LA DÉRIVATION E03C

Définition partielle:

Soit f et g deux fonctions. On appelle composée de f par g et on note $f \circ g$ la fonction : $f \circ g : x \mapsto f \circ g(x) = f(g(x))$

cliquez-moi

EXERCICE N°1 fonction affine et fonction carré

Soit $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 3x + 4 \end{cases}$ une fonction affine et soit $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$ la fonction carré. Pour $x \in \mathbb{R}$:

1) Exprimer $f \circ g(x)$ puis $g \circ f(x)$.

$$f \circ g(x) = f(g(x))$$

= $f(3x+4)$
= $(3x+4)^2$
= $9x^2+24x+16$

$$g \circ f(x) = g(f(x))$$

$$= g(x^{2})$$

$$= 3x^{2}+4$$

On retient que l'ordre dans lequel on compose est important.

2) Exprimer $(f \circ g)'(x)$ puis $(g \circ f)'(x)$.

$$(f \circ g)'(x) = 18x + 24$$

$$(g \circ f)'(x) = 6x$$

3) Exprimer f'(x) et g'(x).

$$f'(x) = 2x$$

$$g'(x) = 3$$

4) Exprimer $g'(x) \times f'(g(x))$ puis $f'(x) \times g'(f(x))$.

$$g'(x) \times f'(g(x)) = 3 \times f'(g(x))$$

= $3 \times 2(3x+4)$
= $18x+24$

$$f'(x) \times g'(f(x)) = 2x \times g'(f(x))$$

$$= 2x \times 3$$

$$= 6x$$
g' est la fonction constante égale à 3

5) Comparer les questions 2) et 4).

On obtient les mêmes fonctions dérivées :

$$(f \circ g)'(x) = g'(x) \times f'(g(x)) \qquad (g \circ f)'(x) = f'(x) \times g'(f(x))$$

$$(g \circ f)'(x) = f'(x) \times g'(f(x))$$