P. Maurer ENS Rennes

Leçon 144. Racines d'un polynôme. Fonctions symétriques élémentaires. Exemples et applications.

Devs:

- Théorème de Gauss-Wantzel
- Etude des polynômes cyclotomiques

Références:

- 1. Gozard, Théorie de Galois
- 2. Perrin, Cours d'algèbre
- 3. Gourdon, Algèbre

Dans ce qui suit, K désigne un corps commutatif.

1 Racines d'un polynôme

1.1 Définitions et propriétés

On se donne $P \in K[X]$.

Définition 1. Soit L/K une extension de K. On dit que $a \in L$ est racine de P si P(a) = 0.

Proposition 2. Soit $a \in K$. Alors a est une racine de P si et seulement si X - a|P.

Définition 3. Soit $a \in K$ et $h \in \mathbb{N}^*$. On dit que a est une racine d'ordre h de P si $(X-a)^h|P$ et $(X-a)^{h+1} \nmid P$.

Proposition 4. Soit $a_1,...,a_r \in K$ des racines (deux à deux distinctes) de P d'ordre $h_1,...,h_r$. Il existe $Q \in K[X]$ tel que $P = (X - a_1)^{h_1} \cdots (X - a_r)^{h_r} Q(X)$, et $\forall i \in [\![1,r]\!] Q(a_i) \neq 0$.

Corollaire 5. Si P est de degré $n \ge 1$, alors P a au plus n racines (comptées avec leur ordre de multiplicité).

Remarque 6. Le corollaire 5 est faux si K est seulement un anneau. Par exemple, dans $\mathbb{Z}/8\mathbb{Z}$, le polynôme P=4X a trois racines qui sont $\overline{0}$, $\overline{2}$ et $\overline{4}$ mais $\deg(P)=1$.

Corollaire 7. Soit A une partie infinie de K. Si $\forall a \in A$ P(a) = 0, alors P est le polynôme nul.

Remarque 8. Sur un corps fini, cela n'est pas vrai : $P = (X - \overline{0}) \cdots (X - \overline{p-1}) \in \mathbb{F}_p[X]$ n'est pas le polynôme nul, pourtant il vérifie P(x) = 0 pour tout $x \in \mathbb{F}_p$.

Corollaire 9. Si K est infini, alors il y a une bijection entre K[X] et les fonctions polynomiales de \mathbb{K} vers \mathbb{K} .

Définition 10. Un polynôme $P \in K[X]$ est dit scindé sur K si on peut écrire

$$P = \lambda (X - a_1)^{h_1} \cdots (X - a_r)^{h_r},$$

avec $\lambda \in K$, $r \in \mathbb{N}$ et $\forall i \in [1, r]$ $a_i \in K$ et $h_i \in \mathbb{N}^*$.

Remarque 11. Deux polynômes de K[X] scindés sur K sont premiers entre eux si et seulement si ils n'ont pas de racine commune.

Théorème 12. (Formule de Taylor). Si K est de caractéristique nulle, tout polynôme $P \in K[X]$ de degré inférieur à $n \in \mathbb{N}$ vérifie

$$\forall a \in K \quad P(X) = \sum_{k=0}^{n} \frac{(X-a)^k}{k!} P^{(k)}(a).$$

Théorème 13. Si K est de caractéristique nulle et $P \in K[X]$ est non nul, alors $a \in K$ est racine d'ordre h de P si et seulement si $\forall i \in [0, r-1]$ $P^{(i)}(a) = 0$ et $P^{(h)}(a) \neq 0$.

Remarque 14. Le polynôme $X^3 \in \mathbb{F}_3[X]$ admet 0 pour racine de mulitplicité 3, pourtant $P^{(3)}(0) = 0$. Le théorème 13 est faux en caractéristique quelconque. En revanche, le résultat subsiste pour caractériser les racines simples.

Proposition 15. (Interpolation de Lagrange). Soit $a_1, \ldots, a_n \in K$ deux à deux distincts et $b_1, \ldots, b_n \in K$. Il existe un unique polynôme $L \in K[X]$ tel que $\deg(L) \leq n-1$ et $\forall i \in [\![1, n]\!]$ $L(a_i) = b_i$. On l'appelle le polynôme interpolateur de Lagrange associé à (a_1, \ldots, b_n) et (b_1, \ldots, b_n) .

1.2 Adjonction de racines

Définition 16. Soit $P \in K[X]$ un polynôme irréductible dans K[X]. On dit que L est un corps de rupture de P si et seulement si L est une extension monogène de K engendrée par K et une racine, notée α , de P.

Remarque 17. L est alors une extension de K de degré deg(P).

Exemple 18. Si deg(P) = 1, K est un corps de rupture de P.

Théorème 19. Soit $P \in K[X]$ irréductible.

1. Il existe un corps de rupture de P.

2 Section 2

Si L = K(α) et L' = K(β) sont deux corps de rupture de P, alors L et L' sont K-isomorphes : il existe un unique K-isomorphisme t: L → L' tel que t(α) = β.

Définition 20. Soit L une extension de K. Soit $P \in K[X]$, avec $\deg(P) = n \in \mathbb{N}^*$. On dit que L est un corps de décomposition de P sur K si P s'écrit $P(X) = a(X - \alpha_1) \cdots (X - \alpha_n)$ avec $a, \alpha_1, \ldots, \alpha_n \in L$ et si $L = K(\alpha_1, \ldots, \alpha_n)$.

Exemple 21. $\mathbb{C} = \mathbb{R}(i)$ est un corps de décomposition de $X^2 + 1$ sur \mathbb{R} , et $\mathbb{Q}(\sqrt{2})$ est un corps de décomposition de $X^2 - 2$ sur \mathbb{Q} .

 $\mathbb{Q}(\sqrt[3]{2})$ est un corps de rupture de $\sqrt[3]{2}$ sur \mathbb{Q} mais pas un corps de décomposition.

Théorème 22. *Soit* $P \in K[X]$ *de degré* n > 1.

- 1. Il existe un corps de décomposition L de P sur K, avec $[L:K] \le n!$
- 2. Si L et L' sont deux corps de décomposition de P sur K, alors il existe un K-isomorphisme de L dans L'.

Théorème 23.

Soit p un nombre premier et $n \in \mathbb{N}^*$. On pose $q = p^n$.

- 1. Il existe un corps K à q éléments, c'est le corps de décomposition du polynôme $X^q X$ sur $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$.
- 2. En particulier, K est unique à isomorphisme près. On le note \mathbb{F}_q .

1.3 Extension algébrique et clotûre

Définition 24. Soit L/K une extension, et $A \subset L$. On dit que A engendre L, et on écrit L = K(A) si L est le plus petit sous-corps de L contenant A et K. Si A est fini et $A = \{\alpha_1, \ldots, \alpha_n\}$, on note $L = K(\alpha_1, \ldots, \alpha_n)$.

Définition 25. Soit K un corps et L une extension de K. Soit $\varphi: K[T] \to L$ l'homomorphisme défini par $\varphi_{|K} = \mathrm{id}_K$ et $\varphi(T) = \alpha$.

Si φ est injectif, on dit que α est transcendant sur K. Sinon, on dit que α est algébrique sur K, et l'idéal $I=\operatorname{Ker}\varphi$ étant principal, on a I=(P) avec P irréductible (que l'on peut supposer unitaire). Le polynôme P est, par définition, le polynôme minimal de α sur K, et on le note μ_{α} .

Exemple 26. $\sqrt{2}$ et i sont algébriques sur \mathbb{Q} , mais pas π ni e.

Remarque 27. Le polynôme minimal d'un élément α algébrique sur K est l'unique polynôme unitaire irréductible de K[X] qui annule α .

Exemple 28. X^2+1 est le polynôme minimal de i sur \mathbb{Q} . X-i est le polynôme minimal de i sur \mathbb{C} .

Théorème 29. Soit $K \subset L$ une extension et $\alpha \in L$. Les propriétés suivantes sont équivalentes :

• α est algébrique sur K

- On $a K[\alpha] = K(\alpha)$
- On $a \dim_K K[\alpha] < \infty$

Dans ce cas, on a $deg(\mu_{\alpha}) = [K(\alpha): K]$.

Définition 30. Une extension L/K est dite finie si on a $[L:K] < \infty$. Elle est dite algébrique si tous les éléments de L sont algébriques sur K.

Définition 31. Les conditions suivantes sont équivalentes :

- 1. Tout polynôme de degré ≥ 1 de K[X] est scindé sur K
- 2. Tout polynôme de degré ≥ 1 de K[X] admet au moins une racine sur K
- 3. Les seuls polynômes irréductibles de K[X] sont de degré 1
- 4. Toute extension algébrique de K est identique à K lui-même.

On dit que K est algébriquement clos.

Exemple 32. $\mathbb Q$ n'est pas algébriquement clos, car X^2-2 et X^3-2 n'ont pas de racines dans $\mathbb Q$.

 $\mathbb R$ n'est pas algébriquement clos, car X^2+1 et X^2+X+1 n'ont pas de racine dans $\mathbb R$.

Proposition 33. Tout corps algébriquement clos est infini.

 ${\bf Th\'{e}or\`{e}me~34.}~~(D'Alembert\text{-}Gauss)$

 \mathbb{C} est algébriquement clos.

Définition 35. Soit K un corps, L une extension de K. On dit que L est une clotûre algébrique de K si L est algébrique sur K et si L est algébriquement clos.

Exemple 36. \mathbb{C} est une clotûre algébrique de \mathbb{R} .

2 Polynômes symétriques et fonctions symétriques élémentaires

Soit A un anneau commutatif unitaire, et $n \in \mathbb{N}$.

2.1 Relations coefficients et racines

Proposition 37. Le groupe S_n agit sur l'anneau (ou la A-algèbre) $A[X_1, \ldots, X_n]$ via $(\sigma P)(X_1, \ldots, X_n) = P(X_{\sigma(1)}, \ldots, X_{\sigma(n)}).$

Définition 38. Soit $P \in A[X_1, ..., X_n]$. Les conditions suivantes sont équivalentes :

• Pour tout $\sigma \in \mathcal{S}_n$, $P(X_{\sigma(1)}, \dots, X_{\sigma(n)}) = P(X_1, \dots, X_n)$.

Applications 3

• Pour tout $(i, j) \in [1, n]^2$ avec i < j, on a

$$P(X_1, ..., X_i, ..., X_j, ..., X_n) = P(X_1, ..., X_i, ..., X_i, ..., X_n).$$

On dit que P est un polynôme symétrique et on note $A[X_1, \ldots, X_n]^{S_n}$ l'ensemble des polynômes symétriques sur A. C'est une sous-algèbre de $A[X_1, \ldots, X_n]$.

Exemple 39. Le polynôme $\prod_{i\neq j} (X_i-X_j)$ est symétrique. $X_1+X_2+X_3+X_4$ est symétrique.

Définition 40. (Polynômes symétriques élémentaires)

Soit $k \in [1, n]$. On note \sum_k , et on appelle $k^{\text{ème}}$ fonction (ou polynôme) symétrique élémentaire, le polynôme $\sum_{1 \leq i_1 < \dots < i_k < n} X_{i_1} \cdots X_{i_k} \in A[X_1, \dots, X_n].$

Proposition 41. Pour tout $k \in [1, n]$, $\sum_{n} \in A[X_1, \dots, X_n]^{S_n}$.

Exemple 42. On a
$$\Sigma_1 = X_1 + \cdots + X_n$$
, $\Sigma_2 = \sum_{1 \le i < j \le n} X_i X_j$ et $\Sigma_n = X_1 \cdots X_n$.

Théorème 43. (Relations coefficients-racines). Soit $P \in A[X]$, et $(\alpha_1, \ldots, \alpha_n) \in A^n$. Les conditions suivantes sont équivalentes :

- $P(X) = (X \alpha_1) \cdots (X \alpha_n)$
- $P(X) = X^n + a_{n-1}X^{n-1} + \dots + a_0$, où

$$\forall i \in [1, n] \quad a_{n-i} = (-1)^i \sum_i (\alpha_1, \dots, \alpha_n).$$

Exemple 44. En particulier, les racines de P vérifient $\alpha_1 + \cdots + \alpha_n = -a_{n-1}$ et $\alpha_1 \cdots \alpha_n = (-1)^n a_0$.

2.2 Structure des polynômes symétriques

Définition 45. Soit un monôme $aX_1^{\alpha_1} \cdots X_n^{\alpha_n}$, où $a \in A^*$ et $\alpha_i \in \mathbb{N}$. On appelle poids de ce monôme l'entier $\sum_{i=1}^n i\alpha_i$. Pour $P \in A[X_1, \dots, X_n]$ non nul, on appelle poids de P le maximum des poids des monômes dont il est somme.

Exemple 46. Le poids de \sum_{k} est nk - k(k-1)/2.

Proposition 47. Soit P un polynôme non nul de $A[X_1, \ldots, X_n]$ et π son poids. Alors le polynôme Q défini par $Q(X_1, \ldots, X_n) = P(\Sigma_1, \ldots, \Sigma_n)$ est un polynôme symétrique de degré $\leq \pi$.

Lemme 48. Soit $P \in A[X_1, \ldots, X_n]$ tel que pour tout $j \in [1, n]$, $P(X_1, \ldots, X_{j-1}, 0, X_{j+1}, \ldots, X_n) = 0$. Alors P est divisible par $\Sigma_n = X_1 \cdots X_n$ dans $A[X_1, \ldots, X_n]$.

Théorème 49. Soit $P \in A[X_1, \ldots, X_n]$ un polynôme symétrique de degré k. Il existe un unique polynôme $Q \in A[X_1, \ldots, X_n]$ tel que $P(X_1, \ldots, X_n) = Q(\Sigma_1, \ldots, \Sigma_n)$. Ce polynôme Q est de poids k et de degré égal au degré partiel de P par rapport à l'une des indéterminées X_1, \ldots, X_n .

2.3 Discriminant

Dans cette partie, on se place de nouveau sur un corps K.

Définition 50. Soit $P \in K[X]$ un polynôme de degré $n \ge 2$, et $\alpha_1, \ldots, \alpha_n$ les racines de P dans son corps de décomposition sur K. On appelle discriminant de P sur K et on note $\operatorname{disc}(P)$ l'élément

$$\operatorname{disc}(P) := a_n^{2n-2} \prod_{i < j} (\alpha_i - \alpha_j)^2,$$

où a_n est le coefficient dominant de P.

Proposition 51. Soit $\lambda \in K$. Le polynôme $S = \lambda^{2n-2} \prod_{i < j} (X_i - X_j)^2 = (-1)^{n(n-1)/2} \lambda^{2n-2} \prod_{i < j} X_i - X_j$ est symétrique.

Corollaire 52. Soit $P \in K[X]$ un polynôme de degré $n \ge 2$, et $\alpha_1, \ldots, \alpha_n$ les racines de P dans son corps de décomposition sur K. Il existe $Q \in K[X_1, \ldots, X_n]$ tel que $\operatorname{disc}(P) = Q(\sigma_1, \ldots, \sigma_n)$, où $\sigma_k = \sum_k (\alpha_1, \ldots, \alpha_n)$.

Corollaire 53. $P \in K[X]$ est à racines simples ssi $\operatorname{disc}(P) \neq 0$.

Exemple 54. Si $P(X) = aX^2 + bX + c$ est de degré 2. disc $(P) = \Delta = b^2 - 4ac$.

3 Applications

3.1 Racine primitives $n^{\text{èmes}}$ et cyclotomie

Dans ce qui suit, K est un corps et $n \in \mathbb{N}^*$ est un entier tel que $\operatorname{car}(K) \nmid n$.

Définition 55. On appelle groupe des racines $n^{\text{èmes}}$ de l'unité dans K, et on note $\mu_n(K)$ l'ensemble $\{\zeta \in K : \zeta^n = 1\}$. Une racine $n^{\text{ème}}$ de l'unité est dite primitive si de plus, pour tout k divisant n, on a $\zeta^k \neq 1$. On note $\mu_n^*(K)$ l'ensemble des racines primitives $n^{\text{èmes}}$ de l'unité.

Définition 56. Le $n^{\text{ème}}$ polynôme cyclotomique sur K est défini par :

$$\Phi_{n,K}(X) := \prod_{\zeta \in \mu_n^*(K)} X - \zeta.$$

Section 3

 $\textbf{Lemme 57.} \ \Phi_{n,K}(X) \ est \ unitaire, \ de \ degré \ \varphi(n), \ et \ vérifie \ X^n-1 = \prod_{d \mid n} \Phi_{d,K}(X).$

Développement 1 :

Théorème 58. (Polynômes cyclotomiques rationnels)

- i. $\Phi_{n,\mathbb{O}}(X)$ est à coefficients dans \mathbb{Z} .
- ii. $\Phi_{n,\mathbb{Q}}(X)$ est irréductible sur \mathbb{Z} .

Théorème 59. (Cas des corps finis)

Les propositions suivantes sont équivalentes :

- i. Il existe p premier, avec $p \wedge n = 1$, tel que $\Phi_{n,\mathbb{F}_p}(X)$ soit irréductible sur \mathbb{F}_p .
- ii. $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est cyclique.

Développement 2 :

Théorème 60. (Gauss-Wantzel)

Soit p un nombre premier impair, et $\alpha\in\mathbb{N}^*$. Alors l'angle $\frac{2\pi}{p^\alpha}$ est constructible si et seulement si $\alpha=1$ et p est un nombre premier de Fermat, c'est-à-dire $p=1+2^{2^\beta}$ pour un certain $\beta\in\mathbb{N}$.

3.2 Racines et réduction des endomorphismes

Soit E un espace vectoriel sur un corps commutatif K, et $A \in \mathcal{M}_n(K)$.

Définition 61. On appelle polynôme caractéristique de A (resp. de f) le polynôme de K[X] défini par $\chi_A(X) = \det(A - XI_n)$ (resp. $\chi_f(X) = \det(f - X\operatorname{Id})$).

Proposition 62. χ_A est un polynôme de degré n. Si $\chi_A = (-1)^n \sum_{k=0}^n a_k X^k$, alors on a $a_n = 1$, $a_{n-1} = -\text{Tr}(A)$ et $a_0 = (-1)^n \det(A)$.

Théorème 63. (Cayley-Hamilton)

On a $\chi_f(f) = 0$. Autrement dit, le polynôme minimal divise le polynôme caractéristique.

Corollaire 64. Les valeurs propres de f sont racines de son polynôme caractéristique (en fait, ce sont les seules).

Proposition 65. (Condition suffisante de diagonalisabilité) Si χ_f est scindé à racines simples, alors f est diagonalisable.

Théorème 66. Les propositions suivantes sont équivalents :

- f est diagonalisable.
- μ_f est scindé à racines simples dans k.
- χ_f est scindé dans k et dim(E_λ) = v_λ, où v_λ désigne la multiplicité de λ en tant que racine de χ_f.
- $E = \bigoplus_{\lambda \in \mathrm{Sp}(f)} E_{\lambda}.$

Corollaire 67. Si f possède n valeurs propres distinctes, alors f est diagonalisable.