TEMA 3. MODELOS LINEALES

MODELO LINEAL

$$y = mx + b$$

$$y = B0 x + B1 + \epsilon$$

MODELO LINEAL

REGRESIÓN MÚLTIPLE

CORRELACIÓN DE PEARSON

$$r = rac{\sum (x_i - ar{x})(y_i^{ar{\prime}} - ar{y})}{\sqrt{\sum (x_i - ar{x})^2 \sum (y_i - ar{y})^2}}$$

CORRELACIÓN DE KENDALL

X	Y					
1	3					
2	1	-				
3	4	+	+			
4	2	-	+	-		
5	6	+	+	+	+	
6	5	+	+	+	+	-

Datos pequeños

Prueba de hipótesis

t = 0; sin correlación

T ≠ 0; correlación

$$t = \frac{C - D}{C + D}$$
 $t = \frac{11 - 4}{11 + 4}$

$$t = \frac{7}{15} = 0.46$$

CORRELACIÓN DE SPEARMAN

X	Y
1	3
2	1
3	4
4	2
5	6
6	5

X	X ¹	Υ	y ¹
1	1	3	3
2	2	1	1
3	3	4	4
4	4	2	2
5	5	6	6
6	6	5	5

REGRESIÓN LOGÍSTICA

