Introduction

Clue is a board game, instance of treasure hunt problem

Designing an agent requires solving and integrating these solutions

Tradeoffs

My Contribution

Utility Function: Entropy Belief: Particle Filtering Path Finding: Value Iteration

Motivation

Clue

Rules

Formal Description

Sensor model

Action model

States

Treasure Hunt Problem

Sensors on mobile platforms

Path planning

inference

Real World Examples, examples of:

Logic

Utility

Path planning

Belief State Representation

By nature there is no solution to these problems

Tradeoffs, performance

Idea

Desired Characteristics

Guaranteed best policy as much as possible Probabilistically approaching best policy other wise Low memory footprint AND fast computation

Hopefully provably so

Components

UI/Environment

Logic

Formal Specification

Boolean Terms

21 cards

numplayers + 1 *locations*

Inherent Knowledge

All cards are somewhere

If a card is somewhere it isn't somewhere else

At least one card of each type is in the case file
If on card of a type is in the case file then no other card
of that type is also in the case file

Description of how actions update the KB

Suggestions

Passed people

They don't have any of the cards

Made by you

You learn the location of the revealed

card

Made by other

You learn the revealing player has at least one of the cards

Utility Function

What it is, why we need it

Derived from mathematical principles

Why we do this (reference Chenghui Cai)

Entropy

Description

Entropy of What?

Mutual Information

Requires probabilistic reasoning

Calculable after a few turns, otherwise

incalculable

This system will work in both situations

Other possibility: Machine learning

Time vs Space

Exact vs Estimate

Particle filtering? (Heart of my contribution)

All possible worlds approach

Advantages

No memory

Disadvantages

Incomputable

Chenghui's Q-Learning approach

Advantages

Don't need to do any tough calculations

Faster

Disadvantages

Needs a long "growing up" time

More memory

Filtering

Advantages

Less memory Q-Learning

```
Less time Calculation
Disadvantages
```

Updates

 ${\it Generating \ sample \ in \ highly \ constrained}$

universes!!

Mutation (probabilistic)

Solves problem of generating

Ways to mutate

k-beam + genetic

Varying # of particles

tradeoffs

Path Finding

Value Iteration

Value map drawings explaining various states

Justification

Results

Results

Time/Space Guarantees

Tests

Friends' impressions of the AI

Thoughts on difficulty settings

"Nintendo Hard"

How to ease up

Other Work

Chris Nash

Interview

Chenghui Cai & Silvia Ferrari

Description

Further Work

Keeping track of what the other players know about me

Learning the discount factor for value iteration?

Why is this a better candidate for machine learning than utility function?

Appendix

Code