CWRU DSCI351-451: MidTermReview

04 October, 2018

Contents

7.1.0.1	Reading	g, Homeworks, Projects, SemProjects				
7.2 Readings:						
7.2.0.1	Syllabus	3				
7.2.0.2 setup for r-code chunks						
7.2.0.3 Midterm						
	7.2.0.3.1	Midterm is open book / open resource				
	7.2.0.3.2	Midterm Does Not Cover Foundations of Inference				
	7.2.0.3.3	Topics Covered In Class				
7.2.0.4	Midtern	n Concepts e. g. Open Data Science, Data Analysis, EDA, Visualiation				
7.2.0.5 R statistics programming language						
	7.2.0.5.1	But Excel, or mousey/mousey programs are not for data science				
	7.2.0.5.2	IDE (Integrated Development Environment)				
	7.2.0.5.3	Yet everything can be done at command line				
	7.2.0.5.4	Git Repositories for content versioning				
	7.2.0.5.5	Markdown languages				
7.2.0.6 Peng's R Programming (PRP) and Exploratory Dati Analysis (EDA)						
	7.2.0.6.1	Using R as a calculator				
	7.2.0.6.2	Inspecting variables and your workspace				
	7.2.0.6.3	Vectors, matrices and Arrays, List & Dataframes				
	7.2.0.6.4	Environments & Functions				
	7.2.0.6.5	Strings & Factors				
	7.2.0.6.6	Getting Data				
	7.2.0.6.7	Cleaning and Transforming (Tidying)				
	7.2.0.6.8	Exploring and Visualizing (EDA)				
7.2.0.7 So in DSCI						
7.2.0.8 R for Data Science (R4DS)						
	7.2.0.8.1	Writing R scripts and the R console				
	7.2.0.8.2	Viewing and Plotting Data				
	7.2.0.8.3	Managing R Projects				
	7.2.0.8.4	Generating Reports (Open Data Science)				
	7.2.0.8.5	Literate Programming (or Open/Reproducible Data Science) 8 a Data Analysis				
7.2.0.9 What is a Data Analysis						
	7.2.0.9.1	Steps in a Data Analysis				
	7.2.0.9.2	Open Intro Stats: OI-1 Intro to Data				
7.2.0.10 THE FOLLOWING TOPICS NOT ON MIDTERM: Inferential Statistics .						
	7.2.0.10.1	OI-3 Distributions of Random Variables				
	7.2.0.10.2	OI-4 Foundations of Inference (Not on Exam)				
	7.2.0.10.3	So Things to know (Not on Exam)				
	7.2.0.10.4	Conditions for xbar being nearly normal and SE being accurate (Not				
		on Exam)				

7.1.0.1 Reading, Homeworks, Projects, SemProjects

- Homework:
 - HW 4 release on Thursday October 12th
 - HW 4 Due Tuesday October 17 before class

7.2 Readings:

• 451 SemProjects:

_

7.2.0.1 Syllabus

7.2.0.2 setup for r-code chunks

• rmarkdown::render('1502-w06b-f-FrenchDSCI351-451-numerical-inference.Rmd', 'all')

```
options("digits" = 5)
options("digits.secs" = 3)
library(learningr)
library(tidyverse)
```

```
## -- Attaching packages ----- tidyverse 1.2.1 --
## v ggplot2 3.0.0
                v purrr
                        0.2.5
## v tibble 1.4.2
                v dplyr
                        0.7.6
## v tidyr
         0.8.1
                v stringr 1.3.1
## v readr
         1.1.1
                v forcats 0.3.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
               masks stats::lag()
```

7.2.0.3 Midterm

- Testing Concepts, OpenIntro Stats, and Learning R, Learning Rstudio
- Your Data Science Tool Chain
- Open and Reproducible Science
- Steps in Data Analysis
- Done as Rmd and Rscripts

7.2.0.3.1 Midterm is open book / open resource

- The midterm will be given as an Rmd
- You will work in the Rmd file
- Writing and doing Rcode chunks
- You have the resources of
- Your repository
- - R Help
- — Other online resources
- Open Data Science Approach
- — What can you accomplish

Day:Date	Foundation	Practicum	Reading	Due
w1a:Tu:8/28/18	ODS Tool Chain	R, Rstudio, Git		
w1b:Th:8/30/18	Setup ODS Tool Chain	Bash, Git, Twitter	PRP4-33	HW1
w2a:Tu:9/4/18	What is Data Sci- ence	OIS:Intro2R	PRP35-64	HW1 Due
w2b:Th:9/6/18	Data Analytic Style, Git	451SempProj, Git	PRP65-93, OI1-1.9	HW2
w3a:Tu:9/11/18*	Struct. of Data Analysis	ISLR:Intro2R, Loops	PRP94-116, OIS3	HW2 Due
w3b:Th:9/13/18*	OIS3 Intro to Data	GapMinder, Dplyr, Magrittr		
w4a:Tu:9/18/18	OIS3, Intro2Data part 2, Data	EDA: PET Degr.	EDA1-31	Proj1
w4b:Th:9/20/18	Hypothesis Testing	GGPlot2 Tutorial	EDA32-58	HW3
w5a:Tu:9/25/18	Distributions	SemProj RepOut1	R4DS1-3	HW3 Due
w5b:Th:9/27/18	Wickham DSCI in Tidyverse	SemProj RepOut1	R4DS4-6	SemProj1,
w6a:Tu:10/2/18	OIS Found. of Infer- ence	Inference	R4DS7-8	Proj1 Due
w6b:Th:10/4/18		Midterm Review	R4DS9-16 Wrangle	
w7a:Tu:10/9/18*	Summ. Stats & Vis.	Data Wrangling		
w7b:Th:10/11/18*	MIDTERM EXAM			HW4
w8a:Tu:10/16/18	Numerical Inference	Tidy Check Explore	OIS4	HW4 Due
w8b:Th:10/18/18	Algorithms, Models	Pairwise Corr. Plots	OIS5.1-4	Proj 2, HW5
Tu:10/23	CWRU FALL BREAK		R4DS17-21 Program	
w9b:Th:10/25/18	Categorical Infer	Predictive Analytics	OIS6.1,2	
w10a:Tu:10/30/18	SemProj	SemProj	OIS7	SemProj2 HW5 Du
w10b:Th:11/1/18	Lin. Regr.	Lin. Regr.	OIS8	Proj.2 due
w11a:Tu:11/6/18	Inf. for Regression	Curse of Dim.	OIS8	Proj 3
w11b:Th:11/8/18	Model Accuracy	Training Testing	ISLR3	HW6
w12a:Tu:11/13/18	Multiple Regr.	Mul. Regr. & Pred.	ISLR4	HW6 due
w12b:Th:11/15/18	Classification		ISLR6	
w13a:Tu:11/20/18	Classification	Clustering	ISLR5	Proj 3 due
Th:11/22/18	THANKSGIVING			Proj 4
w14a:Tu:11/27/18	Big Data	Hadoop		
w14b:Th:11/29/18	InfoSec	VerisDB		SemProj3
w15a:Tu:12/4/18	SemProj Re-			
1#L/TL-10/e/10	portOut3			D!4
w15b:Th:12/6/18	SemProj Re- portOut3			Proj4
	FINAL EXAM	Monday12/17,	Olin 313	SemProj4 due
		12:00-3:00pm		10,1 440

Figure 1: DSCI351/451 Syllabus

• Using all available resources

7.2.0.3.2 Midterm Does Not Cover Foundations of Inference

- Foundations of Inference (OIS-4)
- Inference for Numerical Data (OIS-5)
- Inference for Categorical Data (OIS-6)

7.2.0.3.3 Topics Covered In Class

• both Foundations and Practicum topics

7.2.0.4 Midterm Concepts e. g. Open Data Science, Data Analysis, EDA, Visualiation

- Git, Rstudio, R, R packages
- Graphics, Base and GGPlot2
- Data Assembly, Cleaning
- Exploratory Data Analysis
- Tidyverse: Pipes, dplyr, mutate etc.
- Study Design
- Sampling and Populations
- Other topics

Data Science Tool Chain

7.2.0.5 R statistics programming language

• > 8000 packages, free and open source software (FOSS)

Python

- Also a good statistical environment
- not as well developed for stats
- but better are substantial number crunching

There are many other stats softwares and languages

- SPSS, SAS, STATA,
 - But these are not useful for automated analysis

7.2.0.5.1 But Excel, or mousey/mousey programs are not for data science

- Can not record the sequential processing
 - i.e. the script of your analysis
- don't lead to reproducible and open science
- can't distribute code, data and analysis and report

7.2.0.5.2 IDE (Integrated Development Environment)

- Comfortable environment for getting going
- Rstudio for R,
- Spyder or Eclipse with PyDev for Python

7.2.0.5.3 Yet everything can be done at command line

- This enables automation
- And large scale analysis
- Using scripting (bash scripting)
- Simple automation

7.2.0.5.4 Git Repositories for content versioning

- Can pursue branches and revert to earlier versions
- Enables collaboration
- Robust code review
- Fork and develop in a community
- IDEs support Git Versioning

7.2.0.5.5 Markdown languages

- Enable integrated reports, code, data in repositories
- RMarkdown2 for R
- iPython Notebooks for Python
- And Report can autoupdate with a simple re-compile

Direction towards interactive data science

7.2.0.6 Peng's R Programming (PRP) and Exploratory Dati Analysis (EDA)

7.2.0.6.1 Using R as a calculator

- Mathematical operations and vectors
- Assigning variables
- Special numbers
- Logical vectors

7.2.0.6.2 Inspecting variables and your workspace

- Classes
- Different types of numbers
- Other common classes
- Checking and changing classes
- Examining variables
- The workspace

7.2.0.6.3 Vectors, matrices and Arrays, List & Dataframes

- Vectors
- Matrices & Arrays
- Lists
- Data Frames
- — Creating Data Frames
- - Indexing Data Frames
- Basic Data Frame Manipulation

7.2.0.6.4 Environments & Functions

- Environments
- Functions
- — Creating and Calling Functions
- — Passing Functions to and from Other Functions
- - Variable Scope

7.2.0.6.5 Strings & Factors

- Strings
- — Constructing and Printing Strings
- - Formatting Numbers
- Special Characters
- - Changing Case
- – Extracting Substrings
- – Splitting Strings
- - File Paths
- Factors
- — Creating Factors
- - Changing Factor Levels
- - Dropping Factor Levels
- - Ordered Factors
- — Converting Continuous Variables to Categorical
- — Converting Categorical Variables to Continuous
- — Generating Factor Levels
- – Combining Factors

7.2.0.6.6 Getting Data

- Built-in Datasets
- Reading Text Files
- — CSV and Tab-Delimited Files
- — Unstructured Text Files
- XML and HTML Files
- - JSON and YAML Files
- Reading Binary Files
- Web Data
- - Sites with an API
- - Scraping Web Pages

7.2.0.6.7 Cleaning and Transforming (Tidying)

- Cleaning Strings
- Manipulating Data Frames
- - Adding and Replacing Columns
- — Dealing with Missing Values
- Converting Between Wide and Long Form
- - Using SQL
- Sorting

7.2.0.6.8 Exploring and Visualizing (EDA)

- Summary Statistics
- The Three Plotting Systems
- Take 1: base Graphics
- - (We Ignore)Take 2: lattice Graphics
- - Take 3: ggplot2 Graphics
- Scatterplots
- Line Plots
- Histograms
- Box Plots
- Bar Charts
- Other Plotting Packages and Systems

7.2.0.7 So in DSCI

- Your learning coding
- statistical concepts, tools, and approaches
- open data science methods
- open collaboration and learning approaches

7.2.0.8 R for Data Science (R4DS)

7.2.0.8.1 Writing R scripts and the R console

- Moving around RStudio
 - Features of the R console
 - Features of the source editor

7.2.0.8.2 Viewing and Plotting Data

- Object Browser
- Plotting
- Plotting with Manipulate Package

7.2.0.8.3 Managing R Projects

- R Projects
- Version Control with Git

7.2.0.8.4 Generating Reports (Open Data Science)

- R markdown
- Code Chunks
- LaTeX

7.2.0.8.5 Literate Programming (or Open/Reproducible Data Science)

Finally, we note that the interweaving of code and text (often referred to as literate programming) may serve two purposes.

- The first is to generate a data analysis report by executing code to produce the result.
- The second is to document the code itself, for example,
- — by describing the purpose of a function and all its arguments.

The latter purpose will be discussed with the Roxygen2 package for code documentation.

7.2.0.9 What is a Data Analysis

7.2.0.9.1 Steps in a Data Analysis

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data (Open/Available Data first for pilot study)
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

7.2.0.9.2 Open Intro Stats: OI-1 Intro to Data

- Data basics
- Overview of data collection principles
- Observational studies and sampling strategies
- Experiments
- Examining numerical data
- Considering categorical data

7.2.0.10 THE FOLLOWING TOPICS NOT ON MIDTERM: Inferential Statistics

7.2.0.10.1 OI-3 Distributions of Random Variables

- Normal distribution
- Evaluating the normal approximation
- Geometric distribution
- Binomial distribution

7.2.0.10.2 OI-4 Foundations of Inference (Not on Exam)

- Variability in estimates
- Confidence intervals
- Hypothesis intervals
- Examining the central limit theorem
- Inference for other estimators
- Sample size and power
- Statistical vs. practical significance

7.2.0.10.3 So Things to know (Not on Exam)

- Z values (# of sd's away from mean)
- zstar values
- normal probability plots
- How to form a hypothesis for hypothesis testing
- p values
- Type I and II errors
- alpha and beta values
- census vs. sampling
- observational studies, controlled studies
- prospective studies and retrospective studies
- IQRs interquartile ranks
- SE (standard error of an estimate)
- SE of the sample mean
- population values vs. point estimates: mu vs xbar
- Confidence Intervals, 95% CIs

7.2.0.10.4 Conditions for xbar being nearly normal and SE being accurate (Not on Exam)

Important conditions to help ensure the sampling distribution of x is nearly normal and the estimate of SE sufficiently accurate:

- The sample observations are independent.
- The sample size is large: n = 30 (or n > 30) is a good rule of thumb.
- The distribution of sample observations is not strongly skewed.

Additionally, the larger the sample size, - the more lenient we can be with the sample's skew.