(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 March 2001 (01.03.2001)

PCT

(10) International Publication Number WO 01/14566 A2

- (51) International Patent Classification7: C12N 15/54, 15/60, 15/61, 9/04, 9/10, 9/12, 9/88, 9/90, 9/00, C12P 19/24, 19/38, 19/02
- (21) International Application Number: PCT/EP00/08088
- (22) International Filing Date: 18 August 2000 (18.08.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 99116425.2

20 August 1999 (20.08.1999)

- (71) Applicants (for all designated States except US): ROCHE DIAGNOSTICS GMBH [DE/DE]; Sandhofer Strasse 116, D-68305 Mannheim (DE). INSTITUT PASTEUR [FR/FR], 25-28, rue du Docteur Roux, F-75724 Paris Cedex 15 (FR). PHARMA-WALDHOF GMBH & CO.KG [DE/DE]; Hansa-Allee 159, D-40549 Düsseldorf (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): TISCHER, Wilhelm [DE/DE]; Finkenweg 5, D-82380 Peißenberg (DE). IHLENFELDT, Hans-Georg [DE/DE]; Rabenkopfstrasse 5, D-82393 Iffeldorf (DE). BARZU, Octavian [FR/FR]: 3, allée de la Bougainvillée, F-92160 Antony (FR). SAKAMOTO, Hiroshi [JP/FR]; 3, sentier des

Jardies, F-92190 Meudon (FR). PISTOTNIK, Elisabeth [FR/FR]; 11, rue de la Fosse aux Moines, F-94000 Créteil (FR). MARLIERE, Philippe [FR/FR]; 2, allée Saint Martin, F-91450 Etiolles (FR). POCHET, Sylvie [FR/FR]; 5, rue Gossec, F-75012 Paris (FR).

- (74) Agents: WEICKMANN, H. et al.; Kopernikusstrasse 9; D-81679 München (DE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOSIDES

(57) Abstract: The present invention relates to a method for the in vitro enzymatic synthesis of deoxyribonucleosides and enzymes suitable for this method.

10

25

30

Enzymatic synthesis of deoxyribonucleosides

Description

The present invention relates to a method for the in vitro enzymatic synthesis of deoxyribonucleosides and enzymes suitable for this method.

Natural deoxyribonucleosides (deoxyadenosine, dA; deoxyguanosine, dG; deoxycytidine, dC and thymidine, dT) are building blocks of DNA. The N-glycosidic bond between nucleobase and sugar involves the N_1 of a pyrimidine or the N_9 of a purine ring and the C_1 of deoxyribose.

In the living cells the four deoxyribonucleosides (dN) result from the "salvage pathway" of nucleotide metabolism. A group of enzymes is involved in cellular catabolism of deoxyribonucleosides. Besides deoxyriboaldolase (EC 4.1.2.4) and deoxyribomutase (EC 2.7.5.1), this group also includes thymidine phosphorylase (EC 2.4.2.4) and purine nucleoside phosphorylase (EC 2.4.2.1). These four enzymes are induced by the addition of deoxyribonucleosides to the growth medium. The genes

- 2 -

coding for these enzymes have been shown to map closely together on the bacterial chromosome (Hammer-Jesperson and Munch-Peterson, Eur. J. Biochem. 17 (1970), 397 and literature cited therein). In E. coli the genes as described above are located on the deo operon which exhibits an unusual and complicated pattern of regulation (Valentin-Hansen et al., EMBO J.1 (1982), 317).

Using the enzymes of the deo operon for synthesis of deoxynucleosides was described by C.F.Barbas III (Overproduction and Utilization of Enzymes in Synthetic Organic Chemistry, Ph.D. Thesis (1989), Texas A&M University). He applied phosphopentomutase and thymidine phosphorylase for the synthesis of deoxynucleosides. Deoxyribose 5-phosphate was prepared by chemical synthesis (Barbas III et al., J.Am.Chem.Soc. 112 (1990), 2013-2014), which makes this compound expensive as starting material and not suitable for large scale synthesis. He also made deoxyriboaldolase available as a recombinant enzyme and investigated its synthetic applicability but neither he nor C.-H.Wong (Microbial Aldolases in Carbohydrate Synthesis: ACS Symp. Ser. No. 466: Enzymes in Carbohydrate Synthesis, Eds. M.D.Bednarski, E.S.Simon (1991), 23-27) were able to carry out a coupled one-pot synthesis employing all three enzymes. It appears likely that some drawbacks exist which could not be circumvented. Among these drawbacks are insufficient chemical equilibrium, instability of intermediates, such as deoxyribose 1-phosphate and inactivation and inhibition effects of involved compounds on the enzymes.

25

30

10

15

20

Evidence of an advantageous equilibrium is given by S.Roy et al. (JACS 108 (1986), 1675-78). For the aldolase reaction the equilibrium is on the desired product side (deoxyribose 5-phosphate), for the phosphopentomutase it is on the wrong side (also deoxyribose 5-phosphate) and for the purine nucleoside phosphorylase it is on the desired synthesis product side. The authors suggest coupling of the three enzyme reactions to obtain reasonable yields. Contrary to these suggestions they prepared deuterated

PCT/EP00/08088

deoxyguanosine and thymidine in a two step procedure, that is deoxyribose 5-phosphate in a first step and deoxynucleoside in a second step. Isolated yields of the second step were 11% and 5% for deoxyguanosine and thymidine, respectively. These low yields are also obtained in the preparation of arabinose-based nucleosides (Barbas III (1990), supra).

These low yields indicate serious drawbacks for the use of the enzymes of the deo operon in a synthetic route which have to work in the reverse direction of their biological function, which is degradation of deoxynucleosides.

10.

15

20

25

30

5

Thus, there does not exist any economical commercial method at present for the enzymatic in vitro synthesis of deoxyribonucleosides. Hitherto, for commercial purposes, deoxynucleosides are generated from fish sperm by enzymatic cleavage of DNA. This method, however, involves several disadvantages, particularly regarding difficulties of obtaining the starting material in sufficient quantity and quality.

Therefore, it was an object of the invention to provide a method, by means of which the drawbacks of the prior are eliminated at least partially and which allows efficient and economical synthesis of deoxyribonucleosides without any dependence on unreliable natural sources.

Surprisingly, it was found that the drawbacks of previous enzymatic synthesis routes can be avoided and deoxyribonucleosides can be obtained in high yields of e.g. at least 80% based on the amount of starting material.

In a first aspect, the present invention relates to a method for the in vitro enzymatic synthesis of deoxyribonucleosides comprising reacting deoxyribose 1-phosphate (dR1P) and a nucleobase, wherein a deoxyribonucleoside and inorganic phosphate are formed.

- 4 -·

The reaction is catalyzed by an enzyme which is capable of transferring a deoxyribose moiety to a nucleobase, with a deoxyribonucleoside being formed. Preferably, the reaction is catalyzed by a thymidine phosphorylase (TP, EC 2.4.2.4) or a purine nucleoside phosphorylase (PNP, EC 2.4.2.1). For the EC designation of these enzymes and other enzymes mentioned below reference is made to the standard volume Enzyme Nomenclature 1992, Ed. E.C.Webb, Academic Press, Inc.

10.

20

25

30

These enzymes and other enzymes mentioned below are obtainable as native proteins from natural sources, i.e. any suitable organisms selected from eukaryotes, prokaryotes and archaea including thermophilic organisms. Further, these enzymes are obtainable as recombinant proteins from any suitable host cell which is transformed or transfected with a DNA encoding said enzyme. The host cell may be a eukaryotic cell, a prokaryotic cell or an archaea cell. Particular preferred sources of native or recombinant TP or PNP are prokaryotic organisms such as E.coli. Recombinant TP may be isolated from E.coli strain pHSP 282 (CNCM I-2186) deposited on April 23, 1999, which is a recombinant E.coli strain transformed with a plasmid containing the E.coli deoA (thymidine phosphorylase) insert. Recombinant PNP may be isolated from E.coli strain pHSP 283 (CNCM I-2187) deposited on April 23, 1999, which is a recombinant E.coli strain transformed with a plasmid containing the E.coli deoD (purine nucleoside phosphorylase) insert. The nucleotide sequence of the TP gene and the corresponding amino acid sequence are shown in SEQ ID NO.1 and 2. The nucleotide sequence of the PNP gene and the corresponding amino acid sequence are shown in SEQ ID NO.15 and 16 and 3 and 4.

The nucleobase, to which the deoxyribose unit is transferred, will be selected from any suitable nucleobase. For example, the nucleobase may be a naturally occurring nucleobase such as thymine, uracil, adenine, guanine or hypoxanthine. It should be noted, however, that also non-naturally occurring analogs thereof are suitable as enzyme substrates such

10

15

20

25

30

as 2-thio-uracil, 6-aza-uracil, 5-carboxy-2-thiouracil, 6-aza-thymine, 6-aza-2-thio-thymine and 2,6-diamino-purine.

Preferably the inorganic phosphate is removed from the reaction. This removal is preferably effected by (i) conversion to inorganic pyrophosphate, (ii) precipitation/complexation and/or (iii) substrate phosphorylation.

Conversion to inorganic pyrophosphate may be effected by a phosphate transfer from a phosphorylated, preferably polyphosphorylated substrate such as fructose diphosphate (FDP), wherein a phosphate group is cleaved from the phosphorylated substrate and reacts with the inorganic phosphate, with inorganic pyrophosphate (PPi) being formed. This phosphate transfer is preferably catalyzed by a PPi-dependent phosphorylase/kinase, e.g. by a PPi-dependent phosphofructokinase (PFK-PPi, EC 2.7.1.90), which catalyzes the reaction of fructose diphosphate (FDP) and inorganic phosphate to fructose 6-phosphate (F6P) and inorganic pyrophosphate. Preferred sources of PPi-dependent kinases/phosphorylases and genes coding therefor are from Propionibacterium freudenreichii (shermanii) or from potato tubers.

Further, the inorganic phosphate may be removed from the reaction by precipitation and/or complexation which may be effected by adding polyvalent metal ions, such as calcium or ferric ions capable of precipitating phosphate or by adding a complex-forming compound capable of complexing phosphate. It should be noted that also a combination of pyrophosphate formation and complexation/ precipitation may be carried out.

Furthermore, the removal of inorganic phosphate may be effected by substrate phosphorylation. Thereby the inorganic phosphate is transferred to a suitable substrate, with a phosphorylated substrate being formed. The substrate is preferably selected from saccharides, e.g. disaccharides such as sucrose or maltose. When using disaccharides as substrate, a

PCT/EP00/08088

10

15

20

25

30

monosaccharide and a phosphorylated monosaccharide are obtained. The phosphate transfer is catalyzed by a suitable phosphorylase/kinase such as sucrose phosphorylase (EC 2.4.1.7) or maltose phosphorylase (EC 2.4.1.8). Preferred sources of these enzymes are Leuconostoc mesenteroides, Pseudomonas saccherophila (sucrose phosphorylase) and Lactobacillus brevis (maltose phosphorylase).

The phosphorylated substrate may be further reacted by additional coupled enzymatic reactions, e.g. into a galactoside (Ichikawa et al., Tetrahedron Lett.36 (1995), 8731-8732). Further, it should be noted that phosphate removal by substrate phosphorylation may also be coupled with other phosphate removal methods as described above.

Deoxyribose 1-phosphate (dR1P), the starting compound of the method of the invention, is a rather unstable compound, the isolation of which is difficult. In a preferred embodiment of the present invention, d1RP is generated in situ from deoxyribose 5-phosphate (dR5P) which is relatively stable at room temperature and neutral pH. This reaction is catalyzed by a suitable enzyme, e.g. a deoxyribomutase (EC 2.7.5.1) or a phosphopentose mutase (PPM, EC 5.4.2.7) which may be obtained from any suitable source as outlined above. The reaction is preferably carried out in the presence of divalent metal cations, e.g. Mn²⁺ or Co²⁺ as activators. Preferred sources of deoxyribomutase are enterobacteria. Particular preferred sources of native or recombinant PPM are prokaryotic organisms such as E.coli. Recombinant PPM may be isolated from E.coli strain pHSP 275 (CNCM I-2188) deposited on April 23, 1999, which is a recombinant E.coli strain transformed with a plasmid containing the E.coli deo B (phosphopentose mutase) insert. The nucleotide sequence of the PPM gene and the corresponding amino acid sequence are shown in SEQ ID NO.17 and 18 and 5 and 6.

20

25

30

dR5P may be generated by a condensation of glyceraldehyde 3-phosphate (GAP) with acetaldehyde. This reaction is catalyzed by a suitable enzyme, preferably by a phosphopentose aldolase (PPA, EC 4.1.2.4). The reaction exhibits an equilibrium constant favorable to the formation of the phosphorylated sugar ($K_{eq} = [dR5P]/[acetaldehyde] \times [GAP] = 4.2 \times 10^3 \times M^{-1}$). PPA forms an unstable Schiff base intermediate by interacting with the aldehyde. Particular preferred sources of native or recombinant PPA are prokaryotic organisms such as E.coli. Recombinant PPA may be isolated from E.coli strain pHSP 276 (CNCM I-2189) deposited on April 23, 1999. This recombinant E.coli strain is transformed with a plasmid containing the deoC (phosphopentosealdolase) insert. The nucleotide sequence of the PPA gene and the corresponding amino acid sequence are shown in SEQ ID NO.19 and 20 and 7 and 8.

15 GAP is a highly unstable compound and, thus, should be generated in situ from suitable precursors which are preferably selected from fructose 1,6-diphosphate (FDP), dihydroxyacetone (DHA) and/or glycerolphosphate (GP), with FDP being preferred.

FDP can be converted by an FDP aldolase (EC 4.1.2.13) selected from FDP aldolases I and FDP aldolases II to GAP and dihydroxyacetone phosphate ($K_{eq} = [FDP]/[GAP] \times [DHAP] = 10^4 M^{-1}$). The two families of FDP aldolases giving identical end products (GAP and DHAP) via two chemically distinct pathways may be used for this reaction. FDP aldolase I forms Schiff base intermediates like PPA, and FDP aldolase II which uses metals (Zn^{2+}) covalently bound to the active sites to generate the end products. FDP-aldolase I is characteristic to eukaryotes, although it is found in various bacteria. FDP-aldolase II is more frequently encountered in prokaryotic organisms. If FDP-aldolase reacts with FDP in the presence of acetaldehyde, the latter compound can interact with DHAP to yield an undesired condensation by-product named deoxyxylolose 1-phosphate (dX1P). Thus,

10

15

20

25

30

the reaction is preferably conducted in a manner by which the generation of undesired side products is reduced or completely suppressed.

Particular preferred sources of native or recombinant FDP aldolases are prokaryotic or eukaryotic organisms. For example, FDP aldolase may be isolated from rabbit muscle. Further, FDP aldolase may be obtained from bacteria such as E.coli. Recombinant FDP aldolase may be isolated from recombinant E.coli strain pHSP 284 (CNCM I-2190) which is transformed with a plasmid containing the E.coli fba (fructose diphosphate aldolase) insert. The nucleotide sequence of the E.coli FDP aldolase gene and the corresponding amino acid sequence are shown in SEQ ID NO.9 and 10.

On the other hand, GAP may be generated from DHAP and ATP, with dihydroxyacetone phosphate (DHAP) and ADP being formed and subsequent isomerization of DHAP to GAP in a reaction catalyzed by a glycerokinase (GK, EC 2.7.1.30) and a triose phosphate isomerase (TIM, EC 5.3.1.1). Suitable glycerokinases are obtainable from E.coli, suitable triose phosphate isomerases are obtainable from bovine or porcine muscle.

In a still further embodiment of the present invention GAP may be generated from glycerol phosphate (GP) and O_2 , with DHAP and H_2O_2 being formed and subsequent isomerization of DHAP to GAP in a reaction catalyzed by a glycerophosphate oxidase (GPO, EC 1.1.3.21) and a triose phosphate isomerase (TIM, EC 5.3.1.1). Suitable glycerophosphate oxidases are obtainable from Aerococcus viridans.

In an alternative embodiment of the present invention deoxyribose 5-phosphate (dR5P) is generated by phosphorylation of deoxyribose. Preferably this reaction is carried out in the presence of a suitable enzyme, e.g. a deoxyribokinase (dRK, EC 2.7.1.5) which may be obtained from prokaryotic organisms, particularly Salmonella typhi and in the presence of

- 9 -

ATP. The nucleotide sequence of the Salmonella dRK gene and the corresponding amino acid sequence are shown in SEQ ID NO.11 and 12.

By the reaction as outlined above deoxyribonucleosides are obtained which contain a nucleobase which is accepted by the enzymes TP and/or PNP. TP is specific for thymidine (T), uracil (U) and other related pyrimidine compounds. PNP uses adenine, guanine, hypoxanthine or other purine analogs as substrates.

5

10

15

20

25

30

The synthesis of deoxyribonucleosides which are not obtainable by direct condensation such as deoxycytosine (dC), thus, require an additional enzymatic reaction, wherein a deoxyribonucleoside containing a first nucleobase is reacted with a second nucleobase, with a second ribonucleoside containing the second nucleobase being formed. The second nucleobase is preferably selected from cytosine and analogs thereof such as 5-azacytosine. It should be noted, however, that also other nucleobases 2-amino-6-methylmercaptopurine, purine, 6-methyl such dimethylaminopurine, 2,6-dichloropurine, 6-chloroguanine, 6-chloropurine, 5-fluorouracil, ethyl-4-amino-5-imidazole carboxylate, 6-azathymine, imidazole-4-carboxamide and 1,2,4-triazole-3-carboxamide converted to the corresponding deoxyribonucleoside by this nucleobase exchange reaction (Beaussire and Pochet, Nucleosides & Nucleotides 14 (1995), 805-808, Pochet et al., Bioorg.Med.Chem.Lett.5 (1995), 1679-1684, Pochet and Dugué, Nucleosides & Nucleotides 17 (1998), 2003-2009, Pistotnik et al., Anal.Biochem.271 (1999), 192-199). This reaction enzyme called nucleoside catalyzed by preferably an deoxyribosyltransferase (NdT, EC 2.4.2.6) which transfers the glycosyl moiety from a first deoxynucleoside to a second nucleobase, e.g. cytosine. A preferred source of native or recombinant NdT are prokaryotic organisms such as lactobacilli, particularly Lactobacillus leichmannii. Recombinant NdT may be isolated from recombinant E.coli strain pHSP 292 (CNCM I-2191) deposited on April 23, 1999, which is transformed with a plasmid

containing the L.leichmannii NdT (nucleoside 2-deoxyribosyltransferase) insert. The nucleotide sequence of the NdT gene and the corresponding amino acid sequence are shown in SEQ ID NO.13 and 14.

A further aspect of the present invention is a method for the in vitro enzymatic synthesis of deoxyribonucleosides comprising the steps of: (i) condensing glyceraldehyde 3-phosphate (GAP) with acetaldehyde to deoxyribose 5-phosphate (dR5P), (ii) isomerizing deoxyribose 5-phosphate to deoxyribose 1-phosphate (dR1P) and (iii) reacting deoxyribose 1-phosphate and a nucleobase, wherein a deoxyribonucleoside and inorganic phosphate are formed. Preferably, the reaction is carried out without isolating intermediate products and, more preferably, as a one-pot reaction. Further, the removal of the inorganic phosphate from the reaction is preferred.

15

20

25 '

30

10

5

As outlined above, the glyceraldehyde 3-phosphate may be generated from FDP, DHA and/or GP. Preferably, FDP is used as a starting material.

In order to avoid the production of undesired by-products and the toxic effects of acetaldehyde, the course of the reaction is preferably controlled by suitable means. Thus, preferably, the reaction is carried out in a manner such that the acetaldehyde concentration in step (ii) is comparatively low, e.g. less than 100 mM, particularly less than 50 mM, e.g. by adding the acetaldehyde in portions or continuously during the course of the reaction and/or by removing excess acetaldehyde. Further, it is preferred that before step (ii) excess starting materials and/or by-products, particularly fructose 1,6-diphosphate and/or deoxyxylulose 1-phosphate (dX1P), are removed. This removal may be effected by chemical and/or enzymatic methods, e.g. precipitating FDP with ferric salts or enzymatically degrading X1P via dihydroxyacetone phosphate. Alternatively or additionally the reaction conditions may be adjusted such that before step (ii) no substantial amounts, preferably less than 10 mM, of starting materials and/or by-

- 11 -

products, particularly fructose 1,6-diphosphate and/or deoxyxylulose 1-phosphate, are present in the reaction mixture.

In still another embodiment, the present invention relates to a method for the in vitro enzymatic synthesis of deoxyribonucleosides comprising the steps of: (i) phosphorylating deoxyribose to deoxyribose 5-phosphate, (ii) isomerizing deoxyribose 5-phosphate to deoxyribose 1-phosphate and (iii) reacting deoxyribose 1-phosphate and nucleobase, wherein a deoxyribonucleoside and inorganic phosphate are formed. Preferably, these reactions are carried out with isolating intermediate products and, more preferably, as a one-pot reaction. To obtain a better yield the removal of inorganic phosphate from step (iii) is preferred.

10

15

20

25

30

By the process as described above naturally occurring deoxyribonucleosides such as dA, dG, dT, dU and dT but also analogs thereof containing non-naturally occurring nucleobases and/or non-naturally occurring deoxyribose sugars such as 2'-deoxy-3'-azido-deoxyribose or 2'-deoxy-4'-thio-deoxyribose may be produced.

The deoxyribonucleosides obtained may be converted to further products according to known methods. These further reaction steps may comprise the synthesis of deoxyribonucleoside mono-, di- or triphosphates, of H-phosphonates or phosphoramidites. Additionally or alternatively, labelling groups such as radioactive or chemical labelling groups may be introduced into the deoxyribonucleosides.

Still a further aspect of the present invention is the use of an isolated nucleic acid molecule encoding a nucleoside 2-deoxyribosyl transferase (NdT, EC 2.4.2.6) for the preparation of an enzyme in an in vitro enzymatic synthesis process, wherein a deoxyribonucleoside containing a first nucleobase is reacted with a second nucleobase, with a deoxyribonucleoside containing the second nucleobase being formed. The

second nucleobase is preferably selected from cytidine and analogs thereof, 2,6-dichloro-purine, 6-chloro-guanine, 6-chloro-purine, 6-aza-thymine and 5-fluoro-uracil. The first nucleobase is preferably selected from thymine, quanine, adenine or uracil.

5

10

15

More preferably, the nucleic acid molecule encoding an NdT comprises (a) the nucleotide sequence shown in SEQ ID NO.13 or its complementary sequence, (b) a nucleotide sequence corresponding to the sequence of (a) in the scope of degeneracy of the genetic code or (c) the nucleotide sequence hybridizing under stringent conditions to the sequence (a) and/or (b). Apart from the sequence of SEQ ID NO.13 the present invention also covers nucleotide sequences coding for the same polypeptide, i.e. they correspond to the sequence within the scope of degeneracy of the genetic code, and nucleotide sequence hybridizing with one of the above-mentioned sequences under stringent conditions. These nucleotide sequences are obtainable from SEQ ID NO.13 by recombinant DNA and mutagenesis techniques or from natural sources, e.g. from other Lactobacillus strains.

20

Stringent hybridization conditions in the sense of the present invention are defined as those described by Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press (1989), 1.101-1.104. According to this, hybridization under stringent conditions means that a positive hybridization signal is still observed after washing for one hour with 1 x SSC buffer and 0.1% SDS at 55°C, preferably at 62°C and most preferred at 68°C, in particular, for one hour in 0.2 x SSC buffer and 0.1% SDS at 55°C, preferably at 62°C.

25

30

Moreover, the present invention also covers nucleotide sequences which, on nucleotide level, have an identity of at least 70%, particularly preferred at least 80% and most preferred at least 90% to the nucleotide sequence shown in SEQ ID NO.13. Percent identity are determined according to the following equation:

15

20

25

30

$$I = \frac{n}{L} \times 100$$

wherein I are percent identity, L is the length of the basic sequence and n is the number of nucleotide or amino acid difference of a sequence to the basic sequence.

Still another subject matter of the present invention is a recombinant vector comprising at least one copy of the nucleic acid molecule as defined above, operatively linked with an expression control sequence. The vector may be any prokaryotic or eukaryotic vector. Examples of prokaryotic vectors are chromosomal vectors such as bacteriophages (e.g. bacteriophage Lambda) and extrachromosomal vectors such as plasmids (see, for example, Sambrook et al., supra, Chapter 1-4). The vector may also be a eukaryotic vector, e.g. a yeast vector or a vector suitable for higher cells, e.g. a plasmaid vector, viral vector or plant vector. Suitable eukaryotic vectors are described, for example, by Sambrook et al., supra, Chapter 16. The invention moreover relates to a recombinant cell transformed with the nucleic acid or the recombinant vector as described above. The cell may be any cell, e.g. a prokaryotic or eukaryotic cell. Prokaryotic cells, in particular, E.coli cells, are especially preferred.

The invention refers to an isolated polypeptide having NdT activity encoded by the above-described nucleic acid and its use for the preparation of deoxyribonucleosides. Preferably, the polypeptide has the amino acid sequence shown in SEQ ID NO.14 or an amino acid sequence which is at least 70%, particularly preferred at least 80% and most preferred at least 90% identical thereto, wherein the identity may be determined as described above.

Finally, the present invention also relates to the use of isolated nuclecic acid molecules having thymidine phosphorylase (TP), purine nucleoside phosphorylase (PNP), phosphopentose mutase (PPM), phosphopentose aldolase (PPA), FDP aldolase and deoxyribokinase (dRK) activity for the preparation of an enzyme for a method for the in vitro synthesis of deoxynucleosides. Preferably, these nucleic acids are selected (a) from a nucleotide sequence shown in SEQ ID NO.1, 3, 5, 7, 9 or 11 or their complementary sequences, (b) a nucleotide sequence corresponding to a sequence of (a) within the scope of degeneracy of the genetic code or (c) a nucleotide sequence hybridizing under stringent conditions to a sequence (a) and/or (b).

Isolated polypeptides having TP, PNP, PPM, PPA, FDP aldolase or dRK activity encoded by the above-described nucleic acids may be used for the preparation of deoxyribonucleosides. Preferably, these polypeptides have the amino acid sequence shown in SEQ ID NO.2, 4, 16, 6, 18, 8, 20, 10 or 12 or an amino acid sequence which is at least 70%, particulary preferred at least 80% and most preferred at least 90% identical thereto, wherein the identity may be determined as described above.

20

25

30

15

An isolated nucleic acid molecule encoding a dRK may be used for the preparation of an enzyme for an in vitro method for the enzymatic synthesis of deoxyribonucleosides comprising the step of phosphorylating deoxyribose to deoxyribose 5-phosphate, wherein said nucleic acid molecule comprises (a) the nucleotide sequence shown in SEQ ID NO.11 or its complementary sequence, (b) a nucleotide sequence corresponding to the sequence of (a) in the scope of the degeneracy of the genetic code or (c) a nucleotide sequence hybridizing under stringent conditions to the sequence of (a) and/or (b). Correspondingly, an isolated polypeptide having dRK activity is suitable for an in vitro method for the enzymatic synthesis of deoxyribonucleosides as outlined above.

The E.coli strains pHSP 282 (CNCM I-2186), pHSP 283 (CNCM I-2187), pHSP 275 (CNCM I-2188), pHSP 276 (CNCM 2189), pHSP 284 (CNCM I-2190) and pHSP 292 (CNCM I-2191) were deposited according to the regulations of the Budapest Treaty on April 23, 1999 at the Collection Nationale de Culture de Microorganismes, Institut Pasteur, 25, Rue de Docteur Roux, 75724 Paris Cedex 15.

Description of figures

- Figure 1 shows the synthesis of dR5P according to Example 12.
 - Figure 2 shows the synthesis of deoxyadenosine according to Example 12.
- shows the synthesis of deoxyadensine according to Example 13.
 - Figure 4 shows the synthesis of dG-NH₂ according to Example 14.

20 Example 1

25

30

Sources of Enzymes

L-glycerol 3-phosphate oxidase (1.1.3.21) from Aerococcus viridans, sucrose phosphorylase (2.4.1.7), fructose 6-phosphate kinase (2.7.1.90) from Propionibacterium freudenreichii, rabbit muscle aldolase (RAMA), formate dehydrogenase, glycerolphosphate dehydrogenase (GDH), triosephosphate isomerase (TIM), catalase, glycerol 3-phosphate oxidase and maltose phosphorylase were obtained from commercial sources (Roche Diagnostics, Sigma) or as described in the literature.

FDP aldolase II (4.1.2.13), phosphopentose aldolase (PPA, EC 4.1.2.4), phosphopentose mutase (PPM, EC 5.4.2.7), thymidine phosphorylase (TP,

EC 2.4.2.4), purine nucleoside phosphorylase (PNP, EC 2.4.2.1), nucleoside 2-deoxyribosyl transferase (NdT, EC 2.4.2.6) were obtained from E.coli strains deposited at CNCM (see above).

Example 2

5

10

15

20

25

Protocol of the synthesis of deoxyadenosine

Reaction mixture A was prepared by adding acetaldehyde (final concentration 250 mM), FDP aldolase II (0.5 U/mI), PPA (2.5 U/mI) to 20 mI of 100 mM fructose-1,6-diphosphate (FDP), pH 7.6 and incubating overnight at 4°C.

Mixture B was prepared by adding MnCl₂ (final concentration 0.6 mM), glucose 1,6-diphosphate (15 μ M), PPM (1.5 U/ml), PNP (0.4 U/ml), SP (1.5 U/ml) pentosephosphate aldolase, PPA (2 U/ml) and FDP aldolase II (0.5 U/ml) to 10 ml 0.9 M sucrose, pH 7.6, at room temperature.

2 ml of A were added over B at a temperature of 20°C. After 1 hour 2.5 ml A were added. After another hour 3.0 ml A were added. After another 1.5 h 3.5 ml A were added. After another 1.5 h 4 ml A were added and after another 1-1.5 h 5 ml A were added and left to stand overnight.

At each time of addition of A the amounts of FDP, dR5P, dX1P and dA in the reaction mixture were determined and the yield was calculated. The concentration of acetaldehyde was kept between 20-30 mM. The results are shown in Table 1:

20

25

- 17 -

Table 1

Time (h)	Volume (ml)	Concentrations (mM)			Yield (mmol)
		dR5P	dA	dX1P	dA
0	12	4	0	1.2	0
1	12	3.4	3.2	-1	0.04
2	14.5	7.9	8.0	2.6	0.12
3.5	17.5	13	16.2	4.3	0.28
5	21	11.7	21.7		0.46
6	25		23.7		0.59
22	30	11	40.4	13.2	1.21
30	30		50.3	_	1.51
54	30	8.9	60.6		1.82

The starting amount of FDP was 1.92 mmol. The amount after completion of reaction was 0.150 mmol. Thus, 1.77 mmol were consumed, theoretically corresponding to 3.54 mmol equivalents dA. The amount of dA formed was 1.82 mmol, leading to a yield of 51.4% based on the amount of FDP.

Example 3

Removal of excess FDP by means of FeCl₃

1.4 g (2.55 mmol) trisodium-fructose-1,6-disphosphate-octahydrate and 430 μ l (335 mg, 7.6 mmol) acetaldehyde were dissolved in 15 ml of water at 4°C. A pH of 7.9 was adjusted by means of sodium hydroxide solution. 150 U pentosephosphate aldolase (PPA) were added, and cold water (4°C)

was added to give 20 ml. After addition of 50 U E.coli aldolase II the mixture was stored at 4°C. After 2 h another 75 U PPA and 50 μ l acetaldehyde (390 mg, 8.9 mmol) were added. After 20 h 500 U triosephosphate isomerase (TIM) were added. After 120 h the solution contained about 68 mM FDP, about 12 mM dX1P and about 45 mM dR5P. The reaction was stopped by adding 900 μ l of a 2 M solution of iron(III) chloride in 0.01 M hydrochloric acid. The precipitate was centrifuged and washed, the resulting solution contained about 4 mM dX1P, about 9 mM FDP and about 25 mM dR5P.

10

15

20

Example 4

Removal of excess FDP and dX1P by degradation via DHAP

576 mg (1.05 mmol) trisodium-fructose-1,6-disphosphate-octahydrate were dissolved in 8 ml water, and the pH was adjusted at 8.1 by means of sodium hydroxide solution. 75 U PPA and 27 U rabbit muscle aldolase (RAMA) were added, and water was added to give 10 ml. 570 μ l (440 mg, 10 mmol) acetaldehyde were added. The reaction was stored at 4°C. After 100 h the solution contained about 110 mM dX1P, about 5 mM FDP and about 85 mM dR5P (about 870 μ mol). The reaction was stopped by adding hydrochloric acid until a pH of 2 was reached. After adding sodium hydroxide solution to give a pH of 5.5 the solution was stored.

For removing dX1P the acetaldehyde was evaporated and the solution was diluted with water to reach 30 ml. It was mixed with 3 ml 2.65 M sodium formate solution (8 mmol), and sodium hydroxide solution was added until a pH of 7.4 was reached. 23 U formate dehydrogenase (FDH), 6 mg NADH, 16 U RAMA and 20 U glycerolphosphate dehydrogenase (GDH) were added.

After 24 h at room temperature the concentrations of dX1P and FDP are below 3 mM, the loss of dR5P is less than 10%.

Example 5

Preparation of dR5P via G3P

1.1 g (2.0 mmol) trisodium-fructose-1,6-disphosphate-octahydrate were dissolved in 8 ml water. 1.58 mol of a 2.65 M sodium formate solution (4.2 mmol) and 14.2 mg NADH were added. A pH of 7.0 was adjusted by means of NaOH. After addition of 36 U RAMA, 50 U triosephosphate isomerase (TIM), 34 U GDH and 35 U FDH water was added to give 12 ml.

After incubation of 40 h at room temperature the FDP content was below 3 mM. The enzymes were denatured by acidification with hydrochloric acid to reach a pH of 2. Subsequently, the pH of the solution was adjusted at 4 and the solids were centrifuged and filtered off, respectively. Through dilution during purification a total volume of 25 ml was reached which contained about 160 mM of glycerol-3-phosphate (G3P).

20

25

30

5

10

15

4 ml of this solution (about 640 μ mol G3P) were adjusted at a pH of 7.8 by means of sodium hydroxide solution. 7.8 kU catalase, 500 U TIM and 13 U glycerol 3-phosphate oxidase are added. The mixture was stirred very slowly in an open flask. After 30 min 18 U PPA were added. Acetaldehyde was added in portions of 30 μ l (23.5 mg, 530 μ mol) after 30, 60, 120, 180 and 240 min. After 24 h another 15 U PPA, 2.5 kU TIM and 100 μ l (78 mg, 1.8 mmol) acetaldehyde were added. After 30 h the batch is sealed after addition of another 100 μ l acetaldehyde. After a total of 45 h a concentration of about 60 mM dR5P was achieved and the reaction is completed. For preparing 2'-deoxyadenosine (e.g. Example 7) excess acetaldehyde must be distilled off.

10

15

20

25

30

Example 6

Preparation of a dR5P solution containing small amounts of dX1P or FDP

A solution of 60 mmol/l FDP and 120 mmol/l acetaldehyde having pH 7.4 was kept at a temperature of 15°C. 5 ml thereof were mixed with 4 U aldolase II, 2 U TIM and 40 U PPA and kept at 15°C. After 4, 8.5, 16.5 and 24 h 12 U PPA and 100 μ l of a 34 vol.-% solution of acetaldehyde in water (26.4 mg, 600 μ mol) were added each. After 40 h the solution was allowed to reach room temperature. After 90 h the reaction solution had reached concentrations of about 3 mM FDP, about 4 mM dX1P and at least 70 mM dR5P. For stopping the reaction and removing acetaldehyde about 20% of the volume were distilled off.

Example 7

Preparation of deoxyadenosine (dA) from dR5P by means of barium acetate

dR5P was used in the form of a solution prepared according to Examples 3-6. For instance, 10 ml of a solution of Example 6 diluted to have 70 mM dR5P (700 μ mol dR5P) were mixed with 40 mg (300 μ mol) adenine, 41 μ g (50 nmol) tetracyclohexylammonium-glucose-1,6-disphosphatè, 396 μ g (2 μ mol) manganese-II-acetate-tetrahydrate, 10 U pentosephosphate mutase (PPM) and 30 U purine-nucleoside phosphorylase (PNP). After 3 h another 27 mg (200 μ mol) adenine and 26 mg (100 μ mol) barium acetate were added.

A further amount of 26 mg barium acetate was added after 4 h, one of 40 mg adenine after 7 h. After 10 h the reaction was completed. The solution had a concentration of 45 mM dA.

Example 8

5

10

15 .

20

Preparation of deoxyadenosine (dA) from dR5P by means of sucrose phosphorylase

10 ml of a solution of Example 6 diluted to 55 mM dR5P (550 μ mol dR5P) were mixed with 81 mg (600 μ mol) adenine, 41 μ g (50 nmol) tetracyclohexylammonium-glucose-1,6-disphosphate, 396 μ g (2 μ mol) manganese-Il-acetate-tetrahydrate, 10 U pentosephosphate mutase (PPM) 15 U purine nucleoside phosphorylase (PNP), 25 U sucrose phosphorylase and 340 mg (1 mmol) cane sugar.

After 3 h at room temperature the reaction was completed. The solution had a concentration of about 50 mM dA.

Example 9

Preparation of deoxyadenosine (dA) from dR5P by means of maltose phosphorylase

10 ml of a solution of dR5P diluted to 55 mM were mixed at pH 7.0 with 81 mg (600 μ mol) adenine, 41 μ g (50 nmoles) glucose 1,6-diphosphate, 396 μ g (2 μ moles) manganese II-acetate tetrahydrate, 5 units pentose phosphate mutase (PPM), 10 units purine nucleoside phosphorylase, (PNP), 20 units maltose phosphorylase and 1080 mg (3 mmoles) maltose.

After 12h at room temperature the reaction was completed. The solution had a concentration of 49 mM dA.

25

10

Example 10

Preparation of deoxycytosine (dC) from dR5P by means of sucrose phosphorylase

20 ml of a solution of dR5P diluted to 70 mM were mixed at pH 7.0 with 5.4 mg adenine (0.04 mmoles), 155 mg cytosine (1.4 mmoles), 82 μ g (100 nmoles) glucose 1,6-diphosphate, 792 μ g (4 μ moles) manganese II-acetate-tetrahydrate, 20 units PPM, 30 units PNP, 50 units 2-deoxyribosyl transferase (NdT), 50 units sucrose phosphorylase and 2.05 g (6 mmoles) sucrose.

After 18h at 30°C the solution had a concentration of 62 mM dC.

15 Example 11

Preparation of deoxyguanosine (dG) from dR5P by means of sucrose phosphorylase

20 ml of a solution of dR5P diluted to 70 mM were mixed at pH 7.0 with 91 mg guanine (0.6 mmoles), 82 μ g (100 nmoles) glucose 1,6-diphosphate, 792 μ g (4 μ moles) manganese II-acetate-tetrahydrate, 20 units PPM, 10 units PNP, 20 units sucrose phosphorylase and 2.05 g (6 mmoles) sucrose.

After 18h at 37°C the dG formed corresponds to 0.5 mmoles.

25

10

15

20

25

30

Example 12

Two step procedure of dA synthesis

In the first step dR5P was prepared by adding FDP-Aldolase II (AldII) from E. coli, pentosephosphate aldolase (PPA) from E. coli and triosephosphate isomerase (TIM) from E. coli to fructose-1.6-bisphosphate (FDP) and acetaldehyde (AcAld) essentially according to Ex. 6. FDP trisodium salt was mixed in a final concentration of 75 mM with AcAld (100 mM final concentration). The pH was adjusted to 7,4 by addition of sodium hydroxide. The reaction was started by adding PPA (12 kU/I), Ald II (0,3 kU/I) and TIM (2,5 kU/I). At 4 h 117 mM AcAld, at 7 h 117 mm AcAld, PPA 6 kU/I, TIM 2,5 kU/I and at 12 h 117 mM AcAld were added. The reaction was run at 21°C. Conversion was monitored by enzymatical assay using step by step glycerol-3-phosphate dehydrogenase (GDH), rabbit muscle aldolase (RAMA), trisosephosphate isomerase (TIM), pentosephosphate aldolase (PPA) in the presence of NADH (0,26 mM in 300 mM triethanol amine buffer pH 7.6). Conversion is shown in Fig. 1.

After yielding approx. 95 mM dR5P the enzymes were deactivated by heating to 65°C for 10 min. and excess of AcAld was removed by evaporation. In the second step dR5P in a final concentration of 64 mM was converted to deoxyadenosine (dA) by adding adenine (A, final concentration 58 mM) in the presence of 300 μ M MnCl₂, 5 μ M Glucose-1.6-bisphosphate, pentosephosphate mutase from E. coli (PPM, 2 kU/I), purine nucleoside phosphorylase from E. coli (PNP, 1 kU/I). The synthesis was run at 20°C, pH 7.4. In one experiment 200 mM sucrose and 0.6 kU/I sucrose phosphorylase (SP) from Leuconostoc mes. were added at t=2 h (see arrow in Fig. 2, rhombus, solid line), in a second experiment addition of SP was omitted (squares, dotted line). The conversion was monitored by RP-HPLC (column Hypersil ODS 5 μ m, 250 x 4,6 mm; eluent: 30 mM potassium phosphate, 5 mM tetrabutyl ammoniumhydrogensulfate pH 6.0/

1 % acetonitrile, flow rate: 1 ml/min, column temp.: 35°C, det.: UV at 260 nm) and is shown in Fig. 2.

Example 13

10

15

20

25

30

dR5P was prepared by adding FDP-Aldolase II (AldII) from E. coli, pentosephosphate aldolase (PPA) from E. coli and trisosephosphate isomerase (TIM) from E. coli to fructose-1.6-bisphosphate (FDP) and acetaldehyde (AcAld) essentially according to Ex. 6. Excess of AcAld was removed by evaporation. dR5P in a final concentration of 60 mM was converted to deoxyadenosine (dA) by adding adenine (A, final concentration 58 mM) in the presence of 300 μ M MnCl₂, 5 μ M Glucose-1.6-bisphosphate, pentosephosphate mutase from E. coli (PPM, 1,5 kU/I), purine nucleoside phosphorylase from E. coli (PNP, 1 kU/l). The synthesis was run at 20°C, pH 7.4. After 24 h sucrose in a final concentration of 200 mM and sucrose phosphorlyase from Leuconsotoc mes. (1 kU/I) were added. Conversion was monitored by RP-HPLC (dA, A, see ex. 12)) resp. enzymatical assay (dR5P, using step by step glycerol-3-phosphate dehydrogenase (GDH), rabbit trisosephosphate isomerase (TIM), muscle aldolase (RAMA), pentosephosphate aldolase (PPA) in the presence of NADH (0,26 mM in 300 mM Triethanol amine buffer pH 7.6)) and phosphomolybdate complexing of inorg. phosphate (Sigma, Proc. No. 360-UV). This is shown in Fig. 3.

Example 14

dR5P was essentially prepared according according to Ex. 6. dR5P in a final concentration of 80 mM was then converted to deoxy-6-aminoguanosine (dG-NH₂) by adding 2,6-Diaminopurine (DAP, final concentration 77 mM) in the presence of 200 mM sucrose, 300 μ M MnCl₂, 5 μ M Glucose-1.6-bisphosphate, pentosephosphate mutase from E. coli (PPM, 2,5 kU/I), purine nucleoside phosphorylase from E. coli (PNP, 1 kU/I), sucrose

phosphorylase from Leucoonostoc mes. (SP, 1,5 kU/l) . The synthesis was run at 20°C pH 7.4. After 2,5h, 5 h and 20,5 h additional amounts of enzymes were added: 2,5 h PPM (2,5 kU/l), PNP (1 kU/l, SP (1,5 kU/l), 5 h PPM (2,5 kU/l), SP (1,5 kU/l), 20,5 h: PPM (2,5 kU/l), SP (1,5 kU/l). The conversion was monitored by RP-HPLC (column Hypersil ODS 5 μ m, 250 x 4,6 mm; eluent: 30 mM potassium phosphate, 5 mM tetrabutyl ammoniumhydrogensulfate pH 6.0/ 1 % acetonitrile, flow rate: 1 ml/min, column temp.: 35°C, det.: UV at 216 nm) and is shown in Fig. 4.

Claims

- 1. A method for the in vitro enzymatic synthesis of deoxyribonucleosides comprising reacting deoxyribose 1-phosphate (dR1P) and a nucleobase, wherein a deoxyribonucleoside and inorganic phosphate are formed.
 - 2. The method of claim 1, wherein the inorganic phosphate is removed.
- The method of claim 1 or 2, wherein the reaction is catalyzed by a thymidine phosphorylase (TP, EC 2.4.2.4) or a purine nucleoside phosphorylase (PNP, EC 2.4.2.1).
- 4. The method of any one of the previous claims, wherein the nucleobase is selected from the group consisting of thymine, uracil, adenine, guanine and hypoxanthine and analogs thereof, e.g. 2-thio-uracil, 6-aza-uracil, 5-carboxy-2-thio-uracil, 6-aza-thymine, 6-aza-2-thio-thymine and 2,6-diamino-purine.
- The method of any one of the previous claims, wherein the removal of the inorganic phosphate is effected by (i) conversion to inorganic pyrophosphate, (ii) precipitation, (iii) complexation and/or (iv) substrate phosphorylation.
- The method of claim 5, wherein the inorganic phosphate is converted to pyrophosphate by a phosphate transfer from fructose-diphosphate (FDP) under formation of fructose-6-phosphate (F6P).
- 7. The method of claim 6, wherein the phosphate transfer is catalyzed by a PPi-dependent phosphofructokinase (PFK-PPi, EC 2.7.1.90).
 - 8. The method of claim 6 or 7, wherein the inorganic pyrophosphate is removed by precipitation.

20

- 9. The method of claim 5, wherein the inorganic phosphate is transferred to a disaccharide, particularly sucrose or maltose under formation of a monosaccharide and a phosphorylated monosaccharide.
- 10. The method of claim 9, wherein the phosphate transfer is catalyzed by a sucrose phosphorylase (EC 2.4.1.7) or a maltose phosphorylase (EC 2.4.1.8).
- 10 11. The method of claim 10, wherein the phosphorylated monosaccharide is further reacted.
 - 12. The method of any one of the previous claims, wherein the deoxyribose-1-phosphate is generated from deoxyribose 5-phosphate (dR5P).
 - 13. The method of claim 12, wherein the reaction is catalyzed by a deoxyribomutase (EC 2.7.5.1) or a phosphopentose mutase (PPM, EC 5.4.2.7).
 - 14. The method of claim 12 or 13, wherein the deoxyribose-5-phosphate is generated by a condensation of glyceraldehyde 3-phosphate (GAP) with acetaldehyde.
- 15. The method of claim 14, wherein the reaction is catalyzed by a phosphopentose aldolase (PPA, EC 4.1.2.4).
- 16. The method of claim 14 or 15, wherein the glyceraldehyde 3-phosphate is generated from fructose 1,6-diphosphate, dihydroxyacetone (DHA) and/or glycerolphosphate.

10

15

25

30

- 17. The method of claim 16, wherein the glyceraldehyde 3-phosphate is generated from fructose 1,6-diphosphate in a reaction catalyzed by an FDP-aldolase (EC 4.1.2.13) selected from FDP-aldolases I and FDP-aldolases II.
- 18. The method of claim 16, wherein the glyceraldehyde 3-phosphate is generated from dihydroxyacetone and ATP under formation of dihydroxyacetone phosphate (DHAP) and ADP and subsequent isomerization of DHAP to GAP in a reaction catalyzed by a glycerokinase (GK, EC 2.7.1.30) and a triose phosphate isomerase (TIM, EC 5.3.1.1).
- 19. The method of claim 16, wherein the glyceraldehyde 3-phosphate is generated from glycerol phosphate (GP) and O_2 under formation of dihydroxyacetone phosphate (DHAP) and H_2O_2 and subsequent isomerization of DHAP to GAP in a reaction catalyzed by a glycerophosphate oxidase (GPO, EC 1.1.3.21) and a triose phosphate isomerase (TIM, EC 5.3.1.1).
- 20. The method of claim 12 or 13, wherein the deoxyribose 5-phosphate is generated by a phosphorylation of deoxyribose.
 - 21. The method of claim 20, wherein the reaction is catalyzed by a deoxyribokinase (dRK, EC 2.7.1.15).
 - 22. The method of claim 21, wherein a dRK obtainable from Salmonella typhi is used which is encoded by (a) the nucleotide sequence shown in SEQ ID NO.11 or its complementary sequence, (b) a nucleotide sequence corresponding to the sequence of (a) in the scope of the degeneracy of the genetic code or (c) a nucleotide sequence hybridizing under stringent conditions to the sequence of (a) and/or (b).

10

25

30

23. The method of any one of the previous claims, wherein a deoxyribonucleoside containing a first nucleobase is further reacted with a second nucleobase under formation of a deoxyribonucleoside containing the second nucleobase.

24. The method of claim 23, wherein said second nucleobase is selected from cytidine and analogs thereof, e.g. 5-aza-cytidine, 2,6-dichloropurine, 6-chloro-guanine, 6-chloro-purine, 6-aza-thymine and 5-fluorouracil.

- 25. The method of claim 24, wherein the reaction is catalyzed by a nucleoside 2-deoxyribosyl transferase (NdT, EC 2.4.2.6).
- 26. The method of claim 25, wherein an NdT obtainable from Lactobacillus leichmannii is used which is encoded by (a) the nucleotide sequence shown in SEQ ID NO.13 or its complementary sequence, (b) a nucleotide sequence corresponding to the sequence of (a) in the scope of the degeneracy of the genetic code or (c) a nucleotide sequence hybridizing under stringent conditions to the sequence of (a) and/or (b).
 - 27. A method for the in vitro enzymatic synthesis of deoxyribonucleosides comprising the steps of:
 - (i) condensing glyceraldehyde 3-phosphate (GAP) with acetaldehyde to deoxyribose 5-phosphate (dR5P),
 - (ii) isomerizing deoxyribose 5-phosphate to deoxyribose 1-phosphate (dR1P) and
 - (iii) reacting deoxyribose 1-phosphate and nucleobase, wherein a deoxyribonucleoside and inorganic phosphate are formed.

25

- 28. The method of claim 27, wherein the reaction is carried out without isolating intermediate products.
- 29. The method of claim 27 or 28, wherein the glyceraldehyde 3-phosphate (GAP) is generated from fructose 1,6-diphosphate (FDP), dihydroxy-acetone (DHA) and/or glycerolphosphate (GP).
- 30. The method of claims 27 to 29, wherein before step (ii) excess acetaldehyde is removed.
- 31. The method of claims 27 to 30, wherein before step (ii) excess starting materials and/or by-products, particularly fructose 1,6-diphosphate and/or deoxyxylulose 1-phosphate (dX1P) are removed.
- The method of claims 27 to 30, wherein the reaction is carried out in a manner that before step (ii) no substantial amounts of starting materials and/or by-products, particularly fructose 1,6-diphosphate and/or deoxyxylulose 1-phosphate are present.
- 20 33. A method for the in vitro enzymatic synthesis of deoxyribonucleosides comprising the steps of:
 - (i) phosphorylating deoxyribose to deoxyribose 5-phosphate,
 - (ii) isomerizing deoxyribose 5-phosphate to deoxyribose 1-phosphate and
 - (iii) reacting deoxyribose 1-phosphate and nucleobase, wherein a deoxyribonucleoside an inorganic phosphate are formed.
- 34. The method of claim 33, wherein the reaction is carried out without isolating intermediate products.

PCT/EP00/08088

5

10

15

20

30

- 35. The method of claims 27 to 34, wherein the inorganic phosphate is removed.
- 36. The method of any one of the previous claims comprising further reacting said deoxyribonucleoside.
- 37. The method of claim 36, wherein said further reacting comprises the synthesis of deoxyribonucleoside mono-, di- or triphosphates, of H-phosphonates or of phosphoramidites.
- 38. The use of an isolated nucleic acid molecule encoding a nucleoside 2-deoxyribosyl transferase (NdT, EC 2.4.2.6) for the preparation of an enzyme for an in vitro method for the enzymatic synthesis of deoxyribonucleosides, wherein a deoxyribonucleoside containing a first nucleobase is further reacted with a second nucleobase under formation of a deoxyribonucleoside containing the second nucleobase, wherein said nucleic acid molecule comprises (a) the nucleotide sequence shown in SEQ ID NO.13 or its complementary sequence, (b) a nucleotide sequence corresponding to the sequence of (a) in the scope of the degeneracy of the genetic code or (c) a nucleotide sequence hybridizing under stringent conditions to the sequence of (a) and/or (b).
- The use of claim 38, wherein the second nucleobase is selected from cytidine and analogs thereof, e.g. 6-methyl purine, 2-amino-6-methylmercaptopurine, 6-dimethylaminopurine, 5-azacytidine, 2,6-dichloropurine, 6-chloroguanine, 6-chloropurine, 6-azathymine, 5-fluorouracil, ethyl-4-amino-5-imidazole carboxylate, imidazole-4-carboxamide and 1,2,4-triazole-3-carboxamide.
 - 40. The use of claim 38 or 39, wherein the first nucleobase is selected from adenine, guanine, thymine, uracil and hypoxanthine.

15

20

25

.....

- 41. The use of any one of claims 38-40, wherein the nucleic acid molecule is contained on a recombinant vector in operative linkage with an expression control sequence.
- 5 42. The use of any one of claims 38-41, wherein the nucleic acid is contained in a recombinant cell.
 - 43. Use of an isolated polypeptide having NdT activity for the preparation of nucleosides according to claim 24.
 - 44. Use of an isolated nucleic acid molecule encoding a deoxyribokinase (dRK, EC 2.7.1.5) for the preparation of an enzyme for an in vitro method for the enzymatic synthesis of deoxyribonucleosides comprising the step of phosphorylating deoxyribose to deoxyribose 5-phosphate, wherein said nucleic acid molecule comprises (a) the nucleotide sequence shown in SEQ ID NO.11 or its complementary sequence, (b) a nucleotide sequence corresponding to the sequence of (a) in the scope of the degeneracy of the genetic code or (c) a nucleotide sequence hybridizing under stringent conditions to the sequence of (a) and/or (b).
 - 45. Use of an isolated polypeptide having dRK activity for an in vitro method for the enzymatic synthesis of deoxyribonucleosides comprising the step of phosphorylating deoxyribose to deoxyribose 5-phosphate.
 - 46. Recombinant bacteria strains deposited at CNCM under accession numbers I-2186, I-2187, I-2188, I-2189, I-2190 and I-2191.

Fig. 1

- -X- · Mass Balance [%] --- mM DHAP ...<u>s</u>...mM dX1P mm dR5P - - ■- · mM FDP Mass Balance [%] 100 8 8 49 20 ဓ္တ B ------25 20 time [h] / ×--×

1/4

dR5P-Synthesis / TS_09_02_00 #4

Products

20,0

0'09

100,0

0'06

80,0

0'02

Fig. 2

Fig. 3

3/4

Arrow: Addition of SP

Deoxyadenosine Synthesis / TS_08_12_99#1 Effect of Sucrose Phosphorylase (SP)/Sucrose

Fig. 4

dG-NH2 Synthesis / TS_dG-NH2_29_06_00#6

dG-NH2 [area-%], 216 nm

SEQUENCE LISTING

```
<110> Institut Pasteur
     Roche Diagnostics GmbH
      Pharma-Waldhof GmbH & Co.KG
<120> Enzymatic synthesis of deoxyribonucleosides
<130> 20373PWO Deoxyribonucleosides
<140>
<141>
<150> EP99116425.2
<151> 1999-08-20
<160> 20
<170> PatentIn Ver. 2.1
<210> 1
<211> 1323
<212> DNA
<213> Escherichia coli
<220>
<221> CDS
<222> (1) .. (1320)
<400> 1
ttg ttt ctc gca caa gaa att att cgt aaa aaa cgt gat ggt cat gcg
Leu Phe Leu Ala Gln Glu Ile Ile Arg Lys Lys Arg Asp Gly His Ala
ctg agc gat gaa gaa att cgt ttc ttt atc aac ggt att cgc gac aac
                                                                    96
Leu Ser Asp Glu Glu Ile Arg Phe Phe Ile Asn Gly Ile Arg Asp Asn
                                                      30
             20
act atc tcc gaa ggg cag att gcc gcc ctc gcg atg acc att ttc ttc
Thr Ile Ser Glu Gly Gln Ile Ala Ala Leu Ala Met Thr Ile Phe Phe
                                                  45
                              40
         35
```

														atg Met		192
His	Asp 50	Met _.	Thr	мет	Pro	55 55	Arg	Val	ser	Leu	60	Mec	AIG	nec	•••	
														ggc Gly		240
65		•			70	_	_			75					80	
														tcg		288
Ile	Val	Asp	гÀг	85	ser	Thr	GIY	GIY	90	GIY	Asp	·	1111	Ser 95	Lcu	
														atg		336
Met	Leu	Gly	Pro 100	Met	Val	Ala	Ala	Cys 105	Gly	Gly	Tyr	IIe	110	Met	тте	
+ a+	~~ t	cac	aac	ctc	aat	cat	act	ggc	aat	acq	ctc	gac	aaa	ctg	gaa	384
														Leu		
		115					120					125				
														cgc		432
Ser	11e 130	Pro	Gly	Phe	Asp	Ile 135	Phe	Pro	Asp	Asp	Asn 140	Arg	Pne	Arg	GIU	
														tca		480
		Lys	Asp	Val		Val	Ala	Ile	Ile		Gln	Thr	Ser	Ser	Leu 160	
145					150					155					100	
														gca		528
Ala	Pro	Ala	Asp	Lys 165		Phe	Tyr	Ala	Thr 170	Arg	Asp	Ile	Thr	Ala 175	Thr	
a+a		tcc	ato	cca	cta	atc	acc	acc	tct	att	cta	aca	aaq	aaa	ctt	576
														Lys		
			180			•		185				-	190			
														agc		624
Ala	Glu	_		Asp	Ala	Leu	Val 200		Asp	Val	Lys	Val 205		Ser	Gly	
		195					200					200				
														gcg		672
Ala			Pro	Thr	Tyr			Ser	Glu	Ala			Glu	Ala	Ile	
	210)				215					220					

_								ctc Leu		720
_	_							gaa Glu 255		768
_	_							cgt Arġ		816
								ggc		864
								gtg Val		. 912
_								gca Ala		960
								ccg Pro 335		1008
	_							gtc Val		1056
_								ggc Gly	ggc	1104
	_							ttt Phe		1152
_				Asp				ctg Leu		1200

4/36

gtt atc cac gcg aaa gac gaa aac aac tgg cag gaa gcg gcg aaa gcg 1248 Val Ile His Ala Lys Asp Glu Asn Asn Trp Gln Glu Ala Ala Lys Ala 405 410 415

gtg aaa gcg gca att aaa ctt gcc gat aaa gca ccg gaa agc aca cca 1296 Val Lys Ala Ala Ile Lys Leu Ala Asp Lys Ala Pro Glu Ser Thr Pro 420 425 430

act gtc tat cgc cgt atc agc gaa taa 1323
Thr Val Tyr Arg Arg Ile Ser Glu
435 440

<210> 2

<211> 440

<212> PRT

<213> Escherichia coli

<400> 2

Leu Phe Leu Ala Gln Glu Ile Ile Arg Lys Lys Arg Asp Gly His Ala 1 5 10 15

Leu Ser Asp Glu Glu Ile Arg Phe Phe Ile Asn Gly Ile Arg Asp Asn 20 25 30

Thr Ile Ser Glu Gly Gln Ile Ala Ala Leu Ala Met Thr Ile Phe Phe
35 40 45

His Asp Met Thr Met Pro Glu Arg Val Ser Leu Thr Met Ala Met Arg
50 55 60

Asp Ser Gly Thr Val Leu Asp Trp Lys Ser Leu His Leu Asn Gly Pro 65 70 75 80

Ile Val Asp Lys His Ser Thr Gly Gly Val Gly Asp Val Thr Ser Leu 85 90 95

Met Leu Gly Pro Met Val Ala Ala Cys Gly Gly Tyr Ile Pro Met Ile 100 105 110

Ser Gly Arg Gly Leu Gly His Thr Gly Gly Thr Leu Asp Lys Leu Glu 115 120 125

Ser Ile Pro Gly Phe Asp Ile Phe Pro Asp Asp Asn Arg Phe Arg Glu 130 135 140

									5/36	,					
Ile 145	Ile	Lys	Asp	Val	Gly 150	Val	Ala	Ile	Ile	Gly 155	Gln	Thr	Ser	Ser	Leu 160
Ala	Pro	Ala	Asp	Lys 165	Arg	Phe	Tyr	Ala	Thr 170	Arg	Asp	Ile	Thr	Ala 175	Thr
V = 1	Aen	Ser	Tle	Pro	Leu	Tle	Thr	Ala	Ser	Ile	Leu	Ala	Lys	Lys	Leu

- Val Asp Ser Ile Pro Leu Ile Thr Ala Ser Ile Leu Ala Lys Lys Leu 180 185 190
- Ala Glu Gly Leu Asp Ala Leu Val Met Asp Val Lys Val Gly Ser Gly
 195 200 205
- Ala Phe Met Pro Thr Tyr Glu Leu Ser Glu Ala Leu Ala Glu Ala Ile 210 215 220
- Val Gly Val Ala Asn Gly Ala Gly Val Arg Thr Thr Ala Leu Leu Thr 225 230 235 240
- Asp Met Asn Gln Val Leu Ala Ser Ser Ala Gly Asn Ala Val Glu Val
 245 250 255
- Arg Glu Ala Val Gln Phe Leu Thr Gly Glu Tyr Arg Asn Pro Arg Leu 260 265 270
- Phe Asp Val Thr Met Ala Leu Cys Val Glu Met Leu Ile Ser Gly Lys 275 280 285
- Leu Ala Lys Asp Asp Ala Glu Ala Arg Ala Lys Leu Gln Ala Val Leu 290 295 300
- Asp Asn Gly Lys Ala Ala Glu Val Phe Gly Arg Met Val Ala Ala Gln 305 310 315 320
- Lys Gly Pro Thr Asp Phe Val Glu Asn Tyr Ala Lys Tyr Leu Pro Thr 325 330 335
- Ala Met Leu Thr Lys Ala Val Tyr Ala Asp Thr Glu Gly Phe Val Ser 340 345 350
- Glu Met Asp Thr Arg Ala Leu Gly Met Ala Val Val Ala Met Gly Gly
 355 360 365
- Gly Arg Arg Gln Ala Ser Asp Thr Ile Asp Tyr Ser Val Gly Phe Thr 370 375 380

6/36 Asp Met Ala Arg Leu Gly Asp Gln Val Asp Gly Gln Arg Pro Leu Ala 395 390 385 Val Ile His Ala Lys Asp Glu Asn Asn Trp Gln Glu Ala Ala Lys Ala 410 405 Val Lys Ala Ala Ile Lys Leu Ala Asp Lys Ala Pro Glu Ser Thr Pro 425 430 420 Thr Val Tyr Arg Arg Ile Ser Glu 435 · <210 > 3 <211> 720 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (1) ... (717) <400> 3 atg gct acc cca cac att aat gca gaa atg ggc gat ttc gct gac gta 48 Met Ala Thr Pro His Ile Asn Ala Glu Met Gly Asp Phe Ala Asp Val 10 gtt ttg atg cca ggc gac ccg ctg cgt gcg aag tat att gct gaa act Val Leu Met Pro Gly Asp Pro Leu Arg Ala Lys Tyr Ile Ala Glu Thr 30 -20 ttc ctt gaa gat gcc cgt gaa gtg aac aac gtt cgc ggt atg ctg ggc Phe Leu Glu Asp Ala Arg Glu Val Asn Asn Val Arg Gly Met Leu Gly 40 35 ttc acc ggt act tac aaa ggc cgc aaa att tcc gta atg ggt cac ggt 192 Phe Thr Gly Thr Tyr Lys Gly Arg Lys Ile Ser Val Met Gly His Gly

55

50

									•							
ttc	ggc	gtg	aag	aaa	att	atc	cgc	gtg	ggt	tcc	tgt	ggc	gca	gtt	ctg	288
		Val														
	_			85					90					95		
											•					
ccq	cac	gta	aaa	ctg	cgc	gac	gtc	gtt	atc	ggt	atg	ggt	gcc	tgc	acc	336
_		Val														
			100		_			105					110			
gat	tcc	aaa	qtt	aac	cgc	atc	cgt	ttt	aaa	gac	cat	gac	ttt	gcc	gct	384
		Lys														
-		115			٠		120					125				
atc	qct	gac	ttc	gac	atg	gtg	cgt	aac	gca	gta	gat	gca	gct	aaa	gca	432
		Asp														
	130	_		_		135		•		٠.	140					
											•					
ctq	ggt	att	gat	gct	cgc	gtg	ggt	aac	ctg	ttc	tcc	gct	gac	ctg	ttc	480
		Ile														
145	-		_		150		,			155					160	
tac	tct	ccg	gac	ggc	gaa	atg	ttc	gac	gtg	atg	gaa	aaa	tac	ggc	att	528
		Pro														
_				165			•		170					175		•
																·
ctc	ggc	gtg	gaa	atg	gaa	gcg	.gct	ggt	atc	tac	ggc	gtc	gct	gca	gaa	576
Leu	Gly	Val	Glu	Met	Glu	Ala	Ala	Gly	Ile	Tyr	Gly	Val	Ala	Ala	Glu	
			180		٠			185					190			
ttt	ggc	gcg	aaa	gcc	ctg	acc	atc	tgc	acc	gta	tct	gac	cac	atc	cgc	624
Phe	Gly	Ala	Lys	Ala	Leu	Thr	Ile	Cys	Thr	Val	Ser	Asp	His	Ile	Arg	
		195					200					205				
													•	•	٠	
act	cac	gag	cag	acc	act	gcc	gct	gag	cgt	cag	act	acc	ttc	aac	gac	672
Thr	His	Glu	Gln	Thr	Thr	Ala	Ala	Glu	Arg	Gln	Thr	Thr	Phe	Asn	Asp	
	210					215					220					
atg	atc	aaa	atc	gca	ctg	gaa	tcc	gtt	ctg	ctg	ggc	gat	aaa	gag	taa	720
Met	Ile	Lys	Ile	Ala	Leu	Glu	Ser	Val	Leu	Leu	Gly	qaA	Lys	Glu		
225					230					235						
	•															

<210> 4

<211> 239

<212> PRT

<213> Escherichia coli

									0/30						
<400	> 4						•								
Met 1	Ala	Thr	Pro	His 5	Ile	Asn	Ala	Glu	Met 10	Gly	Asp	Phe	Ala	Asp 15	Val
Val	Leu	Met	Pro 20	Gly	Asp	Pro	Leu	Arg 25	Ala	Lys	Tyr	Ile	Ala 30	Glu	Thr
Phe	Leu	Glu 35	Asp	Ala	Arg	Glu	Val 40	Asn	Asn	Val	Arg	Gly 45	Met	Leu	Gly
Phe	Thr 50	Gly	Thr	Tyr	Lys	Gly 55	Arg	Lys	Ile	Ser	Val 60	Met	Gly	His	Gly
Met 65	Gly	Ile	Pro	Ser	Cys 70	Ser	Ile	Tyr	Thr	Lys 75	Glu	Leu	Ile	Thr	Asp 08
Phe	Gly	Val	Lys	Lys 85	Ile	Ile	Arg	Val	Gly 90	Ser	Cys	Gly	Ala	Val 95	Leu
Pro	His	Val	Lys 100	Leu	Arg	Asp	Val	Val 105	Ile	Gly	Met	Gly	Ala 110	Cys	Thr
Asp	Ser	Lys 115	Val	Asn	Arg	Ile	Arg 120	Phe	Lys	Asp	His	Asp 125		Ala	Ala
Ile	Ala 130	Asp	Phe	Asp	Met	Val	Arg	Asn	Ala	Val	Asp 140	Ala	Ala	Lys	Ala
Leu 145	Gly	Ile	Asp	Ala	Arg 150	Val	Gly	Asn	Leu	Phe 155	Ser	Ala	Asp	Leu	Phe 160
Tyr	Ser	Pro	Asp	Gly 165		Met	Phe	Asp	Val 170		Glu	Lys	Tyr	Gly 175	Ile
Leu	Gly	Val	Glu 180		Glu	Ala		Gly 185		Tyr	Gly	Val	Ala 190	Ala	Glu
Phe	Gly	Ala 195		Ala	Leu	Thr	1le 200		Thr	Val	Ser	Asp 205		Ile	Arç
Thr	His 210		Gln	Thr	Thr	Ala 215		Glu	Arg	Gln	Thr 220		Phe	Asn	Asp
Met	Ile	Lys	Ile	Ala	Leu	Glu	Ser	Val	. Leu	Leu	Gly	Asp	Lys	Glu	

230

225

<210	> 5															
<211	> 12	24														
<212	> DN	ΙA														
<213	> Es	cher	ichi	a co	li											
												•				
<220	>															
<221	> CI	S														
<222	> (1	_) (1221	.)												
<400						. • .							250	~~~	act	48
							gtg									40
	Lys	Arg	Ala		TTE	Met	vai	Leu	10	261	FILE	GIY	116	15	Ala.	
1				. 5					10							
			gg2	~ 22	cac	+++	ggt	gac	atc	aaa	act	gac	acc	ctq	ggt	96
							Gly									
TIII	GIU	nap	20	010			1	25		•		-	30			
					•											
cat	atc	gca	gaa	gct	tgt	gcc	aaa	ggc	gaa	gct	gat	aac	ggt	cgt	aaa	144
							Lys									
		35	•				4.0					45				
														•		
															gca	192
Gly	Pro	Leu	Asn	Leu	Pro	Asn	Leu	Thr	Arg	Leu	Gly	Leu	Ala	Lys	Ala	
	50					55					. 60					
																240
							att									240
	Glu	Gly	Ser	Thr		Pne	Ile	Pro	Ата		Met	Asp	GIY	ASII	80	
65		•			70					75					00	
		5 t.c	~~~	aca	tac	aca	tgg	aca	cac	gaa	atg	tca	tcc	aat	aaa	288
							Trp									,
Giu	VAI	110	Q.J.	85	-1-				90					95	_	
gat	acc	ccg	tct	ggt	cac	tgg	gaa	att	gcc	ggt	gtc	ccg	gtt	ctg	ttt	336
							Glu									
-			100					105					110			•
							cac									384
Glu	Trp	Gly	Tyr	Phe	Ser	Asp	His	Glu	Asn	Ser	Phe	Pro	Gln	Glu	Leu	
		115					120					125				

																422
_	_												ctc			432
Leu	Asp	Lys	Leu	Val	Glu		Ala	Asn	Leu	Pro		туг	Leu	GIY	Asn	
	130					135					140					
													gaa			480
Cys	His	Ser	Ser	Gly	Thr	Val	Ile	Leu	Asp	Gln	Leu	Gly	Glu	Glu	His	
145					150		•			155					160	•
atġ	aaa	acc	ggc	aag	ccg	att	ttc	tat	acc	tcc	gct	gac	tcc	gtg	ttc	528
Met	Lys	Thr	Gly	Lys	Pro	Ile	Phe	Tyr	Thr	Ser	Ala	Asp	Ser	Val	Phe	
				165					170					175		
															_	
cag	att.	gcc	tgc	cat	gaa	gaa	act	ttc	ggt	ctg	gat	aaa	ctc	tac	gaa	576
Gln	Ile	Ala	Cys	His	Glu	Glu	Thr	Phe	Gly	Leu	Asp	Lys	Leu	Tyr	Glu	
			180					185					190			
									•							
cta	tac	gaa	atc	acc	cat	qaa	gag	ctq	acc	aac	ggc	ggc	tac	aat	atc	624
													Tyr			
	-7-	195					200				-	205	_			
												• .				
aat	cat	att	atc	act	cat	cca	ttt	atc	aac	gac	aaa	acc	ggt	aac	ttc	672
	_												Gly.			
GIY	210	Val	110		***= 5	215			1		220		,			
	210				•											
636	cat	200	aat	220	cat	cac	gac	cta	act	att	gag	cca	сса	gca	cca	720
_	-												Pro			
225	, r	1111	Cry	715.1	230					235					240	•
223					250	•										
366	ata	cta	CaG	222	cta	att	gat	gaa	aaa	cac	aac	cag	gtg	att	tct	768
		_											Val			
1111	var	пец		245	200	• • • •	1.05		250		1			255		
				243		`	-	•	25,0							
ata	aat	222	att	aca	gac.	atc	tac	acc	aac	tac	aat.	atc	acc	aaa	aaa	816
_													Thr			
vaı	GIY	пуs	260	AIG	rab	110	- 7 -	265	71511	CyD	CLY		270	_,_	-1-	
			260					203					_,,			
~+~		~~~	a~+	~~~	c+~	asa	aca	cta	+++	gac	acc	acc	atc	aaa	gag	864
_													Ile			
val	ьys			GTĀ	neu	vaħ		neu	FIIG	rop	AIG	285	-10	~y3		
		275					280					203				
					= 4			<u> </u>		++-	225	225	++-	~+ <u>`</u> +	C2C	912
-													ttc			914
Met		Glu	Ala	GIY	Asp		Thr	тте	vaı	ьие		ASN	Phe	val	Asp	
	290					.295					300					

11/36

									, _	_						
ttc	gac	tct	tcc	tgg	ggc	cac	cgt	cgc '	gac	gtc	gcc	ggt	tat	gcc	gcg	960
					Gly											
305	-			_	310					315					320	
•																
aat	cta	gaa	cta	ttc	gac	cac	cat	cta	cca	gag	ctq	atq	tct	ctg	ctg	1008
					Asp											
GIY	Deu	GIU	104	325		••	5		330	-				335		•
				343					550							
									~~+	~ 3.6	C2C	aat	tac	gat	cca	1056
					ctg											
Arg	Asp	Asp		TTE	Leu	TTE	rea		MIG	Asp	птэ	Gry		nsp	110	
			340					345					350			
		•					•									1104
					gac											1104
Thr	Trp	Thr	Gly	Thr	Asp	His		Arg	Glu	His	Ile		Val	Leu	Val	
		355					360					365				
												•				
					aaa											1152
Tyr	Gly	Pro	Lys	Val	Lys	Pro	Gly	Ser	Leu	Gly	His	Arg	Glu	Thr	Phe	
	370					375					380				-	
gcg	gat	atc	ggc	cag	act	ctg	gca	aaa	tat	ttt	ggt	act	tct	gat	atg	1200
					Thr											
385	_				390					395					400	•
																. •
gaa	tat	qqc	aaa	gcc	atg	ttc	tga								,	1224
_					Met		_	-								
	•	•	•	405												
							•									
-21	0> 6										•					
	0	07														
	2> P		-i-h		a1 i											
<21	3 > E	sche	ricn	ıa c	011											
	0 > 6			5 1	- 1 -	34-4	77- 7	7	200	C-~	Dho	C111	Tle	Gly	בומ	
Met	Lys	Arg	Ala		iie	Met	vaı	Leu			PHE	GIY	116		Ala	
1				5					10		•			15		
			_									_	m³.	•	G1	
Thr	Glu	Asp	Ala	Glu	Arg	Phe	Gly			'GTÀ	Ala	Asp		ьeu	Gly	
			20					25					30			
										_		_		_	_	
His	Ile	Ala	Glu	Ala	Cys	Ala	Lys	Gly	Glu	Ala	Asp			Arg	Lys	
		25					40					45				

35

Gly	Pro	Leu	Asn	Leu	Pro	Asn	Leu	Thr	Arg	Leu	Gly	Leu	Ala	Lys	Ala
	50					55					60				

- His Glu Gly Ser Thr Gly Phe Ile Pro Ala Gly Met Asp Gly Asn Ala 65 70 75 80
- Glu Val Ile Gly Ala Tyr Ala Trp Ala His Glu Met Ser Ser Gly Lys 85 90 95
- Asp Thr Pro Ser Gly His Trp Glu Ile Ala Gly Val Pro Val Leu Phe 100 105 110
- Glu Trp Gly Tyr Phe Ser Asp His Glu Asn Ser Phe Pro Gln Glu Leu 115 120 125
- Leu Asp Lys Leu Val Glu Arg Ala Asn Leu Pro Gly Tyr Leu Gly Asn 130 135 140
- Cys His Ser Ser Gly Thr Val Ile Leu Asp Gln Leu Gly Glu Glu His 145 150 155 160
- Met Lys Thr Gly Lys Pro Ile Phe Tyr Thr Ser Ala Asp Ser Val Phe 165 170 175
- Gln Ile Ala Cys His Glu Glu Thr Phe Gly Leu Asp Lys Leu Tyr Glu 180 185 190
- Leu Cys Glu Ile Ala Arg Glu Glu Leu Thr Asn Gly Gly Tyr Asn Ile 195 200 205
- Gly Arg Val Ile Ala Arg Pro Phe Ile Gly Asp Lys Ala Gly Asn Phe 210 215 220
- Gln Arg Thr Gly Asn Arg His Asp Leu Ala Val Glu Pro Pro Ala Pro 225 230 235 240
- Thr Val Leu Gln Lys Leu Val Asp Glu Lys His Gly Gln Val Val Ser 245 250 255
- Val Gly Lys Ile Ala Asp Ile Tyr Ala Asn Cys Gly Ile Thr Lys Lys 260 265 270
- Val Lys Ala Thr Gly Leu Asp Ala Leu Phe Asp Ala Thr Ile Lys Glu 275 280 285

13/36

Met Lys Glu Ala Gly Asp Asn Thr Ile Val Phe Thr Asn Phe Val Asp 290 295 300

Phe Asp Ser Ser Trp Gly His Arg Arg Asp Val Ala Gly Tyr Ala Ala 305 310 315 320

Gly Leu Glu Leu Phe Asp Arg Arg Leu Pro Glu Leu Met Ser Leu Leu
325 330 335

Arg Asp Asp Ile Leu Ile Leu Thr Ala Asp His Gly Cys Asp Pro 340 345 350

Thr Trp Thr Gly Thr Asp His Thr Arg Glu His Ile Pro Val Leu Val
355 360 365

Tyr Gly Pro Lys Val Lys Pro Gly Ser Leu Gly His Arg Glu Thr Phe 370 375 380

Ala Asp Ile Gly Gln Thr Leu Ala Lys Tyr Phe Gly Thr Ser Asp Met 385 390 395 400

Glu Tyr Gly Lys Ala Met Phe 405

<210> 7

<211>.780

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1)..(777)

<400> 7

atg act gat ctg aaa gca agc agc ctg cgt gca ctg aaa ttg atg gac 48
Met Thr Asp Leu Lys Ala Ser Ser Leu Arg Ala Leu Lys Leu Met Asp

1 1 15

ctg aac acc ctg aat gac gac gac acc gac gag aaa gtg atc gcc ctg 96 Leu Asn Thr Leu Asn Asp Asp Asp Thr Asp Glu Lys Val Ile Ala Leu 20 25 30

tgt	cat	cag	gcc	aaa	act	ccg	gtc	ggc	aat	acc	gcc	gct	atc	tgt	atc	144
Cys	His	Gln	Ala	Lys	Thr	Pro	Val	Gly	Asn	Thr	Ala	Ala	Ile	Cys	Ile	
•		35		-		•	40	_				45				
tat	cct	cac	ttt	atc	ccg	att	act	cac	aaa	act	cta	aaa	gag	caq	ggc	192
		_			Pro											
IYL	50	719	1110		110	55			_,_		60	-1-			-	
•	30					7,5					•					
200		~ 222	atc	cat	atc	act	200	ata	200	220	ttc	cca	cac	aat.	aac	240
	_	_			Ile											
	PIO	GIU	TIE	Arg		AIG	1111	vai	1111	75	1110	110			80	-
65					70					/5						
											~~~	~~~	250	~~~	tac	288
_					gcg											200
Asp	Asp	IIe	Asp		Ala	Leu	Ата	GIU		Arg	Ala	АТА	TIE		IYI	
				85					.90					95		
						•										226
	_	_			gac											336
Gly	Àla	Asp	Glu	Val	Asp	Val	Val		Pro	Tyr	Arg	ALą		Met	Aia	
			100					105			•		110			
			•													
			_	_	ggt											384
Gly	Asn	Glu	Gln	Val	Gly	Phe	Asp	Leu	Val	Lys	Ala	Сув	Lys	Glu	Ala	
		115					120					125				
					•								•		٠	
_					gta											432
Cys	Ala	Ala	Ala	Asn	Val	Leu	Leu	Lys	Val	Ile	Ile	Glu	Thr	Gly	Glu	
	130					135					140					
												•				
ctg	aaa	gac	gaa	gcg	ctg	atc	cgt	aaa	gcg	tct	gaa	atc	tcc	atc	aaa	480
Leu	Lys	Asp	Glu	Ala	Leu	Ile	Arg	Lys	Ala	Ser	Glu	Ile	Ser	Ile	Lys	
145					150	•				155					160	
•																
gcg	ggt	gcg	gac	ttc	atc	aaa	acc	tct	acc	ggt	aaa	gtg	gct	gtg	aac	528
Ala	Gly	Ala	Asp	Phe	Ile	Lys	Thr	Ser	Thr	Gly	Lys	Val	Ala	Val	Asn	
				165					170			•		175		
	•															
gcg	acg	ccg	gaa	agc	gcg	cgc	atc	atg	atg	gaa	gtg	atc	cgt	gat	atg	576
					Ala											
			180			•		185					190			
							٠									
gar	ata	gaa	aaa	acc	gtt	aat	ttc	aaa	ccq	gca	ggc	ggc	gtg	cgt	act	624
					Val											
1		195	_, _			1	200	•			•	205		`		
												_				

15/36

gcg gaa gat gcg cag aaa tat ctc gcc att gca gat gaa ctg ttc ggt 672 Ala Glu Asp Ala Gln Lys Tyr Leu Ala Ile Ala Asp Glu Leu Phe Gly 220 215 210 gct gac tgg gca gat gcg cgt cac tac cgc ttt ggc gct tcc agc ctg 720 Ala Asp Trp Ala Asp Ala Arg His Tyr Arg Phe Gly Ala Ser Ser Leu 225 230 ctg gca agc ctg ctg aaa gcg ctg ggt cac ggc gac ggt aag agc gcc 768 Leu Ala Ser Leu Leu Lys Ala Leu Gly His Gly Asp Gly Lys Ser Ala 250 780 agc agc tac taa Ser Ser Tyr <210> 8 <211> 259 <212> PRT <213> Escherichia coli <400> 8 Met Thr Asp Leu Lys Ala Ser Ser Leu Arg Ala Leu Lys Leu Met Asp 10 Leu Asn Thr Leu Asn Asp Asp Asp Thr Asp Glu Lys Val Ile Ala Leu 25 20 Cys His Gln Ala Lys Thr Pro Val Gly Asn Thr Ala Ala Ile Cys Ile 40 Tyr Pro Arg Phe Ile Pro Ile Ala Arg Lys Thr Leu Lys Glu Gln Gly 60 55 50 Thr Pro Glu Ile Arg Ile Ala Thr Val Thr Asn Phe Pro His Gly Asn 75 70 65 Asp Asp Ile Asp Ile Ala Leu Ala Glu Thr Arg Ala Ala Ile Ala Tyr 85 90 Gly Ala Asp Glu Val Asp Val Val Phe Pro Tyr Arg Ala Leu Met Ala 105 110 100 Gly Asn Glu Gln Val Gly Phe Asp Leu Val Lys Ala Cys Lys Glu Ala 125 120 115

16/36

Cys Ala Ala Ala Asn Val Leu Leu Lys Val Ile Ile Glu Thr Gly Glu 130 135 140

Leu Lys Asp Glu Ala Leu Ile Arg Lys Ala Ser Glu Ile Ser Ile Lys 145 150 155 160

Ala Gly Ala Asp Phe Ile Lys Thr Ser Thr Gly Lys Val Ala Val Asn 165 170 175

Ala Thr Pro Glu Ser Ala Arg Ile Met Met Glu Val Ile Arg Asp Met 180 185 190

Gly Val Glu Lys Thr Val Gly Phe Lys Pro Ala Gly Gly Val Arg Thr 195 200 205

Ala Glu Asp Ala Gln Lys Tyr Leu Ala Ile Ala Asp Glu Leu Phe Gly
210 215 220

Ala Asp Trp Ala Asp Ala Arg His Tyr Arg Phe Gly Ala Ser Ser Leu 225 230 235 240

Leu Ala Ser Leu Leu Lys Ala Leu Gly His Gly Asp Gly Lys Ser Ala 245 250 255

Ser Ser Tyr

<210> 9

<211> 1080

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1)..(1077)

<400> 9

atg tct aag att ttt gat ttc gta aaa cct ggc gta atc act ggt gat 48
Met Ser Lys Ile Phe Asp Phe Val Lys Pro Gly Val Ile Thr Gly Asp

1 5 10 15

gac	gta	cag	aaa	gtt	ttc	cag	gta	gca	aaa	gaa	aac	aac	ttc	gca	ctg	96
Asp	Val	Gln	Lys	Val	Phe	Gln	Val	Ala	Lys	Glu	Asn	Asn	Phe	Ala	Leu	
_	•		20					25					30			
cca	gca	gta	aac	tac	atc	gat	act	qac	tcc	atc	aac	gcc	gta	ctg	gaa	144
														Leu		
FIO	AIG	35	,,,,,,	0,0	,	0-1	40					45				
		33														
				~++		aca	666	att	atc	att	cad	ttc	tee	aac	aat	192
														Asn		
Thr		Ата	гÀг	vaı	гÃа		PIO	vaı	116	vai	60	1 110	-		<b>0</b> -1	
	50					55					80					
												~~~	~++		Cag	240
														ccg		240
Gly	Ala	Ser	Phe	Ile		Gly	Lys	GIĀ	vaı		ser	Asp	vai	Pro		
65					70					75					. 80	
		•											× .			
														cac		288
Gly	Ala	Ala	Ile	Leu	Gly	Ala	Ile	Ser	Gly	Ala	His	His	Val	His	Gln	
				85					90			•		95		
	•															
atg	gct	gaa	cat	tat	ggt	gtt	ccg	gtt	atc	ctg	cac	act	gac	cac	tgc	336
Met	Ala	Glu	His	Tyr	Gly	Val	Pro	Val	Ile	Leu	His	Thr	Asp	His	Cys	
			100					105					110			
aca	aaq	aaa	ctg	ctg	ccg	tgg	atc	gac	ggt	ctg	ttg	gac	gcg	ggt	gaa	384
														Gly		
		115				_	120					125				
aaa	cac	ttc	gca	act	acc	aat	aaq	cca	ctq	ttc	tct	tct	cac	atg	atc	432
														Met		
Lly S	130					135					140					
	130											•				
~ > ~	ata	+ < +	~ 33	<u>дээ</u>	tct	cta	caa	gag	aac	atc	gaa	atc	tac	tct	aaa	480
														Ser		
_		Ser	Giu	GIU	150	neu	GIII	014	71011	155	024				160	
145					150					100						
											a+ a		a t	. ~==	cta	528
														gaa		520
Tyr	Leu	Glu	Arg			Lys	ile	GIY			Leu	GIU	116	Glu	ьеu .	
				165					170					175	-	
														atg		. 576
Gly	Cys	Thr	Gly	Gly	Glu	Glu	Asp	Gly	Val	Asp	Asn	Ser	His	Met	Asp	
			180)				185					190			

										-						
act	tct	qca	cta	tac	acc	cag	ccq	gaa	gac	gtt	gat	tac	gca	tac	acc	624
_						Gln										
		195		- 4 -			200		-			205		_		
																٥
					200	ccg	cat	++0	366	atc	ac a	aca	tcc	ttc	aat	672
						Pro										0.2
GIU		Ser	гÀг	TTE	ser		Arg	Pne	1111	TTE		AIG	Ser	FIIC	Gry	
	210					215					220					
																720
	_					aag										720
Asn	Val	His	Gly	Val		Lys	Pro	GTÅ	Asn-		vaı	ьeu	Tnr	Pro		·
225					230					235					240	
									•							
	_	_				gaa										768
Ile	Leu	Arg	Asp	Ser	Gln	Glu	Tyr	Val	Ser	Lys	Lys	His	Asn	Leu	Pro	
				245					250					255		
cac	aac	agc	ctg	aac	ttc	gta	ttc	cac	ggt	ggt	tcc	ggt	tct	act	gct	816
His	Asn	Ser	Leu	Asn	Phe	Val	Phe	His	Gly	Gly	Ser	Gly	Ser	Thr	Ala	
•			260					265					270			
caq	gaa	atc	aaa	gac	tcc	gta	agc	tac	ggc	gta	gta	aaa	atg	aac	atc	864
_	_					Val										
		275					280	•	-			285				
gat	acc	gat	acc	caa	taa	.gca	acc	taa	gaa	aac	att	ctq	aac	tac	tac	912
_						Ala										
nop	290	1.00				295					300			-	-	
	250															
	aca	220	~ 33	act	tat	ctg	cag	aat	cag	cta	aat	aac	cca	aaa	ggc	960
						Leu										
-	MIG	ASII	GIU	Ата		пец	GIII	Gly	GIII	315	CTY	71011		ب ر د	320	
305					310					313					320	
											,	~+~	+~~	ata	aat	1000
						aaa										1008
Glu	Asp	GIn	Pro		гÀг	Lys	Tyr	Tyr		PIO	Arg	vai	пр		Arg	
				325					330					335		
		•														1056
_		_				atc										1056
Ala	Gly	Gln		Ser	Met	Ile	Ala		Leu	Glu	Lys	Ala		GIn	GIu	
		•	340					345					350			
ctg	aac	gcg	atc	gac	gtt	ctg	taa									1080
Leu	Asn	Ala	Ile	Asp	Val	Leu					•					
		355					•									

19/36

<210> 10

<211> 359

<212> PRT

<213> Escherichia coli

<400> 10

Met Ser Lys Ile Phe Asp Phe Val Lys Pro Gly Val Ile Thr Gly Asp

1 5 10 15

Asp Val Gln Lys Val Phe Gln Val Ala Lys Glu Asn Asn Phe Ala Leu 20 25 30

Pro Ala Val Asn Cys Val Gly Thr Asp Ser Ile Asn Ala Val Leu Glu 35 40 45

Thr Ala Ala Lys Val Lys Ala Pro Val Ile Val Gln Phe Ser Asn Gly
50 55 60

Gly Ala Ser Phe Ile Ala Gly Lys Gly Val Lys Ser Asp Val Pro Gln 65 70 75 80

Gly Ala Ala Ile Leu Gly Ala Ile Ser Gly Ala His His Val His Gln 85 90 95

Met Ala Glu His Tyr Gly Val Pro Val Ile Leu His Thr Asp His Cys
100 105 110

Ala Lys Lys Leu Leu Pro Trp Ile Asp Gly Leu Leu Asp Ala Gly Glu 115 120 125

Lys His Phe Ala Ala Thr Gly Lys Pro Leu Phe Ser Ser His Met Ile 130 135 140

Asp Leu Ser Glu Glu Ser Leu Gln Glu Asn Ile Glu Ile Cys Ser Lys 145 150 155 160

Tyr Leu Glu Arg Met Ser Lys Ile Gly Met Thr Leu Glu Ile Glu Leu 165 170 175

Gly Cys Thr Gly Gly Glu Glu Asp Gly Val Asp Asn Ser His Met Asp 180 185 190

Ala Ser Ala Leu Tyr Thr Gln Pro Glu Asp Val Asp Tyr Ala Tyr Thr 195 200 205

20/36

Glu Leu Ser Lys Ile Ser Pro Arg Phe Thr Ile Ala Ala Ser Phe Gly
210 215 220

Asn Val His Gly Val Tyr Lys Pro Gly Asn Val Val Leu Thr Pro Thr 225 230 235 240

Ile Leu Arg Asp Ser Gln Glu Tyr Val Ser Lys Lys His Asn Leu Pro 245 250 255

His Asn Ser Leu Asn Phe Val Phe His Gly Gly Ser Gly Ser Thr Ala 260 265 270

Gln Glu Ile Lys Asp Ser Val Ser Tyr Gly Val Val Lys Met Asn Ile 275 280 285

Asp Thr Asp Thr Gln Trp Ala Thr Trp Glu Gly Val Leu Asn Tyr Tyr 290 295 300

Lys Ala Asn Glu Ala Tyr Leu Gln Gly Gln Leu Gly Asn Pro Lys Gly 305 310 315 320

Glu Asp Gln Pro Asn Lys Lys Tyr Tyr Asp Pro Arg Val Trp Leu Arg 325 330 335

Ala Gly Gln Thr Ser Met Ile Ala Arg Leu Glu Lys Ala Phe Gln Glu 340 345 350

Leu Asn Ala Ile Asp Val Leu 355

<210> 11

<211> 921

<212> DNA

<213> Salmonella typhi

<220>

<221> CDS

<222> (1)..(918)

<400> 11

atg gat atc gcg gtt att ggc tct aac atg gtg gac ctt atc acc tac 48
Met Asp Ile Ala Val Ile Gly Ser Asn Met Val Asp Leu Ile Thr Tyr

1 5 10 15

									Ť							
acc	aac	cag	atg	ccc	aaa	gaa	999	gaa	act	ctg	gaa	gcg	ccg	gcg	ttt	96
Thr	Asn	Gln	Met	Pro	Lys	Glu	Gly	Glu	Thr	Leu	Glu	Ala	Pro	Ala	Phe	
			20		_			25					30			
														•		
aaa	atc	aac	tac	aac	gga	aaa	aaa	aca	aac	caq	acc	ata	aca	acc	act	144
					Gly				-							
273		35	CyD	017	017	Lyb	40					45				
		33					40	•				1,7				
									200		~+~	999	~ ~ ~	ant.	2++	192
_					gta											192
ьуs		Asn	ser	гуѕ	Val		Met	Leu	inr	гуя		GIY	ASP	Asp	116	
	50					55					60					-
					•											
	-	-			att											240
Phe	Ala	Asp	Asn	Thr	Ile	Arg	Asn	Leu	Glu		Trp	Gly	Ile	Asn		
65					70		•			75					80	
_					gta											288
Thr	Tyr	Val	Glu	Lys	Val	Pro	Cys	Thr	Ser	Ser	Gly	Val	Ala	Pro	Ile	
				85					90					95		, '
										•				•		
ttc	gtc	aac	gcc	aac	tcc	agc	aac	agc	att	ctg	atc	atc	aaa	ggc	gct	336
Phe	Val	Asn	Ala	Asn	Ser	Ser	Asn	Ser	Ile	Leu	Ile	Ile	Lys	Gly	Ala	
			100					105					110			
aac	aag	ttt	ctc	tcg	ccg	gaa	gat	atc	gat	cgc	gcg	gċg	gaa	gat	tta	384
Asn	Lys	Phe	Leu	Ser	Pro	Glu	Asp	Ile	Asp	Arg	Ala	Ala	Glu	Asp	Leu	
	_	115					120					125				•
				•	•											
aaa	aaa	tgc	cag	ctt	att	gtt	ctg	caa	ctg	gaa	gtt	cag	ctt	gaa	acg	432
		_			Ile											
	130	•				135					140					
															•	
att	tat	cac	gca	ata	gaa	ttt	aac	aaq	aaa	cac	aaa	att	gaa	ata	tta	480
_					Glu											
145	-7-				150		1	- 2-		155	1	,			160	
117				•												
. ·	224	cct	aca	CC=	gca	++>	caa	G 2 2	tta	get	ato	tct	tat	acc	tat	528 [°]
			_		Ala			-								
neu	Voli	FIO	wid	165	TTG	Tea	~rg	GIU	170	rsp.	1-1C C	Jer	-1-	175	- J 13	
				103					1/0					113		
	.								255	~~~	ate	~	a+-	++-	200	E76
	_	_			gta											576
гÀг	Cys	Asp		rne	Val	PTO	ASN		inr	GIU	ьeu	GIU		ьeu	IIIE	
			180					185					190			

												gcg Ala 205				624
												atg Met				672
												gtt Val				720
aga Arg	gtg Val	aac Asn	gct Ala	gtt Val 245	gat Asp	acc Thr	agc Ser	ggc	gcg Ala 250	ggc	gat Asp	gcc Ala	ttt Phe	atc Ile 255	ggc Gly	768
												gaa Glu			atg Met	816
												999 Gly 285				864
												tat Tyr			ttg Leu	912
	gaa Glu	taa									٠.					921
<21 <21	0> 1 1> 3 2> P 3> S	06 RT	nell	a ty	phi											
			: Ala	Val		Gly	Ser	Asn	Met 10		Asp	Leu	Ile	Thr		
Thr	Asn	Gln	Met 20		Lys	Glu	Gly	Glu 25		Leu	Glu	Ala	Pro		Phe	

- Lys Ile Gly Cys Gly Gly Lys Gly Ala Asn Gln Ala Val Ala Ala Ala 35 40 45
- Lys Leu Asn Ser Lys Val Leu Met Leu Thr Lys Val Gly Asp Asp Ile
 50 55 60
- Phe Ala Asp Asn Thr Ile Arg Asn Leu Glu Ser Trp Gly Ile Asn Thr 65 70 75 80
- Thr Tyr Val Glu Lys Val Pro Cys Thr Ser Ser Gly Val Ala Pro Ile 85 90 95
- Phe Val Asn Ala Asn Ser Ser Asn Ser Ile Leu Ile Ile Lys Gly Ala 100 105 110
- Asn Lys Phe Leu Ser Pro Glu Asp Ile Asp Arg Ala Ala Glu Asp Leu 115 120 125
- Lys Lys Cys Gln Leu Ile Val Leu Gln Leu Glu Val Gln Leu Glu Thr 130 135 140
- Val Tyr His Ala Ile Glu Phe Gly Lys Lys His Gly Ile Glu Val Leu 145 150 155 160
- Leu Asn Pro Ala Pro Ala Leu Arg Glu Leu Asp Met Ser Tyr Ala Cys 165 170 175
- Lys Cys Asp Phe Phe Val Pro Asn Glu Thr Glu Leu Glu Ile Leu Thr 180 185 190
- Gly Met Pro Val Asp Thr Tyr Asp His Ile Arg Ala Ala Ala Arg Ser 195 200 205
- Leu Val Asp Lys Gly Leu Asn Asn Ile Ile Val Thr Met Gly Glu Lys
 210 215 220
- Gly Ala Leu Trp Met Thr Arg Asp Gln Glu Val His Val Pro Ala Phe 225 230 235 240
- Arg Val Asn Ala Val Asp Thr Ser Gly Ala Gly Asp Ala Phe Ile Gly
 245 250 255
- Cys Phe Ala His Tyr Tyr Val Gln Ser Gly Asp Val Glu Ala Ala Met 260 265 270

24/36 Lys Lys Ala Val Leu Phe Ala Ala Phe Ser Val Thr Gly Lys Gly Thr 285 275 280 Gln Ser Ser Tyr Pro Ser Ile Glu Gln Phe Asn Glu Tyr Leu Ser Leu 300 295 290 Asn Glu 305 <210> 13 <211> 483 <212> DNA <213> Lactobacillus leichmannii <220> <221> CDS <222> (10) .. (480) <400> 13 gtatactaa atg cca aaa aag acg atc tac ttc ggt gcc ggc tgg ttc act 51 Met Pro Lys Lys Thr Ile Tyr Phe Gly Ala Gly Trp Phe Thr 5 gac cgc caa aac aaa gcc tac aag gaa gcc atg gaa gcc ctc aag gaa Asp Arg Gln Asn Lys Ala Tyr Lys Glu Ala Met Glu Ala Leu Lys Glu 25 15 aac cca acg att gac ctg gaa aac agc tac gtt ccc ctg gac aac cag 147 Asn Pro Thr Ile Asp Leu Glu Asn Ser Tyr Val Pro Leu Asp Asn Gln 45 40 35 tac aag ggt atc cgg gtt gat gaa cac ccg gaa tac ctg cat gac aag 195 Tyr Lys Gly Ile Arg Val Asp Glu His Pro Glu Tyr Leu His Asp Lys 50 gtt tgg gct acg gcc acc tac aac aac gac ttg aac ggg atc aag acc Val Trp Ala Thr Ala Thr Tyr Asn Asn Asp Leu Asn Gly Ile Lys Thr 70 65 aac gac atc atg ctg ggt gtc tac atc cct gac gaa gaa gac gtc ggc

90

Asn Asp Ile Met Leu Gly Val Tyr Ile Pro Asp Glu Glu Asp Val Gly

85

80

								•	23/3	•						
cta	aac	ato	caa	cta	gat	tac	acc	tta	agc	caa	gac	aaq	tac	gtc	ctt	339
														Val		
	GLY	rice	014		100	-1-				105	2	•	-		110	
95	•				100					105						
										~~~	250	226	ctc	ato	200	387
_	_													atg		307
Leu	Val	Ile	Pro		GIu	Asp	тут	GIY		PIO	116	ASII	цец	Met	Ser	
				115		٠.			120					125		
							•									
														gac		435
$\mathtt{Trp}$	Gly	Val	Ser	Asp	Asn	Val	Ile	Lys	Met	Ser	Ģln	Leu		Asp	Phe	
			130					135					140			
aac	ttc	aac	aag	ccg	cgc	ttc	gac	ttc	tac	gaa	ggt	gcc	gta	tac	taa	483
Ásn	Phe	Asn	Lys	Pro	Arg	Phe	Asp	Phe	Tyr	Glu	Gly	Ala	Val	Tyr		
		145					150					155				
<21	0> 14	4														
<21	1> 1!	57					•				•					
	2> PI															
			baci	llus	lei	chmai	nnii									•
<40	0 > 1	4						÷	•							
	0> 1		Lvs	Thr	Ile	Tvr	Phe	Gly	Ala	Gly	Trp	Phe	Thr	Asp	Arg	
Met			Lys			Tyr	Phe	Gly		Gly	Trp	Phe	Thr	Asp 15	Arg	٠
			Lys	Thr		Tyr	Phe	Gly	Ala 10	Gly	Trp	Phe	Thr		Arg	
Met 1	Pro	Lys		5,				•	10					15		
Met 1	Pro	Lys	Ala	5,				Meţ	10				Glu			
Met 1	Pro	Lys		5,				•	10					15		
Met 1 Gln	Pro Asn	Lys	Ala 20	5 Tyr	Lys	Glu	Ala	Meţ 25	10 Glu	Ala	Leu	Lys	Glu 30	15 Asn	Pro	
Met 1 Gln	Pro Asn	Lys	Ala 20	5 Tyr	Lys	Glu	Ala	Met 25 Val	10 Glu	Ala	Leu	Lys	Glu 30	15	Pro	
Met 1 Gln	Pro Asn	Lys	Ala 20	5 Tyr	Lys	Glu	Ala	Met 25 Val	10 Glu	Ala	Leu	Lys	Glu 30	15 Asn	Pro	
Met 1 Gln Thr	Pro Asn Ile	Lys Lys Asp 35	Ala 20 Leu	5 Tyr Glu	Lys Asn	Glu	Ala Tyr 40	Met 25 Val	10 Glu Pro	Ala Leu	Leu	Lys Asn 45	Glu 30 Gln	15 Asn Tyr	Pro Lys	
Met 1 Gln Thr	Pro Asn Ile	Lys Lys Asp 35	Ala 20 Leu	5 Tyr Glu	Lys Asn	Glu Ser His	Ala Tyr 40	Met 25 Val	10 Glu Pro	Ala Leu	Leu Asp	Lys Asn 45	Glu 30 Gln	15 Asn	Pro Lys	
Met 1 Gln Thr	Pro Asn Ile	Lys Lys Asp 35	Ala 20 Leu	5 Tyr Glu	Lys Asn	Glu	Ala Tyr 40	Met 25 Val	10 Glu Pro	Ala Leu	Leu	Lys Asn 45	Glu 30 Gln	15 Asn Tyr	Pro Lys	
Met 1 Gln Thr	Pro Asn Ile 50	Lys Lys Asp 35	Ala 20 Leu Val	5 Tyr Glu Asp	Lys Asn Glu	Glu Ser His 55	Tyr 40	Met 25 Val Glu	Glu Pro Tyr	Ala Leu Leu	Leu Asp His	Lys Asn 45 Asp	Glu 30 Gln Lys	15 Asn Tyr Val	Pro Lys Trp	
Met 1 Gln Thr	Pro Asn Ile 50	Lys Lys Asp 35	Ala 20 Leu Val	5 Tyr Glu Asp	Lys Asn Glu	Glu Ser His 55	Tyr 40	Met 25 Val Glu	Glu Pro Tyr	Ala Leu Leu	Leu Asp His	Lys Asn 45 Asp	Glu 30 Gln Lys	15 Asn Tyr	Pro Lys Trp	
Met 1 Gln Thr	Pro Asn Ile Ile 50	Lys Lys Asp 35	Ala 20 Leu Val	5 Tyr Glu Asp	Lys Asn Glu	Glu Ser His 55	Tyr 40	Met 25 Val Glu	Glu Pro Tyr	Ala Leu Leu	Leu Asp His	Lys Asn 45 Asp	Glu 30 Gln Lys	15 Asn Tyr Val	Pro Lys Trp	
Met  1 Gln Thr Gly Ala 65	Pro Asn Ile 50	Lys Asp 35 Arg	Ala 20 Leu Val	Tyr Glu Asp	Lys Asn Glu Asn 70	Glu Ser His 55 Asn	Ala Tyr 40 Pro	Met 25 Val Glu Leu	10 Glu Pro Tyr	Ala Leu Leu Gly 75	Leu Asp His 60	Lys Asn 45 Asp	Glu 30 Gln Lys	15 Asn Tyr Val	Pro Lys Trp Asp	
Met  1 Gln Thr Gly Ala 65	Pro Asn Ile 50	Lys Asp 35 Arg	Ala 20 Leu Val	Tyr Glu Asp	Lys Asn Glu Asn 70	Glu Ser His 55 Asn	Ala Tyr 40 Pro	Met 25 Val Glu Leu	10 Glu Pro Tyr	Ala Leu Leu Gly 75	Leu Asp His 60	Lys Asn 45 Asp	Glu 30 Gln Lys	15 Asn Tyr Val	Pro Lys Trp Asp	
Met  1 Gln Thr Gly Ala 65	Pro Asn Ile 50	Lys Asp 35 Arg	Ala 20 Leu Val	Tyr Glu Asp	Lys Asn Glu Asn 70	Glu Ser His 55 Asn	Ala Tyr 40 Pro	Met 25 Val Glu Leu	10 Glu Pro Tyr	Ala Leu Leu Gly 75	Leu Asp His 60	Lys Asn 45 Asp	Glu 30 Gln Lys	15 Asn Tyr Val	Pro Lys Trp Asp	
Met  1 Gln Thr Gly Ala 65	Pro Asn Ile 50	Lys Asp 35 Arg	Ala 20 Leu Val	Tyr Glu Asp Tyr	Lys Asn Glu Asn 70	Glu Ser His 55 Asn	Ala Tyr 40 Pro	Met 25 Val Glu Leu	Glu Pro Tyr Asn	Ala Leu Leu Gly 75	Leu Asp His 60	Lys Asn 45 Asp	Glu 30 Gln Lys	15 Asn Tyr Val Asn	Pro Lys Trp Asp	
Met  Gln  Thr  Gly  Ala  65	Pro Asn Ile 50 Thr	Lys Asp 35 Arg	Ala 20 Leu Val Thr	Tyr Glu Asp Tyr Val	Lys Asn Glu Asn 70	Glu Ser His 55 Asn	Ala Tyr 40 Pro	Met 25 Val Glu Leu Asp	Glu Pro Tyr Asn Glu 90	Ala Leu Leu Gly 75 Glu	Leu Asp His 60 Ile	Lys Asn 45 Asp Lys	Glu 30 Gln Lys Thr	15 Asn Tyr Val Asn	Pro Lys Trp Asp 80 Gly	
Met  Gln  Thr  Gly  Ala  65	Pro Asn Ile 50 Thr	Lys Asp 35 Arg	Ala 20 Leu Val Thr	Tyr Glu Asp Tyr Val 85	Lys Asn Glu Asn 70	Glu Ser His 55 Asn	Ala Tyr 40 Pro Asp	Met 25 Val Glu Leu Asp	Glu Pro Tyr Asn Glu 90	Ala Leu Leu Gly 75 Glu	Leu Asp His 60 Ile	Lys Asn 45 Asp Lys	Glu 30 Gln Lys Thr	Asn Tyr Val Asn Leu 95	Pro Lys Trp Asp 80 Gly	

26/36 Ile Pro Asp Glu Asp Tyr Gly Lys Pro Ile Asn Leu Met Ser Trp Gly 125 120 115 Val Ser Asp Asn Val Ile Lys Met Ser Gln Leu Lys Asp Phe Asn Phe 135 140 130 Asn Lys Pro Arg Phe Asp Phe Tyr Glu Gly Ala Val Tyr 155 150 145 <210> 15 <211> 720 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (1) .. (717) <400> 15 atg gct acc cca cac att aat gca gaa atg ggc gat ttc gct gac gta Met Ala Thr Pro His Ile Asn Ala Glu Met Gly Asp Phe Ala Asp Val 5 · 1 gtt ttg atg cca ggc gac ccg ctg cgt gcg aag tat att gct gaa act 96 Val Leu Met Pro Gly Asp Pro Leu Arg Ala Lys Tyr Ile Ala Glu Thr 25 20 ttc ctt gaa gat gcc cgt gaa gtg aac aac gtt cgc ggt atg ctg ggc Phe Leu Glu Asp Ala Arg Glu Val Asn Asn Val Arg Gly Met Leu Gly 40 35 ttc acc ggt act tac aaa ggc cgc aaa att tcc gta atg ggt cac ggt. 192 Phe Thr Gly Thr Tyr Lys Gly Arg Lys Ile Ser Val Met Gly His Gly 55 50 atg ggt atc ccg tcc tgc tcc atc tac acc aaa gaa ctg atc acc gat Met Gly Ile Pro Ser Cys Ser Ile Tyr Thr Lys Glu Leu Ile Thr Asp 75 65

90

288

95

ttc ggc gtg aag aaa att atc cgc gtg ggt tcc tgt ggc gca gtt ctg

Phe Gly Val Lys Lys Ile Ile Arg Val Gly Ser Cys Gly Ala Val Leu

85

_			atc ggt atg g		
	100	105		110	
-			aaa gac cat g		
Asp Ser Lys		, lie Arg Phe 120	Lys Asp His A	sp Pne Ala 25	Ata
			gca gta gat g		
Ile Ala Asp	Phe Asp Met	: Val Arg Asn 135	Ala Val Asp A 140	Ia AIa Lys	Ala
130		133	2.10		
			ctg ttc tcc g		
			Leu Phe Ser A	la Asp Leu	
145	150	)	155		160
tac tct ccg	gac ggc gaa	atg ttc gac	gtg atg gaa a	aa tac ggc	att 528
Tyr Ser Pro	Asp Gly Glu	Met Phe Asp	Val Met Glu L	ys Tyr Gly	Ile
	165		170	175	
ctc agc ato	r gaa atg gaa	a gcg gct ggt	atc tac ggc g	tc gct gca	gaa 576
			Ile Tyr Gly V		
	180	185		190	
ttt	, 222 <i>aca c</i> t	r acc atc toc	acc gta tct g	ac cac atc	cqc 624
			Thr Val Ser A		
195		200		05	•
		•		. • •	
			cgt cag act a Arg Gln Thr T		
210	GIN THE TH	215	220 .	III FIIE ASII	ASII
	•				
-			ctg ctg ggc g		taa 720
			Leu Leu Gly A 235	sp Lys Glu	
225	230	,			
		•	•		
<210> 16					
<211> 239 <212> PRT				•	
•	erichia coli			•	
<400> 16	- Dwo 174 - Ti	. Non Ni - Ci	Met Cl. les T	he Nin No-	Val
Met Ala Thi	r Pro His II	E Wau wig Gin	Met Gly Asp P	ne Ala Asp	AGT
•	•	•			

28/36

Val Leu Met Pro Gly Asp Pro Leu Arg Ala Lys Tyr Ile Ala Glu Thr
20 25 30

Phe Leu Glu Asp Ala Arg Glu Val Asn Asn Val Arg Gly Met Leu Gly
35 40 45

Phe Thr Gly Thr Tyr Lys Gly Arg Lys Ile Ser Val Met Gly His Gly 50 55 60

Met Gly Ile Pro Ser Cys Ser Ile Tyr Thr Lys Glu Leu Ile Thr Asp
65 70 75 80

Phe Gly Val Lys Lys Ile Ile Arg Val Gly Ser Cys Gly Ala Val Leu 85 90 95

Pro His Val Lys Leu Arg Asp Val Val Ile Gly Met Gly Thr Cys Thr
100 105 110

Asp Ser Lys Val Asn Arg Ile Arg Phe Lys Asp His Asp Phe Ala Ala 115 120 125

Ile Ala Asp Phe Asp Met Val Arg Asn Ala Val Asp Ala Ala Lys Ala 130 135 140

Leu Gly Ile Asp Ala Arg Val Gly Asn Leu Phe Ser Ala Asp Leu Phe 145 150 155 160

Tyr Ser Pro Asp Gly Glu Met Phe Asp Val Met Glu Lys Tyr Gly Ile 165 170 175

Leu Gly Val Glu Met Glu Ala Ala Gly Île Tyr Gly Val Ala Ala Glu 180 185 190

Phe Gly Ala Lys Ala Leu Thr Ile Cys Thr Val Ser Asp His Ile Arg 195 200 205

Thr His Glu Gln Thr Thr Ala Ala Glu Arg Gln Thr Thr Phe Asn Asn 210 215 220

Met Ile Lys Ile Ala Leu Glu Ser Val Leu Leu Gly Asp Lys Glu 225 230 235

<210> 17

<211> 1224

29/36

<212> DNA <213> Escherichia coli <220> <221> CDS <222> (1) .. (1221) <400> 17 atg aaa cgt gca ttt att atg gtg ctg gac tca ttc ggc atc ggc gct Met Lys Arg Ala Phe Ile Met Val Leu Asp Ser Phe Gly Ile Gly Ala 10 5 aca gaa gat gca gaa cgc ttt ggt gac gtc ggg gct gac acc ctg ggt Thr Glu Asp Ala Glu Arg Phe Gly Asp Val Gly Ala Asp Thr Leu Gly 20: cat atc gca gaa gct tgt gcc aaa ggc gaa gct gat aac ggt cgt aaa 144 His Ile Ala Glu Ala Cys Ala Lys Gly Glu Ala Asp Asn Gly Arg Lys 45 35 40 ggc ccg ctc aat ctg cca aat ctg acc cgt ctg ggg ctg gcg aaa gca Gly Pro Leu Asn Leu Pro Asn Leu Thr Arg Leu Gly Leu Ala Lys Ala 50 cac gaa ggt tot acc ggt tto att ccg gcg gga atg gac ggc aac gct, His Glu Gly Ser Thr Gly Phe Ile Pro Ala Gly Met Asp Gly Asn Ala 70 4 65 gaa gtt atc ggc gcg tac gca tgg gcg cac gaa atg tca tcc ggt aaa 288 Glu Val Ile Gly Ala Tyr Ala Trp Ala His Glu Met Ser Ser Gly Lys 95 85 336 gat acc ccg tct ggt cac tgg gaa att gcc ggc gtc ccg gtt ctg ttt Asp Thr Pro Ser Gly His Trp Glu Ile Ala Gly Val Pro Val Leu Phe 100 105 gag tgg gga tat ttc tcc gat cac gaa aac agc ttc ccg caa gag ctg 384 Glu Trp Gly Tyr Phe Ser Asp His Glu Asn Ser Phe Pro Gln Glu Leu 125 115 120 ctg gat aaa ctg gtc gaa cgc gct aat ctg ccg ggt tac ctc ggt aac 432 Leu Asp Lys Leu Val Glu Arg Ala Asn Leu Pro Gly Tyr Leu Gly Asn 130 135 140

tgc	cac	tct	tcc	ggt	acg	gtc	att	ctg	gat	caa	ctg	ggc	gaa	gag	cac	480
Cys	His	Ser	Ser	Gly	Thr	Val	Ile	Leu	Asp	Gln	Leu	Gly	Glu	Glu	His	
145					150					155					160	
atg	aaa	acc	ggc	aag	ccg	att	ttc	tat	acc	tcc	gct	gac	tcc	gtg	ttc	528
					Pro											
	•		•	165				•	170			_		175		
caq	att	acc	tac	cat	gaa	qaa	act	ttc	ggt	ctg	gat	aaa	ctc	tac	gaa	576
					Glu											
			180					185	•		-	•	190	-		
cta	tac	gaa	atc	acc	cgt	gaa	aaa	cta	acc	aac	qqc	aac	tac	aat	atc	624
_	_	_		_	Arg											
	010	195			5		200				_ •	205	•			
		100					200									
aat	cat	att	atc	act	cgt	cca	ttt	atc	aac	gac	aaa	acc	aat	aac	ttc	672
	-				Arg											
<b>U</b> _j	210	• • • • • • • • • • • • • • • • • • • •			5	215	•		2		220					
caa	cat	acc	aat	aac	cgt	cac	gac	cta	act	att	gag	cca	cca	qca	ccq	720
					Arg											
225	••••		0_1		230					235					240	
acc	ata	cta	cag	aaa	ctg	att	gat	gaa	aaa	cac	ggc	caq	qtq	gtt	tct	768
		_			Leu											
				245			-		250		•			255		
							*									
atc	aat	aaa	att	aca	gac	atc	tac	qcc	aac	tqc	ggt	atc	acc	aaa	aaa	816
_					Asp											
	2	-1 -	260		•		•	265		-	-		270	_	_	
ata	aaa	gcg	act	ggc	ctg	gac	gcg	ctg	ttt	gac	acc	acc	atc	aaa	gag	864
					Leu											
		275		•		-	280			-		285		_		
												•				
atq	aaa	qaa	qcq	ggt	gat	aac	acc	atc	gtc	ttc	acc	aac	ttc	gtt	gac	912
_		_			Asp											
	290			•	•	295					300					
tta	qac	tct	tcc	taa	ggc	cac	cat	cqc	gac	gtc	gcc	ggt	tat	gcc	gcg	960
	_				Gly											•
305				- 4	310		- J	- 3	- •	315		- 4	•		320	•

									31/3	6						
			Leu								ctg Leu					1008
											cac His					1056
											att Ile					1104
											cat His 380					1152
											ggt Gly					1200
_				gcc Ala 405			tga	•								1224
<21 <21	0> 1 1> 4 2> P 3> E	07 RT	rich	ia c	oli						•					
-40	0> 1	g.											•			
	Lys		Ala	Phe 5	Ile	Met	Val	Leu	Asp 10		Phe	Gly	Ile	Gly 15		
Thr	Glu	Asp	Ala 20	Glu	Arg	Phe	Gly	Asp 25	Val	Gly	Ala	Asp	Thr 30	Leu	Gly	
His	Ile	Ala 35	Glu	Ala	Cys	Ala	Lys 40		Glu	Ala	Asp	Asn 45	Gly	Arg	Lys	•
Gly	Pro		Asn	Leu	Pro	Asn 55		Thr	Arg	Leu	Gly 60	Leu	Ala	Lys	Ala	
His 65		Gly	Ser	Thr	Gly 70	Phe	Ile	Pro	Ala	Gly 75	Met	Asp	Gly	Asn	Ala 80	

Glu	Val	Ile	Gly	Ala 85	Tyr	Ala	Trp	Ala	His 90	Glu	Met	Ser	Ser	Gly 95	Lys
Asp	Thr	Pro	Ser 100	Gly	His	Trp	Glu	Ile 105	Ala	Gly	Val	Pro	Val 110	Leu	Phe
Glu	Trp	Gly 115	Tyr	Phe	Ser	Asp	His 120	Glu	Asn	Ser	Phe	Pro 1 <u>2</u> 5	Gln	Glu	Leu
Leu	Asp	Lys	Leu	Val	Glu	Arg 135	Ala	Asn	Leu	Pro	Gly 140	Tyr	Leu	Gly	Asn
Cys 145	His	Ser	Ser	Gly	Thr 150	Val	Ile	Leu	Asp	Gln 155	Leu	Gly	Glu	Glu	His 160
Met	Lys	Thr	Gly	Lys 165	Pro	Ile	Phe	Tyr	Thr 170	Ser	Ala	Asp	Ser	Val 175	Phe
Gln	Ile	Ala -	Cys 180	His	Glu	Glu	Thr	Phe 185	Gly	Leu	Asp	Lys	Leu 190	Tyr	Glu
Leu	Cys	Glu 195	Ile	Ala	Arg	Glu	Glu 200	Leu	Thr	Asn	Gly	Gly 205	Tyr	Asn	Ile
Gly	Arg 210	Val	Ile	Ala	Arg	Pro 215	Phe	Ile	Gly	Asp	Lys 220	Ala	Gly	Asn	Phe
Gln 225	Arg	Thr	Gly	Asn	Arg 230	His	Asp	Leu	Ala	Val 235	Glu	Pro	Pro	Ala	Pro 240
Thr	Val	Leu	Gln	Lys 245	Leu	Val	Asp	Glu	Lys 250		Gly	Gln	Val	Val 255	
Val	Gly	Lys	Ile 260	Ala	Asp	Ile	Tyr	Ala 265	Asn	Cys	Gly	Įle	Thr 270	Lys	Lys
Val	Lys	Ala 275		Gly	Leu	Asp	Ala 280	Leu	Phe	Asp	Thr	Thr 285	Ile	Lys	Glu
Met	Lys 290		Ala	Gly	Asp	Asn 295		Ile	Val	Phe	Thr 300	Asn	Phe	Val	Asp
Phe	Asp	Ser	Ser	Trp	Gly 310	His	Arg	Arg	Asp	Val	Ala	Gly	Tyr	Ala	Ala 320

33/36

Gly Leu Glu Leu Phe Asp Arg Arg Leu Pro Glu Leu Met Ser Leu Leu
325 330 335

Arg Asp Asp Ile Leu Ile Leu Thr Ala Asp His Gly Cys Asp Pro 340 345 350

Thr Trp Thr Gly Thr Asp His Thr Arg Glu His Ile Pro Val Leu Val

Tyr Gly Pro Lys Val Lys Pro Gly Ser Leu Gly His Arg Glu Thr Phe 370 375 380

Ala Asp Ile Gly Gln Thr Leu Ala Lys Tyr Phe Gly Thr Ser Asp Met 385 390 395 400

Glu Tyr Gly Lys Ala Met Phe 405

<210> 19

<211> 780

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1) .. (777)

<400> 19

atg act gat ctg aaa gca agc agc ctg cgt gca ctg aaa ttg atg gac 48
Met Thr Asp Leu Lys Ala Ser Ser Leu Arg Ala Leu Lys Leu Met Asp
1 5 10 15

ctg aac acc ctg aat gac gac gac acc gac gag aaa gtg atc gcc ctg 96 Leu Asn Thr Leu Asn Asp Asp Asp Thr Asp Glu Lys Val Ile Ala Leu 20 25 30

tgt cat cag gcc aaa act ccg gtc ggc aat acc gcc gct atc tgt atc

144

Cys His Gln Ala Lys Thr Pro Val Gly Asn Thr Ala Ala Ile Cys Ile

35

40

45

tat cct cgc ttt atc ccg att gct cgc aaa act ctg aaa gag cag ggc 192

Tyr Pro Arg Phe Ile Pro Ile Ala Arg Lys Thr Leu Lys Glu Gln Gly

50 55 60

	_	_				_	_	-			cac His		240
_	_		_								atc Ile		288
	_	_	_	_	_	_			_	_	 ctg Leu 110		336
			_	_							aaa Lys		384
			_								acc Thr		432
											tcc Ser		480
			_								gct Ala		528
	_	_	_	-							cgt Arg 190		576
	_				_						gtg Val		<b>624</b>
_	_	_	-	_				_			ctg Leu		672
_					-						tcc Ser		720

35/36

ctg gca agc ctg ctg aaa gcg ctg ggt cac ggc gac ggt aag agc gcc 768 Leu Ala Ser Leu Leu Lys Ala Leu Gly His Gly Asp Gly Lys Ser Ala 245 250 255

agc agc tac taa Ser Ser Tyr 780

<210> 20

<211> 259

<212> PRT

<213> Escherichia coli

<400> 20

Met Thr Asp Leu Lys Ala Ser Ser Leu Arg Ala Leu Lys Leu Met Asp

1 5 10 15

Leu Asn Thr Leu Asn Asp Asp Asp Thr Asp Glu Lys Val Ile Ala Leu 20 25 30

Cys His Gln Ala Lys Thr Pro Val Gly Asn Thr Ala Ala Ile Cys Ile 35 40 45

Tyr Pro Arg Phe Ile Pro Ile Ala Arg Lys Thr Leu Lys Glu Gln Gly
50 55 60

Thr Pro Glu Ile Arg Ile Ala Thr Val Thr Asn Phe Pro His Gly Asn 65 70 75 80

Asp Asp Ile Asp Ile Ala Leu Ala Glu Thr Arg Ala Ala Ile Ala Tyr 85 90 95

Gly Ala Asp Glu Val Asp Val Val Phe Pro Tyr Arg Ala Leu Met Ala 100 105 110

Gly Asn Glu Gln Val Gly Phe Asp Leu Val Lys Ala Cys Lys Glu Ala 115 120 125

Cys Ala Ala Ala Asn Val Leu Leu Lys Val Ile Ile Glu Thr Gly Glu 130 135 140

Leu Lys Asp Glu Ala Leu Ile Arg Lys Ala Ser Glu Ile Ser Ile Lys 145 150 155 160

36/36

Ala Gly Val Asp Phe Ile Lys Thr Ser Thr Gly Lys Val Ala Val Asn 165 170 175

Ala Thr Pro Glu Ser Ala Arg Ile Met Met Glu Val Ile Arg Asp Met 180 185 190

Gly Val Glu Lys Thr Val Gly Phe Lys Pro Ala Gly Gly Val Arg Thr
195 200 205

Ala Glu Asp Ala Gln Lys Tyr Leu Ala Ile Ala Asp Glu Leu Phe Gly 210 215 220

Ala Asp Trp Ala Asp Ala Arg His Tyr Arg Phe Gly Ala Ser Ser Leu 225 230 235 240

Leu Ala Ser Leu Leu Lys Ala Leu Gly His Gly Asp Gly Lys Ser Ala 245 250 255

Ser Ser Tyr