Yufei Lin

Problem Set 8

Nov 25^{th} 2019

Problem Set 8

Question 1

Suppose that $f:[a,b]\to\mathbb{R}$, is integrable, and suppose that $m=\inf\{f(x):x\in[a,b]\}$ and $M=\sup\{f(x):x\in[a,b]\}$. Then, we have $m(b-a)\leq\int_a^bf\leq M(b-a)$.

Proof:

Lemma: Suppose $f:[a,b]\to\mathbb{R}$ is integrable and suppose that P is any partition [a,b]. Then we have $L(f,P)\leq \int_a^b f\leq U(f,P)$.

Proof of Lemma:

We will prove this lemma from two parts:

First, we prove that $L(f, P) \leq \int_a^b f$.

Since f is integrable, then we know $\sup\{L(f,P)|P,\text{a partition in range }[a,b]\}=\int_a^b f.$ And let $A=\{L(f,P)|P,\text{a partition in range }[a,b]\}.$ Then $\sup A$ is the least upper bound of A. Let $y=\sup A$, then $\forall x\in A,x\leq y$. Then, because we have $y=\int_a^b f,\,\forall x\in A,x\leq y=\int_a^b f.$ Thus, $L(f,P)\leq \int_a^b f.$

Then, we prove that $\int_a^b f \leq U(f, P)$.

Since f is integrable, we know $\inf\{U(f,P)|P$, a partition in range $[a,b]\}=\int_a^b f$. And let $B=\{U(f,P)|P$, a partition in range $[a,b]\}$. Let $z=\inf B$, then $\forall x\in B, z\leq x$. Therefore, since we have $U(f,P)\geq \int_a^b f$.

Thus, $L(f, P) \leq \int_a^b f \leq U(f, P)$.

From the definition, $L(f,P) = \sum_{i=1}^n m_i(t_i - t_{i-1})$ and $U(f,P) = \sum_{i=1}^n M_i(t_i - t_{i-1})$. In this case, we have the partition P as [a,b] meaning there's only one pair of m and M, and $t_i = b, t_{i-1} = a$. Therefore, we have L(f,P) = m(b-a) and U(f,P) = M(b-a). Thus, from the lemma we know that $m(b-a) \leq \int_a^b f \leq M(b-a)$.

Question 2

Prove that the function $f: [-1,1] \to \mathbb{R}$, defined by

$$f(n) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases},$$

is integrable on [-1, 1].

Proof:

At first we choose the partition $P = \{-1, 0, 1\}$. Then, by definition, $L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1})$ and $U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1})$. Therefore, we have,

$$L(f, P) = \sum_{i=1}^{2} m_i (t_i - t_{i-1})$$

$$= m_1 \cdot (t_1 - t_0) + m_2 \cdot (t_2 - t_1)$$

$$= 0 \cdot (-0 + 1) + 1 \cdot (1 - 0)$$

$$= 1$$

and

$$U(f, P) = \sum_{i=1}^{2} M_i(t_i - t_{i-1})$$

$$= M_1 \cdot (t_1 - t_0) + M_2 \cdot (t_2 - t_1)$$

$$= 1 \cdot (-0 + 1) + 1 \cdot (1 - 0)$$

$$= 2$$

Thus, we have $1 \leq \int_a^b f \leq 2$.

Then, suppose f is not integrable on [-1,1]. Therefore, $\forall \epsilon \in \mathbb{R}, \epsilon > 0$ such that if $P = \{-1, -\epsilon, 1\}$, then, L(f, P) < U(f, P). Therefore, we have

$$U(f, P) = \sum_{i=1}^{2} M_i(t_i - t_{i-1})$$

$$= M_1 \cdot (t_1 - t_0) + M_2 \cdot (t_2 - t_1)$$

$$= 0 \cdot (-\epsilon + 1) + 1 \cdot (1 + \epsilon)$$

$$= 1 + \epsilon$$

Then, $1+\epsilon \geq \int_a^b f$. Also we have $1 \leq \int_a^b f$. Therefore, $0 \leq \int_a^b f - 1 \leq \epsilon$. Since f is not integrable, then we have $0 < \int_a^b f - 1$. Let $\delta = \int_a^b f - 1, \delta > 0$. Since $\epsilon > 0$, therefore, $\exists \epsilon, \delta > \epsilon > 0$. Thus, $\exists \epsilon, \int_a^b f - 1 > \epsilon > 0$. Then, we have $\int_a^b f > 1 + \epsilon$, which is a contradiction. Thus, f is integrable on [-1, 1].

Question 3

Suppose that $f:[a,b]\to\mathbb{R}$, is bounded. Then f is integrable on [a,b] if, and only if, for every $\epsilon>0$, there exists a partition P of [a,b] such that

$$U(f, P) - L(f, P) < \epsilon.$$

Proof:

Suppose f is integrable on [a, b].

Question 4

Use the theorem you proved in question #?? to solve question #?? again in a slightly different way. (It should be easier this way, but it is worth doing it both ways.)

Proof:

sdfsdf

Chpater 13. #1

Prove that $\int_0^b x^3 dx = \frac{b^4}{4}$, by considering partitions into n equal intervals.

Proof:

Since we are going to have a partition with n intervals, then we would have $P = \{t_0, t_1, ..., t_n\}$ with $t_0 = 0, t_i = i \cdot \frac{b}{n}$. Then, we have

$$L(f, P_n) = \sum_{i=1}^n t_{i-1}^3 (t_i - t_{i-1})$$

$$= \sum_{i=1}^n (\frac{(i-1) \cdot b}{n})^3 \cdot \frac{b}{n}$$

$$= (\frac{b}{n})^4 \cdot \sum_{i=1}^n (i-1)^3$$

$$= (\frac{b}{n})^4 \cdot \sum_{i=0}^{n-1} j^3$$

$$U(f, P_n) = \sum_{i=1}^n t_i^3 (t_i - t_{i-1})$$
$$= \sum_{i=1}^n (\frac{i \cdot b}{n})^3 \cdot \frac{b}{n}$$
$$= (\frac{b}{n})^4 \cdot \sum_{i=1}^n i^3$$

From the previous question Chapter 2 #6, we know that $\sum_{i=1}^{n} i^3 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{2}$, and the

equation could be written:

$$L(f, P_n) = \left(\frac{b}{n}\right)^4 \cdot \left(\frac{(n-1)^4}{4} + \frac{(n-1)^3}{2} + \frac{(n-1)^2}{4}\right)$$

$$= \left(\frac{b}{n}\right)^4 \cdot \frac{1}{4}((n-1)^4 + 2(n-1)^3 + (n-1)^2)$$

$$= \frac{b^4}{4} \cdot \left(\frac{(n-1)^4}{n^4} + \frac{2(n-1)^3}{n^4} + \frac{(n-1)^2}{n^4}\right)$$

$$U(f, P_n) = \left(\frac{b}{n}\right)^4 \cdot \left(\frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}\right)$$

$$= \left(\frac{b}{n}\right)^4 \cdot \frac{1}{4}(n^4 + 2n^3 + n^2)$$

$$= \frac{b^4}{4} \cdot \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)$$

Since $n \geq 1, n \in \mathbb{N}$, therefore, we know when n gets very large both $U(f, P_n)$ and $L(f, P_n)$ are close to $\frac{b^4}{4}$. At the same time, we find that

$$U(f, P_n) - L(f, P_n) = \frac{b^4}{4} (\frac{2n^3 - 1}{n^4})$$

which is a positive number. And we can make this difference as small as possible, by theorem 2, this function is integrable. Therefore, we have $U(f, P_n) \ge \frac{b^4}{4} \ge L(f, P_n)$. Thus, $\int_0^b x^3 dx = \frac{b^4}{4}$.

Chpater 13. #13

(a) Prove that if f is integrable on [a,b] and $f(x) \ge 0$ for all x in [a,b], then $\int_a^b f \ge 0$. **Proof:**

Since f is integrable on [a, b], then we have $U(f, P_n) \ge \int_a^b f \ge L(f, P_n)$. Also, based on the definition, we have:

$$L(f, P_n) = \sum_{i=1}^{n} f(t_{i-1})(t_i - t_{i-1})$$
$$U(f, P_n) = \sum_{i=1}^{n} f(t_i)(t_i - t_{i-1})$$

Also, because $f(x) \geq 0, \forall x \in [a, b]$ and $t_{i-1} \in [a, b], \forall i \in \mathbb{N}, i \leq n$, then $f(t_{i-1}) \geq 0$. Also, because the definition of t_i guarantees, $t_i > t_{i-1}$, then $t_i - t_{i-1} > 0$ Therefore, let $q_i = f(t_{i-1})(t_i - t_{i-1})$, since both $f(t_{i-1})$ and $f(t_i - t_{i-1})$ are greater than or equal to 0. We have $f(t_i) \geq 0$. Similarly, because $f(t_i) \neq 0$ then $f(t_i) \geq 0$. Let $p_i = f(t_i)(t_i - t_{i-1})$. Because both $f(t_{i-1})$ and $f(t_i - t_{i-1})$ are both greater than or equal to 0. Then, $f(t_i) = 0$. Thus, we have $f(t_i) = 0$ and $f(t_i) = 0$. Thus, $f(t_i) = 0$ are both greater than or equal to 0.

(b) Prove that if f and g are both integrable on [a,b] and $f(x) \geq g(x), \forall x \in [a,b]$, then $\int_a^b f \geq \int_a^b g$.

Proof:

Suppose f and g are both integrable on [a,b] and $f(x) \geq g(x), \forall x \in [a,b]$. Then, we know that $f(x) - g(x) \geq 0$. Thus, $(f-g)(x) \geq 0, \forall x \in [a,b]$. Furthermore, from theorem 5, we know that for any two functions that are integrable at the same range, we have $\int_a^b f + \int_a^b g = \int_a^b (f+g)$. Furthermore, from theorem 6 we know that $\int_a^b cg = c \cdot \int_a^b g$. Thus, $\int_a^b -g = -\int_a^b g$. Then, we have $\int_a^b f - \int_a^b g = \int_a^b (f-g)$. Let L(x) = (f-g)(x), then $\int_a^b (f-g) = \int_a^b L$ and from the previous theorem that if f is integrable on [a,b] and $f(x) \geq 0$ for all x in [a,b], then $\int_a^b f \geq 0$. We know that $\int_a^b L \geq 0$. Thus $\int_a^b f - \int_a^b g = \int_a^b (f-g) = \int_a^b L \geq 0$. Therefore, $\int_a^b f \geq \int_a^b g$.

Chpater 13. #20

Suppose that f is nondecreasing on [a, b]. Notice that f is automatically bounded on [a, b], because $f(a) \ge f(x) \ge f(b), \forall x \in [a, b]$.

(a) If $P = \{t_0, t_1, ..., t_n\}$ is a partition of [a, b], then what is L(f, P) and U(f, P)

Answer:

By definition of L(f, P) and U(f, P), we have the following:

$$L(f, P_n) = \sum_{i=1}^{n} f(t_{i-1})(t_i - t_{i-1})$$
$$U(f, P_n) = \sum_{i=1}^{n} f(t_i)(t_i - t_{i-1})$$

(b) Suppose that $t_i - t_i = \delta$ for each i. Prove that $U(f, P_n) - L(f, P_n) = \delta \cdot (f(b) - f(a))$. **Proof:**

Suppose $t_i - t_i = \delta$ for each i. Therefore, we know that

$$U(f, P_n) - L(f, P_n) = \sum_{i=1}^n f(t_i)(t_i - t_{i-1}) - \sum_{i=1}^n f(t_{i-1})(t_i - t_{i-1})$$

$$= \sum_{i=1}^n (f(t_i) \cdot \delta) - \sum_{i=1}^n (f(t_{i-1}) \cdot \delta)$$

$$= \delta \cdot (\sum_{i=1}^n (f(t_i) - \sum_{i=1}^n (f(t_{i-1})))$$

$$= \delta \cdot (\sum_{i=1}^n (f(t_i) - f(t_{i-1}))$$

$$= \delta \cdot (f(b) - f(a))$$

Based on the idea that this equations is a nondecreasing equation, then we know that $f(a) \ge f(x) \ge f(b), \forall x \in [a, b]$. Meaning, the largest possible value of $f(t_i) \ge f(b)$ for each i.

(d) Give an example of a nondecreasing function on [0, 1] which is discontinuous at infinitely many points.

Example:

$$y = \begin{cases} 0 & x = 0\\ \frac{1}{\left\lfloor \frac{1}{x} \right\rfloor} & 0 < x < 1\\ 1 & x = 1 \end{cases}$$