EV Charging Stations Security- Free Of Charge

Stephan Gerling

Senior Security Researcher ICS CERT

kaspersky

EV charging stations & security

free of charge

Stephan Gerling
Senior Security Researcher
Kaspersky ICS-CERT
Stephan.Gerling@Kaspersky.com

@ObiWan666

EV charging industry challenges

Electromobility

- Exponential Market Growth
- Fast Evolving Market
- Ensuring EV Drivers' Satisfaction and Loyalty

challenge #1 EV acceptance

challenge #1 charging infrastructur

"charging must be as easy as refueling"

https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/E-Mobilitaet/start.html

OCPP System architecture

- communications path between charger and Charging Station Management Systems (CSMS)
- CSMS often cloud based platform.
- communication between the charger and the CSMS is done with Web Sockets (WS), a bi-directional HTTP-like protocol.
- Secure Web Socket (WSS) are available

One Charging station (CS) can have multiple charging points (CP)

AC or DC

Minimum requirement of the German LSV (Ladesäulenverordnung) for Ad-hoc charging requires at least one of these methods (vgl. § 4 LSV)

- 1. Free usage or chash payment
- 2. Card payment or creditcard payment
- bevore 1. Juli 2023: with cardpayment or web based paymentsystem
- after 1. Juli 2023: via Credit- or Debit card

OCPP 1.6

OCPP 1.5

SOAP and JSON

Smart Charging support for load balancing and use of charge profiles

(Local) list management support

Additional status

Message sending requests such as CP time or status at the CP

OSCP 2.0

Communicate prediction of local available capacity for production and generation Fitting production and generation of flexibility resources to grid capacity Acts between Flexibility Providers and Capacity Providers Applicable for site owners, utilities and more

OCPP 2.0.1

OCPP 1.6 plus added functionalities

Device Management

Improved Transaction handling

Added Security

Added Smart Charging functionalities

Support for ISO15118

Display and messaging support

additional improvements requested by the EV charging community

Problem:

communication between CP and backend mostly unencrypted

Version 2.0.1 (march 2020) includes first Security Implementations

Minimum requirement still Version 1.6 Once in place, no need to upgrade to secure protocol

How works a CS?

How works a CS?

AC Charging System Power Flow

DC Charging System Power Flow

AC Residential Charging Station (Level 1,2 or 3) Block Diagram

How works a CS

Wrong scope?

Charging Point:

- 1. Housing defined as "secure,
- 2. No hardened IIoT because of #1
- 3. No Charging card security (only UID of mifare cards used)
- 4. #3 still cloneable and public known since 2017
- 5. No encryption
- 6. Searchable on Shodan.IO
- 7. And many more

Shodan

Kafka

// 9092 / TCP

Kafka Broker

med

issigned

20.160.126.152 Microsoft Corporation

Netherlands, Amsterdam

cloud

user-service.v1.mfa-requested user-service.v1.account-created

consumer offsets

portal-partner-service.v1.charger-registered user-service.v1.registration-code-requested

user-service.v1.email-verification-requested

charger-service.v1.connector-session-started

location-service.v1.device-created ocpp-service.v1.transaction-data

portal-partner-service.v1.order-closed

test

user-service.v1.reset-password-token-requested

Hosts:

20.160.126.152:9092

Physical Security fail

Physical Security fail #2

How to bypass the se

Why Use Sec

Security seals of entry.

How to bypa

Shimming wi other thechn

A Swiss Charging Station

Whats inside?

Control electronic

Embedded System & Network

Relais for power connector

Smart Meter

RCD/RCM

Circuit protection (fuses)

(un)secure charging cards

Charging Cards

- Mifare classic
- Only UID used
- Easy to clone
- Public known since 2017
- Nothing changed

Cloning the Charging Card

Max accepted frame size 16 bytes (FSC); 0)

Cloning the Charging Card

Vulnerabilities KLCERT-21-227

EVTEC espresso&ch

Denial of Service

denial of Service po

- nmap aggressiv electronic with
- Network paket

CVSS:3.1 Base score: 7.3 (high CVSS:3.1/AV:A/AC:L/PR:N/

Vulnerabilities KLCERT-21-228

EVTEC espresso&charge 4 in 1 EV charging Station

No authentication required to access log files, (log files accessible for public)

log files accessible for public http://ip.address.of.charginstation:8888/cgi-bin/public/list-logs

log files contains juicy information's accessible for everyone List of public readable log files:

ACEnergyMeterPlug2.log (105 KB)

.....

CVSS:3.1 Base score: 6.5 (medium)
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Wrong security decision

Public

List Logs for separate Download

Download all Logs

Private

Download Config File

File Upload

Restore Backup Config File

Router IP: 10.200.4.24

Router State: AT+CSQ

ICCID: 89883030000045170922

IMSI: 295050900258676

Device: 18140424 10858.0A

ECP Version: 3.3rc3

Image Version: 2018-02-09

Device ID: 8C1CC61697

Running Time: 26:18:11

GPS: 48.55613 / 12.1964916667

Config RFID Whitelist Debug

EVTEC espresso&charge 4 in 1 EV charging Station

```
-{"list": [
      {"expiryDate": "", "idTag": "0", "parentIdTag": "", "status": "Blocked"},
      {"expiryDate": "", "idTag": "0", "parentIdTag": "", "status": "Blocked"},
      {"expiryDate": "", "idTag": "0", "parentIdTag": "", "status": "Blocked"},
                                            84", "parentIdTag": "", "status": "Invalid"},
 5
      {"expirvDate": "", "idTag":
      {"expirvDate": "", "idTag":
                                             80", "parentIdTag": "", "status": "Accepted"},
      {"expirvDate": "", "idTag": "6
                                             "parentIdTag": "", "status": "Accepted"},
 8
      {"expirvDate": "", "idTag":
                                                 "parentIdTag": "4A Capted" | "status": "Accepted" |
 9
                                                ", "parentIdTag": "", "status": "Accepted"},
      {"expirvDate": "", "idTag":
      {"expirvDate": "", "idTag":
                                             "parentIdTag": "", "status": "Accepted"},
11
                                                 "parentIdTag": "", "status": "Accepted"},
      {"expirvDate": "", "idTag":
12
      {"expirvDate": "", "idTag":
                                             "parentIdTag": "", "status": "Accepted"},
13
      {"expirvDate": "", "idTag":
                                          14
      {"expiryDate": "", "idTag":
                                            "parentIdTag": "", "status": "Accepted"},
15
      {"expirvDate": "", "idTag":
                                                                                 "status": "Accepted"}.
16
      {"expirvDate": "", "idTag":
17
      {"expirvDate": "", "idTag": "4
                                                  "parentIdTag":
                                                                                 "status": "Accepted" }.
18
                        "idTag": "4
19
                                                 "parentIdTag": "", "status": "Accepted"},
20
                                                                                 "status": "Accepted"}].
21
     L"version": 304}
```

Vulnerabilities **KLCERT-21-230**

EVTEC espresso&charge 4 in 1 EV charging Station Payment cards (RFID card) are clone able

KLCERT-21-229 shows several ways to get an valid UID of an RFID payment card for the EV charging station.

Mifare Classic 1k RFID cards are used for the authentication and payment at the charging station.

Forensic Artefacts

Many usefully artefacts can be found during an analyze of charging point

- UID of used payment card is logged
- pevID of the Car and Car Model

```
2019-07-31;10:14:14;76010.510;Plug0: AuthPlug Plug0, scanned RFID 4xxxxxx252 / F 314 -> Transaction State: running 2019-07-31;10:14:25;76020.465;Plug0: PLC Protocol urn:din:70121:2012:MsgDef 2019-07-31;10:14:26;76021.734;Plug0: SOC Start 70% 2019-07-31;10:14:26;76021.734;Plug0: BMW i3 (18.8 kWh), pevID: 26xxxxxxxxxx296 2019-07-31;10:14:26;76022.079;Plug0: Enter charge mode 2019-07-31;10:14:31;76027.381;End Transaction {'displayName': 'DC CCS', 'elapsedChargeTime': 16.874226093292236, 'energone 2019-07-31;10:14:40;76036.082;Plug0: < Plugged out (State: error) 2019-07-31;10:14:52;76048.087;Plug5: > Plugged in (State: ready) 2019-07-31;10:15:01;76056.689;RFID scanned: 4xxxxxx252
```

Thank you!

Stephan Gerling

Senior Security Researcher
Kaspersky ICS-CERT
Stephan.Gerling@Kaspersky.com

@obiwan666