Problem: With $\hat{\mathbf{n}}$ a unit vector and $\mathbf{1}$ the identity tensor Let, $\mathbf{Q} = \mathbf{1} - 2\hat{\mathbf{n}} \otimes \hat{\mathbf{n}}$.

- a) Show that **Q** is an orthogonal tensor.
- b) Calculate the principal values and principal vectors of **Q**.
- c) Take a vector $\mathbf{a} = \hat{\mathbf{e}}_1 + 2\hat{\mathbf{e}}_2 + 3\hat{\mathbf{e}}_3$, evaluate $\mathbf{Q}\mathbf{a}$ and describe the action of \mathbf{Q} on \mathbf{a} by drawing sketches of \mathbf{a} and $\mathbf{Q}\mathbf{a}$. Let $\hat{\mathbf{n}} = \frac{1}{\sqrt{3}}(\hat{\mathbf{e}}_1 + \hat{\mathbf{e}}_2 + \hat{\mathbf{e}}_3)$.

Solution: (a) First note that, from the given form of \mathbf{Q} , $\mathbf{Q} = \mathbf{Q}^T$. Then, $\mathbf{Q}\mathbf{Q}^T = \mathbf{Q}^T\mathbf{Q} = \mathbf{Q}\mathbf{Q} = (\mathbf{1} - 2\hat{\mathbf{n}}\otimes\hat{\mathbf{n}})(\mathbf{1} - 2\hat{\mathbf{n}}\otimes\hat{\mathbf{n}}) = \mathbf{1}$, where we have used the result $(\hat{\mathbf{n}}\otimes\hat{\mathbf{n}})(\hat{\mathbf{n}}\otimes\hat{\mathbf{n}}) = (\hat{\mathbf{n}}\otimes\hat{\mathbf{n}})$, as can be verified directly using the definition of tensor product.

- (b) Let \hat{p} and \hat{q} be any two unit vectors such that \hat{p} , \hat{q} , and \hat{n} form an orthonormal triad (i.e., mutually orthogonal unit vectors). We can write the identity tensor as $1 = \hat{p} \otimes \hat{p} + \hat{q} \otimes \hat{q} + \hat{n} \otimes \hat{n}$ and consequently, $Q = \hat{p} \otimes \hat{p} + \hat{q} \otimes \hat{q} \hat{n} \otimes \hat{n}$. Hence, Q has three principal values 1, 1, and -1 corresponding to principal vectors \hat{p} , \hat{q} , and \hat{n} , respectively.
- (c) $\mathbf{Qa} = (\mathbf{1} 2\hat{\mathbf{n}} \otimes \hat{\mathbf{n}})\mathbf{a} = \mathbf{a} 2(\hat{\mathbf{n}} \cdot \mathbf{a})\hat{\mathbf{n}}$. Substituting the given value of \mathbf{a} , and noting that $\hat{\mathbf{n}} \cdot \mathbf{a} = 2\sqrt{3}$, we obtain, $\mathbf{Qa} = -3\hat{\mathbf{e}}_1 2\hat{\mathbf{e}}_2 \hat{\mathbf{e}}_3$. The geometrical illustration is given on the next page. The x, y, and z axes correspond to vectors $\hat{\mathbf{e}}_1$, $\hat{\mathbf{e}}_2$, and $\hat{\mathbf{e}}_3$, respectively. The pink plane is a plane orthogonal to $\hat{\mathbf{n}}$ passing through the origin. The orange point is obtained using vector \mathbf{a} while the blue point is obtained using vector \mathbf{a} . Clearly, the blue point is obtained (as if) by reflection, through the mirror represented by the plane, from the orange point. The operation of \mathbf{a} on any vector \mathbf{a} is therefore to reflect it across a plane whose normal is $\hat{\mathbf{n}}$.

The above can be seen, alternatively, by calculating the principal vectors $\hat{\mathbf{p}} = (1/\sqrt{6})(2\hat{\mathbf{e}}_1 - \hat{\mathbf{e}}_2 - \hat{\mathbf{e}}_3)$ and $\hat{\mathbf{q}} = (1/\sqrt{2})(\hat{\mathbf{e}}_2 - \hat{\mathbf{e}}_3)$. Any linear combination of these vectors is also a principal vector. Furthermore, we note that $\mathbf{a} = 2\sqrt{3}\hat{\mathbf{n}} - (1/\sqrt{2})\hat{\mathbf{q}} - \sqrt{3}\hat{\mathbf{p}}$ and $\mathbf{Q}\mathbf{a} = -2\sqrt{3}\hat{\mathbf{n}} - (1/\sqrt{2})\hat{\mathbf{q}} - \sqrt{3}\hat{\mathbf{p}}$. These expressions clearly confirm with the above stated geometrical interpretation.

