PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Primer Semestre de 2018

Stochastic Calculus Notes

Rodrigo Bazaes rebazaes@uc.cl July 1, 2018

1 Stochastic Integral with respect to Brownian motion

This section is a warm-up to the general theory of stochastic integrals. We consider a probability space (Ω, \mathcal{F}, P) with a filtration $\{\mathcal{F}_t\}$ and $B = \{B_t\}$ is a standard one-dimensional Brownian motion with respect to the filtration \mathbb{F}_t . As usual, we assume that $\mathcal{F}, \mathcal{F}_t$ contains all the subsets of events of probability zero.

The next lemma says that if we want to consider the integral $\int_0^t B_s dB_s$ as limit of Riemann sums, then the point of evaluation is crucial.

Lemma 1.1. Fix a number $u \in [0, 1]$. Given a partition $\pi = \{0 = t_0 < t_1 < \dots < t_{m(\pi)} = t\}$, let $s_i = (1 - u)t_i + ut_{i+1}$, and define

$$S(\pi) := \sum_{i=0}^{m(\pi)-1} B_{s_i} (B_{t_{i+1}} - B_{t_i})$$

Then

$$\lim_{mesh(\pi)\to 0} S(\pi) = \frac{1}{2}B_t^2 - \frac{1}{2}t + ut \text{ in } L^2(P)$$

Proof. For $a, b, c \in \mathbb{R}$ we have

$$b(a-c) = \frac{a^2}{2} - \frac{c^2}{2} - \frac{(a-c)^2}{2} + (b-c)^2 + (a-b)(b-c)$$

Apply this to $b = B_{s_i}$, $a = B_{t_{i+1}}$, $c = B_{t_i}$ to get

$$S(\pi) = \sum_{i=0}^{m(\pi)-1} (B_{t+1}^2 - B_{t_i}^2) - \frac{1}{2} \sum_{i=0}^{m(\pi)-1} (B_{t_{i+1}} - B_{t_i})^2 + \sum_{i=0}^{m(\pi)-1} (B_{s_i} - B_{t_i})^2 + \sum_{i=0}^{m(\pi)-1} (B_{t_{i+1}} - B_{s_i})(B_{s_i} - B_{t_i})$$

$$:= \frac{1}{2} B_t^2 - S_1(\pi) - S_2(\pi) - S_3(\pi)$$

We now that

$$S_1(\pi) \stackrel{mesh(\pi)\to 0}{\longrightarrow} \frac{1}{2}t$$
 in $L^2(P)$

For the second sum, note that

$$E[S_2(\pi)] = \sum_{i=0}^{m(\pi)-1} u(t_{i+1} - t_i) = ut$$

because $B_{s_i} - B_{t_i} \sim N(0, s_i - t_i) = N(0, u(t_{i+1} - t_i))$. On the other hand,

$$Var(S_2(\pi)) = \sum_{i} Var((B_{s_i} - B_{t_i}))^2 = 2\sum_{i} (s_i - t_i)^2 \le 2\sum_{i} (t_{i+1} - t_i)^2 \le 2tmesh(\pi)$$

Here we used that if $X \sim N(0, s_i - t_i)$, then

$$Var(X^2) = E(X^4) - E(X^2)^2 = 3(s_i - t_i)^2 - (s_i - t_i)^2 = 2(s_i - t_i)^2$$

We conclude that $\lim_{mesh(\pi)\to} S_2(\pi) = ut$ in $L^2(P)$.

In the final sum, we check that $S_3(\pi) \to 0$ in $L^2(P)$.

$$E[S_3(\pi)^2] = E\left(\sum_i (B_{t_{i+1}-B_{s_i}})(B_{s_i} - B_{t_i})\right)^2$$

$$= E\left(\sum_i (B_{t_{i+1}-B_{s_i}})^2 (B_{s_i} - B_{t_i})^2\right)$$

$$+ E\left(\sum_{i \neq j} (B_{t_{i+1}-B_{s_i}})(B_{s_i} - B_{t_i})(B_{t_{j+1}-B_{s_j}})(B_{s_j} - B_{t_j})\right)$$

$$= \sum_i (t_{i+1} - s_i)(s_i - t_i) \le \sum_i (t_{i+1} - t_i)^2 \le \operatorname{mesh}(\pi)t$$

this goes to zero when $mesh(\pi) \to 0$.

Remark 1.2. By the last lemma, and using that $B_t^2 - t$ is a martingale, then there exists a unique choice of u such that the limit of $S(\pi)$ is martingale, namely u = 0, so $s_i = t_i$. This election is used in the Itô integral. Under this integral we have

$$\int_0^t B_s dB_s = \frac{1}{2} B_t^2 - \frac{t}{2}$$

The election $u = \frac{1}{2}$ leads to the Stratonovich integral. Here we have

$$\int_0^t B_s \circ dB_s = \frac{B_t^2}{2}$$

Under this integral the usual rules of calculus are satisfied.

Now we develop the Itô stochastic integral with respect to Brownian motion.now we describe the space of integrands.

For a measurable process X, the L^2 -norm over the set $[0,T]\times\Omega$ is

$$||X||_{L^{2}([0,T]\times\Omega)} = \left(E\int_{[0,T]} |X(t,\omega)|^{2}\right)^{1/2}$$
(1.1)

Let $\mathcal{L}_2(B)$ denote the collection of all measurable, adapted processes X such that

$$||X||_{L^2([0,T]\times\Omega)}<\infty$$

for all $T < \infty$. A metric on $\mathcal{L}_2(B)$ is given by $d_{L_2}(X,Y) := ||X - Y||_{\mathcal{L}_2(B)}$ where

$$||X||_{\mathcal{L}_2(B)} := \sum_{k=1}^{\infty} 2^{-k} (1 \wedge ||X||_{L^2([0,k] \times \Omega)})$$
(1.2)

We call it a norm, although it's not a geniune norm, as in the martingale case. However, it's true that $||X + Y||_{\mathcal{L}_2(B)} \leq ||X||_{\mathcal{L}_2(B)} + ||Y||_{\mathcal{L}_2(B)}$, so we have the triangle inequality $d_{\mathcal{L}_2}(X,Y) \leq d_{\mathcal{L}_2}(X,Z) + d_{\mathcal{L}_2}(Z,Y)$. To conclude that $d_{\mathcal{L}_2}$ is a metric, we need the property $d_{\mathcal{L}_2}(X,Y) = 0 \leftrightarrow X = Y$. As in L^p spaces, we use the convention that two processes are considered as equal if the set of points (t,ω) such that $X(t,\omega) \neq Y(t,\omega)$ has $m \otimes P$ -measure zero. Equivalently,

$$\int_0^\infty P(X(t) \neq Y(t)dt = 0 \tag{1.3}$$

In particular, processes that are indistinguishable, or modifications of each other have to be considered equal under this interpretation.

The symmetry property follows from the definition, so we conclude that $\mathcal{L}_2(B)$ is a metric space. Convergence $X_n \to X$ in $\mathcal{L}_2(B)$ is equivalent to $X_n \to X$ in $L^2([0,T] \times \Omega)$ for each $T < \infty$.

The class $\mathcal{L}_2(B)$ is quite restrictive, so we move to a wider class of function $\mathcal{L}(B)$ where the mean square requirement is satisfied only locally .More precisely, we define the class $\mathcal{L}(B)$ of all the measurable, adapted processes X such that

$$P\left(\omega: \int_0^T X(t,\omega)^2 dt < \infty \text{ for all } T < \infty\right) = 1$$
 (1.4)

Under this class we will define the process $(X \cdot B)_t := \int_0^t X_s dB_s$.

We start with a class of function such that the integral can be defined directly.

Definition 1.3. A simple predictable process is a process of the form

$$X(t,\omega) = \xi_0(\omega)(t) + \sum_{i=1}^{n-1} \xi_i(\omega) \mathbb{1}_{(t_i,t_{i+1}]}(t)$$
(1.5)

where n is finite, $0 = t_0 < t_1 < t_2 < \cdots < t_n$ are time points, and for $0 \le i \le n - 1, \xi_i$ is a bounded \mathcal{F}_{t_i} -measurable random variable on (Ω, \mathcal{F}, P) .

Call S_2 the space of simple predictable processes.

Now we state a key approximation lemma.

Lemma 1.4. Suppose X is a bounded, measurable, adapated process. Then there exists a sequence $\{X_n\}$ of simple predictable processes such that, for any $0 < T < \infty$,

$$\lim_{n\to\infty} E \int_0^T |X_n(t) - X(t)|^2 dt = 0.$$

Proof. The first step is show that for each $0 < T < \infty$, there exists a simple predictable process $Y_k^{(T)}$ which vanish outside [0,T] and satisfy

$$\lim_{k \to \infty} E \int_0^T |Y_k^{(T)}(t) - X(t)|^2 dt = 0$$
 (1.6)

Extend X to $\mathbb{R} \times \Omega$ by defining $X(t,\omega) = 0$ for t < 0. For each $n \in \mathbb{N}$ and $s \in [0,1]$, define

$$Z^{n,s}(t,\omega) := \sum_{j \in \mathbb{Z}} X(s+2^{-n}j,\omega) \mathbb{1}_{(s+2^{-n}j,s+2^{-n}(j+1))}(t) \mathbb{1}_{[0,T]}(t)$$

 $Z^{n,s}$ is a simple predictable process. It's jointly measurable as a function of the triple (s, t, ω) , so it can be integrated over all the three variables, in any order due to Fubini's theorem. We claim that

$$\lim_{n \to \infty} E \int_0^T \int_0^1 |Z^{n,s}(t) - X(t)|^2 ds dt = 0$$
 (1.7)

To prove this, first consider a fixed ω , and write

$$\begin{split} & \int_0^T \int_0^1 |Z^{n,s}(t) - X(t)|^2 ds dt \\ &= \int_0^T \sum_{j \in \mathbb{Z}} \int_0^1 |X(s+2^{-n}j,\omega) - X(t,\omega)|^2) \mathbb{1}_{(s+2^{-n}j,s+2^{-n}(j+1))}(t) ds dt \\ &= \int_0^T \sum_{j \in \mathbb{Z}} \int_0^1 |X(s+2^{-n}j,\omega) - X(t,\omega)|^2) \mathbb{1}_{(t-2^{-n}(j+1),t-2^{-n}j)}(s) ds dt \end{split}$$

For a fixed t, the s-integral vanishes unless

$$0 < t - 2^{-n}j$$
 and $t - 2^{-n}(j+1) < 1$

which is equivalent to $2^n(t-1) - 1 < j < 2^n t$. For each fixed t and j, change variables in the s-integral: let $h = t - s - 2^{-n}j$, and observe that $s \in [t - 2^{-n}(j+1), t - 2^{-n}j)$ iff $h \in (0, 2^{-n}]$. The last integral above is transformed into

$$\int_{0}^{T} \sum_{j \in \mathbb{Z}} \mathbb{1}_{2^{n}(t-1)-1 < j < 2^{n}t} \int_{0}^{2^{-n}} |X(t-h,\omega) - X(t,\omega)|^{2} dh dt$$

$$\leq (2^{n}+1) \int_{0}^{2^{-n}} \int_{0}^{T} |X(t-h,\omega) - X(t,\omega)|^{2} dt dh$$

The last bound follows using the fact that there are at most $2^n + 1$ j-values such that $2^n(t-1) - 1 < j < 2^n t$. Now we take expectations to deduce

$$E \int_0^T \int_0^1 |Z^{n,s}(t) - X(t)|^2 ds dt \le (2^n + 1) \int_0^{2^{-n}} \int_0^T |X(t - h, \omega) - X(t, \omega)|^2 dt dh \to 0$$

when $n \to \infty$. To show this, first note that for fixed ω ,

$$\lim_{h\to 0} \int_0^T |X(t-h,\omega) - X(t,\omega)|^2 dt = 0$$

This is proved first for simple functions, and then by approximation to general $X(\cdot, \omega) \in L^2([0,T])$. Since X is bounded, by dominated convergence

$$\lim_{h\to 0} E \int_0^T |X(t-h,\omega) - X(t,\omega)|^2 dt = 0$$

Last,

$$\lim_{n \to \infty} (2^n + 1) \int_0^{2^{-n}} \left\{ \int_0^T |X(t - h, \omega) - X(t, \omega)|^2 dt = 0 \right\} dh = 0$$

This follows from this general fact: if $f(x) \to 0$ when $x \to 0$, then

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^{\epsilon} f(x) dx = 0$$

To check this, fix $\delta > 0$, and take ϵ_0 such that if $|x| < \epsilon_0$, then $|f(x)| \le \delta$. Then, if $\epsilon < \epsilon_0$,

$$\frac{1}{\epsilon} \int_0^{\epsilon} f(x) dx \le \delta$$

As $\delta > 0$ is arbitrary, we are done. This concludes the proof of (1.7). Observe that (1.7) is equivalent to say that the sequence $\phi_n(s) := E \int_0^T |Z^{n,s} - X(t)|^2 dt$ satisfies $\phi_n(s) \to 0$ in

 $L^1[0,1]$. Then there exists a subsequence ϕ_{n_k} such that $\phi_{n_k}(s) \to 0$ for a.e $s \in [0,1]$. Pick any such s, and define $Y_k^{(T)} = Z^{n_k,s}$. By construction

$$\lim_{k \to \infty} \phi_{n_k}(s) = E \int_0^T |Y_k^{(T)} - X(t)|^2 dt = 0$$

This is (1.6). To complete the proof, for $m \in \mathbb{N}$, choose k_m such that

$$E \int_0^m |Y_{k_m}^{(m)} - X(t)|^2 dt < \frac{1}{m}$$

and define $X_m = Y_{k_m}^{(m)}$. Therefore for any T > 0, for any m > T we have

$$E \int_0^T |X_m(t) - X(t)|^2 dt \le E \int_0^m |X_m(t) - X(t)|^2 dt < \frac{1}{m} \xrightarrow{m \to \infty} 0$$

Proposition 1.5. Suppose $X \in \mathcal{L}_2(B)$ -Then there exists a sequence of simple predictable processes $\{X_n\}$ such that $||X_n - X||_{\mathcal{L}_2(B)} \to 0$.

Proof. Let $X^{(k)} := (X \wedge k) \vee (-k)$. Since $|X^{(k)} - X| \leq |X|$ and $|X^{(k)} - X| \to 0$ when $k \to \infty$, pointwise on $\mathbb{R}_+ \times \Omega$,

$$\lim_{k \to \infty} E \int_0^m |X^{(k)}(t) - X(t)|^2 dt = 0$$

for each $m \in \mathbb{N}$. This is equivalent to $||X - X^{(k)}||_{\mathcal{L}_2(B)} \to 0$. Given $\epsilon > 0$, pick k such that $||X - X^{(k)}||_{\mathcal{L}_2(B)} \le \epsilon/2$. Since $X^{(k)}$ is a bounded process, we an use the last lemma to find a predictable process Y_{ϵ} such that $||X^k - Y_{\epsilon}||_{\mathcal{L}_2(B)} \le \epsilon/2$. By the triangle inequality, $||X - Y_{\epsilon}||_{\mathcal{L}_2(B)} \le \epsilon$. Repeat this argument for each $\epsilon = 1/n$, and call $X_n = Y_{\epsilon}$. This give the approximating sequence $\{X_n\}$.

Now we are ready to construct the stochastic integral. The main steps are:

- i) Define an explicit formula $X \cdot B$ for a simple predictable process X. This integrall will be a continuous L^2 martingale.
- ii) A general process $X \in \mathcal{L}_2(B)$ is approximated by simple processes X_n . One shows that the integrals $X_n \cdot B$ converges to a uniquely defined continuous L^2 -martingale, which we call $X \cdot B$.

iii) A localization argument is used to get from integrands in $\mathcal{L}_2(B)$ to integrands in $\mathcal{L}(B)$. The integral $X \cdot B$ is a continuous local L^2 —martingale.

Let's start with step i). For a simple predictable process X like (1.5), the stochastic integral is the process $X \cdot B$ defined by

$$(X \cdot B)_t := \sum_{i=1}^{n-1} \xi_i(\omega) (B_{t_{i+1} \wedge t}(\omega) - B_{t_i \wedge t}(\omega). \tag{1.8}$$

We also write $I(X) = X \cdot B$ when we need a symbol for the maping $I: X \to X \cdot B$.

As always, we need to check that the integral does not depend of the representation as simple predictable process, and also that the integral map I(X) is linear on S_2 .

Lemma 1.6.

a) Suppose the process X in (1.5) also satisfies

$$X_t(\omega) = \eta_0(\omega) \mathbb{1}_{\{0\}}(t) + \sum_{j=1}^{m-1} \eta_j \mathbb{1}_{(s_j, s_{j+1}]}(t)$$

for all (t, ω) , where $0 = s_0 = s_1 < s_2 < \cdots < s_m < \infty$ and $\eta_j \in \mathcal{F}_{s_j}$ -measurable for $0 \le j \le m-1$. Then for each (t, ω) ,

$$\sum_{i=1}^{n-1} \xi_i(\omega) (B_{t_{i+1} \wedge t}(\omega) - B_{t_i \wedge t}(\omega)) = \sum_{j=1}^{m-1} \eta_j(\omega) (B_{s_{j+1} \wedge t}(\omega) - B_{s_j \wedge t}(\omega)). \tag{1.9}$$

b) S_2 is a linear space, in other words, for $X, Y \in S_2$ and reals $\alpha, \beta, \alpha X + \beta Y \in S_2$. The integral satisfies

$$(\alpha X + \beta Y) \cdot B = \alpha (X \cdot B) + \beta (Y \cdot B).$$

Proof. a) Let $\{u_k\}_{k=1}^l$ be a common refinement of the partitions $\{t_i\}$ and $\{s_j\}$. Then X is equal to the process $\kappa_0(\omega)\mathbb{1}_{\{0\}}(\omega)(t) + \sum_{k=1}^l \kappa_k \mathbb{1}_{(u_k,u_{k+1}]}(t)$, where $\kappa_k = \xi_i$ if $(u_k,u_{k+1}] \subset$

 $(t_i, t_{i+1}], \kappa_k = \eta_j \text{ if } (u_k, u_{k+1}] \subset (s_j, s_{j+1}]. \text{Therefore}$

$$\sum_{i=1}^{n-1} \xi_{i}(\omega) (B_{t_{i+1} \wedge t}(\omega) - B_{t_{i} \wedge t}(\omega)) = \sum_{i=1}^{n-1} \xi_{i}(\omega) \sum_{k: (u_{k}, u_{k+1}] \subset (t_{i}, t_{i+1}]} (B_{u_{k+1} \wedge t}(\omega) - B_{u_{k} \wedge t}(\omega))$$

$$= \sum_{i=1}^{n-1} \sum_{k: (u_{k}, u_{k+1}] \subset (t_{i}, t_{i+1}]} \kappa_{k}(\omega) (B_{u_{k+1} \wedge t}(\omega) - B_{u_{k} \wedge t}(\omega))$$

$$= \sum_{k=1}^{l} \kappa_{k}(\omega) (B_{u_{k+1} \wedge t}(\omega) - B_{u_{k} \wedge t}(\omega))$$

And we can do the same with the another representation.

b) If $X, Y \in \mathcal{S}_2$, by the argument in the first part we can assume that both X, Y have the same partition, namely

$$X(t,\omega) = \xi_0(\omega)(t) + \sum_{i=1}^{n-1} \xi_i(\omega) \mathbb{1}_{(t_i,t_{i+1}]}(t)$$
$$Y(t,\omega) = \eta_0(\omega)(t) + \sum_{i=1}^{n-1} \eta_i(\omega) \mathbb{1}_{(t_i,t_{i+1}]}(t)$$

Clearly,

$$\alpha X + \beta Y = X(t, \omega) = \alpha \xi_0(\omega)(t) + \beta \eta_0(\omega)(t) + \sum_{i=1}^{n-1} (\alpha \xi_i(\omega) + \beta \eta_i(\omega)) \mathbb{1}_{(t_i, t_{i+1}]}(t)$$

so $\alpha X + \beta Y \in \mathcal{S}_2$, and the linearity follows from this representation.

Now we check that the integral is a martingale, and we have an isommetry.

Lemma 1.7. Let $X \in \mathcal{S}_2$. Then $X \cdot B$ is a continuous square-integrable martingale with respect to the original filtration $\{\mathcal{F}_t\}$. We have these isometries:

$$E[(X \cdot B)_t^2] = E \int_0^t X_s^2 ds \text{ for all } t \ge 0,$$
 (1.10)

and

$$||X \cdot B||_{\mathcal{M}_2} = ||X||_{\mathcal{L}_2(B)}.$$
 (1.11)

Proof. To show that $X \cdot B$ is a martingale, it's enough to check the following: if u < v and ξ is a bounded \mathcal{F}_u measurable martingale, then $Z_t = \xi(B_{t \wedge v} - B_{t \wedge u})$ is a martingale. Suppose

t > s.If $s \le u$, then $s \wedge u = s = s \wedge v$, so $Z_s = 0.$ On the other hand, as $\mathcal{F}_s \subset \mathcal{F}_u$,

$$E[Z_t|\mathcal{F}_s] = E[E[Z_t|\mathcal{F}_u]|\mathcal{F}_s] = E[\underbrace{E[\xi(B_{t\wedge v} - B_{t\wedge u})|\mathcal{F}_u]}_{=0}|\mathcal{F}_s] = 0 = Z_s$$

If s > u, then ξ is \mathcal{F}_s -measurable, and we get

$$E[Z_t|\mathcal{F}_s] = \xi E[(B_{t \wedge v} - B_{t \wedge u})|\mathcal{F}_s] = Z_s$$

To prove (1.10), first square

$$(X \cdot B)_t^2 = \sum_{i=1}^{n-1} \xi_i^2 (B_{t \wedge t_{i+1}} - B_{t_i})^2 + 2 \sum_{i < j} \xi_i \xi_j (B_{t \wedge t_{i+1}} - B_{t_i}) (B_{t \wedge t_{j+1}} - B_{t_j})$$

Now we take and expectations, and by independence, the expectations of the second sum vanish (see Exercise 5). We have

$$E(X \cdot B)_t^2 = \sum_{i=1}^{n-1} E(\xi_i^2) (t \wedge t_{i+1} - w \wedge t_i)$$

On the other hand, we have

$$E\int_0^t X_2^2 ds = \int_0^t \sum_{i=1}^{n-1} E[\xi_i^2] \mathbb{1}_{(t_i, t_{i+1}]} = \sum_{i=1}^{n-1} E\xi_i^2 (t \wedge t_{i+1} - t \wedge t_i)$$

So (1.10) holds. Finally, to check (1.11),

$$||X \cdot B||_{\mathcal{M}_2} = \sum_{k=1}^{\infty} 2^{-k} (1 \wedge ||(X \cdot B)_k||_{L^2(P)}) = \sum_{k=1}^{\infty} 2^{-k} (1 \wedge ||X||_{L^2([0,k] \times \Omega)}) = ||X||_{\mathcal{L}_2(B)}$$

Lemma 1.8. Let $X \in \mathcal{L}_2(B)$. Then there is a unique continuous L^2 -martingale Y such that for any sequence of simple predictable processes $\{X_n\}$ such that

$$||X - X_n||_{\mathcal{L}_2(B)} \to 0$$

we have

$$||Y - X_n \cdot B||_{\mathcal{M}_{\in}} \to 0$$

Proof. Note that for any $X \in \mathcal{L}_2(B)$, there exists an approximating sequence by Proposition 1.5.By the last lemma, we have for $n, m \in \mathbb{N}$,

$$||X_n \cdot B - X_m \cdot B||_{\mathcal{M}_2} = ||X_n - X_m||_{\mathcal{L}_2(B)} \to 0$$

when $n, m \to \infty$. So $\{X_n \cdot B\}_n$ is a Cauchy sequence in \mathcal{M}_2^c . As this space is complete (Theorem 1.48 in Chapter 2), we deduce that there exists a limit Y. To show uniqueness, if \tilde{Y} is another such limit, let's say that $\tilde{X}_n \cdot B \to \tilde{Y}$. We have

$$||Y - \tilde{Y}||_{\mathcal{M}_2} \le ||Y - X_n \cdot B||_{\mathcal{M}_2} + ||X_n \cdot B - \tilde{X}_n \cdot B||_{\mathcal{M}_2} + ||\tilde{X}_n \cdot B - \tilde{Y}||_{\mathcal{M}_2}$$
$$= ||Y - X_n \cdot B||_{\mathcal{M}_2} + ||X_n - \tilde{X}_n||_{\mathcal{L}_2(B)} + ||\tilde{X}_n \cdot B - \tilde{Y}||_{\mathcal{M}_2} \to 0$$

when $n \to \infty$, because in the middle term we can apply again triangle inequality. This shows the uniqueness.

With this result, we can define the stochastic integral respect to Brownian motion.

Definition 1.9. Let B be a Brownian motion on a probability space (Ω, \mathcal{F}, P) with respect to the filtration $\{\mathcal{F}_t\}$. For any measurable adapted process $X \in \mathcal{L}_2(B)$, the stochastic integral $I(X) = X \cdot B$ is the squaare-integrable continuous martingale that satisfies

$$\lim_{n \to \infty} ||X \cdot B - X_n \cdot B||_{\mathcal{M}_2} = 0$$

for any sequence $X_n \in \mathcal{S}_2$ of simple predictable processes such that

$$||X - X_n||_{\mathcal{L}_2(B)} \to 0$$

The process I(X) is unique up to indistinguishability. Alternative notation for the stochastic integral is

$$\int_0^t X_s dB_s = (X \cdot B)_t$$

Example 1.10. We derive the integral for the process

$$X(t) = \sum_{i=1}^{m-1} \eta_i \mathbb{1}_{(s_i, s_{i+1}]}(t)$$

where $0 \le s_1 < \cdots < s_m$ and each $\eta_i \in L^2(P)$ is \mathcal{F}_{s_i} -measurable. It can be proved that (see the exercises)

$$X_k(t) = \sum_{i=1}^{m-1} \eta_i^{(k)} \mathbb{1}_{(s_i, s_{i+1}]}(t)$$

is an approximating sequence for X, where $\eta_i^{(k)} = (\eta_i \wedge k) \vee (-k)$. Then

$$\int_{0}^{t} X(s)dB_{s} = \sum_{i=1}^{m-1} \eta_{i} (B_{t \wedge s_{i+1}} - B_{t \wedge s_{i}})$$

It's also needed to check that the right-side is square integrable. More details in the exercises.

Example 1.11. One can check that the Brownian motion itself is an element of $\mathcal{L}_2(B)$.Let $t_i^n = i2^{-n}$ and

$$X_n(t) = \sum_{i=0}^{2^n n-1} B_{t_i^n} \mathbb{1}_{(t_i^n, t_{i+1}^n]}(t)$$

 $X_n \notin \mathcal{S}_2$, but it can be used to approximate B.By Example 1.10,

$$\int_0^t X_n(s)dB_s = \sum_{i=0}^{2^n n-1} B_{t_i^n} (B_{t \wedge t_{i+1}^n} - B_{t \wedge t_i^n})$$

For any T < n, we use that $X_n(t) = B_{t_i^n}(t)$ in $(t_i^n, t_{i+1}^n]$ to get

$$E \int_{0}^{T} |X_{n}(s) - B_{s}|^{2} dB_{s} \leq \sum_{i=0}^{2^{n} - 1} \int_{t_{i}^{n}}^{t_{i+1}^{n}} E|X_{n}(s) - B_{s}|^{2} ds$$

$$= \sum_{i=0}^{2^{n} - 1} \int_{t_{i}^{n}}^{t_{i+1}^{n}} E|B_{t_{i}^{n}}(s) - B_{s}|^{2} ds$$

$$= \sum_{i=0}^{2^{n} - 1} \int_{t_{i}^{n}}^{t_{i+1}^{n}} (t_{i}^{n} - s) ds = \sum_{i=0}^{2^{n} - 1} \frac{1}{2} (t_{i+1}^{n} - t_{i}^{n})^{2} = \frac{1}{2} n 2^{-n}$$

Thus $X_n \to B$ in $\mathcal{L}_2(B)$ as $n \to \infty$. By the isometry (1.12) in the next proposition, this integral converges to $\int_0^t B_s dB_s$ in L^2 as $n \to \infty$, so by Lemma 1.1,

$$\int_0^t B_s dB_s = \frac{1}{2} B_t^2 - \frac{1}{2} t$$

Proposition 1.12. Let $X, Y \in \mathcal{L}_2(B)$.

- a) Linearity: $(\alpha X + \beta Y) \cdot B = \alpha (X \cdot B) + \beta (Y \cdot B)$.
- b) The isometry holds:

$$E[(X \cdot B)_t^2] = E \int_0^t X_s^2 ds \quad \text{for all } t \ge 0$$
 (1.12)

and

$$||X \cdot B||_{\mathcal{M}_2} = ||X||_{\mathcal{L}_2(B)}$$
 (1.13)

In particular, if $X, Y \in \mathcal{L}_2(B)$ are $m \otimes P$ -equivalent in the sense of (1.3), then $X \cdot B$ and $Y \cdot B$ are indistinguishable.

c) Suppose τ is a stopping time such that $X(t,\omega) = Y(t,\omega)$ for $t \leq \tau(\omega)$. Then for almost every ω , $(X \cdot B)_t(\omega) = (Y \cdot B)_t(\omega)$ for $t \leq \tau(\omega)$

Proof. Parts a) - b) are inherited by approximation. So we only prove c). Taking Z = X - Y, it suffices to prove that if $Z \in \mathcal{L}_2(B)$ satisfies $Z(t, \omega) = 0$ for all $t \leq \tau(\omega)$, then $(Z \cdot B)_t(\omega) = 0$ for $t \leq \tau(\omega)$.

Assume first that Z is bounded, so $|Z(t,\omega)| \leq C$. Pick a sequence $\{Z_n\}$ of simple predictable processes that converge to Z in $\mathcal{L}_2(B)$.Let Z_n be of the type

$$Z_n(t,\omega) = \sum_{i=1}^{m(\pi)-1} \xi_i^n \mathbb{1}_{(t_i^n, t_{i+1}^n]}(t)$$

We may assume $|\xi_i^n| \leq C$, otherwise replace ξ_i^n by $(\xi_i^n \wedge k) \vee (-k)$ this also approximates Z). Define another sequence of predictable processes by

$$\tilde{Z}_n(t) := \sum_{i=1}^{m(\pi)-1} \xi_i^n \mathbb{1}_{\{\tau \le t_i^n\}} \mathbb{1}_{(t_i^n, t_{i+1}^n]}(t)$$

We claim that

$$\tilde{Z}_n \to Z \ in \ \mathcal{L}_2(B)$$
 (1.14)

To prove (1.14), first note that $Z_n \mathbb{1}_{\tau < t} \to Z \mathbb{1}_{\tau < t} = Z$ in $\mathcal{L}_2(B)$. So it suffices to show that

$$Z_n \mathbb{1}_{\tau < t} - \tilde{Z}_n \to 0 \text{ in } \mathcal{L}_2(B).$$
 (1.15)

We estimate

$$|Z_n(t)\mathbb{1}_{\tau < t} - \tilde{Z}_n(t)| \le C \sum_i |\mathbb{1}_{\tau < t} - \mathbb{1}_{\tau \le t_i^n}|\mathbb{1}_{(t_i^n, t_{i+1}^n]} \le C \sum_i \mathbb{1}_{\{t_i^n < \tau < t_{i+1}^n\}} \mathbb{1}_{(t_i^n, t_{i+1}^n]}(t)$$

The last inequality can be justified noting that $|\mathbbm{1}_{\tau < t} - \mathbbm{1}_{\tau \le t_i^n}|\mathbbm{1}_{(t_i^n, t_{i+1}^n]}| = 1$ if $\tau < t, \tau > t_i^n$ and $t < t_{i+1}^n$, so $t_i^n < \tau < t_{i+1}^n$. The another case, namely $\tau \le t_i^n$ and $t \le \tau$ and $t_i^n < t \le t_{i+1}^n$ cannot happen. Now we integrate over $[0, T] \times \Omega$ to get

$$E \int_0^T |Z_n(t) \mathbb{1}_{\tau < t} - \tilde{Z}_n(t)|^2 dt \le C^2 \sum_i P(t_i^n < \tau < t_{i+1}^n) \int_0^T \mathbb{1}_{(t_i^n, t_{i+1}^n]}(t) dt$$

$$\le C^2 \max\{T \wedge t_{i+1}^n - T \wedge t_i^n : 1 \le i \le m(n) - 1\}$$

We can add as many points t_i^n to the partition of each Z_n , so the right hand side converges to zero when $n \to \infty$, for each fixed T. This proves (1.15) and also (1.14).

The integral of Z_n is given explicitly by

$$(\tilde{Z}_n \cdot B)_t = \sum_{i=1}^{m(\pi)-1} \xi_i^n \mathbb{1}_{\tau \le t_i^n} (B_{t \wedge t_{i+1}^n} - B_{t \wedge t_i^n})$$

By construction, we see that $(\tilde{Z}_n \cdot B)_t = 0$ if $t \leq \tau$. Byc (1.14), $\tilde{Z}_n \cdot B \to Z \cdot B$ in \mathcal{M}_2^c . By Lemma 1.49 in Chapter 1, there exists a subsequence $\tilde{Z}_{n_k} \cdot B$ and an event Ω_0 with $P(\Omega_0) = 1$ such that, for eact $\omega \in \Omega_0$ and $T < \infty$,

$$(\tilde{Z}_{n_k} \cdot B)_t(\omega) \to (Z \cdot B)_t(\omega)$$
 uniformly for $0 \le t \le T$

For any $\omega \in \Omega_0$, in the limit $(Z \cdot B)_t(\omega) = 0$ for $t \leq \tau(\omega)$. This concludes the proof for bounded processes.

The general case comes from the standard approximation: if $Z \in \mathcal{L}_2(B)$, take $Z^{(k)} = (Z \wedge k) \vee (-k)$ satisfies property c), and the same holds in the limit.

Next we extend the integral to integrands in $\mathcal{L}(B)$. Given a process $X \in \mathcal{L}(B)$, define the stopping times

$$\tau_n(\omega) := \inf\{t \ge 0 : \int_0^t X(s, \omega^2) ds \ge n\}$$
(1.16)

These are stopping times by Lemma 1.20 in Chapter 1 because the function

$$t \to \int_0^t X(s,\omega)^2 ds$$

is continuous for each ω in the event in the definition of (1.4). By this same continuity, if $\tau_n(\omega) < \infty$,

$$\int_0^\infty X(s,\omega)^2 \mathbb{1}_{s \le \tau_n(\omega)} ds = \int_0^{\tau_n(\omega)} X(s,\omega)^2 ds = n$$

Let $X_n(t,\omega) := X(t,\omega)\mathbb{1}_{t \leq \tau_n}(\omega)$. Adapteness of X_n follows from $\{t \leq \tau_n\} = \{\tau_n < t\}^c \in \mathcal{F}_t$. The function $(t,\omega) \to \mathbb{1}_{t \leq \tau_n(\omega)}$ is $\mathcal{B}_{\mathbb{R}_+} \otimes \mathcal{F}$ -measurable (see the exercises), hence X_n is a measurable process. Together these properties say that $X_n \in \mathcal{L}_2(B)$, and the stochastic integrals $X_n \cdot B$ are well defined.

Now we want to show that there exists a unique limit when $n \to \infty$ of $X_n \cdot B$, and this will be our definition of $X \cdot B$.

Lemma 1.13. For almost every ω , $(X_m \cdot B)_t(\omega) = (X_n \cdot B)_t(\omega)$ for all $t \leq \tau_m(\omega) \wedge \tau_n(\omega)$.

Proof. This follows from Proposition 1.12, part c).

Observe that by (1.4) we have that $\tau_n(\omega) \nearrow \infty$ for almost every ω . Now we extend the stochastic integral to $\mathcal{L}(B)$.

Definition 1.14. Let B be a Brownian motion on a probability space (Ω, \mathbb{F}, P) with respect to the filtration \mathcal{F}_t , and $X \in \mathcal{L}(B)$. Let Ω_0 be the event of full probability on which $\tau_n \nearrow \infty$ and the conclusion of Lemma 1.13 holds for all pairs m, n. The stochastic integral $X \cdot B$ is defined for $\omega \in \Omega_0$ by

$$(X \cdot B)_t(\omega) = (X_n \cdot B)_t(\omega)$$
 for any n such that $\tau_n(\omega) \ge t$ (1.17)

For $\omega \notin \Omega_0$, define $(X \cdot B)_t(\omega) \equiv 0$. The process $X \cdot B$ is a continuous local L^2 -martingale.

To justify the claim that $X \cdot B$ is a local L^2 -martingale, just note that $\{\tau_n\}$ serves as a localizing sequence:

$$(X \cdot B)_t^{\tau_n} = (X \cdot B)_{t \wedge \tau_n} = (X_n \cdot B)_{t \wedge \tau_n} = (X_n \cdot B)_t^{\tau_n}$$

so $(X \cdot B)_t^{\tau_n} = (X_n \cdot B)_t^{\tau_n}$, which is an L^2 - martingale (by Corollary 1.12 in Chapter 2). The above equality also implies that $(X \cdot B)_t(\omega)$ is continuous for $t \in [0, \tau_n(\omega)]$, which contains any given interval [0, T] if n is taken large enough.

Definition 1.15. Let X be an adapted measurable process. A nondecreasing sequence of stopping times $\{\sigma_n\}$ is a localizing sequence for X if $X(t)\mathbb{1}_{t\leq\sigma_n}$ is in $\mathcal{L}_2(B)$ for all n, and $\sigma_n\nearrow\infty$ with probability one.

Remark 1.16. In the exercises we prove that $X \in \mathcal{L}(B)$ iff X has a localizing sequence $\{\sigma_n.$ In fact, the definition of stochastic integral works equally well if we replace the stopping times $\{\tau_n\}$ by a localizing sequence $\{\sigma_n\}$. To see this, fix a localizing sequence $\{\sigma_n\}$ and define $\tilde{X}_n(t) = \mathbb{1}_{t \leq \sigma_n} X(t).$ Let Ω_1 the event of full probability on which $\sigma_n \nearrow \infty$ and for all pairs $m, n, (\tilde{X}_m \cdot B)_t = (\tilde{X}_n \cdot B)_t$ for $t \leq \sigma_m \wedge \sigma_n.$ Let Y be the process defined by

$$Y_t(\omega) = (\tilde{X}_n \cdot B)_t(\omega)$$
 for any n such that $\sigma_n \ge t$ (1.18)

for $\omega \in \Omega_1$, and zero outside.

Lemma 1.17. $Y = X \cdot B$ in the sense of indistinguishability.

Proof. Let $\Omega_2 = \Omega_0 \cap \Omega_1$. This is a full probability event. Applying Proposition 1.12(c) to the stopping time $\sigma_n \wedge \tau_n$ and the processes X_n, \tilde{X}_n , we conclude that for almost every $\omega \in \Omega_2$, if $t \leq \sigma_n(\omega) \wedge \tau_n(\omega)$,

$$Y_t(\omega) = (\tilde{X}_n \cdot B)_t(\omega) = (X_n \cdot B)_t(\omega) = (X \cdot B)_t(\omega)$$

since $\sigma_n \wedge \tau_n \nearrow \infty$, the above equality holds almost surely for all $0 \le t < \infty$.

This lemma says that if $X \in \mathcal{L}(B)$, the stochastic integral $X \cdot B$ can be defined for any localizing sequence.