CS 241, Lecture 6 - Deterministic Finite Automata

Note that from this point on, I'm using "s" to define "\$" when within code blocks.

1 Finite Languages and Membership

- Recall us defining languages and words.
- How can we efficiently determine membership for a finite language? This is the easiest case.
- The naive way of doing it would be to check EVERY single word until we hit it or run through the entire list of words in the language.
- More efficiently, though, we could basically use a structure like a trie, where we determine if a word is in a language based on the previous character.
- For example:

```
if char[0] == 'b' {
    if char[1] == 'a' {
        if char[2] == 'g' {
            accept();
        }
        else if char[2] == 't' {
            accept();
        }
        else if no_more_chars(char*) reject();
    }
    else if char[2] == 'e' {
        if char[3] == 't' {
            accept();
        }
        else if no_more_chars(char*) reject();
    }
} else reject();
```

• We can represent this pictorially:

- We place an arrow into the inital start state.
- Accepting states are two circles.
- Label your arrows from state to state.
- In CS 241, we do not need to include error states. You'll need them for CS 360 though. If your bubble does not have a valid arrow leaving it, we assume that this means it will go into an error state.

2 Regular Languages

- A **regular language** over an alphabet \sum consists of one of the following:
 - 1. The empty language and the language consisting of the empty word are regular.
 - 2. All languages $\{s\}$ for all $s \in \sum$ are regular.
 - 3. The union, concatenation, or Kleene star of any two reg. lang. are also regular.
 - 4. Nothing else.
- Let L, L_1, L_2 be two reg. lang. Then the following are regular languages:
 - Union: $L_1 \bigcup L_2 = \{x : x \in L_1 \text{ or } x \in L_2\}$
 - Concatenation: $L_1 \cdot L_2 = L_1 L_2 = \{xy : x \in L_1, y \in L_2\}$
 - Kleene star: $L*=\{\epsilon\}\bigcup\{xy:x\in L*,y\in L\}=\bigcup_{n=0}^{\infty}L^n$ where $L^n=\left\{\{\epsilon\}\text{ if }n=0\atop LL^{n-1}\text{ otherwise}\right\}$

- Equivalently, L* is the set of all strings consisting of 0 or more occurences of strings from L concatenated together.
- For example, suppose $L_1 = \{\text{up, down}\}, L_2 = \{\text{hill, load}\}, \text{ and } L = \{a, b\}.$ Then:
 - $L_1 \bigcup L_2 = \{\text{up, down, hill, load}\}$
 - $L_1L_2 = \{\text{uphill, upload, downhill, download}\}$
 - $L* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, \dots \}$
- Another sample question: Let $\sum = \{a, b\}$. Explain why $L = \{ab^na : n \in \mathbb{N}\}$ is regular.
- Solution: Since $\{a\}$ is regular and $\{b\}$ * is also regular as $\{b\}$ is regular, then the concatenation of $\{a\} \cdot \{b\} * \cdot \{a\}$ is also regular.
- A regular expression is basically a regular language as well. We just drop all the set notation.
 - Union uses a pipe (|) now.
 - Concationation is still \cdot or just put them together.
 - Kleene star stays the same.
 - Order of operations: $* > \cdot > |$.
 - For example, the previous example would translate to ab * a.

3 Deterministic Finite Automata

- We can use our earlier pictorial representation to represent a regular language IF we allow our picture to include loops!
- This is, of course, to support Kleene stars. For example:

• Or, if you're in CS 360:

- These machines are called **Deterministic Finite Automata (DFA):**
 - A DFA is a 5-tuple $(\sum, Q, q_0, A, \delta)$:
 - * \sum is a finite non-empty set (alphabet)
 - * Q is a finite non-empty set of states
 - * $q_0 \in Q$ is a start state
 - $*A \subseteq Q$ is a set of accepting states
 - * $\delta:(Q\times\sum)\to Q$ is our transition function given a state and a symbol of our alphabet, which state do we go to? With no explicit arrows, this means, go to the error state.
- For example, let's consider MIPS labels (Carmen forgot to add the image): -¿ [q0] -(a-z. A-Z)-¿ [q1](loops with (a-z, A-Z, 0-9)) -(:)-¿ [[q2]]
- Let's try another DFA example. Write DFAs over $\sum = \{a, b\}$ that:
 - 1. Accepts only words with an even number of a's
 - 2. Accepts only words with an odd number of a's and an even number of b's
 - 3. Accepts only words where the parity of the number of a's is equal to that of the number of b's

• We'll do the third one: