Mechanics Project 2 Violeta Iskandaryan

I have assumed F is positive

We have the following equations:

 $M_1 in \ x \ direction : F - N_{0x} - F_{F1} - N_3 = M_1 a_1$

 M_1 in y direction : $N_1 - M_1 g - N_2 - N_{0y} = 0$ (doesn't move in y direction)

 M_2 in x direction : $F_{F2} + T = M_2a_2$ M_2 in y direction : $N_2 - M_2g = 0$

 M_3 in x direction : : $N_3 = M_3 a_{3x}$

 M_3 in y direction: $T - M_3g - 2F_{F3} = M_3a_{3y}$

 M_0 in x direction : $N_{0x} - T = M_0g = 0 \implies N_{0x} = T$ M_0 in y direction : $N_{0y} - T = M_0g = 0 \implies N_{0y} = T$

And the following constraints

The length of the rope is constant $\implies a_1 - a_2 - a_{3y} = 0 \implies a_1 = a_2 + a_{3y}$ M_3 cannot escape the hole $\implies a_1 = a_{3x}$

From the system of equations we will get that

$$a_1 = \frac{(M_3 + M_2)(F - \mu_1(M_1 + M_2)g) - M_2M_3g(1 - \mu_2)(1 - \mu_1)}{(M_1 + M_3)(M_3 + M_2) + (1 - \mu_1)(2\mu_3M_3 + M_3)M_2}$$

$$T = \frac{M_2 M_3 g + (2 \mu_3 M_3 + M_3) a_1 M_2 - \mu_2 M_2 g M_3}{M_3 + M_2}$$

$$a_2 = \frac{T - M_3 g - 2 \mu_3 M_3 a_1 - M_3 a_1}{-M_3}$$

$$a_{3y} = a_1 - a_2$$

$$a_{3x} = a_1$$

by having a_1 , a_2 , a_{3y} , a_{3x} , M_1 , M_2 , M_3 , F_n , μ_1 , μ_2 , μ_3 , x_1 , x_2 , x_3 , y_1 , y_2 , y_3 , t_n we can find the coordinates after we use the F_n forces (see the code).