Math40003 Linear Algebra and Groups, Term 2 Unseen 5 (week 8)

- 1. Suppose $q, n \in \mathbb{N}$ and \mathbb{F}_q is a field with q elements.
 - (a) Find a formula (depending on n and q) for the number of bases v_1, \ldots, v_n of \mathbb{F}_q^n (consider choosing v_1, v_2, \ldots in turn).
 - (b) What is the order of $GL_n(\mathbb{F}_q)$, the group of all invertible $n \times n$ matrices over \mathbb{F}_q .

For the rows of A to be linearly independent, we can choose as the first row any non-zero vector in \mathbb{F}_q^n . For the $k+1^{th}$ rows, we need to exclude all vectors in the span of the first k rows. Assuming the first k rows r_1,\ldots,r_k are l.i., different choices of $\alpha_1,\ldots,\alpha_k\in\mathbb{F}_q$ yield different vectors $\alpha_1r_1+\cdots+\alpha_kr_k$. So there is a bijection between \mathbb{F}_q^k and $\mathrm{span}(r_1,\ldots,r_k)$. Any choice of vector from $\mathbb{F}_q^n\setminus\mathrm{span}(r_1,\ldots,r_k)$ is valid for r_{k+1} and no else. So there are q^n-q^k options for the k+1 vector. In conclusion, choosing n rows we have

$$(q^{n}-1)\cdot(q^{n}-q)\cdot\dots\cdot(q^{n}-q^{n-1})=\prod_{i=0}^{n-1}(q^{n}-q^{i}).$$

- (c) Suppose $0 \neq \alpha \in \mathbb{F}_q$. Show that the number of matrices in $GL_n(\mathbb{F}_q)$ with determinant α does not depend on the choice of α . When do these matrices form a subgroup of $GL_n(\mathbb{F}_q)$?
- (d) Find a formula (depending on n and q) for the order of $SL_n(\mathbb{F}_q)$, the group of all $n \times n$ matrices over \mathbb{F}_q with determinant 1.

For $k \in \mathbb{F}_q \setminus \{0\}$, let A_k be the set of $n \times n$ matrices of determinant k. So A_k are disjoint, $\bigcup_{i=1}^q A_i = GL_n(\mathbb{F}_q)$ and $A_1 = SL_n(\mathbb{F}_q)$. Let $f_j: A_1 \to A_k$ be the map defined such that f(M) is achieved by multiplying the first row of M by k. Let $g_j: A_k \to A_1$ be the map defined such that f(M) is achieved by multiplying the first row of M by k^{-1} . Then $f \circ g = Id_{A_k}$ and $g \circ f = Id_{A_1}$, so f_k is a bijection. Therefore $|A_i| = |A_j|$ for all $i, j \in \mathbb{F}_q \setminus \{0\}$. So

$$|A_i| = |GL_n(\mathbb{F}_q)|/|\mathbb{F}_q \setminus \{0\}| = \frac{\prod_{i=0}^{n-1} (q^n - q^i)}{q-1}.$$

2. Let (G, .) be a finite group and let $A, B \subseteq G$ be subsets. Prove that if |A| + |B| > |G| then G = AB where $AB = \{ a.b | a \in A, b \in B \}$

First notice that if |A| + |B| > |G|, then $A \cap B \neq \emptyset$. Notice that

$$g \in A * B \iff 1 \in g^{-1} \star A \star B \iff (g^{-1} \star A) \cap B^{-1} \neq \emptyset,$$

- where $B^{-1} = \{b^{-1}|b \in B\}$ and $g^{-1} \star A = \{g^{-1} * a | a \in A\}$. Notice also that $|g^{-1} * A| = |A|$ and $|B^{-1}| = |B|$, so $|g^{-1} * A| + |B^{-1}| > |G|$, therefore $(g^{-1} \star A) \cap B^{-1} \neq \emptyset$.
- 3. Let F be a finite field. Prove that every element of F is a sum of two squares, i.e., for every $a \in F$, there are $b_1, b_2 \in F$ such that $a = b_1^2 + b_2^2$. Is it true that every $n \in \mathbb{N}$ is a sum of two squares of \mathbb{N} ?
 - By Question 2, It suffices to show that $F^2 = \{a^2 | a \in F\}$ is of size > |F|/2. It was proved in Question Sheet 2, Q4, that every polynomial $x^2 a$ has at most 2 roots, there for the map $f: F \to F$ defined by $f(x) = x^2$ is $\leq 2 to 1$, i.e., for every $a \in F$, there are at most two b's such that f(b) = a. So $|(F^{\times})^2| \geq |F^{\times}|/2$. For 0, the only b such that f(b) = 0 is 0. So $|F^2| = |(F^{\times})^2| + 1 \geq |F^{\times}|/2 + 1$. Therefore, $|F^2| > |F|/2$.
- 4. Let X be a set and let $G \leq Sym(X)$ be a subgroup. G acts freely if $\forall x \in X$, $g, h \in G$: $g(x) = h(x) \Longrightarrow g = h$. G is transitive if $\forall x, y \in X$, $\exists g \in G$: g(x) = y. Prove that if G is transitive and acts freely, then |G| = |X|.
 - Fix some $x_0 \in X$ and let $\phi : G \to X$ be defined as $\phi(g) := g(x_0)$. Free action and transitivity give injectivity and surjectivity, respectively.