

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

## «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

## Отчёт

### по лабораторной работе №6

**Название:** Формирование эффективных программ на Prolog.

Дисциплина: Функциональное и логическое программирование.

| Студент       | ИУ7-64Б  |                 | Л.Е.Тартыков   |
|---------------|----------|-----------------|----------------|
|               | (Группа) | (Подпись, дата) | (И.О. Фамилия) |
| Преподаватель |          |                 | Н.Б.Толпинская |
|               |          | (Подпись, дата) | (И.О. Фамилия) |
| Преподаватель |          |                 | Ю.В.Строганов  |
|               |          | (Подпись, дата) | (И.О. Фамилия) |

## 1 Практические задания

### 1.1 Задание

Используя хвостовую рекурсию, разработать программу, позволяющую найти:

- 1. n!;
- 2. п-е число Фибоначчи.

Убедиться в правильности результатов. Для одного из вариантов ВОПРОСА и каждого задания составить таблицу, отражающую конкретный порядок работы системы.

Код программы представлен на листинге 1.1.

#### Листинг 1.1 - Код программы

```
predicates
       factorial (integer, integer).
2
       factorial (integer, integer, integer).
3
       fib (integer, integer).
       fib (integer, integer, integer, integer).
6
   clauses
       factorial (N, Factorial N, Factorial M) :- N > 1,
                                            Temp factorial N = Factorial M * N,
9
                                            M = N - 1, !,
10
                                      factorial (M, Factorial N, Temp factorial N).
11
       factorial (_, Factorial_M, Factorial_M).
12
       factorial (N, Factorial N) :- factorial (N, Factorial N, 1).
13
       fib(N, FibN, LastN, Lastfib) := N > 3
15
                                             Temp fib = Last N + Last fib,
16
                                             Temp N = N - 1, !,
17
                                             fib (Temp N, Fib N, Last fib, Temp fib).
18
       fib (_, Temp_fib, _, Temp_fib).
19
       fib (1, 0).
20
       fib(N, Fib_N) := fib(N, Fib_N, 1, 1).
21
   goal
22
       \% factorial (5, Factorial N).
23
       fib (4, Fib elem).
```

Ниже на рисунках 1.1 1.2 приведена таблица порядка поиска ответа для нахождение факториала:

|      | Состояние резольвенты,                                                                 | Для каких термов запускается                                                                                                               | Дальнейшие действия: прямой ход                                                             |
|------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Nº   | и вывод: дальнейшие                                                                    | алгоритм унификации: T1=T2 и                                                                                                               | или откат (почему и к чему                                                                  |
| шага | действия (почему?)                                                                     | каков результат (и подстановка)                                                                                                            | приводит?)                                                                                  |
|      |                                                                                        |                                                                                                                                            |                                                                                             |
| 3    | factorial(3, Factorial_N)                                                              | factorial(0, Factorial_N) = factorial(N, Factorial_N) Результат: унификация успешна. Подстановка: {N = 3}                                  | Прямой ход. Переход к телу правила. Редукция и подстановка в резольвенту.                   |
| 4    | factorial(3, Factorial_N, 1)                                                           | factorial(3, Factorial_N, 1) = factorial(N, Factorial_N, Factorial_M) Результат: унификация успешна. Подстановка: {Factorial_M = 1}        | Прямой ход. Редукция и<br>подстановка в резольвенту.                                        |
| 5    | 3 > 1 Temp_factorial_N = 1 * 3 M = 3 - 1 ! factorial(M, Factorial_N, Temp_factorial_N) | 3 > 1.<br>Результат: да.                                                                                                                   | Прямой ход. Переход к следующей цели в резольвенте.                                         |
| 6    | Temp_factorial_N = 1 * 3  M = 3 - 1 ! factorial(M, Factorial_N, Temp_factorial_N)      | Temp_factorial_N = 1 * 3.<br>Результат: унификация успешна<br>Подстановка {Temp_factorial_N = 3}                                           | Прямой ход. Переход к следующей цели в резольвенте.                                         |
| 7    | M = 3 – 1<br>!<br>factorial(M, Factorial_N,<br>Temp_factorial_N)                       | M = 3 – 1<br>Результат: унификация успешна.<br>Подстановка {M = 2}                                                                         | Прямой ход. Переход к следующей цели в резольвенте.                                         |
| 8    | !<br>factorial(2, Factorial_N, 3)                                                      | !<br>Результат: да.                                                                                                                        | Прямой ход. Переход к следующей цели в резольвенте.                                         |
| 9    | factorial(2, Factorial_N, 3)                                                           | factorial(2, Factorial_N, 3) = factorial(N, Factorial_N, Factorial_M) Результат: унификация успешна. Подстановка: {N = 2, Factorial_M = 3} | Прямой ход. Редукция и подстановка в резольвенту.                                           |
| 10   | 2 > 1 Temp_factorial_N = 3 * 2 M = 2 - 1 ! factorial(M, Factorial_N, Temp_factorial_N) | 3 > 1.<br>Результат: да.                                                                                                                   | Прямой ход. Переход к следующей цели в резольвенте.                                         |
|      |                                                                                        |                                                                                                                                            | Barra Mara B                                                                                |
| 13   | !<br>factorial(1, Factorial_N, 6)                                                      | !<br>Результат: да.                                                                                                                        | Прямой ход. Переход к следующей цели в резольвенте.                                         |
| 14   | factorial(1, Factorial_N, 6)                                                           | factorial(1, Factorial_N, 6) = factorial(N, Factorial_N, Factorial_M) Результат: унификация успешна. Подстановка: {N =1, Factorial_M = 6}  | Прямой ход. Переход к следующей цели в резольвенте.                                         |
| 15   | 3 > 1 Temp_factorial_N = 1 * 3 M = 3 - 1 ! factorial(M, Factorial_N, Temp_factorial_N) | 1 > 1.<br>Результат: нет.                                                                                                                  | Обратный ход. Восстановление предыдущего состояния резольвенты. Реконкретизация переменных. |

Рисунок 1.1 – Таблица порядка поиска ответов для нахождение факториала.

| №<br>шага | Состояние резольвенты, и вывод: дальнейшие действия (почему?) | Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)                                                            | Дальнейшие действия: прямой ход<br>или откат (почему и к чему<br>приводит?)                                                                            |
|-----------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16        | factorial(1, Factorial_N, 6)                                  | factorial(1, Factorial_N, 6) = factorial(_, Factorial_M, Factorial_M) Результат: унификация успешна. Подстановка: {Factorial_M = 6, Factorial_N = 6} | Прямой ход. Переход к<br>следующему предложению.                                                                                                       |
|           |                                                               |                                                                                                                                                      |                                                                                                                                                        |
| 21        | factorial(1, 6, 6)                                            | БЗ пуста.                                                                                                                                            | Обратный ход (тело пусто, но резольвента нет). Восстановление предыдущего состояния резольвенты.                                                       |
| 22        | !<br>factorial(1, 6, 6)                                       | !<br>Результат: нет.                                                                                                                                 | Запрет унификации терма factorial(1, 6, 6). Обратный ход (тело пусто, но резольвента нет). Восстановление предыдущего состояния резольвенты из шага 8. |
| 23        | !<br>factorial(2, 6, 3)                                       | !<br>Результат: нет.                                                                                                                                 | Запрет унификации терма factorial(2, 6, 3). Обратный ход (тело пусто, но резольвента нет). Восстановление предыдущего состояния резольвенты из шага 4. |
| 24        | factorial(3, 6, 1)                                            | Тело пусто.<br>Добавление в рез. ячейку<br>{Factorial_N = 6}. Реконкретизация<br>Factorial_N.                                                        | Обратный ход. Переход к<br>следующему предложению.                                                                                                     |
|           |                                                               |                                                                                                                                                      |                                                                                                                                                        |
| 30        | factorial(3, Factorial_N, 1)                                  | factorial(3, Factorial_N, 1} = fib(N, Fib_N}. Результат: унификация неуспешна.                                                                       | Обратный ход. Реконкретизация переменных. Восстановление предыдущего состояния резольвенты.                                                            |
|           |                                                               |                                                                                                                                                      |                                                                                                                                                        |
| 35        | factorial(3, Factorial_N)                                     | factorial(3, Factorial_N)} = fib(N, Fib_N}. Результат: унификация неуспешна.                                                                         | Обратный ход. Резольвента пуста.<br>Б3 просмотрена полностью. Вывод<br>на экран подстановки {Factorial_N =<br>6                                        |

Рисунок 1.2 – Таблица порядка поиска ответов для нахождение факториала (продолжение).

Ниже на рисунке 1.3 и 1.4 приведена таблица порядка поиска ответа для нахождения значения N-ого числа Фибоначчи:

| №<br>шага | Состояние резольвенты, и вывод: дальнейшие действия (почему?)                     | Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)                                           | Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)                                |
|-----------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 7         | fib(4, Fib_elem)                                                                  | fib(4, Fib_elem) = fib(N, Fib_N) Результат: унификация успешна. Подстановка: {N = 4}                                                | Прямой ход. Переход к телу правила. Редукция и подстановка в резольвенту.                            |
|           |                                                                                   | £:L/4 F:L N 4 4)                                                                                                                    |                                                                                                      |
| 11        | fib(4, Fib_N, 1, 1)                                                               | fib(4, Fib_N, 1, 1) = fib(N, Fib_N, Last_N, Last_fib) Результат: унификация успешна. Подстановка: {Last_N = 1, Last_fib = 1}        | Прямой ход. Редукция и подстановка в резольвенту.                                                    |
| 12        | 4 > 3  Temp_fib = 1 + 1  Temp_N = 4 - 1  !  fib(Temp_N,  Fib_N, 1, Temp_fib)      | 4 > 3.<br>Результат: унификация успешна.                                                                                            | Прямой ход. Переход к следующей цели в резольвенте.                                                  |
| 13        | Temp_fib = 1 + 1     Temp_N = 4 - 1     !     fib(Temp_N,     Fib_N, 1, Temp_fib) | Temp_fib = 1 + 1<br>Результат: унификация успешна.<br>Подстановка: {Temp_Fib = 2}                                                   |                                                                                                      |
| 14        | Temp_N = 4 - 1<br>!<br>fib(Temp_N, Fib_N, 1, 2)                                   | Temp_N = 4 – 1<br>Подстановка: {Temp_N = 3}                                                                                         | Прямой ход. Переход к следующей цели в резольвенте.                                                  |
| 15        | !<br>fib(3, Fib_N, 1, 2)                                                          | !<br>Результат: да.                                                                                                                 | Прямой ход. Переход к следующей цели в резольвенте.                                                  |
| 16        | fib(3, Fib_N, 1, 2)                                                               | !<br>Результат: да.                                                                                                                 | Прямой ход. Переход к следующей цели в резольвенте.                                                  |
|           |                                                                                   |                                                                                                                                     |                                                                                                      |
| 20        | пусто                                                                             | fib(3, Fib_N, 1, 2) = fib(N, Fib_N, Last_N, Last_fib) Pезультат: унификация успешна. Подстановка: {N = 3, Last_N = 1, Last_fib = 2} | Переход к телу правила. Редукция и подстановка в резольвенту.                                        |
| 21        | 3 > 3  Temp_fib = 1 + 2  Temp_N = 3 - 1  !  fib(Temp_N,  Fib_N, 2, Temp_fib)      | 3 > 3.<br>Результат: нет.                                                                                                           | Обратный ход. Восстановление предыдущего состояния резольвенты (шаг 16). Реконкретизация переменных. |
| 22        | fib(3, Fib_N, 1, 2)                                                               | fib(3, Fib_N, 1, 2) = fib(_, Temp_fib, _, Temp_fib) Результат: унификация успешна. Подстановка: {Temp_fib = 2, Fib_N = 2}           | Сохранение подстановки {Fib_N = 2} в памяти. Обратный ход. Реконкретизация переменных.               |
| 24        | fib(3, Fib_N, 1, 2)                                                               | fib(3, Fib_N, 1, 2) = fib(N, Fib_N)<br>Результат: унификация неуспешна.                                                             | Обратный ход. Восстановление предыдущего состояния резольвенты.                                      |

Рисунок 1.3 – Таблица порядка поиска ответов для нахождения значения N-ого числа Фибоначчи.

| №<br>шага | Состояние резольвенты, и вывод: дальнейшие действия (почему?) | Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка) | Дальнейшие действия: прямой ход или откат (почему и к чему приводит?) |
|-----------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 25        | [                                                             | !                                                                                         | Запрет унификации терма                                               |
|           | fib(3, Fib_N, 1, 2)                                           | Результат: нет                                                                            | резольвенты. Резольвента пуста.                                       |
|           |                                                               |                                                                                           | Обратный ход. Восстановление                                          |
|           |                                                               |                                                                                           | предыдущего состояния                                                 |
|           |                                                               |                                                                                           | резольвенты (шаг 11).                                                 |
|           | fib(4, Fib_N, 1, 1)                                           |                                                                                           | Обратный ход. Восстановление                                          |
| 26        |                                                               | Тело пустое                                                                               | предыдущего состояния                                                 |
|           | (резольвента пуста)                                           |                                                                                           | резольвенты (шаг 7)                                                   |
|           | fib(4 Fib alam)                                               |                                                                                           | Обратный ход. Резольвента пуста.                                      |
| 27        | fib(4, Fib_elem)                                              | БЗ пуста.                                                                                 | БЗ просмотрена полностью. Вывод                                       |
|           | (резольвента пуста)                                           |                                                                                           | на экран подстановки {Fib_N = 2}                                      |

Рисунок 1.4 – Таблица порядка поиска ответов для нахождения значения N-ого числа Фибоначчи (продолжение).

# 2 Контрольные вопросы

1. Что такое рекурсия? Как организуется хвостовая рекурсия в Prolog? Как организовать выход из рекурсии?

Рекурия – ссылка на описываемый объект при описании объекта. Хвостовая рекурсия организовывается следующим образом: сначала выполняются необходимые вычисления, и последним шагом такой «функции» является вызов того же самого объекта. При этом вычисления собираются по мере выхода из рекурсии. Для того, чтобы система не выполняла лишних действий и при этом правильно отрабатывала, необходимо ставить условия выхода из рекурсии вначале.

#### 2. Какое первое состояние резольвенты?

В резольвенте изначально хранится конъюнкция вопросов.

3. В каком случае система запускает алгоритм унификации? Каково назначение использования алгоритма унификации? Каков результат алгоритма унификации?

Назначение алгоритма унификации – подбор знаний. Результатом её работы является ответ «да» или «нет», т.е удалось ли ей подобрать знание или нет.

4. В каких пределах программы переменные уникальны?

Именованные переменные уникальны в пределах одного предложения, анонимные переменные – уникальные всегда.

5. Как применяется подстановка, полученная с помощью алгоритма унификации?

Подстановка применяется путем конкретизации переменных.

### 6. Как изменяется резольвента?

Резольвента меняется в два этапа.

- (а) Новое состояние приобретается в результате алгоритма редукции.
- (b) K полученному состоянию применятся подстановка.

### 7. В каких случаях применяется механизм отката?

Механизм отката применяется в случае тупиковой ситуации — в ситуации, когда нельзя перейти и данного состояния в новое, и при этом резольвента непуста.