Statistical Methods for Analysis with Missing Data

Lecture 13: intro to (weighted generalized) estimating equations

Mauricio Sadinle

Department of Biostatistics

W UNIVERSITY of WASHINGTON

Previous Lecture

- ► Inverse-probability weighting (IPW)
 - Origins in survey sampling (Horvitz-Thompson estimator)
 - Does not require modeling of the full-data distribution
 - Sensitive to misspecification of the propensity score model and to extreme weights
- Augmented IPW
 - Enjoys double-robustness property
 - However "in at least some settings, two wrong models are not better than one" (Kang and Schafer, 2007)
- ▶ We focused on estimation of a mean

Today's Lecture

Introduction to:

- Estimating equations
- ► Generalized estimating equations
- Weighted generalized estimating equations

Outline

Estimating Equations

Generalized Estimating Equations

Weighted Generalized Estimating Equations

Summary

- ▶ Consider i.i.d. data $\mathbf{Z} = \{Z_i\}_{i=1}^n$
- An estimating function $M(Z; \theta)$ is a continuously differentiable function of Z and parameters θ that satisfies

$$E_{Z|\theta}[M(Z;\theta)] = \mathbf{0}$$

▶ Given an estimating function, the *estimating equations* are given by

$$\frac{1}{n}\sum_{i=1}^n M(Z_i;\theta) = \mathbf{0}$$

▶ If

$$E_{\mathbf{Z}|\theta}\left[\frac{1}{n}\sum_{i=1}^{n}M(Z_{i};\theta)\right]=\mathbf{0},$$

- ▶ Consider i.i.d. data $\mathbf{Z} = \{Z_i\}_{i=1}^n$
- ▶ An estimating function $M(Z; \theta)$ is a continuously differentiable function of Z and parameters θ that satisfies

$$E_{Z|\theta}[M(Z;\theta)] = \mathbf{0}$$

▶ Given an estimating function, the estimating equations are given by

$$\frac{1}{n}\sum_{i=1}^n M(Z_i;\theta) = \mathbf{0}$$

▶ If

$$E_{\mathsf{Z}|\theta}\left[\frac{1}{n}\sum_{i=1}^{n}M(Z_{i};\theta)\right]=\mathbf{0},$$

- ▶ Consider i.i.d. data $\mathbf{Z} = \{Z_i\}_{i=1}^n$
- ▶ An estimating function $M(Z; \theta)$ is a continuously differentiable function of Z and parameters θ that satisfies

$$E_{Z|\theta}[M(Z;\theta)] = \mathbf{0}$$

▶ Given an estimating function, the *estimating equations* are given by

$$\frac{1}{n}\sum_{i=1}^n M(Z_i;\theta) = \mathbf{0}$$

▶ If

$$E_{\mathsf{Z}|\theta}\left[\frac{1}{n}\sum_{i=1}^{n}M(Z_{i};\theta)\right]=\mathbf{0},$$

- ▶ Consider i.i.d. data $\mathbf{Z} = \{Z_i\}_{i=1}^n$
- An estimating function $M(Z; \theta)$ is a continuously differentiable function of Z and parameters θ that satisfies

$$E_{Z|\theta}[M(Z;\theta)] = \mathbf{0}$$

▶ Given an estimating function, the *estimating equations* are given by

$$\frac{1}{n}\sum_{i=1}^n M(Z_i;\theta)=\mathbf{0}$$

▶ If

$$E_{\mathbf{Z}|\theta}\left[\frac{1}{n}\sum_{i=1}^{n}M(Z_{i};\theta)\right]=\mathbf{0},$$

M-Estimators

▶ The solution $\hat{\theta}$ to the $p \times 1$ estimating equations

$$\frac{1}{n}\sum_{i=1}^n M(Z_i;\theta)=\mathbf{0}$$

is referred to as an M-estimator

- ▶ Say we are interested in estimating a mean $\mu = E(Y)$
- ▶ Take the estimating function as $M(Y; \mu) = Y \mu$
- ▶ The sample mean is the solution to the unbiased estimating equation

$$\sum_{i=1}^n (Y_i - \mu) = 0$$

▶ Say we are interested in a regression model

$$E(Y \mid x) = \mu(x; \beta)$$

- ▶ With no further assumptions, this is a semiparametric model
- ▶ With full data $\{(Y_i, X_i)\}_{i=1}^n$, estimation of β is done by solving the least squares estimating equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial \beta} [\mu(X_i; \beta)] [Y_i - \mu(X_i; \beta)] = \mathbf{0}$$

$$\frac{\partial}{\partial \beta} [\mu(X;\beta)][Y - \mu(X;\beta)]$$

- The estimating equation is unbiased if the regression model is correctly specified
- ▶ Under the additional assumption of $Y \mid x$ being normal, this corresponds to MLF

▶ Say we are interested in a regression model

$$E(Y \mid x) = \mu(x; \beta)$$

- ▶ With no further assumptions, this is a semiparametric model
- ▶ With full data $\{(Y_i, X_i)\}_{i=1}^n$, estimation of β is done by solving the least squares estimating equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial \beta} [\mu(X_i; \beta)] [Y_i - \mu(X_i; \beta)] = \mathbf{0}$$

$$\frac{\partial}{\partial \beta} [\mu(X;\beta)][Y - \mu(X;\beta)]$$

- The estimating equation is unbiased if the regression model is correctly specified
- ▶ Under the additional assumption of $Y \mid x$ being normal, this corresponds to MIF

Say we are interested in a regression model

$$E(Y \mid x) = \mu(x; \beta)$$

- ▶ With no further assumptions, this is a *semiparametric model*
- ▶ With full data $\{(Y_i, X_i)\}_{i=1}^n$, estimation of β is done by solving the least squares estimating equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial \beta} [\mu(X_i; \beta)] [Y_i - \mu(X_i; \beta)] = \mathbf{0}$$

$$\frac{\partial}{\partial \beta} [\mu(X;\beta)][Y - \mu(X;\beta)]$$

- ▶ Under the additional assumption of $Y \mid x$ being normal, this

Say we are interested in a regression model

$$E(Y \mid x) = \mu(x; \beta)$$

- ▶ With no further assumptions, this is a semiparametric model
- ▶ With full data $\{(Y_i, X_i)\}_{i=1}^n$, estimation of β is done by solving the least squares estimating equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial \beta} [\mu(X_i; \beta)] [Y_i - \mu(X_i; \beta)] = \mathbf{0}$$

$$\frac{\partial}{\partial \beta} [\mu(X;\beta)] [Y - \mu(X;\beta)]$$

- The estimating equation is unbiased if the regression model is correctly specified
- ► Under the additional assumption of Y | x being normal, this corresponds to MLE

Say we are interested in a regression model

$$E(Y \mid x) = \mu(x; \beta)$$

- ▶ With no further assumptions, this is a semiparametric model
- ▶ With full data $\{(Y_i, X_i)\}_{i=1}^n$, estimation of β is done by solving the least squares estimating equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial \beta} [\mu(X_i; \beta)] [Y_i - \mu(X_i; \beta)] = \mathbf{0}$$

$$\frac{\partial}{\partial \beta} [\mu(X;\beta)] [Y - \mu(X;\beta)]$$

- The estimating equation is unbiased if the regression model is correctly specified
- ► Under the additional assumption of Y | x being normal, this corresponds to MLE

Say we are interested in a regression model

$$E(Y \mid x) = \mu(x; \beta)$$

- ▶ With no further assumptions, this is a *semiparametric model*
- ▶ With full data $\{(Y_i, X_i)\}_{i=1}^n$, estimation of β is done by solving the least squares estimating equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial \beta} [\mu(X_i; \beta)] [Y_i - \mu(X_i; \beta)] = \mathbf{0}$$

$$\frac{\partial}{\partial \beta} [\mu(X;\beta)] [Y - \mu(X;\beta)]$$

- ▶ The estimating equation is unbiased if the regression model is correctly specified
- ▶ Under the additional assumption of $Y \mid x$ being normal, this corresponds to MLE

- ▶ Say we have a parametric model for the study variables $p(z \mid \theta)$
- ► Taking

$$M(Z;\theta) = \frac{\partial}{\partial \theta} \log p(Z \mid \theta)$$

leads to the usual score equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log p(Z_i \mid \theta) = \mathbf{0},$$

- ► The estimating (score) equation is unbiased if the model is correctly specified
- ► MLEs are *M*-estimators

- ▶ Say we have a parametric model for the study variables $p(z \mid \theta)$
- Taking

$$M(Z;\theta) = \frac{\partial}{\partial \theta} \log p(Z \mid \theta),$$

leads to the usual score equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log p(Z_i \mid \theta) = \mathbf{0},$$

- The estimating (score) equation is unbiased if the model is correctly specified
- ► MLEs are *M*-estimators

- ▶ Say we have a parametric model for the study variables $p(z \mid \theta)$
- Taking

$$M(Z;\theta) = \frac{\partial}{\partial \theta} \log p(Z \mid \theta),$$

leads to the usual score equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log p(Z_i \mid \theta) = \mathbf{0},$$

- ► The estimating (score) equation is unbiased if the model is correctly specified
- ► MLEs are *M*-estimators

- ▶ Say we have a parametric model for the study variables $p(z \mid \theta)$
- Taking

$$M(Z;\theta) = \frac{\partial}{\partial \theta} \log p(Z \mid \theta),$$

leads to the usual score equation

$$\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log p(Z_i \mid \theta) = \mathbf{0},$$

- ► The estimating (score) equation is unbiased if the model is correctly specified
- MLEs are M-estimators

M-Estimators

 \blacktriangleright Heuristically, we say that with a large sample size the approximate distribution of $\hat{\theta}$ is

$$\hat{\theta} \approx \mathsf{Normal}[\theta_0, n^{-1}U_n^{-1}V_n(U_n^{-1})^T]$$

where

$$U_n = \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial \theta^T} M(Z_i; \hat{\theta})$$

and

$$V_n = \frac{1}{n} \sum_{i=1}^n M(Z_i; \hat{\theta}) M(Z_i; \hat{\theta})^T$$

Outline

Estimating Equations

Generalized Estimating Equations

Weighted Generalized Estimating Equations

Summary

Generalized estimating equations (GEEs) were introduced by Liang and Zeger (Biometrika 1986)

- ▶ Data to be collected at *T* time points
- ▶ *n* i.i.d. individuals
- $ightharpoonup Y_{ij}$: outcome of individual i at time j
- $Y_i = (Y_{i1}, \dots, Y_{iT})$
- \triangleright X_i : exogenous vector of covariates for individual i
- ▶ We are interested in a model

$$E(Y_i \mid X_i) = \begin{bmatrix} E(Y_{i1} \mid X_i) \\ \vdots \\ E(Y_{iT} \mid X_i) \end{bmatrix} = \begin{bmatrix} \mu_1(X_i; \beta) \\ \vdots \\ \mu_T(X_i; \beta) \end{bmatrix}$$

Generalized estimating equations (GEEs) were introduced by Liang and Zeger (Biometrika 1986)

- Data to be collected at T time points
- ▶ n i.i.d. individuals
- $ightharpoonup Y_{ij}$: outcome of individual i at time j
- $Y_i = (Y_{i1}, \dots, Y_{iT})$
- \triangleright X_i : exogenous vector of covariates for individual i
- ▶ We are interested in a model

$$E(Y_i \mid X_i) = \begin{bmatrix} E(Y_{i1} \mid X_i) \\ \vdots \\ E(Y_{iT} \mid X_i) \end{bmatrix} = \begin{bmatrix} \mu_1(X_i; \beta) \\ \vdots \\ \mu_T(X_i; \beta) \end{bmatrix}$$

Generalized estimating equations (GEEs) were introduced by Liang and Zeger (Biometrika 1986)

- Data to be collected at T time points
- n i.i.d. individuals
- $ightharpoonup Y_{ij}$: outcome of individual i at time j
- $Y_i = (Y_{i1}, \ldots, Y_{iT})$
- \triangleright X_i : exogenous vector of covariates for individual i
- ▶ We are interested in a model

$$E(Y_i \mid X_i) = \begin{bmatrix} E(Y_{i1} \mid X_i) \\ \vdots \\ E(Y_{iT} \mid X_i) \end{bmatrix} = \begin{bmatrix} \mu_1(X_i; \beta) \\ \vdots \\ \mu_T(X_i; \beta) \end{bmatrix}$$

Generalized estimating equations (GEEs) were introduced by Liang and Zeger (Biometrika 1986)

- Data to be collected at T time points
- n i.i.d. individuals
- $ightharpoonup Y_{ij}$: outcome of individual i at time j
- $Y_i = (Y_{i1}, \dots, Y_{iT})$
- \triangleright X_i : exogenous vector of covariates for individual i
- ▶ We are interested in a model

$$E(Y_i \mid X_i) = \begin{bmatrix} E(Y_{i1} \mid X_i) \\ \vdots \\ E(Y_{iT} \mid X_i) \end{bmatrix} = \begin{bmatrix} \mu_1(X_i; \beta) \\ \vdots \\ \mu_T(X_i; \beta) \end{bmatrix}$$

Generalized estimating equations (GEEs) were introduced by Liang and Zeger (Biometrika 1986)

- ▶ Data to be collected at *T* time points
- n i.i.d. individuals
- $ightharpoonup Y_{ij}$: outcome of individual i at time j
- $Y_i = (Y_{i1}, \ldots, Y_{iT})$
- \triangleright X_i : exogenous vector of covariates for individual i
- ▶ We are interested in a model

$$E(Y_i \mid X_i) = \begin{bmatrix} E(Y_{i1} \mid X_i) \\ \vdots \\ E(Y_{iT} \mid X_i) \end{bmatrix} = \begin{bmatrix} \mu_1(X_i; \beta) \\ \vdots \\ \mu_T(X_i; \beta) \end{bmatrix}$$

Generalized estimating equations (GEEs) were introduced by Liang and Zeger (Biometrika 1986)

- ▶ Data to be collected at *T* time points
- n i.i.d. individuals
- $ightharpoonup Y_{ij}$: outcome of individual i at time j
- $Y_i = (Y_{i1}, \ldots, Y_{iT})$
- \triangleright X_i : exogenous vector of covariates for individual i
- ▶ We are interested in a model

$$E(Y_i \mid X_i) = \begin{bmatrix} E(Y_{i1} \mid X_i) \\ \vdots \\ E(Y_{iT} \mid X_i) \end{bmatrix} = \begin{bmatrix} \mu_1(X_i; \beta) \\ \vdots \\ \mu_T(X_i; \beta) \end{bmatrix}$$

Generalized estimating equations (GEEs) were introduced by Liang and Zeger (Biometrika 1986)

- ▶ Data to be collected at *T* time points
- ▶ n i.i.d. individuals
- $ightharpoonup Y_{ij}$: outcome of individual i at time j
- $Y_i = (Y_{i1}, \ldots, Y_{iT})$
- \triangleright X_i : exogenous vector of covariates for individual i
- We are interested in a model

$$E(Y_i \mid X_i) = \begin{bmatrix} E(Y_{i1} \mid X_i) \\ \vdots \\ E(Y_{iT} \mid X_i) \end{bmatrix} = \begin{bmatrix} \mu_1(X_i; \beta) \\ \vdots \\ \mu_T(X_i; \beta) \end{bmatrix}$$

Generalized estimating equations (GEEs) were introduced by Liang and Zeger (Biometrika 1986)

- ▶ Data to be collected at *T* time points
- n i.i.d. individuals
- $ightharpoonup Y_{ij}$: outcome of individual i at time j
- $Y_i = (Y_{i1}, \ldots, Y_{iT})$
- \triangleright X_i : exogenous vector of covariates for individual i
- We are interested in a model

$$E(Y_i \mid X_i) = \begin{bmatrix} E(Y_{i1} \mid X_i) \\ \vdots \\ E(Y_{iT} \mid X_i) \end{bmatrix} = \begin{bmatrix} \mu_1(X_i; \beta) \\ \vdots \\ \mu_T(X_i; \beta) \end{bmatrix}$$

$$E(y_{ij}) = a'(\theta_{ij}), \ V(y_{ij}) = a''(\theta_{ij})/\phi$$

$$p(y_{ij}) = \exp[\{y_{ij}\theta_{ij} - a(\theta_{ij}) + b(y_{ij})\}\phi]$$

$$E(y_{ij}) = a'(\theta_{ij}), \ V(y_{ij}) = a''(\theta_{ij})/\phi$$

$$E(y_{ij}) = a'(\theta_{ij}), \ V(y_{ij}) = a''(\theta_{ij})/\phi$$

$$E(y_{ij}) = a'(\theta_{ij}), \ V(y_{ij}) = a''(\theta_{ij})/\phi$$

$$\mu_j(X_i;\beta) = a'(\theta_{ij})$$

▶ The estimate $\hat{\beta}$ is obtained from solving the *generalized estimating* equations

$$\sum_{i=1}^{n} \mathcal{D}_{i}^{T} \mathcal{V}_{i}^{-1} \begin{bmatrix} Y_{i1} - \mu_{1}(X_{i}; \beta) \\ \vdots \\ Y_{iT} - \mu_{T}(X_{i}; \beta) \end{bmatrix} = \mathbf{0}$$

- $\triangleright \mathcal{D}_i = \frac{\partial}{\partial \beta^T} [\mu(X_i; \beta)] \text{ is } T \times p$
- \triangleright V_i is a $T \times T$ working covariance matrix, specified through the working correlation matrix $R(\alpha)$

$$\mathcal{V}_i = A_i^{1/2} R(\alpha) A_i^{1/2} / \phi$$

where $A_i = \text{diag}\{a''(\theta_{ii})\}$

▶ The estimate $\hat{\beta}$ is obtained from solving the *generalized estimating* equations

$$\sum_{i=1}^{n} \mathcal{D}_{i}^{T} \mathcal{V}_{i}^{-1} \begin{bmatrix} Y_{i1} - \mu_{1}(X_{i}; \beta) \\ \vdots \\ Y_{iT} - \mu_{T}(X_{i}; \beta) \end{bmatrix} = \mathbf{0}$$

- $\triangleright \mathcal{D}_i = \frac{\partial}{\partial \beta^T} [\mu(X_i; \beta)] \text{ is } T \times p$
- \triangleright V_i is a $T \times T$ working covariance matrix, specified through the working correlation matrix $R(\alpha)$

$$\mathcal{V}_i = A_i^{1/2} R(\alpha) A_i^{1/2} / \phi$$

where $A_i = \text{diag}\{a''(\theta_{ii})\}$

▶ The estimate $\hat{\beta}$ is obtained from solving the *generalized estimating* equations

$$\sum_{i=1}^{n} \mathcal{D}_{i}^{T} \mathcal{V}_{i}^{-1} \begin{bmatrix} Y_{i1} - \mu_{1}(X_{i}; \beta) \\ \vdots \\ Y_{iT} - \mu_{T}(X_{i}; \beta) \end{bmatrix} = \mathbf{0}$$

- V_i is a $T \times T$ working covariance matrix, specified through the working correlation matrix $R(\alpha)$

$$\mathcal{V}_i = A_i^{1/2} R(\alpha) A_i^{1/2} / \phi$$

where $A_i = \text{diag}\{a''(\theta_{ii})\}$

- $ightharpoonup R_{jj'} = 0$ (independence)
- $R_{jj'} = \alpha \text{ (exchangeability)}$
- $ightharpoonup R_{jj'} = lpha^{|j-j'|}$ (autoregressive of order 1 AR 1)
- $ightharpoonup R_{ii'} = \alpha_{ii'}$ (unstructured)

- $ightharpoonup R_{jj'} = 0$ (independence)
- $ightharpoonup R_{jj'} = \alpha \text{ (exchangeability)}$
- $ightharpoonup R_{jj'} = lpha^{|j-j'|}$ (autoregressive of order 1 AR 1)
- $ightharpoonup R_{jj'} = \alpha_{jj'} \text{ (unstructured)}$

- $ightharpoonup R_{jj'} = 0$ (independence)
- $ightharpoonup R_{jj'} = \alpha$ (exchangeability)
- $ightharpoonup R_{jj'} = lpha^{|j-j'|}$ (autoregressive of order 1 AR 1)
- $ightharpoonup R_{jj'} = \alpha_{jj'} \text{ (unstructured)}$

- $ightharpoonup R_{jj'} = 0$ (independence)
- $ightharpoonup R_{jj'} = \alpha$ (exchangeability)
- $R_{jj'} = \alpha^{|j-j'|}$ (autoregressive of order 1 AR 1)
- $R_{jj'} = \alpha_{jj'} \text{ (unstructured)}$

- $ightharpoonup R_{jj'} = 0$ (independence)
- $ightharpoonup R_{jj'} = \alpha$ (exchangeability)
- $R_{jj'} = \alpha^{|j-j'|}$ (autoregressive of order 1 AR 1)
- $ightharpoonup R_{jj'} = \alpha_{jj'}$ (unstructured)

- ▶ $V(X; \beta) = V(Y \mid X)$ if $R(\alpha)$ is indeed the true correlation of Y_1, \ldots, Y_T
- Parameter estimates from the GEE are consistent even when the correlation structure is misspecified
- ightharpoonup Approximately correct specification of $R(\alpha)$ improves the efficiency of the estimator
- Full specification of the joint distribution of the correlated responses is not needed

- ▶ $V(X; \beta) = V(Y \mid X)$ if $R(\alpha)$ is indeed the true correlation of Y_1, \ldots, Y_T
- ▶ Parameter estimates from the GEE are consistent even when the correlation structure is misspecified
- ightharpoonup Approximately correct specification of $R(\alpha)$ improves the efficiency of the estimator
- Full specification of the joint distribution of the correlated responses is not needed

- ▶ $V(X; \beta) = V(Y \mid X)$ if $R(\alpha)$ is indeed the true correlation of Y_1, \ldots, Y_T
- ▶ Parameter estimates from the GEE are consistent even when the correlation structure is misspecified
- ▶ Approximately correct specification of $R(\alpha)$ improves the efficiency of the estimator
- Full specification of the joint distribution of the correlated responses is not needed

- ▶ $V(X; \beta) = V(Y \mid X)$ if $R(\alpha)$ is indeed the true correlation of Y_1, \ldots, Y_T
- ▶ Parameter estimates from the GEE are consistent even when the correlation structure is misspecified
- ▶ Approximately correct specification of $R(\alpha)$ improves the efficiency of the estimator
- Full specification of the joint distribution of the correlated responses is not needed

Outline

Estimating Equations

Generalized Estimating Equations

Weighted Generalized Estimating Equations

Summary

▶ When we have missing data, we could ask about the validity of the GEE estimator $\hat{\beta}^{ac}$ based on *available cases*, derived from

$$\sum_{i=1}^{n} \mathcal{D}_{i}^{T} \mathcal{V}_{i}^{-1} \mathcal{R}_{i} \begin{bmatrix} Y_{i1} - \mu_{1}(X_{i}; \beta) \\ \vdots \\ Y_{iT} - \mu_{T}(X_{i}; \beta) \end{bmatrix} = \mathbf{0}$$

where
$$\mathcal{R}_i = \text{diag}(R_{i1}, \dots, R_{iT})$$

The solution to this system of equations will converge to the solution of

$$E\left\{\mathcal{D}^{T}(X)\mathcal{V}^{-1}(X)\mathcal{R}\begin{bmatrix}Y_{1}-\mu_{1}(X;\beta)\\\vdots\\Y_{T}-\mu_{T}(X;\beta)\end{bmatrix}\right\}=0$$

▶ When we have missing data, we could ask about the validity of the GEE estimator $\hat{\beta}^{ac}$ based on *available cases*, derived from

$$\sum_{i=1}^{n} \mathcal{D}_{i}^{T} \mathcal{V}_{i}^{-1} \mathcal{R}_{i} \begin{bmatrix} Y_{i1} - \mu_{1}(X_{i}; \beta) \\ \vdots \\ Y_{iT} - \mu_{T}(X_{i}; \beta) \end{bmatrix} = \mathbf{0}$$

where $\mathcal{R}_i = \text{diag}(R_{i1}, \dots, R_{iT})$

 The solution to this system of equations will converge to the solution of

$$E\left\{\mathcal{D}^{T}(X)\mathcal{V}^{-1}(X)\mathcal{R}\begin{bmatrix}Y_{1}-\mu_{1}(X;\beta)\\\vdots\\Y_{T}-\mu_{T}(X;\beta)\end{bmatrix}\right\}=\mathbf{0}$$

▶ We can write the left-hand side of the above expression as

$$E_{X}\left(\mathcal{D}^{T}(X)\mathcal{V}^{-1}(X)E_{Y\mid X}\left\{E[\mathcal{R}\mid X,Y]\begin{bmatrix}Y_{1}-\mu_{1}(X;\beta)\\\vdots\\Y_{T}-\mu_{T}(X;\beta)\end{bmatrix}\mid X\right\}\right)$$

- Note that if $R \perp \!\!\! \perp Y \mid X$ then this expression is zero when $\mu(X; \beta)$ is correctly specified and the solution $\hat{\beta}^{ac}$ is a consistent estimator of β
- ▶ Otherwise there's no guarantee that $\hat{\beta}^{ac}$ is consistent

▶ We can write the left-hand side of the above expression as

$$E_{X}\left(\mathcal{D}^{T}(X)\mathcal{V}^{-1}(X)E_{Y|X}\left\{E[\mathcal{R}\mid X,Y]\begin{bmatrix}Y_{1}-\mu_{1}(X;\beta)\\ \vdots\\ Y_{T}-\mu_{T}(X;\beta)\end{bmatrix}\mid X\right\}\right)$$

- Note that if $R \perp\!\!\!\perp Y \mid X$ then this expression is zero when $\mu(X; \beta)$ is correctly specified and the solution $\hat{\beta}^{ac}$ is a consistent estimator of β
- ▶ Otherwise there's no guarantee that $\hat{\beta}^{ac}$ is consistent

▶ We can write the left-hand side of the above expression as

$$E_{X}\left(\mathcal{D}^{T}(X)\mathcal{V}^{-1}(X)E_{Y|X}\left\{E[\mathcal{R}\mid X,Y]\begin{bmatrix}Y_{1}-\mu_{1}(X;\beta)\\ \vdots\\ Y_{T}-\mu_{T}(X;\beta)\end{bmatrix}\mid X\right\}\right)$$

- Note that if $R \perp\!\!\!\perp Y \mid X$ then this expression is zero when $\mu(X; \beta)$ is correctly specified and the solution $\hat{\beta}^{ac}$ is a consistent estimator of β
- ▶ Otherwise there's no guarantee that $\hat{\beta}^{ac}$ is consistent

Observation/Occasion-Specific Weighted GEE

▶ The observation- or occasion- specific weighted GEE method solves the weighted generalized estimating equations

$$\sum_{i=1}^{n} \mathcal{D}_{i}^{T} \mathcal{V}_{i}^{-1} \mathcal{W}_{i} \begin{bmatrix} Y_{i1} - \mu_{1}(X_{i}; \beta) \\ \vdots \\ Y_{iT} - \mu_{T}(X_{i}; \beta) \end{bmatrix} = \mathbf{0}$$

- $V_i = \text{diag}\{R_{i1}w_{i1}, \dots, R_{iT}w_{iT}\}, \text{ with } w_{ii} = p(R_{ii} = 1 \mid X_i, Y_i)^{-1}$

Observation/Occasion-Specific Weighted GEE

▶ The observation- or occasion- specific weighted GEE method solves the weighted generalized estimating equations

$$\sum_{i=1}^{n} \mathcal{D}_{i}^{T} \mathcal{V}_{i}^{-1} \mathcal{W}_{i} \begin{bmatrix} Y_{i1} - \mu_{1}(X_{i}; \beta) \\ \vdots \\ Y_{iT} - \mu_{T}(X_{i}; \beta) \end{bmatrix} = \mathbf{0}$$

- $\mathcal{W}_i = \text{diag}\{R_{i1}w_{i1}, \dots, R_{iT}w_{iT}\}, \text{ with } w_{ij} = p(R_{ii} = 1 \mid X_i, Y_i)^{-1}$

Observation/Occasion-Specific Weighted GEE

▶ The observation- or occasion- specific weighted GEE method solves the weighted generalized estimating equations

$$\sum_{i=1}^{n} \mathcal{D}_{i}^{T} \mathcal{V}_{i}^{-1} \mathcal{W}_{i} \begin{bmatrix} Y_{i1} - \mu_{1}(X_{i}; \beta) \\ \vdots \\ Y_{iT} - \mu_{T}(X_{i}; \beta) \end{bmatrix} = \mathbf{0}$$

- $\mathcal{W}_i = \text{diag}\{R_{i1}w_{i1}, \dots, R_{iT}w_{iT}\}, \text{ with } w_{ii} = p(R_{ii} = 1 \mid X_i, Y_i)^{-1}$
- ▶ Note that while under likelihood-based inference we can ignore the response mechanism, here it needs to be explicitly modeled to estimate the weights, even if the missingness mechanism is assumed to be ignorable¹

¹See Sun & Tchetgen Tchetgen (JASA 2018) https://doi.org/10.1080/01621459.2016.1256814

- It is not too difficult to accommodate dropout into WGEEs under MAR
- ▶ Let D be the *dropout* indicator, where D = j + 1 indicates that the individual is last seen at time j
- ▶ Denote the hazard function as $\lambda_j(Z) = p(D = j \mid D \ge j, Z)$
- ▶ It can be shown that (HW4)

$$p(D=j+1\mid Z)=\lambda_{j+1}(Z)\prod_{\ell=1}^{J}[1-\lambda_{\ell}(Z)]$$

$$p(R_j = 1 \mid Z) = \prod_{\ell=1}^{j} [1 - \lambda_{\ell}(Z)]$$

- It is not too difficult to accommodate dropout into WGEEs under MAR
- ▶ Let D be the *dropout* indicator, where D = j + 1 indicates that the individual is last seen at time j
- ▶ Denote the hazard function as $\lambda_j(Z) = p(D = j \mid D \ge j, Z)$
- ▶ It can be shown that (HW4)

$$p(D = j + 1 \mid Z) = \lambda_{j+1}(Z) \prod_{\ell=1}^{j} [1 - \lambda_{\ell}(Z)]$$

$$p(R_j = 1 \mid Z) = \prod_{\ell=1}^{j} [1 - \lambda_{\ell}(Z)]$$

- It is not too difficult to accommodate dropout into WGEEs under MAR
- Let D be the *dropout* indicator, where D = j + 1 indicates that the individual is last seen at time j
- ▶ Denote the hazard function as $\lambda_j(Z) = p(D = j \mid D \ge j, Z)$
- ▶ It can be shown that (HW4)

$$p(D = j + 1 \mid Z) = \lambda_{j+1}(Z) \prod_{\ell=1}^{j} [1 - \lambda_{\ell}(Z)]$$

$$p(R_j = 1 \mid Z) = \prod_{\ell=1}^{j} [1 - \lambda_{\ell}(Z)]$$

- It is not too difficult to accommodate dropout into WGEEs under MAR
- Let D be the *dropout* indicator, where D = j + 1 indicates that the individual is last seen at time j
- ▶ Denote the hazard function as $\lambda_j(Z) = p(D = j \mid D \ge j, Z)$
- ▶ It can be shown that (HW4)

$$ho(D=j+1\mid Z)=\lambda_{j+1}(Z)\prod_{\ell=1}^{j}[1-\lambda_{\ell}(Z)]$$

$$p(R_j = 1 \mid Z) = \prod_{\ell=1}^{j} [1 - \lambda_{\ell}(Z)]$$

▶ Let us define the *history* up to time *j* as

$$H_j = \{X, (Y_1, V_1), ..., (Y_j, V_j)\},\$$

- ► The auxiliary *V* variables might not be of scientific interest, but might be seen as important to model the dropout process
- ► The MAR assumption in this case is equivalent to (HW4)

$$\lambda_j(Z) = p(D = j \mid D \ge j, Z) = p(D = j \mid D \ge j, H_{j-1}) = \lambda_j(H_{j-1})$$

- Note that each $\lambda_j(H_{j-1})$ can be estimated form the observed data, for example using a logistic regression (explain, HW4)
- ▶ Given estimates $\hat{\lambda}_j(H_{j-1})$, we can estimate the weights of the WGEE above as $w_{ij} = \hat{p}(R_j = 1 \mid H_{j-1})^{-1}$

Let us define the *history* up to time *j* as

$$H_j = \{X, (Y_1, V_1), ..., (Y_j, V_j)\},\$$

- ► The auxiliary *V* variables might not be of scientific interest, but might be seen as important to model the dropout process
- ► The MAR assumption in this case is equivalent to (HW4)

$$\lambda_j(Z) = p(D = j \mid D \ge j, Z) = p(D = j \mid D \ge j, H_{j-1}) = \lambda_j(H_{j-1})$$

- Note that each $\lambda_j(H_{j-1})$ can be estimated form the observed data, for example using a logistic regression (explain, HW4)
- ▶ Given estimates $\hat{\lambda}_j(H_{j-1})$, we can estimate the weights of the WGEE above as $w_{ij} = \hat{p}(R_i = 1 \mid H_{j-1})^{-1}$

Let us define the *history* up to time *j* as

$$H_j = \{X, (Y_1, V_1), ..., (Y_j, V_j)\},\$$

- ► The auxiliary *V* variables might not be of scientific interest, but might be seen as important to model the dropout process
- ► The MAR assumption in this case is equivalent to (HW4)

$$\lambda_j(Z) = p(D = j \mid D \ge j, Z) = p(D = j \mid D \ge j, H_{j-1}) = \lambda_j(H_{j-1})$$

- Note that each $\lambda_j(H_{j-1})$ can be estimated form the observed data, for example using a logistic regression (explain, HW4)
- ▶ Given estimates $\hat{\lambda}_j(H_{j-1})$, we can estimate the weights of the WGEE above as $w_{ij} = \hat{p}(R_j = 1 \mid H_{j-1})^{-1}$

▶ Let us define the *history* up to time *j* as

$$H_j = \{X, (Y_1, V_1), ..., (Y_j, V_j)\},\$$

- ► The auxiliary *V* variables might not be of scientific interest, but might be seen as important to model the dropout process
- ► The MAR assumption in this case is equivalent to (HW4)

$$\lambda_j(Z) = p(D = j \mid D \ge j, Z) = p(D = j \mid D \ge j, H_{j-1}) = \lambda_j(H_{j-1})$$

- Note that each $\lambda_j(H_{j-1})$ can be estimated form the observed data, for example using a logistic regression (explain, HW4)
- ▶ Given estimates $\hat{\lambda}_j(H_{j-1})$, we can estimate the weights of the WGEE above as $w_{ij} = \hat{p}(R_i = 1 \mid H_{j-1})^{-1}$

► Let us define the *history* up to time *j* as

$$H_j = \{X, (Y_1, V_1), ..., (Y_j, V_j)\},\$$

- ► The auxiliary *V* variables might not be of scientific interest, but might be seen as important to model the dropout process
- ► The MAR assumption in this case is equivalent to (HW4)

$$\lambda_j(Z) = p(D = j \mid D \ge j, Z) = p(D = j \mid D \ge j, H_{j-1}) = \lambda_j(H_{j-1})$$

- Note that each $\lambda_j(H_{j-1})$ can be estimated form the observed data, for example using a logistic regression (explain, HW4)
- ▶ Given estimates $\hat{\lambda}_j(H_{j-1})$, we can estimate the weights of the WGEE above as $w_{ij} = \hat{p}(R_i = 1 \mid H_{j-1})^{-1}$

 Under dropout, another way of implementing WGEEs is via the subject-specific weighted GEE method, which solves the weighted generalized estimating equations

$$\sum_{i=1}^{n} w_i \mathcal{D}_i^T \mathcal{V}_i^{-1} \mathcal{R}_i \begin{bmatrix} Y_{i1} - \mu_1(X_i; \beta) \\ \vdots \\ Y_{iT} - \mu_T(X_i; \beta) \end{bmatrix} = \mathbf{0}$$

where $\mathcal{R}_i = \text{diag}(R_{i1}, \dots, R_{iT})$

- The weight $w_i = p(D_i = d_i \mid H_{d_{i-1}})^{-1}$ for subject i is the inverse probability of a subject i dropping out at the observed dropout time d_i
- ▶ The weights can be estimated from an estimate of $p(D_i = d_i \mid H_{d_i-1})$ as explained above

 Under dropout, another way of implementing WGEEs is via the subject-specific weighted GEE method, which solves the weighted generalized estimating equations

$$\sum_{i=1}^{n} w_i \mathcal{D}_i^T \mathcal{V}_i^{-1} \mathcal{R}_i \begin{bmatrix} Y_{i1} - \mu_1(X_i; \beta) \\ \vdots \\ Y_{iT} - \mu_T(X_i; \beta) \end{bmatrix} = \mathbf{0}$$

where $\mathcal{R}_i = \text{diag}(R_{i1}, \dots, R_{iT})$

- ▶ The weight $w_i = p(D_i = d_i \mid H_{d_{i-1}})^{-1}$ for subject i is the inverse probability of a subject i dropping out at the observed dropout time d_i
- ► The weights can be estimated from an estimate of $p(D_i = d_i \mid H_{d_i-1})$ as explained above

 Under dropout, another way of implementing WGEEs is via the subject-specific weighted GEE method, which solves the weighted generalized estimating equations

$$\sum_{i=1}^{n} w_i \mathcal{D}_i^T \mathcal{V}_i^{-1} \mathcal{R}_i \begin{bmatrix} Y_{i1} - \mu_1(X_i; \beta) \\ \vdots \\ Y_{iT} - \mu_T(X_i; \beta) \end{bmatrix} = \mathbf{0}$$

where $\mathcal{R}_i = \text{diag}(R_{i1}, \dots, R_{iT})$

- ▶ The weight $w_i = p(D_i = d_i \mid H_{d_{i-1}})^{-1}$ for subject i is the inverse probability of a subject i dropping out at the observed dropout time d_i
- ▶ The weights can be estimated from an estimate of $p(D_i = d_i \mid H_{d_i-1})$ as explained above

Davidian and Tsiatis note

- "Theoretically, it is not straightforward to deduce if the subject level or occasion level approach is preferred in general on the basis of efficiency"
- ► Expensive simulation studies have shown that "under MAR, the occasion level WGEE is to be preferred on efficiency grounds" (Preisser, Lohman, and Rathouz, 2002)

Davidian and Tsiatis note

- "Theoretically, it is not straightforward to deduce if the subject level or occasion level approach is preferred in general on the basis of efficiency"
- Expensive simulation studies have shown that "under MAR, the occasion level WGEE is to be preferred on efficiency grounds" (Preisser, Lohman, and Rathouz, 2002)

Outline

Estimating Equations

Generalized Estimating Equations

Weighted Generalized Estimating Equations

Summary

Main take-aways from today's lecture:

- ▶ We only scratched the surface of
 - Estimating equations
 - Generalized estimating equations
 - Weighted generalized estimating equations
 - Monotone nonresponse (dropout)

Comments

- No need of a full-data model (semiparametric) but missingness mechanism has to be correctly modeled!
- General doubly robust, augmented inverse probability weighted estimators not covered here! (only for eatimating mean)
- ▶ How to obtain standard errors?: asymptotic covariance matrix can be obtained using the sandwich technique (these are *M*-estimators), but
 - "The parameter of interest is estimated jointly with the parameters in the dropout models and working covariance model by solving accompanying estimating equations for these parameters"
 - Or use the bootstrap!

Main take-aways from today's lecture:

- ▶ We only scratched the surface of
 - Estimating equations
 - Generalized estimating equations
 - Weighted generalized estimating equations
 - Monotone nonresponse (dropout)

Comments

- No need of a full-data model (semiparametric) but missingness mechanism has to be correctly modeled!
- General doubly robust, augmented inverse probability weighted estimators not covered here! (only for eatimating mean)
- ▶ How to obtain standard errors?: asymptotic covariance matrix can be obtained using the sandwich technique (these are *M*-estimators), but
 - "The parameter of interest is estimated jointly with the parameters in the dropout models and working covariance model by solving accompanying estimating equations for these parameters"
 - ► Or use the bootstrap

Main take-aways from today's lecture:

- ▶ We only scratched the surface of
 - Estimating equations
 - Generalized estimating equations
 - Weighted generalized estimating equations
 - Monotone nonresponse (dropout)

Comments

- No need of a full-data model (semiparametric) but missingness mechanism has to be correctly modeled!
- General doubly robust, augmented inverse probability weighted estimators not covered here! (only for eatimating mean)
- ▶ How to obtain standard errors?: asymptotic covariance matrix can be obtained using the sandwich technique (these are *M*-estimators), but
 - "The parameter of interest is estimated jointly with the parameters in the dropout models and working covariance model by solving accompanying estimating equations for these parameters"
 - Or use the bootstrap!

Main take-aways from today's lecture:

- ▶ We only scratched the surface of
 - Estimating equations
 - Generalized estimating equations
 - Weighted generalized estimating equations
 - Monotone nonresponse (dropout)

Comments

- No need of a full-data model (semiparametric) but missingness mechanism has to be correctly modeled!
- General doubly robust, augmented inverse probability weighted estimators not covered here! (only for eatimating mean)
- How to obtain standard errors?: asymptotic covariance matrix can be obtained using the sandwich technique (these are M-estimators), but
 - "The parameter of interest is estimated jointly with the parameters in the dropout models and working covariance model by solving accompanying estimating equations for these parameters"
 - Or use the bootstrap!

Main take-aways from today's lecture:

- ▶ We only scratched the surface of
 - Estimating equations
 - Generalized estimating equations
 - Weighted generalized estimating equations
 - Monotone nonresponse (dropout)

Comments

- No need of a full-data model (semiparametric) but missingness mechanism has to be correctly modeled!
- General doubly robust, augmented inverse probability weighted estimators not covered here! (only for eatimating mean)
- How to obtain standard errors?: asymptotic covariance matrix can be obtained using the sandwich technique (these are M-estimators), but
 - "The parameter of interest is estimated jointly with the parameters in the dropout models and working covariance model by solving accompanying estimating equations for these parameters"
 - Or use the bootstrap!

Main take-aways from today's lecture:

- We only scratched the surface of
 - Estimating equations
 - Generalized estimating equations
 - Weighted generalized estimating equations
 - Monotone nonresponse (dropout)
- Comments
 - No need of a full-data model (semiparametric) but missingness mechanism has to be correctly modeled!
 - General doubly robust, augmented inverse probability weighted estimators not covered here! (only for eatimating mean)
 - How to obtain standard errors?: asymptotic covariance matrix can be obtained using the sandwich technique (these are M-estimators), but
 - "The parameter of interest is estimated jointly with the parameters in the dropout models and working covariance model by solving accompanying estimating equations for these parameters"
 - Or use the bootstrap!

Main take-aways from today's lecture:

- We only scratched the surface of
 - Estimating equations
 - Generalized estimating equations
 - Weighted generalized estimating equations
 - Monotone nonresponse (dropout)

Comments

- No need of a full-data model (semiparametric) but missingness mechanism has to be correctly modeled!
- General doubly robust, augmented inverse probability weighted estimators not covered here! (only for eatimating mean)
- How to obtain standard errors?: asymptotic covariance matrix can be obtained using the sandwich technique (these are M-estimators), but
 - "The parameter of interest is estimated jointly with the parameters in the dropout models and working covariance model by solving accompanying estimating equations for these parameters"
 - Or use the bootstrap!

Next lecture:

R session 4

