Санкт-Петербургский национальный исследовательский институт информационных технологий, механики и оптики

Физический факультет

ИТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3.13 "Магнитное поле Земли"

Группа: ЭМ СУиР 1.1.1

Студент: Сайфуллин Д.Р. R3243 Преподаватель: Боярский К.К. К работе допущен: Работа выполнена: Отчет принят:

1 Цель работы

- Провести измерения направления суммарного магнитного поля, создаваемого Землей и системой катушек Гельмгольца.
- Определить горизонтальную составляющую магнитного поля Земли.

2 Задачи, решаемые при выполнении работы

- Юстировка лабораторной установки.
- Измерение зависимости угла отклонения магнитной стрелки от силы тока, протекающей через катушки Гельмгольца.
- Вычисление магнитного поля Земли.

3 Объект исследования

Магнитное поле, создаваемое системой катушек Гельмгольца и Землей.

4 Метод экспериментального исследования

Многократные прямые измерения силы тока и угла отклонения магнитной стрелки компаса.

5 Рабочие формулы и исходные данные

Магнитное поле катушек в пространстве между ними:

$$B = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{I \cdot n}{R},$$

где $\mu_0 = 4\pi \cdot 10^{-7}$ - магниная постоянная, I - сила тока, протекающая через катушки, n- число витков в каждой катушке, а R- средний радиус каждой катушки.

Параметр γ_i :

$$\gamma_i = \frac{\sin(\alpha_i)}{\sin(\phi - \alpha_i)},$$

где ϕ - угол отклонения стрелки компаса от оси катушек в отсутствии токов в катушках, а α_i - угол отклонения магнитной стрелки от начального положения в присутствии токов.

Величина	Значение	
Радиус катушек: R	0,15 м	
Число витков в каждой катушке: n	100	

6 Измерительные приборы

Наименование	Тип прибора	Погрешность прибора
Генератор тока	Электрический	_
Амперметр	Электрический	0,1 мА

7 Схема установки

Рис. 1: Внешний вид лабораторной установки

8 Результаты измерений и их обработки

Результаты измерений и их обработка представлены ниже в таблице ??. Ниже таблицы представлен пример расчета косвенных измерений.

$\phi = 160^{\circ}$	Ток в катушках, мА					
α_i°	I_1	I_2	I_3	$\langle I \rangle$	B_c , мк T л	γ
10	15	15.1	15.2	15.100	9.052	0.347
20	23	23.2	23.10	23.100	13.847	0.532
30	28	26	27.5	27.167	16.285	0.653
40	32	30	29.9	30.633	18.363	0.742
50	35	33	33.3	33.767	20.241	0.815
60	38	36	35.9	36.633	21.960	0.879
70	39	38	36.4	37.800	22.659	0.940
80	42	42	37.6	40.533	24.298	1.000
90	43	43	39.6	41.867	25.097	1.064
100	44	44	41.5	43.167	25.876	1.137
110	46	46	44.3	45.433	27.235	1.227
120	48	48	48.4	48.133	28.854	1.347
130	52	53	52.3	52.433	31.431	1.532
140	61	60.8	61.2	61.000	36.567	1.879

Таблица 1: Результаты прямых измерений.

Пример расчета косвенных измерений:

По формуле рассчитаем значение магнитного поля катушек для первого измерения:

$$B=\mu_0\left(rac{4}{5}
ight)^{rac{3}{2}}rac{I\cdot n}{R}=4\pi*10^{-7}\left(rac{4}{5}
ight)^{rac{3}{2}}rac{15,1\cdot 10^{-3}\cdot 100}{0,15}=9,052$$
 мкТл

Найдем значение параметра γ для первого измерения:

$$\gamma_i = \frac{\sin(\alpha_i)}{\sin(\phi - \alpha_i)} = \frac{\sin(10)}{\sin(160 - 10)} = 0,347$$

По полученным данным построим график зависимости $B_c = B_c(\gamma)$ и проаппроксимируем его прямой, исходя из теоретически, найдем значение магнитного поля Земли как угловой коэффициент аппроксимации (Puc.2). Значения коэффициентов линейной аппроксимации:

$$B = \cdot \gamma + b$$
, где:

a = 17,45 мкТл

b=5,42 мкТл

Получили значение горизонтальной составляющей магнитного поля Земли на широте лаборатории и погрешность полученного значения (используя МНК):

$$B = (17,450 \pm 0,806)$$
 мкТл.

9 Расчет погрешностей измерений

Погрешности исследуемых величин были получены методом наименьших квадратов и представлены выше.

10 Графики

Рис. 2: График завсиимости магнитного поля от параметра γ

11 Окончательные результаты

Значение горизонтальной составляющей магнитного поля Земли на широте лаборатории: $B=(17,450\pm0,806)~{\rm MkTr}$.

12 Выводы и анализ результатов работы

В ходе работы было получено экспериментальное значение горизонтальной составляющей магнитного поля Земли на широте лаборатории $B = (17, 450 \pm 0, 806)$ мкТл, которое, в свою очередь, отличается от табличного значения $B_t = 15, 133$ мкТл (взятого с сайта National Geothermal Data System на широте лаборатории) на 13,2%.