```
Jame: Nishtha Jain
Bedion: H
Roll No : 39
        DESIGN AND ANALYSIS OF ALGORITHMS (TOTORIAL-4)
de T(n)=3T(n/2)+n2
   =) a=3, b=2, f(n)=n2
       => nlogba = nlog28
           n \log_2 3 < n^2 => T(n) = O(n^2)
  d2 T(n) = 4T(n/2)+n2
  \Rightarrow Q = 4, b= \(\alpha\), f(n) = n^2
        n^{\log 60} = n^{\log_2 4} = n^2 = n^2
                          = n \log 6 = f(n)
                          =) T(n) = O(n2logu)
  \frac{d_3}{d_3} T(n) = T(n/2) + o^n
=) a = 1, b = o^n, f(n) = o^n
      =) nlog6a = nlog2 =) nlog22° = n°
                           3) Since 12 f(u)
                            =) T(u) = @ (2h)
   dy TW= 2" T(u/2)+u2
   =) Master's Theorem is not applicable since a's a function.
  05 T(n) = 16 T(n/4)+n
```

=) a=16, b=4, f(u)=u=) $u^{\log_{0}a} = u^{\log_{4}16}$ $\Rightarrow u^{\log_{4}4^{2}} = u^{2\log_{4}4}$ = u^{2}

Since
$$u^2 > u$$

3) $T(u) = O(u^2 - u)$

(b) $T(u) = o T(u|2) + u \log u$

3) $u \log_0 a = u \log_2 a = u$

Bince $u \log_0 a < f(u)$

2) $T(u) = O(u \log_0 u)$

T(u) = $a T(u|2) + u \log_0 u$

2) $a = a^2 , b = a^2 , f(u) = u \log_0 u$

2) $a = a^2 , b = a^2 , f(u) = u \log_0 a = u \log_0 a < f(u)$

2) $a = a^2 , b = u , f(u) = u \log_0 a < f(u)$

3) $a = a^2 , b = u , f(u) = u^{0.51}$

3) $a = a^2 , b = u , f(u) = u^{0.51}$

3) $a = a^2 , b = u , f(u) = u^{0.51}$

3) $a = a^2 , b = u , f(u) = u^{0.51}$

3) $a = a^2 , b = u , f(u) = u^{0.51}$

49 $a = u \log_0 a < f(u)$

3) $a = u \log_0 a < f(u)$

3) $a = u \log_0 a < f(u) = u \log_0 a < u$

400 $a = u \log_0 a < u$

3) $a = u \log_0 a < u$

4) $a = u \log_0 a < u$

3) $a = u \log_0 a < u$

4) $a = u \log_0 a < u$

3) $a = u \log_0 a < u$

4) $a = u \log_0 a < u$

5) $a = u \log_0 a < u$

6) $a = u \log_0 a < u$

7) $a = u \log_0 a < u$

8) $a = u \log_0 a < u$

8) $a = u \log_0 a < u$

8) $a = u \log_0 a < u$

9) $a = u \log_0 a < u$

9)

Ny. T(n) = 4T (n/2) + log n =) a = 4, $b = \infty$, f(u) = log u=) $u log b^a = u log 24$ =) u^2 Since, whomas flus =) 7(n)=0(n2) diz. T(u) = Sqxt(u) + (u/2) + logu =) Master's Theosen is not applicable, since, a is not constant (13 Th)=3T(u/2)+n =) a = 3, b = 4, f(u) = u=) $u \log_{2} a = 1$, $u \log_{2} a = 1$ Since nlogo S flas =) T(u)=O(u150) diy T(n) = 3T(n/3) + va => a=3, b=8, flu a = 8, b = 8, $f(u) = \sqrt{u}$ =) nlogba = nlogs3 =) u Sence, n'ego > fln) >) T(u)=0(u) 015 T(n) = 4T (n/2) + cn =) a=4, b=0, f(u)=u =) nlog69 = nlog24 =) nq Since, nlog 69 > f(n) $\frac{7(n)=O(n^2)}{2}$

Master's Theorem is not applicable, Since, f(n) is not an encreasing function. dol T(n) = 77(n/3)+n0 =) a=7, b=3, f(n)= no =) nlogo = nlogo =) nl.7 Since, ulgga < flu) $=) T(u) = O(u^2)$

(T(n)= T(n/2)+ n(2-cosn)

2) Master's Theorem & not applicable, state, due to violation of regularity condition.

