K-Means Clustering

- Select k number of classes and initialize their respective center points
- The center points are vectors of the same length as each data point vector
- Each data point is classified to be in the group whose center is closest to it
- Based on these classified points, recompute the group center
- Repeat these steps until the expected result
- Consider the following 2D points and find 3 cluster centroids for those

X	1	-3	0	-7	0	6	2	-1	0	10
Y	2	6	3	-4	7	9	3	-1	-100	10

X	1	-3	0	-7	0	6	2	-1	0	10
Y	2	6	3	-4	7	9	3	-1	-100	10
Cluster										
Distance (C1)										
Distance (C2)										
Distance (C3)										

C1	(1,2)
C2	(-3,6)
С3	(0,3)

For simplicity, we will use squared distances

X	1	-3	0	-7	0	6	2	-1	0	10	
Y	2	6	3	-4	7	9	3	-1	-100	10	
Cluster	1	2	3	3	2	3	1	1	1	1	
Distance (C1)	0	32	2	100	26	74	2	13	10405	145	
Distance (C2)	32	0	18	116	10	90	34	53	11245	185	
Distance (C3)	2	18	0	98	16	72	4	17	10609	149	
C1		(1,2)							(2	.4,-17.2)	
C2	(-3,6)		Upo	Update the cluster centroid				C2		(-1.5,6.5)	
C3 (0.3)				-				С3		(-0.3,2.7)	

C3

(0,3)

How to Find a Proper k value?

A number of analysis are used:

- Elbow Method
- Average Silhouette Method
- Gap Statistic Method

Elbow Method

- Compute clustering algorithm for different values of k
- For each k, calculate the sum of intra-cluster squared error (sse)
- Plot the curve of **sse vs k**
- The location of a bend (knee) in the plot is generally considered as an indicator of the appropriate number (k) of clusters

Elbow Method

Average Silhouette Method

- Compute clustering algorithm for different values of k
- For each k, calculate the average silhouette of observations (avg.sil)
- Plot the curve of avg.sil vs k
- The location of the maximum is considered as the appropriate number (k) of clusters
- Silhouette Coefficient is calculated as:

$$silCof = rac{eta - lpha}{\max(eta, lpha)}$$
 $lpha = average intra - cluster distance$ $eta = minimum average inter - cluster distance$

Average Silhouette Method

0.0

Eruption time in mins

Silhouette coefficient values

Drawbacks of K-Means

- Works poor with complex geometric shapes of clusters
- Can't handle outlier
- Can't guarantee to find the global optimum clusters
- Can't handle non-numerical data

• ...

Drawbacks of K-Means

Assignment

Find the optimum number of cluster for the given dataset using Elbow Method.

Dataset Preparation: If your student id is ABCD-E-FG-HIJ

X	-1	7	2	0	9	-3	5	8	-6	4
Υ	Α	В	С	D	E	F	G	Н	I	J

Thank You

References

- https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
- https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a
- https://www.geeksforgeeks.org/ml-determine-the-optimal-value-of-k-in-k-means-clustering/#:~:text=There%20is%20a%20popular%20method,fewer%20elements%20in%20the%20cluster.
- http://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/

•