PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
A61K 31/44, 31/47, 31/475, C07D 401/06, 413/06, 417/06, 211/82, 213/24, 215/06

(11) International Publication Number:

WO 97/17076

(43) International Publication Date:

15 May 1997 (15.05.97)

(21) International Application Number:

PCT/US96/17942

(22) International Filing Date:

8 November 1996 (08.11.96)

(30) Priority Data:

08/555,529

9 November 1995 (09.11.95)

US

(71) Applicant: BIOMETRIC IMAGING, INC. [US/US]; 1025
Bella Avenue, Mountain View, CA 94043 (US).

(72) Inventor: LEE, Linda, G.; 3187 Stelling Drive, Palo Alto, CA 94303 (US).

(74) Agents: PARKHURST, David, G. et al.; Fulwider Patton Lee & Utecht, L.L.P., 10th floor, 10877 Wilshire Boulevard, Los Angeles, CA 90024 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: FLUORESCENT DNA-INTERCALATING CYANINE DYES INCLUDING A POSITIVELY CHARGED BENZOTHIAZOLE SUBSTITUENT

(57) Abstract

New intercalating cyanine dyes are provided in which the benzothiazole portion of the cyanine dye has been modified to produce dyes with improved properties for labelling nucleic acids. This class of fluorescent cyanine dyes are represented by general formula (1) where the definitions for the variables can be found in the claims.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	. PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	Prance	MN	Mongolia	UZ.	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

WO 97/17076 PCT/US96/17942

Title: FLUORESCENT DNA-INTERCALATING CYANINE DYES INCLUDING A POSITIVELY CHARGED BENZOTHIAZOLE SUBSTITUENT

FIELD OF THE INVENTION

The present invention relates generally to dyes for labelling nucleic acids. More specifically, the present invention relates to intercalating cyanine dyes for the detection and enumeration of nucleic acids.

BACKGROUND OF THE INVENTION

Intercalating dyes which exhibit enhanced fluorescence upon binding to DNA or RNA are a basic tool in molecular and cell biology. In general, intercalating dyes bind noncovalently to DNA through a combination of hydrophobic interactions with the DNA base-pairs and ionic binding to the negatively charged phosphate backbone. The fluorescence of the dye is ideally increased several-fold upon binding to DNA, thereby enabling the detection of small amounts of nucleic acids. Examples of fluorescent noncovalent DNA binding dyes include ethidium bromide which is commonly used to stain DNA in agarose gets after get electrophoresis, and propidium iodide and Hoechst 33258 which are used in flow cytometry to determine the DNA ploidy of cells.

Fluorescent nucleic acid labelling dyes preferably absorb light between about 300 and 900 nm and preferably have a Stokes shift of at least about 10 nm. Dyes that absorb light in the 500 to 900 nm range are preferred because they are spectrally removed from other components that may be present in a biological sample and because they may be used with inexpensive light sources. Fluorescent dyes that have a high extinction coefficient, a high quantum yield, and significantly enhanced fluorescence when bound to a nucleic acid are also preferred.

Few new dye chromophores were described until the introduction of Thiazole Orange as a reticulocyte stain in 1986. Lee, et al., "Thiazole Orange: A New Dye for Reticulocyte Analysis", Cytometry 1986 7, 508-517. Thiazole

5

10

15

10

15

Orange is an asymmetric cyanine dye. Although many asymmetric cyanine dyes have been described in the art (e.g., Lincoin, et al., U.S. Patent No. 3,282,932), Thiazole Orange's fluorescence properties when bound to DNA and RNA and its utility for labelling nucleic acids had not been previously identified. Lee, et al., U.S. Patent No. 4,957,870. For example, unlike most asymmetric cyanine dyes, Thiazole Orange exhibits a several thousand-fold enhancement in fluorescence upon binding to DNA.

Since the discovery of Thiazole Orange as a nucleic acid dye, several improvements to Thiazole Orange and its trimethine homologs have been developed to provide dyes with tighter binding to DNA and greater water solubility. Xue, et al. U.S. Patent No. 5,321,130 and Glazer, et al. U.S. Patent No. 5,312,921. These dyes generally involve a modification to the quinolinium portion of the dye.

A continuing need exists for new and improved dyes for labelling nucleic acids. In particular, a need exists for dyes which exhibit longer wavelengths and significantly enhanced fluorescence when bound to DNA or RNA.

· 10

15

20

SUMMARY OF THE INVENTION

The present invention relates asymmetric cyanine dyes for non-covalently labelling nucleic acids in which the benzothiazole portion of the dye has been modified to provide improved physical properties to the dye, such as longer wavelengths and improved fluorescence enhancement when bound to DNA or RNA.

More specifically, the invention relates to fluorescent cyanine dyes having a positively charged substituent attached to the positively charged nitrogen on the benzothiazole portion of the cyanine dye. This class of fluorescent cyanine dyes are represented by the general formula

where:

.n is 0, 1 or 2:

Y may be either S or O;

R₁₂ is a positively charged alkyl substituent, more preferably a positively charged aminoalkyl substituent;

 R_{19} , R_{14} and R_{15} may each independently be either hydrogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, or C_1 - C_{10} alkylthio;

 R_{12} and R_{13} may optionally be taken together to form a 5, 6, 7 or 8 membered ring;

 R_{16} may be a C_1 - C_{80} alkyl, preferably substituted with one or more polar substituents which preferably includes one or more

positively charged atoms, or a cyclized fluorescent cyanine dye of the present invention, i.e., where R_{16} is a linker between two cyclized fluorescent cyanine dyes;

5

 R_{17} and R_{18} may each independently be either H or C_{1-10} alkyl, or may be taken together to form a 5 or 6 membered ring, most preferably a 6 membered aromatic ring, optionally substituted with C_{1-8} alkyl or C_1 - C_{10} alkoxy groups;

10

 R_{10} and R_{20} may each independently be either H or C_{1-10} alkyl, or may be taken together to form a 5 or 6 membered ring, most preferably a 6 membered aromatic ring, optionally substituted with C_1 - C_{1-4} alkyl or C_{10} alkoxy groups; and

 R_{21} may be either H, C_{14} alkyl, C_1 - C_{10} alkoxy or a fused

benzene.

15

As used above, alkyl and alkoxy refer to any substituent having a carbon backbone having the specified range of carbon atoms. The carbon backbone may form a straight chain, may be branched or may be cyclic. The alkyl and alkoxy groups may be optionally substituted by a wide variety of substituents including, for example, alcohols, amines, thiols, phosphates, halides, ethers, esters, ketones, aldehydes, carboxylic acids, amides, cycloalkyls, and aromatic rings.

20

In general, R_{12} can be an aminoalkyl chain containing a backbone of 3-42 carbons and 1-5 positively charged nitrogen atoms as described in U.S. Patent No. 5,321,130 to Yue, et al. which is incorporated herein by reference. In addition to the positively charged substituents described in U.S. Patent No. 5,321,130, R_{12} is also intended to include aminoalkyl chains including a positively charged cyclic aminoalkyl group having 1-5 positively charged nitrogen atoms.

25

30

In a preferred embodiment, R_{12} has the general formula $-R_{26}N(R_{29}R_{30}R_{31})$ where R_{26} is a C_{1-6} alkyl and R_{26} , R_{30} , and R_{31} are each independently a C_{1-10} alkyl.

10

15

In an alternate preferred embodiment, R_{12} and R_{13} are taken together to form a 5, 6, 7 or 8 membered ring where the ring includes a positively charged alkyl substituent, more preferably an aminoalkyl chain containing a backbone of 3-42 carbons and 1-5 positively charged nitrogen atoms as described in U.S. Patent No. 5,321,130 to Yue, et al. Dyes of this embodiment may be generally represented by the general formula

where R_{12} and R_{13} represent the atoms necessary to form a 5, 6, 7 or 8 membered ring and R_{27} is a positively charged alkyl substituent, as specified above with regard to R_{12} , which may be attached to any atom used to form the 5, 6, 7 or 8 membered ring as represented by R_{12} and R_{13} .

As used above, alkyl and alkoxy refer to any substituent having a carbon backbone having the specified range of carbon atoms, whether substituted or unsubstituted. The alkyl and alkoxy groups may be optionally substituted by a wide variety of substituents including, for example, alcohols, amines, thiols, phosphates, halides, ethers, esters, ketones, aldehydes, carboxylic acids, amides, cycloalkyls, and aromatic rings.

The invention also relates to the composition of a cyanine dye of the present invention non-covalently bound to a nucleic acid sequence, i.e., RNA or DNA, which enables the nucleic acid sequence to be analytically detected.

The invention also relates to a method for detecting nucleic acids in a sample by contacting the nucleic acids with a fluorescent cyanine dye of the present invention and monitoring the change in fluorescence emission of the dye.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates asymmetric cyanine dyes for non-covalently labelling nucleic acids in which the benzothiazole portion of the dye has been modified to provide improved physical properties to the dye, such as longer wavelengths and improved fluorescence enhancement when bound to DNA or RNA.

In one embodiment, the present invention relates to cyclized fluorescent cyanine dyes generally represented by General Formula I

$$R_{10}$$
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{7}
 R_{8}
 R_{9}

where:

15

20

5

10

n is 0, 1 or 2:

Y may be either S or O:

 $\ensuremath{\text{R}_{\text{1}}}$ and $\ensuremath{\text{R}_{\text{2}}}$ are taken together to form a 5, 6, 7 or 8 membered ring;

 R_3 and R_4 may each independently be either hydrogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, or C_1 - C_{10} alkylthio;

 R_s may be a C_1 - C_{so} alkyl, preferably substituted with one or more polar substituents which preferably includes one or more positively

WO 97/17076 PCT/US96/17942

charged atoms, or a cyclized fluorescent cyanine dye of the present invention, i.e., where $R_{\rm s}$ is a linker between two cyclized fluorescent cyanine dyes;

 R_4 and R_7 may each independently be either H or C_{1-10} alkyl, or may be taken together to form a 5 or 6 membered ring, most preferably a 6 membered aromatic ring, optionally substituted with C_{1-4} alkyl or C_1 - C_{10} alkoxy groups;

 $R_{\rm s}$ and $R_{\rm p}$ may each independently be either H or $C_{\rm t-10}$ alkyl, or may be taken together to form a 5 or 6 membered ring, most preferably a 6 membered aromatic ring, optionally substituted with $C_{\rm t-8}$ alkyl or $C_{\rm t}$ - $C_{\rm t0}$ alkoxy groups; and

 R_{10} may be either H, C_{1-8} alkyl, C_1 - C_{10} alkoxy or a fused benzene.

As used above, alkyl and alkoxy refer to any substituent having a carbon backbone having the specified range of carbon atoms. The carbon backbone may form a straight chain, may be branched or may be cyclic. The alkyl and alkoxy groups may be optionally substituted by a wide variety of substituents including, for example, alcohols, amines, thiols, phosphates, halides, ethers, esters, ketones, aldehydes, carboxylic acids, amides, cycloalkyls, and aromatic rings.

The cyclized cyanine dyes of the present invention provide the advantage over previous cyanine dyes of having higher absorbance and emission wavelengths. The cyclized cyanine dyes preferably absorb light at a

wavelength of at least about 640 nm, more preferably at least about 649 nm and emit fluorescence at a wavelength of at least about 650 nm, more preferably at least about 663 nm. The cyclized cyanine dyes also preferably have a positive Stoke's shift ($\lambda_{Embaton} - \lambda_{Abo}$) of at least about 12 nm.

In particular, cyclized cyanine dyes having General Formula I where R_1 and R_2 are taken together to form a 5, 6, 7 or 8 membered ring have been found to absorb light and fluoresce when bound to a nucleic acid polymer at unexpectedly higher wavelengths than has been previously achieved by cyanine dyes where R_1 and R_2 do not form a ring structure.

30

25

5

10

15

Fluorescent cyanine dyes having the General Formula i where R, and R2 are taken together to form a 7 membered ring have also been found to have the greatest Stoke's shift

 $(\lambda_{\text{Emission}} - \lambda_{\text{Abs.}})$.

5 TABLE 1: Absorbance and Emission Maxima of Intercalating Dyes in PBS with Excess DNA ([bp]/[dye] = 100)

	COMPOUND		Abs	Ems	E.E.
		1	649	663	100X
10	2 - Chark	2	654	667	100X
		3	654	672	30X
		4	675	690	200X
〈	Jan Charles Ch	6 *	641	655	100X

Abs_{max} - Absorbance maximum (bound to DNA) Ems_{max} - Emission maximum (bound to DNA)

15

F.E. - fluorescence enhancement (bound vs. not bound to DNA or RNA)

^{*} Compound 5 is taught in U.S. Patent No. 5,321,130 to Yue, et al.

Table 1 summarizes the absorbance maximum and fluorescence emission maximum wavelengths (both when bound to DNA) of some exemplary cyclized cyanine dyes of the present invention.

As illustrated in Table 1, it was found that the addition of a cyclic aliphatic side chain to the basic cyanine dye structure, i.e., formation of a 5-8 membered ring by combining R₁ and R₂, was found to increase the absorbance and fluorescence emission wavelengths of the corresponding acyclic cyanine dye by about 12 nm. For example, as shown with regard to dyes 2 and 5, dye 2 has an Abs_{max} at 654 nm as compared to 641 nm and an Ems_{max} at 667 nm as compared to 655 nm. In addition, dye 4 is the longest wavelength trimethine intercalating dye yet reported.

With regard to n, n may equal 1. Accordingly, the present invention includes cyclized cyanine dyes having the General Formula II (i.e. where n = 1)

$$R_{10}$$
 R_{10}
 R

where Y, R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_6 , R_9 and R_{10} are as specified above.

Y may be either S or O. and is most preferably S.

 R_3 and R_4 may each independently be either hydrogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, or C_1 - C_{10} alkylthio, and are preferably H.

 R_s may be a C_1 - C_{so} alkyl. Since DNA and RNA to which the cyclized cyanine dyes bind contain negatively charged phosphate backbones, it is preferred that R_s be substituted with one or more polar substituents. It is most preferred that R_s include one or more positively charged atoms in the polar

15

5

10

15

20

substituent. U.S. Patent No. 5,321,130 to Yue, et al. teaches unsymmetrical cyanine dyes having an aminoalkyl chain containing a backbone of 3-42 carbons and 1-5 positively charged nitrogen atoms. The cationic tail described in U.S. Patent No. 5,321,130 exemplifies one of the positively charged R_5 substituents that may be used in combination with the cyclic cyanine dyes of the present invention and is incorporated herein by reference. In addition to the positively charged R_5 substituents described in U.S. Patent No. 5,321,130, R_{12} is also intended to include aminoalkyl chains including a positively charged cyclic aminoalkyl group having 1-5 positively charged nitrogen atoms.

Alternatively, R_s may form part of a linker between two cyclized fluorescent cyanine dyes as illustrated by General Formula IV

According to this embodiment, Y, R_1 , R_2 , R_3 , R_4 , R_6 , R_7 , R_6 , R_9 and R_{10} are as specified above. It should be noted that the two linked cyanine dyes may be the same or different cyanine dyes. In general, it is preferred that the linked cyanine dyes be the same since different dyes will have different spectral properties.

 R_4 and R_7 may each independently be either H, $C_{1:10}$ alkyl, or are taken together to form a 5 or 6 membered ring, most preferably a 5 or 6 membered aromatic ring, optionally substituted with $C_{1:0}$ alkyl or C_1 - C_{10} alkoxy groups.

 $R_{\rm e}$ and $R_{\rm e}$ may each independently be either H, $C_{\rm t-10}$ alkyl, or are taken together to form a 5 or 6 membered ring, most preferably a 5 or 6 membered aromatic ring, optionally substituted with $C_{\rm t-e}$ alkyl or $C_{\rm 1}$ - $C_{\rm 10}$ alkoxy groups.

In general, it is preferred either R_s and R₇ or R_s and R_s are taken together to form a 5 or 6 membered aromatic ring, optionally substituted with

 C_{14} alkyl or C_1 - C_{10} alkoxy groups. The R_4 and R_7 or R_6 and R_9 groups that do not form the aromatic ring are preferably H.

 R_{10} may be either H, C_{1-6} alkyl, C_1 - C_{10} alkoxy or a fused benzene.

In a particularly preferred embodiment, the cyclized cyanine dye has the General Formula V where the ring formed by R_1 and R_2 includes a positively charged substituent R_{27} . As discussed herein, inclusion of a positively charged substituent, such as R_{27} , to a substituent on the positively charged nitrogen on the benzothiazole ring improves the net fluorescence enhancement of the dye with DNA.

10
$$R_{10} \longrightarrow R_{27} \longrightarrow R_{2} \longrightarrow$$

R₂₇ is a positively charged alkyl substituent which may be attached to any atom used to form the 5, 6, 7 or 8 membered ring. R₂₇ is more preferably a positively charged aminoalkyl substituent. For example, R₁₂ can be an aminoalkyl chain containing a backbone of 3-42 carbons and 1-5 positively charged nitrogen atoms as described in U.S. Patent No. 5,321,130 to Yue, et al. which is incorporated herein by reference. In addition to the positively charged substituents described in U.S. Patent No. 5,321,130, R₁₂ is also intended to include aminoalkyl chains including a positively charged cyclic aminoalkyl group having 1-5 positively charged nitrogen atoms.

WO 97/17076 PCT/US96/17942

In a preferred embodiment, R_{27} has the general formula $-R_{28}N(R_{29}R_{30}R_{31})$ where R_{29} is a C_{1-6} alkyl and R_{29} , R_{30} , and R_{31} are each independently a C_{1-10} alkyl.

Table 2 provides examples of some of the preferred cyclized cyanine dyes. It should be understood, however, that the dyes listed in Table 2 are intended only to exemplify the cyclized cyanine dyes of the present invention and are not intended to be limiting.

TABLE 2

TABLE 2 (cont.)

The present invention also relates to fluorescent cyanine dyes having a positively charged substituent attached to the positively charged nitrogen on the benzothiazole portion of the cyanine dye. These fluorescent cyanine dyes are represented by General Formula VI

where

n is 0, 1 or 2;

Y may be either S or O;

R₁₂ is a positively charged alkyl substituent, more preferably a positively charged aminoalkyl substituent;

 R_{13} , R_{14} and R_{15} may each independently be either hydrogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, or C_1 - C_{10} alkylthio;

 $R_{\rm 12}$ and $R_{\rm 13}$ may optionally be taken together to form a 5, 6, 7 or 8 membered ring;

 R_{18} may be a C_1 - C_{80} alkyl, preferably substituted with one or more polar substituents which preferably includes one or more positively charged atoms, or a cyclized fluorescent cyanine dye of the present invention, i.e., where R_{16} is a linker between two cyclized fluorescent cyanine dyes;

 $R_{\rm 17}$ and $R_{\rm 18}$ may each independently be either H or $C_{\rm 1-10}$ alkyl, or may be taken together to form a 5 or 6 membered ring, most

10

5

15

10

15

20

preferably a 5 or 6 membered aromatic ring, optionally substituted with C_{1-4} alkyl or C_1 - C_{10} alkoxy groups;

 R_{19} and R_{20} may each independently be either H or C_{1-10} alkyl, or may be taken together to form a 5 or 6 membered ring, most preferably a 5 or 6 membered aromatic ring, optionally substituted with C_{1-4} alkyl or C_1 - C_{10} alkoxy groups; and

 \mbox{R}_{21} may be either H, \mbox{C}_{1-} alkyl, \mbox{C}_1 - \mbox{C}_{10} alkoxy or a fused benzene.

As used above, alkyl and alkoxy refer to any substituent having a carbon backbone having the specified range of carbon atoms. The carbon backbone may form a straight chain, may be branched or may be cyclic. The alkyl and alkoxy groups may be optionally substituted by a wide variety of substituents including, for example, alcohols, amines, thiols, phosphates, halides, ethers, esters, ketones, aldehydes, carboxylic acids, amides, cycloalkyls, and aromatic rings.

With regard to n, it is noted that n may equal 1. Accordingly, an embodiment of the present invention includes cyanine dyes having the General Formula VII (i.e. where n = 1)

where Y, R_{12} , R_{13} , R_{14} , R_{16} , R_{16} , R_{17} , R_{18} , R_{18} , R_{20} and R_{21} are as specified above.

With regard to dyes having General Formula VI or VII, Y may be either S or O and is most preferably S.

 R_{12} can be an aminoalkyl chain containing a backbone of 3-42 carbons and 1-5 positively charged nitrogen atoms as described in U.S. Patent No. 5,321,130 to Yue, et al. which is incorporated herein by reference. In addition to the positively charged substituents described in U.S. Patent No. 5,321,130, R_{12} is also intended to include aminoalkyl chains including a positively charged cyclic aminoalkyl group having 1-5 positively charged nitrogen atoms.

5

10

15

20

In a preferred embodiment, R_{12} has the general formula $-R_{22}N(R_{22}R_{30}R_{31})$ where R_{23} is a C_{1-6} alkyl and R_{23} , R_{30} , and R_{31} are each independently a C_{1-10} alkyl.

In an alternate preferred embodiment, R₁₂ and R₁₃ are taken together to form a 5, 6, 7 or 8 membered ring where the ring includes a positively charged alkyl substituent, more preferably an aminoalkyl chain containing a backbone of 3-42 carbons and 1-5 positively charged nitrogen atoms as described in U.S. Patent No. 5,321,130 to Yue, et al. Dyes of this embodiment may be generally represented by General Formula VIII

where R_{12} and R_{13} represents the atoms necessary to form a 5, 6, 7 or 8 membered ring and R_{27} is a positively charged substituent, as specified above with regard to R_{12} , which may be attached to any atom used to form the 5, 6, 7 or 8 membered ring as represented by R_{12} and R_{13} . In this regard, these dyes are equivalent to the dyes described above having the General Formula V.

 R_{14} and R_{15} may each independently be either hydrogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, or C_1 - C_{10} alkylthio, and are preferably H.

 R_{16} may be a C_1 - C_{50} alkyl. Since DNA and RNA to which the cyclized cyanine dyes bind contain negatively charged phosphate backbones, it is preferred that R_{16} be substituted with one or more polar substituents. It is most preferred that R_{16} include one or more positively charged atoms in the polar substituent, such as is specified with regard to R_{12} above.

5

10

15

20

25

The cyanine dyes according to General Formula VI, i.e., dyes where a positively charged substituent is positioned off the nitrogen of the benzothiazole portion of the dye, provide the advantage over previous cyanine dyes of exhibiting a significantly larger net fluorescence enhancement with DNA than cyanine dyes where a positively charged substituent is positioned at R₁₆ alone.

The use of intercalating dyes for staining cell nuclei requires that the dye itself be membrane-permeable or that a membrane permeabilizing step be incorporated into the sample preparation. In general, dyes with more than one charge are not membrane permeable. Methods for enabling charged molecules and very large molecules into cells include the use of chemicals, such as digitonin, freeze-thaw cell lysis steps, or the use of non-ionic detergents such as TRITON X-100. For speed and simplicity, it is preferred to add approximately 9mM TRITON X-100.

The presence of a detergent solution (TRITON X-100) causes significant fluorescence enhancement of the dyes as compared to in PBS buffer. An increase in detergent-enhanced fluorescence (F_{TRITON}/F_{PBS}) has the effect of decreasing the net DNA enhanced fluorescence over detergent-enhanced background fluorescence (F_{DNA}/F_{TRITON}). The detergent-enhanced fluorescence is believed to increase with increasing hydrophobicity.

TABLE 3: Fluorescence Ratios of Dyes in Buffer, TRITON X-100 and DNA Solutions

			ETRITON/EPBS	Enw/Eres	EDNA/ETRITON
5		6*	94	200	3
	CH (CH)	5*	12	100	8
	O'S MAICHER	7*	10	70	7
	N*(CH ₃) ₃	8	1.8	70	40

* Compounds 5 and 7 are taught in U.S. Patent No. 5,321,130 to Yue, et al.

* Compound 6 is taught in U.S. Patent No. 4,957,870 to Lee, et al.

Fluorescence enhancement of the dyes upon binding to an excess of DNA was found to be fairly constant regardless of how the quinolinium ring side chain was modified (R₁₆). Advantageously, however, it was found that inclusion of a positively charged substituent off the positively charged nitrogen of the benzothiazole portion of the dye (General Formula VI) causes the dye to exhibit a significantly larger net DNA-enhancement than the positioning of a positively charged substituent at R₁₆ alone. As a result, smaller concentrations of nucleic acids can be detected using cyanine dyes having General Formula VI.

For example, Table 3 compares the fluorescence ratios of dyes in a saline buffer, a detergent (TRITON X-100) and in a DNA solution. Dye solutions (1.0 µM) were prepared in phosphate buffered saline (PBS), in PBS with TRITON X-100 (9mM), and in PBS with double-stranded DNA (100µM).

5

Table 3 shows the effect of various side chains on the fluorescence background in TRITON X-100 (9mM). As illustrated in Table 3, the net DNA enhanced fluorescence over detergent-enhanced background fluorescence (F_{DNA}/F_{TRITON}) was found to be a factor of 5 greater in dye 8 than in dye 7. This result is unexpected since the net charge of 3+ is the same for both dyes 7 and 8. It appears that both the location and quantity of charges affect the fluorescence enhancement of the dyes.

10

The cyanine dyes according to General Formula VI preferably absorb light at a wavelength of at least about 640 nm, more preferably at least about 649 nm and emit fluorescence at a wavelength of at least about 650 nm, more preferably at least about 663 nm. The cyanine dyes also preferably have a positive Stoke's shift (λ_{Emission} - λ_{λλδε}) of at least 11 nm.

15

Table 4 provides examples of some of the preferred cyanine dyes having General Formula VI. It should be understood, however, that the dyes listed in Table 4 are intended only to exemplify the cyanine dyes of the present invention and are not intended to be limiting.

TABLE 4

SUBSTITUTE SHEET (HULE 26)

TABLE 4 (con't)

WO 97/17076 PCT/US96/17942

The present invention also relates to the use of the cyanine dyes having General Formulas I, II, IV, V, VI, VII or VIII to form compositions for detecting the presence of nucleic acids in a sample. In general, the compositions include a cyanine dye according to the present invention non-covalently bound to a nucleic acid, i.e., DNA or RNA.

The fluorescence of the cyanine dyes of the present invention significantly increase when bound to a nucleic acid. As a result, it is possible to qualitatively or quantitatively determine the presence of nucleic acids in a sample by monitoring the change in the fluorescence intensity of the dye at a wavelength corresponding to the composition of the dye bound to the nucleic acids. Use of cyanine dyes in general for detecting the presence of nucleic acids in a sample is known in the art. A discussion regarding the use of cyanine dyes to detect the presence of nucleic acids in a sample is provided in U.S. Patent No. 5,321,130 to Yue, et al. which is incorporated herein by reference.

The present invention also relates to a method for detecting nucleic acids by contacting the nucleic acids with a cyanine dye of the present invention. According to the method, a sample of nucleic acids are contacted with a cyanine dye of the present invention in order to form the composition of a cyanine dye non-covalently bound to a nucleic acid sequence. After the dyenucleic acid sequence composition is formed, the bound dye is exposed to light having a wavelength near an absorbance maximum of the dye when bound to a nucleic acid sequence. The resulting fluorescence emission of the dye is then detected in order to qualitatively or quantitatively determine the presence of nucleic acids in the sample.

25

5

10

15

Example 1: Preparation of Compound 4

1a. Preparation of 2,3-Tetramethylenenaphth[2,1-d]thiazolium Bromide

2-Aminonaphthalene-1-thiol was prepared by the method of Ambrogi, et al. (Ambrogi, V.; Grandolini, G.; Perioli, L.; Rossi, C. *Synthesis*, 1992, 7, 656-8.) 2-Aminonaphthalene-1-thiol (0.14 g, 0.8 mmol) and bromovaleryl chloride (0.48 g, 2.4 mmol) were combined and heated to 100° for 1 h, then to 50°C overnight. The resulting solid was washed with acetone and air-dried to provide a white solid (0.16 g, 0.5 mmol, 60% yield).

1b. Preparation of IodoNAP6

4-(2"-Acetaniiidovinyi)-1'-(3'-iodopropyi)-quinolinium iodide (prepared by the general method of Brooker, et al. *J. Am. Chem. Soc.* 1941, 63, 3192-3203; 32 mg, 63 μmol), 2,3-tetramethylenenaphth[2,1-d]thiazolium bromide (20 mg, 63 μmol), triethylamine (40 μL) and ethanol (1 mL) were combined and refluxed for 20 min. The dark blue solid was recrystallized sequentially from isopropanol and ethanol to provide a purple solid (12 mg, 30% yield). HPLC analysis on a C8 reverse-phase column using gradient elution of 40% to 80% acetonitrile vs. 0.1 M triethylammonium acetate buffer showed one major peak at 16 min.

1c. Preparation of Compound 4

5

10

15

$$\frac{1}{N} = \frac{1}{N(CH_3)_3} = \frac{1}{N} = \frac{1}{N$$

lodoNAP6 (2 mg, 3 µmol) was dissolved in dimethylformamide.

Trimethylamine was bubbled through the solution. The reaction was monitored by thin layer chromatography on silica gel with methanol as the eluant. The Rf values of lodoNAP6 and compound 4 were 0.5 and zero, respectively. After 30 min, reaction was complete. The solvent was evaporated and the residue partitioned between methylene chloride (CH_2CI_2) and water. The aqueous layer was washed with 2 x 1 mL CH_2CI_2 and concentrated to dryness. HPLC

analysis with the same gradient that was used with iodoNAP6 showed one broad peak at 7.2 min with no apparent starting material. The absorbance maximum of compound 4 in methanol was at 667 nm.

Example 2: Preparation of Compound 8

2a. Preparation of 1', 1"-(3', 3"-Bislodopropyl)-thia-4-carbocyanine lodide

1'-(3'-lodopropyl)-2-(2"-acetanilidovinyl)-benzothiazium iodide (15 mg, 26 μποί), 1'-(3'-iodopropyl)-quinolinium iodide (15 mg, 34 μποί), triethylamine (50 μL) and methanol (1 mL) were combined at room temperature. A blue precipitate formed immediately. The reaction mixture was centrifuged and the residue washed with methanol and isopropanol and air-dried to provide a dark solid (15 mg, 20μποί, 77% yield).

2b. Preparation of Compound 8

1', 1"-(3', 3'-Bisiodopropyl)-thia-4-carbocyanine iodide (15 mg, 20 µmol) was dissolved in DMF and trimethylamine bubbled through the solution. The reaction progress was monitored by TLC on reverse-phase plates with 1:1 dimethylformamide:4 M NaCl as eluant. The Rf's of the bisiodo starting material and the bisammonium salt were 0 and 0.8, respectively. The intermediate monoammonium salts could also be resolved, at Rf's of 0.7 and 0.6. After 30 min the reaction was complete. The solvent was evaporated. The absorbance maximum of compound 8 in DMSO was at 639 nm.

While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than limiting sense, as it is contemplated that modifications will readily occur to those skilled in the art, which modifications will be within the spirit of the invention and the scope of the appended claims.

10

1

2

3

What is claimed is:

1. A fluorescent cyanine dye having the general formula

3 wherein: n is 0, 1 or 2: 5 Y is selected from the group consisting of S and O; 6 R₁₂ is a positively charged alkyl substituent; 7 R₁₃, R₁₄ and R₁₅ are each independently selected from the group consisting of hydrogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, and C_1 - C_{10} alkylthio; 8 9 R₁₆ is a C₁ - C₅₀ alkyl; 10 $R_{\mbox{\tiny 17}}$ and $R_{\mbox{\tiny 18}}$ are each independently selected from the group 11 consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 12 ring; 13 R_{10} and R_{20} are each independently selected from the group 14 consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 15 ring; and 16 R_{21} is selected from the group consisting of H, C_{1-6} alkyl, C_1 - C_{10} 17

alkoxy and a fused benzene.

2. The fluorescent cyanine dye of claim 1 wherein R₁₂ includes an aminoalkyl chain containing a backbone of 3-42 carbons and 1-5 positively charged nitrogen atoms.

1 3. The fluorescent cyanine dye of claim 1 wherein R₁₂ is a positively charged cyclic aminoalkyl group having 1-5 positively charged nitrogen atoms.

4. The fluorescent cyanine dye of claim 1 wherein R_{12} has the general formula $-R_{22}N(R_{22}R_{32}R_{31})$ where R_{22} is a C_{1-5} alkyl and R_{29} , R_{30} , and R_{31} are each independently a C_{1-10} alkyl.

1

2

. 1

1

1

- 5. The fluorescent cyanine dye of claim 1 wherein Y is S.
- 6. The fluorescent cyanine dye of claim 1 wherein Y is O.
- 7. The fluorescent cyanine dye of claim 1 wherein R_{17} and R_{18} or R_{19} and R_{20} are each H.
 - 8. The fluorescent cyanine dye of claim 7 wherein R_{17} and R_{18} or R_{19} and R_{20} are taken together to form a 5 or 6 membered ring.
- 9. The fluorescent cyanine dye of claim 8 wherein the ring formed by R₁₇ and R₁₈ or R₁₉ and R₂₀ is a 6 membered aromatic ring.
 - 10. A fluorescent cyanine dye having the general formula

3	wherein:
4	Y is selected from the group consisting of S and O;
5	R ₁₂ is a positively charged alkyl substituent;
6	R ₁₃ , R ₁₄ and R ₁₅ are each independently selected from the group
7	consisting of hydrogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy, and C_1 - C_{10} alkylthio;
8	R ₁₆ is a C ₁ - C ₅₀ alkyl;
9	R ₁₇ and R ₁₈ are each independently selected from the group
0	consisting of H and C ₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membere
1	ring;
2	R ₁₉ and R ₂₀ are each independently selected from the group
3	consisting of H and C ₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membere
4	ring; and
5	R ₂₁ is selected from the group consisting of H, C ₁₋₆ alkyl, C ₁ - C ₁₀
6	alkoxy and a fused benzene.
1	11. The fluorescent cyanine dye of claim 10 wherein R ₁₂ includes an
2	aminoalkyl chain containing a backbone of 3-42 carbons and 1-5 positively
3	charged nitrogen atoms.
1	12. The fluorescent cyanine dye of claim 10 wherein R_{12} is a
2	positively charged cyclic aminoalkyl group having 1-5 positively charged
3	nitrogen atoms.
1	13. The fluorescent cyanine dye of claim 10 wherein R ₁₂ has the
2	general formula $-R_{26}N(R_{29}R_{30}R_{31})$ where R_{26} is a C_{1-6} alkyl and R_{26} , R_{30} , and R_{31}
3	are each independently a C ₁₋₁₀ alkyl.
1	14. The fluorescent cyanine due of claim 10 wherein Y is S.
1	15. The fluorescent cyanine dye of claim 10 wherein R ₁₇ and R ₁₈ or
2	R_{10} and R_{20} are each H.

1	16.	The fluorescent cyanine dye of claim 15 wherein R_{17} and R_{18} or
2	R ₁₉ and R ₂₀	are taken together to form a 5 or 6 membered ring.

2

1

- 17. The fluorescent cyanine dye of claim 16 wherein the ring formed by R_{17} and R_{18} or R_{19} and R_{20} is a 6 membered aromatic ring.
 - 18. A fluorescent cyanine dye having the general formula

3 wherein: n is 0, 1 or 2; 5 Y is selected from the group consisting of S and O; 6 R_{12} and R_{13} represent the atoms necessary to form a 5, 6, 7 or 8 7 membered ring; R₁₄ and R₁₅ are each independently selected from the group consisting of hydrogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy and C_1 - C_{10} alkylthio; 10 R₁₆ is a C₁ - C₈₀ alkyl; 11 $R_{\mbox{\tiny 17}}$ and $R_{\mbox{\tiny 18}}$ are each independently selected from the group consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 12 13 ring;

14	R ₁₉ and R ₂₀ are each independently selected from the group
15	consisting of H and C ₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered
16	ring;
17	R ₂₁ is selected from the group consisting of H, C ₁₋₀ alkyl, C ₁ - C ₁₀
18	alkoxy and a fused benzene; and
19	R ₂₇ is a positively charged alkyl substituent which may be
20	attached to any of the atoms forming the 5, 6, 7 or 8 membered ring as
21	represented by R ₂₈ .
1	19. The fluorescent cyanine dye of claim 18 wherein R ₂₇ includes an
2	aminoalkyl chain containing a backbone of 3-42 carbons and 1-5 positively
3	charged nitrogen atoms.
1	20. The fluorescent cyanine dye of claim 18 wherein R ₂₇ is a
2	positively charged cyclic aminoalkyl group having 1-5 positively charged
3	nitrogen atoms.
1	21. The fluorescent cyanine dye of claim 18 wherein R ₂₇ has the
2	general formula $-R_{29}N(R_{29}R_{30}R_{31})$ where R_{29} is a C_{1-5} alkyl and R_{29} , R_{30} , and R_{31}
3	are each independently a C ₁₋₁₀ alkyl.
1	22. The fluorescent cyanine dye of claim 18 wherein Y is S.
1	23. The fluorescent cyanine dye of claim 18 wherein R ₁₇ and R ₁₈ or
2	R_{10} and R_{20} are each H.
1	24. The fluorescent cyanine dye of claim 23 wherein R ₁₇ and R ₁₈ or
2	R_{19} and R_{20} are taken together to form a 5 or 6 membered ring.
1	25. The fluorescent cyanine dye of claim 24 wherein the ringformed
2	by R ₁₇ and R ₁₈ or R ₁₉ and R ₂₀ is a 6 membered aromatic ring.

26. A composition comprising: 2 a fluorescent cyanine dye noncovalently bound to a nucleic acid polymer. 3 the fluorescent cyanine dye having the general formula

1

$$R_{21}$$
 R_{12}
 R_{13}
 R_{14}
 R_{16}
 R_{16}
 R_{20}

5 wherein: 6 n is 0, 1 or 2; 7 Y is selected from the group consisting of S and O: 8 R₁₂ is a positively charged alkyl substituent; 9 R_{13} , R_{14} and R_{15} are each independently selected from the group 10 consisting of hydrogen, C₁ - C₁₀ alkyl, C₁ - C₁₀ alkoxy and C₁ - C₁₀ alkylthio; 11 R₁₆ is a C₁ - C₅₀ alkyl; 12 R₁₇ and R₁₈ are each independently selected from the group 13 consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 14 ring; 15 R_{10} and R_{20} are each independently selected from the group 16 consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 17 ring; and 18 R₂₁ is selected from the group consisting of H, C_{1-a} alkyl, C₁ - C₁₀ 19 alkoxy and a fused benzene.

27. The composition of claim 26 wherein R₁₂ includes an aminoalkyl chain containing a backbone of 3-42 carbons and 1-5 positively charged nitrogen atoms.

1

2

1

2

1

3 ·

- 28. The composition of claim 26 wherein R_{12} is a positively charged cyclic aminoalkyl group having 1-5 positively charged nitrogen atoms.
- 1 29. The composition of claim 26 wherein R₁₂ has the general formula 2 -R₂₆N(R₂₆R₃₀R₃₁) where R₂₆ is a C₁₋₅ alkyl and R₂₆, R₃₀, and R₃₁ are each 3 independently a C₁₋₁₀ alkyl.
 - 30. The composition of claim 26 wherein Y is S.
- 31. A composition comprising:
 a fluorescent cyanine dye noncovalentiy bound to a nucleic acid polymer,
 the fluorescent cyanine dye having the general formula

wherein:

Y is selected from the group consisting of S and O;

R₁₂ is a positively charged alkyl substituent;

R₁₃, R₁₄ and R₁₅ are each independently selected from the group

consisting of hydrogen, C₁ - C₁₀ alkyl, C₁ - C₁₀ alkoxy and C₁ - C₁₀ alkylthio;

10 R₁₈ is a C₁ - C₅₀ alkyl; $R_{\mbox{\tiny 17}}$ and $R_{\mbox{\tiny 18}}$ are each independently selected from the group 11 consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 12 13 ring; $R_{\mbox{\tiny 19}}$ and $R_{\mbox{\tiny 20}}$ are each independently selected from the group 14 consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 15 16 ring; and $\rm R_{21}$ is selected from the group consisting of H, C $_{1-8}$ alkyl, C $_{1}$ - C $_{10}$ 17 18 alkoxy and a fused benzene. 1 **32**. A composition comprising: 2

a fluorescent cyanine dye noncovalently bound to a nucleic acid polymer, the fluorescent cyanine dye having the general formula

$$R_{21}$$
 R_{17}
 R_{18}
 R_{17}
 R_{18}
 R_{19}
 R_{20}

3

wherein:

n is 0, 1 or 2;

Y is selected from the group consisting of S and O;

R₁₂ and R₁₃ represent the atoms necessary to form a 5, 6, 7 or 8

membered ring;

R₁₄ and R₁₅ are each independently selected from the group

consisting of hydrogen, C₁ - C₁₀ alkyl, C₁ - C₁₀ alkoxy and C₁ - C₁₀ alkylthio;

R₁₆ is a C₁ - C₈₀ alkyl;

23

2

3

 $R_{\mathbf{17}}$ and $R_{\mathbf{18}}$ are each independently selected from the group consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 14 15 ring; $R_{\mbox{\tiny 10}}$ and $R_{\mbox{\tiny 20}}$ are each independently selected from the group 16 consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 17 18 ring; R_{21} is selected from the group consisting of H, C_{1-4} alkyl, C_1 - C_{10} 19 20 alkoxy and a fused benzene; and 21 R₂₇ is a positively charged alkyl substituent which may be attached to any of the atoms forming the 5, 6, 7 or 8 membered ring as 22

> represented by R₁₂ and R₁₃. 33. A method for detecting a nucleic acid sequence comprising: contacting a nucleic acid sequence with a fluorescent cyanine dye to

form a noncovalently bound dye-nucleic acid composition, the fluorescent cyanine dye having the general formula

$$R_{17}$$
 R_{19}
 R_{19}
 R_{19}
 R_{10}
 R_{10}
 R_{10}
 R_{20}

7 wherein: 8 n is 0. 1 or 2: Y is selected from the group consisting of S and O; 9

WO 97/17076 PCT/US96/17942

10	R ₁₂ is a positively charged alkyl substituent;
11	R ₁₃ , R ₁₄ and R ₁₅ are each independently selected from the group
12	consisting of hydrogen, C ₁ - C ₁₀ alkyl, C ₁ - C ₁₀ alkoxy and C ₁ - C ₁₀ alkylthio;
13	R ₁₆ is a C ₁ - C ₅₀ alkyl;
14	R ₁₇ and R ₁₈ are each independently selected from the group
15	consisting of H and C ₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered
16	ring;
17	R ₁₀ and R ₂₀ are each independently selected from the group
18	consisting of H and C ₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered
19	ring; and
20	R_{21} is selected from the group consisting of H, $C_{1,0}$ alkyl, $C_1 - C_{10}$
21	alkoxy and a fused benzene;
22	exposing the fluorescent cyanine dye bound to the nucleic acid sequence
23	to light, the fluorescent cyanine dye absorbing the light and producing a
24	fluorescence emission; and
25	detecting the fluorescence emission.
1	34. The method of claim 33 wherein R ₁₂ includes an aminoalkyl chain
2	containing a backbone of 3-42 carbons and 1-5 positively charged nitrogen
3	atoms.
1	35. The method of claim 33 wherein R ₁₂ is a positively charged cyclic
2	aminoalkyl group having 1-5 positively charged nitrogen atoms.
1	36. The method of claim 33 wherein R ₁₂ has the general formula -
2	$R_{22}N(R_{22}R_{32}R_{31})$ where R_{26} is a C_{1-5} alkyl and R_{29} , R_{30} , and R_{31} are each
3	independently a C ₁₋₁₀ alkyl.
1	37. The composition of claim 33 wherein Y is S.
1	38. A method for detecting a nucleic acid sequence comprising:

contacting a nucleic acid sequence with a fluorescent cyanine dye to form a noncovalently bound dye-nucleic acid composition, the fluorescent cyanine dye having the general formula

7 wherein: Y is selected from the group consisting of S and O: 9 R₁₂ is a positively charged alkyl substituent; 10 $R_{13},\,R_{14}$ and R_{15} are each independently selected from the group 11 consisting of hydrogen, C₁ - C₁₀ alkyl, C₁ - C₁₀ alkoxy and C₁ - C₁₀ alkylthio; 12 R_{16} is a $C_1 - C_{60}$ alkyl; 13 R_{17} and R_{18} are each independently selected from the group 14 consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 15 ring; 16 $R_{\mbox{\tiny 19}}$ and $R_{\mbox{\tiny 20}}$ are each independently selected from the group consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 17 18 ring; and 19 $\rm R_{21}$ is selected from the group consisting of H, C $_{1-8}$ alkyl, C $_{1}$ - C $_{10}$ 20 alkoxy and a fused benzene: 21 exposing the fluorescent cyanine dye bound to the nucleic acid sequence 22 to light, the fluorescent cyanine dye absorbing the light and producing a 23 fluorescence emission; and

1 .

2

3

24 detecting the fluorescence emission.

39. A method for detecting a nucleic acid sequence comprising: contacting a nucleic acid sequence with a fluorescent cyanine dye to form a noncovalently bound dye-nucleic acid composition, the fluorescent cyanine dye having the general formula

6 wherein: 7 n is 0. 1 or 2: 8 Y is selected from the group consisting of S and O; 9 R_{12} and R_{13} represent the atoms necessary to form a 5, 6, 7 or 8 $\,$ 10 membered ring; 11 R₁₄ and R₁₅ are each independently selected from the group consisting of hydrogen, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxy and C_1 - C_{10} alkylthio; 12 13 R₁₆ is a C₁ - C₅₀ alkyl; 14 $R_{\mbox{\tiny 17}}$ and $R_{\mbox{\tiny 18}}$ are each independently selected from the group consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 15 16 ring; 17 $R_{\mbox{\scriptsize 10}}$ and $R_{\mbox{\scriptsize 20}}$ are each independently selected from the group 18 consisting of H and C₁₋₁₀ alkyl, or are taken together to form a 5 or 6 membered 19 ring;

WO 97/17076 PCT/US96/17942

20	R_{21} is selected from the group consisting of H, C_{14} alkyl, C_1 - C_{10}
21	alkoxy and a fused benzene; and
22	R ₂₇ is a positively charged alkyl substituent which may be
23	attached to any of the atoms forming the 5, 6, 7 or 8 membered ring as
24	represented by R ₁₂ and R ₁₃ ;
25	exposing the fluorescent cyanine dye bound to the nucleic acid sequence
26	to light, the fluorescent cyanine dye absorbing the light and producing a
27	fluorescence emission; and
28	detecting the fluorescence emission.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/17942

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :A61K 31/44, 31/47, 31/475; C07D 401/06, 413/06, 417/06, 211/82, 213/24, 215/06 US CL :546/176, 112, 270.1, 271.7, 256, 89, 80; 540/479, 586				
	o Internstional Patent Classification (IPC) or to both	national classification and IPC		
	DS SEARCHED			
Minimum d	ocumentation searched (classification system followed	d by classification symbols)		
U.S. :	546/176, 112, 270.1, 271.7, 256, 89, 80; 540/479, 5	586		
Documenta	ion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched	
	lata base consulted during the international search (na Y, CHEMICAL ABSTRACTS	ame of data base and, where practicable,	search terms used)	
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.	
Y	US 4,847,364 A (MOCKLI) 11 Ju	ly 1989, columns 1-4.	18-25, 32	
Y	US 5,410,030 A (YUE et al) 25 April 1995, figure 1 and 10-17, 31, 38 column 2 lines 60-68.		10-17, 31, 38	
Y,P	US 5,534,416 A (MILLARD et al) 09 July 1996, column 3 10-17, 31 line 60 - column 7 line 25.			
Y,P	US 5,545,535 A (ROTH et al) 13 August 1996, claim 1. 10-17, 31		10-17, 31	
A	US 3,821,205 A (FUNIA, Jr et al) 28 June 1974, claim 1.		1	
A	US 4,323,362 A (DEGEN et al) 06 April 1982, claim 1.		1	
į				
X Furth	ner documents are listed in the continuation of Box C	See patent family annex.		
• Sp	ocial categories of cited documents:	"T" Inter document published after the inte	rnational filing date or priority	
A do	comment defining the general state of the art which is not considered	date and not in conflict with the application principle or theory underlying the inv		
_	be of particular relevance riter decomment published on or after the interestional filling date.	"X" document of particular relevance; th	e claimed invention cannot be	
_	considered novel or cannot be considered to involve an inventive step			
cit	ed to establish the publication data of another citation or other scial reason (se specified)	"Y" document of particular relevance; th	e claimed invention cannot be	
O do	considered to involve an investive step when the document is		step when the document is a documents, such combination	
P document published prior to the international filing date but later than the priority date claimed *D* document published prior to the international filing date but later than the priority date claimed		ic ert		
		Date of mailing of the international ser	irch report	
	26 FEBRUARY 1997 1 9 MAR 1997			
Name and	nailing address of the ISA/US	Authorized officer	2 1 AN 19	
Commissio Box PCT	ner of Patents and Trademarks	D. MARGARET M. MACH	17/WH/	
	lo. (703) 305-3230	Telephone No. (703) 308-1235		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/17942

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.	
A	US 4,600,776 A (MEISEL et al) 15 July 1986, abstrac	et.	1	
X	US 4,677,051 A (KUBODERA et al) 30 June 1987, at	ostract.	1-2, 5-9, 26-30, 33-35, 38	
A	US 4,751,309 A (DALTROZZO et al) 14 June 1988, a	abstract.	1	
Y	US 5,321,130 A (YUE et al) 14 June 1994, claim 1.		1-17, 26-31, 33- 38	
Y	US 5,401,847 A (GLAZER et al) 28 March 1995, figure compounds 3 and 5.	ıre I	1-2, 5-9, 26-30, 33, 35	
X	Chemical Abstracts No. 123:159968, Vol. 123, FREY Cytometry, 1995, Vol 20, No. 3, pages 218-227.	et al,	1-9, 26-30	
Y	Chemical Abstracts No. 119:67272, Vol. 119, 1993, YUE et al., WO9306482, 1 April 1993.		1-9,26-30	
·		·	•	
·				

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/17942

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
·
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.