Replication instructions for "Tug of War: The Heterogeneous Effects of Outbidding between Terrorist Groups',"

Casey Crisman-Cox and Michael Gibilisco

Sept 2024

A note for replicators

Conducting constrained maximum likelihood estimation (CMLE) requires specialized (open source) software that we are only able to run using the Ubuntu Linux operating system. We provide detailed setup instructions below. All results were produced on a computer using Ubuntu 22.04.4 (Jammy Jellyfish)) using R 4.4.1 ("Race for Your Life") and Python 3.10.12.

Replication package contents

Files marked with (U) require Ubuntu, with the setup as described below.

- Basic Information
 - readme.md plain text readme (this file)
 - readme.pdf This document in pdf format
 - replicateMainText.sh (U) Reproduces all results in the main text using the code files below in order. Tables and Figures are produced and placed in the Output folder.
 - replicateAppendix.sh (U) Reproduces all results in the Appendix using the code files below in order. Tables and Figures are produced and placed in the Output folder
- Installation
 - pyopt_setup_python3.sh (U) A bash script designed to be run on a fresh installation of Ubuntu 22.04.04. This will install all the necessary outside software to replicate the results. (Internet connection is required)
 - Rpackages.r An R script that installs all the R packages used here with the versions used here.
- Data: These are both the original data used in the analysis as well as the merged and complete versions used in the analysis.
 - acosta1993.csv Acosta and Ramos' (2017) data to supplement missing data from the Global Terrorism Database (GTD).
 - actionsSetup.Rdata Produced by buildDataSets.r, below, aggregates the GTD data to monthly level. This produces the main measurement of the actions
 - actionsSetup_byAttackType.Rdata Produced by buildDataSets_byAttackType.r, below, aggregates terrorism data by attack type.

- corruption_WBG.csv World Bank attitudes towards corruption data for the Palestinian Territories.
- cpsr.csv Survey data from CPSR/PCPSR.
- cpsr_GAZA.csv Survey data from CPSR/PCPSR, disaggregated to just the Gaza Strip
- cpsr_WB.csv Survey data from CPSR/PCPSR, disaggregated to just the West Bank
- ExtraFactors.rdata Output from the latent measurement model for unemployment status and attitudes towards violence. Produced by appendixD_latentMeasures.r, below.
- gadm41_PSE.gpkg Spatial administrative lines file used to assess the location of the West Bank and Gaza Strip for rainfall data.
- gtd.csv Terrorist attacks data from the GTD.
- jmcc.csv Survey data from JMCC
- jmcc_2023.csv Survey data from JMCC, with additional details collected later in the analysis
- jmcc_GAZA.csv Survey data from JMCC, disaggregated to just the Gaza Strip
- jmcc_WB.csv Survey data from JMCC, disaggregated to just the West Bank
- measurement.rdata The results of the measurement model that produces the latent state variable \tilde{s}^t . Produced by measurementModel.r, below
- mortality_WB.csv Infant mortality data for the Palestinian Territories from the World Bank
- otherattacks.rdata Palestinian Islamic Jihad (PIJ) attacks data from the GTD, produced by appendixD_PIJatacks.r, below
- palestinian_deaths_2000_2008.csv Palestinian fatalities data from B'Tselem (2000-2008)
- palestinian_deaths_2008_2020.csv Palestinian fatalities data from B'Tselem (2008-2020)
- PalestinianDeaths.rdata Aggregated data on Palestinian fatalities from B'Tselem. Created by appendixD aggregateDeaths.r, below
- rainData.rdata Aggregated data on extreme rainfall in the Palestinian territories from the Global Precipitation Climatology Centre (GPCC) and provided by NOAA. Created by appendixD_buildraindata.r, below

• Code

- Python3 (U)
 - * attackProbs.py Generate attack probabilities from values
 - * estFunctions_NoComp.py Estimation functions for the no competition model
 - * estFunctions.py Estimation functions for the main model
 - * estFunctions_t4t.py Estimation functions for the tit-for-tat model
 - * fitChangingDeltas.py Fit the model with different discount

factors

- * fitMainModel.py Fit the main model
- * fitMainModel_t4t.pyFit the tit-for-tat model
- * fitNoCompetition.py Fit the no competition model
- * fitSensitivity.py Fit the main model, but designed for parallel use
- * genGiven.py Helper function for the estimation functions
- * usaParam.py Generate utilities from parameter and data

- R441

- * Results: A folder of results that are saved and used along the way
- * appendixB.R The numerical examples in Appendix B. Produces Figures B.1–4
- * appendixB_equilibiraSearch.R Searches for different solutions to the numerical example.
- * appendixC_alternatives.r Consider alternatives to the main measurement model. Produces Tables C.3-4
- * appendixC_geographic.R Considers the geographical differences in the survey responses. Produces Figure C.2
- * appendixD_aggregateDeaths.r Aggregates Palestinian fatalities from B'Tselem. Creates PalestinianDeaths.rdata
- * appendixD_buildraindata.r Downloads rainfall data (1.2GB) from GPCC and produces the measures of extreme rainfall in the Palestinian Territories. Creates rainData.rdata
- * appendixD_latentMeasures.r Fits the latent measurement model for unemployment status and attitudes towards violence. CreatesExtraFactors.rdata.
- * appendixD_PIJattacks.r Aggregates PIJ attacks. Produces otherattacks.rdata
- * appendixD_robustness.r Fits the robustness checks in Appendix D along with the sensitivity analysis. Produces Tables D.1–7 and Figure D.1.
- * appendixF.r (U) Fits the simulations in Appendix F. Produces Figure F.1
- * appendixG_VAR_comparison.r Fits the Vector Autoregression models in Appendix G. Produces Table G.4 and Figure G.1.
- * appendixH.r (U) Fits the model at different temporal subsets. Produces Table H.1.
- * appendixI.r (U) Fits the model with different discount factors. Produces Table I.1 and Figure I.1.
- * appendixJ1.r(U) Fits the model with different discretization parameters. Produces Table J.1
- * appendixJ2.r Fits the model with very coarse discretization parameters. Produces Table J.2 and Figures J.1–2.
- * appendixK.R Analyses and interprets β . Produces Figure K.1
- * buildDataSets.r Merges and aggregates the polling and terrorist

- attack data. Produces actionsSetup.Rdata and Figure A.1
- * buildDataSets_byAttackType.r Merges and aggregates the polling and terrorist attack data but breaks it down by target type. Produces actionsSetup_byAttackType.Rdata
- * counterfactual_beta.R Conducts counterfactual analysis on changes in the value of popularity (β) . Produces Figure A.3.
- * counterfactual_gamma.R Conducts counterfactual analysis on changes the ability to affect popularity (γ) . Produces Figure 6.
- * counterfactual_kappa.R Conducts counterfactual analysis on changes in the costs of terrorism (κ). Produces Figure A.4
- * counterfactual_kappa_discussion.R Conducts counterfactual analysis on changes in the costs of terrorism (κ). Produces Table 5.
- * counterfactual_single_agent.R Conducts the counterfactual comparisons with the single agent models. Produces Figure 5 and Table 4.
- * figure3.R Produces Figure 3
- * firststageboot.r Function for a parametric bootstrap on the first stage
- * firstStageEstimation.r Fit the first stage model. Produces
 Table 1
- * fitNoCompetition.r (U) Fit the no competition model
- * gamma2trans.R Function to produce the Markov transition matrix from the first-stage results
- * helperFunctions.r Various helper functions
- * helper_functions_t4t.R Various helper functions for the titfor-tat model
- * liml.r Functions for limited information maximum likelihood estimators (LIML) for IV regression
- * measurementModel.r Uses the polling data to produce the continuous version of the state space. Produces measurement.rdata, Figures 1-2, and Tables C.2-3.
- * secondStageEstimation.r (U) Fits the second stage model. Produces Table 2.
- * secondStageEstimation_t4t.r(U) Fits the tit-for-tat model.
- Output
 - Figures. A folder containing all the produced figures
 - Tables. A folder containing all the produced tables in text format

Ubuntu 22.04.4 setup

From a fresh installation of Ubuntu 22.04.4, you will need to use the following steps to prepare the replication environment.

- 1. Download the replication package
- 2. Extract the replication package to the desired location (\${REPDIR})

- 3. Open a terminal and navigate to Installation directory (\${REPDIR}/Installation)
- 4. Run the file pyopt_setup_python3.sh using the command

bash pyopt_setup_python3.sh

This step may take up an hour depending on network speed and you may be prompted to press "Enter" at one or more points in the process. As software is downloaded, updated, or installed you may notice various background notifications appearing. These are normal and can be ignored. A known bug sometimes appears where the installation hangs on "Pregenerating ConTeXt MarkIV format. This may take some time..." If you find yourself here for more than five minutes, press "Enter" 4–5 times and wait about another minute. This will often work to "unstick" it (see this link).)

5. Run the file Rpackages.R

Rscript Rpackages.R

6. We are now ready to produce the results

Order of replication

Any file can be run and will produce the desired output as listed in its description. Two additional script files are provided to replicated the main paper and the appendix, respectively. These call the scripts, in order, to produce the files in the Output folder. Once the above installation is complete, these can be run by opening the terminal in this folder and running

nohup bash replicateMainText.sh &

or

nohup bash replicateAppendix.sh &

respectively. Note the use of **nohup** allows you to let these run in the background for as long as needed. This can be useful if you're replicating this on a remote device. Additionally, note that some files produce results for both the main text and the appendix.