

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190902103

FCC REPORT

Applicant: General Procurement, Inc

Address of Applicant: 800 E Dyer Road Santa Ana, CA 92705 United States

Equipment Under Test (EUT)

Product Name: 5.0 inch smartphone

Model No.: Eternity G50L

Trade mark: Hyundai

FCC ID: 2AIOHHT1G50L

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 06 Sep., 2019

Date of Test: 07 Sep., to 27 Sep., 2019

Date of report issued: 29 Sep., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	29 Sep., 2019	Original

Tested by: Mike DU Date: 29 Sep., 2019

Test Engineer

Reviewed by: 29 Sep., 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	54
Q	FUT	CONSTRUCTIONAL DETAILS	55

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	General Procurement, Inc	
Address:	800 E Dyer Road Santa Ana, CA 92705 United States	
Manufacturer/ Factory: Shen Zhen Cheng Fong Digital-Tech Limited		
Address:	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China	

5.2 General Description of E.U.T.

Product Name:	5.0 inch smartphone
Model No.:	Eternity G50L
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))
Channel numbers:	11 for 802.11b/802.11g/802.11(HT20) 7 for 802.11n(HT40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2300mAh
AC adapter:	Model: K-T50501000U1 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.

Transmitting mode

Report No: CCISE190902103

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Keep the EUT in continuous transmitting with modulation

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			
802.11n(HT40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
Tool Equipment	Manaraotaror	model ito.	oonan no.	(mm-dd-yy)	(mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LICN	Dahda 9 Cabusan	F0110.75	0.4000004/0.40	07-21-2018	07-20-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz			
Limit:	Frequency range	Limit (d	dBuV)		
	(MHz) Quasi-peak Average				
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the log				
	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 				
Test setup:	Reference Plane				
	AUX Equipment Test table/Insulat Remark E.U.T: Equipment Under 1 LISN: Line Impedence States table height=0.8m	E.U.T EMI Receiver	I liter — AC power		
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Product name:	5.0 inch smartphone	Product model:	Eternity G50L
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	dB	dBu₹	−−dBuV	<u>d</u> B	
1	0.182	42.63	-0.42	10.77	52.98	64.42	-11.44	QP
2	0.242	37.41	-0.40	10.75	47.76	62.04	-14.28	QP
3	0.369	35.93	-0.37	10.73	46.29	58.52	-12.23	QP
1 2 3 4 5 6 7 8 9	0.381	21.65	-0.37	10.72	32.00	48.25	-16.25	Average
5	0.442	20.55	-0.38	10.74	30.91	47.02	-16.11	Average
6	0.489	35.51	-0.39	10.76	45.88	56.19	-10.31	QP
7	0.614	19.27	-0.38	10.77	29.66	46.00	-16.34	Average
8	1.456	15.35	-0.40	10.92	25.87	46.00	-20.13	Average
9	4.180	32.13	-0.47	10.88	42.54	56.00	-13.46	QP
10	4.180	18.12	-0.47	10.88	28.53	46.00	-17.47	Average
11	11.317	17.38	-0.63	10.93	27.68			Average
12	11.438	31.62	-0.63	10.93	41.92	60.00	-18.08	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	5.0 inch smartphone	Product model:	Eternity G50L
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	₫B	dBu₹	dBu∜	<u>db</u>	
1	0.186	43.02	-0.69	10.76	53.09	64.20	-11.11	QP
2	0.442	22.32	-0.64	10.74	32.42	47.02	-14.60	Average
3	0.486	35.96	-0.65	10.76	46.07	56.23	-10.16	QP
4	0.555	21.76	-0.65	10.76	31.87	46.00	-14.13	Average
1 2 3 4 5 6 7 8 9	0.727	34.33	-0.64	10.78	44.47	56.00	-11.53	QP
6	0.731	19.62	-0.64	10.78	29.76	46.00	-16.24	Average
7	1.456	32.15	-0.65	10.92	42.42	56.00	-13.58	QP
8	3.454	34.38	-0.68	10.91	44.61	56.00	-11.39	QP
9	3.454	18.25	-0.68	10.91	28.48	46.00	-17.52	Average
10	4.006	18.31	-0.70	10.89	28.50	46.00	-17.50	Average
11	4.180	35.96	-0.70	10.88	46.14	56.00	-9.86	QP
12	4.180	20.04	-0.70	10.88	30.22	46.00	-15.78	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

Test CH	Max	ximum Conducte	Limit(dDm)	Popult			
Test CH	802.11b	802.11g	02.11g 802.11n(HT20) 802.11n(HT40)		Limit(dBm)	Result	
Lowest	14.60	11.80	11.43	13.71			
Middle	15.27	14.27	14.37	13.77	30.00	Pass	
Highest	14.82	13.96	14.16	13.57			

Test plot as follows:

6.4 Occupy Bandwidth

Measurement Data:

Test CH		6dB Emission	Limit/kU=)	Result		
Test Cn	802.11b	802.11g	1g 802.11n(HT20) 802.11n(HT40)		Limit(kHz)	Resuit
Lowest	9.20	15.84	16.48	35.36		
Middle	9.28	16.00	16.56	36.00	>500	Pass
Highest	8.24	15.36	15.36	35.52		
Test CH		99% Occupy I	Bandwidth (MHz)		Lippit/Idla	Result
rest CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(kHz)	Result
Lowest	12.48	16.80	17.76	35.84		
Middle	12.72	16.88	17.84	36.96	N/A	N/A
Highest	12.32	16.72	17.60	36.64		

Test plot as follows:

6.5 Power Spectral Density

Measurement Data:

Toot CU		Limit(dDm)	Dogult				
Test CH	802.11b	802.11g 802.11n(HT20) 802.11n(HT40)		Limit(dBm)	Result		
Lowest	5.36	-0.20	-0.18	0.12			
Middle	6.04	2.45	2.46	-0.73	8.00	Pass	
Highest	6.32	2.30	3.10	-0.79			

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Oolidabtea Elilloololi				
Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	Radiated Ellission W	.2 Radiated Emission Method						
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
	Test Frequency Range:	2.3GHz to 2.5G	Hz					
	Test Distance:	3m						,
	Receiver setup:	Frequency	Detecto	r	RBW	VBW		Remark
		Above 1GHz	Peak		1MHz		ИHz	Peak Value
	1	Fraguesa	RMS	Lina	1MHz		ИHz	Average Value Remark
	Limit:	Frequenc	У	LIII	nit (dBuV/m @ 54.00	3111)	Λ,	verage Value
		Above 1GH	Hz –		74.00			Peak Value
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
	Test setup:	150cm	AE EUT (Turntable)	ŀ	Ground Reference Plane	rn Antenna	Antenna To	wer
	Test Instruments:	Refer to section	5.8 for de	tails	<u> </u>			
	Test mode:	Refer to section 5.3 for details						
	Test results:	Passed						
								

802.11b mode:

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		Read	Intenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2390.000 2390.000								

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode: 802.11b Tx mode	
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%
110 Level (dBuV/m)			
100			# (AFF & Care)
80			FCC PART 15 (PK)
60	mamman	mmmm	FCC PART 15 (AV)
		2	
40			
20			
2310 2320	2350 Frequency (8847	2422
	rrequency (MHZ)	
		out out of the contract of the	VI20780000
г	ReadAntenna Cable Preamp Level Factor Loss Factor	Limit	Over
Freq	Level Factor Loss Factor	Level Line	Limit Remark

Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 1 2390.000 24.37 27.08 4.69 0.00 57.82 74.00 -16.18 Peak 2 2390.000 13.65 27.08 4.69 0.00 47.10 54.00 -6.90 Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		ReadAntenna		Cable	Preamp		Limit	Over		
	Freq		Factor							
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB		
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	ReadAntenna Level Factor							
	MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq Level Factor								
MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
2390.000 2390.000								
								(100

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:		5.0 inch s	martphone			Product Mo	odel:	Eternity	Eternity G50L		
Test By:		Mike				Test mode		802.11g	Tx mode		
Test Cha	nnel:	Lowest cl	nannel			Polarizatio	n:	Horizont	tal		
Test Volt	age:	AC 120/6	0Hz		Environment:			Temp: 2	4°C Hur	ni: 57%	
110 Le	vel (dBuV/m)										
100											
80								₽c	C PART 15	(PK)	
60	~~~~~	mm	mann	~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mjr	morfic	C PART 15	(AV)	
40											
20											
023	10 2320		23		quency (M	Hz)				2422	
	Freq	Read/ Level	intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	MHz	dBu∜	<u>dB</u> /m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>			
1 2	2390.000 2390.000	23.33 13.98	27.08 27.08	4.69 4.69	0.00	56.78 47.43	74.00 54.00	-17.22 -6.57	Peak Average		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq			ReadAntenna Cable Pre Level Factor Loss Fac						
	MHz	dBu∜	—dB/m	₫₿	₫B	dBuV/m	dBuV/m	<u>dB</u>		
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq		Antenna Factor						
MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	nch smartphone Product Model:			
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

							Limit Line		
		dBu∀	dB/m dB	₫B	dBuV/m	$\overline{dBuV/m}$	dB		
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
Level (dRuV/m)			

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	7m	dB	dBuV/m	dBuV/m	dB	
1 2	2483, 500 2483, 500					57.73 47.59			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					Remark
	MHz	dBu∀	<u>dB</u> /m	₫B	₫B	dBuV/m	dBuV/m	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

			Antenna Factor						Remark
		Hz dBuV dB/m dE	₫B	āB	dBuV/m dBuV/m		<u>dB</u>		
1 2	2390.000 2390.000								

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

		ReadAntenna		Cable	Cable Preamp			Over	
	Freq	Freq Level F		Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	₫B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

			Antenna Factor						
		dBu∜	dB/m dB	dB	dBuV/m	dBuV/m	dB		
	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	MHz	MHz dBuV dB/m	dB	dB dB d	$\overline{dBuV/m}$	dBuV/m	dB	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

0.7.1 Conducted Linission	
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	
	Spectrum Analyzer
	E.U.T
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Me	etnoa								
Test Requirement:	FCC Part 15 C S	ection 15.20	9 and 15.205						
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VBW		Remark			
	30MHz-1GHz	Quasi-peal	k 120KHz	300	KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3N	ИHz	Peak Value			
	Above 1G112	RMS	1MHz	3N	MHz Average Value				
Limit:	Frequency		imit (dBuV/m @3	m)		Remark			
	30MHz-88MH		40.0			uasi-peak Value			
	88MHz-216MH		43.5			uasi-peak Value			
	216MHz-960M		46.0			uasi-peak Value			
	960MHz-1GH	Z	54.0			uasi-peak Value			
	Above 1GHz	:	54.0 74.0			Average Value Peak Value			
Test Procedure:	1GHz)/1.5m The table wa highest radia 2. The EUT wa antenna, wh tower. 3. The antenna the ground the Both horizon make the me 4. For each suscase and the meters and to find the m 5. The test-reconspecified Ba 6. If the emission the limit spen of the EUT whave 10dB m.	(above 1GHas rotated 36 ation. Is set 3 metoich was more the anterest of the rota table aximum reactiver system andwidth witton level of the rotate of the cified, then the rotate of th	ers away from the unted on the top aried from one rethe maximum vical polarization. It is soon, the EUT in a was turned from the was turned from the EUT in peak testing could be ported. Otherwis	ound eterm ne interpretation of a meter value of the was a point of th	at a 3 ine the erferent variable to four of the fine ante errange that from the from the fine arrange errange	meter chamber. e position of the ce-receiving e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees enction and OdB lower than d the peak values ions that did not sing peak, quasi-			
Test setup:	Below 1GHz Turn Table Ground F		lm A						

Measurement Data (worst case):

Below 1GHz:

Product Name:	5.0 inch smartphone	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq			Readântenna Cabl Freq Level Factor Los					Limit		
33		dBuV				dBuV/m					
	MHz	and a	ш/ ж	dB	ш	man/ iii	and a \ m	dB			
1	46.340	54.41	12.24	1.28	29.85	38.08	40.00	-1.92	QP		
2 3 4 5 6	51.843	54.72	11.92	1.27	29.81	38.10	40.00	-1.90	QP		
3	93.113	49.11	10.87	2.02	29.56	32.44	43.50	-11.06	QP		
4	103.442	50.95	12.20	1.97	29.50	35.62	43.50	-7.88	QP		
5	127.665	46.30	10.32	2.26	29.34	29.54	43.50	-13.96	QP		
6	309.998	36.74	13.82	2.97	28.47	25.06	46.00	-20.94	QP		

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Wi-Fi Media Streaming Module	Product Model:	Eternity G50L
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	dB	−−−dB	dBuV/m	dBuV/m	<u>d</u> B	
1	46.666	38.04	12.24	1.28	29.85	21.71	40.00	-18.29	QP
2	54.643	42.07	11.62	1.34	29.80	25.23	40.00	-14.77	QP
2 3	107.134	48.53	11.90	2.02	29.48	32.97	43.50	-10.53	QP
4	120.277	42.35	10.85	2.17	29.39	25.98	43.50	-17.52	QP
4 5 6	165.487	38.01	9.49	2.62	29.09	21.03	43.50	-22.47	QP
6	385.281	38.83	15.10	3.09	28.72	28.30	46.00	-17.70	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz												
				802.11b								
Test channel: Lowest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	49.50	30.94	6.81	41.82	45.43	74.00	-28.57	Vertical				
4824.00	49.98	30.94	6.81	41.82	45.91	74.00	-28.09	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	40.11	30.94	6.81	41.82	36.04	54.00	-17.96	Vertical				
4824.00	40.41	30.94	6.81	41.82	36.34	54.00	-17.66	Horizontal				
			Test ch	nannel: Mido	lle channel							
			De	tector: Peal	Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	49.26	31.20	6.85	41.84	45.47	74.00	-28.53	Vertical				
4874.00	49.87	31.20	6.85	41.84	46.08	74.00	-27.92	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	40.27	31.20	6.85	41.84	36.48	54.00	-17.52	Vertical				
4874.00	40.36	31.20	6.85	41.84	36.57	54.00	-17.43	Horizontal				
			Test ch	annel: High	est channel							
			De	tector: Peal	Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	49.26	31.46	6.89	41.86	45.75	74.00	-28.25	Vertical				
4924.00	49.83	31.46	6.89	41.86	46.32	74.00	-27.68	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	40.31	31.46	6.89	41.86	36.80	54.00	-17.20	Vertical				
4924.00	40.28	31.46	6.89	41.86	36.77	54.00	-17.23	Horizontal				

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g													
Test channel: Lowest channel													
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4824.00	49.37	30.94	6.81	41.82	45.30	74.00	-28.70	Vertical					
4824.00	49.86	30.94	6.81	41.82	45.79	74.00	-28.21	Horizontal					
Detector: Average Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4824.00	39.83	30.94	6.81	41.82	35.76	54.00	-18.24	Vertical					
4824.00	39.47	30.94	6.81	41.82	35.40	54.00	-18.60	Horizontal					
				nannel: Midd									
				tector: Peal	Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	49.76	31.20	6.85	41.84	45.97	74.00	-28.03	Vertical					
4874.00	49.65	31.20	6.85	41.84	45.86	74.00	-28.14	Horizontal					
			Dete	ector: Avera	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	40.26	31.20	6.85	41.84	36.47	54.00	-17.53	Vertical					
4874.00	40.31	31.20	6.85	41.84	36.52	54.00	-17.48	Horizontal					
			Test ch	annel: High	est channel								
			De	tector: Peak	Value Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	49.58	31.46	6.89	41.86	46.07	74.00	-27.93	Vertical					
4924.00	49.92	31.46	6.89	41.86	46.41	74.00	-27.59	Horizontal					
			Dete	ector: Avera	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	40.65	31.46	6.89	41.86	37.14	54.00	-16.86	Vertical					
4924.00	40.89	31.46	6.89	41.86	37.38	54.00	-16.62	Horizontal					
Remark:													

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20)												
Test channel: Lowest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	49.34	36.06	6.81	41.82	50.39	74.00	-23.61	Vertical				
4824.00	49.61	36.06	6.81	41.82	50.66	74.00	-23.34	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	39.57	36.06	6.81	41.82	40.62	54.00	-13.38	Vertical				
4824.00	39.91	36.06	6.81	41.82	40.96	54.00	-13.04	Horizontal				
			Test ch	nannel: Mido	dle channel							
			De	tector: Peak	v Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	49.38	36.32	6.85	41.84	50.71	74.00	-23.29	Vertical				
4874.00	49.85	36.32	6.85	41.84	51.18	74.00	-22.82	Horizontal				
			Dete	ctor: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	40.64	36.32	6.85	41.84	41.97	54.00	-12.03	Vertical				
4874.00	40.97	36.32	6.85	41.84	42.30	54.00	-11.70	Horizontal				
			Test ch	annel: High	est channel							
			De	tector: Peal	v Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	49.81	36.58	6.89	41.86	51.42	74.00	-22.58	Vertical				
4924.00	49.86	36.58	6.89	41.86	51.47	74.00	-22.53	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	40.35	36.58	6.89	41.86	41.96	54.00	-12.04	Vertical				
4924.00	40.92	36.58	6.89	41.86	42.53	54.00	-11.47	Horizontal				
Remark:			–		. –							
 Final Lev 	/el = Receive	r Read level +	- Antenna Fa	ctor + Cable	i oss – Pream	inlitier Factor						

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40)												
Test channel: Lowest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4844.00	49.12	36.06	6.81	41.82	50.17	74.00	-23.83	Vertical				
4844.00	49.27	36.06	6.81	41.82	50.32	74.00	-23.68	Horizontal				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4844.00	39.86	36.06	6.81	41.82	40.91	54.00	-13.09	Vertical				
4844.00	39.92	36.06	6.81	41.82	40.97	54.00	-13.03	Horizontal				
				nannel: Midd								
	D I	A . (tector: Peal	value		I					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	49.78	36.32	6.85	41.84	51.11	74.00	-22.89	Vertical				
4874.00	49.96	36.32	6.85	41.84	51.29	74.00	-22.71	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	40.21	36.32	6.85	41.84	41.54	54.00	-12.46	Vertical				
4874.00	40.54	36.32	6.85	41.84	41.87	54.00	-12.13	Horizontal				
			Test ch	annel: High	est channel							
				tector: Peak								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4904.00	49.57	36.45	6.87	41.85	51.04	74.00	-22.96	Vertical				
4904.00	49.64	36.45	6.87	41.85	51.11	74.00	-22.89	Horizontal				
				ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4904.00	40.38	36.45	6.87	41.85	41.85	54.00	-12.15	Vertical				
4904.00	40.89	36.45	6.87	41.85	42.36	54.00	-11.64	Horizontal				
Remark:	vol – Posoire	r Pood lovel	Antonno Fo	estar i Cabla	Loop Proces	anlifior Footor						

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.