

1/5" UXGA CMOS Image Sensor GC2155 COB

DataSheet V1.0

2013-11-28

GalaxyCore Inc.

GALAXYCORE CONFIDENTIAL

GALAXYCORE CONFIDENTIAL

Content

1	. SE	NSOR OVERVIEW	5
	1.1	GENERAL DESCRIPTION	5
	1.2	FEATURES	5
	1.3	APPLICATION	
	1.4	TECHNICAL SPECIFICATIONS	6
	1.	4.1 Main Characteristics	6
	1.	4.2 DC Parameters	7
2	. BI	LOCK DIAGRAM	8
1			_
3	. Co	OB PACKAGE SPECIFICATIONS	9
	3.1	PIN DIAGRAM	9
	3.2	SIGNAL DESCRIPTIONS	0
	3.3	REFERENCE OF APPLICATION CIRCUIT	2
	3.	3.1 Parallel interface 1	2
	3.	3.2 MIPI interface: 1 lane	3
	<i>3</i> .	3.3 MIPI interface: 2 lane	4
4	. 0	PTICAL SPECIFICATIONS1	.5
-		O(1)/N,	
	4.1	SENSOR ARRAY CENTER	5
	4.2	PIXEL ARRAY	
	4.3	LENS CHIEF RAY ANGLE (CRA)	7
	4.4	COLOR FILTER SPECTRAL CHARACTERISTICS	8
5.	. т\	WO-WIRE SERIAL BUS COMMUNICATION1	.8
	5.1	PROTOCOL	8
	5.2	SERIAL BUS TIMING	.0
6	. AI	PPLICATIONS	0

	. 20
6.1.1 Parallel	. 20
6.1.2 MIPI	21
Clock lane low-power	21
Data Burst	22
6.2 POWER ON/OFF SEQUENCE	2 3
6.2.1 Power On Sequence	2 3
6.2.2 Power Off Sequence	2 3
7. REGISTER LIST	25

GALAXYCORE CONFIDENTIAL

1. Sensor Overview

1.1 General Description

GC2155 is a high quality 2Mega CMOS image sensor, for mobile phone camera applications and digital camera products. GC2155 incorporates a 1616V x 1232H active pixel array, on-chip 10-bit ADC, and image signal processor.

According to different light conditions, The on-chip ISP provides a very smooth AE (Auto Exposure) and accurate AWB (Auto White Balance) control .Besides, interpolation, de-noise, and color correction, gamma correction are supported, which can revert the real scene better. The sensor also provides various data formats, such as Bayer RGB, RGB565, YCbCr 4:2:2. All sensor parameters and features are controlled through a standard 2-wire serial interface.

Internal master clock can be generated by on-chip Phase Lock Loop(PLL) oscillator.

1.2 Features

- ◆ Standard optical format of 1/5 inch
- ◆ Various output formats: YCbCr4:2:2, RGB565, Raw Bayer
- ◆ Power supply requirement : AVDD: 2.7~3.0V

DVDD: 1.7~1.9V

IOVDD: 1.7~3.0V

- ◆ PLL support
- ♦ Windowing support
- ◆ MIPI interface support: Single lane/Double lane(CSI-2 V1.0/PHY-1.0)
- Horizontal /Vertical mirror
- ◆ Image processing module
- Package: CSP/COB/wafer

1.3 Application

- Cellular Phone Cameras
- Notebook and desktop PC cameras
- **PDAs**
- Toys
- Digital still cameras and camcorders
- nt Video telephony and conferencing equipment
- Security systems
- Industrial and environmental systems

1.4 Technical Specifications

1.4.1 Main Characteristics

Parameter	Typical value				
Optical Format	1/5 inch				
Pixel Size	1.75μm x 1.75μm				
Active pixel array	1616 x 1232				
ADC resolution	10 bit ADC				
Shutter type	Electronic rolling shutter				
Power Supply	AVDD: 2.7~3.0V				
	DVDD: 1.7~1.9V				
	IOVDD: 1.7~3.0V				
SNR	TBD				
Dark Current	TBD				
Sensitivity	TBD				
Operating temperature:	-20~70°C				
Stable Image temperature	0~50℃				
Optimal lens chief ray	25°(non-linear)				
angle(CRA)					
Package type	CSP/wafer/ COB				

GC2155 COB DataSheet 6 / 46

1.4.2 DC Parameters

	Sy	mbol	Min	Тур	Max	Unit	
	V _{AVDD}		2.7	2.8	3.0	V	
Power supply	$\mathbf{V}_{ extbf{DVDD}}$		1.7	1.8	1.9	V	1
	V_{IOVDD}		1.7	1.8	3.0	V	
	I _{AVDD}				TBD	mA	
Operating Current(SVGA)	I_{DVDD}			IV	TBD	mA	
	I _{IOVDD}	1.8V	1811		TBD	mA	
	-1OVDD	2.8V			TBD	mA	
	I_{AVDD}				TBD	mA	
Operating Current(UXGA)	I_{DVDD}				TBD	mA	
VUV I	T	1.8V			TBD	mA	
	I_{IOVDD}	2.8V			TBD	mA	
Standby Current	I_{DDS_PWD}				TBD	uA	
Digital Input(Typical conditions	s: AVDD =	2.8V, DVD	D=1.8V,	IOVDD	= 1.8V)		
Input voltage HIGH	V_{IH}		TBD			V	
Input voltage LOW	$\mathbf{V}_{\mathbf{IL}}$				TBD	V	
Digital Output(AVDD = 2.8V,	standard	Loading 25	PF, IOV	$\sqrt{DD} = 1.8$	V)		
Output voltage HIGH	$\mathbf{V}_{\mathbf{OH}}$		TBD			V	
Output voltage LOW	V_{OL}				TBD	V	
		20			EN		A

GC2155 COB DataSheet 7 / 46

2. Block Diagram

GC2155 has an active image array of 1616 x 1232 pixels. The active pixels are read out progressively through column/row driver circuits. In order to reduce fixed pattern noise, CDS circuits are adopted. The analog signal is transferred to digital signal by 10 bit A/D converter. The digital signals are processed in the ISP Block, including Bayer interpolation, de-noise, and color correction, gamma correction, and data format conversion and so on. Users can easily control these functions via two-wire serial interface bus.

ALANYCORE

GC2155 COB DataSheet 8 / 46

3. COB Package Specifications

3.1 Pin Diagram

*Die size: $4320x3710\mu m$

*Thickness of die (wafer): $740 + /-25 \mu m$

Pad size and aperture

GC2155 COB DataSheet 9 / 46

3.2 Signal Descriptions

	POS	POS	Name	Pin type	Description
	X(um)	Y(um)			
1	499	28.5	MCLK	Input	sensor input clock
2	801	28.5	MDP0	Output	MIPI data <0> (+)
3	1103	28.5	MDN0	Output	MIPI data <0> (-)
4	1405	28.5	MDN1	Output	MIPI data <1> (-)
5	1707	28.5	MDP1	Output	MIPI data <1> (+)
6	2009	28.5	МСР	Output	MIPI clock (+)
7	2311	28.5	MCN	Output	MIPI clock (-)
8	2613	28.5	NC		
9	2915	28.5	DGND	Ground	Ground for digital
10	3217	28.5	D<7>	Output	YUV/RGB video port bit [7]
11	3519	28.5	DVDD	Power	Power Supply for digital circuits, connect
					to ground by capacity.
12	3821	28.5	DVDD	Power	Power Supply for digital circuits, connect
					to ground by capacity.
13	4291.5	496	IOVDD	Power	Power Supply for I/O circuits, connect to
					ground by capacity.
14	4291.5	798	D<6>	Output	YUV/RGB video port bit [6]
15	4291.5	1100	D<5>	Output	YUV/RGB video port bit [5]
16	4291.5	1402	D<4>	Output	YUV/RGB video port bit[4]
17	4291.5	1704	D<3>	Output	YUV/RGB video port bit[3]
18	4291.5	2006	D<2>	Output	YUV/RGB video port bit[2]
19	4291.5	2308	D<1>	Output	YUV/RGB video port bit[1]
20	4291.5	2610	D<0>	Output	YUV/RGB video port bit[0]
21	4291.5	2912	DGND	Ground	Ground for digital
22	4291.5	3214	DVDD	Power	Power Supply for digital circuits, connect

GC2155 COB DataSheet 10 / 46

10						4
ground by capacity.					_	
24 3519 3681.5 DGND Ground Ground for digital 25 3217 3681.5 PCLK Output Pixel clock output 26 2915 3681.5 DGND Ground Ground for digital 27 2613 3681.5 DGND Output Horizontal reference output 28 2311 3681.5 VSYNC Output Vertical sync output 29 2009 3681.5 SBDA I/O SCCB data 30 1707 3681.5 SBCL Input SCCB input clock 31 1405 3681.5 RESET Input power down (active high) 32 1103 3681.5 PWDN Input power down (active high) 33 801 3681.5 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 35 28.5 3214 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 36 28.5 2912 VERF	23	3821	3681.5	IOVDD	Power	Power Supply for I/O circuits, connect to
25 3217 3681.5 PCLK Output Pixel clock output 26 2915 3681.5 DGND Ground Ground for digital 27 2613 3681.5 HSYNC Output Horizontal reference output 28 2311 3681.5 VSYNC Output Vertical sync output 29 2009 3681.5 SBDA I/O SCCB data 30 1707 3681.5 SBCL Input SCCB input clock 31 1405 3681.5 RESET Input reset (active high) 32 1103 3681.5 PWDN Input power down (active high) 33 801 3681.5 AGND Ground Ground for sensor analog 34 499 3681.5 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 35 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 36 28.5 2912 VERF Power<						ground by capacity.
26 2915 3681.5 DGND Ground Ground for digital 27 2613 3681.5 HSYNC Output Horizontal reference output 28 2311 3681.5 VSYNC Output Vertical sync output 29 2009 3681.5 SBDA L/O SCCB data 30 1707 3681.5 SBCL Input SCCB input clock 31 1405 3681.5 RESET Input reset (active high) 32 1103 3681.5 PWDN Input power down (active high) 33 801 3681.5 AGND Ground Ground for sensor analog 34 499 3681.5 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 35 28.5 3214 AVDD POWER Power for analog circuit/sensor array connect to ground by capacity. 36 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 37 28.5 261	24	3519	3681.5	DGND	Ground	Ground for digital
27 2613 3681.5 HSYNC Output Horizontal reference output	25	3217	3681.5	PCLK	Output	Pixel clock output
28 2311 3681.5 VSYNC Output Vertical sync output 29 2009 3681.5 SBDA I/O SCCB data 30 1707 3681.5 SBCL Input SCCB input clock 31 1405 3681.5 RESET Input reset (active high) 32 1103 3681.5 PWDN Input power down (active high) 33 801 3681.5 AGND Ground Ground for sensor analog 34 499 3681.5 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 35 28.5 3214 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 36 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 37 28.5 2610 AGND Ground Ground for analog circuit/sensor array internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power	26	2915	3681.5	DGND	Ground	Ground for digital
29 2009 3681.5 SBDA I/O SCCB data 30 1707 3681.5 SBCL Input SCCB input clock 31 1405 3681.5 RESET Input reset (active high) 32 1103 3681.5 PWDN Input power down (active high) 33 801 3681.5 AGND Ground Ground for sensor analog 34 499 3681.5 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 35 28.5 3214 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 36 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 37 28.5 2610 AGND Ground Ground for analog circuit/sensor array internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog <td>27</td> <td>2613</td> <td>3681.5</td> <td>HSYNC</td> <td>Output</td> <td>Horizontal reference output</td>	27	2613	3681.5	HSYNC	Output	Horizontal reference output
30 1707 3681.5 SBCL Input SCCB input clock 31 1405 3681.5 RESET Input reset (active high) 32 1103 3681.5 PWDN Input power down (active high) 33 801 3681.5 AGND Ground Ground for sensor analog 34 499 3681.5 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 35 28.5 3214 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 36 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 37 28.5 2610 AGND Ground Ground for analog circuit/sensor array internal analog reference, connect to ground by capacity. 38 28.5 2308 TXLOW Power internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog	28	2311	3681.5	VSYNC	Output	Vertical sync output
31 1405 3681.5 RESET Input reset (active high) 32 1103 3681.5 PWDN Input power down (active high) 33 801 3681.5 AGND Ground Ground for sensor analog 34 499 3681.5 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 35 28.5 3214 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 36 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 37 28.5 2610 AGND Ground Ground for analog circuit/sensor array internal analog reference, connect to ground by capacity. 38 28.5 2308 TXLOW Power internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog	29	2009	3681.5	SBDA	I/O	SCCB data
B 32 1103 3681.5 PWDN Input power down (active high) 33 801 3681.5 AGND Ground Ground for sensor analog 34 499 3681.5 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 35 28.5 3214 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 36 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 37 28.5 2610 AGND Ground Ground for analog circuit/sensor array internal analog reference, connect to ground by capacity. 38 28.5 2308 TXLOW Power internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog	30	1707	3681.5	SBCL	Input	SCCB input clock
32 1103 3681.5 PWDN Input power down (active high)	31	1405	3681.5	RESET	Input	reset (active high)
33 801 3681.5 AGND Ground Ground for sensor analog 34 499 3681.5 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 35 28.5 3214 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 36 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 37 28.5 2610 AGND Ground Ground for analog circuit/sensor array 38 28.5 2308 TXLOW Power internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog				В		
34 499 3681.5 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 35 28.5 3214 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 36 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 37 28.5 2610 AGND Ground Ground for analog circuit/sensor array 38 28.5 2308 TXLOW Power internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog	32	1103	3681.5	PWDN	Input	power down (active high)
connect to ground by capacity. 35	33	801	3681.5	AGND	Ground	Ground for sensor analog
35 28.5 3214 AVDD POWER Power for analog circuit/sensor array, connect to ground by capacity. 36 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 37 28.5 2610 AGND Ground Ground for analog circuit/sensor array 38 28.5 2308 TXLOW Power internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog	34	499	3681.5	AVDD	POWER	Power for analog circuit/sensor array,
connect to ground by capacity. 36 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 37 28.5 2610 AGND Ground Ground for analog circuit/sensor array 38 28.5 2308 TXLOW Power internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog						connect to ground by capacity.
36 28.5 2912 VERF Power internal analog reference, connect to ground by capacity. 37 28.5 2610 AGND Ground Ground for analog circuit/sensor array 38 28.5 2308 TXLOW Power internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog	35	28.5	3214	AVDD	POWER	Power for analog circuit/sensor array,
ground by capacity. 37 28.5 2610 AGND Ground Ground for analog circuit/sensor array 38 28.5 2308 TXLOW Power internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog						
37 28.5 2610 AGND Ground Ground for analog circuit/sensor array 38 28.5 2308 TXLOW Power internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog	36	28.5	2912	VERF	Power	internal analog reference, connect to
38 28.5 2308 TXLOW Power internal analog reference, connect to ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog						ground by capacity.
ground by capacity. 39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog	37	28.5	2610	AGND	Ground	Ground for analog circuit/sensor array
39 28.5 2006 VPIX POWER Internal Analog power 40 28.5 1704 CGND Ground Ground for sensor analog	38	28.5	2308	TXLOW	Power	internal analog reference, connect to
40 28.5 1704 CGND Ground Ground for sensor analog	1	\ A				ground by capacity.
	39	28.5	2006	VPIX	POWER	Internal Analog power
41 28.5 1402 AGND Ground Ground for sensor analog	40	28.5	1704	CGND	Ground	Ground for sensor analog
	41	28.5	1402	AGND	Ground	Ground for sensor analog
42 28.5 1100 AVDD POWER Power for analog circuit/sensor array,	42	28.5	1100	AVDD	POWER	Power for analog circuit/sensor array,
connect to ground by capacity.						connect to ground by capacity.

GC2155 COB DataSheet 11 / 46

43	28.5	798	NC		
44	28.5	496	DVDD	Power	Power Supply for digital circuits, connect
					to ground by capacity.

3.3 Reference of Application Circuit

3.3.1 Parallel interface

Figure 2-1 Parallel reference design

GC2155 COB DataSheet 12 / 46

3.3.2 MIPI interface: 1 lane

GC2155 COB DataSheet 13 / 46

3.3.3 MIPI interface: 2 lane

GC2155 COB DataSheet 14 / 46

4. Optical Specifications

4.1 Sensor Array Center

GC2155 COB DataSheet 15 / 46

4.2 Pixel Array

Pixel array is covered by Bayer pattern color filters. The primary color BG/GR array is arranged in line-alternating way.

If no flip in column, column is read out from 0 to 1615. If flip in column, column is read out from 1615 to 0.

GC2155 COB DataSheet 16 / 46

4.3 Lens Chief Ray Angle (CRA)

Image Height (mm)

Field (%)	Image height(mm)	CRA(degrees)
0	0	0
10	0.177	4.15
20	0.354	8.25
30	0.531	12.2
40	0.708	15.83
50	0.885	18.98
60	1.062	21.61
70	1.239	23.62
80	1.416	24.82
90	1.593	25.39
100	1.77	25.78
110	1.895	25.89

GC2155 COB DataSheet 17 / 46

4.4 Color Filter Spectral Characteristics

The optical spectrum of color filters is shown as follows:

5. Two-wire Serial Bus Communication

GC2155 Device Address:

serial bus write address = 0x78, serial bus read address = 0x79

5.1 Protocol

The host must perform the role of a communications master and GC2155 acts as either a slave receiver or transmitter. The master must do:

- ◆ Generate the **Start(S)/Stop(P)** condition
- ◆ Provide the serial clock on **SBCL**

GC2155 COB DataSheet 18 / 46

Single Register Reading:

S 78H A Register Address A S 79H A Data NA P

Notes:

From master to slave From slave to master

S: Start condition P: Stop condition

A: Acknowledge bit **NA:** No acknowledge

Register Address: Sensor register address

Data: Sensor register value

GC2155 COB DataSheet 19 / 46

5.2 Serial Bus Timing

Parameter	Symbol	Min.	Typ.	Max.	Unit
SBCL clock frequency	fscl	0		400	KHz
Bus free time between a stop and a start	tbuf	1.3		+	μs
Hold time for a repeated start	thd;sta	0.6			μs
LOW period of SBCL	tlow	1.3			μs
HIGH period of SBCL	thigh	0.6			μs
Set-up time for a repeated start	tsu;sta	0.6			ns
Data hold time	thd;dat	0		0.9	μs
Data Set-up time	tsu;dat	100			ns
Rise time of SBCL, SBDA	Tr			300	ns
Fall time of SBCL, SBDA	tf			300	ns
Set-up time for a stop	tsu;sto	0.6			μs
Capacitive load of bus line (SBCL, SBDA)	Cb				pf

6. Applications

6.1 Timing

6.1.1 Parallel

Supposed VSYNC is LOW active and HSYNC is HIGH active, and output format is YCbCr/RGB565, then the timing of VSYNC and HSYNC is following:

Ft = VB + Vt + 8 (unit is row time)

VB = Bt + St + Et, Vblank/Dummy line, setting by register P0:0x07 and P0:0x08.

- ◆ Ft -> Frame time, one frame time.
- ◆ Bt -> Blank time, VSYNC no active time.

GC2155 COB DataSheet 20 / 46

- ◆ St -> Start time, setting by register P0:0x13
- ◆ Et -> End time, setting by register P0:0x14
- ◆ Vt -> valid line time. UXGA is 1200, Vt=win_height-8, win_height is setting by register P0:0x0d and P0:0x0e(1232).

When exp_time <= win_height+VB, Bt=VB-St-Et. Frame rate is controlled by window height+VB.

When exp_time > win_height+VB, Bt=exp_time-win_height-St-Et. Frame rate is controlled by exp_time.

The following is row_time calculate:

row time = Hb + Sh delay + win width + 4.

Hb -> HBlank or dummy pixel, Setting by register P0:0x05 and P0:0x06.

Sh_delay -> Setting by register P0:0x11[9:8], P0:0x12[7:0].

win_width -> Setting by register 0x0f and P0:0x10, win_width = 1600,

final_output_width + 8. So for UXGA, we should set win_width as 1616.

6.1.2 MIPI

Clock lane low-power

Notice:

- Olock must be reliable during high speed transmission and mode-switching
- Olock can go to LP only if data lanes are in LP(and nothing relies on it),

GC2155 COB DataSheet 21 / 46

In Low –Power data lanes are conceptually asynchronous(independent of the high speed clock)

T_{CLK PRE}: setting by Register P3: 0x24

T_{CLK POST}: setting by Register P3: 0x25

T_{CLK-ZERO}: setting by Register P3: 0x23

T_{CLK} T_{RAIL}: setting by Register P3: 0x26

Data Burst

Notice:

- Clock Keeps running and samples data lanes(except for lanes in LPS)
- Unambiguous leader and trailer sequences required to distill real ditz,
- trailer is removed inside PHY(a few bytes)
- Time-out to ignore line values during line state transition

T_{LPX}: setting by Register P3:0x21

T_{HS-PREPARE}: setting by Register P3: 0x29

T_{HS-ZERO}: setting by Register P3:0x2a

T_{HS-TRAIL}: setting by Register P3:0x2b

T_{HS-EXIT}: setting by Register P3: 0x27

6.2 Power On/Off Sequence

6.2.1 Power On Sequence

Parameter	Description	Min.	Max.	Unit
t0	DVDD rising time	TBD		us
t1	From DVDD to IOVDD	TBD		us
t2	From IOVDD to AVDD	TBD		us
t3	From AVDD to MCLK applied	TBD		us
t4	From MCLK applied to Sensor enable	TBD		us
t5	From PWDN pull low to RESET pull high	TBD		us

6.2.2 Power Off Sequence

GC2155 COB DataSheet 23 / 46

	Parameter	Description	Min.	Max.	Unit
	t0	From IOVDD to DVDD falling time	TBD		us
	t1	From AVDD to IOVDD falling time	TBD		us
	t2	AVDD falling time	TBD	71	us
	t3	From MCLK disable to sensor AVDD power down	TBD		us
	t4	From sensor disable to RESET pull low	TBD		us
	t5	From sensor RESET pull low to MCLK	TBD		us
		disable			
GA	LAX	CORL			

GC2155 COB DataSheet 24 / 46

7. Register List

System Register

Address	em Register Pess Name Width Default R/W D		Description		
Address	Name	wiatn	Value	K/W	Description
0xf0	chip ID[15:8]	8	0x21	RO	chip ID[15:8]
0xf1	chip_ID[7:0]	8	0x55		chip_ID[7:0]
0xf2	pad_vb_hiz_mod	8	0x0f	RW	[4] auto vb pad hiz
	e 			V	[3] data_pad_io
	data_pad_io				[2:0] sync_pad_io
	sync_pad_io				0:input
0 m	Tag		0.01	DIII	1:output
0xf3	I2C_open_en	1	0x01		[0] I2C_open_en
0xf6	Up_dn	3	0x00	RW	[5:4] up_dn
M	Pwd_dn				00: not pull
					01: pull down
					10: pull up
					11: illegal
					[0] PWD dn
					0: pull down
					1: not pull
0xf7	PLL_mode1	8	0x05	RW	[7] dvp mode
					[6:4] serial_clk_double
					[3] clk_double
					[2] NA
					[1] div2en
					[0] pll_en
0xf8	PLL_mode2	8	0x81	RW	[7] pll_dgdiv_en
					[6] NA
					[5:0] divx4
0xf9	cm_mode	8	0xfe	RW	[7] regf clk enable
	-17/		1 -		[6] 2pclk enable
	VX I.				[5] pclk enable
1.1	MI,				[4] hpclk enable
					[3] isp all clock enable
					[2] serail_clk enable
					[1] re_lock_pll
					[0] not_use_pll
0xfa	clk_div_mode	8	0x11	RW	[7:4] divide_by
					[3:0] clock duty eg:pllclk=192
0xfb	I2C device ID	8	0x78	RO	I2C device ID

GC2155 COB DataSheet 25 / 46

0xfc	analog_pwc	8	0x06	RW	[2] vpll en
	<u>O_</u> F				[1] vpix en
					[0] analog pwd enable
0xfd	Scalar mode	8	0x00	RW	[1] column scalar mode
			01200	22,,	[0] scalar mode
0xfe	Reset related	8	0x00	RW	[7] soft reset
			01200	12,,	[6] cm reset
					[5] mipi reset
					[4] CISCTL restart n
					[3] NA
					[2:0] page select
	1310				000:page 0
1		,			001:page 1
	VV				010:page 2
$M_{\rm A}$					011: page 3
P0:0x03	Exposure[12:8]	5		RO	[7:5] NA
7 4					[4:0] exposure[12:8]
P0:0x04	Exposure[7:0]	8		RO	Exposure[7:0], controlled by AEC if AEC
					is in function
P0:0x05	buf_CISCTL_ca	4	0x00	RW	H Blanking
	pt_hb[11:8]				
P0:0x06	buf_CISCTL_ca	8	0xaa		
	pt_hb[7:0]				
P0:0x07	buf_CISCTL_ca	5	0x00	RW	Vertical blanking, if current exposure <
	pt_vb[12:8]				(Vb + window Height), frame rate will
P0:0x08	buf_CISCTL_ca	8	0x0c		be (Vb + window Height); otherwise
	pt_vb[7:0]				frame rate will be determined by exposure
P0:0x09	buf_CISCTL_ca	3	0x00	RW	Row Start
	pt_row_start[10:				
	8]				70.
P0:0x0a	buf_CISCTL_ca	8	0x00	RW	
	pt_row_start[7:0]				
P0:0x0b	buf_CISCTL_ca	3	0x00	RW	Col start
1.1	pt_col_start[10:8				
IMI					
P0:0x0c	buf_CISCTL_ca	8	0x04	RW	
5 ,	pt_col_start[7:1]				
P0:0x0d	buf_CISCTL_ca	3	0x04	RW	[7:3] NA
	pt_win_height[1				[2:0] Window height[10:8]
	0:8]				
P0:0x0e	buf_CISCTL_ca	3	0xd0	RW	Window height [7:0]
	pt_win_height[7:				

	0]				
P0:0x0f	buf_CISCTL_ca	8	0x03	RW/	[7:3] NA
1 0.0201	pt win width[10	O	0203		[2:0] Window width [10:8]
	:8]				[2.0] Willdow width [10.0]
P0:0x10	buf CISCTL ca	8	0x28	RW	[7:1]window width[7:1]
10.0410	pt win width[7:	O	OAZO		[0]NA
	1]				[o]tvi
P0:0x17	Analog mode1	8	0x00	RW	[7:2] reserved
					[1] updown
				7	[0] mirror
P0:0x18	Analog mode2	8	0x0a	RW	[7] NA
	. 1				[6] row skip
1	NYV				[5] NA
					[4:0] reserved
P0:0x20	Analog mode3		0x00		
P0:0x24	Driver mode	8	0x55	RW	[7:6] drv_low_data
					00: 8mA
					01: 12mA
					10: 16mA
					11: 20mA
					[5:4] sync_drv
					00: 4mA
					01: 8mA
					10: 12mA
					11: 16mA
					[3:2] drv_high_data
					00: 8mA
					01: 12mA
					10: 16mA
					11: 20mA
			25		[1:0] pclk_drv
			112		00: 8mA
	IVVA				01: 12mA
	DV_I				10: 16mA
					11: 20mA

CSI/PHY1.0

Address	Name	Width	Default	R/W	Description
			Value		
P3:0x01	DPHY_analog_	8	0x00	RW	[7]clk lane_p2s_sel
	mode1				[6] CTD_lan1
					[5] CTD_lane0

GC2155 COB DataSheet 27 / 46

			<u> </u>	1	1
					[4] CTD_clk
					[2] phy_lane1_en
					[1] phy_lane0_en
					[0] phy_clk_en
P3:0x02	DPHY_analog_	8	0x00	RW	[7]support odd LWC
	mode2				[6:4] lane0_diff
					[2:0] clk_diff
P3:0x03	DPHY_analog_	8	0x00	RW	[7] LP low voltage enable
	mode3			67	[6] lane1_delay
				V	[5] lane0_delay
					[4] clk_delay
	-31(*)		1		[2:0] lane1_diff
P3:0x04	FIFO prog full	8	0xa0	RW	[7:0] FIFO full level[7:0]
	level[7:0]				
P3:0x05	FIFO prog full	4	0x00	RW	[3:0] FIFO full level[11:8]
	level[11:8]				
P3:0x06	FIFO mode	8	0x08	RW	[7] MIPI CLK MODULE
	_				[6] manual CSI2 up mode
					[5]no flop mode set 1 when [3] is 0
					[4] FIFO_rst_mode
					[3] read gate
					[2] write gate
					[1] switchread
					[0] switch write
P3:0x10	BUF CSI2 mod	8	0x00	RW	[7] lane enable
P3.0X10		8	UXUU	KW	
	e				[6] NA
					[5] ULP_mode
					[4] MIPI_enable
					[3] bit10_swicth
					[2] RAW8
			21		[1] line_sync_mode
					[0] double_lane
P3:0x11	LDI_set	8	0x2b		RAW10
P3:0x12	LWC_set[7:0]	8	0x20		LWC set
P3:0x13	LWC_set[15:8]	8	0x03	RW	640x5/4 RAW10
P3:0x14	SYNC_set	8	0xb8	RW	[7:0] SYNC set
P3:0x15	DPHY_mode	8	0x00	RW	[7:4] trigger mode
					[7] DATA gate mode
					[6] half
					[5] full
					[4] prog
					[3] mipi_write_gate_mode

P3:0x16						[0] clklane mode
	P3:0x16	LP set	8	0x09	RW	-
P3:0x17						
MIPI_wdiv_set MIPI_wdiv_set	P3:0x17	fifo gate mode	8	0x00	RW	
[6] write_gate_mode [5] read_gate_mode [3:0] MIPI_wdiv_set default 1/2 P3:0x20						
[5] read gate_mode [3:0] MIPI_wdiv_set default 1/2 P3:0x20 T_init_set 8 0x80 RW more than 100 us P3:0x21 T_LPX_set 8 0x10 RW more than 50ns P3:0x22 T_CLK_HS_PR 8 0x05 RW 38ns ~95ns LP00 EPARE_set P3:0x23 T_CLK_zero_set 8 0x30 RW [7:0] T_CLK_PRE_set ,more than 300ns P3:0x24 T_CLK_PRE_se 8 0x02 RW [7:0] T_CLK_PRE_set ,more than 8UI P3:0x25 T_CLK_POST_s 8 0x10 RW [7:0] T_CLK_POST_set, 60ns +52UI P3:0x26 T_CLK_TRAIL 8 0x08 RW [7:0] T_CLK_TRAIL_set ,60ns set set set 8 0x10 RW [7:0] T_Ms_exit_set ,more than 100ns P3:0x28 T_wakeup_set 8 0x00 RW [7:0] T_Ms_exit_set ,more than 100ns P3:0x29 T_HS_PREPAR 8 0x06 RW [7:0] T_Ms_PREPARE_set,45+4UI E_set						
P3:0x20 T_init_set 8 0x80 RW more than 100 us P3:0x21 T_LPX_set 8 0x10 RW more than 50ns P3:0x22 T_CLK_HS_PR 8 0x05 RW 38ns ~95ns LP00 EPARE_set 0x02 RW [7:0] T_CLK_PRE_set ,more than 300ns P3:0x23 T_CLK_PRE_set 8 0x02 RW [7:0] T_CLK_PRE_set ,more than 300ns P3:0x24 T_CLK_PRE_set 8 0x02 RW [7:0] T_CLK_PRE_set ,more than 8UI P3:0x25 T_CLK_POST_s 8 0x10 RW [7:0] T_CLK_POST_set, 60ns +52UI et et 0x08 RW [7:0] T_CLK_TRAIL_set, 60ns P3:0x26 T_CLK_TRAIL 8 0x08 RW [7:0] T_HS_exit_set, more than 100ns P3:0x27 T_HS_exit_set 8 0x10 RW [7:0] T_HS_exit_set, more than 100ns P3:0x28 T_wakeup_set 8 0x00 RW [7:0] T_HS_exit_set, more than 100ns P3:0x29 T_HS_PREPAR 8 0x06 RW [7:0] T_MS_exit_set, more than 100ns P3:0x22 T_HS_PREPAR 8 0x06 RW [7:0] T_HS_exit_set, more						
P3:0x21					V	default 1/2
P3:0x22 T_CLK_HS_PR EPARE_set 8 0x05 RW 38ns~95ns LP00 P3:0x23 T_CLK_zero_set 8 0x30 RW [7:0] T_CLK_PRE_set, more than 300ns P3:0x24 T_CLK_PRE_set 8 0x02 RW [7:0] T_CLK_PRE_set, more than 8UI P3:0x25 T_CLK_POST_st 8 0x10 RW [7:0] T_CLK_POST_set, 60ns +52UI P3:0x26 T_CLK_TRAIL st 8 0x08 RW [7:0] T_CLK_TRAIL_set, 60ns P3:0x27 T_HS_exit_set 8 0x10 RW [7:0] T_HS_exit_set, more than 100ns P3:0x28 T_wakeup_set 8 0x00 RW [7:0] T_HS_exit_set, more than 100ns P3:0x29 T_HS_PREPAR 8 0x00 RW [7:0] T_HS_exit_set, more than 100ns P3:0x29 T_HS_PREPAR 8 0x00 RW [7:0] T_HS_exit_set, more than 100ns P3:0x20 T_HS_PREPAR 8 0x06 RW [7:0] T_HS_exit_set, 45+4UI P3:0x22 T_HS_TRAIL_s 8 0x0a RW [7:0] T_HS_TRAIL_set, 45+4UI P3:0x32 T_HS_TRAIL_s 8 0x0a RW [7:0] T_HS_TRAIL_set, 60ns P3:0x32 <td>P3:0x20</td> <td>T_init_set</td> <td>8</td> <td>0x80</td> <td>RW</td> <td>more than 100 us</td>	P3:0x20	T_init_set	8	0x80	RW	more than 100 us
EPARE set P3:0x23	P3:0x21	T_LPX_set	8	0x10	RW	more than 50ns
P3:0x23 T_CLK_zero_set 8 0x30 RW [7:0] T_CLK_PRE_set ,more than 300ns P3:0x24 T_CLK_PRE_set 8 0x02 RW [7:0] T_CLK_PRE_set ,more than 8UI P3:0x25 T_CLK_POST_s 8 0x10 RW [7:0] T_CLK_POST_set, 60ns +52UI P3:0x26 T_CLK_TRAIL 8 0x08 RW [7:0] T_CLK_TRAIL_set ,60ns P3:0x27 T_HS_exit_set 8 0x10 RW [7:0] T_HS_exit_set ,more than 100ns P3:0x28 T_wakeup_set 8 0xa0 RW [7:0] T_HS_exit_set ,more than 100ns P3:0x28 T_wakeup_set 8 0xa0 RW [7:0] T_HS_exit_set ,more than 100ns P3:0x29 T_HS_PREPAR 8 0xa0 RW [7:0] T_HS_PREPARE_set,45+4UI E_set 8 0x06 RW [7:0] T_HS_PREPARE_set,45+4UI P3:0x2a T_HS_TRAIL_s 8 0x08 RW [7:0] T_HS_TRAIL_set ,60ns P3:0x30 MIPI_Test 8 0x00 RW [1:0] MIPI_Test P3:0x31 MIPI_Test_da	P3:0x22	T_CLK_HS_PR	8	0x05	RW	38ns ~95ns LP00
P3:0x24 T_CLK_PRE_se 8 0x02 RW [7:0] T_CLK_PRE_set ,more than 8UI P3:0x25 T_CLK_POST_s 8 0x10 RW [7:0] T_CLK_POST_set, 60ns +52UI P3:0x26 T_CLK_TRAIL 8 0x08 RW [7:0] T_CLK_TRAIL_set ,60ns P3:0x27 T_HS_exit_set 8 0x10 RW [7:0] T_HS_exit_set ,more than 100ns P3:0x28 T_wakeup_set 8 0xa0 RW [7:0] T_wakeup_set ,1ms P3:0x29 T_HS_PREPAR 8 0x06 RW [7:0] T_HS_PREPARE_set,45+4UI E_set -85+5UI P3:0x2a T_HS_Zero_set 8 0x0a RW [7:0] T_HS_TRAIL_set ,60ns P3:0x2b T_HS_TRAIL_s 8 0x08 RW [7:0] T_HS_TRAIL_set ,60ns P3:0x30 MIPI_Test 8 0x96 RW MIPI_Test_data0 P3:0x31 MIPI_Test_data1 8 0x96 RW MIPI_Test_data1 P3:0x32 MIPI_Test_data2 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x36		EPARE_set				
P3:0x25 T_CLK_POST_s 8 0x10 RW [7:0] T_CLK_POST_set, 60ns +52UI P3:0x26 T_CLK_TRAIL 8 0x08 RW [7:0] T_CLK_TRAIL_set ,60ns P3:0x27 T_HS_exit_set 8 0x10 RW [7:0] T_HS_exit_set ,more than 100ns P3:0x28 T_wakeup_set 8 0xa0 RW [7:0] T_Wakeup_set ,1ms P3:0x29 T_HS_PREPAR 8 0x06 RW [7:0] T_HS_PREPARE_set,45+4UI E_set R5+5UI P3:0x2a T_HS_Zero_set 8 0x0a RW [7:0] T_HS_Zero_se,140ns P3:0x2b T_HS_TRAIL_s 8 0x08 RW [7:0] T_HS_TRAIL_set ,60ns et P3:0x30 MIPI_Test 8 0x00 RW [1:0] MIPI_Test P3:0x31 MIPI_Test_data0 8 0x96 RW MIPI_Test_data0 P3:0x32 MIPI_Test_data1 8 0x3a RW MIPI_Test_data1 P3:0x33 MIPI_Test_data2 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x36 FIFO_error log 8 RO FIFO_error log	P3:0x23	T_CLK_zero_set	8	0x30	RW	[7:0] T_CLK_PRE_set ,more than 300ns
P3:0x26	P3:0x24	T_CLK_PRE_se	8	0x02	RW	[7:0] T_CLK_PRE_set ,more than 8UI
P3:0x26		t				
P3:0x26 T_CLK_TRAIL 8 0x08 RW [7:0] T_CLK_TRAIL_set ,60ns P3:0x27 T_HS_exit_set 8 0x10 RW [7:0] T_HS_exit_set ,more than 100ns P3:0x28 T_wakeup_set 8 0xa0 RW [7:0] T_wakeup_set ,1ms P3:0x29 T_HS_PREPAR 8 0x06 RW [7:0] T_HS_PREPARE_set,45+4UI E_set -85+5UI P3:0x2a T_HS_Zero_set 8 0x0a RW [7:0] T_HS_Zero_se,140ns P3:0x2b T_HS_TRAIL_s 8 0x08 RW [7:0] T_HS_TRAIL_set ,60ns et P3:0x30 MIPI_Test 8 0x00 RW [1:0] MIPI_Test P3:0x31 MIPI_Test_data0 8 0x96 RW MIPI_Test_data1 P3:0x32 MIPI_Test_data1 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x3f FIFO_error log 8 RO FIFO error log	P3:0x25	T_CLK_POST_s	8	0x10	RW	[7:0] T_CLK_POST_set, 60ns +52UI
P3:0x27 T_HS_exit_set 8 0x10 RW [7:0] T_HS_exit_set ,more than 100ns P3:0x28 T_wakeup_set 8 0xa0 RW [7:0] T_wakeup_set ,1ms P3:0x29 T_HS_PREPAR 8 0x06 RW [7:0] T_HS_PREPARE_set,45+4UI E_set		et				
P3:0x27 T_HS_exit_set 8 0x10 RW [7:0] T_HS_exit_set ,more than 100ns P3:0x28 T_wakeup_set 8 0xa0 RW [7:0] T_wakeup_set ,1ms P3:0x29 T_HS_PREPAR	P3:0x26	T_CLK_TRAIL	8	0x08	RW	[7:0] T_CLK_TRAIL_set ,60ns
P3:0x28 T_wakeup_set 8 0xa0 RW [7:0] T_wakeup_set ,1ms P3:0x29 T_HS_PREPAR 8 0x06 RW [7:0] T_HS_PREPARE_set,45+4UI - 85+5UI P3:0x2a T_HS_Zero_set 8 0x0a RW [7:0] T_HS_Zero_se,140ns P3:0x2b T_HS_TRAIL_s 8 0x08 RW [7:0] T_HS_TRAIL_set ,60ns et P3:0x30 MIPI_Test 8 0x00 RW [1:0] MIPI_Test P3:0x31 MIPI_Test_data0 8 0x96 RW MIPI_Test_data0 P3:0x32 MIPI_Test_data1 8 0x3a RW MIPI_Test_data1 P3:0x33 MIPI_Test_data2 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x3f FIFO_error log 8 RO FIFO error log		_set				
P3:0x29 T_HS_PREPAR E_set 8 0x06 RW [7:0] T_HS_PREPARE_set,45+4UI	P3:0x27	T_HS_exit_set	8	0x10	RW	[7:0] T_HS_exit_set ,more than 100ns
E_set	P3:0x28	T_wakeup_set	8	0xa0	RW	[7:0] T_wakeup_set ,1ms
P3:0x2a T_HS_Zero_set 8 0x0a RW [7:0] T_HS_Zero_se,140ns P3:0x2b T_HS_TRAIL_s 8 0x08 RW [7:0] T_HS_TRAIL_set,60ns P3:0x30 MIPI_Test 8 0x00 RW [1:0] MIPI_Test P3:0x31 MIPI_Test_data0 8 0x96 RW MIPI_Test_data0 P3:0x32 MIPI_Test_data1 8 0x3a RW MIPI_Test_data1 P3:0x33 MIPI_Test_data2 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x3f FIFO_error log 8 RO FIFO error log	P3:0x29	T_HS_PREPAR	8	0x06	RW	[7:0] T_HS_PREPARE_set,45+4UI
P3:0x2b T_HS_TRAIL_s 8 0x08 RW [7:0] T_HS_TRAIL_set ,60ns P3:0x30 MIPI_Test 8 0x00 RW [1:0] MIPI_Test P3:0x31 MIPI_Test_data0 8 0x96 RW MIPI_Test_data0 P3:0x32 MIPI_Test_data1 8 0x3a RW MIPI_Test_data1 P3:0x33 MIPI_Test_data2 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x3f FIFO_error log 8 RO FIFO error log		E_set				~85+5UI
P3:0x30 MIPI_Test 8 0x00 RW [1:0] MIPI_Test P3:0x31 MIPI_Test_data0 8 0x96 RW MIPI_Test_data0 P3:0x32 MIPI_Test_data1 8 0x3a RW MIPI_Test_data1 P3:0x33 MIPI_Test_data2 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x3f FIFO_error log 8 RO FIFO Error log	P3:0x2a	T_HS_Zero_set	8	0x0a	RW	[7:0] T_HS_Zero_se,140ns
P3:0x30 MIPI_Test 8 0x00 RW [1:0] MIPI_Test P3:0x31 MIPI_Test_data0 8 0x96 RW MIPI_Test_data0 P3:0x32 MIPI_Test_data1 8 0x3a RW MIPI_Test_data1 P3:0x33 MIPI_Test_data2 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x3f FIFO_error log 8 RO FIFO error log	P3:0x2b	T_HS_TRAIL_s	8	0x08	RW	[7:0] T_HS_TRAIL_set ,60ns
P3:0x31 MIPI_Test_data0 8 0x96 RW MIPI_Test_data0 P3:0x32 MIPI_Test_data1 8 0x3a RW MIPI_Test_data1 P3:0x33 MIPI_Test_data2 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x3f FIFO_error log 8 RO FIFO error log		et				
P3:0x32 MIPI_Test_data1 8 0x3a RW MIPI_Test_data1 P3:0x33 MIPI_Test_data2 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x3f FIFO_error log 8 RO FIFO error log	P3:0x30	MIPI_Test	8	0x00	RW	[1:0] MIPI_Test
P3:0x33 MIPI_Test_data2 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x3f FIFO_error log 8 RO FIFO error log	P3:0x31	MIPI_Test_data0	8	0x96	RW	MIPI_Test_data0
P3:0x33 MIPI_Test_data2 8 0x87 RW MIPI_Test_data2 P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x3f FIFO_error log 8 RO FIFO error log	P3·0x32	MIPI Test data1	8	0x3a	RW	MIPI Test data1
P3:0x34 MIPI_Test_data3 8 0xb5 RW MIPI_Test_data3 P3:0x3f FIFO_error log 8 RO FIFO error log		= 1				
P3:0x3f FIFO_error log 8 RO FIFO error log						
				0.100		
II J. VA TV MULDUL DUL HIQU L O L VA VV LIX W II / . T L SLALL HIQUC		output buf mod	8	0x00		[7:4] start mode
el [3] NA				01100	22,,,	
[2:1] delay half						
[0] NA						1 1
P3:0x41 output buf mod 8 0x00 RW [2] clk gating	P3:0x41	output buf mod	8	0x00	RW	
e2 [1] pclk polarity				-		
[0] hsync_polarity						F 3 1 — F

GC2155 COB DataSheet 29 / 46

P3:0x42	buf_win_width[7	8	0x40	RW	Buffer window width		
	:0]						_ 1
P3:0x43	buf_win_width[1	8	0x06	RW			
	1:8]					11	

ISP Related

ISP Rela	T	T			
Address	Name	Width	Default	R/W	Description
			Value		
P0:0x80	Block_enable1	8	0x08	RW	[7] reserved
	10				[6] gamma enable
	-11				[5] CC enable
	(X,Y,Y)				[4] Edge enhancement enable
					[3] Interpolation enable
					[2] DN enable
					[1] DD enable
					[0] Lens-shading correction enable
P0:0x81	Block_enable2	8	0x28	RW	[7] BLK dither mode
					[6] low light Y stretch enable
					[5] skin detection enable
					[4] reserved
					[3] new skin mode
					[2] autogray enable
					[1] reserved
					[0] BFF test image mode
P0:0x82	Block enable	8	0x00	RW	[7:3] reserved
					[2] ABS enable
					[1] AWB enable
					[0] NA
P0:0x83	Special aeffect	8	0x00	RW	[7:4] Effect select
			21		1: 00 gray
	11/2		110		2: 7f high
	NYY				3: dark
	DV.				4: special red
101					5: green
					6: blue
					7: yellow
					8: ancients
					9: solarize 1
					[3] Edge map2
					[2] Edge map1
					[1] fixed CbCr enable

GC2155 COB DataSheet 30 / 46

					[0] inverse color
P0:0x84	Output format	8	0x02		[7] YUV420 row switch
	' _				[6] YUV420 col switch
					[5] YUV420 legacy
					[4:0] output data mode
					5'h00 Cb Y Cr Y
					5'h01 Cr Y Cb Y
					5'h02 Y Cb Y Cr
					5'h03 Y Cr Y Cb
					5'h04 LSC bypass, C/Y
					5'h05 LSC bypass, Y/C
					5'h06 RGB 565
	VVV	9,			5'h0f bypass 10bits
					5'h17 switch odd/even column /row to
M_{\perp}					controls output bayer pattern
Mr					00 RGBG
7.0					01 RGGB
					10 BGGR
					11 GBRG
					5'h18 DNDD out mode
					5'h19 LSC out mode
					5'h1b EEINTP out mode
P0:0x85	Frame start	8	0x60		Frame start num
P0:0x86	sync_mode	8	0x0f	RW	Synchronize signal output mode
					[7] data delay half
					[6] hsync delay half
					[5] odd even row switch
					[4] odd even col switch
					[3] opclk gated in HB
					0: not gated
			21		1: gated
	11/2		110		[2] opclk polarity
	WALL				0: invert of isp_2pclk(isp_pclk)
1.1	NV,				1: same as isp_2pclk(isp_pclk) [1] hsync polarity
177					0: low valid
					1: high valid
					[0] vsync polarity
					0: low valid
					1: high valid
P0:0x87	block enable3 b	1	0x00	RW	
2 0.0207		1	OAGO		
P0:0x87	block_enable3_b uf	1	0x00	RW	[7:1] NA [0] auto_edge_effect

GC2155 COB DataSheet 31 / 46

				I	L
P0:0x88	module_gating	2	0x03	RW	[7:2] NA
					[1] ctl_auto_gating
					[0] out_auto_gating
P0:0x89	bypass_mode	8	0x03	RW	[7] YUV_420_mode
					[6] single_2_double_mode
					[5] first_second_switch
					[4] shake_mode
					[3] 8 bit bypass
					[2] 10 bit bypass(for 8 bit data line FPGA)
				U	[1:0] bypass which 8bits from 11bit, in is 8
					bit bypass mode
	-31(*)		1		11: [10:3]default
		7			10: [9:2]
	7 // /				01: [8:1]
$M_{\rm M}$					00: [7:0]
P0:0x8c	debug_mode2	8	0x00	RW	[7:5]reserved
7.					[4] skin map
					[3] test image mode
					1: UXGA
					0: VGA
					[2] input test image
					[1] LSC test image
					[0] test image after EEINTP
P0:0x8d	Debug mode3	8	0x01	RW	[7:4] test image fix value
					[3] test image fix value mode
					[2] reserved
					[1] INBF enable
					[0] update gain mode
P0:0x90	win mode buf	8	0x00	RW	[7:1] NA
					[0] Crop out Window mode
P0:0x91	out win y1[10:8	3	0x00	RW	out win y1[10:8]
0.011)				10,,	
P0:0x92	out win y1 [7:0]	8	0x00	RW	out win y1[7:0]
P0:0x93	out win x1[10:8	3	0x00		out win x1[10:8]
0.075		5	UAUU	15.44	
P0:0x94	out win x1[7:0]	8	0x00	RW	out win x1[7:0]
P0:0x94	+	3			
EU.UX93	out_win_height[3	0x04	IX W	Out window height[10:8]
D0.006	10:8]	0	01-0	DW	Out window height[7:0]
P0:0x96	out_win_height[8	0xb0	KW	Out window height[7:0]
DO 0 07	7:0]	2	0.00	DIII	0 / 1 1 14510 01
P0:0x97	out_win_width[1	3	0x06	KW	Out window width[10:8]
	0:8]				

GC2155 COB DataSheet 32 / 46

P0:0x98	out_win_width[7	8	0x40	RW	Out window width[7:0]
	:0]				
P0:0x99	subsample	8	0x11	RW	[7:4] subsample row ratio
					[3:0] subsample col ratio
P0:0x9a	Sub_mode	6	0x06	RW	[7] hide clk in the head of hsync en
					[6] hide clk mode
					[5] use or cut row
					1: use 0: cut
					[4] use or cut col
				V	1: use 0: cut
					[3] smooth Y
					[2] smooth Chroma
1	VYV	9			[1] neighbor average mode
					[0] subsample extend opclk
P0:0x9b	Sub_row_N1	8	0x02	RW	[7:4] sub row num1
1					[3:0] sub row num2
P0:0x9c	Sub_row_N2	8	0x04	RW	[7:4] sub row num3
					[3:0] sub row num4
P0:0x9d	Sub_row_N3	8	0x00	RW	[7:4] sub row num5
					[3:0] sub row num6
P0:0x9e	Sub_row_N4	8	0x00	RW	[7:4] sub row num7
					[3:0] sub row num8
P0:0x9f	Sub_col_N1	8	0x02	RW	[7:4] sub col num1
					[3:0] sub col num2
P0:0xa0	Sub_col_N2	8	0x04	RW	[7:4] sub col num3
					[3:0] sub col num4
P0:0xa1	Sub_col_N3	8	0x00	RW	[7:4] sub col num5
					[3:0] sub col num6
P0:0xa2	Sub_col_N4	8	0x00	RW	[7:4] sub col num7
					[3:0] sub col num8
P0:0xc2	output_buf_enab	1	0x00	RW	[4] output_buf_enable
	le_buf		1/h		

BLK

Address	Name	Width	Default	R/W	Description
			Value		
P0:0x3f	dark_current_st	8	0x00	RW	dark_current_stable_th
	able_th				
P0:0x40	Blk_mode1	8	0x2b	RW	[7:2] Reserved
					[1] dark_current_en
					[0] offset_en
P0:0x42	BLK_limit_val	8	0xff	RW	When Dark data big than it, while get this

GC2155 COB DataSheet 33 / 46

34 / 46

	ue				to replace it for protect dark data.
					low align 11bits
P0:0x43	BLK fame cnt	8	0x54	RW	[7:4] BLK start not smooth
	TH				[3:0] output start frame
P0:0x5c	Exp_rate_darkc	8	0x00	RW	Exp rate darke
P0:0x5e	current G1 off	6	0x18		[7:6] NA
	set odd ratio				[5:0] 1.5bits offset ratio G1 odd
P0:0x5f	current_G1_off	6	0x18	RW	[7:6] NA
	set_even_ ratio				[5:0] 1.5bits offset_ratio_G1_even
P0:0x60	current_R1_offs	6	0x18	RW	[7:6] NA
	et_odd_ ratio				[5:0] 1.5bits offset_ratio_R1_odd
P0:0x61	current_R1_offs	6	0x18	RW	[7:6] NA
1	et_even_ ratio				[5:0] 1.5bits offset_ratio_R1_even
P0:0x62	current_B1_offs	6	0x18	RW	[7:6] NA
M_{\odot}	et_odd_ ratio				[5:0] 1.5bits offset_ratio_B1_odd
P0:0x63	current_B1_offs	6	0x18	RW	[7:6] NA
	et_even_ ratio				[5:0] 1.5bits offset_ratio_B1_even
P0:0x64	current_G2_off	6	0x18	RW	[7:6] NA
	set_odd_ ratio				[5:0] 1.5bits offset_ratio_G2_odd
P0:0x65	current_G2_off	6	0x18	RW	[7:6] NA
	set_even_ ratio				[5:0] 1.5bits offset_ratio_G2_even
P0:0x66	Dark_current_G	6	0x20	RW	[7:6] NA
	1_ ratio				[5:0] 1.5bits dark_current_ratio_G1
P0:0x67	Dark_current_R	6	0x20	RW	[7:6] NA
	_ ratio				[5:0] 1.5bits dark_current_ratio_R1
P0:0x68	Dark_current_B	6	0x20	RW	[7:6] NA
	_ ratio				[5:0] 1.5bits dark_current_ratio_B2
P0:0x69	Dark_current_G	6	0x20	RW	[7:6] NA
	2_ ratio				[5:0] 1.5bits dark_current_ratio_G2
P0:0x6a	manual_G1_od	6	0x00	RW	[7:6] NA
	d_offset		21		[5:0] S5, aligned to lower 8 of 11 bits data
P0:0x6b	manual_G1_eve	6	0x00	RW	[7:6] NA
	n_offset				[5:0] S5, aligned to lower 8 of 11 bits data
P0:0x6c	manual_R1_od	6	0x00	RW	[7:6] NA
	d_offset				[5:0] S5, aligned to lower 8 of 11 bits data
P0:0x6d	manual_R1_eve	6	0x00	RW	[7:6] NA
5.	n_offset				[5:0]S5, aligned to lower 8 of 11 bits data
P0:0x6e	manual_B2_od	6	0x00	RW	[7:6] NA
	d_offset				[5:0] S5, aligned to lower 8 of 11 bits data
P0:0x6f	manual_B2_eve	6	0x00	RW	[7:6] NA
	n_offset				[5:0] S5, aligned to lower 8 of 11 bits data
P0:0x70	manual_G2_od	6	0x00	RW	[7:6] NA

	d_offset				[5:0] S5, aligned to lower 8 of 11 bits data
P0:0x71	manual_G2_eve	6	0x00	RW	[7:6] NA
	n_offset				[5:0] S5, aligned to lower 8 of 11 bits data
P0:0x72	BLK_DD_th	8	0xf2	RW	[7:4] BLK_DD_th
	BLK_various_t				[3:0] BLK_various_th
	h				

GAIN

Address	Name	Width	Default	R/W	Description
			Value		
P0:0xa3	channel_gain_G	8	0x80	RW	G1 odd Channel gain, float 1.7
	1_odd	112			
P0:0xa4	channel_gain_G	8	0x80	RW	G1 even Channel gain, float 1.7
	1_even				
P0:0xa5	channel_gain_R1	8	0x80	RW	R1 odd Channel gain, float 1.7
K	_odd				
P0:0xa6	channel_gain_R1	8	0x80	RW	R1 even Channel gain, float 1.7
	_even				
P0:0xa7	channel_gain_B2	8	0x80	RW	B2 odd channel gain, float 1.7
	_odd				
P0:0xa8	channel_gain_B2	8	0x80	RW	B2 even channel gain, float 1.7
	_even				
P0:0xa9	channel_gain_G	8	0x80	RW	G2 odd channel gain, float 1.7
	2_odd				
P0:0xaa	channel_gain_G	8	0x80	RW	G2 even channel gain, float 1.7
	2_even				· UP/III ·
	R_ratio	8	0x80		R ratio, float 1.7
	G_ratio	8	0x80		G ratio, float 1.7
	B_ratio	8	0x80		B ratio, float 1.7
P0:0xb0	Global_gain	8	0x40	RW	Global gain, float 4.4
P0:0xb1	Auto_pregain	8	0x20	RO	Controlled by AEC, can be manually
	-10				controlled when disable AEC
P0:0xb2	Auto_postgain	8	0x40	RO	Controlled by AEC, can be manually
					controlled when disable AEC
	AWB_R_gain	8	0x40		AWB R gain float 4.4
P0:0xb4	AWB_G_gain	8	0x40		AWB G gain float 4.4
P0:0xb5	AWB_B_gain	8	0x40	RO	AWB B gain float 4.4

DNDD

Address	Name	Width	Default Value	R/W	Description
P2:0x84	DD_dark_th	6	0x0a	RW	DD_dark_th,2.5

GC2155 COB DataSheet 35 / 46

P2:0x85	ASDE_DN_B_sl	4	0x02	RW	ASDE_DN_B_slope
	ope				
P2:0x89	ASDE_low_lum	8	0x20	RW	ASDE_low_luma_value_DD_th2,4.4
	a_value_DD_th2				
P2:0x8a	ASDE_low_lum	8	0x20	RW	ASDE_low_luma_value_DD_th3,4.4
	a_value_DD_th3				
P2:0x8b	ASDE_low_lum	8	0x20	RW	ASDE_low_luma_value_DD_th4,4.4
	a_value_DD_th4				

INTPEE

Address	Name	Width	Default	R/W	Description
ridaress	10		Value	10, 11	Bescription
P2:0x90	EEINTP mode 1	8	0x6c	RW	[7]edge1_mode
	1 1 1 0				[6]HP3_mode
					[5]edge2_mode
H					[4]Reserved
					[3]LP_intp_en
					[2]LP_edge_en
					[1]NA
					[0] half_scale_mode_en
P2:0x91	EEINTP mode 2	8	0x00	RW	[7]HP_mode1
					[6]HP_mode2
					[5]only 2 direction
					only two direction H and V
					[4]NA
					[3]only_defect_map
					[2]map_dir
					[1:0]reserved
P2:0x92	direction_TH1	8	0x48	`	[7:6] reserved
					[5:0] Lower Criteria for direction detection
P2:0x93	Direction_TH2	6	0x03	RW	[7:6] NA
	10				[5:0] Upper Criteria for direction detection
P2:0x94	diff_HV_mode	8	0x00	RW	[7:4] Diff HV TI TH1
					[3:0] Diff HV TI TH2
P2:0x95	direction_diff_T	8	0x83	RW	[7:4] Direction diff TH1
2 141	H_mode				[3:0] Direction diff TH2
P2:0x96	edge level	8	0x00	RW	[3:2] edge level
P2:0x97	Edge1 effect	8	0x48	RW	[7:4] edge1 effect
	Edge2 effect				[3:0] edge2 effect
P2:0x98	Edge_pos_ratio	8	0x88	RW	[7:4] pos edge ratio
	Edge_neg_ratio				[3:0] neg edge ratio
P2:0x99	Edge1_max	8	0x81	RW	[7:4] edge1 max

GC2155 COB DataSheet 36 / 46

AUTO_	AUTO_CC							
	er							
P2:0x9d	Edge_effect_scal	4	0x04	RW	[3:0] edge1_effect_scaler			
	Edge_neg_max				[3:0] Negative edge max			
P2:0x9c	Edge_pos_max	8	0xf8	RW	[7:4] Positive edge max			
	Edge2_th				[3:0] edge2 threshold			
P2:0x9b	Edge1_th	8	0x22	RW	[7:4] edge1 threshold			
	Edge2_min				[3:0] edge2 min			
P2:0x9a	Edge2_max	8	0x81	RW	[7:4] edge2 max			
	Edge1_min				[3:0] edge1 min			

AUTO_CC

Address	Name	Width	Default	R/W	Description
		7,	Value		
P2:0xc0	CC_mode	8	0x00	RW	reserved
P2:0xc1	CC_CT1_11	8	0x40	RW	CC_CT1_11
P2:0xc2	CC_CT1_12	8	0x00	RW	CC_CT1_12
P2:0xc3	CC_CT1_13	8	0x00	RW	CC_CT1_13
P2:0xc4	CC_CT1_21	8	0x00	RW	CC_CT1_21
P2:0xc5	CC_CT1_22	8	0x40	RW	CC_CT1_22
P2:0xc6	CC_CT1_23	8	0x00	RW	CC_CT1_23
P2:0xe6	CC_R_offset	8	0x00	RW	CC_R_offset
P2:0xe7	CC_G_offset	8	0x00	RW	CC_G_offset
P2:0xe8	CC_B_offset	8	0x00	RW	CC_B_offset

RGB GAMMA

Address	Name	Width	Default	R/W	Description
			Value		
P2:0x10	Gamma_out1	8	0x0a	RW	Knee0=2
P2:0x11	Gamma_out2	8	0x12	RW	Knee1=4
P2:0x12	Gamma_out3	8	0x19	RW	Knee2=6
P2:0x13	Gamma_out4	8	0x1f	RW	Knee3=8
P2:0x14	Gamma_out5	8	0x2c	RW	Knee4=12
P2:0x15	Gamma_out6	8	0x38	RW	Knee5=16
P2:0x16	Gamma_out7	8	0x42	RW	Knee6=20
P2:0x17	Gamma_out8	8	0x4e	RW	Knee7=24
P2:0x18	Gamma_out9	8	0x63	RW	Knee8=32
P2:0x19	Gamma_out10	8	0x76	RW	Knee9=40
P2:0x1a	Gamma_out11	8	0x87	RW	Knee10=48
P2:0x1b	Gamma_out12	8	0x96	RW	Knee11=56
P2:0x1c	Gamma_out13	8	0xa2	RW	Knee12=64
P2:0x1d	Gamma_out14	8	0xb8	RW	Knee13 =80
P2:0x1e	Gamma_out15	8	0xca	RW	Knee14 = 96

GC2155 COB DataSheet 37 / 46

P2:0x1f	Gamma_out16	8	0xd8	RW	Knee15 = 112
P2:0x20	Gamma_out17	8	0xe0	RW	Knee16 = 128
P2:0x21	Gamma_out18	8	0xe8	RW	Knee17 = 144
P2:0x22	Gamma_out19	8	0xf0	RW	Knee18 =160
P2:0x23	Gamma_out20	8	0xf8	RW	Knee19 = 192
P2:0x24	Gamma_out21	8	0xfd	RW	Knee 20 = 224
P2:0x25	Gamma_out22	8	0xff	RW	Knee21 = 256

YCP

Address	Name	Width	Default	R/W	Description
			Value		
P2:0xd0	Global saturation	8	0x40	RW	[7:0] Global saturation, controlled by auto
)			saturation
P2:0xd1	saturation_Cb	8	0x30	RW	[7:0] Cb saturation
N N	11,				3.5bits, 0x20=1.0
P2:0xd2	saturation_Cr	8	0x30	RW	[7:0] Cr saturation
					3.5bits, 0x20=1.0
P2:0xd3	luma_contrast	8	0x40	RW	[7:0] Luma contrast, can be adjusted via
					contrast center
					2.6bits, 0x40=1.0
P2:0xd4	Contrast center	8	0x80	RW	[7:0] Contrast center value
P2:0xd5	Luma_offset	8	0x00	RW	[7:0] Add offset on luma value. S7.
P2:0xd6	skin_Cb_center	8	0xec	RW	[7:0] Cb criteria for skin detection.
P2:0xd7	skin_Cr_center	4	0x12	RW	[7:0] Cr criteria for skin detection.
P2:0xd9	Skin brightness	8	0xe3	RW	[7:4] skin brightness th1
	mode				[3:0] skin brightness th2
P2:0xda	Fixed_Cb	8	0x00	RW	S7, if fixed CbCr function is enabled,
					current image Cb value will be replace by
					this value to achieve special effect
P2:0xdb	Fixed_Cr	8	0x00	RW	S7, if fixed CbCr function is enabled,
					current image Cr value will be replace by
	1				this value to achieve special effect

Measure Window

Address	Name	Width	Default	R/W	Description
			Value		
P0:0xec	C_big_win_x0	8	0x04	RW	
P0:0xed	C_big_win_y0	8	0x02	RW	Dia wie was har AWD
P0:0xee	C_big_win_x1	8	0x30	RW	Big win use by AWB
P0:0xef	C_big_win_y1	8	0x48	RW	

AEC

Address	Name	Width	Default	R/W	Description
---------	------	-------	---------	-----	-------------

GC2155 COB DataSheet 38 / 46

			Value		
P0:0xb6	AEC enable	1	0x00	RW	[7:1] NA
1 0.0000	TEC_chaore	1	0.00	IC VV	[0] AEC enable
P1:0x01	AEC x1	8	0x04	RW	[7:0] AEC x1, X8 local measure window
P1:0x02	AEC_x2	8	0x60		[7:0] AEC_x2, X8 local measure window
P1:0x03	AEC_y1	8	0x02		[7:0] AEC_y1, X8
P1:0x04	AEC_y2	8	0x48	RW	[7:0] AEC_y2, X8
P1:0x05	AEC_center_x1	8	0x20	RW	[7:0] AEC_center_x1, X8
P1:0x06	AEC_center_x2	8	0x40	RW	[7:0] AEC_center_x2, X8
P1:0x07	AEC_center_y1	8	0x18	RW	[7:0] AEC_center_y1, X8
P1:0x08	AEC_center_y2	8	0x30	RW	[7:0] AEC_center_y2, X8
P1:0x0a	AEC_mode1	8	0x01	RW	[7] NA
	$\mathcal{M} \mathcal{M} \mathcal{M}$				[6] measure point
					[5] adjust_max_gain
. D.L.					[4] AEC gain mode
					[3] NA
					[2] gain mode
					[1:0] skip mode
P1:0x0b	AEC_mode2	8	0x21	RW	[7] fix target
					[6:4] AEC take action every N frame
					[3:0 Reserved
P1:0x0c	AEC_mode3	8	0x01	RW	[7] reserved
					[6:4] center weight mode
					[3:2] skin weight mode [1:0]NA
P1:0x0d	AEC mode4	8	0x00	RW	[1.0]NA
P1:0x0e	AEC_high_range		0xf2		AEC_high_range
	AEC low range	8	0x20		AEC_low_range
	AEC target Y	8	0x50		expected luminance value
P1:0x14	Y average	8	0x10	$\overline{}$	Current frame luminance average
P1:0x15	target Y limit f	8	0x80		target Y limit from histogram
	rom histogram				
P1:0x16	AEC number li	8	0x35	RW	AEC number limit high range
	mit_high_range				
P1:0x18	AEC mode5	8	0x91	RW	[7:4] AEC slow margin
					[2:0] AEC slow speed
P1:0x19	AEC mode 6	8	0x95	RW	[7:4] AEC fast margin
					[2:0] AEC fast speed
P1:0x1a	AEC gain mode	8	0x96	RW	Gain change criteria, float 1.7, default use
					1.2x
P1:0x1f	AEC_max_pre_d	8	0x30	RW	AEC_max_pre_dg_gain
	g_gain				

GC2155 COB DataSheet 39 / 46

P1:0x20	AEC max post	8	0xc0	PW/	AEC max post dg gain
F1.0X20	dg gain	0	UXCU	IX VV	AEC_max_post_dg_gam
P1:0x25		8	0x01	DW	[7:5]NA
P1.0X23	AEC_anti_flicke	8	UXU1	KW	[4:0] AEC anti flicker step[12:8]
D1.0-26	r_step[12:8]	0	069	DW	
P1:0x26	AEC_anti_flicke	8	0x68	KW	AEC anti flicker step[7:0]
D1.0-27	r_step[7:0]	0	004	DW	[7,5]3]4
P1:0x27	AEC_exp_level_	8	0x04	KW	[7:5] NA
D1 0 20	1[12:8]	- 0	0.20	DIV	[4:0] AEC exp level1[12:8]
P1:0x28	AEC_exp_level_	8	0x38	RW	AEC exp level1[7:0]
	1[7:0]			V	
P1:0x29	AEC_exp_level_	8	0x05	RW	[7:5] NA
	2[12:8]				[4:0] AEC exp level2[12:8]
P1:0x2a	AEC_exp_level_	8	0xa0	RW	AEC exp level2[7:0]
	2[7:0]				
P1:0x2b	AEC_exp_level_	8	0x09	RW	[7:5] NA
	3[12:8]				[4:0] AEC exp level3[12:8]
P1:0x2c	AEC_exp_level_	8	0xd8	RW	AEC exp level_3[7:0]
	3[7:0]				
P1:0x2d	AEC_exp_level_	8	0x0e	RW	[7:5] NA
	4[12:8]				[4:0] AEC exp level 4[12:8]
P1:0x2e	AEC_exp_level_	8	0x10	RW	AEC exp level 4 [7:0]
	4[7:0]				
P1:0x2f	AEC_exp_level_	8	0x10	RW	[7:5] NA
	5[12:8]				[4:0] AEC exp level 5[12:8]
P1:0x30	AEC_exp_level_	8	0xe0	RW	AEC exp level 5 [7:0]
	5[7:0]				UPIN
P1:0x31	AEC_exp_level_	8	0x1c	RW	[7:5] NA
	6[12:8]				[4:0] AEC exp level 6[12:8]
P1:0x32	AEC_exp_level_	8	0x20	RW	AEC exp level 6[7:0]
	6[7:0]				70,
P1:0x33	AEC_exp_level_	8	0x1c	RW	[7:5] NA
	7[12:8]				[4:0] AEC exp level7[12:8]
P1:0x34	AEC exp level	8	0x20	RW	AEC exp level 7[7:0]
- 1	7[7:0]				
P1:0x35	AEC max dg g	8	0x40	RW	5.3bits, AEC max dg gain1
	ain1				
P1:0x36	AEC max dg g	8	0x40	RW	5.3bits, AEC max dg gain2
	ain2				
P1:0x37	AEC max dg g	8	0x40	RW	5.3bits, AEC max dg gain3
1.0/3/	ain3		02.10		2.30.00, 7 EDO HIMA US SUITIS
P!:0x38	AEC max dg g	8	0x40	RW	5.3bits, AEC max dg gain4
1.0330	ain4	U	UATU	12.44	5.50to, ADC max ag gam-
	μ111 1				

GC2155 COB DataSheet 40 / 46

P1:0x39	AEC_max_dg_g	8	0x40	RW	5.3bits, AEC max dg gain5
	ain5				
P1:0x3a	AEC_max_dg_g	8	0x40	RW	5.3bits, AEC max dg gain6
	ain6				
P1:0x3b	AEC_max_dg_g	8	0x40	RW	5.3bits, AEC max dg gain7
	ain7				
P1:0x3c	AEC_max_exp_1	8	0x20	RW	[6:5] Max level setting
	evel				[4:0] exp min[12:8]
	AEC_exp_min_l				
	[12:8]			V	9.
P1:0x3d	AEC_exp_min_l	8	0x04	RW	AEC_exp_min_l[7:0]
	[7:0]				

AWR

P1:0x51 A	Name WB mode 1 WB parameter	Width	Default Value	R/W	Description
P1:0x51 A		0	Valua		
P1:0x51 A		_	v alue		
	WP noromator	8	0x00	RW	Reserved
	w B parameter	8	0x80	RW	AWB parameter
P1:0x52 A	WB parameter	8	0x01	RW	AWB parameter
P1:0x53 A	WB parameter	8	0x80	RW	AWB parameter
P1:0x54 A	WB parameter	8	0x0f	RW	AWB parameter
P1:0x55 A	WB parameter	8	0x00	RW	AWB parameter
P1:0x56 A	WB parameter	8	0x00	RW	AWB parameter
P1:0x57 A	WB parameter	8	0x07	RW	AWB parameter
P1:0x58 A	WB parameter	4	0x00	RW	AWB parameter
P1:0x59 A	WB_PRE_RG	8	0x01	RW	RGB pixel low THD
B	s_low				
P1:0x5a A	WB_PRE_RG	8	0xf0	RW	RGB pixel high THD
B	_high			0	
P1:0x5b A	WB parameter	8	0x00	RW	AWB parameter
P1:0x75 A	WB_every_N	8	0x01	RW	[7:2] NA
	10				[1:0] AWB_every_N
P1:0x76 A	WB_R_gain_li	8	0x70	RW	Channel gain limit for R, G, B.
m	nit				Float 2.6
P1:0x77 A	WB_G_gain_li	8	0x58	RW	
m	nit				
P1:0x78 A	WB_B_gain_li	8	0x78	RW	
m	nit				
P1:0x79 A	WB_R_gain_o	8	0x50	RW	outdoor R high limit
ut	t_h_limit	_			
P1:0x7a A	WB_G_gain_o	8	0x58	RW	outdoor G high limit
ut	t_h_limit				

GC2155 COB DataSheet 41 / 46

P1:0x7b	AWB_B_gain_o	8	0x46	RW	outdoor B high limit
	ut_h_limit				
P1:0x7c	AWB_R_gain_o	8	0x40	RW	outdoor R low limit
	ut_l_limit				.1714
P1:0x7d	AWB_G_gain_o	8	0x40	RW	outdoor G low limit
	ut_l_limit				
P1:0x7e	AWB_B_gain_o	8	0x40	RW	outdoor B low limit
	ut_l_limit				

ABS

Address	Name	Width	Default Value	R/W	Description
P1:0x9a	ABS_range_com	8	0xf3	RW	[7:4] add dynamic range
	pesate				[2:0] abs adjust every frame
	ABS_skip_frame				
P1:0x9b	ABS_stop_margi	4	0x02	RW	[7:4] NA
	n				[3:0] margin for ABS to stop adjustment
P1:0x9c	Y_S_compesate	8	0x00	RW	[7:4] Y S compensate
	ABS_manual_K				[3:0] manual ABS slope adjustment
P1:0x9d	Y_stretch_limit	8	0x40	RW	[7:0] Y stretch limit

LSC

Address	Name	Width	Default	R/W	Description
			Value		
P1:0xa0	LSC_row_x2	8	0x03	RW	[3] LSC_row_x2
	LSC_col_x2				[2] LSC_col_x2
	LSC_pixel_array				[1:0] LSC pixel array select
	_select				
P1:0xa1	LSC_row_center	8	0x80	RW	LSC row center
P1:0xa2	LSC_col_center	8	0x80	RW	LSC col center
P1:0xa4	LSC_Q1_red_b1	8	0x00	RW	[6] LSC_Q1_red_b1_sign
	sign	\cup	21		[5] LSC_Q1_green_b1_sign
	LSC_Q1_green_				[4] LSC_Q1_blue_b1_sign
	b1_sign				[2] LSC_Q2_red_b1_sign
	LSC_Q1_blue_b				[1] LSC_Q2_green_b1_sign
	1_sign				[0] LSC_Q2_blue_b1_sign
111	LSC_Q2_red_b1				
	_sign				
	LSC_Q2_green_				
	b1_sign				
	LSC_Q2_blue_b				
	1_sign				
P1:0xa5	LSC_Q3_red_b1	8	0x00	RW	[6] LSC_Q3_red_b1_sign

GC2155 COB DataSheet 42 / 46

			ı	1	,
	_sign				[5] LSC_Q3_green_b1_sign
	LSC_Q3_green_				[4] LSC_Q3_blue_b1_sign
	b1_sign				[2] LSC_Q4_red_b1_sign
	LSC_Q3_blue_b				[1] LSC_Q4_green_b1_sign
	1_sign				[0] LSC_Q4_blue_b1_sign
	LSC_Q4_red_b1				
	_sign				
	LSC_Q4_green_				
	b1_sign				
	LSC_Q4_blue_b			V)	9.
	1_sign				
P1:0xa6	LSC_right_red_b	8	0x00	RW	[6] LSC_right_red_b4_sign
	4_sign	9			[5] LSC_right_green_b4_sign
11	LSC_right_green				[4] LSC_right_blue_b4_sign
	_b4_sign				[2] LSC_left_red_b4_sign
M	LSC_right_blue_				[1] LSC_left_green_b4_sign
	b4_sign				[0] LSC_left_blue_b4_sign
	LSC_left_red_b4				
	_sign				
	LSC_left_green_				
	b4_sign				
	LSC_left_blue_b				
	4_sign				. 1
P1:0xa7	LSC_up_red_b4	8	0x00	RW	[6] LSC_up_red_b4_sign
	_sign				[5] LSC_up_green_b4_sign
	LSC_up_green_				[4] LSC_up_blue_b4_sign
	b4_sign				[2] LSC_down_red_b4_sign
	LSC_up_blue_b				[1] LSC_down_green_b4_sign
	4_sign			0	[0] LSC_down_blue_b4_sign
	LSC_down_red_				101
	b4_sign				
	LSC_down_gree				
	n_b4_sign	10			
	LSC_down_blue				
	_b4_sign				
P1:0xa8	LSC_right_up_re	8	0x00	RW	[6] LSC_right_up_red_b22_sign
Ni .	d_b22_sign				[5] LSC_right_up_green_b22_sign
	LSC_right_up_g				[4] LSC_right_up_blue_b22_sign
	reen_b22_sign				[2] LSC_right_down_red_b22_sign
	LSC_right_up_bl				[1] LSC_right_down_green_b22_sign
	ue_b22_sign				[0] LSC_right_down_blue_b22_sign
	LSC_right_down				

GC2155 COB DataSheet 43 / 46

	1			1	
	_red_b22_sign				
	LSC_right_down				
	_green_b22_sign				
	LSC_right_down				
	_blue_b22_sign				
P1:0xa9	LSC_left_up_red	8	0x00	RW	[6] LSC_left_up_red_b22_sign
	_b22_sign				[5] LSC_left_up_green_b22_sign
	LSC_left_up_gre				[4] LSC_left_up_blue_b22_sign
	en_b22_sign				[2] LSC_left_down_red_b22_sign
	LSC_left_up_blu				[1] LSC_left_down_green_b22_sign
	e b22 sign				[0] LSC left down blue b22 sign
	LSC left down				
	red b22 sign	5			
. 1	LSC left down				
	green_b22_sign				
	LSC_left_down_				
	blue b22 sign				
P1:0xaa	LSC Q1 red b1	8	0x20	RW	LSC Q1 red b1
P1:0xab	LSC Q1 green	8	0x20		LSCQ1 green b1
	b1				
P1:0xac	LSC Q1 blue b	8	0x20	RW	LSC Q1 blue b1
	1				
P1:0xad	LSC Q2 red b1	8	0x20	RW	LSC Q2 red b1
P1:0xae	LSC Q2 green	8	0x20	RW	LSC Q2 green b1
	b1				
P1:0xaf	LSC Q2 blue b	8	0x20	RW	LSC Q2 blue b1
	1				
P1:0xb0	LSC Q3 red b1	8	0x20	RW	LSC Q3 red b1
P1:0xb1	LSC Q3 green	8	0x20	RW	LSC Q3 green b1
	b1				1010
P1:0xb2	LSC Q3 blue b	8	0x20	RW	LSC Q3 blue b1
	1				
P1:0xb3	LSC Q4 red b1	8	0x20	RW	LSC Q4 red b1
P1:0xb4	LSC Q4 green	8	0x20		LSC Q4 green b1
	b1	Ü	0.120	12,,,	200 Q. g. 0011 01
P1:0xb5	LSC Q4 blue b	8	0x20	RW	LSC Q4 blue b1
T I.OXOS	1	O	0.720	ICVV	Lise Q4 blue b1
P1:0xb6	LSC right red b	8	0x20	PW	LSC right red b2
11.0000	2	0	0.7.2.0	IX VV	LSC light icu bz
P1:0xb7	LSC right green	8	0x20	RW	LSC right green b2
1.UXU/	b2	O	UAZU	17. 44	Loc right green 02
P1:0xb8	_	8	0×20	DW	I SC right blue b2
r i .uxb8	LSC_right_blue_	ð	0x20	ΚW	LSC right blue b2

	b2				
P1:0xb9	LSC_right_red_b	8	0x20	RW	LSC right red b4
P1:0xba	LSC_right_green_b4	8	0x20	RW	LSC right green b4
P1:0xbb	LSC_right_blue_ b4	8	0x20	RW	LSC right blue b4
P1:0xbc	LSC_left_red_b2	8	0x20	RW	LSC left red b2
P1:0xbd	LSC_left_green_	8	0x20	RW	LSC left green b2
	b2			V	
P1:0xbe	LSC_left_blue_b 2	8	0x20	RW	LSC left blue b2
P1:0xbf	LSC_left_red_b4	8	0x20	RW	LSC left red b4
P1:0xc0	LSC_left_green_ b4	8	0x20	RW	LSC left green b4
P1:0xc1	LSC_left_blue_b	8	0x20	RW	LSC left blue b4
P1:0xc2	LSC_up_red_b2	8	0x20	RW	LSC up red b2
P1:0xc3	LSC_up_green_ b2	8	0x20	RW	LSC up green b2
P1:0xc4	LSC_up_blue_b 2	8	0x20	RW	LSC up blue b2
P1:0xc5	LSC_up_red_b4	8	0x20	RW	LSC up red b4
P1:0xc6	LSC_up_green_ b4	8	0x20	RW	LSC up green b4
P1:0xc7	LSC_up_blue_b	8	0x20	RW	LSC up blue b4
P1:0xc8	LSC_down_red_ b2	8	0x20	RW	LSC down red b2
P1:0xc9	LSC_down_gree n_b2	8	0x20	RW	LSC down green b2
P1:0xca	LSC_down_blue _b2	8	0x20	RW	LSC down blue b2
P1:0xcb	LSC_down_red_	8	0x20	RW	LSC down red b4
	b4				
P1:0xcc	LSC_down_gree n_b4	8	0x20	RW	LSC down green b4
P1:0xcd	LSC_down_blue b4	8	0x20	RW	LSC down blue b4
P1:0xd0	LSC_right_up_re d b22	8	0x20	RW	LSC Q1 red b22
	LSC_right_up_g	8	0x20	t	LSC Q1 green b22

	reen_b22				
P1:0xd2	LSC_right_up_blue_b22	8	0x20	RW	LSC Q1 blue b22
P1:0xd3	LSC_right_down red_b22	8	0x20	RW	LSC Q4 red b22
P1:0xd4	LSC_right_down _green_b22	8	0x20	RW	LSC Q4 green b22
P1:0xd5	LSC_right_down blue_b22	8	0x20	RW	LSC Q4 Blue b22
P1:0xd6	LSC_left_up_red_b22	8	0x20	RW	LSC Q2 red b22
P1:0xd7	LSC_left_up_gre en_b22	8	0x20	RW	LSC Q2 green b22
P1:0xd8	LSC_left_up_blu e_b22	8	0x20	RW	LSC Q2 blue b22
P1:0xd9	LSC_left_down_ red_b22	8	0x20	RW	LSC Q3 red b22
P1:0xda	LSC_left_down_ green_b22	8	0x20	RW	LSC Q3 green b22
P1:0xdb	LSC_left_down_ blue_b22	8	0x20	RW	LSC Q3 blue b22
P1:0xdc	LSC_Y_dark_th	8	0x20	RW	LSC_Y_dark_th
P1:0xdd	LSC_Y_dark_slo	8	0x10	RW	LSC_Y_dark_slope
P1:0xdf	LSC_U_B2G_st and[9:8] LSC_FF_fixed_e n	8	0x1c	RW	[7:6]LSC_U_B2G_stand[9:8] [5]LSC_FF_fixed_en [4]LSC_FF_hold_en [3]LSC_dark_dec_mode
	LSC_FF_hold_e n LSC_dark_dec_ mode	0	E		[2]LSC_dark_pixel_select_mode [1]LSC_K_RB_select_mode [0]LSC_K_RB_interp_mode
JA!	LSC_dark_pixel _select_mode LSC_K_RB_sele ct_mode LSC_K_RB_inte rp_mode				

GC2155 COB DataSheet 46 / 46