p.11 & p.14: on utilise le « i » minuscule pour numéroter les observations (et non un I majuscule)

Table 3.3

Données brutes relatives à la taille de T-shirt d'enfants de 4ème primaires

i	Taille (X_i)						
1	S	11	M	21	M	31	L
2	M	12	S	22	M	32	L
3	M	13	S	23	M	33	L
4	M	14	M	24	M	34	L
5	S	15	S	25	S	35	S
6	XS	16	S	26	S	36	S
7	XS	17	M	27	M	37	S
8	XS	18	M	28	M	38	S
9	S	19	M	29	M	39	S
10	S	20	M	30	L	40	S

Table 3.6

Données brutes relatives au nombre d'enfants par ménages, au sein de 40 ménages

i	Enfants (X_i)						
1	5	11	1	21	1	31	1
2	2	12	3	22	1	32	1
3	2	13	3	23	2	33	2
4	3	14	1	24	2	34	2
5	1	15	4	25	1	35	1
6	2	16	3	26	2	36	2
7	1	17	3	27	3	37	3
8	2	18	1	28	1	38	1
9	2	19	2	29	3	39	3
10	2	20	1	30	4	40	4

MÉTHODE D'INTERPOLATION LINÉAIRE

• Déterminez le 3^{ème} quartile.

Classe	Centre de classe	n_j	f_j (en %)	N_{j}	F_{j}
[0-20000[10000	20	0.444	20	0.444
[20000-40000[30000	9	0.200	29	0.644
[40000-60000[50000	11	0.244	40	0.888
[60000-80000[70000	3	0.067	43	0.955
[80000-100000[90000	1	0.022	44	0.977
[100000-120000[110000	1	0.022	45	1

BOÎTES À MOUSTACHE

- Les moustaches:
 - Limites = les barrières (à distance de 1,5 x écart interquartile)

Exemple.:
$$Q_1 = 8$$
; $Q_3 = 13$

- \rightarrow Écart interquartile = $5 \rightarrow 5 \times 1,5 = 7,5!!$
 - \rightarrow Barrière inférieure = 8 7,5 = 0,5
 - \rightarrow Barrière supérieure = 13 + 7,5 = 20;5

DECRIRE CHAQUE BOXPLOT

Décrivez chaque boite à moustache. Dans quel groupe le score est-il le plus élevé « globalement »?

CHAPITRE 4

EXPLORATION ALGÉBRIQUE DES DONNÉES À UNE DIMENSION

LES INDICATEURS ALGÉBRIQUE PRINCIPAUX

- 1. Les mesures de la tendance centrale
- 2. Les mesures de la dispersion
- 3. La détermination algébrique de la symétrie et de l'aplatissement

1. MESURE DE LA TENDANCE CENTRALE

- LE MODE
- LA MOYENNE
- LA MÉDIANE

(a) Série Ancienneté i (Y_i)

(b) Distribution de fréquence (= tableau de transnumérisation)

Уj	n _j fréquence absolue)	f _j (fréquence relative)	Fréquences relatives (en %)
1	4	0.27	27%
2	1	0.07	7%
3	0	0.00	0%
4	0	0.00	0%
5	1	0.07	7%
6	0	0.00	0%
7	1	0.07	7%
8	5	0.33	33%
9	2	0.13	13%
10	1	0.07	7%
TOTAL	9	1,00	100%

• **MODE**: classe/valeur la plus représentée.

- **AVANTAGE**: insensible aux valeurs aberrantes (>< moyenne)
- **INCONVENIENT**: insensible à TOUTES les autres valeurs de la distribution

(a) Série		
i	Ancienneté (Y _i)	
1	1	
2	5	
3	2	
4	8	
5	8	
6	9	
7	9	
8	1	
9	1	
10	1	
11	8	
12	8	
13	7	
14	10	
15	8	

(b) Distribution de fréquence (= tableau de transnumérisation)

\mathbf{y}_{j}	n _j (valeur absolue)	f _j (fréquence relative)	Fréquences relatives (en %)
1	$4 = n_1$	0.27	27%
2	$1 = n_2$	0.07	7%
3	0	0.00	0%
4	0	0.00	0%
5	1	0.07	7%
6	0	0.00	0%
7	1	0.07	7%
8	5	0.33	33%
9	2	0.13	13%
10	1	0.07	7%
TOTAL	15	1,00	100%

NOTATION:

Indice i dans les séries statistiquesIndice j dans les distributions de fréquence

ATTENTION

Ne pas confondre le mode et la fréquence associée au mode!

MOYENNE calculée à partir d'une série statistique: = somme des valeurs divisées par le nombre de valeurs de la somme

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{somme \ des \ observations}{n}$$

n = effectif total

X_i = les valeurs que peut prendre la variable

i = numéro de la donnée

 \bar{X} = moyenne de l'échantillon

(a) Série			
i	Ancienneté (Y _i)		
1	1		
2	5		
3	2		
4	8		
5	8		
6	9		
7	9		
8	1		
9	1		
10	1		
11	8		
12	8		
13	7		
14	10		
15	8		

$$\bar{Y} = \frac{1+5+2+8+8+9+9+1+1+1+8+8+7+10+8}{15}$$

ERRATUM

- P.34: La variable « ancienneté » s'appelle « Y_i » et non « X_i » (cf. Table 1.1)
- P.35: Dans le tableau de fréquence de l'âge (variable X_i), la notation requise est « x_i » et non « y_i ».

MOYENNE calculée à partir de données présentées sous forme de distribution de fréquences:

= lorsque très grand nombre de données

• Calcul sur base de fréquences absolues (n_i)

$$\bar{X} = \frac{\sum_{j=1}^{J} n_j x_j}{n}$$

• Calcul sur base de fréquences relatives (f_i)

$$\bar{X} = \sum_{j=1}^{J} f_j x_j$$

$$\bar{Y} = \frac{1+5+2+8+8+9+9+1+1+1+8+8+7+10+8}{15}$$

$$\Leftrightarrow \overline{Y} = \frac{1+1+1+1+2+5+7+8+8+8+8+8+9+9+10}{15}$$

$$\bar{X} = \frac{\sum_{j=1}^{J} n_j x_j}{n} \iff \bar{Y} = \frac{\mathbf{4} \times \mathbf{1} + \mathbf{1} \times \mathbf{2} + \mathbf{1} \times \mathbf{5} + \mathbf{1} \times \mathbf{7} + \mathbf{5} \times \mathbf{8} + 2 \times 9 + 1 \times 10}{15}$$

$$\bar{X} = \sum_{j=1}^{J} f_j x_j \iff \bar{Y} = \frac{4}{15} \times 1 + \frac{1}{15} \times 2 + \frac{1}{15} \times 5 + \frac{1}{15} \times 7 + \frac{5}{15} \times 8 + \frac{2}{15} \times 9 + \frac{1}{15} \times 10$$

INCONVÉNIENTS DE LA MOYENNE

- Sensible aux valeurs aberrantes
- Peu représentatif d'une distribution non symétrique ou multimodale

AVANTAGES DE LA MOYENNE

Représente parfaitement une distribution_normale (uni-modale et symétrique)

LA DISTRIBUTION NORMALE

La moyenne correspond à la valeur la plus représentée

DISTRIBUTION ASYMÉTRIQUE

La moyenne ne correspond qu'à une très faible

DISTRIBUTION SYMÉTRIQUE BIMODALE

La moyenne ne correspond qu'à une très faible portion de sujets

SYNTHÈSE

Distribution normale:	Distribution multimodale ou asymétrique:
La moyenne représentera parfaitement la distribution	Moyenne très peu représentative

Importance des indices de symétrie!

2. MESURE DE LA DISPERSION

- ÉTENDUE
- -ÉCART INTERQUARTILE
- ÉCART MOYEN ABSOLU
- VARIANCE ET ÉCART-TYPE

(a) Série $math(X_i)$ 8.5 4 4.5 3.5 6.5 6 8 5 9 7.5 10 7.5

ÉTENDUE DES DONNÉES

Valeur maximale observée – valeur minimale observée

→ Dans l'exemple

$$Max = 8.5$$

$$Min = 3.5$$

$$E = 8.5 - 3.5 = 5$$

EXERCICE: QUELLE EST L'ÉTENDUE DES SÉRIES A, B ET C? (PRÉCISION À LA DEMI UNITÉ PRÈS)

ÉTENDUE DES DONNÉES

Avantage:

- Très facile et rapide à calculer

Problème:

- Ne dépend que de deux valeurs, donc très peu représentatif de la distribution!
 - Est très sensible aux valeurs extrêmes

ÉCART INTER-QUARTILE

Correspond à la boite centrale des boîtes à moustaches

Q3 - Q1

ÉCART INTER-QUARTILE

(a) Série		
i	math (X _i)	
1	8.5	
2	4	
3	4.5	
4	6	
5	3.5	
6	6.5	
7	7	
8	5	
9	7.5	
10	7.5	

3.5,4,4.5,5,6 6.5,7,7.5,7.5,8.5

6.5,7,7.5,7.5,8.5

$$=Q3$$

$$Q3 - Q1 = 7.5 - 4.5 = 3$$

EMA ET VARIANCE

(a) Série		
i	math (X _i)	
1	8.5	
2	4	
3	4.5	
4	6	
5	3.5	
6	6.5	
7	7	
8	5	
9	7.5	
10	7.5	

Sert à déterminer à quel point les données tendent à s'éloigner plus ou moins fort de la moyenne

ETAPE 1 & 2

- Calculer la moyenne de la série
- Calculer l'écart de chaque observation par rapport à la moyenne.

(a) Série	(a) Série			
i	X_i	X_i - \overline{X}		
1	8.5	2.5		
2	4	-2		
3	4.5	-1.5		
4	6	0		
5	3.5	-2.5		
6	6.5	0.5		
7	7	1		
8	5	-1		
9	7.5	1.5		
10	7.5	1.5		

ETAPE 3

Puisqu'on cherche à déterminer de combien les sujets s'éloignent de la tendance centrale « en moyenne », il semblerait logique de calculer la moyenne des écarts $(X_i - \overline{X})$ Mais....

ETAPE 3

(a) Série				
i	X_i	X_i - \overline{X}		
1	8.5	2.5		
2	4	-2		
3	4.5	-1.5		
4	6	0		
5	3.5	-2.5		
6	6.5	0.5		
7	7	1		
8	5	-1		
9	7.5	1.5		
10	7.5	1.5		

Moyenne des $(X_i - \overline{X}) = 0$

Les « + » et les « - » s'annulent

SOLUTION 1: EMA: ÉCART MOYEN ABSOLU

= Moyenne des écarts (pris en valeur absolue) de chaque donnée par rapport au paramètre estimé (*cf.: la moyenne*)

$$EMA = \frac{\sum_{i=1}^{n} |X_i - \bar{X}|}{n}$$

(a) Série			
i	X_i	X_i - \overline{X}	$ X_i-\overline{X} $
1	8.5	2.5	2.5
2	4	-2	2
3	4.5	-1.5	1.5
4	6	0	0
5	3.5	-2.5	2.5
6	6.5	0.5	0.5
7	7	1	1
8	5	-1	1
9	7.5	1.5	1.5
10	7.5	1.5	1.5

EMA =
$$\frac{2.5+2+1.5+0+2.5+0.5+1+1+1.5+1.5}{10}$$
 = 1.4

<u>Ccl</u>: en moyenne, les sujets s'écartent de l.4 points de la moyenne

EMA: ÉCART MOYEN ABSOLU

• Très bonne représentation de la dispersion

MAIS

Supplantée par l'écart-type, à cause des propriétés mathématiques de la variance dont il est dérivé

SOLUTION 2: VARIANCE (S²) ET ÉCART-TYPE (S)

= Moyenne des écarts (élevés au carré) de chaque donnée par rapport au paramètre estimé (*cf.: la moyenne*)

$$\mathbf{S}^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n}$$

(a) Série			
i	X_i	X_i - X	$(X_i - \overline{X})^2$
1	8.5	2.5	6.25
2	4	-2	4
3	4.5	-1.5	2.25
4	6	0	0
5	3.5	-2.5	6.25
6	6.5	0.5	0.25
7	7	1	1
8	5	-1	1
9	7.5	1.5	2.25
10	7.5	1.5	2.25

$$S^{2} = \frac{6,25+4+2,25+0+6,25+0,25+1+1+2,25+2,25}{10}$$
=2.55

=2.55

Ccl: en moyenne, les sujets s'écartent de 2.55 points au carré » de la moyenne

Difficile à interpréter, car exprimé dans une unité « au carré »

Solution = écart-type!

VARIANCE ET ÉCART-TYPE

• Écart-type = racine carré de la variance

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n}}$$

$$S = \sqrt{2,55} = 1,597$$

• Remarque:

CME > S: 1,597 > 1,4

→ Surestimation de l'erreur par l'écart-type (par rapport à l'EMA).

INCONVÉNIENT DE LA VARIANCE (ET ÉCART-TYPE)

- Sensible aux valeurs extrêmes
- Car calcul des écart par rapport à la **moyenne** (elle-même très sensible)
- → erreur élevée au carré → sensibilité exacerbée!

REPRISE DE NOTRE EXEMPLE

(a) Série			
	Cotes (X _i)		
1	8.5		
2	4		
3	4.5		
4	6		
5	3.5		
6	6.5		
7	7		
8	5		
9	7.5		
$S^2 = 2,55$			

(a) Série		
Num		
1	8.5	
2	4	
3	4.5	
4	16	
5	3.5	
6	6.5	
7	7	
8	5	
9	7.5	

 $S^2 = 11,55$

(a) Série		
Num		
1	8.5	
2	4	
3	4.5	
4	66	
5	3.5	
6	6.5	
7	7	
8	5	
9	7.5	
$S^2 = 326,55$		

3. LA DÉTERMINATION ALGÉBRIQUE DE LA SYMÉTRIE ET DE L'APLATISSEMENT

- LES MOMENTS
- COEFFICIENT G₁ DE FISHER (ASYMÉTRIE)
- COEFFICIENT G2 DE FISHER (APLATISSEMENT)

INDICE D'ASYMÉTRIE (SKEWNESS) OU COEFFICIENT G1 DE FISHER

 $G_1 = 0$ si la distribution est symétrique

 $G_1 > 0$ si asymétrie positive

 $G_1 < 0$ si asymétrie négative

INDICE D'APLATISSEMENT (KURTOSIS) OU COEFFICIENT G2 DE FISHER

 $G_2 = 0$ si la distribution a l'aplatissement la normale $G_2 > 0$ si plus pointue que la normale (leptokurtique) $G_2 < 0$ si aplatie que la normale (platikurtique)