Bilag 1

Contents	
Phase 1 - Domain Analysis	1
Milestones	1
Phase Description	2
Methods applied for reaching milestones	2
Phase 2 - Requirement Engineering	4
Milestones	4
Phase Description	4
Methods applied for reaching milestones	4
Phase 3 - Solution Analysis	5
Milestones	5
Phase Description	5
Methods applied for reaching milestones	6
Phase 4 - Solution Implementation and testing	8
Milestones	8
Phase Description	8
Methods applied for reaching milestones	8
Phase 5 - Report Writing	9
Milestones	9
Phase Description	9

Projektphases

Phase 1- Domain Analysis

Milestones

- Clinical Problem
- Physiological Mechanisms
- Motivation for physiological modelling
- SOTA
- Problem Statement

Phase Description

In the domain analysis phase, the problem will be analyzed based on its relevant aspects.

The clinical aspect investigates how the instance of the healthcare sector is affected by the issue - how does it affect the clinician's workflow, what is the effect on variables of interest in patient outcome and other significant factors.

The physiology will be described at a level of detail which encapsulates the effect on the patient's physiological systems in a clear and concise manner, without introducing unnecessary complexity with insignificant influence on outcome.

The motivation section investigates the necessity for creating physiological models in the context of researching clinical phenomena.

The state of the art (SOTA) section will investigate the performance and architecture of current non-invasive physiological models used for researching the clinical problem. The SOTA section will have high influence on the requirements for the final system, as it bridges the gap between the previously described theory, and current scientific/clinical application of the theory.

Method	Description	Associated Milestone
Unstructured	Conducted based on	All
Literature Search	initial curiosity,	
	without formal	
	research questions,	
	search process and	
	literature review	
	process.	
Structured Literature	Formally investigates a	All
Search	set of research	
	questions, conducted	
	through a well defined	
	search process in peer	

		T
	reviewed databases.	
	Found literature is	
	filtered based on	
	inclusion/exclusion	
	criteria, and reviewed	
	based on standardized	
	review schemes.	
Interview	A semi-structured	Clinical Aspect
	interview, wherein a	SOTA
	clinician or similar	
	expert in the field	
	shares their expert	
	knowledge on the	
	problem in a formal	
	setting, documented	
	for future usage.	

Phase 2- Requirement Engineering

Milestones

- Requirement Elicitation
- Requirement Analysis
- Requirement Specification

Phase Description

The requirement engineering phase defines a set of constraints to which the system must adhere.

Elicitation defines the needs of the clinician/researchers which the system will support, based on the research conducted in the domain analysis phase

System requirements constrain the system on a technical- and user experience level, without necessarily impacting the core support provided for the clinician/researchers.

Requirements analysis filters the identified requirements, based on available resources. Resources can include manpower, allocated project time and economical aspects, among others.

Method	Description	Associated Milestone
Structured literature	See Domain Analysis	Requirement
search	phase	Elicitation
Interview	See Domain Analysis	Requirement
	phase	Elicitation

MoSCOW	MoSCOW is an	Requirements Analysis
	acronym for must-,	Requirements
	should-, could- and	Specification
	would- have.	
	Requirements are	
	given a priority level	
	based on their	
	relevance for the	
	project. The priority	
	level is used as a	
	threshold when	
	subsequently filtering	
	requirements.	

Phase 3- Solution Analysis

Milestones

- Data Source
- System Description
- Physiological Modelling
- System Architecture
- Implementation Methods

Phase Description

The Solution Analysis phase aims to identify a suitable solution to the problem statement, in accordance with constraints posed by the systemand user- requirements.

The data source section describes the clinical trials from which the trials originate. Furthermore, the data relevant to the problem solution is described in detail.

The system description bridges the gap between domain analysis, requirement engineering and clinical implementation, by providing the context for the clinicians' usage of the system in their workflow.

Physiological modelling provides the architecture of the systems data processing engine at a unit- and module level.

The system architecture encapsulates the full system at relevant levels of detail. This includes database connectivity, user interfaces, interactions between modules and other relevant factors.

The implementation method section contains a description of the tools applied in building and testing the system.

Method	Description	Associated Milestone
Bioelectrical modelling	Bioelectrical modelling	Physiological
	(BE) identifies the	Modelling
	circuit diagram	
	analogues of the	System Architecture
	relevant physiological	
	mechanisms. BE	
	provides a high level	
	architecture of the	
	physiological models,	
	assisting as a useful	
	tool for stakeholder	
	communication and	
	guiding	
	implementation.	
Compartment	Compartment	Physiological
modelling	modelling structures	Modelling
	the physiological	
	mechanisms into	System Architecture
	encapsulated	

compartments. They contain more detail than BE, describing state variables as well as independent variables and interactions between these. This provides a level of the architecture which is closer to the physiology than BE, allowing for the same communicative and implementational benefits as BE, but from a different perspective.

Phase 4- Solution Implementation and testing

Milestones

- Individual Compartment Implementation
 - Individual Compartment Testing
- Module Implementation
 - Module Testing
- System Implementation
 - System Requirement Testing
 - User Requirement Testing

Phase Description

This phase is a distillation of the work performed in the previous phases.

First, the individual compartments will be implemented and tested according to the tests designed in the test plans.

The same process will be conducted at the module level of the architecture. In this case, modules are defined as a coherent collection of compartments, influencing a common module state variable. E.g. the heart consists of six compartments, with the modules state variable being pulse pressure.

Finally, the individual modules will be assembled into the full system, which is then tested on the system- and user- requirements.

Method	Description	Associated Milestone
Mathematical Toolbox	Depending on the	Individual
	available data,	Compartment
	different methods can	Implementation
	be applied for	Module
	computing the	Implementation

	systems state variables. Thus, ODE Solvers, optimization algorithms, integration and differentiation etc. can be applied, depending on the	System Implementation
Test Design	Depending on the requirements and physiological constraints of the system, tests will be designed to test its capabilities of handling different usability scenarios.	Individual Compartment Testing Module Testing System- and user- requirement testing

Phase 5- Report Writing

Milestones

- Problem Analysis
- Problem Statement
- Solution Analysis
- Methods
- Results
- Discussion
- Conclusion

Phase Description

The report writing phase consists of disseminating the research conducted in the previous phases.

The report is structured into different sections, which aid in disseminating the results of the work in a structured and scientific manner.