1ª Questão) (1.0 ponto) Considere que o código em C da função int Qx(int) a seguir foi compilado para MIPS

```
int Qx (int i) {
    (... lógica em C ...);
}

Código MIPS compilado:
    Qx:
    li $t1, 32
    li $s0, 0
    li $s1, 32
    add $s0, $s0, $a0
    L1: addiu $s0, $s0, 1
    sub $s1, $t1, $s0
    bne $s0, $t1, L1
    jr $ra
```

A variável i foi armazenada em \$a0 e que os resultados gerados pela função Qx estarão em \$s0 e \$s1, valores literais (variáveis) no espaço de memória global.

As instruções li e addiu correspondem, respectivamente, a um load imediato (constante) e um add imediato sem sinal (constante positiva).

- a) Traduza o código MIPS para C
- b) O que faz exatamente essa sequência de código em Qx?
- c) Quais os valores finais armazenados em \$50 e \$51? Especifique os valores em função do parâmetro 1 da função Qx.

```
int Qx (int i){
int t1=32, s0=0, s1=32;
s0 = s0 + i;
do{
s0 = s0 + 1;
s1 = t1 - s0;
} while (s0 \sim= t1};
b) i<32
        s1 = 0
        s0 = 32;
i>=32
        loop infinito
c)
i<32
        s1 = 0
        s0 = 32;
i>=32
        loop infinito
        s0= i + 1 (vai para infinito)
        s1 = 32 - (i+1) (vai para –infinito)
```

Endereço	Instrução	Observações
FA00:0000	lw \$s0,60(\$t0)	Os registradores \$t0-\$t7 são numerados de 8 a 15 (temporários) e os de \$s0-\$s7 de 16 a
		23. (valores salvos/arma zenados). O opcode de lw é 35. O opcode da instrução sub é 0,
FA00:0004	lw \$s1,64(\$t0)	com 34 nos bits [5-0]. O valor (em hexa) de \$t0 = 8AFF:0000. Os valores carregados
FA00:0008	sub\$s2,\$s0,\$s1	em \$s0 e \$s0 após a execução da instrução lw serão, respectivamente, 12 e 25. Campos
	, ,,,,,,,,	de bits não utilizados/desnecessários para a classe instrução terão valor 0.

2ª Questão)

	Opcode	Rs	Rt	Rd	Shant	Funct
lw \$s0,60(\$t0)	35	8	16		60	
lw \$s1,64(\$t0)	35	8	17	64		
sub \$s2,\$s0,\$s1	0	16	17	18	0	34
Posição	31-26	25-21	20-16	15-11	10-6	5-0

	Opcode	Rs	Rt	Rd	Shant	Funct
lw \$s0,60(\$t0)	100011	01000	10000	000	00000000111	100
lw \$s1,64(\$t0)	100011	01000	10001	000000001000000		
sub \$s2,\$s0,\$s1	000000	10000	10001	10010	00000	100010
Posição	31-26	25-21	20-16	15-11	10-6	5-0

lw \$s0,60(\$t0)

a1	10001101000100000000000111100
a2	10000
b1	00000000111100
b2	111100
b3	00000000000000000000000111100
c1	00000000000000000000000001100 – valor 12
c2	10001010111111111000000000111100
c3	000000000000000000000000000000000000000

c1 – valor 12

000000000000000000000000000001100

\$t0 = 8 A F F 0 0 0 0

10001010111111111000000000000000000

00000000000000000000000000111100

=

100010101111111110000000000111100

lw \$s1,64(\$t0))

a1	100011010001000100000001000000
a2	10001
b1	00000001000000
b2	000000
b3	000000000000000000000000000000000000000
c1	0000000000000000000000011001 - valor 25
c2	100010101111111110000000001000000
c3	00000000000000000000000011001

\$t0 = 8 A F F 0 0 0 0

0000000000000000000000001000000

=

10001010111111111000000001000000

sub \$s2,\$s0,\$s1

a1	00000010000100011001000000100010
a2	10010
b1	100100000100010
b2	100010
b3	0000000000000100100000010010
c1	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
c2	-13
c3	111111111111111111111111110011

Complemento de dois

0000000000000000000000000001101 - 13

000000000000000000000000000000001

Inverter

Transforma para real

000000000000000000000000000001100

Soma 1

00000000000000000000000000001101 - 13

Resultado -13 (Complemento dois)

0000000000000000000000000001101 - 13

000000000000000000000000001100 12

00000000000000000000000011001 - 25

= 12 -25

8 A F F O O O O

0000000000000000000000001000000 \$64

=

10001010111111111000000001000000

V[] - \$s0

Enquanto i<100 li \$t4,100 $v[i+1] \leftarrow v[i] +1;$ **TESTE**: slt \$t5,\$t3,\$t4 se v[i+1] <> 10 beq \$t5, \$zero, FIM a++; add \$t6,\$s0, \$st3 fim se; lw \$s1, (0)\$t6 i **←** i+1; addi \$s2, \$s1,1 $b \leftarrow c*2 -d;$ sw \$s2, (1)\$t6 fim enquanto addi \$s3, \$zero,10 bneq \$s2, \$s3, ELSE addi \$t0, \$t0, 1 ELSE: addi \$t3, \$t3, 1 add \$t1, \$t2,\$t2 sub \$t1, \$t1, \$t2 jump TESTE **FIM**