Bitcoin: A Peer-to-Peer Electronic Cash

Dr. Subba Rao Y.V.
School of Computer and Information Sciences

Agenda

- Crypto Preliminaries
- What is Bitcoin?
- Decentralization Challenges
- Double Spending
- The Blockchain
- Block Structure
- Bitcoin Mining
- Transaction Output and Input
- Bitcoin's script validation
- Top 20 Cryptocurrencies
- Applications

Crypto Preliminaries

- Cryptographic hash function
- Hash pointers and Data Structures
- Digital Signatures

Cryptographic hash function

- Its input can be any string of any size.
- It produces a fixed-sized output.

H:
$$\{0, 1\}^* \longrightarrow \{0, 1\}^n$$

Property 1: Collision Resistance

Property 2: Hiding

A hash function H is said to be hiding if when a secret value r is chosen using "a probability distribution" that has high min-entropy, then, given

H(r || x), it is infeasible to find x.

• **Property 3**: Puzzle Friendliness

A hash function H is said to be puzzle friendly if for every possible n-bit output value y, if k is chosen from a distribution with high min-entropy, then it is infeasible to find x such that,

 $H(k \parallel x) = y$ in time significantly less than 2^n .

Hash pointers and Data Structures

Digital Signatures

- A digital signature scheme consists of the following three algorithms:
 - (sk, pk) := generateKeys(keysize)
 - sig := sign(sk, message)
 - isValid := verify(pk, message, sig)
- We require that the following two properties hold:
 - Valid signatures must verify:

verify(pk, message, sign(sk, message)) == true.

Signatures are existentially unforgeable.

What is Bitcoin?

- Cryptocurrency
- Open source
- Decentralized network

Decentralization Challenges

- Counterfeiting
- Currency creation rules
- Double spending
 - Alice pays Bob n digicoins for a cake
 - Alice uses the **same** n digicoins to pay Charlie for a book

Seller B

Solution without a central coordinator?

Double Spending

- Familiar to academics
 - Submitting same paper to two conferences
- Possible solution
 - Reviewers google paper contents to find duplicates
- Solution fails if
 - Conferences accepting papers at same time
 - Conference proceedings not published/indexed
- Better solution

A single public database to store all submissions to all conferences

The Blockchain

• **Blockchain**: A public database to store all transactions which is replicated by many network nodes

How are the blocks linked?

Block Structure

- The Block contains two parts the header and the data (the transactions)
- The header of a block connects the transactions any change in any transaction will result in a change at the block header
- The headers of subsequent blocks are connected in a chain the entire blockchain needs to be updated if you want to make any change anywhere

.

Size	Field	Description	
4 bytes	Block Size	The size of the block, in bytes, following this field	
80 bytes	Block Header	Several fields form the block header	
1-9 bytes (VarInt)	Transaction Counter	How many transactions follow	
Variable	Transactions	The transactions recorded in this block	

Block Header

Size	Field	Description
4 bytes	Version	A version number to track software/protocol upgrades
32 bytes	Previous Block Hash A reference to the hash of the previous (parent) block in the chain	
32 bytes	Merkle Root	A hash of the root of the merkle tree of this block's transactions
4 bytes	Timestamp	The approximate creation time of this block (seconds from Unix Epoch)
4 bytes	Difficulty Target	The Proof-of-Work algorithm difficulty target for this block
4 bytes	Nonce	A counter used for the Proof-of-Work algorithm

Merkle Tree

- Transactions are organized as a Merkle Tree. The Merkle Root is used to construct the block hash
- If you change a transaction, you need to change all the subsequent block hash
- The **difficulty** of the mining algorithm determines the **toughness** of tampering with a block in a blockchain

Bitcoin Mining

Miner who can find Nonce such that

- Tx:Transactions to be approved
- D: parameter for difficulty

can add a new block

Modifying any header field will require solving PoW puzzle again

Transaction Output and Input

Bitcoin's script validation

Transaction Script

• Locking script form:

OP_DUP OP_HASH160 <cafe Public Key Hash> OP_EQUALVERIFY OP_CHECKSIG

• Unlocking script form:

<Cafe Signature> <Cafe Public Key>

Evaluating combined script:

<sig> <Pubk> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

Top 20 Cryptocurrencies

No.	Name	BC or	Proof	Hash	Mining	ASIC
		DAG	of 'X'	Algorithm	Time	resist.
1	Bitcoin	BC	PoW	SHA-256	10 min	
2	Ethereum	BC(DAG)	(PoW,) PoS	Ethash	12 seconds	
3	Bitcoin Cash	BC	PoW	SHA-256	10 min	✓
4	Ripple		PoCons	80% majority	-	
5	Litecoin	BC	PoW	Scrypt	2.5 min	✓
6	Dash	BC	PoW	X11 of SHA-3 cand.	5 seconds	✓
7	NEM	BC	PoI	SHA-256	1 min	✓
8	NEO	BC	dBFT	-	20 seconds	
9	Ethereum Classic	BC(DAG)	PoW	Ethash	12 seconds	$\overline{}$
10	Monero	BC(DAG)	PoW	CryptoNight	-	√
11	IOTA	DAG "Tangle"	PoW	SHA-3, Kerl	-	$\overline{}$
12	\mathbf{Qtum}	BC	PoS	-	-	√
13	OmiseGO	BC	PoS	-	-	
14	BitConnect	BC	PoW, PoS	-	-	
15	Zcash	BC	PoW	Equihash	2.5 min	✓
16	ADA	BC	PoS	-	-	
17	Lisk	BC	DPoS	-	-	
18	Tether	BC	PoRes	-	-	
19	EOS	BC	DPoS	-	-	
20	Stellar	BC	PoCons	80% majority	-	

Types of Blockchains

• Permissionless (Public)

- Bitcoin
- Ethereum
- Ripple
- Litecoin etc.

Permissioned (Private)

- Hyperledger Fabric
- Hyperledger Sawtooth
- Hyperledger Composer etc.

Applications

- Internet of Things (IoT)
- Land Registry
- Voting
- Food
- Patient Data Management
- Drug Traceability
- Cross-border transactions
- Digital Identity
- Smart Contracts

References

- 1. Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
- 2. Andreas M, Mastering Bitcoin: Programming the Open Blockchain, Second Edition, O'REILLY, 2017
- 3. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder "Bitcoin and Cryptocurrency Technologies A Comprehensive Introduction", Princeton University Press, 2016
- 4. https://www.blockchaintechnologies.com/applications/internet-of-things-iot/

Thank You