Exerciții

I. De găsit prin metoda grafică și prin metoda tabelelor simplex soluțiile optime ale PROBLEMA DE PROGRAMARE LINIARĂ.

1.
$$f = 7x_1 + 6x_2 \rightarrow \max$$
;
 $2x_1 + 5x_2 \ge 10$,
 $5x_1 + 2x_2 \ge 10$,
 $2x_2 \ge 10$,
 $x_1, x_2 \ge 0$.

3.
$$f = 5x_1 - 3x_2 \rightarrow \min;$$

 $3x_1 + 2x_2 \ge 6,$
 $2x_1 - 3x_2 \ge -6,$
 $x_1 - x_2 \le 4,$
 $4x_1 + 7x_2 \le 28,$
 $x_1, x_2 \ge 0.$

5.
$$f = 2x_1 + 3x_2 \rightarrow \max$$
;
 $3x_1 - 2x_2 \ge -6$,
 $x_1 + x_2 \ge 3$,
 $x_2 \le 5$,
 $x_1, x_2 \ge 0$.

7.
$$f = x_1 + 2x_2 \rightarrow \max$$
;
 $3x_1 + 2x_2 \le 9$,
 $3x_1 + 4x_2 \le 27$,
 $2x_1 + x_2 \le 14$,
 $x_1, x_2 \ge 0$.

9.
$$f = 7x_1 - 2x_2 \rightarrow \min;$$

 $5x_1 - 2x_2 \le 3,$
 $x_1 - x_2 \ge 1,$
 $x_1 + x_2 \le 4, x_1, x_2 \ge 0.$

2.
$$f = 3x_1 - 2x_2 \rightarrow \max$$
;
 $2x_1 + x_2 \le 11$,
 $-3x_1 + 2x_2 \le 10$,
 $3x_1 + 2x_2 \ge 20$,
 $x_1, x_2 \ge 0$.

4.
$$f = 2x_1 + x_2 \rightarrow \max$$
;
 $x_1 - 2x_2 \ge 4$,
 $5x_1 + 2x_2 \le 27$,
 $4x_1 - 3x_2 \le 12$,
 $7x_1 + 4x_2 \le 28$,
 $x_1, x_2 \ge 0$.

6.
$$f = 3x_1 + 3x_2 \rightarrow \max;$$

 $x_1 - 4x_2 \le 4,$
 $3x_1 + 2x_2 \le 6,$
 $x_1 + 2x_2 \ge 2,$
 $x_1, x_2 \ge 0.$

8.
$$f = 2x_1 - 4x_2 \rightarrow \max$$
;
 $8x_1 - 5x_2 \le 16$,
 $x_1 + 3x_2 \le 2$,
 $2x_1 + 7x_2 \ge 9$,
 $x_1, x_2 \ge 0$.

10.
$$f = 2x_1 - x_2 \rightarrow \max$$
;
 $x_1 + x_2 \ge -3$,
 $x_1 + 7x_2 \le 42$,
 $x_1 + x_2 \ge 4$, $x_1, x_2 \ge 0$.

11.
$$f = x_1 + 2x_2 \rightarrow \max$$
;
 $5x_1 - 2x_2 \le 4$,
 $x_1 - 2x_2 \ge -4$,
 $x_1 + x_2 \ge 4$,
 $x_1, x_2 \ge 0$.

13.
$$f = 7x_1 + x_2 \rightarrow \max$$
;
 $x_1 + x_2 \le 14$,
 $3x_1 - 5x_2 \le 15$,
 $5x_1 + 3x_2 \ge 21$,
 $x_1, x_2 \ge 0$.

15.
$$f = x_1 - x_2 \rightarrow \max$$
;
 $-x_1 + x_2 \ge 8$,
 $8x_1 + 5x_2 \le 80$,
 $x_1 - 2x_2 \le 2$,
 $x_1 + 4x_2 \ge 4$,
 $x_1, x_2 \ge 0$.

17.
$$f = x_1 + x_2 \rightarrow \min;$$

 $3x_1 + x_2 \ge 8,$
 $x_1 + 2x_2 \ge 6,$
 $x_1 - x_2 \le 3,$
 $x_1, x_2 \ge 0.$

19.
$$f = x_1 + x_2 \rightarrow \max$$
;
 $x_1 + x_2 \ge 1$,
 $5x_1 + x_2 \le 0$,
 $x_1 + 5x_2 \ge 0$,
 $x_1 + x_2 \le 6$;
 $x_1, x_2 \ge 0$.

etrika i di di

12.
$$f = x_1 + 3x_2 \rightarrow \max$$
;
 $-x_1 + x_2 \le 3$,
 $4x_1 - 3x_2 \le 20$,
 $x_1 + x_2 \ge 4$,
 $x_1, x_2 \ge 0$.

14.
$$f = x_1 + 2x_2 \rightarrow \max$$
;
 $5x_1 - 2x_2 \le 4$,
 $x_1 - 2x_2 \le 4$
 $x_1 + x_2 \ge 3$,
 $x_1, x_1 \ge 0$.

16.
$$f = 2x_1 + x_2 \rightarrow \max$$
;
 $x_1 - x_2 \ge 4$,
 $x_1 + x_2 \ge 10$,
 $4x_1 - x_2 \le 12$,
 $7x_1 + x_2 \le 7$,
 $x_1, x_2 \ge 0$.

18.
$$f = x_1 + x_2 \rightarrow \max$$
;
 $x_1 - 2x_2 \le 7$,
 $-x_1 + x_2 \le 5$,
 $x_1 - x_2 \le 6$,
 $x_1 \ge 0$, $x_2 \ge 0$.

$$f = x_1 + x_2 \rightarrow \max;$$

$$x_1 + x_2 \ge 1,$$

$$5x_1 + x_2 \le 0,$$

$$x_1 + 5x_2 \ge 0,$$

$$x_1 + 5x_2 \ge 6;$$

$$x_1 + x_2 \le 6;$$

$$x_1, x_2 \ge 0.$$

$$20. f = x_1 + 2x_2 \rightarrow \max;$$

$$x_1 + x_2 \le 4,$$

$$3x_1 + x_2 \ge 4,$$

$$0 \le x_1 \le 3,$$

$$0 \le x_2 \le 3.$$

nervik njero ikazal sandikskig

A complete a superior constituit

21.
$$f = 2x_1 - x_2 \rightarrow \max$$
;
 $x_1 + x_2 \le -3$,
 $6x_1 + 7x_2 \le 42$,
 $3x_1 - 2x_2 \le 6$,
 $x_1 \ge 0$, $x_2 \ge 0$.

23.
$$f = -2x_1 + x_2 \rightarrow \min;$$

 $2x_1 + x_2 \le 8,$
 $x_1 + 3x_2 \ge 6,$
 $3x_1 + x_2 \ge 3,$
 $x_1 \ge 0, x_2 \ge 0.$

25.
$$f = 2x_1 - 4x_2 \rightarrow \max$$
;
 $8x_1 - 5x_2 \le 16$,
 $x_1 + 3x_2 \ge 2$,
 $2x_1 + 7x_2 \le 9$,
 $x_1, x_2 \ge 0$.

27.
$$f = 3x_1 + 3x_2 \rightarrow \max;$$

 $x_1 + x_2 \le 8,$
 $3x_1 + 7x_2 \ge 21$
 $x_1 + 2x_2 \ge 6,$
 $0 \le x_1 \le 1;$
 $0 \le x_2 \le 1.$

22.
$$f = -3x_1 + x_2 \rightarrow \min;$$

 $x_1 + 2x_2 \ge 10,$
 $3x_1 + x_2 \ge 15,$
 $x_1 \le 8,$
 $x_1 \ge 0, x_2 \ge 0.$

24.
$$f = 2x_1 + 2x_2 \rightarrow \max$$
;
 $3x_1 - 2x_2 \ge -6$,
 $x_1 + x_2 \ge 3$
 $0 \le x_1 \le 9$;
 $0 \le x_2 \le 6$.

26.
$$f = -3x_1 + 6x_2 \rightarrow \min;$$

 $5x_1 - 2x_2 \le 4,$
 $x_1 - 2x_2 \ge -4,$
 $x_1 + x_2 \ge 4,$
 $x_1, x_2 \ge 0.$

28.
$$f = 2x_1 + 2x_2 \rightarrow \max;$$

 $3x_1 - 2x_2 \ge -6,$
 $x_1 + x_2 \ge 3,$
 $x_1 \le 3,$
 $x_2 \le 5;$
 $x_1, x_2 \ge 0.$

1.3. Dualitatea în programarea liniară

1.3.1. Algoritmul simplex dual

Alegerea algoritmului simplex la rezolvarea problemei duale ne conduce la un algoritm nou de rezolvare a problemelor de programare liniară, numit *algoritmul simplex dual*. Algoritmul simplex dual construiește o succesiune de soluții de bază ale