Zadanie 1.

Niech T będzie czasem likwidacji szkody, mierzonym w taki sposób, że T=0 gdy szkodę zlikwidowano w ciągu tego samego roku, w którym do niej doszło, T=1 jeśli w ciągu następnego roku, T=2 jeśli jeszcze w następnym roku itd. W tabeli poniżej podany jest rozkład zmiennej T. W tej samej tabeli podane są warunkowe oczekiwane wartości szkody (między wartością szkody Y a czasem jej likwidacji T występuje dodatnia zależność).

j	0	1	2	3
Pr(T=j)	0.4	0.3	0.2	0.1
E(Y/T=j)	10	15	20	30

Ani T, ani Y nie zależą od tego, w którym roku kalendarzowym do szkody doszło.

Niech n_t oznacza ilość szkód, które zaszły w ciągu roku t. Mamy dane na ten temat z roku t_0 oraz kilku lat poprzednich:

t	t_0	$t_0 - 1$	$t_0 - 2$	$t_0 - 3$
n_{t}	100	80	60	40

Oznaczmy literami A i B następujące zdarzenia:

- A szkoda, wylosowana ze zbioru szkód do których doszło w latach od t_0 3 do t_0 włącznie, na koniec roku t_0 oczekuje jeszcze na likwidację,
- B szkoda, wylosowana ze zbioru szkód do których doszło w latach od t_0 3 do t_0 włącznie, została zlikwidowana w ciągu roku t_0

Stosunek warunkowych wartości oczekiwanych $\frac{E(Y/A)}{E(Y/B)}$ wynosi:

- (A) 1.00
- (B) 1.17
- (C) 1.33
- (D) 1.50
- (E) 1.67

Zadanie 2.

Rozkład warunkowy dwóch ryzyk X i Y przy danej wartości parametru ryzyka Z ma następujące charakterystyki:

$$COV(X,Y/Z) = 2Z$$
 ,

$$E(X/Z) = 3Z ,$$

$$E(Y/Z) = Z$$
;

podczas gdy zróżnicowanie parametru Z w populacji ryzyk daje się opisać rozkładem logarytmiczno-normalnym takim, że ln(Z) ma rozkład normalny o parametrach

$$\left(\mu,\sigma^2\right) = \left(0, \frac{1}{10}\right).$$

COV(X,Y) wynosi w przybliżeniu (wybierz najbliższą odpowiedź):

- (A) 2.00
- (B) 2.15
- (C) 2.30
- (D) 2.45
- (E) 2.50

Zadanie 3.

Zmienna losowa:

$$S = Y_1 + ... + Y_N$$
, (przyjmujemy $S = 0$ jeżeli $N = 0$)

ma złożony rozkład geometryczny:

$$Pr(N = k) = \left(\frac{1}{2}\right)^{k+1}, \qquad k = 0,1,2,...$$

W tabeli poniżej podano rozkład prawdopodobieństwa składnika Y. W tejże tabeli podano także obliczone dla k = 0,1,...,5 prawdopodobieństwa Pr(S = k).

k	$\Pr(Y=k)$	$\Pr(S=k)$
0	0	0.50000
1	0.2	0.05000
2	0.3	0.08000
3	0.1	0.04050
4	0.2	0.06855
5	0.1	0.04693
6	0.1	?

Pr(S = 6) wynosi w przybliżeniu (wybierz najbliższą odpowiedź):

- (A) 0.0425
- (B) 0.0450
- (C) 0.0475
- (D) 0.0500
- (E) 0.0525

Zadanie 4.

Decydent maksymalizuje oczekiwaną wartość funkcji użyteczności postaci:

$$u(x) = const - \exp(-x)$$

Jego wyjściowy majątek wynosi w = 1, narażony jest on jednak na ryzyko X:

$$Pr(X = 1) = 1 - Pr(X = 0) = \frac{1}{5}$$

Rynek ubezpieczeniowy oferuje wszystkie kontrakty pokrycia nadwyżki ryzyka X ponad kwotę $d \in [0,1]$ za cenę:

$$P(d) = \frac{5}{4} \cdot E[(X-d)_{+}]$$

Wartość \boldsymbol{d}^* parametru kontraktu d, przy której oczekiwana użyteczność osiąga maksimum, wynosi:

$$(A) d^* = 0$$

$$(B) d^* = \ln\frac{3}{2}$$

$$(C) d^* = \ln\frac{4}{3}$$

$$(D) d^* = \ln \frac{5}{4}$$

(E)
$$d^* = 1$$
 (brak ubezpieczenia)

Zadanie 5.

W momencie t_0 wiemy o pewnym ryzyku, iż generuje ono szkody zgodnie z procesem Poissona (λt) , a o parametrze λ zakładamy a priori iż jest realizacją zmiennej losowej Λ o rozkładzie Gamma (α, β) , danym na półosi dodatniej gęstością:

$$f_{\Lambda}(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot \lambda^{\alpha-1} \cdot \exp(-\beta\lambda),$$

z parametrami: $\alpha = 2$, $\beta = 10$.

Rozpoczęliśmy obserwację procesu w momencie t_0 , i prowadziliśmy ją do momentu t_1 wystąpienia pierwszej szkody. Warunkowa wartość oczekiwana zmiennej Λ pod warunkiem iż $t_1=t_0+2$, wynosi:

- $(A) \qquad \frac{6}{24}$
- (B) $\frac{6}{25}$
- (C) $\frac{5}{24}$
- (D) $\frac{5}{25}$
- (E) $\frac{4}{24}$

Zadanie 6.

Przy danej wartości parametru ryzyka Λ łączna wartość szkód X z pewnego ryzyka ma złożony rozkład Poissona z parametrami $(\Lambda, F_{Y/\Lambda}(\cdot))$, a warunkowa wartość oczekiwana pojedynczej szkody Y dana jest wzorem:

$$E(Y|\Lambda) = 10 \cdot (1 + 2 \cdot \Lambda).$$

Parametr ryzyka Λ ma rozkład Gamma (α, β) , dany na półosi dodatniej gęstością:

$$f_{\Lambda}(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot \lambda^{\alpha-1} \cdot \exp(-\beta\lambda),$$

z parametrami: $\alpha = 4$, $\beta = 20$.

E(X) wynosi:

- (A) 2.80
- (B) 2.85
- (C) 2.90
- (D) 2.95
- (E) 3.00

Zadanie 7.

Łączna wartość odszkodowań za szkody zaistniałe w danym roku składa się z dwóch komponentów:

 \boldsymbol{X}_0 - łącznej wartości odszkodowań wypłacanych w ciągu tego samego roku

 \boldsymbol{X}_1 - łącznej wartości odszkodowań do wypłacenia w latach następnych.

Przyjmujemy następujące założenia:

 o warunkowym rozkładzie ww. zmiennych przy danej wartości parametru ryzyka Λ:

$$E(X_0/\Lambda) = \Lambda \cdot m_1 \cdot p \qquad VAR(X_0/\Lambda) = \Lambda \cdot m_2 \cdot p$$

$$E(X_1/\Lambda) = \Lambda \cdot m_1 \cdot q, \qquad VAR(X_1/\Lambda) = \Lambda \cdot m_2 \cdot q, \qquad COV(X_0, X_1/\Lambda) = 0$$

• oraz o bezwarunkowym rozkładzie parametru ryzyka Λ :

$$E(\Lambda) = \overline{\Lambda}$$
, $VAR(\Lambda) = L^2$

oraz iż znamy wartości parametru $1-q=p\in(0,1)$ oraz (dodatnich) parametrów m_1,m_2 , $\overline{\Lambda}$ oraz L^2 .

Po zaobserwowaniu wartości zmiennej X_0 przeprowadzamy predykcję zmiennej X_1 za pomocą najlepszego liniowego predyktora postaci:

$$BLP(X_1/X_0) = q \cdot \left(z \cdot \frac{1}{p} \cdot X_0 + (1-z) \cdot \overline{\Lambda} \cdot m_1\right).$$

Współczynnik z zapewniający, iż predyktor jest rzeczywiście najlepszy wśród liniowych, jest postaci:

(A)
$$z = \frac{L^2 \cdot p \cdot m_1^2}{L^2 \cdot p \cdot m_1^2 + \overline{\Lambda} \cdot m_2}$$

(B)
$$z = \frac{L^2 \cdot p \cdot m_2}{L^2 \cdot p \cdot m_2 + \overline{\Lambda} \cdot m_1^2}$$

(C)
$$z = \frac{L^2 \cdot m_1^2}{L^2 \cdot m_1^2 + \overline{\Lambda} \cdot p \cdot m_2}$$

(D)
$$z = \frac{L^2 \cdot m_2}{L^2 \cdot m_2 + \overline{\Lambda}^2 \cdot p \cdot m_1^2}$$

(E)
$$z = \frac{L^2 \cdot p \cdot m_2}{L^2 \cdot p \cdot m_2 + \overline{\Lambda}^2 \cdot m_1^2}$$

Zadanie 8.

Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: $U_n = u + c \cdot n - S_n$, n = 0,1,2,...

gdzie $S_n = W_1 + W_2 + ... + W_n$ jest procesem o przyrostach niezależnych o identycznym rozkładzie (w skrócie: rozkładzie zmiennej losowej W).

Wyznaczamy składkę c za portfel ryzyk generujący łączną wartość szkód W przyjmując dla uproszczenia, iż prawdopodobieństwo ruiny ε spełnia równość $\varepsilon = \exp(-Ru)$, gdzie R to *adjustment coefficient*, zaś u to nadwyżka początkowa.

Przyjmujemy, iż zmienna W posiada funkcję generującą momenty, oraz że charakteryzuje się dodatnią (i niepomijalną) skośnością γ_W , natomiast wyrazy wyższych rzędów w rozwinięciu logarytmu funkcji generującej momenty są pomijalne.

Przyjmujemy także konkretne założenia liczbowe:

- nadwyżka początkowa jest równa dwukrotności odchylenia standardowego zmiennej W: $u=2\sigma_{\scriptscriptstyle W}$,
- przyjęty poziom bezpieczeństwa wynosi: $\varepsilon = \exp(-3)$

W rezultacie otrzymujemy formułę składki:

$$c = E(W) + \sigma_W \cdot (a_0 + a_1 \cdot \gamma_W)$$

parametr a_1 formuly wynosi:

(A)
$$a_1 = \frac{3}{2}$$

(B)
$$a_1 = \frac{3}{8}$$

(C)
$$a_1 = \frac{9}{8}$$

(D)
$$a_1 = \frac{3}{4}$$

(E)
$$a_1 = \frac{9}{16}$$

Zadanie 9.

Wartość pojedynczej szkody Y ma rozkład Pareto dany dystrybuantą:

$$F_{Y}(y) = 1 - \left(\frac{10}{10 + y}\right)^{3}$$
 dla $y \ge 0$, oraz $F_{Y}(y) = 0$ dla $y < 0$.

Rozważamy klasyczny model procesu nadwyżki ubezpieczyciela U(t) w czasie ciągłym. Tak więc szkody pojawiają się zgodnie z procesem Poissona z intensywnością λ , a intensywność składki (napływającej w sposób ciągły) wynosi:

$$c = \frac{5}{4} \cdot \lambda \cdot E(Y).$$

Przyjmujemy iż <u>nadwyżka początkowa jest zerowa</u>.

Niech $T = \inf\{t: t \ge 0, U(t) < 0\}$ oznacza moment czasu, w którym dochodzi do ruiny (przyjmujemy $T = \infty$ jeśli dla dowolnego $t \ge 0$ nadwyżka jest nieujemna).

Niech funkcja:

$$G(h) = \Pr((T < \infty) \land (U(T) < -h)), \quad h \ge 0$$

określa prawdopodobieństwo zdarzenia, iż do ruiny dojdzie, i że deficyt w momencie ruiny przekroczy wartość h.

Wartość G(2) wynosi:

- (A) 2/3
- (B) 3/5
- (C) 5/9
- (D) 1/2
- (E) 4/9

Zadanie 10.

Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci:

$$U_n = u + c \cdot n - S_n$$
, $n = 0,1,2,...$

gdzie $S_n = W_1 + W_2 + ... + W_n$ jest procesem o przyrostach niezależnych o identycznym rozkładzie (w skrócie: rozkładzie zmiennej losowej W) takich, że $\Pr(W \ge 0) = 1$.

Załóżmy, że $c < E(W) < \infty$. Wobec tego ruina jest pewna.

Niech T(u) oznacza czas ruiny:

$$T(u) = \inf \{ n : n \in \{0,1,2,...\}, U_n < 0 \},$$

zaś E(T(u)) oczekiwany czas ruiny (traktowany explicite jako funkcja zmiennej u). Oczywiście dla ujemnych wartości u zachodzi E(T(u)) = 0.

Dla nieujemnych wartości u funkcja E(T(u)) spełnia tożsamość całkową:

(A)
$$E(T(u)) = \int_{0}^{u+c} E(T(u+c-x))dF_{w}(x)$$

(B)
$$E(T(u)) = 1 + \int_{0}^{u+c} E(T(u+c-x))dF_w(x)$$

(C)
$$E(T(u)) = 1 - F_W(u+c) + \int_0^{u+c} E(T(u+c-x))dF_W(x)$$

(D)
$$E(T(u)) = 1 - F_W(u+c) + F_W(u+c) \cdot \int_0^{u+c} E(T(u+c-x)) dF_W(x)$$

(E)
$$E(T(u)) = 1 - F_W(u+c) + F_W(u+c) \cdot \int_0^{u+c} [1 + E(T(u+c-x))] dF_W(x)$$

Wskazówka: Rozważ dwa rozłączne zdarzenia: $U_1 < 0$ oraz $U_1 \ge 0$

XXV Egzamin dla Aktuariuszy z 13 kwietnia 2002 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko	K L U C Z	ODPOWIEDZI	
Pecel			

		î .
Zadanie nr	Odpowiedź	Punktacja*
1	D	
2	D	
3	Е	
4	С	
5	A	
6	Е	
7	A	
8	В	
9	C	
10	В	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.