PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-278221

(43) Date of publication of application: 24.10.1995

(51)Int.CI.

CO8F 4/654

CO8F 10/02

(21)Application number: 07-022911

(71)Applicant: MITSUI PETROCHEM IND LTD

(22)Date of filing:

10.02.1995

(72)Inventor: KOJO SHINICHI

KIOKA MAMORU

(30)Priority

Priority number: 06 21084

Priority date: 18.02.1994

Priority country: JP

(54) ETHYLENE POLYMER AND ITS PRODUCTION

(57)Abstract:

PURPOSE: To produce an ethylene polymer excellent in moldability, rigidity and impact resistance and free from defective appearance by (co)polymerizing ethylene in the presence of a Ziegler–Natta catalyst. CONSTITUTION: An ethylene polymer wherein (1) the density is 0.90–0.98g/cm3, (2) the melt flow rate is 0.001–3000g/10min as measured at 190° C under a load of 2.16kg, (3) the formula: logMT ≥-0.4 logMFR+0.75 (MT is the melt tension, and MFR is the melt flow rate) holds, (4) the molecular weight distribution Mw/Mn is 2-9, (5) the molecular weight distribution Mz/Mw is 2-5, (6) the value of g* as an index representing the rate of long-chain branches is 0.90–1.00, and (7) the swell ratio is 1.20–1.35.

LEGAL STATUS

[Date of request for examination]

08.02.2001

[Date of sending the examiner's decision of rejection]

24.06.2003

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

2003-14349

rejection]

[Date of requesting appeal against examiner's decision of 24.07.2003

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平7-278221

(43) 公開日 平成7年(1995) 10月24日

(51) Int. Cl. 6

識別記号

C08F 4/654

MFG

10/02

FI

審査請求 未請求 請求項の数5 OL (全22頁)

(21) 出願番号

特願平7-22911

(22) 出願日

平成7年(1995)2月10日

(31) 優先権主張番号 特願平6-21084

(32) 優先日

平6 (1994) 2月18日

(33) 優先権主張国

日本(JP)

(71) 出願人 000005887

三井石油化学工業株式会社

東京都千代田区霞が関三丁目2番5号

(72) 発明者 古 城 真 一

山口県玖珂郡和木町和木六丁目1番2号

三井石油化学工業株式会社内

(72) 発明者 木 岡 護

山口県玖珂郡和木町和木六丁目1番2号

三井石油化学工業株式会社内

(74) 代理人 弁理士 鈴木 俊一郎

(54) 【発明の名称】エチレン系重合体およびその製造方法

(57) 【要約】

【構成】M_▼ /M_∞ およびM_∞ /M_▼ の値が小さく、長 鎖分岐の割合が少なく、かつ、メルトテンションおよび スウェル比が高いエチレン系重合体およびその製造方 法。チタン、マグネシウム、ハロゲンおよび複数の原子 を介して存在する二個以上のエーテル結合を有する化合 物を含む固体状チタン触媒成分と、有機金属化合物触媒 成分とからなるエチレン重合用触媒の存在下にエチレン を重合するエチレン系重合体の製造方法。

【効果】成形性に優れ、かつ剛性および耐衝撃性に優れ た成形体が得られるとともに、外観不良がない成形体が 得られる。

(A) 運移金属成分

【特許請求の範囲】

【請求項1】(i)密度が0.90~0.98g/cm³の範囲にあり、(ii)190℃、荷重2.16kgで測定されるメルトフローレートが0.001~3000g/10分の範囲にあり、(iii)メルトテンション(MT)とメルトフローレート(MFR)とが、式 logMT≧-0.4logMFR+0.75で示される関係を満たし、(iv)分子量分布M・/M・の値が2~9の範囲にあり、(v)分子量分布M・/M・の値が2~5の範囲にあり、(vi)長鎖分岐の割合を示す指標であ 10るg'の値が0.90~1.00の範囲にあり、(vii)スウェル比が1.20~1.35の範囲にあることを特徴とするエチレン系重合体。

【請求項2】 チーグラー・ナッタ型触媒により製造された請求項1に記載のエチレン系重合体。

【請求項3】 [1] (a) 液状状態の還元能を有しないマグネシウム化合物、(b) 複数の原子を介して存在する二個以上のエーテル結合を有する化合物、(c) 液状状態のチタン化合物、および必要に応じて(d) 析出化剤(ただし成分(a)、成分(b)、成分(c) および 20成分(d) の少なくとも1成分はハロゲン含有化合物を含む)を接触させて得られ、チタン、マグネシウム、ハロゲンおよび上記複数の原子を介して存在する二個以上のエーテル結合を有する化合物を含む固体状チタン触媒成分と、

[||] 周期律表第 | 族〜第||| 族から選ばれる金属を含む有機金属化合物触媒成分とを含むエチレン重合用触媒により製造された請求項 1 に記載のエチレン系重合体。

【請求項4】 [1] (a) 液状状態の還元能を有しないマグネシウム化合物、(b) 複数の原子を介して存在す 30 る二個以上のエーテル結合を有する化合物、(c) 液状状態のチタン化合物、および必要に応じて(d) 析出化剤(ただし成分(a)、成分(b)、成分(c) および成分(d) の少なくとも1成分はハロゲン含有化合物を含む)を接触させて得られ、チタン、マグネシウム、ハロゲンおよび上記複数の原子を介して存在する二個以上のエーテル結合を有する化合物を含む固体状チタン触媒成分と、

[11] 周期律表第 I 族〜第111 族から選ばれる金属を含む有機金属化合物触媒成分とを含むエチレン重合用触媒 40 の存在下に、エチレンを単独重合させるか、または、エチレンとエチレン以外のオレフィンとを共重合させることを特徴とするエチレン系重合体の製造方法。

【請求項5】[1](a)液状状態の還元能を有しないマグネシウム化合物、(b)複数の原子を介して存在する二個以上のエーテル結合を有する化合物、(c)液状状態のチタン化合物、および必要に応じて(d)析出化剤(ただし成分(a)、成分(b)、成分(c)および成分(d)の少なくとも1成分はハロゲン含有化合物を含む)を接触させて得られ、チタン、マグネシウム、ハ 50

ロゲンおよび上記複数の原子を介して存在する二個以上 のエーテル結合を有する化合物を含む固体状チタン触媒 成分と、

[11] 周期律表第 I 族〜第111 族から選ばれる金属を含む有機金属化合物触媒成分とを含むエチレン重合用触媒の存在下に、エチレンを単独重合させるか、または、エチレンとエチレン以外のオレフィンとを共重合させて請求項 1 に記載のエチレン系重合体を得ることを特徴とするエチレン系重合体の製造方法。

0 【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、エチレン系重合体およびその製造方法に関し、さらに詳しくは、メルトテンションおよびスウェル比が高く、分子量分布が狭く、かつ、長鎖分岐が少ないエチレン系重合体およびその製造方法に関するものである。

[0002]

【発明の技術的背景】従来からエチレン系重合体は、中空成形体、押出成形体、フィルム、シートなどの素材として広く用いられている。このようなエチレン系重合体は、用途に応じて求められる特性が異なり、また成形方法に応じて求められる特性も異なってくる。たとえば、高速でインフレーションフィルムを成形する際のバブルのゆれやちぎれを防ぐため、または、中空成形時やシート成形時のドローダウンを防ぐためには、メルトテンション(溶融張力)が大きいエチレン系重合体を選択する必要がある。また、ボトルを中空成形により製造する際のピンチオフ形状をよくするため、または、中空成形体の肉厚分布を狭くするためには、スウェル比が大きいエチレン系重合体を選択する必要がある。

【0003】ところでMgCl,担持型Ti系触媒に代表されるチーグラー・ナッタ型触媒により製造されたエチレン系重合体は、長鎖分岐がほとんど存在せず剛性、耐衝撃強度に優れているが、Cr系フィリップス型触媒により製造されたエチレン系重合体に比べて成形性に劣る。一方、高圧法により製造されたエチレン系重合体およびCr系フィリップス型触媒により製造されたエチレン系重合体は、チーグラー・ナッタ型触媒により製造されたエチレン系重合体に比べメルトテンションおよびスウェル比が高く、成形性に優れているが、長鎖分岐が存在するため剛性、耐衝撃強度に劣る。

【0004】このような現状のもとチーグラー・ナッタ型触媒により製造され、成形性などに優れたエチレン系重合体について種々検討されている。たとえば特開昭55-12735号公報には、チーグラー・ナッタ型触媒により製造されたエチレン系重合体がブレンドされてなるエチレン系重合体が記載されている。また、特開昭60-36546号公報には、チーグラー・ナッタ型触媒により製造されたエチレン系重合体に、Cr系フィリップス型触

→ ン系重合体は、特定の触媒を用いることにより製造しう

媒により製造されたエチレン系重合体がプレンドされてなるエチレン系重合体が記載されている。しかしながら、これらのエチレン系重合体は成形性が向上するものの、重合体中の長鎖分岐の割合が増えるため、チーグラー・ナッタ型触媒により製造されたエチレン系重合体が本来有している優れた剛性および耐衝撃強度が低下している。

【0005】また、特開昭59-89341号公報などには、チーグラー・ナッタ型触媒により製造されたエチレン系重合体をラジカル発生剤の存在下に変性してなる 10 エチレン系重合体が記載され、特開昭59-164347号公報などには、チーグラー・ナッタ型触媒により製造されたエチレン系重合体をマレイン酸を用いて変性してなるエチレン系重合体が記載されている。しかしながら、この場合も成形性が向上するものの、重合体中の長鎖分岐の割合が増えるため剛性および耐衝撃強度が低下している。

【0006】さらに、特開昭57-158204号公報、特開昭60-106806号公報などには、特定の触媒を用いて得られた、長鎖分岐の割合が少なくかつ成 20形性に優れたエチレン系重合体が記載されている。しかしこのエチレン系重合体は、Mr/M。およびM。/M。の値が大きく、平均分子量よりも著しく大きな分子量の重合体が含まれている。この平均分子量よりも著しく大きな分子量の重合体は、フィッシュアイなどの成形体の外観不良の原因となる場合が多い。

【0007】さらにまた、特開昭61-130314号公報には多段階の重合工程で重合することにより得られた成形性に優れたエチレン系重合体が記載されている。このエチレン系重合体は、分子量分布が広く、このため 30 平均分子量よりも著しく大きな分子量のエチレン系重合体が含まれており、フィッシュアイなどの成形体の外観不良が発生する。

【0008】このようにチーグラー・ナッタ型触媒により製造され、成形性に優れるとともに、機械的強度に優れ、外観不良が少ない成形体が得られるようなエチレン 系重合体について検討されているが未だ見出されていない

【0009】本発明者らは、このような従来技術に鑑みチーグラー・ナッタ型触媒により製造され、成形性に優 40 れるとともに、機械的強度に優れ、外観不良が少ない成形体が得られるようなエチレン系重合体について検討した結果、密度およびメルトフローレートが特定の範囲にあり、メルトテンション(MT)とメルトフローレート(MFR)とが特定の関係にあり、分子量分布M』/M。の値、分子量分布M』/M。の値、分子量分布M』/M。の値、分子量分布M。/M』の値、長鎖分岐の割合を示す指標であるg」の値、およびスウェル比がそれぞれ特定の範囲にあるエチレン系重合体は、成形性に優れるとともに、機械的強度に優れ、外観不良が少ない成形体が得られることを見出した。そして、このようなエチレ 50

[0010]

【発明の目的】本発明は、このような現状に鑑みなされたものであり、成形性に優れるとともに、剛性および耐衝撃性に優れ、かつ、外観不良がない成形体が得られるようなエチレン系重合体およびその製造方法を提供することを目的としている。

[0011]

【発明の概要】本発明に係るエチレン系重合体は、

ることを見出して本発明を完成するに至った。

(i)密度が0.90~0.98g/cm³の範囲にあり、(ii)190℃、荷重2.16kgで測定されるメルトフローレートが0.001~3000g/10分の範囲にあり、(iii)メルトテンション(MT)とメルトフローレート(MFR)とが、式 log MT≧-0.4log MFR+0.75 で示される関係を満たし、

(iv) 分子量分布M_{*} / M_{*} の値が2~9の範囲にあり、(v) 分子量分布M_{*} / M_{*} の値が2~5の範囲にあり、(vi) 長鎖分岐の割合を示す指標であるg^{*} の値が0.90~1.00の範囲にあり、(vii) スウェル比が1.20~1.35の範囲にあることを特徴としている。

【0012】本発明のエチレン系重合体は、チーグラー・ナッタ型触媒、たとえば

[1] (a)液状状態の還元能を有しないマグネシウム化合物、(b)複数の原子を介して存在する二個以上のエーテル結合を有する化合物、(c)液状状態のチタン化合物、および必要に応じて(d)析出化剤(ただし成分(a)、成分(b)、成分(c)および成分(d)の少なくとも1成分はハロゲン含有化合物を含む)を接触させて得られ、チタン、マグネシウム、ハロゲンおよび上記複数の原子を介して存在する二個以上のエーテル結合を有する化合物を含む固体状チタン触媒成分と、

[11] 周期律表第 I 族〜第111 族から選ばれる金属を含む有機金属化合物触媒成分とを含むエチレン重合用触媒により製造することができる。

【0013】このようなエチレン系重合体は、成形性に優れ、得られた成形体は剛性および耐衝撃強度に優れ、 しかもフィッシュアイなどの外観不良の発生がない。本 発明に係るエチレン系重合体の製造方法は、

[1] (a) 液状状態の還元能を有しないマグネシウム化合物、(b) 複数の原子を介して存在する二個以上のエーテル結合を有する化合物、(c) 液状状態のチタン化合物、および必要に応じて(d) 析出化剤(ただし成分(a)、成分(b)、成分(c) および成分(d)の少なくとも1成分はハロゲン合有化合物を含む)を接触させて得られ、チタン、マグネシウム、ハロゲンおよび上記複数の原子を介して存在する二個以上のエーテル結合を有する化合物を含む固体状チタン触媒成分と、

[||] 周期律表第 | 族~第||| 族から選ばれる金属を含

む有機金属化合物触媒成分とを含むエチレン重合用触媒 の存在下に、エチレンを単独重合させるか、または、エ チレンとエチレン以外のオレフィンとを共重合させるこ とを特徴としている。

【0014】本発明のエチレン重合体の製造方法によれば、前記(i)~(vii)を満たすエチレン系重合体を製造することができる。なお、上記のような固体状チタン触媒成分[I]と、有機金属化合物触媒成分[II]とからなるオレフィン重合用触媒は、特開平4-218507号公報に記載されている。しかしながら、このオレコイン重合用触媒は、主に炭素数3以上のα-オレフィンを主成分とする重合体または共重合体を製造するために用いられている。したがって、このようなオレフィン重合用触媒を用いてエチレンを重合した際に、成形性、剛性および耐衝撃強度に優れ、しかもフィッシュアイなどの外観不良の発生がないエチレン系重合体が得られることは、従来全く知られていなかった。

[0015]

【発明の具体的説明】以下、本発明に係るエチレン系重 合体およびその製造方法について具体的に説明する。

【0016】なお、本明細書において「重合」という語は、単独重合だけでなく、共重合をも包含した意味で用いられることがあり、「重合体」という語は、単独重合体だけでなく、共重合体をも包含した意味で用いられることがある。

【0017】本発明に係るエチレン系重合体は、エチレンの単独重合体、エチレンとオレフィンとのランダム共重合体、またはエチレンとオレフィンとのブロック共重合体である。

【0018】エチレンとオレフィンとの共重合体では、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル -1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの炭素数3~20のα-オレフィンから誘導される構成単位を10重量%以下、好ましくは5重量%以下の量で含有していてもよい。

【0019】さらにスチレン、アリルベンゼンなどの芳香族ビニル化合物、ビニルシクロヘキサンなどの脂環族ビニル化合物、シクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロド 40 デセン、2-メチル-1、4、5、8-ジメタノ-1、2、3、4、4a、5、8、8 a-オクタヒドロナフタレンなどの環状オレフィン、6-メチル1、6-オクタジエン、6-エチル-1、6-オクタジエン、6-ブロピル-1、6-オクタジエン、6-ブチル-1、6-オクタジエン、6-ブチル-1、6-ノナジエン、7-メチル-1、6-ノナジエン、7-メチル-1、6-ノナジエン、7-メチル-1、6-ノナジエン、7-メチル-1、6-ブカジエン、6-メチル-1、6-ブカジエン、7-メチル-1、6-デカジエン、6-メチル-1、6-ヴンデカジエン、イソプレン、ブタジエンなどのジェン類などの共役ジエンや非共役ジエンのような不飽和結合 50

を多く有する化合物から誘導される構成単位を10重量 %以下、好ましくは5重量%以下の量で含有していても よい。

【0020】本発明に係るエチレン系重合体は、密度が 0.90 \sim 0.98g/cm³、好ましくは 0.92 \sim 0.98g/cm³、さらに好ましくは 0.94 \sim 0.98g/cm³の範囲にある。

【0021】密度は、下記のように測定する。すなわ ち、後述するメルトフローレート測定後の試料(長さ5 ~6 c mのストランド)を120℃の恒温油槽に入れ1 時間保つ。1時間保った後、油槽に水を少しずつ流し込 み、1時間で120℃から室温まで直線的に冷却する。 次に、試料を23℃の室内に1時間放置した後、該試料 から2個の小片(試験片)を切り取り、切り取った試験 **- 片をメタノールで濡らした後、密度勾配管の中に静かに** 入れる。15分後の試験片の位置を密度勾配管の目盛り から読み取り、試験片2個の平均値を求める。そしてこ の平均値を、標準フロートを用いて作成した密度と密度 勾配管の目盛りの較正曲線により密度に換算する。な 20 お、標準フロートは、直径1~2mmのガラス毛細管の 一端を封じ、この封じた端に二クロム線を仮に融着さ せ、封じた端から2mm程離れた所で封じ切り、これを ニクロム線で支持し、熱して膨らませた直径3~5mm の球状のガラスである。また、密度勾配管中の液は、J IS K1501に規定された試薬1級のメタノール と、JIS K8371に規定された試薬1級の酢酸ナ トリウムを用いて調製された酢酸ナトリウム水溶液とを 混合したものである。

【0022】本発明に係るエチレン系重合体は、メルト30 フローレートが0.001~3000g/10分、好ましくは0.005~1000g/10分、より好ましくは0.01~100g/10分、さらに好ましくは0.02~10g/10分の範囲にある。

【0023】メルトフローレートは、下記のように測定する。すなわち、JIS K7210に準じて製作されたテスター産業(株)製自動MFR測定計に、JIS K7210に規定する寸法を満たすオリフィスを取付け、バレル(試料を入れる部分)を190℃に昇温し、保持する。バレルに試料4gを入れ、ピストンを装着し、気泡抜きを行い、6分間予熱する。予熱後、2160gの荷重を加えて試料を押出し、10分間当たりに押し出される試料の重量を算出しメルトフローレートとする。

【0024】本発明に係るエチレン系重合体は、メルトテンション (MT) とメルトフローレート (MFR) とが、

式 log MT≧−0. 4 log MFR+0. 75 好ましくは、

式 log MT≧-0. 4 log MFR+0. 78 より好ましくは、

式 iog MT≥-0. 4iog MFR+0. 80 で示される関係を満たしている。

【0025】メルトフローレートが上記のような範囲に あり、かつメルトテンションとメルトフローレートとが 上記式で示される関係を満たすエチレン系重合体は、成 形性に優れている。たとえば、高速でインフレーション フィルムを成形する際にバブルのゆれやちぎれが発生し にくく、また、中空成形時やシート成形時にドローダウ ンが発生しにくい。

系重合体を一定速度で延伸したときの応力を測定するこ とにより決定される。すなわち、東洋精機製作所製、M T測定機を用い、樹脂温度190℃、押し出し速度15 mm/分、巻取り速度10~20m/分、ノズル径2. 09mm

の、ノズル長さ8mmの条件で行った。

【0027】本発明に係るエチレン系重合体は、重量平 均分子量(M_r)と数平均分子量(M_n)との比で表さ れる分子量分布M_w /M_w の値が2~9、好ましくは3 ~8、より好ましくは4~7の範囲にあり、2平均分子 分子量分布M, /M, の値が2~5、好ましくは2. 5 ~4. 5、より好ましくは3~4の範囲にある。

【0028】M_{*} /M_{*} の値およびM_{*} /M_{*} の値が上 記のような範囲にあるエチレン系重合体は、分子量分布

 $M_i = (j_i / K)^{\nu \alpha + \iota}$

 $(K = 2. 0 9 2 2 \times 1 0^{-4}, \alpha = 0. 7 3 5)$

 $j_1 = P(1) + P(2) R_{ti} + P(3) R_{ti}^2 + P(4) R_{ti}^3$

 $H_i = M_i N_i$

【0031】(ただし、P(1)、P(2)、P(3) およびP(4)は、標準試料ポリスチレン(M, /M。 =1.1)を、前記条件でGPC測定して得た溶出量対 分子量を表す検量線より計算して得たものである。)求 めたMi およびHi の値から、それぞれ下記式によりに よりM。、M、およびM、を算出してM、/M。および M, /M, を求めた。

 $[0032]M_n = \Sigma H_i / \Sigma (H_i / M_i)$ $M_{I} = \Sigma H_{i} M_{i} / \Sigma H_{i}$

 $M_z = \Sigma H_i M_i^2 / \Sigma H_i M_i$

(Pollock, D., and Kratz, F. F., GPC Sixth international | Seminar (1968)、および「サイズ排除クロマトグラフ ィー」森定雄著、p51~p56、1991年12月 1 日発行(共立

 $[\eta]_{arc}^{odes}$ の値を式 $[\eta]_{arc}^{odes} = K(\Sigma H_1(M_1)^a / \Sigma H_1)$

(ただし、K、 α 、 H_i および M_i は前配と同様である。)

【0035】により算出し、これを文献 (Pollock, D., a) nd Kratz, F. F., GPC Sixth international Seminar (196 8)) に従って、デカリン溶媒中での値 ([ŋ] [pc) に補正した。また、各試料について135 \mathbb{C} デカリン溶 50 g'= [n]。。。/[n] (n)

が狭く、かつ平均分子量よりも著しく大きな分子量の重 合体の含有率が低いので、フィッシュアイなどの成形体 の外観不良が発生しない。

【0029】M_{*} /M_o およびM_o /M_{*} は、ゲルパー ミエイションクロマトグラフィー(GPC)を用い、下 記のように測定する。

[装置]

ミリポアー社製 ALC/GPC 150C型 [測定条件]

【0026】メルトテンションは、溶融させたエチレン 10 カラム:GMH-HT6(7.5mmID×60cm) 東ソー製

移動相:o-Dichlorobenzene (ODCB)

カラム温度:138℃ 流 量:1.0ml/分

試料濃度:30mg/20ml

溶解温度:140℃ 流入量:500ml 検出器:示差屈折計

[M, /M, およびM, /M, の算出] GPC溶出曲線 量(M_z)と重量平均分子量($M_{f e}$) との比で表される 20 の i 番目の区分に対する溶出時間 $R_{i,i}$ 、溶出量 H_i 、分 子量M,、高分子数Niは、下記の関係にある。

[0030]

【数1】

出版)参照)

本発明に係るエチレン系重合体は、長鎖分岐の割合を示 す指標であるg'の値が0.90~1.00、好ましく は0.92~1.00、より好ましくは0.95~1. 00の範囲にある。

【0033】g'の値が上記のような範囲にあるエチレ ン系重合体は、重合体中の長鎖分岐の割合が少ないた め、得られる成形体は剛性および耐衝撃強度に優れる。 g'の値は、GPCを用いて下記のように求める。すな 40 わち、前記と同様の測定条件でMi およびHi の値を求

[0034]

【数2】

媒中の極限粘度([η]。。) を測定した。

【0036】以上のようにして得られた値より、下記式 を用いてg'を算出した。

本発明に係るエチレン系重合体は、スウェル比(SR) が1. 20~1. 35、好ましくは1. 25~1. 34 の範囲にある。

【0037】スウェル比が上記のような範囲にあるエチ レン系重合体は、成形性に優れる。たとえば、ボトルを 中空成形により製造する際には、ピンチオフ形状がよく なるため、強度に優れるボトルが製造できる。また中空 成形体の肉厚分布を狭くすることができるので、目付量 を低減できるとともに、同一の目付量では座屈強度を強 くすることができる。

【0038】スウェル比は、下記のように測定する。す なわち、東洋精機製作所製 キャピログラフー IBにノ ズル径 (D。) = 3. 0 mm φ、長さ (L) = 3 mm の ノズルを取り付け、バレル(試料を入れる部分)を19 0℃に昇温し、保持する。バレルに試料約10gを入 れ、ピストンを装着し、気泡抜きを行い、6分間予熱す る。予熱後、0.25、0.5、1、2.5、5、1 0、25 sec⁻¹の各ずり速度で試料を押出し、ノズル 出口より15mm下方のストランド径(Di)をレーザ 一光線により測定する。このようにして測定したストラ 20 ンド径 (D_i) とノズル径 (D_o) との比 (SR_i = D , /D。)を求める。

【0039】半対数方眼紙に各ずり速度に対するSR。 をプロットし得られた曲線より、ずり速度9.98se c-1のときの値を読み取りスウェル比とする。本発明に 係るエチレン系重合体は、メルトテンションおよびスウ ェル比が高く、分子量分布が狭く、かつ長鎖分岐が少な い。このようなエチレン系重合体は、従来存在しなかっ た。

【0040】本発明に係るエチレン系重合体は、上述の 30 ような物性を有しているので、成形製に優れ、かつ得ら れた成形体は剛性および耐衝撃性に優れ、外観不良を発 生しない。このようなエチレン系重合体は、中空成形 体、押出成形体などの各種成形体の素材として好適に用 いられる。

【0041】本発明のエチレン系重合体を中空成形体の 素材として用いる場合は、特に、密度が0.94~0. 9 7 g / c m³ の範囲にあり、190℃、荷重2.16 kgで測定されるメルトフローレートが0.01~10 メルトフローレート(MFR)とが、式 log MT≧ー 0. 4 log MFR+0. 75 で示される関係を満た し、分子量分布M。/M。の値が3~8の範囲にあり、 分子量分布M。/M。の値が2.5~4.5の範囲にあ り、g'の値が0.95~1.00の範囲にあり、スウ ェル比が1.25~1.34の範囲にあることが好まし

【0042】また、押出成形体の素材として用いる場合 は、特に、密度が0.94~0.97g/cm³の範囲 にあり、190℃、荷重2. 16kgで測定されるメル 50 ムのカルボン酸塩、炭酸マグネシウム、ホウ酸マグネシ

トフローレートが0.01~10g/10分の範囲にあ り、メルトテンション(MT)とメルトフローレート (MFR) とが、式 log MT≥-0. 4 log MFR+ 0. 75 で示される関係を満たし、分子量分布Mr/ M。の値が3~8の範囲にあり、分子量分布M。/M▼ の値が2.5~4.5の範囲にあり、g*の値が0.9 2~1.00の範囲にあり、スウェル比が1.25~ 1. 34の範囲にあることが好ましい。

【0043】このような本発明に係るエチレン系重合体 10 は、チーグラー・ナッタ型触媒、たとえば

[I] (a) 液状状態の還元能を有しないマグネシウム 化合物、(b)複数の原子を介して存在する二個以上の エーテル結合を有する化合物、(c)液状状態のチタン 化合物、および必要に応じて(d)析出化剤(ただし成 分(a)、成分(b)、成分(c)および成分(d)の 少なくとも1成分はハロゲン含有化合物を含む)を接触 させて得られ、チタン、マグネシウム、ハロゲンおよび 上記複数の原子を介して存在する二個以上のエーテル結 合を有する化合物を含む固体状チタン触媒成分と、

[||] 周期律表第 | 族~第||| 族から選ばれる金属を含 む有機金属化合物触媒成分とを含むエチレン重合用触媒 の存在下にエチレンを単独重合させるか、エチレンとオ レフィンとを共重合させることにより製造することがで きる。

【0044】前記固体状チタン触媒成分[1]の調製に 用いられる還元能を有しない液状状態のマグネシウム化 合物(a)は、液体のマグネシウム化合物、液体のマグ ネシウム化合物をマグネシウム化合物可溶化能を有する 溶媒に溶解したマグネシウム化合物の溶液、または固体 のマグネシウム化合物をマグネシウム化合物可溶化能を 有する溶媒に溶解したマグネシウム化合物の溶液であ る。

【0045】このような還元能を有しない液状状態のマ グネシウム化合物(a)は、還元能を有するマグネシウ ム化合物から誘導されたものであってもよい。具体的に は、塩化マグネシウム、臭化マグネシウム、ヨウ化マグ ネシウム、フッ化マグネシウムのようなハロゲン化マグ ネシウム;メトキシ塩化マグネシウム、エトキシ塩化マ グネシウム、イソプロポキシ塩化マグネシウム、ブトキ g \diagup 1 0 分の範囲にあり、メルトテンション(M T) と 40 シ塩化マグネシウム、オクトキシ塩化マグネシウムのよ うなアルコキシマグネシウムハライド;フェノキシ塩化 マグネシウム、メチルフェノキシ塩化マグネシウムのよ うなアリーロキシマグネシウムハライド;エトキシマグ ネシウム、イソプロポキシマグネシウム、ブトキシマグ ネシウム、オクトキシマグネシウム、2-エチルヘキソキ ゙シマグネシウムのようなアルコキシマグネシウム;フェ ノキシマグネシウム、ジメチルフェノキシマグネシウム のようなアリーロキシマグネシウム;ラウリン酸マグネ シウム、ステアリン酸マグネシウムのようなマグネシウ

ウム、ケイ酸マグネシウムなどの無機酸塩などを挙げることができるが、該マグネシウム化合物は他の金属との錯化合物、複化合物あるいは他の金属化合物との混合物であってもよい。さらにこれらの化合物の2種以上の混合物であってもよい。これらの中では、ハロゲン化マグネシウム、特に塩化マグネシウムが好ましい。また、該還元能を有しないマグネシウム化合物は、他の物質から誘導されたものであってもよい。

【0046】本発明において、このようなマグネシウム 化合物が、固体である場合には、これをマグネシウム化 10 合物可溶化能を有する溶媒に溶解し、液状状態の還元能 を有しないマグネシウム化合物(a)として用いる。また、マグネシウム化合物が液体である場合そのまま液状 状態の還元能を有しないマグネシウム化合物(a)として用いることができるが、これをマグネシウム化合物可溶化能を有する溶媒に溶解して用いることができる。

【0047】このようなマグネシウム化合物可溶化能を有する溶媒としては、たとえばチタン酸エステルを用いることができる他、アルコール、アルデヒド、アミン、カルボン酸および金属酸エステル(チタン酸エステルを 20除く)などの電子供与体(g)を用いることができ、これら化合物は単独で用いても二種以上を混合して用いてもよい。

【0048】チタン酸エステルとしては、オルトチタン酸メチル、オルトチタン酸エチル、オルトチタン酸n-プロピル、オルトチタン酸n-プロピル、オルトチタン酸n-プチル、オルトチタン酸i-プチル、オルトチタン酸n-アミル、オルトチタン酸2-エチルへキシル、オルトチタン酸n-オクチル、オルトチタン酸フェニルおよびオルトチタン酸シクロヘキシルなどのオルトチタン酸エテル、ポリチタン酸パープロピル、ポリチタン酸i-プロピル、ポリチタン酸n-ブチル、ポリチタン酸i-ブチル、ポリチタン酸n-アミル、ポリチタン酸2-エチルヘキシル、ポリチタン酸n-オクチル、ポリチタン酸フェニルおよびポリチタン酸シクロヘキシルなどのポリチタン酸エステル類を挙げることができる。

【0049】アルコールとしては、具体的には、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、メチルカルビトール、2-メチルペンタノール、2-エチルブタノール、n-ヘプタノール、n-オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、テトラデシルアルコール、ウンデセノール、オレイルアルコール、ステアリルアルコールなどの脂肪族アルコール;シクロヘキサノールなどの脂環族アルコール、メチルシクロヘキサノールなどの脂環族アルコール;ベンジルアルコール、メチルベンジルアルコール、イソプロピルベンジルアルコール、α-メチルベンジルアルコール、α,α-ジメチルベンジルアルコールなどの芳香族アルコール;n-ブチルセロソルブ、1-ブトキシ-2-プロパノールなどのアルコ

キシ基を含んだ脂肪族アルコールなどを挙げることがで きる。

【0050】アルデヒドとしては、カプリックアルデヒド、2-エチルヘキシルアルデヒド、カプリルアルデヒド、ウンデシリックアルデヒドなどの炭素数7以上のアルデヒド類を挙げることができる。

【0051】アミンとしては、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ラウリルアミン、ウンデシルアミン、2-エチルヘキシルアミンなどの 炭素数6以上のアミン類などを挙げることができる。

【0052】カルボン酸としては、カプリル酸、2-エチルヘキサノイック酸、ウンデシレニック酸、ウンデカノイック酸、ノニリック酸、オクタノイック酸などの炭素数7以上の有機カルボン酸類を挙げることができる。

【0053】金属酸エステルとしては、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラプロポキシドなどのジルコニウムテトラアルコキシド類などを挙げることができる。

【0054】これらチタン酸エステルおよび電子供与体(g)は、不活性溶媒とともに用いることができ、このような不活性溶媒としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素; ベンゼン、トルエン、キシレンなどの芳香族炭化水素; エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素、あるいはこれらの混合物などを挙げることができる。

【0055】このようなマグネシウム化合物可溶化能を有する溶媒にマグネシウム化合物を溶解して得られた液状物中、マグネシウム化合物は、該溶媒に対して0.1~20モル/リットル、好ましくは、0.5~5モル/リットルの量で含有されてる。

【0056】固体状チタン触媒成分[1]の調製では、 上記したような液状状態の還元能を有しないマグネシウム化合物(a)に加えて複数の原子を介して存在する二個以上のエーテル結合を有する化合物(b)が用いられる。

【0057】固体状チタン触媒成分[1]に含有される複数の原子を介して存在する2個以上のエーテル結合を有する化合物(b)は、この成分[1]に含有されるチタンの0.80倍モル以上5.0倍モル以下、好ましくは0.85倍モル以上4.0倍モル以下、より好ましくは0.90倍モル以上3.0倍モル以下であることが望ましい

【0058】固体状チタン触媒成分[I]の調製に用いられる複数の原子を介して存在する二個以上のエーテル結合を有する化合物(b)(以下「ジエーテル化合物

50 (b)」ということがある。)としては、これらエーテ

ル結合間に存在する原子が、炭素、ケイ素、酸素、窒素、リン、ホウ素、硫黄あるいはこれらから選択される 2種以上である化合物などを挙げることができ、このうちエーテル結合間の原子に比較的嵩高い置換基が結合しており、二個以上のエーテル結合間に存在する原子に複

【0061】(式中、nは2 \leq n \leq 10の整数であり、 $R^1\sim R^{26}$ は炭素、水素、酸素、N口ゲン、窒素、硫黄、リン、ホウ素およびケイ素から選択される少なくとも1種の元素を有する置換基を示し、任意の $R^1\sim R^{26}$ 、好ましくは $R^1\sim R^{2n}$ は共同してベンゼン環以外の環を形成していてもよく、主鎖中には炭素以外の原子が含まれていてもよい。)で示されるエーテル化合物を挙げることができる。

【0062】上記のようなジエーテル化合物(b)とし て具体的には、2-(2-エチルヘキシル)-1,3-ジメトキ シプロパン、2-イソプロピル-1,3-ジメトキシプロパ ン、2-ブチル-1、3-ジメトキシプロパン、2-s-ブチル-1、 3-ジメトキシプロパン、2-シクロヘキシル-1,3-ジメト キシプロパン、2-フェニル-1、3-ジメトキシプロパン、2 -クミル-1.3-ジメトキシプロパン、2-(2-フェニルエチ ル) -1, 3-ジメトキシプロパン、2-(2-シクロヘキシル エチル) -1, 3-ジメトキシプロパン、2-(p-クロロフェ ニル) -1, 3-ジメトキシプロパン、2-(ジフェニルメチ ·ル)-1, 3-ジメトキシプロパン、2-(1-ナフチル)-1, 3-ジメトキシプロパン、2-(2-フルオロフェニル)-1,3-ジメトキシプロパン、2-(1-デカヒドロナフチル)-1,3 -ジメトキシプロパン、2-(p-t-ブチルフェニル)-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメ トキシプロパン、2,2-ジエチル-1,3-ジメトキシプロパ ン、2,2-ジプロピル-1,3-ジメトキシプロパン、2,2-ジ ブチル-1, 3-ジメトキシプロパン、2-メチル-2-プロピル -1, 3-ジメトキシプロパン、2-メチル-2-ベンジル-1, 3-ジメトキシプロパン、2-メチル-2-エチル-1,3-ジメトキ シプロパン、2-メチル-2-イソプロピル-1、3-ジメトキシ プロパン、2-メチル-2-フェニル-1, 3-ジメトキシプロパ ン、2-メチル-2-シクロヘキシル-1、3-ジメトキシプロパ ン、2, 2-ビス(p-クロロフェニル)-1, 3-ジメトキシプ ロパン、2,2-ビス(2-シクロヘキシルエチル)-1,3-ジ メトキシプロパン、2-メチル-2-イソプチル-1、3-ジメト キシプロパン、2-メチル-2-(2-エチルヘキシル)-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキ シプロパン、2, 2-ジフェニル-1, 3-ジメトキシプロパ ン、2, 2-ジベンジル-1, 3-ジメトキシプロパン、2, 2-ビ ス(シクロヘキシルメチル)-1,3-ジメトキシプロパ ン、2,2-ジイソブチル-1,3-ジエトキシプロパン、2,2数の炭素原子が含まれた化合物が好ましい。

【0059】このようなジエーテル化合物(b)としては、たとえば以下の式、

ジイソプチル-1,3-ジプトキシプロパン、2-イソプチル-2-イソプロピル-1, 3-ジメトキシプロパン、2, 2-ジ-s-ブ チル-1, 3-ジメトキシプロパン、2, 2-ジ-t-ブチル-1, 3-ジメトキシプロパン、2, 2-ジネオペンチル-1, 3-ジメト キシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジ メトキシプロパン、2-フェニル-2-ベンジル-1,3-ジメト キシプロパン、2-シクロヘキシル-2-シクロヘキシルメ チル-1, 3-ジメトキシプロパン、2, 3-ジフェニル-1, 4-ジ エトキシブタン、2,3-ジシクロヘキシル-1,4-ジエトキ 20 シブタン、2, 2-ジベンジル-1, 4-ジエトキシブタン、2, 3 -ジシクロヘキシル-1、4-ジエトキシブタン、2、3-ジイソ プロピル-1, 4-ジエトキシブタン、2, 2-ビス(p-メチル フェニル) -1, 4-ジメトキシブタン、2, 3-ビス(p-クロ ロフェニル) -1, 4-ジメトキシブタン、2, 3-ビス(p-フ ルオロフェニル)-1,4-ジメトキシブタン、2,4-ジフェ ニル-1, 5-ジメトキシペンタン、2, 5-ジフェニル-1, 5-ジ メトキシヘキサン、2.4-ジイソプロピル-1.5-ジメトキ シペンタン、2,4-ジイソプチル-1,5-ジメトキシペンタ ン、2、4-ジイソアミル-1、5-ジメトキシペンタン、3-メ トキシメチルテトラヒドロフラン、3-メトキシメチルジ オキサン、1,2-ジイソブトキシプロパン、1,2-ジイソブ トキシエタン、1,3-ジイソアミロキシエタン、1,3-ジイ ソアミロキシプロパン、1,3-ジイソネオペンチロキシエ タン、1,3-ジネオペンチロキシプロパン、2,2-テトラメ チレン-1, 3-ジメトキシプロパン、2, 2-ペンタメチレン-1, 3-ジメトキシプロパン、2, 2-ヘキサメチレン-1, 3-ジ メトキシプロパン、1,2-ビス(メトキシメチル)シクロ ヘキサン、2,8-ジオキサスピロ[5,5]ウンデカン、3,7 -ジオキサビシクロ [3, 3, 1] ノナン、3, 7-ジオキサビシ クロ [3, 3, 0] オクタン、3, 3-ジイソプチル-1, 5-オキソ ノナン、6,6-ジイソブチルジオキシヘプタン、1,1-ジメ トキシメチルシクロペンタン、1,1-ビス(ジメトキシメ チル)シクロヘキサン、1,1-ビス(メトキシメチル)ビ シクロ [2, 2, 1] ヘプタン、1, 1-ジメトキシメチルシク ロペンタン、2-メチル-2-メトキシメチル-1,3-ジメトキ シプロパン、2-シクロヘキシル-2-エトキシメチル-1,3-ジエトキシプロパン、2-シクロヘキシル-2-メトキシメ チル-1、3-ジメトキシプロパン、2、2-ジイソブチル-1、3-ジメトキシシクロヘキサン、2-イソプロピル-2-イソア 50 ミル-1, 3-ジメトキシシクロヘキサン、2-シクロヘキシ

ル-2-メトキシメチル-1、3-ジメトキシシクロヘキサン、 2-イソプロピル-2-メトキシメチル-1, 3-ジメトキシシク ロヘキサン、2-イソプチル-2-メトキシメチル-1、3-ジメ トキシシクロヘキサン、2-シクロヘキシル-2-エトキシ メチル-1,3-ジエトキシシクロヘキサン、2-シクロヘキ シル-2-エトキシメチル-1,3-ジメトキシシクロヘキサ ン、2-イソプロピル-2-エトキシメチル-1,3-ジエトキシ シクロヘキサン、2-イソプロピル-2-エトキシメチル-1, 3-ジメトキシシクロヘキサン、2-イソブチル-2-エトキ シメチル-1, 3-ジエトキシシクロヘキサン、2-イソブチ ル-2-エトキシメチル-1.3-ジメトキシシクロヘキサン、 トリス (p-メトキシフェニル) ホスフィン、メチルフェ ニルビス(メトキシメチル)シラン、ジフェニルビス (メトキシメチル) シラン、メチルシクロヘキシルビス (メトキシメチル) シラン、ジ-t-ブチルビス (メトキ シメチル) シラン、シクロヘキシル-t-ブチルビス(メ トキシメチル)シラン、i-プロピル-t-ブチルビス(メ トキシメチル)シランなどを例示することができる。

【0063】このうち、1,3-ジエーテル類が好ましく、特に、2,2-ジイソブチル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ビス(シクロヘキシルメチル)1,3-ジメトキシプロパンが好ましい。

【0064】固体状チタン触媒成分[1]の調製に用いられる液状状態のチタン化合物(c)としては、たとえば

Ti (OR) , X4-,

(式中、Rは炭化水素基を示し、Xはハロゲン原子を示し、gは0 \leq g<4である)で示される4価のハロゲン 30 含有チタン化合物を挙げることができる。

【0065】より具体的には、TiCl₁、TiBr₄、Til₄などのテトラハロゲン化チタン; Ti(OCH₃) Cl₃、Ti(On-C₄H₅) Cl₃、Ti(On-C₄H₅) Cl₃、Ti(OisoC₄H₅) Br₃、Ti(OisoC₄H₅) Br₃ などのトリハロゲン化アルコキシチタン; Ti(OCH₃), Cl₂、Ti(OC, H₅), Cl₂、Ti(On-C₄H₅), Cl₂、Ti(On-C₄H₅), Cl₂、Ti(On-C₄H₅), Cl₂、Ti(On-C₄H₅), Cl₃ Ti(On-C₄H₅), Cl₄ Ti(On-C₄H₅), Cl₅ Ti(On-C₄H₅), Cl₅ Ti(On-C₄H₅), Cl₅ Ti(On-C₄H₅), Cl₅ Ti(On-C₄H₅), Ti(On-C₄H₅), Ti(On-C₄H₅),

Ti (Oiso-C4H₉) 4

Ti(O-2-エチルヘキシル), などのテトラアルコキシチタンなどを挙げることができる。

【0066】これらの中で好ましいものは、テトラハロゲン化チタンであり、特に四塩化チタンが好ましい。これらのチタン化合物は単独で用いてもよく、混合物の形で用いてもよい。あるいは炭化水素、ハロゲン化炭化水 50

素に希釈して用いてもよい。

【0067】固体状チタン触媒成分[1]の調製に必要に応じて用いられる(d)析出化剤としては、たとえばケイ素化合物を挙げることができる。このようなケイ素化合物としては、一般式

SiXnR4-n

(式中、Xはハロゲン原子を示し、 R° は炭素数 $1\sim 2$ 0のアルキル基、炭素数 $3\sim 2$ 0のシクロアルキル基、または炭素数 $6\sim 2$ 0のアリール基を示し、n は $1\sim 4$ の実数である。)で表されるハロゲン含有ケイ素化合物、および

[0068]

【化2】

$$-\left(\begin{array}{c} R^* \\ S \\ i \\ H \end{array}\right) - O \xrightarrow{p}$$

【0069】(式中、R³は炭化水素基であり、pは1 以上の整数である。)で表されるケイ素系高分子化合物 20 を例示することができる。上記一般式SiX,R%,, で 示されるハロゲン含有ケイ素化合物として具体的には、 一般式SiX4 (上記式中、n=4)で示されるテトラ ハロシラン、たとえば、テトラクロルシラン、テトラブ ロムシラン、テトラヨードシラン、テトラフルオロシラ ン、トリクロルプロムシラン、トリクロルヨードシラ ン、トリクロルフルオルシラン、ジクロルジブロムシラ ン、ジクロルジヨードシラン、ジクロルジフルオルシラ ン、クロルトリプロムシラン、クロルトリヨードシラ ン、クロルトリフルオルシラン、プロムトリヨードシラ ン、プロムトリフルオルシラン、ジブロムジョードシラ ン、ジブロムジフルオルシラン、トリブロムヨードシラ ン、トリブロムフルオルシラン、ヨードトリフルオルシ ラン、ジョードジフルオルシラン、トリョードフルオル シランを例示でき、これらの中でも、テトラクロルシラ ン、テトラブロムシラン、トリクロルブロムシラン、ジ クロルジプロムシラン、クロルトリプロムシランが好ま しく、最適なものはテトラクロルシランである。

【0070】一般式SiXiR°(上記式中n=3)で示される化合物、たとえばメチルトリクロルシラン、エチルトリクロルシラン、n-およびi-プロピルトリクロルシラン、n-、i-、sec-およびtert-ブチルトリクロルシラン、n-およびi-アミルトリクロルシラン、n-ヘキシルトリクロルシラン、n-やボデシルトリクロルシラン、n-オクチルトリクロルシラン、n-ドデシルトリクロルシラン、n-テトラデシルトリクロルシラン、n-ヘキサデシルトリクロルシランなどの炭素原子数16個までの飽和アルキル基を含むアルキルトリクロルシランはどの炭素原子数1から4個の不飽和アルキル基を含む不飽和アルキルトリクロルシラン;クロルメチルトリクロルシラン、

ジクロルメチルトリクロルシラン、トリクロルメチルト リクロルシラン、(2-クロルエチル)トリクロルシラ ン、(1, 2-ジプロムエチル)トリクロルシラン、トリフ ルオルメチルトリクロルシラン、(ビニル-1-クロル) トリクロルシランなどの飽和または不飽和ハロアルキル トリクロルシラン;シクロプロピルトリクロルシラン、 シクロペンチルトリクロルシラン、シクロヘキセニルト リクロルシラン、3-シクロヘキセニルトリクロルシラン などの飽和または不飽和のシクロアルキルトリクロルシ ラン;フェニルトリクロルシラン、2-、3-および4-トリ 10 ルトリクロルシラン、ベンジルトリクロルシランなどの アリールまたはアラルキルトリクロルシラン;メチルジ フルオルクロルシラン、メチルフルオルジクロルシラ ン、エチルジフルオルクロルシラン、エチルフルオルジ クロルシラン、n-およびi-プロピルジフルオルクロルシ ラン、n-ブチルジフルオルクロルシラン、n-ブチルフル オルジクロルシラン、フェニルジフルオルクロルシラ ン、メチルジクロルブロムシラン、エチルジクロルブロ ムシラン、メチルジクロルヨードシラン、(トリフルオ ルメチル) ジフルオルプロムシランなどのアルキル、ア 20 リールまたはハロアルキル混在トリハロシランなど:一 般式 S i X_2 R⁶ $_2$ (上記式中、n=2) で示されるジア ルキルジハロシラン、たとえばジメチルジクロルシラ ン、ジエチルジクロルシラン、ジ-n- およびジ-i-プロ ピルジクロルシラン、ジ-n- 、ジ-i- 、ジ-sec- および ジ-tert-ブチルジクロルシラン、ジ-n- およびジ-i-ア ミルジクロルシラン、ジ-n-ヘキシルジクロルシラン、 ジ-n-ヘプチルジクロルシラン、ジ-n-オクチルジクロル シラン;ジシクロアルキルジハロシラン、たとえばジシ クロペンチルジクロルシラン、ジシクロヘキシルジクロ 30 ルシラン、ジシクロヘキシルジプロムシラン、ジシクロ ヘキシルジョードシラン、ジシクロヘキシルジフルオル シラン;ジアリールまたはジアラルキルジハロシラン、 たとえばジフェニルジクロルシラン、ジ-2- 、ジ-3- ま たはジ-4- トリルジクロルシラン、ジベンジルジクロル シランなど:一般式SiXR[®]3(上記式中、n=1)で 示されるトリアルキルハロシラン、たとえばトリメチル クロルシラン、トリエチルクロルシラン、トリ (n-およ びi-プロピル) クロルシラン、トリ(n-およびi-ブチ ル) クロルシラン、トリ(n-ヘキシル) クロルシラン、 トリ (n-ヘプチル) クロルシラン、トリ (n-オクチル) クロルシラン、ジメチル(エチル)クロルシラン、メチ ル (ジエチル) クロルシラン; トリアリールまたはトリ アラルキルハロシラン、たとえばトリフェニルクロルシ ラン、トリ(2-、3-または4-トリル)クロルシラン、ト リベンジルクロルシランなどが挙げられる。

ロポリシロキサン、エチルヒドロポリシロキサン、フェニルヒドロポリシロキサン、シクロヘキシルヒドロポリシロキサンなどを例示することができる。これらの化合物は、単独または混合して用いることもできる。これら化合物の中では、特にテトラクロルシラン、メチルヒドロポリシロキサンが好ましい。ケイ素系高分子化合物の重合度について、特に制限はないが、実用上、その粘度が10センチストークスから100センチストークス程度のものが好ましい。また末端構造は、触媒性能に大きな影響を及ぼすものではないが、不活性基で封鎖されていることが望ましい。

【0072】析出化剤(d)の他の例としては、後述する有機金属化合物[II]を例示することができる。このような析出化剤(d)は、他の成分が析出化剤としての機能を有する場合は用いなくてもよい。

【0073】固体状チタン触媒成分[1]の調製では、上記したような液状状態の還元能を有しないマグネシウム化合物(a)、ジエーテル化合物(b)、液状状態のチタン化合物(c)および必要に応じて用いられる析出化剤(d)が用いられるが、これら化合物以外に、更に他の担体化合物、ハロゲン含有化合物、および前記ジエーテル化合物(b)以外の電子供与体などを用い、これら化合物を接触させてもよい。

【0074】このような担体化合物としては、 $A1_2O_3$ 、 SiO_2 、 B_2O_3 、MgO、CaO、 TiO_2 、ZnO、ZnO2、SnO2、BaO、ThO3 どの金属酸化物、スチレン-ジビニルベンゼン共重合体などの樹脂などが用いられる。この中で $A1_2O_3$ 、 SiO_2 、スチレン-ジビニルベンゼン共重合体が好ましい。

【0075】またハロゲン含有化合物としては、前記の ハロゲン含有ケイ素化合物に加えて、2-クロルエタノー ル、1-クロル-2-プロパノール、3-クロル-1-プロパノー ル、1-クロル-2-メチル-2-プロパノール、4-クロル-1-ブタノール、5-クロル-1-ペンタノール、6-クロル-1-へ キサノール、3-クロル-1、2-プロパンジオール、2-クロ ルシクロヘキサノール、4-クロルベンズヒドロール、 (m, o, p)-クロルベンジルアルコール、4-クロルカテコー ル、4-クロル-(m, o)-クレゾール、6-クロル-(m, o)-クレ ゾール、4-クロル-3,5-ジメチルフェノール、クロルハ イドロキノン、2-ベンジル-4-クロルフェノール、4-ク ロル-1-ナフトール、(m, o, p)-クロルフェノール、p-ク ロル-α-メチルベンジルアルコール、2-クロル-4-フェ ニルフェノール、6-クロルチモール、4-クロルレゾルシ ン、2-プロムエタノール、3-プロム-1-プロパノール、1 -プロム-2-プロパノール、1-プロム-2-プタノール、2-ブロム-p-クレゾール、1-ブロム-2-ナフトール、6-ブロ ム-2-ナフトール、(m, o, p) -ブロムフェノール、4-ブロ ムレゾルシン、(m, o, p)-フロロフェノール、p-イオドフ ェノール: 2, 2-ジクロルエタノール、2, 3-ジクロル-1-

ル-1-(α-クロルメチル)-1-プロパノール、2,3-ジブ ロム-1-プロパノール、1、3-ジブロム-2-プロパノール、 2, 4-ジブロムフェノール、2, 4-ジプロム-1-ナフトー ル: 2, 2, 2-トリクロルエタノール、1, 1, 1-トリクロル-2 -プロパノール、β, β, β-トリクロル-tert-ブタノー ル、2,3,4-トリクロルフェノール、2,4,5-トリクロルフ ェノール、2,4,6-トリクロルフェノール、2,4,6-トリブ ロムフェノール、2,3,5-トリプロム-2-ヒドロキシトル エン、2,3,5-トリプロム-4-ヒドロキシトルエン、2,2,2 -トリフルオロエタノール、 α , α , α -トリフルオロ-m-クレゾール、2, 4, 6-トリイオドフェノール: 2, 3, 4, 6-テ トラクロルフェノール、テトラクロルハイドロキノン、 テトラクロルビスフェノールA、テトラブロムビスフェ ノールA、2, 2, 3, 3-テトラフルオロ-1-プロパノール、 2, 3, 5, 6-テトラフルオロフェノール、テトラフルオロレ ゾルシンなどのハロゲン含有アルコール類などを例示す ることができる。

【0076】また、ハロゲン含有化合物の他の例としては、

元素状態におけるハロゲン: たとえば塩素、臭素、ヨー 20 ド、

ハロゲン化水素: たとえば塩化水素、臭化水素およびヨウ化水素、

ハロアルカン:たとえば四塩化炭素、クロロホルム、二塩化エタン、四塩化エタン、塩化メチレン、トリクレン、塩化メチル、塩化エチル、塩化-n-ブチル、塩化-n-オクチル、

非金属のオキシハロゲン化物:たとえば塩化スルフリル、塩化チオニル、塩化ニトロシル、オキシ塩化リン、ホスゲン、

非金属のハロゲン化物:たとえば三塩化リン、五塩化リ ン

金属およびアンモニウムのハロゲン化物:たとえば塩化アルミニウム、塩化アンモニウム、などを挙げることができる。

【0077】固体状チタン触媒成分[1]の調製に用いられるジエーテル化合物(b)以外の電子供与体(e)としては、有機酸エステル、有機酸ハライド、有機酸無水物、エーテル、ケトン、アルデヒド、第三アミン、亜リン酸エステル、リン酸エステル、リン酸アミド、カル 40

ボン酸アミド、ニトリルなどを例示でき、具体的には、 アセトン、メチルエチルケトン、メチルイソブチルケト ン、アセトフェノン、ベンゾフェノン、シクロヘキサノ ン、ベンゾキノンなどの炭素数3~15のケトン類;ア セトアルデヒド、プロピオンアルデヒド、オクチルアル デヒド、ベンズアルデヒド、トルアルデヒド、ナフトア ルデヒドなどの炭素数2~15のアルデヒド類;ギ酸メ チル、酢酸メチル、酢酸エチル、酢酸ビニル、酢酸プロ ピル、酢酸オクチル、酢酸シクロヘキシル、プロピオン 酸エチル、酪酸メチル、吉草酸エチル、クロル酢酸メチ ル、ジクロル酢酸エチル、メタクリル酸メチル、クロト ン酸エチル、シクロヘキサンカルボン酸エチル、安息香 酸メチル、安息香酸エチル、安息香酸プロピル、安息香 酸ブチル、安息香酸オクチル、安息香酸シクロヘキシ ル、安息香酸フェニル、安息香酸ベンジル、トルイル酸 メチル、トルイル酸エチル、トルイル酸アミル、エチル 安息香酸エチル、アニス酸メチル、アニス酸エチル、エ トキシ安息香酸エチル、γ-ブチロラクトン、δ-バレロ ラクトン、クマリン、フタリド、炭酸エチレンなどの炭 素数2~18の有機酸エステル類;アセチルクロリド、 ベンゾイルクロリド、トルイル酸クロリド、アニス酸ク ロリドなどの炭素数2~15の酸ハライド類;メチルエ ーテル、エチルエーテル、イソプロピルエーテル、ブチ ルエーテル、アミルエーテル、テトラヒドロフラン、ア ニソール、ジフェニルエーテルなどの炭素数2~20の エーテル類:酢酸N, N-ジメチルアミド、安息香酸N, N-ジ エチルアミド、トルイル酸N, N-ジメチルアミドなどの酸 アミド類:トリメチルアミン、トリエチルアミン、トリ ブチルアミン、トリベンジルアミン、テトラメチルエチ レンジアミンなどの第三アミン類;アセトニトリル、ベ 30 ンゾニトリル、トリニトリルなどのニトリル類などを例 示することができ、これらの内では芳香族カルボン酸エ ステルが好ましい。これら化合物は、単独または2種以 上併用することができる。

【0078】またさらに、有機酸エステルとしては、多価カルボン酸エステルを特に好ましい例として挙げることができ、このような多価カルボン酸エステルとしては、下記一般式、

[0079]

【化3】

または

【0080】(式中、R'は置換または非置換の炭化水素基、R'、R'、R'は水素または置換または非置換の炭化水素基を示し、R'、R'は、水素あるいは置換または非置換の炭化水素基であって、好ましくはその少なくとも一方は置換または非置換の炭化水素基を示す。R'とR'は互いに連結して環状構造を形成していてもよい。炭化水素基R'~R'が置換されている場合の置換基は、N、O、Sなどの異原子を含み、たとえばC-O-C、COOR、COOH、OH、SO,H、-C-N-C-、NH、などの基を有する)で表される骨格を有する化合物を例示できる。

【0081】このような多価カルボン酸エステルとして は、具体的には、コハク酸ジエチル、コハク酸ジブチ ル、メチルコハク酸ジエチル、α-メチルグルタル酸ジ イソブチル、メチルマロン酸ジエチル、エチルマロン酸 ジエチル、イソプロピルマロン酸ジエチル、ブチルマロ ン酸ジエチル、フェニルマロン酸ジエチル、ジエチルマ ロン酸ジエチル、ジブチルマロン酸ジエチル、マレイン 酸モノオクチル、マレイン酸ジオクチル、マレイン酸ジ 30 ブチル、ブチルマレイン酸ジブチル、ブチルマレイン酸 ジエチル、 β -メチルグルタル酸ジイソプロピル、エチ ルコパク酸ジアリル、フマル酸ジ-2-エチルヘキシル、 イタコン酸ジエチル、シトラコン酸ジオクチルなどの脂 防族ポリカルボン酸エステル、1,2-シクロヘキサンカル ボン酸ジエチル、1,2-シクロヘキサンカルボン酸ジイソ ブチル、テトラヒドロフタル酸ジエチル、ナジック酸ジ エチルのような脂環族ポリカルボン酸エステル、フタル 酸モノエチル、フタル酸ジメチル、フタル酸メチルエチ ル、フタル酸モノイソブチル、フタル酸ジエチル、フタ ル酸エチルイソブチル、フタル酸ジn-プロピル、フタル 酸ジイソプロピル、フタル酸ジn-ブチル、フタル酸ジイ ソブチル、フタル酸ジn-ヘプチル、フタル酸ジ-2-エチ ルヘキシル、フタル酸ジn-オクチル、フタル酸ジネオペ ンチル、フタル酸ジデシル、フタル酸ベンジルブチル、 フタル酸ジフェニル、ナフタリンジカルボン酸ジエチ ル、ナフタリンジカルボン酸ジブチル、トリメリット酸 トリエチル、トリメリット酸ジブチルなどの芳香族ポリ カルボン酸エステル、3,4-フランジカルボン酸エステル などの異節環ポリカルボン酸エステルなどを好ましい例 50 として挙げることができる。

【0082】また、多価カルボン酸エステルの他の例としては、アジピン酸ジエチル、アジピン酸ジイソブチル、セバシン酸ジープチル、セバシン酸ジーオクチル、セバシン酸ジー2-エチルへキシルなどの長鎖ジカルボン酸のエステルなどを挙げることができる。これら化合物の中では、カルボン酸エステルを用いることが好ましく、特に多価カルボン酸エステル、とりわけフタル酸エステル類を用いることが好ましい。

【0083】これら電子供与体(e)は、必ずしも出発物質として使用する必要はなく、固体状チタン触媒成分 [1]の調製の過程で生成させることもできる。固体状チタン触媒成分 [1]は、上記したような液状状態のデタン触媒成分 [1]は、上記したような液状状態の元能を有しないマグネシウム化合物(a)、ジエーテル化合物(b)、液状状態のチタン化合物(c)およびハロゲン含有化合物を用いこれらを接触させて調製される。ただし、マグネシウム化合物(a)、ジエーテル化合物(b)、液状状態のチタン化合物(c)および析出化剤(d)のうち少なくとも1成分はハロゲン含有化合物を含んでいる。

【0084】このような固体状チタン触媒成分【Ⅰ】の 調製方法としては、特に制限はないが、たとえば、

- (1) 液状状態の還元能を有しないマグネシウム化合物 (a) と液状状態のチタン化合物 (c) をジエーテル化 合物 (b) の存在下で反応させる方法、(2) 液状状態 の還元能を有しないマグネシウム化合物 (a) と液状状態のチタン化合物 (c) を上記ジエーテル化合物 (b) および電子供与体 (e) の存在下で反応させる方法、
- (3)液状状態の還元能を有しないマグネシウム化合物 (a)を析出化剤(d)と接触させた後、得られた析出物をジエーテル化合物(b)と、液状状態のチタン化合物(c)と、必要に応じて電子供与体(e)と反応さる方法、(4)液状状態の還元能を有しないマグネシウム化合物(a)を析出化剤(d)と接触させた後に、得られた析出物をハロゲン含有化合物と、ジエーテル化合物(b)と、液状状態のチタン化合物(c)と、必要に応じて電子供与体(e)と反応させる方法、(5)

(1)、(2)、(3)、(4)で得られた反応生成物に液状状態のチタン化合物(c)をさらに反応させる方法、(6)(1)、(2)、(3)、(4)で得られた反応生成物にジェーテル化合物(b)、液状状態のチタン化合物(c)をさらに反応させる方法、(7)(1)~(6)で得られた反応生成物にジェーテル化合物(b)をさらに反応させる方法、などを例示することが

(b) をさらに反応させる方法、などを例示することが できる。

【0085】このような方法によって、固体状チタン触媒成分[1]を製造する際、成分(a)、(b)、

(c) および(d) の使用量については、その種類、接触条件、接触順序などによって異なるが、液状状態の還元能を有しないマグネシウム化合物(a) 1モルに対し、ジエーテル化合物(b) は、約0.01モル〜約5 モル、特に好ましくは約0.1モル〜約1モルの量で用いられ、液状状態のチタン化合物(c) は、0.1モル〜1000モル、特に好ましくは1モル〜200モルの量で用いられる。また、析出化剤(d) は、固体成生物を形成させるに充分な量であればよいが、液状状態の還元能を有しないマグネシウム化合物(a) 1モルに対し、0.1モル〜1000モル、特に好ましくは1モル〜約200モルの量で用いられる。

【0086】これらの成分(a)、(b)、(c)および(d)を接触させる際の温度は、通常-70 $^{\circ}$ ~20 $^{\circ}$ 0 $^{\circ}$ 、好ましくは10 $^{\circ}$ ~150 $^{\circ}$ である。このようにして得られる固体状チタン触媒成分[I]は、チタン、マグネシウムおよびハロゲンと、ジエーテル化合物(b)とを含有している。

【0087】また、固体状チタン触媒成分[1]において、ハロゲン/チタン(原子比)は、2~100、好ま 30 しくは4~90であり、前記ジエーテル化合物(b)/チタン(モル比)は、0.01~100、好ましくは0.2~10であり、マグネシウム/チタン(原子比)は、2~100、好ましくは4~50であることが望ましい。

【0088】本発明に係るエチレン系重合体の製造に用いられるエチレン重合用触媒は、このようにして得られた固体状チタン触媒成分[1]と、周期律表第1族〜第111族から選ばれる金属を含む有機金属化合物触媒成分[11]とを含んでいる。

【0089】図1に、本発明に係るエチレン系重合体の 製造に用いられるエチレン重合用触媒の調製工程の説明 図を示す。有機金属化合物触媒成分 [II] としては、た とえば有機アルミニウム化合物、I族金属とアルミニウ ムとの錯アルキル化物、II族金属の有機金属化合物など を用いることができる。

【0090】有機アルミニウム化合物としては、たとえば

R', A | X3-n

(式中、R'は炭素数1~12の炭化水素基を示し、X 50 で表される化合物、たとえば、

はハロゲン原子または水素原子を示し、nは1~3である)で示される有機アルミニウム化合物を例示することができる。

【0091】上記式において、R¹ は炭素数1~12の 炭化水素基たとえばアルキル基、シクロアルキル基また はアリール基であるが、具体的には、メチル基、エチル 基、n-プロピル基、イソプロピル基、イソブチル基、ペ ンチル基、ヘキシル基、オクチル基、シクロペンチル 基、シクロヘキシル基、フェニル基、トリル基などであ 10る。

【0092】このような有機アルミニウム化合物として は、具体的には以下のような化合物が用いられる。トリ メチルアルミニウム、トリエチルアルミニウム、トリイ ソプロピルアルミニウム、トリイソブチルアルミニウ ム、トリオクチルアルミニウム、トリ2-エチルヘキシル アルミニウムなどのトリアルキルアルミニウム;イソプ レニルアルミニウムなどのアルケニルアルミニウム;ジ メチルアルミニウムクロリド、ジエチルアルミニウムク ロリド、ジイソプロピルアルミニウムクロリド、ジイソ ブチルアルミニウムクロリド、ジメチルアルミニウムブ ロミドなどのジアルキルアルミニウムハライド;メチル アルミニウムセスキクロリド、エチルアルミニウムセス キクロリド、イソプロピルアルミニウムセスキクロリ ド、ブチルアルミニウムセスキクロリド、エチルアルミ ニウムセスキブロミドなどのアルキルアルミニウムセス キハライド;メチルアルミニウムジクロリド、エチルア ルミニウムジクロリド、イソプロピルアルミニウムジク ロリド、エチルアルミニウムジブロミドなどのアルキル アルミニウムジハライド;ジエチルアルミニウムハイド ライド、ジイソブチルアルミニウムハイドライドなどの アルキルアルミニウムハイドライド。

【0093】また有機アルミニウム化合物として、 R', A | Y₃₋,

(式中R'は上記と同様であり、Yは-OR'基、-OSiR',基、-OAIR',基、-NR',基、-SiR',基または-N(R')AIR',基であり、nは1~2であり、R'、R'、R'およびR'はメチル基、エチル基、イソプロピル基、イソブチル基、シクロヘキシル基、フェニル基などであり、R'は水素、メチル基、エチル基、イソプロピル基、フェニル基、トリメチルシリル基などであり、R'およびR'はメチル基、エチル基などである)で示される化合物を用いることもできる

【0094】このような有機アルミニウム化合物としては、具体的には、以下のような化合物が用いられる。
(i)式 R', AI(OR), -。で表される化合物、
たとえば、ジメチルアルミニウムメトキシド、ジエチル
アルミニウムエトキシド、ジイソブチルアルミニウムメ
トキシドなど、(ii)式 R', AI(OSiR',), -。
で表される化合物、たとえば

Et₂Al (OSiMe₃)

(iso-Bu) 2 A I (OS i Me3).

(iso-Bu),AI (OSiEt,) など、(iii) 式 R¹, A I (O A | R¹,), , で表される化合物、たとえ

Et, AIOAIEt,

(iso-Bu) 2 A I O A I (iso-Bu) 2 など、 (iv) 式 R', A I (N R',), で表される化合物、たとえ ば、

Me, AINEt,

Et₂AINHMe

Me, AINHEt

Et, AIN (Me, Si),

(iso-Bu), AIN (Me, Si), など、(v)式 R¹, A I (S i R'₃)₃-。で表される化合物、たとえ ば、(iso-Bu), AISiMe, など、(vi) 式 R', AI (N (R*) A I R¹,) 3-8 で表される化合物、たとえ ば、

Et, AIN (Me) AIEt

(iso-Bu),AIN(Et)AI(iso-Bu),な ٤.

【0095】上記のような有機アルミニウム化合物とし T, $R^{*}_{3}AI$, $R^{*}_{n}AI$ (OR b) $_{3-n}$, $R^{*}_{n}AI$ (O A | R⁴2) 3-a で表わされる有機アルミニウム化合物を 好適な例として挙げることができる。

【0096】 I 族金属とアルミニウムとの錯アルキル化 物としては、一般式

M¹ A I R¹

(式中、M' はLi、NaまたはKを示し、R'は炭素 数1~15の炭化水素基を示す)で表される化合物を例 30 -アミノプロピルトリエトキシシラン、クロルトリエト 示でき、具体的には、LiAI(C2H5)4、LiAI (C, H,s), などを挙げることができる。

【0097】!!族金属の有機金属化合物としては、一般 疘

R'R'M'

(式中、Rk、Rlは炭素数1~15の炭化水素基また はハロゲン原子を示し、互いに同一でも異なっていても よいが、いずれもハロゲンである場合は除く。M²はM g、ZnまたはCdを示す)で表される化合物を例示で き、具体的には、ジエチル亜鉛、ジエチルマグネシウ ム、ブチルエチルマグネシウム、エチルマグネシウムク ロリド、ブチルマグネシウムクロリドなどを挙げること ができる。

【0098】これらの化合物は、単独または2種以上混 合して用いることもできる。また、エチレン重合用触媒 は、有機金属化合物触媒成分[11]と共に、必要に応じ て上記ジエーテル化合物(b)、電子供与体(f)を含 有していてもよい。このような電子供与体(f)として は、前述した電子供与体(e)および有機ケイ素化合物 を用いることができる。これらの内では、ジエーテル化 50 クロペンチルメチルエトキシシラン、シクロペンチルジ

合物(b)および有機ケイ素化合物が好ましい。

【0099】このような有機ケイ素化合物としては、下 記一般式で表される有機ケイ素化合物を挙げることがで きる。

R, S i (OR') 4-n

(式中、RおよびR'は炭化水素基を示し、0 < n < 4 である)

上記のような一般式で示される有機ケイ素化合物として は、具体的には、トリメチルメトキシシラン、トリメチ 10 ルエトキシシラン、ジメチルジメトキシシラン、ジメチ ルジェトキシシシラン、ジイソプロピルジメトキシシラ ン、t-ブチルメチルジメトキシシラン、t-ブチルメチル ジエトキシシラン、t-アミルメチルジエトキシシラン、 ジフェニルジメトキシシラン、フェニルメチルジメトキ シシラン、ジフェニルジエトキシシラン、ビス0-トリル ジメトキシシラン、ビスm-トリルジメトキシシラン、ビ スp-トリルジメトキシシラン、ビスp-トリルジエトキシ シラン、ビスエチルフェニルジメトキシシラン、ジシク ロヘキシルジメトキシシラン、シクロヘキシルメチルジ 20 メトキシシラン、シクロヘキシルメチルジエトキシシラ ン、エチルトリメトキシシラン、エチルトリエトキシシ ラン、ビニルトリメトキシシラン、メチルトリメトキシ シラン、n-プロピルトリエトキシシラン、デシルトリメ トキシシラン、デシルトリエトキシシラン、フェニルト リメトキシシラン、ャ-クロルプロピルトリメトキシシ ラン、メチルトリエトキシシラン、エチルトリエトキシ シラン、ビニルトリエトキシシラン、t-プチルトリエト キシシラン、n-プチルトリエトキシシラン、iso-ブチル トリエトキシシラン、フェニルトリエトキシシラン、ャ キシシラン、エチルトリイソプロポキシシラン、ビニル トリプトキシシラン、シクロヘキシルトリメトキシシラ ン、シクロヘキシルトリエトキシシラン、2-ノルボルナ ントリメトキシシラン、2-ノルボルナントリエトキシシ ラン、2-ノルボルナンメチルジメトキシシラン、ケイ酸 エチル、ケイ酸ブチル、トリメチルフェノキシシラン、 メチルトリアリロキシ(allyloxy)シラン、ビニルトリス (β-メトキシエトキシシラン)、ビニルトリアセトキ シシラン、ジメチルテトラエトキシジシロキサン;シク 40 ロペンチルトリメトキシシラン、2-メチルシクロペンチ ルトリメトキシシラン、2,3-ジメチルシクロペンチルト リメトキシシラン、シクロペンチルトリエトキシシラ ン;ジシクロペンチルジメトキシシラン、ビス(2-メチ ルシクロペンチル) ジメトキシシラン、ビス (2,3-ジメ チルシクロペンチル) ジメトキシシラン、ジシクロペン チルジエトキシシラン;トリシクロペンチルメトキシシ ラン、トリシクロペンチルエトキシシラン、ジシクロペ ンチルメチルメトキシシラン、ジシクロペンチルエチル メトキシシラン、ヘキセニルトリメトキシシラン、ジシ

メチルメトキシシラン、シクロペンチルジエチルメトキ シシラン、シクロペンチルジメチルエトキシシランが用 いられる。

27

【0100】このうちエチルトリエトキシシラン、n-プロピルトリエトキシシラン、t-ブチルトリエトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、ビニルトリブトキシシラン、ジフェニルジメトキシシラン、レートリルジメトキシシラン、p-トリルメチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、2-ノルボルナントリエトキシシラン、2-ノルボルナンメチルジメトキシシラン、フェニルトリエトキシシラン、ジシクロペンチルジメト

[0104]

キシシラン、ヘキセニルトリメトキシシラン、シクロペンチルトリエトキシシラン、トリシクロペンチルメトキシシラン、シクロペンチルジメチルメトキシシランなどが好ましく用いられる。

【0101】また、これら有機ケイ素化合物以外に用いることができる電子供与体(f)としては、前記以外の窒素含有化合物、燐含有化合物、酸素含有化合物などを挙げることができる。

トリルジメトキシシラン、p-トリルメチルジメトキシシ 【0102】このような窒素含有化合物としては、具体ラン、ジシクロヘキシルジメトキシシラン、シクロヘキ 10 的には、以下に示すような化合物を用いることができシルメチルジメトキシシラン、2-ノルボルナントリエト る。

[0103]

【化4】

【化5】

29

CH₃

【0105】などの2,6-置換ピペリジン類:

[0106]

【化6】

【0107】などの2,5-置換ピペリジン類:N,N,N',N'-テトラメチルメチレンジアミン、N,N,N',N'-テトラエチルメチレンジアミンなどの置換メチレンジアミン類:1,3-ジベンジルイミダゾリジン、1,3-ジベンジル-2-フェニルイミダゾリジンなどの置換イミダゾリジン類など。

【0110】 【化7】

【0108】燐含有化合物としては、具体的には、以下に示すような亜リン酸エステル類を用いることができる。トリエチルホスファイト、トリープロピルホスファイト、トリイソプロピルホスファイト、トリーブチルホスファイト、トリイソブチルホスファイト、ジエチルーブチルホスファイト、ジエチルフェニルホスファイトなどの亜リン酸エステル類など。

【0109】また、酸素含有化合物としては、以下に示すような化合物を用いることができる。

【0111】などの2,6-置換テトラヒドロピラン類: 【0112】 【化8】

【0113】などの2,5-置換テトラヒドロピラン類など。本発明に係るエチレン系重合体の製造方法は、前記エチレン重合用触媒の存在下にエチレンを単独重合させるか、またはエチレンとオレフィンとを共重合させることにより製造する。

【0114】重合においてエチレンとともに使用することができるオレフィンとしては、炭素数が $3 \sim 200 \alpha$ -オレフィン、たとえばプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどを挙げることができる。

【0115】エチレンの重合においては、これらのオレ フィンを単独で、あるいは組み合わせて使用することが できる。さらにスチレン、アリルベンゼンなどの芳香族 ビニル化合物、ビニルシクロヘキサンなどの脂環族ビニ ル化合物、シクロペンテン、シクロヘプテン、ノルボル ネン、5-メチル-2- ノルボルネン、テトラシクロドデセ 40 ン、2-メチル-1, 4, 5, 8- ジメタノ-1, 2, 3, 4, 4a, 5, 8, 8a-オクタヒドロナフタレンなどの環状オレフィン、6-メチ ル1, 6-オクタジエン、7-メチル-1, 6-オクタジエン、6-エチル-1,6-オクタジエン、6-プロピル-1,6-オクタジエ ン、6-ブチル-1、6-オクタジエン、6-メチル-1、6-ノナジ エン、7-メチル-1,6-ノナジエン、6-エチル-1,6-ノナジ エン、7-エチル-1,6-ノナジエン、6-メチル-1,6-デカジ エン、7-メチル-1,6-デカジエン、6-メチル-1,6-ウンデ カジエン、イソプレン、ブタジエンなどのジエン類など の共役ジエンや非共役ジエンのような不飽和結合を多く 50

有する化合物を重合原料として用いることもできる。

【0116】エチレン系重合体の重合は、溶解重合、懸 濁重合などの液相重合法あるいは気相重合法いずれにお いても実施できる。重合が液相重合の反応形態を採る場 合、反応溶媒としては、不活性炭化水素を用いることが でき、反応温度において液状のオレフィンを用いること もできる。

【0117】この際用いられる不活性炭化水素としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素、あるいはこれらの混合物などを挙げることができる。これらの不活性炭化水素のうちでは特に脂肪族炭化水素を用いることが好ましい。

【0118】重合においては、固体状チタン触媒成分 [1]は、重合容積1リットル当りTi原子に換算し 20 て、通常は約0.001~0.5ミリモル、好ましくは 約0.005~0.1ミリモルの量で用いられる。ま た、有機金属化合物触媒成分[II]は、重合系中の予備 重合触媒成分中のチタン原子1モルに対し、金属原子 が、通常約1~2000モル、好ましくは約5~500 モルとなるような量で用いられる。

【0119】本重合時に、水素を用いれば、得られる重合体の分子量を調節することができ、メルトフローレートの大きい重合体が得られる。重合温度は、通常、約20~200℃、好ましくは約50~150℃に、圧力は、通常、常圧~100kg/cm²、好ましくは約2~50kg/cm²に設定される。重合は、回分式、半連続式、連続式の何れの方法においても行うことができる。さらに重合を、反応条件を変えて2段以上に分けて行うこともできる。

【0120】このようにして得られたエチレン系重合体は、エチレン単独重合体、エチレン・オレフィンランダム共重合体、エチレン・オレフィンブロック共重合体のいずれであってもよい。

[0121]

【発明の効果】本発明に係るエチレン系重合体は、密度およびメルトフローレート(MFR)が特定の範囲にあり、メルトテンション(MT)とメルトフローレート(MFR)とが特定の関係を満たし、Mr / Mr の値、Mr / Mr の値、g の値、スウェル比がそれぞれ特定の範囲にあるので、成形性に優れるとともに、剛性および耐衝撃強度に優れ、かつフィッシュアイなどの外観不良がない成形体が得られる。

【0122】本発明に係るエチレン系重合体の製造方法は、前記ような特性を有するエチレン系重合体を優れた重合活性で製造することができる。

[0123]

【実施例】以下、実施例に基づいて本発明をさらに具体 的に説明するが、本発明はこれら実施例に限定されるも のではない。

33

[0124]

【実施例1】

[固体状チタン触媒成分(A)の調製] 無水塩化マグネ シウム95.2g、デカン442mlおよび2-エチルへ キシルアルコール390、6gを130℃で2時間加熱 して均一溶液とした後、この溶液中に無水フタル酸2 1. 3gを添加し、さらに、130℃にて1時間攪拌混 合を行い、無水フタル酸をこの均一溶液に溶解させた。 このようにして得られた均一溶液75mlを−20℃に 保持した四塩化チタン200m | 中に1時間にわたって 全量滴下装入した。装入終了後、この混合液の温度を4 時間かけて100℃に昇温し、100℃に達したところ で2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロ パン4.06gを添加し、これより2時間同温度にて攪 拌下保持した。2時間後、熱濾過にて固体部を採取し、 この固体部を275mlの四塩化チタンにて再懸濁させ 20 た後、110℃で2時間加熱した。その後、再び熱濾過 にて固体部を採取し、110℃デカンおよび室温へキサ ンにて洗浄中に遊離のチタン化合物が検出されなくなる まで充分洗浄した。以上の操作によって調製した固体状 チタン触媒成分(A)の組成は、チタン 2.1重量 %、マグネシウム 18.0重量%、2-イソプロピル-2 -イソペンチル-1, 3-ジメトキシプロパン 11.8重量 %、2-エチルヘキソキシ基 0.2 重量%、塩素 60 重量%であった。

【0125】 [重合] 内容積2リットルのオートクレー 30 ブに、精製ヘキサン1リットルを装入し、60℃、エチレン雰囲気にてトリエチルアルミニウム1ミリモルおよび固体状チタン触媒成分(A)をチタン原子換算で0.02ミリモル装入した。

【0126】次に75℃まで昇温し、水素をゲージ圧力で 1 kg/cm^2 導入した。続いてエチレンでゲージ圧力 8 kg/cm^2 まで加圧し、1 時間の間この圧力を保持するようにエチレンを供給し続けた。この間温度は80℃に保持した。

【0127】重合終了後、生成固体を含むスラリーを濾 40 過し、白色粉末と液相部に分離し、得られた白色粉末を80℃で10時間減圧乾燥した。乾燥後の白色粉末(エチレン系重合体)150gに対して3,5-ジ-tert-ブチルー4-ヒドロキシトルエン300mg及びステアリン酸カルシウム150mgを添加して、サーモプラスチック社製20mmφ押出機を使用して、200℃でペレット化し、メルトテンション(MT)、メルトフローレート(MFR)、スウェル比(SR)、分子量分布M。/M。、M。/M。の値、g'の値および密度を、明細書中に示した方法で測定した。結果を表1に示す。 50

[0128]

【実施例2】

[重合] 充分に窒素置換された触媒瓶にデカン20m I、トリエチルアルミニウム5ミリモルおよび固体状チタン触媒成分(A)をチタン原子換算で0.1ミリモルを装入し、室温で5分間攪拌しデカンスラリー(B)を得た。

【0129】内容積2リットルのオートクレーブに、窒素雰囲気下にて精製ヘキサン1リットルを装入し、エチレン雰囲気に変更して60℃まで昇温し、前記デカンスラリー(B)を4ml(チタン原子換算で0.02ミリモル)装入した。

【0130】次に75℃まで昇温し、水素をゲージ圧力で 1 kg/cm^2 導入した。続いてエチレンでゲージ圧力 8 kg/cm^2 まで加圧し、1時間の間この圧力を保持するようにエチレンを供給し続けた。この間温度は8 o ℃に保持した。

【0131】重合終了後、生成固体を含むスラリーを濾過し、白色粉末と液相部に分離し、得られた白色粉末を80℃で10時間減圧乾燥した。乾燥後の白色粉末(エチレン系重合体)について、実施例1と同様にして物性を測定した。結果を表1に示す。

[0132]

【実施例3】

[重合] 充分に窒素置換された触媒瓶にデカン20ml、トリエチルアルミニウム5ミリモルおよび固体状チタン触媒成分(A)をチタン原子換算で0.1ミリモルを装入し、室温で15分間攪拌しデカンスラリー(C)を得た。

【0133】内容積2リットルのオートクレーブに、窒素雰囲気下にて精製ヘキサン1リットルを装入し、エチレン雰囲気に変更して60℃まで昇温し、前記デカンスラリー(C)を4ml(チタン原子換算で0.02ミリモル)装入した。

【0134】次に75℃まで昇温し、水素をゲージ圧力で1kg/cm²導入した。続いてエチレンでゲージ圧力8kg/cm²まで加圧し、1時間の間この圧力を保持するようにエチレンを供給し続けた。この間温度は80℃に保持した。

40 【0135】重合終了後、生成固体を含むスラリーを濾過し、白色粉末と液相部に分離し、得られた白色粉末を80℃で10時間減圧乾燥した。乾燥後の白色粉末(エチレン系重合体)について、実施例1と同様にして物性を測定した。結果を表1に示す。

[0136]

【実施例4】

[重合] 充分に窒素置換された触媒瓶にデカン20m I、トリエチルアルミニウム5ミリモルおよび固体状チ タン触媒成分(A)をチタン原子換算で0.1ミリモル 50 を装入し、室温で30分間攪拌しデカンスラリー(D)

を得た。

【0137】内容積2リットルのオートクレーブに、窒 素雰囲気下にて精製ヘキサン1リットルを装入し、エチ レン雰囲気に変更して60℃まで昇温し、前記デカンス ラリー (D) を4ml (チタン原子換算で0.02ミリ モル)装入した。

【0138】次に75℃まで昇温し、水素をゲージ圧力 で1kg/cm゚導入した。続いてエチレンでゲージ圧 カ8kg/cm² まで加圧し、1時間の間この圧力を保 持するようにエチレンを供給し続けた。この間温度は8 10 0℃に保持した。

【0139】重合終了後、生成固体を含むスラリーを濾 過し、白色粉末と液相部に分離し、得られた白色粉末を 80℃で10時間減圧乾燥した。乾燥後の白色粉末(エ チレン系重合体)について、実施例1と同様にして物性 を測定した。結果を表1に示す。

[0140]

【実施例5】

[重合] 水素をゲージ圧力3kg/cm² で導入したこ と以外は実施例1と同様にしてエチレンの重合を行っ た。

【0141】重合終了後、生成固体を含むスラリーを濾 過し、白色粉末と液相部に分離し、得られた白色粉末を 80℃で10時間減圧乾燥した。乾燥後の白色粉末(エ チレン系重合体)について、実施例1と同様にして物性 を測定した。結果を表1に示す。

[0142]

【実施例6】

[重合] 充分に窒素置換された内容積2リットルのオー トクレープに精製へキサン850mlを装入し、室温で 30 エチレン置換を行った後、60℃に昇温し、トリエチル アルミニウム1.25ミリモル、固体状チタン触媒成分 (A)をチタン原子換算で0.025ミリモル、およ び、4-メチル-1-ペンテン 150mlを装入した後、 オートクレーブを密閉した。水素で1.2kg/cm² まで加圧した後、エチレンを加えて全圧を4kg/cm 'として、2時間の間、この圧力を維持するようにエチ レンを供給し続けた。

【0143】重合終了後、スラリーをオートクレーブの 内温55℃で取り出し、速やかにフィルターで濾過し、 重合により生成した白色粉末を液相部より分離した。得 られた白色粉末を80℃で10時間減圧乾燥したした 後、乾燥後の白色粉末(エチレン系重合体)について、 実施例1と同様にして物性を測定した。 結果を表1に示 す。

[0144]

【比較例1】

[固体状チタン触媒成分(A-1)の調製]無水塩化マグ ネシウム95.2g、デカン442mlおよび2-エチル ヘキシルアルコール 3 9 0. 6 g を 1 3 0 ℃で 2 時間加 50 リモル (4 4 0 m l) を入れ、0 ℃まで冷却した。次

熱して均一溶液とした後、この溶液中に無水フタル酸2 1. 3gを添加し、さらに、130℃にて1時間攪拌混 合を行い、無水フタル酸をこの均一溶液に溶解させた。 このようにして得られた均一溶液75mlを−20℃に 保持した四塩化チタン200ml中に1時間にわたって 全量滴下装入した。装入終了後、この混合液の温度を4 時間かけて110℃に昇温し、110℃に達したところ でジイソブチルフタレート5.22gを添加し、これよ り2時間同温度にて攪拌下保持した。2時間後、熱濾過 にて固体部を採取し、この固体部を275mlの四塩化 チタンにて再懸濁させた後、再び110℃で2時間加熱 した。その後、再び熱濾過にて固体部を採取し、110 ℃デカンおよび室温ヘキサンにて洗浄中に遊離のチタン 化合物が検出されなくなるまで充分洗浄した。以上の操 作によって調製した固体状チタン触媒成分(A-1)の組 成は、チタン 2.4重量%、マグネシウム 19.0 重量%、ジイソブチルフタレート 12.4重量%、塩 素 60重量%であり、2-エチルヘキソキシル基は検出 されなかった。

【0145】 [重合] 充分に窒素置換された触媒瓶にデ カン20ml、トリエチルアルミニウム5ミリモルおよ び固体状チタン触媒成分(A-1)をチタン原子換算で 0. 1ミリモルを装入し、室温で5分間攪拌しデカンス ラリー(B-1)を得た。

【0146】内容積2リットルのオートクレーブに、窒 素雰囲気下にて精製ヘキサン1リットルを装入し、エチ レン雰囲気に変更して60℃まで昇温し、前記デカンス ラリー (B-1) を 4 m l (チタン原子換算で 0.02 ミ リモル)装入した。

【0147】次に75℃まで昇温し、水素をゲージ圧力 で1kg/cm゚導入した。続いてエチレンでゲージ圧 カ8kg/cm² まで加圧し、1時間の間この圧力を保 持するようにエチレンを供給し続けた。この間温度は8 0℃に保持した。

【0148】重合終了後、生成固体を含むスラリーを濾 過し、白色粉末と液相部に分離し、この白色粉末を80 ℃で10時間減圧乾燥した。乾燥後の白色粉末(エチレ ン系重合体)について、実施例1と同様にして物性を測 定した。結果を表1に示す。

[0149] 40

【比較例2】

[固体状チタン触媒成分 (A-2) の調製] 無水塩化マグ ネシウム 0. 75モルを1リットルのデカン中に懸濁さ せ、2.25モルの2-エチルヘキサノールを加え、攪拌 しながら昇温し、120℃で2時間加熱して無色透明な 均一溶液を得た。この溶液は室温まで放冷しても無色透 明の均一溶液のままであった。

【0150】内容積1リットルのガラス製フラスコに窒 素雰囲気下でデカン400ml、四塩化チタン400ミ

に、上記の無色透明の均一溶液をマグネシウム原子に換算して100ミリモルを滴下ロートより20分にわたって滴下した。滴下直後から発泡をともない黄色の懸濁液となった。滴下後、4℃/分の速度で昇温し、80℃にて1時間攪拌し続けた。1時間後、窒素雰囲気下、ガラスフィルターにて、固体部と液相部を分離し、2リットルのデカンで固体部を洗浄した。固体部を再び900m Iのデカンで懸濁し、120℃で1時間30分の加熱処理を行った。以上の操作で固体状チタン触媒成分(A-2)を得た。

【0151】固体状チタン触媒成分(A-2)の組成は、 チタン 8.1重量%、塩素 55.0重量%、マグネシウム 17.0重量%、2-エチルヘキソキシ基 0.04重量%であった。

【0152】 [重合] 内容積2リットルのオートクレープに、窒素雰囲気下にて精製へキサン1リットルを装入し、50℃まで昇温した。次にトリイソブチルアルミニウム1.0ミリモル、上記の固体状チタン触媒成分(A-2)をチタン原子に換算して0.02ミリモルを加え、密封した後、水素をゲージ圧力で4kg/cm² 導入した。続いてエチレンでゲージ圧力8kg/cm² まで加圧し、2時間の間この圧力を保持するようにエチレンを供給し続けた。この間温度は80℃に保持した。

【0153】重合終了後、生成固体を含むスラリーを濾過し、白色粉末と液相部に分離し、この白色粉末を80℃で10時間減圧乾燥した。乾燥後の白色粉末(エチレン系重合体)について、実施例1と同様にして物性を測定した。結果を表1に示す。

[0154]

【比較例3】

[固体状チタン触媒成分(A-3)の調製]塩化マグネシウム19.1gをデカン88.4m | 中に懸濁した後、2-エチルヘキサノール78.1gを系内に添加した後、135℃まで昇温し、4時間の間135℃に維持しながら攪拌し、無色透明な均一溶液を得た。次に、以上の操作で得られた溶液を100℃まで降温し、100℃で1時間攪拌することにより塩化マグネシウム含有デカン溶液を得た。400m | フラスコ中に四塩化チタン200m | を装入後-20℃まで降温した後、上記の塩化マグネシウム含有デカン溶液50m | (塩化マグネシウム濃度1モル/リットル)を2時間で滴下した。系を徐々に昇温し、90℃で2時間攪拌した後熱濾過し、90℃のデカンで洗浄し、さらに室温のデカンで固体部を充分洗浄して固体状チタン触媒成分(A-3)を得た。

【0155】固体状チタン触媒成分(A-3)の組成は、 チタン 10.7重量%、塩素 57重量%、マグネシウム 12.0重量%、2-エチルヘキソキシ基 8.4 重量%であった。

【0156】500mlのフラスコに400mlのデカ 50 スラリーとした。この操作を2度行った後、デカン20

ンを装入し、固体状チタン触媒成分(A-3)を3.59 g添加した後、平均組成が $A \mid (O-i-C_3H_7)C \mid 2$ のアルミニウム化合物(デカン溶液1モル/リットル)を20m | 添加し、さらにイソプロパノール0.15m | を添加した。系内を昇温し、150m | で3時間攪拌した後、固体部を熱濾過で採取し、130m のデカンで洗浄した後、室温のデカンで充分に洗浄し、固体状チタン触媒成分(A-4)を得た。

【0157】固体状チタン触媒成分(A-4)の組成は、 10 チタン 4 1 重量%、マグネシウム 1 1 重量%、塩 素 4 9 重量%、アルミニウム 1 2 9 重量%、イソ プロポキシ基 0 2 重量%であった。

【0158】 [重合] 内容積2リットルのオートクレーブに、窒素雰囲気下にて精製へキサン1リットルを装入し、50℃まで昇温した。次にトリイソブチルアルミニウム1.0ミリモル、上記の固体状チタン触媒成分(A-4)をチタン原子に換算して0.02ミリモルを加え、密封した後、水素をゲージ圧力で4kg/cm²導入した。続いてエチレンでゲージ圧力8kg/cm²まで加圧し、2時間の間この圧力を保持するようにエチレンを供給し続けた。この間温度は80℃に保持した。

【0159】重合終了後、生成固体を含むスラリーを濾過し、白色粉末と液相部に分離し、この白色粉末を80℃で10時間減圧乾燥した。乾燥後の白色粉末(エチレン系重合体)について、実施例1と同様にして物性を測定した。結果を表1に示す。

[0160]

【比較例4】

[固体状触媒成分(A-5)の調製]内容積 3 リットルの30 オートクレーブを充分窒素置換した後、精製灯油1.5 リットル、無水塩化マグネシウム75g、エタノール109gおよびエマゾール320(花王アトラス社製、ソルビタンジステアレート)を10g入れ、系を攪拌下に昇温し、125℃にて600rpmで20分間攪拌した。系内圧を窒素にて10kg/cm²-Gとし、オートクレーブに直結され125℃に保温された内径3mmのSUS(ステンレススチール)製チューブのコックを開き、あらかじめー15℃に冷却された精製灯油3リットルを張り込んである5リットルガラスフラスコ(攪拌機40付き)に移液した。移液量は1リットルであり、所要時間は約20秒であった。生成固体を濾過により採取し、ヘキサンで充分洗浄した。

【0161】上記固体12gをデカン200mlでスラリーとし、0℃に冷却、この温度に保ちジエチルアルミニウムクロリド125ミリモルを30分にわたって滴下した。滴下終了後室温で1時間、さらに90℃に昇温し、この温度で3時間保った。この操作により塩化マグネシウム上に有機アルミニウムが一部固定される。このスラリーを静置して上澄み液を除去し、デカンにて再びスラリーとした。この操作を2度行った後、デカン20

0mlを加え、このスラリーを攪拌下0℃に保ち、これ にデカン10mlで希釈したバナジルトリクロリド5ミ リモルと四塩化チタン5ミリモルの混合物を15分にわ たり滴下した。滴下終了後、80℃に昇温しこの温度で 1時間保った。その後、濾過により固体生成物を採取 し、洗浄液中に遊離のバナジウムおよびチタンが検出さ れなくなるまでデカンで洗浄し、固体状触媒成分(A-

【0162】 [重合] 内容積2リットルのオートクレー ム2. 0ミリモル、固体状触媒成分(A-5)をチタンと バナジウムの合計の金属原子換算で0.01ミリモル装 入した。温度を40℃とした後、エチレンガスを導入し て全圧を8kg/cm²-Gとして1分間重合を行った

5) を得た。

(第1段階)。その後、エチレンガスを一旦脱圧した 後、水素ガスを導入し、1 kg/cm²-Gまで加圧し た。続いて70℃に昇温し、再びエチレンガスを導入し て全圧を8kg/cm²-Gとして重合を再開始した。そ の後、全圧が8kg/cm²-Gを保つようにエチレンを 供給し続けて80℃で80分間重合を行った。

【0163】重合終了後、生成固体を含むスラリーを濾 過し、白色粉末と液相部に分離し、得られた白色粉末を 80℃で10時間減圧乾燥した。乾燥後の白色粉末(エ プに精製デカン1リットル、トリイソブチルアルミニウ 10 チレン系重合体)について、実施例1と同様にして物性 を測定した。結果を表1に示す。

[0164]

【表 1 】

表 1										
	収 量 (g)	触媒活性 #1	MFR g/10分	MT E	· α *2	SR	Mw/Mn	Hz∕Mn	g#	密 度 g/cm³
実施例1	220	11000	0.027	36.5	0.93	1.31	5.83	3.19	1.00	0.96
実施例 2	256	12800	0.018	41.0	0.91	1.33	5.80	3.25	1.00	0.96
実施例3	238	11900	0.019	39.0	0.90	1.34	6.57	3.14	0.99	0.96
実施例 4	252	12600	0.022	39.0	0.93	1.33	5.01	3.12	1.00	0.97
実施例 5	146	7300	1.80	7.1	0.95	1.32	5.50	3.08	0.99	0.95
実施例 6	128	5100	0.95	5.9	0.76	1.32	5.74	3.10	0.98	0.93
比較例 1	208	10400	0.038	15.5	0.62	1.20	5.22	3.18	1.00	0.95
比較例 2	184	9200	0.75	12.0	1.03	1.43	10.30	6.44	1.00	0.96
比較例 3	190	9500	0.21	30.0	1.21	+ 3	13.87	7.96	0.99	0.96
比較例 4	344	34400	0.19	18.2	0.97	1.34	9.86	6.37	1.00	0.97
	i	1			I	I	1	1	l	L

#1:g-PE/mmol-Ti #2:α=log MT + 0.4×log MPR #3:測定不可(メルトフラクチャー発生)

【0165】表1から明らかなように、本発明のエチレ ン系重合体は、前記(i)~(vii)を満たしている。 すなわち、密度が高く、メルトテンションとメルトフロ ーレートとが特定の関係にあり、メルトテンションおよ びスウェル比が高く、分子量分布(Mr /M。、M、/ M_w) が狭く、g の値が1に近い。このようなエチレ ン系重合体からは、成形性に優れるとともに、剛性、耐 40 衝撃強度などの機械的強度に優れ、外観不良が少ない成 形体が得られる。

【図面の簡単な説明】

本発明に係るエチレン系重合体の製造に用い 【図1】 られるエチレン重合用触媒の調整工程を示す説明図であ る。

【図1】

(A) 遷移金属成分

