מטלת מנחה (ממיין) 14

הקורס: 20474 – חשבון אינפיניטסימלי 1

חומר הלימוד למטלה: יחידה 4

מספר השאלות: 5 נקודות

סמסטר: ב2015 מועד אחרון להגשה: 4.5.2015

קיימות שתי חלופות להגשת מטלות:

- שליחת מטלות באמצעות מערכת המטלות המקוונת באתר הבית של הקורס
 - שליחת מטלות באמצעות הדואר או הגשה ישירה למנחה במפגשי ההנחיה

הסבר מפורט ב"נוהל הגשת מטלות מנחה"

שאלה 1 (15 נקודות)

- $f(x) = \sqrt{\tan x 1}$ א. מצאו את תחום ההגדרה של הפונקציה
- . $|\tan x| \leq \sin 2x$ שעבורם מתקיים $[0,\pi]$ שעבור בקטע בקטע מצאו את כל ערכי x בקטע נמקו את תשובותיכם.

שאלה 2 (20 נקודות)

 \mathbb{R} -ל- \mathbb{R} ל-f ו-f פונקציות מ-f ל-

הוכיחו או הפריכו כל אחת מהטענות הבאות:

- g = h אז $f \circ g = f \circ h$ אם.
- g=h ו- $f\circ g=f\circ h$ ו- $f\circ g=f\circ h$ ב.
 - g = h ו- $g \circ f = h \circ f$ ג. אם $g \circ f = h \circ f$ ו-
 - . ד. אם $g \circ g$ עולה, ו- $f \circ g$ יורדת, אז
- . או g מונוטונית אז היא חד-חד- ערכית או $f \circ g$ מונוטונית.

שאלה 3 (20 נקודות)

$$\lim_{x\to 2} \sqrt{3x-2} = 2$$
 : (4.28 הגדרה הגבול בלשון $\varepsilon-\delta$ הגדרת הגבול לפי הגדרת לפי הגדרת הגבול בלשון :

$$\lim_{x \to \infty} \frac{x}{x + \sin x} = 1$$
 : (4.54 הגדרה (4.54) ב.

שאלה 4 (20 נקודות)

 x_0 א. תהי f פונקציה המוגדרת בסביבת

: בשתי דרכים יילא קיים ל- f גבול קיים הטענה יילא קיים את גבול סופי ל- גבול קיים ל- בשתי בשתי ב

- $\varepsilon \delta$ בלשון (i)
- (ii) בלשון סדרות (על-פי היינה).

: בשתי דרכים כש-
$$x o 0$$
 גבול סופי כש- $f(x) = \frac{x}{(x - \lfloor \sin x \rfloor)}$ ב.

- (i) ישירות לפי ההגדרה של סעיף אי (i)
- (ii) ישירות לפי ההגדרה של סעיף אי (ii)

שאלה 5 (25 נקודות)

בכל אחד מהסעיפים הבאים חשבו את הגבול, או הוכיחו שאינו קיים.

$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin x} \qquad .8$$

$$\lim_{x \to 0} \frac{x + 7x^3}{x^3 - 2x^4} \qquad .$$

$$\lim_{x \to \infty} \frac{x^2 - 1}{2x^3 - x^2 - x} \qquad \lambda$$

.
$$\lim_{x \to -\infty} \left(\sqrt{1 + x + x^2} - \sqrt{1 - x + x^2} \right)$$
 .7

ה.
$$k = 0,1,2$$
 , $\lim_{x \to k} \lfloor x \rfloor \tan \frac{\pi x}{2}$ ה. $k = 0,1,2$, $\lim_{x \to k} \lfloor x \rfloor \tan \frac{\pi x}{2}$