Math HW5

Rohan Mukherjee

February 10, 2025

- 1. I claim that if B is an invertible matrix, then BA and A have the same kernel. This is because $BAx = 0 \iff Ax = 0$, the first direction following since B is invertible we must have Ax = 0, and the other direction is clear. Also, since the rank is the dimension of the image, equivalently the dimension of the rowspace or column space, we have $\operatorname{rank}(A) = \operatorname{rank}(A^T)$. So, $\operatorname{rank}(AB) = \operatorname{rank}(B^TA^T) = \operatorname{rank}(A^T)\operatorname{rank}(A)$ by above. So $\operatorname{rank}(B^TAB) = \operatorname{rank}(A)$ for invertible B. By the structure of a diagonal matrix, the rank of a diagonal matrix is just the number of zeros in the diagonal. So indeed, the theorem follows.
- 2. We prove the result by induction. The base case of n=2 is as follows. Place the first vector v_1 . The second vector has to have negative inner product with v_1 , so in particular it has angle at least 90 degrees with v_1 . Then place the third vector, which has angle at least 90 degrees with both v_1 and v_2 . If somehow the fourth vector had angle greater than 90 degrees, if we order the vectors counter-clockwise, we would get that a circle has angle greater than 360 degrees, which can't be.

Now assume that we had n+2 vectors in \mathbb{R}^n $\{v_1,\ldots,v_{n+2}\}$ with $||v_i||=1$ and $\langle v_i,v_j\rangle<0$ for $i\neq j$. In particular, $\langle v_1,v_i\rangle<0$ for i>1. Project v_2,\ldots,v_{n+2} onto the n-1 dimensional subspace $\{\langle x,v_1\rangle=0\}$, i.e. take $v_i'=v_i-\langle v_i,v_1\rangle v_1$. Consider:

$$\langle v_i', v_j' \rangle = \langle v_i - \langle v_i, v_1 \rangle v_1, v_j - \langle v_j, v_1 \rangle v_1 \rangle$$

$$= \langle v_i, v_j \rangle - \langle v_i, v_1 \rangle \langle v_j, v_1 \rangle - \langle v_j, v_1 \rangle \langle v_i, v_1 \rangle + \langle v_i, v_1 \rangle \langle v_j, v_1 \rangle$$

$$= \langle v_i, v_j \rangle - \langle v_i, v_1 \rangle \langle v_j, v_1 \rangle < 0$$

Since, crucially, $\langle v_1, v_i \rangle$ and $\langle v_j, v_1 \rangle$ are both negative, their product is positive, which can only make $\langle v'_i, v'_j \rangle$ smaller. By induction, this setup isn't possible, which completes the proof.

- 3. Since $(AB)_{ii} = \sum_{j=1}^{n} a_{ij}b_{ji}$ by expanding, we know that $\operatorname{Tr}(AB) = \sum_{i,j} a_{ij}b_{ji}$. Switching the order of summation and renaming the new i with j, we get that it also equals $\sum_{i,i} b_{ij}a_{ji} = \operatorname{Tr}(BA)$. Taking $B = A_2 \cdots A_k$ in the question proves the result.
- 4. Let $Ax = \lambda x$, and write $\lambda = a + bi$ and x = y + zi. Then Ay + iAz = ay bz + i(az + by). Matching real and imaginary parts, the kth row of this equation is just:

$$\sum_{j} A_{kj} y_j = ay_k - bz_k$$
$$\sum_{j} A_{kj} z_j = az_k + by_k$$

The only number we care about bounding is b, so we multiply the top equation by $-z_k$ and the bottom by y_k , add them together and get:

$$\sum_{j} A_{kj}(-y_j z_k + y_k z_j) = b(y_k^2 + z_k^2)$$

Summing over k yields:

$$\sum_{k,j} A_{kj}(-y_j z_k + y_k z_j) = b \sum_k (y_k^2 + z_k^2)$$

Sending $(k,j) \to (j,k)$, and adding the two equations up gives:

$$\sum_{k,j} (A_{kj} - A_{jk})(-y_j z_k + y_k z_j) = 2b \sum_k (y_k^2 + z_k^2)$$

Firstly,

$$\left(\sum_{k,j} (A_{kj} - A_{jk})(-y_j z_k + y_k z_j)\right)^2 = 4\left(\sum_{k < j} (A_{kj} - A_{jk})(-y_j z_k + y_k z_j)\right)^2$$

By Cauchy-Schwarz, we have that:

$$\left(\sum_{k < j} (A_{kj} - A_{jk})(-y_j z_k + y_k z_j)\right)^2 \le \left(\sum_{k < j} (A_{kj} - A_{jk})^2\right) \left(\sum_{k < j} (-y_j z_k + y_k z_j)^2\right)$$

Each term in the first sum is bounded by $\max_{k,j} |A_{kj} - A_{jk}|$, and so:

$$b^{2} \left(\sum_{k} (y_{k}^{2} + z_{k}^{2}) \right)^{2} \leq {n \choose 2} \max_{k,j} |A_{kj} - A_{jk}|^{2} \left(\sum_{k < j} (-y_{j} z_{k} + y_{k} z_{j})^{2} \right)$$

Adding back a factor of 2 (Recall that the diagonal terms are 0):

$$2b^{2} \left(\sum_{k} (y_{k}^{2} + z_{k}^{2}) \right)^{2} \leq {n \choose 2} \max_{k,j} |A_{kj} - A_{jk}|^{2} \sum_{k,j} (-y_{j}z_{k} + y_{k}z_{j})^{2}$$

Now we prove Langrange's identity. Notice that, for vectors $a, b \in \mathbb{R}^n$, we have that, by the circular property of the trace we proved before:

$$||ab^{T} - ba^{T}||_{F}^{2} = \text{Tr}((ab^{T} - ba^{T})^{T}(ab^{T} - ba^{T}))$$

$$= \text{Tr}(ba^{T}ab^{T} - ba^{T}ba^{T} - ab^{T}ab^{T} + ab^{T}ba^{T})$$

$$= ||a||^{2} \text{Tr}(bb^{T}) - 2\langle a, b \rangle \langle b, a \rangle + ||b||^{2} \text{Tr}(aa^{T})$$

$$= 2||a||^{2}||b||^{2} - 2\langle a, b \rangle^{2}$$

Writing this out gives:

$$\left(\sum_{i} a_{i}^{2}\right) \left(\sum_{i} b_{i}^{2}\right) - \left(\sum_{i} a_{i} b_{i}\right)^{2} = \frac{1}{2} \sum_{i,j} (a_{i} b_{j} - a_{j} b_{i})^{2}$$

In particular,

$$\sum_{k,j} (-y_j z_k + y_k z_j)^2 \le 2 \left(\sum_k y_k^2 \right) \left(\sum_k z_k^2 \right) \le \left(\sum_k (y_k^2 + z_k^2) \right)^2$$

Putting our findings together yields:

$$2b^2 \left(\sum_{k} (y_k^2 + z_k^2) \right)^2 \le \binom{n}{2} \max_{k,j} |A_{kj} - A_{jk}|^2 \left(\sum_{k} (y_k^2 + z_k^2) \right)^2$$

Thus,

$$|b| \le \sqrt{\frac{n(n-1)}{8}} \max_{k,j} |A_{kj} - A_{jk}|.$$