Cálculo

folha 11 -

2015'16 -Ainda séries numéricas

- 1. Diga, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:
 - (a) se $(u_n)_n$ é convergente então $\sum_{n\geq 1} u_n$ é convergente;
 - (b) se $(u_n)_n$ é divergente então $\sum_{n>1} u_n$ é divergente;
 - (c) se $\sum_{n\geq 1}u_n$ é convergente então $(u_n)_n$ é convergente;
 - (d) se $\sum_{n\geq 1}u_n$ é divergente então $(u_n)_n$ é divergente;
 - (e) se $\lim_n u_n = 0$ então $\sum_{n>1} u_n$ é convergente;
 - (f) se $\sum_{n>1} u_n$ é divergente então $\lim_n u_n \neq 0$;
 - (g) se $\sum_{n>1} u_n$ é convergente então $\lim_n (u_1 + u_2 + \cdots + u_n) = 0$;
 - (h) se $\lim_n (u_1 + u_2 + \cdots + u_n) = 0$ então $\sum_{n>1} u_n$ é convergente;
 - (i) se $\lim_n (u_1 + u_2 + \cdots + u_n) = 1$ então $\sum_{n \ge 1} u_n$ é convergente.
- 2. Em cada uma das seguintes alíneas, apresente um exemplo nas condições indicadas, ou justifique porque não existe:
 - (a) uma série convergente;
 - (b) uma série divergente;
 - (c) uma série alternada divergente;
 - (d) uma sucessão $(u_n)_n$ tal que $\sum_{n>1} u_n$ seja divergente e $\sum_{n>1} u_n^2$ seja convergente;
 - (e) uma série divergente, $\sum_{n\geq 1}u_n$, tal que $\lim_nu_n=0$;
 - (f) uma série convergente, $\sum_{n>1}u_n$, tal que $\lim_nu_n=1$;
 - (g) duas séries divergentes, $\sum_{n\geq 1}u_n$ e $\sum_{n\geq 1}v_n$, tais que $\lim_n(u_n+v_n)$ seja convergente.

Séries de potências.

3. Determine o raio e o domínio de convergência das séries de potências

(a)
$$\sum_{n\geq 0} \frac{n}{n+1} x^n \ (R=1);$$
 (d) $\sum_{n\geq 0} \frac{x^n}{n!} \ (R=\infty);$

(d)
$$\sum_{n>0} \frac{x^n}{n!} \ (R=\infty);$$

(g)
$$\sum_{n>1} \frac{2^n}{n^n} x^n \ (R=\infty);$$

(b)
$$\sum_{n \ge 0} \frac{n^5}{(n+1)!} x^n \ (R = \infty)$$

(e)
$$\sum_{n > 0} n!(x-3)^n (R=0)$$
;

(b)
$$\sum_{n\geq 0} \frac{n^5}{(n+1)!} x^n \ (R=\infty);$$
 (e) $\sum_{n\geq 0} n! (x-3)^n \ (R=0);$ (h) $\sum_{n\geq 0} \frac{(-3)^n}{\sqrt{n+1}} x^n \ (R=\frac{1}{3});$ (c) $\sum_{n\geq 1} \frac{(x-2)^n}{n} \ (R=1);$ (f) $\sum_{n\geq 0} \frac{1}{2+\frac{1}{n+1}} x^n \ (R=1);$ (i) $\sum_{n\geq 0} \frac{n}{5^{n+1}} (x+1)^n \ (R=5).$

(c)
$$\sum_{n>1} \frac{(x-2)^n}{n} (R=1)$$

(f)
$$\sum_{n\geq 0} \frac{1}{2+\frac{1}{n+1}} x^n \ (R=1)$$

(i)
$$\sum_{n>0} \frac{n}{5^{n+1}} (x+1)^n \ (R=5)$$

4. Recorde a série geométrica de razão |r| < 1

$$\sum_{n\geq 0} r^n = \frac{1}{1-r}.$$

Usando a série geométrica escreva as seguintes funções como séries de potências indicando o seu intervalo de convergência.

(a)
$$\frac{1}{1+x}$$

(c)
$$\frac{x^3}{2+x}$$

(e)
$$\frac{2}{3-x}$$

(b)
$$\frac{1}{2+x}$$

(d)
$$\frac{1}{1+x^7}$$

(f)
$$\frac{1}{8+x^3}$$
.

5. Considere a função
$$f(x) = \frac{1}{1+x^2}$$
.

- (a) Escreva a função f como uma série de potências indicando o seu domínio de convergência.
- (b) Recorrendo à a alínea anterior, escreva nas forma de série de potências as funções

i.
$$\frac{x}{(1+x^2)^2}$$

ii.
$$\frac{x}{1+x^2}$$

iii.
$$ln(1+x^2)$$

Séries de Taylor e MacLaurin.

6. Mostre que

(a)
$$\frac{1}{1-x} = \sum_{n>0} x^n$$
, $|x| < 1$;

(d)
$$e^x = \sum_{n>0} \frac{x^n}{n!}, \quad x \in \mathbb{R};$$

(b)
$$\operatorname{sen} x = \sum_{n>0} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \quad x \in \mathbb{R};$$

(b)
$$\operatorname{sen} x = \sum_{n \ge 0} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \quad x \in \mathbb{R};$$
 (e) $\operatorname{ln} x = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n} (x-1)^n, \quad |x-1| < 1;$

(c)
$$\cos x = \sum_{n>0} \frac{(-1)^n}{(2n)!} x^{2n}, \quad x \in \mathbb{R};$$

(f)
$$\ln(x+1) = \sum_{n>1} \frac{(-1)^{n+1}}{n} x^n, \quad |x| < 1.$$

7. Mostre que

$$1 = \frac{\pi}{2} - \frac{\pi^3}{3!2^3} + \frac{\pi^5}{5!2^5} - \frac{\pi^7}{7!2^7} + \dots$$

(Sug: recorde o exercício 6b.)

8. Seja
$$f:]-1,1[\longrightarrow \mathbb{R}$$
 a função definida por $f(x)=\dfrac{1}{1-x}.$

- (a) Determine a série de Taylor de f em torno de a=0.
- (b) Determine a série de Taylor de f em torno de a=1/2.

9. * Considere a série
$$\sum_{n>0} \frac{x^n}{n!}$$
.

No exercício 3d mostrou-se que esta série converge para todo o $x \in \mathbb{R}$. Designe-se por f(x) a soma da série.

- (a) Mostre que f(x) = f'(x).
- (b) Mostre que a função e^x é a única função que verifica as condições

$$f(x) = f'(x), \qquad f(0) = 1.$$

Conclua que
$$e^x = \sum_{n \geq 0} \frac{x^n}{n!}$$
.