Verifying Tail Modulo Cons using Relational Separation Logic

<u>Clément Allain</u> Gabriel Scherer François Pottier

INRIA Paris

May 31, 2024

Verifying Tail Modulo Cons using Relational Separation Logic

Program transformation implemented in the OCAML compiler.

Verifying Tail Modulo Cons using Relational Separation Logic

Formalize the transformation and its soundness.

Verifying Tail Modulo Cons using Relational Separation Logic

Prove soundness using an adequate IRIS binary logical relation à la SIMULIRIS.

The map problem: natural implementation

```
let rec map f xs =
  match xs with
   \mathsf{I} \quad \mathsf{\Gamma} \mathsf{I} \quad \to \quad
  \mid x :: xs \rightarrow
        let y = f x in
        y :: map f xs
# List.init 250 000 (fun \rightarrow ())
  |> map Fun.id
  |> ignore
Stack overflow during evaluation (looping recursion■).
```

The map problem: natural implementation

The map problem: APS implementation

```
let rec map ys f xs =
  match xs with
  I \quad [] \quad \rightarrow
    List.rev ys
  \mid x :: xs \rightarrow
       let y = f x in
       map (y :: ys) f xs
let map xs =
  map [] f xs
# List.init 250_000 (fun \rightarrow ())
  |> map Fun.id
  |> ignore
 ; ;
-: unit = ()
```

The map problem: APS implementation

The map problem: DPS implementation

The map problem: DPS implementation

```
let rec map dps dst f xs = let map f xs =
  match xs with
                                    match xs with
  I \quad \Gamma \rceil \quad \rightarrow
                                     I \quad [] \quad \rightarrow
   set field dst 1 []
  | x :: xs \rightarrow
                                    | x :: xs \rightarrow
       let y = f x in
                                         let y = f x in
       let dst' = y :: [] in let dst = y :: [] in
       set field dst 1 dst';
                                     map dps dst f xs ;
       map dps dst' f xs
                                        dst
# List.init 250 000 (fun \rightarrow ())
  |> map Fun.id
  |> ignore
  ;;
-: unit = ()
```

The map problem: TMC

```
let[@tail_mod_cons] rec map f xs =
  match xs with
  I \quad [] \quad \rightarrow
       Γ٦
  | x :: xs \rightarrow
       let y = f x in
       y :: map f xs
# List.init 250_000 (fun \rightarrow ())
  |> map Fun.id
  |> ignore
  ;;
-: unit = ()
```

DATALANG: syntax

```
Index \ni i := 0 | 1 | 2
Tag \ni t
\mathbb{B}
        \ni \ell
\mathbb{L}
        \ni f
\mathbb{F}
\mathbb{X} \qquad \ni \quad x, y
Val \qquad \ni \quad v, w \quad ::= \quad () \mid i \mid t \mid b \mid \ell \mid @f
Expr
         \ni e ::= v \mid x \mid \mathtt{let} \ x = e_1 \ \mathtt{in} \ e_2 \mid e_1 \ \overline{e_2}
                                       e_1 = e_2 | if e_0 then e_1 else e_2
                                       \{t, e_1, e_2\}
                                        e_1.(e_2) \mid e_1.(e_2) \leftarrow e_3
Def \ni d ::= rec \overline{x} = e
                              := \mathbb{F} \stackrel{\text{fin}}{\rightharpoonup} \text{Def}
Prog \ni p
State \ni \sigma := \mathbb{L} \stackrel{\text{fin}}{\rightharpoonup} \text{Val}
Config
                                := \operatorname{Expr} \times \operatorname{State}
              \ni \rho
```

Dataland: semantics

$$\begin{split} & \text{STEPCALL} \\ & \underbrace{p[f] = (\text{rec } \overline{x} = e)}_{\text{(@}f \ \overline{v}, \sigma) \xrightarrow{\text{head}} (e[\overline{x} \backslash \overline{v}], \sigma)} \end{split}$$

StepBlock
$$\forall i \in \text{Index}, \ell + i \notin \text{dom}(\sigma)$$

$$(\{\,t\,,\,v_1\,,\,v_2\,\},\sigma)\xrightarrow[\mathrm{head}]{p} (\ell,\sigma[\ell\mapsto t,v_1,v_2])$$

$$\begin{array}{ll} \text{STEPLOAD} & \text{STEPSTORE} \\ \frac{\sigma[\ell] = v}{(\ell.\,(i),\sigma)^{\frac{p}{\text{head}}}\,(v,\sigma)} & \frac{\ell+i \in \text{dom}(\sigma)}{(\ell.\,(i)\leftarrow v,\sigma)^{\frac{p}{\text{head}}}\,((),\sigma[\ell+i\mapsto v])} \end{array}$$

DATALANG: map

```
map → rec f xs =
  match xs with
  | [] →
        []
  | x :: xs →
        let y = f x in
        y :: @map f xs
```

TMC transformation

$$e_s \overset{\xi}{\underset{\text{dir}}{\rightleftharpoons}} e_t \qquad d_s \overset{\xi}{\underset{\text{dir}}{\rightleftharpoons}} d_t$$

$$(e_{dst}, e_{idx}, e_s) \overset{\xi}{\underset{\text{dps}}{\rightleftharpoons}} e_t \qquad d_s \overset{\xi}{\underset{\text{dps}}{\rightleftharpoons}} d_t$$

 $p_s \leadsto p_t$

TMC transformation: map

Transformation soundness

TODO

Separation logic

TODO quote original TMC article main ideas, specifications (direct and DPS)

Protocols

TODO

$$f_s \approx f_t$$
 $xs_s \approx xs_t$

[]

$$f_s \approx f_t$$
 $xs_s \approx xs_t$

[]

$$f_s \approx f_t$$
 $xs_s \approx xs_t$ $x_s \approx xs_t$ $xs_s' \approx xs_t'$

$$f_s \approx f_t$$
 $xs_s \approx xs_t$ $x_s \approx x_t$ $xs_s' \approx xs_t'$ $y_s \approx y_t$

$$f_s \approx f_t$$
 $xs_s \approx xs_t$ $x_s \approx x_t$ $xs_s' \approx xs_t'$ $y_s \approx y_t$

```
y_s :: \texttt{Qmap} \ f_s \ xs_s' \qquad \qquad \underbrace{\texttt{Qmap\_dps} \ \text{dst} \ 2}_{\texttt{dst}} \ f_t \ xs_t' \ ;
```

$$f_spprox f_t$$
 $xs_spprox xs_t$ $xs_spprox xs_t$ $xs_spprox xs_t$ RELTGTCONS $orall \ell.\ell\mapsto_t (ext{CONS},v_1,v_2) woheadrightarrow e_s\gtrsim \ell\ [\Phi]$ $e_s\gtrsim v_1::v_2\ [\Phi]$ let $ext{dst}=y_t::\ lacksquare$ in $ext{gmap_dps}$ $ext{dst}$ $ext{in}$ $ext{gmap_dps}$ $ext{dst}$; $ext{dst}$

$$f_s \approx f_t$$
 $xs_s \approx xs_t$ $x_s \approx x_t$ $xs_s' \approx xs_t'$ $y_s \approx y_t$ $\ell_t \mapsto_t (\text{CONS}, y_t, \blacksquare)$

$$y_s :: \texttt{Qmap} \ f_s \ xs_s' \qquad \begin{tabular}{ll} & \texttt{let} \ \texttt{dst} \ = \ \ell_t \ \texttt{in} \\ & \texttt{Qmap_dps} \ \texttt{dst} \ 2 \ f_t \ xs_t' \ ; \\ & \texttt{dst} \end{tabular}$$

$$f_spprox f_t$$
 $xs_spprox xs_t$ $xs_s'pprox xs_t'$ $xs_s'pprox xs_t'$ Reltgirule $e_t extstyle rac{p_t}{ extstyle exts$

$$y_s :: \texttt{Qmap} \ f_s \ xs_s' \\ \underset{\sim}{>} \ \text{Qmap_dps dst 2} \ f_t \ xs_t' \ ;$$

$$f_s \approx f_t$$
 $xs_s \approx xs_t$ $x_s \approx x_t$ $xs_s' \approx xs_t'$ $y_s \approx y_t$ $\ell_t \mapsto_t (\text{CONS}, y_t, \blacksquare)$

$$f_{s} \approx f_{t} \qquad xs_{s} \approx xs_{t}$$

$$\begin{cases}
ELDPS2 & \xi[f] = f_{dps} \\
\overline{v_{s}} \approx \overline{v_{t}} \\
\ell \mapsto_{t} (t, w_{1}, w_{2}) \\
\forall w_{s}, w_{t}. w_{s} \approx w_{t} * \ell \mapsto_{t} (t, w_{1}, w_{t}) * w_{s} \gtrsim () \ [\Phi]
\end{cases}$$

$$f \ \overline{v_{s}} \gtrsim f_{dps} \ \ell \ 2 \ \overline{v_{t}} \ [\Phi]$$

$$y_{s} :: @map \ f_{s} \ xs'_{s} & & \ell_{t} \end{cases}$$

$$f_s \approx f_t$$
 $xs_s \approx xs_t$ $x_s \approx x_t$ $xs_s' \approx xs_t'$ $y_s \approx y_t$ $ys_s \approx ys_t$ $\ell_t \mapsto_t (\text{CONS}, y_t, ys_t)$

$$y_s$$
 :: ys_s \gtrsim (); ℓ_t

$$f_s \approx f_t$$
 $xs_s \approx xs_t$ $x_s \approx x_t$ $xs_s' \approx xs_t'$ $y_s \approx y_t$ $ys_s \approx ys_t$ $\ell_t \mapsto_t (\text{CONS}, y_t, ys_t)$

$$y_s :: ys_s > \ell_s$$

$$f_s \approx f_t$$
 $xs_s \approx xs_t$ $x_s \approx xs_t$ $xs_s' \approx xs_t'$

$$\frac{\text{RELSRCCONS}}{\forall \ell. \ell \mapsto_s (\text{CONS}, v_1, v_2) \twoheadrightarrow \ell \gtrsim e_t \ [\Phi]}{v_1 :: v_2 \gtrsim e_t \ [\Phi]}$$

$$y_s :: ys_s > \ell$$

$$f_s \approx f_t \qquad xs_s \approx xs_t$$

$$x_s \approx x_t \qquad xs_s' \approx xs_t'$$

$$y_s \approx y_t$$

$$ys_s \approx ys_t$$

$$\ell_t \mapsto_t (\text{CONS}, y_t, ys_t)$$

$$\ell_s \mapsto_s (\text{CONS}, y_s, ys_s)$$

$$\ell_s$$
 \gtrsim ℓ_t

$$f_s pprox f_t$$
 $xs_s pprox xs_t$ RelbijInsert $\ell_s \mapsto_s \overline{v_s}$ $\ell_t \mapsto_t \overline{v_t}$ $\overline{v_t}$ $\overline{v_s} pprox \overline{v_t}$

$$\frac{\ell_s \approx \ell_t \twoheadrightarrow e_s \gtrsim e_t \ [\Phi]}{e_s \gtrsim e_t \ [\Phi]}$$

$$\ell_s$$
 \geq ℓ

$$f_s \approx f_t$$
 $xs_s \approx xs_t$ $x_s \approx x_t$ $xs_s' \approx xs_t'$ $y_s \approx y_t$ $ys_s \approx ys_t$ $\ell_s \approx \ell_t$

$$\ell_s$$
 \geq ℓ

Thank you for your attention!