Chapter 1

Introduction

Summary

- About Artificial Intelligence
- About the course
- Analytics
- Big data, small data & data science
- Big data architectures
- What is data?
- Taxonomy on data analytics
- Methodologies for projects of data analytics
- A project on data analytics
- Credits
- Further Reading

"Any sufficiently advanced technology is indistinguishable from magic"

"Any sufficiently advanced technology is indistinguishable from magic"

- Arthur C. Clarke

- Intelligence
- Artificial Narrow Intelligence
- Artificial Generic Intelligence

What is behind the *magic*?

- Lot of data
- Lot of computing power
- Decades of research
- Parameter optimalization

About the course

Goals:

- Have a good general understanding of the concepts of ML
- Familiarity with most common ML models
- Have practical knowledge about the most common ML libraries
- Know where to move on for improving

About the course

Requirements:

3-4 assignments during the semester

Success stories

- Content, item recommender systems
- Smart services
- Speech recognition
- Autonomous trading
- Self-driving cars
- Medical anomaly detection
- Augmented Reality applications

Data Analytics

Definition

 The science that analyze crude data to extract useful knowledge (patterns) from them

Includes

- Statistics -> Inductive learning
- Reproducing the human behaviour: artificial intelligence
- Learning from databases
- Machine Learning
- Data Mining

Big data, small data and data science

- Big Data
 - Volume: How to store large amounts of data whose structure is not known in advance?
 - Velocity: How to guarantee that we can process the incoming data before the new data arrives?
 - Variety: how to use together information arriving in different moments, different granularities, different sources?
 - Others: Veracity, Validity, Volatility, Variability, ...

Big data, small data and data science

- Small Data
 - Data set whose volume and format allows its processing and analysis by a person or a small organization

Big data, small data and data science

Data Science

- Data science extracts meaningful and useful knowledge from data, with the support of suitable technologies
- It has a strong relation to analytics and data mining
- Data science goes beyond data mining by providing a knowledge extraction framework that also includes statistics and visualization

Big data architectures

- Distributed systems
 - the most popular big data processing technique using clusters of computers is MapReduce
 - Hadoop: is its most famous implementation
 - Is a programming model
 - Has two steps: map & reduce
 - Divide the data into chunks and split them by the computers in the cluster

Big data architectures

- Expected characteristics of distributed systems
 - resource sharing
 - openness
 - concurrency
 - scalability
 - fault tolerance
 - transparency

Tabular data

- Rows: represent instances also named objects; an instance per row
- Columns: represent attributes also named features; an attribute per column

Instances

 Are examples of the concept we want to characterize

Attributes

Are characteristics present in the instances

Name	Age	Educational level	Company
Andrew	55	1	Good
Bernhard	43	2	Good
Carolina	37	5	Bad
Dennis	82	3	Good
Eve	23	3.2	Bad
Fred	46	5	Good
Gwyneth	38	4.2	Bad
Hayden	50	4	Bad
Irene	29	4.5	Bad
James	42	4.1	Good
Kevin	35	4.5	Bad
Lea	38	2.5	Good
Marcus	31	4.8	Bad
Nigel	71	2.3	Good

What is data?

Relational data

- There are data that are not possible to represent in a single table
- Data sets represented by several tables, making clear the relations between these tables, are named relational data sets
- Data sets represented by a single table but where there are relations between their instances, are also named relational data sets

Taxonomy on data analytics

Descriptive analytics

- Summarize or condensate data to extract patterns
- The result of a given method or technique is obtained directly by applying an algorithm to the data

Predictive analytics

 The result of applying an algorithm on a predictive method to given data, is typically a model

Model

Node 2 (n = 7)

 Is a generalization obtained from data that can be used afterwards to generate predictions for new given instances

18

Taxonomy on data analytics

- Algorithm
 - A self-contained step-bystep set of instructions easily understandable by humans, allowing the implementation of a given method to an arbitrary programming language
- Method or technique
 - Is a systematic procedure that allows to achieve an intended goal

Taxonomy on data analytics

- Hyper-parameters
 - The values of the hyperparameters are set by the user, or some external optimization method
 - E.g. the number of clusters in kmeans

- Parameters
 - The parameter values are model parameters whose values are set by a modeling or learning algorithm in its internal procedure
 - E.g. the slope parameter of multivariate linear regression

Methodologies for projects of data analytics

- The KDD process: a ninestep methodology
- SEMMA Sample, Explore, Modify, Model and Assess

 Surveys conducted in 2002, 2004, 2007 and 2014 by kdnuggets on the use of planning and developing methodologies for projects on data analytics

KDD Method

- 1. Developing an understanding of the domain, goals
- 2. Creating a target data set
- 3. Data cleaning and preprocessing
 - Removal of noise or outliers
- 4. Data reduction and projection
- 5. Choosing the data mining task
 - Deciding whether the goal of the KDD process is classification, regression, clustering, etc.
- 6. Choosing the data mining algorithm
- 7. Data mining
- 8. Interpreting mined patterns.
- Consolidating discovered knowledge

The CRISP-DM methodology

Credits

- João Mendes Moreira and Tomáš Horváth
- Krisztian Buza

Further reading

A General Introduction to Data Analytics

by João Mendes Moreira, André C. P. L. F. de Carvalho and Tomáš Horváth

Introduction to Data Mining

by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne and Vipin Kumar

https://www-users.cs.umn.edu/~kumar001/dmbook/index.php#item3

Questions?

