Patent Claims

1. Polymerizable, luminescent compounds of formula I

wherein

10 R¹, R² are independently of each other H, halogen, NO₂, CN,

NCS, straight chain, branched or cyclic alkyl with 1 to 25 C-atoms wherein one or more CH₂ groups may also be replaced by -CO-, -O-, -S-, -NR^o-, -CH=CH-, -C≡C-

in such a manner that O- and/or S-atoms are not linked

directly to one another, and wherein one or more H-atoms may also be replaced by F or Cl, or denotes

 $P-(Sp-X)_n-$

Sp is a spacer group with 1 to 20 C-atoms,

P is a polymerizable group,

X is -O-, -S-, -CO-, -COO-, -CO-NR°-, -NR°-CO-,

25. -NR°- or a single bond,

n is 0 or 1,

R° is H or alkyl with 1 to 5 C-atoms,

Q is one of the following subformulae

10

R³, R⁴ are independently of each other straight chain, branched or cyclic alkyl with 1 to 15 C-atoms wherein one or more H-atoms may also be replaced by F or Cl, or denotes P-(Sp-X)_n-,

15

p is 0 or 1,

 L^1

is H, F or CN

20

with the proviso that

a) the compounds of formula I contain one, two or more groups -(X-Sp)_n-P,

25

b) if Q denotes \bigcirc , then R¹ is -O-Sp-P, R² is -CN, wherein P is not \bigcirc R⁵

30

with R⁵ denoting H, CI or alkyl with 1 to 5 C-atoms,

c) if Q denotes \mathcal{N} , then R¹ is $-N < \frac{Sp-P}{R^3}$ and R² is -NO₂

35

i) wherein P is not

la

 R^5 or

ii) L¹ is F or CN.

10 2. Compounds according to claim 1 selected from the following formulae

$$0$$
 0 0 0

15

5

$$R^1 \longrightarrow N \longrightarrow N \longrightarrow N$$
Ib

20

$$P-Sp-O \longrightarrow O \longrightarrow O \longrightarrow CN$$
 Ic

25

30

$$R^{1} \longrightarrow C = C \longrightarrow O \longrightarrow C = C \longrightarrow O \longrightarrow D$$
 le

35

$$\begin{array}{c|c} & & & \\ P-Sp & & & \\ \hline R^3 & N & & \\ \end{array}$$

5 wherein

10

20

 R^1 , R^2 , R^3 , R^4 , P, Sp, L^1 and p are defined as in claim 1 with the proviso that

a) in formula Ic P is not R⁵ wherein R⁵ denotes

H, CI or alkyl with 1 to 5 C-atoms,

b) in formula If

i) P is not $\stackrel{\text{-OOC}}{R^5}$ and P is not $\stackrel{\text{-}}{Q}$

wherein R⁵ has the meaning given above or

ii) L¹ is F or CN.

253. Compounds according to claim 1 or 2 wherein P is selected from

35 wherein

		R⁵	is H, CI or alkyl with 1 to 5 C-atoms,	
5		R ⁶ ,R ⁶ ',R ⁶ "	are independently of each other -CI, -O-alkyl and/or -O-CO-alkyl with alkyl having 1 to 5 C-atoms and	
J		k	is 0 or 1.	
10	4.	Polymerizable mixture comprising at least one compound according to one of the claims 1 to 3.		
15	5.	•	ole mixture according to claim 4 further comprising at olymerizable mesogenic compound of formula II	
		P—(Sp-X−	${n}$ MG-R ²¹	
20		wherein		
		Р	is a polymerizable group,	
25		Sp	is a spacer group having 1 to 20 C-atoms,	
		X	is a group selected from -O-, -S-, -CO-, -COO-, -OCO -O-COO-, -SO ₂ -O-, -O-SO ₂ - or a single bond,	- ,
		n	is 0 or 1,	
30		R ²¹	is H or an alkyl radical with up to 25 C atoms which m	ay

be unsubstituted, mono- or polysubstituted by halogen

or CN, it being also possible for one or more non-adjacent CH₂ groups to be replaced, in each case independently from one another, by -O-, -S-, -NH-,

-N(CH₃)-, -CO-, -COO-, -OCO-, -OCO-O-, -S-CO-,

-CO-S- or -C≡C- in such a manner that oxygen atoms are not linked directly to one another, or alternatively R²¹ is halogen, cyano or has independently one of the meanings given for P-(Sp-X)_n-,

5 MG is a mesogenic or mesogenity supporting group.

6. Polymerizable mixture according to claim 5 wherein MG is a mesogenic or mesogenity supporting group of formula III

 $-\left(-A^{31}-Z^{31}\right)_{m}A^{32}-Z^{32}A^{33}$

wherein

15

10

A³¹, A³², A³³ being independently from one another 1,4-phenylene in which, in addition, one or more CH groups may be replaced by N, 1,4-cyclohexylene in which, in addition, one or two non-adjacent CH₂ groups may be replaced by O and/or S, 1,4-cyclohexenylene or naphthalene-2,6-diyl, it being possible for all these groups to be unsubstituted, mono- or polysubstituted with halogen, cyano or nitro groups or alkyl, alkoxy or alkanoyl groups having 1 to 7 C atoms wherein one or more H atoms may be substituted by F or Cl,

25

20

 Z^{31} , Z^{32} being independently from one another -O-, -CO-, -COO-, -OCO-, -SO₂-O-, -O-SO₂-, -CH₂CH₂-, -OCH₂-, -CH₂O-, -CH=CH-, -C \equiv C-, -CH=CH-COO-, -OCO-CH=CH- or a single bond and

30

35

m being 0, 1 or 2.

7. Polymerizable mixture according to claim 4, 5 or 6 further comprising at least one polymerizable and photoorientable compound.

8. Polymerizable mixture according to claim 7 characterized in that the polymerizable and photoorientable compound is denoted by the formula IV

5	P-(Sp-X) _n -A	A ⁴¹ -A ⁴² -Z ⁴ -A ⁴³ -A ⁴⁴ -R ⁴¹ IV
	wherein	
10	P	is a polymerizable group,
10	Sp	is a spacer group having 1 to 20 C-atoms,
15	x	is a group selected from -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -SO ₂ -O-, -O-SO ₂ - or a single bond,
15	n	is 0 or 1,
20	A ⁴¹ , A ⁴² , A ⁴³ , A ⁴⁴	are independently of each other 1,4-phenylene, wherein 1, 2, 3 or 4 H-atoms may be replaced by F or CI,
	A ⁴¹ , A ⁴⁴	may in addition to the above given meaning denote independently of each other a single bond,
25	Z ⁴	is -N=N-, -CH=CH- or $\frac{1}{100} \frac{1}{100} 1$
		with s1 being 0 or 1 and s2 being 0 to 6,
30	R ⁴¹	is H, halogen, NO ₂ , CN, SCN, straight chain, branched or cyclic alkyl with 1 to 25 C-atoms wherein one or more CH ₂ groups can also be replaced by -O-, -S-, -NR°-,

F or CI, or denotes $P-(Sp-X)_{n-}$.

-CH=CH-, -C≡C- in such a manner that O- and/or Satoms are not linked directly to one another, and

wherein one or more H-atoms can also be replaced by

10

15

20

25

30

- 9. Polymer material obtainable by polymerizing a polymerizable mixture according to one of the claims 4 to 8.
- 10. Polymer material according to claim 9 obtainable by a process comprising the following steps
 - a) forming a thin layer of the polymerizable material,
 - b) aligning the molecules of the compounds of the mixture in the thin layer into a uniform orientation or a patterned orientation such that in each pattern the orientation is uniform,
 - c) polymerizing said polymerizable material.
 - 11. Use of a compound according to one of the claims 1 to 3 or of a polymerizable mixture according to one of the claims 4 to 8 for the manufacture of photoluminescent and/or electroluminescent polymer material.
 - 12. Use of a polymer material according to claim 9 or 10 as a photoand/or electroluminescent material in a light emitting device, an optical or electrooptical display element.
 - 13. Light emitting device comprising a polymer material according to claim 9 or 10 as a photo- and/or electroluminescent material.
 - 14. Optical or electrooptical display element comprising a polymer material according to claim 9 or 10 as a photo- and/or electro-luminescent material.