Integration

Matthew Seguin

7.2.3

a. Let $f:[a,b] \to \mathbb{R}$ be a bounded function.

First assume there exists a sequence of partitions (P_n) of [a,b] such that $\lim_{n\to\infty} U(f,P_n) - L(f,P_n) = 0$.

Recall that for any partition P of [a, b] we have $U(f, P) \ge L(f, P)$.

So for all $n \in \mathbb{N}$ we have $U(f, P_n) - L(f, P_n) \ge 0$ and therefore $|U(f, P_n) - L(f, P_n)| = U(f, P_n) - L(f, P_n)$.

Then for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that for $n \geq N$ we have $|U(f, P_n) - L(f, P_n) - 0| = U(f, P_n) - L(f, P_n) < \epsilon$.

So for any $\epsilon > 0$ let $P_{\epsilon} = P_N$ then we have found a partition such that $U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon$.

This was for arbitrary $\epsilon > 0$ and is therefore true for all $\epsilon > 0$.

Therefore f is integrable on [a, b] by the integrability criterion.

Now assume that f is integrable on [a, b].

Then by the integrability criterion for all $\epsilon > 0$ there exists a partition P_{ϵ} of [a, b] such that $U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon$.

So for each $n \in \mathbb{N}$ let P_n be such that $U(f, P_n) - L(f, P_n) < \frac{1}{n}$. Such a P_n exists by the integrability criterion.

Recall that for any partition P of [a, b] we have $U(f, P) \ge L(f, P)$.

So for all $n \in \mathbb{N}$ we have $0 \le U(f, P_n) - L(f, P_n) < \frac{1}{n}$.

Therefore $\lim_{n\to\infty}U(f,P_n)-L(f,P_n)=0$ by the squeeze theorem since $(\frac{1}{n})\to 0$ and $(0)\to 0$.

So we have found a sequence of partitions (P_n) of [a,b] such that $\lim_{n\to\infty} U(f,P_n) - L(f,P_n) = 0$.

Assume we have such a sequence of partitions (P_n) of [a,b], then by the above proof f is integrable on [a,b].

Furthermore note that for any partition P we have that $L(f,P) \leq L(f) = \int_a^b f = U(f) \leq U(f,P)$.

Therefore for all $n \in \mathbb{N}$ we have $L(f, P_n) \leq \int_a^b f \leq U(f, P_n)$.

So for all $n \in \mathbb{N}$ we have $0 \le \int_a^b f - L(f, P_n) \le U(f, P_n) - L(f, P_n)$.

So by the squeeze theorem $\lim_{n\to\infty}\int_a^b f-L(f,P_n)=\int_a^b f-\lim_{n\to\infty}L(f,P_n)=0$ and hence $\lim_{n\to\infty}L(f,P_n)=\int_a^b f$.

Since $\lim_{n\to\infty}U(f,P_n)-L(f,P_n)=0$ we have by the algebraic limit theorem that

$$\lim_{n\to\infty} U(f, P_n) = \lim_{n\to\infty} L(f, P_n) = \int_a^b f.$$

Therefore f is integrable on [a, b] if and only if there exists a sequence of partitions (P_n) of [a, b] such that

$$\lim_{n\to\infty}U(f,P_n)-L(f,P_n)=0$$
, and in this case $\lim_{n\to\infty}L(f,P_n)=\lim_{n\to\infty}U(f,P_n)=\int_a^bf$

a. Let $A = [a, b] \cap \mathbb{Q}$. Since \mathbb{Q} is countable we know that A is also countable so we may write $A = \{a_1, a_2, a_3, ...\}$.

For $n \in \mathbb{N}$ let $A_n = \{a_1, a_2, ..., a_n\}$ then let $f_n(x) = 1$ if $x \in A_n$ and $f_n(x) = 0$ otherwise.

As $n \to \infty$ clearly $A_n \to A$ and so $(f_n(x)) \to f(x)$ where f(x) = 1 is $x \in A$ and f(x) = 0 otherwise.

This is Dirichlet's function restricted to the domain of [a, b].

Clearly each f_n has only finitely many discontinuities.

Since \mathbb{Q} is dense in \mathbb{R} we know for all $x \in [a, b]$ that in every $V_{\epsilon}(x)$ there is some element of A.

Therefore U(f, P) = 1 for any partition P. Similarly, the irrationals are dense in \mathbb{R} so L(f, P) = 0 for any partition P.

So we have that U(f) = 1 and L(f) = 0 so f is not integrable.

So this is such an example of a sequence of functions $(f_n) \to f$ such that each f_n has at most finitely many discontinuities but f is not integrable.

b. This is not possible. Let $(f_n) \to f$ uniformly with each f_n having at most finitely many discontinuities.

Let the discontinuities of f_n be $D_n = \{d_1, d_2, ..., d_{m_n}\}$, and let these be in increasing order.

Then we know f_n is continuous and therefore integrable on (d_k, d_{k+1}) for each $k \in \{1, 2, ..., m_n - 1\}$.

For each k fix some $z_k \in (d_k, d_{k+1})$ then we know f_n is integrable on $[x, z_k]$ for all $x \in (d_k, z_k)$.

Therefore f_n is integrable on $[d_k, z_k]$.

Similarly we know f_n is integrable on $[z_k, y]$ for all $y \in (z_k, d_{k+1})$.

Therefore f_n is integrable on $[z_k, d_{k+1}]$ and is hence integrable on $[d_k, d_{k+1}]$.

This was for each $[d_k, d_{k+1}]$ and therefore we have that f_n is integrable on its domain.

This was for arbitrary f_n and is therefore true for each f_n , so each f_n is integrable on its domain.

Since uniform convergence preserves integrability we have that f is also integrable on its domain.

So if $(f_n) \to f$ uniformly with each f_n having at most finitely many discontinuities then f is integrable \square

C. Let $A = [a, b] \cap \mathbb{Q}$. Then for $n \in \mathbb{N}$ let $f_n(x) = \frac{1}{n}$ if $x \in A$ and $f_n(x) = 0$ otherwise.

This is a modified version of Dirichlet's function restricted to the domain of [a, b].

Consider some arbitrary f_n .

As before we have that since \mathbb{Q} is dense in \mathbb{R} we know for all $x \in [a,b]$ that in every $V_{\epsilon}(x)$ there is some element of A.

Therefore $U(f_n, P) = \frac{1}{n}$ for any partition P. Similarly, the irrationals are dense in \mathbb{R} so $L(f_n, P) = 0$ for any partition P.

So we have that $U(f_n) = \frac{1}{n}$ and $L(f_n) = 0$ so f_n is not integrable.

This was for arbitrary f_n and is therefore true for all f_n , so each f_n is not integrable.

Now let $\epsilon > 0$ then let $N \in \mathbb{N}$ be such that $\frac{1}{N} < \epsilon$.

Then for $n \ge N$ we have $|f_n(x) - 0| = |f_n(x)| \le \frac{1}{n} \le \frac{1}{N} < \epsilon$. So $(f_n) \to f = 0$ uniformly.

Since constant functions are continuous they are also integrable.

So this is such an example of a sequence of functions $(f_n) \to f$ uniformly where each f_n is not integrable but f is integrable.

7.5.2

a. False, derivatives do not necessarily conserve continuity.

I don't remember which sample work it was but we looked at $f(x) = x^2 cos(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.

We concluded that
$$f'(x) = 2x \cos(\frac{1}{x}) + \sin(\frac{1}{x})$$
 for $x \neq 0$ and $f'(0) = 0$.

However f' is clearly not continuous at 0 as $2x \cos(\frac{1}{x})$ grows arbitrarily small as we get close to 0 but $\sin(\frac{1}{x})$ grows extremely oscillatory as we get close to 0. So the limit of f' does not exist at 0 and hence f' is not continuous at 0.

b. True, this is a result of the fundamental theorem of calculus.

If g is continuous on [a, b] then it is also integrable on [a, b].

By defining the function $G(x) = \int_a^x g$ we get that G is continuous on [a, b], and differentiable on [a, b] since g is continuous on [a, b]. Consequently, G' = g.

So every continuous function is the derivative of some function.

C. False, the converse is true but this statement is not true.

Let h be Thomae's function on [0, a] which we have seen previously is discontinuous at every rational number.

Now consider any partition P of [0, a]. You can always find an irrational number in any of the segments of the partition since the irrationals are dense in \mathbb{R} so L(h, P) = 0 for any partition P. Hence L(h) = 0.

Furthermore for any point $y \in \mathbb{R}$ we have seen that $\lim_{x \to y} h(x) = 0$. So by refining your partitions repeatedly you can make U(h, P) arbitrarily small hence $\inf\{U(h, P), P \in \mathcal{P}\} = 0$.

So $\int_0^a h = 0$ and this was for an arbitrary $a \in \mathbb{R}$ and is therefore true for all $a \in \mathbb{R}$.

So choose any $x \in \mathbb{Q}$, then $H(x) = \int_0^x h = 0$ is constant and therefore differentiable. However h(x) is discontinuous. So the differentiability of H does not imply the continuity of h.