FEATURE ENGINEERING

13기 디자인팀김민정 류재원

INTRO

Feature Engineering in Data Science Process

Data Collection

EDA

Data Preprocessing

Feature Engineering

Modeling

INTRO

FEATURE ENGINEERING?

모델에 데이터를 넣기 직전의 단계

모델의 성능을 높이기 위해 주어진 초기 데이터로부터 특징을 찾아 가공하고 생성하는 과정 (모델에 입력할 데이터를 만드는 과정의 일부)

머신러닝의 성능은 데이터의 양과 질에 굉장히 의존적이기 때문에, 모델 성능에 미치는 영향이 크다

시간이 많이 소요되는 과정

CONTENTS

- 1. Variable Identification
- 2. Univariate Analysis
- 3. Bi-variate Analysis
- 4. Missing Values Treatment
- 5. Outlier Treatment
- 6. Variable Transformation
- 7. Variable Creation

참고

모델 돌리기 전까지 4~7번 반복해야함

CONTENTS

- 1. Variable Identification
- 2. Univariate Analysis
- 3. Bi-variate Analysis
- 4. Missing Values Treatment
- 5. Outlier Treatment
- 6. Variable Transformation
- 7. Variable Creation

EDA

Preprocessing

FE

Variable Identification

id	date_account_created	gender	age	signup_method	first_device_type	first_browser	country_destination
4ft3gnwmtx	2010-09-28	FEMALE	56.0	basic	Windows Desktop	IE	US
bjjt8pjhuk	2011-12-05	FEMALE	42.0	facebook	Mac Desktop	Firefox	other
87mebub9p4	2010-09-14	unknown-	41.0	basic	Mac Desktop	Chrome	US
lsw9q7uk0j	2010-01-02	FEMALE	46.0	basic	Mac Desktop	Safari	US
0d01nltbrs	2010-01-03	FEMALE	47.0	basic	Mac Desktop	Safari	US

Variable Identification

id	date_account_created	gender	age	signup_method	first_device_type	first_browser	country_destination
4ft3gnwmtx	2010-09-28	FEMALE	56.0	basic	Windows Desktop	IE	US
bjjt8pjhuk	2011-12-05	FEMALE	42.0	facebook	Mac Desktop	Firefox	other
87mebub9p4	2010-09-14	unknown-	41.0	basic	Mac Desktop	Chrome	US
lsw9q7uk0j	2010-01-02	FEMALE	46.0	basic	Mac Desktop	Safari	US
0d01nltbrs	2010-01-03	FEMALE	47.0	basic	Mac Desktop	Safari	US

Predictor

date_account_created ~ first_browser

Target

country_destination

Variable Identification

Continuous

연속형 변수의 경우에는, Central tendency와 변수의 분산에 대해 알아야 합니다

Mean, median, mode, Min, Max, Range, Quantile ···

Categorical

각 카테고리의 분포를 이해하기 위해서 frequency table을 이용합니다

Count와 Count%를 나타내는 bar chart 그려보기 등

Univariate Analysis

Continuous

연속형 변수의 경우에는, Central tendency와 변수의 분산에 대해 알아야 합니다

Mean, median, mode, Min, Max, Range, Quantile ...

Categorical

각 카테고리의 분포를 이해하기 위해서 frequency table을 이용합니다

Count와 Count%를 나타내는 bar chart 그려보기 등

실습 시간에 Pandas Profiling 이용해서 파악해보세요!

Univariate Analysis

Continuous Variable

Univariate Analysis

Categorical Variable

Bi-variate Analysis

Continuous & Continuous

Bi-variate Analysis

Categorical & Categorical

Bi-variate Analysis

Continuous & Categorical

Why Data Have Missing Values?

Missing Completely at Random (MCAR)

어떤 변수의 결측치가 완전히 무작위로 발생한 경우

Missing at Random (MAR)

어떤 변수의 결측의 여부가 자료 내의 다른 변수와 관련이 있는 경우 (예: 학업 점수의 결측 여부가 소득 수준과 관련 있을 때)

Missing not at Random, Non-Ignorable (MNAR)

어떤 변수의 결측의 여부가 해당 변수와 관련이 있는 경우 (예: 학업 점수가 낮은 학생들이 학업 점수에 응답하지 않음)

4 Structually Missing Data

How To Handle Missing Values?

Deletion

date_first_booking	gender	age	
2010-08-03	-	22	
	dilliniowii-		
2010-08-03	MALE	38	
2010-08-02	FEMALE	56	
2012-09-08	FEMALE	42	
2010-02-18		41	
	ulikilowii-		
2010-01-02	-	22	
	GIII(IIOWII-		
2010-01-05	FEMALE	46	
2010-01-13	FEMALE	47	
2010-07-29	FEMALE	50	

date_first_booking	ge	nder	age
2010-08-03	unkn	-)wn-	22
2010-08-03	N	ALE	38
2010-08-02	FEN	ALE	56
2012-09-08	FEN	ALE	42
2010-02-18	unkn	- wn-	41
2010-01-02	unkn	- wn-	22
2010-01-05	FEN	ALE	46
2010-01-13	FEN	ALE	47
2010-07-29	FEN	ALE	50

How To Handle Missing Values?

2

Heuristic Imputation

Name	Sex	Survived
Mr. Owen	Male	F
Mrs. Bradley		Т
Miss. Laina	Female	Т
Mrs. Jarques	Female	F
Mr. William		F
Mr. James	Male	Т

Name	Sex	Survived
Mr. Owen	Male	F
Mrs. Bradley	Female	Т
Miss. Laina	Female	Т
Mrs. Jarques	Female	F
Mr. William	Mr. William Male	
Mr. James	Male	Т

How To Handle Missing Values?

3

Mean/Median/Mode

Generalized Imputation

모든 사람의 나이 평균: 35

Case Imputation

Female 나이 평균: 30 Male 나이 평균: 40

How To Handle Missing Values?

4

Prediction Model

timestamp_first_active	date_first_booking	gender	age
20090319043255	2010-08-03	unknown-	22
20090523174809	2010-08-03	MALE	38
20090609231247	2010-08-02	FEMALE	56
20091031060129	2012-09-08	FEMALE	42
20091208061105	2010-02-18	unknown-	41
20100101215619	2010-01-02	unknown-	22

train

test

How To Handle Missing Values?

5

KNN Imputation

결측치가 있는 변수별로 모델을 짤 필요가 없음 데이터간의 연관성을 고려함

시간이 오래 걸림 K 정하기 어려움

How To Handle Missing Values?

6 Model Itself!

Example: Tree Based Models

https://stats.stackexchange.com/questions/96025/how-do-decision-treelearning-algorithms-deal-with-missing-values-under-the-hoo

What is an Outlier?

What is an Outlier?

Check Outliers

사분위수(IQR)

하한선: Q1 – 1.5 * 사분위수 범위 상한선: Q3 + 1.5 * 사분위수 범위

Capping Method

백분위 수에서 5% ~ 95% 를 벗어나 있는 값

Data Points

평균으로부터 3 표준편차 이상 벗어난 경우

Causes of Outliers

Data Entry Error

Measurement Error

Experimental Error

Intentional Error

Data Processing Error

Sampling Error

Natural Outliers

How to Handle Outlier

Deletion

Capping

연봉(만원)	연봉(만원)
3,000	3,000
4,000	4,000
5,000	5,000
4,500	4,500
5,500	5,500
7,000	7,000
50,000	10,000
250,000	10,000

How to Handle Outlier

3

Assign New Value

Height(cm)
180
165
159
191
62
173
175
302

Height(cm)
180
165
159
191
NA
173
175
NA

Mean, median, mode…

How to Handle Outlier

4 Transformation

	1	2	3	4	5	6	7	8	9	10	100	
--	---	---	---	---	---	---	---	---	---	----	-----	--

	0	0.3	0.47	0.6	0.69	0.7	0.84	0.9	0.95	1	2	
--	---	-----	------	-----	------	-----	------	-----	------	---	---	--

Model Itself!

Example: Tree Based Models

https://www.quora.com/Why-are-tree-based-models-robust-to-outliers

Feature Selection vs. Feature Extraction

어떤 Feature가 유용한가?

차원 축소의 효과

Selection

- 전체 특징의 부분집합을 선택해서 간결하게 만드는 것
- Domain Knowledge에 의한 직접 선택
- 자동 특징 선택

Extraction

- 고차원의 원본 feature공간을 저차원의 새 feature 공간으로 투영
- 원본 feature 공간의 선형 or 비선형 결합
- (예) PCA

출처: http://terryum.io/korean/2016/05/05/FeatureSelection_KOR/

Variable Transformation & Variable Creation

Variable Transformation

Variable Creation

				Kraffing					
Naive Bayes Classifier	Features are independent	Performs well with categorical variables Conseeges faster: less training time Good with moderate to large training state sets Good when dilatanet contains several features	Correlated features affect performance	No	Can handle missing data (it ignores missing data)	Robust to outliers	Classification Multiclass classification	Supervised	Sentiment Analysis Document categorisation Email Spam Eftering
Support Vector tachine (SVM)	None	Good for datasets with more variables than observations Good performance Good of the shelf model in general for several scenarios Can approximate complex non-linear functions	Long training time required Tuning is required to determine which kernel is optimal for non-linear SVMs	Yes	Semilive	Robust to outliers	Classification Regression	Supervised	Stock market forecasting Walse at risk determination
Linear Regression	Linear relation between features and target	interpretability Little tuning	Correlated features may affect performance Extensive feature engineering required	Yes	Sensitive	Sensitive	Regression	Supervised	Sales forecasting House pricing
Logistic Regression	Linear relation between features and the log odds	Interpretability Little tuning	Correlated features may affect performance Extensive feature engineering required	Yes.	Semilize	Potentially sensitive	Classification	Supervised	Hisk Assessment Fraud Prevention
Classification and Regression Trees	None	Interpretability Render feature importance Saves on data preparation.	Do not fit well to continuous variables It does not perdict beyond the range of the response values in the training data Not very accurate Overfits	No	No	Robust to outliers	Classification Regression	Supervised	Risk Assessment Fraud Prevention
Random Forests	None	Interpretability Iterates feature importance Saves on data preparation Does not overific Good performance /accuracy Intobus to noise Little if any parameter tuning required Apt at almost any machine learning problem	If does not predict beyood the range of the response values in the training data Ilianed bowards categories with several categories Based in multiclass problems toward more frequent dases	No	No	Robust to outliers	Oasification Regression	Supervised	 Credit Risk Assessment. Predict breakdown of a mechanical parts (automobile infustry). Assess probability of developing a thronic disease threathromy). Predicting the average number of social media shares.
Gradient Boosted Trees	None	Great performance Apt at almost any machine learning problem It can approximate most non-linear function	Prone to overfit Needs some parameter tuning	No	No	Robust to outFers	Classification Regression	Supervised	
K-meanest neighbours	Norman	Good performance	Slow when predicting Susceptible to high dimension (lots of features)	Yes	Semilize	Robust to outliers	Classification Regression	Supervised	Cone expression Protein-protein interaction Content retrieval (of webpages for example)
AdsBoost	None	It doesn't overfit easily Few parameters to tune		No	Castande	Sensitive	Classification Regression	Supervised	
Neural Networks	None	Can approximate any function Great Performance	Long training time Several parameters to tune, including neuronal architecture Prone to overfit Little interpretability	Yes	Sensitive	Can handle outliers, and it affects performanc e if they are too many	Classification Regression	Supervised	
K-Means Clustering	chasters are spherical chasters are of similar size	Fast training	Need to determine it, the number of clusters Senitive to initial points and local optima	Yes		Semilive	Segmentation	Unsupervised	
Hierarchical clustering		No a priori information about the number of clusters required	Final number of clusters to be decided by the scientist Slow training	Yes	Sensitive	Sensitive	Segmentation	Unsupervised	
PCA	Correlation among features			Yes	Sensitive	Sensitive			

ML Model Cheat Sheet 첨부한 자료를 참고해주세요

Variable Transformation

Centralizing & Scaling

Variable Transformation

Centralizing & Scaling

Variable Transformation

Centralizing & Scaling

Variable Transformation

Centralizing & Scaling

Min-Max Scaling

{X-min(X)} / {max(X)-min(X)}
To [0,1]

Variable Transformation

Centralizing & Scaling

Standardization

{X-mean(X)} / std(X)

Mean = 0, std = 1

Variable Transformation

Symmetrizing

Variable Transformation

Binning

Age
56
42
41
46
37
50
46

Age (Transformed)
50대
40대
40대
40대
30대
50대
40대

Variable Transformation

Top/Bottom/Zero coding

Age
56
17
41
29
18
68
34

Age (Transformed)
50세 이상 64세 이하
25세 미만
35세 이상 49세 이하
25세 이상 34세 이하
25세 미만
65세 이상
25세 이상 34세 이하

Variable Creation

Date	sales
2019.01.01	1744
2019.01.02	1332
2019.01.03	922
2019.01.04	2448
2019.01.05	1864
2019.01.06	1760

Variable Creation

Date	Weekday	sales
2019.01.01	Tue	1744
2019.01.02	Wed	1332
2019.01.03	Thu	922
2019.01.04	Fri	2448
2019.01.05	Sat	1864
2019.01.06	Sun	1760

Variable Creation

Date	Weekday	Daynumber_sin ce_year_2019	is_Holiday	Days_till_hol idays	sales
2019.01.01 Tue		0	Т	0	1744
2019.01.02	Wed	1	F	4	1332
2019.01.03	Thu	2	F	3	922
2019.01.04	Fri	3	F	2	2448
2019.01.05	Sat	4	F	1	1864
2019.01.06	Sun	5	Т	0	1760

Variable Creation

One-hot Encoding

Device
Windows
Mac
Mac
Мас
Windows

Windows	Mac
1	0
0	1
0	1
0	1
1	0

문자형 Categorical Variable의 경우, 컴퓨터가 인식할 수 있도록 숫자형으로 바꿔주는 방법 가장 많이 사용되는 방법 중 하나입니다.

Variable Creation

One-hot Encoding

- 차원 증가의 문제
- 유사도 표현 불가

리트리버	웰시코기	냉장고	독수리
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Variable Creation

Feature Interaction

The integration of two features would modify the behavior of one or both features

shot_id	Min_remaining	Sec_remaining	Time_remaining	
0	10	27	627	
1	10	22	622	
2	7	45	465	
3	6	52	412	
4	6	19	379	

Variable Creation

같은 성격의 Indicator Variable이 많을 때?

MedicalKey word_1	MedicalKey word_2	MedicalKey word_3	MedicalKey word_4	MedicalKey word_5	MedicalKey word_6		MedicalKey word_48	MedicalKey word_sum
1	0	0	1	1	0		0	6
0	0	1	1	0	0		0	8
0	0	1	1	0	0		1	5
0	0	0	0	0	1	•••	0	4
0	0	0	0	0	0		0	1
0	0	1	0	0	1		1	6
0	1	1	0	0	0		0	7
1	0	1	0	0	1		1	12

Variable Creation

Age
56
42
41
NA
37
NA
46

Age_is_null	
0	
0	
0	
1	
0	
1	
0	

결측 여부가 중요한 경우 / 그러나 차원 증가!

그 밖의 FEATURE ENGINEERING?

External Data

기존 주어진 데이터 외의 다른 외부데이터를 활용해 성능을 높입니다

Error Analysis

모델을 통해 나온 결과를 바탕으로 특징을 만드는 방법

- Start with Lagrer Errors: 모든 값을 확인하기 보다 에러가 큰 feature부터 확인합니다
- Segment by classes: 평균 에러 값을 기준으로 segment를 나누어 비교, 분석합니다
- Unsupervised clustering: 패턴 발견에 어려움이 있을 경우, 비지도학습인 clustering 알고리즘을 사용하여 분류되지 않은 값을 확인

이제 데이터셋 하나가 완성됐습니다!

다시 처음으로 돌아가 다른 데이터셋도 만들어 봅시다

Q&A

이제는 실습시간! Jupyter Notebook을 이용해서 실습해봅시다