Examen « apprentissage automatique » -Session 1

6 mai 2019 - Durée 2h - Documents autorisés

Exercice 1 (8 points)

y∖x	0	1	2	3	4	5	6	
8	ı	-	-	-	-	-	-	
7	-	+	+	+	+	+	_	
6	-	-	-	-	-	+	-	
5	-	-	-	-	- +		-	
4	-	-	-	+	-	-	-	
3	-	-	+	-	-	-	-	
2	-	+	-	-	-	-	-	
1	-	+	+	+	+	+	-	
0	-	-	-	-	-	-	-	

Table 1

Soit Z l'ensemble d'exemples de la Table 1. Z est utilisé pour un apprentissage avec un réseau de neurones. Les exemples ont 2 attributs réels x et y, et une classe d'appartenance valant + ou -. Chaque colonne correspond à une valeur de x et chaque ligne à une valeur de y.

Pour les 2 cas ci-dessous, donner par ordre d'importance décroissante :

- sur la feuille jointe, le dessin des droites caractéristiques des unités cachées.
- sur la copie, les inéquations des demi-plans caractéristiques.
- sur la copie, le réseau complet avec les poids de toutes les connexions.

Cas Z 2 : On traite l'ensemble Z avec un réseau de neurones avec <u>deux</u> couches cachées, la première composée de M neurones. M assez grand pour que le réseau fasse 0 erreur. (4 pts)

Cas Z 1 : On traite l'ensemble Z avec un réseau de neurones avec <u>une</u> couche cachée composée de N neurones. N assez grand pour que le réseau fasse 0 erreur. (4 pts)

Exercice 2 (12 points)

Soit A l'ensemble total des exemples, et soient B, C, D, E les 4 ensembles d'apprentissage de la table 2. Les exemples ont 2 attributs réels x et y, et une classe d'appartenance valant + ou -. Chaque colonne correspond à une valeur de x et chaque ligne à une valeur de y.

A					В						С						
y∖x	0	1	2	3	4	y∖x	0	1	2	3	4	y∖x	0	1	2	3	4
4	+	+	+	+	-	4				+		4	+				
3	+	+	-	-	+	3		+		-		3			-		
2	-	-	-	+	+	2					+	2					+
1	-	-	+	+	+	1	-		+			1		-			
0	-	+	+	+	+	0						0				+	
					D						E						
y∖x	0	1	2	3	4	y∖x	0	1	2	3	4	y∖x	0	1	2	3	4
4						4			+		-	4				+	-
3						3	+				+	3		+	-		+
2						2	-		-	+		2	-				
1						1				+		1		-			
0						0	-					0		+			

Table 2

Pour chaque ensemble d'apprentissage B, C, D, E:

1° Construire un réseau de neurones ayant x et y en entrées, la classe d'appartenance en sortie (1 pour + et 0 pour -) et 2 unités cachées exactement. (2 points).

Pour une unité du réseau, on précisera l'inéquation du demi-plan permettant de classifier les exemples + et -.

On précisera les poids de chaque connexion et le biais.

Sur la feuille jointe, on dessinera les droites caractéristiques des unités cachées.

2° Tester le réseau sur l'ensemble total A. (1 point).