به نام خدا

گزارش تمرین شماره ۱ شبیه سازی JMT

حسام تاجبخش

947401-4

استاد: دكتر آنالويي

زمستان ۹۳

Part A:
Service demand of transaction at each resource:

jMVA Model Details

		Classes		
Name	Туре	Population	Arrival Rate	
Class1	open		5.0	
		Stations		
Name	Туре			
CPU	Load Independent			
Disk1		Load Independent		
Disk2		Load Independent		
	Serv	ice Demands		
		Class1		
	CPU	0.02		
	Disk1	0.03		
	Disk2	0.06		

System throughput and throughput of each resource:

Utilization of each resource:

Residence time of transaction at each resource and system response time (aggregate response time):

Number of transaction at system and each resource:

Part B:

b) N'= Number of transaction is being served

$$N'=SiXi=Ui \longrightarrow \begin{cases} N'cpu=0.1\\ N'd_1=0.15 \end{cases} \sim V N' = 0.1+0.15+0.3\\ N'd_2=0.3 = 0.55 \end{cases}$$

Queue Length = N-N' $\rightarrow \begin{cases} Q.1.cpu=0.011\\ Q.1.d_1=0.026 \end{cases} \sim N_{uniting} = 0.265$

Queue Length = N-N' $\rightarrow \begin{cases} Q.1.cpu=0.026\\ Q.1.d_1=0.026 \end{cases} \sim N_{uniting} = 0.265$

Waiting Time = Residence Time - Demand $\Rightarrow \begin{cases} W.Tepu=0.022-0.02=0.002s\\ W.Td_1=0.035-0.06=0.025s \end{cases}$

Waiting Time of System = Ry - Dy = 0.143-(0.02+0.03+0.06)

= 0.033 (5)

Part C:

Scenario 1:

Service Demand: No change in service demand. Similar to Part A.

jMVA Model Details

Classes					
Name	Туре	Population	Arrival Rate		
Class1	open		5.0		
		Stations			
Name	Туре				
CPU	Load Independent				
Disk1	Load Independent				
Disk2	Load Independent				
	Servi	ce Demands			
		Class1			
	CPU	0.02			
	Disk1	0.03			
	Disk2	0.06			

System Throughput and Throughput of each resource:

Utilization of each resource:

Residence time of transaction at each resource:

System response time:

Number of transaction at system:

Number of transaction at each resource:

Scenario 2:

Disk2 is replaced by one that is three times faster, means new demand is one third.

Response Time:

$$\begin{aligned} \textit{Residence Time}_{\textit{new}} &= 0.079 \quad \Rightarrow \quad \frac{\Delta \textit{Residence Time}}{\textit{Residence Time}_{old}} \\ &= \frac{0.079 - 0.143}{0.143} \times 100 \, \approx \, -44\% \, \textit{Reduction} \end{aligned}$$

Scenario 3:

Service demand of each resource:

jMVA Model Details

Classes						
Name	Type P	opulation	Arrival Rate			
Class1	open		5.0			
	Sta	itions				
Name	Туре					
CPU	Load Independent					
Disk1	Load Independent					
Disk2	Load Independent					
Station5	Load Independent					
	Service	Demands				
		Class1				
	CPU	0.02				
	Disk1	0.03				
	Disk2	0.03				
	Station5	0.03				

Residence Time (Aggregate response time):

Residence Times Total time spent by each customer class at each station. Note that the aggregate values are weighted by relative per-class throughput. The global aggregate is the system response time. Aggregate Class1 0.128105 0.128105 Aggregate CPU 0.022222 0.022222 0.035294 0.035294 Disk1 Disk2 0.035294 0.035294 0.035294 0.035294

$$\begin{array}{l} \textit{Residence Time}_{\textit{new}} = 0.128 \quad \Rightarrow \quad \frac{\Delta \textit{Residence Time}}{\textit{Residence Time}_{old}} \\ = \frac{0.128 - 0.143}{0.143} \times 100 \, \approx \, -10 \, \% \, \textit{Reduction} \\ \end{array}$$