Application No.: 10/663,090
Office Action Dated: June 3, 2004

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently amended) A compound of formulae (I) or formula (II):

and pharmaceutically acceptable salts thereof wherein:

 R^1 , R^2 , R^3 and R^4 are independently selected at each occurrence from the group: C_{1-} C_{10} alkyl substituted with 0-5 R^5 , C_2 - C_{10} alkenyl substituted with 0-5 R^5 and aryl substituted with 0-5 R^5 ;

 R^5 is independently elected at each occurrence from the group: H, C(=O)OR¹⁸, C₁-C₁₀ alkyl substituted with 0-5 R¹³, C₂-C₁₀ alkenyl substituted with 0-5 R¹³, aryl substituted with 0-5 R¹³ and heterocycle substituted with 0-5 R¹³;

X is selected from the group: BR^6R^7 , C(=O), SiR^6R^7 , GeR^6R^7 , SnR^6R^7 , NR^8 , PR^9 , $P(=O)R^9$, $P(=S)R^9$, AsR^9 and $As(=O)R^9$;

A is selected from the group: CH₂, NR¹⁰ and O;

 Q^1 , Q^2 , and Q^3 are independently -($CR^{11}R^{12}$)_n, wherein: n is 2-5;

 R^6 -and R^7 -are independently selected from the group: C_1 - C_{10} -alkyl substituted with 0-5 R^{13} , C_2 - C_{10} alkenyl substituted with 0-5 R^{13} and aryl substituted with 0-5 R^{13} ;

or alternatively, R^6 and R^7 may be taken together to form a transannular bridge, said bridge selected from the group: C_3 - C_{10} alkyl substituted with 0-5 R^{13} and ortho-aryl substituted with 0-3 R^{13} ;

 R^8 is selected from the group: OR^{14} , $C(=O)R^{14}$, $S(=O)_2R^{14}$ and $P(=O)(OR^{14})$; R^9 is selected from the group: OR^{14} , $NR^{15}R^{16}$ and $CH_2NR^{15}R^{16}$;

Application No.: 10/663,090
Office Action Dated: June 3, 2004

 \mathbb{R}^{10} , \mathbb{R}^{11} and \mathbb{R}^{12} are independently selected from the group: H, C_1 - C_{10} alkyl substituted with 0-5 \mathbb{R}^{17} , C_2 - C_{10} alkenyl substituted with 0-5 \mathbb{R}^{17} and aryl substituted with 0-3 \mathbb{R}^{17} ;

 R^{13} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, C(=O)R¹⁸, OC(=O)R¹⁸, OC(=O)OR¹⁸, C(=O)OR¹⁸, C(=O)NR₂¹⁸, PO₃R₂¹⁸, SR¹⁸, SOR¹⁸, SO₂R¹⁸, NHC(=O)R¹⁸, NHC(=O)NHR¹⁸, CH₂OR¹⁸, CH₃ and NHC(=S)NHR¹⁸;

 R^{14} , R^{15} and R^{16} are independently selected from the group: hydrogen, C_1 - C_{10} alkyl substituted with 0-5 R^{13} , C_2 - C_{10} alkenyl substituted with 0-5 R^{13} and aryl substituted with 0-5 R^{13} ;

or, alternatively, two R^{14} or R^{15} and R^{16} may be taken together to form a transannular bridge, said bridge selected from the group: C_3 - C_{10} alkyl substituted with 0-5 R^{13} and ortho-aryl substituted with 0-3 R^{13} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, C(=O)R¹⁸, OC(=O)R¹⁸, OC(=O)OR¹⁸, C(=O)OR¹⁸, C(=O)NR₂¹⁸, PO₃R₂¹⁸, SR¹⁸, SOR¹⁸, SO₂R¹⁸, NHC(=O)R¹⁸, NHC(=O)NHR¹⁸ and NHC(=S)NHR¹⁸; and

 R^{18} is independently selected at each occurrence from the group: H, C_1 - C_6 alkyl, benzyl and phenyl;

with the proviso that when said compound is of formula (I) and X is $P(=O)R^9$, Λ is not CH₂.

2. (Currently amended) A compound of Claim 1, wherein:

X is selected from the group: NR⁸, PR⁹ and P(=O)R⁹;

A is CH;

 R^8 is selected from the group: OR^{14} , $C(=O)R^{14}$ and $S(=O)_2R^{14}$; and R^9 is $CH_2NR^{15}R^{16}$.

3. (Currently amended) A compound of Claim 1 2 of formula (II), wherein:

X is P(=O)OH;

A is CH2;

Application No.: 10/663,090
Office Action Dated: June 3, 2004

 Q^1 , Q^2 , and Q^3 are independently -($CR^{11}R^{12}$)_n-, wherein: n is 2 or 3;

 R^{11} and R^{12} are independently selected from the group: H, C_1 - C_5 alkyl substituted with 0-3 R^{17} and aryl substituted with 0-1 R^{17} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, $C(=O)R^{18}$, $OC(=O)R^{18}$, $OC(=O)OR^{18}$, $C(=O)OR^{18}$, $C(=O)NR_2^{18}$, $PO_3R_2^{18}$, PO_3

 R^{18} is independently selected at each occurrence from the group: H and $C_1\text{-}C_3$ alkyl.

4. (Original) A compound of Claim 3, wherein:

 R^1 , R^2 , R^3 and R^4 are independently selected at each occurrence from the group: H, CH₂COOH, CH₂PO₃H₂ and CH₂-heterocycle substituted with 0-3 R^{13} ; and

 R^{13} is independently selected at each occurrence from the group: H, OH, NH₂, COOH, PO₃H₂, CH₂OH, CH₃ and SO₃H.

5. A radiopharmaceutical of formulae (III) or formula (IV):

and pharmaceutically acceptable salts thereof, wherein:

M is selected from the group: ⁶⁴Cu, ⁶⁷Cu, ⁶⁷Ga, ⁶⁸Ga, ^{99m}Tc, ¹¹¹In, ⁹⁰Y, ¹⁴⁹Pr, ¹⁵³Sm, ¹⁵⁹Gd, ¹⁶⁶Ho, ¹⁶⁹Yb, ¹⁷⁷Lu, ¹⁸⁶Re and ¹⁸⁸Re;

 R^1 , R^2 , R^3 and R^4 are independently selected at each occurrence from: C_1 - C_{10} alkyl substituted with 0-5 R^5 , C_2 - C_{10} alkenyl substituted with 0-5 R^5 and aryl substituted with 0-5 R^5 ;

Application No.: 10/663,090
Office Action Dated: June 3, 2004

 R^5 is independently elected at each occurrence from: H, C(=O)OR¹⁸, C(=O)OR²³, C₁-C₁₀ alkyl substituted with 0-5 R¹³, C₂-C₁₀ alkenyl substituted with 0-5 R¹³, aryl substituted with 0-5 R¹³ and heterocycle substituted with 0-5 R¹³;

X is selected from the group: BR^6R^7 , C(=O), SiR^6R^7 , GeR^6R^7 , SnR^6R^7 , NR^8 , PR^9 , $P(=O)R^9$, $P(=S)R^9$, AsR^9 and $As(=O)R^9$;

A is selected from the group: CH₂, NR¹⁰ and O;

 Q^1 , Q^2 , and Q^3 are independently -($CR^{11}R^{12}$)_n, wherein: n is 2-5;

 R^6 and R^7 are independently selected from the group: C_1 - C_{10} alkyl substituted with 0-5 R^{13} , C_2 - C_{10} alkenyl substituted with 0-5 R^{13} ;

or alternatively, R^6 and R^7 may be taken together to form a transannular bridge, said bridge selected from the group: C_3 - C_{10} -alkyl substituted with 0-5 R^{13} -and ortho-aryl substituted with 0-3 R^{13} ;

 R^8 is selected from the group: OR^{23} , OR^{14} , $C(=O)R^{14}$, $S(=O)_2R^{14}$ and $P(=O)(OR^{14})$; R^9 is selected from the group: OR^{14} , $NR^{15}R^{16}$ and $CH_2NR^{15}R^{16}$;

 R^{10} , R^{11} and R^{12} are independently selected from the group: H, C_1 - C_{10} alkyl substituted with 0-5 R^{17} , C_2 - C_{10} alkenyl substituted with 0-5 R^{17} and aryl substituted with 0-3 R^{17} ;

 R^{13} is independently selected at each occurrence from the group: H, OH, OR^{23} , NHR¹⁸, C(=O)R¹⁸, OC(=O)R¹⁸, OC(=O)OR¹⁸, OC(=O)OR²³, C(=O)OR¹⁸, C(=O)OR²³, C(=O)NR₂¹⁸, PO₃R₂¹⁸, PO₃R¹⁸R²³, SR¹⁸, SR²³, SOR¹⁸, SO₂R¹⁸, SOR²³, SO₂R²³, NHC(=O)R¹⁸, NHC(=O)NHR¹⁸, CH₂OR¹⁸, CH₂OR²³, CH₃ and NHC(=S)NHR¹⁸;

 R^{14} , R^{15} and R^{16} are independently selected from the group: C_1 - C_{10} alkyl substituted with 0-5 R^{13} , C_2 - C_{10} alkenyl substituted with 0-5 R^{13} and aryl substituted with 0-5 R^{13} :

or, alternatively, two R^{14} or R^{15} and R^{16} may be taken together to form a transannular bridge, said bridge selected from the group: C_3 - C_{10} alkyl substituted with 0-5 R^{13} and ortho-aryl substituted with 0-3 R^{13} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, C(=O)R¹⁸, OC(=O)R¹⁸, OC(=O)OR¹⁸, C(=O)OR¹⁸, C(=O)NR₂¹⁸, PO₃R₂¹⁸, SR¹⁸, SOR¹⁸, SO₂R¹⁸, NHC(=O)R¹⁸, NHC(=O)NHR¹⁸ and NHC(=S)NHR¹⁸;

Application No.: 10/663,090 Office Action Dated: June 3, 2004

 R^{18} is independently selected at each occurrence from the group: H, C_1 - C_6 alkyl, benzyl and phenyl; and

 R^{23} is a bond to the metal M;

with the proviso that when said radiopharmaceutical is of formula (III) and X is $P(-0)R^9$, A is not CH_2 .

6. (Currently amended) A radiopharmaceutical of Claim 5, wherein:

X is selected from the group: NR⁸, PR⁹ and P(=O)R⁹;

A is CH2;

 R^8 -is selected from the group: OR^{23} , OR^{14} , $C(=O)R^{14}$ and $S(=O)_2R^{14}$; and R^9 is $CH_2NR^{15}R^{16}$.

7. (Currently amended) A radiopharmaceutical of Claim <u>5</u> 6 of formula (IV), wherein:

X is P(=O)OH;

A is CH2;

 Q^1 , Q^2 , and Q^3 are independently -($CR^{11}R^{12}$)_n, wherein: n is 2 or 3;

 R^{11} and R^{12} are independently selected from the group: H, C_1 - C_5 alkyl substituted with 0-3 R^{17} and aryl substituted with 0-1 R^{17} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, C(=O)R¹⁸, OC(=O)R¹⁸, OC(=O)OR¹⁸, C(=O)OR¹⁸, C(=O)NR₂¹⁸, PO₃R₂¹⁸, SO₂R¹⁸, NHC(=O)R¹⁸, NHC(=O)NHR¹⁸ and NHC(=S)NHR¹⁸; and

 R^{18} is independently selected at each occurrence from the group: H and C_1 - C_3 alkyl.

8. (Original) A radiopharmaceutical of Claim 7, wherein:

 R^1 , R^2 , R^3 and R^4 are independently selected at each occurrence from the group: H, CH_2COOH , $CH_2PO_3H_2$ and CH_2 -heterocycle substituted with 0-3 R^{13} ; and

Application No.: 10/663,090 Office Action Dated: June 3, 2004

 R^{13} is independently selected at each occurrence from the group: H, OR^{23} , $OC(=O)OR^{23}$, $C(=O)OR^{23}$, $PO_3R^{18}R^{23}$, SR^{23} , SOR^{23} , SO_2R^{23} , CH_2OR^{23} , OH, NH_2 , COOH, PO_3H_2 , CH_2OH , CH_3 and SO_3H .

9. (Currently amended) A MRI contrast agent of the formulae (V) or formula (VI):

$$\begin{bmatrix} R^4 & A & X & A & R^1 \\ N & N & N & R^2 \end{bmatrix} M \begin{bmatrix} R^4 & A & A & R^1 \\ R^4 & N & N & R^2 \\ Q^1 & Q^2 & Q^2 \\ R^3 & A & X & A & R^2 \end{bmatrix} M$$

$$(VI)$$

and pharmaceutically acceptable salts thereof, wherein:

M is a paramagnetic metal ion of atomic number selected from the group: 21-29, 42-44 and 58-70;

 R^1 , R^2 , R^3 and R^4 are independently selected at each occurrence from: C_1 - C_{10} alkyl substituted with 0-5 R^5 , C_2 - C_{10} alkenyl substituted with 0-5 R^5 and aryl substituted with 0-5 R^5 ;

 R^5 is independently elected at each occurrence from: H, C(=O)OR¹⁸, C(=O)OR²³, C₁-C₁₀ alkyl substituted with 0-5 R¹³, C₂-C₁₀ alkenyl substituted with 0-5 R¹³, aryl substituted with 0-5 R¹³ and heterocycle substituted with 0-5 R¹³;

X is selected from the group: BR^6R^7 , C(=O), SiR^6R^7 , GeR^6R^7 , SnR^6R^7 , NR^8 , PR^9 , $P(=O)R^9$, $P(=S)R^9$, AsR^9 and $As(=O)R^9$;

A is selected from the group: CH₂, NR¹⁰ and O;

 Q^1 , Q^2 , and Q^3 are independently - $(CR^{11}R^{12})_n$, wherein: n is 2-5;

 R^6 and R^7 are independently selected from the group: C_1 - C_{10} alkyl substituted with 0-5 R^{13} , C_2 - C_{10} alkenyl substituted with 0-5 R^{13} ;

Application No.: 10/663,090 Office Action Dated: June 3, 2004

or alternatively, R⁶ and R⁷ may be taken together to form a transannular bridge, said bridge selected from the group: C₃-C₁₀ alkyl substituted with 0-5 R¹³ and ortho-aryl substituted with 0-3 R¹³;

 R^8 is selected from the group: OR^{23} , OR^{14} , $C(=O)R^{14}$, $S(=O)_2R^{14}$ and $P(=O)(OR^{14})$; R^9 is selected from the group: OR^{14} , $NR^{15}R^{16}$ and $CH_2NR^{15}R^{16}$;

 R^{10} , R^{11} and R^{12} are independently selected from the group: H, C_1 - C_{10} alkyl substituted with 0-5 R^{17} , C_2 - C_{10} alkenyl substituted with 0-5 R^{17} and aryl substituted with 0-3 R^{17} ;

 R^{13} is independently selected at each occurrence from the group: H, OH, OR^{23} , NHR¹⁸, C(=O)R¹⁸, OC(=O)R¹⁸, OC(=O)OR¹⁸, OC(=O)OR²³, C(=O)OR¹⁸, C(=O)OR²³, C(=O)NR₂¹⁸, PO₃R₂¹⁸, PO₃R¹⁸R²³, SR¹⁸, SR²³, SOR¹⁸, SO₂R¹⁸, SOR²³, SO₂R²³, NHC(=O)R¹⁸, NHC(=O)NHR¹⁸, CH₂OR¹⁸, CH₂OR²³, CH₃ and NHC(=S)NHR¹⁸;

 R^{14} , R^{15} and R^{16} are independently selected from the group: C_1 - C_{10} alkyl substituted with 0-5 R^{13} , C_2 - C_{10} alkenyl substituted with 0-5 R^{13} and aryl substituted with 0-5 R^{13} ;

or, alternatively, two R^{14} or R^{15} and R^{16} may be taken together to form a transannular bridge, said bridge selected from the group: C_3 - C_{10} alkyl substituted with 0-5 R^{13} and ortho-aryl substituted with 0-3 R^{13} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, C(=O)R¹⁸, OC(=O)R¹⁸, OC(=O)OR¹⁸, C(=O)OR¹⁸, C(=O)NR₂¹⁸, PO₃R₂¹⁸, SR¹⁸, SOR¹⁸, SO₂R¹⁸, NHC(=O)R¹⁸, NHC(=O)NHR¹⁸ and NHC(=S)NHR¹⁸;

 R^{18} is independently selected at each occurrence from the group: H, C_1 - C_6 alkyl, benzyl and phenyl; and

 R^{23} is a bond to the metal M;

with the proviso that when said MRI contrast agent is of formula (V) and X is $P(=O)R^9$, Λ is not CH_2 .

10. (Currently amended) A MRI contrast agent of Claim 9, wherein:

X is selected from the group: NR⁸, PR⁹ and P(=0)R⁹;

Application No.: 10/663,090
Office Action Dated: June 3, 2004

A is CH2;

 R^8 is selected from the group: OR^{23} , OR^{14} , $C(-O)R^{14}$ and $S(-O)_2R^{14}$; and R^9 is $CH_2NR^{15}R^{16}$.

11. (Currently amended) A MRI contrast agent of Claim 9 10 of formula (VI), wherein:

X is P(=O)OH;

A is CH2;

 Q^1 , Q^2 , and Q^3 are independently -($CR^{11}R^{12}$)_n, wherein: n is 2 or 3;

 R^{11} and R^{12} are independently selected from the group: H, C_1 - C_5 alkyl substituted with 0-3 R^{17} and aryl substituted with 0-1 R^{17} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, $C(=O)R^{18}$, $OC(=O)R^{18}$, $OC(=O)OR^{18}$, $C(=O)OR^{18}$, $C(=O)NR_2^{18}$, $PO_3R_2^{18}$, SO_2R^{18} , $NHC(=O)R^{18}$, $NHC(=O)NHR^{18}$ and $NHC(=S)NHR^{18}$; and

 R^{18} is independently selected at each occurrence from the group: H and C_1 - C_3 alkyl.

12. (Original) A MRI contrast agent of Claim 11, wherein:

 R^1 , R^2 , R^3 and R^4 are independently selected at each occurrence from the group: H, CH₂COOH, CH₂PO₃H₂ and CH₂-heterocycle substituted with 0-3 R^{13} ; and

 R^{13} is independently selected at each occurrence from the group: H, OR^{23} , $OC(=O)OR^{23}$, $C(=O)OR^{23}$, $PO_3R^{18}R^{23}$, SR^{23} , SOR^{23} , SO_2R^{23} , CH_2OR^{23} , OH, NH_2 , COOH, PO_3H_2 , CH_2OH , CH_3 and SO_3H .

13. (Currently amended) A conjugate of the formula:

$$C_h-L_n-W$$

and pharmaceutically acceptable salts thereof,

wherein:

C_h is a chelator of formulae (VII) or formula (VIII):

Application No.: 10/663,090
Office Action Dated: June 3, 2004

wherein:

 R^1 , R^2 , R^3 and R^4 are independently selected at each occurrence from the group: C_{1-} C_{10} alkyl substituted with 0-5 R^5 , C_2 - C_{10} alkenyl substituted with 0-5 R^5 and aryl substituted with 0-5 R^5 ;

 R^5 is independently elected at each occurrence from the group: H, C(=0)OR¹⁸, C₁-C₁₀ alkyl substituted with 0-5 R¹³, C₂-C₁₀ alkenyl substituted with 0-5 R¹³, aryl substituted with 0-5 R¹³ and heterocycle substituted with 0-5 R¹³;

X is selected from the group: BR^6R^7 , C(=O), SiR^6R^7 , GeR^6R^7 , SnR^6R^7 , NR^8 , PR^9 , $P(=O)R^9$, $P(=S)R^9$, AsR^9 and $As(=O)R^9$;

A is selected from the group: CH₂, NR¹⁰ and O;

 Q^1 , Q^2 , and Q^3 are independently -($CR^{11}R^{12}$)_n, wherein: n is 2-5;

 R^6 -and R^7 -are independently selected from the group: $-C_1$ - C_{10} alkyl substituted with 0-5 R^{13} , C_2 - C_{10} alkenyl substituted with 0-5 R^{13} -and aryl substituted with 0-5 R^{13} ;

or alternatively, R^6 -and R^7 -may be taken together to form a transannular bridge, said bridge selected from the group: C_3 - C_{10} -alkyl substituted with 0-5 R^{13} -and ortho-aryl substituted with 0-3 R^{13} ;

 $R^8 \hbox{-is selected from the group: } OR^{14}, C(=O)R^{14}, S(=O)_2 R^{14} \hbox{-and } P(=O)(OR^{14});$

 R^9 is selected from the group: OR^{14} , $NR^{15}R^{16}$ and $CH_2NR^{15}R^{16}$;

 R^{10} , R^{11} and R^{12} are independently selected from the group: H, C_1 - C_{10} alkyl substituted with 0-5 R^{17} , C_2 - C_{10} alkenyl substituted with 0-5 R^{17} and aryl substituted with 0-3 R^{17} ;

Application No.: 10/663,090
Office Action Dated: June 3, 2004

 R^{13} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, C(=O)R¹⁸, OC(=O)R¹⁸, OC(=O)OR¹⁸, C(=O)OR¹⁸, C(=O)NR₂¹⁸, PO₃R₂¹⁸, SR¹⁸, SOR¹⁸, SO₂R¹⁸, NHC(=O)R¹⁸, NHC(=O)NHR¹⁸, CH₂OR¹⁸, CH₃, NHC(=S)NHR¹⁸ and a bond to L_n;

 R^{14} , R^{15} and R^{16} are independently selected from the group: hydrogen, C_1 - C_{10} alkyl substituted with 0-5 R^{13} , C_2 - C_{10} alkenyl substituted with 0-5 R^{13} and aryl substituted with 0-5 R^{13} ;

or, alternatively, two R^{14} or R^{15} and R^{16} may be taken together to form a transannular bridge, said bridge selected from the group: C_3 - C_{10} alkyl substituted with 0-5 R^{13} and ortho-aryl substituted with 0-3 R^{13} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, $C(=O)R^{18}$, $OC(=O)R^{18}$, $OC(=O)OR^{18}$, $C(=O)OR^{18}$, $C(=O)NR_2^{18}$, $PO_3R_2^{18}$, PO_3

 R^{18} is independently selected at each occurrence from the group: H, C_1 - C_6 alkyl, benzyl, phenyl and a bond to L_n ;

 L_n is a linking group of formula:

$$L^{1}-[Y^{1}(CR^{19}R^{20})f(Z^{1})f'Y^{2}]f-L^{2},$$

wherein:

g is independently 0-10;

g' is independently 0-1;

g" is independently 0-10;

f is independently 0-10;

f is independently 0-10;

f' is independently 0-1;

Y¹ and Y², at each occurrence, are independently selected from the group: a bond, O, NR²⁰, C=O, C(=O)O, OC(=O)O, C(=O)NH-, C=NR²⁰, S, SO, SO₂, NHC(=O), (NH)₂C(=O) and (NH)₂C=S;

Application No.: 10/663,090
Office Action Dated: June 3, 2004

 R^{19} and R^{20} are independently selected at each occurrence from the group: H, C₁-C₁₀ alkyl substituted with 0-5 R^{21} and alkaryl wherein the aryl is substituted with 0-5 R^{21} ;

 R^{21} is independently selected at each occurrence from the group: NHR 22 , C(=0)R 22 , OC(=0)R 22 , OC(=0)OR 22 , C(=0)OR 22 , C(=0)NR 22 , -CN, SR 22 , SOR 22 , SO2R 22 , NHC(=0)NHR 22 , NHC(=S)NHR 22 and a bond to W;

 R^{22} is independently selected at each occurrence from the group: H, C_1 - C_6 alkyl, benzyl, phenyl and a bond to W; and

W is a biologically active molecule selected from the group: IIb/IIIa receptor ligands, fibrin binding peptides, leukocyte binding peptides, chemotactic peptides, somatostatin analogs, selectin binding peptides, vitronectin receptor antagonists and tyrosine kinase inhibitors;

with the proviso that when said chelator is of formula (VII) and X is P(=O)R⁹, A is not CH₂.

14. (Currently amended) A conjugate of Claim 13, wherein:

X is selected from the group: NR⁸, PR⁹ and P(=O)R⁹;

A is CH2:

R⁸ is selected from the group: OR²³, OR¹⁴, C(=O)R¹⁴ and S(=O)₂R¹⁴;

R⁹ is CH₂NR¹⁵R¹⁶;

g is independently 0-5;

g" is independently 0-5;

f is independently 0-5;

f is independently 0-5;

Y¹ and Y², at each occurrence, are independently selected from the group: a bond, O, NR²⁰, C=O, C(=O)O, OC(=O)O, C(=O)NH-, SO, SO₂, NHC(=O), (NH)₂C(=O) and (NH)₂C=S; and

 R^{21} is independently selected at each occurrence from the group: NHR 22 , C(=O)R 22 , OC(=O)R 22 , OC(=O)OR 22 , C(=O)OR 22 , C(=O)NR 22 , SO2R 22 , NHC(=O)R 22 , NHC(=O)NHR 22 , NHC(=S)NHR 22 and a bond to W.

Application No.: 10/663,090
Office Action Dated: June 3, 2004

15. (Currently amended) A conjugate of Claim 14 13 wherein:

Ch is a chelator of formula (VIII);

X is P(=O)OH;

A is CH2;

 Q^1 , Q^2 , and Q^3 are independently -($CR^{11}R^{12}$)_n, wherein: n is 2 or 3;

 R^{11} and R^{12} are independently selected from the group: H, C_1 - C_5 alkyl substituted with 0-3 R^{17} and aryl substituted with 0-1 R^{17} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, $C(=O)R^{18}$, $OC(=O)R^{18}$, $OC(=O)OR^{18}$, $C(=O)OR^{18}$, $C(=O)NR_2^{18}$, $PO_3R_2^{18}$, SO_2R^{18} , $NHC(=O)R^{18}$, $NHC(=O)NHR^{18}$ and $NHC(=S)NHR^{18}$; and

R¹⁸ is independently selected at each occurrence from the group: H and C₁-C₃ alkyl.

16. (Original) A conjugate of Claim 15, wherein:

 R^1 , R^2 , R^3 and R^4 are independently selected at each occurrence from the group: H, CH₂COOH, CH₂PO₃H₂ and CH₂-heterocycle substituted with 0-3 R^{13} ; and

 R^{13} is independently selected at each occurrence from the group: H, OH, NH₂, COOH, PO₃H₂, CH₂OH, CH₃ and SO₃H.

17. (Currently amended) A radiopharmaceutical of the formula:

$$M-C_h-L_n-W$$
,

and pharmaceutically acceptable salts thereof,

wherein,

M is selected from the group: ⁶⁴Cu, ⁶⁷Cu, ⁶⁷Ga, ⁶⁸Ga, ^{99m}Tc, ¹¹¹In, ⁹⁰Y, ¹⁴⁹Pr, ¹⁵³Sm, ¹⁵⁹Gd, ¹⁶⁶Ho, ¹⁶⁹Yb, ¹⁷⁷Lu, ¹⁸⁶Re and ¹⁸⁸Re;

C_h is a chelator of formulae (IX) or formula (X):

DOCKET NO.: DM-7007 DIV (BMS-2442)

Application No.: 10/663,090
Office Action Dated: June 3, 2004

wherein:

 R^1 , R^2 , R^3 and R^4 are independently selected at each occurrence from the group: C_{10} alkyl substituted with 0-5 R^5 , C_2 - C_{10} alkenyl substituted with 0-5 R^5 and aryl substituted with 0-5 R^5 ;

 R^5 is independently elected at each occurrence from the group: H, C(=O)OR¹⁸, C(=O)OR²³, C₁-C₁₀ alkyl substituted with 0-5 R¹³, C₂-C₁₀ alkenyl substituted with 0-5 R¹³, aryl substituted with 0-5 R¹³ and heterocycle substituted with 0-5 R¹³;

X is selected from the group: BR^6R^7 , C(=O), SiR^6R^7 , GeR^6R^7 , SnR^6R^7 , NR^8 , PR^9 , $P(=O)R^9$, $P(=S)R^9$, AsR^9 and $As(=O)R^9$:

A is selected from the group: CH₂, NR¹⁰ and O;

 Q^1 , Q^2 , and Q^3 are independently -($CR^{11}R^{12}$)_n, wherein: n is 2-5;

R⁶-and R⁷-are independently selected from the group: C₁-C₁₀ alkyl substituted with 0-5 R¹³, C₂-C₁₀ alkenyl substituted with 0-5 R¹³ and aryl substituted with 0-5 R¹³;

or alternatively, R^6 and R^7 may be taken together to form a transannular bridge, said bridge selected from the group: C_3 - C_{10} alkyl substituted with 0-5 R^{13} and ortho-aryl substituted with 0-3 R^{13} ;

 R^8 is selected from the group: OR^{23} , OR^{14} , $C(=O)R^{14}$, $S(=O)_2R^{14}$ and $P(=O)(OR^{14})$; R^9 is selected from the group: OR^{14} , $NR^{15}R^{16}$ and $CH_2NR^{15}R^{16}$;

 R^{10} , R^{11} and R^{12} are independently selected from the group: H, C_1 - C_{10} alkyl substituted with 0-5 R^{17} , C_2 - C_{10} alkenyl substituted with 0-5 R^{17} and aryl substituted with 0-3 R^{17} ;

 R^{13} is independently selected at each occurrence from the group: H, OH, OR^{23} , NHR^{18} , $C(=O)R^{18}$, $OC(=O)OR^{23}$, $OC(=O)OR^{18}$, OC(=O)OR

Application No.: 10/663,090
Office Action Dated: June 3, 2004

C(=O)OR¹⁸, C(=O)NR₂¹⁸, PO₃R₂¹⁸, PO₃R¹⁸R²³, SR¹⁸, SR²³, SOR¹⁸, SO₂R¹⁸, SOR²³, SO₂R²³, NHC(=O)R¹⁸, NHC(=O)NHR¹⁸, CH₂OR¹⁸, CH₂OR²³, CH₃, NHC(=S)NHR¹⁸ and a bond to L_n;

 R^{14} , R^{15} and R^{16} are independently selected from the group: C_1 - C_{10} alkyl substituted with 0-5 R^{13} , C_2 - C_{10} alkenyl substituted with 0-5 R^{13} and aryl substituted with 0-5 R^{13} ;

or, alternatively, two R^{14} or R^{15} and R^{16} may be taken together to form a transannular bridge, said bridge selected from the group: C_3 - C_{10} alkyl substituted with 0-5 R^{13} and ortho-aryl substituted with 0-3 R^{13} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, $C(=O)R^{18}$, $OC(=O)R^{18}$, $OC(=O)OR^{18}$, $C(=O)OR^{18}$, $C(=O)NR_2^{18}$, $PO_3R_2^{18}$, PO_3

 R^{18} is independently selected at each occurrence from the group: H, C_1 - C_6 alkyl, benzyl, phenyl and a bond to L_n ;

R²³ is a bond to the metal M;

 L_n is a linking group of formula:

$$L^{1}$$
- $[Y^{1}(CR^{19}R^{20})f(Z^{1})f''Y^{2}]f-L^{2}$,

wherein:

L¹ is
$$-[(CH_2)_gZ^1]_{g'}-(CR^{19}R^{20})_{g''}$$
;

$$L^2$$
 is $-(CR^{19}R^{20})_{g''}-[Z^1(CH_2)_g]_{g'}-$;

g is independently 0-10;

g' is independently 0-1;

g" is independently 0-10;

f is independently 0-10;

f is independently 0-10;

f' is independently 0-1;

 Y^1 and Y^2 , at each occurrence, are independently selected from the group: a bond, O, NR 20 , C=O, C(=O)O, OC(=O)O, C(=O)NH-, C=NR 20 , S, SO, SO₂, NHC(=O), (NH)₂C(=O) and (NH)₂C=S;

DOCKET NO.: DM-7007 DIV (BMS-2442)

Application No.: 10/663,090
Office Action Dated: June 3, 2004

 R^{19} and R^{20} are independently selected at each occurrence from the group: H, C₁-C₁₀ alkyl substituted with 0-5 R^{21} and alkaryl wherein the aryl is substituted with 0-5 R^{21} ; R^{21} is independently selected at each occurrence from the group: NHR²², C(=0)R²², OC(=0)R²², OC(=0)OR²², C(=0)OR²², C(=0)NR₂²², -CN, SR²², SOR²², SO₂R²², NHC(=0)R²², NHC(=0)NHR²², NHC(=S)NHR²² and a bond to W;

R²² is independently selected at each occurrence from the group: H, C₁-C₆ alkyl, benzyl, phenyl and a bond to W; and

W is a biologically active molecule selected from the group: IIb/IIIa receptor ligands, fibrin binding peptides, leukocyte binding peptides, chemotactic peptides, somatostatin analogs, selectin binding peptides, vitronectin receptor antagonists and tyrosine kinase inhibitors;

with the proviso that when said chelator is of formula (IX) and X is $P(=O)R^9$, A is not CH_2 .

18. (Currently amended) A radiopharmaceutical of Claim 17, wherein:

X is selected from the group: NR⁸, PR⁹ and P(=O)R⁹;

A is CH2;

R⁸ is selected from the group: OR²³, OR¹⁴, C(=O)R¹⁴ and S(=O)₂R¹⁴;

R⁹ is CH₂NR¹⁵R¹⁶;

g is independently 0-5;

g" is independently 0-5;

f is independently 0-5;

f is independently 0-5;

Y¹ and Y², at each occurrence, are independently selected from the group: a bond, O, NR²⁰, C=O, C(=O)O, OC(=O)O, C(=O)NH-, SO, SO₂, NHC(=O), (NH)₂C(=O) and (NH)₂C=S; and

 R^{21} is independently selected at each occurrence from the group: NHR^{22} , $C(=O)R^{22}$, $OC(=O)R^{22}$, $OC(=O)OR^{22}$, $C(=O)OR^{22}$, $C(=O)NR_2^{22}$, SO_2R^{22} , $NHC(=O)R^{22}$, $NHC(=O)NHR^{22}$, $NHC(=S)NHR^{22}$ and a bond to W.

Application No.: 10/663,090
Office Action Dated: June 3, 2004

19. (Currently amended) A radiopharmaceutical of Claim 18 17, wherein:

Ch is a chelator of formula (X);

X is P(=O)OH;

A is CH2;

 Q^1 , Q^2 , and Q^3 are independently -($CR^{11}R^{12}$)_n, wherein: n is 2 or 3;

 R^{11} and R^{12} are independently selected from the group: H, C_1 - C_5 alkyl substituted with 0-3 R^{17} and aryl substituted with 0-1 R^{17} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, $C(=O)R^{18}$, $OC(=O)R^{18}$, $OC(=O)OR^{18}$, $C(=O)OR^{18}$, $C(=O)NR_2^{18}$, $PO_3R_2^{18}$, PO_3

R¹⁸ is independently selected at each occurrence from the group: H and C₁-C₃ alkyl.

20. (Original) A radiopharmaceutical of Claim 19, wherein:

 R^1 , R^2 , R^3 and R^4 are independently selected at each occurrence from the group: H, CH_2COOH , $CH_2PO_3H_2$ and CH_2 -heterocycle substituted with 0-3 R^{13} ; and

 R^{13} is independently selected at each occurrence from the group: H, OR^{23} , $OC(=O)OR^{23}$, $C(=O)OR^{23}$, $PO_3R^{18}R^{23}$, SR^{23} , SOR^{23} , SO_2R^{23} , CH_2OR^{23} , OH, NH_2 , COOH, PO_3H_2 , CH_2OH , CH_3 and SO_3H .

21. (Currently amended) A MRI contrast agent of the formula:

$$M-C_h-L_n-W$$
,

and pharmaceutically acceptable salt thereof,

wherein:

M is a paramagnetic metal ion of atomic number selected from the group: 21-29, 42-44 and 58-70;

C_h is a chelator of formulae (XI) or formula (XII):

Application No.: 10/663,090
Office Action Dated: June 3, 2004

wherein:

 R^1 , R^2 , R^3 and R^4 are independently selected at each occurrence from the group: C_{10} alkyl substituted with 0-5 R^5 , C_2 - C_{10} alkenyl substituted with 0-5 R^5 and aryl substituted with 0-5 R^5 ;

 R^5 is independently elected at each occurrence from the group: H, C(=O)OR¹⁸, C(=O)OR²³, C₁-C₁₀ alkyl substituted with 0-5 R¹³, C₂-C₁₀ alkenyl substituted with 0-5 R¹³, aryl substituted with 0-5 R¹³ and heterocycle substituted with 0-5 R¹³;

X is selected from the group: BR^6R^7 , C(=O), SiR^6R^7 , GeR^6R^7 , SnR^6R^7 , NR^8 , PR^9 , $P(=O)R^9$, $P(=S)R^9$, AsR^9 and $As(=O)R^9$:

A is selected from the group: CH₂, NR¹⁰ and O;

 Q^1 , Q^2 , and Q^3 are independently -($CR^{11}R^{12}$)_n, wherein: n is 2-5;

 R^6 and R^7 are independently selected from the group: C_1 - C_{10} alkyl substituted with 0-5 R^{13} , C_2 - C_{10} alkenyl substituted with 0-5 R^{13} ;

or alternatively, R^6 and R^7 may be taken together to form a transannular bridge, said bridge selected from the group: C_3 - C_{10} alkyl substituted with 0-5 R^{13} and ortho-aryl substituted with 0-3 R^{13} ;

 R^8 is selected from the group: OR^{23} , OR^{14} , $C(=O)R^{14}$, $S(=O)_2R^{14}$ and $P(=O)(OR^{14})$; R^9 is selected from the group: OR^{14} , $NR^{15}R^{16}$ and $CH_2NR^{15}R^{16}$;

 R^{10} , R^{11} and R^{12} are independently selected from the group: H, C_1 - C_{10} alkyl substituted with 0-5 R^{17} , C_2 - C_{10} alkenyl substituted with 0-5 R^{17} and aryl substituted with 0-3 R^{17} ;

 R^{13} is independently selected at each occurrence from the group: H, OH, OR^{23} , NHR^{18} , $C(=O)R^{18}$, $OC(=O)R^{18}$, $OC(=O)OR^{18}$, $OC(=O)OR^{23}$, $C(=O)OR^{18}$,

DOCKET NO.: DM-7007 DIV (BMS-2442)

Application No.: 10/663,090
Office Action Dated: June 3, 2004

 $C(=O)OR^{23}$, $C(=O)NR_2^{18}$, $PO_3R_2^{18}$, $PO_3R^{18}R^{23}$, SR^{18} , SR^{23} , SOR^{18} , SO_2R^{18} , SOR^{23} , SO_2R^{23} , $NHC(=O)R^{18}$, $NHC(=O)NHR^{18}$, CH_2OR^{18} , CH_2OR^{23} , CH_3 , $NHC(=S)NHR^{18}$ and a bond to L_n ;

 R^{14} , R^{15} and R^{16} are independently selected from the group: C_1 - C_{10} alkyl substituted with 0-5 R^{13} , C_2 - C_{10} alkenyl substituted with 0-5 R^{13} and aryl substituted with 0-5 R^{13} ;

or, alternatively, two R^{14} or R^{15} and R^{16} may be taken together to form a transannular bridge, said bridge selected from the group: C_3 - C_{10} alkyl substituted with 0-5 R^{13} and ortho-aryl substituted with 0-3 R^{13} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, $C(=O)R^{18}$, $OC(=O)R^{18}$, $OC(=O)OR^{18}$, $C(=O)OR^{18}$, $C(=O)NR_2^{18}$, $PO_3R_2^{18}$, PO_3

 R^{18} is independently selected at each occurrence from the group: H, C_1 - C_6 alkyl, benzyl, phenyl and a bond to L_n ;

R²³ is a bond to the metal M;

 L_n is a linking group of formula:

$$L^{1}-[Y^{1}(CR^{19}R^{20})f(Z^{1})f'Y^{2}]f-L^{2},$$

wherein:

L¹ is -[(CH₂)_gZ¹]_{g'}-(CR¹⁹R²⁰)_{g''}-; L² is -(CR¹⁹R²⁰)_{g''}-[Z¹(CH₂)_g]_{g'}-; g is independently 0-10; g' is independently 0-1; g'' is independently 0-10;

f is independently 0-10;

f is independently 0-10;

f" is independently 0-1;

DOCKET NO.: DM-7007 DIV (BMS-2442)

Application No.: 10/663,090 Office Action Dated: June 3, 2004

 Y^1 and Y^2 , at each occurrence, are independently selected from the group: a bond, O, NR²⁰, C=O, C(=O)O, OC(=O)O, C(=O)NH-, C=NR²⁰, S, SO, SO₂, NHC(=O), (NH)₂C(=O) and (NH)₂C=S;

 R^{19} and R^{20} are independently selected at each occurrence from: H, C₁-C₁₀ alkyl substituted with 0-5 R^{21} and alkaryl wherein the aryl is substituted with 0-5 R^{21} ;

 R^{21} is independently selected at each occurrence from the group: NHR²², C(=O)R²², OC(=O)R²², OC(=O)OR²², C(=O)OR²², C(=O)NR₂²², -CN, SR²², SOR²², SO₂R²², NHC(=O)R²², NHC(=O)NHR²² and a bond to W;

 R^{22} is independently selected at each occurrence from the group: H, C_1 - C_6 alkyl, benzyl, phenyl and a bond to W; and

W is a biologically active molecule selected from the group: IIb/IIIa receptor ligands, fibrin binding peptides, leukocyte binding peptides, chemotactic peptides, somatostatin analogs, selectin binding peptides, vitronectin receptor antagonists and tyrosine kinase inhibitors

with the proviso that when said chelator is of formula (XI) and X is P(=0)R⁹, A is not CH₂.

22. (Currently amended) A MRI contrast agent of Claim 21, wherein:

X is selected from the group: NR⁸, PR⁹ and P(=O)R⁹;

A is CH2;

 R^8 -is selected from the group: OR^{23} , OR^{14} , $C(=O)R^{14}$ and $S(=O)_2R^{14}$;

R⁹ is CH₂NR¹⁵R¹⁶;

g is independently 0-5;

g" is independently 0-5;

f is independently 0-5;

f is independently 0-5;

Y¹ and Y², at each occurrence, are independently selected from the group: a bond, O, NR²⁰, C=O, C(=O)O, OC(=O)O, C(=O)NH-, SO, SO₂, NHC(=O), (NH)₂C(=O) and (NH)₂C=S; and

Application No.: 10/663,090
Office Action Dated: June 3, 2004

 R^{21} is independently selected at each occurrence from the group selected from the group: NHR 22 , C(=O)R 22 , OC(=O)R 22 , OC(=O)OR 22 , C(=O)OR 22 , C(=O)NR $_{2}^{22}$, SO2R 22 , NHC(=O)R 22 , NHC(=O)NHR 22 , NHC(=S)NHR 22 and a bond to W.

23. (Currently amended) A MRI contrast agent of Claim 22 21, wherein:

Ch is a chelator of formula (XII);

X is P(=O)OH;

A is CH2;

 Q^1 , Q^2 , and Q^3 are independently -($CR^{11}R^{12}$)_n-, wherein n: is 2 or 3;

 R^{11} and R^{12} are independently chosen from the group: H, C_1 - C_5 alkyl substituted with 0-3 R^{17} and aryl substituted with 0-1 R^{17} ;

 R^{17} is independently selected at each occurrence from the group: H, OH, NHR¹⁸, $C(=O)R^{18}$, $OC(=O)R^{18}$, $OC(=O)OR^{18}$, $C(=O)OR^{18}$, $C(=O)NR_2^{18}$, $PO_3R_2^{18}$, PO_3

 R^{18} is independently selected at each occurrence from the group: H and C_1 - C_3 alkyl.

24. (Original) A MRI contrast agent of Claim 23, wherein:

R¹, R², R³ and R⁴ are independently selected at each occurrence from the group: H, CH₂COOH, CH₂PO₃H₂, CH₂-heterocycle substituted with 0-3 R¹³; and

 R^{13} is independently selected at each occurrence from the group: H, OR^{23} , $OC(=O)OR^{23}$, $C(=O)OR^{23}$, $PO_3R^{18}R^{23}$, SR^{23} , SOR^{23} , SO_2R^{23} , CH_2OR^{23} , OH, NH_2 , COOH, PO_3H_2 , CH_2OH , CH_3 and SO_3H .