

UNIVERSIDAD CATÓLICA "NUESTRA SEÑORA DE LA ASUNCIÓN" CAMPUS ALTO PARANÁ FACULTAD DE CIENCIAS Y TECNOLOGÍA

DATA DISCOVERY APLICADOS A DATOS DEL PARAGUAY

Iván Ariel Cáceres Cañete Ariel Hernán Landaida Duarte

Hernandarías, octubre de 2016

UNIVERSIDAD CATÓLICA "NUESTRA SEÑORA DE LA ASUNCIÓN" CAMPUS ALTO PARANÁ FACULTAD DE CIENCIAS Y TECNOLOGÍA

DATA DISCOVERY APLICADOS A DATOS DEL PARAGUAY

Iván Ariel Cáceres Cañete Ariel Hernán Landaida Duarte

Iván Ariel Cáceres Cañete

Ariel Hernán Landaida Duarte

"DATA DISCOVERY APLICADOS A DATOS DEL PARAGUAY". yecto de Fin de Carrera presentado como requisito parcial para optitulo de Licenciado en Análisis de Sistemas.

Facultad de Ciencias y Tecnología, Universidad Católica "Nuestra Se de la Asunción"

Tutor: Ing. Ricardo Luis Brunelli Montero

Hernandarías, octubre de 2016

Landaida Duarte, Ariel Hernán; Cáceres Cañete, Iván Ariel.

(2016); DATA DISCOVERY APLICADOS A DATOS DEL

PARAGUAY, una aplicación para ayudar a las personas a

analizar, visualizar y compartir información rápidamente.

Hernandarias, Universidad Católica. 110 p.

Tutor: Ing. Ricardo Luis Brunelli Montero.

Defensa de Proyecto de Fin de Carrera.

Palabras clave: Data Discovery, Business Intelligence.

Iván Ariel Cáceres Cañete

Ariel Hernán Landaida Duarte

"DATA DISCOVERY APLICADOS A DATOS DEL PARAGUAY". Proyecto de Fin de Carrera presentado como requisito parcial para optar al título de Licenciado en Análisis de Sistemas.

	Mesa Examinadora
	 Presidente de Mesa
Prof	f. Manuel Chamorro Alderete, Ing. Miembro de Mesa
	 Presidente de Mesa

Aprobado en fecha:

Hernandarías, octubre de 2016

ÍNDICE

Li	sta d	e Siglas y Acrónimos	ΚI
1.	Intr	oducción	1
2.	Plai	teamiento del problema	3
3.	Obj	etivos	5
	3.1.	Objetivo General	5
	3.2.	Objetivos Específicos	5
	3.3.	Justificación	6
4.	Mar	co Teórico	7
	4.1.	Business Intelligence	7
	4.2.	Componentes de BI	10
		4.2.1. OLAP	10
		4.2.2. Análisis Avanzado	10
		4.2.3. BI en tiempo real	11
		4.2.4. Datawarehouse y Datamarts	11
	4.3.	Beneficios de BI	13

	4.4.	Tecnología de BI	15
	4.5.	Breve discución	17
	4.6.	Data Discovery Analysis	22
	4.7.	Framework de Análisis de Negocio de Gartner	25
		4.7.1. Portal de información	34
		4.7.2. Workbench analítico	35
		4.7.3. Laboratorio de datos científicos	37
5.	Sele	ección de la herramienta para Data Discovery	41
	5.1.	Cuadrante Mágico de Gartner	41
6.	Res	ultado	51
	6.1.	Aplicación de Data Discovery a datos de instituciones del Estado	51
	6.2.	Datos de la ANDE y de la DGEEC	51
	6.3.	Dashboard de control / monitoramiento	52
		6.3.1. Dashboard - Clientes Facturados vs Crecimiento Poblacional	52
		6.3.2. Panel estadístico de consumo de electricidad por sector	60
		6.3.3. Panel comparativo de Tasa de crecimiento y el Consumo de energía $$.	62
		6.3.4. Panel de Tasa de crecimiento poblacional y Consumo de energía anual	65
7.	Mar	rco Metodológico	71
	7.1.	Alcance	71
	7.2.	Enfoque	71
	7.3	Técnica e Instrumentos de recolección de datos	71

8.	Conclusiones	7 3
9.	Trabajos futuros	7 5
	Referencias	76

ÍNDICE DE FIGURAS

4.1.	Etapas de BI como fuentes de datos de calidad	9
4.2.	Framework Analítico de Negocios Gartner	28
4.3.	Espectro Analítico	30
4.4.	Típico uso de estilos analíticos	33
4.5.	Características de BI en niveles y Plataforma Analítica	40
5.1.	Cuadrante Mágico para BI y Plataformas Analíticas	42
5.2.	Puntuaciones de producto o servicio para análisis descentralizado .	44
5.3.	Puntuaciones de producto o servicio guiados por Data Discovery	45
5.4.	Arrastre el campo país para el campo desplegable señalado	47
5.5.	Arrastrar hojas de trabajo al dashboard	48
6.1.	Clientes Facturados vs Crecimiento Poblacional	53
6.2.	Clientes Facturados vs Crecimiento Poblacional	54
6.3.	Clientes Facturados vs Crecimiento Poblacional	55
6.4.	Clientes Facturados vs Crecimiento Poblacional	56
6.5.	Clientes Facturados vs Crecimiento Poblacional	57
6.6.	Clientes Facturados vs Crecimiento Poblacional	57

6.7.	Proyección de Clientes Facturados Crecimiento Poblacional Y Con-	
	sumo De Energía para los Próximos 5 Años	58
6.8.	Energía Consumida vs Importe Facturado	59
6.9.	Energía Consumida vs Importe Facturado	60
6.10.	Estadística de consumo de electricidad por $sector(1990-2014)$	61
6.11.	Importe facturado por año y sector(1990-2014)	62
6.12.	Tasa de crecimiento vs Consumo de energía	63
6.13.	Tasa de crecimiento vs Consumo de energía, filtrado por el departa-	
	mento Alto Paraná	64
6.14.	Proyección de clientes y consumos para los próximos 5 años	65
6.15.	Panel de Tasa de crecimiento poblacional y Consumo de energía anual	66
6.16.	Consumo por departamento	67
6.17.	Proyección de crecimiento poblacional y consumo ee energía	68
6.18.	Tasa de crecimiento poblacional y consumo de energía años tras años	69

LISTA DE TABLAS

4.1.	Técnicas actuales de BI																					21
------	-------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----

Lista de Siglas y Acrónimos

ANDE	Administración Nacional de Electricidad
BI	Business Intelligence
CPU	Unidad Central de Procesos
CRM	
DGEEC	Dirección General de Estadísticas, Encuestas y Censo
ERP	Sistemas de Planificación de Recursos Empresariales
OLAP	Procesamiento nalítico en línea

DEDICATORIA

A mis padres, por la oportunidad de existir, por su sacrificio en algún tiempo incomprendido, por su ejemplo de superación incansable, por su comprensión y confianza, por su amor y amistad incondicional, por los consejos que siempre me han dado para sobrellevar los desafíos en la vida.

Iván Ariel Cáceres Cañete

A mis padres, por la oportunidad de existir, por su sacrificio en algún tiempo incomprendido, por su ejemplo de superación incansable, por su comprensión y confianza, por su amor y amistad incondicional, por los consejos que siempre me han dado para sobrellevar los desafíos en la vida.

Ariel Hernán Landaida Duarte

Agradecimientos

A Dios por la fortaleza que siempre nos ha dado en todos los momentos de nuestra vida. Gracias, a nuestro tutor, el Ing. Ricardo Luis Brunelli. Gracias por su paciencia, dedicación, motivación, criterio y aliento. Ha hecho fácil lo difícil. Ha sido un privilegio poder contar con su guía y ayuda.

A nuestra familia quienes por ellos somos lo que somos. A nuestros padres por su apoyo, consejos, comprensión, amor, ayuda en los momentos difíciles, y por ayudarnos con los recursos necesarios para estudiar. Nos han dado todo lo que somos como persona, valores, principios, carácter, empeño, perseverancia, y coraje para conseguir nuestros objetivos.

Iván Ariel Cáceres Cañete

A Dios por la fortaleza que siempre nos ha dado en todos los momentos de nuestra vida. Gracias, a nuestro tutor, el Ing. Ricardo Luis Brunelli. Gracias por su paciencia, dedicación, motivación, criterio y aliento. Ha hecho fácil lo difícil. Ha sido un privilegio poder contar con su guía y ayuda.

A nuestra familia quienes por ellos somos lo que somos. A nuestros padres por su apoyo, consejos, comprensión, amor, ayuda en los momentos difíciles, y por ayudarnos con los recursos necesarios para estudiar. Nos han dado todo lo que somos como persona, valores, principios, carácter, empeño, perseverancia, y coraje para conseguir nuestros objetivos.

Ariel Hernán Landaida Duarte

RESUMEN

Hasta hace poco tiempo, la mayoría de las organizaciones proveían datos es-

tructurados, limpios, e integrados, resumidos a niveles convenientes para plataformas con-

vencionales. Data Warehouse y Business Intelligence (BI) dominaban ese enfoque. Otras

organizaciones, principalmente aquellas centradas en internet, desarrollaron algunas alter-

nativas para gestionar y analizar grandes volúmenes de datos directamente de sus sitios y

aplicaciones web, hoy generalmente denominado Big Data. Aquellos datos obtenidos, en su

mayoría, eran heterogéneos y hasta inclusive no estructurados, y esa situación generó la ne-

cesidad de crear otro tipo de herramienta que ayude al tomador de decisión en la búsqueda

de patrones y relaciones. Este nuevo enfoque, denominado Data Discovery, no podía ser igual

a las técnicas ya tradicionales, además debía tener características como innovación visual,

facilidad de uso, Experiencia del Usuario (UX) para que se asemeje a un BI guiado por un

usuario experto del negocio. En este trabajo se presenta una propuesta del estado del arte

del área de BI y específicamente Data Discovery. Se aplican estas técnicas a datos de dos

instituciones del estado, demostrando los beneficios de aplicar este tipo de técnica.

Palabras clave: Data Discovery, Business Intelligence, Data Warehouse.

XV

ABSTRACT

Until recent time, most organizations provide structured, clean, and integrated

data, summarized in desirable levels for conventional platforms. Data Warehouse and BI

(Business intelligence) ruled that approach. Other organizations, mainly those focusing on the

Internet, developed some alternatives to manage and analyze large volumes of data directly

from their websites and web applications, now generally called Big Data. Those data, mostly,

were heterogeneous and even including unstructured, and this situation generated the need

to create another type of tool that helps the decision maker in the search for patterns and

relationships. This new approach, called Data Discovery, could not be equal to the traditional

techniques also should have features like visual innovation, usability, UX (User Experience)

so that it resembles a BI guided by an expert business user. This paper presents a proposal

of state of the art area BI and Data Discovery is presented specifically. These techniques are

applied to data of two state institutions, demonstrating the benefits of applying this kind of

technique.

Keywords: Data Discovery, Business Intelligence, Data Warehouse.

XVII

Introducción

En este trabajo fue elaborada una propuesta de estado del arte del área de BI y específicamente Data Discovery. El objetivo fue aplicar los conocimientos adquiridos al entorno nacional, en este caso aplicados a una institución del estado Administración Nacional de Electricidad (ANDE), para el apoyo en la toma de decisiones. Aplicaremos las técnicas de Data Discovery a los datos de dos instituciones del estado, específicamente la ANDE y Dirección General de Estadísticas, Encuestas y Censo (DGEEC), donde demostraremos que con datos de calidad podríamos detectar oportunidades que nos faciliten la toma de decisiones en la institución. Utilizaremos conjuntos de datos de las instituciones mencionadas más arriba para este fin. Este trabajo está estructurado de la siguiente forma: El capítulo I presenta el planteamiento del problema, los objetivos generales y específicos, concluyendo con la justificación. El capítulo II presenta el marco teórico. Se compone de conceptos, componentes, tecnologías de BI, y el framework de Gartner. El capítulo III presenta los diferentes paneles indicadores (dashboards) realizados con la herramienta seleccionada para aplicar data discovery sobre los conjuntos de datos existentes. Se explica el cuadrante mágico de Gartner, el cual apoyó a la selección de la herramienta mencionada. Además se presentan ejemplos de análisis de datos y la información obtenida, como resultado de la combinación del uso de las

herramientas y datos.

Planteamiento del problema

Actualmente la mayoría de las instituciones públicas e incluso las del sector privado, tienen un bajo nivel de inversión en tecnología. Generalmente en empresas que exigen toma de decisión, con frecuencia optan por decisiones de negocios no óptimas debido a que no poseen la suficiente experiencia o suficiente datos procesados del negocio para llegar al correcto análisis, o pueden estar usando herramientas incorrectas. Teniendo únicamente la experiencia como herramienta, puede ser suficiente sólo en organizaciones pequeñas, donde se adquiere conocimiento sin necesidad de alguna herramienta de análisis de datos, por ejemplo, sabríamos cuales son los productos más vendidos o más rentables en un negocio pequeño, y esto se complica a medida que la organización crece, cuando la cantidad de sucursales y variedad de productos es amplia, se pierde el control sin ayuda de estas herramientas. La calidad del conocimiento se basa principalmente en la calidad de la información. Estas informaciones son obtenidas a través de un análisis profundo de datos, por consiguiente estos datos también deben ser de buena calidad. Si una organización posee la capacidad de obtener lo que desea por medio de los datos, es seguro que su crecimiento será positivo, debido a que tomará mejores decisiones, y estos ayudarían a su evolución y estabilidad a lo largo del tiempo.

Existen ocasiones en que la organización posee suficientes datos pero no consigue analizarlos o procesarlos por falta de conocimiento del negocio, además de desconocimiento técnico de las herramientas.

Objetivos

3.1. Objetivo General

Aplicar las técnicas de Data Discovery a datos de dos instituciones del estado: ANDE y DGEEC.

3.2. Objetivos Específicos

- Estudio del estado del arte de BI y Data discovery.
- Selección de la herramienta adecuada para este trabajo.
- Análisis y cruzamiento de datos para el descubrimiento de situaciones de interés.
- Elaboración de *Paneles indicadores* (Dashboard) que reflejen el análisis de los datos con la herramienta seleccionada.
- Elaboración de gráficos de tendencias, proyecciones de consumo y clientes de la institución.
- Proponer algunos Dashboard para demostrar que con los datos proveídos es posible

detectar situaciones, y estimar o visualizar acontecimientos de interés para una organización

3.3. Justificación

Falta de un ambiente analítico corporativo, que proporcione informaciones e indicadores necesarios para la toma de decisión. Falta de agilidad para elaborar informes con indicadores de tendencias de consumo de energía, que apoye a la planificación territorial de expansión de la red de transmisión eléctrica. Falta de indicadores de consumo geográfico de electricidad, relacionados con indicadores poblacionales, para apoyo en la planificación de inversión en el aumento de capacidad de transformadores por región.

Marco Teórico

4.1. Business Intelligence

BI o Inteligencia de negocio, es definido como la capacidad de una organización para tomar todos sus procesos y capacidades, y luego convertirlos en conocimiento, o en otras palabras, obtener información correcta para la persona correcta, en el tiempo correcto, a través del canal correcto (Kumari, 2013).

Esto produce grandes cantidades de información que pueden llevar al desarrollo de nuevas oportunidades para la organización. La identificación e implementación de estas oportunidades en un estrategia efectiva, puede proporcionar una ventaja competitiva de mercado y la deseada estabilidad a largo plazo (Rud, 2009).

Las tecnologías de BI ofrecen vistas históricas, actuales y predictivas de las operaciones de una empresa. Algunas de las funcionalidades más comunes de BI son reportes, *Procesamiento nalítico en línea* (OLAP), minería de datos, minería de procesos, procesamiento de eventos complejos, gestión del rendimiento empresarial, benchmarking, minería de texto, análisis predictivos y análisis prescriptivos. BI tiene como objetivo apoyar una mejor toma de decisiones, por tanto, un sistema de BI puede también ser llamado *Sistema de apoyo a las decisiones*

(DSS). (Rud, 2009).

Las herramientas de BI son diseñadas para obtener, analizar y reportar datos. Estas herramientas generalmente leen datos que han sido previamente almacenados, frecuentemente, aunque no necesariamente en un Almacén de datos (Datawarehouse). BI ha experimentado un alto crecimiento y ha ganado mucha popularidad. De acuerdo a (Hancock y Toren, 2006), BI es "un conjunto de conceptos, métodos, y tecnologías para convertir datos separados o aislados de una organización en información útil para mejorar el rendimiento del negocio". En un ambiente de BI, se extraen datos de diferentes fuentes, se transforman y posteriormente se cargan (ETL, extraction - transformation - load) dentro de un datawarehouse y desde este repositorio son utilizados para generar reportes transversales a toda la organización. El proceso de BI y sus varias etapas son mostrados en la Figura 4.1. La calidad de los datos juegan un rol crítico e importante en el éxito de la inteligencia de negocios, ya que la mala calidad de los datos pueden afectar las decisiones de negocio en todos los niveles de la organización, además de impedir el crecimiento de la organización (Kumari, 2013).

Fuentes del Sistema/ BD de Producción Extraer, Transformar y Cargar(ETL) Almacén de Datos Empresarial (EDW) /Reportes BD Herramietnas BI para construir informes Reportes BI para Análisis de Calidad y toma de decisiones

Figura 4.1: Etapas de BI como fuentes de datos de calidad

Fuente: (Kumari, 2013)

Una cuestión fundamental es el hecho que una organización corre sobre datos; y actúa como insumo para el motor de la industria corporativa. Una organización no puede comprender a sus clientes, proveedores, competidores o a su propia gente, procesos, y rendimiento sin datos de buena calidad. Por consiguiente, la alta dirección de una empresa y el área de *Tecnología de la información* (TI) deberían trabajar juntos para asegurar datos de alta calidad (Eckerson, 2009).

4.2. Componentes de BI

4.2.1. OLAP

Se refiere al mecanismo por el cual los usuarios de una organización pueden explorar y realizar cortes de datos, usando herramientas sofisticadas que permiten la navegación de dimensiones tales como el tiempo o jerarquías. OLAP, provee vistas resumidas multidimensionales de datos del negocio de una organización, y es usado para reportes, análisis, modelado y planificación para la optimización de una organización. (Malhotra, 2001) Las técnicas y herramientas OLAP pueden ser usados para trabajar con datawarehouse o con data marts (un subconjunto de datos de un área específica) diseñados para sistemas sofisticados. Este tipo de consultas son requeridas para descubrir tendencias y analizar factores críticos. Los reportes generan vistas agregadas de datos para mantener la gestión informada sobre el estado de sus negocios. Otras herramientas de BI son usadas para almacenar y analizar datos, tales como la minería de datos y el datawarehouse; sistemas de soporte o apoyo a las decisiones y previsiones; almacén de documentos y gestión de documentos; gestión del conocimiento; mapeamiento, visualización de información y Dashboard; sistemas de información de gestión, sistemas de información geográficas; análisis de tendencias; Software como servicio (SaaS) y otros. (Malhotra, 2001)

4.2.2. Análisis Avanzado

Conocido como minería de datos y análisis predictivos, toma las ventajas de las técnicas de análisis estadísticos para predecir o proveer medidas de certeza sobre ciertos

hechos. La gestión sobre el rendimiento de una organización (Portales, cuadros de mando, paneles de control): esta categoría general normalmente provee un sistema de varios componentes interconectados, de tal forma que en conjunto describan una historia. Por ejemplo, un cuadro de mando integral que muestre componentes de indicadores financieros, todos ellos combinados pueden describir métricas y patrones de aprendizaje y crecimiento en las organizaciones. (Gangadharan y Swami, 2004)

4.2.3. BI en tiempo real

Permite la distribución de métricas en tiempo real a través de correos, sistemas de mensajería instantánea y/o pantallas interactivas.

4.2.4. Datawarehouse y Datamarts

El datawarehouse es un componente importante de BI. El datawarehouse soporta la propagación física de los datos manejando grandes volúmenes de registros de las organizaciones para integración, limpieza, agregación y tareas de consulta.(Gangadharan y Swami, 2004)

También puede contener datos operacionales, los cuales pueden ser definidos como un conjunto actualizable de datos integrados disponibles para toda una organización, para la toma de decisiones tácticas de un asunto específico. Contiene datos vivos actualizados en tiempo real, no solamente fotos de un momento específico, y también conserva un historial mínimo. Las fuentes de datos pueden ser bases de datos operacionales, datos históricos, datos externos, por ejemplo, de organizaciones de investigación de mercados o desde internet mismo, o

información desde un entorno de datawarehouse ya existente. Las fuentes de datos pueden ser de bases de datos relacionales o cualquier otra estructura que apoya o soporta el conjunto de sistemas transaccionales de una organización. (Gangadharan y Swami, 2004)

Un datamart, tal como se describe en (Kumari, 2013), es una colección de disciplinas organizadas para el apoyo de las decisiones basadas en las necesidades de un departamento dado. Finanzas tiene su data marts, marketing tiene el suyo, y ventas tienen la suya y así sucesivamente.

Cada departamento tiene su propia interpretación de cómo debe verse un data mart y el data mart de cada departamento es particular y atiende las necesidades específicas del área. Similar al datawarehouse, los data marts contienen datos transaccionales que ayudan a expertos en negocios a crear una estrategia basada en el análisis de las tendencias y experiencias pasadas. La principal diferencia es que la creación de los data marts se basa en una necesidad específica, predefinida para un grupo determinado. Un data mart puede apoyar o soportar procesos o unidades de negocio específicos (Ranjan, 2009).

Las herramientas de BI son ampliamente aceptadas como una capa intermedia entre aplicaciones transaccionales y aplicaciones de apoyo a la toma de decisión, éstas están desacopladas y extraen informaciones de transacciones de negocio. Las habilidades de BI incluyen, apoyo a la decisión, procesamiento analítico en línea, análisis estadísticos, análisis predictivo, y la minería de datos (Ranjan, 2009).

Las fuentes de datos pueden ser bases de datos operacionales, datos históricos, datos externos por ejemplo, desde las empresas de investigación de mercados o desde internet, datos no estructurados de redes sociales, o información desde un datawarehouse existente. Las fuentes de datos pueden ser bases de datos relacionales o cualquier otra estructura de datos de sis-

temas transaccionales. Ellos también pueden residir en muchas plataformas diferentes, tales como tablas, hojas de cálculo, o información no estructurada, tales como archivos de texto plano o imágenes y otras informaciones multimedia (Ranjan, 2009).

4.3. Beneficios de BI

BI provee muchos beneficios a las compañías que lo utilizan. Puede ayudar a eliminar muchas conjeturas erróneas dentro de una organización, mejorando la comunicación entre departamentos mientras se coordinan las actividades, y apoyan a las organizaciones para responder rápidamente a cambios de condiciones financieras o preferencias de clientes. BI puede ayudar a mejorar el rendimiento general de una organización (Ranjan, 2009). La información es frecuentemente considerada como el segundo recurso más importante que una compañía tiene (lo más valorable de una compañía son las personas). Cuando una compañía puede tomar decisiones basadas en información oportuna y precisa, puede ayudar a mejorar su rendimiento en su segmento de mercado. BI también agiliza la toma de decisiones, ayuda a actuar rápida y correctamente con la información adecuada antes de otras empresas de la competencia. También pueden mejorar la experiencia del cliente, teniendo en cuenta la respuesta oportuna y adecuada a los problemas y prioridades de los mismos. A continuación se listan algunos de estos beneficios:

Con herramientas de BI, los empleados pueden fácilmente convertir sus conocimientos de negocio en inteligencia analítica para resolver muchas cuestiones de negocio, tales como incrementar la tasa de respuestas desde correos electrónicos, teléfonos, y mejorar las campañas de ventas desde internet.

- Con BI, las empresas pueden identificar sus clientes más rentables y las razones subyacentes para la lealtad de esos clientes, así como identificar clientes futuros con grandes potenciales.
- Analizar los datos de clics para mejorar las estrategias de comercio electrónico.
- Detección rápidamente de problemas reportados de productos para minimizar el impacto de las deficiencias en sus diseños.
- Descubrir lavado de dinero de actividades delictivas.
- Analizar la rentabilidad potencial del cliente, y reducir el riesgo a través de una puntuación más precisa de crédito financiero de los mismos.
- Determinar cuales son las combinaciones de productos y servicios que los clientes son más propensos a comprar y cuando.
- Analizar los ensayos clínicos de fármacos experimentales.
- Establecer tarifas más rentables para las primas de seguros.
- Reducir el tiempo fuera de un equipamiento mediante la aplicación de mantenimiento predictivo.
- Determinar con el análisis de deserción y rotación de clientes, la causa por la cual los clientes se van a los competidores o se convierten en nuestros clientes.
- Detectar y disuadir comportamientos fraudulentos, por ejemplo, de picos de uso cuando las tarjetas de crédito o tarjetas telefónicas son robadas.
- Identificar nuevos compuestos de fármacos moleculares prometedores.

4.4. Tecnología de BI

La inteligencia empresarial provee datos organizacionales de tal manera que los filtros de conocimientos organizacionales puedan fácilmente asociarse con estos datos y volverlos en información para la organización. Las personas involucradas en procesos de inteligencia de negocios podrían usar software y otras tecnologías para reunir, almacenar, analizar, proveer accesos a datos, y presentar esos datos de una manera simple y útil. El software ayuda en la gestión de una organización, y a las personas a hacer mejores decisiones de negocios, teniendo la información precisa, actualizada, y relevante cuando lo necesiten. Algunas empresas usan data warehouse porque es un conjunto de información lógica recolectado desde varias bases de datos operacionales con el objetivo de crear inteligencia de negocios (Ranjan, 2009).

Para que los sistemas BI trabajen efectivamente, existen algunas restricciones técnicas que deberían ser tratadas:

- Seguridad y acceso de usuarios al data warehouse.
- Volumen de datos (capacidad).
- Cuánto tiempo será almacenado el dato (retención de datos).
- Sizing y rendimiento de infraestructura (servidores).

Las personas que trabajan en BI desarrollan productos que facilitan el trabajo, especialmente cuando las tareas de inteligencia involucran conseguir y analizar grandes cantidades de datos no estructurados. Cada proveedor típicamente define BI de una forma particular, y comercializa herramientas para hacer BI de la forma en que cada uno lo propone. BI incluye

herramientas en diversas categorías, incluyendo las siguientes: (Ranjan, 2009).

- AQL (Associative Query Logic) Lógica Asociativa de Consultas.
- Métricas y mediciones del rendimiento del negocio.
- Planeamiento Empresarial.
- Data mining (DM), Data Farming, y Data warehouses.
- Sistemas de apoyo a la decisión (DSS) y predicción.
- Datawarehouse de documentos y gestión documental.
- Sistema de Gestión Empresarial.
- Finanzas y presupuestos.
- Recursos humanos.
- Gestión del conocimiento.
- Mapeamiento, visualización de la información, y paneles de control (dashboards).
- Sistemas de gestión de informaciones.
- Sistemas de información geográfica (GIS).
- OLAP (Online Analytical Processing) y análisis multidimensional; a veces simplemente
 llamado "Analytics" (basado también en "hipercubo" o "cubo").
- BI en tiempo real.
- Análisis de datos estadísticos y técnicos.
- Gestión de la línea de producción, Gestión de demandas.
- Gestión de la cadena de Suministro/Gestión de la cadena de demanda.
- Análisis de tendencias.
- Reportes y consultas de usuarios/usuarios-finales.

BI frecuentemente usa indicadores de rendimientos (KPIs, key performance indicators) para

evaluar el estado actual de los negocios y para establecer un plan de acción. Más y más organizaciones han comenzado a disponibilizar más datos con mayor velocidad. En el pasado, los datos sólo estaban disponibles después de uno o dos meses, lo que no ayudaba a los directivos de empresas para ajustar las actividades con la velocidad necesaria para alcanzar sus objetivos. Recientemente, los bancos han intentado disponibilizar los datos en el intervalo más corto y reduciendo los atrasos (Ranjan, 2009).

Por ejemplo, para negocios de alto riesgo operacional (por ejemplo, tarjetas de créditos), un banco multinacional disponibiliza los datos relacionados con KPI semanalmente, y en ocasiones ofrece un análisis diario de los números. Esto significa que los datos normalmente están disponibles a cada 24 horas, requiriendo la automatización y el uso de sistemas de TI.

4.5. Breve discución

La experiencia actual de cualquier nueva forma de organización es la cadena de valor, la cual es un conjunto de actividades primarias y secundarias que crea valor para los clientes. (Denison, 1997) examina muchas actividades críticas relacionada a la cadena de valor. Sin un BI eficaz para dirigir las organizaciones orientadas a los procesos de apoyo, esto no sería posible.

(Davenport, 1993) describe varias cuestiones en la reingeniería en las innovaciones de los procesos de negocio. De acuerdo a (Adelman, Moss, y Barbusinski, 2002), BI es un término que engloba un amplio rango de software de análisis y soluciones para recolectar, consolidar, analizar y proveer acceso a la información de una manera sencilla para que los usuarios de una empresa puedan tomar mejores decisiones de negocio. (Malhotra, 2001) describe a BI

como un facilitador de conexiones en una nueva forma de organización, trayendo información en tiempo real para centralizar repositorios y apoyar el analisis, que puede ser explotada en cada nivel horizontal y vertical, dentro y fuera de la empresa.

Bi describe el resultado de un análisis profundo de los datos detallados del negocio, incluyendo base de datos y tecnologías de aplicación, así como prácticas de análisis (Gangadharan y Swami, 2004). BI es técnicamente más amplio, lo que potencialmente engloba la gestión del conocimiento, la planificación de recursos empresariales, sistemas de apoyo a la toma de decisiones y la minería de datos (Gangadharan y Swami, 2004).

(Nguyen, Schiefer, y Tjoa, 2005) introdujeron una arquitectura mejorada de BI que cubre un proceso completo para identificar, interpretar, predecir, automatizar y responder a los ambientes de negocios; y por lo tanto tiene como objetivo reducir el tiempo de reacción necesario para las decisiones empresariales. (Nguyen y cols., 2005) propone una infraestructura de TI basada en eventos para operar aplicaciones de BI que permiten análisis en tiempo real a través de procesos de negocios corporativos, y brindar recomendaciones automáticamente para optimizar las operaciones comerciales, y cerrando efectivamente la brecha entre sistemas de BI y procesos de negocio.

(Seufert y Schiefer, 2005) sugieren una arquitectura de BI mejorada, que tiene como objetivo aumentar el valor de la información mediante la reducción del tiempo de acción y la interconexión de los procesos de negocio en la toma de decisiones.

Las empresas no solo desean conocer lo que ha sucedido, sino necesitan saber las causas subyacentes. Por ejemplo, en lugar de saber cuántas mantas fueron vendidas en un mes, las empresas desean entender cuántas fueron vendidas en un país determinado durante un evento meteorológico. BI proporciona una visión integrada unificada de las actividades em-

presariales. Las empresas han construido sistemas de BI que apoyan análisis de negocio y de toma de decisiones para ayudarlos a un mejor entendimiento de sus operaciones y competir en el mercado (Gangadharan y Swami, 2004).

Algunas innovaciones en tecnologías de almacenamiento de datos están superando significativamente el progreso en potencia de procesamiento *Unidad Central de Procesos* (CPU), anunciando una nueva era para BI en tiempo real. Como resultado, algunos proveedores de software con herramientas superiores ofrecen una suite completa de aplicaciones para análisis de BI, herramientas y modelos de datos que permiten a una organización aprovechar su información. Las herramientas BI facilitan el acceso a un gran volumen de datos corporativos, y convertir esos datos en información útil y procesable que sea consistente a través de la versión coherente de la verdad.

Las empresas aún sienten que BI tiene complejidades relacionadas con la tecnología y que puede usarse solamente por especialistas con conocimientos técnicos, además que los costos de implantación son altos. Las empresas requieren estos análisis en tiempo real para los proyectos a corto plazo. El BI tradicional puede que no haga esto, pero en un ambiente BI en tiempo real ciertamente podría atender las necesidades actuales de las empresas. Los datos finalmente son considerados como recursos corporativos en una nueva disciplina. Cualquier sistema transaccional (incluyendo Sistemas de Planificación de Recursos Empresariales (ERP) y Administración basada en la relación con los clientes (CRM)) y cualquier aplicación de apoyo a la decisión (incluyendo datawarehouses y data marts) son BI, si y sólo si fueron desarrollados bajo la protección y la metodología de una iniciativa estratégica de toda la Organización (Gangadharan y Swami, 2004).

Los sistemas tradicionales de BI consisten en una base de datos en el back-end, una inter-

faz de usuario en el front-end, software que procesa la información para producir la propia inteligencia de negocios, y un sistema de informes. Las capacidades de BI incluyen apoyo a la decisión, procesamiento analítico en linea, análisis estadísticos, predicción y minería de datos.

Diferentes sectores como fabricantes, comercios electrónicos, empresas de telecomunicaciones, aerolíneas, minoristas, sistemas de salud, servicios financieros, bioinformática y hoteles utilizan BI para apoyo a clientes, investigación de mercado, segmentación, rentabilidad del producto, análisis y distribución de stock, análisis estadístico, informes multidimensionales, detección fraudes, entre otros.

BI y minería de datos es un área que está fuertemente influenciado por técnicas estadísticas tradicionales, y la mayoría de los métodos de minería de datos revela una fuerte base de métodos estadísticos y de análisis de datos. Algunas de las técnicas tradicionales de minería de datos incluyen clasificación, agrupación, análisis de valores atípicos, patrones secuenciales, análisis de series temporales, la predicción, la regresión, análisis de enlaces (asociaciones), y métodos multidimensionales incluyendo el procesamiento analítico en línea OLAP. Estos pueden clasificarse en una serie de técnicas de minería de datos, que se clasifican e ilustran en la Tabla 4.1 (Goebel y Gruenwald, 1999).

Cuadro 4.1: Técnicas actuales de BI

TÉCNICAS	DESCRIPCIÓN		
Modelo predictivo	Predecir valor para un atributo específico		
	del elemento de datos.		
Caracterización y minería de datos descrip-	Distribución, dispersión y excepción de da-		
tivo	tos		
Asociación, correlación, análisis de la causa-	Identificar relación entre atributos		
lidad (Análisis Link)			
Clasificación	Determinar a qué clase pertenece un ele-		
	mento de datos		
La agrupación y análisis de valores atípicos	, · · · · · · · · · · · · · · · · · · ·		
	cual elementos con características similares		
	se agrupan		
Análisis de patrones temporal y secuencial	Tendencia y desviación, patrones secuencia-		
	les, frecuencia		
OLAP(Procesamiento Analitico en Linea)	Herramientas OLAP permiten a los usua-		
	rios analizar distintas dimensiones de datos		
	multidimensionales. Por ejemplo, proporcio-		
	na series temporales y puntos de vista de		
	análisis de tendencias.		
Modelo de visualización	Hacer fácil la descubierta de conocimiento		
	usando charts, plots, histograms y otros me-		
	dios visuales		
Análisis Exploratorio de Datos(EDA)	Explorar un conjunto de datos sin una fuerte		
	dependencia en hipótesis o modelos; el ob-		
	jetivo es identificar patrones de una manera		
	exploratoria		

Fuente: Elaboración propia.

En el siguiente capítulo se presenta una introducción a los métodos y técnicas de análisis exploratorio, y en especial la técnica actualmente llamada Data Discovery, la cual fue aplicada en este trabajo.

4.6. Data Discovery Analysis

Data discovery es una arquitectura de BI destinado a informes interactivos y en tiempo real que pueden ser explorados desde múltiples orígenes (Marakas, 2003). La mayor parte de la base instalada en todo BI son propietarias de empresas tradicionales que han construido sus plataformas alrededor de una capa semántica y metadatos, la cual es generalmente accesible solo por herramientas del propio fabricante. La situación actual de carácter propietario de la capa semántica tradicional de BI fue aceptada y adoptada por más organizaciones como un facilitador para análisis ad hoca cambio de una única y confiable versión de la realidad, que puede ser accedida fácilmente por los usuarios de negocio, ocultando los aspectos técnicos y la complejidad de las estructuras de datos subyacentes. Sin embargo, con la adopción y rápido crecimiento de las herramientas de data discovery como Qlik, Tableau, y Tibco Spotfire, los usuarios buscan cada vez más acceso a datos confiables en capas semánticas cerradas, y los proveedores de BI se enfrentan a un reto difícil para seguir siendo relevantes en un mercado que está en transición. La respuesta de los proveedores tradicionales y la inversión significativa hasta la fecha, ha sido la utilización de sus capas semánticas existentes para promover la gestión a nivel empresarial de sus propias herramientas de data discovery desarrolladas internamente. Esto ha sido un mecanismo para diferenciar sus soluciones de las de proveedores de data discovery pure-play. Mientras que, en teoría, este enfoque logra un equilibrio entre la facilidad de uso y escalabilidad empresarial. Esto ha mostrado poco éxito para la mayoría de los proveedores de BI tradicionales como huecos de importantes funcionalidades que permanecen entre sus herramientas de data discovery desarrolladas internamente y los de los proveedores especialistas de data discovery.(Josh Parenteau, 2015)

La capa semántica que sirve como la base de la mayoría de las plataformas BI tradicionales ha sido ampliamente adoptada por muchas organizaciones a través de los años y ha sido promovida y generalmente aceptada como un componente esencial de una plataforma BI. Proveedores como SAP (BusinessOjects), IBM (Cognos) u Oracle (OBIEE) mantienen una gran base instalada de clientes que han invertido mucho en el desarrollo, operación y mejora de estas plataformas construidas alrededor de una definida y centralizada capa semántica propietaria.

Este enfoque ha funcionado bien cuando el objetivo fuera una única fuente de datos, en apoyo a sistemas definidos de registros centralizados de informes y gestión de dashboards fomentando la consistencia, la gobernanza e integración entre las plataformas de presentación y capas de metadatos. Sin embargo, con el surgimiento y expansión de data discovery, el concepto de auto servicio cobró preponderancia. Los usuarios de negocio y análisis ahora tienen acceso a un gran rango de herramientas que promueven y apoyan el uso autónomo sin la participación de TI. Como tal, hay una necesidad emergente para acceder a las reglas de negocio integradas dentro de la capa semántica propietaria de herramientas de BI existentes. Mientras esto no es posible aún en la mayoría de los casos hoy en día, algunos proveedores ya han comenzado a adoptar un enfoque cada vez más abierto para sus capas semánticas propietarias, y esto puede llevar a un cambio mayor de mercado con el tiempo. La oportunidad probablemente será dictada por el éxito que los proveedores tradicionales de BI tengan con el desarrollo y la adopción de sus propias ofertas de data discovery, que se ha limitado hasta la fecha.

El acceso abierto a metadatos no es inédito en BI y en mercados analíticos. Ejemplos incluyen Oracle OBI EE, Microsoft Power, SAP BusinessObjects y, más recientemente, conectividad nativa de Tableau para modelo de datos Birst a través de su capa semántica propietaria. Oracle BI Enterprise Edition(OBI EE) fue uno de los primeros productos de plataformas BI para tener una capa semántica abierta, un vestigio de los orígenes del producto como una nueva plataforma web abierta, desarrollada por nQuire, posteriormente adquirida por Siebel en 2001, y finalmente por Oracle en el 2005. Con OBI EE, el modelo de datos puede ser publicado y accedido con una conexión ODBC que puede ser consumida por herramientas e interfaces de terceros. Inicialmente, esto es cómo Oracle proporciona conectividad a su herramienta interna de informes de producción desarrollada, Oracle BI Publisher. Más allá de eso, pocos clientes son conscientes de esta capacidad, y citan los malos resultados como una razón por la que no fue adoptado ampliamente.

La reciente alianza entre Birst y Tableau, establecida en Abril 2015, es el más reciente ejemplo de este cambio hacia acceso abierto e integración entre proveedores puros de data discovery y fabricantes tradicionales de BI. Antes del anuncio, Birst no había permitido el acceso a su estructura de datos propietaria o capa semántica, hizo accesible sólo a de informes, dashboard y capacidades data discovery auto-contenidas dentro de la cartera Birst. A través de la alianza y desarrollo conjunto, se añadió una conexión con Tableau que permite la conexión directa con el medio ambiente Birst. Esto proporciona una mayor flexibilidad y una gama más amplia de opciones a los clientes comunes.

Una alianza similar a la que existe entre Birst y Tableau fue anunciada en 2014 entre SAP y Microsoft permite a los usuarios Power Query acceder a la capa semántica de SAP BusinessObjects (Universe). Este acuerdo permite a los clientes comunes la opción de usar

herramientas de Microsoft Power BI para data discovery a la vez aprovechan las inversiones en el SAP BusinessObjects Universe.

Un inconveniente de estas alianzas es que son actualmente unidireccionales en su naturaleza y sólo otorgan acceso de sólo lectura a herramientas de data discovery de otros proveedores de BI a la capa semántica propietaria de proveedores de BI tradicionales. Como tal, ellos todavía no apoyan la promoción de modelos de datos derivados de herramientas de data discovery en la capa semántica como una forma de promover a proveedores independientes que rigen capacidades de data discovery. Esto es, sin embargo, una oportunidad potencial de modernización que los proveedores tradicionales pueden considerar.

Proveedores de software independientes e integradores de sistemas desarrollarán nuevas soluciones de capa intermedia que facilitan el acceso a la capa semántica a las herramientas de data discovery a través de servicios web.

Mientras que los clientes prefieren una única solución de sus proveedores titulares, ya sea de los proveedores de plataforma tradicional de BI o de proveedor de data discovery, los clientes actualmente encontrarán más oportunidades para acceder a la capa semántica desde los integradores de software y los proveedores independientes menores.

4.7. Framework de Análisis de Negocio de Gartner

En este trabajo fue adoptado un Framework de Análisis de Negocio de Gartner, el cual se describe a continuación.

Hay una serie de defectos relacionados en la mayoría de las organizaciones con relación a BI y plataformas analíticas, así como una percepción errónea de sus objetivos y cómo gestionarlos.

Los equipos de BI, especialmente si se encuentran en el área de TI, creen que:

- La plataforma analítica de negocio debe ser una solución estrechamente integrada con pocos componentes, preferentemente de un único proveedor, para entregar una sola versión de la verdad para la organización.
- La información puede ser confiable sólo si está almacenada en un data warehouse corporativo y entregada a los consumidores de información usando artefactos de BI, tales como informes y dashboards.
- Las informaciones creadas o manipuladas por los usuarios de negocios inevitablemente producirán discrepancias a través de diferentes análisis, lo que lleva a decisiones equivocadas, generando caos en la organización a través del tiempo.
- La responsabilidad del departamento TI para la gestión de información termina en la capa semántica de BI y en los contenidos orientados a TI.
- Procesos analíticos orientados al negocio están fuera del alcance y no soportados por TI. Hay varios problemas orientados a la información documentados en el mundo BI y análisis, que obligan a los líderes de BI a seguir estas creencias y desplegar un entorno de BI centralizado y monolítico, que termina siendo impuesta a los usuarios, independientemente de su adecuación a las necesidades.
- Los proveedores licenciados de BI, a favor de sus propias plataformas, apoyan este enfoque.

Según Gartner, una plataforma analítica necesitan evolucionar más allá del pensamiento monolítico. Debe ocurrir una transformación para ofrecer diferentes soluciones para las diferentes necesidades del usuario, con un conjunto diverso de niveles de integración, y encontrar un equilibrio entre confianza y agilidad. El propósito es ayudar a los usuarios a alcanzar

sus objetivos de negocio a través del uso de la tecnología apropiada, no para erradicar las soluciones de BI orientados al usuario que resuelven parcialmente sus problemas de hoy. El entorno de BI y el análisis resultante también exigirá cambios en los procesos de gestión de la información, como atribuir nuevas responsabilidades a diferentes personas en la organización.

A continuación el framework de análisis de negocios. La figura 4.2 presenta el framework de análisis de negocios de Gartner.

Figura 4.2: Framework Analítico de Negocios Gartner

Fuente: (J, 2014)

El framework de análisis de Gartner identifica las personas, los procesos y componentes de la plataforma que apoyan la transformación de la información en un mejor rendimiento de la organización. El uso de esta herramienta está hecha por la lectura desde arriba hacia abajo, comenzando con los resultados del negocio y luego descifrando las composiciones analíticas de apoyo y la información necesaria para alcanzarlos. De acuerdo a las necesidades de los usuarios, la plataforma debe ser re-diseñada con un amplio conjunto de capacidades técnicas (llenando los vacíos), nuevas responsabilidades y organización. Centrándose en las herramientas o normalización de proveedor por sí sola no es la respuesta.

El framework es también muy útil para definir los estados actuales y futuros de la arquitectura. La diferencia entre ellos es el mapa de rutas e incluye cambios en personas y procesos. La organización muy probablemente también necesitará re-organizar y capacitar a los proveedores y usuarios de BI y análisis. Los usuarios de negocio deben ganar acceso a las herramientas analíticas adecuadas, de acuerdo a sus metas y habilidades, y un rango comprensivo de fuente de datos con tipos de datos variados, granularidad adecuada y accesos apropiados. Teniendo en cuenta el espectro de capacidades analíticas con énfasis en las plataformas, en particular, el componente de capacidad analítica, podemos notar cuatro estilos analíticos que se detallaran a continuación (Figura 4.3).

Figura 4.3: Espectro Analítico

Fuente: (J, 2014)

Las capacidades analíticas implementadas en organizaciones son a menudo limitadas el análisis descriptivo, a través de reportes básicos y dashboards. Con esto, la pregunta, "Qué paso?" puede ser respondida. Después de conocer "Que,", lo más probable es que los usuarios también pregunten, "Por qué pasó?". Abordar adecuadamente esto requiere mucha más agilidad y más capacidades avanzadas de exploración de la información. Despliegues de BI tradicionales tienden a tener huecos en esta área, pero TI por lo general pasa por alto el impacto de esta problemática y continúa impulsando el estándar del proveedor y sus herramientas no aptas-para-propósito. Como consecuencia, los usuarios recurrirán a Excel, consultas ad hoc, extracciones de datos y a los equipos de shadow TI para lograr sus metas de análisis.

Los líderes de BI deben extender el BI y la plataforma analítica hasta el análisis de diagnóstico para complementar el análisis descriptivo. Aquí es donde OLAP y los modelos de datos en memoria son utilizadas para proporcionar una navegación fácil y rápida de datos sin una consulta predefinida. Aprovechando mejoras en el nivel de acceso a datos, también vemos la necesidad de mejorar las capas semánticas abstrayendo la complejidad del modelo físico subyacente. Esto puede hacer que sea mucho más fácil para el descubrimiento de autoservicio sin el cuello de botella de TI que se encuentra en un típico equipo de BI.

Más allá de la capa de datos, vemos la introducción de nuevas herramientas de visualizaciones de datos, y aquí es donde el enfoque del rápido crecimiento de las herramientas de data discovery se concentran. Pero herramientas tradicionales pueden también proporcionar mejoras con un mayor enfoque en informes más comprensivos(como el análisis de varianza), planificación integrada, dashboards y informes KPI.

A través del tiempo, con un crecimiento a un alto nivel de madurez de análisis, la organización debería moverse dentro del análisis predictivo y preceptivo. Esto requiere un incremento

significante en los niveles de habilidades del analista de negocios. Modelos predictivos requieren desarrollo y mantenimiento con lógicas complejas y reglas de negocio. Ellos incorporan métodos sofisticados que pueden también requerir un entendimiento profundo de la estadística o investigación operacional.

Además, las organizaciones deben darse cuenta de que hay necesidad de mezclar todas estas diferentes técnicas en soluciones integrales en lugar de dejarlos aislados.

Re-diseñar el BI y la Plataforma Analítica

Los líderes de BI deben seguir las herramientas fundamentales descritas anteriormente para así con éxito re-diseñar el BI y la plataforma de análisis. Gartner recomienda la instalación de una arquitectura por niveles compuesta por:

- Portal de Información.
- Workbench Análitico.
- Laboratorio de datos científicos.

En la figura 4.4 se presenta la representación de BI en niveles y la plataforma analítica, la cual puede ser utilizada como una guía genérica que puede ser ajustado de acuerdo a las características específicas de la organización.

Portal de Información Entorno de Trabajo Análitico Laboratorio de Ciencia de Datos Descriptivo Diagnóstico Predictivo y Prescriptivo Clientes y Socios Toma de Operaciones de **Decisiones** Negocio BI Especialista Información **Datos Científicos** de Negocio **Análitica** BI Especialista User-build promoción de contenido Técnico Capacidades Típicas: análisis Capacidades Típicas: data predictivo, simulación y optimización, acceso avanzado de datos, Gestión de discovery, OLAP, consulta ad-hoc, filtro, manipulación, integración y modelado de datos, previsión, BI colaborativo, análisis apoyo para big data, . Información Especialista Técnico de ubicación, modelado predictivo Transacciones IT/OT Audio Imagen básico,... Capacidades Típicas: informes, dashboards, tarjetas de puntuación, BI móvil, .. Dominio-Especifico Datos Proveedores de Archivos Transacciones Social Abiertos Datos Externos Texto Ad Hoc Información Transacciones

Figura 4.4: Típico uso de estilos analíticos

Fuente: (J, 2014)

Para hacer realidad la visión de los tres niveles y ser capaz de maximizar sus fortalezas, los líderes de BI necesitan implementar nuevas capacidades técnicas para proporcionar nuevos estilos de análisis, mejorar el uso de las herramientas existentes a través de una mejor integración global, y proporcionar metadatos comunes y gobernanza. Procesos, roles de personas y responsabilidades, son de suma importancia para el éxito.

Ellos deben ser tratados en conjunto con la plataforma técnica como se describe en el framework de análisis de negocios de Gartner.

Vamos a ampliar cada nivel para entender cómo integrar y aprovecharlos en conjunto.

4.7.1. Portal de información

Seguir de cerca las características de sistemas de registros desde el Pace Layer Model. El portal de información es el área de trabajo donde los usuarios de negocio pueden encontrar rápida y fácilmente las métricas clave de confianza con la cual la organización mide su rendimiento. Por lo general hecho de capacidades de informes y dashboard que proporciona contenido para los consumidores de información. Sus productos son el resultado de un proceso de desarrollo formal que abarca que un usuario de negocios establezca requisitos y un especialista técnico(típicamente de TI, pero cada vez más de negocio) los implemente. Capacidades típicas de la plataforma:

- Informes.
- Dashboards.
- Integración Microsoft Office.
- BI móvil.

Análisis integrada.

Ejemplo de herramientas y proveedores:

- SAP BusinessObjects.
- IBM Cognos.
- Oracle BI.
- Microsoft Reporting Services.
- MicroStrategy.
- Information Builders WebFocus.

4.7.2. Workbench analítico

El workbench analítico es el área de trabajo usado para investigar tendencias en indicadores de confianza o detectar patrones en otros conjuntos de datos — desde múltiples fuentes —. que pueden convertirse en oportunidades o riesgos. Es una capa ágil para explorar información y tener acceso a un amplia gama de fuentes de datos, con limitado o ningún apoyo de expertos técnicos. Los conjuntos de herramientas deberían incluir una herramienta de data discovery (descubrimiento de datos) y un número de otras capacidades para ayudar a los usuarios de negocios a extraer valor de la información de forma autónoma.

En el espectro de análisis, el workbench es capaz de proporcionar análisis descriptivo ,pero por lo general se centrará en el análisis de diagnóstico. En algunos casos – es decir, a través del uso de herramientas de data discovery más centrado al análisis. – Puede extender a un nivel básico de análisis predictivo y ganará el modelado de datos y capacidades analíticas más avanzadas en el futuro.

Capacidades típicas de la plataforma:

- Data discovery.
- Informes/consultas Ad hoc.
- Inteligencia geoespacial y localización.
- Análisis integrado avanzado.
- OLAP.
- Mashup de datos y modelado de usuarios de negocios.
- Colaboración.
- Filtrado y manipulación de datos.

Ejemplo de herramientas y proveedores:

- Tableau Software.
- Qlik.
- Tibco Spotfire.
- SAS Visual Analytics.
- SAP Lumira.
- Oracle Endeca Information Discovery.
- MicroStrategy Visual Insight.
- Alteryx.
- Microsoft SQL Server Analysis Services and Power BI.

4.7.3. Laboratorio de datos científicos

El laboratorio científico de datos es el área de trabajo donde análisis avanzados se llevan a cabo y es la incubadora ideal para iniciativas big data. Es un entorno flexible donde experimentos de prueba y error es actualmente alentado para generar ideas impactantes para la organización.

Un amplio conjunto de capacidades técnicas es esperado y a menudo proporcionado por herramientas especializadas con integración TI mínima, destinada a entregar agilidad y capacidad de responder las preguntas imprevisibles. Esto es porque TI tiende a pasar por alto esta área a favor de inversión en el portal de información. Los usuarios son cualificados y experimentados, a menudo más que los expertos técnicos en TI. Sus conjuntos de herramientas incluyen capacidades de data mining, predicciones y otras herramientas de estadísticas y análisis complejos.

Capacidades típicas de la plataforma:

- Acceso avanzado de datos.
- Soporte para fuentes de big data.
- Análisis descriptivo avanzado.
- Análisis predictivo.
- Predicción.
- Optimización.
- Simulación.
- Otros análisis avanzado.

Aunque no capacidades BI, Hadoop y bases de datos NoSQL también deben ser referenciados aquí.

Ejemplo de herramientas y proveedores:

- SAS Enterprise Miner.
- IBM SPSS.
- SAP InfiniteInsight.
- Revolution Analytics y R.
- RapidMiner.
- Knime.
- Alteryx.
- FICO.
- Dell StatSoft.
- Cloudera.
- Hortonworks.
- MapR y otras distribuciones Hadoop.

Entender las características de BI en niveles y la plataforma analítica. La siguiente tabla resume las características que posee cada una de las tres capas. Los líderes de BI deberían deberán intentar entender los huecos en su plataforma analítica, y cambiar sus estrategias en consecuencia.

Figura 4.5: Características de BI en niveles y Plataforma Analítica

Características	Portal de Información	Entorno de Trabajo Análitico	Laboratorio de Ciencia de Datos
Objectivo Principal	Entrega información estandarizada y confiable para la organización.	Proveer capacidades de exploración de información para una rango extenso de usuarios de negociso.	Permitir la producción de procesos análiticos avanzados.
Audiencia	Especialistas técnicos producen el contenido BI; usuarios de negocio(toman decisiones) lo consumen.	Analizar la información de negocio genera contenido para la toma de decisiones, como en el portal de información.	Cientistas de datos generan el contenido para consumido por las operaciones de negocios(como el personal de call center) a través de análitica integrada en aplicaciones de negocio. Puede ser consumido directamente por clientes (Ejemplo: a través de sitios web).
Origens de Datos	Información Estructurada desde los almacenes de datos empresariales(EDW) o data mart de dominio específicos.	En general información estructurada desde EDW, data mart de dominio específico, información generada por usuario(a menudo en Excel), aplicaciones de negocio y datos externos y abiertos. Empezar a utilizar fuentes de datos no estructurados. Entradas desde el portal de información.	Información estructurada y no estructurada desde todos los origenes internos y externos disponíbles. Entradas desde los almacenes análiticos de datos.
Confiable vs Ágil	Información Confiable y estructurada, pero estático y poco inflexible.	Interactivo, ágil y personalizable acuerdo a las necesidades del usuario, pero puede mostrar discrepancias en la información generada por el usuario.	Confiable, a fondo y dirigido por datos. Personalizable para responder o resolver un problema simple y poco flexible.
Tiempo para Entregar Contenido	Puede llevar días o meses para desarrollar, pero puede ser consumido en segundos.	Minutos a horas.	Días a meses.
Nivel de Habilidades Requeridas	Habilidades técnicas de intermedio a avanzado para desarrollo de contenido. Sin necesidad de habilidades particulares de BI para el consumo de información.	Básica a anvazada capacidades de manipulación a nivel usuario de negocios. No requiere grandes conocimientos técnicos o estadísticos.	Avanzadas técnicas y habilidades matemáticas.
Acceso a Información Requerida	Acceso reducido para el consumo de información, de acuerdo al rol y perfil del usuario.	Acceso amplio a multiples data source, de acuerdo a áreas de responsabilidad.	Acceso muy amplio a información, de acuerdo a áreas de responsabilidad.
Apoyo TI Requerido	Elevado desarrollo de contenidos.	Disponibilidad de data source medianos y validación de contenidos.	Baja disponibilidad de data source.
Capacidades analíticas típicas Producida	Análisis descriptivo y salidad de análisis prescriptivos y predictivos.	Componentes basicos, descriptivos y diagnósticos de análisis descriptivos(asi como previsión).	Avanzado análisis descriptivo, diagnóstico, predictivo y prescriptivo.

Fuente: (J, 2014)

Selección de la herramienta para Data Discovery

Fueron analizados los estudios de Gartner (Herschel, Linden, y Kart, 2015) (Sallam y cols., 2015) para la selección de la mejor herramienta que se adecue a los criterios necesarios para ser utilizado en esta tesis. Estos documentos realizan un análisis de las mejores herramientas del mercado, en un área de conocimiento. A continuación se presenta el Cuadrante Mágico de Gartner, para herramientas de BI y Analytics.

5.1. Cuadrante Mágico de Gartner

Cuadrante Mágico Aspirantes Líderes Tableau Birst (Microsoft Logi Analytics Information Bu Tibco Software CAPACIDAD PARA EJECUTAR GoodData (Prognoz Pyramid Analytics Alteryx Pentaho, Targit Board International Datawatch Panorama Software Salient Management Company OpenText (Actuate) Especialistas Visionarios A partir de febrero de 2015 INTEGRIDAD DE LA VISION Fuente: Gartner (Febrero 2015) Visión general del Cuadrante Mágico de Posicionamiento

Figura 5.1: Cuadrante Mágico para BI y Plataformas Analíticas

Fuente: (Herschel y cols., 2015)

Los líderes del mercado se encuentran siempre en el cuadrante superior derecho. Se puede observar una amplia diferencia entre Tableau y los demás líderes.

En las siguientes figuras se presenta el análisis de Gartner que evalúa las capacidades críticas que debe tener una herramienta de BI y Analytics, para adecuarse a las necesidades del mercado.

Figura 5.2: Puntuaciones de producto o servicio para análisis descentralizado

Fuente: (Josh Parenteau, 2015)

Figura 5.3: Puntuaciones de producto o servicio guiados por Data Discovery

Fuente: (Josh Parenteau, 2015)

Los valores posibles van del 1 al 5, conforme la siguiente evaluación:

1. Pobre o ausente: la mayoría de los requisitos de esta capacidad no fueron alcanzadas.

2. Justo: Algunos de los requisitos fueron alcanzados.

3. Bueno: cumple con los requisitos.

4. Excelente: alcanza o excede algunos requisitos.

5. Superior: excede significativamente los requisitos.

Tableau tiene una posición fuerte en capacidad de ejecución (producto/servicio, su oferta, ejecución de ventas, marketing, experiencia del cliente) en el eje de líderes del cuadrante. Esta herramienta fue la que mejor se adecuó a las necesidades del trabajo de Tesis, dado que cuenta con una versión pública para la construcción y publicación de dashboards, además de la facilidad de uso que nos proporciona. Tableau Desktop, la cual se basa en tecnología drag and drop (arrastrar y soltar) permite analizar datos rápidamente y permite ver los cambios en tiempo real sin necesidad de codificación, de esta manera, posibilita a un usuario con escasos conocimientos técnicos, poder utilizarlo de igual manera.

Tableau - Book1 File Data Worksheet Dashboard Analysis Map Format Server Window Help → 🖪 🟮 📆 - 🖫 🖫 - 💁 - ② - 🏗 - 월 - Abc 🗘 🖼 - Normal Data Pages Columns ecomod#csv (ecomod.csv) Dimensions Rows country, city country @ Drop field here Abc dummy1 Abc dummy2 Marks ⊕ zip Abc Measure Names here III Show Me Abc Automatic ~ 2 Abc 123 Color Size Text Tooltip Detail Measures 🜐 Latitude (generated) Description (1980)
(penerated) =# Number of Records # Measure Values

Figura 5.4: Arrastre el campo país para el campo desplegable señalado.

Fuente: (Peck, 2013)

Figura 5.5: Arrastrar hojas de trabajo al dashboard.

Fuente: (Peck, 2013)

De una forma ágil el usuario puede conectarse a diversas fuentes de datos y crear paneles interactivos, conectando entre sí los diferentes componentes (tipo de gráfico) que proporciona la herramienta. La herramienta permite utilizar componentes como filtros, siendo o no de la misma fuente de datos siempre y cuando los datos coincidan en los diversos conjuntos. Pueden ser utilizadas en la organizaciones para comprender rápidamente diferentes aspectos del negocio. También se puede utilizar para realizar proyecciones o tendencias, la cual Tableau nos ofrece de manera automática.

Resultado

6.1. Aplicación de Data Discovery a datos de

instituciones del Estado

Generalmente las organizaciones no logran comprender en su totalidad los datos que generan. La consecuencia de no comprender esos datos puede resultar en la mala toma de decisión, lo cual podría ocasionar un gran impacto negativo a la organización. La información es considerada como uno de los recursos más importantes en una organización, y en base a esta información, se puede obtener conocimiento que podría ayudar a obtener mejores resultados.

En el presente trabajo son analizados datos de la ANDE y de la DGEEC, relacionando ambos conjuntos de datos, con el objetivo de obtener información de interés para la organización.

6.2. Datos de la ANDE y de la DGEEC

Se cuenta con datos de consumo de energía eléctrica, facturaciones, grupos de consumo (residencial, industrial, exportación, comercial, gubernamental y otros), por año (2000-2014), por departamento y distrito. Estos datos fueron solicitados formalmente a la institución por medio de la Facultad de Ciencias y Tecnología de la Universidad Católica, a

la cual tuvimos una respuesta favorable.

6.3. Dashboard de control / monitoramiento

En esta sección se presentan 4 productos construidos en esta Tesis, los cuales son Paneles de Control, en donde se relacionan conjuntos de datos de la ANDE y de la DGEEC. Una de las técnicas utilizadas para medir el crecimiento es la tasa de crecimiento, la cual se obtiene de la siguiente forma:

Es calculado el porcentaje de crecimiento ocurrido por cada año (Ej: Si al cerrar el año 2014, la cantidad de clientes fue de 1.000.000 y en el año 2015 aumentó 100.000, esto quiere decir que en el año 2015, la tasa de crecimiento de los clientes fue del 10%, es decir, hubo un crecimiento positivo y la cantidad de clientes ha aumentado). Suponiendo que en el año 2016 la ANDE cierra con un total de 1.000.000 de clientes, su crecimiento ser a 10% menor al año anterior. La fórmula empleada (ver fórmula Tasa de variación abajo), donde n es el año actual y n-1 el año anterior, PIB indica la cantidad de clientes que posee la ANDE .

$$t_n = \frac{PIB_n - PIB_{n-1}}{PIB_{n-1}} \times 100$$

Fórmula: Tasa de variación

6.3.1. Dashboard - Clientes Facturados vs Crecimiento

Poblacional

En el dashboard de la Figura 6.1 son utilizados datos históricos de la población, proveídos por la DGEEC, y datos de clientes, tales como el consumo y facturación, proveídos por la ANDE. Es importante notar en la figura, que independiente a que la tasa de

crecimiento poblacional se mantenga casi constante, la tasa de crecimiento del consumo se eleva de forma pronunciada. Además, puede ser muy relevante la información de proyección del consumo para los próximos años, para elaborar una planificación en la ampliación de la capacidad de transmisión o distribución de energía.

Clientes facturados vs Crecimiento poblacional % Diferencia con año Indicadores gráficos de datos de la ANDE cru-2000 2010 2012 2014 zados con datos DGEEC. Datos de población, consumo de energía, clientes facturados, importe factrurado. Tasa de crecimien.. Energía consumida vs Importe facturado Proyección de Clientes facturados, crecimiento poblacional y consumo de energía para los próximos 5 años. 35% 25M 30% 30% 25% 20M 20% 15M 15% 10% 10M 5% 2013 2015

Figura 6.1: Clientes Facturados vs Crecimiento Poblacional

Fuente: Elaboración propia.

En la Figura 6.2 se presentan dos tasas de crecimiento: de Clientes de la ANDE y de la Población del Paraguay. Es importante notar que el ritmo de crecimiento de la población disminuye con el tiempo, pero no así el ritmo de consumo de electricidad. No existe una

relación directa entre estas dos tasas por el momento, lo cual puede deberse a factores tales como instalación de mayor cantidad de dispositivos eléctricos en residencias, o bien la instalación de más industrias las cuales tienen un alto nivel de consumo de electricidad. Es importante notar que la tendencia de la tasa de crecimiento del consumo de electricidad es positiva, lo cual podría ayudar a planificar una mayor inversión en la red de electricidad para aquellas zonas donde se registran tendencias mayores al consumo.

Clientes facturados vs Crecimiento poblacional ď % Diferencia con año anterior 5% 2001 Año Tasa de crecimiento de la poblacion: 1,9022% 5.385.002 Poblacion: 1998 2000 2014 2016 Año 🖈 Tasa de crecimiento de clientes Tasa de crecimiento de la poblacion

Figura 6.2: Clientes Facturados vs Crecimiento Poblacional

Fuente: Elaboración propia.

En la figura 6.3 observamos que la cantidad de la población en el año 2002 cerró con un total de 5.484.610, la cual su crecimiento fue del 1.8497 % que equivale a 99608.

Figura 6.3: Clientes Facturados vs Crecimiento Poblacional

En la figura 6.4 se muestran valores que representan el porcentaje del crecimiento de los clientes de la ANDE. Como podemos ver, hay años en que el aumento es muy evidente (2004,2006,2008) y hay años en que este es mínimo(2002,2005,2007). Las líneas discontinuas representan las tendencias de ambos puntos. Por ejemplo, la cantidad de clientes en el año 2001 fue de 959.580, la cual aumentó el 4.1 % respecto al año anterior.

Figura 6.4: Clientes Facturados vs Crecimiento Poblacional

En la figura 6.5, se muestra la cantidad de clientes correspondiente al año 2002, vemos que ascendió a 964.449 con un aumento de 4.869, que corresponde a un incremento del 0.5 % respecto al año 2001. Sin embargo en la figura 6.6, en el año 2003 el incremento fue de 1.2 %, la cual representa a un aumento de más que el doble del año anterior llegando a aumentar 11830 clientes.

Figura 6.5: Clientes Facturados vs Crecimiento Poblacional

Figura 6.6: Clientes Facturados vs Crecimiento Poblacional

En la figura 6.7 se puede observar con más detalle la proyección (forecasting) del consumo,

crecimiento poblacional y cantidad de clientes. Se puede notar que existe una mayor probabilidad que en promedio, el consumo de electricidad aumente de forma considerable hasta el 2020 (línea roja). Además, este aumento es mayor en proporción al aumento de la población y a la cantidad de clientes.

Esto demuestra claramente que el consumo aumenta cada vez más, independiente que se dé un aumento en la misma proporción de clientes o población. Esto puede ocurrir a causa de varios factores, entre ellos, el aumento de dispositivos eléctricos en las residencias, debido al aumento en la capacidad adquisitiva de las personas. También se puede dar a causa de un aumento en la cantidad de industrias.

Figura 6.7: Proyección de Clientes Facturados Crecimiento Poblacional Y Consumo De Energía para los Próximos 5 Años

Proyección de Clientes facturados, crecimiento poblacional y consumo de energía para los próximos 5 años.

Fuente: Elaboración propia.

En el tercer y último gráfico de este panel, se muestra el porcentaje del crecimiento anual

de los importes facturados y consumo de energía. Se puede observar que la facturación de la ANDE, en general es proporcional al consumo de energía eléctrica, excepto en el año 2011 (Figura 6.8), en la cual el importe facturado fue superior al aumento del consumo de energía. Sin embargo, en el año 2013 (Figura 6.9) se registra nuevamente un aumento en relación a años anteriores.

Energía consumida vs Importe facturado ď Año: 2001 30% 30% Tasa de crecimiento del importe facturado: 34,03% Importe (GS): 950.690.247 % Diferencia en Importe (GS) % Diferencia con año anterior 20% 20% 10% 0% 0% 2000 2002 2004 2006 2008 2010 2012 2014 Año

Figura 6.8: Energía Consumida vs Importe Facturado

Fuente: Elaboración propia.

Energía consumida vs Importe facturado ď 30% 30% % Diferencia en Importe (GS) Diferencia con año anterior 20% 20% 10% ✓ Conservar solo esto × Excluir 0% 2004 Tasa de crecimiento del importe facturado: 1,89% 2000 2002 2004 1.394.699.791 Importe (GS): Tasa de crecimiento del consumo Tasa de crecimiento del importe facturado

Figura 6.9: Energía Consumida vs Importe Facturado

6.3.2. Panel estadístico de consumo de electricidad por sector

En la figura 6.10 se presenta un gráfico con el consumo de energía histórica, que abarca desde el año 1990 hasta 2014. Estos datos están clasificados por los siguientes criterios de la ANDE: Alumbrado Público, Comercial, Exportación, Gubernamental, Industrial y Residencial. En este gráfico se puede apreciar que el mayor consumo de energía se encuentra en el sector Residencial. Sin embargo, los valores de Exportación de energía fue

disminuyendo durante el tiempo. Esto tiene sentido debido a que ambos valores son inversamente proporcionales, esto es, cuando el consumo nacional se incrementa, se hace un mayor uso de energía en el país, por lo tanto disminuye la energía disponible para exportación.

Figura 6.10: Estadística de consumo de electricidad por sector(1990-2014)

Fuente: Elaboración propia.

La Figura 6.11 presenta las informaciones de facturación también clasificados por sector, con el recurso de filtros por año. Es importante destacar un factor resaltante: aunque energía exportada disminuyó, el valor facturado por energía vendida al exterior aumentó. Es probable que esto se haya debido al aumento de la tarifa de energía vendida, lo cual beneficia al país.

Figura 6.11: Importe facturado por año y sector(1990-2014)

Datos de la ANDE

Fuente: Elaboración propia.

6.3.3. Panel comparativo de Tasa de crecimiento y el Consumo de energía

En la figura 6.12 se presenta un panel comparativo entre la tasa de crecimiento de clientes y consumo de energía. También se cuenta con un mapa para filtrar por región del país.

Tasa de crecimiento de clientes y consumos por año 15% 15% del consumo (%) Distribución por grupo de consumidores Tasa de crecimiento 0% 2000 2002 2004 2006 2008 2010 2012 2014 Año Nombre de medidas Grupo de Consumo Comercial Otros Tasa de crecimiento de clientes respecto al año anterio Residencial Industrial Tasa de crecimiento de consumo respecto al año anterio Proyección de clientes y consumos para los próximos 5 años OK – 1000K – 1 20G 10G - 5G 0G 2015 2017 2001 2003 2005 2007 2009 2011 2013 2019 Año Clientes (número.. | Clientes (número.. | Consumo (MWh).. | Consumo (MWh).

Figura 6.12: Tasa de crecimiento vs Consumo de energía

En el gráfico situado a la derecha del mapa (Figura 6.13), se tiene el consumo y crecimiento de clientes. Para un mejor análisis fue necesario suavizar los datos calculando lineas de tendencia, debido a una inestabilidad de los datos de consumo. Así se puede apreciar, que existe una tendencia de crecimiento sostenido durante el tiempo de clientes. Sin embargo, la tendencia que el consumo crezca es mayor al de clientes.

Figura 6.13: Tasa de crecimiento vs Consumo de energía, filtrado por el departamento Alto Paraná

Debajo se presenta un cuadro con la línea de cada valor (Figura 6.14), de crecimiento y consumo. Con el uso de un recurso disponible que cuenta la herramienta escogida Tableau, es posible realizar análisis predictivo (forecasting) del crecimiento y consumo. Tableau utiliza

un algoritmo llamado Suavizado Exponencial, muy conocido en el área de Matemáticas Estadísticas. En este gráfico se puede notar que existe una mayor probabilidad que en los próximos años aumente considerablemente el consumo, superando su media. Sin embargo, se nota que el ritmo de crecimiento de clientes es sostenible, y no tiene una alta probabilidad de sufrir un aumento abrupto.

Figura 6.14: Proyección de clientes y consumos para los próximos 5 años

Fuente: Elaboración propia.

6.3.4. Panel de Tasa de crecimiento poblacional y Consumo de energía anual

Proyección de crecimiento poblacional y consumo de energía. 🕝 **ANDE** 20G 18G Consumo por departamento Consumo de energia 12G 10G 1000K 6G 4G 2G Consumo (mWh) 61.289.579 Consumo, Actual Tasa de crecimiento poblacional y consumo de energía año tras año 2011 2012 2013 2014 Tasa de crecimiento de la poblacion Tasa de crecimiento del consumo

Figura 6.15: Panel de Tasa de crecimiento poblacional y Consumo de energía anual

En la figura 6.16 se presenta el panel comparativo de datos de crecimiento poblacional de la DGEEC y de consumo de la ANDE. En el mapa, cuando el color es más oscuro el consumo de energía es mayor, y si el color es más claro, el consumo es menor. Se puede notar que los departamentos Central y Alto Paraná son los que tiene mayor consumo de energía. Este tipo de gráfico es muy útil cuando se desea analizar información de forma general y georeferenciada. Al ubicar el mouse sobre cualquier departamento, se presenta una ventana emergente indicando el valor de consumo del departamento seleccionado. Al seleccionar un departamento del mapa, los demás gráficos también se actualizan filtrando el

departamento seleccionando.

Figura 6.16: Consumo por departamento

Fuente: Elaboración propia.

Los gráficos situados a la derecha y debajo del mapa presentan la tasa de crecimiento poblacional y de consumo de energía. Es importante notar que la tasa de crecimiento de la población es casi constante, esto es, no tiene una gran variación en el tiempo, ni una tendencia a alejarse de la media. Sin embargo, la tasa de crecimiento de consumo tiene una línea de tendencia a crecer durante el tiempo. Así puede apreciarse que, el consumo de energía no tiene una relación de proporcionalidad con respecto al crecimiento de la población.

Figura 6.17: Proyección de crecimiento poblacional y consumo ee energía

Proyección de crecimiento poblacional y consumo de energía.

Fuente: Elaboración propia.

En este gráfico, se muestra la misma información que el gráfico anterior pero con diferente

perspectiva, en este caso se calcula el porcentaje de crecimiento anual tanto de la población, así como del consumo.

Figura 6.18: Tasa de crecimiento poblacional y consumo de energía años tras años

Fuente: Elaboración propia.

Marco Metodológico

7.1. Alcance

Aplicamos las técnicas de Data Discovery a los datos de dos instituciones del estado, específicamente la ANDE y DGEEC, donde demostramos que con datos de calidad se pueden detectar oportunidades que nos facilitan la toma de decisiones en la institución. Utilizamos conjuntos de datos de las instituciones mencionadas más arriba para este fin.

7.2. Enfoque

El enfoque que utilizamos es el cuantitativo, que por lo común, utiliza la recolección y el análisis de datos para contestar preguntas de investigación y probar hipótesis establecidas previamente, y confía en la medición numérica, el conteo, y en el uso de la estadística para intentar establecer con exactitud patrones en una población. (por ejemplo el censo es un enfoque cuantitativo del estudio demográfico de la población de un país).

7.3. Técnica e Instrumentos de recolección de datos

La técnica aplicada en este trabajo en la recolección de datos fue la investigación de documentos científicos procedentes de publicaciones de empresas pioneras en Data Discovery y de expertos en el área.

Conclusiones

Este trabajo fue dividido en las siguientes partes:

- Introducción: Introducción a los objetivos de este trabajo.
- Marco Teórico: esta sección desarrolla el estado del arte en el área de BI y principalmente el de Data Discovery, técnica aplicada en este trabajo.
- Selección de herramienta Tableau: En esta sección se presenta la evaluación técnica realizada para la selección de la herramienta Tableau. Además la aplicación de técnicas de Data Discovery a los datos de la ANDE y la DGEEC. También se presentan los productos construidos en este trabajo, para el análisis de las informaciones, y las proyecciones realizadas para los próximos años.
- Resultados: Para el desarrollo de este trabajo se obtuvieron datos de la ANDE y la DGEEC. Con estos datos fue posible aplicar técnicas de Data Discovery realizar un análisis de las informaciones, cruzar los, georeferenciarlos, encontrar líneas de tendencias y pronósticos de crecimiento a futuro tanto del consumo de energía, de clientes de la ANDE y de la población del país. En cada caso se presenta un análisis que demuestra con gráficos intuitivos que en ciertas ocasiones no existe una relación proporcional entra algunas dimensiones. Sin embargo, teniendo en cuenta los resultados obtenidos se pueden observar las siguientes cuestiones:
 - 1. La tasa de crecimiento del consumo es mayor a la tasa de aumento de clientes.
 - 2. Debido a este aumento en el consumo de energía del país, disminuyó la cantidad de

energía exportada.

- 3. Aunque se tuvo una disminución en la energía exportada, se obtuvo un crecimiento en el valor facturado. Esto demuestra una mejoría en el precio de venta de la energía al Brasil (Itaipú) o Argentina (Yacyretá).
- 4. Según el pronóstico de crecimiento para los próximos años, el consumo de energía tendrá un crecimiento mayor al de la cantidad de clientes, y la población del país.
- 5. La tasa de crecimiento de la población se mantiene constante durante el tiempo, esto es, la población crece a una tasa sostenida. Sin embargo, la tasa de aumento en el consumo de energía es considerablemente mayor, y demuestra un aumento abrupto para los próximos años, independiente a la tasa de aumento de la población y de nuevos clientes de la ANDE.

Teniendo en cuenta estas cuestiones, este trabajo puede servir de herramienta para la Planificación en la Inversión en la capacidad de transmisión y distribución de electricidad dentro del territorio del país, para los próximos años, además de ayudar con indicadores para montar una estrategia de exportación para replantear las condiciones actuales de venta de la energía al exterior.

Trabajos futuros

Referencias

- Adelman, S., Moss, L., y Barbusinski, L. (2002). I found several definitions of bi. *DM**Review, 5700–1.
- Davenport, T. (1993). Process innovation: reengineering work through information technology. Harvard Business Press.
- Denison, D. R. (1997). Toward a process-based theory of organizational design: Can organizations be designed around value chains and networks? *Advances in Strategic Management*, 14, 1–44.
- Eckerson, W. (2009). Who ensures clean, consistent data. The Data Warehouse Institute.
- Gangadharan, G. R., y Swami, S. N. (2004). Business intelligence systems: design and implementation strategies. En *Information technology interfaces*, 2004. 26th international conference on (pp. 139–144).
- Goebel, M., y Gruenwald, L. (1999). A survey of data mining and knowledge discovery software tools. ACM SIGKDD explorations newsletter, 1(1), 20–33.
- Hancock, J. C., y Toren, R. (2006). Practical business intelligence with sql server 2005.

 Pearson Education.
- Herschel, G., Linden, A., y Kart, L. (2015). Magic quadrant for advanced analytics platforms.

 Gartner Report G, 270612.
- J, T. (2014). How to architect the bi and analytics platform. Gartner Research. Gartner Inc, 1.
- Josh Parenteau, C. H., Rita L. Sallam. (2015). The rise of data discovery has set the stage

- for a major strategic shift in the bi and analytics platform market. Gartner Research.

 Gartner Inc, 1.
- Kumari, N. (2013). Business intelligence in a nutshell. *International Journal of Innovative*Research in Computer and Communication Engineering, 1(4), 969–975.
- Malhotra, Y. (2001). From information management to knowledge management. beyond the 'hi-tech hidebound' systems. Knowledge management and business model innovation, 115–134.
- Marakas, G. M. (2003). Modern data warehousing, mining, and visualization: core concepts.

 Prentice Hall.
- Nguyen, T. M., Schiefer, J., y Tjoa, A. M. (2005). Sense & response service architecture (saresa): an approach towards a real-time business intelligence solution and its use for a fraud detection application. En *Proceedings of the 8th acm international workshop on data warehousing and olap* (pp. 77–86).
- Peck, G. (2013). Tableau 8: The official quide. McGraw-Hill Osborne Media.
- Ranjan, J. (2009). Business intelligence: concepts, components, techniques and benefits.

 *Journal of Theoretical and Applied Information Technology, 9(1), 60–70.
- Rud, O. P. (2009). Business intelligence success factors: tools for aligning your business in the global economy (Vol. 18). John Wiley & Sons.
- Sallam, R., Parenteau, J., Hostmann, B., Schlegel, K., Oestreich, T., Tapadinhas, J., y Howson, C. (2015). Critical capabilities for business intelligence and analytics platforms.

 Retrieved Oct, 1, 2015.
- Seufert, A., y Schiefer, J. (2005). Enhanced business intelligence-supporting business processes with real-time business analytics. En *Database and expert systems applications*,

2005. proceedings. sixteenth international workshop on (pp. 919–925).