SLUČAJNA PROMENLJIVA I NJENA RASPODELA

Slučajna promenljiva je vrlo važan pojam u teoriji verovatnoće. Njena definicija je malo zeznuta pa se mi njome nećemo baviti već ćemo pokušati da vam pojasnimo rešavanje zadataka...

Već smo u ranijim fajlovima iz verovatnoće rešavali nekoliko zadataka sa bacanjem novčića. Podsetimo se situacije kad smo bacali novčić tri puta. Mogu da nastanu sledeće situacije:

- PPP GG
- P P G G P
- (P)(G)(P) (G)(P)(G)
- PGG GPP

Recimo da nas interesuje **broj palih grbova**. Jasno je da može da ne padne nijedan grb (0 puta) , da može da padne jedan grb , dva grba i tri grba. Obeležimo broj palih grbova sa **X** i napravimo "šemicu":

$$X:\begin{pmatrix}0&1&2&3\\&&&\end{pmatrix}$$

U zagradi u gornjem redu smo zapisali koliko puta može sve da padne grb u tri bacanja novčića. Ispod ćemo zapisati verovatnoće za svaki broj. Najpre da se podsetimo tih verovatnoća:

PPPGGGGPPPGGGGPPPGGGG(P)(P)(P)(G)(G)(P)(G)(G)(G)(P)(P)(P)(G)(G)(P)(P)(P)(G)(G)(G)(P)(P)(G)(P)(G)(P)(G)PGPGPGPGP GPG PGPGPG(P)(G)(G)(G)(P)(P)(P)(G)(G)(G)(P)(P)PGGGGPP(P)(G)(G)(G)(P)(P)grb pada nijednom grb pada jednom grb pada dva puta grb pada tri puta verovatnoća je 3/8 verovatnoća je 3/8 verovatnoća je 1/8 verovatnoća je 1/8

Sad ove verovatnoće ubacimo u šemicu: $X : \begin{pmatrix} 0 & 1 & 2 & 3 \\ \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \end{pmatrix}$

Treba uočiti da kada saberemo sve verovatnoće uvek dobijamo jedinicu. $\frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = \frac{8}{8} = 1$

Ovde smo dakle imali **slučajnu promenljivu** X koja predstavlja broj palih grbova i našli smo raspodelu njene verovatnoće.

1

Dakle, ako slučajna promenljiva X uzima vrednosti $x_1, x_2, ..., x_n$ kojima odgovaraju verovatnoće $p_1, p_2, ..., p_n$

to možemo šematski prikazati sa

$$X: \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ p_1 & p_2 & \dots & p_n \end{pmatrix}$$

raspodelu verovatnoće.

Primer 1.

Kocka se baca dva puta. Ako se sa X označi zbir tačaka dobijenih iz oba bacanja, odrediti raspodelu verovatnoća slučajne promenljive X.

Rešenje:

Uvek najpre ispitamo sve mogućnosti...

Zaključujemo da zbir može biti najmanji 2 a najveći 12 a to nam govori da će gornji red u raspodeli biti:

Sad računamo verovatnoće da će zbir biti 2, pa 3, pa 4 itd.

verovatnoća je 1/36

verovatnoća je 2/36

verovatnoća je 3/36

I tako dalje...

Ubacimo ove vrednosti u šemu i dobijamo:

Primer 2.

Strelac koji ima 4 metka gađa u metu dok ne pogodi ili ne utroši sve metke. Broj utrošenih metaka je slučajna promenljiva X. Odrediti raspodelu verovatnoća pod uslovom da je verovatnoća pogodka pri svakom gađanju jednaka 0,8.

Rešenje:

Razmišljamo ovako:

Ako je verovatnoća pogodka 0,8 onda je verovatnoća da će promašiti 0,2 (1-0,8=0,2)

- Ako je pogodio u prvom gađanju imamo verovatnoću 0,8
- Ako je pogodio u drugom gađanju, znači da je u prvom promašio, pa je $0, 2 \cdot 0, 8 = 0, 16$
- Ako je prva dva gađanja promašio a treće pogodio imamo verovatnoću $0, 2 \cdot 0, 2 \cdot 0, 8 = 0,0032$
- Ako je prva tri puta promašio a pogodio četvrto gađanje, onda je verovatnoća $0.2 \cdot 0.2 \cdot 0.2 \cdot 0.8 = 0.0064$
- Ako je sva četiri puta promašio imamo $0, 2 \cdot 0, 2 \cdot 0, 2 \cdot 0, 2 = 0,0016$

Pošto je imao 4 metka, raspodela verovatnoće će izgledati:

$$X: \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$$

Jasno je da je za 1,2 i 3 raspodela
$$X : \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0.8 & 0.16 & 0.032 & ? \end{pmatrix}$$

Kod četvrtog metka su moguće dve situacije, da je tri puta promašio a četvrti put pogodio ili da je sva četiri puta promašio, pa je tu verovatnoća 0,0064+0,0016=0,008

Konačno imamo
$$X: \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0.8 & 0.16 & 0.032 & 0.008 \end{pmatrix}$$