F. Design Tutorial: Change the Goal

time limit per test: 2 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

There are some tasks which have the following structure: you are given a model, and you can do some operations, you should use these operations to achive the goal. One way to create a new task is to use the same model and same operations, but change the goal.

Let's have a try. I have created the following task for Topcoder SRM 557 Div1-Hard: you are given n integers $x_1, x_2, ..., x_n$. You are allowed to perform the assignments (as many as you want) of the following form $x_i = x_j$ (in the original task i and j must be different, but in this task we allow i to equal j). The goal is to maximize the sum of all x_i .

Now we just change the goal. You are also given n integers $y_1, y_2, ..., y_n$. You should make $x_1, x_2, ..., x_n$ exactly equal to $y_1, y_2, ..., y_n$. In other words, for each i number x_i should be equal to y_i .

Input

The first line contains an integer n ($1 \le n \le 10000$). The second line contains n integers: x_1 to x_n ($0 \le x_i \le 10^9$). The third line contains n integers: y_1 to y_n ($0 \le y_i \le 10^9$).

Output

If there is no solution, output -1.

If there is a solution, then in the first line output an integer m $(0 \le m \le 1000000)$ – the number of assignments you need to perform. Then print m lines, each line should contain two integers i and j $(1 \le i, j \le n)$, which denote assignment $x_i \triangleq x_j$.

If there are multiple solutions you can print any of them. We can prove that under these constraints if there exists a solution then there always exists a solution with no more than 10^6 operations.

Examples

```
input
2
3 5
6 0

output
2
1 2
2 2
```

```
input

5
0 0 0 0 0
1 2 3 4 5

output
-1
```

```
input

3
4 5 6
1 2 3

output
```

5		
3 1		
1 2		
2 2		
2 3		
3 1		

```
input
3
1 2 3
4 5 6

output
-1
```

Note

Assignment $a \triangleq b$ denotes assignment $a = a \land b$, where operation "^" is bitwise XOR of two integers.