Assignment 3 - You Wu

Before starting, check **data completeness**. There are two gaps and one repeat value in the timestamps, but that's because of the daylight-saving setting. There are only a few empty values. Because we are building forecast models, we use ffill instead of interpolation to fill the empty values.

There seem to be some outliers in the data. If a value deviates from its moving mean by more than 5 moving std, we consider it to be an outlier. We use a 30-hour hollow neighborhood to calculate the moving mean and moving std (15 hours before and 15 hours after, and that hour itself is not included). There're 169 outliers (1% of the total data) in RTLMP and no outliers in WIND_RTI, GENERATION_SOLAR_RT, and RTLOAD. We **drop the outliers and ffill them**. Below is the data without outliers.

There still seem to be some abnormal values. Here's an example.

We can see that though data on 07-28 and 07-29 is abnormal, it's not an outlier. We should keep these abnormal values.

Split data into a train set and a test set.

Firstly, consider OLS models.

Use WIND_RTI, GENERATION_SOLAR_RT, and RTLOAD as number variables, and PEAKTYPE as a label variable. Use **the lag 1 term** of these variables to predict RTLMP.

GENERATION_SOLAR_RT and PEAKTYPE are not very useful in predicting RTLMP. OLS with WIND_RTI and RTLOAD has the lowest BIC. Lasso regression also suggests only using WIND_RTI and RTLOAD. The model is as below, ε is the residual.

 $RTLMP_{t} = 3.0755 - 0.0009 \text{ WIND_RTI}_{t-1} + 0.0006 \text{ RTLOAD}_{t-1} + \varepsilon_{t}$

OLS Regression Results

Dep. Variable:	HB_NORTH (RTLMP)	R-squared:	0. 149	
Model:	OLS	Adj. R-squared:	0. 149	
Method:	Least Squares	F-statistic:	1049.	
Date:	Sun, 21 May 2023	Prob (F-statistic):	0.00	
Time:	15:12:11	Log-Likelihood:	-51133.	
No. Observations: 11999		AIC:	1.023e+05	
Df Residuals: 11996		BIC:	1.023e+05	
DC 1/ 1 1	0			

Df Model: Covariance Type: nonrobust

8	coef	std err	t	P> t	[0. 025	0. 975]
const	3. 0755	0. 878	3. 501	0. 000	1. 354	4. 797
ERCOT (WIND_RTI)	-0.0009	4e-05	-21.639	0.000	-0.001	-0.001
ERCOT (RTLOAD)	0.0006	1.86e-05	34.898	0.000	0.001	0.001

Omnibus: 25277.694 Durbin-Watson: 0.745 Prob(Omnibus): 0.000 Jarque-Bera (JB): 131901107.927 Skew: 18. 212 Prob(JB): 0.00 Kurtosis: 515.345 Cond. No. 2.34e+05

OLS residual is not really normal-distributed.

Secondly, consider ARIMA models.

Due to the ADF and KPSS tests, the price process is stationary.

ACF and PACF of the price process show evidence of auto-correlation. Due to BIC, choose the ARMA(3,2) model. ϵ is the residual.

$$\begin{aligned} \mathsf{RTLMP}_t \ = \ 22.\ 5850 \ - \ 0.\ 9369\ \ \mathsf{RTLMP}_{t-1} \ + \ 0.\ 3031\ \ \mathsf{RTLMP}_{t-2} \ + \ 0.\ 4741\ \ \mathsf{RTLMP}_{t-3} \\ + \ \varepsilon_t \ + \ 1.\ 6871\varepsilon_{t-1} \ + \ 0.\ 8196\varepsilon_{t-2} \end{aligned}$$

			_====	=====	====				
Dep. Variab	ole:			У	No.	Observations:		11999	
Model:		ARIMA	(3, 0)	, 2)	Log	Likelihood	-48247. 516		
Date:	Sun, 21 May 20 15:14:		2023	AIC			96509.032		
Time:			4:20	BIC			96560.780		
Sample:				0	HQIO	2		96526.391	
			- 1	1999					
Covariance	Type:			opg					
	coef	std	err		Z	P> z	[0. 025	0. 975]	
const	22. 5850	0.	654	34.	547	0.000	21. 304	23. 866	
ar. L1	-0.9369	0.	008	-114.	344	0.000	-0.953	-0.921	
ar. L2	0.3031	0.	006	52.	972	0.000	0.292	0.314	
ar. L3	0.4741	0.	008	63.	185	0.000	0.459	0. 489	
ma.L1	1.6871	0.	008	208.	997	0.000	1.671	1.703	
ma. L2	0.8196	0.	009	88.	993	0.000	0.802	0.838	
sigma2	182. 0500	0.	329	553.	354	0.000	181. 405	182. 695	
====== Ljung-Box ((L1) (Q):			1.	26	Jarque-Bera	(TB):	176794974.	
Prob(Q):		0.	26	Prob(JB):		0.			
Heteroskedasticity (H):			91	Skew:		16.			
Prob(H) (two-sided):			.00	Kurtosis:		596.			

Check the residuals of the ARMA model.

The Ljung-Box test is also rejected. There is no evidence of auto-correlation for ARMA residuals. The ARMA model has **residuals with lower values** than the OLS model. ARMA residuals are also more normal-distributed than OLS residuals. The ARMA model is effective.

Also, consider the ARMAX(3,2) model with lag 1 term WIND_RTI and RTLOAD. It has a higher BIC.

Thirdly, consider GARCH models.

Due to BIC, choose the ARX(3)-GARCH(2,0) model with lag 1 term RTLOAD. ε is the residual.

$$\begin{aligned} \mathsf{RTLMP}_t \ = \ 0.\ 9873 \ + \ 0.\ 2780 \ \ \mathsf{RTLMP}_{t-1} \ - \ 0.\ 0416 \ \ \mathsf{RTLMP}_{t-2} \ - \ 0.\ 0613 \ \ \mathsf{RTLMP}_{t-3} \\ + \ 0.\ 00036 \ \ \mathsf{RTLOAD}_{t-1} \ + \ a_t \\ a_t \ = \ \sigma_t \varepsilon_t \\ \sigma_t^2 \ = \ 20.\ 0141 \ + \ 0.\ 9159a_{t-1}^2 \ + \ 0.\ 0841a_{t-2}^2 \end{aligned}$$

AR-X - ARCH Model Results

Dep. Variable		HB_N	ORTI	H (RTLMP)	R-sq	uar	ed:	0. 284		
Mean Model:		AR-X				R-	-squared:	0. 283		
Vol Model:				ARCH			elihood:	-40632. 9		
Distribution:				Normal	AIC:			81281.8		
Method:		Maximu	m L:	ikelihood	BIC:			81340.9		
			No.	0bs	ervations:	11996				
Date:		Sun, May 21 2023				esi	duals:	11991		
Time:		15:15:38				lode	:1:	5		
				Me	an Mode	1				
		coef		std err		t	. P> t	95.0% Conf. Int.		
Const		0. 9873		2. 208	0.	447	0. 655	5 [-3.340, 5.314]		
HB_NMP)[1]		0.2780		0.201	1.	381	0. 167	[-0.117, 0.673]		
HB_NMP)[2]		-0.0416	4.	054e-02	-1.	027	0.304	[-0.121, 3.781e-02]		
HB_NMP)[3]		-0.0613	6.	405e-02	-0.	956	0. 339	[-0. 187, 6. 428e-02]		
ERCOT (RTLOAD)	3.	5933e-04	1.	212e-04	2.	964	3.035e-03	3 [1. 217e-04, 5. 969e-04]		
				Volatil	ity Mod	le1				
		coef	std	err	t		P> t	95.0% Conf. Int.		
	250.00		50020					TEL SECRETARY OF SECRET		
omega	20.	0141	13.	962	1.433		0. 152	[-7. 351, 47. 379]		

	coef	std err	t	P> t	95.0% Conf. Int.		
omega	20. 0141	13. 962	1. 433	0. 152	[-7.351,	703097 0304300V±	
alpha[1]	0.9159	0.306	2.990	2.788e-03	[0.316,	1.516]	
alpha[2] =======	0.0841	6. 121e-02	1. 373	0. 170	[-3.592e-02,	0. 204]	

The GARCH model has **residuals with lower values** than the OLS model. GARCH residuals are also more normal-distributed than OLS residuals. The GARCH model is effective.

Lastly, **make predictions and calculate MSE** on the test set using the models.

OLS MSE: 3040.8380410248615 ARMA MSE: 3348.995360503033 GARCH MSE: 3213.4042339972075

The OLS model has the lowest MSE.

It is hard to predict the extreme values for both models. Generally, the OLS model performs better than the GARCH model. But in the periods where volatility changes, the GARCH model has a much better performance. Both models capture the pattern of the price and are useful to some extent.