CS516: Parallelization of Programs

Assignment-2

Due date: September 5, 2022 11:59 pm

Question-1: [100 Points]

Consider a Matrix M of size m*m having integer elements. Write a program under the following versions the following scenarios that takes input M and gives output matrix N (size m*m) by applying the below stencil operation.

N[i][j] = M[i-1][j] + M[i+1][j] + M[i][j-1] + M[i][j-1]

Assume that M[i][j] = 0 if i<0 or i>=m or j<0 or j>=m

Version-1: Implement a sequential version of the program using C/C++ language.

Version-2: Implement a parallel version of the program using CUDA. Use global memory and launch only one thread block to compute, where each thread is responsible for computing one element of the N[i][j].

Version-3: Implement a parallel version of the program using CUDA. Use global memory memory, launch as many threads and thread blocks as needed, and use the concept of tiling discussed in class.

Version-4: Repeat Version-3 using shared memory for storing the input matrix.

Submission Instructions:

- 1. Prepare your solutions in a zip file.
- 2. The zip file should contains 4 files:
 - a. File named as "seq.c", which is the implementation for Version-1
 - b. File named as "parallel_1tb.cu", which is the implementation for Version-2
 - c. File named as "*parallel_multiple_tb.cu*", which is the implementation for Version-3
 - d. File named as "parallel_shared_memory.cu", which is the implementation for Version-4
 - e. A **README** file containing the instructions to execute both programs.
 - f. A report named "report.pdf", which is described below.
- 3. Your report should contain the following
 - a. Report the GPU hardware parameters that you are using. You can use NVIDIA Documentation to obtain them.
 - i. GPU device name (such as NVIDIA Tesla T4, NVIDIA K80, etc).
 - ii. Number of streaming multiprocessors present in the GPU
 - iii. Shared memory available in each SM
 - iv. Maximum size of the thread block
 - b. Report the maximum value for m that your Version-2 supports
 - c. Prepare a table as shown in Table 1 that compares the execution time of your Version-1, Version-3 and Version-4 implementations. To measure the execution time, you can use the *gettimeofday* function; an example of usage is listed here.

Matrix Size (m*m)	Thread Block Size	Number of Thread Blocks	Version-1 Execution Time	Version-3 Execution Time	Version-4 Execution Time
128*128	1024	16	To be filled	To be filled	To be filled
256*256	1024	64	To be filled	To be filled	To be filled
512*512	1024	256	To be filled	To be filled	To be filled
1024*1024	1024	1024	To be filled	To be filled	To be filled
2048*2048	1024	4096	To be filled	To be filled	To be filled
4096*4096	1024	16384	To be filled	To be filled	To be filled
8192*8192	1024	65536	To be filled	To be filled	To be filled