Partial Differential Equations 2024 - Assignment and Seminar Exam(Combined) Each question carries 6 marks.

1. Estimate: For the fundamental solution Φ of the Laplacian and $n \geq 2$

$$\int_{\partial B(0,\epsilon)} |\Phi(y)| dy \le C(\epsilon).$$

- 2. If $g \in C_c^{\infty}(\mathbb{R})$ and f is locally integrable, then f * g exists and is infinitely differentiable on \mathbb{R} .
- 3. State Gauss-Green theorem. Let U be an open bounded subset of \mathbb{R}^n . Suppose that $u \in C^1(\bar{U})$, then

$$\int_{U} u \Delta v - v \Delta u dx = \int_{\partial U} u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \ dS$$

4. Define standard mollifier. Let U be an open subset of \mathbb{R} and $f: U \to \mathbb{R}$ is locally integrable, define its mollification f^{ϵ} and prove that $f^{\epsilon} \to f$ a.e. as $\epsilon \to 0$.

Partial Differential Equations 2024 - Minor 2

Each question carries 4 marks.

1. Evaluate: For $x = (2,0) \in \mathbb{R}^2$

$$\int_{B(x,\sqrt{2})} \ln\left(x^2 + y^2\right) \ dxdy.$$

- 2. State true or false with justification: Let $u: \mathbb{R}^n \to \mathbb{R}$ be a continuous bounded function which satisfies mean value property, then u is a constant.
- 3. For the case n=2, write the Laplace operator Δ in polar coordinates.
- 4. Let Ω be a open bounded subset of \mathbb{R}^n , $u:\Omega\to\mathbb{R}$ be a harmonic function, $A=\{x\in\Omega:u(x)=M\}$ where $M=\sup_{x\in\Omega}u(x)$. Then which of the following is/are correct:
 - a. A is open in Ω .
 - b. A is closed in Ω .
 - c. A is empty.
 - d. A is empty only if u is non-constant.