Peeling for L0-Regularized Least-Squares

Théo Guyard[⋆], Gilles Monnoyer[⋄], Cédric Herzet[†] and Clément Elvira[‡]

*Inria, Rennes, France [⋄]UCLouvain, Louvain, Belgium

†Ensai, Rennes, France [‡]CentraleSupelec, Rennes, France

PGMO days EDF Lab, Saclay, France November 29th, 2023

L0-Regularized Least-Squares

Framework

Sparse linear models

- Linear regression with a sparse optimizer
- Applications in signal processing, machine learning, statistics, etc...

Framework

Sparse linear models

- Linear regression with a sparse optimizer
- Applications in signal processing, machine learning, statistics, etc...

 $\ell_0 \text{-regularized least-squares} \\ \min_{\mathbf{x}} \ \ \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_0$

Ingredients

- Least-squares loss to ensure the linear model fitting
- ℓ_0 -norm that counts the non-zeros in x
- \bullet Tradeoff parameter $\lambda>0$ to control the sparsity

Initial problem

$$\min_{\mathbf{x}} \ \tfrac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_0$$

Branch-and-Bound

Branch-and-Bound algorithms

Branch-and-Bound

"Enumerate all candidate solutions and discard sub-optimal ones."

Main principles

Branching: Divide the search space

Bounding: Test whether a region can contain optimal solutions

Pruning: Discard regions without optimal solutions

$$\left\{ \begin{array}{ll} \min & \frac{1}{2}\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{2}}^{2} + \lambda \|\mathbf{x}\|_{\mathbf{0}} \\ \text{s.t.} & -M \leq \mathbf{x} \leq M \end{array} \right.$$

Node problem

$$\left\{ \begin{array}{ll} \min & \frac{1}{2}\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{2}}^{2} + \lambda \|\mathbf{x}\|_{\mathbf{0}} \\ \text{s.t.} & -M \leq \mathbf{x} \leq M \end{array} \right.$$

Node problem

$$\begin{cases} \min & \frac{1}{2} \| y - Ax \|_{2}^{2} + \lambda \| x \|_{0} \\ s.t. & -M \le x \le M \end{cases}$$

Node problem

$$\begin{cases} \min & \frac{1}{2} \| y - Ax \|_2^2 + \lambda \| x \|_0 \\ s.t. & -M \le x \le M \end{cases}$$

Node problem

$$\begin{cases} \min & \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_0 \\ \text{s.t.} & -M \le x \le M \end{cases}$$

Relaxation

$$\begin{aligned} & \min \quad & \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{2}}^{2} + \frac{\lambda}{M} \|\mathbf{x}\|_{\mathbf{1}} \\ & \text{s.t.} \quad & -M \leq \mathbf{x} \leq M \end{aligned}$$

$$\begin{cases} \min & \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_0 \\ \text{s.t.} & -M \le x \le M \end{cases}$$

Relaxation

$$\begin{aligned} & \min & \quad \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{2}}^{2} + \frac{\lambda}{M} \|\mathbf{x}\|_{\mathbf{1}} \\ & \text{s.t.} & \quad -M < \mathbf{x} < M \end{aligned}$$

Dilemma in the choice of M

Large value of M to recover interesting solutions Small value of M to build strong relaxations

Our solution: Peeling

Start with M large and refine it locally along branches

Peeling

Find some $\frac{M' \leq M}{\text{such that } N^{k'} \text{ is pruned}}$

Find some $\frac{M' \leq M}{\text{such that } N^{k'} \text{ is pruned}}$

Bound tightening

Bound tightening

Propagation along branches

Standard BnB

Propagation along branches

Standard BnB

BnB with peeling

Propagation along branches

Standard BnB

BnB with peeling

- ✔ Branches pruned early-on
- ✓ Less nodes explored
- ✔ Reduce solve time

Bound spread reduction

$$\min_{\mathbf{x} \in [-M,M]} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{0}$$

Data A **and** y : Sparse regression **Parameter** λ : Set statistically **Bound** M : $M = \gamma ||\mathbf{x}^{\star}||_{\infty}$

$$\min_{x \in [-M,M]} \frac{1}{2} ||y - Ax||_2^2 + \lambda ||x||_0$$

Data A **and** y : Sparse regression **Parameter** λ : Set statistically **Bound** M : $M = \gamma ||\mathbf{x}^{\star}||_{\infty}$

$$\min_{\mathbf{x} \in [-M,M]} \ \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_0$$

Take-home message

Question time

