

Revision History

512K x16 bit Super Low Power and Low Voltage Full CMOS Static RAM

Revision No	History	Date	Remark
1.0	Initial Issue	August 2010	Preliminary
2.0	tDW updated to 25ns	October 2012	
3.0	Update USA HQ moved - change of address	September 2014	

FEATURES

Process Technology: 0.15μm Full CMOS

• Organization: 512K x 16 bit

Power Supply Voltage: 2.7V ~ 3.6V

Low Data Retention Voltage: 1.5V(Min.)

Three state output and TTL Compatible

• Package Type: 44pin TSOP2

singlle CS – A6 is NC

· All parts are ROHS Compliant

GENERAL DESCRIPTION

The AS6C8016A families are fabricated by advanced full CMOS process technology. The families support industrial temperature range and Chip Scale Package for user flexibility of system design. The families also support low data retention voltage for battery back- up operation with low data retention current.

PRODUCT FAMILY

Draduot	Operating	Vcc		Power Dis	DKC		
Product Family	Operating Temperature	Range	Speed	Standby (I _{SB1} , Typ.)	Operating (I _{CC1} .Max.)	PKG Type	
AS6C8016A-55ZIN	Industrial (-40 ~ 85°C)	2.7 ~ 3.6 V	55 ns	2 μA ¹⁾	4 mA	44-TSOP2	

Typical values are measured at Vcc=3.3V, T_A =25°C and not 100% tested.

FUNCTIONAL BLOCK DIAGRAM

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070

TEL: (650) 610-6800 FAX: (650) 620-9211

Alliance Memory Inc. reserves the right to change products or specification without notice.

PIN CONFIGURATIONS

44PIN TSOP2: Top view-single CS - A6 is NC

44 - TSOP2: Top view

PIN DESCRIPTION

Name	Function	Name	Function
CS	Chip Select input	V _{CC}	Power Supply
ŌĒ	Output Enable input	V _{SS}	Ground
WE	Write Enable input	ŪB	Upper Byte (DQ8~DQ15)
A0~A18	Address inputs	LВ	Lower Byte (DQ0~DQ7)
DQ0~DQ15	Data inputs/outputs	NC	No Connection

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070

TEL: (650) 610-6800 FAX: (650) 620-9211

ABSOLUTE MAXIMUM RATINGS¹⁾

Parameter	Symbol	Ratings	Unit
Voltage on Any Pin Relative to Vss	V _{IN} , V _{OUT}	-0.2 to 4.0	V
Voltage on Vcc supply relative to Vss	V _{CC}	-0.2 to 4.0	V
Power Dissipation	P _D	1.0	W
Operating Temperature	T _A	-40 to 85	°С

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTIONAL DESCRIPTION

CS	OE	WE	LB	UB	DQ0~7	DQ8~15	Mode	Power
Н	Х	Х	Х	Х	High-Z	High-Z	Deselected	Stand by
Х	X	X	Н	Н	High-Z	High-Z	Deselected	Stand by
L	Н	Н	L	Х	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Χ	L	High-Z	High-Z	Output Disabled	Active
L	L	Н	L	Н	Data Out	High-Z	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Data Out	Upper Byte Read	Active
L	L	Н	L	L	Data Out	Data Out	Word Read	Active
L	Х	L	L	Н	Data In	High-Z	Lower Byte Write	Active
L	Х	L	Н	L	High-Z	Data In	Upper Byte Write	Active
L	Х	L	L	L	Data In	Data In	Word Write	Active

NOTE: X means don't care. (Must be low or high state)

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070

TEL: (650) 610-6800 FAX: (650) 620-9211

RECOMMENDED DC OPERATING CONDITIONS 1)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	2.7	3.3	3.6	V
Ground	V _{SS}	0	0	0	V
Input high voltage	V _{IH}	2.2	-	V _{CC} + 0.2 ²⁾	V
Input low voltage	V _{IL}	-0.2 ³⁾	-	0.6	V

- 1. TA= -40 to 85°C, otherwise specified
- 2. Overshoot: VCC +2.0 V in case of pulse width < 20ns
- 3. Undershoot: -2.0 V in case of pulse width < 20ns
- 4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f =1MHz, T_A =25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	C _{IN}	V _{IN} =0V	-	8	pF
Input/Output capacitance	C _{IO}	V _{IO} =0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Input leakage current	I _{LI}	V _{IN} =V _{SS} to V _{CC}		-1	-	1	μА
Output leakage current	I _{LO}	CS=V _{IH} or OE=V _{IH} or WE=V _{IL} or LB=UB=V _{IH} V _{IO} =V _{SS} to V _{CC}		-1	-	1	μА
Operating power supply	I _{CC}	I_{IO} =0mA, \overline{CS} = V_{IL} , \overline{WE} = V_{IH} , V_{IN} = V_{IH} or V_{IL}		-	-	2	mA
Average operating	I _{CC1}			-	-	4	mA
current		Cycle time = Min, I _{IO} =0mA, 100% duty,					
	I _{CC2}	CS=V _{IL} , LB=V _{IL} or/and UB=V _{IL}	55ns	-	-	35	mA
		V _{IN} =V _{IL} or V _{IH}					
Output low voltage	V _{OL}	I _{OL} = 2.1mA		-	-	0.4	V
Output high voltage	V _{OH}	I _{OH} = -1.0mA		2.4	-	-	V
Standby Current (TTL)	I _{SB}	CS =V _{IH} , Other inputs=V _{IH} or V _{IL}		-	-	0.5	mA
Standby Current (CMOS)	I _{SB1}	$\overline{\text{CS}} > \text{V}_{\text{CC}} - 0.2\text{V},$ Other inputs = $0 \sim \text{V}_{\text{CC}}$ (Typ. condition : $\text{V}_{\text{CC}} = 3.3\text{V} \otimes 25^{\circ}\text{C}$) (Max. condition : $\text{V}_{\text{CC}} = 3.6\text{V} \otimes 85^{\circ}\text{C}$)	LF	-	2 1)	15	μА

^{1.} Typical values are measured at Vcc=3.3V, $T_A\!=\!25^{\circ}\text{C}$ and not 100% tested.

Alliance Memory Inc. reserves the right to change products or specification without notice.

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070

TEL: (650) 610-6800 FAX: (650) 620-9211

AC OPERATING CONDITIONS

Test Conditions (Test Load and Test Input/Output Reference)

Input Pulse Level: 0.4 to 2.4V Input Rise and Fall Time: 5ns

Input and Output reference Voltage: 1.5V

Output Load (See right): CL¹⁾ = 100pF+ 1 TTL (70nsec)

 $CL^{1)} = 30pF + 1 TTL (45ns/55ns)$

1. Including scope and Jig capacitance

2. $R_1 = 3070\Omega$, $R_2 = 3150\Omega$

3. V_{TM}=2.8V

4. CL = 5pF + 1 TTL (measurement with t_{LZ} , t_{HZ} , t_{OLZ} , t_{OHZ} , t_{WHZ})

READ CYCLE ($V_{cc} = 2.7 \text{ to } 3.6 \text{V}$, Gnd = 0V, $T_A = -40 \,^{\circ}\text{C}$ to $+85 \,^{\circ}\text{C}$)

, 55				,
Downwater	Symbol	55	l lmi4	
Parameter	Symbol	Min	Max	Unit
Read cycle time	t _{RC}	55	-	ns
Address access time	t _{AA}	-	55	ns
Chip select to output	t _{CO}	-	55	ns
Output enable to valid output	t _{OE}	-	35	ns
UB, LB access time	t _{BA}		55	ns
Chip select to low-Z output	t _{LZ}	5	-	ns
UB, LB enable to low-Z output	t _{BLZ}	5	-	ns
Output enable to low-Z output	t _{OLZ}	5	-	ns
Chip disable to high-Z output	t _{HZ}	0	20	ns
UB, LB disable to how-Z output	t _{BHZ}	0	20	ns
Output disable to high-Z output	t _{OHZ}	0	20	ns
Output hold from address change	t _{OH}	10	-	ns

WRITE CYCLE ($V_{cc} = 2.7 \text{ to } 3.6 \text{V}$, Gnd = 0V, $T_A = -40 ^{\circ} \text{C to } +85 ^{\circ} \text{C}$)

Down atom	Symbol	55	Unit	
Parameter	Syllibol	Min	Max	Oilit
Write cycle time	t _{WC}	55	-	ns
Chip select to end of write	t _{CW}	45	-	ns
Address setup time	t _{As}	0	-	ns
Address valid to end of write	t _{AW}	45	-	ns
UB, LB valid to end of write	t _{BW}	45	-	ns
Write pulse width	t _{WP}	45	-	ns
Write recovery time	t _{WR}	0	-	ns
Write to output high-Z	t _{WHZ}	0	20	ns
Data to write time overlap	t _{DW}	25		ns
Data hold from write time	t _{DH}	0	-	ns
End write to output low-Z	t _{OW}	5		ns

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070

TEL: (650) 610-6800 FAX: (650) 620-9211

Alliance Memory Inc. reserves the right to change products or specification without notice.

TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE (1) (Address Controlled, CS=OE=V_{IL}, UB or/and LB=V_{IL})

TIMING WAVEFORM OF READ CYCLE(2) $(\overline{WE} = V_{IH})$

NOTES (READ CYCLE)

- $1.t_{HZ}$ and t_{OHZ} are defined as the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2.At any given temperature and voltage condition, $t_{HZ}(Max.)$ is less than $t_{LZ}(Min.)$ both for a given device and from device to device interconnection.

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070

TEL: (650) 610-6800 FAX: (650) 620-9211

Alliance Memory Inc. reserves the right to change products or specification without notice.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070

TEL: (650) 610-6800 FAX: (650) 620-9211

Alliance Memory Inc. reserves the right to change products or specification without notice.

TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB Controlled)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(t_{WP}) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when \overline{CS} goes high and \overline{WE} goes high. The t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from the $\overline{\text{CS}}$ going low to end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end or write to the address change. t_{WR} applied in case a write ends as \overline{CS} or \overline{WE} going high.

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070

Alliance Memory Inc. reserves the right to change products or specification without notice.

TEL: (650) 610-6800 FAX: (650) 620-9211

Low Power, 512Kx16 SRAM

DATA RETENTION CHARACTERISTICS

Parameter Symbol Test Condition		Min	Тур	Max	Unit	
V _{CC} for Data Retention	V _{DR}	I _{SB1} Test Condition (Chip Disabled) ¹⁾	1.5	-	3.6	V
Data Retention Current	I _{DR}	V _{CC} =1.5V, I _{SB1} Test Condition (Chip Disabled) ¹⁾	-	-	4	μА
Chip Deselect to Data Retention Time	t _{SDR}	See data retention wave form	0	-	-	no
Operation Recovery Time	t _{RDR}	See data retention wave form	t _{RC}	-	-	ns

NOTES

DATA RETENTION WAVE FORM

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070

TEL: (650) 610-6800 FAX: (650) 620-9211

 $\textbf{Alliance Memory Inc.} \ reserves \ the \ right \ to \ change \ products \ or \ specification \ without \ notice.$

^{1.} See the $\ensuremath{I_{SB1}}$ measurement condition of datasheet page 5.

PACKAGE DIMENSION

44 - TSOP2 (0.8mm pin pitch)

Unit: millimeters / inches

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070

TEL: (650) 610-6800 FAX: (650) 620-9211

ORDERING INFORMATION

Alliance Part no	Organization	Vcc Range	Package	Operating Temp	Speed ns
AS6C8016A-55ZIN - Tray	512K x 16	2.7V – 3.6V	44 PIN TSOP2 (0.8MM PIN PITCH)	-40°C~85°C	55
AS6C8016A-55ZINTR – Tape & Reel	512K x 16	2.7V – 3.6V	44 PIN TSOP2 (0.8MM PIN PITCH)	-40°C~85°C	55

PART NUMBERING SYSTEM

AS6C	8016	A	-55	Z	_	N
LOW POWER	DEVICE NUMBER	Device	Access		Temperature	N = Lead Free
SRAM	80 = 8M	revision or	Time		range:	ROHS
PREFIX	16 = by 16	sub-contract		44 PIN TSOP2	I = Industrial	Compliant
		Wafer build		(0.8MM	(-40°C to 85°C)	Part
		supplier		PIN PITCH)		
		identification		·		

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070

TEL: (650) 610-6800 FAX: (650) 620-9211

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Alliance Memory:

AS6C8016A-55ZIN AS6C8016A-55ZINTR