Analyse II

22.3.19

Série 16

- 1. (a) Déterminer l'ensemble des points du plan complexe satisfaisant :
 - (i) $\overline{z}(z-3) < 6\text{Re}(z) + 3z + 5$;
 - (ii) |z i| = |z + 4 + 7i|.
 - (b) Soit P_i un point du plan de Gauss défini par $z=z_i$. Connaissant $z_1=2-3i$, $z_2=8+3i$ et sachant que $P_1P_2P_3$ forment un triangle équilatéral d'orientation positive, déterminer z_3 à l'aide de sommes et de produits complexes.
- 2. (a) Faire tourner, dans le plan complexe, le point z=5-i d'un angle de $-\frac{\pi}{2}$ autour de l'origine ;
 - (b) On se donne, dans le plan, les deux points suivants : P(2;3) et $M_1(6;5)$. Par un calcul dans \mathbb{C} , à l'aide des affixes de ces points, calculer les coordonnées du point M_2 connaissant les informations suivantes :
 - la distance de P à M_1 et la même que la distance de P à M_2
 - l'angle aigu φ orienté défini par $\angle(M_2PM_1)$ est tel que $\tan\varphi = \frac{4}{3}$;
 - (c) Déterminer le point P du plan complexe satisfaisant les conditions suivantes :
 - La distance de P au point A vaut $\sqrt{10}$
 - L'angle \widehat{BAP} vaut $-\frac{\pi}{4}$
 - $z_A = 2 + 2i$ et $z_B = 4 + 3i$.
- 3. Donner, sous forme algébrique, les solutions de l'équation suivante :

$$\left(z^{2} - (\sqrt{3} + i)z + \frac{3 + i\sqrt{3}}{6}\right)^{3} = i\left(\frac{\sqrt{3}}{3}\right)^{3}$$

- 4. Résoudre :
 - (a) $z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 = 0$;
 - (b) $(1+i)z^4 = (1-i)\overline{z}^2$;
 - (c) $z^6 + 2iz^3 1 = 0$.

 $\ensuremath{\mathsf{EPFL}}$ - $\ensuremath{\mathsf{CMS}}$

5. Résoudre les équations suivantes :

- (a) $z^3-3z^2+3z-i=0$ et exprimer l'une des solutions sous forme algébrique $x+iy\,;$
- (b) $z^3 + 3iz^2 3z = 1 + i$.

EPFL - CMS Analyse II

Solutions

(c) $z_P = 5 + i$

S1 (a) (i) $S = \{(x,y) \in \mathbb{R}^2 | (x-6)^2 + y^2 < 41 \}$ (ii) $S = \{(x,y) \in \mathbb{R}^2 | x+2y+8=0 \}$

(b)
$$P_3 = (5 - 3\sqrt{3}, 3\sqrt{3})$$

S2 (a)
$$z' = -1 - 5i$$

(b)
$$M_2 = 6 + i$$

S3
$$S = \{0, 2\sqrt{3}, \frac{1}{2}(\sqrt{3}+i), \sqrt{3}+i, -2\}$$

S4 (a)
$$S = \{[1; \frac{2k\pi}{7}] | k = 1, \dots, 6\}$$
 (c) $S = \{i, \pm \frac{\sqrt{3}}{2} - \frac{i}{2}\}$

(b)
$$S = \{0\} \cup \{[1; -\frac{\pi}{12} + k\frac{\pi}{3}] | k = 0, \dots, 5\}$$

S5 (a)
$$z_0 = 1 + 2^{-1/3}(1+i)$$

(b)
$$z_1 = 1 - i$$
, $z_2 = -\frac{1}{2} + \left(\frac{\sqrt{3}}{2} - 1\right)i$, $z_3 = -\frac{1}{2} - \left(\frac{\sqrt{3}}{2} + 1\right)i$