40. Цилиндрические поверхности.

Цилиндрические поверхности Пусть в пространстве заданы кривая l и ненулевой вектор \vec{a} . Поверхность образованная прямыми, проходящими через всевозможные точки кривой l и коллинеарными вектору \vec{a} , называется цилиндрической.

Hаправляющая - кривая l

Образующие - прямые из определения.

Замечание Любая цилиндрическая поверхность имеет направляющую, являющуюся плоской кривой.

Теорема Произвольная цилиндрическая поверхность может быть задана в подходящей системе координат общим уравнением вида F(x,y)=0, где F(x,y) - некоторая функция от двух переменных. Обратно, уравнение вида F(x,y)=0, где F(x,y) - произвольная функция от двух переменных, задает в пространстве цилиндрическую поверхность.

Доказательство

- I. Пусть σ цилиндрическая поверхность, образующие которой параллельны вектору \vec{a} . Обозначим через m произвольную прямую, коллинеарную вектору \vec{a} , а через O произвольную точку на этой прямой. Возьмем точку O в качестве начала координат. Далее проведем через точку O плоскость $\pi \perp m$, выберем в этой плоскости произвольный базис, векторы которого обозначим через \vec{b} и \vec{c} . Посмотрим как выглядит уравнение поверхности σ в системе координат $(O; \vec{b}, \vec{c}, \vec{a})$. Обозначим через l кривую, по которой плоскость π пересекает поверхность σ . Ясно, что l плоская кривая, являющаяся направляющей поверхности σ . Эта кривая задается в плоскости π некоторым общим уравнением F(x,y)=0. Пусть $M(x_0,y_0,z_0)$ произвольная точка пространства. Проведем через M прямую
 - Пусть $M(x_0,y_0,z_0)$ произвольная точка пространства. Проведем через M прямую коллинеарную \vec{a} , и обозначим через M' точку пересечения этой прямой с плоскостью Oxy. Ясно, что точка M' имеет координаты $(x_0,y_0,0)$. При этом $M\in\sigma$ тогда и только тогда, когда $M'\in l$, тогда и только тогда, когда $F(x_0,y_0)=0$ Таким образом, точка M принадлежит σ тогда и только тогда, когда её координаты удовлетворяют уравнению F(x,y)=0. первое доказали.
- 2. Предположим что поверхность σ имеет в некоторой системе координат уравнение F(x,y)=0. Обозначим через l пересечение σ с плоскостью Oxy и положим $\vec{a}=(0,0,1)$. Произвольная точка пространства M лежит на $\sigma\iff$ координаты её проекции на плоскость Oxy удовлетворяют уравнению $F(x,y)=0\implies \sigma$ цилиндрическая поверхность с направляющей l, образующие которой коллинеарны вектору \vec{a}

Эллиптический цилиндр
$$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1, a\geq b>0$$
 Гиперболический цилиндр $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1, a,b>0$ Параболический цилиндр $y^2=2px,p>0$