AD)			

Award Number: DAMD17-00-1-0396

TITLE: Novel Synthetic Antiestrogens That Block Nuclear Estrogen

Receptor Function Through Plasma Membrane Localization

PRINCIPAL INVESTIGATOR: Stephen L. Hussey

Blake Peterson, Ph.D.

CONTRACTING ORGANIZATION: The Pennsylvania State University

University Park, Pennsylvania 16802-7000

REPORT DATE: May 2003

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;

Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE		3. REPORT TYPE AND DATES COVERED		
	May 2003	Annual Summary	(1 May 00 - 30 Apr 03)	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS	
Novel Synthetic Anti	ock Nuclear	DAMD17-00-1-0396		
Estrogen Receptor Fu	asma			
Membrane Localizatio				
6. AUTHOR(S):				
Stephen L. Hussey				
Blake Peterson, Ph.D				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER	
The Pennsylvania State				
University Park, Penns				
_				
E-Mail:STEVEH@CHEM.PSU.EDU				
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
U.S. Army Medical Research and M				

11. SUPPLEMENTARY NOTES

Fort Detrick, Maryland 21702-5012

20030724 024

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

Hormonally responsive breast cancers that respond favorably to antiestrogens such as tamoxifen often become resistant to this treatment. We are working to identify novel antiestrogens that promote plasma membrane localization of estrogen receptors (ERs). Thus far, we have not successfully recruited ERs to plasma membranes. To probe the failure of the ER recruitment system we studied the ability of membrane-anchored ligands to recruit other intracellulary-expressed proteins that might provide a simpler model system of the ER. Studies of a cholesterylamine-biotin chimera led to the discovery that this compound promotes streptavidin (SA, expressed in Jurkat lymphocytes, fused to Green Fluorescent Protein (GFP)) and Apo-1) recruitment to the plasma membrane. This biotin - SA system provides a great model for further studies of hER membrane recruitment. Because such compounds "dimerize" SA with the plasma membrane, we were interested in compounds that could dimerize SA with the estrogen receptor. Toward that end, we developed a novel chemical inducer of dimerization comprising β -estradiol linked to biotin. This compound potently dimerizes streptavidin and the estrogen receptor in the nucleus of yeast. This result sheds more light on methods for manipulating the estrogen receptor in living cells.

14. SUBJECT TERMS:	15. NUMBER OF PAGES		
drug discovery, steroi	16		
receptor, organic synt	16. PRICE CODE		
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
Unclassified	Unclassified	Unclassified	Unlimited

Table of Contents

Cover1
SF 2982
Table of Contents3
ntroduction4
Body4
Key Research Accomplishments9
Reportable Outcomes9
Conclusions10
References10
Appendices10

Introduction

Hormonally dependant breast cancers that respond favorably to antiestrogens such as tamoxifen often become resistant to this treatment. Novel antiestrogens that inhibit estrogen receptor-mediated gene expression through novel mechanisms of action may

provide more effective therapeutics. We are developing novel anti-estrogens that function by targeting estrogen receptors (ERs) to the plasma membrane. Thus far, synthetic compounds comprising β-estradiol conjugated to cholesterol and cholesterylamine have been unsuccessful in recruiting ERs to membranes (Appendix A). To address this failure we have synthesized a novel compound (1) that replaces β-estradiol with biotin and has the potential to target streptavidin (SA) to membranes. Treatment of Jurkat lymphocytes expressing SA fused to green fluorescent protein (GFP) and Apo-1 with streptaphage (1, 10 µM) revealed recruitment of the cytosolic protein to the plasma membrane in most of the observed cells (Figure 1). This fusion protein was designed to initiate apoptosis upon membrane recruitment. These results of these studies are encouraging for the continued development of compounds capable of targeting ERs to membranes.

Figure 1. Epifluorescence micrographs of cells expressing SA-Apo-1-GFP. Panels A, B: No streptaphage (1) added. Panels C, D: Streptaphage (1, 10 μM) added for 10 h.

Body

Streptaphage was, in effect, designed to dimerize a cytosolic protein with the plasma membrane. While this design has many potential applications in biology, compounds capable of dimerizing two proteins in the nucleus of living cells provide important tools for probing many other biological processes.² Chemical inducers of protein dimerization (CIDs) have been used to control intracellular signal transduction

pathways, protein subcellular localization, and gene expression.³⁻⁶ This approach has been used to identify protein targets of small molecule natural products.⁷ Pioneering work by Liu linked the steroid dexamethasone to the natural product FK506 to identify the protein target FKBP by screening this chimeric compound against a genetically encoded library of proteins in a yeast three hybrid system.⁷ This system employed an engineered glucocorticoid receptor (GR) protein as a DNA-bound platform that displayed dexamethasone-tethered FK506 to target proteins that activate gene expression upon binding.

Although screening natural products against protein targets with yeast three hybrid systems is a potentially elegant alternative to traditional affinity chromatography

methods, dexamethasone derivatives are limited in this regard by the relatively low activity of glucocorticoids in recombinant yeast.⁸ This low activity relates in part to the observation that yeast-expressed GR proteins bind dexamethasone with >10³-fold lower affinity than GR proteins expressed in mammalian cells.⁹

In contrast to
glucocorticoid-based yeast
three-hybrid systems,
steroidal estrogens are

Figure 2. Structure of 7α -substituted estradiol derivatives.

highly active in yeast systems,¹ and 7α -substituted estradiol derivatives such as the antiestrogen ICI 182,780 (2, Figure 2) bind tightly to both the estrogen receptor α (ER α , $K_d\sim1.0$ nM) and estrogen receptor β (ER β , $K_d\sim3.6$ nM) isoforms.¹⁰ Furthermore, high resolution X-ray crystal structures of these proteins bound to cognate ligands are available for design of CIDs.¹¹ To investigate these potential advantages for the analysis

of natural products in yeast three-hybrid-based systems, we employed the previously reported protected 7α -substituted β -estradiol derivative $\mathbf{6}^1$ to synthesize the chimeric 7α -substituted β -estradiol derivatives $\mathbf{3}$ and $\mathbf{4}$ linked to the natural product biotin (Scheme 1). The dexamethasone-biotin derivative $\mathbf{5}$ was also prepared as shown in

Scheme 1. Synthesis of 7- α -substituted estradiol chimeras 3, 4, and 5.

Scheme 1 from the known compound 7^7 to directly compare yeast three-hybrid systems based on GR-dexamethasone and ER-estradiol molecular recognition in vivo.

To analyze ligand-mediated protein heterodimerization in vivo, yeast were engineered to express ER β LBD and SA fusion proteins as shown in Figure 3. In this novel yeast three hybrid system, the bacterial LexA protein¹² was fused to the N-terminus of the steroid receptor to anchor this protein on DNA sites that control expression of a reporter gene, and the bacterial B42 activation domain (AD)¹² was fused to the SA C-terminus to activate gene expression if this protein was brought into proximity of the

Figure 3. Schematic of the ER-SA yeast three hybrid assay showing a hypothetical model of the ternary complex. Addition of ligand 3 heterodimerizes the DNA-bound LexA-ER fusion protein and the SA-B42 fusion protein to activate expression of a *lacZ* reporter gene.

LexA fusion protein by a small molecule-protein interaction. Analogous yeast three hybrid assays were constructed by substituting the ER β LBD with the ER α LBD and the GR LBD.

Addition of ligands 3 and 4 to yeast three hybrid systems and analysis of ligand-mediated gene expression provided the dose-response curves shown in Figure 4. Ligand 3 potently activated gene expression in yeast expressing either the ERα (~380-fold activation at 10 μM, Panel A) or ERβ LBD (~450-fold at 10 μM, Panel B) compared with levels of activation in the absence of ligand. Surprisingly, the lower affinity mutant SA Y43A and SA W120A proteins were nearly as effective as SA W.T. in mediating this dose-response (Figure 4), revealing that moderate-affinity interactions can be detected with this approach. Surprisingly, the W79A mutant was inactive in this assay.

Figure 4. Dose-response curves and competition experiments. Panels A-C: Fold activation = observed β-Galactosidase activity / β-Galactosidase activity without ligand. Panel D: [Ligand]=10 μ M. [Biotin] =100 μ M. [2] and [4]=50 μ M.

Activation of gene expression by dexamethasone derivative 5 was directly compared with 3 using SA Y43A expressed in three hybrid systems due to the predicted high affinity of this SA protein for biotin derivatives and favorable cellular growth characteristics. Remarkably, ligand 3 was much more potent (ER β -SA_{Y43A} EC₅₀=700 nM;

9-fold activation at 100 nM; 60-fold {140-fold for ER α } activation at 1 μ M) than activation by 5 (GR-SA_{Y43A} EC₅₀=3.6 μ M; 2-fold activation at 1 μ M, 27-fold activation at 10 μ M). Moreover, the absolute magnitude of response with 3 was up to 70-fold greater than 5 at 1 μ M (Figure 4, Panel C). At the high concentration of 50 μ M, ligand 3 was sufficiently potent to partially competitively inhibit reporter gene expression. Although not commonly observed in three hybrid systems, this auto-inhibition is predicted to occur if all of the protein binding sites become occupied by excess ligand. Competition experiments with free biotin and the inactive 4 confirmed the specificity of these interactions (Figure 4, Panel D).

These results indicate that 7α -substituted derivatives of β -estradiol are highly potent and effective activators of gene expression in living yeast cells (Appendix B. Coupling these compounds to natural products may facilitate the identification of protein targets from cDNA libraries expressed in yeast three hybrid systems.

REFERENCES

- (1) Hussey, S. L.; He, E.; Peterson, B. R. Org. Lett. 2002, 4, 415-418.
- (2) Lin, H.; Cornish, V. W. Angew. Chem. Int. Ed. Engl. 2001, 40, 871-875.
- (3) Spencer, D. M.; Wandless, T. J.; Schreiber, S. L.; Crabtree, G. R. Science 1993, 262, 1019-1024.
- (4) Belshaw, P. J.; Ho, S. N.; Crabtree, G. R.; Schreiber, S. L. *Proc. Natl. Acad. Sci. U.S.A.* **1996**, *93*, 4604-4607.
- (5) Diver, S. T.; Schreiber, S. L. J. Am. Chem. Soc. 1997, 119, 5106-5109.
- (6) Lin, H. N.; Abida, W. M.; Sauer, R. T.; Cornish, V. W. J. Am. Chem. Soc. 2000, 122, 4247-4248.
- (7) Licitra, E. J.; Liu, J. O. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 12817-12821.
- (8) Sitcheran, R.; Emter, R.; Kralli, A.; Yamamoto, K. R. *Genetics* **2000**, *156*, 963-972.
- (9) Garabedian, M. J.; Yamamoto, K. R. Mol. Biol. Cell **1992**, 3, 1245-1257.
- (10) Sun, J.; Meyers, M. J.; Fink, B. E.; Rajendran, R.; Katzenellenbogen, J. A.; Katzenellenbogen, B. S. *Endocrinology* **1999**, *140*, 800-804.
- (11) Pike, A. C.; Brzozowski, A. M.; Walton, J.; Hubbard, R. E.; Thorsell, A.; Li, Y.; Gustafsson, J.; Carlquist, M. Structure 2001, 9, 145-153.
- (12) Gyuris, J.; Golemis, E.; Chertkov, H.; Brent, R. Cell 1993, 75, 791-803.

Key Research Accomplishments:

- Initial testing of streptaphage revealed that it is capable of recruiting a streptavidin green fluorescent protein fusion (expressed in Jurkats) to the plasma membrane in a moderate percentage of analyzed cells (40 -50 %).
- Further testing of streptaphage revealed that it is capable of recruiting a streptavidin Apo-1-green fluorescent protein fusion (expressed in Jurkats) to the plasma membrane in a higher percentage of analyzed cells (80 90 %).
- Synthesized novel 7- α -substituted β -estradiol biotin chimeras.
- Synthesized a novel dexamethasone biotin chimera.
- Analyzed the longer linker estradiol biotin chimera in a yeast three-hybrid assay and found that it is a potent dimerizer of the estrogen receptor and streptavidin proteins.

Reportable Outcomes:

Harry and Catherine Dalalian Graduate Fellowship in Organic Chemistry, 2003

- 1. Hussey, S. L., He, E., Peterson, B. R. "A Synthetic Membrane-Anchored Antigen Efficiently Promotes Uptake of Antifluorescein Antibodies and Associated Protein A by Mammalian Cells" *J. Am. Chem. Soc.* **2001**, 123, 12712-12713.
- 2. Hussey, S. L., He, E., Peterson, B. R. "Synthesis of Chimeric 7α-Substituted Estradiol Derivatives Linked to Cholesterol and Cholesterylamine" *Org. Lett.* **2001**, 4 (3), 415-418.
- 3. Hussey, S. L., Peterson, B. R. "Efficient Delivery of Streptavidin Conjugates to Mammalian Cells: Clathrin-Mediated Endocytosis Regulated by a Synthetic Ligand" *J. Am. Chem. Soc.* **2002**, *124*, 6265-6273.

Hussey, S. L.; Muddana, S. S.; Peterson, B. R. "Synthesis of a β-Estradiol-Biotin 4.

Chimera that Potently Heterodimerizes Estrogen Receptor and Streptavidin Proteins in a

Yeast Three Hybrid System." J. Am. Chem. Soc. 2003; ASAP Article.

Conclusions:

It is known that breast cancers that respond favorably to antiestrogens such as

tamoxifen will develop resistant to tamoxifen chemotherapy. Antiestrogens that function

through novel mechanisms of action may be able to halt the growth of tamoxifen-

resistant tumors. This research is oriented towards the identification of novel

antiestrogens that promote plasma membrane localization of estrogen receptors. The

successful development of this approach may fully block ER function and yield agents

that kill tamoxifen-refractory breast cancers. Thus far, membrane-recruitment of ERs has

been difficult to achieve. Membrane-localization studies involving a simpler model

system were continued with a new biotin – cholesterylamine conjugate. This compound

recruited SA fusion proteins to the plasma membrane in a good percentage of the

mammalian cells analyzed.

Furthermore, the activity of these compounds leads to the discovery and synthesis

of a novel β-estradiol - biotin conjugate that potentially dimerizes the estrogen receptor

and streptavidin proteins in yeast. This system can be used to discover novel β -estradiol

binding proteins that might provide novel targets for breast cancer therapeutics.

There has been slight deviation from the original statement of work in the final

year of the described research. However, the exciting development of the SA-recruitment

system and subsequent three-hybrid chemical inducer of dimerization has warranted such

changes.

References: Please see body of report.

Appendices: Please see attached publications.

10

Synthesis of Chimeric 7α -Substituted **Estradiol Derivatives Linked to Cholesterol and Cholesterylamine**

ORGANIC LETTERS 2002 Vol. 4, No. 3

415-418

Stephen L. Hussey, Enfei He, and Blake R. Peterson*

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

brpeters@chem.psu.edu

Received November 26, 2001

We report the synthesis of 7α -substituted β -estradiol derivatives bearing side chains terminated with cholesterol and 3β -cholesterylamine. These chimeric compounds were designed to exhibit high affinity for estrogen receptors (ERs) and cellular plasma membranes to potentially enable regulated uptake of ERs by mammalian cells. Evaluation with recombinant yeast reporting compound-mediated ER dimerization revealed potencies similar to the antiestrogen ICI 182780. Compounds that efficiently deliver dominant negative ERs into cells may provide novel therapeutics against breast cancers.

Compounds that enable the regulated delivery of small molecules, proteins, and DNA to mammalian cells are critical to the effectiveness of therapeutics and molecular probes.1 Since macromolecules do not efficiently penetrate cell membranes, the delivery of these compounds to cells is typically mediated by lipids²⁻⁵ or cationic polymers⁶⁻⁹ that modulate the chemical properties of their cargo prior to addition of complexes or conjugates to cells. Alternatively, cellular membranes can be chemically altered to facilitate macromolecular uptake. 10-12 As an example of this latter approach, we recently reported¹³ the synthesis of the fluorescent "memtigen" (membrane-anchored antigen) 1 (Figure 1), which strongly associates with cellular plasma

Figure 1. Structure of a previously reported fluorescein-cholesteramine chimera (1) that enables uptake of antifluorescein antibodies and associated protein complexes by mammalian cells.

membranes. When added to mammalian cells, 1 efficiently promotes uptake of macromolecular antifluorescein antibodies and associated protein complexes in nearly 100% of viable cells.

⁽¹⁾ Smith, D. A.; van de Waterbeemd, H. Curr. Opin. Chem. Biol. 1999,

⁽²⁾ Bendas, G. BioDrugs 2001, 15, 215-224.

⁽³⁾ Rait, A.; Pirollo, K.; Will, D. W.; Peyman, A.; Rait, V.; Uhlmann,

E.; Chang, E. H. *Bioconjugate Chem.* 2000, 11, 153–160.
(4) Rui, Y. J.; Wang, S.; Low, P. S.; Thompson, D. H. *J. Am. Chem. Soc.* 1998, 120, 11213–11218.

⁽⁵⁾ Zelphati, O.; Wang, Y.; Kitada, S.; Reed, J. C.; Felgner, P. L.; Corbeil, J. J. Biol. Chem. 2001, 276, 35103-35110.

⁽⁶⁾ Wender, P. A.; Mitchell, D. J.; Pattabiraman, K.; Pelkey, E. T.; Steinman, L.; Rothbard, J. B. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 13003-

⁽⁷⁾ Lindgren, M.; Hallbrink, M.; Prochiantz, A.; Langel, U. Trends Pharmacol. Sci. 2000, 21, 99-103.
(8) Schwarze, S. R.; Ho, A.; Vocero-Akbani, A.; Dowdy, S. F. Science

^{1999, 285, 1569-1572.}

⁽⁹⁾ Murphy, J. E.; Uno, T.; Hamer, J. D.; Cohen, F. E.; Dwarki, V.; Zuckermann, R. N. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 1517-1522.

We report here the synthesis of structurally related 7αsubstituted derivatives of β -estradiol (2) linked to cholesterol and cholesterylamine. The antiestrogens ICI 182780 (3)14 and ICI 164384 (4)15 (Figure 2) provided models for the

Figure 2. Structures of the estrogenic steroid hormone β -estradiol (2), the antiestrogen ICI 182780 (3), and the antiestrogen ICI 164384 (4).

design of compounds with high affinity for estrogen receptor (ER) proteins. Antiestrogens such as tamoxifen, raloxifene. 3, and 4, are employed clinically to treat hormonally responsive breast cancers dependent on estrogens such as 2 to proliferate. 16 The proliferation of these cancers is controlled by ERs α and β , which are transcription factor proteins that regulate gene expression in the cell nucleus. 16-18

Although antiestrogens 3 and 4 comprise potent competitive antagonists of estrogen receptors, 14,15 most breast cancers eventually become resistant to these types of antihormone therapeutics. 19 As an alternative therapeutic approach, the delivery of transcriptionally altered ERs, termed dominant negative mutants, to breast cancer cells holds promise as a strategy to treat breast cancer.20 However, current methods of delivery of estrogen receptors are either inefficient or require the use of a recombinant virus, which limits the therapeutic potential of this approach.^{20,21}

As a preliminary step directed at investigating whether small molecules might be employed to deliver ERs into

(10) Lu, Y.; Friedman, R.; Kushner, N.; Doling, A.; Thomas, L.; Touzjian, N.; Starnbach, M.; Lieberman, J. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 8027-8032.

(11) Waley, I.; Bhakdi, S. C.; Hofmann, F.; Djonder, N.; Valeva, A.; Aktories, K.; Bhakdi, S. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 3185-

(12) Wojda, U.; Goldsmith, P.; Miller, J. L. Bioconjugate Chem. 1999, 10, 1044-1050.

(13) Hussey, S. L.; He, E.; Peterson, B. R. J. Am. Chem. Soc. 2001, 123. 12712-12713.

(14) Wakeling, A. E.; Bowler, J. J. Steroid Biochem. Mol. Biol. 1992, 43, 173-177.

(15) Wakeling, A. E.; Bowler, J. J. Endocrinol. 1987, 112, 7-10.

(16) MacGregor, J. I.; Jordan, V. C. Pharmacol. Rev. 1998, 50, 151-

(17) Weatherman, R. V.; Fletterick, R. J.; Scanlan, T. S. Annu. Rev. Biochem. 1999, 68, 559-581.

(18) Tsai, M. J.; O'Malley, B. W. Annu. Rev. Biochem. 1994, 63, 451-

(19) Norris, J. D.; Paige, L. A.; Christensen, D. J.; Chang, C. Y.; Huacani, M. R.; Fan, D.; Hamilton, P. T.; Fowlkes, D. M.; McDonnell, D. P. Science 1999, 285, 744-746.

(20) Lazennec, G.; Alcorn, J. L.; Katzenellenbogen, B. S. Mol. Endo-

crinol. 1999, 13, 969-980.
(21) Schodin, D. J.; Zhuang, Y.; Shapiro, D. J.; Katzenellenbogen, B. S. J. Biol. Chem. 1995, 270, 31163-31171.

mammalian cells, we report here the synthesis of compounds 5-8 (Figure 3). Recent X-ray crystal structures of $ER\beta$ -

Figure 3. Structures of synthetic targets.

bound 4 revealed that whereas the steroid is buried in the protein interior, the amide nitrogen atom of the side chain is solvent-exposed,²² suggesting that this would be an excellent point of attachment for cholesterol derivatives. Cholesterol (9) derivatives were chosen for investigation because cholesterol is an abundant plasma-membraneassociated steroid that controls membrane fluidity23 and is covalently linked to proteins involved in cellular signaling²⁴ and synthetic derivatives can enable protein uptake by mammalian cells.13

The synthesis of compounds 5-7 required cholesterolderived electrophiles 12-14. The acid chloride 12 was prepared from cholesterol (9) in three steps as shown in Scheme 1. As shown in Figure 4, cholesteryl chloroformate

a Reagents and conditions: (a) NaH, tert-butylbromoacetate, THF, reflux. (b) HCO₂H, Et₂O, 65 °C. (c) SOCl₂, CH₂Cl₂, reflux.

(13) was commercially available, and the protected cholesterylamine (14) was prepared as previously described. 13

⁽²²⁾ Pike, A. C.; Brzozowski, A. M.; Walton, J.; Hubbard, R. E.; Thorsell, A.; Li, Y.; Gustafsson, J.; Carlquist, M. Structure 2001, 9, 145-153. (23) Brown, M. S.; Goldstein, J. L. Angew. Chem., Int. Ed. Engl. 1986, 25, 583-602.

$$\begin{array}{c} \text{Me} \\ \text{Me} \\$$

Figure 4. Structures of commercially available cholesteryl chloroformate (13) and the previously described acid chloride (14).

Steroid side chain precursors were prepared from the known²⁵ N-methylamide 15 as shown in Scheme 2. Reduc-

^a Reagents and conditions: (a) DIBAL, CH₂Cl₂, 25 °C. (b) (Boc)₂O, DIEA, CH₂Cl₂, 25 °C. (c) NaI, acetone, reflux.

tion of the amide, protection of the resulting amine, and conversion to the iodide under Finkelstein conditions afforded the *tert*-butylcarbamate-protected *N*-methylamine 17 (Scheme 2).

In contrast to other syntheses of 7α -substituted estradiol derivatives, 26,27 which have primarily employed tetrahydropyranyl (THP) ethers for alcohol protection, $^{28-34}$ we installed *tert*-butyl ether protecting groups for the preparation of this class of compounds. This approach avoided generation of mixtures of diastereomers that limit facile assignment of side chain stereochemistry by NMR. Protection of **2** as the di*tert*-butyl ether³⁵ was accomplished in good yield using a heterogeneous mixture of isobutylene and acidic Amberlyst resin in a sealed flask (Scheme 3).

^a Reagents and conditions: (a) Isobutylene, acidic Amberlyst-15, CH₂Cl₂, 25 °C. (b) LDA, t-BuOK, THF, −78 °C. (c) B(OMe)₃, 0 °C. (d) H₂O₂, H₂O, 25 °C. (e) NaOCl, TEMPO, KBr, H₂O, CH₂Cl₂, 25 °C. (f) t-BuOK, 17, THF, 0 °C. (g) 10% Pd (C), H₂, ethanol, 65 °C. (h) Trichloroacetic acid, CH₂Cl₂, 25 °C. (i) 12, DIEA, THF, 25 °C. (j) 13, DIEA, THF, 25 °C. (k) Ac₂O, DIEA, THF, 25 °C. (l) 14, DIEA, THF, 25 °C. (m) PhSH, K₂CO₃, CH₃CN, 25 °C.

Compound 18 was deprotonated under well precedent-ed^{28,36,37} "superbase" conditions employing a 1:1 ratio of potassium *tert*-butoxide and lithium diisopropylamide. This anion was trapped with trimethyl borate to yield an intermediate borate ester that was oxidized with hydrogen peroxide to epimeric alcohols 19. These epimers were further oxidized to ketone 20 with aqueous sodium hypochlorite, including TEMPO free radical and KBr as catalysts.³⁸

Deprotonation of 20 with potassium *tert*-butoxide generated the corresponding enolate, which was alkylated with iodoalkane 17 to furnish ketone 21 as a single epimer in good yield. A minor O-alkylation product could also be isolated. Two-dimensional NMR experiments unambiguously confirmed the configuration of the 7α -side chain of 21 by detection of a nuclear Overhauser effect (NOE) between protons H_7 and H_8 and the absence of a NOE between H_7 and H_9 (Figure 5).

Hydrogenolysis of 21 over palladium on carbon afforded 22 in high yield. Complete removal of the acid-labile

⁽²⁴⁾ Mann, R. K.; Beachey, P. A. Biochim. Biophys. Acta 2000, 1529, 188-202.

⁽²⁵⁾ Robinson, D. I.; Sherrington, D. C.; Suckling, C. J. J. Chem. Res. Miniprint 1985, 5, 1701-1728.

⁽²⁶⁾ Adamczyk, M.; Johnson, D. D.; Reddy, R. E. Steroids 1997, 62, 771-775.

⁽²⁷⁾ Tremblay, M. R.; Simard, J.; Poirier, D. Bioorg. Med. Chem. Lett. 1999, 9, 2827-2832.

⁽²⁸⁾ Skaddan, M. B.; Wust, F. R.; Katzenellenbogen, J. A. J. Org. Chem. 1999, 64, 8108-8121.

⁽²⁹⁾ Ali, H.; Rousseau, J.; van Leir, J. J. Med. Chem. 1993, 36, 264-271

⁽³⁰⁾ Anstead, G.; Carlson, K.; Katzenellenbogen, J. A. Steroids 1997, 62, 268-303.

⁽³¹⁾ Dasilva, J.; van Leir, J. J. Med. Chem. 1990, 33, 430-434.

⁽³²⁾ Levesque, C.; Merand, Y.; Dufour, J.; Labrie, C.; Labrie, F. J. Med. Chem. 1991, 34, 1624-1630.

⁽³³⁾ VanBrocklin, H. F.; Liu, A.; Welch, M. J.; O'Neil, J. P.; Katzenellenbogen, J. A. Steroids 1994, 59, 34-45.

⁽³⁴⁾ Gao, H.; Katzenellenbogen, J. A.; Garg, R.; Hansch, C. Chem. Rev.

⁽³⁵⁾ Alexakis, A.; Gardette, M.; Colin, S. Tetrahedron Lett. 1988, 29, 2951-2954.

⁽³⁶⁾ Tedesco, R.; Fiaschi, R.; Napolitano, E. Synthesis 1995, 1493-1495.

⁽³⁷⁾ Tedesco, R.; Katzenellenbogen, J. A.; Napolitano, E. Tetrahedron Lett. 1997, 38, 7997-8000.

⁽³⁸⁾ Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Am. Chem. Soc. 1987, 52, 2559-2562.

Figure 5. Assignment of 7α -stereochemistry to compound 21 by 2-D NMR. (A) Structure of 21 depicting the diagnostic NOE between H_7 and H_8 . (B) COSY spectrum of B-ring proton resonances. (C) NOESY spectrum of this region.

protecting groups with 10% trichloroacetic acid was followed by acylation of the side chain amine with 12, 13, acetic anhydride, and 14 to yield 5, 7, 8, and 23 as shown in Scheme 3. The 2-nitrobenzene sulfonamide protecting group on 23 was removed with deprotonated thiophenol to provide 6.

The ability of these 7α -substituted β -estradiol derivatives to interact with ER α was assessed by comparison with β -estradiol (2) and the antiestrogen ICI 182780 (3) in a yeast whole cell assay^{39,40} that reports both estrogen- and antiestrogen-induced dimerization of ER α by activating expression of the enzyme β -galactosidase. Although competitive binding assays with purified ER α and radiolabeled or fluorescent estrogen probes might have provided a more quantitative comparison, recombinant yeast provide well-precedented

Figure 6. Dose-dependent activation of gene expression in whole yeast cells engineered to report compound-induced dimerization of $FR\alpha$

assays^{39,40} for analysis of compound-mediated ER dimerization. This yeast-based assay provided a simple, rapid, inexpensive, and nonradioactive method for generation of initial biological activity data.

As shown in Figure 6, these experiments revealed that compounds 5-8 exhibit activities nearly identical to that of ICI 182780 (3). Remarkably, the cholesterol derivatives 5-7 did not differ from the acetylated control compound 8 in ability to induce ER α dimerization, indicating that these compounds exhibit substantial affinity for estrogen receptors. Future studies will investigate the ability of lipidic estrogens to promote uptake of estrogen receptors by mammalian cells.

Acknowledgment. We thank the National Institutes of Health (CA83831) for financial support. S.L.H. thanks the Department of Defense for a predoctoral fellowship. We thank Dr. B. Katzenellenbogen for the gene encoding $ER\alpha$.

Supporting Information Available: Experimental procedures and characterization data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0171261

⁽³⁹⁾ Wang, H.; Peters, G. A.; Zeng, X.; Tang, M.; Ip, W.; Khan, S. A. J. Biol. Chem. 1995, 270, 23322-23329.

J. Biol. Chem. 1995, 270, 23322-23329.
(40) Dudley, M. W.; Sheeler, C. Q.; Wang, H.; Khan, S. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 3696-3701.

Published on Web 00/00/0000

Synthesis of a β -Estradiol-Biotin Chimera that Potently Heterodimerizes Estrogen Receptor and Streptavidin Proteins in a Yeast Three-Hybrid System

Stephen L. Hussey, Smita S. Muddana, and Blake R. Peterson*

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Received November 13, 2002; E-mail: brpeters@chem.psu.edu

Small molecules that dimerize proteins in living cells provide important tools for probing diverse biological processes. Chemical inducers of protein dimerization (CIDs) have been used to control intracellular signal transduction pathways, protein subcellular localization, and gene expression. This approach has also been used to identify protein targets of small molecule natural products. Pioneering work by Liu linked the steroid dexamethasone to the natural product FK506 to identify the protein target FKBP by screening this chimeric compound against a genetically encoded library of proteins in a yeast three-hybrid system. This system employed an engineered glucocorticoid receptor (GR) protein as a DNA-bound platform to display dexamethasone-tethered FK506 to target proteins that activate gene expression upon binding.

Although screening natural products against protein targets with yeast three-hybrid systems is a potentially elegant alternative to traditional affinity chromatography methods, dexamethasone derivatives are limited in this regard by the relatively low activity of glucocorticoids in recombinant yeast.4 This low activity relates in part to the observation that yeast-expressed GR proteins bind dexamethasone with >103-fold lower affinity than GR proteins expressed in mammalian cells.⁵ In contrast, steroidal estrogens are highly active in yeast systems,6 and 7-α-substituted estradiol derivatives such as the antiestrogen ICI 182,780 (1) bind tightly to both the estrogen receptor α (ER- α , $K_d \approx 1.0$ nM) and the estrogen receptor β (ER- β , $K_d \approx 3.6$ nM) isoforms.⁷ Furthermore, highresolution X-ray crystal structures of these proteins bound to cognate ligands are available for design of CIDs.8 To investigate these potential advantages for the analysis of natural products in yeastbased systems, we employed the previously reported protected 7-\alphasubstituted β -estradiol derivative 5^{6b} to synthesize the chimeric 7- α substituted β -estradiol derivatives 2 and 3 linked to the natural product biotin (Scheme 1). Other biotinylated β -estradiol derivatives have also been reported in the literature.9 Biotin was chosen because molecular recognition by the bacterial streptavidin (SA) protein has been extensively characterized. 10 Moreover, interactions between biotin and streptavidin have not been previously investigated in a yeast three-hybrid system, and biotin provides a simple model of more complex natural products. The dexamethasone-biotin derivative 4 was prepared from 63 (Scheme 1) to directly compare yeast three-hybrid systems on the basis of GR-dexamethasone and ERestradiol molecular recognition in vivo.

The availability of X-ray crystal structures of the ligand binding domain (LBD) of ER- β (PDB code 1HJ1)⁸ bound to the antiestrogen ICI 164,384 (structurally similar to 1) and tetrameric streptavidin (PDB code 1SWR)¹¹ bound to biotin enabled construction of a simple molecular model of a ternary protein—ligand complex (Figure 1, see Supporting Information for details). Actual protein—ligand interactions formed in vivo will be much more complex; estrogen binding to ER monomers promotes ER homodimerization, and tetrameric SA binds four biotin ligands. Modeling suggested that the longer linker of ligand 2 as compared with ligand 3 would

"(a) HCl (aq.)/dioxane (1:9). (b) D-Biotinamidocaproate NHS ester, DIEA, CH₂Cl₂/MeOH or THF. (c) D-Biotin NHS ester, DIEA, CH₂Cl₂/MeOH.

Figure 1. Schematic of the ER-SA yeast three-hybrid assay showing a hypothetical model of the ternary complex. Addition of ligand 2 heterodimerizes the DNA-bound LexA-ER fusion protein and the SA-B42 fusion protein to activate expression of a lacZ reporter gene.

be necessary to effectively bridge both binding sites and heterodimerize these proteins.

To analyze ligand-mediated protein heterodimerization in vivo, yeast were engineered to express ER- β LBD and SA fusion proteins as shown in Figure 1. In this novel yeast three-hybrid system, the DNA binding domain (DBD) of the bacterial LexA protein¹² was fused to the N-terminus of the steroid receptor to anchor this protein

Figure 2. Dose—response curves and competition experiments. Panels A—C: Fold activation = observed β-Gal. activity/β-Gal. activity without ligand. Panel D: [Ligand] = $10 \ \mu M$. [Biotin] = $100 \ \mu M$. [1] and [3] = $50 \ \mu M$.

on DNA sites that control expression of a lacZ (β -galactosidase) reporter gene. The bacterial B42 activation domain $(AD)^{12}$ was fused to the SA C-terminus to activate gene expression upon small molecule-mediated heterodimerization with the ER- β -LexA fusion protein. Analogous three-hybrid assays were constructed by substituting the ER- β LBD with the ER- α LBD and the GR LBD.

Functional SA has been expressed in bacteria fused to an N-terminal T7 peptide tag to facilitate protein folding. ¹³ We employed this approach to express functional SA proteins in yeast. However, expression of wild-type (WT) SA fused to the B42 AD resulted in a substantial reduction in the rate of yeast cell growth (data shown in the Supporting Information), presumably due to the high affinity ($K_d \approx 100 \text{ fM}$)¹¹ of SA for endogenous biotin, which is an essential vitamin. In an attempt to attenuate this toxicity, site directed mutagenesis was employed to generate the known lower-affinity SA mutants: SA Y43A ($K_d \approx 100 \text{ pM}$)^{10a} and SA W120A ($K_d \approx 100 \text{ nM}$). ¹¹ As expected, yeast expressing these mutant proteins exhibited substantially enhanced rates of cellular growth (data shown in the Supporting Information).

Addition of ligands 2 and 3 to yeast three-hybrid systems and analysis of ligand-mediated gene expression provided the dose-response curves shown in Figure 2 (panels A and B). Ligand 2 potently activated gene expression in yeast expressing either the ER- α (~380-fold activation at 10 μ M, panel A) or the ER- β LBD (~450-fold at 10 μ M, panel B) as compared with levels of gene expression in the absence of ligand. Surprisingly, the lower affinity mutant SA Y43A and SA W120A proteins were nearly as effective as SA WT in mediating this dose—response (Figure 2), revealing that moderate-affinity interactions can be detected with this approach. Analysis of the toxic SA WT protein in this three-hybrid system was possible because expression of this protein was controlled by the galactose-inducible Gal1 promoter. \text{\text{12}} As predicted from molecular modeling, ligand 3 did not significantly activate gene expression in ER-SA three-hybrid assays.

Yeast three-hybrid systems expressing cognate steroid receptor proteins and SA Y43A were employed to directly compare activation of gene expression by dexamethasone derivative 4 and β -estradiol derivative 2. Remarkably, ligand 2 was more potent and much more active (ER- β -SA_{Y43A} EC₅₀ = 700 nM; 9-fold activation at 100 nM; 60-fold (ER- β) to 140-fold (ER- α) activation at 1 μ M) than 4 (GR-SA_{Y43A} EC₅₀ = 3.6 μ M; 2-fold activation at 1 μ M, 27-fold activation at 10 μ M). Moreover, the absolute magnitude of the response with 2 was up to 70-fold greater than that with 4 at 1 μ M (Figure 2, panel C). At the high concentration of 50 μ M, ligand 2 was sufficiently potent to partially competitively inhibit

reporter gene expression. Although not commonly observed in three-hybrid systems, this autoinhibition is predicted to occur if all protein binding sites become occupied by excess ligand. Competition experiments confirmed that biotin, 1, and 3 are antagonists, establishing the specificity of these interactions (Figure 2, panel D).

Estrogen receptors expressed in yeast homodimerize upon addition of $7-\alpha$ -substituted estradiol derivatives. ^{66,14} Thus, substitution of SA-B42 with B42-ER in the three-hybrid assay enables evaluation of the cell permeability of compounds linked to β -estradiol. This analysis of compounds 1-3 revealed similar levels of ligand-mediated ER dimerization (data provided in the Supporting Information). This approach provides information regarding compound cellular permeability prior to screening of compounds against libraries of proteins.

These results indicate that $7-\alpha$ -substituted derivatives of β -estradiol can be employed as highly effective activators of gene expression in living yeast cells. Coupling these compounds to biologically active small molecules may facilitate the identification of cognate protein targets expressed in yeast three-hybrid systems.

Acknowledgment. We thank Drs. B. Katzenellenbogen, S. Nilsson, J. Liu, and T. Sano for the receptor genes. We thank the National Institutes of Health (R01-CA83831) and American Cancer Society (RSG-02-025-01) for financial support. S.L.H. thanks the Department of Defense for a predoctoral fellowship.

Supporting Information Available: Experimental procedures, additional data and control experiments, and characterization data for new compounds (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Lin, H.; Cornish, V. W. Angew. Chem., Int. Ed. 2001, 40, 871-875.
- (2) (a) Spencer, D. M.; Wandless, T. J.; Schreiber, S. L.; Crabtree, G. R. Science 1993, 262, 1019-1024.
 (b) Belshaw, P. J.; Ho, S. N.; Crabtree, G. R.; Schreiber, S. L. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 4604-4607.
 (c) Diver, S. T.; Schreiber, S. L. J. Am. Chem. Soc. 1997, 119, 5106-5109.
 (d) Lin, H. N.; Abida, W. M.; Sauer, R. T.; Cornish, V. W. J. Am. Chem. Soc. 2000, 122, 4247-4248.
- (3) Licitra, E. J.; Liu, J. O. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 12817— 12821.
- (4) Sitcheran, R.; Emter, R.; Kralli, A.; Yamamoto, K. R. Genetics 2000, 156, 963-972.
- (5) Garabedian, M. J.; Yamamoto, K. R. Mol. Biol. Cell 1992, 3, 1245– 1257.
- (6) (a) Wooge, C. H.; Nilsson, G. M.; Heierson, A.; McDonnell, D. P.; Katzenellenbogen, B. S. Mol. Endocrinol. 1992, 6, 861-869. (b) Hussey, S. L.; He, E.; Peterson, B. R. Org. Lett. 2002, 4, 415-418.
- (7) Sun, J.; Meyers, M. J.; Fink, B. E.; Rajendran, R.; Katzenellenbogen, J. A.; Katzenellenbogen, B. S. Endocrinology 1999, 140, 800-804.
- (8) Pike, A. C.; Brzozowski, A. M.; Walton, J.; Hubbard, R. E.; Thorsell, A.; Li, Y.; Gustafsson, J.; Carlquist, M. Structure 2001, 9, 145-153.
- (9) Hauptmann, H.; Paulus, B.; Kaiser, T.; Luppa, P. B. Bioconjugate Chem. 2000, 11, 537-548.
- (10) (a) Perez-Luna, V. H.; O'Brien, M. J.; Opperman, K. A.; Hampton, P. D.; Lopez, G. P.; Klumb, L.; Stayton, P. S. J. Am. Chem. Soc. 1999, 121, 6469-6478. (b) Sano, T.; Cantor, C. R. Methods Enzymol. 2000, 326, 305-311.
- (11) Freitag, S.; Le Trong, I.; Chilkoti, A.; Klumb, L.; Stayton, P. S.; Stenkamp, R. J. Mol. Biol. 1998, 279, 211—221.
- (12) Gyuris, J.; Golemis, E.; Chertkov, H.; Brent, R. Cell 1993, 75, 791-803.
- (13) Gallizia, A.; de Lalla, C.; Nardone, E.; Santambrogio, P.; Brandazza, A.; Sidoli, A.; Arosio, P. Protein Expression Purif. 1998, 14, 192-196.
- (14) Wang, H.; Peters, G. A.; Zeng, X.; Tang, M.; Ip, W.; Khan, S. A. J. Biol. Chem. 1995, 270, 23322-23329.

JA0293305