KARL: Fast Kernel Aggregation Queries

(**Edison**) Tsz Nam Chan^{1,2}, Man Lung Yiu², Leong Hou U³

¹Univ. of Hong Kong

²Hong Kong Polytechnic Univ.

³Univ. of Macau

What is Kernel Aggregation?

Compute the function:
$$\mathcal{F}_{P}(\mathbf{q}) = \sum_{\mathbf{p_i} \in P} w_i \exp(-\gamma \cdot dist(\mathbf{q}, \mathbf{p_i})^2)$$

- Application: crime rate prediction
 - Each **p** (black dot) represents the location of a crime
 - e.g., robbery, commercial burglary, motor vehicle theft
 - Predict the crime rate of a given location (\mathbf{q}) by computing $\mathcal{F}_P(\mathbf{q})$

Kernel Aggregation: More Applications

Kernel aggregation function:
$$\mathcal{F}_{P}(\mathbf{q}) = \sum_{\mathbf{p_i} \in P} w_i \exp(-\gamma \cdot dist(\mathbf{q}, \mathbf{p_i})^2)$$

$$\frac{1}{2} \sum_{\mathbf{q} \in P} w_i \exp(-\gamma \cdot dist(\mathbf{q}, \mathbf{p_i})^2)$$

Type of weighting	Used in model	Application(s)	
Type I: identical, positive w_i (most specific)	Kernel Density Classification	Crime rate prediction Ecological modeling Particle Searching	
Type II: positive w_i (subsuming Type I)	1-class SVM	Network fault detection Outlier detection	
Type III: no restriction on w_i (subsuming Type II)	2-class SVM	Network fault detection Tumor samples classification Image classification	

Kernel Aggregation Queries

- Application: crime rate prediction
- Just classify $\mathcal{F}_P(\mathbf{q})$ into
 - Lowest risk: [0, 10)
 - Low risk:: [10, 20)
 - Moderate risk: [20, 50)
 - High risk: [50, 100)
 - Highest risk: $[100, \infty)$
- Threshold kernel aggregation query $(\tau$ -KAQ)
 - Input: query vector \mathbf{q} , dataset P, threshold τ
 - Output: Boolean value
 - true (if $\mathcal{F}_P(\mathbf{q}) \ge \tau$) or
 - false (if $\mathcal{F}_P(\mathbf{q}) < \tau$)

Expensive to compute the exact $\mathcal{F}_P(\mathbf{q})$!

Le et al. "Despite their successes, what makes kernel methods difficult to use in many large scale problems is the fact that computing the decision function is typically expensive, especially at prediction time." [1]

$$\mathcal{F}_{P}(\mathbf{q}) = \sum_{\mathbf{p_i} \in P} w_i \exp(-\gamma \cdot dist(\mathbf{q}, \mathbf{p_i})^2)$$

$$O(|P| \times d) \text{ time } \circ$$
What are typical values of |P| and d?

Our contribution: KARL

- Kernel Aggregation Rapid Library (KARL)
 - 2.5-738x speed up over state-of-the-art in different datasets
 - The **Fastest** library in **online prediction phase**

Library	Support indexing	Response time
LibSVM	no	high
Scikit-learn	yes	high
KARL (this paper)	yes	low

KARL: https://github.com/edisonchan2013928/KARL-Fast-Kernel-Aggregation-Queries

LibSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Scikit-learn: https://scikit-learn.org/

How to speed up?

$$\mathcal{F}_{P}(\mathbf{q}) = \sum_{\mathbf{p_i} \in P} w \exp(-\gamma \cdot dist(\mathbf{q}, \mathbf{p_i})^2)$$

$$LB(\mathbf{q}) \le \mathcal{F}_P(\mathbf{q}) \le UB(\mathbf{q})$$

Requirements:

- 1. Fast to compute, e.g., O(d) time
- 2. As tight as possible

Cases to avoid computing exact $\mathcal{F}_{P}(\mathbf{q})$:

Existing Bounding Function

$$\mathcal{F}_{P}(\mathbf{q}) = \sum_{\mathbf{p_i} \in P} w \exp(-\gamma \cdot dist(\mathbf{q}, \mathbf{p_i})^2)$$

$$LB_R(\mathbf{q}) = w \cdot R. \operatorname{count} \cdot \exp(-\gamma \cdot \operatorname{maxdist}(\mathbf{q}, R)^2)$$

- [1] "Scalable kernel density classification via threshold based pruning" SIGMOD2017
- [2] "Nonparametric Density Estimation: Toward Computational Tractability" SDM03

Summary:

☑ Fast to compute, e.g., O(d) time

▼ Too loose

Research question 1:

How to develop a **tighter** lower bound function (than the existing one)?

Our Idea: Tangent Bound

$$\mathcal{F}_{P}(\mathbf{q}) = \sum_{\mathbf{p_i} \in P} w \exp(-\gamma \cdot dist(\mathbf{q}, \mathbf{p_i})^2)$$

Tangent Bound:

$$\mathcal{FL}_{P}(\mathbf{q}, Lin_{m,c}) = \sum_{\mathbf{p_i} \in P} w\left(m(\gamma dist(\mathbf{q}, \mathbf{p_i})^2) + c\right)$$

© always tighter than the existing bound

Research question 2:

How to compute this tighter bound quickly?

O(d)-time Tighter Linear Bound

$$\mathcal{F}_{P}(\mathbf{q}) = \sum_{\mathbf{p_i} \in P} w \exp(-\gamma \cdot dist(\mathbf{q}, \mathbf{p_i})^2)$$

$$X_i$$

Linear bound of $\mathcal{F}_P(\mathbf{q})$:

$$\mathcal{FL}_{P}(\mathbf{q}, Lin_{m,c}) = \sum_{\mathbf{p_i} \in P} w\left(m(\gamma dist(\mathbf{q}, \mathbf{p_i})^2) + c\right)$$

$$X_i$$

$$\mathcal{FL}_{P}(\mathbf{q}, Lin_{m,c}) = wm\gamma(|P|\|\mathbf{q}\|^{2} - 2\mathbf{q} \cdot \mathbf{a_{P}} + b_{P}) + wc|P|$$

$$O(d) \qquad O(d)$$

where
$$\mathbf{a}_P = \sum_{\mathbf{p_i} \in P} \mathbf{p_i}$$
 and $b_P = \sum_{\mathbf{p_i} \in P} ||\mathbf{p_i}||^2$

Research question 3:

How to further tighten our bound (tangent bound)?

Observation:

The optimal tangent line depends on the distance values (e.g., x_1 , x_2 , x_3)

Challenge:

How to compute the optimal tangent **efficiently** (e.g., O(d) time) without knowing the exact distance values (e.g., x_1 , x_2 , x_3)?

Solved in our paper

Experimental Results

Methods: SCAN (baseline), LIBSVM, SOTA and KARL

Datasets: UCI Machine Learning Repository/ LibSVM website

Throughput (Queries/sec)

Type	Datasets	SCAN	LIBSVM	SOTA	KARL
I- $ au$	miniboone	36.1	34	102	510
	home	15.2	14.1	93.2	258
	susy	2.02	1.86	3.58	83.4
II-τ	nsl-kdd	283	481	748	20668
	kdd99	260	520	1269	11324
	covtype	158	462	448	6022
Ш-т	ijenn1	903	1170	1119	826928
	a9a	162	610	546	6885
	covtype-b	13	38.4	33.9	274

Conclusion and Future Work

• What we have done:

- 1. Develop Kernel Aggregation Rapid Library (KARL)
 - 1. Support a wide range of models (in prediction stage)
 - 1. Kernel Density Classification
 - 2. One Class SVM
 - 3. Two Class SVM
 - 2. Achieve higher throughput than the state-of-the-art by 2.5-738x times

• Future Work:

- 1. Integrate the implementation into the library (Ongoing)
- 2. Support different types of machine learning models (Ongoing)
- 3. Support different types of kernel functions (Ongoing)
- 4. Support interesting applications, e.g., Kernel Density Visualization (Ongoing)

For more details...

• The Github page is in **Page 2** of our paper

Our proposal is **K**ernel **A**ggregation **R**apid **L**ibrary (KARL)¹, a comprehensive solution for addressing all the issues mentioned above. It utilizes a novel bounding technique and index tuning in order to achieve excellent efficiency. Experimental studies on many real datasets reveal that our proposed method achieves speedups of 2.5-738 over the state-of-the-art.

Two widely-used libraries, namely LibSVM [8] and Scikitlearn [30], provide convenient programming support for practitioners to handle kernel aggregation queries. Implementationwise, LibSVM is based on the sequential scan method, and Scikit-learn is based on the algorithm in [16] for query type I. We compare them with our proposal (KARL) in Table II. As a remark, since Scikit-learn supports query types II and III via the wrapper of LibSVM [30], we remove those two query types from the row of Scikit-learn in Table II. The features of KARL are: (i) it supports all three types of weightings

¹https://github.com/edisonchan2013928/KARL-Fast-Kernel-Aggregation-Queries