Self-Attention

vector sequence as input (e.g. text, voice, graph)

Self-Attention can process the original vectors to make meaningful within the context:

Self-Attention structure

Self-Attention considers the whole sequence to determine how to construct the new vector

Can be either input or a hidden layer

Focus on one vector e.g. a_2 , how to get the corresponding b_2

1. Find the relevant vectors in the sequence use **query** q of vector a_2 and **key** k_i of vector a_i to compute the **attention score** $\alpha_{2,i}$ which measures the relevance between vector a_i and vector a_2

Method 1: Dot product (used in Transformer)

- Method 2: Additive
- 2. Translate the attention scores into weights $\alpha'_{2,i}$ use Softmax
- 3. Compute the wieghted sum of v_i , then we get b_2

The parallel process of computing b_i can be represented by matrix multiplications

- I: inputs, all a_i
- O: ouputs, all b_i

Multi-head Self-attention

A single Attention Matrix may not be to capture the various aspects of relationships present within a sequence.

To address this, we use multiple independent Self-Attention and introduce another matrix W_o to measure the weight of every relevance factor.

Positional Encoding

To add positional information into Self-Attention, enabling the model to understand the sequential natures (e.g. part of speech)

. . .

Advanced Self-Attentions

Self-Attention dominates computation in models like Transformer because

- complexity of the attention mechanism, $O(n^2)$ for a sequence of length n
- · demands for Multi-head
- large sequence lengths
- ...

To make it more efficiency, here are some varients of Self-Attention, usually called "xx-former"

- Local Attention / Truncated Attention
 Only pay attention to the closest tokens in the sequence, similiear with <u>CNN</u>
- Stride Attention
- Global Attention
- Longformer: Local + Stride + Global
- Big Bird: Longerformer + Random Attention

• ...

Self-Attention applications

- 1. NLP
- 2. Speech
 - Truncated Self-attention. Your understanding on the data determines the scope of ${\bf context},$ i.e. the range of keys k
- 3. Image
 - In CNN, Image --> a long vector
 - In Self-attention, Image --> a set of vector, also reasonable!
 - Self-Attention GAN, DEtection Transformer (DETR)...
- 4. Graph
 - becomes one type of Graph Neural Network (GNN)