Zusammenfassung

 ${\it Maschinelles \ Lernen} \\ {\it WS \ 19/20}$

November 27, 2019

Grundlagen

1.1 Lineare Algebra

1.1.1 Skalarprodukt

- Vektoren $x, y \in \mathbb{R}^n$: $x \circ y = \sum_{i=1}^n x_i \cdot y_i = x^T y$ $-\begin{bmatrix} 1\\2 \end{bmatrix} \circ \begin{bmatrix} 3\\4 \end{bmatrix} = 1 \cdot 3 + 2 \cdot 4 = 11$

1.1.2 Vektornorm

 $f: \mathbb{R}^n \to \mathbb{R}$ mit

- $f(x) = 0 \Rightarrow x = 0$
- $f(x+y) \le f(x) + f(y)$ (Dreiecksgleichung)
- $f(\alpha x) = |\alpha| f(x)$

- L_1 -Norm: $||x||_1 = \sum_i |x_i|$ - L_2 -Norm: $||x||_2 = \sqrt{\sum_i x_i^2}$ (euklidische Norm)

Matrizen 1.1.3

-
$$m$$
 Zeilen und n $Spalten$ $\mathbf{A} = \begin{bmatrix} A_{11} & \dots & A_{1n} \\ A_{m1} & \dots & A_{mn} \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$

$$- \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \cdot \begin{bmatrix} g & h \\ i & j \\ k & l \end{bmatrix} = \begin{bmatrix} ag + bi + ck & ah + bj + cl \\ dg + ei + fk & dh + ej + fl \end{bmatrix}, I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- $A^{-1}A = I$ (Matrizen mit linear abhängigen Zeilen oder Spalten (niedriger Rang) sind nicht invertierbar)

Hyperebene

- $\mathbf{x} \in \mathbb{R}^d$ erfüllen Gleichung $w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d = 0 \ (w_0 + w^T x_d = 0)$

- d = 1: Skalar $(w_0 + w_1x_1)$, d = 2: Gerade $(w_0 + w_1x_1 + w_2x_2)$, d = 3: Ebene

- Für einen Punkt x entscheidet das Vorzeichen $sgn(w_0 + w^T x) \in \{-1, 0, 1\}$ auf welcher Seite der Hyperebene er liegt (bzw. ob er auf ihr liegt)

2

1.2 **Analysis**

1.2.1 Kettenregel

- Wenn z von y und y von x abhängt, dann gilt: $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$ $f(x) = g(h(x)) = \frac{1}{2} \cdot (x_1 x_2)^2 \rightarrow g(x) = \frac{1}{2} x^2$ und $h(x) = x_1 x_2$ $\frac{df}{dx_2} = \frac{dg}{dh} \frac{dh}{dx^2} = h(x)(-1) = -(x_1 x_2) = x_2 x_1$

Partielle Ableitung

$$f(x) = 2x_1^3 - 5x_2^2 + 3$$
, $\frac{df}{dx_1} = 6x_1^2$, $\frac{df}{dx_2} = -10x_2$

1.2.3 Gradient

$$\nabla f = \begin{bmatrix} \frac{df}{dx_1} \\ \vdots \\ \frac{df}{dx_n} \end{bmatrix}, f(x) = 2x_1^3 - 5x_2^2 + 3, \nabla f = \begin{bmatrix} 6x_1^2 \\ -10x_2 \end{bmatrix}$$

1.3 Was ist maschinelles Lernen

1.3.1Paradigmenwechsel

Es ist schwierig, den entsprechenden Programmcode manuell zu schreiben, daher wird ein anderes Paradigma verwendet:

Traditionelle Programmierung:

Drei verschiedene Lernmethoden

- Überwachtes Lernen (Supervised Learning)
- Unüberwachtes Lernen (Unsupervised Learning)
- Bestärkendes Lernen (Reinforcement Learning)

1.4 Überwachtes Lernen

- Ziel: finden einer Funktion $f:X\to Y$ wobei X auch Features / Prädiktoren und Y auch Responses genannt werden
- $X = \mathbb{R}^d$ (d-dimensionaler Vektorraum) mit $d \in \mathbb{N}$
- Eine perfekte Abbildung ist nicht möglich, es treten reduzierbare Fehler (z.B. durch eine bessere Funktion f) und nicht reduzierbare Fehler (z.B. Messfehler in Eingabedaten) auf
 - Vorhersage: y = f(x) optimieren wobei f auch Blackbox sein kann
 - Inferenz: Interpretierbarkeit von f steht im Vordergrund (Welche Prädiktoren sind für welche Response verwantwortlich)
 - Parametrische Methoden: Annahme einer parametrisierten Struktur von f dessen Parameter mit Hilfe von Daten bestimmt werden
 - ullet Nicht-parametrische Methoden: Keine Annahme einer Struktur von f sondern möglichst direkte Definition mit Hilfe von Daten
- Menge X und Y bekannt, genaue Abbildung f kann aber nur anhand von Beispielen $D=\{(x^i,y^i)|x^i\in X,y^i\in Y,1\leq i\leq n\}$ (Trainingsdatensatz bzw. gelabelte Daten) erahnt werden

1.4.1 Beispiel Klassifikation

- Wenn Y diskrete Menge $\{C_1,...,C_k\}$ für $k\in\mathbb{N}$ dann handelt es sich um ein Klassifikationsproblem, $C_1,...,C_k$ sind dann Klassen / Kategorien
- |Y| = 2 (Binäre Klassifikation) mit $f : \mathbb{R} \to \{\text{angenehm}, \text{unangenehm}\}$ (Temperaturklassifikation)
- |Y| = 5 (*Mehrklassen*-Klassifikation) mit $f : \mathbb{R} \to \{\text{frostig, kalt, angenehm, warm, heiß} \}$

1.4.2 Beispiel Regression

- Wenn Ykontinuierliche Menge, d.h. $Y\subseteq \mathbb{R},$ dann handelt es sich um ein Regressionsproblem
- Interesse an quantitativen Aussagen

- Ausgabemenge Y kann auch mehrdimensional sein (z.B. {gut, schlecht} × {günstig, normal, teuer})

1.5 Unüberwachtes Lernen

- Mehrwert erhalten ohne Zuhilfenahme von gelabelten Daten
- Man geht von Menge an Daten $D=\{x^i|x^i\in X, 1\leq i\leq n\}$ aus und versucht mehr über Beschaffenheit von X herauszufinden
- z.B. Verteilung von X bei Sprachmodellen, Dimensions reduktion zur Verbesserung von überwachten Lernverfahren

1.6 Datenvisualisierung

Abbildung 6: Beispiel eines Liniendiagramms.

Abbildung 7: Beispiel eines Balkendiagramms.

Abbildung 8: Beispiel eines Histogramms – eines speziellen Balkendiagramms.

Abbildung 9: Beispiel eines Streudiagramms.

1.7 Datenvorverarbeitung

Bevor ein Modell erstellt und trainiert werden kann, müssen Daten durch

- Auswahl: Nur für den Anwendungsfall relevante Daten verwenden
- \bullet Aufbereitung
 - Dateiformat (Tabellen, BigData)
 - Bereinigung von unvollständigen oder ungültigen Daten
 - Repräsentative Auswahl bei langer Laufzeit / großem Speicheraufwand
- Transformation
 - Features in geeigneten Wertebereich bringen ([0, 1])
 - Zerlegen in sinnvolle Features
 - Aggregation mehrerer Features

Lineare Regression

Lineare Regression im Eindimensionalen 2.1

- $f: \mathbb{R} \to \mathbb{R}$ mit $f_w(x) = w_1 x + w_0$
- $w = (w_0, w_1)^T \in \mathbb{R}^2$ sind die Parameter des Modells

- Wie mit Daten $D = \{(x^i, y^i) \in \mathbb{R}^2 | 1 \le i \le n\}$ die besten Parameter von fbestimmen?

2.1.1 Lösungsverfahren

- Quadratischen Fehler (Residual Sum of Squares) mit $RSS(w) = \sum_{i=1}^{n} (y^i - f_w(x^i))^2$ bestimmen

- Zur besseren Vergleichbarkeit verwendet man oft die normalisierte Variante
- Mean Squared Error: $MSE(w) = \frac{1}{n} \cdot RSS(w)$ (n = Anzahl Trainingsdaten) Die beste Funktion durch Minimierung des Fehlers finden $\Rightarrow w^* = \arg\min E(w) = \arg\min \frac{1}{2} \cdot \sum_{i=1}^{n} (y^i f_w(x^i))^2$
 - \bullet Ableitung von E(w) gleich Null setzen und Gleichungssystem lösen

•
$$\nabla E(w) = \begin{bmatrix} \frac{dE(w)}{dw_0} \\ \frac{dE(w)}{dw_1} \end{bmatrix} = 0$$

$$\frac{dE(w)}{dw_0} = -\sum_{i=1}^n y^i + w_1 \cdot \sum_{i=1}^n x^i + n \cdot w_0$$

$$\frac{dE(w)}{dw_1} = -\sum_{i=1}^n x^i y^i + w_1 \cdot \sum_{i=1}^n x^i x^i + w_0 \cdot \sum_{i=1}^n x^i$$

• Gleichungssystem mit zwei Gleichungen und zwei Unbekannten lösbar, aber numerisch ungenau bei großen Matrizen

7

2.1.2 Gradientenabstiegsverfahren

Abbildung 5: Gradientenabstiegsverfahren auf f(x) = x(x-2)

- Iterativ einem Bruchteil der negativen Ableitung: $-\eta f'(x) = \eta \cdot (2-2x)$ folgen
- Lernrate η hat direkten Einfluss auf Konvergenz (zu klein \Rightarrow viele Schritte, zu groß \Rightarrow Oszillation)

$$\begin{array}{lll} w0 = 0\,, & w1 = 0 \\ for & (x, y) & in & D \\ dw0 += -y\, +\, w1*x\, +\, w0 \\ dw1 += -xy\, +\, w1*x*x\, +\, w0*x \\ end & for \\ w0 += -eta*dw0 \\ w1 += -eta*dw1 \end{array}$$

2.2 Mehrdimensionale Lineare Regression

- $X = \mathbb{R}^d$ und $f : \mathbb{R}^d \to \mathbb{R}$ sowie $f_w(x) = \sum_{i=1}^d w_i x_i + w_0$ mit Parametern $w = (w_0, w_1, ..., w_d)^T \in \mathbb{R}^{d+1}$ - Kompaktere Schreibweise mit $x_0 = 1$: $f_w(x) = \sum_{i=1}^d w_i x_i + w_0 = w^T x$

- Im Mehrdimensionalen wird eine Hyperebene, im dreidimensionalen eine Ebene, im Raum so positioniert, dass der Abstand zu den Datenpunkten minimiert wird

- Angepasste Fehlermetrik
$$E(w) = \frac{1}{2} \cdot \sum_{i=1}^{n} (y^i - f(x^i))^2$$
 mit $\nabla E(w) = \begin{bmatrix} \frac{dE(w)}{dw_0} \\ \frac{dE(w)}{dw_1} \\ \dots \\ \frac{dE(w)}{dw_d} \end{bmatrix}$

$$\begin{array}{l} dw \, = \, 0 \\ for \, (x, \, y) \ in \, D \\ dw \, + = \, -(y \, - \, f(x) \, * \, gradF(x)) \\ end \, for \\ w \, + = \, -eta * dw \end{array}$$

wobei grad
F(x) =
$$\nabla f(x) = \begin{bmatrix} 1 \\ x_1 \\ \dots \\ x_d \end{bmatrix}$$

Abbildung 9: Gradientenabstiegsverfahren im mehrdimensionalen Raum bei der Funktion $f(\mathbf{x}) = \mathbf{x}_1^2 + \mathbf{x}_2^2$.

2.3 Genauigkeit

- Wie gut ist das durch das Gradientenabstiegsverfahren gefundene Modell?
- \Rightarrow Quadratischer Fehler RSS oder mittlerer quadratischer Fehler MSE
- Letzterer ist unabhängig von der Anzahl an Trainingsdaten allerdings gibt es keine allgemein gültige Skala da diese vom Wertebereich der y-Werte abhängt

2.3.1 R^2 Statistik

- Definiert über den quadratischen Gesamtfehler $TSS = \sum_{i=1}^n (y^i \bar{y})^2$ $\bar{y} = \frac{1}{n} \cdot \sum_{i=1}^n y^i \Rightarrow R^2(w) = \frac{TSS RSS(w)}{TSS} = 1 \frac{RSS(w)}{TSS}$ TSS misst die komplette Varianz in den Ausgabedaten y^i
- TSS-RSS(w) misst die durch das Modell mit Parametern w erklärte Varianz
- R^2 misst die komplette Varianz des Modells und ist $\in [0,1]$
 - \bullet R^2 nahe 1 zeugt von einem passenden Model das die Daten gut erklärt

- \mathbb{R}^2 nahe 0 bedeutet, dass das Modell die Daten schlecht erklärt
- R^2 ist unabhängig von Anzahl an Trainingsdaten UND dem Wertebereich Allgemeine Aussage ab welchem R^2 -Wert das Modell gut ist, ist nicht möglich. Hängt vom Anwendungsfall (Medizin / Physik) ab

${\bf Interpretier barke it}$ 2.4