EJERCICIOS PROPUESTOS INTERPOLACIÓN DE LAGRANGE

1°) Considerando la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = \cos(x)$ y los puntos $\{0; \pi/6; \pi/3; \pi/2\}$, deduce la expresión de los polinomios de base de Lagrange $L_i(x)$, la expresión del polinomio interpolador de Lagrange $p_n(x)$, la expresión del error cometido E(x), y la cota de error en el intervalo de trabajo.

Sol.: $E(x) \le 0,0005348$.

2°) Considerando la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = 2x \, e^{-(4x+2)}$ y los puntos $\{0,2;0,6;1\}$, deduce la expresión de los polinomios de base de Lagrange $L_i(x)$, la expresión del polinomio interpolador de Lagrange $p_n(x)$, la expresión del error cometido E(x), y la cota de error en el intervalo de trabajo.

Sol:
$$p_2(x) = -5,75 \times 10^{-4} x^2 - 0,024x + 0,029$$
.

3°) Considerando la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^2 \cos(5x + 2)$, deduce la expresión de los polinomios de base de Lagrange $L_i(x)$, y la expresión del polinomio interpolador de Lagrange $p_n(x)$ con los puntos a) $\{0; \pi/3; \pi/2\}$; b) $\{0; \pi/6; \pi/3; \pi/2\}$.

Sol.: a)
$$p_2(x) = \frac{-38,36}{\pi}x^2 + \frac{14,69}{\pi}x$$
; b) no indicado.

4°) Considerando la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{-x} + \cos\left(\frac{4x}{\pi}\right)$, deduce la expresión de los polinomios de base de Lagrange $L_i(x)$, y la expresión del polinomio interpolador de Lagrange $p_n(x)$ con los puntos a) $\{0;0,6;2\}$; b) $\{0;0,6;1,4;2\}$.

Sol.: a) no indicado; b) $p_3(x) = 0.23x^3 - 0.70x^2 - 0.88x + 2$.