САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАТЕМАТИКО-МЕХАНИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ФИЗИЧЕСКОЙ МЕХАНИКИ

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ

Отчёт по лабораторной работе №2-2

«ЭЛЕКТРОННЫЙ ОСЦИЛЛОГРАФ»

Выполнил студент: Почерникова Елизавета Кирилловна группа: 23.Б12-мм

> Проверил: Морозов Виктор Александрович

Санкт-Петербург, 2025 г.

Содержание

1	Введение				
2	Осн	овная	и часть	3	
	2.1	Teope	тическая часть	. 3	
	2.2	Экспе	еримент	. 4	
	2.3	Обраб	ботка данных и обсуждение результатов	. 4	
		2.3.1	Исходный код	. 4	
		2.3.2	Таблицы	. 5	
		2.3.3	Графики	. 7	
3	Выі	воды		8	

1 Введение

Осциллограф — один из основных приборов для визуализации и измерения временных характеристик электрических сигналов. Он позволяет наблюдать форму сигнала, измерять его амплитуду, частоту и фазу.

В данной работе исследуется принцип работы электронно-лучевой трубки, определяются чувствительности отклоняющих пластин, а также измеряется частота сигнала с помощью фигур Лиссажу.

Цель работы

Ознакомление с принципом действия и устройством электронного осциллографа, исследование чувствительности отклоняющих пластин осциллографической трубки, а также наблюдение и анализ электрических сигналов с помощью осциллографа.

Решаемые задачи

- 1. Исследовать чувствительность пластин вертикального и горизонтального отклонения осциллографической трубки.
- 2. Наблюдать синусоидальное напряжение, поступающее с выхода генератора, с помощью осциллографа.
- 3. Получить фигуры Лиссажу на экране осциллографа и определить частоту исследуемого сигнала по этим фигурам.

2 Основная часть

2.1 Теоретическая часть

Основным элементом осциллографа является электронно-лучевая трубка (ЭЛТ), в которой пучок электронов отклоняется электрическими полями между двумя парами пластин и попадает на экран с люминофорным покрытием. Направление и амплитуда отклонения зависят от напряжения, подаваемого на пластины.

При подаче постоянного напряжения пятно смещается, при переменном — образуется светящаяся линия. Чувствительность пластин (смещение на единицу напряжения) рассчитывается как:

$$S = \frac{1}{2\sqrt{2}} \cdot \frac{L}{U_{\rm eff}} \approx \frac{0.354 \cdot L}{U_{\rm eff}},$$

где L — длина линии на экране, $U_{\rm eff}$ — эффективное значение синусоидального напряжения.

При подаче сигналов на обе пары пластин наблюдаются фигуры Лиссажу. Их форма определяется соотношением частот:

$$\frac{f_x}{f_y} = \frac{m}{n},$$

где $m,\,n$ — число петель по вертикали и горизонтали. Это позволяет определить неизвестную частоту по известной.

Максимальный коэффициент усиления оценивается по формуле:

$$K = \frac{S_{\text{Makc}}}{S_{\text{IIBO}}} \approx \frac{354}{0.55} \approx 644.$$

2.2 Эксперимент

Эксперимент состоит из трёх этапов:

- 1. **Измерение чувствительности пластин.** Подаются синусоидальные сигналы на вертикальные и горизонтальные пластины. Измеряется длина полосы и напряжение.
- 2. Максимальная чувствительность входа *Y*. При минимальном напряжении и максимальном усилении определяется чувствительность по входу.
- 3. **Фигуры Лиссажу.** На экран выводятся фигуры при подаче синусоидальных напряжений на обе пары пластин. Частота вычисляется по виду фигуры и известному значению частоты по другой оси.

Рис. 1: Схема электрической цепи для исследования чувствительности пластин электронно-лучевой трубки и получения фигур Лиссажу

2.3 Обработка данных и обсуждение результатов

2.3.1 Исходный код

```
double calculateSensitivity(double L, double U_eff) {
   return (0.354 * L) / U_eff;
}
```

Листинг 1: Функция расчёта чувствительности

```
for (auto& row : pvo) row.S = calculateSensitivity(row.L, row.U_eff);
```

Листинг 2: Для каждой строки всех таблиц рассчитывается чувствительность

Листинг 3: Функция для вывода таблиц

2.3.2 Таблицы

Длина линии на экране, L	Эффективное напряжение, $U_{\rm eff}$	Чувствительность, S	
(MM)	(B)	(мм/В)	
10	6.46	0.5480	
20	12.33	0.5742	
30	18.14	0.5854	
40	26.20	0.5405	
50	34.30	0.5160	

Таблица 1: Пластины вертикального отклонения(ПВО)

Длина линии на экране, L	Эффективное напряжение, $U_{\rm eff}$	Чувствительность, S	
(MM)	(B)	(мм/В)	
10	5.30	0.6679	
20	10.80	0.6556	
30	20.80	0.5106	
40	27.70	0.5112	
50	35.50	0.4986	

Таблица 2: Пластины горизонтального отклонения(ПГО)

Длина линии на экране, L	Эффективное напряжение, $U_{\rm eff}$	Чувствительность, S	
(MM)	(B)	(мм/В)	
10	0.010	354.0000	
20	0.020	354.0000	
30	0.031	342.5806	
40	0.047	301.2766	
50	0.060	295.0000	

Таблица 3: Максимальная чувствительность осциллографа

Вид фигуры Лиссажу	0.8 0.6 0.4 0.2 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 03 04 04 04 04 04 04 04 04 04 04 04 04 04	01 04 04 04 04 04 04 05 05 11 1.5 -1 0.5 0 0.5 1 1.5	0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.6 0.8 1.1-0.80.604402 0 020.40.60.8 1
Отношение частот $f_x:f_y$	1:1	2:1	1:3	1:2
Частота по лимбу генератора f_y , Γ ц	50	25	150	100
Исследуемая частота f_x , Γ ц	50	50	50	50

Таблица 4: Фигуры Лиссажу и параметры частот

2.3.3 Графики

Максимальная чувствительность осциллографа

3 Выводы

В работе исследованы характеристики электронного осциллографа и принцип действия электронно-лучевой трубки. Основные результаты:

• Чувствительность отклоняющих пластин определена как:

$$S_{\rm IIBO} \approx 0.55 \text{ mm/B}, \quad S_{\rm IIIO} \approx 0.56 \text{ mm/B}$$

Чувствительность сохранялась стабильной при различных напряжениях, что указывает на линейную зависимость смещения луча от подаваемого сигнала.

• Максимальная чувствительность по входу У составила:

$$S_{\mathrm{makc}} pprox 354 \ \mathrm{mm/B}$$

при минимальном напряжении и максимальном усилении.

- Частота сигнала определена по фигурам Лиссажу. При соотношениях $f_x: f_y = 1:1, 2:1, 1:2, 1:3$ получены устойчивые изображения, соответствующие $f_x = 50$ Γ п, что совпадает с заданным значением.
- Работа позволила на практике освоить управление ЭЛТ, методы измерения амплитуды и частоты сигналов, а также технику построения фигур Лиссажу.