- drive has reduced losses.
 - iv) The pulsed gate drive can be easily passed through isolation transformers to isolate thyristor and trigger circuit.

3.2.2 Requirement of Gate Drive

The gate drive has to satisfy the following requirements:

- i) The maximum gate power should not be exceeded by gate drive, otherwise thyristor will be damaged.
- ii) The gate voltage and current should be within the limits specified by gate characteristics (Fig. 3.6) for successful turn-on.
- iii)The gate drive should be preferably pulsed. In case of pulsed drive the following relation must be satisfied: (Maximum gate power x pulse width) x (Pulse frequency) ≤ Allowable average gate power
- iv)The width of the pulse should be sufficient to turn-on the thyristor successfully.
- v) The gate drive should be isolated electrically from the thyristor. This avoids any damage to the trigger circuit if in case thyristor is damaged.

e general transistor equations are,

$$\begin{split} I_{C} &= \beta I_{B} + \left(1 + \beta\right) I_{CBO} \\ I_{C} &= \alpha I_{E} + I_{CBO} \\ I_{E} &= I_{C} + I_{B} \\ I_{B} &= I_{E} \left(1 - \alpha\right) - I_{CBO} \end{split}$$

e SCR can be considered to be made up of two transistors as shown in above figure.

Considering NPN transistor of the equivalent circuit,

$$I_{C} = I_{C_{1}}, I_{B} = I_{B_{1}}, I_{E_{1}} = I_{K} = I_{A} + I_{G}$$

$$I_{C_{1}} = \alpha_{1}I_{k} + I_{CBO_{1}}$$

$$I_{C_{2}} = \alpha_{2}(I_{A} + I_{G}) + I_{CBO_{2}} ----(2)$$

From the equivalent circuit, we see that

$$I_{C_2} = I_{B_1}$$

$$\Rightarrow I_A = \frac{\alpha_2 I_g + I_{CBO1} + I_{CBO2}}{1 - (\alpha_1 + \alpha_2)}$$

$$\Rightarrow I_A = \frac{\alpha_2 I_g + I_{CBO1} + I_{CBO2}}{1 - (\alpha_1 + \alpha_2)}$$

Two transistors analog is valid only till SCR reaches ON state

Case 1: When $I_g = 0$,

$$I_{A} = \frac{I_{CBO_{1}} + I_{CBO_{2}}}{1 - (\alpha_{1} + \alpha_{2})}$$

The gain α_1 of transistor T_1 varies with its emitter current $I_E = I_A$. Similarly varies with $I_E = I_A + I_E = I_K$. In this case, with $I_E = 0$, α_2 varies only with I_A . Initially when the applied forward voltage is small, $(\alpha_1 + \alpha_2) < 1$.

PradeepmysurNagaraj

a

b:

re

