Discrete Structures Assignment 2

SURAJ-CS20BTECH11050

February 2021

Problem 1

problem 1(a)

Given,
$$f(n) a_n = g(n) a_{n-1} + h(n)$$
 for $n \ge 1$ and $a_0 = C$

Define, $Q(n) = \frac{(f(1) f(2) \dots f(n-1))}{(g(1) g(2) \dots g(n))} = \frac{\prod_{i=1}^{n-1} f(i)}{\prod_{i=1}^{n} g(i)}$

$$f(n) - g(n)a_{n-1} = h(n)$$

by Multiplying Q(n) on both sides of the above equation we get

$$(f(n) a_n - g(n) a_{n-1}) Q(n) = h(n) Q(n)$$

$$f(n) a_n Q(n) - g(n) a_{n-1} Q(n) = h(n) Q(n)$$

$$\frac{a_n f(n) \prod_{i=1}^{n-1} f(i)}{\prod_{i=1}^{n} g(i)} - g(n) a_{n-1} Q(n) = h(n) Q(n)$$

by including f(n) in numerator's product of above equation multiplying numerator and denominator with g(n+1) we get

$$\frac{a_n g(n+1) \prod_{i=1}^n f(i)}{g(n+1) \prod_{i=1}^n g(i)} - g(n) a_{n-1} Q(n) = h(n) Q(n)$$

we know that
$$\frac{\displaystyle\prod_{i=1}^n f(i)}{\displaystyle\prod_{i=1}^n g(i)} = Q(n+1)$$
 by substituting $Q(n+1)$ in the above

equation we get

$$Q(n+1) g(n+1) a_n - Q(n) g(n) a_{n-1} = h(n) Q(n)$$

Assume $Q(n+1) g(n+1) a_n = b_n$ hence the given recurrence relation is converted to Non-Homogeneous Recurrence Relation

$$b(n) - b(n-1) = h(n) Q(n)$$

$$b(n) = b(n-1) + h(n) Q(n)$$

problem1(b)

Given that Q(1) g(1) = f(0) = 1

Consider for some $i \in \mathbb{N}$ b(i) - b(i-1) = h(i) Q(i) let us do the following summation to

$$\sum_{i=1}^{n} (b_i - b_{i-1}) = \sum_{i=1}^{n} (h(i) Q(i))$$

$$b_n - b_0 = \sum_{i=1}^{n} (h(i) Q(i))$$

$$Q(n+1) g(n+1) a_n - Q(1) g(1) a_0 = \sum_{i=1}^{n} (h(i) Q(i))$$

$$Q(n+1) g(n+1) a_n - C = \sum_{i=1}^{n} (h(i) Q(i))$$

$$a_n = \frac{C + \sum_{i=1}^{n} (h(i) Q(i))}{Q(n+1) g(n+1)}$$

Finally after solving the recurrence we get the value of a_n as

$$a_n = \frac{C + \sum_{i=1}^{n} (h(i) Q(i))}{Q(n+1) g(n+1)}$$

Problem 2

problem 2(a)

Given,
$$(n+1) a_n = (n+3) a_{n-1} + n$$
 for $n \ge 1$ and $a_0 = 1$

by previous exercise we know that

$$f(n) = n + 1$$

 $g(n) = n + 3$
 $h(n) = n$
 $Q(n) = \frac{1 \cdot 2 \cdot 3 \cdot ... \cdot n}{4 \cdot 5 \cdot ... \cdot n + 3} = \frac{6 \cdot n!}{(n+3)!}$ (as per its definition)

Applying the a_n result from previous exercise we get

$$a_n = \frac{C + \sum_{i=1}^{n} (h(i) Q(i))}{Q(n+1) g(n+1)}$$

$$a_n = \frac{1 + \sum_{i=1}^{n} \left(i \frac{6i!}{(i+3)!} \right)}{\frac{6(n+1)!}{(n+4)!} (n+4)}$$

$$a_{n} = \frac{1 + \sum_{i=1}^{n} \left(\frac{6i}{(i+1)(i+2)(i+3)} \right)}{\frac{6}{(n+2)(n+3)}}$$

Solving Summation using telescopic addition

$$\sum_{i=1}^{n} \left(\frac{6i}{(i+1)(i+2)(i+3)} \right) = \sum_{i=1}^{n} \frac{3}{(i+2)} \left(\frac{3}{(i+3)} - \frac{1}{(i+1)} \right)$$

$$= \sum_{i=1}^{n} 9\left(\frac{1}{(i+2)} - \frac{1}{(i+3)}\right) - \sum_{i=1}^{n} 3\left(\frac{1}{(i+1)} - \frac{1}{(i+2)}\right)$$

$$= 9\left(\frac{1}{3} - \frac{1}{(n+3)}\right) - 3\left(\frac{1}{2} - \frac{1}{(n+2)}\right)$$
$$= \frac{3}{2} - \frac{9}{(n+3)} + \frac{3}{(n+2)}$$

Summation =
$$\frac{3}{2} - \frac{(6n+9)}{(n+2)(n+3)}$$

By substituting value of summation in a_n we get

$$a_n = \frac{1 + \frac{3}{2} - \frac{(6n+9)}{(n+2)(n+3)}}{\frac{6}{(n+2)(n+3)}}$$

$$a_n = \frac{\frac{5(n^2 + 5n + 6) - 2(6n + 9)}{2(n + 2)(n + 3)}}{\frac{6}{(n + 2)(n + 3)}}$$

$$a_n = \frac{5n^2 + 13n + 12}{12}$$

$$\therefore a_n = \frac{n(5n+13)}{12} + 1$$

problem 2(b)

Execution code:

from sympy import Function, rsolve from sympy.abc import n $g = Function(\mbox{'g'})$ Func = g(n-1) - (n+1) * g(n) $print \mbox{'Solving the Recurrence'}, \mbox{Func}$ $soln = rsolve(Func, g(n), g(0); \mbox{1})$ $print \mbox{ soln}$

Output:

>>> from sympy import Function, rsolve

 \dots from sympy.abc import n

... g = Function('g')

... Func = g(n-1) - (n+1) * g(n)

... print 'Solving the Recurrence', Func

... soln = rsolve(Func, g(n), g(0): 1)

... print soln

Solving the Recurrence -(n+1) * g(n) + g(n-1)

$$\frac{1}{\Gamma(n+2)}$$

Which is further equals to $\left(\frac{1}{(n+1)!}\right)$

Hence the problem solved using SymPy

Problem 3

Theorem: Let c_1 , $c_2 \in \mathbb{R}$ with $c_2 \neq 0$. Suppose that $r^2 - c_1 r - c_2 = 0$ has only one root r_0 . A sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ iff $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$ for $n = 0, 1, 2, \ldots$, where α_1 and α_2 are constants

Proof: Let $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ be a recurrence relation whose character equation is $r^2 - c_1 r - c_2 = 0$ has one root r_0

We have $\Delta=c_1^2+4\,c_2=0$, $r_0=\frac{c_1}{2}$ and $r_0^2=c_1\,r_0+c_2$ from quadratic equation

Let solution of above recurrence be of form $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$ where α_1 and α_2 are constants

$$a_{n} = c_{1} a_{n-1} + c_{2} a_{n-2}$$

$$= c_{1} (\alpha_{1} r_{0}^{n-1} + \alpha_{2} (n-1) r_{0}^{n-1}) + c_{2} (\alpha_{1} r_{0}^{n-2} + \alpha_{2} (n-2) r_{0}^{n-2})$$

$$= (c_{1} r_{0} + c_{2}) \alpha_{1} r_{0}^{n-2} + (c_{1} r_{0} + c_{2}) n r_{0}^{n-2} \alpha_{2} - (c_{1} r_{0} + 2c_{2}) r_{0}^{n-2} \alpha_{2}$$

$$= (c_{1} r_{0} + c_{2}) \alpha_{1} r_{0}^{n-2} + (c_{1} r_{0} + c_{2}) n r_{0}^{n-2} \alpha_{2} - \left(\frac{c_{0}^{2} + 4 c_{2}}{2}\right) r_{0}^{n-2} \alpha_{2}$$

$$= (c_{1} r_{0} + c_{2}) \alpha_{1} r_{0}^{n-2} + (c_{1} r_{0} + c_{2}) n r_{0}^{n-2} \alpha_{2}$$

$$= (c_{1} r_{0} + c_{2}) \alpha_{1} r_{0}^{n-2} + (c_{1} r_{0} + c_{2}) n r_{0}^{n-2} \alpha_{2}$$

$$= \alpha_{1} r_{0}^{n} + \alpha_{2} r_{0}^{n}$$

$$= a_{n}$$

$$\therefore 2 r_{0} = c_{1} \text{ and } \Delta = c_{1}^{2} + 4 c_{2} = 0 \text{ and } r_{0}^{2} = c_{1} r_{0} + c_{2}$$

To show every solution of the Recurrence has the same form as above consider the following statements

$$a_0 = c_0 = \alpha_1$$

$$a_1 = c_1 = (\alpha_1 + \alpha_2) r_0$$

$$\alpha_1 = c_0$$

$$\alpha_2 = \frac{c_1 - r_0 \, c_0}{r_0}$$

With the values of α_1 and α_2 we obtain a sequence $\{a_n\}$ such that

$$a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$$

satisfy same initial conditions as the given recurrence relation

We know that for a linear homogeneous recurrence of degree 2 Unique solution is obtained for two given initial conditions

 \therefore $a_n=\alpha_1\,r_0^n+\alpha_2\,n\,r_0^n$ is the only possible solution for the given recurrence relation $a_n=c_1\,a_{n-1}+c_2\,a_{n-2}$

Problem 4

Given f is an increasing function and a Recurrence relation

$$f(n) = a f\left(\frac{n}{b}\right) + c n^d$$

where $a \ge 1$, b > 1 and c , $d \in \mathbb{R}$

(a) $(a = b^d) \wedge (n = b^k) \implies f(n) = f(1) n^d + c n^d \log_b n$

Proof: Let $a = b^d$ and $n = b^k$ we know that,

$$f(n) = f(1) a^k + \sum_{i=0}^{k-1} a^i g\left(\frac{n}{b^i}\right)$$

$$f(n) = f(1) (b^d)^k + \sum_{i=0}^{k-1} (b^d)^i \left(c \left(\frac{n}{b^i} \right)^d \right)$$

$$f(n) = f(1) (b^k)^d + \sum_{i=0}^{k-1} (b^{di}) \left(\frac{c n^d}{b^{di}} \right)$$

$$f(n) = f(1) n^d + \sum_{i=0}^{k-1} c n^d \ (\because n = b^k)$$

$$f(n) = f(1) n^d + k c n^d$$
 (: c, n are independent of i)

$$f(n) = f(1) n^d + c n^d \log_b n \ (\because k = \log_b n)$$

... The solution of given recurrence is $f(n) = f(1) n^d + c n^d \log_b n$

$$(a \neq b^d) \wedge (n = b^k) \implies f(n) = c_1 n^d + c_2 n^{\log_b a} \text{ where } c_1 = \frac{b^d c}{b^d - a} \text{ and } c_2 = f(1) + \frac{b^d c}{a - b^d}$$

proof: Let $a \neq b^d$ and $n = b^k$ we know that,

$$f(n) = f(1) a^k + \sum_{i=0}^{k-1} a^i g\left(\frac{n}{b^i}\right)$$

$$f(n) = f(1) a^{\log_b n} + \sum_{i=0}^{k-1} a^i c \left(\frac{n}{b^i}\right)^d$$

$$f(n) = f(1) n^{\log_b a} + \sum_{i=0}^{k-1} c n^d \left(\frac{a}{b^d}\right)^i$$

$$f(n) = f(1) n^{\log_b a} + c n^d \sum_{i=0}^{k-1} \left(\frac{a}{b^d}\right)^i$$

$$f(n) = f(1) n^{\log_b a} + c n^d \frac{\left(\frac{a}{b^d}\right)^k - 1}{\left(\frac{a}{b^d}\right) - 1}$$

$$f(n) = f(1) n^{\log_b a} + c b^d n^d \frac{\frac{a^{\log_b n}}{(b^{\log_b n})^d} - 1}{a - b^d}$$

$$f(n) = f(1) n^{\log_b a} + c b^d n^d \frac{n^{\log_b a} - n^d}{a - b^d}$$

$$f(n) = f(1) n^{\log_b a} + \frac{b^d c n^{\log_b n}}{a - b^d} - n^d \frac{b^d c}{a - b^d}$$

$$f(n) = \left(\frac{b^d c}{b^d - a}\right) n^d + \left(f(1) + \frac{b^d c}{a - b^d}\right) n^{\log_b a}$$

Let $c_1 = \frac{b^d c}{b^d - a}$ and $c_2 = \left(f(1) + \frac{b^d c}{a - b^d}\right)$ we finally get the solution for given recurrence such that $a \neq b^d$ as

$$f(n) = c_1 n^d + c_2 n^{\log_b a}$$

 \therefore We used logarithmic identities $b^{log_bn}=n$ and $a^{log_bn}=n^{log_ba}$ we achieved the solution of the given recurrence as

$$f(n) = \begin{cases} f(n) = f(1) n^d + c n^d \log_b n & \text{if } a = b^d \\ f(n) = \left(\frac{b^d c}{b^d - a}\right) n^d + \left(f(1) + \frac{b^d c}{a - b^d}\right) n^{\log_b a} & \text{if } a \neq b^d \end{cases}$$