Number-theoretical theorems in LEAN

Ke Yu, Xiang Li

Imperial College London University of Cambridge

16th February 2023

Outline

Euler's Totient Theorem

2 Prime Number Theorem

Euler's Totient Theorem

The Euler function $\phi(n)$ is defined as the number of natural numbers not exceeding n which are coprime with n, and we have $\phi(1) = 1$.

Theorem (Euler's theorem)

Let n > 1 be a natural number, and let $a \in \mathbb{N}$ such that n and a are coprime. Then $a^{\phi(n)} - 1 = 0 \mod n$.

Proof

Proof.

Using the ring \mathbb{Z}_n , for an integer i, we denote the coset of i in \mathbb{Z}_n by [i]. Then, the problem changes to proving $[a^{\phi(n)}] = [1]$.

Let $1 \leqslant k_1, k_2, ..., k_{\phi(n)} < n$ be all numbers coprime with n and list the corresponding elements of ring \mathbb{Z}_n : $[k_1], [k_2], ..., [k_{\phi(n)}]$. We claim that $[k_1 \cdot a], [k_2 \cdot a], ..., [k_{\phi(n)} \cdot a]$ are the same elements of ring \mathbb{Z}_n , possibly in a different order.

Then,

$$[k_1] \cdot [k_2] \cdot \dots \cdot [k_{\phi(n)}] = [k_1 \cdot a] \cdot [k_2 \cdot a] \cdot \dots \cdot [k_{\phi(n)} \cdot a]$$
$$= [k_1] \cdot [k_2] \cdot \dots \cdot [k_{\phi(n)}] \cdot [a]^{\phi(n)}.$$

Thus,

$$\lceil a^{\phi(n)} \rceil = \lceil 1 \rceil.$$

Lean Implementation

Let

$$M = [k_1] \cdot [k_2] \cdot \dots \cdot [k_{\phi(n)}]$$

$$N = [k_1 \cdot a] \cdot [k_2 \cdot a] \cdot \dots \cdot [k_{\phi(n)} \cdot a]$$

- Proving two big products are equal: M = N
- 2 Taking out $[a]^{\phi(n)}$: $N = M * [a]^{\phi(n)}$
- **3** Cancelling $M: M = M * [a]^{\phi(n)} \rightarrow [1] = [a]^{\phi(n)}$

Prime Number Theorem

Let $\pi(x) := \sum_{p \leq x} 1$ be the prime-counting function, for any $x \in \mathbb{R}$.

Theorem (Prime Number Theorem)

We have the asymptotic formula

$$\pi(x) \sim x/\log x,\tag{1}$$

which is equivalent to the following: for every $c_1 < 1 < c_2$,

$$c_1 \frac{x}{\log x} \leqslant \pi(x) \leqslant c_2 \frac{x}{\log x}.$$

Outline of the proof

We prove this by showing a sequence of properties of the three functions:

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \quad \Phi(s) := \sum_{p} \frac{\log p}{p^s} \quad \theta(x) := \sum_{p \leqslant x} \log p \quad s \in \mathbb{C} \quad x \in \mathbb{N}.$$

- **1** Reduce $\pi(x) \sim x/\log x$ to $\theta(x) \sim x$.
- **2** Reduce $\theta(x) \sim x$ to showing $I := \int_1^\infty \frac{\theta(x) x}{x^2} dx$ is convergent.
- Prove an Analytic Theorem.
- **4** Apply the Analytic Theorem on *I*, then suffice to show $\zeta(s) \neq 0$ for $\Re(s) = 1$.

We focused on formalising (1) and (3).

Newman's Proof - First Reduction 1

Reduce the asymptotic formula $\pi(x) \sim x/\log x$ to $\theta(x) \sim x$, where

$$\theta(x) := \sum_{p \leqslant x} \log p.$$

Proof.

For any $0 < \epsilon \le 1/2$ and x > 1, we have an upper bound for of $\theta(x)$:

$$\theta(x) = \sum_{p \le x} \log p \le \log x \sum_{p \le x} 1 = \pi(x) \log x. \tag{2}$$

And a lower bound:

$$\theta(x) \geqslant \sum_{x^{1-\epsilon}$$

(3)

Hence,

$$(1 - \epsilon)(\pi(x) - \pi(x^{1 - \epsilon})) \log x \le \theta(x) \le \pi(x) \log x. \tag{4}$$

First Reduction 2

Proof.

Recall Chebyshev's bounds for $\pi(N)$: for sufficiently large x, there exists constants a,b>0 such that

$$a\frac{x}{\log x} \leqslant \pi(x) \leqslant b\frac{x}{\log x}.$$
 (5)

Hence for large $x > 1, 0 < \epsilon \le 1/2$,

$$\pi(x^{1-\epsilon}) \leqslant b \frac{x^{1-\epsilon}}{\log x^{1-\epsilon}} \leqslant 2b \frac{x^{1-\epsilon}}{\log x}.$$
 (6)

First Reduction 3

Proof.

And also by Chebyshev's bound,

$$(1 - \epsilon)\pi(x) \leqslant \pi(x) - 2b \frac{x^{1 - \epsilon}}{\log x} \leqslant \pi(x) - \pi(x^{1 - \epsilon}). \tag{7}$$

Thus,

$$(1 - \epsilon)^2 \pi(x) \log x \le \theta(x) \le \pi(x) \log x, \tag{8}$$

Dividing the above by x, we get $\pi(x) \sim x/\log x$.

Cauchy's Integral Formula: Why We Need It

Theorem (An Analytic Theorem)

Let $f:[0,\infty)\to\mathbb{R}$ be a bounded locally integrable function. Suppose that $g(z):=\int_0^\infty f(t)e^{-tz}dt$ (for $\{\operatorname{Re}(z)>0\}$) extends to a holomorphic function over a neighborhood of $\{\operatorname{Re}(z)>0\}$. Then $\int_0^\infty f(t)dt$ exists (i.e., f is integrable) and equal to g(0).

Cauchy's Integral Formula

What's missing in the mathlib:

- The definition of contour integral for a general contour.
- Cauchy's Integral Theorem for a general curve.

We did the first part, and the second part for a rectangular path, which is sufficient to prove the analytic theorem.

Cauchy's Integral Formula

What's missing in the mathlib:

- The definition of contour integral for a general contour.
- Cauchy's Integral Theorem for a general curve.

We did the first part, and the second part for a rectangular path, which is sufficient to prove the analytic theorem.

Preparation:

- Type conversions
- Affine functions and their derivative (deriv.scomp)
- Operations of path

Definition (Contour Integral)

$$\int_{L} f := \int_{0}^{1} L'(t) \cdot f(L(t)) dt$$

The "hardest" part: prove

$$\int_{L} (f+g) = \int_{L} f + \int_{L} g$$

- continuity and integrability (interval_integrable.smul_continuous_on)
- integrability and addictivity (interval_integral.integral_add)
- change of variables (interval_integral.smul_integral_comp_add_mul)

The "hardest" part: prove

$$\int_{L} (f + g) = \int_{L} f + \int_{L} g$$

- continuity and integrability (interval_integrable.smul_continuous_on)
- integrability and addictivity (interval_integral.integral_add)
- change of variables (interval_integral.smul_integral_comp_add_mul)

Preparation:

- Continuity and differentiability of some basic functions
- Definitions and properties of rectangles
- Turns the contour integral along a rectangle into the real integral

Theorem (Cauchy's Integral Formula for A Rectangle)

Let $c \in \mathbb{C}$ be a point in the interior of a rectangle region D. If f is continuous on ∂D and holomorphic on $\operatorname{int}(D)$, then $\int_{\partial D} \frac{f(z)}{z-c} dz = 2\pi i f(c)$.

Basic idea: Construct

$$g(z) := \begin{cases} \frac{f(z) - f(c)}{z - c} & \text{if } z \neq c \\ f'(c) & \text{otherwise} \end{cases}$$

- **9** Show that g is continuous on ∂D and holomorphic on int(D). (analysis.calculus.dslope)
- **②** Show $\int_{\partial D} g = 0$ (complex.integral_boundary_rect..._countable).
- **3** Show $\int_{\partial D} \frac{1}{z-c} = 2\pi i$ (winding number).

computation of the winding number of a rectangle:

say
$$b \leq \operatorname{Im}(z) \leq t, I \leq \operatorname{Re}(z) \leq r$$
.

• bottom:
$$\int \frac{1}{z-c} = \log(r-c+bi) - \log(l-c+bi)$$

• top:
$$\int \frac{1}{z-c} = \log(I - c + ti) - \log(r - c + ti)$$

• right:
$$\int \frac{1}{z-c} = \log(r-c+ti) - \log(r-c+bi)$$

• left:
$$\int \frac{1}{z-c} = 2\pi i + \log(I-c+bi) - \log(I-c+ti)$$

Computation of the left one is extremely hard! Still need to spilt into two parts: the upper one and the lower one.

- logarithm near the branch cut (analysis.special_functions.complex.log)
- distinguish continuous/differentiable _ on/at/within_at

Computation of the left one is extremely hard! Still need to spilt into two parts: the upper one and the lower one.

- logarithm near the branch cut (analysis.special_functions.complex.log)
- distinguish continuous/differentiable _ on/at/within_at