Institut für Stochastik

Prof. Dr. D. Hug · Dr. F. Nestmann

Stochastische Geometrie (SS2019)

Übungsblatt 11

Aufgabe 1

Zeigen Sie, dass das in der Vorlesung definierte Maß μ auf G_d linksinvariant ist.

Aufgabe 2

Es seien $K, K_0 \in \mathcal{K}^d$ mit $K \subset K_0$ und $V_d(K_0) > 0$. Weiter sei $q \in \{0, \dots, d-1\}$ und

$$A_{K_0} := \{ E \in A(d,q) : K_0 \cap E \neq \emptyset \}.$$

Eine A(d,q)-wertige Zufallsvariable X_q mit Verteilung $\frac{1}{\mu_q(A_{K_0})}\mu_q(\cdot \cap A_{K_0})$ bezeichnet man als zufällige q-Ebene in K_0 .

- (a) Bestimmen Sie die Wahrscheinlichkeit $\mathbb{P}(X_q \cap K \neq \emptyset)$. Dabei können Sie die inneren Volumina von K und K_0 als bekannt voraussetzen.
- (b) Es seien $d=2,\ e\in S^1$ und $0< r\le 1$. Bestimmen Sie die Wahrscheinlichkeit dafür, dass eine zufällige Gerade in B(0,1) die Strecke [-re,re] schneidet.

Aufgabe 3

Es seien $K \in \mathcal{K}^d$, $j \in \{0, \dots, d-1\}$, $r \ge 0$ und

$$A(r) := \{ E_{d-j-1} \in A(d, d-j-1) : K \cap E_{d-j-1} = \emptyset, (K+rB^d) \cap E_{d-j-1} \neq \emptyset \}$$

(a) Beweisen Sie die folgende Version der Steiner-Formel:

$$V_j(K+rB^d) = \sum_{i=0}^j r^{j-i} \binom{d-i}{d-j} \frac{\kappa_{d-i}}{\kappa_{d-j}} V_i(K).$$

(b) Bestimmen Sie mithilfe von (a)

$$\lim_{r \to 0} \frac{1}{r} \mu_{d-j-1}(A(r)).$$

Man kann diesen Grenzwert interpretieren als das Maß der (d-j-1)-dimensionalen Ebenen, die K berühren.

Aufgabe 4

Es sei G eine lokalkompakte Gruppe mit abzählbarer Basis und der Hausdorffeigenschaft (später: $G = SO_d$). Sei μ ein Radon-Maß auf G, d.h. $\mu(A) < \infty$ für kompakte $A \in \mathcal{B}(G)$. Das Maß μ heißt links-invariant falls $\mu(gA) = \mu(A)$, rechts-invariant falls $\mu(Ag) = \mu(A)$ und inversions-invariant falls $\mu(A^{-1}) = \mu(A)$ für alle $g \in G$ und $A \in \mathcal{B}(G)$ gilt. Falls μ alle drei Eigenschaften hat, so nennt man es invariant. Ein links-invariantes (rechts-invariantes, invariantes) Maß auf $\mathcal{B}(G)$, welches nicht das Nullmaß ist, heißt linkes Haarsches Maß (rechtes Haarsches Maß, Haarsches Maß).

Zeigen Sie, dass es auf der Drehgruppe SO_d ein eindeutiges Haarsches Maß ν mit $\nu(SO_d) = 1$ gibt.

Allgemeine Hinweise: (nicht zu zeigen, siehe z.B. Schneider & Weil, Kapitel 13):

- (a) Jedes linke Haarsche Maß auf einer kompakten Gruppe G mit einer abzählbaren Basis ist invariant.
- (b) Es sei G eine lokalkompakte Gruppe mit einer abzählbaren Basis und μ ein Haarsches Maß und ν ein linkes Haarsches Maß. Dann gilt $\mu = c\nu$ für ein c > 0.
- (c) Die Drehgruppe SO_d ist eine kompakte topologische Gruppe mit abzählbarer Basis.

Tipps zum Vorgehen: Verwenden Sie das sphärische Lebesgue-Ma β σ auf S^{d-1} , das durch

$$\sigma(A) := \int_{B^d} \mathbb{1}\left\{\frac{x}{\|x\|} \in A\right\} dx, \quad A \in \mathcal{B}(S^{d-1}),$$

gegeben ist. Mithilfe einer geeigneten Abbildung $\psi: (S^{d-1})^d \to SO_d$ kann das (nicht normierte) Maß

$$\bar{\nu}(\cdot) := \int_{(S^{d-1})^d} \mathbb{1}\{\psi(x_1, \dots, x_d) \in \cdot\} \, \sigma^d(\mathrm{d}(x_1, \dots, x_d))$$

definiert werden.