1. 对于一片完整的1 mm×1 mm的单层石墨烯,可以看作是一个超大分子,请计算这样一个大分子的平动、转动、振动自由度数以及将这片石墨烯放在一个0.1 m 边长的立方容器里的平动基本能隙。

解:题中已说明,把整个单层石墨烯看作一整个分子。我们可以假设这个分子内有N个碳原子,而长与宽相同单层石墨烯虽然有对称轴的,但并不是线性分子,故而我们可以得到转动自由度为3N-6。

因为石墨烯中碳-碳键长约为 $a=1.42\times 10^{-10}\,m$,而石墨烯中碳的排布类似于苯环,所以一个六元碳环的大小为 $\frac{3\sqrt{3}}{2}a^2$ 。由于一个六元环中,每一个碳都被三个环共用,所以一个六元环有 2 个碳原子。而该单层石墨烯为1 $mm\times 1$ mm。故而, $N=\frac{2\times 1\times 10^{-6}}{3\sqrt{3}a^2}\approx 3.82\times 10^{13}$ 个。

而平动基本能隙可以按照公式来求—— $E_{n_x,n_y,n_z}=(n_x^2+n_y^2+n_z^2)\frac{h^2}{8mV^2/3}$,因此基本能隙 $\Delta \varepsilon=E_{(2,1,1)}-E_{(1,1,1)}=\frac{3h^2}{8mV^2/3}=2.16\times 10^{-53}$ J,其中 $m=\frac{N}{N_A}\cdot 12$ 。注意:该石墨烯虽然有两个转动惯量相同的转轴,但是转动自由度只取决于其是否为线性分子,只有线性分子才会只有两个自由度。

2. 对于甲烷分子, 计算平动、转动、振动自由度数, 计算该分子在 0. 1m 边长的立方容器中的平动基本能隙, 查数据库确定最低和最高转动频率的基本能隙、最高和最低振动频率的基本能隙

解:甲烷是非线性分子,转动自由度为3,平动自由度为3,振动自由度为9。

对一个分子,
$$m = \frac{16}{N_A}(g)$$
, 所以平动基本能隙 $\Delta \varepsilon = \frac{3h^2}{8mV^2/3} = 6.20 \times 10^{-40} J$ 。

由于甲烷是球对称分子,所以三个方向上的转动常数是一致的,而转动的基本能隙 $\Delta \varepsilon_{rotation} = 2hc\tilde{B}$ 。在 CCCBDB 上可以查得,甲烷的 $\tilde{B} = 5.24120~cm^{-1}$, $\Delta \varepsilon_{rotation} = 2.08 \times 10^{-22} J$,最高能隙和最低能隙相同。

振动的基本能隙 $\Delta \varepsilon_{vibration} = hv$,同样在 CCCBDB 上可以发现,最低振动波数为1306 cm^{-1} ,最高为3019 cm^{-1} ,所以最低振动能隙 $\Delta \varepsilon_{rotation} = 2.60 \times 10^{-20} J$,最高振动能隙 $\Delta \varepsilon_{rotation} = 6.00 \times 10^{-20} J$ 。

注意: 在计算平动基本能隙时, 质量要准确换算。

3. 把上面的甲烷分子换成乙烷分子,同样计算平动、转动、振动自由度数,计算该分子在1升容器中的平动基本能隙,查数据库确定最低和最高转动频率的基本能隙、最高和最低振动频率的基本能隙。

解: 乙烷是非线性分子, 转动自由度为 3, 平动自由度为 3, 振动自由度为 18。

$$m = \frac{30}{N_A}(g)$$
, 平动基本能隙 $\Delta \varepsilon = \frac{3h^2}{8mV^{2/3}} = 3.31 \times 10^{-40} J$ 。

在 CCCBDB 上可以查得,乙烷转动常数最小为 $0.68341~cm^{-1}$,最大为 $2.51967~cm^{-1}$,所以最低转动能隙 $\Delta \varepsilon_{rotation}=2.72\times 10^{-23}J$,最高转动能隙 $\Delta \varepsilon_{rotation}=1.00\times 10^{-22}J$ 。

乙烷最低振动波数为289 cm^{-1} ,最高为2985 cm^{-1} ,所以最低振动能隙 $\Delta \varepsilon_{rotation} = 5.74 \times 10^{-21} J$,最高振动能隙 $\Delta \varepsilon_{rotation} = 5.93 \times 10^{-20} J$ 。

4. 列表比较这些数值,讨论甲烷、乙烷分子的平动、转动、振动的能隙大小和 差距以及分子性质(结构,质量等等)对这些能隙的影响;讨论甲烷分子和石墨烯 片片平动基本能隙的数量级差异。

解:

平动基本能隙	单位统一为焦耳			
甲烷	6.20×10^{-40}	分子质量越小,平动基本能隙越大;		
乙烷	3.31×10^{-40}	宏观物质的平动基本能隙远小于微观分子,		
石墨烯	2.16×10^{-53}	这是由于两者质量的巨大差别。		
转动基本能隙	最低	分析	最高	分析
甲烷	2.08×10^{-22}	球形分子只有	2.08×10^{-22}	甲烷的转动惯量
		一种转动能隙		比乙烷小
乙烷	2.72×10^{-23}	绕分子主轴的	1.00×10^{-22}	绕垂直于分子主
		转动,转动惯		轴的轴转动, 转
		量小		动惯量更大
振动基本能隙	最低	分析	最高	分析
甲烷	2.60×10^{-20}	弯曲振动	6.00×10^{-20}	碳氢键伸缩振动
乙烷	5.74×10^{-21}	分子内转动	5.93×10^{-20}	碳氢键伸缩

5. 我们在课堂里介绍了宏观状态与微观结构。让我们用一些事实来加强对这两个关键概念的认识。针对 15Au 原子和 15Ag 原子的合金,请列表给出可能的

宏观状态、各宏观状态的微观结构的权重、各宏观状态出现的概率(注意: 概率之和应为1)。把宏观状态出现的概率对左半边 Au 原子的百分比作图。解:

左侧出现的	左侧 Au 原子	り手	り ルロチ	lar str
Au 个数	的百分比	权重	归一化权重	概率
0	0.0000	1	2.41492E-08	6.44673E-09
1	0.0667	225	5.43357E-06	1.45051E-06
2	0.1333	11025	0.000266245	7.10751E-05
3	0.2000	207025	0.00499949	0.001334633
4	0.2667	1863225	0.044995409	0.012011699
5	0.3333	9018009	0.217777778	0.058136624
6	0.4000	25050025	0.604938272	0.161490623
7	0.4667	41409225	1	0.266953888
8	0.5333	41409225	1	0.266953888
9	0.6000	25050025	0.604938272	0.161490623
10	0.6667	9018009	0.217777778	0.058136624
11	0.7333	1863225	0.044995409	0.012011699
12	0.8000	207025	0.00499949	0.001334633
13	0.8667	11025	0.000266245	7.10751E-05
14	0.9333	225	5.43357E-06	1.45051E-06
15	1.0000	1	2.41492E-08	6.44673E-09

6. 课堂中,我们提到对于大量原子的情况,分布趋近于 delta 函数。我们来计算比较分布函数。对于一共 10^3 原子(Au 和 Ag 各 50%),计算左边 45%, 47%,49%,49.5%,50.5%,51%,53%,55% Au 原子的归一化权重(以 50%的权重为 1),根据数据,画出分布图。如果一共 10^7 原子(Au 和 Ag 各 50%),又是什么样的?(因为分布变窄,为了更好的作图,分布的点在 50%附近需要取得更密一点,比如 49%,49.9%,49.99%,49.99%,50.001%,50.01%,50.1%,51%),根据数据,画出此时的分布图。

解:

10³原子:

左侧 Au 原子	lnW的斯特林	权重	归一化权重	概率
的百分比	近似	八王) 10/11	120 1
0	0	1	9.8111E-302	2.4032E-302
0.45	688.1388137	7.16E+298	0.007024396	0.001720565
0.47	691.346099	1.77E+300	0.173586243	0.042518437
0.49	692.9471672	8.77E+300	0.860697216	0.21082028
0.495	693.0971797	1.02E+301	1	0.244941283
0.505	693.0971797	1.02E+301	1	0.244941283
0.51	692.9471672	8.77E+300	0.860697216	0.21082028
0.53	691.346099	1.77E+300	0.173586243	0.042518437
0.55	688.1388137	7.16E+298	0.007024396	0.001720565
1	0	1	9.8111E-302	2.4032E-302

107原子:

左侧 Au 原子	lnW的斯特林	归一化lnW	归一化权重	概率
的百分比	近似	(减去最大的lnW)		
0.49	6929471.672	-2000.133354	0	0
0.499	6931451.806	-20.00001314	2.061E-09	2.7001E-10
0.4999	6931471.606	-0.199999837	0.8187309	0.10725601
0.49999	6931471.804	-0.001999823	0.9980022	0.13074105
0.499999	6931471.806	-1.98167E-05	0.9999802	0.13100017
0.4999999	6931471.806	0	1	0.13100277
0.5000001	6931471.806	-2.79397E-08	1	0.13100276
0.500001	6931471.806	-1.98167E-05	0.9999802	0.13100017
0.50001	6931471.804	-0.001999823	0.9980022	0.13074105
0.5001	6931471.606	-0.199999837	0.8187309	0.10725601
0.501	6931451.806	-20.00001314	2.061E-09	2.7001E-10
0.51	6929471.672	-2000.133354	0	0

注:此处画的是折线图。