30 января 2013г.

Задача 1. Докажите методом математической индукции: **a)** $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6};$ **6)** $(5^n + 2 \cdot 3^n - 3) \vdots 8;$ **B)** $3^n > 5n + 1$ при $n \ge 3$.

Задача 2. Последовательность a_n строится по правилу $a_{n+1} = 3a_n - 2a_{n-1}$. Известно, что a_1 и a_0 натуральные числа, причем $a_1 > a_0$. Докажите, что $a_n > 2^n$.

Задача 3. Сумма первых n членов последовательности вычисляется по формуле $S_n = n^3 + 3n^2 - n$. Найдите третий член последовательности. Докажите, что все члены последовательности положительны.

Задача 4. Даны две арифметические прогрессии $p_n = 3 + 2(n-1)$ и $q_n = 2 + 3(n-1)$. Найдите сумму $p_1q_1 + p_2q_2 + \ldots + p_nq_n$.

Для получения оценки n необходимо правильно решить n-1 задачу.

CP №3

Самостоятельная работа

30 января 2013г.

Задача 1. Докажите методом математической индукции: **a)** $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6};$ **6)** $(5^n + 2 \cdot 3^n - 3) \vdots 8;$ **B)** $3^n > 5n + 1$ при $n \ge 3.$

Задача 2. Последовательность a_n строится по правилу $a_{n+1} = 3a_n - 2a_{n-1}$. Известно, что a_1 и a_0 натуральные числа, причем $a_1 > a_0$. Докажите, что $a_n > 2^n$.

Задача 3. Сумма первых n членов последовательности вычисляется по формуле $S_n = n^3 + 3n^2 - n$. Найдите третий член последовательности. Докажите, что все члены последовательности положительны.

Задача 4. Даны две арифметические прогрессии $p_n = 3 + 2(n-1)$ и $q_n = 2 + 3(n-1)$. Найдите сумму $p_1q_1 + p_2q_2 + \ldots + p_nq_n$.

Для получения оценки n необходимо правильно решить n-1 задачу.

CP №3

Самостоятельная работа

30 января 2013г.

Задача 1. Докажите методом математической индукции: **a)** $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6};$ **6)** $(5^n + 2 \cdot 3^n - 3) \vdots 8;$ **B)** $3^n > 5n + 1$ при $n \geqslant 3.$

Задача 2. Последовательность a_n строится по правилу $a_{n+1} = 3a_n - 2a_{n-1}$. Известно, что a_1 и a_0 натуральные числа, причем $a_1 > a_0$. Докажите, что $a_n > 2^n$.

Задача 3. Сумма первых n членов последовательности вычисляется по формуле $S_n = n^3 + 3n^2 - n$. Найдите третий член последовательности. Докажите, что все члены последовательности положительны.

Задача 4. Даны две арифметические прогрессии $p_n = 3 + 2(n-1)$ и $q_n = 2 + 3(n-1)$. Найдите сумму $p_1q_1 + p_2q_2 + \ldots + p_nq_n$.

Для получения оценки n необходимо правильно решить n-1 задачу.

CP №3

Самостоятельная работа

30 января 2013г.

Задача 1. Докажите методом математической индукции: **a)** $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6};$ **6)** $(5^n + 2 \cdot 3^n - 3) \vdots 8;$ **B)** $3^n > 5n + 1$ при $n \ge 3.$

Задача 2. Последовательность a_n строится по правилу $a_{n+1} = 3a_n - 2a_{n-1}$. Известно, что a_1 и a_0 натуральные числа, причем $a_1 > a_0$. Докажите, что $a_n > 2^n$.

Задача 3. Сумма первых n членов последовательности вычисляется по формуле $S_n = n^3 + 3n^2 - n$. Найдите третий член последовательности. Докажите, что все члены последовательности положительны.

Задача 4. Даны две арифметические прогрессии $p_n = 3 + 2(n-1)$ и $q_n = 2 + 3(n-1)$. Найдите сумму $p_1q_1 + p_2q_2 + \ldots + p_nq_n$.