H. Lewey's Example of a Linear Equation without Solutions

8

It is natural to believe that linear partial differential equations always have solutions, in fact so many that it is possible to impose additional conditions. [There are trivial nonlinear equations without solutions, e.g. the equation $\exp(u_x) = 0$.] Solutions may of course, cease to exist at a "singular" point, where the characteristic form vanishes, as is the case for the equation $xu_x +$ $yu_y = 1$ which has no solution in a neighborhood of the origin, or the equation $xu_x + yu_y + u = 0$ which has only the trivial solution. (See Problem 2, p. 16). It was surprising therefore when H. Lewy (Annals of Mathematics 66 (1957), 155-158, see also [16]) constructed a linear equation without singular points that has no solution anywhere. His equation has the form Lu = F where the linear first order differential operator L has complexvalued linear functions as coefficients, and F is a suitably chosen function of class C^{∞} . (For analytic F there would always be solutions by Cauchy-Kowalevski.) The function F in this example is not given explicitly; its existence is proved by a non-constructive argument. The single equation Lu = F with complex coefficients for a complex-valued u is equivalent to a system of two equations with real coefficients for two real-valued functions.

Theorem. Let L denote the differential operator acting on functions u(x,y,z) defined by

$$Lu = -u_x - iu_y + 2i(x + iy)u_z.$$
 (1.1a)

There exists a function $F(x, y, z) \in C^{\infty}(\mathbb{R}^3)$ such that the equation

$$Lu = F(x, y, z) \tag{1.1b}$$

has no solution whose domain is an open set Ω in \mathbb{R}^3 , with $u \in C^1(\Omega)$, and u_x, u_y, u_z Hölder continuous in Ω .

In the proof we first construct special F, for which every solution of (1.1b) must become singular at certain special points. By superposition we construct then an F such that every solution must become singular in a dense set of points. The proof is broken up into a number of lemmas.

Lemma I. Let $\psi(z) \in C^{\infty}(\mathbb{R})$, where ψ is real-valued. Let for a certain $\delta > 0$ and $\zeta \in \mathbb{R}$

$$\Omega = \{(x, y, z) | (x, y, z) \in \mathbb{R}^3; \quad x^2 + y^2 < \delta; \quad |z - \zeta| < \delta\}.$$

A solution $u \in C^1(\Omega)$ of

$$Lu = \psi'(z) \tag{1.2a}$$

can exist only if $\psi(z)$ is real analytic at ζ .

PROOF. Set

$$v(r,\theta,z) = e^{i\theta} \sqrt{r} u(\sqrt{r}\cos\theta, \sqrt{r}\sin\theta, z). \tag{1.2b}$$

Then $v \in C^1$ for $0 < r < \delta$, $\theta \in \mathbb{R}$, $|z - \zeta| < \delta$. Moreover, v has period 2π in θ . One easily verifies that

$$Lu = -2v_r - \frac{i}{r}v_\theta + 2iv_z = \psi'(z).$$

The function

$$V(z,r) = \int_0^{2\pi} v(r,\theta,z) d\theta$$

is defined and in C^1 for $0 < r < \delta$, $|z - \zeta| < \delta$, and moreover satisfies

$$V_z + iV_r = \int_0^{2\pi} \left(v_z - \frac{1}{2r} v_\theta + iv_r \right) d\theta = -\pi i \psi'(z).$$

Now the continuity of u(x,y,z) implies that $v(r,\theta,z)$ is continuous for $0 \le r < \delta$, $\theta \in \mathbb{R}$, $|z-\zeta| < \delta$, and that $v(0,\theta,z) = 0$. Then V(z,r) is continuous for $0 \le r < \delta$, $|z-\zeta| < \delta$, and vanishes for r=0. It follows that the function $W=V(z,r)+i\pi\psi(z)$ is C^1 for $0 < r < \delta$, $|z-\zeta| < \delta$, satisfies $W_z+iW_r=0$ and is continuous for $0 \le r < \delta$, $|z-\zeta| < \delta$. Thus W is an analytic function of z+ir for r>0, $|z-\zeta| < \delta$, which is still continuous for r=0 and has vanishing real part there. Equivalently the real and imaginary parts of W(z,r) are conjugate harmonics. By reflection, that is by $W(z,-r)=-\overline{W(z,r)}$, we can extend W as analytic function of z+ir to $|r|<\delta$, $|z-\zeta|<\delta$. (See Problem 5, p. 110). It follows that $\pi\psi(z)$, the imaginary part of W(z,0), is real analytic for $|z-\zeta|<\delta$.

(1.3a)

(1.3b)

IS of

of

a)

δ, OT n 0

in

Then U(X, Y, Z) is of class C^1 in a neighborhood of $(0, 0, \zeta)$ and satisfies

PROOF. Set

 $-U_{Y}-iU_{Y}+2i(X+iY)U_{Z}=\psi'(Z)$ as is verified easily. Apply Lemma I.

u(x, y, z) of class C^1 of the equation

In what follows let $\psi(z)$ denote a fixed real-valued periodic function in $C^{\infty}(\mathbb{R})$ which is not real analytic (see problem 4, p. 69) at any real z. For a function $F(x,y,z) \in C^{\infty}(\mathbb{R}^3)$ and a multi-index $\alpha = (a,b,c)$ we write $D^{\alpha}F$ for $(\partial/\partial x)^a(\partial/\partial y)^b(\partial/\partial z)^c F$, and $|\alpha|$ for a+b+c. Let $Q_i=(\xi_i,\eta_i,\zeta_i)$ for $j=1,2,\ldots$, denote a sequence of points which is dense in \mathbb{R}^3 , fixed in what follows. We set

Lemma II. Let $\psi(z) \in C^{\infty}(\mathbb{R})$, where ψ is real valued. Let there exist a solution

 $Lu = \psi'(z - 2\eta x + 2\xi y)$

in a neighborhood of the point (ξ, η, ζ) . Then, $\psi(z)$ is real analytic at $z = \zeta$.

 $U(X, Y, Z) = u(X + \xi, Y + \eta, Z + 2\eta X - 2\xi Y).$

$$c_i = 2^{-j} \exp(-\rho_i)$$
 where $\rho_i = |\xi_i| + |\eta_i|$. (1.4a)

Finally we introduce the bounded infinite sequences $\varepsilon = (\varepsilon_1, \varepsilon_2, ...)$ of real numbers ε_i . They form a vector space, with addition and multiplication by real scalars defined in an obvious manner, which becomes a Banach space B when referred to the norm

$$\|\varepsilon\| = \sup_{i} |\varepsilon_{i}|. \tag{1.4b}$$

Lemma III. For any $\varepsilon \in B$ the series

$$F_{\varepsilon}(x,y,z) = \sum_{i=1}^{\infty} \varepsilon_{i} c_{j} \psi'(z - 2\eta_{j} x + 2\xi_{j} y)$$
 (1.4c)

and all its formal derivatives with respect to x, y, z converge uniformly, defining a function $F_{\varepsilon} \in C^{\infty}(\mathbb{R}^3)$.

PROOF. Since ψ is periodic,

$$M_k = \sup_{z} |\psi^{(k)}(z)| \tag{1.4d}$$

is finite for any k. Then

$$|D^{\alpha}\varepsilon_{j}c_{j}\psi'(z-2\eta_{j}x+2\xi_{j}y)| \leq \|\varepsilon\|c_{j}M_{|\alpha|+1}\rho_{j}^{|\alpha|}$$

$$\leq 2^{-j}\|\varepsilon\|M_{|\alpha|+1}\rho_{j}^{|\alpha|}\exp(-\rho_{j}) \leq 2^{-j}\|\varepsilon\|M_{|\alpha|+1}\left(\frac{|\alpha|}{e}\right)^{|\alpha|}. \quad (1.4e)$$

This implies uniform convergence of the series for $D^{\alpha}F_{\varepsilon}$.

Definition. For positive integers j, n let $\Omega_{j,n}$ denote the ball in \mathbb{R}^3 with center Q_j and radius $n^{-1/2}$, consisting of the points P = (x, y, z) with

$$|P - Q_j|^2 = (x - \xi_j)^2 + (y - \eta_j)^2 + (z - \zeta_j)^2 < \frac{1}{n}.$$
 (1.5a)

We denote by $E_{j,n}$ the subset of B consisting of those ε for which there exists a solution u(P) = u(x,y,z) of class $C^1(\Omega_{j,n})$ of the equation

$$Lu = F_{\varepsilon}(x, y, z) \tag{1.5b}$$

for which

$$u(Q_j) = 0 ag{1.5c}$$

$$|D^{\alpha}u(P)| \le n \quad \text{for } |\alpha| \le 1, \quad P \in \Omega_{j,n}$$
 (1.5d)

$$|D^{\alpha}u(P) - D^{\alpha}u(Q)| \leq n|P - Q|^{1/n} \quad \text{for } |\alpha| = 1, \quad P \in \Omega_{j,n}, \quad Q \in \Omega_{j,n}.$$

$$(1.5e)$$

(Condition (1.5d) represents bounds for u and its first derivatives in $\Omega_{j,n}$, while (1.5e) prescribes a uniform Hölder condition on the first derivatives.)

Lemma IV. The sets $E_{j,n}$ are closed subsets of B that are nowhere dense (i.e., have no interior points).

PROOF. Let $\varepsilon^1, \varepsilon^2, \ldots$ be in $E_{j,n}$, let ε be in B, and

$$\lim_{k\to\infty}\|\varepsilon-\varepsilon^k\|=0.$$

By (1.4e) with $\alpha = 0$

$$|F_{\varepsilon} - F_{\varepsilon^k}| \leqslant M_1 \|\varepsilon - \varepsilon^k\|.$$

Thus the F_{ε^k} converge to F_{ε} . Denote by u_k the solution u of $Lu = F_{\varepsilon^k}$ with the properties (1.5c,d,e). Since the u_k and their first derivatives are equi-bounded and equi-continuous in $\Omega_{j,n}$ there exists a subsequence of the u_k which converges uniformly to a function u together with its first derivatives. Then u must again satisfy (1.5c,d,e). Since also the Lu_k in the subsequence converge to Lu, the function u is a solution of (1.5b), and $u \in E_{j,n}$. This shows that $E_{j,n}$ is closed.

Let δ denote the bounded sequence all of whose elements are zero, except the j-th one which shall have the value $1/c_j$. Then

$$F_{\delta} = \psi'(z - 2\eta_i x + 2\xi_i y).$$

Let ε be an interior point of $E_{j,n}$. We can find a positive number θ so small that also

$$\varepsilon' = \varepsilon + \theta \delta \in E_{j,n}$$

Let u, u' be the solutions of $Lu = F_{\varepsilon}$ respectively $Lu' = F_{\varepsilon'}$ with the properties

iter

ons

5a)

ere

5b)

5c)

5d)

5e)

'j,n', ∂S.)

.e.,

he ed

nu ge

ıaţ.

pt

all

es

guaranteed by the definition of $E_{j,n}$. Set $u'' = (u' - u)/\theta$. Then u'' is a solution of class C^1 of $Lu'' = F_{\delta}$ in a neighborhood of the point Q_j . This contradicts Lemma II, since ψ is not real analytic at ζ_j .

PROOF OF THE THEOREM. Assume the theorem does not hold. There would exist for every $\varepsilon \in B$ an open set $\Omega \subset \mathbb{R}^3$ and a solution u of $Lu = F_\varepsilon$ in Ω with Hölder continuous first derivatives. Now Ω contains a point Q_j , since the sequence Q_1, Q_2, \ldots is dense. Thus $\Omega_{j,n} \subset \Omega$ for all sufficiently large n. For n sufficiently large u will also satisfy (1.5d,e). It will satisfy as well (1.5c) if we replace u by $u - u(Q_j)$. But this means that $\varepsilon \in E_{j,n}$. Hence B is the union of all the $E_{j,n}$ with positive j,n. This contradicts Lemma IV, since the complete metric space B cannot be union of a countable set of closed nowhere dense subsets (Baire category argument! see [7]).

PROBLEMS

- 1. (a) Write equation (1.1b) as a system of two equations for the real and imaginary parts of u.
 - (b) Show that the characteristic form of the system is semi-definite but not definite for all x,y,z.
 - (c) Show that there are no real characteristic surfaces $\phi(x,y,z) = \text{const.}$ with grad $\phi \neq 0$.