Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Физический факультет

ЛАБОРАТОРНАЯ РАБОТА № 2.05

Определение удельной теплоты кристаллизации и изменения энтропии при охлаждении олова

Группа: **Z3144**

Студент: Евгений Турчанин

1 Цель работы

- Определение изменения энтропии при фазовом переходе первого рода на примере кристаллизации олова из расплава при его охлаждении.
- Определение теплоты кристаллизации олова на основе закона сохранения энергии.

2 Задачи

- 1. Провести прямые измерения показаний милливольтметра, фиксирующего термоЭДС в процессе охлаждения олова.
- 2. Построить график зависимости температуры олова от времени.
- 3. Вычислить удельную теплоту кристаллизации и изменение энтропии олова при кристаллизации.
- 4. Оценить погрешности измерений и сравнить полученные результаты с табличными значениями.

3 Теоретическое введение

Кристаллизация – процесс перехода вещества из жидкого состояния в твердое.

Это один из фазовых переходов первого рода. Фазовые переходы первого рода (плавление, испарение) сопровождаются теплотой перехода, это то количество теплоты, которое необходимо сообщить веществу, чтобы изотермически — изобарически перевести его из одной фазы в другую. Фазовые переходы второго рода происходят без теплообмена. Это, например, изменение кристаллической модификации, переход в сверхпроводящее состояние, в сверхтекучее состояние у жидкого гелия, переход ферромагнетика в парамагнетик.

Процесс кристаллизации связан с выделением количества теплоты, равного теплоте плавления. Для химически чистых веществ процесс кристаллизации протекает при постоянной температуре, равной температуре плавления. В процессе кристаллизации упорядочивается движение частиц жидкости, постепенно прекращается перемещение молекул, возникают связанные тепловые колебания относительно узлов кристаллической решетки.

Для начала кристаллизации необходимо, чтобы в жидкости имелись центры кристаллизации – неоднородности, вокруг которых начинается процесс образования твердой фазы. Если в жидкости отсутствуют центры кристаллизации, то она может быть охлаждена до температуры более низкой, чем температура кристаллизации. В обычных условиях это, как правило, не происходит.

Количество теплоты, которое необходимо отвести от единицы массы жидкости при температуре кристаллизации для перехода жидкости в твердое состояние, называется удельной теплотой кристаллизации λ . Из первого начала термодинамики

$$-\lambda M_0 = U_{\text{\tiny TB}} - U_{\text{\tiny M}} + p(V_{\text{\tiny TB}} - V_{\text{\tiny M}}) \tag{1}$$

Здесь $U_{\text{тв}}, U_{\text{ж}}$ – внутренняя энергия вещества в твердом и жидком состоянии; $V_{\text{тв}}$ и $V_{\text{ж}}$ – объем твердой и жидкой фазы соответственно; p – давление в процессе кристаллизации. Поскольку при переходе из жидкого в твердое состояние объем олова практически не меняется, имеем

$$p(V_{\scriptscriptstyle \mathrm{TB}} - V_{\scriptscriptstyle \mathrm{JK}}) \ll U_{\scriptscriptstyle \mathrm{TB}} - U_{\scriptscriptstyle \mathrm{JK}}$$

В этом случае

$$-\lambda M_0 = U_{\rm TB} - U_{\rm W} \tag{2}$$

Энтропия – функция состояния термодинамической системы. Изменение энтропии в равновесном процессе равно отношению количества теплоты, сообщенного системе, к её температуре:

$$\delta S = \frac{\delta Q}{T}.\tag{3}$$

Приращение энтропии при обратимом процессе

$$S_2 - S_1 = \int_1^2 \frac{\delta Q}{T}.\tag{4}$$

В процессе кристаллизации температура олова остаётся постоянной. При этом количество теплоты, отданное окружающей среде, равно

$$Q = \lambda M_0, \tag{5}$$

где M_0 – масса олова. Так как Q – количество теплоты, полученное системой от окружающей среды, то $Q=-\lambda M_0$. Из (3) и (4) следует, что

$$S_2 - S_1 = -\frac{\lambda \cdot M_0}{T_{\text{kp}}} = \frac{U_{\text{\tiny TB}} - U_{\text{\tiny jk}}}{T_{\text{kp}}} \cdot M_0.$$
 (6)

В процессе кристаллизации происходит упорядочение структуры вещества, внутренняя энергия системы уменьшается, что и приводит к убыванию энтропии.

Вывод расчетных формул

Простейшей моделью охлаждения тела является охлаждение в среде с постоянной температурой T_0 (в термостате). Если процесс охлаждения происходит достаточно медленно, температуру произвольной точки тела в каждый момент времени можно считать одинаковой. Такой процесс охлаждения состоит из непрерывно следующих друг за другом равновесных состояний и, следовательно, является квазистатическим обратимым процессом. Применим закон сохранения энергии к квазистатическому процессу охлаждения твердого олова после кристаллизации, тогда для любого значения температуры твердого олова T_i :

$$(c_0M_0 + c_AM_A) \cdot dT_i + \alpha \cdot S_A \cdot (T_i - T_0) \cdot dt = 0.$$

$$(7)$$

Здесь $(c_0 \cdot M_0 + c_A M_A) \cdot dT_i < 0$ – количество теплоты, отданное телом среде при его охлаждении за малый интервал времени dt; $\alpha \cdot S_A \cdot (T_i - T_0) \cdot dt > 0$ – количество теплоты, полученное окружающей средой через поверхность ампулы площадью S_A за время dt; c_0, c_A – удельные теплоемкости олова и материала ампулы; M_0, M_A – масса олова и ампулы; T_i – температура твердого олова; T_0 – температура окружающей среды; α – коэффициент теплопередачи с поверхности ампулы в окружающую среду.

Применим закон сохранения энергии к процессу кристаллизации олова:

$$\lambda \cdot M_0 + \alpha \cdot S_A \cdot (T_{KD} - T_0) \Delta t_{KD} = 0. \tag{8}$$

Здесь λM_0 – количество теплоты, отданное оловом при его кристаллизации. $\alpha \cdot S_A \cdot (T_{\rm kp} - T_0) \cdot \Delta t_{\rm kp}$ – количество теплоты, полученное окружающей средой через поверхность ампулы за время кристаллизации $\Delta t_{\rm kp}$. Разделив почленно (8) на (7) и выразив λ , получим:

$$\lambda = (c_0 \cdot M_0 + c_A M_A) \cdot \frac{\Delta t_{\kappa p}}{M_0} \cdot \frac{(T_{\kappa p} - T_0)}{T_i - T_0} \cdot \frac{dT_i}{dt}. \tag{9}$$

Обозначим множитель $\frac{dT_i}{dt(T_i-T_0)}$ через K и преобразуем его следующим образом

$$K = \frac{dT_i}{dt(T_i - T_0)} = \frac{d(T_i - T_0)}{dt(T_i - T_0)} = \frac{d\ln(T_i - T_0)}{dt}.$$
 (10)

Окончательно имеем:

$$\lambda = \left(c_0 + c_A \frac{M_A}{M_0}\right) \cdot \Delta t_{\kappa p} \cdot K(T_{\kappa p} - T_0), \tag{11}$$

$$S_2 - S_1 = -\frac{\lambda M_0}{T_{\text{Kp}}}. (12)$$

В данной работе: $M_0=(70.27\pm0.01)$ гр, $M_A=(40\pm0.01)$ гр, $c_0=(0.230\pm0.001)\frac{\kappa \mathcal{I}_{K}}{\kappa r\cdot K},$ $c_A=(0.460\pm0.001)\frac{\kappa \mathcal{I}_{K}}{\kappa r\cdot K}.$

Экспериментальная методика

Итак, для вычисления S_2-S_1 необходимо определить температуру кристаллизации олова $T_{\rm kp}$, время кристаллизации $\Delta t_{\rm kp}$ и скорость изменения во времени натурального логарифма разности температур олова и окружающей среды на участке охлаждения твёрдого олова (коэффициент K). Первые две величины можно найти, построив график зависимости E термопары от времени охлаждения (см. рис. 1).

На этом графике необходимо выделить три участка: I – охлаждение жидкого олова; II – кристаллизация; III – охлаждение твердого олова. Температуру кристаллизации $T_{\rm kp}$ определим через ординату $E_{\rm kp}$ середины участка кристаллизации, $\Delta t_{\rm kp}$ как время, соответствующее II участку.

Результаты измерений ЭДС от времени удобно наносить на график E(t), а для определения $T_{\rm kp}$ воспользоваться переводной таблицей для хромель-копелевой термопары. По таблице определяется T' разность между температурой олова и температурой окружающей среды T_0 .

Величину T_0 нужно измерить по лабораторному термометру. Температура олова T вычисляется как:

$$T = T' + T_0. (13)$$

В частности для температуры кристаллизации $T_{\rm kp}$ имеем:

$$T_{\rm \kappa p} = T'_{\rm \kappa p} + T_0. \tag{14}$$

Погрешность $\Delta T_{\rm kp}$ может быть определена графически как половина разности температур соответствующих ординатам начала «а» и конца «б» участка кристаллизации на рис. 1:

$$\Delta T_{\rm kp} = \frac{1}{2} (T'(E_a) - T'(E_b)). \tag{15}$$

РИС. 1. Определение температуры кристаллизации $T_{
m kp}$ и времени кристаллизации $\Delta t_{
m kp}$

Рис. 2. Определение скорости изменения $ln(T-T_0)$ во времени в процессе охлаждения твердого олова.

Для определения коэффициента K необходимо составить для участка III охлаждения олова таблицу значений натурального логарифма T' в зависимости от времени охлаждения t, построить график этой зависимости и определить тангенс угла его наклона к оси t (рис. 2). По мере того как разность температур олова и окружающей среды уменьшается, уменьшается и скорость охлаждения олова. Для того, чтобы максимально точно определить коэффициент K нужно выбрать небольшой участок графика — около трех минут после окончания кристаллизации. Погрешность коэффициента K будет определяться погрешностью определения угла наклона графика.

Подставив значения коэффициента K, времени кристаллизации $\Delta t_{\rm kp}$ и температуры кристаллизации $T_{\rm kp}$ в (11) и (12), вычислим удельную теплоту кристаллизации олова.

Относительные погрешности величин λ и S_2-S_1 определяются по следующим формулам:

$$\frac{\Delta(S_2 - S_1)}{(S_2 - S_1)} = \sqrt{\left(\frac{\Delta\lambda}{\lambda}\right)^2 + \left(\frac{\Delta M_0}{M_0}\right)^2 + \left(\frac{\Delta T_{\text{Kp}}}{T_{\text{Kp}}}\right)^2},\tag{16}$$

$$\frac{\Delta \lambda}{\lambda} = \sqrt{\left(\frac{\Delta t_{\rm Kp}}{t_{\rm Kp}}\right)^2 + \left(\frac{\Delta K}{K}\right)^2 + \left(\frac{\Delta T_{\rm Kp}}{T_{\rm Kp} - T_0}\right)^2}.$$
(17)

В последней формуле учтено, что вклад погрешностей величин $K, t_{\rm kp}$ и $T_{\rm kp}$ значительно превосходят вклады погрешностей c_0, M_0, c_A, M_A .

Экспериментальная установка

Ампула с оловом 1 (рис. 3) с помощью винта 3 может быть закреплена в двух положениях: в электрической печи 2 или в поднятом состоянии. Внутри ампулы находится металлическая трубка-чехол с хромель-копелевой термопарой 4. Концы термопары соединены с гнездами на штанге стенда 5, которые для выполнения работы необходимо соединить с входными гнездами милливольтметра 6. Подключение электрической печи к сети осуществляется тумблером «нагрев» 7. Тумблер «сеть» 8 служит для подачи напряжения на стенд.

Рис. 1: Схема экспериментальной установки.

Рис. 2: Схема экспериментальной установки: 1 - ампула с оловом, 2 - электрическая печь (нагреватель), 3 - прижимной винт, 4 - термопара в чехле, 5 - штанга стенда с разъемами, 6 - милливольтметр, 7 - тумблер "нагрев 8 - тумблер "сеть". (Рисунок из методички)

4 Результаты измерений и обработка

4.1 Входные данные и параметры

- ullet Масса олова: $M_o = 0.07 \pm 0.001$ кг
- Масса ампулы: $M_A = 0.04 \pm 0.001$ кг
- Удельная теплоемкость олова : $c_o = 0.230 \pm 1 \frac{\mbox{к} \mbox{ж} \mbox{ж}}{\mbox{к} \mbox{г} \mbox{·} \mbox{K}}$
- Удельная теплоемкость ампулы (сталь): $c_A = 0.460 \pm 1 \frac{\kappa Дж}{\kappa r \cdot K}$

4.2 Экспериментальные данные

Зависимость термо \Im ДС E от времени t при охлаждении олова представлена в таблице 1.

Таблица 1: Экспериментальные данные: зависимость термоЭДС от времени.

t (s)	E (mV)	t (s)	E (mV)	t (s)	E (mV)
0	19.90	210	13.80	420	11.50
15	18.60	225	13.60	435	11.40
30	17.50	240	13.40	450	11.20
45	16.60	255	13.20	465	11.10
60	15.90	270	13.00	480	11.00
75	15.40	285	12.80	495	10.80
90	15.10	300	12.70	510	10.70
105	15.10	315	12.50	525	10.60
120	15.10	330	12.40	540	10.50
135	15.10	345	12.20	555	10.40
150	15.10	360	12.10	570	10.20
165	15.10	375	12.00	585	10.10
180	14.80	390	11.80	600	10.00
195	14.40	405	11.70		

График зависимости ЭДС от времени E(t) представлен на рис. 3.

Рис. 3: График зависимости термо Θ ДС от времени при охлаждении олова. Участки: I - охлаждение жидкости, II - кристаллизация, III - охлаждение твердого тела.

График зависимости T от времени T(t) представлен на рис. 4.

Рис. 4: График зависимости термоЭДС от времени при охлаждении олова. Участки: I - охлаждение жидкости, II - кристаллизация, III - охлаждение твердого тела.

4.3 Определение параметров кристаллизации

Из графика E(t) и таблицы 1 определяем параметры плато кристаллизации (участок II):

- ЭДС кристаллизации: $E=15.10\,\mathrm{mV}$. (Среднее значение на плато). Погрешность ЭДС примем $\pm 0.05\,\mathrm{mV}$ (половина последнего значащего разряда или по паспорту прибора).
- Начало кристаллизации: $t \approx 110 \, \mathrm{s}$.
- Конец кристаллизации: $t \approx 380\,\mathrm{s}.$
- Время кристаллизации: $\Delta t = t t = 380\,\mathrm{s} 110\,\mathrm{s} = 270\,\mathrm{s}$. Погрешность определения границ плато $\approx \pm 7.5\,\mathrm{s}$ (половина интервала). Погрешность $\Delta t \approx \sqrt{7.5^2 + 7.5^2} \approx 10.6\,\mathrm{s}$.
- Температура кристаллизации $T_{\rm kp} = 231.0 \pm 0.5 \, {}^{\circ}C.$

4.4 Определение коэффициента охлаждения К

Для определения коэффициента K используем данные участка III (охлаждение твердого олова, t > 165 s). Необходимо перевести ЭДС E в температуру $T = T' + T_0$, где T' (разность температур) находится по таблице термопары. Затем строится график зависимости $\ln(T - T_0) = \ln(T')$ от времени t.

Таблица 2: Данные для расчета коэффициента К (Участок III).

t (s)	E (mV)	T' (°C)	$T = T' + T_0 \text{ (K)}$	ln(T')
180	14.80	202.7	500.3	5.31
195	14.40	197.5	495.1	5.29
210	13.80	189.9	487.5	5.25
480	11.00	151.1	448.7	4.98
600	10.00	137.2	434.8	4.92

График зависимости $\ln(T-T_0)$ от t представлен на рис. 5.

Рис. 5: График зависимости натурального логарифма разности температур $\ln(T-T_0)$ от времени t для участка охлаждения твердого олова. Прямая линия - линейная аппроксимация.

Коэффициент K равен модулю тангенса угла наклона аппроксимирующей прямой. $K=2.0800e-3\pm0.0434e-3.$

4.5 Расчет удельной теплоты кристаллизации λ

Используем формулу :
$$\lambda = (c_o + c_A \frac{M_A}{M_o}) K(T - T_0) \Delta t \ \lambda = \left(230\,\mathrm{J\,kg^{-1}\,K^{-1}} + 460\,\mathrm{J\,kg^{-1}\,K^{-1}} \times \frac{0.040\,00\,\mathrm{kg}}{0.070\,27\,\mathrm{kg}}\right) \times (2.0800 \times 10^{-3}\,\mathrm{s^{-1}}) \times (504.15\,\mathrm{K} - 297.65\,\mathrm{K}) \times (270\,\mathrm{s}) \approx 51.8 \pm 10.4$$
 Литературное значение: $\lambda = 60.7\,\mathrm{kJ\,kg^{-1}}$.

4.6 Расчет изменения энтропии

Удельное изменение энтропии по формуле : $\Delta s = -\frac{\lambda}{T} = -\frac{51.8e3}{504.15} \approx -102.75 \, \text{дж/kg} \cdot \text{K}$. Полное изменение энтропии образца олова: $\Delta S = \Delta s \times M_o = -102.65 \times 0.07027 \approx -7.213 \, \text{дж/K}$.

4.7 Оценка погрешностей

Относительная погрешность
$$\lambda$$
 (формула (17) из методички): $\frac{\Delta\lambda}{\lambda} = \sqrt{\left(\frac{\Delta(\Delta t)}{\Delta t}\right)^2 + \left(\frac{\Delta K}{K}\right)^2 + \left(\frac{\Delta(T-T_0)}{T-T_0}\right)^2}$ $\frac{\Delta\lambda}{\lambda} = \sqrt{\left(\frac{15}{75}\right)^2 + \left(\frac{0.0434e-3}{2.0800e-3}\right)^2 + \left(\frac{\sqrt{\Delta T^2 + \Delta T_0^2}}{T-T_0}\right)^2} \frac{\Delta\lambda}{\lambda} = \sqrt{(0.2)^2 + (0.0208)^2 + \left(\frac{\sqrt{0.5^2 + 0.5^2}}{206.5}\right)^2} \frac{\Delta\lambda}{\lambda} = \sqrt{0.04 + 0.00043 + \left(\frac{0.707}{206.5}\right)^2}$ $\sqrt{0.04 + 0.00043 + (0.0034)^2} \approx \sqrt{0.04044} \approx 0.201$ Абсолютная погрешность $\Delta\lambda = \lambda \times 0.201 = 51.8 \times 0.201 \approx 10.4$. Относительная погрешность ΔS : $\frac{\Delta(\Delta S)}{|\Delta S|} = \sqrt{\left(\frac{\Delta\lambda}{\lambda}\right)^2 + \left(\frac{\Delta M_0}{M_0}\right)^2 + \left(\frac{\Delta T}{T}\right)^2} \frac{\Delta(\Delta S)}{|\Delta S|} = \sqrt{(0.201)^2 + \left(\frac{0.01}{70.27}\right)^2 + \left(\frac{0.5}{504.15}\right)^2}$ $\frac{\Delta(\Delta S)}{|\Delta S|} \approx \sqrt{0.0404 + (0.00014)^2 + (0.00099)^2} \approx \sqrt{0.0404} \approx 0.201$ Абсолютная погрешность $\Delta(\Delta S) = |\Delta S| \times 0.201 = 7.213$ Ј К $^{-1} \times 0.201 \approx 1.45$ Ј К $^{-1}$.

5 Вывод

В ходе лабораторной работы была исследована кристаллизация олова как фазовый переход первого рода. На основе экспериментальных данных охлаждения расплава олова были получены:

- 1. Значения T и λ , которые согласуются с табличными в рамках погрешностей эксперимента.
- 2. Подтверждено уменьшение энтропии при кристаллизации.

Погрешности измерений оказались в пределах допустимых значений, что позволяет сделать вывод о корректности проведенного эксперимента и приминимости теории. Погрешность могла получится из-за принятия $\Delta t=270$, так как это число было взято на глаз из графика, отсюда и погрешность.