Ex. For some $\lambda > 0$, random variable X has the density function $f(x) = \lambda^2 x e^{-\lambda x}, x > 0$, and given X, Y is a uniform random variable on the interval [0, X].

- 1. What is the joint distribution of X and Y?
- 2. What is the distribution of Y?

Expectation of Functions

- Recall how we compute E[h(X)]. A similar result also holds for a function h(X, Y) of two jointly distributed rv's.
- Let X and Y be jointly distributed rv's with pmf p(x, y), if they are discrete; or pdf f (x, y), if they are continuous. The expected value of a function h(X, Y), denoted by E[h(X, Y)] is given by

$$E[h(X,Y)] = \begin{cases} \sum_{x} \sum_{y} h(x,y) \cdot p(x,y) & \text{if X and Y are discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) \cdot f(x,y) dx dy & \text{if X and Y are continuous} \end{cases}$$

This result can also be extended to multiple (>2) rv case.

Ex. (Important! Linearity of expectations) Show that for any two random variables X and Y, E(X+Y) = E(X) + E(Y).

 $\underline{\mathsf{Ex.}}$ If two random variables X and Y are independent, what is E(XY)? What about E $(g(\mathsf{X})h(\mathsf{Y}))$?

Covariance

- When two random variables X and Y are not independent, it is often of interest to assess how strongly they are related to one another.
- A popular measurement to characterize the dependence of two rv's is called correlation. To calculate correlation of two rv's, we'll have calculate the covariance of the two rv's.
- The covariance between two rv's X and Y is

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \begin{cases} \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) \cdot p(x, y) & X, Y \text{ discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) \cdot f(x, y) dx dy & X, Y \text{ continuous} \end{cases}$$

Short cut

• Proposition:

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

What happens if we set Y=X?

Ex. Suppose the joint distribution of X and Y are

$$f(x,y) = \begin{cases} 24xy & 0 \le x \le 1, 0 \le y \le 1, x+y \le 1\\ 0 & \text{otherwise} \end{cases}$$

What is the covariance of X and Y?

$$f_X(x) = \int_y f(x,y)dy = \int_0^{1-x} 24xydy = 12x(1-x)^2$$

$$f_Y(y) = 12y(1-y)^2$$

$$E(X) = \int_0^1 x \cdot 12x(1-x)^2 dx = \frac{2}{5} = E(Y)$$

$$E(XY) = \int \int_{x,y} xyf(x,y)dxdy = \int_0^1 \int_0^{1-y} 24x^2y^2 dxdy = \frac{2}{15}$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{2}{15} - \left(\frac{2}{5}\right)^2 = -\frac{2}{75}$$

Correlation

• The correlation coefficient of X and Y, denoted by Corr(X, Y) or $\rho_{X,Y}$ is defined by

$$\rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y}$$

Because of Cauchy-Schwarz inequality, we have

$$Cov^2(X, Y) \le Var(X)Var(Y) \Longrightarrow |\rho_{X,Y}| \le 1$$

• The correlation coefficient $\rho_{X,Y}$ is NOT a completely general measure of the strength of a relationship. $\rho_{X,Y}$ is actually a measure of the degree of *linear* relationship between X and Y.

Remarks

- If X and Y are independent, then $\rho_{X,Y} = 0$ (why?). But $\rho_{X,Y} = 0$ does NOT imply independence.
- $\rho_{X,Y} = 1$ or -1 iff Y = aX+b for some numbers a and b with $a \neq 0$.

Ex. If X has a symmetric distribution centered at 0 with finite 3^{rd} moment, $E(|X|^3) < \infty$, show that X^2 and X are uncorrelated.