in which

- R^1 is hydrogen, or branched and unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where R^{11} is hydrogen or C_1 - C_4 -alkyl, and
- is hydrogen, chlorine, bromine, iodine, fluorine, CF_3 , nitro, $NHCOR^{21}$, $NR^{22}R^{23}$, OH, $O-C_1-C_4$ -alkyl, $O-C_1-C_4$ -alkylphenyl, NH_2 , CH, a straight or branched C_1 to C_2 -alkyl, OR^{21} or phenyl, it also being possible for the phenyl rings to be substituted by at most two radicals R^{24} , and R^{21} and R^{22} independently of one another are hydrogen or C_1-C_4 -alkyl and R^{23} is hydrogen, C_1-C_4 -alkyl or phenyl, and R^{24} is OH, C_1-C_6 -alkyl, $O-C_1-C_4$ -alkyl, chlorine, bromine, iodine, fluorine, CF_3 , nitro or NH_2 , and
- x may be 0, 1 or 2 and
- is -D-(F¹)_p-(E)_q-(F²)_r -G, where p, q and r may not simultaneously be 0, or is -E-(D)_u-(F²)_s-(G)_v, it also being possible for the radical E to be substituted by one or two radicals A, and if v = 0, E is imidazole, pyrrole,

- pyridine, pyrimidine, piperazine, pyrazine, pyrrolidine or piperidine, or R³ is B and
- is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, OH, nitro, CF_3 , CN, $NR^{41}R^{42}$, NH-CO- R^{43} , or O- C_1 - C_4 -alkyl, where R^{41} and R^{42} independently of one another are hydrogen or C_1 - C_4 -alkyl and R^{43} is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkylphenyl or phenyl, and
- D is S or O
- is phenyl, imidazole pyrrole, thiophene, pyridine, pyrimidine, piperazine, pyrazine, furan, thiazole, isoxazole, pyrrolidine, piperidine, or trihydroazepine and
- is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and
- is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and
- p may be 0 or 1
- q may be 0 or 1, and
- r may be 0 or 1 and
- s may be 0 or 1
- u may be 0 or 1
- v may be 0 or 1
- G may be NR⁵¹R⁵² or

and

R⁵¹ is hydrogen or branched and unbranched C₁-C₆-alkyl, or (CH₂)_t-K and

R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl, phenyl,

in which

NH $_2$, CN, COOH, COOC $_1$ -C $_4$ -alkyl, C $_1$ -C $_4$ -alkylamino, CCl $_3$, C $_1$ -C $_4$ -dialkylamino, SO $_2$ -C $_1$ -C $_4$ - alkyl, SO $_2$ phenyl, CONH $_2$, CONH-C $_1$ -C $_4$ -alkyl, CONHphenyl, CONH-C $_1$ -C $_4$ -alkylphenyl, NHSO $_2$ -C $_1$ -C $_4$ -alkyl, NHSO $_2$ phenyl, S-C $_1$ -C $_4$ -alkyl,

$$\begin{array}{c|c}
 & O & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

CHO, CH_2 -O- C_1 - C_4 -alkyl, $-CH_2$ O- C_1 - C_4 -alkylphenyl, $-CH_2$ OH, $-SO_1$ - C_4 -alkylphenyl, $-SO_2$ NH- C_1 - C_4 -alkylphenyl, or two radicals form a bridge -O- $(CH_2)_{1/2}$ -O-,

B may be

$$R^7$$
 R^7
 R^7

and

A may be hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, OH, O-C₁-

 C_4 -alkyl, $O-C_1-C_4$ -alkylphenyl, NH_2 , branched and unbranched C_1-C_6 -alkyl, CN, or $NH-CO-R^{33}$, where R^{33} is hydrogen, C_1-C_4 -alkyl or phenyl and

- t is 0,1,2,3, or 4 and
- is a phenyl optionally having at most two substitutents on the ring, R^{k1} and/or R^{k2} are any of the radicals defined for R⁴¹ and R⁴², respectively, or NH-C₁-C₄-alkylphenyl, pyrrolidine, piperidine, 1,2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, or homopiperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, and
- R^5 may be hydrogen, C_1 - C_6 -alky, or NR_7R_9 and

and

- R^7 is hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkylphenyl, or phenyl, it also being possible for the rings to be substituted by up to two radicals R^{71} , and
- R⁷¹ is OH, C_1 - C_6 -alkyl, O- C_1 - C_4 -alkyl, chlorine, bromine, iodine, fluorine, CF_3 , nitro, or NH_2 , and

Wais Van

R⁸ is hydrogen, C_1 - C_6 -alkyl, phenyl, or C_1 - C_4 -alkylphenyl, it also being possible for the ring to be substituted by up to two radicals R⁸¹, and

R⁸¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro, or NH₂ and

is hydrogen, COCH₃, OO-O-C₁-C₄-alkyl, COCF₃, branched and unbranched C₁-C₆-alkyl, it being possible for one or two hydrogens of the C₁-C₆-alkyl radical to be substituted in each case by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and for the phenyl ring also to carry one or two of the following radicals: iodine, chlorine, bromine, fluorine, branched and unbranched C₁-C₆-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C4-alkyl, CN, CF₃, or SO₂-C₁-C₄-alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

(twice amended) A compound of the formula I or II as claimed in claim 1 in which

 R^1 is hydrogen, branched and unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where

R¹¹ is hydrogen or C₁-C₄-alkyl, and

is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{22}R^{23}$, NH-CO- R^{21} , OR^{21} , where

R²¹ and R₂₂ are, independently of one another, hydrogen or C₁-C₄-alkyl, and

 R^{23} is hydrogen, c_1-C_4 -alkyl or phenyl, and

 R^3 is -O-(CH₂)_o-(CHR³¹)_m-(CH₂)_n-G, where

 R^{31} is hydrogen, C_1 - C_4 -alkyl, OH and O- C_1 - C_4 -alkyl,

m,o are, independently of one another, 0, 1 or 2, and

n is 1, 2, 3 or 4 and

 R^4 is hydrogen, branched and unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, $NR^{41}R^{42}$ NH-CO- R^{43} OR⁴¹ where

R⁴¹ and R⁴² are, independently of one another, hydrogen or C₁-C₄-alkyl, and

R⁴³ is C₁-C₄-alkyl or phenyl, and

G is NR⁵¹R⁵² or one of the following radicals

where

R⁵¹ is hydrogen and branched and unbranched C₁-C₆-alkyl, and

R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl phenyl,

 R^{53} is branched or unbranched O-C₁-C₆-alkyl, phenyl, branched or unbranched C₁-C₄-alkyl-phenyl, where one hydrogen in the C₁-C₆-alkyl

St. St.

radical in R^{52} and R^{53} are, independently of one another, optionally substituted by one of the following radicals: OB, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl, where the carbocycles of the R^{52} and R^{53} radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C_1 -C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl, OH, F, C1, Br, , CF₃, NO₂, NH₂, CN, COOH, COOC₁-C₄-alkyl, C_1 -C₄-alkylamino, $CC1_3$, C_1 -C₄-dialkylamino, $CC1_3$, C_1 -C₄-dialkylamino, $CC1_4$ -alkyl, CC1-C₄-alkyl, C1-C₄-alkyl, C1-C₄-alkyl,

$$\begin{array}{c|c}
 & O \\
 & \bigcirc \\$$

CHO, CH_2 -O- C_1 - C_4 -alkyl, $-CH_2$ O- C_1 - C_4 -alkyl-phenyl, $-CH_2$ OH, $-SO-C_1$ - C_4 -alkyl-phenyl, SO_2 NH $_2$, $-SO_2$ NH $-C_1$ - C_4 -alkyl and two radicals form a bridge $-O-(CH_2)_{1,2}$ -O-,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

(twice amended) A compound of the formula I or II as claimed in claim 1 in which

R¹ is hydrogen, branched and unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where

R¹¹ is hydrogen or C₁-C₄-alkyl, and

Strip .

- is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, nitro, C_7 - C_8 -3, CN, $NR^{22}R^{23}$, NH-CO- R^{21} , OR^{21} , where
- R²¹ and R²² independently of one another are hydrogen or C₁-C₄-alkyl

and

R³ is

and

- is hydrogen, CHO and - $(CH_2)_0$ - $(CHR^{32})_m$ - $(CH_2)_n$ -G, where R^{32} is hydrogen, C_1 - C_4 -alkyl, OH and O- C_1 - C_4 -alkyl, m,o independently of one another are 0, 1 or 2 and n is 1, 2, 3 or 4, and
- R^4 is hydrogen, branched and unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, $NR^{41}R^{42}$ NH-CO- R^{43} , OR^{41} , where

R⁴¹and R⁴² independently of one another are hydrogen or C₁-C₄-alkyl and

- R^{43} is C_1 - C_4 -alkyl or phenyl, and
- G is NR⁵¹R⁵² or one of the radicals below

where

R⁵¹ is hydrogen and branched and unbranched and C₁-C₆-alkyl and

is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, branched and unbranched C₁-C₆-alkyl, it being possible for one hydrogen of the C₁-C₆-alkyl radical to be substituted by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C₁-C₄-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C₄-alkyl, CN, SO₂-C₁-C₄-alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

(amended) A compound as claimed in claim 1 where

for R³ being

-N N

 R^{31} is hydrogen or -(CH₂)_p-G, where

p is 1 or 2 and

(ii) for R³ being

-N Hau

 R^{31} is hydroger or $-(CH_2)_p-R^5$, where

p is 1 or 2 and

may be hydrogen, branched and unbranched C_1 - C_6 -alkyl, where one hydrogen of the C_1 - C_6 -alkyl radical may be substituted by one of the following radicals: OH, O- C_1 - C_4 -alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C_1 - C_4 -alkyl, nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino, OH, O- C_1 - C_4 -alkyl, CN, SO $_2$ - C_1 - C_4 -alkyl;

and (iii) for R3 being

nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino, OH, O- C_1 - C_4 -alkyl, CN, SO_2 - C_1 - C_4 -alkyl.

(amended) A compound as claimed in claim 1, where R³ is -O-(CH₂)_p-G with p equal

o 2-3 or 4.