Algorithms Chapter 1 & 2 Getting Started

Juinn-Dar Huang Professor jdhuang@mail.nctu.edu.tw

July 2007 Rev. '08, '11, '12, '15, '16, '18, '19, '20

Algorithms

Algorithm

- is any well-defined computational procedure
- takes some value or set of values as input
- produces some value or set of values as output
- → is a sequence of computational steps that transfer the input into the output
- An algorithm is a tool for solving a well-specified computational problem
- The problem statement
 - specifies the desired input/output relationship
 - → the algorithm is a specific procedure for achieving that I/O relationship

Sorting Problem

- Sorting problem
 - input: a sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$
 - output: a permutation $\langle a_1, a_2, ..., a_n \rangle$ of the input sequence such that $a_1 \le a_2 \le ... \le a_n$
- For example
 - an instance of the problem - input: <31, 41, 59, 26, 41, 58>
 - output: <26, 31, 41, 41, 58, 59>
- An instance of the problem
 - consists of the input needed to compute a solution (output) to the problem

Correctness of Algorithm

- Correct algorithm
 - halts with the correct output for every input instance
- A correct algorithm solves the given computational problem
- Incorrect algorithm
 - might halt with an incorrect output
 - might not halt for some input instances

Beyond the Correctness

- Make the algorithm correct first
- Reality
 - computers are not infinitely fast
 - memory is not infinitely large
- In addition to correctness, a good algorithm should be efficient in both time and space

Correctness vs. Efficiency?

Traveling Salesman Problem (TSP)

- **Input:** A set of points (cities) P together with a distance d(p, q) between any pair $p, q \in P$
- Output: What is the shortest circular route that starts and ends at a given point and visits all the points

Correct and efficient algorithms?

Nearest Neighbor Tour

- 1. pick and visit an initial point p_0
- 2. $P \leftarrow p_0$
- $3. i \leftarrow 0$
- 4. **while** there are unvisited points **do**
- visit p_i 's nearest unvisited point p_{i+1}
- $i \leftarrow i + 1$
- 7. return to p_0 from p_i
- Simple to implement and very efficient, but

incorrect!

A Correct but Inefficient Algorithm

- 1. $d \leftarrow \infty$
- 2. for each of the n! permutations π_i of the n points
- if $(cost(\pi_i) \le d)$ then
- 4. $d \leftarrow cost(\pi_i)$
- $T_{min} \leftarrow \pi_i$
- 6. return T_{min}
- Correctness? Try all possible orderings of the points -> Guarantee to end up with the shortest possible tour
- Efficiency? Try n! possible routes!
 - 120 routes for 5 points; 3,628,800 routes for 10 points
 - no known efficient and correct algorithm for TSP!
 - TSP is NP-complete
- Think Deep: What will you do?

Sorting Problem

- Sorting problem
 - input: a sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$
 - output: a permutation $\langle a_1, a_2, ..., a_n \rangle$ of the input sequence such that $a_1 \le a_2 \le ... \le a_n$
- For example
 - input: <31, 41, 59, 26, 41, 58>
 - output: <26, 31, 41, 41, 58, 59>
- The numbers under sorting are also known as keys
- How to sort?

Sorting a Hand of Cards

Getting Started

Insertion Sort

Insertion sort is an efficient algorithm for sorting a small number of elements

Pseudocode

Insertion sort

```
Insertion-Sort(A)
1 for j \leftarrow 2 to length[A]
    do key \leftarrow A[j]
        * Insert A[j] into the sorted sequence A[1..j-1]
3
         i \leftarrow j - 1
        while i > 0 and A[i] > \text{key}
5
6
             do A[i+1] \leftarrow A[i]
                  i \leftarrow i - 1
        A[i+1] \leftarrow \text{key}
```

Analyzing Algorithms

- Analyzing an algorithm has come to mean predicting the resources that the algorithm requires
 - CPU time
 - memory space
- Assumption
 - single processor (not multiprocessor, not parallel computing)
 - RAM as memory (not disk)

Running Time vs. Input Size

- The running time needed by Insertion-Sort depends on the input size
 - 10 numbers vs. 1 million numbers
- In general
 - input size → running time
 - the running time is typically described as a function of the input size
- How to calculate running time?
 - count the number of primitive operations (steps)
 - machine-independent

Analysis of Insertion Sort

Insertion-sort(A)	cost	times
1 for $j \leftarrow 2$ to length[A]	C1	n
2 do key \leftarrow A[j]	<i>c</i> ₂	n-1
3 * Insert A[j] into the	0	
sorted sequence $A[1j-1]$		
$4 \qquad i \leftarrow j-1$	<i>c</i> ₄	n-1
5 while $i > 0$ and $A[i] > \text{key}$	<i>c</i> 5	$\sum_{j=2}^{n} t_j$
6 do $A[i+1] \leftarrow A[i]$	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
$7 \qquad i \leftarrow i - 1$	<i>c</i> 7	$ \int_{n}^{j=2} (t_{j}-1) $ $ \sum_{j=2}^{n} (t_{j}-1) $ $ j=2 $
8 $A[i+1] \leftarrow \text{key}$	<i>c</i> 8	n-1

 t_j : the number of times the while loop test in Line 5 is executed for the value of j

Best-Case Analysis

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

- T(n) does not solely depend on n
- Best case: the array is already sorted

$$-t_j = 1$$
 for $j = 2, 3, ..., n$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

- T(n) is a linear function of n

Worst-Case Analysis

Worst case: the array is sorted in reverse order

$$-t_j = j$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (\frac{n(n+1)}{2} - 1) + c_5 ($$

$$c_{6}(\frac{n(n-1)}{2}) + c_{7}(\frac{n(n-1)}{2}) + c_{8}(n-1)$$

$$= (\frac{c_{5} + c_{6} + c_{7}}{2})n^{2} - (c_{1} + c_{2} + c_{4} + \frac{c_{5} - c_{6} - c_{7}}{2} + c_{8})n$$

T(n) is a quadratic function of n

 $-(c_2 + c_4 + c_5 + c_8)$

Best/Worst/Average Cases

- We usually concentrate on finding the worst-case running time
 - the longest running time for any input size of n
- Why?
 - worst case gives an upper bound
 - for some algorithms, the worst case occurs fairly often
 - e.g., searches in databases
 - the average case is *often* roughly as bad as the worst case
 - e.g., for insertion sort, T(n) is still a quadratic function of n

Order of Growth

- Why is the running time typically described as a function of the input size?
 - to know how the running time grows as the input size grows
- It is the rate of growth, or order of growth, of the running time that really interests us
- For insertion sort
 - the worst-case running time, $\Theta(n^2)$
- Assume Algo1 with Θ(n²) and Algo2 with Θ(n³)
 - Algo1 is considered more efficient than Algo2
 - i.e., for a large enough n, Algo1 runs faster than Algo2

Divide-and-Conquer

- Many algorithms are recursive
 - they call themselves recursively one or more times to deal with subproblems
- Divide-and-conquer paradigm
 - divide the problem into a number of subproblems
 - conquer the subproblems by solving them recursively
 - combine the solutions to the subproblems into the solution to the original problem

Merge Sort

- Divide-and-conquer
 - divide: divide the n-element sequence into
 2 subsequences of n/2 elements each
 - conquer: sort the 2 subsequences recursively
 - combine: merge the 2 sorted subsequences to produce the answer

MERGE(A, p, q, r) (1/2)

- MERGE(A, p, q, r)
 - given that A[p .. q] and A[q+1 .. r] are 2 sorted subarrays
 - MERGE(A, p, q, r) produce a sorted A[p .. r] subarray
- 1 $n_1 \leftarrow q p + 1$
- $2 \quad n_2 \leftarrow r q$
- create array L[1.. $n_1 + 1$] and R[1.. $n_2 + 1$]
- for $i \leftarrow 1$ to n_1
- **do** L[i] \leftarrow A[p+i-1]
- for $j \leftarrow 1$ to n_2
- **do** R[i] \leftarrow A[q + j]
- 8 $L[n_1 + 1] \leftarrow \infty$
- 9 $R[n_2+1] \leftarrow \infty$

sentinels

MERGE(A, p, q, r) (2/2)

```
10 i \leftarrow 1
                         Time: \Theta(n), n = number of elements
11 j \leftarrow 1
12 for k \leftarrow p to r
        do if L[i] \leq R[j]
13
                 then A[k] \leftarrow L[i]
14
15
            i \leftarrow i + 1
16
        else A[k] \leftarrow R[j]
17
           j \leftarrow j + 1
```

Illustration of MERGE (1/2)

MERGE(A, 9, 12, 16)

Illustration of MERGE (2/2)

Merge Sort

MERGE-SORT(A, p, r)

– sort the elements in A[p .. r]

```
1 \text{ if } p < r
       then q \leftarrow \lfloor (p+r)/2 \rfloor
              MERGE-SORT(A,p,q)
3
              MERGE-SORT(A,q+1,r)
              MERGE(A,p,q,r)
5
```

Illustration of MERGE-SORT

Analysis of Merge Sort (1/2)

- The running time of a recursive algorithm can be expressed as a recurrence equation
 - discuss later in Chap 4
 - "master theorem" can be found in discrete math
- Analysis of merge sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

$$T(n) = \Theta(n \lg n)$$
 by the master theorem

Hence the merge sort is better than the insertion sort when n is large

Analysis of Merge Sort (2/2)

