Value Function Iteration

Shang-Chieh Huang

November 3, 2021

Table of Contents

- Concept of Solving Functional Equation
- Solving the dynamic problem on Matlab:
 - Setting parameters
 - Discretizing the state variable k and control variable k'
 - Construct the periodic utility function matrix
 - Initial guess on value funtion
 - Mapping procedure T
 - Loop T until value function converges
 - Value Function and Policy Function
 - Simulate Time Series

Table of Contents

- Concept of Solving Functional Equation
- Solving the dynamic problem on Matlab:
 - Setting parameters
 - Discretizing the state variable k and control variable k'
 - Construct the periodic utility function matrix
 - Initial guess on value function
 - Mapping procedure T
 - Loop T until value function converges
 - Value Function and Policy Function
 - Simulate Time Series

$$v(k) = \max_{k' \in [0, g(k)]} u(g(k) - k') + \beta v(k'),$$

- where $g(k) = Ak^{\alpha} + (1-\delta)k$ and $u(c) = \frac{c^{1-\theta}-1}{1-\theta}$.
- Our goal is to solve for the fixed point of contraction mapping $T: V \to V$, where V is functional space.
- To solve for v(k), we basically look for the fixed point of the mapping T.
- What is the statement means?

• First, we guess an initial value function v_0 . From the mapping T, we can know:

$$v_1 = Tv_0$$

$$v_2 = Tv_1$$

$$v_3 = Tv_2$$
:

• Those value functions we get from mapping will converge to a fixed value function, says v^* :

$$v_0, v_1, v_2, ..., v_N \rightarrow v^*$$

• How can we know the mapping converge to v^st or not? By checking

$$\begin{aligned} |v_1 - v_0| \\ |v_2 - v_1| \\ \vdots \\ |v_N - v_{N-1}| < \epsilon, \end{aligned}$$

where ϵ is arbitrary small number.

- Then we can find
 - The value function, $v^*(k)$. You can interpret this function as the lifetime utility that household can achieve when he/she is given k.
 - The policy function, k' = G(k). Policy function is a set of rules describe what k' would household choose as his/her optimal choice when he/she is given k.

Table of Contents

- Concept of Solving Functional Equation
- Solving the dynamic problem on Matlab:
 - Setting parameters
 - Discretizing the state variable k and control variable k'
 - Construct the periodic utility function matrix
 - Initial guess on value function
 - Mapping procedure T
 - Loop T until value function converges
 - Value Function and Policy Function
 - Simulate Time Series

Setting Parameters

• Same as before

Discretize the State and Control Variable

• Discretize the domain by construction a vector:

$$k = [0 = k_0, k_1, k_2, ..., k_{max} = \overline{k} \equiv \left(\frac{\delta}{A}\right)^{\frac{1}{\alpha - 1}}]$$

- Matlab code: k = 0 : diff : kbar
- Note that diff is 0.005 in assignment 5

Discretize the State and Control Variable

Now we turn back to the mapping of value function

$$v(k) = \max_{k' \in [0, g(k)]} u(g(k) - k') + \beta v(k')$$

• We have already constructed vector k.

Discretize the State and Control Variable

Now we turn back to the mapping of value function

$$v(k) = \max_{k' \in [0, g(k)]} u(g(k) - k') + \beta v(k')$$

- What is k' here?
 - k' has same domain as k
 - Thus to maximize $u(g(k) k') + \beta v(k')$, we need to consider all possible k' for each k and find out the maximum.

- How can we achieve it?
- First, focus on g(k) k' from u(g(k) k')
- We know

$$g(k) - k' = Ak^{\alpha} + (1 - \delta)k - k'$$

$$g(k) - k' = Ak^{\alpha} + (1 - \delta)k - k'$$

- We can easily get g(k) from our vector k.
- Matlab code: gk = A*k.^alpha + (1-delta)*k

$$g(k) - k' = Ak^{\alpha} + (1 - \delta)k - k'$$

• Next, for each k, we want to consider all possible k'.

		k'		
		k_1'	k_2'	k_3'
	k_1	$g(k_1) - k_1'$	$g(k_1)-k_2'$	$g(k_1) - k_3'$
k	k_2	$g(k_2) - k_1'$	$g(k_2) - k_2'$	$g(k_2) - k_3'$
	k_3	$g(k_3) - k_1'$	$g(k_3)-k_2'$	$g(k_3)-k_3'$

• Matlab Code: mC = gk' - k

- Matlab Code: mC = gk' k
- Note that $(gk)' = [g(k_1) \quad g(k_2) \quad g(k_3)]'$ and $k = [k_1 \quad k_2 \quad k_3]$.
- Thus the operation: gk'-k is nonsense mathematically, but Matlab will automatically turn it into

$$\begin{bmatrix} g(k_1) & g(k_1) & g(k_1) \\ g(k_2) & g(k_2) & g(k_2) \\ g(k_3) & g(k_3) & g(k_3) \end{bmatrix} - \begin{bmatrix} k_1 & k_2 & k_3 \\ k_1 & k_2 & k_3 \\ k_1 & k_2 & k_3 \end{bmatrix}$$

- Note that c = g(k) k' and $c \ge 0$.
- Thus we need to replace the negative value with nan.
- Matlab Code: mC(mC < 0) = nan

- Then we can calculate utility: $u(c) = \frac{c^{1-\theta}-1}{1-\theta}$.
- Matlab Code: $mU = (mC.^(1-theta)-1)/(1-theta)$

		k'		
		$-{k_1'}$	k_2'	k_3'
	k_1	$u(k_1, k_1')$	$u(k_1, k_2')$	$u(k_1, k_3')$
k	k_2	$u(k_2,k_1')$	$u(k_2,k_2')$	$u(k_2,k_3')$
	k_3	$u(k_3,k_1')$	$u(k_3,k_2')$	$u(k_3,k_3')$

- Initial guess on value function $v_0 = [0, 0, 0, ..., 0]$
- Matlab code: v0 = zeros(1, length(k))
- Now turn back to our mapping, we can rewrite it as

$$v_1 = max (mU + \beta v_0)$$

• mU never change during we do the mapping, so that we can calculate it before doing "loop."

• while loop: we can decide ϵ so that our loop would be stopped when $|v_N-v_{N-1}|<\epsilon$

Matlab code:

while expression

statements

end

- for loop: we can decide how many times of loop we want to do
- Matlab code: TA session on Sep. 22.

$$v_1 = max (mU + \beta v_0)$$

• In the loop, we want to add v_0 into mU.

		k'				
		k_1' k_2' k_3'				
	k_1	$u(k_1, k_1') + \beta v_0(k_1')$	$u(k_1, k_2') + \beta v_0(k_2')$	$u(k_1, k_3') + \beta v_0(k_3')$		
k	k_2	$u(k_2, k_1') + \beta v_0(k_1')$	$u(k_2, k_2') + \beta v_0(k_2')$	$u(k_2,k_3')+\beta v_0(k_3')$		
	k_3	$u(k_3, k_1') + \beta v_0(k_1')$	$u(k_3, k_2') + \beta v_0(k_2')$	$u(k_3, k_3') + \beta v_0(k_3')$		

- Convert v_0 into a matrix
- Matlab code: v0_m = ones(length(k),1)*v0

- Then we can have $mU + \beta v_0$
- Matlab code: wis = mU + beta*v0_m

- Next step, we want to find the maximum for each k.
- Matlab code: [v1,ind] = max(wis);
- v1 is a column vector recording the maximum of Tv for each k (row).
- ind is a column vector recording the index corresponding to the maximum value of "wis."

Loop T until value function converges

- Last step of loop, we compare the distance between v_0 and v_1 .
- Matlab code: pcntol = max(abs(v1-v0))

- Stop the loop:
 - while $|v_N v_{N-1}| < \epsilon$, or
 - for t = 100 (assignment 5)

Value Function and Policy Function

- After we achieve convergence,
 - Value function: v1 in the last mapping.
 - **Policy function**: note that ind indicates for each k which element in vector $k = [0, k_1, k_2, ..., k_{max}]$ is the optimal choice for household to choose. So we can construct policy function by choosing the element in vector k.
 - Matlab code: PF = k(ind)

Simulate Time Series

• First, we combine our policy function and vector k as this form:

k_0	k_1	k_2	k_3	k_4	k_5	•••	k_{max}
$k'(k_0)$	$k'(k_1)$	$k'(k_2)$	$k'(k_3)$	$k'(k_4)$	$k'(k_5)$	•••	$k'(k_{max})$

- Suppose that we have a old steady state level of capital k_{old}^* , then we need to check which element in vector k is most closest to k_{old}^* .
- Matlab Code: [min_ts, ind_ts] = min(abs(k kss_old))
 - "ind_ts" tells us the (ind_ts)th element is most closet to k_{old}^{st}

Simulate Time Series

k_0	k_1	k_2	k_3	k_4	k_5	•••	k_{max}
$k'(k_0)$	$k'(k_1)$	$k'(k_2)$	$k'(k_3)$	$k'(k_4)$	$k'(k_5)$	•••	$k'(k_{max})$

- Then initialize vectors: tsk to store the simulated time series of capital.
- Store the $k'(k_{ind_ts})$ from policy function at the next period of the shock.
- Next, check which element in vector k is most closest to $k'(k_{ind_ts})$...
- You can repeat this process to construct whole time series.

Simulate Time Series

- Time series vector of consumption: $c_t = g(k_t) k_{t+1}$
- Time series vector of output: $y_t = Ak_t^{\alpha}$
- Time series vector of investment: $x_t = y_t c_t$