SUPPLEMENTARY MATERIAL

Analysis of Biological Diversity between the cyanobacteria Cylindrospermospsis and Sphaerospermopsis

Reno Nooblath

Federal University of Pará (UFPA), <u>reno.bioinfo@gmail.com</u>, +55 (91) 98208-1316, Augusto Corrêa Street, 01 – Bairro Guamá – CEP 66075-110 Belém–Pará – Amazônia, Brasil.

Daniel Gomes

Federal University of Pará (UFPA), <u>daniel.h.gomes18@gmail.com</u>, +55 (91) 98126-7143, Augusto Corrêa Street, 01 – Bairro Guamá – CEP 66075-110 Belém – Pará – Amazônia, Brasil.

Vinícius Abreu

Federal University of Pará (UFPA), <u>vabreuufpa@gmail.com</u>, +55 (91) 99810-7845, Augusto Corrêa Street, 01 – Bairro Guamá – CEP 66075-110 Belém –Pará – Amazônia, Brasil.

Sintia Silva de Almeida

Federal University of Pará (UFPA), <u>sintiaalmeida@gmail.com</u>, +55 (91) 98218-2015, Augusto Corrêa Street, 01 – Bairro Guamá – CEP 66075-110 Belém – Pará – Amazônia, Brasil.

Table S1. Origin of the *Cylindrospermopsis* and *Sphaerospermopsis* strains used in this study and their taxonomic identification on NCBI, organized in ascending order based on the number of scaffolds..

Organism	Taxonomy ID	Scafolds	Origin of Sample	Size	GC%
C. raciborskii KLL07	683357	1	Israel	3.80818	40.2
C. raciborskii N8	1524929	1	China	3.85717	40.1
C. raciborskii Cr2010	2108055	1	Netherlands	3.75785	40.2
C. curvispora GIHE G1	2666332	2	South Korea	4.05721	40117
C. raciborskii DSH	3117726	2	China	4.0	40
C. raciborskii GIHE 2018	2588993	3	South Korea	3.62982	40.2
C. raciborskii CS-505	533240	6	Australia	3.9	40
R. brookii D9	533247	47	Brazil	3.2	40
C. raciborskii CENA 302	1170768	58	Brazil	3.5	40
C. raciborskii CENA 303	1170769	77	Brazil	3.4	40.5
C. raciborskii MVCC14	940191	99	Uruguay	3.6	40.1
C. raciborskii KL1	2787621	100	USA	3.7	40
C. raciborskii PAMP2012	2969974	134	Brazil	3.2	40
C. sp. CR12	1747196	136	Malaysia	3.7	40
C. raciborskii MVCC 19	940192	155	Uruguay	3.5	40
C. raciborskii CS508	533243	162	Australia	3.6	40
C. raciborskii CYRF	2021698	166	Brazil	4.2	40
C. raciborskii 1523720	77022	173	Índia	3.2	40
C. raciborskii CYLP	2021699	188	Brazil	4.2	40
C. raciborskii CHAB3438	1480071	189	China	3.5	40.5
C. raciborskii ITEPA-A1	1810942	195	Brazil	3.6	40

S. torques-reginae ITEP-024	984208	1	Brazil	5.3	37.5
S. kisseleviana NIES-73	1973480	2	Japan	5.4	37.5
S. sp. SIO1G1	2607814	38	Puerto Rico	5.2	36.5
S. sp. FACHB-1194	2692862	108	China	5.4	37.5
S. sp. LEGE 08334	1828651	119	Mexico	5.5	37
S. sp. LEGE 00249	1380707	177	Portugal	5.3	37.5

Table S2. 16S rRNA Sequences used in this study.

Organism 16S rRNA Sequences

>Cylindrospermopsis_raciborskii_KLL07_GEN_REF

GAACGGGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATTGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGTGGTGTAAGGGACCACCAAGGCATCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC CGTGCCAGCAGCGGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGCAGGTGGAACTGAAAGTCTGCTGTTAAAGAGTTTGGCTTAACCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGTAACT GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGG ACTTGACATCCTGCGAATCCTGGTGAAAGCTGGGAGTGCCTTAGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCAG $\tt CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCT$ AGAGAGACTGCCGGTGACAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTGCGGACAGAGGGCAGCGAGCCAGGGATGGCAAGCGAATCCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCC TTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA

GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Cylindrospermopsis curvispora GIHE G1 GEN

GAACGGGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATCGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGTGGTGTAAGGGACCACCAAGGCGTCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG $\tt CCCAGACTCCTACGGGAGCAGCAGTGGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATACCGCGTGAGGGA$ GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC CGTGCCAGCAGCGGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGCAGGTGGAACTGAAAGTCTGCTGTTAAAGAGTTTGGCTTAACCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGTGGTAGGGGCAAA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCATAACT GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGG ACTTGACATCCTGCGAATCCCAGTGAAAGCTGGGAGTGCCTTAGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCAG $\tt CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCT$ AGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTACGGACAGAGGGCAGCGAGCCAGGGATGGCAAGCGAATCCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCC TTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCG

>Cylindrospermopsis raciborskii CENA302 GEN

>Cylindrospermopsis raciborskii CENA303 GEN

GAACGAGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGACAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATCGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGCGGTGTAAGGGACCACCAAGGCATCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG CCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATACCGCGTGAGGGAGGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC CGTGCCAGCAGCGGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGCAGGTGGAACT GAAAGTCTGCTGTTAAAGAGTTTGGCTTAACCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGTAACT GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGG ACTTGACATCCTGCGAATCCCGGTGAAAGCTGGGAGTGCCTTAGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCAG CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCTAGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA $\operatorname{CGTACTACAATGCTACGGACAGGGCAGCGAGCCAGGGATGGCAAGCGAATCCAGAAACCGTAGCTCAGTTCAGATCGAGAGATCGAGAATCGAGATCGAGATCGAGATCGAGATCGAGATCGAGATCGAGATCGAGATCGAGATCGAGATC$ AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Cylindrospermopsis raciborskii CHAB3438 GEN

GAACGGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATTGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGTGGTGTAAGGGACCACCAAGGCGTCGATCAGTAGCTGGTCTGAGAGGGATGATCAGCCACACTGGGACTGAGACACGG CCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATACCGCGTGAGGGA GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC

>Cylindrospermopsis raciborskii Cr2010 GEN

GAACGGGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATTGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGTGGTGTAAGGGACCACCAAGGCGTCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG $\tt CCCAGACTCCTACGGGAGCAGCAGTGGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATACCGCGTGAGGGA$ GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC CGTGCCAGCAGCGGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGCAGGTGGAACTGAAAGTCTGCTGTTAAAGAGTTTGGCTTAACCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGTAACT GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGG ACTTGACATCCTGCGAATCCTGGTGAAAGCTGGGAGTGCCTTAGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCAG ${\sf CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCT}$ AGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTACGGACAGAGGGCAGCGAGCCAGGGATGGCAAGCGAATCCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCC TTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Cylindrospermopsis raciborskii CS 505 GEN

GAACGGGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATTGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGTGGTGTAAGGGACCACCAAGGCGTCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC $\operatorname{CGTGCCAGCAGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGCAGGTGGAACT$ GAAAGTCTGCTGTTAAAGAGTTTGGCTTAACCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGTAACT GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGG ACTTGACATCCTGCGAATCCCGGTGAAAGCTGGGAGTGCCTTAGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCGTCAG ${\sf CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCT}$ AGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTACGGACAGAGGGCAGCAAGCCAGGGATGGCAAGCGAATCCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCG

>Cylindrospermopsis_raciborskii_CS_508_GEN

>Cylindrospermopsis raciborskii CYLP GEN

GAACGGGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATCGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGCGGTGTAAGGGACCACCAAGGCATCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC CGTGCCAGCAGCGGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGCAGGTGGAACTGAAAGTCTGCTGTTAAAGAGTTTGGCTTAACCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGTAACT GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGG ACTTGACATCCTGCGAATCCCGGTGAAAGCTGGGAGTGCCTTAGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCGTCAG $\tt CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCT$ AGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTACGGACAGAGGGCAGCGAGCCAGGGATGGCAAGCGAATCCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCC TTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Cylindrospermopsis_raciborskii_CYRF_GEN

GAACGGATGCTTAGGCATCTAGTGGCGGACGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAAGATTTATCGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGCGGTGTAAGGGACCACCAAGGCATCGATCAGTAGCTGGTCTGAGAGAGGATGATCAGCCACACTGGGACTGAGACACGG CCCAGACTCCTACGGGAGCAGCAGCAGTGGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATACCGCGTGAGGGA GGAAGGCTCTTGGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC CGTGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCCGTAAAGGGTCTGCAGGTGGAACT

>Cylindrospermopsis raciborskii DSH GEN

GAACGGGGTGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATTGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGTGGTGTAAGGGACCACCAAGGCGTCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCGTAAGGAAGAAGTGACGGTACTTGAGGAATAAGCATCAGCTAACTCC ATTAACAACGCCAGCATAATACGGAGGATTTGAAGCGTTATCCAAGATGATTGGGCGTAAAGGGTCTGCGGGTGGAAC TGAAAGTCTGCTGTTAAAGAGTTTGGCTTAGCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGCGGTAGGAGCAAA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGTAACT GACACTGAGGGACGAAAGCTAGAGGCGAATGGGATTAGATACCCCAGTAGTCCTGTCCGTAAACGATGGATCACTGGGC $\mathsf{TCAAAGGAATTGACGAAGCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGACTT$ GACATCCTGCGAATCCTGGTGAAAGCTGGGAGTGCCTTCGGGGGCGCAGAGACGGGTGGTGCATGGCTGTCAGCTCGT GTCGTGAGATGTTGGGTTAAGTCCCGCAACTTGAGACGCAACCCTCGTTTTTAGTTGCCAGCATTAAATTGGAAACTCTAG AGAGACTGCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCGGCATACCCCTTACGTCTTGAGCTACACACGT ACTACAATGCTACGGACAGAGGGCAGCAAGCGGGATGGCAGCGAATCAAGAAACCGTAGCTCAGTTCAGATCGAAGGCT GCAACTCGCCTTCGTGAAGGGAGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCAGGCTTATGTTA $\tt CTGCCGTCACACCATGGAGATTGGTCACCGCTTGAAGTCGTTACCCCAACCGAAAGGAGGATGCCTAAAATGGGACTGG$ TGACTGGGGTGAAGTCGT

>Cylindrospermopsis raciborskii GIHE 2018 GEN

GAACGGGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATTGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGTGGTGTAAGGGACCACCAAGGCGTCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC $\operatorname{CGTGCCAGCAGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGCAGGTGGAACT$ GAAAGTCTGCTGTTAAAGAGTTTGGCTTAACCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGTAACT GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGG ACTTGACATCCTGCGAATCCTGGTGAAAGCTGGGAGTGCCTTAGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCAG ${\sf CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCT}$ AGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTACGGACAGAGGGCAGCGAGCCAGGGATGGCAAGCGAATCCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCG

>Cylindrospermopsis raciborskii isolate 1523720 GEN

ACACAGGTGTTGCATGGCTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCATTCTT ATTTGCCAGCGAGTAATGTCGGGAACTATAAGAAAACTGCCGGCCCTAAGCCGGAGGAAGGTGAGGACGAGGTCAAGTC ATCATGGCCCTTATGGGTTGGGCTACACGCGTGCTACAATGGTATCTACAGAGGGAAGCAATATGGCGACATGGAGCAAA TCCTCAAAAGATATCTCAGTTCGGATTGGTCTCTGCAACTCGAGACCATGAAGTTGGAATCGATAGTAATCGCAGATCAG CATGCTGCGGTGAATATCTTCCTGAGCCTTGT

>Cylindrospermopsis raciborskii ITEP A1 GEN

GAACGGGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATCGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGCGGTGTAAGGGACCACCAAGGCATCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC CGTGCCAGCAGCGGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGCAGGTGGAACTGAAAGTCTGCTGTTAAAGAGTTTGGCTTAACCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGTAACT GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGG ACTTGACATCCTGCGAATCCCGGTGAAAGCTGGGAGTGCCTTAGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCAG ${\sf CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCT}$ AGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTACGGACAGAGGGCAGCGAGCCAGGGATGGCAAGCGAATCCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Cylindrospermopsis raciborskii MVCC14 GEN

GAACGGGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG
GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATCGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT
GGCGGTGTAAGGGACCACCAAGGCATCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG
CCCAGACTCCTACGGGAGGCAGCAGTGGGGAAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATACCGCGTGAGGGA
GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC
CGTGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGCAGGTGGAACT
GAAAGTCTGCTGTTAAAGAGTTTGGCTTAACCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAA

>Cylindrospermopsis raciborskii MVCC19 GEN

GAACGGGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATCGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGCGGTGTAAGGGACCACCAAGGCATCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC CGTGCCAGCAGCGGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGCAGGTGGAACTGAAAGTCTGCTGTTAAAGAGTTTGGCTTAACCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGTAACT GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGG ACTTGACATCCTGCGAATCCCGGTGAAAGCTGGGAGTGCCTTAGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCAG $\tt CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCT$ AGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTACGGACAGAGGGCAGCGAGCCAGGGATGGCAAGCGAATCCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCC TTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCG

>Cylindrospermopsis raciborskii N8 GEN

GAACGGGATGCTTAGGCATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTCCAGGTCGGGGATAACAGTTG GAAACGACTGCTAATACCGGATGTGCCGAGAGGTGAAAGATTTATTGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGTGGTGTAAGGGACCACCAAGGCGTCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTC $\operatorname{CGTGCCAGCAGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGCAGGTGGAACT$ GAAAGTCTGCTGTTAAAGAGTTTGGCTTAACCAAATAAAAGCGGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGTAACT GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGG ACTTGACATCCTGCGAATCCTGGTGAAAGCTGGGAGTGCCTTCGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCAG ${\sf CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCT}$ AGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTACGGACAGAGGGCAGCGAGCCAGGGATGGCAAGCGAATCCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Raphidiopsis_brookii_D9_GEN

CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCT AGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTACGGACAGAGGGCAGCGAGCCAGGGATGGCAAGCGAATCCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCC TTGTACACACCGCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Sphaerospermopsis torques reginae ITEP 024 GEN REF

GAACGAAATCTTCGGATTTAGTGGCGGACGGGTGAGTAACGCGTGAGAATTTGGCTTCAGGTCGGGGACAACAGTTGGA AACGACTGCTAATACCGGATGTGCCGGAAGGTGAAAGATTTATCGCCTGAAGATAAGCTCGCGTCTGATTAGCTAGTTGG TGGTGTAAGGGACTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCC AAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAAAAATGACGGTACTTGAGGAATAAGCATCGGCTAACTCCG TGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGTAGGTGGTACTGA AAGTCTGCTGTTAAAGAGCAAGGCTCAACCTTGTAAAAGCAGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAAAG GAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGCAACTG ACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGGC TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGA $\tt CTTGACATCCTGCGAATCCCGGTGAAAGCTGGGAGTGCCTTAGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCAGC$ TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGATGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGCAGCTACACAGCGATGTGATGCAAAATCCAAAAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCC TTGTACACCCCGCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGTTTGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Sphaerospermopsis kisseleviana NIES 73 GEN

>Sphaerospermopsis aphanizomenoides 1LT27S09 SILVADB EX

GAACGGGATCTTAGGATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATTTGGCTTCAGGTCGGGGACAACAGTTGGA AACGACTGCTAATACCGGATGTGCCGGAAGGTGAAAGATTTATCGCCTGAAGATAAGCTCGCGTCTGATTAGCTAGTTGG TGGTGTAAGGGACTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCC AAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTCCG TGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGTAGGTGGTACTGA AAGTCTGCTGTTAAAGAGCAAGGCTCAACCTTGTAAGAGCAGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAAAG GAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGCAACTG ACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGGC TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGA $\tt CTTGACATCCTGCGAATTTTCCTGAAAGGGAAAAGTGCCTTCGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCGTCAGC$ TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGATGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGCGGCTACACAGCGATGTGATGCAAATCTCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Sphaerospermopsis aphanizomenoides NRERC 603 NO GEN EX

GAACGGGATCTTAGGATCTAGTGGCGGACGGGTGAGTAACGCGTGAGAATTTGGCTTCAGGTCGGGGACAACAGTTGGA AACGACTGCTAATACCGGATGTGCCGGAAGGTGAAAGATTTATCGCCTGAAGATAAGCTCGCGTCTGATTAGCTAGTTGG TGGTGTAAGGGACTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCC AAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAAGAAGTGACGGTACTTGAGGAATAAGCATCGGCTAACTCCG TGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGTAGGTGGTACTGA AAGTCTGCTGTTAAAGAGCAAGGCTCAACCTTGTAAGAGCAGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAAAG GAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGCAACTG ACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGGC TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGA $\tt CTTGACATCCTGCGAATCTCGGTGAAAGCTGAGAGTGCCTTCGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCGTCAGC$ TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGATGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGCGGCTACACAGCGATGTGATGCAAATCTCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Sphaerospermopsis aphanizomenoides NRERC 607 NO GEN EX

CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGATGGGCACTCT AGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTACGGACAAAGGGCGGCTACACAGCGATGTGATGCAAATCTCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCC TTGTACACACCGCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Sphaerospermopsis oumiana NIES 1679 NO GEN EX

GAACGGACTCTTAGGAGTTAGTGGCGGACGGGTGAGTAACGCGTGAGAATTTGGCTTCAGGTCGGGGACAACAGTTGGA AACGACTGCTAATACCGGATGTGCCGGAAGGTGAAAGATTTATCGCCTGAAGATAAGCTCGCGTCTGATTAGCTAGTTGG TGGTGTAAGGGACTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCC AAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAATGCAATGACGGTACTTGAGGAATAAGCATCGGCTAACTCCG TGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGTAGGTGGTACTGA AAGTCTGCTGTTAAAGAGCAAGGCTCAACCTTGTAAGAGCAGTGGAAACTACAGAACTGGAGTGCGGTAGGGGCAAAAG GAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGCAACTG ACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGGC TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGA TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGATGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGCGGCTACACAGCGATGTGATGCAAATCTCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCC TTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Sphaerospermopsis reniformis NIES 1949 GEN EX

>Sphaerospermopsis sp FACHB 1094 GEN EX

GAACGGACTCTTAGGAGTTAGTGGCGGACGGGTGAGTAACGCGTGAGAATTTGGCTTCAGGTCGGGGACAACAGTTGGA AACGACTGCTAATACCGGATGTGCCGGAAGGTGAAAGATTTATCGCCTGAAGATAAGCTCGCGTCTGATTAGCTAGTTGG TGGTGTAAGGGACTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCC AAGGCTCTTGGGTCGTAAACCTCTTTTCTCAAGGAAGAATGCAATGACGGTACTTGAGGAATAAGCATCGGCTAACTCCG TGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGTAGGTGGTACTGA AAGTCTGCTGTTAAAGAGCAAGGCTCAACCTTGTAAGAGCAGTGGAAACTACAGAACTAGAGTGCGGTAGGGGCAAAAG GAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTTTGCTAGACCGCAACTG ACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGGC TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGA $\tt CTTGACATCCTGCGAATTTTCCTGAAAGGGAAAAGTGCCTTCGGGAGCGCAGAGACAGGTGGTGCATGGCTGTCGTCAGC$ TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGATGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGCGGCTACACAGCGATGTGATGCAAATCTCAGAAACCGTAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACCCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGGTGACTGGGGTGAAGTCGT

>Anabaena_cylindrica_FACHB_243_GEN

GAACGGAATCCTTAGGGATTTAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTTCAGGTCGGGGACAACAGTTG GAAACGACTGCTAATACCGGATATGCCGAGAGGTGAAAGATTAATTGCCTGGAGATGAGCTCGCGTCTGATTAGCTAGTT GGTGGGGTAAGAGCCTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAGGGAAGAAAAAAATGACGGTACCTGAGGAATAAGCATCGGCTAACTC $\operatorname{CGTGCCAGCAGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGTCCGCAGGTGGCCAT$ GTAAGTCTGCTGTTAAAGAGTCATGCTTAACATGATAAAAGCAGTGGAAACTACAGAGCTAGAGTACGTTCGGGGCAGA GGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGCTCTGCTAGGCCGTAAC TGACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAG ACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAA GGCTTGACATGTCGCGAATCTTTCTGAAAGGAGAGAGTGCCTTCGGGAGCGCGAACACAGGTGGTGCATGGCTGTCA GCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTC TAGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACAC ACGTACTACAATGCTACGGACAAAGGGCAGCTACACAGCGATGTGATGCTAATCTCATAAACCGTAGCTCAGTTCAGATC GCAGGCTGCAACTCGCCTGCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGC $\tt CTTGTACACCGCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAGGAGGGGGGATGCCTA$ AGGTAGGACTGGTGACTGGGGTGAAGTCGT

>Anabaena_cylindrica_PCC_7122_GEN

GCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTC TAGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACAC ACGTACTACAATGCTACGGACAAAGGGCAGCTACACACGCGATGTGATGCTAATCTCATAAACCGTAGCTCAGGTCAGATC GCAGGCTGCAACTCGCCTGCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGC CTTGTACACACCGCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCGAAAGGAGGGGGATGCCTA AGGTAGGACTGGTGACTGGGGTGAAGTCGT

>Anabaena sp 90 GEN

GAACGGAATCTTTAGGGATTTAGTGGCGGACGGGTGAGTAACGCGTAAGAATCTACCTTCAGGTTGGGGACAACCACTGG AAACGGTGGCTAATACCGAATGTGCCGAGAGGTGAAAGGCTTGCTGCCTGAAGAAGAGCTTGCGTCTGATTAGCTAGTTG GTGGGGTAAGAGCCTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGC GAAGGCTCTTGGGTTGTAAACCTCTTTTCTCAGGGAAGAAAAAAATGACGGTACCTGAGGAATAAGCATCGGCTAACTCC GTGCCAGCAGCCGCGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCCGCAGGTGGCATTG TATGTCTGCTGTTAAAGAGTTTGGCTCAACCAAATCAAAGCAGTGGAAACTACAAAGCTAGAGTATGGTCGGGGCAGAG GGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAGGCGCTCTGCTAGGCCAAAACT GACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGG TGTAGCTCGTATCGACCCGAGCTGTACCGTAGCTAACGCGTTAAGTATCCCGCCTGGGGAGTACGCAGGCAACTGTGAAA GCTTGACATGTCACGAATCCCGGCGAAAATTGGGAGTGCCTTAGGGAGCGTGAACACAGGTGGTGCATGGCTGTCAG $\tt CTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCT$ AGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACA CGTACTACAATGCTCCGGACAAAGGGCAGCTACACAGCGATGTGATGCGAATCTCATAAACCGGAGCTCAGTTCAGATCG AAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCC TTGTACACCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCGTTACCCCAACCTTTTGGAGGGGGATGCCTAA GGTAGGACTGATGACTGGGGTGAAGTCGT

>Anabaena sp 299 NO GEN

GAACGGAATCTTTAGGGATTTAGTGGCGGACGGGTGAGTAACGCGTAAGAATCTACCTTCAGGTTGGGGACAACCACTGG AAACGGTGGCTAATACCGAATGTGCCGAGAGGTGAAAAGGCTTGCTGCTGAAGAAGAAGACTTGCGTCTGATTAGCTAGTTG GTGGGGTAAGAGCCTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGAGGATGATCAGCCACACTGGGACTGAGACACGGC CCAGACTCCTACGGGAGCAGCAGCAGCAGCAGTGGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATACCGCGTGAGGGAG GAAGGCTCTTGGGTTGTAAACCTCTTTTCTCAGGGAAGAAAAAAATGACGGTACCTGAGGAATAAGCATCGGCTAACTCC GTGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCCGCAGGTGGCATTG

>Anabaena sphaerica FACHB 251 GEN

GAACGGAATGCTTAGGCATTTAGTGGCGGACGGGTGAGTAACGCGTGAGAATTTGGCTTCAGGTCGGGGACAACAGTTG GAAACGACTGCTAATACCGGATATGCCGGAAGGTGAAAGATTTATTGCCTGGAGATAAGCTCGCGTCTGATTAGCTAGTT GGTGGGGTAAGAGCCTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG GGAAGGCTCTTGGGTCGTAAACCTCTTTTCTCAGGGAAGAAAAAAATGACGGTACCTGAGGAATAAGCATCGGCTAACTC CGTGCCAGCAGCGGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCTGTAGGTGGTGCTGTAAGTCTGCTGTTAAAGAGTCACGCTCAACGTGATAAAAGCAGTGGAAACTACAGGACTAGAGTGCGTTCGGGGCAGA AGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAAGCGTTCTGCTAGGCCGCAAC TGACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAG ACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAA GACTTGACATGTCGCGAATCTCGGTGAAAGCTGAGAGTGCCTTCGGGAGCGCGAACACAGGTGGTGCATGGCTGTCGTCA GCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTC TAGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGAGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACAC ${\tt CCTTGTACACCGCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCATTACCCCAACCTTTTGGAGGGGGGATGCCT}$ AAGGTAGGACTGGTGACTGGGGTGAAGTCGT

>Aphanizomenon flos aquae DEX188 GEN

GAACGGTCTTTTAGGAGACAGTGGCGGACGGGTGAGTAACGCGTAAGAATCTACCTTCAGGTTGGGGACAACCACTGGA AACGGTGGCTAATACCGAATGTGCCGAGAGGTGAAAGGCTTGCTGCCTGAAGAAGAGCTTGCGTCTGATTAGCTAGTTGG TAGTGTAAGAGACTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCC AAGGCTCTTGGGTTGTAAACCTCTTTTCTCAGGGAAGAACAGAATGACGGTACCTGAGGAATAAGCATCGGCTAACTCCG TGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCCGTAAAGGGTCCGCAGGTGGCATTGT AAGTCTGCTGTTAAAGAGTTTGGCTCAACCAAATAAGAGCAGTGGAAACTACAAAGCTAGAGTGTGGTCGGGGCAGAGG GAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCAGTGGCGAAGGCGCTCTGCTAGGCCGAGACTG ACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGGC GTAGCTCGTATCGACCCGAGCTGTGCCGGAGCTAACGCGTTAAGTATCCCGCCTGGGGAGTACGCAGGCAACTGTGAAAC TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGG TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGATGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTCCGGACAAAGGGCAGCTACACAGCGATGTGATGCGAATCTCATAAACCGGAGCTCAGTTCAGATCGA AGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCGTTACCCCAACCTATTGGAGGGGGATGCCTAAG GTAGGACTGATGACTGGGGTGAAGTCGT

>Aphanizomenon flos aquae FACHB 1171 GEN

TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAGGTTGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGCAGCTACACAGCGATGTGATGCGAATCTCGTAAACCGTAGCTCAGTTCAGATCGA AGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCT TGTACACACCGCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCGTTACCCCAACCTATTGGAGGGGGATGCCTAAG GTAGGACTGATGACTGGGGGTGAAGTCGT

>Aphanizomenon flos aquae KM1D3 PB GEN

GAACGGTCTTTTCGGAGATAGTGGCGGACGGGTGAGTAACGCGTAAGAATCTACCTTCAGGTTGGGGACAACCAGTGGA AACGGTGGCTAATACCCAATGTGCCGAGAGGTGAAAGGCTTGCTGCCTGAAGAAGAGCTTGCGTCTGATTAGCTAGTTGG TGGGGTAAAAGCCTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCC AAGGCTCTTGGGTTGTAAACCTCTTTTCTCAGGGAAGAACAAAATGACGGTACCTGAGGAATAAGCATCGGCTAACTCCG TGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCCGTAAAGGGTCCGCAGGTGGCATTGT AAGTCTGCTGTTAAAGAGTTTGGCTCAACCAAATAAAAGCAGTGGAAACTACAAAGCTAGAGTGTGGTCGGGGCAGAGG GAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAGGCGCTCTGCTAGGCCAAGACTG ACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGGC GTAGCTCGTATCGACCCGAGCTGTGCCGTAGCTAACGCGTTAAGTATCCCGCCTGGGGAGTACGCAGGCAACTGTGAAAC TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGG $\tt CTTGACATGTCACGAATTCCGTTGAAAGATGGAAGTGCCTTCGGGAGCGTGAACACAGGTGGTGCATGGCTGTCAGC$ TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGCAGCTACACAGCGATGTGATGCGAATCTCATAAACCGTAGCTCAGTTCAGATCGA AGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCT TGTACACACCGCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCGTTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGATGACTGGGGTGAAGTCGT

>Dolichospermum circinale AWQC310F GEN OBS

>Dolichospermum flos aquae LEGE 04289 GEN OBS

GAACGGTCTTTTAGGAGACAGTGGCGGACGGGTGAGTAACGCGTAAGAATCTACCCTCAGGTCGGGGACAACCACTGGA AACGGTGGCTAATACCGGATGTGCCGAGAGGTGAAAGGCTTGCTGCCTGGGGAAGAGCTTGCGTCTGATTAGCTAGTTGG TAGTGTAAGGGACTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCC AAGGCTCTTGGGTTGTAAACCTCTTTTCTCAGGGAAGAAAAAATGACGGTACCTGAGGAATAAGCATCGGCTAACTCCG TGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCCGTAAAGGGTCCGCAGGTGGCATTGT AAGTCTGCTGTTAAAGAGTTTGGCTCAACCAAATAAAAGCAGTGGAAACTACAAAGCTAGAGTTTGGTCGGGGCAGAGG GAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCAGTGGCGAAGGCGCTCTGCTAGGCCGAGACTG ACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGGC GTAGCTCGTATCGACCCGAGCTGTGCCGGAGCTAACGCGTTAAGTATCCCGCCTGGGGAGTACGCAGGCAACTGTGAAAC TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGG $\tt CTTGACATGTCACGAATCCTGTGGAAACATAGGAGTGCCTTAGGGAGCGTGAACACAGGTGGTGCATGGCTGTCGTCAGC$ TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGCAGCTACACAGCGATGTGATGCGAATCTCGTAAACCGTAGCTCAGTTCAGATCGA AGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGAAGTTGGTCACGCCCGAAGTCGTTACCCCAACCGAAAGGAGGGGGATGCCTAA GGTAGGACTGATGACTGGGGTGAAGTCGT

>Dolichospermum sp UHCC 0260 GEN

GAACGGAATCTTTAGGGATTTAGTGGCGGACGGGTGAGTAACGCGTAAGAATCTACCTTCAGGTCGGGGACAACCACTG GAAACGGTGGCTAATACCGGATGTGCCGAGAGGTGAAAGGCTTGCTGCCTGAAGAAGAGCTTGCGTCTGATTAGCTAGTT GGTGGGGTAAGAGCCTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGG GGAAGGCTCTTGGGTTGTAAACCTCTTTTCTCAGGGAAGAAAAAAATGACGGTACCTGAGGAATAAGCATCGGCTAACTC CGTGCCAGCAGCGGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGGGTCCGCAGGTGGCATTGTATGTCTGCTGTTAAAGAGTCTGGCTCAACCAGATCAAAGCAGTGGAAACTACAAAGCTAGAGTATGGTCGGGGCAGA GGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCGGTGGCGAAGGCGCTCTGCTAGGCCAAAAC TGACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAG GTGTAGCTCGTATCGACCCGAGCTGTACCGTAGCTAACGCGTTAAGTATCCCGCCTGGGGAGTACGCAGGCAACTGTGAA ACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAA GGCTTGACATGTCACGAATTCCGGCGAAAGTTGGGAGTGCCTTAGGGAGCGTGAACACAGGTGGTGCATGGCTGTCA GCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTC TAGAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACAC ACGTACTACAATGCTCCGGACAAAGGGCAGCTACACAGCGATGTGATGCGAATCTCATAAACCGGAGCTCAGTTCAGATC GAAGGCTGCAACTCGCCTTCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGC $\tt CTTGTACACCGCCGTCACACCATGGAAGTTGGTCACGCCGAAGTTGTTACCCCAACCTTTTGGAGGGGGATGCCTA$ AGGTAGGACTGATGACTGGGGTGAAGTCGT

>Nodularia_harveyana_Huebel_1983_300_NO_GEN

TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGATGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGCAGCTACACACGCAATGTGATGCAAATCTCAGAAACCGTAGCTCAGTTCAGATCGC AGGCTGCAACTCGCCTGCGTGAAGTAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCT TGTACACACCGCCCGTCACACCATGGAAGCTGGTCACGCCCGAAGTCGTTACCCCAACTTTTAGGAGAGGGGGATGCCGA AGGTAGGACTGGTGACTGGGGTGAAGTCGT

>Nodularia sp LEGE 06071 GEN

GAACGGTCTCTTCGGAGATAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTGGCTTCAGGTCGGGGACAACCACTGGA AACGGTGGCTAATACCGGATATGCCGAGAGGTGAAAGGCTTGCCGCCTGAAGATGAGCTCGCGTCTGATTAGCTAGTAGG TGTGGTAAAGGCGCACCTAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCC AAGGCTCTTGGGTTGTAAACCTCTTTTCTCAGGGAAGAAAAAAATGACGGTACCTGAGGAATAAGCATCGGCTAACTCCG TGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCCGTAAAGGGTCCGCAGGTGGCTATGT AAGTCTGCTGTTAAAGAACTTAGCTTAACTAGGTAAAAGCAGTGGAAACTACAAGGCTAGAGTGCGTTCGGGGTAGAGG GAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCAGTGGCGAAGGCGCTCTACTAGGCCGCAACTG ACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGGC GTGGCTTGTATCGACCCGAGCCGTGCCGGAGCTAACGCGTTAAGTATCCCGCCTGGGGAGTACGCAGGCAACTGTGAAAC TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGA $\tt CTTGACATGTCGCGAATCTCTCTGAAAGGAGAGAGTGCCTTCGGGAGCGCGAACACAGGTGGTGCATGGCTGTCGTCAGC$ TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGTAGCTACACAGCAATGTGATGCCAATCTCAGAAACCGTAGCTCAGTTCAGATCGC AGGCTGCAACTCGCCTGCGTGAAGGAGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCT TGTACACACCGCCGTCACACCATGGAAGCTGGTCACGCCCGAAGTCGTTACCCCAACTTTTCGGAGAGGGGGATGCCGA AGGCAGGACTGGTGACTGGGGTGAAGTCGT

>Nodularia_sp_NIES_3585_GEN

>Nodularia sphaerocarpa UHCC 0038 GEN

GAACGGTCTCTTCGGAGATAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTAGCTTCAGGTCGGGGACAACCACTGGA AACGGTGGCTAATACCGGATATGCCGAGAGGTGAAAGGCTTGCTGCCTGAAGATGAGCTCGCGTCTGATTAGCTAGTAGG TGTGGTAAAAGCGCACCTAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCC AAGGCTCTTGGGTTGTAAACCTCTTTTCTCAGGGAAGAAAAAAATGACGGTACCTGAGGAATAAGCATCGGCTAACTCCG TGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCCGTAAAGGGTCCGCAGGTGGCTATGT AAGTCTGCTGTTAAAGAACCTAGCTTAACTAGGTAAAAGCAGTGGAAACTACAAGGCTAGAGTGCGTTCGGGGTAGAGG GAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCAGTGGCGAAGGCGCTCTACTAGGCCGCAACTG ACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGGC TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGA $\tt CTTGACATGTCGCGAATCTTCTTGAAAGGGAAGAGTGCCTTCGGGAGCGCGAACACAGGTGGTGCATGGCTGTCGTCAGC$ TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGTAGCTACACAGCAATGTGATGCCAATCTCAGAAACCGTAGCTCAGTTCAGATCGC AGGCTGCAACTCGCCTGCGTGAAGTCGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGAAGCTGGTCACGCCCGAAGTCGTTACCCCAACTTTTCGGAGAGGGGGATGCCGA AGGCAGGTCTGGTGACTGGGGTGAAGTCGT

>Nodularia spumigena CCY9414 GEN

GAACGGTCTCTTCGGAGATAGTGGCGGACGGGTGAGTAACGCGTGAGAATCTAGCTTCAGGTCGGGGACAACCACGGGA AACTGTGGCTAATACCGGATATGCCGAGAGGTGAAAGGCTTGCTGCCTGAAGATGAGCTCGCGTCTGATTAGCTAGTAGG TGTGGTAAAAGCGCACCTAGGCGACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCC AAGGCTCTTGGGTTGTAAACCTCTTTTCTCAGGGAAGAAAAAAATGACGGTACCTGAGGAATAAGCATCGGCTAACTCCG TGCCAGCAGCCGCGGTAATACGGAGGATGCAAGCGTTATCCGGAATGATTGGGCCGTAAAGGGTCCGCAGGTGGCTATGT AAGTCTGCTGTTAAAGAACCTAGCTTAACTAGGTAAAAGCAGTGGAAACTACAAGGCTAGAGTGCGTTCGGGGTAGAGG GAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAAGAACACCAGTGGCGAAGGCGCTCTACTAGGCCGCAACTG ACACTGAGGGACGAAAGCTAGGGGAGCGAATGGGATTAGATACCCCAGTAGTCCTAGCCGTAAACGATGGATACTAGGC TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCAAGA $\tt CTTGACATGTCGCGAATCTCTCTGAAAGGAGAGAGTGCCTTCGGGAGCGCGAACACAGGTGGTGCATGGCTGTCGTCAGC$ TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGTTTTTAGTTGCCAGCATTAAGTTGGGCACTCTA GAGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAGTCAGCATGCCCCTTACGTCTTGGGCTACACAC GTACTACAATGCTACGGACAAAGGGCAGCTACACAGCAATGTGATGCAAAATCTCACAAAACCGTAGCTCAGTTCAGATCG CAGGCTGCAACTCGCCTGCGTGAAGTCGGAATCGCTAGTAATTGCAGGTCAGCATACTGCAGTGAATTCGTTCCCGGGCCTTGTACACCCCGCCGTCACACCATGGAAGCTGGTCACGCCCGAAGTCGTTACCCCAACTGTTCGCAGAGGGGGATGCCG AAGGCAGGACTGGTGACTGGGGTGAAGTCGT

>Synechococcus_elongatus_PCC_6301_GEN

TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCACGTTTTTAGTTGCCATCATTCAGTTGGGCACTCTA GAGAAACTGCCGGTGACAAACCGGAGGAAGGTGTGGACGACGTCAAGTCATCATGCCCCTTACATCCTGGGCTACACAC GTACTACAATGCTCCGGACAGCGGAGACGCGAAGCCGCGAGGTGAAGCAAATCTCCCAAACCGGGGCTCAGTTCAGATTG CAGGCTGCAACTCGCCTGCATGAAGGCGGAATCGCTAGTAATCGCAGGTCAGCATACTGCGGTGAATACGTTCCCGGGCC TTGTACACACCGCCCGTCACACCATGGAAGTTGGCCATGCCCGAAGTCGTTACCCTAACCGTTCGCGGAGGGGGGCCCG AAGGTAGGGCTGATGACTGGGGTGAAGTCGT

Table S3. Sequences of 31 conserved proteins in cyanobacteria used in this study.

Organism Sequence

>Cylindrospermopsis_curvispora_GIHE_G1

MOIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPTKOIYYCFGCOASGNAIKFIMDLNKROFAE VVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQGKRFLKTETVEKFALGYAPPG WETLYHYLVENKNYPAHLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETELFDKSKTLF ALDLAKDAISKLDQAVVVEGYFDAIALHAKGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISNL AYKGEVQLKILHIPDGKDADEYLKNHSVTDYGQLLVDAPLWLDWQIAQVIQGRDLKQPTDFQLVSREFVKLLQKILNSDTLNY YISHCAEILSLGDSRLIPLRVENLITOVTPTAILRPTPNSTIWSKTSPISHPOPSLLEOAEGLLLRIFLHCPOEROVIIETLGSSNLEFSV SHHRFLWEKSLQFPSQTLDLISQLQNLYLETQNDLGPVQHIFQLNEKNKQEILLRTNQLVQAAIACMEKVFRENRYRHFLELWQ KTDPNTDPDQYNLYAQTIYADKMRIQELSKQRQLSIADLIDMTLAEAESTMKKTVEATQKAFNSIRTGRANASLLDKVQVEYY GNPAPLKSLANITTPDASTILIQPYDRTSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSERRKELVKLAAKYAEEGRVGIRNIRR DALDSIRKQQKAADISEDESRDQQDKLQKITNIYTAKIDELLAEKEKDISTVMPVIEKKRTRDLPQINERIRFPKIRVIDSEGAQLG IMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERF LKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLERNLP RLAVOSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNCDHOISLDEVOOVAPEAOSGD SVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPKRE QLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTL DRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQN VRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQDESNQPDSQFEVREEEYEDDPDEGEDEFNSMGEENMSKKSLASLS AADISDKRALVRVDFNVPVDNOGNITDDTRIRAALPTIODLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLGOEVIKTD DCIGDDVTAQVAALEKGQVLLLENVRFYKEEENNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEK

ELQYLQGAIEAPQRPLVAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLELASSLEKEAAKRGVT LLLPTDIVAADKFAPDADAVTVSIDHIPDDRMGLDIGPESVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEIGK TGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRD YSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIP HITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSI GIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSHP QSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARN QQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFDPQTDYPVINLLPEQQDVIDLGGTMRLGLYPCHVQPNTLAFDLYQEEVIY ERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPKHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGSAPMVK KVSRRLQALQAKVEERDYAPLEALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVIARGEKVTEA TNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLEFRADRTGIV HVMFGKASFTPEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISATMGPSIKIDINALRDLKTTDAAMGTRSYRPYTPSTRQVTI SDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALVEYEDGEKRYI LHPNGLKVGAKITAGPQAPFEDGNALPLGNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPSGEVRMVRR ECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTRKRKKASS KLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIKAGPCTVTQVKTQPTDGYCAIQVGYGEVKPKALNKP KLGHLAKSSAGPVRYLNEYRTDTAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGA GTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESTVKNWQGEEVGQTS FELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDFNIKL NRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGAEADQKTLLILSEIGQSTETISLSARNVENIKVIAADQL NVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYSQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEAAQNAKALEASL SEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGNYTLGVREQLIFPE VEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELSRDLPAHVTVSQ SGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPAGVQFAVEN NTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNAGKANPAPPVGP ALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGSITRTQLKEIAQT KLPDLNANDIEAAMNIVEGTAKNMGVTVKDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAPVGGMAVIAAPGGAA AAEVVEEQTEFDVILQEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKESADDISKKITEAGGKVTIKMSSKTYL PPEEEIKRDWYVVDAADKRLGRLATEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKQSQKLYRRHSGRPGGMKT ETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGSTHPHTAQKPKELIINTIPGENMIQPQTYLNVADNSGARKLMCI RVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPKGTRVFGPVARE LRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRRGGKIWIRI

FPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNAQEIIRSIEA EQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKIMRRGKVRR AKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDF RRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPTTFAKVAELASSVKGNMAHKKGTGSTRNGRDSNAQR LGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVTEEAVASMNNENYMEPS FLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVOMYVPTRLLNKETGDIK EQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSV QVLLKALGLSDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYDLGRVGRYKLNK KLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVLTPASLV NPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHA RVNQYGFLETPFRPVENGRVCYEKPPVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQVDYVAVSPVQIV SVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATEIRVRVKEKAALT NRESESIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPWEGYNYEDAILISE RLVOEDVYTSIHIEKFEIEAROTKLGPEEITREIPNVGEDALROLDEOGIIRVGAWVESGDILVGKVTPKGESDOPPEEKLLRAIFG EKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPLEDMPYLP DGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSRDWVYNPENPGKI MVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELL TVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQISRRTPPRPTYESF SRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRTQAEQGKKFLFVGT KRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSKLQKYLGGIKNM RKVPDVVIIVDQRREYNAVQECQKLGIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQLEVESDYEDYES AEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPDRYPELLQEDHKLRQYIEQKLGRNAQNNAGISEIH IERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQLERRVSFRRVVRQA IQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEIIPGQEDIVSQPVTRE REPRRRQOORRROOFEDRSNEAMATGRRKASKAKKEETNWOERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGOVGVGVGKA SDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKQLGSNNPLNN ARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAENNSGRALYWGTGRRKSAVAQVRLVPGEGKFVVNGKEGELYFQYNP NYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERKKYGLHKARKAP QYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIHQP SSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGIAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGT PFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMARIAGVDLPRDKR VEIGLTYIYGIGLTRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYRGRRHRMGLPV

RGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNEKQVIKTWSRASTILPLMVGHTIAVHNG KQHVPVFVNEQMVGHKLGEFAPTRTYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQLTGTEVKSIRAGK VNLQDGYALLRNGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHRLEIRKLIGKVEQQGLTLIPLKMYFKRGWVKISIGLCRG KKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQELRQKTGAGMMDCKKALSETQGNIDEAIDWLRKKGIASAGKKSDR VTAEGLVDIYTTPDGNRGVLIEVNCQTDFVARNDAFKLLVKNLAKQAINANNVTSLLAQPYIENASVTVDEYIKETIATLGENIQ VRRFVNFSLEDAPGAIDGYIHTGGRVGVLVSIIVDTGTAAANEEVKSLAKNTAMQVAACPNVEYVSVDKIPDQVVQKEKEIEM GKEDLGNKPANIKEKIVQGRIDKRLREMTLLDQPYIRDQNISVADLIRQVESQVSGKIKVHEFVRYILGEGIEKQESNFAEEVAA OIGTK

>Cylindrospermopsis raciborskii CENA302

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPNKQIYYCFGCQASGNAIRFIMDLNKRKFAE VVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPPG WETLYHYLVENKSYPAQLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETELFDKSKTLF ALDVAKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISNL AYKGEVRLKILHIPDGKDADEYLKNHSVTDYEOLLVEAPLWLDWOIAOVIOGRDLKOPTDFOLVSREFVKLLOKILNSDTLNY YISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPILRPPASPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGSSNLEFS VSHYRFLWEKSLQFPSQTLDLISQLQNLYLETQNDLGPVEHIFQLNEKNKQEILLRTNQLVQAAIACMEKVFRENRYRHFLELW QKTDPSTDPDQYNLYAQTIYADKMRIQELSKQRQLSISDLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKVQVDY YGSPTPLKSLTNITTPDASTILIQPYDRSSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVGIRNIR RDALDSIRKQEKAGEISEDESRDQQDKLQKITGKYTAKIDELLTEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDSEGAQL GIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAE RFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEIQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLERN LPRLAVQSSIREALLKGYERYRRAQNLERRQFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHQISLDEVQQVAPEAQS GDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPK REQLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVD TLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEG QNVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQPDNQFEIIEEGYEDDPDEGEDDFNSMEEENMSKKSLAS LSATDISDKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLGQEVIKT DDCIGDDVTAQVAALEKGQVLLLENVRFYKEEEKNDPNFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLV EKELQYLQAAIEVPQRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLELASSLEKKAAERG VTLLLPTDIVAADKFAPDADAVTVSIENIPDDRMGLDIGPKSVKLFQDALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEI GKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGTVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKS RDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQV

IPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELR SIGIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSH POSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARN RQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFDPKTDYPVINLLPEQQDVIDMGGTMRLGLYPCHVQPNTLAFDLYQEEVIY ERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKQLPQ GFPQFPMVKKVSRRLQALQAKVEERDYAPLEALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVI ARGEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLE FRADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKVDINALRDLKTTDAAMGTRSYRP YTPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALL EYEDGEKRYILHPNGLKVGAKVTAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKL PSGEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGA KTRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIKAGPCTVTQVKTQPTDGYCAIQVGYG EVKPKALNKPKLGHLAKSSAVPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGS KNHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESIVKN WQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIF GPKPREFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDOLORPKSKELVAALARWGATADOKTLLILSEIGOSTETISLSARNVE NIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEAA QNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGNYT LGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELSRD LPTHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPA GVQFAVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNAGKA NPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGSITR TQLREIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTVKDMSTATDQILEQLKVLTLLEAAELVKQIEEAFGVSAAAPAGGMM VMAAPGAAAAEPVEEQTEFNVVLEEVPADRKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKESAEEISKKIADAGGKVV IKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKPSQKLYRRHS GRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGSTHPHTAQKPKELIINTIPGENMIQPQTYLNVADN SGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPKGT RVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYI RRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMN AQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKI MRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPATFAKVAELASSVKGMAHKKGTGSTRNG

RDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPSVTEEAVASMNN ENYTEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMYVPTRLLN KETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRID KTRKLSIQVLLKALGLSDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYDLGRVG RYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEV LTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLI GSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQVDYV AVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATEIRVR VKEKAALTNRESETIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPWEGY NYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGESDQPP EEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRI LPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSRDWV YNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFG AAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQVSRR TPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRSQAEQ GKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSKLQ KYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDVPIPANDDAIRSIKLIVGKLADAIYEGRHGQLE VEPDDEDYDIPEEDYEYNESEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLGRNAQNNAGLSEIHIE RKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQLERRVSFRRVVRQAIQ RAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEIIPGQEDIVSQPVTRER EPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQVGVGVGKAS DVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKQLGSNNPLNNA RAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFVVNGKEGELYFQYNPN YLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERKKYGLHKARKAPQ YSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIHQPS SKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTP FAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMARIAGVDLPRDKRV EIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYRGRRHRMGLPVR GQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKLEKLNANNEKQVIKTWSRASTILPLMVGHTIAVHNGK OHVPVFVNEOMVGHKLGEFAPTRTYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQLTGTEVKSIRAGKV NLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYFKRGWVKISIGLCRGK KVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGIMDCKKALNETQGNIDEAIDWLRKKGIASAGKKSDRV

TAEGLVEIYTTPDRSGGVLIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVTSLLAQPYIENTAVTVDEYIKETIATLGENIQ VRRFVNFSLEGSPGAIDGYIHTGGRVGVLISIGVDTETAAKNEEVQSLAKNTAMQVAACPNVEYVSVDKIPDQVVQKEKEIEM GKEDLGNKPENIKEKIVQGRIDKRLKEMTLLDQPYIRDQSISVAELIKQVESKVSEPIKVHQFVRYILGEGIEKQESNFAQEVAAQ IGAK

>Cylindrospermopsis raciborskii CENA303

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPNKQIYYCFGCQASGNAIRFIMDLNKRKFAE VVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPPG WETLYHYLVENKSYPAQLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETELFDKSKTLF ALDVAKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISNL AYKGEVRLKILHIPDGKDADEYLKNHSVTDYEQLLVEAPLWLDWQIAQVIQGRDLKQPTDFQLVSREFVKLLQKILNSDTLNY YISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPILRPPASPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGSSNLEFS VSHYRFLWEKSLQFPLQTLDLISQLQNLYLETQNDLGPVEHIFQLNEKNKQEILLRTNQLVQAAIACMEKVFRENRYRHFLELW QKTDPSTDPDQYNLYAQTIYADKMRIQELSKQRQLSISDLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKVQVDY YGSPTPLKSLSNITTPDASTILIQPYDRSSLNIVEKAISLSDVGLTPSNDGSVVRLNIPPLTSDRRKELVKLAAKYAEEGRVGIRNIR RDALDSIRKQEKAGEISEDESRDQQDKLQKITGKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDNEGAQ LGIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQA ERFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEIQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLER NLPRLAVQSSIREALLKGYERYRRAQNLERRQFDENYFDNFEVELDIDGEGFRVLSTKIIVEEVTNSDHQISLDEVQQVAPEAQS GDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPK REQLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVD TLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEG QNVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQFEVIEEEYERDPDEGEDDFNSMEEENMSKKSLASLSAA DISDKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKFRLTPVAKRLSELLGQEVIKTNDCI GDDVTARVAALEQGQVLLLENVRFHKEEEKNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEKEL QYLQAAIEFPQRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLELASSLEKKAAERGVTLL LPTDIVAADKFAPDADAVTVSIENIPDDRMGLDIGPDSVKLFQDALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEIGKTG ATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGTVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYS VSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTYMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHIT NEIKERVIRVAKETNPAALITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQ PDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSHPQSP VEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARNROIP FLGLCLGMQCSIIEWARNVEGLVGANSAEFDPKTDYPVINLLPEQQDVIDIGGTMRLGLYPCHVQPNTLAFDLYQEEVIYERHR

HRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKQLPHGFPQF PMVKKVSRRLQALQAKVEERDYAPLEALSLLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVIARGE KVTEATNAGADIAGSEELIDEIQRGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLEFRAD RTGIVHVMFGKASFSSEDLLVNLKALOETIDRNRPSGAKGRYWRTFYISSTMGPSIKVDINALRDLKTTDAAMGTRSYRPYTPS TROVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALLEYED GEKRYILHPNGLKVGAKVTAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPSGE VRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTR KRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIKAGPCTVTQVKTQPTDGYCAIQVGYGEVK PKALNQPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNH RAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESIVKNWQ GEEVGQTSFELRIAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPK PRDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATAEQKTLLILSEIGQSTETISLSARNVENIK VIAADQLNVFDLLHADKIVVTSSALNKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEAAQN AKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGNYTLG VREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELSRDLP THVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPAG VQFVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNAGKAN PAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGSITRT QLKEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTVKDMSTATDQILEQLKVLTLLEAAELVKQIEEAFGVSAAAPAGGMMV MAAPGAAAAEPVEEQTEFNVVLEEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKESAEEISKKIAEAGGKVVI KMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKPSQKLYRRHSG RPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGSTHPHTAQKPKELIINTIPGENMIQPQTYLNVADNS GARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPKGTR VFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIR RGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNA QEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKIM RRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDR KKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPATFAKVAELASSVKGMAHKKGTGSTRNGR DSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVTEEAVASMNNE NYMEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVOMYVPTRLLNK ETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDK TRKLSIQVLLKALGLSDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYDLGRVGR

YKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVL TPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIG SLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQVDYVA VSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATEIRVRV KEKAALTNRESESIPHKPQEVKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPWEGYN YEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGESDQPPE EKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILP LEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSRDWVY NPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGA AYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQVSRRT PPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRSQAEQG KKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSKLQK YLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQLEVE PDYEDYDIPEEDYEDEEPGYVDHFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLGRNAQ NNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQLERRV SFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGVKVWVFKGEIIPGQE DIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERG QVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAK QLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFVVNGK EGELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERKKY GLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETR THRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAGS SGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMARI AGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYR GRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKLEKLNANNEKQVIKTWSRASTILPL MVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRTYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQL TGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYFKR GWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNETQGNIDEAIDWLRK KGIASAGKKSDRVTAEGLVDIYTTPDRSGGVLIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVTSLLAQPYIENTDVTVTV DDYIKETIATLGENIQVRRFVNFSLEGAPGVIDGYIHTGGRVGVLVSIGVYTETAAKNEEVQSLARNTAMQVAACPNVEYVSVD KIPDQVVQKEKEIEMGKEDLGNKPENIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKLSEPIIVHQFVRYILGEGI **EKQESNFAQEVAAQIGAK**

>Cylindrospermopsis raciborskii CHAB3438

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPTKQIYYCFGCQASGNAIKFMMDLNKRQFA EVVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPP GWETLYHYLVENKNYPAOLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVOGRVIAFGGRTLTDEOPKYLNSPETELFDKSKT LFALDVSKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEIS NLAYKGEVQLKILHIPDGKDADEYLKNHSVTDYGQLLVDAPLWLDWQIAQVIQGRDLRQPTDFQLVSREFVKLLQKILNSDTL NYYISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPRPPQPDSTTSPNTHPISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGSS NLEFSVSHHRFLWEKSLOFPSQTLDLISQLQNLYLETQNDLGPVQHIFQLNEKNKQEILLRTSQLVQAAIACMEKVFRENRYRHF LELWQKTDPSTDPDQYSLYAQTIYADKMRIQELSKQRQLSIADLINMNKTVEATQRAFNSIRTGRANASLLDKVQVDYYGSPTS LKSLANITTPDATTILIQPYDRTSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVGIRNIRRDALDS IRKQEKAGEVSEDESRDQQDKLQKITSKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDSEGAQLGIMAPL EALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERFLKDG DKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLERNLPRLAV OSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHOISLDEVOOVAPEAOSGDSVVL DVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPKREQLPN DTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTLDRDV DPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQNVRLA ARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQLDNQFEVIEEEYEDDPDAGEDDFNSMEEENMSKKSLASLSAADI SGKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLGQEVIKTDDCIG DDVTTQVAALEKGQVLLLENVRFYKEEEKNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEKELQ YLQGAIEVPQRPLVAIIGGSKVSSKITVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEDDKLVLASSLEKKAAERGVALLL PTDIVAADRFAPDADAVTVSIDSIPDDRMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEISKTGA TTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSV SILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHITN EIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQP DILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSHPQSPV EIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARNRQIPF LGLCLGMQCSIIEWARNVEGLVGANSAEFNPQTDYPVINLLPEQQDVIDLGGTMRLGLYPCHVQPNTLAFDLYQEEVIYERHRH RYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKPNYPLRVSSV PMVKKVSRRLQALQAKVEERDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVIARGE KVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLEFRAD RTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKIDINALRDFKTTDVAMGTRSYRPYTPST

RQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALVEYEDG EKRYILHPNGLKVGAKITAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPSGEVR MVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIQAGPCTVTQVKTQPTDGYCAIQVGYGEVKPK ALNKPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRA PGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESTVKNWQGE EVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPR DFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQNTETISLSARNVENIKVI AADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEAAQNAK ALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGNYTLGVR EQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELSRDLPAH VTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPAGVQ FVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNAGKANPA PPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGSITRTQL KEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTIKDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAPAGGMMMMA APGGAAAAEVVEEKTEFDVILEEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKEAAEDISKKITEAGGKVAIK MSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKQSQKLYRRHSGR PGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGATHPHTAQKPKELIINTIPGENMIQPQTYLNVADNSG ARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPKGTRV FGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRR GGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNA QEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKIM RRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDR KKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPTTFAKVAELASSVKGNMAHKKGTGSTRNG RDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVTEEAVASMNN ENYMEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMYVPTRLLN KETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRID KTRKLSIQVLLKALGLLDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYDLGRVG RYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEV LTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLI GSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQVDYV AVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATEIRVR

VKEKAALTNRESESIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPWEGY NYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGESDQPP EEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRI LPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSKDWV YNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFG AAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQVSRR TPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRSQAEQ GKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSKLQ KYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQLE VESDYEEYESAEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLGRNA ONNAGLSEIHIERKADOVDLELRTARPGVVVGRGGOGIEALRTGLQOLLGSHROVRINVVEVQKVDADAYLIAEYIAQQLERR VSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEIIPGQ EDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNER GQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLA KQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFVVNG KEGELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERKK YGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFET RTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAG SSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMAR IAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYR GRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNEKQVIKTWSRASTILPLM VGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRSYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQLTG TEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYFKRGW VKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNETQGNIDEAIDWLRKKG IASAGKKSDRVTAEGLVDIYTTPDKSGGVIIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVASLLAQPYIEKTDVTVDEYIK ETIATLGENIOVRRFVNFSLEGAPGAIDGYIHTGGRVGVLVSIGVDTETAAKNEELOSLAKNTAMOVAACPNVEYVSVDKIPDO VVEKEKEIEMGKEDLGNKPANIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKVSEPIKVHQFVRYILGEGIEKQE **SNFAEEVAAQIGAK**

>Cylindrospermopsis raciborskii Cr2010

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPTKQIYYCFGCQASGNAIKFMMDLNKRQFA EVVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPP GWETLYHYLVENKNYPAQLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETELFDKSKT

LFALDVSKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEIS NLAYKGEVQLKILHIPDGKDADEYLKNHSVTDYGQLLVDAPLWLDWQIAQVIQGRDLRQPTDFQLVSREFVKLLQKILNSDTL NYYISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPRPPQPDSTTSPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGF SNLEFSVSHHRFLWEKSLQFPSQTLDLISQLQNLYLETQNDLGPVQHIFQLNEKNKQEILLRTSQLVQAAIACMEKVFRENRYRH FLELWQKTDPSTDPDQYSLYAQTIYADKMRIQELSKQRQLSIADLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKV QVDYYGSPTSLKSLANITTPDATTILIQPYDRTSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVG IRNIRRDALDSIRKQEKAGEVSEDESRDQQDKLQKITSKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDS EGAQLGIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVR VKQAERFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEK ISLERNLPRLAVQSSIREALLKGYERYRRAQNLERRQFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHQISLDEVQQVA PEAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVE AELPKREQLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRT KIAVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLA IGKEGQNVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQLDHQFEVMEEEYEDDPDAGEDDFNSMEEENMS KKSLASLSAADISDKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELL GQEVIKTDDCIGDDVTAQVAALEKGQVLLLENVRFYKEEENNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPS VAGYLVEKELQYLQGAIEVPQRPLVAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLGLASSLEK KAAERGVTLLLPTDIVAADKFGPDADAVTVSIDHIPDDRMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAI AQTLAEISKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAAS LGRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDY NGGTVQVIPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPT QHSVKELRSIGIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWE TMVERMSHPQSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDG KISAIEYARNQQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFDPKTDYPVINLLPEQQDVIDLGGTMRLGLYPCHVQPNTLAF DLYQEEVIYERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTH QGSTPMVKKVSRRLQALQAKVEERDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVI ARGEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLE FRADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKIDINALRDFKTTDVAMGTRSYRPY TPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALVE YEDGEKRYILHPNGLKVGAKITAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPS GEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAK TRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIQAGPCTVTQVKTQPTDGYCAIQVGYGE

VKPKALNKPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSK NHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESTVKN WQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIF GPKPRDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQNTETISLSARNV ENIKVIAADOLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEA AQNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGN YTLGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELS RDLPAHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIE PPAGVOFVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKLVAVIKLALNA GKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGS ITRTQLKEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTIKDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAPVGGM AVIAAPGGAAAAEVVEEQTEFDVILQEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKEAAEDISKKITEAGGK VAIKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKQSQKLYRR HSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGATHPHTAQKPKELIINTIPGENMIQPQTYLNVA DNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPK GTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMT RYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQ EMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRID NIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSA YRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPTTFAKVAELASSVKGNMAHKKGTGS TRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVTEEAVA SMNNENYMEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMYVP TRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLV WVRIDKTRKLSIQVLLKALGLLDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYD LGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTV SDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGP NAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQ VDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATE IRVRVKEKAALTNRESESIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPW EGYNYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGESD QPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRIVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIIS RILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSKD

WVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEA FGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQVS RRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRSQA EQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSK LQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQ LEVESDYEEYESAEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLGR NAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQLE RRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEIIP GQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGN ERGQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVL AKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFVVN GKEGELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERK KYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFE TRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISWASA GSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMA RIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCY RGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNEKQVIKTWSRASTILPL MVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRSYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQL TGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYFKR GWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNETQGNIDEAIDWLRK KGIASAGKKSDRVTAEGLVDIYTTPDKSGGVIIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVASLLDQPYIEKTDVTVDE YIKETIATLGENIQVRRFVNFSLEGAPGAIDGYIHTGGRVGVLVSIGVDTETAAKNEELQSLAKNTAMQVAACPNVEYVSVDKI PDQVVEKEKEIEMGKEDLGNKPANIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKVSEPIKVHQFVRYILGEGIE KOESNFAEEVAAOIGAK

>Cylindrospermopsis raciborskii CS 505

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPTKQIYYCFGCQASGNAIKFMMDLNKRQFA EVVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPP GWETLYHYLVENKNYPPQLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETELFDKSKTL FALDVSKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISN LAYKGEVQLKILHIPDGKDADEYLKNHSVTDYGQLLVDAPLWLDWQIAQVIQGRDLRQPTDFQLVSREFVKLLQKILNSDTLN YYISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPRPPQPDSTTSPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGSS NLEFSVSHHRFLWEKSLQFPSQTLDLISQLQNLYLETQNDLGPVQHIFQLNEKNKQEILLRTSQLVQAAIACMEKVFRENRYRHF

LELWOKTDPSTDPDQYSLYTQTIYADKMRIQELSKQRQLSIADLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKVQ VDYYGSPTSLKSLANITTPDATTILIQPYDRTSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVGI RNIRRDALDSIRKQEKAGEVSEDESRDQQDKLQKITSKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDSE GAQLGIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRV KQAERFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKI SLERNLPRLAVQSSIREALLKGYERYRRAQNLERRQFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHQISLDEVQQVAP EAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEA ELPKREQLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKI AVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIG KEGONVRLAARLTGWKIDIKDOAKYDYGAEDAKFAAVRANYQEESNOLDNOFEVIEEEYEDDPDAGEDEFNSMEEENMSKK SLASLSAADISDKRALVRVDFNVPVDNQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLGQ EVIKTDDCIGDDVTTQVAALEKGQVLLLENVRFYKEEEKNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVA GYLVEKELQYLQGAIEVPQRPLVAIIGGSKVSSKITVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEDDKLVLASSLEKKA AERGVTLLLPTDIVAANTFAPDADAVTVSIDHIPDDRMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAIAQT LAEISKNGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGR LLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGG TVQVIPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSV KELRSIGIOPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVE RMSHPQSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIE YARNRQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFNPQTDYPVINLLPEQQDVIDLGGTMRLGLYPCHVQPNTLAFDLYQE EVIYERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKP NYPLRVSSVPMVKKVSRRLQALQAKVEERDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIV RVAVIARGEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFK AGKLEFRADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKIDINALRDFKTTDVAMGT RSYRPYTPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNA RIALVEYEDGEKRYILHPNGLKVGAKITAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYV TLKLPSGEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKP ALGAKTRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIQAGPCTVTQVKTQPTDGYCAIQ VGYGEVKPKALNKPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPM SHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVES TVKNWQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRG GGVIFGPKPRDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQNTETISLS

ARNVENIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRG LGEAAQNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDG RGNYTLGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPK GELSRDLPAHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQ VQIEPPAGVQFVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLA LNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKK KVGSITRTQLKEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTIKDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAP VGGMAVIAAPGGAAAAEVVEEQTEFDVILQEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKEAAEDISKKITE AGGKVAIKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKQSQK LYRRHSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGATHPHTAQKPKELIINTIPGENMIQPQTY LNVADNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKE GNPKGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRR AMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQP QEQEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSP RIDNIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKAL RSAYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPTTFAKVAELASSVKGNMAHKKG TGSTRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVTEE AVASMNNENYMEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQM YVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRN DLVWVRIDKTRKLSIQVLLKALGLLDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPK RYDLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRER MTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIET PEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTT TPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYV DATEIRVRVKEKAALTNRESESIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVA YMPWEGYNYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTP KGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRIVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHG NKGIISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEARE ETSKDWVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEV WALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDL MADQVSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYN YMRSQAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASML

RREMSKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYE GRHGQLEVESDYEEYESAEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIE QKLGRNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYI AQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVF KGEIIPGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAI VIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAG VRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEG KFVVNGKEGELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPR AKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKD SREHFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVI SWASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKR RRVMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRL VDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNEKQVIKTWSR ASTILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRSYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETY EAGIQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLK MYFKRGWVKISIGLCRGKKVHDKREDLKRRODORDIORAMKNYMAEISAKLVODLROKTGAGMMDCKKALNETOGNIDEAI DWLRKKGIASAGKKSDRVTAEGLVDIYTTPDKSGGVIIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVASLLAQPYIEKTD VTVDEYIKETIATLGENIQVRRFVNFSLEGAPGAIDGYIHTGGRVGVLVSIGVDTETAAKNEELQSLAKNTAMQVAACPNVEYV SVDKIPDQVVEKEKEIEMGKEDLGNKPANIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKVSEPIKVHQFVRYIL **GEGIEKQESNFAEEVAAQIGAK**

>Cylindrospermopsis_raciborskii_CS_508

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPTKQIYYCFGCQASGNAIKFMMDLNKRQFA EVVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPP GWETLYHYLVENKNYPPQLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETELFDKSKTL FALDVSKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISN LAYKGEVQLKILHIPDGKDADEYLKNHSVTDYGQLLVDAPLWLDWQIAQVIQGRDLRQPTDFQLVSREFVKLLQKILNSDTLN YYISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPRPPQPDSTTSPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGSS NLEFSVSHHRFLWEKSLQFPSQTLDLISQLQNLYLETQNDLGPVQHIFQLNEKNKQEILLRTSQLVQAAIACMEKVFRENRYRHF LELWQKTDPSTDPDQYSLYTQTIYADKMRIQELSKQRQLSIADLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKVQ VDYYGSPTSLKSLANITTPDATTILIQPYDRTSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVGI RNIRRDALDSIRKQEKAGEVSEDESRDQQDKLQKITSKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDSE GAQLGIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRV

KOAERFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKI SLERNLPRLAVQSSIREALLKGYERYRRAQNLERRQFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHQISLDEVQQVAP EAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEA ELPKREQLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKI AVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIG KEGONVRLAARLTGWKIDIKDOAKYDYGAEDAKFAAVRANYQEESNOLDNOFEVIEEEYEDDPDAGEDEFNSMEEENMSKK SLASLSAADISDKRALVRVDFNVPVDNQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPNGVDEKLRLTPVAKRLSELLGQ EVIKTDDCIGDDVTTQVAALEKGQVLLLENVRFYKEEEKNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVA GYLVEKELQYLQGAIEVPQRPLVAIIGGSKVSSKITVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEDDKLVLASSLEKKA AERGVTLLLPTDIVAANTFAPDADAVTVSIDHIPDDRMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAIAQT LAEISKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGR LLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGG TVQVIPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSV KELRSIGIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVE RMSHPQSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIE YARNROIPFLGLCLGMOCSIIEWARNVEGLVGANSAEFNPOTDYPVINLLPEOODVIDLGGTMRLGLYPCHVOPNTLAFDLYOE EVIYERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKP NYPLRVSSVPMVKKVSRRLQALQAKVEERDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIV RVAVIARGEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFK AGKLEFRADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKIDINALRDFKTTDVAMGT RSYRPYTPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNA RIALVEYEDGEKRYILHPNGLKVGAKITAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYV TLKLPSGEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKP ALGAKTRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIQAGPCTVTQVKTQPTDGYCAIQ VGYGEVKPKALNKPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPM SHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVES TVKNWQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRG GGVIFGPKPRDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQNTETISLS ARNVENIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRG LGEAAQNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDG RGNYTLGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPK GELSRDLPAHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQ

VQIEPPAGVQFVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLA LNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKK KVGSITRTQLKEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTIKDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAP VGGMAVIAAPGGAAAAEVVEEQTEFDVILQEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKEAAEDISKKITE AGGKVAIKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKQSQK LYRRHSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGATHPHTAQKPKELIINTIPGENMIQPQTY LNVADNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKE GNPKGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRR AMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSOP QEQEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSP RIDNIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKAL RSAYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPTTFAKVAELASSVKGNMAHKKG TGSTRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVTEE AVASMNNENYMEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQM YVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRN DLVWVRIDKTRKLSIQVLLKALGLLDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPK RYDLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRER MTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIET PEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTT TPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYV DATEIRVRVKEKAALTNRESESIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVA YMPWEGYNYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTP KGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRIVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHG NKGIISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEARE ETSKDWVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEV WALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDL MADQVSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYN YMRSQAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASML RREMSKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYE GRHGQLEVESDYEEYESAEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIE QKLGRNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYI AQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVF

KGEIIPGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAI VIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAG VRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEG KFVVNGKEGELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPR AKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKD SREHFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVI SWASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKR RRVMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRL VDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNEKQVIKTWSR ASTILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRSYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETY EAGIQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLK MYFKRGWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNETQGNIDEAI DWLRKKGIASAGKKSDRVTAEGLVDIYTTPDKSGGVIIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVASLLAQPYIEKTD VTVDEYIKETIATLGENIQVRRFVNFSLEGAPGAIDGYIHTGGRVGVLVSIGVDTETAAKNEELQSLAKNTAMQVAACPNVEYV SVDKIPDQVVEKEKEIEMGKEDLGNKPANIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKVSEPIKVHQFVRYIL **GEGIEKOESNFAEEVAAOIGAK**

>Cylindrospermopsis raciborskii CYLP

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPNKQIYYCFGCQASGNAIRFIMDLNKRKFAE VVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPPG WETLYHYLVENKSYPAQLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETELFDKSKTLF ALDVAKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISNL AYKGEVRLKILHIPDGKDADEYLKNHSVTDYEQLLVEAPLWLDWQIAQVIQGRDLKQPTDFQLVSREFVKLLQKILNSDTLNY YISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPILRPPASPNTHQISHPQPSLLEQAEGLLRIFLHCPQERQVIIETLGSSNLEFS VSHYRFLWEKSLQFPSQTLDLISQLQNLYLETQNDLGPVEHIFQLNEKNKQEILLRTNQLVQAAIACMEKVFRENRYRHFLELW QKTDPSTDPDQYNLYAQTIYADKMRIQELSKQRQLSISDLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKVQVDY YGSPTPLKSLTNITTPDASTILIQPYDRSSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVGIRNIR RDALDSIRKQEKAGEISEDESRDQQDKLQKITGKYTAKIDELLTEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDSEGAQL GIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAE RFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEIQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLERN LPRLAVQSSIREALLKGYERYRRAQNLERRQFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHQISLDEVQQVAPEAQS GDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPK REOLPNDTYRSNATFKVYLKKVSOGOORGPOLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVD

TLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEG QNVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQPDNQFEIIEEGYEDDPDEGEDDFNSMEEENKKVIASLSA TDISDKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLGQEVIKTDD CIGDDVTAQVAALEKGQVLLLENVRFYKEEEKNDPNFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEKE LQYLQAAIEVPQRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLELASSLEKKAAERGVTL LLPTDIVAADKFAPDADAVTVSIENIPDDRMGLDIGPKSVKLFQDALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEIGKT GATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGTVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDY SVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHI TNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGI QPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSHPQS PVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARNRQI PFLGLCLGMQCSIIEWARNVEGLVGANSAEFDPKTDYPVINLLPEQQDVIDMGGTMRLGLYPCHVQPNTLAFDLYQEEVIYERH RHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKQLPQGFP QFPMVKKVSRRLQALQAKVEERDYAPLEALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVIAR GEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLEFR ADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKVDINALRDLKTTDAAMGTRSYRPYT PSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALLEY EDGEKRYILHPNGLKVGAKVTAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPS GEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAK TRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIKAGPCTVTQVKTQPTDGYCAIQVGYGE VKPKALNKPKLGHLAKSSAVPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSK NHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESIVKN WQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIF GPKPREFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQSTETISLSARNVE NIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEAA QNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGNYT LGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELSRD LPTHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPA GVOFAVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNAGKA NPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGSITR TQLREIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTVKDMSTATDQILEQLKVLTLLEAAELVKQIEEAFGVSAAAPAGGMM VMAAPGAAAAEPVEEQTEFNVVLEEVPADRKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKESAEEISKKIADAGGKVV

IKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKKVVVTGKKPSQKLYRRH MIQPQTYLNVADNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDN AAVIINKEGNPKGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITS ROIEASRRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKT KFIVRSQPQEQEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVE RVFLLHSPRIDNIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTAN QQVMKALRSAYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPATFAKVAELASSVKG MAHKKGTGSTRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSV YPSVTEEAVASMYVPTRLLNKETGDIKEOEVFIGDLPLMTDRGTFIINGAERVIVNOIVRSPGVYYKSEIDKNGRRTYSASLIPNR GAWLKFETDRNDLVWVRIDKTRKLSIQVLLKALGLSDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGG QQLLESRFFDPKRYDLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVR VGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDI HPSHYGRICPIETPEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQ VPVRYRQEFSTTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVI VSRTDGDVVYVDATEIRVRVKEKAALTNRESETIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGG ELALGONVIVAYMPWEGYNYEDAILISERLVOEDVYTSIHIEKFEIEAROTKLGPEEITREIPNVGEDALROLDEOGIIRVGAWVE SGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQ VGDKMAGRHGNKGIISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRI VHGKLWEAREETSRDWVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQ GGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTD GSSLDVEVDLMADQVSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQT AQLMDDAYNYMRSQAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALD LLPKKEASMLRREMSKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDVPIPANDDAIRSIK LIVGKLADAIYEGRHGQLEVEPDDEDYDIPEEDYEYNESEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIE QKLGRNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYI AQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVF KGEIIPGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAI VIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAG VRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEG KFVVNGKEGELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPR AKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKD SREHFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLLRGQKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRE

TAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDA DLAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLK KGPFVADHLLSKLEKLNANNEKQVIKTWSRASTILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRTYRGHGKTDK KSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHE PRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYFKRGWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMDCKKAL NETQGNIDEAIDWLRKKGIASAGKKSDRVTAEGLVEIYTTPDRSGGVLIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVTS LLAQPYIENTDVTVDEYIKGTITTLGENIQVRRFVNFSLEGSPGAIDGYIHTGGRVGVLISIGVDTENAAKNEEVQSLAKNTAMQ VAACPNVEYVSVDKIPDQVVQKEKEIEMGKEDLGNKPENIKEKIVQGRIDKRLKEMTLLDQPYIRDQSISVAELIKQVESKVSEP IKVHOFVRYILGEGIEKOESNFAOEVAAOIGAK

>Cylindrospermopsis raciborskii CYRF

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPNKQIYYCFGCQASGNAIRFIMDLNKRKFAE VVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPPG WETLYHYLVENKSYPAQLVEKAGLIKPRKEGGGYYDAFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETELFDKSKTLF ALDVAKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISNL AYKGEVRLKILHIPDGKDADEYLKNHSVTDYEQLLVEAPLWLDWQIAQVIQGRDLKQPTDFQLVSREFVKLLQKILNSDTLNY YISHCAEILSLGDTRLIPLRVENLITOVAPRRTPTPILRPPASPNTHOISHPOPSLLEOAEGLLLRIFLHCPOEROVIIETLGSSNLEFS VSHYRFLWEKKFAVPMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKVQVDYYGSPTPLKSLTNITTPDASTILIQPYDR SSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVGIRNIRRDALDSIRKQEKAGEISEDESRDQQDK LQKITGKYTAKIDELLTEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDSEGAQLGIMAPLEALRLAEEKELDLVLLSDKAD PPVCRIMDYGKYKFEQEKKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERFLKDGDKVKATVMFRGREIQHSDLA ETLLNRMATDLEPFGEIQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLERNLPRLAVQSSIREALLKGYERYRRAQNL ERRQFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHQISLDEVQQVAPEAQSGDSVVLDVTPDQGEFGRMAAMQTKQV LAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPKREQLPNDTYRSNATFKVYLKKVSQGQQ RGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTLDRDVDPVGACIGARGSRIQVVVNELR GEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQVKKKSLASLSATDISDKRALVRVDFNV PVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLGQEVIKTDDCIGDDVTAQVAALEKG QVLLLENVRFYKEEEKNDPDFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEKELQYLQAAIEVPQRPLA AIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLELASSLEKKAAERGVTLLLPTDIVAADKFAPDA DAVTVSIENIPDDRMGLDIGPKSVKLFQDALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEIGKTGATTIIGGGDSVAAVE KVGLADQMSHISTGGGASLELLEGTVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSILKLDPYINVDPG TMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHITNEIKERVIRVAKETN PAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQPDILVCRCDRPIPVG

LKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSHPQSPVEIAIVGKYVRLGD AYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARNRQIPFLGLCLGMQCSIIE WARNVEGLVGANSAEFDPKTDYPVINLLPEQQDVIDIGGTMRLGLYPCHVQPNTLAFDLYQEEVIYERHRHRYEFNNLYRNHL LNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKQLPHGFPQFPMVKKVSRRLQA LQAKVEERDYAPLEALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVIARGEKVTEATNSGADIA GSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLEFRADRTGIVHVMFGKAS FSSEDLLVNLKALQETIDRNRMGTRSYRPYTPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRII DFKRDKRDITATVIAVEYDPNRNARIALLEYEDGEKRYILHPNGLKVGAKVTAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPG KGGQIVRAAGATAQLMAKEGNYVTLKLPSGEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVD HPHGGGEGRAPIGRSGPVTPWGKPALGAKTRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVT VIKAGPCTVTQVKTQPTDGYCAIQVGYGEVKPKALNKPKLGHLAKSSAVPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVD VIGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGA IPGKPGGLVNVVPTTKVGNKMVESIVKNWQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGR KPWROKGTGRARAGSIRSPLWRGGGVIFGPKPREFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDOLORPKSKELVAALARW GATADQKTLLILSEIGQSTETISLSARNVENIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLT OOFOYTNVHOVPKVLKVTVNRGLGEAAONAKALEASLSEIALITGOKPVVTRAKKAIAGFKIROGMPVGIMVTLRGERMYAF LDRLISLALPRIRDFRGVSAKSFDGRGNYTLGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGK RPITIPAKVQVAIDGTKVVVKGPKGELSRDLPTHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQ GVGYRAQVQGANLVLNIGYSHQVQIEPPAGVQFAVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRK AGKTGGKGKKMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLK TPPASVLIRKAAKIERGSDQPNKKKVGSITRTQLREIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTVKDMSTATDQILEQLKV LTLLEAAELVKQIEEAFGVSAAAPAGGMMVMAAPGAAAAEPVEEQTEFNVVLEEVPADKKIAVLKIVREITGLGLKEAKELVE STPKAVKEGVNKESAEEISKKIAEAGGKVVIKMVVTGKKPSQKLYRRHSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKN SLGRQLFTKLKVYSGSTHPHTAQKPKELIINTIPGENMIQPQTYLNVADNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQ PNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPKGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKF RKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEF WVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEG DKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALM TRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNL KKANVELNRKMLAQLAVLDPATFAKVAELASSVKGMAHKKGTGSTRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKF HPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPPVTEESVASMNNENYTEPSFLLPDLIEIORSSFRWFLEEGLIEELNSF SPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIV

NQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSIQVLLKALGLSDNEILDALRHPEYFQKTI EKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYDLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINL EYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNP LAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPA VYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQ RQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATEIRVRVKEKAALTNRESETIPHKPQEIKYVLSKYQRSNQ DTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPWEGYNYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLG PEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDV RLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFE CLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSRDWVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKL VHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRP GTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQVSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHF GHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRSQAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWL GGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQK LSIPIVSMLDTNCDPDTVDVPIPANDDAIRSIKLIVGKLADAIYEGRHGQLEVEPDDEDYDIPEEDYEYNESEMGQKIHPVGFRLG ITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLGRNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGL QQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGR VPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEIIPGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAK KEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVG GGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVA ETNSGRALYWGTGRRKSAVAQVRLVPGEGKFVVNGKEGELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADS IRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTA NRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMRQIQVMVSGPGA GRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDL TDADLAALRAEIESNYOVEGDLRRLEAMNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGR SLKKGPFVADHLLSKLEKLNANNEKQVIKTWSRASTILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRTYRGHGK TDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYF NHEPRRTRKLLLHGLEIRKLIGKVEQOGLTLIPLKMYFKRGWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEIS AKLVQDLRQKTGAGMMDCKKALNETQGNIDEAIDWLRKKGIASAGKKSDRVTAEGLVDIYTTPDRSGGVLIEVNCQTDFVAR NDAFKLLVKNLAKQAVNADNVTSLLAQPYIENTDVTVDEYIKETIATLGENIQVRRFVNFSLEGSPGAIDGYIHTGGRVGVLISI GVDTETAAKNEEVQSLAKNTAMQVAACPNVEYVSVDKIPDR

>Cylindrospermopsis raciborskii DSH PROT

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPTKQIYYCFGCQASGNAIKFMMDLNKRQFA EVVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPP GWETLYHYLVENKNYPAOLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVOGRVIAFGGRTLTDEOPKYLNSPETELFDKSKT LFALDVSKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEIS NLAYKGEVQLKILHIPDGKDADEYLKNHSVTDYGQLLVDAPLWLDWQIAQVIQGRDLRQPTDFQLVSREFVKLLQKILNSDTL NYYISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPRPPQPDSTTSPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGS TNLEFSVSHHRFLWEKSLQFPSQTLDLISQLQNLYLETQNDLGPVQHIFQLNEKNKQEILLRTSQLVQAAIACMEKVFRENRYRH FLELWQKTDPSTDPDQYSLYAQTIYADKMRIQELSKQRQLSIADLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKV QVDYYGSPTSLKSLANITTPDATTILIQPYDRTSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVG IRNIRRDALDSIRKQEKAGEVSEDESRDQQDKLQKITSKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDS EGAQLGIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVR VKQAERFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEK ISLERNLPRLAVOSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHOISLDEVOOVA PEAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVE AELPKREQLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRT KIAVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLA IGKEGONVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQLDNQFEVMEEEYEDDPDAGEDDFNSMEEENMS KKSLASLSAADISDKRALVRVDFNVPVDNQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELL GQEVIKTDDCIGDDVTAQVAALEKGQVLLLENVRFYKEEEKNNPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPS VAGYLVEKELQYLQGAIEVPQRPLVAIIGGSKVSSKITVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEDDKLVLASSLEE KAAERGVTLLLPTDIVAADKFAPDADCRTVSIDHIPDDRMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAI AQTLAEISKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAAS LGRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDY NGGTVQVIPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPT QHSVKELRSIGIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWE TMVERMSHPQSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDG KISAIEYARNQQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFDPQTDYPVINLLPEQQDVIDLGGTMRLGLYPCHVQPNTLAF DLYQEEVIYERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTH QGSTPMVKKVSRRLQALQAKVEERDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVI ARGEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLE FRADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKIDINALRDFKTTDVAMGTRSYRPY

TPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALVE YEDGEKRYILHPNGLKVGAKITAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPS GEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAK TRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIQAGPCTVTQVKTQPTDGYCAIQVGYGE VKPKALNKPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSK NHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESTVKN WQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIF GPKPRDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQNTETISLSARNV ENIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEA AQNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGN YTLGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELS RDLPAHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPAGVQFVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNA GKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGS ITRTQLKEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTIKDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAPAGGM MMMAAPGGAAAAEVVEEOTEFDVILOEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKEAAEDISKKITEAGG KVAIKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKQSQKLYR RHSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGATHPHTAQKPKELIINTIPGENMIQPQTYLNV ADNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNP KGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAM TRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSOPOE QEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRI DNIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRS AYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPTTFAKVAELASSVKGNMAHKKGT GSTRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVTEEA VASMNNENYMEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMY VPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDL VWVRIDKTRKLSIQVLLKALGLLDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRY DLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMT VSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEG PNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPE QVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDAT

EIRVRVKEKAALTNRESESIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMP WEGYNYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGE SDOPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRIVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKG IISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSK DWVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALE AFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQ VSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRS QAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREM SKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYEGRHG QLEVESDYEEYESAEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLG RNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQL ERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEII PGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVG NERGOVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRN VLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFV VNGKEGELYFOYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGOADSIRLGVARALCOLDPDNRSPLKIEGYLTRDPRAKE RKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSRE HFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISW ASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRR VMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVD IGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNEKQVIKTWSRAST ILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRSYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAG IQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYF KRGWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNETQGNIDEAIDWL RKKGIASAGKKSDRVTAEGLVDIYTTPDKSGGVIIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVASLLDQPYIEKTDVTV DEYIKETIATLGENIQVRRFVNFSLEGAPGAIDGYIHTGGRVGVLVSIGVDTETAAKNEELQSLAKNTAMQVAACPNVEYVSVD KIPDQVVEKEKEIEMGKEDLGNKPANIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKVSEPIKVHQFVRYILGEG **IEKQESNFAEEVAAQIGAK**

>Cylindrospermopsis raciborskii GIHE 2018

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPTKQIYYCFGCQASGNAIKFMMDLNKRQFA EVVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPP GWETLYHYLVENKNYPAOLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVOGRVIAFGGRTLTDEOPKYLNSPETELFDKSKT LFALDVSKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEIS NLAYKGEVQLKILHIPDGKDADEYLKNHSVTDYGQLLVDAPLWLDWQIAQVIQGRDLRQPTDFQLVSREFVKLLQKILNSDTL NYYISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPRPPQPDSTTSPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGS TNLEFSVSHHRFLWEKSLQFPSQSLDLISQLQNLYLETQNDLGPVQHIFQLNEKNKQEILLRTSQLVQAAIACMEKVFRENRYRH FLELWQKTDPSTDPDQYSLYAQTIYADKMRIQELSKQRQLSIADLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKV QVDYYGSPTSLKSLANITTPDATTILIQPYDRTSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVG IRNIRRDALDSIRKQEKAGEVSEDESRDQQDKLQKITSKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDS EGAQLGIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVR VKQAERFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEK ISLERNLPRLAVOSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHOISLDEVOOVA PEAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVE AELPKREQLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRT KIAVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLA IGKEGONVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQLDNQFEVMEEEYEDDPDAGEDDFNSMEEENMS KKSLASLSAADISDKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELL GQEVIKTDDCIGDDVTAQVAALEKGQVLLLENVRFYKEEENNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPS VAGYLVEKELQYLQGAIEVPQRPLVAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLGLASSLEK KAAERGVTLLLPTDIVAADKFGPDADAVTVSIDHIPDDRMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAI AQTLAEISKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAAS LGRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDY NGGTVQVIPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPT QHSVKELRSIGIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWE TMVERMSHPQSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDG KISAIEYARNQQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFDPQTDYPVINLLPEQQDVIDLGGTMRLGLYPCHVQPNTLAF DLYQEEVIYERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTH QGSTPMVKKVSRRLQALQAKVEERDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVI ARGEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLE FRADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKIDINALRDFKTTDVAMGTRSYRPY

TPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALVE YEDGEKRYILHPNGLKVGAKITAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPS GEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAK TRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIQAGPCTVTQVKTQPTDGYCAIQVGYGE VKPKALNKPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSK NHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESTVKN WQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIF GPKPRDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQNTETISLSARNV ENIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEA AQNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGN YTLGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELS RDLPAHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPAGVQFVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKLVAVIKLALNA GKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGS ITRTQLKEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTIKDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAPAGGM MMMAAPGGAAAAEVVEEOTEFDVILOEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKEAAEDISKKITEAGG KVAIKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKQSQKLYR RHSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGATHPHTAQKPKELIINTIPGENMIQPQTYLNV ADNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNP KGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAM TRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSOPOE QEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRI DNIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRS AYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPTTFAKVAELASSVKGNMAHKKGT GSTRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVTEEA VASMNNENYMEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMY VPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDL VWVRIDKTRKLSIQVLLKALGLLDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRY DLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMT VSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEG PNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPE QVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDAT

EIRVRVKEKAALTNRESESIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMP WEGYNYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGE SDOPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRIVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKG IISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSK DWVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALE AFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQ VSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRS QAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREM SKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYEGRHG QLEVESDYEEYESAEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLG RNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQL ERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEII PGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVG NERGOVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRN VLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFV VNGKEGELYFOYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGOADSIRLGVARALCOLDPDNRSPLKIEGYLTRDPRAKE RKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSRE HFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISW ASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRR VMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVD IGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNEKQVIKTWSRAST ILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRSYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAG IQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYF KRGWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNETQGNIDEAIDWL RKKGIASAGKKSDRVTAEGLVDIYTTPDKSGGVIIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVASLLDQPYIEKTDVTV DEYIKETIATLGENIQVRRFVNFSLEGAPGAIDGYIHTGGRVGVLVSIGVDTETAAKNEELQSLAKNTAMQVAACPNVEYVSVD KIPDQVVEKEKEIEMGKEDLGNKPANIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKVSEPIKVHQFVRYILGEG **IEKQESNFAEEVAAQIGAK**

>Cylindrospermopsis raciborskii isolate 1523720 PROT

MOIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPTKQIYYCFGCQASGNAIKFMMDLNKRQFA EVVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPP GWETLYHYLVENKNYPAOLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVOGRVIAFGGRTLTDEOPKYLNSPETELFDKSKT LFALDVSKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEIS NLAYKGEVQLKILHIPDGKDADEYLKNHSVTDYGQLLVDAPLWLDWQIAQVIQGRDLRQPTDFQLVSREFVKLLQKILNSDTL NYYISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPRPPQPDSTTSPNTHPISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGSS NLEFSVSHHRFLWEKSLOFPSOTLDLISQLONLYLETQNDLGPVQHIFQLNEKNKQEILLRTSQLVQAAIACMEKVFRENRYRHF LELWQKTDPSTDPDQYSLYAQTIYADKMRIQELSKQRQLSIADLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKV QVDYYGSPTSLKSLANITTPDATTILIQPYDRTSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVG IRNIRRDALDSIRKQEKAGEVSEDESRDQQDKLQKITSKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDS EGAQLGIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVR VKQAERFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEK ISLERNLPRLAVOSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHOISLDEVOOVA PEAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVE AELPKREQLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRT KIAVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLA IGKEGONVRLAARLTGWKIDIKDOAKYDYGAEDAKFAAVRANYQEESNOLDNOFEVIEEEYEDDPDAGEDDFNSMEEENMSK KSLASLSAADISGKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLG QEVIKTDDCIGDDVTTQVAALEKGQVLLLENVRFYKEEEKNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSV AGYLVEKELQYLQGAIEVPQRPLVAIIGGSKVSSKITVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEDDKLVLASSLEKK AAERGVALLLPTDIVAADRFAPDADAVTVSIDSIPDDRMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAIA QTLAEISKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASL GRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYN GGTVQVIPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQ HSVKELRSIGIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWET MVERMSHPQSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKI SAIEYARNRQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFNPQTDYPVINLLPEQQDVIDLGGTMRLGLYPCHVQPNTLAFD LYQEEVIYERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQ GKKPNYPLRVSSVPMVKKVSRRLQALQAKVEERDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVVLPKGT GQIVRVAVIARGEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAI SEFKAGKLEFRADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKIDINALRDFKTTDVA

MGTRSYRPYTPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPN RNARIALVEYEDGEKRYILHPNGLKVGAKITAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEG NYVTLKLPSGEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPW GKPALGAKTRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIQAGPCTVTQVKTQPTDGYC AIQVGYGEVKPKALNKPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGR GPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNK MVESTVKNWQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPL WRGGGVIFGPKPRDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQNTE TISLSARNVENIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVT VNRGLGEAAQNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSA KSFDGRGNYTLGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVV KGPKGELSRDLPAHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIG YSHQVQIEPPAGVQFVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVA VIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQ PNKKKVGSITRTQLKEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTIKDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVS AAAPAGGMMMMAAPGGAAAAEVVEEKTEFDVILEEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKEAAEDI SKKITEAGGKVAIKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGK KQSQKLYRRHSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGATHPHTAQKPKELIINTIPGENMI QPQTYLNVADNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAA VIINKEGNPKGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQ IEASRRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFI VRSQPQEQEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERV FLLHSPRIDNIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQ VMKALRSAYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPTTFAKVAELASSVKGN MAHKKGTGSTRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSV YPRVTEEAVASMNNENYMEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDS TYGVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLK FETDRNDLVWVRIDKTRKLSIQVLLKALGLLDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLES RFFDPKRYDLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLONOVRVGLNRL ERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYG RICPIETPEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYR QEFSTTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDG

DVVYVDATEIRVRVKEKAALTNRESESIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQ NVIVAYMPWEGYNYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILV GKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKM AGRHGNKGIISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKL WEAREETSKDWVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRF GEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLD VEVDLMADQVSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLM DDAYNYMRSQAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPK KEASMLRREMSKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGK LADAIYEGRHGQLEVESDYEEYESAEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDH KLRQYIEQKLGRNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDAD AYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGIL GIKVWVFKGEIIPGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGG KKLSFRAIVIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAV RTVLELAGVRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQ VRLVPGEGKFVVNGKEGELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIE GYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVL RSPHVDKDSREHFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTI TDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPH NGCRPPKRRRVMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRL EAMNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNEK QVIKTWSRASTILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRSYRGHGKTDKKSGRMSDKNEGYKIISDNRQAR YLYEILETYEAGIQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQ QGLTLIPLKMYFKRGWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNE TQGNIDEAIDWLRKKGIASAGKKSDRVTAEGLVDIYTTPDKSGGVIIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVASLL AQPYIEKTDVTVDEYIKETIATLGENIQVRRFVNFSLEGAPGAIDGYIHTGGRVGVLVSIGVDTETAAKNEELQSLAKNTAMQV AACPNVEYVSVDKIPDQVVEKEKEIEMGKEDLGNKPANIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKVSEPI KVHQFVRYILGEGIEKQESNFAEEVAAQIGAK

>Cylindrospermopsis raciborskii ITEP A1

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPNKQIYYCFGCQASGNAIRFIMDLNKRKFAE VVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPPG WETLYHYLVENKSYPAOLVEKAGLIKPRKEGGGYYDAFRNRLMIPIRDVOGRVIAFGGRTLTDEOPKYLNSPETELFDKSKTLF ALDVAKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISNL AYKGEVRLKILHIPDGKDADEYLKNHSVTDYEQLLVEAPLWLDWQIAQVIQGRDLKQPTDFQLVSREFVKLLQKILNSDTLNY YISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPILRPPASPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGSSNLEFS VSHYRFLWEKSLOFPSQTLDLISQLQNLYLETQNDLGPVEHIFQLNEKNKQEILLRTNQLVQAAIACMEKVFRENRYRHFLELW QKTDPSTDPDQYNLYAQTIYADKMRIQELSKQRQLSISDLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKVQVDY YGSPTPLKSLTNITTPDASTILIQPYDRSSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVGIRNIR RDALDSIRKQEKAGEISEDESRDQQDKLQKITGKYTAKIDELLTEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDSEGAQL GIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAE RFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEIQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLERN LPRLAVQSSIREALLKGYERYRRAQNLERRQFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHQISLDEVQQVAPEAQS GDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPK REOLPNDTYRSNATFKVYLKKVSOGOORGPOLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVD TLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEG ONVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQPDNQFEIIEEGYEDDPDEGEDDFNSMEEENMSKKSLAS LSATDISDKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLGQEVIKT DDCIGDDVTAQVAALEKGQVLLLENVRFYKEEEKNDPDFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLV EKELQYLQAAIEVPQRPLAAIIGGSKVSSKIGVIETLLKKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLELASSLEKKAAERG VTLLLPTDIVAADKFAPDADAVTVSIENIPDDRMGLDIGPDSVKLFQDALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEI GKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGTVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKS RDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQV IPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELR SIGIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSH PQSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARN RQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFDPKTDYPVINLLPEQQDVIDIGGTMRLGLYPCHVQPNTLAFDLYQEEVIYE RHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKQLPHG FPQFPMVKKVSRRLQALQAKVEERDYAPLEALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVIA RGEKVTEATNSGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLEF RADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKVDINALRDLKTTDAAMGTRSYRPY

TPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALLE YEDGEKRYILHPNGLKVGAKVTAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLP SGEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGA KTRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIKAGPCTVTQVKTQPTDGYCAIQVGYG EVKPKALNKPKLGHLAKSSAVPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGS KNHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESIVKN WQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIF GPKPREFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQSTETISLSARNVE NIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEAA QNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGNYT LGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELSRD LPTHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPA GVQFAVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNAGKA NPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGSITR TQLREIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTVKMSTATDQILEQLKVLTLLEAAELVKQIEEAFGVSAAAPAGGMMV MAAPGAAAAEPVEEOTEFNVVLEEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKESAEEISKKIAEAGGKVVI KMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKPSQKLYRRHSG RPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGSTHPHTAQKPKELIINTIPGENMIQPQTYLNVADNS GARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPKGTR VFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIR RGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNA QEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKIM RRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDR KKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPATFAKVAELASSVKGMAHKKGTGSTRNGR DSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPPVTEESVASMNNE NYTEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMYVPTRLLNK ETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDK TRKLSIQVLLKALGLSDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYDLGRVGR YKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVL TPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIG SLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQVDYVA VSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATEIRVRV

KEKAALTNRESETIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPWEGYN YEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGESDQPPE EKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILP LEDMPYLPDGTPVDIVLNPLGVPSRMNVGOVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSRDWVY NPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGA AYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQVSRRT PPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRSQAEQG KKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSKLQK YLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDVPIPANDDAIRSIKLIVGKLADAIYEGRHGQLEV EPDDEDYDIPEEDYEYNESEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLGRNAQNNAGLSEIHIER KADOVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQLERRVSFRRVVRQAIQR AQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEIIPGQEDIVSQPVTREREP RRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQVGVGVGKASD VIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKOLGSNNPLNNAR AAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFVVNGKEGELYFQYNPNYL GVIKAPLETLGLENEYDILVKAKGGGLTGOADSIRLGVARALCOLDPDNRSPLKIEGYLTRDPRAKERKKYGLHKARKAPOYS KRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIHQPSSK TIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFA AQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMARIAGVDLPRDKRVEI GLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYRGRRHRMGLPVRG QRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKLEKLNANNEKQVIKTWSRASTILPLMVGHTIAVHNGKQ HVPVFVNEQMVGHKLGEFAPTRTYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQLTGTEVKSIRAGKVN LQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYFKRGWVKISIGLCRGKK VHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNETQGNIDEAIDWLRKKGIASAGKKSDRV TAEGLVDIYTTPDRSGGVLIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVTSLLAQPYIENTDVTVDEYIKETIATLGENIQ VRRFVNFSLEGSPGAIDGYIHTGGRVGVLISIGVDTETAAKNEEVQSLAKNTAMQVAACPNVEYVSVDKIPDQVVQKEKEIEM GKEDLGNKPENIKEKIVQGRIDKRLKEMTLLDQPYIRDQSISVAELIKQVESKVSEPIKVHQFVRYILGEGIEKQESNFAQEVAAQ **IGAK**

>Cylindrospermopsis raciborskii KL1

MOIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPNKOIYYCFGCOASGNAIKFIMDLNKRKFAE VVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQRKRFLKTETVEKFALGYAPPG WETLYHYLVESKNYPAQLLEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETELFDKSKTLF ALDVAKDAISKLDQAVVVEGYFDAITLHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISNL AYKGEVRLKILHIPDGKDADEYLKNHSVTDYEQLLVDAPLWLDWQIAQVIQGRDLKQPTDFQLVSREFVKLLQKILNSDTLNY YISHCAEILSLGDTRLIPLRVENLITQVAPRHSTTSPKTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLQSSNLEFSVSHHRF LWEKSLOFPSOTLDLISQLONLYLETONDLGPVEHIFQLNEKNKQEILLRTNQLVQAAIACMEKVFRENRYRHFLELWQKTDPS TDPDQYNLYAQTIYADKMRIQELSKQRQLSISDLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKVQVDYYGSPTPL KSLANITTPDATTIYIQPYDRSSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVGIRNIRRDALDSI RKQEKAGEISEDESRDQQDKLQKITGKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDSEGAQLGIMAPL EALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERFLKDG DKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEIQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLERNLPRLAV OSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHOISLDEVOOVAPEAOSGDSVVL DVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPKREQLPN DTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTLDRDV DPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQNVRLA ARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQPDNQFEVIEEEYEDDPDEGGDDFNSMEEKNMSKKSLASLSATDIS DKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLGQEVIKTDDCIGD DVTTQVAALEKGQVLLLENVRFYKEEEKNDPDFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEKELQY LQAAIEDPQRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLELASSLEKKAAERGVTLLLP TDIVAADKFAPDANAVTVSIDNIPDDRMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEISKTGAT TIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVS ILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHITNE IKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQPD ILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSHPQSPVE IAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARNOOIPFL GLCLGMQCSIIEWARNVEGLVGANSAEFDPKTDYPVINLLPEQQDVIDLGGTMRLGLYPCHVQPNTLAFDLYQEEVIYERHRH RYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKQVPHGFPQFP MVKKVSRRLQALQAKVEERDYAPLEALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVIARGEK

VTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLEFRADR TGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKVDINALRDLKTTDAAMGTRSYRPYTPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALVEYEDG EKRYILHPNGLKVGAKVTAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPSGEV RMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTRK RKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIKAGPCTVTQVKTQPTDGYCAIQVGYGEVKP KALNKPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNHR APGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESIVKNWQG EEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKP RDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATAEQKTLLILSEIGQSTETISLSARNVENIKV IAADQLNVFDLLHADKIIVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEAAQNAK ALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGNYTLGVR EQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELSRDLPAH VTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPAGVQ FAVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNAGKANPA PPVGPALGOHGVNIMMFCKEYNAKTADOAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDOPNKKKVGSITRTOL REIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTVKDMSTATDQILEQLKVLTLLEAAELVKQIEEAFGVSAAAPAGGMMVMA APGGAAAAEVVEEQTEFNVILEEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKESAEEISKKIAEAGGKVAIKM SSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKPSQKLYRRHSGRP GGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGSTHPHTAQKPKELIINTIPGENMIQPQTYLNVADNSGA RKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPKGTRVF GPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRRG GKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNAQE IIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKIMRR GKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKK KKRDFRRLWITRINAASRQQGLSYSQLIGNLKKSNVELNRKMLAQLAVLDPATFAKVAELASSVKGMAHKKGTGSTRNGRDS NAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVTEEAVASMNNENY TEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMYVPTRLLNKET GDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTR KLSIQVLLKALGLSDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYDLGRVGRYK LNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSL

ATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQVDYVAVS PVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATEIRVRVKE KAALTNRESETIPHKPQEVKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPWEGYNYE DAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGESDQPPEEK LLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPLE DMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSRDWVYNP ENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAY TLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQVSRRTPP RPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRSQAEQGK KFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSKLQKY LGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQLEVEP DHEDYDIPEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLGRNAQN NAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQLERRVSF RRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEIIPGQEDI VSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQV GVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKOL GSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFVVNGKEG ELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERKKYGL HKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTH RRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAGSSG FKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMARIAG VDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYRGR RHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKLEKLNANNEKQVIKTWSRASTILPLMV GHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRTYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQLTGT EVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYFKRGWV KISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGIMDCKKALNETQGNIDEAIDWLRKKGIA SAGKKSDRVTAEGLVDIYTTPDRSGGVLIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVTSLLAQPYIENTDVTVDDYIKE TIATLGENIQVRRFVNFSLEGAPGAIDGYIHTGGRVGVLVSIGVDTETAAKNEEVQSLARNAAMQVAACPNVEYVSVDKIPDQV VQKEKEIEMGKEDLGNKPDNIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELINQVQSKVSEPIKVHQFVRYILGEGIEKQES **NFAEEVAAQIGTK**

>Cylindrospermopsis raciborskii KLL07

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPTKQIYYCFGCQASGNAIKFMMDLNKRQFA EVVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPP GWETLYHYLVENKNYPAOLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVOGRVIAFGGRTLTDEOPKYLNSPETELFDKSKT LFALDVSKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEIS NLAYKGEVQLKILHIPDGKDADEYLKNHSVTDYGQLLVDAPLWLDWQIAQVIQGRDLRQPTDFQLVSREFVKLLQKILNSDTL NYYISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPRPPQPDSTTSPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGF SNLEFSVSHHRFLWEKSLQFPSQTLDLISQLQNLYLETQNDLGPVQHIFQLNEKNKQEILLRTSQLVQAAIACMEKVFRENRYRH FLELWQKTDPSTDPDQYSLYAQTIYADKMRIQELSKQRQLSIADLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKV QVDYYGSPTSLKSLANITTPDATTILIQPYDRTSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVG IRNIRRDALDSIRKQEKAGEVSEDESRDQQDKLQKITSKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDS EGAQLGIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVR VKQAERFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEK ISLERNLPRLAVOSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHOISLDEVOOVA PEAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVE AELPKREQLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRT KIAVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLA IGKEGONVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQLDHQFEVMEEEYEDDPDAGEDDFNSMEEENMS KKSLASLSAADISDKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELL GQEVIKTDDCIGDDVTAQVAALEKGQVLLLENVRFYKEEENNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPS VAGYLVEKELQYLQGAIEVPQRPLVAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLGLASSLEK KAAERGVTLLLPTDIVAADKFGPDADAVTVSIDHIPDDRMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAI AQTLAEISKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAAS LGRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDY NGGTVQVIPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPT QHSVKELRSIGIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWE TMVERMSHPQSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDG KISAIEYARNQQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFNPQTDYPVINLLPEQQDVIDLGGTMRLGLYPCHVQPNTLAF DLYQEEVIYERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTH QGSTPMVKKVSRRLQALQAKVEERDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVI ARGEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLE FRADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKIDINALRDFKTTDVAMGTRSYRPY

TPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALVE YEDGEKRYILHPNGLKVGAKITAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPS GEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAK TRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIQAGPCTVTQVKTQPTDGYCAIQVGYGE VKPKALNKPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSK NHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESTVKN WQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIF GPKPRDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQNTETISLSARNV ENIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEA AQNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGN YTLGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELS RDLPAHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPAGVQFVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKLVAVIKLALNA GKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGS ITRTQLKEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTIKDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAPAGGM MMMAAPGGAAAAEVVEEOTEFDVILOEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKEAAEDISKKITEAGG KVAIKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKQSQKLYR RHSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGATHPHTAQKPKELIINTIPGENMIQPQTYLNV ADNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNP KGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAM TRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSOPOE QEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRI DNIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRS AYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPTTFAKVAELASSVKGNMAHKKGT GSTRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVTEEA VASMNNENYMEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMY VPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDL VWVRIDKTRKLSIQVLLKALGLLDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRY DLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMT VSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEG PNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPE QVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDAT

EIRVRVKEKAALTNRESESIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMP WEGYNYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGE SDOPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRIVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKG IISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSK DWVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALE AFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQ VSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRS QAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREM SKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYEGRHG QLEVESDYEEYESAEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLG RNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQL ERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEII PGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVG NERGOVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRN VLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFV VNGKEGELYFOYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGOADSIRLGVARALCOLDPDNRSPLKIEGYLTRDPRAKE RKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSRE HFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISW ASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRR VMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVD IGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNEKQVIKTWSRAST ILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRSYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAG IQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYF KRGWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNETQGNIDEAIDWL RKKGIASAGKKSDRVTAEGLVDIYTTPDKSGGVIIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVASLLDQPYIEKTDVTV DEYIKETIATLGENIQVRRFVNFSLEGAPGAIDGYIHTGGRVGVLVSIGVDTETAAKNEELQSLAKNTAMQVAACPNVEYVSVD KIPDQVVEKEKEIEMGKEDLGNKPANIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKVSEPIKVHQFVRYILGEG **IEKQESNFAEEVAAQIGAK**

>Cylindrospermopsis raciborskii MVCC14

VLRRRGKDFVGLCPFHEEKTPSFTVSPNKQIYYCFGCQASGNAIRFIMDLNKRKFAEVVLDLAKRYQVPVKTLAPEQRQELQRQ LSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPPGWETLYHYLVENKSYPAQLVEKAGLIKP RKEGGGYYDVFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETELFDKSKTLFALDVAKDAISKLDQAVVVEGYFDAIAL HANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISNLAYKGEVRLKILHIPDGKDADEYLKNHS VTDYEQLLVEAPLWLDWQIAQVIQGRDLKQPTDFQLVSREFVKLLQKILNSDTLNYYISHCAEILSLGDTRLIPLRVENLITQVA PRRTPTPILRPPASPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGSSNLEFSVSHYRFLWEKSLQFPSQTLDLISQLQNL YLETQNDLGPVEHIFQLNEKNKQEILLRTNQLVQAAIACMEKVFRENRYRHFLELWQKTDPSTDPDQYNLYAQTIYADKMRIQ ELSKQRQLSISDLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKVQVDYYGSPTPLKSLTNITTPDASTILIQPYDRSS LNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVGIRNIRRDALDSIRKQEKAGEISEDESRDQQDKL QKITGKYTAKIDELLTEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDSEGAQLGIMAPLEALRLAEEKELDLVLLSDKADP PVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERFLKDGDKVKATVMFRGREIQHSDLAET LLNRMATDLEPFGEIQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLERNLPRLAVQSSIREALLKGYERYRRAQNLER RQFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHQISLDEVQQVAPEAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLA OKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPKREQLPNDTYRSNATFKVYLKKVSQGQQRG POLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTLDRDVDPVGACIGARGSRIOVVVNELRGE KIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQNVRLAARLTGWKIDIKDQAKYDYGAEDA KFAAVRANYQEESNQPDNQFEIIEEGYEDDPDEGEDDFNSMEEENMSKKSLASLSATDISDKRALVRVDFNVPVDDQGNITDDT RIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLGQEVIKTDDCIGDDVTAQVAALEKGQVLLLENVRFYK EEEKNDPNFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEKELQYLQAAIEVPQRPLAAIIGGSKVSSKIGV IETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLELASSLEKKAAERGVTLLLPTDIVAADKFAPDADAVTVSIENIPDD RMGLDIGPKSVKLFQDALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEIGKTGATTIIGGGDSVAAVEKVGLADQMSHIS TGGGASLELLEGTVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFV TQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHITNEIKERVIRVAKETNPAAVITEIGGTV GDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQPDILVCRCDRPIPVGLKQKLSEFCDVP VECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSHPQSPVEIAIVGKYVRLGDAYLSVVESLRHA AIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARNRQIPFLGLCLGMQCSIIEWARNVEGLVGA NSAEFDPKTDYPVINLLPEQQDVIDMGGTMRLGLYPCHVQPNTLAFDLYQEEVIYERHRHRYEFNNLYRNHLLNSGYVISGTSP DGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKQLPQGFPQFPMVKKVSRRLQALQAKVEERDYA PLEALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVIARGEKVTEATNAGADIAGSEELIDEIQKG MMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLEFRADRTGIVHVMFGKASFSSEDLLVNLK ALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKVDINALRDLKTTDAAMGTRSYRPYTPSTRQVTISDFAEITKTEPEKSLTESVH

RPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALLEYEDGEKRYILHPNGLKVGAKVTAGPQA PFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPSGEVRMVRRECYATIGQVGNTDARNLS AGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTRKRKKASSKLIVRRRRKSSKRGRGGR QSMSVGILGTKLGMTQIFDEAGVSIPVTVIKAGPCTVTQVKTQPTDGYCAIQVGYGEVKPKALNKPKLGHLAKSSAVPVRYLN EYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGR LGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESIVKNWQGEEVGQTSFELRVAKEETASHIVHR ALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPREFNIKLNRKERRLALRTAFVSRR EDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQSTETISLSARNVENIKVIAADQLNVFDLLHADKIVVTSSAL TKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEAAQNAKALEASLSEIALITGQKPVVTRAKK AIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGNYTLGVREQLIFPEIEYDRIDQIRGLDISIITTA KTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELSRDLPTHVTVSQSGETLLVTRRDDTRTSRQ MHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPAGVQFAVENNTNVIVSGYDKEVVGNTA AKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNA KTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGSITRTQLREIAQTKLPDLNANDIEAAMNIVEG TAKNMGVTVKDMSTATDQILEQLKVLTLLEAAELVKQIEEAFGVSAAAPAGGMMVMAAPGAAAAEPVEEQTEFNVVLEEVP ADRKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKESAEEISKKIADAGGKVVIKMSSKTYLPPEEEIKRDWYVVDAADK RLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKPSQKLYRRHSGRPGGMKTETFAKLQQRLPERIVEHAV KGMLPKNSLGRQLFTKLKVYSGSTHPHTAQKPKELIINTIPGENMIQPQTYLNVADNSGARKLMCIRVLGAGNRRYGGVGDRII AVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPKGTRVFGPVARELRDKNFTKIVSLAPEVLM LSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGS GKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRV GVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKIMRRGKVRRAKLYYLRQLSGKATRIKQ RFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWITRINAASRQQGLSY SQLIGNLKKANVELNRKMLAQLAVLDPATFAKVAELASSVKGMAHKKGTGSTRNGRDSNAQRLGVKRFGGQVVRAGNILVR QRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPSVTEEAVASMNNENYTEPSFLLPDLIEIQRSSFRWFLEEGL IEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIING AERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSIQVLLKALGLSDNEILDALRHPE YFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYDLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAV DYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFM DQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVC YEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALM GSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATEIRVRVKEKAALTNRESETIPHKPQEIKYVLSKY

QRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPWEGYNYEDAILISERLVQEDVYTSIHIEKFEIEAR QTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKG RVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNV GOVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSRDWVYNPENPGKIMVYDGRTGEPFDRAVTVGIA YMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKG KAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQVSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMME SGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRSQAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYIN QRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQ ECOKLSIPIVSMLDTNCDPDTVDVPIPANDDAIRSIKLIVGKLADAIYEGRHGOLEVEPDDEDYDIPEEDYEYNESEMGOKIHPVG FRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLGRNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALR TGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTR EGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEIIPGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKAS KAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPID GVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMA TVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFVVNGKEGELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQ ADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIV DTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTG SKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGA GRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDL TDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGR SLKKGPFVADHLLSKLEKLNANNEKQVIKTWSRASTILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRTYRGHGK TDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYF NHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYFKRGWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEIS AKLVQDLRQKTGAGIMDCKKALNETQGNIDEAIDWLRKKGIASAGKKSDRVTAEGLVEIYTTPDRSGGVLIEVNCQTDFVARN DAFKLLVKNLAKQAVNADNVTSLLAQPYIENTDVTVDEYIKGTITTLGENIQVRRFVNFSLEGSPGAIDGYIHTGGRVGVLISIG VDTENAAKNEEVQSLAKNTAMQVAACPNVEYVSVDKIPDQVVQKEKEIEMGKEDLGNKPENIKEKIVQGRIDKRLKEMTLLD QPYIRDQSISVAELIKQVESKVSEPIKVHQFVRYILGEGIEKQESNFAQEVAAQIGAK

>Cylindrospermopsis raciborskii MVCC19

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPNKQIYYCFGCQASGNAIRFIMDLNKRKFAE VVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPPG WETLYHYLVENKSYPAOLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVOGRVIAFGGRTLTDEOPKYLNSPETELFDKSKTLF ALDVAKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISNL AYKGEVRLKILHIPDGKDADEYLKNHSVTDYEQLLVEAPLWLDWQIAQVIQGRDLKQPTDFQLVSREFVKLLQKILNSDTLNY YISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPILRPPASPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGSSNLEFS VSHYRFLWEKSLOFPSQTLDLISQLQNLYLETQNDLGPVEHIFQLNEKNKQEILLRTNQLVQAAIACMEKVFRENRYRHFLELW QKTDPSTDPDQYNLYAQTIYADKMRIQELSKQRQLSISDLINMNKTVEATQRAFNSIRTGRANASLLDKVQVDYYGSPTPLKSL TNITTPDASTILIQPYDRSSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVGIRNIRRDALDSIRKQ EKAGEISEDESRDQQDKLQKITGKYTAKIDELLTEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDSEGAQLGIMAPLEALR LAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERFLKDGDKVK ATVMFRGREIQHSDLAETLLNRMATDLEPFGEIQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLERNLPRLAVQSSIR EALLKGYERYRRAQNLERRQFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHQISLDEVQQVAPEAQSGDSVVLDVTPD QGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPKREQLPNDTYRS NATFKVYLKKVSOGOORGPOLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTLDRDVDPVGA CIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQNVRLAARLTG WKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQPDNQFEIIEEGYEDDPDEGEDDFNSMEEENMSKKSLASLSATDISDKRAL VRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLGQEVIKTDDCIGDDVTAQ VAALEKGQVLLLENVRFYKEEEKNDPNFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEKELQYLQAAIE VPQRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLELASSLEKKAAERGVTLLLPTDIVAA DKFAPDADAVTVSIENIPDDRMGLDIGPKSVKLFQDALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEIGKTGATTIIGGG DSVAAVEKVGLADQMSHISTGGGASLELLEGTVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSILKLDP YINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHITNEIKERVI RVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQPDILVCR CDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSHPQSPVEIAIVG KYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARNRQIPFLGLCL GMQCSIIEWARNVEGLVGANSAEFDPKTDYPVINLLPEQQDVIDMGGTMRLGLYPCHVQPNTLAFDLYQEEVIYERHRHRYEF NNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKQLPQGFPQFPMVK KVSRRLQALQAKVEERDYAPLEALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVIARGEKVTEA TNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLEFRADRTGIV HVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKVDINALRDLKTTDAAMGTRSYRPYTPSTRQVT

ISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALLEYEDGEKRY ILHPNGLKVGAKVTAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPSGEVRMVR RECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTRKRKKAS SKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIKAGPCTVTQVKTQPTDGYCAIQVGYGEVKPKALNK PKLGHLAKSSAVPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIG AGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESIVKNWQGEEVGQT SFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPREFNIK LNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGOSTETISLSARNVENIKVIAADOLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEAAQNAKALEAS LSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGNYTLGVREQLIFP EIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELSRDLPTHVTVSQ SGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPAGVQFAVEN NTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNAGKANPAPPVGP ALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGSITRTQLREIAQT KLPDLNANDIEAAMNIVEGTAKNMGVTVKDMSTATDQILEQLKVLTLLEAAELVKQIEEAFGVSAAAPAGGMMVMAAPGAA AAEPVEEOTEFNVVLEEVPADRKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKESAEEISKKIADAGGKVVIKMSSKTYL PPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKPSQKLYRRHSGRPGGMKTE TFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGSTHPHTAQKPKELIINTIPGENMIQPQTYLNVADNSGARKLMCI RVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPKGTRVFGPVARE LRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRRGGKIWIRI FPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNAQEIIRSIEA EQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKIMRRGKVRR AKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDF RRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPATFAKVAELASSVKGMAHKKGTGSTRNGRDSNAQRL GVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPSVTEEAVASMNNENYTEPSFL LPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMYVPTRLLNKETGDIKEQ EVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSIQV LLKALGLSDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYDLGRVGRYKLNKKL RLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVLTPASLVNP KPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARV NQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQVDYVAVSPVQIVSV ATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATEIRVRVKEKAALTNR

ESETIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPWEGYNYEDAILISERL VQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGESDQPPEEKLLRAIFGEK ARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPLEDMPYLPDG TPVDIVLNPLGVPSRMNVGOVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSRDWVYNPENPGKIMV YDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTV KSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQVSRRTPPRPTYESFSR DSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRSQAEQGKKFLFVGTKR QAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSKLQKYLGGIKNMRK VPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDVPIPANDDAIRSIKLIVGKLADAIYEGRHGQLEVEPDDEDYDIPE EDYEYNESEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLGRNAQNNAGLSEIHIERKADQVDLELRT ARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQGIKV QVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVFKGEIIPGQEDIVSQPVTREREPRRRQQQRRRQ QFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQVGVGVGKASDVIGAVKKGVAD GKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFVVNGKEGELYFQYNPNYLGVIKAPLETLGL ENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIR IRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIHQPSSKTIDALMKLDLPS GVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAGRR AIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMARIAGVDLPRDKRVEIGLTYIYGIGLRR SQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRR GRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKLEKLNANNEKQVIKTWSRASTILPLMVGHTIAVHNGKQHVPVFVNEQM VGHKLGEFAPTRTYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQLTGTEVKSIRAGKVNLQDGYALLRD GEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYFKRGWVKISIGLCRGKKVHDKREDLKR RQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGIMDCKKALNETQGNIDEAIDWLRKKGIASAGKKSDRVTAEGLVEIYTTP DRSGGVLIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVTSLLAQPYIENTDVTVDEYIKGTITTLGENIQVRRFVNFSLEGS PGAIDGYIHTGGRVGVLISIGVDTENAAKNEEVQSLAKNTAMQVAACPNVEYVSVDKIPDQVVQKEKEIEMGKEDLGNKPENI KEKIVQGRIDKRLKEMTLLDQPYIRDQSISVAELIKQVESKVSEPIKVHQFVRYILGEGIEKQESNFAQEVAAQIGAK

>Cylindrospermopsis raciborskii N8

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPTKQIYYCFGCQASGNAIKFMMDLNKRQFA EVVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPP GWETLYHYLVENKNYPAOLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVOGRVIAFGGRTLTDEOPKYLNSPETELFDKSKT LFALDVSKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEIS NLAYKGEVQLKILHIPDGKDADEYLKNHSVTDYGQLLVDAPLWLDWQIAQVIQGRDLRQPTDFQLVSREFVKLLQKILNSDTL NYYISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPRPPQPDSTTSPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGS TNLEFSVSHHRFLWEKSLQFPSQTLDLISQLQNLYLETQNDLGPVQHIFQLNEKNKQEILLRTSQLVQAAIACMEKVFRENRYRH FLELWQKTDPSTDPDQYSLYAQTIYADKMRIQELSKQRQLSIADLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKV QVDYYGSPTSLKSLANITTPDATTILIQPYDRTSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVG IRNIRRDALDSIRKQEKAGEVSEDESRDQQDKLQKITSKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDS EGAQLGIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVR VKQAERFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEK ISLERNLPRLAVOSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHOISLDEVOOVA PEAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVE AELPKREQLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRT KIAVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLA IGKEGONVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQLDNQFEVMEEEYEDDPDAGEDDFNSMEEENMS KKSLASLSAADISDKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELL GQEVIKTDDCIGDDVTAQVAALEKGQVLLLENVRFYKEEENNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPS VAGYLVEKELQYLQGAIEVPQRPLVAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLGLASSLEK KAAERGVTLLLPTDIVAADKFGPDADAVTVSIDHIPDDRMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAI AQTLAEISKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAAS LGRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDY NGGTVQVIPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPT QHSVKELRSIGIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWE TMVERMSHPQSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDG KISAIEYARNQQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFDPKTDYPVINLLPEQQDVIDLGGTMRLGLYPCHVQPNTLAF DLYQEEVIYERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTH QGKKPNYPLRVSSVPMVKKVSRRLQALQAKVEERDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVVLPKG TGQIVRVAVIARGEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASA ISEFKAGKLEFRADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKIDINALRDFKTTDV

AMGTRSYRPYTPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDP NRNARIALVEYEDGEKRYILHPNGLKVGAKITAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKE GNYVTLKLPSGEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTP WGKPALGAKTRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIQAGPCTVTQVKTQPTDG YCAIQVGYGEVKPKALNKPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNF GRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVG NKMVESTVKNWQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIR SPLWRGGGVIFGPKPRDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQN TETISLSARNVENIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLK VTVNRGLGEAAQNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGV SAKSFDGRGNYTLGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKV VVKGPKGELSRDLPAHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLN IGYSHQVQIEPPAGVQFVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVV AVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSD QPNKKKVGSITRTQLKEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTIKDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGV SAAAPAGGMMMMAAPGGAAAAEVVEEOTEFDVILOEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKESADD ISKKITEAGGKVTIKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTG KKQSQKLYRRHSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGATHPHTAQKPKELIINTIPGEN MIQPQTYLNVADNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDN AAVIINKEGNPKGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITS ROIEASRRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKT KFIVRSQPQEQEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVE RVFLLHSPRIDNIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTAN QQVMKALRSAYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPTTFAKVAELASSVKG NMAHKKGTGSTRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVS VYPRVTEEAVASMNNENYMEPSFLLPDLIEIORSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRD STYGVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWL KFETDRNDLVWVRIDKTRKLSIQVLLKALGLLDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLE SRFFDPKRYDLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLONOVRVGLNR LERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHY GRICPIETPEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRY RQEFSTTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTD

GDVVYVDATEIRVRVKEKAALTNRESESIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALG QNVIVAYMPWEGYNYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDIL VGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRIVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDK MAGRHGNKGIISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGK LWEAREETSKDWVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQR FGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLD VEVDLMADQVSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLM DDAYNYMRSQAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPK KEASMLRREMSKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGK LADAIYEGRHGQLEVESDYEEYESAEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDH KLRQYIEQKLGRNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDAD AYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGIL GIKVWVFKGEIIPGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGG KKLSFRAIVIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAV RTVLELAGVRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQ VRLVPGEGKFVVNGKEGELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVARALCQLDPDNRSPLKIE GYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVL RSPHVDKDSREHFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTI TDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPH NGCRPPKRRRVMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRL EAMNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNEK QVIKTWSRASTILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRSYRGHGKTDKKSGRMSDKNEGYKIISDNRQAR YLYEILETYEAGIQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQ QGLTLIPLKMYFKRGWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNE TQGNIDEAIDWLRKKGIASAGKKSDRVTAEGLVDIYTTPDKSGGVIIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVASLL DQPYIEKTDVTVDEYIKETIATLGENIQVRRFVNFSLEGAPGAIDGYIHTGGRVGVLVSIGVDTETAAKNEELQSLAKNTAMQV AACPNVEYVSVDKIPDQVVEKEKEIEMGKEDLGNKPANIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKVSEPI KVHQFVRYILGEGIEKQESNFAEEVAAQIGAK

>Cylindrospermopsis raciborskii PAMP2012 PROT

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPNKQIYYCFGCQASGNAIRFIMDLNKRKFAE VVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPPG WETLYHYLVENKSYPAQLVEKAGLIKPRKEGGGYYDAFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETELFDKSKTLF ALDVAKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISNL AYKGEVRLKILHIPDGKDADEYLKNHSVTDYEQLLVEAPLWLDWQIAQVIQGRDLKQPTDFQLVSREFVKLLQKILNSDTLNY YISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPILRPPASPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGSSNLEFS VSHYRFLWEKSLOFPSQTLDLISQLQNLYLETQNDLGPVEHIFQLNEKNKQEILLRTNQLVQAAIACMEKVFRENRYRHFLELW QKTDPSTDPDQYNLYAQTIYADKMRIQELSKQRQLSISDLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKVQVDY YGSPTPLKSLTNITTPDASTILIQPYDRSSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYAEEGRVGIRNIR RDALDSIRKQEKAGEISEDESRDQQDKLQKITGKYTAKIDELLTEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDSEGAQL GIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAE RFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEIQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLERN LPRLAVQSSIREALLKGYERYRRAQNLERRQFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHQISLDEVQQVAPEAQS GDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPK REOLPNDTYRSNATFKVYLKKVSOGOORGPOLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVD TLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEG ONVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQPDNQFEIIEEGYEDDPDEGEDDFNSMEEENKCDKLIIGG GMIFTFYKARGLNVGKSLVEQDKLELASSLEKKAAERGVTLLLPTDIVAADKFAPDADAVTVSIENIPDDRMGLDIGPDSVKLF QDALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEIGKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGTV LPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHY ERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLR KEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYE VPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSHPQSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVN SEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARNRQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFDPKTDYPVINL LPEQQDVIDMGGTMRLGLYPCHVQPNTLAFDLYQEEVIYERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFF IACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKQLPHGFPQFPMVKKVSRRLQALQAKVEERDYAPLEALALLKETATAKF PEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVIARGEKVTEATNSGADIAGSEELIDEIQKGMMDFDKLIATPDVMP QVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLEFRADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKG RYWRTFYISSTMGPSIKVDINALRDLKTTDAAMGTRSYRPYTPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRR GGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALLEYEDGEKRYILHPNGLKVGAKVTAGPQAPFEDGNALPLSNIPLGT NVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPSGEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPK

VRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQ IFDEAGVSIPVTVIKAGPCTVTQVKTQPTDGYCAIQVGYGEVKPKALNKPKLGHLAKSSAVPVRYLNEYRTDAAGDYALGQEI KADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKV DAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESIVKNWQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTAST KTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPREFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPK SKELVAALARWGATADQKTLLILSEIGQSTETISLSARNVENIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLK TLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEAAQNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIM VTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGNYTLGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMG MPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELSRDLPTHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVE GVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPAGVQFAVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGK GIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEIS VFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGSITRTQLREIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTVKDMS TATDQILEQLKVLTLLEAAELVKQIEEAFGVSAAAPAGGMMVMAAPGAAAAEPVEEQTEFNVVLEEVPADKKIAVLKIVREIT GLGLKEAKELVESTPKAVKEGVNKESAEEISKKIAEAGGKVVIKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLR GKRKAEYTPHLDTGDFVVVINAEKVVVTGKKPSQKLYRRHSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLF TKLKVYSGSTHPHTAQKPKELIINTIPGENMIQPQTYLNVADNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVK KSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPKGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRG RMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVK PGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQ PYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRG NVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVE LNRKMLAQLAVLDPATFAKVAELASSVKGMAHKKGTGSTRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNV GIGNDDTLFALIDGVVTFERKGKSRKKVSVYPPVTEESVASMNNENYTEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYT GKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSP GVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSIQVLLKALGLSDNEILDALRHPEYFQKTIEKEGQFS EEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYDLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSID DIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHK RRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADE EDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLK PERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATEIRVRVKEKAALTNRESETIPHKPQEIKYVLSKYQRSNQDTCLNQKPL VRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPWEGYNYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPN VGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQG

DELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAG HNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSRDWVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKI HARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKV LMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQVSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRW NPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRSQAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNW ATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSML DTNCDPDTVDVPIPANDDAIRSIKLIVGKLADAIYEGRHGQLEVEPDDEDYDIPEEDYEYNESEMGQKIHPVGFRLGITQEHQSL WFAVPGRYPELLQEDHKLRQYIEQKLGRNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHR QVRINVVEVQKVDADAYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRA DIDYSYCTAQTVYGILGIKVWVFKGEIIPGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQ ERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIM RPAAPGTGVIAGGAVRTVLELAGVRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRA LYWGTGRRKSAVAQVRLVPGEGKFVVNGKEGELYFQYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGQADSIRLGVAR ALCQLDPDNRSPLKIEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNAT AIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVP NGVAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQ GAGLEITLIRDVTPIPHNGCRPPKRRRVMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALR AEIESNYQVEGDLRRLEAMNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVA DHLLSKLEKLNANNEKQVIKTWSRASTILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRTYRGHGKTDKKSGRMS DKNEGYKIISDNRQARYLYEILETYEAGIQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRK LLLHGLEIRKLIGKVEQQGLTLIPLKMYFKRGWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQ KTGAGMMDCKKALNETQGNIDEAIDWLRKKGIASAGKKSDRVTAEGLVDIYTTPDRSGGVLIEVNCQTDFVARNDAFKLLVK NLAKQAVNADNVTSLLAQPYIENTDVTVDEYIKETIATLGENIQVRRFVNFSLEGSPGAIDGYIHTGGRVGVLISIGVDTETAAK NEEVQSLAKNTAMQVAACPNVEYVSVDKIPDQVVQKEKEIEMGKEDLGNKPENIKEKIVQGRIDKRLKEMTLLDQPYIRDQSIS VAELIKQVESKVSEPIKVHQFVRYILGEGIEKQESNFAQEVAAQIGAK

>Cylindrospermopsis sp CR12

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPTKQIYYCFGCQASGNAIKFMMDLNKRQFA EVVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPP GWETLYHYLVENKNYPAQLVEKAGLIKPRKEGGGYKEGGGYYDVFRNRLMIPIRDVQGRVIAFGGRTLTDEQPKYLNSPETEL FDKSKTLFALDVSKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATER AIGEISNLAYKGEVOLKILHIPDGKDADEYLKNHSVTDYGOLLVDAPLWLDWQIAQVIQGRDLRQPTDFQLVSREFVKLLQKIL NSDTLNYYISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPRPPQPDSTTSPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVII ETLGSTNLEFSVSHHRFLWEKSLQFPSQTLDLISQLQNLYLETQNDLGPVQHIFQLNEKNKQEILLRTSQLVQAAIACMEKVFRE NRYRHFLELWQKTDPSMDPDQYSLYAQTIYADKMRIQELSKQRQLSIADLINMKLAEAESTMNKTVEATQRAFNSIRTGRANA SLLDKVQVDYYGSPTSLKSLANITTPDATTILIQPYDRTSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKELVKLAAKYA EEGRVGIRNIRRDALDSIRKQEKAGEVSEDESRDQQDKLQKITSKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFP KIRVIDSEGAQLGIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEH DYNVRVKQAERFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGL KDLIEKISLERNLPRLAVOSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIDGEGFRVLSTKTIVEEVTNGDHOISLDE VQQVAPEAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSF GQPEVEAELPKREQLPNDTYRSNATFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSR YVGPRTKIAVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAE DQLSLAIGKEGQNVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQLDNQFEVMEEEYEDDPDAGEDDFNSM EEENMSKKSLASLSAADISDKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKLRLTPVAK RLSELLGQEVIKTDDCIGDDVTAQVAALEKGQVLLLENVRFYKEEENNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVT KYLSPSVAGYLVEKELQYLQGAIEVPQRPLVAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLGL ASSLEKKAAERGVTLLLPTDIVAADKFGPDADAVTVSIDHIPDDRMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFA VGTEAIAQTLAEISKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGK GIVAASLGRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKE RRGDYNGGTVQVIPHITNEIKERVIRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEM KTKPTQHSVKELRSIGIQPDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDL THWETMVERMSHPQSPVEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIR GVDGKISAIEYARNQQIPFLGLCLGMQCSIIEWARNVEGLVGANSAEFDPKTDYPVINLLPEQQDVIDLGGTMRLGLYPCHVQP NTLAFDLYQEEVIYERHRHRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEA AISHTHQGSTPMVKKVSRRLQALQAKVEERDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIV RVAVIARGEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFK AGKLEFRADRTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKIDINALRDFKTTDVAMGT

RSYRPYTPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNA RIALVEYEDGEKRYILHPNGLKVGAKITAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYV TLKLPSGEVRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKP ALGAKTRKRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIQAGPCTVTQVKTQPTDGYCAIQ VGYGEVKPKALNKPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPM SHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVES TVKNWQGEEVGQTSFELRVAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRG GGVIFGPKPRDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATADQKTLLILSEIGQNTETISLS ARNVENIKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRG LGEAAQNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDG RGNYTLGVREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPK GELSRDLPAHVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQ VQIEPPAGVQFVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLA LNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKK KVGSITRTQLKEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTIKDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAP AGGMMMMAAPGGAAAAEVVEEOTEFDVILOEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKESADDISKKIT EAGGKVTIKMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKQSQ KLYRRHSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGATHPHTAQKPKELIINTIPGENMIQPQT YLNVADNSGARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIIN KEGNPKGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEAS RRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRS QPQEQEMNAQEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLL HSPRIDNIKIMRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMK ALRSAYRDRKKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPTTFAKVAELASSVKGNMAHK KGTGSTRNGRDSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVT EEAVASMNNENYMEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQ MYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDR NDLVWVRIDKTRKLSIQVLLKALGLLDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDP KRYDLGRVGRYKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRE RMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIE TPEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFST TTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVY

VDATEIRVRVKEKAALTNRESESIPHKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIV AYMPWEGYNYEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVT PKGESDOPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRIVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRH GNKGIISRILPLEDMPYLPDGTPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAR EETSKDWVYNPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEME VWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDL MADQVSRRTPPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYN YMRSQAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASML RREMSKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYE GRHGQLEVESDYEEYESAEEDYEYDESEFVDSFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIE QKLGRNAQNNAGLSEIHIERKADQVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYI AQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGIKVWVF KGEIIPGQEDIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAI VIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAG VRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEG KFVVNGKEGELYFOYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGOADSIRLGVARALCOLDPDNRSPLKIEGYLTRDPR AKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKD SREHFETRTHRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVI SWASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKR RRVMARIAGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRL VDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNEKQVIKTWSR ASTILPLMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRSYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETY EAGIQLTGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLK MYFKRGWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNETQGNIDEAI DWLRKKGIASAGKKSDRVTAEGLVDIYTTPDKSGGVIIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVASLLDQPYIEKTD VTVDEYIKETIATLGENIQVRRFVNFSLEGAPGAIDGYIHTGGRVGVLVSIGVDTETAAKNEELQSLAKNTAMQVAACPNVEYV SVDKIPDQVVEKEKEIEMGKEDLGNKPANIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKVSEPIKVHQFVRYIL **GEGIEKQESNFAEEVAAQIGAK**

>Raphidiopsis brookii D9

MQIPRLHPDTVEEVKHRADIVDVISDYVVLRRRGKDFVGLCPFHEEKTPSFTVSPNKQIYYCFGCQASGNAIRFIMDLNKRKFAE VVLDLAKRYQIPVKTLAPEQRQELQRQLSLRDQLFEVLASTSQFYQHVLRQDIGQQALQYLQKKRFLKTETVEKFALGYAPPG WETLYHYLVENKSYPAOLVEKAGLIKPRKEGGGYYDVFRNRLMIPIRDVOGRVIAFGGRTLTDEOPKYLNSPETELFDKSKTLF ALDVAKDAISKLDQAVVVEGYFDAIALHANGINNVVASLGTALSLEQVRLLLRYSESKQLVLNFDGDKAGINATERAIGEISNL AYKGEVRLKILHIPDGKDADEYLKNHSVTDYEQLLVEAPLWLDWQIAQVIQGRDLKQPTDFQLVSREFVKLLQKILNSDTLNY YISHCAEILSLGDTRLIPLRVENLITQVAPRRTPTPILRPPASPNTHQISHPQPSLLEQAEGLLLRIFLHCPQERQVIIETLGSSNLEFS VSHYRFLWEKSLOFPSQTLDLISQLQNLYLETQNDLGPVEHIFQLNEKNKQEILLRTNQLVQAAIACMEKVFRENRYRHFLELW QKTDPSTDPDQYNLYAQTIYADKMRIQELSKQRQLSISDLINMKLAEAESTMNKTVEATQRAFNSIRTGRANASLLDKVQVDY YGSPTPLKSLSNITTPDASTILIQPYDRSSLNIVEKAISLSDVGLTPSNDGSVVRLNIPPLTSDRRKELVKLAAKYAEEGRVGIRNIR RDALDSIRKQEKAGEISEDESRDQQDKLQKITGKYTAKIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDNEGAQ LGIMAPLEALRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQA ERFLKDGDKVKATVMFRGREIQHSDLAETLLNRMATDLEPFGEIQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIEKISLER NLPRLAVOSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIDGEGFRVLSTKIIVEEVTNSDHOISLDEVOOVAPEAOS GDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSSFGQPEVEAELPK REOLPNDTYRSNATFKVYLKKVSOGOORGPOLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVD TLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEG ONVRLAARLTGWKIDIKDQAKYDYGAEDAKFAAVRANYQEESNQFEVIEEEYERDPDEGEDDFNSMEEENMSKKSLASLSAA DISDKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLISKGAKVILASHFGRPKGVDEKFRLTPVAKRLSELLGQEVIKTNDCI GDDVTARVAALEQGQVLLLENVRFHKEEEKNDPEFARQLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEKEL QYLQAAIEFPQRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEQDKLELASSLEKKAAERGVTLL LPTDIVAADKFAPDADAVTVSIENIPDDRMGLDIGPKSVKLFQDALADCKTVIWNGPMGVFEFDKFAVGTEAIAQTLAEIGKTG ATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGTVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYS VSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTYMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHIT NEIKERVIRVAKETNPAALITEIGGTVGDIESLPFLEAIRQLRKEVGKQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQ PDILVCRCDRPIPVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQREPDLTHWETMVERMSHPQSP VEIAIVGKYVRLGDAYLSVVESLRHAAIATYGDLRLRWVNSEILEVEPPDNYLLGVDGIIVPGGFGIRGVDGKISAIEYARNRQIP FLGLCLGMQCSIIEWARNVEGLVGANSAEFDPKTDYPVINLLPDQQDVIDIGGTMRLGLYPCHVQPNTLAFDLYQEEVIYERHR HRYEFNNLYRNHLLNSGYVISGTSPDGRLVEIVEYPQHPFFIACQFHPEFQSRPSHPHPLFKGFMEAAISHTHQGKKQLPHGFPQF PMVKKVSRRLQALQAKVEERDYAPLEALSLLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVVLPKGTGQIVRVAVIARGE KVTEATNAGADIAGSEELIDEIQRGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAISEFKAGKLEFRAD RTGIVHVMFGKASFSSEDLLVNLKALQETIDRNRPSGAKGRYWRTFYISSTMGPSIKVDINALRDLKTTDAAMGTRSYRPYTPS

TROVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRDITATVIAVEYDPNRNARIALLEYED GEKRYILHPNGLKVGAKVTAGPQAPFEDGNALPLSNIPLGTNVHNVEMTPGKGGQIVRAAGATAQLMAKEGNYVTLKLPSGE VRMVRRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTR KRKKASSKLIVRRRRKSSKRGRGGRQSMSVGILGTKLGMTQIFDEAGVSIPVTVIKAGPCTVTQVKTQPTDGYCAIQVGYGEVK PKALNQPKLGHLAKSSAGPVRYLNEYRTDAAGDYALGQEIKADIFSVGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNH RAPGSIGAGTTPGRVYPGKRMAGRLGGSRVTVRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTTKVGNKMVESIVKNWQ GEEVGQTSFELRIAKEETASHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPK PRDFNIKLNRKERRLALRTAFVSRREDLIVVEEFTDQLQRPKSKELVAALARWGATAEQKTLLILSEIGQSTETISLSARNVENIK VIAADQLNVFDLLHADKIVVTSSALNKIQEVYSAMATTRLKTLYGQTIVPKLTQQFQYTNVHQVPKVLKVTVNRGLGEAAQN AKALEASLSEIALITGOKPVVTRAKKAIAGFKIROGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSAKSFDGRGNYTLG VREQLIFPEIEYDRIDQIRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGTKVVVKGPKGELSRDLP THVTVSQSGETLLVTRRDDTRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGANLVLNIGYSHQVQIEPPAG VQFVVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRKAGKTGGKGKKMAKKVVAVIKLALNAGKAN PAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSDQPNKKKVGSITRT QLKEIAQTKLPDLNANDIEAAMNIVEGTAKNMGVTVKDMSTATDQILEQLKVLTLLEAAELVKQIEEAFGVSAAAPAGGMMV MAAPGAAAAEPVEEOTEFNVVLEEVPADKKIAVLKIVREITGLGLKEAKELVESTPKAVKEGVNKESAEEISKKIAEAGGKVVI KMSSKTYLPPEEEIKRDWYVVDAADKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVVVTGKKPSQKLYRRHSG RPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNSLGRQLFTKLKVYSGSTHPHTAQKPKELIINTIPGENMIQPQTYLNVADNS GARKLMCIRVLGAGNRRYGGVGDRIIAVVKDAQPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKEGNPKGTR VFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIR RGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNA QEIIRSIEAEQLKSDLPQIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKIM RRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARNRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDR KKKKRDFRRLWITRINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPATFAKVAELASSVKGMAHKKGTGSTRNGR DSNAQRLGVKRFGGQVVRAGNILVRQRGTKFHPGNNVGIGNDDTLFALIDGVVTFERKGKSRKKVSVYPRVTEEAVASMNNE NYMEPSFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGHNYKLKEPKYSVEESKRRDSTYGVQMYVPTRLLNK ETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDK TRKLSIQVLLKALGLSDNEILDALRHPEYFQKTIEKEGQFSEEEALLELYRKLRPGEPPTVMGGQQLLESRFFDPKRYDLGRVGR YKLNKKLRLSVPDTTRVLTPGDILSAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVL TPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIG SLATHARVNQYGFLETPFRPVENGRVCYEKPAVYMTADEEDDLRVAPGDIPVDDNGQILGIQVPVRYRQEFSTTTPEQVDYVA VSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVIVSRTDGDVVYVDATEIRVRV

KEKAALTNRESETIPHKPQEVKYVLSKYQRSNQDTCLNQKPLVRIGEKVIAGQVLADGSSTEGGELALGQNVIVAYMPWEGYN YEDAILISERLVQEDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAWVESGDILVGKVTPKGESDQPPE EKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILP LEDMPYLPDGTPVDIVLNPLGVPSRMNVGOVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLWEAREETSRDWVY NPENPGKIMVYDGRTGEPFDRAVTVGIAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGA AYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMADQVSRRT PPRPTYESFSRDSLDEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRSQAEQG KKFLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMSKLQK YLGGIKNMRKVPDVVIIVDQRREYNAVQECQKLSIPIVSMLDTNCDPDTVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQLEVE PDYEDYDIPEEDYEDEEPGYVDHFSDDDDEEMGQKIHPVGFRLGITQEHQSLWFAVPGRYPELLQEDHKLRQYIEQKLGRNAQ NNAGLSEIHIERKADOVDLELRTARPGVVVGRGGQGIEALRTGLQQLLGSHRQVRINVVEVQKVDADAYLIAEYIAQQLERRV SFRRVVRQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTVYGILGVKVWVFKGEIIPGQE DIVSQPVTREREPRRRQQQRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERG QVGVGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGVGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAK QLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAETNSGRALYWGTGRRKSAVAQVRLVPGEGKFVVNGK EGELYFOYNPNYLGVIKAPLETLGLENEYDILVKAKGGGLTGOADSIRLGVARALCOLDPDNRSPLKIEGYLTRDPRAKERKKY GLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETR THRRIIDIHQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKKNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAGS SGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIQVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMARI AGVDLPRDKRVEIGLTYIYGIGLRRSQDILAATDVNPDTRVKDLTDADLAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYR GRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKLEKLNANNEKQVIKTWSRASTILPL MVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRTYRGHGKTDKKSGRMSDKNEGYKIISDNRQARYLYEILETYEAGIQL TGTEVKSIRAGKVNLQDGYALLRDGEAWLINAHISPYTASGQYFNHEPRRTRKLLLHGLEIRKLIGKVEQQGLTLIPLKMYFKR GWVKISIGLCRGKKVHDKREDLKRRQDQRDIQRAMKNYMAEISAKLVQDLRQKTGAGMMDCKKALNETQGNIDEAIDWLRK KGIASAGKKSDRVTAEGLVDIYTTPDRSGGVLIEVNCQTDFVARNDAFKLLVKNLAKQAVNADNVTSLLAQPYIENTDVTVDD YIKETIATLGENIQVRRFVNFSLEGAPGVIDGYIHTGGRVGVLVSIGVYTETAAKNEEVQSLARNTAMQVAACPNVEYVSVDKI PDQVVQKEKEIEMGKEDLGNKPENIKEKIVQGRIDKRLKEMTLLDQPYIRDQNISVAELIKQVESKLSEPIIVHQFVRYILGEGIE KQESNFAQEVAAQIGAK

>Sphaerospermopsis kisseleviana NIES 73

MQIPRLHPDTIEEVKHRADIVDVVSDYVVLRRRGKDFVGLCPFHDEKTPSFTVSPSKQMYYCFGCQAAGNAIKFVMDLNKRHF AEVVLDLAKRYOVPVKTLAPEORQELORQISLREQLYEILASTAQFYQHALRONLGQKAMQYLQENRQLKIETIQQFGLGYAP PGWETLHRYLVENKNYPVQLVEKAGLIKPRKEGGGYYDVFRDRLMIPIHDVQGRVIAFGGRTLTDEQPKYLNSPETELFSKGK TLFALDQAKDGISKSDQGVVVEGYFDAIALHAAGINNVVASLGTALSIEQVRLLLRYSDSKQLILNFDADNAGINAAERAIGEIA TLAYKGEVQLKILNIPDGKDADEYLQTHTAAEYQQLLTNAPLWLNWQIEEIIKDRDLKQATNFQIVTKEMVKILQKIVNSDTLN YYISYCAEILSLGDARLIPLRVENLLTQIAPASVQTPPLRLRKPESKTPKLSLVTTERSLLEQAEALLLRIFLHCPEQRQIIFEELEER NLEFSLSHHRFLWQKSLEFPLEEVDLISNLQNRYLELEEDLKIVSHVFHLNEKNKQEILRTPQVVQATLACMEIVLREKRYRHFM ELWEKVDPQIEPEKNKSYYDNAIAEKRRIQELDKQRQFSIAELMKLAEAESTMQKTVEATQRAFNTIRTGRANASLLDKVQVD YYGSPTPLKSLANISTPDASTILIQPYDKKSLNMVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKEFAKLAAKYAEEGRVGIRN IRRDALDSIRKQEKNAEISEDESRDQQDKLQKLTNKYTAKIDDLLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDTDG GQLGIMPPHEALKLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVK QAERFLKDGDKVKATVMFRGREIQHSDLAEDLLKRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMVTLPGLKDLIESISRER NLPRLAVQSSIREALLKGYERYRRAQNLERRQFDENYFDNFEVELDIEGEGFRVLSTKTIVEEVTNTDHQISLDEVQQVAPEAQS GDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLESTVLQARVLRFERQSVILAVSSGFGQPEVEAELPK REQLPNDTYRSNTTFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVD TLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEG ONVRLAARLTGWKIDIKDQAKYDYAAEDAKFAAVRAKYQAENDETEMEQLEDEYQDKLELENDNFETNEEETMSKKSLASL SAADISGKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLTQKGAKVILTSHFGRPKGVDDKLRLTPVAKRLSELLGQEVVK TDDCIGDDVAAKVAALENGQVLLLENVRFYKEEEKNDPEFAQKLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYL VEKELQYLQSAIEVPQRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLSVGKSLVEEDKLELAKSLEAKAKER GVTFLLPTDIVAADKFAPDANATTVSIENIPADGMGLDIGPDSVKVFQDALADCKTVIWNGPMGVFEFDQFAVGTEAIAHTLAE IGKTGTTTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEADLGHYERFTDTSMSRLNSVTTGLIYQSVI NKERRGDYNGGTVQVIPHITNEIKDRILRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGRQNVLYMHVTLLPWIASA GEMKTKPTQHSVKELRSIGIQPDILVCRCDRPIGVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQR OPDLSOWETMVERMYSPKYSVEIAIVGKYVRLSDAYLSVVESLRHAAISTYGDLRIRWVNSETLETESAENYLAGVDGILVPGG FGSRGIDGKIAAIKFARDRQIPFLGLCLGMQCSVIEWARNVEGLADANSAEFDPYTTNPIINLLPEQQDVVDLGGTMRLGLYPCR VQPGTIAFDLYQEEVIYERHRHRYEFNNLYRNALLESGYVVSGTSPDGRLVEIVEYPKHPFFIACQFHPEFQSRPSTPHPLFKGFM EAAISRTHHSKNTSKPVQVSMGKKISRRLQALLEKVEDRDYAPLDALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVA LPKGTGQVVRVAVIARGEKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTF DVASAIAEFKAGKLEFRADRTGIVHVMFGKASFTPEDLLVNLKALQETIDRNRPSGAKGRYWRTFYVSATMGPSIKVDINALRD LKVTDAAMGTRSYRPYTPSTRQVTISDFAEITKTEPEKSLTESVHRAKGRNNQGRITSRRRGGGHKKLYRIIDFKRDKRNIAATV

TAIEYDPNRNARIALVQYEDGEKRYILHPNGLKVGAKIIAGSEAPFEDGNALPLSNIPLGTNVHNVELTAGKGGQIVRAAGATA QVVAKEGNYVTLKLPSGEVRMIRKECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGR SGPVTPWGKPALGAKTRKRKKASTKLIVMSVGILGTKLGMTQIFDEAGVAIPVTVIKAGPCTVTQVKTKQTDGYSAIQVGYGE VKPKALNQPKLGHLAKSSAPALRHLNEYRTDTASEYALGQEIKADIFSEGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKN HRAPGSIGAGTTPGRVYPGKRMAGRLGGTRVTIRKLTVVKVDAERNLILVKGAIPGKPGGLVNVVPTNKVGNKMVESVVKNW QGEEVGQTSFELRVAKEETAAHIVHRALVRQMTNSRQGTVSTKTRSEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFG PKPRDFNIKLNRKERRLALRTAFVSRAEDLIVVEEFSNELQRPKTKELVAALARWGAVPEQKTLLILSEIAENVNLSARNVENLK VIAADQLNVFDLLHAGKIVVTSSALTKIQEVYSAMATTRLKTVYQETIVPKLTQQFQYTNVHQVPKVVKITVNRGLGEAAQNA KALEASLNEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSPKSFDGRGNYTLGV REQLIFPEVEYDSIDQIRGLDISIITTAKNDEEGRALLKEMGMPFRDQMSRIGKRPITVPAKVQVAIDGTKVVVKGPKGELSRDLP ANVIVSQEGETLLVTRRDETRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGRNLVLNIGYSHQVQIEPPDGI QFAVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRMAKKVVAVIKLALNAGKANPAPPVGPALGQHG VNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSEQPNKKKVGSITKAQLREIAQTKLPDLN ANDIDAAMNIVAGTAKNMGVTITDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAPAGGMMMMAAPGAAAPAEAV EEKTEFDAILESVPADKKIAVLKIVREITGLGLKEAKDLVEAAPKPVKEGVNKEAAEDIKKRIAEAGGTVTIKMSSKTYLPPQEK LEREWYVVDATDKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVAVTGKKRTOKVYRRHSGRPGGMKTETFAK LQQRLPERIVEHAVKGMLPKNSLGKQLFTKLKVYAGPTHPHAAQKPKELIVNTIPGENMIQPQTYLNVADNSGAKKLMCIRVL GAGNRRYGGVGDKIIAVVKESNPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKDGNPRGTRVFGPVARELRD KNFTKIVSLAPEVLMLSPKRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRRGGKIWIRIFPD KPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNVQEVIRSIEAEHL KSDLPEIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKVVRRGKVRRAKL YYLRQLSGKATRIKQRFDRALMTRVKRGNVARKRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRL WITRINAASROHGLSYSQLIGNLKKANVDLNRKMLAQLAVLDPASFAKVAELANSAKGMAHKKGTGSTRNGRDSNAQRLGV KRFGGQTVLAGNILVRQRGTKFHPGNNVGIGSDDTLFALVDGVVTFERKGKSRKKVSVYPAIAAEAVASMTNETYMEPAFLLP DLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFIGQNYKLKEPKYSVEESKRRDSTYAVQMYVPTRLLNKETGDIKEQEV FIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSAQVLL KALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEEALMELYRKLRPGEPPTVLGGQQLLDSRFFDPKRYDLGRVGRYKLNKKLRL SVPDTMRVLTPGDILAAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVLTPASLVNPK PLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVN QYGFLETPFRPVENGRVCYEKAAVYMTADEEDDLRVAPGDIPVDENGHIIGPQVPVRYRQEFSTTTPEQVDYVAVSPVQIVSVA TSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQAARDSGMVIVSRTDGDVVYADANEIRVRVRERTGDRLQV TGDSEETSSFPVSKPQEIKYVLSKYQRSNQDTCLNQKPLVRIGEKVVAGQVLADGSSTEGGELALGQNIVVAYMPWEGYNYED

AILISERLVQDDVYTSIHIEKYEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRIGAWVESGDILVGKVTPKGESDQPPEEKLL RAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPAED MPYLPDGSPVDIVLNPLGVPSRMNVGQVFECLLGWAGQNLGVRFKITPFDEMYGEESSRRIVHGKLQEARDETGKTWVYNPD DSGKIMVYDGRTGEPFDRPVTVGVAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYT LQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQADGSSLDVEVDLMADQGSRRTPPR PTYESLSRESLEEDEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRTQAEQGKK FLFVGTKRQAAGIIAQEANRCGSHYINQRWLGGMLTNWATIKTRAERLKDLERREENGALDLLPKKEASMLRREMAKLQKYL GGIKNMRKVPDIVVIVDQRREYNAVQECQKLGIPIVSMLDTNCDPDVVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQLEVEE DYEDYEGAEEEYDYDESEYTDSMMSDDDEEMGQKIHPVGFRLGITQEHQSRWFAVPDRYPALLQEDHKLRQYIEKKLGRTAQ NNAGISEIRIERKADQIDLELRTARPGVVVGRGGQGIESLRTGLQDLLGGQRQIRINVVEVQKVDADAYLIAEYIAQQLERRVSF RRVVRQAIQRAQRAGVQGIKVQVGGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTIYGILGIKVWVFKGEIIPGQEEA PQPSGREREPRRRDQKRRRQQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQVG VGVGKASDVIGAVKKGVADGKKHLIEIPITKSNSIPHPIDGIGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKQLGS SNPLNNARAAVNALSTLRTFAEVAEDRGIAVENLYIMATVAEANSGRAVYWGTGRRKSAVAQVRLVPGEGKFTVNGKDGEL YFQFNANYLGAIKAPLETLGLESEYDILVKAEGGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERKKYGLHK ARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRI IDIYQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKRNVPNGIAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKG AKKGTPFAAQTAAESAGRRAMDQGMRQIEVMVSGPGAGRETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDL PRDKRVEIGLTYIYGIGLTRSQEILAATGVNPDTRVKDLSDADVAALRAEIESNYQVEGDLRRLEAMSIKRLVDIGCYRGRRHR MGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNEKNEKQVIKTWSRASTIIPVMVGHTIA VHNGKQHVPVFVNEQMVGHKLGEFAPTRTYRGHGKSDKKSGRMSDKNEGYKVISDNRQARYLYEILETYEAGIQLAGTEVKS IRAGKANLQDGYALIRNGEAWLINVHISPYTSSGQYFNHEPRRTRKLLLHRQELRKLIGKVEQQGLTLVPLKMYLKRGWVKVSI GLCKGKKIHDKRESLKRRQDQRDIQRAMKNYMAEISAKLVQELRQKTGAGMMDCKKALKENDGNIDAAIDWLRKKGIASAG KKSDRVAAEGLVDTYIQPDGKVGVLIEVNCQTDFVARNDAFKTLVKNLAQQAATADSVESLLAQPYIEKAEVTVDEFIKESIAT LGENIQVRRFVNFSLGDTPGVVDSYIHTGGRVGVLLQVIAKTDDAAGNEEFKKFAKNAAMQVAACPNVEYVSVDOIPAETVO KEKDIEMGKEDLANKPENIREKIVQGRIEKRLKELTLLDQPYIRDQSISVADLVKQVQSKVGEDITVHGFVRYVLGEGIEKQESN **FAEEVAAQMGAK**

>Sphaerospermopsis sp FACHB 1194

MQIPRLHPDTIEEVKHRADIVDVVSDYVVLRRRGKDFVGLCPFHDEKTPSFTVSPSKQMYYCFGCQAAGNAIKFVMDLNKRHF AEVVLDLAKRYOVPVKTLAPEORQELORQISLREQLYEILASTAQFYQHALRONLGQKAMQYLQENRQLKIETIQQFGLGYAP PGWETLHRYLVENKNYPVOLVEKAGLIKPRKEGGGYYDVFRDRLMIPIHDVOGRVIAFGGRTLTDEOPKYLNSPETELFSKGK TLFALDQAKDGISKSDQGVVVEGYFDAIALHAAGINNVVASLGTALSIEQVRLLLRYSDSKQLILNFDADNAGINAAERAIGEIA TLAYKGEVQLKILNIPDGKDADEYLQTHTAAEYQQLLTNAPLWLNWQIEEIIKDRDLKQATNFQIVTKEMVKILQKIVNSDTLN YYISYCAEILSLGDARLIPLRVENLLTQIAPASVQTPPLRLRKPESKTPKLSLVTTERSLLEQAEALLLRIFLHCPEQRQIIFEELEER NLEFSLSHHRFLWQKSLEFPLEEVDLISNLQNRYLELEEDLKIVSHVFHLNEKNKQEILRTPQVVQATLACMEIVLREKRYRHFM ELWEKVDPQIEPEKNKSYYDNAIAEKRRIQELDKQRQFSIAELMQKTVEATQRAFNTIRTGRANASLLDKVQVEYYGNPTPLKS LANISTPDATTILIQPYDKKSLNMVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKEFAKLAAKYAEEGRVGIRNIRRDALDSIR KQEKNAEISEDESRDQQDKLQKLTNKYTAKIDDLLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDTDGGQLGIMPPHE ALKLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERFLKDGD KVKATVMFRGREIQHSDLAEDLLKRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVALPGLKDLIESISRERNLPRLAVQ SSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIEGEGFRVLSTKTIVEEVTNTDHOISLDEVOOVAPEAOSGDSVVLDV TPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLESTVLQARVLRFERQSVILAVSSGFGQPEVEAELPKREQLPNDT YRSNTTFKVYLKKVSOGOORGPOLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTLDRDVDP VGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQNVRLAAR LTGWKIDIKDQAKYDYAAEDAKFAAVRAKYQAENDETEMEQLEDEYQDKLELENDNFETNEEETVSKKSLASLSAADISGKR ALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLTQKGAKVILTSHFGRPKGVDEKLRLTPVAKRLSELLGQEVVKTDDCIGDDV AAKVAALENGQVLLLENVRFYKEEEKNDPEFAQKLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEKELQYLQ SAIEVPORPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLSVGKSLVEEDKLELAKSLEAKAKERGVALLLPTD VVLADNFAADANSQTVTIEAIPDGWMGLDIGPDSVKVFQEALADCKTVIWNGPMGVFEFDKFAAGTEAIAHTLAEIGKTGTTTI IGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSIL KLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHITNEIK DRILRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGRQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQPDIL VCRCDRPIGVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQRQPDLSQWETMVERMYSPKYSVEI AIVGKYVRLSDAYLSVVESLRHAAISTYGDLRIRWVNSETLETESAENYLAGVDGILVPGGFGSRGIDGKIAAIKFARDRQIPFLG LCLGMQCSVIEWARNVEGLADANSAEFDPYTTNPIINLLPEQQDVVDLGGTMRLGLYPCRVQPGTIAFDLYQEEVIYERHRHRY EFNNLYRNALLGSGYVVSGTSPDGRLVEIVEYPKHPFFIACQFHPEFQSRPSTPHPLFKGFMEAAISRTHHSKNTSKPVQVSMGK KISRRLQALLEKVEDRDYAPLDALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVALPKGTGQVVRVAVIARGEKVTEA TNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDVASAIAEFKAGKLEFRADRTGIV HVMFGKASFTPEDLLVNLKALQETIDRNRPSGAKGRYWRTFYVSATMGPSIKVDINALRDLKVTDAAMGTRSYRPYTPSTRQV

TISDFAEITKTEPEKSLTESVHRAKGRNNQGRITSRRRGGGHKKLYRIIDFKRDKRNIAATVTAIEYDPNRNARIALVQYEDGEK RYILHPNGLKVGAKIIAGPEAPFEDGNALPLSNIPLGTNVHNVELTAGKGGQIVRAAGATAQVVAKEGNYVTLKLPSGEVRMIR KECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTRKRKKAS TKLIVMSVGILGTKLGMTQIFDEAGVAIPVTVIKAGPCTVTQVKTQQTDGYSAIQVGYGEVKPKALNQPKLGHLAKSSAPALRH LNEYRTDTASEYALGQEIKADIFSEGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAG RLGGTRVTIRKLTVVKVDAERNLILVKGAIPGKPGGLVNVVPTNKVGNKMVESVVKNWQGEEVGQTSFELRVAKEETAAHIV HRALVROMTNSRQGTVSTKTRSEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDFNIKLNRKERRLALRTAFVSRAEDLIVVEEFSNELQRPKTKELVAALARWGAVPEQKTLLILSEIAENVNLSARNVENLKVIAADQLNVFDLLHADKIVVTSSA LTKIQEVYSAMATTRLKTVYQETIVPKLTQQFQYTNVHQVPKVVKITVNRGLGEAAQNAKALEASLNEIALITGQKPVVTRAK KAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSPKSFDGRGNYTLGVREQLIFPEVEYDSIDQIRGLDISIIT TAKNDEEGRALLKEMGMPFRDQMSRIGKRPITVPAKVQVAIDGTKVVVKGPKGELSRDLPANVIVSQEGETLLVTRRDETRTS RQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGRNLVLNIGYSHQVQIEPPDGIQFAVENNTNVIVSGYDKEVVGN TAAKIRAVRPPEPYKGKGIRYAGEVVRRMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMV IPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSEQPNKKKVGSITKAQLREIAQTKLPDLNANDIDAAMNIVAGTAKNMGVTI TDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAPAGGMMMMAAPGAAAPAEAVEEKTEFDAILESVPADKKIAVLKI VREITGLGLKEAKDLVEAAPKPVKEGVNKEAAEDIKKRIAEAGGTVTIKMSSKTYLPPOEKLEREWYVVDATDKRLGRLASEI AMVLRGKRKAEYTPHLDTGDFVVVINAEKVAVTGKKRTQKVYRRHSGRPGGMKTETFAKLQQRLPERIVEHAVKGMLPKNS LGKQLFTKLKVYAGPTHPHAAQKPKELIVNTIPGENMIQPQTYLNVADNSGAKKLMCIRVLGAGNRRYGGVGDKIIAVVKESN PNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKDGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPKRTKF RKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEF WVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNVQEVIRSIEAEHLKSDLPEIYVGDTVRVGVKIKE GDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKVVRRGKVRRAKLYYLRQLSGKATRIKQRFDRAL MTRVKRGNVARKRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWITRINAASRQHGLSYSQLIGNARGEN (MARKERNKILK) and the second of the seLKKANVDLNRKMLAQLAVLDPASFAKVAELANSAKGMAHKKGTGSTRNGRDSNAQRLGVKRFGGQTVLAGNILVRQRGTK FHPGNNVGIGSDDTLFALVDGVVTFERKGKSRKKVSVYPAIAAEAVASMTNETYMEPAFLLPDLIEIQRSSFRWFLEEGLIEELN SFSPITDYTGKLELHFIGQNYKLKEPKYSVEESKRRDSTYAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVI VNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQK TIEKEGQFSEEEALMELYRKLRPGEPPTVLGGQQLLDSRFFDPKRYDLGRVGRYKLNKKLRLSVPDTMRVLTPGDILAAVDYLI NLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQT NPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEK AAVYMTADEEDDLRVAPGDIPVDENGHIIGPQVPVRYRQEFSTTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSN MQRQAVPLLKPERPLVGTGLEAQAARDSGMVIVSRTDGDVVYADANEIRVRVRERTGDRLQVTGDSEETSSFPVSKPQEIKYV

LSKYQRSNQDTCLNQKPLVRIGEKVVAGQVLADGSSTEGGELALGQNIVVAYMPWEGYNYEDAILISERLVQDDVYTSIHIEK YEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRIGAWVESGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVP NGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPAEDMPYLPDGSPVDIVLNPLGVP SRMNVGQVFECLLGWAGQNLGVRFKITPFDEMYGEESSRRIVHGKLQEARDETGKTWVYNPNDSGKIMVYDGRTGEPFDRPV TVGVAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEAL NAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQADGSSLDVEVDLMADQGSRRTPPRPTYMPVVSLAQMMESGVHF GHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRTQAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWL GGMLTNWATIKTRAERLKDLERREENGALDLLPKKEASMLRREMAKLQKYLGGIKNMRKVPDIVVIVDQRREYNAVQECQK LGIPIVSMLDTNCDPDVVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGOLEVEEDYEDYEGAEEEYDYDESEYTDSMMSDDDEE MGQKIHPVGFRLGITQEHQSRWFAVPDRYPALLQEDHKLRQYIEKKLGRTAQNNAGISEIRIERKADQIDLELRTARPGVVVGR GGQGIESLRTGLQDLLGGQRQIRINVVEVQKVDADAYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVGGRLNGA EIARTEWTREGRVPLHTLRADIDYSYCTAQTIYGILGIKVWVFKGEIIPGQEEAPQPSGREREPRRRDQKRRRQQFEDRSNEAMA TGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIEIPITK SNSIPHPIDGIGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKQLGSSNPLNNARAAVNALSTLRTFAEVAEDRGIAV ENLYIMATVAEANSGRAVYWGTGRRKSAVAQVRLVPGEGKFTVNGKDGELYFQFNANYLGAIKAPLETLGLESEYDILVKAE GGGLTGQADSIRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLL DTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIYQPSSKTIDALMKLDLPSGVDIEVKLMAR QPTKKTGSKKQKRNVPNGIAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAGRRAMDQGMRQIEV MVSGPGAGRETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDLPRDKRVEIGLTYIYGIGLTRSQEILAATGVNPD TRVKDLSDADVAALRAEIESNYQVEGDLRRLEAMSIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAP GKMGRSLKKGPFVADHLLSKIEKLNEKNEKQVIKTWSRASTIIPVMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRTYR GHGKSDKKSGRMSDKNEGYKVISDNRQARYLYEILETYEAGIQLAGTEVKSIRAGKANLQDGYALIRNGEAWLINVHISPYTSS GQYFNHEPRRTRKLLLHRQELRKLIGKVEQQGLTLVPLKMYLKRGWVKVSIGLCKGKKIHDKRESLKRRQDQRDIQRAMKNY MAEISAKLVQELRQKTGAGMMDCKKALKENDGNIDAAIDWLRKKGIASAGKKSDRVAAEGLVDTYIQPDGKVGVLIEVNCQ TDFVARNDAFKTLVKNLAQQAATADSVESLLAQPYIEKAEVTVDEFIKESIATLGENIQVRRFVNFSLGDTPGVVDSYIHTGGR VGVLLQVIAKTDDAAGNEEFKKFAKNAAMQVAACPNVEYVSVDQIPAETVQKEKDIEMGKEDLANKPENIREKIVQGRIEKRL KELTLLDQPYIRDQSISVADLVKQVQSKVGEDITVHGFVRYVLGEGIEKQESNFAEEVAAQMGAK

>Sphaerospermopsis sp LEGE 00249

MQIPRLHPDTIEEVKHRADIVDVVSDYVVLRRRGKDFVGLCPFHDEKTPSFTVSPSKQMYYCFGCQAAGNAIKFVMDLNKRHF TEVVLDLAKRYQVPVKTLAPEQRQELQRQISLREQLYEILASTAQFYQHALRQNLGQKAMQYLQEKRLFKIETIQQFGLGYAPP GWETLYRYLVDNKNYPVOLVEKAGLIKPRKEGGSYYDVFRDRLMIPIRDIOGRVIAFGGRTLTEEOPKYLNSPETELFSKGKTL FALDQAKDGISKSDQGVVVEGYFDAIALHAAGINNVVASLGTALSIEQVRLLLRYSDSKQLILNFDADKAGINAAERAIGEIATL AYKGEVQLKILNIPDGKDADEYLHSHTATEYQQLLANAPLWLNWQIEEIIKDRDLKQAANFQIVTKEMVKLLQKIVNSDTLNY YISYCAEILSLGDARLIPLRVENLLTQIAPANVQTPPLRPRKPESKTPKLSLVTTERSLLEQAEALLLRIFLHCPEQRKVVFAELEE RNLEFSLSHHRFLWQQSLEFPLEEVDLISNLQNRYLELEEDLKIVSHVFHLNEKNKTEILRTPQVVQATLACMERVLREKRYRHF MELWKKIDPQAEPDKYKSYADAIYADKMRIQELDKQRQFPISELFMQKTVEATQRAFNTIRTGRANASLLDKVQVDYYGSPTP LKSLANISTPDASTILIQPYDKKSLNMVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRREFAKLAAKYAEEGRVGIRNIRRDALD SIRKQEKAAEISEDESRDQQDKLQKLTNKYTAKIDDLLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDTDGGQLGIMP PHEALKLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERFLK DGDKVKATVMFRGREIQHSDLAEDLLKRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIESISRERNLPRL AVQSSIREALLKGYERYRRAQNLERRQFDENYFDNFEVELDIEGEGFRVLSTKTIVEEVTNTDHQISLDEVQQVAPEAQSGDSV VLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLESTVLQARVLRFERQSVILAVSSGFGQPEVEAELPKREQL PNDTYRSNTTFKVYLKKVSOGOORGPOLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTLDR DVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQNVR LAARLTGWKIDIKDQAKYDYAAEDAKFAAVRAKYQAENDETEMEQLEDEYQDKLELENDNFETNEEETVSKKSLASLSAADI SGKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLTQKGAKVILTSHFGRPKGVDDKLRLTPVAKRLSELLGQEVVKTDDCI GDDVAAKVAALENGQVLLLENVRFYKEEEKNDPEFAQKLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEKEL QYLQSAIEVPQRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLSVGKSLVEEDKLELAKSLEAKAKERGVALL LPTDVVLADNFAADANSQTVSIEAIPDGWMGLDIGPDSVKVFQEALADCKTVIWNGPMGVFEFDKFAVGTEAIAHTLAEIGKT GTTTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDY SVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHI TNEIKDRILRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGRQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGI QPDILVCRCDRPIGVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEREGLAQQTLDLLQMEQRQPDLSQWETMVERMYSPK YSVEIAIVGKYVRLSDAYLSVVESLRHAAISTYGDLRIRWVNSETLETESAENYLAGVDGILVPGGFGSRGIDGKIAAIKFARDR QIPFLGLCLGMQCSVIEWARNVEGLADANSAEFDPYTTNPIINLLPEQQDVVDLGGTMRLGLYPCRVQPGTIAFDLYQEEVIYER HRHRYEFNNLYRNALLESGYVVSGTSPDGRLVEIVEYPKHPFFIACQFHPEFQSRPSTPHPLFKGFMEAAISRTHHSKNTSKPVQ VSMGKKISRRLQALLEKVEDRDYAPLDALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVALPKGTGQVVRVAVIARG EKVTEATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDVASAIAEFKAGKLEFR ADRTGIVHVMFGKASFTPEDLLVNLKALQETIDRNRPSGAKGRYWRTFYVSATMGPSIKVDINALRDLKVTDAAMGTRSYRPY

TPSTRQVTISDFAEITKTEPEKSLTESVHRAKGRNNQGRITSRRRGGGHKKLYRIIDFKRDKRNIAATVTAIEYDPNRNARIALVQ YEDGEKRYILHPNGLKVGAKIIAGSEAPFEDGNALPLSNIPLGTNVHNVELTAGKGGQIVRAAGATAQVVAKEGNYVTLKLPS GEVRMIRKECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKT RKRKKASTKLIVMSVGILGTKLGMTQIFDEAGVAIPVTVIKAGPCTVTQVKTKQTDGYSAIQVGYGEVKPKALNQPKLGHLAK SSAPALRHLNEYRTDTASEYALGQEIKADIFSEGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVY PGKRMAGRLGGTRVTIRKLTVVKVDAERNLILVKGAIPGKPGGLVNVVPTNKVGNKMVESVVKNWQGEEVGQTSFELRVAK EETAAHIVHRALVRQMTNSRQGTVSTKTRSEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDFNIKLNRKERRL ALRTAFVSRAEDLIVVEEFSNELQRPKTKELVAALARWGAVPEQKTLLILSEIAENVNLSARNVENLKVIAADQLNVFDLLHAD KIVVTSSALTKIQEVYSAMATTRLKTVYQETIVPKLTQQFQYTNVHQVPKVVKITVNRGLGEAAQNAKALEASLNEIALITGQK PVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLALPRIRDFRGVSPKSFDGRGNYTLGVREQLIFPEVEYDSIDQIR GLDISIITTAKNDEEGRALLKEMGMPFRDQMSRIGKRPITVPAKVQVAIDGTKVVVKGPKGELSRDLPANVIVSQEGETLLVTRR DETRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGRNLVLNIGYSHQVQIEPPDGIQFAVENNTNVIVSGYDK EVVGNTAAKIRAVRPPEPYKGKGIRYSGEVVRRMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTAD QAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSEQPNKKKVGSITKAQLREIAQTKLPDLNANDIDAAMNIVAGTAK NMGVTITDMSTATDQILEQLKSLTLLEAAELVKQIEEAFGVSAAAPAGGMMMMAAPGAAAPAEAVEEKTEFDAILESVPADK KIAVLKIVREITGLGLKEAKDLVEAAPKPVKEGVNKEAAEDIKKRIAEAGGTVTIKMSSKTYLPPOEKLEREWYVVDATDKRLG RLASEIAMVLRGKRKAEYTPHLDTGDFVVVINAEKVAVTGKKRTQKVYRRHSGRPGGMKTETFAKLQQRLPERIVEHAVKGM LPKNSLGKQLFTKLKVYAGPTHPHAAQKPKELIVNTIPGENMIQPQTYLNVADNSGAKKLMCIRVLGAGNRRYGGVGDKIIAV VKESNPNMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKDGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSP KRTKFRKQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGK GNPEFWVAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNVQEVIRSIEAEHLKSDLPEIYVGDTVRVG VKIKEGDKYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKVVRRGKVRRAKLYYLRQLSGKATRIKQR FDRALMTRVKRGNVARKRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWITRINAASRQHGLSYS QLIGNLKKANVDLNRKMLAQLAVLDPASFAKVAELANSAKGMAHKKGTGSTRNGRDSNAQRLGVKRFGGQTVLAGNILVRQ RGTKFHPGNNVGIGSDDTLFALVDGVVTFERKGKSRKKVSVYPAIAAEAVASMTNETYMEPAFLLPDLIEIQRSSFRWFLEEGLI EELNSFSPITDYTGKLELHFIGQNYKLKEPKYSVEESKRRDSTYAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGA ERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPE YFQKTIEKEGQFSEEEALMELYRKLRPGEPPTVLGGQQLLDSRFFDPKRYDLGRVGRYKLNKKLRLSVPDTMRVLTPGDILAAV DYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFM DQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVC YEKAAVYMTADEEDDLRVAPGDIPVDENGHIIGPQVPVRYRQEFSTTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALM GSNMQRQAVPLLKPERPLVGTGLEAQAARDSGMVIVSRTDGDVVYADANEIRVRVRERTGDRLQVTGDSEETSSSPVSKPQEI

KYVLSKYQRSNQDTCLNQKPLVRIGEKVVAGQVLADGSSTEGGELALGQNIVVAYMPWEGYNYEDAILISERLVQDDVYTSIH IEKYEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRIGAWVESGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLR VPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPAEDMPYLPDGSPVDIVLNPLG VPSRMNVGQVFECLLGWAGQNLGVRFKITPFDEMYGEESSRRIVHGKLQEARDETGKTWVYNPDDSGKIMVYDGRTGEPFDR PVTVGVAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNE ALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQADGSSLDVEVDLMADQGSRRTPPRPTYESLSRESLEEDEMPV VSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRTQAEQGKKFLFVGTKRQAAGIIAQEA NRCGSHYINQRWLGGMLTNWATIKTRAERLKDLERREENGALDLLPKKEASMLRREMAKLQKYLGGIKNMRKVPDIVVIVDQ RREYNAVQECQKLGIPIVSMLDTNCDPDVVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQLEVEEDYEDYEGAEEEYDYDESE YTDSMMSDDDEEMGQKIHPVGFRLGITQEHQSRWFAVPDRYPALLQEDHKLRQYIEKKLGRTAQNNAGISEIRIERKADQIDLE LRTARPGVVVGRGGQGIESLRTGLQDLLGGQRQIRINVVEVQKVDADAYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQG IKVQVGGRLNGAEIARTEWTREGRVPLHTLRADIDYSYCTAQTIYGILGIKVWVFKGEIIPGQEEAPQPSGREREPRRRDQKRRR QQFEDRSNEAMATGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQVGVGVGKASDVIGAVKKGVA DGKKHLIEIPITKSNSIPHPIDGIGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKQLGSSNPLNNARAAVNALSTLRT FAEVAEDRGIAVENLYITVAEANSGRAVYWGTGRRKSAVAQVRLVPGEGKFTVNGKDGELYFQFNANYLGSIKAPLETLGLES EYDILVKAEGGGLTGOADSIRLGVARALCOLDPDNRSPLKIEGYLTRDPRAKERKKYGLHKARKAPOYSKRMATLOOOKIRIR LQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIYQPSSKTIDALMKLDLPSGV DIEVKLMARQPTKKTGSKKQKRNVPNGIAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAGRRAM DQGMRQIEVMVSGPGAGRETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDLPRDKRVEIGLTYIYGIGLTRSQEI LAATGVNPDTRVKDLSDADVAALRAEIESNYQVEGDLRRLEAMSIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQ TVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNEKNEKQVIKTWSRASTIIPVMVGHTIAVHNGKQHVPVFVNEQMVGHKL GEFAPTRTYRGHGKSDKKSGRMSDKNEGYKVISDNRQARYLYEILETYEAGIQLAGTEVKSIRAGKANLQDGYALIRNGEAWL INVHISPYTSSGQYFNHEPRRTRKLLLHRQELRKLIGKVEQQGLTLVPLKMYLKRGWVKVSIGLCKGKKIHDKRESLKRRQDQR DIQRAMKNYMAEISAKLVQELRQKTGAGMMDCKKALKENDGNIDAAIDWLRKKGIASAGKKSDRVAAEGLVDTYIQPDGKV GVLIEVNCQTDFVARNDAFKTLVKNLAQQAATADSVESLLAQPYIEKAEVTVDEFIKESIATLGENIQVRRFVNFSLGDTPGVV DSYIHTGGRVGVLLQVIAKTDDAAGNEEFKKFAKNAAMQVAACPNVEYVSVDQIPAETVQKEKDIEMGKEDLANKPENIREKI VQGRIEKRLKELTLLDQPYIRDQSISVADLVKQVQSKVGEDITVHGFVRYVLGEGIEKQESNFAEEVAAQMGAK

>Sphaerospermopsis sp LEGE 08334

MQIPRLHPDTIEEVKHRADIVDVVSDNVVLRRRGKDFVGLCPFHDEKTPSFTVSPSKQMYYCFGCQAAGNAIKFVMDLNKRHF AEVVLDLAKRYOVPVKTLAPEORQELORQISLREQLYEILASTAQFYQHALRONLGQKAMQYLQENRQFKIETIQQFGLGYAP PGWETLYRYLVDNKNYPVOLVEKAGLIKPRKEGGGCYDVFRDRLMIPIRDVOGRVIAFGGRTLTDEOPKYLNSPETELFSKGK TLFALDQAKDGISKSDQGVVVEGYFDAIALHAAGINNVVASLGTALSIEQVRLLLRYSDSKQLILNFDADKAGINAAERAIGEIA TLAYKGEVQLKILNIPDGKDADEYLHSHTAADYQQLLANAPLWLNWQIEEIIKDRDLKQATDFQIVTKEIVKLLQKIVNSDTLN YYISYCAEILSLGDTRLIPLRVENLLTQIAPASVQTPPLRLRKPESKTPKLSLVTTERSLLEQAEALLLRIFLHCAEQRQVIFEELEE RNLEFSLSHHRFLWQQSLEFPLQELDLISKLQNRYLELEEDLKIVSHVFHLNEKNKTEILRTPQVVQATLACMERVLREKRYRHF MELWKKIDPQAEPDKYKSYADAIYADKMRIQELDKQRQFPISELFMQKTVEATQRAFNTIRTGRANASLLDKVQVEYYGTPTP LKSLANISTPDASTILIQPYDKSSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKEFVKLAAKYAEEGRVGIRNIRRDALDS IRKQEKAAEISEDESRDQQDKLQKLTNKYTTRIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDTDGGQLGIMPPH EALKLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERFLKDG DKVKATVMFRGREIQHSDLAEDLLKRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIESISRERNLPRLAV OSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIEGEGFRVLSTKTIVEEVTNSDHOISLDEVOOVAPEAOSGDSVVLD VTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLESTVLQARVLRFERQSVILAVSSGFGQPEVEAELPKREQLPND TYRSNTTFKVYLKKVSOGOORGPOLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTLDRDVD PVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQNVRLAA RLTGWKIDIKDQAKYDYAAEDAKFAAVRANYQAENDETEMEQLEDEYQDKLELENDNFETNEEETMSKKSLASLSAADISGK RALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLTQKGAKVILTSHFGRPKGVDEKLRLTPVAKRLSELLGQEVVKTDDCIGDE VAAKVAALDNGQVLLLENVRFYKEEEKNDPEFAQKLAANADFYVNDAFGTAHRAHASTEGVTKFLSPSVAGYLVEKELQYL OSAIEAPORPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLSVGKSLVEEDKLELAKTLEAKAKERGVALLLPT DIVAADKFAPDANATTVSIENIPADGMGLDIGPDSVKVFQEALADCKTVIWNGPMGVFEFDKFAVGTEAIAHTLAEIGKTGAITI IGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSIL KLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGEYNGGTVQVIPHITNEIK DRILRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGRQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQPDIL VCRCDRPIGVGLKQKLSEFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQRQPDLSQWETMVERMYSPKYSVEI AIVGKYVRLSDAYLSVVESLRHAAISTYGDLRIRWVNSETLETESAENYLAGVDGILVPGGFGSRGIDGKIAAIKFARDRQIPFLG LCLGMQCSVIEWARNVEGLADANSAEFDPYTTNPIINLLPEQQDVVDLGGTMRLGLYPCRVQPDTLAFDLYQEEVIYERHRHR YEFNNLYRNALLESGYVVSGTSPDGRLVEIVEYPKHPFFIACQFHPEFQSRPSTPHPLFKGFMEAAISRTHHSKNTSKPVQVSMG KKISRRLQALLEKVEDRDYAPLDALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVALPKGTGQVVRVAVIARGEKVTE ATNAGADIAGSEELIDEIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDVASAIAEFKAGKLEFRADRTGI VHVMFGKASFTPEDLLVNLKALQETIDRNRPSGAKGRYWRTFYVSATMGPSIRIDINALRDLKVTDAAMGTRSYRPYTPSTRQ

VTISDFAEITKTEPEKSLTESVHRAKGRNNQGRITSRRRGGGHKKLYRIIDFKRDKRDIAATVTAIEYDPNRNARIALVQYEDGE KRYILHPNGLKVGAKIIAGPEAPFEDGNALPLSNIPLGTNVHNVELTAGKGGQIVRAAGATAQVVAKEGNYVTLKLPSGEVRMI RRECYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTRKRKKA STKLIVMSVGILGTKLGMTQIFDEAGVAIPVTVIKAGPCTVTQVKTKQTDGYSAIQVGYGEVKPKALNQPKLGHLAKSSAPALR HLNEYRTDAASEYALGQEIKADIFSEGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMA GRLGGTRVTIRKLTVVKVDAERNLILIKGAIPGKPGGLVNVVPTNKVGNKMVESVVKNWQGEEVGQTSFELRVAKEETAAHIV HRALVRQMTNSRQGTASTKTRSEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDFNLKLNRKERRLALRTAFV SRAEDLIVVEEFSNELQRPKTKELVAALARWGAAPEQKTLLILSEIAENVNLSARNVENLKVIAADQLNVFDLLHADKIVVTSS ALTKIQEVYSAMATTRLKTVYQETIVPKLTQQFQYTNVHQVPKVVKITVNRGLGEAAQNAKALEASLNEIALITGQKPVVTRA KKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLISLSLPRIRDFRGVSPKSFDGRGNYTLGVREQLIFPEVEYDSIDQIRGLDISIIT TAKNDEEGRALLKEMGMPFRDQMSRIGKRPITVPAKVQVAIDGTKVVVKGPKGELSRDLPANVIVSQEGETLLVTRRDETRTS RQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQVQGRNLVLNIGYSHQVQIEPPDGVQFAVENNTNVIVSGYDKEVVGN TAAKIRAVRPPEPYKGKGIRYAGEVVRRMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMV IPVEISVFEDRSFTFVLKTPPASVLIRKAAKIERGSEQPNQKKVGSITKAQLREIAQTKLPDLNANDIDAAMNIVAGTAKNMGVTI TDMSAATDQILEQLKSLTLLEASELVKQIEEAFGVSAAAPAGGMMMMAAPGAAAPAEAVEEKTEFDAILESVPADKKIAVLKI VREITGLGLKEAKDLVEATPKPVKEGVNKEAAEDIKKRIAEAGGTVTIKMSSKTYLPPQEKLEREWYVVDATDKRLGRLASEIA MVLRGKRKAEYTPHLDTGDFVVVINAEKVAVTGKKRTQKVYRRHSGRPGGMKTETFAKLQQRLPERILEHAVKGMLPKNSL GKQLFTKLKVYAGPTHPHAAQKPKELIVNTIPGENMIQPQTYLNVADNSGAKKLMCIRVLGAGNRRYGGVGDKIIAVVKESNP NMAVKKSDVVEAVIVRTKKSINRDSGMSIRFDDNAAVIINKDGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPKRTKFR KQQRGRMEGLAHRGSTLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFW VAVVKPGRILFEIAGVSEEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNVQEVIRSIEAEHLKSDLPEIYVGDTVRVGVKIKEGD KYRVQPYEGVVIGKRNGGINETITVRRVFQGVGVERVFLLHSPRIDNIKVVRRGKVRRAKLYYLRQLSGKATRIKQRFDRALM TRVKRGNVARKRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWITRINAASRQHGLSYSQLIGNL KKANVDLNRKMLAQLAVLDPASFAKVAELANSVKAMAHKKGTGSTRNGRDSNAQRLGVKRFGGQTVLAGNILVRQRGTKF HPGNNVGIGSDDTLFALVDGVVTFERKGKSRKKVSVYPAVAAEAVASMTNETYMEPAFLLPDLIEIQRSSFRWFLEEGLIEELN SFSPITDYTGKLELHFIGQNYKLKEPKYSVEESKRRDSTYAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVI VNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQK TIEKEGQFSEEEALMELYRKLRPGEPPTVLGGQQLLDSRFFDPKRYDLGRVGRYKLNKKLRLSVPDTLRVLTPGDILAAVDYLI NLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQT NPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEK AAVYMTADEEDDLRVAPGDIPVDENGHIIGPQVPVRYRQEFSTTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSN MQRQAVPLLKPERPLVGTGLEAQAARDSGMVIVSRTDGDVVYADANEIRVRVREKALTTGEETSSAKPQEIRYVLSKYQRSNQ

DTCLNQKPLVRIGEKVVAGQVLADGSSTEGGELALGQNIVVAYMPWEGYNYEDAILISERLVQDDVYTSIHIEKYEIEARQTKL GPEEITREIPNVGEDALRQLDEQGIIRIGAWVESGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVD VRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPAEDMPYLPDGSPVDIVLNPLGVPSRMNVGOVF ECLLGWAGQNLGVRFKITPFDEMYGEESSRRIVHGKLQEARDETGKTWVYNPDDSGKIMVYDGRTGEPFDRPVTVGVAYMLK LVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPR PGTPESFKVLMRELQSLGLDIAVHKVETQADGSSLDVEVDLMADQGSRRTPPRPTYESLSRESLEEDEMPVVSLAQMMESGVH FGHQTRRWNPKMSPYIYTSRNGVHIIDLVQTAQLMDNAYNYMRTQAEQGKKFLFVGTKRQAAGIIAQEANRCGSHYINQRWL GGMLTNWATIKTRAERLKDLERREENGALDLLPKKEASMLRREMAKLQKYLGGIKNMRKVPDIVVIVDQRREYNAVQECQK LGIPIVSMLDTNCDPDVVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGOLEVEEDYEDYEGAEEEYDYDESEYTDSMMSDDDEE MGQKIHPVGFRLGITQEHQSRWFAVPDRYPALLQEDHKLRQYIEKKLGRNAQNNAGISEIRIERKADQIDLELRTARPGVVVGR GGQGIESLRTGLQDLLGGQRQIRINVVEVQKVDADAYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVGGRLNGA EIARTEWTREGRVPLHTLRADIDYSYCTAQTIYGILGIKVWVFKGEIIPGQEEAPQPSGREREPRRRDQKRRRQQFEDRSNETMA TGRRKASKAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIDIPITK SNSIPHPIDGIGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGISV ENLYITVAEANSGRAVYWGTGRRKSAVAQVRLVPGEGKFTVNGKDGELYFQFNANYLGAIKAPLETLGLESEYDILVKAEGG GLTGQADSIRLGVARALCQLDPDNRSPLKTEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDT SCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIYQPSSKTIDALMKLDLPSGVDIEVKLMARQP TKKTGSKKQKRNVPNGMAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAGRRAMDQGMRQIEVM VSGPGAGRETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDLPRDKRVEIGLTYIYGIGLTRSQEILAATGVNPDT RVKDLSDADVAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAP GKMGRSLKKGPFVADHLLSKIEKLNEKNEKQVIKTWSRASTIIPVMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRTYR GHGKSDKKSGRMSDKNEGYKVISDNRQARYLYEILETYEAGIQLAGTEVKSIRAGKANLQDGYALIRNGEAWLINVHISPYTSS GQYFNHEPRRTRKLLLHRQELRKLIGKVEQQGLTLVPLKMYLKRGWVKVSIGLCKGKKIHDKRESLKRRQDQRDIQRAMKNY MAEISAKLVQELRQKTGAGMMDCKKALKETEGNIEEAINWLRKKGIASAGKKSDRVAAEGLVETYIQPDGKVGVLIEVNCQT DFVARNDAFKSLVKNLAQQAATADSVESLLAQPYIEKADVTVDEFIKESIATLGENIQVRRFVNFSLGDTPGVVDSYIHTGGRV GVLVQINANTAAAAGNEEFKILAKNTAMQVAACPNVEYVSVDQIPAETVQKEKDIEMGKEDLANKPENIREKIVQGRIEKRLK ELTLLDQPYIRDQSISVADLVKQVQSKVDEDIKVHGFVRYVLGEGIEKQETNFAEEVAAQMGAK

>Sphaerospermopsis sp SIO1G1

MQIPRIHPDTIEEVKSRADIVEVVSDYVVLKKRGKDFVGLCPFHNEKTPSFTVSPGKQIYYCFGCQAGGNAIKFIMELDKRNFGD VVLGLAQRYQVPVKSLAPEQRQELQRQISLRDQLYEVLASAAQFYQHALRQSLGQKAMLYLQEERKLTTETIQQFGLGYAPAG WETLYRYLVENKNYPVOLVDKAGLIKPRKEDKGYYDVFRDRLMIPIRDVOGRVIAFGGRTLTEEOPKYLNSPETELFLKGKTLF ALDQAKDGVSKLDQAVVVEGYFDAIALHAAGVNNVVASLGTALSIEQIRLLLRYCDSKQLILNFDADKAGTNATERAIGEIAN LAYQGEVQLKILNLPNGKDADEYLQNHTVENYQQLLANAPLWLNWQIEEIIKDRDLKQATDFQIVTKEIVKILQNIGNSDTLNY YISYCAEILSLGDTRLIPLRVENLLTQIAPSHFKTPARPRKQESKKPKFTVATTEKSLLEQAEALLLRIFLHCPEQREMIFAELEDR NLEFSLSHHRLLWQQSLVFPLEDNDLISKLENRYLELAEDLNILSHVFHLDEKNKLEIIRTPQVVQATLACMEKVFREKRHRYF MEQWEKVDSKTEPEKERLYYENAMGEKRRIQELEKQRQFSIIELFMKLDESESKMKSSVEATQRDFNTVRTGRANSSLLDKVE VEYYGTPTPLKSLASVSTPDASTIMIQPYDKGTLNIIEKAISLSDVGITPNNDGSSIRLNIPPLTSERRQEFVKLASKYAEDGKVAIR NIRRETVDSIRKREKAGEISEDESRDEQDKLQKLTNKYTAKIDDLLAEKEKDITKVMPVIEKKRARDLPQINERIRFPKIRVIDTD GAQLGILTPSEAIRLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVK QAERFLKDGDKVKATVMFRGREIQHSDLAEELLKRMANDLQAIGEVQQAPKKEGRNMMMLISPKKMVTLPGLKDLIEKISQE RNLPRLAVOSSIREALLKGYERYRRAONLERKOFDEDYFENFEVELDIEGEGFRVLSTKTIVEEVSNSDHOISLEEVOOVAPEAO SGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLESTVLQARVLRFERQSVILAVSSGFGQPEVEAELP KREQLPNDTYRSNTAFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAV DTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKE GONVRLAARLTGWKIDIKDKAKYDYAAEDAKFAEVRAKYOMSKKSLASLSAADIAGKRALVRVDFNVPMDEGKITDDTRIRA ALPTIQDLTQKGAKVILASHFGRPKGKVKDEFRLTPVAKRLSELLGQEVVKTDDCIGDDVATKVAALQNGQVLLLENVRFYPG EEENDPOFAEKLAANADFYVNDAFGTAHRAHASTEGVTKYLSPSVAGYLVEKELQYLQGAIEEPKRPLAAIIGGSKVSSKIGVIE TLLEKCDKLIIGGGMIFTFYKARGLSVGKSLVEDDKLELAKSLEAKAKEKGVTFLLPTDIVSADKFDKDANATTVSIENIPADGM GLDIGPDSVKVFQEALADCKTVIWNGPMGVFEFDKFAVGTEAIARTLAEISQTGTTTIIGGGDSVAAVEKVGLAEKMSHISTGG GASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQD GAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHITNEIKDRILRVAKESNPAAVITEIGGTVGDIE SLPFLEAIRQLRKEVGRQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQPDILVCRSDRPIPVGLKRKLSEFCDVPVKC VITAQDASSIYEVPLILEREGLAQQTLDLLQMEQRQPDLTQWANMVERMYSPKYSVEIAIVGKYVRLSDAYLSVVESLRHAAIS TYGDLRIRWVNSELLENEPADNYLSGVDGIIVPGGFGSRGIDGKINAIKYARDRQIPFLGLCLGMQCSVIEWARNVKGLDTANS AEVDPYTEHPVINLLPEQQDVVDLGGTMRLGLYPCSIQPGTLAHNLYQEDIIYERHRHRYEFNNFYRQALLDSGYVVSGTSPDG RLVEIVEYPNHPFFIACQFHPEFQSRPNTPHPLFQGLMQAAISRTHHAPSTPKPVQVSMGKKISKRLKALLEKVEDRDYAPEEAL ALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVALPKGTGQDVRVAVIARGEKVTEATNAGANIAGSEELINDIQKGMMD FDKLIATPDVMPQVAKLGKMLGPRGLMPSPKGGTVTFDIAGAIAEFKAGKLEFRADRTGIVHVMFGKASFSPDDLLVNLKALQ ETIDRNRPSGAKGRYWRTVYVSATMGPSIRVDINALRDLKITDAAMGTRSYRPYTPSTRQVTISDFAEITKSKPEKSLTEFIHRAK

GRNNQGRITSRRRGGGHKKLYRIIDFKRDKRDIPATVKAVEYDPNRNARIALVQYEDGEKRYILHPNGLKVGTTIIAGVDSPIED GNALPLYRIPTGTSVHNVEMTPGKGGQIVRAAGATAQVMAKDGDYVTLKLPSGEFRMIRRECYATIGQVGNTEARNLSAGKA GRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTRKRKKASSKFIVMSVGILGTKLGMTQVFTEE GVAIPVTVVKVGPCTVTQVKTRQTDGYSAIQVGYGEVKPKALNKPKMGHLAKSNAPALRHLKEYRTDTAGDYNIGQEIKADIF SEGQIVDVAGTSIGRGFAGNQKRHNFGRGPMSHGSKNHREPGSIGAGTTPGRVYPGKRMAGRLGGSSVTIRKLTVVKVDAERN LLLIKGAIPGKPGGLVDVSPTNKVGNKMVESVVKNWQGDQVGQTNFDLKVAKEETAAHIVHRALVRQMTNSRQGTASTKTR SEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPREFNIKLNRKERRLALRTAFVSRAEDLIVVEEFSSELQRPKTKEL VAALVRWGAAPEQKTLLILSEIAENVNLSARNVENLKLIAADQLNVYDILHADKIVVTPASLEKIQEVYSAMATTRLKTLYQET IVPKLTQQFQYTNIHQVPKLVKITVNRGLGEAAQNAKALEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRSER MYAFLDRLISLALPRIRDFRGISPKSFDGRGNYTLGVREQLIFPEVEYDSIDQIRGLDISIITTAKNDEEGRALLKEMGMPFRDMSR IGKRPITIPAKVQVTINGTQVAVKGPKGELSREISNTIAISQEGETLRVTRRDETRVARQMHGLSRTLIANMVEGVSNGFERRLE MQGVGYRAQMQGTKLVLNIGYSHQIQVEPPAGVNFKVENNTNIIVSGYDKEVVGNTAAKIRDYRPPEPYKGKGIRYVGEVVR RMAKKVVAVIKLALSAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIRKA AKIDKGSSEPNKKKVGSITTEQLKEIAQTKLPDLNANDIEAAMNIVAGTARNMGVTVKDMSAATEQILEQLKSLTLLEAAELVK EIEEAFGVSAAAPAGGMMMMAAPGAGGGAAEAVEEKTEFDVVLESVPADKKIAILKIVREITGLGLKEAKDLVESAPKAIKEGI AKDAAEDIKKRITDAGGTVSVKMSSKTYLPPQASLERDWYIVDATDKRLGRLASEIAMVLRGKRKAEYTPHLDTGDFVVVINA EKVAVTGKKRSQKLYRRHSGRPGGMKTETFAKLQQRIPERIVEKAVKGMLPKNSLGRQLFTKLKVYAGSTHPHAAQKPKELII NTIPGDMIQPQTYLNVADNSGAKKLMCIRVLGAGNRRYGGVGDRIIAVVKESSPNMAVKKSDVVEAVIVRTKKNINRDSGMSI RFDDNAAVIINKEGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPKRTKFRKQQRGRMEGLAHRGSSINFGDFALQAQEP SWITSRQIEAARRAMTRYIRRGGKIWIRIFPDKPITMRPAETRMGSGKGNPEFWVAVVKPGRILFEISGVSEEVAREAMRLASHK LPIKTKFIVRPKVQEQMNVQEIIRSIEAEHLKSDIPQIYVGDTVRVGVKIKEGNKYRVQPYEGVVIGKRNGGINETITVRKVFQGV GVERVFLLHSPRIDNIKVVRRGKVRRAKLYYLRNRTGKATRIKQRFDRPLMTRVKRGNVARKRRNKILKLAKGFRGSHSTLFR TANQQVMKALRSAYRDRKKKKRDFRRLWIARINAASRQQGLSYSQLIGNLKKANVELNRKMLAQLAVLDPDSFVKVTELANS VKMAHKKGTGSTRNGRDSNSQRLGVKRYGGQSVIAGNILVRQRGTKFHPGNNVGIGSDDTLFALVDGIVTFERKGKTRKKVS VYPVATEAVAMTNETYMEPAFLLPDLIEIQRSSFRWFLEEGLIEELSSFSPITDYTGKLELHFLGHNYRLKEPKYSVEESKRRDST YAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKF ETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEEALMELYRKLRPGEPPTVLGGQQLLES RFFDPKRYDLGRVGRYKLNKKLRLSVPDSVRVLTPGDILAAIDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLE RIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRI CPIETPEGPNAGLIGSLATHARVNKYGFLETPFRPVENGKVKFDIPPVYMTADEEDDLRTATGDVPLDENGYIKGPQVPVRYRQ DWTTTSPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQAARDSGMVIVSRTDG DVVYVDANEIRVRVREKTITSGTEISEPPKHQEIRYPLSKYQRSNQDTCLNQKPLVRIGEKVVTGQVLADGSSTEGGELALGQNI

IVTYMPWEGYNYEDAILISERLVQDDIYTSIHIEKYEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRIGAWVEAGDILVGKV TPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGR HGNKGIISRILPIEDMPYLPDGSPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEESSRRIVHGKLQEAR DETGKDWLYNPDNAGKIMVYDGRTGEPFDHPVTVGVAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEM EVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQADGSSLDVEVD LMADQNSRRTPPRPTYQMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTARNGVHIIDLVQTAQLIDQAYNYMRSESEQGK RFLFVGTKRQAAGIIAQEAARCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREESGALDLLPKKEASMLRREMAKLQKY LGGIKNMRKVPDVVVIVDQKREYNAVQECQKLNIPIVSMLDTNCDPDVVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQLESE NDYEDYEGAEEDYDYDEGEYTDSMGMGQKIHPVGFRLGITKEHQSRWFAVPDRYPELLQEDYKLRQYIDQKLGKKAQNNAGI SEVRIERKADQIDLEVRTARPGVVVGRGGQGIEALRTGLQELLGSNRQIRINVVEVQRVDADAYLIGEYIAQQLERRVSFRRVV RQAIQRAQRAGVQGIKVQVSGRLNGAEIARTEWTREGRVPLHTLRANIDYAYCTAQTIYGILGIKVWVFTGEIIPGQEEAPAQPA NREREPRRRQQQRRRQQFEDRSNETMATGRRKANRAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVVIGNERGQVGVGV GKASDVIGAVKKGVADGKKHLIDIPITKSNSIPHPIDGIGGGAKVIMRPASPGTGVIAGGAVRTVLELAGVRNVLAKQLGSNNPL NNARAAVNALSTLRTLSEVAEDRGIALENLYFATEANSGRAIYWGTGRRKSSVARVRLIPGEGKFSVNGKDGELYFQFNANYL GSIKAPLETLGLESEYDIVVKAEGGGLTGQADSIRLGVARALCQLDPDNRLPLKTEGYLTRDPRAKERKKYGLHKARKAPQYS KRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIYQPSSK TIDALMKLDLPSGVDIEVKLMARQPTKKSGSKKQKKNVPNGIAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIEVMVSGPGAGRETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGIDLPRDKRIEYGL TYIYGIGLTSSHQILAATGVNPDTRVKDLSDADVAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYRGRRHRMGLPVRGQR TRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNANNDKQVIKTWSRASTIIPIMVGHTIAVHNGKQHVP VFVNEQMVGHKLGEFAPTRPYRGHGRSDKKSGRMSDKNNSDGYKVITDNRQARYLYQILETYEAGIQLAGTEVKSIRAGKVN LQDGYALLRNGEAWLINAHISPYTSSGQYFNHEPRRTRKLLLHRQELRKLIGKVEQQGLTLIPLKMYLKRGWVKVSIGLCKGK KIHDKREDLKRRQDQRDIQRALKRYMAEISAKLVQELRQKTGAGMMDCKKALKENDGSIEAATDWLRKKGIAKADKASSRV AAEGLVENYIQPDGKVGVIIEVNCQTDFVARNEAFKALVKTLAKQAANADSVEALLAQPYIENSSVTVDEAIKQTTATLGENIQ VRRFVTFAPASTPGIVDSYIHTGGRVGVLVELGSKTEDTTGKEEFQGLAKNIAMQVAACPNVEYVNIGQIPAEFVQKEKEIEMG KDDLGKKPENIREKIVQGRIDKRLKEITLLDQPYIRDQSISVEDLVKQVKSQVGDEIEVNRFVRYVLGEGIDKQEVSFAEEVAAQ MG

>Sphaerospermopsis torques reginae ITEP 024

MQIPRLHPDTIEEVKHRADIVDVVSDYVVLRRRGKDFVGLCPFHDEKTPSFTVSPTKQMYYCFGCQAAGNAIKFVMDLNKRHF AEVVLDLAKRYQVPVKTLAPEQRQELQRQLSLREQLYEILASTAQFYQHALRQNLGQKAMQYLQENRQFKIETIQQFGLGYAP PGWETLYRYLVDNKNYPVOLVEKAGLIKPRKEGGSYYDVFRDRLMIPIRDVOGRVIAFGGRTLTEEOPKYLNSPETELFSKGKT LFALDQAKDGISKSDQGVVVEGYFDAIALHAAGINNVVASLGTALSIEQVRLLLRYTDSKQLILNFDADKAGINAAERAIGEIAT LAYKGEVQLKILNIPDGKDADEYLHSHTAADYQQLLANAPLWLNWQIEEIIKDRDLKQATDFQIVTKEMVKLLOKIVNSDTLN YYISYCAEILSLGETRLIPLRVENLLTQIAPASVQTPPLRLRKPESKTPKLSLVTTERSLLEQAEALLLRIFLHCAEQRQVIFEELEE RNLEFSLSHHRFLWQKSLEFPLEELDLISKLQNRYLELEEDLKIVSHVFHLNEKNKTEILRTPQVVQATLACMERVLREKRYRHF MELWKKIDPQAEPDKYKSYADAIYADKMRIQELDKQRQFPISELFMKLAEAESTMQKTVEATQRAFNTIRTGRANASLLDKVQ VEYYGTPTPLKSLANISTPDASTILIQPYDKGSLNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKEFVKLAAKYAEEGRVGI RNIRRDALDSIRKQEKAAEISEDESRDQQDKLQKLTNKYTTRIDELLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDTD GGQLGIMPPHEALKLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRV KQAERFLKDGDKVKATVMFRGREIQHSDLAEDLLKRMATDLEPFGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKDLIESI SRERNLPRLAVOSSIREALLKGYERYRRAONLERROFDENYFDNFEVELDIEGEGFRVLSTKTIVEOVSNSDHOISLEEVOOVAP EAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLESTVLQARVLRFERQSVILAVSSGFGQPEVEA ELPKREQLPNDTYRSNTTFKVYLKKVSQGQQRGPQLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKI AVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIG KEGQNVRLAARLTGWKIDIKDKAKYDYAAEDAKFAAVRAQYQSEDDENDMSKKSLASLSAADISGKRALVRVDFNVPVDDQ GNITDDTRIRAALPTIQDLTQKGAKVILTSHFGRPKGVDEKLRLTPVAKRLSELLGQEVIKTDDCIGDDVAAKVAALDNGQVLL LENVRFYKEEEKNEPEFAQKLAANADFYVNDAFGTAHRAHASTEGVTKFLSPSVAGYLVEKELQYLQSAIEVPQRPLAAIIGGS KVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLDVGKSLVEEDKLELAKSLEAKAKERGVTFLLPTDIVAADKFAPDANATTV SIENIPADGMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAVGTEAIAHTLAEIGKTGAITIIGGGDSVAAVEKVGLA DQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSILKLDPYINVDPGTMSPFQ HGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGEYNGGTVQVIPHITNEIKDRILRVAKETNPAAVIT EIGGTVGDIESLPFLEAIRQLRKEVGRQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQPDILVCRCDRPIGVGLKQKLS EFCDVPVECVITCQDASSIYEVPLILEKEGLAQQTLDLLQMEQRQPDLSQWETMVERMYSPKYSVEIAIVGKYVRLSDAYLSVV ESLRHAAISTYGDLRIRWVNSETLETESAENYLAGVDGILVPGGFGSRGIDGKIAAIKFARDRQIPFLGLCLGMQCSVIEWARNV EGLADANSAEFDPYTTNPIINLLPEQQDVVDLGGTMRLGLYPCRVQPGTLAFDLYQEEVIYERHRHRYEFNNLYRNALLESGYV VSGTSPDGRLVEIVEYPKHPFFIACQFHPEFQSRPSTPHPLFKGFMEAAISRTHHSKNTSKPVQVSMGKKISRRLQALLEKVEDRD YAPLEALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVALPKGTGQVVRVAVIARGEKVTEATNAGADIAGSEELIDDI QKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDVASAIAEFKAGKLEFRADRTGIVHVMFGKASFTPEDLL VNLKALQETIDRNRPSGAKGRYWRTFYVSATMGPSIRIDINALRDLKVTDAAMGTRSYRPYTPSTRQVTISDFAEITKTEPEKSL

TESVHRAKGRNNQGRITSRRRGGGHKKLYRIIDFKRDKRDIAATVTAIEYDPNRNARIALVQYEDGEKRYILHPNGLKVGAKIIA GPEAPFEDGNALPLSNIPLGTNVHNVELTAGKGGQIVRAAGATAQVVAKEGNYVTLKLPSGEVRMIRKECYATIGQVGNTDAR NLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPALGAKTRKRKKASTKLIVMSVGILGTKLG MTQIFDEAGVAIPVTVIKAGPCTVTQVKTKQTDGYSAIQVGYGEVKPKALNQPKLGHLAKSSAPALRHLNEYRTDAASEYALG QEIKADIFSEGQIVDVIGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGTRVTIRKLTVV KVDAERNLILIKGAIPGKPGGLVNVVPTNKVGNKMVESVVKNWQGEEVGQTSFELRVAKEETAAHIVHRALVRQMTNSRQGT ASTKTRSEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDFNLKLNRKERRLALRTAFVSRAEDLIVVEEFSNELQ RPKTKELVAALARWGAAPEQKTLLILSDIAENVNLSARNVENLKVIAADQLNVFDLLHADKIVVTSSALTKIQEVYSAMATTRL KTVYQETIVPKLTQQFQYTNVHQVPKVVKITVNRGLGEAAQNAKALEASLNEIALITGQKPVVTRAKKAIAGFKIRQGMPVGI MVTLRGERMYAFLDRLISLSLPRIRDFRGVSPKSFDGRGNYTLGVREQLIFPEVEYDSIDQIRGLDISIITTAKNDEEGRALLKEM GMPFRDQMSRIGKRPITVPAKVQVAIDGTKVVVKGPKGELSRDLPANVIVSQEGETLLVTRRDETRTSRQMHGLSRTLVANMV EGVSQGFQRRLEIQGVGYRAQVQGRNLVLNIGYSHQVQIEPPDGVQFAVENNTNVIVSGYDKEVVGNTAAKIRAVRPPEPYKG KGIRYAGEVVRRMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVL KTPPASVLIRKAAKIERGSEQPNKKKVGSITKAQLREIAQTKLPDLNANDIDAAMNIVAGTAKNMGVTITDMSAATDQILEQLK SLTLLEAAELVKQIEEAFGVSAAAPAGGMMMMAAPGAAAPAEAAEEKTEFDAILESVPADKKIAVLKIVREITGLGLKEAKDL VEAAPKPIKEGVNKEAAEDIKKRIAEAGGTVTIKMSSKTYLPPOEKLEREWYVVDATDKRLGRLASEIAMVLRGKRKAEYTPH LDTGDFVVVINAEKVAVTGKKRTQKVYRRHSGRPGGMKTETFAKLQQRLPERILEHAVKGMLPKNSLGKQLFTKLKVYAGPT HPHAAQKPKELIVNTIPGENMIQPQTYLNVADNSGAKKLMCIRVLGAGNRRYGGVGDKIIAVVKESNPNMAVKKSDVVEAVIV RTKKSINRDSGMSIRFDDNAAVIINKDGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPKRTKFRKQQRGRMEGLAHRGS TLNFGDFALQAQEPCWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVS EEIAREAMRLAAYKLPIKTKFIVRSQPQEQEMNVQEVIRSIEAEHLKSDLPEIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRN GGINETITVRRVFQGIGVERVFLLHSPRIDNIKVVRRGKVRRAKLYYLRQLSGKATRIKQRFDRALMTRVKRGNVARKRRNKIL KLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWITRINAASRQHGLSYSQLIGNLKKANVDLNRKMLAQLAV LDPASFAKVAELANSVKGMAHKKGTGSTRNGRDSNAQRLGVKRFGGQTVLAGNILVRQRGTKFHPGNNVGIGSDDTLFALVD GVVTFERKGKSRKKVSVYPAVAAEAVASMTNETYMEPAFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFIGON YKLKEPKYSVEESKRRDSTYAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKN GRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEEALMELYR KLRPGEPPTVLGGQQLLDSRFFDPKRYDLGRVGRYKLNKKLRLSVPDTLRVLTPGDILAAVDYLINLEYDIGSIDDIDHLGNRRV RSVGELLQNQVRVGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGL TRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVNQYGFLETPFRPVENGRVCYEKAAVYMTADEEDDLRVAPGD IPVDENGHIIGPQVPVRYRQEFSTTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGL EAQAARDSGMVIVSRTDGDVVYADANEIRVRVRERTGDRSQVLRHGDSEETSSLPVSKPQEIKYVLSKYQRSNQDTCLNQKPL

VRIGEKVVAGQVLADGSSTEGGELALGQNIIVAYMPWEGYNYEDAILISERLVQDDVYTSIHIEKYEIEARQTKLGPEEITREIPN VGEDALRQLDEQGIIRIGAWVESGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGD ELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPAEDMPYLPDGSPVDIVLNPLGVPSRMNVGQVFECLLGWAGQ NLGVRFKITPFDEMYGEESSRRIVHGKLQEARDETGKNWVYNPDDPGKIMVYDGRTGEPFDRPVTVGVAYMLKLVHLVDDKI HARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKV LMRELQSLGLDIAVHKVETQADGSSLDVEVDLMADQGSRRTPPRPTYESLSRESLEEDEMPVVSLAQMMESGVHFGHQTRRW NPKMSPYIYTARNGVHIIDLVQTAQLMDDAYNYMRTQAEQGKKFLFVGTKRQAAGIIAQEATRCGSHYINQRWLGGMLTNW ATIKTRAERLKDLERREENGALDLLPKKEASMLRREMTKLQKYLGGIKNMRKVPDIVVIVDQRREYNAVQECQKLGIPIVSML DTNCDPDVVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGOLEVEEDYEDYEGAEEEYDYDESEYTDSMMSDDDEEMGOKIHPV GFRLGITQEHQSRWFAVPDRYPALLQEDHKLRQYIEQKLGRNAQNNAGISEIRIERKADQIDLELRTARPGVVVGRGGQGIESLR TGLQDLLGGQRQIRINVVEVQKVDADAYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVGGRLNGAEIARTEWTR EGRVPLHTLRADIDYSYCTAQTIYGILGIKVWVFKGEIIPGQEEAPQPSGREREPRRRDQKRRRQQFEDRSNEAMATGRRKASK AKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVIVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIDIPITKSNSIPHPIDG IGGGAKVIMRPAAPGTGVIAGGAVRTVLELAGVRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGISVENLYIMATV AEANSGRAVYWGTGRRKSAVAQVRLVPGEGKFTVNGKDGELYFQFNANYLGAIKAPLETLGLESEYDILVKAEGGGLTGQAD SIRLGVARALCQLDPDNRSPLKIEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDT ANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIYQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSK KQKRNVPNGIAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAGRRAMDQGMRQIEVMVSGPGAGR ETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDLPRDKRVEIGLTYIYGIGLTRSQEILAATGVNPDTRVKDLSDA DVAALRAEIESNYQVEGDLRRLEAMNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLK KGPFVADHLLSKIEKLNEKNEKQVIKTWSRASTIIPVMVGHTIAVHNGKQHVPVFVNEQMVGHKLGEFAPTRTYRGHGKSDKK SGRMSDKNEGYKVISDNRQARYLYEILETYEAGIQLAGTEVKSIRAGKANLQDGYALIRNGEAWLINVHISPYTSSGQYFNHEP RRTRKLLLHRQELRKLIGKVEQQGLTLVPLKMYLKRGWVKVSIGLCKGKKIHDKRESLKRRQDQRDIQRAMKNYMAEISAKL VQELRQKTGAGMMDCKKALKENDGNIDAAIDWLRKKGIASAGKKSDRVAAEGLVDTYIQPDGKVGVLIEVNCQTDFVARND AFKSLVKNLAQQAATADSIESLLAQPYIEKAEVTVDEFIKESIATLGENIQVRRFVNFSLGDTPGVVDSYIHTGGRVGVLLQVSA KTDAAADNEEFKNLAKNAAMQVAACPNVEYVSVDQIPAETVQKEKDIEMGKEDLANKPENIREKIVQGRIEKRLKELTLLDQP YIRDQSISVADLVKQVQSKVGADITVQGFVRYVLGEGIEKQESNFAEEVAAQMGAK

>Anabaena cylindrica PCC 7122

MEIPRLHPDTIEEVKLRADIVDVVSEYVVLRKRGKDFVGLCPFHDEKSPSFTVSPSKOMFYCFGCOAGGNAIKFVMDLGKRHFT EVVLDLARRYQVPVQTLEPEQKQELQRQLSLREQLYEVLASTAQFYQHALRHTQQQKVMQYLRENRQLREETIQQFGLGYAP AGWETLHRYLVEDKHYPVOLVEKAGLIKPRKEGGGYYDVFRDRLMIPIRDVOGRVIAFGGRTLTEEOPKYLNSPETELFSKGK TLFALDQAKDGIAKLDQAVVVEGYFDAIALHAAGINNAVASLGTALSIEQVRLLLRYTDSKQLILNFDADKAGTNAAERAIGEI ATLAYKGEVOLKILNLPNGKDADEYLQSHTSADYQQLLATAPLWLNWQIDQIIQNRDLRQATDFQQVTQQIVKLLQNIVNGDT LNYYISYCAEILSLGDSRIIPLRVENLLTQIAPASVQTPPSRFRKQESKTPKLSLVNTERSLLEQAEALLLQIYLHCPEQRQLIINELE ERNLELSLTHHRFLWLQISELTDEADLISNLQNRYLELSEELGLISHLFHLNEKTNKEILRTPQVVQATLACMEIVLREKRYRHF MELWENIDIQAEPDKYKSYADAIYAEKMRIQELDKQRQFPITELLMKLDEAESKMQHTVEATQRAFNTIRTGRANASLLDKVQ VEYYGTPTGLKSLANISTPDASTILIQPYDKGSLNIVEKAISLSDIGITPSNDGSVIRLNIPPLTSDRRKEFVKMAAKYAEEGRVGIR NIRRDALDSIRKQEKAAEVSEDESRDQQDKLQKLTNKYTARIDDLLTEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDTD GAQLGIMPPQEALQLAEDKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYLVRV KQAERFLKDGDKVKATVMFRGREIQHSDLAETLLKRMATDLDALGEVQQAPKKEGRNMMMLISPKKMSMVTLPGLKELIESI SRERNLPRLAVOSSIREALLKGYERYRRAONLERROFDEEYFDNFEVELDIEGEGFRVLSTKTIVDEVSNTDHOISLEEVOOVAP EAQSGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSGFGQPEVE AELPKREOLPNDNYRANATFKVYLKKVSOGOORGPOLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRT KIAVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPETRQTHVLVAEDQLSLA IGKEGONVRLAARLTGWKIDIKDKAKYDYAAEDAKFVAVRAKYOMSKKSLASLSAADVSGKRALVRVDFNVPVDDQGSITD DTRIRAALPTIQDLTKKGAKVILASHFGRPKGVDDKLRLTPVAKRLSELLGQEVVKTDDCIGDDVAAKVAALQNGQVLLLENV RFYKEEEKNEPEFAKKLAANADFYVNDAFGTAHRAHASTEGVTKFLSPSVAGYLVEKELQYLQSAIEEPKRPLAAIIGGSKVSS KIGVIETLLEKCDKLIIGGGMIFTFYKARGLSVGKSLVEEDKLELAKALEAKAKERGVALLLPTDIVSADKFAPDANATTVSIENI PADGMGLDIGPDSIKVFQAALADCKTVIWNGPMGVFEFDKFAAGTEAIAHTLAEIGKTGTTTIIGGGDSVAAVEKVGLADQMS HISTGGGASLELLEGKILPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEV FVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHITNEIKDRILRVAKETNPSAVITEIGGT VGDIESLPFLEAIRQLRKEVGRQNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQPDILVCRSDRTIPVGLKQKLSEFCD VPVECVITCQDASSIYEVPLILEREGLAQQALDLLQMEQRQPNLTQWETMVERMYSPKHSIEIAIVGKYVRLSDAYLSVVESLR HAAIATHGDLRLRWVNSEALENEPPENYLAGVDGIVVPGGFGSRGIDGKIAAIKYARDRQIPFLGLCLGMQCSVIEWARNVAGL VDANSAEFDPYTSDPVINLLPEQQDVVDLGGTMRLGLYPCRVIPGTLAFDLYQEEVIYERHRHRYEFNNVYRNPLLDSGYVVS GTSPDGRLVEIVELPNHPFFLACQFHPEFQSRPSSPHPLFKGFMQATISMGKKLSRRLQALQEKVEDRDYTPVEALALLKETATA KFAEAVEAHIRLGIDPKYTDQQLRTTVALPKGTGQIVRVAVIARGEKVTEATNAGADIAGSEELIEDIQKGMMDFDKLIATPDV MPMVAKLGKLLGPRGLMPSPKGGTVTFDVASAIAEFKAGKLEFRADRTGIVHVMFGKASFAPEDLLVNLKALQETIDRNRPSG AKGRYWRTLYVSATMGPSIKIDISALRDLKLTDAAMGTRSYRPYTPSTRQVIVSDFAEITKTEPEKSLTESVHRPKGRNNQGRIT

SRRRGGGHKQLYRIIDFKRDKRDIPATVTAIEYDPNRNARIALLLYEDGEKRYILHPNGLKVGTTIIAGADAPFEDGNALPLFKIP LGTSVHNVEMTPGKGGQIVRAAGAEAQVVAKEGNYVTLKLPSGEVRLIRRDCYATIGKVGNTDARNLSAGKAGRNRWKGRR PKVRGSVMNPVDHPHGGGEGRAPIGRAGPVTPWGKPTLGAKTRKRKKASSKLIVMSVGILGTKLGMTQIFDDAGRAIPVTVIQ AGPCTVTQVKTKQTDGYAAIQVGYGEVKPKALNRPLLGHLAKSSAPALRHLNEYRTDASGDYALGQELKADIFSEGQIVDVIG TSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGTRVTIRKLTVVRVDAERNLILIKGAIPGK PGALVNVVPTNKVGNKMVESVVKNWQGEQVGETTFDLRVAKAETAAHIVHRALVRQMTNSRQGTASTKTRSEVRGGGRKP WRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDFNLKLNRKERRLALRTAFVSRAEDLIVVEEFSNELQRPKTKELVAALARWG ALPEQKSLLILSEIAENVLLSARNIENLKLIAADQLNVYDLLHADKIILTSAALAKIQEVYSAMAKTRLKNLYQETIVPKLINQFQ YTNVHQVPKVVKITINRGLGEAAQNAKSLEASLNEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLVS LSLPRIRDFRGISPKSFDGRGNYTLGVREQLIFPEVEYDSIDQIRGLDISIITTAKNDEEGRALLKEMGMPFRDQMSRIGKRPITVPA KVQVAIDGSKVVVKGPKGELSRVLPSNVIVSQEGETLLVTRRDETRTSRQLHGLSRTLVANMVEGVSLGFQRRLEIQGVGYRA QVQGRNLVLNMGYSHQVQIEPPEGIQFAVEGTTNVIVSGYDKEIVGNTAAKVRGVRPPEPYKGKGIRYAGEVVRRKAGKTGKS GKKMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKTPPASVLIR KAAKIERGSNEPNKKKVGSITRVQLREIAQTKLPDLNANDIDAAMNIVEGTAKNMGVTITDMSAATEQILEQLKTLTLLEASEL VKQIEEAFGVSAAPAAGGMMMMAAPGAAAAEVVEEKTEFDAVLESVPADKKIAVLKIVREITGLGLKEAKDLVEAAPKAIKE AVAKEAAEDIKKRVEEAGGKVVIKMSSKTYLPPQATLERDWYVVDATDKRLGRLASEIAMILRGKKKPEYTPHMDTGDFVVV INAEKVAVTGKKRTQKIYRRHSGRPGGMKTETFAKLQQRLPERILEHAVKGMLPKNSLGKQLFTKLKVYAGPTHPHAAQQPK ELVINTIPGENMIQPQTYLNVADNSGAKKLMCIRVLGAGNRRYGGVGDKIIAVVKESTPNMAVKKSDVVEAVIVRTRKAINRD SGMCIRFDDNAAVIINKDGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLATRGSTLNFGDFAL QAQEPAWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSGKGNPEFWVAVVKPGRILFEIAGVTEEIAREAMR LAAYKLPIKTKFIIRSQPQEQEMNAQEIIRSIEAEHLKSDIPIIYVGDTVRVGVKIKEGDKYRVQPYEGVVIGKRNGGINETITVRR VFQGVGVERVFLLHSPRIDNIKVLRRGRVRRAKLYYLRDRVGKATRIKQRFDRALMTRVKRGNVARKRRNKILKIAKGFRGSH STLFRTANQQVMKALRSSYRDRKKKKRDFRRLWITRINAASRQHGLSYSQLIGNLKKANIELNRKMLAQLAVLDPASFAKVAE MANAVKGMAHKKGTGSTRNGRDSNAQRLGVKRFGGQVVRAGNILIRQRGTKIHPGNNVGIGNDDTLFALVDGVVTFERKGK TRKKVSVYPVVAVEALASMTNETYMEPAFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGNNYKLKEPKYSV EESKRRDSTYAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIP NRGAWLKFETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEEALMELYRKLRPGEPPTVL GGQQLLDSRFFDPKRYDLGRVGRYKLNKKLRLSVPDTMRVLTPGDILAAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELLQNQ VRVGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVR DIHPSHYGRICPIETPEGPNAGLIGSLATHARVNLYGFLETPFRPVENGKVRFDVQPVYMTADEEDDLRTATGDIPVDENGYIKG PQVPVRYRQDWATTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSG MVIVSRTDGDVVYVDAAEIRVRVREQTTDKNLTQLPASLKESPTGKPPEVTYYLSKYQRSNQDTCLNQKPLVRIGEKVVAGQV

LADGSSTEGGELALGONIVVAYMPWEGYNYEDAILISERLVQDDVYTSIHIEKYEIEARQTKLGPEEITREIPNVGEDALRQLDE QGIIRIGAWVEAGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVV RVYVAQKRKIQVGDKMAGRHGNKGIISRILPAEDMPYLPDGSPVDIVLNPLGVPSRMNVGQVFECLLGWAGQNLGVRFKITPF DEMYGEESSRRIVHGKLQEARDETGKNWVYNPDDPGKIMVYDGRTGEPFDRPITIGVAYMLKLVHLVDDKIHARSTGPYSLVT QQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDI AVHKVETQADGSSLDVEVDLMADQATRRTPPRPTYESLSRESLEEEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTSRN GVHIIDLVQTAQLMDNAYNYMRSQSEQGKKFLFVGTKRQAAGIIAQEAARCGSHYINQRWLGGMLTNWATIKTRADRLKDLE RREENGALDLLPKKEASMLRREMTKLQKYLGGIKNMRKVPDVVIIVDQRREYNAVQECEKLGIPIVSMLDTNCDPDVVDIPIPA NDDAIRSIKLIVGKLADAIYEGRHGOLEAEGDYDDYEGAEGDYDYDESEYTDAVIPDEEEEMGOKIHPVGFRLGITOEHOSRWF AVPDRYPELLQEDHKLRKYIEQKLGRYAQNNAGISEVRIERKADQIDLEVRTARPGVVVGRGGQGIESLRTGLQDLLGSNRQIRI NVVEVQRVDADAYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVGGRLNGAEIARTEWTREGRVPLHTLRADIDY SYCTAQTIYGILGIKVWVFKGEIIPGQEETPSAPTTREPRRRQQQRRRQQFEDRSNEGMATGRRKTNRAKKEETNWQERVIQIRR VSKVVKGGKKLSFRAIVVVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIDIPITKSNSIPHPIDGIGGGAKVMMRPAAPG TGVIAGGAVRTVLELAGVRNVLAKQLGSNNPLNNARAAVNALSTLRTFAEVAEDRGIPIESLYIVAEANSGRAVYWGTGRRKS AVARVRLVPGEGKFVVNGKDGELYFQFNANYLGAIKAPLETLGLESEYDILVKAEGGGLTGQADSIRLGVARALCQLDPDNRP PLKTEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRRI YCVLRSPHVDKDSREHFETRTHRRIIDIYQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKSGSKKQKRNVPNGMAYIQSTFN NSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAGRRAIDQGMRQIEVMVSGPGAGRETAIRALQGAGLEITLIRDI TPIPHNGCRPPKRRRVMARISGVDLPRDKRVEIGLTYIYGIGLSRSQEILAATGVNPDTRVKDLSDADVAALRGEIESNYQVEGD LRRLEAMNIKRLVDIGSYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLSKIEKLNAK NEKQVIKTWSRASTILPMMVGHTIAVHNGRQHVPVFVNEQMVGHKLGEFSPTRTYRGHGKSDKKSGRMSDKKEGFKVISDNR QARYLYEIIETYEAGIQLTGTEVKSIRAGKVNLQDGYALLRNGEAWLINIHISPYTSSGQYFNHEPRRTRKLLLHRQELRKLIGKV EQQGLTLVPLKMYLQRGWVKVSIALGKGKKLHDKRESLKRRQDQRDIQRAMKSYMAEISAKLVQELRQKTGAGMMDCKKA LKETEGNIEEAVDWLRKKGIASAGKKSDRIAAEGLVDTYIQSGGQVGVLIEVNCQTDFVARNDAFKSLVKNLAQQAATADSVE SLLAQPYLEKSSVSVDEFIKETMATLGENIQVRRFVNFALSAATPGVVDSYIHTGGRVGVLLELNAQTESAAGNEDFQNLAKNA AMQVAACPNVEYVTIEQIPAEFVQKEKDIEMGKDDLGNKPENIKEKIVQGRIDKRLKEITLLDQPYIRDQAISVEELVKQVKSKV GEEIKINRFVRYVLGEGIDKQEISFADEVAAQMGAK

>Anabaena sp 90

MQIPRLHPDTIEEVKLRADIVDVVSEYVVLRKRGKDFLGLCPFHDEKSPSFSVSPNKQMYYCFGCQAAGNAIKFVMDLGKRQF ADVVLDLAKRYQVPVKTLEPEQRQELQRQISLRDQLYTVLATAAQFYQHTLRQSQGQKALEYLEQTRQFKQGTIQQFGLGYAP AGWETLYRYLVESKHYPVOLVEOAGLIKPRKEGGGYYDVFRDRLMIPIRDIOGRVIAFGGRTLTDEOPKYLNSPETELFSKGKM LFALDEAKDGISKVDQAVVVEGYFDAIALHAAGINNAVASLGTALSIEQVRLLLRYTESKQLILNFDADKAGTNATERAIGEIA NLAYAGEVOLKILNLPNGKDADEYLHSHTSADYQKLLTNAPLWLDWQIQNIIKNRDLKQATDFQQVTQQIVKLLQNIVNSDTL NYYVSSCAEILSLGDTRLIPLRVENLLTQIKPGRIKSLNPRTSNPATKTPKLSLVNTERSLLERAEALLLIIYLHSSQQRQIIIEDLEN RNLEFSLSHHRFLWQQMAEFTVDEVDLISSVQNRYLELAEELEIVSHIFHLNEKNKTEILRTPHVIQAALACMERVFREKRYRYF MEQWEKIDPEAEPEKDKYYAEAIYIEKLHLQDLEKQRQFSITDLIMKLAEAESMMQKTVESTQRAFNTIRTGRANASLLDKVQ VEYYGTPTSLKALTNISTPDSSTILIQPYDKGSLNIIEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKEFVKLAAKYAEEGRVAIR NIRRDANDSIRKQEKSAEISEDESRDQQDKLQKLTNKHTEKIDHLLVEKEKEITTVMPVIEKKRTRDLPQINERIRFPKIRVIDTDG AQLGIITPQEAIQLAEEKELDLVLISDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQA ERFLKDGDKVKATVMFRGREIQHSDLAETLLKRMATDLEPFGELQQAPKKEGRNMMMLISPKKMSMVTLSGLKELIESISQER NLPRLAVOAAIREALIKGYERYRRAONLERROFDEEYFNNFEVELDIEGEGFRVLSTKTIVEAVANTDHOISLDEVOOVAPEAO LGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVVLAVSSGFGQSEVEAEL PKREQLPNDNYRANATFKVYLKKVSQGQQRGPQLMVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIA VDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPAKVDEVRLMDPESRQTHVLVAEDQLSLAIGK EGONVRLAARLTGWKIDIKDQAKYDEEAENTKFAAVRAQYQSQNDRDDRSDREDAMAEELELDEDRFDNSEEDMSKKSLAS LSAADISGKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLTQKGAKVILTSHFGRPKGVDEKLRLTPVAKRLSELLGQEVIK TDDCIGDDVAAKVAALDNGQVLLLENVRFYKEEEKNDREFAQKLAANADFYVNDAFGTAHRAHASTEGVTEFLSPSVAGYL VEKELOYLOSAIEEPKRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEEDKLELARELEAKAKER GVALLLPTDIVSADKFAPDANATTVSIENIPADGMGLDIGPDSIKVFQAALADCQTVIWNGPMGVFEFDKFAAGTEAIAHTLAEI GKTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKS RDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQV IPHITNEIKERILRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKRNVLYMHVTLLPWIAAAGEMKTKPTOHSVKELR SIGIQPDILVCRSDRPIPVGLKQKLSEFCDVPVECVITSPDARSIYEVPVILEREGLAEQVLNLLQMEQRQPNMTQWENMVDRMY NPKYTVEIAIVGKYVRLGDAYLSVVESLRHAAIATHGDLRLRWINSEVLENEPPENYLAGVDGIIVPGGFGSRGIDGKIAAIKYA RDRQIPFLGLCLGMQCSVIEWARNVEGLSNANSAEFDPYTDNPVINLLPEQQDVVDLGGTMRLGLYPCRVLPNSLAFQLYQEE VIYERHRHRYEFNNVYRSQLLDSGYLVSGTSPDGRLVEIIEYPKHPFFIACQFHPEFQSRPNAPHPLFKGFMTAAISQFHSTTTTPK PVQVSMAKKVSRRLQALLEKVEDRDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVALPKGTGQIIRVAVIA RGEKVTEATNAGADIAGSEELIEDIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDVASAIAEFKAGKLE YRADRTGIVHVMFGKTAFSPEDLLINLKALQESIDRNRPSGAKGRYWRSVYISSTMGPSIAIDISALRELKITDAAMGTRSYRPYT

SSTRQVIISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRNMSATVTAIEYDPNRNARIALVLY EDGEKRYILQTNGMTVGTKIIAGPESPIEDGNALPLSNMPLGTSVHNVEMTPGKGGQIVRAAGAVAQVVAKEGNYVTLKLPSG EVRLIRRDCYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSAMNPVDHPHGGGEGRAPIGRAGPVTPWGKPTLGAKTR NRKKASTKLIIMSVGILGTKLGMTQIFDEAGVSIPVTVIKAGPCTVTQVKTKQTDGYSAIQVGYGEVKPKSLNRPLLGHLAKSSA PPVRHLNEYRTDSTGDYALGQEIKADIFSVGEIVDVVGTSIGRGFAGNQKRNNFARGPMSHGSKNHRAPGSIGAGTTPGRVYPG KRMAGRLGGTRVTIRKLTVIRVDAERNLIIIKGAIPGKPGALVSVVPATIVGKKMVESVIKNWQGEQVGETSFDLRVAKETTAA HIVHRALVRQMTNSRQGTVSTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDFDLKMNRKERRLALRT AFVGRAEDLIVVEEFSNELQRPKTKDLVAALARWGATSEQKTLLILSEIAENVLLSARNIENLKLIPADQLNVYDLLHADKIIVTS STLDKIQEVYSAMAKTRLKTVYQETITPKLTTQFEYTNVHQVPKVIKITINRGLGESAQNAKSLEASISEIALITGQKPVVTRAKK AIAGFKIRQGMPVGIMVTLRGERMYAFLDRLINLTLPRIRDFRGVSPKSFDGRGNYTLGVREQLIFPEVEYDRIDQVRGLDISIITT AKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGVKVVVKGPKGELSRQLPKNVIVSQEGETLIVTRRDETRTSRQ MHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQLQGSNLVLNMGYSHQVQIEPPAGIQFAVEGTTNVIVSGYDKEIVGNTA AKIRAVRPPEPYKGKGIRYAGEVVRRMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIP VEISVYEDRSFTFVLKTPPASVLIRKAAKIERGSSEPNKTKVGSISRTQLREIAQTKLPDLNANDIDAAMNIVEGTAKNMGVTITD MSAATEQILDQLKSLTLLEASELVKQIEEAFGVSAAPTGGGMMMMAAPGAVAEVVEEKTEFDAILDSVPADKKIAVLKIVREIT GLGLKEAKDLVEAAPKAVKEAVTKEAAEDIKKRIEEAGGKVTVKTKTYLPPQASIERDWYLVDATDKRLGRLATEVAMILRGKKKPEFTPHMDTGDFVIIINAEKVAVTGKKRTQKVYRRHSGRPGGMKTETFAKLQQRLPERILEHAIKGMLPKNSLGKQLFTKL KVYAGPTHPHAAQLPKEITISTIPGENMIQPQSYLNVADNSGAKKLMCIRVLGAGNRRYGGVGDRIIAVVKESSPNMAVKKSDV VEAVIVRTRKAISRDSGMAIRFDDNAAVIINKEGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEG LASRGSTLNFGDFGLQAQEPSWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPITMRPAETRMGSGKGNPEFWVAVVKPGRIMF EIGGVTEEIAREAMRLADSKLPIKTKFITRSQPQEQEMNAQEIIRSIEAEQMKSDLPDIYVGDTVKVGIKIQEGTKFRVQPYEGVVI ARRNGGINETITVRKVFQGVGVERVFLLHSPLVESIKVLRRGKVRRAKLYYLRALVGKATRIKQRFDRPLMTRVKRGNVARKR RNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWIARINAASRQHGLSYSRLIGNLKKANVELNRKML AQLAILDPASFAKIAELANSVNGMAHKKGTGSTRNGRDSNAQRLGVKRYGGQTVRAGNILVRQRGTKVHPGNNVGIGSDDTL FALIDGVVTFERRGKSQKKVSVYAVAAELVEAVANDDKYMESAFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELH FLGNNYKLKEPKYSVEESKRRDSTYAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKS EIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEEAL MELYRKLRPGEPPTVLGGQQLLDSRFFDPKRYDLGKVGRYKLNKKLRLSAPDTMRVLTPGDILAAIDYLINLEYDIGSIDDIDHL GNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSDAESLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSAL GPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVNLYGFLETPFRPVENGKVLFDVLPVYMTADEEDDLRT ATGDVPLDENGYIKGPHVPVRYRQDWTTTGPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLRPERP LVGTGLEAQAARDSGMVIVSRTDGDVVYVDATEIRVRASGQLSAASGSQVIEKGQELKYKLSKYQRSNQDTCLNQKPLVRIGE

KVVAGQVLADGSSTEGGELALGQNIVVAYMPWEGYNYEDAILISERLVQEDVYTSIHIEKYEIEARQTKLGPEEITREIPNVGED ALRQLDEQGIIRIGAWVDAGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPP GANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILAAEDMPYLADGSPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLG VRFKITPFDEMYGEETSRRLVHGKLQEARDETTKDWIYNPDNAGKIMVYDGRTGEPFDRAITVGVAYMLKLVHLVDDKIHAR STGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMR ELQSLGLDIAVHKVETQADGSSLDVEVDLMADQAARRTPPRPTYESLSRESLEGEEMPVVSLAQMMESGVHFGHQTRRWNPK MAPYIYTSRNGVHIIDLVQTAQLMDNAYNYMRTQSEQGKKFLFVGTKRQAAGIIAQEALRCGSHYINQRWLGGMLTNWATIK TRAERLKDLERREETGALDLLPKKEASMLRREMTKLQKYLGGIKNMRKVPDIVVIVDQKREYNAVQECEKLGIPIVSMLDTNC DPDVVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQLMGQKIHPVGFRLGITQEHQSRWFAEPDRYPELLQEDYKLRQYIEQKL GRYAQNNAGISEVRIERKADQIDLEVRTARPGVVVGRGGQGIESLRLGLQGALGGNRQIRINVVEVQRVDADAYLIAEYIAOOL ERRVSFRRVVRQAIQRAQRAGVQGIKVQVGGRLNGAEIARSEWTREGRVPLHTLRADIDYSGCTAKTVYGILGIKVWVFKGEII PGQEQAPAQPAMVTGRRKASRTKKEETTWQERVIQIRRVSKVVKGGKKLSFRAIVVVGNERGQVGVGVGKASDVIGAVKKG VADGKKHLIDIPITKSNSIPHPIDGVGGGAKVMMRPAAPGTGVIAGGAVRTVLELAGIRNILAKQLGSNNPLNNARAAVNALST LRTLSEVAEDRGISIEKLYIVAETTSGRAVYWGTGRRKCSVASVRLVPGEGKMTVNGKDGDLYFQFNPNYLGAIKAPLETLGLE SEYDILVKAEGGGLTGQADSIRLGVARALCQLDPDNRSPLKTEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRI RLKAFDRRLLDTSCEKIVETANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIYOPSSKTIDALMKLDLPSG VDIEVKLMARQPTKKSGSKKQKRNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAARRA TDQGMRQIEVMVSGPGAGRETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDLPRDKRVEIGLTYIYGIGLTRSH QILAATGVNPDIRVKDLSDADVAALRGEIESNYQVEGDLRRLEGLNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRR QTVAGKKKAPGKMGRSLKKGPFVADHLLKKIEKLNAKDEKQVVKTWSRASTILPLMVGHTIAVHNGRQHIPVFVNEQMVGH KLGEFAPTRTYRGHGKSDKKSGRMSDKQSEGYKVICDNRQARFLYEIIETYEAGVQLTGTEVKSIRAGKANLQDGYALLRDGE AWLINVHISPYASSGAYFNHEPRRTRKLLLHKQELRKLIGRVQQEGLTLVPLKMYLKRGWVKIVIALGKGKKLHDKRESLKRR DDQRDMQRAMKRYMAEISAKLVQELRQKTGAGMMDCKKALKENNGDVEESITWLRQKGIAKADKGSARIAAEGLVDTYIQ ADGHIGVLIEVNCQTDFVARNEAFKALVKNLAQQAATTDSVESLLAQPYLEKSSVTVDEFIKETIATLGENIQVRRFVNFSLTTD TPGIADSYIHTGGRVGVLLELTAQSASAAANEEFQSLAKNAAMQVAACPNVEYVSVDQIPAEIVTKEKGIEMGKDDLGNKPENI KEKIVOGRIDKRLKEMTLLDOPYIRDOSISVEELVKOVKSKVGEEIOVSRFVRYVLGEGIEKNEMSFADEVAAOMGAK

>Aphanizomenon flos aquae DEX188

MOIPRLHPDTIEEVKIRADIVDVVSEYVVLRKRGKDFVGLCPFHNEKSPSFTVSPNKQMYYCFGCQAAGNAIKFVMDLGKRQF ADVVLDLAKRYQVPIKTLEPEQRQELQRQISLRDQLYTVLAAAAQFYQHTLRQSQGQKALEYLEKIRQFQQGTIQQFGLGYAP AGWETLYRYLVESKHYPVQLLEQAGLIKPRKEGGGYYDVFRDRLMIPIRDIQGRVIAFGGRTLTDEQPKYLNSPETELFSKGKIL FALDEAKEGISKVDQSVVVEGYFDAISLHAAGINHVVASLGTALSIEQVRLLLRYTESKQLILNFDADKAGINATEKAIGEIANL AYTGEVOLKILNLPNGKDADEYLHGHTSDDYQQLLTNAPLWLDWQIQKIIENRDLKQATDFQQVTQQIVKLLQNIVNSDTLNY YVSYCAEILSLGDSRLKPLRVENLLTQIKPSSVKSLSPRTTNPQPKTPKLSLVTTERSLLERAEALLLIIYLHSFEQRQIIIEDLEARN LEFSLSHHRFLWQQMAEFTIDEIDLISSVQNRYLELGEELDIVSHIFHLNEKNKTEILRTPHVIQAALACMERVFREKRYRYFMEQ WEKIDPETEPEKDKYYAEAMYIEKIHLHDLEKQRQFSITDLIMKLAEAQETMQKTVEATQRSFNTIRTGRANASLLDKVQVEYY GTPTSLKSLANITTPDSSIILIQPYDKGSLNIIEKAISLSDVGLTPSNDGVVIRLNIPPLTSDRRKEFVKLAAKYAEEGRVAIRNIRRD AIDAIRKQEKSAEISEDEARDQQDKLQKLTNKHTEKIDHLFAEKEKEITTVMPVIEKKRTRDLPQINERIRFPKIRVIDTDGAQLGI ITPQEAIQLAEEKELDLVLISDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERFLK DGDKVKATVMFRGREIQHSDLAETLLKRMATDLEPFGELQQAPKKEGRNMMMLISPKKMVTLSGLKELIESISQERNLPRVAV OAAIREALIKGYERYRRAONLERROFDEEYFNNFEVELDIDGEGFRVLSTKTIVDTVSNTDHOISLDEVOOVAPEAOLGDSVVL DVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVVLAVTSGFGQSEVEAELPKREQLP NDNYRANATFKVYLKKVSOGOORGPOLMVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTLDR DVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPAKVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQNVR LAARLTGWKIDIKDQAKYDQEAEDIKFAAVRAQNQPQNDHDDRSNREDKMEEELELEEDRFDSREEDMSKKSLASLSAADISG KRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLTQKGAKVILTSHFGRPKGVDEKLRLTPVAKRLSELLGQEVIKTDDCIGD DVAAKVAALDNGQVLLLENVRFYKEEEKNDREFAQKLAANADFYVNDAFGTAHRAHASTEGVTKFLSPSVAGYLVEKELQY LQSAIEAPQRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLSVGKSLVEEDKLELAKSLEAKAKERGVALLLPT DIVSADKFAPDANATTVSIENIPADGMGLDIGPDSVKVFQAALADCKTVIWNGPMGVFEFDKFAAGTEAIAHTLAEISKTGAITII GGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSIL KLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINRERRGDYNGGTVQVIPHITNEIK ERILRVAKETNPSAVITEIGGTVGDIESLPFLEAIRQLRKEVGKRNVLYMHVTLLPWIAAAGEMKTKPTQHSVKELRSIGIQPDIL VCRSDRPIPVGLKQKLSEFCDVAVECVITSPDARSIYEVPVILEREGLAEQVLNLLQMEQRQPNMSQWEMMVERMYNPKYSVE IAIVGKYVRLSDAYLSVVESLRHAAIATHSDLRLRWVNSEALETEPAENYLSGVDGIIVPGGFGSRGIDGKIAAIKYARTRQIPFL GLCLGMQCSVIEWARNVEGLSHADSAEFNPYTEDPVINLLPEQQDVVDLGGTMRLGLYPCRILPNTLAFQLYQEEVIYERHRHR YEFNNIYRNQLLDSGYLVSGTSPDGRLVEIVEYSQHPFFIACQFHPEFQSRPNAPHPLFKGFITAAISQSMAKKVSRRLQALLDKV EDRDYSPLEALALLKETATAKFSEAAEAHVRLGIDPKYTDQQLRTTVALPKGTGQIIRVAVIARGEKVTEATNAGADIAGSEELI DQIQKGFMEFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDIASAIAEFKAGKLEYRADRTGIVHVMFGKAAFSPEDL LINLKALQESIDRNRPSGAKGRYWRSLYISSTMGPSIAIDISALRDLKLTEAAMGTRSYRPYTPSTRQVIISDFAEITKTEPEKSLTE

SVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRNMTATVTAIEYDPNRNARIALLLYEDGEKRYILQPNGMTVGTKVIAG PDSPIEDGNALPLANMPLGTGVHNVEMTPGKGGQIVRAAGAVAQVVAKEGNYVTLRLPSGEVRLIRRDCYATIGQVGNTDAR NLSAGKAGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPTLGAKTRNRKKSSTKLILMSVGILGTKLGM TQIFDEAGVSIPITIIQAGPCTVTQVKTKQTDGYSAIQVGYGEVKPKALNKPLLGHLAKSSAPALRHLNEYRTDSAGDYTPGQEI KADIFSAGEIVDVVGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGTRVTIRKLTVVRV DTERNLILIKGAIPGKPGALVSVVPATIVGKKMVESVIKNWQGEQVGETSFDLPVAKETTAAHIVHRALVRQMTNSROGTASTK TRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDFDLKMNRKERRLALRTALIGRAEDIIIVEEFSNELQRPKT KDLVAALARWGAVPEQKTLLILSEIAENVLLSARNIENLKLIPADQLNVYDLLHADKIVVTSSTLEKIQEVYSAMAITRLKTVYQ ETITPKLITQFQYTNVHQVPKVTKITINRGLGEAAQNAKSLEASISEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGER MYAFLDRLINLTLPRIRDFRGVSAKSFDGRGNYTLGVREQLIFPEVEYDKIDQVRGLDISIITTAKTDEEGRALLKEMGMPFRDQ MSRIGKRPITIPAKVQVAIDGVKVVVKGPKGELSRQLPNNVIVSQEGETLLVTRRDETRTSRQMHGLSRTLVANMVEGVSQGFQ RRLEIQGVGYRAQLQGSNLVLNMGYSHQVQIEPPPGIKFAVEGTTNVIVSGYDKEIVGNTAAKIRAVRPPEPYKGKGIRYAGEV VRRMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVYEDRSFTFVLKTPPASVLIR KAAKIERGSNEPNKKKVGSISRTQLREIAQTKLPDLNANDIDAAMNIVEGTAKNMGVTVTDMSAATEQILEQLKSLTLLEASEL VKQIEEAFGVSAAAPAGGMMMMAPGAGAAAEEVVEKTEFDAILDSVPADKKIAVLKIVREITGLGLKEAKDLVEAAPKAVKE AVTKDAAEDIKKRIEEAGGKVTVKMSSKTYLPPQASLERDWYLVDATDKRLGRLASEVAMILRGKRKAEYTPHLDTGDFVIII NAEKVAVTGKKRTQKLYRRHSGRPGGMKTETFAKLQQRLPERILEHAIKGMLPKNSLGKQLFTKLKVYAGPTHPHEAQQPKEI TISTIPGENMIQPQSYLNVADNSGAKKLMCIRVLGAGNRRYGGVGDRIIAVVKESSPNMAVKKSDVVEAVIVRTRKAISRDSGM TIRFDDNAAVIINKEGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLASRGSTLNFGDFGLQAQ EPSWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPITMRPAETRMGSGKGNPEFWVAVVKPGRIMFEIGGVTEEIAREAMRLAD AKLPIKTKFIVRSQPQEQEMNAQEIIRSIEAEQMKSNLPDIYVGDTVKVGVKIQEGNKFRVQPYEGVVIAMRNGGINETITVRKV FQGVGVERVFLLHSPLIETIKVLRRGKVRRAKLYYLRALVGKATRIKQRFDRPLMTRVKRGNVARKRRNKILKLAKGFRGSHS TLFRTANQQVMKALRSAYRDRKKKKRDFRRLWIARINAASRQHGLSYSRLIGNLKKANVELNRKMLAQLAILDPTSFAKIAEL AQSVNGMAHKKGTGSTRNGRDSNAQRLGVKRYGGQTVRAGNILVRQRGTKVHPGNNVGIGSDDTLFALVDGVVTFERKGKS QKKVSVYPNDDKYMESAFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGNNYKLKEPKYSVEESKRRDSTYA VQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFET DRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEEALMELYRKLRPGEPPTVLGGQQLLDSRF FDPKRYDLGKVGRYKLNKKLRLSAPDTMRVLSSSDILAAIDYLINLEFDIGNIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERI IRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRIC PIETPEGPNAGLIGSLATHARVNLYGFLETPFRPVENGKVLFHLPPVYMTADEEDDLRTATGDIPLDEYGFIKGPNVPVRYRQD WTTTPPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQAARDSGMVIVSRTDGD VVYVDATEIRVRVGGQRLVAGDNEKTGDREQLRTDKPQELKYKLSKYQRSNQDTCLNQKPLVRIGEKVVAGQVLADGSSTEG

GELALGONIVVAYMPWEGYNYEDAILISERLVQEDVYTSIHIEKYEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRVGAW VDAGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRAYVAQKR KIQVGDKMAGRHGNKGIISRILPAEDMPYLSDGSPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGEETS RRLVHGKLEEAREETGRDWVYNPDNAGKITVYDGRTGEAFDRDVTVGVAYMLKLVHLVDDKIHARSTGPYSLVTOOPLGGK AQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDVAVHKVE TQTDGSSLDVEVDLMIDQATRRTPPRPTYESLSRESLDEEEMPVVSLAQMMESGVHFGHQTRRWNPKMAPYIYTSRNGVHIIDL VQTAQLMDDAYNYMRTQSEQGKKFLFVGTKRQAAGIIAQEALRCGSHYINQRWLGGMLTNWATIKTRAERLKDLERREETG ALDLLPKKEASMLRREMTKLQKYLGGIKNMRKVPDIVVIVDQKREYNAVQECEKLGIPIVSMLDTNCDPDVVDIPIPANDDAIR SIKLIVGKLADAIYEGRHGQLEVMGQKIHPVGFRLGITQEHQSLWFAEPDRYPELLQEDYKLRQYIEQKLGRYAQNNAGISEVRI ERKADQIDLEVRTARPGVVVGRGGQGIESLRLGLQGALGGNRQIRINVVEVQRVDADAYLIAEYIAQQLERRVSFRRVVRQAIQ RAQRAGVQGIKVQVGGRLNGAEIARSEWTREGRVPLHTLRADIDYSGCTAKTIYGILGIKVWVFKGEIIPGQEQAPAQPARERD RDRDRGDREREPRRRQQGRRRQQFEDRSNETMVTGRRKASRTKKEETTWQERVIQIRRVSKVVKGGKKLSFRAIVVVGNERG QVGVGVGKASDVIGAVKKGVADGKKHLIDIPITKSNSIPHPIDGIGGGAKVMMRPAAPGTGVIAGGAVRTVLELAGIRNILAKQ LGSNNPLNNARAAVNALSTLRTLTEVAEDRGIAIEKLYIIAEINSGRAVYWGTGRRKASVARVRLVPGEGKMIVNGKDGELYF QFNPNYLGSIKAPLETLGLENEYDILVKAEGGGLTGQADSIRLGVARALCELDPDNRSPLKTEGYLTRDPRAKERKKYGLHKAR KAPOYSKRMATLOOOKIRIRLKAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDI YQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKTGSKKQKRNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAK KGTPFAAQTAAESAARRATDQGMRQVEVMVSGPGAGRETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDLPR DKRIEIGLTYIYGIGLTRSHQILAATGVNPDTRVKDLSDADVTALRGEIESNYQVEGDLRRLEGLNIKRLVDIGCYRGRRHRMGL PVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLKKIEKLNAKDEKQVVKTWSRASTILPLMVGHTIAVH NGRQHVPVFVNEQMVGHKLGEFAPTRTYRGHGKSDKKSGRMSEKQSEGYKVICDNRQARFLYEIIETYEAGVQLTGTEVKSIR AGKANLQDGYALLRDGEAWLINVHISPYTSSGAYFNHEPRRTRKLLLHKQELRKLIGRVQQEGLTLVPLKMYLKRGWVKIVIA LGKGKKLHDKRESMKRRDDQRDMQRAMKRYMAEISAKLVQELRQKTGAGMMDCKKALKENDGDIEAATTWLRQKGIAKA DKGSSRIAAEGLVDTYIRPDGQVGVLIEVNCQTDFVARNDAFKDLVKKLAQQAATTDSVESLLAQPYIGKESVSVDEFIKETIAT LGENIQVRRFVNFSFTSDTPGIADSYIHTGGRVGVLVELTTPGALAGTNEDLQGLAKNAAMQVAACPNVEYVSVDQIPVEVVQ KEKDIEMGKDDLANKPVNIREKIVQGRIDKRLKEMTLLDQPYIRDQSISVEDLVKQVKSKVDREIQVSRFVRYILGEGIEKKEISF **ADEVAAQIGAK**

>Aphanizomenon flos aquae KM1D3

MQIPRLHPDTIEEVKLRADIVDVVSEYVVLRKRGKDFVGLCPFHDEKSPSFTVSPNKQMYYCFGCQAAGNAIKFVMDLGKRQF ADVVLDLAKRYQVPVKTLEPEQRQELQRQISLRDQLYTVLASAAQFYQHTLRQSQGQKALEYLEKTRQFQQGTIQQFGLGYAP AGWETLYRYLVESKHYPVQLVEQAGLIKPRKEGGGYYDVFRDRLMIPIRDIQGRVIAFGGRTLTEEQPKYLNSPETELFSKGKT LFALDEAKDGISKVDQAVVVEGYFDAIALHAAGINNAVASLGTALSLEQVRLLLRYTESKQLILNFDADKAGTTATERAIGEIA NLAYTGEVQLKILNLPNGKDADEYLHSHTPADYQQLLTNAPLWLDWQIQNIIKNRDLKQATDFQQVTQQIVKLLQNIVNSDTL NYYVSYCAEILSLGDTRLIPLRVENLLTQIKPGSIKPSIPRTSRPPTKTPKLSLVTTERSLLERAEALLLIIYLHSSQQRQIIIEDLETR NLEFSLSHHRFLWQQMAEFIVDEVDLISSVQNRYLELGEELDIVSHIFHLNEKNKTEILRTPHVIQAALACMERVFREKRYRYFM EQWEKIDPQTEPEKDKYYAEAIYIEKIHLHDLEKQRQFSITDLIMKLAEAESTMQKTVESTQRAFNTIRTGRANSSLLDKVQVDY YGSPTSLKSLANITTPDSSTILIQPYDRNALNIVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKEFVKLAAKYAEEGRVAIRNIR RDALDTIRKQEKSAEISEDEARDQQDKLQKLTNKHIVKIDELLREKEQEISTVMPVIEKKRTRDLPQINERIRFPKIRVIDTDGAQL GIITPQEAIQLAEEKELDLVLISDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERF LKDGDKVKATVMFRGREIQHSDLAETLLKRMATDLEPFGELQQAPKKEGRNMMMLISPKKMVTLSGLKELIESISKERNLPRL AVOAAIREALIKGYERYRRAONLERROFDEEYFNNFEVELDIEGEGFRVLSTKTIVDAVSNTDHOISLDEVOOVAPEAOLGDSV VLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVSSGFGQSEVDAELPKREQL PNDNYRANATFKVYLKKVSQGQQRGPQLMVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTLD RDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQNV RLAARLTGWKIDIKDQAKYDQEAEDIKFAAVRAQNQPRNDEDDRSDREYEMAEELELDEDRFNNREEDMSKKSLASLSAADIS GKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLTQKGAKVILTSHFGRPKGVDEKLRLTPVAKRLSELLGQEVIKTDDCIG DDVAAKVAALDNGQVLLLENVRFYKEEEKNDPEFAQKLAANADFYVNDAFGTAHRAHASTEGVTKFLSPSVAGYLVEKELQ YLQSAIEVPQRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLSVGKSLVEEDKLELAKSLEAKAKERGVALLL PTDIVSADKFAPDANATTVSIENIPADGMGLDIGPDSIKVFQAALADCKTVIWNGPMGVFEFDKFAAGTEAIAHTLAEIGKTGAT TIIGGGDSVAAVEKVGLADKMSHISTGGGASLELLEGKILPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSI LKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHITNEI KDRILRVAKETNPSAVITEIGGTVGDIESLPFLEAIRQLRKEVGKRNVLYMHVTLLPWIAAAGEMKTKPTQHSVKELRSIGIQPDI LVCRSDRPIPVGLKQKLSEFCDVPVECVITSPDARSIYEVPVILEREGLAEQVLNLLQMEQRQPNMTQWETMVDRMYNPQHTV EIAIVGKYVRLGDAYLSVVESLRHAAIATHGDLRLRWVNSEVLENEPPENYLSGVDGIIVPGGFGSRGIDGKIAAIKYARDRQIPF LGLCLGMQCSVIEWARNVEGLSNANSAEFDPYTDNPVINLLPEQQDVVDLGGTMRLGLYPCRVLPNTLAFQLYQEEVIYERHR HRYEFNNVYRSQLLDSGYLVSGTSPDGRLVEIVEYPKHPFFIACQFHPEFQSRPNAPHPLFKGLMTAAISQSHSATATPKPVQVM AKKVSRRLQALLEKVEDKDYTPLEALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVALPKGTGQIIRVAVIARGEKVT EATNAGADIAGSEELIEDIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDVASAIAEFKAGKLEYRADRT GIVHVMFGKTAFSPEDLLINLKALQESIDRNRPSGAKGRYWRSLYISSTMGPSIAIDISALRELKLTDAAMGTRSYRPYTPSTRQV

IISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRNIPATVTAIEYDPNRNARIALLLYEDGEKRY ILQPNGMTVGTKIIAGPESPIEDGNALPLSNIPLGTGVHNVEMTPGKGGQIVRAAGAVAQVVAKEGNYVTLKLPSGEVRLIRRD CYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSAMNPVDHPHGGGEGRAPIGRSGPVTPWGKPTLGAKTRKRKKASTK LIIMSVGILGTKLGMTQIFDEAGVSIPVTVVKAGPCTVTQVKTKQTDGYSAIQVGYGEVKPKALNKPLLGHLAKSSAPAVRHLN EYRTDSAGDYALGQEIKADIFSAGEIVDVVGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGR LGGTRVTIRKLTVVRVDTERNLILIKGAIPGKPGALVSVVPATIVGKKMVESVIKNWQGEQVGETNFDLRVAKETTAAHIVHRA LVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDFDLKMNRKERRLALRTAFISRA EDLIVVEEFSNELQRPKTKDLVAALARWGAAPEQKALLILSEIAENVLLSARNIENLKLIPADQLNVYDLLHADKIIVTSSTLEKI QEVYSAMAITRLKTVYQETITPKLINQFQYTNVHQVPKVIKVTINRGLGEAAQNAKSLEASISEIALITGQKPVVTRAKKAIAGF KIRQGMPVGIMVTLRGERMYAFLDRLINLTLPRIRDFRGVSPKSFDGRGNYTLGVREQLIFPEVEYDRIDQVRGLDISIITTAKTD EEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGVKVVVKGPKGELSRQLPNNVILSLDGETLLVTRRDETRTSRQMHGL SRTLVANMVEGVSQGFQRRLEIQGVGYRAQLEGRNLVLNMGYSHKVQIEPPEGIQFAVEGTTNVIVSGYDKEIVGNTAAKIRA VRPPEPYKGKGIRYAGEVVRRMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISV YEDRSFTFVLKTPPASVLIRKAAKIERGSNEPNKKKVGSISRTQLREIAQTKLPDLNANDIDAAMNIVEGTAKNMGVTVTDMSA ATEQILEQLKSLTLLEASELVKQIEEAFGVSAAATGGGMMMMAAPGGAAAEVVEEKTEFDAILDSVPADKKIAVLKIVREITGL GLKEAKDLVEAAPKAVKEAVTKDAAEDIKKRIEEAGGKVTVKMSSKTYLPPQASLERDWYLVDATDKRLGRLASEVAMILRG KRKAEYTPHLDTGDFVIIINAEKVAVTGKKRTQKLYRRHSGRPGGMKTETFAKLQQRLPERILEHAIKGMLPKNSLGKQLFTKL KVYAGPTHPHAAQQPKEITISTIPGENMIQPQSYLNVADNSGAKKLMCIRVLGAGNRRYGGVGDRIIAVVKESSPNMAVKKSD VVEAVIVRTRKAISRDSGMCIRFDDNAAVIINKEGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRME GLASRGSTLNFGDFGLQAQEPSWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPITMRPAETRMGSGKGNPEFWVAVVKPGRIM FEIGGVTEEIAREAMRLADAKLPIKTKFIVRSQPQEQEMNAQEIIRSIEAEQMKSDLPEIYVGDTVKVGVKIQEGTKFRVQPYEGV VIARRNGGINETITVRKVFQGVGVERVFLLHSPLVESIKVLRRGKVRRAKLYYLRKLVGKATRIKQRFDRPLMTRVKRGNVAR KRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWIARINAASRQHGLSYSRLIGNLKKANVELNRK MLAQLAILDPASFAKIAELANSVNGMAHKKGTGSTRNGRDSNAQRLGVKRYGGQTVRAGNILVRQRGTKVHPGNNVGIGSDD TLFALVDGVVTFERRGKSQKKVSVYPVAVELVEAVASNDDKYMESAFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKL ELHFLGNNYKLKEPKYSVEESKRRDSTYAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVY YKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEE ALMELYRKLRPGEPPTVLGGQQLLDSRFFDPKRYDLGKVGRYKLNKKLRLSAPDTMRVLTPGDILAAIDYLINLEYDIGSIDDID HLGNRRVRSVGELLONOVRVGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSOLSOFMDOTNPLAELTHKRRL SALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVNLYGFLETPFRPVENGKVLFDVPPVYMTADEEDD LRTATGDVPLDENGYIKGPQVPVRYRQDWTTTGPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKP ERPLVGTGLEAQAARDSGMVIVSRTDGDVVYVDATEIRVRSSGQLSAASGSQVIEKGQELKYKLSKYQRSNQDTCLNQKPLVR

IGEKVVAGQVLADGSSTEGGELALGQNIVVAYMPWEGYNYEDAILISERLVQEDVYTSIHIEKYEIEARQTKLGPEEITREIPNV GEDALRQLDEQGIIRIGAWVDAGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGD ELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILPAEDMPYLADGSPVDIVLNPLGVPSRMNVGQVFECLLGWAGH NLGVRFKITPFDEMYGEETSRRLVHGKLQEARDETAKDWVYNPDNAGKIMVYDGRTGEPFDRAITVGVAYMLKLVHLVDDKI HARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKV LMRELQSLGLDIAVHKVETQADGSSLDVEVDLMADQAARRTPPRPTYESLSRESLEGDDMPVVSLAQMMESGVHFGHQTRR WNPKMAPYIYTSRNGVHIIDLVQTAQLMDNAYNYMRTQSEQGKKFLFVGTKRQAAGIIAQEALRCGSHYINQRWLGGMLTN WATIKTRAERLKDLERREESGALDLLPKKEASMLRREMTKLQKYLGGIKNMRKVPDIVVIVDQKREYNAVQECEKLGIPIVSM LDTNCDPDVVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQLMGQKIHPVGFRLGITQEHQSRWFAEPDRYPELLQEDYKLRQY IEQKLGRYAQNNAGISEVRIERKADQIDLEVRTARPGVVVGRGGQGIESLRLGLQGALGGNRQIRINVVEVQRVDADAYLIAEY IAQQLERRVSFRRVVRQAIQRAQRAGVQGIKVQVGGRLNGAEIARSEWTREGRVPLHTLRADIDYSGCTAKTIYGILGIKVWVF KGEIIPGQEQAPAQPAMVTGRRKASRTKKEETTWQERVIQIRRVSKVVKGGKKLSFRAIVVVGNERGQVGVGVGKASDVIGAV KKGVADGKKHLIDIPITKSNSIPHPIDGIGGGAKVMMRPAAPGTGVIAGGAVRTVLELAGIRNILAKQLGSNNPLNNARAAVNA LSTLRTLSEVAEDRGIAIEKLYIVAEITSGRAVYWGTGRRKASVARVRLVPGEGKMTVNGKDGDLYFQFNPNYLGAIKAPLETL GLESEYDIVVKAEGGGLTGQADSIRLGVARALCQLDPDNRSPLKTEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQ KIRIRLKAFDRRLLDTSCEKIVETANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIYOPSSKTIDALMKLDL PSGVDIEVKLMARQPTKKSGSKKQKRNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAA RRATDQGMRQIEVMVSGPGAGRETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDLPRDKRIEIGLTYIYGIGLT RSHQILAATGVNPDTRVKELSDADVAALRGEIESNYQVEGDLRRLEGLNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRR GRRQTVAGKKKAPGKMGRSLKKGPFVADHLLKKIEKLNAKDEKQVVKTWSRASTILPLMVGHTIAVHNGRQHVPVFVNEQM VGHKLGEFAPTRTYRGHGKSDKKSGRMSDKQSEGYKVICDNRQARFLYEIIETYEAGIQLTGTEVKSIRAGKANLQDGYALLR DGEAWLINVHISPYTSSGAYFNHEPRRTRKLLLHKQELRKLIGRVQQEGLTLVPLKMYLKRGWVKIVIALGKGKKLHDKRESL KRRDDQRDMQRAMKRYMAEISAKLVQELRQKTGAGMMDCKKALKENEGDVEAATTWLRQKGIAKADKGSARIAAEGLVD TYIRPDGQVGVLIEVNCQTDFVARNEAFKALVKNLAKQAANADTVESLLAQPYTEKSSVTVDEFIKETIATLGENIQVRRFVNF SLTTDKPGIVDSYIHTGGRVGVLLELNSQTDAPATQEEFQNLARNAAMQVAACPNVEYVNIDQIPVEVVTKEKDIEMGKDDLG NKPENIKEKIVOGRIEKRLKEMTLLDOPFIRDOSISVEDLVKOVEKIVGEGIOVSRFVRYVLGEGIERKEMSFADEVAAOIGAK

>Dolichospermum circinale AWQC310F

MQIPRLHPDTIEEVKLRADIVDVISEYVVLRKRGKDFVGLCPFHDEKTPSFTVSPYKQMYYCFGCQAAGNAIKFVMDLGKRQF AEVVLDLAKRYQVPVKTLEPEQRQELQRQISLRDQLYTVLASAAQFYQHTLRQSQGQKAREYLTKIRQFQEETIQQFGLGYAPP GWETLYRYLVESKHYPLOLVEOAGLIKPRKEGGGYYDVFRDRLMIPIRDLOGRVIAFGGRTLTEEOPKYLNSPETELFSKGKTL FALDAAKNAISKVDQAVVVEGYFDVISLHAAGINNAVASLGTALSIEQVRLLLRYTESKQLILNFDADKAGINATEKAIGEVSNL VYTGEVQLKILNLPHSKDADEYLHDHTSSDYQQLLKDAPLWLDWQIQNIIKNRDLKQATDFQQVTQQIIKLLQNIVNSDTLNYY VSYCAEILSLGDSRLKPLRVENLLTQIRPNSLKSLSPRINKPQPQKLKLSLVNTERTLLERAEASLLIIYIHFSEQRQIIIDELETRNL EFSLSHHRFLWQQMLEFSLDELDLISHVQNRYLELGEELDIISHLFHLNEKNKKEDILRISYIIQVALACMERVFREKRCRYFIEQ WEKINPQTEPEKDKYYAEAIYIEKIHLQDLEKQQMKLAEAESTMQKTVESTQRAFNTIRTGRANASLLDKVQVEYYGTPTSLKS LANISTPDASTILIQPYDKSSLNIVEKAISLSDVGLTPSNDGIVIRLNIPPLTTDRRKEFVKLAAKYAEEGRVAIRNIRRDAIESIRKQ EKNAEIPEDEARDQQDKLQKLTNKYTAKIDELLAEKEKDISTVMPVIEKKRTRDLPQINERIRFPKIRVIDTDGAQLGIITPQEAIQ LAEEKELDLVLISDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQAERFLKDGDKVK ATVMFRGREIQHSDLAETLLKRMATDLEPFGELQQAPKKEGRNMMMLISPKKMSMVTLSGLKELIESISQERNLPRLAVQAAIR EALLKGYERYRRAQNLERKQFDEEYFKNFEVELDIEGEGFRVLSTKNIVETVSNTDHQISLDEVQQVAPEAQLGDSVVLDVTPD OGEFGRMAAMOTKOVLAOKLRDOOROMVQEEFODLEGTVLOARVLRFEROSVVLAVSSGFGOSEVEAELPKREOLPNDNYR ANATFKVYLKKVSOGOORGPOLMVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAVDTLDRDVDPV GACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPAKVDEVRLMDPESRQTHVLVAEDQLSLAIGKEGQNVRLAARL TGWKIDIKDQAKYDYEAENTKFAAVRAQYQSQNMSKKSLASLSAADISGKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQD LTQKGAKVILTSHFGRPKGVDEKLRLTPVAKRLSALLGQEVIKTDDCIGDDVAAKVAALDNGQVLLLENVRFYAEEEKNDPEF AQKLAANADFYVNDAFGTAHRAHASTEGVTKFLSPSVAGYLVEKELQYLQSAIEAPQRPLAAIVGGSKVSSKIGVIETLLEKCD KLIIGGGMIFTFYKARGLSVGKSLVEEDKLELAKSLEAKAKERGVALLLPTDVVLADKFAPDADSQTVNIDAIPDGWMGLDIGP DSVKVFQAALADCKTVIWNGPMGVFEFDKFAKGTEAIAHTLADISKTGAITIIGGGDSVAAVEKVGLADQMSHISTGGGASLEL LEGKILPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDL DLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIPHITNEIKDRIVRVAKETNPSAVITEIGGTVGDIESLPFLEA IRQLRKEVGRRNVLYMHVTLLPWIASAGEMKTKPTQHSVKELRSIGIQPDILVCRSDRPIPVGLKQKLSEFCDVAVECVIPAPDA RSIYEVPVILEREGLAEQVLDLLQMEQRQPNLQEWETMVERMYTPKYSVEIAIVGKYVRLSDAYLSVVESLRHAAIATHGDLRL RWVNSEALETEPAENYLSGVDGIIVPGGFGSRGIDGKIAAIKYARDRQIPFLGLCLGMQCSVIEWARNVEGLSHANSAEFDPNTN DPVINLLPEQQDVVDLGGTMRLGLYPCRILPNTLAFQLYQEEVIYERHRHRYEFNNVYRSQLLDSGYLVSGTSPDGRLVEIVEY SQHPFFIACQFHPEFQSRPNAPHPLFKGFVNAAISQAHSTTNIPKPLKVSMAKKVSRRLRALLEKVEDRDYTPLEGLALLKETAT AKFAEAAEAHIRLGIDPKYTDQQLRTTVALPKGTGQIIRVAVIARGEKVTEATNAGADIAGSEELIEQIQKGFMDFDKLIATPDV MPQVAKLGKLLGPRGLMPSPKGGTVTFDIGSAIAEFKAGKLEYRADRTGIVHVMFGKAGFSPEDLLINLKALQESIDRNRPSGA KGRYWRSLYVSSTMGPSIAIDISALRELKLTEAAMGTRSYRPYTPSTRQVTISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSR

RRGGGHKQLYRIIDFKRDKRNIPATVTAIEYDPNRNARIALLLYEDGEKRYILQPNGMTVGTKVIAGPDSPIEDGNALPLSNIPLG SNVHNVEMTPGKGGQIVRAAGATAQVVAKEGNYVTLKLPSGEVRLIRRDCYATIGQVGNTDARNLSAGKAGRNRWKGRRPK VRGSVMNPVDHPHGGGEGRAPIGRSGPVTPWGKPTLGAKTRKRKKASTKLIIMSVGILGTKLGMTQIFDEEGVSIPVTVIQAGP CTVTQVKTKQTDGYAAIQVGYGEVKPKALNRPLLGHLAKSSAPAVRHLNEYRTDSAGDYALGQEIKADIFSAGEIVDVVGTSI GRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGTRVTIRKLTVVRVDTERNLIIIKGAIPGKPG ALVNVLPAKKVGKKMVESVIKNWQGEQVGETSFDLRVAKETTAAHIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWR QKGTGRARAGSIRSPLWRGGGVIFGPKPRDFNLQMNRKERRLALRTAFISRAEDLIIVEEFSNELQRPKTKELVAALARWGAAP EQKTLLILSEIAENVLLSARNIENLKLIPANQLNVYDLLHADKIVVTSSTIDKIQEVYSAMATTRLKTVYQETITPKLISQFQYTNV HQVPKVTKITVNRGLGEAAQNAKSLEASLSEIALITGQKPVVTRAKKAIAGFKIRQGMPVGIMVTLRGERMYAFLDRLINLTLP RIRDFRGVSPKSFDGRGNYTLGVREQLIFPEVEYDKIDQVRGLDISIITTAKTDEEGRALLKEMGMPFRDQMSRIGKRPITVPAKV QVAIDGVKVVVKGPKGELSRQLPNNVIVSQEGETLLVTRRDETRTSRQMHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQI QGRNLVLNMGYSHQVQIEPPEGIQFAVEGTTNVIVSGYDKEIVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRMAKKLVAVIK LALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVYEDRSFTFVLKTPPASVLIRKAAKIERGSNEPNK KKVGSISRNQLREIAQTKLPDLNANDIDAAMKIVAGTAKNMGVTVTDMSAATEQILEQLKALTLLEASELVKQIEEAFGVSAA ATGGMMMVAPGAAAPAEEVVEKTEFDAILDSVPADKKIAVLKIVREITGLGLKEAKELVEAAPKAVKEGVAKEAAEDIKKRIE EAGGKVVIKMSSKTYLPPQASLERDWYLVDATDKRLGRLASEVAMILRGKRKAEYTPHLDTGDFVIIINAEKVAVTGKKRTQK IYRRHSGRPGGMKTETFAKLQQRLPERILEHAIKGMLPKNSLGKQLFTKLKVYAGPTHPHAAQQPKEITISTIPGENMIQPQSYL NVADNSGAKKLMCIRVLGAGNRRYGGVGDRIIAVVKESSPNMAVKKSDVVEAVIVRTRKAINRDSGMTIRFDDNAAVIINKEG NPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEGLASRGSTLNFGDFGLQAQEPSWITSRQIEASRRA MTRYIRRGGKIWIRIFPDKPITMRPAETRMGSGKGNPEFWVAVVKPGRIMFEIAGVAEEIAREAMRLADAKLPIKTKFIVRSQPQ EQEMNAQEIIRSIEAEQLKSDLPDIYVGDTVKVGVKIKEGTKYRVQPYEGVVIAMRNGGINETITVRKVFQGVGVERVFLLHSPR IESIKVLRRGKVRRAKLYYLRALVGKATRIKQRFDRALMTRVKRGNVARKRRNKILKLAKGFRGSHSTLFRTANQQVMKALR SAYRDRKKKKRDFRRLWIARINAASROHGLSYSRLIGNLKKANVELNRKMLAQLAILDPASFAKIAELAQSVMAHKKGTGSTR NGRDSNAQRLGVKSYGGQTVRAGNILVRQRGTKVHPGNNVGIGSDDTLFALVDGVVTFERKGKSRKKVSVYPVVVAEVEAM TNDKYMESAFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGNNYKLKEPKYSVEESKRRDSTYAVQMYVPTR LLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLKFETDRNDLVWV RIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEEALMELYRKLRPGEPPTVLGGQQLLDSRFFDPKRYDLG KVGRYKLNKKLRLSAPDTMRVLTSGDILAAIDYLINLEFDIGSIDDIDHLGNRRVRSVGELLQNQVRVGLNRLERIIRERMTVSD AEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSHYGRICPIETPEGPNA GLIGSLATHARVNQYGFLETPFRPVENGKVLFDVPPVYMTADEEDDLRTATGDVPLDENGYIKGPQVPVRYRQDWTTTGPEQV DYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQAARDSGMVIVSRTDGEVVYVDATEIR VRVSSQWSVISGQSSLAEKRTTDNEQLTTDKPQEIRYNLSKYQRSNQDTCLNQKPLVRIGEKVVAGQVLADGSSTEGGELALG

QNIVVAYMPWEGYNYEDAILISERLVQEDIYTSIHIEKYEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRIGAWVDAGDILV GKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKM AGRHGNKGIISRILPAEDMPYLADGSPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKVTPFDEMYGEETSRRLVHGK LQEARDETGRDWVYNPENCGKIMVYDGRTGEPFDRAVTVGVAYMLKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQR FGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKVETQVDGSSLD VEVDLMADLAPRRTPPRPVYESLSYESLEDDDMPVVSLAQLMESGVHFGHQTRRWNPKMDPYIYTSRNGVHIIDLVQTAQLM DNAYNYMRTQSEQGKKFLFVGTKRQAAGIIAQEALRCGSHYINQRWLGGMLTNWATIKTRAERLKDLERREETGALDLLPKK EASMLRREMTKLQKYLGGIKNMRKVPDIVIIVDQKREYNAVQECEKLGIPIVSMLDTNCDPDVVDIPIPANDDAIRSIKLIVGKL ADAIYEGRHGQLMGQKIHPVGFRLGITQEHQSRWFAEPDRYPELLQEDYKLRQYIEQKLGRYAQNNAGISEVRIERKADQIDLE VRTARPGVVVGRGGQGIESLRLGLQGALGGNRQIRINVVEIQRVDADAYLIAEYIAQQLERRVSFRRVVRQAIQRAQRAGVQGI KIQVGGRLNGAEIARSEWTREGRVPLHTLRADIDYSGCTAKTIYGILGIKVWVFKGEIIPGQEQAPVQPARDRDRDRDRDRGDRER EPRRRQQQRRRQQFEDRSNEAMVTGRRKASRAKKEETNWQERVIQIRRVSKVVKGGKKLSFRAIVVVGNERGQVGVGVGKA SDVIGAVKKGVADGKKHLIDIPITKSNSIPHPIDGIGGGAKVMMRPAAPGTGVIAGGAVRTVLELAGIRNILAKQLGSNNPLNNA RAAVNALSTLRTLSEVAEDRGVAIEKLYIVAEINSGRAVYWGTGRRKCSVARVRLVPGAGKMTVNGKDGELYFQFNPNYLGA IKAPLETLGLENEYDIVVKAEGGGLTGQADSIRLGVARALCELDPDNRSPLKTEGYLTRDPRAKERKKYGLHKARKAPQYSKR MATLQQQKIRIRLKAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIYQPSSKTI DALMKLDLPSGVDIEVKLMARQPTKKTGSKKPKRNVPNGIAYIQSTFNNSIVTITDQKGDVISWASAGSSGFKGAKKGTPFAAQ TAAESAARRATDQGMRQIEVMVSGPGAGRETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVIKRLVDIGCYRGRRHRMGLP VRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFIADHLLKKIEKLNAKNEKQVVKTWSRASTILPLMVGHTIAVHN GRQHVPVFVNEQMVGHKLGEFAPTRTYRGHGKSDKKSGRMSDKQSEGYKTICDNRQARFRYEILETYEAGIELTGTEVKSIRG GKANLQDGYALIRDGEAWLINVHISPYTSSGAYFNHEPRRTRKLLLHKQELRKLIGKVEQEGLTLVPLKMYLKRGWVKVVIAL GRGKKLHDKRESIKRRDDQRSMQRAMKRFMAEISAKLVQELRQKTGAGMMDCKKALKENDGNIEAATTWLRQKGIAKADK GSSRIAAEGLVDTYIQPGGQVGVLIEVNCQTDFVARNEAFKALVKNLAQQAATADSVESLLAQPYIENSSVTVEEFIKETIATLG ENIQVRRFVNFSLANGTPGVADSYIHTGGRVGVLLELTTESDSAVANEEFQGLAKNAAMQVAACPNVEYVSVDKIPAELVQKE KDIEMGKDDLANKPENIREKIVQGRIEKRLKEMTLLDQPYIRDQSILVEDLVRQVKSKIGEEVQVSRFVRYVLGEGIEKKEISFAE **EVAAQMGAK**

>Dolichospermum sp DET69

MQIPRLHPDTIEEVKLRADIVDVVSEYVVLRKRGKDFVGLCPFHDEKSPSFTVSPNKQMYYCFGCQAAGNAIKFVMDLGKRQF ADVVLDLAKRYQVPVKTLEPEQRQELQRQISLRDQLYTVLASAAQFYQHTLRQSQGQKALEYLEKSRQFQQGTIQQFGLGYAP AGWETLYRYLVESKHHPVQLVEQAGLIKPRKEGGGYYDVFRDRLMIPIRDIQGRVIAFGGRTLTDEQPKYLNSPETELFSKGKT LYALDEAKDGISKVDQAVVVEGYFDAIALHAAGINNAVASLGTALSIEQVRLLLRYSESKQLILNFDADKAGTNATERAIGEIA NLAYAGEVOLKILNLPNGKDADEYLHSHTSADYQQLLVNAPLWLDWQIQKIIENRDLKQATDFQQVTQQIVKLLQNIVNSDTL NYYVSSCAEILSLGDTRLIPLRVENLLTQIKPGRIKSSPQQIRNQQPKTSKLSLVTTERSLLERAEALLLIIYLHSSRQRQIIIEDLET RNLEFSLSHHRFLWQQMAEFTVDEVDLISSVQNRYLELAEELEVVSHLFHLNEKNKTEILRTPHVIQAALACMERVFREKRYRY FMEQWEKIDPETEPEKDKYFAEAIYIEKIHLQDLEKQRQFSITDLIMKLAEAQETMEKTVESTQRAFNTIRTGRANASLLDKVQV EYYGTPTALKSLASISTPDSSTILIQPYDKGSLNIIEKALSLSDVGLTPSNDGVVIRLNIPPLTSDRRKQFVKLAAKYAEEGRVAIR NIRRDAIESIRKQEKSAEISEDESRDQQDKLQKLTNKHTEKIDHLLVEKEKEISTVMPVIEKKRTRDLPQINERIRFPKIRVIDTDG AQLGIITPQEAIQLAEEKELDLVLISDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQA ERFLKDGDKVKATVMFRGREIQHSDLAETLLKRMATDLEPFGELQQAPKKEGRNMMMLISPKKMSMVTLSGLKELIESISQDR NLPRLAVOAAIREALIKGYERYRRAONLERROFDEEYFNNFEVELDIDGEGFRVLSTKTIVEAVSNTDHOISLDEVOOVAPEAOL GDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVVLAVSSGFGQSEVEAELP KREOLPNDNYRANATFKVYLKKVSOGOORGPOLMVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIA VDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPARVDEVRLMDPESRQTHVLVAEDQLSLAIGK EGONVRLAARLTGWKIDIKDQAKYDEAAENTKFAAVRAQYQSHNNENDRSNREDEIQEQLELDEDRFDSREEDMSKKSLASL SAAEISGKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLTQKGAKVILASHFGRPKGVDEKLRLTPVAKRLSELLKQEVVK TDDCIGDDVAAKVAALQNGQVLLLENVRFYPEEEKNEPEFAKKLAANADFYVNDAFGTAHRAHASTEGVTKFLSPSVAGYLV EKELQYLQSAIESPQRPLVAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLSVGKSLVEEDKLELAKALEAKAKERG VALLLPTDIVSADKFSPDANATTVSIENIPADGMGLDIGPDSIKVFQAALADCKTVIWNGPMGVFEFDKFAAGTEAIAHTLADIS KTGAITIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKILPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRD YSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVIP HITNEIKERILRVAKETNPSAVITEIGGTVGDIESLPFLEAIRQLRKEVGRRNVLYLHVTLLPWIAAAGEMKTKPTQHSVKELRSIG IQPDILVCRSDRPIPTGLKQKLSEFCDVPVECVITSPDARSIYEVPVLLEREGLAEQVLNLLQMEQRQPNMTQWEMMVDRMYNP KYTVEIAIVGKYVRLSDAYLSVVESLRHAAIATHGDLRLRWVNSEVLENEPPENYLSGVDGIIVPGGFGNRGIDGKIAAIKYARD RQIPFLGLCLGMQCSVIEWARNVEGLSNANSAEFDQYTKNPVINLLPEQQDVVDLGGTMRLGLYPCRVLPNTLAFQLYQEEVI YERHRHRYEFNNVYRSQLLNSGYLVSGTSPDGRLVEIIEYPKHPFFIACQFHPEFQSRPNAPHPLFKGFMTAALSQSHSTTTIPKP VEVSMAKKVSRRLQALLEKVEDRDYTPLEALALLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVALPKGTGQIIRVAVIAR GEKVTEATNAGADLAGSEELIDQIQKGFMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDVASAIAEFKAGKLEY RADRTGIVHVMFGKTAFSPEDLLINLKALQESVDRNRPSGAKGRYWRSLYISSTMGPSIAIDISALRDLKLTDAAMGTRSYRPYT

PSTRQVIISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRNISATVTAIEYDPNRNARIALLLYE DGEKRYILQPNGMTVGTKIIAGPESPIEDGNALPLSNIPLGTGVHNVEMIPGKGGQIVRAAGAVAQVVAKDGNYVTLKLPSGEV RLIRRDCYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSAMNPVDHPHGGGEGRAPIGRAGPVTPWGKPTLGAKTRKK KKASSKLIIMSVGILGTKLGMTQIFDEAGVAIPVTVIKAGPCTVTQVKTKQTDGYAAIQVGYGEVKPKALNRPLLGHLAKSSAP ALRHLNEYRTDNSGDYTLGQELKADLFSAGEIVDVAGTSIGRGFAGNQKRNNFARGPMSHGSKNHRAPGSIGAGTTPGRVYPG KRMAGRLGGTRVTIRKLTVIRVDVERNLILIKGAIPGKPGALVSIIPANLVGRKMVESVIKNWQGEQVGQTSFELRVAKETTAA HIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDFNINMNRKERRLALRT AFIGRAEDLIVVEEFSNELQRPKTKDLVAALGRWGATPEQKTLLILSEIAENVLLSARNIENLKLIPADQLNVYDLLHADKIIVTS STLDKIQEVYSAMAKTRLKTVYQETITPKLITQFEYTNVHQVPKVTKITINRGLGEAAQNAKSLEASISEIALITGQKPVVTRAKK AIAGFKIRQGMPVGIMVTLRGERMYAFLDRLINLTLPRIRDFRGISPKSFDGRGNYTLGVREQLIFPEVEYDRIDQVRGLDISIITT AKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGLKVVVKGPKGELSRQLPRNVILSQEGETLLVTRRDETRTSRQ MHGLSRTLVANMVEGVSLGFQRRLEIQGVGYRAQLEGRNLVLNMGFSHKVQIEPPEGIQFAVEGTTNVIVSGYDKEIVGNTAA KIRAVRPPEPYKGKGIRYAGEVVRRMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPV EISVYEDRSFTFVLKTPPASVLIRKAAKIEKGSNEPNKTKVGSISRTQLREIAQTKLPDLNANDIDAAMNIVEGTAKNMGVTITEM SAATETILEQLKSLSLLEASELVKQIEEAFGVSAAPAAGGMMMMAAPGAVAEAVEEKVEFDAILDSVPADKKIAVLKIVREITG LGLKEAKDLVEAAPKAIKEAVTKDAAEDIKKRVEEAGGKVTVKTKTYLPPOASIERDWYLVDATDKRLGRLATEVAMILRGK KKPEFTPHMDTGDFVIIINAEKVAVTGKKRTQKLYRRHSGRPGGMKTETFAKLQQRLPERIIEHAVKGMLPKCSLGKQLFTKLK VYAGPTHPHAAQLPKEITINTIPGENMIQPQSYLNVADNSGAKKLMCIRVLGAGNRRYGGVGDKIIAVVKESTPNMAVKKSDV VEAVIVRTRKAISRDNGMCIRFDDNAAVIINKDGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEG LASRGSTLNFGDFGLQAQEPSWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPITMRPAETRMGSGKGNPEFWVAVVKPGRIMF EIGGVTEEIAREAFRLADAKLPIKTKFMARSQPQEQEMNAQEIIRSIEAEQMKSDLPDIYVGDTVKVGVKIQEGTKFRVQPYEGV VIARRNGGINETITVRKVFQGVGVERVFLLHSPLVESIKVLRRGKVRRAKLYYLRDLVGKATRIKQRFDRPLMTRVKRGNVAR KRRNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWIARINAASRQHGLSYSRLIGNLKKANVELNRK MLAQLAILDPASFAKIAELANSVNGMAHKKGTGSTRNGRDSNAQRLGVKRYGGQTVRAGNILVRQRGTKVHPGNNVGIGSDD TLFALIDGVVTFERRGKSQKKNDDKYMESAFLLPDLIEIQRSSFRWFLEEGLVEELNSFSPITDYTGKLELHFLGNNYKLKEPKY SVEESKRRDSTYAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSAS LIPNRGAWLKFETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEEALMELYRKLRPGEPP TVLGGQQLLDSRFFDPKRYDLGKVGRYKLNKKLRLSAPDTMRVLTPGDILAAVDYLINLEYDIGSIDDIDHLGNRRVRSVGELL QNQVRVGLNRLERIIRERMTVSDAESLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGF AVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVNLYGFLETPFRAVENGKVLFNVAPVYMTADEEDDLRTATGDVPLDENG YIKGPSVPVRYRQDWTTTNPEQVDYVAVSPVQIISVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQAAR DSGMVIVSRTDGDVIYVDATEIRVRASGQLSAASGSQPIEKGQELKYKLSKYQRSNQDTCLNQKPLVRIGEKVVAGQVLADGS

STEGGELALGONIVVAYMPWEGYNYEDAILISERLVQEDVYTSIHIEKYEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRIG AWVDAGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQ KRKIQVGDKMAGRHGNKGIISRILPAEDMPYLADGSPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVRFKITPFDEMYGE ETSRRLVHGKLOEARDETSKDWIYNPDNAGKIMVYDGRTGEPFDRAITVGVAYMLKLVHLVDDKIHARSTGPYSLVTOOPLG GKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQSLGLDIAVHKV ETQADGSSLDVEVDLMADQAARRTPSRPTYESLSRESLEGEEMPVVSLAQMMESGVHFGHQTRRWNPKMAPYIYTSRNGVHII DLVQTAQLMDNAYNYMRTQSEQGKKFLFVGTKRQAAGIIAQEALRCGSHYINQRWLGGMLTNWATIKTRAERLKDLERREE TGALDLLPKKEASMLRREMTKLQKYLGGIKNMKKVPDIVVIVDQKREYNAVQECEKLGIPIVSMLDTNCDPDVVDIPIPANDD AIRSIKLIVGKLADAIYEGRHGQLMGQKIHPVGFRLGITQEHQSRWFAEPDRYPELLQEDYKLRQYIEQKLGRYAQNNAGISEV RIERKADQIDLEVRTARPGVVVGRGGQGIESLRLGLQGALGGNRQIRINVVEIQRVDADAYLIAEYIAQQLERRVSFRRVVRQSI QRAQRAGVQGIKVQVGGRLNGAEIARSEWTREGRVPLHTLRADIDYSSCSAKTTYGILGIKVWVFKGEIIPGQEQAPEQPARDR DRDRDRDRDRDREPRRKQQRRRQQFEDRSNESMVTGRRKQARAKKEETTWQERVIQIRRVSKVVKGGKKLSFRAIVVVGNE RGQVGVGVGKASDVIGAVKKGVADGKKHLIDIPITKANSIPHPIDGIGGGAKVMMRPAAPGTGVIAGGAVRTVLELAGIKNILA KQLGSNNPLNNARAAVNALSTLRTLSEVAEDRGIAIEKLYVAETTSGRAVYWGTGRRKCSVASVRLVPGEGKMTVNGKDGDL YFQFNPNYLGAIKAPLETLGLESEYDILVKAEGGGLTGQADSIRLGVARALCQLDPDNRSPLKTEGYLTRDPRAKERKKYGLHK ARKAPQYSKRMATLQQQKIRIRLKAFDRRLLDTSCEKIVETANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRI IDIYQPSSKTIDALMKLDLPSGVDIEVKLMARQPTKKSGSKKQKRNVPSGVAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKG AKKGTPFAAQTAAESAARRATDQGMRQIEVMVSGPGAGRETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDL PRDKRVEIGLTYIYGIGLTRSHQILAATGVNPDIRVKDLSDADVAALRGEIESNYQVEGDLRRLEGLNIKRLIDIGCYRGRRHRM GLPVRGQRTRTNARTRRGRRQTVAGKKKAPGKMGRSLKKGPFVADHLLKKIEKLNAKDEKQVVKTWSRASTILPLMVGHTIA VHNGRQHIPVFVNEQMVGHKLGEFAPTRTYRGHGKSDKKSGRMSDKQSDGYKVICDNRQARFLYEIIETYEVGIQLTGTEVKSI RAGKANLQDGYALLRDGEAWLINVHISPYASSGAYFNHEPRRTRKLLLHKQELRKLIGRVQQEGLTLVPLKMYLKRGWVKIVI ALGKGKKLHDKRESLKRRDDQRDMQRAMKRYMAEISAKLVQELRQKTGAGMMDCKKALKENDGNVDESIDWLRKKGIAK ADKGSSRIAAEGLVDTYIQPDGQVGVLIEVNCQTDFVARNEAFKALVKNLAQQAATTDSVESLLAQSYAEKPSVTVDEFIKETI ATLGENIQVRRFVNYSLTSTPGIADSYIHTGGRVGVLMELTAQSASAAANAEFQSLAKNAAMQVAACPNVEYVSVDQIPVEVV TKEKSIEMGKDDLGNKPENIKEKIVQGRIDKRLKEMTLLDQPYIRDQSISVEDLVKQVKSTVGEEIQVNRFVRYILGEGIEKNEM **SFADEVAAQIGAK**

>Dolichospermum sp DL01

MQIPRLHPDTIEEVKLRADIVDVVSEYVVLRKRGKDFLGLCPFHDEKSPSFSVSPNKQMYYCFGCQAAGNAIKFVMDLGKRQF ADVVLDLAKRYQVPVKTLEPEQRQELQRQISLRDQLYTVLATAAQFYQHTLRQSQGQKALEYLEQTRQFKQGTIQQFGLGYAP AGWATLYRYLVESKHYPVQLVEQAGLIKPRKEGGGYYDVFRDRLMIPIRDIQGRVIAFGGRTLTEEQPKYLNSPETELFSKGKM LFALDEAKDGISKVDQAVVVEGYFDAIALHAAGINNAVASLGTALSIEQVRLLLRYTESKQLILNFDADKAGTNATERAIGEIA NLAYAGEVOLKILNLPNGKDADEYLHSHTSADYQQLLTNAPLWLDWQIQNIIKNRDLKQATDFQKVTQQIVKLLQNIVNSDTL NYYVSSCAEILSLGDTRLIPLRVENLLTQIKPGRIKSLNPRTSNPATKTPKLSLVNTERSLLERAEALLLIIYLHSSQQRQIIIEDLEN RNLEFSLSHHRFLWQQMAEFTVDEVDLISSVQNRYLELAEELEIVSHIFHLNEKNKTEILRTPHVIQAALACMERVFREKRYRYF MEQWEKIDPEAEPEKDKYYAEAIYIEKLHLQDLEKQRQFSITDLIMKLAEAESMMQKTVESTQRAFNTIRTGRANASLLDKVQ VEYYGTPTSLKALTNISTPDSSTILIQPYDKGSLNIIEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKEFVKLAAKYAEEGRVAIR NIRRDANDSIRKQEKSAEISEDESRDQQDKLQKLTNKHTEKIDHLLVEKEKEITTVMPVIEKKRTRDLPQINERIRFPKIRVIDTDG AQLGIITPQEAIQLAEEKELDLVLISDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQA ERFLKDGDKVKATVMFRGREIQHSDLAETLLKRMATDLEPFGELQQAPKKEGRNMMMLISPKKMVTLSGLKELIESISQERNL PRLAVOAAIREALIKGYERYRRAONLERROFDEEYFNNFEVELDIEGEGFRVLSTKTIVEAVANTDHOISLDEVOOVAPEAOLG DSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVVLAVSSGFGQSEVEAELPK REQLPNDNYRANATFKVYLKKVSQGQQRGPQLMVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKIAV DTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPATYIANALSPAKVDEVRLMDPESRQTHVLVAEDQLSLAIGKE GONVRLAARLTGWKIDIKDOAKYDEEAENTKFAAVRAQYOSONDRDDRSDREDAMAEELELDEDRFDNSEEDMSKKSLASL SAADISGKRALVRVDFNVPVDDQGNITDDTRIRAALPTIQDLTQKGAKVILTSHFRRPKGVDEKLRLTPVAKRLSELLGQEVIKT DDCIGDDVAAKVAALDNGQVLLLENVRFYKEEEKNDPEFAQKLAANADFYVNDAFGTAHRAHASTEGVTKFLSPSVAGYLV EKELOYLOSAIEEPKRPLAAIIGGSKVSSKIGVIETLLEKCDKLIIGGGMIFTFYKARGLNVGKSLVEEDKLELARELEAKAKERG VALLLPTDIISADKFAPDANATTVSIENIPADGMGLDIGPDSIKVFQAALADCQTVIWNGPMGVFEFDKFAAGTEAIAHTLAEIG KTGATTIIGGGDSVAAVEKVGLADQMSHISTGGGASLELLEGKVLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSR DYSVSILKLDPYINVDPGTMSPFQHGEVFVTQDGAETDLDLGHYERFTDTSMSRLNSVTTGLIYQSVINKERRGDYNGGTVQVI PHITNEIKERILRVAKETNPAAVITEIGGTVGDIESLPFLEAIRQLRKEVGKRNVLYMHVTLLPWIAAAGEMKTKPTQHSVKELRS IGIOPDILVCRSDRPIPVGLKQKLSEFCDVPVECVITSPDARSIYEVPVILEREGLAEQVLNLLQMEQRQPNMTQWENMVDRMYN PKYTVEIAIVGKYVRLGDAYLSVVESLRHAAIATHGDLRLRWVNSEVLENEPPENYLAGVDGIIVPGGFGSRGIDGKIAAIKYAR DRQIPFLGLCLGMQCSVIEWARNVEGLSNANSAEFDPYTDNPVINLLPEQQDVVDLGGTMRLGLYPCRVLPNTLAFQLYQEEVI YERHRHRYEFNNVYRSQLLDSGYLVSGTSPDGRLVEIIEYPKHPFFIACQFHPEFQSRPNAPHPLFKGFMTAAISQFHSTTTTPKP VQVSMAKKVSRRLQALLEKVEDRDYTPLEALALLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVALPKGTGQIIRVAVIAR GEKVTEATNAGADIAGSEELIEDIQKGMMDFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDVASAIAEFKAGKLEY RADRTGIVHVMFGKTAFSPEDLLINLKALQESVDRNRPSGAKGRYWRSLYISSTMGPSISIDISALRELKLTDAAMGTRSYRPYT

SSTRQVIISDFAEITKTEPEKSLTESVHRPKGRNNQGRITSRRRGGGHKQLYRIIDFKRDKRNMPATVTAIEYDPNRNARIALVLY EDGEKRYILQTNGMTVGTKIIAGPESPIEDGNALPLSNMPLGTSVHNVEMTPGKGGQIVRAAGAVAQVVAKEGNYVTLKLPSG EVRLIRRDCYATIGQVGNTDARNLSAGKAGRNRWKGRRPKVRGSAMNPVDHPHGGGEGRAPIGRAGPVTPWGKPTLGAKTR NRKKASTKLIIMSVGILGTKLGMTQIFDEAGVSIPVTVIKAGPCTVTQVKTKQTDGYSAIQVGYGEVKPKSLNRPLLGHLAKSSA PPVRHLNEYRTDSTGDYALGQEIKADIFSAGEIVDVVGTSIGRGFAGNQKRNNFARGPMSHGSKNHRAPGSIGAGTTPGRVYPG KRMAGRLGGTRVTIRKLTVIRVDAERNLIIIKGAIPGKPGALVSVVPATIVGKKMVESVIKNWQGEQVGETSFDLRVAKETTAA HIVHRALVRQMTNSRQGTASTKTRAEVRGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDFDLKMNRKERRLALRT AFVGRAEDLIVVEEFSNELQRPKTKDLVAALARWGAAPEQKTLLILSEIAENVLLSARNIENLKLIPADQLNVYDLLHADKIIVT SSTLDKIQEVYSAMAKTRLKTVYQETITPKLITQFEYTNVHQVPKVIKITINRGLGESAQNAKSLEASISEIALITGQKPVVTRAKK AIAGFKIRQGMPVGIMVTLRGERMYAFLDRLINLTLPRIRDFRGISPKSFDGRGNYTLGVREQLIFPEVEYDRIDQVRGLDISIITT AKTDEEGRALLKEMGMPFRDQMSRIGKRPITIPAKVQVAIDGVKVVVKGPKGELSRQLPKNVIVSQEGETLIVTRRDETRTSRQ MHGLSRTLVANMVEGVSQGFQRRLEIQGVGYRAQLQGSNLVLNMGYSHQVQIEPPAGVQFAVEGTTNVIVSGYDKEIVGNTA AKIRAVRPPEPYKGKGIRYAGEVVRRMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIP VEISVYEDRSFTFVLKTPPASVLIRKAAKIERGSSEPNKTKVGRISRTQLREIAQTKLPDLNANDIDAAMNIVEGTAKNMGVTITD MSAATEQILEQLKSLTLLEASELVKQIEEAFGVSAAAPVGVAIAAPGAAAAEVVEEKTEFDAILDSVPADKKIAVLKIVREITGL GLKEAKDLVEAAPKAVKEAVTKEAAEDIKKRIEEAGGKVKVKMTSKTYLPPQQSIERDWYLVDATDKRLGRLATEVAMILRG KKKPEFTPHMDTGDFVIIINAEKVAVTGKKRTQKVYRRHSGRPGGMKTETFAKLQQRLPERILEHAIKGMLPKNSLGKQLFTKL KVYAGPTHPHAAQLPKEITISTIPGENMIQPQSYLNVADNSGAKKLMCIRVLGAGNRRYGGVGDRIIAVVKESSPNMAVKKSDV VEAVIVRTRKAISRDSGMAIRFDDNAAVIINKEGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLSPRRTKFRKQQRGRMEG LASRGSTLNFGDFGLQAQEPSWITSRQIEASRRAMTRYIRRGGKIWIRIFPDKPITMRPAETRMGSGKGNPEFWVAVVKPGRIMF EIGGVTEEIAREAMRLADSKLPIKTKFITRSQPQEQEMNAQEIIRSIEAEQMKSDLPDIYVGDTVKVGIKIQEGTKFRVQPYEGVVI ARRNGGINETITVRKVFQGVGVERVFLLHSPLVESIKVLRRGKVRRAKLYYLRALVGKATRIKQRFDRPLMTRVKRGNVARKR RNKILKLAKGFRGSHSTLFRTANQQVMKALRSAYRDRKKKKRDFRRLWIARINAASRQHGLSYSRLIGNLKKANVELNRKML AQLAILDPASFAKIAELANSVNGMAHKKGTGSTRNGRDSNAQRLGVKRYGGQTVRAGNILVRQRGTKVHPGNNVGIGSDDTL FALIDGVVTFERRGKTQKKVSVYAVAAVEPVEANDDKYMESAFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFL GNNYKLKEPKYSVEESKRRDSTYAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEI DKNGRRTYSASLIPNRGAWLKFETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEEALME LYRKLRPGEPPTVLGGQQLLDSRFFDPKRYDLGKVGRYKLNKKLRLSAPDTMRVLTPGDILAAIDYLINLEYDIGSIDDIDHLGN RRVRSVGELLONOVRVGLNRLERIIRERMTVSDAESLTPASLVNPKPLVAAIKEFFGSSOLSOFMDOTNPLAELTHKRRLSALGP GGLTRERAGFAVRDIHPSHYGRICPIETPEGPNAGLIGSLATHARVNLYGFLETPFRPVENGKVLFDVLPVYMTADEEDDLRTAT GDVPLDENGYIKGPHVPVRYRQDWTTTGPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLRPERPLV GTGLEAQAARDSGMVIVSRTDGDVVYVDATEIRVRASGQLSAASGSQVIEKGQELKYKLSKYQRSNQDTCLNQKPLVRIGEKV

VAGQVLADGSSTEGGELALGQNIVVAYMPWEGYNYEDAILISERLVQEDVYTSIHIEKYEIEARQTKLGPEEITREIPNVGEDAL RQLDEQGIIRIGAWVDAGDILVGKVTPKGESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGA NMVVRVYVAQKRKIQVGDKMAGRHGNKGIISRILAAEDMPYLADGSPVDIVLNPLGVPSRMNVGQVFECLLGWAGHNLGVR FKITPFDEMYGEETSRRLVHGKLQEARDETTKDWIYNPDNAGKIMVYDGRTGEPFDRAITVGVAYMLKLVHLVDDKIHARSTG PYSLVTQQPLGGKAQQGGQRFGEMEVWALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKAIPRPGTPESFKVLMRELQ SLGLDIAVHKVETQADGSSLDVEVDLMADQAARRTPPRPTYESLSRESLEGEEMPVVSLAQMMESGVHFGHQTRRWNPKMAP YIYTSRNGVHIIDLVQTAQLMDNAYNYMRTQSEQGKKFLFVGTKRQAAGIIAQEALRCGSHYINQRWLGGMLTNWATIKTRA ERLKDLERREETGALDLLPKKEASMLRREMTKLQKYLGGIKNMRKVPDIVVIVDQKREYNAVQECEKLGIPIVSMLDTNCDPD VVDIPIPANDDAIRSIKLIVGKLADAIYEGRHGQLMGQKIHPVGFRLGITQEHQSRWFAEPDRYPELLQEDYKLRQYIEQKLGRY AQNNAGISEVRIERKADQIDLEVRTARPGVVVGRGGQGIESLRLGLQGALGGNRQIRINVVEVQRVDADAYLIAEYIAQQLERR VSFRRVVRQAIQRAQRAGVQGIKVQVGGRLNGAEIARSEWTREGRVPLHTLRADIDYSGCTAKTVYGILGIKVWVFKGEIIPGQ EQAPAQPAMVTGRRKASRTKKEETTWQERVIQIRRVSKVVKGGKKLSFRAIVVVGNERGQVGVGVGKASDVIGAVKKGVAD GKKHLIDIPITKSNSIPHPIDGVGGGAKVMMRPAAPGTGVIAGGAVRTVLELAGIRNILAKQLGSNNPLNNARAAVNALSTLRTL SEVAEDRGIAIEKLYIVAETTSGRAVYWGTGRRKCSVASVRLVPGEGKMTVNGKDGDLYFQFNPNYLGAIKAPLETLGLESEY DILVKAEGGGLTGQADSIRLGVARALCQLDPDNRSPLKTEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLK AFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIYOPSSKTIDALMKLDLPSGVDI EVKLMARQPTKKSGSKKQKRNVPNGVAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAARRATDQ GMRQIEVMVSGPGAGRETAIRALQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDLPRDKRVEIGLTYIYGIGLTRSHQILA ATGVNPDTRVKDLSDADVAALRGEIESNYQVEGDLRRLEGLNIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTV AGKKKAPGKMGRSLKKSPFVADHLLKKIEKLNAKDEKQVVKTWSRASTILPLMVGHTIAVHNGRQHIPVFVNEQMVGHKLGE FAPTRTYRGHGKSDKKSGRMSDKQSEGYKVICDNRQARFLYEIIETYEAGVQLTGTEVKSIRAGKANLQDGYALLRDGEAWLI NVHISPYASSGAYFNHEPRRTRKLLLHKQELRKLIGRVQQEGLTLVPLKMYLKRGWVKIVIALGKGKKLHDKRESLKRRDDQR DMQRAMKRYMAEISAKLVQELRQKTGAGMMDCKKALKENNGDVEESITWLRQKGIAKADKGSARIAAEGLVDTYIQPGGQV GVLIEVNCQTDFVARNDAFKALVKNLAQQAATTDSVESLLAQPYLEKSSVTVDEFIKETIATLGENIQVRRFVNFSLTTDTPGIA DSYIHTGGRVGVLLELNSQTDAAATNEEFQNLARNAAMQVAACPNVEYVSVDQIPAEIVTKEKDIEMGKDDLGNKPENIKEKI VOGRIDKRLKEMTLLDOPYIRDOSISVEELVKOVKSKVGEEIOVSRFVRYVLGEGIEKNEMSFADEVAAOIGAK

>Nodularia sphaerocarpa UHCC 0038

MQIPRLHPDTIEEIKQRADIVDVVSDHVVLRKRGKDFVGLCPFHDEKSPSFTVSQTKQMYYCFGCQAGGNAIKFLMDVGKHSF AEVVLDLARRYQVPVQTLAPEQRQELQRQISLREQLYEVLASTGQFYQHALRQSQGQKAYQYLQSERQLKEETIQQFGLGYAP AGWETLHRYLVEDKRYPVHLVEKAGLIKPRKEGGGYYDVFRDRLMIPICDIOGRVIAFGGRTLSDEOPKYLNSPETELFSKGKT LFALDHAKDGISKLDQAVVVEGYFDAIALHAAGINNAVASLGTALSIEQVRLILRYTESKQLVLNFDADKAGNIAAERAIGEIAA LAYKGEVOLKIVNIPDGKDADEYLHTHTPFDYEQLLANAPLWLNWQIDQIIQNRDLKQATDFQQVSQQLVKLLKNIDNSDTRN YYVSHCAEILSLGDTRLIPLRVENLLTQIAPTTATRNKPLSSKKKFTQSPVPGDKSLLELAEALLLRIYLHCPEQRQVIFNILEERN LEFSFSHHRLLWQKILGATGDELDFVSSLQDRYLELAEEIESVSHLFHVNEKSKQEMLRTPQVVQAAVACMERVLIEKRYRYFL ELWEQTDSEAEPEKWQSYYQSFYNEKMRLQELDRQRQFSITDLIMKLSEAKSTMEKTVEATQRAFNSIRTGRANASLLDKVSV DYHGTPTSLKSLANISTPDATTILIQPYDKGSLNIVEKAISLSDIGLTPSNDGSVIRLNIPPLTSDRRKEFVKIAAKYAEEGRVAIRNI RRDVQDTIRKEEKASEISKDESKDQQDQLQKLTNKYTSRIDDLLAEKEKDITTVMPVIEKKRTRDLPQINERIRFPKIRVIDNDGA QLGIMPPQEALQLADEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQ AERFLKDGDKVKATVMFRGREIQHSDLAEHLLKRMAKDLEPLGELQQAPKKEGRNMMMLISPKKMSMVSLPGLKELIESISRE RNLPRLAVOSAIREALLKGYERYRRAONLERROFDEEYFDNFEVELDIEGEGFRVLSTKSIVEAVENSDHOISLEEVOOVAOEA QLGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVASNFGQPEVEAE LPKREOLPNDNYRANATFKVYLKKVSOGOORGPOLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKI AVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPSTYIANALSPARVDEVRLMDPETRQTHVLVAEDQLSLAIG KEGQNVRLAARLTGWKIDIKDKAKYDYAGEDTKFAAARAKYQMSKKTLANLSAADISGKRALVRVDFNVPLDDQGNITDDT RIRAALPTIKDLMQKGAKVILASHFGRPKGVDDKLRLTPVAQRLSELLGQEVVKTDDCIGDAVAAQVGALQNGQVLLLENVRF YKEEEKNDPEFAKKLAANADFYVNDAFGTAHRAHASTEGVTHYLSPSVGGYLIEKELQYLQNAIENPQRPLVAIIGGSKVSSKI GVIETLLEKCDKLIIGGGMIFTFYKARGLSVGKSLVEEDKLELAKTLEAKAKERGVALLLPTDIVSADKFAPDANATTVSIENIPA DGMGLDIGPDSIKVFQAALADCKTVIWNGPMGVFEFDKFAAGTEAIAHTLAEISKTGTTTIIGGGDSVAAVEKVGLADQMSHIS TGGGASLELLEGKILPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSILKLDPYINIDPGTMSPFQHGEVFVTE DGAETDLDLGHYERFTDTSMSRLNSVTTGSIYQAVINKERRGDYNGGTVQVIPHITNEIKERILSVAQETNPSVLITEIGGTVGDI ESLPFLEAIRQLRKEVGRQNVLYMHVTLIPWIASAGEMKTKPTQHSVKELRSIGIQPDILVCRCDRAIPLGLKRKLSEFCDVPQEC VITAQDASSIYEVPLIVEREGLAEQVLDLLQMEQRQPNLVQWQTMVERLYSPKYTVEIAIVGKYVRLSDAYLSVVEALRHAAIS TYGDLRLRWVNSEDIENESPETYLAGVDGILVPGGFGVRGVDGKIAAIKYARDRQIPFLGLCLGMQCSVIEWARNVEGLIGANS AEFDSETQYPVINLLPEQQDVVDLGGTMRLGLYPCHLVPNTMAANLYQKEVVNERHRHRYEFNNTYRNMMLESGYVISGTSP DGRLVEIVEFPEHPFFLACOFHPEFHSRPSTPHPLFKGFMEAAINRTNPMSNLPTPVEVSMGKKISRRFOALLEKVEDRDYAPLD ALNLLKETATAKFAEAAEAHIRLGIDPKYTDQQLRTTVTLPKGTGQTVRVAVIARGEKVTEASNAGADIVGSDELINEIQQGML DFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDVASAIAEFKAGKLEFRADRTGIVHVMFGKASFSSEDLLVNLKAL QETIDRNRPSGAKGRYWRTIYVTSTMGPSIKVDINALRDLKLSELAMGTRSYRPYTPSTRQVTVSDFAEITKSKPEKSLTEYVHR

PKGRNNQGRITSRRRGGGHKQMYRIIDFKRDKRNIPAQVIAIEYDPNRNARIALVLYQDGEKRYILHPNKLPVGATIIAGPDSPFE DGNALPLLNIPLGTSVHNVELTPGKGGQIVRAAGANAQVVAKEGQYVTLKLPSGEVRMIRRECYATIGQVGNTDARNLSAGK AGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRPGPVTPWGKPTLGAKTRKPKKASSKLIVMSVGILGTKLGMTQVFDE SGVSIPVTVVQAGPCTVTQVKTKQTDGYSAIQLGYGEVKPKALNRPLLGHLAKSSAPALRHLNEYHTDSPSDYALGQELKADIF TEGQIVDVVGTSIGRGFAGNQKRNNFSRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGTRVTIRKLTVVRVDLERN LLLIKGAIPGKPGSLVNILPAKKVGMVESVVKNWQGEQVGETTFELRVAKESTASHIVHRALVRQMTNSRQGTASTKTRSEVR GGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDYNQKLNRKERRLALRTALVSRAEDLIVVQDFSNELSRPKTKELVA ALARWGAAPENKALLIMPAISSEDNVYLSARNIQNLKLIAADQLNVYDLLHADKIVITASALAKIQEVYSAMPTTRLKNLYQET IVPKLTNQFQYTNVHQVPKVIKITINRGLGEAAQNAKSLEASLNEIAVITGQKPVVTRAKKAIAGFKIREGMPVGIMVTLRGERM YAFLDRLISLSLPRIRDFRGISPKSFDGRGNYTLGVREQLIFPEVEYDSIDQIRGMDISIITTAKNDEEGRALLKEMGMPFRDQMSR IGKQPITIPAKVEVTIDGPKVLVKGPKGQLSRTLSANVIVSQEGEILNVTRRDETRVSRQMHGLSRTLVANMVEGVSQGFKRRLE IQGVGYRAQLQGRNLVLNIGYSHQVHIVPPDGVEFVVETNTSIVVSGYDKEIVGNTAAKIRAVRPPEPYKGKGIRYAGEVVRRK AGKTGKSGKKMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTFVLKT PPASVLIRKAAKIERGSNEPNKKKVGSITKAQLQEIAQTKMPDLNANDIEAAMRIVEGTANNMGVTISDMSATTDQILEQLKTLS LLEASELVKQIEEAFGVSAAAPAGGMMMMAPGAAAAAEPVEEKTEFDVVLDSVPADKKIAVLKIVRELTGLGLKEAKDLVEA APKAVKEAITKDAAEDAKKRIEEAGGKVTIKMTTKTYLPPOATLEREWYVVDATDKRLGRLATEIAMILRGKKKAEFTPHMDT GDFVIVINAEKIAVTGKKRTQKLYRRHSGRPGGMKTETFAKLQQRLPERILEHAVKGMLPKNSLGKQLFTKLKVYAGPTHPHE AQQPKELKINTIPGEMIQTQTYLNVADNSGAKKIMCIRVLGGGNRRYGFIGDRIIAVVKDAIPNMAVKKSDVIEAVIVRTRHSIR RDSGMTIRFDDNAAVIINKDGNPRGTRVFGPVARELREKSFTKIVSLAPEVLMLSPRRTKFRKQQRGRMQGLATRGCNIDFGDF ALQAQEPSWITARQIEASRRAMTRYIRRGGQIWIRIFPDKPITMRAAETRMGSGKGNPEYWVAVVKPGRIMFEIAGVTEEIAREA MRLAANKLPIKTKFIVRSQPKEQEMSAQEIIRSIEAEQLKSDLPIIYVGDTVKVGVKIKEGEKFRVQPYEGVVIAKRNGGINETITV RRVFQGIGVERVFLLHSPRIDNIKILRRGKVRRAKLYYLRGRVGKATRIKQRFDRALMTRVKRGNVARKRRNKILKLAKGFRGS HSTLFRTANQQVMKALRSSYRDRKKKKRDFRRLWIARINAAARQHGLSYSQLIGNLKKADIQLNRKMLAQLAVLDPASFGKV AELALQAKGMAHKKGTGSTRNGRDSNAQRLGVKRFGGQKVIAGNILVRQRGTKVHPGNNVGIGSDDTLFALIEGVVTFERKG KSRKKVSVYMTTDTYNMESAFLLPDLIEIQRASFRWFLEEGLIEELNSFSPITDYTGKLELHFLGNNYKLKEPKYSVEESKRRDS TYAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNRGAWLK FETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEEALMELYRKLRPGEPPTVLGGQQLLD SRFFDPKRYDLGRVGRYKLNKKLRLSVPDTMRVLTPGDILAAVDYLINLEYDIGNIDDIDHLGNRRVRSVGELLONOVRVGLN RLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRDIHPSH YGRICPIETPEGPNAGLIGSLATHARVNLYGFLETPFRPVENGRVRFDLPPVYMTADEEDDLRTATGDIPVDENGYIKGPQVPVR YRQDWATTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGMVVVS RTDGDVTYVDATEIRVRPKGGNSETRYRLSKYQRSNQDTCLNQKPLVRIGERVVAGQVLADGSATEGGELALGQNIVLAYMP

WEGYNYEDAILISERLVQDDVYTSIHIEKYEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRIGAWVEAGDILVGKVTPKGE SDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHGNK GIISRILPVEDMPYLADGSTVDIVLNPLGVPSRMNVGQVFECMLGWAAHTLGVRFKITPFDEMYGEETSRSIVHGKLQEARDET GKDWVYNPDNPGKIMVFDGRTGEAFDRPITVGVAYILKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVWA LEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKSIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMAD QSARRTPPRPTYESLSRDSLEEEEMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTSRNGVHIIDLVQTAQLMDNAYNYMR SQSEQGKKFLFVGTKRQAAGIIAQEAARCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRRE MTKLQKYLGGIKNMRKVPDVVVIVDQRREYNAVQECQKLGLPIVSMLDTNCDPDVVDIPIPANDDAIRSIKLIVGKLADAIYEG RGGKLEGEDDYEDYDGSEYDDEYDDGEYAQASTSDEEMGQKIHPVGFRLGITREHQSRWFAIPERYPELLQEDYKLRQYIEQK LGKLAQNNAGISEVRIERKADQIDLEVRTARPGVVVGRGGQGIESLRIGLQEVLGGNRQIRINVVEVQKVDADASLIGEYIAQQL ERRVSFRRVVRQAIQRAQRAGVQGIKIQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYAYCTAKTIYGILGIKVWVFKGEIIP GQEETPAPPSTMATGRRKANRTKKEETTWQERVIQIRRVSKVVKGGKKLSFRAIVVVGNERGQVGVGVGKASDVIGAVKKGV ADGKKHLIDIPMTKSNSIPHPIDGVGGGAKVMMRPAAPGTGVIAGGAVRTVLELAGVRNILAKQLGSNNPLNNARAAVNALST LRTLSEVAEDRGIPIEKLYIVVADSNSGRAVYWGTGRRKCAVARVRLVPGEGKLTVNGKDGELYFQFNANYLGVIKNPLETLG LENEYDILVKAEGGGLTGQADSIRLGVARALCQLDPDNRPPLKTEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQK IRIRLOAFDRRLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDAREHFETRTHRRIIDIYOPSSKTIDALMKLDLP SGVDIEVKLMARQPTKKGGSKKQKRNVPNGMAYIQSTFNNSIVTITDQNGDVISWASAGSSGFKGAKKGTPFAAQTAAESAAR RAMDQGMRQIEVMVSGPGAGRETAIRAIQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDLPRDKRVEIGLTYIYGIGLTR SLEILAATGVNPDTRVKDLSDADVAALRGEIESNYQVEGDLRRLEAMSIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRG RRQTVAGKKKAPGKMGRSLKKGPFVADHLLTKIEKLNAKNEKQVIKTWSRASTILPLMIGHTIAVHNGRQHVPVFVNEQMVG HKLGEFAPTRTYRGHGKSDKKAGRMSEKSQSYKVISDNRQARYLYEILETFEAGVELVGTEVKSIRAGRVNLQDGYALIRNGE AWLINVHISPYNASGQYFNHEPRRTRKLLLHRQEIRKLIGKVEQEGLTLVPLKMYLKRGWVKVSIALGKGKKLHDKRESLKRR QDQRDMQRAMKSYMAEISAKLVQELRQKTGAGMMDCKKALKENDGDIEKGIEWLRQKGIASAGKKSDRIAAEGLVDTYIQP GGRVGVLIEVNCQTDFVARNEAFKVLVKNLAQQAATADSVESLLAQPYIEETSVTVDQFIKQTIAQLGENIQVRRFINFALEGK QGIVDSYIHTGGRVGVLVEVNAQTESPAQNEEFQTLAKNAAMQVAACPNVEYVSVDEIPAEFAQKETEIEMGRDDLGNKPQNI KEKIVQGRIEKRLKELTLLDQPFIRDQSISVEDLVKQVKGKVGEEIKVNRFVRYILGEGIEKQESNFAEEVAAQMG

>Nodularia spumigena CCY9414

MQIPRLHPDTIEEIKQRADIVDVVSDHVVLRKRGKDFVGLCPFHDEKTPSFTVSQTKQMYYCFGCQAGGNAIKFLMDLGKHSF AEVVLDLARRYQVPVQTLAPEQRQELQRQISLREQLYEVLASTGQFYQHALRQSQGQKAYQYLQSERQLKEETIQQFGLGYAP AGWETLHRYLVEDKRYPVOLVEKAGLIKPRKEGGGYYDVFRDRLMIPIRDIOGRVIAFGGRTLSEEOPKYLNSPETELFSKGKT LFALDIAKDGISQLDQAVVVEGYFDAIALHAAGINNAVASLGTALSIEQVRLILRYTESKQLVLNFDADKAGNIAAERAIGEIAT LAYKGEVOLKILNIPDGKDADEYLYTHTPFDYEQLLANAPLWLNWQIEQIIQNRDLKQATDFQQVSQQVVKLLKNIDNSDTRN YYVSYCAEILSLGDARLIPLRVENLLTQIAPTTATRNKPLSSKKKFTQSPIPGDKSLLELAEALLLRIYLHCPEQRQIIFNTLEERNL EFSLSHHRLLWQKILGSTGEEVDFVSSLQDRYLELSEEIASISHLFHLNEKSQKEILRTPQAVQAAVACMERVLIEKRYRYFLEL WEKTDSQAEPEKWQSYYQSFYHEKMRLQELDRQRQFSITDLLMKLSEAESTMQKTVEATQRAFNTIRTGRANASLLDKVSVD YYGSPTPLKSLANISTPDASTILIQPYDKGSLNVVEKAISLSDVGLTPSNDGSVIRLNIPPLTSDRRKEFVKMASKYAEEGRVAIRN IRRDVQDTIRKEEKASEISEDESKDQQDQLQKLTNKYTARIDDLLAEKEKDISTVMPVIEKKRTRDLPQINERIRFPKIRVIDTDGA QLGIMPPQEALQLAEEKELDLVLLSDKADPPVCRIMDYGKYKFEQEKKAREARKKQHTADVKEVKMRYKIEEHDYNVRVKQ AERFLKDGDKVKATVMFRGREIQHSDLAEHLLKRMAKDLEPLGELQQAPKKEGRNMMMLISPKKMSMVSLPGLKELIESISRE RNLPRLAVOTAIREALLKGYERYRRAONLEKROFDEEYFDNFEVELDIEGEGFRVLSTKSIVEAVDNTDHOISLEEVOOVAPEA QLGDSVVLDVTPDQGEFGRMAAMQTKQVLAQKLRDQQRQMVQEEFQDLEGTVLQARVLRFERQSVILAVASGFGQPEVEAE LPKREOLPNDNYRANATFKVYLKKVSOGOORGPOLLVSRADAGLVVYLFANEVPEIEDEVVRIVAVAREANPPSRYVGPRTKI AVDTLDRDVDPVGACIGARGSRIQVVVNELRGEKIDVIRWSPDPSTYIANALSPARVDEVRLMDPETRQTHVLVAEDQLSLAIG KEGQNVRLAARLTGWKIDIKDKAKYDYAGEDTKFAAARAKYQMSKKTLANLSAADISGKRALVRVDFNVPVDDNGNITDDT RIRAALPTIQDLMEKGAKVILASHFGRPKGVDDKLRLTPVAQRLSELLGQEVVKTDDCIGDAVTAQVGALQNGQVLLLENVRF YKEEEKNDPEFAKKLAANADFYVNDAFGTAHRAHASTEGVTHYLSPSVGGYLIEKELQYLQSAIENPQRPLAAIIGGSKVSSKI GVIETLLDKCDKLIIGGGMIFTFYKARGLSVGKSLVEEDKLELAKTLEAKAKERGVALLLPTDIVSADKFAPDANATTVSIENIPA DGMGLDIGPDSIKVFQAALADCKTVIWNGPMGVFEFDKFAAGTEAIAHTLAEIGKTGTTTIIGGGDSVAAVEKVGLADQMSHIS TGGGASLELLEGKTLPGIAALDEAMTKFIFVTGGVVSSIGKGIVAASLGRLLKSRDYSVSILKLDPYINIDPGTMSPFOHGEVFVT EDGAETDLDLGHYERFTDTSMSRLNSVTTGSIYQAVINKERRGDYNGGTVQVIPHITNEIKERILRVAQDTNPSVLITEIGGTVGD IESLPFLEAIROLRKEVGRONVLYMHVTLIPWIASAGEMKTKPTQHSVKELRSIGIQPDILVCRCDRAIPLGLKRKLSEFCDVPQE CVITAQDASSIYEVPLIVEREGLAEQALDLLQMEQRQPNLVQWQTMVERLYSPKYTVEIAIVGKYVRLSDAYLSVVEALRHAAI STYGDLRLRWVNSEDLENESAETYLAGVDGILVPGGFGIRGVDGKIAAIKYARDRQIPFLGLCLGMQCSVIEWARNVEGLNGA NSAEFDPETKYPVINLLPEQQDVVDLGGTMRLGLYPCHLLPNTLAANLYQQEVVDERHRHRYEFNNNYRNLLLESGYVISGTS PDGRLVEIVEFPQHPFFLACQFHPEFHSRPSTPHPLFKGFMEASINRTHSISNLPTPVEVSMGKKISRRFQALLEKVEDRDYTPLEA LNLLKETATAKFPEAAEAHIRLGIDPKYTDQQLRTTVTLPKGTGQTVRVAVIARGEKVTEASNAGADVVGSDELINEIQQGMM DFDKLIATPDVMPQVAKLGKLLGPRGLMPSPKGGTVTFDVASAIAEFKAGKLEFRADRTGIVHVMFGKASFSPEDLLVNLKAL QETIDRNRPSGAKGRYWRTIYVTSTMGPSIKVDINALRDLKLSELAMGTRSYRPYTPSTRQVTVSDFAEITKSKPEKSLTEYVHR

PKGRNNQGRITSRRRGGGHKQMYRIIDFKRDKRNIPAQVIAIEYDPNRNARIALVLYQDGEKRYILHPNKLPVGATIIAGPDSPFE DGNALPLLNIPLGTSVHNVELTPGKGGQIVRAAGANAQVVAKEGQYVTLKLPSGEVRMIRRECYATIGQVGNTDARNLSAGK AGRNRWKGRRPKVRGSVMNPVDHPHGGGEGRAPIGRPGPVTPWGKPTLGAKTRKPKKASSKLIVMSVGILGTKLGMTQVFDE AGVSIPVTVVQAGPCTVTQVKTKQTDGYSAIQLGYGEVKPKALNRPLLGHLAKSSAPALRHLNEYHTDSPSDYALGQELKADI FSEGQIVDVVGTSIGRGFAGNQKRNNFGRGPMSHGSKNHRAPGSIGAGTTPGRVYPGKRMAGRLGGTRVTIRKLTVVRVDLER NLLLIKGAIPGKPGSLVNILPAKKVGMVESVVKNWQGEQVGETTFELRVAKESTASHIVHRALVRQMTNSRQGTASTKTRSEV RGGGRKPWRQKGTGRARAGSIRSPLWRGGGVIFGPKPRDYNQKLNRKERRLALRTAFVSRADDLIVVQDFSNELSRPKTKELV AALARWGAAPENKALLIMPIISSEDNVYLSARNIQNLKLIAADQLNVYDLLHADKIVITASALAKIQEVYSAMPTTRLKNLYQE TIVPKLTNQFQYTNVHQVPKVIKITINRGLGEAAQNAKSLEASLNEIAVITGQKPVVTRAKKAIAGFKIREGMPVGIMVTLRGER MYAFLDRLISLSLPRIRDFRGISPKSFDGRGNYTLGVREQLIFPEVEYDSIDQIRGMDISIITTAKNDEEGRALLKEMGMPFRDQM SRIGKQPITIPAKVEVTIDGPKVVVKGPKGQLSRTLSANVIVSQEGGILNVTRRDETRVSRQMHGLSRTLVANMVEGVSQGFKR RLEIQGVGYRAQLQGRNLVLNIGYSHQVNIVPPDGVEFLVETNTNIVVSGYDKEIVGNTAAKIRAVRPPEPYKGKGIRYAGEVV RRKAGKTGKSGKKMAKKVVAVIKLALNAGKANPAPPVGPALGQHGVNIMMFCKEYNAKTADQAGMVIPVEISVFEDRSFTF VLKTPPASVLIRKAAKIERGSNEPNKKKVGSITKAQLQEIAQTKMPDLNANDIEAAMRIVEGTANNMGVTISDMSATTDQILEQ LKTLSLLEASELVKQIEEAFGVSAAAPAGGMMMMAPGAAAAAEPVEEKTEFDVILDSVPADKKIAVLKIVRELTGLGLKEAKD LVEAAPKAVKEGIAKDAAEDAKKRIEEAGGKVTVKMTTKTYLPPOATLEREWYVVDATDKRLGRLATEIAMILRGKKKAEFT PHMDTGDFVIVINAEKIAVTGKKRTQKLYRRHSGRPGGMKTETFAKLQQRLPERILEHAVKGMLPKNSLGKQLFTKLKVYAGP THPHEAQQPKELKINTIPGEMIQTQTYLNVADNSGAKKIMCIRVLGGGNRRYGFIGDRIIAVVKDAIPNMAVKKSDVIEAVIVRT RHSIRRDSGMTIRFDDNAAVIINKDGNPRGTRVFGPVARELREKSFTKIVSLAPEVLMLSPRRTKFRKQQRGRMQGLATRGCNI DFGDFALQAQEPSWITARQIEASRRAMTRYIRRGGQIWIRIFPDKPITMRAAETRMGSGKGNPEYWVAVVKPGRIMFEIAGVTE EIAREAMRLAANKLPIKTKFIVRSQPKEQEMSAQEIIRSIEAEQLKSDLPIIYVGDTVKVGVKIKEGQKFRVQPYEGVVIAKRNGG INETITVRRVFQGIGVERVFLLHSPRIDNIKIIRRGKVRRAKLYYLRGRVGKATRIKQRFDRALMTRVKRGNVARKRRNKILKLA KGFRGSHSTLFRTANQQVMKALRSSYRDRKKKKRDFRRLWIARINAAARQHGLSYSQLIGNLKKADIQLNRKMLAQLAVLDP ASFGKVAELALQAKGMAHKKGTGSTRNGRDSNAQRLGVKRYGGQTVLAGNILVRQRGTKVHPGNNVGIGSDDTLFALIEGV VTFERKGKSRKKVSVYMTTDTYMESAFLLPDLIEIQRSSFRWFLEEGLIEELNSFSPITDYTGKLELHFLGNNYKLKEPKYSVEES KRRDSTYAVQMYVPTRLLNKETGDIKEQEVFIGDLPLMTDRGTFIINGAERVIVNQIVRSPGVYYKSEIDKNGRRTYSASLIPNR GAWLKFETDRNDLVWVRIDKTRKLSAQVLLKALGLSDNEIFDALRHPEYFQKTIEKEGQFSEEEALMELYRKLRPGEPPTVLGG QQLLDSRFFDPKRYDLGRVGRYKLNKKLRLSVPDTMRVLTPGDILAAVDYLINLEYDIGNIDDIDHLGNRRVRSVGELLQNQV RVGLNRLERIIRERMTVSDAEVLTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRLSALGPGGLTRERAGFAVRD IHPSHYGRICPIETPEGPNAGLIGSLATHARVNLYGFLETPFRPVENGRVRFDLPPVYMTADEEDDLRTATGDIPLDENGYIKGPQ VPVRYRQDWATTTPEQVDYVAVSPVQIVSVATSMIPFLEHDDANRALMGSNMQRQAVPLLKPERPLVGTGLEAQGARDSGM VIVSRTDGDVTYVDATEIRVRPKDGNSEIRYRLSKYQRSNQDTCLNQKPLVRIGERVVAGQVLADGSSTEGGELALGQNIVIAY

MPWEGYNYEDAILISEKLVQDDVYTSIHIEKYEIEARQTKLGPEEITREIPNVGEDALRQLDEQGIIRIGAWVEAGDILVGKVTPK GESDQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRLFTREQGDELPPGANMVVRVYVAQKRKIQVGDKMAGRHG NKGIISRILPVEDMPYLADGSTVDIVLNPLGVPSRMNVGQVFECMLGWAAHTLGVRFKITPFDEMYGEETSRSIVHGKLQEARD ETGKDWVYNPDNPGKIMVFDGRTGEPFDRPITVGVAYILKLVHLVDDKIHARSTGPYSLVTQQPLGGKAQQGGQRFGEMEVW ALEAFGAAYTLQELLTVKSDDMQGRNEALNAIVKGKSIPRPGTPESFKVLMRELQSLGLDIAVHKVETQTDGSSLDVEVDLMA DQSARRTPPRPTYMPVVSLAQMMESGVHFGHQTRRWNPKMSPYIYTSRNGVHIIDLVQTAQLMDNAYNYMRSQSEQGKKFLF VGTKRQAAGIIAQEAARCGSHYINQRWLGGMLTNWATIKTRADRLKDLERREENGALDLLPKKEASMLRREMTKLQKYLGGI KNMRKVPDVVVIVDQRREYNAVQECQKLGLPIVSMLDTNCDPDVVDIPIPANDDAIRSIKLIVGKLADAIYEGRGGTLEGEDDY EDYDGSEYDDDYDESEYAQGSSDESSDEMGQKIHPVGFRLGITREHQSRWFAVPERYPELLQEDYKLRQYIEKKLGKLAQNNA GISEVRIERKADQIDLEVRTARPGVVVGRGGQGIESLRLGLQEVLGGNRQIRINVVEVQKVDADASLIGEYIAQQLERRVSFRRV VRQAIQRAQRAGVQGIKIQVSGRLNGAEIARTEWTREGRVPLHTLRADIDYAYCTAKTIYGILGIKVWVFKGEIIPGQEEIPAPPS TMATGRRKANRTKKEETTWQERVIQIRRVSKVVKGGKKLSFRAIVVVGNERGQVGVGVGKASDVIGAVKKGVADGKKHLIDI PMTKSNSIPHPIDGVGGGAKVMMRPAAPGTGVIAGGAVRTVLELAGVRNILAKQLGSNNPLNNARAAVNALSTLRTLSEVAED RGIPIEKLYIVVAQSNSGRAVYWGTGRRKSAVARVRLVPGEGKLTVNGKDGELYFQFNANYLGVIKNPLETLGLENEYDILVK AEGGGLTGQADSIRLGVARALCQLDPDNRPPLKTEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLQAFDR RLLDTSCEKIVDTANRTNATAIGPIPLPTKRKIYCVLRSPHVDKDAREHFETRTHRRIIDIYQPSSKTIDALMKLDLPSGVDIEVKL RQIEVMVSGPGAGRETAIRAIQGAGLEITLIRDITPIPHNGCRPPKRRRVMARISGVDLPRDKRVEIGLTYIYGIGLTRSLEILAATG VNPDTRVKDLSDAEVAALRGEIESNYQVEGDLRRLEAMSIKRLVDIGCYRGRRHRMGLPVRGQRTRTNARTRRGRRQTVAGK KKAPGKMGRSLKKGPFVADHLLTKIEKLNAKNEKQVIKTWSRASTILPLMIGHTIAVHNGRQHVPVFVNEQMVGHKLGEFAPT RTYRGHGKSDKKAGRMSEKSQSYKVISDNRQARYLYEILETFEAGVELTGTEVKSIRAGRVNLQDGYALIRNGEAWLINVHISP YNASGQYFNHEPRRTRKLLLHRQEIRKLIGKVEQEGLTLVPLKMYLKRGWVKVSIALGKGKKLHDKRESLKRRQDQRDMQRA MKNYMAEISAKLVQELRQKTGAGMMDCKKALKENDGDIEKAIEWLRQKGIASAGKKSDRIAAEGLVDTYIQPGGRVGVLIEV NCQTDFVARNEAFKALVKNLAQQATTADSVESLLAQPYIEETSVTVDQFIKQTIAQLGENIQVRRFINFALPEGQQGVVDSYIHT GGRVGVLVELNAQTETAAQNEEFQTLAKNAAMQVAACPNVEYVSVDEIPAEFAQKETEIEMGRDDLGNKPQNIKEKIVQGRIE KRLKELTLLDQPFIRDQSISVEDLVKQVKTKVGEDIKVNRFVRYILGEGIEKQEISFAEEVAAQMGSK

>Synechocystis sp PCC 6803

RLHPDTIQEIKQRIDIVEIIGDYVVLKKRGRDHLGLCPFHDEKSPSFSVSPAKQMYYCFGCGAGGNAFNFLMELGKRSFTDVALD LARRYQIQIQTLEPAQKQELQRQLSLREQLYEIMAVAAGFYHHTLFQPQGQEALTYLDQKRCLSSATIQEFQLGYAPAGWETLY RYLVEQKRYPVAAVEQAGLIKARQSGTGYYDQFRHRLMIPIRDVQGKTIAFGSRTLGNDEPKYLNSPETPLFHKSKTLFGLDQA KTAIQKVDEAILVEGYFDVIALHESGIKQTVAALGIALSRDQVQSLMRFSQSKQIIFNFDADKAGINATQRAIQEIEPLVYSGQVN LRILNLPAGKDADEFIHSSAENKEIYQTLVKQAPLWVDWQIQQLLKQKNLKDPLDFEQVARGMVDILKRLTDQNKRAYYLQLC GEILSQGDSRLISLQVNNLSSQLTYGDRPGKNGSRHWQAKDPTSSLLEKAEALLLKIYLHCPQERPTIDQILTENDLLFSFAHHRL LWQKIDQVREYFNLDSDPDNQLPLLVQLAYLEQEGDFNSVESLFQLTETSAEDLFRANLRIPEAIAIMEKVPWESYQKHCFGKL QQLDPRTQAEDFRYYQEQWQKAHQEIQRLESQRMKLAELKDHMQKSVEATQRSFNTIRTGRANASLLDRITVEYYGAETPLKS LATIGTPDASTIVIQPFDMGSIGTIEKAISLSDLGLTPNNDGKVIRLNIPPLTAERRKELVKVAGKLAEEGKVAIRNIRRDAVDEVR KQEKNSDISEDEARDLQEEIQKLTDQSTKRIDELLAAKEKDITTVRDLPQINERIRFPEIRVIDSDGAQLGIITPNEAMEIADERGLD LVLVSETADPPVCRIMDYGKYKFEQEKKAREAKKKQHTADVKEVKMRYKIDEHDYQVRINQAKRFLKAGDKVKATVNFRGR EIQHAHLAKELLDRMATDLATEADIQQAPKREGRNMMMFLSPKKMSLVSLPGLPAMISEISKRNNLPTTAVEEALREALLKGY ERFRRSQLMGHQFPEEYFNNFEVELDTEEEGFRVLSTKRIVEEVENSDQQISLKEVLEVAEEAQLGDEVVLDVTPEQKDFGRMA AIQTKQVLLQKLRDQQRKIIQEEFQDLEGTVLNARALRFERQSIIVAVQSSFGQPEVEAELPKREQLPNDNYRANSTFRVYLKRV REGSORGPOLVVSRAAAGLVVDLFSVEVPEIEEEVVRIVAVAREAKPPSPSVGPRTKIAVDTLERDVDPVGACIGARGSRIHAVV NELRGEKIDVIRWSPDPATYIAQALSPARVDQVYLIHAEERHALVIVAEDQLSLAIGKEGQNVRLAARLTGWKIDIKDPETYMS KQSIANLTEADLAGKRVFVRVDFNVPLDNGSITDDTRIRAALPTIKDLLSKGAKVILGSHFGRPKGKVVDSMRLTPVGDRLGEL LGQPVVKCDDCIGAEVTAKIASLPNGGVALLENLRFHAGEEGNDAEFAKALAANADLYVNDAFGTAHRAHASTEGVTHFLSP NVAGYLIEKELQFLQGAIEAPKRPLVAIVGGSKVSSKIGVIETLLDKCDKLIIGGGMIFTFYKAQGLNTGKSLVEEDKLDLAKSL MAKAKEKGVEFLLPTDVVVADNFAPDANAQTVGVDAIPDGWMGLDIGPDSVKTFQDALAGCGTVIWNGPMGVFEFDKFAVG TEAIACSLAELTASGTVTIIGGGDSVAAVEKVGVAEKMSHISTGGGASLELLEGKVLPGIAALDDMSKFVFVTGGVVSSIGKGIV AASLGRLLKSRHYSVSILKLDPYINVDPGTMSPFQHGEVFVTEDGAETDLDLGHYERFTDTSMSRLNSVTTGSIYQAVINKERR GAYMGGTVQVIPHITNEIKERILRVAQNTNPDVVITEIGGTVGDIESLPFLEAIRQFRKEVGRHNVIYMHVTLIPWIPAAKEMKTK PTQHSVKELRSIGIQPDILVCRCDRPLHPGMKEKLSEFCDVPVESVITCQDASSIYEVPLILEKEGLAHQTLELLRMENRSPDLSQ WQSLVEKMQSPHHDITVALVGKYVQLSDAYLSVVEALGHAAIASDSKLHLRWISAEEIEAQGAATFLKDVDGVLVPGGFGIRG VDGKVQAIEYARENQLPFLGLCLGMQCSVIEWARNVAKLPEANSAEFETETPNPVINLLPEQQDVVDLGGTMRLGLYPCRIAP DTLAFSLYQKEVVYERHRHRYEFNNSYRTQFTDTGFVVSGTSPDGRLVEIVEYPHHPFFIACQFHPEFHSRPNQAHPLFSGFINA VLKRRNAPAKIAMTKKLSKRMQAAIAKVDDSKLYSPLEAMELLKETATAKFDETAEAHIRLGIDPKYSDQQIRTTVSLPKGTGQ TVRVAVLARGEKVKEATDAGADIAGSEELIEEIQKGMMDFDVLIATPDMMPKIARLGKQLGPRGLMPSPKGGTVTADLAAAV NEFKAGKLEFRADRTGIVHVMFGKASFSADDLLANLKALQETIDRNRPSGAKGRFWRTVFVSSSMGPSIPVDINALRDLKFEDM GIRNYRPMTPGTRQASVSDFTEITKSKPEKSLTTNRHDQKGRNNRGVITSRHRGGGHKKLYRIIDFKRNKQNIPARVAAIEYDPN

RNARIALLFYTDGEKRYILAPAGLQVGMTVIAGEEAPFEIGNTLPLSRIPLGSEIHNVELVAGRGGQMVRSAGAFAQVVAKEGD YVTIKLPSKEVRMVRKECVATLGRVSNAEFRNLKLGKAGRKRHLGRRPHVRGSVMNPCDHPHGGGEGRAPIGRSGPVSPWGK PALGAKTRNKKKRSSALIVRRRTKMSIGILGTKLGMTQIFDQESGISIPVTVVQAGPCPVTQVKTQDTDGYNAIQVGFLPVKEKA LSKPELGHLKKSNTDPMRHLKEYRLTDAPNLQPGDAVTADIFQAGDLVDVAGQSMGRGFAGYQKRHNFRRGNMTHGSKNHR LPGSTGAGTTPGRVYPGKRMAGQYGASQVTVRRLTVVRVDAERNLLIIKGALPGKPGTLLNITPAKTVGMVDCIVKNWQGEE VGNASLTLRVAKEENAAHIVHRALVRQQNNARQGNASAKTRAEVRGGGRKPWKQKGTGRARAGSIRSPLWRGGGVIFGPKP RDYSQKMNRKERRLALRTAIASRADNMVVVEAFGDQFSQPKTKELATALTRWGAKPEKRVLLILDEIPENVFLSGRNIPYLKIL RADNLNIYDVLVADTIVATATALEKIQEVYTQRLKTLYQETILPKLQEEFGYKNIHQVPKLTKVTVNRGLGEASQNAKALESSL TELATITGQKPVVTRARKAIAGFKIREGMPVGVMVTLRSERMYAFLDRLINLALPRIRDFRGISPNSFDGRGNYSLGIREQLIFPEI DYDTIDQIRGMDVSIITSAQTDEEGRALLKALGMPFRMSRIGKRPIPLPAKVSVDIQGSHLSVKGPKGSLERQLPEKVIVAQEGET ITVTRQDESRTARERHGLVRTLVANMVDGVAQGFERRLEIQGVGYRAQAQGNKLTLNVGYSKPVEMTMPQGIEVKVENNTQ VIVSGIDKELLGNTAAKIRAVRPPEPYKGKGIRYQGEYVRRKAGKTGKKMAKKVVALIKLALPAGKANPAPPVGPALGQHGV NIMAFCKEYNAKTADKPGMIIPVEISVFEDRSFTFILKTPPASVLIRKAAGVEKGSSEPNKNKVASITREQLREIAQTKLPDLNAN DIDAAMNIIEGTARNMGITVMSAATDQILEQLKSLSLLEASELVKQIEEAFGVSAAAPVGGMVMAAAAAAAAAAEKTEFDVI LEEVPADKKIAVLKVVRTITGLGLKEAKELVESTPKAIKEATGKDDAEAIKKQIEEAGGKAAVKNKTVLPTIDNLDHKWYVIDA EGQRLGRLATEVATILRGKNKPTFTPHMDTGDFVIIINAEKIEVTGRKREQKLYRRHSGRPGGMKEETFEKLQVRLPERIVESAV RGMLPKNSLGRKLFTKLKVYAGPSHPHAAQQPETLVINTIPAMIQQQTYLNVADNSGARKLMCLRVLGTGNCTYGGIGDQIIA VVKDALPNMPIKKSDVVRAVIVRTKQPLRRASGMSIRFDDNAAVIINAEGNPRGTRVFGPVARELRDKNFTKIVSLAPEVLMLS PRRTKFRKQQRGRMRGLAERGSTLNFGDYALQATEPCWITSRQIEAARRAMTRYIRRGGKIWIRIFPDKPVTMRPAETRMGSG KGSPEYWVAVVKPGRVMFELAGVSEEVAREAMRLAAQKLPIKTKFISRQEMNAQAIINSIEAEFLKEDLPTIHVGDTIKVGVKIV EGGKERIQPYEGTVIAKRNGGISETITVRKIFQGVGVERVFLLHSPRVASIKVLRRGKVRRAKLYYLRDRVGKATRIKQRFDRAL MTRVKRGNVARKRRKKILKLAKGFRGSHSKLFRTANQQVMKALRNAYRDRRKRKRDFRRLWITRINAAARQEGMSYSKLTG QLKKANIEINRKMLAQLAVLDPAAFSEVVKVAATAKMAHKKGTGSTRNGRDSNAQRLGVKRYGGQTVTAGSIIVRQRGTQV HPGNNVGRGKDDTLFALIDGVVKFEHKTRSRRKVSVYPATAEMLPDLIEIQHASFHWFLEEGLIEELNSFSPISDYTGKLELHFL GKDYKLKQPKYDVDESKRRDASYSVQMYVPTRLINKETGEIKEQEVFIGDLPLMTERGTFIINGAERVIVNQIVRSPGVYYKKE LDKNGRRTYSASLIPNRGAWLKFETDKNGLVYVRIDKTRKLSAQVLLKAIGLSDNEILDSLSHPEFYQKTLDKEGNPTEEEALV ELYKKLRPGEPPTVSGGQQLLESRFFDPKRYDLGRVGRYKLNKKLRLNEADTTRVLTPQDILAAINYLINLEFDVGTTDDIDHL GNRRVRSVGELLQNQIRVGLNRLERIIRERMTVSESDALTPASLVNPKPLVAAIKEFFGSSQLSQFMDQTNPLAELTHKRRISAL GPGGLTRERAGFAVRDIHPSHHGRICPVETPEGPNAGLIGSLATCARVNDYGFIETPYFRVESGRVRKDLDPVYLTADEEDDMR VAPGDIPTDEEGNIIGESVPIRYRQEFSTTSPEQVDYVAVSPVQIISVATSMIPFLEHDDANRALMGSNMQRQAVPLLRPERPLVG TGLEAQAARDSGMVIVSRTHGIVTYVDATEIRVQPHSPDNPAEKGEEIVYPIQKYQRSNQDTCLNQRPLVYAGEDVVPGQVLA DGSATEGGELALGONILVAYMPWEGYNYEDAILISERLVYDDVYTSIHIEKFEIEARQTKLGPEEITREIPNVGEDALRNLDEHGI

IRIGAWVESGDILVGKVTPKGEADQPPEEKLLRAIFGEKARDVRDNSLRVPNGEKGRVVDVRVFTREKGDELPPGANMVVRIY VAQKRKIQVGDKMAGRHGNKGIISRILPIEDMPYLPDGRPIDIALNPLGVPSRMNVGQVFECLLGWAGENLGVRFKITPFDEMY GEEASRDTVHGLLEEASQRPNKDWVFNENHPGKIQVFDGRTGEPFDRPITVGQAYMLKLVHLVDDKIHARSTGPYSLVTQQPL GGKAQQGGQRFGEMEVWALEAYGAAYILQELLTVKSDDMQGRNEALNAIVKGKSIPRPGTPESFKVLMRELQSLGLDIAAHK VQLSEDGESADAEVDLMIDSQRRAPNRPTYESLMPVVSLADLLESGVHFGHQTRRWNPRMDQYIYTARNGVHIIDLVQTAQL MEDAYEYVRSSTINGKKFLFVGTKRQAAGIISQEAQRCGAHYVNQRWLGGMLTNWETIRKRVDRLKELEALEASGGIDRRGK KEGSMLRRELGKLQKYLGGIKNMRKLPDVVVIVDQRREHNAIHECQKLGIPIIAMLDTNCDPDVVDVPIPANDDAIRSIKLIVGK LADAIYEGRHGQPDVSDDYEEFDEGMGQKIHPVGFRLGITKDHKSCWYADPKRYPELLQEDHKIRQYIEKTLNNAGISDIRIER KAEQIELGIHTARPGVVVGRGGSGIEQLREGLQKLLGSARQIRVNVIEVPNADADAALMAEYIGQQLERRVSFRRVVRQALQR AERAEVKGIKIQVSGRLNGAEIARTEWVREGRVPLHTLRADIDYAYRTALTTYGILGIKVWIFKGEVIPGQEAAIVAPPSQPRRK SRRQQFDDRSQDRRKTSREKKEDTNWQERVIQIRRVSKVVKGGKKLSFRAIVVVGNETGQVGVGVGKAGDVIGAVRKGVAD GKKQLIEVPLTKSNSITHITNGVSGGAKVVVRPAAPGTGVIAGGAVRTVLELAGVKNILAKQLGSNNPLNNARAAINALETLRT FSEVAEERGVSVEHLYANDSSNKVVYWGTGRRKAAIARVRLVPGQGEVIVNGKPGEIYFNRIANYIQSLKAPLETLGLEGEYNI LVNAHGGGLTGQADAVKLGVARALCQLSPENRQPLKAEGYLTRDPRAKERKKYGLHKARKAPQYSKRMATLQQQKIRIRLK AFDRRLLDTSCDKIVDTANRTNAAAVGPIPLPTKRKIYCVLRSPHVDKDSREHFETRTHRRIIDIYQPSSKTIDALMKLDLPAGVD IEVKLMARPTRKTGPKKAKKNVPSGVAHIQSTFNNTIVTISDIRGDVISWASAGSSGFKGAKKGTPYAAQTAADSAARRAMEQ GMRQLEVMVSGPGAGRETAIRALQGAGLEITLIRDVTPIPHNGCRPPKRRRVMARIAGVDLPRDKRVEIALTYLYGIGLSRSHEI LDATGVSPDVRVKDLSDEDALKLRTYIDENYEIEGDLRRWEAMNIKRLGDIGTYRGRRHRQGLPVRGQRTRTNARTRRGRRLT VAGKKKTPAKMGRSLKKGPFVAASLLRKIDKLNDKGDKQVVKTWSRASTILPQMVGHTIAVHNGRQHVPVFVSEQMVGHKL GEFAPTRTFRSHSKSDKKAMAKEKERIKVVSDNRQARFLYEILETYEAGIELQGTEVKSIRAGKVNLRDGFALLRDGEVWLMN VHISPYDKSSLFFNHDPRRTRRLLMHNWEIRKLIGQVEQKGLTLVPLKMYFKGSWVKVALGLGKGKKLHDKRETLKRRQDDR DMARAMKAEGLVHSYIHFGGRIGVLVEVNCETDFVARGDRFKDLVNDVAMQIAACPNVEYVSVADIPQEMVAKEKEIEMGR DDLGKKPANIKEKIVQGRIDKRLKELSLLDQPYIKDQNLTIEELVKQAIAELGENIQVRRFIRFNLGEGIEKAETNFAEEVAA

Suplementary Table S4. Summary of NRPS, PKS, NRPS/PKS, terpene synthase, and phytoene synthase genes analyzed in this research.

Strain	NRPS	PKS	Hybrid NRPS/PKS	Terpene synthase	Phytoene synthase	Total
C. raciborskii KLL07	4	12	1	1	2	20
C. raciborskii N8	4	8	0	1	2	15
C. raciborskii Cr2010	4	12	1	1	2	20
C. curvispora GIHE G1	1	4	0	1	2	8
C. raciborskii GIHE 2018	6	3	0	1	2	12
C. raciborskii CS-505	4	10	0	1	2	17
R. brookii D9	3	9	0	1	2	15
C. raciborskii CENA 302	0	9	0	1	2	12
C. raciborskii CENA 303						
C. raciborskii MVCC14						
C. raciborskii KL1						
C. sp. CR12						
C. raciborskii MVCC 19						
C. raciborskii CS508						

C. raciborskii CYRF			
C. raciborskii CYLP			
C. raciborskii CHAB3438			
C. raciborskii ITEPA-A1			
C. raciborskii DSH			
C. raciborskii PAMP2012			
C. raciborskii 1523720			
S. torques-reginae ITEP-024			
S. kisseleviana NIES-73			
S. sp. SIO1G1			
S. sp. FACHB-1194			
S. sp. LEGE 08334			
S. sp. LEGE 00249			

Suplementary Table S5. Proposed function of the proteins encoded by heterocyte glycolipid biosynthetic gene cluster and two proteins involved in the regulation of heterocyte differentiation in the genomes of the *S. torques reginae* ITEP-024, *S. kisseleviana* NIES-73, *S.* SIO1G1, *S.* FACHB-1194 and *S.* LEGE 00249.

Protein	Aminoacids	Product	Strain	Organism	Identity (%)	Function	Acession number
HglA	556		S. torques reginae ITEP024	S. LEGE 08334	99	2-nitropropane dioxygenas	WP_194054992.1
	556		S. Kisseleviana NIES 73	S. LEGE 00249	99		MBC5793826.1
	556		S. sp SIO1G1	S. torques reginae ITEP024	88		WP_220610685.1
	556		S. FACHB 1194	S. LEGE 08334	99		WP_194054992.1
	556	2-nitropropane	S. LEGE 08334	S. LEGE 00249	99	family	MBC5793826.1
	556	dioxygenas	S. FACHB 1194	S. LEGE 08334	99	polyunsaturated	WP_194054992.1
	556		S. LEGE 08334	S. LEGE 00249	99	fatty acid	MBC5793826.1
	556		S. sp. LEGE 00249	S. Kisseleviana NIES 73	99		WP_096572229.1
	556		S. torques reginae ITEP024	S. LEGE 08334	99		WP_194054992.1
	556		S. Kisseleviana NIES 73	S. LEGE 00249	99		MBC5793826.1

	497		S. sp SIO1G1	S. FACHB 1194	84	thioester	WP_190647549.1
HglB	505	Polyketide	S. FACHB 1194	S. Kisseleviana NIES 73	100	tillocstel	WP_096572228.1
ligib	505	synthase	S. LEGE 08334	S. torquesreginaeITEP024	98	reductase	WP_220610686.1
	505		S. sp. LEGE 00249	S. Kisseleviana NIES 73	99		WP_096572228.1
	1106	-	S. Kisseleviana NIES 73	S. FACHB 1194	99		WP_242027320.1
	1106	-	S. FACHB 1194	S. Kisseleviana NIES 73	100		WP_272109449.1
	1106	-	S. torques reginae ITEP024	S. LEGE 08334	97		WP_194054993.1
HglC	1106	omega-3	S. LEGE 08334	S. torques reginae ITEP024	98	polyketide	WP_220610684.1
ligic	1106	omega 3	S. sp. LEGE 00249	S. Kisseleviana NIES 73	98	synthase	WP_272109449.1
	1089		S. sp SIO1G1	S. torques reginae ITEP024	85		WP_220610684.1
	450		S. torques reginae ITEP024	S. LEGE 08334	98		WP_194054994
HglD	450		S. Kisseleviana NIES 73	S. sp. LEGE 00249	99	polyketide	MBC5793824.1
	451	polyketide	S. sp SIO1G1	S. LEGE 08334	89	synthase	WP_194054994.1
	450	synthase	S. FACHB 1194	S. sp. LEGE 00249	99		MBC5793824.1
	450		S. LEGE 08334	S. torques reginae ITEP024	98		WP_220610683
	450		S. sp. LEGE 00249	S. torques reginae ITEP024	98		WP_220610683
	450		S. sp. LEGE 00249	S. torques reginae ITEP024	98		WP_220610683

HglE	1826 1807 1788 1801 1793	polyketide synthase	S. torques reginae ITEP024 S.Kisseleviana NIES 73 S. sp SIO1G1 S. FACHB 1194 S. LEGE 08334	S. LEGE 08334 S.Aphanizomenoids S. torques reginae ITEP024 S.Kisseleviana NIES 73 S. torques ITEP024	99 99 80 99	polyketide synthase	WP_220611797.1 WP_193941129.1 WP_220611797.1 WP_096572232.1 WP_220611797.1
	1802	_	S. sp. LEGE 00249	S.kisseleviana NIES73	99	_	WP_096572232.1
HglG	334 334 334 334 334	Polyketide synthase	S. torques reginae ITEP024 S. Kisseleviana NIES 73 S. sp SIO1G1 S. FACHB 1194 S. LEGE 08334 S. sp. LEGE 00249	S. LEGE 08334 S. sp. LEGE 00249 S. sp. LEGE 00249 S. LEGE 00249 S. torques reginae ITEP024 S. LEGE 08334	99 100 85 100 99		WP_194054998.1 WP_18703495.1 WP_187038495.1 WP_187038495.1 WP_220610678.1 WP_194054998.1
HetR	299	Heterocyst differentiation	S. torques reginae ITEP024	S. sp. LEGE 08334	100	Heterocyst differentiation control protein	QYX31586.1
	299	control protein	S. torques reginae ITEP024	S. LEGE 00249	99	Heterocyst differentiation control protein	MBC5794768.1
	299		S. torques reginae ITEP024	S. sp. SIO1G1	96	Heterocyst differentiation	NET01886.1

						control protein	
	263		S. torques reginae ITEP024	S. LEGE 08334	99		WP_194057199.1
HetN	263	S. torques reginae S. LEGE 08334 99 SDR family	SDR family NAD(P)-	WP_194057199.1			
	267	NAD(P)- dependent	S. torques reginae ITEP024	S. Kisseleviana NIES 73	95	dependent oxidoreductase	WP_096572227.1
	267	oxidoreductase	S. Kisseleviana NIES 73	S. torques reginae ITEP024	94		WP_220610687.1
	267		S. sp SIO1G1	S. LEGE 08334	80		WP_194054985.1
	267		S. FACHB 1194	S. Kisseleviana NIES 73	99	_	WP_096572227.3
	267		S. LEGE 08334	S. Kisseleviana NIES 73	94	-	WP 096572227.1
	267		S. sp. LEGE 00249	S. Kisseleviana NIES 73	100		WP_096572227.1

Supplementary Table S6. Proposed function of the proteins encoded by the nitrogen fixation biosynthetic gene cluster in the genomes of Sphaerospermopsis strains.

Protein	Aminoacids	Proposed function	Strain	Organism	Identity (%)	Function	Acession number
	90	FeoA family protein	S. LEGE 00249	S. kisseleviana NIES-73	93	Iron transporter FeoA	BAZ80902.1
	115	FeoA family protein	S. kisseleviana NIES- 73	S. LEGE 00249	93	Iron transporter FeoA	MBC5796910.1
FeoA	83	FeoA family protein	S. sp. SIO1G1	S. LEGE 00249	75	Iron transporter FeoA	MBC5796910.1
	99	Ferrodixin (2Fe-2S)	S. torquees reginae ITEP-024	S. LEGE 08334	99	Iron transporter FeoA	MBE9054910.1
	99	Ferrodixin (2Fe-2S)	S. torquees reginae ITEP-024	S. sp. SIO1G1	82	Iron transporter FeoA	NET00481.1
БІ-Ш	99	Ferrodixin (2Fe-2S)	S. LEGE 08334	S. torquees reginae ITEP- 024	99	Ferredoxin (2Fe-2S)	QYX31309.1
FdxH	99	Ferrodixin (2Fe-2S)	S. torquees reginae ITEP-024	S. LEGE 08334	99	Ferredoxin (2Fe-2S)	MBE9054910.1
FdxN	112	4Fe-4S binding protein	S. Kisseleviana NIES 73	S. sp SIO1G1	85	Ferredoxin(4F	NET02523.1
		F. 5.5				e-4S)	

Ш	259	UBA/THIF-type NAD/FAD binding protein	S. torques ITEP024	S. LEGE 08334	100	HesA/MoeB	MBE9054908.1
HesA	259	UBA/THIF-type NAD/FAD binding protein	S. torques ITEP024	S. sp SIO1G1	95	HesA/MoeB	NET00479.1
HesB	121	Iron-sulfur cluster assembly acessory protein	S. sp. SIO1G1	S. LEGE 00249	85	Fe-S cluster assembly protein HesB	MBC5796912.1
NifD	460	Nitrogenase molybdenum-ion protein alpha chain	S. torques reginae ITEP-024	S. LEGE 00249	99	Nitrogenase molybdenum- iron protein alpha chain	MBC5795059.1
NifE	455	Nitrogenase MoFe cofactor biosynthesis protein	S. torques reginae ITEP-024	S. kisseleviana NIES-73	99	Nitrogenase molybdenum- cofactor biosynthesis protein NifE	BAZ80912.1
	455	Nitrogenase MoFe cofactor biosynthesis protein	S. torques reginae ITEP-024	S. sp. LEGE 08334	99	Nitrogenase MoFe cofactor biosynthesis protein NifE	MBE9054902.1
	455	Nitrogenase MoFe cofactor biosynthesis protein	S. torques reginae ITEP-024	S. sp. FACHB 1194	99	Nitrogenase MoFe cofactor biosynthesis protein NifE	MBD2144569.1
	455	Nitrogenase MoFe cofactor biosynthesis protein	S. torques reginae ITEP-024	S. LEGE 00249	99	Nitrogenase MoFe cofactor biosynthesis protein NifE	MBC5796919.1

	455	Nitrogenase MoFe cofactor biosynthesis protein	S. torques reginae ITEP-024	S. sp SIO1G1	99	Nitrogenase MoFe cofactor biosynthesis protein NifE	NET02491.1	
	478	Nitrogenase cofactor biosynthesis protein	S. torques ITEP024	S. LEGE 08334	100	Nitrogenase cofactor biosynthesis protein NifB	MBE9059234.1	
NifB	478	Nitrogenase cofactor biosynthesis protein	S. torques ITEP024	S. sp. LEGE 00249	99	Nitrogenase cofactor biosynthesis protein NifB	MBC5795050.1	
	478	Nitrogenase cofactor biosynthesis protein	S. torques ITEP024	S. sp SIO1G1	94	Nitrogenase cofactor biosynthesis protein NifB	NET02524.1	
NifW	105	Nitrogen fixation protein	S. torques ITEP024	S. sp. LEGE 00249	98	Nitrogenase stabilizing/protec tive protein	MBC5796914.1	
NIIW	105	Nitrogen fixation protein	S. torques ITEP024	S. sp SIO1G1	78	Nitrogenase stabilizing/protec tive protein	NET00478.1	
NifX	139	Nitrogen fixation protein	S. sp SIO1G1	S. sp. LEGE 00249	88	Dinitrogenase iron-molybdenum cofactor biosynthesis	MBC5796917.1	
NifN	442	Nitrogenase molybdenum-ion	S. torques ITEP024	S. sp. LEGE 08334	100	Nitrogenase molybdenum-	MBE9054903.1	

		cofactor biosynthesis protein NifN				cofactor biosynthesis protein NifN	
	442	Nitrogenase molybdenum-ion cofactor biosynthesis protein NifN	S. torques ITEP024	S. sp. LEGE 00249	98	Nitrogenase molybdenum- cofactor biosynthesis protein NifN	MBC5796918.1
	442	Nitrogenase molybdenum-ion cofactor biosynthesis protein NifN	S. torques ITEP024	S. FACHB-1194	98	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	MBD2144570.1
	442	Nitrogenase molybdenum-ion cofactor biosynthesis protein NifN	S. torques ITEP024	S. sp SIO1G1	91	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	NET02490.1
NifK	511	Nitrogenase molybdenum-ion protein beta chain	S. torques ITEP024	S. sp LEGE 08334	100	Nitrogenase molybdenum- iron protein subunit beta	MBE9054900.1
NifU	300	Fe-S cluster assembly protein NifU	S. torques ITEP024	S. sp. LEGE 08334	100	Fe-S cluster assembly protein NifU	MBE9059231.1
MIIU	308	Fe-S cluster assembly protein NifU	S. torques ITEP024	S. sp SIO1G1	92	Fe-S cluster assembly protein NifU	NET02521.1
NifS	403	Nitrogenase metalloclusters biosynthesis protein NifS	S. torques ITEP024	S. sp. LEGE 08334	99	Cysteine desulfurase NifS	MBE9059232.1

403	Nitrogenase metalloclusters biosynthesis protein NifS	S. torques ITEP024	S. kisseleviana NIES-73	99	Cysteine desulfurase NifS	BAZ80945.1
403	Nitrogenase metalloclusters biosynthesis protein NifS	S. torques ITEP024	S. sp. LEGE 00249	98	Cysteine desulfurase NifS	MBC5795052.1
403	Nitrogenase metalloclusters biosynthesis protein NifS	S. torques ITEP024	S. sp SIO1G1	94	Cysteine desulfurase NifS	NET02522.1

Suplementary Table S7. Proposed function of the proteins encoded by anabaenopeptin biosynthetic gene cluster of the Sphaerospermopsis group.

Protein	Amino acids		Strain	Organism	Identity (%)	Function	Acession number
aptA1	4161	Siderophore biosynthesis non-ribosomal peptide	S. torques ITEP024	Aphanizomenon flos- aquae	90	non-ribosomal peptide synthetase	WP_190382984.1
mpv:11	4109	synthetase modules	S. Kisseleviana NIES 73	Dolichospermum sp. LEGE 00246	83	pepade symmetase	WP_1939621
	2208		S. torques ITEP024	S. LEGE 08334	97	Polyketide synthase	WP_194056036.1
	2226		S. Kisseleviana NIES 73	S. FACHB 1194	95		WP_190346674.1
aptA2	2186		S. sp SIO1G1	S. LEGE 08334	74		WP_194056036.1
	2224	Polyketide synthase	S. FACHB 1194	S. Kisseleviana NIES 73	96		WP_096571779.1
	2212		S. LEGE 08334	S. torques reginae ITEP024	97		WP_220609901.1

	1069		S. torques ITEP024	S. LEGE 08334	95	non-ribosomal peptide synthetase	WP_194056038.1
	1087		S. Kisseleviana NIES 73	S. FACHB 1194	95	amino acid adenylation	WP_242052557.1
aptB	1074	Siderophore biosynthesis non-ribosomal peptide	S. sp SIO1G1	S. torques ITEP024	72	non-ribosomal peptide synthetase	WP_220609902.1
•	1088		S. FACHB 1194	S. Kisseleviana NIES 73	95	non-ribosomal peptide synthetase	WP_096571778.1
	1073		S. LEGE 08334	S. torques reginae ITEP024	95	non-ribosomal peptide synthetase	WP_220609902.1
	2576		S. torques ITEP024	Nodularia spumigena	90	non-ribosomal peptide synthetase	WP_063874470.1
aptC	2587		S. Kisseleviana NIES 73	Dolichospermum sp. LEGE 00246	97	non-ribosomal peptide synthetase	WP_193962698.1
	2562	Siderophore biosynthesis non-ribosomal peptide synthetase modules	S. sp SIO1G1	Aphanizomenonacea e cyanobacterium TIOX110	74	amino acid adenylation	WZB86541.1
	2570		S. FACHB 1194	S. Kisseleviana NIES 73	81	non-ribosomal peptide synthetase	WP_096571777.1
	2200		S. LEGE 08334	S. FACHB 1194	78	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WP_190346675.1

	1415		S. torques ITEP024	S. LEGE 08334	88		WP_194056042.1
	1363		S. Kisseleviana NIES 73	Dolichospermum	93		WP_193962697.1
aptD	1397	Siderophore biosynthesis	S. sp SIO1G1	Aphanizomenonacea e cyanobacterium TIOX110	74	amino acid	WZB86542.1
	1419	non-ribosomal peptide	S. FACHB 1194	S. Kisseleviana NIES 73	84	adenylation	WP_272110476.1
	1420		S. LEGE 08334	S. torques reginae ITEP024	88	non-ribosomal peptide synthetase	WP_220609905.1
	392		S. torques ITEP024	S. FACHB 1194	98		WP_190346677.1
aptE .	392	2-isopropylmalate	S. LEGE 08334	S. Kisseleviana NIES 73	93	2-isopropylmalate	WP_272110474.1
uptz	253	synthase	S. Kisseleviana NIES 73	S. FACHB 1194	100	synthase	MBD2144629.1
	392	3	S. LEGE 08334	S. Kisseleviana NIES 73	93		WP_272110474.1
	813		S. FACHB 1194	Sphaerospermopsis reniformis	95		GCL35044.1
aptF	761	ATD hinding apparts	S. sp SIO1G1	Okeanomitos corallinicola	73	ATP-binding cassette	WZB86544.1
"Pit	803	ATP-binding cassette	S. torques ITEP024	S. FACHB 1194	86		WP_190346678
	761		S. Kisseleviana NIES 73	S. LEGE 08334	94		MBE9057071.1
	769		S. LEGE 08334	S. Kisseleviana NIES 73	94		BAZ82708.1

Suplementary Table S8. Proposed function of the proteins encoded by Sphaerociclamida biosynthetic gene cluster

Protein	Amino acids	Product	Strain	Organism	Identity (%)	Function	Acession number
sphG	710	cyanobactin maturation protease	S. sp. LEGE 00249	Aphanizomenon gracile PMC638.10	95	cyanobactin maturation protease	MDM3844803.1
sphF	290	LynF/TruF/PatF family peptide O-prenyltransferase	S. sp. LEGE 00249	Chrysosporum ovalisporum Ak1311	99	LynF/TruF/PatF family peptide O-prenyltransferase	MDH6088854.1
sphE	47	anacyclamide/piricyclamide	S. sp. LEGE 00249	Dolichospermum sp. JUN01	97	anacyclamide/piricyclamide	MBO1057685.1
sphA	667	cyanobactin maturation protease	S. sp. LEGE 00249	Sphaerospermopsis aphanizomenoides	95	cyanobactin maturation protease	MBE9236410.1

Suplementary Table S9. Proposed function of the proteins encoded by Nocuolin biosynthetic gene cluster

Protein	Aminoacids	Product	Strain	Organism	Identity (%)	Function	Acession number
nocT	597	AarF/ABC1/UbiB kinase family protein	S. sp. LEGE 00249	S. Aphanizomenoids	99	AarF/ABC1/UbiB kinase family protein	MBE9236862.1
nocS	2101	tectonin domain-containing protein	S. sp. LEGE 00249	S. FACHB 1194	96	tectonin domain- containing protein	WP_242052555.1
nocR	426	NocR	S. sp. LEGE 00249	Nostoc sp. CCAP 1453/38	82	NocR	AKL71651.1
nocQ	2325	Oxidoreductase	S. sp. LEGE 00249	S. Aphanizomenoids	99	oxidoreductase	MBE9235326.1
nocP	1286	Polyketide synthase	S. sp. LEGE 00249	S. Aphanizomenoids	99	polyketide synthase	MBE9235325.1
nocO	452	hypothetical protein	S. sp. LEGE	S. Aphanizomenoids	87	Hypothetical protein	MBE9235324.1

			00249				
nocM	92	acyl carrier protein	S. sp. LEGE 00249	S. Aphanizomenoids	92	acyl carrier protein	MBE9235322.1
nocN	471	hypothetical protein	S. sp. LEGE 00249	Anabaena sp. PCC 7108	87	Hypothetical protein	WP_016949101.1
nocK	397	DUF3419 family protein	S. sp. LEGE 00249	S. Aphanizomenoids	99	DUF3419 family protein	MBE9235319
nocJ	349	NocJ	S. sp. LEGE 00249	Nostoc sp. CCAP 1453/38	89	NocJ	AKL71643.1
nocI	372	acyl-CoA dehydrogenase	S. sp. LEGE 00249	S. Aphanizomenoids	100	acyl-CoA dehydrogenase	MBE9235317.1
nocH	698	AMP-binding protein	S. sp. LEGE 00249	S. Aphanizomenoids	100	AMP-binding protein	MBE9235316.1
nocG	347	3-oxoacyl-[acyl-carrier-protein] synthase	S. sp. LEGE 00249	S. Aphanizomenoids	99	3-oxoacyl-[acyl-carrier- protein] synthase III	MBE9235315.1
nocF	872	aminotransferase	S. sp. LEGE 00249	S. aphanizomenoides BCCUSP55	89	aminotransferase	MBK1987674
nocE	486	NAD(P)-binding	S. sp. LEGE 00249	S. Aphanizomenoids	100	NAD(P)-binding	MBE9235313.1
nocD	231	Isoprenylcysteine carboxylmethyltransferase	S. sp. LEGE 00249	S. Aphanizomenoids	100	Isoprenylcysteine carboxylmethyltransfer ase	MBE9235312.1
nocB	184	NocB	S. sp. LEGE 00249	Nostoc sp. CCAP 1453/38	89	NocB	AKL71634.1
nocA	214	NocA	S. sp. LEGE 00249	Nostoc sp. CCAP 1453/38	90	NocA	AKL71633.1

Suplementary Table S10. Proposed function of the proteins encoded by the saxitoxin biosynthetic gene cluster from the *Sphaerospermopsis* group.

Protein	Amino acids	Product	Strain	Organism	Identity (%)	Function	Acession number
	266	Phytanoyl-CoA dioxygenase	S. torques ITEP024	S. LEGE 08334	100	phytanoyl-CoA dioxygenase	WP_194055575.1
sxtJ	747	carbamoyltransferase	S. torques ITEP024	S. LEGE 08334	100	carbamoyltransferase	MBE9056840.1
sxtK	54	DUF5989	S. torques ITEP024	Nostoc sp. ChiQUE01a	89	DUF5989	MDZ8239473.1
sxtJ	747	carbamoyltransferase	S. LEGE 08334	S. torques ITEP024	100	carbamoyltransferase	QYX30560.1
sxtK	54	DUF5989	S. LEGE 08334	Nostoc sp. ChiQUE01a	89	DUF5989	MDZ8239473.1
	747	Nodulation protein nolO	S. torques ITEP024	S. LEGE 08334	100	SxtJ family membrane protein	WP_194055576
	108	hypothetical protein	S. torques ITEP024	S. LEGE 08334	100	macrolide family glycosyltransferase	WP_194055579.1
	385	Carbamoyl-phosphate synthase small chain	S. torques ITEP024	S. LEGE 08334	99	glutamine-hydrolyzing carbamoyl-phosphate	WP_194055594.1

Supplementary Table S11. Proposed function of the proteins encoded by heterocyte glycolipid biosynthetic gene cluster and two proteins involved in the regulation of heterocyte differentiation in the genomes of the *C. raciborskii*.

Protein	Aminoacids	Product	Strain	Organism	Identity (%)	Function	Acession number
	577	2-nitropropane dioxygenase	C. raciborskii CS-505	C. raciborskii CS-505	99		EFA69444.1
	577		C. raciborskii CS-508	C. raciborskii CS-505	99	2-nitropropane dioxygenase, NPD	EFA69444.1
HglA	577		C. raciborskii CR12	C. raciborskii CS-505	99		EFA69444.1
	577		C. raciborskii CENA302	C. raciborskii MVCC14	99		OHY31851.1
	577		C. raciborskii ITEP-A1	C. raciborskii MVCC14	99		OHY31851.1

	577		C. raciborskii MVCC14	C. raciborskii CR12	97		EFA69444.1
	577		C. raciborskii CR12	C. raciborskii CHAB3438	100		MCH4905695.1
	577		C. raciborskii CR12	C. curvispora GIHE-G8	98		QNP28543.1
	577		C. raciborskii CR12	S. SIO1G1	80		NET02811.1
	577		C. raciborskii CR12	S. kisseleviana NIES-73	84		BAZ83237.1
	577		C. raciborskii CR12	S. torques reginae ITEP-024	84		QYX32837.1
	577		C. raciborskii CR12	S. LEGE 08334	84		MBE9056527.1
	577		C. raciborskii CR12	S. LEGE 00249	84		MBC5793826.1
	507		C. raciborskii CS-508	C. raciborskii CS-505	100	Polyketide synthase HetM	EFA69445.1
	507		C. raciborskii CS-508	C. raciborskii CS-505	99	Polyketide synthase HetM	EFA69445.1
Halb	507	Dalvikati da gemthaga	C. raciborskii CR12	C. raciborskii CS-505	100	Polyketide synthase HetM	EFA69445.1
HglB	507	Polyketide synthase	C. raciborskii CENA302	C. raciborskii MVCC14	100	Polyketide synthase	OHY31850.1
	507		C. raciborskii ITEP-A1	C. raciborskii MVCC14	9	Polyketide synthase	OHY31850.1
	507		C. raciborskii MVCC14	C. raciborskii CS-505	96	Polyketide synthase HetM	EFA69445.1
HglC	1104		C. raciborskii CS-508	C. raciborskii CS-505	100	HglC (Beta-ketoacyl synthase)	EFA69443.1
	1104		C. raciborskii CS-508	C. raciborskii CR12	99		KRH97007.1
	1104	Polyketide synthase	C. raciborskii CR12	C. raciborskii CS-508	99		OHY37860.1
	1100	1 Olykonde Symmase	C. raciborskii CENA302	C. raciborskii MVCC14	99	Polyketide synthase	OHY31852.1
	1100		C. raciborskii ITEP-A1	C. raciborskii MVCC14	99		OHY31852.1
	1100		C. raciborskii MVCC14	C. raciborskii CS-508	97		OHY37860.1

	453		C. raciborskii CS-508	C. raciborskii CS-505	100	Heterocyst glycolipid synthase HglD	EFA69442.1
	453	Polyketide synthase	C. raciborskii CS-508	C. raciborskii CS-505	99	Heterocyst glycolipid synthase HglD	EFA69442.1
	453		C. raciborskii CR12	C. raciborskii CS-505	100	Heterocyst glycolipid synthase HglD	EFA69442.1
	453		C. raciborskii CENA302	C. raciborskii CS-505	98	Heterocyst glycolipid synthase HglD	EFA69442.1
	453		C. raciborskii ITEP-A1	C. raciborskii MVCC14	99	Polyketide synthase	OHY31853.1
HglD	453		C. raciborskii MVCC14	C. raciborskii CS-505	98	Heterocyst glycolipid synthase HglD	EFA69442.1
	1771		C. raciborskii CS-508	C. raciborskii CS-505	100	Beta-ketoacyl synthase	EFA69440.1
	1771		C. raciborskii CS-508	C. raciborskii CS-505	99	Beta-ketoacyl synthase	EFA69440.1
	1771		C. raciborskii CR12	C. raciborskii CS-505	98	Beta-ketoacyl synthase	EFA68870.1
HglE	1751	Polyketide synthase	C. raciborskii CENA302	C. raciborskii MVCC14	99	Beta-ketoacyl synthase	ОНҮ34297.1
	1751		C. raciborskii ITEP-A1	R. brookii D9	95	Beta-ketoacyl synthase	EFA74388.1
	1751		C. raciborskii MVCC14	R. brookii D9	96	Beta-ketoacyl synthase	EFA74388.1

	585	Polyketide synthase	C. raciborskii CS-508	C. raciborskii CS-505	100	Putative ketoreductase and dehydrase (HglG)	EFA69441.1
	585		C. raciborskii CS-508	C. raciborskii CS-505	99	Putative ketoreductase and dehydrase (HglG)	EFA69441.1
	585		C. raciborskii CR12	C. raciborskii CS-508	99	Polyketide synthase	OHY37862.1
	585		C. raciborskii CENA302	C. raciborskii MVCC14	100	Polyketide synthase	OHY31854.1
	585		C. raciborskii ITEP-A1	C. raciborskii MVCC14	100	Polyketide synthase	OHY31854.1
HglG	585		C. raciborskii MVCC14	C. raciborskii CS-508	97	Polyketide synthase	ОНҮ37862.1
	299	Heterocyte differentiation control	C. raciborskii CS-505	C. raciborskii CS-505	100	Heterocyst differentiation control protein	EFA68362.1
HetR	299	protein	C. raciborskii CS-508	C. raciborskii CS-505	100	Heterocyst differentiation control protein	EFA683621
	299		C. raciborskii CR12	C. raciborskii CS-505	100	Heterocyst differentiation control protein	EFA68362.1
	299		R. brookii D9	C. raciborskii CENA303	99	Heterocyst differentiation control	OSO91885.1

				protein	
299	C. raciborskii CENA303	R. brookii D9	99	Heterocyst differentiation control protein	EFA73115.1
299	C. raciborskii CENA302	C. raciborskii CS-505	100	Heterocyst differentiation control protein	EFA68362.1
299	C. raciborskii ITEP-A1	C. raciborskii CS-505	100	Heterocyst differentiation control protein	EFA68362.1
299	C. raciborskii MVCC14	C. raciborskii CS-505	100	Heterocyst differentiation control protein	EFA68362.1
299	C. raciborskii CS-505	C. curvispora GIHE-G8	100	Heterocyst differentiation control protein	QNP30904.1
299	C. raciborskii CS-505	S. LEGE 08334	90	Heterocyst differentiation control protein	MBE9057199.1
299	C. raciborskii CS-505	S. torques reginae ITEP-024	90	Heterocyst differentiation control protein	QYX31586.1
299	C. raciborskii CS-505	S. LEGE 00249	89	Heterocyst differentiation control protein	MBC5794768.1
299	C. raciborskii CS-505	S. SIO1G1	88	Heterocyst differentiation control protein	NET01886.1
241	C. raciborskii CS-505	C. raciborskii CS-505	100	SDR family NAD(P)- dependent oxidoreductase	EFA70572.1

	241		C. raciborskii CS-508	C. raciborskii CS-505	100	SDR family NAD(P)- dependent oxidoreductase	EFA70572.1
	241		C. raciborskii CR12	C. raciborskii CS-505	99	SDR family NAD(P)- dependent oxidoreductase	EFA70572.1
	241	SDR family NAD(P)-	R. brookii D9	C. raciborskii CENA303	99	Short-chain dehydrogenase	OSO94107.1
HetN	241	dependent oxidoreductase	C. raciborskii CENA303	R. brookii D9	99	Short-chain dehydrogenase/reductas e SDR	EFA73007.1
	241		C. raciborskii CENA302	C. raciborskii MVCC14	100	Short-chain dehydrogenase	OHY31780.1
	241		C. raciborskii ITEP-A1	C. raciborskii MVCC14	99	Short-chain dehydrogenase	OHY31780.1
	241		C. raciborskii MVCC14	C. raciborskii CENA302	100	Short-chain dehydrogenase	OPH09154.1

Supplementary Table S12. Proposed function of the proteins encoded by the nitrogen fixation biosynthetic gene cluster in the genomes of the Cylindrospermopsis strains.

Protein	Aminoacids	Proposed function	Strain	Organism	Identity (%)	Function	Acession number
	86		C. raciborskii CS-505	R. brookii CR12	99	Iron transporter FeoA	KRH97483.1
	86	FeoA family protein	C. raciborskii CS-508	R. brookii CR12	100	Iron transporter FeoA	KRH97483.1
FeoA	86		C. raciborskii GIHE 2018	R. brookii CR12	99	Iron transporter FeoA	TPX29624.1
FCOA	86		C. raciborskii CR2010	R. brookii CR12	99	Iron transporter FeoA	UJL32789.1
	86		C. raciborskii KLL07	R. brookii CR12	99	Iron transporter FeoA	UJS05248.1

	86		C. raciborskii CHAB3438	R. brookii CR12	99	Iron transporter FeoA	MCH4904046.1
	86		C. raciborskii CS-508	R. brookii CR12	100	Iron transporter FeoA	KRH97483.1
	86		C. raciborskii DSH	R. brookii CR12	99	Iron transporter FeoA	WP_057177527.1
	86		C. raciborskii CR12	C. raciborskii CS-505	99	Iron transporter FeoA	EFA68726.1
	86		C. raciborskii CENA302	C. raciborskii CS-505	99	Iron transporter FeoA	EFA68726.1
	86		C. raciborskii CS-505	S. sp SIO1G1	71	Iron transporter FeoA	NET00482.1
	86		C. raciborskii CS-505	S. LEGE 00249	72	Iron transporter FeoA	MBC5796910.1
	86		C. raciborskii CS-505	C. raciborskii DSH	99	Iron transporter FeoA	MEE6161293.1
FdxH	99	Ferrodixin (2Fe-2S)	C. raciborskii CS-505	C. raciborskii CR12	100	Ferredoxin	KRH97484.1
	99		C. raciborskii CS-508	C. raciborskii CS-505	100	Ferredoxin (2Fe-2S)	EFA68727.1
	99		C. raciborskii CR12	C. raciborskii CS-505	100	Ferredoxin (2Fe-2S)	EFA68727.1
	99		C. raciborskii CENA302	C. raciborskii CS-505	99	Ferredoxin (2Fe-2S)	EFA68727.1
	99		C. raciborskii ITEP-A1	C. raciborskii MVCC14	100	Ferredoxin	ОНҮ36357.1
	99		C. raciborskii MVCC14	C. raciborskii CS-505	99	Ferredoxin (2Fe-2S)	EFA68727.1
	99		C. raciborskii CHAB 3438	C. raciborskii CS-505	99	Ferredoxin (2Fe-2S)	MCH4904045.1
	99		C. raciborskii DSH	C. raciborskii CS-505	99	Ferredoxin (2Fe-2S)	MEE6161294.1

	99		C. raciborskii GIHE 2018	C. raciborskii CS-505	99	Ferredoxin (2Fe-2S)	TPX29625
	99		C. raciborskii KLL07	C. raciborskii CS-505	99	Ferredoxin (2Fe-2S)	UJS05249.1
	99		C.raciboskii CR2010	C. raciborskii CS-505	99	Ferredoxin (2Fe-2S)	UJL32790.1
fdxN	130		C. raciborskii CS-505	C. raciborskii CR12	100	Ferredoxin	KRH97498.1
	130	Ferrodixin (2Fe-2S)	C. raciborskii CS-508	C. raciborskii CS-505	100	Ferredoxin-like protein in nif region protein, fdxN	EFA68741.1
	130		C. raciborskii CR12	C. raciborskii CS-505	100	Ferredoxin-like protein in nif region protein, fdxN	EFA68741.1
	112		C. raciborskii CENA302	C. raciborskii CS-505	94	Ferredoxin-like protein in nif region protein, fdxN	EFA68741.1
	112		C. raciborskii ITEP-A1	C. raciborskii CS-505	94	Ferredoxin-like protein in nif region protein, fdxN	EFA68741.1
	112		C. raciborskii MVCC14	C. raciborskii CS-505	94	Ferredoxin-like protein in nif region protein, fdxN	EFA68741.1
	112		C. raciborskii DSH	C. curvispora GIHE G1	96	Ferredoxin-like protein in nif region protein, fdxN	MEE6161308.1
	112		C. raciborskii CR12	S. Kisseleviana NIES 73	85	Ferredoxin-like protein in nif region protein, fdxN	BAZ80946.1

	112		C. raciborskii CR12	S. sp SIO1G1	80	Ferredoxin-like protein in nif region protein, fdxN	NET02523.1
	259		C. raciborskii CS-505	C. raciborskii CR12	100	Protein hesA	KRH97486.1
	259		C. raciborskii CS-508	C. raciborskii CS-505	100	MoeZ/MoeB	EFA68729.1
	259		C. raciborskii CR12	C. raciborskii CS-505	100	MoeZ/MoeB	EFA68729.1
	259		C. raciborskii CENA302	C. raciborskii CS-505	99	MoeZ/MoeB	EFA68729.1
	259		C. raciborskii ITEP-A1	C. raciborskii CS-505	98	MoeZ/MoeB	EFA68729.1
	259	AND A /TEXAME A	C. raciborskii MVCC14	C. raciborskii CS- 505	99	MoeZ/MoeB	EFA68729.1
HesA	259	UBA/THIF-type NAD/FAD binding	C. raciborskii DSH	C. curvispora GIHE G1	99	HesA/MoeB	MEE6161296.1
	259	protein	C. raciborskii CHAB 3438	C. curvispora GIHE G1	99	Protein hesA	MCH4904043.1
	259		C. raciborskii GIHE 2018	C. curvispora GIHE G1	99	HesA/MoeB	TPX29627.1
	259		C.raciboskii CR2010	C. curvispora GIHE G1	99	HesA/MoeB	UJL32792.1
	259		C. raciborskii KLL07	C. curvispora GIHE G1	99	HesA/MoeB	UJS05251.1
	259		C. raciborskii CR12	S. LEGE 08334	94	HesA/MoeB	MBE9054908
	259		C. raciborskii CR12	S. torques ITEP024	93	HesA/MoeB	CP080598.1
	259		C. raciborskii CR12	S. sp SIO1G1	93	HesA/MoeB	NET00479.1
HesB	121		C. raciborskii CS-505	C. raciborskii CR12	99	Fe-S cluster assembly protein HesB	KRH97485.1

	121		C. raciborskii CS-508	C. raciborskii CR12	100	Fe-S cluster assembly protein HesB	KRH97485.1
	121		C. raciborskii CR12	C. raciborskii CS-505	99	HesB/YadR/YfhF	EFA68728.1
	121		C. raciborskii CENA302	C. raciborskii CR12	97	Fe-S cluster assembly protein HesB	KRH97485.1
	138	Iron-sulfur cluster assembly acessory protein	C. raciborskii ITEP-A1	C. raciborskii MVCC14	100	Fe-S cluster assembly protein HesB	OHY36358.1
	121		C. raciborskii MVCC14	C. raciborskii CR12	97	Fe-S cluster assembly protein HesB	KRH97485.1
	121		C. raciborskii CHAB 3438	C. curvispora GIHE G1	92	Fe-S cluster assembly protein HesB	MCH4904044.1
	121		C. raciborskii DSH	C. curvispora GIHE G1	92	Fe-S cluster assembly protein HesB	MEE6161295.1
	121		C.raciboskii CR2010	C. curvispora GIHE G1	92	Fe-S cluster assembly protein HesB	UJL32791.1
	121		C. raciborskii KLL07	C. curvispora GIHE G1	92	Fe-S cluster assembly protein HesB	UJS05250
	121		C. raciborskii GIHE 2018	C. curvispora GIHE G1	92	Fe-S cluster assembly protein HesB	TPX29626.1
NifD	501	Nitrogenase molybdenum-ion protein alpha chain	C. raciborskii CS-505	C. raciborskii CR12	99	Nitrogenase molybdenum-iron protein alpha chain	KRH97494.1
	501	Nitrogenase molybdenum-ion protein alpha chain	C. raciborskii CS-508	C. raciborskii CS-505	100	Nitrogenase molybdenum-iron protein alpha chain	EFA68737.1
	501	Nitrogenase	C. raciborskii CR12	C. raciborskii	99	Nitrogenase	EFA68737.1

		molybdenum-ion protein alpha chain		CS-505		molybdenum-iron protein alpha chain	
	501	Nitrogenase molybdenum-ion protein alpha chain	C. raciborskii CENA302	C. raciborskii CS-505	99	Nitrogenase molybdenum-iron protein alpha chain	EFA68737.1
	501	Nitrogenase molybdenum-ion protein alpha chain	C. raciborskii ITEP-A1	C. raciborskii MVCC14	100	Nitrogenase molybdenum-iron protein alpha chain	OHY36367.1
	501	Nitrogenase molybdenum-ion protein alpha chain	C. raciborskii MVCC14	C. raciborskii CS-505	99	Nitrogenase molybdenum-iron protein alpha chain	EFA68737.1
	501	Nitrogenase molybdenum-ion protein alpha chain	C. raciborskii DSH	C. curvispora GIHE G1	100	Nitrogenase molybdenum-iron protein alpha chain	MEE6161304.1
	501	Nitrogenase molybdenum-ion protein alpha chain	C. raciborskii GIHE 2018	C. curvispora GIHE G1	100	Nitrogenase molybdenum-iron protein alpha chain	TPX29635.1
	501	Nitrogenase molybdenum-ion protein alpha chain	C. raciborskii CR12	S. torques ITEP024	96	Nitrogenase molybdenum-iron protein alpha chain	QYX31286.1
	501	Nitrogenase molybdenum-ion protein alpha chain	C. raciborskii CR12	S. LEGE 00249	96	Nitrogenase molybdenum-iron protein alpha chain	MBC5795059.1
	501						
NifE	460	Nitrogenase MoFe cofactor biosynthesis protein	C. raciborskii CS-505	C. raciborskii CR12	99	Nitrogenase molybdenum-cofactor biosynthesis protein NifE	KRH97492.1
	460		C. raciborskii CS-508	C. raciborskii	100	Nitrogenase MoFe	EFA68735.1

			CS-505		cofactor biosynthesis protein NifE	
460		C. raciborskii CR12	C. raciborskii CS-505	99	Nitrogenase MoFe cofactor biosynthesis protein NifE	EFA68735.1
460		C. raciborskii CENA302	C. raciborskii CR12	99	Nitrogenase molybdenum-cofactor biosynthesis protein NifE	KRH97492.1
460		C. raciborskii ITEP-A1	C. raciborskii CS-505	99	Nitrogenase MoFe cofactor biosynthesis protein NifE	EFA68735.1
460		C. raciborskii MVCC14	C. raciborskii CS-505	99	Nitrogenase MoFe cofactor biosynthesis protein NifE	EFA68735.1
460		C. raciborskii DSH	C. curvispora GIHE-G1	98	Nitrogenase MoFe cofactor biosynthesis protein NifE	MEE6161302.1
460		C. raciborskii GIHE 2018	S. FACHB 1194	95	Nitrogenase MoFe cofactor biosynthesis protein NifE	TPX29633.1
460		C. raciborskii CR2010	C. curvispora GIHE- G1	98	Nitrogenase MoFe cofactor biosynthesis protein NifE	UJL32798.1
460		C. raciborskii KLL07	C. curvispora GIHE- G1	98	Nitrogenase MoFe cofactor biosynthesis protein NifE	UJS05257.1
295	Nitrogenase iron protein	C. raciborskii CS-505	C. raciborskii CR12	99	Nitrogenase reductase	KRH97495.1
295	NifH	C. raciborskii CS-508	C. raciborskii	100	Nitrogenase iron	EFA68738.1

				CS-505		protein	
	295		C. raciborskii CR12	C. raciborskii CS-505	99	Nitrogenase iron protein	EFA68738.1
	295		C. raciborskii CENA302	C. raciborskii CR12	99	Nitrogenase reductase	KRH97495.1
	295		C. raciborskii ITEP-A1	C. raciborskii CR12	99	Nitrogenase reductase	KRH97495.1
	295		C. raciborskii MVCC14	C. raciborskii CR12	99	Nitrogenase reductase	KRH97495.1
	295		C. raciborskii DSH	C. curvispora GIHE G1	99	Nitrogenase reductase	MEE6161305.1
	295		C. raciborskii GIHE 2018	C. curvispora GIHE G1	99	Nitrogenase reductase	TPX29636.1
	295		C. raciborskii CR2010	C. curvispora GIHE G1	99	Nitrogenase reductase	UJL32801.1
	295						
NifH	295		C. raciborskii KLL07	C. curvispora GIHE G1	99	Nitrogenase reductase	UJS05260.1
NifB	477	Nitrogenase cofactor biosynthesis protein	C. raciborskii CS-505	C. raciborskii CR12	100	Nitrogen fixation protein NifB	KRH97499.1
	477		C. raciborskii CS-508	C. raciborskii CS-505	100	Nitrogenase cofactor biosynthesis protein NifB	EFA68742.1

477	C. raciborskii CR12	C. raciborskii CS-505	100	Nitrogenase cofactor biosynthesis protein NifB	EFA68742.1
478	C. raciborskii CENA302	C. raciborskii MVCC14	100	Nitrogenase cofactor biosynthesis protein NifB	ОНҮ36372.1
478	C. raciborskii ITEP-A1	C. raciborskii CS-505	99	Nitrogenase cofactor biosynthesis protein NifB	EFA68742.1
478	C. raciborskii MVCC14	C. raciborskii CS-505	99	Nitrogenase cofactor biosynthesis protein NifB	EFA68742.1
477	C. curvispora GIHE G1	C. raciborskii DSH	99	Nitrogenase cofactor biosynthesis protein NifB	MEE6161309.1
477	C. curvispora GIHE G1	C. raciborskii CS-508	98	Nitrogenase cofactor biosynthesis protein NifB	ОНҮ32534.1
477	C. curvispora GIHE G1	C. raciborskii CR2010	98	Nitrogenase cofactor biosynthesis protein NifB	UJL32805.1
477	C. curvispora GIHE G1	C. raciborskii KLL07	98	Nitrogenase cofactor biosynthesis protein NifB	UJS05264.1
477	S. LEGE 08334	S. torques ITEP024	100	Nitrogenase cofactor biosynthesis protein NifB	WP_220609327.1
477	S. torques ITEP024	S. LEGE 00834	100	Nitrogenase cofactor biosynthesis protein NifB	WP_194059990.1
477	S. LEGE 08334	S. sp. LEGE 00249	99	Nitrogenase cofactor biosynthesis	WP_187039462

						protein NifB	
			S. torques ITEP024	S. sp SIO1G1	94	Nitrogenase cofactor biosynthesis protein NifB	NET02524.1
NifW	105	Nitrogen fixation protein	C. raciborskii CS-505	C. raciborskii CR12	100	Nitrogenase stabilizing/protective protein	KRH97487.1
	105	C. raciborskii CS-508	C. raciborskii CS-505	100	Nitrogen fixation protein NifW	EFA68730.1	
	105		C. raciborskii CR12	C. raciborskii CS-505	100	Nitrogen fixation protein NifW	EFA68730.1
	105		C. raciborskii CENA302	C. raciborskii CS-505	96	Nitrogen fixation protein NifW	EFA68730.1
	105		C. raciborskii ITEP-A1	C. raciborskii CS-505	96	Nitrogen fixation protein NifW	EFA68730.1
	105		C. raciborskii MVCC14	C. raciborskii CS-505	96	Nitrogen fixation protein NifW	EFA68730.1
	105		C. curvispora GIHE G1	C. raciborskii CHAB 3438	94	Nitrogenase stabilizing/protective protein	KRH97487.1
	105		C. curvispora GIHE G1	C. raciborskii DSH	94	Nitrogenase stabilizing/protective protein	MEE6161297
	105		C. curvispora GIHE G1	C. raciborskii CS-508	94	Nitrogenase stabilizing/protective protein	ОНҮ32546.1
	105		C. curvispora GIHE G1	C. raciborskii GIHE 2018	94	Nitrogenase stabilizing/protective protein	TPX29628.1
	105		C. curvispora GIHE G1	C. raciborskii CR2010	94	Nitrogenase stabilizing/protective protein	UJL32793.1

	105		C. curvispora GIHE G1	C. raciborskii KLL07	94	Nitrogenase stabilizing/protective protein	UJS05252.1
	105		S. torques ITEP024	S. sp. LEGE 00249	98	Nitrogenase stabilizing/protective protein	WP_187040960.1
	105		S. sp. LEGE 00249	S. torques ITEP024	98	Nitrogenase stabilizing/protective protein	WP_220609369.1
NifX	139	Nitrogen fixation protein	C. raciborskii CS-505	C. raciborskii CR12	100	Nitrogen fixation protein NifX	KRH97490.1
	139		C. raciborskii CS-508	C. raciborskii CS-505	100	Dinitrogenase iron- molybdenum cofactor biosynthesis	EFA68733.1
	139		C. raciborskii CR12	C. raciborskii CS-505	100	Dinitrogenase iron-molybdenum cofactor biosynthesis	EFA68733.1
	139		C. raciborskii CENA302	C. raciborskii CS-505	97	Dinitrogenase iron-molybdenum cofactor biosynthesis	EFA68733.1
	139		C. raciborskii ITEP-A1	C. raciborskii CS-505	97	Dinitrogenase iron- molybdenum cofactor biosynthesis	EFA68733.1
	139		C. raciborskii MVCC14	C. raciborskii CS-505	97	Dinitrogenase iron- molybdenum cofactor biosynthesis	EFA68733.1
	139		C. curvispora GIHE G1	C. raciborskii CHAB 3438	97	Nitrogen fixation protein NifX	MCH4904039
	139		C. curvispora GIHE G1	C. raciborskii DSH	97	Nitrogen fixation protein NifX	MEE6161300.1
	139		C. curvispora GIHE G1	C. raciborskii	97	Nitrogen fixation	UJL32796.1

				CR2010		protein NifX	
	139		C. curvispora GIHE G1	C. raciborskii KLL07	97	Nitrogen fixation protein NifX	UJS05255.1
	139		C. curvispora GIHE G1	S. sp SIO1G1	85	Nitrogen fixation protein NifX	NET02489.1
	139		C. curvispora GIHE G1	S. sp. LEGE 00249	92	Nitrogen fixation protein NifX	WP_187040961.1
	443		C. raciborskii CS-505	C. raciborskii CR12	100	Nitrogenase molybdenum-cofactor biosynthesis protein NifN	KRH97491.1
	443	Nitrogenase molybdenum-ion cofactor biosynthesis protein NifN	C. raciborskii CS-508	C. raciborskii CR12	100	Nitrogenase molybdenum-cofactor biosynthesis protein NifN	KRH97491.1
NifN	443		C. raciborskii CR12	C. raciborskii CR12	100	Nitrogenase molybdenum-cofactor biosynthesis protein NifN	KRH97491.1
	443		C. raciborskii CENA302	C. raciborskii CR12	100	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	KRH97491.1
	443		C. raciborskii ITEP-A1	C. raciborskii CR12	100	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	KRH97491.1
	443		C. raciborskii MVCC14	C. raciborskii	99	Nitrogenase iron-	KRH97491.1

			CR12		molybdenum cofactor biosynthesis protein NifN	
44	43	C. raciborskii CS-505	C. raciborskii CR12	100	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	KRH97493.1
44	43	C. raciborskii CR12	C. raciborskii CHAB 3438	100	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	MCH4904038.1
44	43	C. raciborskii CR12	C. raciborskii DSH	100	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	MEE6161301.1
44	43	C. raciborskii CR12	C. raciborskii GIHE 2018	100	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	TPX29632.1
44	43	C. raciborskii CR12	C. raciborskii CR2010	100	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	UJL32797.1
44	43	C. raciborskii CR12	C. raciborskii KLL07	100	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	UJS05256.1
44	43	C. curvispora GIHE G1	C. raciborskii CHAB 3438	99	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	MCH4904038.1
44	13	C. curvispora GIHE G1	C. raciborskii	99	Nitrogenase iron-	MEE6161301.1

			DSH		molybdenum cofactor biosynthesis protein NifN	
4	443	C. curvispora GIHE G1	C. raciborskii GIHE 2018	99	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	TPX29632.1
4	443	C. curvispora GIHE G1	C. raciborskii CR2010	99	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	UJL32797.1
4	443	C. curvispora GIHE G1	C. raciborskii KLL07	99	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	UJS05256.1
4	442	S. sp. LEGE 00249	S. torques reginae ITEP024	99	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	WP_220609367.1
4	442	S. sp. LEGE 00249	S. FACHB 1194	99	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	WP_190346642.1
4	442	S. torques reginae ITEP024	S. LEGE 08334	99	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	WP_194051913.1
4	442	S. FACHB 1194	S. sp. LEGE 00249	99	Nitrogenase iron- molybdenum cofactor biosynthesis protein NifN	WP_187040962.1
5	511	C. raciborskii CS-508	C. raciborskii	100	Nitrogenase	EFA68736.1

		CS-505		molybdenum-iron protein beta chain	
511	C. raciborskii CR12	C. raciborskii CS-505	100	Nitrogenase molybdenum-iron protein beta chain	EFA68736.1
511	C. raciborskii CENA30.	2 C. raciborskii CS-505	99	Nitrogenase molybdenum-iron protein beta chain	EFA68736.1
511	C. raciborskii ITEP-A	C. raciborskii CS-505	99	Nitrogenase molybdenum-iron protein beta chain	EFA68736.1
511	C. raciborskii MVCC14	C. raciborskii CS-505	99	Nitrogenase molybdenum-iron protein beta chain	EFA68736.1
511	C. curvispora GIHE G.	C. raciborskii DSH	99	Nitrogenase molybdenum-iron protein beta chain	MEE6161303.1
511	C. curvispora GIHE G.	C. raciborskii GIHE 2018	99	Nitrogenase molybdenum-iron protein beta chain	TPX29634.1
511	C. curvispora GIHE G.	C. raciborskii CR2010	99	Nitrogenase molybdenum-iron protein beta chain	UJL32799.1
511	C. curvispora GIHE G.	C. raciborskii KLL07	99	Nitrogenase molybdenum-iron protein beta chain	UJS05258.1
511	S. LEGE 08334	S. torques reginae ITEP024	100	Nitrogenase molybdenum-iron protein beta chain	WP_220609365.1
511	S. torques reginae ITEP024	S. LEGE 08334	100	Nitrogenase molybdenum-iron protein beta chain	WP_194051907.1

	308		C. raciborskii CS-505	C. raciborskii CR12	99	Fe-S cluster assembly protein NifU	KRH97496.1
	308		C. raciborskii CS-508	C. raciborskii CS-505	100	Fe-S cluster assembly protein NifU	EFA68739.1
	308		C. raciborskii CR12	C. raciborskii CS-505	99	Fe-S cluster assembly protein NifU	EFA68739.1
	308		C. raciborskii CENA302	C. raciborskii CS-505	97	Fe-S cluster assemblyprotein NifU	EFA68739.1
	308		C. raciborskii ITEP-A1	C. raciborskii CS-505	97	Fe-S cluster assembly protein NifU	EFA68739.1
	308		C. raciborskii MVCC14	C. raciborskii CS-505	97	Fe-S cluster assembly protein NifU	EFA68739.1
NifU	308		C. curvispora GIHE G1	C. raciborskii DSH	97	Fe-S cluster assembly protein NifU	MEE6161306.1
	308	Fe-S cluster assembly protein NifU	S. LEGE 08334	S. torques reginae ITEP024	100	Fe-S cluster assembly protein NifU	WP_220609329.1
	308		S. torques reginae ITEP024	S. LEGE 08334	100	Fe-S cluster assembly protein NifU	WP_194059988.1
	308		S. LEGE 08334	S. sp SIO1G1	92	Fe-S cluster assembly protein NifU	NET02521.1

	401		C. raciborskii CS-505	C. raciborskii CR12	100	Cysteine desulfurase NifS	KRH97497.1
	401		C. raciborskii CS-508	C. raciborskii CR12	100	Cysteine desulfurase NifS	KRH97497.1
	401		C. raciborskii CR12	C. raciborskii CS-505	100	Aromatic amino acid beta-eliminating lyase/threonine aldolase	EFA68740.1
	401	Nitrogenase metalloclusters	C. raciborskii CENA302	C. raciborskii CS-505	99	Aromatic amino acid beta-eliminating lyase/threonine aldolase	EFA68740.1
NifS	401	biosynthesis protein NifS	C. raciborskii ITEP-A1	C. raciborskii CS-505	99	Aromatic amino acid beta-eliminating lyase/threonine aldolase	EFA68740.1
	401		C. raciborskii MVCC14	C. raciborskii CS-505	99	Aromatic amino acid beta-eliminating lyase/threonine aldolase	EFA68740.1
	401		C. curvispora GIHE G1	C. raciborskii DSH	99	Cysteine desulfurase NifS	MEE6161307.1
	401		C. curvispora GIHE G1	C. raciborskii GIHE 2018	99	Cysteine desulfurase NifS	TPX29638

	401		C. curvispora GIHE G1	C. raciborskii CR2010	99	Cysteine desulfurase NifS	UJL32803.1
	401	C. curvispora GIHE G1	C. raciborskii KLL07	99	Cysteine desulfurase NifS	UJS05262.1	
		S. LEGE 08334	S. torques reginae ITEP024	99	Cysteine desulfurase NifS	WP_220609328.1	
	403		S. Kisseleviana NIES 73	S. sp SIO1G1	94	Cysteine desulfurase NifS	NET02522.1
	403		S. torques reginae ITEP024	S. LEGE 08334	99	Cysteine desulfurase NifS	WP_194059993.1

Supplementary Table S13. Proposed function of proteins encoded by hassallidin gene cluster identified in the genomes of the C. raciborskii strains CENA303, PAMP 2012, KL1, KLL07, CR 2010, CS-505, CS-508, GIHE-2018, GIHE-G1, DSH, N8, CR12, 1523720, CYRF and S. torques reginae ITEP-024 como a única do gênero Sphaerospermopsis.

Protein	Aminoacids	Proposed function	Strain	Organism	Identity (%)	Function	Acession number
	555	ABC-transporter	C. raciborskii CS-505	C. raciborskii CR12	99	ABC transporter ATP- binding protein	KRH96585.1
HasA	555		C. raciborskii CS-508	C. raciborskii CS-505	99	ABC transporter-like protein	EFA70507.1
	555		C. raciborskii CR12	C. raciborskii CS-505	99	ABC transporter-like protein	EFA70507.1
	555		C. raciborskii	C. raciborskii CR12	88	ABC transporter ATP-	KRH96585.1
			CENA303			binding protein	
			C. raciborskii CR12			ABC transporter ATP-	UJL33519.1
	555			C. raciborskii CR2010	99	binding protein	

						ADG	
	555		C. raciborskii CR12	C. raciborskii KLL07	99	ABC transporter ATP- binding protein	UJS03222.1
HasB	670		C. raciborskii CS-505	C. raciborskii CR12	97	Alpha amylase	KRH96572.1
	670	Alpha amylase	C. raciborskii CS-508	C. raciborskii CS-505	99	Alpha-amylase	EFA70488.1
	670		C. raciborskii CR12	C. raciborskii CS-505	97	Alpha amylase	EFA70488.1
	571		R. brookii D9	C. raciborskii CR12	79	Alpha amylase	KRH96572.1
	670		C. raciborskii CENA303	R. brookii D9	99	Alpha amylase	EFA73364.1
	329		C. raciborskii CENA302	C. raciborskii CR12	79	Alpha-amylase	KRH96572.1
	670		C. raciborskii CR12	C. curvispora GIHE G1	98	Alpha-amylase	WP_187706034.
	210		C.raciboskii PAMP2012	C. raciborskii CR12	73	Alpha-amylase	KRH96572.1
	571		R. brookii D9	C.raciboskii PAMP2012	98	Alpha-amylase	MCZ2202904.1
	670		C. raciborskii GIHE 2018	C. curvispora GIHE G1	99	Alpha-amylase	WP_187706034.
	670		C. raciborskii GIHE 2018	C. raciborskii CR12	98	Alpha-amylase	WP_057178215.
	670		C. curvispora GIHEG1	C. raciborskii CR12	99	Alpha-amylase	WP_057178215.
	670		C. raciborskii KLL07	C. raciborskii CR12	98	Alpha-amylase	WP_057178215.

	670		C. raciborskii KLL07	C. curvispora GIHEG1	98	Alpha-amylase	WP_187706034.
	670		C. raciborskii N8	C. raciborskii CR12	100	Alpha-amylase	WP_057178215.
	670		C. raciborskii N8	C. curvispora GIHEG1	99	Alpha-amylase	WP_187706034.
	502		C. raciborskii PAMP2012	C. curvispora GIHEG1	81	Alpha-amylase	WP_187706034.
	502		C. raciborskii PAMP2012	C. raciborskii CR12	81	Alpha-amylase	WP_057178215.
	523		C. raciborskii 1523720	C. raciborskii CR12	98	Alpha-amylase	WP_057178215.
	523		C. raciborskii 1523720	C. curvispora GIHEG1	98	Alpha-amylase	WP_187706034.
	342		C. raciborskii CS-505	C. raciborskii CR12	95	Methyltransferase domain-containing protein	KRH96618.1
	342		C. raciborskii CS-508	C. raciborskii CS-505	98	Hypothetical protein	EFA70501.1
	361		C. raciborskii CR12	C. raciborskii CS-505	95	Hypothetical protein	EFA70501.1
HasC	342	Methyltransferase	R. brookii D9	C. raciborskii CS-505	83	Methyltransferase domain-containing protein	OBU78171.1
	357		C. raciborskii CENA303	C. raciborskii CR12	95	Methyltransferase domain-containing protein	KRH96618.1
	344		C. raciborskii CENA302	R. brookii D9	93	Hypothetical protein	EFA73367.1
	342		C. raciborskii CR12	C. raciborskii CHAB 3438	99	Methyltransferase domain-containing protein	MCH4903615.1
	342		C. raciborskii CS-508	C. raciborskii CHAB 3438	97	Methyltransferase	MCH4903615.2

						domain-containing	
						protein	
	71		C.raciboskii PAMP2012	C. raciborskii CHAB 3438	100	Methyltransferase domain-containing protein	MCH4903615.1
	372	acetylglucosamine	C. raciborskii CR2010	C. curvispora GIHEG1	97	acetylglucosamine	WP_187706020.
	372		C. raciborskii GIHE 2018	C. raciborskii CR12	100	acetylglucosamine	WP_057178233.
	372		C. raciborskii GIHE 2018	C. curvispora GIHE G1	97	acetylglucosamine	WP_187706020.
	372		C. curvispora GIHEG1	C. raciborskii CR12	97	acetylglucosamine	WP_057178233.
	372		C. raciborskii N8	C. raciborskii CR12	99	undecaprenyldiphospho -muramoylpentapeptide	WP_057178233
	372		C. raciborskii N8	C. curvispora GIHEG1	97	undecaprenyldiphospho -muramoylpentapeptide	WP_187706020.
	265		C. raciborskii CS-505	C. raciborskii CR12	99	Glycosyl transferase family 2	KRH96581.1
	265	Glycosyl transferase	C. raciborskii CS-508	C. raciborskii CS-505	99	Glycosyl transferase family 2	EFA70500.1
	275		C. raciborskii CR12	C. raciborskii CS-505	99	Glycosyl transferase family 2	EFA70500.1
	267	family	C. raciborskii ITEP- A1	Anabaena sp. 90	83	Glycosyl transferase family 2	AFW95739.1
HasD	266		C. raciborskii CR12	C. curvispora GIHE G1	100	Glycosyl transferase family 2	QNP29407.1
	266		C. raciborskii CR12	C. raciborskii GIHE 2018	100	Glycosyl transferase family 2	TPX27091.1
	266		C. raciborskii GIHE	C. raciborskii CENA303	76	polyprenol	OSO97128.1
		Dolichol-phosphate	2018			monophosphomannose	
		mannosyltransferase				synthase	

	266		C. raciborskii GIHE 2018	C. raciborskii KL1	76	polyprenol monophosphomannose synthase	MBG0742668.1
	266		C. raciborskii GIHE 2018	C. raciborskii KL1	76	polyprenol monophosphomannose synthase	MBG0742668.1
	266		C. raciborskii GIHE 2018	C. raciborskii CENA303	76	polyprenol monophosphomannose synthase	OSO97128.1
	266		C. curvispora GIHEG1	C. raciborskii CENA303	76	polyprenol monophosphomannose synthase	WP_141303791.
	266	Dolichol-phosphate mannosyltransferase	C. curvispora GIHEG1	C. raciborskii KL1	76	polyprenol monophosphomannose synthase	MBG0742668.1
	265	Dolichol-phosphate mannosyltransferase	C. raciborskii KLL07	C. raciborskii KL1	77	polyprenol monophosphomannose synthase	MBG0742668.1
	265	Dolichol-phosphate mannosyltransferase	C. raciborskii KLL07	C. raciborskii CENA303	77	polyprenol monophosphomannose synthase	OSO97128.1
	266	Dolichol-phosphate mannosyltransferase	C. raciborskii N8	C. raciborskii KL1	76	polyprenol monophosphomannose synthase	MBG0742668.1
	266	Dolichol-phosphate mannosyltransferase	C. raciborskii N8	C. raciborskii CENA303	76	polyprenol monophosphomannose synthase	OSO97128.1
	154		C. raciborskii CS-505	C. raciborskii CR12	100	Hypothetical protein	KRH96580.1
HasE	151	GtrA family protein	C. raciborskii CS-508	C. raciborskii CR12	99	Hypothetical protein	KRH96580.1
Hase	151		C. raciborskii CR12	C. raciborskii CS-505	100	Hypothetical protein	OBU77708.1

	184		C. raciborskii CENA303	Scytonema hofmanni UTEX B 1581	70	Hypothetical protein	WP_051502819.
	184		C. raciborskii ITEP- A1	Anabaena sp. 90	68	GtrA-like protein	AFW95740.1
	197	Polyketide synthase	C. raciborskii 1523720	C. raciborskii CR12	96	non-ribosomal peptide synthetase	WP_057178252.
	197	Polyketide synthase	C. raciborskii 1523720	C. curvispora GIHEG1	96	non-ribosomal peptide synthetase	WP_187706030.
	547	547	C. raciborskii CS-505	C. raciborskii CR12	99	Dolichyl-phosphate- mannose-protein mannosyltransferase	KRH96579.1
	547		C. raciborskii CS-508	C. raciborskii CS-505	99	Dolichyl-phosphate- mannose-protein mannosyltransferase	OBU77709.1
HasF	547	Putative membrane	C. raciborskii CR12	C. curvispora GIHEG1	99	Dolichyl-phosphate- mannose-protein mannosyltransferase	WP_187706028.
паяг	547	protein	C. raciborskii CR12	C. raciborskii CS-505	99	Conserved hypothetical protein	EFA70498.1
	545		C. raciborskii CENA303	Anabaena sp. 90	68	Putative membrane protein	AFW95741.1
	62		C. raciborskii CENA302	Anabaena sp. Syke748	75	Putative membrane protein	AHZ20765.1
	547		C. curvispora GIHEG1	C. raciborskii CR12	99	Dolichyl-phosphate- mannose-protein mannosyltransferase	KRH96579.1
HasG	312	AMP-dependent synthetase/ligase	C. raciborskii CENA303	Anabaena sp. 90	87	AMP-dependent synthase/ligase	AFW95742.1
	452		C. raciborskii CS-505	C. raciborskii CR12	98	MFS transporter	KRH96587.1
	456	Major facilitator	C. raciborskii CR12	C. raciborskii CR2010	98	MFS transporter	UJL33521.1
HasK	456	transporter	C. raciborskii CR12	C. raciborskii CS- 508	97	MFS transporter	OHY34101.1

	456		C. raciborskii CR12	C. raciborskii CHAB 3438	97	MFS transporter	MCH4903619.1
	456		C. raciborskii CR12	C. curvispora GIHEG1	96	MFS transporter	TPX27098.1
	456		C. raciborskii CS-508	C. raciborskii CS-505	99	Hypothetical protein	EFA70509.1
	452		C. raciborskii CR12	C. raciborskii CS-505	98	MFS transporter	OBU77700.1
	449		R. brookii D9	C. raciborskii CS-505	66	MFS transporter	OBU77700.1
	449		C. raciborskii CENA303	C. raciborskii CS-505	66	MFS transporter	OBU77700.1
	449		C. raciborskii ITEP- A1	R. brookii D9	96	Major facilitator superfamily MFS_1	EFA73366.1
	445	Long-chain-fatty-acidCoA ligase	C. raciborskii KLL07	Nostocaceae cyanobacterium	92	MAG TPA: fatty acid- CoA ligase family protein	HLO88498
	444	hypothetical protein	C. raciborskii KLL07	Nostocaceae cyanobacterium	80	alpha/beta hydrolase- fold protein	HLO88501.1
HasL	254		C. raciborskii CS-505	C. raciborskii CR12	99	3-oxoacyl-ACP reductase	KRH96575.1
	254		C. raciborskii CS-508	C. raciborskii CS-505	100	3-oxoacyl-ACP reductase	EFA70493.1
	254		C. raciborskii CR12	C. raciborskii CS-505	99	3-oxoacyl-ACP reductase	EFA70493.1
	254		C. raciborskii CENA303	C. raciborskii CS- 505	87	3-oxoacyl-ACP reductase	EFA70493.1
	254		C. raciborskii CR12	S. torques reginae ITEP024	87	3-oxoacyl-ACP reductase	WP_220609295.
	254	3-oxoacyl-acyl- carrier-protein	C. raciborskii CS-505	S. torques reginae ITEP024	87	3-oxoacyl-ACP reductase	WP_220609295.
	254	reductase	C. raciborskii CR2010	S. torques ITEP024	87	3-oxoacyl-ACP reductase	WP_220609295.
	254		C. raciborskii GIHE 2018	S. torques ITEP024	87	3-oxoacyl-ACP reductase	WP_220609295.
	254		C. raciborskii KLL07	S. torques ITEP024	87	3-oxoacyl-ACP reductase	WP_220609295.

	254		C. raciborskii N8	S. torques ITEP024	87	3-oxoacyl-ACP reductase	WP_220609295.
	254		C. raciborskii PAMP2012	S. torques ITEP024	89	3-oxoacyl-ACP reductase	WP_220609295.
	254		C. raciborskii 1523720	S. torques ITEP024	87	oxidoreductase	WP_220609295.
	254		S. torques ITEP024	Cronbergia sp. UHCC 0137]	95	oxidoreductase	WP_323283647
	192		C. raciborskii CS-505	C. raciborskii CR12	99	Hydroxylase	KRH96574.1
	192		C. raciborskii CS-508	C. raciborskii CS-505	99	Aspartyl/asparaginyl beta-hydroxylase	EFA70492.1
	192	Aspartyl/asparaginyl	C. raciborskii CR12	C. raciborskii CS-505	99	Hydroxylase	OBU77714.1
	204	beta-hydroxylase	C. raciborskii CENA303	Anabaena sp. 90	73	Aspartyl/asparaginyl beta-hydroxylase	AFW95748.1
HasM	192		C. raciborskii CR12	S. torques reginae ITEP024	70	Aspartyl/asparaginyl beta-hydroxylase	WP_220609294.
	197	Polyketide synthase	C. raciborskii 1523720	C. raciborskii CR12	96	Non-ribosomal peptide synthetase	1
	197	Polyketide synthase	C. raciborskii 1523720	C. curvispora GIHEG1	96	Non-ribosomal peptide synthetase	WP_187706030.
	3051		C. raciborskii CS-505	C. raciborskii CR12	98	Non-ribosomal peptide	KRH96616.1

						synthetase	
	2824		C. raciborskii CS-508	C. raciborskii CR12	96	Non-ribosomal peptide synthetase	KRH96616.1
	3049		C. raciborskii CR12	C. raciborskii CS-505	98	Non-ribosomal peptide synthetase	OBU77715.1
	3050		C. raciborskii CENA303	C. raciborskii CS-505	71	Non-ribosomal peptide synthetase	OBU77715.1
	3049		C. raciborskii CR2010	C. raciborskii CR12	99	Non-ribosomal peptide synthetase	WP_072149121.
	3049	NRPS	C. raciborskii CR2010	C. raciborskii CS505	97	Non-ribosomal peptide synthetase	EFA70490.1
	3049		C. raciborskii CR2010	S. torques ITEP024	70	Non-ribosomal peptide synthetase	WP_220609293.
	3049		C. raciborskii GIHE 2018	C. curvispora GIHE G1	99	Non-ribosomal peptide synthetase	WP_187706032.
	3049		C. raciborskii GIHE 2018	C. raciborskii CR12	99	Non-ribosomal peptide synthetase	1
	3049		C. curvispora GIHEG1	C. raciborskii CR12	99	Non-ribosomal peptide synthetase	WP_072149121.
	3049		C. curvispora GIHEG1	C. raciborskii CS505	97	Non-ribosomal peptide synthetase	EFA70490.1
	3050	NRPS	C. raciborskii KLL07	C. curvispora GIHEG1	99	Non-ribosomal peptide synthetase	WP_187706032.
	3050		C. raciborskii KLL07	C. raciborskii CR12	98	Non-ribosomal peptide synthetase	WP_072149121.
	3050		C. raciborskii KLL07	C. raciborskii CS505	96	Non-ribosomal peptide synthetase	EFA70490
	3050		C. raciborskii KLL07	S. torques ITEP024	71	Non-ribosomal peptide synthetase	WP_220609293.
HasN	3049		C. raciborskii N8	C. curvispora GIHEG1	99	Non-ribosomal peptide synthetase	WP_187706032.

	3049		C. raciborskii N8	C. raciborskii CR12	100	Non-ribosomal peptide synthetase	WP_072149121.
	3049		C. raciborskii N8	C. raciborskii CS505	98	Non-ribosomal peptide synthetase	EFA70490.1
	3050		C. raciborskii PAMP2012	C. curvispora GIHEG1	71	Non-ribosomal peptide synthetase	WP_187706032.
	3050		C. raciborskii PAMP2012	C. raciborskii CR12	71	Non-ribosomal peptide synthetase	1
	3055		C. raciborskii 1523720	C. raciborskii CR12	94	Non-ribosomal peptide synthetase	WP_072149121.
	3055		C. raciborskii 1523720	C. raciborskii CS505	95	Non-ribosomal peptide synthetase	EFA70490.1
	3056		S. torques ITEP024	Cronbergia sp. UHCC 0137]	85	Non-ribosomal peptide synthetase	WP_323283649.
	3661	NRPS	C. raciborskii CR12	C. raciborskii CS-505	100	Non-ribosomal peptide synthase	EFA70489.1
HasO	3670	INKES	C. raciborskii CENA303	C. raciborskii CR12	72	Non-ribosomal peptide synthase	KRH96573.1
	3049		C. raciborskii CR12	C. curvispora GIHEG1	97	Non-ribosomal peptide synthase	WP_187706032.
	3049		C. raciborskii CR12	C. raciborskii CS-505	100	Non-ribosomal peptide synthase	EFA70490.1
	3049		C. raciborskii CR12	S. torques reginae ITEP024	71	Non-ribosomal peptide synthase	1
	3662		C. raciborskii CR2010	C. raciborskii CR12	97	Non-ribosomal peptide synthase	1
	3659		C. raciborskii GIHE 2018	C. raciborskii CR12	97	Non-ribosomal peptide synthase	1
	3659		C. curvispora GIHEG1	C. raciborskii CR12	97	Non-ribosomal peptide synthase	1
	3662		C. raciborskii KLL07	C. curvispora GIHEG1	99	Non-ribosomal peptide	WP_187706033.

						synthase 1
	3662		C. raciborskii KLL07	C. raciborskii CR12	97	Non-ribosomal peptide WP_057178216. synthase 1
	3661		C. raciborskii N8	C. raciborskii CR12	100	Non-ribosomal peptide WP_057178216. synthase 1
	3661		C. raciborskii N8	C. curvispora GIHEG1	97	Non-ribosomal peptide WP_057178216. synthase 1
	3670		C. raciborskii PAMP2012	C. raciborskii CR12	72	Non-ribosomal peptide WP_057178216. synthase I
	3670		C. raciborskii PAMP2012	C. curvispora GIHEG1	72	Non-ribosomal peptide WP_187706033. synthase 1
	3660		C. raciborskii 1523720	C. raciborskii CR12	95	non-ribosomal peptide WP_057178216. synthetase I
	3660		C. raciborskii 1523720	C. curvispora GIHEG1	94	non-ribosomal peptide synthetase WP_187706033
HasP	354	NAD-dependent	C. raciborskii CS-505	C. raciborskii CR12	99	NAD-dependent epimerase KRH96583.1
	354	epimerase dTDP-glucose 4,6-	C. raciborskii CR12	C. curvispora GIHEG1	100	NAD-dependent wP_187706027. epimerase/dehydratase 1
	354	dehydratase	C. raciborskii CS-505	C. curvispora GIHEG1	99	NAD-dependent wP_187706027. epimerase/dehydratase 1
	354		C. raciborskii CR12	C. raciborskii CS-505	99	NAD-dependent epimerase/dehydratase EFA70505.1
	352		C. raciborskii CENA303	Anabaena sp. 90	84	NAD dependent epimerase/dehydratase AFW95751.1
	370		C. raciborskii CR2010	C. raciborskii CR12	99	NAD-dependent wP_057178224. epimerase/dehydratase 1
	370		C. raciborskii GIHE 2018	C. raciborskii CR12	99	NAD-dependent wP_057178224. epimerase/dehydratase 1
	370		C. raciborskii GIHE 2018	C. curvispora GIHE G1	99	NAD-dependent wP_187706027. epimerase/dehydratase 1
	370		C. curvispora	C. raciborskii CR12	94	NAD-dependent WP_057178224.

			GIHEG1			epimerase/dehydratase	1
	370		C. raciborskii KLL07	C. curvispora GIHEG1	100	NAD-dependent epimerase/dehydratase	WP_187706027
	370		C. raciborskii KLL07	C. raciborskii CR12	100	NAD-dependent epimerase/dehydratase	WP_057178224.
	354		C. raciborskii N8	C. raciborskii CR12	100	NAD dependent epimerase/dehydratase	WP_057178224.
	354		C. raciborskii N8	C. curvispora GIHEG1	99	NAD dependent epimerase/dehydratase	WP_187 706027.1
	352		C. raciborskii PAMP2012	Anabaena cylindrica	82	NAD-dependent epimerase/dehydratase	WP_323 309738.1
	402		C. raciborskii CS-505	C. raciborskii CR12	99	MGT family glycosyltransferase	KRH965 84.1
HasQ	402	Glycosyltransferase	C. raciborskii CR12	C. raciborskii CS- 505	99	Hypothetical protein	EFA7050 6.1
	73		C. raciborskii CENA303	C. raciborskii CS- 505	90	MGT family glycosyltransferase	OBU777 03.1
	402		C. raciborskii CS-505	S. torques reginae ITEP024	83	MGT family glycosyltransferase	WP_220 609292.1
	402		C. raciborskii CR2010	S. torques ITEP024	82	Glycosyl transferase	WP_220 609292.1
	402		C. raciborskii GIHE 2018	S. torques ITEP024	72	Glycosyl transferase	WP_220 609292.1
	402		C. curvispora GIHEG1	S. torques ITEP024	83	Glycosyl transferase	WP_220 609292.1
	402		C. raciborskii KLL07	S. torques ITEP024	83	Glycosyl transferase	WP_220 609292.1
	402		C. raciborskii CR12	S. torques reginae ITEP024	83	Glycosyl transferase	WP_220 609292.1
	402		C. raciborskii	S. torques ITEP024	82	Glycosyl transferase	WP_220

			N8				609292.1
	408		S. torques ITEP024	Dolichospermum sp. UHCC 0352	91	Glycosyl transferase	WP_168 652019.1
HasR	206	Putative acyltransferase	C. raciborskii CENA303	Anabaena sp. 90	68	Hypothetical protein	WP_015080900.
	245		C. raciborskii CS-505	C. raciborskii CR12	99	Glycosyl transferase	KRH96578.1
	245		C. raciborskii CS-508	C. raciborskii CS-505	100	Glycosyl transferase	EFA70497.1
	245		C. raciborskii CR12	C. raciborskii CS-505	99	Putative glycosyltransferase	EFA70497.1
HasT	245	Glycosyl transferase	C. raciborskii CR12	C. curvispora GIHEG1	99	Glycosyl transferase	WP_187706029.
	258		C. raciborskii CENA303	C. raciborskii CR12	79	Glycosyl transferase	KRH96578.1
	258		C. raciborskii CR12	C. raciborskii PAMP2012	79	Glycosyl transferase	MCZ2202044.1
	315		S. torques ITEP024	C. raciborskii	88	Glycosyl transferase	WP_324140027.
	72		C. raciborskii CS-505	C. raciborskii CR12	100	Antibiotic synthesis protein MbtH	KRH96576.1
HasU	72	Putative MbtH-like protein	Cylindrospermopsis CR12	S. torques reginae ITEP024	84	Antibiotic synthesis protein MbtH	WP_220609290.
	72		C. raciborskii CS-508	C. raciborskii CS-505	98	Putative MbtH- like protein	EFA70494.1
	72		C. raciborskii CS-505	C. raciborskii DSH	100	Putative MbtH- like protein	MEE6162471
	72		C. raciborskii CS-505	C. raciborskii CR12	100	Putative MbtH- like protein	KRH96576.1
	72		C. raciborskii CS-505	C. raciborskii CS-508	100	Antibiotic synthesis protein MbtH	OHY35853.1

	72		C. raciborskii CS-505	C. curvispora GIHEG1	100	Putative MbtH- like protein	TPX27085.1
	72		C. raciborskii CS-505	C. raciborskii CR2010	100	MbtH family NRPS accessory protein	UJL33506.1
	72		C. raciborskii CS-505	C. raciborskii KLL07	100	MbtH family NRPS accessory protein	UJS03236.1
	72		C. raciborskii CR12	C. raciborskii CS-505	100	Putative MbtH-like protein	EFA70494.1
	73		C. raciborskii CENA303	Anabaena sp. 90	87	MbtH-like protein	AFW95756.1
	72		C. raciborskii CR2010	S. torques ITEP024	84	MbtH family protein	WP_220609290.
	72		C. raciborskii GIHE 2018	S. torques ITEP024	72	MbtH family protein	WP_220609290.
	72		C. curvispora GIHEG1	S. torques ITEP024	84	MbtH family protein	WP_220609290.
	72		C. raciborskii KLL07	S. torques ITEP024	84	MbtH family protein	WP_220609290.
	72		C. raciborskii N8	S. torques ITEP024	84	MbtH family protein	WP_220609290.
	73		C. raciborskii PAMP2012	S. torques ITEP024	94	MbtH family protein	WP_220609290
	72		C. raciborskii 1523720	S. torques ITEP024	84	MbtH family protein	WP_220609290.
	71		S. torques ITEP024	Cronbergia sp. UHCC 0137]	96	MbtH-like NRPS chaperone	WP_323283663.
	2153		C. raciborskii CS-505	C. raciborskii CR12	97	Non-ribosomal peptide synthase	KRH96577.1
HasV	2127	NRPS	C. raciborskii CS-508	C. raciborskii CR12	99	Non-ribosomal peptide synthase	KRH96577.1
	2153		C. raciborskii CR12	C. curvispora GIHEG1	99	Non-ribosomal peptide synthase	WP_187706031.

2153	C. raciborskii CR12	C. raciborskii CR2010	99	amino acid adenylation domain-containing protein	UJL33507.1
2153	C. raciborskii CR12	C. raciborskii KLL07	99	amino acid adenylation domain-containing protein	UJS06337.1
2153	C. raciborskii CR12	S. torques reginae ITEP024	74	Non-ribosomal peptide synthase	WP_220609291.
2153	C. raciborskii CR12	C. raciborskii KL1	98	amino acid adenylation domain-containing protein	MBG0742686.1
2153	C. raciborskii CR12	C. raciborskii CS-505	97	Non-ribosomal peptide synthase	EFA70495.1
2147	C. raciborskii CENA303	Anabaena sp. 90	73	Non-ribosomal peptide synthase	AFW95757.1
2153	C. raciborskii GIHE 2018	C. raciborskii CR2010	100	amino acid adenylation	UJL33507.1
2153	C. raciborskii GIHE 2018	C. raciborskii CR12	99	Non-ribosomal peptide synthase	WP_057178219
2153	C. raciborskii GIHE 2018	C. curvispora GIHE G1	99	Non-ribosomal peptide synthase	WP_187706031.
2153	C. raciborskii GIHE 2018	C. raciborskii KLL07	100	Non-ribosomal peptide synthase	UJS06337.1
2153	C. raciborskii GIHE 2018	S. torques ITEP024	74	Non-ribosomal peptide synthase	WP_220609291.
2153	C. curvispora GIHEG1	C. raciborskii CR12	100	Non-ribosomal peptide synthase	WP_057178219.
2153	C. curvispora GIHEG1	C. raciborskii CR2010	100	Non-ribosomal peptide synthase	UJL33507.1
2153	C. curvispora GIHEG1	C. raciborskii KLL07	99	Non-ribosomal peptide synthase	UJS06337.1
2153	C. curvispora	S. torques ITEP024	74	Non-ribosomal peptide	WP_220609291.

	GIHEG1			synthase	1
2153	C. raciborskii KLL07	C. raciborskii CR2010	100	Non-ribosomal peptide synthase	UJL33507.1
2153	C. raciborskii KLL07	C. raciborskii CR12	99	Non-ribosomal peptide synthase	WP_057178219.
2153	C. raciborskii KLL07	C. curvispora GIHEG1	99	Non-ribosomal peptide synthase	WP_187706031.
2153	C. raciborskii KLL07	S. torques ITEP024	74	Non-ribosomal peptide synthase	WP_220609291.
2153	C. raciborskii N8	C. raciborskii CR12	100	Non-ribosomal peptide synthase	1
2153	C. raciborskii N8	C. curvispora GIHEG1	99	Non-ribosomal peptide synthase	1
2153	C. raciborskii N8	C. raciborskii CR2010	99	amino acid adenylation domain-containing protein	UJL33507.1
2153	C. raciborskii N8	C. raciborskii KLL07	99	amino acid adenylation domain-containing protein	UJS06337.1
2153	C. raciborskii N8	S. torques ITEP024	74	Non-ribosomal peptide synthase	WP_220609291.
2147	C. raciborskii PAMP2012	C. raciborskii KL1	98	amino acid adenylation	MBG0742686.1
2147	C. raciborskii PAMP2012	S. torques ITEP024	77	Non-ribosomal peptide synthase	WP_220609291.
2153	C. raciborskii 1523720	C. curvispora GIHEG1	96	Non-ribosomal peptide synthase	WP_187706031.
2153	C. raciborskii 1523720	C. raciborskii CR12	95	Non-ribosomal peptide synthase	WP_057178219.
2153	C. raciborskii 1523720	C. raciborskii CR2010	95	amino acid adenylation	UJL33507.1

	2153		C. raciborskii 1523720	C. raciborskii KLL07	95	amino acid adenylation	UJS06337.1
	2142		S. torques ITEP024	C. raciborskii KL1	76	Non-ribosomal peptide synthase	WP_220609288.
	1961		S. torques ITEP024	C. curvispora GIHEG1	74	Non-ribosomal peptide synthase	WP_187706033.
	1961		S. torques ITEP024	C. raciborskii CR12	74	Non-ribosomal peptide synthase	WP_057178216.
	310		C. raciborskii CR12	Anabaena sp. 90	73	Glycosyl transferase	AFW95759.1
	310	Glycosyltransferase	C. raciborskii N8	S. torques ITEP024	88	family 2 Glycosyltransferase	WP_220609289.
HasX	267		C. raciborskii CENA303	Anabaena sp. 90	83	Family 2 glycosyl transferase	AFW95739.1
	82	Hypothetical protein	C. raciborskii CENA302	Scytonema hofmanni UTEX B 1581	74	Hypothetical protein	WP_051502821.
	82	Glycosyltransferase	C. raciborskii PAMP2012	S. torques ITEP024	83	Glycosyltransferase	WP_220609289.
	2874		C. raciborskii CS-505	C. raciborskii CR12	90	Non-ribosomal peptide synthase	KRH96617.1
	2870		C. raciborskii CS-508	C. raciborskii CR12	96	Non-ribosomal peptide synthase	KRH96617.1
HasY	2864	NDDG	C. raciborskii CR12	C. raciborskii CS-505	90	Non-ribosomal peptide synthase	EFA70496.1
	2864	NRPS	C. raciborskii CR12	S. torques reginae ITEP024	76	Non-ribosomal peptide synthase	WP_220609288.
	2864		C. raciborskii CR12	C. raciborskii KL1	72	Non-ribosomal peptide	MBG0742682.1

				synthase	
2864	C. raciborskii CR12	C. raciborskii CENA303	72	Non-ribosomal peptide synthase	OSO88008.1
2863	C. raciborskii CENA303	C. curvispora GIHEG1	72	Non-ribosomal peptide V synthase	1
2864	C. raciborskii GIHE 2018	C. curvispora GIHEG1	100	Non-ribosomal peptide V synthase	1
2864	C. raciborskii GIHE 2018	C. raciborskii CR12	97	Non-ribosomal peptide V synthase	WP_057178252.
2864	C. raciborskii GIHE 2018	C. raciborskii KL1	72	Non-ribosomal peptide synthase	MBG0742682.1
2864	C. raciborskii GIHE 2018	S. torques ITEP024	76	Non-ribosomal peptide V synthase	WP_220609288.
2864	C. raciborskii GIHE 2018	C. raciborskii CENA303	72	Non-ribosomal peptide synthase	OSO88008.1
2864	C. curvispora GIHEG1	C. raciborskii CR12	97	Non-ribosomal peptide V synthase	1
2864	C. curvispora GIHEG1	S. torques ITEP024	76	Non-ribosomal peptide V synthase	WP_220609288.
2864	C. raciborskii KLL07	C. curvispora GIHEG1	100	Non-ribosomal peptide V synthase	1
2864	C. raciborskii KLL07	C. raciborskii CR12	98	Non-ribosomal peptide V synthase	WP_220609288. 1
2864	C. raciborskii KLL07	S. torques ITEP024	76	Non-ribosomal peptide V synthase	WP_220609288. 1
2864	C. raciborskii N8	C. curvispora GIHEG1	99	Non-ribosomal peptide V synthase	WP_220609288. 1
2864	C. raciborskii N8	C. raciborskii CR12	97	Non-ribosomal peptide V synthase	1
2864	C. raciborskii N8	S. torques ITEP024	76	Non-ribosomal peptide V synthase	WP_220609288.
2864	C. raciborskii N8	C. raciborskii KL1	72	amino acid adenylation	MBG0742682.1

						domain-containing protein	
	2864		C. raciborskii N8	C. raciborskii CENA303	72	Non-ribosomal peptide synthase	OSO88008.1
	2862		C. raciborskii PAMP2012	S. torques ITEP024	84	Non-ribosomal peptide synthase	WP_220609288.
	2862		C. raciborskii PAMP2012	C. raciborskii KL1	98	Non-ribosomal peptide synthase	MBG074 2682.1
	2862		C. raciborskii PAMP2012	C. raciborskii CENA303	99	Non-ribosomal peptide synthase	OSO88008.1
	2855		S. torques ITEP024	C. raciborskii KL1	84	Non-ribosomal peptide synthase	MBG074 2686.1
	2855		S. torques ITEP024	C. raciborskii CENA303	84	Non-ribosomal peptide synthase	OSO88008.1
	2855		S. torques ITEP024	C. curvispora GIHEG1	76	Non-ribosomal peptide synthase	WP_187706030.
	2855		S. torques ITEP024	C. raciborskii CR12	76	Non-ribosomal peptide synthase	WP_057178252.
	431		C. raciborskii CS-505	Cylindrospermopsis CR12	97	MFS transporter	KRH96586.1
	431		C. raciborskii CS-505	C. curvispora GIHE G1	97	MFS transporter	QNP29400.1
	431		C. raciborskii CS-505	C. curvispora GIHE G1	97	MFS transporter	QNP29400.1
	431		C. raciborskii CS-505	C. curvispora GIHE G1	97	Major facilitator superfamily MFS_0	QNP29400.1
	427		C. raciborskii CS-508	C. raciborskii CS-505	96	Major facilitator superfamily MFS_1	EFA70508.1
HasZ	431	Transporter	C. raciborskii CR12	C. raciborskii CS-505	97	Major facilitator superfamily MFS_1	EFA70508.1
	431		C. raciborskii CS-505	C. raciborskii CR12	97	MFS transporter	WP_057178227.
	429		C. raciborskii CENA303	C. raciborskii CS-505	68	MFS transporter	OBU77701.1

Supplementary Table S14. Proposed function of the proteins encoded by cylindrospermopsin biosynthetic gene cluster in the genomes of the *C. raciborskii* strains CS-505, CR12, DSH and CHAB-3438.

Protein	Amino acids	Proposed function	Strain	Organism	Identit y(%)	Function	Acession number
	391		C. raciborskii CS- 505	C. raciborskii AWT205	100	Amidinotransferase	ABX60160.1
CyrA	391	Amidinotransferase	C. raciborskii CR12	C. raciborskii AWT205	99	Amidinotransferase	ABX60160.1
	391		C. raciborskii CHAB3438	C. raciborskii AWT205	100	Amidinotransferase	ABX60160.1
	2917		C. raciborskii CS- 505	C. raciborskii AWT205	100	Mixed NRPS/PKS	ABX60161.1
CyrB	2917	NRPS/PKS	C. raciborskii CR12	C. raciborskii AWT205	100	Mixed NRPS/PKS	ABX60161.1
	2917		C. raciborskii CHAB3438	Raphidiopsis curvata HB1	100	Mixed NRPS/PKS	AHN91606.1
	1667		C. raciborskii CS- 505	C. raciborskii AWT205	99	Polyketide synthase	ABX60163.1
CyrC	1667		C. raciborskii CR12	C. raciborskii AWT205	99	Polyketide synthase	ABX60163.1
	1667	PKS	C. raciborskii CHAB3438	Raphidiopsis curvata HB1	100	Polyketide synthase	AHN91608.1
CyrD	1851	PKS	C. raciborskii CS- 505	C. raciborskii AWT205	100	Polyketide synthase	ABX60152.1
	1876		C. raciborskii	C. raciborskii	99	Polyketide synthase	ABX60152.1

			CR12	AWT205			
	1876		C. raciborskii CHAB3438	Raphidiopsis curvata HB1	100	Polyketide synthase	AHN91609.1
	1888		C. raciborskii CS- 505	C. raciborskii AWT205	99	Polyketide synthase	ABX60162.1
CyrE	1888	PKS	C. raciborskii CR12	C. raciborskii AWT205	99	Polyketide synthase	ABX60162.1
	1888		C. raciborskii CHAB3438	Raphidiopsis curvata HB1	100	Polyketide synthase	AHN91607.1
	1357		C. raciborskii CS- 505	C. raciborskii AWT205	100	Polyketide synthase	ABX60153.1
CyrF	1357	PKS	C. raciborskii CR12	C. raciborskii AWT205	99	Polyketide synthase	ABX60153.1
	1357		C. raciborskii CHAB3438	Raphidiopsis curvata CHAB1150	100	Polyketide synthase	AFC35246.1
	478		C. raciborskii CS- 505	C. raciborskii AWT205	100	Putative uracil ring formation	ABX60154.1
CyrG	478	Uracil ring formation	C. raciborskii CR12	C. raciborskii AWT205	99	Putative uracil ring formation	ABX60154.1
	478		C. raciborskii CHAB3438	Raphidiopsis curvata HB1	99	Putative uracil ring formation	AHN91611.1
CyrI	276	Hydroxylation of C-7	C. raciborskii CS- 505	C. raciborskii CHAB3438	100	Putative 2-oxoglutarate- dependent iron oxygenase	AHN91588.1
	276		C. raciborskii CS- 505	C. raciborskii CR12	99	Putative 2- oxoglutarate-dependent iron oxygenase	WP_057178790
	278		C. raciborskii CR12	C. raciborskii CHAB3438	99	Putative 2-oxoglutarate- dependent iron oxygenase	AHN91588.1
	276		C. raciborskii CHAB3438	C. raciborskii CR12	99	Putative 2-oxoglutarate- dependent iron oxygenase	WP_057178790.1

	465		C. raciborskii CS- 505	C. raciborskii AWT205	99	Multidrug exporter MatE	ABX60156.1
CyrK	465	Exporter	C. raciborskii CR12	C. raciborskii CS-505	99	MATE family efflux transporter	OBU75962.1
	451		C. raciborskii CHAB3438	Raphidiopsis curvata CHAB1150	100	Multidrug exporter MatE	AFC35248.1
CyrL	249	Transposase	C. raciborskii CS- 505	C. raciborskii AWT205	100	Transposase	ABX60157.1
CyrL	153	Transposase	C. raciborskii CHAB3438	C. raciborskii CR12	98	Transposase	WP_161808566.1
	476		C. raciborskii CS- 505	C. raciborskii AWT205	100	Amidohydrolase	ABX60158.1
СугН	476	Uracil ring formation	C. raciborskii CR12	C. raciborskii AWT205	99	Amidohydrolase	ABX60158.1
	476	ioimation	C. raciborskii CHAB3438	Raphidiopsis curvata CHAB1150	100	Amidohydrolase	AHN91614.1
	259		C. raciborskii CS- 505	C. raciborskii AWT205	100	Putative sulfotransferase	ABX60159.1
CyrJ	259	Sulfotransferase	C. raciborskii CR12	C. raciborskii AWT205	99	Putative sulfotransferase	ABX60159.1
	261		C. raciborskii CHAB3438	Raphidiopsis curvata HB1	100	Putative sulfotransferase	AHN91615
CyrM	105	Transposase	C. raciborskii CS- 505	C. raciborskii AWT205	97	Transposase protein	ABX60157.1
CyrN	219	Adenylyl-sulfate kinase	C. raciborskii CS- 505	C. raciborskii AWT205	100	Adenylylsulfate kinase	ABX60164.1

CyrO	515	Regulator	C. raciborskii CS- 505	C. raciborskii AWT205	99	Hypothetical protein	AHN91599.1
------	-----	-----------	---------------------------	--------------------------	----	----------------------	------------

Supplementary Table S15. Proposed function of the proteins encoded by saxitoxin biosynthetic gene cluster in the genomes of the *C. raciborskii* strains *R. brookii* D9 , MVCC14, MVCC19,CENA302, ITEP-A1, and the CYRF.

Protein	Amino acids	Product	Strains	Organism	Identity(%)	Function	Acession number
	1245		R. brookii D9	C. raciborskii T3	99	Polyketide synthase- related protein	ABI75094.1
	1245		C. raciborskii CENA302	C. raciborskii T3	100	Polyketide synthase- related protein	ABI75094.1
SxtA	1245	-PKS	C. raciborskii ITEP-A1	C. raciborskii T3	100	Polyketide synthase- related protein	ABI75094.1
SXIA	1245	PKS	C. raciborskii MVCC14	C. raciborskii T3	100	Polyketide synthase- related protein	ABI75094.1
	1245		C. raciborskii MVCC19	C. raciborskii T3	99	Polyketide synthase- related protein	ABI75094.1
	860		C. raciborskii CYRF	C. raciborskii T3	99	polyketide synthase- related protein	ABI75094.1
SxtB	318	Cytidine	R. brookii D9	C. raciborskii T3	100	Cytidine deaminase	ABI75093.1
	318	deaminase	C. raciborskii CENA302	R. brookii D9	100	SxtB	EFA72782.1
	318		C. raciborskii ITEP-A1	C. raciborskii T3	100	Cytidine deaminase	ABI75093.1
	318		C. raciborskii MVCC14	C. raciborskii T3	100	Cytidine deaminase	ABI75093.1
	318		C. raciborskii MVCC19	C. raciborskii T3	89	Cytidine deaminase	WP_254011061.1

	318		C. raciborskii CYRF	Heteroscytonem a crispum UCFS10	92	SxtB	AYN62266.1
	117		R. brookii D9	C. raciborskii T3	100	SxtC	ABI75092.1
	94		C. raciborskii CENA302	C. raciborskii T3	100	SxtC	ABI75092.1
	94		C. raciborskii ITEP-A1	C. raciborskii T3	100	sxtC	ABI75092.1
SxtC	117	Regulatory	C. raciborskii MVCC14	C. raciborskii T3	100	sxtC	ABI75092.1
	94		C. raciborskii MVCC19	Heteroscytonem a crispum UCFS10	91	sxtC	AYN62265.1
	117		C. raciborskii CYRF	C. raciborskii T3	100	sxtC	AYN62265.1
	252		R. brookii D9	C. raciborskii T3	99	Sterole desaturase	ABI75089.1
	252	Sterole	C. raciborskii CENA302	R. brookii D9	100	SxtD	EFA72785.1
SxtD	252	desaturase- like protein	C. raciborskii ITEP-A1	R. brookii D9	100	SxtD	EFA72785.1
	252		C. raciborskii MVCC14	R. brookii D9	100	SxtD	EFA72785.1
SxtE	128	Unknown	R. brookii D9	C. raciborskii T3	99	SxtE	ABI75095.1
	45	protein	C. raciborskii CENA302	C. raciborskii T3	100	SxtE	ABI75095.1
	45		C. raciborskii ITEP-A1	C. raciborskii T3	100	SxtE	ABI75095.1
	128		C. raciborskii MVCC14	C. raciborskii T3	100	SxtE	ABI75095.1
	127		C. raciborskii MVCC19	Microseira wollei	88	SxtE	ACZ26228.1
	120		C. raciborskii CYRF	Microseira wollei	92	SxtE	ACZ26228.1

	471		R. brookii D9	C. raciborskii T3	99	Sodium-driven multidrug and toxic compound extrusion protein	ABI75096.1
	471		C. raciborskii CENA302	C. raciborskii T3	100	Sodium-driven multidrug and toxic compound extrusion protein	ABI75096.1
SxtF	471	MATE	C. raciborskii ITEP-A1	C. raciborskii T3	100	Sodium-driven multidrug and toxic compound extrusion protein	ABI75096.1
	471		C. raciborskii MVCC14	C. raciborskii T3	100	Sodium-driven multidrug and toxic compound extrusion protein	ABI75096.1
	471		C. raciborskii MVCC19	C. raciborskii T3	100	Sodium-driven multidrug and toxic compound extrusion protein	ABI75096.1
	220		C. raciborskii CYRF	Heteroscytonema crispum UCFS10	83	SxtM1	AYN62272.1
	377		R. brookii D9	C. raciborskii T3	100	Amidinotransferase	ABI75097.1
	377		C. raciborskii CENA302	C. raciborskii T3	100	Amidinotransferase	ABI75097.1
SxtG	377	Amidinotran	C. raciborskii ITEP-A1	C. raciborskii T3	100	Amidinotransferase	ABI75097.1
	sferase 377		C. raciborskii MVCC14	C. raciborskii T3	100	Amidinotransferase	ABI75097.1
	377		C. raciborskii	C. raciborskii T3	100	Amidinotransferase	ABI75097.1

			MVCC19				
	377		C. raciborskii CYRF	C. raciborskii T3	100	Amidinotransferase	ABI75097.1
	334		R. brookii D9	C. raciborskii T3	100	Phenylpropionate dioxygenase	ABI75098.1
	334		C. raciborskii CENA302	C. raciborskii T3	100	Phenylpropionate dioxygenase	ABI75098.1
SxtH	334	Phenylpropi	C. raciborskii ITEP-A1	C. raciborskii T3	100	Phenylpropionate dioxygenase	ABI75098.1
SALI	334	onate dioxygenase	C. raciborskii MVCC14	C. raciborskii T3	100	Phenylpropionate dioxygenase	ABI75098.1
	334		C. raciborskii MVCC19	C. raciborskii T3	100	Phenylpropionate dioxygenase	ABI75098.1
	334		C. raciborskii CYRF	C. raciborskii T3	100	Phenylpropionate dioxygenase	ABI75098.1
SxtI	612	Carbamoyltr ansferase	R. brookii D9	C. raciborskii T3	100	NodU/CmcH-related carbamoyltransferase	ABI75099.1
	596		C. raciborskii CENA302	C. raciborskii T3	99	NodU/CmcH-related carbamoyltransferase	ABI75099.1
	612		C. raciborskii ITEP-A1	C. raciborskii T3	100	NodU/CmcH-related carbamoyltransferase	ABI75099.1
	612		C. raciborskii MVCC19	C. raciborskii T3	99	NodU/CmcH-related carbamoyltransferase	ABI75099.1
	612		C. raciborskii CYRF	C. raciborskii T3	99	NodU/CmcH-related carbamoyltransferase	ABI75099.1

	147		R. brookii D9	C. raciborskii T3	100	SxtJ	ABI75100.1
	134		C. raciborskii MVCC14	C. raciborskii T3	99	SxtJ	ABI75100.1
SxtJ	147	Regulatory	C. raciborskii MVCC19	C. raciborskii MVCC14	100	SxtJ	OHY34958.1
	147		C. raciborskii CENA302	C. raciborskii MVCC14	100	SxtJ	ОНҮ34958.1
	147		C. raciborskii CYRF	C. raciborskii MVCC14	100	SxtJ	OHY34958.1
SxtK	54	Unknown protein	C. raciborskii CENA302	C. raciborskii T3	100	SxtK	ABI75101.1
	54		C. raciborskii ITEP-A1	C. raciborskii T3	100	SxtK	ABI75101.1
	54		C. raciborskii MVCC19	C. raciborskii T3	100	SxtK	ABI75101.1
	54		C. raciborskii CYRF	C. raciborskii T3	100	SxtK	ABI75101.1
	54		C. raciborskii MVCC14	C. raciborskii T3	100	SxtK	ABI75101.1

	435		R. brookii D9	C. raciborskii T3	100	GDSL-lipase	ABI75102.1
SxtL	407		C. raciborskii CENA302	C. raciborskii T3	99	GDSL-lipase	ABI75102.1
	420		C. raciborskii ITEP-A1	C. raciborskii T3	99	GDSL-lipase	ABI75102.1
	419		C. raciborskii MVCC14	C. raciborskii T3	99	GDSL-lipase	ABI75102.1
	419	GDSL-lipase	C. raciborskii MVCC19	C. raciborskii T3	99	GDSL-lipase	ABI75102.1
	432		C. raciborskiiCYRF	C. raciborskii T3	99	GDSL-lipase	ABI75102.1
SxtM	475	MATE	R. brookii D9	C. raciborskii MVCC14	99	SxtM, partial	AFQ99040.1
	429		C. raciborskii CENA302	C. raciborskii MVCC14	99	SxtM, partial	AFQ99040.1
	482		C. raciborskii ITEP-A1	C. raciborskii T3	99	Sodium-driven multidrug and toxic compound extrusion protein	ABI75103.1
	475		C. raciborskii MVCC14	R. brookii D9	99	SxtSUL	EFA72771.1
	475		C. raciborskii MVCC19	C. raciborskii MVCC14	99	SxtM	AFQ99040.1
	182		C. raciborskii CYRF	C. raciborskii T3	99	Sodium-driven multidrug and toxic compound extrusion protein	ABI75103.1

	302		R. brookii D9	Microseira wollei	89	SxtSUL	ACG63834.1
SxtN	302	G 16	C. raciborskii CENA302	R. brookii D9	100	SxtSUL	EFA72773.1
	302	Sulfotransfer ase	C. raciborskii MVCC14	R. brookii D9	100	SxtSUL	EFA72773.1
	270		C. raciborskii CYRF	C. raciborskii T3	100	SxtSUL	EFA72773.1
	200		R. brookii D9	C. raciborskii T3	100	Adenylylsulfate kinase	ABI75115.1
SxtO	159		C. raciborskii CENA302	R. brookii D9	100	Adenylylsulfate kinase	EFA72764.1
	200		C. raciborskii MVCC14	R. brookii D9	100	Adenylylsulfate kinase	EFA72764.1
	200	Adenylylsulf —ate kinase	C. raciborskii MVCC19	C. raciborskii MVCC14	100	Adenylylsulfate kinase	OHY34903.1
	200	— ate kinase	C. raciborskii MVCC19	C. raciborskii CENA302	100	Adenylylsulfate kinase	ОРН09277
	200		C. raciborskii MVCC19	C. raciborskii T3	100	Adenylylsulfate kinase	ABI75115.1
	200		C. raciborskii CYRF	C. raciborskii T3	100	Adenylylsulfate kinase	ABI75115.1
SxtP	408		R. brookii D9	C. raciborskii T3	99	Putative saxitoxin- binding protein	ABI75114.1
	408		C. raciborskii CENA302	C. raciborskii T3	100	Putative saxitoxin- binding protein	ABI75114.1
	408	RTX toxin	C. raciborskii MVCC14	C. raciborskii T3	100	Putative saxitoxin- binding protein	ABI75114.1
	408		C. raciborskii MVCC19	C. raciborskii T3	100	Putative saxitoxin- binding protein	ABI75114.1
	408		C. raciborskii	C. raciborskii T3	100	Putative saxitoxin-	ABI75114.1

			CYRF			binding protein	
SxtQ	258		R. brookii D9	C. raciborskii T3	99	SxtQ	ABI75113.1
	239		C. raciborskii CENA302	R. brookii D9	100	SxtQ	EFA72766.1
	239	Unknown protein	C. raciborskii MVCC14	R. brookii D9	100	SxtQ	EFA72766.1
	239	protein	C. raciborskii MVCC19	C. raciborskii T3	100	SxtQ	EFA72766.1
	239		C. raciborskii CYRF	C. raciborskii T3	100	SxtQ	EFA72766.1
	258		R. brookii D9	C. raciborskii T3	100	Acyl-CoA N-acyltransferase	ABI75112.1
SxtR	258		C. raciborskii CENA302	C. raciborskii T3	100	Acyl-CoA N-acyltransferase	ABI75112.1
	258	Acyl transferase	C. raciborskii MVCC14	C. raciborskii T3	100	Acyl-CoA N-acyltransferase	ABI75112.1
	258		C. raciborskii MVCC19	C. raciborskii T3	100	Acyl-CoA N-acyltransferase	ABI75112.1
	258		C. raciborskii CYRF	C. raciborskii T3	100	Acyl-CoA N-acyltransferase	ABI75112.1
SxtS	241	Phytanoyl- CoA	R. brookii D9	C. raciborskii T3	99	Phytanoyl-CoA dioxygenase	ABI75110.1
	241	dioxygenase	C. raciborskii CENA302	R. brookii D9	100	SxtS	EFA72768.1
	241		C. raciborskii MVCC14	R. brookii D9	100	SxtS	EFA72768.1
	241		C. raciborskii MVCC19	C. raciborskii T3	99	Phytanoyl-CoA dioxygenase	ABI75110
	241		C. raciborskii CYRF	C. raciborskii T3	100	Phytanoyl-CoA dioxygenase	ABI75110

SxtT	334		R. brookii D9	C. raciborskii T3	99	Phenylpropionate dioxygenase	ABI75109.1
	334	Phenylpropi	C. raciborskii CENA302	R. brookii D9	100	SxtT	EFA72769.1
	334	onate dioxygenase	C. raciborskii MVCC14	R. brookii D9	100	SxtT	EFA72769.1
	334	uloxygenase	C. raciborskii MVCC19	R. brookii D9	100	SxtT	EFA72769.1
	334		C. raciborskii CYRF	C. raciborskii T3	100	Phenylpropionate dioxygenase	EFA72769.1
SxtU	248		R. brookii D9	C. raciborskii T3	100	Short-chain alcohol dehydrogenase	ABI75108.1
	248	-Alcohol dehydrogena -se	C. raciborskii CENA302	R. brookii D9	100	SxtU	EFA72770.1
	248		C. raciborskii MVCC14	R. brookii D9	100	SxtU	EFA72770.1
	248		C. raciborskii MVCC19	R. brookii D9	93	SxtU	EFA72770.1
	249		C. raciborskii CYRF	C. raciborskii T3	100	Short-chain alcohol dehydrogenase	ABI75108.1
SxtDIOX	334		R. brookii D9	Microseira wollei	86	SxtDIOX	ACG63835.1
	334	(2Fe-2S)- binding	C. raciborskii CENA302	R. brookii D9	99	SxtDIOX	EFA72772.1
	334	protein	C. raciborskii MVCC14	R. brookii D9	99	SxtDIOX	EFA72772.1