Running Lecture Outline: [Course Code]

Kirby CHEN

Academic Year 2019-2020

Contents

1	Fall 2019	1
	1.1 Fri, Sept 6: Phenomenology of Microscopic Physics	1
	1.2 Mon, Sept 9: Review of Newtonian Mechanics	1
	1.3 Tue, Sept 10: Alternative Formulations of Newtonian Mechanics	2
2	Spring 2020	2

1 Fall 2019

1.1 Fri, Sept 6: Phenomenology of Microscopic Physics

- Newtonian mechanics (i.e., $\mathbf{F} = m\mathbf{a}$) is an excellent theory; it applies to the vast majority of human-scale (and even interplanetary-scale) physics.
- Apart from relativistic effects at very high velocities (special relativity) or in very strong gravitational fields (general relativity), Newtonian mechanics accurately describes a huge range of phenomena, but around the end of the Nineteenth Century people became aware of some physical effects for which there is no sensible Newtonian explanation.
- Examples include:
 - the **double slit experiment** (done with light by Thomas Young in 1801, and with electrons by Tonomura in 1986)
 - the photoelectric effect (analyzed by Einstein in 1905 in fact his Nobel-winning work)
 - the "quantum Venn diagram" puzzle, involving the overlaps of three polarizing filters
 - the stability of the hydrogen atom (i.e., the fact that the electron doesn't lose energy and spiral inward toward the proton).

Remark 1. How now, brown cow?

Definition 1. The Feynman kernel is given by

$$K(x_b, t_b; x_a, t_a) = \int_{x(t_a) = x_a}^{x(t_b) = x_b} e^{(i/\hbar)S[x(t)]} \mathscr{D}x(t).$$

1.2 Mon, Sept 9: Review of Newtonian Mechanics

• A Newtonian trajectory $\mathbf{x}(t)$ $(t \in \mathbb{R})$ is given by solutions of the second order ODE

$$m \ddot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}(t)),$$

where m > 0 is a basic parameter associated with a given Newtonian particle, called its mass.

• The force field $\mathbf{F}(\mathbf{x})$ — which we take to be static (i.e., not intrinsically dependent on time) for simplicity — is said to be *conservative* if there is a *potential function* $V(\mathbf{x})$ such that

$$\mathbf{F}(\mathbf{x}) = -\nabla V(\mathbf{x}).$$

Here, ' ∇ ' denotes the gradient operator,

$$\nabla V = \left(\frac{\partial V}{\partial x}, \, \frac{\partial V}{\partial y}, \, \frac{\partial V}{\partial z}\right).$$

• For a conservative force field, we can find a *conserved quantity* along the Newtonian trajectories, namely the *total mechanical energy*.

$$E = H(\mathbf{x}, \mathbf{p}) := \frac{1}{2m} \mathbf{p}^2 + V(\mathbf{x}).$$

Here, $\mathbf{p}^2 := \mathbf{p} \cdot \mathbf{p} = ||\mathbf{p}||^2$, and $\mathbf{p} := m\mathbf{v} := m\dot{\mathbf{x}}$ is the momentum.

1.3 Tue, Sept 10: Alternative Formulations of Newtonian Mechanics

• The Hamiltonian formulation:

$$\dot{\mathbf{x}} = \frac{\partial H}{\partial \mathbf{p}}, \quad \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{x}}.$$

• The Lagrangian formulation:

$$\delta S[\mathbf{x}(t)] = 0,$$

where the *action* on the time interval $[t_a, t_b]$ is given by

$$S[\mathbf{x}(t)] := \int_{t_a}^{t_b} \left[\frac{m}{2} \, \dot{\mathbf{x}}(t)^2 - V(\mathbf{x}(t)) \right] \, dt.$$

• Etc.

2 Spring 2020