Heavy vector-like quarks Constraints and phenomenology at the LHC

Luca Panizzi

University of Southampton, UK

Outline

- Motivations and Current Status
- 2 The effective lagrangian
- Constraints on model parameters
- Signatures at LHC

Outline

- Motivations and Current Status
- 2 The effective lagrangian
- Constraints on model parameters
- Signatures at LHC

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

Why are they called "vector-like"?

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

Why are they called "vector-like"?

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \left(J^{\mu +} W_{\mu}^+ + J^{\mu -} W_{\mu}^- \right)$$
 Charged current Lagrangian

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

Why are they called "vector-like"?

$$\mathcal{L}_W = rac{g}{\sqrt{2}} \left(J^{\mu +} W^+_{\mu} + J^{\mu -} W^-_{\mu}
ight)$$
 Charged current Lagrangian

SM chiral quarks: ONLY left-handed charged currents

$$J^{\mu+} = J_L^{\mu+} + J_R^{\mu+}$$
 with
$$\begin{cases} J_L^{\mu+} = \bar{u}_L \gamma^{\mu} d_L = \bar{u} \gamma^{\mu} (1 - \gamma^5) d = V - A \\ J_R^{\mu+} = 0 \end{cases}$$

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

Why are they called "vector-like"?

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \left(J^{\mu +} W^+_{\mu} + J^{\mu -} W^-_{\mu} \right)$$
 Charged current Lagrangian

SM chiral quarks: ONLY left-handed charged currents

$$J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} \qquad \text{with} \qquad \left\{ \begin{array}{l} J_L^{\mu+} = \bar{u}_L \gamma^\mu d_L = \bar{u} \gamma^\mu (1 - \gamma^5) d = \textit{V} - \textit{A} \\ J_R^{\mu+} = 0 \end{array} \right.$$

vector-like quarks: BOTH left-handed and right-handed charged currents

$$J^{\mu +} = J_L^{\mu +} + J_R^{\mu +} = \bar{u}_L \gamma^{\mu} d_L + \bar{u}_R \gamma^{\mu} d_R = \bar{u} \gamma^{\mu} d = V$$

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

Vector-like quarks in many models of New Physics

- Warped or universal extra-dimensions KK excitations of bulk fields
- Composite Higgs models
 VLQ appear as excited resonances of the bounded states which form SM particles
- Little Higgs models partners of SM fermions in larger group representations which ensure the cancellation of divergent loops
- Gauged flavour group with low scale gauge flavour bosons required to cancel anomalies in the gauged flavour symmetry
- Non-minimal SUSY extensions
 VLQs increase corrections to Higgs mass without affecting EWPT

SM and a vector-like quark

$${\cal L}_M = - M ar{\psi} \psi$$
 Gauge invariant mass term without the Higgs

SM and a vector-like quark

 $\mathcal{L}_{M}=-Mar{\psi}\psi$ Gauge invariant mass term without the Higgs

Charged currents both in the left and right sector

SM and a vector-like quark

 $\mathcal{L}_M = -M\bar{\psi}\psi$

Gauge invariant mass term without the Higgs

Charged currents both in the left and right sector

They can mix with SM guarks

Dangerous FCNCs \longrightarrow strong bounds on mixing parameters BUT

Many open channels for production and decay of heavy fermions

Rich phenomenology to explore at LHC

Searches at the LHC

Overview of ATLAS searches from ATLAS Twiki page

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots

 4^{th} generation : $t^{\text{th}} \to \text{WbWb}$ 4^{th} generation : $b^{\text{th}} \subset T_{sol} \to \text{WtWt}$ New quark $b^{\text{th}} : b^{\text{th}} \to 2b^{\text{th}} \to 2b^{\text{th}}$, $D^{\text{th}} \to 2b^{\text{th}} \to 2b^{\text{th}}$, $D^{\text{th}} \to 2b^{\text{th}} \to 2b^{\text{th}}$, $D^{\text{th}} \to 2b^{\text{th}}$, $D^{\text{th$

New quarks

Overview of CMS searches from CMS Twiki page

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

But look at the hypotheses ...

Example: b' pair production

Common assumption $BR(b' \rightarrow tW) = 100\%$

Searches in the same-sign dilepton channel (possibly with b-tagging)

Example: b' pair production

Common assumption $BR(b' \rightarrow tW) = 100\%$

Searches in the same-sign dilepton channel (possibly with b-tagging)

If the b' decays both into Wt and Wq

There can be less events in the same-sign dilepton channel!

	SM	Singlets	Doublets	Triplets
	$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$	(U) (D)	$\binom{\binom{X}{U}}{\binom{U}{D}}\binom{D}{\binom{D}{Y}}$	$\begin{pmatrix} X \\ U \\ D \end{pmatrix} \begin{pmatrix} U \\ D \\ Y \end{pmatrix}$
$SU(2)_L$	2 and 1	1	2	3
$U(1)_Y$	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3 -1/3	7/6 1/6 -5/6	2/3 -1/3
\mathcal{L}_{Y}	$-y_u^iar{q}_L^iH^cu_R^i \ -y_d^iar{q}_L^iV_{CKM}^{ij}Hd_R^j$	$-\lambda_{u}^{i}ar{q}_{L}^{i}H^{c}U_{R} \ -\lambda_{d}^{i}ar{q}_{L}^{i}HD_{R}$	$ \begin{vmatrix} -\lambda_u^i \psi_L H^{(c)} u_R^i \\ -\lambda_d^i \psi_L H^{(c)} d_R^i \end{vmatrix} $	$-\lambda_i \bar{q}_L^i \tau^a H^{(c)} \psi_R^a$

	SM	Singlets	Doublets	Triplets
	$\left(\begin{smallmatrix} u\\d \end{smallmatrix}\right)\left(\begin{smallmatrix} c\\s \end{smallmatrix}\right)\left(\begin{smallmatrix} t\\b \end{smallmatrix}\right)$	(t') (b')	$\begin{pmatrix} X \\ t' \end{pmatrix} \begin{pmatrix} t' \\ b' \end{pmatrix} \begin{pmatrix} b' \\ Y \end{pmatrix}$	$\begin{pmatrix} X \\ t' \\ b' \end{pmatrix} \qquad \begin{pmatrix} t' \\ b' \\ Y \end{pmatrix}$
$SU(2)_L$	2 and 1	1	2	3
$U(1)_Y$	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3 -1/3	7/6 1/6 -5/6	2/3 -1/3
\mathcal{L}_{Y}	$-\frac{\frac{y_u^iv}{\sqrt{2}}\bar{u}_L^iu_R^i}{-\frac{y_d^iv}{\sqrt{2}}\bar{d}_L^iV_{CKM}^{i,j}d_R^j}$	$-\frac{\lambda_u^i v}{\sqrt{2}} \bar{u}_L^i U_R \\ -\frac{\lambda_d^i v}{\sqrt{2}} \bar{d}_L^i D_R$	$-\frac{\lambda_u^i v}{\sqrt{2}} U_L u_R^i \\ -\frac{\lambda_d^i v}{\sqrt{2}} D_L d_R^i$	$\begin{array}{l} -\frac{\lambda_i v}{\sqrt{2}} \bar{u}_L^i U_R \\ -\lambda_i v \bar{d}_L^i D_R \end{array}$

	SM	Singlets	Doublets	Triplets
	$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$	(t') (b')	$\begin{pmatrix} A \\ t' \end{pmatrix} \begin{pmatrix} t' \\ b' \end{pmatrix} \begin{pmatrix} b' \\ Y \end{pmatrix}$	$\begin{pmatrix} A \\ t' \\ b' \end{pmatrix} \qquad \begin{pmatrix} t' \\ b' \\ Y \end{pmatrix}$
$SU(2)_L$	2 and 1	1	2	3
$U(1)_Y$	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3 -1/3	7/6 1/6 -5/6	2/3 -1/3
$\mathcal{L}_{ m Y}$	$-\frac{y_u^i v}{\sqrt{2}} \bar{u}_L^i u_R^i \\ -\frac{y_d^i v}{\sqrt{2}} \bar{d}_L^i V_{CKM}^{i,j} d_R^j$	$-\frac{\lambda_u^i v}{\sqrt{2}} \bar{u}_L^i U_R \\ -\frac{\lambda_d^i v}{\sqrt{2}} \bar{d}_L^i D_R$	$-\frac{\lambda_u^i v}{\sqrt{2}} U_L u_R^i \\ -\frac{\lambda_d^i v}{\sqrt{2}} D_L d_R^i$	$-rac{\lambda_i v}{\sqrt{2}}ar{u}_L^i U_R \ -\lambda_i v ar{d}_L^i D_R$
\mathcal{L}_m		$-Mar{\psi}\psi$ (gauge invariant since vector-like)		
Free parameters		$\begin{array}{ c c c }\hline 4\\ M+3\times\lambda^i\end{array}$	$\begin{array}{ c c c }\hline 4 \text{ or } 7\\ M + 3\lambda_u^i + 3\lambda_d^i \end{array}$	$M + 3 \times \lambda^i$

Outline

- Motivations and Current Status
- 2 The effective lagrangian
- Constraints on model parameters
- Signatures at LHC

Mixing between VL and SM quarks

Flavour and mass eigenstates

$$\begin{pmatrix} \tilde{u} \\ \tilde{c} \\ \tilde{t} \\ U \end{pmatrix}_{L,R} = V_{L,R}^u \begin{pmatrix} u \\ c \\ t \\ t' \end{pmatrix} \qquad \text{and} \qquad \begin{pmatrix} \tilde{d} \\ \tilde{s} \\ \tilde{b} \\ D \end{pmatrix}_{L,R} = V_{L,R}^d \begin{pmatrix} d \\ s \\ b \\ b' \end{pmatrix}$$

The exotics $X_{5/3}$ and $Y_{-4/3}$ do not mix \rightarrow no distinction between flavour and mass eigenstates

$$\mathcal{L}_{y+M} = \left(\bar{u}\;\bar{c}\;\bar{t}\;\bar{U}\right)_{L}\mathcal{M}_{u}\left(\begin{array}{c} \tilde{u}\\ \tilde{c}\\ \tilde{t}\\ U \end{array}\right)_{R} + \left(\bar{d}\;\bar{s}\;\bar{b}\;\bar{D}\right)_{L}\mathcal{M}_{d}\left(\begin{array}{c} d\\ \tilde{s}\\ \tilde{b}\\ D \end{array}\right)_{R} + h.c.$$

Mixing between VL and SM quarks

Flavour and mass eigenstates

$$\begin{pmatrix} \tilde{u} \\ \tilde{c} \\ \tilde{t} \\ U \end{pmatrix}_{L,R} = V_{L,R}^u \begin{pmatrix} u \\ c \\ t \\ t' \end{pmatrix} \qquad \text{and} \qquad \begin{pmatrix} \tilde{d} \\ \tilde{s} \\ \tilde{b} \\ D \end{pmatrix}_{L,R} = V_{L,R}^d \begin{pmatrix} d \\ s \\ b \\ b' \end{pmatrix}$$

The exotics $X_{5/3}$ and $Y_{-4/3}$ do not mix \rightarrow no distinction between flavour and mass eigenstates

$$\mathcal{L}_{y+M} = \begin{pmatrix} \bar{u} \ \bar{c} \ \bar{t} \ \bar{U} \end{pmatrix}_L \mathcal{M}_u \begin{pmatrix} \bar{u} \\ \bar{c} \\ \bar{t} \\ U \end{pmatrix}_R + \begin{pmatrix} \bar{d} \ \bar{s} \ \bar{b} \ \bar{D} \end{pmatrix}_L \mathcal{M}_d \begin{pmatrix} \bar{d} \\ \bar{s} \\ \bar{b} \\ D \end{pmatrix}_R + h.c.$$

Mixing matrices depend on representations

Singlets and triplets:

$$\mathcal{M}_u = \begin{pmatrix} \tilde{m}_u & x_1 \\ & \tilde{m}_c & x_2 \\ & \tilde{m}_t & x_3 \\ & & M \end{pmatrix} \qquad \mathcal{M}_d = \begin{pmatrix} \underbrace{\tilde{V}_L^{CKM} \begin{pmatrix} \tilde{m}_d \\ & \tilde{m}_s \\ & & \tilde{m}_b \end{pmatrix}}_{K} \underbrace{\tilde{V}_R^{CKM}}_{K} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ & & M \end{pmatrix}$$

• Doublets: $\mathcal{M}_{u,d}^{4I} \leftrightarrow \mathcal{M}_{u,d}^{I4}$

Mixing matrices

$$\mathcal{L}_{m} = \left(\bar{u}\ \bar{c}\ \bar{t}\ \bar{t}'\right)_{L} \left(V_{L}^{u}\right)^{\dagger} \mathcal{M}_{u} \left(V_{R}^{u}\right) \begin{pmatrix} u \\ c \\ t \\ t' \end{pmatrix}_{R} + \left(\bar{d}\ \bar{s}\ \bar{b}\ \bar{b}'\right)_{L} \left(V_{L}^{d}\right)^{\dagger} \mathcal{M}_{d} \left(V_{R}^{d}\right) \begin{pmatrix} d \\ s \\ b' \\ d' \end{pmatrix}_{R} + h.c.$$

$$(V_L^u)^\dagger \mathcal{M}_u(V_R^u) = diag\left(m_u, m_c, m_t, m_{t'}\right) \qquad (V_L^d)^\dagger \mathcal{M}_d(V_R^d) = diag\left(m_d, m_s, m_b, m_{b'}\right)$$

Mixing matrices

$$\mathcal{L}_{m} = \left(\bar{u}\ \bar{c}\ \bar{t}\ \bar{t}'\right)_{L} \left(V_{L}^{u}\right)^{\dagger} \mathcal{M}_{u} \left(V_{R}^{u}\right) \begin{pmatrix} u \\ c \\ t' \end{pmatrix}_{R} + \left(\bar{d}\ \bar{s}\ \bar{b}\ \bar{b}'\right)_{L} \left(V_{L}^{d}\right)^{\dagger} \mathcal{M}_{d} \left(V_{R}^{d}\right) \begin{pmatrix} d \\ s \\ b' \end{pmatrix}_{R} + h.c.$$

$$(V_L^u)^{\dagger} \mathcal{M}_u(V_R^u) = \operatorname{diag}(m_u, m_c, m_t, m_{t'}) \qquad (V_L^d)^{\dagger} \mathcal{M}_d(V_R^d) = \operatorname{diag}(m_d, m_s, m_b, m_{b'})$$

Mixing in left- and right-handed sectors behave differently

$$\begin{cases} (V_L^q)^{\dagger}(\mathcal{M}\mathcal{M}^{\dagger})(V_L^q) = diag \\ (V_R^q)^{\dagger}(\mathcal{M}^{\dagger}\mathcal{M})(V_R^q) = diag \end{cases} \qquad q_{L,R}^I - \underbrace{V_{L,R}^q}_{L,R} - \underbrace{q_{L,R}^J}_{L,R} - \underbrace{V_{L,R}^q}_{L,R} - \underbrace{V_{L,R}^q}_{L,R} - \underbrace{q_{L,R}^J}_{L,R} - \underbrace{V_{L,R}^q}_{L,R} - \underbrace{q_{L,R}^J}_{L,R} - \underbrace{V_{L,R}^q}_{L,R} - \underbrace{Q_{L,R}^J}_{L,R} - \underbrace{Q_{L,R}^J$$

Mixing matrices

$$\mathcal{L}_{m} = \left(\bar{u} \ \bar{c} \ \bar{t} \ \bar{t}'\right)_{L} \left(V_{L}^{u}\right)^{\dagger} \mathcal{M}_{u} \left(V_{R}^{u}\right) \begin{pmatrix} u \\ c \\ t' \end{pmatrix}_{R} + \left(\bar{d} \ \bar{s} \ \bar{b} \ \bar{b}'\right)_{L} \left(V_{L}^{d}\right)^{\dagger} \mathcal{M}_{d} \left(V_{R}^{d}\right) \begin{pmatrix} d \\ s \\ b' \end{pmatrix}_{R} + h.c.$$

$$(V_L^u)^\dagger \mathcal{M}_u(V_R^u) = diag\left(m_u, m_c, m_t, m_{t'}\right) \qquad (V_L^d)^\dagger \mathcal{M}_d(V_R^d) = diag\left(m_d, m_s, m_b, m_{b'}\right)$$

Mixing in left- and right-handed sectors behave differently

$$\begin{cases} (V_L^q)^\dagger(\mathcal{M}\mathcal{M}^\dagger)(V_L^q) = \operatorname{diag} \\ (V_R^q)^\dagger(\mathcal{M}^\dagger\mathcal{M})(V_R^q) = \operatorname{diag} \end{cases} \qquad q_{L,R}^I \xrightarrow{\qquad \qquad \qquad } q_{L,R}^J$$

Singlets and triplets (case of up-type quarks)

$$\begin{array}{c} V_L^u \implies \mathcal{M}_u \cdot \mathcal{M}_u^+ = \begin{pmatrix} \tilde{m}_u^2 + |x_1|^2 & x_1^*x_2 & x_1^*x_3 & x_1^*M \\ x_2^*x_1 & \tilde{m}_c^2 + |x_2|^2 & x_2^*x_3 & x_2^*M \\ x_3x_1 & x_3x_2 & \tilde{m}_t^2 + x_3^2 & x_3M \\ x_1M & x_2M & x_3M & M^2 \end{pmatrix} \begin{array}{c} \text{mixing in the left sector present also for } \tilde{m}_q \to 0 \\ \text{flavour constraints for } q_L \\ \\ V_R^u \implies \mathcal{M}_u^+ \cdot \mathcal{M}_u = \begin{pmatrix} \tilde{m}_u^2 & x_1^*\tilde{m}_u^2 \\ \tilde{m}_c^2 & x_2^*\tilde{m}_t^2 \\ x_1\tilde{m}_u & x_2\tilde{m}_c & x_3\tilde{m}_t^2 \\ x_1\tilde{m}_u & x_2\tilde{m}_c & x_3\tilde{m}_t & \sum_{i=1}^3 |x_i|^2 + M^2 \end{pmatrix} \end{array} \begin{array}{c} \text{mixing in the left sector present also for } \tilde{m}_q \to 0 \\ \text{flavour constraints for } q_L \\ \\ \tilde{m}_t^2 & x_2^*\tilde{m}_t^2 \\ x_1\tilde{m}_u & x_2\tilde{m}_c & x_3\tilde{m}_t^2 \\ x_1\tilde{m}_u & x_2\tilde{m}_c & x_3\tilde{m}_t & \sum_{i=1}^3 |x_i|^2 + M^2 \end{pmatrix} \end{array} \end{array}$$

mixing in the left sector

are relevant

$$m_q \propto \tilde{m}_q$$
 mixing is suppressed by quark masses

Doublets: other way round

Now let's check how couplings are modified

this will allow us to identify which observables can constrain masses and mixing parameters

With Z

$$\begin{split} \mathcal{L}_{Z} &= \frac{\mathcal{g}}{c_{W}} \left(\bar{q}_{1} \ \bar{q}_{2} \ \bar{q}_{3} \ \bar{q}_{1}' \right)_{L} \left(V_{L}^{q} \right)^{\dagger} \left[\left(T_{3}^{q} - Q^{q} s_{w}^{2} \right) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \left(T_{3}^{q'} - T_{3}^{q} \right) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right] \gamma^{\mu} (V_{L}^{q}) \begin{pmatrix} q_{1} \\ q_{2} \\ q_{3} \\ q' \end{pmatrix}_{L} Z_{\mu} \\ &+ \frac{\mathcal{g}}{c_{W}} \left(\bar{q}_{1} \ \bar{q}_{2} \ \bar{q}_{3} \ \bar{q}_{1}' \right)_{R} \left(V_{R}^{q} \right)^{\dagger} \left[\left(-Q^{q} s_{w}^{2} \right) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + T_{3}^{q'} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right] \gamma^{\mu} (V_{R}^{q}) \begin{pmatrix} q_{1} \\ q_{2} \\ q_{3} \\ q' \end{pmatrix}_{R} Z_{\mu} \end{split}$$

With Z

$$\begin{split} \mathcal{L}_{Z} &= \frac{\mathcal{S}}{c_{W}} \left(\bar{q}_{1} \ \bar{q}_{2} \ \bar{q}_{3} \ \bar{q}_{1}' \right)_{L} \left(V_{L}^{q} \right)^{\dagger} \left[\left(T_{3}^{q} - Q^{q} s_{w}^{2} \right) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \left(T_{3}^{q'} - T_{3}^{q} \right) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right] \gamma^{\mu} (V_{L}^{q}) \begin{pmatrix} q_{1} \\ q_{2} \\ q_{3} \\ q' \end{pmatrix}_{L} Z_{\mu} \\ &+ \frac{\mathcal{S}}{c_{W}} \left(\bar{q}_{1} \ \bar{q}_{2} \ \bar{q}_{3} \ \bar{q}_{1}' \right)_{R} \left(V_{R}^{q} \right)^{\dagger} \left[\left(-Q^{q} s_{w}^{2} \right) \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + T_{3}^{q'} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right] \gamma^{\mu} (V_{R}^{q}) \begin{pmatrix} q_{1} \\ q_{2} \\ q_{3} \\ q' \end{pmatrix}_{R} Z_{\mu} \end{split}$$

FCNC, are induced by the mixing with vector-like quarks!

With W[±]

$$\begin{split} \mathcal{L}_{W^{\pm}} &= \frac{\mathcal{g}}{\sqrt{2}} \left(\bar{u} \; \bar{c} \; \bar{t} \; | \bar{t}' \right)_{L} \left(V_{L}^{u} \right)^{\dagger} \left(\begin{array}{c} \tilde{V}_{L}^{CKM} \\ \hline \end{array} \right) \gamma^{\mu} V_{L}^{d} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{L} W_{\mu}^{+} \\ &+ \frac{\mathcal{g}}{\sqrt{2}} \left(\bar{u} \; \bar{c} \; \bar{t} \; | \bar{t}' \right)_{R} \left(V_{R}^{u} \right)^{\dagger} \begin{pmatrix} 0 \\ 0 \\ \hline 0 \\ \hline \end{array} \right) \gamma^{\mu} V_{R}^{d} \begin{pmatrix} d \\ s \\ b \\ b' \end{pmatrix}_{R} W_{\mu}^{+} + h.c. \end{split}$$

CKM matrices for left and right handed sector:

$$g_{WL} = \frac{g}{\sqrt{2}} (V_L^u)^{\dagger} \left(\begin{array}{c} \tilde{V}_{CKM} \\ \hline \end{array} \right) V_L^d \equiv \frac{g}{\sqrt{2}} V_L^{CKM} \qquad g_{WR} = \frac{g}{\sqrt{2}} (V_R^u)^{\dagger} \begin{pmatrix} 0 \\ 0 \\ \hline \end{array} \right) V_R^d \equiv \frac{g}{\sqrt{2}} V_R^{CKM}$$

If BOTH t' and b' are present \longrightarrow CC between right-handed quarks

$$u_R \xrightarrow{t'_R} b'_{l'} = u_R \xrightarrow{d_R} (V_R^{u*})^{t'I} (V_R^d)^{b'J}$$

With Higgs

$$\mathcal{L}_h = rac{1}{v} \left(ar{q}_1 \; ar{q}_2 \; ar{q}_3 \; ar{q}_1'
ight)_L \left(V_L^q
ight)^\dagger \left[\mathcal{M}_q - M egin{pmatrix} 0 \ 0 \ 1 \end{matrix}
ight] \left(V_R^q
ight) egin{pmatrix} q_1 \ q_2 \ q_3 \ q_1' \end{pmatrix}_p h + h.c.$$

The coupling is:

$$C = \frac{1}{v} (V_L^q)^{\dagger} \mathcal{M}_q (V_R^q) - \frac{M}{v} (V_L^q)^{\dagger} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} (V_R^q) = \frac{1}{v} \begin{pmatrix} m_{q_1} \\ m_{q_2} \\ m_{q_3} \\ m_{q'} \end{pmatrix} - \frac{M}{v} (V_L^q)^{\dagger} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} (V_R^q)$$

FCNC induced by vector-like quarks are present in the Higgs sector too!

$$C^{IJ} = \frac{1}{v} m_I \delta^{IJ} - \frac{M}{v} (V_L^*)^{q'I} V_R^{q'J} \qquad \qquad q_R^I \longrightarrow \qquad \qquad q_L^I \qquad \qquad q_L^I$$

Outline

- Motivations and Current Status
- 2 The effective lagrangian
- Constraints on model parameters
- Signatures at LHC

Rare FCNC top decays

Suppressed in the SM, tree-level with t'

$$BR(t \to Zq) = \mathcal{O}(10^{-14})$$

SM prediction

$$BR(t
ightarrow Zq) < 0.24\%$$
 measured at CMS @ 5 fb^{-1}

Rare FCNC top decays

Suppressed in the SM, tree-level with t'

$$BR(t \to Zq) = \mathcal{O}(10^{-14})$$

SM prediction

$$BR(t \rightarrow Zq) < 0.24\%$$
 measured at CMS @ 5 fb^{-1}

Loop decays with both SM and vector-like quarks

$$BR(t \rightarrow Zq) = \mathcal{O}(10^{-12})$$

SM prediction

$$BR(t \rightarrow gu) < 5.7 \times 10^{-5} \\ BR(t \rightarrow gc) < 2.7 \times 10^{-4}$$
 ATLAS @ 2.5 fb^-1

Rare FCNC top decays

Suppressed in the SM, tree-level with t'

$$BR(t \to Zq) = \mathcal{O}(10^{-14})$$

SM prediction

$$BR(t \rightarrow Zq) < 0.24\%$$
 measured at CMS @ 5 fb⁻¹

Loop decays with both SM and vector-like quarks

$$BR(t \to Zq) = \mathcal{O}(10^{-12})$$

SM prediction

$$BR(t \to gu) < 5.7 \times 10^{-5}$$

 $BR(t \to gc) < 2.7 \times 10^{-4}$ ATLAS @ 2.5 fb⁻¹

ATLAS @
$$2.5 \, fb^{-1}$$

Bound on mixing parameters
$$\implies$$
 $BR(t \rightarrow Zq, gq) = f(V_{L,R}^{q'u}, V_{L,R}^{q'c}, V_{L,R}^{q't}) \leq BR^{exp}$

$$\Longrightarrow$$

$$BR(t \to Zq, gq) = f(V_L^q)$$

$$)=f(V_{L,R}^{q'u},V_{L}^{q'})$$

$$_{R}^{c},V_{L,R}^{q't})\leq BR$$

$Zc\bar{c}$ and $Zb\bar{b}$ couplings

Coupling measurements

$$\begin{cases} g^c_{ZL} = 0.3453 \pm 0.0036 \\ g^c_{ZR} = -0.1580 \pm 0.0051 \end{cases} \begin{cases} g^b_{ZL} = -0.4182 \pm 0.00315 \\ g^b_{ZR} = 0.0962 \pm 0.0063 \end{cases}$$

data from LEP EWWG

$$g_{ZL,ZR}^q = (g_{ZL,ZR}^q)^{SM} (1 + \delta g_{ZL,ZR}^q)$$

$$\begin{cases} g_{ZL}^c = 0.34674 \pm 0.00017 \\ g_{ZR}^c = -0.15470 \pm 0.00011 \end{cases} \begin{cases} g_{ZL}^b = -0.42114^{+0.00045}_{-0.00024} \\ g_{ZR}^b = 0.077420^{+0.000052}_{-0.000061} \end{cases}$$

SM prediction

Asymmetry parameters

$$A_q = \frac{(g_{ZL}^q)^2 - (g_{ZR}^q)^2}{(g_{ZL}^q)^2 + (g_{ZR}^q)^2} = A_q^{SM}(1 + \delta A_q) \qquad \begin{cases} A_c = 0.670 \pm 0.027 \\ A_b = 0.923 \pm 0.020 \\ \text{PDG fit} \end{cases} \qquad \begin{cases} A_c = 0.66798 \pm 0.00055 \\ A_b = 0.93462^{+0.00016}_{-0.0020} \\ \text{SM prediction} \end{cases}$$

$$\begin{cases} A_c = 0.670 \pm 0.027 \\ A_b = 0.923 \pm 0.020 \\ \text{PDG fit} \end{cases}$$

$$\left\{ egin{array}{ll} A_c = & 0.66798 \pm 0.00055 \ A_b = & 0.93462^{+0.00016}_{-0.00020} \ & {
m SM \ prediction} \end{array}
ight.$$

Decay ratios

$$R_q = \frac{\Gamma(Z \to q\bar{q})}{\Gamma(Z \to \textit{hadrons})} = R_q^{SM}(1 + \delta R_q) \qquad \begin{cases} R_c = & 0.1721 \pm 0.0030 \\ R_b = & 0.21629 \pm 0.00066 \\ \text{PDG fit} \end{cases} \qquad \begin{cases} R_c = & 0.17225^{+0.00016}_{-0.00012} \\ R_b = & 0.21583^{+0.00035}_{-0.00045} \\ \text{SM prediction} \end{cases}$$

Atomic Parity Violation

Atomic parity is violated through exchange of Z between nucleus and atomic electrons

Weak charge of the nucleus

$$Q_{W} = \frac{2c_{W}}{g} \left[(2Z + N)(g_{ZL}^{u} + g_{ZR}^{u}) + (Z + 2N)(g_{ZL}^{d} + g_{ZR}^{d}) \right] = Q_{W}^{SM} + \delta Q_{W}^{VL}$$

$$\text{From Z couplings} \quad \begin{cases} \frac{2c_W}{g} g_{ZL}^{qq} = 2(T_3^q - Q^q s_W^2) \ \ + 2(T_3^{q'} - T_3^q) |V_L^{q'q}|^2 \\ \frac{2c_W}{g} g_{ZR}^{qq} = 2(-Q^q s_W^2) \ \ \ + 2(T_3^{q'}) |V_R^{q'q}|^2 \end{cases}$$

Atomic Parity Violation

Atomic parity is violated through exchange of Z between nucleus and atomic electrons

Weak charge of the nucleus

$$Q_{W} = \frac{2c_{W}}{g} \left[(2Z + N)(g_{ZL}^{u} + g_{ZR}^{u}) + (Z + 2N)(g_{ZL}^{d} + g_{ZR}^{d}) \right] = Q_{W}^{SM} + \delta Q_{W}^{VL}$$

From Z couplings
$$\begin{cases} \frac{2c_W}{g} g_{ZL}^{qq} = 2(T_3^q - Q^q s_W^2) & +2(T_3^{q'} - T_3^q) |V_L^{q'q}|^2 \\ \frac{2c_W}{g} g_{ZR}^{qq} = 2(-Q^q s_W^2) & +2(T_3^{q'}) |V_R^{q'q}|^2 \end{cases}$$

$$\delta Q_W^{VL} = 2\left[(2Z+N)\left((T_3^{t'}-\frac{1}{2})|V_L^{t'u}|^2 + T_3^{t'}|V_R^{t'u}|^2\right) + (Z+2N)\left((T_3^{b'}+\frac{1}{2})|V_L^{b'd}|^2 + T_3^{b'}|V_R^{b'd}|^2\right)\right]$$

Atomic Parity Violation

Atomic parity is violated through exchange of Z between nucleus and atomic electrons

Weak charge of the nucleus

$$Q_{W} = \frac{2c_{W}}{g} \left[(2Z + N)(g_{ZL}^{u} + g_{ZR}^{u}) + (Z + 2N)(g_{ZL}^{d} + g_{ZR}^{d}) \right] = Q_{W}^{SM} + \delta Q_{W}^{VL}$$

$$\text{From Z couplings} \quad \begin{cases} \frac{2c_W}{g} g_{ZL}^{qq} = 2(T_3^q - Q^q s_W^2) \ \ + 2(T_3^{q'} - T_3^q) |V_L^{q'q}|^2 \\ \frac{2c_W}{g} g_{ZR}^{qq} = 2(-Q^q s_W^2) \ \ \ + 2(T_3^{q'}) |V_R^{q'q}|^2 \end{cases}$$

$$\delta Q_{W}^{VL} = 2\left[(2Z+N)\left((T_{3}^{t'}-\frac{1}{2})|V_{L}^{t'u}|^{2} + T_{3}^{t'}|V_{R}^{t'u}|^{2}\right) + (Z+2N)\left((T_{3}^{b'}+\frac{1}{2})|V_{L}^{b'd}|^{2} + T_{3}^{b'}|V_{R}^{b'd}|^{2}\right)\right]$$

Bounds from experiments

Most precise test in Cesium $^{133}\mathrm{Cs}$:

$$Q_W(^{133}{
m Cs})|_{\it exp} = -73.20 \pm 0.35 \qquad Q_W(^{133}{
m Cs})|_{\it SM} = -73.15 \pm 0.02$$

Flavour constraints

example with $D^0 - \bar{D}^0$ mixing and $D^0 \to l^+ l^-$ decay

In the SM

Mixing ($\Delta C = 2$):

$$D^{0} \left\{ \begin{array}{c} c \\ u \end{array} \right. \left. \begin{array}{c} W \\ d_{i} \\ W \end{array} \right. \left. \begin{array}{c} u \\ c \end{array} \right\} \bar{D}^{0}$$

$$x_D = \frac{\Delta m_D}{\Gamma_D} = 0.0100^{+0.0024}_{-0.0026}$$

$$y_D = \frac{\Delta \Gamma_D}{2\Gamma_D} = 0.0076^{+0.0017}_{-0.0018}$$

Decay ($\Delta C = 1$):

$$D^{0} \begin{cases} c & W \\ u & V_{i} \\ W & l^{-} \end{cases}$$

$$D^{0} \begin{cases} c & W \\ W & d_{i} \\ W & d_{i} \end{cases}$$

$$BR(D^0 \to e^+e^-)_{exp} < 1.2 \times 10^{-6}$$

$$BR(D^0 \to \mu^+ \mu^-)_{exp} < 1.3 \times 10^{-6}$$

 $BR(D^0 \to \mu^+ \mu^-)_{th,SM} = 3 \times 10^{-13}$

Flavour constraints

example with $D^0 - \bar{D}^0$ mixing and $D^0 \to l^+ l^-$ decay

Contributions at tree level

Mixing ($\Delta C = 2$):

$$D^0 \left\{ \begin{array}{c} c \\ u \end{array} \right\} \bar{D}^0$$

Decay (
$$\Delta C = 1$$
):

$$D^{0}\left\{\begin{array}{c}c\\ \end{array}\right.$$

$$\delta x_D = f(m_D, \Gamma_D, m_c, m_Z, g_{ZL}^{uc}, g_{ZR}^{uc})$$

$$\delta BR = g(m_D, \Gamma_D, m_l, m_Z, g_{ZL}^{uc}, g_{ZR}^{uc})$$

Flavour constraints

example with $D^0 - \bar{D}^0$ mixing and $D^0 \to l^+ l^-$ decay

Contributions at tree level

Mixing ($\Delta C = 2$):

$$D^0 \left\{ \begin{array}{c} c \\ u \end{array} \right\} \bar{D}^0$$

$$\delta x_D = f(m_D, \Gamma_D, m_c, m_Z, g_{ZL}^{uc}, g_{ZR}^{uc})$$

Decay ($\Delta C = 1$):

$$D^0 \left\{ \begin{array}{c} c \\ u \end{array} \right\}$$

$$\delta BR = g(m_D, \Gamma_D, m_l, m_Z, g^{uc}_{ZL}, g^{uc}_{ZR})$$

Contributions at loop level

- Relevant only if tree-level contributions are absent
- Possible sources of CP violation

EW precision tests and CKM

EW precision tests

Contributions of new fermions to S,T,U parameters

EW precision tests and CKM

EW precision tests

Contributions of new fermions to S,T,U parameters

CKM measurements

- Modifications to CKM relevant for singlets and triplets because mixing in the left sector is NOT suppressed
- The CKM matrix is not unitary anymore
- If BOTH t' and b' are present, a CKM for the right sector emerges

Higgs coupling with gluons/photons

Production and decay of Higgs at the LHC

New physics contributions mostly affect loops of heavy quarks t and q^\prime :

$$\kappa_{gg} = \kappa_{\gamma\gamma} = \frac{v}{m_t} g_{ht\bar{t}} + \frac{v}{m_{q'}} g_{hq'\bar{q}'} - 1$$

Higgs coupling with gluons/photons

Production and decay of Higgs at the LHC

New physics contributions mostly affect loops of heavy quarks t and q':

$$\kappa_{gg} = \kappa_{\gamma\gamma} = \frac{v}{m_t} g_{ht\bar{t}} + \frac{v}{m_{q'}} g_{hq'\bar{q}'} - 1$$

The couplings of t and q' to the higgs boson are:

$$\begin{split} g_{ht\bar{t}} &= \frac{m_t}{v} - \frac{M}{v} V_L^{*,t't} V_R^{t't} \qquad g_{hq'\bar{q}'} = \frac{m_{q'}}{v} - \frac{M}{v} V_L^{*,q'q'} V_R^{q'q'} \end{split}$$
 In the SM: $\kappa_{gg} = \kappa_{\gamma\gamma} = 0$

The contribution of just one VL quark to the loops turns out to be negligibly small Result confirmed by studies at NNLO

Outline

- Motivations and Current Status
- The effective lagrangian
- Constraints on model parameters
- Signatures at LHC

Production channels

Vector-like quarks can be produced in the same way as SM quarks **plus** FCNCs channels

- Pair production, dominated by QCD and sentitive to the q' mass independently of the representation the q' belongs to
- Single production, only EW contributions and sensitive to both the q' mass and its mixing parameters

Production channels

Production channels

Pair vs single production, example with non-SM doublet $(X_{5/3} t')$

pair production depends only on the mass of the new particle and decreases faster than single production due to different PDF scaling

current **bounds from LHC** are around the region where (model dependent) **single production dominates**

Decays

Not all decays may be kinematically allowed it depends on representations and mass differences

Decays of t'

Examples with non-SM doublet $(X_{5/3} t')$

Bounds at ${\sim}600~\text{GeV}$ assuming

$$BR(t' \rightarrow bW) = 100\%$$
or
 $BR(t' \rightarrow tZ) = 100\%$

Decays of t'

Examples with non-SM doublet $(X_{5/3} t')$

Bounds at \sim 600 GeV assuming

$$BR(t' \rightarrow bW) = 100\%$$

or

$$BR(t' \rightarrow tZ) = 100\%$$

Charge	Resonant state	After t' decay
0	t'Ŧ'	$t\bar{t} + \{ZZ, ZH, HH\} \\ tj + \{ZZ, ZH, HH\} \\ jj + \{ZZ, ZH, HH\} \\ tW^- + \{b, j\} + \{Z, H\} \\ W^+W^- + \{bb, b_j, j_j\} $
	$t'\bar{u}_{ar{l}}$ $t'ar{t}$	$\begin{array}{l} t\bar{t} + \{Z, H\} \\ tj + \{Z, H\} \\ jj + \{Z, H\} \\ tW^- + \{b, j\} \\ W^{\pm} + \{bj, jj\} \end{array}$
1/3	$t'd_i$ $t'b$	$t + \{b, j\} + \{Z, H\}$ $\{bj, jj\} + \{Z, H\}$ $W^{\pm} + \{bb, bj, jj\}$
	$W^{+}\bar{t}'$	$tW^{-} + \{Z, H\}$ $jW^{-} + \{Z, H\}$ $W^{+}W^{-} + \{b, j\}$
2/3	t'Z t'H	$t + \{ZZ, ZH, HH\}$ $W^{\pm} + \{b, j\} + \{Z, H\}$
1	$t'ar{d}_i$ $t'ar{b}$	$t + \{b, j\} + \{Z, H\}$ $\{bj, jj\} + \{Z, H\}$ $W^{\pm} + \{bb, bj, jj\}$
4/3	t't'	$\begin{array}{l} tt + \{ZZ, ZH, HH\} \\ tj + \{ZZ, ZH, HH\} \\ jj + \{ZZ, ZH, HH\} \\ tW^+ + \{b,j\} + \{Z, H\} \\ W^{\pm}W^{\pm} + \{bb, bj, jj\} \end{array}$
	$t'u_i$ $t't$	$tt + \{Z, H\}$ $tW^+ + \{b, j\}$ $tj + \{Z, H\}$ $W^{\pm} + \{bj, jj\}$

Possible final states from pair and single production of t' in general mixing scenario

only 2 effectively tested since now

Signatures of $X_{5/3}$ Current searches vs general mixing scenario

based on arXiv:1211.4034, accepted by JHEP

Decays of $X_{5/3}$

Examples with non-SM doublet $(X_{5/3} t')$

Decays of $X_{5/3}$

Examples with non-SM doublet $(X_{5/3} t')$

Current bounds

Direct pair $X_{5/3}$ searches

ATLAS search with $4.7 fb^{-1}$

Assumption $BR(X_{5/3} \rightarrow W^+ t) = 100\%$ same-sign dilepton $+ \geq 2$ jets

$$m_{X_{5/3}} \ge 670 GeV$$

Pair b' searches

CMS search with $5fb^{-1}$

Assumption $BR(b' \rightarrow W^- t) = 100\%$ same-sign dilepton + jets

$$m_{b'} \geq 675 GeV$$

Selection of kinematical cuts

Comparison of selections

Full Signal (BRs depend on mass)

Our bounds observation: 561 GeV discovery: 609 GeV

Comparison of selections

observation: 561 GeV discovery: 609 GeV

not considered in CMS study

(well, it has been designed exactly for this purpose...)

Comparison of selections

Branching ratio as free parameter

$$BR(X_{5/3} \to W^+ t) = b$$
 and

$$BR(X_{5/3} \to W^+ u, W^+ c) = 1 - b$$

CMS search well reproduced for $BR(W^+t) = 1$

Search more sensitive for $BR(W^+t) < 1$

Conclusions and Outlook

- Vector-like quarks are a very promising playground for searches of new physics
- Fairly rich phenomenology at the LHC and many possibile channels to explore
 - → Signatures of single and pair production of VL quarks are accessible at current CM energy and luminosity and have been explored to some extent
 - → Current bounds on masses around 500-600 GeV, but searches are not fully optimized for general scenarios.