

UCB Momentum Q-learning: Correcting the bias without forgetting

Pierre Ménard¹, Omar Darwiche Domingues², Xuedong Shang^{2,3} Michal Valko^{2,4}

¹Otto von Guericke University Magdeburg, ²Inria Lille, ³Université de Lille, ⁴DeepMind

Overview

- Analyze the benefits of adding a momentum term to Q-learning in the episodic setting.
- UCBMQ algorithm with regret bound that scales linearly with the number of states S.

Setting

- Tabular MDP: H horizon, S states, A actions, $p_h(s'|s,a)$ unknown transitions, deterministic reward $r_h(s,a)$.
- Regret: $\sum_{t=1}^{T} V_1^*(s_1) V_1^{\pi^t}(s_1)$

Intuition

• Generic Q-learning step:

$$Q_h^n(s,a) = \alpha_n(r_h + p_h^n \overline{V}_h^{n-1})(s,a) + (1 - \alpha_n)Q_h^{n-1}(s,a)$$

$$\overline{Q}_h^n(s,a) = Q_h^n(s,a) + b_h^n(s,a) \qquad \overline{V}_h^n(s) = \max_a \overline{Q}_h^n(s,a)$$

where the sample expectation $(p_h^n f)(s, a) = f(s_{h+1}^n)$

- How to choose the learning rate α_n and the bonus b_h^n ?
- learning rate $\alpha_n \approx 1/n$, unfolding the formula for Q_h^n + Hoeffding inequality

$$\begin{split} Q_h^n(s,a) &\approx r_h(s,a) + \frac{1}{n} \sum_{i=1}^n p_h^i \overline{V}_{h+1}^{i-1}(s,a) \\ &\approx r_h(s,a) + p_h \left(\frac{1}{n} \sum_{i=1}^n \overline{V}_{h+1}^{i-1}\right)(s,a) \pm \underbrace{\sqrt{\frac{H^2}{n}}}_{:=V_{h,s,a}^n \text{ bias-value function}} \end{split}$$
 variance term \rightarrow bonus

learning rate $\alpha_n \approx H/n$ (OptQL [Jin et al., 2018])

$$Q_h^n(s,a) \approx r_h(s,a) + \frac{H}{n} \sum_{i \geq n-H/n}^n p_h^i \overline{V}_{h+1}^{i-1}(s,a)$$

$$\approx r_h(s,a) + p_h \underbrace{\frac{H}{n} \sum_{i \geq n-n/H}^n \overline{V}_{h+1}^{i-1}}_{:=V_h^n s \text{ bias-value function}}^{n} (s,a) \pm \underbrace{\sqrt{\frac{H^3}{n}}}_{\text{variance term}}.$$

UCB Momentum Q-learning

Idea add a (negative) momentum to correct the bias [Azar et al., 2011] learning rate $\alpha_n \approx 1/n$ and momentum rate $\gamma_n \approx H/n$: UCBMQ

$$Q_h^n(s,a) = \alpha_n(r_h + p_h^n \overline{V}_{h+1}^{n-1})(s,a) + (1 - \alpha_n)Q_h^{n-1}(s,a) + \gamma_n \underbrace{p_h^n(\overline{V}_{h+1}^{n-1} - V_{h,s,a}^{n-1})(s,a)}_{\leq 0, \text{ momentum}}$$

where the bias-value function

$$V_{h,s,a}^{n}(s') = (\alpha_n + \gamma_n) \overline{V}_{h+1}^{n-1}(s') + (1 - \alpha_n - \gamma_n) V_{h,s,a}^{n-1}(s')$$

$$\approx \frac{H}{n} \sum_{i>n-n/H}^{n} \overline{V}_{h+1}^{i-1}(s')$$

Unfolding+ Hoeffding inequality

$$\begin{split} Q_h^n(s,a) &\approx r_h(s,a) + \frac{1}{n} \sum_{i=1}^n p_h^i \left((H+1) \overline{V}_{h+1}^{i-1} - V_{s,a,h}^{i-1} \right) (s,a) \\ &\approx r_h(s,a) + p_h \underbrace{\left(\frac{H}{n} \sum_{i \geq n-n/H}^n \overline{V}_h^{i-1} \right)}_{\approx V_{hsa}^n \text{ bias-value function}}^{n} (s,a) \pm \underbrace{\sqrt{\frac{H^2}{n}}}_{\text{variance term}} \pm \underbrace{\sqrt{\frac{H^3}{n} \sum_{i=1}^n p_h (V_{h,s,a}^{n-1} - \overline{V}_h^{n-1})(s,a) \frac{1}{n}}_{\text{momentum variance term}}. \end{split}$$

- keep only the last H/n fraction of the past targets: bound polynomial in H
- ullet n samples to approximate the mean
- still an extra H in the bonus \rightarrow Bernstein inequality instead of Hoeffding

Rates	
Algorithm	Upper bound
UCBVI [Azar et al., 2017]	$\widetilde{\mathcal{O}}(\sqrt{H^3SAT} + H^3S^2A)$
UBEV [Dann et al., 2017]	$\widetilde{\mathcal{O}}(\sqrt{H^4SAT} + H^2S^3A^2)$
EULER [Zanette and Brunskill, 2019]	$\widetilde{\mathcal{O}}\left(\sqrt{H^3SAT} + H^3S^{3/2}A(\sqrt{S} + \sqrt{H})\right)$
OptQL [Jin et al., 2018] (Bernstein)	$\widetilde{\mathcal{O}}(\sqrt{H^4SAT} + H^{9/2}S^{3/2}A^{3/2})$
UCB-Advantage [Zhang et al., 2020]	$\widetilde{\mathcal{O}}(\sqrt{H^3SAT} + H^{33/4}S^2A^{3/2}T^{1/4})$
UCBMQ (this paper)	$\widetilde{\mathcal{O}}(\sqrt{H^3SAT} + H^4SA)$