

FCC TEST REPORT

On Behalf of

WHISPER USA INC

WS2

Model No.: WS2M, WS2S

FCC ID: 2AG63-WS2M

Prepared for : WHISPER USA INC

Address : 7700 N KENDALL DR STE 405 MIAMI, FL 33156

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address : Building B, East Area of Nanchang Second Industrial Zone,

Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

Report Number : T1870494 01 Date of Receipt : April 6, 2017

Date of Test : April 7, 2017- April 25, 2017

Date of Report : April 26, 2017

Version Number : REV0

TABLE OF CONTENTS

<u>De</u>	escript	tion	Page		
1.	Sumi	mary of Standards And Results	5		
1.	1.1.	•			
2.		eral Information			
	2.1.	Description of Device (EUT)			
	2.2.	Tested Supporting System Details			
	2.3.	Block Diagram of connection between EUT and simulators			
	2.4.	Test Mode Description			
	2.5.	Test Conditions			
	2.6.	Test Facility			
	2.7.	Measurement Uncertainty	8		
	2.8.	Test Equipment List			
3.	Powe	er Line Conducted Emission Test	10		
	3.1.	Block Diagram of Test Setup	10		
	3.2.	Test Limits	10		
	3.3.	Configuration of EUT on Test	11		
	3.4.	Operating Condition of EUT	11		
	3.5.	Test Procedure	11		
	3.6.	Test Results	12		
4.	Radiated Emission Test				
	4.1.	Block Diagram of Test Setup	15		
	4.2.	Test Limit	16		
	4.3.	Configuration of EUT on Test	17		
	4.4.	Operating Condition of EUT	17		
	4.5.	Test Procedure	17		
	4.6.	Test Results	18		
5.	Band	l Edge Test	28		
	5.1.	Block Diagram of Test Setup	28		
	5.2.	Test Limit	28		
	5.3.	Configuration of EUT on Test	29		
	5.4.	Operating Condition of EUT	29		
	5.5.	Test Procedure	29		
	5.6.	Test Results	31		
6.	Occu	pied bandwidth Test	32		
	6.1.	Block Diagram of Test Setup	32		
	6.2.	Test Limit	32		
	6.3.	Test Procedure	32		
	6.4.	Test Results	32		
7.	Ante	nna Requirement	35		
	7.1.	Standard Requirement	35		
	7.2	Antenna Connected Construction	35		

Page	3	of	42
1 420	J	\mathbf{v}	74

		Page 3 of 42	Report No.: T1870494 01
	7.3. Results		35
8.	Photograph	•••••	36
	8.1. Photo of Conducted Er	nission	36
	8.2. Photos of Radiated Em	ission Test (In Semi Anec	hoic Chamber)36
9.	Photos of The EUT	•••••	38

TEST REPORT DECLARATION

: WHISPER USA INC **Applicant**

Manufacturer: Shenzhen Alcors Technology Co.,Ltd

EUT

WS2 Description

> WS2M, WS2S (A) Model No.

(B) Trademark Whisper

DC 3.7V, DC 5V Ratings

Supply

: DC 3.7V From battery, DC 5V From USB for charge Test Voltage (D)

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249: 2016, ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC Part15 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Reak Yang Reak Yang Tested by (name + signature)....: Test Engineer

Simple Guan Approved by (name + signature).....: Project Manager

Date of issue....: April 26, 2017

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION						
Description of Test Item	Description of Test Item					
Power Line Conducted Emission Test	FCC Part 15:2016	Section 15.207	P			
Spurious Emission Test	FCC Part 15:2016	Section 15.249&15.209	P			
Occupied bandwidth	FCC Part 15:2016	Section 15.215	P			
Band edge Requirement	FCC Part 15:2016	Section 15.249	P			
Antenna Requirement	FCC Part 15:2016	Section 15.203	P			

Note: 1. P is an abbreviation for Pass.

2. F is an abbreviation for Fail.

3. N/A is an abbreviation for Not Applicable.

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Description : WS2

Model Number : WS2M, WS2S

Diff

All the models are the same except the appearance, this report performs:

the WS2M to test.

Test Voltage : DC 3.7V From battery, DC 5V From USB for charge

Operation

frequency : 904MHz-926MHz

Channel No. : 13

Channel

: 1MHz, 2MHz Separation

Modulation type : QPSK

Data Rate : 500Kbps

Antenna Type : Fixed Antenna, max gain 0.45dBi.

Software version : V1.0 Hardware version : V1.0

Trademark : Whisper

Applicant : WHISPER USA INC

Address : 7700 N KENDALL DR STE 405 MIAMI, FL 33156

Manufacturer : Shenzhen Alcors Technology Co.,Ltd

4th floor south, Bldg 23, LianChuang Sci& Tech Park, Bulan Road,

Address : LongGang District, Shenzhen, China

Sample Type : Prototype production

2.2.Tested Supporting System Details

No.	Description	scription Manufacturer Model		Serial Number	Certification or DOC	
1	Notebook PC ACER		ZQT	N/A	DOC	

2.3.Block Diagram of connection between EUT and simulators

2.4.Test Mode Description

Test mode:

Mode	Channel	Frequency (MHz)		
	CH1	904		
ODGIV	CH7	915		
QPSK	CH13	926		

Note:

- 1. The test was used to control EUT work in Continuous TX mode, and select test channel, wireless mode
- 2. The EUT has been tested as an independent unit. And Continual Transmitting in maximum power.
- 3. For the relevant Conducted Measurement, the temporary antenna connector is used during the measurement. Antenna Connector Impedance: 50Ω , Cable Loss: 1.0 dB

Channel list:

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
CH 1	904	СН 6	913	CH 11	923
CH 2	905	CH 7	915	CH 12	925
CH 3	907	CH 8	917	CH 13	926
CH 4	909	CH 9	919		
CH 5	911	CH 10	921		

2.5.Test Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.6.Test Facility

Shenzhen Alpha Product Testing Co., Ltd.
Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road, Bao'an, Shenzhen, China

March 25, 2015 File on Federal Communication Commission

Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

2.7. Measurement Uncertainty

(95% confidence levels, k=2)

Test Item	Uncertainty
Uncertainty for Conduction emission test	2.71dB
Uncertainty for Radiation Emission test	3.90 dB (Distance: 3m Polarize: V)
(<1G)	3.92 dB (Distance: 3m Polarize: H)
Uncertainty for Radiation Emission test	4.26 dB (Distance: 3m Polarize: V)
(>1G)	4.28 dB (Distance: 3m Polarize: H)
Uncertainty for conducted RF Power	0.16dB

2.8.Test Equipment List

Equipment	Manufacture	Model No.	Serial No.	Due cal.	Cal Interval
3m Semi-Anechoic	noic CHENYU N/A N/A 20		2018.09.28	2Year	
Spectrum analyzer	Agilent	E4407B	MY46185649	2017.09.28	1Year
Signal Analyzer	Agilent	N9020A	MY48030494	2017.09.28	1 Year
Receiver	R&S	ESCI	101165	2017.09.28	1Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2017.09.28	1Year
Bilog Antenna	SCHWARZB ECK	VULB 9168	VULB9168-438	2017.09.29	2Year
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	BBHA 9120 D(1201)	2017.09.29	2Year
Horn Antenna	SCHWARZB ECK	BBHA 9170	BBHA 9170 D(1432)	2017.09.29	2Year
Cable (9KHz-1GHz)	SCHWARZB ECK	N/A	No.2	2017.09.28	1Year
Cable(1GHz- 26.5GHz)	SCHWARZB ECK	N/A	No.3	2017.09.28	1Year
Pre-amplifier	HP	HP8347A	2834A00455	2017.09.28	1Year
Pre-amplifier	Agilent	8449B	3008A02664	2017.09.28	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2017.09.28	1 Year
L.I.S.N.#2	ROHDE&SC HWARZ	ENV216	101043	2017.09.28	1 Year

3. POWER LINE CONDUCTED EMISSION TEST

3.1.Block Diagram of Test Setup

3.2.Test Limits

	Maximum RF Line Voltage			
Frequency	Quasi-Peak Level	Average Level		
	$dB(\mu V)$	$dB(\mu V)$		
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*		
500kHz ~ 5MHz	56	46		
5MHz ~ 30MHz	60	50		

Notes:

- 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss
- 2. * Decreasing linearly with logarithm of frequency.
- 3. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Test

The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 3.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.

3.5.Test Procedure

- The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013 on conducted Emission test.
- (2) The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 9kHz.
- (3) The frequency range from 30MHz to 1000MHz was pre-scanned with a Peak detector and all final readings of measurement from Test Receiver are Quasi-Peak and Average values.
- (4) The test results are reported on Section 3.6.

3.6.Test Results

EUT	:	WS2	Test Date	:	2017.4.21	
M/N	:	WS2M	Temperature	:	23.6°C	
Test Engineer	:	Reak Yang	Humidity	:	54%	
Test Mode	:	TX CH1				
Test Results : PASS						
Note: 1. All modes have been tested, and only worse case mode is reported only.						

Limit: FCC Part 15 CLASS B QP

EUT: WS2 M/N: WS2M Mode: 904MHz

Note:

Site LAB

Phase: Power: AC 120V/60Hz Temperature: 23.6

Humidity: 54 %

Report No.: T1870494 01

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
	10.9340	37.09	10.36	47.45	60.00	-12.55	peak		
	5.1620	25.56	10.20	35.76	60.00	-24.24	peak		
	1.2140	32.33	9.85	42.18	56.00	-13.82	peak		
*	0.4060	35.94	9.77	45.71	57.73	-12.02	peak		
	0.5060	29.31	9.78	39.09	56.00	-16.91	peak		
	0.2020	35.17	9.74	44.91	63.53	-18.62	peak		
		MHz 10.9340 5.1620 1.2140 * 0.4060 0.5060	MHz dBuV 10.9340 37.09 5.1620 25.56 1.2140 32.33 * 0.4060 35.94 0.5060 29.31	MHz dBuV dB 10.9340 37.09 10.36 5.1620 25.56 10.20 1.2140 32.33 9.85 * 0.4060 35.94 9.77 0.5060 29.31 9.78	MHz dBuV dB dBuV 10.9340 37.09 10.36 47.45 5.1620 25.56 10.20 35.76 1.2140 32.33 9.85 42.18 * 0.4060 35.94 9.77 45.71 0.5060 29.31 9.78 39.09	MHz dBuV dB dBuV dBuV 10.9340 37.09 10.36 47.45 60.00 5.1620 25.56 10.20 35.76 60.00 1.2140 32.33 9.85 42.18 56.00 * 0.4060 35.94 9.77 45.71 57.73 0.5060 29.31 9.78 39.09 56.00	MHz dBuV dB dBuV dBuV dB 10.9340 37.09 10.36 47.45 60.00 -12.55 5.1620 25.56 10.20 35.76 60.00 -24.24 1.2140 32.33 9.85 42.18 56.00 -13.82 * 0.4060 35.94 9.77 45.71 57.73 -12.02 0.5060 29.31 9.78 39.09 56.00 -16.91	MHz dBuV dB dBuV dBuV dB Detector 10.9340 37.09 10.36 47.45 60.00 -12.55 peak 5.1620 25.56 10.20 35.76 60.00 -24.24 peak 1.2140 32.33 9.85 42.18 56.00 -13.82 peak * 0.4060 35.94 9.77 45.71 57.73 -12.02 peak 0.5060 29.31 9.78 39.09 56.00 -16.91 peak	MHz dBuV dB dBuV dBuV dB Detector Comment 10.9340 37.09 10.36 47.45 60.00 -12.55 peak 5.1620 25.56 10.20 35.76 60.00 -24.24 peak 1.2140 32.33 9.85 42.18 56.00 -13.82 peak * 0.4060 35.94 9.77 45.71 57.73 -12.02 peak 0.5060 29.31 9.78 39.09 56.00 -16.91 peak

*:Maximum data x:Over limit I:over margin Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

(Reference Only

E:\EZ-EMC\Test Report\Z\zhongdian\monit

Page: 1

Engineer Signature:

Site LAB Limit: FCC Part 15 CLASS B QP

EUT: WS2 M/N: WS2M Mode: 904MHz

Note:

Phase: L1 Power: AC 120V/60Hz Temperature: 23.6

Humidity: 54 %

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	0.2020	37.35	9.74	47.09	63.53	-16.44	peak		
2	0.3060	31.26	9.76	41.02	60.08	-19.06	peak		
3	0.4060	36.00	9.77	45.77	57.73	-11.96	peak		
4	1.2180	34.62	9.85	44.47	56.00	-11.53	peak		
5	5.2819	26.29	10.20	36.49	60.00	-23.51	peak		
6 *	13.4380	38.16	10.34	48.50	60.00	-11.50	peak		
6 *	13.4380	38.16	10.34	48.50	60.00	-11.50	peak		

*:Maximum data x:Over limit I:over margin Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

(Reference Only

E:\EZ-EMC\Test Report\Z\zhongdian\monit

Page: 1

Engineer Signature:

4. RADIATED EMISSION TEST

4.1.Block Diagram of Test Setup

In Semi Anechoic Chamber (3m) Test Setup Diagram for 9KHz~30MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

4.2.Test Limit

Frequency	Distance	Field Stren	gths Limits
MHz	(Meters)	uV/m	dB uV/m
0.009 ~ 0.490	300	2400/F(kHz)	
0.490 1.703	30	24000/F(kHz)	
1.705 30	30	30	29.5
30 88	3	100(3nW)	40
88 216	3	150(6.8nW)	43.5
216 960	3	200(12nW)	46
Above 960	3	500(75nW)	54
Carrier frequency	3	50000(avg)	113.97(peak) 93.97(avg)

Notes:

- 1. Emission level = Read level + Antenna Factor Preamp Factor + Cable Loss
- 2. The smaller limit shall apply at the cross point between two frequency bands.
- 3. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- 4. For frequencies above 1000 MHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

4.3. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

4.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.

4.5. Test Procedure

- (1) The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for below 1GHz and 150 cm above the ground plane inside a semi-anechoic chamber for above 1GHz. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10: 2013 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- (3) Test antenna was located 4m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
 - (a) Change work frequency or channel of device if practicable.
 - (b) Change modulation type of device if practicable.
 - (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions
- (4) For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP

- (5) The frequency range from 9KHz to 150KHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 200Hz.
 - The frequency range from 150KHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 9KHz.
 - The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 120kHz.
 - The frequency range from above 1GHz is checked, the bandwidth of Signal Analyzer (Signal Analyzer N9020A) is set at 1MHz.
- (6) The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, the frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (7) Test for all x, y, z axes is performed and only the worst case of X xes was recorded in the test report.
- (8) The test results are reported on Section 4.6.

4.6. Test Results

Frequency Range	9KHz~30MHz								
EUT	WS2 Test Date : 2017.04.1	.7							
M/N	WS2M Temperature : 23.8℃								
Test Engineer	Reak Yang Humidity : 56%								
Test Mode	TX								
Test Results	PASS								
Note: 1. Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.									

Note: below the permissible value has no need to be reported.

Frequency Range	:	30MHz~1000MHz			
EUT	:	WS2	Test Date	:	2017.04.17
M/N	:	WS2M	Temperature	:	23.8℃
Test Engineer	:	Reak Yang	Humidity	:	56%
Test Mode	:	TX			
Test Results	:	PASS			

Note: 1. The test results are listed in next pages.

- 2. This mode is worst case mode, and this report only reflected the worst mode.
- 3. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.

Limit: FCC Part 15 Class B Radiation

EUT: WS2 M/N: WS2M Mode:904MHz Polarization: **Vertical**Power: DC 3.7V

Distance:

Temperature: 23.8 Humidity: 56 %

Report No.: T1870494 01

W52IVI

Note:

Engineer Signature:

Mk	. Freq.	Level	Factor	ment	Limit	Margin		Height	Degree	
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	42.0066	13.44	14.12	27.56	40.00	-12.44	peak			
	136.9391	14.77	13.65	28.42	43.50	-15.08	peak			
	316.5889	17.10	13.79	30.89	46.00	-15.11	peak			
	600.0000	12.67	19.34	32.01	46.00	-13.99	QP			
*	904.0093	66.37	23.04	89.41			QP			
	960.0000	13.33	23.92	37.25	46.00	-8.75	QP			
		MHz 42.0066 136.9391 316.5889 600.0000 * 904.0093	Mk. Freq. Level MHz dBuV 42.0066 13.44 136.9391 14.77 316.5889 17.10 600.0000 12.67 * 904.0093 66.37	Mk. Freq. Lev el dBuV Factor dBuV 42.0066 13.44 14.12 136.9391 14.77 13.65 316.5889 17.10 13.79 600.0000 12.67 19.34 * 904.0093 66.37 23.04	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 42.0066 13.44 14.12 27.56 136.9391 14.77 13.65 28.42 316.5889 17.10 13.79 30.89 600.0000 12.67 19.34 32.01 * 904.0093 66.37 23.04 89.41	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 42.0066 13.44 14.12 27.56 40.00 136.9391 14.77 13.65 28.42 43.50 316.5889 17.10 13.79 30.89 46.00 600.0000 12.67 19.34 32.01 46.00 * 904.0093 66.37 23.04 89.41	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB 42.0066 13.44 14.12 27.56 40.00 -12.44 136.9391 14.77 13.65 28.42 43.50 -15.08 316.5889 17.10 13.79 30.89 46.00 -15.11 600.0000 12.67 19.34 32.01 46.00 -13.99 * 904.0093 66.37 23.04 89.41	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector 42.0066 13.44 14.12 27.56 40.00 -12.44 peak 136.9391 14.77 13.65 28.42 43.50 -15.08 peak 316.5889 17.10 13.79 30.89 46.00 -15.11 peak 600.0000 12.67 19.34 32.01 46.00 -13.99 QP * 904.0093 66.37 23.04 89.41 UR QP	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 42.0066 13.44 14.12 27.56 40.00 -12.44 peak 136.9391 14.77 13.65 28.42 43.50 -15.08 peak 316.5889 17.10 13.79 30.89 46.00 -15.11 peak 600.0000 12.67 19.34 32.01 46.00 -13.99 QP * 904.0093 66.37 23.04 89.41 QP QP	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dB Detector cm degree 42.0066 13.44 14.12 27.56 40.00 -12.44 peak

Note:1. *:Maximum data; x:Over limit; !:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Limit: FCC Part 15 Class B Radiation

EUT: WS2 M/N: WS2M Mode:904MHz Note:

Polarization: Horizontal

Power: DC 3.7V

Temperature: 23.8 Humidity: 56 %

Report No.: T1870494 01

Distance:

Engineer Signature:

Note:1. *:Maximum data; x:Over limit; 1:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Limit: FCC Part 15 Class B Radiation

EUT: WS2 M/N: WS2M Mode:926MHz Note: Polarization: Horizontal

Power: DC 3.7V

Temperature: 23.8 Humidity: 56 %

Report No.: T1870494 01

Distance:

Engineer Signature:

Note:1. *:Maximum data; x:Over limit; 1:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Limit: FCC Part 15 Class B Radiation

EUT: WS2 M/N: WS2M Mode:926MHz Note: Polarization: **Vertical**Power: DC 3.7V

Temperature: 23.8 Humidity: 56 %

Report No.: T1870494 01

Distance:

Engineer Signature:

Note:1. *:Maximum data; x:Over limit; 1:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Site LAB

Note:

Limit: FCC Part 15 Class B Radiation

EUT: WS2 M/N: WS2M Mode:915MHz Polarization: Horizontal

Power:

Temperature: 23.8 Humidity: 56 %

Report No.: T1870494 01

Distance:

Radiated Emission Measurement

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	1	119.8555	13.65	12.58	26.23	43.50	-17.27	peak			
2	-	163.7547	13.62	14.28	27.90	43.50	-15.60	peak			
3		316.5889	20.69	13.79	34.48	46.00	-11.52	peak			
4		535.7073	15.42	18.19	33.61	46.00	-12.39	peak			
5		860.0352	19.52	22.46	41.98	46.00	-4.02	QP			
6	*	915.0034	66.81	23.43	90.24	20197000	1823 0230	QP			

Note:1. *:Maximum data; x:Over limit; !:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Site LAB Limit: FCC Part 15 Class B Radiation

EUT: WS2 M/N: WS2M Mode:915MHz Note:

Polarization: Vertical

Power: Distance: Temperature: 23.8

Report No.: T1870494 01

Humidity: 56 %

Radiated Emission Measurement

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		39.2991	13.61	14.21	27.82	40.00	-12.18	peak			
2		88.0327	15.25	9.73	24.98	43.50	-18.52	peak			
3		136.9389	14.77	13.65	28.42	43.50	-15.08	peak			
4	3	316.5889	17.10	13.79	30.89	46.00	-15.11	peak			
5		709.1823	14.15	20.63	34.78	46.00	-11.22	peak			
6	*	915.0032	63.17	23.43	86.60	L1308-00058	31 250 1350 250 150 170 170 170 170 170 170 170 170 170 17	QP			

Note:1. *:Maximum data; x:Over limit; I:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Freque	Frequency Range : 1GHz~25GHz										
EUT		: WS	52		-	Test Date	: 2017.0	4.17			
M/N		: WS	52M		-	Геmperature	: 24°C				
Test Engineer : Reak Yang Humidity : 56%											
Test Mode : TX 904MHz											
Test R	Test Results : PASS										
No.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark			
1	1808	Н	44.77	-4.62	40.15	74	-33.85	Peak			
2	1808	Н		-4.62		54		Avg			
3	2712	Н	45.58	-3.37	42.21	74	-31.79	Peak			
4	2712	Н		-3.37		54		Avg			
5	4520	Н	46.91	-2.57	44.34	74	-29.66	Peak			
6	4520	Н		-2.57		54		Avg			
						•					
1	1808	V	45.81	-4.62	41.19	74	-32.81	Peak			
2	1808	V		-4.62		54		Avg			
3	2712	V	45.37	-3.37	42.00	74	-32.00	Peak			
4	2712	V		-3.37		54		Avg			

Note:

5

6

4520

4520

1. Means other frequency and mode comply with standard requirements and at least have 20dB margin.

43.87

74

54

-30.13

Peak

Avg

2. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain.

46.44

Result=Reading + Correct Factor.

V

Margin= Result-Limit.

3. Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK.

-2.57

-2.57

- 4. Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: Avg.
- 5. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

Freque	ency Rang	e : 1 0	GHz~25GHz									
EUT		: WS	52			Test Date	: 2017.0)4.17				
M/N		: WS	52M			Temperature	: 24℃					
Test Engineer : Reak Yang Humidity : 56%												
Test M	Iode	: TX	915MHz									
Test Results : PASS												
No.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m	Limit (dBuV/m)	Margin	Remark				
1	1830	Н	44.65	-4.56	40.09	74	-33.91	Peak				
2	1830	Н		-4.56		54		Avg				
3	2745	Н	45.72	-3.21	42.51	74	-31.49	Peak				
4	2709	Н		-3.21		54		Avg				
5	4575	Н	46.37	-2.54	43.83	74	-30.17	Peak				
6	4575	Н		-2.54		54		Avg				
1	1830	V	44.29	-4.56	39.73	74	-34.27	Peak				
2	1830	V		-4.56		54		Avg				
3	2745	V	45.38	-3.21	42.17	74	-31.83	Peak				
4	2709	V		-3.21		54		Avg				
5	4575	V	47.19	-2.54	44.65	74	-29.35	Peak				
6	4575	V		-2.54		54		Avg				

Note:

- 1. Means other frequency and mode comply with standard requirements and at least have 20dB margin.
- 2. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain.

Result=Reading + Correct Factor.

Margin= Result-Limit.

- 3. Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK.
- 4. Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: Avg.
- 5. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

Freque	ency Rang	e : 10	GHz~25GHz								
EUT		: WS	52			Test Date	: 2017.0	04.17			
M/N		: WS	52M			Temperature	: 24°C				
Test E	Engineer	: Rea	ak Yang			Humidity	: 56%				
Test N	/lode	: TX	926MHz								
Test Results : PASS											
No.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark			
1	1852	Н	46.21	-4.52	41.69	74	-32.31	Peak			
2	1852	Н		-4.52		54		Avg			
3	2778	Н	45.59	-3.17	42.42	74	-31.58	Peak			
4	2778	Н		-3.17		54		Avg			
5	4630	Н	47.27	-2.51	44.76	74	-29.24	Peak			
6	4630	Н		-2.51		54		Avg			
1	1852	V	45.78	-4.52	41.26	74	-32.74	Peak			
2	1852	V		-4.52		54		Avg			
3	2778	V	45.67	-3.17	42.50	74	-31.50	Peak			
4	2778	V		-3.17		54		Avg			
5	4630	V	46.95	-2.51	44.44	74	-29.56	Peak			
6	4630	V		-2.51		54		Avg			

Note:

- 1. Means other frequency and mode comply with standard requirements and at least have 20dB margin.
- 2. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain.

Result=Reading + Correct Factor.

Margin= Result-Limit.

- 3. Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK.
- 4. Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: Avg.
- 5. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

5. BAND EDGE TEST

5.1.Block Diagram of Test Setup

5.2.Test Limit

Please refer section 15.249 and section 15.205.

249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in section 15.209, whichever is the lesser attenuation.

249(e) As show in section 15.35(b), for frequencies above 1000MHz, the above field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak filed strength shall not exceed 2500 millivolts/meter at 3meters along the antenna azimuth.

5.3. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 5.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.

5.5.Test Procedure

- (1) The EUT was placed on a non-metallic table, 150 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10: 2013 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- (3) Test antenna was located 4m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
 - (a) Change work frequency or channel of device if practicable.
 - (b) Change modulation type of device if practicable.
 - (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions

- Report No.: T1870494 01
- (5) The frequency range from above 1GHz is checked, the bandwidth of Signal Analyzer (Signal Analyzer N9020A) is set at 1MHz.
- (6) The frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (7) Test for all x, y, z axes is performed and only the worst case of X xes was recorded in the test report.
- (8) The test results are reported on Section 5.6.

5.6.Test Results

EUT		: WS	52			Test Date	: 2017.0)4.25
M/N		: WS	52M		7	Геmperature	: 23.8℃	1
Test E	Ingineer	: Rea	ak Yang		I	Humidity	: 56%	
Test N	/lode		904MHz		•			
Test R	lesults	: PA			1			
No.	Freq MHz	Polar ity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark
1	600	Н	14.13	19.34	33.47	46(QP)	-12.53	QP
2	902	Н	16.22	22.77	38.99	46(QP)	-7.01	QP
3	960	Н	13.59	23.92	37.51	46(QP)	-8.49	QP
4	-		-					
1	600	V	12.67	19.34	32.01	46(QP)	-13.99	QP
2	902	V	13.08	22.77	35.85	46(QP)	-10.15	QP
3	960	V	13.33	23.92	37.25	46(QP)	-8.75	QP
4								
Test N	/Iode	: TX	926MHz					
Test R	Results	: PA	SS					
1	600	Н	14.13	19.34	33.47	46(QP)	-12.53	QP
2	928	Н	12.95	23.46	36.41	46(QP)	-9.59	QP
3.	960	Н	12.69	23.92	36.61	46(QP)	-9.39	QP
4.								
		•				•		
1	600	V	14.10	19.34	33.44	46(QP)	-12.56	QP
2	928	V	13.14	23.46	36.60	46(QP)	-9.40	QP
3.	960	V	13.61	23.92	37.53	46(QP)	-8.47	QP
4.								

Note:

- 1. Means other frequency and mode comply with standard requirements and at least have 20dB margin.
- 2. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain.

Result=Reading + Correct Factor, Margin= Result-Limit.

- 3. Spectrum Set for PK measure: RBW=120KHz, VBW=300KHz, Sweep time=Auto, Detector: PK.
- 4. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

6. OCCUPIED BANDWIDTH TEST

6.1.Block Diagram of Test Setup

6.2.Test Limit

Please refer section 15.249 and section 15.205.

6.3.Test Procedure

- The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- (2) The test receiver RBW set 30KHz, VBW set 100KHz, Sweep time set auto.

6.4.Test Results

EUT	: WS2		Test Date :	2017.04.24
M/N	: WS2M		Temperature :	24℃
Test Engineer	: Reak Yang		Humidity :	56%
Test Results	: PASS			
Mode	Frequency	20dB Bandwidth	99% Bandwidth	Limit
	MHz	(MHz)	(MHz)	(kHz)
QPSK	904	3.043	2.7857	/
	915	3.029	2.7824	/
	926	3.034	2.7787	/
Note: 1. The test	results are listed in	next pages.		•

Frequency: 904MHz

Frequency: 915MHz

Frequency: 926MHz

7. ANTENNA REQUIREMENT

7.1.Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2. Antenna Connected Construction

The directional gains of antenna used for transmitting is 0.45dBi, and the antenna is fixed antenna no consideration of replacement. Please see EUT photo for details.

7.3.Results

The EUT antenna is fixed Antenna. It comply with the standard requirement.

8. PHOTOGRAPH

8.1.Photo of Conducted Emission

8.2. Photos of Radiated Emission Test (In Semi Anechoic Chamber)

9. PHOTOS OF THE EUT

EUT View

EUT View

----END OF REPORT----