Chapter 6 Medium Access Control protocols and Local Area Networks

Part II:

局域网Local Area Networks

6.6 局域网概览Overview of LANs

6.7 以太网Ethernet和IEEE 802.3

令牌环Token Ring和FDDI

802.11 无线局域网

6.8 局域网桥接

Chapter 6 Medium Access Control protocols and Local Area Networks

局域网概述

局域网是什么?

局域网 特性:

- 私有性
 - 不受广域网的管制限制
- 短距离 (~1km)
 - 低成本,单一的传播媒介
 - 相对较少的站⇒不需要复杂和昂贵的交换设备
 - 高速、相对无误差的通信⇒不需要复杂的错误控制
- 站点可能经常移动位置
 - 给每个站点指定一个唯一地址
 - 消息在网络中广播
- 需要一个介质访问控制协议

G 几种典型拓扑结构

TREE

典型的局域网(LAN)架构

- 传输媒介
- 网卡(NIC, Network Interface Card)
- 独一无二的MAC"物 理"地址

IEEE 802中的数据链路层

- IEEE 802委员会是专门制定局域网和城域网标准的机构。
- 对于局域网标准,它只对物理层和数据链路层进行了规范,不涉及网络层及以上层。
- 下图中的网络层,仅为与OSI模型对比。如果本地局域网需要连接到互联网, 就需要在数据链路层(具体为LLC子层)上附加网络层的服务接入点。
- IEEE 802标准体系结构中,数据链路层又被分为两个子层:
 - 介质访问控制子层
 - 逻辑链路控制子层
- 本章主要介绍IEEE 802的多个MAC子层协议,简单介绍物理层和LLC子层

IEEE 802中的数据链路层

1. 介质访问控制(MAC)子层

- 协调共享介质的访问;
- 提供无连接的帧传输服务— 多个标准(802.3,802.5,802.11,...。注意虽然标注在MAC子层,但每个标准都包括了相适应的物理层规范)!!!
- 由MAC/物理地址识别机器
- 广播带有MAC地址的帧
- 2. 逻辑链路控制(LLC, logical link control)子层
 - 在网络层和MAC子层之间
 - 可能需要向上层提供额外的流量控制和差错控制-单一的标准(IEEE 802.2)!
 - 与传输媒介无关(局域网对LLC子层是透明的)!

M络层 数据链路 层 物理层

IEEE 802 Serial Standards

		IEEE 802.2									LLC						
IEEE	IEEE 802.1 Bridge]								
ਸ਼ਿੰ	IEEE																
802.10	802.1	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	MAC
0	Manag	 &	<u> </u>			 &	 &	8	8	~	8	- &	8	- 8	- 8C	80	
	ag.	802.3	802.4	802.5	802.6	802.7	802.8	802.9	802.11	802.12	802.13	802.14	802.15	802.16	802.17	802.20	PHY
					_		. _	-		+		-	-		-	_	
																	Media

图 2-1: IEEE 802 家族,以及其与 OSI 模型的关系

逻辑链路控制子层提供的服务类型

- 类型 1: 无确认的无连接服务
 - Unnumbered frame mode of HDLC
 - 最常用
- 类型 2: 可靠的面向连接的服务
 - Asynchronous balanced mode of HDLC
 - 连接建立和释放、差错控制、 排序和流量控制,可在没有传 输层时使用
- 类型 3: 有确认的无连接服务

不可靠的数据报传输服务

- 可以看出,虽然MAC子层只关注介质 访问,但LLC子层增强了其服务能力, LLC子层能够向网络层提供标准服务
 - 向上屏蔽底层不同MAC的细节
 - 也可用于不同MAC网络间的互通
 - 可以灵活设计和选用底层MAC而不影响 网络层
- 额外的寻址
 - 一个工作站仅有一个单独的MAC物理地址,但需要能够处理多个与不同上层间的逻辑连接,这可以通过LLC的SAP (service access points)来区分

LLC PDU结构

物理上,不同的SAP对应不同buffer

MAC 帧的封装

Chapter 6 Medium Access Control protocols and Local Area Networks

802.3以太网Ethernet

Ethernet发展历史...

- 是一系列在物理层以及数据链路层(MAC sublayer)的协议的集合
- ALOHA网络在夏威夷岛首次部署 1970
- Xerox 公司的Robert Metcalfe对此网络进行了进一步的发展 1973
- Dec, IBM 和 Xerox 推广并使用了这一系列的协议 1979
- 10 Mbps Ethernet 成为一项IEEE 标准1985 IEEE 802.3
- 其他高速的版本:

```
100 Mbps - Fast Ethernet (1995)
1000 Mbps - Gigabit Ethernet (1998)
10 Gbps - 10 Gigabit Ethernet (2002)
100 Gbps - 100 Gigabit Ethernet (2007 / 2010)
```

• 目前大约80-90 % LANs都使用这些架构

Metcalf's Sketch

1、IEEE 802.3 (10 Mbps) MAC 特征

退避: 1-坚持CSMA/CD与截断二进制指数退避算法(truncated binary exponential backoff algorithm)

- 如果介质空闲 传输; 如果介质繁忙,等待直到空闲,然后传输(p=1);
- *时隙*是关键的系统参数(minislot>=2tprop)
- 截断的二进制指数回退
 - ●对应第n次重传: 0 =< r < 2^k-1, where k=min(n,10)
 - •16次重传后放弃

CSMA/CD 的冲突检测

当冲突被检测到后,站点可以传输一个阻塞信号

IEEE 802.3 MAC 特征

<u>帧长:</u>

最初的IEEE 802.3:

最大段长500m

使用4个中继器

最大距离2500 [m]

R=10 Mbps运行

c≈2*108 [m/sec]

 $2*t_{prop}$ +中继器延迟≈ 51.2 μs (minislot!) ⇒ 512 [bits] (minimum frame length!)

- 最小帧长= 512 bits = 64 bytes = 46 + 18 Why?
- 最大帧长= 1518 bytes = 1500 + 18 (防止一个站垄断媒介)
- •对于给定的最小帧长,比特率每增加10倍,最大距离就减少到1/10

IEEE 802.3 MAC 帧

- 每一个帧的传输都是"从头开始"(都要竞争信道)
- 前导码(Preamble)能够帮助用户将他们的时钟与发射机同步
- 7 bytes 的10101010 产生的方波
- 起始帧定界符(Start frame Delimiter) 的byte 会变成10101011
- 接收机检测1和0的变化

IEEE 802.3 MAC帧

- 0 单一地址
- 1 组播地址
 - 0 全局地址
 - 1 本地地址

- ·MAC地址有三种:
 - •单一地址
 - •组播地址
 - 广播 = 111...111

地址也可分为(通过第2个比特区分):

本地或全局(全局地址有**2^46**个) 全局地址

- •头24位分配给制造商;
- •接下来的24位由制造商指定
- Cisco 00-00-0C
- 3COM 02-60-8C

IEEE 802.3 MAC Frame

- 长度Length字段: 信息部分的bytes数目
 - 最大的帧长度是1518 bytes, 除去前导码和起始帧定界符
 - 最大的信息长度1500 bytes: 05DC
- 填充(Pad): 确保最小帧长64 bytes
- 帧校验序列(FCS): CCITT-32 CRC, 包括地址、长度、信息和填充部分
 - NIC 会依据 不正确的帧长度或者校验错误的CRC将帧丢弃

DIX 以太网(Ethernet II)帧结构

- DIX:Digital、Intel、Xerox 联合以太网规范
- 类型字段: 表明信息字段中PDU的协议,如IP、ARP等
 - 信息长度字段
- 成帧:接收方如何知道帧长?
 - 物理层信号

IEEE 802.3 Physical Layer

Table 6.2 IEEE 802.3 10 Mbps medium alternatives

	10base <u>\$</u>	10base <u>2</u>	10base <u>T</u>	10base <u>FX</u>
媒介	粗同轴电缆	细同轴电缆	双绞线 <u>(T</u> wisted pair)	光纤(Optical <u>f</u> iber)
每段最大长度	<u>5</u> 00 m	<u>2</u> 00 m	100 m	2 km
传输速率	10Mbps	10Mbps	10Mbps	10Mbps
编码方式	Manchester	Manchester	Manchester	Manchester
拓扑结构	总线	总线	总线(星型)	点对点链接

集线器和交换机!

IEEE 802.3物理层(Cont.)

- 10Mbps以太网使用曼彻斯特码-额外的带宽来实现更好的同步,不是一个 大问题
- •粗(10mm)同轴电缆以太网-难于操作和安装
- •细(5mm)同轴电缆以太网 –更便宜,更容易操作,但每个段的长度不能超过 200 m,这是由于细同轴电缆的高衰减水平
- 非屏蔽双绞线以太网-低成本,办公室普遍应用,但由于双绞线传输质量差, 单个链路的长度被限制在100米

物理层(对比)

Ethernet Coaxial Cable

Ethernet Twisted Pair

Ethernet vs. Telephone Cable

以太网集线器和交换机

简单转发,无缓存 使用便宜的双绞线 易于工作,可靠 物理上星形拓朴,CSMA-CD 工作时类似于总线拓扑

全双工,每个端口有输入输出 缓存 按需转发 除非多个工作站共用同一输入 线路,否则不会发生碰撞

2 Fast Ethernet -- IEEE802.3u

	100baseT4	100baseT	100baseFX
媒介	第三类非屏蔽双绞线 UTP 4 pairs	第五类非屏蔽双绞线 UTP two paris	多模光纤 双线
每段最长距离	100 m	100 m	2 km
拓扑结构	星型	星型	星型

为了保持与10Mbps以太网的兼容性:

- 相同的帧格式,相同的接口,相同的协议
- 集线器拓扑且只有双绞线和光纤
- 放弃了总线拓扑和同轴电缆
- 第三类双绞线(普通电话级)需要4对
- 第五类双绞线需要两对(最常用的)

• 100 Mbps以太网使用4B/5B块编码和MLT-3线路码(代替曼彻斯特编码)的组合以最小化带宽需求

典型的以太网部署方式

3、千兆以太网

-- IEEE802.3z & IEEE802.3ab

表 6.3 IEEE 802.3 1 Gbps 快速以太网介质

	1000baseSX	1000baseLX	1000baseCX	1000baseT
媒介	光纤 多模 两条线	光纤 单模 两条线	铜屏蔽电缆	第6类双绞线 UTP
最大区段长度	550 m	5 km	25 m	100 m
拓扑结构	星形	星形	星形	星形

- 时间增加到512 字节(而不是64 字节)
- 小帧需要扩展到512 B
- 帧突发(frame bursting)允许站点传输突发的短帧
- 框架结构保留了下来,但CSMA-CD实质上被抛弃了
- 在企业数据网络主干和服务器群中广泛部署

4、10 Gigabit Ethernet -- IEEE 802.3ae

Table 6.5 IEEE 802.3 10 Gbps Ethernet medium alternatives

	10GbaseSR	10GBaseLR	10GbaseEW	10GbaseLX4
媒介	两条工作在 850 nm的多模 传输的光纤 64B66B code	两条工作在1310 nm的单模传输的 光纤 64B66B	两条工作在 1550 nm的单模传输的 光纤 SONET compatibility	两条光纤在4个波 长进行单模或多 模传输(1310 nm band) 8B10B code
每段最大传输 长度	300 m	10 km	40 km	300 m – 10 km

- 仍保留之前的帧结构
- CSMA-CD 协议被正式放弃
- LAN PHY 被用于本地网的应用
- WAN PHY 通过 SONET OC-192c 被用于广域的互联
- 预期在城市网络中广泛部署

Chapter 6 Medium Access Control protocols and Local Area Networks

802.5 令牌环Token Ring

IEEE 802.5 环形 LAN

- 单向环形网络
- 速率: 4 Mbps and 16 Mbps (双绞线)
- 信号: 差分曼彻斯特线路编码
- 规模: 最多250个主机
- 令牌传递协议提供访问
 - ✓ 公平性
 - ✓ 接入优先权
 - ×环的中断会导致整个网络瘫痪

星型拓扑的环型局域网

- •物理上是星型,逻辑上是环型
- 集线器执行令牌传递管理和网络诊断
- 优势: 故障线路或站点可以轻松绕过
- 缺点:集线器-单点故障

Chapter 6 Medium Access Control protocols and Local Area Networks

802.11 Wireless LAN无线局域网

无线数据通信

- 无线通信
 - ✓简单、部署成本低
 - ✓移动性和漫游:随时随地获取信息
 - ✓支持个人设备
 - ✓PDAs, 笔记本电脑,手机
 - ✓支持通讯设备
 - ✓监控、定位服务、个人无线认证
 - *信号强度随时间和空间而变化
 - *信号会被窃听者捕获
 - **★**频谱是有限的且通常受到管制

图 I IEEE802.II 系列标准在物理层和

MAC 层的分布

Internet 发展期间的核心技术: Wi-Fi技术不断演进与发展

2018年10月,Wi-Fi联盟对不同Wi-Fi标准制定了新的命名,802.11ax被命名为Wi-Fi 6

11ax

2019年

工作频率	2.4GHz	2.4GHz/5GHz	2.4GHz	2.4/5GHz	5GHz	2.4/5/6GHz
PHY技术	FHSS,DSSS	DSSS/CCK OFDM 64QAM	DSSS/CCK OFDM 64QAM	OFDM 64QAM	OFDM 256QAM	OFDM 1024QAM
空间流数	1	1	1	4	8(实际4流)	8
信道带宽	20MHz	20MHz	20MHz	40MHz	160MHz	160MHz
峰值速率	2Mbps	11Mbps/54Mbps	54Mbps	600Mbps	6.9Gbps	9.6Gbps

双轮驱动: 技术与应用发展助推Wi-Fi 6时代到来

1、自组织网络(Ad Hoc)通信

- 站群临时联合,没有固定基础设施
 - 在彼此的范围内
 - 交换信息的需要
 - E. g. 在会议上发言,或分布式电脑游戏,或两者兼而有之

2、IEEE 802.11 无线局域网(基础设施网络)

ESS (Extended Service Set)

IEEE802.11b/a/g 54Mbps & 802.11n 240Mbps

站点 (STA)

□ 带访问部件的终端到无线媒介的连 接和无线电连接到访问点

基本服务组 (BSS)

- □ 使用相同无线电频率的一组站点 访问点
 - □ 被综合到无线局域网和分布式系统 的站点

入口

- □ 连接到其他(有线)网络的桥梁 分布式系统
 - □ 互联网络形成一个基于几个BSS的 逻辑网络 (ESS: 扩展服务组)
 - □ 802.11标准中未指定!

基础设施网路

一个有限范围内的直接通信

- □ 站点(STA): 带访问部件的终端到无线媒介
- □ 独立的基本服务组 (IBSS): 使用同一个无线电频率的一组站点

为什么不是无线CSMA/CD???

三个主要理由:

- (1)在无线电环境中很难检测到碰撞——同一站的发射功率远远超过接收功率,且接收信号易受干扰
- (2)隐藏终端问题-发射信号的多个站点超出彼此的范围(信道实际忙,但探测到空闲)
- (3)暴露终端的问题-发射信号的多个站点在彼此的范围内,但接收器不在! (信道实际空闲,但探测到忙)

隐藏终端问题

• 新的MAC协议可能引入RTS/CTS来避免上述碰撞情形

图 3-3:RTS/CTS

如图 3-3 所示,节点 1 有个数据帧待传送,因此送出一个 RTS 帧启动整个过程。RTS 帧本身带有两个目的: 预约无线链路的使用权,并要求接收到这一消息的其他的工作站停止发言。一 旦收到 RTS 帧,接收端会以 CTS 帧应答。和 RTS 帧一样, CTS 帧也会令附近的工作站保持沉默。等到 RTS/CTS 完成交换过程,节点 1 即可传送上面要传送的帧,无须担心来自其他隐藏节点的干扰。

A站发送RTS(发送请求, Request To Send),

RTS包括:源地址、目的地址和这次通信 (包括相应的确认帧) 所需的持续时间

如果空闲, B发送CTS (Clear To Send), C,E收到CTS将保持沉默!

A如果接收到CTS,则发送数据

暴露终端的问题

Exposed terminal problem

B站发送RTS(Request To Send),

如果空闲, A发送CTS

B如果收到CTS就发送数据,但C只收到RTS而没有对应的 CTS,可判断C的发送不影响A的接收,于是C也发送RTS

如果空闲, D发送CTS (Clear To Send)

如果接收到CTS, C发送数据

备注

- 在无线设置中,碰撞检测(CD)是不可能的,因此需要避免碰撞(CA),所以前述无线局域网的MAC协议又称为CSMA-CA(collision avoidance)
 - •站在发射时无法收听
 - •RTS/CTS的使用只是CSMA/CA的一个可选部分。 CA并不是指RTS/CTS的使用,而是指当中转站 发现信道繁忙时回退的情况。回退方法类似于非 坚持CSMA。

3 802.11 Priorities

MAC 层

争用服务 (必须实现)

分布协调功能 DCF (Distributed Coordination Function) (CSMA/CA)

物理层

- DCF(分散式协调功能)

DCF 是标准 CSMA/CA 访问机制的基础。和以太网一样,在传送数据之前,它会先检查无线链路是否处于空闲状态。为了避免冲突发生,当某个传送者占据频道时,工作站会随机为每个帧选定一段延后时间。在某些情况之下,DCF 可利用CTS/RTS 空闲技术,进一步减少碰撞发生的可能性。

- PCF(点协调功能)

点协调功能提供的是免竞争服务。称为点协调者的特殊工作站可以确保不必通过竞争即可使用介质。 点协调者位于基站,因此只有基础型网络才会使用PCF。为了赋予比标准竞争式还高的优先性, PCF 允许工作站经过一段较短的时间即可传送帧。 PCF 在实际上并不常见。

优先

- □ 通过定义不同的帧间空间
- □ SIFS (短帧内间隔):
 - 10µs (802.11b/g), 16 µs (802.11a)
 - 高优先, 用于ACK, CTS, 轮询回应
- □ PIFS (PCF IFS):
 - PIFS = SIFS + 时槽时间, 其为20 µs在802.11b中, 9 µs在802.11a/g中
 - 中优先, 用于使用PCF的时限服务
- □ DIFS (DCF IFS):
 - DIFS = PIFS + 时槽时间
 - 低优先, 用于异步数据服务

RTS/CTS

发送单播封包

- □ 站点可以在等待DIFS之后发送带預留参数的RTS (預留决定了数据封包需要媒介的时间值)
- □ 接收器在SIFS之后通过CTS进行回应确认(如果准备好接收的话)
- □ 其他站点通过RTS和CTS储存媒介预留信息
- □ 两个 (可能不同的) NAV组

通过帧间间距和三种类型的时隙的优先级

- •高优先级帧等待短IFS (SIFS):ACKs、CTS、分段MSDU的数据帧等.
- •PCF IFS (PIFS)启动无争用期
- •DCF IFS (DIFS)传输数据和MPDUs

•••

因为 802.11 MAC 内建避免碰撞的功能, 所以工作站会延迟介质的访问, 直到介质再度空闲。 不同的帧间隔, 会为不同类型的传输产生不同的优先次序。其后的决定逻辑十分简单:

当介质闲置下来时,高优先级的数据所等待的时间较短。因此,如有任何高优先级的数据待传,在低优先级的帧试图访问介质之前,优先级较高的数据早就将介质据为已用了。

为了维持不同数据传输率的互通性,帧间隔的时间值都是固定的,而与传输率无关。 不过,不同的物理层可以指定不同的帧间隔时间。

- 短帧间隔 (Short interframe space , 简称 SIFS)

SIFS 用于高优先级的传输场合,例如 RTS/CTS 以及正面应答帧。经过一段 SIFS (时间),即可进行高优先级的传输。一旦高优先级传输开始,介质即处于忙碌状态,因此相较于必须等待较长时间才能传输的帧, SIFS 消逝后即可进行传输的帧优先级较高。

- 点帧间隔 (PCF interframe space , 简称 PIFS)

PISF 主要被 PCF 使用在免竞争过程,有时被误解为优先性帧间隔。在免竞争时期,有数据传输的工作站可以等待 PISF 期间过后加以传送,其优先程度高于任何竞争式传输。

- 分布式帧间隔 (DCF interframe space , 简称 DIFS)

DIFS 是竞争式服务中最短的介质闲置时间。如果介质闲置时间长于 DIFS,工作站可以立即对介质进行访问。

WiFi 版本	WiFi 标准	发布时间	最高速率	工作频段
WiFi 7	IEEE 802.11be	2022年	30Gbps	2.4GHz, 5GHz, 6GH z ^[3]
WiFi 6	IEEE 802.11ax	2019年	11Gbps	2.4GHz 或 5GHz
WiFi 5	IEEE 802.11ac	2014年	1Gbps	5GHz
WiFi 4	IEEE 802.11n	2009年	600Mbps	2.4GhHz 或 5GHz
WiFi 3	IEEE 802.11g	2003年	54Mbps	2.4GHz
WiFi 2	IEEE 802.11b	1999年	11Mbps	2.4GHz
WiFi 1	IEEE 802.11a	1999 年	54Mbps	5GHz
WiFi 0	IEEE 802.11	1997年	2Mbps	2.4GHz

2.4GHz (802.11b/g/n/ax) , 5GHz (802.11a/n/ac/ax)