COMP250: Induction proofs.

https://powcoder.com

Add WeChat powcoder Jerôme Waldispuni School of Computer Science McGill University

Based on slides from (Langer, 2012), (CRLS, 2009) & (Sora, 2015)

Outline

- Induction proofs
- O Introduction Assignment Project Exam Help O Definition
 - o https://preswcoder.com
- Loop th War Sheat powcoder
 - Definition
 - Example (Insertion sort)
 - Analogy with induction proofs
 - Example (Merge sort)

for any $n \ge 2$, $n^2 \ge 2^n$?

for any $n \ge 5$, $n^2 \le 2^n$?

Motivation

How to prove these?

for any
$$n$$
 and n are n and n and n and n and n and n and n are n and n and n and n and n and n are n and n and n and n and n are n and n and n and n and n are n and n and n and n and n are n and n and n are n and n and n are n and n and n and n are n and n are n and n and n are n are n and n are n a

And in general, any statement of the form: "for all $n \ge n_0$, P(n)" where P(n) is some proposition.

Mathematical induction

Many statement of the form "for all $n \ge n_0$, P(n)" can be proven with a logical argument call mathematical Assignment Project Exam Help induction.

https://powcoder.com

The proof has two components:

Base case: P(n₀) Add WeChat powcoder

Induction step: for any $n \ge n_0$, if P(n) then P(n+1)

n ₀									
0	1	2	3	4	5	•••	k	k+1	•••

Principle

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Claim:
$$for any n \ge 1$$
, $1+2+3+4+\cdots+n = \frac{n \cdot (n+1)}{\text{Assignment Project Exam Help 2}}$

Proof: https://powcoder.com

- Base case: Add WeChat powcoder
- Induction step:

for any
$$k \ge 1$$
, if $1+2+3+4+\cdots+k = \frac{k \cdot (k+1)}{2}$
then $1+2+3+4+\cdots+k+(k+1) = \frac{(k+1)\cdot (k+2)}{2}$

Induction

Assume
$$1+2+3+4+\cdots+k = \frac{k \cdot (k+1)}{2}$$

then $1+2+3+4+\cdots+k+(k+1)$

$$= \frac{k \cdot (k+1)}{2} + (k+1)$$

$$= \frac{k \cdot (k+1)}{2} + (k+1)$$

$$= \frac{k \cdot (k+1) + 2 \cdot (k+1)}{2}$$

$$= \frac{(k+2) \cdot (k+1)}{2}$$

Summary

Base case: Assignment Project Exam Help

Induction step: https://pkyr.pdp/(k) then P(k+1)

Add WeChat powcoder

Thus for all $n\geq 1$, P(n)

Claim: $for any n \ge 1$, $1+3+5+7+\cdots+(2\cdot n-1)=n^2$ Assignment Project Exam Help

Proof: https://powcoder.com

- Base case: Add We€hat powcoder
- Induction step:

for any
$$k \ge 1$$
, if $1+3+5+7+\cdots+(2\cdot k-1)=k^2$
then $1+3+5+7+\cdots+(2\cdot (k+1)-1)=(k+1)^2$

Assume
$$1+3+5+7$$
https://povkcoller.(2n(k+1)-1) Induction $= k^2 + 2 \cdot (k+1)$ We Chat powcoder $= k^2 + 2 \cdot k + 1$ $= (k+1)^2$

Claim: $for any n \ge 3$, $2 \cdot n + 1 < 2^n$ Assignment Project Exam Help

Proof: https://powcoder.com

- Base case: Acto We Chat bowed er8
- Induction step:

for any
$$k \ge 3$$
, if $2 \cdot k + 1 < 2^k$
then $2 \cdot (k+1) + 1 < 2^{k+1}$

Assignment Project Exam Help

then
$$2 \cdot (k+1)+1$$

https://powcoder.com

 $= 2 \cdot k+2+1$

Add WeChat poweder hypothesis

 $\leq 2^k+2^k$

for $k \geq 1$
 $= 2^{k+1}$

Stronger than we need, but that works!

Claim: $for any n \ge 5$, $n^2 \le 2^n$ Assignment Project Exam Help

Proof: https://powcoder.com

- Base case: Add ₩€Ehat 25€20der
- Induction step:

for any
$$k \ge 5$$
, if $k^2 \le 2^n$
then $(k+1)^2 \le 2^{k+1}$

Assignment Preject Exam Help

thentp(k/pd) wcoder.com

Add We Chat power Induction hypothesis $\leq 2^{k} + 2 \cdot k + 1$ $\leq 2^{k} + 2^{k}$ From previous example

 $=2^{k+1}$

Fibonacci sequence:

```
Fib_0 = 0 base case

Fib_1 = 1 Assignment Project Exam Help

Fib_n = Fib_{n-1} + Fib_{n-2} for n > 1 recursive case

https://powcoder.com
```

Claim: For all nat powcoder

Base case: $Fib_0=0<2^0=1$, $Fib_1=1<2^1=2$ Q: Why should we check both Fib_0 and Fib_1 ?

Induction step: for any $i \le k$, if $Fib_i < 2^i$ then $Fib_{k+1} < 2^{k+1}$

```
Assume that for all i \le k, Fib_i < 2^i (Note variation of Assignment Project Exam Help induction hypothesis)

Then Fib_{k+1} = Fib_k + Fib_{k-1} https://powcoder.comuction hypothesis (x2)
< 2^k + 2^{k-1} Add WeChat powcoder
\le 2^k + 2^k for k \ge 1
= 2^{k+1}
```

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder Proving the correctness of an algorithm

LOOP INVARIANTS

Algorithm specification

- An algorithm is described by:
 - Input data
 - Output dataignment Project Exam Help
 - **Preconditions**: specifies restrictions on input data
 - Postconditions: specifies what is the result
- Example: Binary searchat powcoder
 - Input data: a:array of integer; x:integer;
 - Output data: index:integer;
 - Precondition: a is sorted in ascending order
 - Postcondition: index of x if x is in a, and -1 otherwise.

Correctness of an algorithm

An algorithm is correct if:

- for any correct input data:
 - it stopssignment Project Exam Help
 - it produges correct enterteem
- Correct input data: satisfies precondition
 Add WeChat powcoder
 Correct output data: satisfies postcondition

Problem: Proving the correctness of an algorithm may be complicated when the latter is repetitive or contains loop instructions.

How to prove the correctness of an algorithm?

- Assignment Project Exam Help
 Recursive algorithm ⇒ Induction proofs
 https://powcoder.com
- Iterative algorithm (loops) der????

Loop invariant

Assignment Project Exam Help

A **loop invariant** is a loop property that hold https://powcoder.com

before and after exchite pation of a loop.

Insertion sort

```
for i ← 1 to length(A) - 1

j ← i

whistignment()Project Exam Help[j]

swap A[j] and A[j-1]

https://powcoder.com

end whileWeChat powcoder

end for
```

(Seen in previous lecture)

Insertion sort

n+1 elements sorted

Loop invariant

The array A[0...i-1] is fully sorted.

Assignment Project Exam Help

```
1 https://pow. 6 com 4

Add WeChat powcoder
A[0...i-1]
```

Initialization

Just before the first iteration (i = 1), the sub-array A[0 ... i-1] is the single element A[0], which is the element original wips A[0] and it is trivially sorted.

Add WeChat powcoder

Maintenance

Note: To be precise, we would need to state and prove a loop invariant for the ``inner'' while loop.

Termination

The outer **for** loop ends when $i \ge length(A)$ and increment by 1 at each iteration starting from 1.

Therefore, i Afeingth Project Exam Help

Plugging length(A)tips fopowleindthecloop invariant, the subarray A[0 ... length(A)-1] consists of the elements originally in A[0 ... length(A)-1] but in sorted order.

A[0 ... length(A)-1] contains length(A) elements (i.e. all initial elements!) and no element is duplicated/deleted.

In other words, the entire array is sorted.

Proof using loop invariants

We must show:

- 1. Initialization: It is true prior to the first iteration of the loop.
- Maintenance in the loop, it remains true before the next iteration. Add We Chat powcoder
 Termination: When the loop terminates, the
- 3. Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Analogy to induction proofs

Using loop invariants is like mathematical induction.

- You prove a base case and an inductive step.
 Assignment Project Exam Help
 Showing that the invariant holds before the first iteration is
- Showing that the invariant holds before the first iteration is like the base casettps://powcoder.com
- Showing that the invariant holds from iteration to iteration is like the inductive step.
- The **termination** part differs from classical mathematical induction. Here, we stop the ``induction'' when the loop terminates instead of using it infinitely.

We can show the three parts in any order.

Merge Sort

```
MERGE-SORT (A,p,r)

if p < r then

q=(p+r)/2

MERGE-SORT (A,q+1,r)

MERGE (A,pttps://powcoder.com
```

Add WeChat powcoder

Precondition:

Array A has at least 1 element between indexes p and r (p≤r)

Postcondition:

The elements between indexes p and r are sorted

Merge Sort (Merge method)

- MERGE-SORT calls a MERGE (A,p,q,r) function MERGE(A,p,q,r) to merge the sorted subarrays Precondition: A is an of A into a single softed by a proof of MERGE car be used as a paragraph.
 The proof of MERGE car be used as payors uch that p <= 0
- The proof of MERGEDSAM bewooder from such that p <= q done separately, using loop < r. The subarrays invariants Add WeChat powered and A[q +1...

Postcondition: The subarray A[p..r] is sorted

Procedure Merge

```
Merge(A, p, q, r)
                                                         Input: Array containing
1 n_1 \leftarrow q - p + 1
2 n_2 \leftarrow r - q
                                                         sorted subarrays A[p..q]
      for i \leftarrow 1 to n_1
                                                         and A[q+1..r].
         do L[i] \leftarrow A[p+i-1]
     for i \leftarrow 1 to n_2
         do R[j] ← AAssignment Project Extput: HAderged sorted
     L[n_1+1] \leftarrow \infty
                                                         subarray in A[p..r].
      R[n_2+1] \leftarrow \infty
                              https://powcoder.com
      i \leftarrow 1
     j \leftarrow 1
10
                              Add We Chat powcoder
       for k \leftarrow p to r
11
12
         do if L[i] \leq R[i]
            then A[k] \leftarrow L[i]
13
14
                  i \leftarrow i + 1
            else A[k] \leftarrow R[j]
15
                 i \leftarrow i + 1
16
```

Merge/combine – Example

Idea: The lists L and R are **already sorted**.

Correctness proof for Merge

- **Loop Invariant:** The array A[p,k] stored the (k-p+1) smallest elements of L and R sorted in increasing order.
- **Initialization**: k = p
 - A contains Assignment the locate the same "Help")
 - A[p] is the smallest element of L and R
- https://powcoder.com Maintenance:
 - Assume that Merge satisfy the loop invariant property until k.
 (k-p+1) smallest elements of L and R are already sorted in A.

 - Next value to be inserted is the smallest one remaining in L and R.
 - This value is larger than those previously inserted in A.
 - Loop invariant property satisfied for k+1.

Termination Step:

 Merge terminates when k=r, thus when r-p+1 elements have been inserted in $A \Rightarrow All$ elements are sorted.

Correctness proof for Merge Sort

- Recursive property: Elements in A[p,r] are be sorted.
- Base Case: p = r
 - A contains a single element (which is trivially "sqrted")
- Inductive Hypothesis:
 - Assume that Mergesort/correctly odets of 1112, ..., k elements
- Inductive Step:
 - Show that Merges of corrections to the strip of the str
- Termination Step:
 - MergeSort terminate and all elements are sorted.

Note: Merge Sort is a recursive algorithm. We already proved that the Merge procedure is correct. Here, we complete the proof of correctness of the main method using induction.

Inductive step

- Inductive Hypothesis:
 - Assume MergeSort correctly sorts n=1, ..., k elements
- Inductive Step:
 Assignment Project Exam Help

 Show that MergeSort correctly sorts n = k + 1 elements.
- https://powcoder.com Proof:
 - First recursive Call ny goth 1 (kt 1) (2) der => subarray A[p .. q] is sorted
 - Second recursive call $n_2=r-q=(k+1)/2 \le k$ => subarray A[q+1 .. r] is sorted
 - A, p q, r fulfill now the precondition of Merge
 - The post-condition of Merge guarantees that the array A[p .. r] is sorted => post-condition of MergeSort satisfied.

Termination Step

We have to find a quantity that decreases with every recursive call: the length of the subarray of A to be sorted Mergesoignment Project Exam Help

At each recursive call of Mergesort, the length of the subarray is strictly decreasing powcoder

When MergeSort is called on an array of size ≤ 1 (i.e. the base case), the algorithm terminates without making additional recursive calls.

Calling MergeSort(A,0,n) returns a fully sorted array.