PadhAl: MP Neuron & Perceptron

One Fourth Labs

Perceptron: Toy Example

Perceptron Learning Algorithm in action

1. Dataset

X ₁	X ₂	У
-1	-1	0
-5	-2.5	0
-7.5	7.5	0
10	7.5	1
-2.5	12.5	0
5	10	1
5	5	1

- 2. $P \Rightarrow$ Green points, $N \Rightarrow$ Red points
- 3. Decision boundary line is given by $w_1x_1 + w_2x_2 b \ge 0$
 - a. Or $x_2 = -(w_1/w_2)x_1 + (b/w_2)$
 - b. Can be rewritten as $x_2 = mx + c$
 - c. Where $m = -(w_1/w_2)$ and $c = (b/w_2)$
- 4. Initialize w randomly
 - a. $W_1 = 1.00$, $W_2 = 1.00$, $b = 5.00 \Rightarrow m = -1.00$, c = 5.00
- 5. The line is $x_2 = -x_1 + 5$
- 6. While !convergence do:
 - a. Pick random $x \in P \cup N$
 - b. If $x \in P$ and $\sum_{i=0}^{n} w_i x_i < 0$ then, w = w + x; end
 - c. If $x \in N$ and $\sum_{i=0}^{n} w_i x_i >= 0$ then, w = w x; end
 - d. Consider $x = [x_0; x_1; x_2]$ and $w = [w_0; w_1; w_2]$, where x_0 bias term is always 1
 - e. On the 5th training example, condition c isn't satisfied, so we recalculate w = w x
 - f. $w_1 = 3.5$, $w_2 = -11.5$, $b = 4.00 \Rightarrow m = 0.3$, c = -0.35
 - g. The line changes, causing a new error on the 6th training example, so we calculate w = w+x
 - h. $W_1 = 8.5$, $W_2 = -1.5$, $b = 5.00 \Rightarrow m = 5.67$, c = -3.33
 - i. The resulting line predicts all examples perfectly, thus convergence is reached