Herbst 12 Themennummer 2 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Lösen Sie die Differentialgleichung

$$y'(x) = \frac{3x^2 + 4x + 2}{2(y(x) - 1)}, \quad y(0) = -1$$

und zeigen Sie, dass die Lösung für alle $x \geq 0$ existiert.

(b) Lösen Sie die Differentialgleichung

$$y'(x) = 2y(x)^2 + xy(x)^2, \quad y(0) = 1,$$

bestimmen Sie das maximale Existenzintervall I, alle lokalen Extrema der Lösung y auf I und klassifizieren Sie diese nach Maxima und Minima.

Lösungsvorschlag:

a) Die vorliegende Differentialgleichung ist trennbar; Umstellen liefert $2(y(x)-1)y'(x)=3x^2+4x+2$. Integration führt auf $(y(x)-1)^2-4=x^3+2x^2+2x$, also auf $y(x)=1-\sqrt{x^3+2x^2+2x+4}$, wobei wir ein negatives Vorzeichen für die Wurzel wählen, um die Anfangsbedingung zu erfüllen.

Für $x \ge 0$ ist der Radikand selbst strikt positiv und die Wurzel daher wohldefiniert und differenzierbar, weshalb die Lösung für $x \ge 0$ existiert.

(b) Die rechte Seite lässt sich zu $(2+x)y(x)^2$ umformen und ist polynomiell, also lokal lipschitzstetig bezüglich y. Weil die Nulllösung eine Lösung der Differentialgleichung ist, die aber die Anfangsbedingung nicht erfüllt, ist $y(x) \neq 0$ für alle $x \in I$. Insbesondere wechselt y das Vorzeichen nicht, bleibt also durch die Anfangsbedingung strikt positiv, und auch $y(x)^2$ verschwindet nicht, darf also dividiert werden.

Damit ist die Gleichung wieder trennbar und äquivalent zu $\frac{y'(x)}{y(x)^2} = 2 + x$. Integration führt auf $1 - \frac{1}{y(x)} = 2x + \frac{x^2}{2}$ und schließlich auf $y(x) = -\frac{1}{\frac{x^2}{2} + 2x - 1}$.

Die Lösung existiert für alle $x \in \mathbb{R}$ für die der Nenner nicht verschwindet, also für $x \neq -2 \pm \sqrt{6}$. Das maximale Intervall, das keinen dieser beiden Punkte, aber die 0 enthält, ist $I =]-2-\sqrt{6}, -2+\sqrt{6}[$, da $\sqrt{6} > \sqrt{4} = 2$ ist.

Lokale Extrema von differenzierbaren Funktionen auf offenen Intervallen sind Nullstellen der Ableitung. Diese verschwindet wegen $y(x) \neq 0$ genau für $x = -2 \in I$. Die zweite Ableitung lautet $y''(x) = 4y(x)y'(x) + 2xy(x)y'(x) + y(x)^2$. Einsetzen von x = -2 führt wegen y'(-2) = 0 auf $y''(-2) = y(-2)^2 > 0$. (Alternativ kann man direkt ablesen, dass $x < -2 \implies y'(x) < 0; x > -2 \implies y'(x) > 0$ gilt.) Damit handelt es sich um ein lokales Minimum.

Alternativ kann man den Nenner von y untersuchen und das streng monotone Wachstum von $t\mapsto -\frac{1}{t}$ verwenden.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$