Overview of Parallel HDF5

-1-

Outline

- Overview of Parallel HDF5 design
- Setting up parallel environment
- Programming model for
 - Creating and accessing a File
 - Creating and accessing a Dataset
 - Writing and reading Hyperslabs

- 2 -

PHDF5 Initial Target

- Support for MPI programming
- Not for shared memory programming
 - Threads
 - OpenMP
- Has some experiments with
 - Thread-safe support for Pthreads
 - OpenMP if called "correctly"

- 3 -

PHDF5 Requirements

- PHDF5 files compatible with serial HDF5 files
 - Shareable between different serial or parallel platforms
- Single file image to all processes
 - One file per process design is undesirable
 - Expensive post processing
 - Not useable by different number of processes
- Standard parallel I/O interface
 - Must be portable to different platforms

- 4 -

Collective vs. Independent Calls

- MPI definition of collective call
 - All processes of the communicator must participate in the right order
- · Independent means not collective
- Collective is not necessarily synchronous

- 7 -

Programming Restrictions

- Most PHDF5 APIs are collective
- PHDF5 opens a parallel file with a communicator
 - Returns a file-handle
 - Future access to the file via the file-handle
 - All processes must participate in collective PHDF5 APIs
 - Different files can be opened via different communicators

- 8 -

Examples of PHDF5 API

- Examples of PHDF5 collective API
 - File operations: H5Fcreate, H5Fopen, H5Fclose
 - Objects creation: H5Dcreate, H5Dopen, H5Dclose
 - Objects structure: H5Dextend (increase dimension sizes)
- Array data transfer can be collective or independent
 - Dataset operations: H5Dwrite, H5Dread

- 9 -

What Does PHDF5 Support?

- After a file is opened by the processes of a communicator
 - All parts of file are accessible by all processes
 - All objects in the file are accessible by all processes
 - Multiple processes write to the same data array
 - Each process writes to individual data array

- 10

Creating and Accessing a File Programming model

- HDF5 uses access template object (property list) to control the file access mechanism
- General model to access HDF5 file in parallel:
 - Setup MPI-IO access template (access property list)
 - Open File
 - Close File

- 11

Creating and Opening Dataset

- All processes of the MPI communicator open/close a dataset by a collective call
 - C: H5Dcreate or H5Dopen; H5Dclose
 - F90: h5dcreate_f or h5dopen_f; h5dclose_f
- All processes of the MPI communicator extend dataset with unlimited dimensions before writing to it
 - C: H5Dextend
 - F90: h5dextend f

- 15

Accessing a Dataset

- All processes that have opened dataset may do collective I/O
- Each process may do independent and arbitrary number of data I/O access calls
 - C: H5Dwrite and H5Dread
 - F90: h5dwrite_f and h5dread_f

- 18 -

Accessing a Dataset Programming model

- Create and set dataset transfer property
 - C: H5Pset dxpl mpio
 - H5FD_MPIO_COLLECTIVE
 - H5FD_MPIO_INDEPENDENT (default)
 - F90: h5pset dxpl mpio f
 - H5FD_MPIO_COLLECTIVE_F
 - H5FD MPIO INDEPENDENT F (default)
- Access dataset with the defined transfer property

- 19 -

F90 Example: Collective write

Writing and Reading Hyperslabs Programming model

- Distributed memory model: data is split among processes
- PHDF5 uses hyperslab model
- Each process defines memory and file hyperslabs
- · Each process executes partial write/read call
 - Collective calls
 - Independent calls

