





# Floquet theory for open quantum systems

### **Sigmund Kohler**

Instituto de Ciencia de Materiales de Madrid, CSIC

- I. Driven quantum systems and Floquet theory
- II. Floquet theory and quantum dissipation
- III. Fermionic environments & miscellaneous



http://www.icmm.csic.es/sigmundkohler/Download/FloquetTutorial.pdf

# Floquet theory for open quantum systems



- Geometric phases
- **2** Floquet theory
- **3** Quantum dissipation
- 4 Floquet-Bloch-Redfield formalism
- 5 Dissipative phenomena in driven systems
  - The driven double-well potential
  - Influence of the system–bath coupling
  - Coherence stabilization by ac fields
- **6** Floquet transport theory
  - scattering theory
  - master equation
- 7 Miscellaneous time-dependent Liouvillians
  - Matrix continued fractions
  - Bichromatic driving



■ Time evolution of an eigenstate:

$$|\psi(t)\rangle = e^{-iE_nt}|\phi_n\rangle$$

Notation:

 $\psi$ : solution of Schrödinger equation  $\phi$ : other state vector, e.g., eigenstate

■ energy → phase

for (periodically) time-dependent system?

# ${\bf Adiabatic\ time-dependence-Berry\ phase}$



Spin in magnetic field B(t) = B(t + T):

$$H(t) = \frac{1}{2}\vec{B}(t)\cdot\vec{\sigma}$$





■ Spin in magnetic field B(t) = B(t + T):

$$H(t) = \frac{1}{2}\vec{B}(t)\cdot\vec{\sigma}$$



■ Quantum dynamics for  $\dot{B} \ll B^2$ : state follows the eigenstate adiabatically

$$|\psi(t)\rangle \propto |\phi_n(t)\rangle$$



 $\rightarrow |\psi(t)\rangle$  determined up to phase factor



After one period:  $|\psi(T)\rangle = e^{i\varphi}|\psi(0)\rangle$ 

$$\boldsymbol{\varphi} = -\int_0^T \mathrm{d}t \, E_n(t) + \boldsymbol{\gamma}_{\mathscr{C}}$$



- dynamical phase → mean energy
- Berry phase  $\gamma_{\mathscr{C}}$ 
  - ► depends only on closed curve **%** in parameter space

M. Berry, Proc. Roy. Soc. London, Ser. A 392, 45 (1984)



After one period:  $|\psi(T)\rangle = e^{i\varphi}|\psi(0)\rangle$ 

$$\boldsymbol{\varphi} = -\int_0^T \mathrm{d}t \, E_n(t) + \boldsymbol{\gamma}_{\mathscr{C}}$$



- dynamical phase → mean energy
- Berry phase  $\gamma_{\mathscr{C}}$ 
  - ► depends only on closed curve **%** in parameter space

M. Berry, Proc. Roy. Soc. London, Ser. A **392**, 45 (1984)

- Assumptions:
  - $\vec{B}(t)$  changes adiabatically slowly
  - **2** initial state: eigenstate  $|\phi_n(0)\rangle$



#### Different perspective:

State vector undergoes periodic time-evolution

- $|\psi(T)\rangle = e^{i\varphi}|\psi(0)\rangle$
- dynamics  $|\psi(t)\rangle$  induced by some Hamiltonian H(t)

#### Remarks:

- no adiabatic condition
- $|\psi(t)\rangle$  need not be an eigenstate of H(t)
- $\blacksquare$  H(t) is not unique
- only condition: cyclic time-evolution in Hilbert space

# **Projective Hilbert space**



Remove phase factor by projection  $\Pi: \mathcal{H} \to \mathcal{P}$  where

- $\,\blacksquare\,$  all parallel vectors are projected to the same vector



Remove phase factor by projection  $\Pi: \mathcal{H} \to \mathcal{P}$  where

- $\blacksquare \Pi | \psi_1 \rangle = \Pi | \psi_2 \rangle \text{ if } | \psi_1 \rangle = c | \psi_2 \rangle \text{ for any } c \in \mathbb{C}$
- all parallel vectors are projected to the same vector

Cyclic time-evolution:  $|\psi(t)\rangle = e^{if(t)}|\phi(t)\rangle$ 

- $|\psi\rangle \in \mathcal{H}$  (Hilbert space)
- $|\phi\rangle \in \mathscr{P}$  (projective Hilbert space)
- $\rightarrow |\phi(t+T)\rangle = |\phi(t)\rangle \rightarrow \text{image } |\phi(t)\rangle = \Pi|\psi(t)\rangle \text{ is } T\text{-periodic}$

From Schödinger equation follows

$$\frac{\mathrm{d}f}{\mathrm{d}t} = -\langle \phi(t)|H(t)|\phi(t)\rangle + \langle \phi(t)|\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}t}|\phi(t)\rangle$$



 $\rightarrow$  Phase acquired during cyclic evolution:  $\varphi = f(T) - f(0)$ 

$$\frac{\mathrm{d}f}{\mathrm{d}t} = -\langle \phi | H | \phi \rangle + \langle \phi | i \frac{\mathrm{d}}{\mathrm{d}t} | \phi \rangle \quad \Longrightarrow \quad \boxed{\varphi = \gamma_{\mathrm{dyn}} + \gamma}$$



→ Phase acquired during cyclic evolution:  $\varphi = f(T) - f(0)$ 

$$\frac{\mathrm{d}f}{\mathrm{d}t} = -\langle \phi | H | \phi \rangle + \langle \phi | \mathrm{i} \frac{\mathrm{d}}{\mathrm{d}t} | \phi \rangle \quad \Longrightarrow \quad \boxed{\varphi = \gamma_{\mathrm{dyn}} + \gamma}$$

Dynamical phase 
$$\gamma_{\rm dyn} = -\int_0^T {\rm d}t \, \langle \phi(t)|H(t)|\phi(t)\rangle$$

- ightharpoonup depends on choice of H(t)
- reflects mean energy



 $\rightarrow$  Phase acquired during cyclic evolution:  $\varphi = f(T) - f(0)$ 

$$\frac{\mathrm{d}f}{\mathrm{d}t} = -\langle \phi | H | \phi \rangle + \langle \phi | i \frac{\mathrm{d}}{\mathrm{d}t} | \phi \rangle \quad \Longrightarrow \quad \boxed{\varphi = \gamma_{\mathrm{dyn}} + \gamma}$$

Dynamical phase 
$$\gamma_{\text{dyn}} = -\int_0^T dt \langle \phi(t) | H(t) | \phi(t) \rangle$$

- ightharpoonup depends on choice of H(t)
- reflects mean energy

Aharonov-Anandan phase ("non-adiabatic Berry phase")

$$\gamma = \int_0^T \mathrm{d}t \, \langle \phi | \mathrm{i} \frac{\mathrm{d}}{\mathrm{d}t} | \phi \rangle$$

- depends only on trajectory in Hilbert space not in parameter space!
  - adiabatic limit:  $\gamma = \gamma_{\mathscr{C}}$

## **Floquet Theory**



#### Some standard references

- Classic work:
  - ► Shirley, Phys. Rev. 138, B979 (1965)
  - ► Sambe, Phys. Rev. A 7, 2203 (1973)
- Reviews:
  - ► Grifoni, Hänggi, Phys. Rep. 304, 229 (1998)
  - Hänggi, Chap.5 of "Quantum transport and dissipation" (1998) http://www.physik.uni-augsburg.de/theo1/hanggi/Papers/Chapter5.pdf

## Time-dependent Schrödinger equation



#### Goal: propagator U(t, t')

■ Time-independent system: diagonalize Hamiltonian  $\rightarrow |\phi_n\rangle$ ,  $E_n$ 

$$U(t,t') = U(t-t') = \sum_n \mathrm{e}^{-\mathrm{i} E_n(t-t')} |\phi_n\rangle \langle \phi_n|$$

# Time-dependent Schrödinger equation



#### Goal: propagator U(t, t')

■ Time-independent system: diagonalize Hamiltonian  $\rightarrow |\phi_n\rangle$ ,  $E_n$ 

$$U(t,t') = U(t-t') = \sum_{n} e^{-iE_n(t-t')} |\phi_n\rangle\langle\phi_n|$$

■ Driven system:

$$i\frac{d}{dt}|\psi\rangle = H(t)|\psi\rangle$$
  $\rightarrow$  numerical integration

problem 1: time-integration not efficient for long times problem 2: no information about structure of U



#### Goal: propagator U(t, t')

■ Time-independent system: diagonalize Hamiltonian  $\rightarrow |\phi_n\rangle$ ,  $E_n$ 

$$U(t,t') = U(t-t') = \sum_{n} e^{-iE_n(t-t')} |\phi_n\rangle\langle\phi_n|$$

■ Driven system:

$$i\frac{d}{dt}|\psi\rangle = H(t)|\psi\rangle$$
  $\rightarrow$  numerical integration

problem 1: time-integration not efficient for long times problem 2: no information about structure of U

- Solution for H(t) = H(t+T): "Bloch theory in time" cf.  $H(x)|\phi\rangle = \epsilon|\phi\rangle$  with H(x) = H(x+a)
  - $\rightarrow$  Bloch waves  $\phi(x) = e^{iqx} \varphi(x)$ , where  $\varphi(x)$  is a-periodic

#### Mathieu equation



#### Floquet (1883):

Ann. de l'Ecole Norm. Sup. 12, 47 (1883)

Parametric oscillator (cf. Paul trap)

$$\ddot{x} + (\omega_0^2 + \epsilon \cos \Omega t) x = 0$$

Floquet theorem: solutions have the structure

$$x(t) = e^{\pm i\mu t} \xi(t)$$

where 
$$\xi(t) = \xi(t + 2\pi/\Omega)$$

(undriven limit:  $\mu = \omega_0$ ,  $\xi = \text{const}$ )



 $\mu$  real

→ oscillating solutions

 $\mu$  imaginary

→ one solution unstable

#### Discrete time translation and Floquet ansatz



- $\blacksquare$  H(t) = H(t+T)
  - $\rightarrow t \rightarrow t + T$  is symmetry operation
  - $\rightarrow$  solutions of Schrödinger equation obey  $|\psi(t+T)\rangle = e^{i\varphi}|\psi(t)\rangle$
- Floquet ansatz

$$|\psi(t)\rangle = \mathrm{e}^{-\mathrm{i}\epsilon t}|\phi(t)\rangle = \mathrm{e}^{-\mathrm{i}\epsilon t}\sum_k \mathrm{e}^{-\mathrm{i}k\Omega t}|c_k\rangle$$

ightharpoonup  $\epsilon$  quasienergy (cf. quasi momentum)

→ long-time dynamics

 $\blacktriangleright$   $|\phi(t)\rangle = |\phi(t+T)\rangle$ , Floquet state

- → within driving period
- Floquet theorem: H(t) has a complete set of Floquet solutions
- Schrödinger equation  $i\partial_t |\psi\rangle = H(t)|\psi\rangle$  yields

$$(H(t) - i\partial_t)|\phi(t)\rangle = \epsilon|\phi(t)\rangle$$

#### Brillouin zone structure



- $|\phi(t)\rangle$  Floquet state with quasienergy  $\epsilon$
- ightharpoonup  $e^{ik\Omega t}|\phi(t)\rangle$  Floquet state with  $\epsilon+k\Omega$

proof: insert into  $(H - i\partial_t)|\phi\rangle = \epsilon|\phi\rangle$ 

#### Brillouin zone structure



- $|\phi(t)\rangle$  Floquet state with quasienergy  $\epsilon$
- ightharpoonup  $e^{ik\Omega t}|\phi(t)\rangle$  Floquet state with  $\epsilon+k\Omega$

proof: insert into 
$$(H - i\partial_t)|\phi\rangle = \epsilon |\phi\rangle$$

e.g. for two-level system



- all Brillouin zones equivalent, choice arbitrary
- → quasienergies cannot serve for ordering!



■ Physical quantity: mean energy

$$E = \frac{1}{T} \int_0^T dt \, \langle \psi(t) | H(t) | \psi(t) \rangle = \frac{1}{T} \int_0^T dt \, \langle \phi(t) | H(t) | \phi(t) \rangle$$

- All equivalent states have the same mean energy [proof: insert  $e^{-ik\Omega t}|\phi(t)\rangle$ ]
- → Floquet states can be ordered by their mean energy



Mean energy

$$E = \frac{1}{T} \int_0^T dt \, \langle \phi(t) | \{ H(t) - i\partial_t + i \frac{\partial_t}{\partial t} \} | \phi(t) \rangle$$

where  $(H - i\partial_t)|\phi(t)\rangle = \epsilon|\phi(t)\rangle$ 

$$E = \epsilon + \frac{1}{T} \int_0^T \mathrm{d}t \, \langle \phi(t) | \mathrm{i} \partial_t | \phi(t) \rangle$$



Mean energy

$$E = \frac{1}{T} \int_0^T dt \, \langle \phi(t) | \{ H(t) - i\partial_t + i\partial_t \} | \phi(t) \rangle$$

where  $(H - i\partial_t)|\phi(t)\rangle = \epsilon|\phi(t)\rangle$ 

$$-\epsilon = -E + \frac{1}{T} \int_0^T dt \, \langle \phi(t) | i \partial_t | \phi(t) \rangle$$

Compare to

$$\varphi = \gamma_{\rm dyn} + \gamma$$



Mean energy

$$E = \frac{1}{T} \int_0^T dt \, \langle \phi(t) | \{ H(t) - i\partial_t + i\partial_t \} | \phi(t) \rangle$$

where  $(H - i\partial_t)|\phi(t)\rangle = \epsilon|\phi(t)\rangle$ 

$$-\epsilon = -E + \frac{1}{T} \int_0^T dt \, \langle \phi(t) | i \partial_t | \phi(t) \rangle$$

Compare to

$$\varphi = \gamma_{\text{dyn}} + \gamma$$

 $(E-\epsilon)T$  is a geometric phase

# Mean energies — two-level system





Driven undetuned two-level system

exact crossings (consequence of symmetry)







exact crossings (consequence of symmetry)



#### ... with small detuning

- quasi energies
  - avoided crossings
- mean energies
  - exact crossings remain
  - additional crossings
  - → do not follow from any eigenvalue equation





$$H(t) = H_{\rm DW} + Fx \sin(\Omega t)$$





- $H(t) = H_{\rm DW} + Fx \sin(\Omega t)$
- → doublet structure
- → states interchange their morphology at avoided quasienergy crossing
- → mean energies interchanged



SK et al., PRE 1998

# Symmetries of dipole driving



$$H_{\rm dipole} \propto x \cos(\Omega t)$$



1 time periodicity  $t \longrightarrow t + T$ 

→ Floquet theory applicable

**2** time reversal  $t \longrightarrow -t$ 

- → Floquet states real
- **3** generalized parity (x, t) → (-x, t + T/2) → Floquet states even/odd e.g. symmetric potential with dipole driving
- 4 time-reversal parity  $(x, t T/4) \longrightarrow (-x, T/4 t)$ 
  - combination of the other three
  - relevant for Floquet scattering theory (Lecture III on fermionic environments)



Goal: more formal treatment of  $H(t) - i\partial_t$ 

■  $|\phi(t)\rangle \in \mathcal{R} \otimes \mathcal{T}$  composite Hilbert space / Sambe space Shirley, PR 138, B979 (1965), Sambe, PRA 7, 2203 (1973)

 $\mathcal{T}$ : Hilbert space of T-periodic functions with inner product

$$\langle f|g\rangle = \int_0^T f(t)^* g(t) \frac{\mathrm{d}t}{T} = \sum_k f_k^* g_k$$

- extended Dirac notation:
  - $|\phi(t)\rangle = \langle t|\phi\rangle\rangle$
  - ► Fourier coefficient  $|\phi_k\rangle = \langle k|\phi\rangle\rangle$

e.g.: 
$$|\phi(t)\rangle = \langle t|\phi\rangle\rangle = \sum_{k} \langle t|k\rangle\langle k|\phi\rangle\rangle = \sum_{k} e^{-ik\Omega t} |\phi_{k}\rangle$$

# **Completeness and Orthogonality**



- $H i\partial_t$  is hermitian
- → Floquet states  $|\phi_{\alpha}\rangle$  orthonormal and complete in  $\Re \otimes \mathcal{T}$

$$\langle\langle\phi_{\alpha}^{(k)}|\phi_{\beta}^{(k')}\rangle\rangle=\delta_{\alpha\beta}\delta_{kk'}$$

 $\mathbf{?}$  but in  $\mathcal{R}$ ?

# **Completeness and Orthogonality**



- $H i\partial_t$  is hermitian
- → Floquet states  $|\phi_{\alpha}\rangle$  orthonormal and complete in  $\Re \otimes \mathcal{T}$

$$\langle\langle\phi_{\alpha}^{(k)}|\phi_{\beta}^{(k')}\rangle\rangle=\delta_{\alpha\beta}\delta_{kk'}$$

- ? but in  $\mathcal{R}$ ?
- Consider  $\langle \phi_{\alpha}(t) | \phi_{\beta}(t) \rangle = \sum_{k} \lambda_{k} e^{-ik\Omega t}$  since *T*-periodic with the Fourier coefficient

$$\lambda_{k} = \frac{1}{T} \int_{0}^{T} \mathrm{d}t \, \mathrm{e}^{\mathrm{i}k\Omega t} \langle \phi_{\alpha}(t) | \phi_{\beta}(t) \rangle = \langle \langle \phi_{\alpha} | \phi_{\beta}^{(k)} \rangle \rangle = \delta_{\alpha\beta} \delta_{k,0}$$

→ Floquet states orthogonal at equal times



propagator in terms of Floquet states

$$U(t,t') = \sum_{\alpha} |\psi_{\alpha}(t)\rangle\langle\psi_{\alpha}(t')| = \sum_{\alpha} e^{-i\epsilon_{\alpha}(t-t')} |\phi_{\alpha}(t)\rangle\langle\phi_{\alpha}(t')|$$

- ▶ long-time dynamics (depends on t t')
- ▶ dynamics within driving period (depends on t and t')



propagator in terms of Floquet states

$$U(t,t') = \sum_{\alpha} |\psi_{\alpha}(t)\rangle \langle \psi_{\alpha}(t')| = \sum_{\alpha} \mathrm{e}^{-\mathrm{i}\epsilon_{\alpha}(t-t')} |\phi_{\alpha}(t)\rangle \langle \phi_{\alpha}(t')|$$

- long-time dynamics (depends on t t')
- ▶ dynamics within driving period (depends on t and t')
- one-period propagator for kicked systems

$$H(t) = H_0 + K \sum_{n} \delta(t - nT)$$

$$\rightarrow U(T) = e^{-iH_0T}e^{-iK}$$

- ✓ easy to compute
- ✓ provides quasienergies
- only long-time dynamics (stroboscopic)

# **Computation of Floquet states**



Solve eigenvalue problem

$$\big\{H(t)-\mathrm{i}\partial_t\big\}|\phi\rangle\rangle=\epsilon|\phi\rangle\rangle$$



### Solve eigenvalue problem

$$\{H(t) - i\partial_t\}|\phi\rangle\rangle = \epsilon|\phi\rangle\rangle$$

Straightforward in Fourier representation ("Floquet matrix")

$$H_0 + H_1 \cos(\Omega t) - \mathbf{i} \frac{\mathbf{d}}{\mathbf{d}t} \leftrightarrow \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & H_0 + 2\Omega & \frac{1}{2}H_1 & 0 & 0 & 0 & \cdots \\ \cdots & \frac{1}{2}H_1 & H_0 + \Omega & \frac{1}{2}H_1 & 0 & 0 & \cdots \\ \cdots & 0 & \frac{1}{2}H_1 & H_0 & \frac{1}{2}H_1 & 0 & \cdots \\ \cdots & 0 & 0 & \frac{1}{2}H_1 & H_0 - \Omega & \frac{1}{2}H_1 & \cdots \\ \cdots & 0 & 0 & 0 & \frac{1}{2}H_1 & H_0 - 2\Omega & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

### **Computation of Floquet states**



- 1 direct diagonalization of  $H(t) i\partial_t$ 
  - ► conceptually simple → first choice
  - increasingly difficult with smaller frequency
  - often more efficient after unitary transformation
- 2 analytical tool: perturbation theory strong driving:  $H_1 \cos(\Omega t) i\partial_t$  as zeroth order
- **3** diagonalization of U(T,0) →  $e^{-i\epsilon T}$ ,  $|\phi(0)\rangle$
- 4 matrix-continued fraction
- $\mathbf{5}$  (t, t') formalism

# **Example I: Coherent destruction of tunneling**



- role of quasienergy crossings
- perturbation theory (two-level approximation)
- 3 convenient route to mean energy

Driven double-well potential  $H(t) = H_{DW} + Sx\cos(\Omega t)$ 





- tunnel oscillations influenced by driving
- ? dynamics at quasienergy crossing

# **Example I: Coherent destruction of tunneling**



### Occupation $P_{\text{left}}(nT)$





### far from crossing:

tunnel oscillations

# at crossing:

- particle stays in left well
- → "coherent destruction of tunneling" by ac field

Grossmann et al., PRL 1991

Analytical understanding → two-level approximation



### Driven two-level system

$$H(t) = -\frac{\Delta}{2}\sigma_x + \frac{A}{2}\cos(\Omega t)\sigma_z$$

### quasienergy spectrum





Analytical approach for  $\Delta \ll \Omega$ : high-frequency limit

$$H(t) = -\frac{\Delta}{2}\sigma_x + \frac{A}{2}\cos(\Omega t)\sigma_z$$

zeroth order Floquet equation

$$\left(\frac{A}{2}\cos(\Omega t)\sigma_z - i\frac{\mathrm{d}}{\mathrm{d}t}\right)|\phi(t)\rangle = \epsilon^{(0)}|\phi(t)\rangle$$

with the Floquet states and quasienergies

$$|\phi_{\rm L/R}(t)\rangle = {\rm e}^{\pm {\rm i}(A/2\Omega)\sin(\Omega t)}|{\rm L/R}\rangle, \quad \epsilon^{(0)} = 0 \quad ({\rm degenerate!})$$

→ degenerate perturbation theory

## Example I: CDT — perturbation theory



Diagonalize  $H_0 = -\frac{\Delta}{2}\sigma_x$  in degenerate subspace

■ compute all matrix elements ( $\ell = L, R$ )

$$\langle \langle \phi_{\ell} | H_0 | \phi_{\ell'} \rangle \rangle = \frac{1}{T} \int_0^T \mathrm{d}t \, \langle \phi_{\ell}(t) | H_0 | \phi_{\ell'}(t) \rangle = \begin{cases} 0 & \text{for } \ell = \ell' \\ -\frac{\Delta}{2} J_0(A/\Omega) & \text{for } \ell \neq \ell' \end{cases}$$

Bessel function  $J_n(x)$ : *n*th Fourier coefficient of  $e^{-ix\sin(\Omega t)}$ 

■ diagonalize the resulting matrix

$$-\frac{\Delta}{2}J_0(A/\Omega)\begin{pmatrix}0&1\\1&0\end{pmatrix} \equiv -\frac{\tilde{\Delta}}{2}\begin{pmatrix}0&1\\1&0\end{pmatrix} \quad \text{with } \tilde{\Delta} = \Delta J_0(A/\Omega)$$

$$\rightarrow$$
 eigenvalues  $\pm \frac{\tilde{\Delta}}{2}$  and eigenvectors  $|\phi_L\rangle\rangle \pm |\phi_R\rangle\rangle$ 

# Example I: CDT — perturbation theory



### Floquet states

$$|\phi_{\pm}\rangle\rangle = \frac{|\phi_L\rangle\rangle \pm |\phi_R\rangle\rangle}{\sqrt{2}}$$

### quasienergies

$$\pm \frac{\Delta}{2} J_0(A/\Omega)$$



# Example I: CDT — perturbation theory



#### Floquet states

$$|\phi_{\pm}\rangle\rangle = \frac{|\phi_L\rangle\rangle \pm |\phi_R\rangle\rangle}{\sqrt{2}}$$

quasienergies

$$\pm \frac{\Delta}{2} J_0(A/\Omega)$$



solution for initial state  $|L\rangle$ 

$$|\psi(t)\rangle = \cos\left(\frac{\tilde{\Delta}t}{2}\right) \exp\left[-i\frac{A}{2\Omega}\sin(\Omega t)\right] |L\rangle + \sin\left(\frac{\tilde{\Delta}t}{2}\right) \exp\left[i\frac{A}{2\Omega}\sin(\Omega t)\right] |R\rangle$$

$$\rightarrow$$
 for  $J_0(A/\Omega) = 0$ :  $|\psi(t)\rangle \propto |L\rangle \rightarrow$  tunneling supressed

# Perturbation theory for mean energies



goal: 
$$E = \epsilon + \langle \langle \phi | i \partial_t | \phi \rangle \rangle$$

- **I** compute  $\langle \langle \phi | i \partial_t | \phi \rangle \rangle$  from perturbed Floquet states
- 2 apply Hellman-Feynman theorem

$$A_{\lambda}|u_{\lambda}\rangle = a_{\lambda}|u_{\lambda}\rangle \quad \Rightarrow \quad \frac{\partial a_{\lambda}}{\partial \lambda} = \langle u_{\lambda}|\frac{\partial A_{\lambda}}{\partial \lambda}|u_{\lambda}\rangle$$

problem:  $\frac{\partial H(t)}{\partial \Omega}$  not T-periodic [notice:  $\frac{\partial}{\partial \Omega}\cos(\Omega t) = -t\sin(\Omega t)$ ]



goal:  $E = \epsilon + \langle \langle \phi | i \partial_t | \phi \rangle \rangle$ 

- **1** compute  $\langle \langle \phi | i \partial_t | \phi \rangle \rangle$  from perturbed Floquet states
- 2 apply Hellman-Feynman theorem

$$A_{\lambda}|u_{\lambda}\rangle = a_{\lambda}|u_{\lambda}\rangle \quad \Rightarrow \quad \frac{\partial a_{\lambda}}{\partial \lambda} = \langle u_{\lambda}|\frac{\partial A_{\lambda}}{\partial \lambda}|u_{\lambda}\rangle$$

problem:  $\frac{\partial H(t)}{\partial \Omega}$  not T-periodic [notice:  $\frac{\partial}{\partial \Omega} \cos(\Omega t) = -t \sin(\Omega t)$ ]

solution: scaled time  $\xi = \Omega t$  $H(t) - i \frac{\partial}{\partial t}$  and  $\mathcal{H}' = H(\xi/\Omega) - i\Omega \frac{\partial}{\partial \xi}$  have the same Floquet matrix

$$\Rightarrow \frac{\partial \epsilon}{\partial \Omega} = \left\langle \left\langle \frac{\partial \mathcal{H}'}{\partial \Omega} \right\rangle \right\rangle = -\left\langle \left\langle \mathrm{i} \partial_{\xi} \right\rangle \right\rangle = -\frac{\left\langle \left\langle \mathrm{i} \partial_{t} \right\rangle \right\rangle}{\Omega} = \frac{\epsilon - E}{\Omega} \quad \Rightarrow \quad \boxed{E = \epsilon - \Omega \frac{\partial \epsilon}{\partial \Omega}}$$



goal:  $E = \epsilon + \langle \langle \phi | i \partial_t | \phi \rangle \rangle$ 

- **1** compute  $\langle \langle \phi | i \partial_t | \phi \rangle \rangle$  from perturbed Floquet states
- 2 apply Hellman-Feynman theorem

$$A_{\lambda}|u_{\lambda}\rangle = a_{\lambda}|u_{\lambda}\rangle \quad \Rightarrow \quad \frac{\partial a_{\lambda}}{\partial \lambda} = \langle u_{\lambda}|\frac{\partial A_{\lambda}}{\partial \lambda}|u_{\lambda}\rangle$$

problem:  $\frac{\partial H(t)}{\partial \Omega}$  not T-periodic [notice:  $\frac{\partial}{\partial \Omega} \cos(\Omega t) = -t \sin(\Omega t)$ ]

■ solution: scaled time  $\xi = \Omega t$  $H(t) - i \frac{\partial}{\partial t}$  and  $\mathcal{H}' = H(\xi/\Omega) - i\Omega \frac{\partial}{\partial \xi}$  have the same Floquet matrix

$$\Rightarrow \frac{\partial \epsilon}{\partial \Omega} = \left\langle \left\langle \frac{\partial \mathcal{H}'}{\partial \Omega} \right\rangle \right\rangle = -\left\langle \left\langle i \partial_{\xi} \right\rangle \right\rangle = -\frac{\left\langle \left\langle i \partial_{t} \right\rangle \right\rangle}{\Omega} = \frac{\epsilon - E}{\Omega} \quad \Rightarrow \quad \boxed{E = \epsilon - \Omega \frac{\partial \epsilon}{\partial \Omega}}$$

■ For TLS:  $E_{\pm} = \pm \frac{\Delta}{2} \left( J_0(A/\Omega) - \frac{A}{\Omega} J_1(A/\Omega) \right)$  since  $J_1 = -J_0'$ 

# Example II: Rabi problem beyond RWA



$$H(t) = -\frac{\Delta}{2}\sigma_z + \frac{A}{2}\cos(\Omega t)\sigma_x$$

■ close to resonance:  $\delta = \Delta - \Omega \ll \Delta$ , small amplitude:  $A \ll \Delta$ 



$$H(t) = -\frac{\Delta}{2}\sigma_z + \frac{A}{2}\cos(\Omega t)\sigma_x$$

■ close to resonance:  $\delta = \Delta - \Omega \ll \Delta$ , small amplitude:  $A \ll \Delta$ 

$$\mathcal{H}_0 = \frac{\Omega}{2}\sigma_z - i\frac{\partial}{\partial t}$$
  $\mathcal{H}_1 = \frac{\delta}{2}\sigma_z + \frac{A}{2}\cos(\Omega t)\sigma_x$ 

■ degenerate perturbation theory → two-level Floquet Hamiltonian

$$\mathcal{H} \approx \frac{1}{2} \begin{pmatrix} \delta + A^2/4\Omega & A \\ A & -\delta - A^2/4\Omega \end{pmatrix}$$
 Rabi Hamiltonian beyond RWA

- quasienergy splitting:  $\epsilon_2 \epsilon_1 = \bar{\omega}$ , where  $\bar{\omega}^2 = \delta^2 + A^2 + \frac{A^2 \delta}{8\Omega}$
- absorption maximum at

$$\Omega_{\rm res} \approx \Delta + \frac{A^2}{16\Delta}$$
 Bloch-Siegert shift

### Floquet theory



#### Summary

- Floquet ansatz
- properties of quasienergies and Floquet states
- composite Hilbert space
- methods for computing Floquet states

#### Homework

- Given a time-dependent Hamiltonian H(t) with an eigenstate  $|u(t)\rangle$  and energy E(t). Write down the adiabatic solution of the Schrödinger equation and the corresponding Floquet state  $|\phi(t)\rangle$
- **2** Compute numerically the quasienergies of the driven TLS
- **3** Perform the corresponding perturbation theory for  $\Delta \ll \Omega$
- **4** derive the relation  $E = \epsilon \Omega \frac{\partial \epsilon}{\partial \Omega}$

# Floquet theory for open quantum systems



- Geometric phases
- **2** Floquet theory
- **3** Quantum dissipation
- 4 Floquet-Bloch-Redfield formalism
- 5 Dissipative phenomena in driven systems
  - The driven double-well potential
  - Influence of the system–bath coupling
  - Coherence stabilization by ac fields
- **6** Floquet transport theory
  - scattering theory
  - master equation
- 7 Miscellaneous time-dependent Liouvillians
  - Matrix continued fractions
  - Bichromatic driving

# Quantum dissipation and decoherence



# Heuristic approach

coupling of qubit to electromagnetic environment  $\rightarrow$  sponaneous decay

$$|\psi\rangle \longrightarrow \begin{cases} \sigma_{-}|\psi\rangle & \text{decay with probability } \alpha \ll 1 \\ |\psi\rangle + |\delta\psi\rangle & \text{no decay, probability } 1 - \alpha \end{cases}$$

■ normalization requires  $|\delta\psi\rangle = \frac{\alpha}{2}\sigma_+\sigma_-|\psi\rangle$ 

# Quantum dissipation and decoherence



### Heuristic approach

coupling of qubit to electromagnetic environment → sponaneous decay

$$|\psi\rangle \longrightarrow \begin{cases} \sigma_{-}|\psi\rangle & \text{decay with probability } \alpha \ll 1 \\ |\psi\rangle + |\delta\psi\rangle & \text{no decay, probability } 1 - \alpha \end{cases}$$

- normalization requires  $|\delta\psi\rangle = \frac{\alpha}{2}\sigma_+\sigma_-|\psi\rangle$
- corresponding density operator

$$\rho \longrightarrow \rho + \frac{\alpha}{2} \Big( 2\sigma_- \rho \sigma_+ - \sigma_+ \sigma_- \rho - \rho \sigma_+ \sigma_- \Big)$$

■ add continuous time-evolution → master equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho = -\mathrm{i}[H,\rho] + \frac{\gamma}{2} \left( 2\sigma_{-}\rho\sigma_{+} - \sigma_{+}\sigma_{-}\rho - \rho\sigma_{+}\sigma_{-} \right)$$

### Lindblad form



### Time evolution must conserve

- lacksquare hermiticity and trace of ho
- positivity (all eigenvalues of  $\rho \ge 0$ )

#### Lindblad form



Time evolution must conserve

- hermiticity and trace of  $\rho$
- positivity (all eigenvalues of  $\rho \ge 0$ )

Fulfilled by a Markovian master equation iff of "Lindblad form"

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho = -\mathrm{i}[H,\rho] + \sum_{n} \gamma_{n} \left( 2Q_{n}\rho Q_{n}^{\dagger} - Q_{n}^{\dagger}Q_{n}\rho - \rho Q_{n}^{\dagger}Q_{n} \right)$$

G. Lindblad, Comm. Math. Phys. 48, 119 (1976)

V. Gorini, J. Math. Phys. 17, 821 (1976)

■ Interpretation: incoherent transitions  $|\psi\rangle \rightarrow Q_n|\psi\rangle$ 

#### Lindblad form



Time evolution must conserve

- hermiticity and trace of  $\rho$
- positivity (all eigenvalues of  $\rho \ge 0$ )

Fulfilled by a Markovian master equation iff of "Lindblad form"

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho = -\mathrm{i}[H,\rho] + \sum_{n} \gamma_{n} \left( 2Q_{n}\rho Q_{n}^{\dagger} - Q_{n}^{\dagger}Q_{n}\rho - \rho Q_{n}^{\dagger}Q_{n} \right)$$

G. Lindblad, Comm. Math. Phys. 48, 119 (1976)

V. Gorini, J. Math. Phys. **17**, 821 (1976)

■ Interpretation: incoherent transitions  $|\psi\rangle \rightarrow Q_n|\psi\rangle$ 

## **X** Critique

- request for Markovian evolution unphysical
- axiomatic, not based on physical model
- high-temperature limit typically wrong

   i.e. not the Klein-Kramers or the Smoluchowski equation



### Caldeira-Leggett model

Magalinskii 1959; Caldeira, Leggett 1981

Coupling of a system to bath of harmonic oscillators



$$H = H_{\text{system}}(t) + X \sum_{v} \gamma_{v} (b_{v}^{\dagger} + b_{v}) + \sum_{v} \omega_{v} b_{v}^{\dagger} b_{v}$$

- → eliminate bath
- → equation of motion for reduced density operator
  - interpretation: bath "measures" system operator *X*



Total density operator  $R \approx \rho \otimes \rho_{\text{bath,eq}}$ 

$$\dot{R} = -\mathrm{i}[H_{\mathrm{total}}, R]$$

2nd order perturbation theory in system-bath coupling

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \rho &= -\mathrm{i}[H_{\mathrm{sys}}, \rho] - \mathrm{i} \int_{0}^{(t-t_0) \to \infty} \mathrm{d}\tau \mathcal{A}(\tau) [X, [\tilde{X}(-\tau), \rho(t-\tau)]_{+}] \\ &- \int_{0}^{(t-t_0) \to \infty} \mathrm{d}\tau \mathcal{S}(\tau) [X, [\tilde{X}(-\tau), \rho(t-\tau)]] \end{split}$$

- Heisenberg operator  $\tilde{X}(-\tau) = U(\tau)XU^{\dagger}(\tau)$
- lacktriangle bath correlation functions  $\mathcal{A}$ ,  $\mathcal{S}$
- non-Markovian
- short system-bath correlation time: Markov approximation



anti-symmetric correlation function

$$\mathscr{A}(\tau) = -\mathrm{i}\langle [\xi(\tau), \xi(0)] \rangle$$

lacksquare Fourier transformed: spectral density  $\longrightarrow$  continuum limit

$$\mathcal{A}(\omega) = \pi \sum_{\nu} |\gamma_{\nu}|^2 \delta(\omega - \omega_{\nu}) \longrightarrow J(\omega)$$

► here: Ohmic with cutoff

$$J(\omega) = 2\pi \alpha \omega e^{-\omega/\omega_{\text{cutoff}}}$$

• dimensionless dissipation strength  $\alpha$ 





■ symmetric bath correlation function

$$\begin{split} \mathcal{S}(\tau) &= \frac{1}{2} \langle [\xi(\tau), \xi(0)]_{+} \rangle \\ \mathcal{S}(\omega) &= J(\omega) \coth \left( \frac{\omega}{2k_{B}T} \right) \\ &= \begin{cases} 4\pi\alpha k_{B}T & \text{high } k_{B}T \\ 2\pi\alpha\omega & \text{low } k_{B}T \end{cases} \end{split}$$





symmetric bath correlation function

$$\begin{split} \mathcal{S}(\tau) &= \frac{1}{2} \langle [\xi(\tau), \xi(0)]_{+} \rangle \\ \mathcal{S}(\omega) &= J(\omega) \coth \left( \frac{\omega}{2k_{B}T} \right) \\ &= \begin{cases} 4\pi\alpha k_{B}T & \text{high } k_{B}T \\ 2\pi\alpha\omega & \text{low } k_{B}T \end{cases} \end{split}$$



- $\blacksquare$   $\mathscr{S}(\omega)$  evaluated at transition frequencies
- → dissipation strength depends on coherent spectrum/dynamics



- Ohmic, short memory times (e.g. for  $\gamma < k_B T$ )
  - → Bloch-Redfield master equation

$$\dot{\rho} = -i[H_S, \rho] + i\gamma[X, \{[H_S, X], \rho\}] - [X, [Q, \rho]]$$

coherent dynamics dissipation decoherence

coherent dynamics enters via 
$$Q = \int_0^\infty d\tau \, \mathcal{S}(\tau) \, \tilde{X}(-\tau)$$



- Ohmic, short memory times (e.g. for  $\gamma < k_B T$ )
  - → Bloch-Redfield master equation

$$\dot{\rho} = -i[H_S, \rho] + i\gamma[X, \{[H_S, X], \rho\}] - [X, [Q, \rho]]$$

coherent dynamics dissipation decoherence

coherent dynamics enters via 
$$Q = \int_0^\infty d\tau \, \mathcal{S}(\tau) \, \tilde{X}(-\tau)$$

- not of Lindblad form
  - positivity might be violated
  - √ happens only on unphysically small time scales
- high-temperature limit: Fokker-Planck equation

### Pauli master equation



- Decomposition into energy basis and rotating-wave approximation
- → rate equation for the populations (Pauli master equation)

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{\alpha\alpha} = \sum_{\alpha'} \left[ w_{\alpha \leftarrow \alpha'} \ \rho_{\alpha'\alpha'} - w_{\alpha' \leftarrow \alpha} \ \rho_{\alpha\alpha} \right]$$

with the golden-rule rates

$$w_{\alpha \leftarrow \alpha'} = J(E_{\alpha} - E_{\alpha'}) \left| \langle \phi_{\alpha} | X | \phi_{\alpha'} \rangle \right|^2 \frac{n_{\text{th}}(E_{\alpha} - E_{\alpha'})}{n_{\text{th}}(E_{\alpha} - E_{\alpha'})}$$

► notice:  $-n_{\text{th}}(-\omega) = n_{\text{th}}(\omega) + 1$ 



- Decomposition into energy basis and rotating-wave approximation
- → rate equation for the populations (Pauli master equation)

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{\alpha\alpha} = \sum_{\alpha'} \left[ w_{\alpha \leftarrow \alpha'} \ \rho_{\alpha'\alpha'} - w_{\alpha' \leftarrow \alpha} \ \rho_{\alpha\alpha} \right]$$

with the golden-rule rates

$$w_{\alpha \leftarrow \alpha'} = J(E_{\alpha} - E_{\alpha'}) \left| \langle \phi_{\alpha} | X | \phi_{\alpha'} \rangle \right|^2 n_{\text{th}} (E_{\alpha} - E_{\alpha'})$$

- ► notice:  $-n_{\text{th}}(-\omega) = n_{\text{th}}(\omega) + 1$
- $\checkmark \text{ fluctuation theorem } \frac{w_{\alpha \leftarrow \alpha'}}{w_{\alpha' \leftarrow \alpha}} = e^{-(E_{\alpha} E_{\alpha'})/k_B T}$
- ✓ Lindblad form
- high-temperature limit typically wrong

full Bloch-Redfield: golden rule for non-diagonal  $\rho_{\alpha\beta}$ 

# Floquet-Bloch-Redfield master equation



Driven system → decoherence becomes time-dependent

$$\dot{\rho} = \dots - [X, [Q(t), \rho]], \quad Q(t) = \int_0^\infty d\tau \, \mathcal{S}(\tau) \, \tilde{X}(t - \tau, t)$$



Driven system → decoherence becomes time-dependent

$$\dot{\rho} = \dots - [X, [Q(t), \rho]], \quad Q(t) = \int_0^\infty d\tau \, \mathcal{S}(\tau) \, \tilde{X}(t - \tau, t)$$

#### Central idea:

- **1** adapted basis: Floquet states  $|\phi_{\alpha}(t)\rangle \rightarrow$  captures coherent dynamics
- 2 master equation in Floquet basis

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{\alpha\beta} = -\mathrm{i}(\epsilon_{\alpha} - \epsilon_{\beta})\rho_{\alpha\beta} + \sum_{\alpha'\beta'} \mathcal{L}_{\alpha\beta,\alpha'\beta'}(t)\,\rho_{\alpha'\beta'}$$

where 
$$\mathcal{L}(t) = \mathcal{L}(t+T)$$

3 moderate rotating-wave approximation: time average  $\mathcal{L}(t) \to \bar{\mathcal{L}}$ , but keep all  $\rho_{\alpha\beta}$ (can sometimes be avoided, see Lecture III)



lacksquare Numerical method: compute  $\mathcal L$  and solve

$$\dot{\rho}_{\alpha\beta} = -\mathrm{i}(\epsilon_{\alpha} - \epsilon_{\beta})\rho_{\alpha\beta} + \sum_{\alpha'\beta'} \bar{\mathcal{L}}_{\alpha\beta,\alpha'\beta'} \, \rho_{\alpha'\beta'}$$

- time-independent master equation for driven system
- 2 ac driving captured by choice of basis → efficient
- includes impact of bath on dissipation strength (very relevant for fermionic baths; see Lecture III)

- Analytical tool: find  $H_{\text{eff}}$  and approx. for  $\overline{Q(t)}$ 
  - → effective time-independent Bloch-Redfield equation



→ full RWA → (Pauli master equation)

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{\alpha\alpha} = \sum_{\alpha'} w_{\alpha \leftarrow \alpha'} \rho_{\alpha'\alpha'} - \sum_{\alpha} w_{\alpha' \leftarrow \alpha} \rho_{\alpha\alpha}$$

with the golden-rule rates

$$w_{\alpha \leftarrow \alpha'} = \sum_{k} J(\epsilon_{\alpha} - \epsilon_{\alpha'} + k\Omega) \left| \sum_{k'} \langle \phi_{\alpha, k+k'} | X | \phi_{\alpha', k} \rangle \right|^{2} n_{\text{th}}(\epsilon_{\alpha} - \epsilon_{\alpha'} + k\Omega)$$

- sidebands contribute to  $w_{\alpha \leftarrow \alpha'}$ 
  - ... but NOT as independent states!
- no simple relation between forward/backward rates

## **Example 1: Driven double-well potential**



- long-time solution of a "non-trivial" problem → populations
- 2 semi-classical limit → capability of the formalism



$$H(x, p, t) = H_{\rm DW}(x, p) + Fx\cos(\Omega t)$$

Symmetries:

**TR:** 
$$(x, p, t) \to (x, -p, -t)$$

**GP:** 
$$(x, p, t) \rightarrow (-x, -p, t + T/2)$$

SK, PhD thesis, 1999 SK, Utermann, Dittrich, Hänggi, PRE 1998

# Phase-space structure (Hamiltonian)



### Classical phase space



## Stroboscopic map [x(nT), p(nT)]

- regular vs. chaotic
- chaos augments with amplitude
- symmetry  $p \rightarrow -p$  (consequence of TR)



### Classical phase space



Stroboscopic map [x(nT), p(nT)]

- regular vs. chaotic
- chaos augments with amplitude
- symmetry  $p \rightarrow -p$  (consequence of TR)

Husimi functions of Floquet states (at times nT)





## Population of Floquet states





- far from crossing: occupation according to  $E_{\alpha}$
- at crossing: no general rule

## Phase-space structure (dissipative)



### large dissipation:

→ fixed points, limits cycles



### weak dissipation:

→ strange attractor



- dissipative term  $-\gamma \dot{x}$  breaks time reversal
  - $\rightarrow$  phase lag due to dissipation  $\rightarrow$  no longer symmetric in p

# Phase-space structure (dissipative)



#### large dissipation:

→ fixed points, limits cycles



### weak dissipation:

→ strange attractor



- dissipative term  $-\gamma \dot{x}$  breaks time reversal
  - $\rightarrow$  phase lag due to dissipation  $\rightarrow$  no longer symmetric in p
- ✓ Floquet-Bloch-Redfield capable of phase lag
- **X** RWA:  $\rho = \sum_{\alpha} p_{\alpha} |\phi_{\alpha}\rangle \langle \phi_{\alpha}|$  would preserve symmetry

## **Example 2: LZSM Pattern for the Spin-Boson Model**



- influence of qubit-bath coupling on long-time solution
- 2 (approximation by time-independent Bloch equation)



■ driven qubit

$$H(t) = \frac{\Delta}{2}X + \frac{1}{2}(\epsilon + A\cos(\Omega t))Z$$

qubit-bath coupling

$$H_{\text{qb-bath}} = X\xi$$
 or  $+Z\xi$ 

## **Superconducting qubits**







Izmalkov et al., PRL 2008

Experiments with driven superconducting qubits

- mean occupation of  $|\uparrow\rangle$
- → LZSM (Landau Zener Stückelberg Majorana) interference pattern

Shevchenko, Ashhab, Nori, Phys. Rep. 2010



## Numerical solution via Floquet-Bloch-Redfield



- Lorentz peaks
- $P_{\text{ex}} \le 1/2$



- triangular structure
- population inversion



$$H(t) = \frac{\Delta}{2}X + \frac{1}{2}(\epsilon + A\cos(\Omega t))Z$$
  $+X\xi$  or  $+Z\xi$ 



#### Main features

- triangular background
- *X*-coupling: Lorentzians
- *Z*-coupling: asymmetric peaks
- both: *X* dominates



$$H(t) = \frac{\Delta}{2}X + \frac{1}{2}(\epsilon + A\cos(\Omega t))Z$$
  $+X\xi$  or  $+Z\xi$ 



#### Main features

- triangular background
- *X*-coupling: Lorentzians
- *Z*-coupling: asymmetric peaks
- both: *X* dominates

## **Bloch equations**

*X*: decay towards  $|\downarrow\rangle$  or  $|\uparrow\rangle$ 

**Z**: decay towards  $|\downarrow\rangle \pm |\uparrow\rangle$ 



$$H(t) = \frac{\Delta}{2}X + \frac{1}{2}(\epsilon + A\cos(\Omega t))Z$$
  $+X\xi$  or  $+Z\xi$ 



#### Main features

- triangular background
- *X*-coupling: Lorentzians
- *Z*-coupling: asymmetric peaks
- both: *X* dominates

## **Bloch equations**

*X*: decay towards  $|\downarrow\rangle$  or  $|\uparrow\rangle$ 

**Z**: decay towards  $|\downarrow\rangle \pm |\uparrow\rangle$ 

→ driving & dissipation: bath is more than decay towards ground state

## Example III: Qubit with bit-flip noise



- influence of driving on decoherence → transient dynamics
- derive effective time-independent master equation



■ (undriven) qubit coupled to bath

$$H = -\frac{\Delta}{2}Z + X\xi(t) + H_{\text{bath}}$$

■ driving  $Z\cos(\Omega t)$  or  $X\cos(\Omega t)$ 

? average decay of Bloch vector



## Coherent Destruction of Tunneling

$$H = -\frac{\Delta}{2}Z + X\xi(t) + H_{\text{bath}} + AX\cos(\Omega t)$$

- interaction picture with respect to  $X\cos(\Omega t)$
- in rotating frame: time-dependent *z*-axis
- averaged angular frequency:

$$\Delta_{\rm eff} = J_0 (A/\Omega) \Delta$$





- transformation to rotating frame
  - $ightharpoonup \Delta \longrightarrow \Delta_{eff}$
  - system-bath coupling  $X\xi$  unchanged
- modified decoherence rate

$$\Gamma_{\text{CDT}} = \mathcal{S}(\Delta_{\text{eff}}) = 2\pi\alpha\Delta_{\text{eff}} \coth\frac{\Delta_{\text{eff}}}{2k_{\text{B}}T}$$

at low temperatures

$$\frac{\Gamma_{\rm CDT}}{\Gamma} = \frac{\Delta_{\rm eff}}{\Delta} = J_0(A/\Omega)$$

- ▶ under "CDT conditions": coherence significantly stabilized
- but: coherent dynamics also slowed down



$$H = -\frac{\Delta}{2}Z + X\xi(t) + H_{\text{bath}} + AZ\cos(\Omega t)$$

- pulses: Dynamical Decoupling Carr, Purcell, Phys. Rev. 94, 630 (1954)Viola, Lloyd, PRA 58, 2733 (1998)
- central idea: flip coupling operator *X* to revert influence of noise



$$H = -\frac{\Delta}{2}Z + X\xi(t) + H_{\text{bath}} + AZ\cos(\Omega t)$$

- pulses: Dynamical Decoupling Carr, Purcell, Phys. Rev. 94, 630 (1954) Viola, Lloyd, PRA 58, 2733 (1998)
- central idea: flip coupling operator *X* to revert influence of noise
- eliminates noise  $\bot Z$  with  $\omega < \Omega$
- system Hamiltonian unchanged



here: cw driving

## Dynamical decoupling: decoherence



- transformation to rotating frame w.r.t.  $H_{DD} = Z\cos(\Omega t)$ 
  - ► tunnel Hamiltonian  $-\frac{\Delta}{2}Z$  remains
  - coupling  $X\xi \longrightarrow X\eta + Y\eta'$  with correlation function

$$\mathscr{S}_{\eta}(t,\tau) = \langle \eta(t+\tau)\eta(t) \rangle$$

effective low-frequency noise

$$\mathscr{S}_{\text{eff}}(\omega) \approx \sum_{k=-\infty}^{\infty} J_k^2 (A/\Omega) \mathscr{S}(\omega + k\Omega)$$

## Dynamical decoupling: decoherence



- transformation to rotating frame w.r.t.  $H_{DD} = Z \cos(\Omega t)$ 
  - ► tunnel Hamiltonian  $-\frac{\Delta}{2}Z$  remains
  - coupling  $X\xi \longrightarrow X\eta + \bar{Y}\eta'$  with correlation function

$$\mathscr{S}_{\eta}(t,\tau) = \langle \eta(t+\tau)\eta(t) \rangle$$

effective low-frequency noise

$$\mathcal{S}_{\mathrm{eff}}(\omega) \approx \sum_{k=-\infty}^{\infty} J_k^{\,2}(A/\Omega) \mathcal{S}(\omega + k\Omega)$$

■ Thus, for  $\Delta \ll \Omega$ 

$$\frac{\Gamma_{\rm DD}}{\Gamma} = J_0^2 (A/\Omega) + 2 \sum_{k=1}^{\infty} J_k^2 (A/\Omega) \frac{k\Omega}{\Delta} \frac{\coth(k\Omega/2k_{\rm B}T)}{\coth(\Delta/2k_{\rm B}T)} e^{-k\Omega/\omega_{\rm cutoff}}$$

■ note:  $J_0(A/\Omega) = 0$  corresponds to  $\pi$ -pulse



$$\frac{\Gamma_{\rm DD}}{\Gamma} = J_0^2 \, (A/\Omega) + 2 \sum_{k=1}^{\infty} J_k^2 (A/\Omega) \frac{k\Omega}{\Delta} \frac{\coth(k\Omega/2\,k_{\rm B}\,T)}{\coth(\Delta/2\,k_{\rm B}\,T)} {\rm e}^{-k\Omega/\omega_{\rm cutoff}}$$

■ for  $\Omega \gg \omega_{\text{cutoff}}$ : noise reduction by factor  $J_0^2(A/\Omega)$ 

## Summary: Floquet-Bloch-Redfield equation



- master equation based on Floquet states
  - ✓ efficient basis
  - ✓ captures dissipative phase lag
- driving affects decoherence
- for driven systems, the system-bath coupling operator matters

#### Homework

- derive the BR equation for the harmonic oscillator
- **2** two-level system with resonant driving Blattmann, PRA 91, 042109 (2015)
  - derive the effective Hamiltonian
  - derive the equation of motion for the Bloch vector
- 3 compute the effective spectral density for dynamical decoupling

# Floquet theory for open quantum systems



- Geometric phases
- **2** Floquet theory
- **3** Quantum dissipation
- 4 Floquet-Bloch-Redfield formalism
- 5 Dissipative phenomena in driven systems
  - The driven double-well potential
  - Influence of the system–bath coupling
  - Coherence stabilization by ac fields
- **6** Floquet transport theory
  - scattering theory
  - master equation
- 7 Miscellaneous time-dependent Liouvillians
  - Matrix continued fractions
  - Bichromatic driving

### Wire-lead models



#### Environment: electron source/drain



### Heuristic Lindblad approach:

source-to-dot tunneling

$$|\psi\rangle \longrightarrow c_1^{\dagger}|\psi\rangle$$

$$\Rightarrow \dot{\rho} = \dots + \Gamma \left( c_1^{\dagger} \rho c_1 - \frac{1}{2} c_1 c_1^{\dagger} \rho - \frac{1}{2} \rho c_1 c_1^{\dagger} \right)$$

#### Wire-lead models



#### Environment: electron source/drain





### Heuristic Lindblad approach:

source-to-dot tunneling

$$|\psi\rangle \longrightarrow c_1^{\dagger}|\psi\rangle$$

$$\rightarrow \dot{\rho} = \dots + \Gamma \left( c_1^{\dagger} \rho c_1 - \frac{1}{2} c_1 c_1^{\dagger} \rho - \frac{1}{2} \rho c_1 c_1^{\dagger} \right)$$

- hybridized levels, finite voltage
  - → Lindblad only for large bias
- scattering formalism
- 2 Bloch-Redfield master equation
- **3** Keldysh-Green functions

## Landauer-Büttiker formula



■ Landauer (1957): "conductance is transmission"



#### Landauer-Büttiker formula



■ Landauer (1957): "conductance is transmission"



- current  $I = \frac{e}{2\pi\hbar} \int dE \, T(E) [f(E + eV) f(E)]$
- $\blacksquare$  transmission of an electron with energy *E*

$$T(E) = \Gamma_L \Gamma_R |\langle 1| G(E) |N \rangle|^2$$

## Time-dependent gating vs. ac bias



- 1 ac gate voltage
- → oscillating levels
- 2 ac bias voltage
- → bias: chemical potential difference





Al-Al<sub>2</sub>O<sub>3</sub>-In diode as measured by Dayem and Martin with and without the microwave field, ħω/ε=0.16 mV.

Tien, Gordon, Phys.Rev. 1963

## **Tien-Gordon theory**



ac bias voltage:

$$V_0 \longrightarrow V_0 + V_{ac} \cos(\Omega t)$$



■ time-dependent energy shift by  $eV_{ac}\cos(\Omega t)$ 

$$e^{-iEt} \longrightarrow \exp\left(-iEt - i\frac{eV_{ac}}{\Omega}\sin(\Omega t)\right)$$

## **Tien-Gordon theory**



ac bias voltage:

$$V_0 \longrightarrow V_0 + V_{\rm ac} \cos(\Omega t)$$



■ time-dependent energy shift by  $eV_{ac}\cos(\Omega t)$ 

$$e^{-iEt} \longrightarrow \exp\left(-iEt - i\frac{eV_{ac}}{\Omega}\sin(\Omega t)\right) = \sum_{k} J_k (eV_{ac}/\Omega)e^{-i(E+k\Omega)t}$$

- sidebands occupied with probability  $J_k^2(...)$
- energy  $k\Omega$  corresponds to additional DC bias voltage  $k\Omega/e$

$$I(V_0, V_{\rm ac}) = \sum_{k} J_k^2 \left(\frac{eV_{\rm ac}}{\Omega}\right) I_0(V_0 + k\Omega/e)$$

DC conductivity determines the current!

# **Tien-Gordon theory**



- Derivation rather heuristic
- → Rigorous derivation ?
- → When is Tien-Gordon theory applicable ?

# Floquet transport theory



Transport and driving:

 $Green \hbox{\'s function and Landauer formula for time-dependent situation}$ 



### Transport and driving:

Green's function and Landauer formula for time-dependent situation

■ Floquet equation with self-energy  $\Sigma = |1\rangle \frac{i\Gamma_L}{2} \langle 1| + |N\rangle \frac{i\Gamma_R}{2} \langle N|$ 

$$\left(H(t) + \Sigma - i\frac{\mathrm{d}}{\mathrm{d}t}\right)|\varphi_{\alpha}(t)\rangle = (\epsilon_{\alpha} - i\gamma_{\alpha})|\varphi_{\alpha}(t)\rangle$$

propagator in the presence of the contacts

$$G(t, t - \tau) = \sum_{k} e^{ik\Omega t} \int d\epsilon e^{-i\epsilon\tau} \underbrace{\sum_{\alpha, k'} \frac{|\varphi_{\alpha, k+k'}\rangle \langle \varphi_{\alpha, k'}|}{\epsilon - (\epsilon_{\alpha} + k'\Omega - i\gamma_{\alpha})}}_{G^{(k)}(\epsilon)}$$

propagation under absorption/emission of |k| photons



■ dc current [note: no blocking factors  $(1 - f_{\ell})$ ]

$$I = \frac{e}{2\pi\hbar} \sum_{k} \int d\epsilon \left\{ T_{LR}^{(k)}(\epsilon) f(\epsilon - \mu_L) - T_{RL}^{(k)}(\epsilon) f(\epsilon - \mu_R) \right\}$$

Wagner, Sols, PRL 1999

■ transmission under absorption of *k* photons

$$T_{LR}^{(k)}(\epsilon) = \Gamma_L \Gamma_R |\langle 1|G^{(k)}(\epsilon)|N\rangle|^2 \not\equiv T_{RL}^{(\pm k)}(\epsilon \pm k\Omega)$$

$$\epsilon + 2\hbar\Omega$$

$$\epsilon + \hbar\Omega$$

 $\epsilon - 2\hbar\Omega$ 

# When is Tien-Gordon theory applicable $\ref{eq:condition}$





- applicable for
  - AC bias voltage
  - tunnel barriers (studied by Tien & Gordon)

uniform AC gate voltage

# When is Tien-Gordon theory applicable?





# applicable for

- AC bias voltage
- tunnel barriers (studied by Tien & Gordon)

■ uniform AC gate voltage

#### but not for

- non-uniform gating
- dipole force

Camalet, SK, Hänggi, PRB 2004







- quasienergies:  $\Delta \rightarrow \Delta J_0(A/\hbar\Omega)$ 
  - → coherent destruction of tunnelling
- Electron reservoirs
  - × reduce coherence
  - √ localize electrons

## Coherent suppression of current





- current suppression for  $J_0(...) = 0$ Lehmann, Camalet, SK, Hänggi, CPL 2003 arXiv:physics/0205060
- shot noise suppressed as well

  Camalet, Lehmann, SK, Hänggi, PRL 2003

## Coherent suppression of current







■ shot noise suppressed as well

Camalet, Lehmann, SK, Hänggi, PRL 2003



■ *n*-photon resonance:  $I \propto J_n^2(...)$ Stehlik *et al.*, PRB 2012 arXiv:1205.6173

## **REMINDER: Symmetries of dipole driving**



$$H_{\rm dipole} \propto x \cos(\Omega t)$$



- 1 time periodicity  $t \longrightarrow t + T$
- **2** time reversal  $t \longrightarrow -t$

- → Floquet theory applicable
- → Floquet states real
- **3** generalized parity  $(x, t) \longrightarrow (-x, t + T/2) \rightarrow$  Floquet states even/odd e.g. symmetric potential with dipole driving
- 4 time-reversal parity  $(x, t T/4) \longrightarrow (-x, T/4 t)$ 
  - combination of the other three
  - relevant for Floquet scattering theory

#### Consequences for scattering probabilities?



## Symmetry-related processes have the same probability



$$t \rightarrow -t$$



# generalized parity $(x, t \rightarrow -x, t + \frac{T}{2})$





time-reversal parity

$$(x, t \rightarrow -x, -t)$$



## **Example II: Non-adiabatic electron pumping**





- zero voltage:  $\mu_L = \mu_R$
- coupling to rf-field:

$$H_{\rm rf}(t) \sim (n_L - n_R) \cos(\Omega t)$$

■ no generalized parity

## **Example II: Non-adiabatic electron pumping**







- zero voltage:  $\mu_L = \mu_R$
- coupling to rf-field:

$$H_{\rm rf}(t) \sim (n_L - n_R) \cos(\Omega t)$$

■ no generalized parity

Strass, Hänggi, SK,

reduced shot noise

resonance peaks at  $\epsilon \approx k\Omega$ 

Strass, Hänggi, SK, PRL 2005

# Analytic approach



- at kth resonance  $\epsilon \approx k\Omega$ 
  - ► inter-dot tunneling
  - ► dot-lead tunneling



- at *k*th resonance  $\epsilon \approx k\Omega$ 
  - inter-dot tunneling
  - dot-lead tunneling
- renormalized tunneling:  $\Delta \longrightarrow \Delta_k = J_k(A/\Omega)\Delta \rightarrow T_{\text{eff}}$
- effective effective electron distribution



■ ac-induced "voltage":  $f_{L,\text{eff}}(0) - f_{R,\text{eff}}(0) = J_0^2(A/2\Omega)$ 

(while  $V_0 = 0$ )

# Realistic modelling of quantum dots







- ✓ dot-lead tunneling
- ✓ detuning
- ✓ AC gate voltage  $H_{\rm rf}(t) \propto \cos(\Omega t)$
- ✓ Zeeman splitting
- → scattering theory

# Realistic modelling of quantum dots







- ✓ detuning
- ✓ AC gate voltage  $H_{\rm rf}(t) \propto \cos(\Omega t)$
- ✓ Zeeman splitting
- → scattering theory



- Coulomb repulsion
- coupling to phonons
- spin relaxation
- → master equation



Perturbation theory in DQD-environment coupling V

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho = -\mathrm{i} \left[ H_{\mathrm{DQD}}(t), \rho \right] - \int_{0}^{\infty} \mathrm{d}\tau \left\langle \left[ V, \left[ V(t-\tau, t), \rho \right] \right] \right\rangle_{\mathrm{env}}$$





Perturbation theory in DQD-environment coupling V

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho = -\mathrm{i} \left[ H_{\mathrm{DQD}}(t), \rho \right] - \int_{0}^{\infty} \mathrm{d}\tau \left\langle \left[ V, \left[ V(t-\tau,t), \rho \right] \right] \right\rangle_{\mathrm{env}}$$

■ Floquet theory for QDs → rf-field exact

$$(H_{\rm DQD}(t) - \mathrm{i}\partial_t)|\phi_\alpha(t)\rangle = \epsilon_\alpha |\phi_\alpha(t)\rangle$$

- w/o RWA
- in RWA → rate equation

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{\alpha} = \sum_{\alpha'} w_{\alpha \leftarrow \alpha'} P_{\alpha'} - \sum_{\alpha'} w_{\alpha' \leftarrow \alpha} P_{\alpha}$$



# Dissipation vs. Transport



Evaluation of the rates  $w_{\alpha \leftarrow \alpha'}$ 

|                        | Dissipation                 | Transport                                 |
|------------------------|-----------------------------|-------------------------------------------|
| Environment            | harmonic oscillators        | electron source/drain                     |
| Coupling of mode $\nu$ | $X(a_v^{\dagger}+a_v)$      | $c^{\dagger}c_{\nu} + c_{\nu}^{\dagger}c$ |
| Absorption / tunnel in | $n_{ m th}(\omega)$         | $f(\epsilon - \mu)$                       |
| Emission / tunnel out  | $1+n_{\mathrm{th}}(\omega)$ | $1-f(\epsilon-\mu)$                       |
| "Ohmic"                | $J(\omega) \propto \omega$  | $\Gamma(\omega) = \mathrm{const}$         |

#### **Example: LZSM for current**





- resonance peaks
- fades at higher temperature

- inhomogeneous broadening
- → convolute with Gaussian

. . .

→ determine system-bath coupling

Forster et al., PRL 2014





Vertical slices at resonances  $\epsilon = n\hbar\Omega$ :

• qualitatively:  $\Delta \to \Delta J_n(...)$ 

$$I \propto |J_n(\ldots)|^2$$

- quantitative agreement depends on
  - phonons
  - ► Coulomb interaction
  - spin relaxation
  - ▶ ...

# Floquet theory for open quantum systems



- Geometric phases
- **2** Floquet theory
- **3** Quantum dissipation
- 4 Floquet-Bloch-Redfield formalism
- **5** Dissipative phenomena in driven systems
  - The driven double-well potential
  - Influence of the system–bath coupling
  - Coherence stabilization by ac fields
- **6** Floquet transport theory
  - scattering theory
  - master equation
- 7 Miscellaneous time-dependent Liouvillians
  - Matrix continued fractions
  - Bichromatic driving

### Periodically time-dependent Liouvillians



#### Master equation of type

$$\frac{\mathrm{d}}{\mathrm{d}t}P = L(t)P$$

- Floquet-Bloch-Redfield beyond moderate RWA
- time-dependent system with Lindblad dissipator

$$\dot{\rho} = -\mathrm{i}[H(t), \rho] + \gamma (2a^{\dagger}\rho a - a^{\dagger}a\rho - \rho a^{\dagger}a)$$

- very weak dissipation
- transport problem with large bias
- → long-time solution *T*-periodic
- → Floquet ansatz with "quasienergy" zero

$$P(t) = \sum_{k} e^{-ik\Omega t} p_k$$



$$\frac{\mathrm{d}}{\mathrm{d}t}P = L(t)P$$
 with

$$L(t) = L_0 + 2L_1 \cos(\Omega t)$$

→ tridiagonal Floquet matrix

$$L_{0} + 2L_{1}\cos(\Omega t) - \partial_{t} \leftrightarrow \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & L_{0} + 2\mathrm{i}\Omega & L_{1} & 0 & 0 & 0 & \cdots \\ \cdots & L_{1} & L_{0} + \mathrm{i}\Omega & L_{1} & 0 & 0 & \cdots \\ \cdots & 0 & L_{1} & L_{0} & L_{1} & 0 & \cdots \\ \cdots & 0 & 0 & L_{1} & L_{0} - \mathrm{i}\Omega & L_{1} & \cdots \\ \cdots & 0 & 0 & 0 & L_{1} & L_{0} - 2\mathrm{i}\Omega & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

#### **Matrix-continued fractions**



■ ansatz  $P(t) = \sum_{k} e^{-ik\Omega t} p_k$  yields

$$L_1 p_{k-1} + (L_0 + i k \Omega) p_k + L_1 p_{k+1} = 0$$

■ idea: truncate and iterate  $p_{k-1} = -L_1^{-1} \{ (L_0 - ik\Omega) p_k + L_1 p_{k+1} \}$ 

#### **Matrix-continued fractions**



■ ansatz  $P(t) = \sum_{k} e^{-ik\Omega t} p_k$  yields

$$L_1 p_{k-1} + (L_0 + i k\Omega) p_k + L_1 p_{k+1} = 0$$

■ idea: truncate and iterate  $p_{k-1} = -L_1^{-1} \{ (L_0 - \mathrm{i} k \Omega) p_k + L_1 p_{k+1} \}$ × fails,  $L_1$  generally singular



■ ansatz  $P(t) = \sum_{k} e^{-ik\Omega t} p_k$  yields

$$L_1 p_{k-1} + (L_0 + i k\Omega) p_k + L_1 p_{k+1} = 0$$

- idea: truncate and iterate  $p_{k-1} = -L_1^{-1} \{ (L_0 ik\Omega) p_k + L_1 p_{k+1} \}$ X fails,  $L_1$  generally singular
- solution: ansatz  $p_k = S_k L_1 p_{k+1}$  ( $k \ge 0$ ) leads to

$$S_k = -(L_0 + ik\Omega + L_1S_{k\pm 1}L_1)^{-1} \longrightarrow S_{\pm 1}$$
 (1)

$$0 = (L_1 S_{-1} L_1 + L_0 + L_1 S_1 L_1) p_0$$
 (2)

- $\rightarrow$  truncate at  $\pm k_0$ , iterate (1), and solve (2)
- $\rightarrow$  time-averaged  $P(t) = p_0 \rightarrow$  time-averaged expectation values



■  $f(t) = \sin(\Omega t) + \eta \sin(\Omega' t + \phi)$  $\Omega', \Omega$  commensurable vs. incommensurable



→ periocdic *vs* quasi-periodic



$$\frac{\mathrm{d}}{\mathrm{d}t}P = L(t)P$$
 with

$$L(t) = L_0 + L_1 \cos(\underline{n\Omega t}) + L_1' \cos(\underline{n'\Omega t})$$



 $\mathbf{d} \frac{\mathrm{d}}{\mathrm{d}t}P = L(t)P$  with

$$L(t) = L_0 + L_1 \cos(\underline{n\Omega t}) + L_1' \cos(\underline{n'\Omega t})$$

■ Floquet ansatz for long-time solution

$$P(t) = \sum_{k} e^{-ik\Omega t} p_k$$

 $\rightarrow$  equations for  $p_k$ : Floquet matrix with additional diagonal



$$L(t) = L_0 + L_1 \cos(\Omega t) + L_1' \cos(\omega t)$$

■ auxiliary angular coordinate  $\omega t \longrightarrow \theta$ 

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{P} &= \mathcal{L}(t, \boldsymbol{\theta}) \mathcal{P} \\ \mathcal{L}(t, \boldsymbol{\theta}) &= L_0 + L_1 \cos(\Omega t) + L_1' \cos(\boldsymbol{\theta}) - \omega \frac{\partial}{\partial \boldsymbol{\theta}} \end{split}$$

cf. t-t' formalism by Peskin, Moiseyev, J.Chem.Phys. 1993

- $\rightarrow 2\pi/\Omega$ -periodic time-dependence
- → usual Floquet tools, e.g. matrix-continued fractions



$$L(t) = L_0 + L_1 \cos(\Omega t) + L_1' \cos(\omega t)$$

■ auxiliary angular coordinate  $\omega t \longrightarrow \theta$ 

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \mathscr{P} &= \mathscr{L}(t, \boldsymbol{\theta}) \mathscr{P} \\ \mathscr{L}(t, \boldsymbol{\theta}) &= L_0 + L_1 \cos(\Omega t) + L_1' \cos(\boldsymbol{\theta}) - \omega \frac{\partial}{\partial \boldsymbol{\theta}} \end{split}$$

cf. t-t' formalism by Peskin, Moiseyev, J.Chem.Phys. 1993

- $\rightarrow 2\pi/\Omega$ -periodic time-dependence
- → usual Floquet tools, e.g. matrix-continued fractions
  - connection  $P(t) = \mathcal{P}(t, \theta)|_{\theta = \omega t}$

## **Examples: LZSM pattern**



driving: 
$$f(t) = \sin(\Omega t) + \eta \sin(\Omega' t + \phi)$$



$$\Omega'/\Omega=2$$

 $\bullet$   $\phi$ -dependent

$$\Omega'/\Omega = \frac{1}{2}(1+\sqrt{5})$$

 interference despite quasi-random phase factors

# **Summary of Floquet methods**



#### Schrödinger equation

- Floquet matrix
- perturbation theory
- ... or any other diagonalization technique

#### Master equations

- Floquet-Bloch-Redfield (BR in Floquet basis)
  - basis adapted to coherent dynamics
  - captures effect of driving on environment
  - ► dissipative phase shift
  - ► weak dissipation: RWA → Lindblad
- time-dependent Liouvillian (Lindblad form in "natural" basis)
  - ► stat. solution via matrix-continied fraction
  - bichromatic, commensurable: extended Floquet matrix
  - ▶ bichromatic, incommensurable: Floquet matrix & MCF