Latent Variable Models (contd) and Deep Neural Networks

CS771: Introduction to Machine Learning

MLE for Latent Variable Models

Optimization is difficult in general because the objective has a complex form, complex derivatives, so FOO etc won't apply easily

- Original problem: $\Theta_{MLE} = \underset{\Theta}{\operatorname{argmax}} \log p(X|\Theta) = \underset{\Theta}{\operatorname{argmax}} \log \sum_{z} p(X, Z|\Theta)$
- The EM approach for solving MLE problem in LVMs

MAP for Θ can also be done by adding a log prior term for Θ

$$\Theta_{MLE} = \underset{\Theta}{\operatorname{argmax}} \mathbb{E}_{p(\mathbf{Z}|\Theta,\mathbf{X})}[\log p(\mathbf{X},\mathbf{Z}|\Theta)]$$

■ Can be easily shown (exercise) that original objective (log-lik) can be written as

$$\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + KL(q||p_z)$$

Holds for any distribution q(Z) over Z

$$\mathcal{L}(q,\Theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right\}$$

 $\log p(X|\Theta) \ge \mathcal{L}(q,\Theta)$

KL is always non-negative

$$KL(q||p_z) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z}|\mathbf{X}, \mathbf{\Theta})}{q(\mathbf{Z})} \right\}$$

Thus $\mathcal{L}(q,\Theta)$ is a lower bound on the log likelihood of the LVM

EM maximizes this lower bound to get (an approximate) MLE

Maximizing the Lower Bound

- As we saw, $\mathcal{L}(q,\Theta)$ depends on q and Θ . Consider ALT-OPT.
- Let's maximize $\mathcal{L}(q,\Theta)$ w.r.t. q with Θ fixed at Θ^{old}

The posterior distribution of Z given older parameters Θ^{old} (will need this posterior to get the expectation of CLL)

Since $\log p(X|\Theta) = \mathcal{L}(q,\Theta) + KL(q||p_z)$ is constant when Θ is held fixed at Θ^{old}

$$\hat{q} = \operatorname{argmax}_{q} \mathcal{L}(q, \Theta^{\text{old}}) = \operatorname{argmin}_{q} \widehat{KL}(q||p_z) = p_z = p(\mathbf{Z}|\mathbf{X}, \Theta^{\text{old}})$$

• Now let's maximize $\mathcal{L}(q,\Theta)$ w.r.t. Θ with q fixed at $\hat{q} = p_z = p(Z|X,\Theta^{\text{old}})$

$$\Theta^{\text{new}} = \operatorname{argmax}_{\Theta} \mathcal{L}(\hat{q}, \Theta) = \operatorname{argmax}_{\Theta} \sum_{Z} p(Z|X, \Theta^{\text{old}}) \log \left\{ \frac{p(X, Z|\Theta)}{p(Z|X, \Theta^{\text{old}})} \right\}$$

=
$$\operatorname{argmax}_{\Theta} \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\Theta)$$

= $\operatorname{argmax}_{\Theta} \mathbb{E}_{p(\mathbf{Z}|\mathbf{X}, \Theta^{\text{old}})} [\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$

Maximization of expected CLL w.r.t. the posterior distribution of Z given older parameters Θ^{old}

=
$$\operatorname{argmax}_{\Theta} \mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\Theta^{\text{old}})}[\log p(\mathbf{X},\mathbf{Z}|\Theta)]$$

=
$$\operatorname{argmax}_{\Theta} Q(\Theta, \Theta^{\text{old}})$$

EM: An Illustration

Alternating between them until convergence to some local optima

- As we saw, EM maximizes the lower bound $\mathcal{L}(q,\Theta)$ to get $\Theta^{(MLE)}$ in two steps
- Step 1 sets $\hat{q} = p(Z|\Theta, X)$ using Θ^{old} . KL becomes zero and $\mathcal{L}(\hat{q}, \Theta^{\text{old}}) = \log p(X|\Theta^{\text{old}})$
- Step 2 maximizes $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ which gives the new Θ .

CS771: Intro to ML

works faster and has cleaner updates

The EM Algorithm in its general form..

■ Maximization of $\mathcal{L}(q,\Theta)$ w.r.t. q and Θ gives the EM algorithm (Dempster, Laird, Rubin, 1977)

The EM Algorithm

- Initialize Θ as $\Theta^{(0)}$, set t=1
- ② Step 1: Compute posterior of latent variables given current parameters $\Theta^{(t-1)}$

$$p(\boldsymbol{z}_n^{(t)}|\boldsymbol{x}_n,\boldsymbol{\Theta}^{(t-1)}) = \frac{p(\boldsymbol{z}_n^{(t)}|\boldsymbol{\Theta}^{(t-1)})p(\boldsymbol{x}_n|\boldsymbol{z}_n^{(t)},\boldsymbol{\Theta}^{(t-1)})}{p(\boldsymbol{x}_n|\boldsymbol{\Theta}^{(t-1)})} \propto \operatorname{prior} \times \operatorname{likelihood}$$

 \odot Step 2: Now maximize the expected complete data log-likelihood w.r.t. Θ

$$\Theta^{(t)} = \arg\max_{\Theta} \mathcal{Q}(\Theta, \Theta^{(t-1)}) = \arg\max_{\Theta} \sum_{n=1}^{N} \mathbb{E}_{p(\boldsymbol{z}_{n}^{(t)}|\boldsymbol{x}_{n}, \Theta^{(t-1)})} [\log p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n}^{(t)}|\Theta)]$$

- If not yet converged, set t = t + 1 and go to step 2.
- Note: If we can take the MAP estimate \hat{z}_n of z_n (not full posterior) in Step 2 and maximize the CLL in Step 3 using that, i.e., do $\operatorname{argmax}_{\Theta} \sum_{n=1}^{N} \left[\log p(x_n, \hat{z}_n^{(t)} | \Theta) \right]$ this will be ALT-OPT

The Expected CLL

■ Expected CLL in EM is given by (assume observations are i.i.d.)

$$\mathcal{Q}(\Theta, \Theta^{old}) = \sum_{n=1}^{N} \mathbb{E}_{p(z_n|x_n, \Theta^{old})}[\log p(x_n, z_n|\Theta)]$$

$$= \sum_{n=1}^{N} \mathbb{E}_{p(z_n|x_n, \Theta^{old})}[\log p(x_n|z_n, \Theta) + \log p(z_n|\Theta)] \quad \text{Was indeed the case of GMM: } p(z_n|\Theta) \quad \text{was multinoulli, } p(x_n|z_n, \Theta) \text{ was Gaussian}$$

- If $p(z_n|\Theta)$ and $p(x_n|z_n,\Theta)$ are exponential family distributions, then $Q(\Theta,\Theta^{\text{old}})$ has a very simple form
- ullet In resulting expressions, replace terms containing z_n 's by their respective expectations, e.g.,
 - $lacksquare oldsymbol{z}_n$ replaced by $\mathbb{E}_{p(oldsymbol{z}_n|oldsymbol{x}_n,\,\widehat{\Theta})}[oldsymbol{z}_n]$
 - $lacksquare oldsymbol{z}_n oldsymbol{z}_n^{ op}$ replaced by $\mathbb{E}_{p\left(oldsymbol{z}_n | oldsymbol{x}_n, \widehat{\Theta}
 ight)}[oldsymbol{z}_n oldsymbol{z}_n^{ op}]$
- However, in some LVMs, these expectations are intractable to compute and need to be approximated (beyond the score of CS771)

Another LVM: Probabilistic PCA (PPCA)

• Assume $x_n \in \mathbb{R}^D$ as a linear mapping of a latent var $z_n \in \mathbb{R}^K$ + Gaussian noise

A "reverse" generative way of thinking about PCA (low-dim z_n generating high-dim x_n This linear mapping can be replaced by more powerful nonlinear mapping of the form $x_n = f(z_n) + \epsilon_n$ where f can be modeled using a deep neural net (e.g.,

- $= \text{Equivalent to saying } p(\boldsymbol{x}_n | \boldsymbol{z}_n, \boldsymbol{\mu}, \boldsymbol{W}, \sigma^2) = \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu} + \boldsymbol{W} \boldsymbol{z}_n, \sigma^2 I_D)$
- lacktriangle Assume a zero-mean K-dim Gaussian prior on $oldsymbol{z}_n$, so $p(oldsymbol{z}_n) = \mathcal{N}(oldsymbol{z}_n | oldsymbol{0}, I_K)$
- We would like to do MLE for $\Theta = (\mu, W, \sigma^2)$
- ILL for this model $p(x_n|\mu, W, \sigma^2)$ is also a Gaussian (thanks to Gaussian properties)

$$p(\mathbf{x}_n|\boldsymbol{\mu}, \boldsymbol{W}, \sigma^2) = \int p(\mathbf{x}_n|\mathbf{z}_n, \boldsymbol{\mu}, \boldsymbol{W}, \sigma^2) p(\mathbf{z}_n) d\mathbf{z}_n = N(\mathbf{x}_n|\boldsymbol{\mu}, \boldsymbol{W}\boldsymbol{W}^\mathsf{T} + \sigma^2 I_D)$$
PRML 12.2.1

- Maximizing ILL w.r.t. $\Theta = (\mu, W, \sigma^2)$ is possible but requires solving eig decomp. problem
- We can use ALT-OPT/EM to estimate $\Theta = (\mu, W, \sigma^2)$ more efficiently without eig decomp.

Learning PPCA using EM

- Instead of maximizing the ILL $p(x_n|\mu,W,\sigma^2)=N(x_n|\mu,WW^\top+\sigma^2I_D)$, let's use ALT-OPT/EM
- EM will instead maximize expected CLL, with CLL (assume $\mu = 0$) given by

$$\log p(X, Z|W, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n|W, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, W, \sigma^2) p(\mathbf{z}_n)$$

lacksquare Using $p(\pmb{x}_n|\pmb{z}_n,\pmb{W},\sigma^2)=~\mathcal{N}(\pmb{x}_n|\pmb{W}\pmb{z}_n,\sigma^2I_D)$ and $p(\pmb{z}_n)=~\mathcal{N}(\pmb{z}_n|\pmb{0},I_K)$

$$CLL = -\sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} \|\boldsymbol{x}_n\|^2 - \frac{1}{\sigma^2} \boldsymbol{z}_n^\mathsf{T} \boldsymbol{W}^\mathsf{T} \boldsymbol{x}_n + \frac{1}{2\sigma^2} \operatorname{trace}(\boldsymbol{z}_n \boldsymbol{z}_n^\mathsf{T} \boldsymbol{W}^\mathsf{T} \boldsymbol{W}) + \frac{1}{2} \operatorname{trace}(\boldsymbol{z}_n \boldsymbol{z}_n^\mathsf{T}) \right\}$$

lacktriangle Expected CLL will require $\mathbb{E}[oldsymbol{z}_n]$ and $\mathbb{E}[oldsymbol{z}_noldsymbol{z}_n^{ oldsymbol{ oldsymbol{$

Using the fact that $p(x_n|z_n)$ and $p(z_n)$ are Gaussians and the CP is just the reverse conditional $p(z_n|x_n)$ and must also be Gaussian

$$egin{array}{lll} egin{array}{lll} egin{arra$$

Learning PPCA using EM

- The EM algo for PPCA alternates between two steps
 - lacktriangle Compute CP of $oldsymbol{z}_n$ given parameters $\Theta = (\mathbf{W}, \sigma^2)$ and required expectatuions

$$p(\mathbf{z}_{n}|\mathbf{x}_{n}, \mathbf{W}) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^{\top}\mathbf{x}_{n}, \sigma^{2}\mathbf{M}^{-1}) \quad \text{where } \mathbf{M} = \mathbf{W}^{\top}\mathbf{W} + \sigma^{2}\mathbf{I}_{K}$$

$$\mathbb{E}[\mathbf{z}_{n}] = \mathbf{M}^{-1}\mathbf{W}^{\top}\mathbf{x}_{n}$$

$$\mathbb{E}[\mathbf{z}_{n}\mathbf{z}_{n}^{\top}] = \mathbb{E}[\mathbf{z}_{n}]\mathbb{E}[\mathbf{z}_{n}]^{\top} + \operatorname{cov}(\mathbf{z}_{n}) = \mathbb{E}[\mathbf{z}_{n}]\mathbb{E}[\mathbf{z}_{n}]^{\top} + \sigma^{2}\mathbf{M}^{-1}$$

■ Maximize the expected CLL $\mathbb{E}[\log p(X, Z|W, \sigma^2)]$ w.r.t. W and σ^2

Note: This approach does not assume/ensure that **W** is orthonormal

$$\mathbb{E}[\text{CLL}] = -\sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} \|\boldsymbol{x}_n\|^2 - \frac{1}{\sigma^2} \mathbb{E}[\boldsymbol{z}_n^{\mathsf{T}}] \boldsymbol{W}^{\mathsf{T}} \boldsymbol{x}_n + \frac{1}{2\sigma^2} \operatorname{trace}(\mathbb{E}[\boldsymbol{z}_n \boldsymbol{z}_n^{\mathsf{T}}] \boldsymbol{W}^{\mathsf{T}} \boldsymbol{W}) + \frac{1}{2} \operatorname{trace}(\mathbb{E}[\boldsymbol{z}_n \boldsymbol{z}_n^{\mathsf{T}}]) \right\}$$

$$\mathbf{W}_{new} = \left[\sum_{n=1}^{N} \mathbf{x}_{n} \mathbb{E}[\mathbf{z}_{n}]^{\top}\right] \left[\sum_{n=1}^{N} \mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\top}]\right]^{-1}$$

$$\sigma_{new}^{2} = \frac{1}{ND} \sum_{n=1}^{N} \left\{ ||\mathbf{x}_{n}||^{2} - 2\mathbb{E}[\mathbf{z}_{n}]^{\top} \mathbf{W}_{new}^{\top} \mathbf{x}_{n} + \text{tr}\left(\mathbb{E}[\mathbf{z}_{n} \mathbf{z}_{n}^{\top}] \mathbf{W}_{new}^{\top} \mathbf{W}_{new}\right) \right\} /$$

lacksquare Will get ALT-OPT if we use mode of the CP as $\hat{oldsymbol{z}}_n$ in the CLL

Note: setting $\sigma^2 = 0$ makes it equivalent to standard PCA without orthonormality constraint, but EM is more efficient since no eigendecomposition is needed

Generative Models can generate synthetic data!

- Once parameters $\Theta = (\mu, W, \sigma^2)$ are learned, we can even generate new data, e.g.,
 - Generate a random \mathbf{z}_n from $\mathcal{N}(\mathbf{0}, I_K)$
 - Generate x_n condition on z_n from $\mathcal{N}(\mu + W z_n, \sigma^2 I_D)$

In addition to, of course, reducing the data dimensionality

(a) Training data

(b) Random samples

Generated using a more sophisticated generative model, not PPCA (but similar in formulation)

Methods such as variational autoencoders, GAN, diffusion models, etc are based on similar ideas

EM: Some Comments

- Good initialization is important
- The E and M steps may not always be possible to perform exactly. Some reasons
 - lacktriangle CP of latent variables $p(Z|X,\Theta)$ may not be easy to find and may require approx.
 - Even if $p(Z|X,\Theta)$ is easy, expected CLL, i.e., $\mathbb{E}[\log p(X,Z|\Theta)]$ may still not be tractable

$$\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)] = \int \log p(\mathbf{X}, \mathbf{Z}|\Theta) p(\mathbf{Z}|\mathbf{X}, \Theta) d\mathbf{Z}$$

..and may need to be approximated, e.g., using Monte-Carlo expectation

Gradient methods may still be needed for this step

Monte-Carlo EM

- Maximization of the expected CLL may not be possible in closed form
- EM works even if the M step is only solved approximately (Generalized EM)
- Other advanced probabilistic inference algorithms are based on ideas similar to EM
 - E.g., Variational Bayesian inference a.k.a. Variational Inference (VI)
- EM is also related to non-convex optimization algorithms Majorization-Maximization (MM)
 - MM maximizes a difficult-to-optimize objective function by iteratively constructing surrogate functions that are easier to maximize (in EM, the surrogate function was the CLL)

Deep Neural Nets

Limitation of Linear Models

■ Linear models: Output produced by taking a linear combination of input features

■ A basic unit of the form $y = f(w^T x)$ is known as the "Perceptron" (not to be confused with the Perceptron "algorithm", which learns a linear classification model)

Although can kernelize to make them nonlinear

This can't however learn nonlinear functions or nonlinear decision boundaries

Neural Networks: Multi-layer Perceptron (MLP)

- An MLP is a network containing several Perceptron units across many layers
- An MLP consists of an input layer, an output layer, and one or more hidden layers

Input layer units/nodes denote the original features of input x_n

MLP is also called feedforward fully-connected network

Illustration: Neural Net with Single Hidden Layer

■ Compute K pre-activations for each input x_n

A linear model with learnable weight vec
$$\mathbf{w}_k$$
 $\mathbf{z}_{nk} = \mathbf{w}_k^\mathsf{T} \mathbf{x}_n = \sum_{d=1}^D w_{dk} x_{nd}$ $(k = 1, 2, ..., K)$

Apply nonlinear activation on each pre-act

Called a hidden unit
$$h_{nk}=g(z_{nk})$$
 $(k=1,2,...,K)$

lacktriangle Apply a linear model with $m{h}_n$ acting as features

A linear model with learnable weight vec
$$v$$
 Score of the input $S_n = v^{\mathsf{T}} h_n = \sum_{k=1}^K v_k h_{nk}$

Finally, output is produced as

Score converted to the actual prediction
$$\hat{y}_n = o(s_n)$$

Loss: $\mathcal{L}(\boldsymbol{W}, \boldsymbol{v}) = \sum_{n=1}^{N} \ell(y_n, \hat{y}_n) \mathcal{X}_{n1}(\boldsymbol{v})$

Neural Nets: A Compact Illustration

Will denote a linear combination of inputs followed by a nonlinear operation on the result

■ Note: Hidden layer pre-act z_{nk} and post-act h_{nk} will be shown together for brevity

■ Denoting $W = [w_1, w_2, ..., w_K]$, $w_k \in \mathbb{R}^D$, $h_n = g(W^\mathsf{T} x_n) \in \mathbb{R}^K$ (K = 2, D = 3) above). Note: g applied elementwise on pre-activation vector $\mathbf{z}_n = W^\mathsf{T} \mathbf{x}_n$ cs771: Intro to ML

MLP Can Learn Any Nonlinear Function

■ An MLP can be seen as a composition of multiple linear models combined nonlinearly

Superposition of two linear models = Nonlinear model

Two sigmoids (blue and orange) can be combined via a shift and a subtraction operation to result in a nonlinear separation boundary

Likewise, more than two sigmoids can be combined to learn even more sophisticated separation boundaries

Nonlinear separation boundary

