Home Credit Default Risk (HCDR)

The course project is based on the Home Credit Default Risk (HCDR) Kaggle Competition. The goal of this project is to predict whether or not a client will repay a loan. In order to make sure that people who struggle to get loans due to insufficient or non-existent credit histories have a positive loan experience, Home Credit makes use of a variety of alternative data--including telco and transactional information--to predict their clients' repayment abilities.

Some of the challenges

- 1. Dataset size
 - (688 meg compressed) with millions of rows of data
 - 2.71 Gig of data uncompressed
- Dealing with missing data
- · Imbalanced datasets
- Summarizing transaction data

Kaggle API setup

Kaggle is a Data Science Competition Platform which shares a lot of datasets. In the past, it was troublesome to submit your result as your have to go through the console in your browser and drag your files there. Now you can interact with Kaggle via the command line. E.g.,

! kaggle competitions files home-credit-default-risk

It is quite easy to setup, it takes me less than 15 minutes to finish a submission.

- 1. Install library
- Create a API Token (edit your profile on Kaggle.com); this produces kaggle.json file
- Put your JSON kaggle.json in the right place
- Access competition files; make submissions via the command (see examples below)
- Submit result

For more detailed information on setting the Kaggle API see here and here.

In [1]: !pip install kaggle

```
Requirement already satisfied: kaggle in /usr/local/lib/python3.9/site-packages (1.5.12) Requirement already satisfied: certifi in /usr/local/lib/python3.9/site-packages (from kaggle) (2021.10.8)
```

Requirement already satisfied: python-dateutil in /usr/local/lib/python3.9/site-packages (from kaggle) (2.8.2)

Requirement already satisfied: requests in /usr/local/lib/python3.9/site-packages (from kaggle) (2.26.0)

Requirement already satisfied: tqdm in /usr/local/lib/python3.9/site-packages (from kagg le) (4.62.3)

Requirement already satisfied: python-slugify in /usr/local/lib/python3.9/site-packages (from kaggle) (5.0.2)

Requirement already satisfied: urllib3 in /usr/local/lib/python3.9/site-packages (from k

```
behaviour with the system package manager. It is recommended to use a virtual environme
        nt instead: https://pip.pypa.io/warnings/venv
        WARNING: You are using pip version 21.3.1; however, version 24.0 is available.
        You should consider upgrading via the '/usr/local/bin/python -m pip install --upgrade pi
        p' command.
In [2]: !pwd
        /root/shared/Courses/I526_AML_Student/Assignments/Unit-Project-Home-Credit-Default-Risk/
In [3]: !ls -l ~/.kaggle/kaggle.json
        ls: cannot access '/root/.kaggle/kaggle.json': No such file or directory
In [4]:
        !mkdir ~/.kaggle
        !cp kaggle.json ~/.kaggle
        !chmod 600 ~/.kaggle/kaggle.json
        mkdir: cannot create directory '/root/.kaggle': File exists
        cp: cannot stat 'kaggle.json': No such file or directory
        chmod: cannot access '/root/.kaggle/kaggle.json': No such file or directory
In [5]: ! kaggle competitions files home-credit-default-risk
        Traceback (most recent call last):
          File "/usr/local/bin/kaggle", line 5, in <module>
            from kaggle.cli import main
          File "/usr/local/lib/python3.9/site-packages/kaggle/__init__.py", line 23, in <module>
            api.authenticate()
          File "/usr/local/lib/python3.9/site-packages/kaggle/api/kaggle_api_extended.py", line
        164, in authenticate
            raise IOError('Could not find {}. Make sure it\'s located in'
        OSError: Could not find kaggle.json. Make sure it's located in /root/.kaggle. Or use the
        environment method.
```

Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.9/site-packages (from

Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.9/site-pack

Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/sit

Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/site-packages (f

WARNING: Running pip as the 'root' user can result in broken permissions and conflicting

Dataset and how to download

Back ground Home Credit Group

Many people struggle to get loans due to insufficient or non-existent credit histories. And, unfortunately, this population is often taken advantage of by untrustworthy lenders.

Home Credit Group

aggle) (1.26.7)

kaggle) (1.15.0)

rom requests->kaggle) (3.3)

ages (from python-slugify->kaggle) (1.3)

e-packages (from requests->kaggle) (2.0.4)

Home Credit strives to broaden financial inclusion for the unbanked population by providing a positive and safe borrowing experience. In order to make sure this underserved population has a positive loan experience, Home Credit makes use of a variety of alternative data--including telco and transactional information--to predict their clients' repayment abilities.

While Home Credit is currently using various statistical and machine learning methods to make these predictions, they're challenging Kagglers to help them unlock the full potential of their data. Doing so will ensure that clients capable of repayment are not rejected and that loans are given with a principal, maturity, and repayment calendar that will empower their clients to be successful.

Background on the dataset

Home Credit is a non-banking financial institution, founded in 1997 in the Czech Republic.

The company operates in 14 countries (including United States, Russia, Kazahstan, Belarus, China, India) and focuses on lending primarily to people with little or no credit history which will either not obtain loans or became victims of untrustworthly lenders.

Home Credit group has over 29 million customers, total assests of 21 billions Euro, over 160 millions loans, with the majority in Asia and almost half of them in China (as of 19-05-2018).

While Home Credit is currently using various statistical and machine learning methods to make these predictions, they're challenging Kagglers to help them unlock the full potential of their data. Doing so will ensure that clients capable of repayment are not rejected and that loans are given with a principal, maturity, and repayment calendar that will empower their clients to be successful.

Data files overview

The HomeCredit_columns_description.csv acts as a data dictioanry.

There are 7 different sources of data:

- application_train/application_test (307k rows, and 48k rows): the main training and testing data with information about each loan application at Home Credit. Every loan has its own row and is identified by the feature SK_ID_CURR. The training application data comes with the TARGET indicating 0: the loan was repaid or 1: the loan was not repaid. The target variable defines if the client had payment difficulties meaning he/she had late payment more than X days on at least one of the first Y installments of the loan. Such case is marked as 1 while other all other cases as 0.
- bureau (1.7 Million rows): data concerning client's previous credits from other financial institutions.
 Each previous credit has its own row in bureau, but one loan in the application data can have multiple previous credits.
- bureau_balance (27 Million rows): monthly data about the previous credits in bureau. Each row is one month of a previous credit, and a single previous credit can have multiple rows, one for each month of the credit length.
- **previous_application (1.6 Million rows):** previous applications for loans at Home Credit of clients who have loans in the application data. Each current loan in the application data can have multiple previous loans. Each previous application has one row and is identified by the feature SK_ID_PREV.
- POS_CASH_BALANCE (10 Million rows): monthly data about previous point of sale or cash loans clients have had with Home Credit. Each row is one month of a previous point of sale or cash loan, and a single previous loan can have many rows.
- credit_card_balance: monthly data about previous credit cards clients have had with Home Credit. Each row is one month of a credit card balance, and a single credit card can have many rows.
- installments_payment (13.6 Million rows): payment history for previous loans at Home Credit. There is one row for every made payment and one row for every missed payment.

Table sizes

```
rows cols]
name
                                            MegaBytes
application_train
                            307,511, 122]:
                                             158MB
                             48,744, 121]:
application_test
                       : [
                                             25MB
bureau
                       : [ 1,716,428, 17]
                                             162MB
bureau_balance
                       : [ 27,299,925, 3]:
                                             358MB
credit_card_balance
                       : [ 3,840,312, 23]
                                             405MB
installments_payments : [ 13,605,401, 8]
                                             690MB
                     : [ 1,670,214, 37]
previous_application
                                             386MB
POS_CASH_balance
                       : [ 10,001,358, 8]
                                              375MB
```

In []:

Downloading the files via Kaggle API

Create a base directory:

```
DATA_DIR = "../../Data/home-credit-default-risk" #same level as course repo in the data directory
```

Please download the project data files and data dictionary and unzip them using either of the following approaches:

- 1. Click on the Download button on the following Data Webpage and unzip the zip file to the BASE_DIR
- 2. If you plan to use the Kaggle API, please use the following steps.

```
DATA_DIR = "../../../Data/home-credit-default-risk" #same level as course repo in the d
#DATA_DIR = os.path.join('./ddddd/')
!mkdir DATA_DIR
```

```
In [7]: | !ls -l DATA_DIR
         total 0
 In [8]:
         ! kaggle competitions download home-credit-default-risk -p $DATA_DIR
         Traceback (most recent call last):
           File "/usr/local/bin/kaggle", line 5, in <module>
             from kaggle.cli import main
           File "/usr/local/lib/python3.9/site-packages/kaggle/__init__.py", line 23, in <module>
             api.authenticate()
           File "/usr/local/lib/python3.9/site-packages/kaggle/api/kaggle_api_extended.py", line
         164, in authenticate
             raise IOError('Could not find {}. Make sure it\'s located in'
         OSError: Could not find kaggle.json. Make sure it's located in /root/.kaggle. Or use the
         environment method.
In [9]: !pwd
         /root/shared/Courses/I526_AML_Student/Assignments/Unit-Project-Home-Credit-Default-Risk/
         Phase2
In [10]:
         !ls -l $DATA_DIR
         ls: cannot access '../../../Data/home-credit-default-risk': No such file or directory
In [11]:
         !rm -r DATA_DIR
         Imports
         import numpy as np
In [12]:
         import pandas as pd
         from sklearn.preprocessing import LabelEncoder
         import os
         import zipfile
         from sklearn.base import BaseEstimator, TransformerMixin
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.linear_model import LogisticRegression
         from sklearn.model_selection import train_test_split
         from sklearn.model_selection import KFold
         from sklearn.model_selection import cross_val_score
         from sklearn.model_selection import GridSearchCV
         from sklearn.impute import SimpleImputer
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.pipeline import Pipeline, FeatureUnion
         from pandas.plotting import scatter_matrix
         from sklearn.preprocessing import StandardScaler
         from sklearn.preprocessing import OneHotEncoder
         import warnings
         warnings.filterwarnings('ignore')
         # unzippingReg = True #True
In [13]:
         # if unzippingReq: #please modify this code
               zip_ref = zipfile.ZipFile(f'{DATA_DIR}/home-credit-default-risk.zip', 'r')
```

extractall(): Extract all members from the archive to the current working direc

Data files overview

zip_ref.close()

zip_ref.extractall('{DATA_DIR}')

#

#

Data Dictionary

As part of the data download comes a Data Dictionary. It named HomeCredit_columns_description.csv

Application train

```
ls -l ../../Data/home-credit-default-risk/'{DATA_DIR}'/application_train.csv
         ls: cannot access '../../Data/home-credit-default-risk/../../Data/home-credit-defa
         ult-risk/application_train.csv': No such file or directory
         import numpy as np
In [15]:
         import pandas as pd
         from sklearn.preprocessing import LabelEncoder
         import os
         import zipfile
         from sklearn.base import BaseEstimator, TransformerMixin
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.linear_model import LogisticRegression
         from sklearn.model_selection import train_test_split
         from sklearn.model_selection import KFold
         from sklearn.model_selection import cross_val_score
         from sklearn.model_selection import GridSearchCV
         from sklearn.impute import SimpleImputer
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.pipeline import Pipeline, FeatureUnion
         from pandas.plotting import scatter_matrix
         from sklearn.preprocessing import StandardScaler
         from sklearn.preprocessing import OneHotEncoder
         import warnings
         warnings.filterwarnings('ignore')
```

```
def load_data(in_path, name):
    df = pd.read_csv(in_path)
    print(f"{name}: shape is {df.shape}")
    print(df.info())
    display(df.head(5))
    return df
datasets = {} # lets store the datasets in a dictionary so we can keep track of them ea
ds_name = 'application_train'
#DATA_DIR=f"{DATA_DIR}/home-credit-default-risk/"
datasets[ds_name] = load_data(os.path.join('{DATA_DIR}', f'{ds_name}.csv'), ds_name)
datasets['application_train'].shape
application_train: shape is (307511, 122)
<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 307511 entries, 0 to 307510

Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR

dtypes: float64(65), int64(41), object(16)

memory usage: 286.2+ MB

None

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	(
0	100002	1	Cash loans	М	N	Υ	
1	100003	0	Cash loans	F	N	N	
2	100004	0	Revolving loans	М	Υ	Υ	
3	100006	0	Cash loans	F	N	Y	
4	100007	0	Cash loans	М	N	Υ	

5 rows × 122 columns

```
(307511, 122)
Out[15]:
```

0

100001

```
In [16]:
         DATA_DIR
```

'../../Data/home-credit-default-risk' Out[16]:

Application test

• application train/application test: the main training and testing data with information about each loan application at Home Credit. Every loan has its own row and is identified by the feature SK ID CURR. The training application data comes with the TARGET indicating 0: the loan was repaid or 1: the loan was not repaid. The target variable defines if the client had payment difficulties meaning he/she had late payment more than X days on at least one of the first Y installments of the loan. Such case is marked as 1 while other all other cases as 0.

```
In [17]:
         ds_name = 'application_test'
         datasets[ds_name] = load_data(os.path.join('{DATA_DIR}', f'{ds_name}.csv'), ds_name)
         application_test: shape is (48744, 121)
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 48744 entries, 0 to 48743
         Columns: 121 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR
         dtypes: float64(65), int64(40), object(16)
         memory usage: 45.0+ MB
         None
            SK_ID_CURR NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REALTY CNT_CHILD
```

F

Ν

Υ

Cash loans

1	100005	Cash loans	М	N	Υ
2	100013	Cash loans	М	Υ	Υ
3	100028	Cash loans	F	N	Υ
4	100038	Cash loans	М	Υ	N

5 rows × 121 columns

The application dataset has the most information about the client: Gender, income, family status, education ...

The Other datasets

- **bureau:** data concerning client's previous credits from other financial institutions. Each previous credit has its own row in bureau, but one loan in the application data can have multiple previous credits.
- **bureau_balance:** monthly data about the previous credits in bureau. Each row is one month of a previous credit, and a single previous credit can have multiple rows, one for each month of the credit length.
- **previous_application:** previous applications for loans at Home Credit of clients who have loans in the application data. Each current loan in the application data can have multiple previous loans. Each previous application has one row and is identified by the feature SK_ID_PREV.
- POS_CASH_BALANCE: monthly data about previous point of sale or cash loans clients have had with Home Credit. Each row is one month of a previous point of sale or cash loan, and a single previous loan can have many rows.
- credit_card_balance: monthly data about previous credit cards clients have had with Home Credit. Each row is one month of a credit card balance, and a single credit card can have many rows.
- **installments_payment:** payment history for previous loans at Home Credit. There is one row for every made payment and one row for every missed payment.

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	(
0	100002	1	Cash loans	М	N	Υ	
1	100003	0	Cash loans	F	N	N	
2	100004	0	Revolving loans	М	Υ	Υ	
3	100006	0	Cash loans	F	N	Υ	
4	100007	0	Cash loans	М	N	Υ	

application_test: shape is (48744, 121)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48744 entries, 0 to 48743

Columns: 121 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR

dtypes: float64(65), int64(40), object(16)

memory usage: 45.0+ MB

None

	SK_ID_CURR	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILD
0	100001	Cash loans	F	N	Υ	
1	100005	Cash loans	М	N	Υ	
2	100013	Cash loans	М	Υ	Υ	
3	100028	Cash loans	F	N	Υ	
4	100038	Cash loans	М	Υ	N	

5 rows × 121 columns

bureau: shape is (1716428, 17)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1716428 entries, 0 to 1716427

Data columns (total 17 columns):

Jucu	OOTAMING (COCAT IT OOTAMI	15).					
#	Column	Dtype					
0	SK_ID_CURR	int64					
1	SK_ID_BUREAU	int64					
2	CREDIT_ACTIVE	object					
3	CREDIT_CURRENCY	object					
4	DAYS_CREDIT	int64					
5	CREDIT_DAY_OVERDUE	int64					
6	DAYS_CREDIT_ENDDATE	float64					
7	DAYS_ENDDATE_FACT	float64					
8	AMT_CREDIT_MAX_OVERDUE	float64					
9	CNT_CREDIT_PROLONG	int64					
10	AMT_CREDIT_SUM	float64					
11	AMT_CREDIT_SUM_DEBT	float64					
12	AMT_CREDIT_SUM_LIMIT	float64					
13	AMT_CREDIT_SUM_OVERDUE	float64					
14	CREDIT_TYPE	object					
15	DAYS_CREDIT_UPDATE	int64					
16	AMT_ANNUITY	float64					
dtype	<pre>ftypes: float64(8), int64(6), object(3)</pre>						
amaga, usaga, 200 C. MD							

memory usage: 222.6+ MB

None

	SK_ID_CURR	SK_ID_BUREAU	CREDIT_ACTIVE	CREDIT_CURRENCY	DAYS_CREDIT	CREDIT_DAY_OVERDUE
0	215354	5714462	Closed	currency 1	-497	(
1	215354	5714463	Active	currency 1	-208	(
2	215354	5714464	Active	currency 1	-203	(
3	215354	5714465	Active	currency 1	-203	(
4	215354	5714466	Active	currency 1	-629	(

bureau_balance: shape is (27299925, 3)
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 27299925 entries, 0 to 27299924

Data columns (total 3 columns):
Column Dtype

--- -----

0 SK_ID_BUREAU int64 1 MONTHS_BALANCE int64 2 STATUS object dtypes: int64(2), object(1) memory usage: 624.8+ MB

None

SK_ID_BUREAU MONTHS_BALANCE STATUS 0 0 С 5715448 С 5715448 -1 2 5715448 -2 С 3 -3 С 5715448 4 5715448 -4 С

credit_card_balance: shape is (3840312, 23)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3840312 entries, 0 to 3840311
Data columns (total 23 columns):

Dutu	COTAMINS (COCAT 20 COTAMINS).	
#	Column	Dtype
0	SK_ID_PREV	int64
1	SK_ID_CURR	int64
2	MONTHS_BALANCE	int64
3	AMT_BALANCE	float64
4	AMT_CREDIT_LIMIT_ACTUAL	int64
5	AMT_DRAWINGS_ATM_CURRENT	float64
6	AMT_DRAWINGS_CURRENT	float64
7	AMT_DRAWINGS_OTHER_CURRENT	float64
8	AMT_DRAWINGS_POS_CURRENT	float64
9	AMT_INST_MIN_REGULARITY	float64
10	AMT_PAYMENT_CURRENT	float64
11	AMT_PAYMENT_TOTAL_CURRENT	float64
12	AMT_RECEIVABLE_PRINCIPAL	float64
13	AMT_RECIVABLE	float64
14	AMT_TOTAL_RECEIVABLE	float64
15	CNT_DRAWINGS_ATM_CURRENT	float64
16	CNT_DRAWINGS_CURRENT	int64
17	CNT_DRAWINGS_OTHER_CURRENT	float64
18	CNT_DRAWINGS_POS_CURRENT	float64
19	CNT_INSTALMENT_MATURE_CUM	float64
20	NAME_CONTRACT_STATUS	object
21	SK_DPD	int64
22	SK_DPD_DEF	int64
dtype	es: float64(15), int64(7), o	bject(1)
mama 1	SV 1100001 672 O. MD	

memory usage: 673.9+ MB

None

	SK_ID_PREV	SK_ID_CURR	MONTHS_BALANCE	AMT_BALANCE	AMT_CREDIT_LIMIT_ACTUAL	AMT_DRAWII
0	2562384	378907	-6	56.970	135000	
1	2582071	363914	-1	63975.555	45000	
2	1740877	371185	-7	31815.225	450000	
3	1389973	337855	-4	236572.110	225000	
4	1891521	126868	-1	453919.455	450000	

5 rows × 23 columns

installments_payments: shape is (13605401, 8)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13605401 entries, 0 to 13605400
Data columns (total 8 columns):

#	Column	Dtype
0	SK_ID_PREV	int64
1	SK_ID_CURR	int64
2	NUM_INSTALMENT_VERSION	float64
3	NUM_INSTALMENT_NUMBER	int64
4	DAYS_INSTALMENT	float64
5	DAYS_ENTRY_PAYMENT	float64
6	AMT_INSTALMENT	float64
7	AMT_PAYMENT	float64
	67 (01/-) 1 (01/0)	

dtypes: float64(5), int64(3) memory usage: 830.4 MB

None

	SK_ID_PREV	SK_ID_CURR	NUM_INSTALMENT_VERSION	NUM_INSTALMENT_NUMBER	DAYS_INSTALMENT
0	1054186	161674	1.0	6	-1180.0
1	1330831	151639	0.0	34	-2156.0
2	2085231	193053	2.0	1	-63.0
3	2452527	199697	1.0	3	-2418.0
4	2714724	167756	1.0	2	-1383.0

previous_application: shape is (1670214, 37)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1670214 entries, 0 to 1670213

-	columns (total 37 columns):	10.0210	
#	Column	Non-Null Count	Dtype
π 		Non Nair Count	
0	SK_ID_PREV	1670214 non-null	int64
1	SK_ID_CURR	1670214 non-null	int64
2	NAME_CONTRACT_TYPE	1670214 non-null	object
3	AMT_ANNUITY	1297979 non-null	float64
4	AMT_APPLICATION	1670214 non-null	float64
5	AMT_CREDIT	1670213 non-null	float64
6	AMT_DOWN_PAYMENT	774370 non-null	float64
7	AMT_GOODS_PRICE	1284699 non-null	float64
8	WEEKDAY_APPR_PROCESS_START	1670214 non-null	object
9	HOUR_APPR_PROCESS_START	1670214 non-null	int64
10	FLAG_LAST_APPL_PER_CONTRACT	1670214 non-null	object
11	NFLAG_LAST_APPL_IN_DAY	1670214 non-null	int64
12	RATE_DOWN_PAYMENT	774370 non-null	float64
13	RATE_INTEREST_PRIMARY	5951 non-null	float64
14	RATE_INTEREST_PRIVILEGED	5951 non-null	float64
15	NAME_CASH_LOAN_PURPOSE	1670214 non-null	object
16	NAME_CONTRACT_STATUS	1670214 non-null	object
17	DAYS_DECISION	1670214 non-null	int64
18	NAME_PAYMENT_TYPE	1670214 non-null	object
19	CODE_REJECT_REASON	1670214 non-null	object
20	NAME_TYPE_SUITE	849809 non-null	object
21	NAME_CLIENT_TYPE	1670214 non-null	object
22	NAME_GOODS_CATEGORY	1670214 non-null	object
23	NAME_PORTFOLIO	1670214 non-null	object
24	NAME_PRODUCT_TYPE	1670214 non-null	object
25	CHANNEL_TYPE	1670214 non-null	object
26	SELLERPLACE_AREA	1670214 non-null	int64
27	NAME_SELLER_INDUSTRY	1670214 non-null	object
28	CNT_PAYMENT	1297984 non-null	float64
29	NAME_YIELD_GROUP	1670214 non-null	object
30	PRODUCT_COMBINATION	1669868 non-null	object
31	DAYS_FIRST_DRAWING	997149 non-null	float64
32	DAYS_FIRST_DUE	997149 non-null	float64
33	DAYS_LAST_DUE_1ST_VERSION	997149 non-null	float64
34	DAYS_LAST_DUE	997149 non-null	float64
35	DAYS_TERMINATION	997149 non-null	float64

SK_ID_PREV SK_ID_CURR NAME_CONTRACT_TYPE AMT_ANNUITY AMT_APPLICATION AMT_CREDIT AM 0 2030495 271877 Consumer loans 1730.430 17145.0 17145.0 1 2802425 108129 Cash loans 25188.615 607500.0 679671.0 2 2523466 122040 Cash loans 112500.0 136444.5 15060.735 3 2819243 450000.0 470790.0 176158 Cash loans 47041.335 4 1784265 202054 Cash loans 31924.395 337500.0 404055.0 5 rows × 37 columns POS_CASH_balance: shape is (10001358, 8) <class 'pandas.core.frame.DataFrame'> RangeIndex: 10001358 entries, 0 to 10001357 Data columns (total 8 columns): # Column Dtype - - - SK_ID_PREV 0 int64 1 SK_ID_CURR int64 2 MONTHS_BALANCE int64 3 CNT_INSTALMENT float64 4 CNT_INSTALMENT_FUTURE float64 5 NAME_CONTRACT_STATUS object SK_DPD int64 7 SK_DPD_DEF int64 dtypes: float64(2), int64(5), object(1) memory usage: 610.4+ MB SK_ID_PREV SK_ID_CURR MONTHS_BALANCE CNT_INSTALMENT CNT_INSTALMENT_FUTURE NAME_CON 0 1803195 182943 45.0 -31 48.0 1 1715348 367990 36.0 35.0 -33 2 -32 1784872 397406 12.0 9.0 3 1903291 269225 -35 48.0 42.0 4 -35 36.0 35.0 2341044 334279 CPU times: user 19.6 s, sys: 3.85 s, total: 23.5 s Wall time: 33.1 s In [19]: for ds_name in datasets.keys(): print(f'dataset {ds_name:24}: [{datasets[ds_name].shape[0]:10,}, {datasets[ds_name] dataset application_train 307,511, 122] dataset application_test 48,744, 121] : [dataset bureau : [1,716,428, 17] dataset bureau_balance : [27, 299, 925, 3] dataset credit_card_balance 3,840,312, 23] : [dataset installments_payments : [13,605,401, 8] dataset previous_application : [1,670,214, 37] dataset POS_CASH_balance : [10,001,358, 8]

997149 non-null

float64

Exploratory Data Analysis

36 NFLAG_INSURED_ON_APPROVAL

memory usage: 471.5+ MB

dtypes: float64(15), int64(6), object(16)

Summary of Application train and Application test

Summary of Application train

```
In [20]: datasets["application_train"].shape
Out[20]: (307511, 122)
```

• There are a total of 3,07,511 rows in "application training" dataset and 122 features, including the "Target" column.

float64

In [21]: datasets["application_train"].info(verbose=True)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510
Data columns (total 122 columns):
 #
                                     Dtype
      Column
- - -
                                     ----
      SK_ID_CURR
                                     int64
 0
 1
                                     int64
      TARGET
 2
      NAME_CONTRACT_TYPE
                                     object
 3
      CODE_GENDER
                                     object
 4
      FLAG_OWN_CAR
                                     object
 5
      FLAG_OWN_REALTY
                                     object
 6
      CNT_CHILDREN
                                     int64
 7
      AMT_INCOME_TOTAL
                                     float64
 8
      AMT_CREDIT
                                     float64
 9
                                     float64
      AMT_ANNUITY
 10
      AMT_GOODS_PRICE
                                     float64
 11
      NAME_TYPE_SUITE
                                     object
 12
      NAME_INCOME_TYPE
                                     object
 13
      NAME_EDUCATION_TYPE
                                     object
 14
      NAME_FAMILY_STATUS
                                     object
 15
      NAME_HOUSING_TYPE
                                     object
 16
      REGION_POPULATION_RELATIVE
                                     float64
 17
      DAYS_BIRTH
                                     int64
 18
      DAYS_EMPLOYED
                                     int64
 19
      DAYS_REGISTRATION
                                     float64
 20
      DAYS_ID_PUBLISH
                                     int64
      OWN_CAR_AGE
 21
                                     float64
 22
      FLAG_MOBIL
                                     int64
 23
      FLAG_EMP_PHONE
                                     int64
 24
      FLAG_WORK_PHONE
                                     int64
 25
      FLAG_CONT_MOBILE
                                     int64
 26
      FLAG_PHONE
                                     int64
 27
      FLAG_EMAIL
                                     int64
 28
      OCCUPATION_TYPE
                                     object
 29
      CNT_FAM_MEMBERS
                                     float64
 30
      REGION_RATING_CLIENT
                                     int64
 31
      REGION_RATING_CLIENT_W_CITY
                                     int64
 32
      WEEKDAY_APPR_PROCESS_START
                                     object
 33
      HOUR_APPR_PROCESS_START
                                     int64
 34
      REG_REGION_NOT_LIVE_REGION
                                     int64
 35
      REG_REGION_NOT_WORK_REGION
                                     int64
 36
      LIVE_REGION_NOT_WORK_REGION
                                     int64
      REG_CITY_NOT_LIVE_CITY
 37
                                     int64
 38
      REG_CITY_NOT_WORK_CITY
                                     int64
 39
      LIVE_CITY_NOT_WORK_CITY
                                     int64
 40
      ORGANIZATION_TYPE
                                     object
 41
      EXT_SOURCE_1
                                     float64
 42
                                     float64
      EXT_SOURCE_2
                                     float64
 43
      EXT_SOURCE_3
```

44

APARTMENTS_AVG

45	BASEMENTAREA_AVG	float64
46	YEARS_BEGINEXPLUATATION_AVG	float64
47	YEARS_BUILD_AVG	float64
48	COMMONAREA_AVG	float64
49	ELEVATORS_AVG	float64
50	ENTRANCES_AVG	float64
51	FLOORSMAX_AVG	float64
52	FLOORSMIN_AVG	float64
53	LANDAREA_AVG	float64
54	LIVINGAPARTMENTS_AVG	float64
55	LIVINGAREA_AVG	float64
56	NONLIVINGAPARTMENTS_AVG	float64
57	NONLIVINGAREA_AVG	float64
58	APARTMENTS_MODE	float64
59	BASEMENTAREA_MODE	float64
60	YEARS_BEGINEXPLUATATION_MODE	float64
61	YEARS_BUILD_MODE	float64
62 63	COMMONAREA_MODE ELEVATORS_MODE	float64
64	ENTRANCES_MODE	float64 float64
65	FLOORSMAX_MODE	float64
66	FLOORSMIN_MODE	float64
67	LANDAREA_MODE	float64
68	LIVINGAPARTMENTS_MODE	float64
69	LIVINGAREA_MODE	float64
70	NONLIVINGAPARTMENTS_MODE	float64
71	NONLIVINGAREA_MODE	float64
72	APARTMENTS_MEDI	float64
73	BASEMENTAREA_MEDI	float64
74	YEARS_BEGINEXPLUATATION_MEDI	float64
75	YEARS_BUILD_MEDI	float64
76	COMMONAREA_MEDI	float64
77	ELEVATORS_MEDI	float64
78 70	ENTRANCES_MEDI	float64
79 80	FLOORSMAX_MEDI FLOORSMIN_MEDI	float64 float64
81	LANDAREA_MEDI	float64
82	LIVINGAPARTMENTS_MEDI	float64
83	LIVINGAREA_MEDI	float64
84	NONLIVINGAPARTMENTS_MEDI	float64
85	NONLIVINGAREA_MEDI	float64
86	FONDKAPREMONT_MODE	object
87	HOUSETYPE_MODE	object
88	TOTALAREA_MODE	float64
89	WALLSMATERIAL_MODE	object
90	EMERGENCYSTATE_MODE	object
91	OBS_30_CNT_SOCIAL_CIRCLE	float64
92	DEF_30_CNT_SOCIAL_CIRCLE	float64
93	OBS_60_CNT_SOCIAL_CIRCLE	float64
94	DEF_60_CNT_SOCIAL_CIRCLE	float64
95 96	DAYS_LAST_PHONE_CHANGE FLAG_DOCUMENT_2	float64
97	FLAG_DOCUMENT_2 FLAG_DOCUMENT_3	int64 int64
98	FLAG_DOCUMENT_4	int64
99	FLAG_DOCUMENT_5	int64
100	FLAG_DOCUMENT_6	int64
101	FLAG_DOCUMENT_7	int64
102	FLAG_DOCUMENT_8	int64
103	FLAG_DOCUMENT_9	int64
104	FLAG_DOCUMENT_10	int64
105	FLAG_DOCUMENT_11	int64
106	FLAG_DOCUMENT_12	int64
107	FLAG_DOCUMENT_13	int64
108	FLAG_DOCUMENT_14	int64
109	FLAC DOCUMENT_15	int64
110	FLAG_DOCUMENT_16	int64

```
111 FLAG_DOCUMENT_17
                                   int64
 112 FLAG_DOCUMENT_18
                                   int64
 113 FLAG_DOCUMENT_19
                                   int64
 114 FLAG_DOCUMENT_20
                                   int64
 115 FLAG_DOCUMENT_21
                                   int64
 116 AMT_REQ_CREDIT_BUREAU_HOUR
                                   float64
                                   float64
 117 AMT_REQ_CREDIT_BUREAU_DAY
 118 AMT_REQ_CREDIT_BUREAU_WEEK
                                   float64
 119 AMT_REQ_CREDIT_BUREAU_MON
                                   float64
                                   float64
 120 AMT_REQ_CREDIT_BUREAU_QRT
121 AMT_REQ_CREDIT_BUREAU_YEAR
                                   float64
dtypes: float64(65), int64(41), object(16)
memory usage: 286.2+ MB
```

In [22]: datasets["application_train"].describe() #numerical only features

Out[22]:		SK_ID_CURR	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AM
	count	307511.000000	307511.000000	307511.000000	3.075110e+05	3.075110e+05	307499.000000	
	mean	278180.518577	0.080729	0.417052	1.687979e+05	5.990260e+05	27108.573909	
	std	102790.175348	0.272419	0.722121	2.371231e+05	4.024908e+05	14493.737315	
	min	100002.000000	0.000000	0.000000	2.565000e+04	4.500000e+04	1615.500000	
	25%	189145.500000	0.000000	0.000000	1.125000e+05	2.700000e+05	16524.000000	
	50%	278202.000000	0.000000	0.000000	1.471500e+05	5.135310e+05	24903.000000	
	75%	367142.500000	0.000000	1.000000	2.025000e+05	8.086500e+05	34596.000000	
	max	456255.000000	1.000000	19.000000	1.170000e+08	4.050000e+06	258025.500000	

8 rows × 106 columns

In [23]:	datase	ts["applicat	ion_train"].c	describe(include <mark>='all</mark>	') #look at a	ll categorical	and numer
Out[23]:		SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN
	count	307511.000000	307511.000000	307511	307511	307511	
	unique	NaN	NaN	2	3	2	
	top	NaN	NaN	Cash loans	F	N	
	freq	NaN	NaN	278232	202448	202924	
	mean	278180.518577	0.080729	NaN	NaN	NaN	
	std	102790.175348	0.272419	NaN	NaN	NaN	
	min	100002.000000	0.000000	NaN	NaN	NaN	
	25%	189145.500000	0.000000	NaN	NaN	NaN	
	50%	278202.000000	0.000000	NaN	NaN	NaN	
	75%	367142.500000	0.000000	NaN	NaN	NaN	
	max	456255.000000	1.000000	NaN	NaN	NaN	

11 rows × 122 columns

```
In [24]: # Define function to List the categorical and Numerical features in the dataframe

def datatypes_groups(df, df_name):
    print(f"Description of the {df_name} dataset:\n")
    print("----"*15)
    print("Data type value counts: \n", df.dtypes.value_counts())
```

```
df_dtypes = df.columns.to_series().groupby(df.dtypes).groups
               print("----"*15)
              print(f"Categorical and Numerical(int + float) features of {df_name}.")
               print("----"*15)
               print()
               for k, v in df_dtypes.items():
                   print({k.name: v})
                   print("---"*10)
               print("\n \n")
In [25]:
          datatypes_groups(datasets['application_train'], 'application_train')
          Description of the application_train dataset:
          ______
          Data type value counts:
           float64
                     65
          int64
                      41
          object
          dtype: int64
          Categorical and Numerical(int + float) features of application_train.
          'FLAG_CONT_MOBILE', 'FLAG_PHONE', 'FLAG_EMAIL', 'REGION_RATING_CLIENT',
                  'REGION_RATING_CLIENT_W_CITY', 'HOUR_APPR_PROCESS_START', 'REG_REGION_NOT_LIVE_REGION', 'REG_REGION_NOT_WORK_REGION',
                  'LIVE_REGION_NOT_WORK_REGION', 'REG_CITY_NOT_LIVE_CITY',
                  'REG_CITY_NOT_WORK_CITY', 'LIVE_CITY_NOT_WORK_CITY', 'FLAG_DOCUMENT_2',
                  'FLAG_DOCUMENT_3', 'FLAG_DOCUMENT_4', 'FLAG_DOCUMENT_5', 'FLAG_DOCUMENT_6', 'FLAG_DOCUMENT_7', 'FLAG_DOCUMENT_8', 'FLAG_DOCUMENT_9', 'FLAG_DOCUMENT_10', 'FLAG_DOCUMENT_11',
                  'FLAG_DOCUMENT_12', 'FLAG_DOCUMENT_13', 'FLAG_DOCUMENT_14',
                  'FLAG_DOCUMENT_15', 'FLAG_DOCUMENT_16', 'FLAG_DOCUMENT_17', 'FLAG_DOCUMENT_18', 'FLAG_DOCUMENT_19', 'FLAG_DOCUMENT_20',
                  'FLAG_DOCUMENT_21'],
                dtype='object')}
          {'float64': Index(['AMT_INCOME_TOTAL', 'AMT_CREDIT', 'AMT_ANNUITY', 'AMT_GOODS_PRICE',
                  'REGION_POPULATION_RELATIVE', 'DAYS_REGISTRATION', 'OWN_CAR_AGE',
                  'CNT_FAM_MEMBERS', 'EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3'
                  'APARTMENTS_AVG', 'BASEMENTAREA_AVG', 'YEARS_BEGINEXPLUATATION_AVG', 'YEARS_BUILD_AVG', 'COMMONAREA_AVG', 'ELEVATORS_AVG', 'ENTRANCES_AVG',
                  'FLOORSMAX_AVG', 'FLOORSMIN_AVG', 'LANDAREA_AVG',
                  'LIVINGAPARTMENTS_AVG', 'LIVINGAREA_AVG', 'NONLIVINGAPARTMENTS_AVG',
                  'NONLIVINGAREA_AVG', 'APARTMENTS_MODE', 'BASEMENTAREA_MODE',
                  'YEARS_BEGINEXPLUATATION_MODE', 'YEARS_BUILD_MODE', 'COMMONAREA_MODE',
                  'ELEVATORS_MODE', 'ENTRANCES_MODE', 'FLOORSMAX_MODE', 'FLOORSMIN_MODE',
                  'LANDAREA_MODE', 'LIVINGAPARTMENTS_MODE', 'LIVINGAREA_MODE',
                  'NONLIVINGAPARTMENTS_MODE', 'NONLIVINGAREA_MODE', 'APARTMENTS_MEDI',
                  'BASEMENTAREA_MEDI', 'YEARS_BEGINEXPLUATATION_MEDI', 'YEARS_BUILD_MEDI',
                  'COMMONAREA_MEDI', 'ELEVATORS_MEDI', 'ENTRANCES_MEDI', 'FLOORSMAX_MEDI',
                  'FLOORSMIN_MEDI', 'LANDAREA_MEDI', 'LIVINGAPARTMENTS_MEDI',
                  'LIVINGAREA_MEDI', 'NONLIVINGAPARTMENTS_MEDI', 'NONLIVINGAREA_MEDI',
                  'TOTALAREA_MODE', 'OBS_30_CNT_SOCIAL_CIRCLE',
                  'DEF_30_CNT_SOCIAL_CIRCLE', 'OBS_60_CNT_SOCIAL_CIRCLE', 'DEF_60_CNT_SOCIAL_CIRCLE', 'DAYS_LAST_PHONE_CHANGE',
                  'AMT_REQ_CREDIT_BUREAU_HOUR', 'AMT_REQ_CREDIT_BUREAU_DAY',
                  'AMT_REQ_CREDIT_BUREAU_WEEK', 'AMT_REQ_CREDIT_BUREAU_MON', 'AMT_REQ_CREDIT_BUREAU_YEAR'],
                dtype='object')}
```

- Explaination
- There are 16 Categorical features and 106 Numerical(int + float) features in the "application_train" dataset.

Summary of Application test

```
In [26]: datasets["application_test"].shape
Out[26]: (48744, 121)
```

• There are a total of 487,44 rows in "application test" dataset and 122 features, including the "Target" column.

```
In [27]: datasets["application_test"].info(verbose=True)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48744 entries, 0 to 48743
Data columns (total 121 columns):

#	Column	Dtype
0	SK_ID_CURR	int64
1	NAME_CONTRACT_TYPE	object
2	CODE_GENDER	object
3	FLAG_OWN_CAR	object
4	FLAG_OWN_REALTY	object
5	CNT_CHILDREN	int64
6	AMT_INCOME_TOTAL	float64
7	AMT_CREDIT	float64
8	AMT_ANNUITY	float64
9	AMT_GOODS_PRICE	float64
10	NAME_TYPE_SUITE	object
11	NAME_INCOME_TYPE	object
12	NAME_EDUCATION_TYPE	object
13	NAME_FAMILY_STATUS	object
14	NAME_HOUSING_TYPE	object
15	REGION_POPULATION_RELATIVE	float64
16	DAYS_BIRTH	int64
17	DAYS_EMPLOYED	int64
18	DAYS_REGISTRATION	float64
19	DAYS_ID_PUBLISH	int64
20	OWN_CAR_AGE	float64
21	FLAG_MOBIL	int64
22	FLAG_EMP_PHONE	int64
23	FLAG_WORK_PHONE	int64
24	FLAG_CONT_MOBILE	int64
25	FLAG_PHONE	int64
26	FLAG_EMAIL	int64
27	OCCUPATION_TYPE	object

28	CNT_FAM_MEMBERS	float64
29	REGION_RATING_CLIENT	int64
30	REGION_RATING_CLIENT_W_CITY	int64
31	WEEKDAY_APPR_PROCESS_START	object
32	HOUR_APPR_PROCESS_START	int64
33	REG_REGION_NOT_LIVE_REGION	int64
34	REG_REGION_NOT_WORK_REGION	int64
35	LIVE_REGION_NOT_WORK_REGION	int64
36	REG_CITY_NOT_LIVE_CITY	int64
37 38	REG_CITY_NOT_WORK_CITY LIVE_CITY_NOT_WORK_CITY	int64 int64
39	ORGANIZATION_TYPE	object
40	EXT_SOURCE_1	float64
41	EXT_SOURCE_2	float64
42	EXT_SOURCE_3	float64
43	APARTMENTS_AVG	float64
44	BASEMENTAREA_AVG	float64
45	YEARS_BEGINEXPLUATATION_AVG	float64
46	YEARS_BUILD_AVG	float64
47	COMMONAREA_AVG	float64
48	ELEVATORS_AVG	float64
49	ENTRANCES_AVG	float64
50	FLOORSMAX_AVG	float64
51	FLOORSMIN_AVG	float64
52 53	LANDAREA_AVG LIVINGAPARTMENTS_AVG	float64 float64
53 54	LIVINGAPARTMENTS_AVG	float64
55	NONLIVINGAPARTMENTS_AVG	float64
56	NONLIVINGAREA_AVG	float64
57	APARTMENTS_MODE	float64
58	BASEMENTAREA_MODE	float64
59	YEARS_BEGINEXPLUATATION_MODE	float64
60	YEARS_BUILD_MODE	float64
61	COMMONAREA_MODE	float64
62	ELEVATORS_MODE	float64
63	ENTRANCES_MODE	float64
64	FLOORSMAX_MODE	float64
65 66	FLOORSMIN_MODE	float64
66 67	LANDAREA_MODE LIVINGAPARTMENTS_MODE	float64 float64
68	LIVINGAPARTMENTS_MODE	float64
69	NONLIVINGAPARTMENTS_MODE	float64
70	NONLIVINGAREA MODE	float64
71	APARTMENTS_MEDI	float64
72	BASEMENTAREA_MEDI	float64
73	YEARS_BEGINEXPLUATATION_MEDI	float64
74	YEARS_BUILD_MEDI	float64
75	COMMONAREA_MEDI	float64
76	ELEVATORS_MEDI	float64
77	ENTRANCES_MEDI	float64
78	FLOORSMAX_MEDI	float64
79	FLOORSMIN_MEDI	float64
80 81	LANDAREA_MEDI LIVINGAPARTMENTS_MEDI	float64 float64
82	LIVINGAPARTMENTS_MEDI	float64
83	NONLIVINGAPARTMENTS_MEDI	float64
84	NONLIVINGAREA_MEDI	float64
85	FONDKAPREMONT_MODE	object
86	HOUSETYPE_MODE	object
87	TOTALAREA_MODE	float64
88	WALLSMATERIAL_MODE	object
89	EMERGENCYSTATE_MODE	object
90	OBS_30_CNT_SOCIAL_CIRCLE	float64
91	DEF_30_CNT_SOCIAL_CIRCLE	float64
92	OBS_60_CNT_SOCIAL_CIRCLE	float64
93	DEF_60_CNT_SOCIAL_CIRCLE	float64

94	DAYS_LAST_PHONE_CHANGE	float64
95	FLAG_DOCUMENT_2	int64
96	FLAG_DOCUMENT_3	int64
97	FLAG_DOCUMENT_4	int64
98	FLAG_DOCUMENT_5	int64
99	FLAG_DOCUMENT_6	int64
100	FLAG_DOCUMENT_7	int64
101	FLAG_DOCUMENT_8	int64
102	FLAG_DOCUMENT_9	int64
103	FLAG_DOCUMENT_10	int64
104	FLAG_DOCUMENT_11	int64
105	FLAG_DOCUMENT_12	int64
106	FLAG_DOCUMENT_13	int64
107	FLAG_DOCUMENT_14	int64
108	FLAG_DOCUMENT_15	int64
109	FLAG_DOCUMENT_16	int64
110	FLAG_DOCUMENT_17	int64
111	FLAG_DOCUMENT_18	int64
112	FLAG_DOCUMENT_19	int64
113	FLAG_DOCUMENT_20	int64
114	FLAG_DOCUMENT_21	int64
115	AMT_REQ_CREDIT_BUREAU_HOUR	float64
116	AMT_REQ_CREDIT_BUREAU_DAY	float64
117	AMT_REQ_CREDIT_BUREAU_WEEK	float64
118	AMT_REQ_CREDIT_BUREAU_MON	float64
119	AMT_REQ_CREDIT_BUREAU_QRT	float64
	AMT_REQ_CREDIT_BUREAU_YEAR	
	s: float64(65), int64(40), obje	ect(16)
nemory	/ usage: 45.0+ MB	

memory usage: 45.0+ MB

In [28]: datasets["application_test"].describe() #numerical only features

Out[28]:		SK_ID_CURR	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRIC
	count	48744.000000	48744.000000	4.874400e+04	4.874400e+04	48720.000000	4.874400e+0
	mean	277796.676350	0.397054	1.784318e+05	5.167404e+05	29426.240209	4.626188e+0
	std	103169.547296	0.709047	1.015226e+05	3.653970e+05	16016.368315	3.367102e+0
	min	100001.000000	0.000000	2.694150e+04	4.500000e+04	2295.000000	4.500000e+0
	25%	188557.750000	0.000000	1.125000e+05	2.606400e+05	17973.000000	2.250000e+0
	50%	277549.000000	0.000000	1.575000e+05	4.500000e+05	26199.000000	3.960000e+0
	75%	367555.500000	1.000000	2.250000e+05	6.750000e+05	37390.500000	6.300000e+0
	max	456250 000000	20 000000	4 410000e+06	2 245500e+06	180576 000000	2 245500e+0

8 rows × 105 columns

datasets["application_test"].describe(include='all') #look at all categorical and numeri

Out[29]:		SK_ID_CURR	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT
	count	48744.000000	48744	48744	48744	48744	48
	unique	NaN	2	2	2	2	
	top	NaN	Cash loans	F	N	Υ	
	freq	NaN	48305	32678	32311	33658	
	mean	277796.676350	NaN	NaN	NaN	NaN	
	std	103169.547296	NaN	NaN	NaN	NaN	
	min	100001.000000	NaN	NaN	NaN	NaN	

25 % 188557.750000	NaN	NaN	NaN	NaN
50% 277549.000000	NaN	NaN	NaN	NaN
75 % 367555.500000	NaN	NaN	NaN	NaN
max 456250.000000	NaN	NaN	NaN	NaN

11 rows × 121 columns

```
In [30]:
          datatypes_groups(datasets['application_test'], 'application_test')
          Description of the application_test dataset:
          Data type value counts:
           float64 65
                      40
          int64
          object
                      16
          dtype: int64
          Categorical and Numerical(int + float) features of application_test.
          {'int64': Index(['SK_ID_CURR', 'CNT_CHILDREN', 'DAYS_BIRTH', 'DAYS_EMPLOYED',
                  'DAYS_ID_PUBLISH', 'FLAG_MOBIL', 'FLAG_EMP_PHONE', 'FLAG_WORK_PHONE',
                  'FLAG_CONT_MOBILE', 'FLAG_PHONE', 'FLAG_EMAIL', 'REGION_RATING_CLIENT',
                  'REGION_RATING_CLIENT_W_CITY', 'HOUR_APPR_PROCESS_START',
                  'REG_REGION_NOT_LIVE_REGION', 'REG_REGION_NOT_WORK_REGION',
                  'LIVE_REGION_NOT_WORK_REGION', 'REG_CITY_NOT_LIVE_CITY',
                  'REG_CITY_NOT_WORK_CITY', 'LIVE_CITY_NOT_WORK_CITY', 'FLAG_DOCUMENT_2',
                  'FLAG_DOCUMENT_3', 'FLAG_DOCUMENT_4', 'FLAG_DOCUMENT_5', 'FLAG_DOCUMENT_6', 'FLAG_DOCUMENT_7', 'FLAG_DOCUMENT_8',
                  'FLAG_DOCUMENT_9', 'FLAG_DOCUMENT_10', 'FLAG_DOCUMENT_11'
                 'FLAG_DOCUMENT_12', 'FLAG_DOCUMENT_13', 'FLAG_DOCUMENT_14',
'FLAG_DOCUMENT_15', 'FLAG_DOCUMENT_16', 'FLAG_DOCUMENT_17',
                  'FLAG_DOCUMENT_18', 'FLAG_DOCUMENT_19', 'FLAG_DOCUMENT_20',
                  'FLAG_DOCUMENT_21'],
                dtype='object')}
          {'float64': Index(['AMT_INCOME_TOTAL', 'AMT_CREDIT', 'AMT_ANNUITY', 'AMT_GOODS_PRICE',
                  'REGION_POPULATION_RELATIVE', 'DAYS_REGISTRATION', 'OWN_CAR_AGE',
                  'CNT_FAM_MEMBERS', 'EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3'
                  'APARTMENTS_AVG', 'BASEMENTAREA_AVG', 'YEARS_BEGINEXPLUATATION_AVG',
                  'YEARS_BUILD_AVG', 'COMMONAREA_AVG', 'ELEVATORS_AVG', 'ENTRANCES_AVG',
                  'FLOORSMAX_AVG', 'FLOORSMIN_AVG', 'LANDAREA_AVG',
                  'LIVINGAPARTMENTS_AVG', 'LIVINGAREA_AVG', 'NONLIVINGAPARTMENTS_AVG',
                  'NONLIVINGAREA_AVG', 'APARTMENTS_MODE', 'BASEMENTAREA_MODE',
                  'YEARS_BEGINEXPLUATATION_MODE', 'YEARS_BUILD_MODE', 'COMMONAREA_MODE', 'ELEVATORS_MODE', 'ENTRANCES_MODE', 'FLOORSMAX_MODE', 'FLOORSMIN_MODE',
                  'LANDAREA_MODE', 'LIVINGAPARTMENTS_MODE', 'LIVINGAREA_MODE',
                  'NONLIVINGAPARTMENTS_MODE', 'NONLIVINGAREA_MODE', 'APARTMENTS_MEDI',
                  'BASEMENTAREA_MEDI', 'YEARS_BEGINEXPLUATATION_MEDI', 'YEARS_BUILD_MEDI',
                  'COMMONAREA_MEDI', 'ELEVATORS_MEDI', 'ENTRANCES_MEDI', 'FLOORSMAX_MEDI',
                  'FLOORSMIN_MEDI', 'LANDAREA_MEDI', 'LIVINGAPARTMENTS_MEDI',
                  'LIVINGAREA_MEDI', 'NONLIVINGAPARTMENTS_MEDI', 'NONLIVINGAREA_MEDI',
                  'TOTALAREA_MODE', 'OBS_30_CNT_SOCIAL_CIRCLE',
                  'DEF_30_CNT_SOCIAL_CIRCLE', 'OBS_60_CNT_SOCIAL_CIRCLE',
                  'DEF_60_CNT_SOCIAL_CIRCLE', 'DAYS_LAST_PHONE_CHANGE',
                  'AMT_REQ_CREDIT_BUREAU_HOUR', 'AMT_REQ_CREDIT_BUREAU_DAY',
                  'AMT_REQ_CREDIT_BUREAU_WEEK', 'AMT_REQ_CREDIT_BUREAU_MON',
                  'AMT_REQ_CREDIT_BUREAU_QRT', 'AMT_REQ_CREDIT_BUREAU_YEAR'],
                dtype='object')}
          {'object': Index(['NAME_CONTRACT_TYPE', 'CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALT
          Υ',
```

```
'NAME_TYPE_SUITE', 'NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE',
'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'OCCUPATION_TYPE',
'WEEKDAY_APPR_PROCESS_START', 'ORGANIZATION_TYPE', 'FONDKAPREMONT_MODE',
'HOUSETYPE_MODE', 'WALLSMATERIAL_MODE', 'EMERGENCYSTATE_MODE'],
dtype='object')}
```

Explaination

In [32]: **import** missingno **as** msno

In [33]:

import matplotlib.pyplot as plt

missing_application_train_data.head(20)

 There are 16 Categorical features and 105 Numerical(int + float) features in the "application_test" dataset.

Missing data for application train and test

Missing data for application train

```
In [31]: !pip install missingno
         Requirement already satisfied: missingno in /usr/local/lib/python3.9/site-packages (0.5.
         Requirement already satisfied: numpy in /usr/local/lib/python3.9/site-packages (from mis
         singno) (1.22.0)
         Requirement already satisfied: seaborn in /usr/local/lib/python3.9/site-packages (from m
         issingno) (0.11.2)
         Requirement already satisfied: matplotlib in /usr/local/lib/python3.9/site-packages (fro
         m missingno) (3.4.3)
         Requirement already satisfied: scipy in /usr/local/lib/python3.9/site-packages (from mis
         singno) (1.7.3)
         Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.9/site-packag
         es (from matplotlib->missingno) (1.3.2)
         Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.9/site-pac
         kages (from matplotlib->missingno) (2.8.2)
         Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.9/site-packages
         (from matplotlib->missingno) (9.0.0)
         Requirement already satisfied: pyparsing>=2.2.1 in /usr/local/lib/python3.9/site-package
         s (from matplotlib->missingno) (3.0.6)
         Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.9/site-packages (f
         rom matplotlib->missingno) (0.11.0)
         Requirement already satisfied: pandas>=0.23 in /usr/local/lib/python3.9/site-packages (f
         rom seaborn->missingno) (1.3.5)
         Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.9/site-packages (f
         rom pandas>=0.23->seaborn->missingno) (2021.3)
         Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/site-packages (from
         python-dateutil>=2.7->matplotlib->missingno) (1.15.0)
         WARNING: Running pip as the 'root' user can result in broken permissions and conflicting
          behaviour with the system package manager. It is recommended to use a virtual environme
         nt instead: https://pip.pypa.io/warnings/venv
         WARNING: You are using pip version 21.3.1; however, version 24.0 is available.
         You should consider upgrading via the '/usr/local/bin/python -m pip install --upgrade pi
         p' command.
```

percent = (datasets["application_train"].isnull().sum()/datasets["application_train"].is

sum_missing = datasets["application_train"].isna().sum().sort_values(ascending = False)
missing_application_train_data = pd.concat([percent, sum_missing], axis=1, keys=['Perce

	Percent	Train Missing Count
COMMONAREA_MEDI	69.87	214865
COMMONAREA_AVG	69.87	214865
COMMONAREA_MODE	69.87	214865
NONLIVINGAPARTMENTS_MODE	69.43	213514
NONLIVINGAPARTMENTS_AVG	69.43	213514
NONLIVINGAPARTMENTS_MEDI	69.43	213514
FONDKAPREMONT_MODE	68.39	210295
LIVINGAPARTMENTS_MODE	68.35	210199
LIVINGAPARTMENTS_AVG	68.35	210199
LIVINGAPARTMENTS_MEDI	68.35	210199
FLOORSMIN_AVG	67.85	208642
FLOORSMIN_MODE	67.85	208642
FLOORSMIN_MEDI	67.85	208642
YEARS_BUILD_MEDI	66.50	204488
YEARS_BUILD_MODE	66.50	204488
YEARS_BUILD_AVG	66.50	204488
OWN_CAR_AGE	65.99	202929
LANDAREA_MEDI	59.38	182590
LANDAREA_MODE	59.38	182590
LANDAREA_AVG	59.38	182590

```
# msno.bar(datasets['application_train'])
In [34]:
```

Out[33]:

In [35]: # msno.matrix(datasets['application_train'])

Missing data for application test

In [36]: percent = (datasets["application_test"].isnull().sum()/datasets["application_test"].isnu sum_missing = datasets["application_test"].isna().sum().sort_values(ascending = False) missing_application_train_data = pd.concat([percent, sum_missing], axis=1, keys=['Perce missing_application_train_data.head(20)

32780

67.25

Out[36]:		Percent	Test Missing Count
	COMMONAREA_AVG	68.72	33495
	COMMONAREA_MODE	68.72	33495
	COMMONAREA_MEDI	68.72	33495
	NONLIVINGAPARTMENTS_AVG	68.41	33347
	NONLIVINGAPARTMENTS_MODE	68.41	33347
	NONLIVINGAPARTMENTS_MEDI	68.41	33347
	FONDKAPREMONT_MODE	67.28	32797
	LIVINGAPARTMENTS_AVG	67.25	32780
	LIVINGAPARTMENTS_MODE	67.25	32780

LIVINGAPARTMENTS_MEDI

FLOORSMIN_MEDI	66.61	32466
FLOORSMIN_AVG	66.61	32466
FLOORSMIN_MODE	66.61	32466
OWN_CAR_AGE	66.29	32312
YEARS_BUILD_AVG	65.28	31818
YEARS_BUILD_MEDI	65.28	31818
YEARS_BUILD_MODE	65.28	31818
LANDAREA_MEDI	57.96	28254
LANDAREA_AVG	57.96	28254
LANDAREA_MODE	57.96	28254

```
In [37]: # msno.bar(datasets['application_test'])
In [38]: # msno.matrix(datasets['application_test'])
```

Distribution of the target column

```
In [39]: # Print the value counts of the 'TARGET' column in "application_train" dataset
    print(datasets["application_train"]['TARGET'].value_counts())

0     282686
1     24825
Name: TARGET, dtype: int64

In [40]: # Plot the distribution of the values of 'TARGET' column in "application_train" dataset
    import matplotlib.pyplot as plt
    import seaborn as sns
    target_distribution = datasets["application_train"]['TARGET'].value_counts()
    plt.figure(figsize=(4, 5))
    sns.barplot(x=target_distribution.index, y=target_distribution.values)
    plt.title('Distribution of TARGET Column in "application_train" dataset') # Set the tit
    plt.ylabel('Frequency')
    plt.show()
```

Distribution of TARGET Column in "application_train" dataset

- Explaination
- As shown above, an imbalanced class issue was found in the "application_train" dataset. Class
 Imbalance is a common problem in machine learning, especially in classification tasks. This problem
 can negatively impact the performance and accuracy of machine models. Therefore, we need to handle
 the class imbalance problem before performing machine learning using combining Undersampling and
 Oversampling' techniques.

Correlation with the target column

```
correlations = datasets["application_train"].corr()['TARGET'].sort_values()
In [41]:
         print('Most Positive Correlations:\n', correlations.tail(10))
         print('\nMost Negative Correlations:\n', correlations.head(10))
         Most Positive Correlations:
          FLAG_DOCUMENT_3
                                          0.044346
         REG_CITY_NOT_LIVE_CITY
                                         0.044395
         FLAG_EMP_PHONE
                                         0.045982
         REG_CITY_NOT_WORK_CITY
                                         0.050994
         DAYS_ID_PUBLISH
                                         0.051457
         DAYS_LAST_PHONE_CHANGE
                                         0.055218
         REGION_RATING_CLIENT
                                         0.058899
         REGION_RATING_CLIENT_W_CITY
                                         0.060893
         DAYS_BIRTH
                                         0.078239
         TARGET
                                         1.000000
         Name: TARGET, dtype: float64
         Most Negative Correlations:
          EXT_SOURCE_3
                                        -0.178919
         EXT_SOURCE_2
                                       -0.160472
         EXT_SOURCE_1
                                       -0.155317
         DAYS_EMPLOYED
                                       -0.044932
         FLOORSMAX_AVG
                                       -0.044003
         FLOORSMAX_MEDI
                                       -0.043768
         FLOORSMAX_MODE
                                       -0.043226
         AMT_GOODS_PRICE
                                       -0.039645
         REGION_POPULATION_RELATIVE
                                       -0.037227
         ELEVATORS_AVG
                                       -0.034199
         Name: TARGET, dtype: float64
```

```
most_positive_correlations = correlations.tail(10).index.tolist() #Positively correlated
         most_negative_correlations = correlations.head(10).index.tolist() #Negatively correlated
         top_correlated_features = most_positive_correlations + most_negative_correlations
         top_correlated_features
Out[42]: ['FLAG_DOCUMENT_3',
          'REG_CITY_NOT_LIVE_CITY',
           'FLAG_EMP_PHONE',
           'REG_CITY_NOT_WORK_CITY',
          'DAYS_ID_PUBLISH',
           'DAYS_LAST_PHONE_CHANGE',
           'REGION_RATING_CLIENT',
           'REGION_RATING_CLIENT_W_CITY',
           'DAYS_BIRTH',
           'TARGET',
           'EXT_SOURCE_3',
           'EXT_SOURCE_2',
           'EXT_SOURCE_1',
           'DAYS_EMPLOYED',
           'FLOORSMAX_AVG'
          'FLOORSMAX_MEDI',
          'FLOORSMAX_MODE',
           'AMT_GOODS_PRICE',
           'REGION_POPULATION_RELATIVE',
          'ELEVATORS_AVG']
         # Subset the 'application_train' dataset to include only the top correlated features
In [43]:
         application_train_subset = datasets["application_train"][top_correlated_features]
         # Calculate the correlation matrix for the subset of features
         matrix_model_subset = application_train_subset.corr().round(2)
         # Applying mask
         mask = np.triu(np.ones_like(matrix_model_subset, dtype=bool))
         # Plotting a triangle correlation heatmap for the subset of features
         plt.figure(figsize=(18, 16))
         sns.heatmap(matrix_model_subset, annot=True, mask=mask, cmap='coolwarm')
         plt.title('Correlation Matrix of the Model dataset (Top Correlated Features)', fontsize=
         plt.show()
```


- Explaination
- The correlation results with the TARGET column from the application_train dataset showed that the variables most positively correlated with the target variable was DAYS_BIRTH (0.078239), whereas, the variables most negatively correlated with the target variable was EXT_SOURCE_3 (-0.178919).

Applicants Age

```
In [44]: plt.hist(datasets["application_train"]['DAYS_BIRTH'] / -365, edgecolor = 'k', bins = 25)
plt.title('Age of Client'); plt.xlabel('Age (years)'); plt.ylabel('Count');
```


Applicants occupations

```
In [45]: sns.countplot(x='OCCUPATION_TYPE', data=datasets["application_train"]);
  plt.title('Applicants Occupation');
  plt.xticks(rotation=90);
```


Dataset questions

Unique record for each SK_ID_CURR

```
In [46]: list(datasets.keys())
    ['application_train',
```

```
Out[46]:
           'application_test',
           'bureau',
           'bureau_balance',
           'credit_card_balance',
           'installments_payments',
           'previous_application',
           'POS_CASH_balance']
         len(datasets["application_train"]["SK_ID_CURR"].unique()) == datasets["application_train"]
In [47]:
         True
Out[47]:
          # is there an overlap between the test and train customers
In [48]:
          np.intersect1d(datasets["application_train"]["SK_ID_CURR"], datasets["application_test"
         array([], dtype=int64)
Out[48]:
In [49]:
          datasets["application_test"].shape
         (48744, 121)
Out[49]:
          datasets["application_train"].shape
In [50]:
          (307511, 122)
Out[50]:
```

previous applications for the submission file

The persons in the kaggle submission file have had previous applications in the previous_application.csv . 47,800 out 48,744 people have had previous applications.

```
In [51]: appsDF = datasets["previous_application"]
    display(appsDF.head())
    print(f"{appsDF.shape[0]:,} rows, {appsDF.shape[1]:,} columns")
```

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	AM
0	2030495	271877	Consumer loans	1730.430	17145.0	17145.0	
1	2802425	108129	Cash loans	25188.615	607500.0	679671.0	
2	2523466	122040	Cash loans	15060.735	112500.0	136444.5	
3	2819243	176158	Cash loans	47041.335	450000.0	470790.0	
4	1784265	202054	Cash loans	31924.395	337500.0	404055.0	

5 rows × 37 columns

1,670,214 rows, 37 columns

```
In [52]: print(f"There are {appsDF.shape[0]:,} previous applications")
```

There are 1,670,214 previous applications

```
In [53]: #Find the intersection of two arrays.

print(f'Number of train applicants with previous applications is {len(np.intersect1d(dat

Number of train applicants with previous applications is 291,057
```

```
In [54]: #Find the intersection of two arrays.
print(f'Number of train applicants with previous applications is {len(np.intersect1d(dat
```

Number of train applicants with previous applications is 47,800

```
In [55]: # How many previous applications per applicant in the previous_application
    prevAppCounts = appsDF['SK_ID_CURR'].value_counts(dropna=False)
    len(prevAppCounts[prevAppCounts >40]) #more that 40 previous applications
    plt.hist(prevAppCounts[prevAppCounts>=0], bins=100)
    plt.grid()
```



```
In []:
In [56]: # Display the applicants with more than 50 applications in the dataset.

plt.figure(figsize=(10, 6))
   prevAppCounts[prevAppCounts >50].plot(kind='bar')
   plt.xticks(rotation = 45)
   plt.show()
```


Histogram of Number of previous applications for an ID

```
In [57]: sum(appsDF['SK_ID_CURR'].value_counts()==1)
Out[57]: 60458
```

```
In [58]: plt.figure(figsize=(8, 5))
   plt.hist(appsDF['SK_ID_CURR'].value_counts(), cumulative =True, bins = 100);
   plt.grid()
   plt.ylabel('cumulative number of IDs')
   plt.xlabel('Number of previous applications per ID')
   plt.title('Histogram of Number of previous applications for an ID')
   plt.show()
```


Can we differentiate applications by low, medium and high previous apps?

```
* Low = <5 claims (22%)

* Medium = 10 to 39 claims (58%)

* High = 40 or more claims (20%)
```

```
In [59]: apps_all = appsDF['SK_ID_CURR'].nunique()
    apps_5plus = appsDF['SK_ID_CURR'].value_counts()>=5
    apps_40plus = appsDF['SK_ID_CURR'].value_counts()>=40
    print('Percentage with 10 or more previous apps:', np.round(100.*(sum(apps_5plus)/apps_a
    print('Percentage with 40 or more previous apps:', np.round(100.*(sum(apps_40plus)/apps_
```

Percentage with 10 or more previous apps: 41.76895 Percentage with 40 or more previous apps: 0.03453

Joining secondary tables with the primary table

In the case of the HCDR competition (and many other machine learning problems that involve multiple tables in 3NF or not) we need to join these datasets (denormalize) when using a machine learning pipeline. Joining the secondary tables with the primary table will lead to lots of new features about each loan application; these features will tend to be aggregate type features or meta data about the loan or its application. How can we do this when using Machine Learning Pipelines?

Joining previous_application with application_x

We refer to the application_train data (and also application_test data also) as the **primary table** and the other files as the **secondary tables** (e.g., previous_application dataset). All tables

can be joined using the primary key SK_ID_PREV .

Let's assume we wish to generate a feature based on previous application attempts. In this case, possible features here could be:

- A simple feature could be the number of previous applications.
- Other summary features of original features such as AMT_APPLICATION, AMT_CREDIT could be based on average, min, max, median, etc.

To build such features, we need to join the application_train data (and also application_test data also) with the 'previous application' dataset (and the other available datasets).

When joining this data in the context of pipelines, different strategies come to mind with various tradeoffs:

- 1. Preprocess each of the non-application data sets, thereby generating many new (derived) features, and then joining (aka merge) the results with the application_train data (the labeled dataset) and with the application_test data (the unlabeled submission dataset) prior to processing the data (in a train, valid, test partition) via your machine learning pipeline. [This approach is recommended for this HCDR competition. WHY?]
- Do the joins as part of the transformation steps. [Not recommended here. WHY?]. How can this be done? Will it work?
 - This would be necessary if we had dataset wide features such as IDF (inverse document frequency) which depend on the entire subset of data as opposed to a single loan application (e.g., a feature about the relative amount applied for such as the percentile of the loan amount being applied for).

I want you to think about this section and build on this.

Roadmap for secondary table processing

- 1. Transform all the secondary tables to features that can be joined into the main table the application table (labeled and unlabeled)
 - 'bureau', 'bureau balance', 'credit card balance', 'installments payments',
 - 'previous application', 'POS CASH balance'
- Merge the transformed secondary tables with the primary tables (i.e., the application_train data (the labeled dataset) and with the application_test data (the unlabeled submission dataset)), thereby leading to X_train, y_train, X_valid, etc.
- Proceed with the learning pipeline using X train, y train, X valid, etc.
- Generate a submission file using the learnt model

agg detour

Aggregate using one or more operations over the specified axis.

For more details see agg

```
DataFrame.agg(func, axis=0, *args, **kwargs**)
```

Aggregate using one or more operations over the specified axis.

```
In [60]: df = pd.DataFrame([[1, 2, 3],
                              [4, 5, 6],
                             [7, 8, 9],
                             [np.nan, np.nan, np.nan]],
                             columns=['A', 'B', 'C'])
         display(df)
                       С
              Α
                   В
                  2.0
         0
             1.0
                      3.0
             4.0
                  5.0
                      6.0
         2
             7.0
                 8.0
                      9.0
         3 NaN
                 NaN
                     NaN
         df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
In [61]:
                 Α
         #max
                NaN 8.0
         #min
                1.0 2.0
               12.0 NaN
         #sum
                Α
                     В
Out[61]:
         sum 12.0 NaN
               1.0 2.0
          min
                  8.0
         max NaN
In [62]: df = pd.DataFrame(\{'A': [1, 1, 2, 2],
                              'B': [1, 2, 3, 4],
                              'C': np.random.randn(4)})
         display(df)
            А В
                       С
         0 1 1 -1.924206
         1 1 2 -0.839642
         2 2 3 -1.597312
         3 2 4 -0.823235
In [63]: # group by column A:
         df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'})
         # B
         # min max
                        sum
         #A
         #1
             1 2 0.590716
         #2
                  4 0.704907
                           С
                   В
Out[63]:
            min max
                         sum
         Α
          1
              1
                   2 -2.763848
          2
              3
                   4 -2.420547
In [64]: appsDF.columns
```

```
'AMT_APPLICATION', 'AMT_CREDIT', 'AMT_DOWN_PAYMENT', 'AMT_GOODS_PRICE',
                 'WEEKDAY_APPR_PROCESS_START', 'HOUR_APPR_PROCESS_START',
                 'FLAG_LAST_APPL_PER_CONTRACT', 'NFLAG_LAST_APPL_IN_DAY',
                 'RATE_DOWN_PAYMENT', 'RATE_INTEREST_PRIMARY'
                 'RATE_INTEREST_PRIVILEGED', 'NAME_CASH_LOAN_PURPOSE',
                 'NAME_CONTRACT_STATUS', 'DAYS_DECISION', 'NAME_PAYMENT_TYPE',
                                                         'NAME_CLIENT_TYPE',
                                       'NAME_TYPE_SUITE',
                 'CODE_REJECT_REASON',
                 'NAME_GOODS_CATEGORY', 'NAME_PORTFOLIO', 'NAME_PRODUCT_TYPE',
                 'CHANNEL_TYPE', 'SELLERPLACE_AREA', 'NAME_SELLER_INDUSTRY',
                 'CNT_PAYMENT', 'NAME_YIELD_GROUP', 'PRODUCT_COMBINATION',
                 'DAYS_FIRST_DRAWING', 'DAYS_FIRST_DUE', 'DAYS_LAST_DUE_1ST_VERSION',
                 'DAYS_LAST_DUE', 'DAYS_TERMINATION', 'NFLAG_INSURED_ON_APPROVAL'],
               dtype='object')
In [ ]:
         funcs = ["a", "b", "c"]
In [65]:
          {f:f"{f}_max" for f in funcs}
         {'a': 'a_max', 'b': 'b_max', 'c': 'c_max'}
Out[65]:
```

Out[64]: Index(['SK_ID_PREV', 'SK_ID_CURR', 'NAME_CONTRACT_TYPE', 'AMT_ANNUITY'

Multiple condition expressions in Pandas

So far, both our boolean selections have involved a single condition. You can, of course, have as many conditions as you would like. To do so, you will need to combine your boolean expressions using the three logical operators and, or and not.

Use &, | , ~ Although Python uses the syntax and, or, and not, these will not work when testing multiple conditions with pandas. The details of why are explained here.

You must use the following operators with pandas:

appsDF[0:50][(appsDF["SK_ID_CURR"]==175704)]

- & for and
- | for or
- ~ for not

1 rows × 37 columns

In [66]:

```
SK_ID_PREV SK_ID_CURR NAME_CONTRACT_TYPE AMT_ANNUITY AMT_APPLICATION AMT_CREDIT
Out[66]:
          6
                2315218
                             175704
                                                Cash loans
                                                                                    0.0
                                                                                                0.0
                                                                  NaN
         1 rows × 37 columns
          appsDF[0:50][(appsDF["SK_ID_CURR"]==175704)]["AMT_CREDIT"]
In [67]:
               0.0
Out[67]:
         Name: AMT_CREDIT, dtype: float64
In [68]:
          appsDF[0:50][(appsDF["SK_ID_CURR"]==175704) & ~(appsDF["AMT_CREDIT"]==1.0)]
            SK_ID_PREV SK_ID_CURR NAME_CONTRACT_TYPE AMT_ANNUITY AMT_APPLICATION AMT_CREDIT
Out[68]:
          6
                2315218
                             175704
                                                                                    0.0
                                                                                                0.0
                                                Cash loans
                                                                  NaN
```

Missing values in prevApps

```
appsDF.isna().sum()
In [69]:
         SK_ID_PREV
                                               0
Out[69]:
                                               0
         SK_ID_CURR
         NAME_CONTRACT_TYPE
                                               0
                                          372235
         AMT_ANNUITY
         AMT_APPLICATION
                                               0
         AMT_CREDIT
                                          895844
         AMT_DOWN_PAYMENT
         AMT_GOODS_PRICE
                                          385515
         WEEKDAY_APPR_PROCESS_START
                                               0
         HOUR_APPR_PROCESS_START
                                               0
         FLAG_LAST_APPL_PER_CONTRACT
                                               0
         NFLAG_LAST_APPL_IN_DAY
                                               0
                                          895844
         RATE_DOWN_PAYMENT
         RATE_INTEREST_PRIMARY
                                         1664263
         RATE_INTEREST_PRIVILEGED
                                         1664263
         NAME_CASH_LOAN_PURPOSE
                                               0
         NAME_CONTRACT_STATUS
                                               0
         DAYS_DECISION
                                               0
         NAME_PAYMENT_TYPE
                                               0
         CODE_REJECT_REASON
                                               0
                                          820405
         NAME_TYPE_SUITE
         NAME_CLIENT_TYPE
                                               0
         NAME_GOODS_CATEGORY
                                               0
         NAME_PORTFOLIO
                                               0
         NAME_PRODUCT_TYPE
                                               0
         CHANNEL_TYPE
                                               0
         SELLERPLACE_AREA
                                               0
         NAME_SELLER_INDUSTRY
                                               0
                                          372230
         CNT_PAYMENT
         NAME_YIELD_GROUP
                                             346
         PRODUCT_COMBINATION
         DAYS_FIRST_DRAWING
                                          673065
         DAYS_FIRST_DUE
                                          673065
         DAYS_LAST_DUE_1ST_VERSION
                                          673065
         DAYS_LAST_DUE
                                          673065
         DAYS_TERMINATION
                                          673065
         NFLAG_INSURED_ON_APPROVAL
                                          673065
         dtype: int64
In [70]:
         appsDF.columns
         Index(['SK_ID_PREV', 'SK_ID_CURR', 'NAME_CONTRACT_TYPE', 'AMT_ANNUITY',
Out[70]:
                 'AMT_APPLICATION', 'AMT_CREDIT', 'AMT_DOWN_PAYMENT', 'AMT_GOODS_PRICE',
                 'WEEKDAY_APPR_PROCESS_START', 'HOUR_APPR_PROCESS_START',
                 'FLAG_LAST_APPL_PER_CONTRACT', 'NFLAG_LAST_APPL_IN_DAY',
                 'RATE_DOWN_PAYMENT', 'RATE_INTEREST_PRIMARY',
                 'RATE_INTEREST_PRIVILEGED', 'NAME_CASH_LOAN_PURPOSE',
                 'NAME_CONTRACT_STATUS', 'DAYS_DECISION', 'NAME_PAYMENT_TYPE',
                 'CODE_REJECT_REASON', 'NAME_TYPE_SUITE', 'NAME_CLIENT_TYPE',
                 'NAME_GOODS_CATEGORY', 'NAME_PORTFOLIO', 'NAME_PRODUCT_TYPE',
                 'CHANNEL_TYPE', 'SELLERPLACE_AREA', 'NAME_SELLER_INDUSTRY', 'CNT_PAYMENT', 'NAME_YIELD_GROUP', 'PRODUCT_COMBINATION',
                 'DAYS_FIRST_DRAWING', 'DAYS_FIRST_DUE', 'DAYS_LAST_DUE_1ST_VERSION',
                 dtype='object')
```

feature engineering for prevApp table

The groupby output will have an index or multi-index on rows corresponding to your chosen grouping

variables. To avoid setting this index, pass "as index=False" to the groupby operation.

```
import pandas as pd
import dateutil

# Load data from csv file
data = pd.DataFrame.from_csv('phone_data.csv')

# Convert date from string to date times
data['date'] = data['date'].apply(dateutil.parser.parse, dayfirst=True)

data.groupby('month', as_index=False).agg({"duration": "sum"})
```

Pandas reset_index() to convert Multi-Index to Columns We can simplify the multi-index dataframe using reset_index() function in Pandas. By default, Pandas reset_index() converts the indices to columns.

Fixing Column names after Pandas agg() function to summarize grouped data

Since we have both the variable name and the operation performed in two rows in the Multi-Index dataframe, we can use that and name our new columns correctly.

For more details unstacking groupby results and examples please see here

For more details and examples please see here

```
features = ['AMT_ANNUITY', 'AMT_APPLICATION']
In [71]:
         print(f"{appsDF[features].describe()}")
         agg_ops = ["min", "max", "mean"]
         result = appsDF.groupby(["SK_ID_CURR"], as_index=False).agg("mean") #group by ID
         display(result.head())
         print("-"*50)
         result = appsDF.groupby(["SK_ID_CURR"], as_index=False).agg({'AMT_ANNUITY' : agg_ops,
         result.columns = result.columns.map('_'.join)
         display(result)
         result['range_AMT_APPLICATION'] = result['AMT_APPLICATION_max'] - result['AMT_APPLICATIO
         print(f"result.shape: {result.shape}")
         result[0:10]
                AMT_ANNUITY AMT_APPLICATION
         count 1.297979e+06
                                1,670214e+06
         mean
               1.595512e+04
                               1.752339e+05
         std
               1.478214e+04
                              2.927798e+05
               0.000000e+00
         min
                                0.000000e+00
         25%
             6.321780e+03 1.872000e+04
         50% 1.125000e+04
                               7.104600e+04
         75%
               2.065842e+04
                               1.803600e+05
         max
               4.180581e+05
                                6.905160e+06
           SK ID CLIRR SK ID PREV AMT ANNUITY AMT APPLICATION AMT CREDIT
```

	SK_ID_CORK	SK_ID_PREV	AWII_ANNUII Y	AMI_APPLICATION	AWII_CREDII	AWII_DOWN_PAYMENT	AIVI I
0	100001	1.369693e+06	3951.000	24835.50	23787.00	2520.0	
1	100002	1.038818e+06	9251.775	179055.00	179055.00	0.0	
2	100003	2.281150e+06	56553.990	435436.50	484191.00	3442.5	
3	100004	1.564014e+06	5357.250	24282.00	20106.00	4860.0	
4	100005	2.176837e+06	4813.200	22308.75	20076.75	4464.0	

5 rows × 21 columns

	SK_ID_CURR_	AMT_ANNUITY_min	AMT_ANNUITY_max	AMT_ANNUITY_mean	AMT_APPLICATION_min
0	100001	3951.000	3951.000	3951.000000	24835.5

1	100002	9251.775	9251.775	9251.775000	179055.0
2	100003	6737.310	98356.995	56553.990000	68809.5
3	100004	5357.250	5357.250	5357.250000	24282.0
4	100005	4813.200	4813.200	4813.200000	0.0
338852	456251	6605.910	6605.910	6605.910000	40455.0
338853	456252	10074.465	10074.465	10074.465000	57595.5
338854	456253	3973.095	5567.715	4770.405000	19413.0
338855	456254	2296.440	19065.825	10681.132500	18846.0
338856	456255	2250.000	54022.140	20775.391875	45000.0

338857 rows × 7 columns

result.shape: (338857, 8)

			, ,				
Out[71]:		SK_ID_CURR_	AMT_ANNUITY_min	AMT_ANNUITY_max	AMT_ANNUITY_mean	AMT_APPLICATION_min	AMT
	0	100001	3951.000	3951.000	3951.000000	24835.5	
	1	100002	9251.775	9251.775	9251.775000	179055.0	
	2	100003	6737.310	98356.995	56553.990000	68809.5	
	3	100004	5357.250	5357.250	5357.250000	24282.0	
	4	100005	4813.200	4813.200	4813.200000	0.0	
	5	100006	2482.920	39954.510	23651.175000	0.0	
	6	100007	1834.290	22678.785	12278.805000	17176.5	
	7	100008	8019.090	25309.575	15839.696250	0.0	
	8	100009	7435.845	17341.605	10051.412143	40455.0	
	9	100010	27463.410	27463.410	27463.410000	247212.0	

```
In [72]: result.isna().sum()
Out[72]: SK_ID_CURR_
         AMT_ANNUITY_min
                                   480
         AMT_ANNUITY_max
                                   480
         AMT_ANNUITY_mean
                                   480
         AMT_APPLICATION_min
                                    0
                                     0
         AMT_APPLICATION_max
                                    0
         AMT_APPLICATION_mean
         range_AMT_APPLICATION
                                     0
         dtype: int64
```

feature transformer for prevApp table

```
In [73]: # Create aggregate features (via pipeline)
class prevAppsFeaturesAggregater(BaseEstimator, TransformerMixin):
    def __init__(self, features=None): # no *args or **kargs
        self.features = features
        self.agg_op_features = {}
        for f in features:
# self.agg_op_features[f] = {f"{f}_{func}}":func for func in ["min", "max", "self.agg_op_features[f] = ["min", "max", "mean"]

    def fit(self, X, y=None):
```

```
return self
    def transform(self, X, y=None):
       #from IPython.core.debugger import Pdb as pdb; pdb().set_trace() #breakpoint;
        result = X.groupby(["SK_ID_CURR"]).agg(self.agg_op_features)
          result.columns = result.columns.droplevel()
       result.columns = ["_".join(x) for x in result.columns.ravel()]
        result = result.reset_index(level=["SK_ID_CURR"])
        result['range_AMT_APPLICATION'] = result['AMT_APPLICATION_max'] - result['AMT_AP
        return result # return dataframe with the join key "SK_ID_CURR"
from sklearn.pipeline import make_pipeline
def test_driver_prevAppsFeaturesAggregater(df, features):
    print(f"df.shape: {df.shape}\n")
    print(f"df[{features}][0:5]: \n{df[features][0:5]}")
    test_pipeline = make_pipeline(prevAppsFeaturesAggregater(features))
    return(test_pipeline.fit_transform(df))
features = ['AMT_ANNUITY', 'AMT_APPLICATION']
features = ['AMT_ANNUITY'
       S - ['AMT_ANNUTIY',
'AMT_APPLICATION', 'AMT_CREDIT', 'AMT_DOWN_PAYMENT', 'AMT_GOODS_PRICE',
       'RATE_DOWN_PAYMENT', 'RATE_INTEREST_PRIMARY',
       'RATE_INTEREST_PRIVILEGED', 'DAYS_DECISION', 'NAME_PAYMENT_TYPE',
       'CNT_PAYMENT',
       'DAYS_FIRST_DRAWING', 'DAYS_FIRST_DUE', 'DAYS_LAST_DUE_1ST_VERSION',
       'DAYS_LAST_DUE', 'DAYS_TERMINATION']
features = ['AMT_ANNUITY', 'AMT_APPLICATION']
res = test_driver_prevAppsFeaturesAggregater(appsDF, features)
print(f"HELLO")
print(f"Test driver: \n{res[0:10]}")
print(f"input[features][0:10]: \n{appsDF[0:10]}")
# QUESTION, should we lower case df['OCCUPATION_TYPE'] as Sales staff != 'Sales Staff'?
df.shape: (1670214, 37)
df[['AMT_ANNUITY', 'AMT_APPLICATION']][0:5]:
  AMT_ANNUITY AMT_APPLICATION
     1730.430
                      17145.0
    25188.615
1
                     607500.0
    15060.735
2
                     112500.0
3
    47041.335
                     450000.0
    31924.395
4
                     337500.0
HELL0
Test driver:
   SK_ID_CURR AMT_ANNUITY_min AMT_ANNUITY_max AMT_ANNUITY_mean \
0
      100001
                    3951.000
                                     3951.000 3951.000000
                                     9251.775
1
      100002
                    9251.775
                                                    9251.775000
                                   98356.995
                                                  56553.990000
2
                   6737.310
      100003
3
      100004
                   5357.250
                                     5357.250
                                                   5357.250000
                                                 4813.200000
23651.175000
12278.805000
4
      100005
                   4813.200
                                     4813.200
                   2482.920
                                  39954.510
      100006
5
6
      100007
                   1834.290
                                   22678.785
                                                  15839,696250
7
                   8019.090
      100008
                                   25309.575
                    7435.845
8
      100009
                                    17341.605
                                                   10051.412143
9
      100010
                  27463.410
                                   27463.410
                                                  27463.410000
  AMT_APPLICATION_min AMT_APPLICATION_max AMT_APPLICATION_mean \
0
              24835.5
                                   24835.5
                                                  24835.500000
1
             179055.0
                                  179055.0
                                                 179055.000000
2
              68809.5
                                 900000.0
                                                 435436.500000
3
              24282.0
                                   24282.0
                                                   24282.000000
4
                  0.0
                                   44617.5
                                                   22308.750000
```

```
5
                     0.0
                                      688500.0
                                                         272203.260000
6
                17176.5
                                      247500.0
                                                         150530.250000
7
                     0.0
                                      450000.0
                                                         155701.800000
8
                40455.0
                                      110160.0
                                                          76741.714286
9
                                                         247212.000000
               247212.0
                                      247212.0
   range_AMT_APPLICATION
0
                       0.0
1
                       0.0
2
                 831190.5
3
                       0.0
4
                  44617.5
5
                 688500.0
6
                 230323.5
7
                 450000.0
8
                  69705.0
9
                       0.0
input[features][0:10]:
   SK_ID_PREV SK_ID_CURR NAME_CONTRACT_TYPE AMT_ANNUITY
                                                                AMT_APPLICATION
0
      2030495
                    271877
                                 Consumer loans
                                                     1730,430
                                                                          17145.0
1
                                     Cash loans
      2802425
                     108129
                                                     25188.615
                                                                         607500.0
                                                    15060.735
2
      2523466
                    122040
                                     Cash loans
                                                                         112500.0
3
                                     Cash loans
      2819243
                     176158
                                                    47041.335
                                                                         450000.0
4
                    202054
                                     Cash loans
                                                    31924.395
                                                                         337500.0
      1784265
5
      1383531
                    199383
                                     Cash loans
                                                    23703.930
                                                                         315000.0
6
                                     Cash loans
                                                                              0.0
      2315218
                    175704
                                                           NaN
7
                                     Cash loans
                                                           NaN
                                                                              0.0
      1656711
                    296299
8
                                     Cash loans
                                                                              0.0
      2367563
                     342292
                                                           NaN
9
      2579447
                     334349
                                     Cash loans
                                                           NaN
                                                                              0.0
                AMT_DOWN_PAYMENT AMT_GOODS_PRICE WEEKDAY_APPR_PROCESS_START
   AMT_CREDIT
0
                              0.0
      17145.0
                                             17145.0
                                                                          SATURDAY
1
     679671.0
                              NaN
                                            607500.0
                                                                          THURSDAY
2
     136444.5
                              NaN
                                            112500.0
                                                                           TUESDAY
3
     470790.0
                              NaN
                                            450000.0
                                                                            MONDAY
4
     404055.0
                              NaN
                                            337500.0
                                                                          THURSDAY
5
     340573.5
                                            315000.0
                              NaN
                                                                          SATURDAY
6
           0.0
                              NaN
                                                 NaN
                                                                           TUESDAY
7
           0.0
                                                 NaN
                              NaN
                                                                            MONDAY
8
           0.0
                              NaN
                                                 NaN
                                                                            MONDAY
9
                              NaN
                                                                          SATURDAY
           0.0
                                                 NaN
   HOUR_APPR_PROCESS_START
                                   NAME_SELLER_INDUSTRY
                                                           CNT_PAYMENT
0
                          15
                                            Connectivity
                                                                   12.0
1
                          11
                                                                   36.0
                                                      XNA
                               . . .
2
                          11
                                                      XNA
                                                                   12.0
                               . . .
3
                           7
                                                      XNA
                                                                   12.0
                               . . .
4
                           9
                                                      XNA
                                                                   24.0
5
                           8
                                                      XNA
                                                                   18.0
6
                          11
                                                      XNA
                                                                    NaN
7
                           7
                                                      XNA
                                                                    NaN
                               . . .
8
                          15
                                                      XNA
                                                                    NaN
9
                          15
                                                      XNA
                                                                    NaN
                               . . .
   NAME_YIELD_GROUP
                            PRODUCT_COMBINATION
                                                   DAYS_FIRST_DRAWING
0
              middle
                       POS mobile with interest
                                                               365243.0
1
                               Cash X-Sell: low
          low_action
                                                               365243.0
2
                high
                              Cash X-Sell: high
                                                               365243.0
3
              middle
                            Cash X-Sell: middle
                                                               365243.0
4
                              Cash Street: high
                high
                                                                    NaN
5
                                                               365243.0
         low_normal
                                Cash X-Sell: low
6
                 XNA
                                             Cash
                                                                    NaN
7
                 XNA
                                             Cash
                                                                    NaN
8
                 XNA
                                             Cash
                                                                    NaN
9
                 XNA
                                             Cash
                                                                    NaN
```

```
DAYS_FIRST_DUE DAYS_LAST_DUE_1ST_VERSION DAYS_LAST_DUE DAYS_TERMINATION
0
          -42.0
                                     300.0
                                                     -42.0
                                                                      -37.0
1
          -134.0
                                     916.0
                                                  365243.0
                                                                  365243.0
2
          -271.0
                                                                  365243.0
                                      59.0
                                                  365243.0
3
          -482.0
                                     -152.0
                                                    -182.0
                                                                     -177.0
4
             NaN
                                        NaN
                                                       NaN
                                                                        NaN
5
          -654.0
                                    -144.0
                                                    -144.0
                                                                     -137.0
6
             NaN
                                        NaN
                                                       NaN
                                                                        NaN
7
                                       NaN
                                                       NaN
                                                                        NaN
             NaN
8
             NaN
                                        NaN
                                                       NaN
                                                                        NaN
9
             NaN
                                        NaN
                                                       NaN
                                                                        NaN
 NFLAG_INSURED_ON_APPROVAL
1
                        1.0
2
                        1.0
3
                        1.0
4
                        NaN
5
                        1.0
6
                        NaN
7
                        NaN
8
                        NaN
                        NaN
```

[10 rows x 37 columns]

Feature Engineering for Primary & Secondary Tables

```
In [74]: # Choosing Highly correlated features from all input datasets
         def correlation_files_target(df_name):
           A = datasets["application_train"].copy()
           B = datasets[df_name].copy()
           correlation_matrix = pd.concat([A.TARGET, B], axis=1).corr().filter(B.columns).filter
           return correlation_matrix
         df_name = "previous_application"
In [75]:
         correlation_matrix = correlation_files_target(df_name)
         print(f"Correlation of the {df_name} against the Target is :")
         correlation_matrix.T.TARGET.sort_values(ascending= False)
         Correlation of the previous_application against the Target is :
         AMT_DOWN_PAYMENT
                                      0.002496
Out[75]:
         CNT_PAYMENT
                                      0.002341
         DAYS_LAST_DUE_1ST_VERSION 0.001908
         AMT_CREDIT
                                      0.001833
         AMT_APPLICATION
                                      0.001689
         AMT_GOODS_PRICE
                                      0.001676
         SK_ID_CURR
                                      0.001107
         NFLAG_INSURED_ON_APPROVAL 0.000879
         RATE_DOWN_PAYMENT
                                      0.000850
         RATE_INTEREST_PRIMARY
                                    0.000542
         SK_ID_PREV
                                     0.000362
         DAYS_DECISION
                                   -0.000482
         AMT_ANNUITY
                                    -0.000492
         DAYS_FIRST_DUE
                                    -0.000943
         SELLERPLACE_AREA
                                   -0.000954
         DAYS_TERMINATION
                                   -0.001072
         NFLAG_LAST_APPL_IN_DAY
                                  -0.001256
-0.001293
         DAYS_FIRST_DRAWING
         DAYS_LAST_DUE
                                    -0.001940
         HOUR_APPR_PROCESS_START -0.002285
         RATE_INTEREST_PRIVILEGED
                                     -0.026427
         Name: TARGET, dtype: float64
```

```
In [76]:
         df_name = "bureau"
         correlation_matrix = correlation_files_target(df_name)
         print(f"Correlation of the {df_name} against the Target is :")
         correlation_matrix.T.TARGET.sort_values(ascending= False)
         Correlation of the bureau against the Target is :
         DAYS_CREDIT_UPDATE
                                   0.002159
Out[76]:
                                    0.002048
         DAYS_CREDIT_ENDDATE
         SK_ID_BUREAU
                                   0.001550
         DAYS_CREDIT
                                   0.001443
         AMT_CREDIT_SUM
                                   0.000218
                                   0.000203
         DAYS_ENDDATE_FACT
         AMT_ANNUITY
                                   0.000189
         AMT_CREDIT_MAX_OVERDUE -0.000389
         CNT_CREDIT_PROLONG
                                   -0.000495
         AMT_CREDIT_SUM_LIMIT
                                   -0.000558
         AMT_CREDIT_SUM_DEBT
                                  -0.000946
         SK_ID_CURR
                                   -0.001070
         AMT_CREDIT_SUM_OVERDUE
                                   -0.001464
                                   -0.001815
         CREDIT_DAY_OVERDUE
         Name: TARGET, dtype: float64
         df_name = "bureau_balance"
In [77]:
         correlation_matrix = correlation_files_target(df_name)
         print(f"Correlation of the {df_name} against the Target is :")
         correlation_matrix.T.TARGET.sort_values(ascending= False)
         Correlation of the bureau_balance against the Target is :
         SK_ID_BUREAU
                           0.001223
Out[77]:
         MONTHS_BALANCE
                          -0.005262
         Name: TARGET, dtype: float64
         df_name = "credit_card_balance"
In [78]:
         correlation_matrix = correlation_files_target(df_name)
         print(f"Correlation of the {df_name} against the Target is :")
         correlation_matrix.T.TARGET.sort_values(ascending= False)
         Correlation of the credit_card_balance against the Target is :
         CNT_DRAWINGS_ATM_CURRENT
                                       0.001908
Out[78]:
         AMT_DRAWINGS_ATM_CURRENT
                                       0.001520
         AMT_INST_MIN_REGULARITY
                                       0.001435
         SK_ID_CURR
                                        0.001086
         AMT_CREDIT_LIMIT_ACTUAL
                                       0.000515
         AMT_BALANCE
                                       0.000448
         SK_ID_PREV
                                       0.000446
         AMT_RECIVABLE
                                       0.000412
         AMT_TOTAL_RECEIVABLE
                                       0.000407
         AMT_RECEIVABLE_PRINCIPAL
                                       0.000383
         SK_DPD
                                       0.000092
         SK_DPD_DEF
                                       -0.000201
         CNT_INSTALMENT_MATURE_CUM
                                       -0.000342
         MONTHS_BALANCE
                                       -0.000768
         AMT_PAYMENT_CURRENT
                                       -0.001129
                                       -0.001395
         AMT_PAYMENT_TOTAL_CURRENT
         AMT_DRAWINGS_CURRENT
                                       -0.001419
                                       -0.001764
         CNT_DRAWINGS_CURRENT
         CNT_DRAWINGS_OTHER_CURRENT
                                       -0.001833
                                       -0.002387
         CNT_DRAWINGS_POS_CURRENT
         AMT_DRAWINGS_OTHER_CURRENT
                                       -0.002672
         AMT_DRAWINGS_POS_CURRENT
                                       -0.003518
         Name: TARGET, dtype: float64
         df_name = "POS_CASH_balance"
In [79]:
         correlation_matrix = correlation_files_target(df_name)
         print(f"Correlation of the {df_name} against the Target is :")
```

correlation_matrix.T.TARGET.sort_values(ascending= **False**)

```
Correlation of the POS_CASH_balance against the Target is:
         CNT_INSTALMENT_FUTURE 0.002811
MONTHS_BALANCE 0.002775
Out[79]:
                                0.002164
0.001434
         SK_ID_PREV
         CNT_INSTALMENT
                                  0.000050
         SK_DPD
         SK_ID_CURR
                                 -0.000136
         SK_DPD_DEF
                                 -0.001362
         Name: TARGET, dtype: float64
         agg_funcs = ['min', 'max', 'mean', 'count', 'sum']
In [80]:
         prevApps = datasets['previous_application']
         prevApps_features = ['AMT_ANNUITY', 'AMT_APPLICATION']
         bureau = datasets['bureau']
         bureau_features = ['AMT_ANNUITY', 'AMT_CREDIT_SUM']
         # bureau_funcs = ['min', 'max', 'mean', 'count', 'sum']
         bureau_bal = datasets['bureau_balance']
         bureau_bal_features = ['MONTHS_BALANCE']
         cc_bal = datasets['credit_card_balance']
         cc_bal_features = ['MONTHS_BALANCE', 'AMT_BALANCE', 'CNT_INSTALMENT_MATURE_CUM']
         installments_pmnts = datasets['installments_payments']
         installments_pmnts_features = ['AMT_INSTALMENT', 'AMT_PAYMENT']
         pos_cash_bal = datasets['POS_CASH_balance']
         pos_cash_bal_features = ['CNT_INSTALMENT', 'MONTHS_BALANCE']
```

Feature Aggregator

Added a if statement allowing us to transform bureau_balance as it does not have a SK_ID_CURR as it
joins with bureau.csv on the SK_ID_BUREAU column. Will have to keep this in mind when joining the
tables.

```
In [81]: # Pipelines
         from sklearn.impute import SimpleImputer
         from sklearn.preprocessing import LabelEncoder
         from sklearn.base import BaseEstimator, TransformerMixin
         from sklearn.pipeline import make_pipeline, Pipeline, FeatureUnion
         from sklearn.preprocessing import MinMaxScaler, StandardScaler, OneHotEncoder
         class FeaturesAggregator(BaseEstimator, TransformerMixin):
             def __init__(self, file_name=None, features=None, funcs=None):
                 self.file_name = file_name
                 self.features = features
                 self.funcs = funcs
                 self.agg_op_features = {}
                 for f in self.features:
                     temp = {f"{file_name}_{f}_{func}":func for func in self.funcs}
                     self.agg_op_features[f]=[(k, v) for k, v in temp.items()]
                 print(self.agg_op_features)
             def fit(self, X, y=None):
                 return self
             def transform(self, X, y=None):
                 if self.file_name != 'bureau_balance' and self.file_name != 'bureau':
                     result = X.groupby(["SK_ID_CURR"]).agg(self.agg_op_features)
```

```
result.columns = result.columns.droplevel()
                     result = result.reset_index(level=["SK_ID_CURR"])
                     return result # return dataframe with the join key "SK_ID_CURR"
                 elif self.file_name == 'bureau':
                     result = X.groupby(["SK_ID_CURR", "SK_ID_BUREAU"]).agg(self.agg_op_features)
                     result.columns = result.columns.droplevel()
                     result = result.reset_index(level=["SK_ID_CURR", "SK_ID_BUREAU"])
                     return result # return dataframe with the join keys "SK_ID_CURR" AND "SK_ID
                 elif self.file_name == 'bureau_balance':
                     result = X.groupby(["SK_ID_BUREAU"]).agg(self.agg_op_features)
                     result.columns = result.columns.droplevel()
                     result = result.reset_index(level=["SK_ID_BUREAU"])
                     return result # return dataframe with the join key "SK_ID_BUREAU"
In [82]: class engineer_features(BaseEstimator, TransformerMixin):
             def __init__(self, features=None):
                 self
             def fit(self, X, y=None):
                 return self
             def transform(self, X, y=None):
         # FROM APPLICATION
                 # ADD INCOME CREDIT PERCENTAGE
                 X['ef_INCOME_CREDIT_PERCENT'] = (
                     X.AMT_INCOME_TOTAL / X.AMT_CREDIT).replace(np.inf, 0)
                 # ADD INCOME PER FAMILY MEMBER
                 X['ef_FAM_MEMBER_INCOME'] = (
                     X.AMT_INCOME_TOTAL / X.CNT_FAM_MEMBERS).replace(np.inf, 0)
                 # ADD ANNUITY AS PERCENTAGE OF ANNUAL INCOME
                 X['ef_ANN_INCOME_PERCENT'] = (
                     X.AMT_ANNUITY / X.AMT_INCOME_TOTAL).replace(np.inf, 0)
```

• Added the pos_cash_pal feature pipeline instead of the application_train feature engineering pipeline because we don't need it as our goal is to do feature aggregation on each of the secondary tables then join them to application train and test

```
In [83]: from sklearn.pipeline import make_pipeline, Pipeline, FeatureUnion
         prevApps_feature_pipeline = Pipeline([
             ('prevApps_aggregator', FeaturesAggregator('prevApps', prevApps_features, agg_funcs)
             ])
         bureau_feature_pipeline = Pipeline([
             ('bureau_aggregator', FeaturesAggregator('bureau', bureau_features, agg_funcs)),
             ])
         bureau_bal_features_pipeline = Pipeline([
             ('bureau_bal_aggregator', FeaturesAggregator('bureau_balance', bureau_bal_features
             ])
         cc_bal_features_pipeline = Pipeline([
             ('cc_bal_aggregator', FeaturesAggregator('credit_card_balance', cc_bal_features , ag
             ])
         installments_pmnts_features_pipeline = Pipeline([
             ('installments_pmnts_features_aggregator', FeaturesAggregator('credit_card_balance',
             ])
```

```
('pos_cash_bal_aggregator',FeaturesAggregator('pos_cash_bal', pos_cash_bal_features
{'AMT_ANNUITY': [('prevApps_AMT_ANNUITY_min', 'min'), ('prevApps_AMT_ANNUITY_max', 'max'), ('prevApps_AMT_ANNUITY_mean', 'mean'), ('prevApps_AMT_ANNUITY_count', 'count'), ('prevApps_AMT_ANNUITY_count'), ('p
revApps_AMT_ANNUITY_sum', 'sum')], 'AMT_APPLICATION': [('prevApps_AMT_APPLICATION_min',
'min'), ('prevApps_AMT_APPLICATION_max', 'max'), ('prevApps_AMT_APPLICATION_mean', 'mea
n'), ('prevApps_AMT_APPLICATION_count', 'count'), ('prevApps_AMT_APPLICATION_sum', 'su
{'AMT_ANNUITY': [('bureau_AMT_ANNUITY_min', 'min'), ('bureau_AMT_ANNUITY_max', 'max'),
('bureau_AMT_ANNUITY_mean', 'mean'), ('bureau_AMT_ANNUITY_count', 'count'), ('bureau_AMT
_ANNUITY_sum', 'sum')], 'AMT_CREDIT_SUM': [('bureau_AMT_CREDIT_SUM_min', 'min'), ('bureau_AMT_CREDIT_SUM_max', 'max'), ('bureau_AMT_CREDIT_SUM_mean', 'mean'), ('bureau_AMT_CREDIT_SUM_mean'), ('burea
IT_SUM_count', 'count'), ('bureau_AMT_CREDIT_SUM_sum', 'sum')]}
{'MONTHS_BALANCE': [('bureau_balance_MONTHS_BALANCE_min', 'min'), ('bureau_balance_MONTH S_BALANCE_max', 'max'), ('bureau_balance_MONTHS_BALANCE_mean', 'mean'), ('bureau_balance
_MONTHS_BALANCE_count', 'count'), ('bureau_balance_MONTHS_BALANCE_sum', 'sum')]}
{'MONTHS_BALANCE': [('credit_card_balance_MONTHS_BALANCE_min', 'min'), ('credit_card_bal
ance_MONTHS_BALANCE_max', 'max'), ('credit_card_balance_MONTHS_BALANCE_mean', 'mean'),
('credit_card_balance_MONTHS_BALANCE_count', 'count'), ('credit_card_balance_MONTHS_BALA
NCE_sum', 'sum')], 'AMT_BALANCE': [('credit_card_balance_AMT_BALANCE_min', 'min'), ('cre
dit_card_balance_AMT_BALANCE_max', 'max'), ('credit_card_balance_AMT_BALANCE_mean', 'mea
n'), ('credit_card_balance_AMT_BALANCE_count', 'count'), ('credit_card_balance_AMT_BALAN
CE_sum', 'sum')], 'CNT_INSTALMENT_MATURE_CUM': [('credit_card_balance_CNT_INSTALMENT_MAT
URE_CUM_min', 'min'), ('credit_card_balance_CNT_INSTALMENT_MATURE_CUM_max', 'max'), ('cr
edit_card_balance_CNT_INSTALMENT_MATURE_CUM_mean', 'mean'), ('credit_card_balance_CNT_IN
STALMENT_MATURE_CUM_count', 'count'), ('credit_card_balance_CNT_INSTALMENT_MATURE_CUM_su
m', 'sum')]}
{'AMT_INSTALMENT': [('credit_card_balance_AMT_INSTALMENT_min', 'min'), ('credit_card_bal
ance_AMT_INSTALMENT_max', 'max'), ('credit_card_balance_AMT_INSTALMENT_mean', 'mean'),
('credit_card_balance_AMT_INSTALMENT_count', 'count'), ('credit_card_balance_AMT_INSTALM
ENT_sum', 'sum')], 'AMT_PAYMENT': [('credit_card_balance_AMT_PAYMENT_min', 'min'), ('cre
dit_card_balance_AMT_PAYMENT_max', 'max'), ('credit_card_balance_AMT_PAYMENT_mean', 'mea
n'), ('credit_card_balance_AMT_PAYMENT_count', 'count'), ('credit_card_balance_AMT_PAYME
NT_sum', 'sum')]}
{'CNT_INSTALMENT': [('pos_cash_bal_CNT_INSTALMENT_min', 'min'), ('pos_cash_bal_CNT_INSTA
LMENT_max', 'max'), ('pos_cash_bal_CNT_INSTALMENT_mean', 'mean'), ('pos_cash_bal_CNT_INSTALMENT_mean'), ('pos_cash_bal_C
TALMENT_count', 'count'), ('pos_cash_bal_CNT_INSTALMENT_sum', 'sum')], 'MONTHS_BALANCE':
[('pos_cash_bal_MONTHS_BALANCE_min', 'min'), ('pos_cash_bal_MONTHS_BALANCE_max', 'max'), ('pos_cash_bal_MONTHS_BALANCE_mean', 'mean'), ('pos_cash_bal_MONTHS_BALANCE_count', 'cou
nt'), ('pos_cash_bal_MONTHS_BALANCE_sum', 'sum')]}
```

Prepare Datasets

Added poscashbalDF

```
In [84]: poscashbalDF = datasets['POS_CASH_balance']

X_train = datasets['application_train']
    prevAppsDF = datasets["previous_application"] #prev app
    bureauDF = datasets["bureau"] #bureau app
    bureaubalDF = datasets['bureau_balance']
    ccbalDF = datasets["credit_card_balance"] #prev app
    installmentspaymentsDF = datasets["installments_payments"] #bureau app
```

Fit Feature Engineering Pipeline

pos_cash_bal_feature_pipeline = Pipeline([

Removed the applin pipeline and added the pos cash bal aggregated

```
pos_cash_bal_aggregated = pos_cash_bal_feature_pipeline.fit_transform(poscashbalDF)
In [85]:
          prevApps_aggregated = prevApps_feature_pipeline.fit_transform(prevAppsDF)
          bureau_aggregated = bureau_feature_pipeline.fit_transform(bureauDF)
          bureaubal_aggregated = bureau_bal_features_pipeline.fit_transform(bureaubalDF)
In [86]:
          ccblance_aggregated = cc_bal_features_pipeline.fit_transform(ccbalDF)
          installments_pmnts_aggregated = installments_pmnts_features_pipeline.fit_transform(insta
          installments_pmnts_aggregated.head()
In [87]:
             SK_ID_CURR credit_card_balance_AMT_INSTALMENT_min credit_card_balance_AMT_INSTALMENT_max credit
Out[87]:
                  100001
                                                       3951.000
                                                                                             17397.900
          1
                  100002
                                                       9251.775
                                                                                             53093.745
          2
                  100003
                                                       6662.970
                                                                                            560835.360
                  100004
                                                       5357.250
                                                                                             10573.965
          4
                  100005
                                                       4813.200
                                                                                             17656.245
In [88]:
          bureau_aggregated.head()
Out[88]:
             SK_ID_CURR SK_ID_BUREAU bureau_AMT_ANNUITY_min bureau_AMT_ANNUITY_max bureau_AMT_ANNUITY
                  100001
                                5896630
                                                             0.0
                                                                                     0.0
          1
                  100001
                                5896631
                                                             0.0
                                                                                     0.0
          2
                  100001
                                5896632
                                                             0.0
                                                                                     0.0
          3
                  100001
                                5896633
                                                             0.0
                                                                                     0.0
          4
                  100001
                                5896634
                                                          4630.5
                                                                                   4630.5
          bureaubal_aggregated.head()
In [89]:
Out[89]:
             SK_ID_BUREAU bureau_balance_MONTHS_BALANCE_min bureau_balance_MONTHS_BALANCE_max bureau_
          0
                   5001709
                                                            -96
                                                                                                  0
          1
                   5001710
                                                                                                  0
                                                            -82
          2
                   5001711
                                                             -3
                                                                                                  0
                   5001712
                                                            -18
          4
                   5001713
                                                            -21
                                                                                                  0
```

Join the labeled dataset

```
In [90]: datasets.keys()
Out[90]: dict_keys(['application_train', 'application_test', 'bureau', 'bureau_balance', 'credit_card_balance', 'installments_payments', 'previous_application', 'POS_CASH_balance'])
In [91]: merge_all_data = True
    if merge_all_data:
        prevApps_aggregated = prevApps_feature_pipeline.transform(appsDF)
    # merge primary table and secondary tables using features based on meta data and aggreg if merge_all_data:
```

```
### Merging bureau and bureau balancce
bureau_aggregated = bureau_aggregated.merge(bureaubal_aggregated, how = 'left', on =
### Train DF

X_train = X_train.merge(prevApps_aggregated, how = 'left', on = 'SK_ID_CURR')

X_train = X_train.merge(bureau_aggregated, how = 'left', on = "SK_ID_CURR")

X_train = X_train.merge(ccblance_aggregated, how = 'left', on = "SK_ID_CURR")

X_train = X_train.merge(installments_pmnts_aggregated, how = 'left', on = "SK_ID_CURR")

X_train = X_train.merge(pos_cash_bal_aggregated, how = 'left', on = "SK_ID_CURR")
```

Join the unlabeled dataset (i.e., the submission file)

```
In [92]: X_kaggle_test= datasets["application_test"]
          merge_all_data = True
          if merge_all_data:
              X_kaggle_test = X_kaggle_test.merge(prevApps_aggregated, how ='left', on = 'SK_ID_CU
              X_kaggle_test = X_kaggle_test.merge(bureau_aggregated, how ='left', on = "SK_ID_CURR"
              X_kaggle_test = X_kaggle_test.merge(ccblance_aggregated, how ='left', on = "SK_ID_CU
              X_kaggle_test = X_kaggle_test.merge(installments_pmnts_aggregated, how ='left', on="
              X_kaggle_test = X_kaggle_test.merge(pos_cash_bal_aggregated, how = 'left', on = "SK_
         # approval rate 'NFLAG_INSURED_ON_APPROVAL'
In [93]:
In [94]: # Convert categorical features to numerical approximations (via pipeline)
          class ClaimAttributesAdder(BaseEstimator, TransformerMixin):
              def fit(self, X, y=None):
                  return self
              def transform(self, X, y=None):
                  charlson_idx_dt = {'0': 0, '1-2': 2, '3-4': 4, '5+': 6}  
los_dt = {'1 day': 1, '2 days': 2, '3 days': 3, '4 days': 4, '5 days': 5, '6 day
                    '1- 2 weeks': 11, '2- 4 weeks': 21, '4- 8 weeks': 42, '26+ weeks': 180}
                  X['PayDelay'] = X['PayDelay'].apply(lambda x: int(x) if x != '162+' else int(162)
                  X['DSFS'] = X['DSFS'].apply(lambda x: None if pd.isnull(x) else int(x[0]) + 1)
                  X['CharlsonIndex'] = X['CharlsonIndex'].apply(lambda x: charlson_idx_dt[x])
                  X['Length0fStay'] = X['Length0fStay'].apply(lambda x: None if pd.isnull(x) else
                  return X
```

Processing pipeline

OHE when previously unseen unique values in the test/validation set

Train, validation and Test sets (and the leakage problem we have mentioned previously):

Let's look at a small usecase to tell us how to deal with this:

- The OneHotEncoder is fitted to the training set, which means that for each unique value present in the training set, for each feature, a new column is created. Let's say we have 39 columns after the encoding up from 30 (before preprocessing).
- The output is a numpy array (when the option sparse=False is used), which has the disadvantage of losing all the information about the original column names and values.
- When we try to transform the test set, after having fitted the encoder to the training set, we obtain a ValueError. This is because the there are new, previously unseen unique values in the test set and

the encoder doesn't know how to handle these values. In order to use both the transformed training and test sets in machine learning algorithms, we need them to have the same number of columns.

This last problem can be solved by using the option handle unknown='ignore' of the OneHotEncoder, which, as the name suggests, will ignore previously unseen values when transforming the test set.

Here is a example that in action:

```
# Identify the categorical features we wish to consider.
          cat_attribs = ['CODE_GENDER',
          'FLAG_OWN_REALTY', 'FLAG_OWN_CAR', 'NAME_CONTRACT_TYPE',
                          'NAME_EDUCATION_TYPE','OCCUPATION_TYPE','NAME_INCOME_TYPE']
          # Notice handle_unknown="ignore" in OHE which ignore values from the
          validation/test that
          # do NOT occur in the training set
          cat_pipeline = Pipeline([
                  ('selector', DataFrameSelector(cat_attribs)),
                  ('imputer', SimpleImputer(strategy='most_frequent')),
                  ('ohe', OneHotEncoder(sparse=False, handle_unknown="ignore"))
              1)
In [95]: # # load data
         # df = pd.read_csv('chronic_kidney_disease.csv', header="infer")
         # # names=['age', 'bp', 'sg', 'al', 'su', 'rbc', 'pcc', 'pcc', 'ba', 'bgr', 'bu', 'sc',
         # # 'hemo', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad', 'appet', 'pe', 'ane', 'class'])
         # # head of df
         # df.head(10)
In [96]: # # Categorical boolean mask
         # categorical_feature_mask = df.dtypes==object
         # categorical_feature_mask
In [97]: # # filter categorical columns using mask and turn it into a list
         # categorical_cols = X.columns[categorical_feature_mask].tolist()
         # categorical_cols
In [98]: # from sklearn.preprocessing import OneHotEncoder
         # import pandas as pd
         # categorical_feature_mask = [True, False]
         # # instantiate OneHotEncoder
         # enc = OneHotEncoder(categorical_features = categorical_feature_mask,sparse = False, ha
         # # categorical_features = boolean mask for categorical columns
         # # sparse = False output an array not sparse matrix
         # X_train = pd.DataFrame([['small', 1], ['small', 3], ['medium', 3], ['large', 2]])
         # X_test = [['small', 1.2], ['medium', 4], ['EXTRA-large', 2]]
         # print(f"X_train:\n{X_train}")
         # print(f"enc.fit_transform(X_train):\n{enc.fit_transform(X_train)}")
         # print(f"enc.transform(X_test):\n{enc.transform(X_test)}")
         # print(f"enc.get_feature_names():\n{enc.get_feature_names()}")
In [99]: # print(f"enc.categories_{enc.categories_}")
         # print(f"enc.categories_{enc.categories_}")
         # enc.transform([['Female', 1], ['Male', 4]]).toarray()
```

enc.inverse_transform([[0, 1, 1, 0, 0], [0, 0, 0, 1, 0]])

```
# enc.get_feature_names()
```

OHE case study: The breast cancer wisconsin dataset (classification)

```
In [100... # from sklearn.datasets import load_breast_cancer
    # data = load_breast_cancer(return_X_y=False)
    # X, y = load_breast_cancer(return_X_y=True)
    # print(y[[10, 50, 85]])
    # #([0, 1, 0])
    # list(data.target_names)
    # #['malignant', 'benign']
    # X.shape
In [101... # data.feature_names
```

Please this blog for more details of OHE when the validation/test have previously unseen unique values.

HCDR preprocessing

```
# Split the provided training data into training and validationa and test
In [102...
         # The kaggle evaluation test set has no labels
         from sklearn.model_selection import train_test_split
         use_application_data_ONLY = False #use joined data
         if use_application_data_ONLY:
             # just selected a few features for a baseline experiment
             selected_features = ['AMT_INCOME_TOTAL', 'AMT_CREDIT', 'DAYS_EMPLOYED', 'DAYS_BIRTH',
                  'EXT_SOURCE_2', 'EXT_SOURCE_3', 'CODE_GENDER', 'FLAG_OWN_REALTY', 'FLAG_OWN_CAR', 'N
                             'NAME_EDUCATION_TYPE','OCCUPATION_TYPE','NAME_INCOME_TYPE']
             X_train = datasets["application_train"][selected_features]
             y_train = datasets["application_train"]['TARGET']
             X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size=0.
             X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.15
             X_kaggle_test= datasets["application_test"][selected_features]
             # y_test = datasets["application_test"]['TARGET'] #why no TARGET?!! (hint: kaggle
         selected_features = ['AMT_INCOME_TOTAL', 'AMT_CREDIT', 'DAYS_EMPLOYED', 'DAYS_BIRTH', 'EXT
                 'EXT_SOURCE_2', 'EXT_SOURCE_3', 'CODE_GENDER', 'FLAG_OWN_REALTY', 'FLAG_OWN_CAR', 'N
                             'NAME_EDUCATION_TYPE','OCCUPATION_TYPE','NAME_INCOME_TYPE']
         y_train = X_train['TARGET']
         X_train = X_train[selected_features]
         X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size=0.15,
         X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.15, ra
         X_kaggle_test= X_kaggle_test[selected_features]
         # y_test = datasets["application_test"]['TARGET'] #why no TARGET?!! (hint: kaggle com
         print(f"X train
                                   shape: {X_train.shape}")
         print(f"X validation
                                   shape: {X_valid.shape}")
         print(f"X test
                                   shape: {X_test.shape}")
         print(f"X X_kaggle_test shape: {X_kaggle_test.shape}")
         X train
                           shape: (1090501, 14)
         X validation
                           shape: (226402, 14)
         X test
                          shape: (192442, 14)
         X X_kaggle_test shape: (257527, 14)
```

```
from sklearn.base import BaseEstimator, TransformerMixin
In [103...
         import re
         # Creates the following date features
         # But could do so much more with these features
                extract the domain address of the homepage and OneHotEncode it
         #
         # ['release_month','release_day','release_year', 'release_dayofweek','release_quarter']
         class prep_OCCUPATION_TYPE(BaseEstimator, TransformerMixin):
             def __init__(self, features="OCCUPATION_TYPE"): # no *args or **kargs
                 self.features = features
             def fit(self, X, y=None):
                 return self # nothing else to do
             def transform(self, X):
                 df = pd.DataFrame(X, columns=self.features)
                 #from IPython.core.debugger import Pdb as pdb;
                                                                  pdb().set_trace() #breakpoint;
                 df['OCCUPATION_TYPE'] = df['OCCUPATION_TYPE'].apply(lambda x: 1. if x in ['Core
                 #df.drop(self.features, axis=1, inplace=True)
                 return np.array(df.values) #return a Numpy Array to observe the pipeline protoc
         from sklearn.pipeline import make_pipeline
         features = ["OCCUPATION_TYPE"]
         def test_driver_prep_OCCUPATION_TYPE():
             print(f"X_train.shape: {X_train.shape}\n")
             print(f"X_train['name'][0:5]: \n{X_train[features][0:5]}")
             test_pipeline = make_pipeline(prep_OCCUPATION_TYPE(features))
             return(test_pipeline.fit_transform(X_train))
         x = test_driver_prep_OCCUPATION_TYPE()
         print(f"Test driver: \n{test_driver_prep_OCCUPATION_TYPE()[0:10, :]}")
         print(f"X_train['name'][0:10]: \n{X_train[features][0:10]}")
         # QUESTION, should we lower case df['OCCUPATION_TYPE'] as Sales staff != 'Sales Staff'?
         X_train.shape: (1090501, 14)
         X_train['name'][0:5]:
                 OCCUPATION_TYPE
         899239
                        Laborers
                     Sales staff
         1333889
         597650 Medicine staff
         209947
                     Core staff
                             NaN
         X_train.shape: (1090501, 14)
         X_train['name'][0:5]:
                 OCCUPATION_TYPE
         899239
                        Laborers
         1333889
                     Sales staff
         597650
                  Medicine staff
         209947
                     Core staff
         451114
                             NaN
         Test driver:
         [[0.]
          [0.]
          [0.]
          [0.]
          [0.]
          [0.]
          [0.]
          [0.]
          [0.]
```

[0.]]

```
X_train['name'][0:10]:
                        OCCUPATION_TYPE
         899239
                                Laborers
                             Sales staff
         1333889
         597650
                         Medicine staff
         209947
                              Core staff
         451114
                                     NaN
         1372880 High skill tech staff
         486230
         1127205
                             Sales staff
         1134196
                         Cleaning staff
         1108233
In [104... | # Create a class to select numerical or categorical columns
         # since Scikit-Learn doesn't handle DataFrames yet
         class DataFrameSelector(BaseEstimator, TransformerMixin):
             def __init__(self, attribute_names):
                 self.attribute_names = attribute_names
             def fit(self, X, y=None):
                  return self
             def transform(self, X):
                  return X[self.attribute_names].values
         # Identify the numeric features we wish to consider.
In [105...
         num_attribs = [
              'AMT_INCOME_TOTAL', 'AMT_CREDIT','DAYS_EMPLOYED','DAYS_BIRTH','EXT_SOURCE_1',
              'EXT_SOURCE_2', 'EXT_SOURCE_3']
         num_pipeline = Pipeline([
                  ('selector', DataFrameSelector(num_attribs)),
                  ('imputer', SimpleImputer(strategy='mean')),
                  ('std_scaler', StandardScaler()),
         # Identify the categorical features we wish to consider.
         cat_attribs = ['CODE_GENDER', 'FLAG_OWN_REALTY', 'FLAG_OWN_CAR', 'NAME_CONTRACT_TYPE',
                         'NAME_EDUCATION_TYPE','OCCUPATION_TYPE','NAME_INCOME_TYPE']
         # Notice handle_unknown="ignore" in OHE which ignore values from the validation/test tha
         # do NOT occur in the training set
         cat_pipeline = Pipeline([
                  ('selector', DataFrameSelector(cat_attribs)),
                 #('imputer', SimpleImputer(strategy='most_frequent')),
                  ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
                  ('ohe', OneHotEncoder(sparse=False, handle_unknown="ignore"))
             1)
         data_prep_pipeline = FeatureUnion(transformer_list=[
                  ("num_pipeline", num_pipeline),
                  ("cat_pipeline", cat_pipeline),
             ])
In [106... list(datasets["application_train"].columns)
          ['SK_ID_CURR',
Out[106]:
           'TARGET',
           'NAME_CONTRACT_TYPE',
           'CODE_GENDER',
           'FLAG_OWN_CAR',
           'FLAG_OWN_REALTY',
           'CNT_CHILDREN',
           'AMT_INCOME_TOTAL',
           'AMT_CREDIT'
           'AMT_ANNUITY',
           'AMT_GOODS_PRICE',
           'NAME_TYPE_SUITE',
```

```
'NAME_INCOME_TYPE'
'NAME_EDUCATION_TYPE',
'NAME_FAMILY_STATUS',
'NAME_HOUSING_TYPE',
'REGION_POPULATION_RELATIVE',
'DAYS_BIRTH',
'DAYS_EMPLOYED',
'DAYS_REGISTRATION',
'DAYS_ID_PUBLISH',
'OWN_CAR_AGE',
'FLAG_MOBIL',
'FLAG_EMP_PHONE'
'FLAG_WORK_PHONE'
'FLAG_CONT_MOBILE',
'FLAG_PHONE',
'FLAG_EMAIL',
'OCCUPATION_TYPE',
'CNT_FAM_MEMBERS',
'REGION_RATING_CLIENT',
'REGION_RATING_CLIENT_W_CITY',
'WEEKDAY_APPR_PROCESS_START',
'HOUR_APPR_PROCESS_START'
'REG_REGION_NOT_LIVE_REGION',
'REG_REGION_NOT_WORK_REGION',
'LIVE_REGION_NOT_WORK_REGION',
'REG_CITY_NOT_LIVE_CITY',
'REG_CITY_NOT_WORK_CITY'
'LIVE_CITY_NOT_WORK_CITY',
'ORGANIZATION_TYPE',
'EXT_SOURCE_1',
'EXT_SOURCE_2'
'EXT_SOURCE_3',
'APARTMENTS_AVG'
'BASEMENTAREA_AVG',
'YEARS_BEGINEXPLUATATION_AVG',
'YEARS_BUILD_AVG',
'COMMONAREA_AVG',
'ELEVATORS_AVG'
'ENTRANCES_AVG',
'FLOORSMAX_AVG',
'FLOORSMIN_AVG',
'LANDAREA_AVG',
'LIVINGAPARTMENTS_AVG',
'LIVINGAREA_AVG',
'NONLIVINGAPARTMENTS_AVG',
'NONLIVINGAREA_AVG',
'APARTMENTS_MODE',
'BASEMENTAREA_MODE'
'YEARS_BEGINEXPLUATATION_MODE',
'YEARS_BUILD_MODE',
'COMMONAREA_MODE',
'ELEVATORS_MODE',
'ENTRANCES_MODE'
'FLOORSMAX_MODE',
'FLOORSMIN_MODE',
'LANDAREA_MODE',
'LIVINGAPARTMENTS_MODE',
'LIVINGAREA_MODE',
'NONLIVINGAPARTMENTS_MODE',
'NONLIVINGAREA_MODE',
'APARTMENTS_MEDI',
'BASEMENTAREA_MEDI',
'YEARS_BEGINEXPLUATATION_MEDI',
'YEARS_BUILD_MEDI',
'COMMONAREA_MEDI',
'ELEVATORS_MEDI'
```

```
'ENTRANCES_MEDI',
'FLOORSMAX_MEDI',
'FLOORSMIN_MEDI',
'LANDAREA_MEDI',
'LIVINGAPARTMENTS_MEDI',
'LIVINGAREA_MEDI',
'NONLIVINGAPARTMENTS_MEDI',
'NONLIVINGAREA_MEDI',
'FONDKAPREMONT_MODE',
'HOUSETYPE_MODE',
'TOTALAREA_MODE'
'WALLSMATERIAL_MODE'
'EMERGENCYSTATE_MODE',
'OBS_30_CNT_SOCIAL_CIRCLE',
'DEF_30_CNT_SOCIAL_CIRCLE',
'OBS_60_CNT_SOCIAL_CIRCLE',
'DEF_60_CNT_SOCIAL_CIRCLE',
'DAYS_LAST_PHONE_CHANGE',
'FLAG_DOCUMENT_2',
'FLAG_DOCUMENT_3',
'FLAG_DOCUMENT_4',
'FLAG_DOCUMENT_5'
'FLAG_DOCUMENT_6'
'FLAG_DOCUMENT_7'
'FLAG_DOCUMENT_8',
'FLAG_DOCUMENT_9'
'FLAG_DOCUMENT_10'
'FLAG_DOCUMENT_11',
'FLAG_DOCUMENT_12',
'FLAG_DOCUMENT_13'
'FLAG_DOCUMENT_14'
'FLAG_DOCUMENT_15',
'FLAG_DOCUMENT_16',
'FLAG_DOCUMENT_17'
'FLAG_DOCUMENT_18'
'FLAG_DOCUMENT_19',
'FLAG_DOCUMENT_20'
'FLAG_DOCUMENT_21',
'AMT_REQ_CREDIT_BUREAU_HOUR',
'AMT_REQ_CREDIT_BUREAU_DAY',
'AMT_REQ_CREDIT_BUREAU_WEEK',
'AMT_REQ_CREDIT_BUREAU_MON',
'AMT_REQ_CREDIT_BUREAU_QRT',
'AMT_REQ_CREDIT_BUREAU_YEAR']
```

Baseline Model

To get a baseline, we will use some of the features after being preprocessed through the pipeline. The baseline model is a logistic regression model

```
"Test AUC",
"Train F1 Score",
"Test F1 Score"
])
```

%%time np.random.seed(42) full_pipeline_with_predictor = Pipeline([("preparation", data_prep_pipeline), ("linear", LogisticRegression())]) model = full_pipeline_with_predictor.fit(X_train, y_train)

Evaluation metrics

 In the present final project, several evaluation meterics for Classification task were used to evaluate model peroformacnee, including Accuracy, Confusion Matrix, Precision, Recall, F1 Score, AUC-ROC curve.

Accuracy

Accuracy simply measures how often the classifier correctly predicts. We can define accuracy as the ratio of the number of correct predictions and the total number of predictions.

Precision

Precision for a label is defined as the number of true positives divided by the number of predicted positives.

$$Precision = \frac{TruePositive}{TruePositive + FalsePositive}$$

Recall

Recall for a label is defined as the number of true positives divided by the total number of actual positives.

$$Recall = \frac{TruePositive}{TruePositive + FalseNegative}$$

F1 Score is the harmonic mean of precision and recall.

$$F1 = 2. \ rac{Precision imes Recall}{Precision + Recall}$$

Confusion Matrix

Confusion Matrix is a performance measurement for the machine learning classification problems where the output can be two or more classes. It is a table with combinations of predicted and actual values.

- True Positive: We predicted positive and it's true.
- True Negative: We predicted negative and it's true.
- False Positive (Type 1 Error): We predicted positive and it's false.
- False Negative (Type 2 Error): We predicted negative and it's false.

Actual Values

		Positive (1)	Negative (0)
Predicted Values	Positive (1)	TP	FP
Predicte	Negative (0)	FN	TN

AUC-ROC

The Receiver Operator Characteristic (ROC) is a probability curve that plots the TPR(True Positive Rate) against the FPR(False Positive Rate) at various threshold values and separates the 'signal' from the 'noise'.

```
model = full_pipeline_with_predictor.fit(X_train, y_train)
np.round(accuracy_score(y_train, model.predict(X_train)), 3)
Out[109]:
0.921
```

Calculate accuracy, and Classification report of baseline model on testing data

```
In [110...
         # Calculate accuracy, and Classification report of baseline model on testing data
         accuracy_test_baseline = accuracy_score(y_test, model.predict(X_test)).round(4) * 100
         report_test_baseline = classification_report(y_test, model.predict(X_test))
         print("Accuracy of Logistic Regression: {:.2f}%".format(accuracy_test_baseline))
         print(".....
         print("Classification report: Logistic Regression")
         print()
         print(report_test_baseline)
         Accuracy of Logistic Regression: 92.18%
         Classification report: Logistic Regression
                                    recall f1-score
                       precision
                                                        support
                                                        177375
                    0
                            0.92
                                      1.00
                                                0.96
                            0.52
                                      0.01
                                                0.02
                                                         15067
                                                0.92
                                                        192442
             accuracy
                            0.72
                                      0.50
                                                0.49
                                                        192442
            macro avg
         weighted avg
                            0.89
                                      0.92
                                                0.89
                                                        192442
         from sklearn.metrics import roc_auc_score
In [111...
         roc_auc_score(y_train, model.predict_proba(X_train)[:, 1])
          0.7411204457223629
Out[111]:
In [112...
         from sklearn.metrics import f1_score
         exp_name = f"Baseline_{len(selected_features)}_features"
         expLog.loc[len(expLog)] = [f"{exp_name}"] + list(np.round(
                         [accuracy_score(y_train, model.predict(X_train)),
                         accuracy_score(y_valid, model.predict(X_valid)),
                         accuracy_score(y_test, model.predict(X_test)),
                          roc_auc_score(y_train, model.predict_proba(X_train)[:, 1]),
                          roc_auc_score(y_valid, model.predict_proba(X_valid)[:, 1]),
                          roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]),
                          f1_score(y_train, model.predict(X_train)),
                          f1_score(y_test, model.predict(X_test))],
             4))
         expLog
Out[112]:
                                Train
                                       Valid
                                               Test
                                                      Train
                                                              Valid
                                                                      Test
                                                                              Train F1
                                                                                          Test F1
                    exp name
                                        Acc
                                               Acc
                                                       AUC
                                                               AUC
                                                                      AUC
                                                                                Score
                                                                                          Score
                                 Acc
```

Confusion matrix for baseline model

0 Baseline_14_features

0.9211

0.9214 0.9218

0.7411

0.7406

0.7413

0.0174

0.0168

```
from sklearn.metrics import RocCurveDisplay, confusion_matrix

cm_lr = confusion_matrix(y_test, model.predict(X_test))

plt.figure(figsize = (7, 6))
sns.heatmap(cm_lr, annot = True, fmt = "d", cmap = "Blues", annot_kws={"fontsize": 16})
plt.title("Confusion Matrix of Logistic Regression Classifier", fontsize = 16)
plt.xlabel("Predicted Label", fontsize = 14)
plt.ylabel("True Label", fontsize = 14)
plt.show()
```

Confusion Matrix of Logistic Regression Classifier

ROC curve for baseline model

```
In [115... #Plot the ROC curve for baseline model

y_score = model.predict_proba(X_test)[:, 1]

roc_display = RocCurveDisplay.from_predictions(y_test, y_score)
plt.title("ROC curve: Logistic Regression model", fontsize = 16) # Adjust the title to
plt.xlabel("False Positive Rate (FPR)", fontsize = 14)
plt.ylabel("True Positive Rate (TPR)", fontsize = 14)
plt.show()
```


Hyperparameter Tuning of Basline model with grid search CV

```
params_grid = {'linear__penalty': ['l1', 'l2'],
In [116...
                      'linear__tol': [0.0001, 0.00001, 0.0000001],
                      'linear__C': [10, 1, 0.1, 0.01]}
         # Initialize GridSearchCV with the pipeline and the parameter grid
          gs = GridSearchCV(full_pipeline_with_predictor, params_grid, cv=5, n_jobs=-1, verbose=2,
         ### Creating a subset as the full file is just too big and crashes my kernal
          random_index = X_train.sample(n=100000, random_state=42).index
         X_train_subset = X_train.loc[random_index]
         y_train_subset = y_train.loc[random_index]
          print(X_train_subset.shape)
         print(y_train_subset.shape)
          gs.fit(X_train_subset, y_train_subset)
         (100000, 14)
         (100000,)
         Fitting 5 folds for each of 24 candidates, totalling 120 fits
          GridSearchCV(cv=5,
Out[116]:
                        estimator=Pipeline(steps=[('preparation',
                                                   FeatureUnion(transformer_list=[('num_pipeline',
                                                                                     Pipeline(steps=
          [('selector',
            DataFrameSelector(attribute_names=['AMT_INCOME_TOTAL',
                                                 'AMT_CREDIT',
                                                 'DAYS_EMPLOYED',
                                                 'DAYS_BIRTH',
                                                 'EXT_SOURCE_1',
                                                 'EXT_SOURCE_2',
                                                 'EXT_SOURCE_3'])),
          ('imputer',
            SimpleImputer()),
```

```
StandardScaler())])),
                                                                                  ('cat_pip...
                                                'NAME_EDUCATION_TYPE',
                                                'OCCUPATION_TYPE',
                                                'NAME_INCOME_TYPE'])),
          ('imputer',
            SimpleImputer(fill_value='missing',
                          strategy='constant')),
          ('ohe',
            OneHotEncoder(handle_unknown='ignore',
                          sparse=False))]))),
                                                  ('linear', LogisticRegression())]),
                       n_jobs=-1,
                       param_grid={'linear__C': [10, 1, 0.1, 0.01],
                                   'linear__penalty': ['l1', 'l2'],
                                   'linear__tol': [0.0001, 1e-05, 1e-07]},
                       verbose=2)
         best_model = gs.best_estimator_
In [117...
         best_params = gs.best_params_
         # Evaluate the best model on the test set
         y_pred = best_model.predict(X_test)
         best_accuracy = accuracy_score(y_test, y_pred).round(4) * 100
         print("Best model hyperparameters:", best_params)
         print("Accuracy of best model:", best_accuracy)
         Best model hyperparameters: {'linear__C': 1, 'linear__penalty': 'l2', 'linear__tol': 0.0
         001}
         Accuracy of best model: 92.1799999999999
         Calculate accuracy, and Classification report of baseline model on testing
         data
In [118... # Calculate accuracy, and Classification report of baseline model on testing data
         accuracy_test_gs = accuracy_score(y_test, best_model.predict(X_test)).round(4) * 100
         report_test_gs = classification_report(y_test, best_model.predict(X_test))
         print("Accuracy of Logistic Regression with hyperparameter tuning: {:.2f}%".format(accur
         print("Classification report: Logistic Regression with hyperparameter tuning")
         print()
         print(report_test_gs)
         Accuracy of Logistic Regression with hyperparameter tuning: 92.18%
```

Classification report: Logistic Regression with hyperparameter tuning

support

precision recall f1-score

('std_scaler',

```
0
                   0.92
                             1.00
                                        0.96
                                                177375
                   0.53
           1
                             0.01
                                        0.02
                                                 15067
                                        0.92
                                                192442
    accuracy
                   0.73
                             0.50
                                        0.49
                                                192442
   macro avg
                                        0.89
weighted avg
                   0.89
                             0.92
                                                192442
```

Out[119]:

	exp_name	Train Acc	Valid Acc	Test Acc	Train AUC	Valid AUC	Test AUC	Train F1 Score	Test F1 Score
0	Baseline_14_features	0.9211	0.9214	0.9218	0.7411	0.7406	0.7413	0.0174	0.0168
1	GridSearchCV Logistic Regression	0.9211	0.9214	0.9218	0.7399	0.7397	0.7403	0.0163	0.0163

Create confusion matrix for Logistic Regression with hyperparameter tuning

```
In [120... # Create confusion matrix for Logistic Regression with hyperparameter tuning

cm_lr_gs = confusion_matrix(y_test, best_model.predict(X_test))

plt.figure(figsize = (7, 6))
    sns.heatmap(cm_lr_gs, annot = True, fmt = "d", cmap = "Blues", annot_kws={"fontsize": 16
    plt.title("Confusion Matrix of Logistic Regression with hyperparameter tuning", fontsize
    plt.xlabel("Predicted Label", fontsize = 14)
    plt.ylabel("True Label", fontsize = 14)
    plt.show()
```

Confusion Matrix of Logistic Regression with hyperparameter tuning

Plot the ROC curve for Logistic Regression with hyperparameter tuning

```
In [121... #Plot the ROC curve for Logistic Regression with hyperparameter tuning

y_score = best_model.predict_proba(X_test)[:, 1]

roc_display = RocCurveDisplay.from_predictions(y_test, y_score)
plt.title("ROC curve: Logistic Regression with hyperparameter tuning", fontsize = 16) #
plt.xlabel("False Positive Rate (FPR)", fontsize = 14)
plt.ylabel("True Positive Rate (TPR)", fontsize = 14)
plt.show()
```

ROC curve: Logistic Regression with hyperparameter tuning

Submission File Prep

For each SK_ID_CURR in the test set, you must predict a probability for the TARGET variable. The file should contain a header and have the following format:

```
SK_ID_CURR, TARGET
          100001,0.1
          100005,0.9
          100013,0.2
          etc.
          test_class_scores = model.predict_proba(X_kaggle_test.drop_duplicates())[:, 1]
In [122...
In [123... test_class_scores[0:10]
          array([0.05803207, 0.18385248, 0.02918214, 0.06339177, 0.11813162,
Out[123]:
                  0.05098996, 0.01717775, 0.07965548, 0.01474992, 0.18479812])
          # Submission dataframe
In [124...
          submit_df = datasets["application_test"][['SK_ID_CURR']]
          submit_df['TARGET'] = test_class_scores
          submit_df.head()
             SK_ID_CURR TARGET
Out[124]:
           0
                  100001 0.058032
           1
                  100005 0.183852
           2
                  100013 0.029182
                  100028 0.063392
                  100038 0.118132
           4
          submit_df.to_csv("submission.csv",index=False)
In [125...
```

Kaggle submission via the command line API

```
In [ ]: ! kaggle competitions submit -c home-credit-default-risk -f submission.csv -m "baseline
```

report submission

Click on this link

Write-up

In this section, we will summarize the work done for phase 2.

Project title:

Predicting credit default risk using machine learning

Team and phase leader plan:

This week, our phase leader is Wunchana Seubwai. Our phase schedule is below

Phase	Phase leader				
Phase 1	Evie Mahsem				
Phase 2	Wunchana Seubwai				
Phase 3	Woojeong Kim				
Phase 4	Alaina Barca				

Credit assignment plan for phase 2:

Group member	Tasks completed
Evie Mahsem	Did EDA, built baseline pipelines, visualized EDA, contributed to slides
Wunchana Seubwai	Did EDA, built baseline pipelines, visualized EDA, created PPT template and contributed to slides
Woojeong Kim	Led development of PPT slides
Alaina Barca	Wrote report and developed presentation video

Abstract

The aim of this final project on the Home Credit Default Risk dataset is to develop a predictive model that accurately predicts whether a client will default on a loan. For phase 2 of the final project, we implemented several EDA and feature engineering techniques before constructing logistic regression models with and without hyperparameter tuning to identify potential loan defaulters among Home Credit's clientele. Various evaluation metrics, including accuracy score, precision, recall, F-1 score, confusion matrix, and ROC-AUC curve, were used to evaluate model performance. The results demonstrated that both models exhibited similar accuracy across the training, validation, and test datasets, with accuracy scores of around 92% and AUC scores of approximately 0.74. However, we aim to improve our model's performance by addressing class imbalance issues in the dataset. In addition, more machine learning models for classification tasks will be explored in the final project's phase 3.

Introduction

A consumer's ability to access a line of credit is often highly dependent on their credit history, leaving many potentially credit-worthy consumers without traditional loan options simply due to insufficient data. In this project, we will explore data from Home Credit, a lender striving to lend to consumers with insufficient credit histories using alternative lending data, to improve their methods for predicting loan repayment. We will use consumer transaction and payment data to develop pipelines for various machine learning algorithms — including logistic regressions, classification methods, and deep learning models — to predict consumers' likelihood of default. We will evaluate each method's predictive power using the ROC curve and produce a report summarizing the methods tested and the strongest performing predictor of consumer default. We will follow the project schedule for intermediate steps, which includes developing EDA and baseline pipeline in week 14, feature engineering and hyperparameter tuning in week 15, and implementing neural networks, advanced models, and finalizing the project in week 16.

For this phase (week 14), we review the dataset, conduct EDA, basic feature engineering and transformers, develop pipelines for our baseline model, and discuss our initial experimental results. We conclude with next steps for phase 3.

Dataset

The dataset from Home Credit is comprised of seven different sources of data. The first, application_train/application_test (307k rows, and 48k rows) is our main training and testing data. Six other datasets supplement the main train and test data. The dataset bureau (1.7 Million rows) contains client credit history, bureau_balance (27 Million rows) includes monthly credit history, previous_application (1.6 Million rows) contains previous applications, POS_CASH_BALANCE (10 Million rows) provides monthly data on spending, credit_card_balance gives us monthly credit card information, and installments_payment (13.6 Million rows) contains previous loan payments with Home Credit, if any.

EDA

From our EDA, we find that there are 16 categorical features and 106 numeric features in the application_train dataset. There are 48,744 rows and 122 features, including the "target" column (which represents whether a loan was repaid, with 0 for no and 1 for yes). There is quite a bit of missing data, with as much as 68.72 percent of some variables' observations missing. There is also quite a bit of class imbalance for our target variable -- 92 percent of the loans in our data are paid (0) and 8 percent are unpaid

(1). So, we will need to address this in our analysis. The variable most positive correlated with the target variable is DAYS_BIRTH (0.078), while the variable most negatively correlated with the target variable is EXT_SOURCE_3 (-0.179).

The distribution of applicant age is fairly flat between the ages of 20 and 70, though there are a few spikes around the ages of 30, 40, and 55. More than any other occupation, applicants are laborers, followed by occupations of sales staff and core staff. There are 1.7 million previous credit applications in our data. 291,057 of our 307,511 unique training set applicants have submitted a previous application. This is similar to the rate we see in the test data, with 47,800 out of 48,744 test set applicants submitting a previous application. About 22 percent of applicants have submitted a small number of applications ever (less than 5). 58 percent have submitted a moderate amount of applications (10 to 39), and 20 percent have submitted a large amount of applications (40 or more).

Feature Engineering and transformers

We conduct feature engineering for the prevApp table to address missing values, as well as creating feature transformer via pipeline for the prevApp table. We also construct a feature aggregator for the primary and secondary tables via pipeline. After fitting the feature engineering pipeline, we joined the primary and secondary datasets using features based on metadata and aggregated statistics. We then convert categorical features to numerical approximations via pipeline. We also prepare the data for our baseline model via pipeline, in which we split the provided training data into training and test sets, and identify the numeric features we wish to consider in our analysis.

Pipelines

As described above, we constructed pipelines for the feature engineering and transformer steps in this phase of the project. We also describe the baseline model pipeline below.

Experimental results

In Phase 2 of the final project, We developed our baseline logistic model pipeline, which we evaluate via accuracy, confusion matrix, precision, recall, F1 score, and AUC-ROC curve. We conducted hyperparameter tuning of the baseline model with grid search CV, and also evaluated model performance across the same tests.

As shown in Figure 1, Figure 2, and Table 1, Our baseline logistic model had train dataset accuracy of 0.921, a .741 AUC and a 0.017 F1 score. The test dataset had an accuracy of 0.922, a 0.741 AUC, and a 0.017 F1 score. The confusion matrix reveals we had 92.1% true negatives, 7.8% false negatives, 0.1% true positives, and 0.1% false positives. The small proportion of any positives is indicative of our imbalanced target class, and may mean we need to do more to address our imbalance issue.

We then conduct hyperparameter tuning via grid search CV. We experienced memory issues at this stage and were forced to run on a random subset of the data. According to our grid search results, the best model is a ridge regression with a tolerance of 0.0001 and a relatively strict regularization strength of 1. With this model, we see a training dataset accuracy of 0.921, a .740 AUC and a 0.016 F1 score. The test dataset had an accuracy of 0.922, a 0.740 AUC, and a 0.016 F1 score. Although the numbers shifted slightly in our confusion matrix, the percentages were the same as those presented for the baseline model above.

A.	Accuracy of Logistic Regression: 92.18% Classification report: Logistic Regression								
		precision	recall	f1-score	support				
	0	0.92	1.00	0.96	177375				
	1	0.52	0.01	0.02	15067				
	accuracy			0.92	192442				
	macro avg	0.72	0.50	0.49	192442				
	weighted avg	0.89	0.92	0.89	192442				

B. Accuracy of Logistic Regression with hyperparameter tuning: 92.18%

Classification report: Logistic Regression with hyperparameter tuning

	precision	recall	f1-score	support
0	0.92	1.00	0.96	177375
1	0.53	0.01	0.02	15067
accuracy			0.92	192442
macro avg	0.73	0.50	0.49	192442
weighted avg	0.89	0.92	0.89	192442

Figure 1 Accuracy score and classification report.

(A) Logistic regression model, (B) Logistic regression model with hyperparameter tuning.

Figure 2 Confusion matrix and ROC curve.

(A) Logistic regression model, (B) Logistic regression model with hyperparameter tuning.

Table 1. The results of the various experiments.

	exp_name	Train Acc	Valid Acc	Test Acc	Train AUC	Valid AUC	Test AUC	Train F1 Score	Test F1 Score
0	Baseline_14_features	0.9211	0.9214	0.9218	0.7411	0.7406	0.7413	0.0174	0.0168
1	GridSearchCV Logistic Regression	0.9211	0.9214	0.9218	0.7399	0.7397	0.7403	0.0163	0.0163

Discussion

All models (Logistic Regression with and without hyperparameter tuning) performed well with comparable results in terms of accuracy, ROC curve, evaluation metrics, and confusion matrix for 'Class 0'. However, the machine learning models failed to accurately predict of 'Class 1'.

Based on Class '1' results, the logistic regression models with and without hyperparameter tuning performed similarly with very low precision, recall, and F1-scores. This data indicated that models failed to predict 'Class 1' accurately. A significant class imbalance could significantly impact the learning process of the machine learning models. The machine learning models may have been trained with a bias toward the majority class ('Class 0'). Consequently, the models may overfit with the majority class ('Class 0') and have difficulty accurately predicting the rare instances of 'Class 1'.

Class Imbalance is a common problem in machine learning, especially in classification tasks. This problem can negatively impact the performance and accuracy of machine models. Therefore, We would like to improve our model performance through the implementation the technique to handle class imbalance issues in the dataset, such as the Synthetic Minority Over-sampling Technique (SMOTE). In addition, more machine learning model for classification task such as random forest, SVM, ANN will be used in the final project phase 3.

Conclusion

In this study, we performed EDA, feature engineering, and baseline model using logistic regression models, with and without hyperparameter tuning, to identify potential loan defaulters within the Home Credit Default Risk dataset. Both logistic regression models achieved high accuracy levels of approximately 92% and ROC-AUC scores around 0.74. However, the models failed to predict 'Class 1'(loan defaulters) accurately, as indicated by the low precision, recall, and F1-scores for this class. These results suggest a significant class imbalance within the dataset, which negatively impacted the model's predictive performance for the minority class. Next, we would like to handle class imbalance issue and used another machine learning model that work well with classimblance dataset to enhance model performance.

Kaggle Submission

References

Some of the material in this notebook has been adopted from here

- https://www.kaggle.com/competitions/home-credit-default-risk/overview
- https://medium.com/analytics-vidhya/home-credit-default-risk-part-1-business-understanding-datacleaning-and-eda-1203913e979c
- https://medium.com/@dhruvnarayanan20/home-credit-default-risk-part-2-feature-engineering-and-modelling-i-be9385ad77fd
- https://medium.com/@soohyunniekimm/logistic-regression-with-columntransformer-pipeline-and-gridsearchcv-d2e3a781422f
- https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-classification-model-to-take-the-right-decisions/
- https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
- https://medium.com/@okanyenigun/handling-class-imbalance-in-machine-learning-cb1473e825ce

TODO: Predicting Loan Repayment with Automated Feature Engineering in Featuretools

Read the following:

feature engineering via Featuretools library:

- https://github.com/Featuretools/predict-loanrepayment/blob/master/Automated%20Loan%20Repayment.ipynb
- https://www.analyticsvidhya.com/blog/2018/08/guide-automated-feature-engineering-featuretools-python/
- feature engineering paper: https://dai.lids.mit.edu/wp-content/uploads/2017/10/DSAA_DSM_2015.pdf
- https://www.analyticsvidhya.com/blog/2017/08/catboost-automated-categorical-data/