

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.01 Информатика и вычислительная** техника

ОТЧЕТ

по практикуму № 2

Название: обработке с пом	-	ципов представления ьного комплекса Тераг	1 1
Дисциплина: <u>О</u> ј	рганизация ЭВМ і	и систем	
Студент	<u>ИУ6-72Б</u> (Группа)	(Подпись, дата)	<u>И.С.Марчук</u> (И.О. Фамилия)
Преподаватель		(Полимет пата)	А.Ю. Попов

Цель: освоить принципы представления графов и их обработки с помощью вычислительного комплекса Тераграф.

Задание: выполнить визуализацию неориентированного графа, представленного в формате tsv. Каждая строчка файла представляет собой описание ребра, сотоящее из трех чисел (Вершина,Вершина,Вес) или двух чисел (Вершина,Вершина). Во втором случае вес ребра принимается равным 1.

Ход работы

Для визуализации графа из файла был написан модуль, позволяющий читать информацию из файла и обрабатывать его должным образом, код представлен в листинге 1.

```
Листинг 1 – Код модуля для визуализации
      // Кастомный граф
      #ifdef CUSTOM GRAPH
             printf("< CUSTOM PART > \n");
             unsigned int u;
               _foreach_core(group, core)
                    lnh inst.gpc[group][core]->start async( event (delete graph));
             unsigned
                                                                                 int*
host2gpc ext buffer[LNH GROUPS COUNT][LNH MAX CORES IN GROUP];
             unsigned int messages count = 0;
               foreach core(group, core){
                    host2gpc ext buffer[group][core]
                                                                            (unsigned
int*)lnh_inst.gpc[group][core]->external_memory create buffer(BIFFER SIZE);
                    offs = 0;
                    int num1, num2;
                    std::string line;
                    std::ifstream
myfile("/iu home/iu6051/worksp lr4/btwc-dijkstra-xrt/host/src/var03.txt");
                    if(myfile.is open())
```

```
[?] issue: why segmaentation fails if (messages count >
1900) [?]
                             */
                            while((getline(myfile,line)) && (messages count<1500))
                                   // printf(">>> alloating N %d \n", messages count);
                                   num1 = std::atoi(line.substr(0, line.find("\t")).c str());
                                    num2 = std::atoi(line.substr(line.find("\t")+1).c str());
                                   //printf("key: %d val: %d\n", num1, num2);
                                    EDGE(num1, num2, 1);
                                   EDGE(num2, num1, 1);
                                    messages count++;
                            myfile.close();
                     printf(">>> external memory sync to device \n");
                     lnh inst.gpc[group][core]->external memory sync to device(0, 3 *
sizeof(unsigned int)*messages count);
                 foreach core(group, core)
                     lnh inst.gpc[group][core]->start async( event (insert edges));
                foreach core(group, core) {
                     long
                                                                  tmp
lnh inst.gpc[group][core]->external memory address();
                     lnh_inst.gpc[group][core]->mq_send((unsigned int)tmp);
                foreach core(group, core) {
                     printf(">>> mq_send(2 * sizeof(int)*messages_count)");
                     lnh inst.gpc[group][core]->mq send(2 * sizeof(int)*messages count);
                foreach_core(group, core)
                     lnh inst.gpc[group][core]->finish();
              printf("Data graph created!\n");
              printf("</ CUSTOM PART >");
       #endif
```

В результате выполения программы был получен граф, представленный на рисунке 1.

Рисунок 1 – Визуализированный граф

Вывод: в результате выполениня практикума 2 были получены навыки представления графов и их обработки с помощью вычислительного комплекса Тераграф.