Bioinformatics II Winter Term 2016/17

Chapter 4: Dimensionality Reduction

Jun.-Prof. Dr.-Ing. Thomas Schultz

URL: http://cg.cs.uni-bonn.de

E-Mail: schultz@cs.uni-bonn.de

Office: Friedrich-Ebert-Allee 144, 53113 Bonn

November 22, 2016

Dimensionality Reduction

Goal: Embed high-dimensional data into a low-dimensional space, in a way that important structure is preserved

We will cover four methods:

- PCA: Brief recap, you should already know this
- Kernel PCA: Deal with nonlinear structures
- MDS: Finds a low-dimensional embedding based on distances alone
- ISOMAP: Allows us to "unroll" nonlinear manifolds

Section 4.1: (Kernel) Principal Component Analysis

PCA – the general idea

 PCA finds an orthogonal basis that best represents a given data set.

The sum of squared distances from the x' axis is minimized.

PCA – the general idea

 PCA finds an orthogonal basis that best represents a given data set.

3D point set in standard basis

PCA finds a best approximating plane (again, in terms of $\Sigma_{distances}^2$)

Managing high-dimensional data

Example: Data base of face scans (3D geometry + texture)

- 10,000 points in each scan
- -x, y, z, R, G, B -6 numbers for each point
- Thus, each scan is a 10,000*6 = 60,000-dimensional vector!

Managing high-dimensional data

- How to find interesting axes is this 60,000dimensional space?
 - axes that measures age, gender, etc...
 - There is hope: the faces are likely to be governed by a small set of parameters (much fewer than 60,000...)

Goals of Principal Component Analysis

- Given input $\mathbf{x}_i \in \mathbb{R}^p$, i = 1, 2, ..., n, learn mapping from \mathbf{x} to $\mathbf{y} = \mathbf{U}_k^{\mathrm{T}}(\mathbf{x} \overline{\mathbf{x}})$
 - **–Approximation:** $U_k \in \mathbb{R}^{p \times k}$ with $k \leq p$
 - Select U_k such that the approximation error $\sum_i \| (I U_k U_k^T) (\mathbf{x}_i \overline{\mathbf{x}}) \|^2$ is minimal
 - ullet Select U_k so that the variance in the projected data remains maximal

– Decorrelation:

- Coefficients of y are uncorrelated
- If k = p, pure rotation, no approximation

Algorithm: PCA

- Input: $\mathbf{x}_i \in \mathbb{R}^p$, i = 1, 2, ..., n
- Output: $U_k \in \mathbb{R}^{p \times k}$ with $k \leq p$ such that $\mathbf{y} = U_k^{\mathrm{T}}(\mathbf{x} \overline{\mathbf{x}})$ with $\overline{\mathbf{x}} = \frac{1}{n} \sum_i \mathbf{x}_i$
- Algorithm:
 - **Center** the points, $\mathbf{z}_i = \mathbf{x}_i \bar{\mathbf{x}}$
 - Form $p \times n$ centered data matrix $\mathbf{Z} = [\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_n]$
 - Form $p \times p$ scatter matrix $S = ZZ^T$
 - Compute spectral decomposition $S = U\Lambda U^T$
 - Sort coefficients of Λ in decreasing order
 - Form U_k from k leading columns of U
- I assume you have seen the derivation previously₉

Principal Components

- Eigenvectors that correspond to big eigenvalues are the directions in which the data has strong components (= large variance).
- If the eigenvalues are more or less the same, there is no main direction.

There is no preferred direction.

S looks like this:

Any vector is an eigenvector

There is a clear preferred direction.

S looks like this:

$$egin{pmatrix} \lambda & & \ & U^T & \ & \mu \end{pmatrix}$$

 μ is close to zero, much smaller than $\lambda.$

Example: Biological Shape Analysis

- Data: CT images of 48 mouse mandibles
- Scientific question: Impact of factors such as evolutionary history, diet, or geography on skeleton shape

Linear Shape Spaces

- Align all shapes, compute a mean shape
- Express each shape as transformation of the mean
 - Shape vector: Concatenation of displacement vectors
- Perform PCA on shape vectors to identify principal modes of shape variation

Linear Shape Space: Example

Normal component: Color

Tangential component: Arrow glyph

Exploring Shape Spaces

Hermann et al.:
"A Visual Analytics
Approach to Study
Anatomic
Covariation."
PacificVis 2014

Group Analysis

Hermann et al.: "Accurate Interactive Visualization of Large Deformations and Variability in Biomedical Image Ensembles." IEEE SciVis 2015

Quiz: Interpreting PCA Result

What if *n*<*p*?

- Maximum rank of Z and S is min(n-1, p)
 - Linear dependence introduced by centering
 - It does not make sense to use k > n-1
- All eigenvectors of S are in the span of z_i:

$$\lambda_a \mathbf{u}_a = \mathbf{S} \mathbf{u}_a = \sum_i \mathbf{z}_i \mathbf{z}_i^T \mathbf{u}_a = \sum_i (\mathbf{z}_i^T \mathbf{u}_a) \mathbf{z}_i$$

$$\Rightarrow u_a = \sum_i \frac{\mathbf{z}_i^T \mathbf{u}_a}{\lambda_a} \mathbf{z}_i =: \sum_i \alpha_i^a \mathbf{z}_i$$

Efficient computation for *n*<*p*

- We can replace the $p \times p$ with an $n \times n$ eigenvalue problem
 - Based on $\mathbf{S}\mathbf{u} = \lambda \mathbf{u} \Leftrightarrow \mathbf{z}_i^{\mathrm{T}} \mathbf{S}\mathbf{u} = \lambda \mathbf{z}_i^{\mathrm{T}} \mathbf{u}$ for all i $\mathbf{z}_i^{\mathrm{T}} \mathbf{S}\mathbf{u}_a = \lambda_a \mathbf{z}_i^{\mathrm{T}} \mathbf{u}_a$ $\mathbf{z}_i^{\mathrm{T}} \sum_{l} \mathbf{z}_l \mathbf{z}_l^{\mathrm{T}} \sum_{j} \alpha_j^a \mathbf{z}_j = \lambda_a \mathbf{z}_i^{\mathrm{T}} \sum_{j} \alpha_j^a \mathbf{z}_j$ $\sum_{i,l} \alpha_j^a [\mathbf{z}_i^{\mathrm{T}} \mathbf{z}_l] [\mathbf{z}_l^{\mathrm{T}} \mathbf{z}_j] = \lambda_a \sum_{i} \alpha_j^a [\mathbf{z}_i^{\mathrm{T}} \mathbf{z}_j]$
 - With $n \times n$ centered inner product ("Gram") matrix $K_{ij}^c \coloneqq [\mathbf{z}_i^T \mathbf{z}_j]$: $(K^c)^2 \boldsymbol{\alpha}^a = \lambda_a K^c \boldsymbol{\alpha}^a \Rightarrow K^c \boldsymbol{\alpha}^a = \lambda_a \boldsymbol{\alpha}^a$

Proper Normalization and Projecting New Data

• Normalization: $\mathbf{u}_a^{\mathrm{T}}\mathbf{u}_a = 1$ translates into

$$\sum_{i,j} \alpha_i^a \alpha_j^a [\mathbf{z}_i^T \mathbf{z}_j] = (\mathbf{\alpha}^a)^T \mathbf{K}^c \mathbf{\alpha}^a$$
$$= \lambda_a (\mathbf{\alpha}^a)^T \mathbf{\alpha}^a = 1$$

– Therefore:

$$\|\mathbf{\alpha}^a\| = \frac{1}{\sqrt{\lambda_a}}$$

Projection of a new point x:

$$\mathbf{u}_a^T(\mathbf{x} - \bar{\mathbf{x}}) = \sum_i \alpha_i^a \, \mathbf{z}_i^T(\mathbf{x} - \bar{\mathbf{x}})$$

Preserving Nonlinear Structures

- PCA works well for linear structures
 - Straight lines, planes, etc.
- Can we preserve nonlinear / curved structure?
- Idea: Nonlinearly map data to a higherdimensional feature space, apply PCA there

Kernel Trick

- We reformulated PCA so that it only makes use of the data \mathbf{x}_i within scalar products
- To apply PCA in feature space, we do not explicitly need the feature map $\mathbf{x} \to \varphi(\mathbf{x})$, only a nonlinear kernel function $K(\mathbf{x}_i, \mathbf{x}_i) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_i)$
- K should produce positive definite matrices
- Widely used examples (here without proofs):
 - Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - Polynomial of power $p: K(\mathbf{x_i}, \mathbf{x_j}) = (1 + \mathbf{x_i}^\mathsf{T} \mathbf{x_j})^p$
 - Gaussian (RBF): $K(\mathbf{x}_i, \mathbf{x}_i) = e^{-\gamma \|\mathbf{x}_i \mathbf{x}_j\|^2}$

Centering in Feature Space

- We require the centered kernel matrix $K_{ij}^c = (\Phi_i \overline{\Phi})^T (\Phi_j \overline{\Phi})$, but evaluating the kernel function gives us $K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j) = \Phi_i^T \Phi_j$
 - Applying K to centered data \mathbf{z}_i is *not* equivalent to centering feature vectors Φ_i
- Centering can be performed as follows:

$$K_{ij}^{c} = (\Phi_{i} - \overline{\Phi})^{T} (\Phi_{j} - \overline{\Phi})$$
$$= \Phi_{i}^{T} \Phi_{j} - \overline{\Phi}^{T} \Phi_{j} - \Phi_{i}^{T} \overline{\Phi} + \overline{\Phi}^{T} \overline{\Phi}$$

$$- \overline{\Phi}^{\mathrm{T}} \Phi_j = \frac{1}{n} \sum_i \Phi_i^{\mathrm{T}} \Phi_j = \frac{1}{n} \sum_i K_{ij}$$

$$- \Phi_i^{\mathrm{T}} \overline{\Phi} = \frac{1}{n} \sum_j \Phi_i^{\mathrm{T}} \Phi_j = \frac{1}{n} \sum_j K_{ij}$$

$$- \overline{\Phi}^{\mathrm{T}} \overline{\Phi} = \frac{1}{n^2} \sum_{i,j} \Phi_i^{\mathrm{T}} \Phi_j = \frac{1}{n^2} \sum_{i,j} K_{ij}$$

Notation: Centering in Feature Space

- Let $\mathbf{1} \in \mathbb{R}^n$ denote the column vector in which each coefficient equals 1.
 - Then, $\mathbf{H}=\mathbf{I}-\frac{1}{n}\mathbf{1}\mathbf{1}^{\mathrm{T}}$ is a matrix with $\frac{n-1}{n}$ on the diagonal and $-\frac{1}{n}$ everywhere else
- Easy to verify that

$$K^c = HKH$$

Algorithm: Kernel PCA

- Input: $\mathbf{x}_i \in \mathbb{R}^p$, i = 1, 2, ..., n and kernel function $K: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$
- Output: $U_k \in \mathbb{R}^{p \times k}$ with $k \leq p$ and $D_k \in \mathbb{R}^{k \times k}$ such that $\mathbf{y} = D_k^{-1} U_k^\mathrm{T} H\left(\mathbf{k} \frac{1}{n} K \mathbf{1}\right)$ with $k_i = K(\mathbf{x}_i, \mathbf{x})$

Algorithm:

- Compute **kernel matrix** $K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$
- Center kernel matrix $K^c = HKH$
- Compute spectral decomposition $K^c = U\Lambda U^T$
 - Sort coefficients of Λ in decreasing order
- Form U_k from k leading columns of U
- Form D_k from top-left $k \times k$ block of $\sqrt{\Lambda}$

Kernel PCA: Advantages and Disadvantages

Advantages of Kernel PCA:

- Better reflects nonlinear structures
- Given suitable kernels, can be applied to more abstract objects or to unfold manifolds (see next sections)

Disadvantages of Kernel PCA:

 Less interpretable: Principal modes are no longer a fixed combination of input variables

 Unlike with linear PCA, it is not easy to find a vector that corresponds to given Kernel PCA coordinates ("pre-image problem")

Advantage / Disadvantage:

- Complexity grows with number of samples
- If needed, cluster as pre-process (e.g., k-means)

Example: Kernel PCA of Gene Expression Data

- Leukemia dataset with n=19, p=3051
- Kernel PCA with RBF kernel

Section 4.2: Multidimensional Scaling

Multidimensional scaling (MDS)

Multidimensional scaling (MDS)

- A dimensionality reduction technique
- Maps pairwise distances to coordinates
- Provides model of non-geometric data
- Useful for
 - visualizing high-dimensional data
 - preprocessing data before clustering

Example: Multidimensional scaling (MDS)

Example: map of the US

Given a list of cities...

Chicago		
Raleigh		
Boston		
Seattle		
San Francisco		
Austin		
Orlando		

Example: Multidimensional scaling (MDS)

Knowing only the distances between them...

	Chicago	Raleigh	Boston	Seattle	San Francisco	Austin	Orlando
Chicago	0						
Raleigh	641	0					
Boston	851	608	0				
Seattle	1733	2363	2488	0			
San Francisco	1855	2406	2696	684	0		
Austin	972	1167	1691	1764	1495	0	
Orlando	994	520	1105	2565	2458	1015	0

Example: Multidimensional scaling (MDS)

Result: Given only the distances between points, MDS finds suitable coordinates for each point, of the specified dimension

Example with non-Euclidean Dissimilarity Matrix

• Given: *street* distances between 16 German cities (according to a route planner)

	В	НВ	DD	D	EF	нн	Н	КІ	MD	MZ	М	Р	SB	SN	S	WI
Berlin (B)	0	392	193	559	303	289	286	353	156	580	585	36	722	211	633	570
Bremen (HB)	392	0	472	287	334	124	131	208	253	476	749	363	575	224	629	466
Dresden (DD)	193	472	0	615	218	500	367	542	232	496	465	211	638	400	510	486
Düsseldorf (D)	559	287	615	0	400	411	277	495	419	216	611	529	298	511	404	201
Erfurt (EF)	303	334	218	400	0	362	219	458	235	289	414	274	431	475	339	279
Hamburg (HH)	289	124	500	411	362	0	157	97	280	528	775	283	670	109	655	518
Hannover (H)	286	131	367	277	219	157	0	248	147	384	632	256	526	252	512	374
Kiel (KI)	353	208	542	495	458	97	248	0	376	624	872	348	766	175	752	614
Magdeburg (MD)	156	253	232	419	235	280	147	376	0	465	519	125	607	309	567	455
Mainz (MZ)	580	476	496	216	289	528	384	624	465	0	430	544	146	621	210	14
München (M)	585	749	465	611	414	775	632	872	519	430	0	555	487	757	232	424
Potsdam (P)	36	363	211	529	274	283	256	348	125	544	555	0	693	207	604	541
Saarbrücken (SB)	722	575	638	298	431	670	526	766	607	146	487	693	0	771	262	159
Schwerin (SN)	211	224	400	511	475	109	252	175	309	621	757	207	771	0	756	619
Stuttgart (S)	633	629	510	404	339	655	512	752	567	210	232	604	262	756	0	220
Wiesbaden (WI)	570	466	486	201	279	518	374	614	455	14	424	541	159	619	220	0

MDS: Non-Euclidean Example

• MDS result

MDS: Non-Euclidean Example

MDS result rotated and overlayed on a geographic map

Multidimensional scaling: Basic Concepts

Input

- Symmetric dissimilarity matrix, containing pair-wise dissimilarities $\delta_{ij} = \delta(x_i, x_j)$ between (p-dimensional) data samples x_1, \dots, x_n
- Desired dimensionality k (k < p, often k = 2,3)

Output

– Image of data in a Euclidean frame y_1, \ldots, y_n such that pair-wise distances $d_{ij} = d(y_i, y_j)$ are best approximation to original dissimilarities $\delta(x_i, x_j)$ for k dimensions

Embedding errors

- Take into account n(n-1)/2 errors between the individual distances
- Have to be invariant against rigid transformations (i.e. translation, rotation, mirroring)

Find
$$y_i \in \mathbb{R}^k$$
 such that $d(y_i, y_i) \approx \delta_{ij}$

MDS: What is a good approximation?

Possible error functionals ("Stress"):

$$J_{ee} = \frac{\sum_{i < j} (d_{ij} - \delta_{ij})^2}{\sum_{i < j} \delta_{ij}^2}$$

(punishes large absolute deviations)

$$J_{ff} = \sum_{i < j} \left(rac{d_{ij} - \delta_{ij}}{\delta_{ij}}
ight)^2$$

(punishes large relative deviations)

$$J_{ef} = rac{1}{\sum_{i < j} \delta_{ij}} \sum_{i < j} rac{(d_{ij} - \delta_{ij})^2}{\delta_{ij}}$$
 Compromise between J_{ee} and J_{ff}

(Commonly L2 distance measure $d_{ij} = ||y_i - y_j||_2$ is used here.)

MDS: What is a good approximation?

Example global vs. local

$$J_{ee} = \frac{\sum_{i < j} (d_{ij} - \delta_{ij})^2}{\sum_{i < j} \delta_{ij}^2}$$

$$J_{ff} = \sum_{i < j} \left(rac{d_{ij} - \delta_{ij}}{\delta_{ij}}
ight)^2$$

$$J_{ef} = \frac{1}{\sum_{i < j} \delta_{ij}} \sum_{i < j} \frac{(d_{ij} - \delta_{ij})^2}{\delta_{ij}}$$

Image from [Klock et al. 2000]

MDS: Solution by Iterative Methods

- Common solution: Iterative optimization (e.g. gradient descent)
- Requires derivatives of objective function with respect to embedded point positions:

$$\frac{\partial J_{ee}}{\partial y_k} = \frac{2}{\sum_{i < j} \delta_{ij}^2} \sum_{j \neq k} (d_{kj} - \delta_{kj}) \frac{y_k - y_j}{d_{kj}}$$

$$\frac{\partial J_{ff}}{\partial y_k} = 2 \sum_{j \neq k} \frac{d_{kj} - \delta_{kj}}{\delta_{kj}^2} \cdot \frac{y_k - y_j}{d_{kj}}$$

$$\frac{\partial J_{ef}}{\partial y_k} = \frac{2}{\sum_{i < j} \delta_{ij}} \sum_{j \neq k} \frac{d_{kj} - \delta_{kj}}{\delta_{kj}} \cdot \frac{y_k - y_j}{d_{kj}}$$

Metric MDS: Solution via Kernel PCA

• Assume dissimilarity matrix $\Delta = (\delta_{ij})$ results from points in an unknown feature space:

$$\{\Phi_i \in \mathbb{R}^q, i = 1, ..., n\}$$

• In this case:

$$\delta_{ij}^{2} = \|\Phi_{i} - \Phi_{j}\|^{2}$$

$$= \|\Phi_{i}\|^{2} + \|\Phi_{j}\|^{2} - 2\langle\Phi_{i}, \Phi_{j}\rangle$$

• Idea: If we can transform Δ into an inner product matrix, we can continue as in kernel PCA

Metric MDS: Reduction to Kernel PCA

- Inner product matrix of centered features Φ_i $\mathbf{K^c} = \left[\left\langle \Phi_i, \Phi_j \right\rangle \right]$
- Then, $\delta_{ij}^2 = K_{ii} + K_{jj} 2K_{ij}$ Since features are centered $\sum_i \Phi_i = 0$, we have that $\sum_i K_{ij} = 0$ and thus:

$$\frac{1}{N}\sum_{i}\delta_{ij}^{2} = \frac{1}{N}\sum_{i}K_{ii} + K_{jj} := \delta_{\oplus j}^{2}$$

$$\frac{1}{N}\sum_{j}\delta_{ij}^{2} = K_{ii} + \frac{1}{N}\sum_{j}K_{jj} := \delta_{i\oplus}^{2}$$

$$\frac{1}{N^{2}}\sum_{i}\sum_{j}\delta_{ij}^{2} = \frac{2}{N}\sum_{i}K_{ii} := \delta_{\oplus \oplus}^{2}$$

Transform dissimilarities to

$$K_{ij} = -\frac{1}{2} \left(\delta_{ij}^2 - \delta_{i\oplus}^2 - \delta_{\oplus j}^2 + \delta_{\oplus \oplus}^2 \right)$$

Metric MDS: Solution via Eigenvectors

- 1. Compute $K^c = -\frac{1}{2}HDH$ with $H = I \frac{1}{N}\mathbf{1}\mathbf{1}^T$
 - If Δ is metric, this defines K^c such that $K^c = [\langle \Phi_i, \Phi_j \rangle]$
- 2. Compute spectral decomposition of K^c
 - $K^{c} = U\Lambda U^{T}$

- 3. Lower dimensional embedding:
 - Want k-dimensional coordinates
 - U_k = first k columns of U
 - $\Lambda_k = k \times k \text{ submatrix of } \Lambda$
 - Desired coordinates = $U_k \Lambda_k^{1/2}$

Properties of MDS

- Effort independent of dimensionality
 - Distance matrix is all that matters
- Solution unique only up to rigid transformation and reflection
- Approaches:
 - Optimization-based: Works with all matrices and different error measures
 - Analogous to kernel PCA: Assumes underlying metric space, permits projection of new points (if you know distances to all existing ones)

Example: Full-Brain Tractography

Problem: Nerve fiber pathways present themselves as an impenetrable knot of curves. How to interact with them (e.g., make a selection) in an easy way?

Idea: It is much simpler to interact with 2D views! Can't we represent each streamline as a point in 2D image space, such that similar streamlines are placed nearby?

Linked 2D Views

Section 4.3: ISOMAP

Distances on Nonlinear Manifolds

- MDS allows us to use arbitrary distances
- On nonlinear manifolds, we should use geodesic distances (length of shortest connection on manifold), not Euclidean:

$$d(A,C) < d(A,B)$$

Idea: Estimating Geodesic Distance

 We are usually not given the manifold, only a set of discrete input points

Estimate geodesic distances:

- Use Euclidean distance for nearby points
- Connect distant points by short hops between nearby points, measure length of shortest path

ISOMAP Algorithm

- 1. Build a neighborhood graph (e.g., k-NN) that approximates the manifold structure
 - Make sure it's connected
 - Very similar to spectral clustering
- 2. For the resulting graph, compute all-pairs shortest paths
- 3. Perform metric MDS based on resulting distance matrix

ISOMAP: Example result

Summary: Dimensionality Reduction

- Dimensionality reduction projects highdimensional objects to low-dimensional space
 - PCA: Takes Euclidean input and finds linear projection that preserves maximum variance
 - Kernel PCA: Generalizes PCA to better preserve nonlinear structures
 - MDS: Can be applied even if original data does not have coordinates or if distances are non-Euclidean
 - ISOMAP: Combines MDS with distance measures on neighborhood graphs to approximate nonlinear manifolds