Operations Research (Master's Degree Course)

2. Mathematical Programming

Silvano Martello

DEI "Guglielmo Marconi", Università di Bologna, Italy

This work by is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Based on a work at http://www.editrice-esculapio.com

Notation

- R (or R^1): set of real numbers; \mathbb{R}^n : n-dimensional vector space.
- $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$: column vector of n elements $(\equiv \text{point in } R^n); \blacksquare$
- $x' = [x_1, \dots, x_n] = (x_1, \dots, x_n) = \text{row vector};$

$$Ax=b \iff a_i'x=b_i \quad (i=1,\ldots,m);$$

$$\iff \sum_{j=1}^n x_j A_j=b.$$

$$\iff \sum_{j=1}^{n} x_j A_j = b.$$

$$\begin{bmatrix} b_i \\ b \end{bmatrix}$$

- $\det(A)$: determinant of A;
- $S = \{s_1, s_2, \dots\}$: set of elements s_1, s_2, \dots ;
- $S = \{x : \mathcal{P}(x)\}$: set of those x for which property \mathcal{P} holds;
- |S|: number of elements in S.

General optimization problem

- $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ = vector of decision variables = point in \mathbb{R}^n .
- $F \subseteq \mathbb{R}^n = \text{set of the feasible solutions}$
- $\varphi: F \to R =$ objective function (cost function)
- Optimization problem: $\min_{x \in F} \varphi(x)$

find a point (vector) $x^* \in F$ (global optimum) such that:

$$\varphi(x^*) \le \varphi(x) \ \forall \ x \in F \blacksquare$$

- If the objective function φ has to be maximized (profit function)
 - 1. minimize $-\varphi$;
 - 2. invert the sign of the solution value, i.e.:

$$\max \varphi(x) = -\min(-\varphi(x))$$

Classifying optimization problems

The Feasible region F is normally defined by equations and inequalities:

min
$$\varphi(x)$$

 $h_j(x) = 0 \quad (j = 1, \dots, p)$
 $g_i(x) \ge 0 \quad (i = 1, \dots, q)$

1. If φ , h_j and g_i are general functions \Rightarrow Non Linear Programming: we only know non efficient algorithms which can find the global optimum for small-size problem instances, or a local optimum for larger instances, but can also fail in finding any feasible solution.

We will see that

- 2. If φ is convex, g_i is concave $\forall i$, and h_j is linear $\forall j \Rightarrow \textbf{Convex Programming}$:

 we know algorithms which can find a **local optimum** for small- or medium-size problem instances, **but**
 - a local optimum is always a global optimum.
- 3. If φ , h_j and g_i are all linear \Rightarrow Linear Programming:

 the simplex algorithm (very efficient) easily finds a global optimum even for very large problem instances.

Non Linear Programming

- ullet In a general optimization problem $\min_{x\in F} \varphi(x)$
 - 1. φ is a general function, and F is a general set. Hence:
 - 2. F can be empty (no solution exists) or non-continuous;
 - 3. local optima can exist (•):

- We don't know efficient algorithms to exactly solve this problem (algorithms do not have a "sufficiently complete vision" of F and φ);
- we know algorithms which can find the optimal solution, within reasonable times, for small size instances or an approximate (sub-optimal) solution for larger instances.

Optimization problems

- Another definition of **optimization problem** we will use: (F, d), with F = set of feasible points (solutions); $d: F \longrightarrow R^1$ (cost function).
- Problem: find $f \in F$ (global optimum) such that $d(f) \leq d(y) \ \forall y \in F$.
- Example: Linear Programming:

$$\left. \begin{array}{ll} \min & c'x \\ Ax = b \\ x \ge 0 \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{ll} (F,d) \\ F = \{x \in R^n : Ax = b, \ x \ge 0\} \\ d: x \to c'x \end{array} \right.$$

• Numerical example: m=1, n=3, $A=[1\ 1\ 1\]$, b=[2]:

min
$$c_1x_1 + c_2x_2 + c_3x_3$$

s.t. $x_1 + x_2 + x_3 = 2$
 $x_1 , x_2 , x_3 \ge 0$

Neighborhoods

ullet Given a set F, we define:

$$2^F = \text{set of all subsets of } F.$$

- Given a problem (F, d), a **Neighborhood** is a function $N : F \longrightarrow 2^F$ (very general definition).
- Example: (LP) $F = \{x \in R^n : Ax = b, x \ge 0\}$; for a prefixed $\varepsilon > 0$, possible neighborhood of $x \in F$: $N_{\varepsilon}(x) = \{y \in F : ||y x|| \le \varepsilon \}$ (Euclidean neighborhood).

Local and global optima

• Given a problem (F, d), and a neighborhood N, $f \in F$ is **locally optimum** with respect to N if:

$$d(f) \le d(p) \ \forall p \in N(f).$$

• Example: $F = [0,1] \subset R^1$, $N_{\varepsilon}(f) = \{x \in F : |x-f| \le \varepsilon\}$

ullet Given(F,d) and N , N is **exact** if:

 $(f \in F \text{ locally optimum with respect to } N) \Longrightarrow (f \text{ globally optimum}).$

• Example: $N_1(f) = \{x \in [0,1] : |x-f| \le 1\}$, obviously exact.

Convex sets

ullet Given $x,y\in R^n$, a convex combination of x and y is any $z\in R^n$ defined by

$$z = \lambda x + (1 - \lambda)y$$
 with $\lambda \in R^1, 0 \le \lambda \le 1$.

$$x, y \in \mathbb{R}^2$$

 $S \subseteq \mathbb{R}^n$ is a **convex set** if

$$\forall x, y \in S, \ \forall \ \lambda \ (0 \le \lambda \le 1), z = \lambda x + (1 - \lambda)y \in S.$$

- Examples in R^2 :
- **Property 0** \mathbb{R}^n is convex (proof immediate from definition).
- **Property 1** Given convex sets S_i , $\cap S_i$ is convex.

Proof $x, y \in \cap S_i \Rightarrow x, y \in S_i \ \forall \ i \Rightarrow z \in S_i \ \forall \ i \Rightarrow z \in \cap S_i$. \square

Convex functions

ullet Given $S\subseteq R^n$ convex, $c:S\to R^1$ is convex in S if

$$\forall x, y \in S, \ \forall \lambda (0 \le \lambda \le 1), \ c(\lambda x + (1 - \lambda) y) \le \lambda c(x) + (1 - \lambda)c(y).$$

• Example: $S = [0, 1] \subset \mathbb{R}^1$:

• Property 2 Given c(x) convex in S convex, $\forall t S_t = \{x \in S : c(x) \leq t\}$ is convex.

Proof Given $x, y \in S_t$, $\lambda x + (1 - \lambda)y \in S$, and

$$c(\lambda x + (1-\lambda)y) \le \lambda c(x) + (1-\lambda)c(y) \le \lambda t + (1-\lambda)t = t \implies \lambda x + (1-\lambda)y \in S_t. \square$$

Convex functions (cont'd)

 x_1

 $\bullet \ \ \mathsf{Example} \colon S \subseteq R^1$

 $\bullet \ \, \mathsf{Example:} \,\, S \subseteq \,\, R^2$

ullet A function c, defined in S convex, is **concave** if -c is convex in S: c_{\dagger}

• A linear function is both concave and convex.

Convex programming

- Let us consider the problem of minimizing a convex function over a convex set:
- **Theorem** Given (F, c) with $F \subseteq \mathbb{R}^n$ convex and c convex in F, the neighborhood

$$N_{\varepsilon}(x) = \{ y \in F : ||x - y|| \le \varepsilon \}$$

is exact $\forall \ \varepsilon > 0$.

Proof $x = \text{local optimum with respect to } N_{\varepsilon}$; $y \in F$;

take $z = \lambda x + (1 - \lambda)y$ in $N_{\varepsilon}(x)$ (λ close to 1);

$$c(z) = c(\lambda x + (1 - \lambda)y) \le \lambda c(x) + (1 - \lambda) c(y) \Rightarrow c(y) \ge \frac{c(z) - \lambda c(x)}{1 - \lambda};$$

$$\mathbf{z} \in N_{\varepsilon}(x) \Rightarrow c(z) \ge c(x) \Rightarrow c(y) \ge \frac{c(x) - \lambda c(x)}{1 - \lambda} = c(x). \square$$

$$z \in N_{\varepsilon}(x) \Rightarrow c(z) \ge c(x) \Rightarrow c(y) \ge \frac{c(x) - \lambda c(x)}{1 - \lambda} = c(x). \square$$

Convex programming (cont'd)

- (F, c) is a Convex Programming Problem (CP) if
 - − c is convex;
 - $F \subseteq \mathbb{R}^n$ is defined by

$$g_i(x) \ge 0 \ (i = 1, \dots, q)$$

with $g_i: R^n \to R^1$ concave $\forall i$.

- Relationship with the previous definition:
- A constraint $h_j(x) = 0$ with h_j linear can be replaced by a pair of constraints:

$$h_j(x) \geq 0$$

$$-h_j(x) \geq 0$$

(both $h_i(x)$ and $-h_i(x)$ are concave)

• Property In a CP, F is convex.

Proof $-g_i$ is convex $\forall i \Rightarrow F_i = \{x \in R^n : g_i(x) \geq 0\} = \{x \in R^n : -g_i(x) \leq 0\}$ is convex $\forall i$ (by **Property 2**);

 $\Rightarrow F = \cap F_i$ is convex (by **Property 1**). \square **Hence**

- In a CP a local optimum with respect to the Euclidean distance is a global optimum.
- ullet The same holds for linear programming (c linear; F defined by linear functions).