Math 445 Homework 4 solutions

13. Show that if n|m, and (10, m) = 1, then the period of the decimal expansion of 1/n divides the period of the decimal expansion of 1/m.

Translating this into the language of orders, if n|m and (10,m)=1, then we wish to show that $\operatorname{ord}_n(10)|\operatorname{ord}_m(10)$. Setting $s=\operatorname{ord}_m(10)$, it is enough to show that $10^s\equiv 1\pmod n$, since we know that $\operatorname{ord}_n(10)$ divides any such exponent. But by definition, $10^s\equiv 1\pmod m$, so $m|10^s-1$, so $10^s-1=mx$ for some x. But since n|m, m=ny for some y, so $10^s-1=mx=(ny)x=n(xy)$, so $n|10^s-1$, so $10^s\equiv 1\pmod n$, as desired.

14. Show that for every $n \ge 2$, $\operatorname{ord}_{3^n}(10) = 3^{n-2}$.

(Hint: induction! This is not entirely unlike what we did for 7^n)

[N.B.: Consequently, the period of the decimal expansion of $1/3^n$ is 3^{n-2} .]

We show first that for every $n \ge 2$, $10^{3^{n-2}} = 1 + k3^n$ for some k with (k,3) = 1. We proceed by induction. For n = 2, $10^{3^{2-2}} = 10^{3^0} = 10^1 = 10 = 1 + 1 \cdot 3^2$, so k = 1 and (1,3) = 1. Now suppose that $10^{3^{n-2}} = 1 + k3^n$ for some k with (k,3) = 1. Then

$$10^{3^{(n+1)-2}} = 10^{3^{n-2} \cdot 3} = (10^{3^{n-2}})^3 = (1+k3^n)^3$$

$$= 1 + 3(1)^2(k3^n) + 3(1)(k3^n)^2 + (k3^n)^3$$

$$= 1 + k3^{n+1} + k^23^{2n+1} + k^33^{3n}$$

$$= 1 + (k + k^23^n + k^33^{2n-1})3^{n+1}$$

with $k + k^2 3^n + k^3 3^{2n-1} \equiv k + k^2 (0) + k^3 (0) \equiv k \pmod{3}$ (since $n, 2n - 1 \ge 1$). So $(k + k^2 3^n + k^3 3^{2n-1}, 3) = (k, 3) = 1$, so $10^{3^{(n+1)-2}} = 1 + K3^{n+1}$ with (K, 3) = 1, as desired. So by induction, for $n \ge 2$, $10^{3^{n-2}} = 1 + k3^n$ for some k with (k, 3) = 1.

Since $10^{3^{n-2}} = 1 + k3^n$, $10^{3^{n-2}} \equiv 1 \pmod{3^n}$, so $\operatorname{ord}_{3^n}(10)|3^{n-2}$. So either $\operatorname{ord}_{3^n}(10) = 3^{n-2}$ or $\operatorname{ord}_{3^n}(10) = 3^m$ for some m < n-2. But we know from above that $10^{3^m} - 1 = k3^{m+2}$ for some k with (k,3) = 1. So if $\operatorname{ord}_{3^n}(10) = 3^m$, then $3^n|10^{3^m} - 1$, so $10^{3^m} - 1 = s3^n$ for some s. But then $k3^{m+2} = s3^n$, so cancelling powers of $3, k = s3^{n-(m+2)} = s3^{(n-2)-m} = s3^r$ for some $r \ge 1$. So 3|k, so (k,3) = 3, a contradiction. So $\operatorname{ord}_{3^n}(10) = 3^{n-2}$, as desired.

15. Show that if (3, n) = 1 (and (10, n) = 1), then $\operatorname{ord}_n(10) = \operatorname{ord}_{3n}(10) = \operatorname{ord}_{9n}(10)$.

By problem number 13, we know that $\operatorname{ord}_n(10)|\operatorname{ord}_{3n}(10)$ and $\operatorname{ord}_{3n}(10)|\operatorname{ord}_{9n}(10)$. In particular, $\operatorname{ord}_n(10) \leq \operatorname{ord}_{3n}(10)$ and $\operatorname{ord}_{3n}(10) \leq \operatorname{ord}_{9n}(10)$. To show that they are all equal, it suffices to show that $\operatorname{ord}_{9n}(10) \leq \operatorname{ord}_n(10)$; what we will if fact show is that $\operatorname{ord}_{9n}(10)|\operatorname{ord}_n(10)$.

ord_n(10) is the smallest positive k for which $n|10^k - 1$, and so it is enough to show that if $n|10^k - 1$, then $9n|10^k - 1$. But $10 \equiv 1 \pmod{9}$, so $1)^k \equiv 1^k = 1 \pmod{9}$. so $9|10^k - 1$ for every $k \ge 1$. and since (3, n) = 1, 3 and n share no factors, so 9 and n share no factors (p) prime and $p|9 = 3^2$, p|n, then p|3 and p|n, so p|(3, n) = 1, so (9, n) = 1.

But $n|10^k - 1$, $9|10^k - 1$, and (9, n) = 1 together imply $9n|10^k - 1$, as desired. So $\operatorname{ord}_{9n}(10)|\operatorname{ord}_n(10)$, and so

$$\operatorname{ord}_{n}(10) = \operatorname{ord}_{3n}(10) = \operatorname{ord}_{9n}(10)$$
, as desired.

16. Find the primitive roots of 1 mod 31. (I.e., find all $a, 1 \le a \le 31$, with $\operatorname{ord}_{31}(a) = 30$. (Hint: find one; then use one of our results to quickly find the others.)

To get started, we don't have much better than random chance? $\phi(31) = 31 - 1 = 30 = 2 \cdot 3 \cdot 5$, so the possible orders of elements are 2,3,5,6,10,15, or 30. We could construct a primitive root in the course of our failures if we assemble exactly the data needed to use the proof of existence, i.e., numbers of orders 2, 3, and 5 precisely; their product will be a primitive root. But that seems unlikely to occur first...

Start with a=2; mod 31, $a^2=4$, $a^4=16$, $a^8=256=31\cdot 8+8\equiv 8$, $a^{16}\equiv 64=31\cdot 2+2\equiv 2$. So $a^2=4\not\equiv 1$, $a^3=4\cdot 2=8\not\equiv 1$, but $a^5=32\equiv 1$, so 2 has order 5 mod 31.

Next try
$$a=3$$
; mod 31, $a^2=9$, $a^4=81=31\cdot 3-12\equiv -12\equiv 19$, $a^8\equiv 19^2=361=31\cdot 11+20\equiv 20$, and $a^{16}\equiv 20^2=400=31\cdot 13-3\equiv -3\equiv 28$.

So
$$a^2 = 9 \not\equiv 1$$
, $a^3 = 9 \cdot 3 = 27 \not\equiv 1$, $a^5 = a^4 \cdot a \equiv 19 \cdot 3 = 57 \equiv 26 \not\equiv 1$, $a^6 = a^4 \cdot a^2 \equiv 19 \cdot 9 = 171 = 31 \cdot 5 + 16 \equiv 16 \not\equiv 1$, $a^{10} = a^8 \cdot a^2 \equiv 20 \cdot 9 = 180 = 31 \cdot 6 - 6 \equiv 25 \not\equiv 1$, $a^{15} = a^{10}a^5 \equiv 25 \cdot 26 = 650 = 31 \cdot 20 + 30 \equiv 30 \equiv -1 \not\equiv 1$, and just for sanity's sake, $a^{30} = a^{15}a^{15} \equiv (-1)^2 = 1$. So 3 has order 30 mod 31, and so is a primitive root of 1 mod 31.

To find all other primitive roots of 1 mod 31, we can take all $3^k \mod 31$, for $(k, \phi(31)) = (k, 30) = 1$. But the numbers coprime to $30 = 2 \cdot 3 \cdot 5$ are the numbers less than 30 that are not multiples of 2, 3, or 5, i.e., k = 1, 7, 11, 13, 17, 19, 23, 29 (since $30 < 6^2 = 36$, we should have expected all primes...). Note that we know this list is complete, since

 $\phi(\phi(31)) = \phi(30) = \phi(2 \cdot 3 \cdot 5) = 1 \cdot 2 \cdot 4 = 8$, so we should have 8 primitive roots. So we compute:

$$\begin{array}{l} 3^1=3,\ 3^7=3^43^3\equiv 19\cdot 27=540-27=31\cdot 18-18-27\equiv -45\equiv -14\equiv 17,\\ 3^{11}=3^83^3\equiv 20\cdot 27=540=31\cdot 18-18\equiv -18\equiv 13,\\ 3^{13}=3^{11}3^2\equiv 13\cdot 9=117=31\cdot 4-7\equiv -7\equiv 24,\\ 3^{17}=3^{16}3\equiv -3\cdot 3=-9\equiv 22,\\ 3^{19}=3^{17}3^2\equiv 22\cdot 9=198=31\cdot 6+12\equiv 12,\\ 3^{23}=3^{19}3^4\equiv 12\cdot 19=240-12=31\cdot 8-8-12\equiv -20\equiv 11,\\ \text{and } 3^{29}=3^{16}3^{13}\equiv 28\cdot 24\equiv (-3)\cdot (-7)=21. \end{array}$$

So the primitive roots of 1 mod 31 are: 3, 17, 13, 24, 22, 12, 11, and 21, or, in increasing order, 3, 11, 12, 13, 17, 21, 22, and 24. Who would have guessed....