一、填空题

1.
$$\cos[iLn(2i)] = \underline{\hspace{1cm}}$$
, $Re[(2i)^i] = \underline{\hspace{1cm}}$

2.
$$\exists \exists z = \frac{\sqrt{2}}{2}(1-i)$$
, $\exists z^{100} + z^{50} + 1 = \underline{\hspace{1cm}}$

- 3. $\sin^2(4+7i) + \cos^2(4+7i) =$
- 4. 要使复变函数 $f(z) = x^2 + 2xy + ay^2 + i(-x^2 + bxy + y^2)$ 在复平面上处处解析,则 a,b的取值分别为

5. 计算积分
$$\oint_{|z-4|=3} \frac{1-\sin z}{z^2(z-4)} dz =$$
________。

6. 级数
$$\sum_{n=0}^{\infty} a^n z^n + \sum_{n=0}^{\infty} b^n z^n$$
 (0 < a < b) 的收敛半径为______。

8. 复变函数
$$f(z) = \frac{z^2 + 1}{z^3(z - 2)}$$
,则 Re $s[f(z), 2] = _____$, Re $s[f(z), \infty] = _____$ 。

二、选择题

1、方程
$$z^2 = 2z \operatorname{Re}(z) - 1$$
 在复平面上表示的几何形状为(

- A. 圆形
- B. 直线
- C. 椭圆
- D. 双曲线

2、设
$$f(z) = \sin z$$
 ,则以下命题中,不正确的是 ()

- A. f(z) 在复平面上处处解析 B. f(z) 的周期为 2π C. $|f(z)| \le 1$
- D. $f(z) = \frac{e^{iz} e^{-iz}}{2i}$

3、
$$z = i$$
 是函数 $f(z) = \frac{z^2 + 1}{(z - i)(z - 2i)^5}$ 的(

- A. 可去奇点
- C. 本性奇点 D. 5 阶极

4、若幂级数
$$\sum_{n=0}^{\infty} c_n z^n$$
 在 $z=1+2i$ 处收敛,则该级数在 $z_0=2i$ 处 (

- A. 一定是收敛的
- B. 有条件收敛 C. 一定是发散的 D. 不

能确定敛散性

5.	、设 $z = \alpha$ 分别是函数 $f(z)$	、 $g(z)$ 的本性奇点和 n	i 阶极点,则 $z = \alpha$ 是函	数 $f(z)g(z)$
的(()			
A.	可去奇点 B	3. 本性起点	C. m 阶极点	D. 小于 m
阶的极点				
三、判断题				
1.	等式 $Lnz^n = nLnz$ 一定成立	Z. ()		
2.	若函数 $f(z)$ 在 z_0 点处满足柯西-黎曼条件,则 $f(z)$ 在 z_0 处解析。()			
3.	若级数 $\{z_n\}$ 绝对收敛,则 $\{\operatorname{Re} z_n\}$ 与 $\{\operatorname{Im} z_n\}$ 都绝对收敛。()			
4.	若 z_0 分别是 $f(z)$ 和 $g(z)$ 的 m,n 阶极点 (m>n),则 z_0 是 $f(z)/g(z)$ 的 $m-n$ 阶极			
	点。 ()			
5.	若 $f(z)$ 在区域 D 内解析,	则对 D 内任一简单闭曲	日线 C 都有 $\oint_C f(z)dz = 0$	0。 ()
6.	若函数 $f(z)$ 是单连通区域 D 内的每一点均可导,则它在 D 内有任意阶导数。()			
7.	若无穷远点是 $f(z)$ 的可去奇点,则 $\operatorname{Re} s[f(z),\infty]$ 必为零。()			
8.	若函数 $f(z)$ 在复平面上解析,且对于任意 z 有 $\left f(z)\right \leq M < \infty$,则 $f(z)$ 必为常数。			
	()			
9.	函数 $f(z)$ 在点 z_0 处解析,	则将 $f(z)$ 在 z_0 处展开	成级数必为泰勒级数。()
10.	若 $\lim_{z \to z_0} f(z)$ 不存在,则函数	数 $f(z)$ 在 z_0 处可展开为	7罗朗级数,且其主要部	分为有限多
	项。()			
四、	、计算题			
1,	求解析函数 $f(z) = (2xy - 2xy - 2$	(2y)+iv(x,y)的完整表	达式,并使 $f(2)=-i$ 。	

2、 已知
$$f(z) = \oint_{|\lambda|=4} \frac{\lambda^2 - 3\lambda + 1}{\lambda - z} d\lambda$$
 (z 为复数),求 $f'(3)$;

3、 将函数
$$f(z) = \frac{1}{z^2 - 5z + 4}$$
 分别在指定区域内展开为级数形式。
$$(1) \ 1 < |z| < 4 \qquad \qquad (2) \ 0 < |z - 1| < 3$$

4、 计算积分
$$I = \int_{|z-1|=2} \frac{e^z}{z^2(z^2-4)} dz$$
 。

5、计算积分
$$I = \int_0^\infty \frac{x \sin mx}{x^2 + 9} dx \ (m > 0)$$

五、证明题

1、利用积分
$$\int_{|z|=1}^{\infty} \frac{1}{z+2} dz$$
 的值,证明 $\int_{0}^{2\pi} \frac{1+2\cos x}{5+4\cos x} dx = 0$

2、若函数 $\varphi(z)$ 在 $z=\alpha$ 处解析, $z=\alpha$ 为函数f(z)的一阶极点且 $\mathrm{Res}\big[f(z),\alpha\big]=A$,

证明:
$$\operatorname{Res}[f(z)\cdot\varphi(z),\alpha] = A\cdot\varphi(\alpha)$$
。