Analysis 4 - Lecture 3

28 January, 2022

Example: Let $K = \{z \in \mathbb{C} | |z| = 1\}$. Let \mathcal{A} be the algebra generated by $\iota: z \mapsto z$ and the constant functions. That is, $\mathcal{A} = \{\phi: z \mapsto \sum_{k=0}^n c_k z^k | c_k \in \mathbb{C}, n \in \mathbb{N} \cup \{0\}\}$. \mathcal{A} is an algebra that separates points of K and nowhere vanishes. \mathcal{A} is not dense in C(K). Let $f \in C(K)$, $f: z \mapsto \overline{z}$. We claim that $f \notin \overline{\mathcal{A}}$. If $P_n \in \mathcal{A}$ such that $P_n \to f$. Then, for all large n and for all $z \in K$, $|P_n(z) - \overline{z}| = |zP_n(z) - 1| < \frac{1}{2}$. Then, $\int_0^{2\pi} e^{i\theta} P_n(e^{i\theta}) d\theta = 0. \mid \int_0^{2\pi} (zP_n - 1) d\theta \mid = 2\pi \le \frac{1}{2}.2\pi = \pi.$ This is a contradiction. Therefore, \mathcal{A} is not dense in C(K). Let \mathcal{A} be an algebra in C(X). We say that \mathcal{A} is self adjoint if for any $f \in \mathcal{A}$, $\overline{f} \in \mathcal{A}$ where $\overline{f}(x) = \overline{f(x)}$ for all $x \in X$.

Proposition: If \mathcal{A} is an algebra in C(X) that separates points of X and nowhere vanishes, then $\overline{\mathcal{A}} = C(X)$ provided \mathcal{A} is self adjoint.

Proof. Let $f \in C(X)$. Then, there are two functions $f_r, f_s \in C_{\mathbb{R}}(X)$ such that $f = f_r + if_s$. We have $f_r = \frac{f + \overline{f}}{2}$ and $f_s = \frac{f - \overline{f}}{2}$. Since \mathcal{A} is a self adjoint algebra, for any $f \in \mathcal{A}$, $f_r, f_s \in \mathcal{A}$ and $f = f_r + if_s$. Let $\mathcal{A}_{\mathbb{R}} = \mathcal{A} \cap C_{\mathbb{R}}(X)$. Verify that $\mathcal{A}_{\mathbb{R}}$ is an algebra in $C_{\mathbb{R}}(X)$. Let $x, y \in X$ be distinct. Then, there exists $f \in \mathcal{A}$ such that $f(x) \neq f(y)$. Either $f_r(x) \neq f_r(y)$ or $f_s(x) \neq f_s(y)$. This implies that $\mathcal{A}_{\mathbb{R}}$ separates points of X. Let $x \in X$. Then, there exists $f \in \mathcal{A}$ such that $f(x) \neq 0$. This implies that $f_r(x) \neq 0$ or $f_s(x) \neq 0$. So, $\mathcal{A}_{\mathbb{R}}$ nowhere vanishes. So, $\overline{\mathcal{A}_{\mathbb{R}}} = C_{\mathbb{R}}(X)$. Given $f \in C(X)$ there exist f_n, g_n in $\mathcal{A}_{\mathbb{R}}$ such that $f_n \to f_r$ and $g_n \to f_s$. And, $f_n + ig_n$ converges to f. So, $\overline{\mathcal{A}} = C(X)$

Theorem: C(X) is separable.

Proof. X is separable. This implies that there is a subset $\{x_n\} \subseteq X$ such that $\overline{\{x_n\}} = X$. Let $f_n(x) = d(x_n, x)$ for all $x \in X$. Then, $f_n \in C(X)$. Let $\mathcal{A} = \{a + \sum_{k=1}^m a_{n_1, \dots, n_k} f_{n_1} \dots f_{n_k} | a, a_{n_1}, \dots, a_{n_k} \in \mathbb{C}\}$. \mathcal{A} is a self-adjoint algebra in C(X). Let $x, y \in X$ be distinct and let $d(x, y) = \delta > 0$. There exists x_n such that $d(x, x_n) < \frac{\delta}{2}$. $f_n(x) < \frac{\delta}{2}$. $\delta = d(x, y) \le d(x, x_n) + d(x_n, y)$. So, $\delta < \frac{\delta}{2} + f_n(y)$. So, $f_n(x) < \frac{\delta}{2} < f_n(y)$. \mathcal{A} separates points of X. It is easy to see \mathcal{A} nowhere vanishes. $\overline{\mathcal{A}} = C(X)$ Let $E = \{a + \sum a_{n_1, n_2, \dots, n_k} f_{n_1} \dots f_{n_k} | a, a_{n_1, \dots, n_k} \in \mathbb{Q} + i \mathbb{Q}\}$. Then, E is a dense set in \mathcal{A} is countable and dense in \mathcal{A} and hence also in C(X).

 $E \subseteq \mathbb{R}^n$ or \mathbb{C}^n is compact if and only if E is closed and bounded.

Let E be a collection of functions in X. We say that E is pointwise bounded if to each $x \in X$, there exists a constant $M_x > 0$ such that $|f(x)| \leqslant M_x$ for all $f \in E$. We say that E is equicontinuous if to each $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever $d(x,y) < \delta$ for all $f \in E$. **Exercise:** If $E \subseteq C(X)$ is such that \overline{E} is compact, then E is pointwise bounded and E is equicontinuous.

Theorem:(Arzèla-Arcoli) Let $E \subseteq C(X)$. Suppose that E is pointwise bounded and equicontinuous. Then, \overline{E} is compact.

Proof. X has a countable dense subset D. Let (f_n) be a sequence in E. Let $E \subseteq C(X)$ be pointwise bounded and quicontinuous. There exists a subsequence (f_{k_n}) of (f_n) such that $(f_{k_n}(x))$ converges for all $x \in D$. Given $\varepsilon > 0$ there exists $\delta > 0$ such that $d(x,y) < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{3}$ for all $f \in E$. $\{B(x_n,\delta)|x_n \in D\}$ is an open cover for X. Since X is compact, $X = \bigcup_{i=1}^m B(x_i,\delta)$ for $x_1,x_2,\ldots,x_m \in D$. We can find N such that $|f_{k_n}(x_i) - f_{k_m}(x_i)| < \frac{\varepsilon}{3}$ for $n,m \geq N$ and all i. Let $x \in X$ Then, there exists x_i such that $d(x,x_i) < \delta$. This implies that $|f_{k_n}(x) - f_{k_m}(x)| \le |f_{k_n}(x) - f_{k_n}(x_i)| + |f_{k_n}(x_i) - f_{k_m}(x_i)| + |f_{k_n}(x_i) - f_{k_m}(x_i)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$. That is, $\exists N$ such that $|f_{k_n}(x) - f_{k_m}(x_i)| < \varepsilon$ for all $n, m \geq N$ and for all x. So, (f_{k_n}) is Cauchy in C(X). Therefore, f_{k_n} converges in C(X). Thus, for any sequence in $E \subseteq C(X)$ that is pointwise bounded and equicontinuous, has a convergent subsequence.

Exercise: \overline{E} is compact.