河海大学 2024—2025 学年第一学期

《高等数学 BI》期末试卷(A卷)

考试对象: 2024 级全校工科各专业本科生 考试日期: 2025年1月16日

专业			学号	•		姓	名		成绩		
任课教师(金坛重修学生填写)											
	题号	.	_	Ξ	四	五	六	七	八	成绩	
	得分										
得	分										
一、单选题(每小题3分,共15分)											
1. 当	$ix \rightarrow 0^4$	时,下	列与x氧	等价无约	了小的是	란 ().				
A	$e^{-\sin x}$	-1	В.	$\sqrt{1+arc}$	$\tan x - 1$		C. 1	$-\cos\sqrt{2}$	x	D. $1-\frac{\ln(1)})}}}}}}}}}}})}}}}}}}}}}}}$	$\frac{1+x}{x}$
2. 设	$\xi f(x) =$	$\frac{1}{x^2}$, ab	≠0且 <i>a</i>	a≠b, 5	则在a、	b之间(使得 f(l	f(a)	$=f'(\xi)$	(b-a)成立的	 内点 <i>ξ</i>
(). ~#-		~ m-	- I-	~ -	←		日本士	- 	1 	
A	. 个仔?	£	B. 只有	一点	C. 7	有两个点	₹ D.	是召仔	仕与み	b之值有关	
3. 设	f(x) =	$ x^3-1 $	$\varphi(x)$,	其中 <i>φ</i> (x) 在 x :	=1 处连	续,则	$\varphi(1)=0$	是 f(x)	在 $x=1$ 处页	「导的
().										
	. 充分。 . 充分(···			要但非 語充分					
4. 1	告∫ <i>f</i> ′(ɔ	$(x^2) dx =$	$x^4 + C$	(x>0),则 <i>f</i>	$\hat{f}(x) = 0$).			
A	$x^2 +$	C	$\mathbf{B.} \frac{4}{5}$	$\frac{1}{5}x^{\frac{5}{2}}+C$		C. x	+ <i>C</i>	D.	$\frac{8}{5}x^{\frac{5}{2}}+$	C	
5. 强	函数 <i>f</i> ()	$c) = \ln \frac{1}{1}$	l — x l + x	麦克劳	林公式	为().				
A	$-2\sum_{k=1}^{n}$	$\frac{x^{2k}}{2k} + c$	$o(x^{2n})$		В.	$-2\sum_{k=1}^{n}\frac{1}{2}$	$\frac{x^{2k-1}}{k-1} + c$	$o(x^{2n-1})$			

第 1 页 共 6 页 (高等数学 B I) 期末试卷 (A 卷)

C.
$$2\sum_{k=1}^{n}\frac{x^{2k}}{2k}+o(x^{2n})$$

C.
$$2\sum_{k=1}^{n} \frac{x^{2k}}{2k} + o(x^{2n})$$
 D. $-2\sum_{k=1}^{n} \frac{x^{2k-1}}{(2k-1)!} + o(x^{2n-1})$

得 分

二、填空题(每小题3分,共15分)

- 1. 不定积分 $\int \frac{x+5}{r^2-6r+13} dx = _____$
- 2. 设 y = y(x) 是由方程 $\sqrt[3]{y} = \sqrt[3]{x}(x > 0, y > 0)$ 所确定,则 $dy = \underline{\hspace{1cm}}$
- 3. 极限 $\lim_{x\to 0} \frac{\int_0^{x^2} \left(\sqrt[3]{1+t^2} 1\right) dt}{x^3 (e^{-x^3} 1)} =$ _____
- 4. 曲线 $y = \frac{\ln x}{x} 2x$ 的渐近线方程为___

得 分

三、解答下列各题(每小题6分,共30分)

 $1. 求极限 \lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}.$

2. 求曲线 $\begin{cases} x = a\cos^3 t \\ v = a\sin^3 t \end{cases}$ (a > 0) 在 $t = \frac{\pi}{6}$ 处的曲率.

3. 已知
$$f(x)$$
 的一个原函数为 $\frac{(\arcsin x)^2}{x}$, 求 $\int x f'(x) dx$.

4. 计算定积分
$$\int_{1}^{\sqrt{3}} \frac{1}{x^2 \sqrt{1+x^2}} dx$$
.

5. 设
$$f(x) = 3x^2 + Ax^{-3}$$
,问正数 A 至少为何值时,可使得对任意 $x \in (0,+\infty)$,都有 $f(x) \ge 20$?

得 分	四、 (8%) 求 $f(x) = xe^x$ 的 n 阶分别具有拉格朗日型余项和皮亚诺
-----	--

型余项的麦克劳林公式.

得分 五、(8分) 过坐标原点作曲线 y=lnx的切线,该切线与曲线

 $y = \ln x$ 以及 x 轴所围成的平面图形记为 D.

- (1) 求D的面积A;
- (2) 求D绕y轴旋转一周所得的旋转体的体积V.

得 分

六、(8分) 设函数 f(x) 连续.

- (1) 证明 $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$;
- (2) $\iint_0^2 \frac{\sqrt{4-x}}{\sqrt{4-x}+\sqrt{x+2}} dx$.

得 分

七、(8分)(1) 计算不定积分 $\int e^x \sin x dx$;

(2) 求 $I_n = \int e^x \sin^n x dx$ 的递推公式, 其中 n 为大于 1 的整数.

得 分

八、(8分) 设y = f(x)在 $x = x_0$ 处三阶可导,且 $f''(x_0) = 0$,

 $f'''(x_0) \neq 0$. (1) 证明 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点; (2) 试问 $x = x_0$ 是否是函数 y = f(x) 的极值点? 为什么?

河海大学 2024-2025 学年第一学期《高等数学 BI》(A 卷)期末试卷参考解答

-, 1. C; 2. D; 3. A; 4. D; 5. B

$$=$$
 1. $\frac{1}{2}\ln(x^2-6x+13)+4\arctan\frac{x-3}{2}+C$; 2. $dy = \frac{1+\ln x}{1+\ln y}dx$; 3. $-\frac{1}{9}$;

4.
$$x = 0 = 0$$
; $y = -2x$; 5. $\frac{\pi}{2}$.

三、1. 解 原极限 =
$$\lim_{x\to 0} \left(1 + \frac{\tan x - x}{x}\right)^{\frac{x}{\tan x - x} \cdot \frac{\tan x - x}{x^3}} = e^{\lim_{x\to 0} \frac{\tan^2 x}{3x^2}} = e^{\lim_{x\to 0} \frac{\tan^2 x}{3x^2}} = e^{\frac{1}{3}}.$$

2.
$$\Re \left. \frac{\mathrm{d}y}{\mathrm{d}x} = -\tan t, \; \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{3a\cos^4 t \sin t}, \; \Re \left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{t=\frac{\pi}{6}} = -\frac{\sqrt{3}}{3}, \; \left. \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right|_{t=\frac{\pi}{6}} = \frac{32}{27a} \, \left[4 \, \mathcal{H} \right].$$

曲率
$$K|_{t=\frac{\pi}{6}} = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}}|_{t=\frac{\pi}{6}} = \frac{4\sqrt{3}}{9a} \left[2 \%\right].$$

3.
$$\Re f(x) = \left(\frac{(\arcsin x)^2}{x}\right)' = \frac{2\arcsin x \cdot \frac{x}{\sqrt{1-x^2}} - (\arcsin x)^2}{x^2}$$
 [3 \(\frac{1}{x}\)],

所以
$$\int xf'(x)dx = \int xdf(x) = xf(x) - \int f(x)dx = \frac{2\arcsin x}{\sqrt{1-x^2}} - \frac{2(\arcsin x)^2}{x} + C.$$
 【3分】

$$\iiint_{1}^{\sqrt{3}} \frac{1}{x^{2}\sqrt{1+x^{2}}} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos t}{\sin^{2} t} dt \quad [3 \, \%] = -\frac{1}{\sin t} \Big|_{\frac{\pi}{4}}^{\frac{\pi}{3}} [2 \, \%] = \sqrt{2} - \frac{2}{3} \sqrt{3}... [1 \, \%]$$

5.解 不等式写成 $A \ge 20x^3 - 3x^5$.设 $f(x) = 20x^3 - 3x^5$,即求 f(x) 的最大值.令 $f'(x) = 60x^2 - 15x^4 = 0$,得 $(0, +\infty)$ 内的唯一驻点x = 2【4分】.又f(0) = 0, $\lim_{x \to +\infty} f(x) = -\infty$,故当 $x \in (0, +\infty)$ 时, $\max f(x) = f(2) = 64$,即A = 64【2分】.

四、解
$$f^{(n)}(x) = C_n^0(e^x)^{(n)}x + C_n^1(e^x)^{(n-1)}x' = xe^x + ne^x$$
,【3分】

拉格朗日型:
$$xe^x = x + x^2 + \frac{x^3}{2!} \cdots + \frac{x^n}{(n-1)} + \frac{e^{\theta x}(n+1+\theta x)}{(n+1)!} x^{n+1}.0 < \theta < 1.$$
 【3分】

皮亚诺型:
$$xe^x = x + x^2 + \frac{x^3}{2!} \cdots + \frac{x^n}{(n-1)} + o(x^n)$$
. 【2分】

五、解 设切点为 $(x_0, \ln x_0)$,则切线方程为 $y = \ln x_0 + \frac{1}{x_0}(x - x_0)$,切线过原点知

 $\ln x_0 - 1 = 0, x_0 = e \text{ 切点为}(e,1), \text{ 切线方程为 } y = \frac{1}{e}x \text{ 【2分】}.$ 面积 $A = \frac{e}{2} - \int_1^e \ln x dx = \frac{e}{2} - 1 \text{ 【2分】}.$

体积
$$V_y = \pi \int_0^1 e^{2y} dy - \frac{1}{3}\pi e^2 = \frac{\pi}{6}(e^2 - 3)$$
. 【4分】

六、(1) 证 令 a+b-x=t, 则 $\int_a^b f(a+b-x) dx = -\int_b^a f(t) dt = \int_a^b f(x) dx$. 【3分】

七、解 (1) $\int e^x \sin x dx = \int \sin x de^x = e^x \sin x - \int e^x \cos x dx = e^x \sin x - \int \cos x de^x$

$$= e^x \sin x - \left[e^x \cos x + \int e^x \sin x dx \right],$$
由此得到 $\int e^x \sin x dx = \frac{1}{2} e^x \left(\sin x - \cos x \right) + C.$ 【3 分】

(2)
$$I_n = \int \sin^n x \, d(e^x) = e^x \sin^n x - \int e^x \, d(\sin^n x) = e^x \sin^n x - n \int e^x \sin^{n-1} x \cos x \, dx$$

$$= e^x \sin^n x - n \int \sin^{n-1} x \cos x \, \mathrm{d}\left(e^x\right) = e^x \sin^n x - n \int e^x \sin^{n-1} x \cos x - \int e^x \, \mathrm{d}\left(\sin^{n-1} x \cos x\right) \right].$$

$$= e^{x} \sin^{n} x - ne^{x} \sin^{n-1} x \cos x + n \int e^{x} ((n-1)\sin^{n-2} x \cos^{2} x - \sin^{n} x) dx$$

$$= e^{x} \sin^{n} x - ne^{x} \sin^{n-1} x \cos x + n \int e^{x} ((n-1)\sin^{n-2} x - n \sin^{n} x) dx$$

$$=e^{x}\sin^{n}x-ne^{x}\sin^{n-1}x\cos x+n(n-1)I_{n-2}-n^{2}I_{n}$$
 [4 \(\frac{1}{2}\)]

曲此得到
$$I_n = \frac{e^x \sin^{n-1} x}{n^2 + 1} \left(\sin x - n \cos x \right) + \frac{n(n-1)}{n^2 + 1} I_{n-2} (n \ge 2)$$
. 【1分】

八、(1) 证 不妨设 $f'''(x_0) > 0$, 则 $f'''(x_0) = \lim_{x \to x_0} \frac{f''(x) - f''(x_0)}{x - x_0} \lim_{x \to x_0} \frac{f''(x)}{x - x_0} > 0$, 由极限的保号性, 在

 $\stackrel{\circ}{U}(x_0)$ 内有 $\frac{f''(x)}{x-x_0} > 0$, 所以 f''(x) 在 x_0 的两侧异号, 所以 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点. 【3 分】

(2) $x = x_0$ 不是函数 y = f(x) 的极值点.【1分】理由如下:

①若 $f'(x_0) \neq 0$,则由费马引理(取极值的必要条件)知 $x = x_0$ 不是函数 y = f(x) 的极值点.【2 分】

②若 $f'(x_0) = 0$,则由泰勒公式 $f(x) - f(x_0) = \frac{f'''(x_0)}{3!} (x - x_0)^3 + o((x - x_0)^3)$.可见在 $x = x_0$ 的两侧 f(x) - f(x) 的符合异号,所以 $x = x_0$ 不是函数 y = f(x) 的极值点. 【2 分】.

河海大学 2024-2025 学年第一学期《高等数学 BI》(B卷)期末试卷参考解答

-, 1. B; 2. A; 3. D; 4. B; 5. C

4.
$$\frac{\pi}{2}$$
; 5. $-\frac{1}{9}$.