A Formal Approach to Explainability

(by Lior Wolf, Tomer Galanti, and Tamir Hazan)

Phaphontee Yamchote

July 29, 2024

Outline

Setting

Let

- ightharpoonup an input space $\mathcal X$
- ightharpoonup an output space ${\cal Y}$
- ightharpoonup a representation space $\mathcal R$
- ightharpoonup an explanation space G
- ightharpoonup a representation function $f:\mathcal{X} \to \mathcal{R}$
- ightharpoonup a classifier function $c:\mathcal{R} o\mathcal{Y}$

We want to explain a model $h=c\circ f$ by an explanation function $g:\mathcal{X}\times\mathcal{Y}\to G$ in terms of g(x,h(x))

Consistency

Definition (Consistent Representation)

Given a function $\beta:(0,\infty)\to(0,\infty)$ mapping distance in \mathcal{R} into distance in G.

A representation f is β -consistent w.r.t. g if

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \epsilon \Rightarrow |f(x_1) - f(x_2)| \leqslant \beta(\epsilon)$$

 ${\sf Explainability}$

Definition (Explainable Representation)

Given a function $\gamma:(0,\infty)\to(0,\infty)$ mapping distance in $\mathcal R$ into distance in G.

A representation f is γ -explainable w.r.t. g if

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |f(x_1) - f(x_2)| \leqslant \epsilon \Rightarrow |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \gamma(\epsilon)$$

Explainability

Definition (Explainable Representation)

Given a function $\gamma:(0,\infty)\to(0,\infty)$ mapping distance in $\mathcal R$ into distance in G.

A representation f is γ -explainable w.r.t. g if

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |f(x_1) - f(x_2)| \leqslant \epsilon \Rightarrow |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \gamma(\epsilon)$$

Definition (Second-order Explainable Representation)

Given a function $\gamma:(0,\infty)\times(0,\infty)\to(0,\infty)$.

A representation f is second-order γ -explainable w.r.t. g if

$$\forall \epsilon_0 \epsilon_1 > 0 \forall x_1, x_2 \in \mathcal{X}, |f(x_1) - f(x_2)| \leqslant \epsilon_0 \land |f_x(x_1) - f_x(x_2)| \leqslant \epsilon_1$$

$$\Downarrow$$

$$|g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \gamma(\epsilon_0, \epsilon_1)$$

Consistency Recall

$$\forall \epsilon > 0 \forall x_1, x_2 \in \mathcal{X}, |g(x_1, h(x_1)) - g(x_2, h(x_2))| \leqslant \epsilon \Rightarrow |f(x_1) - f(x_2)| \leqslant \beta(\epsilon)$$

- What if the representation of our machine learning model is consistent, i.e. h(x) = c(f(x)) where f is consistent?
- Let try: $|h(x_1) h(x_2)| = |c(f(x_1)) c(f(x_2))|$.
- ▶ What can connect between $|c(f(x_1)) c(f(x_2))|$ and $|f(x_1) f(x_2)|$?

Definition (*l*-Lipschitz continuous)

A function L is l-Lipschitz continuous if

$$\forall x_1, x_2, |F(x_1) - F(x_2)| \le l |x_1 - x_2|$$

Consistency representation and Lipschitz classifier

Theorem (Lipschitz o Consistent is Consistent)

Given a model $h=c\circ f:\mathcal{X}\to\mathcal{Y}$ with an explanation function $g:\mathcal{X}\times\mathcal{Y}\to G$, if f is β -consistent w.r.t. g and c is l-Lipschitz continuous, then h is $l\beta$ -consistent w.r.t. g.

Let's prove!