TechGI Klausurbesprechung

1. Aufgabe

Übersetzen Sie folgenden Code in MIPS-Assembler, halten Sie sich an die Registerkonventionen: void doit(int a[], int n){ int i; for(i=0;i<n;i++){</pre> **if**(a[i]<0){ a[i] = i;} Loesung: doit: add \$t0,\$zero,\$zero # i = 0for: bge \$t0, \$a1, endfor #if(i>=n) goto endfor sll \$t1, \$t0, 2 # \$t1 = 4*iadd \$t1, \$a0, \$t1 # \$t1 = a+4i = &a[i]lw \$t2, 0(\$t1) # \$t2 = a[i]bge \$t2, \$zero, endif $\# if(a[i] \ge 0)$ goto endif sw \$t0, 0(\$t1) # a[i] = iendif: addi \$t0, \$t0, 1 # i++ # goto for **j** for endfor: jr \$ra # return

2. Aufgabe

stellen Sie die Zahl 10,25 nach IEEE 754 mit einfacher Genauigkeit dar $10,25_{10}=?_2$ 10:2=5 R0 5:2=2 R1 0,25 *2= 0,5 +0 2:2=1

Zahl	S	е	f
10,250	0	10000010	01001

3. Aufgabe

Drei Programme (P1, P2 und P3) werden auf zwei verschiedenen Computern (M1 und M2) ausgeführt. Die folgende Tabelle zeigt die Ausführungszeiten beider Programme auf den beiden Computern.

	M1	M2
P1	1	10
P2	100	10
P3	10	5

a) Welches System ist schneller wenn die Ausführungszeit auf M1 normiert wird und der arithmetisch Mittelwert verwendet wird? Begründen Sie ihre Antwort.

11110111011				
	M1	M2		
P1	1	10		
P2	1	0,1		
P3	1	0,5		
Arithmetisch Mittelwert	1	$\frac{10+0,1+0,5}{3} = \frac{10,6}{3} = 3,53$		

M1 ist schneller (lower is better)

b) Welches System ist schneller wenn die Ausführungszeit auf M2 normiert wird und der arithmetisch Mittelwert verwendet wird? Begründen Sie ihre Antwort.

	M1	M2
P1	0,1	1
P2	10	1
P3	2	1
Arithmetisch Mittelwert	$\frac{0,1+10+2}{3} = \frac{12,1}{3} = 4,03$	1

M2 ist schneller (lower is better)

c) Welches System ist schneller wenn der geometrische Mittelwert verwendet wird. Begründen Sie Ihre Antwort.

voi wonder wha. Begranden sie internitwort.				
	M1	M2	M1	M2
P1	1	10	0,1	1
P2	1	0,1	10	1
P3	1	0,5	2	1
Geometrisch Mittelwert	1	³ √0,5	³ √2	$\sqrt[3]{1}$

M2 ist bei beiden schneller

4. Aufgabe

bne Eintakt Prozessor Erweitern

von der Ope ein zusätzliches Signal (BNE), verunundet mit dem negierten Zero-Ausgang der ALU, das Ergebnis verordert mit der ursprünglichen Ausgabe.

Signale für BNE sind:

RegDst=X, ALUSrc=0, MEMtoReg=X,RegWrite=0,

MemRead=0 (sonst evtl Miss), MemWrite=0, Branch=0,ALUOp=10(sub), BrNoEq=1 (sonst =0)

5. Aufgabe

Die folgende Tabelle zeigt die source/destination Register in der EX, MEM und WB Stufe (z.B. ID/EX.Rs ist die Abkürzung für ID/EX.RegisterRs). Vervollständigen Sie die Tabelle:

ID/EX.Rs	ID/EX.Rt	EX/MEM.Rd	EX/Mem.RegWrite	MEM/WB.Rd	MEM/WB.RegWrite	ForwardA	ForwardB
6	7	7	0	8	1	00	00
6	7	6	1	7	1	10	01
6	7	6	1	6	1	10	00
6	0	0	1	6	0	00	00

- 1 Befehl schreibt nicht zum Registersatz
- 4 Befehl schreibt in Null-Register, somit muss nichts geforwardet werden

6. Aufgabe

Der AMD Athlon 64 Prozessor Befehlscache auf erster Ebene hat folgende Eigenschaften:

- Kapazität: 64 KB
- 2-fach satzassoziativ
- Blockgroesse: 64 Bytes
- Adresslänge: 64 Bit (Aufpassen nicht 32!!!)
- a)Wie groß ist der Index und wie groß ist der Tag?

Cache-Formula:

```
(cache-size)=#sets*associativity*(block-size) 64kB=#sets*2*64Byte \Rightarrow #sets=512 index=9Bit(2^{9}=512 #sets) offset=6Bit(2^{6}=64Blockgroesse) tag=64-9(index)-6(offset)=49Bit
```

tag	index	offset
\mathcal{C}		i

b)Auf welchem Satz wird Byteadresse 64132 abgebildet? Geben Sie den Index an.

```
block-addr=(int)((byte addr)/(block size))=
block-addr=(int)(64132/64)=1002
index=(block-addr)mod#sets=1002mod512=490
```

Sonst: Viel Erfolg für Klausur.