

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 108 790 A2

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 20.06.2001 Builetin 2001/25
- (21) Application number: 00127688.0
- (22) Date of filing: 18.12.2000
- (84) Designated Contracting States:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE TR
 Designated Extension States:
 AL LT LV MK RO SI
- (30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988
- (83) Declaration under Rule 28(4) EPC (expert solution)
- (71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chlyoda-ku, Tokyo 100-8185 (JP)
- (72) Inventors:
 - Nakagawa, Satochi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
 - Mizoguchi, Hiroshi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

- (51) Int CI.7: C12Q 1/68, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50
 - Ando, Selko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)
 - Hayashi, Mikiro,
 Ço Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
 - Ochlal, Kelko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
 - Yokoi, Haruhiko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
 - Tatèlshi, Naoko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
 - Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
 - Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
 - Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)
- (74) Representative: VOSSIUS & PARTNER Slebertstrasse 4 81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

BEST AVAILABLE COPY

Description

30

35

45

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by *Corynebacterium glutamicum* is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of Livsine, for example, a microorganism belonging to the genus *Corynebacterium* is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (*J. Biochem., 65*: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (*Microbiology, 142*: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli, Bacillus subtilis,* and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual gene its genome size is about 3,100 kb. However, only density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clarified hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as Escherichia coli, Mycobacterium tuberculosis, yeast, and the like, have been determined (Science, 277: 1453-62 (1997); Nature, 393: 537-544 (1998); Nature, 387: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

10

25

30

35

40

45

50

55

[0009] An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed,
a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to
which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide
sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been
recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

15 BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

(1) A method for at least one of the following:

- (A) Identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
- (B) measuring an expression amount of a gene derived from a coryneform bacterium,
- (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
- (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
- (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:
 - (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
 - (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
 - (c) detecting any hybridization, and
 - (d) analyzing the result of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus 5 Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucelotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

10

15

20

25

30

35

40

45

50

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acld, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:
 - (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - (18) The polypeptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

10

15

20

25

30

35

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

EP 1 108 790 A2
 (ii) at least temporarily storing said information; (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
(27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
(i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide
sequence information; (ii) a data storage device for at least temporarily storing the input information; (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: (iii) a comparator that compares the at least one nucleotide sequence information, and determining a function of a polypeptide encoded 2 to 3501 with the target nucleotide sequence which is coincident with or analogous to the poly- by a polynucleotide having the target nucleotide sequence selected from SEQ ID NOS:2 to 3501; and (iv) an output devices that shows a function obtained by the comparator.
(28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
(i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information; (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with
the target nucleotide sequence information; and (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
(29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
(i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence infor-
mation; (ii) a data storing device for at least temporarily storing the input information; (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: (iii) a comparator that compares the at least one amino acid sequence information for determining a function of a polypeptide 3502 to 7001 with the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and (iv) an output device that shows a function obtained by the comparator.
(30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
(i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
(ii) at least temporarily storing said information; (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001
with the target amino acid sequence information; and (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or (iv) determining a function of a polypeptide having the target amino acid sequence selected from SEQ ID NOS:3502 to

7001.

(31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microor-

analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to

5

10

15

20

25

30

35

45

50

55

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium. (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium. (33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lillium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes. (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes. (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ iD NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28). (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30). (37) The recording medium or storage device according to (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW. (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue. (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ iD NO:6952 is replaced with an amino acid residue other than a Vai residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue. (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue. (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue. (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum. (45) A DNA encoding the polypeptide of any one of (38) to (44). (46) A recombinant DNA comprising the DNA of (45). (47) A transformant comprising the recombinant DNA of (46). (48) A transformant comprising in its chromosome the DNA of (45). (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium. (50) The transformant according to (49), which is derived from Corynebacterium glutamicum. (51) A method for producing L-iysine, comprising: culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture. (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ iD NOS:1 to 3431, comprising the following: (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from

(ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
 (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform

method, with a corresponding nucleotide sequence in SEQ iD NOS:1 to 3431;

an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation

bacterium obtained in (iii).

5

10

15

20

25

30

35

40

45

50

- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway:
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
 - (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
- (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes. (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a
- 55 saccharide, an organic acid and an analogue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulate at least

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

(64) The method according to (63), wherein the compound is L-lysine.

(65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:

(i) preparing

10

15

20

25

30

45

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis:

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to Identifying the protein having the amino acid sequences.

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

(66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.

(67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.

(68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

35 [0018] The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.

1. Determination of full nucleotide sequence of coryneform bacteria

[0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).

[0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.

[0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species:

Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis

55 ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of coryneform bacteria

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

[0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/ I ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is

added thereto, followed by gently shaking at room temperature for 15 to 45 minutes. [0030] After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

35

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in Molecular Cloning, A laboratory Manual, Second Edition (1989) (hereinafter referred to as "Molecular Cloning, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

[0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 μl of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DHIOB

(manufactured by Life Technologies) for *Escherichia coli*. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

[0043] The transformed Escherichia coll is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gai and IPTG (isopropyl-β-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/mi of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 mi per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(3) Production of cosmid library

15

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as SauGAi or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 mi per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanoi.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with SauSAI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions.

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack ill Goid Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

[0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (*Science*, 269: 498-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each weil of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

[0059] The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 µl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Blosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (MI3REV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μl of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) Is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

25

35

45

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator. 50

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used. [0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a cione wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of "the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

35

45

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of *Corynebacterium glutamicum* ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" Is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oilgonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an

enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.
[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

20

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. in these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS: 3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym., 164*: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from Corynebacterium glutamicum ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of Ix SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

25

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach*, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (Initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present Invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotides (hereInafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester

bond in an oligonucleotide is converted to a phosphorothicate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

5

15

35

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in Molecular Cloning, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the blosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such

as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwf of the B-6 strain.

[0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by Isoleucine, which Indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the Identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of tysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

5

(🚱

45

25

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Blotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

expression amount and the expression profile thereof can be analyzed.

[0167] The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in Molecular Cloning, 2nd ed. or the like. mRNA derived from Corynebacterium glutamicum can also be obtained by the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)) or the like. [0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the anal-

5

25

40

45

50

ysis is not seriously disturbed thereby. [0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

[0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the blotin moiety (Nat. Biotechnol., 16: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999)); and the like.

[0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (J. Bacteriol., 181: 6425-40 (1999)).

[0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (Nat. Bioctechnol., 14: 1675-80 (1996), or the like).

[0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene

[0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

[0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

[0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

[0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

[0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

(b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

[0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the

[0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

[0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like). [0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out

the information in the recording medium can be appropriately selected, depending on the type of the recording medium

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like, of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present Invention refers to a medium in which the information of the present Invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence Information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

15

25

50

55

9. System based on a computer using the recording medium of the present Invention which is readable by a computer

[0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

[0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

[0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.

[0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994)), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; *Nuc. Acids. Res., 26*: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.

45 [0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.

[0192] Namely, the system based on a computer according to the present Invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
- (ii) a data storage device for at least temporarily storing the input information;
- (lii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
- (iv) an output device that shows a screening or analyzing result obtained by the comparator.

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

5

35

45

- [0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, and the like, for example, according to the following method.
 - [0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.
- [0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.
 - [0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.
- The recombinant vector is introduced to a host cell suitable for the expression vector. [0198]
 - Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.
- [0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.
 - [0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.
 - [0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured
- [0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from Escherichia coli, phage and the like, such as trp promoter (Ptp), lac promoter, Pp promoter, T7 promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two Ptrp are linked in series (P+m×2), tac promoter, lacT7 promoter let promoter and the like, can be used.
 - [0204] It is preferred to use a plasmid in which the space between Shine-Dalgarno sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).
- [0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural
 - [0206] One of ordinary skill in the art will appreciate that the codons of the above-described elements may be opti-

mized, in a known manner, depending on the host cells and environmental conditions utilized.

15

25

[0207] Examples of the host cell include microorganisms belonging to the genus Escherichia, the genus Serratia, the genus Bacillus, the genus Brevibacterium, the genus Corynebacterium, the genus Microbacterium, the genus Pseudomonas, and the like. Specific examples include Escherichia coli XL1-Biue, Escherichia coli XL2-Biue, Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli Gl698, Escherichia coli TB1, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Corynebacterium ammonia genes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium lactofermentum, or Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA, 69*: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in *Gene, 17*: 107 (1982) and *Molecular & General Genetics, 168*: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gai 1 promoter, gai 10 promoter, a heat shock protein promoter, MF all promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshl), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of iE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metal-iothionein promoter, a heat shock promoter, SRα promoter, and the like. Also, the enhancer of the iE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (*Cytotechnology, 3*: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (*Proc. Natl. Acad. Sci. USA, 84*, 7413 (1987)), the method described in *Virology, 52*: 458 (1973), and the like.

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992), Bio/Technology, 6: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacill (manufactured by Invitrogen), and the like.

- [0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family Barathra are infected, and the like.
 - [0222] Examples of the insect cells include Spodoptera frugiperda oocytes Sf9 and Sf21 (Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)), Trichoplusia ni oocyte High 5 (manufactured by Invitrogen) and the like.
- [0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.
 - [0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.
 - [0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.
 - [0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.
- [0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.
- [0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.
 - [0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.
 - [0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.
 - [0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.
 - [0232] When the transformant of the present invention is obtained using a prokaryote, such as Escherichia coli or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.
 - [0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.

40

- [0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).
- [0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.
 - [0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.
 - [0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.
 - [0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.
 - [0239] When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured,

an inducer can be added to the medium, if necessary.

25

[0240] For example, isopropyi-β-D-thiogalactopyranoside (IPTG) or the ilke can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid (IAA) or the ilke can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal ceils as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199.* 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, peniclilin, and the like, can be added to the medium during the culturing.

[0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 il SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

[0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antiblotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the ilke according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

[0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal Include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α casein promoter, a (β-casein promoter, a β-lactoglobulin promoter, a whey acidic protein promoter, and the like, which

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (Tissue Culture, 20 (1994), Tissue Culture, 21 (1994), Trends in Biotechnology, 15: 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering

the polypeptide from the plant. The polypeptide according to the present invention can also be obtained by translation in vitro.

The polypeptide of the present invention can be produced by a translation system in vitro. There are, for [0261] example, two in vitro translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an in vitro transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the in vitro translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. In vitro translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an in vitro transcription/translation system E. coli T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as lacUV5, tac, \(\lambda PL(con), \(\lambda PL, \) or the like, can be carried out using an in vitro transcription/translation system E. coli S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCRamplified DNA product, a duplicated oligonucleotide ligation, an in vitro transcriptional RNA, a prokaryotic RNA, and

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacla) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of ceils, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ iD NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide is means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, Nuc. Acids. Res.*, 10: 6487 (1982), *Proc. Natl. Acad. Sci. USA*, 79: 6409 (1982), *Gene, 34*: 315 (1985), *Nuc. Acids. Res.*, 13: 4431 (1985), *Proc. Natl. Acad. Sci. USA*, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-giutamine, L-giutamic acid, glycine, L-histidine, L-isoleucine, L-ieucine, L-iysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

10

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

30

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

⁴⁵ [0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenyialanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present Invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular Cloning*, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of *Corynebacterium glutamicum*, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

30

35

40

50

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.
[0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks

[0291] The administration. On the 3rd to 7th day after each administration, a blood sample is collected from the

after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the

after the first administration, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay

venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay

(Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring

Harbor Laboratory (1988)) or the like.

Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

[0293] Examples of the method for the Isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (*Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

(2) Production of monoclonal antibody

5

20

25

55

- (a) Preparation of antibody-producing cell
- [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.
 [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.
 - [0296] The spleen is cut to pieces in MEM medium (manufactured by Nissul Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.

 [0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.
 - (b) Preparation of myeloma cells
 - [0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-Agl4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10-5 mol/l 2-mercaptoethanol, 10 μg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 μg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10⁷ or more of the cells are used for the fusion.
 - (c) Production of hybridoma
- [0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodlum hydrogen phosphate: 1.83 g, sodium dlhydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, dlstilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5: 1 to 10: 1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.
 - [0300] The ceils in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 10⁸ antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.
 - [0301] After the addition, MEM medium is added to give a total amount of 50 mi. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10⁻⁴ mol/l hypoxanthine, 1.5×10⁻⁵ mol/l thymidine and 4×10⁻⁷ mol/l aminopterin have been added) by repeated drawing up into-and discharging from a measuring pipette.
 - [0302] The suspension is poured into a 96 well culture plate at 100 μl/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.
 - [0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual,* Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like. [0304] A specific example of the enzyme immunoassay is described below.
 - [0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monocional antibody of the present invention.

(d) Preparation of monoclonal antibody

[0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetramethylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10^6 to 20×10^6 cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.

[0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000

[0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.

[0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.

[0311] The antibody obtained in the above is within the scope of the antibody of the present invention.

[0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled Immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982), Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).

[0313] The antibody of the present invention can be used as it is or after being labeled with a label.

[0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the 30 like), a label using a rhodamine atom, (J. Histochem. Cytochem., 18: 315 (1970); Meth. Enzym., 62: 308 (1979); Immunol., 109: 129 (1972); J. Immunol., Meth., 13: 215 (1979)), and the like.

[0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.

[0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.

12. Production and use of polypeptide array

(1) Production of polypeptide array

40

[0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present Invention obtained in the above item 11.

[0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.

[0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.

[0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in Biotechniques, 27: 1258-61 (1999); Molecular Medicine Today, 5: 326-7 (1999); Handbook of Experimental Immunology, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); Meth. Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.

[0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polypeptide array

10

15

25

30

35

45

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.
- [0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.
- [0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.
- 50 [0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.
 - 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining two

electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474). [0332] In searching the data base, the amino acid sequence information of the polypeptides of the present invention

and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred. [0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

35 Example 1

20

25

40

45

50

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of Corynebacterium glutamicum was determined based on the whole genome shotgun method (Science, 269: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 mi of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 \times g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subjected to iso-

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of Corynebacterium glutamicum ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total Insert and 500 ng of pUC18 Smal/BAP (manufactured by Amersham Pharmacia Blotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gai and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonles formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

25 (3) Construction of cosmid library

15

[0345] About 0.1 mg of the genome DNA of *Corynebacterium glutamicum* ATCC 13032 was partially digested with *Sau*3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into Escherichia coli XL-1-BlueMR strain (manufactured by Stratagene) using Glgapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The Escherichia coli was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0347] The full nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 98-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

[0352] The double-stranded DNA plasmid as the template was obtained by the following method.

[0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

[0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in

accordance with the protocol provided by the manufacturer.

[0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

[0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

[0357] Το 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Blosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μ l of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

[0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manu-20 factured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark

25

50

[0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

[0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequence er and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

[0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simul-40 taneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

[0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the 45 preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of Corynebacterium glutamicum ATCC 13032 (Mol. Gen. Genet., 252: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

[0364] The sequence in the region which was not covered with the contigs was determined by the following method. [0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ iD NO:1.

(7) Identification of ORF and presumption of its function

10

15

30

45

50

55

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PiR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO: 1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] __ Fig._1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC-13032 on the genome.

EP 1 108 790 A2

5		Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF	protein) hypothetical protein	DNA topoisomerase (ATP-	hydrolyzing)				Josepher G IVVIO	AGUALLI PERSONAL		< :	DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory process, Lysix type		cytochrome c biogenesis protein	hypothetical protein	ronrescor	in control
15	Matched		T		390 DN	362		1	704 hy	-	-		1	422 N		T	854		329 h	268	1	265 c	155	;	\neg
20		Similarity (%)	8.66		81.8	70.0	5.6	3	88.9		1			20.7			88.1	9.69	63.5	62.3		57.4	64.5	1	70.1
		identify (%)	8 6		50.5	:	33.3	g	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6		36.8
25	-		\ \delta \	5	Neus dia	1	is rect	yrec :	osis					OSIS			losis	losis	Ŧ	oluteolus		Is ccdA		locic	2000
30	Table 1	Homologous gene	The state of the s	Brevibacterium Havuill una	Nemoderalism emoderatis duals	yconadelium	Mycobacterium smegmatis recr	Streptomyces coelicolor yrec	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Obodobader cansulatus ccdA	Kiloudakasi odi	Coxiella pullicui com	Mycobacterium (uperculosis H37Rv Rv1846c
35 40		db Match		gsp:R98523 Br	_	SP.DP3B_MYCSM_M	Sp:RECF_MYCSM M	sp:YREG_STRCO S	N pir.S44198					sp:YV11_MYCTU			sp.GYRA_MYCTU	pir.E70698	SD:YEIH ECOLI			0 00101111	gp:AF156103_4	pir.A49232	pir.F70664
		ORF.	<u>a</u>		_	1182	1182	534	2133	996	699	510	441	1071	261	246	2568	342	1035	894	5	2	8	762	369
45		let	(JĽ)	1572	1597	3473	4766	5299	7486	8795	8798	10071	9474	10107	11263	11523	14398	14746	15200	17207		2/0/1	17860	18736	20073
50		Initial	Ê	-	1920	2292	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	46343	1			18729	19497	19705
		SEQ	(a. c.	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	26.50	3518		3519	3520	3521	3522
55		SEQ			6	4	5	ď	<u> </u>	60	0	9	=	12	13	14	15	9	!	÷		6	8	2	22

r	 т		<u> </u>												1				
	Function	hypothetical membrane protein	2,5-diketo-D-gluconic acid reductase	5-nucleotidase precursor	5'-nucleotidase family protein	transposase	organic hydroperoxide detoxication enzyme	ATP-dependent DNA helicase		glucan 1,4-alpha-glucosidase	lipoprotein	ABC 3 transport family or integral membrane protein	iron(III) dicitrate transport ATP- biding protein	sugar ABC transporter, periplasmic sugar-binding protein	high affinity ribose transport protein	ribose transport ATP-binding protein	neurofilament subunit NF-180	peptidyf-prolyl cis-trans isomerase A	hypothetical membrane protein
	Matched length (a.a.)	321	26	196	270	51	139	217		.449	311	266	222	283	312	236	347	169	226
	Similarity (%)	50.8	88.5	56.1	26.7	72.6	79.9	8.09		54.1	63.7	74.1	70.3	56.5	68.3	76.7	44.4	89.9	53.1
	Identity (%)	24.9	65.4	27.0	27.0	52.9	51.8	32.7		26.7	28.9	34.6	39.2	25.8	30.5	32.2	23.6	79.9	29.2
Table 1 (continued)	Homologous gene	Mycobacterium leprae MLCB1788.18	Corynebacterium sp. ATCC 31090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris phaseoli ohr	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae S288C YIR019C sta1	Erysipelothrix rhusiopathlae ewlA	Streptococcus pyogenes SF370 mtsC	Escherichia coli K12 fecE	Thermotoga maritima MSB8 TM0114	Escherichia coli K12 rbsC	Bacillus subtilis 168 rbsA	Petromyzon marinus	Mycobacterium leprae H37RV RV0009 ppiA	Bacillus subtilis 168 yqgP
	db Match	gp:MLCB1788_6	pir:140838	sp:5NTD_VIBPA	gp.AE001909_7	prf.2513302C	prf.2413353A	Sp.RECG_THIFE		1278 SP. AMYH_YEAST	gp:ERU52850_1	gp:AF180520_3	sp:FECE_ECOLI	pir.A72417	prf.1207243B	sp:RBSA_BACSU	pir.151116	sp:CYPA_MYCTU	sp:YQGP_BACSU
	ORF (bp)	993	9	528	1236	165	435	1413	438	1278	954	849	657	981	1023	759	816	561	687
	Terminal (nt)	21065	21074	22124	23399	23615	24729	24885	26775	26822	28164	29117	30651	31677	32699	33457	33465	34899	35668
	Initial (nt)	20073	21253	21597	22164	23779	24295	26297	26338	28099	29117	29965	29995	30697	31677	32699	34280	34339	34982
	SEO NO.	3523	3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535	3536	3537	3538	3539	3540
	SEQ NO.	23	2	25	26	27	78	53	8	3.	32	33	34	35	36	37	38	ရှ	40

EP 1 108 790 A2

5		Function	ferric enterobactin transport system		ATPase	vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serine/threonine protein kinase		penicilin-binding process	stage V sporulation protein c	phosphoprotein phosphatase		hypothetical protein	hypothetical protein					nhenol 2-monooxygenase	cuccipate, semialdehyde	dehydrogenase (NAD(P)+)	hypothetical protein	hypothetical membrane protein	
15		Matched length (a.a.)			253 /	260	95	940	7	Т	T	375	469		155	526					55		490	242	262	
20		Similarity (%)	70.5		81.8	52.7	72.6	1.5	20.0	e e	66.7	9.59	9 02		66.5	38.8				_	3	63.5	78.2	57.0	64.1	-
		Identity (%)	404		51.8	28.2	40.0		40.6	31./	33.5	31.2	;	-	38.7	23.6		-				29.9	46.7	27.3	200	7.57
25	Table 1 (continued)	ns gene	0000	oda zi	ار	406-24 viuB	uberculosis		eprae pknB	elicolor pksC	iseus pppA	168 spoVE	uherculosis		tuberculosis	tuberculosis					COLUMN ATOR	Trichosporon cutaneum Arco	II K12 gabD	s vrkH	s jannaschii	
30	Table 1 (Homologaus gene	2	Escherichia coli N12 lepo		Vibrio cnolei de vido	Avenhacterium ti	H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Strentomyces ariseus pbpA	Cuching cubtile 168 spoVE	Bacillus subtiles 100 special	Mycobacterium H37Rv ppp	Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv0020c					Trichosporan c 46490	Escherichia coli K12 gabD	Dacillus subtilis vrkH	Methanococcu	MJ0441
35		-	$\neg \vdash$			6,			 	\vdash	.].	-	\top									IRICU		1004	SAC30	ETJA
40		db Match		sp:FEPG_ECOLI		gp:VCU52150	sp:viUB VIBVU	sp:YO11_MYCTU	SD:PKNB MYCLE	AE004711 1	Sp. Ar Coast	gp:AF 24 13/3	sp:SP5E_BACSU	pir:H70699	olr.A70700		pir:B70700					sp:PH2M_TRICU	sp.GABD ECOLI			sp:Y441_METJA
		ORF	(a)	978	986	111	822	270	1938	15	9	1422	1143	1353	462		864	147	22	219	471	954	1470		1467	789
45		- Ta	(b)	38198	36247	38978	39799	40189	40578		42513	43926	45347	46669	48024	17004	48505	49455	49897	50754	99605	54008	2,63,6	07016	55546	55629
50		-	(uf)	37221	37242	38202	38978	40458	40643	47313	43919	45347	46489	48021	30707	48465	49368	49601	50616	50972	51436	53055		53095	54080	56417
		<u> </u>	(a.a.)	3541	3542	1	!1	3545			3547	3548	3549	3550		3551	3552	3553	3554	3555	3556	3557		3558	3559	3560
55		SEQ 8		41	42	1	4	45	T	46	47	48	1	50	3	51	52	ß	2	88	88	15		 88	89	9

																-					
	Function	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein			magnesium and cobalt transport protein		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+)/citrate complex secondary transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacid dehydrogenase
	Matched length (a.a.)	74	179	7 9		310			390		400	241	340				497	563		229	293
	Similarity (%)	74.3	70.4	83.9		50.7			59.5		64.8	53.1	0.09				68.8	9.09		63.3	73.7
	Identity (%)	40.5	36.3	53.2		26.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
Table 1 (continued)	Homologous gene	Bacillus sublilis yrkF	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 clcb	Salmonella typhimurium pnuC	Mycobacterium tuberculosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB		Escherichia coli K12 criR	Corynebacterium glutamicum unkdh
	db Match	sp:YRKF_BACSU	sp:YC61_SYNY3	pir.G70988		gp:LMFL4768_11			pir.F70952		gp:AF179611_12	sp:PNUC_SALTY	sp:PHOL_MYCTU				sp:CITM_BACSU	sp:DPIB_ECOLI		sp:DPIA_ECOLI	gp:AF134895_1
	ORF (bp)	291	591	174	855	840	711	1653	1119	447	1269	069	1122	132	384	765	1467	1653	570	654	912
•	Terminal (nt)	56386	96680	57651	58941	59930	60662	62321	62390	63294	65458	80559	67972	68301	68251	69824	68720	72158	71474	72814	72817
	Initial (nt)	92995	57270	57478	58087	59091	59952	69909	63508	64040	64190	66197	66851	68170	68634	09069	70186	70506	72043	72161	73728
	SEQ NO. (a.a.)	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580
	SEQ NO. (DNA)	61	62	63	B	65	99	29	68	69	20	17	72	73	74	75	76	77	78	62	80
											_	_									

EP 1 108 790 A2

5		Function	hypothetical protein	biotin synthase	hynothetical protein		hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	creatinine deaminase			SIR2 gene family (silent information	regulator)	triacyiglycerol lipase	triacylglycerol lipase		transcriptional regulator	se namma subunit or urease	structural protein	urease beta subunit	iondia odel	חנפסאב פולוופ אחסייי
15	Matched	length (a.a.)	127	334	;		85		42	84	507	394				279	251	262	_	121		6	162		9/0
20		(%)	76.4	99.7		r i	63.5		75.0	96.0	59.0	8 66	23			50.2	59.0	56.1		24.7	5	100.0	100.0	4-	100.0
		Identify (%)	38.6	99.4		72.1	34.1		71.0	610	25.6	07.2	31.75			26.2	30.7	29.4		9	90.0	100.0	100.0		100.0
25 5			A3(2)	icum	1	200	ae		ligg		0,000	200				siae hst2	S8	65		micum		micum	amicum		
30	lable 1 (confined)	Homologous gene	Streptomyces coalicolor A3(2)	Corynebacterium glutamicum	90	Mycobacterium tubercurosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg	TC0129	Chlamydia pneumomac	Streptomyces virginiae valo	Bacillus sp.			Saccharomyces cerevisiae hst2	Propionibacterium acnes	Dronionihacterium acnes	Topinoido L	Compacterium olitamicum	ureR	Corynebacterium glutamicum	Corynebacterium glutamicum	ATCC 13032 ureb	Corynebacterium glutamicum ATCC 13032 ureC
35	-		ळ ठ		$\overline{}$	ΣÏ		-	0	- -										1			,		
40		db Match	an SCM2 3		Sp:BIOB_CORG	pir:H70542	sp:YKI4_YEAST		707707	PIK.F01/3/	GSP: Y35814	prt 2512333A	gp:D38505_1			sp:HST2_YEAST	A8753160-	A 1001 C2 114	prt 2310376A		gp:AB029154_1	qp:AB029154_2	25.40	gp.celessions	1710 gp.CGL251883_3
		ORF (bp)			1002	237	339	;		141	273	1449	1245	306	615	924	5	3/2	잃	88	513	8		480	1710
45		Terminal	74070	71761	75491	75742	76035	20.400	/0409	80613	81002	82120	83691	85098	85663	87241		8/30	88545	90445	90461	91473		91988	93701
50	!	Initial		/3844	74490	75506	75697		76353	80753	81274	83568	84935	85403	86277	86318		88532	89444	89558	90973	01174		91503	91992
		SEO	(a.a.)	3581	3582	3583	3584		3585	3586	3587	3588	3589	25.90	3591	3507	3332	3293	3594	3595	3596	2507	65	3598	3599
5 5		SEQ 8		18	82	83			8 	98	87	Т	Т	8	8 8	3	35	93	22	95	96	1	5	86	66

		_			_	_		_			_													
	Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase		valanimycin resistant protein			heat chock protein then 00 (amily)	MAD SUCCESSION (INSPECTATION)	AMP flucieostaase		acerolactare synthase large subunit	proline dehydrogenase/P5C	denydrogenase	aryl-alcohol dehydrogenase	(NADP+)	pump protein (transport)	indole-3-acetyl-Asp hydrolase		hypothetical membrane protein	
	Matched length (a.a.)	157	226	205	283	279		347	T		668	\top	1	90,	_	1297	+	338	丁	寸	352		56 E	
	Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2	3	203	8	50.4	1	60.7		7.4	49.2		70.8	
	Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	410	2	20.6		25.8		30.2	9	5 5 5 6	23.0		35.9	
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vlmF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE250a		Salmonella typhimurium putA		Phanerochaete chrysosporium	Escharichia coli K42 udell	Enterphone con N. c. year	criteroparter aggionnerans		Eschenchia con K12 yidH	
	db Match	gp:CGL251883_4	gp:CGL251883_5	9p:CGL251883_6	gp:CGL251883_7	prf:2318326B		gp:AF148322_1			sp:HTPG_ECOLI	SP:AMN ECOLI		pir.E72483		SP:PUTA_SALTY		sp:AAD_PHACH	SD:YDAH ECOLL	\top	T	HOLA ECO!	T	
	ORF (bp)	471	678	615	849	777	699	1152	675	2775	1824	1418	579	552	999	3456	114	945	1614	1332	99	38	3 15	;
	Terminal (nt)	94199	94879	95513	96365	96368	98189	97319	100493	98808	101612	104909	105173	105841	106630	110890	111274	112318	114083	115478	114564	115943	116263	
	Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435	103494	105751	106392	107289	107435	111161	111374	112470	114147	115262	115578	115949	
	SEO NO.	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615	3616	3617	3618	3619	•		,
	SEQ NO.	901	101	102	103	5	5	186	107	108	ğ	110	111	112	113	114	115	116	11	118	119	_	121	7

EP 1 108 790 A2

											_	<u> </u>			TT				1 1	- 1	ı	- (1	1	
5		Function		transcriptional repressor	methylglyoxalase	hypothetical protein	mannitol dehydrogenase	D-arabinitol transporter		galactitol utilization operon repressor	xylulose kinase		pantoate-beta-alanine ligase	3-methyl-2-oxobutanoate	hydroxymetnymansor	DNA-3-methyladenine glycosylase		esterase		carbonate dehydratase	xylose aperon repressor protein	macrolide efflux protein			
15		Matcheo length	11	258 tr	126	162 h	497	435		260	451		279	37.1		188		270		201	357	418			
20		Similarity N		59.7	78.6	64.8	70.4	68.3		64.6	68.1		100.0	000	0.001	67.6		803	3	53.2	49.3	61.2			
		Identity (%)		29.5	57.9	37.0	43.5	30.3		27.3	45.0		100.0		190.0	42.0		5	28.5	30.9	24.1	21.1	_		\ \
25	inued)			aciens		culosis	City	Scens miles	10000	9,50	Horale will	i de constant	utamicum	Timichi	diameter.		а шад	no bacterium	20	alihooma	SaviR	mel214			
30	Table 1 (continued)	Homologous gene		Agrobacterium tumefaciens	accR	Mycobacterium tuberculosis	H37Rv Rv1276c	Pseudomonas fluorescens fluid	Klebsiella pneumoniae uni	247.11	Escherichia coli N. 12 yaun	Streptomyces tubiginoses y	ownebacterium gl	ATCC 13032 panC	Corynebacterium glutaniicani ATCC 13032 panB	1	Arabidopsis thallana mag	iperson minimum	HD-1 hde		Methanosarcina memopilis	Bacillus suovins vizo 21	Lactococcus races		
35		4000	do Malcii		GRTU	_	sp:YC76_MYCTU H	prf.2309180A P	1335 prt.2321326A K			Sp:XYLB_STRRU		gp:CGPAN_2	gp:CGPAN_1		SP:3MG_ARATH		gp:AB029896_1		SP.CAH METTE	SP:XYLR BACSU	gp:LLLPK214_12		
40						 -		1509 prf.2	35 prf.2	189	837 sp:C	1419 sp:>	822	837 gp:	813 gp:	951	630 sp:	654	924 gp	627	558 sp	1143		8	444
		OR P		8 2052	0 780	10 390	13 510	_	-	30 18	98				192 8	+	1	_	815 (132424	2981	2971	$\overline{}$	-+	136122
45		, imi	(m)	11654	11881	12041	12041	120951	12250	1240	1249	126350	127992	126353	127	128099	╄	130798	130	↓	=	+			_
		—	intia (nt)	118599	119589	120021	120922	122459	123841	123842	124130	124932	127171	127189	128004	129049	130118	130145	131738	131798		134113	135478	136321	136565
50		OEO.		+	3623 1	3624 1	3625 1	3636	_	-				3632	3633	3634	3635	3636	3637	3638	3639	3640	3641	3642	3643
		0			123 3	124	125 3	_	5 5			+	1	1	133	_	\neg	1	137	138	138	5	141	142	143
55		1 0		- 1		1	1	_1_							_										

EP 1 108 790 A2

	Function				cellulose synthase	hypothelical membrane protein				chloramphenicol sensitive protein	hypothetical membrane protein			transport protein	hypothetical membrane protein			ATP-dependent helicase		nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxonubidn blosynthesis enzyme
	Matched length (a.a.)				420	593				303	198			361	248			828		188	219	166	217	55	284
	Similarity (%)				51.2	51.8				60.7	59.1			62.3	70.2			64.3		0.99	2.09	65.1	61.3	72.7	52.1
	Identity (%)				24.3	25.1				34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	50.9	31.0
Table 1 (continued)	Homologous gene				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichia coli K12 abrB	Escherichia coli K12 yfcA			Escherichia coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1JI nodL	Escherichia coli o373#1 alkB	Escherichia coli K12 tag	Escherichia coli K12 rhtC	Bacillus subtilis yaaA	Streptomyces peucetius dnrV
	db Match				pir:139714	sp:HKR1_YEAST				SP:RARD_PSEAE	sp:YADS_ECOLI			sp:ABRB_ECOLI	sp:YFCA_ECOLI			sp:HRPB_ECOLI		Sp:NODL_RHILV	sp:ALKB_ECOLI	Sp:3MG1_ECOLI	Sp:RHTC_ECOLI	sp:YAAA_BACSU	prf.2510326B
	ORF (bp)	1941	1539	636	1461	1731	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	675	069	525	678	291	852
	Terminal (nt)	138744	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	158831	159159	160013
	Initial (nt)	136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	152410	155613	155853	156821	156848	157614	158154	158869	159162
	SEO NO.	3644	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	3664	3665	3666	3667
	SEQ NO.	144	145	146		148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165		167

EP 1 108 790 A2

5		Function	methyltransferase				ribonuclease			neprilysin-like metallopeptidase 1		September 1 and 1	transcriptional regulator, or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical protein	methylmalonic acid semialdehyde	dehydrogenase	myo-inositol catabolism	myo-inositol catabolism	rhizopine catabolism protein	myo-inosital 2-dehydrogenase	myo-inositol catabolism	metabolite export pump of	tetracenomyon C resistance	oxidoreductase		
15	Matched	length (a.a.)	104	1			118			722	\top		238	332	296		498	268	586	290	335	287	467	?	354		
20		Similarity (%)	56.7				76.3			67.3	37.76		65.6	63.0	80.7	6	1.98	58.2	8.69	51.0	72.2	72.1	3,6	6.19	65.5		
20		Identity S (%)	35.6				415			3 00	28.5		29.8	28.6	53.7	32.1	61.0	33.2	41.0	29.7	39.1	44.6	_	30.9	31		
<i>25</i>	T		es pombe				Jis MC58						2 farR		icolor A3(2)		licolor msdA		2 5	Door.	Soi so		5	ucescens tcmA		₹PA	
30	Table 1 (confined)	Homologous gene	Schizosaccharomyces pombe	AC1230.045			piccoria meninditi	NMB0662			Mus musculus nl1		Fscherichia coli K12 farR		Beta vulgaris	SC8F11.03c	Strentomyces coelicolor msdA		Bacillus subtilis ioto	Bacillus survivo	Rhizobium melliou moco	Bacillus subtilis Idri or 1915	Bacillus subtilis loin	Streptomyces glaucescens tcmA		Bacillus subtilis yvan	
35			\top	T	+								1	1				_	7	П.	-	$\neg \tau$	\neg	STRGA		ACSU	
40		db Match	6 0501750 3	p. or no lead				gp:AE002420_13			gp: AF176569_1		001	Sp:FAKK_ECUCI	pir.T14544	gp:SC8F11_3			Sp.IOLB_BACSU	sp:10LD_BACSU	sp:MOCC_RHIME		Sp.IOLH_BACSU	Sp:TCMA_STRGA	\neg	sp:YVAA_BACSU	
		ORF (hn)			8	657	933	405	639	741	1.	-	963	759	1017	921		1512	88	1728	954	1011	870	1374	621	-	456
45		- E		160370	161360	162352	161363	162867	163603	166457	163689		167419	167837	169991	170916		172444	173355	175275	176272	177318	178203	179658	178461	╀┦	181297
50		Initial	(uf)	160029	160431	161696	162295	162463	162965	466747	100/1/	2000	166457	168595	168975	169996		170933	172468	173548	175319		177334	178285	179081	179689	180842
		SEO	(a a)	3668 1	3669	3670		3672	2673		36/4	2005	3676	3677	3678	3679		3680	3681	3682	3683	3684	3685		3687	- i	3689
55		1=	(DNA)	168	169	+	$\overline{}$	172		\neg	_	13	176	177	178	179		180	181	182	183	184	185	186	187	188	189

. 50

Table 1 (continued)	db Match Homologous gene (%) (%) (aa) Function		x:SRE9798_1 Streptomyces reticuli cebR 32.0 61.9 331 regulatory protein	5.Y4HM_RHISN Rhizobium sp. NGR234 y4hM 24.4 52.5 442 oxidoreductase	SYFIH_BACSU Bacillus subtifis yith 33.7 64.7 303 hypothetical protein		Streptomyces coelicolor A3(2) 70.3 92.2 64 cold shock protein csp			#2113413A Stellaria longipes 30.6 58.2 134 caffeoyl-CoA 3-O-methyltransferase		o: CCPA_BACSU Bacillus subtilis ccpA 28.7 62.1 338 regulator regulator			XXYLT_LACBR Lactobacillus brevis xylT 36.0 70.5 458 D-xylose proton symporter		5.AF189147_1 Corynebacterium glutamicum 100.0 100.0 401 (transposase (ISCg2) ATCC 13032 tnp	3.FIXL_RHIME Rhizobium meliloti fixL 27.6 60.7 145 signal-transducing histidine kinase	o:AB024708_1 Corynebacterium glutamicum 99.9 100.0 1510 glutamine 2-oxoglutarate	5.AB024708_2 Corynebacterium glutamicum 99.4 99.8 506 glutamine 2-oxoglutarate aminotransferase small subunit			H3/KV KV3698
_			gp:SRE9798_1 Streptom	sp. Y4HM_RHISN Rhizobiu	sp.YFIH_BACSU Bacillus		sp.CSP_ARTGO Streptom			prt.2113413A Stellaria		sp:CCPA_BACSU Bacillus			sp:XYLT_LACBR Lactobac		gp:AF189147_1 Coryneb	sp:FIXL_RHIME Rhizobiu	gp:AB024708_1 Coryneb	gp:AB024708_2 Coryneb		pir.C70793 Mycobac	
	ORF (bp)	384	993	1233	1011	429	201	534	306	414	426	066	402	240	1473	300	1203	435	4530	1518	240	1485	_
	Terminal (nl)	181647	181687	184051	185087	185642	186708	187302	187607	188100	188300	188747	190321	190389	190703	192949	194464	194604	199769	201289	201341	201760	
	Initial (nt)	181264	182679	182819	184077	185214	186508	186769	187302	187687	188725	189736	189920	190628	192175	193248	193262	195038	195240	199772	201580	203244	
	SEQ NO. (a.a.)	3690	3691	3692	3693	3694	3692	3696	3697	3698	3699	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	3710	
	SEQ NO. (DNA)	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	•

EP 1 108 790 A2

			Т	Τ				\Box			Γ			T							9				•
5		Function		arabinosyl transferase	hypothetical membrane protein	acetoacetyl CoA reductase	ovidoreductase				proteophosphodivcan	recording to the second of the	hypothetical protein		hypothetical protein		rhamnosyl transferase		hypothetical protein	O-antigen export system ATP-	pinding process	O-antigen export system permease protein	hypothetical protein	NADPH quinone oxidoreductase	
15		Matched length (a.a.)		1122 ar	651 hy	223					036	\top	124		206	十	302		214	236		262	416	302	
20		Similarity N		70.6	66.1	56.5		g				5/.4	83.9		73.8		79.1		55.1	78.4		75.6	63.0	71.5	
		Identity (%)		39.8	35.0	31.4	7.	0.99				24.3	60.5		13.5	4	63.6		31.3	47.0	2.15	31.3	36.5	154	
25	linued)			embB	culosis	9	e de la compania de l	calcosis				1g1	rculosis		rculosis		erculosis		efaciens	A tion too	ica noc	ica rfbD	erculosis		
30	Table 1 (continued)	Homologous gene		Attropacterium avium embB	Mycobacterium tuberculosis	H37Rv Rv3792	Pseudomonas sp. phob	Mycobacterium tubercurosis H37Rv Rv3790				Leishmania major ppg1	Mycobacterium tuberculosis		Mucobacterium tuberculosis	H37Rv Rv1864c	Mycobacterium tuberculosis H37Rv Rv3782 rfbE		Agrobacterium tumefaciens	plasmid pTi-SAKURA tion 100	Yersinia enterocolitica fior	Yersinia enterocolitica rfbD	Mycobacterium tuberculosis	H37Rv Rv3778c	Homo sapiens piga
35		db Match			2		prf.2504279B P	pir.B70697				ap.LMA243459 1 L		┪		pir.H70666	pir.B70696		+		Sp.RFBE_YEREN	SP. RFBD YEREN		pir.F /U695	gp:AF010309_1
40		Щ.	+			1983 pir.f	759 prf.:	1464 pir.1	234	507	453	+=		_	402	633 pir	939 pir	5	+-	597	789 sp	804		1173 II	954 9
45		Terminal ORF	+	<u>"</u>	203541 3471	207007 19	209210 75	92	211535 2	╌	5	3 2	; ;		214522 4	215159 6	215162	216605	3	216116	217141	+-		220151	220154
		_	(E)		207011 2	208989 2	209968	L	211768	┺	4	-ļ-	000717		214121	214527	216100	19095	410704	216712	217929	246746	04/017	218979	221107
50		SEO		3712 20	3713 20	3714 20	3715 20		2717			<u>. </u>		3/21 2	3722 2	3723 2	3724 2		3/52	3726	7275		3/20	3729	3730
		0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	212 3	213 3	214 3	215 3		217 -	-1				177	222	223		- † -	225	226	727		822	229	230

.

	Function		probable electron transfer protein	amino acid carrier protein		molybdopterin biosynthesis protein moeB (sulfurylase)	molybdopterin synthase, large subunit	molybdenum cofactor biosynthesis protein CB	co-factor synthesis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	molybdate-binding periplasmic protein	molybdopterin converting factor subunit 1	maltose transport protein	hypothetical membrane protein	histidinol-phosphate aminotransferase			
	Matched length (a.a.)		78	475		368	150	158	154	377	227	256	96	365	121	330			
	Similarity (%)		51.0	75.8		70.1	75.3	63.3	84.4	58.6	70.5	68.0	70.8	8.09	76.9	65.8			
	Identity (%)		35.0	46.7		43.8	44.7	33.5	61.7	34.5	44.1	34.0	37.5	34.3	36.4	37.3			
Table 1 (continued)	Homologaus gene		Mycobacterium luberculosis H37Rv Rv3571	Bacillus subtilis alsT		Synechococcus sp. PCC 7942 moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp. PCC 7942 moaCB	Arthrobacter nicotinovorans moaC	Arthrobacter nicolinovorans moeA	Arthrobacter nicotinovorans modB	Arthrobacter nicotinovorans modA	Mycobacterium tubercutosis H37Rv moaD2	Thermococcus litoralis malK	Streptomyces coelicolor A3(2) ORF3	Zymomonas mobilis hisC			
	db Match		PIR:A70606	sp:ALST_BACSU		gp:SYPCCMOEB_	pri:2403296D	sp:MOCB_SYNP7	prf:2403296C	gp:ANY10817_2	prf.2403296F	prf:2403296E	pir.D70816	prf.2518354A	sp:YPT3_STRCO	Sp:HIS8_ZYMMO			
	ORF (bp)	582	297	1476	808	1083	456	471	468	1185	723	804	321	912	420	1023	906	294	120
:	Terminal (nt)	221131	222207	222210	225244	225242	226312	226760	227218	227703	228891	229711	230928	230931	231848	232260	234818	234910	235409
	Initial (nt)	221712	221911	223685	224336	226324	226767	227230	227685	228887	229613	230514	230608	231842	232267	233282	233913	235203	235290
	SEO NO. (a.a.)	3731	3732	3733	3734	3735	3736	3737	3738	3739	3740	3741	3742	3743	3744	3745	3746	3747	3748
	SEQ NO. (DNA)	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248

EP 1 108 790 A2

		Т	Т		Γ	Ι –	_		Τ	\neg		T	Т	T	T		T		T		T								
5		Function		nase		ansporter		potranennitar				u:	protein			nort protein	מוני לווני ל	osylitansierase	nbrane protein				ynthetase						
10		Fun	transcription factor	alcohol dehydrogenase	autroccine oxidase	puriessing ion fransporter	The state of the s		Na/dicalboxylate con circle	oxidoreductase		hypothetical protein	nitrogen fixation protein			niabout transment profein	memorane uans	queuine tRNA-ribosyitransierase	hypothetical membrane protein			ABC transporter	qlutamyl-tRNA synthetase			transposase			
15		Matched length (a.a.)	252	335	_	\top	444		567	317		160	144			1	997	400	203			526	316			980			
20		Similarity (%)	57.1	0 89	3	38.1	68.5		59.6	69.1		73.8	70.1				45.7	68.0	62.1			49.6	63.3	3		55.0			
		Identity (%)	29.4	2	2. P	21.5	30.9		33.2	46.1		48.8	45.1				20.7	41.3	28.1			24.3	9 76	34.0		34.2			
25	ned)			hilus		٥	밀			ulosis		ulosis	End				vilosis 2					My sage	Scells sure			ae tnpA			
30	Table 1 (continued)	Homologous gene	Syry Subode -11-	rucella abolicas orgici	Bacillus steatotilening	Micrococcus rubens puo	Borrelia burgdorferi mgtE		Xenopus laevis	Mycobacterium tuberculosis	H37Rv tyrA	Mycobacterium tuberculosis	HS/ KV KVS/ SSC	Stauyinizoomin Jepon			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	7 vmomonas mobilis	Darillus subtilis vodP	To compo			Streptomyces glaucescens sirve	Bacillus subtilis gltX		Pseudomonas syringae tnpA			
35			1	\top					Ť			-	1		1			Т	T-					SS		CBAD_			
40		db Match		gp.BAU81286_1	sp:ADH2_BACST	Sp. PUO MICRU	ort.2305239A		A041005040	pil. 2.320 1.10	pir.C70800	nir B70800		gp.RHBNFXP_1			Sp:YV34_MYCTU		_	Sp. YPUP_BACSU				sp:SYE_BACSU		gp:PSESTBCBAD_	_		-
		ORF	â B	292	1017	Ş					1020	522	376	417	201	351	2403		7,03		<u>8</u>	648	1437	879	980	1110			38
45		Terminal	(nt)	235451	237342	220445	230143		239940	241515	241883	243434	743431	243910	244215	244816	247304		248572	248557	250507	249722	251939	252830	252830	↓	-+-	┰	256204
50		Inițial	£	236212	236326		23/345	270027	239772	239986	242902	978	242910	243494	244015	244466				249294	249428	250369	250503					255/34	3770 256067
		SEQ	(a, c)	3749	3750					3754	3755		3756	3757	3758	3759	3760	3	3761	3762	3763	3764	3765	_	_	_			
55		-	ON SO		+ -			727	\neg	554	255	\neg	256	257	258	259	3 . 6	707	261	262	263	264	285	266	787	896	3	569	270

				/me tau					iide	hain	ii				srnative					ansport
	Function	aspartate transaminase		DNA polymerase III holoenzyme tau subunit		hypothetical protein	recombination protein	cobyric acid synthase	UDP-N-acetylmuramyl tripeptide synthetase	DNA polymerase III epsilon chain	hypothelical membrane protein	aspartate kinase alpha chain			extracytoplasmic function alternative sigma factor	vegetative catalase			leucine-responsive regulatory protein	branched-chain amino acid transport
	Matched length (a.a.)	432		642		101	214	248	444	346	270	421			189	492			143	203
	Similarity (%)	100.0		53.1		74.3	72.4	61.7	60.6	55.2	100.0	99.8			63.5	76.4			72.0	68.0
	Identity (%)	98.6		31.6		41.6	42.5	38.3	31.3	25.7	100.0	99.5			31.2	52.9			37.1	30.5
Table 1 (continued)	Homologous gene	Brevibacterium lactofermentum aspC		Thermus thermophilus dnaX		Baciflus subtilis yaaK	Bacillus subtilis recR	Heliobacilius mobilis cobQ	Heliobacillus mobilis murC	Mycobacterium tuberculosis H37Rv dnaQ	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum lysC-alpha			Mycobacterium smegmatis sigE	Bacillus subtilis katA			Klebsieila pneumoniae Irp	Bacillus subtilis 1A1 aziC
	db Match	gsp:W69554		gp:AF025391_1		sp:YAAK_BACSU	sp:RECR_BACSU	prf:2503462B	pri.2503462C	pir:H70794	sp:YLEU_CORGL	sp:AKAB_CORGL			prf.2312309A	sp:CATV_BACSU			sp:LRP_KLEPN	sp:AZLC_BACSU
	ORF (bp)	1296	630	2325	717	309	654	750	1269	1080	867	1263	1053	1434	579	1506	342	291	462	753
	Terminal (nt)	257894	258529	260875	258596	261295	262055	262546	263298	264599	268258	270633	269524	273194	273542	275871	276232	275957	276302	277581
	Initial (nt)	256599	257900	258551	259312	260987	261402	263295	264566	265678	269124	269371	270576	271781	274120	274366	275891	276247	276763	276829
	SEQ NO. (a.a.)	3771	3772	3773	3774	3775	3776	3777	3778	3779	3780	3781	3782	3783	3784	3785	3786	3787	3788	3789
İ	SEQ NO.	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287		289

EP 1 108 790 A2

5		Function			metalloregulatory protein	arsenic oxyanion-translocation pump	membrane subunit	arsenate reductase				Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter	Na+/H+ antiporter or multiple	resistance and pH regulation related protein A				transcriptional activator	two-component system sensor histidine kinase	alkaline phosphatase		phosphoesterase	hypothetical protein	
15		Matched length (a a)			06 06	341	1	119 ar				503 F	119 N	Z	824 re				223 tr	521 h	180		307	149	1
20		Similarity (%)			689	6,6	84.2	68.9				70.4	70.6		64.3				70.4	56.8	60.0		54.7	71.8	
		Identity (%)			34.4		52.2	31.1				32.4	37.0		34.1				38.6	26.7	28.3		26.1	37.6	
25	Table 1 (continued)			- *	And and	Var elect	As4 arsB	ylosus arsC				F4 mrpD	Jun Ph	aciens immi	Р4 mrpA				ophus CH34	tuberculosis	tis MG1363 apl		vkuE	Your	yder
30	Table 1 (Homologous gene				Sinorhizobium sp. Ast disin	Sinorhizobium sp. As4 arsB	Staphylococcus xylosus arsC				Bacillus firmus OF4 mrpD		Staphylococcus agrees minic	Bacillus firmus OF4 mrpA				Alcaligenes eutrophus CH34 czcR	Mycobacterium tuberculosis mtrB	Lactococcus lactis MG1363 apl		Bacillus subtilis vkuE	o philis	Bacillus subillis yer
<i>35</i>		db Match			1	gp:AF178758_1	gp:AF178758_2	SP. ARSC_STAXY				gp:AF097740_4		prf.2504285D	gp:AF097740_1				sp:CZCR_ALCEU	prf.2214304B	so APL LACIA		nir D60865	11.003000	sp:YQEY_BACSU
		ORF (bp)	3	324	_+	345 gp	1080 gp	387 sp	$\overline{}$	1 5	2 2		-	381 P	2886 91	1485	603	864	999	1467 p	603	_		_	453 s
45		Terminal O	÷,	4		278388	279893	280279	ę	╁		281404	-	282937	283317	287857	929	287966	289131	289777	_		59762	4	293991
50		Initial (nt)		277581	278301	278732	278814	279893	99000	20000	280939	281401		283317	286202	286373	287661	288829	289796	291243	204045	20167	291833	293511	293539
50		SEO	÷	3790 2	3791 2	3792	3793					3797		3799	3800	3801	-	-		3805	9000	3000		88	3809
				290	291	1	293		7		296			299	300	301	302	33	304	305	3	3	307	8	309

													,								
	Function	class A penicillin-binding protein(PBP1)	regulatory protein		hypothelical protein	transcriptional regulator	shikimate transport protein		long-chain-fatty-acid-CoA ligase	transcriptional regulator	3-oxoacyl-(acyl-carrier-protein) reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein	hydrolase			cAMP receptor protein		ultraviolet N-glycosylase/AP lyase	cytochrome c biogenesis protein
	Matched length (a.a.)	782	1.2		20	149	440		534	127	251	254	394	153	272			207		240	211
	Similarity (%)	1.77	63.4		96.0	89.9	68.9		59.9	65.4	72.5	52.0	66.5	72.6	72.4			65.7		77.1	58.3
	Identity (%)	48.3	40.9		84.0	65.1	37.3		31.1	33.9	41.0	27.2	38.8	45.8	41.2			30.9		57.5	34.6
Table 1 (continued)	Hamologous gene	Mycobacterium leprae pon1	Streptomyces coelicolor A3(2) whiB		Streptomyces coelicolor A3(2) SCH17.10c	Mycobacterium tuberculosis H37Rv Rv3678c	Escherichia coli K12 shiA		Bacillus subtilis IcfA	Streptomyces coelicolor A3(2) SCJ4.28c	Bacilius subtilis fabG	Emericella nidulans fluG	Arabidopsis thaliana atg6	Rhizobium leguminosarum nodN	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
	db Match	prf.2209359A	pir:S20912		gp:SCH17_10	pir:G70790	sp:SHIA_ECOLI		1536 sp.LCFA_BACSU	gp:SCJ4_28	sp:FABG_BACSU	sp:FLUG_EMENI	prf:2512386A	Sp:NODN_RHILV	pir.F70790			prf.2323349A		sp:UVEN_MICLU	pir:870790
	ORF (pg)	2385	339	192	153	459	1353	609	1536	525	933	942	1194	471	843	1173	705	681	192	780	558
	Terminal (nt)	294004	297402	297622	297783	298250	298332	300695	299726	301512	303099	304074	305263	305758	306700	305195	307504	306782	307727	308734	309302
	Initial (nt)	296388	297064	297431	297631	297792	299684	280008	301261	302036	302167	303133	304070	305288	305858	306367	306800	307462	307918	307955	308745
	SEQ NO. (a.a.)	3810	3811	3812	3813	3814	3815	3816	3817	3818	3819	3820	3821	3822	3823	3824	3825	3826	3827	3828	3829
	SEQ NO. (DNA)	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329
								-													

EP 1 108 790 A2

	_					_					т-				$\neg \neg$		Т	Т		Т		١.
5		tion					rane protein	sphatase	_	egion protein		orane protein	c	E			NA belicase	Separati Chi			1881	
10		Function	hypothetical protein	serine proteinase	selinic production	epoxide ily di carac	hypothetical membrane protein	phosphoserine phosphatase	hypothetical protein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein			ATA Appropriate DNA helicase	Al F-uependent	cold shock protein		DNA topoisomerase I	
15		Matched length (a.a.)	192	306		780	156	287	349	319		262	201	59			195	6	67		977	
20		Similarity (%)	56.3	7	9.7	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8				06.1	1.88		81.6	
		Identity (%)	30.7		38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5		1		33.8	68.7	_	61.7	
25	(D;			Į,	,	핆	is:		sis			sis	sis	sis					SISS		sis	
	Table 1 (continued)	Homologous gene	Separation of K12 veaB	the potenting tuberculosis	Mycobacterium tuber curs. H37Rv Rv367 i c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis SI55 csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
<i>35</i>		Ę.	\top	\top														BACSU	RTGO		5	
40		db Match		sp:YEAB_ECUL	pir.H70789	prf:2411250A	pir.F70789	pir.S72914	pir.E70788	pir.C44020		pir.C70788	pir.B70788	pir.A70788				sp:YPRA_BACSU	sp:CSP_ARTGO		2988 pir.G70563	
		ORF Jag		699	1191	993	549	996	1023	1023	615	816	546	198	318	414	345	2355	201	225	+	7
45		Terminal		310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
50		Initial		309370	310135	312891	313457	314590	314980				317920	318492	318696	318958	318991	321690		322216		325904
		SEO	(a.a.)	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	1	3846		3848
55		© ⊙	(¥	30	31	3	133	34	335	92	3 2	338	339	340	341	342	343	344	345	346	347	348

	Т										r—			-				_	,	_	
	Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	hypothetical protein	ribosomal large subunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycothiol-dependent formaldehyde dehydrogenase		metallo-beta-lactamase superfamily	3-oxoacyl-(acyl-carrier-protein) reductase	valanimycin resistant protein	dTDP-glucose 4,6-dehydratase	hypothetical protein	dolichol phosphate mannose synthase		nucleotide sugar synthetase	UDP-sugar hydrolase	
	Matched length (a.a.)	263	423		144	172	314	558	101	362		160	251	415	320	108	230		260	586	
	Similarity (%)	62.4	52.7		59.0	63.4	65.0	60.2	61.4	86.5		47.5	8:55	56.4	66.3	88.9	66.5		57.3	54.4	
	Identity (%)	32.7	25.3		32.6	39.0	43.6	34.8	38.6	9.99		32.5	25.9	26.3	33.8	59.3	33.9		25.8	26.1	. :
Table 1 (continued)	Homologous gene	Stigmatella aurantiaca B17R20 cyaB	Bacilius subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinla chrysanthemi D1 bgxA	Azospirillum irakense salB	Amycolatopsis methanolica		Rhodococcus erythropolis orf5	Escherichia coli K12 fabG	Streptomyces vindifaciens vlmF	Actinoplanes sp. acbB	Mycobacterium tuberculosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222		Escherichia coli K12 yelJ	Salmonella typhimurium ushA	
	db Match	sp:CYAB_STIAU	sp:DP3X_BACSU		9p:AE002103_3	gp:AE001882_8	sp:Rtuc_Ecoti	SP:BGLX_ERWCH	9p:AF090429_2	sp:FADH_AMYME		sp:YTH5_RHOSN	sp:FABG_ECOLI	gp:AF148322_1	prf.2512357B	pir.A70562	sp:YC22_METJA		sp:YEFJ_ECOLI	sp:USHA_SALTY	
	ORF (bp)	1041	1257	162	444	561	882	1644	1989	1104	621	537	699	1230	933	375	759	1029	1035	2082	162
	Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	334953	336112	335185	336748	337449	338768	339725	340195	340569	342375	343451	345717	345814
	Initial (nt)	327735	328283	329748	329933	330973	331552	332919	332965	335009	335805	336212	336781	337539	338793	340569	341327	341347	342417	343636	345975
	SEQ NO. (8.8.)	3849	3650	3851	3852	3853	3854	3855	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868
	SEQ NO.	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368

EP 1 108 790 A2

5		Function	lodoole trobacter and	dehydrogenase	glucose-1-phosphate thymidylyltransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		Ciotaga Caranta	hypothetical memorane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane protein	and a section	cell surface layer process	autophosphorylating protein 1 yr kinase	protein phosphatase		capsular polysaccharide biosynthesis	ORF 3	incontractoride biosynthesis /	aminotransferase
15	Pode	Marched length (a.a.)		343 deh	285 glut	192 dTE	343 dTt	206 NA	325 Fe			423 hyp	461 me	708 pro		258 hy		363	453 gu	102 pr		613 ca	0	T	394 ar
20		Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5			68.3	62.5	56.4		46.0		76.6	57.2	68.6		65.7	51.0		68.3
		Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2			37.4	34.1	28.4		26.0		50.7	28.5	39.2		33.0	4	?	37.1
25	ned)			osis	щрА	일	C mB	XOU	sirA			osis	_	ta		r A3(2)		5872	ptk	i ptp		M capD			ЛаК
30	Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Ctrantococcus mutans milC	Streptococcus mutans XC rmlB	Thermis adilaticile HBB nox	Stanhylococcus aureus sirA			Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A, 19c	Sphingomonas capsulata		Ctrontomyces coelicolor A3(2)	ileptolityces comen	Corynepacterium ammoniagenes ATCC 6872	Acinetobacter johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD		Vibrio cnolerae	Campylobacter jejuni właK
35		<u> </u>	: i		1_	十	-	_	\top	1	1			S		0	2 0	<u>ة د</u>	▼	<		 	\neg		-
40		db Match		SP:ADH_MYCTU	SP. RFBA SALAN	20.000	99:078182.3	Sp: KMLB SI RING	Sp:NOX_INEIN	O1000107110		sp:Y17M_MYCTU	gp:SC5F2A_19	orf 2502226A		0 67.100	gp:5Cr43_2	gsp:W56155	prf.2404346B	orf.2404346A		Sp.CAPD STAAU		PRF:2109288X	prf:2423410L
		ORF (bp)	351	1 _	855 8						639	1308	1380	2118			1092	1095	1434	603	8	1812		942	1155
45		Terminal (nt)	348110	346961	348098		348952	350313	351370	35363/	353749	354599	355849	157237	102.02.0	70/600	360814	362057	365257	365852	95035	369642	2	367701	369801
50		Initial (nt)	346460	348019	148952	-	350310	351443	351948	352693	354387	355906	357228	250354			361905	363151	363824	365250		266622		368642	368647
		SEO NO.	+-				3872	3873			3876	3877	3878	02.00		3880	3881	3882	3883	2004	5 6	3885	3880	3887	3888
55		SEO NO.		370		- i	372	373			376	377	378	02.0	S/S	380	381	382	383	196	5 3	G S	380	387	388

	Function	pilin glycosytation protein	capsular polysaccharide biosynthesis	lipopolysaccharide biosynthesis / export protein	UDP-N-acetylglucosamine 1-carboxyvinyltrensferase	UDP-N- acetylenolpyruvoylglucosamine reductase	sugar transferase	transposase		transposase (Insertion sequence IS31831)		hypothetical protein	acetyltransferase .	hypothetical protein B	UDP-glucose 6-dehydrogenase			glycosyl transferase	acetyltransferase	
	Matched length (a.a.)	196	380	504	427	273	356	53		02		404	354	65	388			243	221	
	Similarity (%)	75.0	69.2	8.69	64.6	68.5	6.73	79.3		94.3		57.4	60.2	53.0	89.7			65.0	62.0	
	Identity (%)	54.6	33.4	34.3	31.4	34.8	32.0	60.4		75.7		28.0	34.5	44.0	63.7			32.1	33.0	
Table 1 (continued)	Homologous gene	Neisseria meningitidis pglB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA	Bacillus subtilis murB	Vibrio cholerae ORF39x2	Corynebacterium glutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas aeruginosa PAO1 psbC	Corynebacterium glutamicum	Escherichia coli ugd			Escherichia coli wbnA	Escherichia coli 0157 wbhH	
	db Match	gp:AF014804_1	sp:CAPM_STAAU	pir.S67859	sp:MURA_ENTCL	sp:MURB_BACSU	gp:VCLPSS_9	prf.2211295A		pir.S43613		pir.G70539	gsp:W37352	PIR: S60890	sp:UDG8_ECOLI			gp:AF172324_3	gp:AB008676_13	
	ORF (bp)	612	1161	1491	1314	1005	1035	150	135	327	276	1170	993	231	1161	273	1209	822	645	195
	Terminal (nt)	370405	371773	373419	374813	375837	376876	377832	378227	378511	378287	378668	379850	381495	383108	383496	383982	385374	387200	387463
	Initial (nt)	369794	370613	371929	373500	374833	375842	377683	378093	378185	378562	379837	380842	381265	381948	383768	385190	386195	386556	387657
	SEQ NO. (a.a.)	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903	3904	3905		3907
į	SEO NO.	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	

EP 1 108 790 A2

5		Function	dihydrolipoamide dehydrogenase	UTP-glucose-1-phosphate uridylytransferase	and a protein	and topping	transcriptional regulator	cytochrome b subunit	succinate dehydrogenase flavoprotein	succinate dehydrogenase subunit B						oietora lectional	hypothetical protein	nypourement process		tetracenomycin C transcription	repressor	reacconter	l dispose
15	Matched		469	295			477	230	809	258						1	ec.	431		1	19/	1	5
20	_	Similarity (%)	100.0	68.1		71.9	81.3	67.4	61.2	56.2							49.8	64.3			53.8	;	(4.6
		Identity (%)	9.66	41.7		43.8	57.0	34.8	32.4	27.5							26.3	32.7			78.4		38.1
25	lunea)	еле	amicum	ctric	70	nosa raci	culosis	olor A3(2)		ane edhB						1	:0101	Nijk 2			Secens	T#2247	00 1 1 2 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum	ATCC 13032 Ipa	שוויסוווסוווסו	Pseudomonas aeruginosa PAO I orfX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicalor A3(2)	Some sublike adbA	Sections solling	Paenibaciius inacei dia						Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA 0 tcmR	4	Streptomyces Italiae 1#21 10
35			8	₹ ;	2		ŽÏ	100 0	5 6	_		+	+	+	\top	1	0, 0,						
40		db Match	0.00	gp:corru_1	pir.JC4985	gp:PAU49666_2	pir.E70828	ap:SCM10 12		pir.A27763	gp.BMSDHCAB_4						gp:SCC78_5	Sp.YJIN_ECOL			sp:TCMR_STRGA		gp:AF164961_8
		ORF		140/	921 p	498	1422	771		1875	$\overline{}$	336	261	630	8	339	975	1251	420	303	678	204	1647
45		16		389098	390168	390730	390787	202475	2 12 2	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150	401253	402796
50		Initial	(E)	387692	389248	390233	302208	3 3	297/02	393639	395426	396315	396672	397040	397730	397884	398206	398329				401050	401150
		SEO	(a.a.)	3908	3909	3910			3912	3913	3914	3915	3916	-	3918	3919		3024	3922	3923	3924	3925	3926
55		SEQ	$\overline{}$	408	409	410		$\neg \neg$	412	413	414	415	416	417	418	419	420	5	422	423	424	425	426

Natched Control Cont							Table 1 (continued)				
9.2.7. 402799 404430 1632 gp.AF164961_8 Streptomyces fradiae T#2717 39.6 74.6 508 1 39.7 402799 402430 1632 gp.AF164961_8 Streptomyces fradiae T#2717 39.6 74.0 286 f 39.2 405480 405145 666 sp.DEOC_BACSU Bacillus subtilis deoC 38.5 74.0 208 7 39.1 405410 406141 150 ADTA1341K Mycobacterium avium GIR10 26.8 53.6 280 f 39.3 406417 405521 897 Prt.2413441K Mycobacterium avium GIR10 26.8 53.6 280 f 39.3 407708 407416 867 prt.2413441K Mycobacterium diptiliteriae 58.7 75.3 74.8 7 39.3 407708 407711 2265 sp.CTPB_MYCLE Mycobacterium diptiliteriae 57.2 83.6 34.8 39.3 410476 407711 2663 sp.CTPB_MYCLE Mycobacterium diptiliteriae	g o	SEO	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Hamologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
3328 405419 401-508 912 SP-DNRU_CORSP Conynebacterium sp. P-1 purU 40.9 72.7 286 3329 405480 405408 912 sp.DURU_CORSP Conynebacterium sviull GlR10 38.5 74.0 208 3320 405400 405611 150 Apple COLORSP Conynebacterium sviull GlR10 26.8 53.6 280 1 3931 405417 40551 867 prt.2413441K Mycobacterium svium GlR10 26.8 53.6 280 1 3933 407708 407416 867 prt.2413441K Mycobacterium leprae clpB 45.7 75.3 748 3934 407708 407411 2265 sp.CTPB_MYCLE Mycobacterium leprae clpB 45.7 75.3 748 3935 410476 410027 450 pr.AMYH_YEAST Sacchatomyces cerevisiae 57.2 83.6 36.1 626 3936 413643 414710 1068 gp.AF109162_2 Corynebacterium diphtheriae 63.6 58.6 5		(a a.)	402799	404430		qp.AF164961_8	Streptomyces fradiae T#2717	39.6	74.6	508	transporter
328 40549 912 spPURC_CORSP Conversacte lumin sp. 1 pp. 2 74.0 208 3929 405480 404508 912 spPURC_CORSP Conversacte lumin sp. 1 pp. 2 38.5 74.0 208 3920 405480 406161 150 Conversacte lumin savium GIR10 26.8 53.6 280 1 3931 40617 405161 150 Mycobacterium luberculosis 58.7 85.9 92 1 3932 4061708 407408 300 pir.A70907 Hygobacterium luberculosis 58.7 85.9 92 1 3933 407708 407111 2265 sp:CTPB_MYCLE Mycobacterium leprae ctpB 45.7 75.3 748 3934 410476 410707 450 sp:CTPB_MYCLE Mycobacterium leprae ctpB 45.7 75.3 748 3936 410676 410707 450 sp:CTPB_MYCLE Mycobacterium leprae ctpB 45.7 75.3 748 3936 410676 410776 41094076 41094076	. 1	1765	201			1	Oracle Continue on Del Parit	40.9	72.7	286	formyltetrahydrofolate deformylase
3928 405480 406145 666 sp.DEOC_BACSU Bacillus subtils deoC 36.3 74.0 20.0 3930 406310 406161 150 Amyobacderium avium GIR10 26.8 53.6 28.0 14.0 3931 40617 40551 897 Amyobacderium avium GIR10 26.8 53.6 28.0 18.0 3932 406550 407416 867 pr.2413441K Mycobacderium tuberculosis 58.7 85.9 28.0 18.0 3934 407708 40711 2265 sp:CTPB_MYCLE Mycobacderium leprae ctpB 45.7 75.3 74.8 3934 410864 407409 30 pirA70907 Mycobacderium leprae ctpB 45.7 75.3 74.8 3934 410683 410274 4863 sp:CATPB_MYCLE Mycobacderium leprae ctpB 45.7 75.3 74.8 3934 410683 410274 41663 41774 41863 sp:AF109162_3 Corynebacterium diphtheriae 65.4 26. 39	88	3928	405419	404508	_	7	Corynebacterium sp. r-1 puro		3.6	anc	Acovirbose-phosphate addolase
3930 406161 150 Mycobadcerium avium GIR10 26.8 53.6 280 3931 406510 407416 867 prt.2413441K Mycobadcerium avium GIR10 26.8 53.6 280 1 3932 406550 407416 867 prt.2413441K Mycobadcerium tuberculosis 58.7 85.9 92 1 3934 40708 40711 2265 sp.CTPB_MYCLE Mycobadcerium leprae cpBB 45.7 75.3 748 3936 410476 400711 2265 sp.CTPB_MYCLE Mycobadcerium leprae cpBB 45.7 75.3 748 3936 410476 410271 2265 sp.CTPB_MYCLE Mycobadcerium leprae cpBB 57.2 83.6 85.0 56.1 3936 410476 410277 410683 sp.CTPB_MYCLE Mycobadcerium leprae cpBB 57.2 83.6 83.6 65.6 56.1 626 178 3937 410683 412545 1863 sp.AF109162_2 hmuU 27.3 56.1	53	3929	405480	406145		\neg	Bacillus subtilis deoC	38.5	(4.0	907	מביל אונים ביל
3931 406417 405521 897 Mycobadcrium avium GIR10 26.8 53.6 280 1 3932 406550 407416 867 prt.2413441K Mycobadcrium tuberculosls 58.7 58.9 92 I 3932 407708 407409 300 pir.A70907 H37Rv Rv0190 58.7 75.3 748 92 I 3934 408546 407711 2265 sp:CTPB_MYCLE Mycobadcrium teprae dpB 45.7 75.3 748 78 3936 410476 410027 450 A50 CROTARD CALL CALL CALL CALL CALL CALL CALL CAL	30	3930	406310	406161	150						
3932 406550 407416 867 prt.2413441K Mycobacterium avium GIR10 26.8 53.6 280 1 3933 407708 407409 300 pir.A70907 Hyrobacterium tuberculos1s 58.7 85.9 92 1 3934 407708 407145 600 Mycobacterium tuberculos1s 58.7 75.3 748 92 1 3935 408546 409145 600 Mycobacterium tuberculos1s 58.7 75.3 748 92 1 3936 410476 410027 450 Mycobacterium diphtheriae 57.2 83.6 348 3937 410683 412545 1863 5p.AF109162_1 Grynabacterium diphtheriae 57.2 83.6 348 3939 413543 414710 1068 gp.AF109162_2 Grynabacterium diphtheriae 63.8 85.0 254 3940 414714 415526 813 gp.AF109162_3 Corynabacterium diphtheriae 63.8 85.0 254 3941	31	3931	406417	405521	897						
3933 407708 407409 300 pir.A70907 Mycobacterium tuberculosIs 58.7 85.9 92 3934 408546 409145 600 Annana Annana Afs.7 75.3 748 3935 409975 407711 2265 sp:CTPB_MYCLE Mycobacterium leprae ctpB 45.7 75.3 748 3936 410476 410027 450 Annana	32	3932	1	407416	867	prf.2413441K	Mycobacterium avium GIR 10 mav 346	26.8	53.6	280	hypothetical protein
3934 408546 409145 600 Mycobacterium leprae ctpB 45.7 75.3 748 3935 409975 407711 2265 sp:CTPB_MYCLE Mycobacterium leprae ctpB 45.7 75.3 748 3936 410476 410027 450 sp:CTPB_MYCLE Mycobacterium diphtheriae 27.3 56.1 626 3937 410683 412545 1863 sp:AMYH_YEAST Saccharomyces cerevisiae 27.3 56.1 626 3938 412557 413633 1077 gp:AF109162_1 fmuV fmuV fmuV fmuV 3940 414714 415526 813 gp:AF109162_3 forynebacterium diphtheriae 63.8 85.0 254 3941 416643 414710 1068 gp:AF109162_3 forynebacterium diphtheriae 63.8 85.0 254 3941 415643 416599 957 gp:SCC75A_17c Streptomyces coelicobr C75A 32.6 61.6 258 3943 418541 813 gp:SCC	33	3933	1	407409	330		Mycobacterium tuberculosis H37Rv Rv0190	58.7	85.9	92	hypothetical protein
3935 40975 407711 2265 sp.CTPB_MYCLE Mycobacterium leprae cpB 45.7 75.3 748 3936 410476 410027 450 A.0 A.0<	25	2074	4—	409145	009						
3936 410476 410027 450 Saccharomyces cerevisiae 27.3 56.1 626 3937 410683 412545 1863 sp.AMYH_YEAST Saccharomyces cerevisiae 27.3 56.1 626 3938 412557 413633 1077 gp.AF109162_1 Corynebacterium diphtheriae 65.2 90.3 330 3939 413643 414710 1068 gp.AF109162_3 Corynebacterium diphtheriae 63.8 85.0 254 3940 414714 415526 813 gp.AF109162_3 hmuJ Corynebacterium diphtheriae 63.8 85.0 254 3941 415643 416599 957 gp.SCC75A_17 Streptomyces coelicolor C75A 28.6 56.4 266 3942 416603 417445 810 SCC75A_17 SCC75A_17c A1835A 417545 810 A1835A 41835A 41835A 41835A 418441 813 A19253 501 A19257 A19257 A19257 A19257 A19257 A19257 </td <td>3.</td> <td>3935</td> <td></td> <td>407711</td> <td>2265</td> <td></td> <td>Mycobacterium leprae ctpB</td> <td>45.7</td> <td>75.3</td> <td>748</td> <td>cation-transporting P-type A I Pase B</td>	3.	3935		407711	2265		Mycobacterium leprae ctpB	45.7	75.3	748	cation-transporting P-type A I Pase B
3937 412545 1863 sp:AMYH_YEAST Saccharomyces cerevisiae 27.3 56.1 626 3938 412557 413633 1077 gp:AF109162_1 hmuT Corynebacterium diphtheriae 57.2 83.6 348 3939 413643 414710 1068 gp:AF109162_2 Corynebacterium diphtheriae 65.2 90.3 330 3940 414714 415526 813 gp:AF109162_3 Corynebacterium diphtheriae 63.8 85.0 254 3941 415643 416599 957 gp:SCC75A_17 Streptomyces coelicobr C75A 28.6 56.4 266 3942 416603 417439 837 gp:SCC75A_17 Streptomyces coelicobr C75A 32.6 61.6 258 3943 418253 418441 813 57 Streptomyces coelicobr C75A 32.6 61.6 258 3945 419253 418441 813 50 50 50 50 50 50 50 50 50 50	3 g	3036		410027	450						
3938 412557 413633 1077 gp.AF109162_1 Conynebacterium diphtheriae 57.2 83.6 348 3939 413643 414710 1068 gp.AF109162_2 Corynebacterium diphtheriae 65.2 90.3 330 3940 414714 415526 813 gp.AF109162_3 Corynebacterium diphtheriae 63.8 85.0 254 3941 415643 416599 957 gp.SCC75A_17 Streptomyces coelicolor C75A 28.6 56.4 266 3942 416603 417439 810 SCC75A_17 SCC75A_17c 61.6 258 3944 419253 418441 813 810 SCC75A_17c <	3 18	3937	_ !	412545	1863	Sp. AMYH_YEAST	Saccharomyces cerevisiae S288C YIR019C sta1	27.3	56.1	979	glucan 1,4-alpha-glucosidase
3939 413643 414710 1068 gp.AF109162_3 Conynebacterium diphtheriae 65.2 90.3 330 3940 414714 415526 813 gp.AF109162_3 Conynebacterium diphtheriae 63.8 85.0 254 3941 415643 416599 957 gp.SCC75A_17 Streptomyces coelicolor C75A 28.6 56.4 266 3942 416603 417439 837 gp.SCC75A_17 Streptomyces coelicolor C75A 32.6 61.6 258 3943 418354 417545 810 SCC75A.17c SCC	38	3938	'	413633	1077		Corynebacterium diphtheriae hmuT	57.2	83.6	348	hemin-binding periplasmic protein
3940 414714 415526 813 gp.AF109162_3 Corynebacterium diphtheriae 63.8 85.0 254 3941 415643 416599 957 gp.SCC75A_17 Streptomyces coelicobr C75A 28.6 56.4 286 3942 416603 417439 837 gp.SCC75A_17 Streptomyces coelicobr C75A 32.6 61.6 258 3943 418253 418441 813 813 813 814 813 814 813 814 814 813 814 814 813 814 814 813 814 </td <td>95</td> <td>3939</td> <td></td> <td>414710</td> <td>1068</td> <td></td> <td>Corynebacterium diphtheriae hmuU</td> <td>65.2</td> <td>90.3</td> <td>330</td> <td>ABC transporter</td>	95	3939		414710	1068		Corynebacterium diphtheriae hmuU	65.2	90.3	330	ABC transporter
3941 415643 416599 957 gp.SCC75A_17 Streptomyces coelicolor C75A 28.6 56.4 266 3942 416603 417439 837 gp.SCC75A_17 Streptomyces coelicolor C75A 32.6 61.6 258 3943 418354 417545 810 813 81	54	3940		415526	813	gp:AF109162_3	Corynebacterium diphtheriae hmuV	63.8	85.0	254	ABC transporter ATP-binding protein
3942 416603 417439 837 gp.SCC75A_17 Streptomyces coelicofor C75A 32.6 61.6 258 3943 418354 417545 810 813 8	141	3941		416599	957		Streptomyces coelicolor C75A SCC75A.17c	28.6	56.4	266	hypothelical protein
3943 418354 417545 3944 419253 418441 3945 419757 419257	442	3942		417439	837		Streptomyces coelicolor C75A SCC75A.17c	32.6	61.6	258	hypothetical protein
3944 419253 418441 3945 419757 419257	443	3943		417545	810						
3945 419757 419257	444	1	<u> </u>	 	813						
	445	_		<u>: </u>	501						

5	Function	UDP-N-acetylpyruvoylglucosamine reductase				long-chain-fatty-acidCoA ligase	transferase	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response regulator		ABC transporter ATP-binding protein	cytochrome P450	exopolyphosphatase	hypothelical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetical protein	
15	Matched length (a.a.)	356				558	416	246	417	231		921	269	306	302	269	394	55	
20	Similarity (%)	58.4				68.1	58.7	84.2	74.8	6.06		2.09	69.9	57.8	57.3	100.0	52.0	94.6	
	Identity (%)	30.1				35.5	33.9	70.7	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
30 September 1 (Continued)	Homologous gene	Escherichia coli RDD012 murB				s IcfA	coelicolor	Streptomyces coelicolor A3(2) gpm	n bovis senX3	n bovis BCG		Streptomyces coelicolor A3(2) SCE25.30	n tuberculosis 1	Pseudomonas aeruginosa ppx	n tubercutosis 7	Corynebacterium glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	n leprae 2	
	Homolc	Escherichia co				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces gpm	Mycobacterium bovis senX3	Mycobacterium bovis BCG regX3		Streptomyces SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium g ATCC 17965 proC	Equine herpes	Mycobacterium leprae B2168_C1_172	
35	db Match	gp:ECOMURBA_1				sp:LCFA_BACSU	9p:SC2G5_6	sp:PMGY_STRCO	prf.2404434A	prf.2404434B		gp:SCE25_30	sp:YV21_MYCTU	prf:2512277A	sp:YV23_MYCTU	sp.PROC_CORGL	gp:D88733_1	pir.S72921	
	ORF (bp)	101	651	735	174	1704	1254	744	1239	969	879	2586	903	927	813	910	1122	198	219
45	Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	427172	427867	429439	429438	432126	433988	434822	435695	433865	436137	436103
50	Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434010	434886	434986	435940	436321
	SEQ NO.	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963
55	SEQ NO.	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463

						Table 1 (continued)				
SEQ NO.	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
464	3964	436463	436561	66	gp:SCE68_25	Streptomyces coelicolor SCE68 25c	89.7	100.0	29	hypothetical protein
465	3965	436573	436764	192						
466	3966	437233	437850	618						
467	3967	438044	436980	1065	pir.S72914	Mycobacterium leprae MTCY20G9.32C. serB	51.0	77.4	296	phosphoserine phosphatase
468	3968	438179	438424	246	sp:YV35_MYCTU	Mycobacterium tuberculosis H37Rv Rv0508	40.5	66.2	74	hypothetical protein
469	3969	438294	438037	258						
470	3970	438516	439904	1389	SP:HEM1_MYCLE	Mycobacterium leprae hemA	44.4	74.3	455	glutamyHtRNA reductase
471	3971	439909	440814	906	pir.S72887	Mycobacterium leprae hem3b	50.7	75.3	80E	hydroxymethylbilane synthase
472	3972	441220	441591	372						
473	3973	442482	441501	882	Sp.CATM_ACICA	Acinetobacter calcoaceticus catM	27.1	57.6	321	cat operon transcriptional regulator
474	3974	442758	444158	1401	sp:SHIA_ECOLI	Escherichia coli K12 shiA	35.5	72.2	417	shikimate transport protein
475	3975	444185	446038	1854	sp:3SHD_NEUCR	Neurospora crassa qa4	28.2	57.9	60E	3-dehydroshikimate dehydratase
476	3976	446538	447386	849	gp:AF124518_2	Corynebacterium glutamicum ASO19 aroE	98.2	98.6	282	shikimate dehydrogenase
477	2268	447670	447398	273						•
478	3978	449179	448130	1050	sp:POTG_ECOLI	Escherichia coli K12 potG	34.7	68.6	363	putrescine transport protein
479	3979	449714	449100	615						
480	3980	450826	449183	1644	sp:SFUB_SERMA	Serratia marcescens sfuB	25.1	55.2	578	iron(III)-transport system permease protein
481	3981	450849	451961	1113						
482	3982	451895	450837	1059	gp:SHU75349_1	Brachyspira hyodysenteriae bitA	25.1	59.9	347	periplasmic-iron-binding protein
483	3983	452661	454430	1770	pir.S72909	Mycobacterium leprae cysG	46.5	71.6	486	uroporphyrin-III C-methyltransferase
484	3984	454450	454875	426						

EP 1 108 790 A2

5	Function	delta-aminolevulinic acid dehydratase		A Dace A TDace B	cation-transporting r-type Att asc		uroporphyrinogen decarboxylase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2, 1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biogenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein		transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate octaprenyltransferase
15	Matched			1	858		364	464	425	161	208	245	533	338			8		82	301
20	Similarity (%)	83.1			56.5		7.97	59.9	83.5	62.7	71.2	85.3	76.0	8.77		69.4	72.2		78.1	61.5
	Identity (%)	60.8			27.4		55.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
25 Quijuned)	s gene	color A3(2)			rae ctpB		color A3(2)	nΥ	rae hemL	2 gpmB	erculosis	oerculosis	serculosis	oerculosis		oerculosis b5	reus zntR		berculosis	12 menA
so Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2)			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hemY	Mycobacterium leprae hemL	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
35		_						†			ΣI	ΣI	ΣI	≥I		≥I	S		≥ I	T
40	db Match	sp:HEM2_STRCO			sp:CTPB_MYCLE		sp.DCUP_STRCO	sp. PPOX_BACSU	sp:GSA_MYCLE	sp:PMG2_ECOLI	pir.A70545	pir:870545	pir.C70545	pir:D70545		pir.G70790	prt:2420312A		pir.F70545	sp:MENA_ECOL!
	ORF	(op) 1017	582	510	2544	843	1074	1344	1311	909	621	792	1623	1011	801	471	357	စ္တ	333	894
45	Terminal	(nt) 455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	467571	468658	470170	470654	470657	471121	471847	471915
50	Initial	(nt) 454967	456016	456641	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEO			3987			3990	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
55	SEQ	(DNA)		1	_	489		491	492	493	494	495	496	497	498	499	200	Š	502	503

Table 1 (confinued) SEC SEC Initial Terminal ORF db Maich Homologous gene (%)								_		_			_	γ-		_	_		,		
SEQ Initial Terminal ORF db Match Homologous gene (%) (%		Function	glycosyl transferase	malonyl-CoA-decarboxylase	hypothetical membrane protein	ketoglutarate semialdehyde dehydrogenase	5-dehydro 4-deoxyglucarate dehydratase	als operon regulatory protein	hypothetical protein		2-pyrone-4,6-dicarboxylic acid				low-affinity inorganic phosphate transporter			naphthoate synthase	peptidase E	pterin-4a-carbinolamine dehydratase	muconate cycloisomerase
Table 1 (continued) SEQ Initial Terminal ORF db Match Homologous gene (%)			238	421	139	520	303	293	94		267				410			293	202	12	335
Table 1 (continued) SEC Initial Terminal ORF db Match Homologous gene 472948 473811 884 gp.AF125184_6 Bacteroides fagilis wcgB 475486 475487 411 5123 pr.AF125184_6 Bacteroides fagilis wcgB 475486 475489 1560 pr.AF125184_6 Bacteroides fagilis wcgB 475487 471995 411 5p.YQJF_ECOL Escherichia coli K12 yqiF 47009 477995 477048 475489 1560 pr.S27612 Pseudomonas putida KDGDH 477995 477048 948 sp.XDGD_PSEPU Pseudomonas putida KDGDH 478970 478970 478989 315 pir.B70547 Mycobacterium tuberculosis 480124 480526 41139 41131 281 481001 480624 480208 417 481001 480624 481394 481394 481396 481394 481396 4			62.6	51.5	65.5	76.0	9'5'	66.2	64.9		54.7				83.2			70.3	82.7	68.8	7.97
SEQ Initial Terminal ORF db Match (a.a.) (nt) (nt) (bp) (bp) db Match 4004 472948 473811 864 gp:AF125164_6 4005 475136 473814 1323 prt.2423270B 4006 475407 474997 411 sp:YQJF_ECOLI 4007 477048 475489 1560 plr:S27612 4008 477995 477048 948 sp:KOGD_PSEPU 4009 478970 478092 879 sp:ALSR_BACSU 4010 479303 478989 315 pir.B70547 4011 480154 480597 444 4012 480201 479452 750 gp:SSP277295_9 4013 480624 480208 417 4014 481091 480624 378 4015 481391 481131 261 4016 482668 481394 1275 pir.D70547 4017 483587 483637 306 4020 485384 485986 603 gp:AE001957_12 4021 485385 485077 309 pir.C70304 4022 486001 487014 1014 pir.D70548		Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9	33.0		28.1				9.09			48.5	57.9	37.7	54.0
SEQ Initial Terminal ORF (nt) (nt) (nt) (nt) (bp) (do. 472948 473814 1323 4006 475407 474997 411 4005 475408 475489 1560 4010 479303 478989 315 4010 479303 478989 315 4011 480154 480201 479452 750 4013 480201 479452 750 4013 480201 479452 750 4011 481391 481131 261 4015 481391 481394 1275 4017 48386 483366 222 4010 485385 485077 309 4020 485385 485077 309 4021 485385 485071 309	Table 1 (continued)	Нотоlogous gene	Bacteroides fragilis wcgB	Rhizobium trifolii mat8	Escherichia coli K12 yqjF	Pseudomonas putida	Pseudomonas putida KDGDH	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp. LB126 fldB				Mycobacterium tuberculosis H37Rv pitA			Bacillus subtilis menB	Deinococcus radiodurans DR1070	Aquifex aeolicus VF5 phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
SEQ Initial Terminal (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1)		db Maich	gp:AF125164_6		sp:YQJF_ECOU		sp:KDGD_PSEPU	sp:ALSR_BACSU	pir:B70547		gp:SSP277295_9				pir:D70547			sp:MENB_BACSU	gp:AE001957_12	pir.C70304	pir.D70548
SEQ Initial NO. (nt) (a.a.) (nt) 4004 472948 4005 475407 4000 478970 4010 47995 4009 478970 4011 480154 4012 480501 4016 48384 4017 485385 4020 485385 4020 485385 4020 485385 4020 485385 4020 485385 4020 485385		ORF (bp)	864	1323	411	1560	948	879	315	444	750	417	378	261	1275	222	308	957	603	309	1014
SEQ (a.a.) 4004 4005 4006 4007 4009 4010 4011 4011 4011 4011 4011 4011		Terminal (nt)	473811	473814	474997	475489	477048	478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	485077	487014
SEQ (a.a.) 4004 4005 4006 4007 4009 4010 4011 4011 4011 4011 4011 4011		Initial (nt)	472948		475407	477048	477995	478970	479303	480154	480201	480624	481001	481391		483587	483942	485062		485385	
		SEQ NO.	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017				4021	
		SEQ NO.	50	$\overline{}$	909	507	508	509	510	511	512							\neg		\neg	

EP 1 108 790 A2

5		Function	2-oxoglutarate decarboxylase and 2- succinyl-6-hydroxy-2,4- cyclohexadiene-1-carboxylate synthase	hypothetical membrane protein	aipha-D-mannose-aipha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransferase
15	Matched	length (a.a.)	909	148	408	447	237		412	316	Ξ	318	145	236	564	443
20		Similarity (%)	54.0	64.9	54.2	6.68	66.7		76.7	67.1	100.0	100.0	100.0	100.0	50.2	82.4
		Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100.0	100.0	100.0	23.1	60.5
25 30	Communical	ons gene	nenO	uberculosis	uberculosis	K12 cycA	K12 ubiE		tuberculosis	nermophilus pT	n glutamicum cE	m glutamicum ISG	m glutamicum IK	m glutamicum IIA	oelicolor	tuberculosis gabT
30	lage	Homologous gene	Bacilus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 mIK	Corynebacterium glutamicum ATCC 13032 rpIA	Streptomyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
35 40		db Match	1629 sp:MEND_BACSU	pir:G70548	pir.H70548	SPICYCA ECOLI	sp.UBIE_ECOLI		pir.D70549	sp.HEP2_BACST	gp:AF130462_2	gp:AF130462_3	gp:AF130462_4	gp:AF130462_5	gp:SC5H4_2	sp:GABT_MYCTU
		ORF (bp)	629 sp:1	441 pir.	1239 pir.	1359 sp:	.ds 069	000			333 gp	954 gp	435 gp	708 gp	1512 gp	1344 sp
45		Terminal O	99	489100 4	1	491938 1	35	+	492645		497142	498327	499032	499869	499925	502920
50		Initial	487028	488660	489209	490580	491966		493916	494061	496810	497374	498598	499162	501436	501577
		SEO		4024	4025	4028	4027		4028	4030	4031	4032	4033	4034	4035	4036
55			(DNA) 523	574	525	AC3	527		528	530	531	532	533	534	535	536

			т						_	-	·		·,			
Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12		hypothetical membrane protein	DNA-directed RNA polymerase beta chain	DNA-directed RNA polymerase beta chain	hypothetical protein		ONA-binding protein	hypothetical protein
Matched length (a.a.)	481	150	447	615	468		170	130		283	1180	1332	169		232 (215
Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	88.7	52.0		63.8	57.7
Identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
Homologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rpU	Mycobacterium tuberculosis H37Rv RV0652 rpiL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpoC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptomyces coelicolor A3(2) SCJ9A. 15c	Mycobacterium tuberculosis H37Rv RV2908C
db Match	sp:GABD_ECOLI	GP:ABCARRA_2	sp:TYRP_ECOLI	sp:CTPG_MYCTU	sp:P49_STRLI		sp:RL10_STRGR	sp:RL7_MYCTU		pir:A70962	sp:RPOB_MYCTU	sp:RPOC_MYCTU	GP:AF121004_1			sp:YT08_MYCTU
ORF (bp)	1359	468	1191	1950	1413	603	513	384	138	972	3495	3889	582	180	780	798
Terminal (nt)	504283	503272	505569	507647	509081	509696	510510	510974	510989	512507	516407	520492	518696	520850	521644	521679
Initial (nt)	502925	503739	504379	505698	507669	509094	509998	510591	511126	511536	512913	516494	519277	520671	520865	522476
SEQ NO. (a.a.)	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	4048	4049	4050	4051	4052
SEQ NO.	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552 4
	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity length (%) (nt) (hp) (hp) (a.a.)	SEQ Initial NO. (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%)	SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match (ps) Homologous gene (%) Identity (%) SImilarity (%) Matched (%) Matched	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) SImilarity (%) Matched (%) Matched (%)<	SEQ NO. (nt) Initial (nt) Terminal (hp) ORF (hp) db Match Homologous gene (%) Identity (%) Similarity (%) Add (%) Implementation (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) SImilarity (%) SImilarity (%) Matched (%) Matched (%)	SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEC (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1)	SEQ NO. Initial (Int) Terminal (Int) CRF (bp) db Match (bp) Homologous gene (Ph) Identity (Ph) SImiliarity (Ph) Matched (Ph) Match	SEQ Initial Terminal ORF db Match Homologous gene (%) SImilarity (%) Matched (%)	2 SEO Initial (Au) Terminal (Au) ORF (DA) db Match Homologous gene (%s) Identity (%s) Imiganity (%s)	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) SIMILIARITY (%) Matched (%) (%)

EP 1 108 790 A2

5		Function	30S ribosomal protein S12	S distant profein S7	Ciposoniai process	elongation lactor of			lipoprotein			ferric enterobactin transport ATP-	binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA:acetate coenzyme A	Iransferase	30S ribosomal protein S10	50S ribosornal protein L3		50S ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein L2	010	30S nbosomal protein 515	
15	Pohoto	Matched length (a.a.)	121 30		\neg	709 etc	1		44				258 bi	329 fe	335 fe	T	<u> </u>	101	212	Т	212	1	T	280	1	92	
20		Similarity N	97.5	5	8.8	88.9			78.0				83.7	77.8	80.6	1	(9.3	99.0	89.6		90.1	908	22	92.0	36.3	98.9	
		Identity S	1 8	8.08	81.8	7.17			58.0			1	2.95	45.6	48.1		58.6	84.2	66.5	3	2.5	7 6	2	200)	87.0	
25	(eq)		lare		ets ——						1		ပ္ရ	٢	2 9	2 6	actA	္ဌ	000	200		ace relic	BCG rpiw	9	ECC 198	culosis	
30	Table 1 (continued)	Homologous gene	er intracellulare	Mycobacterium mu accir.	Mycobacterium smegmatis	Micrococcus luteus fusA				Chlamydia trachomans			Escherichia coli K12 fepC	ed K12 fel	Escherichia coli Nizirapo	Escherichia coll N12 lepu	Thermoanaeropacterium actA thermosaccharolyticum actA	Planobispora rosea ATCC	53733 rpsJ	Mycobacterium bowls boo ipic		Mycobacterium bovis BCG rplD	Mycobacterium bows BCG rpw		Mycobacterium bows BCG rplB	Mycobacterium tuberculosis H37Rv Rv0705 rpsS	
35						\top	1	+	1	3	1			T	7			1							CLE	YCTU	
40		db Match		sp:RS12_MYCIT	SD. RS7_MYCSM	MICI II	9P.E. 0			GSP:Y37841			SHIFFPC ECOLI			Sp. FEPD_ECOLI	gp:CTACTAGEN_1	OBA ID OF ARO	sp. vol. of	sp:RL3_MYCBO		Sp.RL4_MYCBO	sp:RL23_MYCBO	_	Sp.RL2_MYCLE		
		ORF.	ig	366	465			2160	144	228	153	729	792	<u> </u>	1035	1035	516	1 5	ટ્ર	654	687	654	303	327	8	278	285
45		<u>a</u>	(nt)	523059	523533	3	526010	523911	526013	526894	527607	528768	075003	270113	529592	530748	532523	3	533401	534090	533401	534743	┿	534746	+	┼─	535899
50		Initial	<u></u>	522694	9000	_+	-+	526070	526156	527121	527759	528040	1	0/c675	530628	531782	532008		533099	533437	534087			_			536183
		SEO					4055	4056	4057	-	-			4061	4062	_			4065	4066	4067	4068	4069		7	1	
5 <i>5</i>			D NO.		-		555	_	$\overline{}$	Т	1	_	_	561	582	563	464	3	565	266	267	895	28	27	5 5	572	573

			-						 ,	 -													
	Function	50S ribosomal protein L22	30S ribosomal protein S3	50S ribosomal protein L16	50S ribosomal protein L29	30S ribosomal protein S17				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein L5		2,5-diketo-D-gluconic acid reductase		formate dehydrogenase chain D	molybdopterin-guanine dinucleotide biosynthesis protein	formate dehydrogenase H or atpha chain			ABC transporter ATP-binding protein		
	Matched length (a.a.)	109	238	137	87	82				122	105	183		260		298	94	95/			624		
	Similarity (%)	91.7	91.2	68.3	88.1	89.0				95.1	91.4	92.3		74.2		29.7	68.1	53.4			52.6		
	Identity (%)	74.3	77.4	€.69	65.7	69.5				83.6	76.2	73.6		52.3		28.9	37.2	24.3			26.9		
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0708 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rpIP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rpiN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus luteus rpIE		Corynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdiF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
	db Match	sp:RL22_MYCTU	sp:RS3_MYCBO	sp:RL16_MYCBO	sp:RL29_MYCBO	sp.RS17_MYCBO				sp:RL14_MYCTU	sp:RL24_MYCTU	sp:RL5_MICLU		sp:2DKG_CORSP		Sp:FDHD_WOLSU	gp:SCGD3_29	2133 Sp.FDHF_ECOU			sp:YC81_MYCTU		
	ORF (bp)	360	744	414	228	276	294	318	969	366	312	573	1032	807	492	915	336	2133	756	804	1662	1146	1074
	Terminal (nt)	536576	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	548187	548990	550699	551854
	Initial (nt)	536217	536579	537328	537744	537977	538267	838698	539413	539741	540112	540428	541048	542896	543412	544329	544670	546889	547329	548990	550651	551844	552927
	SEQ NO.	4074	4075	4076	4077	4078	4079	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093	4094	4095
	SEQ NO.	574	575	576	577	578	579	580	581	582	583	584	585	586	287	588	589	065	591	265	593	594	585

EP 1 108 790 A2

5		Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	sos ribosomal protein L6	Constant Protein 1.8	Social profession of	30S ribosomai procein 33	50S ribosomal protein Lau	50S ribosomal protein L15		methylmatonic acid semialdehyde	genydrogenase	Note Incorporate	nover two-component regulatory system	aldehyde dehydrogenase or betaine	aldehyde dehydrogenase		Carponpos	SCOOL forredoxin	CLECA Introduction Caracter	p-cumic alcohol denydlogenase	hypothetical protein	phosphoenolpyruvate synthetase	phosphoenoipyruvate synthetase	cytochrome P450
15		Matched length (a.a.)	405	150	132	1	61.	פנו	171	55	143		128			125	487	ò		3	403	2	257	S	629	378	422
20		Similarity (%)	50.4	66.7	7 70		à	90.9	88.3	76.4	87.4		68.8			52.0	74.5	6.17		į	0.5	90.4	70.8	26.0	45.0	66.7	65.2
		Identity (%)	24.7	42.7	0 35	20.0	28.5		67.8	54.6	66.4		46.9			47.0	!	41.			41.1	4(.,	35.8	20.0	22.9	38.6	34.8
25	Table 1 (confinued)	Homologous gene	ulaidus AF1398	fiodurans		eus	eus	eus rpIR	eus rpsE	K12 rpmJ	eus rplO		Apar medA	Coeiii iniooliad		asilense carR	hodochrous	orf5			sp. redA2	Rhodobacter capsulatus fdxE	putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 posA	Pyrococcus furiosus Vc1 DSM 3638 posA	Rhodococcus erythropolis thcB
30	Table 1	Homolog	Achaendohis fulgidus AF1398	Deinococcus radiodurans	DR0763	Micrococcus Inteus	Micrococcus luteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rpIO			Streptomyces coencolor misos		Azospirillum brasilense carR	Dhadacaccus rhadachrous	plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter c	Pseudomonas putida cymB	Aeropyrum per	Pyrococcus fur	Pyrococcus fur	Rhadococcus
<i>35</i> 40		db Match	707001	DIL EOS424	gp:AEUU1931_13	pir.S29885	pir.S29886	Sp.RL18 MICLU	Sp.RS5 MICLU	Sp. R. BCOLI	Sp. RL 15 MICLU			prf:2204281A		GP: ABCARRA_2		prt.2516398E			prf.2411257B	prf.2313248B	qp:PPU24215_2	PIR:H72754	pir.JC4176	pir.JC4176	1290 pri.2104333G
		ORF (bg)		_	468 9	396	534	1-	_			-+		321	363	456	-	1491	735	306	1266	318	-	7-	1740	1080	\neg
45		Terminal		552948	554452	555726	556282		557366		55 BOOR	2000		558197	558607	560260		559144	560634	562937	561368	562646	562993	564083	563732	565680	566799
50		Initial	(ma)	554129	554919	555331	655749	556280	556734	5000	35/3/3	200,700		558517	558969	559805		560634	561368	562632	562633	562963		_1_	_1	566759	568088
30		SEO		4096	4097	4098	_1			_				4105	4106	4107		4108	4109	4110	4111	4112	1 5	111		4116	4117
		SEQ NO.	1	236	597	598	Т	\top	$\neg \neg$	3	602		904	909	909	20 20	3	608	609	610	119	612	1 5	2 3	615	616	617

			$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$			_			_	_		_				
	Function	transcriptional repressor	adenylate kinase		methionine aminopeptidase		translation initiation factor IF-1	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrane protein			hypothetical protein	cell elongation protein	cyclopropane-fatty-acyt-phospholipid synthase	hypothetical membrane protein
	Matched length (a.a.)	256	184		253		72	122	134	132	311		122	265	786			485	505	423	100
	Similarity (%)	66.0	81.0		74.7		86.0	91.0	93.3	93.9	77.8		77.1	61.1	51.2			53.8	50.9	26.0	0.65
	Identity (%)	28.5	48.9		43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
Table 1 (continued)	Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacillus subtilis 168 map		Bacillus subtilis infA	Thermus thermophitus HB8 rps13	Streptomyces coelicolor A3(2) SC6G4.08. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rplQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis thaliana CV OIM	Escherichia coli K12 c/a	Streptomyces coelicolor A3(2) SCL2.30c
	db Match	pri:2512309A	sp:KAD_MICLU		sp:AMPM_BACSU		pir.F69644	prf:2505353B	sp:RS11_STRCO	prf.2211287F	sp:RPOA_BACSU		sp:RL17_ECOLI	sp:TRUA_ECOLI	pir.G70695			pir.A70836	Sp:DIM_ARATH	sp:CFA_ECOU	gp:SCL2_30
	ORF (bp)	804	543	612	792	828	216	366	402	603	1014	156	489	298	2397	456	303	1257	1545	1353	426
	Terminal (nt)	568272	571318	570756	572267	573176	573622	574181	574588	575217	576351	575211	576898	577923	580429	580436	580919	282862	584228	585620	586248
	Initial (nt)	569075	570774	571367	571476	572349	573407	573816	574187	574615	575338	575366	576410	577057	578033	580891	581221	581406	582684	584268	585823
i	SEQ NO. (a.a.)	4118	4119	4120	4121	4122	4123	4124	4125	4126	4127	4128	4129	4130	4131	4132	4133	4134	4135	4136	4137
Ì	SEQ NO. (DNA)	618	619	620	621	622	623	624	625	929	627	628	629	630	631	632	633	634	635	636	637

EP 1 108 790 A2

5		ion	proteinase	rane protein	i	lane protein				A STATE OF THE	early secretory amigen raige.	tein L13		tein S9	ine mutase		<u>c</u>			S		in
10		Function	high-alkaline serine proteinase	hypothetical membrane protein	in the state of th	hypothetical membrane process				hypothetical protein	early secretory and	50S ribosomal protein L13		30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothelical protein	alanine racemase	hypothetical protein
15	Matched	length (a.a.)	273	949	910	1260				103	8	145		181	450		318			259	368	154
20		Similarity (%)	58.0	9 6	20.0	38.4				69.9	81.3	1 28	3	72.4	76.4		45.6		1	72.2	68.5	78.6
		Identity (%)	31.3		24.0	65.0				31.1	36.3	4 0 3	0.00	49.2	48.9		29.3	\perp		44.0	41.6	48.7
25 1	nunaea)	gene		Alor A3/2)	(a) (a) (b)	rculosis				erculosis	erculosis	color A3(2)		color A3(2)	reus		PCC6803			rae	serculosis afr	oerculosis
<i>30</i>	lable 1 (confinded)	Homologous gene	Bacillus alcalophilus	dile	Streptomyces coeliculor AS(4) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	trentomyces coelic	SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 slr1753			Mycobacterium leprae B229_F1_20	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv Rv3422c
35 40		db Match		Sp.ELTA BACA	pir.T10930 S	pir:E70977				N pir.C70977	nf-2111376A N		sp:RL13_STRCO	sp:RS9_STRCO	prf.2320260A		pir.S75138	-		pir.S73000	Sp.ALR_MYCTU	sp:Y097_MYCTU
		ORF (ed)		1359 8	1371 p	3567 p	822	663	8		288		441	546	1341	303	1509	573	234	855	1083	495
45		Terminal	(m)	586399	587645	592862	589590	589898	593761	594258	504580	2000	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
′ 50		Initial	(m)	587757	589015	589296	590411	590560			2007	394293	594939	595382	596109	597892		599350	<u> </u>		600971	
		SEQ		4138	4139	4140	4141			4144	:	4145	4146	4147	4148	4149	4150	4151	4152	4153		
55		SEO	_		· · ·	640	641	7		644		645	646	647	648	649	650	651	652	653	65.4	655

																			_
	Function	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetyttransferase	O-sialoglycoprotein endopeplidase	hypotheticai protein			heat shock protein groES	heat shock protein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein
	Matched length (a.a.)	550	411	207	132	319	571			100	537	76	138	94	174		116	504	146
	Similarity (%)	66.2	77.6	75.4	59.9	75.2	59.4			94.0	85.1	56.0	45.0	88.3	81.6		69.8	93.9	53.0
	Identity (%)	28.9	51.3	52.2	30.3	46.1	38.4			76.0	63.3	50.0	34.0	64.9	55.2		41.4	80.8	39.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 yidE	Proplonibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 riml	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae B229_C3_248 groE1	GP:MSGTCWPA_1 Mycobacterium tuberculosis	GP:MSGTCWPA_3 Mycobacterium tuberculosis	Mycobacterium smegmatis whi83	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterlum ammoniagenes ATCC 6872 guaB	Pyrococcus horikoshii PH0308
	db Match	sp:YIDE_ECOLI	gp:PSJ00161_1	sp:Y098_MYCTU	sp:RIMI_ECOLI	sp:GCP_PASHA	sp:Y115_MYCTU			sp:CH10_MYCTU	sp:CH61_MYCLE	GP:MSGTCWPA_1		gp:AF073300_1	sp:Y09F_MYCTU		Sp:Y09H_MYCLE	gp:AB003154_1	PIR:F71456
	ORF (bp)	1599	1239	675	507	1032	1722	429	453	297	1614	255	1158	297	564	1026	378	1518	627
	Terminal (nt)	604409	605708	606392	606898	607936	609879	610175	609816	610644	612272	610946	611109	612418	613719	614747	614803	616853	615605
	Initial (nt)	602811	604470	605718	606392	606905	607958	609747	610268	610348	610659	611200	612266	612714	613156	613722	615180	615336	616231
	SEQ NO.	4156	4157	4158	4159	4160	4161	4162	4163	4164	4165	4166	4167	4168	4169	4170	4171	4172	4173
	SEQ. NO.		657	658	659	099	661	299	663	664	999	999	299	899	699	670	671	672	673

EP 1 108 790 A2

	_			-T			-	1	_	т			\neg	Т	\top			T	$\neg \neg$		\neg
5		Function	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive regulator	GMP synthetase				hypothetical memorane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator				hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	
15	Matched	length (a.a.)	381	274	262	517			\top	513	411	218				201	563		275	288	
20		Similarity (%)	86.1	67.5	58.4	92.8				39.6	48.7	65.1				64.2	64.1		62.9	58.3	
		Identity (%)	70.9	38.0	29.0	81.6				20.5	26.8	33.5				30.9	37.5		33.8	27.8	
25 G	(manna)	jene	C 6872	ybiF		-				olor A3(2)	olor A3(2)	degU				rculosis	rculosis		olor A3(2)	urans	
30 Substitution	ומחוב ו (כחו	Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium ammoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
35	 											1									
40		db Match	gp:AB003154_2	Sp:YBIF_ECOLI	prf. 1516239A	sp:GUAA_CORAM				gp:SCD63_22	9p.SC6E10_15	sp.DEGU_BACSU				pir.B70975	pir.A70975		gp:SC5B8_20	gp:AE001935_7	
		ORF (bp)	1122	921	1	1569	663	441	189	1176	1140	069	324	489	963	825	1590	99	861	861	390
45		Terminal (nt)	618094	618093	619994	621572	620264	622157	622457	622460	624939	625674	626000	626070	626577	628551	630140	630151	631809	631824	632690
50		Initial (nt)	616973	619013		620004	620926	621717		623635	623800	624985	625677	626558	627239	627727	628551	630810	630949	632684	633079
		SEQ NO.	4174	4175	4176	4177	4178	4179	4180	4181	4182	4183	4184	4185	4186	4187	4188	4189	4190	4191	4192
55		SEQ NO.	674	675	676	677	678	679	089	681	682	683	684	685	989	289	989	689	069	691	692

ſ	· · ·	;											_	γ	_	_	_	·	_	
	Function	hypothetical membrane protein	phytoene desaturase	phytoene synthase	transmembrane transport protein	geranylgeranyl pyrophosphate (GGPP) synthase	transcriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein	DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipoprotein	DNA polymerase III	hypothetical protein
	Matched length (a.a.)	95	524	288	722	367	188	145	462	497	205	268	223		206		346	268	1101	159
	Similarity (%)	67.4	76.2	71.2	75.6	83.8	1.89	62.1	74.2	63.2	53.7	54.9	72.2		75.2		75.4	67.2	57.5	62.3
	Identity (%)	36.8	50.4	42.0	48.6	32.7	38.3	33.1	48.7	40.0	25.9	24.3	35.4		35.9		43.6	28.7	30.2	41.5
Table 1 (continued)	Homologous gene	Mycobacterium marinum	Brevibacterium linens ATCC 9175 crtl	Brevibacterium linens ATCC 9175 cnB	Streptomyces coelicolor A3(2) SCF43A,29c	Brevibacterium linens cdE	Brevibacterium linens	Citrobacter freundii bic OS60 bic	Brevibacterium linens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Helicobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus influenzae SEROTYPE B hipA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11
	db Match	gp:MMU92075_3	gp:AF139916_3	gp:AF139916_2	9p;SCF43A_29	gp:AF139916_11	gp:AF139916_14	sp:BLC_CITFR	9p:AF139916_1	gp:AF139916_5	gp:AF155804_7	gp:SCE25_30	pri:2420410P		prf.2320284D		sp:ABC_ECOLI	sp:HLPA_HAEIN	prf:2517386A	gp:SCE126_11
	ORF (bp)	366	1644	912	2190	1146	585	648	1425	1404	753	2415	717	153	999	846	1080	897	3012	447
	Terminal (nt)	633079	633532	635178	636089	638317	640208	640232	642557	642556	644778	645176	647593	648315	648440	650187	649114	650392	654612	655122
	Initial (nt)	633474	635175	636089	638278	639462	639624	640879	641133	643959	644026	647590	648309	648467	649105	649342	650193	651288	651601	654676
	SEQ NO. (a.a.)	4193	4184	4195	4196	4197	4198	4199	4200	4201	4202	4203	4204	4205	4206	4207	4208	4209	4210	4211
	SEQ NO. (DNA)	693	694	695	969	269	869	669	8	701	702	703	704	705	708	707	708	709	710	711

EP 1 108 790 A2

Table Confinued Table Confinued Table Confinued Table Confinued Table Confinued Table Confinued Table Tabl												$\neg \tau$		\neg						1 1		1	- 1		1	ì	- 1	١	•
Se			Function		ypothetical memorane process		anscriptional repressor	ypothetical protein		ranscriptional regulator (Sir2 family)		hypothetical protein	inportation precursor	IfOn-regulated lipopromise	rRNA methylase	methylenetetrahydrofolate	dehydrogenase	hypothetical membrane protein	riotare lacitati	hypotherical protein		homoserine O-acetyltransferase	O-acetylhomoserine sulfhydrylase	cerbon starvation protein			hypothetical protein		
SEC	15	hatched	length	_				\top		1	T		\top		151		278	80		489		379	429	6	88		20		i
SEO Initial Terminal ORF db Match Homologous gene (%) NO (m) (20			+	26.0		76.4	7. 13)	1	2	78.3		62.2	86.1		87.4	76.3		63.2		99.5	78.2		8.8		99		
SEC Initial Terminal ORF db Match Homologous gene National (int) (in		-		(£	26.1		503	2 3	24.9 9.4	1	42.5	45.2		31.1	62.0	3	70.9	313		34.0		99.5	100		53.9		40.0		
SEO Initial Terminal ORF db Match (aa.) (nt) (nt) (bp) (bp) datch (aa.) (nt) (nt) (nt) (bp) db Match (aa.) (nt) (nt) (nt) (bp) db Match (aa.) (nt) (nt) (nt) (bp) db Match (aa.) (ab.) (nt) (nt) (nt) (bp) db Match (aa.) (ab.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	25	linued)		eue	lor A3(2)		culosis	Apr A3(2)	(=)au ioio		dus AF1676	olor A3(2)		phtheriae	erculosis	٦	erculosis ID	rae		icolor A3(2)		glutamicum		metY	12 cstA		15 viiX		
SEO Initial Terminal ORF db Match (aa.) (nt) (nt) (bp) (bp) datch (aa.) (nt) (nt) (nt) (bp) db Match (aa.) (nt) (nt) (nt) (bp) db Match (aa.) (nt) (nt) (nt) (bp) db Match (aa.) (ab.) (nt) (nt) (nt) (bp) db Match (aa.) (ab.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	30	Table 1 (con		Homologous	eptomyces coelica	E9.01	achacterium tuber	17Rv Rv2788 sirR	reptomyces coeiic		chaeoglobus fulgi	reptomyces coelic	C5H1.34	orynebacterium di	p i	37Rv Rv3366 spo	Aycobacterium tub	Avcobacterium lep	ALCB1779.16c	streptomyces coel sc6673.18c		Corynebacterium	metA	Leptospira meyeri	Escherichia coli K		r. Lariatia coli K	Escuencina con	
SEQ Initial Terminal ORF (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	35		-		ग्र	S	1	£Ξ	S S	-	¥	100	S		\top	<u>E</u>	23	T	∞.			1				T	1	\top	
SEO Initial Terminal ORF (a.a.) (nt) (nt) (bp) (a.a.) (nt) (nt) (nt) (bp) (a.a.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	40			db Match		p:SCE9_1		ir.C70884	p:SCG8A_5		17.080450	OIL COSTOS	3p:SC5H1_34	Apr. CDI 102617	ap. da	pir.E70971	pir C.70970		gp:MLCB1779									-	
SEQ Initial Terminal NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)			-	P. (ed.			38			85	-	-+-		-	$\overline{}$		85.2	3	255	1380	5	3		1311	+	_	;	-+	\dashv
SEQ Initial NO. (nt) (a.a.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	45			<u> </u>	T				657205	0,70	761909	658928	659424		660538	660650	7,0000	110700	662374	862382		664126		BERARO				6	67
SEO II	50		-						58002	1	58005	158155	158933		559543	561120		661166	662120	663761		665088	666313	027770	2//00	668264	670053		671653
12 S 6 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8	30				_}													_				4224			4226	4227	4228		4230
55	<i>EE</i>			SEQ SE	_1	712 4:	713 4	1		_	716	717		$\neg au$	719	+-		121		723		724	725		726	727	728	729	730

.

	·				_	_	_	,	,		,		,						
	Function	hypothetical protein	carboxy phosphoenolpyruvate mutase	citrale synthase		hypothetical protein		L-malate dehydrogenase	regulatory protein		vibriobactin utilization protein	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	iron-regulated lipoprotein precursor	chloramphenicol resistance protein	catabolite repression control protein	hypothetical protein	
	Matched length (a.a.)	317	281	380		53		338	226		284	269	339	330	356	395	303	219	
	Similarity (%)	86.4	76.2	81.3		62.3		67.5	62.8		54.2	85.1	86.4	88.2	82.3	69.6	58.1	85.8	
	Identity (%)	71.0	41.6	56.1		34.0		37.6	26.1		25.4	55.4	58.3	63.0	53.1	32.2	30.4	56.2	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium smegmatis ATCC 607 gitA		Escherichia coli K12 yneC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-6 uxuR		Vibrio cholerae OGAWA 395 viuB	Corynebacterium diphtheriae irp1D	Corynebacterium diphtherlae	Corynebacterium diphtheriae irp18	Corynebacterium diphtheriae	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus influenzae Rd H11240	
	db Match	pir.C70539	prf. 1902224A	sp:CISY_MYCSM		sp:YNEC_ECOLI		sp:MDH_METFE	prf.2514353L		sp:ViuB_ViBCH	gp:AF176902_3	gp:AF176902_2	gp:AF176902_1	gp:CDU02617_1	prf.2202262A	prf:2222220B	sp:YICG_HAEIN	
	ORF (bp)	954	912	1149	930	192	672	190	720	702	897	807	1059	966	1050	1272	912	657	195
	Terminal (nt)	672653	673576	674756	672710	674799	675846	675082	676218	677047	680131	681040	681846	682871	683876	686380	687346	688007	688335
	Initial (nt)	671700	672665	673608	673639	674990	675175	676122	676937	677748	681027	681846	682904	683866	684925	685109	686435	687351	688141
	SEQ NO.	4231	4232	4233	4234	4235	4236	4237	4238	4239	4240	4241	4242	4243	4244	4245	4246	4247	4248
	SEQ NO. (DNA)	731	732	733	734	735	736	737	738	739	740	741	742	743	744	+	746	747	748 /

EP 1 108 790 A2

5		Function		ferrichrome ABC transponer	hemin permease	tryptophanyl-tRNA syntnetase	hypothetical protein		penicillin-binding protein 6B precursor	hypothetical protein	hypothetical protein			uracil phosphoribosyltransferase	bacterial regulatory protein, laci	family	N-acyl-L-amino acid amidonydrorase or peptidase	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
15	Matched	length (a.a.)	-		346	331	278		301	417	323			209	Τ	77	385	561	468	1140	263	127
20	-	Similarity (%)		73.8	69.1	79.8	72.3		57.5	7.07	52.6			72.3		66.2	80.5	53.8	65.0	100.0	60.1	6.99
		Identity (%)		45.1	38.7	54.4	37.1		30.9	34.1	29.4			46.4		41.8	51.4	22.1	31.6	100.0	26.2	30.7
<i>25</i>	uiucu)	ene		theriae	hemU	Sd	둳		ım LT2	culosis	lor A3(2)			9	2	olor A3(2)	cutosis A	ER manB	nii ATCC	rtamicum	rculosis	olor A3(2)
30	lable 1 (collinaci)	Homologous gene		Corynebacterium diphtheriae hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 yhjD		Salmonella typhimurium LT2	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			The second of the second	Lactococcus ideas upp	Streptomyces coelicolor A3(2) SC1A2.11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Halobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicalor A3(2) SCF11.30
35	-				>	T		T	i	1				T	1			t^-		4	VCT.	9
40		db Match		gp:AF109162_3	air CEAA3B	SCHOOL STANKS	Sp.SIW_COC	20.11.00	sp:DACD_SALTY	pir.F70842	gp:SC6G10_8				Sp. UPP_LACLA	gp:SC1A2_11	pir.H70841	SP. MANB MYCPI	Sp:DLDH_HALVO	prf.2415454A	sp:YD24_MYCTU	gp:SCF11_30
	į	ORF (bp)	975	780			_		1137		858	105	261	3	633	384	1182	1725	1407	3420	870	486
45		Terminal (nt)	688916	689917	1000	90/069	692910	034110	695074	696769	698065	99000	007660	698922	699913	700381	703262	700384	704811	708630	709708	710278
50		Initial (nt)	689890	+-	+	- -		+	694172	697995	698922	02000	2/0669	699272	699281	866669	702081	702108		705211	708839	709793
		SEQ.							4254	4256	4257	1	425B	4259	4260	4261	4262	4263	4264	4265	4266	4267
55		SEO	740				_	_	754	756	757		758	759	760	761	762	763	76	765	766	767

.5

							·						_	,	,	_			
	Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabolism	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	detergent sensitivity rescuer ar carboxyi transferase	detergent sensitivity rescuer or carboxyl transferase
	Matched length (a.a.)	381	305	521	278	96	283		456			225	352	133	718	192	63	537	543
	Similarity (%)	69.0	59.3	49.5	74.5	47.0	6'82		72.6			100.0	79.8	76.7	63.4	66.2	8.69	100.0	100.0
	Identity (%)	44.6	24.6	24.0	42.5	39.0	54.6		40.8			100.0	61.1	51.1	35.1	31.8	33.3	99.8	9.66
Table 1 (continued)	Homologous gene	Bacillus subtilis 168 yciC	Bacillus subtilis IS58 trxB	Salmonella typhimurium LT2 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gitA		Mycobacterium tuberculosis H37Rv Rv1129c			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308- C3-211	Corynebacterium glutamicum AJ11060 dtsR2	Corynebacterium glutamicum AJ11060 dtsR1
	db Match	pir.B69760	sp:TRXB_BACSU	sp:PRPO_SALTY	prf:1902224A	PIR:E72779	1182 SP.CISY_MYCSM		pir.870539			sp:THTR_CORGL	gp:CJ11168X1_62	gp:MLCB4_16	pir.G70539	sp:YCEF_ECOLI	prf.2323363CF	gp:AB018531_2	1629 pir.JC4991
	ORF (bp)	1086	924	1494	888	378	1182	375	1323	246	1359	903	1065	414	2148	591	246	1611	1629
	Terminal (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
	Initial (nt)	711605	711724	712738	714258	714757	715102	716660	718009	718105	718658	721449	721777	723338	723412	726462	726715	728352	730324
	SEQ NO. (a.a.)	4268	4269	4270	4271	4272	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
	SEQ NO. (DNA)	768	769	770	771	772	773	774	775	776	111	778	779	780	781	782	783	784	785

EP 1 108 790 A2

10		Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5-phosphoribosyl-5-amino-4- imidasol carboxylase	K+-uptake protein			5-phosphoribosyl-5-amino-4- imidasol carboxylase	hypothetical protein	hypothetical protein	nitrilotriacetate monooxygenase	transposase (ISA0963-5)	glucose 1-dehydrogenase	hypothetical membrane protein		hypothetical protein	hypothetical protein	
15	Matchod	Matcheo length (a.a.)	293	165	394	628			147	152	255	426	303	256	96		175	142	
20		Similarity (%)	61.8	58.8	83.8	73.6			93.2	60.5	70.6	73.0	52.5	64.8	68.8		66.3	76.8	
		Identity (%)	28.7	23.0	69.0	41.1			85.7	36.2	42.8	43.2	23.4	31.3	29.2		28.6	35.9	
25 3	lillinear	gene	birA	culosis	C 6872	kup			C 6872	losum	olor A3(2)	zii ATCC	qus	1AM 1030	a MSB8		ywjB	color A3(2)	
30	lable 1 (confined)	Hamologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammoniagenes ATCC 6872 purk	Escherichia coli K12 kup			Corynebacterium ammoniagenes ATCC 6872 purE	Actinosynnema pretiosum	Streptomyces coelicolor A3(2) SCF43A.36	Chelatobacter heintzii ATCC 29600 ntaA	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhll	Thermotoga manitima MSB8 TM1408		Bacillus subtills 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A.21	
35 40		db Match	Sp.BIRA_ECOLI	pir.G70979	sp:PURK_CORAM	11003 0114.42			sp.PUR6_CORAM	ap: APU33059 5		sp:NTAA_CHEHE	pir.A69426	sp:DHG2_BACME	pir.A72258		sp: YWJB_BACSU	gp:SCJ9A_21	
		ORF (gg)		486	1161		10/2	357	495	453	792	1314	1500	789	369	342	295	420	222
45		Terminal (nt)	9	731797	733017	67070	733183	735340	735896	736351	737204	737216	738673	740228	741765	742195	741818	742828	742831
50		Initial	730436	731312	731857		733072	734984	735402	725800	736413	738529	740172		741397	741854			743052
		SEO.	(a.a.) 4286	4287	4288		4289	4290	4292	4203	4294	4295	4296	4297	4298	4299	1300	4301	4302
55			(DNA) 786	787	788		789	701	792	103	794	795	796	797	798	799	8	80	802

	Function	trehalose/mattose-binding protein	trehalose/matose-binding protein		trehalose/maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		RNA helicase			hypothetical protein	hypothetical protein	DNA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
	Matched length (a.a.)	271	306		417		332		1783			240	720	701					2033	869	873
	Similarity (%)	75.3	70.3		62.4		73.9		49.9			59.2	62.5	41.1					45.8	53.2	48.6
	Identity (%)	42.4	37.3		30.9		57.2		25.1			31.7	30.0	20.7					22.4	24.4	23.1
Table 1 (continued)	Homologous gene	Thermococcus litoralis malG	Thermococcus litoralis malf		Thermococcus litoralis malE	-	Streptomyces reticuli msiK		Deinococcus radiodurans R1 DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Helicobacter pylori J99 jhp0462	Escherichia coli K12 uvrD					Streptomyces caelicolor SCH5.13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
	db Match	prf 2406355C	prf.2406355B		prf.2406355A		prf.2308356A		4800 pir.B75633			pir.E70978	pir.C71929	sp:UVRD_ECOU					pir.T36671	4596 pir.T08313	2886 sp:HEPA_ECOLI
	ORF (bp)	834	1032	468	1272	423	966	369	4800	372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
	Terminal (nt)	743067	743900	745046	745622	748442	747031	748814	748886	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
	Initial (nt)	743900	744931	745513	746893	748020	748026	748446	753685	757063	757395	758262	760796	762468	762497	762730	762977	768191	769443	774142	777035
	SEO NO.	4303	4304	4305	4306	4307	4308	4309	4310	4311	4312	4313	4314	4315	4316	4317	4318	4319	4320	4321	4322
	SEO NO.	803	804	T	908	68	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822
		_				_		_						_							

EP 1 108 790 A2

													_				\neg	\neg	
5		Function	hypothetical protein	dTDP-Rha:a-D-GlcNAc- diphosphoryl polyprenol, a-3-L- rhamnosyl transferase	mannose-1-phosphate guanylytransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase			pheromone-responsive protein		S-adenosy-L-homocysteine hydrolase			thymidylate kinase
15	-	Matched length (a.a.)	527	289	353	46	139	136	460	327	420			180		476		j	209
20		Similarity (%)	71.4	77.9	6.99	81.9	74.8	71.3	66.3	56.3	66.2			57.8		83.0			26.0
		identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	36.9			35.6		29.0			25.8
25	Table 1 (continued)	s gene	berculosis	negmatis	erevisiae	negmatis	berculosis	licolor A3(2)	evideo M40	iberculosis	(12 manA			calis plasmid		jinalis WAA38			ulgidus VC-16
30	Table 1 (c	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3267	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae YDL055C MPG1	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobacterium tuberculosis H37Rv Rv3256c	Escherichia coli K12 manA			Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0061
35			ΣI				51			21	1								
40	٠	db Match	pir.D70978	gp:AF187550_1	sp:MPG1_YEAST	gp:AF164439_1	pir:B70847	gp:SCE34_11	sp:MANB_SALMO	pir.B70594	sp:MANA_ECOLI			prf:1804279K		Sp.SAHH_TRIVA			sp:KTHY_ARCFU
		ORF (bp)	1554	897	1044	408	456	390	1374	1005	1182	150	360	564	351	1422	708	720	609
45		Terminal (nt)	777158	779910	781171	781875	782162	783101	784557	785639	786824	787045	787983	787170	788546	790093	788719	789002	790704
50		Initial (nt)	778711	779014	780128	781468	782617	782712	783184	784635	785643	786896	787624	787733	788196	788672	789426	789721	790096
		SEQ NO.		4324	4325	4326	4327	4328	4329	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
55		SEQ.	823		825	826	827	828	829	830	831	832	833	834	835	836	837	838	839

ſ		- 1	\neg	· I				<u>_</u>		7			60		o)		,
	Function	two-component system response regulator		two-component system sensor histidine kinase	lipoprotein	hypothetical protein		30S ribosomal protein or chloroplast precursor	preprotein translocase SecA subunit		hypothetical protein	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	RNA polymerase sigma factor
	Matched length (a.a.)	224		484	595	213		203	845		170	322	461	180	23	380	188
	Similarity (%)	90.6		78.9	65.6	72.8		61.6	93.6		78.8	82.9	0.66	63.9	100.0	42.4	87.2
	Identity (%)	73.7		53.1	29.6	38.0		34.5	99.1		47.1	64.6	98.0	38.3	100.0	21.6	61.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA		Mycobacterium tuberculosis H37Rv Rv3245c mtrB	Mycobacferium tuberculosis H37Rv Rv3244c tpqB	Mycobacterium tuberculosis H37Rv Rv3242c		Spinacia oleracea CV rps22	Brevibacterlum flavum (Corynebacterlum glutamicum) MJ-233 secA		Mycobacterium tuberculosis H37Rv Rv3231c	Mycobacterium tubercutosis H37Rv Rv3228	Corynebacterium glutamicum ASO19 aroA	Mycobacterium tuberculosis H37Rv Rv3228c	Corynebacterium glutamicum	Mycobaderium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis sigH
	db Match	pri:2214304A		prf:2214304B	pir.F70592	pir.D70592		sp.RR30_SPIOL	gsp:R74093		pir.A70591	pir.F70590	gp:AF114233_1	pir.D70590	GP:AF114233_1	pir.G70506	prf.2515333D
	ORF (bp)	678	684	1497	1704	588	156	663	2535	672	504	987	1413	480	123	1110	618
	Terminal (nt)	791409	790738	793008	794711	795301	795292	796110	798784	799691	800200	800208	801190	803128	802565	803131	805025
	initial (nt)	790732	791421	791512	793008	794714	795447	795448	796250	799020	799697	801194	802602	802649	802687	804240	804408
	SEQ NO.	4340	4341	4342	4343	4344	4345	4346	4347	4348	4349	4350	4351	4352	4353	4354	4355
	SEQ NO.	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855

EP 1 108 790 A2

																			$\overline{}$
5		Function	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical protein	hypothetical protein	ATP-dependent DNA helicase		ATP-dependent DNA helicase		potassium channel	hypothetical protein	DNA helicase II		hypothetical protein	
15		Matched length (a.a.)	84 reg	129 hy	415 hy	458 DE	-	291 hy	249 hy	1155 AT		1126 AT		302 ро	230 hy	660 Df		280 hy	
20		Similarity (%)	96.4	65.1	62.2	64.0		69.8	62.9	48.9		65.7		64.2	58.3	58.8		49.3	
		Identity (%)	78.6	33.3	29.6	37.3		46.4	37.0	23.9		41.4		26.2	30.4	32.6		26.8	
25	tinued)	gene	culosis 1	culosis	rculosis	ae CG43		rculosis	rculosis	rculosis		rculosis		naschii JAL-	rculosis	uvrD		rculosis	
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3219 whiB1	Mycobacterium tuberculosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis H37Rv Rv3201c		Methanococcus jannaschii JAL- 1 MJ0138.1.	Mycobacterium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis H37Rv Rv3196	
35 40		db Match	pir.D70596	N pir.B70596	pir.E70595	sp:DEAD_KLEPN		Pir.H70594	pir.F70594	pir.G70951		pir.G70951		sp:Y13B_METJA	pir.E70951	sp:UVRD_ECOLI		pir:870951	
		H (c	+	+			35	 	759 pir.	3048 pir.	8	3219 pir.	1332	1005 sp.	714 pir.	2034 sp:	591	816 pir	603
40		at ORF (bp)	5 258	7 420	0 1200	6 1272	0 225	4 846	_		6 780	~	6	6	 	\top	╌		
45		Termina (nt)	805535	806737	806740	807946	809510	810394	81116	814217	811386	81742	81421	81852	819236	821287	822669	821290	823391
50		Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165	814204	815541	817519	818523	819254	822079		822789
		SEQ NO.	4356	4357	4358	4359	4360	4361	4362	4363	4364	4365	4366	4367	4368	4369	4370	4371	4372
55		O O S		857	858	859	860	861	862	863	864	965	866	867	868	698	870	871	872

r	 r									_								_	_	
	Function	hypothetical protein	hypothetical protein			hypothetical protein	regulatory protein	ethylene-inducible protein	hypothetical protein	hypothetical protein		alpha-lytic proteinase precursor		DNA-directed DNA polymerase	major secreted protein PS1 protein precursor					monophosphalase
	Matched length (a.a.)	474	350			1023	463	301	18	201		408		208	363					255
	Similarity (%)	76.4	74.9			73.5	57.7	0.68	53.0	73.6		44.4	·	51.4	51.5					74.9
	Identity (%)	42.8	43.4			47.2	34.3	67.4	49.0	40.8		26.7		25.0	27.0					51.8
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3195	Mycobacterium tuberculosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans DR0840	Hevea brasiliensis laticifer er1	Aeropyrum pernix K1 APE0247	Bacillus subtilis 168 yaaE		Lysobacter enzymogenes ATCC 29487		Neurospora intermedia LaBelle- 1b mitochondrion plasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1					Streptomyces alboniger pur3
	db Match	pir.A70951	pir.H70950			pir.G70950	gp:AE001938_5	sp:ER1_HEVBR	PIR:F72782	sp:YAAE_BACSU		pir.TRYXB4		pir.S03722	sp.CSP1_CORGL					prf.2207273H
	ORF (bp)	1446	1050	675	522	2955	1359	951	345	99	363	1062	501	585	1581	429	510	222	309	780
	Terminal (nt)	822680	825239	825242	825996	829570	829627	831971	831578	832570	832795	834633	835388	835837	838892	839353	840139	840210	840437	841517
	Initial (nt)	824125	824190	825916	826517	826616	830985	831021	831922	831971	833157	833572	834888	835253	837312	838925	839630	840431	840745	842296
	SEQ NO. (a.a.)	4373	4374	4375	4376	4377	4378	4379	4380	4381	4382	4383	4384	4385	4386	4387	4388	4389	4390	4391
	SEQ NO. (DNA)	873	874	875	876	877	878	879	880	881	882	883	884	885	988	887	888	889	890	891
																	-			

EP 1 108 790 A2

	_				-	\neg			\neg	\neg	_	Г	Τ	1	Т	T				$\overline{}$
5		Function	myo-inositol monophosphatase	peptide chain release factor 2	cell division ATP-binding protein	al protein	n protein	small protein B (SSRA-binding protein)	al protein					vibriobactin utilization prolein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (ATP- binding protein)
			myo-inosito	peptide cha	cell divisior	hypothetical protein	cell division protein	small prote protein)	hypothetical			<u> </u>		vibriobacti	Fe-regulat	hypothetic	ferric angu precursor	ferrichrome (permease)	ferrichrome (permease)	ferrichrame ABC binding protein)
15	Motorod	Marched length (a.a.)	243	359	228	72	301	145	116					272	319	191	325	313	312	250
20		Similarity (%)	59.3	88.6	91.2	54.0	74.8	75.9	73.3					52.9	58.3	71.2	61.5	80.8	76.0	82.0
		identity (%)	33.7	68.0	70.4	43.0	40.5	43.5	44.0	_		1		26.8	29.5	36.1	27.7	39.3	35.6	48.4
25 3	utiunea)	gene	ersicus	olor A3(2)	rculosis	1 APE2061	erculosis X	2 smpB	2 yeaO					AWA 395	reus sirA	rae	775 fatB	3 yclN	8 yclO	8 yclP
30	Table 1 (continued)	Hamologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) prfB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO					Vibrio cholerae OGAWA 395 viuB	Staphytococcus aureus	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacilius subtilis 168 yclN	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP
35	}		SS	S a	21	1	-	1	1	T	- -									
40		db Match	9_9:U70376_9	sp:RF2_STRCO	pir.E70919	PIR:G72510	pir.D70919	sp:SMPB_ECOLI	Sp.VEAD FCOL	abi i de				Sp:VIUB_VIBCH	prf.2510361A	gp:MLCB1243_5	sp:FATB_VIBAN	pir.869763	pir.C69763	pir.D69763
		ORF (bp)	819	1104	687	264	8	492	25.1	3	537	300	405	825	918	588	1014	666	942	753
45		Terminal (nt)	842306	844360	845181	844842	846097	846628	Canara	040207	846269	848026	847718	848499	849326	850412	852364	853616	854724	855476
50		Initial (nt)	843124	843257	844495	845405				L	846805	847727	848122	849323	850243		851351		_1	854724
		SEO NO.	4392	4393	4394	4004	4396	4397		4398	4399	4400	1401	4402	4403	4404	4405	4406	4407	4408
55		SEO		893			989	_		868	899	900	901	902	8	904	905	906	907	808

SEO Initial NOT Terminal ORF (bp) db Match (bp) Homologous gene (bp) (104) NO.	ומחוב ו (כסווווווומבה)				
860224 860078 147 PIR:F81737 Chlamydia muridarum Nigg 860745 860773 273 GSP:Y35814 Chlamydia pneumoniae 861544 862752 1209 pir.S66270 Rattus norvegicus (Rat) 863391 862753 639 American Secrevislae 865066 863396 1671 sp.RA25_YEAST Saccharomyces cerevislae 865073 2199 pir.F70815 Mycobacterium tuberculosis 867363 867571 219 pir.G70815 Mycobacterium tuberculosis 868399 867803 597 prt.2420502A Micrococcus luteus rpf 868939 869318 774 sp.MLCB57_11 Mycobacterium leprae 869903 869319 774 sp.AE001874_1 Deinococcus luteus radiodurans 870691 870691 774 sp.AE001874_1 Deinococcus radiodurans 871523 871660 138 Process Streptomyces coelicolor A3(2) 871523 871660 138 Scec5.09 Streptomyces azureus tsnR		Identity S (%)	Similarity M	Matched length (a.a.)	Function
860745 860473 273 GSP.Y35814 Chlamydia pneumoniae 861544 862752 1209 pir.S66270 Rattus norvegicus (Rat) 863391 862753 639 receptation (Rational Control Cont		0.99	72.0	48	hypothetical protein
861544 462752 1209 pir.S66270 Rattus norvegicus (Rat) 863391 862753 639 Pir.RA25_YEAST Saccharomyces cerevislae 865066 863396 1671 sp.RA25_YEAST Saccharomyces cerevislae 867373 865119 2199 pir.F70815 Mycobacterium tuberculosis 867353 867571 219 pir.F70815 Mycobacterium tuberculosis 868398 867803 597 prt.2420502A Micrococcus luteus rpf 868399 867803 525 gp.MLCB57_11 Mycobacterium leprae 869903 869379 525 gp.MLCB57_11 Mycobacterium leprae 870691 869918 774 gp.AE001874_1 Deinococcus radiodurans 871523 870721 699 Process Process 871523 871660 138 Process Process 871523 871660 138 Process Process 872927 872016 912 Process Process 872927 872016		61.0	66.0	8	hypothetical protein
865391 862753 639 Saccharomyces cerevisiae 865066 863396 1671 sp.RA25_YEAST Saccharomyces cerevisiae 867317 865119 2199 pir.F70815 Mycobacterium tuberculosis 867353 867571 219 pir.G70815 Mycobacterium tuberculosis 867368 868630 843 Mycobacterium tuberculosis 868398 867801 537 pir.G70815 Mycobacterium tuberculosis 868930 869318 381 pr.Z320271A Lactococcus luteus rpf 869903 869318 381 pr.Z320271A Lactococcus luteus rpf 869903 869379 525 gp.MLCB57_11 Mycobacterium leprae 870691 870691 774 gp.AE001874_1 Deinococcus radiodurans 871523 871660 138 Sp.SC6C5_9 Streptomyces coelicolor A3(2) 871738 873210 1473 gp.SC6C5_9 Streptomyces azureus tsnR 873213 874040 828 sp.TSNR_STRAZ Streptomyces azureus tsnR		33.5	64.9	442	kynurenine aminotransferase/glutamine transaminase K
865066 863396 1671 sp.RA25_YEAST Saccharomyces cerevisiae 867317 865119 2199 pir.F70815 Mycobacterium tuberculosis 867353 867571 219 pir.G70815 Mycobacterium tuberculosis 868399 868830 843 Mycobacterium tuberculosis 868938 867803 597 prf.2420502A Micrococcus luteus rpf 868939 869318 381 prf.2320271A Lactococcus lactis cspB 869903 869318 774 gp.MLCB57_11 Mycobacterium leprae 870691 869918 774 gp.AE001874_1 Deinococcus radiodurans 871523 871660 138 DR0112 871523 871660 138 Streptomyces coelicolor A3(2) 872927 872016 912 Streptomyces azureus tsnR		1	1		
867317 865119 2199 pir.F70815 Mycobacterium tuberculosis 867353 867571 219 pir.G70815 Mycobacterium tuberculosis 867368 868630 843 Mycobacterium tuberculosis 86839 867803 597 prf.2420502A Micrococcus luteus rpf 868938 869318 381 prf.2320271A Lactococcus lactis cspB 869903 869379 525 gp:MLCB57_11 Mycobacterium leprae 870691 870721 699 MCB57_27c DR010ccoccus radiodurans 871523 871660 138 CR0112 Streptomyces coelicolor A3(2) 871738 87360 1473 gp:SC6C5_9 SC6C5.09 873213 874040 828 sp:TSNR_STRAZ Streptomyces azureus tsnR	e e	30.7	62.3	613	DNA repair helicase
4415 867353 867571 219 pir.G70815 Mycobacterium tuberculosis 4416 867788 868630 843 H37Rv Rv0863 4417 86839 867803 597 prf.2420502A Micrococcus luteus rpf 4418 868938 869318 381 prf.2320271A Lactococcus luteus rpf 4419 869903 869379 525 gp:MLCB57_11 Mycobacterium leprae 4420 870691 869918 774 gp:MLCB57_11 Miccb57_27c 4421 871419 870721 699 Process Streptomyces coelicofor A3(2) 4422 871523 871660 138 SCGC5_9 SCGC5.09 4424 872927 872016 912 SCGC5.09 4425 873213 874040 828 sp:TSNR_STRAZ Streptomyces azureus tsnR		36.1	65.2	764	hypothetical protein
867768 868630 843 Micrococcus luteus rpf 868938 867803 597 prf.2420502A Micrococcus luteus rpf 868938 869318 381 prf.2320271A Lactococcus lactis cspB 869903 869379 525 gp:MLCB57_11 Mycobacterium leprae 870691 869918 774 gp:AE001874_1 Deinococcus radiodurans 871419 870721 699 Contraction of the contraction of		44.0	62.0	57	hypothetical protein
868399 867803 597 prf.2420502A Micrococcus luteus rpf 868938 869318 381 prf.2320271A Lactococcus lactis cspB 869903 869379 525 gp:MLCB57_11 Mycobacterium leprae 870691 869918 774 gp:AE001874_1 Deinococcus radiodurans 871419 870721 699 Common result Common result 871523 871660 138 Streptomyces coelicolor A3(2) 871738 873210 1473 gp:SC6C5_9 Streptomyces azureus tsnR 873213 874040 828 sp:TSNR_STRAZ Streptomyces azureus tsnR					
4418 868938 869318 381 prf.2320271A Lactococcus lackis cspB 4419 869903 869379 525 gp:MLCB57_11 Mycobacterium leprae 4420 870691 869918 774 gp:AE001874_1 Deinococcus radiodurans 4421 871419 870721 699 Control Streptomyces coelicolor A3(2) 4422 871523 871660 138 Streptomyces coelicolor A3(2) 4424 872927 872016 912 Streptomyces azureus tsnR 4425 873213 874040 828 sp:TSNR_STRAZ Streptomyces azureus tsnR		39.4	64.7	86	resuscitation-promoting factor
4419 869903 869379 525 gp:MLCB57_11 Mycobacterium leprae 4420 870691 869918 774 gp:AE001874_1 Deinococcus radiodurans 4421 871419 870721 699 ACCCS Streptomyces coelicofor A3(2) 4422 871523 871660 138 Streptomyces coelicofor A3(2) 4424 872927 872016 912 Streptomyces azureus tsnR 4425 873213 874040 828 sp:TSNR_STRAZ Streptomyces azureus tsnR		42.6	75.4	19	cold shock protein
4420 870691 869918 774 gp:AE001874_1 Deinococcus radiodurans 4421 871419 870721 699 A422 871650 138 A423 Streptomyces coelicobor A3(2) 4423 871738 873210 1473 gp:SC6C5_9 SC6C5.09 SC6C5.09 4424 872927 872016 912 Streptomyces azureus tsnR		28.3	58.5	159	hypothetical protein
4421 871419 870721 699 4422 871523 871660 138 4423 871738 873210 1473 gp:SC6C5_9 Streptomyces coelicolor A3(2) 4424 872927 872016 912 Sp:TSNR_STRAZ Streptomyces azureus tsnR		41.8	67.8	273	glutamine cyclotransferase
4422 871523 871660 138 Streptomyces coelicolor A3(2) 4423 871738 873210 1473 gp:SC6C5_9 SC6C5.09 4424 872927 872016 912 Streptomyces azureus tsnR 4425 873213 874040 828 sp:TSNR_STRAZ Streptomyces azureus tsnR					
4423 873210 1473 gp:SC6C5_9 Streptomyces coelicolor A3(2) 4424 872927 872016 912 4425 873213 874040 828 sp:TSNR_STRAZ Streptomyces azureus tsnR					
872927 872016 912 873213 874040 828 sp:TSNR_STRAZ Streptomyces azureus tsnR		43.6	79.3	477	permease
873213 874040 828 sp:TSNR_STRAZ Streptomyces azureus tsnR					
		27.9	51.7	319	rRNA(adenosine-2'-O-)- methyltransferase
926 4426 874944 874069 876					

EP 1 108 790 A2

1		—т	-	—т			_		$\neg \tau$	Т	Т	\neg	Т	Т	1	Т	-т	Т		
5	Function	ein	ansaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	ein	ymporter		ein	se			homoserine O-acetyltransferase				luctase	hase	sporter	DNA helicase	idine-DNA
10	Fu	hypothetical protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	hypothetical protein	sodium/proline symporter		hypothetical protein	fatty-acid synthase			homoserine O-a			glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase
15	Matched length (a.a.)	316	374	236	103	549		243	3026			335			62	171	261	202	1715	298
20	Similarity (%)	55.1	52.9	69.5	90.6	58.1		77.4	83.4			59.7			72.6	62.0	88.9	56.4	68.1	51.0
	Identity (%)	32.6	21.9	36.0	51.5	28.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2
25 (panujuos) t eller	s gene	erculosis	ATCC 21783	2 accD	icolor A3(2)	rescens		perculosis	40			metX			durans	ium folA	12 thyA	12 cysQ	licolor A3(2)	longatus
30 t edge	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacillus circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCIB.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas			Leptospira meyeri metX			Deinococcus radiodurans DR2085	Mycobacterium avium folA	Escherichia coli K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicolor A3(2) SC7C7.16c	Synechococcus elongatus naegeli mutM
35	<u> </u>	ΣÏ	a	ű	क्ष छ	g.		ΣÏ	2 8		-	T,			00	Σ	ŭ	<u>نت !</u>	<u> </u>	S E
40	db Match	sp:YZ11_MYCTU	pir.S71439	sp:ACCD_ECOLI	gp:SCI8_8	pir.JC2382		pir.A70657	pir.S55505			prf.2317335B			gp:AE002044_8	prf:2408256A	sp:TYSY_ECOLI	sp:CYSQ_ECOLI	gp:SC7C7_16	sp:FPG_SYNEN
	ORF (bp)	933	1128	1473	339	1653	816	840	8907	489	186	1047	426	267	237	456	798	756	4560	768
45	Terminal (nt)	874951	875985	1	881985	883647	884541	884549	894578	895191	895593	895596	896719	897689	897727	897979	898434	899253	904602	905382
50	Initial (nt)	875883	877112	881114	881647	881995	883726		885672	894703	895408	896642	897144	897423	897963	898434	899231		900043	904615
	SEQ	4427	4428	4429	4430	4431	4432	4433	4434	4435	4436	4437	4438	4439	4440	4441	4442	4443	4444	4445
55	·	(UNA)	928	1	930	-+-	932		934	935	—	1	938	939	940	941	+	\top		945

	Function	hypothetical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peptidase	hypothetical protein		5'-phosphoribosylglycinamide formyltransferase	5'-phosphoribosyl-5-aminoimidazole- 4-carboxamide formyltransferase	citrate lyase (subunit)
	Matched length (a.a.)	128	196	403		557	195		78	763	885	217		236	434		189	525	217
	Identity Similarity (%) (%)	86.7	71.9	0.79		77.0	52.3		62.9	73.1	48.6	71.4		73.3	8.09		86.2	87.8	100.0
į	Identity (%)	55.5	38.8	33.8		52.4	24.6		29.0	46.1	21.8	43.8		43.6	31.1		64.6	74.5	100.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicalor A3(2) SCI28.06c		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammonlagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
	db Match	pir.F70816	SO:APL LACIA	pir.T36776		pir.NUEC	pir.G70506		sp:YT26_MYCTU	sp:PCRA_BACST	gp:SCE25_30	prf.2420410P		pir.D70716	sp:YT19_MYCTU		gp:AB003159_2	gp:AB003159_3	gp:CGL133719_3
	ORF (bp)	408	99	1173	717	1620	1176	381	309	2289	2223	999	507	711	1425	228	627	1580	819
	Terminal (nt)	905796	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919956	921526	922412
	Initial (nt)	905389	908391	•	908612		910698	910843	911163	911226	915699	916364	916874	917680	917928	918054	919330	919967	921594
	SEO NO.	4446	4447	4448	4449	4450	4451	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	4463
	SEO NO.		_	948	949	1	951	952	953	954	955	956	957	928	959	980	961	962	963

EP 1 108 790 A2

																						_
5		Function	repressor of the high-affinity (methyl) ammonium uptake system	hypothetical protein	0,0	30S noosomal protein 319	30S ribosomal protein 514	50S ribosomal protein L33	50S noosomal protein LZ8	transporter (sulfate transponer)	Zn/Co transport repressor	50S ribosomal protein L31	50S ribosomal protein L32		copper-inducible two-component regulator	two-component system sensor	proteinase DO precursor	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)		large-conductance mechanosensitive channel	hypothetical protein	5-formyltetrahydrofolate cyclo-ligase
15		Matched length (a.a.)	222	109		29	100	49	11	529	8	78	55		227	484	406	188		131	210	191
20		Similarity (%)	100.0	100.0		76.1	90.0	83.7	81.8	71.1	77.5	65.4	78.2		73.6	50.1	59.9	54.3		77.1	60.0	59.7
		Identity (%)	100.0	100.0		52.2	54.0	55.1	52.0	34.4	37.5	37.2	0.09		48.0	24.4	33.3	27.7		50.4	28.6	25.1
25	tinued)	ene	amicum	amicum		a rps 18	rpsN	rpmG	гртВ	NdB	us zntR	i rpmE	olor A3(2)		jae copR	baeS	htrA	CV cnx1		rculosis cl.	rculosis	FS
30	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophora paradoxa rps18	Escherichia coli K12 rpsN	Escherichia coli K12 rpmG	Escherichia coli K12 rpmB	Bacillus subtilis 168 yvdB	Staphylococcus aureus zntR	Haemophilus ducreyi rpmE	Streptomyces coelicolor A3(2) SCF51A, 14		Pseudomonas syringae copR	Escherichia coli K12 baeS	Escherichia coli K12 htrA	Arabidopsis thaliana CV cnx1		Mycobacterium tuberculosis H37Rv Rv0985c mscl.	Mycobacterium tuberculosis H37Rv Rv0990	Homo sapiens MTHFS
35 40		db Match	gp:CGL133719_2	gp:CGL133719_1		sp:RR18_CYAPA C	ECOLI		pir.R5EC28		×2	3			sp:COPR_PSESM	SP:BAES_ECOLI		RATH		sp:MSCL_MYCTU	pir.A70601	pir.JC4389
		ORF (bp)		327	321	249	+		234	+	_		171	447	969	1365	1239	585	198	405	651	570
45		Terminal	922396	923138	923981	924159	924425	924734	924901	925325	926931	927737	927922	927339	928812	930248	931648	932290	932487	932570	933060	933733
50		Initial (nt)	923061	923464	923661	924407		_						927785		928884			932280		933710	934302
		SEO.		4465	4466	4467	4468	4469	4470	4471	147	4473	4474	4475	4476	4477	4478	4479	4480	4481	4482	4483
55		SEO.	DNA)	965	966	2 2	968	8 8	928	2 2	5 5	2/2	974	975	976	770	978	979	980	981	982	983

																	_
Function	UTP-glucose-1-phosphate uridylyltransferase	molybdopterin biosynthesis protein	ribosomal-protein-alanine N- acetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	hypothetical membrane protein	hypothetical protein	methionyl-tRNA synthelase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
Matched length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741	210	363		94
Similarity (%)	68.9	62.6	54.9	54.8	62.4		9.09	59.6	53.6	75.2	78.3	66.7	49.0	53.3	59.0		59.6
Identity (%)	42.2	31.8	29.0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0		33.0
Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans moeA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd H11602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoaufotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
db Match	pir.JC4985	prf.2403296B	sp:RIMJ_ECOLI	pir.G70601	Sp.CYNX_ECOLI		sp:YG02_HAEIN	sp:Y05C_MYCTU	sp:CDAS_BACSH	pir.E70602	sp:Y19J_MYCTU	SP.SYM_METTH	prf.1306383A	pir.869206	sp:YXAG_BACSU		gp:AF029727_1
ORF (bp)	897	1257	099	1020	1200	1419	405	714	1167	1560	825	1830	2049	633	1158	531	294
Terminal (nt)	935319	936607	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950839	950828	951834	953043	954266
Initial (nt)	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	948791	951460	952991	953573	953973
SEQ NO.	4484	4485	4486	4487	4488	4489	4490	4491	4492	4493	4494	4495	4496	4497	4498	4499	4500
SEO.	984	985	986	987	988	989	066	991	392	993	994	995	986	997	966	666	1000
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (bp) (bp) (bp)	SEQ Initial No. (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (match (%) Matched (%) Matched (%) Matched (%) (SEQ Initial No. (nt) Terminal (bp) ORF (bp) db Match Homologous gene (moth properties) Identity (moth properties) Similarity (moth properties) Matched (moth properties) <t< td=""><td>SEQ (a.a.) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Initial (%) Initial (%)</td></t<> <td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (bp) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt</td> <td>SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)</td> <td>SEQ (a.a.) Initial (f) Terminal (h) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)</td> <td>SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td> <td>SEQ NO. Initial (nt) Terminal (nt) ORF (pp) db Match db Match Homologous gene (sa.a) Identity (%) Similarity (%) Matched (%) Match</td> <td>SED Initial Note (mt) Terminal (nt) ORF (mt) db Match (pp) Homologous gene (%6) Identity (%6) Similarity (%6) Matched /td> <td>SED Initial Terminal ORF db Match Homologous gene 1dentity (%) Similarity length (%) Matched (%) Matc</td> <td>SED Initial Terminal (MP) ORF db Match Homologous gene (%) 4%) (%)</td> <td>SED Initial Terminal ORF db Match Homologous gene (%) (%</td> <td>SED Initial Terminal ORF db Match Homotogous gene (45) Similarity (76) Match (76)</td> <td> Nature Carminal /td> <td>SED Initial Terminal ORF db Match Homologous gene (%) (%</td> <td>SED (n.) Initial (n.) Terminal (n.) OPF (n.) db Malch (p.) Homologous gene (h.) Identity (h.) Similarity (h.) Malched (h.) 4485 4485 935351 935319 935351 935319 935351 93531 935607 1257 1252 1252 935607 ptr.JC4985 1252 1252 1252 1252 1252 1252 1252 12</td>	SEQ (a.a.) Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Initial (%) Initial (%)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (bp) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ (a.a.) Initial (f) Terminal (h) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (pp) db Match db Match Homologous gene (sa.a) Identity (%) Similarity (%) Matched (%) Match	SED Initial Note (mt) Terminal (nt) ORF (mt) db Match (pp) Homologous gene (%6) Identity (%6) Similarity (%6) Matched	SED Initial Terminal ORF db Match Homologous gene 1dentity (%) Similarity length (%) Matched (%) Matc	SED Initial Terminal (MP) ORF db Match Homologous gene (%) 4%) (%)	SED Initial Terminal ORF db Match Homologous gene (%) (%	SED Initial Terminal ORF db Match Homotogous gene (45) Similarity (76) Match (76)	Nature Carminal Carminal	SED Initial Terminal ORF db Match Homologous gene (%) (%	SED (n.) Initial (n.) Terminal (n.) OPF (n.) db Malch (p.) Homologous gene (h.) Identity (h.) Similarity (h.) Malched (h.) 4485 4485 935351 935319 935351 935319 935351 93531 935607 1257 1252 1252 935607 ptr.JC4985 1252 1252 1252 1252 1252 1252 1252 12

EP 1 108 790 A2

5		Function	transposase	transposase subunit		D. lactate debydrogenase	מביים ביים ביים ביים ביים ביים ביים ביים	site-specific DNA-methyltransferase		transposase	transposase	transcriptional regulator	cadmium resistance protein		hypothetical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl monophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein	hypothetical protein
15		hed The		Γ	T	+			1	7					263 hy	362 hy	265 dir	315 isc	1	478 AE	242 py	159 hy	108 hy
		Matched length (a.a.)	139	112		202	8 	231		8	23	9	205		56	36	36	3	\dashv	4	5	=	-
20		Similarity (%)	67.6	88.4		9 26	0.07	62.8		59.6	67.6	84.6	66.8		70.7	63.5	65.3	67.0		82.8	67.4	58.5	78.7
		Identify (%)	41.7	73.2	3,2		46.4	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
25	ed)				2			88 88				sis	adD		sis	sis	A	osis		ıraea	¥	osis	A3(2)
30	Table 1 (continued)	Homologous gene	Echarichia coli K12	מרוופוניות המי היים	Brevibacterium linens unpa		Escherichia coli did	Klebsiella pneumoniae OK8 kpnIM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis H37Rv Rv2874	Streptomyces coelicolor A3(2) SCF1.02
35			l	1		7	ш			_	Ī		0,		21					0, 0			
40		db Match	-i-TOTOTI-	DIC I CECIS	gp:AF052055_1		prf:2014253AE	sp:MTK1_KLEPN		ap. AF029727	pir TQEC13	sp:YJ94_MYCTU	prf.2514367A		pir.C70603	pir:D70603	Sp:KSGA ECOLI	pir.F70603		pir:S47441	SP:PDXK_ECOLI		gp:SCF1_2
		ORF (pd)	;;	4//	414	864	1713	840	219	294	477	357	621	342	831	1071	879	933	642	1833	792	480	321
45		Terminal (nt)		954753	955354	956774	955686	957844	959185	950374	960861	961653	962249	961321	963639	964934	965852	966784	965950	099896	969458	969461	970349
50		tnitial (nt)		954277	954941	955911	957398	958683	959403	OBOUR1	960385	961297	961629	061662	962809	963864	964974		966591		968667		970029
		SEO		4501	4502	4503	4504	4505	4506			4509	4510	45.13	4512	4513	4514	4515	4516	4517	4518	4519	4520
55				1001	1002	1003			1006	_	\neg	_		_	$\overline{}$	1013	1014	1015	1016	1017	1018	1019	1020

							_											
	Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-urea transport protein
	Matched length (a.a.)	107	261	278	266				440	100	802	157		121	482		546	404
	Identity Similarity (%)	69.2	88.1	59.1	70.9				56.8	70.0	70.0	75.8		63.6	48.3		68.0	72.8
	Identity (%)	35.5	64.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1 15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17985 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE87.17c	Haemophilus influenzae Rd H10508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
	db Match	gp:SCF1_2	gp:SCJ1_15	sp:YXEH_BACSU	pir.E70893				1386 sp.CSP1_CORGL	9p:SCF56_6	gp:SCE87_17	Sp:MENG_HAEIN	•	gp:NMA622491_21	pir.A70539		pir.159305	prf.2406311A
	ORF (bp)	321	096	792	1017	654	777	1212	1386	629	2373	498	999	381	1551	936	1647	1269
	Terminal (nt)	970738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981490	982287	982294	984650	985845	984864	988007
	Initial (nt)	970418	970864	973035	973139	973957	974186	976176	976349	978378	980740	980993	981622	982674	983100	984910	986510	986739
	SEQ NO. (a.a.)	4521	4522	4523	4524	4525	4526	4527	4528	4529	4530	4531	4532	4533	4534	4535	4536	4537
	SEQ NO. (DNA)	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037

EP 1 108 790 A2

	Γ				ہ دا	و د	T	\top		2	T								
5		Function	sport protein	sport protein	high-affinity branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	lydrolase	dioxygenase	-3-phosphate	polypeptides predicted to be useful antigens for vaccines and diagnostics	hydrolase	protein L25	ne lyase	DNA alkylation repair enzyme	ate inase	glucosamine /lase		ecursor	nodulation ATP-binding protein I
10		Œ	amide-urea transport protein	amide-urea transport protein	high-affinity bra acid transport A	high-affinity bra acid transport A	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoylglutathione lyase	DNA alkylation	ribose-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufi protein precursor	nodulation AT
15	Matched	length (a.a.)	11	234	253	236	187	361	342	51	174	194	143	208	316	452		206	310
20		Similarity (%)	61.0	68.0	70.0	69.1	70.6	54.0	72.8	61.0	63.2	65.0	54.6	62.5	79.1	71.9		61.7	64.8
		Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0	_	30.8	35.8
25 	lable 1 (confined)	s gene	hylotrophus	hylotrophus	ruginosa PAO	ruginosa PAO	12 pth	FO 0895	eofulvus gap	itidis	(12 pth	berculosis	nurium D21	TCC 10987	15	caD		K12 sufl	33 nodl
30	lable 1	Homologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williapsis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitidis	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis prs	Bacillus subtilis gcaD		Escherichia coli K12 sufl	Rhizobium sp. N33 nodl
35	-		ΞĒ	₹ £	Pseu	S S	S	⋛	क	ž	140	ŽΪ	0.0	क क	1	65		<u>ш</u>	12
40		db Match	prt:2406311B	prf:2406311C	sp:BRAF_PSEAE	sp:BRAG_PSEAE	SO.PTH ECOLI			GSP:Y75094	SD PTH ECOLI	+	sp:LGUL_SALTY	prf.2516401BW	sp:KPRS_BACCL	pir.S66080		Sp.SUFI_ECOLI	
		ORF (bp)	882	1077	726	669	612	102	1065	369	531	909	429	624	975	1455	1227	1533	918
45		Terminal (nt)	988904	989980	990705	991414	001417	+	994613	994106	004845	995527	996830	996833	997466	998455	100001	1	
50		fuitiat (nt)	988023	988904	989980			_ 1	993549	1	005175		996402	997456	998440	606666	1001242		1003013
		SEQ.	4538	4539	4540	4541	27.37	710	4543	4545	45.45	4547	4548	4549	4550	4551	4552	4553	4554
55		SEQ.		1039			<u>-</u> -	$\overline{}$	1044		9707	1047	1048	1049	1050	1051	1052	1053	1054

	Function	hypothetical membrane protein	two-component system sensor histidine kinase	two component transcriptional regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	gamma-giulamyttranspeptidase precursor					transposase protein fragment	transposase (IS1628 TnpB)				transcriptional regulator (TetR- family)	transcription/repair-coupling protein	
	Matched length (a.a.)	272	459	202		349	535		573	999					37	236				183	1217 1	1
!	Similarity (%)	63.2	48.4	67.3		64.5	57.0		74.0	58.6					72.0	100.0				59.6	65.1	
	Identity (%)	30.2	24.6	36.6		31.5	28.6		44.0	32.4					64.0	9.66				23.0	36.2	
Table 1 (continued)	Homologous gene	Streptomyces lividans ORF2	Escherichia coli K12 uhpB	Streptomyces peucetius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Escherichia coli K12 ggt					Corynebacterium glutamicum TnpNC	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coll tetR	Escherichia coli mfd	
	db Match	pir.JN0850	1257 sp:UHPB_ECOLI	prf.2107255A		gp:SCF15_7	pir.S65587		pir.T14180	sp:GGT_ECOLI					GPU.AF164956_23	gp:AF121000_8				sp:TETC_ECOU	sp:MFD_ECOLI	
	ORF (bp)	831	1257	609	204	1155	1440	153	1734	1965	249	519	192	606	243	708	462	597	312	651	3627	1224
	Terminal (nt)	1004783	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797	1014264	1014343	1015116	1016560	1015450	1015145	1017018	1017274	1018393	1019066	1022716	1019390
	Initial (nt)	1003953	4556 1004829	1006089	1006937	1006998	4560 1008622	1008686	1010057	1013761	1014016	1014861	1014925	1015652	1015692	1015852	1016557	1017870	1018082	4573 1018416	4574 1019090	4575 1020613
	SEQ NO. (a.a.)	4555		4557	4558	4559		4561	4562	4563	4564	4565	4566	4567	4568	4569	4570	4571	4572	4573	4574	4575
	SEQ NO.	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075

EP 1 108 790 A2

								_	\neg	_	-					$\neg \tau$					1	
5		Function	Neisserial polypeptides predicted to be useful antigens for vaccines and	diagnostics multidrug resistance-like ATP-	binding protein, ABC-type transport protein	ABC transporter	hypothetical membrane protein		hypothetical protein			Ciodes and Control	to procein	enolase (z-priuspriugrycznacy dehydratase)(2-phospho-D- glycerate hydro-lyase)	hypothetical protein	hypothetical protein	hypothetical protein	guanosine pentaphosphatase of		threonine dehydratase		
15			 	dia dia	632 bin pro	574 AB	368 hy		183 hy		_		241 lpc	422 de	41 h	191 F	153 h	329		314 11		
		Matched length	76		8	2.	ř		_	_	_	'	7	4					+	+	+	$\frac{1}{2}$
20		Similarity (%)	69.0		62.7	81.9	100.0		57.4				689	86.0	58.0	55.0	77.8	55.0		64.7		
		Identity S	48.0		31.3	50.2	100.0		33.4				46.5	64.5	68.0	31.9	59.5	25.2		30.3	3	
25	g)		1			sis	mn:						SIS		PE2459	osis	losis					
30	Table 1 (continued)	Homologous gene		Neisseria gonormocae	Escherichia coli mdiB	Mycobacterium tuberculosis H37Rv Rv1273c	Corynebacterium glutamicum	1000	New sittle country	acilias sauvins Jan			Mycobacterium tuberculosis H37Rv Rv1022 IpqU	Bacillus subtilis eno	Aeropyrum pernix K1 APE2459	Mycobacterium tuberculosis H37Rv Rv1024	Mycobacterium tuberculosis	And ilea cideiade			Escherichia coli Idcb	
35				2		1	_		_	$\neg \vdash$	\dagger	1	ΣI		1	21			1			7
40		db Match		GSP:Y75301	Sp:MDLB_ECOL!	sp:YC73_MYCTU	Sp.YLI3 CORGI			Sp. YABN_BACSU			pir.A70623	sp:ENO_BACSU	PIR-R72477	pir.C70623	pir.D70623		sp:GPPA_ECOLI		sp.THD2_ECOLI	
		ORF	<u>(a)</u>	228 (1968	1731			$\overline{}$	585	426	378	786	1275	144	540	546		963	984	8	195
45		Terminal	-	1021078	1022699 1	1024666	1	_		1032780	1032760	1033269	1034739	1036223	4036046	1036855	1037445		1038410	1036498	1038721	1039977
50			(ut)	1021305 1	1024666	902900		10288201	1031885	1032196	1033185	1033646	1033954	1034949		1036316			1037448	1037481	1039650	4592 1039783
		SEQ	(a. a.)	4576 1	4577	6		45/9	4580	4581	4582	4583	4584	4585		4587	900	4300	4589	4590	4591	4592
<i>55</i>		SEQ S		1076	1077	$\overline{}$		1079	1080	1081	1082	+-				1085	9	1088	1089	1090	1091	1092

.

	}	ŀ	ļ		[Table 1 (continued)				
1030996 1040325 330 Thermotoga maritima MSBB 46.3 74.1 56 1040925 1040325 189 pir.B722B7 Thermotoga maritima MSBB 46.3 74.1 56 1040925 1041917 993 sp.RHAR_ECOLI Escherichia coli rhaR 24.8 55.8 242 1042027 1042027 104202 81 mycobacterium tuberculosis 57.8 80.1 282 1043236 104202 87 Mycobacterium tuberculosis 35.0 60.1 143 1043747 1043298 450 gp.SCF55_39 Sireptomyces coelicolor A3(2) 30.0 57.1 140 1044029 1044037 873 pir.SCF55_39 Sireptomyces coelicolor A3(2) 30.0 57.1 140 1046073 1046030 873 pir.SCF55_39 Sireptomyces coelicolor A3(2) 30.0 57.1 140 1046073 1046030 873 pir.SC4952 Sireptomyces coelicolor A3(2) 31.7 56.3 300 1046610 1046030 </td <td></td> <td>a SO (se</td> <td>Initial (nt)</td> <td>Terminal (nt)</td> <td>ORF (bp)</td> <td>db Match</td> <td>Homologous gene</td> <td>Identity (%)</td> <td>Similarity (%)</td> <td>Matched length (a.a.)</td> <td>Function</td>		a SO (se	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1040925 104086Z 189 pir.B72287 Thermotoga martitima MSBB 46.3 74.1 56 1040925 1041917 993 sp.RHAR_ECOLI Escherichia coli rhaR 24.6 55.8 242 1043205 1042860 387 HJRVCBACITIM tuberculosis 57.1 140 1043236 1042860 387 Escherichia coli greA 35.0 60.1 140 1043247 1043284 450 gp.SCF55_39 Sireptomyces coelicolor A3(2) 30.0 57.1 140 1044295 1043774 522 sp.GREA_ECOLI Escherichia coli greA 35.0 60.1 140 1044595 1044477 483 pir.G70894 HJRVR NR1081c 34.3 72.1 140 1044607 1046619 318 Mycobacterium glutamicum 39.2 99.5 36.3 300 1044617 483 pir.G70894 Mycobacterium glutamicum 30.0 97.3 97 1044617 483 pir.SC485CCORGL Corynebacterium glutamicum			1039996	1040325	330						
1043025 1041917 993 sp:RHAR_ECOLI Escherichia coli rhaR 24.8 55.8 242 1043202 1042842 816 pir.F70893 Mycobactarium tuberculosis 57.8 80.1 282 1043236 1042850 387 Ripeptomyces coelicolor A3(2) 30.0 57.1 140 1043247 1042886 450 gp.SCF55_39 Sireptomyces coelicolor A3(2) 30.0 57.1 140 1044395 1043774 522 sp.GREA_ECOLI Escherichia coli greA 35.0 60.1 143 1044859 1044477 483 pir.S44952 Streptomyces lincolnensis tmbE 31.7 56.3 300 10448073 1046830 378 Sp.RAPC_CORGL Corynebacterium glutamicum 99.2 89.5 36.7 104782 1048501 675 sp.YARF_CORGL Corynebacterium glutamicum 100.0 97.3 97 104485 1048501 675 sp.YARF_CORGL Corynebacterium glutamicum 96.0 97.3 97	14		1040494	1040682	189	pir: B72287	Thermotoga maritima MSBB	46.3	74.1	56	hypothetical protein
1042027 1042842 816 pir.F70893 Mycobacterium tuberculosis 57.8 80.1 282 1043236 1042850 387 H37Rv Rv1072 30.0 57.1 140 1043747 1043286 450 gp:SCF55_39 Streptomyces coelicolor A3(2) 30.0 57.1 140 1044395 1044477 52 sp:GREA_ECOL1 Escherichia coli greA 35.0 60.1 143 1046518 1044477 483 pir.G70894 Mycobacterium tuberculosis 34.3 72.1 140 1046518 1046530 873 pir.S4952 Streptomyces fincolnensis ImbE 31.7 56.3 300 1046610 1047707 1098 sp:AROG_CORG CoRG CoRGL CoCRCL8310 0.0 87.3 97 104852 1048501 675 sp:YARF_CORG CoRCL8310 CoCRCL8310 0.0 99.5 367 104852 1048502 174 sp:YARF_CORG CoRCL8310 CoCRCL8310 0.0 100.0 28 <td>1 4</td> <td>1</td> <td>1040925</td> <td>1041917</td> <td>993</td> <td>sp:RHAR_ECOLI</td> <td>Escherichia coli rhaR</td> <td>24.8</td> <td>55.8</td> <td>242</td> <td>transcription activator of L-rhamnose operon</td>	1 4	1	1040925	1041917	993	sp:RHAR_ECOLI	Escherichia coli rhaR	24.8	55.8	242	transcription activator of L-rhamnose operon
4597 1043236 1042850 387 140 4598 1043747 1043298 450 gp.SCF55_39 Skrebcincial A3(2) 30.0 57.1 140 4599 104477 483 pir.G70894 Mycobacterium tuberculosis 34.3 72.1 140 4601 104457 483 pir.G70894 Mycobacterium tuberculosis 34.3 72.1 140 4601 104457 483 pir.G70894 Mycobacterium tuberculosis 34.3 72.1 140 4602 1044607 1046030 873 pir.S44952 Streptomyces fincolnensis lmbE 31.7 56.3 300 4602 1046070 1038 pir.S44952 Streptomyces fincolnensis lmbE 31.7 56.3 300 4603 104607 1046030 873 pir.S44952 Streptomyces fincolnensis lmbE 31.7 56.3 307 4604 104807 104807 1038 sp.YARF_CORG Conynebacterium glutamicum 100.0 100.0 100.0 100.0	4	296	1042027	1042842	816	pir:F70893	Mycobacterium tuberculosis H37Rv Rv1072	57.8	80.1	282	hypothetical protein
459B 1043747 104329B 450 gp:SCF55_39 Streptomyces coelicolor A3(2) 30.0 57.1 140 459B 1044295 1043774 522 sp:GREA_ECOL. Escherichia coli greA 35.0 60.1 143 4600 1044959 1044477 483 pir.G40894 Mycobacterium tuberculosis 34.3 72.1 140 4601 1044959 1044477 483 pir.S44952 Streptomyces (incolnensis ImbE 31.7 56.3 300 4601 1046073 1046390 318 respectation glutamicum 99.2 89.5 367 4602 1046610 1047707 1098 sp:AROG_CORGL Corynebacterium glutamicum 99.2 89.5 367 4603 1047827 1048501 67.5 sp:YARF_CORGL Corynebacterium glutamicum 99.2 89.5 367 4606 104862 17 SP:YARF_CORGL Corynebacterium glutamicum 99.2 99.5 100.0 28 4607 104862 17 </td <td>L</td> <td><u> </u></td> <td>1043236</td> <td>1042850</td> <td>387</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	L	<u> </u>	1043236	1042850	387						
4599 1044295 1044774 522 sp.GREA_ECOL1 Escherichia coli greA 35.0 60.1 143 4600 1044959 1044477 483 pir.G70894 Mycobacterium tuberculosis 34.3 72.1 140 4601 1045188 1046030 873 pir.G40852 Streptomyces fincohensis ImbE 31.7 56.3 300 4602 1046610 1047707 1098 sp.:AROG_CORGL Conynebacterium glutamicum 99.2 99.5 367 4603 1047627 1048501 675 sp:YARF_CORGL Conynebacterium glutamicum 96.0 97.3 97 4605 1047827 1048501 675 sp:YARF_CORGL Conynebacterium glutamicum 100.0 100.0 28 4605 1048262 174 Sp:YARF_CORGL Conynebacterium glutamicum 100.0 100.0 28 4605 1048252 1049043 519 sp:XARF_CORGL Gencynebacterium glutamicum 100.0 100.0 28 4608 1049326	4		1043747	1043298	450	gp:SCF55_39	Streptomyces coelicolor A3(2) SCF55.39	30.0	57.1	140	hypothetical protein
4600 1044958 1044477 483 pir.G70894 Mycobacterium tuberculosis 34.3 72.1 140 4601 1045158 1046390 873 pir.S44952 Streptomyces lincolnensis lmbE 31.7 56.3 300 4602 1046073 1046390 318 Corynebacterium glutamicum 99.2 99.5 367 4603 1046820 633 Corynebacterium glutamicum 96.0 97.3 97 4604 1047452 1048501 675 sp:YARF_CORGL Corynebacterium glutamicum 96.0 97.3 97 4605 1047827 1048509 174 Sp:YARF_CORGL Corynebacterium glutamicum 100.0 100.0 28 4606 1048526 1049043 519 Sp:YARF_CORGL Gorynebacterium glutamicum 100.0 100.0 28 4607 1048526 1049043 519 Sp:YARF_CORGL Escherichia coli coaA 53.9 79.9 308 4608 1050624 105925 1302 gsp:R977	4	1	1044295	1043774	522	Sp. GREA_ECOLI	Escherichia coli greA	35.0	60.1	143	transcription elongation factor
4601 1045158 1046030 873 pir.S44952 Streptomyces (Incolnensis ImbE 31.7 56.3 300 4602 1046073 1046390 318 Corynebacterium glutamicum 99.2 89.5 367 4603 104707 1098 sp.AROG_CORGL Corynebacterium glutamicum 99.2 89.5 367 4604 1047827 1048501 675 sp.YARF_CORGL Corynebacterium glutamicum 96.0 97.3 97 4607 1048525 1049043 519 SP.YARF_CORGL Corynebacterium glutamicum 100.0 100.0 28 4607 1048525 1049043 519 SP.YARF_CORGL Corynebacterium flavum) 100.0 100.0 28 4607 1048525 1049043 519 SP.YARF_CORGL Escherichia coli coaA 53.9 79.9 308 4610 1050362 1049042 936 Sp.COAA_ECOLI Escherichia coli coaA 53.9 79.9 308 4611 1052021 1053880 18		009	1044959	1044477	483	pir:G70894	Mycobacterium tuberculosis H37Rv Rv1081c	34.3	72.1	140	hypothetical protein
4602 1046073 1046390 318 Conynebacterium glutamicum 99.2 99.5 367 4603 1046610 1047707 1098 sp.AROG_CORGL Conynebacterium glutamicum 99.2 99.5 367 4604 1047452 1048501 675 sp.YARF_CORGL Conynebacterium glutamicum 96.0 97.3 97 4605 1048526 174 Sp.YARF_CORGL Conynebacterium glutamicum 100.0 100.0 28 4607 1048525 1049043 519 Exp.YARF_CORGL Revibacterium flavum) 100.0 100.0 28 4608 1049385 1049068 318 Exp.COAA_ECOLI Escherichia coli coaA 53.9 79.9 308 4610 1050624 1051925 1302 gsp:R97745 Brevibacterium flavum MJ-233 99.5 100.0 434 4611 1052021 1053880 1860 sp:PABS_STRGR Streptomyces griseus pabS 47.6 70.1 696	14	•	1045158	1046030	873	pir.S44952	Streptomyces fincolnensis ImbE	31.7	56.3	300	lincomych-production
4603 1046610 1047707 1098 sp. AROG_CORGL Corynebacterium glutamicum 99.2 99.5 367 4604 1047452 1046820 633 Exp. YARF_CORGL Corynebacterium glutamicum 96.0 97.3 97 4605 1047827 1048529 174 SP. YARF_CORGL Corynebacterium glutamicum 100.0 100.0 28 4607 1048525 174 SP. YARF_CORGL Corynebacterium glutamicum 100.0 100.0 28 4607 1048525 174 SP. YARF_CORGL Gorynebacterium glutamicum 100.0 28 4608 1049385 1049068 318 Exp. COAA_ECOLI Escherichia coli coaA 53.9 79.9 308 4610 1050624 1051925 1302 gsp. R97745 Brevibacterium flavum MJ-233 99.5 100.0 434 4611 1052021 1053880 1860 sp. PABS_STRGR Streptomyces griseus pabS 47.6 70.1 696			1046073	1046390	318						
4604 1047452 1048820 633 Conynebacterium glutamicum 96.0 97.3 97 4605 1047827 1048501 675 sp:YARF_CORGL Conynebacterium glutamicum 100.0 100.0 28 4606 1048525 174 SP:YARF_CORGL Conynebacterium glutamicum 100.0 100.0 28 4607 1048525 1049043 519 Exp. COAA_ECOLL Escherichia coli coaA 100.0 28 4608 1050362 1054927 336 Sp: COAA_ECOLL Escherichia coli coaA 53.9 79.9 308 4610 1050624 1051925 1302 gp: R97745 Brevibacterium flavum MJ-233 99.5 100.0 434 4611 1052021 1054602 723 Sr:PABS_STRGR Streptomyces griseus pabS 47.6 70.1 696			1046610	1047707	1098		Corynebacterium glutamicum aroG	99.2	99.5	367	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase
4605 1047827 1048501 675 sp.YARF_CORGL Corynebacterium glutamicum 96.0 97.3 97 4606 1048356 1048529 174 SP.YARF_CORGL Corynebacterium glutamicum 100.0 100.0 28 4608 1048525 1049043 519 P.YARF_CORGL Escherichia coli coaA 53.9 79.9 308 4609 1050362 1049427 936 sp.COAA_ECOLI Escherichia coli coaA 53.9 79.9 308 4610 1050624 1051925 1302 gsp.R97745 Brevibacterium flavum MJ-233 99.5 100.0 434 4611 1053880 1860 sp:PABS_STRGR Streptomyces griseus pabS 47.6 70.1 696 4612 1053880 1054602 723 73.9 70.1 696	4		1047452	1046820	633						
4606 1048356 1048529 174 SP:YARF_CORGL Corynebacterium glutamicum flavum) 100.0 100.0 28 4607 1048525 1049043 519 ACCORA_ECORI Escherichia coli coaA 53.9 79.9 308 4608 1050362 1049427 936 sp:COAA_ECOLI Escherichia coli coaA 53.9 79.9 308 4610 1050624 1051925 1302 gsp:R97745 Brevibacerium flavum MJ-233 99.5 100.0 434 4611 1052021 1053880 1860 sp:PABS_STRGR Streptomyces griseus pabS 47.6 70.1 696 4612 1053880 1054602 723 73.3 70.1 696		909	1047827	1048501	675	sp:YARF_CORGL	Corynebacterium glutamicum CCRC18310	96.0	97.3	97	hypothetical protein or undecaprenyl pyrophosphate synthetase
4607 1048525 1049043 519 Responsible to the column of the column			1048356	1048529	174	SP:YARF_CORGL	Corynebacterium glutamicum (Brevibacterium flavum)	100.0	100.0	28	hypothetical protein
4608 104908B 318 Escherichia coli coaA 53.9 79.9 308 4609 1050362 1051925 1302 gp. R97745 Brevibacterium flavum MJ-Z33 99.5 100.0 434 4611 1052021 1053880 1860 sp. PABS_STRGR Streptomyces griseus pabS 47.6 70.1 696 4612 1053880 1054602 723 73 70.1 696	4		1048525	1049043	519						
4609 1050362 1049427 936 sp.:COAA_ECOLI Escherichia coli coaA 53.9 79.9 308 4610 1050624 1051925 1302 gsp.R97745 Brevibadcerium flavum MJ-233 99.5 100.0 434 4611 1052021 1053880 1860 sp.PABS_STRGR Streptomyces griseus pabS 47.6 70.1 696 4612 1053880 1054602 723 73 70.1 696	1		1049385	1049068	318						
4610 1050624 1051925 1302 gsp. R97745 Brevibacterium flavum MJ-233 99.5 100.0 434 4611 1052021 1053880 1860 sp.PABS_STRGR Streptomyces griseus pabS 47.6 70.1 696 4612 1053880 1054602 723 1053880 47.6 70.1 696	4		1050362	1049427	936	sp:COAA_ECOLI	Escherichia coli coaA	53.9	79.9	308	pantothenate kinase
1052021 1053880 1860 sp:PABS_STRGR Streptomyces griseus pabS 47.6 70.1 696 1053880 1054602 723	4 1		1050624	1051925	1302	gsp:R97745	Brevibacterium flavum MJ-233 glyA	99.5	100.0	434	serine hydroxymethyl transferase
1053880 1054602	4		1052021	1053880	1860		Streptomyces griseus pabS	47.6	70.1	969	p-aminobenzolc acid synthase
	4	1612	1053880	1054602	723						

EP 1 108 790 A2

				-																				_	-	٦ .	
5		Function			phosphinothricin resistance protin	hypothetical protein		hypothetical protein	lactam utilization protein	hypothetical membrane protein			transcriptional regulator		fumerate hydratase precursor	NACH-denendent FMN	oxydoreductase			reductase	dibenzothiophene desulfunzation enzyme A	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)	dibenzothiophene desulfurization	11. July 5 (22) 5 11. July 11.			•
15		Matched length (a.a.)			165 ph	300	Γ	225 hy	276 la	Т	T		100	\top	456		159		1	184	443	372	391	+			
20		Similarity N			58.8	20.0		67.8	522	24.5	7.10		5	93.2	Ş	19.4	65.4			81.0	67.7	51.3	61.6		-		
		Identity (%)			30.3	30.3	30.5	37.8	20 B	200	40.0			26.0		52.0	32.7			55.4	39.1	25.8	28.9		\downarrow		
25	(pa															fumH	<u>:s</u>			. A3(2)	8 soxA	IGTS8 soxC	B soxC				
30	Table 1 (continued)	Homologous gene			Gotta ellected	Alcaligenes raecalis picis	Escherichia coli ybgK	Adv. Handa adda a	Escherichia cui yogo	Emericella nidulans lamb	Bacillus subtilis ycsH			Bacillus subtilis ydhC		Rattus norvegicus (Rat) fumH	Rhodococcus erythropolis IGTS8 dszD			Streptomyces coelicolor A3(2) StAH10.16	Rhodococcus sp. IGTS8 soxA	Rhodococcus sp. IGTS	Phodococcus sp. IGTS8 soxC	L proposition			
35			+		- -	7	\neg	T	T		\neg			$\neg \neg$							+	+	+		1	\neg	
40		db Match				gp:A01504_1	sp:YBGK_ECOLI		sp:YBGJ_ECOLI	Sp:LAMB_EMENI	sp:YCSH_BACSU			sp:YDHC_BACSU		SP:FUMH_RAT	gp:AF048979_1			9p:SCAH10_16	sp.SOXA_RHOSO			sp.sovoc_krioso			
		ORF (bp)		864	393	537	879		699	756	591	672	603	681	1278	1419	489	261	447	564	1488	1080) FL	780	990	
45		Terminal		1055722	1054640	1056319	1056322	1058628	1057200	1057843	1058624	1059889	1059962	1060792	1062146	1062211	1064424	1064478	1064754		1067570			1069845	1068913	1069119	
50		Initial	(111)	1054859	1055032	1055783	1057200	1057573	1057868	1058598	-		4622 1059360	1060112	1060869	1063629	1063936	1064738		1065867	1086083			1068649	1069692	1069808	
		SEO	(a.a.)	4613	4614	4615	4616	4617	4618	1619	4620		4622	4623	4624	4625		4627			4630			4632	4633	4634	
<i>55</i>		Q Q	$\overline{}$	113	114	115	116	117	118	1119	2	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	3 2		1132	1133	1134	

					_	_	·—		,		,									
	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exodeoxyribonuclease small subunit	exodeoxyribonuclease large subunit	penicillin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics		Defmease .		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	ornithine carbamovitransferase	hypothetical protein
	Matched length (a.a.)	397	325	211	227		82	62	466	311	131		338		552	412	364	T	301	1
	Similarity (%)	73.1	75.7	56.4	1.99		78.1	67.7	55.6	78.8	47.0		63.9		61.4	0.09	98.6	80.0	58.8	69.6
	Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.9	6.0	57.3	29.6	.39.2
Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xseB	Escherichia coli K12 MG1655 xseA	Escherichia coli K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
	db Match	gp:ECO237695_3	sp:GLPX_ECOLI	pir:B70897	pir:H70062		gp:SCH24_37	sp:EX7S_ECOLI	sp:EX7L_ECOU	sp:LYTB_ECOLI	GSP:Y75421		sp:PERM_ECOLI		sp:NTPR_RAT	sp.CSP1_CORGL	sp:YYAF_BACSU	sp:VAPI_BACNO	sp:OTCA_PSEAE	sp:YKKB_BACSU
	ORF (bp)	1176	963	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	822	501
	Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080786	1080972	1082951	1085462	1086087	1086917	1087044
	Initial (nt)	1069959	1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077297	1077734	1079146	1080540	1080965	1082708	1084183	1084380	1085791	1086096	1087544
	SEQ NO. (a.a.)	4635	4636	4637	4638	4639	4640	4641	4642	4643		4645	4646	4647	4648	4649	4650		4652	4653
	SEQ NO. (DNA)	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150 4		1152	1153 4

EP 1 108 790 A2

5		Function	9-cis retinol dehydrogenase of	OXIGOREGUCIASS	transposaseumegrase (1010)	hypothetical memorane process	N-acetylglucosaminyltransferase			transposase (insertion sequence	[531831]	transposase		(rainsposasso			oxidoreductase or morpyine-6-	dehydrogenase (naloxone reductase)	4-carboxymuconolactone			frenolicin gene cluster protein	involved in frenoticin biosynthetic
15	100	Matched length (a.a.)	198		386	1153	259			:)6	125	•	\$			1	264	108		-	;	146
20		Similarity (%)	808	2.00	73.0	52.2	47.1				93.8	94.4		95.8				66.3	63.9	-	1	+	66.4
		dentity (%)	9	0.55.0	42.2	23.0	22.8				82.5	79.2	<u> </u>	87.5				37.5	33.3		1	_	34.9
25	nlinued)	gene		4	color	2 vegE	2000	222			lutamicum	jlutamicum ctofermentum)	glutamicum	ctofermentum)				tida M10 norA	coacelicus				seofulvus frnS
30	Table 1 (conlinued)	Homologous gene		Mus musculus RDH4	Streptomyces coelicolor	Graharichia coli K12 vedE	SCHEILCHE COLL	Khizobium melilou noo			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentum)	Corynebacterium glutamicum	(Brevibacterium lactofermentum) ATCC 13869				Pseudomonas putida M10 norA	Acinetobacter calcoaceticus	dc4c			Streptomyces roseofulvus frnS
35			+			1	٦,	\neg	+	-	<u>0 ∢</u>	0 8		= 4							7	1	
40		db Match		gp:AF013288_1	SD: YIS1_STRCO		sp:YEGE_ECOLI	SP:NODC_RHIME			pir.S43813	pir.JC4742		pir.JC4742				sp:MORA_PSEPU		sp:DC4C_ACICA			gp:AF058302_19
		ORF	<u>a</u>	630	1206		3042	765	219	333	291	375	1	144	14	┼~	498	843		321	663	195	654
45		la	(ut)	1087664	1088535		1093216	1094693	1094911	1095384	1095387	1095719		1096188	1096331	1096746	1097726			1098929	1099750	1099015	1099115
5 <i>0</i>		Initial	(nt)	1088293	0770007		1090175	1093929	1094693			1096093		1096331	1006474					1098609	1099088	1099209	4670 1099768
		SEO	(a.a.)	4654	_1	4000	4656	4657	4658		4660	4661		4662	1007					4667	4668	4669	4670
55		<u> </u>	O NO			1155	1156	1157	_			1161		1162	1	1184	1165	1166		1167	1168	1169	1170

			_	_	-	·	т—									_		
	Function	biotin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	hypothelical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
	Matched length (a.a.)	563						655	329	160	262	248	593	136	111	134	367	438
	Similarity (%)	78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	. 82.0	62.7	59.4	99.8
	Identity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
. Table 1 (continued)	Homologous gene	Synechococcus sp. PCC 7942 accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF 1293 BcpA	Streptomyces fradiae trC	Mycobacterium tuberculosis H37Rv RV2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtills 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
	db Match	gp:SPU59234_3						sp:YT15_MYCTU	sp:BCHI_RHOSH	gp:AMU73808_1	pir.A70577	gp:STMBCPA_1	sp:TLRC_STRFR	sp:YD6C_MYCTU	sp:PHNA_ECOL!	sp:YXAD_BACSU	gp:SPN7367_1	pir.S43613
	ORF (bp)	1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
	Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	1114319	1115793
	Initial (nt)	1099917	1102043	1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201	1108993	1109792	1111820	1111889	1112957	1113102	1114486
	SEQ NO. (a.a.)	4671	4672	4673	4674	4675	4676	4677	4678	4679	4680	4681	4682	4683	4684	4685	4686	4687
į	SEQ NO.	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187

EP 1 108 790 A2

5		Function	cysteine desulphurase	nicotinate-nucleotide pyrophosphorylase	quinolinate synthetase A	DNA hydrofase		hypothetical memorane process	hypothetical protein	hypothetical protein	linoate-protein ligase A	alkylohosphonate uptake protein	and C-P lyase activity	transmembrane transport protein of 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4-	monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding process	hypothetical membrane protein		Ca2+/H+ antiporter ChaA		hypothetical protein	hypothetical membrane process
15	Matched		376	283	361	235	1	192	214	108	216	\top	148	420	305	cas	191	532	250		339		236	221
20		Similarity (%)	73.4	6.89	77.6	6.09		54.7	66.4	74.1	200	100	80.8	64.3	3	68.6	9.69	47.6	61.6		0.69		57.6	61.1
		(%)	43.9	42.1	49.3	37.0		23.4	36.0	41.7		30.7	29.7	28.8		40.8	36.7	24.8	25.8		22.3		28.4	27.6
25			aciens	culosis		Slor		irans R1	plor	MG1655		PIA	phnB	a pcaK		ginosa phhy	ykoE		ykoC			¥ (Orsay	аF
30	Table 1 (continued)	Homologous gene	Ruminococcus flavefaciens	Mycobacterium tuberculosis	Apa-illia autilia nada	trentomyces coelico	SC5B8.07	Deinococcus radiodurans R1 DR1112	Streptomyces coelicolor	Escherichia coli K12 MG1655	ybdF	Escherichia coli K12 IplA	Escherichia coli K12 phnB	Pseudomonas putida pcaK		Pseudomonas aeruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli viiK	Bacillus subtilis 168 ykoC	20000		Escherichia coil cham	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis ywaF
35				7 =	\neg	ŭ l ŭ	S	0 s-	S	1				_				1	T		\dashv	1		
40		db Match	an DEA 13152 2	INCOME DAME	Sp. NACC_min	pir.E69663	gp:SC5B8_7	gp:AE001961	gp:SC3A7_8	1	sp:YBDF_ECOL	gp: AAA21740_1	Sp:PHNB_ECOLI			SP:PHHY_PSEAE	pir AFORSO			pircosono		sp:CHAA_ECOLI	pir.C75001	Sp:YWAF_BACSU
		ORF (b)				1182	642	909	009		342	789	411	1203	25.	1185	+	_	-	∤	531	1050	3 708	1 723
45		Terminal	,,,,	7586111	1116908	1117751	1119086	1120804	1120833		1121468	1121818	1123461	453C44	1123334	1124836	00000	0/211	2871	1129102		1130704	1131428	1131401
50		Initial	l		1117744	1118932	1119727	1120205	-		1121809	1122606		0003	1124820	1126020		4699 1126422		1128350	1129102	1129655	1130721	1132123
		SEO		4688	4689 1	4690	4691				4694	4695		260	4697	4698	-+	$\overline{}$		4701	4702	4703		4705
55		SEQ.		1188	1189	1190	1191	1102		2	1194	1105	200	8	1197	1198		199	2 8 8	1201	1202	1203	1204	1205

										_											
	Function	excinuclease ABC subunit A	thioredoxin peroxidase			hypothetical membrane protein	oxidoreductase or thiamin biosynthesis protein					chymotrypsin BII	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothetical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothetical protein		ferredoxin [4Fe-4S]
	Matched length (a.a.)	946	164			318	282					27.1	111	340	147	221	614	909	315		103
	Similarity (%)	58.7	81.7			72.0	49.0					51.3	72.1	62.4	71.4	62.9	76.7	54.9	61.9		91.3
	Identity (%)	35.5	57.3			39.9	34.0					28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7		78.6
Table 1 (continued)	Homologous gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedl.	Streptomyces coelicator A3(2)					Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 lypA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
	db Match	Sp:UVRA_THETH	sp:TPX_MYCTU			sp:YEDI_ECOLI	gp:SCF76_2					sp:CTR2_PENVA	sp:ARC2_ECOLI	sp:YYAD_BACSU	pir.F70559	pir.F70555	sp:TYPA_ECOLI	pir.F70874	plr: B70875		sp:FER_STRGR
	ORF (bp)	2340	495	216	1776	954	006	366	297	261	387	834	345	1200	537	714	1911	1506	870	438	315
	Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140901	1142472	1142479	1143026	1146028	1147602	1148461	1148882	1149267
	Initial (nt)	1134472	1134561	1135476	1136833	1137891	4711 1137960	1138880	1139196	1139357	1140021	1140861	1141245	1141273	1143015	1143739	1144118	1146097	1147592	1148445	4725 1148953
	SEQ NO.	4706	4707	4708	4709	4710	4711	4712	4713	4714	4715	4716	4717	4718	4719	4720	4721	4722	4723	4724	4725
	SEQ NO.	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1218	1217	1218	1219	1220	1221	1222	1223	1224	1225

EP 1 108 790 A2

5	3	Function	aspartate aminotransferase			tetrahydrodipicolinate succinylase or	succinylation of pipendine-4,0- dicarboxylate		hypothetical protein	dihydropteroate synthase	hypothetical protein	hypometrical process	hypothetical protein	antigen TbAAMK, useful in vaccines	for prevention of treatment of tuberculosis	mycinamicin-resistance gene	sucrose-6-phosphate hydrolase	ADPglucose-starch(bactenal glycogen) glucosyltransferase	glucose-1-phosphate	adenyiyidansieidse	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress	
15	Matched		397				229		211	273	376	243	66	!	47	286	524	433	400		93	194	
20	_	Similanty (%)	52.9				100.0		100.0	69.0		(3.1	67.7		91.5	67.8	51.0	51.3	8.18		62.4	57.2	
		Identity (%)	25.9				100.0		100.0	59.0	1	45.7	31.3		72.3	39.2	23.5	24.7	6	3	25.8	27.3	
30 PO	COURTING CO.	aua gene	YM-2 aat				glutamicum		glutamicum	elicolor A3(2)		eprae u17561	uberculosis		uberculosis	griseorubida	ntosaceus scrB	K12 MG1655	pelicolor A3(2)		nycarofaciens	гроЕ	
30	lage	Hamologous gene	Decilius on strain YM-2 aat	adcillus ap. or ca			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutamicum	Streptomyces coelicolor A3(2)	dhpS	Mycobacterium leprae u1756l	Mycobacterium tuberculosis	STAN AND AND AND AND AND AND AND AND AND A	Mycobacterium tuberculosis	Micromonospora griseorubida	Pediococcus pentosaceus scrB	Escherichia coli K12 MG1655	gigA Streatomyces coelicolor A3(2)	glgC	Streptomyces mycarofaciens MdmC	Escherichia coli rpoE	
35 40		db Match	1	Sp. AAI BACSP			gp:CGAJ4934_1		pir.S60064			ap.MLU15180 14	pir.G70609		gsp:W32443	sp:MYRA_MICGR	SCRB PENPE	en GI GA ECOLI		sp:GLGC_STRCO	sp:MDMC_STRMY	sp:RPOE_ECOLI	
		ORF (ho)	_	1101 sp:	621	1185	891 gp	663			56	729 00	+	-+-	165 98	864 St	707			1215 S	639	639 s	492
45		Terminal (1	1150379 1	1151028	1152370	1152373	1155875	, 6		1158524	1150252	1159572		1159799	1160728	4466720	1100/30	1102011	1164916	1164974	1166384	1167067
50		<u> </u>		1149279	4727 1150408	1151186	1153263	1158517		2000	1157694	1000011		103501	1159635	1159865		1 —	coocol I	1163702	1165612		1166576
		SEO	(a.a.)	4726	4727	4728	4729	130		2	4732	13	47.35	7	4735	4736			4/38	4739	4740		1242 4742
55		SEQ	_	1226	1227	1228		_		3	1232	500	1233	1234	1235	4036	3	1237	1238	1239	1240	1241	1242

	<u> </u>																		
	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or mutitdrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	shikimate dehydrogenase	para-nitrobenzyl esterase				tetracycline resistance protein	metabolite export pump of tetracenomycin C resistance	
	Matched length (aa)	112	257	154	434	140			1257	1288	240	255	501				409	444	
	Similarity (%)	73.2	72.0	83.8	77.0	87.1			93.8	60.4	72.1	61.2	64.7				61.4	64.2	
	Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7				27.1	32.4	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterium tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coli aroE	Bacillus subtilis pnbA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tomA	
/	db Match	pir:C70508	Sp:MRP_ECOLI	pir:870509	pir.C70509	pir.A70952			prf.2306367A	sp:MDR2_CRIGR	pir.H70953	sp:AROE_ECOLI	sp:PNBA_BACSU				sp:TCR1_ECOLI	sp:TCMA_STRGA	
	ORF (bp)	468	1125	579	1290	516	999	594	3771	3741	717	804	1611	651	928	525	1215	1347	705
·	Terminal (nt)	1167577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	1180872	1183603	1184257	1185155	1185218	1187039	1188389	1190526
	initial (nt)	1167110	1168711	1169325	1170610	1170672	1171206	1172462	1176271	1180048	1180837	1181675	1181993	1183607	1184280	1185742	1185825	1187043	1189822
	SEQ NO. (a.a.)	4743	4744	4745	4746	4747	4748	4749	4750	4751	4752	4753	4754	4755	4756	4757	4758	4759	4760
	SEQ NO. (DNA)	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	760

EP 1 108 790 A2

				_	_	_						\neg				- 1	- 1	- 1		- 1	- 1	1
5		Function	5- methyltetrahydroptaroyltriglutamate- -homocysteine S-methyltransferase		thiophene biotransformation protein							ABC transporter	ABC transporter		cytochrome bd-type menaquinol oxidase subunit II	cytochrome bd-type menaquinol oxidase subunit I	helicase		mutator mutT protein ((7,8-dihydro- 8-oxoguanine-triphosphatase)(8- oxo-dGTPase)(dGTP pyrophosphohydrolase)		proline-specific permease	
15		Matched length (a.a.)	774 "		444							256	551		333	512	402		98		433	
20		Similarity (%)	72.2		79.5							63.5	58.4	7.00	93.0	99.0	55.0		65.6		85.0	
		Identity (%)	45.2		55.2							28.7	20.4	4.67	92.0	99.6	26.4		36.9		513	;
25	ned)		etE		ain KGB1							G1655	1G1655		micum ermentum)	amicum ermentum)	AG1655				You I	ioid III
30	Table 1 (continued)	Homologous gene	Catharanthus roseus metE		Monardia acternides strain KGB1	locatora asterorace						Escherichia coli K12 MG1655	Escherichia coli K12 MG1655	cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydB	Corynebacterium glutamicum (Brevibacterium factofermentum) cydA	Escherichia coli K12 MG1655 vejH		Proteus vulgaris mutT		A the beating of	Salmonella typnimurum pro r
35			0	+	1	2	+	1					T								T	
40		db Match	pir.S57636			gsp: Y29930						Sp.CYDC_ECOLI		sp:cydo_Ecot	gp:AB035086_2	gp:AB035086_1	sp:YEJH_ECOLI		sp:MUTT_PROVU			sp:PROY_SALTY
		ORF				_	324	945	792	1647	192	1554		1533	666	1539	2265	5	393			1404
45		Terminal	88		1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990		1199543	1201090	1202094	1203916		1206631	_	_	1208212
50		Initial	12		1191087	1192410	4764 1193867	1194165	1195916	1195974	1197624			1201075	1202088	1203632	1206180		1206316			1209615
		SEO			4762	4763	4764	4765	4766					4770	4771	4772	4773		4774		4776	4777
		g ç			262	263	1264	1265	_	_	_		607	1270	1271	1272	1273		1274		1276	1277

ſ										<u> </u>				_	_		_	
	Function	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tetR family	pentachlorophenol 4- monooxygenase	maleylacetate reductase	catechol 1,2-dioxygenase		hypothetical protein	transcriptional regulator		hypothetical protein	phosphoesterase	hypothetical protein			esterase or lipase		
	Matched length (a.a.)	643	247	295	354	872		185	878		203	395	915			220		
i	Similarity (%)	74.3	47.4	47.7	72.0	59.4		58.4	55.4		56.2	67.3	59.6			64.6		
	Identity (%)	48.1	24.7	24.5	40.4	30.6		31.9	24.9		29.6	39.2	29.7			37.3		
Table 1 (continued)	Homologous gene	Klebsiella pneumoniae CG43 DEAD box ATP-dependent RNA helicase deaD	Mycobacterium leprae B1308_C2_181	Sphingomonas flava pcpB	Pseudomonas sp. B13 clcE	Acinetobacter calcoaceticus catA		Mycobaderium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptomyces coelicolor A3(2) orf2	Mycobacterium tuberculosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278			Petroleum-degrading bacterium HD-1 hde		
	db Match	sp:DEAD_KLEPN	pri.2323363BT	sp:PCPB_FLAS3	Sp:CLCE_PSESB	sp:CATA_ACICA		pir.A70672	sp:SNF2_YEAST		gp:SCO007731_6	pir.E70755	sp:Y084_MYCTU			gp:AB029896_1		
	ORF (bp)	2196	687	1590	1068	885	471	540	3102	1065	858	1173	2628	306	318	774	378	786
	Terminal (nt)	1212129	1212429	1214858	1215938	1216836	1216904	1217443	1222996	1221841	1223843	1225059	1227693	1227282	1227340	1228636	1229095	1229935
	Initial (nt)	1209934	1213115	1213269	1214871	1215952	1217374	1217982	1219895	1222905	1222986	1223887	1225066	1227587	1227657	4792 1227863	1228718	1229150
	SEQ NO. (8.8.)	4778	4779	4780	4781	4782	4783	4784	4785	4786	4787	4788	4789	4790	4791	4792	4793	4794
	SEQ NO. (DNA)	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294

EP 1 108 790 A2

			E			T		SELIC		Gpp	$ \top $	T		T			T	T					
5		Function	dds transport			acitor than 144	are) reducing	protein peripla	ATPase Zn(II) be ATPase	kinase (ATP: insferase) (pp	eptidase			drogenase			gamma chair	delta chain	beta chain	ii	Ë	alpha chain	orotein
10		Func	short-chain fatty adds transporter	regulatory protein			regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:GTP 3'-pyrophosphotransferase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductase gamma chain	nitrate reductase delta chain	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
15	Matched	length (a.a.)	122	166			228	8	605	137	601			24			220	175	505	137	83	1271	461
20		Similarity (%)	69.7	56.6			57.9	66.7	70.6	58.4	49.3			98.0			9.69	63.4	83.4	48.0	55.0	73.8	67.9
		Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	56.6	36.0	36.0	46.9	32.8
<i>25</i>	Illingo	Jene	lor	recS			MG1655 fnr	ens merP	MG1655		s tap			tamicum						1 APE1291	1 APE1289		narK
30	lable i (commuco)	Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysantherni recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap		*	Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG	Escherichia coli K12 narK
<i>35</i>		db Match	sp:ATOE_ECOLI	SP:PECS_ERWCH			sp.FNR_ECOLI	SP.MERP_SHEPU	sp.ATZN_ECOLI	sp:RELA_VIBSS	gsp:R80504			GSP:P61449			sp:NARI_BACSU	sp:NARJ_BACSU	Sp:NARH_BACSU	PIR:D72603	PIR:B72603	Sp.NARG BACSU	1350 sp:NARK_ECOLI
		ORF (bp)	537 sp	486 sp	222	519	750 sp	234 St	1875 sı	630	1581 g	603	120	108 G	1260	9	777 s	732 s	1593 s	594 P	273 F	+-	
45		Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232836	1234881	1235612	1236545	1241554	1242156	1243728	1243942	1244843	1245720	1246508	1247199	1250444	1251817	1248794	1252557
50		Initial (nt)	1229716	1229995	1230610	1231432		1232603		1234983	1238125	1242156	4805 1242275	1243621	1245201	1245532	1246496	4810 1247239	1248791				1315 4815 1253906
		SEQ.		4796		4798	4799	4800		4802	4803			4806	4807	4808	4809	4810	_			4814	4815
5 <i>5</i>		SEQ.	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	15.	1312	1313	1314	1315

												_							
	Function	motybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease precurosor		hypothetical membrane protein	hypothetical membrane protein	molybdopterin guanine dinucleotide synthase	molybdoptein biosynthesis protein	molybdopterin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acid-CoA ligase	Rho factor				peptide chain release factor 1	protoporohynnogen oxidase		hypothetical protein	undecaprenyl-phosphate alpha-N- acetylalucosaminyltransferase
	Matched length (a.a.)	157	738		334	472	178	366	354	572	753				363	280	\top	215	322
	Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		86.0	58.4
	Identity (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
Table 1 (continued)	Homologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichia coli K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherichia coli K12 rfe
	db Match	sp:CNX1_ARATH	sp:PRTS_SERMA		sp:Y0D3_MYCTU	sp:Y0D2_MYCTU	gp:PPU242852_2	sp:MOEA_ECOLI	sp:CNX2_ARATH	sp:ALKK_PSEOL	sp:RHO_MICLU				sp:RF1_ECOLI	Sp:HEMK_ECOLI		sp:YD01_MYCTU	1146 sp.RFE_ECOLI
	ORF (bp)	489	1866	684	1008	1401	561	1209	1131	1725	2286	603	969	1023	1074	837	774	648	1146
	Terminal (nt)	1254634	1254737	1257750	1256851	1257865	1259429	1259993	1261688	1262886	1267427	1268267	1265611	1265427	1268503	1289343	1268267	1270043	1271192
	Initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201	1262818	4824 1264610	1265142	4826 1265665	4827 1266306	1266449	1267430	1268507	1269040	1269396	4833 1270047
	SEQ NO.	4816	4817	4818	4819	4820	4821	4822	4823	4824	4825	4826	4827	4828	4829	4830	4831	4832	4833
	SEO NO. (DNA)	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328		1330	133	1332	1333

EP 1 108 790 A2

											· · ·						
10	Function		hypothetical protein	ATP synthase chain a (protein b)	H+-transporting ATP synthase lipid- binding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-transporting ATP synthase alpha chain	H+-transporting ATP synthase gamma chain	H+-transporting ATP synthase beta chain	H+-transporting ATP synthase epsiton chain	hypothetical protein	hypothetical protein	putative ATP/GTP-binding protein	hypothetical protein	hypothetical protein	thioredoxin
15	Matched length (a.a.)		8	245	11	151	274	516	320	483	122	132	230	95	134	101	301
20	Similarity (%)		0.66	26.7	85.9	6.99	67.2	88.4	76.6	100.0	73.0	67.4	85.7	56.0	68.7	79.2	71.4
	Identity (%)		98.0	24.1	54.9	27.8	34.3	6.99	46.3	93.8	41.0	38.6	70.0	45.0	35.8	54.5	37.9
65 57 Gontinued)	Homologous gene		Corynebacterium glutamicum atpl	li K12 atpB	lividans atpL	lividans atpF	lividans atpD	lividans atpA	lividans atpG	Corynebacterium glutamicum AS019 atpB	lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	s yqjC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
Table os	Homolo		Corynebacteriu atpl	Escherichia coli K12 atpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacteri AS019 atpB	Streptomyces lividans at PE	Mycobacterium H37Rv Rv1312	Mycobacteriur H37Rv Rv132	Streptomyces	Bacillus subtilis yqjC	Mycobacteriur H37Rv Rv189	Mycobacteriur H37Rv Rv132
35						1				—					5	1	
40	db Match		GPU:A8046112_1	SD:ATP6 ECOLI	Sp.ATPL_STRLI	sp:ATPF_STRU	Sp:ATPO_STRLI	sp:ATPA_STRU	sp:ATPG_STRLI	sp:ATPB_CORGL	sp:ATPE_STRL	sp:Y0ZW_MYCTU	sp:Y036_MYCTU	GP:SC26G5_35	sp:YQJC_BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU
	ORF (bp)	486	249	810	240	564	813	1674	975	1449	372	471	069	285	453	312	921
45	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	1283114
50	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280967	1281714	1281794	1282194
	SEQ NO.	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	4849
55	SEQ NO.			1336		1338			1341	1342	1343	1344	1345	1346	_		1349

			·		,			,										
	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	alphatic sulfonates transport permease protein	alphatic sulfonates transport permease protein	sulfonate binding protein precursor	1,4-alpha-glucan branching enzyme (glycogen branching enzyme)	alpha-amylase		ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron transfer flavoprotein beta- subunit	electron transfer flavoprotein alpha subunit for various dehydrogenases		nitrogenase cofactor sythesis protein		hypothetical protein
	Matched length (a.a.)	996	240	228	311	710	467		211	260	367		244	335		375		397
	Similarity (%)	74.3	75.8	72.8	62.1	72.7	50.5		87.6	68.5	70.0		64.8	61.8		67.7		55.7
	Identity (%)	50.3	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		29.5
Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia coli K12 ssuA	Mycobacterium tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium meliloti fixA	Rhizobium melitoti fixB		Azotobacter vinelandii nifS		Rhizobium sp. NGR234 plasmid pNGR234a y4mE
	db Match	gp:ECO237695_3	sp:SSUC_ECOLI	sp:SSUB_ECOLI	sp:SSUA_ECOLI	sp:GLGB_ECOLI	sp:AMY3_DICTH		sp:FEPC_ECOLI	pir.C70860	pir.H70859		sp:FIXA_RHIME	sp:FIXB_RHIME		sp:NIFS_AZOVI		1146 sp:Y4ME_RHISN
	ORF (bp)	1143	768	729	957	2193	1494	348	879	804	1056	612	786	951	615	1128	312	1146
	Terminal (nt)	1284466	1285284	1286030	1286999	1287281	1289514	1291373	1292577	1294025	1295206	1294436	1296220	1297203	1297093	1298339	1298342	1299000
	Initial (nt)	1283324	1284517	1285302	1286043	1289473	1291007	1291026	1291699	1293222	1294151	4860 1295047	1295435	1296253	1296479	1297212	1298653	1300145
	SEQ NO. (a.a.)	4850	4851	4852	4853	4854	4855	4856	4857	4858	4859	4860	4861	4862	4863	4864	4865	4866
	SEO NO SO SO SO SO SO SO SO SO SO SO SO SO SO		1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

EP 1 108 790 A2

																						$\overline{}$	
5		Function	egulator		9			RNA (5-methylaminomethyl-2-	thiouridylate)-methyltransferase		otein	tetracenomycin C resistance and export protin			(polydeoxyribonucleotide synthase [NAD+]	rotein	(Gln) ase subunit C	(Gin) ase subunit A	vibriobactin utilization protein / iron-	illon protein	hypothetical membrane protein	pyrophosphateiruciose o- phosphate 1-phosphotransrefase	
10		<u>ш</u>	transcriptional regulator		acetyltransferase			IRNA (5-methyl	thiounidylate)-m		hypothetical protein	tetracenomycin export protin		DNA ligase	(polydeoxyribo [NAD+]	hypothetical protein	glutamyl-tRNA(Gln) amidotransferase subunit C	glutamyl-tRNA(Gln) amidotransferase subunit A	vibriobactin uti	chelator utilization protein	hypothetical m	pyrophosphate 1-5	
15		Matched length (a.a.)	g	3	181				361		332	200			677	220	97	484	283		96	358	
20		Similarity (%)	76.3	0.3	55.3				80.9		66.0	65.8			70.6	70.9	64.0	83.0	540	3	79.2	77.9	
	į	Identity (%)		4/.5	34.8				61.8		33.7	30.2			42.8	40.0	53.0	74.0	2	3	46.9	54.8	
25	uned)	e	4 nlasmid		G1655				ulosis		sisolo	cens tcmA			Club sr	culosis	lor A3(2)	culosis			olor A3(2)	anolica pfp	
30	Table 1 (continued)	Homologous gene	PLIALING CO NGP 34 plasmid	pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces glaucescens tcmA			Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis		Vibrio vuiniticus viub	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp	
35		db Match		SP.Y4MF_RHISN P	sp:YHBS_ECOLI				pir.C70858		pir.B70857	STRGA			sp:DNLJ_RHOMR	pir:H70856	STRCO	Sp.GATA_MYCTU	1	sp:MUB_VIBVU	gp:SCE6_24	Sp:PFP_AMYME	
		ORF	<u>a</u>	225 sp:	504 sp.	942	1149	396	1095 pir	654	990 jid			735	2040 sp	683 pi	297 8	1491	_	849	306	1071 \$	1
45		-e		1300145 2	1301055 5	1300988	1301975 1	4	1304923	1303883	_ <u>\</u>	7	\neg	1307462	1310369	1310435	1311616	_		1314118	1314470	1316083	
50		Initial	(JU)	1300369	1300552	1301929	↓	+ -	<u> </u>	4873 1304536	 	1307384		1308196	1308330	1311097				1313270	1314775	1315013	
		SEQ	(a.a.)	4867	4868	4869		4871	4872	4873	4874	107	48/3	4876	4877	4878				4881	4882	4883	_
		80	_	367			_		372	272	1374	2 1	3/2	1376	1377	1378	1379	2 6	3	1381	1382	1383	

											· · · · · · · · · · · · · · · · · · ·							
	Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein	high affinity ribose transport protein	periplasmic ribose-binding protein	high affinity ribose transport protein	hypothetical protein	iron-siderophare binding lipoprotein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothetical membrane protein		dihydroxy-acid dehydratase	hypothetical protein
	Matched length (a.a.)		328	499	329	305	139	200	354	268	485	172	317	234	325		613	105
	Similarity (%)		31.4	76.2	76.9	7.77	68.4	58.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6		99.4	68.6
	Identity (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4		99.2	33.3
Table 1 (continued)	Homologous gene		Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coll K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichia coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34.13c	Rattus norvegicus (Rat) NTCI	Staphylococcus aureus WHU 29 rat8	Methanococcus jannaschii MJ1501 f4re	Escherichla coli K12 yajG	Mycobacterium tuberculosis H37Rv Rv2972c	Mycobacterium tuberculosis H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 ilvD	Mycobacterium tuberculosis H37Rv Rv3004
	db Match		sp:CCPA_BACME	sp:RBSA_ECOLI	sp:RBSC_ECOLI	sp:RBSB_ECOLI	sp:RBSD_ECOLI	sp:YIW2_YEAST	gp:SCF34_13	sp.NTCI_RAT	gsp:W61467	sp:F4RE_METJA	sp:YQJG_ECOLI	pir.A70672	pir.H70855		gp:AJ012293_1	pir.G70855
	ORF (bp)	63	1107	1572	972	942	369	636	1014	1005	1479	672	1077	174	1056	237	1839	564
	Terminal (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
	Initial (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	1326378	1330987	1331102	1331953	1333424	1335280	1335975
	SEQ NO. (a.a.)	4884	4885	4886	4887	4888	4889	4890	4891	4892	4893	4894	4895	4896	4897	4898	4899	4900
	SEQ NO.	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396		1398	1399	1400

EP 1 108 790 A2

5	Function	hypothetical membrane protein	hypothetical protein	rietor crittin CTA 1	nitrate transport A. PDiriung potent	maltose/malcodextrin transport Arr- binding protein	nitrate transporter protein			actinorhodin polyketide dimerase	cobalt-zinc-cadimium resistance protein			hypothetical protein		D-3-phosphoglycerate dehydrogenase	hypothetical sering-rich protein			hypothetical protein	
15	Matched length (a.a.)	62	99	1	167	87	324			142	304			642		530	105			620	
20	Simitarity (%)	100.0	55.0		80.8	78.2	56.8			73.2	72.7			53.7		100.0	52.0			63.1	
	Identity (%)	100.0	45.0		50.9	46.0	28.1			39.4	39.1			22.9		93.8	29.0			32.9	
Se Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. nrtD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA			Streptomyces coelicolor	Ratstonia eutropha czcD			Methanococcus Jannaschii		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01			Rhodobacter capsulatus strain SB1003	
<i>35</i> 40	db Match	sp:YILV_CORGL	GP:SSU18930_26		SP NRTD SYNP7	SP:MALK_ENTAE	sp:NRTA_ANASP			sp:DIM6_STRCO	sp:czcD_ALCEU			sp:Y686_METJA		gsp:Y22646	SP:YEN1_SCHPO			pir.T03476	
	ORF (bp)	1473	231	909	498	267	882	447	369	486	954	153	069	1815	1743	1590	327	867	1062	1866	402
45	Terminal (nt)	1336095	1338379	1342677	1341960	1342461	1342794	1344464	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540	1357554	1356853
50	Initial (nt)	1337567	1338609	1342072	1342457	1342727	1343675	1344018	1344440	1344935	1345486	1345487	1346331	1346458	1348334	1350855	1352053	1352585	1355601	1355689	1356452
	SEQ NO.	4901	4902	4903	4904	4905	4906	4907	4908	4909	4910	4911	4912	4913	4914	4915	4916	4917	4918	4919	4920
55	SEQ.	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	141	1412	1413	1414	1415	1416	1417	1418	1419	1420

_																				
	Function		homoprotocatechivate catabolism bifunctional isomerase/decarboxylase [includes: 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase(hhdd isomerase); 5-carboxymethyl-2-oxo-hex-3-ene-1,7-dioate decarboxylase(opet decarboxylase)	methyltransferase or 3- demethylubiquinone-9 3-O- methyltransferase	isochorismate synthase	glutamy+tRNA synthetase	transcriptional regulator													thiamin biosynthesis protein
	Matched length (a.a.)		228	192	371	485	29													599
	Similarity (%)		59.2	29.7	70.4	69.7	0.06													81.0
į	Identity (%)		33.3	23.4	38.0	37.3	0'22													65.1
Table 1 (continued)	Homologous gene		Escherichia coli C hpcE	Escherichia coli K12	Bacillus subtilis dhbC	Bacillus subtilis gitX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
	db Match		sp:HPCE_ECOLI	sp:UBIG_ECOLI	1128 sp:DHBC_BACSU	1488 sp:SYE_BACSU	gp:SCJ33_10													1761 sp:THIC_BACSU
	ORF (bp)	654	804	618	1128	1488	213	516	525	342	621	303	180	330	213	183	318	1152	324	1761
	Terminal (nt)	1358210	1359062	1359669	1360168	1362848	1362926	1363142	1363732	1365256	1364340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
	Initial (nt)	1357557	1358259	1359052	4924 1361295	1361361	1363138	1363657	4928 1364253	1364915	1364960	1365180	1365396	1365808	1367293	1368070	1368078	1368400	4938 1369551	4939 1371637
	SEQ NO. (a.a.)	4921	4922	4923	4924	4925	4926	4927	4928	4929	4930	4931	4932	4933	4934	4935	4936	4937	4938	
	SEQ NO. (DNA)	1421	1422		1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

EP 1 108 790 A2

5		Function			lipoprotein		glycogen phosphorylase			hypothetical protein	hypothetical membrane protein		2' 5' his (dinhosphate) 3'-	guanosine o , o - o cupino prophosphatase	acetate repressor protein	3-isopropylmalate dehydratase large	Subunit	3-isopropyimalale uenyulalase silisii subunit		mutator mutT protein ((7,8-dlhydro-	8-oxoguanine-triphosphatase (e- oxo-dGTPase)(dGTP pyrophosphohydrolase)		NAD(P)H-dependent	dihydroxyacetone phosphate reductase	D-alanine-D-alanine ligase
15	Matched	length (a.a.)			44		797			299	356	730		178	257	į	4/3	195			294			331	374
20		Similarity (%)			74.0		74.0			£7.8		54.B		60.1	60.7		87.5	89.2			71.4			72.2	67.4
		Identity (%)			61.0		44.2			25.4	20.7	25.4		29.8	26.1		68.1	67.7			45.9			45.0	40.4
25	uluueu				tis		Rat)				-	naschii Y441		2 spoT	Olai C	Z ICIN	myceucus	rinm			erculosis 35c			φp	12 MG1655
30	Table 1 (confined)	Homologous gene			Chiamydia trachomatis		Rathus norveolcus (Rat)				Bacillus subtilis yrkH	Methanococcus jannaschii Y441		Escherichia coli K12 spoT	N Handalian	Eschenchia cui N 12 Iun	Actinoplanes telcnomyceucus leu2	Salmonella typhimurium			Mycobacterium tuberculosis H37Rv MLCB637.35c			Bacillus subtilis gpdA	Escherichia coli K12 MG1655 ddIA
35			<u> </u> 	+				T	1	\neg	_				ī	Ť		1	1	1			1		
40		db Match	!		730767-000	00101.10100	TAG 1910	sp.rnol_cn.rds			Sp: YRKH_BACSU	Sp: Y441_METJA		en SPOT ECOLI		sp:tCLR_ECOLI	Sp:LEU2_ACTTI	sp:LEUD_SALTY			gp:MLCB637_35			sp:GPDA_BACSU	1080 sp.DDLA_ECOLI
		ORF (bp)	18	ş	155	+	_	_	ق	156	1407	750	477	564	3	705	1443	591		5	954		2	966	
45		Terminal (nt)	010110	13/75	1373131		1375491	1373350	1375805	1375933	1376149	1377666	1378466	4370566	13/3000	1379555	1381882	1382492		1382502	1382845		1384085	1385125	1386232
50		Initial (nt)		_1		_	_ <u> </u>	1375776	1375987	1378088	1	—	1278947	270005	2/9003	1380259	1380440	1381902		1382819	1383798		1383930	1384130	1385153
		SEO.				4942 1	4943	4944	4945 1	4946					4950	4951	4952	4953	3	4954	4955		4956	4957	4958
55				1440 4	1441	1442	1443	1444	1445		_		_		1450	1451	1452	1453	3	1454	1455		1456	1457	1458

		_		_		_			, .										
	Function		thiamin-phosphate kinase	uraci-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	biotin carboxyl carrier protein	methylase	lipopolysaccharide core blosynthesis protein		Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline transport protein	glutamine-binding protein precursor		hypothetical membrane protein		phage integrase
	Matched length (a.a.)		335	245	999	693	108	29	167	155		65	252	220	234		322		223
	Similarity (%)		57.6	59.6	56.3	0.09	48.0	67.2	63.5	78.7		74.0	78.6	75.0	59.0		60.3		52.5
	identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		67.0	56.4	32.7	27.4		28.6		26.9
Table 1 (continued)	Homologous gene		Escherichia coli K12 thiL	Mus musculus ung	Mcoplasma genitalium (SGC3) MC369	Escherichia coli K12 recG	Neisseria meningilidis	Propionibacterium freudenreichli subsp. Shermanii	Escherichia coli K12 yhhF	Escherichia coli K12 MG1655 kdtB		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium tumefaciens nocM	Escherichia cali K12 MG1655 ginH		Methanobacterium thermoautotrophicum MTH465		Bacteriophage L54a vinT
	db Match		Sp:THIL_ECOLI	sp:UNG_MOUSE	sp:Y369_MYCGE	sp:RECG_ECOLI	GSP:Y75303	sp:BCCP_PROFR	Sp:YHHF_ECOLI	sp:KDTB_ECOLI		204 GSP:Y75358	sp.GLNQ_BACST	Sp:NOCM_AGRT5	Sp:GLNH_ECOLI		pir:H69160		sp:VINT_BPL54
	ORF (bp)	978	993	762	1581	2121	324	213	582	480	1080	204	750	843	861	807	978	408	756
	Terminal (nt)	1386293	1388324	1389073	1390788	1392916	1391638	1393151	1393735	1394221	1395933	1395097	1394800	1395568	1396561	1398468	1398557	1401333	1400185
	Initial (nt)	1387270	1387332	1388312	1389208	1390796	1391961	1392939	1393154	1393742	1394854	4969 1394894	1395549	1396410	1397421	1397662	1399534	4975 1400926	4976 1400940
	SEQ NO. (a.a.)	4959	4960	4961	4962	4963	4964	4965	4966	4967	4968	4969	4970	4971	4972	4973	4974	4975	4976
	SEQ NO. (DNA)	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1478

EP 1 108 790 A2

			Τ	Т	Т	Т	\neg		\neg	Γ	Г					Ī										
5		Function						(VIS3 related)	,	tein											e l	port protein	rotein	hydrogenase		
10		Ē						(Jestela related)	inseruon elenie	hypothetical protein	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										DNA polymerase I	cephamycin export protein	DNA-binding protein	morphine-6-dehydrogenase		
15	Matched	length (a.a.)						1	92	9.7	5										896	456	283	284		
20		Similarity (%)							96.2	65	0.78										80.8	67.8	65.4	76.1		
		identity (%)							88.5		89.0										56.3	33.8	41.3	46.5		
25	(nunea)	jene							Tamicum		rtamicum										erculosis	mdurans	color A3(2)	Ja morA		
30	Table 1 (continued)	Homologous gene							Corynebacterium glutamicum orf2		Corynebacterium glutamicum		!								Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A 15c	Pseudomonas putida morA		
35			-	-	-				0 8															3		-
40		db Match							pir.S60890		PIR:S60890										sp:DPO1_MYCTU	Sp.CMCT_NOCLA	gp:SCJ9A_15	Sp: MORA_PSEPU		
		ORF (bp)	144		432	207	864	219	192	855	Ξ	386	315	321	375	948	306	564	222	291	2715	1422	606	873	<u> </u>	2
45		Terminal (nt)	270007	1402070	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748		14195/8
50		Initial (nt)	_		_	1402874	1403128	4981 1403997	4982 1404885	1406174	4984 1407109	1407535	1407873	1409023	4988 1409802	4989 1411011	1411424	1412000	1412351	1412916	4994 1413745	1417883	1417962	1418876		1498 4998 1420036
		SEO.		4977	4978	4979	4980	4981	4982	4983	4984	4985	4986	4987	4988		4990	4991	4992	4993		4995	4996			4998
55				1477		1479		1481		1483		1485	1486			1489	1490	1491	1492	1493	1494	1495	1496	1497		1498

	Function	hypothetical protein	30S ribosomal protein S1		hypothetical protein					inosine-uridine preferring nucleoside hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criptic asc operon repressor, ranscription regulator		excinuclease ABC subunit 8	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	ase
	ַ ס	hypo	305		hypol					inosir hypol	anise	ribos	criptic	_	excin	hypot	hypot	hypot		hypot	hypot	hydrolase
	Matched length (a.a.)	163	451		195					310	517	293	337		671	152	121	279		839	150	214
	Similarity (%)	58.3	71.4		93.9					81.0	53.8	9.79	65.6		83.3	. 59.2	80.2	77.1		47.2	68.0	58.4
	Identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	30.0		57.4	33.6	38.8	53.8		23.2	32.7	30.4
Table 1 (continued)	Homologous gene	Streptomyces coelicolor SCH5.13 yafE	Escherichia coli K12 rpsA		Brevibacterium lactofermentum ATCC 13869 yacE					Crithidia fasciculata iunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 yttH	Escherichia coli K12 yttG		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escherichia coli K12 ycbL
	db Match	sp:YAFE_ECOLI	sp.RS1_ECOLI		sp:YACE_BRELA					sp:IUNH_CRIFA	sp.QACA_STAAU	sp:RBSK_ECOLI	sp:ASCG_ECOLI		sp:UVRB_STRPN	sp:Y531_METJA	sp:YTFH_ECOLI	sp:YTFG_ECOLI		pir.H70040	gp:SC9H11_26	sp:YCBL_ECOLI
	ORF (bp)	654	1458	1476	900	1098	582	246	957	936	1449	921	1038	798	2097	441	381	846	684	2349	912	909
	Terminal (nt)	1420071	1422556	1421096	1425878	1427354	1427376	1427804	1429246	1428224	1429194	1430659	1431575	1433547	1436201	1436775	1436869	1438201	1440028	1438212	1440675	1441793
	Initial (nt)	1420724	1421099	1422571	1425279	1426257	1427957	1428049	1428290	1429159	5008 1430642	1431579	1432612	1432750	1434105	1436335	5014 1437249	1437356	1439343	1440560	1441586	5019 1442392
	SEQ NO.	4999	2000	5001	5005	5003	5004	5005	2006	5007		5009	5010	5011	5012	5013	5014	5015	5016	5017	5018	5019
	SEQ NO.	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519

EP 1 108 790 A2

10		Function	excinuclease ABC subunit A	hypothetical protein 1246 (uvrA region)	hypothetical protein 1246 (uvrA region)			translation initiation factor IF-3	50S ribosomal protein L35		50S ribosomal protein L20			sn-glycerol-3-phosphate transport system permease protein	sn-glycerol-3-phosphate transport system protein	sn-glycerol-3-phosphate transport system permease proein	sn-glycerol-3-phosphate transport ATP-binding protein	hypothetical protein	glycerophosphoryl diester phosphodiesterase	tRNA(guanosine-2'-0-}- methlytransferase	phenylalanyl-tRNA synthetase alpha chain
15	Matched	length (a.a.)	952	100	142			179	8	3	11,			292	270	436	393	74	244	153	
20		Similarity (%)	90.6	67.0	47.0			78.2	76.7	į	92.7			71.6	70.4	57.6	71.3	26.0	50.0	71.2	
		Identity (%)	56.2	40.0	31.0			52.5	7:7		75.0			33.2	33.3	26.6	44.0	47.0	26.2	34.0	
25 6 9 9 9	(control of	gene	uvrA					roides infC		itans	gae pv.			2 MG1655	2 MG1655	2 MG1655	2 MG1655	(1 APE0042	g	2 MG1655	8 syfA
30 Selections to the transfer of the transfer	m) I alore	Homologous gene	Carberichia coli K12 uvrA	Micrococcus luteus	Micrococcus Iuteus			Observator subaeroides infC	ווסחסססמפו פלווים	Mycoplasma fermentans	Pseudomonas syringae pv. syringae			Escherichia coli K12 MG1655	Escherichia coli K12 MG1655 upof	Escherichia coli K12 MG1655 uap8	Escherichia coli K12 MG1655 uapC	Aeropyrum pernix K1 APE0042	Bacillus subtilis glpQ	Escherichia cofi K12 MG1655	Bacillus subtilis 168 syfA
35	}		ļů	i Σ	2	\vdash	┞	- -	十	7	Q. 8		H					1		1	1
40		db Match		PIR:JQ0406	PIR.JQ0406			10010	Sp:IF3 KHOSH	sp:RL35_MYCFE	sp:RL20_PSESY			sp:UGPA_ECOLI	sp:UGPE_ECOLI	sp:UGPB_ECOLI	sp:UGPC_ECOL!	PIR:E72756			1020 sp:SYFA_BACSU
		ORF (bp)	: !	306	450	717		2124	267	192	381	822	123	8 8	834	1314	1224	249	717	594	1020
45		Terminal (nt)		1445333	1444944	1446874		_	1448358	1448581	1449025	1449119	4450600	1451820	1452653	1454071	1455338	1454107	1455350	1456948	1458066
50		Initial (nt)		1442487		1446158	_Ļ	_	5025 1447792	1448390	1448645	1449940		1450918	1451820	1452758	1454115	1454350		<u> </u>	1457047
		SEO.	(9.8.)		5022	50	3	5024	5025	5026	5027	SOOR	3	5029	5031	5032	5033	102	5035	5036	5037
55			(DNA)		1522		2761		1525	1526		16.28		1529		1532	1533	$\overline{}$		1536	1537

											_					, .				
	Function	phenylalanyl-tRNA synthetase beta chain		esterase	macrolide 3-O-acyttransferase		N-acetyglutamate-5-semialdehyde dehydrogenase	glutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate Iyase				hypothetical protein	tyrosyl-tRNA synthase (tyrosine-tRNA ligase)	hypothetical protein		hypothetical protein
	Matched length (a.a.)	343		363	423		347	388	391	401		478				50	417	149		42
	Similarity (%)	71.7		55.1	56.3		99.1	2.68	99.2	99.5		90.0				72.0	79.6	64.4		75.0
	Identity (%)	42.6		26.5	30.0		98.3	99.5	99.0	99.5		83.3				48.0	48.4	26.9		71.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1655 syfB		Streptomyces scabies estA	Streptomyces mycarofaciens mdmB		Corynebacterium glutamicum ASO19 argC	Corynebacterium glutamicum ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Corynebacterium glutamicum ASO19 argH				Escherichia coli K12 ycaR	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum Nigg TC0129
	db Match	sp:SYFB_ECOLI	•	sp:ESTA_STRSC	sp:MDMB_STRMY		gp:AF005242_1	sp:ARGJ_CORGL	sp:ARGD_CORGL	sp:ASSY_CORGL		gp:AF048764_1				sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR:F81737
	ORF (bp)	2484	171	972	1383	402	1041	1164	1173	1203	1209	1431	1143	1575	612	177	1260	465	390	4
	Terminal (nt)	1460616	1458196	1462128	1463516	1463934	1465123	1466373	1468548	1471413	1470154	1472907	1474119	1475693	1476294	1476519	1477809	1477929	1478503	1483335
	Initial (nt)	1458133	1458966	5040 1461157	5041 1462134	5042 1463533	5043 1464083	5044 1465210	5045 1467376	5046 1470211	1471362	5048 1471477	1472977	1474119	1475683	1476343	1476550	1478393	1478892	5058 1483475 14833
	SEQ NO. (a.a.)	5038	5039	5040	5041	5042	5043	5044	5045	5046	5047	5048	5049	5050	5051	5052	5053	5054	5055	5058
	SEQ NO. (DNA)		1539	1540	1541	1542	1543	1544	1545	1546	1547	154B	1549	1550	1551	1552	1553	1554	555	556

EP 1 108 790 A2

				_			_			1	_	\neg	_	T		\neg	Т	Т		T	1	- 1	l			1	- 1	
5		_			ctor IF-2										-ammonia			a	rP-binding	ning profein of	active e bacterial			ısferase			hase B	
10		Function		hypothetical profein	translation initiation factor IF-2	hypothetical protein		hypothetical protein	hypothetical protein	diotoro sienes Alexandre	UNA repair process	hypothetical protein		hypothetical protein	CTP synthase (UTP-ammonia	ligase)	hypothetical protein	tyrosine recombinase	tyrosin resistance ATP-binding	protein	chromosome partitioning process ATPase involved in active partitioning of diverse bacterial plasmids	hypothetical protein		thiosulfate sulfurtransferase	hynothetical protein	ribosomal large subunit	pseudouridine synthase	
15	-	Matched	-1	84	182	311		260	200		574	394		313	0.70	946	157	300	45.4	3	258	251		270	12		229	
20		<u>_</u>	(%)	0.99	67.0	60.1		69.6	18	31.0	63.4	73.1		68.1	3	76.7	71.3	71.7	603	33.7	73.6	84.5		67.0	1	3	72.5	
		<u>~</u>	8	61.0	36.3	306	+-	38.5		31.6	31.4	41.9		30.4		55.0	36.3	39.7	1	30.3	44.6	283		35.6		3	45.9	
25	(oa								eie		Z	osis		osis		ပ္		Chay		ပ္	s parA							
30	Table 1 (continued)		Homologous gene	Ociocamino - C.	Chiamydia pheumomac	Borrella burgoonen 172	Bacillus subtills yzgo		Bacillus subtilis yaxo	Mycobacterium tubercures: H37Rv Rv1695	Escherichia coli K12 recN	Mycobacterium tuberculosis	H37Rv Rv1697	Mycobacterium tuberculosis	H3/KV KV1090	Escherichia coli K12 pyrG	Deciling cubbille voks	Sacillus suome sumans	Staphylococcus aureus Acre	Streptomyces fradiae tlrC	Caulobacter crescentus parA		Hacillus sublinis ypuo		Datisca glomerata tst	Bacillus subtilis ypuH	Bacillus subtilis rluB	
35		-						- †	_		\top	\top					Τ.	2	\top			_	_	1		BACSU	BACSU	
40			db Match		GSP: Y35814	sp:IF2_BORBU	sp:YZGD_BACSU		sp.YQXC_BACSU	Sp:YFJB_HAEIN	*PECN ECOL		pir:H70502	pir. A70503	2000	SP:PYRG_ECOLI		sp:YOKG_BACSU	gp:AF093548_1	sp:TLRC_STRFR	gp. CCU87804_4	-+	sp. YPUG_BACSU		gp:AF109156_1	Sp. YPUH_BACSU	sp:RLUB_BACSU	
			ORF (ha)	_	273 (1353	984	162	819	873	4770		1191	063	205	1662	1	657	912	1530	783	_	765	83	867	543	756	į
45			Terminal	(m)	1483724	1486027	1487025	1487193	1488056	1489018	400004	1490891	1492134	00,000	1483109	1495174		1495861	1496772	1496795	1499645		1500695	1500911	1502576	1503176	1504238	
50			Initial	<u> </u>	1483996	1484675	1486042	i	1487238	5062 1488145		5063 1489103	1490944	!	1492147	1493513		1495205	1495861	1498324			1499931	1501471	1501710	1502634	1503483	
			SEO.	(3.8.)	+	+			5061	2005		5063	5064		2065	5066	2000	5067	5068	5069			5071	5072	5073	5074	5075	
55		į.	2 CN	$\overline{}$						1562		1563	1564		1565	927	200	1567	1568	1569	1570		1571	1572	1573	1574	1575	

.

•	$\overline{}$	_	_	_					_		_		_	_	_					
	Function	cytidylate kinase	GTP binding protein			methyltransferase	ABC transporter	ABC transporter		hypothetical membrane protein		Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-oxohepta-2,4-dienoate hydrolase	preprotein translocase SecA subunit	signal transduction protein	hypothetical protein	hypothetical protein
	Matched length (aa)	220	435			232	499	602		257		499			130	210	805	132	234	133
	identity Similarity (%)	73.6	74.0			67.2	1.09	56.3		73.2		61.5			57.7	8.69	61.7	93.2	74.4	63.2
	(%)	38.6	. 42.8			36.2	29.7	31.2		39.7		25.7			36.9	25.2	35.2	75.8	41.9	30.8
Table 1 (continued)	Homologous gene	Bacillus subtilis cmk	Bacillus subtilis yphC			Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M82B tetA	Corynebacterium striatum M82B tetB		Escherichia coli K12 ygiE		Bacillus subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828
	db Match	sp:KCY_BACSU	sp:YPHC_BACSU			sp:YX42_MYCTU	1554 prf.2513302B	prf.2513302A		sp:YGIE_ECOLI		gp:AB029555_1			sp:YCHJ_ECOLI	pir.C69334	sp:SECA_BACSU	gp:AF173844_2	sp:Y0DF_MYCTU	sp:YODE_MYCTU
	ORF (명)	069	1557	999	498	813	1554	1767	825	789	189	1548	186	420	375	1164	2289	429	756	633
	Terminal (nt)	1504945	1506573	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514693	1512980	1514974	1515815	1515408	1515799	1519458	1520029	1520945	1521589
	Initial (nl)	1504256	1505017	1507327	1507902	1508729	5081 1508813	1510366	1511667	5084 1512189	5085 1514505	5086 1514527	1515159	1515396	1515782	1516962	1517170	1519601	1520190	5094 1520957
	SEQ NO. (a.a.)	5076	5077	8205	6209	5080	5081	5082	5083	5084	5085	5086	5087	5088	5089	2090	5091	5092	5093	5094
	SEQ NO (DNA)	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594

EP 1 108 790 A2

10	Function		hypothetical protein				hemolysin	hemolysin		DEAD box RNA helicase	ABC transporter ATP-binding protein	Abo usingpoint the property of	-phosphogiaconary	thioesterase		nodulation ATP-binding protein I		hypothetical memorane protein	transcriptional regulator	phosphonates transport system permease protein	phosphonates transport system permease protein	phosphonates transport ATP-binding	protein		
15	Matched	length (a.a.)	178 hy				342 h	99 P		374 D			492 6	121		235	T	\neg	277	281	268	250			
20	Similarity		84.3				69.0	65.5		89.5	1	66.1	99.2	8.79		69	- 8	76.3	63.9	63.4	62.3	2	+	<u> </u>	
	1dontity.		71.4				33.9	31.4		41.2		34.3	99.0	39.7		9 6	38.0	43.1	26.7	29.9	27.2	;	44.0	-	
25 0	linea)	ane sue	utosis							e hord	o de de	culosis	٦	culosis			Į po	rculosis	yfhH	phnE	phnE		phic		
30	lable 1 (communication)	Homologous gene	Mycobacterium tubercutosis H37Rv Rv1828				Obt.	Bacillus subtilis ynur	Bacifus subtilis yild i	Hidacome	Thermus mermophisms here	Mycobacterium tuberculosis H37Rv Rv1348	Brevibacterium flavum	Mycobacterium tuberculosis	137Rv Rv1847		Rhizobium sp. N33 nod	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	Escherichia coli K12 phnE	Escharichia coli K12 phnE		Escherichia coli K12 phnC		
35		db Match	SP:YODE_MYCTU H						Sp.YHDT_BACSU B		gp:TTHERAGEN_1	SP:YD48_MYCTU	Ben.W27813		pir.G/0664	\neg	sp.NODI_RHIS3	pir:E70501	SN.YEHH ECOLI	1_		Sp.rmine_econ	Sp.PHNC_ECOLI		
	}	ORF (bp)	<u> </u>	510	1449	000	930	1062 SF		219	1344 g	735 SI	4476		462 p	675	741 \$	741	22	+-		25 25	804		1050
45		Terminal C	5	-+-	052	1525973	1524568	1525473	1526534	1528186	1527987	1530220	1,60004	133034	1532394	1532996	1533781	1534521	0037637	1034363	<u>e</u>	1536227	1537030		1537870
50	ļ	Initial T	1.	-+-	+	5098 1525374	-	1526534	1527913	1527968	5103 1529330	5104 1529486			1531933	1532322		1533781				1537030	1537833	1538759	5115 1538919
		SEO.	(a.a.)		5097	5098	5099	5100	5101	5102			_	5105	5106	5107	510B	5109	$\overline{}$		5111	5112	3 5113	4 5114	5 5115
-20		S S		280		1598	1599	1600	1601	1602	1603	1604	5	1605	1606	1607	909	1609		1610	1611	1612	1613	1614	1615

(2)

| | т | - | |

 | | _

 | _
 | , | ,—

 | | _ | _ | | | <u>.</u>
 | | | | | | |
|-----------------------------|--|--|---
--
--
---|--
--
--
--|--|---
--
--
--	---	---	--	--	--
Function		phosphomethylpyrimidine kinase	hydoxyethylthiazole kinase	cyclopropane-fatty-acyl-phospholipid synthase	

 | sugar transporter or 4-methyl-o-
phthalate/phthalate permease | purine phosphoribosyttransferase

 | hypothetical protein
 | arsenic oxyanion-translocation pump
membrane subunit |

 | hypothetical protein | sulfate permease | hypothetical protein | | |
 | | hypothetical prolein | dolichol phosphate mannose | anotinonratein N. arvitraneforace | | secretory lipase |
| Matched
length
(a.a.) | | 262 | 249 | 451

 | 468 | 156

 | 208
 | 381 |

 | 222 | 469 | 26 | | |
 | | 110 | 217 | 527 | | 392 |
| | | 70.2 | 77.5 | 55.0

 | 6.99 | 59.0

 | 68.5
 | 54.6 |

 | 83.8 | 83.6 | 50.0 | | | ٤
 | | 87.3 | 71.0 | 55.6 | | 55.6 |
| Identity
(%) | | 47.3 | 46.6 | 28.6

 | 32.5 | 36.5

 | 39.8
 | 23.3 |

 | 62.2 | 51.8 | 39.0 | | |
 | | 71.8 | 39.2 | 25.1 | | 23.7 |
| Homologous gene | | Salmonella typhimurium thiD | Salmonella typhimurium LT2
thiM | Mycobacterium tuberculosis
H37Rv ufaA1

 | Burkholderia cepacia Pc701
mopB | Thermus flavus AT-62 gpt

 | Escherichia coli K12 yebN
 | Sinorhizobium sp. As4 arsB |

 | Streptomyces coelicolor A3(2)
SCI7.33 | Pseudomonas sp. R9 ORFA | Pseudomonas sp. R9 ORFG | | |
 | | Mycobacterium tuberculosis
H37Rv Rv2050 | Schizosaccharomyces pombe dpm1 | Escherichia coli K12 Int | | Candida albicans lip1 |
| db Match | | Sp:THID_SALTY | Sp.THIM_SALTY | pir.H70830

 | prf.2223339B | prf.2120352B

 | sp:YEBN_ECOLI
 | gp:AF178758_2 |

 | gp:SCI7_33 | gp:PSTRTETC1_6 | GP.PSTRTETC1_7 | | |
 | | pir.A70945 | prf:2317468A | Sp:LNT_ECOLI | | 1224 gp:AF188894_1 |
| ORF
(bp) | 702 | 1584 | 804 | 1314

 | 1386 | 474

 | 669
 | 966 | 483

 | 693 | 1455 | 426 | 615 | 207 | 189
 | 750 | 396 | 810 | 1635 | 741 | 1224 |
| Terminal
(nt) | 1538963 | 1539820 | 1542119 | 1546289

 | 1546307 | 1547967

 | 1549349
 | 1550398 | 1550951

 | 1552237 | 1553972 | 1553297 | 1554070 | 1555067 | 1554891
 | 1555086 | 1556771 | 1557014 | 1557859 | 1559497 | 137 |
| Initial
(nt) | 1539664 | 1541403 | 1542922 | 1544976

 | 1547692 | 1548440

 | 1548651
 | 1549403 | 1550469

 | 1551545 | 1552518 | 1553722 | 1554684 | 1554861 | 1555079
 | 1555835 | 1556376 | 1557823 | 1559493 | | 5136 1561660 1560 |
| SEQ
NO.
(a.a.) | 5116 | 5117 | 5118 | 5119

 | | 5121

 | 5122
 | | 5124

 | 5125 | 5126 | _ | | | 5130
 | | | | | 5135 | 5136 |
| SEQ
NO. | 1616 | 1617 | 1618 | 1619

 | - | \rightarrow

 | 1622
 | | _

 | 1625 | | | | _ | _
 | 1631 | | 1633 | 1634 | | 1636 |
| | SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (bp) db Match | SEQ Initial NO. (nt) Terminal ORF (bp) db Match Homologous gene (sa.) Identity (%) Similarity length length (a.a.) 5.116 1539864 1538963 702 (a.a.) (a.a.) | SEQ No. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEQ Initial No. (nt) (nt) (pp) db Match Homologous gene Identity (%) Similarity length (%) Matched (%) <td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEQ
NO.
16.a.b. Initial
(nt) Terminal
(nt) ORF
(b) db Match Homotogous gene Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<td>SEQ Initial (at) (bp) CORF (bp) db Match Homologous gene (bp) Identity (bp) Matched (bp) Ma</td><td>SEO NO. (nt) Initial (nt) CMF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5.116 1539664 1538963 702 1511 1584 sp.THID_SALTY Salmonella typhimurium LT2 46.6 77.5 262 5.116 1541403 1539620 1584 sp.THID_SALTY Salmonella typhimurium LT2 46.6 77.5 249 5.118 1542922 1542119 804 sp.THIM_SALTY Mycobacterium tuberculosis 28.6 77.5 249 5.119 1544976 1546289 1314 pir.H70830 H72223339B mopB Burkholderia cepacia Pc701 32.5 66.9 468 5.121 1548640 1547967 1549349 699 sp.YEBN_ECOLI Escherichia coli K12 yebN 39.8 68.5 59.0 156 156</td><td>SEQ
NO.
16.4) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<td>SEQ
NO.
1611 Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(pp) Identity
(pp) Similarity
(pp) Matched
(pp) Homologous gene
(pp) Identity
(pp) Similarity
(pp) Matched
(pp) Matched
(pp)</td><td>SEQ
NO.
1011
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10</td><td>SEQ
NO.
(at) Initial
(b) Terminal
(b) ORF
(b) db Match
(b) Homologous gene
(c) Identity
(c) Similarity
(c) Matched
(c) Matched
(c)</td><td>SEQ
Initial
(a.a.) Initial
(bp) ORF
(bp) db Match
(bp) Homologous gene
(bb) Identity
(bb) Similarity
(a.a.) Matched
(a.a.) 5116 1539864 1538863 702 AC AC AC 5117 1541403 1538862 1584 sp:THIN_SALTY Salmonella typhimurium LT2 46.6 77.5 249 5118 1542922 1542119 804 sp:THIM_SALTY Salmonella typhimurium LT2 46.6 77.5 249 5119 1544976 1546289 1314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5120 1544976 1546289 1314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5121 1548640 1546289 1314 pir.H70830 Mycobacterium tuberculosis 38.6 55.0 458 5121 1548640 1546289 1314 pir.H70830 Mycobacterium tuberculosis 38.6 58.0 156 5122 1548640 15486349</td><td>SEQ
Initial Initial
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)</td><td>SEQ
(a.a.) Initial
(In) Terminal
(In) ORF
(In) db Match
(In) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) 5.116 1539664 1538963 702 262 262 5.116 1541403 1539680 1538963 702 262 5.117 1541403 1539680 15314 Aprillo_SALTY Salmonella typhimurium thiD 46.6 77.5 249 5.118 1542922 1546296 15314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5.119 1544976 1546297 1386 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5.120 1546307 1386 pir.H70830 Mycobacterium tuberculosis 38.6 56.0 451 5.121 1548940 1546297 474 pir.122233398 Mycobacterium tuberculosis 38.6 66.9 468 5.121 1554861 1549349 899 py.YEBN_ECCLI Escherichia coli K12 yeb</td><td>SEQ
(a.a.) Initial
(In) Terminal
(In) ORF
(In) db Match
(In) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(</td><td>SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td><td>SEQ
(at.) Initial
(nt) Terminal
(nt) OFF
(nt) db Match Homotogous gene
(%) Homotogous gene
(%) Homotogous gene
(%) Homotogous gene
(%) Matched
(%) Matched
(%)</td><td>SEQ
(nt)
(nt) Initial
(nt) Terminal ORF
(nt) ORF
(nt) db Match
(nt) Homotogous gene
(nt) Identity
(%) Similarity
(%) Matched
(nt) 5116 153.98684 153.98684 150.2 158.8 177.5 262 5117 1541403 153.98020 158.1 pp.THID_SALTY Salmonella typhimurium thiD 47.3 70.2 262 5118 1542922 1542119 804 sp.THID_SALTY Salmonella typhimurium thiD 47.3 70.2 262 5119 1542922 1546219 804 sp.THID_SALTY thiM Mycobacterium tuberculosis 28.6 55.0 451 5110 1542922 1546307 1386 pr.T2223338B Burkholderia cepacia Pc701 32.5 68.9 468 5120 1548349 1549349 1549106 147 prt2223338B Purkholderia cepacia Pc701 32.5 68.9 468 5120 1548651 1548349 1549106 147 prt2223338B Purkholderia cepacia Pc701 32.6 68.9</td><td>SEO (nt) (nt) (nt)<</td><td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td></td></td> | SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEQ
NO.
16.a.b. Initial
(nt) Terminal
(nt) ORF
(b) db Match Homotogous gene Identity
(%) Similarity
(%) Matched
(%) Matched
(%) <td>SEQ Initial (at) (bp) CORF (bp) db Match Homologous gene (bp) Identity (bp) Matched (bp) Ma</td> <td>SEO NO. (nt) Initial (nt) CMF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5.116 1539664 1538963 702 1511 1584 sp.THID_SALTY Salmonella typhimurium LT2 46.6 77.5 262 5.116 1541403 1539620 1584 sp.THID_SALTY Salmonella typhimurium LT2 46.6 77.5 249 5.118 1542922 1542119 804 sp.THIM_SALTY Mycobacterium tuberculosis 28.6 77.5 249 5.119 1544976 1546289 1314 pir.H70830 H72223339B mopB Burkholderia cepacia Pc701 32.5 66.9 468 5.121 1548640 1547967 1549349 699 sp.YEBN_ECOLI Escherichia coli K12 yebN 39.8 68.5 59.0 156 156</td> <td>SEQ
NO.
16.4) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Matched
(%)<td>SEQ
NO.
1611 Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(pp) Identity
(pp) Similarity
(pp) Matched
(pp) Homologous gene
(pp) Identity
(pp) Similarity
(pp) Matched
(pp) Matched
(pp)</td><td>SEQ
NO.
1011
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10</td><td>SEQ
NO.
(at) Initial
(b) Terminal
(b) ORF
(b) db Match
(b) Homologous gene
(c) Identity
(c) Similarity
(c) Matched
(c) Matched
(c)</td><td>SEQ
Initial
(a.a.) Initial
(bp) ORF
(bp) db Match
(bp) Homologous gene
(bb) Identity
(bb) Similarity
(a.a.) Matched
(a.a.) 5116 1539864 1538863 702 AC AC AC 5117 1541403 1538862 1584 sp:THIN_SALTY Salmonella typhimurium LT2 46.6 77.5 249 5118 1542922 1542119 804 sp:THIM_SALTY Salmonella typhimurium LT2 46.6 77.5 249 5119 1544976 1546289 1314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5120 1544976 1546289 1314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5121 1548640 1546289 1314 pir.H70830 Mycobacterium tuberculosis 38.6 55.0 458 5121 1548640 1546289 1314 pir.H70830 Mycobacterium tuberculosis 38.6 58.0 156 5122 1548640 15486349</td><td>SEQ
Initial Initial
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)</td><td>SEQ
(a.a.) Initial
(In) Terminal
(In) ORF
(In) db Match
(In) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) 5.116 1539664 1538963 702 262 262 5.116 1541403 1539680 1538963 702 262 5.117 1541403 1539680 15314 Aprillo_SALTY Salmonella typhimurium thiD 46.6 77.5 249 5.118 1542922 1546296 15314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5.119 1544976 1546297 1386 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5.120 1546307 1386 pir.H70830 Mycobacterium tuberculosis 38.6 56.0 451 5.121 1548940 1546297 474 pir.122233398 Mycobacterium tuberculosis 38.6 66.9 468 5.121 1554861 1549349 899 py.YEBN_ECCLI Escherichia coli K12 yeb</td><td>SEQ
(a.a.) Initial
(In) Terminal
(In) ORF
(In) db Match
(In) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(</td><td>SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td><td>SEQ
(at.) Initial
(nt) Terminal
(nt) OFF
(nt) db Match Homotogous gene
(%) Homotogous gene
(%) Homotogous gene
(%) Homotogous gene
(%) Matched
(%) Matched
(%)</td><td>SEQ
(nt)
(nt) Initial
(nt) Terminal ORF
(nt) ORF
(nt) db Match
(nt) Homotogous gene
(nt) Identity
(%) Similarity
(%) Matched
(nt) 5116 153.98684 153.98684 150.2 158.8 177.5 262 5117 1541403 153.98020 158.1 pp.THID_SALTY Salmonella typhimurium thiD 47.3 70.2 262 5118 1542922 1542119 804 sp.THID_SALTY Salmonella typhimurium thiD 47.3 70.2 262 5119 1542922 1546219 804 sp.THID_SALTY thiM Mycobacterium tuberculosis 28.6 55.0 451 5110 1542922 1546307 1386 pr.T2223338B Burkholderia cepacia Pc701 32.5 68.9 468 5120 1548349 1549349 1549106 147 prt2223338B Purkholderia cepacia Pc701 32.5 68.9 468 5120 1548651 1548349 1549106 147 prt2223338B Purkholderia cepacia Pc701 32.6 68.9</td><td>SEO (nt) (nt) (nt)<</td><td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td></td> | SEQ Initial (at) (bp) CORF (bp) db Match Homologous gene (bp) Identity (bp) Matched (bp) Ma | SEO NO. (nt) Initial (nt) CMF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5.116 1539664 1538963 702 1511 1584 sp.THID_SALTY Salmonella typhimurium LT2 46.6 77.5 262 5.116 1541403 1539620 1584 sp.THID_SALTY Salmonella typhimurium LT2 46.6 77.5 249 5.118 1542922 1542119 804 sp.THIM_SALTY Mycobacterium tuberculosis 28.6 77.5 249 5.119 1544976 1546289 1314 pir.H70830 H72223339B mopB Burkholderia cepacia Pc701 32.5 66.9 468 5.121 1548640 1547967 1549349 699 sp.YEBN_ECOLI Escherichia coli K12 yebN 39.8 68.5 59.0 156 156 | SEQ
NO.
16.4) Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Matched
(%) <td>SEQ
NO.
1611 Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(pp) Identity
(pp) Similarity
(pp) Matched
(pp) Homologous gene
(pp) Identity
(pp) Similarity
(pp) Matched
(pp) Matched
(pp)</td> <td>SEQ
NO.
1011
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10</td> <td>SEQ
NO.
(at) Initial
(b) Terminal
(b) ORF
(b) db Match
(b) Homologous gene
(c) Identity
(c) Similarity
(c) Matched
(c) Matched
(c)</td> <td>SEQ
Initial
(a.a.) Initial
(bp) ORF
(bp) db Match
(bp) Homologous gene
(bb) Identity
(bb) Similarity
(a.a.) Matched
(a.a.) 5116 1539864 1538863 702 AC AC AC 5117 1541403 1538862 1584 sp:THIN_SALTY Salmonella typhimurium LT2 46.6 77.5 249 5118 1542922 1542119 804 sp:THIM_SALTY Salmonella typhimurium LT2 46.6 77.5 249 5119 1544976 1546289 1314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5120 1544976 1546289 1314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5121 1548640 1546289 1314 pir.H70830 Mycobacterium tuberculosis 38.6 55.0 458 5121 1548640 1546289 1314 pir.H70830 Mycobacterium tuberculosis 38.6 58.0 156 5122 1548640 15486349</td> <td>SEQ
Initial Initial
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)</td> <td>SEQ
(a.a.) Initial
(In) Terminal
(In) ORF
(In) db Match
(In) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) 5.116 1539664 1538963 702 262 262 5.116 1541403 1539680 1538963 702 262 5.117 1541403 1539680 15314 Aprillo_SALTY Salmonella typhimurium thiD 46.6 77.5 249 5.118 1542922 1546296 15314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5.119 1544976 1546297 1386 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5.120 1546307 1386 pir.H70830 Mycobacterium tuberculosis 38.6 56.0 451 5.121 1548940 1546297 474 pir.122233398 Mycobacterium tuberculosis 38.6 66.9 468 5.121 1554861 1549349 899 py.YEBN_ECCLI Escherichia coli K12 yeb</td> <td>SEQ
(a.a.) Initial
(In) Terminal
(In) ORF
(In) db Match
(In) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(</td> <td>SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%)</td> <td>SEQ
(at.) Initial
(nt) Terminal
(nt) OFF
(nt) db Match Homotogous gene
(%) Homotogous gene
(%) Homotogous gene
(%) Homotogous gene
(%) Matched
(%) Matched
(%)</td> <td>SEQ
(nt)
(nt) Initial
(nt) Terminal ORF
(nt) ORF
(nt) db Match
(nt) Homotogous gene
(nt) Identity
(%) Similarity
(%) Matched
(nt) 5116 153.98684 153.98684 150.2 158.8 177.5 262 5117 1541403 153.98020 158.1 pp.THID_SALTY Salmonella typhimurium thiD 47.3 70.2 262 5118 1542922 1542119 804 sp.THID_SALTY Salmonella typhimurium thiD 47.3 70.2 262 5119 1542922 1546219 804 sp.THID_SALTY thiM Mycobacterium tuberculosis 28.6 55.0 451 5110 1542922 1546307 1386 pr.T2223338B Burkholderia cepacia Pc701 32.5 68.9 468 5120 1548349 1549349 1549106 147 prt2223338B Purkholderia cepacia Pc701 32.5 68.9 468 5120 1548651 1548349 1549106 147 prt2223338B Purkholderia cepacia Pc701 32.6 68.9</td> <td>SEO (nt) (nt) (nt)<</td> <td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> | SEQ
NO.
1611 Initial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(pp) Identity
(pp) Similarity
(pp) Matched
(pp) Homologous gene
(pp) Identity
(pp) Similarity
(pp) Matched
(pp) Matched
(pp) | SEQ
NO.
1011
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10
15.10 | SEQ
NO.
(at) Initial
(b) Terminal
(b) ORF
(b) db Match
(b) Homologous gene
(c) Identity
(c) Similarity
(c) Matched
(c) Matched
(c) | SEQ
Initial
(a.a.) Initial
(bp) ORF
(bp) db Match
(bp) Homologous gene
(bb) Identity
(bb) Similarity
(a.a.) Matched
(a.a.) 5116 1539864 1538863 702 AC AC AC 5117 1541403 1538862 1584 sp:THIN_SALTY Salmonella typhimurium LT2 46.6 77.5 249 5118 1542922 1542119 804 sp:THIM_SALTY Salmonella typhimurium LT2 46.6 77.5 249 5119 1544976 1546289 1314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5120 1544976 1546289 1314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5121 1548640 1546289 1314 pir.H70830 Mycobacterium tuberculosis 38.6 55.0 458 5121 1548640 1546289 1314 pir.H70830 Mycobacterium tuberculosis 38.6 58.0 156 5122 1548640 15486349 | SEQ
Initial Initial
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n) | SEQ
(a.a.) Initial
(In) Terminal
(In) ORF
(In) db Match
(In) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) 5.116 1539664 1538963 702 262 262 5.116 1541403 1539680 1538963 702 262 5.117 1541403 1539680 15314 Aprillo_SALTY Salmonella typhimurium thiD 46.6 77.5 249 5.118 1542922 1546296 15314 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5.119 1544976 1546297 1386 pir.H70830 Mycobacterium tuberculosis 28.6 55.0 451 5.120 1546307 1386 pir.H70830 Mycobacterium tuberculosis 38.6 56.0 451 5.121 1548940 1546297 474 pir.122233398 Mycobacterium tuberculosis 38.6 66.9 468 5.121 1554861 1549349 899 py.YEBN_ECCLI Escherichia coli K12 yeb | SEQ
(a.a.) Initial
(In) Terminal
(In) ORF
(In) db Match
(In) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(| SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) | SEQ
(at.) Initial
(nt) Terminal
(nt) OFF
(nt) db Match Homotogous gene
(%) Homotogous gene
(%) Homotogous gene
(%) Homotogous gene
(%) Matched
(%) Matched
(%) | SEQ
(nt)
(nt) Initial
(nt) Terminal ORF
(nt) ORF
(nt) db Match
(nt) Homotogous gene
(nt) Identity
(%) Similarity
(%) Matched
(nt) 5116 153.98684 153.98684 150.2 158.8 177.5 262 5117 1541403 153.98020 158.1 pp.THID_SALTY Salmonella typhimurium thiD 47.3 70.2 262 5118 1542922 1542119 804 sp.THID_SALTY Salmonella typhimurium thiD 47.3 70.2 262 5119 1542922 1546219 804 sp.THID_SALTY thiM Mycobacterium tuberculosis 28.6 55.0 451 5110 1542922 1546307 1386 pr.T2223338B Burkholderia cepacia Pc701 32.5 68.9 468 5120 1548349 1549349 1549106 147 prt2223338B Purkholderia cepacia Pc701 32.5 68.9 468 5120 1548651 1548349 1549106 147 prt2223338B Purkholderia cepacia Pc701 32.6 68.9 | SEO (nt) (nt) (nt)< | SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) |

EP 1 108 790 A2

ſ			-		1	Т		T	T	\neg	_	Τ,	D			$\neg \tau$	1				1	- }	1	
5		Function	precorrin 2 methyltransferase	precornin-6Y C5, 15-	methyltransferase			oxidoreduciase	dipeptidase or X-Pro dipeptidase		escalled And A	ATP-dependent KNA neilcase	sec-independent protein transfocase		hypothetical protein	hypothetical protein	hypothetical protein	hypothetical protein			hypothetical protein	hypothetical protein	hypothetical protein	
15		Matched length (a.a.)	291	1	ì			244	382			1030	268		82	317	324	467			6	516	159	
20		Similarity (%)	56.7	9	90.0			75.4	61.3			55.7	62.7		69.4	61.2	64.8	77.3			80.3	74.2	50.0	
	t	Identity (%)	31.3		32.4			54.1	36.1			26.5	28.7		44.7	31.9	32.4	3	3	\downarrow	54.1	48.6	42.0	
25							1									s		<u>s</u> .			<u>.</u>	sis	2014	
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	H37Rv cobG	Pseudomonas definitional SC510 cobt			Mycobacterium tuberculosis	Streptococcus mutans LT11	Ddad		Saccharomyces cerevisiae	Tacaboar door	Escherichia con N. 12 rato	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis	Mycobacterium leprae	MLCB2533.25	H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis	Aeronyrum pernix K1 APE2014	Jan Maria
40		db Match		pir.C70764	sp:COBL_PSEDE			en.vv12 MYCTU	1 0000000	gp:AF014460_1		SO:MTR4 YEAST	•	sp:TATC_ECOLI	Sp:YY34_MYCLE	SD:YY35 MYCTU	F MYCIF	John John John	sp:YY37_MYCTU		pir.B70512	nir.C70512	7030211-010	PIK:H/204
		ORF Land	_	774 p	1278 s	366	246	+		1137	639	1		1002	315	981		316	1425	249	192	15.42		480
45		Terminal O	1	1562553	1562525	1564237	┼-	+	COC	1565302	1567106	1	\neg	1569932	1571068	157150B		15/2492	1573491	1575205	1574945	467540B	2010	1577806
50		1 Finitial T	(JL)	1561780 1	1563802 1	1563872 1				1566438	156646R		1509903	1570933	1571382	4677488		1573463	1574915	1574957				1577327
		SEO	(a.a.)	5137 1	5138	5130		0140	5141	5142		54.0	5144	5145	5146	, ;	7	5148	5149	5150		_	-	5153
55		SEO S		1637 5	1638	1630	_		1641	1642	-		1644	1645	1646		104	1648	1649	1650	1651		1652	1653

						.												
	Function	AAA (amily ATPase (chaperone-like function)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence-associated protein	quinolon resistance protein	aspartate ammonia-lyase	ATP phospharibosyltransferase	beta-phosphoglucomutase	5-methyltetrahydrofolate- homocysteine methyltransferase		alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reductase	arsenate reductase		cysteinyl-IRNA synthetase
	Matched length (a.a.)	545	281	436	569	69	385	526	. 281	195	1254		366	388	129	123		387
	Similarity (%)	78.5	79.0	67.2	71.4	72.5	61.0	99.8	87.5	63.1	62.4		49.5	63.9	64.3	75.6		64.3
	Identity (%)	51.6	57.3	38.1	45.4	40.6	21.8	8.66	8.98	30.8	31.6		22.4	33.0	32.6	47.2		35.9
Table 1 (continued)	Homalogous gene	Rhodococcus enythropolis arc	Mycobacterium leprae pimT	Homo sapiens	Mycobaclerium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureus norA23	Corynebacterium glulamicum (Brevibacterium flavum) MJ233 aspA	Corynebacterium glutamicum ASO19 hisG	Thermotoga maritima MSB8 TM1254	Escherichia coll K12 metH		Xanthomonas campestris ahpF	Saccharomyces cerevislae S288C YPR201W acr3	Staphylococcus aureus plasmid pl258 arsC	Mycobacterium tuberculosis H37Rv arsC		Escherichia coli K12 cysS
	db Match	prf.2422382Q	pir.S72844	gp:AF005050_1	pir:B70513	sp:VAPI_BACNO	prf:2513299A	1578 sp.ASPA_CORGL	gp:AF050168_1	pir.H72277	sp:METH_ECOL!		1026 SP.AHPF_XANCH	sp:ACR3_YEAST	sp:ARSC_STAAU	pir.G70964		1212 SP.SYC_ECOLI
	ORF (bp)	1581	834	1323	834	264	1209	1578	843	693	3663	570	1026	1176	420	639	378	1212
	Terminat (nt)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1585603	1586812	1587573	1591912	1591941	1594512	1594951	1595668	1595844	1596249
	Initial (nt)	1578531	1579400	1580771	1580807	1581851	1583481	1585490	1586445	1587504	1591235	1591343	1592966	1593337	1594532	1595030	1596221	1597460
	SEQ NO. (a.a.)	5154	5155	5156	5157	5158	5159	5160	5161	5162	5163	5164	5165	5166	5167	5168	5169	5170
	SEQ NO. (DNA)	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665	1666	1991	1668	_	929

EP 1 108 790 A2

																			_			_	_	_	$\neg \tau$		
10		Function	Gielora escational	bacitracin resistance protein	oxidoreductase		lipoprotein	dihydroorotate dehydrogenase			transposase		Ope (Aletin biosynthetic	bio operan ORF I (bloss biosyme)	Neisserial polypeptides predicted to	diagnostics		ABC transporter		4	ABC transponer	in M. acetultransferase	puromycin N-acetylitaliste asc	LAO(lysine, arginine, and	ornithine)transport system kinase	methylmalonyl-CoA mulase alpha subunit	
15		Matched length	_	255	326		359	334			190			152		198		597			232		26		855 	741	
20		<u>_</u>	<u>%</u>	69.4	626	3	53.5	67.1			1 5	23.3		75.0		33.0		7 03	ġ		67.1		56.4		72.3	87.5	
	Ì	Identity	(%)	37.3	7 2 2	*:	27.0	44.0			1	34.7		44.1		26.0		9 5	63.0		36.8		32.4		43.1	72.2	
25	(panu			8	iens		flosis					e tnpA		bhB				atum M82B			atum M626		us pac		argK	nonensis	
30	Table 1 (continued)		Homologous gene	Escherichia coli K12 bacA	Deferment moter	Agrobacterium turnereze mocA	Mycobacterium tuberculosis	H3/KV Ippt	Agrocyne acycline			Pseudomonas syringae InpA		Carcharichia coli K12 vbhB		Neisseria meningitidis		strip charterium ctris	tetB		Corynebacterium striatum M62B tetA		Strentomyces anulatus pac	, , , , , , , , , , , , , , , , , , , ,	Escherichia coli K12 argK	Streptomyces cinnamonensis	A3625,5 mans
35		-	_	\top	1	ξ' Ĕ	Ž	_	~_	1			-	\top			1	Ť									7
40			db Match	000	Sp:BACA_ECUE	prf.2214302F	-iE70577	1.007.1	Sp.PYRD_AGRAE			gp:PSESTBCBAD_			sp:YBMB_ECOL	GSP:Y74829			prf.2513302A		prf:2513302B		-:- u 10062	pir.Jourosz	sp:ARGK_ECOLI	Sp:MUTB_STRCM	
		-	ORF (hr)	$\overline{}$	879 s	948 p	_		1113	351	807	1110	1		531	729	1	8	1797	249	1587	35.	+	3	1089	2211	_
45			Teu.	_	1597745	1599614		1600677	1601804	1601931	1603466	1604629		1604830	1605281	1606689		1608248	1605861	1609335	1607661	4600942		1610844	1611150	1612234	
50			Initial	_	1598623 1	├		1599679	1600692	ļ	┼-	1603520		1605315	1605811	1605961		1607646	1607657	1609087	1609247	0000		1610236	1612238	1614444	
			SEQ		5171 1	5172 1		5173	5174	_	5176	5177		5178	5179	5180		5181	5182	5183				5186	5187		8816
			0, -					573	874					678	629	680		1681	1682	1503	1684		1685	1686	1687	100	1588

EP 1 108 790 A2

	Function	methylmalonyl-CoA mutase beta subunit	hypothetical membrane protein		hypothetical membrane protein	hypothetical membrane protein	hypothetical protein		ferrochelatase	invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein
	Matched length (a.a.)	610	224		370	141	261		364	611		959	174	235	221	98		446
	Similarity (%)	68.2	70.1		87.0	78.7	72.8		65.7	56.5		85.9	81.6	51.9	62.0	80.2		1 98
	Identity (%)	41.6	39.7		64.1	44.7	51.0		36.8	25.5		6.69	54.6	21.3	32.6	37.2		61.2
lable 1 (continued)	eueß snobopowoH	Streptomyces cinnamonensis A3823.5 mutA	Mycobacterium tubercutosis H37Rv Rv1491c		Mycobaclerium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24	-	Propionibacterium freudenreichil subsp. Shermanii hemH	Streptococcus faecium		Mycobaderium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus Jannaschii MJ1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschii MJ1558		Neisseria meningitidis MC58 NMB1652
	db Match	1848 sp.MUTA_STRCM	sp:YS13_MYCTU		sp:YS09_MYCTU	pir.B70711	9p-SCC77_24		sp:HEMZ_PROFR	sp:P54_ENTFC		pir.F70873	pir.E70873	pir.F64496	gp:SCD82_4	pir.E64494		1392 gp:AE002515_9
	ORF (bp)	1848	723	597	1296	435	843	783	1110	1800	498	2829	564	756	663	267	393	1392
!	Terminal (nt)	1614451	1617300	1617994	1618321	1619672	1620167	1621838	1621841	1623027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	1633324
	Initial (nt)	1616298	1616578	1617398	1619616	1620106	1621009	1621056	1622950	1624826	1625925	5199 1626279	1629298	1629913	1631329	1631660	1631745	1631933
	SEQ NO. (a.a.)	5189	5190	5191	5192	5193	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204	5205
i	SEQ NO. (DNA)	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705

EP 1 108 790 A2

ſ		\neg	\top	T		\prod				T	\top	٦	9	Lotein		protein							İ		uctase			
5		Uop			ATPase P									exposed lipop		ATP-binding				1628)		tein fragment	tein		rhamnose red		n protein	
10		Function	antigenic protein	antigenic protein	eation-transporting ATPase		902.0	hypothetical protein						host cell surface-exposed lipoprotein	integrase	ABC transporter ATP-binding protein			sialidase	(151628)	il allaboaraci	transposase protein fragment	hypothetical protein		ATOP-4-keto-1-rhamnose reductase		nitrogen fixation protein	
15	Matched		113	152		282	1	120						107	154	707	2		387	18	87	37	88		107	≧	149	
20	_	Similarity (%)	0.09	0.69		73.2		58.3						73.8	60.4	3	04.4		72.4		190.0	72.0	43.0		1	e	85.2	
	_	Identity (%)	0.20	20.0	2	42.6		35.8						43.0	35	5	32.8		51.9		93.6	64.0	32.0			32.7	63.8	
25	(inued)	ene	OBE24		ae Se	CC6803		olor A3(2)						nophilus		E	2 yijK		ridifaciens		AG1 tnpB	Jutamicum			ye a C	Clady	prae J7	
30	Table 1 (continued)	Homologous gene	100	Neisseria gonomineae	Neisseria gonorrhoeae	Synechocystis sp. PCC6803 sll1614 pma1		Streptomyces coelicolor A3(2)	C3D11.02e					Strentococcus thermophilus	phage TP-J34	Corynephage 304L int	Escherichia coli K12 yijK		Micromonospora viridifaciens	ATCC 31146 nedA	Corynebacterium giutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum	I npivo	A LIN DILLO		Pyrococcus abyssi Cisay PAB1087	Mycobacterium leprae MLCL536.24c nifU7	
35	i			Š	Se		-			-				1					1			23						
40		dp Match		GSP: Y38838	GSP: Y38838	sp:ATA1_SYNY3		200044	gp:SC3U1_2						prf.2408488H	prf.2510491A	SD YJJK ECOLI			sp:NANH_MICVI	gp:AF121000_8	GPI : AF164956 23	5	GP:NT11NIS_5		pir.B75015	pir.S72754	
		ORF	(dq)	480	+-	-	183	-i-	489	1362	357	5,6		791	375	458	1629	<u> </u>	1476	1182	92	3	-+	- i	282	423	447	4
45		Terminal	(II)	1632109	1632682		102000	1032101	1636244	1638442	1638776	DC30C31	1035350	1639817	1640155	1641001		2	1642743	1644318	1646368	1	ě	1645601	1647133	1647212	1647651	
50		-	(ut)	1832588	-		_	1634563	1636732	1637081	1830132	301001	1639300	1639656	1639781	1010546	5216 1640546	16426/4	1644218	1645499	1645661		1645821	1645861	1646549			
30		<u> </u>	0 s	_1	0070	5207		5209	5210 1	5244	1 2 2		5213	5214	5215	1	5216	5217	5218	5219	5220		5221	5222	5223		— -	
		SEQ S				7071		1709	1710	,		_	1713	1714	1715		1716	1717	1718	1719	4720	3	1721	1722	1723	1724	1775	; !

			_	, 														
	Function	hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothetical protein	ABC transporter	DNA-binding protein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		helicase	quinone oxidoreductase	cytochrome o ublquinol oxidase assemby factor / heme O synthase	transketolase	transaldolase	
	Matched fength (a.a.)	52	411	252	377	493	217	518	317	266	291		418	323	295	675	358	
	Similarity (%)	57.0	84.4	89.3	83.0	73.0	71.4	8.78	77.3	74.8	74.6		51.0	70.9	6.6.8	100.0	85.2	
	Identity (%)	48.0	64.7	70.2	55.2	41.0	48.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	100.0	62.0	
Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1462	Synechocystis sp. PCC6803 slr0074	Streptomyces coelicolor A3(2) SCC22.08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL536.31 abc2	Mycobacterium leprae MLCL536.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshii PH0450	Escherichia coli K12 qor	Nitrobacter winogradskyj coxC	Corynebacterium glutamicum ATCC 31833 tkt	Mycobacterium leprae MLCL536.39 tal	
	db Match	PIR:C72506	pir.S72761	gp:SCC22_4	pir.A70872	sp:Y074_SYNY3	gp:SCC22_8	pir:F70871	1020 pir.S72783	pir.S72778	pir.C70871		pir.C71156	sp:QOR_ECOLI	gp:NWCOXABC_3	gp:AB023377_1	1080 sp:TAL_MYCLE	
	ORF (bp)	162	1263	756	1176	1443	693	1629	1020	8	666	357	1629	975	696	2100	1080	162
	Terminal (nt)	1648709	1648100	1649367	1650249	1651433	1652894	1655671	1656700	1657515	1658675	1659140	1661136	1662552	1662630	1666502	1667752	1666601 1164
	tnitial (nt)	1648548	1649362	1650122	1651424	1652875	1653586	1654043	1655681	1656712	1657677	1659496	1659508	1661578	1663598	1664403	1666673	1667764
	SEQ NO. (a.a.)	5226	5227	5228	5229	5230	5231	5232	5233	5234	5235	5236	5237	5238	5239	5240	5241	5242
	SEQ NO. (DNA)	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	_	1738	1739	1740	1741	1742

EP 1 108 790 A2

5		Luncacii	glucose-6-phosphate dehydrogenase	oxppcycle protein (glucose o- phosphate dehydrogenase	assembly protein)	6-phosphogluconolacionase	sarcosine oxidase	transposase (1910/0)	sarcosine oxidase	•			63 C. O C. C. C. C. C. C. C. C. C. C. C. C. C.	triose-phosphate Isomerase	probable membrane protein		phosphoglycerate kirlase	glyceraldehyde-3-phospilate dehydrogenase	hypothetical protein	interest of the second of the	hypothetical protein	hypothetical protein	O timination	excindicesse And and a comment
15	Matched		484 g	318		258 (\neg	200	205					259	ç	3	405	333	5,	324	308	281	1	701
20	_	Similarity (%)	100.0	717		58.1	57.8	46.6	100.0					9.66	3	91.0	98.5	99.7	;	87.4	82.5	76.2		61.5
		Identity S	8.66	8 07		28.7	35.2	24.8	1000					99.2		37.0	98.0	99.1		63.9	56.3	50 0		34.4
<i>25</i>				siso		iae		sis	micum					micum	Aid	Islan	amicum pak	amicum	gap	culosis	culosis	culosis		CC6803
30	Table 1 (continued)	Homologous gene	oravihacterium flavum	evices	H37Rv Rv1446c opcA	Saccharomyces cerevisiae	SZBBC THRIBON 300	parente enthropolis	knouoccces or just	ATCC 13032 soxA				Corynebacterlum glutamicum	AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum	Corynebacterium glutamicum	AS019 ATCC 13059 gap	Mycobacterium tuberculosis H37Rv Rv1423	Mycobacterium tuberculosis	H3/RV RV 1422	H37Rv Rv1421	Synechocyslis sp. PCC6803 uvrC
35				5 :	<u>EI</u>		1.	\dashv		\neg	1			1			RGL		KGL		I I J A		IYCTU	PSEFL
40	,	db Match		gsp:W27612	pir.A70917	VEV C 100	sp sous i roue	Sp.SAOX BACSN	gp:AF126281_1	gp:CGL007732_5					sp:TPIS_CORGL	SP:YCQ3_YEAST			sp.G3P_CORGL	pir.D70903	TOW MYCTH		/ sp:YR39_MYCTU	2088 sp.UVRC_PSEFL
		ORF	(dq)	1452	957	_	e	405	1401	840	174	289	+	<u></u>	777	408	1246		1002	7	+-	201	2 927	
45		Terminal	(ut)	1669401	1670375		1671099	1671273	1673123	1673266	1677384	1678070		1680128	1680332	1681670		1881	1682624	1684117	_	1685110	1686152	1687103
50		-	(ar)	1667950	1669419 1		1670395	1671677	1671723	5248 1674105	1677211	467075R	00/0/01	1679148	1681108	1681263		1682404	1683625	1685097		1686132	1687078	1689190
		ļ	(a.a.)	5243 16	5244		5245 1	5246 1		5248	5240	3 3	2250	5251	5252	5353		5254	5255	5256	_	5257	3 5258	
<i>55</i>			(DNA)	1743 5	47.44		1745	1746	_		1740	2	1750	1751	1752		6	1754	1755	1756		1757	1758	1759

.

_																			
	Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin biosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3, 4- dihydroxy-2-butanone 4-phosphate synthase (riboffavin synthesis)	riboflavin synthase alpha chain	riboflavin-specific deaminase	ribulose-phosphate 3-epimerase	nucleolar protein NOL 1/NOP2 (eukaryotes) family	methionyl4RNA formyltransferase	polypeptide deformylase	primosomal protein n°	S-adenosylmethionine synthetase	DNA/pantothenate metabolism navoprotein	hypothetical protein	guanylate kinase	integration host factor
	Matched length (aa)	150	154	72	217	106	4 04	211	365	234	448	308	150	725	407	409	81	186	103
	Similarity (%)	68.7	72.1	68.0	48.0	52.0	84.7	79.2	62.7	73.1	60.7	67.9	72.7	46.3	99.5	80.9	87.7	74.7	90.3
	Identity (%)	32.7	43.5	59.0	26.0	44.0	65.6	47.4	37.3	43.6	30.8	41.6	44.7	22.9	99.3	58.0	70.4	39.8	80.6
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1417	Escherichia coli K12	Bacillus subtilis	Bacillus subtilis	Bacillus subtilis	Mycobacterium tuberculosis ribA	Actinobacillus pleuropneumoniae ISU-178 ribE	Escherichia coli K12 ribD	Saccharomyces cerevisiae S288C YJL121C rpe1	Escherichia coli K12 sun	Pseudomonas aeruginosa fmt	Bacillus subtilis 168 def	Escherichia coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1381 dfp	Mycobacterlum tuberculosis H37Rv Rv1390	Saccharomyces cerevisiae guk1	Mycobacterium tuberculosis H37Rv Rv1388 mIHF
•	db Match	sp:YR35_MYCTU	sp:RISB_ECOLI	GSP Y83273	GSP: Y83272	GSP:Y83273	gp:AF001929_1	sp:RISA_ACTPL	Sp. RIBD_ECOLI	sp.RPE_YEAST	1332 Sp. SUN_ECOLI	SP.FMT PSEAE	SP.DEF BACSU	sp:PRIA_ECOLI	1221 gsp:R80060	sp:DFP_MYCTU	sp:YD90_MYCTU	pir.KIBYGU	pir.B70899
	ORF (bp)	579	477	228	_	_	1266	633	984	657	1332	945	507	2064	1221	1260	291	627	318
	Terminal (nt)	1689201	1689869	1690921	1691421			1691639	1692275		1693967	1695499	1696466	1697084	1699177	1700508	1702032	1702411	1702991
	Initial (nt)	1689779	1690345	1690694	1690708	1691012		1692271	1693258		1695298	1696443	1696972	1699147	1700397	1701767	1702322	1703037	1703308
	SEO	-i	5261	5262	5263			5266	5267	5268	5269	5270	5271	5272	5273	5274	5275	5276	5277
		1760 1760	1761	1762	-	-		1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1771

EP 1 108 790 A2

5		Function	orotidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase	Small chain	dihydroorotase	asparlate carbamoyltransferase	phosphoribosyl transferase of pyrimidine operon regulatory protein	cell division inhibitor				N utilization substance protein B	(regulation of rRNA biosynthesis by transcriptional antitermination)	elongation factor P	cytoplasmic peptidase	3-dehydroquinate synthase	shikimate kinase	type IV prepiin-like protein specific leader peptidase
15	Matched	length (a.a.)	276	1122	381		402	311	176	297					137	187	217	361	166	142
20		Similarity (%)	73.6	77.5	70.1		67.7	7.8.7	1.08	73.4					69.3	98.4	100.0	99.7	100.0	54.9
		Identity (%)	51.8	53.1	45.A		42.8	48.6	54.0	39.7					33.6	97.9	99.5	98.6	100.0	35.2
25 G		96	losis		osa		SM 405	osa	SM 405	ulosis						ermentum	amicum	amicum	amicum	la tapD
30	ושטום ו (בסוווווחבה)	Hamologous gene	Mycobacterium tuberculosis	HS/RV UIAN Escherichia coli carB	Pseudomonas aeruginosa	ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 ovrR	Mycobacterium tuberculosis					Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13869 efp	Corynebacterium glutamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroB	Corynebacterium glutamicum	Aeromonas hydrophila tapD
35	-				7			 	1	1	┰	\dagger	 	+						
40		db Match	en DCOP MYCTU	Pir.SYECTP		sp:CARA_PSEAE	Sp.PYRC_BACCL	Sp.PYRB_PSEAE	sp:PYRR_BACCL	Sp. YOOR MYCTU					sp.NUSB_BACSU	Sp.EFP_BRELA	gp:AF124600_4	gp:AF124600_3	an.AF124600_2	
	Ì	ORF (bp)	768	2330	3	1179	1341	936	576	1164	1	\$	462	52	681	561	1089	1095	492	
45		Terminal	*703617	1166071	1/04359	1707706	1709017	1710413	1711352	1713759		1714306	1714760	1714950	1715382	1716132	1716780	1717938	1719107	
50		Initial		:_	1/0/07/	1708884	1710357	1711348	-!			1713830	5286 1714299	1714741	1716062	1716692	1717868	1719032	1710598	
		SEO		5278	527g	5280	5281	CRCA	5283	5284				5287	5288	5289	5290	5291	185	
55		SEO			1779	1780	1781	1782			5	1785	1786	1787	1788	1789	1790	1791		1793

			7	_	,				T									
	Function	bacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	farrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothelical protein	alany-tRNA synthetase	hypothetical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	the second of th	היישל ווופריותו אוסופיוו	transcriptional regulator
	Matched length (a.a.)	83	340		373	230	259	395	161	894	454		591	297	839	74.5	1	192
	identity Similarity (%)	68.7	73.2		50.7	7.17	0.09	70.1	69.8	71.8	84.8		89.2	74.1	53.8	540		62.0
	identity (%)	45.8	35.9		23.6	38.3	20.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	33.1		29.2
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU		Pyrococcus abyssi Orsay PAB0349	Bacillus sublilis 168 muC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv RvZ553c	Mycobacterium tuberculosis H37Rv RvZ554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtilis vhaE		Streptomyces coelicolor A3(2) SCE68.13
	db Match	gp:SC1A2_22	gp:AF109162_2		pir.A75169	sp:FHUC_BACSU	pir:D70660	pir.E70660	pir.F70660	SP:SYA_THIFE	sp:Y0A9_MYCTU		sp:SYD_MYCLE	sp:Y08Q_MYCTU	sp:AMYH_YEAST	Sp:YHGE_BACSU		gp:SCE68_13
	ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	594
	Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1726625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
	Initial (nt)	1721725	5295 1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811	1735056	1738679	1740569	1741219	1741313
	SEO NO. (a.a.)	5294	5295	5296	5297	5298	5299	5300	5301	5302	5303	5304	5305	5306	5307	5308	5309	5310
	SEQ NO.	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

EP 1 108 790 A2

																					_
5		Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		alpha-glycerolphosphate oxidase	histidyl-tRNA synthetase	hydrolase	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein-export membrane protein	
15		Matched length (a.a.)		37.1		116	462		598	421	211	175		128		760	185	49	558	332	
20		Similarity (%)		98.1		77.6	71.4		53.9	72.2	62.1	61.1		100.0		6.66	100.0	98.8	6.09	57.2	
		Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		99.9	99.5	98.0	30.7	25.9	
25	Table 1 (continued)	us gene		dicolor A3(2)		ruginosa PAO1	(12 sdaA		sseliflavus glpO	aureus	ajuni 809c	rysomallus		n glutamicum 4		n glutamicum	glutamicum	ո glutamicum AE	uberculosis	K12 secF	
30	Table 1 (Homologous gene		Streptomyces coelicolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1 sIfA	Escherichia coli K12 sdaA		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter Jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium glutamicum ATCC 13032 orf4		Corynebacterium glutamicum ATCC 13032 rel	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dciAE	Mycobacterium tuberculosis H37Rv RV2585c	Escherichia coli K12 secF	
35 40		db Match		gp:SCE15_13		sp:SLFA_PSEAE	sp.:SDHL_ECOLI		prf.2423362A	sp:SYH_STAAU	gp:CJ11168X3_12	prf:2313309A	1	gp:AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	sp:Y0BG_MYCTU	SP: SECF_ECOLI	
		ORF (bp)	714	1113 g	126	495 s	1347 s	861	1686 p	1287 s	639	507	237	555	342	2280	922	150	1743	1209	630
45		Terminal (nt)	1742606	133	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760336
50		Initial (nt)	1741893	┿—	1743843	1744025	1744884				1749963	1750427	1750964		1752186	1754894	1755479	1755748	1757228	1758797	1759707
		SEQ NO.	5311	5312	5313	5314	5315	5316	5317		5319	5320	5321		5323	5324	5325	5326	5327	5328	5329
		SEQ.			1813		1815			1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829

			Т	_	\neg				_					_												
	Function		protein-export membrane protein	hypothetical protein		nomiday junction DNA helicase	holliday junction DNA helicase	endodeoxyribonuclease	hynothetical protein	Decire and Decire	acyl-CoA thiolesterase	hypothetical protein	i de la constanta de la consta	in poureucar protein	hexosyltransferase or Nacetylglucosaminylphosphatidylinositol biosynthetic	protein	acyltransferase	CDP-diacylglycerol-alycerol-3-	phosphate phosphatidytransferase	histidine triad (HIT) family protein		meonyi-tRNA synthetase	hypothetical protein			
	₹ -	(a.a.)	616	106	334	3 3	2.00	100	250		283	E	170		414		295	. 82	\top	194	647	T	400			\vdash
	Similarity (%)		52.0	0.99	910		63.3	3	78.4	0 40	08.0	61.3	61.2		49.3		67.8	78.0		78.4	88.0		87.8			
	Identity (%)		24.4	39.6	55.3	46.5	35.8		49.2	38 5	20.0	31.5	38.2		21.7		46.4	48.2	†	54.6	42.0	57.2	2			
Table 1 (continued)	Homologous gene	Dhodohadar	Anodobacter capsulatus seco	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae rivA	Escherichia coli K12 ruvC	The part of the second second	Escherichia coil KT2 ORF246 vebC	Escherichia coli K12 teca	Strentomyres controles April	SC10A5.09c	Mycobacterium tuberculosis	2000	Saccharomyces cerevisiae S288C spt14		SCL2, 16c	Mycobacterium tuberculosis H37Rv Rv2612c posA	Mycobacterium tuberculosis	H37Rv Rv2613c	Bacillus subtilis thr2	Bacillus subtilis wwbN				
	db Match	or 2313285A		sp:Y08D_MYCLE	Sp:RUVB_ECOLI	SP:RUVA_MYCLE	sp:RUVC_ECOLI		sp:YEBC_ECOU	Sp. TESB_ECOLI		gp.sc.10As_g	pir:H70570		1083 sp.GPI3_YEAST		gp:SCL2_16	pir.C70571	pir.D70571	7	\neg	SP: YWBN_BACSU B				
	ORF (bp)	1932	+	$\overline{}$	1080	618	663	}	/23	846	7.2.7	7	462		1083		ĝ	657	099	9	8	1206	564	546	735	
,	Terminal (nt)	1758803	L	176	-	1762517	1763177	1363	0885071	1765015	1766442	Z Loon	1766487		1766948	1750021	100034	1769022	1769681	1770277	<u>. [</u>	۵	1774444	1773893	1774457	-
	Initial (nl)	1760734				1763134	1763839	1764742	75/15011	1765860	1765969		1766948		1768030	176899B		1769678	1770340	1772384		+	_	1774438	1775191	
i	SEQ NO. (a.a.)	5330		155	2550	2333	5334	5115		5336	5337		5338		5339	5340		5341	5342 1	5343 1	5344 1			5346 1	5347 1	
	SEQ NO DNA)	1830		3 3	750	3	1834	1835	_	1836	1837		1838		1839	1840 5		1841	1842 5	843 5	844 5			\rightarrow	847 5:	

EP 1 108 790 A2

							-				$\overline{}$									1	:	1	1	1	1	1
5		Function					styltransferase											are hinding protein	ferric transport A in Julium B process				etabolism			
10		Fur					puromycin N-acetyltransferase												ferric transport				mantothenate metabolism	flavoprotein		
15	1000	length (a.a.)					190												202	1		1		129	-	
20		Similarity (%)					842					-	-		-		-	1	28.7			-	-	66.7	-	_
		Identity (%)					36.3								_		-	1	28.7	1	1	1	-	27.1	-	
25	ontinued)	s gene					oea sudo	latus pac											ie afuC					oilis dfp		
30	Table 1 (continued)	Homologous gene						Streptomyces anniatus par					,						Actinobacillus pleuropneumoniae afuC					Zymomonas mobilis díp		
35 40		db Match						Sp. PUAC_STRLP											sp:AFUC_ACTPL					gp:AF088896_20		
**		ORF (bp)	378	594	1407	615	399	567 sp	1086	1101	669	2580	1113	1923	483	189	312	429	s 265	666	159	1107	420	591 g	864	420
45		Terminal (nt)	1777646	037	1778102	1779554	1780507	1781019	1782790	1784381	1783382	1782894	1785732	1786907	1789562	1789768	1790057	1790461		1793426	1793496	1794820	1795621	1796181	1797049	1797769
50		Initial (nt)	1777769	1777444	1779508	├	1780905	5353 1781585	-	1783281	1784080	1785473	5358 1786844	5359 1788829	1789080		1789746	1790889	1791842	1792428			1795202	1795591	1796186	5371 1797350
		SEO	(3.3.)	5340	5350	5351	5352					$\overline{}$	-	5359	5360	5361	5362	5363	1 5364	5365		_			0 5370	1 537
<i>55</i>		SEO	(DNA)	1040	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871

			ī	_		Г	Π	T	Т	П	T	Г	Т	Т	\top	\top	7	T	T	T	Т	\top	Τ	T	1
	Function																			transposon TN21 resolvase			protein-tyrosine phosphatase		
	Matched length (a.a.)																			186	1		164		
	Identity Similarity (%)																			78.0			51.8		
	Identity (%)																			51.1			29.3		
Table 1 (continued)	Homologous gene			-																Escherichia coli tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
	db Match																			sp:TNP2_ECOLI			sp:PVH1_YEAST		
	ORF (bp)	120	735	225	894	156	474	753	423	687	429	465	237	681	960	480	681	285	375	612	1005	375	477	726	423
	Terminal (nt)	1797850	1798023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807396	1808113	1808421	1808832	1810372	1811545	_	1812691	1813606	1812460
	Initial (nt)	1797969	1798757	1799182	1799473	5376 1800604	1800834	1801344	5379 1802577	1802733	1803465	5382 1804134	1804629	1804919	1805727	1806917	1807433	1808137	1808458	5390 1809761	5391 1810541	1811564	5393 1812215	5394 1812881	5395 1812882
	SEQ NO. (a.a.)	5372	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391	5392	5393	5394	5395
	SEQ NO. (DNA)	1872	1873	1874	1875	1876	1877	1878	1879	188	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

EP 1 108 790 A2

															-	_	_						_	·
5		on	ition factor															S3 related)	S3 related)		91	IA-specinc		
10		Function	sporulation transcription factor						***************************************			hypothetical protein					nypotnetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase
15		Matched length (a.a.)	216									545					166	298	101			622		381
20		Similarity (%)	65.7									55.2					75.0	95.6	84.2			50.6		64.3
		Identity (%)	34.3									22.6					63.0	87.9	72.3			24.0		31.8
25	(pan	92	A3(2)									1SB8					micum	micum	micum			_{Ca}		ohi-01205
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSB8 TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf 1			Erwinia chrysanthemi recJ		Streptococcus phage phi-01205 ORF13
35					-	1		-				FF		\neg			ပ	υ <u>ε</u>	OB					80
40		db Match	gp:SCA32WHIH_6									pir.C72285					PIR:S60891	pir.S60890	pir. S60889			sp:RECJ_ERWCH		pir.T13302
		ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1650
45		Terminal (nt)	1814517	1815651	1816128	1816636	1817803	1818219	1818774	1819168	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
50		Initial (nt)	1813780	1814863	5398 1815673	1816451	1817132	1817803	1818460	1818798	1819954		5406 1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	1836675
		SEO.	(a.a.)	5397	5398	5399		5401	5402	5403	5404	5405		5407	5408	5409	5410	5411	5412	5413		5415	5416	5417
55		a o	896 896	897	+	668			902	903	904	905	9061	1907	806	1909	910	1911	1912	1913	1914	1915	1916	1917

		$\overline{}$		_		_	_	_	~		_	-	_	_						_				
	Function				helicase		phage N15 protein gp57										actin binding protein with SH3 domains					ATP/GTP binding protein		ATP-dependent Clp proteinase ATP-binding subunit
	Matched length (a.a.)				620		109										422					347		630
	Similarity (%)				44.7		64.2										49.8					52.5		61.0
	Identity (%)				22.1		36.7										28.7					23.6		30.2
Table 1 (continued)	Homologous gene				Mycoplasma pneumoniae ATCC 29342 yb95		Bacteriophage N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c					Streptomyces coelicolor SC5C7.14		Escherichia coli K12 clpA
	db Match				sp:Y018_MYCPN		pir.T13144										gp:SPAPJ760_2					gp:SC5C7_14		1965 sp.CLPA_ECOLI
	ORF (bp)	3789	447	534	1839	375	336	366	618	537	528	798	186	372	438	576	1221	852	1395	594	180	1257	1854	1965
	Terminal (nt)	1842137	1842681	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
	Initial (nt)	1838349	1842235	1842804	1843518	1845483	5423 1845872	1846698	5425 1847315	5426 1847938	1848509	1848988	5429 1849781	1850035	1850415	1851049	1851220	1851473	1852479	5436 1854261	1855058	5438 1855532	1856885	5440 1858763
	SEQ NO. (a.a.)	5418	5419	5420	5421	5422	5423	5424	5425	5426	5427	5428	5429	5430	5431	5432	5433	5434	5435	5436	5437	5438	5439	5440
	SEQ NO. (DNA)	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940

EP 1 108 790 A2

															~~		~			_	\neg		\neg
5		Function					ATP-dependent helicase					hypothetical protein	deoxynucleotide monophosphate kinase					type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothetical protein	
15		Matched length (a.a.)					693					224	208					363	358			504	
20		Similarity (%)					45.9					47.8	61.5					99.7	99.7			45.8	
		Identity (%)					21.4					25.9	31.7					99.2	99.7			24.6	
25 1	nueo)	ane	1				s SA20					or A3(2)	1 gp52					amicum	amicum			lor A3(2)	
<i>30</i>	Table 1 (continued)	Hamolagous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52					Corynebacterium glutamicum ATCC 13032 cgllM	Corynebacterium glutamicum ATCC 13032 cgllR			Streptomyces coelicolor A3(2) SC1A2.16c	
35 40		db Match					Sp.PCRA_STAAU p					gp:SCH17_7	prf.2514444Y					prf.2403350A	pir.A55225			gp:SC1A2_16	
		ORF (bp)	474	156	324	312	2355 s	558	378	465	264	9 777	702 p	225	2166	273	6507	1089 р	1074	1521	717	1818	186
45		Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
50		Initial (nt)	1860752	1861320	1861842	+	 	1865265	1865842	5448 1866328	1866832	1867098	1867886	1868895	1871092	1871373	1877886	5456 1878312	1879412	1883990	1884936		1887405
		SEO NO.		_	•			5446		5448	5449		5451	5452		5454	5455		5457	5458			1961 5461
55		SEO NO.			1943	-		1946		1948	_		1951	1952		1954	1955		1957	1958	1959	1960	1961

EP 1 108 790 A2

.

	Function	SNF2/Rad54 helicase-related protein	hypothetical protein		hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein					-				
	Matched length (a.a.)	06	163		537				724					!		1004									
	Similarity (%)	70.0	56.4		47.9				52.5							49.1									
	Identity (%)	46.7	33.1		20.7		•		25.3							20.1									
Table 1 (confinued)	Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16		•		Escherichla coll clpB							Homo sapiens numA									
	db Match	gp:AE001973_4	pir.T13226		gp:AF188935_16				sp.CLPB_ECOLI							plr:S23647									
	ORF (bp)	351	864	330	1680	1206	1293	2493	1785	621	1113	846	981	879	198	2766	900	1251	969	714	1008	1659	1488	389	1509
	Terminal (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725
	Initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	5471 1900916	5472 1901911	5473 1901975	5474 1902883	1903028	5476 1905878	1906572	1907914	1908660	1909498	1910508	1912300	1913820	1984 5484 1914371	1916233
	SEO NO.	5462	5463	5464	5465	5466	5467	5468	5469	5470	5471		5473	5474	5475		5477	5478	5479	5480	5481	5482	5483	5484	5485
	SEQ NO.	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985

EP 1 108 790 A2

																								T	
5	tion										i	3		960	930	i									
10	Function										Submayillary anomircin	mode (management		modification methylase					hypothetical protein			hypothetical protein			
15	Matched length										1408			61	;				114			328			
20	Similarity (%)										49.2			65.6					58.8			54.6		1	
	Identity (%)										23.2			42.6					38.6			27.1			
25 (penuji	еле																		losis			chii			
& & & & & & & & & & & & & & & & & & &	Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
35			-	_		_	-				Sus so			Esche	_	_			Mycob H37Rv			Methar MJ013		L	
40	db Match										pir. T03099			sp:MTE1_ECOLI					pir.H70638			sp:Y137_METJA			
	ORF (bp)	38	222	312	645	759	549	930	306	357	4464	579	945	171	375	1821	201	468	381	507	837	942	624	210	534
45	Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1930990	1931421	1931935	1932373	1933522	1934971	1936849	1937411	1937486
50	Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019
	SEQ NO.	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495		5497	5498	5499	5500	5501	2205	5503	5504	5505	5506	5507	5508	5509 1
55	SEQ NO.	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002		2004	2005	2006		2008	2009

_								_					_			_								
	Function										surface protein				major secreted protein PS1 protein precursor			DNA topoisomerase III					major secreted protein PS1 protein precursor	
	Matched length (a.a.)									i	304				270			265					344	
	Similarity (%)							i 			44.1				54.4			6.03					54.7	
	Identity (%)										23.0				30.7			23.8					29.7	
Table 1 (continued)	Homologous gene										Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB					Corynebacterlum glutamicum (Brevibacterium flavum) ATCC 17965 csp1	
	db Match							•			prf:2509434A				sp.CSP1_CORGL			sp:TOP3_ECOL!					sp:CSP1_CORGL	
	ORF (bp)	1191	534	588	444	753	303	216	309	885	828	297	381	429	1581	2430	298	7722	2085	891	432	744	1887	291
	Terminal (nt)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952546	1956203	1958450	1959765	1960371	1961114	1963139
	Initial (nt)	1938945	1939064	1940257	1941107	5514 1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	5523 1948650	1951450	5525 1952485	1954822	1958287	1959340	5529 1960196	1961114	1963000	5532 1963429
	SEQ NO.	5510	5511	5512	5513	5514	5515	5516	5517	5518	5519	5520	5521	5522	5523	5524	5525	5526	5527	5528		5530	5531	
	SEQ NO.	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
												_	-							-				_

EP 1 108 790 A2

5		Function				thermonuclease										single stranded DNA-binding protein								serine protease	•			
15		Matched length (a.a.)	ļ. 			227						İ				225								249				
20		Identity Similarity (%)				57.7										59.1								52.6				
		Identity (%)				30.4										24.9								25.7				
30 February 1	(manusca)	Homalogous gane				aureus nuc										qs								ae AgSP24D				
30	ומחום	Homolog				Staphylococcus aureus nuc										Shewanella sp. ssb								Anopheles gambiae AgSP24D				
40		db Match				sp:NUC_STAAU										prf.2313347B								sp:S24D_ANOGA_A				
		ORF (bp)	1230	1176	357	684 sp	147	564	1452	459	1221	1419	591	396	237	624 pr	579	462	202	288	333	558	570	912 sp	693	366	747	180
45		Terminat (nt)	1963514	1964727	1965911	1966984	1967289	1968167	1969715	1970203	1971474	1973090	1973737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979808	1980885	1981657	1982028	1982817	1981912
50		Initial (nt)	1964743	1965902	1966267	1966301	1967435	1967604	1968264		1970254	1971672	1973147	1973809	1974267	1975171	1975916	1976522	1977043	1977742	1978389	1978660	1979239	1979974	5555 1980965	1981663	1982071	1982091
		SEQ NO.	5533	5534	5535	5536	5537	5538	5539	5540	5541	5542	5543	5544	5545	5546	5547	5548	5549	5550	5551	5552	5553	5554		_	5557	5558
55		SEQ NO. (DNA)	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	202	2053	2054	2055	2056	2057	

												_									
	Function	-							integrase	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	transposase					major secreted protein PS1 protein precursor	integrase
	Matched length (a.a.)								406	124	211		31	43	270					153	223
	dentity Similarity (%)								55.9	94.4	84.6		96.8	88.4	53.7					37.0	56.1
	Identity (%)	·							29.6	83.9	70.9		80.7	74.4	31.1					25.0	28.7
Table 1 (continued)	Homologous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL2005 ISaB1	Brevibacterium lactofermentum CGL 2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutamicum orf 1	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
	db Match	٠							sp:VINT_BPML5	gsp:R23011	gsp:R23011		gsp:R21601	plr:S60889	gp:SCJ11_12					sp:CSP1_CORGL	SP:VINT_BPML5
	ORF (bp)	363	273	264	234	342	273	303	1149	390	417	207	114	135	828	354	891	432	744	1584	687
	Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985364	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1994608
	Initial (nt)	1983186	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987896	1988303	1988383	1988483	1988664	1989605	1990667	1990764	1991620	1992538	1994121	1995294
	SEQ NO. (a.a.)	5559	5560	5561	5562	5563	5564	5265	5566	5567	5568	5569	5570	5571	5225	5573	5574	5575	5576	5577	5578
	SEQ NO. (DNA)	2059		2061	2062	2063	2064	2065	2066	2067	2068	5069	2070	2071	2072	2073	2074	2075	2076	2077	2078

EP 1 108 790 A2

5		Function	sodium-dependent transporter	hypothetical protein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxide reductase		hypothetical protein	hypothetical protein	ribonuclease D	1-deoxy-D-xylulose-5-phosphate	ase	RNA methyltransferase		hypothetical protein	deoxyuridine 5'-triphosphate nucleotidohydrolase	hypothetical protein	
15	Matched		88 sodiun	92 hypoth			233 ribofla	384 potent	126 methir		232 hypot	201 hypot	371 ribon	T	618 synthase	472 RNA		268 hуро	140 deox	150 hypo	
20	_	Similarity 16 (%)	76.1	81.5		+	64.4	71.9	67.5		77.2	78.6	52.8		78.5	52.3		62.7	82.1	7.0.7	
•		Identity (%)	39.8	48.9			33.5	42.5	41.3		55.2	55.7	25.9	-	55.3	25.4		38.1	55.0	46.0	
25 G	(Page 1)	gene	6695	7			rculosis	erculosis	onii msrA		erculosis	erculosis	nzae Rd		1,190 dxs	na MSB8		erculosis	icolor A3(2)	erculosis	
30 solder	na) i anei	Homologous gene	Helicobacter pylori 26695 HP0214	Bacillus subtilis yxaA			Mycabacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis	Haemophilus influenzae Rd	KWZO HIO390 ma	Streptomyces sp. CL190 dxs	Thermotoga mantima MSB8 TM1094		Mycobacterium tuberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9.09 dut	Mycobacterium tuberculosis H37Rv RV2698	
35 40		db Match	pir.F64546	Sp. YXAA BACSU			pir.C70968	pir.E70968	an. AF128264 2		pir.H70968	pir:C70528	NI HAFIN		gp:AB026631_1	pir.E72298		pir.C70530	sp.DUT_STRCO	pir:E70530	
		ORF (bp)	306 p	432 8	_	336	+	1254 p	808	_	+	624			1908	1236	282	+	447	549	207
45		Terminal (nt)	1995783	1996537	1997112	1997503	1998240	1999542	1000040	100001		2002112	Accepan	2003334	2003402	2005462	2006979		2007738	2008798	2008876
50		Initial (nt)	1996088		1996768	1997168	1997545	1998289		1999342				2002012	2005309	2006697	2006698		1 2008184	2008250	2096 5596 2009082
		SEO S	5579	000	558.1	5582		5584			5587			5589	5590	5591	5592		\rightarrow	5832	9859
55			(UNA)		2087	2002	2083	2084			2080		90	2089	2090	2091	2002	2093	2094	2095	2096

.

_																		
	Function	hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane prolein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase		hypothetical protein	ATP-dependent RNA helicase
	Matched length (a.a.)	100	198	248	200	422		578	127	76	523	144	228	77	329		305	661
	Similarity (%)	81.0	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	9.88	64.0	99.1		79.0	50.7
	tdentity (%)	.58.0	38.4	54.4	98.0	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1		45.3	24.4
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtilis yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5.08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 dxR	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium lactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1
	db Match	pir.F70530	Sp.SUHB_ECOLI	sp:PPGK_MYCTU	prf.2204286A	sp.YRKO_BACSU		sp:Y065_MYCTU	pir.H70531	pir.G70531	gp:SCH5_8	prt:2204286C	pir.140339	GP: AF010134_1	Sp.GALE_BRELA		pir.E70532	2550 sp:MTR4_YEAST
	ORF (bp)	291	816	828	1494	1335	537	1710	636	237	1533	432	684	234	987	1323	957	2550
	Terminal (nt)	2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313	2023945	2023948	2026379	2029043
	Initial (nt)	2009570	2010539	2010555	2011863	2015496	2016121	2017966	2018119	2018202	2018744	2020293	5608 2022266	2022546	5610 2022959	2025270	2025423	5613 2026494
	SEQ NO.		5598	5599	2600	5601	5602	5603	5604	5605	9095	5607		5609	5610	5611	5612	5613
	SEO NO.	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113

diaminoplmetate epimerase

269

64.7

33.5

Haemophilus influenzae Rd KW20 HI0750 dapF

Sp:DAPF_HAEIN

831

ATP/GTP-binding protein

419

80.0

54.4

Streptomyces fradiae orf11*

gp:AF145049_8

1458

2048650

2050107 2050321

5629 5630

2129

2130 2131 2132

786 537

2051106 2051842 2051845

> 2051306 2052675

> 5631 5632

gafactitol utilization operon repressor hydrogen peroxide-inducible genes activator PTS system, fructose-specific IIBC phosphofructokinase (fructose 1-phosphate kinase) 5 glycerol-3-phosphate regulon phosphoenolpyruvate-protein 1-phosphofructokinase or 6-ATP-dependent helicase SOS regulatory prolein Function phosphocarrier protein phosphofructokinase phosphotransferase regulatory protein uracil permease 10 component repressor 15 Matched length 1298 245 (aa) 145 299 222 320 592 262 345 549 407 8 Similarity 76.2 86.2 71.6 67.8 65.6 64.0 55.6 62.6 69.6 71.6 70.5 8 55.7 20 Identity (%) 35.8 49.2 61.4 46.9 33.9 43.0 37.0 27.2 34.3 33.0 39.1 26.7 25 Streptomyces clavuligerus nrdR Bacillus stearothermophilus pts! Bacillus stearothermophilus XL-65-6 ptsH Streptomyces coelicolor A3(2) SCE22.14c Table 1 (continued) Rhodobacter capsulatus fruK Escherichia coli K12 gatR Homologous gene Escherichia coli K12 glpR Bacillus caldolyticus pyrP Escherichia coli K12 fruA Escherichia coli oxyR Escherichia coli hrpA Bacillus subtilis dinR 30 35 sp:LEXA_BACSU Sp:K1PF_RHOCA 1287 Sp:PYRP_BACCL Sp.OXYR_ECOLI Sp.HRPA_ECOLI Sp.GATR_ECOLI sp:PTHP_BACST sp:GLPR_ECOLI gp:SCAJ4870_3 SP.PTFB_ECOLI sp:PT1_BACST db Match gp:SCE22_14 40 ORF (bp) 1089 3906 450 969 1704 792 966 1836 777 981 420 267 582 98 2047320 2046714 2035383 2035990 2037507 2039618 2030277 2035431 Terminal 2042519 2043508 2046028 45 2038591 2039550 2030157 2045571 3 5618 2036409 5619 2036812 2031365 5617 2035880 2037815 2031478 2047295 2048606 2029177 2041321 2041728 2042519 2043736 5626 2045762 2038591 Initial (nt) 50 5615 5614 5616 5620 8299 SEQ. 5623 5624 5625 5627 5622 (a.a.) 5621 2114 2115 2116 2117 2118 2119 2120 2123 2124 2126 2128 2125 2127 2122 2121

	Function	tRNA delta-2- isopentenylpyrophosphate transferase		hypothetical protein			hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	glutamate transport system permease prolein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine transport ATP-binding protein	hypothetical membrane protein
	Matched length (a.a.)	300		445			190	494	242	71	225	273	142	29		197	622	228
	Similarity (%)	68.7		75.7	·		63.7	86.4	966	73.0	100.0	9.66	6.99	71.6		61.4	69.5	58.8
	Identity (%)	40.0		48.5			29.0	68.4	9.66	0.99	100.0	99.3	34.5	40.3		33.0	33.2	24.6
Table 1 (continued)	Homologous gene	Escherichia coli K12 mlaA		Mycobacterium tuberculosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium glutamicum ATCC 13032 gluA	Neisseria gonorrhoeae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 gluD	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
	db Match	sp:MIAA_ECOLI		pir.B70506			pir.C70506	sp:Y195_MYCLE	sp:GLUA_CORGL	GSP:Y75358	sp:GLUC_CORGL	sp:GLUD_CORGL	Sp:RECX_MYCLE	pir.A70878		Sp. BIOY_BACSH	sp:POTG_ECOLI	pir:F69742
	ORF (bp)	903	675	1359	1020	1023	699	1566	726	219	684	819	597	234	738	576	669	609
	Terminal (nt)	2052684	2053609	2055761	2054724	2056787	2057120	2057855	2060499	2060196	2062312	2063259	2063298	2065394	2065667	2067141	2067866	2068474
	Initial (nt)	; ~	2054283		2055743	2055765	2057788	2059420	2059774	5641 2060414	2061629	5643 2062441	2063894	5645 2065627	2066404	2066566	2067168	5649 2067866
	SEO	5633	5634	5635	5636	5637	5638	5639	5640	5641	5642	5643	5644		5646	5647	5648	
	SEO.		2134		2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149

5	Q.		35kD protein)	ng protein)	induced	hosphate		nococcal		otein	orotein E						phate	n S15	
10	Function	hypothetical protein	hypothetical protein (35kD protein)	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)		tellurite resistance protein	stage III sporulation protein E	hypothetical protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein S15	nucleoside hydrolase
15	Matched length (aa)	228	269	83	165	160	117	30		358	845	216	645	250			742	89	319
20	Similarity (%)	78.5	9.68	78.3	68.5	72.5	52.1	70.0		59.8	64.6	61.0	99.4	93.6			85.3	88.8	63.3
	Identity (%)	41.7	72.5	54.2	41.8	38.8	24.8	60.0		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1
25 General English	gene	rculosis	rculosis	rculosis	noniae R6X	nes pgsA		noniae			spolliE	olor A3(2)	ıtamicum	rtamicum ofermentum)			oticus gpsl		
30 September 1	Homologous gene	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv RV2744C	Mycobacterium tuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X cinA	Streptococcus pyogenes pgsA	Arabidopsis thaliana ATSP:T16118.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spollE	Streptomyces coelicolor A3(2) SC4G6.14	Corynebacterium glutamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces antibioticus gpsl	Bacillus subtilis rpsO	Leishmania major
40	db Match	pir.B60176	sp:35KD_MYCTU	pir.H70878	SP.CINA_STRPN	prf.2421334D	pir.T10688	gp:AF071810_1		prf.2119295D	sp:SP3E_BACSU	gp:SC4G6_14	sp:YOR4_CORGL	sp:YDAP_BRELA			pd:2217311A	pir:F69700	prf.2518365A
	ORF (bp)	069	828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	948
45	Terminal (nt)	2069392	2068556	2069618	2069997	2070519	2071599	2071740	2072878	2071799	2073294	2076392	2077122	2080387	2082813	2082105	2082932	2085436	2085879
50	Initial (nt)	2068703	2069383	2069936	2070512	2071121	2071315	2071624	2072066	2072905	2076056	2077024	2079275	2081136	2082115	2082368	2085190	2085702	2167 5667 2086826
	SEQ.		5651	5652	5653	5654	5655	5656	5657	5658	5659	5660	5661	5662	5663	5664	5665	5666	5667
55	SEQ.	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167

.

	Similarity Matched Function (%) (aa)	79.0 329 bifunctional protein (riboflavin kinase and FAD synthetase)	100	61.7 303 TRNA pseudounding symmetry	73.0 47 hypothetical protein	62.5 237 hypothetical protein	68.9 273 phosphoesterase	78.8 433 DNA damaged inducible protein f	70.8 308 hypothetical protein	70.4 108 ribosome-binding factor A	62 9 1103 translation initiation factor IF-2		66.3 83 hypothetical protein	71.0 352 (transcriptional termination factor)		65.5 165 hypothetical protein	60.9 534 peptide-binding protein	69.4 337 peptidetransport system permease	69.2 292 oligopeptide permease	81.3 552 peptidetransport system ABC-
	Identity (%)	56.2	4	32.7	65.0	42.2	46.9	51.0	36.7	32.4	4	4	44.6	42.3		34.6	25.3	37.7	38.4	57.6
Table 1 (continued)	Homologous gene	Corynebacterium	ammoniagenes AICC 68/2 flbr	Bacillus subtilis 168 truB	Corynebacterium ammoniagenes	Streptomyces coelicolor A3(2) SC5A7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2836c dinF	Mycobacterium tuberculosis H37Rv Rv2837c	Dacillus subtile 168 rbfA	Dacinos sucressiones con contractions of the contraction of the contra	Stigmatella aurantiaca DW4 Inio	Streptomyces coalicolor A3(2) SC5H4.29	Bacillus subtilis 168 nusA		Mycobacterium tuberculosis H37Rv Rv2842c	Bacillus subtilis 168 dppE	Facherichia coli K12 dooB	Bacillus subtilis spo0KC	Mycobacterium tuberculosis
	db Match	MAGO TOBAM	sp.reipconcert	sp:TRUB_BACSU		gp:SC5A7_23	pir:B70885	pir:G70693	pir:H70693	110040 4100	Spikery parced	sp:IF2_STIAU	gp:SC5H4_29	sp:NUSA_BACSU		pir:E70588	Sp.DPPE BACSU			pir H 2028
	ORF (bg)		1023	168	238	651	804	1305	966	Ţ	\$	3012	336	966	1254	534	1602	3 2	+	
	Terminal (nt)	1	6169902	2088863	2087954	2089218	2089861	2090751	2092051		2083055	2093712	2096844	2097380	2099815	2098412	2101841	270007	0462012	24057
	Initial	- -	2087941	2087973		5671 2089868	2090664	2092055	5674 2093046		2093501	2096723	2097179	2098375	2098562		0100010			2702012 2002
	SEO.		2008	5669	5670	5671	5672	5673	5674		5675	9295	5677	5678	5679	5680	1000	900		
•		- : -	2168		2170	2171	2172	2173	2174		2175	2176	2177	2178	2179	2180	18	7181	2872	2183

EP 1 108 790 A2

5		Function	prolyl-tRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinogen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase					methionine aminopeptidase	penicillin binding protein	response regulator (two-component system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
15	-	Matched length (a.a.)	578 pi	243 h	37 п	342 m	237 u	488 h	151 h	338 h	466 9		1		\top	丁	630	216	424	360
20		Similarity (%)	84.6	65.0	60.7	9.69	73.8	68.7	62.3	65.7	76.6					75.8	56.5	72.2	56.8	58.1
		Identity (%)	67.0	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0					47.2	27.3	44.0	29.5	24.4
30 tolder	(Commission) I all pl	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacillus mobilis bchl	Propionibacterium freudenreichii cobA	Clostridium perfringens NCIB 10662 ORF2	Streptomyces coelicolor A3(2) SC5H1.10c	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100 gor					Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae chrA	Corynebacterium diphtheriae chrS	Deinococcus radiodurans DRA0279
35 40		db Match	Sp:SYP_MYCTU	gp:Scc30_5	SP. BCHD_RHOSH	prf.2503462AA		Sp:YPLC_CLOPE	gp:SC5H1_10	pir.A70590	SP.GSHR_BURCE					Sp:AMPM_ECOLI	prf.2224268A	prf.2518330B	prt.2518330A	gp: AE001863_70
		ORF (bp)	1764	735	759	1101	+	1422	006	1014	1395	942	474	357	729	789	1866	630	1149	957
45		Terminal (nt)	2105801	2108386	2108389	2109155		2112659	2112717	2116774	2118310	2117015	2119080	2119495	2120356	2120359	2121296	2123219	2123848	2126045
50		Initial (nt)	2107564	2107652	2109147	2110255		2111238	2113616	2115761	2116916	2117956	5695 2118607	5696 2119139	2119628	2121147			2124996	5702 2125089
		SEQ.	5685	5686	5687	SABA	5689	2690	5691	5695	5693	5694	-		5697	5698			5701	
55		SEQ	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202

_					_															
	Function	ABC transporter		hypothetical protein (gcpE protein)		hypothetical membrane protein	polypeptides can be used as vaccines against Chlamydia trachomatis	1-deoxy-D-xylulose-5-phosphate reductoisomerase		ė		ABC transporter ATP-binding protein	pyruvate formate-lyase 1 activating enzyme	hypothetical membrane protein	phosphatidate cytidylyltransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	30S ribosomal protein S2
	Matched length (a.a.)	225		359		405	147	312				245	356	94	294	185	109		280	254
	Similarity (%)	71.1		73.8		73.6	43.0	42.0				75.1	0.87	74.5	.56.5	84.3	43.1		8.97	83.5
	Identity (%)	37.3		44.3		43.0	36.0	22.8				37.1	66.0	41.5	33.3	47.0	28.4		49.6	54.7
Table 1 (continued)	Hamologous gene	Bacillus subtilis 168 yvrO		Escherichia coli K12 gcpE		Mycobacterium tuberculosis H37Rv Rv2869c	Chlamydia trachomatis	Escherichia coli K12 dxr				Thermotoga maritima MSB8 TM0793	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15892 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2) SC2E1.42 tsf	Bacillus subtilis rpsB
	db Match	prf.2420410P		sp:GCPE_ECOLI		pir.G70886	GSP:Y37145	1176 sp.DXR_ECOLI				pir:B72334	sp:YS80_MYCTU	pir.A70801	sp:CDSA_PSEAE	sp:RRF_BACSU	prf.2510355C		sp:EFTS_STRCO	pir.A69699
	ORF (bp)	930	162	1134	612	1212	645	1176	441	480	1578	855	1098	258	955	255	729	861	825	816
	Terminal (nt)	2126753	2126926	2127350	2129461	2128669	2130950	2129903	2131762	2131247	2131825	2133406	2134454	2136141	2136235	2137286	2137936	2139854	2139003	2140071
	Initial (nt)	2126064	2127087	2128483	2128850	2129880	2130306	2131078	2131322	2131726	2133402	2134260	2135551	2135884	2137089	2137840	2138664	2138994	2139827	5721 2140886
	SEO NO.	5703	5704	5705	5706	5707	5708	5709	5710	5711	5712	5713	5714	5715	5716	5717	5718	5719	5720	5721
	SEQ NO.	2203	2204	2205		2207	2208	2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221

EP 1 108 790 A2

5		Function	hypothetical protein	site-specific recombinase		hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein		ribonuclease HII		signal peptidase	Fe-regulated protein		50S ribosomal protein L19	thiamine phosphate	pyrophosphorylase	oxidoreductase	thiamine biosynthetic enzyme this	(Inica) process	protein	molybdopterin biosynthesis protein	
15	Matched	length (a.a.)	120	707		395	504	119	101		180		285	373		15		622	376	62		251	437	
20		Similarity (%)	58.0	100	00.0	8.99	75.8	72.3	96.0		69.5		1.5	2 0	3	6 8 9	3	6.09	64.1	74.2		76.9	56.8	
		Identity (%)	46.0		40.1	39.8	46.6	40.3	68.3		45.6		3,5	32.3	2.5	100	+	28.4	34.0	3	;	48.2	30.2	
25	nen)		osis			osis	osis	losis	losis		e Rd		TK21		SILA		cidi sniiu	ш	or A3(2)	٩	2	ຣັ	P ^X	
<i>30</i>	Table 1 (continued)	Homologous gene	Mycobacterium tubercutosis	H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv2901c	Haemophilus influenzae Rd H11059 rnhB		Ctrantomycee lividans TK21	sipY	Staphylococcus aureus sirA		Bacillus stearothermophilus rpio	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2)	200 10.01	Escherichia coli K12 mio	Escherichia coli K12 thiG	Emericella nidulans cnxF	
35			+-		Р		†		\top			-	1	3 5.1	"	\neg	\neg				 _	5		
40		db Match		sp:YS91_MYC1U	orf 2417318A					sp:YT01_MYC1U	sp:RNH2_HAEIN		_		prf.2510361A	_	sp:RL19_BACST	sp:THIE_BACSU	0 ap:SC6E10 1	_	sp:THIS_ECOLI	Sp.THIG ECOLI		COC 11 57 11d 15
		ORF (bp)		504	924	1182	1521	366		33	627	÷	/87	786	936	213	339	663	1080	$\neg \uparrow$	195	780	-	_
45		Terminal (nt)		2141760	2141763	2142885	2144068	2145576		2146264	2146566		2148022	2147261	2149166	2149359	2149634	2150997	2152118		2152329	2153113		2154191
50		Initial	+	2141257	90000				F60 F17	2146566	2147192		2147231	2148046	2148231	2149571	5733 2149972	5734 2150335	0454030	EC01612	2152135	2452334	20017	2238 5738 2153058
		S S O	(9 9.)	5722 3		57.73			07/6	5727	5728		5729	5730	5731	5732	5733	-		2/32	5736		2/3/	5738
55		SEQ.	না	2222					9777	2227	2228		2229	2230	2231	2232	2233	2234		2235	2236		223/	2238

	Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cis, cis-muconate cycloisomerase				IRNA (guanine-N1)- methyliransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protein				cell division protein
	Matched length (aa)	778	334	456	65	350			•	273	210	172	69	83	196	256	318	559				505
	Similarity (%)	78.7	65.3	78.3	80.0	66.3				64.8	9.73	72.1	66.7	79.5	61.7	69.1	63.8	78.2				66.1
	Identity (%)	56.6	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	26.6	35.5	58.7				37.0
Table 1 (continued)	Homologous gene	Bordetella pertussis TOHAMA I tex	Bacillus subtilis 168 degA	Chlamydophila pneumoniae CWL029 ybhl	Spinacia oleracea chloroplast	Pseudomonas putida pcaB		•		Escherichia coli K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34. rimM	Helicobacter pylori J99 jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agalactiae cylB	Pyrococcus horikoshii OT3 mtrA	Bacillus subtilis 168 ffh				Escherichia coli K12 fisY
-	db Match	sp.TEX_BORPE	pir.A36940	pir:H72105	prf.2108268A	sp:PCAB_PSEPU				sp.TRMD_ECOLI	gp:SCF81_27	SP.RIMM_MYCLE	pir.B71881	pir.C47154	pir.T14151	prf.2512328G	prf:2220349C	sp:SR54_BACSU				1530 sp.FTSY_ECOLI
	ORF (bp)	2274	975	1428	219	1251	66	393	069	819	648	513	348	495	929	198	928	1841	633	417	699	
	Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2162196	2163745	2163748	2164737	2164815	2166098	2166124	2166990	2167944	2171058	2172131	2172877	2173759
	Initial (nt)	2156733	2157721	2159181	2159237	5743 2160537	5744 2160670	2161503	2162196	2163014	2163098	2164260	5750 2164390	2165309	5752 2165523	5753 2166990	5754 2167865	5755 2169584	2170426	2171715	2172209	5759 2175288
	SEO NO.	5739	5740	5741	5742	5743	5744	5745	5746	5747	5748	5749	5750	5751	5752	5753	5754		5756	5757	5758	5759
	SEQ NO (DNA)	2239	2240	2241	2242	2243	2244	2245	2246		2248	2249	2250	2251	2252	2253	2254	2255		2257	2258	2259

EP 1 108 790 A2

									_	_			_	-		_			\neg			٦ .
5		Function			glucan 1,4-alpha-glucosidase or glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA glycosylase	ribonuclease III	hypothetical protein	hypothetical protein	transport protein	ABC transporter	hypothetical protein	
15		Matched length (a.a.)			1144		1206	92		305	257			188	285	221	176	238	559	541	388	
20		Similarity (%)			46.2		72.6	73.9		0.09	73.5			9.92	66.7	76.5	62.5	76.9	55.6	58.8	62.6	
		Identity (%)			22.4		48.3	51.1		23.9	39.3			46.8	36.1	40.3	35.8	50.0	28.3	26.6	35.3	
30	Table 1 (continued)	Homologous gene			Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581.28c			Dichelobacter nodosus gep	Escherichia coli K12 mutM or foq	Bacillus subtilis 168 rncS	Mycobacterium tuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escherichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
40		db Match			SP:AMYH_YEAST		sp:Y06B_MYCTU	sp.ACYP_MYCTU		Sp.YFER_ECOLI	pir.S72748			ap: DNINTREG 3	Sp:FPG_ECOU	pir.B69693	sp:Y06F_MYCTU	sp:Y06G_MYCTU	prf:2104260G	Sp.CYDC_ECOLI		
		ORF (bp)	159	702	3393	963	3465	282	1854	858	831	183	447	615	858	741	534	789	1644	1530	1122	44
45		Terminal (nt)	2175888	2177103		2181880	2179628	2183110	2183405	2185351	2187129	2187342	2187233	2187	2188	2189166	2189906	2190540	2193165	2194694	2198	2198007
50		Initial (nt)	2176046	-		2180918	2183092	2183391	2185258	2186208	2186299	2187160	2187670	2188306	2189170	2189906		2191328	2191522			2198447
		SEQ NO.	-		5762	5763		5765	576B	5767	5768	5769		5777		5773	5774	5775	5776	5777		5779
55			280			2263		2265	228A	2267	2268	2269	2220	2274	2272	2273	2274	2275	2276	2277	2278	2279

SEG Initial Carminal Carm	_			~			7											
Table 1 (continued) SEQ Initial Terminal ORF db Match Homologous gene (%)		Function	hypothetical protein	peptidase	sucrose transport protein			mallodextrin phosphorylase / glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothetical membrane protein	phosphoribosyt-AMP cyclohydrolase	cyclase	inositol monophosphate phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
Table 1 (continued) SEQ Initial Terminal ORF db Match Homologous game (%) (ml) (Matched length (a a.)	405	353	133			814	295	264	169	228	68	258	241	245	210	402
Table 1 (continued) SEQ Initial Terminal ORF db Match Homologous game (%) (ml) (Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1	58.8	79.8	7.78	94.0	97.6	92.4	54.0
SEQ Initial Terminal ORF db Match (nt) (nt) (bp) (bp) db Match (nt) (nt) (nt) (bp) db Match (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)			21.0	32.9	27.1			36.1	33.9	31.4	29.6	29.4	52.8	97.3	94.0	95.9	86.7	25.6
SEQ Initial Terminal ORF (nt) (nt) (bp) (nt) (nt) (nt) (bp) (nt) (nt) (nt) (bp) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	Table 1 (continued)	Homologous grane	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1	-		Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum AS019 hisH	Streptomyces lividans 66 cmIR
SEQ Initial Terminal NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		db Match	pir.A72322	T				prf.2513410A	Sp. YFIE BACSU	sp:LGT_STAAU	sp:TRPG_EMENI	pir:H70556	Sp. HIS3_RHOSH	sp. HIS6_CORG	prf.2419176B	gp.AF051846_1	gp:AF060558_1	1266 sp.CMLR_STRLI
SEQ Initial Termi (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		ORF (bp)		1263	336	135	276	2550	900	948	801	657	354	774	825	738	633	1266
SEQ Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		- Ta	2199758	2201070	2201073	2201450	2201594	2201992	2204591	2207302	2208367	2209232	2209920	2210273	2211051		2212641	2214321
SEQ NO. (a.a.) 5780 5780 5781 5782 5784 5785 5788 5788 5789 5789 5790 5790 5790 5790 5790 5790 5790 579					2201408	2201584	2201869		2205402				2210273					2215586
		SEQ		5781	5782	5783	5784		5706		5788	5789	5790	5791	5792		5794	5795
								-			2288	2289	2290	2291	2292	2293	2294	2295

		$\neg \top$	Τ	$\neg \tau$		T		П	T	15	200		T		T		\top	SSOF	o						
5		٠	010400	Dspirare			lase	protein		40000	old priospinar			ig enzyme			drogenase	operan repre	t ATP-bindin	le ABC		i			
10		Function		imidazolegiycerol-phospitate dehydratase	histidinol-phosphate	aminoualisielase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid prospiratese		tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding	protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothetical protein	
15	Matched	length (aa)		198	362		439	342			211		204	722	258	268	343	329		246	332	ا	182	113	: : :
20		Similarity (%)		81.8	79.3		85.7	54.4			59.7		60.8	75.5	76.0	55.2	6.09	64.4	_	68.3	71.1	68.0	67.6	73.5	
		Identity (%)		52.5	673	,	63.8	27.2			29.4		28.9	47.4	50.0	29.9	35.0	30.4		32.9	36.8	30.1	34.6	38.1	
25 5	lilucu)	ene		or A3(2)	or A3(2)		matis	s pombe			SACP-1	יייייייייייייייייייייייייייייייייייייי	nid RP1	arius treX	cutosis	olor A3(2)	ti idhA	Sign	200	huC		والر	2126	2 3) July
30	ומסום ו (במווווות במ)	Homologous gene		Streptomyces coelicolor A3(2)	entomyces coelicol	hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			1-Gods depoyani SACP-1	Ishmania donovaiii	Escherichia coli plasmid RP1 tetR	Sulfotobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2)	Sinorhizobium meliloti idhA	Crohorichia coli K12 nalR	בנוופוזרווום כמוו ואיד	Bacillus subtilis 168 fhuC	Vihrio cholerae hutC	Daring autholic 489 tour	Bacillus subtilis 168 year	acilius subvilla 100	Escherichia coii N 12 yun
35	-			Streg	t	n si	₹¥	S G			-		Esc. tetR	S	ΣÏ	कि व	3 0	5 1	ا ت		=	- 1	Ď C	Т	
40		db Match		sp:HIS7_STRCO		sp:HIS8_STRCO	sp:HISX_MYCSM	gp:SPBC215_13				prf:2321269A	pir.RPECR1	prf-2307203B		gp:SC2G5_27	406033004		Sp:GALK_ECUL	sp:FHUC_BACSU	2424234415		pir:G70046		Sp:YTFH_ECOLI
		ORF (bp)	225		T	1098	1326	1200	651	309		642	561	250A	108	774	1		966	798	3,	3	348	294	441
45	1	Terminal (nt)	2215830	+		2216494	2217600	2220358	2220459	2221919		2221187	2222518	2225035	2225949	2225990		2226769	2228901	2229099		0086777	2230947	2231339	2232016
50		Initial (nt)	1215062			2217591	2218925	2219159	2221109	2221611	110177	2221828	2221958		2225149	2226763			2227906	2229896		2230937	5812 2231294	5813 2231932	5814 2232456
		SEO NO.	+-	5797		5798	5799	5800	5801		2000	5803	5804	188	9085	5807		5808	5809	5810		5811	 -		
55		SEQ S		2297	_	2298	2299	2300	2301	_	$\overline{}$	2303	_	-+	2305	_	_	2308	2309	2310		2311	2312	2313	2314

SEQ Initial Terminal ORF	Terminal	1 1 1	ORF			Table 1 (continued)	Jdeodijy	Similarity		
(u)	(nt) (bp)	(dq)				Homologous gene	(%)		length (a.a.)	Function
5815 2232928 2234070 1143 gp:SCIB_12 S	2232928 2234070 1143 gp:SCIB_12	2234070 1143 gp:SCIB_12	1143 gp:SCIB_12	gp:SCI8_12	0, 0,	Streptomyces coelicolor A3(2) SCIB.12	23.4	50.1	355	DNA polymerase III epsilon chain
5816 2234158 2234763 606	2234158 2234763	8	909			_				
5817 2234852 2237284 2433 pir.S65769 Ar	2234852 2237284 2433 pir.S65769	34 2433 pir.S65769	pir.S65769	pir.S65769	₹	Arthrobacter sp. Q36 treY	42.0	68.6	814	maltooligosyl trehalose synthase
5818 2237331 2238353 1023 gp.AE002006_4 DR	2237331 2238353 1023 gp. AE002006_4	1023 gp:AE002006_4	gp:AE002006_4	gp:AE002006_4	86	Deinococcus radiodurans DR 1631	27.6	52.8	322	hypothetical protein
5819 2239092 2238694 399	2239092 2238694	4	399					,		
5820 2240042 2239845 198	2240042 2239845	5	198							
5821 2240246 2240058 189	2240246 2240058	8	189							
5822 2240563 2239508 1056	2240563 2239508	æ	1056							
2323 5823 2240681 2241724 1044 sp:LXA1_PHOLU ATC	2240681 2241724 1044 sp.LXA1_PHOLU	2241724 1044 sp:LXA1_PHOLU	sp:LXA1_PHOLU	sp:LXA1_PHOLU	Pho ATC	Photorhabdus luminescens ATCC 29999 luxA	20.5	54.4	375	alkanal monooxygenase alpha chain
5824 2242115 2241738 378 gp.SC7H2_5 Stret	2242115 2241738 378 gp:SC7H2_5	18 378 gp:SC7H2_5	gp:SC7H2_5		Strey SC7	Streptomyces coelicolor A3(2) SC7H2.05	58.3	79.2	120	hypothetical protein
5825 2242359 2242129 231	2242359 2242129	6	231			٠				
2243035 2244819 1785 pir.S65770	2243035 2244819 1785 pir.S65770	1785 pir.S65770	pir.S65770	pir.S65770	퉏	Arthrobader sp. Q36 treZ	46.3	72.4	268	maltooligosyltrehalose trehalohydrolase
5827 2243043 2242393 651 sp:YVYE_BACSU Baci	2242393 651 sp:YVYE_BACSU	3 651 sp:YVYE_BACSU	sp:YVYE_BACSU		Вас	Bacillus subtilis 168	36.5	72.4	214	hypothetical protein
2246171 2244864 1308 sp:THD1_CORGL	2246171 2244864 1308 sp:THD1_CORGL	4 1308 sp:THD1_CORGL	sp:THD1_CORGL	sp:THD1_CORGL	Con	Corynebacterium glutamicum ATCC 13032 itvA	99.3	99.3	436	threonine dehydratase
5829 2246386 2246892 507	2246386 2246892		507							
2246450	2246295	$\overline{}$	156				!			
5831 2248208 2247006 1203 pir.S57636 Cath	2247006 1203 pir.S57636	1203 pir.S57636	pir.S57636	pir.S57636	Cath	Catharanthus roseus metE	22.7	49.6	415	Corynebacterium glutamicum AS019
2251939 2248358 3582 prf.2508371A	2248358 3582 prf.2508371A	3582 prf.2508371A	prf.2508371A	prf.2508371A	Stre	Streptomyces coelicolor A3(2) dnaE	53.3	80.5	1183	DNA polymerase III
2252856 840 sp:RARD_ECOLI	2252856 840 sp:RARD_ECOLI	2252856 840 sp:RARD_ECOLI	sp:RARD_ECOLI	sp:RARD_ECOLI	Esc	Escherichia coli K12 rarD	37.6	73.8	279	chloramphenicol sensitive protein
2253659 468 sp:HISJ_CAMJE	2253659 468 sp:HISJ_CAMJE	2253659 468 sp:HISJ_CAMJE	sp:HISJ_CAMJE	sp:HISJ_CAMJE	Š	Campylobacter Jejuni DZ72 hisJ	21.5	55.7	149	histidine-binding protein precursor
5835 2253725 2254642 918 pir.D69548 Are	2254642 918 pir.D69548	2 918 pir.D69548	pir:D69548	pir:D69548	¥	Archaeoglobus fulgidus AF2388	22.7	64.7	198	hypothetical membrane protein

EP 1 108 790 A2

												_	-	_		_	$\overline{}$	_			\neg	٦
5		Function	short chain dehydrogenase Or	diaminopimelate (DAP)	decarboxylase	cysteine synthase	Section of the sectio	pseudouridine synthase D	lipoprotein signal peptidase	nietone andicionalism	Oleandomycin resistance process		hypothetical protein	L-asparaginase	DNA-damage-inducible protein r	hypothetical memorane projein	transcriptional regulator		hypothetical protein	isoleucyLtRNA synthetase		
15		Matched length (a.a.)	280	A45.	十	314		326 P	154 ii	1	220	1		T		286	334		212	1066		
2 <u>0</u>		Similarity (%)	80.0	17.6	2.	64.3		61.0	61.7		0.79		57.6	62.0	60.7	61.5	73.1		67.0	65.4		
		Identity (%)	48.2		22.3	32.8		36.5	33.8		36.4		38.7	31.2	31.8	31.5	44.3		42.0	38.5		
25	nued)	au:	C.		osa iysA	СН34		g	cens NCIB		icus oleB		polis orf17		JinP	ΔiF	tor A3(2)		lor A3(2)	visiae 1		
30	Table 1 (continued)	Homologous gene	Osoville 168 vdaD		Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 cysM		Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10586 IspA		Streptomyces antibioticus ole8		Rhodococcus erythropolis orf17	Bacillus licheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolor A3(2) SCF51.06		Streptomyces coelicolor A3(2) SCF51.05	Saccharomyces cerevisiae A364A YBL076C ILS1		
35		db Match	\top	occupa escosids	sp:DCDA_PSEAE P	Sp.CYSM_ALCEU		sp:RLUD_ECOLI E	sp:LSPA_PSEFL 1		pir.S67863		prf.2422382P	Sp. ASPG_BACLI	Γ		gp:SCF51_6		gp:SCF51_5	sp:SYIC_YEAST		
		75 10	-	9/9 -	1287 sp:C	951 sp:C	579	930 sp:F	534 sp:l	1002	1650 pir.	303	1	975 sp:	1401 sp:	858 sp.	1002 gp:	132	627 gp:	3162 sp.	216	1095
45		Terminal ORF		2254683 87	2255738 12	2258362 99	2259421 5	+	2260934 5	2262689 10	66	86	8	200	6	388	992	2270435	2270258	2270988 3	2274473	2274767
50		Initial		225558	2257024	2259312	2259999		5841 2261467	2261688	2262850	5844 2264996	5845 2265108	2265420	2268297	2269245	2270261	2270304		2274149	2274688	
		SEO	(9.9.)	5836 2	5837 2		5839		5841	5842	5843	5844	5845	5846	5847			5850		5852	5853	5854
55		SEQ.	(DNA)	2336	2337		2330	-		2342		_		2346	25.42	_	2349	2350	2351	2352	2353	2354

20 .

·

Г	—т			_		$\overline{}$			7				Т	Т		
	Function	hypothetical membrane protein	hypothetical protein (putative YAK 1 protein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division initiation protein or cell division protein	UDP-N-acetylmuramatealanine ligase	UDP-N-acetyglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine pyrophosphoryl-undecaprenol N-acetylglucosamine	cell division protein	UDP-N-acetylmuramoylalanine-D- glutamate ligase			phospho-n-acetylmuramoyl- pentapeptide	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- atanyl-D-alanyl ligase
	Matched length (a.a.)	82	152	221	246	117	442	222.	486	372	490	110			365	494
	Similarity (%)	73.2	99.3	9.66	100.0	51.0	98.6	100.0	93.8	99.5	9.68	99.1			63.8	64.2
	Identity (%)	46.3	99.3	97.7	99.2	39.0	98.6	93.6	99.4	98.9	99.4	99.1			38.6	35.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2146c	Brevibacterium lactofermentum orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum fts.Z.	Corynebacterium glutamicum ttsQ	Corynebacterium glutamicum murC	Brevibacterium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13869 ftsW	Brevibacterium lactofermentum ATCC 13869 murD			Escherichia coli K12 mraY	Escherichia coli K12 murf
	db Match	pir.F70578	gp:BLFTSZ_6	sp.YFZ1_CORGL	prf:2420425C	GP. AB028868_1	sp:FTSZ_BRELA	gsp:W70502	gp:AB015023_1	gp:BLA242646_3	gp:BLA242646_2	gp:BLA242646_1			1098 sp:MRAY_ECOLI	1542 sp.MURF_ECOLI
	ORF (bp)	285	456	663	738	486	1326	999	1458	1116	1650	468	384	333	1098	1542
	Terminat (nt)	2276353	2276881	2277416	2278122	2279640	2278890	2280470	2281168	2282661	2283782	2285437	2286655	2286831	2286862	2287969
	Initial (nt)	2276637	2277336	2278078	5858 2278859	2279155	5860 2280215	2281135	2282623	2283776	5864 2285431	2285904	2286272	2286499	2287959	2289510
	SEQ NO.		5856	5857	5858	5859	5860	5861	5862	5863	5864	5865	5866	5867	5868	5869
	SEQ NO.		2356	2357		2359		2361	2362	2363	2364	2365	2366	2367	2368	2369

EP 1 108 790 A2

										-								\neg		
5			rlalanyl-D- imelate-D-	,c	rj.			e protein				/drofolate	sferase	ie protein			n kinase		ne protein	
10		Function	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothetical protein	5, 10-methylenetetrahydrofolate reductase	dimethylallyltranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein	
15	Matched	length (a.a.)	491	57	650		323	143	137		190	303	329	484		125	684		411	
20		Similarity (%)	67.6	100.0	58.8		79.3	88.8	69.3		65.3	70.6	62.0	9.69		68.8	62.4		58.4	
		Identity (%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.6	30.1	35.7		43.2	34.2		30.7	
25	Julituan	s gene	3 murE	ofermentum	ginosa pbpB		erculosis	rae	erculosis		ırae	ans 1326	us DK1050	ırae		berculosis	licolor A3(2)		prae	
30	lable 1	Homologous gene	Bacillus subtilis 168 murE	Brevibacterium lactofermentum ORF2 obo	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium leprae MLCB268.11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268.23	
35		db Match	sp:MURE_BACSU B					9p:MLCB268_11 N			gp:MLCB268_13 N	SP:METF_STRLI		gp:MLCB268_16 N			gp:AB019394_1		gp:MLCB268_21	4
40		g	sp:MUR	GSP:Y33117	pir.S54872		pir.A70581	gp:MLCI	pir.C70935		gp:MLC	sp:MET	pir.S32168			pir:A70936				
		ORF (bp)	1551	225	1953	795	1011	429	387	423	573	978	1113	1470	202	369	2148	651	1236	
45		Terminal (nt)	2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298	2298451	2300636	2302175	2302685	2302251	2304980	2303040	2306218	-
50		Initial (nt)	%	2291197	2293164			2295804	2296898	2297653		2299428	2299524	2300706	2302179		2302833	2303690	2304983	
		SEQ.		5871	5872	5873	5874	5875	5876	5877		5879	5880	5881	5882		5884	5885		
55			DNA)	37.1	2372	373	2374	2375	2376	2277	2378	2379	2380	2381	2382	2383	2384	2385	2386	

EQ SEQ Initial (nl) (NO) (nl) (nl) (387 2306314 2307621 388 5886 2309082 2307697 389 5889 2309676 2309173 390 5890 2309835 2312252 391 5891 2312360 2313808 2392 5892 2313833 2314036 2394 5894 2315423 2314236 2395 5895 2318775 2315678 2396 5896 2318775 2315678			ומחוב ו (בחווווים בה)				
5888 2309082 5889 2309082 5890 2309835 5891 2312360 5892 2313833 5892 2313833 5894 2315423 5895 2316412 5895 2316412 5895 2318775	al ORF (bp)	db Match	Homologous gene	Identity (%)	identity Similarity (%)	Matched length (a.a.)	Function
5888 2309082 5889 2309676 5890 2309835 5891 2312360 5892 2313833 5894 2315423 5895 2318475 5896 2318775	1308	B pir.G70936	Mycobacterium tuberculosis	30.4	62.0	434	hypothetical membrane protein
5890 2309835 5890 2309835 5891 2312360 5892 2313833 5893 23144092 5894 2315423 5895 2318475 5896 2318775			Amycolatopsis mediterranei	6.99	67.9	462	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase
5890 2309835 5891 2312360 5892 2313833 5893 2314092 5894 2315423 5895 2316412 5896 2318775	3 504	1 gp:MLCB268_20	Mycobacterium leprae MLCB268.21c	58.4	17.7	166	hypothetical protein
5891 2312360 5892 2313833 5893 2314092 5894 2315423 5895 2316412 5896 2318775 5897 2319850	52 2418	8 pir.G70936	Mycobacterium tuberculosis H37Rv Rv2181	35.1	64.5	428	hypothetical membrane protein
5892 2313833 5893 2314092 5894 2315423 5895 2316412 5896 2318775 5897 2319850	1449	9 sp:CSP1_CORGL	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	28.2	57.1	440	major secreted protein PS1 protein precursor
5893 2314092 5894 2315423 5895 2316412 5896 2318775 5897 2319850	38 204	4	-				
5894 2315423 5895 2316412 5896 2318775 5897 2319850	16 177	7					
5895 2316412 5896 2318775 5897 2319850	36 1188	38 gp:AF096280_3	Corynebacterium glutamicum ATCC 13032	100.0	100.0	249	hypothetical membrane protein
5896 2318775 5897 2319850	78 735	5 gp:AF096280_2	Corynebacterium glutamicum ATCC 13032	100.0	100.0	245	acytransferase
5897 2319850	33 1143	13 gp:SC6G10_5	Streptomyces coelicolor A3(2) SC6G10.05c	50.1	.75.7	383	glycosyl transferase
	04 1047	47 sp:P60_LISIV	Listeria ivanovii iap	26.4	60.8	296	protein P60 precursor (invasion- associated-protein)
2398 5898 2320594 2319968	68 627	7 sp:P60_LISGR	Listeria grayi iap	33.0	61.3	191	protein P60 precursor (invasion- associated-protein)
2399 5899 2323073 2321472	7	1602 prf.2503462K	Heliobacillus mobilis petB	34.3	64.7	201	ubiquinol-cytochrome c reductase cytochrome b subunit
2400 5900 2323759 2323088	 	672 gp:AF107888_1	Streptomyces lividans qcrA	37.9	57.1	203	ubiquinol-cytochrome c reductase iron-sulfur subunit (Rieske (ef e-2S) Iron-sulfur protein cyoB
2401 5901 2325195 2324311		885 sp. Y005_MYCTU	Mycobacterium tuberculosis H37Rv Rv2194 qcrC	58.6	83.1	278	ubiquinol-cytochrome c reductase cytochrome c

	Function	cytochrome c oxidase subunit III		hypothetical membrane protein	cytochrome c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical protein	hypothetical membrane protein	cobinamide kinase	nicotinate-nucleotide- dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5-phosphate) synthase		clavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetyltransferase		lipoyltransferase
	Matched length (a.a.)	188		145	317	640	114	246	172	341	305		241	364	493	97	691		210
	Similarity (%)	70.7		71.0	53.9	8.66	100.0	60.2	64.0	6.99	49.8		68.5	70.3	62.9	0.79	68.5		65.7
	Identity (%)	36.7		38.6	28.7	7.66	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		36.7
Table 1 (continued)	Homologous gene	Synechococcus vulcanus		Mycobacterium tuberculosis H37Rv RvZ199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 IIsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces seoulensis pdhB		Arabidopsis thaliana
	db Match	sp:COX3_SYNVU		sp:Y00A_MYCTU	sp.COX2_RHOSH	1920 gp:AB029550_1	gp:AB029550_2	gp:MLCB22_2	pir.S52220	sp:COBU_PSEDE	sp: COBV_PSEDE		prf.2414335A	sp:fLVE_MYCTU	gp:PPU010261_1	prf:2110282A	gp:AF047034_2		gp:AB020975_1
	ORF (bp)	615	153	429	1077	1920	342	892	522	1089	921	237	714	1137	1500	393	2025	1365	753
	Terminal (nt)	2325273	2326121	2326472	2326921	2330435	2330586	2331967	2332495	2333600	2334535	2334481	2335028	2335915	2338734	2338748	2341293	2339440	2342164
	Initial (nt)	2325887	5903 2326273	2326900	2327997	5906 2328516	2330927	2331200	2331974	2332512	2333615	2334717	2335741	2337051	2337235	2339140	2339269	2340804	2341412
	SEQ.			5904	5905		5907	8069	5909	5910	5911	5912	5913	5914	5915	5916	5917	5918	5919
	SEQ NO.	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419

																					_	_
	Function	lipoic acid synthetase	hypothetical membrane protein	hypothetical membrane protein		transposase (ISCg2)		hypothetical membrane protein		mutator mut T domain protein	hypothetical protein		alkanal monooxygenase alpha chain	Committee of the commit	(translation initiation inhibitor)			4-hydroxyphenylacetate permease	transmembrane transport protein	transmembrane transport protein		
	Matched length (a.a.)	285	257	559		401		157		145	128		220		Ξ			433	158	118		
	Similarity (%)	6:02	76.7	67.8		100.0		63.7		44.0	65.6		6.09		73.0			53.4	72.8	66.1		
	Identify (%)	44.6	45.5	32.0	230	100.0		41.4		31.0	36.7		25.0		40.5			21.9	42.4	31.4		
Table 1 (continued)	Homologous gene	Pelobacter carbinolicus GRA BD	Mycobacterium tuberculosis	H3/KV KVZZ18	Escherichia coii N 12 yide	Corynebacterium glutamicum ATCC 13032 tnp		Streptomyces coelicolor A3(2) SC5F7.04c			Thermotoga maritima MSB8 TM1010		Vibrio harvevi luxA		Thermotoga maritima MSB8 TM0215			Escherichia coli hpaX	Streptomyces coelicolor A3(2) SCGD3.10c	Streptomyces coelicolor A3(2) SCGD3.10c		
	db Match	1044 Sp.LIPA PELCA	Τ,	\neg	sp:YIDE_ECOLI	gp:AF189147_1		gp:SC5F7_34			pir.B72308		AHDIA VIBHA	Sp. Low VIOLIN	pir.A72404			prf:2203345H	gp:SCGD3_10	gp:SCGD3_10		_
	ORF (bp)	1044 \$	780		1617	1203	S	471	213	97.5	+	0	_		393	243	261	1323	561	444	195	405
	Terminal (nt)	4	1 -	_ †	2346047	2346289	2347804	2348078	2350408	_1		25.55	2351310	0707067	2353225	2355398	2355180	2356843	2357354	2357707	2357290	2358130
	Initial (nt)	2342304	95,550	2343479	2344431	2347491	2347505	2348548	2350620	2254002	5928 2351310			2351980	2352833	5932 2355156	5933 2355440	2355521		2357264	2357484	5938 2357726
	SEO	(a.a.)		1760	5922	5923	5924		5026	200	5928			2930	5931		_	_		5936	5937	
	SEO			2421	2422	2423	2424	2425	3476	2427	2428		2429	2430	2431	2432	2433	2434	2435	2436	2437	2438

EP 1 108 790 A2

												e)				Se			
	Function		heme oxygenase	glutamate-ammonia-ligase adenylyttransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypotheticat protein	galactokinase	virulence-associated protein	-	bifunctional protein (ribonuclease H and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphatase	hypothetical protein	Insertion element (1S402)
	Matched length (a.a.)		214	809	441	392	601	54	374	358		382		249	378	204	156	281	129
	Similarity (%)		78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	63.5	65.5	56.6
	Identity (%)		57.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	49.2	26.0	46.2	40.9	32.6
Table 1 (conlinued)	Hamologous gene		Corynebacterium diphtheriae C7	Streptomyces coelicolor A3(2)	Thermotoga maritima MSB8 glnA	Streptomyces coelicolor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv RV2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sapiens galK1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia
	db Match		SD:HMUO CORDI		1338 sp.GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	Sp.GAL1 HUMAN			sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	sp:GPH_ECOLI	sp:PTPA_STRCO	sp:Y01G_MYCTU	sp:Y121_BURCE
	ORF (bp)	543			1338	1104	1827	180	1293	1266	486	1146	729	717	1140	654	471	954	393
	Terminal (nt)	2258153	2358772	2359614	2362818	2365455	2367413	2367473	2369083	2369116	2370908	2371412	2373289	2372573	2373323	2375197	2375684	2376720	2376998
	Initial (nt)	2020200			2364155	2364352	2365587	2367652	2367701	2370381	2370423	2372557	2372561	2373289	2374462	2374544		2375767	5956 2377390
			29.29		5942	5943	5944	5945	5048				5950	5951	5952	5953		5955	5956
	SEO NO.		2439	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456

.

	Function		transcriptional regulator	Para di perioni		hypothetical protein	The production of the producti	pyruvate uenyurogenese com	And the south of the series	transport ATP-binding protein		ribose transport system permease	protein	hypothetical protein	calcium binding protein		•	lipase or hydrolase	acyl carier protein	N-acetylglucosamine-6-phosphate deacetylase	hypothetical protein		
	Matched length (a.a.)		425	2		134		910		261			283	286	125			352	75	253	289		
	Similarity (%)		3	5/.8		77.6		78.9		62.8			58.7	62.9	55.2			55.7	80.0	75.5	65.7		
	Identity (%)			30.4		55.2		55.9		33.7			25.4	26.2	44.8	2		29.6	42.7	43.9	33.6	-	
Table 1 (continued)	Homologous gene		A3(2)	Streptomyces cuelicolol Au(2) SC8F4.22c		Mycobacterium tuberculosis H37Rv Rv2239c		Streptomyces seoulensis pdhA		Escherichia coli K12 glnQ			Bacillus subtilis 168 rbsC	Rickettsia prowazekii Madrid E RP367	Dictrostelium discoideum AX2	cbpA		Streptomyces coelicolor A3(2) SC6G4.24	Myxococcus xanthus ATCC 25232 acpP	Escherichia coli K12 nagD	Deinococcus radiodurans	DR1192	
	db Match			gp:SC8F4_22		sp:Y01K_MYCTU		gp.AF047034_4		sp:GLNQ_ECOLI			sp:RBSC_BACSU	pir.H71693		sp:CBPA_OICDI		gp:SC6G4_24	sp.ACP_MYXXA	SD:NAGD ECOLI	20. AE00196R 4	- I	
	ORF (bp)		243	378 9	198	429 8	345	T = :	1476		150	3	888	939		810	372	1014	291	825			43
	Terminal	1	2377484	2378276	2378489	2378884	2379770		$\overline{}$		9000	2382420	2383622	2384509		2386580	2385913	2386614	2387957	2388821			2390434
	initial	4	2377726	2377899	2378292	+	-			2383615		2384464	2384509	2385447		2385771	2386284		2387667	2387997		2300030	5974 2390904
	SEO	(8.9.)	5957	5958	5050	2965	100	5962	2063	5964		2965	9969	5967		2968	5969	<u> </u>	5971			282	
	S S		457	458	3450		3	2462	2,463	2464		2465	2466	2467		2468	2469	2470	2471	2473	7/67	24/3	2474

EP 1 108 790 A2

5	Function		protein						alkaline phosphatase D precursor		l protein	protein		a)	e Sa			L-glutamine: D-fructose-6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	l protein
70			hypothetical protein						alkaline pho		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine. O-frui amidotrans ferase			deoxyguanosinetriph triphosphohydrolase	hypothetical protein
15	Σ-	(a.a.)	27.1						230		594	89		633	86			636			414	171
20	Similarity (%)		75.3						64.7		73.1	72.1		82.9	67.4		-	82.2			76.3	59.7
	Identity		52.4						34.2		44.4	41.2		59.1	49.0			59.1			54.6	30.4
30 (continued)	us gene		licolor A3(2)						68 phoD		elicolor A3(2)	ıbercutosis		megmatis	reofaciens BMK			megmatis			megmatis dgt	itidis NMA0251
30 CE	Homologous gene		Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
35	db Match								sp:PPBD_BACSU						-			gp:AF058788_1				gp:NMA1Z2491_23 5
40	8		gp:SC4A7_8								gp:SCI51_17	pir.G70661	!	prf:2413330B	gp:XXU39467						prf.2413330A	gp:NM.
	ORF	(pb)	825	492	77.1	546	465	342	1560	714	1836	240	675	1899	462	243	929	1869	324	1152	1272	675
45	Terminal	(<u>at</u>	2391184	2392075	2392579	23939	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
50	Initial	(tc)	2392008	2392566	5977 2393349	2393425	2394437	5980 2394594	5981 2395204	2395986	2397264	2399158	2400342		2401373	2401838	2403165	5990 2404012	2404523	2405671	2406258	5994 2406936
	SEQ		5975	5976	5977	5978	5979	5980		5982	5983	5984	5985		5987	5988	5989		5991	5992		
55	SEQ	(DNA)	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494

						Table 1 (continued)				
	SEQ.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identify (%)	Similarity (%)	Matched length (a.a.)	Function
2495	5995	l Ċ	2409029	2037	pir.B70662	Mycobacterium tuberculosis H37Rv Rv2345	31.1	63.6	692	hypothetical protein
2496	5996	5996 2410264	2409779	486	gp.AE003565_26	Drosophila melanogaster CG10592	24.6	54.4	138	hypothetical protein
2497	5997	2410861	2410280	582						. Andrew
			2410956	1383	pir.S58522	Thermus aquaticus HB8	46.1	69.9	80%	glycyl-trink symmetose
2499	5999	5999 2412580	2412948	369	pir.E70585	Mycobacterium tuberculosis H37Rv Rv2358 furB	49.4	73.0	89	bacterial regulatory protein, or or family
90.50	000	2442002	2413423	432	Sp.FUR ECOLI	Escherichia coli K12 fur	34.9	70.5	132	ferric uptake regulation protein
2501	6001		2415118	1551		Mycobacterium tuberculosis H37Rv Rv1128c	24.8	46.7	529	hypothetical protein (conserved in C.glutamicum?)
2502	6002	2416089	2415298	792	gp:AF162938_1	Streptomyces coelicolor A3(2)	40.6	67.0	224	hypothelical membrane protein
2503		2417099	2416371	729	Sp.UPPS MICLU	Micrococcus luteus B-P 26 uppS	43.4	71.2	233	undecaprenyl diphosphate synthase
2504		2417947	24172	726		Mycobacterium tuberculosis H37Rv Rv2362c	45.7	74.3	245	hypothetical protein
2505	8005	2418883	2417969	915	gp:AF072811_1	Streptococcus pneumoniae era	39.5	70.3	296	Era-like GTP-binding protein
2506			241899	1320		Mycobacterium tuberculosis H37Rv Rv2366	52.8	82.4	432	hypothetical membrane protein
2507	6007	2420900	2420313	588	sp:YN67_MYCTU	Mycobacterium tuberculosis H37Rv Rv2367c	65.0	86.0	157	hypothetical protein
2508		6008 2420973	2421236	264	GSP:Y75650	Neisseria meningitidis	45.0	50.0	85	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics
2509	6009	2421949	2420900	1050	sp:PHOL_MYCTU	Mycobacterium tuberculosis H37Rv Rv2368c phoH	61.1	84.6	344	phosphate starvation inducible protein
2510	6010	2422697	2421975	723	gp:SCC77_19	Streptomyces coelicolor A3(2) SCC77.19c.	44.0	75.4	. 248	hypothetical protein
2511	6011	6011 2422850	2423791	942						

								_											
5		Function	in dnaJ	ble transcriptional (groEL repressor)	dent gen III oxidase	ment subunit			long-chain-fatty-acidCoA ligase	ransferase	ABC transporter, Hop-Resistance protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful antigens for vaccines and diagnostics			ase		e or trehalose	ein
10		Fu	heat shock protein dnaJ	heat-inducible transcriptional repressor (groEL repressor	oxygen-independent coproporphyrinogen III oxidase	agglutinin attachment subunit precursor			long-chain-fatty-a	4-alpha-glucanotransferase	ABC transporter, protein	Neisserial polype be useful antiger diagnostics	polypeptides predicted to antigens for vaccines and diagnostics			peptidyl-dipeptidase	carboxylesterase	glycosył hydrolase or trehalose synthase	hypothetical protein
15		Matched length (a.a.)	380	334	320	134			611	738	604	89	107			069	453	594	449
20		Similarity (%)	77.4	79.6	64.1	64.9			75.1	55.4	64.4	51.0	23.0			68.3	45.7	84.9	58.8
		Identity (%)	47.1	48.2	33.1	36.6			48.0	28.3	29.5	44.0	47.0			40.3	24.1	65.2	32.1
25	tinued)	ene	naJ2	rcA	philus	isiae			or A3(2)	nalQ	asmid	a)				m dcp	ndrae	ulosis	ulosis
30	Table 1 (continued)	Homologous gene	Streptomyces albus dnaJ2	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2) SC6G10.04	Escherichia coll K12 malQ	Lactobacillus brevis plasmid horA	Neisseria gonorrhoeae	Neisseria meningitidis			Salmonella typhimurium dcp	Anisopteromalus calandrae	Mycobaclerium tuberculosis H37Rv Rv0126	Mycobacterium tuberculosis H37Rv Rv0127
40		db Match	prf.2421342B	prt.2421342A	prf:2318256A	sp:AGA1_YEAST			gp:SC6G10_4	sp:MALQ_ECOLI	gp:AB005752_1	GSP:Y74827	GSP:Y74829			sp:DCP_SALTY	gp:AF064523_1	pir.G70983	pir.H70983
		ORF (pg)	1146	1023	990	519	693	378	1845	2118	1863	255	333	180	204	2034	1179	1794	1089
45		Terminal (nt)	2422700	2423915	2424965	2426699	2426776	2427807	2428184	2432413	2434370	2433614	2433875	2434440	2434573	2434805	2438049	2439906	2440994
50		Initial (nt)	2423845	2424937	2425954	2426181	2427468	2428184	2430028	2430296	2432508	2433868	2434207	2434619	2434776	6025 2436838	2436871	2438113	2439906
		SEQ NO.	6012	6013	6014	6015	6016	6017	6018	6019	6020	6021	6022	6023	2524 6024	6025	6026	6027	6028
55		SEQ NO.	2512	2513	2514	2515	2516	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527	2528

5

_																					
	Function	isopentenyl-diphosphate Delta- isomerase						beta C-S lyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carrier protein (isoleucine uptake)	alkanal monooxygenase alpha chain		malonate transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein		heme-binding protein A precursor (hemin-binding lipoprotein)	oligopeptide ABC transporter (permease)	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein
	Matched length (a.a.)	189						325	426	343		324	483	203		467		548	315	172	372
	Similarity (%)	7.72						100.0	100.0	49.0		60.5	55.1	65.0		57.6	,	55.5	73.3	74.5	66.4
	Identity (%)	31.8						99.4	99.8	21.6	٠	25.9	27.7	25.6		22.5		27.5	40.0	43.2	37.4
Table 1 (continued)	Homologous gene	Chlamydomonas reinhardtii ipl1		-				Corynebacterium glutamicum ATCC 13032 aecD	Corynebacterium glutamicum ATCC 13032 brnQ	Vibrio harveyi luxA		Sinorhizobium meliloti mdcF	Escherichia coli K12 glcD	Escherichia coli K12 ydfH		Salmonella typhimurium ygiK	•	Haemophilus influenzae Rd H10853 hbpA	Bacillus subtilis 168 appB	Escherichia coli K12 dppC	Escherichia coli K12 oppD
	db Match	pir. T07979						gp:CORCSLYS_1	1278 sp:BRNQ_CORGL	sp:LUXA_VIBHA		gp:AF155772_2	sp:GLCD_ECOLI	Sp:YDFH_ECOLI		sp:YGIK_SALTY		sp:HBPA_HAEIN	sp:APPB_BACSU	sp:DPPC_ECOLI	pri.2306258MR
	ORF (bp)	585	222	438	1755	999	519	975	1278	978	522	927	2844	711	282	1347	423	1509	996	828	1437
	Terminal (nt)	2441005	2441890	2442792	2441602	2443356	2444033	2445709	2446993	2447998	2450323	2450859	2451794	2455435	2455452	2455720	2457337	2459371	2460336	2461167	2462599
	Initial (nt)	2441589	2441669	6031 2442355	6032 2443356	6033 2444015	6034 2444551	2444735	6036 2445716	2447021	6038 2450844	6039 2451785	6040 2454637	6041 2454725	6042 2455733	6043 2457066	6044 2457759	6045 2457863	6046 2459371	6047 2460340	6048 2461163
	SEQ NO.		6030	6031	6032	6033	6034	6035	6036	6037	6038	6039	6040	6041	6042	6043	6044	6045	6046	6047	6048
	SEQ NO.	2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543	2544	2545	2546	2547	2548

EP 1 108 790 A2

5		Function	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine blosynthesis protein x	hypothetical protein	glycine betaine transporter				large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin l	GTP-binding protein
15	Matched		106 hy	157 hy	300 rib	466 hy		284 80	295 ap		133 th	197 hy	601 gl		1		448 In	118 SI	227 C	46 e	603
20		Similarity (%)	44.0	58.0	65.0	64.6		61.6	51.2		100.0	65.5	7.17				71.9	73.7	59.0	73.0	83.6
		Identity (%)	35.0	29.3	41.0	39.9		31.3	28.5		100.0	42.6	39.8				34.6	33.9	28.2	63.0	58.7
25 G			1580	88		3(2)			· <u>s</u>		Ę	18	E A				dctM	g	810	_	
30 September 1	Table 1 (collins	Homologous gene	Aeroovrum pernix K1 APE1580	Aguifex aeolicus VF5 ag_768	Rhizobium etli rbsK	Streptomyces coelicolor A3(2) SCM2.16c		Homo sapiens	Chlamydomonas reinhardtii		Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP			,	Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
35 40	-	db Match	DID-G72536		4			sp:NTCI_HUMAN_H	ap: AF195243 1		sp:THIX_CORGL		sp.BETP_CORGL				prf:2320266C	gp:AF186091_1	sp.DCTP_RHOCA	PRF:1806416A	1845 SPILEPA_BACSU
		ORF (bp)	507	-	_	-	203	972	846	78.6	570	SAR	- 	966	1608	384	1311	480	747	243	 -
45		Terminal (nt)	0404542	2467607	2464143	2465768	JAREARS	2466038	2467922		2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548
50		Initial (nt)	-	2402049	2463136	2464344	7955767		_	2470343		0473480	2473653	6060 2476497	2477644	6062 2479379	6063 2481208	2481692	2482480	2483845	2484392
		SEO NO.	(3.8.)	50049	200						6057	97.0	6029		6061	_		6064	6065	9909	6067
55		SEQ.	(ONA)		0007		100	2554	26.65	2 2	2557	95	2559	2560	2561	2562	2563	2564	2565	2566	2567

_																			
	Function	hypothetical protein	30S ribosomal protein S20	threanine efflux protein		ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for ONA binding and uptake		hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamyl phosphale reductase or glutamate-5- semialdehyde dehydrogenase	D-isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein
Matched	length (a.a.)	185	85	210	Τ	129	313	527	195		273	235	117	197		432	304		487
	Similarity (%)	69.7	72.9	67.4	- 70	80.6	74.1	49.7	63.6		66.3	66.4	86.3	85.3		99.8	100.0		78.2
	identity (%)	41.6	48.2	000	0.00	61.2	46.0	21.4	30.8		34.8	46.8	55.6	0.89	·	99.1	99.3		58.9
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Carboichia coli K12 meT	Schedula con 17 17 17 17 17 17 17 17 17 17 17 17 17	Escherichia coli K12 rhiC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2) SCC123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2) obg
	db Match	pir.H70683	T	1	Sp.RHTC_ECOLI	gp:SC6D7_25	pir:H70684	sp:CME3_BACSU	sp:CME1_BACSU		gp:SCC123_7	pir.F70685	pir.G70685	gp:SCC123_17		sp:PROA_CORGL	sp:YPRA_CORGL		gp:D87915_1
	ORF (bp)	609		261	699	405	975	1539	582	822	822	708	471	878	1023	1296	912	E	1503
	Terminal (nt)	2485269		2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495696	2497513	1
	Initial (nt)	1 6	-	2485473	6070 2486469		2487884	2489450	2490154	2400011	2491111	2491858	2492343	2493178	2494237	2495634	2496607	2496803	
	SEO			6909	6070	6071	6072	6073	6074	2703	9209	6077	8709	6079	6080	6081	6082	6083	6084
•		256A	_	2569	2570	_	2572	2573		3536	2576	2577	2578	2579	2580	2581	2582	2583	2584

EP 1 108 790 A2

			tase														-			
5	Function	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E				hypothetical protein	transposase (insertion sequenca IS31831)	hypothetical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
15	Matched length (a.a.)	422	276			81	101	986				195	436	117	143	134		92	112	118
20	Similarity (%)	77.3	81.9			92.6	82.2	56.6				82.6	100.0	76.9	67.8	89.6		67.4	64.3	68.6
	Identity (%)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.8	70.9		34.8	36.8	33.9
25 (pan	ф	×	ဥ			-013189	-013189	•				- A3(2)	nicum	. A3(2)	. A3(2)	atis ndk		ıs R1	losis	losis
Se Table 1 (continued)	Homologaus gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne				Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
35	_	1	<u> </u>												4, 6,					
40	db Match	sp.PBUX_BACSU	pir.140838			sp:RL27_STRGR	prf:2304263A	Sp.RNE_ECOLI				gp:SCF76_8	pir.S43613	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1		gp:AE002024_10	pir:H70515	pir.E70863
	ORF (bp)	1887	843	621	396	264	303	2268	549	573	747	609	1308	378	450	408	360	342	465	423
45	Terminal (nt)	2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
50	Initial (nt)	2499783	2502577	6087 2502735	2503870	2504247	2504602	2507098	6092 2507115	2507138	2508094	2508922	2510830	2511046	2511427	2512356	2512768	2512803	2513618	2514114
	SEQ NO.		9809	-	6088	6089	0609	6091		6093	5094	9099	9609	2609	8609	6609	6100	6101	6102	6103
55	SEQ NO.	2585	2586	2587	2588	2589	2590	2591	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603

	Function	folyl-polygiutamate synthetase				valyi-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachlorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock protein or ATP-dependent protease	hypothetical protein	succinyl CoA:3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
Matched	length (a.a.)	451				915	521	508	170	319	207	208	357	338	444	286	430	366	210	251
	Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	76.8	58.4	85.8	73.0	85.7	84.5
	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
(continued)	Homologous gene	Streptomyces coelicolor A3(2)				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebslella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp. 2065 pcaJ	Streptomyces sp. 2065 pcal
	db Match	pri 2410252B				sp:SYV_BACSU	pir.A38447	sp:DNAK_BACSU	gp:ECU89166_1	sp:MDH_THEFL	gp:SC4A10_33	gp.AF065442_1		gp:FSU12290_2	prf.2513416G	gp:KPU95087_7		gp:SCF55_28	gp:AF109386_2	gp:AF109386_1
	ORF (bp)	1374	612	714	663	2700	1575	1452	585	984	777	576	1128	975	1425	930	1278	1086	633	750
	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
	Initial (nt)	2515487	6105 2515662	2516243	2517089	2518336	2519972	6110 2520209	2522251	2523248	2523561	2524915	2525099	2526233	2527135	2529480		2530891	2532601	6122 2533353
	SEQ NO.			6106	6107	6108	6109	6110	6111	6112	6113	6114	6115		6117	6118		6120	6121	
	SEO NO.		2605	2606	2607	_		2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

EP 1 108 790 A2

5	Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		3-carboxy-cis, cis-muconate cyclolsomerase	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase bela subunit	hypothetical protein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
15	Matched length (a.a.)	251	406		256	825	115		437	214	217	273	92		372		285		437
20	Similarity (%)	82.5	71.9		76.6	43.0	93.6		63.4	70.6	91.2	48.7	81.5		84.7		88.4		85.6
	Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		8.09		72.3		62.2
25 Panciju	s gene	us 1CP pcaR	bktB		us pcal.	color A3(2)	us pcaL		us pcaB	us pcaG	us pcaH	erculosis	erculosis		us 1CP catB		ochrous catA		la plasmid
30 Jahle 1 (Continued)	Homologous gene	Rhodococcus opacus 1CP pcaR	Ralstonia eutropha bktB		Rhodococcus opacus pcal.	Streptomyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcal.		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP catB		Rhodococcus rhodochrous catA		Pseudomonas putida plasmid pDK1 xylX
35	-					00						21							
40	db Match	prf:2408324F	prf:2411305D		pri:2408324E	gp:SCM1_10	pri:2408324E		prf.2408324D	prf:2408324C	prf.2408324B	pir.G70506	prf.2515333B		Sp.CATB_RHOOP		prf:2503218A		1470 gp:AF134348_1
	ORF (bp)	792	1224	912	753	2061	366	678	1116	612	069	1164	291	171	1119	909	855	141	1470
45	Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
50	Initial (nt)	2533391	2534201	2535168	2535430	2536196	2538613	2539553	2539731	2540320	2541024	2542350	2542802	2543043	6136 2543936	2544262	6138 2544876	2545068	6140 2545315
	SEO.		6124	6125	6126	6127	6128	6129	6130	6131	6132	6133	6134	6135		6137	6138	6139	
55	SEQ NO.	2623	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

15 .

						Table 1 (continued)				
SEQ NO.	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2641	6141	2546827	2547318	492	gp:AF134348_2	Pseudomonas putida plasmid pDK1 xylY	60.3	83.2	161	toluate 1,2 dioxygenase subunit
2642	6142	2547333	2548868	1536	gp:AF134348_3	Pseudomonas putida plasmid pDK1 xyl2	51.5	81.0	342	toluate 1,2 dioxygenase subunit
2643	6143	2548868	2549695	828	gp:AF134348_4	Pseudomonas putida plasmid pDK1 xylL	30.7	61.4	277	1,2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase
2644		6144 2549771	2552455	2685	2685 gp:REU95170_1	Rhodocaccus erythropolis thcG	23.3	48.6	979	regulator of LuxR family with ATP- binding site
2645		2552563	2553942	1380		Acinetobacter calcoaceticus pcaK	31.3	64.4	435	transmembrane transport protein or 4-hydroxybenzoate transporter
2646	6146	2554026	2555267	1242	sp.BENE_ACICA	Acinetobacter calcoaceticus benE	29.9	66.2	388	benzoate membrane transport protein
2647	6147	2555940	2555317	624	gp.AF071885_2	Streptomyces coelicolor M145 clpP2	69.5	88.3	197	ATP-dependent Clp protease proteolytic subunit 2
2648	6148	2556580	2555978	603	gp:AF071885_1	Streptomyces coelicolor M145 clpP1	62.1	85.9	198	ATP-dependent Clp protease proteolytic subunit 1
2649	6149	2556599	2556748	150	gp:SIS243537_4	Sulfolobus islandicus ORF154	42.9	71.4	42	hypothetical protein
2650	+	2558106	2556760	1347	sp.TIG_BACSU	Bacillus subtilis 168 tig	32.1	66.4	417	trigger factor (prolyl isomerase) (chaperone protein)
2651	6151	2558609	2559103	495	gp:SCD25_17	Streptomyces coelicolor A3(2) SCD25.17	32.5	63.1	160	hypothetical protein
2652	6152	2559157	2560131	975	sp.PBP4_NOCLA	Nocardia lactamdurans LC411 pbp	25.3	50.9	336	penicillin-binding protein
2653	6153	2560131	2560586	456	prf:2301342A	Mus musculus Moa1	27.8	58.3	115	hypothetical protein
2654	6154	2561115	2561363	249						
2655	6155	2561920	2561483	438	prf.2513302C	Corynebacterium striatum ORF1	54.2	73.2	142	transposase
2656	-	6156 2562093	2562242	150						
2657	7 6157	2562115	2561990	126	prf.2513302C	Corynebacterium striatum ORF1	57.1	82.9	35	hypothetical protein
265B	3 6158	2658 6158 2562341	2562078	264	prf.2513302C	Corynebacterium striatum ORF1	50.7	78.7	75	transposase

									_				_									
5	Function			galactose-6-phosphate isomerase	hypothetical protein	hypothetical prolein	aminopeptidase N	hypothetical protein				phytoene desaturase			phytoene dehydrogenase	phytoene synthase	multidrug resistance fransporter		ABC transporter ATP-binding protein	dipeptide transport system permease protein	nickel transport system permease protein	
15	Matched length (a.a.)			140	248	199	890	358		-		104			381	290	392		538	286	316	
20	Similarity (%)			71.4	58.1	80.9	70.5	58.1				81.7			63.8	58.6	47.7		71.6	73.8	62.0	
	Identity (%)			40.0	26.2	56.8	47.5	25.1				61.5			31.2	31.4	25.8		41.3	38.8	33.2	
55 Table 1 (continued)	Homologous gene			s aureus NCTC	Bacillus acidopullulyticus ORF2	tuberculosis c	ividans pepN	ıferi BB0852				linens ATCC			inthus DK1050	Streptomyces griseus JA3933 crtB	dogenes IItB		s elongatus	OF4 dppC	i K12 nikB	,
35 ET	Homolo			Staphylococcus aureus NCTC 8325-4 lacB	Bacillus acidop	Mycobacterium tuberculosis H37Rv Rv2466c	Streptomyces lividans pepN	Borrelia burgdorferi BB0852				Brevibacterium linens ATCC 9175 cttl			Myxococcus xanthus DK1050 carA2	Streptomyces of crtB	Listeria monocytogenes IItB		Synechococcus elongatus	Bacillus firmus OF4 dppC	Escherichia coli K12 nikB	
40	db Match			sp:LACB_STAAU	sp:YAMY_BACAD	pir.A70866	SP:AMPN_STRLI	pir.B70206				gp:AF139916_3			sp.CRTJ_MYXXA	sp.CRTB_STRGR	gp:LMAJ9627_3		gp:SYOATPBP_2	sp:DPPC_BACFI	pir.S47696	
	ORF (bp)	380	885	471	969	609	2601	1083	1152	999	156	327	171	378	1206	876	1119	1233	1641	882	939	1707
45	Terminal (nt)	2562387	2563847	2563932	2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	2575981	2577232	2578879	2579769	2580711
50	Indial (nt)	2562776	2562963	2564402	2565245	2566231	2566345	6165 2569211	2571460	2571510	2572193	2572677	6170 2572977	2573770	2573864	2574718	2575898	2577213	2578872	2579760	2580707	6:79 2582417
	SEQ NO.		6160	6161	6162	6163	6164		8166	6167	6168	6169	—	6171	6172	6173	6174	6175	6176	6177	6178	
55	SEQ NO.	2659	2660	2661	2992	2663	2664	2665	2666	2667	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679

						lable I (confined)				
SEQ.	SEO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
	(a.a.)	- 10	2584504	1941						
2681	6181		2585926	1314	sp:ARGD_CORGL	Corynebacterium glutamicum ATCC 13032 argD	31.4	63.5	411	acetylornithine aminotransferase
2682	6182	2586180	2587763	1584	pir.A70539	Mycobacterium tuberculosis H37Rv Rv1128c	25.1	47.9	482	hypothetical protein
2683	6183	2587976	2588722	747	sp:YA26_MYCTU	Mycobacterium tuberculosis H37Rv Rv0364	49.1	79.4	218	hypothetical membrane protein
2684	6184	2589432	2588725	8	SD:PHBB CHRVI	Chromatium vinosum D phbB	28.1	0.09	235	acetoacetyl CoA reductase
2685			2590302	738	pir.A40046	Streptomyces coelicolor actil	26.7	55.0	240	transcriptional regulator, TetR family
2686			2591137	441		Neisseria meningitidis	38.0	47.0	94	polypeptides predicted to be useful antigens for vaccines and diagnostics
2687	6187	2592365	2591574	792	gp:AF106002_1	Pseudomonas putida GM73 ttg2A	31.1	65.1	238	ABC transporter ATP-binding protein
2688	6188	2592402	2592794	393	gp:MLCB1610_9	Mycobacterium leprae MLCB1610.14c	53.2	77.0	126	globin
2689	6189	2592838	2593965	1128	sp:CHRA_PSEAE	Pseudomonas aeruginosa Plasmid pUM505 chrA	27.3	60.4	396	chromate transport protein
2690	6190	2594594	2593968	627	pir.A70867	Mycobacterium tuberculosis H37Rv Rv2474c	37.8	68.9	186	hypothetical protein
2691	6191	2595061	2594597	465	gp:SC6D10_19	Streptomyces coelicolor A3(2) SC6D10.19c	36.2	61.4	127	hypothetical protein
2692	6192	2595808	2595188	621						
2693	6193		2595822	162	pir.B72589	Aeropyrum pernix K1 APE1182	36.4	0.09	22	hypothetical protein
2694	6194	2597715	2596048	1668	sp:YJJK_ECOLI	Escherichia coli K12 yijK	52.8	79.6	563	ABC transporter ATP-binding protein
2695	6195	2598483	2597869	615	pir.E70867	Mycobacterium tuberculosis H37Rv Rv2478c	31.4	62.2	172	hypothetical protein
2696	6196	2600764	2598662	2103	Sp:Y05L_MYCLE	Mycobacterium leprae o659	28.0	56.7	700	hypothetical membrane protein
2697		6197 2601461	_	1415	2602879 1419 pir.C69676	Bacillus subtilis phoB	28.0	52.6	536	alkaline phosphatase

EP 1 108 790 A2

55		50	45		40	35	25 30		20	15	5
							Table 1 (continued)				
SEQ NO.	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match		Homologous gene	identity (%)	Similarity (%)	Matched length (a.a.)	Function
2698	6198	2604573	2605502	930							
2699	6199	2604583	2603945	639							
2700	6200	2605520	2604609	912	SP:MSMG_STRMU		Streptococcus mutans INGBRITT msmG	39.1	76.3	279	multiple sugar-binding transport system permease protein
2701	6201	2606369	2605527	843	sp:MSMF_STRMU		Streptococcus mutans INGBRITT msmF	27.4	67.5	292	multiple sugar-binding transport system permease protein
2702	6202	2606444	2608117	1674							
2703	6203	2607889	2606561	1329	prf.2206392C	The	Thermoanaerobacterium thermosul amyE	28.8	63.2	462	maltose-binding protein
2704	6204	2609426	2608185	1242		_					
2705	6205	2610639	2609512		1128 prf.2308356A	Str	Streptomyces reticuli msiK	59.1	79.8	386	ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein
2706	6206	2611523	2612272	750							
2707	6207	2611531	2610848	684	prf.2317468A	Schiz dpm1	Schizosaccharomyces pombe dpm1	37.7	72.7	154	dolichol phosphate mannose synthase
2708	6208	2612462	2613151	980							
2709	6209	2613712	2614500	789	prf.2516398E	Rh	Rhodococcus rhodochrous plasmid pRTL1 orf5	67.2	89.4	207	aldehyde dehydrogenase
2710	6210	2614649	2615410	762	prf.2513418A	Synec	Synechococcus sp. PCC7942 cpmA	48.6	73.8	183	circadian phase modifier
2711	6211	2615451	2615195	345							
2712	6212	2617120	2615939	1182	pir.A72312	ξ¥	Thermotoga mantima MSB8 TM0964	35.0	64.6	412	hypothetical membrane protein
2713	6213	2617246	2617995	750	sp:GIP_ECOL!	Esc	Escherichia coli K12 gip	41.2	69.4	255	glyoxylate-induced protein
2714	6214	2618072	2618869	798	pir:E70781	H. ₹	Mycobacterium tuberculosis H37Rv Rv1544	40.0	57.0	258	ketoacyl reductase
2715	6215	6215 2618882	2619538	657	sp:ORN_ECOLI	E.	Escherichia coli K12 orn	48.0	78.8	179	oligoribonuclease

(3)

	Function	ferric enterochelin esterase		lipaprotein				(2003)	transposase (15) (201)				transcriptional regulator	glutaminase	and a specific degradation	regulator protein		uronate isomerase			hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	bacterioferritin comigratory protein	bacterial regulatory protein, tetR	family
	Matched length (a.a.)	454		398					436				131	358		97		335			291	185	75	141	;	114
	Identity Similarity (%)	50.9		71.9					8.66				63.4	69.3		72.2		6.09			45.0	74.6	80.0	73.8		61.4
	Identity (%)	9,0		48.5					99.5				32.8	35.2		42.3		20.0			.32.0	48.1	42.7	46.8		32.5
Table 1 (continued)	Hamologous gene	C	Salmonella enterica irou	Mycobacterium tuberculosis H37Rv Rv2518c lppS					Corynebacterium giutamicum ATCC 21086	٠			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE-	DAWLEY KIDNEY	Bacillus subtilis 168 degA		Town Cty and Manager	Escuencia con N. Z. uxac		Zea diptoperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis	Fscharichia coli K12 bcp	Cich soleology A3(2)	Streptomyces coelicator Aala)
	db Match		prf:2409378A	pir.C70870					1308 gp:SCU53587_1				gp:AF085239_1	TAG SK DAT	sp. Or or or	pir. A36940			sp:UXAC_ECOLI		prf.1814452C	prf:232444A		1000 000.00	-	gp:SCI11_1
	ORF	_	1188	1209	645	3,	2	246	1308	20,	ᆚ	639	453	1630	6701	477	555	-	1554	501	1197	558	+	┿	2	636
*	Terminal	(m)	2619541	2620973	2623605		2623621	2624048	2624051	2625806	2000203	2625809	2628376	1000	2020493	2628852	100000	2020202	2630479	2631136	2632466	2633100		700700	2034004	2634751
	-	(Ju)	2620728	2622181				6220 2623803		0033030	-	6223 2626447	2627924		7628121	6226 2628376	00000	0/00707	6228 2628926	2630636	6230 2631270	2632543	6232 2633418		2633600	2634116
	SEO S	(a.a.)	6216		1,000	2	6219	6220	6221	5	7770	6223	6224		6229			1770		6229		6234	_	_	6233	6234
	SEQ		2716		_	9 :	2719	2720	1272			2723			2725	2726		21.71	2728	2729	2730	27.2	2732		2733	2734

EP 1 108 790 A2

٢		$\overline{}$			\neg		$\neg \tau$		Ţ		T	1	Т		T			T	\neg
10	Function	phosphopantethiene protein transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH				hypothetical membrane protein	transposase (IS1628)		arylsulfatase
15	Matched Jength (a.a.)	145	473	113		3029	404	230	112	113	202	236				428	175		250
20	Similarity (%)	75.9	85.6	54.0		83.6	55.2	60.9	67.9	0.69	7.97	81.4				58.2	97.2	·	74.4
	Identity (%)	56.6	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2				29.0	92.1		46.0
55 Table 1 (continued)	is gone	CC 6871 ppt1	Jutamicum	PCC6803			licolor A3(2)	berculosis	berculosis	orae	berculosis	uginosa				berculosis c	glutamicum pAG1 tnpB		orae ats
Table 1 (6	Homologous gene	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. PCC6803		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SCBA6.09c	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB		Mycobacterium leprae ats
35		2 2	ŏΕ	Ś		<u>2</u> <u>2</u>	8 8	ΣI	ΣÏ	≥ 60			-	_		ΣÏ	2 %	\vdash	
40	db Match	gp:BAY15081_1	gp:AF237667_1	pir.S76537		pir:S2047	gp:SC4A7_14	pir:D70716	sp:Y077_MYCT	sp:Y076_MYCLE	sp:Y03Q_MYCTU	SP:RNPH_PSEAE				sp:Y029_MYCTU	gp:AF121000_8	i b	sp:Y03O_MYCLE
	ORF (학)	405	1425	324	414	8979	1182	615	462	354	618	735	246	693	285	1362	534	99	765
45	Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650902	2651339	2651420	2652067	2653009	2653326	2654079	2654875	2656985	2656974	2657736
50	Initial (nt)	2635151	2636589	2636845	2637653	2647627	2649416	2649550	2650441	2650986	2652037	2652801	2653254	2654018	2654660	2656236	2656452	2657633	2658500
	SEO NO.	6235	6236	6237	6238	6239	6240	6241	6242	6243	6244	6245	6246	6247	6248	6249	6250	6251	6252
55	SEO NO.		2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	2752

	Function	D-glutamate racemase		bacterial regulatory protein, marR family	hypothetical membrane protein		endo-type 6-aminohexanoate oligomer hydrolase	hypothetical protein	hypothetical protein		hypothetical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		cytochrome c oxidase chain I	
	Aatched length (a.a.)	284 D-gl	1	147 bacter family	225 hypo			200 hypo	105 hypc		428 hypc	_	647 ATP	313 hypo	222 hypo	310 phos		575 cyto	
		~		7	2		321	×	<u> </u>	:	, <u>4</u>		ě		2.	3		5.	
	Similarity (%)	99.3		70.8	69.3		58.3	58.5	77.1		80.8		53.3	60.1	52.0	61.0		74.4	
	Identity (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
Table 1 (continued)	Homologous gene	Corynebacterium glutarnicum ATCC 13869 murl		Streptomyces coelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337	-	Flavobacterium sp. nylC	Mycobacterium tuberculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c	-	Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptomyces coelicolor A3(2) SC185.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
	db Match	prf.2516259A		gp:SCE22_22	sp:Y03M_MYCTU		pir.A47039	sp:Y03H_MYCTU	sp:Y03G_MYCTU		sp:Y03F_MYCTU		prf.1816252A	sp:Y0A8_MYCTU	pir.T34684	sp:SERB_ECOLI	3	1743 pir.D45335	
	ORF (bp)	852	636	492	747	168	960	537	300	624	1338	306	1740	891	723	1017	1596	1743	ဓ္တ
	Terminal (nt)	2658606	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2665992	2667854	2667870	2668839	2669557	2672721	2671063	2673255
	Initial (nt)	2659457	2659496	6255 2660638	6256 2661417	2661565	2662376	2662867	6260 2663182	2663437	2664060	2665687	2666115	6265 2668760	2669561	2670573	2671126	2672805	6270 2672950
	SEQ NO.		6254	6255	6256	6257		6229	6260	6261	6262	6263	6264		9929	6267	6268	6929	6270
	SEO NO.		2754		2756	2757		2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770

			<u> </u>	T	1	$\neg \top$	T	Т		T		Se	\top					튱	T	T	7
5		5	lase beta-cha		lion factor	ssor or	IR2 precursor	ane protein	tase alpha-		in L36	D(+) syntheta					ase	g (for mother			o Z
10		Function	ribonucleotide reductase beta-chain	ferritin	sporulation transcription factor	iron dependent repressor diptheria toxin repressor	cold shock protein TIR2 precursor	hypothetical membrane protein	ribonucleotide reductase alpha- chain		50S ribosomal protein L36	NH3-dependent NAD(+) synthetase			hypothetical protein	hypothetical protein	alcohol dehydrogenase	Bacillus subtilis mmg (for mother cell metabolic genes)	hypothetical protein		phosphoglucomutase
15	Matched	length (a.a.)		159	256	225	124	90	707		41	279			257	96	337	459	284		226
20		Similarity (%)	7.56	64.2	60.2	60.4	62.1	86.0	100.0		79.0	78.1			56.4	68.8	52.8	96.0	66.2		80.6
		Identity (%)	99.7	31.5	32.8	27.6	24.2	50.0	99.9		58.0	55.6			30.7	41.7	26.1	27.0	33.8		61.7
25 9	luca)	<u>ə</u>	nicum	¥	A3(2)	nicum	ijae 12	AF0251	nicum			发			:6803	losis	hilus	ngE	8K22.50		E
30 5 P	lable i (collini	Homologous gene	Corynebacterium glutamicum ATCC 13032 nrdF	Escherichia coli K12 ftnA	Streptomyces coelicolor A3(2) whiH	Corynebacterium glutamicum ATCC 13869 dtxR	Saccharomyces cerevisiae YPH148 YOR010C TIR2	Archaeoglobus fulgidus AF0251	Corynebacterium glutamicum ATCC 13032 nrdE		Rickettsia prowazekii	Bacillus subtilis 168 nadE			Synechocystis sp. PCC6803 slr1563	Mycobacterium tuberculosis H37Rv Rv3129	Bacillus stearothermophilus DSM 2334 adh	Bacillus subtilis 168 mmgE	Arabidopsis thaliana T8K22.50		Escherichia coli K12 pgm
<i>35</i>		db Match	gp:AF112536_1	SB:FTNA ECOLI	4	pir.140339	sp:TIR2_YEAST	T	35_3		SP.RL36 RICPR	1_			pir.S76790	pir:G70922	sp:ADH2_BACST	sp:MMGE_BACSU	pir.T05174		1682 sp:PGMU_ECOL3
		ORF (bp)	1002	486	750	999	438	376	2121	315		+-	+-	498	747	288	1020	1371	834	792	⊢ ∹
45		Terminal (nt)	2673338	2675289	2676240	2676243	2677377	000000	2677478	2680784	26817	26823	26814	2683616		2683131	2683627	2686289	2687148	2687449	2688389
50		Initial (nt)	2674339	7674804		2676902	2676940		2679598	0470030	2681763	2681505	2681556		2683125	2683418	2684646	2684919	2686315	6288 2688240	2690050
		SEO		27.0		6274	6275		6277	0703				$\overline{}$		6284	6285	6286	6287		6289
55		SEO	2771	27.50	2773	2774	2775		2777	97.70	27.70	2780	2781	2782	2783	2784	2785	2786	2787	2788	2789

г				-т	_		-т		_		7		_		 -					
	Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)	major secreted protein PS1 protein precursor				transposase (IS1676)		proton/sodium-glutamate symport protein		ABC transporter	•	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein		oxidoreductase or dehydrogenase
	Matched length (a.a.)	84	122	254	496	355				200		438		873		218	84	42		196
	Similarity (%)	64.3	61.5	79.1	48.6	49.6				46.8		66.2		69.0		79.8	0.79	75.0		54.1
	Identity (%)	41.7	25.4	51.2	24.2	24.8				24.6		30.8		33.0		45.4	60.0	71.0		28.1
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3069	Helicobacter pylori J99 jhp1146	Bacillus subtilis 168 yest	Rhodococcus erythropolis	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1				Rhodocaccus erythropolis		Bacillus subtilis 168		Streptomyces coelicator A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia muridarum Nigg TC0129		Streptomyces collinus Tu 1892 ans G
	db Match	pir.F70650	pir.D71843	sp:YCSI_BACSU	gp:AF126281_1	1620 sp.CSP1_CORGL	•			gp:AF126281_1		sp:GLTT_BACCA		gp:SCE25_30		gp:SAU18641_2	PIR:F81516	PIR:F81737		prf:2509388L
	ORF (bp)	288	324	792	1365	1620	354	165	447	1401	768	1338	693	2541	891	708	273	141	678	2/9
	Terminal (nt)	2690437	2690760	2691564	2693053	2694918	2695279	2695718	2695320	2697212	2697383	2698194	2701612	2699926	2703356	2702487	2704586	2704975	2710555	2711308
	Initial (nt)	2690150	2690437	2690773	6293 2691689	2693299	2694926	2695554	6297 2695766	2695812	6299 2698150	6300 2699531	2700920	2702466	6303 2702466	2703194	2704314	2704835	2709878	2808 6308 2710637 271130
	SEQ NO.	6290	6291			6294	6295	6296	6297	6298	6239		6301	6302		6304	6305	6306	6307	6308
	SEQ NO.	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799	2800	2801	2802	2803	2804	2805	2806	2807	2808

5		Function	methyltransferase	hypothetical protein	hypothetical protein		UDP-N-acetyglucosamine r- carboxyvinyltransferase	hypothetical protein	transcriptional regulator		cysteine synthase	O-acetylserine synthase	hypothetical protein	succinyl-CoA synthetase alpha chain	hypothetical protein	succinyl-CoA synthetase beta chain		Constisin sens F product		A constant A Collection	succinyl-CoA coenzyme A	transcriptional regulator
15	Matched	length (a.a.)		84	42 h		41	190	281		305	172	83	291	75			24.5	213		501	321
20	-	Similarity (%)	51.2	0.99	75.0		75.3	84.2	69.0		84.6	79.7	65.1	79.4	43.0	73.0		1	8.		77.8	68.5
		identity (%)	25.9	61.0	71.0		44.8	66.3	45.9		57.1	61.1	36.1	52.9	42.0	30.	23.6		38.5		47.9	38.6
25 6 8)UIIIIIIIII	s gene	erculosis	niae	um Nigg		oaceticus	erculosis	icolor A3(2)		8 cvsK	Indii cysE2	odurans R1	line Mile Ph I	K4 ADE1069	2007	Sa Succ		eofulvus frnE		eri cat1 cat1	ilense ATCC
30 \$	lable i (commued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0089	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Acinetobacter calcoaceticus NCIB 8250 murA	Mycobacterium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5.15c		Racillus subtilis 168 cvsK	Azotobacter vinefandii cysE2	Deinococcus radiodurans R1	Coxiella burnetii Nine Mile Ph I	SUCU.	Aeropyrum perma	Bacillus subtilis 100 succ		Streptomyces roseofulvus frnE		Clostridium kluyveri cal 1 cal 1	Azospirillum brasilense ATCC 29145 ntrC
<i>35</i> 40		db Match	SP.Y089_MYCTU H	GSP:Y35814 C	PIR:F81737 T		SP:MURA_ACICA	Sp:Y02Y_MYCTU	gp:SC2G5_15		HOUSE BACKLE	十	2	1	_		sp:SUCC_BACSU		gp:AF058302_5		sp.CAT1_CLOKL	sp:NIR3_AZOBR
		ORF (bp)	525 sp.	273 GS	141 PIR	195			843 gp	907	-	\neg			-		1194 sp	360	735 gr	819	1539 SF	1143 S
45		Terminal O	2712374 5	2713453 2	+	2717993	g	2720319	2720385	1		2 5		87747C	2157712	<u>ٿ</u>	2725384	2726786	2727399	2728207	2729378	2732518
50		Initial (nt)	6309 2711850	2713181	2713702	2718187	2719689	2719750	7221272		6316 2/21/02	6317 2721934	2724057	0705050	6066212	6321 2725619	6322 2726577	6323 2727145	2728133	2729025		7 2731376
				6310		6312						_	631B		_	_	_		6324			6327
<i>55</i>		SEO	(DNA)	0.00	2811	2043	2813	2814	2815		2816	2817	2818		0797	2821	2822	2823	2824	2825	2826	2827

. 30

- 1									_							
	Function		phosphate transport system regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hypothetical protein	hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	5-phosphoribosyl-5-aminolmidazole synthetase	amidophosphoribosyl (ransferase
	Matched length (a.a.)		213	255	292	325	369	315		344	225	259	352	- 58	347	482
	Similarity (%)		1.18	82.8	82.2	78.5	56.0	60.0	·	55.2	74.2	56.0	79.0	91.0	94.2	89.0
	Identity (%)		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0	70.3
Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterlum ammoniagenes ATCC 6872 purf
	db Match		pir.E70810	pir.S68595	gp:MTPSTA1_1	pir.A70584	pir:H70583	gp:SCD84_18		sp:BMRU_BACSU	pir.E70809	gp:AF193846_1	gp:AB003158_6	pir.B70809	gp:AB003158_5	9p:AB003158_4
	ORF (bp)	807	732	897	921	1014	1125	9/8	783	1095	687	942	1101	213	1074	1482
	Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553	2739556	2741356	2741636	2743785	2744222	2744881	2746083
	Initial (nt)	2732230	2732636	2734351	2735184	2736215	2737538	2738711	2738771	2740650	2740670	2742577	2742685	2744010	2745954	2747564
i	SEQ NO. (a.a.)	6328	6329	6330	6331	6332	6333	6334	6335	6336	6337	6338	6339	6340	6341	6342
	SEQ NO. (DNA)	2828	2829	2830	2831	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842

EP 1 108 790 A2

								_				T		T			1
5		Function	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	5:-phosphoribosyl-N- formylglycinamidine synthetase		5'-phosphoribosyl-N- formylglycinamidine synthetase	hypothetical protein	-1.4botions perovidade	giuliatorie Peroxicae	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
15	Matched	length (a.a.)	124	315	217	42	763		223	79	1	2	965		211	414	697
20		Similarity (%)	75.8	94.0	87.1	71.0	89.5		93.3	93.7		6.77	51.5		68.7	81.6	70.6
		Identity (%)	57.3	75.9	67.7	64.0	77.6		80.3	81.0		48.2	28.0		37.4	49.0	41.8
<i>25</i>	5		s	2	2		72		7.2	72			AP636		Sis	77	dapb1
	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammoniagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purL		Corynebacterium ammoniagenes ATCC 6872 purQ	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
35 40		db Match	pir:H70536	gp:AB003158_2 5	gp:AB003158_1	GP:SSU18930_21	p:AB003162_3		gp:AB003162_2	gp:AB003162_1		prf:2420329A	prf.2216389A		pir:C70709	sp.DCTA_SALTY	2118 prf.2408266A
		ORF (bp)	375 p	1017 g	741	186	2286	720		243	522	477	2748	276	687	1338	
45		Terminal (nt)	2747683	2749111	2749162	2752103	2750027	1752424	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
50		Initial	- 12		2749902	2751918	2752312	0070310	6348 2752402 6349 2752995	2753237	2753298	2753804	2753992	2756851		2759200	2761649
		SEO.	(a.a.) 6343	6344	6345	6346	6347			6350	6351			6354	_	6356	
55			DNA)		2845	2846	2847		2848	2850	2851	2852	2853	2854	2855	2856	2857

	Function		5'-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthetase	adenylosuccino lyase	aspartate aminotransferase	5-phosphoribosylglycinamide synthelase	histidine triad (HIT) family protein		hypothetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethlobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity O-Thr aldolase
	Matched length (a.a.)		294	477	395	425	136		243	469	423	224	335	231	249	382
	Similarity (%)		89.1	95.0	62.3	86.4	80.2		56.4	67.6	98.8	93.6	70.5	72.7	69.5	53.9
	Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
Table 1 (continued)	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynebacterium ammoniagenes ATCC 6872	Mycobacterium leprae u296a		Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioD	Lactococcus factis M71plasmid pND306	Thermotoga maritima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38
	db Match		gp:AB003161_3	gp:AB003161_2	1158 sp:AAT_SULSO	gp:AB003161_1	SD:YHIT MYCLE		pir.S62195	SP:DTPT_LACLA	1269 sp.BIOA_CORGL	sp:BIOD_CORGL	gp:AF049873_3	prf.2222216A	SD:TIPA STRLI	
	ORF (bp)	624	891	1428	1158	1263	414		753	1356		672	1455	705	753	
	Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703		2769156	2771982	2772660	2772644	2774110	2774937	2775
	(nt)	2752452		2764931	2766135	2767420	2787580	6364 2768137	2769095	2770511	2770714	2771989	2774098	2774814	2775689	2776879
	SEO NO.			6360	6361	6362	6363	6364	6365	6366	6367	6368	6369	6370	6371	
	SEO	2050		2860	2861	2862		2864		_	2867	2868	2869	2870	2871	2872

_																			
	Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein.	transcription initiation factor sigma	trehalose-6-phosphate synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affinity zinc uptake system protein
	Matched length (a.a)	574	504	92	421		303	232	278	288		140	464	155	487		245	344	353
	Similarity (%)	75.8	68.9	68.5	78.4		62.1	69.0	52.9	55.6		50.7	64.0	50.3	66.7		57.6	60.2	46.7
	Identity (%)	46.3	33.3	30.4	45.6		34.3	37.1	28.4	26.7		28.6	36.0	32.3	38.8		27.4	24.7	22.4
Table 1 (continued)	Homologous gene	Escherichia coli K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtills 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c IpqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Escherichia coli K12 otsB	Bacillus megaterium ccpA	Haemophilus influenzae Rd H10119 znuA
	db Match	gp:ECOPOXB8G_	prf.2212334B	sp:YCDC_ECOLI	pir.D70551		gp:AF096929_2	sp.ALSR_BACSU	pir.C70982	pir.C69862		pir.A45264	pir:B70798	pir:S41307	1455 sp:TPS1_SCHPO		sp:OTSB_ECOLI	sp:ccPA_BACME	sp:ZNUA_HAEIN
	ORF (qd)	1737	1482	531	1320	2142	096	705	813	813	459	399	1503	327	1455	513	768	1074	942
	Terminal (nt)	2776768	2780446	2780969	2782315	2782340	2784656	2785651	2788594	2788587	2789477	2790550	2792448	2792857	2794327	2794812	2795637	2795676	2797806
	Initial (nt)	2778504	2778965	2780439	2780996	2784481	2785615	2786355	2787782	2789399	2789935	2790152	2790946	2792531	2792873	2794300	2794870	2796749	6390 2796865
	SEQ NO.	6373	6374	6375	6376	6377	6378	6379	6380	6381	6382	6383	6384	6385	6386	6387	6388	6389	
	SEQ NO ONA)	2873	2874	2875	2876	2877	2878	2879	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890

										_				_				
	Function	ABC transporter	hypothetical membrane protein	transposase (ISA0983-5)		3-ketosteroid dehydrogenase		lipopolysaccharide biosynthesis protein or oxidoreductase or dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase	shikimate transport protein	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methylase or tRNA/rRNA methyltransferase	cysteinyl-tRNA synthetase	PTS system, enzyme II sucrose protein (sucrose-specific IIABC component)	sucrose 6-phosphale hydrolase or sucrase	glucosamine-6-phosphate isomerase	N-acetylglucosamine-6-phosphate deacetylase
	Matched length (a.a.)	223	135	303		561		204	128	292	130	212	334	464	899	473	248	368
	Similarity (%)	63.2	87.4	52.5		62.0		56.4	69.5	67.5	80.8	55.7	47.3	68.8	77.0	56.9	69.4	60.3
	Identity (%)	31.4	60.0	23.4		32.1		34.3	35.2	30.5	43.1	32.6	22.8	42.2	47.0	35.3	38.3	30.2
Table 1 (continued)	Hamologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus enythropolis SQ1 kstD1		Thermotoga maritima MSB8 bpIA	Bacillus subtilis 168 idh or iolG	Escherichia coli K12 shiA	Escherichia coli K12 shiA	Streptomyces coelicolor A3(2) SC5A7.19c	Saccharomyces cerevisiae YOR201C PET56	Escherichia coli K12 cysS	Lactococcus ladis sacB	Clostridium acetobutylicum ATCC 824 scrB	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD
	db Match	gp:AF121672_2	pir:E70507	pir: A69428		gp:AF096929_2		pir.872359	sp:MI2D_BACSU	Sp. SHIA ECOLI	SP. SHIA ECOLI	gp:SC5A7_19	sp:PT56_YEAST	sp:SYC_ECOLI	prf.2511335C	gp.AF205034_4	sp:NAGB_ECOLI	1152 sp:NAGA_VIBFU
	ORF (bp)	9	555	1500	202	1689	747	618	435	855	426	654	939	1380	1983	1299	759	1152
	Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676	2R05113	2806016	2806599	2807426	2808399	2809824	2811980	2813279	2814081
	Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996		2805110	2805087			2808364	2809778		2813258	2814037	2815232
	SEQ NO.	\neg	6392	6393			6396	6397	6398	6300	6400	6401	6402	6403	6404	6405	6406	6407
	SEQ NO.		2892	2893	1		2896		2898	0000	2900	2901	2902	2903	2904	2905	2906	2907

EP 1 108 790 A2

	\neg	Т	T	m 1	\neg									1			
Function		dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphate epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothetical protein	transcription factor
Matched	(a.a.)	298	321	220		439	222	999	342	314	258	193	142		152	235	157
Similarity	%	62.1	57.6	68.6		50.3	57.2	51.4	64.3	78.3	78.7	62.7	66.2		86.2	71.5	91.1
Identity	8	28.2	28.7	36.4		24.8	26.6	22.5	31.9	46.5	43.4	28.5	31.0		55.9	46.4	73.3
Homologis gene	Brieg suogoiolian	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10.20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
th Match	db Match	sp:DAPA_ECOLI	sp:GLK_STRCO	prt.2516292A		sp:NANH_MICVI	gp:AF181498_1	gp:BFU64514_1	sp:DPPB_BACFI	sp:OPPD_BACSU	sp:OPPF_LACLA	sp:RHTB_ECOLI	prf:2309303A		pir.C70607	sp:Y18T_MYCTU	pir:H70803
A F	(gb)	936	606	969	177	1215	729	1608	951	1068	816	621	483	360	480	768	594
Terminal	(#)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
Initial	£	2815458		2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817	2828383	2829146	2829749
SEQ	(a. b)	6408	6409	6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
SEG	NO.	2908		2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

15 .

.

_			_					_			т				\top	\neg	T	\neg	Т-	T		$\overline{}$	
	Function	two-component system response	regulator	two-component system sensor histidine kinase		DNA repair protein RadA	hypothetical protein		hypothetical protein	p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate	dehydratase beta	A/G-specific adenine glycosylase			L-Z.3-bulanediol deliya obenese				hypothetical protein	virulence factor	virulence factor
	Matched length (a.a.)	223	T	341		463	345	?}	231	471		3.5	210	283							97	66	72
	Identity Similarity (%)	20.0		2.79		743	22.2	5.57	53.3	85.1			66.2	7.07			93.6				69.1	63.0	55.0
	Identity (%)	43.5	?	29.3		41.5	3 6	40.3	29.4	59.5			36.7	48.4			99.2				48.5	27.0	54.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	H37Rv Rv3246c mtrA	Escherichia coli K12 baeS		< T 1 1 1 1 1 1 1 1 1	Escherichia coli K12 radA	Bacillus subtilis 168 yacK	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000	·		Chlamydomonas reinhardtii ca 1	Streptomyces antibioticus IMRU 3720 mutY			Brevibacterium saccharolyticum				Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
	db Match		prf:2214304A	sp:BAES_ECOU			1392 Sp.RADA_ECOLI	SP.YACK_BACSU	pir.D70804	gp.PPU96338_1			pir:T08204	gp:AF121797_1			gp:AB009078_1		*		pir.E70552	GSP:Y29188	GSP:Y29193
	ORF Pol	_	723	1116		282	1392	1098	687	1452		4	621	879	1155	306	774	324	741	312	291	420	213
	la l		2830779	2831894		2832666	2834181	2835285	2835283	2836048	1000	2837591	2837956	2839521	2840716	2840758	2841848	2842453	2843233	2843716		2845558	2846101
	-	(E)	6424 2830057			2832085	2832790	2834188	2835969	2837499		2837737	2838576	2838643	2839562	6435 2841063	6436 2841075	6437 2842130	6438 2842493	6439 2843405	6440 2843722	2845139	2845889
	SEO	(3.8.)	6424	6425	3	6426	6427	6428	6429	6430		6431	6432	6433	6434							6441	6442
	0 0		924			926	927					2931	2932	2933	2034	2935	2936	2937	2938	2939	2940	2941	2942

10	Function	virulence factor	CIpC adenosine triphosphatase / ATP-binding proteinase	inosine monophosphate dehydrogenase	transcription factor	phenol 2-monooxygenase					lincomycin resistance protein	hypothetical protein	lysyl-tRNA synthetase	pantoate-beta-alanine ligase	
15	Matched length (a.a.)	55	832	469	316	680					481	240	511	268	
20	identity Similarity (%)	75.0	86.2	70.2	62.7	6.09					100.0	55.8	71.2	52.6	
	Identity (%)	74.0	58.5	37.1	24.7	33.5					100.0	26.7	41.7	29.9	
హ Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtilis 168 mecB	Bacilius cereus ts-4 impdh	Rhodococcus rhodochrous nitR	Trichosporon cutaneum ATCC 46490					Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC	
35 <u>Tab</u>	Ношс	Pseudomoni ORF25110	Bacillus subt	Bacillus cere	Rhodococcu	Trichosporor 46490					Corynebacte ImrB	Mycobacterium H37Rv Rv3517	Bacillus stea	Corynebacte ATCC 13033	
40	db Match	321 GSP:Y29193	2775 sp:MECB_BACSU	2848659 1431 gp.AB035643_1	pir.JC6117	2851815 1785 sp.PH2M_TRICU					2857613 1443 gp:AF237667_1	pir.G70807	gp:AB012100_1	gp:CGPAN_2	
	ORF (bp)	321	2775	1431	1011	1785	1716	1941	1722	162	1443	951	1578	798	600
45	Terminal (nt)	2846506	2844166		2849779	2851815	2853732 1716	2855709 1941	2857516	2859205	2857613	2859195	2860505	2862132	000000
50	Initial (nt)	2846186	2846940	6445 2847229	2848769		6448 2852017	6449 2853769	6450 2855795	2859044	6452 2859055	6453 2860145	2862082	2862929	1000000
	SEQ NO.	6443	6444	6445	6446	6447	6448	6449	6450	6451	6452	6453	6454	6455	27.0

hypothetical membrane protein 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase dihydroneopterin aldolase dihydropteroate synthase 118 268 138 158 75.0 69.5 69.0 69.6 51.5 29.0 42.4 38.1 Methylobacterium extorquens AM1 folK Mycobacterium leprae folP Bacillus subtilis 168 folB Mycobacterium leprae MLCB2548.04c sp:FOLB_BACSU SP:HPPK_METEX gp:MLCB2548_4 gp:AB028656_1 477 2960 6460 2865735 2865346 390 2961 6461 2866567 2865731 837 465 798 2956 | 6456 | 2863621 | 2862929 | 693 2957 6457 2864421 2863624 2864384 6459 2865343 2864867 6458 2864848 2949 2950 2954 SEQ NO. (DNA) 2943 2945 2946 2947 2948 2951 2952 2953 2955 2944

15 .

.

Table 1 (continued)	Terminal ORF db Match	(da)	2867173 2866586 588 sp.GCH1_BACSU Bacillus submits 100 min/A	6463 2867471 2868385 915 cell division protein FIsH	2867169 2580	2870444 2869863 582 gp:AF008931_1 hpt	2871389 2870499 891 sp:YZC5_MYCTU H37Rv Rv3625c	2871445 1233 sp.DAC_ACTSP	474	202222 0252202	2875443 2873905	MYCTI	26/3634 24 333 3F 35 3F 100 TH 3/KV KV2600	2876280 2875870 411 sp: YOB2_MYCTU Mycobacterium tuberculosis 36.8 63.2 144 hypothetical protein H37Rv Rv2599	2876777 2876280 498 sp:Y0B3_MYCTU	2877385 2876777 609 sp:Y084_MYCTU	2877703 2877455 249 sp.PTBA_BACSU	2877858 2877595 264	2879710	2879965 2880252 288 gp.SCH69_9 SCH69_09c SCH69.09c	6479 2880544 2880987 444 prf.2516298U Burkholderia pseudomallel ORF 26.7 59.3 135 lamily
		-			1					_; _		o			+-					2879965	
	SEO.	(a.a)	6462	-	-	$\overline{}$			5 5	0400	6470		1747	6472	6473	6474	6475	6476	6477	6478	
	SEO	(DNA)	2962	2963	2964	2965	2966	7967		200	2970		2971	2972	2973	2974	2975	2976	2977	2978	2979

10	Function	peptide synthase		phenylacetaldehyde dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	heat shock protein or chaperon or groEL protein							hypothetical protein			peptidase			Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase
15	Matched length (a.a.)	1241		488	241	54	31	548					-		1236			447			797
20	Similarity (%)	51.6		63.7	79.7	63.0	0.08	100.0							42.3			68.0			68.3
	Identity (%)	28.4		35.0	57.3	62.0	74.0	99.5							21.7			37.1			35.6
5 5 7 Table 1 (continued)	Homologous gene	Streptomyces roseosporus cpsB		Escherichia coli K12 padA	Campylobacter jejuni Cj0604	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Brevibacterium flavum MJ-233							Homo sapiens MUC5B			Mycobacterium tuberculosis H37Rv Rv2522c			Staphylococcus aureus mnhA
<u></u> 35	Hor	Streptomy		Escherichi	Campylob			Brevibacte					·		Homo sap			Mycobacte H37Rv Rv			Staphyloco
40	db Match	prf.2413335A		prf.2310295A	gp:CJ11168X2_25	GP:MSGTCWPA_1	GP:MSGTCWPA_1	gsp:R94368							prt.2309326A			pir:G70870			3057 prf.2504285B
	ORF (bp)	3885	1461	1563	918	162	177	1644	188	1209	963	1986	2454	2799	3591	2775	612	1371	579	900	3057
45	Terminal (nt)	2884882	2881844	2884935	2886916	2890346	2890553	1	2890751	2890930	2892138	2893100	2895072	2897528	2900330	2903964	2906639	2908885	2909788	2909231	2913228
50	Initial (nt)	2880998	2883304	2886497	2887833	2890185		2890540	2890930	2892138	6489 2893100	2895085	2897525	2900326	2903920	2906738	2907250	2907515	2909210	2909830	2999 6499 2910172
	SEQ NO.	6480	6481	6482	6483	6484	6485	6486	6487	6488	6489	6490	6491	6492	6493	6494	6495	6496	6497	6498	6499
55	SEQ NO.	2980	2981	2982	2983	2984	_		2987	2988	2989	2990	2991	2992	2993	2994	2995	2996	2997	2998	2999

_																
	Function	Na+/IH+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothetical protein		polypeptide deformylase	hypothetical protein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			exodeoxyribonuclease III or exonuclease	cardiolipin synthase
	Matched length (a.a.)	104	523	161	11	121	178	334		184	1.1	339			31	513
	Similarity (%)	81.7	72.1	6.09	66.2	63.6	54.5	61.7		6.09	70.4	54.2			58.9	62.0
	Identity (%)	44.2	35.2	26.7	32.5	25.8	24.7	27.0		37.5	47.9	31.3			30.8	27.9
Table 1 (continued)	Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurium LT2 XthA	Bacillus firmus OF4 cls
	db Match	gp:AF097740_3	gp:AF097740_4	gp. AF097740_5	prf.2416476G	prf.2504285H	pir.D70594	sp:YBDK_ECOU		sp:DEF_BACSU	pir:D70631	pir.B70631			gp:AF108767_1	1500 gp:8FU88888_2
	유 (학)	489	1668	441	273	378	594	1128	663	579	252	1005	699	630	789	
	Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920250	2922108	2923617
	Initial (nt)	6500 2913235	2913749	2915482	6503 2915929	6504 2916205	2917617	2918757	2919481	2919715	2919741	2920286	2920476	2920849	2921320	6514 2922118
	SEQ NO.	0059	6501	6502	6503		6505	9059	2059	6208	6203	6510	6511	6512	6513	6514
	SEQ NO.		3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014

EP 1 108 790 A2

5

_	T	_		-		-	-	_	$ \Gamma$				Т		T	\neg	$\neg \top$	T	1	
	Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothetical membrane protein	glutamine-binding protein precursor	serine/threonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylglycinamide formyltransferase	
Matched	tength (a.a.)		393	382	289		255	309	168	423	270	805		457	156				379	
	Similarity (%)		67.2	68.9	56.4		60.8	66.3	68.5	70.2	64.8	63.5		67.8	60.3				82.6	
	Identity (%)		31.6	28.5	38.8		24.3	36.9	47.6	35.0	31.5	41.2		37.2	34.0				59.1	
	Homologous gene		Escherichia coli K12 bar	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30- 84 phzC		Streptomyces coelicolor A3(2) SCE8.16c	Bacillus licheniformis ATCC 9945A bcrA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis H37Rv Rv0412c	Bacillus stearothermophilus NUB36 glnH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		Bos taurus	Escherichia coli K12 elaA				Bacillus subtilis 168 purT	
	db Match		sp:BCR_ECOLI	op.VCA 110968 1	sp:PHZC_PSEAR		gp:SCE8_16	sp:BCRA_BACI.1	pir.C70629	pir.B70629	sp:GLNH_BACST	pir.H70628		1365 sp:ADRO_BOVIN	Sp:ELAA_ECOLI				1194 sp.PURT_BACSU	
	ORF (bp)	654	1 -	1164		633	768	936	501	1386	1032	2253	747	1365	546	1062	1029	399		18
	Terminal (nt)	2924844	2923954	2028704	2926707	2927651	2927551	2928302	2929256	2931336	2932371	2934829	2932652	2939767	2940452	-	294	2942609	294	
	Initial (nt)	2024191	2925147	2005541	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398	2938403	2939907	6529 2941508	6530 2942500	2943007	2944205	
	SEQ NO.	6515	6516		6518	6519	6520	6521	6522	6523	6524	6525	6526		6528	_	-			
	SEO					30.10	3020	3021	3022	3023	3024	3025	3026	3027	3028	3029	83	3031	3032	

						Table 1 (continued)				
SEQ NO.	SEO NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	identity Similarity (%)	Matched length (a.a.)	Function
	6534	2947591	2946698	894	pir.S60890	Corynebacterium glutamicum ort2	77.8	90.9	295	insertion element (1S3 related)
3035	6535	2947886	2947620	267	pir.S60889	Corynebacterium glutamicum orf1	67.4	84.3	89	insertion etement (IS3 related)
3036	6536	2949188	2948049	1140	gp.AB016841_1	Streptomyces thermoviolaceus opc-520 chiS	22.4	51.3	349	two-component system sensor histidine kinase
3037	6537	2949882	2949265	618	sp:DEGU_BACBR	Bacillus brevis ALK36 degU	31.7	65.6	218	transcriptional regulator
3038	6538		2950431	225						
	6539	2951723	2950434	1290	gp:AB003160_1	Corynebacterium ammoniagenes purA	89.7	95.3	427	adenylosuccinate synthelase
3040	6540	2951933	2952691	759	pir.G70575	Mycobacterium tuberculosis H37Rv Rv0358	34.3	59.3	204	hypothetical protein
3041	6541	2952709	2952972	264						
3042	6542	2954141	2952975	1167	sp:YFDA_CORGL	Corynebacterium glutamicum AS019 ATCC 13059 ORF3	100.0	100.0	359	hypothetical membrane protein
3043	6543	2955272	2954241	1032	pir.S09283	Corynebacterium glutamicum AS019 ATCC 13059 fda	99.7	100.0	344	fructose-bisphosphate addolase
3044	6544	2956473	2955523	951	gp:CGFDA_1	Corynebacterium glutamicum AS019 ATCC 13059 ORF1	100.0	100.0	304	hypothetical protein
3045	6545	2957447	2956830	618	pir.G70833	Mycobacterium tuberculosis H37Rv Rv0380c	76.9	91.2	182	methyltransferase
3046	6546	2958036	2957485	552	gp:AF058713_1	Pyrococcus abyssi pyrE	39.1	65.5	174	orotate phosphoribosyltransferase
3047				972	+	Mycobacterium tuberculosis H37Rv Rv0383c	27.6	60.0	250	hypothetical protein
3048	6548	2960371	2959520	852	sp:THTM_HUMAN	Homo sapiens mpsT	29.6	56.1	294	3-mercaptopyruvate sulfurtransferase
3049		6549 2961187	2960468	720						
3050		6550 2963008	2962730	279						
3051	6551	6551 2963596	2963198	399						

[\neg	$\neg \top$	\neg	Т	\neg		ain		T					T	
5						por carrier	rotein	rotein	ddoreductas nase	ise alpha ch	Proces	Tydac	יופון, ופני	transferase	transferase			
10		Function	virulence factor	virulence factor	virulence factor	sodium/glutamate symport carrier protein	cadmium resistance protein	cation efflux system protein (zinc/cadmium)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gariniaryass	family	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothetical protein	oxidoreductase
15	Matched	length (aa)	59	200	132	489	108	283	476	399		375	184	68	99	361	204	386
20		Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	87.5	56.2	64.7	9.09
		Identity (%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.8	31.9
25 G	nen)	ø.	sa	sa	sa	5803	cadc	γe	sno	symbiont		etB	r A3(2)	r A3(2)	or A3(2)	ulosis	ulosis	ulosis
30	lable i (connince)	Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechocystis sp. PCC6803 slr0625	Staphylococcus aureus cadC	Pyrococcus abyssi Orsay	Rhodococcus rhodochrous	Kryptophanaron alfredi symbiont luxA		Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coelicolor A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0836c	Mycobacterium tuberculosis H37Rv Rv0385
35	-		88	88	8 8	\\\ \o \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1-	1	돈	1	-	Es	क्र छ	क छ	8 8	ΣÏ	ΣÏ	ΣÏ
40		db Match	GSP:Y29188	GSP: Y29182	GSP: Y29193	pir.S76683	SP. CADE STAAU	pir.H75109	gp:AB010439_1	sp:LUXA_KRYAS		SP:METB_ECOLI	gp:SC1A2_11	gp:SCE20_34	gp:SCE20_34	pir:E70812	pir:D70812	pir.D70834
		ORF (bp)	17.	762	396	1347	287	858	1170	1041	762	1146	567	240	£83	1125	732	1179
45		Terminal (nt)	2964434	2965837	2965583	2966458	0020000	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
50		Initial (nt)	80	2965076	2965188		-+-	2968951	2969834	2971017	2072099	2973205		2973961	2974200	2974467	2975629	2976596
		SEO	(a.a.) 6552	6553	6554	6555	1	6557	6558	6559	6560	858	6562	6563	6564	6565	6566	959
55			(DNA)				_	3056	3058	3059	3060		3062	3063	3064	3065	3066	3067

						Table 1 (continued)				
Ö Ö	SEO.	Initiat (nt)	Terminal (nt)	ORF (bp)	db Match	Hamologous gene	Identity (%)	Identity Similarity (%)	Matched length (a.a.)	Function
	(a.a.)	%	2977847	798	pir.B69109	Methanobacterium thermoautotrophicum Delta H MTH1811	32.0	67.3	275	N-carbamoyl-D-amino acid amidohydrolase
90	6560	2078737	2978979	243						
	6570	2978982		1134	gp:SC4A7_3	Streptomyces coelicolor A3(2) SC4A7.03	28.0	55.4	289	hypothetical protein
	6571	2980887	2981216	330	GP:ABCARRA_2	Azospirilum brasilense carR	38.0	44.0	108	novel two-component regulatory system
			10000	1640	24.2404233D	Rhadocaccus erythropolis theA	9.69	90.3	507	aldehyde dehydrogenase
3072	6572		2980181	1310	PH. 2 (0433390 2	Streptomyces albus G hspR	47.4	70.4	135	heat shock transcription regulator
3074	6574	2983679	2982495	1185	sp.DNAJ_MYCTU	Mycobacterium tuberculosis H37Rv RV0352 dnaJ	56.7	80.1	397	heat shock protein dnaJ
3075	6575	2984522	2983887	636	sp.GRPE_STRCO	Streptomyces coelicolor grpE	38.7	66.5	212	nucleatide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK
3076	6576	2986397	2984544	1854	gsp.R94587	Brevibacterium flavum MJ-233 dnaK	8.66	93.8	618	heat shock protein dnaK
3077	6577	2986833	2988164	1332	gp:SCF6_8	Streptomyces coelicolor A3(2) SCF6.09	42.6	79.0	338	hypothetical membrane protein
3078	6578	2988846	2988214	633	sp. PFS_HELPY	Helicobacter pylori HP0089 mtn	27.2	0.09	195	S-methylthioadenosine nucleosidase and S- adenosylhomocysteine nucleosidase
3079	6579	2990045	2988846	1200						
3080	+-		2992602	885						
3081		2993286	2989954	3333	sp:CUT3_SCHPO	Schizosaccharomyces pombe cut3	18.9	48.4	1311	chromosome segregation protein
3082	6582	2993921	2993286	636						
3083	6583	2995405	2993921	1485			_			
3084	+	6584 2996781		-	1035 sp. ADH2_BACST	Bacillus stearothermophilus DSM 2334 adh	20.0	81.7	334	alcohol dehydrogenase
	ا			4						

10	Function					hypothetical membrane protein	hypothetical protein		suifate adenylyltransferase, subunit 1	sulfate adenylyltransferase small chain	phosphoadenosine phosphosulfate reductase	ferredoxin-nitrate reductase	ferredoxin/ferredoxin-NADP reductase	huntingtin interactor			alkylphosphonate uptake protein and C-P lyase activity	hypothetical protein	ammonia monooxygenase		
15	Matched length (a.a.)					301	252		414	308	212	502	487	144			142	90	161		
20	Similarity (%)					70.1	53.2		78.3	70.1	64.2	65.5	61.4	29.7			59.9	66.3	76.4	·	
	identity (%)					43.5	32.5		47.3	46.1	39.2	34.5	30.8	32.6			26.8	50.0	39.1		
25 (D	0						A3(2)		z	۵		7942	98				8	A3(2)	SMZ ID		
Se Se Table 1 (continued)	Homologous gene					Bacillus subtilis ytnM	Streptomyces coelicolor A3(2) SC7A8.10c		Escherichia coli K12 cysN	Escherichia coli K12 cysD	Bacillus subtilis cysH	Synechococcus sp. PCC 7942	Saccharomyces cerevisiae FL200 arh1	Homo sapiens hypE			Escherichia coli K12 phnB	Streptomyces coelicolor A3(2) SCE68.10	Pseudomonas putida DSMZ ID 88-260 amoA		
35	-					ш															
40	db Match					pir.F69997	gp:SC7A8_10		sp:CYSN_ECOLI	sp:CYSD_ECOLI	sp:CYH1_BACSU	Sp. NIR SYNP7		prf:2420294J			sp:PHNB_ECOLI	gp:SCE68_10	gp:PPAMOA_1		
	ORF (bp)	216	207	189	261	927	723	915	1299	912	693	1683	+	1083	237	534	414	366	522	321	486
45	Terminal (nt)	2997366	2997481	2997876	2997963	2998528	2999478	3002426	3000241	3001542	3002453	3003480	39006	3008376	3008453	3009303	3008749	3009607	3009710	3010979	3010441
50	Initial (nt)	2997151	2997687	2997688	299823	2999454	3000200	3001512		3002453	3003145	3005162		3007294	3008689	3008770	6600 3009162	3009242	3010231	3010659	3010926
	SEQ NO. (a.a.)	6585	6586	6587	6588	6889	6590	6591	6592	6593	6594	6595		6597	6598	629		6601	6602	6603	6604
5 5	SEQ NO. (DNA)	3085	3086	3087	3088	3089	3090	3091	3092	3093	3094	3095	3096	3097	3098	3099	3100	3101	3102	3103	3104

_																						
	Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homolog			succinyl-diaminopimelate desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATP- binding protein		cobalt transport protein	NADPH-flavin oxidoreductase	inosine-uridine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	flavohemoprotein
	Matched length (a.a.)	68		337	199	211	416	0		466				114	373		179	231	317	276	179	406
	Similarity (%)	58.0		57.9	64.8	73.0	67.8			48.5				46.0	50.1		9'.29	71.4	59.3	59.4	78.8	63.8
	Identity (%)	41.0		26.1	35.7	39.3	30.8			21.5	t			33.0	24.9		30.2	37.2	28.4	31.2	50.3	33.5
Table 1 (continued)	Homologous gene	Agrobacterium vitis ORFZ3		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB		•		Daucus carota	Escherichia coli K12 malK	•	Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata iunH	Streptomyces coelicolor A3(2) SCE20.08c	Escherichia coli K12 tag	Alcaligenes eutrophus H16 fhp
	db Match	SP:YTZ3_AGRVI		sp:YGB7_ALCEU	gp:HIU68399_3	gp:HIU68399_3	pir.A69778			sp:DAPE_ECOLI				GPU:DCA297422_ 1	sp:MALK_ECOLI		gp.AF036485_6	sp.FRP_VIBHA	sp:IUNH_CRIFA	gp:SCE20_8	sp:3MG1_ECOLI	1158 SP:HMPA_ALCEU
	ORF (bp)	285	564	1002	693	714	1209	822	687	1323	1905	774	762	954	1068	642	618	816	903	975	588	1158
	Terminal (nl)	3011273	3011242	3011808	3013106	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	3026142
	Initial (nt)	3010989	3011805	3012809	3013798	3014550	6610 3014616	3015469	3016238	3017149	3017316	3017539	3018181	3019076	3020609	3021202	3021825	3022928	3023900	3024379	3025552	3027299
	SEQ NO.	9099	9099	6607	8099	6099		6611	6612	6613	6614	6615	6616	6617	6618	6619	6620	6621	6622	6623	3124 6624	6625
	SEQ NO.	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124	3125

EP 1 108 790 A2

	_														_	_		_		$\overline{}$	
5		Function		oxidoreductase		transcription antiterminator of peter- glucoside positive regulatory protein		6-phospho-beta-glucosidase		6-phospho-beta-glucosidase	aspartate aminotransferase		transposase (ISCg2)	hypothetical membrane protein		UDP-glucose denydrogenase	deoxycytidine triphosphate deaminase		hypothetical protein		beta-N-Acetylglucosaminidase
15		B	-	oxido	1	trans		6-ph	\dashv	6-ph	asba	\dashv	trans	hypo	十	寸		_		-	
		Matched length (a.a.)		210		192		167		99	402		6	399		442	188		229		410
20		Similarity (%)		63.8		69.3		59.9		78.8	80.9		100.0	70.2		72.2	72.3		59.4		58.1
		Identity (%)		34.8		28.1		43.7		43.9	53.7	:	100.0	33.6		40.5	43.6		30.6		28.5
25	Table 1 (continued)	is gene		icolor A3(2)		12 bglC		porum B6405		porum B6405	agellatus aat		glutamicum	licolor A3(2)		liloti rkpK	12 dcd		elicolor A3(2)		rmoviolaceus
30	Table 1 (c	Homologous gene		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	Methylobacillus flagellatus aat		Corynebacterium glutamicum ATCC 13032 tnp	Streptomyces coelicolor A3(2) SCQ11.10c		Sinorhizobium meliloti rkpK	Escherichia coli K12 dcd		Streptomyces coelicolor A3(2) SCC75A.16c		Streptomyces thermoviolaceus nagA
35 40		db Match		gp:SCO276673_18 n		sp:BGLG_ECOLI E		sp:ABGA_CLOLO		Sp. ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf:2422381B	sp.pcp_Ecol1		gp:SCC75A_16		gp:AB008771_1
		ш.	3		9	1	10	+	=			_	1203 gp:/	1257 gp:	183	1317 prf.	567 sp.f	237	771 gp:	1689	1185 gp:
45		al ORF (bp)	63 603	91 624	33 156	14 591	92 279	702 360	535 381	101 240	979 1257	348 300	 		105	 	845 56	911 23	942 77	993 16	11 8 11
		Terminal (nt)	302816	302889	302903	3028884	302978		303053	303010	303197	303234	3033863	3035437	303410	3035440	303684	3037	3038	30389	3040
50		Initial (nt)	3027561	3028268	3028878	3029474	3029504	3030061	3030155		3030723		3032661	3034181	3034287	3036756		3037675		3040681	6644 3041932
		SEQ NO.	-		6628		6630	6631	6632	6633	6634	6635	_	6637	6638	6639		6641		6643	6644
55		SEO NO.			3128		3130	3131	3132	3133	3134	3135	3136	3137	3138	3139	3140	3141	3142	3143	3144

EP 1 108 790 A2

_			_													_			
	Function			hypothetical protein			hypothetical membrane protein	acytransferase or macrolide 3-O-acytransferase		hypothetical membrane protein		hexosyltransferase	methyl transferase	phosphoenolpyruvate carboxykinase (GTP)	C4-dicarboxylate transporter	hypothetical protein	hypothetical protein	mebrane transport protein	
	Matched length (a.a.)			1416			363	408		529		369	251	601	332	241	202	768	
	(%) (%)			49.4			47.1	51.0		54.8		79.1	73.3	78.5	52.7	67.2	85.0	72.3	
	Identity (%)			29.6			24.8	7.72		31.2		53.4	58.6	54.7	24.4	35.7	69.1	42.3	
Table 1 (continued)	Homologous gene			Mycobacterium leprae MLCB1883.13c			Mycobacterium leprae MLCB1883.05c	Streptomyces sp. acyA		Mycobacterium leprae MLCB1883.04:		Mycobacterium tuberculosis H37Rv Rv0225	Mycobacterium tuberculosis H37Rv Rv0224c	Neocallimastix frontalis pepck	Pyrococcus abyssi Orsay PAB2393	Escherichia coli K12 yggH	Mycobacterium tuberculosis H37Rv Rv0207c	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3	
	db Match			gp:MLCB1883_7			gp:MLCB1883_4	pir.JC4001		gp:MLCB1883_3		pir.G70961	pir.F70961	SP:PPCK_NEOFR	pir.E75125	sp:YGGH_ECOLI	pir:E70959	2316 pir.C70839	
	ORF (bp)	444	201	3129	621	195	903	1068	708	1422	699	1137	177	1830	1011	765	705	2316	1422
	Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049456	3051964	3052062	3055769	3056631	3057317	3059643	3058096
	Initial (nt)	3041994	3042503	3042660	3043642	3045796	3047146	3047189	3047904	3048058	3050522	3050592	3051194	3053891	3054759	3055887	3056613	3057328	3059517
	SEQ NO.	6645	6646	6647	6648	6649	6650	6651	6652	6653	6654	6655	9299	6657	6658	699	0999	6661	6662
	SEQ NO.	3145	3146	3147		3149	3150	3151	3152	3153	3154	3155	3156	3157	3158	3159	3160	3161	3162

EP 1 108 790 A2

	Function	hypothetical membrane protein	hypothetical membrane protein	propionyl-CoA carboxylase complex B subunit	polyketide synthase	acyl-CoA synthase	hypothetical protein		major secreted protein PS1 protein precursor			antigen 85-C	hypothetical membrane protein	nodulation protein	hypothetical protein	hypothetical protein		phosphatidic acid phosphatase
	Matched length (a.a.)	364	108	523	1747	592	319		657			331	299	295	168	929		170
	Similarity (%)	62.9	69.4	76.9	54.2	62.3	67.4	i	99.5			62.5	61.2	51.5	75.0	74.7		56.5
	Identity (%)	29.1	34.3	49.7	30.2	33.5	39.8		98.6			36.3	37.5	27.1	51.2	55.6		28.2
Table 1 frontinued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0204c	Mycobacterium tuberculosis H37Rv Rv0401	Streptomyces coelicolor A3(2) pccB	Streptomyces erythraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1			Mycobacterium tuberculosis ERDMANN RV0129C fbpC	Mycobacterium tuberculosis H37Rv Rv3805c	Azorhizobium caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c	-	Bacillus licheniformis ATCC 9945A bcrC
	db Match	pir.A70839	pir:H70633	gp:AF113605_1	Sp.ERY1_SACER	prt:2310345A	pir.F70887		1971 sp:CSP1_CORGL			sp:A85C_MYCTU	pir.A70888	sp:NOEC_AZOCA	pir:C70888	pir:D70888		sp:BCRC_BACLI
	ORF (bp)	1083	363	1548	4830	1788	927	498		1401	219	1023	2058	966	504	1968	1494	477
	Terminal (nt)	3060733	3061095	3061380	3062951	3068143	3070214	3071147	3071650	3075447	3073857	3075540	3076715	3078853	3079848	3080344	3083960	3083935
	Initial (nt)	3059651	3060733	3062927	3067780	3069930		3071644	6670 3073620	6671 3074047	3074075	3076562	3078772	3079848	3080351	3082311	3082467	6679 3084411
	SEQ NO.		6664	9999	9999			6999	6670	6671	6672	6673	6674	6675	9299	6677	8499	
	SEO		3164	3165	3166			3169	3170	3171	3172	3173	3174	3175	3176	3177	3178	3179

						Table 1 (continued)				
SEQ		Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Hamologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
(DNA)										
3180	0899	3085200	3084424	111						
3181	6681	3085727	3085218	510						N. especialization accompanies (N.
3182	6682	3085747	3087048	1302	sp:FMO1_PIG	Sus scrofa fmo1	24.4	50.4	377	oxide-forming)
2182	6683	3087665	3088276	612						
2 2	9684	3088303	3087101	+	Sp.GLF ECOLI	Escherichia coli K12 glf	43.2	72.9	377	UDP-galactopyranose mutase
3185	6685	3088616	3090664		pir.G70520	Mycobacterium tuberculosis H37Rv Rv3811 csp	29.6	47.8	629	hypothetical protein
3186		6686 3092286	3090760	1527	Sp.GLPK_PSEAE	Pseudomonas aeruginosa ATCC 15692 glpK	51.7	78.8	499	glycerol kinase
3187	6687	3093175	3092342	834	pir.A70521	Mycobacterium tuberculosis H37Rv Rv3813c	41.6	70.3	279	hypothetical protein
3188		6688 3094050	3093175	876	pir.D70521	Mycobacterium tuberculosis H37Rv Rv3816c	46.7	72.0	261	acyttransferase
3189	6899	3095343	3094078	1266	gsp:W26465	Mycobacterium tuberculosis H37Rv	70.2	97.6	419	seryl-IRNA synthetase
3190	0699	3095574	3096287	714	sp.FARR_ECOLI	Escherichia coli K12 farR	7.72	61.7	235	transcriptional regulator, GntR family or fatty acyl-responsive regulator
3191	6691	3096311	3097423	1113	pir.H70652	Mycobacterium tuberculosis H37Rv Rv3835	32.6	61.2	356	hypothelical protein
3192	6692	3097423	3097764	342	pir.A70653	Mycobacterium tuberculosis H37Rv Rv3836	46.0	7.67	113	hypothetical protein
3193	6693	3097878	3097780	66						
3194	6694		3097904	699	gp:AMU73808_1	Amycolatopsis methanolica pgm	37.2	62.8	218	2,3-PDG dependent phosphoglycerate mutase
3195	9999	3098825	3099454	630		·				
3196	9699	3099556	3100698	1143	prt:2501285A	Mycobacterium smegmatis pzaA	27.4	50.9	.460	nicotinamidase or pyrazinamidase
3197	, 6697	3197 6697 3100698	3101426	729						

EP 1 108 790 A2

10	Function	transcriptional regulator				hypothetical protein	glucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconate permease			pyruvate kinase	L-lactate dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GntR family	phosphoesterase	shikimate transport protein
15	Matched length (a.a.)	380				107	432		259	456			491	314	526	224	188	221	255	422
20	Similarity (%)	57.1				81.3	55.3		1.75	71.9			47.7	99.7	64.8	58.5	67.6	57.0	68.6	74.4
	identity (%)	31.6				43.9	28.7		28.0	37.3			25.5	99.7	33.5	32.1	39.9	27.6	47.8	37.9
25 (Der		A3(2)					ae						lcum	1A	osis	A3(2)	RF1	1655	osis	4
35 September 200 September 300 Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC6G4.33				Streptomyces lavendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		Bacillus subtilis glpQ	Bacillus subtilis gntP			Corynebacterium glutamicum AS019 pyk	Brevibacterium flavum lctA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 tmpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c	Escherichia coli K12 shiA
40	db Match	gp:SC6G4_33				pir:B26872	sp:AMYH_YEAST		sp:GLPQ_BACSU	sp:GNTP_BACSU			sp:KPYK_CORGL	gsp:Y25997	pir:C70893	gp:SC1C2_30	gp:AF030288_1	sp:GLCC_ECOLI	pir:B70885	sp:SHIA_ECOLI
	ORF (bp)	1035	120	552	870	327	1314	918	819	1389	642	159	1617	942	1776	636	543	693	786	1299
45	Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3109519	3108823	3110003	3110464	3112449	3115394	3116042	3116621	3117332	3118121	3119582
50	Initial (nt)	3101734	3101863	3102630	3102894	3103926	3104406	3106970	3107769	3108131	3109464	3109845	3112080	3113390	3113619	3115407	3116079	3116640	3117336	6716 3118284
	SEQ NO.	8699	6699	6700	6701	6702	6703	6704	6705	9029	6707	6708	6029	6710	6711	6712	6713	6714	6715	
55	SEQ NO.	3198	3199		3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215	3216

15 .

.

_				_	_	_									·		_	_				
	Function	L-lactate dehydrogenase or FMN- dependent dehydrogenase		imminity repressor protein	, Land 1997			phosphatase or reverse transcriptase (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dişmutase (Fe/Mn)	transcriptional regulator	multidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
	Matched length (a.a.)	376		45	3			569		122		210	164	292	384				216	447	137	212
	Similarity (%)	68.9		0 00	90.0			51.3		63.1		69.1	92.7	65.8	49.0				64.8	59.3	65.0	75.5
	identity (%)	40.4		AE E	0.0			29.5		36.9		47.6	82.3	32.5	23.4				33.8	27.3	37.2	50.9
Table 1 (continued)	Homologous gene	Neisseria meningitidis IIdA			Bacillus phage phi-105 ORF1			Caenorhabditis elegans Y51811A 1		Arabidopsis thaliana ill 1		Escherichia coll B msrA	Corynebacterium pseudodiphtheriticum sod	Bacillus subtilis gitC	Corynebacterium glutamicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus lanJ	Bacillus subtilis 168 yxaD	Corynebacterium diphtheriae chrA
	db Match	prf.2219306A		T	sp:RPC_BPPH1			gp:CELY51B11A_1		Sp:ILL1_ARATH		Sp.PMSR_ECOLI	pir.140858	sp:GLTC_BACSU	gp:AF121000_10				pir.G70654	prf:2508244AB	sp:YXAD_BACSU	prt 2518330B
	ORF (pg)	1215	405		312	138	711	1617	546	402	150	651	900	924	1134	1611	111	1521	633	1491	456	636
	Terminal (nt)	3120879	3121313	;	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135856
	Initial (n1)	3119665	2120000	21,40303	3121598	3122129	3123222	6722 3124172	6723 3124886	6724 3125298	3125343		3126392	3128417	3128606	3129785	3132920	3133028	3133115	3135268	3135297	3136491
	SEO NO.	6717	6718	2	6719	6720	6721	6722	6723	6724	6725	6726	6727	6728	6729	6730	6731	6732	6733	6734	6735	6736
		3217	_	32.10	3219	3220	3221	3222	3223	3224	3225		3227	3228	3229	3230	3231	3232	3233	3234	3235	3236

5			200000	1000000			rotein	sor	ociated protein			synthase				rotein, gntR ranscriptional		
10	Function			two-component system series histidine kinase	hypothetical protein	hypothetical protein	stage III sporutation protein	transcriptional repressor	transglycosylase-associated protein	hypothetical protein	hypothetical protein	RNA pseudouridylate synthase	hypothetical protein	hypothetical protein		bacterial regulatory protein, gntR family or glc operon transcriptional activator	hypothetical protein	hypothetical protein
15	Matched length (a.a.)			408	48	772	265	192	87	296	314	334	28	42		109	488	267
20	Similarity (%)			64.5	79.2	59.2	53.6	60.9	71.3	9.69	73.9	51.2	0.99	75.0		56.0	48.2	78.7
	Identity (%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2	38.5	28.4	61.0	71.0		30.3	26.0	48.3
<i>25</i>				riae	43(2)	43(2)		sis	1655	sis	1655	/bc5		66		1655		osis
& Table 1 (continued)	Homologous gene			Corynebacterium diphtheriae chrS	Streptomyces coelicolor A3(2) SCH69.22c	Streptomyces coelicolor A3(2) SCH69.20c	Bacillus subtilis spolliJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Mycobacterium tuberculosis H37Rv Rv2005c	Escherichia coli K12 MG1655 yhbW	Chlorobium vibrioforme ybc5	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escherichia coli K12 MG1655 glcC	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuberculosis H37Rv Rv2744c
35			-	Cory	इंट ठ	SC		₹£		T		Т	5	52	_		<u> </u>	
40	db Match			prf.2518330A	gp:SCH69_22	gp:SCH69_20	sp:SP3J_BACSU	pir.C70948	sp:TAG1_ECOLI	sp:YW12_MYCTU	sp:YHBW_ECOLI	Sp.YBC5_CHLVI	GSP:Y35814	PIR:F81737		sp:GLCC_ECOL	gp:SC4G6_31	sp:35KD_MYCTU
	ORF (bp)	639	588	1311	150	822	1302	639	261	903	987	996	273	=	207	 	1416	873
45	Terminal (nt)	3137558	3138471	3136593	3138481	3138634	3140952	3140885	3141709	3142454	3143496	3145626	3146841	3147230	3151369	3151	3153828	3153894
50	Initial (nt)	3136920	3137884	3137903	3138630	6741 3139455	3139651	3141523	3141969	3143356	3144482	3144661	3146569	3147090	3151575		3152413	3154766
	SEO NO.	6737	6738	6239	6740		6742		6744	6745	6746	6747	6748	6749	6750		6752	6753
55	SEQ NO.		_	3239	3240	3241	3242	3243	3244	3245	3246	3247	3248	3249	3250	3251	3252	3253

		$\overline{}$	_						_		_											
	Function						methyltransferase	nodulin 21-related protein				transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment TnpNC		glyceraldehyde-3-phosphate dehydrogenase (pseudogene)	lipoprotein	copper/polassium-transporting ATPase B or cation transporting ATPase (E1-E2 family)	
	Matched length (a.a.)						217	241				99		29	55	72	46		38	180	717	
	Similarity (%)						58.1	55.2		·		92.9		98.4	85.5	84.0	90.0		84.2	59.4	73.4	
	Identity (%)						32.3	26.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
Table 1 (continued)	Homologous gene						Streptomyces coelicolor A3(2) SCD35.11c	soybean NO21			-	Pseudomonas aeruginosa TNP5		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	GPU.AF164956_23 Corynebacterium glutamicum		Pyrococcus woesel gap	Synechocystis sp. PCC6803 sli0788	Archaeoglobus fulgidus AF0152	
	db Match						gp:SCD35_11	sp:NO21_SOYBN				sp:TNP5_PSEAE		Sp:FER_SACER	gp:SCD31_14	GPU:AF164956_8	GPU.AF164956_23		sp:G3P_PYRWO	pir.S77018	ріг.Н69268	
	ORF (bp)	153	1452	1068	249	309	711	720	204	378	186	216	483	321	333	111	162	1038	126	999	2217	171
	Terminal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267 171
	Initial (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800	3160216	3160688	3160816	3160938	3161219	3161407	3162014	6768 3162694	3162710	3162852	3162983	3163733	3166005	3166437
	SEQ NO.	6754	6755	6756	6757	6758	6529	9229	6761	6762	6763	6764	6765	3266 6766	3267 6767	6768	6929	6770	6771	6772	6773	
	SEQ NO. (DNA)	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274 6774

EP 1 108 790 A2

	Function		two-component system sensor histidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Zn(II)- translocating p-type ATPase	hypothetical protein		transposase	transposase
	Matched length (a.a.)		301		233		930	101	322		78			909	72		73	70
	Similarity (%)		71.4		72.1		47.9	63.4	60.9		66.7			68.5	54.0		73.0	77.0
	identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			39.8	45.0		58.0	75.0
Table 1 (continued)	Homologous gene		Escherichia coli K12 baeS		Bacilius subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium Japonicum tlpA	Mus musculus qor		Synechocystis sp. PCC6803 atzN			Escherichia coli K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
	db Match		sp:BAES_ECOLI		sp:PHOP_BACSU		sp.COPA_PSESM	sp:TLPA_BRAJA	sp:QOR_MOUSE		sp:ATZN_SYNY3			sp:ATZN_ECOLI	PIR:E72491		GPU:AF164956_8	GPU AF164956_8
	ORF (bp)	192	1197	828	756	672	1479	363	918	471	234	315	207	1875	390	309	216	258
	Terminal (nt)	3167169	3166450	3168566	3167646	3169340	3170892	3171616	3171619	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
	Initial (nt)	3166978	3167646	3167739		3168669	3169414	3171254	3172536	3172995	3173624	3174066	3174990	3175027	3175643	3177174	3177304	3177565
	SEO NO.	6775	92.29	5777	6778	6779	6780	6781	6782	6783	6784	6785	6786		6788	62.89	6790	6791
	SEO NO.	3275		3277		3279		3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291

EP 1 108 790 A2

15.

													$\overline{}$										$\overline{}$
	Function	transposase (IS1628)	thioredoxin		transmembrane transport protein or 4-hydroxybenzoate transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomał protein S6		hypothetical protein		penicillin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
	Matched length (a.a.)	53	100		421		208	461	ļ	154	229	92		480		647	107	137	296		71	298	433
	Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		68.3		60.1	72.0	65.0	61.8		70.4	63.8	64.0
	Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 thi2		Pseudomonas putida pcaK		Escherichia coli K12 yqil	Escherichia coli K12 dnaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yoff		Bacillus subtilis yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
	db Match	gp:AF121000_8	sp:THI2_ECOLI		sp:PCAK_PSEPU		sp:YQJI_ECOLI	sp:DNAB_ECOLI		sp:RL9_ECOU	sp:SSB_ECOLI	sp:RS6_ECOLI		gp:AF187306_1		sp:PBPA_BACSU	sp:YOHC_MYCTU	plr:870912	sp:Y0FF_MYCTU		sp:YHGC_BACSU	sp:YCEA_ECOL!	1263 sp:YBJZ_ECOU
	ORF (bp)	159	447	8	1344	159	576	1530	516	450	675	285	189	1458	882	2160	357	471	942	495	321	936	1263
	Terminal (nt)	3177525	3178112	3178872	3180392	3180946	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185538	3188793	3187042	3189296	3190347	3191319	3191848	3191922	3192268	3193252
	Initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126	6798 3182866	3183469	6800 3183927	6801 3184661	6802 3184985	3185536	3304 6804 3186993	3187912	6806 3189201	3189652	3189877	3190378	3191354	3192242	3193201	3194514
	SEQ NO.	6792	6793	6794	6795	9629	6797	6798	6239	6800	6801	6802	6803	6804	6805	9089	6807	6808	6889	6810	6811	6812	6813
-	SEQ NO.	3292	3293	3294	3295	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3308	3309	3310	3311	3312	3313

EP 1 108 790 A2

			_								_								_
5	Function	ABC transporter ATP-binding protein	I protein	ıl protein			DNA protection during starvation protein	formamidopynimidine-DNA glycosylase	al protein			methylated-DNAprotein-cysteine S-methyltransferase	zinc-binding dehydrogenase or quinone oxidoreductase (NADPH:quinone reductase) or alginate lyase		membrane transport protein	malate oxidoreductase (NAD) (malic enzyme)	gluconokinase or gluconate kinase	teicoplanin resistance protein	teicoplanin resistance protein
		ABC transp	hypothetical protein	hypothetical protein			DNA proter protein	formamidop glycosylase	hypothetical protein			methylated-DNApri S-methyltransferase	zinc-binding de quinone oxido (NADPH:quino alginate lyase		membrane	malate oxi	gluconokin	teicoplanin	teicoplanin
15	Matched length (a.a.)	221	237	360			154	268	404			166	231		398	392	486	169	159
20	Similarity (%)	1.08	42.0	90.0			64.9	55.6	9.99	_		63.3	63.6		66.3	99.5	53.7	60.4	159.0
	Identity (%)	48.9	18.0	77.8			37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	27.0
25 Denicipus	s gene	2 MG1655	Ini Cj0606	erculosis			2 dps	2 mutM or	2 rtcB			ĮĘ.	uinea pig) qor		erculosis eA	nelassecola glutamicum)	关	ium vanZ	ium vanZ
so Salar (Continued)	Homologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c			Escherichia coll K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			sp:MGMT_HUMAN Homo sapiens mgmT	Cavia porcellus (Guinea pig) qor		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 malE	Bacillus subtilis gntK	Enterococcus faecium vanZ	Enterococcus faecium vanZ
35			0	ΣI								MAN		-			+-	1	
40	db Match	sp:YBJZ_ECOLI	pir.E81408	pir.F70912			sp:DPS_ECOLI	sp:FPG_ECOU	sp:RTCB_ECOLI			 	sp:QOR_CAVPO		sp:YDEA_ECOLI	gp:AF234535_1	SP.GNTK_BACSU	sp:VANZ_ENTFC	sp:VANZ_ENTFC
	ORF (bp)	069	1977	1089	909	1485	495	813	1149	1089	573	474	1011	E	1176	1176	1482	591	525
45	Terminal (nt)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	3204728	3204731	3205222	3206756	3208024	3209454	3209705	3211246	إ
50	Initial (nt)	3195203	3197186	3197412	3199187	3200686	3201754	3201900	3202952	3204067	3204156		3206232	3206646	3206849	3208279	3211186	3211836	3212428
	SEQ NO.		6815		6817	6818	6819	6820	6821	6822	6823	6824	6825	6826	6827	6828	6829		9831
55	SEQ.	3314	3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327	3328	3329	3330	3331

	Function	mercury(II) reductase	D-amino acid dehydrogenase small subunit				NAD(P)H nitroreductase	7		leucyl-tRNA synthetase	hypothetical membrane protein	virulence-associated protein		hypothetical protein	bifunctional protein (homoprotocatechuate.catabolism bifunctional isomerase/decarboxylase) (2- hydroxyhepta-2,4-diene-1,7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1,7dioate decarboxylase)	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase	bacterial regulatory protein, lact family or pectin degradation repressor protein	transmembrane transport protein or 4-hydroxybenzoate transporter
	Matched length (a.a.)	448	444				194			943	104	98		247	298	339	229	454
	Similarity (%)	65.6	54.5				55.2			68.1	40.4	81.4		53.8	50.3	64.3	60.7	8.09
	identity (%)	29.8	27.3				25.8			47.7	40.4	55.8		31.6	28.5	34.2	25.3	27.5
Table 1 (conlinued)	Homologous gene	Staphylococcus aureus merA	Escherichia coli K12 dadA				Thermus thermophilus nox			Bacillus subtilis syl	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor SCC54.19	Escherichia coli K12 hpcE	Pseudomonas alcaligenes xinE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
	db Match	Sp.MERA STAAU	sp:DADA_ECOLI				Sp:NOX_THETH			2856 sp.SYL_BACSU	Sp.YBAN_ECOLI	sp:VAPI_BACNO		gp:SCC54_19	sp:HPCE_ECOLI	1125 gp.AF173167_1	sp.KDGR_ERWCH	1356 sp:PCAK_PSEPU
	ORF (bp)	1344	1230	1503	330	321	609	924	1452	2856	429	357	774	723	837	1125	780	
	Terminal (nt)	3213931	3213934	3215257	3216886	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718	3225563	3226910	3229079
	(nt)	3212588	3215163	3216759	3217215	6836 3217777	6837 3217993	6838 3218777	3221044	3222633	3222722	3223445	3224601	3224714	6845 3225554	3226687	3227689	6848 3227724
	SEQ NO.	6832	6833	6834	6835	6836	6837	6838	6839	6840	6841	6842	6843	6844	6845	6846	6847	6848
	SEO NO.	3332		3334	3335	3336	3337	3338	3339	3340	3341	3342	3343	3344	3345	3346	3347	3348
											_	_						

5	Function	salicylate hydroxylase	proton/glutamate sympotter or excitatory amino acid transporter2	tryptophan-specific permease	anthranilate synthase component I		anthranilate synthase component II	anthranilate phosphoribosyltransferase	indole-3-glycerol phosphate synthase (IGPS) and N-(5'- phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain	tryptophan synthase alpha chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding protein	ABC transporter
15	Matched length (a.a.)	476 s	507	170 t	515 a	1	208	348	474		417	283	521	152	305	547
20	Similarity (%)	49.4	54.4	99.4	99.8		100.0	99.4	69 8.9 8.0		97.9	96.5	86.8	7.1.7	63.6	57.2
	Identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		97.6	95.4	9.99	30.3	32.5	25.2
so so so so so so so so so so so so so s	us gene	ida	7	glutamicum	stofermentum		ctofermentum	glutamicum	clofermentum		ctofermentum	ctofermentum	elicolor A3(2)	(12 ptxA	utzeri	elicolor A3(2)
Table 1 (6	Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum ASD19 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glutamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium lactofermentum trpB	Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21.17c	Escherichia coli K12 ptxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
35		ď		\ <u>0</u> ₹				1	 			1	တ တ		1	
40	db Match	prf.1706191A	sp:EAT2_HUMAN	pir.JC2326	sp:TRPE_BRELA		TRPG_BRELA	sp:TRPD_CORGL	1422 Sp.TRPC_BRELA		sp:TRPB_BRELA	sp:TRPA_BRELA	gp:SCJ21_17	sp:PTXA_ECOLI	sp:NOSF_PSEST	gp:SCH10_12
	ORF (bp)	1326	1251	510	1554	171	624	1044		969	+	840	1539	810	986	1584
45	Terminal (nt)	3230444	3231054	3233105	3234956	3233250	3235579	3236645	3238062	3236518	3239332	3240171	3240313	3241879	3243759	3245342
50	Initial (nt)	3229119	3232304	3232596	3233403	3233420		3235602	6856 3236641	3237213		3239332	3241851	3242688	3242854	
	SEO NO.		6850	6851		6853		6855		6857		6889	6860	6861	6862	
55	SEO NO.	3349	3350	3351	3352	3353	3354	3355	3356	3357	3358	3359	3360	3361	3362	3363

•							<u> </u>			ı —								
	Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyt) reductase (acetoin dehydrogenase)	hypothetical protein	di-firipeptide transpoter		bacterial regulatory protein, tetR family	hydroxyquinol 1,2-dioxygenase
	Matched length (aa)	305	336	328	797	102	347	226					238	88	469		188	246
	Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5					52.9	84.5	71.6		50.5	62.2
	Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		26.1	31.7
Table 1 (continued)	Homologous gene	Chlorobium limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SC111.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis dtpT		Escherichia coli K12 acrR	Acinetobacter calcoaceticus catA
	db Match	Sp.UCRI_CHLLT	sp:NADO_THEBR	sp:YFEH_ECOLI	gp:SCI11_36	pir.A29606	1092 sp:NADO_THEBR	sp:YMY0_YEAST					sp:BUDC_KLETE	sp:YY34_MYCTU	sp:DTPT_LACLA		SP:ACRR_ECOLI	sp:CATA_ACICA
	ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753	180	1359	171	555	903
	Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
-	Initiat (nt)	3245317	3246931	3247234	3248392	3249534	3249651	6870 3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549	3256298	3257373
	SEQ NO. (a.a.)	6864	5989	9989	6867	6868	6989	6870	6871	6872	6873	6874	6875	6876	6877	6878	6839	6880
į	SEQ NO (DNA)	3364	3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380

EP 1 108 790 A2

phosphomethylpyrimidine kinase

125

76.8

50.4

Bacillus subtilis thiD

sp:THID_BACSU

900

6897 3282946 3282347

3397

mercuric ion-binding protein or heavy-metal-associated domain containing protein

67

70.1

46.3

Bacillus subtilis yvgY

pir.F70041

243

3283383

3283141

6898

ectoine/proline uptake protein

297

62.3

29.9

Corynebacterium glutamicum proP

prf:2501295A

837

3283473

3284309

6889

3399

15

5	Function	maleylacetate reductase	sugar transporter or D-xylose-proton symporter (D-xylose transporter)	bacterial transcriptional regulator or acetate operon repressor	oxidoreductase	diagnostic fragment protein sequence	myo-inositol 2-dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase or streptomycin blosynthesis protein	phosphoesterase				stomatin		DEAD box RNA helicase family	hypothetical membrane protein	
15	Matched length (a.a.)	351 n	513 8	280 b	357 0	270 d	332 n	343 d	1242 p				206 s		1660	141	
20	Similarity (%)	75.5	58.3	60.7	55.7	58.2	59.6	62.4	62.7				57.3		80.2	61.0	
	Identity (%)	43.0	31.4	25.7	27.2	25.9	26.5	34.1	33.3				28.6		58.4	34.8	
55 Gontinued)	us gene	P51	12 xylE	runium iclR	12 ydgJ	Irain 4450	liloti idhA	eus strl	мВ				egans unc1		ovis BCG	prae u2266k	
Table 1	Homologous gene	Pseudomonas sp. P51	Escherichia coli K12 xylE	Salmonella typhimurium icfR	Escherichia coli K12 ydgJ	Listeria innocua strain 4450	Sinorhizobium meliloti idhA	Streptomyces gniseus strl	Bacillus subtilis yvnB				Caenorhabditis elegans unc1		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2266k	
35 40	db Match	sp.TCBF_PSESQ_F		sp.ICLR_SALTY (sp: YDGJ ECOLI	1	Sp:MI2D BACSU	-	4032 pir.C70044				sp:UNC1_CAEEL		gp:MBO18605_3	prt:2323363AAM	
	ORF (bp)	1089 sp.	1524 sp.	861 sp:	1077 sp:	879 gsp	1005 sp.	083 sp.	032 pir.	645	618	1086	744 sp:	696	4929 gp:	507 prt	360
45	Terminal O (nt)	3257403 10	19	3261989 8	3263221 10	135	3265146 10	997	3271093 4	3267913 6	3268618 6	3272477 1	3274488 7	3275602 9	3276671 4	3281666	3283101
50	Initial (nt)	3258491	3260084	6883 3261129	3262145	3263237	3264142	3265184	3267062	3268557	3269235	3271392	3275231	3276570	3281599	3282172	3282742
	SEQ.			6883	6884		6886		6888	6889	6890	6891	6892	6893	6894	6895	9689
<i>55</i>	SEQ.	3381	3382	3383	3384	3385	3386	3387	3388	3389	3390	3391	3392	3393	3394	3395	3396

													:						
	Function	iron(III) dicitrate-binding periplasmic protein precursor or Iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase			phosphomethylpyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	tRNA nucleotidyltransferase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thioredoxin reductase
	Matched length (a.a.)	279	324			249		29	102	212	169	471	. 234		858	1201		189	308
	Similarity (%)	9.09	58.0			75.5		70.1	65.7	67.0	56.2	51.8	69.2		54.3	60.1		6.09	82.5
	Identity (%)	29.4	27.2	ŀ		46.2		41.8	36.3	32.1	23.7	26.8	43.6		25.8	35.7		30.2	60.4
Table 1 (continued)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe mrf1			Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis aziD	Bacillus subtilis azID	Escherichia coli K12 yqgE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus trxB
	db Match	sp:FECB_ECOLI	1122 sp.MRF1_SCHPO			sp:THID_BACSU		pir.F70041	sp:AZLD_BACSU	sp:AZLC_BACSU	sp:Yage_Ecol1	sp:CCA_ECOLI	pir.E70600		pir.F70600	pir.G70600		SP:RPSH_PSEAE	Sp:TRXB_STRCL
	ORF (bp)	256	1122	384	219	798	345	201	345	711	567	1320	966	273	2511	3249	723	603	951
	Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292610	3296007	3299404	3298428	3300263	3301321
	Initial (nt)	3285355	3285455	3286622	3287297	6904 3288190	3288265	3288685	3289315	6908 3290021	3290591	3291942	6911 3292532	3292882	3293497	3296156	3297706	3299661	6917 3300371
	SEQ NO. (a.a.)	0069	6901	6902	6903	6904	6905		6907	8069	6069	6910	6911	6912	6913	6914	6915	9169	6917
	SEQ NO. (DNA)	3400	3401	3402	3403	3404	3405					3410	3411	3412	3413	3414	3415	3416	3417

EP 1 108 790 A2

5		Function		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanıne amidase			al protein	al protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-alpha-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	asparfate-semialdehyde dehydrogenase	oquinase
				thioredoxii	N-acetylm amidase			hypothetical protein	hypothetical protein	partitionin	glucose in	hypothetic	ribonuclea	50S ribos			L-aspartal precursor	2-isoprop	hypothetia	aspartate-semia dehydrogenase	3-dehydroquinase
15		Matched length (a.a.)		119	196			212	367	272	153	313	123	47	_		136	616	8	344	149
20		Similarity (%)		78.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
		Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
25	Table 1 (continued)	us gene		reinhardtii thi2	wlB			berculosis	tida ygi2	iberculosis	(12 gidB	berculosis	γþγ	vium rpmH			glutamicum	glutamicum	glutamicum lavum) ATCC	glutamicum	glutamicum
30	Table 1 (Homologous gene		Chlamydomonas reinhardtii thi2	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 feuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
35 40		db Match		sp:THI2_CHLRE	sp:CWLB_BACSU			pir:D70851	sp:YGI2_PSEPU	sp:YGI1_PSEPU	sp:GIDB_ECOLI	pir.A70852	Sp. RNPA BACSU	gp:MAU19185_1			gp:AF116184_1	sp:LEU1_CORGL	sp:YLEU_CORGL	sp:DHAS_CORGL	gp:AF124518_1
		ORF (bp)	1185	372	1242	111	1041	618	1152	837	699	951	388	336	294	222	408	1848	255	1032	447
45		Terminal (nt)	3300119	3301729	3302396	3301989	3304475	3302999	3303636	3304835	3305864		3307971	3308	3309321	3308822	147573	266154	268814	271691	446521
50		Initial (nt)	3301303	3301358	3301755	3302765	3303435	3303616	3304787		6926 3306532	3307632	6928 3308369	6929 3308747	3309028	3309043	147980	268001	269068	270660	446075
		SEQ NO.	6918	6919	6920	6921	6922		6924	6925	6926	6927	6928		6930	6931	6932	6933	6934	6935	6936
55		SEQ.	3418			3421	_		3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436

											•	•			
	Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)	acyl-CoA carboxylase or blotin- binding protein	citrate synthase	putative binding protein or peptidyl- prolyl ds-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-tysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase
	Matched length (a.a.)	396	440	738	591	437	118	595	426	501	463	316	369	524	550
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutarnicum ATCC 13059 tuf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium glutamicum ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 fkbA	Corynebacterium glutamicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS
	db Match	1188 sp.EFTU_CORGL	1320 sp. SECY_CORGL	2214 Sp.IDH_CORGL	prf.2223173A	1311 sp.CISY_CORGL	sp.FKBP_CORGL	sp:BETP_CORGL	1278 Sp.YLIZ_CORGL	1503 sp:LYSI_CORGL	1389 sp:AROP_CORGL	pir.S52753	prf.2106301A	gp:CGPUTP_1	1239923 1650 sp:SYR_CORGL
	ORF (bp)	1188	1320	2214	1773	1311	354	1785	1278	1503	1389	948	1107	1572	1650
	Terminal (nt)	527563	570771	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
	Initial (nt)	526376	569452	680044	720352	877838	879276	944996	1030283	1031871	1154683	1155676	1155731	1219602	1238274
	SEQ NO (a.a.)	6937	6938	6639	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	6950
	SEQ NO (DNA)	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

EP 1 108 790 A2

5	Function	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropyimalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acelylglutamate kinase	ornithine carbamoyltransferase	arginine repressor
15	Matched length (a.a.)	445	445	309	216	236	290	626	172	338	340	683	294	319	171
20	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25	s gene	jlutamicum 39 lysA	jlutamicum 59 hom	Jutamicum 59 thrB	jlutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum
30	Homologous gene	Corynebacterium glufamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium glutamicum ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR
<i>35</i> 40	db Match	1335 sp.DCDA_CORGL	sp:DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	sp:ILVB_CORGL	pir.B48648	pir.C48648	sp:LEU3_CORGL	prf.2014259A	sp:ARGB_CORGL	sp:OTCA_CORGL	gp.AF041436_1
	ORF [bb)	1335 S	1335 s _l	927 5	627 g	708	870 s	1878 s	516 p	1014 p	1020 s	2049 p	882 \$	957	513
45	Terminal	83	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
50	Initial	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468565	1469528
	SEQ.	(8.8.)	6952	6953	6954	6955	9569	6957	6958	6929	0969	6961	6962	6963	6964
	SEO.	(DNA)	3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

(——— ₇														
	Function	NADH dehydrogenase	phosphoribosyf-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enolpyruvylshikimate-3-phosphate phospholyase)	restriction endonuclease	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinate synthase	dihydrodipicolinate reductase	L-malate dehydrogenase (acceptor)
	Matched length (a.a.)	467	87	362	452	11	919	410	632	331	. 295	376	301	248	500
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100:0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glufamicum AS019 aroC	Corynebacterium glutamicum ATCC 13032 cgillR	Corynebacterlum glutamicum ATCC 13869 sigB	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	Corynebacterium glutamicum R127 mqo
	db Match	1401 gp:CGL238250_1	gp:AF086704_1	gp:CGL007732_4	gp:CGL007732_3	gp:CGL007732_2	prf.1509267A	1230 gp.AF124600_1	pir.855225	prf.2204286D	sp:GLUB_CORGL	sp:RECA_CORGL	sp:DAPA_BRELA	sp.DAPB_CORGL	1500 gp:CGA224946_1
	ORF (bp)	1401	261	1086	1356	231	2757	1230	1896	993	885	1128	903	744	1500
	Terminat (nt)	1543154	1586465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
	Initial (nt)	6965 1544554	1586725	1675208	1676623	1677279	1680143	1720898	1880490	2020854	2060620	2065116	2080183	2081934	2115363
	SEQ NO. (a.a.)	6965	9969	2969	6968	6969	6970	6971	6972	6973	6974	6975	9269	7.69	6978
	SEQ NO. (DNA)	3465	3466	3467	3468	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478

5			uridilylytransferase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betaine carrier	malate synthase	isocitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	glularedoxin
15	Matched		692	112	438	447	475	323	477	481	615	739	432	369	386	148	11
20		Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
		Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25	millineal	s gene	lutamicum	lutamicum	lutamicum	lutamicum	lutamicum	glutamicum	lutamicum	glutamicum	glutamicum	glutamicum 3	glutamicum A	glutamicum	glutamicum	glutamicum	glutamicum -
30	lable 1 (conlinued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium g ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
35		db Match	gp:CAJ10319_4	gp:CAJ10319_3	gp:CAJ10319_2	pir.S32227	Sp:KPYK_CORGL	gp:AF096280_1	prt.2322244A	Sp.THRC_CORGL	prt.2501295B	pir.140715	pir:140713	Sp.PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
		ORF (bp)		336 gp	1314 gp	1341 pi	1425 sp	696	1431 pi	1443 SI	1845 pi	2217 p	1296 p	1107 s	1158 g	444	231 g
45		Terminal C	98	2171751	2172154 1	2194742	2205668	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
50		Initial (nt)	<u> </u>	2172086	2173467	2196082	2207092	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
		SEO		0869	1869	6982	6983	6984	6985	6986		6988	6869	0669	6991	6992	6993
55			(DNA)	3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493

A. C. C. C. C. C. C. C. C. C. C. C. C. C.	Function	meso-diaminopimelate D- dehydrogenase	porin or cell wall channel forming protein	acelate kinase	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux pump or drug:proton antiporter	ATP-dependent protease regulatory subunit	prephenate dehydratase	ectoine/proline uptake protein
	Matched length (a.a.)	320	45	268	329	459	852	315	504
	Identity Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum KY10755 ddh	Corynebacterium glutamicum MH20-22B porA	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum ATCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
*	db Match	sp:DDH_CORGL	gp:CGL238703_1	1191 sp.ACKA_CORGL	prf.2516394A	2718 1377 prf.2309322A	2556 sp:CLPB_CORGL	prf.1210266A	2563 1512 prf.2501295A
	ORF (6p)	096	135	1191	987	1377	2556	945	1512
•	Terminal ORF (nt) (bp)	2786756	2887944	2935315	2936508	2962718	2963606	3098578	3272563
	Initial (nt)	6994 2787715	6995 2888078	6996 2936505	6997 2937494	6998 2961342	2966161	7000 3099522	7001 3274074
	SEQ NO.	6994	6995	9669	6997	6998	6669	7000	7001
	SEQ NO.	3494	3495	3496	3497	3498	3499	3500	3501

Example 2

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and IysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in lysE, lysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196*: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6*: 1195-1204 (1992)) were each digested with *Pst*l. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters*, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 µg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*l site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, hom and pyc, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with BamHI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed

to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Salto et al. (*Biochem. Biophys. Acta, 72*: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

5

10

15

35

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chioroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of ikeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 µg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda et al. (Microbiology, 144: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wlid type and mutated hom or pyc genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chioride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito et al. PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the hom gene, DNAs having the nucleotide sequences represented by SEQ iD NOS:7002 and 7003 were used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ iD NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated hom gene and pyc gene, respectively.

(3) Lysine production test of HD-1 and No. 58pyc strains

[0384] The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the hom gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the pyc gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 l jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

[0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β-alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonlum molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

		10000
1	Strain	L-Lysine hydrochloride yield (g/l)
	ATCC 13032	0
1	HD-1	8
	No. 58	45
	No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331lle in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

30

35

55

45 Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to Identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in hom, a mutation, Thr311IIe, in lysC, a mutation, Pro458Ser, in pyc and a mutation, Ala213Thr, in zwf were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

- (2) Construction of plasmid for gene replacement having mutated gene
- [0389] The plasmid for gene replacement, pChom59, having the mutated hom gene and the plasmid for gene replacement, pCpyc458, having the mutated pyc gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated lysC and zwf were produced as described below.
 - [0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Voi. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BiO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.
 - [0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwf* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.
 - (3) Introduction of mutation, Thr311lie, in IysC into one point mutant HD-1

25

- [0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in hysC was Introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated hysC gene in addition to the mutated hom gene.
 - (4) introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2
 - [0394] The mutation, Pro458Ser, in pyc was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated pyc gene in addition to the mutated hom gene and lysC gene.
 - (5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3
- [0395] The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated zwf gene in addition to the mutated hom gene, lysC gene and pyc gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

Table 3

		,	
	Strain	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
	HD-1	8	0.3
ı	AHD-2	73	2.5
	AHP-3	80	2.8
	APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

5

10

15

20

25

30

35

50

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ iD NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

[0405] As the oligo DNA primers used for the PCR,

10

[0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207.

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

[0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ iD NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ iD NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ iD NOS:7022 and 7023 were used for the ampification of the DNA having the nucleotide sequence represented by SEQ iD NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

25 [0414] DNAs having the nucleotide sequence represented by SEQ iD NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

[0415] DNAs having the nucleotide sequence represented by SEQ iD NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEQ iD NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ iD NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ iD NO:3453,

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455.

[0419] DNAs having the nucleotide sequence represented by SEQ iD NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NOS:3497, and [0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the DNAs having the nucleotide sequence re

plification of the DNA having the nucleotide sequence of the rabbit globin gene,

as the respective primer set.

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/µl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutlcal), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to In 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/I ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/µl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 µl of 0.1 mol/l DTT, 1.5 µl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l I dTTP), 1.5 μl of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μl of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 μ l of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 μl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 μ l.

(3) Hybridization

25

40

45

55

[0433] UltraHyb (110 µl) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 µl) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62

Table 5 (continued)

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology*, 168: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

10

15

25

30

45

50

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of *Escherichia coli* adenosine deaminase was obtained from Swissprot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (*Proc. Natl. Acad. Sci. ISA, 85*: 2444-2448 (1988)). A case where E-value was le¹⁰ or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

45

50

55

25

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 I jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yieid (g/l)
ATCC 13032	0
FERM BP-7134	45
FERM BP-158	60 ·

[0444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCI buffer (10 mmol/l Tris-HCI, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445] The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCI, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannhelm)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 × g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 moVI, and an equivalent amount of a lysis buffer (9.5 moVI urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannhelm) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at $12,000 \times g$ for 15 minutes, and the supernatant was recovered.

25 [0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

10

15

45

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor, manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/i urea, 0.5% Triton X-100, 0.6% dithiothreltol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 μg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

step 1: 1 hour under a gradient mode of 0 to 500V;

step 2: 1 hour under a gradient mode of 500 to 1,000 V;

step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and

step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmo/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmo/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

10

[0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis*, 9: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.

[0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.

- (4) In-gel digestion of detected protein spot
- [0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μl of 100 mmol/1 ammonium bicarbonate: acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μl of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/μl) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μl of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation *in vacuo* to halve the liquid volume. To the concentrate, 20 μl of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μl of α-cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
 - (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.

[0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.

[0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the Internal standard method.

[0463] The PSD (post-source decay) analysis was carried out using Integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.

[0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.

- (6) Identification of protein spot
- [0465] From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.

[0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.

- (a) Search and identification of gene encoding high-expression protein
- [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.

 [0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

- These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).
- [0470] Also, the protein corresponding to Spot-9 In Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.
- [0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of Corynebacterium glutamicum constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.
- (b) Search and Identification of modified protein
 - [0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.
 - [0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in Isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.
 - [0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - (c) Search and identification of expressed protein effective in lysine production
 - [0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase In the lysine productivity.
 - [0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding alming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - [0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.
- 45 [0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

50 Claims

55

30

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

sald method comprising:

5

10

20

25

30

35

45

55

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus
 Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected
 from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium
 acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium
 melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

- 7. A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- 8. A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A method for producing a polypeptide, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of claim 8 or 9 in the medium, and recovering the polypeptide from the medium.

15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.

- A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
- 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
- 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 25 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

5

10

15

20

30

35

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

22. A polypeptide array, comprising:

at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (II) a data storage device for at least temporarily storing the Input Information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ iD NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 25. A system based on a computer for Identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) Inputting at least one amino acid sequence Information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;

5

10

15

20

25

30

35

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
- (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information:
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 40 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) companing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information:

- (ii) a data storing device for at least temporarily storing the input information;
- (III) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- 30. A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information:
 - (ii) at least temporarily storing said information;

5

10

15

20

25

30

35

45

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- 32. The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
- 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM); a read only memory (ROM), a magneto-optic disc (MO), CD=ROM, CD-R, CD-RW, DVD=ROM, DVD-RAM and DVD-RW.
- 38. A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 5 46. A recombinant DNA comprising the DNA of claim 45.

10

20

30

35

40

55

- 47. A transformant comprising the recombinant DNA of claim 46.
- 48. A transformant comprising in its chromosome the DNA of claim 45.
- 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 25 51. A method for producing L-lysine, comprising:

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

- **52.** A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (III) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - **54.** The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 56. The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 57. The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) Identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the Isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ iD NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ iD NOS:2 to 3431; (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 35 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - 61. The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- 40 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilium, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - 63. A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.
 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

15

20

25

30

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

10

20

25

30

35

40

45

50

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

GENOME AND/OR SEQUENCE DATA POLYNUCLEOTIDE
AND/OR
POLYPEPTIDE
SEQUENCE
RECOGNIZER AND
QUERY BUFFER NETWORK REQUEST RESULT USER INPUT DEVICE

FIG. 4

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

De	efects in the images include but are not limited to the items checked:
	□ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
	DEBLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	_

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)