

1. Considere a sucessão (u_n) definida por $u_n=2n^2-n$ Em relação a uma certa função f, de domínio \mathbf{R}^+ , sabe-se que $\lim f\left(\frac{1}{u_n}\right)=+\infty$

Em qual das opções seguintes pode estar representada parte do gráfico da função f ?

Exame – 2021, Ép. especial

2. Na figura ao lado, está representada parte do gráfico de uma função g, de domínio $\mathbb{R}\setminus\{2\}$

A reta de equação x=2é uma assínto
ta vertical ao gráfico da função g

A que é igual $\lim g(v_n)$?

(D)
$$+\infty$$

Exame – 2021, 2.ª Fase

3. Seja (u_n) a sucessão definida por $u_n = 2 + \frac{1}{n}$ De uma certa função f, sabe-se que $\lim f(u_n) = +\infty$ Em qual das seguintes opções pode estar representada parte do gráfico da função f?

(A)

(B)

(C)

(D)

Teste Intermédio $12.^{\circ}$ ano -28.02.2013

- 4. Na figura ao lado, está representada, num referencial o.n. xOy, parte do gráfico de uma função f, de domínio]-1,3[Sabe-se que:
 - f(1) = -4
 - ulleta reta de equação x=1 é assíntota do gráfico de f
 - (x_n) é uma sucessão com termos em] -1,1[
 - $\lim(x_n) = 1$

Qual é o valor de $\lim (f(x_n))$?

$$(A) + \infty$$

(B)
$$-4$$

$$(C) -5$$

(D)
$$-6$$

Exame - 2012, 2.ª Fase

5. Na figura ao lado, está representada parte do gráfico de uma função h, de domínio \mathbb{R}

Seja (u_n) a sucessão de termo geral $u_n = h\left(4 - \frac{1000}{n}\right)$

Qual é o valor de $\lim(u_n)$?

$$(A) -\infty$$

Teste Intermédio $12.^{\circ}$ ano -15.03.2010

6. Na figura ao lado está representada parte do gráfico de uma função g, de domínio \mathbb{R} e contínua em $\mathbb{R} \setminus \{-2\}$.

As retas de equações x=-2 e y=1 são as únicas assíntotas do gráfico de g.

Seja (x_n) uma sucessão tal que $\lim_{n \to +\infty} g(x_n) = +\infty$.

Qual das expressões seguintes pode ser o termo geral da sucessão (x_n) ?

(A)
$$-2 + \frac{2}{n}$$
 (B) $-2 - \frac{1}{n}$

(B)
$$-2 - \frac{1}{n}$$

(C)
$$1 + \frac{1}{n}$$
 (D) $1 - \frac{1}{n}$

(D)
$$1 - \frac{1}{n}$$

Exame - 2008, 2.ª Fase

7. Na figura ao lado está representada parte do gráfico de uma função g, de domínio \mathbb{R} , contínua em $\mathbb{R} \setminus \{3\}$. As retas de equações x = 3 e y = -4são as únicas assínto
tas do gráfico de g.

Seja (x_n) uma sucessão tal que $\lim g(x_n) = +\infty$

Qual das expressões seguintes pode ser o termo geral da sucessão x_n ?

(B)
$$3 + \frac{1}{n}$$

(C)
$$-4 - \frac{1}{n}$$
 (D) $-4 + \frac{1}{n}$

(D)
$$-4 + \frac{1}{n}$$

Exame - 2001, Ép. Especial (cód. 435)

8. Na figura ao lado está representada parte da representação gráfica de uma função f, de domínio $\mathbb{R} \setminus \{2\}$.

As retas de equações $x=2,\,y=1$ e y=0 são assíntotas do gráfico de f.

Seja (x_n) a sucessão de termo geral

$$x_n = 2 - n^2$$

Indique o valor de $\lim f(x_n)$

(C)
$$-\infty$$

(D)
$$+\infty$$

Exame - 1999, 1.a fase - 1.a chamada (cód. 135)

9. Na figura ao lado está desenhada parte da representação gráfica de uma função f, cujo domínio é $\mathbb{R} \setminus \{1\}$.

A reta de equação x=1 é uma assíntota vertical do gráfico de f.

Considere a sucessão de termo geral $x_n = 1 + \frac{1}{n}$

Seja
$$u_n = f(x_n)$$

Qual das afirmações seguintes é verdadeira?

(B)
$$\lim u_n = +\infty$$

(C)
$$\lim u_n = 1$$

(**D**) Não existe $\lim u_n$

Exame - 1999, Prova modelo (cód. 135)

10. Na figura ao lado está parte da representação gráfica de uma função g de domínio $\mathbb R$ e contínua em $\mathbb R\setminus\{0\}.$

Considere a sucessão de termo geral

$$u_n = \frac{1}{n}$$

Indique o valor de $\lim_{n\to+\infty} g(u_n)$.

- **(A)** 0
- **(B)** 1
- **(C)** 2
- (D) $+\infty$

Exame – 1998, Prova modelo (cód. 135)