Ответы на вопросы по курсу «Теория Вероятностей» *

Колодзей Дарья, 394^{\dagger} осенний семестр 2014

Содержание

- 1 Вероятностное пространство (Ω, \mathcal{F}, P) . Аксиомы Колмогорова. 2
- 2 Дискретные вероятностые пространства. Классическое определение вероятности. Примеры. Геометрические вероятности. Примеры.

5

*Лектор: Жуковский Максим Евгеньевич

Место: ФИВТ МФТИ

[†]Спасибо Алексею Журавлёву за конспекты и билеты Спасибо Павлу Ахтямову за конспекты Спасибо Дмитрию Иващенко за печатные конпекты

1 Вероятностное пространство (Ω, \mathcal{F}, P) . Аксиомы Колмогорова.

Чтобы дать определение *вероятностному пространству*, нам понадобится несколько вспомогательных определений.

Определение 1 (Алгебра). Пусть Ω — произвольное множество. Система его подмножеств $\mathcal{A} \subset 2^{\Omega}$ называется алгеброй, если выполнены условия:

- 1. $\Omega \in \mathcal{A}$
- 2. Если A,B пара множеств, принадлежащих $\mathcal{A},$ то

$$A \cup B \in \mathcal{A}, A \cap B \in \mathcal{A}$$

3. $A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$

Определение 2 (σ -алгебра). Пусть Ω — произвольное множество. Система его подмножеств $\mathcal{F} \subset 2^{\Omega}$ называется σ -алгеброй, если выполнены условия:

- 1. $\Omega \in \mathcal{F}$
- 2. Если $\{A_i\}$ последовательность множеств, принадлежащих \mathcal{F} , то

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}, \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$$

3.
$$A \in \mathcal{F} \Rightarrow \overline{A} \in \mathcal{F}$$

Определение 3 (Измеримое пространство). Измеримым пространством называют пару $\langle \Omega, \mathcal{A} \rangle$, где Ω — произвольное множество, а \mathcal{A} — алгебра его подмножеств.

Определение 4 (Конечно-аддитивная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию \mathbf{P} : $\mathcal{A} \to \mathbb{R}$ называют конечно-аддитивной мерой данного пространства, если выполнены свойства:

1.
$$\forall A \in \mathcal{A} \mathbf{P}(A) \geq 0$$

2.
$$A, B \in \mathcal{A}, A \cap B = \emptyset \Rightarrow \mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$$

Определение 5 (Конечно-аддитивная конечная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию $\mathbf{P}: \mathcal{A} \to \mathbb{R}$ называют конечно-аддитивной конечной мерой данного пространства, если она является конечно-аддитивной мерой данного пространства и $\mathbf{P}(\Omega) < \infty$.

Определение 6 (Конечно-аддитивная вероятностная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию $\mathbf{P}: \mathcal{A} \to \mathbb{R}$ называют конечно-аддитивной вероятностной мерой данного пространства, если она является конечно-аддитивной мерой данного пространства и $\mathbf{P}(\Omega)=1$.

Определение 7 (Счётно-аддитивная вероятностная мера). Пусть $\langle \Omega, \mathcal{A} \rangle$ — измеримое пространство. Функцию $\mathbf{P}: \mathcal{A} \to \mathbb{R}$ называют *счётно-аддитивной вероятностной мерой* данного пространства, если выполнены свойства:

- 1. $\forall A \in \mathcal{A} \mathbf{P}(A) \geq 0$
- 2. $P(\Omega) = 1$
- 3. Пусть $\{A_i\}$ последовательность попарнонеперсекающихся множеств, принадлежащих \mathcal{A} . Пусть их объединение также лежит в \mathcal{A} . Тогда верно

$$\mathbf{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Счётно-аддитивную вероятностную меру над $\langle \Omega, \mathcal{A} \rangle$ также называют вероятностью над $\langle \Omega, \mathcal{A} \rangle$.

Определение 8 (Вероятностное пространство в широком смысле). Тройку $\langle \Omega, \mathcal{A}, \mathbf{P} \rangle$, где

- Ω произвольное множество
- ullet \mathcal{A} алгебра над Ω
- \mathbf{P} вероятность над $\langle \Omega, \mathcal{A} \rangle$

называют вероятностным пространством в широком смысле. Элементы \mathcal{A} называют событиями. Событие Ω называют достоверным событием, событие \varnothing называют невозможным событием.

Определение 9 (Вероятностное пространство). Тройку $\langle \Omega, \mathcal{A}, \mathbf{P} \rangle$, где

- Ω произвольное множество
- $\mathcal{A}-\sigma$ -алгебра над Ω
- \mathbf{P} вероятность над $\langle \Omega, \mathcal{A} \rangle$

называют вероятностным пространством.

Аксиомы Колмогорова — это аксиомы, которым должно удовлетворять вероятностное пространство. В нашем случае аксиомы Колмогорова зашиты внутрь определения вероятностного пространства.

2 Дискретные вероятностые пространства. Классическое определение вероятности. Примеры. Геометрические вероятности. Примеры.