Министерство образования Республики Беларусь Учреждение Образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра электроники

Лабораторная работа № 4 «Исследование полевых транзисторов»

Проверила:Выполнили:
ст. гр.Стома С.С.Полховский А.Ф.
Потапович А.Д.
Лайло В.В.

1 Цель работы

Изучить устройство, принцип действия, классификацию, области применения полевых транзисторов (ПТ). Экспериментально исследовать статические вольт-амперные характеристики (ВАХ) транзисторов и рассчитать дифференциальные параметры полевых транзисторов в заданной рабочей точке.

2 Ход работы

2.1 Исследование сток-затворной характеристики ПТ с управляющим рп переходом в схеме с общим истоком (ОИ)

Для исследования сток-затворной характеристики ПТ собрана цепь по схеме, представленной на рисунке 1.

Рисунок 1 – Схема исследования характеристик ПТ в схеме с ОИ

Перед исследованием сток-затворной характеристики было определено значение максимального тока стока Ic_{max} при Uзu = 0B, Ucu = 4B, которое составило y = 10.8 мA (для каждого транзистора определяется экспериментально). Результаты исследований занесены в таблицу 1.

Таблица 1 — Результаты измерения (изменять значение $U_{\text{пит}1}$) сток-затворной характеристики ПТ Ic=f(Uзи), при фиксированном значении Uси = 4B

Іс, мА	y = 10.8	0.9y = 9.72	0.8y = 8.64	0.7y = 7.56	0.6y = 6.48	0.5y = 5.4
U зи, В	0	$x_1 = 0.24$	0,48	0,73	$x_2 = 0,979$	1,25
Іс, мА	0,4y = 4,32	0.3y = 3.24	0.2y = 2.16	0.1y = 1.08	0,05y=0,54	0
Uзи , В	1,548	$x_3 = 1,865$	2,226	2,658	2,937	3,686

Значения в ячейках, обозначенных х1, х2, х3, будут использованы в дальнейшем

2.2 Исследование выходных характеристик ПТ с управляющим p-n переходом в схеме с общим истоком (ОИ)

Семейство выходных характеристик Ic=f(Ucu) измерено для трех фиксированных значений входного напряжения затвор-исток $Usu=x_1, x_2, x_3$ В. Результаты исследований занесены в таблицу 2, таблицу 3 и таблицу 4 соответственно.

Таблица 2 — Результаты измерения (изменять значение $U_{\text{пит}2}$) выходной характеристики ПТ Ic=f(Ucu), при фиксированном значении $Usu=x_1$ (из таблицы 1) = 0,24 В

U си, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	9,67	9,47	9,15	8,63	7,81	6,59	4,9	2,698	1,41	0,581	0

Таблица 3 — Результаты измерения (изменять значение $U_{\text{пит}2}$) выходной характеристики ПТ Ic=f(Ucu), при фиксированном значении U3 $u=x_2$ (из таблицы 1) = 0,979 В

U си, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	6,562	6,43	6,27	6,03	5,61	4,88	3,72	2,08	1,103	0,457	0

Таблица 4 — Результаты измерения (изменять значение $U_{\text{пит}2}$) выходной характеристики ПТ Ic=f(Ucu), при фиксированном значении $Usu=x_3$ (из таблицы 1) = 1,865 В

U си, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	3,26	3,2	3,156	3,085	2,967	2,744	2,266	1,361	0,737	0,31	0

2.3 Исследование сток-затворной характеристики ПТ с индуцированным каналом в схеме с общим истоком (ОИ)

Для исследования сток-затворной характеристики ПТ собрана цепь по схеме, представленной на рисунке 2.

Рисунок 2 – Схема исследования характеристик ПТ в схеме с ОИ

Перед исследованием сток-затворной характеристики определено значение порогового напряжения $U_{\text{пор}}$, при котором ток стока составляет 10 мкA, которое составило $U_{\text{пор}} = 2,65$ В. Результаты исследований занесены в таблицу 5.

Таблица 5 — Результаты измерения (изменять значение $U_{\text{пит}1}$) сток-затворной характеристики ПТ Ic=f(Uзи), при фиксированном значении Uси = 4B

Іс, мА	0	0,01	$0,1\pm0,05$	$0,5\pm0,1$	1±0,1	2±0,1	3±0,1
Uзи , В	0	$U_{\text{nop}} = 2,65$	2,89	3,056	3,127	3,2	$x_4 = 3,24$
Іс, мА	4±0,1	5±0,1	6±0,1	$7\pm0,1$	8±0,1	9±0,1	10±0,1
Изи, В	3,27	3,299	$x_5=3,321$	3,346	3,36	$x_6=3,375$	3,386

Значения в ячейках, обозначенных х4, х5, х6, будут использованы в дальнейшем

2.4 Исследование выходных характеристик ПТ с индуцированным каналом в схеме с общим истоком (ОИ)

Семейство выходных характеристик Ic=f(Ucu) измерено для трех фиксированных значений входного напряжения затвор-исток $Usu=x_4, x_5, x_6$ В. Результаты исследований занесены в таблицу 6, таблицу 7 и таблицу 8 соответственно.

Таблица 6 — Результаты измерения выходной характеристики ПТ Ic=f(Ucu), при $Usu = x_4$ (из таблицы 5) = 3.24 В (Изменять значение U_{nur2})

U си, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	2,92	2,63	2,31	2,07	1,83	1,583	1,324	1,023	0,823	0,636	0

Таблица 7 — Результаты измерения выходной характеристики ПТ Ic=f(Ucu), при $Usu = x_5$ (из таблицы 5) = 3,321 В (Изменять значение $U_{пит2}$)

U си, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	5,7	5,163	4,649	4,152	3,674	3,184	2,668	2,067	1,652	1,248	0

Таблица 8 — Результаты измерения выходной характеристики ПТ Ic=f(Ucu), при **Uзи** = \mathbf{x}_6 (из таблицы 5) = 3,375 В (Изменять значение $U_{\text{пит}2}$)

U си, В	4	3,5	3	2,5	2	1,5	1	0,5	0,25	0,1	0
Іс, мА	9,123	8,381	7,602	6,8	5,962	5,173	4,332	3,325	2,62	1,93	0

2.5 Исследование логических элементов на основе полевых транзисторов

Современные интегральные микросхемы представляют собой набор логических элементов, которые выполнены, в свою очередь, на полевых либо биполярных транзисторах. Поскольку у полевых транзисторов затраты энергии на их управление ниже, чем у биполярных, то микросхемы на полевых транзисторах получили наибольшее распространение. Простейшие логические элементы (И, И-НЕ, ИЛИ, ИЛИ-НЕ, исключающее ИЛИ, исключающее ИЛИ-НЕ) могут быть реализованы как в виде отдельных микросхем базовой логики, так и в составе сложных интегральных микросхем (регистры, счетчики, мультиплексоры, дешифраторы, триггеры).

Рисунок 3 – Логический элемент на полевых транзисторах

Для исследования логического элемента собрана схема (рисунок 3). Напряжение на канале Ch3 источника питания составляет 5В. Логические сигналы подаются на затворы полевых транзисторов (0 либо 5 В) каналами источника питания Ch1 и Ch2. Логическая «1» соответствует 5В источника питания, «0» — 0В. Логический выход схемы выполнен в виде светодиода. Горящий светодиод соответствует логической «1» выхода, потухший — «0». Для определения типа логического элемента построена таблица истинности (таблица 9).

Таблица 9 – Таблица истинности первого логического элемента

Ch1	Ch2	Выход
«0»	«0»	0
«0»	«1»	0
«1»	«0»	0
«1»	«1»	1

По таблице 9 определили, что схема на рисунке 3 представляет собой логическое "и".

Аналогичным образом исследована схема, представленная на рисунке 4. Для определения типа логического элемента построена таблица истинности (таблица 10).

Рисунок 3 – Логический элемент на полевых транзисторах

Таблица 10 – Таблица истинности второго логического элемента

Ch1	Ch2	Выход
«0»	«0»	1
«0»	«1»	0
«1»	«0»	0
«1»	«1»	0

По таблице 10 определили, что схема на рисунке 4 представляет собой логическое "или-не".

2.6 Результаты экспериментальных исследований

По результатам измерений ПТ с управляющим p-n переходом и ПТ с индуцированным каналом в схеме с ОИ построены графики сток-затворных и выходных характеристик этих ПТ (рисунки 5, 6, 7, 8).

Рисунок 5 — Сток-затворная характеристика Рисунок 6 — Выходные характеристики ПТ с ПТ с управляющим p-n переходом управляющим p-n переходом

Рисунок 7 — Сток-затворная характеристика Рисунок 8 — Выходные характеристики ПТ с ПТ с индуцированным каналом индуцированным каналом

2.7 Расчет дифференциальных параметров ПТ в схеме с ОИ

По построенным графикам характеристик ПТ в схеме с ОИ рассчитаны их дифференциальные параметры в окрестностях рабочих точек:

1) для транзистора с управляющим p-n переходом Ucu = 2,5 B и Ic = 0,6y (из таблицы 3) = 6,48 мA;

$$S = \frac{dI_c}{dU_{3M}} = \frac{(0.54 - 2.226) * 10^{-3}}{3 - 2} = 1.686 * 10^{-3}$$

$$R_i = \frac{dU_{\text{CM}}}{dI_{\text{M}}} = \frac{2-3}{(5,61-6,27)*10^{-3}} = 1515,15 \text{ (Om)}.$$

$$\mu = S \cdot R_i = 1,686 * 10^{-3} * 1515,15 = 2,55.$$

2) для транзистора с индуцированным каналом Ucu = 2,5 B, Ic = 6 MA.

$$S = \frac{dI_c}{dU_{3M}} = \frac{(7-5)*10^{-3}}{3,346-3,299} = 42*10^{-3}$$

$$R_i = \frac{dU_{\text{CM}}}{dI_{\text{M}}} = \frac{2-3}{(7,602-5,962)*10^{-3}} = 609,75 \text{ (OM)}.$$

$$\mu = S \cdot R_i = 42 * 10^{-3} * 609,75 = 25,94.$$

3 Выводы

В ходе лабораторной работы были исследованы полевые транзисторы с индуцированным каналом в схеме с ОИ, а также с управляющим p-n переходом с ОИ. Сняты их сток-затворные и вольт-амперные характеристики, построены графики. По полученным графикам были получены значения дифференциальных параметров данных транзисторов.