Instrumentation for real-time cyclic spectroscopy

Glenn Jones

NRAO (resident at Caltech, soon to be Columbia) jones_gl@caltech.edu

Paul Demorest

NRAO Charlottesville pdemores@nrao.edu

Motivation: Improving pulsar timing

- At frequencies below ~1 GHz, pulsar time of arrival estimation is strongly influenced by scattering in the interstellar medium
- PTAs need more pulsars which can be accurately timed
- Hopefully CS will enable a large number of MSPs which are bright but scattered at low frequencies to be included in the PTA
- Also hope to improve best timers to ~10 ns RMS

Modern pulsar processor review: G/PUPPI Architecture

Cyclic Spectrum: Edge effects

$$S_x(\nu;\alpha) = E\left\{X(\nu + \alpha/2)X^*(\nu - \alpha/2)\right\}$$

$$|\alpha/2| + |\nu| < B/2$$

Computing Cyclic Spectrum in Real-time

- Processing a single band results in edge effects
 - Need to overlap bands
- Why not send whole (~1 GHz) band to GPUs to do everything?
 - Hard to distribute data, need long chunks of contiguous data, lots of buffering
- Simplest approach: filterbank with overlapping channels

Adding CS Front-end to G/ PUPPI

Initial ROACH design

- Uses Half-band filter to provide single complex data stream at 200 MHz for simplicity
- Overlapping channels requires processing the data with two polyphase filterbanks in parallel
- Dual polarization

Output of Half-band Filter: 100-300 MHz

Final output

Zoom in on channel response

- 32 channels across 200 MHz → 6.25 MHz spacing
- Sample rate for each channel is 12.5 MHz (complex)
- Response is set at 1.5x to allow visualization of filter skirts

First light: That's not a pulsar!

Test Data – courtesy of Nipuni

- J1713+0747
- 10 MHz baseband data
- Centered at 335 MHz
- Recorded at Arecibo
- DM \sim 16, p = 4.58 ms
- Tscattering expected to be ~ 1 us

-b 256 -F4:D -cyclic 1024 (513 lags)

- Occupancy ~ 0.521
- Time is dominated by set_bins (12s vs 7s)
- 31 x 253ms

Some bug remains in GPU version 2 channels, 16 cyclic

CPU GPU

Current performance summary: 10-20 MHz per GPU node GTX485

Coherent Dedispersion Filterbank (negligible in comparison)

Test plan – 6 hours at Arecibo

- Hardware is available (borrow the PUPPI GPUs)
- 2 x 1 hour on B1937+21 @ 430 MHz to make sure everything's working
- Science runs on B1953+29 and J2317+1439.
 For each:
 - 1 hour @ 327 MHz (312-342 MHz)
 - 1 hour @ 430 MHz (422-442 MHz)
 - 1 hour @ 1400 MHz
- Planning to propose for GBT time in next cycle; brand new GPU cluster will be available.

References

- P. B. Demorest. "Cyclic spectral analysis of radio pulsars." MNRAS 416 2821. Arxiv: 1106.3345
- Images from http://www.cv.nrao.edu/~pdemores/cyclic/
- Crochier & Rabiner. "Multirate Digital Signal Processing." Prentice-Hall. 1983

Pulse Scattering

- Broadens pulse features → reduces time resolution
- Varies from observation to observation → increases timing noise
- Strongly frequency dependant → observations are done at higher frequencies
 - But pulsars are steep spectrum, so there is a tradeoff
- Ideal solution would be to correct for scattering

Data and Error distributions

Critically Sampled Filterbank: Data rate in (F) = data rate out (F/M)*M

Over-Sampled Filterbank: Data rate in (F) ≠ data rate out (F/M)*M*I

Over-sampled filterbank K = M*I, I=2

"the polyphase filters of the polyphase filters"

ADC input spectrum: 0-400 MHz

After Equalization

Comb Off

Comb On

Cyclic Correlation:

Correlation averaged modulo pulse period

$$C_x(t,\tau) = E\left\{x\left(t + \frac{\tau}{2}\right)x^*\left(t - \frac{\tau}{2}\right)\right\}$$

Periodic Spectrum: Fourier transform along tau axis

$$S_x(\nu,t)$$

Cyclic Spectrum: Fourier transform along t and tau axes

Cyclic Spectrum: Fourier transform along t and tau axes

Traditional spectrum of filtered noise: Only magnitude is retained

Observed signal
$$y(t) = h(t) \star x(t)$$
 Original pulsar signal

$$Y(\nu) = H(\nu)X(\nu)$$

$$S_y(\mathbf{v}) = |H(\mathbf{v})|^2 S_x(\mathbf{v})$$

Cyclic spectrum of filtered noise: Phase information can be retrieved

Observed signal
$$y(t) = h(t) \star x(t)$$
 Original pulsar signal

$$Y(\nu) = H(\nu)X(\nu)$$

$$S_y(\nu;\alpha) = H(\nu + \alpha/2)H^*(\nu - \alpha/2)S_x(\nu;\alpha)$$

$$S_y(\nu; \alpha_n) = H_{ISM}(\nu + \frac{\alpha_n}{2})H_{ISM}^*(\nu - \frac{\alpha_n}{2})I(n)S_0$$