Week3

陈淇奥 21210160025

2022年3月26日

Exercise 1 (1.1.36). 如果 \mathcal{B} 是一个完全的集合代数,则存在 X , $\mathcal{B} \cong \mathcal{P}(X)$ 证明. 如果 \mathcal{B} 是 $\mathcal{P}(A)$ 的完全子代数,定义 A 上的等价关系 \sim 为

 $x \sim y$ 当且仅当 $\forall b \in \mathcal{B}, x \in b \Leftrightarrow y \in b$

令 $f: \mathcal{B} \to \mathcal{P}(A/\sim)$ 为 $f(b) = \{[a] \in A/\sim: a \in b\}$,于是我们可以验证这是一个同构,其中满射由完全性得到:对于任何 $a \in A$, $\{[a]\} = f(\bigcap \{b \in \mathcal{B}: a \in b\})$,因为若 $[a] \neq [c]$,则存在 $b \in \mathcal{B}$ 使得 $a \in b$ 且 $c \notin b$ 。

Exercise 2 (1.1.38). 若 \mathcal{B} 是一个完全的原子化的布尔代数,则存在集合 X, $\mathcal{B}\cong\mathcal{P}(A)$

证明. 由定理 1.1.26,A 是全体原子的集合,对于任何 $Y \subseteq A$, $f(\Sigma Y) = \{a \in A \mid a \leq \Sigma Y\}$,因此 $Y \subseteq f(\Sigma Y)$ 。若存在 $a \in A \setminus Y$ 且 $a \leq \sum Y$,于是对于任何 $b \in Y$, $a \neq b$,于是 $a \cdot b = 0$,因此 $a \cdot \sum Y = \sum \{a \cdot b \mid b \in Y\} = 0 = a$ 矛盾。因此 $f(\sum Y) = Y$,于是 f 是满射,因此 $\mathcal{B} \cong \mathcal{P}(A)$

Exercise 3 (1.1.36). 如果 \mathcal{B} 是一个完全集合代数,则存在 X , $\mathcal{B} \cong \mathcal{P}(X)$ 证明.

Exercise 4 (1.2.3). 令 \mathcal{B} 是布尔代数, $F \subseteq B$, 以下命题等价

1. F 是滤

2. $0 \notin F$, $1 \in F$ 并且对任意 $a, b \in B$, $a \cdot b \in F$ 当且仅当 $a \in F$ 且 $b \in F$ 证明. $1 \to 2$; 因为 $F \neq \emptyset$, 对于任何 $a \in F$, $a \le 1$, 因此 $1 \in F$ 。若 $ab \in F$, 则 $ab \le a$ 且 $ab \le b$,因此 $a, b \in F$. 若 $a, b \in F$,则 $ab \in F$

Exercise 5 (1.2.5). 如果 $G \subseteq B$ 有有穷交性质, $a \in B$,则 $G \cup \{a\}$ 或 $G \cup \{-a\}$ 有有穷交性质

证明. 若 $G \cup \{a\}$ 与 $G \cup \{-a\}$ 都没有有穷交性质,则对于任意 $n \in \omega$,任意 $g_1, \ldots, g_n \in G$, $g_1, \ldots g_n \cdot a = 0 = g_1 \cdot \cdots \cdot g_n \cdot (-a)$,于是 $g_1 \cdot \cdots \cdot g_n \cdot (a + -a) = 0$,于是 G 没有有穷交性质

Exercise 6 (1.2.7). 如果 F 是由 G 生成的滤,则 F 是包含 G 的最小的滤,即 $G \subseteq F$ 且如果 $F' \supseteq G$ 也是滤,则 $F \subseteq F'$

证明. 对于任何包含 G 的滤 F',若 $g_1 \cdot \dots \cdot g_n \in F'$,对于任何 $b \in B$ 且 $g_1 \cdot \dots \cdot g_n \leq b$,有 $b \in F'$,因此 $F \subseteq F'$