PARTE A

1. Data $f(x) = |\sin(x)|25^{x^2}$. Allora f'(0) è uguale a A: N.E. B: 0 C: $\pi/2$ D: N.A. E: 1

2. L'integrale

$$\int_0^\pi (x - \pi) \sin(x) \, dx$$

vale

A: N.A. B: $\pi/2$ C: $\sqrt{2}$ D: 0 E: $-\pi$

3. Il limite

$$\lim_{x\to 0^+}\frac{\log(|\log(x)|)}{\log(x)}$$

vale

A: $+\infty$ B: N.A. C: 1 D: N.E. E: 0

4. La funzione $f:[0,a] \to \mathbb{R}$ definita da $f(x) = \sin(x^2)$ è iniettiva per A: $a = \pi/2$ B: a = 4 C: $a = \sqrt{\pi}$ D: $a = \sqrt{\pi/2}$ E: N.A.

5. Una soluzione dell'equazione $y'(t) = t\sin(t^2)$ è A: $\sin(t^2) + 1$ B: $(t^2 + \pi)/2 + \cos(t)$ C: $t^3/2 - \cos(t)$ D: N.A. E: N.E.

6. L'insieme dove converge la serie di potenze

$$\sum_{n=\lceil\pi\rceil}^{+\infty}\frac{n+2+\mathrm{e}^{\sin(n)}}{n}x^n$$

è

A: |x| < 8 B: N.A. C: 0 < x < 1 D: |x| < 1 E: $0 < x \le 1$

7. La retta tangente al grafico di $y(x)=\mathrm{e}^{\sin(x)}$ nel punto $x_0=3\pi/2$ vale $\phi(x)=$ A: 1-x B: N.A. C: $\mathrm{e}+(x-3\pi/2)$ D: $\frac{1}{\mathrm{e}}$ E: 1+x

8. Se esiste, il minimo di $f(x)=|\sin(x)-1|$ sull'insieme $A=\{x\in]-2\pi,0]\}$ vale A: N.A. B: N.E. C: 0 D: -1 E: 1

9. Inf, min, sup e max dell'insieme

$$A = \{y = \frac{\mathrm{e}^x}{|-\mathrm{e}^x|}, \ x \neq k\frac{\pi}{2} \ \mathrm{con} \ k \in \mathbb{Z}\}$$

valgono

A: $\{1,1,1,1\}$ B: $\{-1,-1,1,1\}$ C: $\{1,N.E.,+\infty,N.E.\}$ D: $\{0,0,1,N.E.\}$ E: N.A

10. L'insieme definito da $\{x \in \mathbb{R} , x < |4i - 3|\}$ è

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

5 febbraio 2016

(Cognome)									(Nome)								-	(N	ume	ro d	atrico	ola)								

ABCDE

1	$lackbox{0}$
2	
3	
4	
5	
6	
7	
8	
9	
10	

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

5 febbraio 2016

PARTE B

1. Studiare il grafico della funzione

$$f(x) = \frac{1 - \log(x^2)}{(\log(x))^2}.$$

Soluzione: L'insieme più grande dove può essere definita la funzione è $\{x>0\}\setminus\{1\}$ e in tale insieme si ha

$$f(x) = \frac{1 - 2\log(x)}{(\log(x))^2} \qquad x \in D =]0, +\infty[\setminus\{1\}.$$

Agli estremi del dominio si hanno i seguenti limiti

$$\lim_{x \to 0^+} f(x) = 0 \qquad \lim_{x \to 1} f(x) = +\infty \qquad \lim_{x \to +\infty} f(x) = 0.$$

La funzione risulta derivabile in De si ha

$$f'(x) = \frac{2(\log(x) - 1)}{x \log^3(x)}$$

Pertanto

$$f' > 0$$
 se e solo se $x \in]0,1[\cup]e,+\infty[$

e la funzione risulta crescente in]0,1[e in $]e,+\infty[$ e decrescente in]1,e[e nel punto x= e si ha un punto di minimo relativo con f(e)=-1. Il valore -1 risulta anche essere il minimo assoluto della funzione. La derivata seconda vale

$$f''(x) = -\frac{2\left(\log^2(x) + \log(x) - 3\right)}{x^2 \log^4(x)}$$

e per trovare gli intervalli di convessità risolviamo, ponendo $y = \log(x)$, l'equazione biquadratica

$$y^2 + y - 3 > 0$$

da cui si ha

$$f''(x) > 0 \leftrightarrow \log(x) < \frac{-1 - \sqrt{13}}{2} \lor \log(x) > \frac{-1 + \sqrt{13}}{2} \leftrightarrow x < e^{\frac{-1 - \sqrt{13}}{2}} \lor x > e^{\frac{-1 + \sqrt{13}}{2}}$$

da cui si ha che f è convessa in $[e^{\frac{-1-\sqrt{13}}{2}},1[\cup]e^{\frac{-1+\sqrt{13}}{2}},+\infty[$. Osserviamo infatti che dato che $-1-\sqrt{13}<0$ il primo cambio di convessità si ha nell'intervallo]0,1[, mentre dato che $-1+\sqrt{13}>2>0$ il secondo si ha per x>e>1.

PARTE A

1. Una soluzione dell'equazione $y'(t) = t \sin(t^2)$ è

A:
$$(t^2 + \pi)/2 + \cos(t)$$
 B: $\sin(t^2) + 1$ C: N.E. D: N.A. E: $t^3/2 - \cos(t)$

2. Se esiste, il minimo di $f(x) = |\cos(x) - 1|$ sull'insieme $A = \{x \in]-\pi/2, \pi/2]\}$ vale

A: N.A. B: N.E. C: 0 D: 1 E:
$$-1$$

3. Lo sviluppo di Taylor di $sin(x + x^3)$ in $x_0 = 0$ al terz'ordine è

A:
$$x + 5x^3/6 + o(x^3)$$
 B: $x + O(x^4)$ C: $x + x^2/2! - x^3/3! + o(x^3)$ D: $x + x^3 + o(x^3)$ E: N.A.

4. La funzione $f:[0,a]\to\mathbb{R}$ definita da $f(x)=\sin(x^2)$ è iniettiva per

A:
$$a = \sqrt{\pi}$$
 B: $a = \pi/2$ C: $a = \sqrt{\pi/2}$ D: N.A. E: $a = 4$

5. Inf, min, sup e max dell'insieme

$$A = \{y = \frac{1 + \log(x)}{|1 + \log(x)|}, \ x > e\}$$

valgono

$$A: \{-1, -1, +\infty, N.E.\} \quad B: \{1, 1, 1, 1\} \quad C: \{-1, N.E., +\infty, N.E.\} \quad D: N.A. \quad E: \{-\infty, N.E., +\infty, N.E.\}$$

6. La retta tangente al grafico di $y(x) = e^{\sin(x)}$ nel punto $x_0 = 3\pi/2$ vale $\phi(x) =$

A: N.A. B:
$$1 + x$$
 C: $\frac{1}{6}$ D: $e + (x - 3\pi/2)$ E: $1 - x$

7. L'insieme dove converge la serie di potenze

$$\sum_{n=[e]}^{+\infty} \frac{n+2 - e^{\cos(n)}}{n} x^n$$

è

A:
$$0 < x < 1$$
 B: $|x| < 8$ C: $0 < x \le 1$ D: $|x| < 1$ E: N.A.

8. L'integrale

$$\int_0^\pi (x - \pi) \cos(x) \, dx$$

vale

A:
$$\pi/2$$
 B: N.A. C: 0 D: $\sqrt{2}$ E: -2

9. Data $f(x) = |\cos(x)|25^{x^2}$. Allora f'(0) è uguale a

A:
$$\pi/2$$
 B: N.A. C: N.E. D: 0 E: 1

10. L'insieme definito da $\{x \in \mathbb{R}, x < |2i - 2|\}$ è

A: l'insieme vuoto B: N.A. C: $-\infty < x < 2\sqrt{2}$ D: $|x|^2 < 8$ E: Impossibile: non si confrontano numeri reali e complessi

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

5 febbraio 2016

(Cognome)	(Nome)	(Numero di matricola)				

ABCDE

\bigcirc

Figura 1: Grafico di f(x)

2. Studiare per $x \in \mathbb{R}$ la convergenza della serie

$$\sum_{n=1}^{\infty} \frac{1+n^2}{n^3} x^n.$$

Soluzione: Utilizziamo il criterio della radice per le serie di potenze:

$$\lim_{n \to \infty} \sqrt[n]{\left|\frac{1+n^2}{n^3}\right|} = 1$$

Quindi serie converge assolutamente per |x| < 1 e non converge per |x| > 1.

In x = 1 abbiamo la serie

$$\sum_{n=1}^{\infty} \frac{1+n^2}{n^3}$$

che non converge perché si comporta asintoticamente come la serie armonica.

In x = -1 abbiamo la serie

$$\sum_{n=1}^{\infty} (-1)^n \frac{1+n^2}{n^3}.$$

Questa serie converge perché a segno alterno e con termini decrescenti.

3. Si consideri l'equazione differenziale

$$y''(x) + 4y(x) = \sin(\alpha x)$$

con $\alpha \geq 0$ reale.

- (a) Calcolare l'integrale generale.
- (b) Esistono α per cui la soluzione non è limitata inferiormente?
- (c) Nei casi $\alpha=2$ e $\alpha=4$ risolvere l'equazione con le condizioni iniziali y(0)=y'(0)=1

Soluzione:

Figura 2: Grafico di f(x) vicino al primo punto di flesso $x=\mathrm{e}^{\frac{-1-\sqrt{13}}{2}}\sim 0.0999809$

(a) L'equazione associata all'omogenea è $\lambda^2+4=0$, con soluzione $\lambda_{1,2}=\pm 2i$. La soluzione dell'equazione omogenea è

$$y_0(x) = A\cos(2x) + B\sin(2x).$$

Per $\alpha=0$, l'equazione si riduce ad un'omogenea, quindi la soluzione generale è

$$y = A\cos(2x) + B\sin(2x).$$

Per $\alpha>0$ e $\alpha\neq 2$, siamo nel caso in cui non c'è risonanza. La soluzione particolare $y_1(x)$ sarà della forma

$$y_1(x) = a\cos(\alpha x) + b\sin(\alpha x)$$

quindi

$$y_1''(x) = -a\alpha^2 \cos(\alpha x) - \alpha^2 b \sin(\alpha x)$$

Vogliamo che

$$y_1''(x) + 4y_1(x) = \sin(\alpha x)$$

quindi $a(4-\alpha^2)=0,\,b(4-\alpha^2)=1$ quindi una soluzione particolare ha la forma

$$y_1(x) = \frac{1}{4 - \alpha^2} \sin(\alpha x)$$

La soluzione generale è

$$y(x) = A\cos(2x) + B\sin(2x) + \frac{1}{4 - \alpha^2}\sin(\alpha x)$$

Nel caso $\alpha = 2$ dobbiamo cercare una soluzione particolare della forma

$$y_1(x) = ax\sin(2x) + bx\cos(2x)$$

abbiamo che

$$y_1''(x) = 4a\cos(2x) + 4ax\sin(2x) - 4b\sin(2x) - 4bx\cos(2x)$$

Vogliamo che

$$y_1''(x) + 4y_1(x) = \sin(2x)$$

da cui ricaviamo che a=0 e b=-1/4. Quindi la soluzione generale dell'equazione ha la forma

$$y_f(x) = A\cos(2x) + B\sin(2x) - \frac{1}{4}x\cos(2x).$$

- (b) Tra queste soluzioni l'unica che non è limitata inferiormente è quella che si ottiene nel caso $\alpha=2$, che ha il termine $x\cos(2x)$ che non è limitato né inferiormente né superiormente.
- (c) Per $\alpha=2$ la soluzione generale è stata determinata nel punto (a). Dalle condizioni iniziali otteniamo A=1, imponendo che y(0)=1, e B=5/8 imponendo che y'(0)=1. La soluzione del problema di Cauchy è data da

$$y_f(x) = \cos(2x) + \frac{5}{8}\sin(2x) - \frac{1}{4}x\cos(2x).$$

Per $\alpha = 4$ la soluzione generale è

$$y(x) = A\cos(2x) + B\sin(2x) - \frac{1}{12}\sin(4x)$$

e per avere la soluzione cercata dobbiamo determinare A,B. Abbiamo che A=1 imponendo che y(0)=1 e $B=\frac{2}{3}$ imponendo che y'(0)=1. La soluzione è quindi

$$y(x) = \cos(2x) + \frac{2}{3}\sin(2x) - \frac{1}{12}\sin(4x).$$

- 4. Dimostrare che data $f \in C([a, b])$
 - (a) la funzione $F(x) = \max\{f(x), 0\}$ è continua in [a, b];
 - (b) data $g \in C([a, b])$ la funzione $G(x) = \max\{f(x), g(x)\}$ è continua in [a, b];
 - (c) può accadere che g non sia continua in tutto [a,b] ma $G(x) = \max\{f(x),g(x)\}$ sia ancora continua in [a,b]?

Soluzione. a) Osserviamo che dato $x \in \mathbb{R}$ si ha

$$\frac{x+|x|}{2} = \begin{cases} x \text{ se } x \ge 0\\ 0 \text{ se } x < 0 \end{cases}$$

quindi $\frac{x+|x|}{2} = \max\{x, 0\}$. Pertanto

$$\max\{f(x), 0\} = \frac{f(x) + |f(x)|}{2}$$

che essendo composizione e somma di funzioni continue è continua.

b) Con lo stesso ragionamento si ha che

$$\max\{f(x), g(x)\} = \frac{f(x) - g(x) + |f(x) - g(x)|}{2} + g(x)$$

e quindi essendo composizione di funzioni continue risulta continua.

c) Si, può accadere. Sia per esempio f(x)=0 e sia g una funzione tale che g(x)<0 per ogni $x\in\mathbb{R}$. Anche se g non è continua in qualche punto si ha che $\max\{f(x),g(x)\}=0$ che è continua.