

FIG.1

FIG.2

FIG.3

TOWNY NOW THOROT

DETECT SYNCHRONIZATION CHIP TIMING FROM RECEIVED SIGNAL POWER $P_{\underline{1},\underline{K}}$ (i = 1, ..., 150k = 1, ..., 256) TO BE WAXINUM

 $P_{l-k} = \frac{1}{N} \sum_{j=1}^{N} \left\{ I_{l-k}(t_j)^p + Q_{l-k}(t_j)^p \right\}$

POWER AVERAGE (N)

. E

FIG.8

FIG.9

FIG.11

FIG.12

DETECT SYNCHRONIZATION CHIP TIMING FROM RECEIVED SIGNAL POWER Pi k (i = 1, ..., 150k = 1, ..., 256) TO BE MAXIMUM

FIG.13

FIG.15

FIG.16

FIG.17

FIG.19

FIG.20

FIG.21

FIG.22

FIG.23

FIG.24

FIG.25

FIG.26

SECONDARY AVERAGING PROCESS
FIG.27

A, B ARE TRANSMISSION SYMBOLS AND X, Y ARE RECEPTION SYMBOLS

FIG.29

FIG.30

FIG.31

FIG.32

FIG.33

	:1			:1			:4			†
	α0_k(t2)			β0_k(t2)			sel0_k(t2)			
	α I-1_k(t1)	1		β I-1_k(t1)	1	1	scll-1_k(t1)			
PERIOD	::	PERIOD	L	:	V PERIOD		:		-	,
SERIES PATTERN REPETITION PERIOD	α2_k(t1)	REPRITION		B 2_k(t1)	REPETITION		sel2_k(t1)			Ps_k, Pi_k
	α1_k(t1)	SERIES PATTERN		β 1_k(t1)	SERIES PATTERN		sell_k(t1)			
SER	α0_k(t1)	SER	,	β0_k(ι1)	SER		sel0_k(t1)	1	,	
8	α I-1_k(t0)	7 00:		β1-1_k(10)	QO.		sell-1_k(t0)	7		
ON PERI	:	ION PERIO		:	TON PER		:			
RN REPETIT	α2_k(t0)	RN REPETIT		β 2_k(t0)	RN REPETIT		sel2_k(t0)			Ps k, Pi k
SERIES PATTERN REPETITION PERIOD	a1_k(t0)	SERIES PATTERN REPE		B 1_k(t0)	SERIES PATTERN REPETITION		sel1_k(t0)			
SS	ar 0 k(t0)	SE	,	B 0 k(t0)	S		sel0_k(f0)	,		
ADD	SERIES	DIFFERENCE	VRCTOR	SERIES	VECTOR	SELECTION	INFORMATION	COMMINICATION	OTHE THE	CALCULATION PROCESS OUTPUT

J IS SERIES PATTERN REPETITION NUMBER OF AVERAGING RANGE I IS DELAY SYMBOL NUMBER N IS SELECT ON NUMBER IN AVERAGING RANGE $\left\{ \begin{array}{l} sel_{i,r}(t_j) = 1 \text{ SELECTION ON} \\ \text{SELECTION} \\ \left\{ \begin{array}{l} sel_{i,r}(t_j) = 0 \text{ SELECTION OFF} \end{array} \right.$ WHERBIN $P_{S,x} = \frac{1}{N} \sum_{j=0}^{j-1} \sum_{l=0}^{j} \frac{|a'_{l,x}(t_j)|^2}{2}$ ADD VECTOR $\alpha'_{l-k}(t_j) = sel_{l-k}(t_j) \cdot \alpha_{i-k}(t_j)$ DIFFERENCE VECTOR $\beta'_{l,k}(t_j) = sel_{l,k}(t_j) \cdot \beta_{l,k}(t_j)$ DESIRED SIGNAL POWER $P_{s_{-k}} = \frac{|P_{s_{-k}} - P_{t_{-k}}|}{2}$ $\begin{array}{ll} \text{INTERFERENCE} & P_{1,z} = \frac{1}{N} \sum_{j=0}^{j-1} \sum_{j=0}^{j-1} \left| \beta_{j,z}^{\prime\prime}(t_j) \right|^2 \\ \text{SIGNAL} & \text{DOMER} & P_{1,z} = \frac{1}{N} \sum_{j=0}^{j-1} \sum_{j=0}^{j-1} \left| \beta_{j,z}^{\prime\prime\prime}(t_j) \right|^2 \end{array}$

* WHEN AVERAGING PERIOD IN COMUNICATION OFFICE CALCULATION PROCESS IS SERVES WATERN REPETITION PERIOD FILE.

FIG.35

FIG.36

※CORRESPONDS VECTOR INFORMATION 1 AND IS SYMBOL TRANSMITTED IN SELECTED COMMUNICATION QUALITY CALCULATION PROCESS

4

FIG.37

FIG.38

FIG.39

FIG.40

FIG.41

FIG.42