1

Inference for SRL Report

Capita Selecta AI (Probabilistic Programming) 2016-2017

Alexander Tang s0189509 Daniel Andrés Pérez Pérez r0605947

I. Probabilistic Inference Using Weighted Model Counting

A. PGM to CNF

Table I shows the semantics of the domain variables used for those tasks.

Tables II and III show the logical variables used for encoding the Bayesian Network.

Table VI represents the encoded Bayesian Network using ENC1 and table V contains the corresponding weights.

Likewise, table VII represents the encoded Bayesian Network using ENC2 and table VIII contains the corresponding weights.

Table I. VARIABLES AND DOMAIN SEMANTICS

Variable	Domain
B = Burglary	b1 = theres is a burglary
	b2 = theres is no burglary
	e1 = there is a heavy earthquake
E = Earthquake	e2 = there is a mild earthquake
_	e3 = there is no earthquake
A = Alarm	a1 = alarm rings
	a2 = alarm does not ring
J = John	j1 = John calls
J = John	j2 = John does not call
M - Mory	m1 = Mary calls
M = Mary	m2 = Mary does not call

Table II. LOGICAL VARIABLES USING ENC1

Network variables	Indicator Variable	СТР
В	$\lambda_{b1}, \lambda_{b2}$	θ_{b1},θ_{b2}
Е	$\lambda_{e1}, \lambda_{e2}, \lambda_3$	$\theta_{e1},\theta_{e2},\theta_3$
A	$\lambda_{a1},\lambda_{a2}$	$\begin{array}{l} \theta_{a1 b1,e1}, \theta_{a1 b1,e2}, \theta_{a1 b1,e3}, \\ \theta_{a1 b2,e1}, \theta_{a1 b2,e2}, \theta_{a1 b2,e3}, \\ \theta_{a2 b1,e1}, \theta_{a2 b1,e2}, \theta_{a2 b1,e3}, \\ \theta_{a2 b2,e1}, \theta_{a2 b2,e2}, \theta_{a2 b2,e3} \end{array}$
J	$\lambda_{j1}, \lambda_{j2}$	$\theta_{j1 a1}, \theta_{j2 a1}, \theta_{j1 a2}, \theta_{j2 a2}$
M	$\lambda_{m1}, \lambda_{m2}$	$\theta_{m1 a1}, \theta_{m2 a1}, \theta_{m1 a2}, \theta_{m2 a2}$

Table III. LOGICAL VARIABLES USING ENC2

Variables	Indicator Variable	СТР
В	$\lambda_{b1}, \lambda_{b2}$	$ ho_{b1}$
E	$\lambda_{e1}, \lambda_{e2}, \lambda_3$	$ ho_{e1}, ho_{e2}$
A	$\lambda_{a1}, \lambda_{a2}$	$\rho_{a1 b1,e1}, \rho_{a1 b1,e2}, \rho_{a1 b1,e3}, \\ \rho_{a1 b2,e1}, \rho_{a1 b2,c2}, \rho_{a1 b2,e3}$
J	$\lambda_{j1}, \lambda_{j2}$	$\rho_{j1 a1}, \rho_{j1 a2}$
M	$\lambda_{m1}, \lambda_{m2}$	$\rho_{m1 a1}, \rho_{m1 a2}$

Table IV. CNF representation of Bayesian network using ENC1

Variables		CNF
В	$\begin{array}{c} \lambda_{b1} \vee \lambda_{b2} \\ \neg \lambda_{b1} \vee \neg \lambda_{b2} \end{array}$	$ \lambda_{b1} \Leftrightarrow \theta_{b1} \\ \lambda_{b2} \Leftrightarrow \theta_{b2} $
Е	$\lambda_{e1} \lor \lambda_{e2} \lor \lambda_{e3}$ $\neg \lambda_{e1} \lor \neg \lambda_{e2}$ $\neg \lambda_{e1} \lor \neg \lambda_{e3}$ $\neg \lambda_{e2} \lor \neg \lambda_{e3}$	$\lambda_{e1} \Leftrightarrow \theta_{e1}$ $\lambda_{e2} \Leftrightarrow \theta_{e2}$ $\lambda_{e3} \Leftrightarrow \theta_{e3}$
A	$\lambda_{a1} \vee \lambda_{a2}$ $\neg \lambda_{a1} \vee \neg \lambda_{a2}$	$\begin{array}{c} \lambda_{a1} \wedge \lambda_{b1} \wedge \lambda_{e1} \Leftrightarrow \theta_{a1 b1,e1} \\ \lambda_{a1} \wedge \lambda_{b1} \wedge \lambda_{e2} \Leftrightarrow \theta_{a1 b1,e2} \\ \lambda_{a1} \wedge \lambda_{b1} \wedge \lambda_{e3} \Leftrightarrow \theta_{a1 b1,e3} \\ \lambda_{a1} \wedge \lambda_{b2} \wedge \lambda_{e1} \Leftrightarrow \theta_{a1 b2,e1} \\ \lambda_{a1} \wedge \lambda_{b2} \wedge \lambda_{e2} \Leftrightarrow \theta_{a1 b2,e2} \\ \lambda_{a1} \wedge \lambda_{b2} \wedge \lambda_{e3} \Leftrightarrow \theta_{a1 b2,e3} \\ \lambda_{a2} \wedge \lambda_{b1} \wedge \lambda_{e1} \Leftrightarrow \theta_{a2 b1,e1} \\ \lambda_{a2} \wedge \lambda_{b1} \wedge \lambda_{e2} \Leftrightarrow \theta_{a2 b1,e2} \\ \lambda_{a2} \wedge \lambda_{b1} \wedge \lambda_{e3} \Leftrightarrow \theta_{a2 b1,e3} \\ \lambda_{a2} \wedge \lambda_{b2} \wedge \lambda_{e1} \Leftrightarrow \theta_{a2 b2,e1} \\ \lambda_{a2} \wedge \lambda_{b2} \wedge \lambda_{e2} \Leftrightarrow \theta_{a2 b2,e2} \\ \lambda_{a2} \wedge \lambda_{b2} \wedge \lambda_{e3} \Leftrightarrow \theta_{a2 b2,e2} \\ \lambda_{a2} \wedge \lambda_{b2} \wedge \lambda_{e3} \Leftrightarrow \theta_{a2 b2,e3} \end{array}$
J	$\begin{array}{c} \lambda_{j1} \vee \lambda_{j2} \\ \neg \lambda_{j1} \vee \neg \lambda_{j2} \end{array}$	$\lambda_{j1} \wedge \lambda_{a1} \Leftrightarrow \theta_{j1 a1}$ $\lambda_{j1} \wedge \lambda_{a2} \Leftrightarrow \theta_{j1 a2}$ $\lambda_{j2} \wedge \lambda_{a1} \Leftrightarrow \theta_{j2 a1}$ $\lambda_{j2} \wedge \lambda_{a2} \Leftrightarrow \theta_{j2 a2}$
М	$\lambda_{m1} \vee \lambda_{m2} \\ \neg \lambda_{m1} \vee \neg \lambda_{m2}$	$\lambda_{m1} \wedge \lambda_{a1} \Leftrightarrow \theta_{m1 a1}$ $\lambda_{m1} \wedge \lambda_{a2} \Leftrightarrow \theta_{m1 a2}$ $\lambda_{m2} \wedge \lambda_{a1} \Leftrightarrow \theta_{m2 a1}$ $\lambda_{m2} \wedge \lambda_{a2} \Leftrightarrow \theta_{m2 a2}$

Table V. WEIGHTS ASSOCIATION USING ENC1

Weights	Value
$W(\theta_{b1})$	0.7
$W(\theta_{b2})$	0.3
$W(\theta_{e1})$	0.01
$W(\theta_{e2})$	0.19
$W(\theta_{e3})$	0.80
$W(\theta_{a1 b1,e1})$	0.90
$W(\theta_{a1 b1.e2})$	0.85
$W(\theta_{a1 b1,e3})$	0.80
$W(\theta_{a1 b2,e1})$	0.30
$W(\theta_{a1 b2,e2})$	0.10
$W(\theta_{a1 b2,e3})$	0.00
$W(\theta_{a2 b1,e1})$	0.10
$W(\theta_{a2 b1.e2})$	0.15
$W(\theta_{a2 b1,e3})$	0.20
$W(\theta_{a2 b2,e1})$	0.70
$\mathrm{W}(\theta_{a2 b2,e2})$	0.90
$W(\theta_{a2 b2,e3})$	1.00
$W(\theta_{j1 a1})$	0.80
$W(\theta_{j1 a2})$	0.10
$W(\theta_{j2 a1})$	0.20
$W(\theta_{j2 a2})$	0.90
$W(\theta_{m1 a1})$	0.80
$W(\theta_{m1 a2})$	0.10
$W(\theta_{m2 a1})$	0.20
$W(\theta_{m2 a2})$	0.90

Table VI. Full CNF representation of Bayesian network using ENC1

Variables		CNF
В	$\begin{array}{c} \lambda_{b1} \vee \lambda_{b2} \\ \neg \lambda_{b1} \vee \neg \lambda_{b2} \end{array}$	$ \begin{array}{l} \neg \lambda_{b1} \lor \theta_{b1} \\ \lambda_{b1} \lor \neg \theta_{b1} \\ \neg \lambda_{b2} \lor \theta_{b2} \\ \lambda_{b2} \lor \neg \theta_{b2} \end{array} $
Е	$\lambda_{e1} \lor \lambda_{e2} \lor \lambda_{e3}$ $\neg \lambda_{e1} \lor \neg \lambda_{e2}$ $\neg \lambda_{e1} \lor \neg \lambda_{e3}$ $\neg \lambda_{e2} \lor \neg \lambda_{e3}$	
A	$\lambda_{a1} \lor \lambda_{a2}$ $\neg \lambda_{a1} \lor \neg \lambda_{a2}$	$ \begin{array}{c} \neg\lambda_{a1}\vee\neg\lambda_{b1}\vee\neg\lambda_{e1}\vee\theta_{a1 b1,e1} \\ (\lambda_{a1}\vee\neg\theta_{a1 b1,e1})\wedge(\lambda_{b1}\vee\neg\theta_{a1 b1,e1})\wedge(\lambda_{e1}\vee\neg\theta_{a1 b1,e1}) \\ \neg\lambda_{a1}\vee\neg\lambda_{b1}\vee\neg\lambda_{e2}\vee\theta_{a1 b1,e2} \\ (\lambda_{a1}\vee\neg\theta_{a1 b1,e2})\wedge(\lambda_{b1}\vee\neg\theta_{a1 b1,e2})\wedge(\lambda_{e2}\vee\neg\theta_{a1 b1,e2}) \\ \neg\lambda_{a1}\vee\neg\lambda_{b1}\vee\neg\lambda_{e3}\vee\theta_{a1 b1,e3} \\ (\lambda_{a1}\vee\neg\theta_{a1 b1,e3})\wedge(\lambda_{b1}\vee\neg\theta_{a1 b1,e3})\wedge(\lambda_{e3}\vee\neg\theta_{a1 b1,e3}) \\ \neg\lambda_{a1}\vee\neg\lambda_{b2}\vee\neg\lambda_{e1}\vee\theta_{a1 b2,e1} \\ (\lambda_{a1}\vee\neg\theta_{a1 b1,e3})\wedge(\lambda_{b2}\vee\neg\theta_{a1 b2,e1})\wedge(\lambda_{e1}\vee\neg\theta_{a1 b2,e1}) \\ \neg\lambda_{a1}\vee\neg\lambda_{b2}\vee\neg\lambda_{e1}\vee\theta_{a1 b2,e1} \\ (\lambda_{a1}\vee\neg\theta_{a1 b2,e1})\wedge(\lambda_{b2}\vee\neg\theta_{a1 b2,e1})\wedge(\lambda_{e1}\vee\neg\theta_{a1 b2,e1}) \\ \neg\lambda_{a1}\vee\neg\lambda_{b2}\vee\neg\lambda_{e2}\vee\theta_{a1 b2,e2} \\ (\lambda_{a1}\vee\neg\theta_{a1 b2,e2})\wedge(\lambda_{b2}\vee\neg\theta_{a1 b2,e2})\wedge(\lambda_{e2}\vee\neg\theta_{a1 b2,e2}) \\ \neg\lambda_{a1}\vee\neg\lambda_{b2}\vee\neg\lambda_{e3}\vee\theta_{a1 b2,e3} \\ (\lambda_{a1}\vee\neg\theta_{a1 b2,e3})\wedge(\lambda_{b2}\vee\neg\theta_{a1 b2,e3})\wedge(\lambda_{e3}\vee\neg\theta_{a1 b2,e3}) \\ \neg\lambda_{a2}\vee\neg\lambda_{b1}\vee\neg\lambda_{e1}\vee\theta_{a2 b1,e1} \\ (\lambda_{a2}\vee\neg\theta_{a2 b1,e1})\wedge(\lambda_{b1}\vee\neg\theta_{a2 b1,e1})\wedge(\lambda_{e1}\vee\neg\theta_{a2 b1,e1}) \\ \neg\lambda_{a2}\vee\neg\lambda_{b1}\vee\neg\lambda_{e2}\vee\theta_{a2 b1,e2} \\ (\lambda_{a2}\vee\neg\theta_{a2 b1,e2})\wedge(\lambda_{b1}\vee\neg\theta_{a2 b1,e2})\wedge(\lambda_{e2}\vee\neg\theta_{a2 b1,e2}) \\ \neg\lambda_{a2}\vee\neg\lambda_{b1}\vee\neg\lambda_{e3}\vee\theta_{a2 b1,e3} \\ (\lambda_{a2}\vee\neg\theta_{a2 b1,e3})\wedge(\lambda_{b1}\vee\neg\theta_{a2 b1,e3})\wedge(\lambda_{e3}\vee\neg\theta_{a2 b1,e3}) \\ \neg\lambda_{a2}\vee\neg\lambda_{b2}\vee\neg\lambda_{e1}\vee\theta_{a2 b2,e1} \\ (\lambda_{a2}\vee\neg\theta_{a2 b2,e1})\wedge(\lambda_{b1}\vee\neg\theta_{a2 b2,e1})\wedge(\lambda_{e1}\vee\neg\theta_{a2 b2,e1}) \\ \neg\lambda_{a2}\vee\neg\lambda_{b2}\vee\neg\lambda_{e1}\vee\theta_{a2 b2,e2} \\ (\lambda_{a2}\vee\neg\theta_{a2 b2,e2})\wedge(\lambda_{b2}\vee\neg\theta_{a2 b2,e2})\wedge(\lambda_{e2}\vee\neg\theta_{a2 b2,e2}) \\ \neg\lambda_{a2}\vee\neg\lambda_{b2}\vee\neg\lambda_{e3}\vee\theta_{a2 b2,e3} \\ (\lambda_{a2}\vee\neg\theta_{a2 b2,e3})\wedge(\lambda_{b2}\vee\neg\theta_{a2 b2,e3})\wedge(\lambda_{e3}\vee\neg\theta_{a2 b2,e3}) \\ \neg\lambda_{a2}\vee\neg\lambda_{b2}\vee\neg\lambda_{e3}\vee\theta_{e3 b2,e3} \\ (\lambda_{a2}\vee\neg\theta_{a2 b2,e$
J	$\lambda_{j1} \vee \lambda_{j2}$ $\neg \lambda_{j1} \vee \neg \lambda_{j2}$	$ \begin{array}{l} \neg \lambda_{j1} \lor \neg \lambda_{a1} \lor \theta_{j1 a1} \\ (\lambda_{j1} \lor \neg \theta_{j1 a1}) \land (\lambda_{a1} \lor \neg \theta_{j1 a1}) \\ \neg \lambda_{j1} \lor \neg \lambda_{a2} \lor \theta_{j1 a2} \\ (\lambda_{j1} \lor \neg \theta_{j1 a2}) \land (\lambda_{a2} \lor \neg \theta_{j1 a2}) \\ \neg \lambda_{j2} \lor \neg \lambda_{a1} \lor \theta_{j2 a1} \\ (\lambda_{j2} \lor \neg \theta_{j2 a1}) \land (\lambda_{a1} \lor \neg \theta_{j2 a1}) \\ \neg \lambda_{j2} \lor \neg \lambda_{a2} \lor \theta_{j2 a2} \\ (\lambda_{j2} \lor \neg \theta_{j2 a2}) \land (\lambda_{a2} \lor \neg \theta_{j2 a2}) \end{array} $
М	$\lambda_{m1} \vee \lambda_{m2}$ $\neg \lambda_{m1} \vee \neg \lambda_{m2}$	$ \begin{array}{c} \neg \lambda_{m1} \vee \neg \lambda_{a1} \vee \theta_{m1 a1} \\ (\lambda_{m1} \vee \neg \theta_{m1 a1}) \wedge (\lambda_{a1} \vee \neg \theta_{m1 a1}) \\ \neg \lambda_{m1} \vee \neg \lambda_{a2} \vee \theta_{m1 a2} \\ (\lambda_{m1} \vee \neg \theta_{m1 a2}) \wedge (\lambda_{a2} \vee \neg \theta_{m1 a2}) \\ \neg \lambda_{m2} \vee \neg \lambda_{a1} \vee \theta_{m2 a1} \\ (\lambda_{m2} \vee \neg \theta_{m2 a1}) \wedge (\lambda_{a1} \vee \neg \theta_{m2 a1}) \\ \neg \lambda_{m2} \vee \neg \lambda_{a2} \vee \theta_{m2 a2} \\ (\lambda_{m2} \vee \neg \theta_{m2 a2}) \wedge (\lambda_{a2} \vee \neg \theta_{m2 a2}) \end{array} $

Table VII. CNF REPRESENTATION OF BAYESIAN NETWORK USING ENC2

Variables		CNF
В	$\begin{array}{c} \lambda_{b1} \vee \lambda_{b2} \\ \neg \lambda_{b1} \vee \neg \lambda_{b2} \end{array}$	$ \begin{array}{c} \rho_{b1} \Rightarrow \lambda_{b1} \\ \neg \rho_{b1} \Rightarrow \lambda_{b2} \end{array} $
Е	$\lambda_{e1} \lor \lambda_{e2} \lor \lambda_{e3}$ $\neg \lambda_{e1} \lor \neg \lambda_{e2}$ $\neg \lambda_{e1} \lor \neg \lambda_{e3}$ $\neg \lambda_{e2} \lor \neg \lambda_{e3}$	$ \rho_{e1} \Rightarrow \lambda_{e1} \neg \rho_{e1} \wedge \rho_{e2} \Rightarrow \lambda_{e2} \neg \rho_{e1} \wedge \neg \rho_{e2} \Rightarrow \lambda_{e3} $
A	$\lambda_{a1} \vee \lambda_{a2}$ $\neg \lambda_{a1} \vee \neg \lambda_{a2}$	$\begin{array}{c} \lambda_{b1} \wedge \lambda_{e1} \wedge \rho_{a1 b1,e1} \Rightarrow \lambda_{a1} \\ \lambda_{b1} \wedge \lambda_{e2} \wedge \rho_{a1 b1,e2} \Rightarrow \lambda_{a1} \\ \lambda_{b1} \wedge \lambda_{e3} \wedge \rho_{a1 b1,e3} \Rightarrow \lambda_{a1} \\ \lambda_{b2} \wedge \lambda_{e1} \wedge \rho_{a1 b2,e1} \Rightarrow \lambda_{a1} \\ \lambda_{b2} \wedge \lambda_{e2} \wedge \rho_{a1 b2,e2} \Rightarrow \lambda_{a1} \\ \lambda_{b2} \wedge \lambda_{e3} \wedge \rho_{a1 b2,e3} \Rightarrow \lambda_{a1} \\ \lambda_{b1} \wedge \lambda_{e3} \wedge \rho_{a1 b2,e3} \Rightarrow \lambda_{a1} \\ \lambda_{b1} \wedge \lambda_{e1} \wedge \neg \rho_{a1 b1,e1} \Rightarrow \lambda_{a2} \\ \lambda_{b1} \wedge \lambda_{e2} \wedge \neg \rho_{a1 b1,e2} \Rightarrow \lambda_{a2} \\ \lambda_{b1} \wedge \lambda_{e3} \wedge \neg \rho_{a1 b1,e3} \Rightarrow \lambda_{a2} \\ \lambda_{b2} \wedge \lambda_{e1} \wedge \neg \rho_{a1 b2,e1} \Rightarrow \lambda_{a2} \\ \lambda_{b2} \wedge \lambda_{e2} \wedge \neg \rho_{a1 b2,e2} \Rightarrow \lambda_{a2} \\ \lambda_{b2} \wedge \lambda_{e3} \wedge \neg \rho_{a1 b2,e3} \Rightarrow \lambda_{a2} \\ \lambda_{b2} \wedge \lambda_{e3} \wedge \neg \rho_{a1 b2,e3} \Rightarrow \lambda_{a2} \\ \end{array}$
J	$\begin{array}{c} \lambda_{j1} \vee \lambda_{j2} \\ \neg \lambda_{j1} \vee \neg \lambda_{j2} \end{array}$	$\lambda_{a1} \wedge \rho_{j1 a1} \Rightarrow \lambda_{j1}$ $\lambda_{a2} \wedge \rho_{j1 a2} \Rightarrow \lambda_{j1}$ $\lambda_{a1} \wedge \neg \rho_{j1 a1} \Rightarrow \lambda_{j2}$ $\lambda_{a2} \wedge \neg \rho_{j1 a2} \Rightarrow \lambda_{j2}$
M	$\lambda_{m1} \vee \lambda_{m2}$ $\neg \lambda_{m1} \vee \neg \lambda_{m2}$	$\lambda_{a1} \wedge \rho_{m1 a1} \Rightarrow \lambda_{m1}$ $\lambda_{a2} \wedge \rho_{m1 a2} \Rightarrow \lambda_{m1}$ $\lambda_{a1} \wedge \neg \rho_{m1 a1} \Rightarrow \lambda_{m2}$ $\lambda_{a2} \wedge \neg \rho_{m1 a2} \Rightarrow \lambda_{m2}$

Table VIII. WEIGHTS ASSOCIATION USING ENC2

Weights	Value
$W(\rho_{b1})$	0.7
$W(\neg \rho_{b1})$	0.3
$W(\rho_{e1})$	0.01
$W(\rho_{e2})$	0.19
$W(\neg \rho_{e1})$	1-0.01 = 0.99
$W(\neg \rho_{e2})$	1-0.19 = 0.81
$W(\rho_{a1 b1,e1})$	0.90
$W(\neg \rho_{a1 b1,e1})$	1-0.90=0.10
$W(\rho_{a1 b1,e2})$	0.85
$W(\neg \rho_{a1 b1,e2})$	1-0.85=0.15
$W(\rho_{a1 b1,e3})$	0.80
$W(\neg \rho_{a1 b1,e3})$	1-0.80=0.20
$W(\rho_{a1 b2,e1})$	0.30
$W(\neg \rho_{a1 b2,e1})$	1-0.30=0.70
$W(\rho_{a1 b2,e2})$	0.10
$W(\neg \rho_{a1 b2,e2})$	1-0-10=0.90
$W(\rho_{a1 b2,e3})$	0
$W(\neg \rho_{a1 b2,e3})$	1-0=1
$W(\rho_{j1 a1})$	0.80
$W(\neg \rho_{j1 a1})$	1-0.80=0.20
$W(\rho_{j1 a2})$	0.10
$W(\neg \rho_{j1 a2})$	1-0.10=0.90

B. SRL to CNF

First the program must be grounded, while taking into account \mathbf{Q} and \mathbf{E} . In this case the evidence set \mathbf{E} is empty (there is no evidence available). The grounding process of the queries will be described step-by-step in listings 1 and 2. If only $\mathbf{query}(\mathbf{path}(1,5))$ was considered, then $\mathbf{edge}(5,6)$ and $\mathbf{edge}(2,6)$ would have been irrelevant. With the inclusion of $\mathbf{query}(\mathbf{path}(1,6))$ all edges become relevant.

```
% grounding path(1,5) becomes:
path(1,5) :- edge(1,3), 5 \== 3, path(3,5).
path(1,5) :- edge(1,2), 5 \== 2, path(2,5).
% grounding path(3,5)
path(3,5) :- edge(3,4), 5 \== 4, path(4,5).
% grounding path(4,5).
path(4,5) :- edge(4,5).
% grounding path(2,5)
path(2,5) :- edge(2,5).
% putting the results together (and resolving the inequalities) gives:
path(1,5) :- edge(1,3), edge(3,4), edge(4,5).
path(1,5) :- edge(1,2), edge(2,5).

Listing 1: Grounding of path(1,5)
```

```
% grounding path(1,6) becomes:
path(1,6) := edge(1,3), 6 = 3, path(3,6).
path(1,6) := edge(1,2), 6 = 2, path(2,6).
% grounding path (3,6)
path(3,6) := edge(3,4), 6 = 4, path(4,6).
% grounding path (4,6).
path(4,6) := edge(4,5), 6 = 5, path(5,6).
% grounding path (5,6)
path(5,6) :- edge(5,6).
% grounding path (2,6)
path(2,6) := edge(2,6).
path(2,6) := edge(5,6), 6 = 5, path(5,6).
% path(5,6) has already been grounded
% putting the results together (and resolving the inequalities) gives:
path(1,6) := edge(1,3), edge(3,4), edge(4,5), edge(5,6).
path(1,6) := edge(1,2), edge(2,5), edge(5,6).
path(1,6) := edge(1,2), edge(2,6).
```

Listing 2: Grounding of path(1,6)

The second step is to find an equivalent CNF of the ground program. Given the grounded rules $\mathbf{w} := \mathbf{r}$ and $\mathbf{w} := \mathbf{s}$, the equivalent CNF contains the following three clauses: $\neg r \lor w$, $\neg s \lor w$ and $\neg w \lor s \lor r$. In our case r and s both are conjunctions, so De Morgans law is used to write the first two clauses. For the last clause, all permutations of the combinations of the elements $\neg w$, r and s are considered. For $\mathbf{path}(1,5)$ this yields 2*3=6 combinations. For $\mathbf{path}(1,6)$ there are 2*3*4=24 combinations. The CNF is shown in table IX. Note that on the last big block of $path_{16}$ that the and operators can be removed, and the separate clauses can be listed underneath each other. We chose to use the current format because the resulting table would become too large (vertically) otherwise. It also clearly shows which clauses corresponds to the 24 combinations.

Table IX. CNF REPRESENTATION OF THE GROUND RULES

Variables	CNF		
$path_{15}$	$\begin{array}{c} path_{15} \vee \neg \ edge_{13} \vee \neg \ edge_{34} \vee \neg \ edge_{45} \\ path_{15} \vee \neg \ edge_{12} \vee \neg \ edge_{25} \\ (\neg path_{15} \vee \ edge_{12} \vee \ edge_{13}) \wedge (\neg path_{15} \vee \ edge_{12} \vee \ edge_{34}) \wedge (\neg path_{15} \vee \ edge_{12} \vee \ edge_{45}) \wedge \\ (\neg path_{15} \vee \ edge_{25} \vee \ edge_{13}) \wedge (\neg path_{15} \vee \ edge_{25} \vee \ edge_{34}) \wedge (\neg path_{15} \vee \ edge_{25} \vee \ edge_{45}) \end{array}$		
$path_{16}$	$\begin{array}{c} path_{16} \lor \neg \ edge_{13} \lor \neg \ edge_{24} \lor \neg \ edge_{45} \lor \neg \ edge_{56} \\ path_{16} \lor \neg \ edge_{12} \lor \neg \ edge_{25} \lor \neg \ edge_{56} \\ path_{16} \lor \neg \ edge_{12} \lor \neg \ edge_{26} \\ (\neg path_{16} \lor \ edge_{13} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{13} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{13} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{13} \lor \ edge_{25} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{13} \lor \ edge_{56} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{13} \lor \ edge_{56} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{34} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{34} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{34} \lor \ edge_{25} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{34} \lor \ edge_{25} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{34} \lor \ edge_{56} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{34} \lor \ edge_{56} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{45} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{45} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{45} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{45} \lor \ edge_{25} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{45} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{45} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{45} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{45} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{56} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{56} \lor \ edge_{25}) \land (\neg path_{16} \lor \ edge_{56} \lor \ edge_{25}) \land (\neg path_{16} \lor \ edge_{56} \lor \ edge_{25}) \land (\neg path_{16} \lor \ edge_{56} \lor \ edge_{25} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{56} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{56} \lor \ edge_{25} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{56} \lor \ edge_{25} \lor \ edge_{12}) \land (\neg path_{16} \lor \ edge_{56} \lor \ edge_{25} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{56} \lor \ edge_{56} \lor \ edge_{25} \lor \ edge_{25}) \land (\neg path_{16} \lor \ edge_{56} \lor \ edge_{25} \lor \ edge_{26}) \land \\ (\neg path_{16} \lor \ edge_{56} \lor \ ed$		

The final step is to obtain a weighted CNF. Since there's no evidence in our example, the CNF remains the same as shown in table IX. Table X displays the weighted literals. The weights for $path_{15}$, $path_{16}$, $\neg path_{15}$ and $\neg path_{16}$ equal 1 because they're defined in clauses. The weight of any world ω can be calculated as the product of the weight of all literals in ω . For example, the world $path_{15}$, $edge_{12}$, $edge_{25}$, $edge_{13}$, $edge_{34}$, $\neg edge_{45}$ has the weight 0.6*0.4*0.1*0.3*0.2=0.00144.

Table X. WEIGHTED LITERALS

Variables	Weight	Variables	Weight
$edge_{12}$	0.6	$\neg edge_{12}$	0.4
$edge_{13}$	0.1	$\neg edge_{13}$	0.9
$edge_{25}$	0.4	$\neg edge_{25}$	0.6
$edge_{26}$	0.3	$\neg edge_{26}$	0.7
$edge_{34}$	0.3	$\neg edge_{34}$	0.7
$edge_{45}$	0.8	$\neg edge_{45}$	0.2
$edge_{56}$	0.2	$\neg edge_{56}$	0.8
$path_{15}$	1	$\neg path_{15}$	1
$path_{16}$	1	$\neg path_{16}$	1

C. Weighted Model Counting

We used the following exact model counters: MiniC2D, SDD and sharpSAT. //TODO

D. Knowledge Compilation