Human Visual System and Image Acquisition Systems

Pengolahan Citra
Semester Gasal 2019 / 2020

Laksmita Rahadianti, Aniati Murni

Fakultas Ilmu Komputer Universitas Indonesia

Image Acquisition

- Proses akuisisi citra membutuhkan 3 komponen:
 - Scene

Light and the Electromagnetic Spectrum

Ohta, Noboru & R. Robertson, Alan. (2006). Colorimetry: Fundamentals and Applications. Wiley.

The Electromagnetic Spectrum

Wavelength = c / Frequency,

dimana c = speed of light (2.998 x 108 m/s)

Cahaya sebagai Gelombang Elektromagnetik

- Cahaya adalah gelombang
 - Panjang gelombang / wavelength (λ / lambda)
 - Frekuensi gelombang f
 - $\lambda = \frac{c}{f}$, where c = speed of light (2.998 x 108 m/s)

Light / Light sources / Illuminants

- Monochromatic light
 - At one wavelength only, from coherent light sources

Light / Light sources / Illuminants

- Chromatic light
 - Or visible light
 - Spans the visible spectrum (λ 400-700 nm)
 - We can measure:
 - Radiance: amount of energy from the light source (watt/W)
 - Luminance: amount of energy an observer perceives (lumens/lm)
 - Brightness? → a subjective measure, cannot be measured

Common Illuminants

Tungsten

Fluorescent

HVS and Image Acquisition

LED

Xenon

Compact Fluorescent

Pengolahan Citra Gasal 2019-2020

Brainstorming

Why are the illuminants important?

Brainstorming

• Why are the illuminants important?

• But why?

Spectral Power Distribution

CIE: Commission internationale de l'éclairage (International Commission on Illumination) is the international authority on <u>light</u>, <u>illumination</u>, <u>colour</u>, and <u>colour spaces</u>.

Spectral Power Distribution

Different lights appear differently

Human Visual System

Additional References:

Sensation and Perception. E. Bruce Goldstein, Wadsworth Publishing, 2007.

Introduction to Visual Optics. Alan H. Tunnacliffe. Association of British Dispensing Opticians, 1993.

Citra pada Mata Manusia

 Citra yang terbentuk bukan citra fisik, tetapi persepsi

Persepsi Penglihatan Manusia

- 1. Cahaya memasuki mata
- 2. Citra terbentuk pada retina
- 3. Citra diterjemahkan menjadi sinyal biologis
- 4. Transmisi sinyal ke otak
- 5. Pemrosesan di dalam otak
- 6. Persepsi Visual

A cross section of the human eye

(Gonzalez & Woods, 1992)

- Cahaya memasuki mata
- 2. Citra terbentuk pada retina
- 3. Citra diterjemahkan menjadi sinyal biologis
- 4. Transmisi ke otak
- 5. Pemrosesan di dalam otak
- 6. Persepsi visual

Visual Perception in The Brain

Pembentukan Citra pada Retina

- Retina terdiri sensor-sensor optik:
 - Cones (6-7 juta sensor)
 - *Rods* (75-150 juta sensor)

Pengolahan Citra Gasal 2019-2020

Cones and Rods

- Cones sangat sensitif terhadap warna → Photopic Vision
- Rods lebih tersebar sepanjang retina, dan berfungsi membuat persepsi yang lebih umum → Scotopic Vision

Bowmaker J.K. & Dartnall H.J.A. (1980). "Visual pigments of rods and cones in a human retina". J. Physiol.

Cones and Rods (2)

- Lokasi cones terpusat pada fovea
- Lokasi rods lebih tersebar sepanjang retina

Blind Spot

Image Formation in the Eye

- Photo camera: lens has fixed focal length. Focusing at various distances by varying distance between lens and imaging plane (location of film or chip)
- Human eye: Distance lens-imaging region (retina) is fixed. Focal length for proper focus obtained by varying the shape of the lens.

What could go wrong?

- Myopia
 - Near-sightedness
 - Rabun jauh

Normal eye

- Why?
 - Mata melonjong
 - Lensa terlalu kuat/fokus

Eye with myopia

What else could go wrong?

- Hypermetropia
 - Far-sightedness

Normal eye

Rabun dekat

• Why?

- Mata memendek
- Lensa tidak cukup kuat

← Focal plane

Eye with hypermetropia

What else could go wrong?

- Presbyopia
 - Due to old age
- Astigmatism
 - Stigmatic optical system: one object point produces one point image.
 - Astigmatism: the opposite.

Refractive errors

These days, we have many optical correctors

The Human Eye

 Tapi pembentukan citra pada mata manusia tidak sesimpel itu!

Brightness Adaptation

 Mach Bands: Perceived intensity is not a simple function of actual intensity

Brightness Adaptation

• Simultaneous Contrast: a region's perceived brightness does not depend simply on its intensity.

Other Curious Things about the Human Eye

 The eye fills in non-existing info or wrongly perceives geometrical properties of objects

It gets weirder with color

• Is A and B the same color?

Color Constancy

And Weirder with Motion

The Human Eye

- What can we replicate in digital images?
- What information can we recover from digital images with computer vision?

There are simply some things that image processing/computer vision can not do.

Digital Images

Additional References:

Ohno, Y., "Photometry and Radiometry", Ch. 14, Vol. III, OSA Handbook of Optics, 2nd Ed. McGraw-Hill, New York (2001).

Sato, J. Computer Vision – Visual Geometry. Corona Publishing, Tokyo (1999)

Digital Image Acquisition

Lets look a little closer into the camera

Fundamentals 1 Pengolahan Citra

Digital Images

Definisi Citra Dijital

- Suatu matriks di mana elemen matriksnya (yang disebut sebagai elemen gambar / piksel / pixel / picture element) menyatakan tingkat keabuan pada titik tersebut.
- Fungsi intensitas cahaya f(x, y) : x dan y merupakan koordinat spasial dan nilai fungsi f(x, y) merupakan tingkat intensitas citra pada titik tersebut;
- Fungsi intensitas cahaya f(x, y) didapatkan melalui:
 - diskritisasi koordinat spasial (sampling)
 - diskritisasi tingkat intensitas/keabuan (kuantisasi);

Citra Dijital

Matriks citra dengan obyek angka 5

Resolusi intensitas :

Tinggi (4)

Rendah (2)

Sampling and Quantization

Scan the object along line AB

Sampling and Quantization (2)

Resolusi Spasial Citra

 Resolusi spasial: halus / kasarnya pembagian grid baris dan kolom. Transformasi citra kontinu ke citra digital disebut digitisasi (sampling).

Diskusi

 Apa pengaruh resolusi spasial dengan prosesproses pengolahan citra?

Resolusi Spasial

Resolusi Spatial = 300 dpi (dot per inch)

72 dpi (dot per inch)

(Sumber: Gonzalez & Woods, 2008) han Citra Gasal 2019-2020

Resolusi Instensitas Citra

 Resolusi intensitas / brightness: halus / kasarnya pembagian level intensitas. Transformasi data analog yang bersifat kontinu ke daerah intensitas diskrit disebut kuantisasi.

Asumsi: 8 bit

Digitization of Intensity

- Assume we have a MxN matrix of captured image intensities
- We can encode L discrete intensity levels.
- For digital images, $L=2^k$
- The intensity values can be encoded as [0,...L-1].
- The range of values are often referred to as *dynamic* range.
- More accurately, the dynamic range of the image can be defined as the ratio of maximum measurable intensity to the minimum detectable intensity level.
- The number of bits needed to store the image is thus

$$M \times N \times k$$

Resolusi Intensitas

Resolusi Intensitas = 16

Resolusi Intensitas = 4

(Sumber: Gonzalez & Woods, 2008) han Citra Gasal 2019-2020

Diskusi

- Dengan MATLAB, kita bisa menyimpan data intensitas s/d berapa bit?
- Bagaimana dengan Python?
- Apa pengaruh resolusi intensitas dengan proses-proses pengolahan citra?

Distorsi pada Citra Dijital

- Distorsi Geometrik
 - Merupakan distorsi spatial
 - Penyebabnya antara lain adalah letak dan arah serta adanya gerakan perekam citra atau dari objek yang direkam
 - Juga bisa dari internal sensor

Distorsi Geometrik

(Source: Ira Hastitu et. al, 2002)

Distorsi pada Citra Dijital

- Distorsi Radiometrik
 - Merupakan distorsi pada distribusi intensitas yang tidak tepat
 - Penyebabnya antara lain adalah keadaan atmosfer yang berbeda (ada kabut), sehingga objek yang sama memberikan respon gray level yang berbeda
 - Juga bisa dari internal sensor (shading)

Distorsi Radiometrik

- Koreksi dilakukan dengan teknik filtering
- Distorsi bisa dalam bentuk distorsi low frequency
- Distorsi juga bisa dalam bentuk distorsi high frequency

Citra foto tangkai daun (MSU, 1990): distorsi radiometrik *blurring* – filtering dengan high pass filter

HVS and Image Acquisition

dengan high pass filter

Pengolahan Citra Gasal 2019-2020

Other Digital Distortions

- Camera noise
 - Sensor noise
 - Foreign object noise
 - Dead pixels, etc
- Quantization errors

Camera Image Acquisition

Brainstorming

 Berdasarkan komponen penglihatan yang sudah kita pelajari, bisakah anda menemukan komponen yang equivalen pada sebuah kamera digital?

Brainstorming

 Faktor-faktor apakah yang perlu dipertimbangkan ketika melakukan pengambilan citra dengan camera digital?