CHAPTER 2 Set Theory

Set — A collection of objects.

The objects comprising a set are called its elements. We write

 $x \in A$ if x is an element in the set A.

Example 2.1

- (a) What is the set *V* of all vowels of the English alphabet *E*?
- (b) What are the elements in the set A where

$$A = \{x : x \in Z \text{ and } x < 4 \text{ and } x \ge 0\}.$$

Subset \longrightarrow A is a subset of B

$$\Leftrightarrow \forall x[x \in A \rightarrow x \in B]$$

$$\Leftrightarrow A \subset B$$
.

Example 2.4

Which of the following statements is/are correct?

(i)
$$a \in V$$
, (ii) $a \subset V$, (iii) $\{a\} \in V$, (iv) $\{a\} \subset V$.

Example 2.5

Let A, B and C be sets such that

$$A \subset B$$
 and $B \subset C$.

Show that

$$A \subset C$$
.

Equality of two sets

$$A = B \Leftrightarrow \forall x[x \in A \to x \in B] \land \forall x[x \in B \to x \in A]$$

 $\Leftrightarrow A \subset B \text{ and } B \subset A.$

That is, *A* and *B* have exactly the same elements.

Venn Diagram

Sets can be represented by simple plane diagrams called *Venn Diagrams*.

$$x \in A \equiv$$

$$A$$
•x

$$A \subset B \equiv$$

$$A \subset B \equiv$$

$$A = B \equiv$$
 B

The negations of $x \in A$, $A \subset B$ and A = B are written as $x \notin A$, $A \not\subset B$ and $A \neq B$, respectively.

Universal Set (denoted by U) — The largest possible set under consideration.

Empty Set (denoted by ϕ) — The set contains no element and is expressed as $\sim \exists x \ (x \in \phi)$.

For any set A, we have

$$\phi \subset A \subset U$$
.

Example 2.8

In human population studies, the universal set consists of all the people in the world.

Example 2.9 Determine which of the following sets are equal:

 ϕ , $\{0\}$, $\{\phi\}$.

Finite Set \longrightarrow Set S has exactly n distinct elements.

We usually write: |S| = n.

Example 2.10

(a) Let S be the set of letters in the English alphabet. Then,

$$|S| = 26.$$

(b) Since ϕ has no elements,

$$|\phi| = 0.$$

A set is said to be *infinite* if it is not finite.

For instance, the set of positive integers is infinite.

Algebra of Set

The *union* of two sets A and B, denoted by $A \cup B$, is the set of elements which belong to either A or B:

$$A \cup B = \{x: x \in A \lor x \in B\}.$$

Example 2.11 Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{3, 4, 5, 6\}$.

Find $A \cup B$.

The *intersection* of A and B, denoted by $A \cap B$, is the set of elements which belong to both A and B:

$$A \cap B = \{x: x \in A \land x \in B\}.$$

Example 2.12 Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$.

Find $A \cap B$.

If $A \cap B = \phi$, then A and B are said to be *disjoint*.

For instance, the set of even numbers and the set of odd numbers are disjoint.

The *difference* of A from B, denoted by A - B, is the set of elements which belong to A but not to B:

$$A - B = \{x : x \in A \land x \notin B\}.$$

Observe that $(A - B) \cap B = \phi$.

Example 2.13 Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$.

Find A - B.

The *complement* of A, denoted by A^c , is the set of elements which do not belong to A:

$$A^c = \{x: x \in U \text{ and } x \notin A\}.$$

From definition, $A^c = U - A$.

Example 2.14 Let $A = \{1, 2, 3, 4\}$ and $U = \{1, 2, 3, ...\}$.

Find A^c .

Venn Diagram of the set operations (U is represented by the area in the entire rectangle):

Laws of the algebra of Sets

Idempotent Laws

(1a)
$$A \cup A = A$$

(1a)
$$A \cup A = A$$
 (1b) $A \cap A = A$

Associative Laws

(2a)
$$(A \cup B) \cup C = A \cup (B \cup C)$$

(2b)
$$(A \cap B) \cap C = A \cap (B \cap C)$$

Commutative Laws

(3a)
$$A \cup B = B \cup A$$
 (3b) $A \cap B = B \cap A$

Distributive Laws

(4a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(4b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Identity Laws

(5a)
$$A \cup \phi = A$$
 (5b) $A \cap U = A$

$$(5b) A \cap U = A$$

(6a)
$$A \cup U = U$$
 (6b) $A \cap \phi = \phi$

$$(6b) A \cap \phi = \phi$$

Complement Laws

(7a)
$$A \cup A^c = U$$
 (7b) $A \cap$

(7a)
$$A \cup A^{c} = U$$
 (7b) $A \cap A^{c} = \phi$ (8a) $(A^{c})^{c} = A$ (8b) $U^{c} = \phi$, $\phi^{c} = U$

De Morgan's Laws

(9a)
$$(A \cup B)^c = A^c \cap B^c$$
 (9b) $(A \cap B)^c = A^c \cup B^c$

Ex. 2.17 Show by using Venn Diagram that

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Ex. 2.18 Prove the above identity from the definitions.

Ex. 2.22 Let *A*, *B* be two sets. Show that

$$(A \cup B) \cap (A \cap B) = A \cap B$$
.

Correspondence of logic connectives with set operators

* For a logical identity, there corresponds a set identity.

- Ex. 2.23 Determine which of the following statements is/are true. Find a counter example for each statement that is false. Assume all sets are subsets of a universal set *U*.
- (a) For all sets A, B and C, $(A C) \cap (B C) \cap (A B) = \emptyset$.
- (b) For all sets A, B and C, if $A \subseteq B$ then $A \cap (B \cap C)^c = \emptyset$.
- (c) For all sets A and B, if $A^c \subseteq B$ then $A \cup B = U$.
- (d) For all sets A, B and C, if $A \subseteq B$ and $B \cap C = \emptyset$ then $A \cap C = \emptyset$.
- (e) For all sets A, B, C and D, $(A-C) \cap (B-C) \cap (A-D) \cap (B-D) = \emptyset.$

Cartesian Products

The *ordered* n–*tuple* $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its nth element.

In particular, 2–tuples are called ordered pairs.

Equality of two ordered pairs:

$$(a, b) = (c, d) \Leftrightarrow a = c \text{ and } b = d.$$

The *Cartesian product* of two sets A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$. Hence,

$$A \times B = \{(a, b): a \in A \land b \in B\}.$$

Ex. 2.24 What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$?

Ex. 2.25 If
$$|A| = m$$
 and $|B| = n$, what is $|A \times B|$?

Ex. 2.26 Is $A \times B$ equal to $B \times A$?

Ex. 2.28 Prove that

$$(A \cap B) \times C = (A \times C) \cap (B \times C).$$

The *Cartesian product* of the sets $A_1, A_2, ..., A_n$, denoted by $A_1 \times A_2 \times ... \times A_n$, is the set of ordered n—tuples $(a_1, a_2, ..., a_n)$ where $a_i \in A_i$ (i = 1, 2, ..., n), i.e.

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) : a_i \in A_i \}$$

for $i = 1, 2, ..., n\}.$

Ex. 2.29 What is the Cartesian product $A \times B \times C$ where $A = \{0, 1\}, B = \{a, b\}$ and $C = \{X, Y, Z\}$?

Relations

For two sets A and B, $A \times B$ may be regarded as all the possible combinations of elements between A and B. A subset of $A \times B$ gives a specific relation between the elements of A and B. A binary relation between A and B is a subset of $A \times B$. If a relation is a subset of $A \times A$, it is called a binary relation on A.

Ex. 3.1 Let $A = \{\text{David, John, Ray}\}$ and $B = \{\text{Lily, Mary,} \}$ Tracy $\}$. Consider the relation of marriage. $A \times B$ gives all the possible marriages. Assume that Lily, Mary, Tracy are married to David, John, Ray, respectively. Then, the relation R is expressed as

$$R = \{(David, Lily), (John, Mary), (Ray, Tracy)\}.$$

If Mary is married to Ray and there is no other marriage, then

$$R = \{(Ray, Mary)\}.$$

Ex. 3.2 The following are relations:

- (a) $M = \{(x,y) \mid x \text{ is married to } y\}$ is a relation on the set of people in the human race.
- (b) $R = \{(x,y) \mid Language \ x \ is \ available \ on \ computer \ y\}$ is a relation between the set of languages and the set of computers.
- (c) $F = \{(x,y) \mid Airline \ x \ flies \ to \ city \ y\}$ is a relation between the set of airlines and the set of cities with airports.

Ex. 3.3 Let $A = \{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(x,y) \mid x \text{ divides } y\}$?

If
$$(x, y) \in R$$
, we write $x R y$.

Otherwise,

$$x \not R y$$
.

An *n*–ary relation is a subset of $A_1 \times A_2 \times ... \times A_n$.

Domain and Range

Given two sets *A* and *B*,

$$dom R = \{a \in A : \exists b \in B \text{ such that } (a,b) \in R\},\$$

range
$$R = \{b \in B : \exists a \in A \text{ such that } R(a) = b\}$$

Note that $dom R \subset A$ and $range R \subset B$.

Ex. 3.4 Let

$$f = \{(1,a),(1,b),(2,b),(3,c)\} \subset \{1,2,3,4\} \times \{a,b,c,d\}$$

Find dom f and range f.

Ex. 3.5 Express the following set of data on 3 students using a 4-ary relation.

<u>Name</u>	Student No.	Tutorial group	<u>Tutor</u>
A E Leung	93101245	1	Dr. Cheung
C C Chan	93050036	2	Mr. Lee
B B Wong	93011236	5	Mr. Berstein

The *inverse relation* of R is the subset of $B \times A$ which is defined by

$$R^{-1} = \{(b,a) \mid (a,b) \in R\}.$$

Ex. 3.6 Let
$$R = \{(1,1), (1,2), (1,3)\}$$
. Find R^{-1} .

Ex. 3.7 Let
$$R = \{(x, y) \mid x < 2y\}$$
. Find R^{-1} .

Ex. 3.8 Let $A = \{a\}$ and $B = \{1, 2\}$. How many possible relations are there from A to B?

Question

Let |A| = m and |B| = n. How many different relations are there from A to B?

<u>Digraph</u> (Pictorial representation of relations)

A directed graph, or digraph, consists of a set V of vertices together with a set E of ordered pairs of elements of V called edges. The vertex a is called the $initial\ vertex$ of the edge (a, b), and the vertex b is called the $terminal\ vertex$ of this edge:

$$(a,b) \in E \Leftrightarrow \bullet a \qquad b \bullet$$

Loop: Edge having the same initial and terminal vertex.

Ex. 3.9 Let $A = \{1, 2, 3, 6, 12\}$ and the relation R on A be defined as

$$(x, y) \in R$$
 iff x divides y .

Find the digraph representation of *R*.

Special properties of binary relations

Let R be a binary relation on A. Then, R is

- (1) reflexive iff $(x,x) \in R$ for all x in A, that is, $\forall x [(x,x) \in R]$ is true.
- (2) symmetric iff $\forall x \forall y [(x,y) \in R \Rightarrow (y,x) \in R]$.
- (3) antisymmetric iff $\forall x \forall y \lceil ((x, y) \in R \land (y, x) \in R) \Rightarrow (x = y) \rceil$.
- (4) transitive iff $\forall x \forall y \forall z \left[\left((x, y) \in R \land (y, z) \in R \right) \Rightarrow (x, z) \in R \right]$.

Ex. 3.10 Let $A = \{1, 2, 3, 4\}$. Let R_1, R_2 and R_3 be defined as

$$R_1 = \{(1, 1), (1, 2), (2, 1)\},\$$
 $R_2 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}$
 $R_3 = \{(1, 1), (2, 2), (3, 3)\}.$

Here, R_1 , R_2 , R_3 and ϕ are relations on A.

Which of these relations are reflexive?

Ex. 3.11 Let A be the set of triangles and R be the binary relation on A defined by

$$(x, y) \in R$$
 iff x is similar to y.

Determine whether R is

- (a) reflexive,
- (b) symmetric,
- (c) antisymmetric,
- (d) transitive.

Ex. 3.12 Let Q be the binary relation defined on N by

$$(x, y) \in Q$$
 iff $x - y$ is divisible by 3.

Determine whether Q is

- (a) reflexive,
- (b) symmetric,
- (c) antisymmetric,
- (d) transitive.

3.1 Equivalence Relations

The purpose is to group the elements of a set into classes according to a certain relation instead of individual elements.

R is an equivalence \Leftrightarrow R is (i) reflexive, relation on A. (ii) symmetric, (iii) transitive.

Two related elements are called *equivalent*.

Ex. 3.14 Let $A = \{1, 2, 3, 4\}$. Let R_1 and R_2 be relation on A defined as

$$R_1 = \{(1, 1), (2, 2), (3, 3), (4, 4)\},\$$

 $R_2 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}.$

Are R_1 and R_2 equivalent relations on A?

Exercise

- (a) Let A be the set of mankind and $R = \{(x, y) : x \text{ and } y \text{ are of the same age} \}$. Show that R is an equivalence relation on A.
- (b) Let A be the set of English letters and R is a relation such that aRb for $a, b \in A \Leftrightarrow L(a) = L(b)$, where L(x) is the length of the string x. Show that R is an equivalence relation on A.

Ex. 3.15 Define that

$$a \equiv b \pmod{m} \iff m \text{ divides } a - b.$$

Let A be the set of integers and R be a relation on A such that

$$aRb \Leftrightarrow a \equiv b \pmod{3}$$
.

Is *R* an equivalent relations on *A*?

Functions

- assignment of each element of a set a particular element of a second set.
- dependence of one varying quantity on another.

A function f from a set A to a set B is a relation between elements of A and elements of B with the property that each element of A is related to a unique element of B, i.e.

(i) For $x \in A$ and $y \in B$ such that

$$\forall x \,\exists y \ (x,y) \in f;$$

(ii) If $(a, b) \in f$ and $(a, b_1) \in f$, then $b = b_1$.

Ex. 4.2 Given sets $A = \{a, b\}$ and $B = \{1, 2, 3\}$. Are the following relations functions?

(a)
$$R_1 = \{(a, 1), (b, 3)\}$$

(b)
$$R_2 = \{(a, 1), (a, 2), (b, 3)\}$$

(c)
$$R_1^{-1} = \{(1, a), (3, b)\}.$$

For a function f from A to B, we write

$$f: A \to B$$
.

For any $a \in A$, we use f(a) to denote the unique element b in B related to a. We write

$$f(a) = b$$
.

- A is the **domain** of f.
- B is the codomain of f.
- b is the **image** of a.
- a is a **pre-image** of b.
- the **range** of f is the set of all images of elements of A.
- f maps A to B.

A function can be expressed explicitly by a digraph.

Ex. 4.3 Let
$$A = \{1, 2, 3\}$$
 and $B = \{a, b, c\}$.
 $f: A \rightarrow B$ is defined as
$$f(1) = a,$$

$$f(2) = c,$$

$$f(3) = c.$$

 $f: A \rightarrow B$ can be expressed by means of a digraph as

$$\begin{array}{c}
 f \\
 1 \longrightarrow a \\
 2 \longrightarrow b \\
 3 \longrightarrow c
\end{array}$$

Ex. 4.4 Which of the following relations on the set of real numbers are functions?

Composition of Functions

Let $g: A \to B$ and $f: B \to C$ be functions with the property that the range of g is a subset of the domain of f. Define a new function $f \circ g: A \to C$ as follows:

$$(f \circ g)(x) = f(g(x))$$
 for all $x \in A$.

The function $f \circ g$ is called the composition of f and g.

Ex. 4.8,4.9 Find $g \circ f$ and $f \circ g$ and determine whether $f \circ g$ equals $g \circ f$.

(a) f(x) = 2x + 1 and $g(x) = x^2$, for all real numbers.

(b) $f(x) = \log_2 x$ and $g(x) = 8^{4x}$, for all positive numbers.

A function f is <u>one-to-one</u> or <u>injective</u>

$$\Leftrightarrow f(x) = f(y) \Rightarrow x = y \quad \forall x, y \in A.$$

$$\Leftrightarrow x \neq y \Rightarrow f(x) \neq f(y) \quad \forall x, y \in A \text{ (contra-positive identity)}.$$

Ex. Determine whether the following functions are one—to—one?

(a)
$$f(x) = x^2 \ (x \in \mathbf{R}),$$

(b)
$$f(x) = x + 1$$
.

Ex. Consider the function $f: \Re \times \Re \to \Re \times \Re$ defined by

$$f(x, y) = (x + y, x - y).$$

Prove that f is one-to-one on $\Re \times \Re$.

A function f from A to B is onto or surjective

 \Leftrightarrow for every element $y \in B$, there is an element $x \in A$ with f(x) = y.

 $\Leftrightarrow \forall y \exists x (f(x) = y)$

Determine whether the following functions from Ex. the set of integers to itself are surjective?

- (a) f(x) = x + 1, (b) $f(x) = x^2$.

A function *f* is **bijective**

 \Leftrightarrow f is both one–to–one and onto.

Ex. 4.15 Construct a bijection

$$f:(0,1) \to (0,2)$$

From the open interval (0, 1) to the open interval (0, 2).

Ex. What types of functions are the following?

Ex. Let $f: R \to R$ be defined by

$$f(x) = \begin{cases} x + 7, & x \le 0 \\ -2x + 5, & 0 < x \le 3 \\ x - 1, & 3 < x. \end{cases}$$

- (i) Find $f^{-1}(0)$ and $f^{-1}(4)$.
- (ii) Let S be a subset of R and $f^{-1}(S)$ contains the preimages of all the elements of S, i.e.

$$f^{-1}(S) = \{a \in R : f(a) \in S\}.$$

Determine $f^{-1}([0, 4])$.

Ex. 4.17 Let $f: A \to B$ be a function from set A to set B. Let S be a subset of B and $f^{-1}(S)$ contains the pre-images of all the elements of S, i.e.

$$f^{-1}(S) = \{a \in A : f(a) \in S\}.$$

- (a) Let *T* be a subset of *B* and $S \subset T$. Show that $f^{-1}(S) \subset f^{-1}(T)$.
- (b) Show that $f(f^{-1}(S)) \subset S$.
- (c) Let T be a subset of A. Show that $T \subset f^{-1}(f(T))$.