Project Euler #29: Distinct powers

This problem is a programming version of Problem 29 from projecteuler.net

Consider all integer combinations of a^b for $2 \le a \le 5$ and $2 \le b \le 5$:

$$2^2 = 4, 2^3 = 8, 2^4 = 16, 2^5 = 32$$
 $3^2 = 9, 3^3 = 27, 3^4 = 81, 3^5 = 243$
 $4^2 = 16, 4^3 = 64, 4^4 = 256, 4^5 = 1024$
 $5^2 = 25, 5^3 = 125, 5^4 = 625, 5^5 = 3125$

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

$$4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125$$

How many distinct terms are in the sequence generated by a^b for $2 \le a \le N$ and $2 \le b \le N$?

Input Format

Input contains an integer N

Output Format

Print the answer corresponding to the test case.

Constraints

 $2 \le N \le 10^5$

Sample Input

5

Sample Output

15