Examples of Tensor Products

Fall 2019

To follow up on some of the material covered during section I figure it would be helpful to provide more examples where the best way of describing the elements of any vector space is to write down a basis. Letting for all of the following examples V and W be finite-dimensional vector spaces over the field \mathbb{F} with bases $\mathcal{B}_V = \{v_1, \ldots, v_n\}$ and $\mathcal{B}_W = \{w_1, \ldots, w_m\}$, the basis for $V \otimes_{\mathbb{F}} W$ is given by $\mathcal{B}_{V \otimes_{\mathbb{F}} W} = \{v_i \otimes_{\mathbb{F}} w_j\}_{1 \le i \le n, 1 \le j \le m}$.

(1) Let us consider the case of $V=W=\mathbb{R}$ as real vector spaces $(\mathbb{F}=\mathbb{R})$. In this scenario we can write down $\mathcal{B}_V=\{a\}$ and $\mathcal{B}_W=\{b\}$ for $a,b\in\mathbb{R}$ from which we obtain $\mathcal{B}_{V\otimes_{\mathbb{R}}W}=\{a\otimes_{\mathbb{R}}b\}$, but from the properties of a tensor:

$$a \otimes_{\mathbb{R}} b = a(1 \otimes_{\mathbb{R}} b) = 1 \otimes_{\mathbb{R}} ab$$

In other words, we can write down an even simpler basis for the tensor product:

$$\mathcal{B}'_{V \otimes_{\mathbb{R}} W} = \{1 \otimes_{\mathbb{R}} c\} \text{ for } c \in \mathbb{R}$$

Since there is a single degree of freedom in the basis we can identify $\dim(V \otimes_{\mathbb{R}} W) = 1$. Furthermore, having the identity element of the field in the tensor does not add any new information, hence justifying the identification $\mathbb{R} \otimes_{\mathbb{R}} \mathbb{R} \cong \mathbb{R}$ as real vector spaces.

(2) Let us consider the case of $V=\mathbb{C}$ and $W=\mathbb{R}$ as real vector spaces $(\mathbb{F}=\mathbb{R})$. In this scenario we can write $\mathcal{B}_V=\{a,bi\}$ and $\mathcal{B}_W=\{c\}$ for $a,b,c\in\mathbb{R}$ from which we obtain $\mathcal{B}_{V\otimes_{\mathbb{R}}W}=\{a\otimes_{\mathbb{R}}c,bi\otimes_{\mathbb{R}}c\}$, but from the properties of a tensor:

$$a \otimes_{\mathbb{R}} c = c(a \otimes_{\mathbb{R}} 1) = ac \otimes_{\mathbb{R}} 1$$
 and $bi \otimes_{\mathbb{R}} c = c(bi \otimes_{\mathbb{R}} 1) = bci \otimes_{\mathbb{R}} 1$

In other words, we can write down an even simpler basis for the tensor product:

$$\mathcal{B}'_{V \otimes_{\mathbb{R}} W} = \{ m \otimes_{\mathbb{R}} 1, ni \otimes_{\mathbb{R}} 1 \} \text{ for } m, n \in \mathbb{R}$$

Since there are two degrees of freedom in the basis we can identify $\dim(V \otimes_{\mathbb{R}} W) = 2$. Furthermore, having the identity element of the field in the tensor does not add any new information, hence justifying the identification $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R} \cong \mathbb{C}$ as real vector spaces.

(3) Let us consider the case of $V=W=\mathbb{C}$ as real vector spaces $(\mathbb{F}=\mathbb{R})$. In this scenario we can write $\mathcal{B}_V=\{a,bi\}$ and $\mathcal{B}_W=\{c,di\}$ for $a,b,c,d\in\mathbb{R}$ from which we obtain $\mathcal{B}_{V\otimes_{\mathbb{R}}W}=\{a\otimes_{\mathbb{R}}c,a\otimes_{\mathbb{R}}di,bi\otimes_{\mathbb{R}}c,bi\otimes_{\mathbb{R}}di\}$, but from the properties of a tensor:

$$a \otimes_{\mathbb{R}} c = c(a \otimes_{\mathbb{R}} 1) = ac(1 \otimes_{\mathbb{R}} 1)$$

$$a \otimes_{\mathbb{R}} di = a(1 \otimes_{\mathbb{R}} di) = ad(1 \otimes_{\mathbb{R}} i)$$

$$bi \otimes_{\mathbb{R}} c = c(bi \otimes_{\mathbb{R}} 1) = bc(i \otimes_{\mathbb{R}} 1)$$

$$bi \otimes_{\mathbb{R}} di = b(i \otimes_{\mathbb{R}} di) = bd(i \otimes_{\mathbb{R}} i)$$

In other words, we can write down an even simpler basis for the tensor product:

$$\mathcal{B}'_{V \otimes_{\mathbb{R}} W} = \{ 1 \otimes_{\mathbb{R}} 1, 1 \otimes_{\mathbb{R}} i, i \otimes_{\mathbb{R}} 1, i \otimes_{\mathbb{R}} i \}$$

Since there are four independent elements in the basis we can identify $\dim(V \otimes_{\mathbb{R}} W) = 4$.

(4) Let us consider the case of $V=W=\mathbb{C}$ as complex vector spaces ($\mathbb{F}=\mathbb{C}$). In this scenario we can write $\mathcal{B}_V=\{z_1\}$ and $\mathcal{B}_W=\{z_2\}$ for $z_1,z_2\in\mathbb{C}$ from which we obtain $\mathcal{B}_{V\otimes_{\mathbb{C}}W}=\{z_1\otimes_{\mathbb{C}}z_2\}$, but from the properties of a tensor:

$$z_1 \otimes_{\mathbb{C}} z_2 = z_1 (1 \otimes_{\mathbb{C}} z_2) = 1 \otimes_{\mathbb{C}} z_1 z_2$$

In other words, we can write down an even simpler basis for the tensor product:

$$\mathcal{B}'_{V \otimes_{\mathbb{R}} W} = \{1 \otimes_{\mathbb{C}} z_3\} \text{ for } z_3 \in \mathbb{C}$$

Since there is a single degree of freedom in the basis we can identify $\dim(V \otimes_{\mathbb{C}} W) = 1$. Furthermore, having the identity element of the field in the tensor does not add any new information, hence justifying the identification $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C} \cong \mathbb{C}$ as complex vector spaces.

(5) Let us consider the case of $V = \mathbb{C}$ and $W = \mathbb{R}^3$ as real vector spaces ($\mathbb{F} = \mathbb{R}$). In this scenario we can write $\mathcal{B}_V = \{1, i\}$ and $\mathcal{B}_W = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ from which we obtain:

$$\mathcal{B}_{V \otimes_{\mathbb{R}} W} = \{1 \otimes_{\mathbb{R}} (1,0,0), 1 \otimes_{\mathbb{R}} (0,1,0), 1 \otimes_{\mathbb{R}} (0,0,1), i \otimes_{\mathbb{R}} (1,0,0), i \otimes_{\mathbb{R}} (0,1,0), i \otimes_{\mathbb{R}} (0,0,1)\}$$

Since there are six independent basis elements we can identify $\dim(V \otimes_{\mathbb{C}} W) = 6$.

From all of the above examples it should become apparent that $\dim(V \otimes_{\mathbb{F}} W) = \dim(V) \dim(W)$. To see why this is so, consider the fact that the basis elements of the tensor product have to choose an $1 \le i \le n$ and $1 \le j \le m$ so as to form $v_i \otimes_{\mathbb{F}} w_j$. Hence, there are n and m choices, respectively, providing a total of mn basis elements for the tensor product.