Math 323 HW5

Minh Bui

May 22, 2017

Problem 3.2: Give an example of a set of integers with at least one element but no minimum.

Solution. Let $A = \{k \in \mathbb{Z} \mid k < 0\}$ is a nonempty set of integers that does not have a minimum.

Problem 3.4: Consider $A = \{ m \in \mathbb{Z} \mid m > 17 \}.$

- (a) Is 17 a lower bound of A?
- (b) Is 12 a lower bound of A?
- (c) Is 20 a lower bound of A?
- (d) Is 17 a minimum of A?
- (e) Is 12 a minimum of A?
- (f) Is 20 a minimum of A?
- (g) Is 18 a lower bound of A?
- (h) Is 18 a minimum of A?

Solution: We review our definition of lower bound and minimum from Prof. Madden's book.

Definition 1. In an ordered number system the number l is said to be a lower bound on a set S when: if $s \in S$, then $l \leq s$.

Definition 2. Let S be a set of numbers. We say m is a minimum of the set S when

- 1. $m \in S$
- 2. If $s \in S$, then $m \leq s$
- (a) 17 is a lower bound of A.
- (b) 12 a lower bound of A.
- (c) 20 is not a lower bound of A since $20 \in A$, $18 \in A$ but 20 > 18.
- (d) 17 is not a minimum of A since it's not in the set A.
- (e) 12 is not a minimum of A since it's not in the set A.

- (f) 20 is not a minimum of A since $18 \in A$ but 20 > 18.
- (g) 18 is a lower bound of A since for $m \in \mathbb{Z}$ and m > 17, $m \ge 18$.
- (h) 18 is a minimum of A since $18 \in A$ and $\forall m \in A, m \ge 18$.
- Problem 3.12: Let A and B be sets of integers so that every element of A is also an element of B. Let $r, s \in \mathbb{Z}$ with r < s. Are the following true or false?
 - (a) If r is a lower bound on A, then s is a lower bound on A. False. If there is an integer k such that r < k < s and if $k \in A$ then s is not a lower bound of A.
 - (b) If s is a lower bound on A, then r is a lower bound on A. True since s is smaller than every elements in A and r < s.
 - (c) If r is a lower bound on A, then s is a lower bound on B. False. We know $A \subseteq B$. So there is a case that A = B. Assume set A or B has a minimum and assume such minimum is actually r. Assume $s \in B$. We know s > r. And so s cannot be a lower bound on B.
 - (d) If s is a lower bound on A, then r is a lower bound on B. False. We know $A \subseteq B$, but what if $\exists k \in B$ and $k \notin A$ such that k < r?
 - (e) If r is a lower bound on B, then s is a lower bound on A. False. s is not a lower bound on A if $\exists a \in A$ such that r < a < s.
 - (f) If s is a lower bound on B, then r is a lower bound on A. True.
- Problem 3.13: Let A be a set of integers and $m \in \mathbb{Z}$. Define the terms:
 - (a) m is a maximum of A.
 - (b) m is an upper bound of A.

Solution.

Definition 3. Let A be a set of integers and $m \in \mathbb{Z}$. We say m is a maximum of A if and only if

- 1. $m \in A$
- 2. If $a \in A$, then $a \leq m$

Definition 4. Let A be a set of integers and $m \in \mathbb{Z}$. We say m is an upper bound of A if and only if it satisfies this condition: if $a \in A$, then $m \geq a$.

Problem 3.11: Let $a, b \in \mathbb{Z}$. Prove: If $a \neq b$, then $ab \neq 1$.

Proof. Assume $a,b\in\mathbb{Z}$ and $a\neq b$. Assume by way of contradiction, ab=1. By our assumption, $a\neq 0$ and $b\neq 0$. Since $a,b\in\mathbb{Z},$

$$a^2>0 \text{ and } b^2>0$$

$$a^2\geq 1 \text{ and } b^2\geq 1$$

$$a^2b^2\geq b^2 \text{ and } b^2a^2\geq a^2 \text{ but } ab=1$$

$$1\geq b^2 \text{ and } 1\geq a^2 \Longrightarrow \Leftarrow$$

So $ab \neq 1$ and thus this completes the proof by contradiction.