$$\frac{\partial}{\partial \theta} \operatorname{M} T(\xi) = \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{T} T(x) f(x, \theta) dx = \int_{\mathbb{R}_{n}}^{\theta} \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{\theta} \int_{\mathbb{R}_{n}}^$$

Project 3

# FYS3150 - Computational physics

# Quantum dots

Author:

Vidar Skogvoll

#### Abstract

Here is a short summary of the project.

### Contents

| 1        | Intr                         | oduct                             | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4  |  |  |  |  |  |  |
|----------|------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| <b>2</b> | The                          | eory                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4  |  |  |  |  |  |  |
|          | 2.1                          | The p                             | hysical system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4  |  |  |  |  |  |  |
|          |                              | 2.1.1                             | The quantum mechanics and the variational principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4  |  |  |  |  |  |  |
|          |                              |                                   | 2.1.1.1 The quantum mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4  |  |  |  |  |  |  |
|          |                              |                                   | 2.1.1.2 The variational principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4  |  |  |  |  |  |  |
|          |                              |                                   | 2.1.1.3 Finding the expectation value of $\hat{H}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5  |  |  |  |  |  |  |
|          |                              |                                   | 2.1.1.4 Verifying that we have found an eigenstate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5  |  |  |  |  |  |  |
|          |                              | 2.1.2                             | The test function $\Psi_T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6  |  |  |  |  |  |  |
|          |                              |                                   | 2.1.2.1 The modified Slater determinant $\mathrm{Det}_M(\phi_0,,\phi_{N-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7  |  |  |  |  |  |  |
|          |                              |                                   | 2.1.2.2 The Jastrow factor $J(\vec{r}_0,,\vec{r}_{N-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7  |  |  |  |  |  |  |
|          |                              |                                   | 2.1.2.3 Motivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8  |  |  |  |  |  |  |
|          |                              |                                   | 2.1.2.4 Closed form expression of the local energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9  |  |  |  |  |  |  |
|          |                              | 2.1.3                             | The virial theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 |  |  |  |  |  |  |
|          | 2.2 The numerical foundation |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |  |  |  |  |  |
|          |                              | 2.2.1                             | Monte Carlo simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 |  |  |  |  |  |  |
|          |                              | 2.2.2                             | The Metropolis algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 |  |  |  |  |  |  |
|          |                              |                                   | 2.2.2.1 Brute force Metropolis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 |  |  |  |  |  |  |
|          |                              |                                   | 2.2.2.2 Importance sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13 |  |  |  |  |  |  |
|          |                              |                                   | 2.2.2.3 The metropolis algorithm for our wavefunction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13 |  |  |  |  |  |  |
|          | 2.3                          | Parall                            | elization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 |  |  |  |  |  |  |
| 3        | Exp                          | erime                             | ntal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 |  |  |  |  |  |  |
|          | 3.1                          | Bench                             | marks and verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16 |  |  |  |  |  |  |
|          |                              | 3.1.1                             | Benchmarks for the brute force approach, no repulsion or jastrow factor $% \left( 1\right) =\left( 1\right) \left( 1\right) \left($ | 16 |  |  |  |  |  |  |
|          |                              | 3.1.2                             | Benchmark for the brute force approach, with repulsion and jastrow factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 |  |  |  |  |  |  |
|          |                              | 3.1.3                             | Comparison of different methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 |  |  |  |  |  |  |
|          | 3.2                          | 3.2 Optimizations and differences |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |  |  |  |  |  |
|          |                              | 3.2.1                             | Test cases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 |  |  |  |  |  |  |
|          |                              | 3.2.2                             | Jastrow factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 |  |  |  |  |  |  |
|          |                              | 3.2.3                             | Importance sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 |  |  |  |  |  |  |

### CONTENTS

|              |      | 3.2.4   | Timely differences between methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 |
|--------------|------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|              | 3.3  | Applie  | cations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 |
|              |      | 3.3.1   | Energies and variances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 |
|              |      | 3.3.2   | The virial theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 |
| 4            | Res  | ults a  | nd discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 |
|              | 4.1  | Bench   | marks and verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 |
|              |      | 4.1.1   | Benchmarks for the brute force approach, no repulsion or jastrow factor $% \left( 1\right) =\left( 1\right) \left( 1\right) \left($ | 18 |
|              |      | 4.1.2   | Benchmark for the brute force approach, with repulsion and jastrow factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 |
|              |      | 4.1.3   | Comparison of different methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 |
|              | 4.2  | Optin   | nizations and differences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21 |
|              |      | 4.2.1   | Test cases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 |
|              |      | 4.2.2   | Jastrow factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21 |
|              |      | 4.2.3   | Importance sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21 |
|              |      | 4.2.4   | Timely differences between methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21 |
|              | 4.3  | Applie  | cations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21 |
|              |      | 4.3.1   | Energies and variances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21 |
|              |      | 4.3.2   | The virial theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21 |
| 5            | Cor  | ıclusio | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21 |
| $\mathbf{A}$ | ppen | dix A   | Reference to the questions posed in the project instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23 |
| $\mathbf{A}$ | ppen | dix B   | Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24 |

### 1 Introduction

Quantum mechanics is an exciting field.

### 2 Theory

Here is all the theory needed to understand the project.

#### 2.1 The physical system

This is the section explaining the physics of the system. Throughout the project, natural units are used ( $\hbar = 1, c = 1, e = 1, m_e = 1$ ) and all energies are in so-called atomix units a.u.

#### 2.1.1 The quantum mechanics and the variational principle

#### 2.1.1.1 The quantum mechanics

In this project we will look at a system of N electrons in a so-called *quantum dot*. That is, a two dimensional harmonic oscillator with potential

$$V(\vec{r}) = \frac{1}{2}\omega^2 r^2 \tag{2.1.1}$$

This potential gives rise to a multi-particle Hamiltonian  $\hat{H}$  given as the sum of an ordinary Hamiltonian and an electron repulsive part

$$\hat{H} = \sum_{i=1}^{N} \left( -\frac{1}{2} \nabla_i^2 + \frac{1}{2} \omega^2 r_i^2 \right) + \sum_{i < i} \frac{1}{r_{ij}}$$
(2.1.2)

Where  $r_{ij} = |\vec{r_i} - \vec{r_j}|$  is the distance between the electrons i and j and  $r_i = |\vec{r_i}| = \sqrt{x_i^2 + y_i^2}$  when  $\vec{r_i} = \begin{pmatrix} x_i \\ y_i \end{pmatrix}$ . Our goal in this project is to find the ground eigenstate and energy of this multi-particle Hamiltonian numerically.

#### 2.1.1.2 The variational principle

We will approach this by constructing a real test function  $\Psi_T(\vec{r}_0, \vec{r}_1, ..., \vec{r}_{N-1}, \alpha, \beta)$  dependent on two parameters  $\alpha$  and  $\beta$  and calculate the expextation value of the hamilton operator  $\langle \hat{H} \rangle$ . As we know, the orthonormal eigenstates  $\Psi_i$  of the Hamiltonian forms a complete basis, so any state, including our test state  $\Psi_T$ , can be written as a linear combination of the eigenstates

$$\Psi_T = \sum_i c_i \Psi_i \tag{2.1.3}$$

Inserting this expression into the equation for the expectation value of  $\hat{H}$  gives

$$\langle \hat{H} \rangle = \frac{\int \Psi_T \hat{H} \Psi_T d\vec{r}}{\int \Psi_T \Psi_T d\vec{r}} = \frac{\int (\sum_i c_i^* \Psi_i^*) \hat{H} (\sum_i c_i \Psi_i) d\vec{r}}{\int (\sum_i c_i^* \Psi_i^*) (\sum_i c_i \Psi_i) d\vec{r}} = \frac{\int (\sum_i c_i^* \Psi_i^*) (\sum_i c_i E_i \Psi_i) d\vec{r}}{\int (\sum_i c_i^* \Psi_i^*) (\sum_i c_i \Psi_i) d\vec{r}}$$

$$= \frac{\sum_i |c_i|^2 E_i}{\sum_i |c_i|}$$
(2.1.4)

The energy of the ground state  $E_0$  is smaller than all other  $E_i$ 's so

$$\frac{\sum_{i} |c_{i}|^{2} E_{i}}{\sum_{i} |c_{i}|} \ge \frac{\sum_{i} |c_{i}|^{2} E_{0}}{\sum_{i} |c_{i}|} = E_{0} \frac{\sum_{i} |c_{i}|^{2}}{\sum_{i} |c_{i}|} = E_{0}$$
(2.1.5)

$$\langle H \rangle \ge E_0 \tag{2.1.6}$$

This simple observation is called the variational principle and is what we will use to narrow our search for the optimal parameters  $\alpha$  and  $\beta$ . We will look for the parameters  $\alpha$  and  $\beta$  that gives us the smallest value of  $\langle \hat{H} \rangle$  and this will be our estimate for the ground state energy.

#### **2.1.1.3** Finding the expectation value of $\hat{H}$

We have

$$\langle \hat{H} \rangle = \frac{\int \Psi_T \hat{H} \Psi_T d\vec{r}}{\int \Psi_T \Psi_T d\vec{r}} = \int \frac{\Psi_T \Psi_T}{\int \Psi_T \Psi_T d\vec{r}} \frac{1}{\Psi_T} \hat{H} \Psi_T d\vec{r}$$
(2.1.7)

If we rename probability density function of the particles

$$\frac{\Psi_T \Psi_T}{\int \Psi_T \Psi_T d\vec{r}} = P(\vec{r}) \tag{2.1.8}$$

And introduce the local energy

$$E_L(\vec{r}) = \frac{1}{\Psi_T} \hat{H} \Psi_T \tag{2.1.9}$$

The integral becomes

$$\langle \hat{H} \rangle = \int P(\vec{r}) E_L(\vec{r}) d\vec{r} = \langle E_L \rangle$$
 (2.1.10)

Thus, to calculate the expectation value of  $\hat{H}$  we can just calculate the expectation value of the local energy.

#### 2.1.1.4 Verifying that we have found an eigenstate

We could very well find a minimum of  $\langle \hat{H} \rangle$  that is not an eigen energy of the system, i.e. still larger than  $E_0$ . To address this problem, let's look at the variance  $V_{E_L}$  of  $\langle E_L \rangle$ .

$$V_{E_L} = \langle E_L^2 \rangle - \langle E_L \rangle^2 = \int P(\vec{r}) \left( \frac{1}{\Psi_T} \hat{H} \Psi_T \right)^2 d\vec{r} - \left( \int P(\vec{r}) \frac{1}{\Psi_T} \hat{H} \Psi_T d\vec{r} \right)^2$$
(2.1.11)

Since

$$\langle (E_L - \langle E_L \rangle)^2 \rangle = \langle E_L^2 - 2E_L \langle E_L \rangle + \langle E_L \rangle^2 \rangle = \langle E_L^2 \rangle - 2\langle E_L \rangle \langle E_L \rangle + \langle E_L \rangle^2$$
$$= \langle E_L^2 \rangle - \langle E_L \rangle^2 = V_{E_L}$$
(2.1.12)

We have that if  $V_{E_L} = 0$ , then

$$\langle (E_L - \langle E_L \rangle)^2 \rangle = 0 \tag{2.1.13}$$

$$0 = \int \left( P(\vec{r}) E_L(\vec{r}) - \int P(\vec{r}) E_L(\vec{r}) d\vec{r} \right)^2 d\vec{r} = \int \left( \frac{1}{\Psi_T} \hat{H} \Psi_T - \int \Psi_T \hat{H} \Psi_T d\vec{r} \right)^2 d\vec{r}$$
 (2.1.14)

When the Hamiltonian acts on a real function, it gives a real function. And since  $\Psi_T$  is real  $\frac{1}{\Psi_T}\hat{H}\Psi_T - \int \Psi_T\hat{H}\Psi_T d\vec{r}$  is real. By consequence

$$\left(\frac{1}{\Psi_T}\hat{H}\Psi_T - \int \Psi_T \hat{H}\Psi_T d\vec{r}\right)^2 > 0 \tag{2.1.15}$$

Which means that for the integral in equation 2.1.14 to be zero, the following must be true for all  $\vec{r}$ 

$$\frac{1}{\Psi_T}\hat{H}\Psi_T - \int \Psi_T \hat{H}\Psi_T d\vec{r} = 0 \tag{2.1.16}$$

$$\Psi_T \hat{H} \Psi_T = \int \Psi_T \hat{H} \Psi_T d\vec{r} \tag{2.1.17}$$

The right hand side of this equation is just a real number. Naming this number E gives

$$\frac{1}{\Psi_T}\hat{H}\Psi_T = E \tag{2.1.18}$$

$$\hat{H}\Psi_T = E\Psi_T \tag{2.1.19}$$

Which is nothing but the eigenvalue equation stating that  $\Psi_T$  is an eigenstate of H. This will serve as a test to see if the state we have found when minimizing the expectation value of  $E_L$  is an eigenstate of the Hamilton operator. It is just as easily (perhaps easier) shown that if  $\Psi_T$  is and eigenstate of  $\hat{H}$ , then the variance of the local energy is 0. This means that if the variance of our test function is not 0, then it is not an eigenfunction of  $\hat{H}$ . We can summarize this discussion as follows

$$V_{E_L} = 0$$
 if and only if  $\Psi_T$  is an eigenstate of  $\hat{H}$  (2.1.20)

#### 2.1.2 The test function $\Psi_T$

We will in this project use the trial wavefunctions of  $\vec{r}_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix}$  given by

$$\Psi_T(\vec{r}_0, ..., \vec{r}_{N-1}) = \text{Det}_M(\phi_0, ..., \phi_{N-1}) \cdot J(\vec{r}_0, ..., \vec{r}_{N-1})$$
(2.1.21)

#### **2.1.2.1** The modified Slater determinant $Det_M(\phi_0,...,\phi_{N-1})$

 $\operatorname{Det}_{M}(\phi_{0},...,\phi_{N-1})$  is a modified *Slater determinant* defined as

Where  $\phi_i(\vec{r_i})$  is a wavefunction resembling one of the eigenfunctions of the Hamilton operator for one particle in a two dimensional harmonic oscillator, but parameterized by  $\alpha$  in the following way:

$$\phi_i(\vec{r}_j) = H_{n_x}(\sqrt{\alpha\omega}x_j)H_{n_y}(\sqrt{\alpha\omega}y_j)\exp(-\alpha\omega(x^2 + y^2)/2)$$
(2.1.23)

The reason for this modified version of the Slater determinant (whose real form can be explored elsewhere<sup>1</sup>) is that the spin parts of the wavefunctions are not incorporated in the expressions of  $\phi_i(\vec{r_j})$ . The result is that if we were to insert these into a regular Slater determinant we would get 0, everytime. The modified Slater determinant  $\text{Det}_M$  avoids this issue while still conserving some of the most important properties of the Slater determinant.

 $n_x(i)$  and  $n_y(i)$  corresponds to the quantum numbers needed to "fill up" the system from the lowest energy levels twice (one for each spin configuration). For i < 12, the explicit dependence of  $n_x, n_y$  on i is given in table 2.1.1.

| i =     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---------|---|---|---|---|---|---|---|---|---|---|----|----|
| $n_x =$ | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 1 | 1 | 0  | 0  |
| $n_y =$ | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 2  | 2  |

Table 2.1.1: The explicit dependence of  $n_x$  and  $n_y$  on i in the construction of the trial wavefunctions.

#### **2.1.2.2** The Jastrow factor $J(\vec{r}_0, ..., \vec{r}_{N-1})$

 $J(\vec{r}_0,...,\vec{r}_{N-1})$  is a so-called *Jastrow factor*, which represents the electron repulsion part of the wavefunction, defined as

$$J(\vec{r}_0, ... \vec{r}_{N-1}) = \prod_{i < j}^{N} \exp\left(\frac{a_{ij} r_{ij}}{1 + \beta r_{ij}}\right)$$
where  $r_{ij} = |\vec{r}_i - \vec{r}_j|$  and  $a_{ij} = \begin{cases} 1/3 & \text{if spin(i) and spin(j) are parallell} \\ 1 & \text{if spin(i) and spin(j) are anti-parallell} \end{cases}$  (2.1.24)

<sup>1</sup>http://en.wikipedia.org/wiki/Slater\_determinant

From the expression of the Jastrow factor, we see that it is zero whenever  $r_{ij} = 0$  for any pair  $i \neq j$ . This is what we want from such a factor, namely that the wavefunction is zero whenever there is no distance between two particles (i.e.  $r_{ij} = 0$ ).

#### 2.1.2.3 Motivation

The motivation of such a trial wavefunction is that it is partly made of the unperturbed harmonic oscillator ground states. See figure 2.1.1.



Figure 2.1.1: The wave function levels. The blue dots represent electrons filling up the states from  $n_x = n_y = 0$  to the third lowest states. 2 electrons fill up the lowest level, 6 electrons the two lowest levels and 12 electrons all three first energy levels. The net spin of each level must be 0 due to the Pauli Exclusion principle.

The energies of these levels are given by the well known 2D-harmonic oscillator energy formula

$$E_{n_x,n_y} = \hbar\omega (1 + n_x + n_y) \tag{2.1.25}$$

So if we have two electrons in the lowest state  $(n_x = n_y = 0)$ , we would expect the energy of this state to be

$$2 \cdot \hbar\omega (1+0+0) = 2\hbar\omega = 2\omega \tag{2.1.26}$$

When using natural units.

To have two electrons in the same state, their spin must be opposite due to the Pauli exclusion principle. This means that the total spin of the  $n_x = n_y = 0$  state is 0. It can be shown that the wavefunction given by equation 2.1.21 when N = 2 (i.e. two electrons) is given by the following equation

$$\Psi_T(\vec{r}_0, \vec{r}_1) = \exp(-\alpha \omega (r_0^2 + r_1^2)/2) \cdot J$$
 (2.1.27)

If we do not include the repulsion part of the system, there is no need to include the Jastrow Factor (for details, see section 2.1.2.2). It can be shown that this state is an eigenstate of the unperturbed harmonic oscillator with energy  $2\omega$  when  $\alpha=1$ . This analogy can be extended to the N=6 and N=12 electron case as well. When N=6 the unperturbed energy should be the sum of the energies in the first level (i.e.  $2\omega$ ) and the collective energies of the electrons in the second level states  $(n_x=1,\ n_y=0 \lor n_x=0,\ n_y=1)$  which is  $4\cdot 2\omega=8\omega$ , resulting in a total energy of  $10\omega$ . Equivalently, the energy for the N=12 electron case should be  $28\omega$ . These energies will all serve as benchmarks and we should get the exact results when there is no repulsion,  $\alpha=1$  and the jastrow factor is omitted.

#### 2.1.2.4 Closed form expression of the local energy

To evaluate the local energy

$$E_L(\vec{r}) = \frac{1}{\Psi_T} \hat{H} \Psi_T = \frac{1}{\Psi_T} \left( \sum_i -\frac{1}{2} \nabla_i^2 + \sum_i V(\vec{r}_i) \right) \Psi_T = \sum_i V(\vec{r}_i) - \frac{1}{2} \sum_i \frac{1}{\Psi_T} \nabla_i^2 \Psi_T \quad (2.1.28)$$

We need a lot of computational power. This is mainly due to the fact that we need to compute the sum of the laplacian operators on each particle. This is an easy task to do "brute force", but if we were able to find an analytical expression for the local energy, it would possibly simplify calculations by alot. Let's look at one of the terms in the laplacian sum, naming it LSP (Laplacian sum part)

$$LSP = \frac{1}{\Psi_T} \nabla_i^2 \Psi_T \tag{2.1.29}$$

Inserting the trial wavefunction expression (equation 2.1.21) into the latter gives

$$\frac{1}{\Psi_T} \nabla_i^2 \Psi_T = \frac{1}{\text{Det}_M J} \nabla_i^2 (\text{Det}_M J)$$
 (2.1.30)

The function  $\mathrm{Det}_M$  is a product of two matrice-determinants |U| and |D| where |U| handles all the particles assigned spin up and |D| the ones assigned spin down. Particle i has either spin up or down, so let  $|S_i|$  denote the matrix determinant which handles particle i and  $|S_{j\neq i}|$  denote the one that doesn't, then

$$\frac{1}{\Psi_T} \nabla_i^2 \Psi_T = \frac{1}{|S_i| |S_{j \neq i}| \mathbf{J}} \nabla_i^2 (|S_i| |S_{j \neq i}| \mathbf{J}) = \frac{1}{|S_i| |S_{j \neq i}| \mathbf{J}} |S_{j \neq i}| \nabla_i^2 (|S_i| \mathbf{J}) = \frac{1}{|S_i| \mathbf{J}} \nabla_i^2 (|S_i| \mathbf{J}) \quad (2.1.31)$$

Using the product rule of the laplacian operator gives

$$\frac{1}{\Psi_T} \nabla_i^2 \Psi_T = \frac{\nabla_i^2 |S_i|}{|S_i|} + \frac{\nabla_i^2 J}{J} + 2 \frac{\nabla_i J}{J} \cdot \frac{\nabla_i |S_i|}{|S_i|}$$
(2.1.32)

It is possible to find analytical expression for all these terms, and that has been already been done in a master thesis written by Jørgen Høgberget [3]. The arguments will not be repeated

but the results are as follows (with names added for code reference)

$$NSS = \frac{\nabla_i |S_i|}{|S_i|} = \sum_{k=0}^{N/2} \left[ (S^{-1})_{ki} \cdot \nabla_i \phi_{2k}(\vec{r}_i) \right]$$
 (2.1.33a)

$$N2SS = \frac{\nabla_i^2 |S_i|}{|S_i|} = \sum_{k=0}^{N/2} \left[ (S^{-1})_{ki} \cdot \nabla_i^2 \phi_{2k}(\vec{r}_i) \right]$$
 (2.1.33b)

$$NJJ = \frac{\nabla_i J}{J} = \sum_{k \neq i} \frac{a_{ik}}{r_{ik}} \frac{\vec{r_i} - \vec{r_k}}{(1 + \beta r_{ik})^2}$$
 (2.1.33c)

$$N2JJ = \frac{\nabla_i^2 J}{J} = \left| \frac{\nabla_i J}{J} \right|^2 + \sum_{k \neq i} \frac{a_{ik}}{r_{ik}} \frac{1 - \beta r_{ik}}{(1 + \beta r_{ik})^3}$$
 (2.1.33d)

 $\nabla_i \phi_k(\vec{r_i})$  and  $\nabla_i^2 \phi_k(\vec{r_i})$  scan be found simply by inserting and taking the derivative of the Hermite polynomials. The explicit formulas for  $\phi_k$  for k in the range 0 to 11 is given in table 2.1.2 and are also taken from the master thesis by Jørgen Høgberget.

| k  | $(n_x, n_y)$ | $\phi_k(\vec{r})$ | $ abla_i \phi_k(\vec{r}_i) = [ abla_x,  abla_y]$ | $ abla_i^2 \phi_k(\vec{r_i})$   |
|----|--------------|-------------------|--------------------------------------------------|---------------------------------|
| 0  | (0,0)        | 1                 | $-\left[l^2x,l^2y ight]$                         | $l^2(l^2r^2 - 2)$               |
| 2  | (1,0)        | 2lx               | $-2l\left[(lx-1)(lx+1),l^2xy\right]$             | $2l^3x(l^2r^2 - 4)$             |
| 4  | (0,1)        | 2ly               | $-2l\left[l^2xy,(ly-1)(ly+1)\right]$             | $2l^3y(l^2r^2 - 4)$             |
| 6  | (2,0)        | $4l^2x^2 - 2$     | $-2\left[l^2x(2l^2x^2-5),l^2y(2l^2x^2-1)\right]$ | $2l^2(l^2r^2 - 6)(2l^2x^2 - 1)$ |
| 8  | (1,1)        | $4l^2xy$          | $-4l^{2} [y(lx-1)(lx+1), x(ly-1)(ly+1)]$         | $4l^4xy(l^2r^2 - 6)$            |
| 10 | (0,2)        | $4l^2y^2 - 1$     | $-2\left[l^2x(2l^2y^2-1),l^2y(2l^2y^2-5)\right]$ | $2l^2(l^2r^2 - 6)(2l^2y^2 - 1)$ |

Table 2.1.2: Table of derivatives of  $\phi_k(\vec{r_i})$  where  $l = \sqrt{\alpha \omega}$ . The factor  $e^{-\frac{1}{2}l^2r^2}$  is ommitted from all expressions. The formula for k+1 is the same as for k if k is even (e.g.  $\phi_0 = \phi_1$ ).

#### 2.1.3 The virial theorem

#### 2.2 The numerical foundation

This is the section explaining the numerical theory upon which the project is built.

#### 2.2.1 Monte Carlo simulations

A Monte Carlo simulation is a way of solving a mathematical or physical problem by generating a random (or pseudorandom <sup>2</sup>) sequence of numbers and evaluating some quantity on the assumption that our the random sequence of numbers is representative of the domain from which the

<sup>&</sup>lt;sup>2</sup>No electronic random number generator of today is truly random. The sequence of numbers generated will repeat itself after a long period. These periods however, are increadibly long and we will for this report consider the random number generators to be truly random.

quantity is evaluated. An example is evaluating the area of the unit circle by randomly placing points in a  $[-1,1] \times [-1,1]$  grid and find the fraction points whose distance to the origin is  $\leq 1$  and multiply this fraction by the area of the grid (i.e. 4). Such a simple Monte Carlo simulation can give the result as shown in figure 2.2.1.



Figure 2.2.1: The results from a very simple Monte Carlo simulation of estimating the circle constant  $\pi$ . The precision increases with the number of points.

However, the method is not confined to this sort of problem, but can be applied to a variety of mathematical and physical problems. In this report, the method, through the Metropolis algorithm (see section 2.2.2) has been applied to a quantum mechanical system.

#### 2.2.2 The Metropolis algorithm

The Metropolis algorithm is a method which cleverly employs a stoichastic approach in order to quickly estimate certain mathematical objects. The method is explained at lengths elsewhere[2], but in this section we will look at an example which captures the main idea of the method.

Suppose we have a PDF<sup>3</sup> P(x) in a domain [a, b] for which we want to calculate the expectation value  $\langle g \rangle$  of some function g(x). The integral we need to solve is then

$$\langle g \rangle = \int_{a}^{b} P(x)g(x)dx$$
 (2.2.1)

This integral can be approximated as follows

$$\int_{a}^{b} P(x)g(x)dx \approx \frac{b-a}{N} \sum_{i} P(x_{i})g(x_{i}) \equiv I$$
 (2.2.2)

Where  $x_i$  are some uniformly chosen values in the interval [a, b]. Now, imagine instead of picking values  $x_i$  uniformly and weighing them by multiplying g(x) with P(x) instead chose the values of  $\tilde{x_i}$  from the PDF P(x) and calculated the quantity  $\tilde{I}$  given by

$$\tilde{I} = \frac{1}{N} \sum_{i} g(\tilde{x}_i) \tag{2.2.3}$$

<sup>&</sup>lt;sup>3</sup>Probability Distribution Function

It can be shown mathematically that for large enough N, these two quantities I and  $\tilde{I}$  approach the same value. The problem with such an approach is that we need the precise expression for the PDF P(x) and a robust algorithm for choosing random values from it. With the Metropolis algorithm however, we can use this approach without knowing the precise expression of the PDF and the relevant values from the domain come naturally.

The algorithm requires that we are able to calculate  $\tilde{P}(x)$ , an unnormalized version of P(x) (i.e. some function aP(x) proportional to P(x)). This may seem like a very strong requirement, but in many applications, as in this project, this is a much easier task than to calculate the precise PDF. The algorithm goes as follows. Starting with a position x choose a new trial position  $x_p$  by

$$x_p = x + \Delta x \tag{2.2.4}$$

Where  $\Delta x$  is a random step according to some rule (see subsections). Then generate a probability criteria  $s \in [0, 1]$ .

$$\frac{P(x_p)}{P(x)} = \frac{aP(x_p)}{aP(x)} = \frac{\tilde{P}(x_p)}{\tilde{P}(x)} \equiv w \ge s \tag{2.2.5}$$

We accept the trial position as our new x and if not we reject it. If we choose new values of  $x_i$  in this manner, the collection of  $x_i$ 's will in fact reflect the PDF P(x), which was what we needed in order to use equation 2.2.3. Note how equation 2.2.5 doesn't require us to have the exact form of the probability distribution function, only a function  $\tilde{P}(x)$  proportional to it.

The intuition behind the algorithm is that for each new position  $x_i$  we generate is drawn towards the part of the domain where P(x) is bigger. To see this, we note that if  $P(x_p) > P(x)$  then  $\frac{P(x_p)}{P(x)} > 1$  which is always bigger than  $s \in [0,1]$  and the new move is always accepted. Whereas if  $P(x_p) < P(x)$ , the move might be rejected. This allows new values of  $x_i$  to be chosen from where P(x) is big, but at the same time allows values with lower values of P(x) to be chosen. Which is what we expect from a PDF. The fact that for a large number M of such steps, the values  $x_i$  picked actually reflects the PDF requires some more mathematics, and once again we refer to the lecture notes of the course [2].

#### 2.2.2.1 Brute force Metropolis

If we have no information about the physical nature of the system a reasonable way to model  $\Delta x$  is the following

$$\Delta x = r \Delta x_0 \tag{2.2.6}$$

Where r is a random number between 0 and 1 and  $\Delta x_0$  is a predefined step length. The step length  $\Delta x_0$  is affecting the effectiveness of the algorithm in two contradicting ways. A small step length increases the probability of each suggested move  $x_p$  being accepted, but weakens the ergodicity<sup>4</sup> of the method.

Since we have no physical understanding of the system when using the brute force Metropolis algorithm, we model our probability criteria s as a uniform random number between 0 and 1.

<sup>&</sup>lt;sup>4</sup>The way in which the walker is able to reach all positions within a finite number of steps.

Increasing the acceptance probability reduces the amount of times we need to evaluate the probability ratio w, but also increses the amount of Monte Carlo simulations needed in order to get a representative collection of  $x_i$ 's. It can be argued that a good balance between these two aspects is to achieve an acceptance ratio (i.e. the ratio between accepted and rejected moves) of around 0.5.

This is called the "Brute Force Metropolis algorithm".

#### 2.2.2.2 Importance sampling

If our current position x is in a region where the probability distribution is important, i.e. has a large value, a small step  $\Delta x$  would be favorable. This is because we want to sample many points in this region, which is what a small step allows. In contrast, if the current position x is in an unimportant region, we want a large step  $\Delta x$  since we don't mind moving a bit farther from the region we're in. The brute force approach produced a step independent of the PDF value in each point, which resulted in an optimal acceptance ratio of around 0.5. If we could introduce some sort of rule which adjusts the step  $\Delta x$  according to the value of the PDF in the point we currently are, this could allow us to achieve an acceptance rate of around 0.9 with the same ergodicity.

To make such a rule, we need to use our physical understanding of the system. One way of doing so is to consider the points to move as a random walker would where the resulting probability is equal to the PDF we're treating. Doing this, and invoking the Fokker-Planck and Langevin equations  $^5$ , it can be shown that the choice of  $\Delta x$  is as follows

$$\Delta x = DF(x)\delta t + \eta \tag{2.2.7}$$

Where D is the diffusion term, F(x) is a drift term which is responsible for pulling the particle towards regions where the PDF is important and  $\eta$  is a gaussian random number.

The way the metropolis algorithm relies as we have seen on accepting and rejecting proposed moves in a domain. Where the probability criteria in the brute force method was just a uniform random number between 0 and 1, the physics behind the system now applies to this criteria as well. It affects the criteria in the following way, the probability criteria s is now given by

$$s = \frac{G(x_p, x, \delta t)}{G(x, x_p, \delta t)} s_0 \tag{2.2.8}$$

Where  $s_0$  is a random unifor number between 0 and 1 and  $G(a, b, \delta t)$  is the so-called greenfunction given by

$$G(a, b, \delta t) = \frac{1}{(4\pi D\delta t)^{3N/2}} \exp\left(-(a - b - D\delta t F(b))^2 / 4D\delta t\right)$$
(2.2.9)

Using this approach is what we will call the "Metropolis algorithm with importance sampling".

#### 2.2.2.3 The metropolis algorithm for our wavefunction

As discussed in section 2.1.1 we need to solve the integral

<sup>&</sup>lt;sup>5</sup>Once again we refer to the lecture notes [2] for a more detailed explanation.

$$\langle E_L \rangle = \int P(\vec{r}) E_L(\vec{r}) d\vec{r}$$
 (2.2.10)

Where we have a trial function

$$\Psi_T(\vec{r}_0, ..., \vec{r}_{N-1}, \alpha, \beta) \tag{2.2.11}$$

dependent on 2 trial parameters  $\alpha$  and  $\beta$  where  $\vec{r_i} = \begin{pmatrix} x_i \\ y_i \end{pmatrix}$ . This is exactly the kind of problem the Metropolis algorithm can solve and the explicit algorithm for calculating  $\langle E_L \rangle$  and  $\langle E_L^2 \rangle$  is given in algorithm 2.1.

```
An initial position matrix \mathbf{r} = (\vec{r}_0, \vec{r}_1 ... \vec{r}_{N-1}) = \begin{pmatrix} x_0 & x_1 & ... & x_{N-1} \\ y_0 & y_1 & ... & y_{N-1} \end{pmatrix}
A method of chosing the step Method(\mathbf{r}) = \Delta \vec{r} = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}
     Result:
     The expectation value of the local energy: \langle E_L \rangle
     The expectation value of the local energy squared: \langle E_L^2 \rangle
    begin
 2
            cumulative\_local\_energy = E_L(\mathbf{r}, \alpha, \beta)
                                                                                                                                    // Initialization
           cumulative\_local\_energy\_squared = 0
 3
           counter = 0
 4
           while counter < M do
 5
                 i = \text{randint}(0, 1, ..., N - 1)
                                                                                                         // Choose random element index
 6
                 \Delta \vec{r} = \text{Method}(\mathbf{r})
                                                                                       // Create a random two-dimensional step
 7
                \mathbf{r_p} = \begin{pmatrix} x_0 \ x_1 \ \dots \ x_i \\ y_0 \ y_1 \ \dots \ y_i \end{pmatrix} + \Delta \vec{r} \ \dots \frac{x_{N-1}}{y_{N-1}} \end{pmatrix}
                                                                                                   // Create a trial position matrix
 8
                 s = \text{prob\_criteria}(0,1)
                                                                                                 // Generate a probability criteria
 9
                 w = |\psi(\alpha, \beta, \mathbf{r_p})|^2 / |\psi(\alpha, \beta, \mathbf{r})|^2
                                                                                                   // Calulate the probability ratio
10
                 if w \geq s then
11
                      \vec{r} = \vec{r}_p
12
                      E_L(\mathbf{r}, \alpha, \beta) = \frac{1}{\Psi_T(\mathbf{r}, \alpha, \beta)} \hat{H} \psi_T(\mathbf{r}, \alpha, \beta)
                                                                                                         // Calculate the local energy
13
14
                                                                                                    // Update cumulative_local_energy
                 cumulative\_local\_energy \stackrel{+}{=} E_L(\mathbf{r}, \alpha, \beta)
15
                 cumulative_local_energy_squared \stackrel{\sim}{+} E_L(\mathbf{r}, \alpha, \beta)^2
16
                                                                                     // Update cumulative_local_energy_squared
                 counter \stackrel{+}{=} 1
                                                                                                                                   // Update counter
17
18
           Calculate \langle E_L \rangle = \frac{cumulative\_local\_energy}{M}
Calculate \langle E_L^2 \rangle = \frac{cumulative\_local\_energy\_squared}{M}
19
20
21
```

Algorithm 2.1: The metropolis algorithm used for finding the expectation value of the local energy and the expectation value of the local energy squared. "Method" refers to either the brute force approach or importance sampling.

If we move only one particle at a time, each new trial position will be given by

$$\mathbf{r_p} = \begin{pmatrix} x_0 & x_1 & \dots & x_i \\ y_0 & y_1 & \dots & y_i \\ \end{pmatrix} + \Delta \vec{r} & \dots & x_{N-1} \\ y_{N-1} \end{pmatrix}$$
 (2.2.12)

Where  $\mathbf{r} = \begin{pmatrix} x_0 & x_1 & \dots & x_{N-1} \\ y_0 & y_1 & \dots & y_{N-1} \end{pmatrix}$ . If we are using the brute force approach, then  $\Delta \vec{r}$  is simply given by

$$\boxed{\Delta \vec{r} = \Delta r \cdot \vec{\text{rand}}}$$
 (2.2.13)

Where  $\Delta r$  is a predefined step length and rand is a random 2-vector with elements between -1 and 1.

If we want to implement importance sampling however, we need expressions for the terms in equation 2.2.7. These terms can be shown [1] to be

$$D = \frac{1}{2} \tag{2.2.14}$$

Which stems from the fact that the drift is caused by kinetic energy in front of which is a factor  $\frac{1}{2}$  and

$$F = 2\frac{1}{\Psi_T} \nabla_i \Psi_T \tag{2.2.15}$$

The formula for using importance sampling when choosing the trial position  $\mathbf{r_p}$  for our wavefunction is thus

$$\Delta \vec{r} = \left(\frac{1}{\Psi_T} \nabla_i \Psi_T\right) \delta t + \eta \tag{2.2.16}$$

We can rewrite this, as in section 2.1.2.4

$$\frac{1}{\Psi_T} \nabla_i \Psi_T = \frac{1}{|S_i| J} \nabla_i (|S_i| J) = \frac{1}{|S_i| J} (|S_i| \nabla_i J + J \nabla_i |S_i|)$$
 (2.2.17)

$$\boxed{\frac{1}{\Psi_T} \nabla_i \Psi_T = \frac{\nabla_i |S_i|}{|S_i|} + \frac{\nabla_i \mathbf{J}}{\mathbf{J}}}$$
(2.2.18)

Expressions we can find both from numerical differenciation and the close form expressions in equations 2.1.33. In this report, we will use both these approaches and compare the CPU time needed.

#### 2.3 Parallelization

Parallelization is a way of exploiting the multiple CPU's you find in modern computers. The idea behind is that tasks that are not dependent on each other and can be done in any order may be divided into so-called threads, and each thread can its own task, see figure 2.3.1.



Figure 2.3.1: Flow chart of a parallelization process. The red and blue section are codes which do not depend on each other and can be parallelized. The image is downloaded from <a href="http://www.embedded.com/.../parallelization">http://www.embedded.com/.../parallelization</a>, 22.11.14.

Using a library such as OpenMP (used in this project) makes use of all four CPU's if told to split the work into four different threads. Such an approach is easy to implement to this problem, because we can calculate  $\langle E_L \rangle$  for different trial parameters at the same time.

### 3 Experimental

#### 3.1 Benchmarks and verification

#### 3.1.1 Benchmarks for the brute force approach, no repulsion or jastrow factor

As discussed in section 2.1.2.3, when  $\omega=1$ , the trial wavefunction should be able to reproduce the exact solution E=2 (in atomic units) when we disregard the electron repulsion part of the Hamiltonian and don't include the Jastrow factor. This benchmark was tested <sup>6</sup> with the brute force metropolis method by varying  $\alpha$  from 0 to 1.5 with steps of 0.05 using numerical diffrentiation of the wavefunction in the expression of the local energy.  $10^7$  Monte Carlo simulations were performed for each  $\alpha$  with a step length  $\Delta r$  suited to each case to get an acceptance rate of around 0.5 (which is implemented in the code before any monte carlo simulation is begun).

Then then the benchmarks for the N=6 and N=12 electron case was tested<sup>7</sup>, still with the brute force approach and  $10^7$  monte carlo simulations for the N=6 case and  $10^6$  for the N=12 case, but this time with a smaller interval around  $\alpha=1$ , ranging from 0.9 to 1.1 with steps of 0.05. In order to also verify the correct implementation of the oscillator frequency  $\omega$ , this was set to 1.5, so the energies to reproduce are  $10\omega=15$  a.u. and  $28\omega=42$  a.u.

<sup>&</sup>lt;sup>6</sup>/Logs/N2\_norep\_bruteforce\_num/test\_investigate.cpp, 21.11.14. See appendix, section B.

 $<sup>^{7}/</sup>Logs/N12\_norep\_bruteforce\_num/test\_investigate.cpp \ and \ /Logs/N6\_norep\_bruteforce\_num/test\_investigate.cpp, \ 21.11.14.$ 

#### 3.1.2 Benchmark for the brute force approach, with repulsion and jastrow factor

The exact energy of the two electron state with repulsion has been shown [4] to be  $3\omega$ . To test this result, first a fast investigation of  $\langle E_L \rangle$  was performed as function of  $\alpha$  and  $\beta$  to find the region in which the lowest energy is. Then, a more detailed search<sup>8</sup> was made with  $\alpha \in [0.9, 1.1]$  and  $\beta \in [0.35, 0.45]$ , both in steps of 0.01 and  $10^6$  MC simulations at each step. The brute force approach with numerical evaluation of the local energy was used and  $\omega$  was set to 1. If the exact wavefunction were within our trial parameters, then we would thus expect to get the exact answer  $3 \cdot 1 = 3$  a.u., but since this may not be the case we expect the lowest energy to be larger than this, according to section 2.1.1.2.

#### 3.1.3 Comparison of different methods

As described in the theory section, a variety of different methods for solving the VMC problem has been explained. Firstly, there is a choice whether to use brute force (BF) or importance sampling (IS) when picking new trial positions in the metropolis algorithm. Secondly there is the the possibility of using numerical methods (NLE) or the analytical expressions (ALE) when evaluating the local energy. In addition, if we're using importance sampling in the metropolis algorithm, there is a choice to whether or not we should use numerical (NQF) or analytical (AQF) expressions for the quantum force. All these methods should output the same result for the expectation value of the local energy, and to verify this an investigation of  $\langle E_L \rangle$  with the different methods were performed for three different, semi-random of  $\langle E_L \rangle$  with the different methods were performed for three different, semi-random for  $\langle E_L \rangle$  with the different methods were performed for three different, semi-random for  $\langle E_L \rangle$  with the different methods were performed for three different, semi-random for  $\langle E_L \rangle$  with the different methods were performed for three different, semi-random for  $\langle E_L \rangle$  with the different methods were performed for three different, semi-random for  $\langle E_L \rangle$  with the different methods were performed for three different, semi-random for  $\langle E_L \rangle$  with the different methods were performed for three different semi-random for  $\langle E_L \rangle$  with the different methods were performed for three different semi-random for  $\langle E_L \rangle$  with the different methods were performed for three different semi-random for  $\langle E_L \rangle$  with the different methods were performed for three different semi-random for  $\langle E_L \rangle$  with the different methods of  $\langle E_L \rangle$  with

#### 3.2 Optimizations and differences

In this section, the different optimization methods, such as the jastrow factor, analytical expressions and importance sampling, was investigated. The investigation of these issues was based upon six test cases with two electrons for which the optimal parameters were found, the procedure is explained in the following section. Since we have verified the validity of the different methods in section 3.1, we could use whatever method we wanted to run sample the energies. For this section, if nothing else is written, the standard method is the brute force approach with analytical expressions for the local energy.

#### 3.2.1 Test cases

The six test cases for this section was  $\omega = 0.01, 0.28, 1.0$ , with repulsion but with and without Jastrow factor. For each test case, the optimal parameters of  $\alpha$  and  $\beta$  was found by first doing a high resolution (step: 0.2) sweep and after finding a region of interest, incresing the resolution (step: 0.01) over a smaller area. Then the parameters yielding the smallest energy was logged. The configuration files for each run was logged <sup>11</sup>.

<sup>&</sup>lt;sup>8</sup>/Logs/N2\_rep\_jast\_num/test\_investigate.cpp, 21.11.14.

 $<sup>{\</sup>rm 9^{\prime}/Logs/compare\_methods/first\_example.cpp,\ second\_example.cpp,\ third\_example.cpp,\ 21.11.14.}$ 

<sup>&</sup>lt;sup>10</sup>Chosen randomly by me, that is.

 $<sup>^{11}/\</sup>mathrm{Logs/test\_cases}/,\,22.11.14$ 

#### 3.2.2 Jastrow factor

When the repulsion part is present, we expect the jastrow factor to

#### 3.2.3 Importance sampling

#### 3.2.4 Timely differences between methods

#### 3.3 Applications

#### 3.3.1 Energies and variances

#### 3.3.2 The virial theorem

#### 4 Results and discussion

#### 4.1 Benchmarks and verification

#### 4.1.1 Benchmarks for the brute force approach, no repulsion or jastrow factor

Table 4.1.1 shows the results from the brute force simulation of the two electron - no repulsion case. A plot of the results is shown in figure 4.1.1.

| $\alpha$ | 0.0     | 0.05   | 0.1    | 0.15   | 0.2    | 0.25   | 0.3    | 0.35   | 0.40   | 0.45   |
|----------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| E(a.u)   | 1.1e5   | 19.96  | 10.03  | 6.77   | 5.17   | 4.23   | 3.61   | 3.19   | 2.89   | 2.66   |
| Variance | 7.4e9   | 2.0e2  | 4.8e1  | 2.0e1  | 1.1e1  | 7.0e0  | 4.5e0  | 3.1e0  | 2.2e0  | 1.5e0  |
| $\alpha$ | 0.5     | 0.55   | 0.6    | 0.65   | 0.7    | 0.75   | 0.8    | 0.85   | 0.9    | 0.95   |
| E(a.u.)  | 2.49    | 2.36   | 2.26   | 2.18   | 2.12   | 2.08   | 2.047  | 2.024  | 2.0096 | 2.002  |
| Variance | 1.1e0   | 7.9e-1 | 5.6e-1 | 3.9e-1 | 2.6e-1 | 1.7e-1 | 1.0e-1 | 5.3e-2 | 2.6e-2 | 5.2e-3 |
| $\alpha$ | 1.0     | 1.05   | 1.1    | 1.15   | 1.2    | 1.25   | 1.3    | 1.35   | 1.4    | 1.45   |
| E(a.u)   | 2       | 2.0029 | 2.010  | 2.021  | 2.035  | 2.05   | 2.07   | 2.09   | 2.12   | 2.14   |
| Variance | 3.3e-13 | 4.7e-3 | 1.8e-2 | 3.9e-2 | 6.7e-2 | 1.0e-1 | 1.4e-1 | 1.8e-1 | 2.3e-1 | 2.9e-1 |

Table 4.1.1: Table showing the results from the brute force VMC simulation of the expectation value of the local energy  $\langle E_L \rangle$  for  $\alpha$  between 0 and 1.45 in the 2-electron case with no repulsion or Jastrow factor. The results show a minimum for the energy at  $\alpha = 1$ , as expected, and the variance at this point is so small that we expect it to be an eigenstate of the system.

The figure shows exactly what we would expect from the discussion of section 2.1.2.3. The energy is always larger than 2 a.u. and takes this value only when  $\alpha=1$ . We also see a huge drop in the variance just as we reach  $\alpha=1$  which indicates that this is indeed an eigenstate of the system. What little is rest of the variance at  $\alpha=1$  can be due to numerical errors in the calculation of the laplacians. This has in retropspect been verified to be true by using the analytical expression for the local energy.

Table 4.1.2 shows the result from the N=6 and N=12 electrons case with no repulsion using the brute force approach with numerical evaluation of the local energy.



Figure 4.1.1: Plot of the values given in table 4.1.1, the brute force VMC simulation of the two-electron no repulsion or Jastrow factor case. Some of the first values of  $\alpha$  has been omitted to make the graph more informative.

| N=6  | $\alpha$ $E(a.u)$ Variance | 0.9<br>15.0803<br>2.49e-1 | 0.95<br>15.0850<br>5.89e-2 | 1<br>15<br>2.56e-13 | 0.105<br>15.0184<br>2.36e-2 | 0.11<br>15.0708<br>2.05e-1 |
|------|----------------------------|---------------------------|----------------------------|---------------------|-----------------------------|----------------------------|
| N=12 | $\alpha$ $E(a.u)$ Variance | 0.9<br>42.2114<br>6.92e-1 | 0.95<br>42.0497<br>1.66e-1 | 1<br>42<br>1.72e-10 | 0.105<br>42.0563<br>1.48e-1 | 0.11<br>42.1937<br>5.69e-1 |

Table 4.1.2: The results from calculating the expectation value of the local energy and its variance. We see that the code works for the N=6 and N=12 case because we are producing the expected results,  $E_6=15$  and  $E_{12}=42$  ( $\omega=1.5$ ). The variance at  $\alpha=1$  is so small that we have probably the exact wavefunction.

The table shows that we are able to produce the results we anticipated. What little there is of variance at  $\alpha=1$  is probably due the numerical evaluation of the local energy, which has been confirmed in retrospect by using the analytical expression for the local energy. It also shows that the code has implemented the oscillator frequency  $\omega$  correctly.

#### 4.1.2 Benchmark for the brute force approach, with repulsion and jastrow factor

A plot of the energies and  $log_{10}$  of the variances after the investigation is shown in figure 4.1.2. It is not easy to see from the figure what is the lowest energy, but manipulating the figure in matlab revealed the smallest test state energy, which is given in table 4.1.3.

The lowest energy was also found in the region where the variance was lowest. It seems thus that the value obtained in this VMC calculation was very close to the real lowest eigenstate. Very close, however, does not mean that we have found the eigenstate. As we saw in the previous section, when we hit the real eigenstate, the variance dropped rapidly to sizes in order of magnitude  $10^{-12} - 10^{-13}$  which was not the case here.



Figure 4.1.2: Plot of the expectations of the local energy and  $log_{10}$  of variances after the VMC simulations with two electrons, with repulsion and jastrow factor. Each point was based on  $10^6$  simulations. The figure gives an overview of how the energies vary as function of  $\alpha$  and  $\beta$ . The lowest energy E = 3.00022 where  $\alpha = 0.98$  and  $\beta = 0.42$ .

The lowest energy E = 3.00022 and Variance = 0.001568 at  $\alpha = 0.98$  and  $\beta = 0.42$ .

Table 4.1.3: The lowest energy found from the VMC study of the two electron case with repulsion and Jastrow factor.

#### 4.1.3 Comparison of different methods

The results from calculation  $\langle E \rangle$  for the different method combinations and problem/wave function parameters are shown in table 4.1.4.

These are very strong results. Firstly, we have verified the nummerical brute force method against known benchmarks and seen that they are correct, thus, it seems that the other methods are working properly! Secondly, the different methods used very different ways to obtain the results. That the results are almost the same is a strong indication that all the methods are doing the same thing and working correctly.

|                   | Pro                  | blem and Wavefunction     | parameters                 |
|-------------------|----------------------|---------------------------|----------------------------|
| Method parameters | (2, 1, Jf, 0, 1, Ef) | (12, 0.5, Jf, 0, 1.5, En) | (6, 0.82, Jo, 0.22, 3, En) |
| (BF, NLE)         | (2.000, 6e-13)       | (92.10, 67.54)            | (54.74, 28.11)             |
| (BF, ALE)         | (2.000, 0)           | (92.18, 161.4)            | (54.72, 28.19)             |
| (IS, NLE,NQF)     | (2.000, 6e-14)       | (92.15, 66.43)            | (54.72, 27.33)             |
| (IS, NLE, AQF)    | (2.000, 1e-13)       | (92.06, 54.49)            | (54.72, 27.32)             |
| (IS, ALE, NQF)    | (2.000, 0)           | (92.13, 143.2)            | (54.76, 27.35)             |
| (IS, ALE, AQF)    | (2.000, 0)           | (92.12, 76.24)            | (54.74, 27.44)             |

Table 4.1.4: A table of the expectation value and variance (Energy, Variance) of the local energy obatined with different Problem/Wavefunction parameters (N, $\alpha$ , Jn/Jf,  $\beta$ ,  $\omega$ , En/Ef). For explanation of abbreviations, see section 3.1.3. For all trials,  $10^6$  VMC calculations were performed and for the importance sampling methods, a timestep of  $\delta t = 0.1$  was used.

#### 4.2 Optimizations and differences

#### 4.2.1 Test cases

The results from finding the optimal parameters for  $\alpha$  and  $\beta$  for the different test cases are given in table 4.2.1.

| Test cases:            | $\omega = 0$    | 0.01             | $\omega =$   | 0.28              | $\omega =$   | : 1              |
|------------------------|-----------------|------------------|--------------|-------------------|--------------|------------------|
| Optimal parameters     | No Jast.        | Jast.            | No Jast.     | Jast.             | No Jast.     | Jast.            |
| $rac{lpha}{eta}$      | 0.0             | 0.9<br>0.07      | 0.6          | 1.0<br>0.25       | 0.8          | 1<br>0.42        |
| Energy (a.u.) Variance | 0.081<br>1.5e-3 | 0.074<br>1.27e-5 | 1.14<br>0.42 | 1.00022<br>9.9e-4 | 3.15<br>2.02 | 2.9999<br>2.7e-3 |

Table 4.2.1: The optimal parameters with and without Jastrow factor (Jast.).

- 4.2.2 Jastrow factor
- 4.2.3 Importance sampling
- 4.2.4 Timely differences between methods
- 4.3 Applications
- 4.3.1 Energies and variances
- 4.3.2 The virial theorem

#### 5 Conclusion

### References

- [1] Morten Hjorth-Jensen. Additional slides for monte carlo project. http://www.uio.no/.../montecarloaddition.pdf, 2014.
- [2] Morten Hjorth-Jensen. Computational Physics Lecture Notes Fall 2014. August 2014.
- [3] Jørgen Høgberget. Quantum monte-carlo studies of generalized many-body systems, June 2013.
- [4] M. Taut. Two electrons in an external oscillator potential: Particular analytic solutions of a coulomb correlation problem. *Phys. Rev. A*, 48:3561–3566, Nov 1993.

## A Reference to the questions posed in the project instructions

Since the format of this report does not correspond to the structure of the project instructions, a reference list over the posed questions and where to find the answer is given below.

| Section | Instruction                                                                                                                                | Reference                                                  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| a )     | Convince yourself that is simply $2\omega$ .<br>What is the total spin? Find arguments for why                                             | Section 2.1.2.3<br>Section 2.1.2.3                         |
| b )     | Perform a Variational Monte Carlo calculation                                                                                              | Sections $3.1$ and $4.1$                                   |
| c)      |                                                                                                                                            |                                                            |
| d)      |                                                                                                                                            |                                                            |
| e)      | Reproduce the unperturbed is switched off. Convince yourself for $N=6$ is $10\omega$ What is the expected total spin of the ground states? | Sections 3.1 and 4.1<br>Section 2.1.2.3<br>Section 2.1.2.3 |
| f)      |                                                                                                                                            |                                                            |
| g)      | Find closed-form expressions compare the results for both $N=2$ and $N=6$                                                                  | Section 2.1.2.4<br>Sections 3.2 and 4.2                    |

Table A.0.1: Reference list over the posed questions and where to find the answer.

# B Codes

All codes used in this exercise can be found at GitHub: https://github.com/vidarsko/Project3.

The class structure of the code is given in the bullet points below

- ullet TrialWavefunction
- $\bullet$  QuantumDots
- $\bullet$  Investigate

Througout this report, reference to different codes are made as footnotes together with the date at which they were run.