# Numerical optimization

Mines Nancy – Fall 2024

session 2 – existence and uniqueness of solutions optimality conditions for unconstrained problems

Lecturer: Christophe Zhang

Course material:

arche.univ-lorraine.fr/course/view.php?id=74098

github.com/jflamant/mines-nancy-fall24-optimization



### Outline

- 1 Introduction and review of important results
- 2 Existence of solutions
- 3 Uniqueness of solutions Convexity Uniqueness in optimization
- Optimality conditions for unconstrained optimization Necessary conditions Sufficient conditions The special case of convex functions

### Context

### Two categories of optimization problems

$$\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x}) \qquad \qquad \min_{\mathbf{x} \in \Omega} f(\mathbf{x})$$

unconstrained optimization

constrained optimization

#### In this session

- Review of elementary results from multivariable calculus and algebra
- Notions of gradient, Hessian, and convexity
- Existence and uniqueness results for minimizers
- For unconstrained problems, necessary and sufficient optimality conditions for a point to be a minimizer.

# Differentiability (I)

Let  $f: U \to \mathbb{R}$  be a function defined on a open subset U of  $\mathbb{R}^N$ .

### Definition

The function f is said to be differentiable at  $a \in U$  if there exists a linear map  $df_a : \mathbb{R}^N \to \mathbb{R}$  such that

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = df_{\mathbf{a}}(\mathbf{h}) + o(\|\mathbf{h}\|)$$

If f is differentiable at  $\mathbf{a} \in U$ , the differential  $df_{\mathbf{a}}$  can be expressed in terms of partial derivatives of f at  $\mathbf{a}$  such that

$$df_{\mathbf{a}}(\mathbf{h}) = \sum_{i=1}^{N} h_{i} \frac{\partial f}{\partial x_{i}}(\mathbf{a})$$

and as the limit, for any  $\mathbf{h} \in \mathbb{R}^N$ ,

$$df_{\mathbf{a}}(\mathbf{h}) = \lim_{\varepsilon \to 0} \frac{f(\mathbf{a} + \varepsilon \mathbf{h}) - f(\mathbf{a})}{\varepsilon}$$

# Differentiability (II)

Let  $f: U \to \mathbb{R}$  be a function defined on a open subset U of  $\mathbb{R}^N$ .

#### Definition

The function f is said to be of class  $C^k$  on U if all its partial derivatives up to order k exist and are continuous on U.

If  $f \in C^1$ , we say it is *continuously differentiable*.

### **Theorem**

If f admits partial derivatives at every point in a neighborhood of  $\mathbf{a}$ , and if the functions  $\frac{\partial f}{\partial x_i}$  are continuous at  $\mathbf{a}$ , then f is differentiable at  $\mathbf{a}$ .

The converse is not true.

Example: the function  $f(x_1, x_2) = |x_1x_2|$  is differentiable at (0,0) but its partial derivatives do not exist everywhere around the origin.

### Gradient of a function

From now on, we assume that  $f: \mathbb{R}^N \to \mathbb{R}$  is at least of class  $C^1$ .

For  $a \in \mathbb{R}^N$ , the vector

$$\nabla f(\mathbf{a}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{a}) \\ \frac{\partial f}{\partial x_2}(\mathbf{a}) \\ \vdots \\ \frac{\partial f}{\partial x_N}(\mathbf{a}) \end{bmatrix} \in \mathbb{R}^N$$

is called the gradient of f at point a.

Remark The differential of f at a reads  $df_a(\mathbf{h}) = \nabla f(\mathbf{a})^T \mathbf{h}$ .

### Hessian of a function

Let  $f: \mathbb{R}^N \to \mathbb{R}$  be of class  $C^2$ .

For  $\mathbf{a} \in \mathbb{R}^N$ , the matrix

$$\nabla^{2} f(\mathbf{a}) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(\mathbf{a}) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{N}}(\mathbf{a}) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(\mathbf{a}) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(\mathbf{a}) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{N}}(\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{N} \partial x_{1}}(\mathbf{a}) & \frac{\partial^{2} f}{\partial x_{N} \partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial^{2} f}{\partial x_{N}^{2}}(\mathbf{a}) \end{bmatrix} \in \mathbb{R}^{N \times N}$$

is called the Hessian matrix of f at point  $\mathbf{a}$  – also noted as Hess  $f(\mathbf{a})$ .

Important remark: since f is of class  $C^2$  on  $\mathbb{R}^N$ , Schwarz's theorem ensures  $\nabla^2 f(\mathbf{a})$  is a symmetric matrix for every  $\mathbf{a} \in \mathbb{R}^N$  since

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\mathbf{a}) \text{ for all } (i,j)$$

### Positive definiteness

Let  $\mathbf{A} \in \mathbb{R}^{N \times N}$  be a symmetric matrix  $(\mathbf{A}^{\top} = \mathbf{A})$ .

#### Definition

The symmetric matrix  $\mathbf{A}$  is said to be positive semi-definite (PSD) if for every  $\mathbf{x} \in \mathbb{R}^N$ ,  $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \geq 0$ . It is said to be positive definite (PD) if for every  $\mathbf{x} \in \mathbb{R}^N \setminus \{\mathbf{0}\}$ ,  $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} > 0$ .

We note  $\mathbf{A} \succeq 0$  when it is PSD, and  $\mathbf{A} \succ 0$  when it is PD.

#### Remarks

- $A \ge 0$  if and only if all its eigenvalues are positive (non-negative)
- **A** > 0 if and only if all its eigenvalues are stricty positive
- Positive (semi)-definiteness of Hessian matrix is crucial in the study of optimization problems

# Taylor's theorem

Amongst different versions of Taylor's theorem, this one will be useful for proofs later on.

# Theorem (see e.g., Nocedal)

Suppose that  $f: \mathbb{R}^N \to \mathbb{R}$  is continuously differentiable and that  $\mathbf{p} \in \mathbb{R}^N$ . Then for some  $t \in (0,1)$ ,

$$f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \nabla f(\mathbf{x} + t\mathbf{p})^{\mathsf{T}}\mathbf{p}$$

Moreover if f is twice continuously differentiable,

$$\nabla f(\mathbf{x} + \mathbf{p}) = \nabla f(\mathbf{x}) + \int_0^1 \nabla^2 f(\mathbf{x} + t\mathbf{p}) \mathbf{p} dt$$

and

$$f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{p} + \frac{1}{2} \mathbf{p}^{\mathsf{T}} \nabla^{2} f(\mathbf{x} + t\mathbf{p}) \mathbf{p}$$

for some  $t \in (0,1)$ .

## Outline

- 1 Introduction and review of important results
- **2** Existence of solutions
- Uniqueness of solutions Convexity Uniqueness in optimization
- Optimality conditions for unconstrained optimization Necessary conditions Sufficient conditions The special case of convex functions

### Existence of solutions

Let  $f: \Omega \subset \mathbb{R}^n \longrightarrow \mathbb{R}$  and consider the following optimization problem

$$(\mathcal{P}) \qquad \min_{\mathbf{x} \in \Omega} f(\mathbf{x})$$

# Theorem (existence in finite dimensions)

Suppose that f is continuous and that  $\Omega \subset \mathbb{R}^n$ . If one of the following condition is satisfied:

- Ω is compact (i.e., closed and bounded because of the finite dimension);
- $\Omega$  is closed and f is coercive (i.e., such that  $f(\mathbf{x}) \xrightarrow{\|\mathbf{x}\| \to +\infty} +\infty$ ),

then the problem (P) admits (at least) one solution.

Remark the set  $\mathbb{R}$  is both open and closed; therefore, optimization problems of the form  $\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$  with f coercive admit at least one solution.

### Outline

- 1 Introduction and review of important results
- 2 Existence of solutions
- 3 Uniqueness of solutions Convexity Uniqueness in optimization
- 4 Optimality conditions for unconstrained optimization Necessary conditions Sufficient conditions The special case of convex functions

### Convex sets and convex functions

convexity is a key tool to study uniqueness of solutions in optimization

### Definition (Convex set)

A set  $\mathcal C$  is convex if for every  $\mathbf x_1, \mathbf x_2 \in \mathcal C$  and for every  $\theta \in [0,1]$ , one has

$$\theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2 \in \mathcal{C}$$



 $\mathcal{C}_1$  is convex



 $C_2$  is non-convex

### Convex sets and convex functions

convexity is a key tool to study uniqueness of solutions in optimization

# Definition (Convex function)

Let  $\Omega \subset \mathbb{R}^N$  be convex. The function  $f:\Omega \to \mathbb{R}$  is said to be convex if for every  $\mathbf{x}_1,\mathbf{x}_2 \in \Omega$  and for every  $\theta \in [0,1]$ , one has

$$f(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2) \le \theta f(\mathbf{x}_1) + (1 - \theta)f(\mathbf{x}_2)$$

and strictly convex if the inequality is strict.



# Examples of convex and non-convex functions (1-D)



### Useful characterization results for convex functions

### Theorem (first order)

Let  $f: \mathbb{R}^N \to \mathbb{R}$  be differentiable. These statements are equivalent:

- **1** f is convex on  $\mathbb{R}^N$
- **2** for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$ ,  $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} \mathbf{x})$
- **3** for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$ ,  $(\nabla f(\mathbf{y}) \nabla f(\mathbf{x}))^{\mathsf{T}} (\mathbf{y} \mathbf{x}) \ge 0$

The equivalence is preserved for strict convexity, with  $\mathbf{x} \neq \mathbf{y}$  and strict inequalities.

### Theorem (second order)

Let  $f: \mathbb{R}^N \to \mathbb{R}$  be twice differentiable. We have equivalence between

- 1 f is convex
- 2 for all  $\mathbf{x} \in \mathbb{R}^N$ ,  $\nabla^2 f(\mathbf{x}) \geq 0$ , i.e. the Hessian is positive semidefinite.

This time, the equivalence is not preserved in the strict case: if  $\nabla^2 f > 0$  then f is strictly convex, the converse is not true.

# Uniqueness in optimization

Consider the following optimization problem

$$\min_{\mathbf{x} \in \Omega} f(\mathbf{x})$$

#### Theorem

Suppose that f is a convex function and that  $\Omega \subset \mathbb{R}^N$  is a convex set. Then:

- 1 any local minimizer is a global minimizer
- ② if f is strictly convex, there is at most one (global) minimizer.

Proof: by contradiction (Exercise!)

### More comments on convex functions

- By definition, f is (strictly) concave iff -f is (strictly) convex
- Optimization problems of the form

$$\min_{\mathbf{x}\in\Omega}f(\mathbf{x})$$

where f is a convex function and  $\Omega \subset \mathbb{R}^N$  is a convex set are called convex optimization problems. It is one of the most successful field in numerical optimization.

• the special (and important!) case of quadratic functions

$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} + \mathbf{p}^{\mathsf{T}} \mathbf{x} + \mathbf{r}$$
 (with  $\mathbf{Q} = \mathbf{Q}^{\mathsf{T}}$ )

Exercise show that f is (resp. strictly) convex iff  $\mathbf{Q} \geq 0$  (resp.  $\mathbf{Q} > 0$ ). What can we say about the minimizers of the problem  $\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$ ?

### Outline

- 1 Introduction and review of important results
- 2 Existence of solutions
- Uniqueness of solutions Convexity Uniqueness in optimization
- 4 Optimality conditions for unconstrained optimization Necessary conditions Sufficient conditions The special case of convex functions

# Optimality conditions for unconstrained optimization

We consider problems of the form

$$\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x})$$

we assume that f has "good" properties on  $\mathbb{R}^N$ , i.e., f is twice continuously differentiable (or at least continuously differentiable).

Provided minimizers exist (not always guaranteed!) we will derive conditions on a point  $\mathbf{x}^*$  to be a minimizer of the problem.

### Conditions are of several types

- Necessary, sufficient or necessary and sufficient
- first-order (i.e. involving  $\nabla f$ ) or second-order (i.e. involving  $\nabla^2 f$ )

# Necessary conditions (unconstrained case)

### Theorem (First-order)

If  $\mathbf{x}^*$  is local minimizer and f is continuously differentiable in a open neighborhood of  $\mathbf{x}^*$ , then  $\nabla f(\mathbf{x}^*) = \mathbf{0}$ .

We call  $\mathbf{x}^*$  a stationary or critical point of f if  $\nabla f(\mathbf{x}^*) = \mathbf{0}$ .

Any local minimizer must be a stationary point.

### Theorem (Second order)

If  $\mathbf{x}^*$  is local minimizer and f is twice continuously differentiable in a open neighborhood of  $\mathbf{x}^*$ , then  $\nabla f(\mathbf{x}^*) = \mathbf{0}$  and  $\nabla^2 f(\mathbf{x}^*) \ge 0$  (is positive semidefinite).

Exercise: prove these results by contradiction using Taylor's theorem.

# Examples: when $\nabla f(\mathbf{x}^*) = 0$ is not enough ...



# Sufficient conditions (unconstrained case)

### Theorem

Suppose that  $\nabla^2 f$  is continuous in an open neighborhood of  $\mathbf{x}^*$  and that  $\nabla f(\mathbf{x}^*) = \mathbf{0}$  and  $\nabla^2 f(\mathbf{x}^*) > 0$  (is positive definite). Then  $\mathbf{x}^*$  is a strict local minimizer of f.

#### Remarks

- Sufficient conditions guarantee that the minimizer is a *strict* local minimizer. (Compare with the necessary conditions)
- These sufficient conditions are not necessary: a point  $\mathbf{x}^*$  can fail to satisfy the conditions and yet be a strict minimizer.

Example:  $f(x) = x^4$ ; the point  $x^* = 0$  is a strict local minimizer (and global as well) but f''(0) = 0 shows that the Hessian is not positive definite at this point.

### Exercises

• Quadratic function

Let  $f: \mathbb{R}^2 \to \mathbb{R}$  such that  $f(\mathbf{x}) = x_1^2 - x_2^2$ . Compute its gradient and Hessian. List critical points and their properties.

Rosenbrock function

Let 
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 such that  $f(\mathbf{x}) = (1 - x_1)^2 + 5(x_2 - x_1^2)^2$ .

Does the point  $[1,1]^T$  satisfy the necessary conditions? the sufficient conditions?

# Necessary and sufficient conditions (unconstrained case)

When f is convex there is a simple characterization of optimal points.

#### **Theorem**

Suppose that  $f: \mathbb{R}^N \to \mathbb{R}$  is convex. A point  $\mathbf{x}^*$  is a local minimizer (hence global) of f if and only if  $\mathbf{x}^*$  is a stationary point of f, i.e., such that  $\nabla f(\mathbf{x}^*) = \mathbf{0}$ .

#### Remarks

- if *f* is strictly convex, then the theorem gives a characterization of the unique global minimizer of the problem (when it exists).
- finding points such that  $\nabla f(\mathbf{x}^*) = \mathbf{0}$  (stationary points) is the foundation for many unconstrained optimization algorithms, even in the non-convex case.
- in the next session, we'll see a very important of this result to solve a very important category of optimization problems, called least-squares problems