NOTES ON DISTRIBUTIONS AND THEIR FOURIER TRANSFORMS

1. Distributions

Definition 1.1. Let $U \subset \mathbb{R}^n$ be an open set. We define

$$D(U) = \{ \varphi : \mathbb{R}^n \to \mathbb{C} \mid \varphi \text{ is smooth, compactly supported and } \sup(\varphi) \subset U \}$$

to be the set of test functions on U. Given $\varphi_1, \varphi_2, \ldots \in D(U)$ and $\varphi \in D(U)$, then we say that $\varphi = \lim_{n \to \infty} \varphi_n$ if there exists a compact set $K \subset U$ such that φ and all φ_n have support inside K and for all $\alpha \in \mathbb{Z}_{\geq 0}^n$ we have that

$$\partial^{\alpha} \varphi_n \to \partial^{\alpha} \varphi$$
 uniformly on K.

Example 1.2. Let $h: \mathbb{R} \to \mathbb{C}$ be the map $h(x) = \mathbb{1}_{(0,\infty)} \exp(-\frac{1}{x})$. This is a smooth map with support $[0,\infty)$. Thus $\varphi: \mathbb{R} \to \mathbb{C}$ given by $\varphi(x) = h(x)h(1-x)$ is a smooth map with support [0,1]. Thus $\varphi \in D((-\epsilon, 1+\epsilon))$ for all $\epsilon > 0$ (but not for $\epsilon = 0$). Now let $\phi_t \in D(\mathbb{R})$ be given by $\phi_t(x) = \phi(x+t)$, then clearly $\lim_{n\to\infty} \phi_{1/n}\phi$ in $D(\mathbb{R})$ but the sequence ϕ_n , $n \in \mathbb{Z}$, does not converge (because the union of the supports is unbounded, hence not compact).

Note that D(U) is closed under partial differentiation, and partial differentiation is continuous (preserves limits).

Definition 1.3. A distribution on $U \subset \mathbb{R}^n$ is a linear functional $f: D(U) \to \mathbb{C}$ that is continuous in the sense that if $\phi_1, \phi_2, \ldots \in D(U)$ converge to $\phi \in D(U)$ then $f(\phi_1), f(\phi_1), \ldots$ converges to $f(\phi)$. We let D'(U) denote the space of distributions on U.

Example 1.4. Any measure μ on \mathbb{R}^n that is finite on compact sets is a distribution in $D(\mathbb{R}^n)$, e.g., $\phi \mapsto \int \phi d\mu$. Consider the distribution $\delta' \in D'(\mathbb{R})$ given by $\delta'(\phi) = -\phi'(0)$. This distribution cannot arise from a measure as can be seen as follows. Choose $\phi_j \in D(\mathbb{R})$ supported on [-1,1] such that $\|\phi_j\|_{\infty} \to 0$ but $\phi'_j(0) = 1$, then if δ' coincides with a measure μ , then we have $-1 = \delta'(\phi_j) = \int \phi_j d\mu \to 0$, a contradiction.

The following definition describes why we called the example above δ' .

Definition 1.5. Let $f \in D'(U)$ where $U \subset \mathbb{R}^n$. Let $\partial_j \phi$ denote the *j*-th partial derivative of a smooth map ϕ . We can define $\partial_j f \in D'(U)$ by

$$\partial_j f(\phi) = -f(\partial_j \phi)$$
 for all $\phi \in D(U)$.

We now explain the minus sign in the definition.

Proposition 1.6. Let f be a continuously differentiable function on \mathbb{R}^n (not necessarily compactly supported). This defines a distribution μ_f on \mathbb{R}^n via $\mu_f(\phi) = \int \phi(x) f(x) d^n x$ where $d^n x$ is the lebesgue measure on \mathbb{R}^n . Then

$$\partial_j \mu_f = \mu_{\partial_j f}.$$

Proof. For convenience, suppose j = n. Then for any $\phi \in D(U)$ we have

$$\mu_{\partial_n f}(\phi) = \int \partial_n f(x)\phi(x)d^n x$$

Now by Fubini's theorem (the integrand has compact support) we can write this integral as

$$\int \left(\int_{-R}^{R} \partial_{n} f(x_{1}, \dots, x_{n-1}, t) \phi(x_{1}, \dots, x_{n-1}, t) dt \right) d^{n-1}(x_{1}, \dots, x_{n-1})$$

where R > 0 is chosen large enough so that $\phi = 0$ outside of $[-R, R]^n$. Finally, we apply integration by parts to the inner integral and use $\phi(x_1, \ldots, x_{n-1}, \pm R) = 0$ to get that this integral is

$$\int \left(\int_{-R}^{R} -f(x_1, \dots, x_{n-1}, t) \partial_n \phi(x_1, \dots, x_{n-1}, t) dt \right) d^{n-1}(x_1, \dots, x_{n-1})$$

which equals $-\int f(x)\partial_n\phi(x)d^nx$ since $\partial_n\phi=0$ outside of $[-R,R]^n$. But this is precisely $-\mu_f(\partial_n)=\partial_n\mu_f$.

Thus we have extended the notion of differentiation to distributions, which include also non-differentiable but locally integrable functions via the embedding $f \mapsto \mu_f$ in the proposition above. We now identify μ_f and f as is standard practice.

Example 1.7. Let $H(x) = \mathbb{1}_{[0,\infty)}(x)$. Then $H : \mathbb{R} \to \mathbb{R}$ is discontinuous at 0 thus not differentiable in the classical. Yet it has a distribution derivative as follows $H' = \delta$ where $\delta(\phi) = \phi(0)$ is the Dirac delta distribution (which is the probability measure supported at a single point 0). To see this note that for any smooth $\phi \in D(\mathbb{R})$ supported on [-R, R] we have that

$$-\int H(x)\phi'(x) = -\int_0^R \phi'(x)dx = -\phi(R) + \phi(0) = \phi(0) = \delta(\phi).$$

Example 1.8. Consider a ball that bounces off a wall. Its position can be modelled as x(t) = t for t < 0 and x(t) = -t for $t \ge 0$ (the wall is located at x = 0 and it hits it at t = 0). Its velocity is x'(t) = 1 for t < 0 and x'(t) = -1 for t > 0 and x'(0) is undefined. What is its acceleration? It is 0 for all $t \ne 0$, but what is it at t = 0? As a distribution the acceleration x''(t) is 2δ , which makes sense as all the impact happens at t = 0. Of course, in real life maybe x''(t) is continuous and the impact happens on some very small time scale $[-\epsilon, \epsilon]$ as the ball is squashed and unsquashed, but nonetheless $\int_{-\epsilon}^{\epsilon} x''(t) dt = 2$ still holds.

Definition 1.9. (Convergence of Distributions) We say that a sequence of distributions $f_1, f_2, \ldots \in D'(U)$ converges to $f \in D'(U)$ (in D'(U)) if $f_i(\varphi) \to f(\varphi)$ for all $\varphi \in D(U)$

Example 1.10. Let $f: \mathbb{R} \to \mathbb{C}$ be an integrable function with $\int_{-\infty}^{\infty} f(x)dx = 1$. Let $f_n(x) = nf(nx)$. Thus if $\varphi \in D(\mathbb{R})$ then by making the substibution u = nx we get

$$\int_{\mathbb{R}} f_n(x)\varphi(x)dx = \int_{\mathbb{R}} \frac{du}{dx} f(nx)\varphi(x)dx = \int_{\mathbb{R}} f(u)\varphi(\frac{u}{n})du \to \varphi(0) \quad \text{as } n \to \infty$$

where we used the dominated convergence theorem (the integrand is bounded by the integrable function $\|\varphi\|_{\infty}f$ and converges to $f(u)\varphi(0)$ pointwise). Thus $f_n \to \delta$ in $D'(\mathbb{R})$.

2. Test functions as a Frechet space

Definition 2.1. A Frechet space is a topological vector space (addition and scalar multiplication is continuous, the field is either \mathbb{R} or \mathbb{C} which has the usual topology) whose topology comes from an invariant metric d (i.e., $d(v_1 + v, v_2 + v) = d(v_1, v_2)$ for all $v_1, v_2, v \in V$) that is complete.

For $K \subset \mathbb{R}^n$ compact we define the norm

$$\|\phi\|_{C^k} = \sup_{x \in K, |\alpha| \le k} |\partial^{\alpha} \phi|(x).$$

Note that $C_0^k(K)$ is a Banach space and hence a Frechet space with respect to this norm. We define $C_0^{\infty}(K)$ to be the smooth functions with support inside K and for $\phi \in C_0^{\infty}(K)$ we define

$$\|\phi\|_{C_0^\infty(K)} = \sum_{k=0}^\infty 2^{-k} \min\{1, \|\phi\|_{C^k}\}$$

and we note that $d(\phi_1, \phi_2) = \|\phi_1 - \phi_2\|_{C_0^{\infty}(K)}$ is an invariant metric that is complete. Moreover, a sequence of test functions $\phi_1, \phi_2, \ldots \in C_0^{\infty}(K)$ converge to $\phi \in C_0^{\infty}(K)$ if and only if for all $\alpha \in \mathbb{Z}_{\geq 0}^n$ we have that

$$\partial^{\alpha} \phi_i \to \phi$$

uniformly on K. In other words, a sequence of test functions in D(U) converges if they all have support inside the same compact subset $K \subset U$ and they converge in $C_0^{\infty}(K)$ with respect to this metric. This in particular verifies that $C_0^{\infty}(K)$ is a topological vector space with respect to this metric (the continuity of addition and scalar multiplication inherits from the same properties of the norms $\|\cdot\|_{C_k}$).

Theorem 2.2 (Theorem 3.8 of [1]). Let $U \subset \mathbb{R}^d$ be open. A linear functional $f: D(U) \to \mathbb{C}$ is a distribution (in D'(U)) if and only if for all compact subsets $K \subset U$ there exists c > 0 and $k \in \mathbb{Z}_{>0}$ such that

$$|f(\phi)| \le c \|\phi\|_{C^k}$$
 for all $\phi \in C_0^{\infty}(K)$.

Proof. Easy to see that any functional satisfying this property is a distribution. To see the converse, suppose that this conditional fails for some compact set $K \subset U$. Then for each positive integer c = k we have

$$|f(\phi_k)| > k \|\phi_k\|_{C^k}$$

for some $\phi_k \in C_0^{\infty}(K)$. Let $\psi_k = \frac{1}{|f(\phi_k)|} \phi_k$. Thus $|f(\psi_n)| = 1$ but we have

$$|\psi_n|_{C^k} \le |\psi_n|_{C^n} < \frac{1}{n}$$

for all $n \geq k$ so $\psi_n \to 0$ on $C_0^{\infty}(K)$, which shows that f is not continuous, i.e., not a distribution.

Theorem 2.3 (Uniform boundedness). Let V be a Frechet space and suppose that \mathcal{F} is a set of continuous linear functions $f:V\to\mathbb{C}$ such that $\{f(x)\mid f\in\mathcal{F}\}$ is bounded in \mathbb{C} for all $x\in V$. Then there is an open set $U\subset V$ with $0\in V$ such that $|f(u)|\leq 1$ for all $f\in\mathcal{F}$ and $u\in U$.

Proof. Let

$$U_n = \{x \in V \mid |f(x)| > n \text{ for some } f \in \mathcal{F}\}$$

. Now U_n is an open set. For each $x \in V$, we have that there exists n such that $|f(x)| \leq n$ for all $f \in \mathcal{F}$, which means that $x \notin U_n$. Consequently

$$\emptyset = \bigcap_{n=1}^{\infty} U_n.$$

Thus not all U_n can be dense by Baire's theorem. As some U_n is dense, we have a non-empty open set V such that $V \cap U_n = \emptyset$. Choosing $v_0 \in V$, we have that if $u \in V - v_0$ then $u = v - v_0$ for some $v \in V$ and so

$$|f(u)| = |f(v) - f(v_0)| \le |f(v)| + |f(v_0)| \le 2n.$$

Thus we may set $U = \frac{1}{2n}(V - v_0)$, which is open by definition of topological vector space.

Theorem 2.4 (Lemma 5.4 in [1], no proof given there). Let f_j be a sequence of distributions in D'(U), where $U \subset \mathbb{R}^d$ is open such that $f_j(\phi)$ is bounded for all $\phi \in D(U)$. Then for all compact $K \subset U$ there exists a constant c > 0 and $k \in \mathbb{Z}_{\geq 0}$ such that

$$||f_j(\phi)|| \le c||\phi||_{C_0^k(K)}$$
 for all $j \in \mathbb{N}$ and $\phi \in C_0^\infty(K)$.

Proof. We apply the uniform boundedness principle above. This implies that there is an open neighbourhood $\mathcal{U} \subset C_0^{\infty}(K)$ such that $f_j(u) \leq 1$ for all $u \in \mathcal{U}$ and $j \in \mathbb{N}$. So there exists an R such that if $\|\phi\|_{C_0^{\infty}(K)} < R$ then $f_j(\phi) \leq 1$. Now take k large enough so that

$$\sum_{i=k}^{\infty} 2^{-i} < \frac{R}{2}.$$

This means that if $\|\phi\|_{C_0^k(K)} < \frac{R}{2}$ then $\|\phi\|_{C_0^k(K)} < R$ and so $f_j(\phi) < 1$. As $\|\cdot\|_{C_0^k(K)}$ is a norm on $C_0^{\infty}(K)$, we have completed the proof with $c = \frac{2}{R}$.

Theorem 2.5. Let $U \subset \mathbb{R}^d$ be an open set and suppose that $f_1, f_2, \ldots \in D(U)$ is a sequence of distributions such that $\lim_{j\to\infty} f_j(\varphi)$ exists in \mathbb{C} for all $\varphi \in D(U)$.

(1) Then there exists a a distribution $f \in D(U)$ such that

$$f = \lim_{j \to \infty} f_j.$$

(2) If $\varphi, \varphi_j \in D(U)$ are such that $\lim_{j \to \infty} \varphi_j = \varphi$ then $f_j(\varphi_j)$ converges to $f(\varphi)$.

Proof. Define $f(\varphi) = \lim_{j \to \infty} f_j(\varphi)$. It remains to show that this defines a distribution (is continuous). Let K be a compact set. Applying the uniform boundedness principle we have a constant c > 0 and $k \in \mathbb{Z}_{\geq 0}$ such that

$$|f_j(\varphi)| \le c \|\varphi\|_{C^k_o(K)}$$
 for all $j \in \mathbb{N}, \varphi \in C^\infty_0(K)$.

Thus as $f_j(\varphi) \to f(\varphi)$ we have that

$$|f(\varphi)| \le c \|\varphi\|_{C^k_o(K)}$$
 for all $\varphi \in C^\infty_0(K)$.

This implies the continuity of f, thus $f \in D(U)$. Now suppose that $\varphi_j \in C_0^{\infty}(K)$ converge to $\varphi \in C_0^{\infty}(K)$. Thus

$$|f_j(\varphi_j) - f(\varphi)| \le |f_j(\varphi_j - \varphi)| + |f_j(\varphi) - f(\varphi)| \le c||\varphi_j - \varphi||_{C^k} + |f_j(\varphi) - f(\varphi)|$$

and the first term converges to 0 as $\varphi_j \to \varphi$ while the second converges to 0 as $f_j \to f$.

3. Support of a distribution

If $U \subset V \subset \mathbb{R}^d$ are open sets, then there is a continuous (preserves limits) inclusion $D(U) \to D(V)$. This induces a restriction map $p_{U,V}: D'(V) \to D'(U)$ where $(p_{U,V}f)(\phi) = f(\phi)$ for $\phi \in D(U) \subset D(V)$ and $f \in D'(U)$. Note that this is continuous (preserves limits of distributions).

Lemma 3.1. Suppose that U is an open set, $f \in D'(U)$ and suppose that for each $x \in U$ there exists an open neighbourhood $U_x \subset U$ of x such that $p_{U_x,U}f = 0$. Then f = 0.

Proof. We take $\phi \in D(U)$, thus there is a compact set K such that $K \subset u$ and ϕ is supported on K. Now by compactness, we can find a finite cover of $U_1, \ldots U_n$ of K such that f restricts to 0 on each $U_i \subset U$. Choose U_i such that the closure of U_i is in U. By partition of unity theorem, we may choose $\psi_1, \ldots, \psi_n \in D(U)$ such that $\sum_{i=1}^n \psi_i(x) = 1$ for all $x \in K$ and supp $\psi_i \subset U_i$. Thus $\phi = \phi \sum_i \psi_i$ and so $f(\phi) = \sum_i f(\phi \psi_i) = 0$.

We justify the partition of unity used above.

Proposition 3.2. Let $B(a,r) \subset B(a,r') \subset \mathbb{R}^d$ are open balls. There is a smooth function $\phi : \mathbb{R}^d \to [0,1]$ that is 1 on B(a,r) and 0 outside B(a,r').

Proof sketch. We just need to prove this for d=1 and then build such a radial function. We already saw that we have a compactly supported $\psi: \mathbb{R} \to [0,1]$ supported on $[0,\epsilon]$ where $0 < \epsilon < \frac{1}{2}$. Now let $\psi_2(x) = \int_{-\infty}^x \psi(t) dt$. We see that $\psi_2(x)$ is constant for $x > \epsilon$ and is zero on x < 0. Consequently $\psi_3(x) = \psi_2(x)\psi_2(1-x)$ has values in [0,1], is compactly supported and is constant on the interval $(\epsilon, 1-\epsilon)$. We can now translate and scale ψ_3 appropriately.

Proposition 3.3 (Partition of unity). Let $K \subset \mathbb{R}^d$ be a compact set and suppose that $U \supset K$ is open. Suppose that \mathcal{U} is a collection of open subsets of U that covers K. Then there exist smooth functions $\psi_1, \ldots, \psi_n : \mathbb{R}^d \to [0, 1]$ such that

$$\psi := \sum_{i=1}^{n} \psi_i$$

satisfies that $\psi(x) = 0$ for $x \in K$ and ψ_i has support inside some element of \mathcal{U} .

Proof. By compactness, we may find finitely many balls $B(a_1, r_1), \ldots, B(a_n, r_n)$ that cover K such that $B(a_i, 2r_i)$ is a subset of some element of \mathcal{U} (and thus $B(a_i, 2r_i)$ are subsets of \mathcal{U}). Now apply the previous construction to find some smooth $\phi_i : \mathbb{R}^d \to [0, 1]$ that equals 1 on $B(a_i, r_i)$ and vanishes outside of $B(a_i, 2r_i)$. Now let $\psi_1 = \phi_1$ and for $1 < j \le n$ define $\psi_i = \phi_i \prod_{j < i} (1 - \phi_j)$. Observe that ψ_i has support inside the support of ϕ_i , thus inside some element of \mathcal{U} , as required. Moreover, by induction we have that

$$\sum_{i=1}^{j} \psi_i = 1 - \prod_{i=1}^{j} (1 - \phi_i).$$

In particular for j=n this means that by setting $\psi = \sum_{i=1}^n \psi_i$ we have that $\psi(x) = 1$ for $x \in B(a_i, r_i)$, and thus for all $x \in K$. Moreover, $x \notin B(a_i, 2r_i)$ means that $(1 - \phi_i(x)) = 1$ for all i, meaning that $\psi_i(x) = 0$ and thus ψ_i has support inside some element of \mathcal{U} , as required.

Theorem 3.4 (Gluding distributions). Suppose that $X \subset \mathbb{R}^d$ is an open set and suppose that \mathcal{U} is a collection of open subsets of X that cover X. Suppose that for each $U \in \mathcal{U}$ there is a distribution $f_U \in D'(U)$ such that these f_U are compatible in the sense that $f_U|_{U\cap V} = f_V|_{U\cap V}$ are the same distributions on $D'(U\cap V)$. Then there is a unique distribution $f \in D'(X)$ such that $f|_U = f_U$ for all $U \in \mathcal{U}$.

Proof. We construct f as follows (show that it is well defined later): For each $\phi \in D(X)$, choose a compact set $K \subset X$ containing the support of ϕ . Now we may apply Parition of Unity to find open sets $U_1, \ldots, U_n \in \mathcal{U}$ that cover K and $\psi_i : \mathbb{R}^d \to [0,1]$ with support inside U_i such that $\psi := \sum_{i=1}^n \psi_i$ satisfies that $\psi(x) = 1$ for all $x \in K$. We now define

$$f(\phi) = \sum_{i=1}^{n} f_{U_i}(\phi \psi_i).$$

Note that this shows uniqueness since $\phi = \sum_{i=1}^{n} \phi \psi_i$ on \mathbb{R}^d .

We now show that f is well defined (does not depend on the choice of K or the choice of the U_i or the choice of ψ_i). To see this, suppose that K', U'_j and ψ'_j are such other choices. Then we make a common refinement and show it assigns the same value to our $f(\phi)$ as follows. Let $K'' = K \cap K'$, it clearly contains the support of ϕ and is compact. Now the sets U_i and U_j cover K''. Thus the sets $V_{i,j} = U_i \cap U_j$ cover K''. Moreover, $\psi_{i,j} := \psi_i \psi'_j : \mathbb{R}^d \to [0,1]$ has support inside $V_{i,j}$ and

$$\sum_{i,j} \psi_{i,j} = \left(\sum_{i} \psi_{i}\right) \left(\sum_{j} \psi'_{j}\right)$$

and thus equals 1 on K''. So this common refinement is a new partition of unity. But now

$$\sum_{i,j} f_{U_i}|_{V_{i,j}}(\psi_{i,j}\phi) = \sum_{i,j} f_{U_i}(\psi_{i,j}\phi) = \sum_{i} f_{U_i}(\phi\psi_i \sum_{j} \psi'_j) = \sum_{i} f_{U_i}(\phi\psi_i)$$

where we used that $\phi \psi_i \sum_j \psi'_j = \phi_i \psi_i$ since $\sum_j \psi'_j(x) = 1$ for all $x \in K'$ and thus all x in the support of ϕ . This completes the proof of well definedness since by assumption,

$$f_{U_i}|_{V_{i,j}}(\psi_{i,j}\phi) = f_{U'_j}|_{V_{i,j}}(\psi_{i,j}\phi)$$

and so

$$\sum_{i} f_{U_i}(\phi \psi_i) = \sum_{j} f_{U'_j}(\phi \psi'_j)$$

by the same calculation as above. Suppose that $\phi, \phi' \in D(X)$. Thus to compute $f(\phi + \phi')$ we may choose a compact set $K \subset U$ that contains the support of ϕ and ϕ' . Now choose $U_1, \ldots, U_n \in \mathcal{U}$ that cover K, thus by definition

$$f(\phi_1 + \phi_2) = \sum_i f_{U_i}(\psi_i(\phi_1 + \phi_2)) = \sum_i f_{U_i}(\psi_i\phi_1) + \sum_i f_{U_i}(\psi_i\phi_2) = f(\phi_1) + f(\phi_2)$$

where the ψ_i are chosen as in the construction. Linearity of f now easily follows. We now show the continuity of f. If $\phi_k \to \phi \in D(X)$ then there is a compact set $K \subset X$ containing all their supports. Thus $\psi_i \phi_k \to \psi \phi$ and the continuity of each f_{U_i} gives continuity of f. Finally, it remains to show that $f|_U = f_U$ for all $U \in \mathcal{U}$. Thus suppose that $\phi \in D(U)$ and choose a compact set $K \subset U$ such that ϕ has support inside K. As U already covers K, by definition we have that

$$f|_U(\phi) = f(\phi) = f_U(\psi\phi) = f_U(\phi)$$

for some $\psi: \mathbb{R}^d \to [0,1]$ smooth that equals 1 on K and has suppose inside U (so $\phi \psi = \psi$ everywhere). \square

4. Tempered Distributions

5. Fourier Transform

References

[1] Duistermaat, J. J.; Kolk, J. A. C. Distributions. Theory and applications. Translated from the Dutch by J. P. van Braam Houckgeest. Cornerstones. Birkhäuser Boston, Inc., Boston, MA, 2010. xvi+445 pp. ISBN: 978-0-8176-4672-1