ISA enoughtion LECTURE II / WED 3/13

diffie-hellman model

RSA encryption follows this general security model to encrypt messages M to A. that others use

C = PKALM)

party A has a secret key SKA that they can use to decrypt ciphertexts they receive.

M= SKA (C)

the circh is that even publishing PKA, nothing is revealed about SKA

RSA implementation

RSA relies on the difficulty of factoring the product nof two very large primes p, q to be secure

the private and public keys are pairs of integers:

PK = (n, e) where $n = p \cdot q$ and gcd(e, q(n)) = 1eulers tothent

SK = (n,d) where de = 1 mod p(n) counts pos. int. to enarypt and decrypt, keys are used as follows: " that

C = Enc(PK, m) = me (mod h)

are rel. prime

 $m \equiv Dec(sk, c) \equiv c^d \pmod{n}$ how are our keys generated?

- 1. two distinct large primes p, q are chosen
- 2. compute n = pq3. compute $\lambda(n) = lcm(\varphi(p), \varphi(q)) = lcm(p-1,q-1)$ where λ is Carmichael's totient function. $\lambda(n)$ is private

- 4. choose int. e s.t. $1 < e < \lambda(n)$ and $acd(e, \lambda(n))$ also: $e \leftarrow \mathbb{Z}_{\lambda(n)}^{*}$, $P(n)=1\mathbb{Z}_{n}^{*}=(p-1)(q-1)^{*}$ this means e $\lambda(n)$ are relative
- 5. compute $d \equiv e^{-1} \pmod{\lambda(n)}$ A(n) are relatively prime to another of e mod $\lambda(n)$

let's briefly show correctness

Dec(SK, Enc(PK, m))
= Dec(SK, me mod n)
= (me)d mod n
= me e-1 mod n(n)
mod n

= m' mod n = m

fun fact
practical
implement. use
chinese remainder
theorem

RSA IS ...

- → not semantically secure
- not even randomized
- → a trapdoor permutation
 4 easy to compute, hard to invertion
 (RSA assumption)
 4 easy to invert given a trapdoor d

making RSA CCA2 SECURE

idea! apply RSA encryption to an encoding of the message we call this OAEP: optimal asymmetric encryption padding

Enc_{nie} (xo, xi) where G, H are random oracles OAEP is randomized $\forall m \rightarrow Enc(m) = (x_0, x_1)$ is randomized. Without revealing the encoding (x_0, x_1) entirely, nothing can be learned about m

any trapdoor with OAEP encoding is CPA secure RSA with OAEP is CCAZ secure