Departamento de Matemáticas $4^{\underline{o}}$ ESO

Autoevaluación - Trimestre 3

- 1. Representa y calcula las coordenadas de las siguientes combinaciones de \overrightarrow{u} y \overrightarrow{v} :
 - (a) $2\overrightarrow{u} 3\overrightarrow{v}$, $-2\overrightarrow{u}$, $-2\overrightarrow{u} 2\overrightarrow{v}$. Siendo \overrightarrow{u} y \overrightarrow{v} :

Sol:
$$2\overrightarrow{u} - 3\overrightarrow{v}$$
, $-2\overrightarrow{u}$, $-2\overrightarrow{u} - 2\overrightarrow{v}$

- 2. Representa y calcula las coordenadas de las siguientes combinaciones de \overrightarrow{u} y \overrightarrow{v} :
 - (a) $\overrightarrow{u} + \overrightarrow{v}$, $\overrightarrow{u} + 2\overrightarrow{v}$, $-2\overrightarrow{u}$. Siendo \overrightarrow{u} y \overrightarrow{v} :

3. Calcular, usando las identidades fundamentales de la trigonometría, las razones trigonométricas de un ángulo agudo x sabiendo que:

(a)
$$\cos x = \frac{1}{2}$$

Sol: $\sin x = \frac{\sqrt{3}}{2}, \cos x = \frac{1}{2}, \tan x = \sqrt{3}.$ El ángulo agudo que cumple esas razones es 60° .

(c)
$$\cos x = \frac{1}{3}$$

Sol: $\sin x = \frac{2\sqrt{2}}{3}, \cos x = \frac{1}{3}, \tan x = 2\sqrt{2}.$ El ángulo agudo que cumple esas razones es 70,53°.

(e)
$$\sin x = \frac{4}{5}$$

Sol: $\sin x = \frac{4}{5}, \cos x = \frac{3}{5}, \tan x = \frac{4}{3}.$ El ángulo agudo que cumple esas razones es $53,13^{\circ}$.

(b)
$$\tan x = \frac{1}{2}$$

Sol: $\sin x = \frac{\sqrt{5}}{5}, \cos x = \frac{2\sqrt{5}}{5}, \tan x = \frac{1}{2}.$ El ángulo agudo que cumple esas razones es 26,57°.

(d)
$$\tan x = 3$$

Sol: $\sin x = \frac{3\sqrt{10}}{10}, \cos x = \frac{\sqrt{10}}{10}, \tan x = 3.$ El ángulo agudo que cumple esas razones es 71,57°.

(f)
$$\tan x = 5$$

Sol: $\sin x = \frac{5\sqrt{26}}{26}, \cos x = \frac{\sqrt{26}}{26}, \tan x = 5.$ El ángulo agudo que cumple esas razones es $78,69^{\circ}$.

- 4. Resuelve los triángulos rectángulos:
 - (a) Sabiendo que los catetos miden 8 y 15 cm.

Sol: Los lados del triángulo miden: 8, 15, 17 cm. Y los ángulos: $28,07,61,93,90^{\circ}$

(b) Sabiendo que un cateto mide 12 cm. y su ángulo opuesto 30°

Sol: Los lados del triángulo miden: 12, $20,78,\ 24$ cm. Y los ángulos: $30,\ 60,\ 90^{\ 0}$

c) Sabiendo que un cateto mide 8 cm. y su ángulo opuesto 45º

Sol: Los lados del triángulo miden: 8, 8, 11,31 cm. Y los ángulos: 45, 45, 90°

(d) Sabiendo que la hipotenusa mide 18 cm. y un ángulo 60°

Sol: Los lados del triángulo miden: $15,59,\ 9,\ 18\ {\rm cm.}\ {\rm Y}$ los ángulos: $60,\ 30,\ 90^{\ 0}$

(e) Sabiendo que un cateto mide 18 cm. y el ángulo opuesto al otro cateto 30º

Sol: Los lados del triángulo miden: 18, 10,39,20,78 cm. Y los ángulos: 60, 30, 90 $^{\circ}$

5. Calcular las razones trigonométricas de un ángulo α si:

(a)
$$\cos \alpha = -\frac{\sqrt{3}}{2} \wedge \alpha \in III$$

Sol:
$$\sin \alpha = \frac{1}{2}, \cos \alpha = \frac{\sqrt{3}}{2}, \tan \alpha = \frac{\sqrt{3}}{3}.$$

El ángulo que cumple las condiciones del ejercicio es: 210°

(c)
$$\sin \alpha = \frac{1}{2} \wedge \alpha \in II$$

Sol:
$$\sin \alpha = \frac{1}{2}, \cos \alpha = \frac{\sqrt{3}}{2}, \tan \alpha = -\frac{\sqrt{3}}{3}.$$
 El ángulo que cumple las condiciones del ejercicio es: 150°

(e)
$$\tan \alpha = 1 \land \alpha \in III$$

Sol:
$$\sin \alpha = \frac{\sqrt{2}}{2}, \cos \alpha = \frac{\sqrt{2}}{2}, \tan \alpha = 1.$$

El ángulo que cumple las condiciones del ejercicio es: 225°

(b)
$$\sin \alpha = \frac{\sqrt{3}}{2} \wedge \alpha \in II$$

Sol:
$$\sin \alpha = \frac{\sqrt{3}}{2}, \cos \alpha = \frac{1}{2}, \tan \alpha = -\sqrt{3}.$$

El ángulo que cumple las condiciones del ejercicio es: 120°

(d)
$$\cos \alpha = -\frac{1}{2} \wedge \alpha \in III$$

$$\begin{array}{lll} \textbf{Sol:} & \sin\alpha & = \\ -\frac{\sqrt{3}}{2}, \cos\alpha & = \\ -\frac{1}{2}, \tan\alpha = \sqrt{3}. \\ \text{El ángulo que cumple las condiciones} \\ \text{del ejercicio es: } 240^{\circ} \end{array}$$

(d)

(f)
$$\sin \alpha = -\frac{\sqrt{2}}{2} \wedge \alpha \in IV$$

Sol:
$$\sin \alpha = \frac{\sqrt{2}}{2}, \cos \alpha = \frac{\sqrt{2}}{2}, \tan \alpha = -1.$$
 El ángulo que cumple las condiciones del ejercicio es: 315°

6. Calcular las razones trigonométricas de un ángulo α si:

(a)
$$\cos \alpha = -\frac{\sqrt{3}}{2} \wedge \tan \alpha > 0$$

Sol:

$$\sin \alpha = -\frac{1}{2}, \cos \alpha = -\frac{\sqrt{3}}{2}, \tan \alpha = \frac{\sqrt{3}}{3}.$$

El ángulo que cumple las condiciones del ejercicio es: 210°

Sol:

$$\sin \alpha = \frac{1}{2}, \cos \alpha = -\frac{\sqrt{3}}{2}, \tan \alpha = -\frac{\sqrt{3}}{3}.$$

El ángulo que cumple las condiciones

del ejercicio es: 150°

(b)
$$\sin \alpha = \frac{\sqrt{3}}{2} \wedge \tan \alpha < 0$$

del ejercicio es: 210°

Sol:

$$\sin \alpha = \frac{\sqrt{3}}{2}, \cos \alpha = -\frac{1}{2}, \tan \alpha = -\sqrt{3}.$$

El ángulo que cumple las condiciones

El ángulo que cumple las condiciones del ejercicio es: 120°

(e)
$$\tan \alpha = 1 \wedge \cos \alpha < 0$$

 $\cos \alpha = -\frac{1}{2} \wedge \tan \alpha > 0$

(c)
$$\sin \alpha = \frac{1}{2} \wedge \cos \alpha < 0$$

Sol:
$$\sin \alpha = -\frac{\sqrt{3}}{2}, \cos \alpha = -\frac{1}{2}, \tan \alpha = \sqrt{3}.$$

El ángulo que cumple las condiciones del ejercicio es: 240°

Sol:
$$\sqrt{2}$$
 $\sqrt{2}$

$$\sin \alpha = -\frac{\sqrt{2}}{2}, \cos \alpha = -\frac{\sqrt{2}}{2}, \tan \alpha = 1.$$

El ángulo que cumple las condiciones del ejercicio es: 225°

(f)
$$\sin \alpha = -\frac{\sqrt{2}}{2} \wedge \tan \alpha < 0$$

Sol:

Sol:
$$\sin \alpha = -\frac{\sqrt{2}}{2}, \cos \alpha = \frac{\sqrt{2}}{2}, \tan \alpha = -1.$$

El ángulo que cumple las condiciones del ejercicio es: 315°

7. Resuelve las siguientes ecuaciones

(a)
$$\cos x = \frac{\sqrt{3}}{2}$$

Sol:
$$x = 30^{\circ}, x = 330^{\circ}$$

(b)
$$\cos x = -\frac{\sqrt{3}}{2}$$

Sol:
$$x = 150^{\circ}, x = 210^{\circ}$$

(c)
$$4(\cos x)^2 - 1 = 0$$

Sol:
$$x = 60^{\circ}, x = 120^{\circ}, x = 240^{\circ}, x = 300^{\circ}$$

(d)
$$2(\sin x)^2 - \sin x - 1 = 0$$

Sol:
$$x = -30^{\circ}, x = 90^{\circ}, x = 210^{\circ}$$

8. Resuelve los siguientes problemas:

(a) El lado de un rombo mide 30 cm y el ángulo menor es de 40°. ¿Cuánto miden las diagonales del rombo?

Sol: las diagonales miden 20,52 y 56,38 respectivamente

Desde el punto donde estoy, la visual al punto más alto de una torre que tengo enfrente forma un ángulo de 30° con la horizontal. Si me acerco 100 m, el ángulo es de 60°. ¿Cuál es la altura del edificio?

Sol:
$$\begin{cases} \tan{(60)} = \frac{y}{x} \\ \tan{(30)} = \frac{y}{x+100} \end{cases} \to \{x: 50,0043301290378, \ y: 86,6125002165064\}$$

(c) Dos torres distan entre sí 200 m. Desde un punto que está entre las torres vemos que las visuales a los puntos más altos de estos forman con la horizontal ángulos de 45° y 60°. ¿Cuál es la altura de las torres si sabemos que uno es 40 m más alto que el otro?

Sol:

Si la mayor altura se corresponde con el ángulo 45°:

$$\begin{cases} \tan{(60)} = \frac{y}{200-x} \\ \tan{(45)} = \frac{y+40}{x} \end{cases} \rightarrow \{x: 141,436989861279, \ y: 101,436989861279\} \rightarrow 101,436989861279 \end{cases}$$

Si la mayor altura se corresponde con el ángulo 60°: $\begin{cases} \tan{(60)} = \frac{y+40}{200-x} \\ \tan{(45)} = \frac{y}{x} \end{cases} \rightarrow \{x: 112, 155484791918, \ y: 112, 155484791918\} \rightarrow 112, 155484791918 \}$

(d) Halla el área de un paralelogramo cuyos lados miden 40 cm y 45 cm y forman un ángulo de 60° .

Sol: La altura mide mide $34,64~\mathrm{cm}$ y por tanto el área es $1559,0~\mathrm{cm}2$