

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2553

วิชา ENE 341 Linear Control Systems

ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่ 3 (หลักสูตรปกติและสองภาษา) สอบ วันศุกร์ที่ 23 กรกฎาคม พ.ศ. 2553 เวลา 13:00 -16:00น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 8 หน้า (รวมใบปะหน้าและตารางสูตรหน้าสุดท้าย) คะแนนรวม 70 คะแนน
- 2. ให้ทำทุกข้อ
- 3. แสดงวิธีทำลงในข้อสอบเท่านั้น และแสดงวิธีทำทุกข้อโดยใช้<u>เลขนัยสำคัญ 2 ตำแหน่ง</u>
- 4. ไม่อนุญาตให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าห้องสอบ
- 5. สามารถนำเครื่องคำนวณเข้าห้องสอบไต้ตามระเบียบของมหาวิทยาลัย
- 6. ขอให้นักศึกษาทุกคนโชคดีในการสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ชื่อ-สกล	
	เลขที่นั่งสอบ

ผศ.ดร.วุฒิชัย อัศวินชัยโชติ ผู้ออกข้อสอบ โทร. 0-2470-9061

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(ผศ.ดร.วุฒิชัย อัศวินชัยโชติ)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

(15 คะแนน) ข้อ 1. จงหา Transfer Function $\frac{Y_2(s)}{R_1(s)}$ ของระบบต่อไปนี้

(15 points) Problem 1. Find the transfer function $\frac{Y_2(s)}{R_1(s)}$ of the following system.

เลขกึ้นงสถุป____

(15 คะแนน) ข้อ 2. จงเขียนพื้นที่ที่ Pole ตอบสนอง (admissible region) ของระบบ T(s) = Y(s)/R(s) ที่มีค่า specification ดังต่อไปนี้

- a) Percent overshoot P.O. < 5%
- b) Settling time $T_s < 4$ second
- c) Peak time $T_p < 1$ second

(15 points) Problem 2. Show the permissible area for the pole T(s) = Y(s)/R(s) in order to achieve the desired response as follows.

- a) Percent overshoot P.O. < 5%
- b) Settling time $T_s < 4$ second
- c) Peak time $T_p < 1$ second

(25 คะแนน) ข้อ 3. เครื่องมือตัวหนึ่ง ได้ถูกออกแบบให้มี r(t) = (1-t)u(t) โดยที่ u(t) คือ ฟังก์ชัน unit step input

(25 points) Problem 3. A machine tool is designed to follow a desired path so that r(t) = (1-t)u(t) where u(t) is the unit step input function.

(10 คะแนน) ก) จงหาค่า steady-state error เมื่อ r(t) คือ อินพุทที่ต้องการกำหนดให้ $T_d(s) = 0$ (10 points) a) Determine the steady-state error when r(t) is the desired path as given and $T_d(s) = 0$

เลงที่นั่งสถา

(15 คะแนน) ข) ถ้า r(t) = 0 จงหา ค่า steady-state error $i \vec{\hat{y}}$ อ $T_d(s) = 1/s$

(15 points) b) If the desired input r(t) = 0, find the steady-state error when $T_d(s) = 1/s$

(15 คะแนน) ข้อ 4. จงพิจารณารูปภาพด้านล่าง กำหนดให้

(15 points) Problem 4. Consider the following figure, where

$$G_c(s)G(s) = \frac{2}{s + 0.2K}$$
 and $H(s) = \frac{2}{2s + \tau}$

(7 คะแนน) ก. ถ้าให้ $\tau = 2.43$ จงหาค่า K ที่ทำให้ค่า steady state error เนื่องจาก unit step input, R(s) = 1/s, มีค่าเท่ากับศูนย์

(7 points) A. If $\tau = 2.43$, determine the value of K such that the steady state error of the closed loop system response to a unit step input, R(s) = 1/s, is zero.

เลาที่ นังสณา _____

(8 คะแนน) ข. จงหาค่า % overshoot และ settling time ของระบบนี้เมื่อให้ค่า K เท่ากับค่าที่หาได้ในข้อ ก. (8 points) B. Determine the percent overshoot and the settling time of the unit step response when K is as in part A.

Laplace transform E(s)	Time function $e(t)$
1 3	ı
$\frac{1}{s^3}$	$\frac{r^2}{2}$
$\frac{(k-1)!}{s^k}$	1 ^{k-1}
$\frac{1}{s+a}$	€_m
$\frac{1}{(s+a)^2}$	t€ [~] **
$\frac{(k-1)!}{(s+a)^k}$	th €~at
$\frac{a}{s(s+a)}$	1 €
$\frac{a}{s^2(s+a)}$	$t-\frac{1-\epsilon^{-a}}{a}$
$\frac{a^2}{s(s+a)^2}$	$1-(1+at)\epsilon^{-at}$
$\frac{b-a}{(s+a)(s+b)}$	$\epsilon^{-at} - \epsilon^{-bt}$
$\frac{a}{s^2+a^2}$	sin (at)
$\frac{s}{s^2+a^2}$	cos (at)
$\frac{1}{(s+a)^2+b^2}$	$\frac{1}{b}\epsilon^{-a}\sin bt$
$\frac{s+a}{(s+a)^2+b^2}$	€° " cos bi
$\frac{a^2+b^2}{s[(s+a)^2+b^2]}$	$1 - \epsilon^{-a} \left(\cos bt + \frac{a}{b} \sin bt \right)$

$$\frac{1}{s(s+a)(s+b)} \qquad \frac{1}{ab} + \frac{e^{-at}}{a(a-b)} + \frac{e^{-bt}}{b(b-a)}$$