Modelltheorie Übungsblatt 1

Aufgabe 1. Sei $\mathcal{L}_M = \{1, \cdot\}$ die Sprache der Monoide und $\mathcal{L}_G = \{1, \cdot, ^{-1}\}$ die Sprache der Gruppen.

- a) Geben Sie in beiden Sprachen ein Axiomensystem für die Klasse der Gruppen an.
- b) Zeigen Sie, dass \mathcal{L}_G -Unterstrukturen von Gruppen Gruppen sind, dagegen \mathcal{L}_M -Unterstrukturen nicht notwendigerweise. (Das heißt: Die Klasse der Gruppen ist in der Gruppensprache abgeschlossen gegen Unterstrukturen, in der Monoidsprache dagegen nicht).
- c) Zeigen Sie mithilfe des Kompaktheitssatzes, dass die Klasse der endlichen Gruppen in der Sprache \mathcal{L}_G nicht axiomatisierbar ist.

 (I, \leqslant) heißt partielle Ordnung, falls für alle $i, j \in I$ gibt es $k \in I$ mit $i \leqslant k$ und $j \leqslant k$. Eine Familie $(\mathcal{A}_i)_{i \in I}$ von \mathcal{L} -Strukturen heißt gerichtet, falls (I, \leqslant) eine partielle Ordnung ist und für alle $i, j \in I$ mit $i \leqslant j$ schon $\mathcal{A}_i \subseteq \mathcal{A}_j$ gilt. Wenn (I, \leqslant) total geordnet ist, nennen wir $(\mathcal{A}_i)_{i \in I}$ eine Kette.

Aufgabe 2. Sei (I, \leq) eine partielle Ordnung und $(\mathcal{A}_i)_{i \in I}$ eine gerichtete Familie von \mathcal{L} -Strukturen. Ziegen Sie, dass $A = \bigcup_{i \in I} A_i$ das Universum einer eindeutig bestimmten \mathcal{L} -Struktur $\bigcup_{i \in I} \mathcal{A}_i$ ist, und dass für alle $i \in I$, \mathcal{A}_i eine Unterstruktur von \mathcal{A} ist.

Aufgabe 3. Sei (I, \leq) eine totale Ordnung und $(\mathcal{A}_i)_{i \in I}$ eine Kette von isomorphen \mathcal{L} -Strukturen. Gilt dann $\bigcup_{i \in I} \mathcal{A}_i \cong \mathcal{A}_j$ für alle $j \in I$? Hinweis: Versuchen Sie $\mathcal{A}_i \cong \mathbb{Z}$.

Aufgabe 4.

- a) Sei \mathcal{A} eine \mathcal{L} -Struktur, $D \subseteq A^n$ eine \emptyset -definierbare Menge und $\sigma \in \operatorname{Aut}(\mathcal{A})$ ein Automorphismus. Zeigen Sie, dass für alle $d \in D$ auch $\sigma(d) \in D$ gilt.
- b) Was sind die \emptyset -definierbaren Teilmengen von \mathbb{Q} in der Struktur $(\mathbb{Q}, <^{\mathbb{Q}})$? Und in $(\mathbb{Q}, 0^{\mathbb{Q}}, +^{\mathbb{Q}}, -^{\mathbb{Q}})$?

Abgabe bis Donnerstag, den 18.10, 10:00 Uhr Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden.

Web-Seite: http://wwwmath.uni-muenster.de/u/franziska.jahnke/mt/