Domande

SERIE NUMERICHE

1) Definizione di serie numerica

Data una successione a_n , definita per $n \ge 0$, si chiama **serie numerica** di termine generale a_n , la somma di tutti gli infiniti termini della successione; si può indicare con la scrittura $\sum_{n=0}^{+\infty} a_n$.

2) Cosa significa studiare il carattere di una serie? Quando una serie è convergente? Divergente? Irregolare?

Studiare il **carattere di una serie** significa indicare se una serie è convergente, divergente o irregolare.

- Convergente, se $\lim_{n \to +\infty} S_n$ è finito
- Divergente, se $\lim_{n \to +\infty} S_n$ è infinito
- Irregolare, se $\lim_{n \to +\infty} s_n$ non esiste

3) Condizione necessaria di convergenza

Condizione **necessaria ma non sufficiente** affinché una serie sia convergente è che il $\lim_{n\to +\infty} del$ termine generale a_n sia uguale a 0.

4) Descrizione di una serie geometrica

Una serie geometrica è una serie che si può ottenere dall'addizione degli infiniti termini di una progressione geometrica.

La forma tipica è
$$\sum_{n=0}^{+\infty} q^n$$
,

dove q è un numero reale fissato.

Una serie geometrica:

• È convergente e ha somma $\frac{1}{1-q}$ se e solo se -1 < q < 1

- È divergente se e solo se $q \ge 1$
- È irregolare se e solo se $q \le -1$
- 5) Descrizione di una serie telescopica

Si chiama **telescopica** la serie $\sum a_n$ il cui termine generale a_n può essere espresso come differenza tra due successivi termini di una successione.

Le serie telescopiche sono particolarmente semplici, perché è facile esprimere in funzione di n la loro somma n—esima e saper indicare così il carattere della serie.

La serie telescopica più conosciuta è la serie di Mengoli:

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{+\infty} \frac{1}{n} - \frac{1}{n+1}$$

6) Descrizione serie armonica generalizzata

La serie **armonica generalizzata** è una serie che si presenta nella forma $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$.

La serie armonica generalizzata:

- Converge se $\alpha > 1$
- Diverge se $\alpha \le 1$