## Outline of Chapter 5: Polynomial

Polynomial Algebra  $\sim F[x]$  is a PID (Principal Ideal) Domain)

- 9 Division Theorem, Divisibility
- The (Not A!) Greatest Common Divisor (GCD) and Relatively Prime
- ~> Chinese Reminder Theorem (CRT) ~> Lagrange Interpolation Formula
- ~~~ (Chapter 7) Jordan-Chevalley Decomposition
- In PID, Irreducible ⇔ Prime
- (PID  $\Rightarrow$  UFD) Unique Factorization
- Repeated Factor  $\rightsquigarrow (f(x), f'(x)) = 1$  ?

(illusion) Lecture 1

## Review of §5.1 Basic Concepts

County the 
$$\sum_{i+j=2p} (-i)^i \mid j \mid \lambda^{2p} = \sum_{i=0}^{2p} (\gamma)^i = 1$$
.

$$f(x) = \left\{ \sum_{k=0}^{2n} (-1)^k x^k \right\} \left\{ \sum_{k=0}^{2n} x^k \right\}$$

那么其中 $x^{2p}$  的系数均为 1,  $x^{2p-1}$  的系数均为 0.  $(1 \le p \le 2n^2, p \in \mathbb{N}^*)$ 

- $F[x] \text{ is an (integral) domain:} \qquad b_{x} \qquad a_{x} \qquad b_{x} \qquad a_{x} \qquad b_{x} \qquad a_{x} \qquad b_{x} \qquad a_{x} \qquad b_{x} \qquad$ 
  - $f(x),g(x),h(x)\in F[x],$  if  $f(x)h(x)=g(x)h(x),\ h(x)\neq 0,$  then f(x)=g(x)h(x)

$$g(x)$$
.  $(14)$ 

$$\left(\int_{-\infty}^{\infty} g(x) - g(x)\right) = 0$$
  $\int_{-\infty}^{\infty} f(x) = g(x)$ 

明 
$$f(x), g(x), h(x) \in \mathbf{R}[x]$$
 and we have  $xf^2(x) + xg^2(x) = h^2(x)$ , then  $f(x) = g(x) = h(x) = 0$ .

Notes:

• 回顾  $f(x), g(x) \in \mathbf{R}[x], f^2(x) + q^2(x) = 0 \rightarrow f(x) = g(x) = 0$ .

• 上述两个结论在  $\mathbf{C}[x]$  上述成立吗?

• 上述两个结论在  $\mathbf{C}[x]$  上述成立吗?

• 大き はっしょう はっしょう

Determine all polynomials 
$$f(x) \in F[x]$$
 such that  $f[f(x)] = f^n(x)$ , where  $n \in \mathbb{N}^*$  is a given positive integer.

Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint:  $f(x) \neq 0 \leadsto \deg f[f(x)] = (\deg f(x))^2$ .

Leaves: Hint: Hi

## Review of §5.2 Division Theorem

A.B & Mr.(F), Arbte C by it, open P= (p)) mm (n2)

### Thm 3

Suppose  $f(x), g(x) \in F[x]$  and  $g(x) \neq 0$ , then there exist unique polynomials  $q(x), r(x) \in F[x]$  such that

$$f(x) = q(x)g(x) + r(x), \qquad (1)$$

where  $\deg r(x) < \deg g(x)$ .

#### Notes:

- 若 r(x) = 0, 那么  $\deg 0 = -\infty < \deg g(x)$  也成立;
- (带余除法与数域扩大无关) 若  $F \subseteq K$ , 在 K[x] 中存在  $q(x), \tilde{r}(x) \in K[x]$
- (带余除法与数域扩大无关) 若  $F \subseteq K$ ,在 K[x] 中存在  $\tilde{q}(x), \tilde{r}(x) \in K[x]$  满足  $\mathfrak{P}_F$

$$f(x) = \tilde{q}(x)g(x) + \tilde{r}(x) \leadsto \tilde{q}(x) = q(x), \ \tilde{r}(x) = r(x).$$

# Thm 3 Suppose $f(x), g(x) \in F[x]$ and $g(x) \neq 0$ , then there exist unique polynomials $q(x), r(x) \in F[x]$ such that f(x) = q(x)q(x) + r(x),(1)where $\deg r(x) < \deg g(x)$ . **(**k) 6





(2) Prove that when 
$$f(x) \in F[x]$$
 is divided by  $(x-a)(x-b)$ , the reminder  $r(x)$  is 
$$\frac{f(a)-f(b)}{a-b}x+\frac{af(b)-bf(a)}{a-b}.$$

$$|A|=|A|=|A|$$

$$|A|=|A|$$

$$|A|$$



$$\int (x) = \int (a) \left( a - b \right) = 1 \quad (mod + a).$$

$$\int (x) = \int (a) \left( a - b \right) = 1 \quad (x - a) - (b)$$

$$\int (x) = \int (a) \left( a - b \right) = 1 \quad (x - b) = 1 \quad ($$

# Review of §5.2 Divisibility

### Thm 6

Given conditions in Division Theorem, if we have r(x) = 0, i.e., f(x) = q(x)g(x), we say that g(x) divides f(x) (or g(x) is a divisor of f(x)), and we denote this as  $g(x) \mid f(x)$ . Otherwise, we write  $g(x) \nmid f(x)$ .

9(2) 9(2) × fee gra) . gran hear => fee hear v

● 整除有自反性和传递性,以及相伴性(associate):

$$f(x) = \tilde{q}(x)g(x) \leadsto \tilde{q}(x) = q(x).$$

(1) 
$$f(x), g(x) \in F[x], f(x^2) \mid g(x^2) \Rightarrow f(x) \mid g(x);$$
(2)  $f(x), g(x) \in F[x], f^2(x) \mid g^2(x) \Rightarrow f(x) \mid g(x);$ 
(3) Given  $a \neq 0, d, n \in \mathbb{N}^*, x^m - a^m \mid x^n - a^n \Leftrightarrow m \mid n.$ 

(1)  $f(x), g(x) \in F[x], f^2(x) \mid g^2(x) \Rightarrow f(x) \mid g(x);$ 
(3)  $f(x) = f(x), f(x) = f(x), f(x) = f(x)$ 

(1)  $f(x), g(x) \in F[x], f(x) \mid g(x) \Rightarrow f(x) \mid g(x);$ 
(3)  $f(x) = f(x), f(x) = f(x)$ 

(4)  $f(x) = f(x), f(x) = f(x)$ 

(5)  $f(x) = f(x)$ 

(6)  $f(x) = f(x)$ 

(7)  $f(x) = f(x)$ 

(8)  $f(x) = f(x)$ 

(9)  $f(x) = f(x)$ 

(1)  $f(x) = f(x)$ 

(2)  $f(x) = f(x)$ 

(3)  $f(x) = f(x)$ 

(4)  $f(x) = f(x)$ 

(5)  $f(x) = f(x)$ 

(6)  $f(x) = f(x)$ 

(7)  $f(x) = f(x)$ 

(8)  $f(x) = f(x)$ 

(9)  $f(x) = f(x)$ 

(11)  $f(x) = f(x)$ 

(12)  $f(x) = f(x)$ 

(13)  $f(x) = f(x)$ 

(14)  $f(x) = f(x)$ 

(15)  $f(x) = f(x)$ 

(17)  $f(x) = f(x)$ 

(18)  $f(x) = f(x)$ 

(19)  $f(x) = f(x)$ 

(19)  $f(x) = f(x)$ 

(19)  $f(x) = f(x)$ 

(19)  $f(x) = f(x)$ 

(20)  $f(x) = f(x)$ 

(21)  $f(x) = f(x)$ 

(22)  $f(x) = f(x)$ 

(23)  $f(x) = f(x)$ 

(24)  $f(x) = f(x)$ 

(25)  $f(x) = f(x)$ 

(27)  $f(x) = f(x)$ 

(28)  $f(x) = f(x)$ 

(29)  $f(x) = f(x)$ 

(21)  $f(x) = f(x)$ 

(22)  $f(x) = f(x)$ 

(23)  $f(x) = f(x)$ 

(24)  $f(x) = f(x)$ 

(25)  $f(x) = f(x)$ 

(26)  $f(x) = f(x)$ 

(27)  $f(x) = f(x)$ 

(28)  $f(x) = f(x)$ 

(29)  $f(x) = f(x)$ 

(29)  $f(x) = f(x)$ 

(21)  $f(x) = f(x)$ 

(22)  $f(x) = f(x)$ 

(23)  $f(x) = f(x)$ 

(24)  $f(x) = f(x)$ 

(25)  $f(x) = f(x)$ 

(26)  $f(x) = f(x)$ 

(27)  $f(x) = f(x)$ 

(28)  $f(x) = f(x)$ 

(29)  $f(x) = f(x)$ 

(29)  $f(x) = f(x)$ 

(21)  $f(x) = f(x)$ 

(21)  $f(x) = f(x)$ 

(22)  $f(x) = f(x)$ 

(23)  $f(x) = f(x)$ 

(24)  $f(x) = f(x)$ 

(25)  $f(x) = f(x)$ 

(27)  $f(x) = f(x)$ 

(28)  $f(x) = f(x)$ 

(29)  $f(x) = f(x)$ 

(21)  $f(x) = f(x)$ 

(21)  $f(x) = f(x)$ 

(22)  $f(x) = f(x)$ 

(23)  $f(x) = f(x)$ 

(24)  $f(x) = f(x)$ 

(25)  $f(x) = f(x)$ 

(27)  $f(x) = f(x)$ 

(28)  $f(x) = f(x)$ 

(29)  $f(x) = f(x)$ 

(29)

$$\Rightarrow x^{2} | x \Rightarrow y \Rightarrow x^{2} | x \Rightarrow y \Rightarrow x^{2} \Rightarrow x^$$

1) 
$$[m \mid n] \Rightarrow n = km$$

$$x = (x^{m} - a)^{m} = (x^{m})^{k} - (a^{m})^{k}$$

$$x = (x^{m} - a)^{m} = (x^{m})^{k} - (a^{m})^{k}$$

$$x = (x^{m} - a)^{m} = (x^{m})^{k} + (x^{m})^{k} + (x^{m})^{k} + (x^{m})^{k}$$

$$x = (x^{m} - a)^{m} = x^{m} - a^{m} + x^{m} +$$

# Examples

**Slogan:** 
$$g(x) \mid f_k(x) \leadsto g(x) \mid \sum_k h_k(x) f_k(x)$$
, For all  $h_k(x) \in F[x]$ .

### 例 8

- (1)  $x^2 + x + 1 \mid x^{3n} + x^{3m+1} + x^{3p+2}$ , For all  $n, m, p \in \mathbb{N}^*$ ;
- (2) If  $m, n, p \in \mathbb{N}^*$  have the same parity, prove that  $x^2 x + 1 \mid x^{3n} x^{3m+1}$  $+x^{3p+2}$ . Check the converse of this proposition is also true.

Notes:

$$\int [w_i] = 0 \Rightarrow |-w_i| \int [x_i] \frac{w_i + w_2}{2} (+w_1, +w_2) = 1$$

- (§5.5 Polynomial Functions) Alternative:  $x^2+x+1=(x-\omega_1)(x-\omega_2)=0,$   $\omega_i^3=1, \omega_i\neq 1 \Longrightarrow \omega_i^{3n}+\omega_i^{3m+1}+\omega_i^{3p+2}=1+\omega_i^1+\omega_i^2=0.$  When we have  $x^2+x+1\left|\sum_i x^{a_i}\left(a_i\in\mathbb{N}^*\right)\right.$ ?

(1) 
$$x^2 + x + 1$$
 |  $x^{3n} + x^{3m+1} + x^{3p+2}$ , For all  $n, m, p \in \mathbb{N}^*$ ; |  $x^3 + x + 1$  |  $x^{3n} + x^{3m+1} + x^{3p+2}$ ? |  $x^3 + x + 1$  |  $x^{3n} + x^{3m+1} + x^{3p+2}$ ? |  $x^{3n} + x^{3m+1} + x^{3m+1}$ 

$$\Rightarrow |\lambda|^{2} + |\lambda| + |\lambda|^{2}$$

$$def(|\lambda|^{2} + |\lambda|^{2}) = |\partial f(|\lambda|^{2} + |\lambda|^{2}) = 2.$$

$$\Rightarrow |\lambda|^{2} + |\lambda|^{2}$$

(2) If 
$$m, n, p \in \mathbb{N}^*$$
 have the same parity, prove that  $x^2 - x + 1 \mid x^{3n} - x^{3m+1} + x^{3p+2}$ . Check the converse of this proposition is also true.

+ス3(トメセン)

$$|A| = |A| + |A|$$