In Exercises 1-3, for the given transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, do the following:

- (a) Find the image of $\vec{v} = (3, -1, 2)$ under T.
- (b) Is T a linear transformation? If so, find the matrix associated with T.
- (c) Find all vectors \vec{v} whose image under T is $\vec{v'} = (1, 3, 2)$.
- (d) Find the inverse transformation, T^{-1} , or give a reason why T^{-1} does not exist.
- (e) Is T^{-1} a linear transformation? If so, find the matrix associated with T^{-1} .
- **1.** $T(v_1, v_2, v_3) = (v'_1, v'_2, v'_3)$, where

$$v'_1 = v_3$$

 $v'_2 = v_1 + v_2$
 $v'_3 = v_1 v_2$

2. $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(v_1, v_2, v_3) = (v'_1, v'_2, v'_3)$, where

$$v'_1 = v_1 + 2v_2 - v_3$$

 $v'_2 = v_2 + v_3$
 $v'_3 = 2 - v_3$

3. $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(v_1, v_2, v_3) = (v'_1, v'_2, v'_3)$, where

$$v'_1 = v_1 - 5v_3$$

$$v'_2 = v_2 + 3v_3$$

$$v'_3 = 2v_1 + 3v_2$$

4. Find all eigenvalues and corresponding eigenvectors for the matrix

$$A = \begin{pmatrix} 7 & -5 & 7 & -1 & 4 \\ 0 & 2 & 5 & -4 & 7 \\ 0 & 0 & 7 & 1 & 17 \\ 0 & 0 & 0 & 7 & 10 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}.$$

5. Let A and E be square matrices of the same size. Suppose E is invertible and let $B=E^{-1}AE$. Show that if (λ, \vec{v}) is an eigenpair of the matrix A, then $(\lambda, E^{-1}\vec{v})$ is an eigenpair of the matrix B.