Частичное обучение

Виктор Китов

victorkitov.github.io

Курс поддержан фондом 'Интеллект'

Победитель конкурса VK среди курсов по IT

Частичное обучение

- Доступны данные:
 - $L = \{(x_1, y_1), \dots (x_N, y_N)\}; \ U = \{x_{N+1}, \dots x_{N+M}\}.$
- Использование частичного обучения (semi-supervised learning):
 - ullet N мало, а $M\gg N$ велико.
- Достаточно типичная ситуация:
 - классификация документов, изображений, речи
 - много неразмеченных объектов в интернете!
- Применимо к трансдуктивному обучению (transductive learning)
 - когда тестовая выборка известна заранее, например kaggle
- Будем рассматривать в основном задачу классификации.
- Частичное обучение есть в scikit-learn.

Мотивационный пример

Обучение с учителем:

Мотивационный пример

Обучение с учителем:

Частичное обучение:

Мотивационный пример

Обучение с учителем:

Частичное обучение:

Предположение частичного обучения

Выход зависит плавно от входа.

- Кластеры/многообразия похожих объектов должны принадлежать одному классу.
- Если предположение не выполнено, то частичное обучение может работать хуже обучения с учителем.

Мотивационный пример¹

Рассмотрим классификацию документов на "астрономию" и "путешествия" или классификацию рукописных цифр.

документ 1	документ 2	документ 3	документ 4	документ 5
разработка	код			
	код	баг		
		баг	тест	
			тест	релиз

imilar 'indirectly' similar

Напрямую объекты несравнимы, но могут быть сравнимы за счет попарной схожести с неразмеченными объектами.

¹Источник иллюстрации.

Методы частичного обучения

• Типы методов частичного обучения:

- препроцессинг на основе большой неразмеченной выборки
 - ↓ размерности, используя РСА
 - word2vec.
 - оценка расстояния Махаланобиса
- мета-алгоритмы, использующие любой базовый алгоритм
 - самообучение (self-learning)
 - совместное обучение (co-learning)
- специальные алгоритмы, использующие как размеченные, так и неразмеченные данные
 - кластеризация с метками
 - частичная генеративная классификация
 - трансдуктивный метод опорных векторов (transductive SVM)

Содержание

- Самообучение
- Совместное обучение

- б Графовые методы

Самообучение

классификатор:
$$f(x)=\arg\max_c g_c(x)$$
 уверенность прогноза: $M_f(x)=g_{f(x)}(x)-\max_{c\in C\setminus f(x)}g_c(x)$

Объекты: L (labeled) - размеченные; U (unlabeled) - неразмеченные.

Самообучение

• Метод самообучения (self-training):

```
Z=L # выборка , по которой учимся ПОВТОРЯТЬ до условия остановки : обучить f(x) на Z применить f(x) к U\backslash Z зададим расширение \Delta=\{(x_i,f(x_i))\in U\backslash Z:M_f(x)\geq t\} Z=Z\cup\Delta
```

- ullet Выход: обученный f(x) либо разметка тестовой выборки.
- ullet Параметр t может выбираться, чтобы $|\Delta|=0.05|U|$
- Реализация в scikit-learn: SelfTrainingClassifier.

Самообучение

- Условия остановки:
 - вся тестовая выборка размечена
 - точность на валидации перестала ↑
- Можно составлять Δ по наиболее уверенным предсказаниям, *сохраняя исходное распределение на классах*.
- Метод применим к любому классификатору.
- Предположение: прогнозы, полученные с большой уверенностью, считаются верными.
 - сильно увеличивает переобученность модели.
 - отчасти исправляется совместным обучением (co-training)

Содержание

- 2 Совместное обучение

- б Графовые методы

Совместное обучение через ансамбль

- Самообучение усиливает переобученность метода.
- Для ↓ переобучения будем использовать разные методы для разметки.

Идея совместного обучения

Разные методы дообучают друг друга.

- Совместное обучение через ансамбль:
 - применяем самообучение к ансамблю $f_1(x), ... f_K(x)$.
 - объекты, на которых большинство прогнозов базовых моделей сходятся, добавляются в выборку
- ↓ переобучение каждой индивидуальной модели.

Совместное обучение

- Пусть $f_1(\cdot)$ и $f_2(\cdot)$ одинаковые классификаторы, использующие различные наборы признаков F_1 и F_2 , $F_1 \cap F_2 = \emptyset$.
- Совместное обучение (co-training):

```
Z_1=L на признаках F_1
Z_2=L на признаках F_2
ПОВТОРЯТЬ до условия остановки:
     обучить f_1(x) на Z_1
     применить f_1(x) к U \setminus Z_2
     \Delta_1 = \{(x_i, f_1(x_i)) \in U \setminus Z_2 : M_{f_1}(x_i) \ge t\}
     Z_2 = Z_2 \cup \Lambda_1
     обучить f_2(x) на Z_2
     применить f_2(x) к U \setminus Z_1
     \Delta_2 = \{(x_i, f_2(x_i)) \in U \setminus Z_1 : M_{f_2}(x_i) \ge t\}
     Z_1 = Z_1 \cup \Delta_2
```

Совместное обучение

- Выход: обученные $f_1(x),\, f_2(x)$ или разметка тестовой выборки.
- Предположение метода (когда прогнозы одной модели случайны для другой):

$$p(F_1, F_2|y) = p(F_1|y)p(F_2|y)$$

- Альтернативно $f_1(\cdot)$ и $f_2(\cdot)$ используют одинаковые признаки, но разные модели.
 - ullet в этом случае инициализация $Z_1 = Z_2 = L.$

Содержание

- Самообучение
- 2 Совместное обучение
- 3 Использование кластеризации
- 4 Генеративные модели
- 5 Трансдуктивный метод опорных векторов
- б Графовые методы

Расширение меток на кластер

- ullet Кластеризовать $L \cup U$.
- Расширить метки на кластер.
 - если нет меток оставить неразмеченными / взять ближайшие
 - если несколько голосование по большинству
- Простой, но слишком грубый метод обобщения меток

К-средних для частичного обучения

Инициализировать $\mu_k, \ k=1,2,...K$.

ПОВТОРЯТЬ до сходимости:

для
$$n=N+1,2,...N+M$$
: определить кластер для x_i : $z_n=\arg\min_{k\in\{1,2,...K\}}||x_n-\mu_k||_2^2$

для
$$k=1,2,...K$$
 : пересчитать центры :
$$\mu_k = \frac{1}{|C_k|} \sum_{n \in C_k} x_n$$

• μ_1, μ_2, \dots инициализируются средними для размеченных объектов.

Аггломеративная кластеризация - алгоритм

инициализировать матрицу попарных расстояний $M \in \mathbb{R}^{NxN}$ между кластерами из отдельных объектов $\{x_1\},...\{x_N\}$

ПОВТОРЯТЬ:

- 1) выбрать ближайшие кластеры i и j
- 2) объединить $i, j \to \{i+j\}$, если нет разных меток
- 3) удалить строки/столбцы i, j из матрицы расстояний
- 4) добавить строку/столбец для нового $\{i+j\}$ в матрицу

ПОКА не выполнено условие остановки

ВЕРНУТЬ иерархическую кластеризацию

Объединяем самые близкие $\{i\}$ и $\{j\}$, в которых нет меток разных классов.

Содержание

- Самообучение
- 2 Совместное обучение
- Использование кластеризации
- 4 Генеративные модели
- 5 Трансдуктивный метод опорных векторов
- б Графовые методы

Частичное обучение в генеративных моделях

• Генеративная модель оценивает $p\left(x,y|\theta\right)$, поэтому можем оценить $p(x|\theta)=\sum_{y}p(x,y|\theta)$ для U.

Частичное обучение в генеративных моделях

• Генеративная модель оценивает $p(x,y|\theta)$, поэтому можем

оценить
$$p(x|\theta) = \sum_{y} p(x,y|\theta)$$
 для U .
$$\ln p(X,Y|\theta) = \sum_{n=1}^{N} \ln p(x_n,y_n|\theta) + \lambda \sum_{i=N+1}^{N+M} \ln p(x_i|\theta)$$

$$= \sum_{n=1}^{N} \ln p(x_n,y_n|\theta) + \lambda \sum_{n=N+1}^{N+M} \ln \left[\sum_{y=1}^{C} p(x_n,y|\theta) \right]$$

$$= \sum_{n=1}^{N} \ln \left[p(y_n|\theta) p(x_n|y_n,\theta) \right] + \lambda \sum_{n=N+1}^{N+M} \ln \left[\sum_{y=1}^{C} p(y|\theta) p(x_n|y,\theta) \right]$$

Частичное обучение в генеративных моделях

• Генеративная модель оценивает $p(x,y|\theta)$, поэтому можем

оценить
$$p(x|\theta) = \sum_y p(x,y|\theta)$$
 для U .
$$\ln p(X,Y|\theta) = \sum_{n=1}^N \ln p(x_n,y_n|\theta) + \lambda \sum_{i=N+1}^{N+M} \ln p(x_i|\theta)$$

$$= \sum_{n=1}^N \ln p(x_n,y_n|\theta) + \lambda \sum_{n=N+1}^{N+M} \ln \left[\sum_{y=1}^C p(x_n,y|\theta) \right]$$

$$= \sum_{n=1}^N \ln \left[p(y_n|\theta) p(x_n|y_n,\theta) \right] + \lambda \sum_{n=N+1}^{N+M} \ln \left[\sum_{y=1}^C p(y|\theta) p(x_n|y,\theta) \right]$$

- $\lambda \in [0,1]$ значимость неразмеченной части.
- Важна адекватность генеративной модели p(x|y).
- $\ln(\sum \cdots)$ нет численного решения, используем EM-алгоритм (латентные переменные $y_{N+1},...y_{N+M}$).

ЕМ алгоритм

ЕМ алгоритм: повторять до сходимости

- для n = N + 1, ...N + M, c = 1, ...C:
 - ullet найти $p_{ny}=p(y_n=y|x_n,\widehat{ heta})$
 - ullet уточнить $\widehat{ heta}$, решив:

$$\sum_{n=1}^{N} \ln \left[p(y_n | \theta) p(x_n | y_n, \theta) \right] + \lambda \sum_{n=N+1}^{N+M} \sum_{y=1}^{C} p_{ny} \ln \left[p(y | \theta) p(x_n | y, \theta) \right]$$

$$\to \max_{\theta}$$

Пример использования

Пусть
$$y \in \{+1, -1\}$$
, $p(x|y) = \mathcal{N}(x|\mu_y, \Sigma_y)$ Размеченные и неразмеченные данные:

Пример использования

Решение без/с использованием неразмеченных данных:

Мультиномиальная модель

- ullet $w_1, w_2, ... w_D$ уникальные токены языка
- Решающее правило:

$$\widehat{y}(x) = \arg\max_{y} p(y) p(x|y)$$

- ullet $x \in \mathbb{R}^D$, $x^i =$ [сколько раз w_i встретилось в документе], $i = \overline{1,D}$
- $m{ heta}_i^y = p\left(w_i \text{ на словопозиции } i|y
 ight)$ не зависит от i и др. слов документа
- ullet Генерация документа класса y:
 - для каждой словопозиции $i=1,2,...n_{document}$:
 - ullet сгенерировать слово $z_i \sim extsf{Categorical}\left(heta_1^y, heta_2^y, ... heta_D^y
 ight)$

Мультиномиальная модель

- ullet $(\sum_i x^i)!$ # перестановок всех слов документа
- ullet $\prod_i \left(x^i
 ight)!$ # перестановок в рамках встречи каждого слова
- ullet $\frac{\left(\sum_i x^i\right)!}{\prod_i (x^i)!}$ # документов где w_1, w_2, \dots встретились x^1, x^2, \dots раз.
- Вероятность:

$$p(x|y) = \frac{(\sum_{i} x^{i})!}{\prod_{i} (x^{i})!} \prod_{i=1}^{D} (\theta_{i}^{y})^{x^{i}}$$

Оценка параметров

$$\begin{split} p(y) &= \frac{\sum_{d=1}^{N} \mathbb{I}[y_d = y] + \lambda \sum_{d=N+1}^{N+M} p_{dy}}{N + \lambda M} \\ \theta_i^y &= \frac{\sum_{d=1}^{N} n_{di} \mathbb{I}[y_d = y] + \alpha + \lambda \sum_{d=N+1}^{N+M} p_{dy} n_{di}}{\sum_{d=1}^{N} \sum_{i=1}^{D} n_{di} \mathbb{I}[y_d = y] + \alpha D + \lambda \sum_{d=N+1}^{N+M} \sum_{i=1}^{D} p_{dy} n_{di}} \end{split}$$

- n_{di} =# раз w_i встретилось в документе d
- *D*=# документов
- $\alpha > 0$ сглаживание Лапласа
- $\lambda \in [0,1]$ важность частичного обучения

$$p_{dy} = p(y|d) = \frac{p(y,d)}{p(d)} = \frac{p(y) p(d|y)}{\sum_{y} p(y) p(d|y)}$$

Эксперимент

- Классификация новостей (20NewsGroups).
- 20 5000 размеченных документов, 10000 неразмеченных.
- Частичное обучение работает лучше:

Содержание

- 1 Самообучение
- 2 Совместное обучение
- ③ Использование кластеризации
- 4 Генеративные модели
- 5 Трансдуктивный метод опорных векторов
- б Графовые методы

Обычный метод опорных векторов

 Метод опорных векторов (SVM) - линейный классификатор:

$$f(x) = \operatorname{sign}(w^T x + w_0), \quad w, x \in \mathbb{R}^D, w_0 \in \mathbb{R}$$

• Отступ объекта x_n :

$$M(x_n, y_n) = (w^T x_n + w_0) y_n$$

• Оптимизационная задача:

$$\frac{1}{2C} \|w\|^2 + \sum_{n=1}^{N} \left[1 - M(x_n, y_n)\right]_+ \to \min_{w, w_0}$$

• $\mathcal{L}(M) = [1-M]_+$ штрафует за $M \leq 1$.

Трансдуктивный метод опорных векторов

$$\tilde{\mathcal{L}}(M) = [1 - |M|]_{+} = [1 - |w^{T}x_{n} + w_{0}|]_{+}$$

- ullet не зависит от y_n
- штрафует объекты за близость к разделяющей гиперплоскости

Трансдуктивный метод опорных векторов (transductive SVM, TSVM):

$$\frac{1}{2C} \|w\|^2 + \sum_{n=1}^{N} \left[1 - M(x_n, y_n)\right]_+ + \lambda \sum_{n=N+1}^{N+M} \left[1 - |M(x_n, y_n)|\right]_+ \to \min_{w, w_0}$$

Иллюстрация

- В кругах размеченные объекты.
- Пунктиром разделяющая граница SVM
- Сплошные линии разделяющая граница TSVM

Идея метода - разделение областей низкой плотности.

Обсуждение

Преимущества:

- может быть обобщено ядрами
- существуют эффективные реализации

Недостатки:

- задача перестаёт быть выпуклой:
 - много локальных минимумов, нужно искать наилучший
- поощряет тривиальное решение, когда гиперплоскость далека от всех объектов
 - т.е. прогноз одним классом
 - рекомендуется оптимизировать при доп. ограничении (balancing contraint²):

$$\frac{1}{M} \sum_{n=N+1}^{N+M} (w^T x + w_0) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} [y_n = +1]$$

²Large Scale Transductive SVMs.

Содержание

- Самообучение
- 2 Совместное обучение
- 3 Использование кластеризации
- 4 Генеративные модели
- 5 Трансдуктивный метод опорных векторов
- б Графовые методы

Алгоритм распространения меток³

- строим граф связей похожих объектов:
 - ullet узлы $x\in L\cup U$ и связи между близкими x_i,x_j :

$$w_{ij} = e^{\|x_i - x_j\|^2/(2\sigma^2)} = w_{ji}; \quad w_{ij} = \begin{cases} 1, & x_j \in \mathsf{KNN}(i) \\ 0, & x_j \notin \mathsf{KNN}(i) \end{cases}$$

 $oldsymbol{0}$ вычисляем матрицу переходов $P \in \mathbb{R}^{(N+M) imes (N+M)}$

$$p_{ij} = P(x_i \to x_j) = \frac{w_{ij}}{\sum_{k=1}^{N+M} w_{ik}}$$

- 3 Инициализируем ответы на объектах $f \in \mathbb{R}^{N+M}$.
 - $f_n := y_n$ для n = 1, 2, ...N.
 - $f_n := 0$ (не принципиально) для n = N + 1, ...N + M.

³Детали метода.

Алгоритм распространения меток⁵

Алгоритм распространения меток (label propagation)

- повторять до сходимости f:
 - усреднить ответы по исходам из каждой вершины

$$f := Pf$$
 (покомпонентно $\mathsf{f}(x_i) := \sum_{j: i o j} p_{ij} \mathsf{f}(x_j)$)

либо по входам в каждую вершину⁴

$$f^T := f^T P$$
 (покомпонентно $\mathsf{f}(x_j) := \sum_{i:i o j} \mathsf{f}(x_i) p_{ij}$)

2 перезадать известные метки: $f_L := Y_L$

$$f = (f^T)^T = (f^T P)^T = P^T f = P f$$

⁴Эквивалентно для ненаправленных графов ($P = P^T$), т.к.

 $f = \left(f^T\right)^T = \left(f^TP\right)^T = P^Tf = Pf.$ 5 Реализация: LabelPropagation, LabelSpreading

Визуализация работы

Комментарии

- Идейно это self-learning для KNN.
- $\bullet \ F^0 = \left(\begin{array}{c} Y_L \\ 0 \end{array} \right)$
- повторять до сходимости:
 - $F^{t+1} := PF^t$
 - $F_{:|Y_L|}^{t+1} := Y_L$
- Вариант: вершина с большим числом соседей слабее отдаёт сигнал.
- повторять до сходимости:
 - $F^{t+1} := D^{-1}PF^t$
 - $F_{:|Y_L|}^{t+1} := Y_L$

Регуляризация энергии графа

- Воспользуемся графом из алгоритма распространения меток.
- Энергия графа измеряет согласованность меток для соседних узлов

$$E(f) = \frac{1}{2} \sum_{i,j} w_{ij} (f(x_i) - f(x_j))^2 = f^T \Delta f$$

ullet Найдем f(x) из задачи

$$\sum_{n=1}^{N} \mathcal{L}\left(f(x_n), y_n\right) + \lambda_1 R\left(f\right) + \frac{\lambda_2 E(f)}{f} \to \min_{f}$$

- Варианты оптимизации:
 - ullet по значениям $f \in \mathbb{R}^{N+M}$
 - по параметрам $f_w(x)$

Лапласиан графа

$$E(f) = \frac{1}{2} \sum_{i,j} w_{ij} (f(x_i) - f(x_j))^2 = f^T \Delta f$$

где $\Delta = D - W$ - Лапласиан графа, $D, W \in \mathbb{R}^{(N+M)x(N+M)}$

$$D = \operatorname{diag}\left(\sum_{j=1}^{N+M} w_{1j}, \sum_{j=1}^{N+M} w_{2j}, \dots \sum_{j=1}^{N+M} w_{(N+M)j}\right)$$

$$W = \{w_{ij}\}_{i,j=1,...N+M}.$$

Разобьём Лапласиан на блоки: $\Delta = \left[egin{array}{cc} \Delta_{LL} & \Delta_{LU} \\ \Delta_{UL} & \Delta_{UU} \end{array}
ight]$

$$\sum_{m=1}^{N} (f_n - y_n)^2 + f^T \Delta f \to \min_{f \in \mathbb{R}^{N+M}} \quad => \quad f_U = -\Delta_{UU}^{-1} \Delta_{UL} Y_L$$

Заключение

- Частичное обучение использование неразмеченных объектов для уточнения прогнозов.
- Наиболее эффективно, когда N мало, $M\gg N$.
- Подходы:
 - мета-алгоритмы, строящиеся на базе других
 - самообучение, совместное обучение
 - кластеризация с учётом меток
 - генеративные модели, учитывающие p(x) для $x \in U$.
 - трансдуктивный метод опорных векторов
 - распространение меток на графе, минимизация энергии