Reaction wheel 1D pendulum

1 Вывод уравнений движения

- \bullet m_p масса маятника

- \bullet τ момент, прикладываемый к ротору
- ullet C_p коэффициент вязкого трения в шарнире маятника
- \bullet C_r коэффициент вязкого трения ротора

Кинетическая энергия маятника:

$$T_p = \frac{1}{2}(m_p l_p^2 + J_p)\dot{\theta}^2$$

Кинетическая энергия маховика:

$$T_r = \frac{1}{2} m_r l_r^2 \dot{\theta}^2 + \frac{1}{2} J_r (\dot{\theta}_r + \dot{\theta})^2$$

Общая потенциальная энергия:

$$P = (m_p l_p + m_r l_r) g \cos \theta$$

Лагранжиан:

$$\mathcal{L} = T_p + T_r - P$$

Введём новые обозначения констант, которые нам уменьшат общее количество закорючек в урав-

$$ml := m_p l_p + m_r l_r$$

$$J := J_p + m_p l_p^2 + m_r l_r^2$$

Тогда лагранжиан запишется следующим образом:

$$\mathcal{L} = \frac{1}{2}J\dot{\theta}^2 + \frac{1}{2}J_r(\dot{\theta}_r + \dot{\theta})^2 - mlg\cos\theta$$

Для удобства выпишем все частные производные:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \dot{\theta}_r} &= J_r (\dot{\theta}_r + \dot{\theta}) \\ \frac{\partial \mathcal{L}}{\partial \dot{\theta}} &= (J + J_r) \dot{\theta} + J_r \dot{\theta}_r \end{split} \qquad \qquad \frac{\partial \mathcal{L}}{\partial \theta_r} = 0 \\ \frac{\partial \mathcal{L}}{\partial \theta} &= m l g \sin \theta \end{split}$$

Напоминалка про уравнения Лагранжа:

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) - \frac{\partial \mathcal{L}}{\partial q_i} = \tau_i,$$

где q это обобщённая координата. В нашем случае мы выбираем $q := (\theta_r, \theta)^\top$. Тогда уравнения движения примут следующий вид:

$$J_r\ddot{\theta}_r + J_r\ddot{\theta} = -C_r\dot{\theta}_r + \tau,$$

$$(J + J_r)\ddot{\theta} + J_r\ddot{\theta}_r - mlg\sin\theta = -C_p\dot{\theta}.$$

Перепишем, оставив вторые производные слева:

$$\begin{cases} \ddot{\theta}_r = \frac{J + J_r}{JJ_r} (\tau - C_r \dot{\theta}_r) - \frac{mlg}{J} \sin \theta + \frac{C_p}{J} \dot{\theta} \\ \ddot{\theta} = -\frac{\tau}{J} + \frac{mlg}{J} \sin \theta - \frac{C_p}{J} \dot{\theta} + \frac{C_r}{J} \dot{\theta}_r \end{cases}$$

Или перепишем в матричной форме:

$$M\ddot{q} + G(q) = \mathcal{T}(\dot{q}, \tau), \tag{1}$$

где

$$M := \begin{bmatrix} J_r & J_r \\ J_r & J_r + J \end{bmatrix}, \ G(q) := \begin{bmatrix} 0 \\ -mlg\sin(q_2) \end{bmatrix}, \ \mathcal{T}(\dot{q}, \tau) := \begin{bmatrix} -C_r \dot{\theta}_r + \tau \\ -C_p \dot{\theta} \end{bmatrix}.$$

Наверняка трение в маятнике будет существенно ниже трения в роторе, и вполне возможно, что при этом пренебречь можно будет обоими.

Эти уравнения движения полностью совпадают с уравнениями из The Cubli: A Cube that can Jump Up and Balance, а также с уравнениями из The Reaction Wheel Pendulum (с точностью до выбора переменных, Åström отсчитывает угол ротора от вертикали). Но Åström в уравнения Лагранжа вставляет моменты τ и $-\tau$, а я тут вставляются τ и 0. Подход Острёма интуитивно понятен: если на ротор действует момент τ , то на маятник действует момент $-\tau$. Впрочем, это зависит от выбора репера (θ_r отсчитывается от вертикали или от маятника). Нечего выбирать неортогональные базисы пространства конфигураций.

2 Как выбрать размер маховика?

2.1 (Почти) аналитическое решение на основе линеаризации

Здесь я напишу уравнения движения для обычного коллекторного двигателя, но для бесколлекторных уравнения примерно такие же. Подадим на клеммы мотора максимально возможное напряжение, для заданного маховика задача состоит в том, чтобы найти максимально возможный угол начального отклонения маятника, при котором разгоняющийся маховик сможет перекинуть маятник через ноль. Затем будем варьировать размер маховика и смотреть, как будет изменяться максимально возможный угол отклонения.

Заглянем в даташит мотора:

- \bullet L индуктивность обмотки
- \bullet R сопротивление обмотки
- k torque constant (= back-EMF constant)

Добавим в уравнения движения уравнение мотора:

$$\left\{ \begin{array}{l} \ddot{\theta}_r = \frac{J+J_r}{JJ_r}(kI-C_r\dot{\theta}_r) - \frac{mlg}{J}\sin\theta + \frac{C_p}{J}\dot{\theta} \\ \ddot{\theta} = -\frac{k}{J}I + \frac{mlg}{J}\sin\theta - \frac{C_p}{J}\dot{\theta} + \frac{C_r}{J}\dot{\theta}_r \\ \dot{I} = \frac{U}{L} - \frac{R}{L}I - \frac{k}{L}\dot{\theta}_r \end{array} \right.$$

Для грубой прикидки размера маховика будем пренебрегать всяким. Индуктивность обмоток мотора очень низкая, поэтому можно сказать, что $I=\frac{U}{R}-\frac{K}{R}\,\dot{\theta}_r$. Вязкие трения тоже убираем, $C_r=C_p=0$.

Рабочая зона наверняка будет узкой, поэтому заменим синус напрямую на его аргумент. Мысль такая: если будет стабилизироваться линеаризованная модель, то с синусом и подавно маятник встанет. Тогда уравнения движения будут выглядеть следующим образом:

$$\begin{cases} \ddot{\theta}_r = \frac{J+J_r}{JJ_r} \left(\frac{k\,U}{R} - \frac{k^2}{R}\dot{\theta}_r\right) - \frac{mlg}{J}\theta \\ \ddot{\theta} = -\frac{k\,U}{J\,R} + \frac{k^2}{J\,R}\dot{\theta}_r + \frac{mlg}{J}\theta \end{cases}$$

Ну или в матричном виде:

$$\frac{d}{dt} \begin{pmatrix} \theta \\ \dot{\theta} \\ \dot{\theta}_r \end{pmatrix} = A \begin{pmatrix} \theta \\ \dot{\theta} \\ \dot{\theta}_r \end{pmatrix} + BU,$$

где:

$$A = \begin{pmatrix} 0 & 1 & 0 \\ \frac{mlg}{J} & 0 & \frac{k^2}{JR} \\ -\frac{mlg}{J} & 0 & -\frac{(J+J_r)k^2}{JJ_rR} \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ -\frac{k}{JR} \\ \frac{(J+J_r)k}{JJ_rR} \end{pmatrix}.$$

На всякий случай выпишем характеристический многочлен

$$\chi(\lambda) = -\lambda^3 - \frac{k^2(J_r + J)}{JrJR}\lambda^2 + \frac{mlg}{J}\lambda + \frac{mlgk^2}{J_rJR}.$$

Он имеет три различных вещественных корня, два из них отрицательных, один положительный. В этом легко убедиться:

$$\chi(0) > 0, \quad \lim_{\lambda \to -\infty} \chi(\lambda) = +\infty, \quad \lim_{\lambda \to +\infty} \chi(\lambda) = -\infty, \quad \chi\left(-\sqrt{\frac{mlg}{J}}\right) = -\frac{mlgk^2}{J^2R} < 0.$$

Аргумент в последнем неравенстве вылез из желания взаимоуничтожить кубическое и линейное слагаемые многочлена. Положительное собственное число говорит о том, что в отсутствие управления система у нас неустойчива. Поскольку у нас три различных вещественных корня, то матрица A будет иметь полный набор вещественных собственных векторов, соответственно можно произвести её спектральное разложение $A = V\Lambda V^{-1}$, где V - это матрица, составленная из трёх собственных векторовстолбцов, а $\Lambda = \mathrm{diag}(\lambda_1, \lambda_2, \lambda_3)$ - диагональная матрица собственных чисел. На всякий случай давайте скажем, что V можно записать в следующем виде:

$$V = \begin{pmatrix} \frac{k^2}{JR} & \frac{k^2}{JR} & \frac{k^2}{JR} \\ \frac{k^2}{JR} \lambda_1 & \frac{k^2}{JR} \lambda_2 & \frac{k^2}{JR} \lambda_3 \\ \lambda_1^2 - \frac{mlg}{J} & \lambda_2^2 - \frac{mlg}{J} & \lambda_3^2 - \frac{mlg}{J} \end{pmatrix}.$$

Конкретно это нам не очень поможет, так как собственные числа мы явно не выписывали. Перемножая $(A - \lambda_i E) \times V$, мы получим вектор нулей, так как в последней координате будет стоять характеристический многочлен.

Наша задача найти зону устойчивости нашего диффура. Для начала сделаем замену переменной x=Vy. Не умаляя общности, будем считать, что $\lambda_1>0>\lambda_2>\lambda_3$. Тогда наше уравнение $\dot{x}=Ax+BU$ перепишется как $V\dot{y}=AVy+BU$. Домножим слева на V^{-1} :

$$\dot{y} = V^{-1}AVy + V^{-1}BU = \Lambda y + V^{-1}BU.$$

Эта замена переменной сделана для того, чтобы зона устойчивости имела красивое выражение, будучи разложенной на независимые переменные. В силу диагональности новой матрицы системы, вторая и третья координата y нас не интересуют вообще, нам интересна координата, которая соответствует положительному собственному числу. Обозначим через b_1 первую координату вектора $V^{-1}BU$ (напоминаю, что y нас напряжение y постоянно). Вполне очевидно, что зона устойчивости этого диффура представляет собой пространство между двумя плоскостями $\left(-\frac{|b_1|}{\lambda_1},\frac{|b_1|}{\lambda_1}\right) \times \mathbb{R} \times \mathbb{R}$. Это прекрасно, но нас интересует устойчивость в терминах изначальных переменных. Если мы

Это прекрасно, но нас интересует устойчивость в терминах изначальных переменных. Если мы сделаем обратное преобразование, то в пространстве x зона устойчивости также будет заключена между двумя параллельными плоскостями. Плоскости будут наклонными, т.к. мы себе можем позволить

Рис. 1: Самый выгодный диаметр маховика - 11см, при этом можно будет отклонить маятник на 0.24 радиана.

больший угол отклонения, если правильно подкрутить начальные скорости. Но нас интересует конкретный случай, когда обе скорости нулевые. Самый простой способ это посчитать - это взять луч с направляющим вектором (1,0,0), преобразовать его при помощи V^{-1} , пересечь с плоскостью $y_1 = \frac{|b_1|}{\lambda_1}$, а затем точку пересечения обратно преобразовать при помощи V.

Решаем численно, так как очень уж громоздко выписывать собственные вектора символьно. Картинка 1 показывает максимальный угол, из которого можно стабилизировать маятник, для данного диаметра маховика.

2.2 Численное решение на основе нелинейной модели

Итак, у нас есть модель (1). Как и в разделе 2.1, мы пренебрегаем индуктивностью и рассматриваем модель мотора вида

$$\tau = kI = \frac{k}{R}U - \frac{k^2}{R}\dot{\theta}_r.$$

Перепишем модель (1) в виде

$$M\ddot{q} = -G(q) - \begin{bmatrix} C_r + \frac{k^2}{R} & 0\\ 0 & C_p \end{bmatrix} \dot{q} + \begin{bmatrix} \frac{k}{R}\\ 0 \end{bmatrix} U.$$

Выберем начальные условия в виде $q(0) = \begin{bmatrix} 0 & -\theta_0 \end{bmatrix}^{\mathsf{T}}$ и $\dot{q}(0) = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\mathsf{T}}$. Тогда наша задача может быть сформулирована следующим образом: при заданных параметрах маховика, то есть матрице M, найти максимальное значение θ_0 , при котором траектория $q_2(t) = \theta(t)$ достигает нуля при входном воздействии $U(t) = -U_{max}$, где U_{max} это максимальное значение управления (напряжения). Минус тут стоит так как момент на маятник создаётся с противоположным знаком по сравнению с моментом на маховике. Эта задача решается численно с использованием матлабовского ode45.

Результат вычислений приведён на рисунке 2.

Рис. 2: Видно, что результаты практически идентичны.