Skript zur Vorlesung Analysis II bei Prof. Dr. Dirk Hundertmark

Karlsruher Institut für Technologie ${\bf Sommersemester}~2024$

Dieses Skript ist inoffiziell. Es besteht kein Anspruch auf Vollständigkeit oder Korrektheit.

Inhaltsverzeichnis

1	[*] Das eindimensionale Riemann-Integral	3
	1.1 Der Integralbegriff nach Riemann	3
	1.2 [*] Integrabilitätskriterien	
	1.3 [*] Mittelwertsätze der Integralrechnung	
2	[*] Das orientierte Riemann-Integral	22
	2.2 Riemann-Integral für vektorraumwertige Funktionen	24
3	[*] Der Hauptsatz der Integral- und Differentialrechnung	25
	3.1 Hauptsatz der Integralrechnung	25
	3.2 Integrationstechniken	27
4	[*] Uneigentliche Integrale	33
	4.1 Uneigentliche Integrale: Fall I	33
	4.2 Uneigentliche Integrale: Fall II	36
	4.3 Uneigentliche Integrale Fall III	36
	4.4 Uneigentliche Integrale Fall IV	37
5	[*] Integrale und gleichmäßige Konvergenz	40
6	[*] Taylors Theorem	45

Alle mit $[\ast]$ markierten Kapitel sind noch nicht Korrektur gelesen und bedürfen eventuell noch Änderungen.

1 [*] Das eindimensionale Riemann-Integral

[16. Apr] Frage: Was ist die Fläche unter einem Graphen?

1.1 Der Integralbegriff nach Riemann

Definition 1.1.1 (Zerlegung). Eine Zerlegung Z eines kompakten Intervalls I = [a, b] in Teilintervalle I_j (j = 1, ..., k) der Längen $|I_j|$ ist eine Menge von Punkten $x_0, x_1, ..., x_k \in I$ (Teilpunkte von Z) mit

$$a = x_0 < x_1 < x_2 < \dots < x_k = b$$

und $I_j = [x_{j-1}, x_j]$. Wir setzen $\Delta x_j := x_j - x_{j-1} =: |I_j|$.

Definition 1.1.2 (Feinheit einer Zerlegung). Die Feinheit der Zerlegung Z ist definiert als die Länge des längsten Teilintervalls von Z:

$$\Delta(Z) := \max(|I_1|, |I_2|, \dots, |I_k|) = \max(\Delta x_1, \Delta x_2, \dots, \Delta x_k)$$

Notation 1.1.3. Wir setzen

$$\mathcal{B}(I) = \left\{ f: I \to \mathbb{R} \;\middle|\; \sup_{x \in I} |f(x)| < \infty \right\}$$

als die Menge aller beschränkten reellwertigen Funktionen auf I.

Definition 1.1.4 (Riemannsche Zwischensumme). In jedem I_j wählen wir ein $\xi_j \in I_j$ als Stützstelle und setzen $\xi = (\xi_1, \xi_2, \dots, \xi_k)$. Für eine Funktion $f \in \mathcal{B}(I)$ setzen wir die Riemannsche Zwischensumme

$$S_Z(f) = S_Z(f, \xi) := \sum_{j=1}^k f(\xi_j) \cdot \Delta x_j = \sum_{j=1}^k f(\xi_j) \cdot |I_j|$$

Definition 1.1.5 (Ober- und Untersumme). Für $f \in \mathcal{B}(I)$ setzen wir außerdem

$$\underline{m}_{j} \coloneqq \inf_{I_{j}} f = \inf \{ f(x) : x \in I_{j} \}$$

$$\overline{m}_{j} \coloneqq \sup_{I_{j}} f = \sup \{ f(x) : x \in I_{j} \}$$

$$\overline{S}_{Z}(f) \coloneqq \sum_{j=1}^{k} \overline{m}_{j} \cdot \Delta x_{j}$$
(Obersumme)
$$\underline{S}_{Z}(f) \coloneqq \sum_{i=1}^{k} \underline{m}_{j} \cdot \Delta x_{j}$$
(Untersumme)

Damit gilt für $x \in I_i$

$$\underline{m}_{j} \leq f(x) \leq \overline{m}_{j}
\Rightarrow \underline{m}_{j} \leq f(\xi_{j}) \leq \overline{m}_{j}
\Rightarrow \underline{S}_{Z}(f) \leq S_{Z}(f, \xi) \leq \overline{S}_{Z}(f)$$
(1.1.1)

Wir wollen die Zerlegung Z nun systematisch verfeinern.

Definition 1.1.6 (Verfeinerung einer Zerlegung).

- (a) Eine Zerlegung Z^* von I ist eine Verfeinerung der Zerlegung Z von I, falls alle Teilpunkte von Z auch Teilpunkte von Z^* sind.
- (b) Die gemeinsame Verfeinerung $Z_1 \vee Z_2$ zweier Zerlegungen Z_1, Z_2 von I ist die Zerlegung von I, deren Teilpunkte gerade die Teilpunkte von Z_1 und Z_2 sind.

Lemma 1.1.7. Ist Z^* eine Verfeinerung der Zerlegung Z von I und $f \in \mathcal{B}(I)$. Dann gilt

$$\underline{S}_{Z}(f) \leq \underline{S}_{Z^{*}}(f) \leq \overline{S}_{Z^{*}}(f) \leq \overline{S}_{Z}(f)$$

Beweis. Z^* enthält alle Teilpunkte von Z, nur mehr.

SCHRITT 1: Wir nehmen an Z^* enthielte genau einen Teilpunkt (y_{l+1}) mehr als Z. Das heißt

$$y_j = x_j \qquad \forall \, 0 \le j \le l$$

$$x_l < y_{l+1} < x_{l+1}$$

$$y_{j+1} = x_j \qquad \forall \, l+1 \le j \le k$$

Dann gilt

$$\underline{S}_{Z}(f) = \sum_{j=1}^{k} \underline{m}_{j} \Delta x_{j} = \sum_{j=1}^{l} \underline{m}_{j} \Delta x_{j} + \underline{m}_{l+1} \Delta x_{l+1} + \sum_{j=l+2}^{k} \underline{m}_{j} \Delta x_{j}$$

$$\underline{m}_{j} = \inf_{I_{j}} f = \inf_{I_{j}^{*}} f = \underline{m}_{j}^{*} \quad \forall 1 \leq j \leq l$$

$$\underline{m}_{j} = \inf_{I_{j}} f = \inf_{I_{j+1}^{*}} f = \underline{m}_{j+1}^{*} \quad \forall j \geq l+2$$

$$I_{j} = [x_{j}, x_{j-1}] = [y_{j+1}, y_{j}] = I_{j+1}^{*} \quad \forall j \geq l+2$$

$$\Rightarrow \sum_{j=l+2}^{k} \underline{m}_{j} \Delta x_{j} = \sum_{j=l+2}^{k} \underline{m}_{j+1}^{*} \Delta y_{j+1} = \sum_{j=l+3}^{k+1} \underline{m}_{j}^{*} \Delta y_{j}$$

$$\underline{m}_{l+1} \Delta x_{l+1} = \underline{m}_{l+1} (x_{l+1} - x_{l}) = \underline{m}_{l+1} (y_{l+2} - y_{l})$$

$$= \underline{m}_{l+1} (y_{l+2} - y_{l+1} + y_{l+1} - y_{l})$$

$$= \underline{m}_{l+1} \Delta y_{l+2} + \underline{m}_{l+1} \Delta y_{l+1}$$

$$\leq \underline{m}_{l+2}^{*} \Delta y_{l+2} + \underline{m}_{l+1}^{*} \Delta y_{l+1}$$

Insgesamt ergibt sich

$$\underline{S}_{Z}(f) \leq \sum_{j=1}^{l} \underline{m}_{j}^{*} \Delta y_{j} + \underline{m}_{l+1}^{*} \Delta y_{l+1} + \underline{m}_{l+2}^{*} \Delta y_{l+2} + \sum_{j=l+3}^{k+1} \underline{m}_{j}^{*} \Delta y_{j} = \underline{S}_{Z^{*}}(f)$$

ähnlich zeigt man $\overline{S}_Z(f) \geq \overline{S}_{Z^*}(f)$.

SCHRITT 2: Sei Z^* eine beliebige Verfeinerung von Z. Wir nehmen eine endliche Folge von Einpunkt-Verfeinerungen $Z=Z_0,Z_1,Z_2,\ldots,Z_r=Z^*$. Dabei hat Z_{s+1} genau einen Punkt mehr als Z_s . Dann gilt nach SCHRITT 1, dass $\underline{S}_Z(f) \leq \underline{S}_{Z_1}(f) \leq \cdots \leq \underline{S}_{Z^*}(f)$ und $\overline{S}_Z(f) \geq \overline{S}_{Z_1}(f) \geq \cdots \geq \overline{S}_{Z^*}(f)$.

SCHRITT 3: Sei $\xi^* = (\xi_1^*, \xi_2^*, \dots, \xi_l^*)$ der Zwischenpunkt zur Zerlegung Z^* . Dann gilt nach (1.1.1)

$$\underline{S}_{Z^*}(f) \leq S_{Z^*}(f, \xi^*) \leq \overline{S}_{Z^*}(f)$$

Lemma 1.1.8. Seien Z_1 , Z_2 Zerlegungen von I. Dann gilt

$$\underline{S}_{Z_1}(f) \le \overline{S}_{Z_2}(f) \qquad \forall f \in \mathcal{B}(I)$$

Beweis. Es gilt nach Lemma 1.1.7, dass

$$\underline{S}_{Z_1}(f) \le \underline{S}_{Z_1 \vee Z_2}(f) \le \overline{S}_{Z_1 \vee Z_2}(f) \le \overline{S}_{Z_2}(f)$$

Bemerkung 1.1.9. Für I = [a, b] und $f \in \mathcal{B}(I)$ gilt immer

$$|I| \cdot \inf_{I} f \le \underline{S}_{Z}(f) \le \overline{S}_{Z}(f) \le |I| \cdot \sup_{I} f$$

für alle Zerlegungen Z von I. Somit sind

$$\left\{ \overline{S}_{Z}(f):Z\text{ ist eine Zerlegung von }I\right\}$$

und

$$\{\underline{S}_{Z}(f): Z \text{ ist eine Zerlegung von } I\}$$

beschränkte, nicht-leere Teilmengen von \mathbb{R} . Das erlaubt uns die folgende Definition, mit der wir nun mithilfe der bereits definierten Summen einem tatsächlichen Integralbegriff nähern wollen.

Definition 1.1.10 (Ober- und Unterintegral). Es sei I = [a, b] und $f \in \mathcal{B}(I)$. Wir definieren

$$\overline{J}(f) \coloneqq \inf \left\{ \overline{S}_Z(f) : Z \text{ ist Zerlegung von } I \right\}$$
 (Oberintegral)
$$\underline{J}(f) \coloneqq \sup \left\{ \underline{S}_Z(f) : Z \text{ ist Zerlegung von } I \right\}$$
 (Unterintegral)

Lemma 1.1.11. Es sei Z eine Zerlegung von I. Dann gilt

$$S_Z(f) \le J(f) \le \overline{J}(f) \le \overline{S}_Z(f)$$

Beweis. Nach Lemma 1.1.8 gilt für zwei beliebige Zerlegungen $\mathbb{Z}_1,\,\mathbb{Z}_2$

$$\underline{S}_{Z_1}(f) \leq \overline{S}_{Z_2}(f)$$

Wir fixieren Z_2 und erhalten

$$\Rightarrow \sup \left\{ \underline{S}_{Z_1}(f) : Z_1 \text{ Zerlegung von } I \right\} \leq \overline{S}_{Z_2}(f)$$

$$\Rightarrow \underline{J}(f) \leq \overline{S}_{Z_2}(f)$$

$$\Rightarrow \underline{J}(f) \leq \inf \left\{ \overline{S}_{Z_2}(f) : Z_2 \text{ Zerlegung von } I \right\}$$

$$\Rightarrow \underline{J}(f) \leq \overline{J}(f)$$

$$\Rightarrow \underline{S}_{Z}(f) \leq \underline{J}(f) \leq \overline{J}(f) \leq \overline{S}_{Z}(f)$$

Definition 1.1.12 (Integral). Es sei I = [a, b]. $f \in \mathcal{B}(I)$ heißt (Riemann-)integrierbar, falls

$$J(f) = \overline{J}(f)$$

In diese Fall nennen wir $J(f)\coloneqq \underline{J}(f)=\overline{J}(f)$ das (bestimmte) Integral von f über [a,b] und schreiben

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f \, dx = \int_{I} f(x) \, dx = \int_{I} f \, dx =: J(f)$$

Die Klasse der Riemann-integrierbaren Funktionen $f \in \mathcal{B}(I)$ nennen wir $\mathcal{R}(I)$.

[18. Apr] Beispiel 1.1.13 (Konstante Funktion). f(x) := c auf [a, b] für eine Konstante $c \in \mathbb{R}$. Dann gilt

$$\int_{a}^{b} f(x) \, \mathrm{d}x = c \cdot (b - a)$$

Beispiel 1.1.14 (Dirichlet-Funktion). Die Funktion $f:[0,1]\to\mathbb{R}$

$$f(x) := \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & \text{sonst} \end{cases}$$

ist nicht Riemann-integrierbar, weil $\overline{J}(f) = 1$ und $\underline{J}(f) = 0$.

Übung 1.1.15. Beweisen Sie die Aussagen aus Beispiel 1.1.13 und 1.1.14 mittels der formalen Definition von $\underline{J}(f)$ und $\overline{J}(f)$.

1.2 [*] Integrabilitätskriterien

Satz 1.2.1 (1. Kriterium). Es sei $f \in \mathcal{B}(I)$. Dann gilt $f \in \mathcal{R}(I)$ genau dann, wenn

$$\forall \varepsilon > 0 \; \exists \, \text{Zerlegung} \; Z \; \text{von} \; I \; \text{mit} \; \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$$

Beweis. "←" Nach Lemma 1.1.11 gilt

$$\underline{S}_Z(f) \le \underline{J}(f) \le \overline{J}(f) \le \overline{S}_Z(f)$$

Sei $\varepsilon > 0$, dann gilt

$$0 \le \overline{J}(f) - \underline{J}(f) \le \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$$

$$\Rightarrow 0 \le \overline{J}(f) - \underline{J}(f) \le 0$$

$$\Rightarrow f \in \mathcal{R}(I)$$

" \Rightarrow "Angenommen $f \in \mathcal{R}(I)$, das heißt

$$\overline{J}(f) = \underline{J}(f)$$

$$\overline{J}(f) = \inf \left\{ \overline{S}_Z(f) : Z \text{ Zerlegung von } I \right\}$$

$$\underline{J}(f) = \sup \left\{ \underline{S}_Z(f) : Z \text{ Zerlegung von } I \right\}$$

Das heißt zu $\varepsilon > 0$ existieren Zerlegungen Z_1, Z_2 von I mit

$$\overline{J}(f) + \frac{\varepsilon}{2} > \overline{S}_{Z_1}(f)$$

$$\underline{J}(f) - \frac{\varepsilon}{2} < \underline{S}_{Z_2}(f)$$

Da $f \in \mathcal{R}(I)$ gilt $\underline{J}(f) = \overline{J}(f)$. Wir definieren die gemeinsame Verfeinerung $Z \coloneqq Z_1 \vee Z_2$. Dann gilt nach Lemma 1.1.7

$$\overline{S}_{Z}(f) - \underline{S}_{Z}(f) < \overline{J}(f) + \frac{\varepsilon}{2} - \left(\underline{J}(f) - \frac{\varepsilon}{2}\right)$$

$$= \underline{\overline{J}(f) - \underline{J}(f)}_{=0} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Satz 1.2.2 (2. Kriterium). Sei $f \in \mathcal{B}(I)$. Dann gilt $f \in \mathcal{R}(I)$ genau dann, wenn

 $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall \text{ Zerlegungen } Z \text{ von } I \text{ mit Feinheit } \Delta(Z) < \delta \colon \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$

Beweis. "←" wird von Satz 1.2.1 bereits impliziert.

" \Rightarrow " Sei $f \in \mathcal{R}(I)$ und $\varepsilon > 0$. Dann gilt nach Satz 1.2.1, dass eine Zerlegung $Z' = (x'_0, x'_1, \dots, x'_l = b)$ von I mit

$$\overline{S}_Z(f) - \underline{S}_Z(f) < \frac{\varepsilon}{2}$$

existiert. Wähle eine andere Zerlegung Z von I mit $\Delta(Z) < \delta$, wobei $\delta > 0$ noch später gewählt wird. Setze $Z^* = Z' \vee Z$. Nach Lemma 1.1.7 und Satz 1.2.1 gilt

$$\overline{S}_{Z^*}(f) - \underline{S}_{Z^*}(f) < \frac{\varepsilon}{2}$$

Wir wollen die Ober- und Untersumme von Z^* mit denen in Z vergleichen.

$$\overline{S}_{Z}(f) - \underline{S}_{Z^{*}}(f) = \sum_{j} \overline{m}_{j} \cdot |I_{j}| - \sum_{t} \overline{m}_{t} \cdot |I_{t}|$$

wobei $I_j = [x_{j-1}, x_j]$. Da Z^* eine Verfeinerung von Z ist, sind alle Teilpunkte von Z auch Teilpunkte von Z^* . Das heißt die Intervalle I_j (zu Z) unterscheiden sich von den Intervallen I_j^* (zu Z^*) sofern Punkte x'_{ν} (Teilpunkte von Z^*) im Inneren von I_j liegen. Also gilt

$$I_Z^* \cap I_j \neq \emptyset \Rightarrow I_Z^* \subseteq I_j$$

Frage: Wie viele Intervalle I_j existieren maximal, für die I_j eine Verfeinerung von Z oder ? hinter reellen I_j^* ist? Dann muss mindestens ein Punkt von der Zerlegung Z' unterhalb von I_j liegen. Wir haben l Punkte in Zerlegung Z'. Das heißt die Anzahl solcher Intervalle I_j ist maximal l.

$$\overline{S}_{Z}(f) - \overline{S}_{Z^{*}}(f) = \sum_{j} \overline{m}_{j} \cdot |I_{j}| - \sum_{t} \overline{m}_{t}^{*} \cdot \left|I_{j}^{*}\right|$$

$$= \sum_{j} \left(\overline{m}_{j} \cdot |I_{j}| - \sum_{t:I_{z}^{*} \subseteq I_{j}} \overline{m}_{t}^{*} \cdot |I_{t}^{*}|\right)$$

$$= \sum_{j} \sum_{t:I_{t}^{*}} (\overline{m}_{j} - \overline{m}_{t}^{*}) \cdot |I_{t}^{*}|$$

$$\overline{S}_{Z}(f) - \overline{S}_{Z}(f) = \sum_{j} \sum_{t:I_{t}^{*}} \left(\underline{\overline{m}_{j} - \overline{m}_{t}^{*}}\right) \cdot |I_{t}^{*}|$$

$$= \sum_{j} \sum_{t:I_{t}^{*}} (\overline{m}_{j} - \overline{m}_{t}^{*}) \cdot |I_{z}^{*}|$$

$$= \sum_{j} \sum_{t:I_{t}^{*}} (\overline{m}_{j} - \overline{m}_{t}^{*}) \cdot |I_{z}^{*}|$$

$$f(x) = f(y) + f(x) - f(y)$$

$$\leq f(y) + \sup_{s_{1}, s_{2} \in I} \{f(s_{1}) - f(s_{2})\}$$

$$f(x) \leq f(y) + 2 \|f\|_{\infty}$$

genauso

$$f(x) = f(y) + f(x) - f(y)$$

$$\geq f(y) + \inf_{s_1, s_2 \in I} \{ f(s_1) - f(s_2) \}$$

$$\geq f(y) - 2 \| f \|_{\infty}$$

$$\Rightarrow \overline{m}_j = \sup_{s \in I_j} f(x) \le 2 \|f\|_{\infty} + f(y) \quad \forall y \in I_t^*$$

$$\Rightarrow \overline{m}_j \le 2 \|f\|_{\infty} + \sup_{?} f = 2 \|f\|_{\infty} + \overline{m}_z^*$$

$$\vdots \quad ????$$

Genauso zeigt man

$$\underline{S}_{Z}(f) - \underline{S}_{Z^{*}}(f) \geq -2 \|f\|_{\infty} l \cdot \delta$$

$$\Rightarrow \overline{S}_{Z}(f) \leq \overline{S}_{Z^{*}} + 2 \|f\|_{\infty} l \cdot \delta$$

$$\underline{S}_{Z}(f) \geq \underline{S}_{Z^{*}} - 2 \|f\|_{\infty} l \cdot \delta$$

$$\Rightarrow \overline{S}_{Z}(f) - \underline{S}_{Z}(f) \leq \overline{S}_{Z^{*}}(f) + 2 \|f\|_{\infty} l \delta - (\underline{S}_{Z^{*}}(f) - 2 \|f\|_{\infty} l \cdot \delta)$$

$$=?$$

$$< \frac{\varepsilon}{2} + 4 \|f\|_{\infty} l \cdot \delta$$

Jetzt wähle $\delta = \frac{\varepsilon}{\delta \left(\|f\|_{\infty} + 1 \right) \cdot l}$

$$\Rightarrow \ \leq \frac{\varepsilon}{2} + 4 \, \|f\|_{\infty} \cdot \frac{\varepsilon}{\delta \, (\|f\| + 1) \cdot l} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

sofern um $\Delta(z) < \delta$ ist.

Anwendung 1.2.3. Es sei $(Z_n)_n$ eine Folge von Zerlegungen von I mit Feinheit $\Delta(Z_n) \to 0$ für $n \to \infty$. ξ_n seien die Zwischenpunkt von Zerlegung $Z_n = \left(x_0^n, x_1^n, \dots, x_{k_n}^n\right)$. Die Riemannnsumme

$$S_{Z_n}(f,\xi_n) = \sum_{j=1}^{k_n} f(\xi_j^n) \cdot \left| I_j^n \right|$$

konvergiert nach Satz 1.2.2 gegen J(f) falls $f \in \mathcal{R}(I)$.

[19. Apr] **Bemerkung 1.2.4** (Linearität der Riemannschen Zwischensumme). Seien $Z=(x_0,x_1,\ldots,x_k)$ Zerlegung von I=[a,b] und $\xi=(\xi_1,\xi_2,\ldots,\xi_k)$ Zwischenpunkt zur Zerlegung Z, sodass

$$x_{j-1} \le \xi_j \le x_j \quad \forall j = 1, \dots, k$$

Dann ist die Riemannsche Zwischensumme

$$S_Z(f) = S_Z(f, \xi) := \sum_{j=1}^k f(\xi_j) \cdot |I_j|$$
 $(I_j = [x_j - 1, x_j])$

linear in Bezug zu f. Wir werden diese Aussage und weitere interessante Vektorraumeigenschaften des $\mathcal{R}(I)$ später in Satz 1.2.6 noch beweisen.

Korollar 1.2.5. Sei $f \in \mathcal{B}(I)$. Dann gilt $f \in \mathcal{R}(I)$ genau dann, wenn für jede Folge $(Z_n)_n$ von Zerlegungen Z_n von I mit Feinheit $\Delta(Z_n) \to 0$ für $n \to \infty$ und jede Folge $(\xi_n)_n$ von Zwischenpunkten ξ_n zugehörig zu Z_n der Grenzwert $\lim_{n \to \infty} S_{Z_n}(f, \xi_n)$ existiert.

Darüber hinaus ist in diesem Fall obiger Grenzwert unabhängig von der Wahl der Zerlegung Z_n und der Zwischenpunkten ξ_n und es gilt

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} S_{Z_n}(f, \xi_n)$$
 (I = [a, b])

Beweis. " \Rightarrow " Sei $f \in \mathcal{R}(I)$. Dann gilt nach Satz 1.2.1

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon \quad \forall \text{Zerlegungen } Z \text{ mit } \Delta(Z) < \delta$$

Da $\Delta(Z_n) \to 0$ für $n \to \infty$ gilt außerdem

$$\Rightarrow \exists N \in \mathbb{N} : \Delta(Z_n) < \delta \quad \forall n \ge N$$

und für alle $n \in \mathbb{N}$ gilt

$$\underline{S}_{Z_n}(f) \leq \underline{J}(f) = \overline{J}(f) \leq \overline{S}_{Z_n}(f)$$

$$\underline{S}_{Z_n}(f) \leq S_{Z_n}(f, \xi_n) \leq \overline{S}_{Z_n}(f)$$

$$\Rightarrow |J(f) - S_{Z_n}(f, \xi_n)| < \varepsilon \quad \forall n \geq N$$

das heißt

$$\lim_{n \to \infty} S_{Z_n}(f, \xi_n) = J(f) = \int_a^b f \, \mathrm{d}x$$

" \Leftarrow " SCHRITT 1: Angenommen $\lim_{n\to\infty} S_{Z_n}(f,\xi_n)$ existiert für jede Folge $(Z_n)_n$ von Zerlegungen von I mit $\Delta(Z_n)\to 0$ und jede Wahl von Zwischenpunkten $(\xi_n)_n$ zu Z_n .

Seien $(Z_n^1)_n$, $(Z_n^2)_n$ zwei solche Folgen von Zerlegungen mit $(\xi_n^1)_n$, $(\xi_n^2)_n$ zugehörigen Folgen von Zwischenpunkten. Sei $(Z_n)_n$ eine neue Folge von Zerlegungen von I, wobei $Z_{2k} = Z_k^2$ und $Z_{2k-1} = Z_k^1$, außerdem sei $\xi_{2k} = \xi_k^2$ und $\xi_{2k-1} = \xi_k^1$. Dann wissen wir, dass

$$\lim_{n\to\infty} S_{Z_n}(f,\xi_n)$$

existiert und gilt

$$\lim_{n \to \infty} S_{Z_n}(f, \xi_n) = \lim_{n \to \infty} S_{Z_{2n}}(f, \xi_{2n})$$

$$= \lim_{n \to \infty} S_{Z_{2n-1}}(f, \xi_{2n-1})$$

$$= \lim_{n \to \infty} S_{Z_n^2}(f, \xi_n^2)$$

$$= \lim_{n \to \infty} S_{Z_n^1}(f, \xi_n^1)$$

Schritt 2: (Später)

Satz 1.2.6 ($\mathcal{R}(I)$ als Vektorraum). Der Raum $\mathcal{R}(I)$ auf einem kompakten Intervall I = [a, b] ist ein Vektorraum und $J : \mathcal{R}(I) \to \mathbb{R}$ $f \mapsto J(f) = \int_a^b f \, \mathrm{d}x$ ist eine lineare Abbildung. Für $f, g \in \mathcal{R}(I)$ und $\alpha, \beta \in \mathbb{R}$ folgt also $\alpha f + \beta g \in \mathcal{R}(I)$ und $J(\alpha f + \beta g) = \alpha J(f) + \beta J(g)$.

Beweis. Teil 1: Sei $h: I \to \mathbb{R}$ eine zusätzliche Funktion auf dem Intervall und Z eine Zerlegung von I mit zugehörigen Intervallen Ij. Dann gilt

$$\overline{m}_{j} = \sup_{x \in I_{j}} h(x) \quad \underline{m}_{j} = \inf_{y \in I_{j}} h(y)$$

$$\Rightarrow \overline{m}_{j} - \underline{m}_{j} = \sup_{x \in I_{j}} h(x) - \inf_{y \in I_{j}} h(y)$$

$$= \sup_{x \in I_{j}} h(x) + \sup_{y \in I_{j}} (-h(y))$$

$$= \sup_{x, y \in I_{j}} (h(x) - h(y))$$

$$= \sup_{x, y \in I_{j}} (h(y) - h(x)) \qquad \text{(Vertauschen von } x, y)$$

$$= \sup_{x, y \in I_{j}} (|h(x) - h(y)|)$$

$$\Rightarrow \overline{m}_{j}(h) - \underline{m}_{j}(h) = \sup_{x, y \in I_{j}} (|h(x) - h(y)|)$$

$$(1)$$

Wir wählen $h = \alpha f + \beta g$, wobei $f, g \in \mathcal{R}(I)$ und $\alpha, \beta \in \mathbb{R}$

$$h(x) - h(y) = \alpha \cdot (f(x) - f(y)) + \beta \cdot (g(x) - g(y))$$

$$\Rightarrow |h(x) - h(y)| \leq |\alpha| \cdot |f(x) - f(y)| + |\beta| \cdot |g(x) - g(y)| \qquad (2)$$

$$\overline{m}_{j}(h) - \underline{m}_{j}(h) = \sup_{x \in I_{j}} h(x) - \inf_{y \in I_{j}} h(y)$$

$$\stackrel{(1)}{=} \sup_{x,y \in I_{j}} (|h(x) - h(y)|)$$

$$\stackrel{(2)}{\leq} |\alpha| \cdot \sup_{x,y \in I_{j}} |f(x) - f(y)| + |\beta| \cdot \sup_{x,y \in I_{j}} |g(x) - g(y)|$$

$$= |\alpha| \cdot (\overline{m}_{j}(f) - \underline{m}_{j}(f)) + |\beta| \cdot (\overline{m}_{j}(g) - \underline{m}_{j}(g))$$

$$\Rightarrow \overline{S}_{Z}(h) - \underline{S}_{Z}(h) = \sum_{j=1}^{k} (\overline{m}_{j}(h) - \underline{m}_{j}(h)) \cdot |I_{j}|$$

$$\leq |\alpha| \cdot \sum_{j=1}^{k} (\overline{m}_{j}(f) - \underline{m}_{j}(f)) \cdot |I_{j}| + |\beta| \cdot \sum_{j=1}^{k} (\overline{m}_{j}(g) - \underline{m}_{j}(g)) \cdot |I_{j}|$$

$$\Rightarrow \overline{S}_{Z}(h) - \underline{S}_{Z}(h) \leq |\alpha| \cdot (\overline{S}_{Z}(f) - \underline{S}_{Z}(f)) + |\beta| \cdot (\overline{S}_{Z}(g) - \underline{S}_{Z}(g)) \qquad (3)$$

Nach Satz 1.2.1 und der Riemann-Integrierbarkeit von f und g gilt

$$\Rightarrow \forall \varepsilon > 0 \ \exists \ Z_1 \colon \overline{S}_{Z_1}(f) - \underline{S}_{Z_1}(f) < \frac{\varepsilon}{2 \cdot (1 + |\alpha| + |\beta|)}$$
$$\forall \varepsilon > 0 \ \exists \ Z_2 \colon \overline{S}_{Z_2}(g) - \underline{S}_{Z_2}(g) < \frac{\varepsilon}{2 \cdot (1 + |\alpha| + |\beta|)}$$

Wähle $Z = Z_1 \vee Z_2$ und verwende (3)

$$\Rightarrow \overline{S}_{Z}(h) - \underline{S}_{Z}(h) < |\alpha| \frac{\varepsilon}{2 \cdot (1 + |\alpha| + |\beta|)} + |\beta| \frac{\varepsilon}{2 \cdot (1 + |\alpha| + |\beta|)}$$

1 [*] Das eindimensionale Riemann-Integral

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Nach Satz 1.2.1 ist $h = \alpha f + \beta g$ damit Riemann-integrierbar.

Teil 2: Für Zwischensummen

$$S_Z(h,\xi) = \sum_{j=1}^k h(\xi_j) \cdot |I_j| = \alpha \cdot S_Z(f,\xi) + \beta \cdot S_Z(g,\xi)$$

haben wir bereits Linearität. Für $h,f,g\in\mathcal{R}(I)$ gilt nach Korollar 1.2.5

$$J(h) = \lim_{n \to \infty} S_{Z_n}(h, \xi_n) \qquad (\Delta(Z_n) \to 0)$$

$$= \lim_{n \to \infty} (\alpha \cdot S_{Z_n}(f, \xi_n) + \beta \cdot S_{Z_n}(g, \xi_n))$$

$$= \alpha \cdot \lim_{n \to \infty} S_{Z_n}(f, \xi_n) + \beta \cdot \lim_{n \to \infty} S_{Z_n}(g, \xi_n)$$

$$= \alpha \cdot J(f) + \beta \cdot J(g)$$

Satz 1.2.7 (Kompositionen von integrierbaren Funktionen). Seien $f, g \in \mathcal{R}(I)$. Dann gilt

- (i) $f \cdot g \in \mathcal{R}(I)$
- (ii) $|f| \in \mathcal{R}(I)$
- (iii) Ist außerdem $|g| \ge c > 0$ auf I für ein konstantes c > 0, so ist auch $\frac{f}{g} \in \mathcal{R}(I)$.

Beweis.

(i) Es sei $h(x) = f(x) \cdot g(x)$ für $x \in I$. Dann gilt

$$|h(x) - h(y)| = |f(x) \cdot g(x) - f(y) \cdot g(y)|$$

$$= |g(x) \cdot (f(x) - f(y)) + f(y) \cdot (g(x) - g(y))|$$

$$\leq ||g||_{\infty} \cdot |f(x) - f(y)| + ||f||_{\infty} \cdot |g(x) - g(y)|$$
(1)

Sei Z Zerlegung von I und I_j die entsprechenden Teilintervalle. Dann gilt

$$\overline{S}_{Z}(h) - \underline{S}_{Z}(h) = \sum_{j=1}^{k} \left(\overline{m}_{j}(h) - \underline{m}_{j}(h) \right) \cdot |I_{j}|$$

$$\overline{m}_{j}(h) - \underline{m}_{j}(h) = \sup_{I_{j}} h - \inf_{I_{j}} h = \sup_{x,y \in I_{j}} |h(x) - h(y)|$$

$$\stackrel{(1)}{\leq} \|g\|_{\infty} \cdot \left(\overline{m}_{j}(f) - \underline{m}_{j}(f) \right) + \|f\|_{\infty} \cdot \left(\overline{m}_{j}(g) - \underline{m}_{j}(g) \right)$$

$$\Rightarrow \overline{S}_{Z}(h) - \underline{S}_{Z}(h) \leq \|g\|_{\infty} \cdot \left(\overline{S}_{Z}(f) - \underline{S}_{Z}(f) \right) + \|f\|_{\infty} \cdot \left(\overline{S}_{Z}(g) - \underline{S}_{Z}(g) \right)$$

Für ein $\varepsilon > 0$ gilt nach Satz 1.2.1

$$\exists Z_1 \colon \overline{S}_{Z_1}(f) - \underline{S}_{Z_1}(f) < \frac{\varepsilon}{2 \cdot (1 + \|g\|_{\infty})}$$
$$\exists Z_2 \colon \overline{S}_{Z_2}(g) - \underline{S}_{Z_2}(g) < \frac{\varepsilon}{2 \cdot (1 + \|f\|_{\infty})}$$

Es sei $Z := Z_1 \vee Z_2$

$$\Rightarrow \overline{S}_{Z}(h) - \underline{S}_{Z}(h) \leq \|g\|_{\infty} \cdot \frac{\varepsilon}{2 \cdot (1 + \|g\|_{\infty})} + \|f\|_{\infty} \cdot \frac{\varepsilon}{2 \cdot (1 + \|f\|_{\infty})}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Damit gilt $h = f \cdot g \in \mathcal{R}(I)$ nach Satz 1.2.1.

(ii) Für |f| verwenden wir $||f(x)| - |f(y)|| \le |f(x) - f(y)|$ $\Rightarrow \overline{m}_j(|f|) - \underline{m}_j(|f|) = \sup_{x,y \in I_j} (||f(x)| - |f(y)||)$ $\le \sup_{x,y \in I_j} (|f(x) - f(y)|)$ $= \overline{m}_j(f) - \underline{m}_j(f)$

wie vorher folgt also $|f| \in \mathcal{R}(I)$.

(iii) Für $\frac{f}{g}$ muss nur $\frac{1}{g}$ betrachtet und die Multiplikationsregel angewendet werden. Es gilt

$$\left| \frac{1}{g(x)} - \frac{1}{g(y)} \right| = \frac{|g(x) - g(y)|}{|g(x)| \cdot |g(y)|} \le \frac{1}{c^2} \cdot |g(x) - g(y)|$$

$$\Rightarrow \overline{m}_j \left(\frac{1}{y} \right) - \underline{m}_j \left(\frac{1}{y} \right) \le \frac{1}{c^2} \cdot \left(\overline{m}_j(y) - \underline{m}_j(y) \right)$$

Damit gilt analog zu (ii) die Behauptung.

[23. Apr] Beispiel 1.2.8 (Exponential funktion). Sei $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto e^{\alpha x}$, $n \in \mathbb{N}$, I = [a, b] und $\alpha \in \mathbb{R}$ mit $\alpha > 0$. Wir betrachten eine äquidistante Zerlegung $Z_n = (x_0^n, x_1^n, \dots, x_k^n)$ mit $x_j^n = a + j \cdot h_n$, wobei $h_n = \frac{b-a}{n} = h = |I_j|$. Da f streng monoton wachsend ist gilt

$$\overline{m}_{j} = \sup_{I_{j}} f = f(x_{j}) = f\left(x_{j}^{n}\right) = e^{\alpha x_{j}}$$

$$\underline{m}_{j} = \inf_{I_{j}} f = f(x_{j-1}) = f\left(x_{j-1}^{n}\right) = e^{\alpha x_{j-1}}$$

$$\Rightarrow \overline{S}_{Z}(f) = \overline{S}_{Z_{n}}(f) = \sum_{j=1}^{n} \overline{m}_{j} \cdot |I_{j}| = \sum_{j=1}^{n} e^{\alpha x_{j}} \cdot h$$

$$= h \cdot \sum_{j=1}^{n} e^{\alpha(a+jh)} = h \cdot \sum_{j=1}^{n} e^{\alpha a} \cdot e^{\alpha jh}$$

$$= h \cdot e^{\alpha a} \cdot e^{\alpha h} \cdot \sum_{j=1}^{n} \left(e^{\alpha h}\right)^{j-1}$$

$$= h \cdot e^{\alpha a} \cdot e^{\alpha h} \cdot \frac{\left(e^{\alpha h}\right)^{n} - 1}{e^{\alpha h} - 1}$$

$$= \frac{h}{e^{\alpha h} - 1} \cdot e^{\alpha h} \cdot e^{\alpha a} \cdot \left(e^{\alpha h \cdot n} - 1\right)$$

$$= \frac{h_{n}}{e^{\alpha h_{n}} - 1} \cdot e^{\alpha h_{n}} \cdot \left(e^{\alpha b} - e^{\alpha a}\right)$$
(Geometr. Summe)

Es gilt $\lim_{n\to\infty} \frac{e^{\alpha h_n}-1}{h_n} = \lim_{h\to0} \frac{e^{\alpha h}-1}{h} = \alpha$ sowie $\lim_{n\to\infty} e^{\alpha h_n} = 1$. Damit folgt

$$\lim_{n \to \infty} \overline{S}_{Z_n}(f) = \frac{1}{\alpha} \cdot \left(e^{\alpha b} - e^{\alpha a} \right)$$

Wir betrachten die Untersumme

$$\underline{S}_{Z} = \underline{S}_{Z_{n}} = \sum_{j=1}^{n} \underline{m}_{j} \cdot |I_{j}| = h \cdot \sum_{j=1}^{n} \left(e^{\alpha x_{j-1}}\right)$$

1 [*] Das eindimensionale Riemann-Integral

$$= h \cdot e^{\alpha a} \cdot \sum_{j=1}^{n} \left(e^{\alpha h} \right)^{j-1} = h \cdot e^{\alpha a} \sum_{j=0}^{n-1} \left(e^{\alpha h} \right)^{j}$$

$$= h \cdot e^{\alpha a} \frac{\left(e^{\alpha h} \right)^{n} - 1}{e^{\alpha h} - 1}$$

$$= \frac{h}{e^{\alpha h} - 1} \cdot e^{\alpha a} \cdot \left(e^{\alpha (b-a)} - 1 \right) \to \frac{1}{\alpha} \cdot \left(e^{\alpha b} - e^{\alpha a} \right)$$

Also gilt $f \in \mathcal{R}(I)$ sowie

$$\int_{a}^{b} e^{\alpha x} \, \mathrm{d}x = \frac{1}{\alpha} \cdot \left(e^{\alpha b} - e^{\alpha a} \right)$$

Beispiel 1.2.9 (Polynome). Es sei $f:[0,\infty)\to[0,\infty),\,x\mapsto x^{\alpha}\ (\alpha\neq -1).$ Dann $f\in\mathcal{R}(I)$ und

$$\int_{a}^{b} x^{\alpha} dx = \frac{1}{\alpha + 1} \left(b^{\alpha + 1} - a^{\alpha + 1} \right)$$

Beweisansatz. Wir wählen eine geometrische Zerlegung. Sei $q=q_n=\sqrt[n]{\frac{b}{a}}, Z=Z_n=(x_0^n,x_1^n,\ldots,x_n^n),$ $I_j=[x_{j-1},x_j], x_j=x_j^n=a\cdot q^j$

$$\begin{split} |I_j| &= \Delta x_j = x_j - x_{j-1} = a \cdot q^j - a \cdot q^{j-1} \\ &= a \cdot q^{j-1} \cdot (q-1) \le b \cdot (q_n-1) \to 0 \text{ für } n \to \infty \end{split}$$

Beobachtung: Ober- und Untersumme lassen sich "leicht" mittels geometrischer Summen ausrechnen

$$\overline{m}_{j} = \sup_{I_{j}} f = (x_{j})^{\alpha} = \left(a \cdot q^{j}\right)^{\alpha} \tag{Nach Monotonie}$$

$$\underline{m}_{j} = \inf_{I_{j}} f = (x_{j-1})^{\alpha} = \left(a \cdot q^{j-1}\right)^{\alpha}$$

$$\underline{S}_{Z}(f) = \underline{S}_{Z_{n}}(f) = \sum_{j=1}^{n} \underline{m}_{j} \cdot |I_{j}| = \sum_{j=1}^{n} \left(a \cdot q^{j-1}\right)^{\alpha} \cdot a \cdot q^{j-1} \cdot (q-1)$$

$$= (q-1) \cdot a^{\alpha+1} \cdot \sum_{j=1}^{n} q^{(\alpha+1) \cdot (j-1)}$$

Damit erhalten wir eine geometrische Summe, dessen Grenzwert sich gut ermitteln lässt. \Box

Übung 1.2.10. Bestimmen Sie den Grenzwert der Ober- und Untersummen aus Beispiel 1.2.9, um die Riemann-Integrierbarkeit der Polynome nachzuweisen.

Satz 1.2.11 (Monotonie des Integrals). Seien $f, g \in \mathcal{R}(I)$, I = [a, b]. Dann erfüllt das Integral Monotonieeigenschaften. Das heißt konkret

(i) Wenn $\forall x \in \mathbb{R} : f(x) \leq g(x)$, dann folgt

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x \tag{1.2.1}$$

(ii) Insbesondere gilt für $f \in \mathcal{R}(I)$ beliebig

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} |f(x)| \, \mathrm{d}x \tag{1.2.2}$$

(iii) Sowie

$$\left| \int_{a}^{b} f \cdot g \, \mathrm{d}x \right| \le \sup_{I} |f| \cdot \int_{a}^{b} |g| \, \mathrm{d}x$$

Beweis.

(i) Sei $h=g-f\geq 0$. Dann gilt nach Satz 1.2.6 $h\in \mathcal{R}(I)$ und $\int_a^b h\,\mathrm{d}x\geq 0$

$$\Rightarrow 0 \le \int_a^b h \, dx = \int_a^b g \, dx + \int_a^b (-f) \, dx = \int_a^b g \, dx - \int_a^b f \, dx$$
$$\Rightarrow \int_a^b f \, dx \le \int_a^b g \, dx$$

(ii) Es gilt $\pm f \leq |f|$. Damit folgt aus (1.2.1)

$$\int_{a}^{b} (\pm f) \, \mathrm{d}x \le \int_{a}^{b} |f| \, \mathrm{d}x$$

$$\Rightarrow \left| \int_{a}^{b} f \, \mathrm{d}x \right| = \max \left(\int_{a}^{b} f \, \mathrm{d}x, -\int_{a}^{b} f \, \mathrm{d}x \right) \le \int_{a}^{b} |f| \, \mathrm{d}x$$

(iii) Nach (1.2.2) gilt

$$\left| \int_a^b fg \, \mathrm{d}x \right| \le \int_a^b |fg| \, \mathrm{d}x \le \int_a^b \left(\sup_I |f| \right) |g| \, \mathrm{d}x = \sup_I (|f|) \cdot \int_a^b |g| \, \mathrm{d}x \qquad \Box$$

Satz 1.2.12 (Cauchy-Schwarz). Seien $f, g \in \mathcal{R}(I)$ und I = [a, b]. Dann gilt

$$\left| \int_a^b fg \, \mathrm{d}x \right|^2 \le \left(\int_a^b |fg| \, \mathrm{d}x \right)^2$$
$$\le \int_a^b |f|^2 \, \mathrm{d}x \cdot \int_a^b |g|^2 \, \mathrm{d}x$$

mit

$$||f|| = \sqrt{\int_a^b |f|^2 dx}$$

$$\Rightarrow \left| \int fg dx \right| \le ||f|| \cdot g$$

Beweis.

$$0 \le (a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$\Rightarrow \mp ab \le \frac{a^2 + b^2}{2}$$

$$\Rightarrow |ab| \le \frac{1}{2} \left(a^2 + b^2 \right)$$

t > 0

$$|\alpha\beta| = \left| t\alpha - \frac{\beta}{t} \right| \le \frac{1}{2} \left(t\alpha^2 + \frac{1}{t} \beta^2 \right)$$

$$\left| \int_a^b fg \, \mathrm{d}x \right| \le \int_a^b |f(x)| \, |g(x)| \, \mathrm{d}x$$

$$\le \frac{1}{2} \left(t \cdot \underbrace{\int_a^b |f(x)|^2 \, \mathrm{d}x}_A + \frac{1}{t} \underbrace{\int_a^b |g|^2 \, \mathrm{d}x}_B \right)$$

$$\le \frac{1}{2} \left(t \cdot |f(x)|^2 + \frac{1}{t} |g(x)|^2 \right) = \frac{1}{2} \left(tA + \frac{1}{t}B \right)$$

Frage: Welches t > 0 maximiert h?

$$A = 0 \Rightarrow h(t) = \frac{1}{2t}B \to 0 \text{ für } n \to \infty$$

$$B = 0 \Rightarrow h(t) = \frac{1}{2}A \to 0 \text{ für } n \to \infty$$

$$\Rightarrow \lim_{t \to 0} h(t) = \infty, \lim_{t \to 0} h(t) = \infty$$

Minimum existiert für ein $t_0 > 0$ und es gilt $0 = h'(t_0)$

$$\Rightarrow 0 = \frac{1}{2} \left(A - \frac{1}{t_0} B \right)$$

$$\Rightarrow (t_0)^2 = \frac{B}{A} \quad t_0 = \sqrt{\frac{b}{A}}$$

$$\Rightarrow \inf_{(0,\infty)} h(t) = \frac{1}{2} t_0 \left(A + \frac{1}{t_0^2} B \right)$$

$$= \frac{1}{2} \sqrt{\frac{b}{A}} \left(A + \frac{A}{B} B \right) = \sqrt{AB}$$

Bemerkung 1.2.13.

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, \mathrm{d}x$$

$$\|f\| \coloneqq \sqrt{\int_a^b |f|^2 \, \mathrm{d}x} \text{ ist eine Norm}$$

$$\Rightarrow |\langle f, g \rangle| \le \|f\| \, \|g\|$$

Satz 1.2.14. Sei $\mathcal{C}(I) = \mathcal{C}([a,b])$ der Raum der stetigen reellen Funktionen auf einem I = [a,b]. Es gilt $\mathcal{C}(I) \subseteq \mathcal{R}(I)$.

Beweis. I = [a, b] ist kompakt und $f : [a, b] \to \mathbb{R}$ ist stetig und damit auch gleichmäßig stetig. Das heißt

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon |f(x) - f(y)| < \delta \quad \forall x, y \in I \ \text{mit} \ |x - y| < \delta$$

Sei Z eine Zerlegung von I mit $\Delta(Z) < \delta$. $I_j = [x_{j-1}, x_j]$ und $Z = (x_0, x_1, \dots, x_k)$. Dann gilt

$$\overline{m}_j - \underline{m}_j = \sup_{x \in I_j} f(x) - \inf_{y \in I_j} f(y)$$
$$= \sup_{x, y \in I_j} |f(x) - f(y)| = \sup_{x, y \in I_j} (f(x) - f(y))$$

Da $|x-y| \le |I_i| < \delta$ gilt

$$\overline{m}_{j} - \underline{m}_{j} \leq \varepsilon$$

$$\Rightarrow \overline{S}_{Z}(f) - \underline{S}_{Z}(f) = \sum_{j=1}^{n} \left(\overline{m}_{j} - \underline{m}_{j} \right) \cdot |I_{j}|$$

$$\leq \varepsilon \sum_{j=1}^{n} |I_{j}| = \varepsilon \cdot |I| = \varepsilon \cdot (b - a)$$

$$\Rightarrow 0 \leq \overline{J}(f) - \underline{J}(f) \leq \overline{S}_{Z}(f) - \underline{S}_{Z}(f)$$

$$\leq \varepsilon (b - a) \quad \forall \varepsilon > 0$$

$$\Rightarrow \overline{J}(f) = \underline{J}(f) \Rightarrow f \in \mathcal{R}(I)$$

Definition 1.2.15. Eine Funktion $f: I \to \mathbb{R}$ auf I = [a, b] heißt stückweise stetig, falls es eine Zerlegung $Z = (x_0, x_1, \dots, x_k)$ von I gibt so, dass f auf jedem der offenen Intervalle (x_{j-1}, x_j) stetig ist und die einseitigen Grenzwerte

$$f(a+) = \lim_{x \to a+} f(x), f(b-) = \lim_{x \to b-} f(x)$$
$$f(x_j-) = \lim_{x \to x_j-} f(x), f(x_j+) = \lim_{x \to x_j+} f(x)$$

für $j = 1, \dots, k-1$ existieren.

 $f((x_{j-1}, x_j))$ können zu stetigen Funktionen auf $I_j = [x_{j-1}, x_j]$ fortgesetzt werden. Wir nennen diese Klasse von Funktionen $\mathcal{PC}(I)^1$.

 $^{^{1}}$ Piecewise continuos function in I

Satz 1.2.16. Es gilt $PC(I) \subseteq R(I)$. I = [a, b]. Ist $Z = (x_0, \dots, x_k)$ eine Zerlegung von $f \in PC(I)$ und f stetig auf $(x_{j-1}, x_j) \ \forall j$ und f_j eine stetige Fortsetzung von $f|_{(x_{j-1}, x_j)}$ auf $I_j = [x_{j-1}, x_j]$. So gilt

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \sum_{l=1}^{k} \int_{x_{l-1}}^{x_{l}} f_{l}(x) \, \mathrm{d}x$$

Beweis. Arbeite auf $I_l = [x_{l-1}, x_l]$ dann ist f_l stetig nach Satz 1.2.14 und summiere zusammen. (Details selber machen).

Bemerkung 1.2.17 (Treppenfunktion). Ist f stückweise konstant auf I. Das heißt es existiert eine Zerlegung $Z = (x_0, \ldots, x_{\nu})$ von I mit f ist konstant auf $(x_{k-1}, x_k) \quad \forall k = 1, \ldots, \nu$. So heißt f Treppenfunktion. Schreiben $\mathcal{J}(I)$ für die Klasse der Treppenfunktionen.

[26. Apr] Satz 1.2.18. Sei $I = [a, b], f : I \to \mathbb{R}$ mit den folgenden Eigenschaften

- (a) In jedem Punkt $x \in (a, b)$ existieren die rechts- und linksseitigen Grenzwerte.
- (b) In a existiert der rechtsseitige und in b der linksseitige Grenzwert.

Dann gilt $f \in \mathcal{R}(I)$.

Zum Beweis dieses Satzes benötigen wir zunächst das folgende Approximationslemma 1.2.20.

Bemerkung 1.2.19. Insbesondere erfüllt PC(I) die Bedingungen a) und b) aus Satz 1.2.18.

Lemma 1.2.20. Sei $f: I \to \mathbb{R}$ eine Funktion, die die Bedingungen aus Satz 1.2.18 erfüllt. Dann gibt es eine Folge $(\varphi_n)_n$ von Treppenfunktionen $\varphi_n: I \to \mathbb{R}$, die gleichmäßig gegen f konvergiert. Das heißt

$$\lim_{n \to \infty} \|f - \varphi_n\|_{\infty} = \lim_{n \to \infty} \sup_{x \in [a,b]} |f(x) - \varphi_n(x)| = 0$$

Also

$$\forall\,\varepsilon>0\;\exists\, \text{Treppenfunktion}\;\,\varphi:I\to\mathbb{R}\;\text{mit}\;\;\|f-\varphi\|_\infty=\sup_{x\in I}|f(x)-\varphi(x)|<\varepsilon$$

Mithilfe dieses Lemmas können wir nun Satz 1.2.18 beweisen.

Beweis. Sei $f:[a,b] \to \mathbb{R}$ wie in Satz 1.2.18 verlangt und $\varepsilon > 0$, sowie $\varphi: I \to \mathbb{R}$ Treppenfunktion mit $||f - \varphi||_{\infty} < \frac{\varepsilon}{2}$. Wir definieren $\Psi_1 := \varphi - \frac{\varepsilon}{2}$, $\Psi_2 = \varphi + \frac{\varepsilon}{2}$ auch als Treppenfunktionen. Dann gilt $\Psi_1 = \varphi - \frac{\varepsilon}{2} \le f$ und $\Psi_2 \ge f$. Für alle Zerlegungen Z von I mit

$$\begin{split} &\underline{S}_Z(\Psi_1) \leq \underline{S}_Z(f) \\ \Rightarrow &\underline{S}_Z(f) \geq \underline{S}_Z\bigg(\varphi - \frac{\varepsilon}{2}\bigg) = \underline{S}_Z(\varphi) - \frac{\varepsilon}{2} \cdot |I| = \underline{S}_Z(\varphi) - \frac{\varepsilon}{2} \left(b - a\right) \end{split}$$

Analog gilt

$$\overline{S}_Z(\varphi) + \frac{\varepsilon}{2}(b-a) \ge \overline{S}_Z(f)$$

Damit folgt insgesamt

$$\underline{S}_{Z}(\varphi) - \frac{\varepsilon}{2} (b - a) \le \underline{S}_{Z}(f) \le \underline{J}(f)$$

$$\overline{S}_Z(\varphi) + \frac{\varepsilon}{2} (b-a) \ge \overline{S}_Z(f) \le \overline{J}(f)$$

Da φ eine Treppenfunktion ist, ist $\varphi \in PC(I) \subseteq \mathcal{R}(I)$. Also existiert eine Folge $(z_n)_n$ von Zerlegungen von I mit

$$\lim_{n \to \infty} \overline{S}_{Z_n}(\varphi) = \lim_{n \to \infty} \underline{S}_{Z_n}(\varphi) = \int_a^b \varphi(x) \, \mathrm{d}x$$

(sofern $\Delta(Z_n) \to 0$ für $n \to \infty$)

$$\Rightarrow \overline{J}(f) - \underline{J}(f) \leq \overline{S}_{Z_n}(\varphi) + \frac{\varepsilon}{2} (b - a) - \left(\underline{S}_{Z_n}(\varphi) - \frac{\varepsilon}{2} (b - a)\right)$$

$$= \overline{S}_{Z_n}(\varphi) - \underline{S}_{Z_n}(\varphi) + \varepsilon (b - a)$$

$$\to {}_{n \to \infty} \int_a^b \varphi(x) \, \mathrm{d}x - \int_a^b \varphi(x) \, \mathrm{d}x + \varepsilon (b - a)$$

$$= \varepsilon (b - a)$$

$$\Rightarrow \overline{J}(f) - \underline{J}(f) \leq \varepsilon (b - a) \quad \forall \varepsilon > 0$$

$$\Rightarrow \overline{J}(f) - \underline{J}(f) \leq 0$$

$$\Rightarrow \overline{J}(f) = \underline{J}(f)$$

$$\Rightarrow f \in \mathcal{R}(I)$$

Bemerkung 1.2.21. Welche $f \in \mathcal{B}(I)$ sind genau Riemann-integrierbar?

Definition 1.2.22 (Nullmenge). Eine Menge $N \subseteq \mathbb{R}$ heißt Nullmenge, falls zu jedem $\varepsilon > 0$ höchstens abzählbar viele Intervalle I_1, I_2, \ldots existieren mit

$$N \subseteq \bigcup_{j} I_{j}$$
 $(I_{j} \text{ überdecken } N)$

und

$$\sum_{j} |I_{j}| < \varepsilon$$

Beispiel 1.2.23. \mathbb{Q} ist eine Nullmenge.

$$\mathbb{Q}\subseteq\bigcup_{j\in\mathbb{N}}I_j$$

Nehme $\varepsilon > 0$

$$Q = \{q_i | j \in \mathbb{N}\}$$

Zu q_j nehme $I_J = \left[q_j - \frac{\varepsilon}{2}, q_j + \frac{\varepsilon}{2}\right]$

$$q_j \in I_j \quad |I_j| = \varepsilon 2^{-j}$$

$$\sum_{j \in \mathbb{N}} |I_j| = \varepsilon \sum_{j=1}^{\infty} 2^{-j}$$

$$= \varepsilon \cdot \frac{1}{2-1} = \varepsilon$$

Definition 1.2.24. Eine Funktion $f: I \to \mathbb{R}$ heißt fast überall stetig auf I, falls die Menge der Unstetigkeitsstellen von f eine Nullmenge ist.

1.2.25 (Lebesgue'sches Integrabilitätskriterium). $\mathcal{R}(I) = \{ f \in \mathcal{B}(I) : f \text{ ist fast "überall stetig auf } I \}$

Bemerkung 1.2.26. Sei f wie in Satz 1.2.18. Dann ist die Menge der Unstetigkeitsstelle von f höchstens abzählbar, also eine Nullmenge.

Ist $f \in PC(I)$ so ist die Menge der Unstetigkeitsstellen endlich.

Beweis von Lemma 1.2.20. Wir führen einen Widerspruchsbeweis. Angenommen die Aussage stimmt nicht, dann existiert ein $\varepsilon_0 > 0$ sowie ein $f: I \to \mathbb{R}$ wie in Satz 1.2.18, sodass

$$\forall \text{ Treppen funktion en } \varphi: I \to \mathbb{R} \colon \|f - \varphi\|_{\infty} = \sup_{x \in [a,b]} |f(x) - \varphi(x)| \ge \varepsilon_0 > 0$$

SCHRITT 1: $I_1 = [a, b], a_1 = a, b_1 = b$. Dann weiter mit Divide & Conquer:

$$\sup_{I_1} |f - \varphi| \ge \varepsilon_0$$

Behauptung: Es existiert eine Folge $(I_n)_n$ von Intervallschachtelungen $I_{n+1} \subseteq I_n$ mit $|I_n| = b - a \to 0$ für $n \to \infty$ mit

$$\sup_{x \in I_n} |f(x) - \varphi(x)| \ge \varepsilon_0 \quad \forall n \in \mathbb{N} \text{ und alle Treppen funktionen } \varphi \text{ (auf } I_n)$$
 (*)

Beweis: Angenommen $I_n = [a_n, b_n]$ ist gegeben und erfüllt die obige Bedingung

$$M_N = \frac{b_n + a_n}{2}$$

$$\Rightarrow \sup_{x \in [a_n, M_n]} |f(x) - \varphi(x)| \ge \varepsilon_0 \text{ oder } \sup_{x \in [M_n, b_n]} |f(x) - \varphi(x)| \ge \varepsilon_0$$
 (Für alle Treppenfunktionen φ)

Im ersten Fall wählen wir die linke Hälfte des Intervalls, also $a_{n+1} = a_n$, $b_{n+1} = M_n$. Im zweiten Fall die rechte Hälfte, also $a_{n+1} = M_n$, $b_{n+1} = b_n$. Damit gilt im Sinne der Intervallhalbierung

$$\Rightarrow I_{n+1} \subseteq I_n$$

sowie

$$b_n - a_n = \frac{1}{2} (b_{n-1} - a_{n-1}) \le \frac{1}{2^n} (b - a) \to 0$$

Nehme $c_n \subseteq I_n$

$$a = a_1 \le a_2 \le \dots \le a_n \le b_n \le b_{n-1} \le \dots \le b_1 = b$$

 $\lim_{n\to\infty}a_n$ existiert und $\lim_{n\to\infty}b_n$ texistiert aufgrund der monotonen Konvergenz

und

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n =: \xi$$

$$\Rightarrow \forall n \in \mathbb{N} : a_n \le \xi \le b_n$$

$$\Rightarrow a_n \le \xi \quad \forall n \in \mathbb{N}$$
(da $b_n - a_n \to 0$)

Analog ergibt sich

$$b_n \ge \xi \quad \forall n \in \mathbb{N}$$

$$\Rightarrow \xi \in I_n = [a_n, b_n] \quad \forall n \in \mathbb{N}$$

$$\Rightarrow \bigcap_{n \in \mathbb{N}} I_n = \{\xi\}$$

Schritt 2: Angenommen $a < \xi < b$. Dann ist

$$c_l = f(\xi -) = \lim_{x \to \xi -} f(x)$$
$$c_r = f(\xi +) = \lim_{x \to \xi +} f(x)$$

Nehmen $\delta > 0$

$$|f(x) - c_l| < \varepsilon_0 \quad \xi - \delta \le x \le \xi$$
$$|f(x) - c_r| < \varepsilon_0 \quad \xi < x \le \xi + \delta$$

Wir definieren $\varphi : [\xi - \delta, \xi + \delta]$ durch

$$\varphi(x) := \begin{cases} c_r & \xi < x < \xi + \delta \\ f(x) & x = \xi \\ c_l & \xi - \delta < x < \xi + \delta \end{cases}$$

und

$$\sup_{\xi - \delta < x \le \xi + \delta} |f(x) - \varphi(x)| < \varepsilon_0 \tag{**}$$

Aber $I_n \subseteq [\xi - \delta, \xi + \delta]$ für fast alle $n \in \mathbb{N}$. Für n groß genug ist (**) im Widerspruch zu (*). Damit folgt die Aussage des Lemmas.

Satz 1.2.27. Seien $f, g \in \mathcal{R}(I)$???.

Lemma 1.2.28. Seien $f, g \in \mathcal{R}(I)$ und gebe es eine Menge $G \subseteq I$ welche in I dicht liegt und für die $f(x) = g(x) \ \forall x \in G$ gilt. Dann folgt $\int_a^b f(x) \, \mathrm{d}x = \int_a^b g(x) \, \mathrm{d}x$

1.3 [*] Mittelwertsätze der Integralrechnung

Definition 1.3.1. Sei $f \in \mathcal{R}(I)$, I = [a, b]. Dann ist

$$\oint_I f(x) dx = \oint_a^b f(x) dx := \frac{1}{b-a} \int_a^b f(x) dx$$

definiert als der Mittelwert von f über I. Wir schreiben auch

$$\overline{f}_I = \int_a^b f(x) \, \mathrm{d}x$$

Satz 1.3.2. Es sei $I = [a, b], f \in \mathcal{C}(I)$. Dann gilt

$$\exists \, \xi \colon a < \xi < b \text{ mit } f(\xi) = \int_a^b f(x) \, \mathrm{d}x$$

Beweis.

$$\overline{m} = \sup_{I} f = \max_{I} f$$

$$\underline{m} = \inf_{I} f = \min_{I} f$$

1 [*] Das eindimensionale Riemann-Integral

Nach Satz 1.2.11 gilt

$$\underline{m} \le f(x) \le \overline{m} \quad \forall x \in I$$

$$\Rightarrow \underline{m} (b - a) = \int_{a}^{b} \underline{m} \, dx \le \int_{a}^{b} f(x) \, dx \le \int_{a}^{b} \overline{m} \, dx = \overline{m} (b - a)$$

$$\Rightarrow \underline{m} \le \int_{a}^{b} f(x) \, dx \le \overline{m}$$

Ist $\underline{m} = \overline{m} \Rightarrow f$ ist konstant auf [a, b]

$$\Rightarrow \underline{m} = \overline{m} = \int_a^b f(x) \, \mathrm{d}x$$

und $\forall a < \xi < b$ ist $f(x) = \underline{m}$. Damit gilt die Behauptung. Sei also $\underline{m} < \overline{m}$. Dann folgt aus der Stetigkeit von f, dass x_1 und x_2 in I existieren, sodass $f(x_1) = \underline{m}$ und $f(x_2) = \overline{m}$ mit $x_1 \neq x_2$. Außerdem folgt aus $\underline{m} < \overline{m}$, $f \in \mathcal{C}(I)$ auch

$$\underline{m} \le \int_a^b f(x) \, \mathrm{d}x < \overline{m}$$

Nach dem Zwischenwertsatz für stetige Funktionen folgt

$$\Rightarrow \exists \xi \text{ zwischen } x_1, x_2 \text{ mit } f(x) = \int_a^b f(x) dx$$

[30. Apr] Satz 1.3.3 (Verallgemeinerung des vorherigen Satzes). Es sei $I = [a, b], f \in \mathcal{C}(I), p \in \mathcal{R}(I)$. Falls $p \geq 0$ folgt $\exists \xi$ mit $a < \xi < b$ und

$$\int_{a}^{b} f(x)p(x) dx = f(\xi) \cdot \int_{a}^{b} p(x) dx$$

$$(1.3.1)$$

Beweis. Angenommen $\int_a^b p(x) dx = 0$

$$\Rightarrow \left| \int_a^b f(x)p(x) \, \mathrm{d}x \right| \le \sup_{x \in I} \int_a^b |p(x)| \, \mathrm{d}x = 0$$

Damit gilt (1.3.1) für alle $a < \xi < b$.

Ist $\int_a^b p(x) dx > 0$, dann definieren wir ein neues Mittel:

$$Mittel(f) := \frac{1}{\int_a^b p(x) dx} \cdot \int_a^b f(x)p(x) dx$$

Durch scharfes Hinschauen folgt dann die Aussage aus dem Beweis des vorherigen Satzes. \Box

2 [*] Das orientierte Riemann-Integral

Sei I = [a, b] und $a', b' \in I$ mit a' < b' und I' = [a', b']. Wenn $f \in \mathcal{R}(I)$, ist dann auch $f \in \mathcal{R}(I')$? Ist also die Einschränkung $\varphi \coloneqq f|_{I'} : I' \to \mathbb{R}$ $x \mapsto f(x)$ Riemann-integrierbar?

Satz 2.1.1. Ist $f \in \mathcal{R}(I)$ und $I' = [a', b'] \subseteq I = [a, b]$, so ist $f|_{I} \in \mathcal{R}(I)$:

Beweis. SCHRITT 1: Angenomen I' = [a, b'] (also a' = a). Dann folgt aus der Riemann-Integrierbarkeit von f und Satz 1.2.18, dass

$$\forall \varepsilon > 0 \; \exists \, \text{Zerlegung} \; Z \; \text{von} \; I \colon \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$$
 (1)

Sei $Z_0 := (a,b',b')$ eine Zerlegung und $Z_1 = Z_0 \vee Z$ die gemeinsame Verfeinerung mit $Z_1 = (x_0,x_1,\ldots,x_k)$. Dann gilt $x_0 = a,\ x_k = b$ und $\exists l \in \{1,\ldots,k-1\}: x_l = b'$. Dann ist $Z' = (x_0,x_1,\ldots,x_l)$ eine Zerlegung von I' mit zugehörigen Intervallen $I_j = [x_{j-1},x_j]$ für $(j=1,\ldots,l)$. Wir definieren $\varphi = f|_{I'}$. Dann folgt

$$\begin{split} \overline{m}_{j}(f) &= \sup_{I} f = \sup_{I_{j}} \varphi \quad \forall 1 \leq j \leq l \\ \underline{m}_{j}(f) &= \inf_{I} f = \inf_{I_{j}} \varphi \quad \forall 1 \leq j \leq l \\ \overline{S}_{Z}(\varphi) &= \underline{S}_{Z}(\varphi) = \sum_{j=1}^{l} \left(\overline{m}_{j}(\varphi) - \underline{m}_{j}(\varphi) \right) \cdot |I_{j}| \\ &\leq \sum_{j=1}^{k} \left(\overline{m}_{j}(f) - \underline{m}_{j}(f) \right) \cdot |I_{j}| = \overline{S}_{Z}(f) - \underline{S}_{Z}(f) < \varepsilon \end{split}$$

Damit gilt die Aussage für I' = [a, b'].

SCHRITT 2: Sei b' = b, a < a' < b. Dann kopiere den Beweis von SCHRITT 1.

SCHRITT 3: Sei $a < a' < b' < b : f \in \mathcal{R}([a,b])$. Dann folgt aus SCHRITT 1, dass $\varphi_1 \coloneqq f|_{[a,b']} \in \mathcal{R}([a,b'])$. Außerdem gilt nach SCHRITT 2, dass $\varphi_2 \coloneqq \varphi_1|_{[a',b']} \in \mathcal{R}([a',b'])$. Damit gilt $f|_{I'} \in \mathcal{R}(I)$.

Bemerkung 2.1.2. Sei $f \in \mathcal{R}(I)$ mit I = [a, b] und $I' = [a', b'] \subseteq I$. Dann folgt $f|_{I'} \in \mathcal{R}(I)$. Und wir definieren

$$\int_{a}^{b'} f(x) \, \mathrm{d}x \coloneqq \int_{a'}^{b'} \varphi(x) \, \mathrm{d}x$$

 $mit \varphi := f|_{[a',b']}.$

Satz 2.1.3. Sei I = [a, b] zerlegt in endlich viele Intervalle I_j j = 1, ..., m, die höchstens die Randpunkt gemeinsam haben. Also

$$I = \bigcup_{j=1}^{m} I_j \quad I_j = [a_j, b_j]$$

also $\operatorname{Int}(I_j) \cap \operatorname{Int}(I_k) = (a_j, b_j) \cap (a_k, b_k) = \emptyset$ für $j \neq k$. Dann gilt

$$\int_{I} f(x) dx = \sum_{j=1}^{m} \int_{I_{j}} f(x) dx$$

Beweis. Sei $(Z'_n)_n$ eine Folge von Zerlegungen von I mit $\Delta(Z'_n) \to 0$ für $n \to \infty$ sowie $Z_0 = \bigcup_j [a_j, b_j]$. Wir betrachten die Verfeinerung $Z_n := Z'_n \vee Z_n$ mit $\Delta(Z_n) \to 0$. Wir haben Zwischenpunkte ξ_n zu Z_n .

 Z_n lässt sich in Zerlegung Z_n^j von I_j aufteilen. Dann gilt auch, dass $\Delta(Z_n^j) \to 0 \ \forall j = 1, \dots, m$. Die Zwischenpunkte ξ_n lassen sich aufteilen in ξ_n von Z_n^j .

$$\Rightarrow S_{Z_n}(f,\xi_n) = \sum_{j=1}^k f(\xi_n^j) \cdot \left| I_j^n \right|$$

$$= \sum_{j=1}^m S_{Z_n}(f,\xi_j)$$

Definition 2.1.4 (Orientiertes Riemann-Integral). Sei $\alpha, \beta \in I = [a, b], f \in \mathcal{R}(I)$. Dann definieren wir

$$\int_{\alpha}^{\beta} f(x) dx := \int_{\alpha}^{\beta} \varphi(x) dx \qquad \varphi := f|_{[\alpha,\beta]}$$

$$\int_{\alpha}^{\beta} f(x) dx := -\int_{\beta}^{\alpha} f(x) dx \quad \text{falls } \alpha \neq \beta$$

$$\int_{\alpha}^{\beta} f(x) dx := 0 \quad \text{falls } \alpha = \beta$$

Satz 2.1.5. Sei $f \in \mathcal{R}(I)$ und $\alpha, \beta, \gamma \in I = [a, b]$. Dann gilt

$$\int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{\gamma} f(x) dx = \int_{\alpha}^{\gamma} f(x) dx$$
 (2.1.1)

Beweis. Sind mindestens 2 Punkte α, β, γ gleich, so stimmt die Aussage. Also seien o.B.d.A. α, β, γ paarweise verschieden. Dann ist (2.1.1) äquivalent zu

$$\int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{\gamma} f(x) dx + \int_{\gamma}^{\alpha} f(x) dx = 0$$

Diese Gleichung ist invariant unter zyklischem Vertauschen von α, β, γ . (Also zum Beispiel γ, α, β oder β, γ, α).

FALL 1: Sei $\alpha < \beta < \gamma$. Dann folgt die Aussage aus Satz 2.1.3.

FALL 2: Sei $\beta < \alpha < \gamma$. Dann folgt aus Fall 1, dass

$$\int_{\beta}^{\alpha} f(x) dx + \int_{\alpha}^{\gamma} f(x) dx = \int_{\beta}^{\gamma} f(x) dx$$
$$= -\int_{\alpha}^{\beta} f(x) dx + \int_{\alpha}^{\gamma} f(x) dx$$

Die restlichen Fälle ergeben sich durch zyklisches Vertauschen von Fall 1 oder zyklischem Vertauschen von Fall 2. Damit gilt die Gleichung für alle Fälle. \Box

2.2 Riemann-Integral für vektorraumwertige Funktionen

Sei $I = [a, b], f : I \to \mathbb{R}^d$.

$$x \mapsto f(x) = (f_1(x), f_2(x), \dots, f_d(x))$$

$$= \begin{pmatrix} f_1(x) \\ \vdots \\ f_j(x) \end{pmatrix}$$
(Komponentenfunktionen)

Definition 2.2.1.

(a) Sei $f: I \to \mathbb{C}$ $x \mapsto f(x) = \text{Re}(f(x)) + \text{Im}(f(x))$. Dann definieren wir

$$f \in \mathcal{B}(I, \mathbb{C}) := \{ f : I \to \mathbb{C} \mid \operatorname{Re}(f), \operatorname{Im}(f) \in \mathcal{B}(I) \}$$

$$\mathcal{R}(I, \mathbb{C}) := \{ f \in \mathcal{B}(I, \mathbb{C}) : \operatorname{Re}(f), \operatorname{Im}(f) \in R(I) \}$$

$$\int_{a}^{b} f(x) \, \mathrm{d}x := \int_{a}^{b} \operatorname{Re}(f(x)) \, \mathrm{d}x + i \cdot \int_{a}^{b} \operatorname{Im}(f(x]) \, \mathrm{d}x$$

(b) Sei $\mathbb{K} = \mathbb{R}$ oder \mathbb{C} und $\mathbb{K}^d = \mathbb{R}^d$ oder C^d . Dann ist eine Funktion $f \in \mathcal{B}(I, \mathbb{K}^d)$ Riemann-integrierbar, falls alle Komponentenfunktionen f_1, f_2, \dots, f_d R-integrierbar auf I sind.

$$\int_{a}^{b} f(x) dx := \begin{pmatrix} \int_{a}^{b} f_{1}(x) dx \\ \int_{a}^{b} f_{2}(x) dx \\ \vdots \\ \int_{a}^{b} f_{d}(x) dx \end{pmatrix}$$

Bemerkung 2.2.2. Das Konzept lässt sich auch auf Matrizen übertragen. Eine Funktion $f: I \to \mathbb{K}^{n \times m}$ ist R-integrierbar, falls jede Komponentenfunktoin R-integrierbar ist. Das Integral wird analog zu Vektoren definiert.

Bemerkung 2.2.3. Außerdem ist auch $\mathcal{R}(I,\mathbb{R}^d)$ ein reeller Vektorraum und $\mathcal{R}(I,\mathbb{C}^d)$ ein komplexer Vektorraum und

$$\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

alle Rechenregeln und Sätze gelten entsprechend!

3 [*] Der Hauptsatz der Integral- und Differentialrechnung

3.1 Hauptsatz der Integralrechnung

Sei $I = [a, b], f \in \mathcal{C}(I)$. Wie rechnet man das Integral dann praktisch aus? Erinnerung: F ist eine Stammfunkton von f, falls F differenzierbar ist und F' = f.

Satz 3.1.1 (Hauptsatz der Differential und Integralrechnung). Sei $f \in \mathcal{C}(I)$. Dann ist für jedes $c \in [a, b]$ die Funktion

$$F(x) := \int_{C}^{x} f(t) \, \mathrm{d}t \qquad (x \in I)$$

stetig differenzierbar und F' = f. Das heißt $F'(x) = f(x) \ \forall x \in I$.

Beweis. (Später)
$$\Box$$

Korollar 3.1.2. Sei $G \in \mathcal{C}^1(I)$ (stetig differenzierbaren Funktionen auf I) eine Stammfunktion von $f \in \mathcal{C}(I)$. Dann gilt

$$\int_{a}^{b} f(x) dx = G(b) - G(a) =: G|_{a}^{b} := [G]_{a}^{b} = [G(x)]_{x=a}^{x=b}$$

Beweis. Wir nehmen c=a aus Satz 3.1.1 und $F:I\to\mathbb{R}$ $x\mapsto F(x)=\int_a^x f(t)\,\mathrm{d}t$ erfüllt F'=f auf I nach Satz 3.1.1.

$$F(b) = \int_a^b f(t) dt$$
$$h(t) := F(t) - G(t)$$
$$h' = F' - G' = f - f = 0 \text{ auf } I$$

Damit ist h konstant, d.h. h(x) = k für alle $x \in I$

$$\Rightarrow F(x) - G(x) = k$$

$$k = F(a) - G(a) = -G(a)$$

$$F(x) - G(x) = -G(a)$$

$$F(x) = G(x) - G(a)$$

$$\Rightarrow F(b) = G(b) - G(a)$$

3. Mai] Beweis von Satz 3.1.1. Sei $F(x) = \int_c^x f(t) dt$ und $h \neq 0$. Wir wollen über den Differenzenquotient zeigen, dass F' = f. Wir berechnen zuerst den Zähler

$$F(x+h) - F(x) = \int_{c}^{x+h} f(t) dt - \int_{c}^{x} f(t) dt = \int_{x}^{x+h} f(t) dt$$

Das können wir in den Differenzenquotienten einsetzen

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \cdot \int_{x}^{x+h} f(t) dt$$

$$\Rightarrow \frac{F(x+h) - F(x)}{h} - f(x) = \frac{1}{h} \cdot \int_{x}^{x+h} f(t) dt - f(x)$$

$$= \frac{1}{h} \int_{x}^{x+h} f(t) dt - \frac{1}{h} \int_{x}^{x+h} f(x) dt$$

$$= \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x)) dt$$

$$\Rightarrow \left| \frac{F(x+h) - F(x)}{h} - f(x) \right| \le \begin{cases} \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x)) dt & h > 0 \\ \frac{1}{-h} \int_{x}^{x+h} (f(t) - f(x)) dt & h < 0 \end{cases}$$

$$\le \frac{1}{|h|} \cdot \sup_{x \le t \le x+h} |f(t) - f(x)| \cdot |h|$$

Wir definieren $I_h(x) = [x, x+h]$, falls h > 0 und ansonsten $I_h(x) = [x+h, x]$

$$\leq \sup_{t \in I_h(x)} |f(t) - f(x)|$$

Da f stetig in x ist, folgt

$$\sup_{t \in I_h(x)} |f(x) - f(x)| \to 0 \text{ für } h \to 0$$

$$\Rightarrow \lim_{h \to 0} \left| \frac{F(x+h) - F(x)}{h} - f(x) \right| = 0$$

$$\Leftrightarrow \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x)$$

Beispiel 3.1.3. Sei $p \in \mathbb{N}$ und $f(x) = x^p$, $x \in \mathbb{R}$. Dann hat f die Stammfunktion $F(x) = \frac{1}{p+1} \cdot x^{p+1}$. Damit folgt

$$\int_{a}^{b} x^{p} dx = \frac{1}{p+1} \cdot \left[b^{p+1} - a^{p+1} \right] \quad \forall a, b \in \mathbb{R}$$

Beispiel 3.1.4. Sei $p \in \mathbb{N}$, $p \ge 2$ und $f(x) = x^{-p}$, $x \ne 0$. Dann ist die Stammfunktion $F(x) = \frac{1}{1-p} \cdot x^{1-p}$. Damit folgt

$$\int_{a}^{b} x^{-p} dx = \frac{1}{1-p} \cdot \left[b^{1-p} - a^{1-p} \right] \quad \forall a, b < 0 \text{ oder } a, b > 0$$

Beispiel 3.1.5. Sei $\alpha \in \mathbb{R} \setminus \{-1\}$, $f(x) = x^{\alpha} = e^{\alpha \cdot \ln(x)}$, x > 0. Dann ist die Stammfunktion $F(x) = \frac{1}{\alpha+1} \cdot x^{\alpha+1}$. Damit gilt

$$\int_{a}^{b} x^{\alpha} dx = \frac{1}{\alpha + 1} \cdot \left[b^{\alpha + 1} - a^{\alpha + 1} \right] \quad \forall a, b > 0$$

Beispiel 3.1.6. Sei $f(x) = \frac{1}{x}$, $x \neq 0$. Dann ist die Stammfunktion $F(x) = \ln |x|$.

Beweis. Falls
$$x > 0$$
. Dann ist $F(x) = \ln x$ und $F'(x) = \frac{1}{x}$.
Falls $x < 0$. Dann ist $F(x) = \ln -x$ und $F'(x) = \frac{1}{-x} \cdot (-1) = \frac{1}{x}$.

Damit gilt

$$\int_{a}^{b} \frac{1}{x} dx = \ln|b| - \ln|a| = \ln\left|\frac{b}{a}\right| \quad \forall a, b < 0 \text{ oder } a, b > 0$$

3 [*] Der Hauptsatz der Integral- und Differentialrechnung

Beispiel 3.1.7. Es gilt $(\sin x)' = \cos x$ und $(\cos x)' = -\sin x$. Damit gilt

$$\int_{a}^{b} \cos x \, dx = \sin b - \sin a$$
$$\int_{a}^{b} \sin x \, dx = [-\cos x]_{a}^{b} - \cos b + \cos a$$

Beispiel 3.1.8. Es gilt $\tan x = \frac{\sin x}{\cos x}$. $(|x| < \frac{\pi}{2})$. Damit folgt $(\tan x)' = \frac{1}{\cos^2 x}$. Das heißt

$$\int_0^{\varphi} \frac{1}{\cos^2 x} \, \mathrm{d}x = [\tan x]_0^{\varphi} = \tan(\varphi) \quad \forall |\varphi| < \frac{\pi}{2}$$

Beispiel 3.1.9. Wir wollen das Integral $\int_a^b \sqrt{1-x^2} \, dx$ berechnen. $\sqrt{1-x^2}$ hat die Stammfunktion $\phi(x) = \frac{1}{2} \left(\arcsin x + x \cdot \sqrt{1-x^2} \right)$, weil

$$\phi'(x) = \frac{1}{2} \left(\frac{1}{\sqrt{1 - x^2}} + \sqrt{1 - x^2} + x \cdot \frac{1}{2\sqrt{1 - x^2}} (-2x) \right) \quad ((\arcsin(x))' = \frac{1}{\sqrt{1 - x^2}})$$

$$= \frac{1}{2} \left(\frac{1}{\sqrt{1 - x^2}} + \sqrt{1 - x^2} - \frac{x^2}{\sqrt{1 - x^2}} \right)$$

$$= \frac{1}{2} \left(\frac{1 - x^2}{\sqrt{1 - x^2}} + \sqrt{1 - x^2} \right) = \frac{1}{2} \left(\sqrt{1 - x^2} + \sqrt{1 - x^2} \right) = \sqrt{1 - x^2}$$

$$\Rightarrow \int_a^b \sqrt{1 - x^2} \, \mathrm{d}x = \left[\frac{1}{2} \left(\arcsin x + x \cdot \sqrt{1 - x^2} \right) \right]_a^b - 1 \le a, b \le 1$$

Geometrisch gesehen können wir damit auch die Fläche der oberen Hälfte des Einheitskreises berechnen

$$\int_{-1}^{1} \sqrt{1 - x^2} \, \mathrm{d}x = \frac{1}{2} \cdot (\arcsin 1 + 0 - \arcsin -1 - 0) = \arcsin 1 = \frac{\pi}{2}$$

Bemerkung 3.1.10. Satz 3.1.1 gilt auch für Funktionen in $\mathbb C$ oder $\mathbb R^d$ bwz. $\mathbb C^d$. Wir nennen

$$\int f(x) \, \mathrm{d}x$$

die Gesamtheit aller Stammfunktionen zu f oder das unbestimmte Integral. Genauer gilt, wenn Φ eine Stammfunktion von f ist

$$\int f(x) \, \mathrm{d}x = \{ \Phi + k : k \text{ Konstante} \}$$

3.2 Integrationstechniken

Satz 3.2.1 (Partielle Integration). Seien $f, g \in \mathcal{C}^1(I)$ (oder $\mathcal{C}^1(I, \mathbb{C})$). Dann gilt

$$\int_{a}^{b} f'(x)g(x) dx = [f(x) \cdot g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx$$
$$= f(b)g(b) - f(a)g(a) - \int_{a}^{b} f(x)g'(x) dx$$

Beweis. Wir wenden die Produktregel der Ableitung an. Es gilt (fg)' = f'g + fg'.

$$\int_{a}^{b} (fg)' \, \mathrm{d}x = \int_{a}^{b} f'g \, \mathrm{d}x + \int_{a}^{b} fg' \, \mathrm{d}x \tag{1}$$

Außerdem gilt

$$\int_{a}^{b} (fg)' dx = [fg]_{a}^{b} = [f(x)g(x)]_{a}^{b} = f(b)g(b) - f(a)g(a)$$
 (2)

Wir setzen (1) und (2) gleich

$$\int_{a}^{b} f'g \, \mathrm{d}x + \int_{a}^{b} fg' \, \mathrm{d}x = f(b)g(b) - f(a)g(a)$$

Beispiel 3.2.2 (Anwendung von partieller Integration).

$$\int \ln x \, \mathrm{d}x = \int 1 \cdot \ln x \, \mathrm{d}x = x \cdot \ln x - \int x \cdot \frac{1}{x} \, \mathrm{d}x$$

$$= x \cdot \ln x - x$$

$$\int \sqrt{1 - x^2} \, \mathrm{d}x = \int 1 \cdot \sqrt{1 - x^2} \, \mathrm{d}x$$

$$= x \cdot \sqrt{1 - x^2} - \int x \cdot \frac{1}{\sqrt{1 - x^2}} \cdot (-2x) \, \mathrm{d}x$$

$$= x \cdot \sqrt{1 - x^2} + \int \frac{x^2}{\sqrt{1 - x^2}} \, \mathrm{d}x$$

$$= x \cdot \sqrt{1 - x^2} + \int \frac{1}{\sqrt{1 - x^2}} \, \mathrm{d}x - \int \frac{1 - x^2}{\sqrt{1 - x^2}} \, \mathrm{d}x$$

$$\Rightarrow 2 \int \sqrt{1 - x^2} \, \mathrm{d}x = x \cdot \sqrt{1 - x^2} + \int \frac{1}{\sqrt{1 - x^2}} \, \mathrm{d}x$$

$$= x \cdot \sqrt{1 - x^2} + \arcsin x$$

$$\Rightarrow \int \sqrt{1 - x^2} \, \mathrm{d}x = \frac{1}{2} \left(x \sqrt{1 - x^2} + \arcsin x \right)$$

Übung 3.2.3. Beweisen Sie analog zum vorherigen Beispiel mittels partieller Integration, dass $\int \sqrt{1+x^2} \, dx = \frac{1}{2} \left(x\sqrt{1+x^2} + \operatorname{arcsinh} x \right)$ und $\int \sqrt{x^2-1} \, dx = \frac{1}{2} \left(x\sqrt{1+x^2} + \operatorname{arccosh} x \right)$

Beispiel 3.2.4.

$$\int e^{ax} \cdot \sin(bx) \, dx = e^{ax} \cdot \left(-\frac{1}{b} \cos(bx) \right) - \int \frac{a}{b} e^{ax} \cos(bx) \, dx$$

Wir wenden nochmal partielle Integration an und erahlten

$$= -\frac{1}{b}e^{ax}\cos(bx) + \frac{a}{b}\left\{\int e^{4x}\cos(bx)\,\mathrm{d}x\right\}$$

$$= -\frac{1}{b}e^{ax}\cos(bx) + \frac{a}{b}\left\{\frac{1}{b}e^{ax}\sin(bx) - \frac{a}{b}\int e^{ax}\sin(bx)\,\mathrm{d}x\right\}$$

$$\Rightarrow \left(1 + \frac{a^2}{b^2}\right)\int e^{ax}\sin(bx)\,\mathrm{d}x = -\frac{1}{b}e^{ax}\cos(bx) + \frac{a}{b}e^{ax}\sin(bx)$$

$$\Rightarrow \int e^{ax}\sin(bx)\,\mathrm{d}x = \frac{1}{a^2 + b^2}\left(e^{ax}\left(a\sin(bx) - b\cos(bx)\right)\right) + const.$$

[07. Mai] **Beispiel 3.2.5.**

$$\int_0^{\frac{\pi}{2}} \cos^2(x) \, dx = \int_0^{\frac{\pi}{2}} \sin^2(x) \, dx = \frac{\pi}{4}$$

$$\int_0^{\frac{\pi}{2}} \sin^2(x) \, dx = \int_0^{\frac{\pi}{2}} \sin(x) \sin(x) \, dx$$

$$= \left[-\cos(x) \sin(x) \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos(x) \cos(x) \, dx$$

$$= 0 - 0 + \int_0^{\frac{\pi}{2}} \cos^2(x) \, dx$$

Mit dem trigonometrischen Pythagoras wissen wir außerdem, dass

$$\frac{\pi}{2} = \int_0^{\frac{\pi}{2}} dx = \int_0^{\frac{\pi}{2}} 1 dx = \int_0^{\frac{\pi}{2}} \left(\cos^2(x) + \sin^2(x)\right) dx$$

$$= \int_0^{\frac{\pi}{2}} \cos^2(x) dx + \int_0^{\frac{\pi}{2}} \sin^2(x) dx$$

$$= 2 \int_0^{\frac{\pi}{2}} \cos^2(x) dx$$

$$\Rightarrow \int_0^{\frac{\pi}{2}} \cos^2(x) dx = \frac{\pi}{4}$$

Beispiel 3.2.6. Sei $n \in \mathbb{N}$ mit $n \geq 2$

$$\int \cos^{n}(x) dx = \int \cos(x) \cos^{n-1}(x) dx$$

$$= \sin(x) \cos^{n-1}(x) + \int \sin(x) (n-1) \cos^{n-2}(x) \sin(x) dx$$

$$= \sin(x) \cos^{n-1}(x) + (n-1) \int \underbrace{\sin^{2}(x)}_{=1-\cos^{2}(x)} \cos^{n-2} x dx$$

$$= \sin(x) \cos^{n-1}(x) + (n-1) \int \cos^{n-2} x dx - (n-1) \int \cos^{n}(x) dx$$

$$\int \cos^{n} x dx = \frac{1}{n} \sin(x) \cos^{n-1}(x) + \frac{n-1}{n} \int \cos^{n-2}(x) dx \qquad \text{(Rekursions formel)}$$

Analog lässt sich zeigen, dass $\int \sin^n(x) x \, dx = \frac{1}{n} \cos(x) \sin^{n-1}(x) + \frac{n-1}{n} \int \sin^{n-2}(x) \, dx$. Wir nutzen nun die Rekursionsformel, um einen Wert für alle n zu ermitteln

$$c_n := \int_0^{\frac{\pi}{2}} \cos^n(x) \, \mathrm{d}x$$

$$= \left[\frac{1}{n} \sin(x) \cos^{n-1}(x) \right]_0^{\frac{\pi}{2}} + \frac{n-1}{n} \int_0^{\frac{\pi}{2}} \cos^{n-2}(x) \, \mathrm{d}x$$

$$= \frac{n-1}{n} \underbrace{\int_0^{\frac{\pi}{2}} \cos^{n-2}(x) \, \mathrm{d}x}_{=c_{n-2}}$$

$$\Rightarrow c_n = \frac{n-1}{n} c_{n-2} \quad \forall n \ge 2$$

$$c_0 = \frac{\pi}{2}$$

$$c_{1} = \int_{0}^{\frac{\pi}{2}} \cos(x) dx = [\sin(x)]_{0}^{\frac{\pi}{2}} = 1 - 0 = 1$$

$$c_{n} = \frac{n-1}{n} \cdot c_{n-2} = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot c_{n-4}$$

$$= \frac{n-1}{n} \cdot \dots \cdot \frac{n-j-1}{n-j} \cdot c_{n-2j-2} \quad \forall j : n-2j-2 \ge 1$$

Damit folgt für $k \in \mathbb{N}$

$$c_{2k} = \frac{2k-1}{2k} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{3}{4} \cdot \int_0^{\frac{\pi}{2}} \cos^2(x) \, dx$$

$$= \frac{2k-1}{2k} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

$$c_{2k+1} = \frac{2k}{2k+1} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{2 \cdot 2}{5} \cdot \int_0^{\frac{\pi}{2}} \cos^3(x) \, dx$$

$$= \frac{2k}{2k+1} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{2 \cdot 2}{5} \cdot \frac{2}{3}$$

Satz 3.2.7 (Wallisches Produkt). Sei $n \in \mathbb{N}$ und

$$W_n := \frac{2 \cdot 2}{1 \cdot 3} \cdot \frac{4 \cdot 4}{3 \cdot 5} \cdot \ldots \cdot \frac{2n \cdot 2n}{(2n-1) \cdot (2n+1)}$$

Dann gilt

$$\lim_{n \to \infty} W_n = \frac{\pi}{2}$$

Beweis. Aus der Definition von c_n aus dem vorherigen Beispiel ergibt sich

$$W_n = \frac{\pi}{2} \cdot \frac{c_{2n+1}}{c_{2n}}$$

Für $x \in \left[0, \frac{\pi}{2}\right]$ ist $0 \le \cos(x) \le 1$. Damit folgt $\cos^{2n}(x) \le \cos^{2n-1}(x) \le \cos^{2n-1}(x)$. Also gilt

$$c_{2n} = \int_0^{\frac{\pi}{2}} \cos^{2n}(x) \, dx \le \int_0^{\frac{\pi}{2}} \cos^{2n-1}(x) \, dx \le \int_0^{\frac{\pi}{2}} \cos^{2n-2} \, dx$$

$$\Rightarrow c_{2n} \le c_{2n-1} \le c_{2n-2} \qquad \forall n \in \mathbb{N}$$

Nach Def. gilt

$$c_{2n} = \frac{\pi}{2} \cdot \prod_{j=1}^{k} \frac{2j-1}{2j}$$

$$\Rightarrow \frac{c_{2n+2}}{c_{2n}} = \frac{\frac{\pi}{2} \cdot \prod_{j=1}^{n+1} \frac{2j-1}{2j}}{\frac{\pi}{2} \cdot \prod_{j=1}^{n} \frac{2j-1}{2j}} = \frac{2(n+1)-1}{2(n+1)} = \frac{2n+1}{2n+2} \to 1 \text{ für } n \to \infty$$

Auch

$$1 = \frac{c_{2n}}{c_{2n}} \ge \left| \frac{c_{2n+1}}{c_{2n}} \right| \ge \frac{c_{2n+2}}{c_{2n}} = \frac{2n+1}{2n+2}$$

$$\Rightarrow \lim_{n \to \infty} \frac{c_{2n+1}}{c_{2n}} = 1$$

Außerdem

$$W_{n} = \frac{2^{2} \cdot 4^{2} \cdot 6^{2} \cdot \dots \cdot (2n-2)^{2}}{3^{2} \cdot 5^{2} \cdot 7^{2} \cdot \dots \cdot (2n-1)^{2}} \cdot 2n \cdot \frac{2n}{2n+1}$$

$$\Rightarrow \sqrt{W_{n}} = \frac{2 \cdot 4 \cdot \dots \cdot (2n-2)}{3 \cdot 5 \cdot \dots \cdot (2n-1)} \cdot \sqrt{2n} \cdot \sqrt{\frac{2n}{2n+1}}$$

$$\Rightarrow \sqrt{\frac{\pi}{2}} = \lim_{n \to \infty} \frac{2 \cdot 4 \cdot \dots \cdot (2n-2)}{3 \cdot 5 \cdot \dots \cdot (2n-1)} \cdot \sqrt{2n}$$

$$= \lim_{n \to \infty} \frac{2^{2} \cdot 4^{2} \cdot \dots \cdot (2n-2)^{2}}{2 \cdot 3 \cdot \dots \cdot (2n-2) \cdot (2n-1)} \cdot \sqrt{2n}$$

$$= \frac{2^{2} \cdot 4^{2} \cdot \dots \cdot (2n-2)^{2} \cdot (2n)^{2}}{(2n-1)! \cdot 2n \cdot \sqrt{2n}}$$

$$= \frac{2^{2n} \cdot (n!)^{2}}{(2n)! \cdot \sqrt{2n}} = \frac{2^{2n}}{\binom{2n}{n} \sqrt{n}} \frac{1}{\sqrt{2}}$$

$$\Rightarrow \sqrt{\pi} = \lim_{n \to \infty} \frac{2^{2n}}{\binom{2n}{n} \sqrt{n}}$$

Satz 3.2.8 (Substitutionsregel). Seien I = [a, b] und I^* kompakte Intervalle und $f \in \mathcal{C}(I, \mathbb{C})$, $\varphi \in \mathcal{C}^1(I^*, \mathbb{R})$ sowie $\varphi(I^*) \subseteq I$. Dann gilt für $\alpha, \beta \in I^*$

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt$$

Beweis. Sei F die Stammfunktion von f ($F'(x) = f(x) \, \forall x \in I$). Wir definieren $h(t) := F(\varphi(t)) \Rightarrow h \in \mathcal{C}^1(I^*, \mathbb{C})$ (Kettenregel).

$$h'(t) = \frac{\mathrm{d}}{\mathrm{d}t}h(t) = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t)) \cdot \varphi'(t)$$

$$\int_{\alpha}^{\beta} h'(t) \, \mathrm{d}t = [h(t)]_{\alpha}^{\beta} = h(\beta) - h(\alpha) = F(\varphi(\beta)) - F(\varphi(\alpha))$$

$$= \int_{\varphi(\alpha)}^{\varphi(\beta)} F'(x) \, \mathrm{d}x = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) \, \mathrm{d}x \qquad \Box$$

ERSTE LESART: $\int_{\alpha}^{\beta} g(t) dt$ ausrechnen. Annahme: Es existiert eine Substitution $x = \varphi(t)$ und f(x), sodass $g(t) = f(\varphi(t)) \cdot \varphi'(t)$ ist.

$$\Rightarrow \int_{\alpha}^{\beta} g(t) dt = \int_{a}^{b} f(x) dx \qquad (b = \varphi(\beta), a = \varphi(\alpha))$$

Beispiel 3.2.9. Wir betrachten des Integral $\int_{\alpha}^{\beta} g(t+c) dt$. Wir definieren $\varphi(t) = t+c$ und f(x) = g(x). Dann gilt $\varphi'(t) = 1$

$$\Rightarrow \int_{\alpha}^{\beta} g(t+c) dt = \int_{\alpha}^{\beta} g(\varphi(t)) \cdot \varphi'(t) dt$$

$$= \int_{\varphi(\alpha)}^{\varphi(\beta)} g(x) dx$$

$$= \int_{a+c}^{b+c} g(x) dx \qquad (Translation)$$

Beispiel 3.2.10. Wir betrachten $\int_a^b g(t) \frac{dt}{t}$ mit a, b > 0 und definieren $\varphi(t) = \ln(t), \ \varphi'(t) = \frac{1}{t}$.

$$g(t) \cdot \frac{1}{t} = g(t) \cdot \varphi'(t)$$

$$= g(e^{\varphi(t)}) \cdot \varphi'(t)$$

$$f'(x) = g(e^{x})$$

$$\Rightarrow \int_{a}^{b} g(t) \frac{dt}{t} = \int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) dt$$

$$= \int_{\varphi(\alpha)}^{\varphi(beta)} f(x) dx = \int_{\ln a}^{\ln b} f(x) dx$$

$$= \int_{\ln a}^{\ln b} g(e^{x}) dx$$

Beispiel 3.2.11. Wir betrachten $\int_0^1 (1+t^2)^n \cdot (t \, dx. \, t = \frac{1}{2} \frac{d}{dt} (1+t^2). (1+t^2)^n = \frac{1}{2} (1+t^2)^n \frac{d}{dt} (1+t^2).$ $\varphi(t) = 1+t^2, \, f(x) = \frac{1}{2} x^n.$ Dann gilt $(1+t^2)^n = \frac{1}{2} f(\varphi(t)) \cdot \varphi'(t).$

[10. Mai] **3.2.12.** Ziel: Berechne $\int_a^b f(x) dx$. Wir führen eine Variablentransformation durch: $x = \varphi(t)$, $\alpha \le t \le \beta$.

Dazu benötigt man $\varphi: [\alpha, \beta] \to [a, b]$ ist invertierbar. (Also zum Beispiel $\varphi' > 0$ oder $\varphi' < 0$ auf ganz $[\alpha, \beta]$)

Notation 3.2.13 (Leibnitz'sche Schreibweise). $x = \varphi(t)$ $\frac{dx}{dt} = \varphi'(t)$ (informell). dx "=" $\varphi'(t) dt$

$$\Rightarrow \int f(x) dx, = \int f(\varphi(t)) \cdot \varphi'(t) dt$$

$$\int_0^1 \sqrt{r^2 - x^2} dx = \int_0^{\frac{\pi}{2}} \sqrt{r^2 - r^2 \sin^2(t)} \cdot \cos(t) dt \qquad (\frac{dx}{dt} = r \cdot \cos t)$$

$$= r^2 \cdot \frac{\pi}{4}$$

4 [*] Uneigentliche Integrale

Bisher haben wir immer nur Integrale auf kompakten Intervalle I berechnet und dabei waren alle Funktionen $f \in \mathcal{R}(I)$ insbesondere beschränkt.

Frage: Was ist $\int_0^1 \frac{1}{\sqrt{x}} dx$? Was ist $\int_0^\infty e^{-t} dt$?

$$\int_{a}^{b} e^{-t} dt = \left[-e^{-t} \right]_{a}^{b} = e^{-0} - e^{-b} = 1 - e^{-b} = 1 - \frac{1}{e^{b}} \to 1 \text{ für } b \to \infty$$

4.1 Uneigentliche Integrale: Fall I

Es sei $I = [a, \infty), f : I \to \mathbb{R}$ und $f \in \mathcal{R}([a, b]) \ \forall a < b < \infty$ sowie $F(b) = \int_a^b f(x) \, \mathrm{d}x$.

Definition 4.1.1 (Fall). Wir definieren

$$\int_{a}^{\infty} f(x) dx := \lim_{b \to \infty} F(b) = \lim_{b \to \infty} \int_{0}^{b} f(x) dx$$

sofern der Grenzwert existiert nennen wir das das uneigentliche Integral von f über $[a, \infty)$. Wenn der Grenzwert existiert, sagen wir das Integral konvergiert.

Divergiert das Integral und gilt $F(b) \to \infty$ für $b \to \infty$ (oder $F(b) \to -\infty$ für $b \to \infty$), so nennen wir das Integral bestimmt divergent und schreiben

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x = +\infty$$

oder

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x = -\infty$$

Satz 4.1.2. Das Integral $\int_a^\infty f(x) \, \mathrm{d}x$ existiert genau dann, wenn

$$\forall \varepsilon > 0 \ \exists R \ge a \colon |F(b_2) - F(b_1)| = \left| \int_{b_1}^{b_2} f(x) \, \mathrm{d}x \right| < \varepsilon \quad \forall b_1, b_2 \ge R$$

Beweis. Wir wollen die Existenz von $\lim_{b\to\infty} F(b)$ für $F(b)=\int_a^b f(x)\,\mathrm{d}x$. Dann folgt der Satz aus dem Cauchy-Kriterium für Grenzwerte.

Definition 4.1.3 (Absolut konvergente uneigentliche Integrale). Das Integral

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x$$

heißt absolut konvergent, falls

$$\int_{a}^{\infty} |f(x)| \, \mathrm{d}x$$

konvergiert.

Satz 4.1.4. Ist das Integral $\int_a^\infty f(x) \, \mathrm{d}x$ absolut konvergent, so ist es auch konvergent. Das heißt ist $\int_a^\infty |f(x)| \, \mathrm{d}x < \infty$, so konvergiert auch $\int_a^\infty f(x) \, \mathrm{d}x$.

Beweis. Wir setzen $G(b)=\int_a^b|f(x)|\,\mathrm{d}x$ und $F(b)=\int_a^bf(x)\,\mathrm{d}x$. Wir nehmen an, dass $\lim_{b\to\infty}G(b)$ existiert, das heißt

$$\forall \varepsilon > 0 \ \exists R \ge a \colon |G(b_2) - G(b_1)| < \varepsilon \quad \forall b_1, b_2 \ge R$$

$$\Rightarrow |F(b_2) - F(b_1)| = \left| \int_{b_1}^{b_2} f(x) \, \mathrm{d}x \right|$$

$$\leq \int_{b_1}^{b_2} |f(x)| \, \mathrm{d}x = G(b_2) - G(b_1)$$

Damit folgt die Behauptung aus Satz 4.1.2.

Satz 4.1.5. Sei $\varphi:[a,\infty)\to[0,\infty)$ mit

$$\int_{a}^{\infty} \varphi(x) \, \mathrm{d}x < \infty$$

une es existiert ein $R_0 \ge 0$, sodass

$$|f(x)| \le \varphi(x) \quad \forall x \ge R_0$$

Dann ist

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x$$

absolut konvergent.

Beweis. Für $b_2 \ge b_1 \ge R_0$ gilt

$$|F(b_2) - F(b_1)| = \left| \int_{b_1}^{b_2} f(x) \, \mathrm{d}x \right|$$

$$\leq \int_{b_1}^{b_2} |f(x)| \, \mathrm{d}x < \int_{b_1}^{b_2} \varphi(x) \, \mathrm{d}x$$

$$\leq \int_{b_1}^{b_2} \varphi(x) \, \mathrm{d}x \to 0 \text{ für } b_1 \to \infty$$

Beispiel 4.1.6. Das Integral

$$\int_{a}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x$$

ist konvergent, aber nicht absolut konvergent. Wir definieren

$$f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

Damit ist f stetig auf $(-\infty, \infty)$ und damit folgt $f \in \mathcal{R}([a, b]) \ \forall a, b \in \mathbb{R}$. Insbesondere existiert

$$\int_0^1 \frac{\sin x}{x} \, \mathrm{d}x$$

4 [*] Uneigentliche Integrale

$$\int_a^b \frac{\sin x}{x} dx = \int_a^1 \frac{\sin x}{x} dx + \int_1^b \frac{\sin x}{x} dx$$
$$\int_1^b \frac{\sin x}{x} dx = \left[-\cos + \frac{1}{x} \right]_1^b - \int_1^b \frac{\cos x}{x^2} dx$$
$$= \cos 1 - \frac{\cos b}{b} - \int_1^b \frac{\cos x}{x^2} dx$$

Wir definieren $\varphi(x) = \frac{1}{x^2}$ mit

$$\int_{1}^{b} \frac{1}{x^{2}} dx = \left[-\frac{1}{x} \right]_{1}^{b} = 1 - \frac{1}{b} \to 1$$

Außerdem gilt

$$\left| \frac{\cos x}{x^2} \right| \le \frac{1}{x^2}$$

Damit ist das Integral nach dem Majorantenkriterium konvergent. Um einzusehen, dass es nicht absolut konvergent ist, betrachten wir für $N \in \mathbb{N}$

$$\int_{N\pi}^{(N+1)\pi} \left| \frac{\sin x}{\pi} \right| dx = \int_{N\pi}^{(N+1)\pi} \frac{|\sin x|}{x} dx$$

$$\geq \frac{1}{\pi (N+1)} \cdot \int_{N\pi}^{(N+1)\pi} |\sin x| dx$$

$$\Rightarrow \int_{0}^{(k+1)\pi} \left| \frac{\sin x}{x} \right| dx = \sum_{n=0}^{k} \int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} dx$$

$$\geq \sum_{n=0}^{k} \frac{2}{\pi (n+1)} = \frac{2}{\pi} \sum_{n=0}^{k} \frac{1}{n+1} \to \infty$$

Bemerkung 4.1.7. Analog zu $[a, \infty)$ wollen wir auch die Integrale in $(-\infty, b]$ betrachten. Wir setzen

$$F(a) = \int_{a}^{b} f(x) dx$$
$$\int_{-\infty}^{b} f(x) dx := \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

sofern der Grenzwert existiert. Alle Aussagen für $[a, \infty)$ gelten analog auch für $(-\infty, b]$.

Definition 4.1.8. Sei $f:(-\infty,\infty)\to\mathbb{R}$ und $f\in\mathcal{R}([a,b])$ $\forall a,b\in\mathbb{R}$. Dann nehmen wir $c\in\mathbb{R}$ beliebig und definieren, dass

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x$$

konvergiert, falls

$$\int_{-\infty}^{c} f(x) d \text{ und } \int_{c}^{\infty} f(x) dx$$

beide konvergieren. Und setzen

$$\int_{-\infty}^{\infty} f(x) dx := \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$

Übung 4.1.9. Weisen Sie nach, dass sowohl die Konvergenz, als auch der Wert des Integrals in der vorherigen Definition unabhängig von der Wahl von c ist.

Bemerkung 4.1.10. Es ist allerdings zu beachten, dass

$$\lim_{a \to \infty} \int_{a}^{c} f(x) dx + \lim_{b \to \infty} \int_{c}^{b} dx \neq \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$$

Das heißt die Integrale müssen tatsächlich getrennt betrachtet werden. Zum Beispiel bei der Funktion f(x) = x geht $\int_{-R}^{R} x \, dx \to 0$, aber ist eigentlich nicht auf $(-\infty, \infty)$ integrierbar, da sich bei der Trennung in zwei Integrale kein Grenzwert ergibt.

4.2 Uneigentliche Integrale: Fall II

Es sei I = [a, b) (oder I = (a, b]) und $f : I \to \mathbb{R}$ unbeschränkt bei x = a (oder x = b). Außerdem $f \in \mathcal{R}([a, c]) \ \forall a < c < b$ (oder $f \in \mathcal{R}([c, b]) \ \forall a < c < b$)

Definition 4.2.1. Existiert

$$\lim_{c \to b^{-}} \int_{a}^{c} f(x) dx \quad \left(\text{oder } \lim_{c \to a^{+}} \int_{c}^{b} f(x) dx \right)$$

so setzen wir

$$\int_{a}^{b} f(x) dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x) dx \quad \left(\text{oder } \int_{a}^{b} f(x) dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x) dx \right)$$

und sagen

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

konvergiert.

Satz 4.2.2. Ist $|f(x)| \le \varphi(x) \ \forall x \in [a,b)$ (oder $\forall x \in (a,b]$) und konvergiert $\int_a^b \varphi(x) \, \mathrm{d}x$, so konvergiert auch $\int_a^b f(x) \, \mathrm{d}x$

Beispiel 4.2.3. Sei $f:(0,1]\to\mathbb{R},\ x\mapsto \frac{1}{\sqrt{x}}$. Dann gilt $F(x)=2\sqrt{x}$

$$\int_0^1 \frac{1}{\sqrt{x}} \, \mathrm{d}x = \left[2\sqrt{x} \right]_c^1 = 2 - 2\sqrt{c} \to 2$$

4.3 Uneigentliche Integrale Fall III

[14. Mai] f hat eine Singularität in ξ im Inneren von [a, b].

Beispiel 4.3.1.
$$f(x) = \frac{1}{|\sqrt{x}|}$$
 auf $[-1,0) \cup (0,1]$.

Definition 4.3.2. Wir sagen, dass

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

existiert/konvergiert, falls die uneigentlichen Integrale

$$\int_{\xi}^{b} f(x) \, \mathrm{d}x \text{ und } \int_{a}^{\xi} f(x) \, \mathrm{d}x$$

konvergieren. Wir setzen

$$\int_{a}^{b} f(x) dx := \int_{a}^{\xi} f(x) dx + \int_{\xi}^{b} f(x) dx$$
 (4.3.1)

Bemerkung 4.3.3. (4.3.1) ist stärker als die Existenz von

$$\lim_{\varepsilon \searrow} \int_{I_{\varepsilon}} f(x) \, \mathrm{d}x$$

mit I = [a, b] und $I_{\varepsilon} := I \setminus (\xi - \varepsilon, \xi + \varepsilon) = [a, \xi - \varepsilon] \cup [\xi + \varepsilon, b]$. (Cauchyscher Hauptwert).

Beispiel 4.3.4. Sei $f(x) = \frac{1}{x^2}$, I = [-1, 1]. Dann existiert der Cauchysche Hauptwert, aber nicht (4.3.1).

4.4 Uneigentliche Integrale Fall IV

Definition 4.4.1. Man hat Singularitäten in \mathbb{R} für f oder/und $b = +\infty$, $a = -\infty$. Dann zerlege $[a, \infty)$ oder $(-\infty, b]$ oder $(-\infty, \infty)$ in endlich viele Intervalle, wobei die Singularitäten die Randpunkte sind (oder $-\infty$, ∞). Dann existiert das Integral, falls die endlich vielen uneigentlichen Integrale existieren. Dann nehme Summe aller dieser uneigentlichen Integrale

Satz 4.4.2 (Integralvergleichskriterium). Sei $f:[1,\infty)\to\mathbb{R}$ monoton fallend. Dann gilt

$$\sum_{n=1}^{\infty} f(n) \text{ konvergiert } \Leftrightarrow \int_{1}^{\infty} f(x) \, \mathrm{d}x \text{ existiert}$$

Beweis. Siehe Saalübung.

Beispiel 4.4.3. Es sei $f(x) = x^{-p}$ mit $p \neq 1$. Dann ist $F(x) = \frac{1}{1-p}x^{1-p}$ für F' = f.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{R \to \infty} \left[\frac{1}{1-p} x^{1-p} \right]_{1}^{R}$$

existiert nach Satz 4.4.2 für p > 1.

Beispiel 4.4.4. $f(x) = \log_2(x) = \log(\log(x)), x > 1$

$$\frac{\mathrm{d}}{\mathrm{d}x}\log_2(x) = \frac{1}{\log(x)} \cdot \frac{1}{x}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\log_2(x)\right)^{1-s} = \frac{1-s}{(\log x)^s} \cdot \frac{1}{x}$$

$$\Rightarrow \sum_{r=2}^{\infty} \frac{1}{n\left(\log^s n\right)^s} \text{ konvergient } \Leftrightarrow s > 1$$

Beispiel 4.4.5 (Gamma-Funktion).

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t \tag{x > 0}$$

(a)

$$t^{x-1}e^{-t} \le t^{x-1} \quad \forall t > 0$$

(b)

$$t^{x-1}e^{-t} = t^{x-1}e^{-\frac{t}{2}}e^{-\frac{t}{2}}$$

$$\leq c_x e^{-\frac{t}{2}} \quad \forall t \geq 1 \qquad (c_x := \sup_{t \geq 1} t^{x-1}e^{-\frac{t}{2}})$$

 $t^{x-1}e^{-\frac{t}{2}}$ ist beschränkt auf $[1,\infty)$

$$\int_{0}^{1} t^{x-1} e^{-t} dt \le \int_{0}^{1} t^{x-1} dt$$

$$= \lim_{c \to \infty} \left[\frac{1}{x} t^{x} \right]_{c}^{1}$$

$$= \lim_{c \to 0^{+}} \frac{1}{x} (1 - e^{x})$$

$$0 \le \int_{1}^{\infty} t^{x-1} e^{-t} dt$$

$$= \lim_{b \to \infty} \int_{a}^{b} t^{x-1} e^{-t} dt$$

$$\le c_{x} e^{-\frac{t}{2}}$$

$$\le \lim_{b \to \infty} c_{x} \int_{a}^{b} e^{-\frac{t}{2}} dt < \infty$$

$$\int_{a}^{b} e^{-\frac{t}{2}} = \left[-2e^{-\frac{t}{2}} \right]_{1}^{b} = 2 \left(e^{-\frac{1}{2}} - e^{-\frac{b}{2}} \right) \to 2e^{-\frac{1}{2}}$$

Satz 4.4.6 (Funktionalgleichung der Γ -Funktion). Es gilt $\Gamma(n+1) = n!$ und $x\Gamma(x) = \Gamma(x+1)$ für alle x > 0.

Beweis.

$$\Gamma(x+1) = \int_0^\infty t^{(x+1)-1} e^{-t} dt$$
$$= \int_0^\infty t^x e^{-t} dt$$

Wir integrieren partiell. Sei $0 < a < b < \infty$

$$\int_{a}^{b} t^{x} e^{-t} dt = \left[-t^{x} e^{-t} \right]_{a}^{b} + \int_{a}^{b} x t^{x-1} e^{-t} dt$$

$$= a^{x} e^{-b} - b^{x} e^{-b} + x \int_{a}^{b} t^{x-1} e^{-t} dt$$

$$\Rightarrow \int_{a}^{\infty} t^{x} e^{-t} dt = \lim_{b \to \infty} \int_{a}^{b} t^{x} e^{-t} dt$$

$$= a^{x} e^{-a} + x \int_{a}^{\infty} t^{x-1} e^{-t} dt$$

$$\Rightarrow \Gamma(x+1) = \int_{0}^{\infty} t^{x} e^{-t} dx = x \Gamma(x)$$

Damit folgt die zweite Behauptung. Wir betrachten außerdem

$$\Gamma(n+1) = n\Gamma(n) = n\Gamma(n-1+1)$$

$$= n(n-1)\Gamma(n-1) = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1 \cdot \Gamma(1)$$

$$= n!$$

Anwendung 4.4.7. Nach Substitution mit $t^2 = x$ gilt $\frac{dt}{dx} = \frac{1}{2\sqrt{x}}$

$$\int_a^{\xi} e^{-t^2} \, \mathrm{d}t = \int e^{-x} \frac{1}{2} \sqrt{x} \, \mathrm{d}x$$

$4\ [*]\ Uneigentliche\ Integrale$

$$= \frac{1}{2} \int_0^\infty \frac{1}{\sqrt{x}} e^{-x} dx$$
$$= \frac{1}{2} \int_1^b s^{-\frac{1}{2}} e^{-s} ds$$

für $b \to \infty$ und $a \searrow 0$

$$\Rightarrow 2 \int_0^\infty e^{-t^2} dx = \int_0^\infty s^{-\frac{1}{2}} e^{-s} ds$$
$$= \Gamma\left(\frac{1}{2}\right)$$

Berechnung von $\Gamma\!\left(\frac{1}{2}\right)$ später.

5 [*] Integrale und gleichmäßige Konvergenz

Sei I = [a, b] und $f : I \to \mathbb{R}$, $f_n : I \to \mathbb{R}$. Wenn die Funktionenfolge $(f_n)_n$ "irgendwie" gegen f konvergiert. Wann gilt dann

$$\int_a^b f_n(x) dx \to \int_a^b f(x) dx \text{ für } n \to \infty ?$$

Wir werden in diesem Kapitel einsehen, dass punktweise Konvergenz dafür nicht ausreichend ist, sondern wir gleichmäßige Konvergenz fordern müssen.

Beispiel 5.1.1 (Punktweise Konvergenz). Sei $f_n:[0,1]\to\mathbb{R}$ mit

$$f_n(x) := \begin{cases} n & 0 < x < \frac{1}{n} \\ 0 & \text{sonst} \end{cases}$$

 $(f_n)_n$ konvergiert punktweise gegen die Nullfunktion $(f_n(x) \to 0$ für $n \to \infty \ \forall x \in [0,1])$. Außerdem gilt für ein $n \in \mathbb{N}$

$$\int_0^1 f_n(x) \, \mathrm{d}x = \int_0^{\frac{1}{n}} n \, \mathrm{d}x = \frac{n}{n} = 1$$

Das Integral über die Nullfunktion ist aber 0. Das heißt punktweise Konvergenz ist kein ausreichendes Kriterium, damit die Integrale gleich sind.

Satz 5.1.2. Seien $f, f_n : [a, b] \to \mathbb{R}$ (oder \mathbb{C}, \dots) und $n \in \mathbb{N}$. Außerdem konvergiere $(f_n)_n$ gleichmäßig gegen f auf [a, b] und $f_n \in \mathcal{R}([a, b])$. Dann gilt $f \in \mathcal{R}(I)$ und

$$\lim_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x = \int_a^b \lim_{n \to \infty} f_n(x) \, \mathrm{d}x$$

Beweis. Sei $\varepsilon > 0$ und $N \in \mathbb{N}$ groß genug. Dann gilt

$$||f - f_n||_{\infty} = \sup_{a \le x \le b} |f(x) - f_n(x)| < \frac{\varepsilon}{4 \cdot (b - a)}$$

$$\Rightarrow f_n(x) - \frac{\varepsilon}{4 \cdot (b - a)} \le f(x) \le f_n(x) + \frac{\varepsilon}{4 \cdot (b - a)} \quad \forall n \ge N$$
(1)

Halte N fest und nehme Zerlegung Z von I = [a, b] mit $\overline{S}_Z(f_N) - \underline{S}_Z(f_N) < \frac{\varepsilon}{2}$. Dann gilt jeweils nach (1)

$$\begin{split} \overline{S}_{Z}(f) &\leq \overline{S}_{Z}\bigg(f_{N} + \frac{\varepsilon}{4\cdot(b-a)}\bigg) = \overline{S}_{Z}(f_{N}) + \overline{S}_{Z}\bigg(\frac{\varepsilon}{4\cdot(b-a)}\bigg) = \overline{S}_{Z}(f_{N}) + \frac{\varepsilon}{4} \\ \underline{S}_{Z}(f) &\geq \underline{S}_{Z}\bigg(f_{N} - \frac{\varepsilon}{4\cdot(b-a)}\bigg) = \underline{S}_{Z}(f_{N}) - \underline{S}_{Z}\bigg(\frac{\varepsilon}{4\cdot(b-a)}\bigg) = \underline{S}_{Z}(f_{N}) - \frac{\varepsilon}{4} \\ \Rightarrow \overline{S}_{Z}(f) - \underline{S}_{Z}(f) &\leq \overline{S}_{Z}(f_{N}) + \frac{\varepsilon}{4} - \bigg(\underline{S}_{Z}(f_{N}) - \frac{\varepsilon}{4}\bigg) \\ &= \overline{S}_{Z}(f_{N}) - \underline{S}_{Z}(f_{N}) + \frac{\varepsilon}{2} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

Damit folgt $f \in \mathcal{R}(I)$. Wir beweisen die Gleichheit der Integrale.

5 [*] Integrale und gleichmäßige Konvergenz

$$\begin{split} \int_a^b f_n(x) \, \mathrm{d}x - \frac{\varepsilon}{4} &= \int_a^b \left(f_n(x) - \frac{\varepsilon}{4 \cdot (b-a)} \right) \mathrm{d}x \\ &\leq \int_a^b f(x) \, \mathrm{d}x \leq \int_a^b \left(f_n(x) + \frac{\varepsilon}{4 \cdot (b-a)} \right) \mathrm{d}x \\ &= \int_a^b f_n(x) \, \mathrm{d}x + \frac{\varepsilon}{4} \quad \forall n \geq N \\ \Rightarrow \limsup_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x - \frac{\varepsilon}{4} \leq \int_a^b f(x) \, \mathrm{d}x \leq \liminf_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x + \frac{\varepsilon}{4} \quad \forall \varepsilon > 0 \\ \Rightarrow \limsup_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x \leq \int_a^b f(x) \, \mathrm{d}x \leq \lim\inf_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x \end{split}$$

[17. Mai] Beispiel 5.1.3 (Integral von Potenzreihen). Wir betrachten die Potenzreihe

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

mit Konvergenzradius R > 0 und

$$R = \frac{1}{\limsup_{n \to \infty} |a_n|^{\frac{1}{n}}}$$

Wir erhalten also eine Funktion $f:(x_0-R,x_0+R)\to\mathbb{R}$ (oder \mathbb{C}). Die Stammfunktion zu $a_n\,(x-x_0)^n$ ist $\frac{a_n}{n+1}\,(x-x_0)^{n+1}$. Wir definieren also eine Funktion F analog

$$F(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - x_0)^{n+1} = \sum_{n=1}^{\infty} c_n (x - x_0)^n$$

$$\lim_{n \to \infty} \sup_{n \to \infty} (|c_n|)^{\frac{1}{n}} = \lim_{n \to \infty} \sup_{n \to \infty} \left| \frac{a_{n-1}}{n} \right|^{\frac{1}{n}}$$

$$(c_n := \frac{a_{n-1}}{n})$$

Es gilt

$$\left(\frac{|a_{n-1}|}{n}\right)^{\frac{1}{n}} = \frac{1}{n^{\frac{1}{n}}} \left(|a_{n-1}|^{\frac{1}{n-1}}\right)^{\frac{n-1}{n}}$$

$$\Rightarrow \limsup_{n \to \infty} |c_n|^{\frac{1}{n}} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}}$$

Das heißt F hat denselben Konvergenzradius wie f. Unsere Hoffnung ist also, dass F eine Stammfunktion von f ist oder

$$\int_{x_0}^x f(t) \, \mathrm{d}t = F(x)$$

Das gilt tatsächlich und lässt sich folgendermaßen zeigen. Wir definieren eine Funktionenfolge

$$f_n(x) = \sum_{k=0}^{n} a_k (x - x_0)^k$$

Wir wissen $\forall \delta > 0$ klein genug (konkret heißt das $\delta < R$) konvergiert f_n gleichmäßig gegen f auf dem Intervall $[x_0 - R + \delta, x_0 + R - \delta]$. Dann gilt nach Satz 5.1.2 für $x \in [x_0 - R + \delta, x_0 + R - \delta]$ fest

$$\int_{x_0}^x f(t) dt = \lim_{n \to \infty} \int_{x_0}^x f_n(t) dt$$

$$= \lim_{n \to \infty} \int_{x_0}^{x} \sum_{k=0}^{n} \frac{a_k}{k+1} (x - x_0)^{k+1} dx = F(x)$$

$$\int_{x_0}^{x} f_n(t) dt = \int_{x_0}^{x} \sum_{k=0}^{n} a_k (x - x_0)^k dt = \sum_{k=0}^{n} a_k \int_{x_0}^{x} (t - x_0)^k dt$$

$$= \left[\frac{1}{k+1} (t - x_0)^{k-1} \right]_{x_0}^{x} = \frac{1}{k+1} xk + 1$$

Satz 5.1.4. Sei I = [a, b] sowie $f_n : I \to \mathbb{R}$ (oder \mathbb{C}) und die folgenden Voraussetzungen gelten

- (i) $\exists x_0 \in I : f_n(x_0)$ konvergiert gegen $f(x_0)$
- (ii) $(f_n')_n$ konvergiert gleichmäßig gegen eine Funktion g
- (iii) f'_n ist stetig für alle $n \in \mathbb{N}$

Dann gilt $f(x) := \lim_{n \to \infty} f_n(x) \ \forall x \in I \text{ und } f \text{ ist stetig differenzierbar mit Ableitung } f' = g.$

Beweis. Sei $x \in I.$ Da alle Ableitungen von f_n stetig sind, können wir den Hauptsatz verwenden und es gilt

$$f_n(x) - f_n(x_0) = \int_{x_0}^x f'_n(t) dt$$

$$\Rightarrow f_n(x) = \underbrace{f_n(x_0)}_{\to f(x_0)} + \underbrace{\int_{x_0}^x f'_n(t) dt}_{\to \int_{x_0}^x g(t) dt}$$

$$\Rightarrow f(x) \coloneqq \lim_{n \to \infty} f_n(x) \text{ existient } \forall x \in I \text{ und}$$

$$f(x) = f(x_0) + \int_{x_0}^x g(t) dt$$

Nach dem Hauptsatz gilt, dass f stetig differenzierbar ist mit f' = g.

Anwendung 5.1.5.

$$f(x) = \sum_{n=0}^{\infty} a_N (x - x_0)^n$$

$$R = \frac{1}{\limsup_{n \to \infty} |a_n|^{\frac{1}{n}}} > 0$$

$$f_n(x) = \sum_{k=0}^n a_k (x - x_0)^k$$

$$\Rightarrow f(x) = \lim_{n \to \infty} f_n(x)$$

$$f'_n(x) = \sum_{k=1}^{\infty} k \cdot a_k (x - x_0)^{k-1}$$

Es gilt

$$\limsup_{n \to \infty} |(n+1) \, a_{n+1}|^{\frac{1}{n}} = \limsup_{n \to \infty} |a_{n+1}|^{\frac{1}{n+1}}$$

Nach dem vorherigen Satz gilt damit

$$f'_n(x) = \sum_{k=1}^n k \cdot a_k (x - x_0)^{k-1}$$

konvergiert auch auf $(x_0 - R, x_0 + R)$ und gleichmäßig auf $[x_0 - R + \delta, x_0 + R - \delta]$. Also konvergiert

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = (x)$$

und ihre Ableitung ist gegeben durch

$$\sum_{n=1}^{\infty} n \cdot a_n \left(x - x_0 \right)^{n-1}$$

Also ist jede Potenzreihe differenzierbar auf ihrem Konvergenzintervall.

Korollar 5.1.6. Jede Potenzreihe $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ ist unendlich oft differenzierbar auf ihrem Konvergenzintervall.

Beweis. Nach Anwendung 5.1.5 ist eine Potenzreihe einmal differenzierbar mit einer Potenzreihe als Ableitung. Damit folgt induktiv die Behauptung. Insbesondere gilt

$$f'(x) = \sum_{n=1}^{\infty} n a_n \cdot (x - x_0)^{n-1}$$

$$f''(x) = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot (x - x_0)^{n-2}$$

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n \cdot (n-1) \cdot \dots \cdot (n-k+1) \cdot a_n \cdot (x - x_0)^{n-k}$$

$$\Rightarrow f^{(k)}(x_0) = k! \cdot a_k$$

$$\Leftrightarrow a_k = \frac{f^{(k)}(x_0)}{k!}$$

Beispiel 5.1.7. Wir wissen

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

$$\Rightarrow \sum_{n=1}^{\infty} n \cdot x^n = x \cdot \sum_{n=1}^{\infty} n \cdot x^{n-1}$$

$$= x \cdot \frac{\mathrm{d}}{\mathrm{d}x} \cdot \frac{1}{1-x}$$

$$= x \cdot \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{\infty} x^n = x \cdot \frac{-1}{(1-x)^2} (-1) = \frac{x}{(1-x)^2}$$

Bemerkung 5.1.8 (Taylorrreihe).

$$f(x) - f(x_0) = \int_{x_0}^x f'(t) dt$$

5.1 Gleichmäßige Konvergenz

$$\Rightarrow f(x) = f(x_0) + \int_{x_0}^x f'(t) dt$$

$$= f(x_0) + \int_{x_0}^x (f'(t) - f'(x_0) + f'(x_0)) dx$$

$$= f(x_0) + \int_{x_0}^x (f'(t) - f'(x_0)) dt + f'(x_0) \cdot \int_{x_0}^x 1 dt$$

$$= f(x_0) + f'(x_0) \cdot (x - x_0) + \underbrace{\int_{x_0}^x (f'(t) - f'(x_0)) dt}_{=:R_{x_0}(x)}$$

Wir können den Fehler abschätzen und erhalten für ein $\varepsilon(x) \coloneqq \sup_{t \in (x_0,x)} |f'(t) - f'(x_0)|$

$$|R_{x_0}(x)| \le \int_{x_0}^x |f'(t) - f'(x_0)| dt \le \varepsilon(x) \cdot |x - x_0|$$
$$\frac{|R_{x_0}(x)|}{|x - x_0|} = \varepsilon(x) \to 0 \text{ für } x \to x_0$$

6 [*] Taylors Theorem

$$f(x) = f(x_0) + \int_{x_0}^{x} f'(t) dt$$
 (6.1.1)

[28. Mai] Satz 6.1.1. Sei $f \in C^{(n+1)}((a,b))$ (n+1) mal stetig differenzierbar auf (a,b)). Dann gilt für alle $x, x_0 \in (a,b)$

$$f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + R_n(f, x_0, x)$$

mit

$$R_n(f, x_0, x) = \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) dt$$

Beweis. Wir verwenden Induktion. Der Induktionsanfang für n=1 ist gerade der Hauptsatz.

Induktionsschritt: Angenommen $f \in \mathcal{C}^{(n+2)}$. Dann gilt nach Induktionsannahme

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(f, x_0, x)$$

$$R_n(f, x_0, x) = \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt$$
(1)

Wir integrieren partiell

$$= \frac{1}{n!} \left(\left[-\frac{1}{n+1} (x-t)^{n+1} f^{(n+1)}(t) \right]_{x_0}^x - \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} f^{(n+2)}(t) dt \right)$$

$$= -\frac{1}{n+1} \cdot \frac{d}{dt} (x-t)^{n+1}$$

Nach (1) folgt

$$f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \underbrace{\frac{1}{(n+1)!} \int_{x_0}^x (x - t)^{n+1} \cdot f^{(n+2)}(t) dt}_{=R_{n+1}(f, x_0, x)}$$

Korollar 6.1.2. Sei $f \in C^n((a,b))$. Dann gilt $\forall x, x_0 \in (a,b)$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \overline{R}_n(f, x_0, x)$$

 $_{
m mit}$

$$\overline{R}_n(f, x_0, x) = \frac{1}{(1 - n)!} \int_{x_0}^x (x - t)^{n - 1} \cdot \left[f^{(n)}(t) - f^{(n)}(x) \right] dt$$

Beweis. Nach Satz 6.1.1 gilt

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(n)}(x_0)}{k!} \cdot (x - x_0)^k + \overline{R}_{n-1}(f, x_0, x)$$

$$= \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_{n-1}(f, x_0, x) - \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

$$(n-1)! \cdot R_{n-1}(f, x_0, x) = \int_{x_0}^{x} (x - t)^{n-1} f(n)(t) dt - \frac{1}{n} f^{(n)}(x_0) (x - x_0)^n$$

$$= \int_{x_0}^{x} (x - t)^{n-1} \cdot \left[f^{(n)}(t) - f^{(n)}(x_0) \right] dt$$

Bemerkung 6.1.3.

$$n! \cdot \left| \frac{R_n(f, x_0, x)}{(x - x_0)^n} \right| = \left| \int_{x_0}^x \frac{(x - t)^n}{(x - x_0)^n} f^{(n+1)}(t) \, dt \right|$$

$$\leq \int_{x_0}^x \left| \frac{x - t}{x - x_0} \right|^n \cdot \left| f^{(n+1)}(t) \right| \, dt$$

$$\leq \int_{x_0}^x \left| f^{(n+1)}(t) \right| \, dt \to 0$$

Definition 6.1.4. Sei $f \in \mathcal{C}((a,b))$ und $x_0 \in (a,b)$. Wir definieren

$$T_n(f, x_0)(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 (n-tes Taylorpolynom)

Ist f unendlich oft differenzierbar, so nennen wir

$$T(f, x_0, x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Taylorreihe (von f im Entwicklungspunkt x_0).

Bemerkung 6.1.5.

- (i) Die Taylorreihe kann Konvergenzradius R > 0 haben
- (ii) Ist eine Taylorreihe konvergent, so muss sie nicht unbedingt gegen f konvergieren

Beispiel 6.1.6. Wir betrachten $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) \coloneqq \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Dann ist f unendlich oft differenzierbar und es gilt $f^{(n)}(0) = 0 \ \forall n \in \mathbb{N}_0$.

Beweis. Schritt 1: Sei $x \neq 0$. Dann existiert $\forall n \in \mathbb{N}_0$ ein Polynom p_n , sodass

$$f^{(n)}(x) = p_n\left(\frac{1}{n}\right) \cdot e^{-\frac{1}{x^2}}$$

Wir beweisen diese Behauptung mittels Induktion.

I-Anfang Es ist n = 0. Wir wählen $p_0(x) = 1$.

6 [*] Taylors Theorem

I-Schritt

$$f^{(n+1)}(x) = \frac{d}{dx} \left(f^{(n)}(x) \right)$$

$$= \frac{d}{dx} \left(p_n \left(\frac{1}{x} \right) \cdot e^{-\frac{1}{x^2}} \right)$$

$$= p'_n \left(\frac{1}{x} \right) \cdot \left(-\frac{1}{x^2} \right) \cdot e^{-\frac{1}{x^2}} + p_n \left(\frac{1}{x} \right) \cdot e^{-\frac{1}{x^2}} \cdot \frac{2}{x^3}$$

$$= \underbrace{\left(-p'_n \left(\frac{1}{x} \right) \cdot \frac{1}{x^2} + 2p_n \left(\frac{1}{x} \right) \cdot \frac{1}{x^3} \right) \cdot e^{-\frac{1}{x^2}}}_{=:p_{n+1}(\frac{1}{x})}$$

$$p_{n+1}(t) := -p'_n(t) \cdot t^2 + 2t^3 \cdot p_n(t)$$

SCHRITT 2: $f^{(n)}(0) = 0 \ \forall n \in \mathbb{N}_0$. Wir nutzen wieder Induktion. Der Induktionsanfang ist klar. I-Schritt Angenommen $f^{(n)}(0) = 0$. Dann gilt

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x}$$

$$= \lim_{x \to 0} \frac{f^{(n)}(x)}{x}$$

$$= \lim_{x \to 0} \left(\frac{1}{x} \cdot p_n \left(\frac{1}{x}\right) \cdot e^{-\frac{1}{x^2}}\right)$$

$$= \lim_{|R| \to \infty} \left(R \cdot p_n(R) \cdot e^{-R^2}\right) = 0$$

Satz 6.1.7. Ist $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ eine Potenzreihe mit Konvergenzradius r > 0, so ist die Taylorreihe von f gleich dieser Potenzreihe.

Beweis. Folgt aus Korollar 5.1.6 und Gleichung ??.

Beispiel 6.1.8.

$$\sum_{n==}^{\infty} \frac{(cx)^n}{n!} = \sum_{n=0}^{\infty} \frac{c^n}{n!} \cdot x^n$$

$$\exp(cx) = \exp(cx_0 + c(x - x_0))$$

$$= \exp(cx_0) \cdot \exp(c(x - x_0))$$

$$= \exp(cx_0) \cdot \sum_{n=0}^{\infty} \frac{c^n}{n!} (x - x_0)^n$$

$$= \sum_{n=0}^{\infty} ??$$

Satz 6.1.9 (Restglieddarstellung von Schlömilch). Sei $f \in \mathcal{C}^{n+1}((a,b))$ und $x_0 \in (a,b)$. Dann gilt

$$f(x) = T_n(f, x_0, x) + R_n(f, x_0, x)$$

mit

????

Bemerkung 6.1.10. Ist p = n + 1, dann haben wir die Lagrangsche Darstellung

$$R_n(f, x_0, x) = \frac{1}{(n+1)!} \cdot f^{(n+1)}(\xi) \cdot (x - x_0)^{n+1}(\xi)$$

und wenn p = 1, dann haben wir die Cauchysche Darstellung

$$R_n(f, x_0, x) = \frac{1}{n!} \cdot f^{(n+1)}(\xi) \cdot (x - \xi)^n \cdot (x - x_0)$$

für das Restglied.

Satz 6.1.11 (Logarithmus). Für die Logarithmusreihe $f_n: -1 \le x \le 1$ gilt

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^2}{3} \pm \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{x^n}{n}$$

Beweis.

$$f(x) = \log(1+x)$$

$$f'(x) = (1+x)^{-1}$$

$$f''(x) = -1 \cdot (1+x)^{-2}$$

$$\vdots$$

$$f^{(n)}(x) = (-1)^{n+1} \cdot (n-1)! \cdot (1+x)^{-n}$$

$$T_n(f,0)(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k} \cdot x^k = \sum_{k=0}^n (-1)^{n+1} \cdot \frac{(k-1)}{k!} x^k$$

$$= \sum_{k=0}^n (-1)^{k+1} \cdot \frac{x^k}{k}$$

SCHRITT 1: Aus Satz 6.1.9 folgt

$$f(x) = \sum_{k=1}^{n} (-1)^{k+1} \cdot \frac{x^k}{k} + R_n(f, 0, x)$$

$$R_n(f, 0, x) = \frac{1}{pn!} \cdot f^{(n+1)}(x) \cdot (x - \xi)^{n+1-p} \cdot (x - x_0)^p$$

$$= n! \cdot (-1)^{n+1} \cdot (1 + \xi)^{-(n+1)}$$

$$\Rightarrow |R_n(f, 0, x)| = \frac{1}{pn!} \cdot n! \cdot (1 + \xi)^{-n-1} \cdot |x - \xi|^{n+1-p} \cdot |x|^p$$

Angenommen $0 \le x \le 1$. $0 < \xi < x$, wir wählen p = n + 1

[31. Mai]
$$\Rightarrow |R_n(f, 0, x)| \le \frac{1}{p} = \frac{1}{n+1} \to 0$$

Angenommen $-1 \le x \le 0$. Dann gibt es ein ξ zwischen 0 und x, das heißt $\xi = \Theta x$ mit $0 < \Theta < 1$. Dann gilt

$$R_n(f,0,x) = \frac{1}{p} \cdot (-1)^n \cdot (1 + \Theta x)^{-(n+1)} \cdot (x - \Theta x)^{n+1-p} \cdot x^p$$

$$\Rightarrow |R_n(f,0,x)| = \frac{1}{p} \cdot (1 + \Theta x)^{-(n+1)} \cdot |x|^{n+1-p} \cdot (1 - \Theta)^{n+1-p} \cdot |x|^p$$

$$= \frac{1}{p} \cdot (1 + \Theta x)^{-(n+1)} \cdot (1 - \Theta)^{n+1-p} \cdot |x|^{n+1}$$

 $\mathrm{Da}\, -1 \leq x \leq 0$

$$\Rightarrow 1 + \Theta x = 1 - \Theta \cdot |x| \ge 1 - \Theta > 0$$

$$\Rightarrow (1 + \Theta x)^{-n} \le (1 - \Theta)^{-n}$$

$$\Rightarrow |R_n(f, 0, x)| \le \frac{1}{p} \cdot (1 - \Theta)^{-n} \cdot (1 - |x|)^{-1} \cdot (1 - \Theta)^{n+1-p} \cdot |x|^{n+1}$$

Wähle p = 1

$$\Rightarrow |R_n(f,0,x)| \le (1-\Theta)^{-n} \cdot (1-\Theta)^n \cdot \frac{|x|^{n+1}}{1-|x|} = \frac{|x|^{n+1}}{1-|x|} \to 0$$

SCHRITT 2: Wir wollen zeigen, dass die Taylorreihe $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cdot x^n$ für alle $-1 \le x \le 1$ konvergiert. Für $-1 \le x \le 0$ gilt

$$\left| \frac{(-1)^{n+1}}{n} \cdot x^n \right| \le \frac{1}{n} \cdot |x|^n \le |x|^n$$

Damit folgt die Konvergenz aus dem Vergleich mit der geometrischen Reihe. Das gleiche Prinzip lässt sich für $0 \le x < 1$ anwenden. Für x = 1 ist $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ eine alternierende monotone Reihe, die damit nach Leibniz konvergiert.

Aus Schritt 1 und Schritt 2 folgt damit die Behauptung.

Korollar 6.1.12. Für a > 0 und $0 < x \le 2a$ folgt

$$\log x = \log a + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \cdot a^n} (x - a)^n$$

Beweis.

$$\log x = \log(a + (x - a)) = \log\left(a \cdot \left(1 + \frac{x}{a}\right)\right)$$
$$= \log a + \log\left(1 + \frac{x}{a}\right)$$

Bemerkung 6.1.13. Es gilt

$$\log 2 = \log(1+1) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 (konvergiert langsam)
$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cdot x^{n}$$

$$\log(1-x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cdot (-1)^{n} \cdot x^{n} = -\sum_{n=1}^{\infty} \frac{x^{n}}{n}$$

$$\Rightarrow \log(1+x) - \log(1-x) = \sum_{n \text{ ungerade}} \left(\frac{x^{n}}{n} + \frac{x^{n}}{n}\right) = 2 \cdot \sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1} = \log\left(\frac{1+x}{1-x}\right)$$

Für ein y > 1 mit $y = \frac{1+x}{1-x}$ gilt

$$(1-x) \cdot y = 1 + x$$

$$\Leftrightarrow y - 1 = x \cdot (y + 1)$$
$$\Leftrightarrow x = \frac{y - 1}{y + 1}$$

Für y=2 gilt also $x=\frac{1}{3}$. Das heißt

$$\log y = 2 \cdot \sum_{k=0}^{\infty} \frac{1}{2k+1} \cdot \left(\frac{y-1}{y+1}\right)^{2k+1}$$

$$\Rightarrow \log 2 = 2 \cdot \sum_{k=0}^{\infty} \frac{1}{2k+1} \cdot \left(\frac{1}{3}\right)^{2k+1}$$
 (konvergiert schneller)

Satz 6.1.14 (Abelscher Grenzwertsatz). Angenommen $\sum_{n=0}^{\infty} a_n$ konvergiert. Dann ist die Potenz-

reihe
$$f(x) := \sum_{n=0}^{\infty} a_n \cdot x^n$$

- (i) konvergent für alle $-1 < x \le 1$
- (ii) stetig in x = 1 und
- (iii) Die Potenzreihe konvergiert gleichmäßig auf allen Intervallen [a,1] mit -1 < a < 1. (Das heißt sie konvergiert lokal gleichmäßig auf [-1,1]). Insbesondere in jeder ε -Umgebung um x=1.

Beweis. Schritt 1: Wir zeigen zunächst (ii) und setzen dafür

$$A_n := \sum_{k=n+1}^{\infty} a_k \to 0 \text{ für } n \to \infty$$

Insbesondere ist

$$\sup_{n\geq 0} |A_n| < \infty$$

$$\Rightarrow \sup_{n\geq k+1} |A_n| \to 0 \text{ für } k \to \infty$$

$$a_n = A_{n-1} - A_n \qquad (\text{Wir setzen } A_{-1} = \sum_{n=0}^{\infty} a_n)$$

Für ein $L \in \mathbb{N}$ gilt

$$\sum_{n=0}^{L} a_n \cdot x^n = \sum_{n=0}^{L} (A_{n-1} - A_n) \cdot x^n$$

$$= \sum_{n=0}^{L} A_{n-1} \cdot x^n - \sum_{n=0}^{L} A_n \cdot x^n$$

$$= \sum_{j=-1}^{L-1} A_j \cdot x^{j+1} - \sum_{j=0}^{L} A_j \cdot x^j$$

$$= A_{-1} \cdot x^0 - A_L \cdot x^L + \sum_{n=0}^{L} A_n \cdot \left(x^{n+1} - x^n\right)$$

$$= f(1) - A_L \cdot x^L + (x-1) \cdot \sum_{n=0}^{L-1} A_n \cdot x^n$$

Es gilt $|A_L \cdot x^L| \le |A_L|$ und $|A_n| \le C$ für eine Konstante C. Das heißt für |x| < 1

$$\Rightarrow \sum_{n=0}^{\infty} A_n \cdot x^n \text{ hat Limes für } L \to \infty$$

$$\Rightarrow f(x) = \lim_{L \to \infty} \sum_{n=0}^{L} a_n \cdot x^n = f(1) + (x-1) \cdot \sum_{n=0}^{\infty} A_n \cdot x^n$$

$$\Rightarrow |f(1) - f(x)| = (1-x) \cdot \left| \sum_{n=0}^{\infty} A_n \cdot x^n \right| \le (1-x) \cdot \sum_{n=0}^{\infty} |A_n| \cdot x^n$$

Sei $K \in \mathbb{N}$. Dann gilt

$$\Rightarrow |f(1) - f(x)| \le (1 - x) \cdot \sum_{n=0}^{K} |A_n| \cdot x^n + (1 - x) \cdot \sum_{n=K+1}^{\infty} |A_n| \cdot x^n$$

$$\le \underbrace{(1 - x) \cdot \sup_{n \ge 0} (|A_n|) \cdot \sum_{n=0}^{K} x^n}_{=:I_K(x)} + \underbrace{(1 - x) \cdot \sup_{n \ge K+1} (|A_n|) \cdot \sum_{n=K+1}^{\infty} x^n}_{=:J_K(x)}$$

Für ein festes $K \in \mathbb{N}$ geht $I_K \to 0$ für $x \to 1-$ und es gilt

$$J_K(x) = \sup_{n \ge K+1} (|A_n|) \cdot (1-x) \cdot \sum_{n=K+1}^{\infty} x^n$$

Nach der geometrischen Summenformel gilt

$$=\sup_{n\geq K+1}(|A_n|)\cdot(1-x)\cdot\frac{x^{K+1}}{1-x}$$

$$\leq\sup_{n\geq K+1}(|A_n|)\to 0 \text{ für } L\to\infty \qquad \text{(gleichmäßig in } 0\leq x<1)$$

$$\Rightarrow \limsup_{x\to 1^-}|f(1)-f(x)|\leq 0+\limsup_{x\to 1^-}J_K(x)$$

$$\leq\sup_{n\geq K+1}(|A_n|)\to 0 \text{ für } K\to\infty \quad \forall K\in\mathbb{N}$$

$$\Rightarrow \limsup_{x\to 1^-}|f(1)-f(x)|=0$$

$$\Rightarrow\lim_{x\to 1^-}f(x)=f(1)$$

Schritt 2: $f_n(x) = \sum_{k=0}^n a_k \cdot x^k$

$$\Rightarrow f(x) - f_n(x) = (x - 1) \cdot \sum_{k=n+1}^{\infty} A_k \cdot x^k - A_n \cdot x^n$$

$$\Rightarrow |f(x) - f_n(x)| \le (1 - x) \cdot \sum_{k=n+1}^{\infty} |A_k| \cdot x^k + |A_n| \cdot x^n$$

$$\le (1 - x) \cdot \sup_{k \ge n+1} (|A_k|) \cdot \sum_{k=n+1}^{\infty} x^k + |A_n|$$

$$\le \sup_{k \ge n+1} (|A_k|) \cdot (1 - x) \cdot x^{n+1} \cdot \sum_{k=0}^{\infty} x^k + |A_n|$$

$$\leq 2 \cdot \sup_{k > n} (|A_k|)$$

Mit (ii) folgt $\forall 0 \le x \le 1$

$$|f(x) - f_n(x)| \le 2 \cdot \sup_{k \ge n} (|A_k|)$$

$$\Rightarrow \sup_{0 \le x \le 1} (|f(x) - f_n(x)|) \le 2 \cdot \sup_{k \ge n} (|A_k|)$$

Das heißt $(A_n)_n$ ist eine Nullfolge. Damit gilt gleichmäßige Konvergenz auf [0,1]. f(x) konvergiert gleichmäßig auf kompakten Teilintervallen innerhalb des Konvergenzradius und $\sum a_n$ konvergiert mit Konvergenzradius $R \geq 1$. Das heißt f(x) konvergiert gleichmäßig auf allen $[-\delta, \delta]$ für $0 < \delta < 1$.

Satz 6.1.15 (Arctan Reihe). Für $|x| \le 1$ gilt

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} \pm \dots$$
$$= \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{2n+1}$$

Beweis. Es sei $f(x) = \arctan x$. Dann gilt

$$f'(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x)^2}$$
$$= \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n \cdot x^{2n}$$

Nach dem Hauptsatz gilt

$$f(x) = f(0) + \int_0^x f'(t) dt$$

$$= 0 + \int_0^x \frac{1}{1+t^2} dt$$

$$= \int_0^x \sum_{n=0}^\infty (-1)^n \cdot t^{2n} dt$$

$$= \sum_{n=0}^\infty (-1)^{2n} \cdot \int_0^x t^{2n} dt$$

$$= \sum_{n=0}^\infty (-1)^n \cdot \frac{x^{2n+1}}{2n+1} \text{ falls } |x| < 1$$

Für x = 1 gilt

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{2n+1}$$

$$f(1) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{1^{2n+1}}{2n+1}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \text{ konvergiert nach Leibniz}$$

Das heißt aus Satz 6.1.14 folgt die gleichmäßige Konvergenz von dieser Reihe für alle $|x| \le 1$. Das heißt aus der Stetigkeit von arctan bei ± 1 und dem Satz folgt

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{2n+1} \quad \forall |x| \le 1$$

Bemerkung 6.1.16. Es gilt $\tan x = \frac{\sin x}{\cos x}$ und damit $1 = \tan \frac{\pi}{4}$, $\arctan 1 = \frac{\pi}{4}$. So ergibt sich mit dem Arctan eine Reihendarstellung von π .