

Joint Institute of Engineering

SUN YAT-SEN UNIVERSITY

Carnegie Mellon University

Cameras and Camera Geometry

Forsyth&Ponce: Chap. 1,2,3

Szeliski: Chap. 2.1

Pinhole Cameras

Equivalent Model with Virtual Image Plane

Basic Geometric Properties

- Distant objects are smaller
- Lines project to lines
- The projection of parallel lines meet at a single vanishing point
- Vanishing points of coplanar sets of lines are collinear, form the vanishing line of the plane (horizon)

Road Scene Example

Perspective Projection

Perspective Projection

What is y' in terms of x,y,z,f?

Perspective Projection

$$y' = f \frac{y}{z}$$

Special Case: Weak Perspective (Affine Projection)

$$x' \approx -mx$$
 $y' \approx -my$
 $m = -\frac{f'}{z_o}$

If scene points are in a plane, projections are simply magnified by m

Special Case: Weak Perspective (Affine Projection)

If
$$\Delta z << -\overline{z}: x' \approx -mx$$
 $m = -\frac{f'}{\overline{z}}$

Justified if scene depth is small relative to average distance from camera

Strong Perspective

- Angles are NOT preserved
- The projections of parallel lines intersect at one point

Strong vs Weak Perspective

image credit: Zisserman & Hartley

Strong vs Weak Perspective

Strong Perspective:

- Angles are NOT preserved
- The projections of parallel lines intersect at one point

Weak Perspective:

- Angles are better preserved
- The projections of parallel lines are (almost) parallel

Limitations of the Pinhole Model

Ideal pinhole: Single scene point generates single image

but:

Diffraction Low light level

Finite-size pinhole: Single scene point generates extended image.

Resulting image is blurry

Thin Lens Model

All rays emanating from **P** converge to a single point **P**'

$$\frac{1}{z}, -\frac{1}{z} = \frac{1}{f}$$

Points at infinity are focused on plane z' = f

Ideal because: infinite aperture

infinite field of view

infinitely small distance between surfaces

Thin Lens Model

All rays emanating from **P** converge to a single point **P**'

$$\frac{1}{z}, -\frac{1}{z} = \frac{1}{f}$$

Points at infinity are focused on plane z' = f

Ideal because: infinite aperture

infinite field of view

infinitely small distance between surfaces

Can you convince yourself of this geometrically and mathematically?

Finite Aperture

Finite Aperture

Finite Aperture

Ideal case: Only the points on one plane are in perfect focus Finite aperture: points within a region of depth D (depth of field) are in focus.

For a given f, the larger the aperture, the smaller D Depth of field controlled by f/a

Meanwhile: Real Lenses

Previous approximation is incorrect:

Aberrations and distortions

under CC BY-SA 2.0 fr via Commons - https://commons.wikimedia.org/ wiki/File:Symetrical.svg#/media/File:Symetrical.svg

Blurring and incorrect shape in the image

Spherical Aberrations

Rays further from the optical axis are focused closer to the lens

Geometric Distortion

Radial Distortion Model

$$x'=f\frac{x}{z}$$

$$y'=f\frac{y}{z}$$

$$x'' = \frac{1}{\lambda} x'$$

$$y'' = \frac{1}{\lambda} y'$$

$$\lambda = 1 + k_1 r^2 + k_2 r^4 + \cdots$$

Fun Facts to Remember!

Perspective Projection	$x'=f\frac{x}{z}$ $y'=f\frac{y}{z}$	x,y: World coordinates x',y': Image coordinates f: pinhole-to-retina distance
Weak-Perspective Projection (Affine)	$x' \approx -mx$ $y' \approx -my$ $m = -\frac{f}{\bar{z}}$	x,y: World coordinates x',y': Image coordinates m: magnification
Orthographic Projection (Affine)	$x'\approx x$ $y'\approx y$	x,y: World coordinates x',y': Image coordinates
Common distortion model	$x'' = \frac{1}{\lambda} x'$ $y'' = \frac{1}{\lambda} y'$ $\lambda = 1 + k_1 r^2 + k_2 r^4 + \cdots$	x',y': Ideal image coordinates x",y": Actual image coordinates