

Probabilistic Modeling and Reasoning ${}^{\rm Homework\,-\,5}$

Nikolaos Liouliakis (AID25001) Vasileios-Efraim Tsavalia (AID25006)

MSc in Artificial Intelligence and Data Analytics University of Macedonia

Supervisor: Professor Dimitris Christou-Varsakelis

Problem 1

After renaming the variables as following, the probability we want to calculate is:

Old variable name	New variable name
fuse assembly malfunction	x_0
drum unit	x_1
toner out	x_2
poor paper quality	x_3
worn roller	x_4
burning smell	x_5
poor print quality	x_6
wrinkled pages	x_7
multiple pages fed	x_8
paper jam	x_9

Table 1: Mapping of original variable names to new variable names.

$$p(x_1 = 1 \mid x_7 = 0, x_5 = 0, x_3 = 1) = 0.5075$$

It was calculated in python utilizing the "pyAgrum" library in the Python script named Problem1_EM.py

Problem 2

The Python script is named Gaussian_Mixture.py and generates the output file named em_output.txt

Problem 3

The marginal likelihood is determined by summing over x_2 :

$$p(x_1 = i) = \sum_{j=1}^{2} \theta_{ij}.$$

1. For the first matrix:

$$\theta^{(1)} = \begin{pmatrix} 0.3 & 0.3 \\ 0.2 & 0.2 \end{pmatrix}$$

we compute:

$$p(x_1 = 1) = \theta_{11} + \theta_{12} = 0.3 + 0.3 = 0.6, \quad p(x_1 = 2) = \theta_{21} + \theta_{22} = 0.2 + 0.2 = 0.4.$$

2. For the second matrix:

$$\theta^{(2)} = \begin{pmatrix} 0.2 & 0.4 \\ 0.4 & 0 \end{pmatrix}$$

we compute:

$$p(x_1 = 1) = \theta_{11} + \theta_{12} = 0.2 + 0.4 = 0.6, \quad p(x_1 = 2) = \theta_{21} + \theta_{22} = 0.4 + 0 = 0.4.$$

Since the marginal probabilities $p(x_1 = i)$ are identical for both matrices $(p(x_1 = 1) = 0.6 \text{ and } p(x_1 = 2) = 0.4)$, both $\theta^{(1)}$ and $\theta^{(2)}$ yield the same marginal likelihood score.

Problem 4

Output of the "EM" function (implemented in EM.m) for input EM(1.9,0.2), where 1.9 is the starting value for θ and 0.2 is the starting value for q(h = 2).

Figure 1: The log likelihood

Figure 2: Convergence using 1.9 for the starting value for θ

Figure 3: Convergence using 0.2 for the starting value for q(h=2)