Simple Logistic Regression

Biostat 515/518
Discussion – Week 4

David Clausen

Adapted from notes by Anu Mishra
University of Washington

PSA Study

- Goal of study was to assess if PSA can be used to identify those patients in whom cancer is progressing
- Prospective cohort study of men who have received hormonal therapy for prostate cancer
- Followed for at least 24 months
- Lowest PSA and cancer severity measured

Scientific Question

 Is PSA nadir (the lowest value observed post therapy) highly associated with time to relapse?

PSA Data

 What are the relevant variables for this scientific question?

PSA Data

- What are the relevant variables for this scientific question?
 - PSA Nadir (continuous, uncensored)
 - Time in remission / time to relapse (continuous, possibly censored)
 - Indicator of relapse status (binary)

What are valid analysis approaches?

Analysis Approaches

- Approach 1: Logistic regression – binary predictor
 - Response: Indicator of relapse within 24 months
 - Predictor: Dichotomized PSA nadir
 - Statistical question: Are the odds of relapse within 24 months different for those with high PSA nadir compared to those with low PSA nadir.
- Drawbacks?
 - Cut-off may be arbitrary (what is "high" or "low" PSA?)

Analysis Approaches

- Approach 2:
 - Logistic regression continuous predictor
 - Response: Indicator of relapse status at 24 months
 - Predictor: PSA nadir
 - Statistical question: Are the odds of relapse with 24 months different for those with different PSA levels?
- Drawbacks?
 - Slightly harder to interpret (but we'll go over this!)

Review of Terms

Probability of event occurring (remission at last followup)

$$P(Y_i = 1) = p_i$$

Odds of event occurring: Ratio of probabilities

$$odds = \frac{p_i}{1 - p_i}$$

 Odds ratio: Ratio of odds of event occurring to odds of event not occurring

$$OR = \frac{\text{odds event in group 1}}{\text{odds event in group 2}}$$

Logistic Regression Review

Uses the model

$$logit(p_i) = log\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 X_i$$

- Parameter interpretations
 - log odds for $X = 0 : \beta_0$
 - log odds for $X = x : \beta_0 + \beta_1 * x$
 - log odds for X = x+ 1 : $\beta_0 + \beta_1^*(x + 1)$

Logistic Regression Review

- Parameter interpretation (cont.)
 - Odds of event for X=x: $exp(\beta_0 + \beta_1 *x)$
 - Odds of event for X=x+1: $exp(\beta_0 + \beta_1^*(x+1))$
 - Odds ratio comparing groups:

$$\frac{\text{odds of event for X=x+1}}{\text{odds of event for X=x}} = \frac{\exp(\beta_0 + \beta_1(x+1))}{\exp(\beta_0 + \beta_1x)}$$
$$= \frac{\exp(\beta_0 + \beta_1x + \beta_1)}{\exp(\beta_0 + \beta_1x)}$$
$$= \exp(\beta_1)$$

Approach 1: Application

```
#clear objects from workspace
rm(list=ls())
#set working directory
setwd("/Users/davidclausen/Dropbox/BIOST 515/Discussion")
#read in data
psa <- read.table('psa.txt',header=T)
#create indicator of relapse within 24 months
psa$relapse24 <- ifelse(psa$inrem=="no"&psa$obstime<=24,1,0)
#create dichotomized PSA variable
psa$high <- ifelse(psa$nadirpsa>=median(psa$nadirpsa),1,0)
#logistic regression of relapse status on dichotomized PSA nadir
mod1 <- glm(relapse24~high,family='binomial',data=psa)summary(mod1)
```

Approach 1: Application

```
> summary(mod1)
Call:
glm(formula = relapse24 ~ high, family = "binomial", data = psa)
Deviance Residuals:
   Min 10 Median 30 Max
-1.5956 -0.5905 -0.5905 0.8106 1.9145
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.6582 0.5455 -3.040 0.002369 **
high 2.6027 0.7043 3.695 0.000219 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 68.593 on 49 degrees of freedom
Residual deviance: 51.631 on 48 degrees of freedom
AIC: 55.631
Number of Fisher Scoring iterations: 4
```

Approach 1: Results

Results

```
    OR: exp(2.60) = 13.5
    95% CI: [exp(1.22), exp(3.98)]
    = [3.40,53.7]
    P value: 0.000219
```

 Note: Above analysis does not use robust standard errors, but could use them here.

Approach 1: Results

 The estimated odds of relapse within 24 months among prostate cancer patients with above-median PSA nadir level are 13.5 times higher relative to a group of prostate cancer patients with below-median PSA nadir level. Based on a 95% CI it would not be unusual to observe an OR between 3.40 and 53.7. With a p-value of 0.000219 we find this result significant at the 0.05 level.

Approach 2: Application

Approach 2: Application

```
> summary(mod2)
Call:
glm(formula = relapse24 ~ nadirpsa, family = "binomial", data = psa)
Deviance Residuals:
   Min 1Q Median 3Q
                                     Max
-2.4956 -0.9110 -0.9098 1.2361 1.4656
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.67626  0.34086 -1.984  0.0473 *
nadirpsa 0.04071 0.02346 1.735 0.0827 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 68.593 on 49 degrees of freedom
Residual deviance: 60.102 on 48 degrees of freedom
AIC: 64.102
Number of Fisher Scoring iterations: 6
```

Approach 2: Results

Results

```
    OR: exp(0.041) = 1.04
    95% CI: [exp(-0.0052), exp(0.087)]
    = [0.995, 1.09]
    P value: 0.0827
```

 Note: Above analysis does not use robust standard errors, but could use them here.

Approach 2: Results

The estimated odds of relapse within 24 months in a group of prostate cancer patients are 4% higher relative to a group of prostate cancer patients with a 1 ng/ml lower PSA nadir level. Based on a 95% CI it would not be unusual to observe an OR between 0.995 and 1.09. With a p-value of 0.08 we find this result is not significant at the 0.05 level.

Approach 3: Using log₂(PSA)

 In the previous example we compared groups on an additive scale (1 unit different in PSA)

 If we want wanted to compare groups on a multiplicative scale we can use a logtransformed predictor

Approach 3: Application

Approach 3: Application

```
> summary(mod3)
Call:
glm(formula = relapse24 ~ log2_nadirpsa, family = "binomial",
   data = psa
Deviance Residuals:
   Min
            10 Median 30 Max
-2.5904 -0.5355 -0.4704 0.6088 1.7684
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.7109 0.3884 -1.831 0.067166 .
log2_nadirpsa 0.6178 0.1671 3.696 0.000219 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 68.593 on 49 degrees of freedom
Residual deviance: 44.063 on 48 degrees of freedom
AIC: 48.063
Number of Fisher Scoring iterations: 5
```

Approach 3: Results

The estimated odds of relapse within 24 months in a group of prostate cancer patients are 1.85 times the odds of relapse for group of prostate cancer patients with a PSA nadir twice as low (two-fold decrease). Based on a 95% CI it would not be unusual to observe an OR between 1.34 and 2.57. With a p-value less than 0.001 we find this result to be significant and reject the null hypothesis.

Summary

- Logistic regression requires a binary dependent/response variable
- Without a good scientific reason, dichotomization of continuous predictors is not recommended.
- Choice of transformation of independent variable depends the scientific question (additive or multiplicative change).