

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences First Year Semester I Examination— May/ June 2016

FDN 1204 - Basic Mathematics

Time: 02hours

Answer four (04) questions, including the question number one (01).

1. Given that,
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 0 & -2 & -3 \\ 0 & 0 & -1 \\ -2 & 0 & 0 \end{pmatrix}$ $C = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$ $D = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

- (a) Find A+B and what is the uniqueness of the resulted matrix?
- (b) Find, (i) A^T
- (ii) D⁻¹ (vi) D⁻¹D
- (iii) A+B^T
- (iv) AC

(v) CA

- (c) Explain the property of D and D⁻¹ matrices.

(25 Marks)

- 2. (a) Simplify and express in the form of (a+bi), $\frac{3i^8-i^{11}}{2i-\sqrt{3}}$
 - (b) Find the real numbers x and y such that $i^3 + 6y + 3ix iy + 5x = -1 + 3i$
 - What is the complex conjugate of $e^{i\theta} = \cos \theta + i \sin \theta$? (c) (i)

Given that,
$$e^{i\theta} = \cos \theta + i \sin \theta$$

 $e^{-i\theta} = \cos \theta - i \sin \theta$

Show that,

(ii) $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ (iii) $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ (iv) $\sin^2 \theta + \cos^2 \theta = 1$ (v) $\cos 2\theta + i \sin 2\theta = e^{2i\theta}$

(d) Given that $\log_5(x^3 + x^2 - 9) = 3 \log_5 x$, find the value x.

(25 Marks)

- 3. (a) In a combustion reaction, the mass (in gram) of fuel decreased according to the formula $M = 4 0.05t^2$ (t in hours).
 - (i) Find the average rate of reaction in the interval from t = 2 to t = 3.
 - (ii) Find the rate of reaction at t = 4.
 - (iii)State whether the curve of combustion reaction is parabola or a straight line.
 - (iv) Find the turning point of this curve and determine whether it is a maximum, minimum or a point of inflexion.
 - (b) Given that Arrhenius equation as $k = Ae^{-\frac{E_a}{RT}}$ where, k is rate of the reaction, T is the temperature, R is the Universal gas constant, A is pre-exponential factor and E_a is activation energy.
 - (i) Express the equation in linear form using logarithms.
 - (ii) If $\frac{1}{r}$ is the independent variable and $\ln k$ is the dependant variable convert the Arrhenius equation into the form of y = mx + c.
 - (iii) Write the values of gradient (m) and intercept (c).
 - (iv) Write down the 1st partial derivative of Arrhenius equation with respect to T.

(25 marks)

- 4. (a) Solve the equation $x^4 7x^2 + 12 = 0$
 - (b) Find the area of the region bound by the x-axis $\sqrt{3}$ and 2 of the curve $y = x^4 7x^2 + 12$, explain the sign of the area obtained.
 - (c) In chemical thermodynamics the G = H TS where, G = Gibbs free energy, H = enthalpy, T = temperature and S = entropy are state variables. The infinitesimal change can be denoted as $(G+\partial G)$, $(H+\partial H)$, $(S+\partial S)$ and $(T+\partial T)$.
 - (i) Show that $\partial G = \partial H T \partial S S \partial T$.
 - (ii) Find all partial derivatives of G = H TS.
 - (iii) Write the total differential of the function G = H TS.

(25 Marks)

- 5. (a) Factorise the equation $3x^3 + 4x^2 4x$
 - (b) Integrate $\int \frac{x^2+4}{3x^3+4x^2-4x} dx$
 - (c) Determine $\frac{dy}{dx}$ from 1st principle of the function $y = 3x^2 + 5$.

(25 Marks)