Matemática Discreta

7^a AULA

Universidade de Aveiro 2014/2015

http://elearning.ua.pt

Matemática Discreta

Relação de equipotência

Teoremas de Cantor e de Dedekind & Cantor

Teoremas do ponto fixo de Tarski e de Schröder-Bernstein

Referências e bibliografia

Conjuntos equipotentes

Definição (de conjuntos equipotentes)

Dois conjuntos A e B dizem-se equipotentes (ou numericamente equivalentes) se existe uma bijecção $f: A \rightarrow B$.

• Quando A e B são equipotentes, dizemos que têm a mesma cardinalidade ou o mesmo número cardinal.

(Notação: |A| denota a cardinalidade de A).

Exemplos de conjuntos

equipotentes:

- 1) \mathbb{N} e \mathbb{N}_0 , onde $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$;
- 2) N e ℤ;

não equipotentes

- 3) $\{1,2,3\}$ e $\{a,b\}$;
- 4) \mathbb{N} e \mathbb{R} .

Matemática Discreta

Relação de equipotência

Cardinalidade

Cardinalidade finita e infinita

Um conjunto finito diz-se que tem cardinalidade finita. Um conjunto infinito diz-se que tem cardinalidade infinita.

Se o conjunto A é finito e $f:[n] \to A$ é uma bijecção, então |A| = n e a cardinalidade de A é o número de elementos de A. Nota: $|\emptyset| = 0$.

N tem cardinaldade infinita.

Observação: №0 denota a cardinalidade de N

e, consequentemente, também a de \mathbb{Z} e \mathbb{N}_0 ,

ou seja, $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{N}_0| = \aleph_0$.

Relações entre a cardinalidade de conjuntos distintos

- Dados dois conjuntos A e B, diz-se que a cardinalidade de A é não superior à cardinalidade de B (e escreve-se $|A| \le |B|$) se existe uma função injectiva $f: A \to B$.
- Se $|A| \le |B|$ e os conjuntos não são equipotentes, então diz-se que a cardinalidade de A é menor que a cardinalidade de B e escreve-se |A| < |B|.

Teorema (de Cantor)

Dado um conjunto X, verifica-se a desigualdade $|X| < |\mathcal{P}(X)|$.

Logo,

$$|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \cdots$$

e, consequentemente, existe uma infinidade de números cardinais infinitos.

Matemática Discreta

Teoremas de Cantor e de Dedekind & Cantor

Conjuntos numeráveis

Definição (de conjunto numerável)

Um conjunto A diz-se numerável (ou enumerável, ou contável) se A é finito ou equipotente ao conjunto \mathbb{N} . Caso contrário, diz-se que A é não numerável.

Exemplos

de conjuntos numeráveis:

- 1) $\{a, b, c, d\}$;
- 2) N;
- 3) **Z**;
- 4) \mathbb{N}_0 ;

de conjunto não numerável:

5) ℝ.

Teorema de Dedekind e Cantor

Exemplo

Vamos mostrar que qualquer conjunto infinito A contém um subconjunto infinito numerável, ou seja, existe uma função injectiva $f: \mathbb{N} \to A$

• Considerando a função de escolha $\xi:\mathcal{P}(A)\setminus\emptyset\to A$ tal que $a_1=\xi(A),\ a_2=\xi(A\setminus\{a_1\}),\ a_3=\xi(A\setminus\{a_1,a_2\}),$ etc. Uma vez que A é infinito, então $A\setminus\{a_1,\ldots,a_n\}\neq\emptyset$, para cada $n\in\mathbb{N}$. É claro que $a_p\neq a_q$ se $p\neq q$, donde o conjunto $\{a_1,a_2,\ldots\}\subseteq A$ é infinito numerável e a sucessão (a_1,a_2,\ldots) corresponde à função f pretendida.

Teorema (de Dedekind e Cantor)

Um conjunto é infinito se e só se é equipotente a um subconjunto próprio.

Matemática Discreta

Teoremas do ponto fixo de Tarski e de Schröder-Bernstein

Teorema de Tarski

Teorema (do ponto fixo de Tarski)

Considere-se um conjunto X e uma função $f: \mathcal{P}(X) \to \mathcal{P}(X)$. Se, para quaisquer subconjuntos $A, B \subseteq X$, $A \subseteq B \Rightarrow f(A) \subseteq f(B)$, então existe um conjunto $C \subseteq X$ tal que f(C) = C.

Teorema (de Schröder-Bernstein)

Sejam X e Y dois conjuntos. Se $f: X \to Y$ e $g: Y \to X$ são funções injectivas, então existe uma bijecção $h: X \to Y$.

Referências e bibliografia I

D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática* Discreta: combinatória, teoria dos grafos e algoritmos, Escolar Editora, 2008.