

The Combinatorics of Allosteric Activation

Tal Einav¹, Julia Duque², Rob Phillips³

¹ Department of Physics, California Institute of Technology, ² London, ³ Departments of Physics, Biology, and Biological Engineering, California Institute of Technology

Mechanism of Activation

CRP (cAMP Receptor Protein)

- Homodimeric transcriptional activator
- Global transcriptional regulator (100+ genes)
- Lanfranco et al. created linked dimer to probe the combinatorics of mutations [1]

A Linked Homo-Oligomer

- N subunits can generate $\frac{N(N+1)}{2}$ CRP mutants
- Combinatorial explosion in predictive power (# of parameters) \propto (# of subunits)

Inactive CRP

MWC Model

Active CRP

Parameter Degeneracy

Parameters	Parameter Set 1 (10 ⁻⁶ M)	Parameter Set 2 (10 ⁻⁶ M)
$K_{ m WT}^{ m Act}$, $K_{ m WT}^{ m Inact}$	1, 40	0.2,40
$K_{53}^{\mathrm{Act}}, K_{53}^{\mathrm{Inact}}$	0.5, 50	0.1,50
$K_{62}^{\mathrm{Act}}, K_{62}^{\mathrm{Inact}}$	70, 200	10,200
ϵ	$-3 k_B T$	$-5 k_B T$

In Vivo Predictions

- Model can then predict activation within in vivo systems

• Theoretically explored the spectrum of activation curves for any dimeric transcriptional activator

- Calibrated model to WT CRP gene expression data [3]

 $-M_L^A < M_L^I, M_R^A < M_R^I$ $-M_L^A > M_L^I, M_R^A > M_R^I$ $-M_L^A < M_L^I, M_R^A > M_R^I$ $-M_L^A = M_L^I = M_R^A = M_R^I$

RNAP

Conclusions

Residue

53, 62, 127, 141

- A holistic, quantitative understanding of transcription factor activation
- Combinations of mutations can be characterized from single mutations
- Model being tested for non-global activators (in vitro and in vivo)

DNA Bindingo

Operator

[1] Lanfranco 2017 J Biol Chem. [2] Sharma 2009 PNAS. [3] Kuhlman 2007 PNAS. [4] Lin 2002 Biochem (PDB)

Anisotropy

- Anisotropy measured for tagged promoter binding to CRP_{53/62}
- Inferred CRP-DNA affinity differs based on the # of bound cAMP

- [CRP]
- Singly cAMP-bound CRP binds tightest to the promoter
- Results are in line with structural knowledge of CRP [2]

