# 電腦視覺實務與深度學習

## 作業三

M11102137 黃科皓

1. Report the performance of your trained source model on the source validation set

Select Model: ConfMix - https://arxiv.org/abs/2210.11539

Train 160 epoch (0~159) with img\_size=1280, hyp=hyp.scratch-high.yaml

a. mAP@[50:5:95], mAP@50, mAP@75

Source validation set:

source.pt (YOLOv5 val.py) (img\_size=1280):

| <u> </u>   | 177 0_ | •     |              |
|------------|--------|-------|--------------|
|            | mAP50  | mAP75 | mAP[50:5:95] |
| all        | 0.604  | 0.462 | 0.426        |
| person     | 0.69   | 0.442 | 0.426        |
| car        | 0.82   | 0.674 | 0.629        |
| truck      | 0.501  | 0.393 | 0.383        |
| bus        | 0.644  | 0.624 | 0.53         |
| rider      | 0.648  | 0.492 | 0.439        |
| motorcycle | 0.551  | 0.358 | 0.319        |
| bicycle    | 0.531  | 0.313 | 0.305        |
| train      | 0.447  | 0.403 | 0.376        |

source.pt (check\_your\_prediction\_valid.py):

|     | mAP50  | mAP75  | mAP[50:5:95] |
|-----|--------|--------|--------------|
| all | 0.6026 | 0.4557 | 0.4224       |

b. mAP50 curve (YOLOv5 results.csv) (img\_size=1280):



# 2. Report the performance of your trained source model on the target validation set (w/o any adaptations)

Target validation set:

source.pt (YOLOv5 uda\_val.py) (img\_size=1280):

|            | mAP50 | mAP75 | mAP[50:5:95] |
|------------|-------|-------|--------------|
| all        | 0.485 | 0.386 | 0.355        |
| person     | 0.604 | 0.407 | 0.389        |
| car        | 0.718 | 0.601 | 0.56         |
| truck      | 0.308 | 0.269 | 0.249        |
| bus        | 0.439 | 0.438 | 0.378        |
| rider      | 0.562 | 0.441 | 0.397        |
| motorcycle | 0.462 | 0.302 | 0.286        |
| bicycle    | 0.433 | 0.277 | 0.261        |
| train      | 0.356 | 0.356 | 0.32         |

source.pt (check\_your\_prediction\_valid.py) (img\_size=1280):

|     | mAP50  | mAP75  | mAP[50:5:95] |
|-----|--------|--------|--------------|
| all | 0.4816 | 0.3819 | 0.3510       |

## 3. Please provide a introduction to the two domain adaptation methods you used.

#### A. ConfMix:

## ConfMix - https://arxiv.org/abs/2210.11539

UDA 用在 object detection 是將在 source domain 上訓練的模型適應到新的 target domain,而該 target domain 上沒有 label 可以使用。與傳統方法不同, ConfMix 使用基於 region-level detection confidence 的 sample mixing strategy 方法,用於 adaptive object detector learning。將 target sample 中最高 confidence 的局部區域與 source image 進行混合,並使用額外的 consistency loss term,逐漸適應 target data distribution。

#### Architecture:



ConfMix 以 YOLOv5 做為訓練模型,將有 label 的 image 用一般 YOLO 的方式做 supervised learning。而沒有 label 的資料先 pridict 出結果,把 confidence 高的區域做為 pseudo label 做 training。Lcons 為 mixed sample 的 loss,Ldet 為 labeled sample 的 loss。

#### B. SSDA-YOLO:

## SSDA-YOLO - https://arxiv.org/abs/2211.02213v2

SSDA-YOLO 利用了 labeled 和 unlabeled data 來訓練模型。該方法基於 YOLO 目標檢測框架,該框架具有快速和高效的特點。SSDA-YOLO 通過兩個關鍵步驟來實現跨領域目標檢測。首先,它使用 labeled 的 source domain data 訓練初始的目標檢測模型。然後使用 unlabeled 的 target domain data 做 adaptive learing,使其能夠適應 target domain 的特徵分佈。

#### Architecture:



SSDA-YOLO 將 real source domain data 用 CUT 轉換成 fake target domain data,以及將 real target domain data 用 CUT 轉換成 fake source domain data。把 real target domain data 輸入 teacher model 中,把 real source domain data、fake source domain data 和 fake target domain data 輸入 student model 中。使用 teacher student learning 的方式來做學習,將 real target domain data 得預測結果和 fake target domain data 的預測結果做 distillation loss。Real source domain data 和 fake source domain data 的預測結果使用 label 算 detection loss,把兩者的 detection loss 結合做為 consistency loss。

4. Please compare the two methods and describe their respective advantages and disadvantages.

|              |                          | ConfMix                                                                                                                                                          |    | SSDA-YOLO                                                                                                     |
|--------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------|
| Advantage    | 禾<br>da<br>da            | 廣展數據集:pseudol abel 可以<br>引用 target domain unlabeled<br>ata 擴展 source domain<br>ataset,從而增加訓練數據的多<br>樣性。                                                          | 1. | 知識轉移:teacher model 可以傳遞在 source domain 上學習到的知識給 student model,幫助 student model 更好地適應 target domain。           |
|              | 重<br>p:                  | 降低 label 成本:相比於需要手<br>d label target dataset 的方法,<br>seudo label 不需要人工 label,<br>因此可以節省大量的成本。                                                                    | 2. | 適應性學習:Teacher student model 可以根據 target domain 的 特徵分佈調整模型的參數,實現 更好的適應效果。                                      |
| disadvantage | 新<br>的<br>果              | seudo label 可靠性:由於預測<br>結果可能存在錯誤,pseudo label<br>的可靠性成為一個關鍵問題。如<br>是 pseudo label 不準確,將會導<br>效模型學習到不正確的知識。                                                       | 1. | 依賴 teacher model:Teacher model 的品質和準確性對 student model 的表現有很大的影響。如果 teacher model 不夠準確,將會影響 student model 的性能。 |
|              | 立<br>ta<br>di<br>右<br>la | omain difference:Pseudo label<br>龙未充分考慮 source domian 和<br>arget domain 之間的 domain<br>ifference。在 target domain 存<br>E較大差異的情況下,pseudo<br>abel 可能無法取得良好的適應效<br>是。 | 2. | 過程複雜:teacher student model<br>需要設計適合的略和損失函數,<br>這需要一定的專業知識和調參過<br>程。                                          |

## 5. Report the performance of the adapted model on the target validation set

mAP50 increase from 0.4816 to 0.5172, magnitude = (0.5172 - 0.4816) / 0.4816 = 7.392%

Train 30 epoch (0~29) img\_size=1280

a. mAP@[50:5:95], mAP@50, mAP@75

source.pt(YOLOv5 uda\_val.py) (img\_size=1280):

|            | mAP50 | mAP75 | mAP[50:5:95] |
|------------|-------|-------|--------------|
| all        | 0.485 | 0.386 | 0.355        |
| person     | 0.604 | 0.407 | 0.389        |
| car        | 0.718 | 0.601 | 0.56         |
| truck      | 0.308 | 0.269 | 0.249        |
| bus        | 0.439 | 0.438 | 0.378        |
| rider      | 0.562 | 0.441 | 0.397        |
| motorcycle | 0.462 | 0.302 | 0.286        |
| bicycle    | 0.433 | 0.277 | 0.261        |
| train      | 0.356 | 0.356 | 0.32         |

source.pt (check\_your\_prediction\_valid.py) (img\_size=1280):

|     | mAP50  | mAP75  | mAP[50:5:95] |
|-----|--------|--------|--------------|
| all | 0.4816 | 0.3819 | 0.3510       |

## epoch10.pt(YOLOv5 uda\_val.py) (img\_size=1280):

|            | _     |       |              |
|------------|-------|-------|--------------|
|            | mAP50 | mAP75 | mAP[50:5:95] |
| all        | 0.467 | 0.34  | 0.311        |
| person     | 0.611 | 0.398 | 0.373        |
| car        | 0.764 | 0.599 | 0.553        |
| truck      | 0.31  | 0.272 | 0.242        |
| bus        | 0.438 | 0.424 | 0.357        |
| rider      | 0.548 | 0.411 | 0.351        |
| motorcycle | 0.5   | 0.281 | 0.274        |
| bicycle    | 0.438 | 0.228 | 0.239        |
| train      | 0.126 | 0.11  | 0.0977       |

epoch10.pt (check\_your\_prediction\_valid.py) (img\_size=1280):

| ·   |        |        |              |
|-----|--------|--------|--------------|
|     | mAP50  | mAP75  | mAP[50:5:95] |
| all | 0.4647 | 0.3368 | 0.3091       |

## epoch20.pt(YOLOv5 uda\_val.py) (img\_size=1280):

|            | mAP50 | mAP75 | mAP[50:5:95] |
|------------|-------|-------|--------------|
| all        | 0.517 | 0.399 | 0.367        |
| person     | 0.637 | 0.418 | 0.392        |
| car        | 0.78  | 0.627 | 0.585        |
| truck      | 0.408 | 0.352 | 0.334        |
| bus        | 0.566 | 0.536 | 0.468        |
| rider      | 0.58  | 0.459 | 0.39         |
| motorcycle | 0.412 | 0.261 | 0.258        |
| bicycle    | 0.448 | 0.234 | 0.259        |
| train      | 0.308 | 0.308 | 0.253        |

## epoch20.pt (check\_your\_prediction\_valid.py) (img\_size=1280):

|     | mAP50  | mAP75  | mAP[50:5:95] |
|-----|--------|--------|--------------|
| all | 0.5138 | 0.3953 | 0.3643       |

## epoch29.pt(YOLOv5 uda\_val.py) (img\_size=1280):

|            | mAP50 | mAP75 | mAP[50:5:95] |
|------------|-------|-------|--------------|
| all        | 0.522 | 0.402 | 0.369        |
| person     | 0.638 | 0.436 | 0.407        |
| car        | 0.784 | 0.641 | 0.598        |
| truck      | 0.424 | 0.339 | 0.329        |
| bus        | 0.547 | 0.511 | 0.452        |
| rider      | 0.576 | 0.459 | 0.397        |
| motorcycle | 0.443 | 0.337 | 0.287        |
| bicycle    | 0.462 | 0.258 | 0.268        |
| train      | 0.303 | 0.231 | 0.213        |

## Epoch29.pt (check\_your\_prediction\_valid.py) (img\_size=1280):

|     | mAP50  | mAP75  | mAP[50:5:95] |
|-----|--------|--------|--------------|
| all | 0.5172 | 0.3963 | 0.3637       |

best: epoch29.pt(YOLOv5 uda\_val.py) (change img\_size to 2000):

|            | mAP50 | mAP75 | mAP[50:5:95] |
|------------|-------|-------|--------------|
| all        | 0.55  | 0.424 | 0.393        |
| person     | 0.704 | 0.522 | 0.473        |
| car        | 0.828 | 0.708 | 0.648        |
| truck      | 0.394 | 0.29  | 0.288        |
| bus        | 0.546 | 0.491 | 0.431        |
| rider      | 0.625 | 0.515 | 0.454        |
| motorcycle | 0.504 | 0.327 | 0.313        |
| bicycle    | 0.493 | 0.302 | 0.303        |
| train      | 0.304 | 0.236 | 0.235        |

best: epoch29.pt(check\_your\_prediction\_valid.py) (change img\_size to 2000):

|     | mAP50  | mAP75  | mAP[50:5:95] |
|-----|--------|--------|--------------|
| all | 0.5464 | 0.4188 | 0.3907       |

## b. mAP50 curve(YOLOv5 results.csv):



7. Please compare the final mAP50 of the adapted model trained from the following two different initial weights.

下面的結果為使用預設 yolov5m6 model 對 unlabeled fog data 訓練和使用先對 org data train 做 pre-train 的 yolov5m6 model 對 unlabeled fog data 訓練。從兩次的結果可以看出有 pre-train 的 model 一開始的 performance 會比較好,因為對 org data 和 fog data 有一定的關聯性。但是在做 很多 epoch 的 training 後,performance 的結果差不多。這是因為 ConfMix 是使用 labeled org data 和 unlabeled fog data 做 training,所以做 domain adaptive training 時也同時對 labeled org data 做 training,導致兩個 model 的差異會逐漸縮小。

#### With training source data:

epoch29.pt (check\_your\_prediction\_valid.py) (img\_size=1280):

|     | mAP50  | mAP75  | mAP[50:5:95] |
|-----|--------|--------|--------------|
| all | 0.5172 | 0.3963 | 0.3637       |



## Without training source data:

epoch29 (check\_your\_prediction\_valid.py) (img\_size=1280):

|     | mAP50  | mAP75  | mAP[50:5:95] |
|-----|--------|--------|--------------|
| all | 0.5221 | 0.3837 | 0.3580       |



#### References:

- 1. Mattolin, Giulio, et al. "ConfMix: Unsupervised Domain Adaptation for Object Detection via Confidence-based Mixing." *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*. 2023.
- 2. Zhou, Huayi, Fei Jiang, and Hongtao Lu. "SSDA-YOLO: Semi-supervised domain adaptive YOLO for cross-domain object detection." *Computer Vision and Image Understanding* 229 (2023): 103649.
- 3. Oza, Poojan, et al. "Unsupervised domain adaptation of object detectors: A survey." *IEEE Transactions on Pattern Analysis and Machine Intelligence* (2023).
- 4. <a href="https://github.com/giuliomattolin/ConfMix">https://github.com/giuliomattolin/ConfMix</a>
- 5. https://github.com/hnuzhy/SSDA-YOLO