

planetmath.org

Math for the people, by the people.

dimension theorem for symplectic complement (proof)

 ${\bf Canonical\ name} \quad {\bf Dimension Theorem For Symplectic Complement proof}$

Date of creation 2013-03-22 13:32:52 Last modified on 2013-03-22 13:32:52

Owner matte (1858) Last modified by matte (1858)

Numerical id 5

Author matte (1858)

Entry type Proof

Classification msc 15A04

We denote by V^* the dual space of V, i.e., linear mappings from V to \mathbb{R} . Moreover, we assume known that dim $V = \dim V^*$ for any vector space V.

We begin by showing that the mapping $S:V\to V^*,\ a\mapsto \omega(a,\cdot)$ is an linear isomorphism. First, linearity is clear, and since ω is non-degenerate, $\ker S=\{0\}$, so S is injective. To show that S is surjective, we apply the http://planetmath.org/node/2238rank-nullity theorem to S, which yields $\dim V=\dim \operatorname{img} S$. We now have $\operatorname{img} S\subset V^*$ and $\dim \operatorname{img} S=\dim V^*$. (The first assertion follows directly from the definition of S.) Hence $\operatorname{img} S=V^*$ (see http://planetmath.org/VectorSubspacethis page), and S is a surjection. We have shown that S is a linear isomorphism.

Let us next define the mapping $T:V\to W^*,\ a\mapsto \omega(a,\cdot)$. Applying the http://planetmath.org/node/2238rank-nullity theorem to T yields

$$\dim V = \dim \ker T + \dim \operatorname{img} T. \tag{1}$$

Now $\ker T = W^{\omega}$ and $\operatorname{img} T = W^*$. To see the latter assertion, first note that from the definition of T, we have $\operatorname{img} T \subset W^*$. Since S is a linear isomorphism, we also have $\operatorname{img} T \supset W^*$. Then, since $\dim W = \dim W^*$, the result follows from equation $\ref{eq:total_point}$. \Box