三角関数の加法定理

 $1 \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

 $| 2 | \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$

 $\boxed{3} \quad \cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$

 $\boxed{4} \quad \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$

 $A(\cos \alpha , \sin \alpha)$

 $B(\cos \beta, \sin \beta)$

 $5 \quad \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$

 $\boxed{6} \quad \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$

証明

右の図のように、角 α 、 β の動径と単位円の交点を それぞれ A、B とする。

2 点 A, B の座標は $A(\cos\alpha, \sin\alpha)$, $B(\cos\beta, \sin\beta)$ であるから、2 点間の距離の公式により

 $AB^2 = (\cos \beta - \cos \alpha)^2 + (\sin \beta - \sin \alpha)^2$

 $=\cos^2\beta - 2\cos\beta\cos\alpha + \cos^2\alpha + \sin^2\beta - 2\sin\beta\sin\alpha + \sin^2\alpha$

 $= (\sin^2 \alpha + \cos^2 \alpha) + (\sin^2 \beta + \cos^2 \beta) - 2(\cos \beta \cos \alpha + \sin \beta \sin \alpha)$

 $=2-2(\cos\alpha\cos\beta+\sin\alpha\sin\beta)$ (

また、 $\angle AOB = \alpha - \beta$ から、 $\triangle AOB$ に余弦定理を用いると

 $AB^2 = OA^2 + OB^2 - 2OA \cdot OB\cos\angle AOB = 1^2 + 1^2 - 2 \cdot 1 \cdot 1 \cdot \cos(\alpha - \beta) = 2 - 2\cos(\alpha - \beta) \quad \cdots \quad \textcircled{2}$

①, ②から $2-2(\cos\alpha\cos\beta+\sin\alpha\sin\beta)=2-2\cos(\alpha-\beta)$

以上により、公式 4 が証明できた。③の β を一 β に置き換えると、 $\cos(-\theta) = \cos\theta$ 、 $\sin(-\theta) = -\sin\theta$ から $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$ よって、公式 3 が証明できた。

また、③の α を $\frac{\pi}{2}$ - α に置き換えると $\cos\left(\frac{\pi}{2} - \alpha - \beta\right) = \cos\left(\frac{\pi}{2} - \alpha\right)\cos\beta + \sin\left(\frac{\pi}{2} - \alpha\right)\sin\beta$

 $\text{Tors.} \quad \cos\left(\frac{\pi}{2}-\alpha-\beta\right)=\cos\left(\frac{\pi}{2}-\left(\alpha+\beta\right)\right) \text{Tors.} \quad \theta, \quad \cos\left(\frac{\pi}{2}-\theta\right)=\sin\theta \ , \quad \sin\left(\frac{\pi}{2}-\theta\right)=\cos\theta$

であるから $\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta$ ……④ よって、公式 1 が証明できた。

④の β を $-\beta$ に置き換えると $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ よって、公式 2 が証明できた。

 $\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}$ であることを利用して $\tan(\alpha + \beta) = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta}$

この右辺の分母と分子を $\cos \alpha \cos \beta$ で割ると

$$\tan(\alpha + \beta) = \frac{\frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta} - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} = \frac{\frac{\sin \alpha}{\cos \alpha} \cdot 1 + 1 \cdot \frac{\sin \beta}{\cos \beta}}{1 - \frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin \beta}{\cos \beta}} = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

よって、公式 $\mathbf{5}$ が証明できた。この等式の β を $-\beta$ に置き換えると、 $\tan(-\theta)$ = $-\tan\theta$ から

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$
 よって、公式 6 が証明できた。