Reinforcement Learning (Tabular Methods) Reference Guide

Jian W Dong, based on Sutton & Barto: Reinforcement Learning - An Introduction 2E ${\it Updated~2025.08.18}$

Algorithm	On/Off Policy	Model- Free/ Model- Based	Control/ Predic- tion	Policy Update	Objective	Bootstrap	Target	Update Rule	When to Use
							MMING (Chapter 4)	T	
Policy Eval	On	Model	Pred	None	V^{π}	Yes	$\sum_{a} \pi(a s) \sum_{s',r} p(s',r s,a)[r + \gamma V(s')]$	$V(s) \leftarrow \text{Target}$	Known environment, need policy evaluation
Policy Iter	On	Model	Ctrl	Greedy	V*	Yes	Same as Policy Eval	Policy Eval + $\pi(s) \leftarrow$ $\arg \max_a \sum_{s',r} p(s',r s,a)[r +$ $\gamma V(s')]$	Known environment, guaranteed optimal policy
State-Value Iter	On	Model	Ctrl	Greedy	V*	Yes	$\max_{a} \sum_{s',r} p(s',r s,a)[r+\gamma V(s')]$	$V(s) \leftarrow \text{Target}$	Known environment, faster than policy iteration
Action-Value Iter	On	Model	Ctrl	Greedy	Q*	Yes	$\sum_{s',r} p(s',r s,a)[r + \gamma \max_{a'} Q(s',a')]$	$Q(s, a) \leftarrow \text{Target}$	Known environment, directly learns action values
	<u>'</u>	<u>'</u>	<u> </u>		MONT	TE CARLO ME	THODS (Chapter 5)		
First-Visit MC	On	Free	Pred	None	V^{π}	No	$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1} \text{ (from first visit)}$	$V(S_t) \leftarrow V(S_t) + \alpha[\text{Target} - V(S_t)]$	Episodic tasks, unbiased estimates
Every-Visit MC	On	Free	Pred	None	V^{π}	No	$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1} \text{ (from each visit)}$	$V(S_t) \leftarrow V(S_t) + \alpha[\text{Target} - V(S_t)]$	Episodic tasks, more data per episode
MC Exploring	On	Free	Ctrl	Greedy	Q*	No	$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$	$ \begin{array}{c} Q(s,a) \leftarrow \text{average}, \\ \pi(s) \leftarrow \arg\max_{a} Q(s,a) \end{array} $	Episodic, can ensure exploring starts
On-policy MC	On	Free	Ctrl	ε-gr	Q^{π}	No	$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$	$Q(s, a) \leftarrow \text{average, } \epsilon\text{-greedy}$ policy	Episodic, practical exploration
Off-policy MC Pred	Off	Free	Pred	None	V^{π}	No	$\begin{array}{l} \rho_{t:T-1}G_t \text{ where} \\ G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1} \\ \rho_{t+1:T-1}G_t \text{ where} \end{array}$	$V(s) \leftarrow \text{weighted average}$	Learn about different policy than behavior
Off-policy MC Ctrl	Off	Free	Ctrl	Greedy	Q*	No	$\rho_{t+1:T-1}G_t \text{ where}$ $G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$	Weighted average + greedy policy	Learn optimal policy from suboptimal data
			'	1	TEMPORAL	L-DIFFERENC	E LEARNING (Chapter 6)		ı
TD(0)	On	Free	Pred	None	V^{π}	Yes	$R_{t+1} + \gamma V(s_{t+1})$	$ V(s_t) \leftarrow V(s_t) + \alpha[\text{Target} - V(s_t)] $	Online learning, fast updates
SARSA	On	Free	Ctrl	ε-gr	Q^{π}	Yes	$R_{t+1} + \gamma Q(s_{t+1}, a_{t+1})$	$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[\text{Target} - Q(s_t, a_t)]$	Safe online control, conservative
Q-learning	Off	Free	Ctrl	ϵ -gr	Q*	Yes	$R_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a')$	$ \begin{vmatrix} Q(s_t, a_t) \leftarrow \\ Q(s_t, a_t) + \alpha[\text{Target} - Q(s_t, a_t)] \end{vmatrix} $	Learn optimal policy, explo- ration/exploitation
Expected SARSA	On/Off	Free	Ctrl	ε-gr	Q^{π}	Yes	$R_{t+1} + \gamma \sum_{a'} \pi(a' s_{t+1}) Q(s_{t+1}, a')$	$ \begin{array}{c} Q(s_t, a_t) \leftarrow \\ Q(s_t, a_t) + \alpha [\text{Target} - Q(s_t, a_t)] \end{array} $	Lower variance than SARSA
Double Q-learning	Off	Free	Ctrl	ϵ -gr	Q^*	Yes	Alternate: $R_{t+1} + \gamma Q_B(s_{t+1}, \arg \max_{a'} Q_A(s_{t+1}, a'))$ or $R_{t+1} + \gamma Q_B(s_{t+1}, a')$	Randomly select: $Q_A \leftarrow Q_A + \alpha[\text{Target}_A - Q_A]$ or	Avoid overestimation bias
							$\gamma Q_A(s_{t+1}, \operatorname{argmax}_{a'} Q_B(s_{t+1}, a'))$	$Q_B \leftarrow Q_B + \alpha[\mathrm{Target}_B - Q_B]$	
						P BOOTSTRA	APPING (Chapter 7)		
n-step TD	On	Free	Pred	None	V^{π}	Yes	$G_{t:t+n} = \frac{\sum_{i=0}^{n-1} \gamma^{i} R_{t+i+1} + \gamma^{n} V(s_{t+n})}{G_{t:t+n} =}$	$V(s_t) \leftarrow V(s_t) + \alpha[\text{Target} - V(s_t)]$	Bridge MC and TD, tune bias/variance
n-step SARSA	On	Free	Ctrl	ε-gr	Q^{π}	Yes	$G_{t:t+n} = \sum_{i=0}^{n-1} \gamma^{i} R_{t+i+1} + \gamma^{n} Q(s_{t+n}, a_{t+n})$	$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[\text{Target} - Q(s_t, a_t)]$	Multi-step lookahead, on-policy
n-step Tree Backup	Off	Free	Ctrl	Any	Q^{π}	Yes	$\begin{array}{l} \sum_{i=0}^{n-1} \gamma^{i} R_{t+i+1} + \gamma^{n} Q(s_{t+n}, a_{t+n}) \\ G_{t:t+n}^{tree} = R_{t+1} + \\ \gamma [\sum_{a \neq A_{t+1}} \pi(a S_{t+1}) Q(S_{t+1}, a) + \\ \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a \neq A_{t+1}} \alpha(a S_{t+1}) Q(S_{t+1}, a) + \\ A_{t+1} = \sum_{a $	$\begin{aligned} &Q(s_t, a_t) \leftarrow \\ &Q(s_t, a_t) + \alpha [\text{Target} - Q(s_t, a_t)] \end{aligned}$	Off-policy without importance sampling
n-step $Q(\sigma)$	On/Off	Free	Ctrl	Any	Q^{π}	Yes	$ \begin{array}{c} \pi(A_{t+1} S_{t+1})G_{t+1:t+n}^{tree} \\ \sigma\text{-weighted combination of SARSA and} \\ \text{Tree Backup} \end{array} $	$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[\text{Target} - Q(s_t, a_t)]$	Unify on/off-policy methods
Off-policy n-step	Off	Free	Ctrl	Any	Q^{π}	Yes	$\rho_{t+1:t+n-1}G_{t:t+n}$ (importance-weighted <i>n</i> -step return)	$Q(s_t, a_t) + \alpha[\text{Target} - Q(s_t, a_t)]$ $Q(s_t, a_t) \leftarrow$ $Q(s_t, a_t) + \alpha[\text{Target} - Q(s_t, a_t)]$	Off-policy with multi-step returns
				PLANN	ING AND LEA	RNING WITH	H TABULAR METHODS (Chapter 8)		
Dyna-Q	Off	Model	Ctrl	ε-gr	Q^*	Yes	$r + \gamma \max_{a'} Q(s', a')$ (same as Q-learning)	Q-learning update + model learning + planning	Combine learning and planning

Algorithm	On/Off Policy	Model- Free/ Model- Based	Control/ Predic- tion	Policy Update	Objective	Bootstrap	Target	Update Rule	When to Use
Dyna-Q+	Off	Model	Ctrl	ε-gr	Q*	Yes	$r + \kappa \sqrt{\tau} + \gamma \max_{a'} Q(s', a')$	Same as Dyna-Q with exploration bonus	Handle changing environments
Prioritized Sweeping	Off	Model	Ctrl	ε-gr	Q*	Yes	$r + \gamma \max_{a'} Q(s', a')$	Updates prioritized by $ { m Target} - Q(s,a) > heta$	Efficient planning, focus important updates
Trajectory Sampling	Off	Model	Ctrl	ε-gr	Q*	Yes	$r + \gamma \max_{a'} Q(s', a')$	Sample long trajectories vs. uniform sweeping	Better state distribution for planning
Real-time DP	On	Model	Ctrl	Greedy	V*	Yes	$\max_{a \sum_{s',r} p(s',r s_t,a)[r+\gamma V(s')]}$	$V(s_t) \leftarrow \text{Target only for visited}$ states	Online DP, focus on relevant states
					ELI	GIBILITY TRA	ACES (Chapter 12)		
Offline λ -return	On	Free	Pred	None	V^{π}	Yes	$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_t$	$ V(s_t) \leftarrow V(s_t) + \alpha [G_t^{\lambda} - V(s_t)] $ (offline at episode end)	Theoretical foundation for $TD(\lambda)$, offline learning
$\mathrm{TD}(\lambda)$	On	Free	Pred	None	V ^π	Yes	$R_{t+1} + \gamma V(s_{t+1}) \text{ (TD error: } \delta_t)$	$V(s) \leftarrow V(s) + \alpha \delta_t e_t(s) \text{ where}$ $e_t(s) = \gamma \lambda e_{t-1}(s) + 1_{s_t=s}$	Credit assignment, faster learning
$SARSA(\lambda)$	On	Free	Ctrl	ε-gr	Q^{π}	Yes	$R_{t+1} + \gamma Q(s_{t+1}, a_{t+1})$ (TD error: δ_t)	$Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t e_t(s, a)$	On-policy with eligibility traces
$Q(\lambda)$	Off	Free	Ctrl	ε-gr	Q*	Yes	$R_{t+1} + \gamma \max_{a} Q(s_{t+1}, a)$ (TD error: δ_t)	Watkins's $Q(\lambda)$: traces reset if non-greedy action	Off-policy with traces (limited)
True Online $TD(\lambda)$	On	Free	Pred	None	V^{π}	Yes	$R_{t+1} + \gamma V(s_{t+1}) \text{ (TD error: } \delta_t)$	Modified update with trace correction term	More accurate trace implementation

Notation: V(s): State value, Q(s,a): Action-value, $\pi(a|s)$: Policy, α : Learning rate, γ : Discount, ϵ : Exploration, G_t : Return, ρ : Importance ratio, $e_t(s)$: Eligibility trace, λ : Trace decay, δ_t : TD error Abbreviations: Model = Model-based, Free = Model-free, Ctrl = Control, Pred = Prediction, ϵ -greedy