Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique

Prof: TRAORE Nasser

Exercice	IFNTI	Durée	Page
Mars 2025		Coefficient	
Nom		Note	
Prénom		7 11016	

ACTIVITE de FORMATION

CISCO PACKET TRACER: SIMULATION DU FONCTIONNEMENT D'UN RESEAU INFORMATIQUE

CO	NDITIONS	D'EXER	CICE - M	oyens et Res	ssources		TAXO	NOMIE	
@		A B C			IL	1 🗆	2	3	4
Internet	Logiciel	Doc.	PC	Outillages	Matériels				

CISCO PACKET TRACER SIMULATION DE RESEAUX INFORMATIQUE

1. Objectifs - Mise en situation

Packet Tracer est un logiciel développé par Cisco pour faire des plans d'infrastructure de réseau locaux en temps réel et voir toute les possibilités d'un réseau et sa future mise en œuvre.

L'objectif principal de ce TP est la maitrise du logiciel et la réalisation de divers réseaux pour découvrir le fonctionnement des différents éléments constituant un réseau informatique.

2. Premier pas : HelloWorld

hello world: (familier). Anglicisme qui signifie bonjour tout le monde et désignant un programme informatique trivial qui ne contient qu'une seule instruction : dire bonjour à l'utilisateur. Le code source de ce programme est souvent utilisé dans l'apprentissage de la programmation.

Réalisez, votre premier réseau sous Packet Tracer :

	cation entre	Commande à passer :	Depuis le poste	Résultats de la commande
PC0	PC1			
PC0	PC2			
PC0	РС3			
PC1	PC2			
PC1	РС3			
PC2	РС3			

Réalisez l'adressage IP suivant le plan d'adressage suivant :

Poste	Adresse IP	Masque de sous-réseau
PC0	192.168.0.2	255.255.255.0
PC1	192.168.0.5	255.255.255.0
PC2	192.168.0.9	255.255.255.0
PC3	192.168.1.2	255.255.255.0

Réalisez les tests nécessaires pour valider la communication ou non entre 2 postes.

Pourquoi la communication avec le poste PC3 est-elle impossible ? La lecture du dossier technique sur les réseaux informatiques peut être nécessaire.

Proposez et tester l'utilisation d'autres 'adresses IP/Masque de sous réseau' pour permettre la communication entre le poste PC3 et les autres postes.

'Adresse/Masque' proposés :

Nous allons travailler uniquement avec PC1 et PC2. Modifiez les adresses IP et masque de sous réseau des PC1 et PC2 en suivant les paramètres du tableau :

Expérimentation n°	PC1	PC2
1	10.12.130.21 / 255.0.0.0	10.33.33.33 / 255.0.0.0
2	111.111.222.222 / 255.255.0.0	111.111.111.111 / 255.255.0.0
3	180.12.200.1 / 255.255.240.0	180.12.100.2 / 255.255.240.0
4	1.2.3.4 / 255.0.0.0	1.33.3.4 / 255.0.0.0
5	172.30.0.25 / 255.255.255.128	172.30.0.1 / 255.255.255.128
6	126.1.1.1 / 255.192.0.0	126.111.111.111 / 255.192.0.0

Pour chaque expérimentation, complétez les tableaux suivant :

Un document présentant la conversion binaire/décimal est présent en annexe mais vous pouvez aussi utiliser la calculatrice pour complétez le tableau

			PC	1													
П	П	\top	П	П	Т	Т	Т	T	Т	Γ	П	Т			\Box	$\overline{\top}$	\top
	П					T	T	T				Ť				$\overline{\top}$	— Т
П		T				T	Τ					T				T	T
			PC	2													
П		T	П		T	T	Т	T	T			T			$\overline{\top}$	$\overline{\top}$	T
	П		П		T	T	Τ	T	<u> </u>			Ť				$\overline{\top}$	 T
					T	T	T	Ť	T			T			T	Ť	T
	l et PC2 ?				PC2												

Expérimentation n°2																							
										PC	1												
Adresse IP		Т	Π	Τ	Τ	Τ	Τ	Τ										Π	Π	Γ			
Masque de sous réseau		Τ	Γ	Τ	T	T	Τ	Τ					_						Γ	 			
Adresse réseau = 'IP' AND 'Masque'																							
										PC	2												
Adresse IP		Γ		Π	l	Ι		Π															
Masque de sous réseau		Π	Π	Π	Ī	Ī	Ī												<u> </u>				
Adresse réseau = 'IP' AND 'Masque'		Γ			T	Γ		Γ						<u> </u>						Γ			_
Y'a-t-il communication entre	e PO	C1 (et I	PC2	?																		

								PC	1																	
Adresse IP	F	Г			$\overline{}$	+	$\overline{}$							T	T	Т			\dashv	T				$\overline{}$	$\overline{}$	_
						+		Ш					+						\dashv							_
Masque de sous réseau							Τ								Т									\Box	\top	
Adresse réseau =		_	_			\perp	_				_	_	\bot	_	_	_		 	\Box		_		_		二	
'IP' AND 'Masque'																										
								PC	2																	
Adresse IP																										
Auresse ir						\perp							\perp		\perp	\perp						\perp			\perp	
Masque de sous réseau		_	_		_	\perp	_				_	_	\perp	_	_	_	_	 	_	_	_	_	_	—	_	_
1	┸					\perp							4						_					\bot	\perp	
Adresse réseau =		_	_		_	_				_	_	_	_	_	_	_	_	 	_	_	_		_		_	
'IP' AND 'Masque'																										

Expérimentation n°4			
		PC1	
Adresse IP			
Masque de sous réseau			
Adresse réseau = 'IP' AND 'Masque'			
		PC2	
Adresse IP			
Masque de sous réseau			
Adresse réseau = 'IP' AND 'Masque'			
Y'a-t-il communication entre	e PC1 et PC2 ?		

							PC	1														
Adresse IP															Т	T		Τ	Τ	Τ	$\overline{\Gamma}$	\Box
Masque de sous réseau												\exists			T	T	Τ	Γ	T	Τ	$\overline{\Gamma}$	Γ
Adresse réseau = 'IP' AND 'Masque'																Τ	Τ	Γ		Γ		
							PC	2														
Adresse IP															T			Ι			T	П
Masque de sous réseau					Т	П	\Box					\exists	_ _	$\overline{}$	$\overline{}$	T	Т	Г	Т	T	$\overline{}$	$\overline{\Gamma}$
Adresse réseau = 'IP' AND 'Masque'	F				T		П			Γ		$\overline{}$	' 		<u> </u>	T	T	r T	T	T		

						PC:	1														
Adresse IP								T			T										Ī
Masque de sous réseau																					
Adresse réseau = 'IP' AND 'Masque'			П	\top		П		Τ	П		Τ	П				+				П	T
						PC	2														
Adresse IP			П	T			T	T			Т			T		H		Τ			T
Masque de sous réseau			П	<u> </u>		П	<u> </u>	T	П		T	П		<u> </u>	П	H		T			T
Adresse réseau = 'IP' AND 'Masque'				<u> </u>		П		<u> </u>				П		<u> </u>		H			П		
⇒ Donnez la c																					
Télécharge	z le logi	iciel '	тсы	IP.e	xe' é	et uti	ilise	ez-1	e poi	ur	vér	ifie	r les	s ré	ésult	ats	que	VOI	us (ave	z o
Télécharge: précédemn	z le logi nent.					et uti	ilise	ez-10	e po	ur v	vér	ifiei	r les	s ré	ésult	ats	que	VOI	us (ave	z o
Télécharge précédemm Complétez	z le logi nent. les phra	ases :	suiva	ante	es :												que	VOI	us (ave	
Télécharge: précédemm Complétez : e adresse IP permet	z le logi nent. les phra	ases :	suiva	ante	es :			_ uı									que	voi	us .	ave	z o
Télécharge: précédemm Complétez : e adresse IP permet	z le logi nent. les phra urs puiss	ases s	s <i>uiva</i>	ante	e s :	 r, il fa	aut	_ uı :	n ord								que	VOI	us (ave	z o
Télécharge: précédemm Complétez : e adresse IP permet ur que plusieurs ordinate: Que leurs adresses II	z le logi nent. les phra urs puiss P soient	sent c	s <i>uiva</i> omm	ante nuni	e s :	r, il fa	aut	_ uı :	n ord	lina	ateu	ır d					que	voi	us i	ave	z o
Télécharge précédemn Complétez e adresse IP permet ur que plusieurs ordinateu	z le logi nent. les phra urs puiss P soient éseau so	sent c	omm	ante	guei	 r, il fa	aut	_ uı :	n ord	lina	ateu	ır d					que	VOI	us .	ave	zz o

Configurez les stations pour qu'elles aient toutes des adresses IP contenu dans le réseau 192.168.3.0 (masque : 255.255.255.0)

Utilisez le mode simulation pour visualiser le trajet d'une information entre PC1 et PC2. (voir vidéo sur le mode simulation)

Donnez la principale différence de fonctionnement entre un concentrateur (hub) et commutateur (switch)

Ajoutez un autre switch et hub au réseau et vérifier (à l'aide du mode simulation) la différence de fonctionnement entre un hub et un switch.

Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique Prof : TRAORE Nasser Exercice IFNTI Durée Page Mars 2025 Coefficient Nom Prénom

3. Utilisation d'un point d'accès Wifi

Réalisez le réseau suivant :

Configurez les 2 stations et le point d'accès sans-fil à l'aide du tableau suivant :

Configuration IP			
Poste	Adresse IP Masque de sous réseau		
PC0	10.1.1.1	255.0.0.0	
Laptop0	10.2.2.2	255.0.0.0	
Configuration Wifi			
SSID	PacketWifi		
Canal	8		
Type de cryptage	WEP		
Clé WEP	ABCDEABCDE		

Testez la bonne communication entre les 2 stations.

Ajoutez plusieurs portables et configurez-les pour qu'ils puissent communiquer ensemble. Complétez le plan d'adressage ci-dessous.

Configuration IP			
Poste	Adresse IP	Masque de sous réseau	
Laptop1			
Laptop2			
Laptop3			

Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique

Prof: TRAORE Nasser

Exercice	IFNTI	Durée	Page
Mars 2025	11.111	Coefficient	
Nom		Note	
Prénom		Note	

4. Réseau salle JJ000 : Adressage fixe et dynamique

Réalisez la simulation du réseau informatique de la salle JJ000 :

Configurez les paramètres réseau des stations sachant qu'elles appartiennent toutes au réseau 192.168.1.0/255.255.255.0

Vérifiez le bon fonctionnement du réseau en testant quelques stations

Donnez les inconvénients d'utiliser ce type d'adressage (adresse fixée à l'avance).

Regardez la vidéo 'Serveur DHCP' puis ajoutez un serveur DHCP au réseau permettant l'attribution automatique des adresses IP.

Paramètres du serveur DHCP		
Adresse IP de départ 10.4.4.1		
Masque de sous réseau	255.0.0.0	
Passerelle par défaut	10.0.0.1	
Serveur DNS	10.0.0.2	

Configurez les stations et vérifiez le bon fonctionnement du serveur DHCP Donnez

les avantages d'utiliser ce type d'adressage (adresse attribuée par un serveur).

Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique Prof : TRAORE Nasser Exercice Mars 2025 Nom Prénom Note

5. Premier routage

Réalisez le réseau suivant :

Vérifiez la bonne communication entre les 2 réseaux.

Donnez le rôle du routeur dans le réseau précédent.

Visualisez, à l'aide du mode simulation, le parcours de l'information partant du PC3 à destination PC1.

6. Routage statique

Il faut sur une des deux interfaces séries positionnez l'horloge sur une valeur correcte (Clock Rate : 4 000 000).

Testez la bonne communication entre PC0 et PC1. S'il n'y pas de communication possible, utilisez le mode simulation pour voir à partir de quels éléments la communication n'est plus possible.

Ajoutez dans la table de routage (Routing Static) les entrées suivantes :

yourse dans in their de routing of the of the observantes.				
Router0		Router1		
Réseau	3.0.0.0	Réseau	1.0.0.0	
Masque	255.0.0.0	Masque	255.0.0.0	
Prochain pas	2.0.0.2	Prochain pas	2.0.0.1	
Explication : on spécifie au routeur que		Explication : on spécifie au routeur que		
pour communiquer avec le réseau		pour communiquer avec le réseau		
3.0.0.0/255.0.0.0, il faut envoyer		1.0.0.0/255.0.0.0, il faut envoyer		
l'information à l'élément 2.0.0.2.		l'information à l'élément 2.0.0.1.		

Vérifiez la bonne communication entre les stations.

Donnez les inconvénients du routage statique (routes définies par l'utilisateur)

7. Routage dynamique

Réalisez le réseau suivant :

Les liaisons entre routeurs sont des liaisons fibres optiques (Fiber)

Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique Prof : TRAORE Nasser Exercice Mars 2025 Nom Prénom Note

Configurez chacun des éléments en vous aidant schéma précédent :

Ajoutez les entrées suivantes dans la table RIP (Routing RIP) :

Routeur0	Routeur1	Routeur2	Routeur3	Routeur4
192.168.0.0	1.0.0.0	3.0.0.0	4.0.0.0	2.0.0.0
1.0.0.0	2.0.0.0	4.0.0.0	5.0.0.0	5.0.0.0
3.0.0.0				172.16.0.0

Explications : Pour les routeurs, la table RIP définit les réseaux sur lesquels les informations de routage sont diffusées. En clair, le routeur0 diffuse (sur toutes ses interfaces) les numéros de réseau sur lesquels il est connecté. Et vu que tous les autres routeurs font de même, chacun sait qui est connecté sur qui et chacun sait où diffuser l'information.

Testez la bonne communication entre PC0 et PC1. Utilisez le mode simulation pour savoir par quel chemin (route) l'information circule.

Mettez hors tension le routeur1 et testez la communication entre PC0 et PC1.

Par quelle route l'information circule-t-elle ?

Donnez les avantages d'un protocole de diffusion d'information de routage automatique (RIP).