Problem type 1:

Provide the context-free grammar that describes the following language:

(See variants below)

a. BYH

 $L = \{(\mathbf{0} + \mathbf{1})^*\}$ (all strings) where $\Sigma = \{\mathbf{0}, \mathbf{1}\}$

Solution: $S \rightarrow \varepsilon \mid \mathbf{0}S \mid \mathbf{1}S$.

b. BYE

 $L = \{ \mathbf{0}^n \mathbf{10}^n | n \ge 0 \}$ where $\Sigma = \{ \mathbf{0}, \mathbf{1} \}$

Solution: $S \rightarrow | 0S0 | 1$.

c. BYA

 $L = \{ \mathbf{0}^n \mathbf{1}^n | n \ge 0 \}$ where $\Sigma = \{ \mathbf{0}, \mathbf{1} \}$

Solution: $S \rightarrow \varepsilon \mid \mathbf{0}S\mathbf{1}$.

d. BYB

 $L = \{ \mathbf{0}^{m} \mathbf{1}^{n} | m \le n \} \text{ where } \Sigma = \{ \mathbf{0}, \mathbf{1} \}$

Solution: $S \rightarrow \varepsilon \mid \mathbf{0}S\mathbf{1} \mid S\mathbf{1}$.

e. BYF

 $L = \{\mathbf{0}^m \mathbf{1}^n | m \neq n\}$ where $\Sigma = \{\mathbf{0}, \mathbf{1}\}$

Solution: We either have more **0**'s than **1**'s or more **1**'s than **0**'s.

$$S \rightarrow \mathbf{0}S\mathbf{1} \mid A \mid B$$

$$A \rightarrow \mathbf{0} \mid \mathbf{0}A$$

 $B \rightarrow \mathbf{1} \mid B\mathbf{1}$

f. **BYG**

 $L = \{ \mathbf{0}^{a} \mathbf{1}^{b} \mathbf{2}^{c} | a, b, c \ge 0, a + b = c \} \text{ where } \Sigma = \{ \mathbf{0}, \mathbf{1}, \mathbf{2} \}$

Solution:

$$S \rightarrow \varepsilon \mid \mathbf{0}S\mathbf{2} \mid A$$

$$A \rightarrow \varepsilon \mid \mathbf{1}A\mathbf{2}$$

g. BYD

$$L = \{ \mathbf{0}^{a} \mathbf{1}^{b} \mathbf{2}^{c} | a, b, c \geq 0, a + b \leq c \} \text{ where } \Sigma = \{ \mathbf{0}, \mathbf{1}, \mathbf{2} \}$$

Solution:

$$S \rightarrow \varepsilon \mid \mathbf{0}S\mathbf{2} \mid A$$

 $A \rightarrow \varepsilon \mid \mathbf{1}A\mathbf{2} \mid A\mathbf{2}$

h. BYC

 $L = \{ww^R | w \in \Sigma^*\}$ (all even length palindromes) where $\Sigma = \{\mathbf{0}, \mathbf{1}\}$

Solution: $S \rightarrow \varepsilon \mid 0S0 \mid 1S1$