NLP for political tagging

Attribute extraction for campaign main topics identification

N. J. Hurst¹

 1 School of Engineering and Sciences Instituto Tecnológico y de Estudios Superiores de Monterrey

Computational Techniques for Machine Learning
October 2017

- Problem description
- Our proposal
- Objectives
- Proposed techniques
- References

2 / 16

- Problem description
- Our proposal
- Objectives
- Proposed techniques
- 6 References

Problem description

- Many Mexican EdoMex governor election candidates use social networks to react to ongoing events
- Each reaction reflects somehow topics comprised on the candidate's campaign
- Experts classify topic attitudes as follows:
 - Proactive
 - 2 Reactive
 - 4 Aggressive
 - Pro-vote

- 1 Problem description
- Our proposal
- Objectives
- Proposed techniques
- 5 References

Hypothesis

- Previous attribute extraction based on an ensemble of natural language techniques and classifiers will improve overall attitude classification precision over unseen tweets.
- These techniques are enumerated in 'Proposed techniques' on page 12 and each of those will be tailored to a single aspect of the problem.
- Oue to the open nature of the corpus recall should be ignored.
- We will test the extracted attributes on a bag-of-words simple classifier to measure the degree of improvement. We expect to improvement reaches at least 10% more precision.
- The contribution is that in Mexico this kind of attribute extraction using spanish and political corpuses has never been done.

- Problem description
- Our proposal
- Objectives
- Proposed techniques
- 6 References

Objectives

S.M.A.R.T. objective

Specific

Improve classification precision by adding a new set of features to each tweet tuple.

Measurable

Crossover validation will be used to measure precision deltas. So far, no parametrization is needed.

Assignable

Will be done by the student. Periodic weekly reviews on Fridays.

Realistic

An ensemble of 3 classifiers will be used.

Time-related

Weekly reviews will be made until project delivery on November.

Each classifier extract a set of attributes

- Problem description
- Our proposal
- Objectives
- Proposed techniques
- 6 References

Proposed machine learning techniques

Word2Vec

- Evaluates context though shallow 2-layer neural networks
- Requires a very large corpus, over 10 million words
- Template matching
 - Uses syntactical structure proposed by Noam Chomsky
 - Can also be learned
- Bag of words
 - For evaluating other candidates tweet mentions

Figure: Word2Vec

Proposed machine learning techniques

- Word2Vec
 - Evaluates context though shallow 2-layer neural networks
 - Requires a very large corpus, over 10 million words
- Template matching
 - Uses syntactical structure proposed by Noam Chomsky
 - Can also be learned
- Bag of words
 - For evaluating other candidates tweet mentions

Figure: Template matching

12 / 16

Proposed machine learning techniques

- Word2Vec
 - Evaluates context though shallow 2-layer neural networks
 - Requires a very large corpus, over 10 million words
- Template matching
 - Uses syntactical structure proposed by Noam Chomsky
 - Can also be learned
- Bag of words
 - For evaluating other candidates tweet mentions

Bag of Words Model: Binary vectors

First, normalize (in this case, lowercase)

silver truck

- Second, compute vocabulary and sort
 a arrived damaged delivery fire gold in of shipment
- a
 arrived
 damag
 defense
 feet
 gold
 n
 of
 alignment
 show
 nuck

 Shymenet of 1
 0
 1
 1
 1
 1
 0
 0

 Graph of the companies of th

Figure: Bag of words

- 1 Problem description
- Our proposal
- Objectives
- Proposed techniques
- References

References

Books

Peter Norvig. *Artificial Intelligence: A Modern Approach*. 2012. ISBN: 9780123969590. DOI: 10.1016/B978-0-12-396959-0.00001-X.

Articles

Yoav Goldberg and Omer Levy. "word2vec Explained: deriving Mikolov et al.'s negative-sampling wordembedding method". In: (Feb. 2014). arXiv: 1402 . 3722. URL: http://arxiv.org/abs/1402.3722.

Collaborators

Post-doctorate professors

• Miguel Ángel Medina , PhD degree in Artificial Intelligence from the Ciego de Ávila University in 2004

Post-doctorate collaborators

J. Benito Camiña, PhD. Dissertation. "The Windows-Users and -Intruder simulations Logs dataset (WUIL): An experimental framework for masquerade detection mechanisms"

Figure: Migue

Figure: Benito

Thanks for your attention! Any questions?

Derechos Reservados 2017[©] Tecnológico de Monterrey Prohibida la reproducción total o parcial de esta obra sin expresa autorización del Tecnológico de Monterrey.

