	** 7	
1	WA	claim:
1	** C	Ciaiiii.

- 2 1. A magnetic recording medium comprising:
- a substrate;
- a lower magnetic layer structure formed over said substrate, said lower magnetic
- 5 layer structure exhibiting a Ms greater than 250 emu/cm³;
- an intermediate layer comprising Ru; and
- an upper magnetic layer structure formed over said intermediate layer, said upper
- 8 magnetic layer structure being antiferromagnetically coupled to the lower magnetic layer
- 9 structure.

10

- 11 2. Magnetic recording medium of claim 1 wherein the Ms of the lower magnetic
- layer structure is greater than 300 emu/cm³.

13

- 14 3. Magnetic recording medium of claim 1 wherein said lower magnetic layer
- structure comprises a layer comprising mostly Co, between 5 and 20 at. % Cr, 0 to 6 at.
- 16 % Ta, 0 to 10 at. % B and 0 to 10 at. % Pt.

17

- 18 4. Magnetic recording medium of claim 3 wherein said layer of said lower magnetic
- layer structure comprises between 0 and 10 % X, where X is one or more elements other
- than Co, Cr, Ta, B or Pt.

21

- 22 5. Magnetic recording medium of claim 4 wherein X comprises one or more of Nb.
- Ta, Cu, Mo, W, V, Si, C, Pd, Ru, Ir or Y.

- 2 6. Magnetic recording medium of claim 1 wherein the upper magnetic layer
- 3 structure comprises a layer comprising mostly Co, between 10 and 30 at. % Cr, between
- 4 8 and 20 at. % Pt, and 0 to 20 at. % B.

5

1

- 6 7. Magnetic recording medium of claim 6 wherein said layer of said upper magnetic
- layer structure comprises between 0 and 10 at. % X, wherein X is one or more elements
- 8 other than Co, Cr, Pt or B.

9

- 10 8. Magnetic recording medium of claim 7 wherein X comprises one or more
- elements selected from Nb, Ta, Cu, Mo, W, V, Si, C, Pd, Ru, Ir or Y.

12

- 13 9. The magnetic recording medium of claim 1 further comprising an underlayer
- formed between the substrate and the lower magnetic layer structure.

15

- 16 10. The magnetic recording medium of claim 1 wherein at least one of said upper and
- 17 lower magnetic layer structures comprise a plurality of layers.

18

- 19 11. The magnetic recording medium of claim 1 wherein a lowest magnetic layer
- 20 structure is formed above said substrate, a second intermediate layer comprising Ru is
- formed between said lowest magnetic layer structure and said lower magnetic layer
- 22 structure, and said lowest magnetic layer structure is antiferromagnetically coupled to
- 23 said lower magnetic layer structure.

1	
2	12. A magnetic disk drive comprising the magnetic recording medium of claim 1.
3	
4	13. A magnetic disk comprising:
5	a substrate;
6	a lower magnetic layer structure formed over the substrate;
7	an intermediate layer comprising Ru;
8	an upper magnetic layer structure formed over the intermediate layer, said upper
9	magnetic layer structure being antiferromagnetically coupled to the lower magnetic layer
10	structure, wherein the relationship between the dynamic coercivity of the lower magnetic
11	layer structure and the exchange field is such that during writing a portion of the lower
12	magnetic layer structure achieves substantially its steady magnetization state within the
13	time required for one revolution of said disk.
14	
15	14. The magnetic disk of claim 13 wherein at least one of said upper and lower
16	magnetic layer structures comprise a plurality of layers.
17	
18	15. The magnetic disk of claim 13 wherein a lowest magnetic layer structure is
19	formed above said substrate, a second intermediate layer comprising Ru is formed
20	between said lowest magnetic layer structure and said lower magnetic layer structure, and
21	said lowest magnetic layer structure is antiferromagnetically coupled to said lower
22	magnetic layer structure.
23	

1	16.	Magnetic disk of claim 13 wherein said magnetic disk is incorporated into a disk
2	drive,	said magnetic disk rotating.
3		
4	17.	A magnetic disk comprising:
5		a substrate;
6		a lower magnetic layer structure formed over the substrate;
7		an intermediate layer comprising Ru; and
8		an upper magnetic layer structure formed over the intermediate layer, said upper
9	magne	etic layer structure being antiferromagnetically coupled to the lower magnetic layer
10	structi	ure, wherein the relationship between the dynamic coercivity of the lower magnetic
11	layer	structure and the exchange field is such that during writing a portion of the lower
12	magne	etic layer structure achieves more than 90% of its steady magnetization state within
13	the tin	ne required for one revolution of said disk.
14		
15	18.	A magnetic disk comprising:
16		a substrate;
17		a lower magnetic layer structure formed over the substrate;
18		an intermediate layer comprising Ru; and
19		an upper magnetic layer structure formed over the intermediate layer, said upper
20	magne	etic layer structure being antiferromagnetically coupled to the lower magnetic layer
21	structu	are, wherein the relationship between the dynamic coercivity of the lower magnetic
22	layer s	structure and the exchange field is such that during writing a portion of the lower

1	magnetic layer structure achieves more than 95% of its steady magnetization state within	
2	the time required for one revolution of said disk.	
3		
4	19. A magnetic recording medium comprising:	
5	a substrate;	
6	a lower magnetic layer structure formed over the substrate;	
7	an intermediate layer comprising Ru; and	
8	an upper magnetic layer structure formed over the intermediate layer, said upper	
9	magnetic layer structure being antiferromagnetically coupled to the lower magnetic layer	
10	structure, wherein the relationship between the dynamic coercivity of the lower magnetic	
11	layer structure and the exchange field is such that during writing a portion of the lower	
12	magnetic layer structure achieves substantially its steady magnetization state within 100	
13	milliseconds.	
14		
15	20. A magnetic recording medium comprising:	
16	a substrate;	
17	a lower magnetic layer structure formed over the substrate;	
18	an intermediate layer comprising Ru; and	
19	an upper magnetic layer structure formed over the intermediate layer, said upper	
20	magnetic layer structure being antiferromagnetically coupled to the lower magnetic layer	
21	structure, wherein the relationship between the dynamic coercivity of the lower magnetic	
22	layer structure and the exchange field is such that during writing a portion of the lower	

1	magnetic layer structure achieves more than 90% of its steady magnetization state within
2	100 milliseconds.
3	
4	21. A magnetic recording medium comprising:
5	a substrate;
6	a lower magnetic layer structure formed over the substrate;
7	an intermediate layer comprising Ru; and
8	an upper magnetic layer structure formed over the intermediate layer, said upper
9	magnetic layer structure being antiferromagnetically coupled to the lower magnetic layer
10	structure, wherein the relationship between the dynamic coercivity of the lower magnetic
11	layer structure and the exchange field is such that during writing a portion of the lower
12	magnetic layer structure achieves more than 95% of its steady magnetization state within
13	100 milliseconds.
14	
15	22. Magnetic recording medium comprising:
16	a substrate;
17	a lower magnetic layer structure formed over said substrate, said lower magnetic
18	layer structure having a Ku between 0 and 10 ⁶ erg/cm ³ ;
19	an intermediate layer comprising Ru formed over the lower magnetic layer
20	structure; and
21	an upper magnetic layer structure formed over said intermediate layer, said upper
22	magnetic layer structure being antiferromagnetically coupled to said lower magnetic layer
23	structure and having a Ku greater than 10 ⁶ erg/cm ³ .

1		
2	23. Magnetic recording medium of claim 22 wherein said lower magnetic layer	
3	structure has a Ku less than 0.5 x 10 ⁶ erg/cm ³ .	
4		
5	24. The magnetic recording medium of claim 22 wherein at least one of said upper	
6	and lower magnetic layer structures comprise a plurality of layers.	
7		
8	25. The magnetic recording medium of claim 22 wherein a lowest magnetic layer	
9	structure is formed above said substrate, a second intermediate layer comprising Ru is	
10	formed between said lowest magnetic layer structure and said lower magnetic layer	
11	structure, and wherein said lowest magnetic layer structure is antiferromagnetically	
12	coupled to said lower magnetic layer structure.	
13		
14	26. A magnetic disk drive comprising the magnetic recording medium of claim 22.	
15		
16	27. A magnetic recording medium comprising:	
17	a lower magnetic layer structure;	
18	an intermediate layer comprising Ru formed over the lower magnetic layer	
19	structure; and	
20	an upper magnetic layer structure antiferromagnetically coupled to the lower	
21	magnetic layer structure and formed over said intermediate layer, the dynamic coercivity	
22	of the lower magnetic layer structure being greater than or equal to zero but less than the	
23	exchange field between the upper and lower magnetic layer structures.	

28.	Magnetic recording medium of claim 27 wherein said dynamic coercivity of said
lower	magnetic layer structure is less than one half of the exchange field.
29.	Magnetic recording medium of claim 27 wherein said dynamic coercivity is for a
record	ling switching time between 1 and 10 ns.
30.	The magnetic recording medium of claim 27 wherein at least one of said upper
and lo	wer magnetic layer structures comprise a plurality of layers.
31.	The magnetic recording medium of claim 27 wherein a lowest magnetic layer
structi	are is formed above said substrate, a second intermediate layer comprising Ru is
forme	d between said lowest magnetic layer structure and said lower magnetic layer
structi	are, and said lowest magnetic layer structure is antiferromagnetically coupled to
said lo	ower magnetic layer structure.
32.	A magnetic disk drive comprising the magnetic recording medium of claim 27.
33.	Magnetic recording medium comprising:
	a substrate;
	a lower magnetic layer structure formed over said substrate;
	an intermediate layer comprising Ru formed over said lower magnetic layer; and
	29. record 30. and lo 31. structu forme structu said lo

1		an upper magnetic layer structure formed over said intermediate layer, said upper
2	magn	etic layer being antiferromagnetically coupled to said lower magnetic layer
3	struct	ure, the coercivity of said lower magnetic layer structure as measured in a switching
4	time o	of 10 milliseconds being less than the exchange field between said upper and lower
5	magn	etic layer structures.
6		
7	34.	Magnetic recording medium of claim 33 wherein said coercivity of said lower
8	magn	etic layer structure as measured in a switching time of 10 milliseconds is less than
9	one h	alf of the exchange field between said upper and lower magnetic layer structures.
10		
11	35.	The magnetic recording medium of claim 33 wherein at least one of said upper
12	and lo	ower magnetic layer structures comprise a plurality of layers.
13		
14	36.	The magnetic recording medium of claim 33 wherein a lowest magnetic layer
15	struct	ure is formed above said substrate, a second intermediate layer comprising Ru is
16	forme	d between said lowest magnetic layer structure and said lower magnetic layer
17	struct	ure.
18		
19	37.	A magnetic disk drive comprising the magnetic recording medium of claim 33.
20		
21	38.	Magnetic recording medium comprising:
22		a substrate;

1	a lower magnetic structure formed over said substrate, said lower magnetic
2	structure comprising a magnetically soft material with intergranular decoupling;
3	an intermediate layer comprising Ru formed over said lower magnetic layer
4	structure; and
5	an upper magnetic layer structure formed over said intermediate layer, said upper
6	magnetic layer structure being antiferromagnetically coupled to said lower magnetic layer
7	structure.
8	
9	39. Magnetic recording medium of claim 38 wherein said lower magnetic layer
10	structure comprises an alloy selected from the list consisting of permalloy, sendust,
11	CoTaZr, FeTaC, NiFeNb, CoFe, NiCrFe, NiV, CuNi, FeRh and PtMn.