華中科技大學

传感器实验报告

多传感器融合技术

院 系	目动化学院
专业班级	自卓 1601
姓 名	杨金昊
学 号	U201614480
指导教师	 张朴

2018年12月28日

目 录

1	试题	建模 .					•	•	 •	 •	•	•	•	 •	•	•	•	•	•	 •	•	•	•	•	•	1
	1.1	试题描	述								-												-			1
	1.2	模型假	设																•							1
	1.3	建模过	程																•							1
		1.3.1	初	始模	型														•							1
2	试题	中实现	的美	键	惟点	. •	•				•		•	 •	•	•	•	•		 •			•		•	2
3	程序	运行指	南				•		 •		•	•	•	 •	•	•			•						•	2
4	程序	运行分	析实	例										 												2

1 试题建模

1.1 试题描述

大多数传染病如天花、流感、肝炎、麻疹等治愈后均有很强的免疫力,所以病愈的人既非健康者(易感染者),也非病人(已感染者),他们已经退出传染系统。

1.2 模型假设

- 1. H1N1 流感传播期内,总人数为 N 不变,既不考虑生死,也不考虑迁移,人群分为易感染者 S,发病人群 I 和退出人群 R(包括死亡者和治愈者)三类,时刻 r 内这三类人在总人数中所占比例分别为 s(t)、i(t)、r(t)。
- 2. 每个病人每天有效接触的平均人数是常数 λ ,称日接触率。当病人与健康者有效接触时,使健康者受感染变为病人。根据假设,每个病人每天可使 $\lambda_s(t)$ 个健康者变为病人,因为病人数为 $N_i(t)$. 所以每天共有 $\lambda Ns(t)i(t)$ 个健康者被感染。
- 3. 病人每天被治愈的占病人总数的比例为 μ, 称为日治愈率, 治愈的病人具有了免疫力, 即治愈后不再会成为二次患者。
- 4. s(t)、i(t)、r(t) 之和是一个常数 1。

1.3 建模过程

1.3.1 初始模型

在这个初始模型中,假设时刻 t 的病人数 i(t) 是连续可谓的函数,并且每天每个病人有效接触的人数为常数 λ ,考察 t 到 $t+\delta t$ 病人人数的增加就可得

$$x(t + \delta t) - x(t) = \lambda x(t)\delta t$$

- 2 试题中实现的关键难点
 - 3 程序运行指南
 - 4 程序运行分析实例