MEM6810 Engineering Systems Modeling and Simulation

Sino-US Global Logistics Institute Shanghai Jiao Tong University

Spring 2023 (full-time)

Assignment 1

Due Date: March 28 (in class)

Instruction

- (a) You can answer in English or Chinese or both.
- (b) Show **enough** intermediate steps.
- (c) Write your answers independently.
- (d) If you copy the solutions from somewhere, you must indicate the source.

.....

Question 1 (5+5=10 points)

- (1) Prove the result in Buffon's Needle: $\mathbb{P}(\text{needle crosses a line}) = \frac{2l}{\pi d}$. (Lec 1 page 25/33)
- (2) If the straight needle is bent to V shape, and let X denote the number of intersection points between a needle and the lines, prove that $\mathbb{E}[X] = \frac{2l}{\pi d}$.

Question 2 (10 points)

Prove that $Var(X) = \mathbb{E}[Var(X|Y)] + Var(\mathbb{E}[X|Y]).$

Question 3 (10 points)

Suppose that $X_1 \sim \text{Gamma}(\alpha_1, \lambda)$, $X_2 \sim \text{Gamma}(\alpha_2, \lambda)$, and $X_1 \perp X_2$. Prove that $X_1 + X_2 \sim \text{Gamma}(\alpha_1 + \alpha_2, \lambda)$.

Question 4 (10 points)

Prove that $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$.

Question 5 (10 points)

Prove that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Question 6 (10 points)

For positive real numbers a_i , i = 1, 2, ..., n, define

arithmetic mean: $a_A = \frac{1}{n}(a_1 + \dots + a_n),$

geometric mean: $a_G = (a_1 \times \cdots \times a_n)^{1/n}$,

harmonic mean: $a_H = \frac{1}{\frac{1}{n}(\frac{1}{a_1} + \dots + \frac{1}{a_n})}$.

Use Jensen's Inequality to prove that $a_H \leq a_G \leq a_A$. (Hint: Use the log() function.)

Question 7 (10 points)

Prove that, if $X_n \xrightarrow{L^s} X$ and $s > r \ge 1$, then $X_n \xrightarrow{L^r} X$. (Hint: Use Hölder's Inequality.)

Question 8 (10 points)

Prove that, if $X_n \xrightarrow{L^r} X$ for $r \ge 1$, then $\mathbb{E}[|X_n|^r] \to \mathbb{E}[|X|^r]$. (Hint: Use Minkowski's Inequality. Also note that for a sequence of numbers a_1, a_2, \ldots , and a continuous function f(), as $n \to \infty$, $a_n \to a$ implies that $f(a_n) \to f(a)$.)

Question 9 (10 points)

Prove that S^2 is an unbiased estimator of σ^2 , i.e., $\mathbb{E}[S^2] = \sigma^2$, but S is a biased estimator of σ , i.e., $\mathbb{E}[S] \neq \sigma$. (Hint: Use Jensen's Inequality.)

Question 10 (10 points)

Prove the Weak Law of Large Numbers with iid assumption and $\sigma^2 < \infty$. (Hint: Use Chebyshev's Inequality.)