Diszkrét matematika II. feladatok

Második alkalom (2024.09.16-20.)

Bemelegítő feladatok

- 1. Az euklideszi algoritmussal számolja ki az alábbi számpárok legnagyobb közös osztóját, és adja meg a legkisebb közös többszörösüket is.
 - a) a = 13, b = 14;
- b) a = 16, b = 37;
- c) a = 90, b = 111;
- d) a = 168, b = 219;

- e) a = 180, b = 219; f) a = 756, b = 795; g) a = 1440, b = 1587; h) a = 3048, b = 4611.

Gyakorló feladatok

- 2. Milyen $x \in \mathbb{Z}$ egészek elégítik ki a következő kongruenciákat:
- b) $2x \equiv 1 \mod 3$; c) $2x \equiv 1 \mod 4$; d) $2x \equiv 2 \mod 4$
- e) $x(x-2) \equiv 0 \mod 8$; f) $x^2 \equiv 1 \mod 5$; g) $x^2 \equiv 1 \mod 6$; h) $x^4 \equiv 1 \mod 5$

Érdekes feladatok

- 3. Legyenek z=i és $w=\frac{1}{2}+\frac{\sqrt{3}}{2}i$ komplex számok. Mely n egészekre teljesül, hogy $z^n=w^n=1$? Válaszát indokolja!
- 4. Mutassa meg, hogy (ca, cb) = c(a, b) ill. (a, b) = (a b, b). Az összefüggések segítségével számolja ki a $(2^{13}-1,2^8-1)$ ill. $(2^{15}-1,2^9-1)$ legnagyobb közös osztókat!
- 5. Legyen $F_1 = F_2 = 1$ és $n \ge 1$ esetén $F_{n+2} = F_{n+1} + F_n$. Ekkor az F_n sorozatot Fibonacci sorozatnak hívjuk, első néhány eleme: 1, 1, 2, 3, 5, 8, 13,... Mutassa meg, hogy $(F_{n+1}, F_n) = 1$

Szorgalmi feladatok

9. Legyen F_n az n-edik Fibonacci-szám! Mi lesz (F_{n+2}, F_n) ill. (F_{n+3}, F_n) ?