Name:	Key
-------	-----

Instructions: You must <u>show your work</u> and put your final answers in the blanks. If you round a numerical answer, **you must give at least 3 significant digits**. **Q1.**

a. Perform 01110011₂+01000000₂ and detect if overflow happens

Answer: For Signed number: Overflow, for unsigned number: No Overflow

b. Perform 11000011₂+01000000₂ and detect if overflow happens

Answer: No Overflow

Q2. Determine whether the Boolean functions $[F = (a + b)^{f}]$ and $G = a + b^{f}$ are equivalent, using: (a) algebraic manipulation, and (b) truth table.

Solution:

a) Convert the sum of minterms form:

$$F = (a + b)^{f}$$
. a
 $F = a^{f}b^{f}a$ Using Demorgan's law
 $F = 0$

AND,

So, they are not equivalent

b)

a	b	F	a	b	G	
0	0	0	0	0	1	
0	1	0	0	1	0	
1	0	0	1	0	1	
1	1	0	1	1	1	

So, they are not equivalent

Instructions: You must <u>show your work</u> and put your final answers in the blanks. If you round a numerical answer, **you must give at least 3 significant digits**. **Q1.**

a. Perform 01110011₂+01000000₂ and detect if overflow happens

Answer: For Signed number: Overflow, for unsigned number: No Overflow

b. Perform 11000011₂+01000000₂ and detect if overflow happens

Answer: No Overflow

Final Answer = (a) ____ Overflow/No Overflow_____, (b) No Overflow _____

Q2. a. Draw the transistor circuit for NAND gate.

b. Find the inverse of the following function, F = abc + a/b.

Using DeMorgan's Law

$$F' = b' + ac'$$