

مخاضرات في ربض ١٠١ جامعت الملك سعود مع الدفني بوال: ٥٨٣٤٢٢٠٠٠

كورس ريض ١٠١ عبدالله الحفني ٥٨٣٤٠٠٠٠

عبدالله الحفني جوال ٠٠٠ ٢٢٢٤ ٥٨٥٠

أ/ عبدالباسط سمير جوال: ١٢٨٢٢١،٥٠٠

0583422200

Question 1

(2 marks for each)

A. Classify the following numbers into rational or irrational

$$\left\{ \sqrt[3]{27}, \ \frac{\sqrt{8}}{\sqrt{2}}, \ \sqrt{9} \cdot \pi, \ \sqrt{\sqrt{25} + \sqrt{16}}, \ 7.\overline{5}, \sqrt[3]{2}, \ 4.952 + \frac{1}{3}, \ 2.45971 \ldots \right\}$$

خطوات الحل

$\sqrt[3]{27} = 3 \in \mathbb{Q}$	$\sqrt{9}\pi = 3\pi \in I$	$\sqrt{\sqrt{25} + \sqrt{16}} = 3 \in \mathbb{Q}$	
$7.\overline{5} \in \mathbb{Q}$	$\sqrt[3]{2} \in I$	$4.95 + \frac{1}{3} \in \mathbb{Q}$	2.4 55 7 1 ∈ <i>I</i>

B. Solve the following inequalities and write the solution in interval notation

0583422200

1.
$$4x - 2 \le 3$$

2.
$$5 - (2x - 4) \le \frac{6x + 1}{3}$$

$$4x - 2 + 2 \le 3 + 2$$
 (+ 2)

$$4x \le 5 \Rightarrow x \le \frac{5}{4}$$

$$s.s = x \in (-\infty, \frac{5}{4}]$$
 (÷ 4)

$$3. \quad \sqrt{\left(\frac{2x-1}{3}\right)^2} + 4 \le 5$$

$$\sqrt{\left(\frac{2x-1}{3}\right)^2} \le 5-4 \Longrightarrow \left|\frac{2x-1}{3}\right| \le 1$$

$$\Rightarrow -3 \le 2x - 1 \le 3 \Rightarrow -2 \le 2x \le 4$$

$$\Rightarrow \frac{-2}{2} \le x \le \frac{4}{2} \Rightarrow -1 \le x \le 2$$

$$s.s = [-1,2]$$

$$5-2x+4 \le \frac{6x+1}{3} \Longrightarrow 9-2x \le \frac{6x+1}{3}$$

خطوات الحل

$$27 - 6x \le 6x + 1 \Rightarrow -12x \le -26$$

$$x \ge \frac{13}{6}$$

$$s.s = x \in \left[\frac{13}{6}, \infty\right)$$

0583422200

4.
$$\frac{1}{|x-1|} < \frac{1}{|x-2|}$$

|X| < |a|

$$\frac{1}{|x-1|} \prec \frac{1}{|x-2|} \Rightarrow |x-2| \prec |x-1| to^{2}$$

$$\Rightarrow (x-2)^2 \prec (x-1)^2 \Rightarrow$$

$$\Rightarrow x^2 - 4x + 4 \prec x^2 - 2x + 1$$

$$-2x \prec -3 \Rightarrow x \succ \frac{3}{2}$$

$$s.s = \left(\frac{3}{2}, 2\right) \cup (2, \infty)$$

0583422200

5.
$$\frac{(x^2 - 2x + 1) \cdot x}{x^2 + 4x + 4} \ge 0$$

0583422200

6.
$$|x|-1| \ge 3$$

$$\frac{x(x-1)(x-1)}{(x+2)(x+2)} \ge 0 \quad ; x \ne -2$$

$$x = 0, x = 1$$

$$s.s = [0, \infty)$$

$$|x|-1| \ge 3$$

$$\begin{vmatrix} x \end{vmatrix} - 1 \ge 3 \qquad \qquad |x| - 1 \le -3$$

$$x \ge 4$$
 or $x \le -4$

 $|x| \ge 4$

$$s.s = \phi$$

 $|x| \leq -2$

خطوات الحل

$$s.s = (-\infty, -4] \cup [4, \infty)$$

uestion 2

A- Find the domain of the following functions

1.
$$f(x) = 9 - (x - 1)^2$$

$$D_f = (-\infty, \infty) because (pol)$$

2.
$$f(x) = \frac{1}{2 + \cos x}$$

$$2 + \cos x = 0$$

$$x = \cos^{-1}(-2) \Rightarrow -2 \notin [-1,1]$$

$$D_f = \mathbb{R} = (-\infty, \infty)$$

 $D_f = \mathbb{R} = (-\infty, \infty)$ 0583422200

3.
$$f(x) = \frac{x+1}{1-\sqrt{1-2x}}$$

$$\begin{vmatrix} 1 - 2x \ge 0 \\ x \le \frac{1}{2} \end{vmatrix}$$

$$1 - \sqrt{1 - 2x} = 0 \Rightarrow \sqrt{1 - 2x} = 1$$

$$1 - 2x = 1 \Rightarrow x = 0$$

$$s.s = (-\infty, 0) \cup (0, \frac{1}{2}]$$

4.
$$f(x) = \sqrt{1 + |x|} + \sqrt[3]{x^2 - 4}$$

خطوات الحل

$$1+|x|\geq 0 \Rightarrow |x|\geq -1$$

$$s.s = \mathbb{R}$$

$$D_f = \mathbb{R}$$

كورس ريض ١٠١ عبدالله الجفني ٥٨٣٤(١٠٠٠)

B- Determine whether the functions

$$f(x) = \sqrt{\frac{x-1}{3-x}}, \ g(x) = \frac{\sqrt{x-1}}{\sqrt{3-x}}$$

are the same or not.

 $D_g: x - 1 \ge 0 \quad 3 - x > 0$ $\Rightarrow x \ge 1 \qquad x < 3$

:simplify التبسيط (2)

$$g(x) = \frac{\sqrt{x-1}}{\sqrt{3-x}} = \sqrt{\frac{x-1}{3-x}} = f(x); \forall x \in D_f \cap D_g$$

$$(1) D_f = D_g$$
$$(2) f = g$$

(*) F and g are the same

لحجز ودراسة كورس ريض ١٠١

- (١) لدينا اقوي مراجعات للميد الاول للعام
- (٢) لدينا مذكرات تحتوي علي شرح كامل للكورس (نحل EXERCISES المهمة نحل EXEMPLE)
 - (ش) لدينًا حلول جميع الآختبارات السابقة
 - (٤) لدينا مذكرة ليلة الامتحان (+A)
 - (ُ٥)نظام فردي وقروبات

عبدالله الحفني مدرس رياضيات لجامعة الملك سعود جوال ٥٨٣٤٢٢٢٠٠٠

Question 3

Let
$$f(x) = \frac{x+4}{x-5}$$
.

- 1. Find D_f .
- 2. Show that f is one-to-one.
- 3. Find f^{-1} .
- 4. Find the range of f.

1. Find D_f .

$$D_f: x-5=0 \Rightarrow x=5$$

$$D_f = \mathbb{R} - \{5\}$$

عبدالله الحفني جوال ٥٥٨٣٤٢٢٢٠٠٠

3. Find
$$f^{-1}$$
.

 \therefore f (x) is(1-1)

put
$$f(x) = x$$
, $x = f^{-1}(x)$

$$x = \frac{f^{-1}(x) + 4}{f^{-1}(x) - 5} \Rightarrow x f^{-1}(x) - 5x = f^{-1}(x) + 4$$

$$(x-1)f^{-1}(x) = 5x + 4$$

$$f^{-1}(x) = \frac{5x+4}{x-1}; \forall x \in \mathbb{R} - \{1\}$$

let
$$f(x_1) = f(x_2) \forall x_1, x_2 \in \mathbb{R} - \{5\}$$

$$\frac{x_1+4}{x_1-5} = \frac{x_2+4}{x_2-5}$$

$$\frac{x_1 - 5 + 9}{x_{1-5}} = \frac{x_2 - 5 + 9}{x_{2-5}} = \implies \cancel{1} + \frac{9}{x_{1-5}} = \cancel{1} + \frac{9}{x_{2-5}}$$

$$\frac{\cancel{9}}{x_1 - 5} = \frac{\cancel{9}}{x_2 - 5} \Rightarrow x_1 \cancel{5} = x_2 \cancel{5}$$

$$x_1 = x_2$$

$$f$$
 is $(1-1)$

4. Find the range of f.

$$f(x)$$
 لايجاد مدي

$$R_f = D_f - 1 (\Upsilon)$$

$$f^{-1}(x) = \frac{5x + 4}{x - 1}$$

$$x-1=0 \Rightarrow x=1$$

$$R_f = D_{f^{-1}} = \mathbb{R} - \{1\}$$

Question 5

Let
$$f(x) = \sqrt{x^2 - 1}$$
, $g(x) = \frac{1}{x - 2}$.

- 1. Find $(f \cdot g)(x)$ and its domain.
- 2. Find $\left(\frac{f}{g}\right)(x)$ and its domain.
- 3. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
- 1. Find $(f \cdot g)(x)$ and its domain.

$$D_{f}: x^{2} - 1 \ge 0 \Rightarrow x^{2} \ge 1 \Rightarrow \sqrt{x^{2}} \ge \sqrt{1}$$

$$|x| \ge 1 \Rightarrow x \ge 1 \quad or \quad x \le -1$$

$$D_{f} = (-\infty, -1] \cup [1, \infty,)$$

$$D_{(f \cdot g)} = D_f \cap D_g = (-\infty, -1] \cup [1, 2) \cup (2, \infty)$$

2. Find $\left(\frac{f}{g}\right)(x)$ and its domain.

$$D_{\binom{f}{g}} = D_f \cap D_g - \{g(x) = 0\} = (-\infty, -1] \cup [1, 2) \cup (2, \infty)$$

3. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.

$$(f \circ g)(x) = f(\frac{1}{x-2})$$
$$= \sqrt{(\frac{1}{x-2})^2 - 1}$$

$$(g \circ f)(x) = g(\sqrt{x^2 - 1})$$
$$= \frac{1}{\sqrt{x^2 - 1} - 2}$$

كورس ريش ١٠١ عبدالله الحفني ٥٨٣٤((٢٠٠٠)

Question 6

A. Let φ be an angle in standard position, its arc length 110 cm, and the diameter of the circle is 40 cm. Determine the angle in ϕ degree, if the rotation is clockwise.

$$\phi = s \bullet \frac{360}{2\pi r} = -110 \bullet \frac{360}{40\pi}$$
$$= -315^{\circ} 7^{l} 43^{ll}$$

$$\begin{vmatrix} s = 110 \\ d = 40 \end{vmatrix}$$

- B. Use reference angles to find the exact value of the following:
- $\cos(210^{\circ})$
- 2. $\sin(\frac{-3\pi}{4})$

1. cos(210°)

حل اول

$$\theta^{i} = 210^{\circ} - 180^{\circ} = 30^{\circ}$$

$$\cos 210 \, = -\cos 30 \, = -\frac{\sqrt{3}}{2}$$

حل ثانی

$$\cos 210^{\circ} = \cos(180^{\circ} + 30^{\circ})$$

$$=-\cos(30^{\circ})=-\frac{\sqrt{3}}{2}$$

2. $\sin(\frac{-3\pi}{4})$

حل اول

$$\theta = 2\pi - \frac{3\pi}{4} = \frac{5\pi}{4}$$

$$\theta^{l} = \frac{5\pi}{4} - \pi = \frac{\pi}{4}$$

$$\sin(-\frac{3\pi}{4}) = -\sin(\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$$

عبدالله الحفني جوال ٥٨٣٤٢٢٢٠٠

حل ثانی

$$\sin(-\frac{3\pi}{4}) = -\sin(\frac{3\pi}{4})$$

$$= -\sin(\frac{\pi}{4}) = -\sin(\frac{\pi}{4})$$

$$= \sin(\pi) = \sqrt{2}$$

$$=-\sin(\frac{\pi}{4})=-\frac{\sqrt{2}}{2}$$

Question 7

Find the exact value of the following, without using calculator:

- 1. $\sin^{-1}(\sin(\frac{5\pi}{4}))$.
- 2. $\cos(\sin^{-1}(\frac{2}{3}) + \tan^{-1}(\frac{-1}{3}))$

1. $\sin^{-1}(\sin(\frac{5\pi}{4}))$.

$$\sin^{-1}\sin(\frac{5\pi}{4}) = \sin^{-1}\sin(\frac{\pi}{4})$$

$$= \sin^{-1}\left[-\sin(\frac{\pi}{4})\right] = \sin^{-1}\left(-\frac{\sqrt{2}}{2}\right); -\frac{\sqrt{2}}{2} \in [-1,1]$$

$$= -\frac{\pi}{4} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

2. $\cos(\sin^{-1}(\frac{2}{3}) + \tan^{-1}(\frac{-1}{3}))$

عبدالله الحفني جو ال ٥٨٣٤٢٢٢٠٠٠

$$\cos\left(\sin^{-1}\left(\frac{2}{3}\right)\right) = \frac{\sqrt{5}}{3}$$

$$\sin\left(\sin^{-1}\left(\frac{2}{3}\right)\right) = \frac{2}{3}$$

 $\cos\left(\sin^{-1}\left(\frac{2}{3}\right)\right) = \frac{\sqrt{5}}{3}$ $\cos\tan^{-1}\left(-\frac{1}{3}\right) = \frac{3}{\sqrt{10}}$ $\sin\tan^{-1}\left(-\frac{1}{3}\right) = \frac{-1}{\sqrt{10}}$

$$\cos \left[\sin^{-1}(\frac{2}{3}) + \tan^{-1}(-\frac{1}{3}) \right] = \cos(A+B)$$

$$= \cos\left(\sin^{-1}\left(\frac{2}{3}\right)\right)\cos\left(\tan^{-1}\left(-\frac{1}{3}\right)\right) - \sin\left(\sin^{-1}\left(\frac{2}{3}\right)\right)\sin\left(\tan^{-1}\left(-\frac{1}{3}\right)\right)$$

$$= \frac{\sqrt{5}}{3} \bullet \frac{3}{\sqrt{10}} - \frac{2}{3} \bullet \frac{-1}{\sqrt{10}} = \frac{3\sqrt{5} + 2}{3\sqrt{10}} = \frac{15\sqrt{2} + 2\sqrt{10}}{30}$$

يوجد طرق اخرى للحل

عبدالله الحفني مدرس رياضيات لجامعة الملك سعود جوال ٥٨٣٤٢٢٢٠٠٠

Question 8

Solve the trigonometric equation

$$cos(2x) = sin x$$
, $x \in [0, 4\pi]$

$$1 - 2\sin^2 x = \sin x$$

عبدالله الحفني جوال ٥٨٣٤٢٢٢٠٠٠

$$2\sin^2 x + \sin x - 1 = 0$$

$$(2\sin x - 1)(\sin x + 1) = 0$$

 $2\sin x = 1$

 $\sin x = \frac{1}{2}$

$$x = \sin^{-1}\left(\frac{1}{2}\right)$$

$$X = \frac{\pi}{6}$$
 , $\frac{5\pi}{6}$, $\frac{13\pi}{6}$, $\frac{17\pi}{6}$

 $\sin x = -1$

$$x = \sin^{-1}(-1)$$

$$X = \frac{3\pi}{2}, \frac{7\pi}{2}$$

$$s.s = \left\{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}, \frac{3\pi}{2}, \frac{7\pi}{2}\right\}$$

لحجز ودراسة كورس ريض ١٠١

(١) لدينا اقوي مراجعات للميد الاول للعام الحالي

(EXERCISES المهمة نحل EXAMPLE المهمة نحل () لدينا مذكرات تحتوي علي شرح كامل للكورس (نحل)

(ش) لدينا حلول جميع الأختبار أت السابقة

(٤) لدينا مذكرة ليلة الامتحان (+A)

(٥)نظام فردي وقروبات

عبدالله الحفني مدرس رياضيات لجامعة الملك سعود جوال ٥٨٣٤٢٢٢٠٠٠

