Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 4 de octubre de 2024

Contenidos estimados para hoy

- Deducción natural
 - \blacksquare Definición inductiva de \mathcal{D}
 - Inducción y recursión en derivaciones
 - Relación de deducción y teoremas

- Corrección y completitud de la lógica proposicional
 - Relación entre verdad y demostrabilidad
 - Teorema de corrección

Definimos el conjunto de las derivaciones de manera recursiva.

Definimos el conjunto de las derivaciones de manera recursiva.

 \mathcal{D} es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida que satisface que:

Definimos el conjunto de las derivaciones de manera recursiva.

 \mathcal{D} es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida que satisface que:

■ Los árboles de un sólo nodo φ , con $\varphi \in PROP$, pertenecen a \mathcal{D} .

Definimos el conjunto de las derivaciones de manera recursiva.

 \mathcal{D} es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida que satisface que:

- Los árboles de un sólo nodo φ , con $\varphi \in PROP$, pertenecen a \mathcal{D} .
- $lacksymbol{\square}$ Si $\overset{\cdot}{arphi}D_1\in\mathcal{D}$ y $\overset{\cdot}{arphi'}D_2\in\mathcal{D}$ entonces

Definimos el conjunto de las derivaciones de manera recursiva.

 \mathcal{D} es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida que satisface que:

■ Los árboles de un sólo nodo φ , con $\varphi \in PROP$, pertenecen a \mathcal{D} .

$$\blacksquare \ \ \text{Si} \ \ \vdots \ \ D_1 \in \mathcal{D} \ \ \ \text{y} \quad \ \vdots \ \ D_2 \in \mathcal{D} \ \ \ \text{entonces} \ \ D := \ \frac{\vdots}{\varphi} \ \ D_1 \quad \ \vdots \ D_2 \\ \hline \ \ \varphi \wedge \varphi' \quad \wedge I \ \ \in \ \mathcal{D}.$$

Definimos el conjunto de las derivaciones de manera recursiva.

 \mathcal{D} es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida que satisface que:

■ Los árboles de un sólo nodo φ , con $\varphi \in PROP$, pertenecen a \mathcal{D} .

$$\blacksquare \ \, \mathrm{Si} \, \overset{\dot{\cdot}}{\overset{\cdot}{\varphi}} D_1 \in \mathcal{D} \ \, \mathrm{y} \ \, \overset{\dot{\cdot}}{\overset{\cdot}{\varphi}} D_2 \in \mathcal{D} \ \, \mathrm{entonces} \ \, D := \, \frac{\overset{\dot{\cdot}}{\overset{\cdot}{\varphi}} D_1 \quad \overset{\dot{\cdot}}{\overset{\cdot}{\varphi}} D_2}{\varphi' \quad \varphi'} \, \wedge I \, \in \, \mathcal{D}.$$

 \blacksquare Si $D \in \mathcal{D}$ entonces

Definimos el conjunto de las **derivaciones** de manera recursiva.

 \mathcal{D} es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida que satisface que:

Los árboles de un sólo nodo φ , con $\varphi \in PROP$, pertenecen a \mathcal{D} .

$$\blacksquare \ \ \text{Si} \ \ \frac{\vdots}{\varphi \wedge \varphi'} D \ \ \text{entonces} \ \ D_1 := \frac{\vdots}{\varphi \wedge \varphi'} \Delta E \in \mathcal{D} \ \ \ \text{y}$$

$$D_2 := rac{\dot{\cdot} D}{arphi \wedge arphi'} \wedge E \in \mathcal{D}.$$

$$\blacksquare \ \ \text{Si} \ \ \dot{\overset{\cdot}{\psi}}^D \in \mathcal{D} \ \ \text{ entonces} \ \ D' := \ \dfrac{\dot{\overset{\cdot}{\psi}}^D}{\varphi \to \psi} \to I \in \mathcal{D}.$$

$$\blacksquare \ \ \text{Si} \ \ \overset{:}{\underset{\psi}{:}} D \in \mathcal{D} \ \ \text{entonces} \ \ D' := \ \frac{\overset{:}{\underset{\psi}{:}} D}{\overset{:}{\underset{\varphi \to \psi}{\longrightarrow}} I} \in \mathcal{D}.$$

$$lacksymbol{\mathbb{S}}$$
 \vdots $D_1 \in \mathcal{D}$ y \vdots $D_2 \in \mathcal{D}$ entonces $\varphi o \psi$

$$\blacksquare \ \ \text{Si} \ \ \overset{:}{\overset{:}{\psi}} D \in \mathcal{D} \ \ \text{entonces} \ \ D' := \ \frac{\overset{:}{\psi}}{\dfrac{\varphi}{\varphi \to \psi} \to I} \in \mathcal{D}.$$

$$\blacksquare \ \ \text{Si} \ \ \dot{\overset{\cdot}{\varphi}}^{D_1} \in \mathcal{D} \ \ \text{y} \quad \ \dot{\overset{\cdot}{\varphi}}^{D_2} \in \mathcal{D} \ \ \text{entonces} \ \ D := \ \frac{\dot{\overset{\cdot}{\varphi}}^{D_1} \quad \ \dot{\overset{\cdot}{\varphi}}^{D_2}}{\varphi \to \psi} \to E$$

$$\quad \blacksquare \ \ \text{Si} \ \ \overset{\cdot}{\overset{\cdot}{\varphi}}^{D} \in \mathcal{D} \quad \text{entonces} \\$$

 $\blacksquare \ \ \text{Si} \ \ \overset{\cdot}{\varphi}^D \in \mathcal{D} \quad \text{entonces}$

$$D_1 := egin{array}{c} draingledown \ arphi \ draingledown \ arphi \$$

$$D_2 := rac{\dot{\cdot}}{arphi'} rac{\dot{\cdot}}{arphi \lor arphi'} \lor I \in \mathcal{D}$$

 $\quad \blacksquare \ \ \text{Si} \ \ \overset{\cdot}{\overset{\cdot}{\varphi}} ^D \in \mathcal{D} \quad \text{entonces} \quad \quad$

$$D_1 := rac{\dot{\cdot}}{arphi} rac{\dot{\cdot}}{arphi} D \quad \mathsf{y} \qquad D_2 := rac{\dot{\cdot}}{arphi} D \ arphi.$$

 $\blacksquare \ \ \text{Si} \ \ \dot{\overset{\cdot}{:}} \ D_1 \in \mathcal{D}, \ \ \dot{\overset{\cdot}{:}} \ D_2 \in \mathcal{D} \ \ \ \text{y} \ \ \ \dot{\overset{\cdot}{:}} \ D_3 \in \mathcal{D} \ \ \ \text{entonces}$

 $\quad \blacksquare \ \ \mathop{\mathrm{Si}} \ \mathop{\dot{:}}\limits_{\varphi}^{:\, D} \in \mathcal{D} \quad \text{entonces} \quad \quad$

$$D_1 := rac{\dot{\cdot}}{arphi} rac{\dot{\cdot}}{arphi ee arphi'} ee I \in \mathcal{D} \; \; \mathsf{y} \qquad D_2 := rac{\dot{\cdot}}{arphi'} rac{\dot{\cdot}}{arphi ee arphi'} ee I.$$

 $\blacksquare \ \ \text{Si} \ \ \dot{\overset{\cdot}{\overset{\cdot}{\overset{\cdot}{\cdot}}}} D_1 \in \mathcal{D}, \ \ \dot{\overset{\cdot}{\overset{\cdot}{\overset{\cdot}{\cdot}}}} D_2 \in \mathcal{D} \quad \text{y} \quad \dot{\overset{\cdot}{\overset{\cdot}{\overset{\cdot}{\cdot}}}} D_3 \in \mathcal{D} \quad \text{entonces}$

$$D_4 := \begin{array}{ccc} \vdots D_1 & \vdots D_2 & \vdots D_3 \\ \varphi \vee \psi & \chi & \chi \\ \hline & \chi & \end{array} \vee E \in \mathcal{D}$$

$$\blacksquare \ \ \text{Si} \ \ \overset{\cdot}{\overset{\cdot}{\sqcup}} D \in \mathcal{D} \ \ \text{entonces} \ \ D' := \ \dfrac{\overset{\cdot}{\overset{\cdot}{\sqcup}} D}{\overset{\cdot}{\smile}} RAA \in \mathcal{D}.$$

$$\blacksquare \ \ \text{Si} \ \ \overset{:}{\underset{\bot}{:}} D \in \mathcal{D} \ \ \text{entonces} \ \ D' := \ \dfrac{\overset{:}{\underset{\smile}{:}} D}{\underset{\varphi}{:}} RAA \in \mathcal{D}.$$

$$\blacksquare \ \ \text{Si} \ \ \vdots \ D \in \mathcal{D} \ \ \text{entonces} \ \ \ \frac{\vdots}{\omega} D \\ \bot \ \ \bot \ \in \mathcal{D}.$$

Al igual que con PROP, se puede hacer inducción y recursión en \mathcal{D} .

Al igual que con PROP, se puede hacer inducción y recursión en \mathcal{D} .

Definimos recursivamente el conjunto de las **hipótesis no canceladas** ${\it Hip}(D)$ de una derivación D.

Al igual que con PROP, se puede hacer inducción y recursión en \mathcal{D} .

Definimos recursivamente el conjunto de las **hipótesis no canceladas** ${\it Hip}(D)$ de una derivación D.

$$\begin{cal}PROP\end{cal}$$
 Si $\varphi\in PROP$, $Hip(\varphi):=\{\varphi\}.$

$$Hip\left(\frac{\vdots D \quad \vdots D'}{\varphi \quad \varphi'} \\ \frac{\vdots D \quad \vdots D'}{\varphi \wedge \varphi'} \wedge I\right) := Hip(D) \cup Hip(D').$$

 $\wedge I$

$$\mathit{Hip}\left(\frac{\vdots D \quad \vdots D'}{\varphi \quad \varphi'} \atop \varphi \wedge \varphi' \land I\right) := \mathit{Hip}(D) \cup \mathit{Hip}(D').$$

 $\wedge E$

$$\operatorname{Hip}\left(\frac{\vdots D}{\varphi \wedge \varphi'} \wedge E\right) = \operatorname{Hip}\left(\frac{\vdots D}{\varphi \wedge \varphi'} \wedge E\right) := \operatorname{Hip}(D).$$

$$\mathit{Hip}\left(rac{\vdots D}{\psi} \atop \overline{arphi
ightarrow \psi}
ightarrow I
ight) := \mathit{Hip}(D) \smallsetminus \{arphi\}.$$

$$\rightarrow I$$

$$\mathit{Hip}\left(\frac{\vdots D}{\psi} \atop \varphi \to \psi \to I\right) := \mathit{Hip}(D) \smallsetminus \{\varphi\}.$$

$$\rightarrow E$$

$$\mathit{Hip}\left(egin{array}{ccc} \vdots D_1 & \vdots D_2 \ arphi & arphi
ightarrow \psi \ \hline \psi & arphi
ightarrow \psi \end{array}
ight) := \mathit{Hip}(D_1) \cup \mathit{Hip}(D_2)$$

 $\vee I$

$$Hip\left(\frac{\vdots D}{\varphi} \bigvee_{\varphi \land \varphi'} \lor I\right) = Hip\left(\frac{\vdots D}{\varphi'} \bigvee_{\varphi \land \varphi'} \lor I\right) := Hip(D).$$

 $\vee I$

$$\mathit{Hip}\left(\frac{\vdots D}{\varphi} \bigvee_{\varphi \wedge \varphi'} \lor I\right) = \mathit{Hip}\left(\frac{\vdots D}{\varphi'} \bigvee_{\varphi \wedge \varphi'} \lor I\right) := \mathit{Hip}(D).$$

 $\vee E$

$$\begin{array}{cccc} Hip\left(\begin{array}{cccc} \vdots D_1 & \vdots & D_2 & \vdots & D_3 \\ \varphi \lor \psi & \chi & \chi & \chi \\ \hline & \chi & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

$$Hip\left(rac{\dot{\cdot}}{D}\right) := Hip(D) \setminus \{\neg \varphi\}.$$

RAA

$$\mathit{Hip}\left(\frac{\dot{\cdot}\,D}{\bot}\atop \varphi\mathit{RAA}\right) := \mathit{Hip}(D) \smallsetminus \{\neg\varphi\}.$$

T

$$\mathit{Hip}\left(egin{array}{c} \vdots D \\ \bot \\ \hline arphi \end{array} \right) := \mathit{Hip}(D).$$

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

■ φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $\mathit{Hip}(D) = \emptyset$ y $\mathit{Concl}(D) = \varphi$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $\mathit{Hip}(D) = \emptyset$ y $\mathit{Concl}(D) = \varphi$.

Ejemplo

■ *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.

 $\blacksquare \vdash \varphi \lor \neg \varphi \iff \exists D \in \mathcal{D} \text{ tal que } \mathit{Hip}(D) = \emptyset \text{ y } \mathit{Concl}(D) = \varphi \lor \neg \varphi.$

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $\mathit{Hip}(D) = \emptyset$ y $\mathit{Concl}(D) = \varphi$.

Ejemplo

■ *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $\mathit{Hip}(D) = \emptyset$ y $\mathit{Concl}(D) = \varphi$.

Ejemplo

- *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.

Relación de deducción y teoremas

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $\mathit{Hip}(D) = \emptyset$ y $\mathit{Concl}(D) = \varphi$.

Ejemplo

- *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.
 - $\blacksquare \{\psi, \neg \varphi \rightarrow \neg \psi\} \vdash \varphi$ (en video de 2021).
- Principio de no contradicción: $\vdash \neg(\varphi \land \neg \varphi)$.

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	⊢
Asignaciones (modelo)	Derivaciones (pruebas formales)

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	⊢
Asignaciones (modelo)	Derivaciones (pruebas formales)

Completitud y Corrección de la Lógica Proposicional

Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	⊢
Asignaciones (modelo)	Derivaciones (pruebas formales)

Completitud y Corrección de la Lógica Proposicional

Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

La implicación (\Rightarrow) es la **Completitud** y (\Leftarrow) es la **Corrección**.

Teorema de corrección

Teorema (Corrección)

Si $\Gamma \vdash \varphi$, entonces $\Gamma \models \varphi$.

Teorema de corrección

Teorema (Corrección)

Si
$$\Gamma \vdash \varphi$$
, entonces $\Gamma \models \varphi$.

Demostración.

Probamos por inducción en $D \in \mathcal{D}$:

"Para todo Γ tal que $Hip(D) \subseteq \Gamma$, se da $\Gamma \models Concl(D)$ ".

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

Para todo
$$\Gamma$$
, $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

Para todo
$$\Gamma$$
, $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

$$PROP$$
 $D = \varphi$. Sea $\Gamma \subseteq PROP$.

$$Hip(D) = \{\varphi\} \subseteq \Gamma$$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

$$PROP$$
 $D = \varphi$. Sea $\Gamma \subseteq PROP$.

$$Hip(D) = \{\varphi\} \subseteq \Gamma \implies \varphi \in \Gamma$$

Para todo
$$\Gamma$$
, $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

$$PROP \mid D = \varphi$$
. Sea $\Gamma \subseteq PROP$.

$$Hip(D) = \{\varphi\} \subseteq \Gamma \implies \varphi \in \Gamma \implies \Gamma \models \varphi = Concl(D).$$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
 - 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
 - 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
 - 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

■ para todo
$$\Gamma$$
, $Hip\left(\begin{array}{cc} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 & \wedge I \end{array} \right) \subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2.$

$$\parallel \\ Hip(D_1) \cup Hip(D_2) \supseteq Hip(D_1), Hip(D_2).$$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
 - 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

■ para todo
$$\Gamma$$
, $Hip\left(\begin{array}{cc} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 \end{array} \wedge I \right) \subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2.$

$$\parallel \\ Hip(D_1) \cup Hip(D_2) \supseteq Hip(D_1), Hip(D_2).$$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
 - 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

■ para todo
$$\Gamma$$
, $Hip\left(\begin{array}{cc} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 \end{array} \wedge I \right) \subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2.$

$$\begin{matrix} || \\ Hip(D_1) \cup Hip(D_2) \supseteq Hip(D_1), Hip(D_2). \end{matrix}$$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\fbox{$ \triangle I $}$ Suponiendo HI para $\begin{picture}(120,1) \put(0,0){\line(1,0){10}} \put(0,0){\line(1,0){10$
 - **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
 - 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

■ para todo
$$\Gamma$$
, $Hip \begin{pmatrix} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 \end{pmatrix} \subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2.$

$$\begin{matrix} || \\ Hip(D_1) \cup Hip(D_2) \supseteq Hip(D_1), Hip(D_2). \end{matrix}$$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
 - 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

probamos

Sea f una asignación que valide $\Gamma \implies [\![\varphi_1]\!]_f = 1$ y $[\![\varphi_2]\!]_f = 1$.

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
 - 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

probamos

Sea f una asignación que valide $\Gamma \Longrightarrow \llbracket \varphi_1 \rrbracket_f = 1$ y $\llbracket \varphi_2 \rrbracket_f = 1$. Luego $\llbracket \varphi_1 \land \varphi_2 \rrbracket_f = \min\{\llbracket \varphi_1 \rrbracket_f, \llbracket \varphi_2 \rrbracket_f\} = 1$.

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

$$\longrightarrow I$$
 Suponiendo HI para $\stackrel{\varphi}{:}D,$ $\stackrel{\psi}{:}$

lacksquare para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \psi$, y

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

$$\overline{ \ \ } \to I$$
 Suponiendo HI para $\dot{\stackrel{arphi}{:}} D,$

lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

Para todo $\Gamma,\ \mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\varphi}{:}D,$ $\stackrel{\psi}{:}$
 - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

Para todo $\Gamma,\ \mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\overbrace{ \rightarrow I } \text{ Suponiendo HI para } \overset{\varphi}{\underset{\cdot}{:}} D,$
 - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- [
 ightarrow I] Suponiendo HI para $\stackrel{arphi}{:}D,$ $\stackrel{\psi}{\psi}$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

■ para todo Γ , $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$. Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, \mathit{Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$.

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\varphi}{:}D$,
 - para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, \mathit{Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$.

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- [
 ightarrow I] Suponiendo HI para $\stackrel{arphi}{:}D,$ $\stackrel{\psi}{\psi}$
 - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

lacksquare para todo Γ , $\mathit{Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$.

 $\operatorname{Supongamos} \operatorname{\it Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \operatorname{\it Hip}(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- [
 ightarrow I] Suponiendo HI para $[P, \psi]$
 - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$

Sea f una asignación que valide Γ .

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \text{ para todo } \Gamma, \mathit{Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$

 $\operatorname{Supongamos} \operatorname{\it Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \Longrightarrow \operatorname{\it Hip}(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$

Sea f una asignación que valide Γ . Casos en $[\![\varphi]\!]_f$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\overline{ \ \ } \to I$ Suponiendo HI para $\dot{\stackrel{arphi}{:}} D$,
 - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea f una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_f$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$
- Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \Longrightarrow Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$
- Sea f una asignación que valide Γ . Casos en $[\![\varphi]\!]_f$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

$$\longrightarrow I$$
 Suponiendo HI para $\stackrel{\varphi}{:}D$,

lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

■ para todo Γ , $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$. Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea f una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_f$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{:}D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$
- Sea f una asignación que valide Γ . Casos en $[\![\varphi]\!]_f$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- [
 ightarrow I] Suponiendo HI para $[P, \psi]$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$
- Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea f una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_f$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

$$[
ightarrow I]$$
 Suponiendo HI para $[P, \psi]$

lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea f una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_f$:

- $\begin{array}{l} \blacksquare & \llbracket \varphi \rrbracket_f = 1 \text{ entonces } f \text{ valida } \Gamma \cup \{\varphi\} \implies \llbracket \psi \rrbracket_f = 1 \\ & \Longrightarrow & \llbracket \varphi \to \psi \rrbracket_f = 1. \end{array}$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\varphi}{:}D$,
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea f una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_f$:

- $\begin{array}{l} \blacksquare & \llbracket \varphi \rrbracket_f = 1 \text{ entonces } f \text{ valida } \Gamma \cup \{\varphi\} \implies \llbracket \psi \rrbracket_f = 1 \\ & \Longrightarrow & \llbracket \varphi \to \psi \rrbracket_f = 1. \end{array}$

