1. What is machine learning

Machine learning

"Field of study that gives computers the ability to learn without being explicitly programmed."

Arthur Samuel (1959)

Question

If the checkers program had been allowed to play only ten games (instead of tens of thousands) against itself, a much smaller number of games, how would this have affected its performance?

- Would have made it better
- ightarrow 0 Would have made it worse
- 2. Supervised learning part 1

Supervised learning

Learns from being given "right answers"

Input (X)	Output (Y)	Application			
email	spam? (0/1)	spam filtering			
audio ———	text transcripts	speech recognition			
English ———	Spanish	machine translation			
ad, user info \longrightarrow	click? (0/1)	online advertising			
image, radar info → position of other cars self-driving car					
image of phone \longrightarrow defect? (0/1) visual inspection					

Regression: Housing price prediction

3. Supervised learning part 2

Classification: Breast cancer detection

- benign
- x malignant type1
- malignant type 2

Classification

predict categories cat dog benign malignant 0,1,2

small number of possible outputs

Two or more inputs

Supervised learning is when we give our learning algorithm the right answer y for each example to learn from. Which is an example of supervised learning?

- Calculating the average age of a group of customers.
- Spam filtering.
 - ✓ Correct

For instance, emails labeled as "spam" or "not spam" are examples used for training a supervised learning algorithm. The trained algorithm will then be able to predict with some degree of accuracy whether an unseen email is spam or not.

Supervised learning

Learns from being given "right answers"

Regression

Predict a number

infinitely many possible outputs

Classification
predict categories
small number of possible outputs

4. Unsupervised learning part 1

Supervised learning Learn from data labeled with the "right answers" Unsupervised learning Find something interesting in unlabeled data.

Clustering: Google news

Clustering: DNA microarray

Clustering: Grouping customers

5. Unsupervised learning part 2

Unsupervised learning

Data only comes with inputs x, but not output labels y. Algorithm has to find structure in the data.

<u>Clustering</u> Group similar data points together.

<u>Dimensionality reduction</u> Compress data using fewer numbers.

Anomaly detection Find unusual data points.

Question

Of the following examples, which would you address using an unsupervised learning algorithm?

6. Linear regression model part 1

Regression model Supervised learning model Classification model Predicts numbers Data has "right answers" Predicts categories
Infinitely many possible outputs Small number of possible outputs

7. Linear regression model part 2

How to represent f?

$$f_{w,b}(x) = wx + b$$

$$f(x)$$

$$f(x) = wx + b$$

$$f(x) = wx + b$$
linear
$$x$$
single feature x
inear regression with one variable.

Linear regression with one variable.

Univariate linear regression.

one variable

8. Cost function formula

Training set

features size in feet ² (x)	targets price \$1000's (y)	$Model: f_{w,b}(x) = wx + b$
2104 1416 1534 852	460 232 315 178	w,b: parameters coefficients weights
•••	((***):	

What do w, b do?

Cost function: Squared error cost function

$$\hat{y}^{(i)} = f_{w,b}(\mathbf{x}^{(i)}) \longleftarrow$$

$$f_{wh}(\mathbf{x}^{(i)}) = w\mathbf{x}^{(i)} + b$$

$$\overline{J}(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$

m = number of training examples

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(f_{w,b} \left(\mathbf{x}^{(i)} \right) - \mathbf{y}^{(i)} \right)^{2}$$

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

9. Cost function: intuition

model:

$$f_{w,b}(x) = wx + b$$

parameters:

cost function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

goal:

 $\underset{w,b}{\operatorname{minimize}} J(w,b)$

simplified

$$f_{w}(x) = \underline{wx}$$

$$w$$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w}(x^{(i)}) - y^{(i)})^{2}$$

$$\min_{w} \text{minimize } J(w)$$

goal of linear regression:

 $\underset{w}{\text{minimize}} J(w)$

general case:

 $\underset{w,b}{\operatorname{minimize}} J(w,b)$

choose w to minimize J(w)

10. Visualizing the cost function

Model
$$f_{w,b}(x) = wx + b$$

Cost Function
$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Objective
$$\min_{w,b} \text{minimize } J(w,b)$$

11. Visualization examples

12. Practice quiz

1.

For linear regression, the model is $f_{w,b}(x) = wx + b$.

Which of the following are the inputs, or features, that are fed into the model and with which the model is expected to make a prediction?

- \bigcirc m
- $\bigcirc \ \ w \text{ and } b.$
- x
- $\bigcirc (x,y)$

⊘ Correct

The x, the input features, are fed into the model to generate a prediction $f_{w,b}(x)$

- 2. For linear regression, if you find parameters w and b so that J(w,b) is very close to zero, what can you conclude?
 - O This is never possible -- there must be a bug in the code.
 - \bigcirc The selected values of the parameters w and b cause the algorithm to fit the training set really poorly.
 - \bullet The selected values of the parameters w and b cause the algorithm to fit the training set really well.

When the cost is small, this means that the model fits the training set well.

13. Gradient descent

Have some function
$$J(w,b)$$
 for linear regression or any function Want $\min_{w,b} J(w,b)$ $\min_{w_1,\dots,w_n,b} J(w_1,w_2,\dots,w_n,b)$

Outline:

Start with some w, b (set w=0, b=0)

Keep changing w, b to reduce J(w, b)

Until we settle at or near a minimum

14. Implementing gradient descent

Gradient descent algorithm

Repeat until convergence

Learning rate
$$b = b - \alpha \frac{\partial}{\partial w} J(w,b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w,b)$$
Simultaneously update w and b

Truth assertion Code a==c

Correct: Simultaneous update

$$tmp_{w} = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

$$tmp_{b} = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$w = tmp_{w}$$

$$b = tmp_{b}$$

Incorrect

$$tmp_w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

Gradient descent is an algorithm for finding values of parameters w and b that minimize the cost function J. What does this update statement do? (Assume α is

$$w = w - \alpha \frac{\partial J(w,b)}{\partial w}$$

- Checks whether w is equal to $w \alpha \frac{\partial J(w,b)}{\partial w}$
- igordright Updates parameter w by a small amount

This updates the parameter by a small amount, in order to reduce the cost ${\cal J}$

15. Gradient descent: intuition

Gradient descent algorithm

$$J(w)$$

$$w = w - \alpha \frac{\partial}{\partial w} J(w)$$

$$\min_{w} J(w)$$

Assume the learning rate α is a small positive number. When $\frac{\partial J(w,b)}{\partial w}$ is a positive number (greater than zero) -- as in the example in the upper part of the slide shown above -- what happens to w after one update step?

- w increases
- \bigcirc It is not possible to tell if w will increase or decrease.
- igcup w decreases.
- $\bigcirc w$ stays the same

The learning rate α is always a positive number, so if you take W minus a positive number, you end up with a new value for W that is smaller

16. Learning rate

$$w = w - \frac{d}{dw} J(w)$$

If α is too small... Gradient descent may be slow.

If α is too large...

Gradient descent may:

- Overshoot, never reach minimum
- Fail to converge, diverge

Can reach local minimum with fixed learning rate

Near a local minimum,

- Derivative becomes smaller
- Update steps become smaller

Can reach minimum without decreasing learning rate

✓

17. Gradient descent for linear regression

Linear regression model Cost function

$$f_{w,b}(x) = wx + b$$
 $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$

Gradient descent algorithm

repeat until convergence {

$$w = w - \alpha \underbrace{\frac{\partial}{\partial w} J(w, b)}_{b = b - \alpha} \underbrace{\frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}}_{m}$$

$$b = b - \alpha \underbrace{\frac{\partial}{\partial b} J(w, b)}_{l = 1} \underbrace{\frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})}_{m}$$

(Optional)
$$\frac{\partial}{\partial w} J(w,b) = \frac{1}{J_{w,b}} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^{2} = \frac{1}{J_{w}} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^{2}$$

$$= \frac{1}{J_{w,b}} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right) \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$= \frac{1}{J_{w,b}} \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^{2} = \frac{1}{J_{w,b}} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)^{2}$$

$$= \frac{1}{J_{w,b}} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right) \sum_{i=1}^{m} \left(w x^{(i)} - y^{(i)} \right)$$

$$= \frac{1}{J_{w,b}} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right) \sum_{i=1}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)$$

Gradient descent algorithm

More than one local minimum

18. Running gradient descent

"Batch" gradient descent

© DeepLearning.AI

THE BATCH

"Batch": Each step of gradient descent uses all the training examples.

other gradient descent: subsets

<u> </u>	x size in feet ²	y price in \$1000's	$\sum_{m=47}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$
(1)	2104	400	$\sum_{i=1}^{\infty} 0 w_i b_i $
(2)	1416	232	<i>i</i> -1
(3)	1534	315	
(4)	852	178	
(47)	 3210	 870	

19. Practice quiz

Gradient descent is an algorithm for finding values of parameters w and b that minimize the cost function J.

repeat until convergence {

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$
$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

When $\frac{\partial J(w,b)}{\partial w}$ is a negative number (less than zero), what happens to w after one update step?

- w increases.
- $\bigcirc w$ stays the same
- $\bigcirc w$ decreases
- It is not possible to tell if w will increase or decrease.

Correct

The learning rate is always a positive number, so if you take W minus a negative number, you end up with a new value for W that is larger (more positive).

2.

For linear regression, what is the update step for parameter b?

$$0 b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$left{igo} b = b - lpha rac{1}{m} \sum_{i=1}^m (f_{w,b}(x^{(i)}) - y^{(i)})$$

 \bigcirc Correct The update step is $b=b-lpharac{\partial J(w,b)}{\partial w}$ where $rac{\partial J(w,b)}{\partial b}$ can be computed with this expression: $\sum\limits_{i=1}^m (f_{w,b}(x^{(i)})-y^{(i)})$