Q.3: Logistic Sigmird Function and Hyperbolic Tangent Function

Given
$$\sigma(\alpha) = \frac{1}{1+e^{-\alpha}}$$
, $+ anh(\alpha) = \frac{e^{\alpha} - e^{-\alpha}}{e^{\alpha} + e^{-\alpha}}$

(1) Show $tanh(\alpha) = 2\sigma(2\alpha) - 1$
 $\Rightarrow tanh(\alpha) = \frac{e^{\alpha} - e^{-\alpha}}{e^{\alpha} + e^{-\alpha}} = \frac{1 - e^{-t\alpha}}{1 + e^{-t\alpha}} = \frac{1}{1 + e^{-t\alpha}} - \frac{e^{-t\alpha}}{1 + e^{-t\alpha}}$
 $= \frac{1}{1 + e^{-t\alpha}} - \frac{1}{e^{2\alpha} + 1} = \sigma(2\alpha) - \sigma(-2\alpha)$
 $\Rightarrow \sigma(z) = 1 - \sigma(-z)$ $\Rightarrow tanh(\alpha) = \sigma(2\alpha) - 1 + \sigma(2\alpha)$
 $\Rightarrow 2\sigma(2\alpha) - 1$

(2) Given $\begin{cases} y(x, \vec{w}) = w_0 + \sum_{i=1}^{n} w_i^i \sigma(\frac{x - \mu_i}{z}) \\ y(x, \vec{w}) = w_0 + \sum_{j=1}^{n} w_j^j \sigma(\frac{x - \mu_j}{z}) \end{cases}$

Assume $a = \frac{x - \mu_j^i}{2s}$
 $\Rightarrow w_j^i \sigma(\alpha) = u_j tanh(\alpha) = u_j \left[2\sigma(2\alpha) - 1 \right] = u_j \left[2 \frac{1}{1 + e^{-t\alpha}} \right]$
 $= w_j^i \frac{1}{1 + e^{-t\alpha}} \Rightarrow \frac{w_j^i}{2s} = 2 \frac{(1 + e^{-\alpha})}{1 + e^{-t\alpha}} - (1 + e^{-\alpha}) = 2(1 + e^{-\alpha}) - (1 + e^{-\alpha})(1 + e^{-\alpha}) + e^{-\alpha} - e^{-t\alpha} - e^{-t\alpha}$

 $=2-\overline{\sigma(x-\mu_{\bar{i}})}$