Artificial Intelligence Nanodegree

Convolutional Neural Networks

Project: Write an Algorithm for a Dog Identification App

In this notebook, some template code has already been provided for you, and you will need to implement additional functionality to successfully complete this project. You will not need to modify the included code beyond what is requested. Sections that begin with '(IMPLEMENTATION)' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section, and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!

Note: Once you have completed all of the code implementations, you need to finalize your work by exporting the iPython Notebook as an HTML document. Before exporting the notebook to html, all of the code cells need to have been run so that reviewers can see the final implementation and output. You can then export the notebook by using the menu above and navigating to \n", "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission.

In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.

Note: Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. Markdown cells can be edited by double-clicking the cell to enter edit mode.

The rubric contains *optional* "Stand Out Suggestions" for enhancing the project beyond the minimum requirements. If you decide to pursue the "Stand Out Suggestions", you should include the code in this IPython notebook.

Why We're Here

In this notebook, you will make the first steps towards developing an algorithm that could be used as part of a mobile or web app. At the end of this project, your code will accept any user-supplied image as input. If a dog is detected in the image, it will provide an estimate of the dog's breed. If a human is detected, it will provide an estimate of the dog breed that is most resembling. The image below displays potential sample output of your finished project (... but we expect that each student's algorithm will behave differently!).

hello, dog! your predicted breed is ... American Staffordshire terrier

In this real-world setting, you will need to piece together a series of models to perform different tasks; for instance, the algorithm that detects humans in an image will be different from the CNN that infers dog breed. There are many points of possible failure, and no perfect algorithm exists. Your imperfect solution will nonetheless create a fun user experience!

The Road Ahead

We break the notebook into separate steps. Feel free to use the links below to navigate the notebook.

- · Step 0: Import Datasets
- Step 1: Detect Humans
- Step 2: Detect Dogs
- Step 3: Create a CNN to Classify Dog Breeds (from Scratch)
- Step 4: Use a CNN to Classify Dog Breeds (using Transfer Learning)
- Step 5: Create a CNN to Classify Dog Breeds (using Transfer Learning)
- Step 6: Write your Algorithm
- Step 7: Test Your Algorithm

Step 0: Import Datasets

Import Dog Dataset

In the code cell below, we import a dataset of dog images. We populate a few variables through the use of the load_files function from the scikit-learn library:

- train files, valid files, test files numpy arrays containing file paths to images
- train_targets, valid_targets, test_targets numpy arrays containing onehot-encoded classification labels

In [1]:

```
from sklearn.datasets import load files
from keras.utils import np utils
import numpy as np
from glob import glob
# define function to load train, test, and validation datasets
def load dataset(path):
    data = load_files(path)
    dog files = np.array(data['filenames'])
    dog targets = np utils.to categorical(np.array(data['target']), 133)
    return dog files, dog targets
# load train, test, and validation datasets
train files, train targets = load dataset('dogImages/train')
valid files, valid targets = load dataset('dogImages/valid')
test files, test targets = load dataset('dogImages/test')
# load list of dog names
dog names = [item[20:-1] for item in sorted(glob("dogImages/train/*/"))]
# print statistics about the dataset
print('There are %d total dog categories.' % len(dog names))
print('There are %s total dog images.\n' % len(np.hstack([train files, valid fil
es, test files])))
print('There are %d training dog images.' % len(train files))
print('There are %d validation dog images.' % len(valid files))
print('There are %d test dog images.'% len(test files))
```

Using TensorFlow backend.

```
There are 133 total dog categories. There are 8351 total dog images.

There are 6680 training dog images. There are 835 validation dog images. There are 836 test dog images.
```

Import Human Dataset

In the code cell below, we import a dataset of human images, where the file paths are stored in the numpy array human_files.

In [2]:

```
import random
random.seed(8675309)

# load filenames in shuffled human dataset
human_files = np.array(glob("lfw/*/*"))
random.shuffle(human_files)

# print statistics about the dataset
print('There are %d total human images.' % len(human_files))
```

There are 13233 total human images.

Step 1: Detect Humans

We use OpenCV's implementation of http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html) to detect human faces in images. OpenCV provides many pre-trained face detectors, stored as XML files on https://github.com/opencv/opencv/tree/master/data/haarcascades). We have downloaded one of these detectors and stored it in the haarcascades directory.

In [3]:

```
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# extract pre-trained face detector
face cascade = cv2.CascadeClassifier('haarcascades/haarcascade frontalface alt.x
ml')
# load color (BGR) image
img = cv2.imread(human files[3])
# convert BGR image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
# find faces in image
faces = face_cascade.detectMultiScale(gray)
# print number of faces detected in the image
print('Number of faces detected:', len(faces))
# get bounding box for each detected face
for (x,y,w,h) in faces:
    # add bounding box to color image
    cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
# convert BGR image to RGB for plotting
cv rgb = cv2.cvtColor(img, cv2.COLOR BGR2RGB)
# display the image, along with bounding box
plt.imshow(cv rgb)
plt.show()
```

Number of faces detected: 1

Before using any of the face detectors, it is standard procedure to convert the images to grayscale. The detectMultiScale function executes the classifier stored in face_cascade and takes the grayscale image as a parameter.

In the above code, faces is a numpy array of detected faces, where each row corresponds to a detected face. Each detected face is a 1D array with four entries that specifies the bounding box of the detected face. The first two entries in the array (extracted in the above code as x and y) specify the horizontal and vertical positions of the top left corner of the bounding box. The last two entries in the array (extracted here as w and h) specify the width and height of the box.

Write a Human Face Detector

We can use this procedure to write a function that returns True if a human face is detected in an image and False otherwise. This function, aptly named face_detector, takes a string-valued file path to an image as input and appears in the code block below.

In [4]:

```
# returns "True" if face is detected in image stored at img_path
def face_detector(img_path):
    img = cv2.imread(img_path)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray)
    return len(faces) > 0
```

(IMPLEMENTATION) Assess the Human Face Detector

Question 1: Use the code cell below to test the performance of the face_detector function.

- What percentage of the first 100 images in human_files have a detected human face?
- What percentage of the first 100 images in dog files have a detected human face?

Ideally, we would like 100% of human images with a detected face and 0% of dog images with a detected face. You will see that our algorithm falls short of this goal, but still gives acceptable performance. We extract the file paths for the first 100 images from each of the datasets and store them in the numpy arrays human files short and dog files short.

Answer:

- 98.0% of the first 100 images in human_files have a detected human face.
- 11.0% of the first 100 images in dog files have a detected human face.

In [5]:

```
human files short = human files[:100]
dog files short = train files[:100]
# Do NOT modify the code above this line.
## TODO: Test the performance of the face detector algorithm
## on the images in human files short and dog files short.
human count=0
dog like human count=0
for face in human files short:
    if (face detector(face)):
        human count = human count + 1
print('{}% of the first 100 images in human files have a detected human face.'.f
ormat(human count/len(human files short)*100))
for face in dog files short:
    if (face detector(face)):
        dog like_human_count = dog_like_human_count + 1
print('{}% of the first 100 images in dog files have a detected human face.'.for
mat(dog_like_human_count/len(dog_files_short)*100))
98.0% of the first 100 images in human_files have a detected human f
11.0% of the first 100 images in dog files have a detected human fac
```

Question 2: This algorithmic choice necessitates that we communicate to the user that we accept human images only when they provide a clear view of a face (otherwise, we risk having unnecessarily frustrated users!). In your opinion, is this a reasonable expectation to pose on the user? If not, can you think of a way to detect humans in images that does not necessitate an image with a clearly presented face?

Answer:

We suggest the face detector from OpenCV as a potential way to detect human images in your algorithm, but you are free to explore other approaches, especially approaches that make use of deep learning:). Please use the code cell below to design and test your own face detection algorithm. If you decide to pursue this *optional* task, report performance on each of the datasets.

In [6]:

```
## (Optional) TODO: Report the performance of another
## face detection algorithm on the LFW dataset
### Feel free to use as many code cells as needed.
```

Step 2: Detect Dogs

In this section, we use a pre-trained ResNet-50

(http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006) model to detect dogs in images. Our first line of code downloads the ResNet-50 model, along with weights that have been trained on ImageNet (http://www.image-net.org/), a very large, very popular dataset used for image classification and other vision tasks. ImageNet contains over 10 million URLs, each linking to an image containing an object from one of 1000 categories (https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a). Given an image, this pre-trained ResNet-50 model returns a prediction (derived from the available categories in ImageNet) for the object that is contained in the image.

In [7]:

```
from keras.applications.resnet50 import ResNet50

# define ResNet50 model
ResNet50_model = ResNet50(weights='imagenet')
```

Pre-process the Data

When using TensorFlow as backend, Keras CNNs require a 4D array (which we'll also refer to as a 4D tensor) as input, with shape

(nb_samples, rows, columns, channels),

where nb_samples corresponds to the total number of images (or samples), and rows, columns, and channels correspond to the number of rows, columns, and channels for each image, respectively.

The path_to_tensor function below takes a string-valued file path to a color image as input and returns a 4D tensor suitable for supplying to a Keras CNN. The function first loads the image and resizes it to a square image that is 224×224 pixels. Next, the image is converted to an array, which is then resized to a 4D tensor. In this case, since we are working with color images, each image has three channels. Likewise, since we are processing a single image (or sample), the returned tensor will always have shape

(1, 224, 224, 3).

The paths_to_tensor function takes a numpy array of string-valued image paths as input and returns a 4D tensor with shape

(nb_samples, 224, 224, 3).

Here, nb_samples is the number of samples, or number of images, in the supplied array of image paths. It is best to think of nb_samples as the number of 3D tensors (where each 3D tensor corresponds to a different image) in your dataset!

In [8]:

```
from keras.preprocessing import image
from tqdm import tqdm

def path_to_tensor(img_path):
    # loads RGB image as PIL.Image.Image type
    img = image.load_img(img_path, target_size=(224, 224))
    # convert PIL.Image.Image type to 3D tensor with shape (224, 224, 3)
    x = image.img_to_array(img)
    # convert 3D tensor to 4D tensor with shape (1, 224, 224, 3) and return 4D tensor
    return np.expand_dims(x, axis=0)

def paths_to_tensor(img_paths):
    list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)]
    return np.vstack(list_of_tensors)
```

Making Predictions with ResNet-50

Getting the 4D tensor ready for ResNet-50, and for any other pre-trained model in Keras, requires some additional processing. First, the RGB image is converted to BGR by reordering the channels. All pre-trained models have the additional normalization step that the mean pixel (expressed in RGB as [103.939, 116.779, 123.68] and calculated from all pixels in all images in ImageNet) must be subtracted from every pixel in each image. This is implemented in the imported function preprocess_input. If you're curious, you can check the code for preprocess_input here (https://github.com/fchollet/keras/blob/master/keras/applications/imagenet utils.py).

Now that we have a way to format our image for supplying to ResNet-50, we are now ready to use the model to extract the predictions. This is accomplished with the predict method, which returns an array whose i-th entry is the model's predicted probability that the image belongs to the i-th ImageNet category. This is implemented in the ResNet50 predict labels function below.

By taking the argmax of the predicted probability vector, we obtain an integer corresponding to the model's predicted object class, which we can identify with an object category through the use of this <u>dictionary</u> (https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a).

In [9]:

```
from keras.applications.resnet50 import preprocess_input, decode_predictions

def ResNet50_predict_labels(img_path):
    # returns prediction vector for image located at img_path
    img = preprocess_input(path_to_tensor(img_path))
    return np.argmax(ResNet50_model.predict(img))
```

Write a Dog Detector

While looking at the <u>dictionary (https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a)</u>, you will notice that the categories corresponding to dogs appear in an uninterrupted sequence and correspond to dictionary keys 151-268, inclusive, to include all categories from 'Chihuahua' to 'Mexican hairless'. Thus, in order to check to see if an image is predicted to contain a dog by the pre-trained ResNet-50 model, we need only check if the ResNet50 predict labels function above returns a value between 151 and 268 (inclusive).

We use these ideas to complete the dog_detector function below, which returns True if a dog is detected in an image (and False if not).

In [10]:

```
### returns "True" if a dog is detected in the image stored at img_path
def dog_detector(img_path):
    prediction = ResNet50_predict_labels(img_path)
    return ((prediction <= 268) & (prediction >= 151))
```

(IMPLEMENTATION) Assess the Dog Detector

Question 3: Use the code cell below to test the performance of your dog_detector function.

- What percentage of the images in human files short have a detected dog?
- What percentage of the images in dog files short have a detected dog?

Answer:

- 3.0% of the images in human files short have a detected dog
- 100.0% of the images in dog files short have a detected dog

In [11]:

```
### TODO: Test the performance of the dog_detector function
### on the images in human_files_short and dog_files_short.

dog_count=0
for human in human_files_short:
    if (dog_detector(human)):
        dog_count = dog_count + 1
print('{}% of the images in `human_files_short` have a detected dog'.format(dog_count/len(human_files_short)*100))

dog_count=0
for dog in dog_files_short:
    if (dog_detector(dog)):
        dog_count = dog_count + 1
print('{}% of the images in `dog_files_short` have a detected dog'.format(dog_count/len(dog_files_short)*100))
```

```
3.0% of the images in `human_files_short` have a detected dog 100.0% of the images in `dog_files_short` have a detected dog
```

Step 3: Create a CNN to Classify Dog Breeds (from Scratch)

Now that we have functions for detecting humans and dogs in images, we need a way to predict breed from images. In this step, you will create a CNN that classifies dog breeds. You must create your CNN *from scratch* (so, you can't use transfer learning *yet*!), and you must attain a test accuracy of at least 1%. In Step 5 of this notebook, you will have the opportunity to use transfer learning to create a CNN that attains greatly improved accuracy.

Be careful with adding too many trainable layers! More parameters means longer training, which means you are more likely to need a GPU to accelerate the training process. Thankfully, Keras provides a handy estimate of the time that each epoch is likely to take; you can extrapolate this estimate to figure out how long it will take for your algorithm to train.

We mention that the task of assigning breed to dogs from images is considered exceptionally challenging. To see why, consider that *even a human* would have great difficulty in distinguishing between a Brittany and a Welsh Springer Spaniel.

It is not difficult to find other dog breed pairs with minimal inter-class variation (for instance, Curly-Coated Retrievers and American Water Spaniels).

Likewise, recall that labradors come in yellow, chocolate, and black. Your vision-based algorithm will have to conquer this high intra-class variation to determine how to classify all of these different shades as the same breed.

Yellow Labrador	Chocolate Labrador	Black Labrador
-----------------	--------------------	----------------

We also mention that random chance presents an exceptionally low bar: setting aside the fact that the classes are slightly imabalanced, a random guess will provide a correct answer roughly 1 in 133 times, which corresponds to an accuracy of less than 1%.

Remember that the practice is far ahead of the theory in deep learning. Experiment with many different architectures, and trust your intuition. And, of course, have fun!

Pre-process the Data

We rescale the images by dividing every pixel in every image by 255.

In [12]:

```
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

# pre-process the data for Keras
train_tensors = paths_to_tensor(train_files).astype('float32')/255
valid_tensors = paths_to_tensor(valid_files).astype('float32')/255
test_tensors = paths_to_tensor(test_files).astype('float32')/255
```

100%| 6680/6680 [00:31<00:00, 212.30it/s] 100%| 835/835 [00:03<00:00, 240.60it/s] 100%| 836/836 [00:03<00:00, 241.93it/s]

(IMPLEMENTATION) Model Architecture

Create a CNN to classify dog breed. At the end of your code cell block, summarize the layers of your model by executing the line:

model.summary()

We have imported some Python modules to get you started, but feel free to import as many modules as you need. If you end up getting stuck, here's a hint that specifies a model that trains relatively fast on CPU and attains >1% test accuracy in 5 epochs:

Layer (type)	Output	Shape	Param #	INPU
conv2d_1 (Conv2D)	(None,	223, 223, 16)	208	CONV
max_pooling2d_1 (MaxPooling2	(None,	111, 111, 16)	0	BOOL
conv2d_2 (Conv2D)	(None,	110, 110, 32)	2080	POOL
max_pooling2d_2 (MaxPooling2	(None,	55, 55, 32)	0	CONV
conv2d_3 (Conv2D)	(None,	54, 54, 64)	8256	POOL
max_pooling2d_3 (MaxPooling2	(None,	27, 27, 64)	0	CONV
global_average_pooling2d_1 ((None,	64)	0	CONV
dense_1 (Dense)	(None,	133)	8645	POOL
Total params: 19,189.0 Trainable params: 19,189.0				GAP
Non-trainable params: 0.0				DENS

Question 4: Outline the steps you took to get to your final CNN architecture and your reasoning at each step. If you chose to use the hinted architecture above, describe why you think that CNN architecture should work well for the image classification task.

Answer: The basic unit of my CNN architecture consists of

- 1. 2D convolution layer to extract the local feature (filter sizer = 2) followed by relu activation
- 2. Dropout layer to prevent overfitting (dropout ratio = 50%)
- 3. 2D MaxPooling layer to summarize local feature (pool size = 2)

First, four basic units having 2D convolution filter number from 16, 32, 64 to 128 gradually extract hidden features. Then, global average pooling layer and dense layer followed by softmax activation function are attached to get the final classified result.

In [13]:

```
from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D
from keras.layers import Dropout, Flatten, Dense
from keras.models import Sequential
model = Sequential()
### TODO: Define your architecture.
model.add(Conv2D(filters=16, kernel size=2,padding='valid', activation='relu',in
put shape=(224, 224, 3)))
model.add(Dropout(0.5))
model.add(MaxPooling2D(pool size=2))
model.add(Conv2D(filters=32, kernel size=2,padding='valid', activation='relu'))
model.add(Dropout(0.5))
model.add(MaxPooling2D(pool size=2))
model.add(Conv2D(filters=64, kernel size=2,padding='valid', activation='relu'))
model.add(Dropout(0.5))
model.add(MaxPooling2D(pool size=2))
model.add(Conv2D(filters=128, kernel size=2,padding='valid', activation='relu'))
model.add(Dropout(0.5))
model.add(MaxPooling2D(pool size=2))
model.add(GlobalAveragePooling2D())
model.add(Dense(133, activation='softmax'))
model.summary()
```

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	223, 223, 16)	208
dropout_1 (Dropout)	(None,	223, 223, 16)	0
max_pooling2d_2 (MaxPooling2	(None,	111, 111, 16)	0
conv2d_2 (Conv2D)	(None,	110, 110, 32)	2080
dropout_2 (Dropout)	(None,	110, 110, 32)	0
max_pooling2d_3 (MaxPooling2	(None,	55, 55, 32)	0
conv2d_3 (Conv2D)	(None,	54, 54, 64)	8256
dropout_3 (Dropout)	(None,	54, 54, 64)	0
max_pooling2d_4 (MaxPooling2	(None,	27, 27, 64)	0
conv2d_4 (Conv2D)	(None,	26, 26, 128)	32896
dropout_4 (Dropout)	(None,	26, 26, 128)	0
max_pooling2d_5 (MaxPooling2	(None,	13, 13, 128)	0
global_average_pooling2d_1 ((None,	128)	0
dense_1 (Dense)	(None,	133)	17157

Total params: 60,597.0 Trainable params: 60,597.0 Non-trainable params: 0.0

The second of th

Compile the Model

In [14]:

model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['ac
curacy'])

(IMPLEMENTATION) Train the Model

Train your model in the code cell below. Use model checkpointing to save the model that attains the best validation loss.

You are welcome to <u>augment the training data (https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html)</u>, but this is not a requirement.

In [15]:

```
Train on 6680 samples, validate on 835 samples
Epoch 1/10
- acc: 0.0111Epoch 00000: val_loss improved from inf to 4.87619, sav
ing model to saved models/weights.best.from scratch.hdf5
c: 0.0112 - val loss: 4.8762 - val acc: 0.0132
Epoch 2/10
acc: 0.0182Epoch 00001: val_loss improved from 4.87619 to 4.85228,
saving model to saved models/weights.best.from scratch.hdf5
6680/6680 [============ ] - 13s - loss: 4.7876 - ac
c: 0.0183 - val loss: 4.8523 - val acc: 0.0204
Epoch 3/10
- acc: 0.0240Epoch 00002: val loss improved from 4.85228 to 4.83310,
saving model to saved models/weights.best.from scratch.hdf5
6680/6680 [============ ] - 12s - loss: 4.7179 - ac
c: 0.0240 - val loss: 4.8331 - val acc: 0.0228
Epoch 4/10
- acc: 0.0318Epoch 00003: val loss improved from 4.83310 to 4.80864,
saving model to saved models/weights.best.from scratch.hdf5
6680/6680 [============ ] - 12s - loss: 4.6536 - ac
c: 0.0317 - val loss: 4.8086 - val acc: 0.0299
Epoch 5/10
- acc: 0.0413Epoch 00004: val loss improved from 4.80864 to 4.80136,
saving model to saved models/weights.best.from scratch.hdf5
c: 0.0412 - val loss: 4.8014 - val acc: 0.0216
Epoch 6/10
- acc: 0.0529Epoch 00005: val_loss improved from 4.80136 to 4.77988,
saving model to saved models/weights.best.from scratch.hdf5
c: 0.0528 - val loss: 4.7799 - val acc: 0.0216
Epoch 7/10
- acc: 0.0568Epoch 00006: val loss improved from 4.77988 to 4.75937,
saving model to saved_models/weights.best.from_scratch.hdf5
6680/6680 [============= ] - 12s - loss: 4.4289 - ac
c: 0.0567 - val loss: 4.7594 - val acc: 0.0192
Epoch 8/10
                   =======>.] - ETA: 0s - loss: 4.3488
6640/6680 [======
- acc: 0.0663Epoch 00007: val loss improved from 4.75937 to 4.75513,
saving model to saved_models/weights.best.from_scratch.hdf5
c: 0.0660 - val_loss: 4.7551 - val_acc: 0.0240
Epoch 9/10
- acc: 0.0718Epoch 00008: val_loss improved from 4.75513 to 4.72500,
saving model to saved_models/weights.best.from_scratch.hdf5
c: 0.0714 - val_loss: 4.7250 - val_acc: 0.0251
Epoch 10/10
- acc: 0.0746Epoch 00009: val_loss improved from 4.72500 to 4.71604,
saving model to saved models/weights.best.from scratch.hdf5
c: 0.0747 - val_loss: 4.7160 - val_acc: 0.0287
```

```
Out[15]:
```

<keras.callbacks.History at 0x7f9afc489eb8>

Load the Model with the Best Validation Loss

```
In [16]:
```

```
model.load_weights('saved_models/weights.best.from_scratch.hdf5')
```

Test the Model

Try out your model on the test dataset of dog images. Ensure that your test accuracy is greater than 1%.

In [17]:

```
# get index of predicted dog breed for each image in test set
dog_breed_predictions = [np.argmax(model.predict(np.expand_dims(tensor, axis=0
))) for tensor in test_tensors]

# report test accuracy
test_accuracy = 100*np.sum(np.array(dog_breed_predictions)==np.argmax(test_targe
ts, axis=1))/len(dog_breed_predictions)
print('Test accuracy: %.4f%' % test_accuracy)
```

Test accuracy: 3.3493%

Step 4: Use a CNN to Classify Dog Breeds

To reduce training time without sacrificing accuracy, we show you how to train a CNN using transfer learning. In the following step, you will get a chance to use transfer learning to train your own CNN.

Obtain Bottleneck Features

```
In [18]:
```

```
bottleneck_features = np.load('bottleneck_features/DogVGG16Data.npz')
train_VGG16 = bottleneck_features['train']
valid_VGG16 = bottleneck_features['valid']
test_VGG16 = bottleneck_features['test']
```

Model Architecture

The model uses the the pre-trained VGG-16 model as a fixed feature extractor, where the last convolutional output of VGG-16 is fed as input to our model. We only add a global average pooling layer and a fully connected layer, where the latter contains one node for each dog category and is equipped with a softmax.

In [19]:

```
VGG16_model = Sequential()
VGG16_model.add(GlobalAveragePooling2D(input_shape=train_VGG16.shape[1:]))
VGG16_model.add(Dense(133, activation='softmax'))
VGG16_model.summary()
```

Layer (type)	Output	Shape	Param #
global_average_pooling2d_2 ((None,	512)	0
dense_2 (Dense)	(None,	133)	68229

Total params: 68,229.0 Trainable params: 68,229.0 Non-trainable params: 0.0

Compile the Model

In [20]:

```
VGG16_model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metric s=['accuracy'])
```

Train the Model

In [21]:

```
Train on 6680 samples, validate on 835 samples
Epoch 1/20
- acc: 0.1216Epoch 00000: val loss improved from inf to 10.79329, sa
ving model to saved models/weights.best.VGG16.hdf5
c: 0.1272 - val loss: 10.7933 - val acc: 0.2180
Epoch 2/20
- acc: 0.2760Epoch 00001: val loss improved from 10.79329 to 10.3639
7, saving model to saved_models/weights.best.VGG16.hdf5
6680/6680 [============ ] - Os - loss: 10.3907 - ac
c: 0.2775 - val loss: 10.3640 - val acc: 0.2790
Epoch 3/20
- acc: 0.3341Epoch 00002: val loss improved from 10.36397 to 10.1744
8, saving model to saved models/weights.best.VGG16.hdf5
c: 0.3310 - val loss: 10.1745 - val acc: 0.3042
Epoch 4/20
- acc: 0.3537Epoch 00003: val loss improved from 10.17448 to 10.0512
1, saving model to saved models/weights.best.VGG16.hdf5
6680/6680 [============== ] - Os - loss: 9.7818 - ac
c: 0.3542 - val loss: 10.0512 - val acc: 0.3257
Epoch 5/20
- acc: 0.3765Epoch 00004: val_loss did not improve
c: 0.3749 - val_loss: 10.0590 - val_acc: 0.3210
Epoch 6/20
- acc: 0.3871Epoch 00005: val_loss did not improve
c: 0.3852 - val loss: 10.1669 - val acc: 0.3126
Epoch 7/20
- acc: 0.3887Epoch 00006: val loss improved from 10.05121 to 9.8475
5, saving model to saved_models/weights.best.VGG16.hdf5
c: 0.3882 - val_loss: 9.8475 - val_acc: 0.3281
Epoch 8/20
- acc: 0.4087Epoch 00007: val loss improved from 9.84755 to 9.64968,
saving model to saved_models/weights.best.VGG16.hdf5
c: 0.4096 - val_loss: 9.6497 - val_acc: 0.3329
Epoch 9/20
- acc: 0.4252Epoch 00008: val loss improved from 9.64968 to 9.56089,
saving model to saved models/weights.best.VGG16.hdf5
c: 0.4253 - val_loss: 9.5609 - val_acc: 0.3461
Epoch 10/20
- acc: 0.4364Epoch 00009: val_loss improved from 9.56089 to 9.34582,
saving model to saved models/weights.best.VGG16.hdf5
c: 0.4343 - val_loss: 9.3458 - val_acc: 0.3533
Epoch 11/20
```

```
- acc: 0.4509Epoch 00010: val loss improved from 9.34582 to 9.25926,
saving model to saved_models/weights.best.VGG16.hdf5
c: 0.4509 - val loss: 9.2593 - val acc: 0.3545
Epoch 12/20
- acc: 0.4591Epoch 00011: val loss improved from 9.25926 to 9.03447,
saving model to saved models/weights.best.VGG16.hdf5
c: 0.4593 - val loss: 9.0345 - val acc: 0.3725
Epoch 13/20
- acc: 0.4744Epoch 00012: val loss improved from 9.03447 to 8.84446,
saving model to saved models/weights.best.VGG16.hdf5
c: 0.4737 - val loss: 8.8445 - val acc: 0.3892
Epoch 14/20
- acc: 0.4876Epoch 00013: val loss improved from 8.84446 to 8.75671,
saving model to saved models/weights.best.VGG16.hdf5
c: 0.4871 - val_loss: 8.7567 - val_acc: 0.3856
Epoch 15/20
- acc: 0.4942Epoch 00014: val loss improved from 8.75671 to 8.71196,
saving model to saved_models/weights.best.VGG16.hdf5
c: 0.4940 - val loss: 8.7120 - val acc: 0.3988
Epoch 16/20
- acc: 0.5005Epoch 00015: val loss improved from 8.71196 to 8.66627,
saving model to saved models/weights.best.VGG16.hdf5
c: 0.5001 - val loss: 8.6663 - val acc: 0.4000
Epoch 17/20
- acc: 0.5046Epoch 00016: val_loss did not improve
c: 0.5039 - val loss: 8.6745 - val acc: 0.4096
Epoch 18/20
- acc: 0.5045Epoch 00017: val_loss did not improve
c: 0.5045 - val_loss: 8.7158 - val_acc: 0.4000
Epoch 19/20
- acc: 0.5074Epoch 00018: val loss improved from 8.66627 to 8.57245,
saving model to saved_models/weights.best.VGG16.hdf5
c: 0.5048 - val_loss: 8.5725 - val_acc: 0.4096
Epoch 20/20
- acc: 0.5045Epoch 00019: val loss improved from 8.57245 to 8.51777,
saving model to saved models/weights.best.VGG16.hdf5
c: 0.5063 - val_loss: 8.5178 - val_acc: 0.4096
Out[21]:
```

<keras.callbacks.History at 0x7f9afc1e6c50>

Load the Model with the Best Validation Loss

In [22]:

```
VGG16_model.load_weights('saved_models/weights.best.VGG16.hdf5')
```

Test the Model

Now, we can use the CNN to test how well it identifies breed within our test dataset of dog images. We print the test accuracy below.

In [23]:

```
# get index of predicted dog breed for each image in test set
VGG16_predictions = [np.argmax(VGG16_model.predict(np.expand_dims(feature, axis=
0))) for feature in test_VGG16]

# report test accuracy
test_accuracy = 100*np.sum(np.array(VGG16_predictions)==np.argmax(test_targets,
axis=1))/len(VGG16_predictions)
print('Test accuracy: %.4f%' % test_accuracy)
```

Test accuracy: 41.5072%

Predict Dog Breed with the Model

In [24]:

```
from extract_bottleneck_features import *

def VGG16_predict_breed(img_path):
    # extract bottleneck features
    bottleneck_feature = extract_VGG16(path_to_tensor(img_path))
    # obtain predicted vector
    predicted_vector = VGG16_model.predict(bottleneck_feature)
    # return dog breed that is predicted by the model
    return dog_names[np.argmax(predicted_vector)]
```

Step 5: Create a CNN to Classify Dog Breeds (using Transfer Learning)

You will now use transfer learning to create a CNN that can identify dog breed from images. Your CNN must attain at least 60% accuracy on the test set.

In Step 4, we used transfer learning to create a CNN using VGG-16 bottleneck features. In this section, you must use the bottleneck features from a different pre-trained model. To make things easier for you, we have pre-computed the features for all of the networks that are currently available in Keras:

- VGG-19 (https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/DogVGG19Data.npz)
 bottleneck features
- ResNet-50 (https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/DogResnet50Data.npz)
 bottleneck features
- Inception (https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/DogInceptionV3Data.npz)
 bottleneck features
- Xception (https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/DogXceptionData.npz)
 bottleneck features

The files are encoded as such:

```
Dog{network}Data.npz
```

where {network}, in the above filename, can be one of VGG19, Resnet50, InceptionV3, or Xception. Pick one of the above architectures, download the corresponding bottleneck features, and store the downloaded file in the bottleneck features/ folder in the repository.

(IMPLEMENTATION) Obtain Bottleneck Features

In the code block below, extract the bottleneck features corresponding to the train, test, and validation sets by running the following:

```
bottleneck_features = np.load('bottleneck_features/Dog{network}Data.npz')
train_{network} = bottleneck_features['train']
valid_{network} = bottleneck_features['valid']
test_{network} = bottleneck_features['test']
```

In [25]:

```
### TODO: Obtain bottleneck features from another pre-trained CNN.
bottleneck_features = np.load('bottleneck_features/DogInceptionV3Data.npz')
train_InceptionV3 = bottleneck_features['train']
valid_InceptionV3 = bottleneck_features['valid']
test_InceptionV3 = bottleneck_features['test']
```

(IMPLEMENTATION) Model Architecture

Create a CNN to classify dog breed. At the end of your code cell block, summarize the layers of your model by executing the line:

```
<your model's name>.summary()
```

Question 5: Outline the steps you took to get to your final CNN architecture and your reasoning at each step. Describe why you think the architecture is suitable for the current problem.

Answer: I use model transfer technique based on InceptionV3 model: Firstly, I use InceptionV3 model as base model. Then I attached global average pooling layer behind. Finally use dense layer followed by softmax activation function to correspond the 133 categories.

In [27]:

```
### TODO: Define your architecture.
InceptionV3_model = Sequential()
InceptionV3_model.add(GlobalAveragePooling2D(input_shape=train_InceptionV3.shape
[1:]))
InceptionV3_model.add(Dense(133, activation='softmax'))
InceptionV3_model.summary()
```

Layer (type)	Output Shape	Param #
global_average_pooling2d_4 ((None, 2048)	0
dense_4 (Dense)	(None, 133)	272517

Total params: 272,517.0 Trainable params: 272,517.0 Non-trainable params: 0.0

(IMPLEMENTATION) Compile the Model

In [28]:

```
### TODO: Compile the model.
InceptionV3_model.compile(loss='categorical_crossentropy', optimizer='rmsprop',
metrics=['accuracy'])
```

(IMPLEMENTATION) Train the Model

Train your model in the code cell below. Use model checkpointing to save the model that attains the best validation loss.

You are welcome to <u>augment the training data (https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html)</u>, but this is not a requirement.

In [29]:

```
Train on 6680 samples, validate on 835 samples
Epoch 1/20
- acc: 0.7110Epoch 00000: val_loss improved from inf to 0.64649, sav
ing model to saved models/weights.best.InceptionV3.hdf5
c: 0.7124 - val loss: 0.6465 - val acc: 0.8000
Epoch 2/20
acc: 0.8609Epoch 00001: val_loss improved from 0.64649 to 0.64107,
saving model to saved models/weights.best.InceptionV3.hdf5
6680/6680 [============== ] - 1s - loss: 0.4725 - ac
c: 0.8605 - val loss: 0.6411 - val acc: 0.8251
Epoch 3/20
- acc: 0.8909Epoch 00002: val loss improved from 0.64107 to 0.57554,
saving model to saved_models/weights.best.InceptionV3.hdf5
6680/6680 [============== ] - 1s - loss: 0.3615 - ac
c: 0.8907 - val loss: 0.5755 - val acc: 0.8467
Epoch 4/20
- acc: 0.9090Epoch 00003: val loss did not improve
c: 0.9079 - val loss: 0.7378 - val acc: 0.8275
Epoch 5/20
- acc: 0.9259Epoch 00004: val_loss did not improve
c: 0.9259 - val loss: 0.6447 - val acc: 0.8515
Epoch 6/20
- acc: 0.9342Epoch 00005: val_loss did not improve
c: 0.9347 - val_loss: 0.7568 - val_acc: 0.8383
Epoch 7/20
- acc: 0.9483Epoch 00006: val loss did not improve
c: 0.9485 - val_loss: 0.7078 - val_acc: 0.8539
Epoch 8/20
- acc: 0.9565Epoch 00007: val_loss did not improve
c: 0.9561 - val loss: 0.7316 - val acc: 0.8599
Epoch 9/20
- acc: 0.9613Epoch 00008: val_loss did not improve
c: 0.9609 - val loss: 0.7636 - val acc: 0.8515
Epoch 10/20
- acc: 0.9672Epoch 00009: val_loss did not improve
c: 0.9672 - val_loss: 0.7727 - val_acc: 0.8599
Epoch 11/20
- acc: 0.9713Epoch 00010: val loss did not improve
c: 0.9714 - val_loss: 0.7375 - val_acc: 0.8551
Epoch 12/20
```

```
- acc: 0.9771Epoch 00011: val_loss did not improve
c: 0.9760 - val loss: 0.7993 - val acc: 0.8431
Epoch 13/20
- acc: 0.9782Epoch 00012: val_loss did not improve
c: 0.9783 - val_loss: 0.8531 - val_acc: 0.8479
Epoch 14/20
- acc: 0.9804Epoch 00013: val_loss did not improve
c: 0.9805 - val loss: 0.8487 - val acc: 0.8527
Epoch 15/20
- acc: 0.9828Epoch 00014: val loss did not improve
c: 0.9826 - val loss: 0.9714 - val acc: 0.8491
Epoch 16/20
- acc: 0.9852Epoch 00015: val loss did not improve
c: 0.9850 - val loss: 0.8531 - val acc: 0.8587
Epoch 17/20
- acc: 0.9870Epoch 00016: val_loss did not improve
c: 0.9871 - val loss: 0.8901 - val acc: 0.8647
Epoch 18/20
- acc: 0.9875Epoch 00017: val loss did not improve
c: 0.9874 - val loss: 0.9095 - val acc: 0.8455
Epoch 19/20
acc: 0.9886Epoch 00018: val_loss did not improve
c: 0.9886 - val loss: 0.9289 - val acc: 0.8515
Epoch 20/20
- acc: 0.9901Epoch 00019: val_loss did not improve
c: 0.9900 - val_loss: 0.9505 - val_acc: 0.8623
Out[29]:
```

<keras.callbacks.History at 0x7f9ada008898>

(IMPLEMENTATION) Load the Model with the Best Validation Loss

```
In [30]:
```

```
### TODO: Load the model weights with the best validation loss.
InceptionV3_model.load_weights('saved_models/weights.best.InceptionV3.hdf5')
```

(IMPLEMENTATION) Test the Model

Try out your model on the test dataset of dog images. Ensure that your test accuracy is greater than 60%.

In [31]:

```
### TODO: Calculate classification accuracy on the test dataset.

# get index of predicted dog breed for each image in test set
InceptionV3_predictions = [np.argmax(InceptionV3_model.predict(np.expand_dims(fe ature, axis=0))) for feature in test_InceptionV3]

# report test accuracy
test_accuracy = 100*np.sum(np.array(InceptionV3_predictions)==np.argmax(test_tar gets, axis=1))/len(InceptionV3_predictions)
print('Test accuracy: %.4f%%' % test_accuracy)
```

Test accuracy: 80.7416%

(IMPLEMENTATION) Predict Dog Breed with the Model

Write a function that takes an image path as input and returns the dog breed (Affenpinscher, Afghan hound, etc) that is predicted by your model.

Similar to the analogous function in Step 5, your function should have three steps:

- 1. Extract the bottleneck features corresponding to the chosen CNN model.
- 2. Supply the bottleneck features as input to the model to return the predicted vector. Note that the argmax of this prediction vector gives the index of the predicted dog breed.
- 3. Use the dog_names array defined in Step 0 of this notebook to return the corresponding breed.

The functions to extract the bottleneck features can be found in extract_bottleneck_features.py, and they have been imported in an earlier code cell. To obtain the bottleneck features corresponding to your chosen CNN architecture, you need to use the function

```
extract {network}
```

where {network}, in the above filename, should be one of VGG19, Resnet50, InceptionV3, or Xception.

In [32]:

```
### TODO: Write a function that takes a path to an image as input
### and returns the dog breed that is predicted by the model.

def InceptionV3_predict_breed(img_path):
    # extract bottleneck features
    bottleneck_feature = extract_InceptionV3(path_to_tensor(img_path))
    # obtain predicted vector
    predicted_vector = InceptionV3_model.predict(bottleneck_feature)
    # return dog breed that is predicted by the model
    return dog_names[np.argmax(predicted_vector)]
```

Step 6: Write your Algorithm

Write an algorithm that accepts a file path to an image and first determines whether the image contains a human, dog, or neither. Then,

- if a **dog** is detected in the image, return the predicted breed.
- if a **human** is detected in the image, return the resembling dog breed.
- if **neither** is detected in the image, provide output that indicates an error.

You are welcome to write your own functions for detecting humans and dogs in images, but feel free to use the face_detector and dog_detector functions developed above. You are **required** to use your CNN from Step 5 to predict dog breed.

Some sample output for our algorithm is provided below, but feel free to design your own user experience!

You look like a ... Chinese shar-pei

(IMPLEMENTATION) Write your Algorithm

In [33]:

```
### TODO: Write your algorithm.
### Feel free to use as many code cells as needed.
def predict dog breed(img path):
    # load color (BGR) image
    img = cv2.imread(img path)
    # convert BGR image to grayscale
    gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
    # convert BGR image to RGB for plotting
    cv rgb = cv2.cvtColor(img, cv2.COLOR BGR2RGB)
    # show image
    plt.imshow(cv rgb)
    plt.show()
    # make prediction
    if face detector(img path):
        # human
        print('Hello, human!')
        prediction = InceptionV3_predict_breed(img_path)
        print('You look like : ', prediction)
    elif dog detector(img path):
        # dog
        print('Hello, dog!')
        prediction = InceptionV3_predict_breed(img_path)
        print('You look like : ', prediction)
    else:
        # neither human and dog
        print('I can\'t recognize the image.')
```

Step 7: Test Your Algorithm

In this section, you will take your new algorithm for a spin! What kind of dog does the algorithm think that **you** look like? If you have a dog, does it predict your dog's breed accurately? If you have a cat, does it mistakenly think that your cat is a dog?

(IMPLEMENTATION) Test Your Algorithm on Sample Images!

Test your algorithm at least six images on your computer. Feel free to use any images you like. Use at least two human and two dog images.

Question 6: Is the output better than you expected :) ? Or worse :(? Provide at least three possible points of improvement for your algorithm.

Answer: It predicts quite well but still fail in some cases that human can easily recognize (e.g. dog2 beagle.img is detected as American foxhound.)

Here's several points I can improve ...

- 1. [Augment data] Augment image with rotation, flipping or adding some noise when training CNN model.
- 2. [More training data] For failure cases, add more samples and retrain model based on existed model.
- 3. [Use more complex model] Because there're so many categories, use deeper model or more feature maps to train may help.

In [34]:

```
## TODO: Execute your algorithm from Step 6 on
## at least 6 images on your computer.
## Feel free to use as many code cells as needed.
predict dog breed('dog1 golden retriever.jpg')
```


Hello, dog!

You look like : Golden retriever

In [35]:

predict_dog_breed('dog2_beagle.jpg')

Hello, dog!

You look like : American_foxhound

In [36]:

predict_dog_breed('dog3_labrador_retriever.jpg')

Hello, dog!

You look like : Labrador_retriever

In [37]:

predict_dog_breed('human1.jpg')

Hello, human!

You look like : Akita

In [38]:

predict_dog_breed('human2.jpg')

Hello, human!

You look like : Dachshund

In [39]:

predict_dog_breed('human3.jpg')

Hello, human!

You look like : Dachshund

In [40]:

predict_dog_breed('cat1.jpg')

I can't recognize the image.

In [41]:

predict_dog_breed('other1.jpg')

I can't recognize the image.

In []: