Answer all the Questions

1. Find the power dissipated in the 1Ω resistor in the circuit shown in Fig. 1. (Hint: Δ to Y conversion)

Fig. 1

 \angle . Find the equivalent resistance R_{ab} in the circuit shown in Fig. 2 using the star-delta conversion. [3]

3. Using the superposition theorem, find the current I in the circuit shown in Fig. 3.

- 4. Using nodal analysis, find the current i and the voltage v_x in the circuit shown in Fig. 4.
 - 5. Calculate the mesh currents I_1 and I_2 in the circuit shown in Fig. 5.

[2]

[3]

[2]

6. Find the Thevenin equivalent circuits When looking into the circuit between (i) a and b, (ii) b and c in Fig. 6.

≥ 7. Find the Norton equivalent circuit at terminals a and b of the circuit shown in Fig. 7.

Fig. 7

8. Using Millman's theorem, find the current through and voltage across R_L in Fig. 8.

Fig. 8

9. Find the current I in the circuit shown in Fig. 9a, and repeat for the circuit shown in Fig. 9b. [4] Is the reciprocity theorem satisfied? 4ΚΩ

10. Find the value of R_L such that the maximum power is delivered to R_L in Fig. 10.

[2]

[4]

[3]

24 V

24K Ω

\$20K Ω