Caltech

Visual scene segmentation in the rodent

Francisco Luongo^{1*}, Lu Liu^{1*}, and Doris Tsao^{1,2}

Caltech, Pasadena, CA 1. Division of Biology and Biological Engineering, Caltech 2. The Howard Hughes Medical Institute, *equal contribution

Background LOW LEVEL MID LEVEL

What constitutes a visual object for a mouse?

Figure-ground and border-ownership modulation

Evidence for such modulation has been reported across primate thalamus, primary, and higher order visual cortices.

Stimuli for assaying FG and BO modulation

Texture-invariant FG/BO response modulation in single neurons is lacking in rodent visual cortex

Mice can perform a texture-invariant object localization task using a touchscreen paradigm

Performance generalizes to unseen orientations and most readily for cross, then iso-oriented, and don't generalize for textures.

Performance is better on naturalistic textures when there is a cross-oriented (e.g. rotated 90 degrees) difference between foreground and background

Each point represents

making it apparent (to us) in both cases

Reading out azimuth position across multiple textures using linear regression from a population of neurons

Readout of position using a linear decoder is best for crossoriented textures, similar to behavioral results

Position information is most prominent in visual area LM

Modeling: how much is explained by feedforward model? Orientation tuned surround inhibition?

neither model (FF or surround) is able to fully explain texture differences in behavior (cross > iso > tex) in a phase-invariant manner

Mid to late layers of a deep network (VGG16) accurately predict the behavioral performance and generalization on the different texture classes (cross > iso > tex)

Conclusions

- Mice lack texture-invariant FG/BO modulation in single neurons
- Cross-orientation contrast is an important cue for segmentation
- Differential coherent motion of figure and ground seems irrelevant to segmentation for mice (key difference from primates)
- Orientation dependent surround interactions are insufficient to capture differences in behavioral performance to texture classes
- Mid to late layers of DNN (VGG16) do capture these differences

hhmi

