OUTPUT PENTODE PENTHODE DE SORTIE ENDPENTODE

Heating:

indirect by A.C. or D.C.; parallel supply

Chauffage: indirect par C.A. ou C.C.; alimentation en parallèle

Heizung:

indirekt durch Wechsel-

oder Gleichstrom;

Parallelspeisung

Dimensions in mm Dimensions en mm Abmessungen in mm

Base Culot OCTAL Sockel

Capacitances Capacités Kapazitäten

Ir =

Socket 5903/13 Support Fassung

 $C_{g1} = 15.2 pF$ 8,4 pF C2

Cag1 (1,1 pF Cg1f (1.0 pF

10 pF Ckf

When using a sinusoidal input signal care should be taken not to exceed the maximum Remark admissible Wg2.

Observation En cas d'un signal d'entrée sinusoïdal faut faire attention à ne pas dépasser la valeur maximum admissible de Wg2.

Bemerkung Bei Verwendung eines sinusförmigen gangssignales muss darauf geachtet werden dass der maximal zulässige Wert von Ψ_{g2} nicht überschritten wird.

PHILIPS

Onemating observation older A	
Operating characteristics class A	
Comportanisticuos diutilication elecas	
Caractéristiques d'utilisation classe	A
Retriebedsten Vlagge A	

v_b	=	265	265	V
Va	=	250	250	V
Rg2	=	2	0	kΩ
Vg3	=	0	0	V .
Vg1	=	-14,5	-13,5	A
Ia	=	70	100	mA
Ig2	=	10	14,9	mA
S	=	9,0	11	mA/V
μ g2g1	==	11	11	
Ri	=	18	15	kΩ
Ra.	==	3,0	2,0	kΩ
Vi	=	9,3	8,7	$v_{\tt eff}$
Wo	=	8	11	W
dtot	=	10	10	%
$V_i (W_0 = 50 \text{ mW})$	==	0,65	5 و ٥	$v_{\tt eff}$

Operating characteristics class B Caractéristiques d'utilisation classe B Betriebsdaten Klasse B

Rg2	=		1000			470		Ω^{-1})
v_{g1}	=		-38			- 32		
v_{g3}	=		٠٠			, 0		V
٧i	=	0	27	27	0	22,7	22,7	$v_{\tt eff}$
Raa	=	-	3,4	4,0	-	2,8	3,8	kΩ
٧b	=	425	425	400	375	375	350	٧
Va.	=	420	400	375	370	350	325	V
Ιa	=	2 x 30	2 x 120	2x100	2 x 35	2x120	2 x 93	mA
Ig2	=	2x4,4	2x25	2x25	2x4,7	2 x 25	2x25	mA
Wo	=	0	55	45	0	44	36	W
dtot	=	-	5	6	-	5	6	Я

⁾Common screen grid resistor; non decoupled Résistance de grille-écran commune; ne pas découplée Gemeinsamer Schirmgitterwiderstand; nicht entkoppelt

EL 34

R _{g2}	=		750			750	Ω 1)
V _{g1}	=		-36			-39	Λ
V _{g3}	=		, 0		_	. 0	ν
$v_{\mathtt{i}}$	=	0	25,8	25,8	0	23,4	23,4 V _{eff}
Raa	=	-	4	5	-	11	11 kΩ
V _{ba}	=	500	500	475	800	800	750 V
٧a	==	4 9 5	475	450	7 95	775	725 V
V _{bg2}	=	400	400	375	400	400	375 V
Ιa	=	2 x 30	2x125	2x102	2x25	2 x 91	2x84 mA
I_{g2}	=	2x4	2 x 25	2 x 25	2 x 3	2x19	2x19 mA
Wo	=	0	70	58	0	100	90 W
dtot	=	-	5	6	-	5	6 %

Operating conditions class AB Caractéristiques d'utilisation classe AB Betriebsdaten Klasse AB

Raa	=		3,4		kΩ
Rg2	=		470		Ω^{1})
$R_{\mathbf{k}}$	=		130		Ω
v_{g3}	=		, 0		γ
Vi	=	C		21	$v_{ t eff}$
٧b	=	375		375	γ
$v_{a+v_{Rk}}$:=	355		350	V
Ia	=	2 x 75		2 x 95	mA
Ig2	=	2x11,5	2	2x22,5	mA
Wo	×	0		35	W
dtot	=	_		5	%

¹⁾Common screen grid resistor; non decoupled Résistance de grille-écran commune; ne pas découplée Gemeinsamer Schirmgitterwiderstand; nicht entkoppelt

PHILIPS

```
Operating conditions in triode connection (g2 connected to anode)
Caractéristiques d'utilisation en connexion triode (g2 relié à l'anode)
Betriebsdaten in Triodenschaltung (g2 verbunden mit Anode)
```

	C	lass A Lasse A Lasse A	Class Classe Klasse		
V _b	=	375	400		v
v_{g3}	=	0	0		A
$R_{\mathbf{k}}$	=	370	220		Ω
Ra	=	3	-		kΩ
Raa	22	-	, 5		kΩ
٧i	=	18,9		22	$v_{\tt eff}$
Ξa.	=	70	2x65	2x71	mA
Wo	=	6	0	16,5	W
d	==	8	-	3	%
Vi(Wo=50mW)	=	1,7			$v_{\tt eff}$

Limiting values Caractéristiques limites Grenzdaten

```
= max. 2000 V
Van
Va.
                        = max.
                                  800 V
W_{\mathbf{a}} (\mathbf{v}_1 = 0)
                                    25 W
                        = max.
                        = max. 27.5 W
W_{\mathbf{a}} (V_{\mathbf{i}} > 0)
Vg2o
                        = max. 800 V
                        = max. 425 V
Vg2
                                    8 W
Wg2
                        = max.
Iν
                        = max. 150 mA
V_{g1} (I_{g1} = +0,3 \mu A) = max. -1,3 V
Rg1 (A, AB)
                        = max. 0.7 M\Omega
R_{g1} (B)
                        = max. 0.5 M\Omega
                        = max. 100 V
Vfk
                        = max. 20 k\Omega
Rfk
```


PHILIPS

J

	EL34	
page	sheet	date
1	1	1958.02.02
2	2	1958.02.02
3	3	1956.02.02
4	4	1956.02.02
5	Α	1949.10.10
6	В	1949.10.10
7	С	1952.02.02
8	D	1952.02.02
9	Е	1951.06.06
10	F	1951.06.06
11	G	1951.06.06
12	Н	1951.06.06
13		1951.06.06
14	J	1951.06.06
15	K	1951.06.06
16	FP	1999.02.16