Linear Algebra Questions from the Admission to Candidacy Exam

The following is a more or less complete list of the linear algebra questions that have appeared on the admission to candidacy exam for the last ten years. I have reworded some of them a little and have omitted some questions that have been repeated. Following the exam questions are some problems that I think are important.

January 1984

- 1. Let V be a finite-dimensional vector space and let T be a linear operator on V. Suppose that T commutes with every diagonalizable linear operator on V. Prove that T is a scalar multiple of the identity operator.
- 2. Let V and W be vector spaces and let T be a linear operator from V into W. Suppose that V is finite-dimensional. Prove $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim V$.
- 3. Let A and B be $n \times n$ matrices over a field F
 - (a) Prove that if A or B is nonsingular, then AB is similar to BA.
 - (b) Show that there exist matrices A and B so that AB is not similar to BA.
 - (c) What can you deduce about the eigenvalues of AB and BA. Prove your answer.
- 4. Let $A = \begin{pmatrix} D & E \\ F & G \end{pmatrix}$, where D and G are $n \times n$ matrices. If DF = FD prove that $\det A = \det(DG FE)$.
- 5. If F is a field, prove that every ideal in F[x] is principle.

August 1984

- 1. Let V be a finite dimensional vector space. Can V have three distinct proper subspaces W_0 , W_1 and W_2 such that $W_0 \subseteq W_1$, $W_0 + W_2 = V$, and $W_1 \cap W_2 = \{0\}$?
- 2. Let n be a positive integer. Define

 $G = \{A : A \text{ is an } n \times n \text{ matrix with only integer entries and } \det A \in \{-1, +1\}\},\$

 $H = \{A : A \text{ is an invertible } n \times n \text{ matrix and both } A \text{ and } A^{-1} \text{ have only integer entries}\}.$

Prove G = H.

- 3. Let V be the vector space over **R** of all $n \times n$ matrices with entries from **R**.
 - (a) Prove that $\{I, A, A^2, \dots, A^n\}$ is linearly dependent for all $A \in V$.
 - (b) Let $A \in V$. Prove that A is invertible if and only if I belongs to the span of $\{A, A^2, \dots, A^n\}$.

4. Is every $n \times n$ matrix over the field of complex numbers similar to a matrix of the form D + N where D is a diagonal matrix, $N^{n-1} = 0$, and DN = ND. Why?

January 1985

- 1. (a) Let V and W be vector spaces and let T be a linear operator from V into W. Suppose that V is finite-dimensional. Prove $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim V$.
 - (b) Let $T \in L(V, V)$, where V is a finite dimensional vector space. (For a linear operator S denote by $\mathcal{N}(S)$ the null space and by $\mathcal{R}(S)$ the range of S.)
 - i. Prove there is a least natural number k such that $\mathcal{N}(T^k) = \mathcal{N}(T^{k+1}) = \mathcal{N}(T^{k+2}) \cdots$ Use this k in the rest to this problem.
 - ii. Prove that $\mathcal{R}(T^k) = \mathcal{R}(T^{k+1}) = \mathcal{R}(T^{k+2}) \cdots$
 - iii. Prove that $\mathcal{N}(T^k) \cap \mathcal{R}(T^k) = \{0\}.$
 - iv. Prove that for each $\alpha \in V$ there is exactly one vector in $\alpha_1 \in \mathcal{N}(T^k)$ and exactly one vector $\alpha_2 \in \mathcal{R}(T^k)$ such that $\alpha = \alpha_1 + \alpha_2$.
- 2. Let F be a field of characteristic 0 and let

$$W = \left\{ A = [a_{ij}] \in F^{n \times n} : \text{tr}(A) = \sum_{i=1}^{n} a_{ii} = 0 \right\}.$$

For i, j = 1, ..., n with $i \neq j$, let E_{ij} be the $n \times n$ matrix with (i, j)-th entry 1 and all the remaining entries 0. For i = 2, ..., n let E_i be the $n \times n$ mat-ix with (1, 1) entry -1, (i, i)-th entry +1, and all remaining entries 0. Let

$$S = \{E_{ij} : i, j = 1, \dots, n \text{ and } i \neq j\} \cup \{E_i : i = 2, \dots, n\}.$$

[Note: You can assume, without proof, that S is a linearly independent subset of $F^{n \times n}$.]

- (a) Prove that W is a subspace of $F^{n\times n}$ and that $W=\mathrm{span}(S)$. What is the dimension of W?
- (b) Suppose that f is a linear functional on $F^{n\times n}$ such that
 - i. f(AB) = f(BA), for all $A, B \in F^{n \times n}$.
 - ii. f(I) = n, where I is the identity matrix in $F^{n \times n}$.

Prove that $f(A) = \operatorname{tr}(A)$ for all $A \in F^{n \times n}$.

August 1985

1. Let V be a vector space over \mathbf{C} . Suppose that f and g are linear functionals on V such that the functional

$$h(\alpha) = f(\alpha)g(\alpha)$$
 for all $\alpha \in V$

is linear. Show that either f = 0 or g = 0.

- 2. Let C be a 2×2 matrix over a field F. Prove: There exists matrices C = AB BA if and only if tr(C) = 0.
- 3. Prove that if A and B are $n \times n$ matrices from C and AB = BA, then A and B have a common eigenvector.

January 1986

- 1. Let F be a field and let V be a finite dimensional vector space over F. Let $T \in L(V, V)$. If c is an eigenvalue of T, then prove there is a nonzero linear functional f in L(V, F) such that $T^*f = cf$. (Recall that $T^*f = fT$ by definition.)
- 2. Let F be a field, $n \geq 2$ be an integer, and let V be the vector space of $n \times n$ matrices over \mathbf{F} . Let A be a fixed element of V and let $T \in L(V, V)$ be defined by T(B) = AB.
 - (a) Prove that T and A have the same minimal polynomial.
 - (b) If A is diagonalizable, prove, or disprove by counterexample, that T is diagonalizable.
 - (c) Do A and T have the same characteristic polynomial? Why or why not?
- 3. Let M and N be 6×6 matrices over C, both having minimal polynomial x^3 .
 - (a) Prove that M and N are similar if and only if they have the same rank.
 - (b) Give a counterexample to show that the statement is false if 6 is replaced by 7.

August 1986

- 1. Give an example of two 4×4 matrices that are not similar but that have the same minimal polynomial.
- 2. Let (a_1, a_2, \ldots, a_n) be a nonzero vector in the real *n*-dimensional space \mathbf{R}^n and let P be the hyperplane

$$\left\{ (x_1, x_2, \dots, x_n) \in \mathbf{R}^n : \sum_{i=1}^n a_i x_i = 0 \right\}.$$

Find the matrix that gives the reflection across P.

January 1987

- 1. Let V and W be finite-dimensional vector spaces and let $T:V\to W$ be a linear transformation. Prove that that exists a basis $\mathcal A$ of V and a basis $\mathcal B$ of W so that the matrix $[T]_{\mathcal A,\mathcal B}$ has the block from $\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$.
- 2. Let V be a finite-dimensional vector space and let T be a diagonalizable linear operator on V. Prove that if W is a T invariant subspace then the restriction of T to W is also diagonalizable.
- 3. Let T be a linear operator on a finite-dimensional vector. Show that if T has no cyclic vector then, then there exists an operator U on V that commutes with T but is not a polynomial in T.

August 1987

- 1. Exhibit two real matrices with no real eigenvalues which have the same characteristic polynomial and the same minimal polynomial but are not similar.
- 2. Let V be a vector space, not necessarily finite-dimensional. Can V have three distinct proper subspaces A, B, and C, such that $A \subset B$, A + C = V, and $B \cap C = \{0\}$?

3

3. Compute the minimal and characteristic polynomials of the following matrix. Is it diagonalizable?

$$\left[\begin{array}{ccccc}
5 & -2 & 0 & 0 \\
6 & -2 & 0 & 0 \\
0 & 0 & 0 & 6 \\
0 & 0 & 1 & -1
\end{array}\right]$$

August 1988

- 1. (a) Prove that if A and B are linear transformations on an n-dimensional vector space with AB = 0, then $r(A) + r(B) \le n$ where $r(\cdot)$ denotes rank.
 - (b) For each linear transformation A on an n-dimensional vector space, prove that there exists a linear transformation B such that AB = 0 and r(A) + r(B) = n.
- 2. (a) Prove that if A is a linear transformation such that $A^2(I-A) = A(I-A)^2 = 0$, then A is a projection.
 - (b) Find a non-zero linear transformation so that $A^2(I-A)=0$ but A is not a projection.
- 3. If S is an m-dimensional vector space of an n-dimensional vector space V, prove that S° , the annihilator of S, is an (n-m)-dimensional subspace of V^{*} .
- 4. Let A be the 4×4 real matrix

$$A = \left[\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{array} \right]$$

- (a) Determine the rational canonical form of A.
- (b) Determine the Jordan canonical form of A.

January 1989

1. Let T be the linear operator on \mathbb{R}^3 which is represented by

$$A = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{array} \right]$$

in the standard basis. Find matrices B and C which represent respectively, in the standard basis, a diagonalizable linear operator D and a nilpotent linear operator N such that T = D + N and DN = ND.

- 2. Suppose T is a linear operator on \mathbf{R}^5 represented in some basis by a diagonal matrix with entries -1, -1, 5, 5, 5 on the main diagonal.
 - (a) Explain why T can not have a cyclic vector.
 - (b) Find k and the invariant factors $p_i = p_{\alpha_i}$ in the cyclic decomposition $\mathbf{R}^5 = \bigoplus_{i=1}^k Z(\alpha_i; T)$.
 - (c) Write the rational canonical form for T.

3. Suppose that V in an n-dimensional vector space and T is a linear map on V of rank 1. Prove that T is nilpotent or diagonalizable.

August 1989

- 1. Let M denote an $m \times n$ matrix with entries in a field. Prove that
 - the maximum number of linearly independent rows of M
 - = the maximum number of linearly independent columns of M

(Do not assume that rank $M = \operatorname{rank} M^t$.)

- 2. Prove the Cayley-Hamilton Theorem, using only basic properties of determinants.
- 3. Let V be a finite-dimensional vector space. Prove there a linear operator T on V is invertible if and only if the constant term in the minimal polynomial for T is non-zero.
- 4. (a) Let $M = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix}$. Find a matrix T (with entries in \mathbf{C}) such that $T^{-1}MT$ is diagonal, or prove that such a matrix does not exist
 - (b) Find a matrix whose minimal polynomial is $x^2(x-1)^2$, whose characteristic polynomial is $x^4(x-1)^3$ and whose rank is 4.
- 5. Suppose A and B are linear operators on the same finite-dimensional vector space V. Prove that AB and BA have the same characteristic values.
- 6. Let M denote an $n \times n$ matrix with entries in a field F. Prove that there is an $n \times n$ matrix B with entries in F so that $\det(M + tB) \neq 0$ for every non-zero $t \in F$.

January 1990

- 1. Let W_1 and W_2 be subspaces of the finite dimensional vector space V. Record and prove a formula which relates dim W_1 , dim W_2 , dim $(W_1 + W_2)$, dim $(W_1 \cap W_2)$.
- 2. Let M be a symmetric $n \times n$ matrix with real number entries. Prove that there is an $n \times n$ matrix N with real entries such that $N^3 = M$.
- 3. TRUE OR FALSE. (If the statement is true, then prove it. If the statement is false, then give a counterexample.) If two nilpotent matrices have the same rank, the same minimal polynomial and the same characteristic polynomial, then they are similar.

August 1990

- 1. Suppose that $T:V\to W$ is a injective linear transformation over a field F. Prove that $T^*:W^*\to V^*$ is surjective. (Recall that $V^*=L(V,F)$ is the vector space of linear transformations from V to F.)
- 2. If M is the $n \times n$ matrix

$$M = \left[\begin{array}{ccccc} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end{array} \right]$$

then prove that $\det M = [x + (n-1)a](x-a)^{n-1}$.

3. Suppose that T is a linear operator on a finite dimensional vector space V over a field F. Prove that T has a cyclic vector if and only if

$$\{U \in L(V,V) : TU = UT\} = \{f(T) : f \in F[x]\}.$$

4. Let $T: \mathbf{R}^4 \to \mathbf{R}^4$ be given by

$$T(x_1, x_2, x_3, x_4) = (x_1 - x_4, x_1, -2x_2 - x_3 - 4x_4, 4x_2 + x_3)$$

- (a) Compute the characteristic polynomial of T.
- (b) Compute the minimal polynomial of T.
- (c) The vector space \mathbb{R}^4 is the direct sum of two proper T-invariant subspaces. Exhibit a basis for one of these subspaces.

January 1991

1. Let V, W, and Z be finite dimensional vector spaces over the field F and let $f: V \to W$ and $g: W \to Z$ be linear transformations. Prove that

$$\operatorname{nullity}(g \circ f) \leq \operatorname{nullity}(f) + \operatorname{nullity}(g)$$

2. Prove that

$$\det \begin{bmatrix} A & 0 & 0 \\ B & C & D \\ 0 & 0 & E \end{bmatrix} = \det A \det B \det E$$

where A, B, C, D and E are all square matrices.

3. Let A and B be $n \times n$ matrices with entries on the field F such that $A^{n-1} \neq 0$, $B^{n-1} \neq 0$, and $A^n = B^n = 0$. Prove that A and B are similar, or show, with a counterexample, that A and B are not necessarily similar.

August 1991

- 1. Let A and B be $n \times n$ matrices with entries from **R**. Suppose that A and B are similar over **C**. Prove that they are similar over **R**.
- 2. Let A be an $n \times n$ with entries from the field F. Suppose that $A^2 = A$. Prove that the rank of A is equal to the trace of A.
- 3. TRUE OR FALSE. (If the statement is true, then prove it. If the statement is false, then give a counterexample.) Let W be a vector space over a field F and let $\theta: V \to V'$ be a fixed surjective transformation. If $g: W \to V'$ is a linear transformation then there is linear transformation $h: W \to V$ such that $\theta \circ h = g$.

January 1992

- 1. Let V be a finite dimensional vector space and $A \in L(V, V)$.
 - (a) Prove that there exists and integer k such that $\ker A^k = \ker A^{k+1} = \cdots$

- (b) Prove that there exists an integer k such that $V = \ker A^k \oplus \operatorname{image} A^k$.
- 2. Let V be the vector space of $n \times n$ matrices over a field F, and let $T: V \to V^*$ be defined by $T(A)(B) = \operatorname{tr}(A^t B)$. Prove that T is an isomorphism.
- 3. Let A be an $n \times n$ matrix and $A^k = 0$ for some k. Show that $\det(A + I) = 1$.
- 4. Let V be a finite dimensional vector sauce over a field F, and T a linear operator on V. Suppose the minimal and characteristic polynomials of of T are the same power of an irreducible polynomial p(x). Show that no non-trivial T-invariant subspace of V has a T-invariant complement.

August 1992

- 1. Let V be the vector space of all $n \times n$ matrices over a field F, and let B be a fixed $n \times n$ matrix that ti not of the form cI. Define a linear operator T on V by T(A) = AB BA. Exhibit a not-zero element in the kernel of the transpose of T.
- 2. Let V be a finite dimensional vector space over a field F and suppose that S and T are triangulable operators on V. If ST = TS prove that S and T have an eigenvector in common.
- 3. Let A be an $n \times n$ matrix over C. If trace $A^i = 0$ for all i > 0, prove that A is nilpotent.

January 1993

- 1. Let V be a finite dimensional vector space over a field F, and let T be a linear operator on V so that rank $(T) = \text{rank}(T^2)$. Prove that V is the direct sum of the range of T and the null space of T.
- 2. Let V be the vector space of all $n \times n$ matrices over a field F, and suppose that A is in V. Define $T: V \to V$ by T(AB) = AB. Prove that A and B have the same characteristic values.
- 3. Let A and B be $n \times n$ over the complex numbers.
 - (a) Show that AB and BA have the same characteristic values.
 - (b) Are AB and BA similar matrices?
- 4. Let V be a finite dimensional vector space over a field of characteristic 0, and T be a linear operator on V so that $\operatorname{tr}(T^k) = 0$ for all $k \geq 1$, where $\operatorname{tr}(\cdot)$ denotes the trace function. Prove that T is a nilpotent linear map.
- 5. Let $A = [a_{ij}]$ be an $n \times n$ matrix over the field of complex numbers such that

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$
 for $i = 1, \dots, n$.

Then show that det $A \neq 0$. (det denotes the determinant.)

6. Let A be an $n \times n$ matrix, and let adj(A) denote the adjoint of A. Prove the rank of adj(A) is either 0, 1, or n.

1. Let

$$A = \left[\begin{array}{rrr} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{array} \right]$$

- (a) Determine the rational canonical form of A.
- (b) Determine the Jordan canonical form of A.
- 2. If

$$A = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right],$$

then prove that there does not exist a matrix with $N^2 = A$.

- 3. Let A be a real $n \times n$ matrix which is symmetric, i.e. $A^t = A$. Prove that A is diagonalizable.
- 4. Give an example of two nilpotent matrices A and B such that
 - (a) A is not similar to B,
 - (b) A and B have the same characteristic polynomial,
 - (c) A and B have the same minimal polynomial, and
 - (d) A and B have the same rank.

January 1994

- 1. Let A be an $n \times n$ matrix over a field F. Show that F^n is the direct sum of the null space and the range of A if and only if A and A^2 have the same rank.
- 2. Let A and B be $n \times n$ matrices over a field F.
 - (a) Show AB and BA have the same eigenvalues.
 - (b) Is AB similar to BA? (Justify your answer).
- 3. Given an exact sequence of finite-dimensional vector spaces

$$0 \xrightarrow{T_0} V_1 \xrightarrow{T_1} V_2 \xrightarrow{T_2} \cdots \xrightarrow{T_{n-2}} V_{n-1} \xrightarrow{T_{n-1}} V_n \xrightarrow{T_n} 0$$

that is the range of T_i is equal to the null space of T_{i+1} , for all i. What is the value of $\sum_{i=1}^{n} (-1)^i \dim(V_i)$? (Justify your answer).

- 4. Let F be a field with q elements and V be a n-dimensional vector space over F.
 - (a) Find the number of elements in V.
 - (b) Find the number of bases in of V.
 - (c) Find the number of invertible linear operators on V.
- 5. Let A and B be $n \times n$ matrices over a field F. Suppose that A and B have the same trace and the same minimal polynomial of degree n-1. Is A similar to B? (Justify your answer.)

6. Let $A = [a_{ij}]$ be an $n \times n$ matrix with $a_{ij} = 1$ for all i and j. Find its characteristic and minimal polynomial.

August 1994

- 1. Give an example of a matrix with real entries whose characteristic polynomial is $x^5 x^4 + x^2 3x + 1$.
- 2. TRUE or FALSE. (If true prove it. If false give a counterexample.) Let A and B be $n \times n$ matrices with minimal polynomial x^4 . If rank $A = \operatorname{rank} B$, and rank $A^2 = \operatorname{rank} B^2$, then A and B are similar.
- 3. Suppose that T is a linear operator on a finite-dimensional vector space V over a field F. Prove that the characteristic polynomial of T is equal to the minimal polynomial of T if and only if

$${U \in L(V, V) : TU = UT} = {f(T) : f \in F[x]}.$$

January 1995

- 1. (a) Prove that if A and B are 3×3 matrices over a field F, a necessary and sufficient condition that A and B be similar over F is that that have the same characteristic and the same minimal polynomial.
 - (b) Give an example to show this is not true for 4×4 matrices.
- 2. Let V be the vector space of $n \times n$ matrices over a field. Assume that f is a linear functional on V so that f(AB) = f(BA) for all $A, B \in V$, and f(I) = n. Prove that f is the trace functional.
- 3. Suppose that N is a 4×4 nilpotent matrix over F with minimal polynomial x^2 . What are the possible rational canonical forms for n?
- 4. Let A and B be $n \times n$ matrices over a field F. Prove that AB and BA have the same characteristic polynomial.
- 5. Suppose that V is an n-dimensional vector space over F, and T is a linear operator on V which has n distinct characteristic values. Prove that if S is a linear operator on V that commutes with T, then S is a polynomial in T.

August 1995

- 1. Let A and B be $n \times n$ matrices over a field F. Show that AB and BA have the same characteristic values in F.
- 2. Let P and Q be real $n \times n$ matrices so that P + Q = I and rank(P) + rank(Q) = n. Prove that P and Q are projections. (HINT: Show that if Px = Qy for some vectors x and y, then Px = Qy = 0.)
- 3. Suppose that A is an $n \times n$ real, invertible matrix. Show that A^{-1} can be expressed as a polynomial in A with real coefficients and with degree at most n-1.

4. Let

$$A = \left[\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array} \right].$$

Determine the rational canonical form and the Jordan canonical form of A.

- 5. (a) Give an example of two 4×4 nilpotent matrices which have the same minimal polynomial but are not similar.
 - (b) Explain why 4 is the smallest value that can be chosen for the example in part (a), i.e. if $n \leq 3$, any two nilpotent matrices with the same minimal polynomial are similar.

Some Other Problems

- 1. This is a very basic and important fact. Let V be a finite dimensional vector space and f and g two linear functionals on V. If ker $f = \ker g$ show g is a scalar multiple of f.
- 2. This problem makes explicit some facts that are used several times in solving some of the problems above.
 - (a) Prove that if V is a finite dimensional vector space over the field F and $T \in L(V,V)$ and V is cyclic for T that any $S \in L(V,V)$ that commutes with T is a polynomial in T. That is ST = TS implies that S = p(T) for some $p(x) \in F[x]$. HINT: Let $\dim V = n$. Then because V is cyclic for T there is a vector $v_0 \in V$ so that $v_0, Tv_0, \ldots, T^{n-1}v_0$ is a basis for V. Thus there are scalars $a_0, a_1, \ldots, a_{n-1}$ so that $Sv_0 = a_0v_0 + a_1Tv_0 + a_2T^2v_0 + \cdots + a_{n-1}T^{n-1}v_0$. Then letting $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}$ we have $Sv_0 = p(T)v_0$. Now use that S commutes with T (and thus also p(T)) to show that $ST^iv_0 = p(T)T^iv_0$ for $i = 0, 1, \ldots, n-1$. Thus the two linear maps S and p(T) agree on a basis and whence are equal.
 - (b) If the minimal polynomial f(x) of T has $\deg f(x) = \dim V$ then V is cyclic for T. HINT: I don't know any particularly easy way to do this. The basic idea is to factor $f(x) = p_1(x)^{k_1} \cdots p_l(x)^{k_l}$ into powers of primes and consider the corresponding primary decomposition $V = \ker(p_1(T)^{k_1}) \oplus \cdots \oplus \ker(p_l(T)^{k_l})$ and show that if $\deg f(x) = \dim V$ then each of the primary factors $\ker(p_i(T)^{k_i})$ is cyclic (this in turn uses that each of the $\ker(p_i(T)^{k_i})$ is a sum of cyclic subspaces). Now let v_i be a cyclic for T in $\ker(p_i(T)^{k_i})$ for $i = 1, \ldots, l$. Then show the vector $v_0 = v_1 + v_2 + \cdots + v_l$ is cyclic for T.
- 3. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be distinct elements of the field F. Then the matrix

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{bmatrix}$$

is invertible. Hint: If A is singular then it has rank less than n and thus there is a nontrivial linear relation between the rows of A. This would in turn imply that there is a nonzero polynomial p(x) of degree $\leq n-1$ than had the n scalars $\lambda_1, \lambda_2, \ldots, \lambda_n$ as roots. But this is impossible.

10

4. This is anther set of facts that anyone who has had a graduate linear algebra class should know. Let D be a diagonal metric that has all its diagonal elements distinct. That is

$$D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) := \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \quad \text{where } \lambda_i \neq \lambda_j \text{ for } i \neq j.$$

Then show

- (a) The only matrices that compute with D are diagonal matrices.
- (b) If A is any other diagonal matrix then C is a polynomial in D. That is there is a polynomial p(x) so that A = p(D).
- (c) If A is any matrix that commutes with D then A is a polynomial in D.
- (d) There is a cyclic vector for T. HINT: Let e_1, \ldots, e_n be the standard coordinate vectors. Then as D is diagonal $De_i = \lambda_i e_i$. Let $v = a_1 e_1 + a_2 e_2 + \cdots + a_n e_n$. Then show that v is a cyclic vector for D if and only if $a_i \neq 0$ for all i (One way to do this is use the last problem). In particular $v = e_1 + e_2 + \cdots + e_n$ is a cyclic vector for T.
- 5. This is anther standard problem. Let V be a finite dimensional vector space over a field F and let $T \in L(V, V)$. Let λ be an eigenvalue of T and let $V_{\lambda} := \{v \in V : Tv = \lambda v\}$ be the corresponding eigenspace.
 - (a) Let $S \in L(V, V)$ commute with T. Then show that V_{λ} is invariant under S. (That is show $v \in V_{\lambda}$ implies $Sv \in V_{\lambda}$.)
 - (b) Show that if A and B are $n \times n$ matrices over the complex numbers that commute they have a common eigenvector. Hint: As A is a complex matrix it has at least one eigenvalue λ . Let V_{λ} be the corresponding eigenspace. Then by what we have just done V_{λ} is invariant under B. But then the restriction of B to V_{λ} has an eigenvector in V_{λ} .
 - (c) This is a different way of looking at Problem 4 above. Assume V has an basis of eigenvectors e_1, e_2, \ldots, e_n of eigenvectors of T, that is $Te_i = \lambda e_i$. Also assume the eigenvalues are distinct: $\lambda_i \neq \lambda_j$ for $i \neq j$. Then show if S commutes with T then for some scalars c_i there holds $Se_i = c_i e_i$, and thus S is also diagonal in the basis e_1, \ldots, e_n . HINT: Let $V_{\lambda_i} := \{v : Te_i = \lambda_i v\}$. Then by the assumptions V_{λ_i} is one dimensional with basis e_i . Part (a) of this problem then implies that V_{λ_i} is invariant under S. As V_{λ_i} is one dimensional this in turn implies e_i is an eigenvector of S.