ASEN 3112

Spring 2020

Lecture 24

April 21, 2020

Problem description and FBDs

Figure 28.5: Column with elastic restraint: a torsional spring, at end B.

Column AB has length L and constant flexural rigidity EI, in which $I \equiv I_{zz}$ is the minimum moment of inertia of the cross section that controls buckling. (For a rectangular cross section of width b and thickness t < b, $I = I_{zz} = b\,t^3/12$.) The column is simply supported (pinned) at both ends A and B, and axially loaded by P. The rotation at B is further restrained by a torsional spring with stiffness k. Select x as shown and consider the buckling shape v(x) sketched in Figure A.1(b). The end rotation at B is $\theta_B = v'(L)$, positive CCW. The spring at B applies a restoring end moment $M_B = -k\,\theta_B$. For convenience in obtaining dimensionless equations we define

$$k = \beta \frac{EI}{L} \tag{28.22}$$

where β is a numerical coefficient. If $\beta=0$ the problem reduces to that of the classical Euler column, whereas if $\beta\to\infty$ we obtain the case of a column simply supported at A and fixed (clamped) at B.

Critical load analysis

The FBD of the complete column is shown in Figure 28.5(b). Taking moments with respect to B one finds that

$$R_A = M_B/L = -k \theta_B/L = -\beta E I \theta_B/L^2.$$
 (28.23)

Now cut the column at section X at distance x as sketched in Figure 28.5(c). Moment equilibrium with respect to X yields the second order differential equation

$$EI v'' + P v = R_A x = -k \theta_B \frac{x}{L} = -\beta \frac{EI \theta_B x}{L^2},$$
 (28.24)

which results from equating the bending moment M(x) = EIv'' to $-Pv + R_Ax$. Dividing through by EI and calling $\lambda^2 = P/EI$ produces the canonical form

$$v'' + \lambda^2 v = -\beta \frac{\theta_B x}{L^2}.$$
 (28.25)

The general solution of (28.25) is the sum of the homogeneous and particular solutions:

$$v(x) = C_1 \sin \lambda x + C_2 \cos \lambda x - \beta \frac{\theta_B x}{\lambda^2 L^2}.$$
 (28.26)

Since v(0) = 0, $C_2 = 0$. The rotation is $\theta(x) = v'(x) = C_1 \lambda \cos \lambda x - \beta \theta_B/(\lambda^2 L^2)$. Evaluating this at x = L yields $\theta_B = \theta(L) = C_1 \lambda \cos \lambda L - \beta \theta_B/(\lambda^2 L^2)$, from which we can solve for the end rotation:

$$\theta_B = C_1 \frac{\lambda^3 L^2}{\beta + \lambda^2 L^2} \cos \lambda L. \tag{28.27}$$

Inserting this into the solution (28.28) with $C_2 = 0$ gives $v(x) = C_1 \sin \lambda x - C_1 \beta \lambda x \cos \lambda L/(\beta + \lambda^2 L^2)$. Applying now the second boundary condition: v(L) = 0, furnishes the stability equation

$$v(L) = C_1 \left(\sin \lambda L - \frac{\beta \lambda L}{\beta + \lambda^2 L^2} \cos \lambda L \right) = 0.$$
 (28.28)

For buckling to occur, $C_1 \neq 0$, and the expression in parentheses in (28.29) must vanish. Calling $\alpha = \lambda L$, which is also a dimensionless variable, we obtain the trascendental equation

$$\tan \alpha = \frac{\alpha \beta}{\alpha^2 + \beta} \tag{28.29}$$

For a given $\beta \geq 0$ we seek the solution $\alpha_{cr} > 0$ of (28.29) closest to zero. If $\beta \neq 0$ there is no closed form solution and it is better to proceed numerically, using for example a Newton solver. It is easily shown that for $\beta = [0, \infty]$, $\pi \leq \alpha_{cr} < 4.5$, so $\alpha \approx 4$ is a good start point for a Newton iteration. Here is a table for selected values of β :

β	0	1	3	10	100	1000	10000	∞
α_{cr}	π	3.4056	3.7264	4.1323	4.4494	4.4889	4.4930	4.4934
L_e/L	1.0000	0.9224	0.8431	0.7602	0.7061	0.7000	0.6992	0.6991

The critical load P_{cr} and the effective length L_e (tabulated above) are

$$P_{cr} = \frac{\alpha_{cr}^2 EI}{L^2} = \frac{\pi^2 EI}{L_e^2}, \qquad L_e = \frac{\pi}{\alpha_{cr}} L$$