Álgebra Universal e Categorias

– Exame de recurso (27 de junho de 2016) – duração: 2h30 _____

1. Para cada $n \in \mathbb{N}$, seja $\mathcal{A}_n = (A_n; (f^{\mathcal{A}}, 0^{\mathcal{A}}))$ a álgebra de tipo (1,0), onde $A_n = \{0,1,2,\ldots,2n\}$, $0^{\mathcal{A}} = 0$ e $f^{\mathcal{A}}: A_n \to A_n$ é a operação definida por

$$f(x) = \begin{cases} x+2 & \text{se} & x \in \{0, 1, 2, \dots, 2n-2\} \\ 1 & \text{se} & x = 2n-1 \\ 0 & \text{se} & x = 2n \end{cases}$$

Para cada $n \in \mathbb{N}$: i. Determine $Sg^{\mathcal{A}_n}(\{1\})$ e $Sg^{\mathcal{A}_n}(\{2\})$. ii. Indique todos os subuniversos de \mathcal{A}_n .

i. Para cada $n \in \mathbb{N}$, $Sg^{\mathcal{A}_n}(\{1\})$ é o menor subuniverso de \mathcal{A}_n que contém $\{1\}$. Por conseguinte, $1 \in Sg^{\mathcal{A}_n}(\{1\})$. Uma vez que $Sg^{\mathcal{A}_n}(\{1\})$ é um subuniverso de \mathcal{A}_n , tem de ser fechado para todas as operações de \mathcal{A}_n , em particular tem de ser fechado para a operação nulária $0^{\mathcal{A}}$, donde segue que $0 \in Sg^{\mathcal{A}_n}(\{1\})$. Atendendo a que $Sg^{\mathcal{A}_n}(\{1\})$ também é fechado para a operação $f^{\mathcal{A}}$, então

$$\begin{array}{ll} 0 \in Sg^{\mathcal{A}_n}(\{1\}) & \Rightarrow & f(0) = 2 \in Sg^{\mathcal{A}_n}(\{1\}) \\ & \Rightarrow & f(2) = 4 \in Sg^{\mathcal{A}_n}(\{1\}) \\ & \vdots \\ & \Rightarrow & f(2n-2) = 2n \in Sg^{\mathcal{A}_n}(\{1\}) \\ & \Rightarrow & f(2n) = 0 \in Sg^{\mathcal{A}_n}(\{1\}) \end{array}$$

е

$$\begin{array}{ll} 1 \in Sg^{\mathcal{A}_n}(\{1\}) & \Rightarrow & f(1) = 3 \in Sg^{\mathcal{A}_n}(\{1\}) \\ & \Rightarrow & f(3) = 5 \in Sg^{\mathcal{A}_n}(\{1\}) \\ & \vdots \\ & \Rightarrow & f(2n-1) = 1 \in Sg^{\mathcal{A}_n}(\{1\}). \end{array}$$

Assim, $\{0,1,2,\ldots,2n\}\subseteq Sg^{\mathcal{A}_n}(\{1\})$ e, uma vez que $Sg^{\mathcal{A}_n}(\{1\})\subseteq \{0,1,2,\ldots,2n\}$, conclui-se que $Sg^{\mathcal{A}_n}(\{1\})=\{0,1,2,\ldots,2n\}$.

De forma análoga, determina-se $Sg^{\mathcal{A}_n}(\{2\})$. Como $Sg^{\mathcal{A}_n}(\{2\})$ é o menor subunivero de \mathcal{A}_n que contém $\{2\}$, então $2 \in Sg^{\mathcal{A}_n}(\{2\})$. Atendendo a que $Sg^{\mathcal{A}_n}(\{2\})$ é fechado para as operações de \mathcal{A}_n , então

$$0 \in Sg^{\mathcal{A}_n}(\{2\})$$

e

$$\begin{array}{ll} 2 \in Sg^{\mathcal{A}_n}(\{2\}) & \Rightarrow & f(2) = 4 \in Sg^{\mathcal{A}_n}(\{2\}) \\ & \Rightarrow & f(4) = 8 \in Sg^{\mathcal{A}_n}(\{2\}) \\ & \vdots \\ & \Rightarrow & f(2n-2) = 2n \in Sg^{\mathcal{A}_n}(\{2\}) \\ & \Rightarrow & f(2n) = 0 \in Sg^{\mathcal{A}_n}(\{2\}). \end{array}$$

Logo $\{0,2,4,\ldots,2n\}\subseteq Sg^{\mathcal{A}_n}(\{2\})$. Uma vez que $2\in\{0,2,4,\ldots,2n\}$, $\{0,2,4,\ldots,2n\}$ é um subuniverso de \mathcal{A}_n e é o menor subuniverso de \mathcal{A}_n que contém $\{2\}$, concluímos que $Sg^{\mathcal{A}_n}(\{2\})=\{0,2,4,\ldots,2n\}$.

- ii. Os únicos subuniversos de A_n são A_n e $\{0,2,4,\ldots,2n\}$, pois:
 - todo o subuniverso de A_n tem de estar contido em A_n ;
 - \emptyset não é subuniverso de \mathcal{A}_n , uma vez que \mathcal{A}_n tem operações nulárias;
 - todo o subuniverso de A_n que contenha um número ímpar de A_n tem de conter todos os elementos de A_n ;
 - um subuniverso de A_n que contenha um número par de A_n tem de conter todos os números pares de A_n .

2. Sejam $\mathcal{R} = (R; \wedge, \vee)$ um reticulado e \leq a relação de ordem parcial definida por

$$x \leq y$$
 se e só se $x = x \wedge y, \ \forall x, y \in R$.

Para cada $a \in R$:

(a) Mostre que a álgebra $\mathcal{I}_a = (I_a; \wedge^{\mathcal{I}_a}, \vee^{\mathcal{I}_a})$, onde $I_a = \{x \in R : x \leq a\}$ e $\wedge^{\mathcal{I}_a}$ e $\vee^{\mathcal{I}_a}$ são as operações definidas por

$$x \wedge^{\mathcal{I}_a} y = x \wedge y, \quad x \vee^{\mathcal{I}_a} y = x \vee y, \ \forall x, y \in I_a,$$

é uma subálgebra de \mathcal{R} .

A álgebra $\mathcal{I}_a = (I_a; \wedge^{\mathcal{I}_a}, \vee^{\mathcal{I}_a})$ é uma subálgebra de \mathcal{R} se:

- (1) $I_a \neq \emptyset$;
- (2) I_a é um subuniverso de \mathcal{R} ;
- (3) para quaisquer $x, y \in I_a$, $x \wedge^{\mathcal{I}_a} y = x \wedge y$ e $x \vee^{\mathcal{I}_a} y = x \vee y$.

Verifiquemos que as três condições anteriores são satisfeitas.

- (1) Uma vez que $a \wedge a = a$, tem-se $a \leq a$ e, portanto, $a \in I_a$. Logo $I_a \neq \emptyset$.
- (2) Dado $a \in R$, o conjunto I_a é um subuniverso de \mathcal{R} se $I_a \subseteq R$ e, para quaisquer $x,y \in I_a$, $x \land y \in I_a$ e $x \lor y \in I_a$.

Obviamente $I_a \subseteq R$. Além disso, para quaisquer $x, y \in R$,

$$\begin{array}{ll} x,y\in I_a & \Rightarrow & x,y\in R \ \mathrm{e} \ x\leq a \ \mathrm{e} \ y\leq a \\ & \Rightarrow & x\wedge y, x\vee y\in R \ \mathrm{e} \ \inf\{x,y\}\leq a \ \mathrm{e} \ \sup\{x,y\}\leq a \\ & \Rightarrow & x\wedge y, x\vee y\in R \ \mathrm{e} \ x\wedge y\leq a \ \mathrm{e} \ x\vee y\leq a \\ & \Rightarrow & x\wedge y\in I_a \ \mathrm{e} \ x\vee y\in I_a. \end{array}$$

Logo I_a é um subuniverso de \mathcal{R} .

- (*) Como $x,y\in R$ e \mathcal{R} é reticulado, é imediato que $x\wedge y\in R$ e $x\vee y\in R$. Uma vez que $\inf\{x,y\}\leq x,y$ e $x\leq a$ e $y\leq a$, vem que $\inf\{x,y\}\leq a$. Além disso, como $x\leq a$ e $y\leq a$, o elemento a é um majorante de $\{x,y\}$, pelo que $\sup\{x,y\}\leq a$ (pois $\sup\{x,y\}$ é o menor dos majorantes de $\{x,y\}$).
- (3) Imediato, pela definição de $\wedge^{\mathcal{I}_a}$ e $\vee^{\mathcal{I}_a}$.

De (1), (2) e (3) conclui-se que \mathcal{I}_a é uma subálgebra de \mathcal{R} .

(b) Mostre que se \mathcal{R} é um reticulado distributivo, então a aplicação $\phi_a:R\to I_a$ definida por $\phi_a(x)=x\wedge a$, para todo $x\in R$, é um homomorfismo de \mathcal{R} em \mathcal{I}_a .

A aplicação ϕ_a é um homomorfismo de \mathcal{R} em \mathcal{I}_a se, para quaisquer $x, y \in R$,

$$\phi_a(x \wedge y) = \phi_a(x) \wedge^{\mathcal{I}_a} \phi_a(y) \ \mathsf{e} \ \phi_a(x \vee y) = \phi_a(x) \vee^{\mathcal{I}_a} \phi_a(y).$$

Para quaisquer $x, y \in R$,

$$\begin{array}{lll} \phi_a(x\wedge y) & = & (x\wedge y)\wedge a & (\text{definição de }\phi_a) \\ & = & (x\wedge y)\wedge (a\wedge a) & (\text{idempotência de }\wedge) \\ & = & (x\wedge a)\wedge (y\wedge a) & (\text{comutatividade e associatividade de }\wedge) \\ & = & \phi_a(x)\wedge\phi_a(y) & (\text{definição de }\phi_a) \\ & = & \phi_a(x)\wedge^{\mathcal{I}_a}\phi_a(y) & (\phi_a(x),\phi_a(y)\in I_a \text{ e definição de }\wedge^{\mathcal{I}_a}), \\ \\ \phi_a(x\vee y) & = & (x\vee y)\wedge a & (\text{definição de }\phi_a) \\ & = & (x\wedge a)\vee (y\wedge a) & (R\text{ \'e distributivo}) \\ & = & \phi_a(x)\vee\phi_a(y) & (\text{definição de }\phi_a) \\ & = & \phi_a(x)\vee^{\mathcal{I}_a}\phi_a(y) & (\phi_a(x),\phi_a(y)\in I_a \text{ e definição de }\vee^{\mathcal{I}_a}). \end{array}$$

Logo ϕ_a é um homomorfismo de \mathcal{R} em \mathcal{I}_a .

- 3. Seja $\mathcal{A} = (A; (f^{\mathcal{A}})_{f \in O})$ uma álgebra.
 - (a) Mostre que se $\theta_1, \theta_2 \in \text{Con}\mathcal{A}$, então $\theta_1 \cap \theta_2 \in \text{Con}\mathcal{A}$.

Sejam θ_1 e θ_2 congruências em \mathcal{A} . Então θ_1 e θ_2 são relações de equivalência em A e satisfazem a propriedade de substituição. Uma vez que θ_1 e θ_2 satisfazem a propriedade de substituição, então, para qualquer símbolo de operação n-ário f de O e para quaisquer $x_1,\ldots,x_n,y_1,\ldots,y_n\in A$, são satisfeitas as condições seguintes:

(1)
$$(\forall i \in \{1, \dots, n\}, (x_i, y_i) \in \theta_1 \Rightarrow (f^{\mathcal{A}}(x_1, \dots, x_n), f^{\mathcal{A}}(y_1, \dots, y_n)) \in \theta_1,$$

(2)
$$(\forall i \in \{1, ..., n\}, (x_i, y_i) \in \theta_2 \Rightarrow (f^{\mathcal{A}}(x_1, ..., x_n), f^{\mathcal{A}}(y_1, ..., y_n)) \in \theta_2.$$

Uma vez que θ_1 e θ_2 são relações de equivalência em A, então

(3) $\theta_1 \cap \theta_2$ é uma relação de equivalência em A.

De facto, $\theta_1 \cap \theta_2$ é uma relação binária em A e, além disso, $\theta_1 \cap \theta_2$ é reflexiva, simétrica e transitiva:

- para qualquer $x \in A$, $(x,x) \in \theta_1$ e $(x,x) \in \theta_2$, pois θ_1 e θ_2 são reflexivas. Logo, para qualquer $x \in A$, $(x,x) \in \theta_1 \cap \theta_2$ e, portanto, $\theta_1 \cap \theta_2$ é reflexiva.
- para quaisquer $x, y \in A$,

$$\begin{array}{lll} (x,y) \in \theta_1 \cap \theta_2 & \Rightarrow & (x,y) \in \theta_1 \text{ e } (x,y) \in \theta_2 \\ & \Rightarrow & (y,x) \in \theta_1 \text{ e } (y,x) \in \theta_2 & (\text{pois } \theta_1 \text{ } e \text{ } \theta_2 \text{ são simétricas}) \\ & \Rightarrow & (y,x) \in \theta_1 \cap \theta_2. \end{array}$$

Logo $\theta_1 \cap \theta_2$ é simétrica.

- para quaisquer $x, y, z \in A$,

$$\begin{array}{lll} (x,y),(y,z) \in \theta_1 \cap \theta_2 & \Rightarrow & (x,y),(y,z) \in \theta_1 \text{ e } (x,y),(y,z) \in \theta_2 \\ & \Rightarrow & (x,z) \in \theta_1 \text{ e } (x,z) \in \theta_2 \\ & \Rightarrow & (x,z) \in \theta_1 \cap \theta_2. \end{array} \qquad \text{(pois θ_1 e θ_2 são transitivas)}$$

Logo (x, z) é transitiva.

Atendendo a que θ_1 e θ_2 satisfazem a propriedade de substituição, então

(4) $\theta_1 \cap \theta_2$ satisfaz a propriedade de substituição, pois

$$\begin{array}{lll} (\forall i \in \{1, \dots n\}, (x_i, y_i) \in \theta_1 \cap \theta_2) & \Rightarrow & \forall i \in \{1, \dots n\}, (x_i, y_i) \in \theta_1 \ \mathsf{e} \ (x_i, y_i) \in \theta_2 \\ & \Rightarrow & (f^{\mathcal{A}}(x_1, \dots, x_n), f^{\mathcal{A}}(y_1, \dots, y_n)) \in \theta_1 \ \mathsf{e} \\ & & & (f^{\mathcal{A}}(x_1, \dots, x_n), f^{\mathcal{A}}(y_1, \dots, y_n)) \in \theta_2 \\ & \Rightarrow & (f^{\mathcal{A}}(x_1, \dots, x_n), f^{\mathcal{A}}(y_1, \dots, y_n)) \in \theta_1 \cap \theta_2. \end{array}$$

De (3) e (4) conclui-se que $\theta_1 \cap \theta_2$ é uma congruência em \mathcal{A} .

(b) Se $\mathcal A$ é uma álgebra cujo reticulado de congruências pode ser representado pelo diagrama de Hasse seguinte

diga, justificando, se a álgebra $\mathcal A$ é:

i. diretamente indecomponível.

A álgebra $\mathcal A$ é diretamente indecomponível se e só se as únicas congruências fator de $\mathcal A$ são \triangle_A e ∇_A .

Uma congruência θ em $\mathcal A$ diz-se uma congruência fator se existe uma congruência θ^* em $\mathcal A$ tal que $\theta \cap \theta^* = \triangle_A$, $\theta \vee \theta^* = \nabla_A$ e $\theta \circ \theta^* = \theta^* \circ \theta$.

Do diagrama de Hasse que representa o reticulado $\operatorname{Con} A$ conclui-se que \triangle_A e ∇_A são as únicas congruências fator de A, uma vez que:

- \triangle_A e ∇_A são congruências fator de \mathcal{A} ;
- $\theta_i \lor \theta_j \neq \nabla_A$, para todo $i,j \in \{1,2,3,4\}$;
- $\theta_i \wedge \nabla_A = \theta_i \neq \triangle_A$, para todo $i \in \{1, 2, 3, 4\}$;
- $\theta_i \vee \triangle_A = \theta_i \neq \nabla_A$, para todo $i \in \{1, 2, 3, 4\}$.

Logo A é diretamente indecomponível.

ii. subdiretamente irredutível.

A álgebra \mathcal{A} subdiretamente irredutível se e só se \mathcal{A} é a álgebra trivial ou $\operatorname{Con} \mathcal{A} \setminus \{\triangle_A\}$ tem elemento mínimo.

Uma vez que \mathcal{A} não é uma álgebra trivial (pois $\mathrm{Con}\mathcal{A} \neq \{\triangle_A\}$) e $\mathrm{Con}\mathcal{A} \setminus \{\triangle_A\}$ não tem elemento mínimo, então \mathcal{A} não é sudiretamente irredutivel.

iii. c-distributiva.

A álgebra \mathcal{A} é c-distributiva se $\mathrm{Con}\mathcal{A}$ é um reticulado distributivo. Um reticulado \mathcal{R} é distributivo se e só se \mathcal{R} não tem qualquer subreticulado isomorfo a M_5 ou a N_5 .

Uma vez que $\{\Delta_A, \theta_1, \theta_2, \theta_3, \theta_4\}$ é um subreticulado de $\mathrm{Con}\mathcal{A}$ (pois é um subconjunto de $\mathrm{Con}\mathcal{A}$ fechado para as operações \wedge e \vee) e é isomorfo a M_5 , concluímos que $\mathrm{Con}\mathcal{A}$ não é um reticulado distributivo. Logo a álgebra \mathcal{A} não é c-distributiva.

4. Considere os operadores S, I e P. Mostre que SIP é um operador de fecho.

O operador SIP é um operador de fecho se:

- (1) para qualquer classe K de álgebras do mesmo tipo, $K \subseteq SIP(K)$;
- (2) para qualquer classe K de álgebras do mesmo tipo, $SIP(K) = (SIP)^2(K)$;
- (3) para quaisquer classes \mathbf{K}_1 e \mathbf{K}_2 de álgebras do mesmo tipo,

$$\mathbf{K}_1 \subseteq \mathbf{K}_2 \Rightarrow SIP(\mathbf{K}_2) \subseteq SIP(\mathbf{K}_2).$$

Facilmente se verificam as condições anteriores. De facto,

- (1) Para qualquer operador $O \in \{H, I, S, P, Ps\}$ e para qualquer classe \mathbf{K}' de álgebras do mesmo tipo, tem-se $\mathbf{K}' \subseteq O(\mathbf{K}')$. Logo, para qualquer classe \mathbf{K} de álgebras do mesmo tipo, tem-se $\mathbf{K} \subseteq P(\mathbf{K})$, $P(\mathbf{K}) \subseteq IP(\mathbf{K})$ e $IP(\mathbf{K}) \subseteq SIP(\mathbf{K})$, donde segue que $\mathbf{K} \subseteq SIP(\mathbf{K})$.
- (2) De (1) segue que, para qualquer classe \mathbf{K} de álgebras do mesmo tipo, $P(\mathbf{K}) \subseteq PSIP(\mathbf{K})$, donde $IP(\mathbf{K}) \subseteq IPSIP(\mathbf{K})$ e, por conseguinte $SIP(\mathbf{K}) \subseteq (SIP)^2(\mathbf{K})$. Além disso,

$$\begin{array}{rcl} (SIP)^2(\mathbf{K}) & = & SIPSIP(\mathbf{K}) \\ & \subseteq & SISPIP(\mathbf{K}) & (\mathsf{pois}\ PS \leq SP) \\ & = & S^2IPIP(\mathbf{K}_1) & (\ \mathsf{pois}\ SI = IS) \\ & = & SIP(\mathbf{K}_1) & (\ \mathsf{pois}\ S^2 = S\ \mathsf{e}\ (IP)^2 = IP). \end{array}$$

Logo $(SIP)^2 = SIP$.

- (3) Se \mathbf{K}_1 e \mathbf{K}_2 são classes de álgebras do mesmo tipo tais que $\mathbf{K}_1 \subseteq \mathbf{K}_2$, então $P(\mathbf{K}_1) \subseteq P(\mathbf{K}_2)$, donde $IP(\mathbf{K}_1) \subseteq IP(\mathbf{K}_2)$ e, por conseguinte, $SIP(\mathbf{K}_1) \subseteq SIP(\mathbf{K}_2)$.
- De (1), (2) e (3) conclui-se que SIP é um operador de fecho.

5. Sejam C, D e E as categorias definidas pelos diagramas seguintes

(a) Construa a categoria $C \times D$.

A categoria $\mathbf{C} \times \mathbf{D}$ é a categoria definida do seguinte modo:

- os objetos de $\mathbf{C} \times \mathbf{D}$ são todos os pares (A,B), onde A é um objeto de \mathbf{C} e B é um objecto de \mathbf{D} :
- os morfismos de $\hom((A,B),(A',B'))$ são todos os elementos da forma $(f,g):(A,B)\to (A',B')$, onde $f:A\to A'$ é um morfismo de ${\bf C}$ e $g:B\to B'$ é um morfismo de ${\bf D}$;
- para cada objeto (A, B) de $\mathbf{C} \times \mathbf{D}$, o morfismo identidade $\mathrm{id}_{(A,B)}$ é o par $(\mathrm{id}_A, \mathrm{id}_B)$;
- a composição $(f',g') \circ (f,g)$ dos morfismos (f,g) e (f',g') de $\mathbf{C} \times \mathbf{D}$ é definida componente a componente, isto é, $(f,g) \circ (f',g') = (f \circ f',g \circ g')$.

Assim, a categoria $\mathbf{C} \times \mathbf{D}$ é a categoria representada pelo diagrama seguinte

(b) Diga, justificando, se (P,(f,g)) é um produto de R e S na categoria E.

Por definição de produto de dois objetos, (P,(f,g)) é um produto de R e S se:

- f é um morfismo de P em R e g é um morfismo de P em S;
- para qualquer objeto X e para quaisquer E-morfismos $f': X \to R$ e $g': X \to S$, existe um e um só morfismo $k: X \to P$ tal que $f \circ k = f'$ e $g \circ k = g'$.

Então, atendendo à definição de ${\bf E}$, conclui-se que (P,(f,g)) não é um produto de R e S, pois i é um morfismo de Q em R, j é um morfismo de Q em S e existe mais do que um morfismo $k:Q\to P$ tal que $f\circ k=i$ e $g\circ k=j$; de facto, u e v são morfismos de Q em P tais que $f\circ u=i$ e $g\circ u=j$, $f\circ v=i$ e $g\circ v=j$ e $u\neq v$.

6. Sejam C uma categoria e $f:A\to B$ e $g:B\to C$ morfismos em C. Mostre que se $g\circ f$ é um monomorfismo e f é invertível à direita, então f é um bimorfismo.

Sejam $f:A\to B$ e $g:B\to C$ morfismos em ${\bf C}$ tais que $g\circ f$ é um monomorfismo e f é invertível à direita.

Uma vez que $g\circ f$ é um monomorfismo, então, para quaisquer C-morfismos $i,j:D\to A$,

$$(g \circ f) \circ i = (g \circ f) \circ j \Rightarrow i = j.$$

Atendendo a que f invertível à direita, existe um C-morfismo $f': B \to A$ tal que $f \circ f' = \mathrm{id}_B$.

Pretendemos mostrar que f é um bimorfismo, isto é, queremos mostrar que f é um monomorfismo e um epimorfismo.

Atendendo às hipóteses anteriores, esta prova é simples. De facto:

- Para quaisquer morfismos $i, j: D \rightarrow A$,

$$\begin{array}{ll} f\circ i=f\circ j & \Rightarrow & g\circ (f\circ i)=g\circ (f\circ j) \\ & \Rightarrow & (g\circ f)\circ i=(g\circ f)\circ j & (\text{associatividade de }\circ) \\ & \Rightarrow & i=j & (g\circ f \text{ \'e um monomorfismo}), \end{array}$$

pelo que f é um monomorfismo.

- Para quaisquer morfismos $i, j: B \rightarrow D$,

$$\begin{array}{lll} i\circ f=j\circ f & \Rightarrow & (i\circ f)\circ f'=(j\circ f)\circ f'\\ & \Rightarrow & i\circ (f\circ f')=j\circ (f\circ f') & (\text{associatividade de }\circ)\\ & \Rightarrow & i\circ \mathrm{id}_B=j\circ \mathrm{id}_B & (f'\text{ \'e o inverso direito de }f)\\ & \Rightarrow & i=j, \end{array}$$

e, portanto, f é um epimorfismo.

Logo f é um epimorfismo.

7. Sejam C uma categoria, $f,g:A\to B$ morfismos em C e (I,i) um igualizador de f e g. Mostre que se $\alpha:B\to C$ é um monomorfismo, então (I,i) é um igualizador de $\alpha\circ f$ e $\alpha\circ g$.

Sejam $f,g:A\to B$ morfismos em \mathbf{C} , (I,i) um igualizador de f e g e $\alpha:B\to C$ um monomorfismo.

Atendendo a que (I,i) é um igualizador de f e g, então i é um ${\bf C}$ -morfismo de I em A tal que:

- (1) $f \circ i = g \circ i$;
- (2) para qualquer C-morfismo $j: J \to A$ tal que $f \circ j = g \circ j$, existe um e um só C-morfismo $u: J \to I$ tal que $i \circ u = j$.

Pretendemos mostrar que (I,i) é um igualizador de $\alpha \circ f$ e $\alpha \circ g$, isto é, queremos mostrar que:

- (3) $(\alpha \circ f) \circ i = (\alpha \circ g) \circ i$;
- (4) para qualquer C-morfismo $k:K\to A$ tal que $(\alpha\circ f)\circ k=(\alpha\circ g)\circ k$, existe um e um só C-morfismo $v:K\to I$ tal que $i\circ v=k$.

De (1) e (2) é simples mostar (3) e (4). De facto:

- (3) Como $f \circ i = g \circ i$, então $\alpha \circ (f \circ i) = \alpha \circ (g \circ i)$, donde resulta que $(\alpha \circ f) \circ i = (\alpha \circ g) \circ i$.
- (4) Seja $k:K\to A$ um ${\bf C}$ -morfismo tal que $(\alpha\circ f)\circ k=(\alpha\circ g)\circ k$. Então $\alpha\circ (f\circ k)=\alpha\circ (g\circ k)$ e, uma vez que α é um monomorfismo, tem-se $f\circ k=g\circ k$. Logo, por (2), existe um e um só ${\bf C}$ -morfismo $v:K\to I$ tal que $i\circ v=k$.
- 8. Sejam C, D e E categorias, $f: A \to B$ um C-morfismo e $F: C \to D$ e $G: D \to E$ funtores.
 - (a) Mostre que GF é um funtor da categoria C na categoria E.

Sejam $F: \mathbf{C} \to \mathbf{D}$ e $G: \mathbf{D} \to \mathbf{E}$ funtores.

- (1) Uma vez que que F é um funtor de ${\bf C}$ em ${\bf D}$, então a cada objeto X de ${\bf C}$, o funtor F associa um objeto F(X) de ${\bf D}$. Atendendo a que G é um funtor de ${\bf D}$ em ${\bf E}$, então a cada objeto F(X) de ${\bf D}$, o funtor G associa um objeto G(F(X)) de ${\bf E}$. Assim, a cada objeto X de ${\bf C}$, a correspondência GF associa um objeto GF(X) de ${\bf E}$.
- (2) Uma vez que que F é um funtor de ${\bf C}$ em ${\bf D}$, a cada ${\bf C}$ -morfismo $f:X\to Y$ é associado um ${\bf D}$ -morfismo $F(f):F(X)\to F(Y)$. Sendo G um funtor de ${\bf D}$ em ${\bf E}$, a cada ${\bf D}$ -morfismo $F(f):F(X)\to F(Y)$ é associado um ${\bf E}$ -morfismo $G(F(f)):G(F(X))\to G(F(Y))$. Assim, a cada ${\bf C}$ -morfismo $f:X\to Y$, a correspondência GF associa um ${\bf E}$ -morfismo $GF(f):GF(X)\to GF(Y)$.
- (3) Para cada objeto X de \mathbf{C} ,

$$\begin{array}{rcl} GF(\operatorname{id}_X) & = & G(F(\operatorname{id}_X)) & (\operatorname{por \ definição \ de} \ GF) \\ & = & G(\operatorname{id}_{F(X)}) & (F \ \operatorname{\'e} \ \operatorname{funtor}) \\ & = & \operatorname{id}_{G(F(X))} & (G \ \operatorname{\'e} \ \operatorname{funtor}) \\ & = & \operatorname{id}_{GF(X)} & (\operatorname{por \ definição \ de} \ GF). \end{array}$$

(4) Para quaisquer C-morfismos $f: X \to Y$ e $g: Y \to Z$,

$$\begin{array}{lll} GF(g\circ f) & = & G(F(g\circ f)) & (\text{por definição de }GF) \\ & = & G(F(g)\circ F(f)) & (F\text{ \'e funtor}) \\ & = & G(F(g))\circ G(F(f)) & (G\text{ \'e funtor}) \\ & = & GF(g)\circ GF(f) & (\text{por definição de }GF). \end{array}$$

Por (1), (2), (3) e (4) fica provado que GF é um funtor de ${\bf C}$ em ${\bf E}$.

(b) Mostre que se F é fiel e pleno e F(f) é invertível à esquerda, então f é invertível à esquerda.

Suponhamos que F é um funtor fiel e pleno e que $F(f): F(A) \to F(B)$ é invertível à esquerda.

Uma vez que F(f) é invertível à esquerda, existe um **D**-morfismo $g:F(B)\to F(A)$ tal que

$$g \circ F(f) = \mathrm{id}_{F(A)}$$
.

Pretendemos mostrar que f é invertível à esquerda, i.e. queremos mostrar que existe um C-morfismo $f': B \to A$ tal que $f' \circ f = \mathrm{id}_A$.

A prova segue facilmente das hipóteses anteriores. De facto, como f é pleno, existe um morfismo $f': B \to A$ tal que F(f') = g. Logo

$$F(f') \circ F(f) = \mathrm{id}_{F(A)}$$

e, uma vez que F é um funtor de ${f C}$ em ${f D}$, vem que

$$F(f' \circ f) = F(\mathrm{id}_A),$$

donde segue que

$$f' \circ f = \mathrm{id}_A,$$

uma vez que F é fiel.

Assim, f é invertível à esquerda.