PageRank 算法实现与优化实验报告

王奕然, 孙致勉

2025年4月29日

目录

1	PageRank 介绍与原理					
	1.1	PageR	Rank 简介		2	
	1.2	PageR	Rank 基本原理		2	
	1.3	PageR	Rank 数学模型		2	
2	PageRank 代码实现					
	2.1	数据读取与图表示				
		2.1.1	全局 CSR 结构		4	
		2.1.2	图读取函数 readGraph		4	
	2.2	PageR	Rank 核心计算		6	
		2.2.1	BCSR 优化		6	
		2.2.2	迭代过程		9	
	2.3	结果输	渝出与主函数		10	
3	性能瓶颈与优化思路					
	3.1	性能瓶	瓶颈分析		11	
	3.2	2 优化思路与实现				
		3.2.1	BCSR (Blocked CSR) 优化		11	
		3.2.2	OpenMP 并行化		12	
		3.2.3	其他潜在优化点		12	
4	结果评估和验证				12	
	4.1	程序运	运行性能评估		12	
	4.2	程序正	E确率验证		13	
	4.3		来源及排查			
5	負结	;			14	

1 PageRank 介绍与原理

1.1 PageRank 简介

PageRank 是由 Google 创始人 Larry Page 和 Sergey Brin 提出的一种网页排名算法,用于衡量网页的重要性。其核心思想是:一个网页的重要性取决于指向它的其他网页的数量和质量。如果一个网页被许多重要的网页链接,那么它本身也很可能是一个重要的网页。

1.2 PageRank 基本原理

PageRank 算法模拟一个随机冲浪者在互联网上浏览网页的行为。冲浪者从一个随机页面开始,然后不断地点击页面上的链接。在每个页面,冲浪者有两种选择:

- 以概率 α (通常取 0.85, 称为阻尼系数) 从当前页面的出链中随机选择一个链接跳转。
- 以概率 $1-\alpha$ 随机跳转到网络中的任意一个页面(模拟用户在地址栏输入新网址或打开书签)。

算法通过迭代更新,收敛后能反映页面在网络中的重要程度。一个页面的 PageRank 值,就是这个随机冲浪者最终停留在该页面的概率。

1.3 PageRank 数学模型

在大规模网络中,我们希望为每个页面分配一个"重要性"度量——PageRank 值。该模型基于"随机冲浪者"假设:冲浪者在当前页面停留后,要么沿着该页面的出链随机跳转,要么跳转到任意页面。下面从数学上详细描述这一过程。

1. PageRank 向量表示 令网络中共有 N 个页面,将它们的 PageRank 值组织为一个 N 维列向量

$$\mathbf{PR} = \left[PR_1, PR_2, \dots, PR_N \right]^T,$$

并且通常要求归一化

$$\sum_{i=1}^{N} PR_i = 1.$$

2. 转移矩阵 M **的构造** 定义一个 $N \times N$ 的列随机矩阵 M, 其第 i 行第 j 列元素 M_{ij} 表示从页面 j 跳转到页面 i 的概率:

$$M_{ij} = \begin{cases} \frac{1}{L(j)}, & L(j) > 0 \text{ } \exists j \to i, \\ 0, & L(j) > 0 \text{ } \exists j \neq i, \\ \frac{1}{N}, & L(j) = 0 \text{ } (\text{Dead End}), \end{cases}$$

其中 L(j) 是页面 j 的出链数," $j \to i$ " 表示存在从 j 到 i 的超链接。对于死链页面(无出链),统一将其视作等概率指向所有页面,以防止 "Rank Sink" 问题。

3. 含阻尼系数的迭代更新 引入阻尼系数 $\alpha \in (0,1)$ (一般取 $\alpha = 0.85$) 和随机跳转机制。令冲浪者以概率 α 遵循矩阵 M 中的链接,以概率 $1-\alpha$ 跳转到任意页面。于是,第 k+1 次迭代时,页面 i 的 PageRank 为

$$PR_i^{(k+1)} = \underbrace{\frac{1-\alpha}{N}}_{\text{随机跳转}} + \underbrace{\alpha \sum_{j:j \to i} \frac{PR_j^{(k)}}{L(j)}}_{\text{所有指向}i}.$$

该公式强调: 新一轮的 PR_i 完全由所有入链页面的旧值累加(加上全局跳转项)构成,不包含页面自身的直接"自馈"影响,除非页面自身在网络中存在自环。

4. 矩阵-向量形式 将上述逐元素更新汇总为向量形式,得到

$$\mathbf{PR}^{(k+1)} = \alpha M \mathbf{PR}^{(k)} + \frac{1-\alpha}{N} \mathbf{1},$$

其中1是全1列向量。为了利用稀疏格式的计算优势,实际实现中常用

$$\mathbf{P}\mathbf{R}^{(k+1)} = \alpha M^T \mathbf{P}\mathbf{R}^{(k)} + \frac{1-\alpha}{N} \mathbf{1}.$$

5. 收敛判定 迭代继续进行, 直到

$$\left\| \mathbf{P} \mathbf{R}^{(k+1)} - \mathbf{P} \mathbf{R}^{(k)} \right\|_1 < \epsilon,$$

其中 ϵ 是预设的收敛阈值 (本实验中设置为 10^{-10}),用于保证 PageRank 向量充分收敛。

2 PageRank 代码实现

本实验使用 C++ 实现了基于幂迭代法的 PageRank 计算,并采用了 BCSR (Blocked Compressed Sparse Row) 格式对稀疏矩阵向量乘法 (SpMV) 进行了优化。

2.1 数据读取与图表示

输入数据 Data.txt 包含图的边信息,每行表示一条有向边。代码首先读取所有边,并构建节点 ID 到内部索引的映射 (node_to_idx 和 idx_to_node)。同时,计算每个节点的出度。

为了进行 PageRank 计算,需要构建转移矩阵 M 的转置 M^T 。代码使用全局 CSR (Compressed Sparse Row) 格式存储 M^T 。

2.1.1 全局 CSR 结构

全局 CSR 格式通过三个数组存储稀疏矩阵:

- values: 存储非零元素的值 (即 1/L(j))。
- col_indices: 存储非零元素对应的列索引(在 M^T 中,对应原始图的有向边索引)。
- row_ptr: 行指针,row_ptr[i] 表示第 *i* 行第一个非零元素在 values 和 col_indices 中的起始位置。

相关的结构体定义如下:

```
struct GlobalSparseMatrix {

vector < double > values;

vector < int > col_indices;

vector < int > row_ptr;

unordered_map < int, int > node_to_idx;

unordered_map < int, int > idx_to_node;

int n = 0; // 节点数

int nnz = 0; // 非零元素数

int getNodeId(int idx) const { /* ... */ }

};
```

Listing 1: 全局 CSR 结构体 GlobalSparseMatrix

2.1.2 图读取函数 readGraph

该函数负责从文件读取边,建立映射,计算出度,并填充上述 CSR 结构体以表示 M^T 。

```
GlobalSparseMatrix readGraph(const string& filename) {
GlobalSparseMatrix graph;
ifstream file(filename);
// ... 省略文件打开检查 ...
```

```
vector<pair<int, int>> edges;
206
       unordered map<int, vector<int>> adj list; // 临时存储邻接表用于计算出度
207
       int idx = 0;
208
       int from, to;
209
210
       // 第一次遍历:读边,建邻接表,节点映射
211
       while (file >> from >> to) {
212
           edges.push_back({from, to});
213
           adj_list[from].push_back(to);
214
           // ... 建立 node_to_idx 和 idx_to_node 映射 ...
215
      }
      file.close();
217
218
      graph.n = idx;
       graph.nnz = edges.size(); // 初始非零元数量, 后面可能调整
219
220
      // 初始化全局 CSR 数组
221
      graph.values.resize(graph.nnz);
222
       graph.col_indices.resize(graph.nnz);
223
       graph.row_ptr.resize(graph.n + 1, 0);
224
      vector<int> out_degrees(graph.n, 0);
225
      vector<vector<pair<int, double>>> temp_rows(graph.n); // 临时存储 M^T
226
      的行
227
      // 计算出度
228
      for (const auto& pair : adj_list) {
229
           if (graph.node_to_idx.count(pair.first)) {
230
                out_degrees[graph.node_to_idx[pair.first]] = pair.second.size
231
      ();
          }
232
      }
233
234
       // 构建 M^T (存储在 temp_rows 中)
235
      for (const auto& edge : edges) {
           int from_node = edge.first; int to_node = edge.second;
237
           if (graph.node_to_idx.count(from_node) && graph.node_to_idx.count(
238
      to_node)) {
               int from_idx = graph.node_to_idx[from_node];
239
               int to_idx = graph.node_to_idx[to_node];
240
               if (out_degrees[from_idx] > 0) {
241
                   double prob = 1.0 / out_degrees[from_idx];
242
                   // M^T 的第 to_idx 行, 第 from_idx 列的值为 prob
243
                   temp_rows[to_idx].push_back({from_idx, prob});
244
               }
245
           }
247
```

```
248
       // 填充全局 CSR 数组
249
       int current_nnz = 0;
       for (int i = 0; i < graph.n; ++i) {</pre>
251
           graph.row_ptr[i] = current_nnz;
           for (const auto& pair : temp_rows[i]) {
253
               if (current_nnz < graph.nnz) { // 避免越界
                    graph.col_indices[current_nnz] = pair.first; // 列索引 (
255
      from_idx)
                    graph.values[current_nnz] = pair.second;
                                                                    // 值 (prob)
256
                    current_nnz++;
257
               }
258
               else { }
259
           }
260
       }
261
       graph.row_ptr[graph.n] = current_nnz;
       // 如果有节点没有任何入链, current_nnz 可能小于 edges.size()
263
       if (current_nnz < graph.nnz) {</pre>
           graph.nnz = current_nnz;
265
           graph.values.resize(graph.nnz);
           graph.col_indices.resize(graph.nnz);
267
       }
       return graph;
269
```

Listing 2: 读取图并构建全局 CSR 的函数 readGraph (部分)

2.2 PageRank 核心计算

核心计算在 computePageRank 函数中完成,采用幂迭代法。

2.2.1 BCSR 优化

为了提高缓存利用率,代码使用了 BCSR (Blocked CSR) 格式进行 SpMV 计算。 BCSR 将大矩阵划分为固定大小的子块,每个非空子块内部使用 CSR 格式存储。

BCSR 结构定义 将全局稀疏矩阵切分为 CSRBlock, 压缩大小的同时方便进行并行运算。块的最优大小需要经过多次调试,以利用不同设备的 cache 大小,使得每次块内矩阵向量乘的访存效率最大化。

```
struct CSRBlock {

vector < double > values; // 块内非零元素的值

vector < int > col_indices; // 块内非零元素的局部列索引 (0 to BLOCK_COL_SIZE-1)
```

```
// 块内局部行指针 (大小 BLOCK_ROW_SIZE + 1)
41
     vector<int> row_ptr;
                                // 块内非零元素数量
     int nnz = 0;
     CSRBlock(int block_height): row_ptr(block_height + 1, 0) {} // 初始化
44
     行指针大小
     bool isEmpty() const { return nnz == 0; }
46 };
48 class BlockedCSRMatrix {
49 public:
     static const int BLOCK_ROW_SIZE = 512; // 块的行数
     static const int BLOCK_COL_SIZE = 512; // 块的列数
     // ...
     int global_n = 0;
                                // 全局矩阵维度
                                // 行方向上的块数量
     int num_block_rows = 0;
                                // 列方向上的块数量
     int num_block_cols = 0;
     vector < vector < CSRBlock >> blocks; // 存储所有块的 CSR 数据
     BlockedCSRMatrix(int n); // 构造函数
58
     void buildFromGlobalCSR(const GlobalSparseMatrix& global_csr); // 构建
     BCSR
     void multiplyVector(const vector<double>& x, vector<double>& y) const;
     // BCSR SpMV
61 };
```

Listing 3: CSR 块结构体 CSRBlock

构建 BCSR buildFromGlobalCSR 函数将全局 CSR 矩阵转换为 BCSR 格式。它首先 遍历全局 CSR 的所有非零元素,将它们分配到对应的块中(存储在临时的 temp_blocks 中),然后对每个块内的元素按行排序,并构建块局部的 CSR 结构。这个过程使用了 OpenMP 进行并行化。

```
void buildFromGlobalCSR(const GlobalSparseMatrix& global_csr) {
      // ... 省略初始化和检查 ...
83
      // 1. 临时存储每个块的元素 (local_row, local_col, value)
     vector<vector<tuple<int, int, double>>>> temp_blocks(/*...*/);
      // 遍历全局 CSR, 将元素分配到 temp_blocks
87
      for (int global_row = 0; global_row < global_n; ++global_row) {</pre>
88
         // ... 计算 block_row_idx, local_row ...
         int row_start = global_csr.row_ptr[global_row];
90
         int row_end = global_csr.row_ptr[global_row + 1];
         for (int k = row_start; k < row_end; ++k) {</pre>
92
             // ... 计算 block_col_idx, local_col ...
```

```
if (/* block indices valid */) {
94
                   temp blocks[block row idx][block col idx].emplace back(
95
      local_row, local_col, value);
               }
96
           }
       }
98
       // 2. 并行为每个块构建局部 CSR
100
       #pragma omp parallel for collapse(2)
       for (int bi = 0; bi < num_block_rows; ++bi) {</pre>
           for (int bj = 0; bj < num_block_cols; ++bj) {</pre>
103
               auto& elements = temp_blocks[bi][bj];
104
               if (elements.empty()) continue;
105
106
               CSRBlock& block = blocks[bi][bj];
               // ... 调整 block.values, block.col_indices 大小 ...
109
               // 排序块内元素
               sort(elements.begin(), elements.end());
111
               // 构建块内 CSR 的 row_ptr, values, col_indices
113
               // ... 填充 block.values, block.col_indices ...
114
               // ... 填充 block.row_ptr ...
115
           }
       }
117
118 }
```

Listing 4: 从全局 CSR 构建 BCSR (部分)

BCSR SpMV multiplyVector 函数执行 $y = A \cdot x$ (其中 A 是 BCSR 矩阵)。它按块行并行遍历所有块。对于每个非空块,执行块内的 CSR SpMV,并将结果累加到输出向量 y 的对应位置。

```
153 void multiplyVector(const vector<double>& x, vector<double>& y) const {
       // ... 省略初始化 ...
154
       fill(y.begin(), y.end(), 0.0);
       #pragma omp parallel for // 按块行并行
       for (int bi = 0; bi < num_block_rows; ++bi) {</pre>
158
           int global_row_start = bi * BLOCK_ROW_SIZE;
159
160
           for (int bj = 0; bj < num block cols; ++bj) {</pre>
161
               const CSRBlock& block = blocks[bi][bj];
162
               if (block.isEmpty()) continue;
163
164
```

```
int global_col_start = bj * BLOCK_COL_SIZE;
165
               int block_height = block.row_ptr.size() - 1;
               // 执行块内 CSR SpMV
168
               for (int local_row = 0; local_row < block_height; ++local_row)</pre>
      {
                    double sum = 0.0;
                    int global_row = global_row_start + local_row;
171
                    if (global_row >= global_n) continue; // 边界检查
172
173
                    int row_nnz_start = block.row_ptr[local_row];
174
                    int row_nnz_end = block.row_ptr[local_row + 1];
176
                    for (int k = row_nnz_start; k < row_nnz_end; ++k) {</pre>
177
                        int local_col = block.col_indices[k];
178
                        double value = block.values[k];
                        int global_col = global_col_start + local_col;
180
                        if (global_col < global_n) { // 边界检查
182
                            sum += value * x[global_col];
183
                        }
184
                    }
185
                    // 累加结果到全局 y
186
                    y[global_row] += sum;
187
               }
188
           }
189
       }
190
191 }
```

Listing 5: BCSR 矩阵向量乘法 multiply Vector (部分)

2.2.2 迭代过程

computePageRank 函数的主循环执行以下步骤:

- 1. 使用 bcsr_matrix.multiplyVector(pr, temp_pr) 计算 $M^T \cdot PR^{(k)}$, 结果存储在 temp_pr。
- 2. 计算 Dead Ends 贡献的总和 dead_end_contribution。
- 3. 计算新的 PageRank 向量 next_pr:
 next_pr[i] = alpha * temp_pr[i] + teleport_prob + dead_end_contribution
- 4. 计算新旧 PageRank 向量的 L1 范数差值 diff。
- 5. 更新 PR 向量: pr.swap(next_pr)。

6. 检查 diff 是否小于阈值 ϵ 或达到最大迭代次数,决定是否终止迭代。

这些步骤中的向量计算(如计算 Dead Ends 贡献、计算 next_pr、计算 diff)也使用了 OpenMP 并行化 (#pragma omp parallel for) 和 SIMD 指令 (simd) 进行优化。

```
double epsilon = tol * n;
298
       while (diff > epsilon && iterations < 100) { // 迭代条件
299
           // --- BCSR 矩阵向量乘法 ---
300
           bcsr_matrix.multiplyVector(pr, temp_pr); // temp_pr = M^T * pr
302
           // 处理 Dead-ends
304
           double dead_end_contribution_sum = 0.0;
           #pragma omp parallel for reduction(+:dead_end_contribution_sum)
306
           for (int i = 0; i < n; i++) {</pre>
               if (is_dead_end[i]) {
308
                    dead_end_contribution_sum += pr[i];
309
               }
           }
311
           double dead_end_term = alpha * dead_end_contribution_sum / n;
312
313
           // 计算 next_pr (并行 + SIMD)
314
           double teleport_term = (1.0 - alpha) / n;
315
           #pragma omp parallel for simd
           for (int i = 0; i < n; i++) {</pre>
317
               next_pr[i] = alpha * temp_pr[i] + teleport_term + dead_end_term
           }
319
320
           // 计算差异 (并行 + SIMD)
321
           diff = 0.0;
322
           #pragma omp parallel for simd reduction(+:diff)
           for (int i = 0; i < n; i++) {</pre>
               diff += abs(next_pr[i] - pr[i]);
           }
327
           pr.swap(next_pr); // 更新 PR 值
           iterations++;
329
```

Listing 6: PageRank 迭代计算核心逻辑 (部分)

2.3 结果输出与主函数

计算完成后,将 PageRank结果(节点 ID 和对应的 PR 值)按 PR 值降序排序,并输出到文件 Res_bcsr.txt。主函数 main 负责设置 OpenMP 线程数,调用图读取和

PageRank 计算函数, 计时并打印运行时间和峰值内存使用情况。

3 性能瓶颈与优化思路

3.1 性能瓶颈分析

PageRank 计算的核心是稀疏矩阵向量乘法 (SpMV)。对于大规模图数据,转移矩阵 M^T 通常非常稀疏。

- **内存访问不规则**: 使用标准的 CSR 格式进行 SpMV 时 ($y = A \cdot x$), 访问 A 的 values 和 col_indices 是顺序的,但访问输入向量 x 的元素 ($x[col_idx]$) 是根据 col_indices 进行的,这通常导致随机内存访问。对于大型图,向量 x 可能无法完全放入缓存,导致频繁 Cache Miss,成为性能瓶颈。
- 计算密度低: 稀疏矩阵中大量的零元素不参与计算, 导致计算单元利用率不高。
- **并行开销**: 虽然 OpenMP 可以并行化循环,但线程间的同步、负载均衡以及对共享数据(如输出向量 *y*)的原子操作或竞争可能引入额外开销。

3.2 优化思路与实现

3.2.1 BCSR (Blocked CSR) 优化

为了改善内存访问模式,代码采用了 BCSR 格式。

- 提高数据局部性: BCSR 将矩阵划分为块。在处理一个块时,涉及的输入向量 *x* 和输出向量 *y* 的部分数据更有可能保留在缓存中。块内的 SpMV 操作访问的数据范围相对集中,提高了空间局部性。重复访问同一块数据(如果块被多次使用)则提高了时间局部性。
- 潜在的指令级并行: 对于密集的块,可以使用 SIMD 指令进一步加速块内计算(尽管本代码的块内 CSR SpMV 未显式使用 SIMD,但编译器可能进行优化)。
- 块大小选择: BCSR 的性能对块大小 (BLOCK_ROW_SIZE, BLOCK_COL_SIZE) 敏感。 块太小,索引开销增大;块太大,缓存优势减弱。代码中选择了 512×512,这需 要根据具体硬件缓存大小和图的稀疏模式进行调整。

如 BlockedCSRMatrix::multiplyVector 函数所示,通过分块处理,期望能减少 SpMV 过程中的缓存未命中。

3.2.2 OpenMP 并行化

代码在多个计算密集型部分使用了 OpenMP 进行并行化:

- BCSR 构建: buildFromGlobalCSR 函数中构建各个块的局部 CSR 结构时,使用了 #pragma omp parallel for collapse(2) 对块的外层循环进行并行。
- BCSR SpMV: multiplyVector 函数中,使用了 #pragma omp parallel for 对 块行的外层循环进行并行,不同的线程处理不同的块行。
- 向量更新与计算: 在 computePageRank 的迭代过程中, 计算 Dead Ends 贡献、更新 next_pr 向量、计算差值 diff 等操作都使用了 #pragma omp parallel for, 并结合 reduction 或 simd 子句进行优化。

通过并行化,可以利用多核处理器的计算能力,显著缩短计算时间。

3.2.3 其他潜在优化点

- 原子操作/锁: 在更大图的 BCSR SpMV 中,如果多个线程可能写入 y 的相同位置 (例如,如果并行粒度更细),则需要使用 #pragma omp atomic 或其他同步机制来 避免竞争条件。当前代码按块行并行,如果块行不重叠,则对 y 的写入是安全的。
- 负载均衡: 如果图中节点的度分布非常不均匀,或者 BCSR 块的非零元数量差异很大,产生极大的非零行长度,会使得 CSR 压缩算法的性能急剧退化,导致 OpenMP 线程负载不均。可以使用动态调度 (dynamic schedule) 等策略尝试改善。
- 内存对齐: 确保数据结构 (尤其是向量) 内存对齐, 可能有利于 SIMD 操作。
- **更高级的稀疏格式**: 对于特定结构的图,可能存在比 BCSR 更优化的格式,如 ELLPACK, HYB 等。

4 结果评估和验证

4.1 程序运行性能评估

程序编译实现了 O2 级编译优化,并启用了共享内存并行机制、自动向量化、基于 CPU 类型的自动编译优化,命令如下:

g++ pagerank.cpp -o pagerank.exe -fopenmp -02 -march=native -static

使用作业资料中所提供的性能测试代码可以看到,除第一次运行外,多次执行程序 所占用的内存始终为 2.58MB,运行时间为 0.12s;但是第一次的内存占用与运行时间都

远大于后几次,应该与操作系统的内存管理机制有关。考虑到编译命令使用的是静态编译,性能提升应该并不是来源于动态库链接缓存,经分析,小组认为原因可能在于要读入的 Data.txt 被映射进内存或 Cache,提升了 I/O 性能。

4.2 程序正确率验证

使用 networkx 库构建了一份标准的 pagerank 算法,并输出结果,使用脚本比对两份结果:

```
1 (base) root@wdzw:~/bigdata# python standard.py
2 Top-100 intersection count: 100
3 Accuracy: 96.00%
4
5 Nodes only in reference (但不在用户结果中):
6 []
7
8 Nodes only in user result (但不在参考结果中):
9 []
10
11 Positional mismatches (位置,用户节点,参考节点):
12 Position 27: User 8036 vs Reference 8314
13 Position 28: User 8314 vs Reference 8036
14 Position 79: User 9043 vs Reference 614
15 Position 80: User 614 vs Reference 9043
```

可以看到,在调整了阈值,迭代次数,使用数据类型 (double64) 全部一致的情况下,前一百的节点存在两处顺序问题,小组初步猜测为 networkx 库中存在一些其他的数据对齐等环节,导致了不同,不过进行了进一步排查。

4.3 误差来源及排查

针对 C++ 实现与 NetworkX 标准库结果存在的微弱差异,本小组从以下三个方面进行了系统排查:

- Dangling 节点处理方式:通过查看 networkx 官方文档,首先怀疑是对 dangling (出度为 0) 节点重定向策略不同导致,于是尝试按照 NetworkX 的 uniform 重定 向方式将所有 dangling 节点的 PageRank 重新分配给全网,但误差依然存在,排除该因素。
- Python 库数值实现差异: 为验证是否由 NumPy/SciPy 在浮点运算或稀疏乘法中引入偏差,本组将核心算法移植为纯 Python,调用 Scipy 与 Numpy 库,结果与原 C++一致,故非库实现差异所致。
- 分块造成收敛判定未对齐: 原始 C++ 实现使用

$$\left\|\mathbf{P}\mathbf{R}^{(k+1)} - \mathbf{P}\mathbf{R}^{(k)}\right\|_{1} < \epsilon \quad (\epsilon = 10^{-10})$$

作为收敛判定。NetworkX (SciPy 后端)则采用

$$\|\mathbf{P}\mathbf{R}^{(k+1)} - \mathbf{P}\mathbf{R}^{(k)}\|_{1} < N \times \text{tol} \quad (\text{tol} = 10^{-10})$$

的方式。将 C++ 收敛阈值调整为同样公式后, 计算结果完全吻合标准库输出, 确认该处为根本原因。

```
(base) root@wdzw:~/bigdata# /bin/python3 /root/bigdata/standard.py
Top-100 intersection count: 100
Accuracy: 100.00%

Nodes only in reference (但不在用户结果中):
[]
Nodes only in user result (但不在参考结果中):
[]
Positional mismatches (位置,用户节点,参考节点):
(base) root@wdzw:~/bigdata#
```

5 总结

本实验成功实现了 PageRank 算法,并通过引入 BCSR 稀疏矩阵存储格式和 OpenMP 并行计算技术,对核心的 SpMV 操作进行了优化。实验代码首先使用全局 CSR 格式读取和存储图的转移矩阵 M^T ,然后将其转换为 BCSR 格式。在 PageRank 的迭代计算中,使用优化的 BCSR SpMV 函数,并结合 OpenMP 并行处理向量更新等步骤。

结果表明,相比于朴素的 CSR SpMV 实现, BCSR 通过改善内存访问局部性,结合 OpenMP 利用多核并行计算,能够有效提升 PageRank 算法在大规模图数据上的执行效率,缩短计算时间。实验中使用的 512 × 512 块大小是一个经验值,最优块大小可能依赖于具体的硬件平台和数据集特性。

除了优化工作以外,小组还对过程中出现的误差进行了深入分析,并最终解决,有 了更多收获。

未来的工作可以探索更精细的并行化策略、动态负载均衡技术,以及尝试其他针对特定硬件架构(如 GPU)的优化方法。