

General information

Designation

Juglans regia

Typical uses

Cabinet and carved work; gun stocks; rifle butts; bent work; superior joinery; propeller blades; fittings;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O	
Material family	Natural
Base material	Wood (hardwood)
Renewable content	100 %
Composition detail (polymers and natural ma	•
Wood	100 %
Price	
Price	* 6.7 - 10.8 USD/kg
Price per unit volume	* 4.15e3 - 8.18e3 USD/m^3
Physical proportios	
Physical properties Density	620 - 760 kg/m^3
Density	020 - 700 kg/iii 3
Mechanical properties	
Young's modulus	* 1.97 - 2.2 GPa
Yield strength (elastic limit)	* 1.92 - 2.34 MPa
Tensile strength	3.2 - 3.9 MPa
Elongation	* 0.48 - 0.59 % strain
Compressive strength	10.6 - 13 MPa
Flexural modulus	1.79 - 2 GPa
Flexural strength (modulus of rupture)	* 3.2 - 3.9 MPa
Shear modulus	* 0.204 - 0.28 GPa
Shear strength	* 21.6 - 26.4 MPa
Rolling shear strength	* 0.8 - 2.4 MPa
Bulk modulus	* 1 - 1.12 GPa
Poisson's ratio	* 0.02 - 0.04
Shape factor	5.7
Hardness - Vickers	* 5.08 - 6.21 HV
Hardness - Brinell	24.3 - 29.7 HB
Hardness - Janka	* 5.08 - 6.21 kN

Walnut (juglans regia) (t)

BEDUPACK					
Fatigue strength at 10^7 cycles	* 0.96 - 1.17 MPa				
Mechanical loss coefficient (tan delta)	* 0.017 - 0.022				
Differential shrinkage (radial)	0.18 - 0.23 %				
Differential shrinkage (tangential)	0.25 - 0.3 %				
Radial shrinkage (green to oven-dry)	4.9 - 5.9 %				
Tangential shrinkage (green to oven-dry)	6.8 - 8.3 %				
Volumetric shrinkage (green to oven-dry)	12.3 - 15.1 %				
Work to maximum strength	* 3.2 - 3.9 kJ/m^3				
Impact & fracture properties					
Fracture toughness	* 0.516 - 0.63 MPa.m^0.5				
Thermal properties					
Glass temperature	77 - 102 ℃				
Maximum service temperature	120 - 140 ℃				
Minimum service temperature	* -7323 ℃				
Thermal conductivity	0.12 - 0.14 W/m.℃				
Specific heat capacity	1.66e3 - 1.71e3 J/kg.℃				
Thermal expansion coefficient	* 31.1 - 41.7 µstrain/℃				
Electrical properties					
Electrical resistivity	* 2.1e14 - 7e14 µohm.cm				
Dielectric constant (relative permittivity)	* 3.85 - 4.71				
Dissipation factor (dielectric loss tangent)	* 0.053 - 0.065				
Dielectric strength (dielectric breakdown)	* 1 - 2 MV/m				
Magnetic properties					
Magnetic type	Non-magnetic				
Optical properties					
Transparency	Opaque				
Critical materials risk					
Contains >5wt% critical elements?	No				
Durability					
Water (fresh)	Limited use				
Water (salt)	Limited use				
Weak acids	Limited use				
Strong acids	Unacceptable				
Weak alkalis	Acceptable				
Strong alkalis	Unacceptable				

Walnut (juglans regia) (t)

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	11.6	- 12.8	MJ/kg		
-------------------------------------	------	--------	-------	--	--

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Water usage	* 665	-	735	l/kg			
-------------	-------	---	-----	------	--	--	--

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 0.637	-	0.705	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0478	-	0.0528	kg/kg
Fine machining energy (per unit wt removed)	* 2.1	-	2.32	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.157	-	0.174	kg/kg
Grinding energy (per unit wt removed)	* 3.72	-	4.12	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.279	-	0.309	kg/kg

Recycling and end of life

, ,	
Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	√
Combust for energy recovery	✓
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg
Combustion CO2	* 1.69 - 1.78 kg/kg
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse	
Reference	
Shape	

