1

Midterm 2

Mark Petersen

07/21/2020

Exercise 1. Prove that the function $f:[0,\infty)\to\mathbb{R}$ defined by $f(x)=\sqrt{x}$ is continuous at every c>0.

Proof: We will show that f is continuous on [0,1] and $[1,\infty)$, and thereby continuous on $[0,\infty)$.

[0,1]: Given an $\epsilon_1 > 0$, let $\delta_1 = 2\epsilon_1$, then when $|x-c| < \delta_1$, we get by manipulation

$$|x - c| = |\sqrt{x} - \sqrt{c}| |\sqrt{x} + \sqrt{c}|$$

$$\leq |\sqrt{x} - \sqrt{c}| |2|,$$

which means that

$$2 \left| \sqrt{x} - \sqrt{c} \right| < \delta_1$$

$$2 \left| \sqrt{x} - \sqrt{c} \right| < 2\epsilon_1$$

$$\left| \sqrt{x} - \sqrt{c} \right| < \epsilon_1,$$

which shows that f is continuous (in fact uniformly continuous) on [0, 1].

 $[1,\infty)$: Given an $\epsilon_2>0$, let $\delta_2=\epsilon_2$, then when $|x-c|<\delta_2$, we get by manipulation

$$\left|\sqrt{x} - \sqrt{c}\right| = \frac{|x - c|}{\sqrt{x} + \sqrt{c}}$$

$$< \frac{|x - c|}{\sqrt{c}}$$

$$< |x - c|$$

$$< \delta_2$$

$$= \epsilon_2,$$

which shows that f is continuous (in fact uniformly continuous) on $[1, \infty)$. Since f is uniformly continuous on [0, 1] and $[1, \infty)$, it is uniformly continuous on $[0, \infty)$, and thus continuous on $[0, \infty)$.

Exercise 2. By directly using the definition of the limit of a sequence (without using any theorems about limits) show that if $\lim_{n\to\infty} x_n = 3$, then $\lim_{n\to\infty} \frac{x_n+2}{x_n} = \frac{5}{3}$.

Proof: We suppose directly that $\lim_{n\to\infty}x_n=3$, then given an $\epsilon>0$, there exists an $N_1\in\mathbb{N}$, such that whenever $n>N_1,\ |x_n-3|<\epsilon$, which implies that there exists an $N_2\in\mathbb{N}$ such that whenever $n>N_2,\ |x_n-3|<1$. This is equivalent to

$$2 < x_n < 4$$
.

By choosing $N = \max(N_1, N_2)$, whenever n > N we get

$$\left| \frac{x_n + 2}{x_n} - \frac{5}{3} \right| = \left| \frac{3x_n + 6 - 5x_n}{3x_n} \right|$$

$$= 2 \left| \frac{x_n - 3}{3x_n} \right|$$

$$\leq 2 \frac{|x_n - 3|}{3 \cdot 2} \quad \text{Since } N \leq N_2$$

$$< |x_n - 3|$$

$$< \epsilon \quad \text{Since } N \leq N_1.$$

Thus if $\lim_{n\to\infty} x_n = 3$, then $\lim_{n\to\infty} \frac{x_n+2}{x_n} = \frac{5}{3}$.

Exercise 3. By directly using the definition of a Cauchy sequence (without using theorems about Cauchy sequences) show that if (x_n) is a Cauchy sequence satisfying $-5 < x_n < -2$, then

$$\left(\frac{x_n^2}{1+x_n}\right)$$

is also a Cauchy sequence.

Proof: We suppose directly that (x_n) is a Cauchy sequence satisfying $-5 < x_n < -2$, then given an $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever n, m > N, $|x_n - x_m| < \frac{\epsilon}{35}$. Now to show that $\left(\frac{x_n^2}{1+x_n}\right)$ is a Cauchy sequence, we use the definition of a Cauchy sequence.

$$\left| \frac{x_n^2}{1+x_n} - \frac{x_m^2}{1+x_m} \right| = \left| \frac{x_n^2 + x_n^2 x_m - x_m^2 - x_m^2 x_n}{(1+x_n)(1+x_n)} \right|$$

$$= \left| \frac{(x_n - x_m)(x_n + x_m) - x_n x_m (x_n - x_m)}{(1+x_n)(1+x_m)} \right|$$

$$\leq \left| \frac{|(x_n - x_m)(x_n + x_m)| + |x_n x_m (x_n + x_m)|}{(1+x_n)(1+x_m)} \right|$$
Since 2<|x|<5
$$\leq 35 |x_n - x_m|$$

$$< \frac{35\epsilon}{35}$$

$$= \epsilon$$

Therefore, $\left(\frac{x_n^2}{1+x_n}\right)$ is a Cauchy sequence.

Exercise 4. By directly using the $\epsilon - \delta$ definition of the limit show that

$$\lim_{x \to 2} \frac{1}{x^3} = \frac{1}{8}.$$

Proof: Given an $\epsilon>0$, let $\delta=\min\left(1,\frac{8}{19}\epsilon\right)$, then when $0<|x-2|<\delta$, it follows that |x-2|<1 which is equivalent to

$$1 < x < 3$$
.

Using the definition of the limit, we get

$$\left| \frac{1}{x^3} - \frac{1}{8} \right| = \left| \frac{x^3 - 8}{8x^3} \right|$$

$$= \left| \frac{(x - 2)(x^2 + 2x + 4)}{8x^3} \right|$$

$$\leq \frac{|x - 2||3^2 + 2 \cdot 3 + 4|}{8 \cdot 1^3}$$

$$= \frac{19}{8}|x - 2|$$

$$< \frac{19}{8} \frac{8\epsilon}{19}$$

$$= \epsilon.$$

Therefore, $\lim_{x\to 2} \frac{1}{x^3} = \frac{1}{8}$.

Exercise 5. By directly using the $\epsilon - \delta$ definition of the limit show that

$$\lim_{x \to 2} \frac{x}{x^2 - 1} = \frac{2}{3}.$$

Proof: Given an $\epsilon>0$, let $\delta=\min\left(\frac{1}{2},\frac{5}{4}\epsilon\right)$, then when $0<|x-2|<\delta$, it follows that $|x-2|<\frac{1}{2}$ which implies

$$\frac{1}{2} < x - 1 < \frac{3}{2},$$

$$\frac{5}{2} < x + 1 < \frac{7}{2},$$

and

$$4 < 2x + 1 < 6$$
.

Using the definition of the limit, we get

$$\left| \frac{x}{x^2 - 1} - \frac{2}{3} \right| = \left| \frac{3x - 2x^2 + 2}{3(x^2 - 1)} \right|$$

$$= \left| \frac{(x - 2)(2x + 1)}{3(x - 1)(x - 2)} \right|$$

$$\leq \frac{|x - 2|6}{3 \cdot \frac{1}{2} \cdot \frac{5}{2}}$$

$$= \frac{4}{5}|x - 2|$$

$$< \frac{4}{5} \cdot \frac{5}{4}\epsilon$$

$$= \epsilon.$$

Therefore, $\lim_{x\to 2} \frac{x}{x^2-1} = \frac{2}{3}$.

Exercise 6. Prove exactly one of the following theorem:

I am choosing the nested compact interval property.

Proof: We suppose directly that K_i is a compact set with $i \in \mathbb{N}$, and that

$$K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$$

is a nested sequence of nonempty compact set. Since K_i is compact, any sequence in K_i contains a subsequence that converges to a point in that set. Since all of the sets are nonempty, we can construct a sequence (x_n) with $x_n \in K_n$. Since $(x_n) \subseteq K_1$, it must contain a subsequence (x_{n_k}) that converges to a point $c \in K_1$. Since (x_n) is contained in any K_i except for a finite number of terms at the beginning of the sequence, (we will refer to this sequence as (x_i) such that $(x_i) \subseteq (x_n)$), then (x_i) must have a convergent subsequence (x_{i_k}) that converges to the point $c \in K_i$. Since the sequence (x_i) contains an infinite number of terms and i is arbitrary, it must be that the limit point c is an element of every set K_i . Thus

$$\bigcap_{n=1}^{\infty} K_n$$

is not empty since it contains at least the point c.

Exercise 7. Assume that $f:(a,c) \to \mathbb{R}$ is uniformly continuous on each of the intervals (a,b] and [b,c), where a < b < c. Show that f is uniformly continuous on the interval (a,c).

Proof: Let $x \in (a,b]$ and $y \in [b,c)$. We assume directly that $f:(a,c) \to \mathbb{R}$ is uniformly continuous on each of the intervals (a,b] and [b,c), then given an $\epsilon > 0$, there exists a δ_1,δ_2 such that when

$$|x - b| < \delta_1,$$

 $|f(x) - f(b)| < \frac{\epsilon}{2},$

and when

$$|b-y|<\delta_2,$$

then

$$|f(b) - f(y)| < \frac{\epsilon}{2}.$$

Thus, given any $k, m \in (a, c)$, by letting $\delta = \min(\delta_1, \delta_2)$ we have three cases to consider.

Case 1. Suppose $k, m \in (a, b]$, then it is uniformly continuous by our assumption.

Case 2. Suppose $k, m \in [b, c)$, then it is uniformly continuous by our assumption.

Case 3. Suppose, without loss in generality, that $k \in (a,b]$ and $m \in [b,c)$, then when $|k-m| < \delta$,

$$|k-b|<\delta_1<\delta$$

and

$$|b-m|<\delta_2<\delta$$

thus

$$|f(k) - f(b)| < \frac{\epsilon}{2},$$

and

$$|f(b) - f(m)| < \frac{\epsilon}{2}.$$

Adding them together and using the triangle inequality we get that

$$|f(k) - f(m)| < \epsilon.$$

Therefore, f is uniformly continuous on (a, b).

Exercise 8. Prove that the function $f: \mathbb{R} \to \mathbb{R}$ given by...

ABCLETTERS.ORG

Exercise 9. Let $F \subseteq \mathbb{R}$ be a nonempty closed set. Let $F^c = \{x \in \mathbb{R} : x \notin F\}$ be the complement of F. Show that F^c is open.

ABCLETTERS.ORG

Exercise 10. Show that $f(x) = \frac{1}{x^2}$ is uniformly continuous on the set $[1, \infty)$, but not on the set [0, 1].

Proof: We will first show that f is uniformly continuous on the set $[1, \infty)$. Given an $\epsilon > 0$, let $\delta = \epsilon/2$, then when $|x - c| < \delta$, it follows that

$$\left| \frac{1}{x^2} - \frac{1}{c^2} \right| = \left| \frac{x^2 - c^2}{x^2 c^2} \right|$$

$$= \left| \frac{|x - c| |x + c|}{x^2 c^2} \right|$$

$$\leq \frac{|x - c| |x|}{|x^2 c^2|} + \frac{|x - c| |c|}{|x^2 c^2|}$$

$$= \frac{|x - c|}{|x c^2|} + \frac{|x - c|}{|x^2 c|}$$

$$\leq |x - c| + |x - c|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Now we will show that f is not uniformly continuous on the set (0,1] using sequences. Let $a_n = \frac{1}{\sqrt{n+1}}$ and $b_n = \frac{1}{\sqrt{n}}$, then

$$\lim_{n \to \infty} (a_n - b_n) = 0,$$

but

$$\lim_{n \to \infty} |f(a_n) - f(b_n)| = \lim_{n \to \infty} \left| \frac{1}{\frac{1}{(\sqrt{n+1})^2}} - \frac{1}{\frac{1}{(\sqrt{n})}^2} \right|$$
$$= \lim_{n \to \infty} |n + 1 - n|$$
$$= 1,$$

thus there exists an $\epsilon > 0$, such that for every $N \in \mathbb{N}$, whenever n > N

$$|f(a_n) - f(b_n)| > \epsilon.$$

This shows that f is not uniformly continuous on the set (0,1].

Exercise 11. For each of the following statement, circle True or False. No justification is needed.

For any set $A \subseteq \mathbb{R}$, \overline{A}^c is open	True
A set A is closed if and only if $A = \overline{A}$	True
If A is a bounded set, then $s = \sup(A)$ is a limit point of A	False
An open set that contains every rational number must necessarily be all of $\mathbb R$	False
An arbitrary intersection of compact sets is compact	True
If $F_1 \supseteq F_2 \supseteq F_3 \supseteq \cdots$ is a nested sequence of nonempty closed sets, then the intersection $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$	False
The notation $V_{\delta}(c)$ in the textbook denotes the interval $(c - \delta, c + \delta)$.	True
The Cantor set is compact.	True
Any finite set is compact.	True
The set $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ is compact.	False

Exercise 12. Complete the following.

a) Let $\{E_{\lambda} : \lambda \in \Lambda\}$ be any collection of sets. Prove the De Morgan Law

$$\left(\bigcup_{\lambda\in\Lambda}E_{\lambda}\right)^{c}=\bigcap_{\lambda\in\Lambda}E_{\lambda}^{c}.$$

Proof: This is an equivalence statement between sets. We must show inclusions both ways. (\subseteq) : Let $x \in (\cup_{\lambda \in \Lambda} E_{\lambda})^c$, then $x \notin \cup_{\lambda \in \Lambda} E_{\lambda}$. Thus $x \notin E_{\lambda}$ for every $\lambda \in \Lambda$, which implies that $x \in E_{\lambda}^c$ for every λ . Hence, $x \in \cap_{\lambda \in \Lambda} E_{\lambda}^c$. Therefore $(\cup_{\lambda \in \Lambda} E_{\lambda})^c \subseteq \cap_{\lambda \in \Lambda} E_{\lambda}^c$.

 $(\supseteq): \text{Let } x \in \cap_{\lambda \in \Lambda} E_{\lambda}^{c}, \text{ then } x \in E_{\lambda}^{c} \text{ for every } \lambda \in \Lambda. \text{ Then } x \notin E_{\lambda} \text{ for every } \lambda, \text{ and hence } x \notin \bigcup_{\lambda \in \Lambda} E_{\lambda}. \text{ Hence, } x \in (\bigcup_{\lambda \in \Lambda} E_{\lambda})^{c}. \text{ Therefore } (\bigcup_{\lambda \in \Lambda} E_{\lambda})^{c} \supseteq \cap_{\lambda \in \Lambda} E_{\lambda}^{c}.$

Since we have shown inclusion both ways, it must be that $(\bigcup_{\lambda \in \Lambda} E_{\lambda})^{c} = \bigcap_{\lambda \in \Lambda} E_{\lambda}^{c}$.

b) Let $\{F_{\lambda} : \lambda \in \Lambda\}$ be a collection of closed sets. Prove that

$$\cap_{\lambda \in \Lambda} F_{\lambda}$$

is a closed set.

Proof: Let $\{E_{\lambda}: \lambda \in \Lambda\}$ be a collection of open sets. We want to show that $\cup_{\lambda \in \Lambda} E_{\lambda}$ is open. Well, let $x \in \cup_{\lambda \in \Lambda} E_{\lambda}$, then x must be an element of at least one E_{λ} and possibly more. For every E_{λ} such that $x \in E_{\lambda}$, there exists a neighborhood $V_{\delta}(x) \subseteq E_{\lambda}$ since E_{λ} is open. This implies that $V_{\delta}(x) \subseteq \cup_{\lambda \in \Lambda} E_{\lambda}$, hence $\cup_{\lambda \in \Lambda} E_{\lambda}$ is open. Since $\cup_{\lambda \in \Lambda} E_{\lambda}$ is open, according to De Morgan Law

$$\left(\bigcup_{\lambda\in\Lambda}E_{\lambda}\right)^{c}=\bigcap_{\lambda\in\Lambda}E_{\lambda}^{c},$$

which is a closed set since the complement of an open set is closed. Also not that E_{λ}^{c} is also closed since each E_{λ} was assumed open. This proves that the intersection of an arbitrary collection of closes sets is a closed set.