Patentansprüche:

- 1. Digitalfotografie-Verfahren, bei dem eine Matrix (1) von optoelektrischen Sensorelementen mindestens einmal bezüglich dem Abbildungsstrahl der Kamera verschoben wird
- und in der Position vor der Verschiebung (\tilde{S}) ein erstes Bild (B_{1e}) , in der Position nach der Verschiebung ein zweites Bild (B_{2e}) gespeichert wird, je in Form elektrischer Bildsignale in Funktion der Sensorausgangssignale und mit der jeweiligen
- Sensorpositions-Information, dadurch gekennzeichnet, dass von den Bildsignalen der beiden Bilder (B_{1e} , B_{2e}) abhängige Signale einer Vergleichsoperation (9) zugeführt werden und ein Vergleichsresultats-Bild (Δ), in Form elektrischer Vergleichsresultatsignale mit der Positionsinformation
- erzeugt wird, und mit elektrischen Signalen des Vergleichsresultats-Bildes (Δ) das erste und/oder zweite Bild zur Erzeugung eines Aufnahmebildes (B_{1K}) modifiziert wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet,
 dass das erste und/oder zweite Bild (B_{1c}, B_{2e}) aus mehr als einem Teilbild (I-IV) bereitgestellt werden, erzeugt durch weitere Verschiebungen der Matrix (1) entsprechend ihrer örtlichen Verteilung farbselektiver Sensorelemente.
- 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass elektrische Bildsignale der beiden Bilder (B_{1e} , B_{2e}) direkt miteinander verglichen werden und Sensorelemente, deren Ausgangssignale ein mindestens in vorgegebenem Masse Übereinstimmung anzeigendes Vergleichsresultat im Vergleichsresultat-Bild (Δ) ergeben,
- 30 als störungsbehaftet (Z) identifiziert werden.

- 4. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das erste (B_{le}) und/oder zweite Bild (B_{2e}) rechnerisch (14) verschoben wird, indem die den elektrischen Bildsignalen zugeordnete Positionsinformation geändert wird, damit mindestens ein elektronisches Phantombild erzeugt wird, als eines der zu vergleichenden Bilder.
- 5. Verfahren nach einem der Ansprüche 1, 3 oder 4, dadurch gekennzeichnet, dass mindestens eines des ersten und zweiten Bildes (B_{2e}) rechnerisch (14) an die Position des andern Bildes (B_{1e}) verschoben wird, indem die den elektrischen Bildsignalen zugeordneten Positionsinformationen in Funktion der Verschiebung (\overline{S}) zwischen den Matrixpositionen geändert werden, damit mindestens ein Phantombild (B_{Ph1}) des anderen Bildes (B_{1e}) erzeugt wird und der Vergleich zwischen Phantombild (B_{Ph1}) und dem anderen Bild (B_{1e}) vorgenommen wird.
- Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass für die Erzeugung des Aufnahmebildes (B_{K1}) elektrische
 Signale am ersten (B_{1e}), zweiten (B_{2e}) oder Phantombild (B_{Ph1}) ersetzt werden, deren zugeordnete Sensorelemente Positionen haben (x₂, y₂; x'₂, y'₂), an denen, im
 Vergleichsresultat-Bild (Δ), Vergleichsresultats-Signale über einem vorgegebenen Schwellwert liegen.
- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Ersetzen durch elektrische Signale (A (x_z/y_z)) eines der anderen Bilder erfolgt, und zwar von Sensorelementen stammend, deren Position der Positionsinformation entspricht an der, im
- Vergleichsresultats-Bild (Δ) , Vergleichsresultats-Signale über dem vorgegebenen Schwellwert liegen.

- 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass aus dem Vergleichsresultat-Bild (Δ) über störbehaftete Stellen (Z) an der Matrix und/oder über bewegte Bildbereiche (ρ) im Abbildungsstrahl geschlossen wird.
- 9. Verfahren nach dem Oberbegriff von Anspruch 1, dadurch gekennzeichnet, dass man nebst einer mechanischen $\overline{(S)} \ \text{der Matrix (1) eine rechnerische}$ Verschiebung mindestens eines der registrierten Bilder
- vornimmt und das unterschiedliche Abbildungsverhalten bei mechanischer Matrix- und elektronischer Bildverschiebung zur Interpretation der Abbildung auswertet.
 - 10. Digitalkamera mit einem den Abbildungsstrahl bildenden optischen System und einer Matrix (1) opto-elektrischer
- Sensorelemente, welche bezüglich dem Abbildungsstrahl der Kamera verschieblich ist, dadurch gekennzeichnet, dass der elektrische Ausgang (A_1) der Matrix (1) mit den Eingangen mindestens zweier Bildspeichereinheiten $(7_1, 7_2)$ wirkverbunden ist, deren Ausgänge (A_{71}, A_{72}) mit den
- Eingängen (E_{91}, E_{92}) einer Vergleichereinheit (9) wirkverbunden sind, deren Ausgang wiederum auf einen Eingang einer Rechnereinheit (12) geführt ist.
 - 11. Digitalkamera nach Anspruch 9, dadurch gekennzeichnet, dass die Ausgänge der Bildspeichereinheiten $(7_1, 7_2)$
- gleich mit den Eingängen (E_{91}, E_{92}) der Vergleichseinheit (9) wirkverbunden sind.
 - 12. Digitalkamera nach Anspruch 10, dadurch gekennzeichnet, dass die Matrix (1) mit einer steuerbaren Antriebsanordnung (3) wirkverbunden ist, der Ausgang der einen Bildspeichereinheit (72) über eine Recheneinheit (14)
- 30 einen Bildspeichereinheit (7_2) über eine Recheneinheit (14) auf den Eingang einer weiteren Bildspeichereinheit (7_{Ph})

1.0

15

geführt ist, wobei ein weiterer Eingang der Recheneinheit (14) mit einem Verschiebungsaufnehmer an der Matrix (1) und/oder dem Antrieb (3) wirkverbunden ist, und dass der Ausgang der weiteren Bildspeichereinheit $(7_{\rm Ph})$ mit dem Eingang (E_{92}) der Vergleichseinheit (9) wirkverbunden ist.

13. Digitalkamera nach Anspruch 12, dadurch gekennzeichnet, dass ein Ausgang der Vergleichseinheit mit einem Ausleseselektionseingang ($E(\mathbf{x}_n,\ \mathbf{y}_n)$) wirkverbunden ist, deren Ausgang (A_{Ph}) mit einem Eingang an der

Recheneinheit (R) wirkverbunden ist.

14. Digitalkamera nach dem <u>Oberbegriff</u> von Anspruch 10, dadurch gekennzeichnet, dass sie eine Recheneinheit (14) hat, welche ein elektronisch abgespeichertes Bild (B_{2e}) rechnerisch verschiebt (B_{Ph}) und die dieses (B_{Pn}) mit einem von der Matrix (1) registrierten Bild (B_{1e}) vergleicht.