Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels

Pengfei Chen

Supervisor: Prof. Shengyu Zhang, Prof, Shih-Chi Chen Dept of Computer Science and Engineering The Chinese University of Hong Kong

1 / 11 Introduction Cross-validation Training Conclusion CUHK

Does CIFAR contain noisy labels?

Noisy labels exist even in CIFAR-10!

3/11 Introduction Cross-validation Training Conclusion CUHK

Noisy labels are ubiquitous

- Online queries (Schroff et al., 2011; Divvala et al., 2014)
- Crowdsourcing (Yan et al., 2014; Chen et al., 2017)

CIFAR-10, Krizhevsky & Hinton, 2009

4 / 11 Introduction Cross-validation Training Conclusion CUHK

Noisy labels are devastating

- Memorizing of noisy labels
- Poor generalization performance

Zhang et al., 2017

5 / 11 Introduction Cross-validation Training Conclusion CUHK

Cross-validation

Cross-validation

Training

CIFAR10

- Random flipping original labels
- Testing on the clean test set

Table 1. Test accuracy

Method	Sym.			Asym.
Wichiou	0.2	0.5	0.8	0.4
F-correction	85.08	76.02	34.76	83.55
	± 0.43	± 0.19	± 4.53	± 2.15
Decoupling	86.72	79.31	36.90	75.27
	± 0.32	± 0.62	± 4.61	± 0.83
Co-teaching	89.05	82.12	16.21	84.55
	± 0.32	± 0.59	± 3.02	± 2.81
MentorNet	88.36	77.10	28.89	77.33
	± 0.46	± 0.44	± 2.29	± 0.79
D2L	86.12	67.39	10.02	85.57
	± 0.43	± 13.62	± 0.04	± 1.21
Ours	89.71	84.78	52.27	86.04
	± 0.18	± 0.33	± 3.50	± 0.54

Test accuracy during training

8/11 Introduction Cross-validation Training Conclusion CUHK

Training

WebVision

- Crawled from websites using the same 1000 concepts as ImageNet
- Containing real-world noisy labels

Table 2. Test accuracy on WebVision val. and ILSVRC2012 val.

Method	WebVision Val.	ILSVRC2012 Val.
F-correction	61.12 (82.68)	57.36 (82.36)
Decoupling	62.54 (84.74)	58.26 (82.26)
Co-teaching	63.58 (85.20)	61.48 (84.70)
MentorNet	63.00 (81.40)	57.80 (79.92)
D2L	62.68 (84.00)	57.80 (81.36)
Ours	65.24 (85.34)	61.60 (84.98)

7/11 Introduction Cross-validation Training Conclusion CUHK

Conclusion

A formal study of noisy labels

- Relationship of noise level and test accuracy
- Mitigating the impact of label noise

Future work

- Structured data (E.g., Graph)
 - Social Networks
 - Molecules
 - Citation graphs

Alchemy Contest (Tencent, Quantum Lab)

- Graph Neural Networks (GNNs)
- Predicting properties of molecules
- 130,000+ molecules
- 12 properties

THANK YOU!

pfchen@cse.cuhk.edu.hk

Reference

- 1. Yan, Y., Rosales, R., Fung, G., Subramanian, R., and Dy, J. Learning from multiple annotators with varying expertise. Machine learning, 95(3):291–327, 2014.
- 2. He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. CVPR, 2016a.
- 3. Chen, G., Zhang, S., Lin, D., Huang, H., and Heng, P. A. Learning to aggregate ordinal labels by maximizing separating width. ICML, 2017.
- 4. Schroff, F., Criminisi, A., and Zisserman, A. Harvesting image databases from the web. TPAMI, 33(4):754–766, 2011.
- 5. Divvala, S. K., Farhadi, A., and Guestrin, C. Learning everything about anything: Webly-supervised visual concept learning. CVPR, 2014.
- 6. Li, W., Wang, L., Li, W., Agustsson, E., and Van Gool, L. Webvision database: Visual learning and understanding from web data. arXiv preprint arXiv:1708.02862, 2017.
- 7. Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.

12 / 11 CUHK

Reference

- 8. Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. Understanding deep learning requires rethinking generalization. ICLR, 2017.
- 9. Patrini, G., Rozza, A., Menon, A. K., Nock, R., and Qu, L. Making deep neural networks robust to label noise: A loss correction approach. CVPR, 2017.
- 10. Goldberger, J. and Ben-Reuven, E. Training deep neuralnetworks using a noise adaptation layer. ICLR, 2017.
- 11. Malach, E. and Shalev-Shwartz, S. Decoupling" when to update" from how to update". NeurIPS, 2017.
- 12. Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L. Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. ICML, 2018.
- 13. Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang, I., and Sugiyama, M. Co-teaching: robust training deep neural networks with extremely noisy labels. NeurIPS, 2018.
- 14. Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., and Rabinovich, A. Training deep neural networks on noisy labels with bootstrapping. ICLR, 2015.

13 / 11 CUHK

Reference

- 15. Ren, M., Zeng, W., Yang, B., and Urtasun, R. Learning to reweight examples for robust deep learning. ICML, 2018.
- 16. Tanaka, D., Ikami, D., Yamasaki, T., and Aizawa, K. Joint optimization framework for learning with noisy labels. CVPR, 2018.
- 17. Ma, X., Wang, Y., Houle, M. E., Zhou, S., Erfani, S. M., Xia, S.-T., Wijewickrema, S., and Bailey, J. Dimensionalitydriven learning with noisy labels. ICML, 2018.
- 18. Arpit, D., Jastrz ebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville, A., Bengio, Y., et al. A closer look at memorization in deep networks. ICML, 2017.

14/11 CUHK