PART B(Simmons data Analysis)

```
In [1]: #Imports the Necessary Libraries
   import pandas as pd
   from sklearn.linear_model import LogisticRegression
   import numpy as np
   print("Libraries imported successfully!")
Libraries imported successfull!
```

In [2]: # Load the dataset
file_path = "C:\\Users\\n\\Downloads\\Simmons-data-raw.xls"
data = pd.read_excel(file_path)

In [3]: data.head()

Out[3]:

	Simmons-data-raw	Unnamed: 1	Unnamed: 2	Unnamed: 3
0	Customer	Spending(000)	Card	Coupon-Usage-Indicator
1	1	2.291	1	0
2	2	3.215	1	0
3	3	2.135	1	0
4	4	3.924	0	0

In [4]: data.tail()

Out[4]:

	Simmons-data-raw	Unnamed: 1	Unnamed: 2	Unnamed: 3
96	96	3.318	0	0
97	97	2.421	1	0
98	98	6.073	0	0
99	99	2.63	1	0
100	100	3.411	0	1

```
In [8]: # Build a logistic regression model
    logistic_model = LogisticRegression()
    logistic_model.fit(X, Y)
    print('Build Successful!')
```

Build Successful!

Coefficients of the logistic regression model

```
In [12]: # PartB-1: Coefficients of the Logistic regression model
         beta0 = logistic_model.intercept_[0]
         beta1, beta2 = logistic_model.coef_[0]
In [14]: # PartB-2: Probability of response for Jack and Jill
         # Jack: X1 = 2, X2 = 1
         # Jill: X1 = 4, X2 = 0
         jack_data = np.array([[2, 1]])
         jill_data = np.array([[4, 0]])
         jack_probability = logistic_model.predict_proba(jack_data)[:, 1]
         jill_probability = logistic_model.predict_proba(jill_data)[:, 1]
         C:\Users\n\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X do
         es not have valid feature names, but LogisticRegression was fitted with featu
         re names
           warnings.warn(
         C:\Users\n\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X do
         es not have valid feature names, but LogisticRegression was fitted with featu
         re names
           warnings.warn(
```

Choosing the cutoff probability

```
In [16]: # PartB-3: Choosing the cutoff probability
# You can evaluate different cutoff probabilities using a confusion matrix
# and choose the one that best suits your business needs.
# For example, you can set a cutoff probability of 0.5, where probabilities >= cutoff_probability = 0.5
```

RESULTS

```
In [17]: # Print the results
    print("LR coefficients Value")
    print(f"BETA0 (or constant term): {beta0}")
    print(f"BETA1 (coeff. For X1): {beta1}")
    print(f"BETA2 (coeff. For X2): {beta2}")

    print("Probability of Response")
    print(f"Jack: {jack_probability[0]}")
    print(f"Jill: {jill_probability[0]}")

    if jack_probability > jill_probability:
        print("Jack is more likely to respond because he has a higher probability.
    else:
        print("Jill is more likely to respond because she has a higher probability
```

```
LR coefficients Value
BETA0 (or constant term): -2.006720615442227
BETA1 (coeff. For X1): 0.32989442356674026
BETA2 (coeff. For X2): 0.9178862828888503
Probability of Response
Jack: 0.3943542838553842
Jill: 0.3346689457446288
Jack is more likely to respond because he has a higher probability.
```

```
In [ ]: #THE END
```