2. Temporal-Difference Learning là gì?

- **Temporal-Difference (TD) Learning** kết hợp ưu điểm của hai phương pháp chính trong Reinforcement Learning:
 - Từ **Monte Carlo methods**: không cần mô hình môi trường (model-free) và tính toán trực tiếp trên trải nghiệm.
 - Từ **Dynamic Programming**: cập nhật liên tục (bootstrap) dựa trên giá trị ước tính ở bước kế tiếp.
- TD Learning cho phép **ước lượng hàm giá trị** V(s) (hoặc Q(s,a)) ngay trong quá trình tương tác, mà không phải đợi toàn bộ episode kết thúc.

3. Temporal-Difference Error (Lỗi sai theo thời gian)

3.1. TD Target

• Tại mỗi bước t, khi agent đang ở trạng thái S_t , quan sát được reward R_{t+1} và chuyển sang trạng thái kế tiếp S_{t+1} , ta xây dựng một **mục tiêu (TD target)**:

TD target_t =
$$R_{t+1} + \gamma V(S_{t+1})$$
,

trong đó

- $\gamma \in [0, 1]$ là hệ số chiết khấu,
- $V(S_{t+1})$ là giá trị ước tính hiện tại của trạng thái kế tiếp.

3.2. TD Error

• Temporal-Difference Error (ký hiệu δ_t) chính là độ chênh giữa TD target và giá trị ước tính hiện tại $V(S_t)$:

$$\delta_t = [R_{t+1} + \gamma V(S_{t+1})] - V(S_t).$$

• δ_t đo lường "bao nhiêu" giá trị $V(S_t)$ cần phải điều chỉnh để khớp với phần thưởng quan sát và giá trị của bước sau.

4. Thuật toán TD(0)

TD(0) là phiên bản đơn giản nhất của TD Learning, cập nhật **ngay lập tức** sau mỗi bước:

- Khởi tao:
 - Với mỗi trạng thái s, gán giá trị ban đầu V(s) (thường là 0 hoặc ngẫu nhiên nhỏ).

- 2. Với mỗi bước t trong quá trình tương tác:
 - Quan sát (S_t, R_{t+1}, S_{t+1}) .
 - Tính TD error:

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t).$$

• Cập nhật giá trị ước tính của S_t theo learning rate $\alpha \in (0, 1]$:

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$
.

- Tiếp tục sang bước t+1 cho đến khi kết thúc quá trình.
- 3. Thuật toán lặp đi lặp lại cho đến khi V hội tụ hoặc đạt giới hạn episode.

5. Policy Improvement với TD Learning

- Mặc dù slide chỉ đề cập sơ lược, nhưng TD(0) có thể mở rộng để học hàm giá trị hành động Q(s, a), rồi dùng cho policy improvement.
- Q-Learning là một ví dụ off-policy TD, trong đó:

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha [R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_{t}, A_{t})].$$

• Agent sau đó **chọn hành động greedy** (hoặc epsilon-greedy) dựa trên Q.

6. Ví dụ minh họa đơn giản (Grid World)

Trong slide có ví dụ Grid World rất gọn:

- 1. Môi trường:
 - Một dãy ô thẳng (line world) với vị trí A (bắt đầu) và B (mục tiêu).
 - Agent có thể di chuyển trái hoặc phải.
 - Chỉ khi đến ô B thì nhận reward = +1; các bước đi khác reward = 0.
- 2. Quá trình tương tác (một episode mẫu):
 - Agent khởi đầu ở A, chọn đi phải \rightarrow tới ô kế (S_{t+1}) .
 - Quan sát reward R=0 (chưa phải B) và giá trị V của ô mới.
 - Tính δ và cập nhật V(A).
 - Tiếp tục đến khi vào B, nhận $R=\pm 1$, tính δ ở bước cuối, cập nhật V cho trạng thái trước đó.
- 3. Cách update cụ thể (ví dụ minh họa):
 - Giả sử ban đầu V(A) = 0, $V(\hat{\mathbf{o}} \hat{\mathbf{ke}}) = 0$.

• Bước 1: từ A \rightarrow ô kế, $R_1 = 0$.

$$\delta_0 = 0 + \gamma \cdot V(\hat{o} \hat{ke}) - V(A) = 0 + 0 - 0 = 0$$

 $\Rightarrow V(A)$ không đổi.

- ...
- Cuối cùng khi đến B, giả sử từ ô trước B chuyển sang B, R=1:

$$\delta = 1 + \gamma \cdot V(B) - V(\hat{o} \text{ tru\'oc}) = 1 + 0 - V(\hat{o} \text{ tru\'oc}).$$

Với $\alpha > 0$, update V (ô trước) dần lên gần 1.

• Qua nhiều episode, **giá trị ước tính** V(A) và các ô giữa sẽ **tiệm cận** giá trị thực (kỳ vọng số bước để đến B).

7. Kết quả và Hội tụ

- Nhờ cập nhật bootstrap (dựa trên giá trị bước kế), TD(0) thường hội tụ nhanh hơn Monte Carlo, vì không phải đợi đến cuối episode mới update.
- So với Dynamic Programming, TD không cần biết mô hình môi trường.
- Kết hợp cả hai, TD Learning là một phương pháp **powerful** trong RL hiện đại.