Definizione 1. Sia A un insieme non vuoto. Un'applicazione

$$*: A \times A \rightarrow A$$

si dice legge di composizione interna o operazione su A. La coppia ordinata (A, *) si dice struttura algebrica, della quale A è il sostegno.

Osservazione 1. Se è assegnata una struttura algebrica (A, *), allora invece di scrivere *(x, y) si scrive x * y.

Definizione 2. Sia (A, *) una struttura algebrica. Si dice che la legge di composizione * verifica la proprietà associativa se

$$\forall x, y, z \in A, \quad (x * y) * z = x * (y * z).$$

Definizione 3. Sia (A, *) una struttura algebrica. Se la legge di composizione * verifica la proprietà associativa si dice che (A, *) è un monoide (o un semigruppo).

Definizione 4. Sia (A, *) una struttura algebrica. Si dice che (A, *) ammette elemento neutro se

$$\exists e \in A \text{ tale che } \forall x \in A \text{ } x * e = e * x = x.$$

Naturalmente e si dice elemento neutro della struttura algebrica (A, *).

Proposizione 1. Se una struttura algebrica (A,*) ammette elemento neutro, esso è unico.

Dimostrazione. Siano e_1 ed e_2 elementi neutri della struttura algebrica (A, *). Allora $e_1 = e_1 * e_2 = e_2$.

Osservazione 2. Nei testi spesso è chiamato monoide una struttura algebrica associativa e con elemento neutro.

Sono esempi di monoidi con unità: $(\mathbb{N},+)$, (\mathbb{Z},\cdot) , il monoide delle parole (definito a lezione).

Definizione 5. Sia (A, *) una struttura algebrica dotata di elemento neutro e, e sia $x \in A$. Si dice che x è simmetrizabile se esiste $x' \in A$ tale che x * x' = x' * x = e; x' si dice il simmetrico di x.

Definizione 6. Si dice che una struttura algebrica (A, *) è un gruppo se è associativa, se ammette elemento neutro e se ogni elemento è simmetrizzabile. In altri termini (A, *) è un gruppo se sono verificate le seguenti proprietà

- $\forall x, y, z \in A$, (x * y) * z = x * (y * z).
- $\exists e \in A$ tale che $\forall x \in A$ x * e = e * x = x.
- $\forall x \in a \ \exists x' \in A \ \text{tale che} \ x * x' = x' * x = e.$

Esempi di gruppi sono: $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, (\mathbb{Q}^*, \cdot) , (\mathbb{R}^*, \cdot) .

Definizione 7. Sia (A, *) una struttura algebrica. Si dice che la legge di composizione * verifica la proprietà *commutativa* se

$$\forall x, y \in A, \quad x * y = y * x.$$

In tal caso la struttura algebrica (A, *) si dice commutativa. Un gruppo commutativo si dice *abeliano*.

Osservazione 3. Il monoide delle parole non è commutativo, mentre sono commutativi i monoidi $(\mathbb{N}, +)$, (\mathbb{Z}, \cdot) . I gruppi $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, (\mathbb{Q}^*, \cdot) , (\mathbb{R}^*, \cdot) sono tutti abeliani. Si vedranno in seguito alcuni esempi di gruppi non abeliani.

Definizione 8. Sia (A, *) una struttura algebrica, \mathcal{R} una relazione di equivalenza su A. Si dice che \mathcal{R} è compatibile con * se

$$\forall a, b, c, d \in A, \quad ((a, b) \in \mathcal{R} \land (c, d) \in \mathcal{R}) \Rightarrow (a * c, b * d) \in \mathcal{R}.$$

Osservazione 4. Se una relazione di equivalenza \mathcal{R} è compatibile con una legge di composizione interna *, allora è possibile definire sull'insieme quoziente A/\mathcal{R} una legge di composizione interna $*_{\mathcal{R}}$ come segue:

$$\forall [a]_{\mathcal{R}}, [b]_{\mathcal{R}} \in A/\mathcal{R}, \quad [a]_{\mathcal{R}} *_{\mathcal{R}} [b]_{\mathcal{R}} = [a * b]_{\mathcal{R}}.$$

Si dimostra che $*_{\mathcal{R}}$ verifica tutte le proprietà di *. Quindi, in particolare, se (A,*) è un monoide o un gruppo, allora $(A/\mathcal{R},*_{\mathcal{R}})$ è monoide o un gruppo, rispettivamente. Inoltre, se (A,*) è una struttura commutativa, allora anche $(A/\mathcal{R},*_{\mathcal{R}})$ è una struttura commutativa.

Esempio 1. La congruenza (mod n) è compatibile sia con la somma che con il prodotto di \mathbb{Z} (verificato a lezione) e quindi si possono considerare le leggi di composizione interne indotte sull'insieme quoziente \mathbb{Z}_n .

$$\forall [a]_n, [b]_n \in \mathbb{Z}_n \quad [a]_n + [b]_n = [a+b]_n, \quad [a]_n \cdot [b]_n = [a \cdot b]_n.$$

Risultano, quindi, le due strutture algebriche $(\mathbb{Z}_n, +)$, che è un gruppo abeliano, e (\mathbb{Z}_n, \cdot) , che è un monoide commutativo.

Gruppi

Osservazione 5. Un gruppo G può essere denotato moltiplicativamente, per esempio con \cdot , con \bullet , con \odot , ecc.: in tal caso si usa generalmente la notazione 1_G o semplicemente 1 per l'elemento neutro e per ogni $x \in G$ si indica con x^{-1} l'elemento simmetrico di x, che dice inverso di x. Può anche essere denotato additivamente con +, con \oplus ecc.: allora si usa generalmente la notazione 0_G o semplicemente 0 per l'elemento neutro e per ogni $x \in G$ si indica con -x l'elemento simmetrico di x, che si dice opposto di x.

Definizione 9. Sia (G, \cdot) un gruppo. Fissato $n \in \mathbb{Z}$, definisce la *potenza n-ma* di g nel modo che segue:

• ricorsivamente per $n \in \mathbb{N}$:

$$\begin{cases} g^0 = 1_G \\ g^n = g^{n-1}g, & n > 0 \end{cases}$$

• per n < 0, si pone $g^n = (g^{-n})^{-1}$.

Osservazione 6. Se (G, +) è un gruppo denotato additivamente, allora fissato $n \in \mathbb{Z}$, si parla non di potenza n-ma di g, ma di multiplo secondo n di g. Si definisce in modo analogo:

• ricorsivamente per $n \in \mathbb{N}$:

$$\begin{cases} 0 \ g = 0 \\ n \ g = (n-1) \ g + g, \ n > 0 \end{cases}$$

• per n < 0, si pone n g = -(-n g).

Proposizione 2. Sia (G,\cdot) un gruppo. Allora si ha

- $(1) \ \forall g \in G, \ \forall m,n \in \mathbb{Z} \ g^m \cdot g^n = g^{m+n}$
- (2) $\forall g \in G, \ \forall m, n \in \mathbb{Z} \ (g^m)^n = g^{mn}$
- (3) se (G, \cdot) è abeliano, allora $\forall g, h \in G, \forall n \in \mathbb{Z} \ (g \cdot h)^n = g^n \cdot h^n$.

Osservazione 7. Se il gruppo (G, +) è denotato additivamente, allora le precedenti proprietà si riscrivono nel modo seguente:

- (1) $\forall g \in G, \ \forall m, n \in \mathbb{Z} \ (m+n) \ g = m \ g + n \ g$
- (2) $\forall g \in G, \ \forall m, n \in \mathbb{Z} \ m \ (n \ g) = (mn) \ g$
- (3) se (G, +) è abeliano, allora $\forall g, h \in G, \forall n \in \mathbb{Z} \ n \ (g+h) = n \ g+n \ h.$

Definizione 10. Sia (G, \cdot) un gruppo, $H \subseteq G$. Si dice che H è un sottogruppo di G se verifica le seguenti 3 condizioni

- SG_1) $H \neq \emptyset$
- $SG_2) \ \forall x, y \in H, \ x \cdot y \in H$
- $SG_3) \ \forall x \in H, \ x^{-1} \in H.$

Osservazione 8. Nel caso di un gruppo (G, +) denotato additivamente, le condizioni SG_2), SG_3) della precedente Definizione si riscrivono come segue:

$$SG_2) \ \forall x, y \in H, \ x + y \in H$$

$$SG_3) \ \forall x \in H, \ -x \in H.$$

Teorema 1. Sia (G, \cdot) un gruppo, $H \subseteq G$. Allora H è un sottogruppo di G se e soltanto se sono verificate le sequenti 2 condizioni

$$SG'_1)$$
 $1_G \in H$

$$SG_2$$
 $\forall x, y \in H, x \cdot y^{-1} \in H.$

Osservazione 9. Nel caso di un gruppo (G, +) denotato additivamente, le condizioni SG'_1), SG'_2) del precedente Teorema si riscrivono come segue:

 $SG_2) \ 0_G \in H$

 $SG_3) \ \forall x, y \in H, \ x - y \in H.$

Esempio 2. Sia (G,\cdot) un gruppo. Allora $G \in \{1_G\}$ sono sottogruppi di (G,\cdot) .

Proposizione 3. Sia (G, \cdot) un gruppo. Allora l'intersezione di due sottogruppi di G è un sottogruppo di G (si verifichi per esercizio).

Osservazione 10. In generale l'unione di due sottogruppi di G non è un sottogruppo di G: ciò si può vedere con degli esempi.

Definizione 11. Sia (G, \cdot) un gruppo. Si indica con |G| la cadinalità (finita o infinita di G), che si chiama *ordine* di G. La stessa notazione vale ovviamente per i sottogruppi.

Teorema 2. (Lagrange) Sia (G, \cdot) un gruppo finito di ordine n, H un suo sottogruppo di ordine h. Allora h|n (h è un divisore di n).

Proposizione 4. Sia (G, \cdot) un gruppo, $g \in G$. Allora il sottoinsieme

$$\langle g \rangle = \{ a \in G : \exists h \in \mathbb{Z} \text{ tale che } a = g^h \} = \{ g^h : h \in \mathbb{Z} \}$$

è un sottogruppo di G.

(verificata a lezione)

Definizione 12. Sia (G, \cdot) un gruppo, $g \in G$. Il sottogruppo < g > si dice sottogruppo ciclico generato da g.

Osservazione 11. Se il gruppo (G, +) è denotato additivamente e $g \in G$, allora il sottogruppo ciclico generato da g si scrive

$$\langle g \rangle = \{ a \in G : \exists h \in \mathbb{Z} \text{ tale che } a = hg \} = \{ hg \mid h \in \mathbb{Z} \}.$$

Osservazione 12. Si osservi che un gruppo infinito può anche ammettere sottogruppi finiti: per esempio il sottogruppo ciclico di (\mathbb{Q}^*,\cdot) generato da -1 è finito in quanto $<-1>=\{1,-1\}.$

Proposizione 5. $Sia(G, \cdot)$ un gruppo, $g \in G$. Allora si ha una delle seguenti possibilità:

- (1) $(\forall h, k \in \mathbb{Z}) (g^h \neq g^k) \Leftrightarrow \langle g \rangle \hat{e} infinito$
- (2) $(\exists h, k \in \mathbb{Z})$ $(g^h = g^k) \Leftrightarrow \langle g \rangle$ è finito.

Definizione 13. Sia (G, \cdot) un gruppo, $g \in G$. Si dice che g ha ordine infinito, e si scrive $|g| = +\infty$, se $| < g > | = +\infty$; si dice che g ha ordine o periodo $k \in \mathbb{N}^*$, e si scrive |g| = k, se | < g > | = k. (Si noti che in ogni caso |g| = | < g > |.)

Definizione 14. Si dice che un gruppo (G, \cdot) è *ciclico* se esiste $g \in G$ tale che $\langle g \rangle = G$. In tal caso g si dice *generatore* di G.

Osservazione 13. Sia (G, \cdot) un gruppo finito di ordine n. Allora (G, \cdot) è ciclico se e solo se esiste un elemento $g \in G$ tale che |g| = n.

Esempio 3. Sono gruppi ciclici:

- (1) $(\mathbb{Z},+)$, in quanto 1 e -1 ne sono generatori
- (2) $(\mathbb{Z}_n, +)$, in quanto $[1]_n$ ne è generatore.

Teorema 3. Ogni sottogruppo di un gruppo ciclico è ciclico.

Quindi, per esempio, sono ciclici tutti i sottogruppi di $(\mathbb{Z}, +)$ e tutti i sottogruppi di $(\mathbb{Z}_n, +)$

Teorema 4. (Inverso del Teorema di Lagrange per i gruppi ciclici) Sia (G, \cdot) un gruppo ciclico di ordine n. Allora per ogni h divisore di n esiste un unico sottogruppo di (G, \cdot) avente ordine h.

Proposizione 6. Sia (G, \cdot) un gruppo ciclico finito di ordine n e ne sia g un generatore, ovvero $G = \langle g \rangle$. Pertanto, per ogni elemento $a \in G$ esiste $h \in \mathbb{Z}$ tale che $a = g^h$. Risulta allora:

(1)
$$|a| = |g^h| = \frac{n}{M.C.D.(h, n)}$$

Osservazione 14. Segue da (1) che per ogni numero intero h primo con n, g^h è un generatore di G. In particolare, i generatori del gruppo $(\mathbb{Z}_n, +)$ sono tutti e soli gli elementi $[h]_n \in \mathbb{Z}_n$ tali che h sia primo con n e quindi i generatori di $(\mathbb{Z}_n, +)$ sono esattamente $\varphi(n)$ (φ funzione di Eulero).

Esercizio 1. Verificare che:

- 1. un gruppo finito di ordine p primo è ciclico.
- 2. un gruppo ciclico è abeliano.

Proposizione 7. Siano (G,\cdot) un gruppo, $a \in G$, con |a| = m. Allora si ha:

$$m = \min\{h \in \mathbb{N}^* : a^h = 1_G\}$$

Proposizione 8. Sia $n \in \mathbb{N}$, n > 1. Allora un elemento $[a]_n \in \mathbb{Z}_n^*$ è invertibile nel monoide (\mathbb{Z}_n, \cdot) se e soltanto se M.C.D.(a, n) = 1.

Dimostrazione. Un elemento $[a]_n \in \mathbb{Z}_n^*$ è invertibile se esiste $[x]_n \in \mathbb{Z}_n$ tale che

$$[a]_n \cdot [x]_n = [1]_n,$$

ovvero

$$[a \cdot x]_n = [1]_n.$$

Pertanto, per trovare $[x]_n$, laddove esista, bisogna risolvere la congruenza lineare

$$(2) a x \equiv 1 \pmod{n},$$

che ha soluzioni se e solo se M.C.D.(a, n)|1. Inoltre, nel caso in cui (2) abbia soluzioni, ce nè soltanto una mod n. Questo a conferma dell'unicità dell'inverso.

Corollario 1. Se $p \in \mathbb{Z}$ è un numero primo, allora \mathbb{Z}_p^* è chiuso rispetto $a \cdot .$

Dimostrazione. Per la proposizione precedente, ogni elemento di \mathbb{Z}_p^* ha inverso rispetto a \cdot . Siano $[a]_p$, $[b]_p \in \mathbb{Z}_p^*$ se fosse

$$[a]_p \cdot [b]_p = 0,$$

moltiplicando a sinistra per l'inverso $[a]_p^{-1}$ di $[a]_p$ si avrebbe

$$[a]_p^{-1} \cdot [a]_p \cdot [b]_p = [a]_p^{-1} \cdot 0,$$

ossia $[b]_p = 0$ che contraddice $[b]_p \in \mathbb{Z}_p^*$. Quindi $[a]_p \cdot [b]_p \in \mathbb{Z}_p^*$, ovvero \mathbb{Z}_p^* è chiuso rispetto a \cdot .

Corollario 2. Se $p \in \mathbb{Z}$ è un numero primo, allora la struttura algebrica (\mathbb{Z}_p^*, \cdot) è un gruppo abeliano.

Un esempio di gruppo non abeliano si costruisce nel modo che segue. Sia A un insieme e sia $\mathcal{S}(A)$ l'insieme delle applicazioni bigettive su A. Si prova facilmente che la struttura algebrica $(\mathcal{S}(A), \circ)$ è un gruppo non abeliano (dimostrato a lezione).

Sia S_n l'insieme delle permutazioni su n oggetti, ovvero su un insieme di cardinalità n. Non è lesivo della generalità considerare S_n come l'insieme delle permutazioni sui primi numeri naturali non nulli

$$\{1, 2, \ldots, n\}.$$

Si è visto che $|S_n| = n!$. La composizione di applicazioni fornisce una legge di composizione interna su S_n :

$$\circ: S_n \times S_n \to S_n$$
.

 (S_n, \circ) è un gruppo, (è un caso particolare di $(S(A), \circ)$) e per n > 2 è non abeliano. Quindi non può essere ciclico per n > 2 (cf. Esercizio 1).

Definizione 15. Si sice che una permutazione f muove un elemento a se $f(a) \neq a$; si dice che fissa a se f(a) = a.

Definizione 16. Si dice che due permutazioni f e g sono disgiunte se gli elementi mossi da f sono fissati da g.

Osservazione 15. Se due permutazioni f e g sono disgiunte, allora

$$f \circ g = g \circ f$$
.

Definizione 17. Si dice *ciclo di lunghezza* r, e si indica con il simbolo $(c_1c_2...c_r)$, $r \leq n$ la permutazione $f \in S_n$ tale che

$$f(c_1) = c_2, f(c_2) = c_3, \dots, f(c_{r-1}) = c_r, f(c_r) = c_1$$

e tutti gli altri elementi vengono fissati da f. Un ciclo di lunghezza 2 si chiama scambio.

Osservazione 16. Si osservi che si ha $(c_1c_2...c_r) = (c_2...c_rc_1) = (c_3...c_rc_1c_2) = ...(c_rc_1...c_{r-1}).$

Teorema 5. Sia $f \in S_n$. Allora f è un ciclo oppure può essere scritta, in modo unico a meno dell'ordine, come prodotto di cicli disgiunti.

Osservazione 17. Si può scrivere il ciclo $(c_1c_2...c_r)$ come

$$(c_1c_2\ldots c_r)=(c_1c_r)\circ\cdots\circ(c_1c_3)\circ(c_1c_2).$$

Quindi ogni ciclo può essere scritto come prodotto di scambi e dunque ogni permutazione può essere scritta prima come prodotto di cicli e poi come prodotto di scambi. La scomposizione in scambi non è unica. Per esempio:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} = (1 \ 3 \ 2) \circ (4 \ 5) = (1 \ 2) \circ (1 \ 3) \circ (4 \ 5)$$
$$= (1 \ 2) \circ (3 \ 4) \circ (3 \ 4) \circ (1 \ 3) \circ (4 \ 5).$$

Teorema 6. Due scomposizioni in scambi di una stessa permutazione hanno la stessa parità.

Il precedente Teorema giustifica la seguente:

Definizione 18. Si dice che una permutazione è di classe pari (rispettivamente di classe dispari) se una sua qualunque scomposizione è costituita da un numero pari (rispettivamente dispari) di scambi.

Si può quindi definire l'applicazione

$$\Delta: S_n \to \{+1, -1\}$$
 tale che $\Delta(f) = \begin{cases} 1 & \text{se } f \text{ è di classe pari} \\ -1 & \text{se } f \text{ è di classe dispari.} \end{cases}$

Proposizione 9. Il sottoinsieme formato dalle permutazioni di classe pari costituisce un sottogruppo di S_n , che si chiama gruppo alterno.

Osservazione 18. Sia σ un ciclo di lunghezza r. Allora l'ordine di σ nel gruppo (S_n, \circ) è r.

Proposizione 10. Sia $f \in S_n$, e sia $f = \sigma_1 \circ \cdots \circ \sigma_h$ la sua scomposizione in cicli disgiunti. Allora

$$|f| = m.c.m.(|\sigma_1|, \ldots, |\sigma_h|).$$

Osservazione 19. Il gruppo (S_n, \circ) non è ciclico per $n \geq 3$.

Definizione 19. Siano (A, *), (B, \cdot) due strutture algebriche. Si può allora considerare sul prodotto cartesiano $A \times B$ la legge di composizione interna \odot definita come segue:

(3)
$$\forall (a,b), (a',b') \in A \times B, (a,b) \odot (a',b') = (a*a',b\cdot b').$$

Si può verificare facilmente la seguente:

Proposizione 11. Siano (A,*), (B,\cdot) due strutture algebriche, e sia $(A \times B, \odot)$ la struttura algebrica definita in (3). Allora si ha:

- se le due strutture (A,*) e (B,\cdot) sono entrambe associative, allora $(A\times B,\odot)$ è associativa
- se la struttura (A,*) ammette elemento neutro e_A e la struttura (B,\cdot) ammette elemento neutro e_B allora $(A \times B, \odot)$ ammette elemento neutro (e_A, e_B)
- se a è un elemento simmetrizzabile di A avente a' come simmetrico e b è un elemento simmetrizzabile di B avente b' come inverso, allora la coppia (a,b) è simmetrizzabile in $(A \times B, \odot)$ ed ha come simmetrico (a',b')
- se le due strutture (A, *) e (B, \cdot) sono commutative, allora $(A \times B, \odot)$ è commutativa
- quindi, se (A, *) e (B, \cdot) sono monoidi (commutativi), allora $(A \times B, \odot)$ è un monoide (commutativo); se (A, *) e (B, \cdot) sono gruppi (abeliani), allora $(A \times B, \odot)$ è un gruppo (abeliano), che si dice gruppo somma diretta dei gruppi (A, *) e (B, \cdot) , che si indica con $A \oplus B$.

Osservazione 20. Si può verificare che se (A,*) e (B,\cdot) sono gruppi, $a \in A, b \in B$, entrambi di ordine finito, allora si ha la seguente formula nel gruppo somma diretta $A \oplus B$

$$|(a,b)| = m.c.m(|a|,|b|).$$

Esempio 4. Fissati $n, m \in \mathbb{N}^*$, $n \neq 1$, si può considerare il gruppo somma diretta $\mathbb{Z}_n \oplus \mathbb{Z}_m$ di $(\mathbb{Z}_n, +)$ e $(\mathbb{Z}_m, +)$, che è un gruppo abeliano finito di ordine $n \cdot m$.

Esercizio 2. In quali ipotesi su n ed m, $\mathbb{Z}_n \oplus \mathbb{Z}_m$ è ciclico?

Esercizio 3. Studiare il gruppo $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ (gruppo di Klein).

Anelli

Definizione 20. Sia A un insieme non vuoto, dotato di due leggi di composizione interne + e \cdot . Si dice che la struttura algebrica $(A, +, \cdot)$ è un *anello* se;

- (1) (A, +) è un gruppo abeliano
- (2) (A, \cdot) è un monoide (ovvero \cdot è associativa)
- (3) valgono le proprietà distibutive, ovvero $\forall a,b,c\in A$ si ha

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 $(a+b) \cdot c = a \cdot c + b \cdot c$.

Se (A, \cdot) è un monoide con unità, allora si parla di anello con unità; se (A, \cdot) è commutativo, allora $(A, +, \cdot)$ si dice anello commutativo.

Nel seguito ci si riferirà sempre ad anelli con unità, anche se verranno chiamati semplicemente anelli.

Esempio 5. Sono esempi di anelli commutativi gli insiemi $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Z}_n, +, \cdot)$.

Tra le proprietà di un anello , che per ragioni di tempo vengono tralasciate, si evidenzia la seguente:

Proposizione 12. Sia $(A, +, \cdot)$ un anello. Allora si ha:

$$\forall \ a \in A \ a \cdot 0 = 0 \cdot a = 0.$$

Dimostrazione. Sia $A \in A$. Per la proprietà distributiva, si ha:

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$$

e, per le leggi di cancellazione applicate al gruppo (A, +), segue $a \cdot 0 = 0$; analogamente si vede che $0 \cdot a = 0$.

Definizione 21. Si dice che un anello $(A, +, \cdot)$ è un *corpo* se ogni elemento non nullo di A è invertibile rispetto a \cdot ; un corpo commutativo si chiama *campo*.

Esempio 6. Sono campi, per esempio, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, $(\mathbb{Z}_p, +, \cdot)$, p numero primo.

Osservazione 21. Nell'anello $(\mathbb{Z}_6, +, \cdot)$ il prodotto $[3]_6 \cdot [2]_6 = [0]_6$, pur essendo $[3]_6 \neq [0]_6$ e $[2]_6 \neq [0]_6$; d'altra parte $[5]_6$ ammette come inverso moltiplicativo $[5]_6$. Pertanto hanno senso le seguenti definizioni:

Definizione 22. Sia $(A, +, \cdot)$ un anello. Un elemento $a \in A$ si dice divisore dello zero se

- (1) $a \neq 0$
- (2) $\exists b \in A, b \neq 0$, tale che $a \cdot b = 0$.

In tal caso b si dice codivisore dello zero di a

Osservazione 22. Si noti che un divisore dello zero di un anello in generale ammette più di un codivisore dello zero: nell'anello $(\mathbb{Z}_6, +, \cdot)$, si può notare che $[2]_6$ e $[4]_6$ sono entrambi codivisori dello zero di $[3]_6$.

Definizione 23. Sia $(A, +, \cdot)$ un anello. Un elemento $a \in A$ si dice *unitario* se è inveritibile rispetto a \cdot .

Proposizione 13. Sia $(A, +, \cdot)$ un anello. Allora un elemento unitario di A non può essere un divisore dello zero.

Dimostrazione. Sia $a \in A$ un elemento unitario. Se per assurdo a fosse un divisore dello zero, sarebbe $a \neq 0$ ed inoltre esisterebbe $b \in A$, $b \neq 0$ tale che

$$a \cdot b = 0.$$

Moltiplicando per a^{-1} , da (4) si avrebbe

$$a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0 = 0$$

ovvero, per l'associatività di \cdot ,

$$b = (a^{-1} \cdot a) \cdot b = 0$$

che dà luogo a contraddizione.

Segue immediatamente il:

Corollario 3. In un campo non ci sono divisori dello zero.

Osservazione 23. L'anello $(\mathbb{Z},+,\cdot)$ non ha divisori dello zero: per questo motivo si chiama dominio di integrità.

Osservazione 24. Si dimostra che in un anello *finito* ogni elemento non nullo è divisore dello zero oppure è unitario. Per esempio si è osservato (Proposizione 8) che in \mathbb{Z}_n , n non primo, sono unitari gli elementi primi con n e quindi gli elementi unitari sono in numero di $\varphi(n)$ (φ funzione di Eulero); i rimanenti $n-1-\varphi(n)$ elementi non nulli di \mathbb{Z}_n sono quindi divisori dello zero.