Trig Final (TEST v687)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 1.1 radians. The radius is 31 meters. How long is the arc in meters?

Question 2

Consider angles $\frac{13\pi}{6}$ and $\frac{-9\pi}{4}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\cos\left(\frac{13\pi}{6}\right)$ and $\sin\left(\frac{-9\pi}{4}\right)$ by using a unit circle (provided separately).

Find $cos(13\pi/6)$

Find $sin(-9\pi/4)$

Question 3

If $\cos(\theta) = \frac{-39}{89}$, and θ is in quadrant II, determine an exact value for $\sin(\theta)$.

Question 4

A mass-spring system oscillates vertically with an amplitude of 2.79 meters, a frequency of 8.5 Hz, and a midline at y = -7.03 meters. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).