

+ 11. 717 107	21-220C	当日 20225070	1.1 1	木叶油	
专业班级	F ZZU0	学号 20225868	姓石	李昕鸿	

实验 2 带控制端的 8 位运算器设计

一、实验目的

- (1) 掌握加法器的设计方法。
- (2) 掌握测试文件的设计方法。
- (3) 掌握 FPGA 技术的层次化设计方法。
- (4) 掌握 FPGA 下载测试方法。

二、实验主要仪器设备

- (1) FPGA 实验板
- (2) FPGA 实验板配套软件, ModelSim 仿真软件
- 三、设计任务与要求

1. 基本任务及要求

- (1)用 Verilog 设计一个带低有效控制端的一位全加器,再利用级联方法构成带低有效控制端的 8 位加法器。
 - (2) 用 Verilog 测试文件,实现 ModelSim 时序仿真。
- (3) 根据 FPGA 开发板,配置输入和输出管脚,生成下载文那你件,实现下载测试。

2. 扩展任务及要求

- (1)用 Verilog 设计带低有效控制端的 4 位并行进位加法器,再利用层次设计方法构成带低有效控制端的 8 位并行加法器。
 - (2) 用 Verilog 设计加减运算器,通过控制端完成 8 位加法和 8 位减法的转换。
 - (3) 用 Verilog 测试文件, 实现 ModelSim 时序仿真。
 - (4) 根据 FPGA 开发板,配置输入和输出管脚,生成下载文件,实现下载测试。

四、实验内容与步骤

1. 基本任务

(1) 带低有效控制端的1位全加器

(a) 工作原理

用门电路实现两个二进制数相加并求出和的组合线路,可以处理低位进位,并输出本位加法进位。

```
(b) Verilog 源程序
module full_add(
    input wire Ai,
    input wire Bi,
    input wire Ci,
    input wire E,
    output reg Si,
    output reg Ciout
);
    wire S = Ci ^ Ai ^ Bi;
    wire C = Ai & Bi | (Ai ^ Bi) & Ci;
    always @ (*) begin
         if (E == 1'b0) begin
              Si = S;
              Ciout = C;
         end else begin
              Si = 1bz;
              Ciout = 1'bz;
         end
    end
```

(c) RTL 视图

endmodule


```
(d) ModelSim 源程序
module add_tb();
reg Ain,Bin;
reg clk;
wire sum1,cout1;
initial
    begin
         #10
         Ain=0;
         Bin=0;
         clk=0;
         end
always #5 clk = \sim clk;
always @(posedge clk)
    begin
         Ain={$random}%2;
         Bin = \{\$random\}\%2;
         end
add u1(.a(Ain),
.b(Bin),
.sum(sum1),
.cout(cout1));
endmodule
```

(d) ModelSim 仿真结果

(e) 下载测试结果

管脚配置

```
set_property -dict {PACKAGE_PIN B24 IOSTANDARD LVCMOS33} [get_ports {Si}]
set_property -dict {PACKAGE_PIN E21 IOSTANDARD LVCMOS33} [get_ports {Ciout}]
set_property -dict {PACKAGE_PIN T3 IOSTANDARD LVCMOS33} [get_ports {Ai}]
set_property -dict {PACKAGE_PIN J3 IOSTANDARD LVCMOS33} [get_ports {Bi}]
set_property -dict {PACKAGE_PIN M2 IOSTANDARD LVCMOS33} [get_ports {Ci}]
set_property -dict {PACKAGE_PIN P1 IOSTANDARD LVCMOS33} [get_ports {E}]
```

(2) 由 1 位全加器级联 8 位加法器

(a) 工作原理

八个一位全加器组级联

(b) Verilog 源程序

```
module full_add(
```

input wire Ai,
input wire Bi,
input wire Ci,
input wire E,

output reg Si,

);

output reg Ciout

wire $S = Ci ^Ai ^Bi$; wire $C = Ai & Bi | (Ai ^Bi) & Ci$;

```
always @ (*) begin
         if (E == 1'b0) begin
              Si = S;
              Ciout = C;
         end else begin
              Si = 1bz;
              Ciout = 1'bz;
         end
    end
endmodule
module add(
    input wire [7:0] A,
    input wire [7:0] B,
    input wire E,
    input wire C0,
    output wire [7:0] S,
    output wire C8
);
    wire C1, C2, C3, C4, C5, C6, C7;
```

full_add f0(

	.Ai(A[0]),			
	.Bi(B[0]),			
	.Ci(C0),			
	.E(E),			
	.Si(S[0]),			
	.Ciout(C1)			
);				
full <u></u>	ll_add f1(
	.Ai(A[1]),			
	.Bi(B[1]),			
	.Ci(C1),			
	.E(E),			
	.Si(S[1]),			
	.Ciout(C2)			
);				
full_	ll_add f2(
	.Ai(A[2]),			
	.Bi(B[2]),			
	.Ci(C2),			
	.E(E),			

.Si(S[2]),

	.Ciout(C3)	
););	
full	full_add f3(
	.Ai(A[3]),	
	.Bi(B[3]),	
	.Ci(C3),	
	.E(E),	
	.Si(S[3]),	
	.Ciout(C4)	
););	
full	full_add f4(
	.Ai(A[4]),	
	.Bi(B[4]),	
	.Ci(C4),	
	.E(E),	
	.Si(S[4]),	
	.Ciout(C5)	
););	
full	full_add f5(

.Ai(A[5]),

	.Bi(B[5]),
	.Ci(C5),
	.E(E),
	.Si(S[5]),
	.Ciout(C6)
);	
full <u></u>	_add f6(
	.Ai(A[6]),
	.Bi(B[6]),
	.Ci(C6),
	.E(E),
	.Si(S[6]),
	.Ciout(C7)
);	
full	add f7(
	. $Ai(A[7]),$
	.Bi(B[7]),
	.Ci(C7),
	.E(E),
	.Si(S[7]),
	.Ciout(C8)

);

endmodule

(c) RTL 视图

(d) ModelSim 源程序

module add_tb;

reg [7:0] A, B;

reg C0;

reg E;

wire [7:0] S;

wire C8;

add uut (

.A(A),

.B(B),

.C0(C0),

.E(E),

.S(S),

.C8(C8)

);

initial begin

E = 1;

A = 0;

 $\mathbf{B}=0$;

```
C0 = 0;
\#10 \ A = 8'd50; \ B = 8'd70;
\#10 \ A = 8'd255; \ B = 8'd1;
\#10 \ E = 1'b0;
\#10 \ A = 8'd150; \ B = 8'd100;
\#10 \ A = 8'd200; \ B = 8'd55; \ C0 = 1'b1;
\#10 \ A = 8'd0; \ B = 8'd0;
\#10 \ A = 8'd128; \ B = 8'd128;
\#10 \ A = 8'd127; \ B = 8'd1;
\#10 \ A = 8'd255; \ B = 8'd255;
\#30 \ A = 1'd0; \ B = 1'd0;
end
```

(d) ModelSim 仿真结果

endmodule

(e) 下载测试结

管脚配置

set_property -dict {PACKAGE_PIN B24 IOSTANDARD LVCMOS33} [get_ports {S[0]}] set_property -dict {PACKAGE_PIN E21 IOSTANDARD LVCMOS33} [get_ports {S[1]}] set_property -dict {PACKAGE_PIN A24 IOSTANDARD LVCMOS33} [get_ports {S[2]}] set_property -dict {PACKAGE_PIN D23 IOSTANDARD LVCMOS33} [get_ports {S[3]}] set_property -dict {PACKAGE_PIN C22 IOSTANDARD LVCMOS33} [get_ports {S[4]}]

set_property -dict {PACKAGE_PIN C21 IOSTANDARD LVCMOS33} [get_ports {S[5]}] set_property -dict {PACKAGE_PIN E20 IOSTANDARD LVCMOS33} [get_ports {S[6]}] set_property -dict {PACKAGE_PIN B22 IOSTANDARD LVCMOS33} [get_ports {S[7]}] set_property -dict {PACKAGE_PIN C23 IOSTANDARD LVCMOS33} [get_ports {C8}] set_property -dict {PACKAGE_PIN T3 IOSTANDARD LVCMOS33} [get_ports {A[0]}] set_property -dict {PACKAGE_PIN J3 IOSTANDARD LVCMOS33} [get_ports {A[1]}] set_property -dict {PACKAGE_PIN M2 IOSTANDARD LVCMOS33} [get_ports {A[2]}] set_property -dict {PACKAGE_PIN P1 IOSTANDARD LVCMOS33} [get_ports {A[3]}] set_property -dict {PACKAGE_PIN P4 IOSTANDARD LVCMOS33} [get_ports {A[4]}] set_property -dict {PACKAGE_PIN L5 IOSTANDARD LVCMOS33} [get_ports {A[5]}] set_property -dict {PACKAGE_PIN L3 IOSTANDARD LVCMOS33} [get_ports {A[6]}] set_property -dict {PACKAGE_PIN N6 IOSTANDARD LVCMOS33} [get_ports {A[7]}] set_property -dict {PACKAGE_PIN M6 IOSTANDARD LVCMOS33} [get_ports {B[0]}] set_property -dict {PACKAGE_PIN N7 IOSTANDARD LVCMOS33} [get_ports {B[1]}] set_property -dict {PACKAGE_PIN M7 IOSTANDARD LVCMOS33} [get_ports {B[2]}] set_property -dict {PACKAGE_PIN L7 IOSTANDARD LVCMOS33} [get_ports {B[3]}] set_property -dict {PACKAGE_PIN M5 IOSTANDARD LVCMOS33} [get_ports {B[4]}] set_property -dict {PACKAGE_PIN K3 IOSTANDARD LVCMOS33} [get_ports {B[5]}] set_property -dict {PACKAGE_PIN J1 IOSTANDARD LVCMOS33} [get_ports {B[6]}] set_property -dict {PACKAGE_PIN L2 IOSTANDARD LVCMOS33} [get_ports {B[7]}] set_property -dict {PACKAGE_PIN K2 IOSTANDARD LVCMOS33} [get_ports {E}] set_property -dict {PACKAGE_PIN K1 IOSTANDARD LVCMOS33} [get_ports {C0}]

测试图

2. 扩展任务

(1)

源程序

module adder4(

input wire C0,

input wire [3:0] A,

input wire [3:0] B,

output wire C4,

output wire [3:0] S);

wire C1,C2,C3;

wire G0,G1,G2,G3;

wire P0,P1,P2,P3;

assign P0=A[0]|B[0];

assign P1=A[1]|B[1];

assign P2=A[2]|B[2];

assign P3=A[3]|B[3];

assign G0=A[0]&B[0];

assign G1=A[1]&B[1];

assign G2=A[2]&B[2];

assign G3=A[3]&B[3];

assign C1=G0|(C0&P0);

assign C2=G1|(C1&P1);

assign C3=G2|(C2&P2);

assign C4=G3|(C3&P3);

assign S[0]=A[0]^B[0]^C0;	
assign S[1]=A[1]^B[1]^C1;	
assign S[2]=A[2]^B[2]^C2;	
assign S[3]=A[3]^B[3]^C3;	
endmodule	
module adder8(
input wire C0,	
input wire [7:0] A,	
input wire [7:0] B,	
output wire [7:0] S,	
output wire C8);	
wire C4,C8;	
adder4 u0(
.C0(C0),	
.A(A[3:0]),	
.B(B[3:0]),	
.S(S[3:0]),	
.C4(C4));	
adder4 u1(
.C0(C4),	
.A(A[7:4]),	
.B(B[7:4]),	

.S(S[7:4]),

.C4(C8));

Endmodule

RTL 视图

仿真源程序

module add_tb;

reg [7:0] A, B;

reg C0;

reg E;

wire [7:0] S;

wire C8;

add uut (

.A(A),

.B(B),

.C0(C0),

. E(E),

```
.S(S),
    .C8(C8)
);
initial begin
    E = 1;
    A = 0;
    B = 0;
    C0 = 0;
    #10 A = 8'd50; B = 8'd70;
    #10 A = 8'd255; B = 8'd1;
    #10 E = 1'b0;
    #10 A = 8'd150; B = 8'd100;
    #10 A = 8'd200; B = 8'd55;
    #10 A = 8'd0; B = 8'd0; C0 = 1;
    #10 A = 8'd128; B = 8'd128;
    #10 A = 8'd127; B = 8'd1;
    #10 A = 8'd255; B = 8'd255;
    #10 A = 1'd0; B = 1'd0;
    #10 $stop;
    end
```

end module

仿真截图

管脚配置

#LEDS

set_property -dict {PACKAGE_PIN B24 IOSTANDARD LVCMOS33} [get_ports {S[0]}]
set_property -dict {PACKAGE_PIN E21 IOSTANDARD LVCMOS33} [get_ports {S[1]}]
set_property -dict {PACKAGE_PIN A24 IOSTANDARD LVCMOS33} [get_ports {S[2]}]
set_property -dict {PACKAGE_PIN D23 IOSTANDARD LVCMOS33} [get_ports {S[3]}]
set_property -dict {PACKAGE_PIN C22 IOSTANDARD LVCMOS33} [get_ports {S[4]}]
set_property -dict {PACKAGE_PIN C21 IOSTANDARD LVCMOS33} [get_ports {S[5]}]
set_property -dict {PACKAGE_PIN E20 IOSTANDARD LVCMOS33} [get_ports {S[6]}]
set_property -dict {PACKAGE_PIN B22 IOSTANDARD LVCMOS33} [get_ports {S[7]}]]
set_property -dict {PACKAGE_PIN B22 IOSTANDARD LVCMOS33} [get_ports {S[7]}]]

#DIP_SW

set_property -dict {PACKAGE_PIN T3 IOSTANDARD LVCMOS33} [get_ports {A[0]}]

set_property -dict {PACKAGE_PIN J3 IOSTANDARD LVCMOS33} [get_ports {A[1]}] set_property -dict {PACKAGE_PIN M2 IOSTANDARD LVCMOS33} [get_ports {A[2]}] set_property -dict {PACKAGE_PIN P1 IOSTANDARD LVCMOS33} [get_ports {A[3]}] set_property -dict {PACKAGE_PIN P4 IOSTANDARD LVCMOS33} [get_ports {A[4]}] set_property -dict {PACKAGE_PIN L5 IOSTANDARD LVCMOS33} [get_ports {A[5]}] set_property -dict {PACKAGE_PIN L3 IOSTANDARD LVCMOS33} [get_ports {A[6]}] set_property -dict {PACKAGE_PIN N6 IOSTANDARD LVCMOS33} [get_ports {A[7]}] set_property -dict {PACKAGE_PIN M6 IOSTANDARD LVCMOS33} [get_ports {C0}] set_property -dict {PACKAGE_PIN N7 IOSTANDARD LVCMOS33} [get_ports {B[0]}] set_property -dict {PACKAGE_PIN M7 IOSTANDARD LVCMOS33} [get_ports {B[1]}] set_property -dict {PACKAGE_PIN L7 IOSTANDARD LVCMOS33} [get_ports {B[2]}] set_property -dict {PACKAGE_PIN M5 IOSTANDARD LVCMOS33} [get_ports {B[3]}] set_property -dict {PACKAGE_PIN K3 IOSTANDARD LVCMOS33} [get_ports {B[4]}] set_property -dict {PACKAGE_PIN J1 IOSTANDARD LVCMOS33} [get_ports {B[5]}] set_property -dict {PACKAGE_PIN L2 IOSTANDARD LVCMOS33} [get_ports {B[6]}] set_property -dict {PACKAGE_PIN K2 IOSTANDARD LVCMOS33} [get_ports {B[7]}] #set_property -dict {PACKAGE_PIN K1 IOSTANDARD LVCMOS33} [get_ports {C0}]

测试

(2)

源程序

```
module full_add(
input wire Ai,
input wire Bi,
input wire Ci,
output reg Si,
output reg Ciout

);
wire S = Ci ^ Ai ^ Bi;
wire C = Ai & Bi | (Ai ^ Bi) & Ci;
always @ (*) begin
Si = S;
Ciout = C;
```

end

endmodule

```
module add(
    input wire [7:0] A,
    input wire [7:0] B,
    input wire C0,
    output wire [7:0] S,
    output wire C8
);
    wire C1, C2, C3, C4, C5, C6, C7;
     full_add f0(
         .Ai(A[0]),
         .Bi(B[0]),
         .Ci(C0),
         .Si(S[0]),
          .Ciout(C1)
    );
    full_add f1(
         .Ai(A[1]),
         .Bi(B[1]),
         .Ci(C1),
         .Si(S[1]),
         .Ciout(C2)
    );
    full_add f2(
```

	.Ai(A[2]),			
	.Bi(B[2]),			
	.Ci(C2),			
	.Si(S[2]),			
	.Ciout(C3)			
);				
full	_add f3(
	.Ai(A[3]),			
	.Bi(B[3]),			
	.Ci(C3),			
	.Si(S[3]),			
	.Ciout(C4)			
);				
full	_add f4(
	.Ai(A[4]),			
	.Bi(B[4]),			
	.Ci(C4),			
	.Si(S[4]),			
	.Ciout(C5)			
)				
full_add f5(
	.Ai(A[5]),			

.Bi(B[5]),

```
.Ci(C5),
          .Si(S[5]),
          .Ciout(C6)
    );
    full_add f6(
          .Ai(A[6]),
          .Bi(B[6]),
          .Ci(C6),
          .Si(S[6]),
          .Ciout(C7)
    );
    full\_add\ f7(
         .Ai(A[7]),
          .Bi(B[7]),
          .Ci(C7),
          .Si(S[7]),
          .Ciout(C8)
    );
endmodule
module full_sub(
    input wire A,
    input wire B,
    input wire Cin,
```

```
output reg D,
    output reg Co
);
    always @ (*) begin
         D = A \wedge (B \wedge Cin);
         Co = ~A & (B ^ Cin) | Cin & B;
    end
endmodule
module sub(
    input wire [7:0] A,
    input wire [7:0] B,
    input wire C0,
    output wire [7:0] D,
    output wire B8
);
    wire B1, B2, B3, B4, B5, B6, B7;
     full_sub s0(
         .A(A[0]),
         .B(B[0]),
         .Cin(C0),
         .D(D[0]),
          .Co(B1)
```

```
);
full_sub s1(
    .A(A[1]),
    .B(B[1]),
    .Cin(B1),
    .D(D[1]),
    .Co(B2)
);
full_sub s2(
    .A(A[2]),
    .B(B[2]),
    .Cin(B2),
    .D(D[2]),
    .Co(B3)
);
full_sub s3(
    .A(A[3]),
    .B(B[3]),
    .Cin(B3),
    .D(D[3]),
    .Co(B4)
);
full_sub s4(
```

	.A(A[4]),			
	.B(B[4]),			
	.Cin(B4),			
	.D(D[4]),			
	.Co(B5)			
);				
full_	l_sub s5(
	.A(A[5]),			
	.B(B[5]),			
	.Cin(B5),			
	.D(D[5]),			
	.Co(B6)			
);				
full	l_sub s6(
	.A(A[6]),			
	.B(B[6]),			
	.Cin(B6),			
	.D(D[6]),			
	.Co(B7)			
);				
full_	l_sub s7(
	.A(A[7]),			

.B(B[7]),

```
.Cin(B7),
         .D(D[7]),
         .Co(B8)
    );
endmodule
module addAndSub(
    input wire [7:0] A,
    input wire [7:0] B,
    input wire E, // 控制信号, 1表示加法, 0表示减法
    input wire C0,
    output wire [7:0] Result,
    output wire C
);
    wire [7:0] sum;
    wire [7:0] diff;
    wire sum_carry;
    wire borrow;
    add adder(
         .A(A),
         .B(B),
         .C0(C0),
         .S(sum),
         .C8(sum_carry)
```

```
sub subtractor(

.A(A),

.B(B),

.C0(C0),

.D(diff),

.B8(borrow)

);

assign Result = (E) ? sum : diff;

assign C = (E) ? sum_carry : borrow;
```

RTL 视图

endmodule

仿真程序

module addAndSub_tb;

reg [7:0] A, B;

reg C0;

```
reg E;
wire [7:0] Result;
wire C;
add And Sub\; uut\; (
     .A(A),
     .B(B),
     .C0(C0),
     .E(E),
     . Result (Result),\\
     .C(C)
);
initial begin
    E = 1;
    A = 0;
    B = 0;
    C0 = 1;
    #10 A = 8'd50; B = 8'd70;
    #10 A = 8'd255; B = 8'd1;
    #10 E = 1'b0;
     #10 A = 8'd150; B = 8'd100;
     #10 A = 8'd200; B = 8'd55;
    #10 A = 8'd0; B = 8'd0; C0 = 0;
     #10 A = 8'd128; B = 8'd128; C0 = 1;
```

```
#10 A = 8'd127; B = 8'd1;

#10 A = 8'd255; B = 8'd255;

#10 A = 1'd0; B = 1'd0;
```

end

endmodule

仿真截图

管脚配置

#LEDS

set_property -dict {PACKAGE_PIN B24 IOSTANDARD LVCMOS33} [get_ports {Result[0]}]
set_property -dict {PACKAGE_PIN E21 IOSTANDARD LVCMOS33} [get_ports {Result[1]}]
set_property -dict {PACKAGE_PIN A24 IOSTANDARD LVCMOS33} [get_ports {Result[2]}]
set_property -dict {PACKAGE_PIN D23 IOSTANDARD LVCMOS33} [get_ports {Result[3]}]
set_property -dict {PACKAGE_PIN C22 IOSTANDARD LVCMOS33} [get_ports {Result[4]}]
set_property -dict {PACKAGE_PIN C21 IOSTANDARD LVCMOS33} [get_ports {Result[5]}]
set_property -dict {PACKAGE_PIN C21 IOSTANDARD LVCMOS33} [get_ports {Result[5]}]

set_property -dict {PACKAGE_PIN B22 IOSTANDARD LVCMOS33} [get_ports {Result[7]}] set_property -dict {PACKAGE_PIN C23 IOSTANDARD LVCMOS33} [get_ports {C}] #DIP_SW set_property -dict {PACKAGE_PIN T3 IOSTANDARD LVCMOS33} [get_ports {A[0]}] set_property -dict {PACKAGE_PIN J3 IOSTANDARD LVCMOS33} [get_ports {A[1]}] set_property -dict {PACKAGE_PIN M2 IOSTANDARD LVCMOS33} [get_ports {A[2]}] set_property -dict {PACKAGE_PIN P1 IOSTANDARD LVCMOS33} [get_ports {A[3]}] set_property -dict {PACKAGE_PIN P4 IOSTANDARD LVCMOS33} [get_ports {A[4]}] set_property -dict {PACKAGE_PIN L5 IOSTANDARD LVCMOS33} [get_ports {A[5]}] set_property -dict {PACKAGE_PIN L3 IOSTANDARD LVCMOS33} [get_ports {A[6]}] $set_property\ -dict\ \{PACKAGE_PIN\ N6\ IOSTANDARD\ LVCMOS33\}\ [get_ports\ \{A[7]\}]$ set_property -dict {PACKAGE_PIN M6 IOSTANDARD LVCMOS33} [get_ports {E}] set_property -dict {PACKAGE_PIN N7 IOSTANDARD LVCMOS33} [get_ports {B[0]}] set_property -dict {PACKAGE_PIN M7 IOSTANDARD LVCMOS33} [get_ports {B[1]}] set_property -dict {PACKAGE_PIN L7 IOSTANDARD LVCMOS33} [get_ports {B[2]}] set_property -dict {PACKAGE_PIN M5 IOSTANDARD LVCMOS33} [get_ports {B[3]}] set_property -dict {PACKAGE_PIN K3 IOSTANDARD LVCMOS33} [get_ports {B[4]}] set_property -dict {PACKAGE_PIN J1 IOSTANDARD LVCMOS33} [get_ports {B[5]}] set_property -dict {PACKAGE_PIN L2 IOSTANDARD LVCMOS33} [get_ports {B[6]}] $set_property \ -dict \ \{PACKAGE_PIN \ K2 \ IOSTANDARD \ LVCMOS33\} \ [get_ports \ \{B[7]\}]$ set_property -dict {PACKAGE_PIN K1 IOSTANDARD LVCMOS33} [get_ports {C0}]

测试

五、实验过程中出现的故障现象、原因分析及解决的办法

加法器最高位进位设置有误,导致溢出出现错误结果,设置最高位进位标志,处理溢出情况。