Date:/	ASB -6
Exercise No.	Solved Problems: Sub Obj
Derivation of Deflection Angle	
, ,	
Ψ,Ψ	
Granibation Potential = plant 0	
23	IP DIL TO THE
	is the deflection angle
-Vo = -GH R and V so	the angle between asymptotic - and storection of closest of
Let b=-ax	
Kietic evergy of particle photon =	$E = \sqrt{m^2c^4 + p^2c^2} = pc$
	和和
K = Jan	- 1200 target equation
920 92^2 $2ME - 2009 - 10^2$	2 %=0
Assume a setial	LC
Assume a posticle of moss of	$RE = \frac{1}{2}mx^{2} + \frac{1}{2}mx^{2}$
$L = T - V = \pm m(\dot{n}^2 + g^2 \dot{g}^2) - \phi$	
$\frac{d}{dr}\left(\frac{\partial L}{\partial \dot{n}}\right) - \frac{\partial L}{\partial n} = 0 \Rightarrow n\dot{n} - 1$	un0 = 1
(3) - 30 = 0 => mont o	== 1
$ \left(\frac{d}{dt}\left(\frac{3L}{30}\right) - \frac{3L}{30} = 0 \Rightarrow mn^2 0^{\frac{1}{2}} $ as d) = 0
$n\hat{n} = -\frac{d\hat{n}}{dn} - \frac{d}{dn} \left(\frac{\ell^2}{2mn^2} \right) =$	$-\frac{d}{dx}(0+\frac{1}{2mx^2})$
at 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	= o(mi2) + mi + p+ l2 = E

Exercise No.

Solved Problems: Sub 🗌 Obj 🗌

Point Mass Long

$$\mathbf{K} = \frac{2}{c^2} \int_{-\infty}^{\infty} \nabla_{\mathbf{L}} \phi \, d\mathbf{r}$$

In He weak field limit
$$\phi = -GM$$

As photon is deflected from the z aris, we can assiste take the central gravitational entity in the x-y plane at z=0
$$n = \sqrt{n^2 + y^2 + z^2}$$

$$\nabla \phi = \partial_{n} \phi \hat{i} + \partial_{y} \phi \hat{j} = \frac{GH}{n^{2}} (en\hat{i} + en\hat{j})$$

$$\frac{d}{dn} \frac{GM}{n} = \frac{-GM}{n^2} \qquad \frac{d}{dn} \frac{GM}{(n^2 + y^2 + z^2)^3 n} = \frac{-GM}{n^2}$$

$$\Rightarrow R = \frac{2}{c^2} \int_{-\infty}^{\infty} \frac{GM}{2s^2} \left(\frac{2s^2 + y^2 + z^2}{2s^2} \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= 2R_3 \left(2s^2 + y^2 + z^2 \right) dz$$

$$= \frac{Z}{(n^2+y^2)\sqrt{n^2+y^2+z^2}}$$

$$= \frac{2}{(n^2 \eta^2)}$$

Exercise No.

Solved Problems: Sub Obj

$$\Delta t = \int \Delta \left(\frac{dl}{v} \right) = \int \frac{dl}{c'} - \frac{dl}{c} = \frac{1}{c} \int dl \left(\frac{c}{c'} - 1 \right) = \left(\frac{(n-1)}{c} \right) dl$$

$$n = 1 - \frac{2\phi}{c^2} \Rightarrow \Delta r = -\frac{2}{c^3} \int \phi dk$$

$$\dot{n} = \frac{dn}{dt} = \sqrt{\frac{-2(\phi + l^2)^2 - E}{2mr^2}} \qquad \dot{\theta} = \frac{d\theta}{dt} = \frac{l}{mn^2}$$

$$\frac{dn}{d\theta} = \frac{\int \frac{2}{n} \left(\phi + \frac{l^2}{2n\eta^2} \right) - E}{l/n\eta^2}$$

$$\Rightarrow ol0 = \frac{1}{n^2 \sqrt{-2n(\phi + \frac{1^2}{2nn^2} - \epsilon)}}$$

$$\int_{0}^{\infty} d\theta = \int_{0}^{\infty} \frac{2n\eta^{2}}{\sqrt{2n(E-\phi-L)}}$$

$$\Rightarrow \Psi = \int_{\eta_0}^{\infty} \frac{d\eta}{\eta^2 \left(\frac{2n(E-\phi)}{\eta^2} - \frac{1}{\eta^2}\right)}$$

E is the total energy

X= 124

$$K = TL - 2 \int_{\eta_0}^{\infty} \frac{dn}{n^2 k}$$

Exercise No.

Subjective Problems: Level / Section -

$$\dot{x} = \frac{1}{n} \nabla n - \nabla \ln n$$

$$= \frac{1}{n} \nabla n + \nabla \frac{\partial p}{\partial x} = \frac{1}{n} \nabla n + \frac{2}{n} \nabla \frac{\partial p}{\partial x} - \nabla p = a$$

A ANTON A THE

$$= \frac{1}{n} \nabla n - 2a \approx -2a$$

Total deflection angle $\overline{x} = -\frac{1}{2i} d\lambda = \frac{2}{c^2} \int_{A}^{B} \nabla \phi d\lambda$

Similar to scattering theory

