

Fifth Semester B.E. Degree Examination, Dec.2015/Jan.2016

Information Theory and coding

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. A binary source produces Symbols 0 and 1 with probability P and 1 P. Determine the entropy of this source and sketch the variation of the entropy with P. (05 Marks)
 - b. Prove that the information content of N independent message is additive. (05 Marks)
 - c. For mark off source shown Find the source entropy and G_1 , G_2 and G_3

(10 Marks)

- 2 a. For the state diagram shown find
 - i) State probabilities ii) Entropy of each state iii) Entropy of the source.

(10 Marks)

b. The joint probability matrix of a channel is given. Compute H(x), H(y), H(xy), H(x/y) and H(y/x)

$$p(xy) = \begin{pmatrix} 0.05 & 0 & 0.2 & 0.05 \\ 0 & 0.1 & 0.1 & 0 \\ 0 & 0 & 0.2 & 0.1 \\ 0.05 & 0.05 & 0 & 0.1 \end{pmatrix}$$
(10 Marks)

- 3 a. Prove the identities:
 - i) H(x, y) = H(x) + H(y)
 - ii) H(xy) = H(x) + H(y/x) (08 Marks)
 - b. A source emits symbols with probabilities 0.4, 0.2, 0.12, 0.08, 0.08, 0.08, 0.04. Construct a binary Huffman code and Shannon Fano code. Calculate efficiency in both cases. (12 Marks)

For More Question Papers Visit - www.pediawikiblog.com

10EC55

4 a. Derive the expression for channel capacity for the binary channel shown

(08 Marks)

b. Define mutual information and explain its properties.

(04 Marks)

- c. An analog signal has a bandwidth of 4KHz. The signal is sampled at 2.5times the Nyquist rate and each sample is quantized into 256 equally likely levels. Assume that the successive samples are statistically independent.
 - i) Find the information rate of this source.
 - ii) Can the output of this source be transmitted without error over a channel of Bandwidth 50KHz and S/N = 20db.
 - iii) If the output of this source is to be transmitted without errors over an analog channel having S/N = 10. Compute the band width required. (08 Marks)

PART - B

5 a. Define hamming weight, hamming distance and minimum distance of linear block code.

(06 Marks)

b. For a linear block code the syndrome is given by

$$S_1 = r_1 + r_2 + r_3 + r_5$$

$$S_2 = r_1 + r_2 + r_4 + r_6$$

$$S_3 = r_1 + r_3 + r_4 + r_7$$

- i) Find the generator matrix
- ii) Draw the encoder and decoder circuit
- iii) How many errors can it detect and correct
- (14 Marks)
- 6 a. A (7, 4) binary cyclic code has a generator polynomial $g(x) = 1 + x + x^3$
 - i) Write the syndrome circuit
 - ii) Verify the circuit for the message polynomial $d(x) = 1 + x^3$, showing the contents of the register for each state. (08 Marks)
 - b. A (15, 5) binary cyclic code has a generator polynomial $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$
 - i) Draw the encoder block diagram
 - ii) Find the code polynomial for message polynomial $d(x) = 1 + x^2 + x^4$ in systematic form
 - iii) Is $V(x) = 1 + x^4 + x^6 + x^8 + x^{14}$ a code polynomial? If not, find the syndrome of V(x) (12 Marks)

7 Explain:

- a. BCH code
- b. Golay code
- c. Reed Solomon codes
- d. Golay codes. (20 Marks)
- 8 Consider the 3, 1, 2 convolution code with $g^{(1)} = 110$, $g^{(2)} = 101$ and $g^{(3)} = 111$
 - i) Draw the encoder block diagram
 - ii) Find the generator matrix
 - iii) Find the code word corresponding to the message sequence (11101) using both time domain and frequency domain approach. (20 Marks)

* * * * *