Exámenes de "Programación funcional con Haskell"

Vol. 4 (Curso 2012-13)

José A. Alonso Jiménez

Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Sevilla, 20 de noviembre de 2013

Esta obra está bajo una licencia Reconocimiento-NoComercial-CompartirIgual 2.5 Spain de Creative Commons.

Se permite:

- copiar, distribuir y comunicar públicamente la obra
- hacer obras derivadas

Bajo las condiciones siguientes:

Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor.

No comercial. No puede utilizar esta obra para fines comerciales.

Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.

- Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.

Esto es un resumen del texto legal (la licencia completa). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/2. 5/es/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Índice general

Introducción		
1	Exámenes del grupo 1 José A. Alonso y Miguel A. Martínez	7
	1.1 Examen 1 (8 de noviembre de 2012) 1.2 Examen 2 (20 de diciembre de 2012) 1.3 Examen 3 (6 de febrero de 2013) 1.4 Examen 4 (21 de marzo de 2013) 1.5 Examen 5 (9 de mayo de 2013) 1.6 Examen 6 (13 de junio de 2013) 1.7 Examen 7 (3 de julio de 2013) 1.8 Examen 8 (13 de septiembre de 2013) 1.9 Examen 9 (20 de noviembre de 2013)	11 14 17 21 26 34
2	Exámenes del grupo 2 Antonia M. Chávez	43
	2.1 Examen 1 (7 de noviembre de 2012) 2.2 Examen 2 (19 de diciembre de 2012) 2.3 Examen 3 (6 de febrero de 2013) 2.4 Examen 4 (3 de abril de 2013) 2.5 Examen 5 (15 de mayo de 2013) 2.6 Examen 6 (13 de junio de 2013) 2.7 Examen 7 (3 de julio de 2013) 2.8 Examen 8 (13 de septiembre de 2013) 2.9 Examen 9 (20 de noviembre de 2013)	45 49 49 55 60 66 66
3	Exámenes del grupo 3 María J. Hidalgo	67
	3.1 Examen 1 (16 de noviembre de 2012)	

4 Índice general

	3.3 Examen 3 (6 de febrero de 2013) 3.4 Examen 4 (22 de marzo de 2013) 3.5 Examen 5 (10 de mayo de 2013) 3.6 Examen 6 (13 de junio de 2013) 3.7 Examen 7 (3 de julio de 2013) 3.8 Examen 8 (13 de septiembre de 2013) 3.9 Examen 9 (20 de noviembre de 2013)		76 83 89 94 94	
4	Exámenes del grupo 4		95	
	Andrés Cordón e Ignacio Pérez			
	4.1 Examen 1 (12 de noviembre de 2012) 4.2 Examen 2 (17 de diciembre de 2012) 4.3 Examen 3 (6 de febrero de 2013) 4.4 Examen 4 (18 de marzo de 2013) 4.5 Examen 5 (6 de mayo de 2013) 4.6 Examen 6 (13 de junio de 2013)		98 100 100 105 110	
	4.7 Examen 7 (3 de julio de 2013)			
	4.8 Examen 8 (13 de septiembre de 2013)4.9 Examen 9 (20 de noviembre de 2013)			
A	Resumen de funciones predefinidas de Haskell A.1 Resumen de funciones sobre TAD en Haskell		111 113	
В	Método de Pólya para la resolución de problemas B.1 Método de Pólya para la resolución de problemas matemáticos B.2 Método de Pólya para resolver problemas de programación			
Bi	Bibliografía			

Introducción

Este libro es una recopilación de las soluciones de ejercicios de los exámenes de programación funcional con Haskell de la asignatura de Informática (curso 2012-13) del Grado en Matemática de la Universidad de Sevilla.

Los exámenes se realizaron en el aula de informática y su duración fue de 2 horas. La materia de cada examen es la impartida desde el comienzo del curso (generalmente, el 1 de octubre) hasta la fecha del examen. Dicha materia se encuentra en los libros de temas y ejercicios del curso:

- Temas de programación funcional (curso 2012–13) ¹
- Ejercicios de "Informática de 1º de Matemáticas" (2012–13) ²
- Piensa en Haskell (Ejercicios de programación funcional con Haskell) ³

El libro consta de 2 capítulos correspondientes a 2 grupos de la asignatura. En cada capítulo hay una sección por cada uno de los exámenes del grupo. Los ejercicios de cada examen han sido propuestos por los profesores de su grupo (cuyos nombres aparecen en el título del capítulo). Sin embargo, los he modificado para unificar el estilo de su presentación.

Finalmente, el libro contiene dos apéndices. Uno con el método de Polya de resolución de problemas (sobre el que se hace énfasis durante todo el curso) y el otro con un resumen de las funciones de Haskell de uso más frecuente.

Los códigos del libro están disponibles en GitHub ⁴

Este libro es el cuarto volumen de la serie de recopilaciones de exámenes de programación funcional con Haskell. Los volúmenes anteriores son

 Exámenes de "Programación funcional con Haskell". Vol. 1 (Curso 2009-10) ⁵

https://www.cs.us.es/~jalonso/cursos/ilm-12/temas/2012-13-IM-temas-PF.pdf

²https://www.cs.us.es/~jalonso/cursos/ilm-12/ejercicios/ejercicios-I1M-2012.pdf

³http://www.cs.us.es/~jalonso/publicaciones/Piensa en Haskell.pdf

⁴https://github.com/jaalonso/Examenes de PF con Haskell Vol4

⁵https://github.com/jaalonso/Examenes_de_PF_con_Haskell_Vol1

6 Índice general

 Exámenes de "Programación funcional con Haskell". Vol. 2 (Curso 2010-11) ⁶

 Exámenes de "Programación funcional con Haskell". Vol. 3 (Curso 2011-12) ⁷

> José A. Alonso Sevilla, 20 de noviembre de 2013

⁶https://github.com/jaalonso/Examenes_de_PF_con_Haskell_Vol2

⁷https://github.com/jaalonso/Examenes_de_PF_con_Haskell_Vol3

1

Exámenes del grupo 1

José A. Alonso y Miguel A. Martínez

1.1. Examen 1 (8 de noviembre de 2012)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (8 de noviembre de 2012)
-- Ejercicio 1. Definir la función primosEntre tal que (primosEntre x y)
-- es la lista de los número primos entre x e y (ambos inclusive). Por
-- ejemplo,
-- primosEntre 11 44 == [11,13,17,19,23,29,31,37,41,43]

primosEntre x y = [n | n <- [x..y], primo n]
-- (primo x) se verifica si x es primo. Por ejemplo,
-- primo 30 == False
-- primo 31 == True
primo n = factores n == [1, n]
-- (factores n) es la lista de los factores del número n. Por ejemplo,
-- factores 30 \valor [1,2,3,5,6,10,15,30]
factores n = [x | x <- [1..n], n `mod` x == 0]
-- Ejercicio 2. Definir la función posiciones tal que (posiciones x ys)
```

```
-- es la lista de las posiciones ocupadas por el elemento x en la lista
-- ys. Por ejemplo,
     posiciones 5 [1,5,3,5,5,7] == [1,3,4]
     posiciones 'a' "Salamanca" == [1,3,5,8]
posiciones x xs = [i \mid (x',i) \leftarrow zip xs [0..], x == x']
-- Ejercicio 3. El tiempo se puede representar por pares de la forma
-- (m,s) donde m representa los minutos y s los segundos. Definir la
-- función duracion tal que (duracion t1 t2) es la duración del
-- intervalo de tiempo que se inicia en t1 y finaliza en t2. Por
-- ejemplo,
      duracion (2,15) (6,40) == (4,25)
     duracion (2,40) (6,15) == (3,35)
tiempo (m1,s1) (m2,s2)
       | s1 \le s2 = (m2-m1, s2-s1)
       | otherwise = (m2-m1-1,60+s2-s1)
-- Ejercicio 4. Definir la función cortas tal que (cortas xs) es la
-- lista de las palabras más cortas (es decir, de menor longitud) de la
-- lista xs. Por ejemplo,
     ghci> cortas ["hoy", "es", "un", "buen", "dia", "de", "sol"]
    ["es","un","de"]
cortas xs = [x \mid x \leftarrow xs, length x == n]
    where n = minimum [length x | x <- xs]
```

1.2. Examen 2 (20 de diciembre de 2012)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (20 de diciembre de 2012)
-- ------
```

```
-- Ejercicio 1. Un entero positivo n es libre de cuadrado si no es
-- divisible por ningún m^2 > 1. Por ejemplo, 10 es libre de cuadrado
-- (porque 10 = 2*5) y 12 no lo es (ya que es divisible por 2^2).
-- Definir la función
      libresDeCuadrado :: Int -> [Int]
-- tal que (libresDeCuadrado n) es la lista de los primeros n números
-- libres de cuadrado. Por ejemplo,
-- libresDeCuadrado 15 = [1,2,3,5,6,7,10,11,13,14,15,17,19,21,22]
libresDeCuadrado :: Int -> [Int]
libresDeCuadrado n =
    take n [n | n <- [1..], libreDeCuadrado n]
-- (libreDeCuadrado n) se verifica si n es libre de cuadrado. Por
-- ejemplo,
     libreDeCuadrado 10 == True
      libreDeCuadrado 12 == False
libreDeCuadrado :: Int -> Bool
libreDeCuadrado n =
    null [m \mid m < -[2..n], rem n (m^2) == 0]
-- Ejercicio 2. Definir la función
      duplicaPrimo :: [Int] -> [Int]
-- tal que (duplicaPrimo xs) es la lista obtenida sustituyendo cada
-- número primo de xs por su doble. Por ejemplo,
     duplicaPrimo [2,5,9,7,1,3] == [4,10,9,14,1,6]
duplicaPrimo :: [Int] -> [Int]
duplicaPrimo []
                 = []
duplicaPrimo (x:xs) | primo x = (2*x) : duplicaPrimo xs
                    | otherwise = x : duplicaPrimo xs
-- (primo x) se verifica si x es primo. Por ejemplo,
     primo 7 == True
     primo 8 == False
primo :: Int -> Bool
primo x = divisores x == [1,x]
```

```
-- (divisores x) es la lista de los divisores de x. Por ejemplo,
     divisores 30 == [1,2,3,5,6,10,15,30]
divisores :: Int -> [Int]
divisores x = [y \mid y \leftarrow [1..x], rem x y == 0]
-- Ejercicio 3. Definir la función
   ceros :: Int -> Int
-- tal que (ceros n) es el número de ceros en los que termina el número
-- n. Por ejemplo,
    ceros 3020000 == 4
ceros :: Int -> Int
ceros n | rem n 10 /= 0 = 0
       | otherwise = 1 + ceros (div n 10)
-- Ejercicio 4. [Problema 387 del Proyecto Euler]. Un número de Harshad
-- es un entero divisible entre la suma de sus dígitos. Por ejemplo, 201
-- es un número de Harshad porque es divisible por 3 (la suma de sus
-- dígitos). Cuando se elimina el último dígito de 201 se obtiene 20 que
-- también es un número de Harshad. Cuando se elimina el último dígito
-- de 20 se obtiene 2 que también es un número de Harshad. Los números
-- como el 201 que son de Harshad y que los números obtenidos eliminando
-- sus últimos dígitos siguen siendo de Harshad se llaman números de
-- Harshad hereditarios por la derecha. Definir la función
     numeroHHD :: Int -> Bool
-- tal que (numeroHHD n) se verifica si n es un número de Harshad
-- hereditario por la derecha. Por ejemplo,
     numeroHHD 201 == True
     numeroHHD 140 == False
     numeroHHD 1104 == False
-- Calcular el mayor número de Harshad hereditario por la derecha con
-- tres dígitos.
-- (numeroH n) se verifica si n es un número de Harshad.
-- numeroH 201 == True
```

1.3. Examen 3 (6 de febrero de 2013)

```
-- Informática (1º del Grado en Matemáticas)
-- 3º examen de evaluación continua (6 de febrero de 2013)
-- Ejercicio 1.1. Definir, por recursión, la función
-- sumaR :: Num a => [[a]] -> a
-- tal que (sumaR xss) es la suma de todos los elementos de todas las
-- listas de xss. Por ejemplo,
   sumaR [[1,3,5],[2,4,1],[3,7,9]] == 35
sumaR :: Num a => [[a]] -> a
sumaR [] = 0
sumaR (xs:xss) = sum xs + sumaR xss
-- Ejercicio 1.2. Definir, por plegado, la función
     sumaP :: Num \ a => [[a]] -> a
-- tal que (sumaP xss) es la suma de todos los elementos de todas las
-- listas de xss. Por ejemplo,
-- sumaP[[1,3,5],[2,4,1],[3,7,9]] == 35
```

```
sumaP :: Num a => [[a]] -> a
sumaP = foldr (\x y -> (sum x) + y) 0
-- Ejercicio 2. Definir la función
-- raicesEnteras :: Int -> Int -> [Int]
-- tal que (raicesEnteras a b c) es la lista de las raices enteras de la
-- ecuación ax^2+bx+c = 0. Por ejemplo,
-- raicesEnteras 1 (-6) 9 == [3]
    raicesEnteras 1 (-6) 0
                             == [0,6]
    raicesEnteras 5 (-6) 0
                             == [0]
    raicesEnteras 1 1 (-6)
                             == [2, -31]
    raicesEnteras 2 (-1) (-6) == [2]
     raicesEnteras 2 0 0
                             == [0]
    raicesEnteras 6 5 (-6)
                             == []
-- Usando raicesEnteras calcular las raíces de la ecuación
--7x^2-11281x+2665212 = 0.
__ ______
raicesEnteras :: Int -> Int -> Int -> [Int]
raicesEnteras a b c
 | c == 0 \&\& rem b a /= 0 = [0]
 | c == 0 \&\& rem b a == 0 = [0,-b `div` a]
                   = [x \mid x \leftarrow divisores c, a^*(x^2) + b^*x + c == 0]
 | otherwise
-- (divisores n) es la lista de los divisores enteros de n. Por ejemplo,
     divisores(-6) == [1,2,3,6,-1,-2,-3,-6]
divisores :: Int -> [Int]
divisores n = ys ++ (map (0-) ys)
 where ys = [x \mid x \leftarrow [1..abs n], mod n x == 0]
-- Una definición alternativa es
raicesEnteras2 a b c = [floor x | x <- raices a b c, esEntero x]</pre>
-- (esEntero x) se verifica si x es un número entero.
esEntero x = ceiling x == floor x
```

```
-- (raices a b c) es la lista de las raices reales de la ecuación
-- ax^2+b^*x+c = 0.
raices a b c | d < 0
                      = []
            | d == 0 = [y1]
            \mid otherwise = [y1,y2]
 where d = b^2 - 4*a*c
       y1 = ((-b) + sqrt d)/(2*a)
       y2 = ((-b) - sqrt d)/(2*a)
-- Ejercicio 3. Definir la función
     segmentos :: (a -> Bool) -> [a] -> [[a]]
-- tal que (segmentos p xs) es la lista de los segmentos de xs cuyos
-- elementos no verifican la propiedad p. Por ejemplo,
     segmentos odd [1,2,0,4,5,6,48,7,2] == [[],[2,0,4],[6,48],[2]]
     segmentos odd [8,6,1,2,0,4,5,6,7,2] == [[8,6],[2,0,4],[6],[2]]
segmentos :: (a -> Bool) -> [a] -> [[a]]
segmentos _ [] = []
segmentos p xs =
 takeWhile (not.p) xs : (segmentos p (dropWhile p (dropWhile (not.p) xs)))
-- Ejercicio 4.1. Un número n es especial si al concatenar n y n+1 se
-- obtiene otro número que es divisible entre la suma de n y n+1. Por
-- ejemplo, 1, 4, 16 y 49 son especiales ya que
         1+2 divide a 12
                               _
                                       12/3 = 4
         4+5 divide a
                         45
                                        45/9 = 5
        16+17 divide a 1617
                                    1617/33 = 49
        49+50 divide a 4950
                                    4950/99 = 50
                              -
-- Definir la función
     esEspecial :: Integer -> Bool
-- tal que (esEspecial n) se verifica si el número obtenido concatenando
-- n y n+1 es divisible entre la suma de n y n+1. Por ejemplo,
   esEspecial 4 == True
    esEspecial 7 == False
```

esEspecial :: Integer -> Bool

```
esEspecial n = pegaNumeros n (n+1) `rem` (2*n+1) == 0
-- (pegaNumeros x y) es el número resultante de "pegar" los
-- números x e y. Por ejemplo,
     pegaNumeros 12 987 == 12987
     pegaNumeros 1204 7
                         == 12047
     pegaNumeros 100 100 == 100100
pegaNumeros :: Integer -> Integer
pegaNumeros x y
    | y < 10 = 10*x+y
    | otherwise = 10 * pegaNumeros x (y `div` 10) + (y `mod` 10)
-- Ejercicio 4.2. Definir la función
     especiales :: Int -> [Integer]
-- tal que (especiales n) es la lista de los n primeros números
-- especiales. Por ejemplo,
     especiales 5 == [1,4,16,49,166]
especiales :: Int -> [Integer]
especiales n = take \ n \ [x \mid x \leftarrow [1..], esEspecial x]
```

1.4. Examen 4 (21 de marzo de 2013)

-- Informática (1º del Grado en Matemáticas)

```
-- 4º examen de evaluación continua (21 de marzo de 2013)

-- Ejercicio 1. [2.5 puntos] Los pares de números impares se pueden

-- ordenar según su suma y, entre los de la misma suma, su primer

-- elemento como sigue:

-- (1,1),(1,3),(3,1),(1,5),(3,3),(5,1),(1,7),(3,5),(5,3),(7,1),...

-- Definir la función

-- paresDeImpares :: [(Int,Int)]

-- tal que paresDeImpares es la lista de pares de números impares con

-- dicha ordenación. Por ejemplo,

-- ghci> take 10 paresDeImpares

-- [(1,1),(1,3),(3,1),(1,5),(3,3),(5,1),(1,7),(3,5),(5,3),(7,1)]
```

```
-- Basándose en paresDeImpares, definir la función
      posicion
-- tal que (posicion p) es la posición del par p en la sucesión. Por
-- ejemplo,
-- posicion(3,5) == 7
paresDeImpares :: [(Int,Int)]
paresDeImpares =
  [(x,n-x) \mid n \leftarrow [2,4..], x \leftarrow [1,3..n]]
posicion :: (Int,Int) -> Int
posicion(x,y) =
  length (takeWhile (/=(x,y)) paresDeImpares)
-- Ejercicio 2. [2.5 puntos] Definir la constante
      cuadradosConcatenados :: [(Integer, Integer, Integer)]
-- de forma que su valor es la lista de ternas (x,y,z) de tres cuadrados
-- perfectos tales que z es la concatenación de x e y. Por ejemplo,
   ghci> take 5 cuadradosConcatenados
   [(4,9,49),(16,81,1681),(36,100,36100),(1,225,1225),(4,225,4225)]
cuadradosConcatenados :: [(Integer,Integer,Integer)]
cuadradosConcatenados =
  [(x,y,concatenacion x y) | y \leftarrow cuadrados,
                              x \leftarrow [1..y],
                              esCuadrado x,
                              esCuadrado (concatenacion x y)]
-- cuadrados es la lista de los números que son cuadrados perfectos. Por
-- ejemplo,
      take \ 5 \ cuadrados == [1,4,9,16,25]
cuadrados :: [Integer]
cuadrados = [x^2 | x \leftarrow [1..]]
-- (concatenacion x y) es el número obtenido concatenando los números x
-- e y. Por ejemplo,
    concatenacion 3252 476 == 3252476
```

```
concatenacion :: Integer -> Integer -> Integer
concatenacion x y = read (show x ++ show y)
-- (esCuadrado x) se verifica si x es un cuadrado perfecto; es decir,
-- si existe un y tal que y^2 es igual a x. Por ejemplo,
     esCuadrado 16 == True
      esCuadrado 17 == False
esCuadrado :: Integer -> Bool
esCuadrado x = y^2 == x
 where y = round (sqrt (fromIntegral x))
-- Ejercicio 3. [2.5 puntos] La expresiones aritméticas se pueden
-- representar mediante el siguiente tipo
     data Expr = V Char
                | N Int
                | S Expr Expr
               | P Expr Expr
-- por ejemplo, la expresión "z*(3+x)" se representa por
-- (P (V 'z') (S (N 3) (V 'x'))).
-- Definir la función
     sumas :: Expr -> Int
-- tal que (sumas e) es el número de sumas en la expresión e. Por
-- ejemplo,
     sumas (P (V 'z') (S (N 3) (V 'x'))) == 1
     sumas (S (V 'z') (S (N 3) (V 'x'))) == 2
     sumas (P (V 'z') (P (N 3) (V 'x'))) == 0
data Expr = V Char
          | N Int
          | S Expr Expr
          | P Expr Expr
sumas :: Expr -> Int
sumas (V ) = 0
sumas (N _) = 0
sumas (S \times y) = 1 + sumas \times x + sumas y
sumas (P x y) = sumas x + sumas y
```

```
-- Ejercicio 4. [2.5 puntos] Los árboles binarios se pueden representar
-- mediante el tipo Arbol definido por
     data Arbol = H2 Int
             | N2 Int Arbol Arbol
-- Por ejemplo, el árbol
       1
       / \
     2 5
    / | / |
-- 3 46 7
-- se puede representar por
     N2 1 (N2 2 (H2 3) (H2 4)) (N2 5 (H2 6) (H2 7))
-- Definir la función
    ramas :: Arbol -> [[Int]]
-- tal que (ramas a) es la lista de las ramas del árbol. Por ejemplo,
     ghci> ramas (N2 1 (N2 2 (H2 3) (H2 4)) (N2 5 (H2 6) (H2 7)))
   [[1,2,3],[1,2,4],[1,5,6],[1,5,7]]
data Arbol = H2 Int
         | N2 Int Arbol Arbol
ramas :: Arbol -> [[Int]]
ramas (H2 x) = [[x]]
ramas (N2 x i d) = [x:r | r <- ramas i ++ ramas d]
       Examen 5 ( 9 de mayo de 2013)
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (16 de mayo de 2013)
import Data.Array
-- Ejercicio 1. Definir la función
```

```
empiezanPorUno :: [Int] -> [Int]
-- tal que (empiezanPorUno xs) es la lista de los elementos de xs que
-- empiezan por uno. Por ejemplo,
-- empiezanPorUno [31,12,7,143,214] == [12,143]
-- 1ª definición: Por comprensión:
empiezanPorUno1 :: [Int] -> [Int]
empiezanPorUnol xs =
  [x \mid x \leftarrow xs, head (show x) == '1']
-- 2ª definición: Por filtrado:
empiezanPorUno2 :: [Int] -> [Int]
empiezanPorUno2 xs =
  filter empiezaPorUno xs
empiezaPorUno :: Int -> Bool
empiezaPorUno x =
 head (show x) == '1'
-- 3ª definición: Por recursión:
empiezanPorUno3 :: [Int] -> [Int]
empiezanPorUno3 [] = []
empiezanPorUno3 (x:xs) | empiezaPorUno x = x: empiezanPorUno3 xs
                      -- 4ª definición: Por plegado:
empiezanPorUno4 :: [Int] -> [Int]
empiezanPorUno4 = foldr f []
 where f x ys | empiezaPorUno x = x : ys
              | otherwise
                            = ys
-- Ejercicio 2. Esta semana A. Helfgott ha publicado la primera
-- demostración de la conjetura débil de Goldbach que dice que todo
-- número impar mayor que 5 es suma de tres números primos (puede
-- repetirse alguno).
-- Definir la función
     sumaDe3Primos :: Int -> [(Int,Int,Int)]
```

```
-- tal que (sumaDe3sPrimos n) es la lista de las distintas
-- descomposiciones de n como suma de tres números primos. Por ejemplo,
      sumaDe3Primos 7 == [(2,2,3)]
      sumaDe3Primos 9 == [(2,2,5),(3,3,3)]
-- Calcular cuál es el menor número que se puede escribir de más de 500
-- formas como suma de tres números primos.
sumaDe3Primos :: Int -> [(Int,Int,Int)]
sumaDe3Primos n =
    [(x,y,n-x-y) \mid y \leftarrow primosN,
                   x <- takeWhile (<=y) primosN,
                   x+y \ll n,
                   y \ll n - x - y,
                   elem (n-x-y) primosN]
    where primosN = takeWhile (<=n) primos</pre>
-- (esPrimo n) se verifica si n es primo.
esPrimo :: Int-> Bool
esPrimo n = [x \mid x < [1..n], rem n x == 0] == [1,n]
-- primos es la lista de los números primos.
primos :: [Int]
primos = 2 : [n | n \leftarrow [3,5..], esPrimo n]
-- El cálculo es
      ghci > head [n \mid n < -[1..], length (sumaDe3Primos n) > 500]
      587
-- Ejercicio 3. Los polinomios pueden representarse de forma densa. Por
-- ejemplo, el polinomio 6x^4-5x^2+4x-7 se puede representar por
-- [(4,6),(2,-5),(1,4),(0,-7)].
-- Definir la función
      suma :: (Num \ a, \ Eq \ a) => [(Int,a)] -> [(Int,a)] -> [(Int,a)]
-- tal que (suma p q) es suma de los polinomios p y q representados de
-- forma densa. Por ejemplo,
      ghci> suma [(5,3),(1,2),(0,1)] [(1,6),(0,4)]
      [(5,3),(1,8),(0,5)]
```

```
ghci> suma [(1,6),(0,4)] [(5,3),(1,2),(0,1)]
      [(5,3),(1,8),(0,5)]
      ghci > suma [(5,3),(1,2),(0,1)] [(5,-3),(1,6),(0,4)]
      [(1,8),(0,5)]
      ghci> suma [(5,3),(1,2),(0,1)] [(5,4),(1,-2),(0,4)]
      [(5,7),(0,5)]
suma :: (Num \ a, Eq \ a) \Rightarrow [(Int,a)] \rightarrow [(Int,a)] \rightarrow [(Int,a)]
suma [] q = q
suma p [] = p
suma ((n,b):p) ((m,c):q)
    | n > m
                 = (n,b) : suma p ((m,c):q)
    | n < m
                = (m,c) : suma ((n,b):p) q
    | b + c == 0 = suma p q
    | otherwise = (n,b+c) : suma p q
-- Ejercicio 4. Se define el tipo de las matrices enteras por
      type Matriz = Array (Integer, Integer) Integer
-- Definir la función
      borraCols :: Integer -> Integer -> Matriz -> Matriz
-- tal que (borraCols j1 j2 p) es la matriz obtenida borrando las
-- columnas j1 y j2 (con j1 < j2) de la matriz p. Por ejemplo,
      ghci > let p = listArray ((1,1),(2,4)) [1..8]
      ghci> p
      array ((1,1),(2,4)) [((1,1),1),((1,2),2),((1,3),3),((1,4),4),
                            ((2,1),5),((2,2),6),((2,3),7),((2,4),8)
      ghci> borraCols 1 3 p
      array ((1,1),(2,2)) [((1,1),2),((1,2),4),((2,1),6),((2,2),8)]
      ghci> borraCols 2 3 p
      array ((1,1),(2,2)) [((1,1),1),((1,2),4),((2,1),5),((2,2),8)]
type Matriz = Array (Integer, Integer) Integer
-- 1ª definición:
borraCols :: Integer -> Integer -> Matriz -> Matriz
borraCols j1 j2 p =
  borraCol (j2-1) (borraCol j1 p)
```

```
-- (borraCol j1 p) es la matriz obtenida borrando la columna j1 de la
-- matriz p. Por ejemplo,
                  ghci > let p = listArray ((1,1),(2,4)) [1..8]
                  ghci> borraCol 2 p
                  array ((1,1),(2,3)) [((1,1),1),((1,2),3),((1,3),4),((2,1),5),((2,2),7),((2,2),7)]
                  ghci> borraCol 3 p
                  array ((1,1),(2,3)) [((1,1),1),((1,2),2),((1,3),4),((2,1),5),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),((2,2),6),(
borraCol :: Integer -> Matriz -> Matriz
borraCol j1 p =
      array ((1,1),(m,n-1))
                         [((i,j), f i j)| i \leftarrow [1..m], j \leftarrow [1..n-1]]
     where (\_,(m,n)) = bounds p
                        f i j | j < j1
                                                                       = p!(i,j)
                                           \mid otherwise = p!(i,j+1)
-- 2ª definición:
borraCols2 :: Integer -> Integer -> Matriz -> Matriz
borraCols2 j1 j2 p =
      array ((1,1),(m,n-2))
                         [((i,j), f i j)| i \leftarrow [1..m], j \leftarrow [1..n-2]]
     where (\_,(m,n)) = bounds p
                        f i j | j < j1 = p!(i,j)
                                           | j < j2-1 = p!(i,j+1)
                                           | otherwise = p!(i,j+2)
-- 3ª definición:
borraCols3 :: Integer -> Integer -> Matriz -> Matriz
borraCols3 j1 j2 p =
      listArray ((1,1),(n,m-2)) [p!(i,j) | i <- [1..n], j <- [1..m], j/=j1 && j/=j2]
     where (\_,(n,m)) = bounds p
```

1.6. Examen 6 (13 de junio de 2013)

import Data.Array

```
-- Ejercicio 1. [2 puntos] Un número es creciente si cada una de sus
-- cifras es mayor o igual que su anterior. Definir la función
-- numerosCrecientes :: [Integer] -> [Integer]
-- tal que (numerosCrecientes xs) es la lista de los números crecientes
-- de xs. Por ejemplo,
     ghci> numerosCrecientes [21..50]
      [22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49]
-- Usando la definición de numerosCrecientes calcular la cantidad de
-- números crecientes de 3 cifras.
-- 1ª definición (por comprensión):
numerosCrecientes :: [Integer] -> [Integer]
numerosCrecientes xs = [n | n <- xs, esCreciente (cifras n)]</pre>
-- (esCreciente xs) se verifica si xs es una sucesión cerciente. Por
-- ejemplo,
      esCreciente [3,5,5,12] == True
      esCreciente [3,5,4,12] == False
esCreciente :: Ord a => [a] -> Bool
esCreciente (x:y:zs) = x \le y \&\& esCreciente (y:zs)
                    = True
esCreciente _
-- (cifras x) es la lista de las cifras del número x. Por ejemplo,
     cifras 325 == [3,2,5]
cifras :: Integer -> [Integer]
cifras x = [read [d] | d \leftarrow show x]
-- El cálculo es
     ghci> length (numerosCrecientes [100..999])
      165
-- 2ª definición (por filtrado):
numerosCrecientes2 :: [Integer] -> [Integer]
numerosCrecientes2 = filter (\n -> esCreciente (cifras n))
-- 3ª definición (por recursión):
numerosCrecientes3 :: [Integer] -> [Integer]
numerosCrecientes3 [] = []
```

```
numerosCrecientes3 (n:ns)
  | esCreciente (cifras n) = n : numerosCrecientes3 ns
  | otherwise
                          = numerosCrecientes3 ns
-- 4ª definición (por plegado):
numerosCrecientes4 :: [Integer] -> [Integer]
numerosCrecientes4 = foldr f []
 where f n ns | esCreciente (cifras n) = n : ns
               | otherwise
                                        = ns
-- Ejercicio 2. [2 puntos] Definir la función
      sublistasIguales :: Eq a => [a] -> [[a]]
-- tal que (sublistasIguales xs) es la listas de elementos consecutivos
-- de xs que son iguales. Por ejemplo,
     ghci> sublistasIguales [1,5,5,10,7,7,7,2,3,7]
     [[1],[5,5],[10],[7,7,7],[2],[3],[7]]
-- 1ª definición:
sublistasIguales :: Eq a => [a] -> [[a]]
sublistasIguales [] = []
sublistasIguales (x:xs) =
  (x : takeWhile (==x) xs) : sublistasIguales (dropWhile (==x) xs)
-- 2ª definición:
sublistasIguales2 :: Eq a => [a] -> [[a]]
sublistasIguales2 [] = []
sublistasIguales2 [x] = [[x]]
sublistasIguales2 (x:y:zs)
 | x == u = (x:u:us):vss
  | otherwise = [x]:((u:us):vss)
 where ((u:us):vss) = sublistasIguales2 (y:zs)
-- Ejercicio 3. [2 puntos] Los árboles binarios se pueden representar
-- con el de dato algebraico
-- data Arbol a = H
                   | N a (Arbol a) (Arbol a)
                   deriving Show
```

```
-- Por ejemplo, los árboles
          9
         / \
        /
       8 6
                       8 6
      / | / |
                       / | / |
     3 2 4 5
                     3 2 4 7
-- se pueden representar por
     ej1, ej2:: Arbol Int
     ej1 = N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
     ej2 = N9 (N8 (N3 H H) (N2 H H)) (N6 (N4 H H) (N7 H H))
-- Un árbol binario ordenado es un árbol binario (ABO) en el que los
-- valores de cada nodo es mayor o igual que los valores de sus
-- hijos. Por ejemplo, ej1 es un ABO, pero ej2 no lo es.
-- Definir la función esABO
     esABO :: Ord t => Arbol t -> Bool
-- tal que (esABO a) se verifica si a es un árbol binario ordenado. Por
-- ejemplo.
-- esABO ej1 == True
    esABO ej2 == False
data Arbol a = H
            | N a (Arbol a) (Arbol a)
            deriving Show
ej1, ej2 :: Arbol Int
ej1 = N 9 (N 8 (N 3 H H) (N 2 H H))
         (N 6 (N 4 H H) (N 5 H H))
e_{12} = N 9 (N 8 (N 3 H H) (N 2 H H))
         (N 6 (N 4 H H) (N 7 H H))
-- 1º definición
esABO :: Ord a => Arbol a -> Bool
esABO H
                             = True
                             = True
esABO (N x H H)
esABO (N x m1@(N x1 a1 b1) H) = x >= x1 \&\& esABO m1
esABO (N x H m2@(N x2 a2 b2)) = x >= x2 \&\& esABO m2
```

```
esABO (N \times m1@(N \times 1 \text{ al b1}) m2@(N \times 2 \text{ a2 b2})) =
      x >= x1 \&\& esAB0 m1 \&\& x >= x2 \&\& esAB0 m2
-- 2ª definición
esABO2 :: Ord a => Arbol a -> Bool
esAB02 H
                 = True
esABO2 (N x i d) = mayor x i && mayor x d && esABO2 i && esABO2 d
       where mayor x H
              mayor x (N y _ ) = x >= y
-- Ejercicio 4. [2 puntos] Definir la función
      paresEspecialesDePrimos :: Integer -> [(Integer,Integer)]
-- tal que (paresEspecialesDePrimos n) es la lista de los pares de
-- primos (p,q) tales que p < q y q - p es divisible por n. Por ejemplo,
      ghci> take 9 (paresEspecialesDePrimos 2)
      [(3,5),(3,7),(5,7),(3,11),(5,11),(7,11),(3,13),(5,13),(7,13)]
      ghci> take 9 (paresEspecialesDePrimos 3)
      [(2,5),(2,11),(5,11),(7,13),(2,17),(5,17),(11,17),(7,19),(13,19)]
paresEspecialesDePrimos :: Integer -> [(Integer,Integer)]
paresEspecialesDePrimos n =
  [(p,q) \mid (p,q) \leftarrow paresPrimos, rem (q-p) n == 0]
-- paresPrimos es la lista de los pares de primos (p,q) tales que p < q.
-- Por ejemplo,
      ghci> take 9 paresPrimos
      [(2,3),(2,5),(3,5),(2,7),(3,7),(5,7),(2,11),(3,11),(5,11)]
paresPrimos :: [(Integer,Integer)]
paresPrimos = [(p,q) | q <- primos, p <- takeWhile (<q) primos]</pre>
-- primos es la lista de primos. Por ejemplo,
      take 9 primos == [2,3,5,7,11,13,17,19,23]
primos :: [Integer]
primos = criba [2..]
criba :: [Integer] -> [Integer]
criba (p:xs) = p : criba [x \mid x \leftarrow xs, x \mod p \neq 0]
```

```
-- Ejercicio 5. Las matrices enteras se pueden representar mediante
-- tablas con índices enteros:
    type Matriz = Array (Int,Int) Int
-- Definir la función
     ampliaColumnas :: Matriz -> Matriz -> Matriz
-- tal que (ampliaColumnas p q) es la matriz construida añadiendo las
-- columnas de la matriz q a continuación de las de p (se supone que
-- tienen el mismo número de filas). Por ejemplo, si p y q representa
-- las dos primeras matrices, entonces (ampliaColumnas p q) es la
-- tercera
-- |0 1|
              |4 5 6| |0 1 4 5 6|
              |7 8 9|
                         [2 3 7 8 9]
    12 31
type Matriz = Array (Int,Int) Int
ampliaColumnas :: Matriz -> Matriz -> Matriz
ampliaColumnas p1 p2 =
  array ((1,1),(m,n1+n2)) [((i,j), f i j) | i \leftarrow [1..m], j \leftarrow [1..n1+n2]]
    where ((\_,\_),(m,n1)) = bounds p1
          ((\_,\_),(\_,n2)) = bounds p2
          f i j | j \le n1 = p1!(i,j)
                \mid otherwise = p2!(i,j-n1)
-- Ejemplo
      ghci > let p = listArray ((1,1),(2,2)) [0...3] :: Matriz
      ghci> let q = listArray ((1,1),(2,3)) [4..9] :: Matriz
      ghci> ampliaColumnas p q
     array ((1,1),(2,5))
            [((1,1),0),((1,2),1),((1,3),4),((1,4),5),((1,5),6),
             ((2,1),2),((2,2),3),((2,3),7),((2,4),8),((2,5),9)]
```

1.7. Examen 7 (3 de julio de 2013)

```
-- Informática (1º del Grado en Matemáticas)
-- 7º examen de evaluación continua (3 de julio de 2013)
```

```
import Data.List
import Data.Array
-- Ejercicio 1. [2 puntos] Dos listas son cíclicamente iguales si tienen
-- el mismo número de elementos en el mismo orden. Por ejemplo, son
-- cíclicamente iquales los siguientes pares de listas
     [1,2,3,4,5] y [3,4,5,1,2],
      [1,1,1,2,2] y [2,1,1,1,2],
      [1,1,1,1,1] y [1,1,1,1,1]
-- pero no lo son
     [1,2,3,4] y [1,2,3,5],
     [1,1,1,1] y [1,1,1],
     [1,2,2,1] y [2,2,1,2]
-- Definir la función
     iguales :: Eq a => [a] -> [a] -> Bool
-- tal que (iguales xs ys) se verifica si xs es ys son cíclicamente
-- iguales. Por ejemplo,
     iguales [1,2,3,4,5] [3,4,5,1,2] ==
                                          True
     iguales [1,1,1,2,2] [2,1,1,1,2] == True
     iguales [1,1,1,1,1] [1,1,1,1,1] == True
     iguales [1,2,3,4] [1,2,3,5] == False
     iguales [1,1,1,1] [1,1,1]
                                     == False
     iguales [1,2,2,1] [2,2,1,2] == False
-- 1ª solución
-- =========
iquales1 :: Ord a => [a] -> [a] -> Bool
iguales1 xs ys =
    permutacionApares xs == permutacionApares ys
-- (permutacionApares xs) es la lista ordenada de los pares de elementos
-- consecutivos de elementos de xs. Por ejemplo,
      permutacionApares [2,1,3,5,4] == [(1,3),(2,1),(3,5),(4,2),(5,4)]
permutacionApares :: Ord a => [a] -> [(a, a)]
permutacionApares xs =
    sort (zip xs (tail xs) ++ [(last xs, head xs)])
```

```
-- 2ª solucion
-- =========
-- (iguales2 xs ys) se verifica si las listas xs e ys son cíclicamente
-- iguales. Por ejemplo,
iguales2 :: Eq a => [a] -> [a] -> Bool
iquales2 xs ys =
    elem ys (ciclos xs)
-- (ciclo xs) es la lista obtenida pasando el último elemento de xs al
-- principio. Por ejemplo,
     ciclo [2,1,3,5,4] == [4,2,1,3,5]
ciclo :: [a] -> [a]
ciclo xs = (last xs): (init xs)
-- (kciclo k xs) es la lista obtenida pasando los k últimos elementos de
-- xs al principio. Por ejemplo,
     kciclo\ 2\ [2,1,3,5,4] == [5,4,2,1,3]
kciclo :: (Eq a, Num a) => a -> [a1] -> [a1]
kciclo 1 xs = ciclo xs
kciclo k xs = kciclo (k-1) (ciclo xs)
-- (ciclos xs) es la lista de las listas cíclicamente iguales a xs. Por
-- ejemplo,
      ghci> ciclos [2,1,3,5,4]
      [[4,2,1,3,5],[5,4,2,1,3],[3,5,4,2,1],[1,3,5,4,2],[2,1,3,5,4]]
ciclos :: [a] -> [[a]]
ciclos xs = [kciclo k xs | k <- [1..length xs]]</pre>
-- 3º solución
-- ========
iguales3 :: Eq a => [a] -> [a] -> Bool
iguales3 xs ys =
    length xs == length ys && isInfixOf xs (ys ++ ys)
-- Ejercicio ?. Un número natural n es casero respecto de f si las
-- cifras de f(n) es una sublista de las de n. Por ejemplo,
-- * 1234 es casero repecto de resto de dividir por 173, ya que el resto
```

```
-- de dividir 1234 entre 173 es 23 que es una sublista de 1234;
-- * 1148 es casero respecto de la suma de cifras, ya que la suma de las
-- cifras de 1148 es 14 que es una sublista de 1148.
-- Definir la función
     esCasero :: (Integer -> Integer) -> Integer -> Bool
-- tal que (esCasero f x) se verifica si x es casero respecto de f. Por
-- ejemplo,
     esCasero (\x -> rem x 173) 1234 == True
     esCasero (\x -> rem x 173) 1148 == False
     esCasero sumaCifras 1148
                                     == True
     esCasero sumaCifras 1234
                                     == False
-- donde (sumaCifras n) es la suma de las cifras de n.
-- ¿Cuál es el menor número casero respecto de la suma de cifras mayor
-- que 2013?
esCasero :: (Integer -> Integer) -> Integer -> Bool
esCasero f x =
   esSublista (cifras (f x)) (cifras x)
-- (esSublista xs ys) se verifica si xs es una sublista de ys; es decir,
-- si existen dos listas as y bs tales que
     ys = as ++ xs ++ bs
esSublista :: Eq a => [a] -> [a] -> Bool
esSublista = isInfixOf
-- Se puede definir por
esSublista2 :: Eq a => [a] -> [a] -> Bool
esSublista2 xs vs =
   or [esPrefijo xs zs | zs <- sufijos ys]
-- (esPrefijo xs ys) se verifica si xs es un prefijo de ys. Por
-- ejemplo,
     esPrefijo "ab" "abc" == True
     esPrefijo "ac" "abc" == False
     esPrefijo "bc" "abc" == False
esPrefijo :: Eq a => [a] -> [a] -> Bool
esPrefijo [] _
                = True
esPrefijo _ [] = False
```

```
esPrefijo (x:xs) (y:ys) = x == y \&\& isPrefixOf xs ys
-- (sufijos xs) es la lista de sufijos de xs. Por ejemplo,
-- sufijos "abc" == ["abc", "bc", "c", ""]
sufijos :: [a] -> [[a]]
sufijos xs = [drop i xs | i <- [0..length xs]]</pre>
-- (cifras x) es la lista de las cifras de x. Por ejemplo,
     cifras 325 == [3,2,5]
cifras :: Integer -> [Integer]
cifras x = [read [d] | d \leftarrow show x]
-- (sumaCifras x) es la suma de las cifras de x. Por ejemplo,
     sumaCifras 325 == 10
sumaCifras :: Integer -> Integer
sumaCifras = sum . cifras
-- El cálculo del menor número casero respecto de la suma mayor que 2013
      ghci> head [n | n <- [2014..], esCasero sumaCifras n]</pre>
     2099
-- Ejercicio 3. [2 puntos] Definir la función
      interseccion :: Ord a => [a] -> [a] -> [a]
-- tal que (interseccion xs ys) es la intersección de las dos listas,
-- posiblemente infinitas, ordenadas de menor a mayor xs e ys. Por ejemplo,
    take 5 (interseccion [2,4..] [3,6..]) == [6,12,18,24,30]
interseccion :: Ord a => [a] -> [a] -> [a]
interseccion [] = []
interseccion _ [] = []
interseccion (x:xs) (y:ys)
    | x == y = x : interseccion xs ys
    | x < y = interseccion (dropWhile (<y) xs) (y:ys)
    otherwise = interseccion (x:xs) (dropWhile (<x) ys)
-- Ejercicio 4. [2 puntos] Los árboles binarios se pueden representar
```

```
-- mediante el tipo Arbol definido por
     data Arbol = H Int
               | N Int Arbol Arbol
-- Por ejemplo, el árbol
         1
         / \
      2 5
     / | / |
  3 46 7
-- se puede representar por
     N 1 (N 2 (H 3) (H 4)) (N 5 (H 6) (H 7))
-- Definir la función
     esSubarbol :: Arbol -> Arbol -> Bool
-- tal que (esSubarbol al a2) se verifica si al es un subárbol de
-- a2. Por ejemplo,
    esSubarbol (H 2) (N 2 (H 2) (H 4))
                                                    == True
     esSubarbol (H 5) (N 2 (H 2) (H 4))
                                                    == False
     esSubarbol (N 2 (H 2) (H 4)) (N 2 (H 2) (H 4)) == True
     esSubarbol (N 2 (H 4) (H 2)) (N 2 (H 2) (H 4)) == False
data Arbol= H Int
         | N Int Arbol Arbol
esSubarbol :: Arbol -> Arbol -> Bool
esSubarbol (H x) (H y) = x == y
esSubarbol a@(H x) (N y i d) = esSubarbol a i || esSubarbol a d
esSubarbol (N _ _ _ ) (H _) = False
esSubarbol a@(N rl il dl) (N r2 i2 d2)
    | r1 == r2 = (igualArbol i1 i2 \&\& igualArbol d1 d2) ||
                 esSubarbol a i2 || esSubarbol a d2
    | otherwise = esSubarbol a i2 || esSubarbol a d2
-- (igualArbol a1 a2) se verifica si los árboles a1 y a2 son iguales.
igualArbol :: Arbol -> Arbol -> Bool
igualArbol (H x) (H y) = x == y
igualArbol (N r1 i1 d1) (N r2 i2 d2) =
    r1 == r2 \&\& igualArbol i1 i2 \&\& igualArbol d1 d2
igualArbol _ _ = False
```

```
-- Ejercicio 5. [2 puntos] Las matrices enteras se pueden representar
-- mediante tablas con índices enteros:
     type Matriz = Array (Int, Int) Int
-- Por ejemplo, las matrices
     | 1 2 3 4 5 |
                        | 1 2 3 |
                         | 268|
     | 2 6 8 9 4 |
    | 3 8 0 8 3 | | 3 8 0 |
     | 4 9 8 6 2 |
    | 5 4 3 2 1 |
-- se puede definir por
     ejM1, ejM2 :: Matriz
     ejM1 = listArray((1,1),(5,5))[1,2,3,4,5,
                                     2,6,8,9,4,
                                     3,8,0,8,3,
                                     4,9,8,6,2,
                                     5,4,3,2,11
     ejM2 = listArray((1,1),(3,3))[1,2,3,
                                     2,6,8,
                                     3,8,01
-- Una matriz cuadrada es bisimétrica si es simétrica respecto de su
-- diagonal principal y de su diagonal secundaria. Definir la función
     esBisimetrica :: Matriz -> Bool
-- tal que (esBisimetrica p) se verifica si p es bisimétrica. Por
-- ejemplo,
     esBisimetrica eiM1 == True
     esBisimetrica ejM2 == False
type Matriz = Array (Int,Int) Int
ejM1, ejM2 :: Matriz
ejM1 = listArray ((1,1),(5,5)) [1,2,3,4,5,
                               2,6,8,9,4,
                               3,8,0,8,3,
                               4,9,8,6,2,
                               5,4,3,2,1]
```

```
ejM2 = listArray ((1,1),(3,3)) [1,2,3,
                                  2,6,8,
                                  3,8,0]
-- 1º definición:
esBisimetrica :: Matriz -> Bool
esBisimetrica p =
    and [p!(i,j) == p!(j,i) | i \leftarrow [1..n], j \leftarrow [1..n]] \&\&
    and [p!(i,j) == p!(n+1-j,n+1-i) | i \leftarrow [1..n], j \leftarrow [1..n]]
    where ((\_,\_),(n,\_)) = bounds p
-- 2ª definición:
esBisimetrica2 :: Matriz -> Bool
esBisimetrica2 p = p == simetrica p && p == simetricaS p
-- (simetrica p) es la simétrica de la matriz p respecto de la diagonal
-- principal. Por ejemplo,
      ghci> simetrica (listArray ((1,1),(4,4)) [1..16])
      array ((1,1),(4,4)) [((1,1),1),((1,2),5),((1,3),9),((1,4),13),
                             ((2,1),2),((2,2),6),((2,3),10),((2,4),14),
                             ((3,1),3),((3,2),7),((3,3),11),((3,4),15),
                             ((4,1),4),((4,2),8),((4,3),12),((4,4),16)]
simetrica :: Matriz -> Matriz
simetrica p =
    array ((1,1),(n,n)) [((i,j),p!(j,i)) | i \leftarrow [1..n], j \leftarrow [1..n]]
    where ((\_,\_),(n,\_)) = bounds p
-- (simetricaS p) es la simétrica de la matriz p respecto de la diagonal
-- secundaria. Por ejemplo,
      ghci> simetricaS (listArray ((1,1),(4,4)) [1..16])
      array ((1,1),(4,4)) [((1,1),16),((1,2),12),((1,3),8),((1,4),4),
                             ((2,1),15),((2,2),11),((2,3),7),((2,4),3),
                             ((3,1),14),((3,2),10),((3,3),6),((3,4),2),
                             ((4,1),13),((4,2),9),((4,3),5),((4,4),1)]
simetricaS :: Matriz -> Matriz
simetricaS p =
    array ((1,1),(n,n)) [((i,j),p!(n+1-j,n+1-i)) | i \leftarrow [1..n], j \leftarrow [1..n]]
    where ((\_,\_),(n,\_)) = bounds p
```

1.8. Examen 8 (13 de septiembre de 2013)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 2º convocatoria (13 de septiembre de 2013)
import Data.List
import Data.Array
-- Ejercicio 1.1. [1 punto] Las notas se pueden agrupar de distinta
-- formas. Una es por la puntuación; por ejemplo,
      [(4,["juan","ana"]),(9,["rosa","luis","mar"])]
-- Otra es por nombre; por ejemplo,
     [("ana",4),("juan",4),("luis",9),("mar",9),("rosa",9)]
-- Definir la función
      transformaPaN :: [(Int,[String])] -> [(String,Int)]
-- tal que (transformaPaN xs) es la agrupación de notas por nombre
-- correspondiente a la agrupación de notas por puntuación xs. Por
-- ejemplo,
     > transformaPaN [(4,["juan","ana"]),(9,["rosa","luis","mar"])]
     [("ana",4),("juan",4),("luis",9),("mar",9),("rosa",9)]
-- 1ª definición (por comprensión):
transformaPaN :: [(Int,[String])] -> [(String,Int)]
transformaPaN xs = sort [(a,n) | (n,as) <- xs, a <- as]
-- 2ª definición (por recursión):
transformaPaN2 :: [(Int,[String])] -> [(String,Int)]
transformaPaN2 []
transformaPaN2 ((n,xs):ys) = [(x,n)|x<-xs] ++ transformaPaN2 ys
-- Ejercicio 1.2. [1 punto] Definir la función
-- transformaNaP :: [(String, Int)] -> [(Int, [String])]
-- tal que (transformaPaN xs) es la agrupación de notas por nombre
-- correspondiente a la agrupación de notas por puntuación xs. Por
-- ejemplo,
```

```
> transformaNaP [("ana",4),("juan",4),("luis",9),("mar",9),("rosa",9)]
     [(4,["ana","juan"]),(9,["luis","mar","rosa"])]
transformaNaP :: [(String, Int)] -> [(Int, [String])]
transformaNaP xs = [(n, [a \mid (a,n') \leftarrow xs, n' == n]) \mid n \leftarrow notas]
   where notas = sort (nub [n \mid (,n) <- xs])
-- Ejercicio 2. [2 puntos] Definir la función
-- multiplosCon9 :: Integer -> [Integer]
-- tal que (multiplosCon9 n) es la lista de los múltiplos de n cuya
-- única cifra es 9. Por ejemplo,
-- take 3 (multiplosCon9 3) == [9,99,999]
-- Calcular el menor múltiplo de 2013 formado sólo por nueves.
multiplosCon9 :: Integer -> [Integer]
multiplosCon9 n = [x \mid x \leftarrow numerosCon9, rem x n == 0]
-- numerosCon9 es la lista de los número cuyas cifras son todas iguales
-- a 9. Por ejemplo,
     take 5 numerosCon9 == [9,99,999,9999,99999]
numerosCon9 :: [Integer]
numerosCon9 = [10^n-1 | n <- [1..]]
-- 2ª definición (por recursión):
numerosCon9R :: [Integer]
numerosCon9R = 9 : sig 9
   where sig x = (10*x+9) : sig (10*x+9)
-- El cálculo es
     ghci> head (multiplosCon9 2013)
     -- Ejercicio 3. [2 puntos] Una sucesión es suave si valor absoluto de la
-- diferencia de sus términos consecutivos es 1. Definir la función
    suaves :: Int -> [[Int]]
```

```
-- tal que (suaves n) es la lista de las sucesiones suaves de longitud n
-- cuyo último término es 0. Por ejemplo,
     suaves 2 == [[1,0],[-1,0]]
     suaves 3 = [[2,1,0],[0,1,0],[0,-1,0],[-2,-1,0]]
suaves :: Int -> [[Int]]
suaves 0 = []
suaves 1 = [[0]]
suaves n = concat [[x+1:x:xs,x-1:x:xs] | (x:xs) <- suaves (n-1)]
-- Ejercicio 4. [2 puntos] Los árboles binarios se pueden representar
-- mediante el tipo Arbol definido por
     data Arbol a = H a
                   | N a (Arbol a) (Arbol a)
                  deriving Show
-- Por ejemplo, el árbol
           1
          / \
         /
        4 6
       / | / |
     0 7 4 3
-- se puede definir por
     ej1 :: Arbol Int
     ej1 = N 1 (N 4 (H 0) (H 7)) (N 6 (H 4) (H 3))
-- Definir la función
     algunoArbol :: Arbol t -> (t -> Bool) -> Bool
-- tal que (algunoArbol a p) se verifica si algún elemento del árbol a
-- cumple la propiedad p. Por ejemplo,
     algunoArbol ej1 (>9) == False
     algunoArbol ej1 (>5) == True
data Arbol a = H a
             | N a (Arbol a) (Arbol a)
            deriving Show
```

```
ej1 :: Arbol Int
ej1 = N 1 (N 4 (H 0) (H 7)) (N 6 (H 4) (H 3))
algunoArbol :: Arbol a -> (a -> Bool) -> Bool
algunoArbol (\mathbf{H} x) p = p x
algunoArbol (N \times i d) p = p \times || algunoArbol i p || algunoArbol d p
-- Ejercicio 5. [2 puntos] Las matrices enteras se pueden representar
-- mediante tablas con índices enteros:
      type Matriz = Array (Int, Int) Int
-- Definir la función
     matrizPorBloques :: Matriz -> Matriz -> Matriz -> Matriz
-- tal que (matrizPorBloques p1 p2 p3 p4) es la matriz cuadrada de orden
-- 2nx2n construida con las matrices cuadradas de orden nxn p1, p2 p3 y
-- p4 de forma que p1 es su bloque superior izquierda, p2 es su bloque
-- superior derecha, p3 es su bloque inferior izquierda y p4 es su bloque
-- inferior derecha. Por ejemplo, si p1, p2, p3 y p4 son las matrices
-- definidas por
     p1, p2, p3, p4 :: Matriz
     p1 = listArray((1,1),(2,2))[1,2,3,4]
     p2 = listArray ((1,1),(2,2)) [6,5,7,8]
     p3 = listArray((1,1),(2,2))[0,6,7,1]
     p4 = listArray((1,1),(2,2))[5,2,8,3]
-- entonces
     ghci> matrizPorBloques p1 p2 p3 p4
     array ((1,1),(4,4)) [((1,1),1),((1,2),2),((1,3),6),((1,4),5),
                           ((2,1),3),((2,2),4),((2,3),7),((2,4),8),
                           ((3,1),0),((3,2),6),((3,3),5),((3,4),2),
                           ((4,1),7),((4,2),1),((4,3),8),((4,4),3)]
type Matriz = Array (Int,Int) Int
p1, p2, p3, p4 :: Matriz
p1 = listArray ((1,1),(2,2)) [1,2,3,4]
p2 = listArray ((1,1),(2,2)) [6,5,7,8]
p3 = listArray ((1,1),(2,2)) [0,6,7,1]
p4 = listArray ((1,1),(2,2)) [5,2,8,3]
```

1.9. Examen 9 (20 de noviembre de 2013)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 3º convocatoria (20 de noviembre de 2012)
__ ______
import Data.List
import Data.Array
-- Ejercicio 1. [2 puntos] Definir la función
     mayorProducto :: Int -> [Int] -> Int
-- tal que (mayorProducto n xs) es el mayor producto de una sublista de
-- xs de longitud n. Por ejemplo,
     mayorProducto\ 3\ [3,2,0,5,4,9,1,3,7]\ ==\ 180
-- ya que de todas las sublistas de longitud 3 de [3,2,0,5,4,9,1,3,7] la
-- que tiene mayor producto es la [5,4,9] cuyo producto es 180.
mayorProducto :: Int -> [Int] -> Int
mayorProducto n cs
   \mid length cs < n = 1
   otherwise = maximum [product xs | xs <- segmentos n cs]
  where segmentos n cs = [take n xs | xs <- tails cs]</pre>
-- Ejercicio 2. Definir la función
     sinDobleCero :: Int -> [[Int]]
-- tal que (sinDobleCero n) es la lista de las listas de longitud n
```

```
-- formadas por el 0 y el 1 tales que no contiene dos ceros
-- consecutivos. Por ejemplo,
      ghci> sinDobleCero 2
      [[1,0],[1,1],[0,1]]
     ghci> sinDobleCero 3
      [[1,1,0],[1,1,1],[1,0,1],[0,1,0],[0,1,1]]
     ghci> sinDobleCero 4
     [[1,1,1,0],[1,1,1,1],[1,1,0,1],[1,0,1,0],[1,0,1,1],
      [0,1,1,0],[0,1,1,1],[0,1,0,1]]
sinDobleCero :: Int -> [[Int]]
sinDobleCero 0 = [[]]
sinDobleCero\ 1 = [[0],[1]]
sinDobleCero n = [1:xs | xs <- sinDobleCero (n-1)] ++</pre>
                 [0:1:ys | ys <- sinDobleCero (n-2)]
-- Ejercicio 3. [2 puntos] La sucesión A046034 de la OEIS (The On-Line
-- Encyclopedia of Integer Sequences) está formada por los números tales
-- que todos sus dígitos son primos. Los primeros términos de A046034
-- son
     2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,222,223
-- Definir la constante
     numerosDigitosPrimos :: [Int]
-- cuyos elementos son los términos de la sucesión A046034. Por ejemplo,
      ghci> take 22 numerosDigitosPrimos
      [2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,222,223]
-- ¿Cuántos elementos hay en la sucesión menores que 2013?
numerosDigitosPrimos :: [Int]
numerosDigitosPrimos =
    [n \mid n \leftarrow [2..], digitosPrimos n]
-- (digitosPrimos n) se verifica si todos los dígitos de n son
-- primos. Por ejemplo,
     digitosPrimos 352 == True
      digitosPrimos 362 == False
```

```
digitosPrimos :: Int -> Bool
digitosPrimos n = all (`elem` "2357") (show n)
-- 2ª definición de digitosPrimos:
digitosPrimos2 :: Int -> Bool
digitosPrimos2 n = subconjunto (cifras n) [2,3,5,7]
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
cifras :: Int -> [Int]
cifras n = [read [x] | x <-show n]
-- (subconjunto xs ys) se verifica si xs es un subconjunto de ys. Por
-- ejemplo,
subconjunto :: Eq a => [a] -> [a] -> Bool
subconjunto xs ys = and [elem x ys \mid x <- xs]
-- El cálculo es
     ghci> length (takeWhile (<2013) numerosDigitosPrimos)</pre>
     84
-- Ejercicio 4. [2 puntos] Entre dos matrices de la misma dimensión se
-- puede aplicar distintas operaciones binarias entre los elementos en
-- la misma posición. Por ejemplo, si a y b son las matrices
-- |3 4 6| |1 4 2|
-- |5 6 7|
                 |2 1 2|
-- entonces a+b y a-b son, respectivamente
-- |4 8 8| |2 0 4|
    |7 7 9|
                 |3 5 5|
-- Las matrices enteras se pueden representar mediante tablas con
-- índices enteros:
      type Matriz = Array (Int, Int) Int
-- y las matrices anteriores se definen por
     a, b :: Matriz
     a = listArray((1,1),(2,3))[3,4,6,5,6,7]
     b = listArray ((1,1),(2,3)) [1,4,2,2,1,2]
-- Definir la función
      opMatriz :: (Int -> Int -> Int) -> Matriz -> Matriz -> Matriz
```

```
-- tal que (opMatriz f p q) es la matriz obtenida aplicando la operación
-- f entre los elementos de p y q de la misma posición. Por ejemplo,
      ghci> opMatriz (+) a b
      array ((1,1),(2,3)) [((1,1),4),((1,2),8),((1,3),8),
                           ((2,1),7),((2,2),7),((2,3),9)
     ghci> opMatriz (-) a b
     array ((1,1),(2,3)) [((1,1),2),((1,2),0),((1,3),4),
                    ((2,1),3),((2,2),5),((2,3),5)]
type Matriz = Array (Int,Int) Int
a, b :: Matriz
a = listArray((1,1),(2,3))[3,4,6,5,6,7]
b = listArray ((1,1),(2,3)) [1,4,2,2,1,2]
-- 1ª definición
opMatriz :: (Int -> Int -> Int) -> Matriz -> Matriz -> Matriz
opMatriz f p q =
    array ((1,1),(m,n)) [((i,j), f(p!(i,j)) (q!(i,j)))
                      | i \leftarrow [1..m], j \leftarrow [1..n]]
    where (,(m,n)) = bounds p
-- 2ª definición
opMatriz2 :: (Int -> Int -> Int) -> Matriz -> Matriz -> Matriz
opMatriz2 f p q =
    listArray (bounds p) [f x y | (x,y) \leftarrow zip (elems p) (elems q)]
-- Ejercicio 5. [2 puntos] Las expresiones aritméticas se pueden definir
-- usando el siguiente tipo de datos
      data Expr = N Int
                | X
                | S Expr Expr
                | R Expr Expr
                | P Expr Expr
                | E Expr Int
                deriving (Eq, Show)
-- Por ejemplo, la expresión
    3*x - (x+2)^7
```

```
-- se puede definir por
     R (P (N 3) X) (E (S X (N 2)) 7)
-- Definir la función
      maximo :: Expr -> [Int] -> (Int,[Int])
-- tal que (maximo e xs) es el par formado por el máximo valor de la
-- expresión e para los puntos de xs y en qué puntos alcanza el
-- máximo. Por ejemplo,
      ghci > maximo (E (S (N 10) (P (R (N 1) X) X)) 2) [-3..3]
      (100, [0, 1])
data Expr = N Int
          | X
          | S Expr Expr
          | R Expr Expr
          | P Expr Expr
          | E Expr Int
          deriving (Eq, Show)
maximo :: Expr -> [Int] -> (Int,[Int])
maximo e ns = (m,[n \mid n \leftarrow ns, valor e n == m])
    where m = maximum [valor e n | n <- ns]</pre>
valor :: Expr -> Int -> Int
valor (N \times) = \times
valor X
          n = n
valor (S e1 e2) n = (valor e1 n) + (valor e2 n)
valor (\mathbb{R} e1 e2) n = (valor e1 n) - (valor e2 n)
valor (P e1 e2) n = (valor e1 n) * (valor e2 n)
valor (\mathbf{E} e m ) n = (valor e n)^m
```

2

Exámenes del grupo 2

Antonia M. Chávez

2.1. Examen 1 (7 de noviembre de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 1º examen de evaluación continua (7 de noviembre de 2012)
-- Ejercicio 1. Definir la función ocurrenciasDelMaximo tal que
-- (ocurrenciasDelMaximo xs) es el par formado por el mayor de los
-- números de xs y el número de veces que este aparece en la lista
-- xs, si la lista es no vacía y es (0,0) si xs es la lista vacía. Por
-- ejemplo,
      ocurrenciasDelMaximo [1,3,2,4,2,5,3,6,3,2,1,8,7,6,5] == (8,1)
     ocurrenciasDelMaximo [1,8,2,4,8,5,3,6,3,2,1,8]
     ocurrenciasDelMaximo [8,8,2,4,8,5,3,6,3,2,1,8] == (8,4)
ocurrenciasDelMaximo [] = (0,0)
ocurrenciasDelMaximo xs = (maximum xs, sum [1 | y <- xs, y == maximum xs])</pre>
-- Ejercicio 2. Definir, por comprensión, la función tienenS tal que
-- (tienenS xss) es la lista de las longitudes de las cadenas de xss que
-- contienen el caracter 's' en mayúsculas o minúsculas. Por ejemplo,
     tienenS ["Este", "es", "un", "examen", "de", "hoy", "Suerte"] == [4,2,6]
     tienenS ["Este"]
                                                               == [4]
```

```
tienenS []
                                                                      []
     tienenS [" "]
                                                                  == []
tienenS xss = [length xs | xs <- xss, (elem 's' xs) || (elem 'S' xs)]</pre>
-- Ejercicio 3. Decimos que una lista está algo ordenada si para todo
-- par de elementos consecutivos se cumple que el primero es menor o
-- igual que el doble del segundo. Definir, por comprensión, la función
-- (algoOrdenada xs) que se verifica si la lista xs está algo ordenada.
-- Por ejemplo,
     algoOrdenada [1,3,2,5,3,8] == True
     algoOrdenada [3,1] == False
algoOrdenada xs = and [x \le 2*y \mid (x,y) \le zip xs (tail xs)]
-- Ejercicio 4. Definir, por comprensión, la función tripletas tal que
-- (tripletas xs) es la listas de tripletas de elementos consecutivos de
-- la lista xs. Por ejemplo,
      tripletas [8,7,6,5,4] == [[8,7,6],[7,6,5],[6,5,4]]
     tripletas "abcd" == ["abc","bcd"]
tripletas [2,4,3] == [[2,3,4]]
    tripletas [2,4] == []
-- 1º definición:
tripletas xs =
    [[a,b,c] \mid ((a,b),c) \leftarrow zip (zip xs (tail xs)) (tail (tail xs))]
-- 2ª definición:
tripletas2 xs =
    [[xs!!n,xs!!(n+1),xs!!(n+2)] \mid n \leftarrow [0..length xs -3]]
-- 3ª definición:
tripletas3 xs = [take 3 (drop n xs) | n \leftarrow [0..(length xs - 3)]]
-- Se puede definir por recursión
```

```
tripletas4 (x1:x2:x3:xs) = [x1,x2,x3] : tripletas (x2:x3:xs)
tripletas4
-- Ejercicio 5. Definir la función tresConsecutivas tal que
-- (tresConsecutivas x ys) se verifica si x tres veces seguidas en la
-- lista ys. Por ejemplo,
-- tresConsecutivas 3 [1,4,2,3,3,4,3,5,3,4,6] == Falsese
    tresConsecutivas 'a' "abcaaadfg"
tresConsecutivas x ys = elem [x,x,x] (tripletas ys)
-- Ejercicio 6. Se dice que un número n es malo si el número 666 aparece
-- en 2^n. Por ejemplo, 157 y 192 son malos, ya que:
     2^157 = 182687704666362864775460604089535377456991567872
     2^192 = 6277101735386680763835789423207666416102355444464034512896
-- Definir una función (malo x) que se verifica si el número x es
-- malo. Por ejemplo,
-- malo 157 == True
     malo 192 == True
-- malo 221 == False
malo n = tresConsecutivas '6' (show (2^n))
2.2.
        Examen 2 (19 de diciembre de 2012)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 2º examen de evaluación continua (19 de diciembre de 2012)
import Test.QuickCheck
-- Ejercicio 1.1. Definir, por comprensión, la función
     maximaDiferenciaC :: [Integer] -> Integer
```

-- tal que (maximaDiferenciaC xs) es la mayor de las diferencias en

```
-- valor absoluto entre elementos consecutivos de la lista xs. Por
-- ejemplo,
     maximaDiferenciaC [2,5,-3]
     maximaDiferenciaC [1,5]
    maximaDiferenciaC [10, -10, 1, 4, 20, -2] == 22
maximaDiferenciaC :: [Integer] -> Integer
maximaDiferenciaC xs =
   maximum [abs (x-y) \mid (x,y) \leftarrow zip xs (tail xs)]
-- Ejercicio 1.2. Definir, por recursión, la función
-- maximaDiferenciaR :: [Integer] -> Integer
-- tal que (maximaDiferenciaR xs) es la mayor de las diferencias en
-- valor absoluto entre elementos consecutivos de la lista xs. Por
-- ejemplo,
   maximaDiferenciaR [2,5,-3]
     maximaDiferenciaR [1,5]
     maximaDiferenciaR [10, -10, 1, 4, 20, -2] == 22
maximaDiferenciaR :: [Integer] -> Integer
maximaDiferenciaR [x,y] = abs (x - y)
maximaDiferenciaR (x:y:ys) = max (abs (x-y)) (maximaDiferenciaR (y:ys))
-- Ejercicio 1.3. Comprobar con QuickCheck que las definiciones
-- maximaDiferenciaC y maximaDiferenciaR son equivalentes.
-- La propiedad es
prop maximaDiferencia :: [Integer] -> Property
prop maximaDiferencia xs =
    length xs > 1 ==> maximaDiferenciaC xs == maximaDiferenciaR xs
-- La comprobación es
    ghci> quickCheck prop maximaDiferencia
    +++ OK, passed 100 tests.
```

```
-- Ejercicio 2.1. Definir, por comprensión, la función acumuladaC tal
-- que (acumuladaC xs) es la lista que tiene en cada posición i el valor
-- que resulta de sumar los elementos de la lista xs desde la posicion 0
-- hasta la i. Por ejemplo,
     acumuladaC [2,5,1,4,3] == [2,7,8,12,15]
     acumuladaC [1,-1,1,-1] == [1,0,1,0]
acumuladaC xs = [sum (take n xs) | n <- [1..length xs]]
-- Ejercicio 2.2. Definir, por recursión, la función acumuladaR tal que
-- (acumuladaR xs) es la lista que tiene en cada posición i el valor que
-- resulta de sumar los elementos de la lista xs desde la posicion 0
-- hasta la i. Por ejemplo,
     acumuladaR [2,5,1,4,3] == [2,7,8,12,15]
    acumuladaR [1,-1,1,-1] == [1,0,1,0]
-- 1ª definición:
acumuladaR [] = []
acumuladaR xs = acumuladaR (init xs) ++ [sum xs]
-- 2ª definición:
acumuladaR2 [] = []
acumuladaR2 (x:xs) = reverse (aux xs [x])
    where aux [] ys = ys
          aux (x:xs) (y:ys) = aux xs (x+y:y:ys)
-- Ejercicio 3.1. Definir la función unitarios tal (unitarios n) es
-- la lista de números [n,nn, nnn, ....]. Por ejemplo.
     take 7 (unitarios 3) == [3,33,333,3333,33333,333333,333333]
     take 3 (unitarios 1) == [1,11,111]
unitarios x = [x*(div (10^n-1) 9) | n <- [1 ..]]
```

```
-- Ejercicio 3.2. Definir la función multiplosUnitarios tal que
-- (multiplosUnitarios x y n) es la lista de los n primeros múltiplos de
-- x cuyo único dígito es y. Por ejemplo,
     multiplosUnitarios 7 1 2 == [111111,1111111111]
     multiplosUnitarios x y n = take n [z \mid z \leftarrow unitarios y, mod z x == 0]
-- Ejercicio 4.1. Definir, por recursión, la función inicialesDistintosR
-- tal que (inicialesDistintosR xs) es el número de elementos que hay en
-- xs antes de que aparezca el primer repetido. Por ejemplo,
     inicialesDistintosR [1,2,3,4,5,3] == 2
     inicialesDistintosR [1,2,3]
     inicialesDistintosR "ahora"
     inicialesDistintosR "ahorA"
                                    == 5
inicialesDistintosR [] = 0
inicialesDistintosR (x:xs)
    \mid elem x xs = 0
    | otherwise = 1 + inicialesDistintosR xs
-- Ejercicio 4.2. Definir, por comprensión, la función
-- inicialesDistintosC tal que (inicialesDistintosC xs) es el número de
-- elementos que hay en xs antes de que aparezca el primer repetido. Por
-- ejemplo,
     inicialesDistintosC[1,2,3,4,5,3] == 2
     inicialesDistintosC [1,2,3]
     inicialesDistintosC "ahora"
     inicialesDistintosC "ahorA"
                                     == 5
inicialesDistintosC xs =
   length (takeWhile (==1) (listaOcurrencias xs))
-- (listaOcurrencias xs) es la lista con el número de veces que aparece
-- cada elemento de xs en xs. Por ejemplo,
```

```
listaOcurrencias [1,2,3,4,5,3] == [1,1,2,1,1,2]
listaOcurrencias "repetidamente" == [1,4,1,4,2,1,1,1,1,4,1,2,4]
listaOcurrencias xs = [ocurrencias x xs | x <- xs]

-- (ocurrencias x ys) es el número de ocurrencias de x en ys. Por
-- ejemplo,
-- ocurrencias 1 [1,2,3,1,5,3,3] == 2
-- ocurrencias 3 [1,2,3,1,5,3,3] == 3
ocurrencias x ys = length [y | y <- ys, x == y]</pre>
```

2.3. Examen 3 (6 de febrero de 2013)

El examen es común con el del grupo 1 (ver página 11).

2.4. Examen 4 (3 de abril de 2013)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 4º examen de evaluación continua (3 de abril de 2013)
import Test.QuickCheck
-- Ejercicio 1.1. Se denomina resto de una lista a una sublista no vacia
-- formada el último o últimos elementos. Por ejemplo, [3,4,5] es un
-- resto de lista [1,2,3,4,5].
-- Definir la función
-- restos :: [a] -> [[a]]
-- tal que (restos xs) es la lista de los restos de la lista xs. Por
-- ejemplo,
    restos [2,5,6] == [[2,5,6],[5,6],[6]]
    restos [4,5] == [[4,5],[5]]
                    == []
    restos []
restos :: [a] -> [[a]]
restos [] = []
restos (x:xs) = (x:xs) : restos xs
```

```
-- Ejercicio 1.2. Se denomina corte de una lista a una sublista no vacía
-- formada por el primer elemento y los siguientes hasta uno dado.
-- Por ejemplo, [1,2,3] es un corte de [1,2,3,4,5].
-- Definir, por recursión, la función
-- cortesR :: [a] -> [[a]]
-- tal que (cortesR xs) es la lista de los cortes de la lista xs. Por
-- ejemplo,
-- cortesR []
                       == []
     cortesR [2,5] == [[2],[2,5]]
     cortesR [4,8,6,0] == [[4],[4,8],[4,8,6],[4,8,6,0]]
-- 1ª definición:
cortesR :: [a] -> [[a]]
cortesR [] = []
cortesR (x:xs) = [x]: [x:y | y <- cortesR xs]</pre>
-- 2ª definición:
cortesR2 :: [a] -> [[a]]
cortesR2 [] = []
cortesR2 (x:xs) = [x] : map (\y -> x:y) (cortesR2 xs)
-- Ejercicio 1.3. Definir, por composición, la función
     cortesC :: [a] -> [[a]]
-- tal que (cortesC xs) es la lista de los cortes de la lista xs. Por
-- ejemplo,
    cortesC []
                       == []
     cortesC [2,5] == [[2],[2,5]]
     cortesC [4,8,6,0] == [[4],[4,8],[4,8,6],[4,8,6,0]]
cortesC :: [a] -> [[a]]
cortesC = reverse . map reverse . restos . reverse
-- Ejercicio 2. Los árboles binarios se pueden representar con el de
```

```
-- dato algebraico
     data Arbol = H Int
                | N Arbol Int Arbol
                deriving (Show, Eq)
-- Por ejemplo, los árboles
         9
         / \
        / |
       8 6
      / | / |
     3 2 4 5
                      3 2 4 7
-- se pueden representar por
     ej1, ej2:: Arbol
     eil = N (N (H 3) 8 (H 2)) 9 (N (H 4) 6 (H 5))
     ej2 = N (N (H 3) 7 (H 2)) 9 (N (H 4) 3 (H 7))
-- Decimos que un árbol binario es par si la mayoría de sus nodos son
-- pares e impar en caso contrario. Por ejemplo, el primer ejemplo es
-- par y el segundo es impar.
-- Para representar la paridad se define el tipo Paridad
     data Paridad = Par | Impar deriving Show
-- Definir la función
     paridad :: Arbol -> Paridad
-- tal que (paridad a) es la paridad del árbol a. Por ejemplo,
    paridad ej1 == Par
    paridad ej2 == Impar
data Arbol = H Int
          | N Arbol Int Arbol
          deriving (Show, Eq)
ej1, ej2:: Arbol
ej1 = N (N (H 3) 8 (H 2)) 9 (N (H 4) 6 (H 5))
ej2 = N (N (H 3) 7 (H 2)) 9 (N (H 4) 3 (H 7))
data Paridad = Par | Impar deriving Show
```

```
paridad :: Arbol -> Paridad
                      = Par
paridad a | x > y
          | otherwise = Impar
         where (x,y) = paridades a
-- (paridades a) es un par (x,y) donde x es el número de valores pares
-- en el árbol a e i es el número de valores impares en el árbol a. Por
-- ejemplo,
     paridades ej1 == (4,3)
     paridades ej2 == (2,5)
paridades :: Arbol -> (Int,Int)
paridades (H x) | even x
                \mid otherwise = (0,1)
paridades (N i x d) | even x
                             = (1+a1+a2,b1+b2)
                    \mid otherwise = (a1+a2,1+b1+b2)
                    where (a1,b1) = paridades i
                          (a2,b2) = paridades d
-- Ejercicio 3. Según la Wikipedia, un número feliz se define por el
-- siguiente proceso. Se comienza reemplazando el número por la suma del
-- cuadrado de sus cifras y se repite el proceso hasta que se obtiene el
-- número 1 o se entra en un ciclo que no contiene al 1. Aquellos
-- números para los que el proceso termina en 1 se llaman números
-- felices y los que entran en un ciclo sin 1 se llaman números
-- desgraciados.
-- Por ejemplo, 7 es un número feliz porque
         7 ~> 7^2
                                              49
           ~> 4^2 + 9^2
                              = 16 + 81
                                              97
           ~> 9^2 + 7^2
                              = 81 + 49
                                           = 130
           \sim 1^2 + 3^2 + 0^2 = 1 + 9 + 0 =
                                              10
           ~> 1^2 + 0^2
                              = 1 + 0
                                               1
-- Pero 17 es un número desgraciado porque
     17 ~> 1^2 + 7^2
                            = 1 + 49
                                           = 50
         ~> 5^2 + 0^2
                            = 25 + 0
                                           = 25
         ~> 2^2 + 5^2
                            = 4 + 25
                                           = 29
         ~> 2^2 + 9^2
                            = 4 + 81
                                           = 85
                           = 64 + 25
        ~> 8^2 + 5^2
                                           = 89
        ~> 8^2 + 9^2
                           = 64 + 81
                                           = 145
```

```
\sim 1^2 + 4^2 + 5^2 = 1 + 16 + 25 = 42
        \sim> 4^2 + 2^2 = 16 + 4 = 20
        ~> 2^2 + 0^2
                          = 4 + 0
        ~> 4^2
                                          = 16
        ~> 1^2 + 6^2
                        = 1 + 36
                                         = 37
        ~> 3^2 + 7^2
                          = 9 + 49
                                         = 58
        ~> 5^2 + 8^2 = 25 + 64 = 89
-- que forma un bucle al repetirse el 89.
-- El objetivo del ejercicio es definir una función que calcule todos
-- los números felices hasta un límite dado.
-- Ejercicio 3.1. Definir la función
     sumaCuadrados :: Int -> Int
-- tal que (sumaCuadrados n) es la suma de los cuadrados de los dígitos
-- de n. Por ejemplo,
-- sumaCuadrados 145 == 42
sumaCuadrados :: Int -> Int
sumaCuadrados n = sum [x^2 | x \leftarrow digitos n]
-- (digitos n) es la lista de los dígitos de n. Por ejemplo,
     digitos 145 == [1,4,5]
digitos :: Int -> [Int]
digitos n = [read [x]|x<-show n]
-- Ejercicio 3.2. Definir la función
     caminoALaFelicidad :: Int -> [Int]
-- tal que (caminoALaFelicidad n) es la lista de los números obtenidos
-- en el proceso de la determinación si n es un número feliz: se
-- comienza con la lista [n], ampliando la lista con la suma del
-- cuadrado de las cifras de su primer elemento y se repite el proceso
-- hasta que se obtiene el número 1 o se entra en un ciclo que no
-- contiene al 1. Por ejemplo,
     ghci> take 20 (caminoALaFelicidad 7)
     [7,49,97,130,10,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
```

```
ghci> take 20 (caminoALaFelicidad 17)
     [17,50,25,29,85,89,145,42,20,4,16,37,58,89,145,42,20,4,16,37]
caminoALaFelicidad :: Int -> [Int]
caminoALaFelicidad n =
   n : [sumaCuadrados x | x <- caminoALaFelicidad n]</pre>
-- Ejercicio 3.3. En el camino a la felicidad, pueden ocurrir dos casos:
-- + aparece un 1 y a continuación solo aparece 1,
-- + llegamos a 4 y se entra en el ciclo 4,16,37,58,89,145,42,20.
-- Definir la función
     caminoALaFelicidadFundamental :: Int -> [Int]
-- tal que (caminoALaFelicidadFundamental n) es el camino de la
-- felicidad de n hasta que aparece un 1 o un 4. Por ejemplo,
    caminoALaFelicidadFundamental 34 == [34,25,29,85,89,145,42,20,4]
     caminoALaFelicidadFundamental 203 == [203,13,10,1]
     caminoALaFelicidadFundamental 23018 == [23018, 78, 113, 11, 2, 4]
caminoALaFelicidadFundamental :: Int -> [Int]
caminoALaFelicidadFundamental n = selecciona (caminoALaFelicidad n)
-- (selecciona xs) es la lista de los elementos hasta que aparece un 1 o
-- un 4. Por ejemplo,
     selecciona [3,2,1,5,4] == [3,2,1]
     selecciona [3,2] == [3,2]
selecciona [] = []
selecciona (x:xs) | x == 1 | | x == 4 = [x]
                 -- Ejercicio 3.4. Definir la función
     esFeliz :: Int -> Bool
-- tal que (esFeliz n) s verifica si n es feliz. Por ejemplo,
    esFeliz 7 == True
    esFeliz 17 == False
```

```
esFeliz :: Int -> Bool
esFeliz n = last (caminoALaFelicidadFundamental n) == 1
-- Ejercicio 3.5. Comprobar con QuickCheck que si n es es feliz,
-- entonces todos los números de (caminoALaFelicidadFundamental n)
-- también lo son.
-- La propiedad es
prop esFeliz :: Int -> Property
prop_esFeliz n =
   n>0 && esFeliz n
   ==> and [esFeliz x | x <- caminoALaFelicidadFundamental n]
-- La comprobación es
     ghci> quickCheck prop_esFeliz
     *** Gave up! Passed only 38 tests.
       Examen 5 (15 de mayo de 2013)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 5º examen de evaluación continua (22 de mayo de 2013)
```

```
import Data.List
import Data.Array
import PolOperaciones

-- Ejercicio 1. Definir la función
-- conFinales :: Int -> [Int]
-- tal que (conFinales x xs) es la lista de los elementos de xs que
-- terminan en x. Por ejemplo,
-- conFinales 2 [31,12,7,142,214] == [12,142]
```

```
-- Dar cuatro definiciones distintas: recursiva, por comprensión, con
-- filtrado y por plegado.
-- 1ª definición (recursiva):
conFinales1 :: Int -> [Int] -> [Int]
conFinales1 x [] = []
conFinales1 x (y:ys) \mid mod y 10 == x = y : conFinales1 x ys
                     | otherwise = conFinales1 x ys
-- 2ª definición (por comprensión):
conFinales2 :: Int -> [Int] -> [Int]
conFinales2 x xs = [y \mid y \leftarrow xs, mod y 10 == x]
-- 3ª definición (por filtrado):
conFinales3 :: Int -> [Int] -> [Int]
conFinales3 x xs = filter (\z -> mod z 10 == x) xs
-- 4ª definición (por plegado):
conFinales4 :: Int -> [Int] -> [Int]
conFinales4 x = foldr f []
    where f y ys | mod y 10 == x = y:ys
                   | otherwise = ys
-- Ejercicio 2. (OME 2010) Una sucesión pucelana es una sucesión
-- creciente de dieciseis números impares positivos consecutivos, cuya
-- suma es un cubo perfecto.
-- Definir la función
-- pucelanasDeTres :: [[Int]]
-- tal que pucelanasDeTres es la lista de la sucesiones pucelanas
-- formadas por números de tres cifras. Por ejemplo,
     ghci> take 2 pucelanasDeTres
      [[241,243,245,247,249,251,253,255,257,259,261,263,265,267,269,271],
      [485, 487, 489, 491, 493, 495, 497, 499, 501, 503, 505, 507, 509, 511, 513, 515]]
-- ¿Cuántas sucesiones pucelanas tienen solamente números de tres
-- cifras?
```

```
pucelanasDeTres :: [[Int]]
pucelanasDeTres = [[x,x+2 .. x+30] | x < -[101, 103 .. 999-30],
                                            esCubo (sum [x,x+2 ... x+30])]
esCubo x = or [y^3 == x | y <- [1..x]]
-- El número se calcula con
-- ghci> length pucelanasDeTres
-- Ejercicio 3.1. Definir la función:
     extraePares :: Polinomio Integer -> Polinomio Integer
-- tal que (extraePares p) es el polinomio que resulta de extraer los
-- monomios de grado par de p. Por ejemplo, si p es el polinomio
-- x^4 + 5*x^3 + 7*x^2 + 6*x, entonces (extraePares p) es
-- x^4 + 7*x^2.
     > let p1 = consPol 4 1 (consPol 3 5 (consPol 2 7 (consPol 1 6 polCero)))
    x^4 + 5*x^3 + 7*x^2 + 6*x
    > extraePares p1
     x^4 + 7*x^2
extraePares :: Polinomio Integer -> Polinomio Integer
extraePares p
    | esPolCero p = polCero
    even n
             = consPol n (coefLider p) (extraePares rp)
    | otherwise = extraePares rp
   where n = grado p
          rp = restoPol p
-- Ejercicio 3.2. Definir la función
      rellenaPol :: Polinomio Integer -> Polinomio Integer
-- tal que (rellenaPol p) es el polinomio obtenido completando con
-- monomios del tipo 1*x^n aquellos monomios de grado n que falten en
-- p. Por ejemplo,
     ghci> let p1 = consPol 4 2 (consPol 2 1 (consPol 0 5 polCero))
```

```
ghci> p1
      2*x^4 + x^2 + 5
      ghci> rellenaPol p1
      2*x^4 + x^3 + x^2 + 1*x + 5
rellenaPol :: Polinomio Integer -> Polinomio Integer
rellenaPol p
    | n == 0 = p
    | n == grado r + 1 = consPol n c (rellenaPol r)
    | otherwise = consPol n c (consPol (n-1) 1 (rellenaPol r))
    where n = grado p
          c = coefLider p
          r = restoPol p
-- Ejercicio 4.1. Consideremos el tipo de las matrices
      type Matriz a = Array (Int, Int) a
-- y, para los ejemplos, la matriz
      m1 :: Matriz Int
      m1 = array((1,1),(3,3))
                 [((1,1),1),((1,2),0),((1,3),1),
                  ((2,1),0),((2,2),1),((2,3),1),
                  ((3,1),1),((3,2),1),((3,3),1)])
-- Definir la función
      cambiaM :: (Int, Int) -> Matriz Int -> Matriz Int
-- tal que (cambiaM i p) es la matriz obtenida cambiando en p los
-- elementos de la fila y la columna en i transformando los 0 en 1 y
-- viceversa. El valor en i cambia solo una vez. Por ejemplo,
      ghci> cambiaM (2,3) m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),0),
                           ((2,1),1),((2,2),7),((2,3),0),
                           ((3,1),1),((3,2),1),((3,3),0)
type Matriz a = Array (Int,Int) a
ml :: Matriz Int
m1 = array((1,1),(3,3))
```

```
[((1,1),1),((1,2),0),((1,3),1),
            ((2,1),0),((2,2),7),((2,3),1),
            ((3,1),1),((3,2),1),((3,3),1)
cambiaM :: (Int, Int) -> Matriz Int -> Matriz Int
cambiaM (a,b) p = array (bounds p) [((i,j),f i j) | (i,j) < - indices p]
       where f i j | i == a | | j == b = cambia (p!(i,j))
                    | otherwise = p!(i,j)
             cambia x \mid x == 0
                      | x == 1
                      | otherwise = x
-- Ejercicio 4.2. Definir la función
      quitaRepetidosFila :: Int -> Matriz Int -> Matriz Int
-- tal que (quitaRepetidosFila i p) es la matriz obtenida a partir de p
-- eliminando los elementos repetidos de la fila i y rellenando con
   ceros al final hasta completar la fila. Por ejemplo,
      ghci> m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),1),
                           ((2,1),0),((2,2),7),((2,3),1),
                           ((3,1),1),((3,2),1),((3,3),1)]
      ghci> quitaRepetidosFila 1 m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),0),
                           ((2,1),0),((2,2),7),((2,3),1),
                           ((3,1),1),((3,2),1),((3,3),1)]
      ghci> quitaRepetidosFila 2 m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),1),
                           ((2,1),0),((2,2),7),((2,3),1),
                           ((3,1),1),((3,2),1),((3,3),1)]
      ghci> quitaRepetidosFila 3 m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),1),
                           ((2,1),0),((2,2),7),((2,3),1),
                           ((3,1),1),((3,2),0),((3,3),0)]
quitaRepetidosFila :: Int -> Matriz Int -> Matriz Int
quitaRepetidosFila x p =
    array (bounds p) [((i,j),f i j) | (i,j) \leftarrow indices p]
    where f i j | i == x = (cambia (fila i p)) !! (j-1)
```

```
| otherwise = p!(i,j)
-- (fila i p) es la fila i-ésima de la matriz p. Por ejemplo,
      ghci> m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),1),
                           ((2,1),0),((2,2),7),((2,3),1),
                           ((3,1),1),((3,2),1),((3,3),1)]
      ghci> fila 2 m1
      [0,7,1]
fila :: Int -> Matriz Int -> [Int]
fila i p = [p!(i,j) | j \leftarrow [1..n]]
    where (,(,n)) = bounds p
-- (cambia xs) es la lista obtenida eliminando los elementos repetidos
-- de xs y completando con ceros al final para que tenga la misma
-- longitud que xs. Por ejemplo,
     cambia [2,3,2,5,3,2] == [2,3,5,0,0,0]
cambia :: [Int] -> [Int]
cambia xs = ys ++ replicate (n-m) 0
    where ys = nub xs
          n = length xs
          m = length ys
```

2.6. Examen 6 (13 de junio de 2013)

```
ghci> numerosAlternados [21..50]
      [21, 23, 25, 27, 29, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 50]
-- Usando la definición de numerosAlternados calcular la cantidad de
-- números alternados de 3 cifras.
-- 1ª definición (por comprension):
numerosAlternados :: [Integer] -> [Integer]
numerosAlternados xs = [n | n < - xs, esAlternado (cifras n)]
-- (esAlternado xs) se verifica si los elementos de xs son par/impar
-- alternativamente. Por ejemplo,
    esAlternado [1,2,3,4,5,6]
     esAlternado [2,7,8,5,4,1,0] == True
esAlternado :: [Integer] -> Bool
esAlternado [_] = True
esAlternado xs = and [odd (x+y) | (x,y) <- zip xs (tail xs)]
-- (cifras x) es la lista de las cifras del n?mero x. Por ejemplo,
-- cifras 325 == [3,2,5]
cifras :: Integer -> [Integer]
cifras x = [read [d] | d \leftarrow show x]
-- El cálculo es
     ghci> length (numerosAlternados [100..999])
      225
-- 2º definición (por filtrado):
numerosAlternados2 :: [Integer] -> [Integer]
numerosAlternados2 = filter (\n -> esAlternado (cifras n))
-- la definición anterior se puede simplificar:
numerosAlternados2' :: [Integer] -> [Integer]
numerosAlternados2' = filter (esAlternado . cifras)
-- 3ª definición (por recursion):
numerosAlternados3 :: [Integer] -> [Integer]
numerosAlternados3 [] = []
numerosAlternados3 (n:ns)
  | esAlternado (cifras n) = n : numerosAlternados3 ns
```

```
| otherwise
                         = numerosAlternados3 ns
-- 4ª definición (por plegado):
numerosAlternados4 :: [Integer] -> [Integer]
numerosAlternados4 = foldr f []
 where f n ns | esAlternado (cifras n) = n : ns
               ∣ otherwise
-- Ejercicio 2. Definir la función
     borraSublista :: Eq a => [a] -> [a] -> [a]
-- tal que (borraSublista xs ys) es la lista que resulta de borrar la
-- primera ocurrencia de la sublista xs en ys. Por ejemplo,
     borraSublista [2,3] [1,4,2,3,4,5] == [1,4,4,5]
     borraSublista [2,4] [1,4,2,3,4,5] == [1,4,2,3,4,5]
     borraSublista [2,3] [1,4,2,3,4,5,2,3] == [1,4,4,5,2,3]
borraSublista :: Eq a => [a] -> [a] -> [a]
borraSublista [] ys = ys
borraSublista _ [] = []
borraSublista (x:xs) (y:ys)
    | esPrefijo (x:xs) (y:ys) = drop (length xs) ys
    otherwise
                             = y : borraSublista (x:xs) ys
-- (esPrefijo xs ys) se verifica si xs es un prefijo de ys. Por ejemplo,
     esPrefijo [2,5] [2,5,7,9] == True
     esPrefijo [2,5] [2,7,5,9] == False
     esPrefijo [2,5] [7,2,5,9] == False
esPrefijo :: Eq a => [a] -> [a] -> Bool
esPrefijo [] ys
                   = True
esPrefijo []
                      = False
esPrefijo (x:xs) (y:ys) = x==y && esPrefijo xs ys
-- Ejercicio 3. Dos números enteros positivos a y b se dicen "parientes"
-- si la suma de sus divisores coincide. Por ejemplo, 16 y 25 son
-- parientes ya que sus divisores son [1,2,4,8,16] y [1,5,25],
-- respectivamente, y 1+2+4+8+16 = 1+5+25.
```

```
-- Definir la lista infinita
      parientes :: [(Int,Int)]
-- que contiene los pares (a,b) de números parientes tales que
-- 1 <= a < b. Por ejemplo,
-- take 5 parientes == [(6,11),(14,15),(10,17),(14,23),(15,23)]
parientes :: [(Int,Int)]
parientes = [(a,b) \mid b \leftarrow [1..], a \leftarrow [1..b-1], sonParientes a b]
-- (sonParientes a b) se verifica si a y b son parientes. Por ejemplo,
      sonParientes 16 25 == True
sonParientes :: Int -> Int -> Bool
sonParientes a b = sum (divisores a) == sum (divisores b)
-- (divisores a) es la lista de los divisores de a. Por ejemplo,
     divisores 16 == [1,2,4,8,16]
     divisores 25 == [1,5,25]
divisores :: Int -> [Int]
divisores a = [x \mid x \leftarrow [1..a], rem a x == 0]
-- Ejercicio 4.1. Los árboles binarios se pueden representar con el de
-- dato algebraico
-- data Arbol a = H a
               | N a (Arbol a) (Arbol a)
-- Por ejemplo, los árboles
         9
         / \
                          / \
            1
      8 6
                        7 9
      / | / |
      3 2 4 5
                      3 2 9 7
-- se pueden representar por
     eil, ei2:: Arbol Int
     ej1 = N 9 (N 8 (H 3) (H 2)) (N 6 (H 4) (H 5))
     ej2 = N 9 (N 7 (H 3) (H 2)) (N 9 (H 9) (H 7))
-- Definir la función
     nodosInternos :: Arbol t -> [t]
```

```
-- tal que (nodosInternos a) es la lista de los nodos internos del
-- árbol a. Por ejemplo,
     nodosInternos\ ej1\ ==\ [9,8,6]
     nodosInternos\ ej2\ ==\ [9,7,9]
-- .........
data Arbol a = H a
            | N a (Arbol a) (Arbol a)
ej1, ej2:: Arbol Int
ej1 = N 9 (N 8 (H 3) (H 2)) (N 6 (H 4) (H 5))
ej2 = N 9 (N 7 (H 3) (H 2)) (N 9 (H 9) (H 7))
nodosInternos (H _) = []
nodosInternos (N x i d) = x : (nodosInternos i ++ nodosInternos d)
-- Ejercicio 4.2. Definir la función
     ramaIquales :: Eq t => Arbol t -> Bool
-- tal que (ramaIguales a) se verifica si el árbol a contiene al menos
-- una rama tal que todos sus elementos son iguales. Por ejemplo,
    ramaIquales eil == False
    ramaIguales ej2 == True
-- lª definición:
ramaIguales :: Eq a => Arbol a -> Bool
ramaIguales (H ) = True
ramaIguales (N \times i d) = aux \times i \mid \mid aux \times d
   where aux x (H y) = x == y
         aux x (N y i d) = x == y \&\& (aux x i || aux x d)
-- 2ª definición:
ramaIguales2 :: Eq a => Arbol a -> Bool
ramaIguales2 a = or [iguales xs | xs <- ramas a]</pre>
-- (ramas a) es la lista de las ramas del árbol a. Por ejemplo,
     ramas\ ej1 == [[9,8,3],[9,8,2],[9,6,4],[9,6,5]]
     ramas\ ej2 == [[9,7,3],[9,7,2],[9,9,9],[9,9,7]]
ramas :: Arbol a -> [[a]]
```

```
ramas (H x)
               = [[x]]
ramas (N x i d) = map (x:) (ramas i) ++ map (x:) (ramas d)
-- (iguales xs) se verifica si todos los elementos de xs son
-- iguales. Por ejemplo,
     iguales [5,5,5] == True
     iguales [5,2,5] == False
iguales :: Eq a => [a] -> Bool
iguales (x:y:xs) = x == y \&\& iguales (y:xs)
iguales
                = True
-- Otra definición de iguales, por comprensión, es
iguales2 :: Eq a => [a] -> Bool
iguales2 [] = True
iguales2 (x:xs) = and [x == y | y \leftarrow xs]
-- Otra, usando nub, es
iguales3 :: Eq a => [a] -> Bool
iquales3 xs = length (nub xs) <= 1</pre>
-- 3ª solución:
ramaIguales3 :: Eq a => Arbol a -> Bool
ramaIguales3 = any iguales . ramas
-- Ejercicio 5. Las matrices enteras se pueden representar mediante
-- tablas con índices enteros:
     type Matriz = Array (Int, Int) Int
-- Por ejemplo, la matriz
     0 1 3
     1 2 0
    0 5 7
-- se puede definir por
    m :: Matriz
     m = listArray((1,1),(3,3))[0,1,3,1,2,0,0,5,7]
-- Definir la función
     sumaVecinos :: Matriz -> Matriz
-- tal que (sumaVecinos p) es la matriz obtenida al escribir en la
-- posicion (i,j) la suma de los todos vecinos del elemento que ocupa
```

```
-- el lugar (i,j) en la matriz p. Por ejemplo,
      ghci> sumaVecinos m
      array ((1,1),(3,3)) [((1,1),4),((1,2),6),((1,3),3),
                            ((2,1),8),((2,2),17),((2,3),18),
                            ((3,1),8),((3,2),10),((3,3),7)
type Matriz = Array (Int,Int) Int
m :: Matriz
m = listArray((1,1),(3,3))[0,1,3, 1,2,0, 0,5,7]
sumaVecinos :: Matriz -> Matriz
sumaVecinos p =
    array ((1,1),(m,n))
          [((i,j), f i j) | i \leftarrow [1..m], j \leftarrow [1..n]]
    where (,(m,n)) = bounds p
          f i j = sum [p!(i+a,j+b) | a <- [-1..1], b <- [-1..1],
                                      a /= 0 || b /= 0,
                                      inRange (bounds p) (i+a,j+b)]
```

2.7. Examen 7 (3 de julio de 2013)

El examen es común con el del grupo 1 (ver página 26).

2.8. Examen 8 (13 de septiembre de 2013)

El examen es común con el del grupo 1 (ver página 34).

2.9. Examen 9 (20 de noviembre de 2013)

El examen es común con el del grupo 1 (ver página 38).

3

Exámenes del grupo 3

María J. Hidalgo

3.1. Examen 1 (16 de noviembre de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 1º examen de evaluación continua (15 de noviembre de 2012)
-- Ejercicio 1. Definir la función numeroPrimos, donde (numeroPrimos m n)
-- es la cantidad de número primos entre 2<sup>m</sup> y 2<sup>n</sup>. Por ejemplo,
   numerosPrimos 2 6 == 16
   numerosPrimos 2 7 == 29
   numerosPrimos 10 12 == 392
numerosPrimos:: Int -> Int -> Int
numerosPrimos m n = length [x \mid x \leftarrow [2^m..2^n], primo x]
-- (primo x) se verifica si x es primo. Por ejemplo,
      primo 30 == False
      primo 31 == True
primo n = factores n == [1, n]
-- (factores n) es la lista de los factores del número n. Por ejemplo,
      factores 30 = [1,2,3,5,6,10,15,30]
factores n = [x \mid x \leftarrow [1..n], n \text{ 'rem'} x == 0]
```

```
-- Ejercicio 2. Definir la función masOcurrentes tal que
-- (masOcurrentes xs) es la lista de los elementos de xs que ocurren el
-- máximo número de veces. Por ejemplo,
     mas0currentes [1,2,3,4,3,2,3,1,4] == [3,3,3]
     masOcurrentes [1,2,3,4,5,2,3,1,4] == [1,2,3,4,2,3,1,4]
     masOcurrentes "Salamanca" == "aaaa"
masOcurrentes xs = [x \mid x \leftarrow xs, ocurrencias x xs == m]
    where m = maximum [ocurrencias x xs | x <-xs]
-- (ocurrencias x xs) es el número de ocurrencias de x en xs. Por
-- ejemplo,
      ocurrencias 1 [1,2,3,4,3,2,3,1,4] == 2
ocurrencias x xs = length [x' | x' <- xs, x == x']
-- Ejercicio 3.1. En este esjercicio se consideran listas de ternas de
-- la forma (nombre, edad, población).
-- Definir la función puedenVotar tal que (puedenVotar t) es la
-- lista de las personas de t que tienen edad para votar. Por ejemplo,
     ghci> :{
     *Main| puedenVotar [("Ana", 16, "Sevilla"), ("Juan", 21, "Coria"),
                          ("Alba", 19, "Camas"), ("Pedro", 18, "Sevilla")]
     *Main|
     *Main| :}
    ["Juan","Alba","Pedro"]
puedenVotar t = [x \mid (x,y,_) \leftarrow t, y >= 18]
-- Ejercicio 3.2. Definir la función puedenVotarEn tal que (puedenVotar
-- t p) es la lista de las personas de t que pueden votar en la
-- población p. Por ejemplo,
      ghci> :{
     *Main| puedenVotarEn [("Ana", 16, "Sevilla"), ("Juan", 21, "Coria"),
                           ("Alba", 19, "Camas"),("Pedro",18,"Sevilla")]
      *Main|
                           "Sevilla"
    *Main|
```

```
*Main| :}
     ["Pedro"]
puedenVotarEn t c = [x \mid (x,y,z) \leftarrow t, y >= 18, z == c]
-- Ejercicio 4. Dos listas xs, ys de la misma longitud son
-- perpendiculares si el producto escalar de ambas es 0, donde el
-- producto escalar de dos listas de enteros xs e ys viene
-- dado por la suma de los productos de los elementos correspondientes.
-- Definir la función perpendiculares tal que (perpendiculares xs yss)
-- es la lista de los elementos de yss que son perpendiculares a xs.
-- Por ejemplo,
     ghci> perpendiculares [1,0,1] [[0,1,0], [2,3,1], [-1,7,1],[3,1,0]]
     [[0,1,0],[-1,7,1]]
perpendiculares xs yss = [ys | ys <-yss, productoEscalar xs ys == 0]</pre>
-- (productoEscalar xs ys) es el producto escalar de xs por ys. Por
-- ejemplo,
     productoEscalar [2,3,5] [6,0,2] == 22
productoEscalar xs ys = sum [x*y \mid (x,y) \leftarrow zip xs ys]
       Examen 2 (21 de diciembre de 2012)
3.2.
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 2º examen de evaluación continua (21 de diciembre de 2012)
import Test.QuickCheck
import Data.List
-- Ejercicio 1. Definir la función f
-- f :: Int -> Integer
```

-- tal que (f k) es el menor número natural x tal que x^k comienza

-- exactamente por k unos. Por ejemplo,

```
-- f 3 = 481
-- f 4 = 1826
f :: Int -> Integer
f 1 = 1
f k = head [x \mid x \leftarrow [1..], empiezaConl k (x^k)]
-- (empiezaCon1 k n) si el número x empieza exactamento con k unos. Por
-- ejemplo,
     empiezaCon1 3 111461 == True
     empiezaCon1 3 111146 == False
      empiezaCon1 3 114116 == False
empiezaCon1 :: Int -> Integer -> Bool
empiezaCon1 k n = length (takeWhile (==1) (cifras n)) == k
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
     cifras 111321 == [1,1,1,3,2,1]
cifras:: Integer -> [Integer]
cifras n = [read [x] | x \leftarrow show n]
-- -----
-- Ejercicio 2.1. Definir la función verificaE tal que
-- (verificaE k ps x) se cumple si x verifica exactamente k propiedades
-- de la lista ps. Por ejemplo,
     verificaE 2 [(>0), even, odd] 5 == True
      verificaE 1 [(>0), even, odd] 5 == False
verificaE :: Int -> [t -> Bool] -> t -> Bool
verificaE k ps x = length [p | p \leftarrow ps, p x] == k
-- Ejercicio 2.2. Definir la función verificaA tal que
-- (verificaA k ps x) se cumple si x verifica, como máximo, k
-- propiedades de la lista ps. Por ejemplo,
     verificaA 2 [(>10), even, (<20)] 5 == True</pre>
     verificaA 2 [(>0), even, odd, (<20)] 5 == False
```

```
verificaA :: Int -> [t -> Bool] -> t -> Bool
verificaA k ps x = length [p | p \leftarrow ps, p x] \leftarrow k
-- Ejercicio 2.3. Definir la función verificaE tal que
-- (verificaE k ps x) se cumple si x verifica, al menos, k propiedades
-- de la lista ps. Por ejemplo,
-- verificaM 2 [(>0), even, odd, (<20)] 5 == True
    verificaM \ 4 \ [(>0), even, odd, (<20)] \ 5 == False
verificaM :: Int -> [t -> Bool] -> t -> Bool
verificaM k ps x = length [p | p <- ps, p x] >= k
-- Nota: Otra forma de definir las funciones anteriores es la siguiente
verificaE2 k ps x = verifica ps x == k
verificaA2 k ps x = verifica ps x >= k
verificaM2 k ps x = verifica ps x <= k</pre>
-- donde (verifica ps x) es el número de propiedades de ps que verifica
-- el elemento x. Por ejemplo,
      verifica [(>0), even, odd, (<20)] 5 == 3
verifica ps x = sum [1 | p \leftarrow ps, p x]
-- Ejercicio 3. Definir la función intercalaDigito tal que
-- (intercalaDigito d n) es el número que resulta de intercalar el
-- dígito d delante de los dígitos de n menores que d. Por ejemplo,
     intercalaDigito 5 1263709 == 51526537509
     intercalaDigito 5 6798 == 6798
intercalaDigito :: Integer -> Integer
intercalaDigito d n = listaNumero (intercala d (cifras n))
-- (intercala y xs) es la lista que resulta de intercalar el
-- número y delante de los elementos de xs menores que y. Por ejemplo,
```

```
intercala 5 [1,2,6,3,7,0,9] == [5,1,5,2,6,5,3,7,5,0,9]
intercala y [] = []
intercala y (x:xs) \mid x < y = y : x : intercala y xs
                  | otherwise = x : intercala y xs
-- (listaNumero xs) es el número correspondiente a la lista de dígitos
-- xs. Por ejemplo,
     listaNumero [5,1,5,2,6,5,3,7,5,0,9] == 51526537509
listaNumero :: [Integer] -> Integer
listaNumero xs = sum [x^*(10^k) | (x,k) \leftarrow zip (reverse xs) [0..n]]
   where n = length xs -1
__ ______
-- Ejercicio 4.1. (Problema 302 del Proyecto Euler) Un número natural n
-- es se llama fuerte si p^2 es un divisor de n, para todos los factores
-- primos de n.
-- Definir la función
     esFuerte :: Int -> Bool
-- tal que (esFuerte n) se verifica si n es fuerte. Por ejemplo,
    esFuerte 800
                     == True
    esFuerte 24 == False
     esFuerte 14567429 == False
-- 1º definición (directa)
esFuerte :: Int -> Bool
esFuerte n = and [rem n (p*p) == 0 | p <- xs]
   where xs = [p \mid p \leftarrow takeWhile (<=n) primos, rem n p == 0]
-- primos es la lista de los números primos.
primos :: [Int]
primos = 2 : [x \mid x \leftarrow [3,5..], esPrimo x]
-- (esPrimo x) se verifica si x es primo. Por ejemplo,
     esPrimo 7 == True
     esPrimo 9 == False
esPrimo :: Int -> Bool
```

```
esPrimo x = [n \mid n \leftarrow [1..x], rem x n == 0] == [1,x]
-- 2ª definición (usando la factorización de n)
esFuerte2 :: Int -> Bool
esFuerte2 n = and [rem n (p*p) == 0 | (p, ) <- factorizacion n]
-- (factorización n) es la factorización de n. Por ejemplo,
      factorizacion 300 == [(2,2),(3,1),(5,2)]
factorizacion :: Int -> [(Int,Int)]
factorizacion n =
    [(head xs, fromIntegral (length xs)) | xs <- group (factorizacion' n)]</pre>
-- (factorizacion' n) es la lista de todos los factores primos de n; es
-- decir, es una lista de números primos cuyo producto es n. Por ejemplo,
     factorizacion 300 == [2,2,3,5,5]
factorizacion' :: Int -> [Int]
factorizacion' n | n == 1 = []
                 | otherwise = x : factorizacion' (div n x)
                where x = menorFactor n
-- (menorFactor n) es el menor factor primo de n. Por ejemplo,
     menorFactor 15 == 3
     menorFactor 16 == 2
     menorFactor 17 == 17
menorFactor :: Int -> Int
menorFactor n = head [x \mid x \leftarrow [2..], rem n x == 0]
-- Comparación de eficiencia:
ghci> :set +s
     ghci> esFuerte 14567429
     False
     (0.90 secs, 39202696 bytes)
     ghci> esFuerte2 14567429
     False
     (0.01 secs, 517496 bytes)
```

```
-- Ejercicio 4.2. Definir la función
   esPotencia:: Int -> Bool
-- tal que (esPotencia n) se verifica si n es potencia de algún número
-- entero. Por ejemplo,
   esPotencia 81 == True
-- esPotencia 1234 == False
-- 1ª definición:
-- ==========
esPotencia:: Int -> Bool
esPotencia n = esPrimo n \mid\mid or [esPotenciaDe n m \mid m < - [0..n-1]]
-- (esPotenciaDe n m) se verifica si n es una potencia de m. Por
-- ejemplo,
     esPotenciaDe 16 2 == True
     esPotenciaDe 24 2 == False
esPotenciaDe:: Int -> Int -> Bool
esPotenciaDe n m = or [m^k = n \mid k \leftarrow [0..n]]
-- 2ª definición
-- =========
esPotencia2 :: Int -> Bool
esPotencia2 1 = True
esPotencia2 n = or [esPotenciaDe2 n m | m <- [2..n-1]]</pre>
-- (esPotenciaDe2 n m) se verifica si n es una potencia de m. Por
-- ejemplo,
     esPotenciaDe2 16 2 == True
     esPotenciaDe2 24 2 == False
esPotenciaDe2 :: Int -> Int -> Bool
esPotenciaDe2 n 1 = n == 1
esPotenciaDe2 n m = aux 1
 where aux k \mid y == n = True
             | y > n = False
             | otherwise = aux (k+1)
             where y = m^k
```

```
-- 3ª definición
-- ==========
esPotencia3 :: Int -> Bool
esPotencia3 n = todosIguales [x | (_,x) <- factorizacion n]
-- (todosIquales xs) se verifica si todos los elementos de xs son
-- iguales. Por ejemplo,
     todosIguales [2,2,2] == True
     todosIguales [2,3,2] == False
todosIguales :: [Int] -> Bool
todosIquales []
                   = True
               = True
todosIguales [ ]
todosIguales (x:y:xs) = x == y && todosIguales (y:xs)
-- Comparación de eficiencia
- - -----
     ghci> :set +s
     ghci> esPotencia 1234
     False
    (16.87 secs, 2476980760 bytes)
     ahci> esPotencia2 1234
    False
    (0.03 secs, 1549232 bytes)
     ghci> esPotencia3 1234
     True
     (0.01 secs, 520540 bytes)
-- Ejercicio 4.3. Un número natural se llama número de Aquiles si es
-- fuerte, pero no es una potencia perfecta; es decir, no es potencia de
-- un número. Por ejemplo, 864 y 1800 son números de Aquiles, pues
--864 = 2^5 \cdot 3^3 y 1800 = 2^3 \cdot 3^2 \cdot 5^2.
-- Definir la función
     esAquileo:: Int -> Bool
-- tal que (esAquileo n) se verifica si n es fuerte y no es potencia
-- perfecta. Por ejemplo,
-- esAquileo 864 == True
```

```
esAquileo 865 == False
-- 1º definición:
esAquileo :: Int -> Bool
esAquileo n = esFuerte n && not (esPotencia n)
-- 2ª definición:
esAquileo2 :: Int -> Bool
esAquileo2 n = esFuerte2 n && not (esPotencia2 n)
-- 3ª definición:
esAquileo3 :: Int -> Bool
esAquileo3 n = esFuerte2 n && not (esPotencia3 n)
-- Comparación de eficiencia
- - -----
      ghci> take 10 [n \mid n <- [1..], esAquileo n]
      [72, 108, 200, 288, 392, 432, 500, 648, 675, 800]
     (24.69 secs, 3495004684 bytes)
      ghci> take 10 [n \mid n \leftarrow [1..], esAquileo2 n]
      [72, 108, 200, 288, 392, 432, 500, 648, 675, 800]
     (0.32 secs, 12398516 bytes)
    ghci> take 10 [n | n <- [1..], esAquileo3 n]</pre>
      [72, 108, 144, 200, 288, 324, 392, 400, 432, 500]
    (0.12 secs, 3622968 bytes)
```

3.3. Examen 3 (6 de febrero de 2013)

El examen es común con el del grupo 1 (ver página 11).

3.4. Examen 4 (22 de marzo de 2013)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 4º examen de evaluación continua (22 de marzo de 2013)
```

import Test.QuickCheck

```
-- Ejercicio 1.1. Consideremos un número n y sumemos reiteradamente sus
-- cifras hasta un número de una única cifra. Por ejemplo,
     477 -> 18 -> 9
     478 -> 19 -> 10 -> 1
-- El número de pasos se llama la persistencia aditiva de n y el último
-- número su raíz digital. Por ejemplo,
      la persistencia aditiva de 477 es 2 y su raíz digital es 9;
      la persistencia aditiva de 478 es 3 y su raíz digital es 1.
-- Definir la función
     persistenciaAditiva :: Integer -> Int
-- tal que (persistencia Aditiva n) es el número de veces que hay que
-- reiterar el proceso anterior hasta llegar a un número de una
-- cifra. Por ejemplo,
     persistenciaAditiva 477 == 2
     persistenciaAditiva 478 == 3
-- 1ª definición
- - ==========
persistenciaAditiva :: Integer -> Int
persistenciaAditiva n = length (listaSumas n) -1
-- (listaSumas n) es la lista de las sumas de las cifras de los números
-- desde n hasta su raíz digital. Por ejemplo,
      listaSumas 477 == [477, 18, 9]
      listaSumas 478 == [478, 19, 10, 1]
listaSumas :: Integer -> [Integer]
listaSumas n \mid n < 10 = [n]
             | otherwise = n: listaSumas (sumaCifras n)
-- (sumaCifras) es la suma de las cifras de n. Por ejemplo,
      sumaCifras 477 == 18
sumaCifras :: Integer -> Integer
sumaCifras = sum . cifras
```

```
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
     cifras 477 == [4,7,7]
cifras:: Integer -> [Integer]
cifras n = [read [x] | x < - show n]
-- 2ª definición
- - ==========
persistenciaAditiva2 :: Integer -> Int
persistenciaAditiva2 n
    | n < 10 = 0
    | otherwise = 1 + persistenciaAditiva2 (sumaCifras n)
-- Ejercicio 1.2. Definir la función
     raizDigital :: Integer -> Integer
-- tal que (raizDigital n) es la raíz digital de n. Por ejemplo,
-- raizDigital 477 == 9
    raizDigital 478 == 1
-- 1º definición:
raizDigital :: Integer -> Integer
raizDigital n = last (listaSumas n)
-- 2ª definición:
raizDigital2 :: Integer -> Integer
raizDigital2 n
    | n < 10 = n
    | otherwise = raizDigital2 (sumaCifras n)
-- Ejercicio 1.3. Comprobar experimentalmente que si n/=0 es múltiplo de
-- 9, entonces la raíz digital n es 9; y en los demás casos, es el resto
-- de la división de n entre 9.
-- La propiedad es
prop_raizDigital :: Integer -> Property
prop raizDigital n =
```

```
n > 0 ==>
   if n `rem` 9 == 0 then raizDigital n == 9
                   else raizDigital n == rem n 9
-- La comprobación es
     ghci> quickCheck prop raizDigital
    +++ OK, passed 100 tests.
-- Ejercicio 1.4. Basándose en estas propiedades, dar una nueva
-- definición de raizDigital.
  raizDigital3 :: Integer -> Integer
raizDigital3 n | r /= 0 = r
             | otherwise = 9
             where r = n \text{ 'rem' } 9
-- Puede definirse sin condicionales:
raizDigital3' :: Integer -> Integer
raizDigital3' n = 1 + (n-1) `rem` 9
-- Ejercicio 1.5. Comprobar con QuickCheck que las definiciones de raíz
-- digital son equivalentes.
__ _______
-- La propiedad es
prop_equivalencia_raizDigital :: Integer -> Property
prop_equivalencia_raizDigital n =
   n > 0 ==>
   raizDigital2 n == x &&
   raizDigital3 n == x &&
   raizDigital3' n == x
   where x = raizDigital n
-- La comprobación es
    ghci> quickCheck prop_equivalencia_raizDigital
    +++ OK, passed 100 tests.
```

```
-- Ejercicio 1.6. Con las definiciones anteriores, calcular la raíz
-- digital del número 987698764521^23456 y comparar su eficiencia.
-- ghci> :set +s
-- ghci> raizDigital (987698764521^23456)
-- 9
-- (6.55 secs, 852846660 bytes)
-- ghci> raizDigital2 (987698764521^23456)
-- 9
-- (6.42 secs, 852934412 bytes)
-- ghci> raizDigital3 (987698764521^23456)
-- 9
-- (0.10 secs, 1721860 bytes)
-- ghci> raizDigital3' (987698764521^23456)
-- 9
-- (0.10 secs, 1629752 bytes)
-- Ejercicio 2. Definir la función
      interVerifican :: Eq a \Rightarrow (b \rightarrow Bool) \rightarrow (b \rightarrow a) \rightarrow [[b]] \rightarrow [a]
-- tal que (interVerifican p f xss) calcula la intersección de las
-- imágenes por f de los elementos de las listas de xss que verifican p.
-- Por ejemplo,
      interVerifican even (\x -> x+1) [[1,3,4,2], [4,8], [9,4]] == [5]
      interVerifican even ((x -> x+1) [[1,3,4,2], [4,8], [9]] == []
-- 1ª definición (por comprensión):
interVerifican :: Eq a => (b -> Bool) -> (b -> a) -> [[b]] -> [a]
interVerifican p f xss = interseccion [[f x | x <- xs, p x] | xs <- xss]</pre>
-- (interseccion xss) es la intersección de los elementos de xss. Por
-- eiemplo,
      intersection [[1,3,4,2], [4,8,3], [9,3,4]] == [3,4]
interseccion :: Eq a => [[a]] -> [a]
interseccion [] = []
intersection (xs:xss) = [x \mid x < -xs, and [x 'elem' ys| ys < -xss]]
```

```
-- 2ª definición (con map y filter):
interVerifican2 :: Eq a => (b -> Bool) -> (b -> a) -> [[b]] -> [a]
interVerifican2 p f = interseccion . map (map f . filter p)
-- Ejercicio 3.1. La sucesión autocontadora
      1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, ...
-- está formada por 1 copia del 1, 2 copias del 2, 3 copias del 3, ...
-- Definir la constante
     autocopiadora :: [Integer]
-- tal que autocopiadora es lista de los términos de la sucesión
-- anterior. Por ejemplo,
-- take 20 autocopiadora == [1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6]
autocopiadora :: [Integer]
autocopiadora = concat [genericReplicate n n | n <- [1..]]</pre>
-- Ejercicio 3.2. Definir la función
      terminoAutocopiadora :: Integer -> Integer
-- tal que (terminoAutocopiadora n) es el lugar que ocupa en la sucesión
-- la primera ocurrencia de n. Por ejemplo,
-- terminoAutocopiadora 4 == 6
     terminoAutocopiadora 5 == 10
    terminoAutocopiadora 10 == 45
-- 1ª definición (por comprensión):
terminoAutocopiadora :: Integer -> Integer
terminoAutocopiadora x =
    head [n \mid n \leftarrow [1..], genericIndex autocopiadora <math>n == x]
-- 2º definición (con takeWhile):
terminoAutocopiadora2 :: Integer -> Integer
terminoAutocopiadora2 x = genericLength (takeWhile (/=x) autocopiadora)
-- 3ª definición (por recursión)
terminoAutocopiadora3 :: Integer -> Integer
```

```
terminoAutocopiadora3 x = aux x autocopiadora 0
 where aux x (y:ys) k \mid x == y = k
                      \mid otherwise = aux x ys (k+1)
-- 4ª definición (sumando):
terminoAutocopiadora4 :: Integer -> Integer
terminoAutocopiadora4 x = sum [1..x-1]
-- 5ª definición (explícitamente):
terminoAutocopiadora5 :: Integer -> Integer
terminoAutocopiadora5 x = (x-1)*x `div` 2
-- Ejercicio 3.3. Calcular el lugar que ocupa en la sucesión la
-- primera ocurrencia de 2013. Y también el de 20132013.
-- El cálculo es
     terminoAutocopiadora5 2013 == 2025078
     terminoAutocopiadora5 20132013 == 202648963650078
-- Ejercicio 4. Se consideran los árboles binarios definidos por
    data Arbol = H Int
               | N Arbol Int Arbol
               deriving (Show, Eq)
-- Por ejemplo, los árboles siguientes
       5
                      8
                      / \
         / \
                                    / \
                                                / \
                     / |
                    9 3
      9 7
                                 9 2
      / | / |
     1 46 8
                   1 46 2 1 4
-- se representan por
     arbol1, arbol2, arbol3, arbol4 :: Arbol
     arbol1 = N (N (H 1) 9 (H 4)) 5 (N (H 6) 7 (H 8))
     arbol2 = N (N (H 1) 9 (H 4)) 8 (N (H 6) 3 (H 2))
     arbol3 = N (N (H 1) 9 (H 4)) 5 (H 2)
     arbol4 = N (H 4) 5 (N (H 6) 7 (H 2))
```

```
-- Observad que los árboles arbol1 y arbol2 tiene la misma estructura,
-- pero los árboles arbol1 y arbol3 o arbol1 y arbol4 no la tienen
-- Definir la función
     iqualEstructura :: Arbol -> Arbol -> Bool
-- tal que (igualEstructura al al) se verifica si los árboles al y a2
-- tienen la misma estructura. Por ejemplo,
     iqualEstructura arbol1 arbol2 == True
     igualEstructura arbol1 arbol3 == False
     igualEstructura arbol1 arbol4 == False
data Arbol = H Int
           | N Arbol Int Arbol
           deriving (Show, Eq)
arbol1, arbol2, arbol3, arbol4 :: Arbol
arbol1 = N (N (H 1) 9 (H 4)) 5 (N (H 6) 7 (H 8))
arbol2 = N (N (H 1) 9 (H 4)) 8 (N (H 6) 3 (H 2))
arbol3 = N (N (H 1) 9 (H 4)) 5 (H 2)
arbol4 = N (H 4) 5 (N (H 6) 7 (H 2))
igualEstructura :: Arbol -> Arbol -> Bool
igualEstructura (H ) (H )
                                          = True
igualEstructura (N i1 r1 d1) (N i2 r2 d2) =
    igualEstructura i1 i2 && igualEstructura d1 d2
                                          = False
igualEstructura
```

3.5. Examen 5 (10 de mayo de 2013)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 5º examen de evaluación continua (10 de mayo de 2013)
-- import Data.Array
import Data.Ratio
import PolOperaciones
-- Ejercicio 1 (370 del Proyecto Euler). Un triángulo geométrico es un
```

```
-- triángulo de lados enteros, representados por la terna (a,b,c) tal
-- que a ≤ b ≤ c y están en progresión geométrica, es decir,
-- b^2 = a*c. Por ejemplo, un triángulo de lados a = 144, b = 156 y
-- c = 169.
-- Definir la función
      numeroTG :: Integer -> Int
-- tal que (numeroTG n) es el número de triángulos geométricos de
-- perímetro menor o igual que n. Por ejemplo
       numeroTG 10 == 4
       numeroTG 100 == 83
       numeroTG 200 == 189
-- 1ª definición:
numeroTG :: Integer -> Int
numeroTG n =
    length [(a,b,c) | c \leftarrow [1..n],
                        b \leftarrow [1..c],
                        a \leftarrow [1..b],
                        a+b+c \le n,
                        b^2 == a*c1
-- 2ª definición:
numeroTG2 :: Integer -> Int
numeroTG2 n =
    length [(a,b,c) | c \leftarrow [1..n],
                        b \leftarrow [1..c],
                        b^2 \text{ rem} c == 0,
                        let a = b^2 \dot div c,
                        a+b+c <= n1
-- 3ª definición:
numeroTG3 :: Integer -> Int
numeroTG3 n =
    length [(b^2 \dot c, b, c) | c \leftarrow [1..n],
                                   b \leftarrow [1..c],
                                   b^2 \text{ rem} c == 0,
                                   (b^2 \dot c) + b + c \ll n
```

```
-- Comparación de eficiencia:
      ghci> numeroTG 200
      189
      (2.32 secs, 254235740 bytes)
     ghci> numeroTG2 200
      189
     (0.06 secs, 5788844 bytes)
     ghci> numeroTG3 200
     189
     (0.06 secs, 6315900 bytes)
-- Ejercicio 2 (Cálculo numérico) El método de la bisección para
-- calcular un cero de una función en el intervalo [a,b] se basa en el
-- teorema de Bolzano:
      "Si f(x) es una función continua en el intervalo [a, b], y si,
     además, en los extremos del intervalo la función f(x) toma valores
      de signo opuesto (f(a) * f(b) < 0), entonces existe al menos un
      valor c en (a, b) para el que f(c) = 0".
-- La idea es tomar el punto medio del intervalo c = (a+b)/2 y
-- considerar los siguientes casos:
-- * Si f(c) ~= 0, hemos encontrado una aproximación del punto que
    anula f en el intervalo con un error aceptable.
-- * Si f(c) tiene signo distinto de f(a), repetir el proceso en el
   intervalo [a,c].
-- * Si no, repetir el proceso en el intervalo [c,b].
-- Definir la función
      ceroBiseccionE :: (Float -> Float -> Float -> Float -> Float
-- tal que (ceroBiseccionE f a b e) es una aproximación del punto
-- del intervalo [a,b] en el que se anula la función f, con un error
-- menor que e, aplicando el método de la bisección (se supone que
-- f(a)*f(b)<0). Por ejemplo,
      let f1 \times = 2 - x
      let f2 x = x^2 - 3
     ceroBiseccionE fl 0 3 0.0001
                                      == 2.000061
     ceroBiseccionE f2 0 2 0.0001
                                      == 1.7320557
     ceroBiseccionE \ f2 \ (-2) \ 2 \ 0.00001 == -1.732048
     ceroBiseccionE cos 0 2 0.0001 == 1.5708008
```

```
ceroBiseccionE :: (Float -> Float -> Float -> Float -> Float
ceroBiseccionE f a b e = aux a b
   where aux c d | aceptable m
                                = m
                 | fc * fm < 0 = aux c m
                 | otherwise = aux m d
             where m = (c+d)/2
                  aceptable x = abs (f x) < e
 -- Ejercicio 3 Definir la función
     numeroAPol :: Int -> Polinomio Int
-- tal que (numeroAPol n) es el polinomio cuyas raices son las
-- cifras de n. Por ejemplo,
   numeroAPol\ 5703 == x^4 + -15*x^3 + 71*x^2 + -105*x
numeroAPol :: Int -> Polinomio Int
numeroAPol n = numerosAPol (cifras n)
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
-- cifras 5703 == [5,7,0,3]
cifras :: Int -> [Int]
cifras n = [read [c] | c <- show n]</pre>
-- (numeroAPol xs) es el polinomio cuyas raices son los elementos de
-- xs. Por ejemplo,
     numerosAPol [5,7,0,3] == x^4 + -15*x^3 + 71*x^2 + -105*x
numerosAPol :: [Int] -> Polinomio Int
numerosAPol [] = polUnidad
numerosAPol (x:xs) =
   multPol (consPol 1 1 (consPol 0 (-x) polCero))
           (numerosAPol xs)
-- La función anterior se puede definir mediante plegado
numerosAPol2 :: [Int] -> Polinomio Int
numerosAPol2 =
    foldr (\ x \rightarrow multPol (consPol 1 1 (consPol 0 (-x) polCero)))
          polUnidad
```

```
-- Ejercicio 4.1. Consideremos el tipo de los vectores y de las matrices
      type Vector a = Array Int a
      type Matriz a = Array (Int, Int) a
-- y los ejemplos siguientes:
    p1 :: (Fractional a, Eq a) => Matriz a
     p1 = listArray((1,1),(3,3))[1,0,0,0,0,1,0,1,0]
    v1,v2 :: (Fractional a, Eq a) => Vector a
    v1 = listArray (1,3) [0,-1,1]
     v2 = listArray (1,3) [1,2,1]
-- Definir la función
     esAutovector :: (Fractional a, Eq a) =>
                      Vector a -> Matriz a -> Bool
-- tal que (esAutovector v p) compruebe si v es un autovector de p
-- (es decir, el producto de v por p es un vector proporcional a
-- v). Por ejemplo,
    esAutovector v2 p1 == False
     esAutovector v1 p1 == True
type Vector a = Array Int a
type Matriz a = Array (Int,Int) a
pl:: (Fractional a, Eq a) => Matriz a
p1 = listArray ((1,1),(3,3)) [1,0,0,0,0,1,0,1,0]
v1, v2:: (Fractional a, Eq a) => Vector a
v1 = listArray (1,3) [0,-1,1]
v2 = listArray (1,3) [1,2,1]
esAutovector :: (Fractional a, Eq a) => Vector a -> Matriz a -> Bool
esAutovector v p = proporcional (producto p v) v
-- (producto p v) es el producto de la matriz p por el vector v. Por
-- ejemplo,
     producto p1 v1 = array (1,3) [(1,0.0), (2,1.0), (3,-1.0)]
     producto\ p1\ v2 = array\ (1,3)\ [(1,1.0),(2,1.0),(3,2.0)]
```

```
producto :: (Fractional a, Eq a) => Matriz a -> Vector a -> Vector a
producto p v =
    array (1,n) [(i, sum [p!(i,j)*v!j | j <- [1..n]]) | i <- [1..m]]
   where (\_,n) = bounds v
          (\_,(m,\_)) = bounds p
-- (proporcional v1 v2) se verifica si los vectores v1 y v2 son
-- proporcionales. Por ejemplo,
     proporcional v1 v1
                                                   = True
     proporcional v1 v2
                                                   = False
     proporcional v1 (listArray (1,3) [0,-5,5]) = True
     proporcional v1 (listArray (1,3) [0,-5,4]) = False
     proporcional (listArray (1,3) [0,-5,5]) v1 = True
     proporcional v1 (listArray (1,3) [0,0,0]) = True
     proporcional (listArray (1,3) [0,0,0]) v1 = False
proporcional :: (Fractional a, Eq a) => Vector a -> Vector a -> Bool
proporcional v1 v2
    \mid esCero v1 = esCero v2
    | otherwise = and [v2!i == k*(v1!i) | i \leftarrow [1..n]]
   where (,n) = bounds v1
               = minimum [i | i <- [1..n], v1!i /= 0]
               = (v2!j) / (v1!j)
          k
-- (esCero v) se verifica si v es el vector 0.
esCero :: (Fractional a, Eq a) => Vector a -> Bool
esCero v = null [x \mid x \le elems v, x \neq 0]
-- Ejercicio 4.2. Definir la función
     autovalorAsociado :: (Fractional a, Eq a) =>
                          Matriz a -> Vector a -> Maybe a
-- tal que si v es un autovector de p, calcule el autovalor asociado.
-- Por ejemplo,
     autovalorAsociado p1 v1 == Just (-1.0)
     autovalorAsociado p1 v2 == Nothing
autovalorAsociado :: (Fractional a, Eq a) =>
                     Matriz a -> Vector a -> Maybe a
autovalorAsociado p v
```

3.6. Examen 6 (13 de junio de 2013)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 6º examen de evaluación continua (13 de junio de 2013)
import Data.Array
-- Ejercicio 1. Un número es creciente si cada una de sus cifras es
-- mayor o igual que su anterior.
-- Definir la función
-- numerosCrecientes :: [Integer] -> [Integer]
-- tal que (numerosCrecientes xs) es la lista de los números crecientes
-- de xs. Por ejemplo,
     ghci> numerosCrecientes [21..50]
      [22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49]
-- Usando la definición de numerosCrecientes calcular la cantidad de
-- números crecientes de 3 cifras.
-- 1ª definición (por comprensión):
numerosCrecientes :: [Integer] -> [Integer]
numerosCrecientes xs = [n | n <- xs, esCreciente (cifras n)]</pre>
-- (esCreciente xs) se verifica si xs es una sucesión cerciente. Por
-- ejemplo,
     esCreciente [3,5,5,12] == True
      esCreciente [3,5,4,12] == False
esCreciente :: Ord a => [a] -> Bool
esCreciente (x:y:zs) = x \le y \&\& esCreciente (y:zs)
esCreciente _ = True
-- (cifras x) es la lista de las cifras del número x. Por ejemplo,
```

```
-- cifras 325 == [3,2,5]
cifras :: Integer -> [Integer]
cifras x = [read [d] | d \leftarrow show x]
-- El cálculo es
      ghci> length (numerosCrecientes [100..999])
      165
-- 2ª definición (por filtrado):
numerosCrecientes2 :: [Integer] -> [Integer]
numerosCrecientes2 = filter (\n -> esCreciente (cifras n))
-- 3ª definición (por recursión):
numerosCrecientes3 :: [Integer] -> [Integer]
numerosCrecientes3 [] = []
numerosCrecientes3 (n:ns)
  | esCreciente (cifras n) = n : numerosCrecientes3 ns
  | otherwise
                          = numerosCrecientes3 ns
-- 4ª definición (por plegado):
numerosCrecientes4 :: [Integer] -> [Integer]
numerosCrecientes4 = foldr f []
  where f n ns | esCreciente (cifras n) = n : ns
               otherwise
                                        = ns
-- Ejercicio 2. Definir la función
      sublistasIguales :: Eq a => [a] -> [[a]]
-- tal que (sublistasIguales xs) es la listas de elementos consecutivos
-- de xs que son iguales. Por ejemplo,
     ghci> sublistasIguales [1,5,5,10,7,7,7,2,3,7]
     [[1],[5,5],[10],[7,7,7],[2],[3],[7]]
-- 1ª definición:
sublistasIguales :: Eq a => [a] -> [[a]]
sublistasIguales [] = []
sublistasIguales (x:xs) =
  (x : takeWhile (==x) xs) : sublistasIguales (dropWhile (==x) xs)
```

```
-- 2ª definición:
sublistasIguales2 :: Eq a => [a] -> [[a]]
sublistasIguales2 [] = []
sublistasIguales2[x] = [[x]]
sublistasIguales2 (x:y:zs)
  | x == u = (x:u:us):vss
  | otherwise = [x]:((u:us):vss)
 where ((u:us):vss) = sublistasIguales2 (y:zs)
-- Ejercicio 3. Los árboles binarios se pueden representar con el de
-- dato algebraico
   data Arbol a = H
                 | N a (Arbol a) (Arbol a)
                  deriving Show
-- Por ejemplo, los árboles
         9
         / \
                         / \
        / \
      8 6
                       8 6
     / | / |
                      / | / |
     3 2 4 5
                     3 2 4 7
-- se pueden representar por
    ej1, ej2:: Arbol Int
    ej1 = N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
     ej2 = N9 (N8 (N3 H H) (N2 H H)) (N6 (N4 H H) (N7 H H))
-- Un árbol binario ordenado es un árbol binario (ABO) en el que los
-- valores de cada nodo es mayor o igual que los valores de sus
-- hijos. Por ejemplo, ej1 es un ABO, pero ej2 no lo es.
-- Definir la función esABO
     esABO :: Ord t => Arbol t -> Bool
-- tal que (esABO a) se verifica si a es un árbol binario ordenado. Por
-- ejemplo.
    esABO eil == True
     esABO ej2 == False
data Arbol a = H
            | N a (Arbol a) (Arbol a)
```

deriving Show

```
ej1, ej2 :: Arbol Int
ej1 = N 9 (N 8 (N 3 H H) (N 2 H H))
          (N 6 (N 4 H H) (N 5 H H))
ej2 = N 9 (N 8 (N 3 H H) (N 2 H H))
          (N 6 (N 4 H H) (N 7 H H))
-- 1º definición
esABO :: Ord a => Arbol a -> Bool
esABO H
                               = True
                               = True
esABO (N x H H)
esABO (N x m1@(N x1 a1 b1) H) = x >= x1 \&\& esABO m1
esABO (N \times H m2@(N \times 2 a2 b2)) = x >= x2 \&\& esABO m2
esABO (N \times m1@(N \times 1 \text{ al b1}) m2@(N \times 2 \text{ a2 b2})) =
      x >= x1 \&\& esAB0 m1 \&\& x >= x2 \&\& esAB0 m2
-- 2ª definición
esAB02 :: Ord a => Arbol a -> Bool
esABO2 H
                = True
esABO2 (N x i d) = mayor x i && mayor x d && esABO2 i && esABO2 d
                           = True
       where mayor x H
              mayor x (N y) = x >= y
-- Ejercicio 4. Definir la función
      paresEspecialesDePrimos :: Integer -> [(Integer,Integer)]
-- tal que (paresEspecialesDePrimos n) es la lista de los pares de
-- primos (p,q) tales que p < q y q-p es divisible por n. Por ejemplo,
      ghci> take 9 (paresEspecialesDePrimos 2)
      [(3,5),(3,7),(5,7),(3,11),(5,11),(7,11),(3,13),(5,13),(7,13)]
      ghci> take 9 (paresEspecialesDePrimos 3)
      [(2,5),(2,11),(5,11),(7,13),(2,17),(5,17),(11,17),(7,19),(13,19)]
paresEspecialesDePrimos :: Integer -> [(Integer,Integer)]
paresEspecialesDePrimos n =
  [(p,q) \mid (p,q) \leftarrow paresPrimos, rem (q-p) n == 0]
```

```
-- paresPrimos es la lista de los pares de primos (p,q) tales que p < q.
-- Por ejemplo,
      ghci> take 9 paresPrimos
      [(2,3),(2,5),(3,5),(2,7),(3,7),(5,7),(2,11),(3,11),(5,11)]
paresPrimos :: [(Integer, Integer)]
paresPrimos = [(p,q) | q <- primos, p <- takeWhile (<q) primos]</pre>
-- primos es la lista de primos. Por ejemplo,
      take 9 primos == [2,3,5,7,11,13,17,19,23]
primos :: [Integer]
primos = 2 : [n | n \leftarrow [3,5..], esPrimo n]
-- (esPrimo n) se verifica si n es primo. Por ejemplo,
     esPrimo 7 == True
      esPrimo 9 == False
esPrimo :: Integer -> Bool
esPrimo n = [x \mid x \leftarrow [1..n], rem n x == 0] == [1,n]
-- Ejercicio 5. Las matrices enteras se pueden representar mediante
-- tablas con índices enteros:
      type Matriz = Array (Int, Int) Int
-- Definir la función
      ampliaColumnas :: Matriz -> Matriz -> Matriz
-- tal que (ampliaColumnas p q) es la matriz construida añadiendo las
-- columnas de la matriz q a continuación de las de p (se supone que
-- tienen el mismo número de filas). Por ejemplo, si p y q representa
-- las dos primeras matrices, entonces (ampliaColumnas p q) es la
-- tercera
              |4 5 6|
                          |0 1 4 5 6|
     0 1
      [2 3]
              |7 8 9|
                         [2 3 7 8 9]
-- En Haskell,
      ghci> :{
      *Main| ampliaColumnas (listArray ((1,1),(2,2)) [0..3])
      *Main|
                            (listArray ((1,1),(2,3)) [4...9])
     *Main| :}
     array ((1,1),(2,5))
            [((1,1),0),((1,2),1),((1,3),4),((1,4),5),((1,5),6),
             ((2,1),2),((2,2),3),((2,3),7),((2,4),8),((2,5),9)]
```

..

3.7. Examen 7 (3 de julio de 2013)

El examen es común con el del grupo 1 (ver página 26).

3.8. Examen 8 (13 de septiembre de 2013)

El examen es común con el del grupo 1 (ver página 34).

3.9. Examen 9 (20 de noviembre de 2013)

El examen es común con el del grupo 1 (ver página 38).

4

Exámenes del grupo 4

Andrés Cordón e Ignacio Pérez

4.1. Examen 1 (12 de noviembre de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 1º examen de evaluación continua (12 de noviembre de 2012)
-- Ejercicio 1.1. Dada una ecuación de tercer grado de la forma
    x^3 + ax^2 + bx + c = 0
-- donde a, b y c son números reales, se define el discriminante de la
-- ecuación como
  d = 4p^3 + 27q^2,
-- donde p = b - a^3/3 y q = 2a^3/27 - ab/3 + c.
-- Definir la función
     disc :: Float -> Float -> Float
-- tal que (disc a b c) es el discriminante de la ecuación
-- x^3 + ax^2 + bx + c = 0. Por ejemplo,
-- disc 1 (-11) (-9) == -5075.9995
disc :: Float -> Float -> Float
disc a b c = 4*p^3 + 27*q^2
   where p = b - (a^3)/3
         q = (2*a^3)/27 - (a*b)/3 + c
```

```
-- Ejercicio 1.2. El signo del discriminante permite determinar el
-- número de raíces reales de la ecuación:
   d > 0 : 1  solución,
   d = 0 : 2  soluciones y
   d < 0 : 3 soluciones
-- Definir la función
    numSol :: Float -> Float > Float -> Int
-- tal que (numSol a b c) es el número de raíces reales de la ecuación
-- x^3 + ax^2 + bx + c = 0. Por ejemplo,
   numSol\ 1\ (-11)\ (-9) == 3
  ______
numSol :: Float -> Float -> Int
numSol a b c
  | d > 0
           = 1
   | d == 0 = 2
   | otherwise = 3
   where d = disc a b c
-- Ejercicio 2.1. Definir la función
   numDiv :: Int -> Int
-- tal que (numDiv x) es el número de divisores del número natural
-- x. Por ejemplo,
   numDiv 11 == 2
   numDiv 12 == 6
numDiv :: Int -> Int
numDiv x = length [n | n \leftarrow [1..x], rem x n == 0]
-- Ejercicio 2.2. Definir la función
    entre :: Int -> Int -> [Int]
-- tal que (entre a b c) es la lista de los naturales entre a y b con,
-- al menos, c divisores. Por ejemplo,
-- entre 11 16 5 == [12, 16]
```

```
entre :: Int -> Int -> [Int]
entre a b c = [x \mid x \leftarrow [a..b], numDiv x >= c]
-- Ejercicio 3.1. Definir la función
     conPos :: [a] -> [(a,Int)]
-- tal que (conPos xs) es la lista obtenida a partir de xs especificando
-- las posiciones de sus elementos. Por ejemplo,
    conPos [1,5,0,7] == [(1,0),(5,1),(0,2),(7,3)]
conPos :: [a] -> [(a, Int)]
conPos xs = zip xs [0..]
-- Ejercicio 3.1. Definir la función
     pares :: String -> String
-- tal que (pares cs) es la cadena formada por los caracteres en
-- posición par de cs. Por ejemplo,
  pares "el cielo sobre berlin" == "e il or eln"
pares :: String -> String
pares cs = [c \mid (c,n) \leftarrow conPos \ cs, even \ n]
-- Ejercicio 4. Definir el predicado
     comparaFecha :: (Int,String,Int) -> (Int,String,Int) -> Bool
-- que recibe dos fechas en el formato (dd, "mes", aaaa) y se verifica si
-- la primera fecha es anterior a la segunda. Por ejemplo:
     comparaFecha (12, "noviembre", 2012) (01, "enero", 2015) == True
     comparaFecha (12, "noviembre", 2012) (01, "enero", 2012) == False
comparaFecha :: (Int,String,Int) -> (Int,String,Int) -> Bool
comparaFecha (d1,m1,a1) (d2,m2,a2) =
    (a1, mes m1, d1) < (a2, mes m2, d2)
   where mes "enero" = 1
         mes "febrero" = 2
```

```
mes "marzo"
               = 3
mes "abril"
                = 4
mes "mayo"
                = 5
mes "junio"
                = 6
mes "julio"
                = 7
mes "agosto"
                = 8
mes "septiembre" = 9
mes "octubre"
              = 10
mes "noviembre" = 11
mes "diciembre" = 12
```

4.2. Examen 2 (17 de diciembre de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 2º examen de evaluación continua (17 de diciembre de 2012)
-- Ejercicio 1. Definir, usando funciones de orden superior (map,
-- filter, ...), la función
      sumaCuad :: [Int] -> (Int,Int)
-- tal que (sumaCuad xs) es el par formado porla suma de los cuadrados
-- de los elementos pares de xs, por una parte, y la suma de los
-- cuadrados de los elementos impares, por otra. Por ejemplo,
      sumaCuad [1,3,2,4,5] == (20,35)
-- 1ª definición (por comprensión):
sumaCuad1 :: [Int] -> (Int,Int)
sumaCuad1 xs =
    (sum [x^2 | x \leftarrow xs, even x], sum [x^2 | x \leftarrow xs, odd x])
-- 2º definición (con filter):
sumaCuad2 :: [Int] -> (Int,Int)
sumaCuad2 xs =
    (sum [x^2 | x \leftarrow filter even xs], sum [x^2 | x \leftarrow filter odd xs])
-- 3ª definición (con map yfilter):
sumaCuad3 :: [Int] -> (Int,Int)
sumaCuad3 xs =
```

```
(sum (map (^2) (filter even xs)), sum (map (^2) (filter odd xs)))
-- 4ª definición (por recursión):
sumaCuad4 :: [Int] -> (Int,Int)
sumaCuad4 xs = aux xs (0,0)
    where aux [] (a,b) = (a,b)
          aux (x:xs) (a,b) | even x = aux xs (x^2+a,b)
                           | otherwise = aux xs (a,x^2+b)
-- Ejercicio 2.1. Definir, por recursión, el predicado
      alMenosR :: Int -> [Int] -> Bool
-- tal que (alMenosR k xs) se verifica si xs contiene, al menos, k
-- números primos. Por ejemplo,
     alMenosR 1 [1,3,7,10,14] == True
     alMenosR \ 3 \ [1,3,7,10,14] == False
alMenosR :: Int -> [Int] -> Bool
alMenosR 0 _ = True
alMenosR _ [] = False
alMenosR k (x:xs) | esPrimo x = alMenosR (k-1) xs
                  | otherwise = alMenosR k xs
-- (esPrimo x) se verifica si x es primo. Por ejemplo,
     esPrimo 7 == True
      esPrimo 9 == False
esPrimo :: Int -> Bool
esPrimo x =
    [n \mid n \leftarrow [1..x], rem x n == 0] == [1,x]
-- Ejercicio 2.2. Definir, por comprensión, el predicado
     alMenosC :: Int -> [Int] -> Bool
-- tal que (alMenosC k xs) se verifica si xs contiene, al menos, k
-- números primos. Por ejemplo,
     alMenosC 1 [1,3,7,10,14] == True
     alMenosC \ 3 \ [1,3,7,10,14] == False
```

```
alMenosC :: Int -> [Int] -> Bool
alMenosC k xs = length [x | x <- xs, esPrimo x] >= k

-- Ejercicio 3. Definir la La función
-- alternos :: (a -> b) -> (a -> b) -> [a] -> [b]
-- tal que (alternos f g xs) es la lista obtenida aplicando
-- alternativamente las funciones f y g a los elementos de la lista
-- xs. Por ejemplo,
-- ghci> alternos (+1) (*3) [1,2,3,4,5]
-- [2,6,4,12,6]
-- ghci> alternos (take 2) reverse ["todo", "para", "nada"]
-- ["to", "arap", "na"]
-- alternos :: (a -> b) -> (a -> b) -> [a] -> [b]
alternos f g (x:xs) = f x : alternos g f xs
```

4.3. Examen 3 (6 de febrero de 2013)

El examen es común con el del grupo 1 (ver página 11).

4.4. Examen 4 (18 de marzo de 2013)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 4º examen de evaluación continua (18 de marzo de 2013)
-- Ejercicio 1.1. Definir, por comprensión, la función
-- filtraAplicaC :: (a -> b) -> (a -> Bool) -> [a] -> [b]
-- tal que (filtraAplicaC f p xs) es la lista obtenida aplicándole a los
-- elementos de xs que cumplen el predicado p la función f. Por ejemplo,
-- filtraAplicaC (4+) (< 3) [1..7] == [5,6]
-- filtraAplicaC :: (a -> b) -> (a -> Bool) -> [a] -> [b]
filtraAplicaC f p xs = [f x | x <- xs, p x]
```

```
-- Ejercicio 1.2. Definir, usando map y filter, la función
      filtraAplicaMF :: (a -> b) -> (a -> Bool) -> [a] -> [b]
-- tal que (filtraAplicaMF f p xs) es la lista obtenida aplicándole a los
-- elementos de xs que cumplen el predicado p la función f. Por ejemplo,
      filtraAplicaMF (4+) (< 3) [1..7] == [5,6]
filtraAplicaMF :: (a -> b) -> (a -> Bool) -> [a] -> [b]
filtraAplicaMF f p = (map f) . (filter p)
-- Ejercicio 1.3. Definir, por recursión, la función
      filtraAplicaR :: (a -> b) -> (a -> Bool) -> [a] -> [b]
-- tal que (filtraAplicaR f p xs) es la lista obtenida aplicándole a los
-- elementos de xs que cumplen el predicado p la función f. Por ejemplo,
      filtraAplicaR (4+) (< 3) [1..7] == [5,6]
filtraAplicaR :: (a -> b) -> (a -> Bool) -> [a] -> [b]
filtraAplicaR _ _ [] = []
filtraAplicaR f p (x:xs) | p x = f x : filtraAplicaR f p xs
                         | otherwise = filtraAplicaR f p xs
-- Ejercicio 1.4. Definir, por plegado, la función
     filtraAplicaP :: (a -> b) -> (a -> Bool) -> [a] -> [b]
-- tal que (filtraAplicaP f p xs) es la lista obtenida aplicándole a los
-- elementos de xs que cumplen el predicado p la función f. Por ejemplo,
     filtraAplicaP (4+) (< 3) [1..7] == [5,6]
filtraAplicaP :: (a -> b) -> (a -> Bool) -> [a] -> [b]
filtraAplicaP f p = foldr g []
                       = f x : y
    where g x y | p x
                | otherwise = y
-- Se puede usar lambda en lugar de la función auxiliar
filtraAplicaP' :: (a -> b) -> (a -> Bool) -> [a] -> [b]
```

```
filtraAplicaP' f p = foldr (x y - if p x then f x : y else y) []
-- Ejercicio 2. Los árboles binarios se pueden representar con el de
-- tipo de dato algebraico
     data Arbol a = H a
                  | N a (Arbol a) (Arbol a)
-- Por ejemplo, los árboles
         9
         / \
        /
       8
            8
                        4
      / | / |
     3 2 4 5
                      3 2 5 7
-- se pueden representar por
     ej1, ej2:: Arbol Int
     ej1 = N 9 (N 8 (H 3) (H 2)) (N 8 (H 4) (H 5))
     ej2 = N 9 (N 4 (H 3) (H 2)) (N 8 (H 5) (H 7))
-- Se considera la definición de tipo de dato:
-- Definir el predicado
     contenido :: Eq a => Arbol a -> Arbol a -> Bool
-- tal que (contenido al a2) es verdadero si todos los elementos que
-- aparecen en el árbol al también aparecen en el árbol a2. Por ejemplo,
     contenido ej1 ej2 == True
     contenido ej2 ej1 == False
data Arbol a = H a
            | N a (Arbol a) (Arbol a)
ej1, ej2:: Arbol Int
ej1 = N 9 (N 8 (H 3) (H 2)) (N 8 (H 4) (H 5))
ej2 = N 9 (N 4 (H 3) (H 2)) (N 8 (H 5) (H 7))
contenido :: Eq a => Arbol a -> Arbol a -> Bool
contenido (\mathbf{H} x) a = pertenece x a
contenido (N x i d) a = pertenece x a && contenido i a && contenido d a
```

```
-- (pertenece x a) se verifica si x pertenece al árbol a. Por ejemplo,
     pertenece 8 ej1 == True
     pertenece 7 ej1 == False
pertenece x (H y) = x == y
pertenece x (N y i d) = x == y | pertenece x i | pertenece x d
-- Ejercicio 3.1. Definir la función
     esCubo :: Int -> Bool
-- tal que (esCubo x) se verifica si el entero x es un cubo
-- perfecto. Por ejemplo,
    esCubo 27 == True
     esCubo 50 == False
-- 1º definición:
esCubo :: Int -> Bool
esCubo x = y^3 == x
    where y = ceiling ((fromIntegral x)**(1/3))
-- 2ª definición:
esCubo2 :: Int -> Bool
esCubo2 x = elem x (takeWhile (\leqx) [i^3 | i \leq- [1..]])
-- Ejercicio 3.2. Definir la lista (infinita)
     soluciones :: [Int]
-- cuyos elementos son los números naturales que pueden escribirse como
-- suma de dos cubos perfectos, al menos, de dos maneras distintas. Por
-- ejemplo,
-- take 3 soluciones == [1729,4104,13832]
soluciones :: [Int]
soluciones = [x \mid x \leftarrow [1..], length (sumas x) >= 2]
-- (sumas x) es la lista de pares de cubos cuya suma es x. Por ejemplo,
     sumas 1729 == [(1,1728),(729,1000)]
sumas :: Int -> [(Int,Int)]
sumas x = [(a^3, x-a^3) \mid a \leftarrow [1..cota], a^3 \leftarrow x-a^3, esCubo (x-a^3)]
```

```
where cota = floor ((fromIntegral x)**(1/3))
-- La definición anterior se pued simplificar:
sumas2 :: Int -> [(Int,Int)]
sumas2 x = [(a^3, x-a^3) | a <- [1..cota], esCubo (x-a^3)]
    where cota = floor ((fromIntegral x / 2)**(1/3))
-- Ejercicio 4. Disponemos de una mochila que tiene una capacidad
-- limitada de c kilos. Nos encontramos con una serie de objetos cada
-- uno con un valor v y un peso p. El problema de la mochila consiste en
-- escoger subconjuntos de objetos tal que la suma de sus valores sea
-- máxima y la suma de sus pesos no rebase la capacidad de la mochila.
-- Se definen los tipos sinónimos:
      type Peso a = [(a, Int)]
      type Valor a = [(a, Int)]
-- para asignar a cada objeto, respectivamente, su peso o valor.
-- Definir la función:
      mochila :: Eq a => [a] -> Int -> Peso a -> Valor a -> [[a]]
-- tal que (mochila xs c ps vs) devuelve todos los subconjuntos de xs
-- tal que la suma de sus valores sea máxima y la suma de sus pesos sea
-- menor o igua que cota c. Por ejemplo,
      ghci> :{
      *Main| mochila ["linterna", "oro", "bocadillo", "apuntes"] 10
                    [("oro",7),("bocadillo",1),("linterna",2),("apuntes",5)]
      *Main|
      *Main|
                    [("apuntes",8),("linterna",1),("oro",100),("bocadillo",10)]
     *Main| :}
type Peso a = [(a,Int)]
type Valor a = [(a,Int)]
mochila :: Eq a => [a] -> Int -> Peso a -> Valor a -> [[a]]
mochila xs c ps vs = [ys | ys <- rellenos, pesoTotal ys vs == maximo]</pre>
    where rellenos = posibles xs c ps
                 = maximum [pesoTotal ys vs | ys <- rellenos]</pre>
-- (posibles xs c ps) es la lista de objetos de xs cuyo peso es menor o
```

```
-- igual que c y sus peso están indicada por ps. Por ejemplo,
     ghci> posibles ["a","b","c"] 9 [("a",3),("b",7),("c",2)]
      [[],["c"],["b"],["b","c"],["a"],["a","c"]]
posibles :: Eq a => [a] -> Int -> Peso a -> [[a]]
posibles xs c ps = [ys | ys <- subconjuntos xs, pesoTotal ys ps <= c]</pre>
-- (subconjuntos xs) es la lista de los subconjuntos de xs. Por ejemplo,
     subconjuntos [2,5,3] == [[],[3],[5],[5,3],[2],[2,3],[2,5],[2,5,3]]
subconjuntos :: [a] -> [[a]]
subconjuntos [] = [[]]
subconjuntos (x:xs) = subconjuntos xs ++ [x:ys | ys <- subconjuntos xs]</pre>
-- (pesoTotal xs ps) es el peso de todos los objetos de xs tales que los
-- pesos de cada uno están indicado por ps. Por ejemplo,
     pesoTotal ["a", "b", "c"] [("a", 3), ("b", 7), ("c", 2)] == 12
pesoTotal :: Eq a => [a] -> Peso a -> Int
pesoTotal xs ps = sum [peso x ps | x <- xs]</pre>
-- (peso x ps) es el peso de x en la lista de pesos ps. Por ejemplo,
     peso "b" [("a",3),("b",7),("c",2)] == 7
peso :: Eq a => a -> [(a,b)] -> b
peso x ps = head [b | (a,b) \leftarrow ps, a ==x]
        Examen 5 ( 6 de mayo de 2013)
4.5.
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 5º examen de evaluación continua (6 de mayo de 2013)
```

```
import Data.List
```

```
-- Ejercicio 1.1. Definir, por recursión, la función

-- borra :: Eq a => a -> [a] -> [a]

-- tal que (borra x xs) es la lista obtenida borrando la primera

-- ocurrencia del elemento x en la lista xs. Por ejemplo,

-- borra 'a' "salamanca" == "slamanca"
```

```
borra :: Eq a => a -> [a] -> [a]
```

```
borra _ [] = []
borra x (y:ys) | x == y = ys
               | otherwise = y : borra x ys
-- Ejercicio 1.2. Definir, por recursión, la función
     borraTodos :: Eq a => a -> [a] -> [a]
-- tal que (borraTodos x xs) es la lista obtenida borrando todas las
-- ocurrencias de x en la lista xs. Por ejemplo,
     borraTodos 'a' "salamanca" == "slmnc"
borraTodos :: Eq a => a -> [a] -> [a]
borraTodos _ [] = []
borraTodos x (y:ys) | x == y = borraTodos x ys
                    | otherwise = y : borraTodos x ys
-- Ejercicio 1.3. Definir, por plegado, la función
     borraTodosP :: Eq a => a -> [a] -> [a]
-- tal que (borraTodosP x xs) es la lista obtenida borrando todas las
-- ocurrencias de x en la lista xs. Por ejemplo,
     borraTodosP 'a' "salamanca" == "slmnc"
borraTodosP :: Eq a => a -> [a] -> [a]
borraTodosP x = foldr f []
    where f y ys | x == y = ys
                | otherwise = y:ys
-- usando funciones anónimas la definición es
borraTodosP' :: Eq a => a -> [a] -> [a]
borraTodosP' x = foldr (\ y \ z \rightarrow if \ x == y then z else (y:z)) []
-- Ejercicio 1.4. Definir, por recursión, la función
     borraN :: Eq a => Int -> a -> [a] -> [a]
-- tal que (borraN n x xs) es la lista obtenida borrando las n primeras
-- ocurrencias de x en la lista xs. Por ejemplo,
     borraN 3 'a' "salamanca" == "slmnca"
```

borraN :: Eq a => Int -> a -> [a] -> [a] borraN _ _ [] = [] borraN 0 xs = xs borraN n x (y:ys) | x == y = borraN (n-1) x ys | otherwise = y : borraN n x ys -- Ejercicio 2.1. Un número entero positivo x se dirá especial si puede -- reconstruirse a partir de las cifras de sus factores primos; es decir -- si el conjunto de sus cifras es igual que la unión de las cifras de -- sus factores primos. Por ejemplo, 11913 es especial porque sus cifras -- son [1,1,1,3,9] y sus factores primos son: 3, 11 y 19. -- Definir la función esEspecial :: Int -> Bool -- tal que (esEspecial x) se verifica si x es especial. Por ejemplo, -- Calcular el menor entero positivo especial que no sea un número -- primo. esEspecial :: Int -> Bool esEspecial x =sort (cifras x) == sort (concat [cifras n | n <- factoresPrimos x])</pre> -- (cifras x) es la lista de las cifras de x. Por ejemplo, cifras 11913 == [1,1,9,1,3]cifras :: Int -> [Int] cifras $x = [read [i] | i \leftarrow show x]$ -- (factoresPrimos x) es la lista de los factores primos de x. Por ejemplo, factoresPrimos 11913 == [3,11,19]factoresPrimos :: Int -> [Int] factoresPrimos x = filter primo (factores x) -- (factores x) es la lista de los factores de x. Por ejemplo, ghci> factores 11913 [1,3,11,19,33,57,209,361,627,1083,3971,11913]

```
factores :: Int -> [Int]
factores x = [i \mid i \leftarrow [1..x], mod x i == 0]
-- (primo x) se verifica si x es primo. Por ejemplo,
     primo 7 == True
     primo 9 == False
primo :: Int -> Bool
primo x = factores x == [1,x]
-- El cálculo es
      ghci > head [x \mid x <- [1..], esEspecial x, not (primo x)]
      735
-- Ejercicio 3. Una lista de listas de xss se dirá encadenada si el
-- último elemento de cada lista de xss coincide con el primero de la
-- lista siguiente. Por ejemplo, [[1,2,3],[3,4],[4,7]] está encadenada.
-- Definir la función
     encadenadas :: Eq a => [[a]] -> [[[a]]]
-- tal que (encadenadas xss) es la lista de las permutaciones de xss que
-- son encadenadas. Por ejemplo,
      ghci> encadenadas ["el","leon","ruge","nicanor"]
      [["ruge", "el", "leon", "nicanor"],
      ["leon", "nicanor", "ruge", "el"],
      ["el","leon","nicanor","ruge"],
      ["nicanor", "ruge", "el", "leon"]]
encadenadas :: Eq a => [[a]] -> [[[a]]]
encadenadas xss = filter encadenada (permutations xss)
encadenada :: Eq a => [[a]] -> Bool
encadenada xss = and [last xs == head ys | (xs,ys) <- zip xss (tail xss)]</pre>
-- Ejercicio 4. Representamos los polinomios de una variable mediante un
-- tipo algebraico de datos como en el tema 21 de la asignatura:
      data Polinomio a = PolCero | ConsPol Int a (Polinomio a)
-- Por ejemplo, el polinomio x^3 + 4x^2 + x - 6 se representa por
```

```
ei :: Polinomio Int
     ej = ConsPol 3 1 (ConsPol 2 4 (ConsPol 1 1 (ConsPol 0 (-6) PolCero)))
-- Diremos que un polinomio es propio si su término independiente es no
-- nulo.
-- Definir la función
     raices :: Polinomio Int -> [Int]
-- tal que (raices p) es la lista de todas las raíces enteras del
-- polinomio propio p. Por ejemplo,
-- raices ej == [1, -2, -3]
data Polinomio a = PolCero | ConsPol Int a (Polinomio a)
ej :: Polinomio Int
ej = ConsPol 3 1 (ConsPol 2 4 (ConsPol 1 1 (ConsPol 0 (-6) PolCero)))
raices :: Polinomio Int -> [Int]
raices p = [z \mid z \leftarrow factoresEnteros (termInd p), valor <math>z p == 0]
-- (termInd p) es el término independiente del polinomio p. Por ejemplo,
      termInd (ConsPol 3 1 (ConsPol 0 5 PolCero)) == 5
      termInd (ConsPol 3 1 (ConsPol 2 5 PolCero)) == 0
termInd :: Num a => Polinomio a -> a
termInd PolCero = 0
termInd (ConsPol n x p) \mid n == 0 = x
                        | otherwise = termInd p
-- (valor c p) es el valor del polinomio p en el punto c. Por ejemplo,
     valor 2 (ConsPol 3 1 (ConsPol 2 5 PolCero)) == 28
valor :: Num a => a -> Polinomio a -> a
valor _ PolCero = 0
valor z (ConsPol n x p) = x*z^n + valor z p
-- (factoresEnteros x) es la lista de los factores enteros de x. Por
-- ejemplo,
     factoresEnteros\ 12 == [-1,1,-2,2,-3,3,-4,4,-6,6,-12,12]
factoresEnteros :: Int -> [Int]
factoresEnteros x = concat [[-z,z] | z < - factores (abs x)]
```

4.6. Examen 6 (13 de junio de 2013)

El examen es común con el del grupo 1 (ver página 60).

4.7. Examen 7 (3 de julio de 2013)

El examen es común con el del grupo 1 (ver página 26).

4.8. Examen 8 (13 de septiembre de 2013)

El examen es común con el del grupo 1 (ver página 34).

4.9. Examen 9 (20 de noviembre de 2013)

El examen es común con el del grupo 1 (ver página 38).

Apéndice A

Resumen de funciones predefinidas de Haskell

```
1. x + y es la suma de x e y.
 2. |x - y| es la resta de x e y.
 3. x / y es el cociente de x entre y.
 4.
     \mathbf{x} \hat{\mathbf{y}} es x elevado a y.
 5.
     x == y se verifica si x es igual a y.
     x \neq y se verifica si x es distinto de y.
 6.
 7.
     x < y | se verifica si x es menor que y.
 8.
     x \leftarrow y se verifica si x es menor o igual que y.
     x > y | se verifica si x es mayor que y.
 9.
10.
     x >= y | se verifica si x es mayor o igual que y.
11.
     x \& y es la conjunción de x e y.
     x | | y es la disyunción de x e y.
12.
     x:ys | es la lista obtenida añadiendo x al principio de ys.
13.
14.
     xs ++ ys es la concatenación de xs e ys.
     xs !! n es el elemento n-ésimo de xs.
15.
16.
     f . g es la composición de f y g.
17.
     abs x es el valor absoluto de x.
     and xs es la conjunción de la lista de booleanos xs.
18.
19.
     ceiling x es el menor entero no menor que x.
20.
     chr n es el carácter cuyo código ASCII es n.
     concat xss es la concatenación de la lista de listas xss.
21.
22.
     const x y es x.
```

- 23. curry f es la versión curryficada de la función f.
- 24. div x y es la división entera de x entre y.
- 25. drop n xs borra los n primeros elementos de xs.
- 26. dropWhile p xs borra el mayor prefijo de xs cuyos elementos satisfacen el predicado p.
- 27. $\begin{vmatrix} elem \times ys \end{vmatrix}$ se verifica si x pertenece a ys.
- 29. filter p xs es la lista de elementos de la lista xs que verifican el predicado p.
- 30. | flip f x y | es f y x.
- 31. | floor x | es el mayor entero no mayor que x.
- 32. foldl f e xs pliega xs de izquierda a derecha usando el operador f y el valor inicial e.
- 33. foldr f e xs pliega xs de derecha a izquierda usando el operador f y el valor inicial e.
- 34. fromIntegral x transforma el número entero x al tipo numérico correspondiente.
- 35. | fst p | es el primer elemento del par p.
- 36. $| gcd \times y |$ es el máximo común divisor de de x e y.
- 37. head xs es el primer elemento de la lista xs.
- 38. init xs es la lista obtenida eliminando el último elemento de xs.
- 39. iterate f x es la lista [x, f(x), f(f(x)), ...].
- 40. <u>last xs</u> es el último elemento de la lista xs.
- 41. length xs es el número de elementos de la lista xs.
- 42. map f xs es la lista obtenida aplicado f a cada elemento de xs.
- 43. $\begin{bmatrix} max & x & y \end{bmatrix}$ es el máximo de x e y.
- 44. maximum xs es el máximo elemento de la lista xs.
- 45. $min \times y$ es el mínimo de x e y.
- 46. minimum xs es el mínimo elemento de la lista xs.
- 47. $| mod \times y |$ es el resto de x entre y.
- 48. not x es la negación lógica del booleano x.
- 49. noElem x ys se verifica si x no pertenece a ys.
- 50. null xs se verifica si xs es la lista vacía.
- 51. $odd \times se$ se verifica si x es impar.
- 52. or xs es la disyunción de la lista de booleanos xs.
- 53. ord c es el código ASCII del carácter c.

- 54. product xs es el producto de la lista de números xs.
- 55. read c es la expresión representada por la cadena c.
- 56. rem x y es el resto de x entre y.
- 57. repeat x es la lista infinita [x, x, x, ...].
- 58. replicate n x es la lista formada por n veces el elemento x.
- 59. reverse xs es la inversa de la lista xs.
- 60. round x es el redondeo de x al entero más cercano.
- 61. scanr f e xs es la lista de los resultados de plegar xs por la derecha con f y e.
- 62. show x es la representación de x como cadena.
- 63. $\begin{vmatrix} signum x \end{vmatrix}$ es 1 si x es positivo, 0 si x es cero y -1 si x es negativo.
- 64. snd p es el segundo elemento del par p.
- 65. splitAt n xs es (take n xs, drop n xs).
- 66. sqrt x es la raíz cuadrada de x.
- 67. sum xs es la suma de la lista numérica xs.
- 68. tail xs es la lista obtenida eliminando el primer elemento de xs.
- 69. take n xs es la lista de los n primeros elementos de xs.
- 70. takeWhile p xs es el mayor prefijo de xs cuyos elementos satisfacen el predicado p.
- 71. uncurry f es la versión cartesiana de la función f.
- 72. | until p f x | aplica f a x hasta que se verifique p.
- 73. zip xs ys es la lista de pares formado por los correspondientes elementos de xs e ys.
- 74. zipWith f xs ys se obtiene aplicando f a los correspondientes elementos de xs e ys.

A.1. Resumen de funciones sobre TAD en Haskell

A.1.1. Polinomios

- 1. polCero es el polinomio cero.
- 2. (esPolCero p) se verifica si p es el polinomio cero.
- 3. (consPol n b p) es el polinomio $bx^n + p$.
- 4. (grado p) es el grado del polinomio p.

- 5. (coefLider p) es el coeficiente líder del polinomio p.
- 6. (restoPol p) es el resto del polinomio p.

A.1.2. Vectores y matrices (Data.Array)

- 1. (range m n) es la lista de los índices del m al n.
- 2. (index (m,n) i) es el ordinal del índice i en (m,n).
- 3. (inRange (m,n) i) se verifica si el índice i está dentro del rango limitado por m y n.
- 4. (rangeSize (m,n)) es el número de elementos en el rango limitado por m y n.
- 5. (array (1,n) [(i, f i) | i <- [1..n]) es el vector de dimensión n cuyo elemento i-ésimo es f i.
- 6. (array ((1,1),(m,n)) [((i,j), f i j) | i <- [1..m], j <- [1..n]]) es la matriz de dimensión m.n cuyo elemento (i,j)-ésimo es f i j.
- 7. (array (m,n) ivs) es la tabla de índices en el rango limitado por m y n definida por la lista de asociación ivs (cuyos elementos son pares de la forma (índice, valor)).
- 8. (t ! i) es el valor del índice i en la tabla t.
- 9. | (bounds t) | es el rango de la tabla t.
- 10. (indices t) es la lista de los índices de la tabla t.
- 11. (elems t) es la lista de los elementos de la tabla t.
- 12. (assocs t) es la lista de asociaciones de la tabla t.
- 13. (t // ivs) es la tabla t asignándole a los índices de la lista de asociación ivs sus correspondientes valores.
- 14. (listArray (m,n) vs) es la tabla cuyo rango es (m,n) y cuya lista de valores es vs.
- 15. (accumArray f v (m,n) ivs) es la tabla de rango (m,n) tal que el valor del índice i se obtiene acumulando la aplicación de la función f al valor inicial v y a los valores de la lista de asociación ivs cuyo índice es i.

A.1.3. Tablas

- 1. (tabla ivs) es la tabla correspondiente a la lista de asociación ivs (que es una lista de pares formados por los índices y los valores).
- 2. (valor t i) es el valor del índice i en la tabla t.
- 3. (modifica (i,v) t) es la tabla obtenida modificando en la tabla t el valor de i por v.

A.1.4. Grafos

- 1. (creaGrafo d cs as) es un grafo (dirigido o no, según el valor de o), con el par de cotas cs y listas de aristas as (cada arista es un trío formado por los dos vértices y su peso).
- 2. (dirigido g) se verifica si g es dirigido.
- 3. (nodos g) es la lista de todos los nodos del grafo g.
- 4. (aristas g) es la lista de las aristas del grafo g.
- 5. (adyacentes g v) es la lista de los vértices adyacentes al nodo v en el grafo g.
- 6. (aristaEn g a) se verifica si a es una arista del grafo g.
- 7. (peso v1 v2 g) es el peso de la arista que une los vértices v1 y v2 en el grafo g.

Apéndice B

Método de Pólya para la resolución de problemas

B.1. Método de Pólya para la resolución de problemas matemáticos

Para resolver un problema se necesita:

Paso 1: Entender el problema

- ¿Cuál es la incógnita?, ¿Cuáles son los datos?
- ¿Cuál es la condición? ¿Es la condición suficiente para determinar la incógnita? ¿Es insuficiente? ¿Redundante? ¿Contradictoria?

Paso 2: Configurar un plan

- ¿Te has encontrado con un problema semejante? ¿O has visto el mismo problema planteado en forma ligeramente diferente?
- ¿Conoces algún problema relacionado con éste? ¿Conoces algún teorema que te pueda ser útil? Mira atentamente la incógnita y trata de recordar un problema que sea familiar y que tenga la misma incógnita o una incógnita similar.
- He aquí un problema relacionado al tuyo y que ya has resuelto ya. ¿Puedes utilizarlo? ¿Puedes utilizar su resultado? ¿Puedes emplear su método? ¿Te hace falta introducir algún elemento auxiliar a fin de poder utilizarlo?

- ¿Puedes enunciar al problema de otra forma? ¿Puedes plantearlo en forma diferente nuevamente? Recurre a las definiciones.
- Si no puedes resolver el problema propuesto, trata de resolver primero algún problema similar. ¿Puedes imaginarte un problema análogo un tanto más accesible? ¿Un problema más general? ¿Un problema más particular? ¿Un problema análogo? ¿Puede resolver una parte del problema? Considera sólo una parte de la condición; descarta la otra parte; ¿en qué medida la incógnita queda ahora determinada? ¿En qué forma puede variar? ¿Puedes deducir algún elemento útil de los datos? ¿Puedes pensar en algunos otros datos apropiados para determinar la incógnita? ¿Puedes cambiar la incógnita? ¿Puedes cambiar la incógnita o los datos, o ambos si es necesario, de tal forma que estén más cercanos entre sí?
- ¿Has empleado todos los datos? ¿Has empleado toda la condición? ¿Has considerado todas las nociones esenciales concernientes al problema?

Paso 3: Ejecutar el plan

- Al ejercutar tu plan de la solución, comprueba cada uno de los pasos
- ¿Puedes ver claramente que el paso es correcto? ¿Puedes demostrarlo?

Paso 4: Examinar la solución obtenida

- ¿Puedes verificar el resultado? ¿Puedes el razonamiento?
- ¿Puedes obtener el resultado en forma diferente? ¿Puedes verlo de golpe? ¿Puedes emplear el resultado o el método en algún otro problema?
- G. Polya "Cómo plantear y resolver problemas" (Ed. Trillas, 1978) p. 19

B.2. Método de Pólya para resolver problemas de programación

Para resolver un problema se necesita:

Paso 1: Entender el problema

- ¿Cuáles son las argumentos? ¿Cuál es el resultado? ¿Cuál es nombre de la función? ¿Cuál es su tipo?
- ¿Cuál es la especificación del problema? ¿Puede satisfacerse la especificación? ¿Es insuficiente? ¿Redundante? ¿Contradictoria? ¿Qué restricciones se suponen sobre los argumentos y el resultado?
- ¿Puedes descomponer el problema en partes? Puede ser útil dibujar diagramas con ejemplos de argumentos y resultados.

Paso 2: Diseñar el programa

- ¿Te has encontrado con un problema semejante? ¿O has visto el mismo problema planteado en forma ligeramente diferente?
- ¿Conoces algún problema relacionado con éste? ¿Conoces alguna función que te pueda ser útil? Mira atentamente el tipo y trata de recordar un problema que sea familiar y que tenga el mismo tipo o un tipo similar.
- ¿Conoces algún problema familiar con una especificación similar?
- He aquí un problema relacionado al tuyo y que ya has resuelto. ¿Puedes utilizarlo? ¿Puedes utilizar su resultado? ¿Puedes emplear su método? ¿Te hace falta introducir alguna función auxiliar a fin de poder utilizarlo?
- Si no puedes resolver el problema propuesto, trata de resolver primero algún problema similar. ¿Puedes imaginarte un problema análogo un tanto más accesible? ¿Un problema más general? ¿Un problema más particular? ¿Un problema análogo?
- ¿Puede resolver una parte del problema? ¿Puedes deducir algún elemento útil de los datos? ¿Puedes pensar en algunos otros datos apropiados para determinar la incógnita? ¿Puedes cambiar la incógnita? ¿Puedes cambiar la incógnita o los datos, o ambos si es necesario, de tal forma que estén más cercanos entre sí?
- ¿Has empleado todos los datos? ¿Has empleado todas las restricciones sobre los datos? ¿Has considerado todas los requisitos de la especificación?

Paso 3: Escribir el programa

- Al escribir el programa, comprueba cada uno de los pasos y funciones auxiliares.
- ¿Puedes ver claramente que cada paso o función auxiliar es correcta?
- Puedes escribir el programa en etapas. Piensas en los diferentes casos en los que se divide el problema; en particular, piensas en los diferentes casos para los datos. Puedes pensar en el cálculo de los casos independientemente y unirlos para obtener el resultado final
- Puedes pensar en la solución del problema descomponiéndolo en problemas con datos más simples y uniendo las soluciones parciales para obtener la solución del problema; esto es, por recursión.
- En su diseño se puede usar problemas más generales o más particulares. Escribe las soluciones de estos problemas; ellas puede servir como guía para la solución del problema original, o se pueden usar en su solución.
- ¿Puedes apoyarte en otros problemas que has resuelto? ¿Pueden usarse? ¿Pueden modificarse? ¿Pueden guiar la solución del problema original?

Paso 4: Examinar la solución obtenida

- ¿Puedes comprobar el funcionamiento del programa sobre una colección de argumentos?
- ¿Puedes comprobar propiedades del programa?
- ¿Puedes escribir el programa en una forma diferente?
- ¿Puedes emplear el programa o el método en algún otro programa?

Simon Thompson *How to program it*, basado en G. Polya *Cómo plantear y resolver problemas*.

Bibliografía

- [1] J. A. Alonso and M. J. Hidalgo. Piensa en Haskell (Ejercicios de programación funcional con Haskell). Technical report, Univ. de Sevilla, 2012.
- [2] R. Bird. *Introducción a la programación funcional con Haskell*. Prentice–Hall, 1999.
- [3] H. C. Cunningham. Notes on functional programming with Haskell. Technical report, University of Mississippi, 2010.
- [4] H. Daumé. Yet another Haskell tutorial. Technical report, University of Utah, 2006.
- [5] A. Davie. *An introduction to functional programming systems using Haskell*. Cambridge University Press, 1992.
- [6] K. Doets and J. van Eijck. *The Haskell road to logic, maths and programming*. King's College Publications, 2004.
- [7] J. Fokker. Programación funcional. Technical report, Universidad de Utrech, 1996.
- [8] P. Hudak. *The Haskell school of expression: Learning functional programming through multimedia*. Cambridge University Press, 2000.
- [9] P. Hudak. The Haskell school of music (From signals to symphonies). Technical report, Yale University, 2012.
- [10] G. Hutton. *Programming in Haskell*. Cambridge University Press, 2007.
- [11] B. O'Sullivan, D. Stewart, and J. Goerzen. *Real world Haskell*. O'Reilly, 2008.
- [12] G. Pólya. Cómo plantear y resolver problemas. Editorial Trillas, 1965.
- [13] F. Rabhi and G. Lapalme. *Algorithms: A functional programming approach*. Addison-Wesley, 1999.

122 Bibliografía

[14] B. C. Ruiz, F. Gutiérrez, P. Guerrero, and J. Gallardo. *Razonando con Haskell (Un curso sobre programación funcional)*. Thompson, 2004.

[15] S. Thompson. *Haskell: The craft of functional programming*. Addison-Wesley, third edition, 2011.