

Copyright © 2022 Goro Akechi Published by Publisher book-website.com Licensed under the Creative Commons Attribution-NonCommercial 4.0 License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at https://creativecommons.org/licenses/by-nc-sa/ 4.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "as is" basis, without warranties or conditions of any kind, either express or implied. See the License for the specific language

governing permissions and limitations under the License.

First printing, March 2022

Part One Title 1 1.1 不同数的符号表示 11 1.1.1 1.1.2 集合中的常见概念 11 1.1.3 1.2 1.3 1.3.1 1.3.2 2 2.1 2.1.1 2.1.2 2.1.3 2.2

2.3

Ш	Part Two Title
3	Mathematics
3.1	Theorems
3.1.1	Several equations
3.1.2	Single Line
3.2	Definitions
3.3	Notations
3.4	Remarks
3.5	Corollaries
3.6	Propositions
3.6.1	Several equations
3.6.2	Single Line
3.7	Examples
3.7.1	Equation Example
3.7.2	Text Example 23
3.8	Exercises
3.9	Problems
3.10	Vocabulary
4	Presenting Information and Results with a Long Chapter Title 25
4.1	Table
4.2	Figure
	Bibliography
	Articles
	Books 27
	Index
	Appendices
A	Appendix Chapter Title
A.1	Appendix Section Title
В	Appendix Chapter Title
B.1	Appendix Section Title

4.1	Figure caption.	 26
4.2	Floating figure.	 26

4.1	Table caption	25
4.2	Floating table	26

Part One Title

1	Pre-requisite knowledge:Basic Conception
	11
1.1	Explanation of symbols
1.2	mapping
1.3	algebraic operation
2	In-text Element Examples
2.1	Lists
2.2	International Support
2.3	Ligatures

1.1 Explanation of symbols

在抽象代数的学习中,会使用到集合中的知识,当然也会使用到集合中的各种符号, 在这一小节中,对这些符号进行一遍复习。

1.1.1 不同数的符号表示

- ℝ 全体实数 (有理数和无理数) 的集合
- № 全体自然数集合
- № 全体非负整数排除 0 的集合
- ℚ 全体有理数 (整数和分数) 的集合
- ℤ 全体整数的集合
- ℂ 全体复数的集合

1.1.2 集合中的常见概念符号

- 集合 A,B,C
- 元素 a,b,c
- 空集 ∅
- 元素与集合之间的从属关系:∈,∉
- 集合与集合之间的从属关系:⊂,⊆,⊄
- 交集,补集,并集: $A \cup B A \cap B,A^{\complement}$

1.1.3 集合中的常见概念

要证明两个集合相等,只需要证明这两个集合相互包含即可,这是一个非常常见的证明集合相等的手段。

Theorem 1.1 定理一: 两个集合 A,B 相等的充要条件: $A = B \iff A \subset B \iff B \subset A$

在抽象代数中,我们将使用集合的笛卡尔积来定义映射,这是一个非常重要的概念。

Theorem 1.2 我们称: $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i\}$ 为 n 个集合 $A_1, A_2, ...A_n$ 的笛卡尔积。

() 内表示的是有序数组,而 a_1 则表示的是 A_1 里的元素。

■ Example 1.1

$$A = \{a, b, c\}, B = \{1, 2\}, A \times B = \{(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)\}$$

根据上面这个例题,我们可以推断出一个结论。

Theorem 1.3 一般地,如果 |A| = m, |B| = n 那么 $|A \times B| = mn$

R 一般,我们使用 |A| 来表示 A 集合中元素的个数。比如上面的 $A \times B$ 表示的就是 AB 笛卡尔积所构成的集合的元素的个数。

1.2 mapping

Theorem 1.4 映射的定义

设 \emptyset 是从笛卡尔积 $A_1 \times A_2 \times ... \times A_n$ 到集合 D 的一个法则,如果 $A_1 \times A_2 \times ... \times A_n$ 中的每一个元素 $(a_1,a_2,...a_n)$ 都有 D 中唯一的元素 d 与之对应,那么我们称 \emptyset 是从 $A_1 \times A_2 \times ... \times A_n$ 到 D 的一个映射。

- Example 1.2 设 $A_1 = \{ \text{东}, \text{ m} \}, A_2 = \{ \text{南} \}, D = \{ \text{高}, \text{ K} \}, \text{ 则 } \emptyset_1(\text{m}, \text{ n}) = \text{高不是 } A_1 \times A_2$ 到 D 的映射,因为只定义了一种情况,总共有两种情况,没有进行一一对应。如果改为 $\emptyset_2(\text{m}, \text{ n}) = \text{高}, \emptyset_2(\text{s}, \text{ n}) = \text{K}, 符合定义,所以是 <math>A_1 \times A_2$ 到 D 的映射。

$$\emptyset(a) = a, a \neq 1$$

$$\emptyset(1) = b, b^2 = 1$$

不是 A_1 到 D 的映射。

虽然这个映射对每一个定义域内的变量都进行了映射,但是在自变量为 1 的时候 b 可以等于 +1 也可以等于 –1, 不符合一一对应的条件,所以不是映射。 ■

■ Example 1.4 设 $A_1 = D = \mathbb{Z}_+$, 则

$$\emptyset(a) = a - 1$$

不是 A_1 到 D 的映射。

由于 A 和 D 都是属于正整数集合,所以当 a=1 的时候映射结果不在 D 集合内,所以不是。

Theorem 1.5 映射相等

设 \emptyset_1,\emptyset_2 都是从笛卡尔积 $A_1 \times A_2 \times ... \times A_n$ 到集合 D 的映射,如果对于 $A_1 \times A_2 \times ... \times A_n$ 中的每一个元素 $(a_1,a_2,...,a_n)$ 都有

$$\emptyset_1(a_1, a_2, ..., a_n) = \emptyset_2(a_1, a_2, ..., a_n),$$

则称这两个映射 \emptyset_1, \emptyset_2 是相等的。

- 特别注意:两个映射相等,实际上的要求是:
 - 它们的定义域相等
 - 它们的作用效果是相通的
- Example 1.5 设 A=D 都表示正整数的集合, $\emptyset_1: A \to D$ 定义为: $\emptyset_1(a) = 1, \emptyset_2: A \to$ 定义为: $\emptyset_2(a) = a^0$,则 $\emptyset_1 = \emptyset_2$

由于前提条件是正整数的集合,而不是自然数,元素自然不可能是 0,所以定义域一样,而作用效果也一样,映射的结果都是 1,所以映射是相等的,但是如果将本例改为自然数,则是错误的。

1.3 algebraic operation

1.3.1 Basic Algebraic Operation

本节的目标任务就是重新定义代数运算,打破之前对代数运算的认知,从映射与集合的观点来重新定义。

Theorem 1.6 一个从 $A \times B$ 到 D 的映射叫做一个 $A \times B$ 到 D 的代数运算。

映射运算 $\emptyset: A \times B \to D, (a,b) \to d = \emptyset(a,b)$ 代数运算 $\circ: A \times B \to D, (a,b) \to d = a \circ b$

$$\circ: (a,b) \to \frac{a}{b} = a \circ b$$

是一个 $A \times B$ 到 D 的代数运算, 也就是普通的除法。

对于被除数是整数,除数是不为 0 的整数来说,除法的运算结果既有可能是分数,也有可能是不为 0 的整数,所以综合来看映射自然是有理数集。

■ Example 1.7 设 A={1,2},B={1,2},D={奇, 偶},则

$$\circ: (1,1) \to \hat{\sigma}, (1,2) \to \hat{\sigma}, (2,1) \to \mathcal{A}, (2,2) \to \mathcal{A}$$

是一个 $A \times B$ 到 D 的代数运算。

对于 $A \times B$ 笛卡尔积的每一个有序数组都规定了映射的结果,并且结果都在 D 集合中存在,所以自然符合代数运算的含义。

Theorem 1.7 我们称 $A \times A$ 的代数运算。为 A 上的代数运算,或者 A 上的二元运算。。 具有封闭性。

■ Example 1.8 设 $A = \mathbb{Z}$,则普通数的加法,减法,乘法,都是集合 A 上的代数运算。 结论当然是成立的,任意一个整数 + 整数,整数 - 整数,整数 * 整数,结果都是整数。

1.3.2 operational rule

1.3.2.1 associative law &commutative law

Theorem 1.8 设 circ 是集合 A 上的一个代数运算。

- 如果对于 $\forall a,b,c \in A$,都有 $(a \circ b) \circ c = a \circ (b \circ c)$,则称 \circ 适合结合律。
- 如果对于 $\forall a,b \in A$,都有 $a \circ b = b \circ a$,则称 \circ 适合交换律。
- Example 1.9 在有理数集 \mathbb{Q} 上规定代数运算 \circ 为普通加法 +, 那么显然 \circ 适合结合律和交换律,并且显然有:

$$[(1 \circ 2) \circ (-1)] \circ (-2) = 0,$$

$$1 \circ \{[2 \circ (-1)] \circ (-2)\} = 0,$$

$$\{[(-2) \circ 2] \circ 1\} \circ (-1) = 0.$$

从这个例子可以看出,当 ○ 适合结合律和交换律的时候,任意方式加括号不改变若干个元素的乘积,任意改变元素的顺序也不改变若干元素的乘积。

Theorem 1.9 如果集合 A 上的代数运算适合结合律,那么任意加括号都不改变若干元素的运算结果。

Theorem 1.10 如果集合 A 上的代数运算适合结合律和交换律,那么任意加括号,任意改变元素的顺序,都不改变若干元素的运算结果。

■ Example 1.10 设 A={所有不为零的实数},○ 是普通数的除法 $a \circ b = \frac{a}{b}$, 判断 ○ 是否适合结合律。

不适合。反例: $(36 \circ 12) \circ 3 = 3 \circ 3 = 1$,而 $36 \circ (12 \circ 3) = 36 \circ 4 = 9$

- **R** 证明结论中,要证明一个结论是错误的,只需要举出一个反例即可。而要证明一个结论是对的,需要证明所有情况都是正确的。
- Example 1.11 设 A={a,b,c}, 规定:

0	а	b	С
а	а	b	С
b	b	С	а
С	С	а	b

这道题的结论是所有情况都是正确的,但是我们要证明这个结论正确,我们需要证明每一个结论都是正确的。但是如果挨个证明,总共有 27 个等式。我们观察 a 发现这是一种特殊情况, $a \circ any = any$, $any \circ = any$, 所以 a 是类似于乘法中 1 的作用,我们根据这个特性,将情况分为 x,y,z 中有 a 和 x,y,z 中不存在 a 的情况。

证明. 对于任意的 $x,y,z \in A$,

- 1. 当 x,y,z 中至少有一个为 a 的时候,结合律成立:
- a. 当 x=a 的时候, $(x \circ y) \circ z = y \circ z, x \circ (y \circ z) = y \circ z$
- b. 当 y=a 的时候, $(x \circ y) \circ z = x \circ z, x \circ (y \circ z) = x \circ z$
- c. 当 z=a 的时候, $(x \circ y) \circ z = x \circ y, x \circ (y \circ z) = x \circ y$
- 2. 当 x,y,z 中任何一个都不为 a 的时候,结合律成立,这个时候情况只有 $2^3 = 8$,只需要证明每一种情况均成立,则结合律成立。

$$a.(b \circ b) \circ b = c \circ b = a, b \circ (b \circ b) = b \circ c = a$$

$$b.(b \circ b) \circ c = c \circ c = b, b \circ (b \circ c) = b \circ a = b$$

$$\mathtt{C}.(b \circ c) \circ b = a \circ b = b, b \circ (c \circ b) = b \circ a = b$$

$$\mathsf{d}.(b \circ c) \circ c = a \circ c = c, b \circ (c \circ c) = (b \circ b = c)$$

$$e.(c \circ b) \circ b = a \circ b = b, c \circ (b \circ b) = c \circ c = b$$

$$\mathsf{f.}(c \circ b) \circ c = a \circ c = c, c \circ (b \circ c) = c \circ a = c$$

$$g.(c \circ c) \circ b = b \circ b = c, c \circ (c \circ b) = c \circ a = c$$

$$h.(c \circ c) \circ c = b \circ c = a, c \circ (c \circ c) = c \circ b = a$$

■ Example 1.12 设 A={a,b,c,d}, 规定:

0	а	b	С	d
а	а	b	С	d
b	b	d	а	С
С	С	а	b	d
d	d	С	а	b

判断 。是否适合交换律。已知有限集 A 上的代数运算 。的运算表,你能判断 。是否适合 交换律吗?得到的规律是什么?

不合适, $c \circ d = d$, 而 $d \circ c = a$, 结论: 代数运算 \circ 适合交换律当且仅当其运算表中元素 关于主对角线对称。

1.3.2.2 cancellation law

2.1 Lists

Lists are useful to present information in a concise and/or ordered way.

2.1.1 Numbered List

- 1. First numbered item
 - a. First indented numbered item
 - b. Second indented numbered item
 - i. First second-level indented numbered item
- 2. Second numbered item
- 3. Third numbered item

2.1.2 Bullet Point List

- First bullet point item
 - First indented bullet point item
 - Second indented bullet point item
 - o First second-level indented bullet point item
- Second bullet point item
- Third bullet point item

2.1.3 Descriptions and Definitions

Name Description

Word Definition

Comment Elaboration

2.2 International Support

àáâäãåèéêëìííïòóôöōøùúûüÿýñçčšž ÀÁÂÄÃÅÈÉÊËÌÍÍÏÒÓÔÖŌØÙÚÛÜŸÝÑ ßÇŒÆČŠŽ

2.3 Ligatures

fi fj fl ffl ffi Ty

Part Two Title

21
21
21
22
22
22
22
22
23
23
23
vith a
25
25
25

3.1 Theorems

3.1.1 Several equations

This is a theorem consisting of several equations.

Theorem 3.1 — Name of the theorem. In $E = \mathbb{R}^n$ all norms are equivalent. It has the properties:

$$|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}|| \tag{3.1}$$

$$||\sum_{i=1}^{n} \mathbf{x}_i|| \le \sum_{i=1}^{n} ||\mathbf{x}_i||$$
 where n is a finite integer (3.2)

3.1.2 Single Line

This is a theorem consisting of just one line.

Theorem 3.2 A set $\mathcal{D}(G)$ in dense in $L^2(G)$, $|\cdot|_0$.

3.2 Definitions

A definition can be mathematical or it could define a concept.

Definition 3.1 — **Definition name.** Given a vector space E, a norm on E is an application, denoted $||\cdot||$, E in $\mathbb{R}^+ = [0, +\infty[$ such that:

$$||\mathbf{x}|| = 0 \Rightarrow \mathbf{x} = \mathbf{0} \tag{3.3}$$

$$||\lambda \mathbf{x}|| = |\lambda| \cdot ||\mathbf{x}|| \tag{3.4}$$

$$||x+y|| \le ||x|| + ||y|| \tag{3.5}$$

3.3 Notations

- Notation 3.1 Given an open subset G of \mathbb{R}^n , the set of functions φ are:
 - 1. Bounded support G;
 - 2. Infinitely differentiable;
- a vector space is denoted by $\mathcal{D}(G)$.

3.4 Remarks

This is an example of a remark.

The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$.

3.5 Corollaries

Corollary 3.1 — Corollary name. The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K} = \mathbb{R}$, however, established properties are easily extended to $\mathbb{K} = \mathbb{C}$.

3.6 Propositions

3.6.1 Several equations

Proposition 3.1 — **Proposition name.** It has the properties:

$$|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}|| \tag{3.6}$$

$$||\sum_{i=1}^{n} \mathbf{x}_i|| \le \sum_{i=1}^{n} ||\mathbf{x}_i||$$
 where n is a finite integer (3.7)

3.6.2 Single Line

Proposition 3.2 Let $f,g \in L^2(G)$; if $\forall \varphi \in \mathcal{D}(G)$, $(f,\varphi)_0 = (g,\varphi)_0$ then f = g.

3.7 Examples

3.7.1 Equation Example

■ Example 3.1 Let $G = \{x \in \mathbb{R}^2 : |x| < 3\}$ and denoted by: $x^0 = (1,1)$; consider the function:

$$f(x) = \begin{cases} e^{|x|} & \text{si } |x - x^0| \le 1/2\\ 0 & \text{si } |x - x^0| > 1/2 \end{cases}$$
 (3.8)

The function f has bounded support, we can take $A = \{x \in \mathbb{R}^2 : |x - x^0| \le 1/2 + \epsilon\}$ for all $\epsilon \in [0; 5/2 - \sqrt{2}[$.

3.8 Exercises 23

3.7.2 Text Example

■ Example 3.2 — Example name. Aliquam arcu turpis, ultrices sed luctus ac, vehicula id metus. Morbi eu feugiat velit, et tempus augue. Proin ac mattis tortor. Donec tincidunt, ante rhoncus luctus semper, arcu lorem lobortis justo, nec convallis ante quam quis lectus. Aenean tincidunt sodales massa, et hendrerit tellus mattis ac. Sed non pretium nibh. Donec cursus maximus luctus. Vivamus lobortis eros et massa porta porttitor.

3.8 Exercises

Exercise 3.1 This is a good place to ask a question to test learning progress or further cement ideas into students' minds.

3.9 Problems

Problem 3.1 What is the average airspeed velocity of an unladen swallow?

3.10 Vocabulary

Define a word to improve a students' vocabulary.

■ Vocabulary 3.1 — Word. Definition of word.

4.1 Table

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent porttitor arcu luctus, imperdiet urna iaculis, mattis eros. Pellentesque iaculis odio vel nisl ullam—corper, nec faucibus ipsum molestie. Sed dictum nisl non aliquet porttitor. Etiam vulputate arcu dignissim, finibus sem et, viverra nisl. Aenean luctus congue massa, ut laoreet metus ornare in. Nunc fermentum nisi imperdiet lectus tincidunt vestibulum at ac elit. Nulla mattis nisl eu malesuada suscipit.

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

表 4.1: Table caption.

Referencing Table 4.1 in-text using its label.

4.2 Figure

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent porttitor arcu luctus, imperdiet urna iaculis, mattis eros. Pellentesque iaculis odio vel nisl ullam—corper, nec faucibus ipsum molestie. Sed dictum nisl non aliquet porttitor. Etiam vulputate arcu dignissim, finibus sem et, viverra nisl. Aenean luctus congue massa, ut laoreet metus ornare in. Nunc fermentum nisi imperdiet lectus tincidunt vestibulum at ac elit. Nulla mattis nisl eu malesuada suscipit.

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

表 4.2: Floating table.

图 4.1: Figure caption.

Referencing Figure 4.1 in-text using its label.

Bibliography

Articles

Books

A.1 Appendix Section Title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam auctor mi risus, quis tempor libero hendrerit at. Duis hendrerit placerat quam et semper. Nam ultricies metus vehicula arcu viverra, vel ullamcorper justo elementum. Pellentesque vel mi ac lectus cursus posuere et nec ex. Fusce quis mauris egestas lacus commodo venenatis. Ut at arcu lectus. Donec et urna nunc. Morbi eu nisl cursus sapien eleifend tincidunt quis quis est. Donec ut orci ex. Praesent ligula enim, ullamcorper non lorem a, ultrices volutpat dolor. Nullam at imperdiet urna. Pellentesque nec velit eget est euismod pretium.

B.1 Appendix Section Title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam auctor mi risus, quis tempor libero hendrerit at. Duis hendrerit placerat quam et semper. Nam ultricies metus vehicula arcu viverra, vel ullamcorper justo elementum. Pellentesque vel mi ac lectus cursus posuere et nec ex. Fusce quis mauris egestas lacus commodo venenatis. Ut at arcu lectus. Donec et urna nunc. Morbi eu nisl cursus sapien eleifend tincidunt quis quis est. Donec ut orci ex. Praesent ligula enim, ullamcorper non lorem a, ultrices volutpat dolor. Nullam at imperdiet urna. Pellentesque nec velit eget est euismod pretium.