

Pianificazione Centri Trapianto

Un Modello di Localizzazione e Allocazione

Formulazione di TRALOC

- Dati
- Obiettivo
- Decisioni
- Vincoli
- Formulazione come problema di PLI binario

Formulazione del Modello

$$\min \sum_{i=1}^{M} \sum_{j=1}^{N} a_{ij} x_{ij} + \sum_{l=1}^{P} \sum_{j \in T_l}^{J} h_l d_{lj} y_{lj} + E$$

$$\sum_{j=1}^N x_{ij}=1, \quad i=1,\ldots M;$$

$$\sum_{j\in T_l} y_{lj} = 1, \quad l = 1, \dots P;$$

$$y_{lj} \leq z_j, \quad i=1,\ldots M, \quad l=1,\ldots P;$$

$$x_{ij} \leq z_j, \quad i=1,\ldots M, \quad j=1,\ldots N;$$

$$\sum_{j=1}^N z_j = p,$$

$$E \geq \sum_{l=1}^{P} h_l y_{lj}, \quad j=1,\ldots N;$$

$$x_{ij} \in \{0,1\}, i = 1, ... M, j = 1, ... N;$$

$$y_{lj} \in \{0,1\}, l = 1, ... P, j = 1, ... N;$$

$$z_j \in \{0,1\}, j = 1, \dots N.$$

Esperimenti e Validazione del Modello

Dati

- Territorio di riferimento: Italia
- Insieme CE: le 105 province
- Insieme PR: le 105 province
- Insieme CIR/CT: 52 province
- Domanda di organi: liste d'attesa al 31/12/2003

Number of Transplant Centers actually active in Italy

	ORGAN					
	HEART	KIDNEY	LIVER	LUNG	PANCREAS	INTESTINE
Number of actual TRANSPLANT CENTERS	24	44	21	11	13	1

The 52 chosen potential locations
- J definition -

AGRIGENTO	FIRENZE	NOVARA	SIENA
ANCONA	FOGGIA	PADOVA	SIRACUSA
BARI	GENOVA	PALERMO	TARANTO
BERGAMO	GROSSETO	PARMA	TORINO
BOLOGNA	IMPERIA	PAVIA	TRAPANI
BOLZANO	L'AQUILA	PERUGIA	TRENTO
BRESCIA	LECCE	PISA	TREVISO
CAGLIARI	MASSA C.	POTENZA	UDINE
CAMPOBASSO	MATERA	RAGUSA	VARESE
CATANIA	MILANO	REGGIO C.	VENEZIA
CATANZARO	MODENA	ROMA	VERONA
CHIETI	NAPOLI	SALERNO	VICENZA
COSENZA	NUORO	SASSARI	VITERBO

Covering distances (δ) for different values of covering time (τ)

COVERING	MATRIX (S	T = cold ischemia time			
	KIDNEY	HEART	LIVER	LUNG	PANCREAS
τ (h)	18	5	12	5	12
δ (km)	1620	450	1080	450	1080

COVERING MATRIX (Speed=90 km/h)				T/2 = (cold ischemia time)/2	
	KIDNEY	HEART	LIVER	LUNG	PANCREAS
τ (h)	9	2,5	6	2,5	6
δ (km)	810	225	540	225	540

COVERING M	IATRIX (Sp	T/3= (cold iscl	hemia time)/3		
	KIDNEY	HEART	LIVER	LUNG	PANCREAS
τ (h)	6	1,7	4	1,7	4
δ (km)	540	153	360	153	360

Table 4 Values of p

	KIDNEY	HEART	LIVER	LUNG	PANCREAS
p *(τ)	1	4	1	4	1
p *(τ/2)	2	9	3	9	3
p *(τ/3)	3	18	5	13	5
p act	44	24	21	11	13
p'	20	15	10	10	8
p "	30	30	16	15	18

Fig. 5 Optimal distribution of the heart transplant centers with service areas

Fig. 8 Optimal distribution of the heart transplant centers with acquisition areas

HEART E variation in function of the activated Transplant Centers for different values of T

Figure 15

LUNG E variation in function of the activated Transplant Centers for different values of T

Figure 16

LIVER E variation in function of the activated Transplant Centers for different values of T

Figure 17

PANCREAS E variation in function of the activated Transplant Centers for different values of T

Figure 18

KIDNEY E variation in function of the activated Transplant Centers for different values of T

Figure 19