Continuity of a Functions of One Variable

A function y = f(x) is said to be continuous at a point x_0 if

- *I.* f(x) is defined at x_0
- II. $\lim_{x \to x_0} f(x)$ exists
- III. $\lim_{x \to x_0} f(x) = f(x_0)$

Mathematically:

A function y = f(x) is said to be continuous at a point x_0 , if for a given $\epsilon > 0$, there exist a real number $\delta > 0$ such that

$$|f(x) - f(x_0)| < \epsilon$$
 whenever $|x - x_0| < \delta$

Example: Discuss the continuity of $y = 2^{1/x}$

The given function is discontinuous at x = 0.

There are two reasons:

- 1. The function is not defined at x = 0
- 2. Compute limits:

$$\lim_{x \to 0^{-}} 2^{\frac{1}{x}} = 0 \qquad \qquad \lim_{x \to 0^{+}} 2^{\frac{1}{x}} = +\infty$$

Note:

- If the function f(x) fails to be continuous at x_0 , then we say that f(x) is discontinuous at x_0 .
- We say that f(x) is continuous on D if f(x) is continuous at every point of D.

Basic Properties:

1. Let $f, g: D \to \mathbb{R}$ be functions, where $D \subseteq \mathbb{R}$ and let $x_0 \in \mathbb{R}$. Suppose f and g are continuous at x_0 . Then

(a) f+g, f-g, f.g, and cf (for any $c \in \mathbb{R}$) are continuous at x_0

(b) Further, if $g \neq 0, \forall x \in D$, and g is continuous at x_0 , then f/g is continuous at x_0 .

- 2. Let $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$, and let |f| be defined by |f|(x) = |f(x)| for $x \in D$.
- a) If f is continuous at a point $x_0 \in D$, then |f| it continuous at x_0 .
- b) If $f(x) \ge 0 \ \forall x \in D \ \& \ f$ is continuous at x_0 , then \sqrt{f} is also continuous at x_0 .
 - 3. If f is continuous at x_0 and $f(x_0) \neq 0$, then $\exists \delta > 0 \ni f(x)$ and $f(x_0)$ have the same sign.

4. (Composites of continuous functions)

Let $D, E \subseteq \mathbb{R}$ and let $f: D \to \mathbb{R}$, $g: E \to \mathbb{R}$ be functions $\exists f(D) \subseteq E$.

If f it continuous at a point $x_0 \in D \& g$ is continuous at $y_0 = f(x_0) \in E$, then the composition $g \circ f : D \to \mathbb{R}$ is continuous at x_0 .

Derivative

Let y = f(x) be a function of single variable.

If the ratio

$$\frac{f(x+\Delta x)-f(x)}{\Delta x}, \qquad \Delta x \neq 0$$

tends to a definite limit as Δx tends to 0.

Then this limit is called the derivative of f(x) at the point x.

It is usually denoted by
$$f'(x)$$
 or $y'(x)$ or $\frac{dy}{dx}$

Differentiability & Differentials

A function f(x) is said to be *differentiable* at the point x, if when x is given the increment Δx (arbitrary increment), the increment Δy can be expressed in the form

$$\Delta y = A \Delta x + \epsilon \Delta x$$

where A is independent of Δx and $\epsilon \to 0$ as $\Delta x \to 0$.

The first term on the right hand side $(A \Delta x)$ is called **differential** (or Total differential) of y and is denoted by dy. Thus

$$dy = A \Delta x$$

Differentiability & Derivative

The necessary and sufficient condition that the function y = f(x) is **differentiable** at the point x is that it possesses a finite definite **derivative** at this point.

Differentiability ⇒ **Existence of Derivative**

Suppose the function y = f(x) is differentiable. This implies $\Delta y = A \Delta x + \epsilon \Delta x$.

Taking limit
$$\Delta x \to 0$$
, we get $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A + \lim_{\Delta x \to 0} \epsilon \implies f'(x) = A$

 \Rightarrow if f(x) is differentiable then f'(x) exists and has definite value A

Existence of Derivative ⇒ **Differentiability**

Differential of an independent variable x: $dx = 1 \cdot \Delta x = \Delta x$

Conversely, if f'(x) has definite value A then

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = A \implies \frac{f(x + \Delta x) - f(x)}{\Delta x} = A + \epsilon, \qquad \epsilon \to 0, \text{ as } \Delta x \to 0$$

$$\Rightarrow f(x + \Delta x) - f(x) = A \Delta x + \epsilon \Delta x, \qquad \epsilon \to 0,$$

This implies, f is differentiable

REMARK: The differential of a function is the product of its derivative and an (arbitrary) increment Δx of the independent variable x, i. e., $dy = f'(x) \Delta x$

Geometrical Interpretation of Differentials

$$\Delta y = A \, \Delta x + \epsilon \, \Delta x$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x) = A$$

$$dy = A \, dx$$

Note: dy and dx measure changes along the tangent line

While Δy and Δx measure changes for the function f(x)

Geometrical Interpretation of Differentiability

A function y = f(x) is said to be differentiable at the point $P(x_0, y_0)$ if it can be approximated in the neighborhood of this point by a linear function.

Mathematically,

$$f(x) = f(x_0) + (x - x_0) A + \epsilon (x - x_0)$$

linear function of *x*

Equation of the tangent to the curve y = f(x) at $(x_0, f(x_0))$

Testing Differentiability

• Existence of
$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} =: f'(x)$$

•
$$\Delta y = dy + \epsilon \Delta x$$
, $dy = A \Delta x$

$$\bullet \quad \lim_{\Delta x \to 0} \frac{\Delta y - dy}{\Delta x} = 0$$

Example 1: Show that the function $f(x) = x^2$ is differentiable.

Let
$$y = f(x) = x^2$$

$$\Delta y = f(x + \Delta x) - f(x) = 2x \Delta x + \Delta x \Delta x$$

$$f'(x) \qquad \epsilon$$

This implies the given function is differentiable and its derivative is 2x.

Alternatively,

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = 2x \qquad \text{OR} \qquad \lim_{\Delta x \to 0} \frac{\Delta y - dy}{\Delta x} = 0$$

Example 2: Given the function $y=x^2$, find Δy and dy at x=2 and $\Delta x=1, \Delta x=0.1, \Delta x=0.01$.

$$\Delta y = f(x + \Delta x) - f(x) \qquad \& \quad dy = f'(x)dx$$

Δx	Δy	dy
1		
0.1		
0.01		

Example 3: Find the derivative of the function
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

First compute its derivative at
$$x = 0$$
: $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin\left(\frac{1}{\Delta x}\right) - 0}{\Delta x} = 0$

Now compute its derivative at
$$x \neq 0$$
: $-\cos\left(\frac{1}{x}\right) + 2x\sin\left(\frac{1}{x}\right)$

$$\Rightarrow f'(x) = \begin{cases} -\cos\left(\frac{1}{x}\right) + 2x\sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Is f' continuous?

KEY TAKEAWAY

The function y = f(x) is said to be differentiable at the point (x, y) if, at this point

$$\Delta y = A \, \Delta x + \epsilon \, \Delta x$$

where A is independent of Δx and ϵ is a function of Δx such that $\epsilon \to 0$ as $\Delta x \to 0$.

The linear function $A \Delta x$ is called the total differential of y at the point (x, y) and is denoted by dy.

The value of A is the derivative of f at x.

KEY TAKEAWAY

We call a function y = f(x) differentiable at the point P(x, y) if

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 exists.

The value of the above limit is called the derivative of f at x.

Remark: Note that $\frac{dy}{dx}$ is not just a notation for f'(x) but it is a ratio of the two differentials. Therefore writing dx and dy alone makes sense.