#### Introduction to Neural Networks

Fundamental ideas behind artificial neural networks





#### **Outline**

- Introduction
- Machine Learning framework
- Neural Networks
- 1. Simple linear models
- 2. Nonlinear activations
- 3. Gradient descent
- Demos



### What are (artificial) neural networks

- A technique to estimate patterns from data (~1940s)
- Also called "multi-layer perceptrons"
- "neural" very crude mimicry of how real biological neurons work
- Large network of simple units which produce a complex output





#### Why do we care about them

- Key ingredient in real Al
- Useful for industry problems
- Perform best on important tasks
- Yield insights into the biological brain (maybe)











# General machine learning framework

- Data  $n \times m$  matrix X
  - rows are observations  $x_i$   $(1 \times m)$
- Data labels  $n \times 1$  vector y
- Assume there is some unknown function f(⋅) that generates the label y<sub>i</sub> given x<sub>i</sub>:

$$f(\mathbf{x}_i) = y_i$$

- ML problem: estimate  $f(\cdot)$
- Use it to generate labels for new observations!





# Some examples...

| Problem                                                                   | Data                                                                               | Data labels                                                  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 119 images of cats and dogs (20 x 20 pixels)                              | 119 × 400 matrix of pixel<br>data<br>(we stretch each image<br>into a long vector) | {Cat, Dog}                                                   |
| A 15 question political poll of 139 residents on recent state legislation | 139 × 15 matrix of answers (A-E)                                                   | Party affiliation:<br>{Republican, Democrat,<br>Independent} |



### Recall: Linear regression

- Assume the generating function  $f(\cdot)$  is linear
  - Write label  $y_i$  as a linear function of X:  $y_i = x_i w$
  - Matrix form: y = Xw
- What should the  $m \times 1$  vector **w** be?
- This is the familiar least squares regression:

$$\boldsymbol{w} = (X^T X)^{-1} X^T \boldsymbol{y}$$



 We will set up the simplest neural network and show we arrive at this same solution!



### Declare a simple neural network

- Recall x is  $1 \times m$
- One artificial neural unit
- Connects to each input  $x_i$  with a weight w<sub>i</sub>
- Produces one output z

$$z = \sum_{i}^{m} x_{i} w_{i}$$





#### Set an objective to learn

- Want network outputs  $z_i$  to match labels  $y_i$ 
  - Choose a loss function E and optimize w.r.t the weights

$$E = \frac{1}{2} \sum_{i}^{N} (z_i - y_i)^2$$

$$E = \frac{1}{2} \sum_{i}^{N} (x_i w - y_i)^2$$

How to minimize E with respect to w?



#### Equivalence to least squares

• Take the derivative and set it to zero:

$$\frac{dE}{d\mathbf{w}} = \sum_{i}^{N} (\mathbf{x}_{i}\mathbf{w} - \mathbf{y}_{i})\mathbf{x}_{i}^{T}$$

$$\sum_{i}^{N} \mathbf{x}_{i}^{T}\mathbf{x}_{i}\mathbf{w} - \mathbf{x}_{i}^{T}\mathbf{y}_{i} = \mathbf{0}$$

Written in matrix form this becomes:

$$X^T X \boldsymbol{w} - X^T \boldsymbol{y} = \boldsymbol{0}$$
$$\boldsymbol{w} = (X^T X)^{-1} X^T \boldsymbol{y}$$



# Key idea: compose simple units

- Where do we go from here?
- Use many of these simple units and compose them in layers:
  - Function composition:  $g(h(\cdot))$
- Each layer learns a new representation of the data
  - 3 layer network:  $z_i = h_3 (h_2(h_1(\boldsymbol{x}_i)))$



http://neuralnetworksanddeeplearning.com



### Drawback to only linear units

- Recall our earlier assumption that  $f(\cdot)$  is linear
  - This is a very restrictive assumption
- Furthermore, composing strictly linear models is also linear!

$$z_i = h_3 (h_2(h_1(\mathbf{x}_i))) = W_3 W_2 W_1 \mathbf{x}_i = W_{123} \mathbf{x}_i$$

XOR problem (Minsky, Papert 1969)



### XOR problem

| <b>X</b> 1 | $\mathbf{X}_2$ | Y                     |
|------------|----------------|-----------------------|
| 0          | 0              | 0                     |
| 0          | 1              | 1                     |
| 1          | 0              | 1                     |
| 1          | 1              | 0                     |
| Y          | = X1 @         | <b>X</b> <sub>2</sub> |



 Can't learn a simple XOR gate using only one straight line



#### Key idea: non-linear activations

- Solution: add a non-linear function at the output of each layer
- What kind of function?
- Differentiable at least:
  - Hyperbolic tangent:  $z = \tanh(\mathbf{w}^T \mathbf{x}_i)$
  - Sigmoid:  $z = \frac{1}{1 + e^{-w^T x_i}}$
  - Rectified Linear:  $z = \max(0, \mathbf{w}^T \mathbf{x}_i)$
- Why? Labels y can be a non-linear function of the inputs (like XOR)



# Examples of non-linear activations



http://ufldl.stanford.edu



### How do we learn weights now?

- With multiple layers and non-linear activation functions we can't simply take the derivative and set it to 0
- Still can set a loss function and:
  - Randomly try different weights
  - Numerically estimate the derivative

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

Terribly inefficient and scale badly with the number of layers...



### Key idea: gradient descent on loss function

• Suppose we could calculate the partial derivative of E w.r.t each weight  $w_i$ :  $\frac{\delta E}{\delta w_i}$  (gradient)

Decrease the loss function E by updating weights:

$$w_i = w_i + \frac{\delta E}{\delta w_i}$$

- Repeatedly doing this process is called gradient descent
- Leads to a set of weights that correspond to a local minimum of the loss function





### Backpropagation to estimate gradients

- One of the breakthroughs in neural network research
- Allows to calculate the gradients of the network!
- Core idea behind the algorithm is multiple applications of the chain rule of derivatives:

$$F(x) = f(g(x))$$
  
$$F'(x) = f'(g(x))g'(x)$$

- Two passes through the network: forward and backward
  - Forward: calculate g(x) and then f(g(x))
  - Backward: calculate f'(g(x)) and then g'(x)



### Multilayer Backpropagation

- Assume we have  $t_i$ ,  $t_j$ ,  $z_j$  from the forward pass
- Work backward from the output of the network:
- $E = \frac{1}{2} \sum_{j \in output} (t_j y_j)^2$ ,  $\frac{\delta E}{\delta t_j} = -(t_j y_j)$  (for output neurons)
- $\bullet \quad \frac{\delta E}{\delta t_i} = \sum_j \frac{dz_j}{dt_i} \left( \frac{\delta E}{\delta z_j} \right) = \sum_j w_{ij} \left( \frac{\delta E}{\delta z_j} \right)$
- $\bullet \quad \frac{\delta E}{\delta z_j} = \frac{\delta t_j}{\delta z_j} \left( \frac{\delta E}{\delta t_j} \right) = t_j \left( \frac{\delta E}{\delta t_j} \right)$
- $\bullet \quad \frac{\delta E}{\delta t_i} = \sum_j w_{ij} \ t_j \left( \frac{\delta E}{\delta t_j} \right)$



http://nikhilbuduma.com



### Putting all the pieces together

- 3 key elements to understanding neural networks
  - Composition of units with simple operations (dot-product)
  - Non-linearity activation functions at unit outputs
  - Learn weights using gradient descent
- Using neural networks:
  - Set up data matrix and label vector: X and y
  - Define a network architecture: number of layers, units per layer
  - Choose a loss function to minimize: depends on the task



# A couple of demos...





#### Credits

- Images from:
  - http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
  - http://ufldl.stanford.edu
  - http://neuralnetworksanddeeplearning.com