

Machine Learning Operations

Diego Mosquera Uzcátegui Marzo 2025

Cross-Industry Standard Process for Data Mining

Metodología iterativa para gestionar el ciclo de vida de proyectos de minería de datos orientados a data driven

Tareas de CRIPS-DM

Determine Business Objectives

Background **Business Objectives Business Success Criteria** (Log and Report Process)

Assess Situation

Inventory of Resources, Requirements, Assumptions, and Constraints Risks and Contingencies Terminology Costs and Benefits (Log and Report Process)

Determine Data Mining Goals

Data Mining Goals Data Minina Success Criteria (Log and Report Process)

Produce Project Plan

Project Plan Initial Assessment of Tools and Techniques (Log and Report Process)

Collect Initial Data

Initial Data Collection Report (Log and Report Process)

Describe Data Data Description Report

(Log and Report Process) **Explore Data**

Data Exploration Report (Log and Report Process)

Verify Data Quality

Data Quality Report (Log and Report Process)

Data Set Data Set Description (Log and Report Process)

Select Data Rationale for Inclusion/ Exclusion (Log and Report Process)

Clean Data Data Cleanina Report (Log and Report Process)

Construct Data

Derived Attributes Generated Records (Log and Report Process)

Integrate Data Meraed Data

(Log and Report Process)

Format Data

Reformatted Data (Log and Report Process)

Select Modeling Technique

Modelina Technique Modeling Assumptions (Log and Report Process)

Generate Test Design

Test Design (Log and Report Process)

Build Model Parameter Settings

Models Model Description (Log and Report Process)

Assess Model Model Assessment

Revised Parameter (Log and Report Process)

Evaluate Results

Alian Assessment of Data Minina Results with **Business Success Criteria** (Log and Report Process)

Approved Models

Review Process Review of Process (Log and Report Process)

Determine Next Steps

List of Possible Actions Decision (Log and Report Process)

Plan Deployment

Deployment Plan (Log and Report Process)

Plan Monitoring and Maintenance

Monitoring and Maintenance Plan (Log and Report Process)

Produce Final Report Final Report Final Presentation (Log and Report Process)

Review Project Experience Documentation (Log and Report Process) ¿Cuál es el problema?

El 85% de los modelos de ML no llegan a producción.

¿Por qué?

Despliegue vs Producción

Concepto	Despliegue de un Modelo	Llevar un Modelo a Producción (MLOps)	
Definición	El acto de exponer un modelo entrenado para su consumo en un entorno de ejecución (local, nube, edge, API, etc.).	Todo el proceso necesario para que el modelo esté en un entorno productivo con monitoreo, escalabilidad y mantenibilidad.	
Alcance	Se enfoca en la fase de exposición del modelo (ej., API REST, Batch Processing, Edge AI).	Incluye el despliegue, pero también aspectos como versionamiento, CI/CD, monitoreo, actualización, seguridad y gobernanza.	
Ejemplo	Exponer un modelo mediante FastAPI o Hacer que ese modelo sea parte de u empresarial con infraestructura robus escalabilidad y monitoreo.		
Herramientas comunes	FastAPI, Flask, TensorFlow Serving, TorchServe, Docker.	MLflow, Kubeflow, Airflow, SageMaker, Vertex Al, Azure ML, Prometheus, Grafana.	

¿Qué haremos en este curso?

- Nos enfocaremos en el proceso de despliegue de modelos de ML.
 - o Flask, FastAPI, etc.
- Aprenderemos sobre los principios de MLOps.
 - MLFlow
- Analizaremos las herramientas disponibles para integrar un modelo expuesto a los sistemas productivos de la empresa.

Alcance MLOps

Aspecto	Sin MLOps (Modelo SoloDesplegado)	✓ Con MLOps (Modelo en Producción)
Entrenamiento del modelo	Se entrena manualmente y se expone a través de una API.	Se despliega automáticamente cada nueva versión del modelo usando CI/CD.
Pruebas automatizadas	X No hay pruebas automatizadas, pueden aparecer errores en producción.	Se realizan pruebas automáticas en cada nueva versión antes de su despliegue.
Monitoreo del modelo	X No se monitorea la performance del modelo, lo que puede llevar a predicciones erróneas.	Se monitorea el rendimiento en tiempo real y se detecta drift en los datos.
Manejo del cambio en los datos	X Si los datos cambian, no hay un mecanismo automático para actualizar el modelo.	Se automatiza el reentrenamiento cuando el modelo pierde precisión.
Rollback y control de versiones	X No se puede volver fácilmente a versiones anteriores si hay errores.	Se pueden hacer rollback a versiones anteriores si algo falla, gracias al versionamiento de modelos.

Ejemplo: detección de fraude bancario

Aspecto	Sin MLOps (Modelo Solo Desplegado)	Con MLOps (Modelo en Producción)
Entrenamiento del modelo	Se entrena manualmente en un Jupyter Notebook.	Se entrena automáticamente con un pipeline en MLflow o Kubeflow .
Versionamiento de código y datos	No hay control de versiones para código ni datos.	Se usa Git para código y DVC/MLflow para datos y modelos .
Despliegue	Se ejecuta en un servidor local o API manualmente.	Se implementa con CI/CD en un clúster Kubernetes.
Consumo del modelo	Se expone mediante una API simple con Flask.	API escalable en la nube con FastAPI + Kubernetes.

Ejemplo: detección de fraude bancario

Monitoreo de métricas	No hay monitoreo. Si el modelo falla, hay que revisar logs manualmente.	Se usa Prometheus y Grafana para monitorear latencia, drift y métricas de desempeño.
Manejo de Data Drift	No se detecta si los datos han cambiado.	Se usa Evidently AI para detectar data drift y alertar al equipo.
Reentrenamiento del modelo	Manual: un analista tiene que darse cuenta de que el modelo ha perdido precisión.	Automático: Airflow/Kubeflow reentrena el modelo si la precisión baja de un umbral.
Rollback (volver a versiones anteriores)	Si el modelo nuevo falla, es difícil volver a la versión anterior.	Se usa MLflow Model Registry para restaurar un modelo anterior fácilmente.
Seguridad y compliance	No hay control de acceso a los modelos.	Se usa MLflow + auditoría de modelos para control y trazabilidad.
Escalabilidad	Si hay más usuarios, la API se satura y colapsa.	El modelo se escala automáticamente en la nube con Kubernetes + autoscaling .

¿Qué es MLOps (Machine Learning Operations)?

¿Qué es MLOps (Machine Learning Operations)?

DevOps

Diferencias entre ML Tradicional y MLOps

Machine Learning Tradicional:

- Modelos entrenados en notebooks de forma manual.
- No hay un pipeline estructurado para entrenamiento y despliegue.
- Los modelos no se versionan correctamente.

Machine Learning con MLOps:

- Pipelines automatizados para entrenamiento y despliegue.
- Versionamiento de datos y modelos con MLflow, DVC, Git.
- Integración con CI/CD y monitoreo para detectar fallos.

Beneficios y Desafíos de MLOps

Beneficios:

- Despliegues más rápidos y confiables.
- Menos intervención manual y menos errores.
- Facilita la colaboración entre equipos de Data Science, Ingeniería y DevOps.
- Mayor estabilidad y monitoreo en producción.

V Desafíos:

- Requiere conocimientos de DevOps y Data Engineering.
- Mayor complejidad en comparación con el desarrollo tradicional de ML.
- Necesidad de herramientas especializadas (MLflow, Kubeflow, Airflow).

MLOps Stack

Herramientas necesarias para implementar un flujo de trabajo efectivo de MLOps.

Discusión interactiva

Pregunta a los estudiantes:

- ¿Han trabajado en proyectos de ML? ¿Han tenido problemas con la implementación?
- ¿Cómo creen que MLOps puede ayudar en su experiencia?
- Breve lluvia de ideas y participación.

Actividad 1: Creación de un Entorno de Trabajo para ML

- Duración: 20 min.
- Conceptos: Configuración de entornos virtuales, estructuración de proyectos ML, control de versiones con Git.
- Qué harán los estudiantes:
- Crear un entorno virtual con venv o conda.
- Inicializar un repositorio en Git y hacer su primer commit.
- Crear la estructura base de un proyecto ML.

Estructura básica de un proyecto ML mkdir proyecto_ml cd proyecto_ml mkdir data src models tests

Actividad 2: Implementar una Prueba Unitaria

- Duración: 20 min.
- Conceptos: Creación de pruebas unitarias con unittest para validar código de ML.
- Qué harán los estudiantes:
- Implementar una función de preprocesamiento de datos.
- Crear una prueba unitaria para verificar su funcionamiento.