Trends in Alternative Daily Cover in California

https://github.com/sarahko7/ADC_AnalysisSarah~Ko

Abstract

Experimental overview. This section should be no longer than 250 words.

Contents

1	Research Question and Rationale				
2 Dataset Information					
3	Exploratory Data Analysis and Wrangling	7 7			
	3.1 Data Wrangling	8			
	3.3 Exploratory Graphs	10			
4	Analysis: Statistical Modeling & Data Visualization	13			
	4.1 Test 1: Difference Between Report Quarters - Analysis	13			
	4.1.1 Test 1: Result	18			
	4.2 Test 2: Linear Model - Analysis	19			
	4.2.1 Test 2: Result	22			
	4.3 Test 3: Changepoint in Construction & Demolition - Analysis	23			
	4.3.1 Test 3: Result	29			
5	Summary and Conclusions	30			

List of Tables

List of Figures

<Note: set up autoreferencing for figures and tables in your document>

1 Research Question and Rationale

2 Dataset Information

Column Name	Data Description		
Report Year	Year that the ADC was used		
Report Quarter	Quarter that the ADC was used		
Ash	Ash and cement kiln dust materials		
Auto Shredder Waste	Treated auto shredder waste		
Construction and Demolition Waste	Processed construction and demolition wastes and materials		
Compost	Compost materials		
Contaminated Sediment	Contaminated sediment, dredge spoils, foundry sands		
Green Material	Processed green material		
Mixed	Mixtures of the other categories		
Other	Before 1998, most ADC was classified in this category		
Tires	Shredded tires		
Sludge	Sludge and sludge-derived materials		
Total	Sum of the columns Ash:Sludge		

SKOTESTThis is the caption for the table 1: Summary of Data Structure

SKOTEST reference the table in text: Table 1 $\,$

3 Exploratory Data Analysis and Wrangling

3.1 Data Wrangling

```
# per the CalRecycle website, segregation into ADC types started in 1998
# therefore, for the analysis, remove data from before 1998
class(ADC raw$Report.Year)
## [1] "integer"
ADC data <- filter(ADC raw, Report. Year >= 1998)
dim(ADC data)
## [1] 80 13
# explore new dataset
head(ADC data)
                                      Ash Auto.Shredder.Waste
     Report. Year Report. Quarter
## 1
            2017
                               1 32511.83
                                                     153270.6
## 2
                               2 37294.78
            2017
                                                      159759.7
## 3
                               3 33349.25
            2017
                                                     153342.6
## 4
            2017
                               4 22248.85
                                                      123203.5
## 5
            2016
                               1 31423.40
                                                      123193.3
## 6
            2016
                               2 45504.45
                                                      126040.9
##
     Construction.and.Demolition.Waste Compost Contaminated.Sediment
## 1
                               173548.6 6128.89
                                                                3396.36
## 2
                               199486.8 2746.22
                                                                7585.58
## 3
                               164028.4 1796.97
                                                                4280.92
## 4
                               198901.7 15993.13
                                                                2979.12
## 5
                               160446.5 15681.63
                                                               20203.18
                               144982.9 42215.62
## 6
                                                               18089.73
##
     Green.Material
                       Mixed
                                 Other
                                         Tires
                                                  Sludge
                                                             Total
                        0.00 71983.68 3771.40 68063.34 893360.9
## 1
           380686.2
## 2
           401034.3
                    1516.12 71066.46 5066.35
                                                65585.25 951141.6
## 3
           362474.4 10891.73 78980.55 5323.75
                                                79967.05 894435.6
## 4
           347204.0 7964.83 56849.63 4575.75 141423.92 921344.5
## 5
           334512.7 12756.90 82081.97 3402.03
                                                83424.85 867126.5
           310959.5 17946.71 75803.52 3616.26 72882.61 858042.2
## 6
tail(ADC data)
      Report.Year Report.Quarter
                                      Ash Auto.Shredder.Waste
##
## 75
                                3 1578.70
             1999
                                                     69300.25
## 76
             1999
                                4 2718.22
                                                      63910.19
## 77
             1998
                                1 2631.85
                                                     39181.17
                                2 878.63
## 78
             1998
                                                     49391.25
```

```
## 79
             1998
                                3 2457.00
                                                     35573.00
## 80
             1998
                                4 2418.00
                                                     38495.89
##
      Construction.and.Demolition.Waste Compost Contaminated.Sediment
                                48321.13
## 75
                                               0
                                                                   0.00
## 76
                                62057.02
                                             381
                                                                  16.50
## 77
                                               0
                                                                   0.00
                                 2693.48
## 78
                                               0
                                                                   2.74
                                 6666.70
## 79
                                28278.30
                                               0
                                                                  92.17
## 80
                                29591.80
                                               0
                                                                   0.00
##
      Green.Material
                       Mixed
                                Other
                                         Tires
                                                 Sludge
                                                           Total
## 75
            349276.6
                        0.00 4695.69 1265.82 66864.38 541302.6
## 76
            360153.2
                        0.00 6316.72 3307.48 69058.27 567918.6
## 77
            191066.3 3907.20 1008.27 14802.71 43391.12 298682.1
## 78
            279191.3 3602.22 3305.93 15394.54 92416.47 450849.8
## 79
            299986.8
                        0.00 2706.53 2943.31 99312.34 471349.4
## 80
            313452.3 4130.00 3767.93
                                        733.71 57511.25 450100.9
# tidy the data by gathering the type columns
ADC gathered <- gather(ADC data, "Type", "Quantity", Ash:Sludge) %>%
  select(-Total) # remove Total column
# save the tidy dataset
write.csv(ADC data, row.names = FALSE,
          file = "../Processed Data/CalRecycle ADC tidy processed.csv")
```

3.2 Summary

```
# generate summary data
ADC_summary_by_type <- ADC_gathered %>%
 group_by(Type) %>% # group the data by lakename
 filter(!is.na(Quantity)) %>% #remove the records when there are nas Quantity
 summarise(MeanQuarterlyQuantity = mean(Quantity),
            MinQuarterlyQuantity = min(Quantity),
            MaxQuarterlyQuantity = max(Quantity),
            sdQuarterlyQuantity = sd(Quantity),
            medianQuarterlyQuantity = median(Quantity))
ADC summary by type table <- kable(ADC summary by type,
 col.names = c("Waste Type", "Mean Quarterly Quantity", "Min Quarterly Quantity",
  "Max Quarterly Quantity", "sd of Quarterly Quantity",
 "Median Quarterly Quantity")) %>%
 kable_styling(bootstrap options = c("striped", "hover", "condensed",
                                "full width = F"), latex options="scale down") %>%
 row_spec(0, bold = T)
```

ADC_summary_by_type_table

Waste Type	Mean Quarterly Quantity	Min Quarterly Quantity	Max Quarterly Quantity	sd of Quarterly Quantity	Median Quarterly Quantity
Ash	11304.716	101.00	108208.23	17860.123	2675.035
Auto.Shredder.Waste	121864.560	35573.00	215857.61	39655.164	123356.730
Compost	3451.346	0.00	42215.62	6437.880	816.520
Construction.and.Demolition.Waste	122445.102	2693.48	281972.47	58940.701	125469.485
Contaminated.Sediment	11632.401	0.00	102850.25	20862.617	873.295
Green.Material	464016.026	191066.26	797463.76	137342.174	431369.340
Mixed	6929.398	0.00	99288.87	12855.562	3618.210
Other	45163.726	1008.27	149415.30	33034.798	47919.710
Sludge	73697.705	23812.68	147167.22	23765.135	72039.815
Tires	6544.532	733.71	29842.28	5735.144	4353.135

```
ADC summary by year <- ADC gathered %>%
 group_by(Report.Year) %>% # group the data by year
 filter(!is.na(Quantity)) %>% #remove the records when there are nas Quantity
 summarise(MeanQuarterlyQuantity = mean(Quantity),
            MinQuarterlyQuantity = min(Quantity),
            MaxQuarterlyQuantity = max(Quantity),
            sdQuarterlyQuantity = sd(Quantity),
            medianQuarterlyQuantity = median(Quantity))
ADC_summary_by_year_table <- kable(ADC_summary_by_year,
  col.names = c("Year", "Mean Quarterly Quantity", "Min Quarterly Quantity",
  "Max Quarterly Quantity", "sd of Quarterly Quantity",
 "Median Quarterly Quantity")) %>%
 kable_styling(bootstrap_options = c("striped", "hover", "condensed",
                                "full_width = F"), latex_options="scale_down") %>%
 row_spec(0, bold = T)
ADC_summary_by_year_table
```

Year	Mean Quarterly Quantity	Min Quarterly Quantity	Max Quarterly Quantity	sd of Quarterly Quantity	Median Quarterly Quantity
1998	41774.55	0.00	313452.3	82508.86	3685.075
1999	54320.11	0.00	383358.8	103282.44	4657.845
2000	72004.54	0.00	437691.8	124324.24	12219.725
2001	80768.84	0.00	550962.5	147577.35	10910.315
2002	81108.82	0.00	572016.4	162476.47	8921.990
2003	86182.39	0.00	704649.9	178905.18	8734.895
2004	94959.32	0.00	680872.4	193691.28	22845.585
2005	116741.86	0.00	797463.8	223003.44	11838.200
2006	105499.79	0.00	731872.6	196767.51	19307.055
2007	98051.49	0.00	592911.4	169159.05	33313.725
2008	104818.28	93.00	587091.4	164134.03	45992.905
2009	83490.23	264.00	461620.7	130916.23	31683.365
2010	87194.48	21.59	457554.9	125910.72	36318.670
2011	103442.44	90.18	448355.7	128119.69	60689.255
2012	87318.52	228.26	445240.2	120284.80	49674.030
2013	82700.26	31.08	395495.6	107155.27	52122.570
2014	85596.00	0.00	343124.0	97936.53	57852.960
2015	87924.03	0.00	359753.1	105114.41	49599.195
2016	88695.99	0.00	340147.2	96515.24	59193.530
2017	91507.06	0.00	401034.3	113972.21	47072.205

3.3 Exploratory Graphs

sko description graph1

Quarterly Quantities of ADC, Grouped by Year

sko description graph2

sko description graph 3

4 Analysis: Statistical Modeling & Data Visualization

4.1 Test 1: Difference Between Report Quarters - Analysis

Is there a significant difference in total ADC between report quarters? (i.e. 1, 2, 3, 4)

```
# create dataset with only total values, from 1995-2017
ADC total only <- ADC raw %>%
 select(Report.Year, Report.Quarter, Total) # keep all columns except ADC Types
# convert column Report. Quarter into factor
class(ADC_total_only$Report.Quarter)
## [1] "integer"
ADC total only$Report.Quarter <- as.factor(ADC total only$Report.Quarter)
# save the dataset
write.csv(ADC total only, row.names = FALSE,
          file = "../Processed Data/CalRecycle ADC totalsonly processed.csv")
# perform one-way ANOVA
# assumption #0: observations are independent
#(cannot be tested, but assumed to be independent)
# test assumption #1: normality
# null hypothesis is that the dataset is normally distributed
shapiro.test(ADC total only$Total[ADC total only$Report.Quarter == 1])
##
## Shapiro-Wilk normality test
##
## data: ADC_total_only$Total[ADC_total_only$Report.Quarter == 1]
## W = 0.90566, p-value = 0.03312
\# p-value = 0.03312
shapiro.test(ADC total only$Total[ADC total only$Report.Quarter == 2])
##
##
   Shapiro-Wilk normality test
##
## data: ADC_total_only$Total[ADC_total_only$Report.Quarter == 2]
## W = 0.89774, p-value = 0.02271
\# p-value = 0.02271
shapiro.test(ADC total only$Total[ADC total only$Report.Quarter == 3])
```

##

```
##
    Shapiro-Wilk normality test
##
## data: ADC_total_only$Total[ADC_total_only$Report.Quarter == 3]
## W = 0.87982, p-value = 0.00993
\# p-value = 0.00993
shapiro.test(ADC total only$Total[ADC total only$Report.Quarter == 4])
##
##
    Shapiro-Wilk normality test
##
## data: ADC total only$Total[ADC total only$Report.Quarter == 4]
## W = 0.83198, p-value = 0.001305
\# p-value = 0.001305
ADC_freq_poly <- ggplot(ADC_total_only) +
  geom_freqpoly(aes(x = Total, color = Report.Quarter)) +
  xlab("Quarterly Quantity (U.S. Tons)") +
  ylab("# of Records") +
  ggtitle("Frequency of Quarterly Quantities")
print(ADC_freq_poly) # appears to be left skewed
```

Frequency of Quarterly Quantities


```
# does not match 1:1 ratio

# Try to fix departure from normality with ln of Total.

#Result is not improved, so keep non-transformed data

ADC_LogTotal <- mutate(ADC_total_only, LogTotal = log(Total))
qqnorm(ADC_LogTotal$LogTotal); qqline(ADC_LogTotal$LogTotal)</pre>
```



```
bartlett.test(ADC_LogTotal$LogTotal ~ ADC_LogTotal$Report.Quarter)

##

## Bartlett test of homogeneity of variances

##

## data: ADC_LogTotal$LogTotal by ADC_LogTotal$Report.Quarter

## Bartlett's K-squared = 1.1435, df = 3, p-value = 0.7666

# Try to fix departure from normality with 1/Total.

#Result is not improved, so keep non-transformed data

ADC_InvTotal <- mutate(ADC_total_only, InvTotal = 1/Total)

qqnorm(ADC_InvTotal$InvTotal); qqline(ADC_InvTotal$InvTotal)</pre>
```



```
bartlett.test(ADC_InvTotal$InvTotal ~ ADC_InvTotal$Report.Quarter)
##
   Bartlett test of homogeneity of variances
##
##
## data: ADC_InvTotal$InvTotal by ADC_InvTotal$Report.Quarter
## Bartlett's K-squared = 6.519, df = 3, p-value = 0.08892
# test assumption #2: equal variances among groups
# null hypothesis is that the variance is the same for the treatment groups
bartlett.test(ADC_total_only$Total ~ ADC_total_only$Report.Quarter)
##
   Bartlett test of homogeneity of variances
##
##
## data: ADC_total_only$Total by ADC_total_only$Report.Quarter
## Bartlett's K-squared = 0.44478, df = 3, p-value = 0.9308
\#p\text{-value} = 0.9308 \# df = 3 \text{ (statistical power is very low)}
# dataset is not normal, but does fulfill requirement for same variances.
#proceed with non-parametric tests.
```

```
# try non-parametric w/ post hoc, bc sample size is on the smaller end for parametric
ADC_quarter_kw <- kruskal.test(ADC_total_only$Total ~ ADC_total_only$Report.Quarter)
ADC_quarter_kw</pre>
```

```
##
## Kruskal-Wallis rank sum test
##
## data: ADC_total_only$Total by ADC_total_only$Report.Quarter
## Kruskal-Wallis chi-squared = 3.4581, df = 3, p-value = 0.3262
```

dunnTest(ADC_total_only\$Total, ADC_total_only\$Report.Quarter)

```
##
     Comparison
                               P.unadj
                                           P.adj
## 1
          1 - 2 -1.08778370 0.27669061 1.0000000
## 2
          1 - 3 -1.84978446 0.06434462 0.3860677
## 3
          2 - 3 -0.76200076 0.44605955 0.8921191
          1 - 4 -1.00495753 0.31491730 1.0000000
## 4
          2 - 4 0.08282617 0.93398976 0.9339898
## 5
## 6
          3 - 4 0.84482693 0.39820748 1.0000000
```

4.1.1 Test 1: Result

ADC Quantities by Quarter

4.2 Test 2: Linear Model - Analysis

Can total annual ADC be represented with a linear model?

```
# assumptions for lm (independent observation, normal distribution,
#equal variances among groups) checked in Test 1. data is not normal,
#but group variances are equal. proceed with lm
# create dates corresponding to year & quarter combination
# Q1: Mar 31
# Q2: Jun 30
# Q3: Sep 30
# Q4: Dec 31
# create dataframe of month-date
quarters to dates <- data.frame("Quarter" = as.factor(1:4),
          "Month.Date" = c('3-31', '6-30', '9-30', '12-31'))
# create new dataframe with dates
ADC fulldate <- ADC total only %>%
 inner_join(quarters to dates, by = c("Report.Quarter" = "Quarter")) %>%
 unite('Quarter.End.Date', c(Report.Year, Month.Date), sep = "-", remove = FALSE)
ADC fulldate Quarter. End. Date <- as. Date (ADC fulldate Quarter. End. Date, "%Y-%m-%d")
class(ADC fulldate$Quarter.End.Date)
## [1] "Date"
# create initial plot to visualize the data
ggplot(ADC_fulldate, aes(x = Quarter.End.Date, y = Total)) +
 geom_point() +
 xlab("") +
 ylab("ADC Quantity (U.S. Tons)") +
 ggtitle("Quarterly Quantities of ADC")
```

Quarterly Quantities of ADC


```
# create lm
ADC date lm <- lm(data = ADC fulldate, Total ~ Quarter.End.Date)
ADC_date_lm # Total = 73.14*Quarter.End.Date - 190264.58
##
## Call:
## lm(formula = Total ~ Quarter.End.Date, data = ADC_fulldate)
##
## Coefficients:
                     Quarter.End.Date
##
        (Intercept)
         -190264.58
                                 73.14
##
summary(ADC_date_lm)
##
## Call:
## lm(formula = Total ~ Quarter.End.Date, data = ADC_fulldate)
## Residuals:
                1Q Median
       Min
                                 ЗQ
                                       Max
  -366483 -153515 -45160 167108 502499
##
## Coefficients:
```

```
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    -1.903e+05
                               1.160e+05
                                            -1.64
                                                     0.104
## Quarter.End.Date
                    7.314e+01
                               8.534e+00
                                             8.57 2.69e-13 ***
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 198500 on 90 degrees of freedom
## Multiple R-squared: 0.4494, Adjusted R-squared: 0.4433
## F-statistic: 73.45 on 1 and 90 DF, p-value: 2.694e-13
# Adjusted R-squared: 0.4433 (date explains 44.33% of variation in total),
#p-value: 2.694e-13
# check normality of residuals
par(mfrow=c(2,2))
plot(ADC_date_lm) # QQ of residuals looks relatively normal
```


4.2.1 Test **2**: Result

Quarterly Quantities of ADC

sko discussion of test 2

Quarterly Quantities of ADC

sko discussion of test 2_loess

4.3 Test 3: Changepoint in Construction & Demolition - Analysis

Is there a changepoint in the Construction & Demolition quantities over time?

```
# create dataframe with dates
quarters_to_dates$Quarter <- as.integer(quarters_to_dates$Quarter)

CD_only <- ADC_data %>%
    select(Report.Year, Report.Quarter, Construction.and.Demolition.Waste) %>%
    inner_join(quarters_to_dates, by = c("Report.Quarter" = "Quarter")) %>%
    unite('Quarter.End.Date', c(Report.Year, Month.Date), sep = "-") %>%
    select(-Report.Quarter)

CD_only$Quarter.End.Date <- as.Date(CD_only$Quarter.End.Date, '%Y-%m-%d')
# format column as date

# arrange data from oldest to newest
CD_only <- CD_only %>%
    arrange(Quarter.End.Date)
```

```
# create initial plot to visualize the data
ggplot(CD_only, aes(x = Quarter.End.Date, y = Construction.and.Demolition.Waste)) +
  geom_point() +
  xlab("") +
  ylab("C&D Quantity (U.S. Tons)") +
  ggtitle("Construction & Demolition Quarterly Quantities")
```

Construction & Demolition Quarterly Quantities


```
# check normality for C&D waste specifically
shapiro.test(CD_only$Construction.and.Demolition.Waste)

##
## Shapiro-Wilk normality test
##
## data: CD_only$Construction.and.Demolition.Waste
## W = 0.9837, p-value = 0.4028

# p-value = 0.4028, inferring that the data is normal

ggplot(CD_only) +
    geom_histogram(aes(x = Construction.and.Demolition.Waste)) +
    xlab("Quarterly C&D (U.S. Tons)") +
    ylab("Count") +
```

Count of Quarterly C&D Quantities

qqnorm(CD_only\$Construction.and.Demolition.Waste);
qqline(CD_only\$Construction.and.Demolition.Waste) # matches 1:1 ratio pretty well


```
# use Pettitt's test (nonparametric) to determine whether there is a shift
#in the central tendency of the time series.
pettitt.test(CD only$Construction.and.Demolition.Waste) # change point at time 40
##
##
   Pettitt's test for single change-point detection
##
## data: CD only$Construction.and.Demolition.Waste
## U* = 1396, p-value = 3.2e-10
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
# Run separate Mann-Kendall for each section
mk.test(CD_only$Construction.and.Demolition.Waste[1:40])
##
   Mann-Kendall trend test
##
##
## data: CD_only$Construction.and.Demolition.Waste[1:40]
## z = 1.736, n = 40, p-value = 0.08256
```

```
## alternative hypothesis: true S is not equal to 0
## sample estimates:
##
              S
                        varS
                                      tau
    150.0000000 7366.6666667
                                0.1923077
mk.test(CD only$Construction.and.Demolition.Waste[41:80])
##
##
   Mann-Kendall trend test
##
## data: CD_only$Construction.and.Demolition.Waste[41:80]
## z = 2.4817, n = 40, p-value = 0.01308
## alternative hypothesis: true S is not equal to 0
## sample estimates:
##
             S
                      varS
                                   tau
   214.000000 7366.666667
##
                              0.274359
# Is there a second change point?
pettitt.test(CD only$Construction.and.Demolition.Waste[41:80])
##
   Pettitt's test for single change-point detection
##
## data: CD only$Construction.and.Demolition.Waste[41:80]
## U* = 203, p-value = 0.04614
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
##
# position 27, so 41+27 = change point at time 68
# Run separate Mann-Kendall for new section
mk.test(CD only$Construction.and.Demolition.Waste[69:80])
##
##
   Mann-Kendall trend test
##
## data: CD only$Construction.and.Demolition.Waste[69:80]
## z = 0.068573, n = 12, p-value = 0.9453
## alternative hypothesis: true S is not equal to O
## sample estimates:
##
              S
                        varS
                                      tau
     2.00000000 212.66666667
##
                               0.03030303
# p-value = 0.9453, not likely a 3rd change point
```

```
# Is there a third change point?
pettitt.test(CD only$Construction.and.Demolition.Waste[69:80])
## Pettitt's test for single change-point detection
##
## data: CD_only$Construction.and.Demolition.Waste[69:80]
## U* = 12, p-value = 1.261
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
##
# p-value = p-value = 1.261, no 3rd change point
# years corresponding to changepoints
changepoint1 <- CD only$Quarter.End.Date[40]</pre>
# between Q4 2007 & Q1 2008 = ~ 2008-02-14
changepoint2 <- CD_only$Quarter.End.Date[68]</pre>
# between Q4 2014 & Q1 2015 = ~ 2015-02-14
```

4.3.1 Test **3**: Result

Construction & Demolition Landfill Cover in CA

sko discussion of test 3

5 Summary and Conclusions