

Inteligência Artificial e Machine Learning

Beatriz Bonafé, Erick Faster

Cientistas de dados

Introdução

Paralisia Facial
Periférica
(PFP)
80

pacientes

por ano

Paralisia Facial
Central
(AVC)
220
nomil

pacientes por ano

1 em cada 6 pessoas irá sofrer de paralisia facial durante a vida

Falta de especialistas em reabilitação facial

Atualmente, é recomendável evitar o atendimento presencial

A maioria dos pacientes não tem acesso à terapia de reabilitação facial

Necessidade de solução de acompanhamento qualificado, remoto, com terapia ágil e escalável

Escala de House-Brackmann

Grau	Descrição	Função estimada [%]
I	Função facial sem debilidade	100
II	Leve debilidade da musculatura	80
Ш	Disfunção Moderada	60
IV	Disfunção moderadamente severa	40
V	Disfunção Severa	20
VI	Paralisia Total	0

Fonte da Imagem: https://pixabay.com/vectors/boy-cartoon-chart-checkup-clinic-2027615/

Motivação

THE DEVELOPER'S CONFERENCE

Apoio: não somente ao paciente, mas também de equipe clínica

Emergência da telemedicina: acentuada pela pandemia, além da facilidade do recurso

Acesso rápido: possibilita terapia de reabilitação facial imediata

Inovação: Poucos estudos com esta abordagem na literatura - solução tecnológica

Projeto FacialRehab

Plataforma digital para monitoramento clínico remoto e suporte na reabilitação facial de indivíduos com paralisia facial.

Algumas tecnologias utilizadas:

- → Visão Computacional
- → Machine Learning (Aprendizado de máquina)

Fonte da Imagem: https://thedo.osteopathic.org/2016/08/telemedicine-in-2016-3-key-takeaways/

Processo

1 - Paciente grava série de movimentos faciais.

4 - Avaliação encaminhada para análise médica.

2 - O melhor frame é selecionado por ML.

3 - Características faciais 2D e 3D são avaliadas.

Vídeo - Movimentos Faciais

- Através da função de vídeo do celular, o paciente deve:
 - Levantar as sobrancelhas;
 - Fechar os olhos com força;
 - Dar um sorriso;
 - Pressionar os lábios (fazer um biquinho)
- Orientação é dada pelo profissional de saúde

Seleção de melhor frame

- Reconhecimento Facial
 - Histograma de Gradientes Orientados / SVM

Input image Histogram of Oriente

Seleção de melhor frame

- Captura de pontos faciais 2D/3D frame a frame
 - Random Forest

Seleção de melhor frame

- Cálculo das distâncias euclidianas entre diversos pontos para cada movimento
 - Classificador KNN para selecionar o melhor frame

Os frames com os melhores resultados são armazenados

Extração de Features

Extração de novas Features para cada frame:

→ Biometria, Distâncias 2D e 3D, Áreas das regiões do rosto,

Técnica SFD utilizando CNN.

Fonte das imagens: https://github.com/1adrianb/face-alignment

Obtenção da Classificação de House-Brackmann

Support Vector Machine (SVM)

Grau	Descrição
I	Função facial sem debilidade
II	Leve debilidade da musculatura
III	Disfunção Moderada
IV	Disfunção moderadamente severa
V	Disfunção Severa
VI	Paralisia Total

Fonte da Imagem: https://pt.wikipedia.org/wiki/M%C3%A1quina_de_vetores_de_suporte#/media/Ficheiro:%D7%9E%D7%9B%D7%95%D7%95%D7%A0%D7%AA_%D7%95%D7%95%D7%95%D7%95%D7%98%D7%99%D7%9D %D7%AA%D7%99 %D7%9B%D7%9B%D7%9B %D7%99%D7%9D %D7%92%D7%9E%D7%90.jpg

Profissional de Saúde Paciente / Usuário Gravação de vídeos com Validação do resultado diferentes movimentos faciais Aplicação Obtenção da Reconhecimento facial e escolha Extração de pontos Classificação de faciais (2D e 3D) do melhor frame para cada vídeo House-Brackmann DLib e Classificador baseado em DLib e Support Vector Machine distâncias Face Alignment (SVM)

Validação médica

- Os resultados são avaliados pelo profissional de saúde
- Envio do grau de paralisia facial e programa de reabilitação customizado
- Treino periódico dos algoritmos após validação médica

Anna Carolina de O. Fonseca - Médica, Otorrinolaringologista Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP)

- Coordenadora do Ambulatório de Paralisia Facial do HCFMUSP
- Doutora em Ciências
- Especialização em Cirurgia Otológica e Base de Crânio
- Médica assistente do Grupo de Otologia HCFMUSP

Resultados Preliminares

Machine Learning / Inteligência Artificial:

Resultados satisfatórios para o processo de captura de melhor frame e avaliação da classificação de House-Brackmann.

Resultados condizentes com avaliação médica.

Acurácia obtida: 86%

Finalidade médica:

Projeto apto a auxiliar no tratamento e monitoramento clínico remoto de indivíduos com PFP como uma plataforma de apoio à reabilitação. Oferece praticidade, agilidade no tratamento e segurança no cenário da pandemia.

Obrigado!

