Answer 1:

1A	1B	Ā/B	1Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Answer 2:

LOAD VALUE	A0	A1	A2	A3	CLK	VALUE
0	1	0	1	1	0	(unknown)
0	1	0	1	1	1	(unknown)
1	1	0	1	1	0	(unknown)
1	1	0	1	1	1	1
1	1	0	1	1	0	1
1	1	0	1	1	1	1
1	1	0	1	1	0	1
1	1	0	1	1	1	1
1	1	0	1	1	0	1
1	1	0	1	1	1	1
1	1	0	1	1	0	1
1	1	0	1	1	1	1
1	1	0	1	1	0	1

Answer 3:

```
entity Shift Register is
    port (
                    in std logic vector(3 downto 0);
         LOADVALUE: in std logic;
         CLK: in std_logic;
VALUE: out std_logic
         );
end entity;
architecture sr of Shift Register is
        signal t:std logic; -- signal to hold the third bit
        signal Q:std logic vector(3 downto 0); -- state of four flip-flops
begin
    process (A, LOADVALUE, CLK) begin
        if (LOADVALUE = '0') then
               Q(3 \text{ downto } 0) \le A(3 \text{ downto } 0);
       elsif(CLK'event and CLK='1')then
               t \le Q(3)
               Q(3 \text{ downto } 1) \leq Q(3 \text{ downto } 1);
               Q(0)<='0';
       Endif;
    end process;
VALUE<=t;
end;
```