COMP3271 Computer Graphics

Curves & Surfaces (I)

2019-20

Objectives

Different representations for curves and surfaces

Design criteria

Parametric curves & surfaces

Interpolation

Escaping Flatland

Until now we have worked with flat entities such as lines and flat polygons

- Fit well with graphics hardware
- Mathematically simple

But the world is not composed of flat entities

- Need curves and curved surfaces
- Implementation can render them approximately with flat primitives

Modeling with Curves if curve passes thini
all data points
all data points

autorpolative

curve interpolating data point data points approximating curve

What Makes a Good Representation?

There are many ways to represent curves and surfaces

Some design criteria

- Local control of shape
- Stability
- Smoothness and continuity (in terms of derivatives)
- Ability to evaluate derivatives
- Ease of evaluation
- Ease of rendering
- Must we interpolate or can we just come close to data?

Explicit Representation

Most familiar form of curve in 2D

$$y = f(x)$$

Express a variable in terms of other variables

Cannot represent all curves

- Vertical lines
- Circles

Extension to 3D

•
$$y = f(x), z = g(x)$$

• The form z = f(x,y) defines a surface

Cannot represent a sphere in the form of z = f(x, y). Why?

Implicit Representation

Two dimensional curve(s)

$$g(x, y) = 0$$

Represents the membership of points on curve

Much more robust

- All lines ax + by + c = 0
- Circles $x^2 + y^2 r^2 = 0$

Not unique

• $(x^2 + y^2 - r^2)^2 = 0$ and $\sqrt{x^2 + y^2} - 1 = 0$ represent the same circle as $x^2 + y^2 - r^2 = 0$.

In general, no analytic way to solve for points that satisfy the equation

Implicit Representation

Three dimensions g(x, y, z)=0 defines a surface

• E.g., $g(x, y, z) = x^2 + y^2 + z^2 - 1 = 0$ represents the unit sphere

Question: how to represent the unit circle centered at the origin in the xy-plane implicitly in the xyz-space?

To represent a 3D curve

Intersect two surfaces to get a curve

$$x^{2}+y^{2}-1=0$$
 $3=0$

Parametric Representation

Two dimensional curves:

$$x = x(t), y = y(t), t \in [a, b]$$

Express the x,y values of each point on the curve explicitly in terms of an independent variable, t, i.e., the **parameter**, with a domain [a,b]

Example: Unit circle

$$P(\theta) = (x(\theta), y(\theta)) = (\cos \theta, \sin \theta), \theta \in [0, 2\pi)$$

Easily extended to three dimensional curves:

$$x = x(u), y = y(u), z = z(u), u \in [a, b]$$

Still in one parameter, hence a curve

Parametric Representation

We trace the curve P(t) = (x(t), y(t), z(t)) as t varies. Hence, we can talk of the velocity of P(t):

$$P'(t) = \frac{dP(t)}{dt} = \begin{bmatrix} \frac{dx(t)}{dt} \\ \frac{dy(t)}{dt} \\ \frac{dz(t)}{dt} \end{bmatrix}$$

This gives the tangent direction of the curve.

The speed of P(t) is then |P'(t)|.

Parametric Representation

When the speed of P(t) is constant or nearly constant, the computed points $P(t_i)$ on P(t) are evenly or nearly evenly spaced if the parameters t_i , i=0,1,2,..., are evenly sampled.

Example. The following parametric equation of the unit circle has a constant speed.

$$P(\theta) = (x(\theta), y(\theta)) = (\cos \theta, \sin \theta), \theta \in [0, 2\pi)$$

$$P(6) = (-520, \cos 0)$$
 $|P'(0)| = 1$

Parametric Lines

Example. A straight line passing through the point P_0 with the direction vector D_0 can be represented by

$$P(t) = (x(t), y(t)) = P_0 + tD_0, t \in (-\infty, \infty).$$

With $t \in [0,1]$, we get the straight line segment P_0 and P_1

Example. A straight line passing through two distinct points $P_0 = (x_0, y_0)$ and $P_1 = (x_1, y_1)$ is commonly represented by

$$P(t) = (1-t)P_0 + tP_1, t \in (-\infty, \infty).$$

Unit Circle in Parametric Form

$$P(\theta) = (x(\theta), y(\theta)) = (\cos \theta, \sin \theta), \theta \in [0, 2\pi)$$

Since
$$\cos \theta = \frac{1-\tan^2(\theta/2)}{1+\tan^2(\theta/2)}$$
 and $\sin \theta = \frac{2\tan(\theta/2)}{1+\tan^2(\theta/2)}$

Substituting $t = \tan \frac{\theta}{2}$, we have another parametric from for the unit circle:

$$R(t) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right), t \in (-\infty, \infty).$$

 $R(-\infty) = R(\infty)$ and R(-1)

Is this parameterization with constant speed?

Parametric Surfaces

Surfaces require 2 parameters

$$x = x(u, v)$$

$$y = y(u, v)$$

$$z = z(u, v)$$

$$p(u, v) = [x(u, v), y(u, v), z(u, v)]^T$$

the four boundary curves of a patch

Want same properties as curves:

- Smoothness
- Differentiability
- Ease of evaluation

Surface Normals

We can differentiate with respect to u and v to obtain the normal at any point p

$$\frac{\partial \mathbf{p}(u,v)}{\partial u} = \begin{bmatrix} \frac{\partial \mathbf{x}(u,v)}{\partial u} \\ \frac{\partial \mathbf{y}(u,v)}{\partial u} \end{bmatrix} \qquad \frac{\partial \mathbf{p}(u,v)}{\partial v} = \begin{bmatrix} \frac{\partial \mathbf{x}(u,v)}{\partial v} \\ \frac{\partial \mathbf{y}(u,v)}{\partial v} \end{bmatrix}$$

$$\frac{\partial \mathbf{p}(u,v)}{\partial v} = \begin{bmatrix} \partial \mathbf{x}(u,v) / \partial v \\ \partial \mathbf{y}(u,v) / \partial v \\ \partial \mathbf{z}(u,v) / \partial v \end{bmatrix}$$

$$\mathbf{n} = \frac{\partial \mathbf{p}(u, v)}{\partial u} \times \frac{\partial \mathbf{p}(u, v)}{\partial v}$$

Parametric Planes

Point-vector form

$$\mathbf{p}(u, v) = \mathbf{p}_0 + u\mathbf{q} + v\mathbf{r}$$
$$\mathbf{n} = \mathbf{q} \times \mathbf{r}$$

Three-point form

$$\mathbf{q} = \mathbf{p}_1 - \mathbf{p}_0$$
$$\mathbf{r} = \mathbf{p}_2 - \mathbf{p}_0$$

Parametric Spheres

$$x(\theta, \varphi) = r \cos \theta \sin \varphi$$

$$y(\theta, \varphi) = r \sin \theta \sin \varphi$$

$$z(\theta, \varphi) = r \cos \varphi$$

$$0 \le \theta \le 2\pi$$

$$0 \le \varphi \le \pi$$

 θ : constant; circles of constant longitude

 φ : constant; circles of constant latitude

Exercise: differentiate to show n = p