The invention claimed is:

- 1. An apparatus for modulating a bit stream onto a pulse signal for transmission, the apparatus comprising:
- a pulse generator that generates a selectively delayed and inverted signal pulse responsive to a phase signal and a delay signal;
- a phase controller coupled to the pulse generator, the phase controller configured to generate the phase signal responsive to a first data bit of the bit stream; and
- a delay controller coupled to the pulse generator, the delay controller configured to generate the delay signal responsive to a second data bit of the bit stream.
- 1 2. The apparatus of claim 1, wherein the pulse generator is a monocycle pulse 2 generator and the signal pulse is a monocycle signal pulse generated by the monocycle 3 pulse generator.
- The apparatus of claim 1, wherein the pulse generator is an Ultra Wideband (UWB) pulse generator and the signal pulse is a UWB signal pulse.
- 1 4. The apparatus of claim 1, wherein the signal pulse is selectively delayed by 2 an amount sufficient to substantially decorrelate the delayed signal pulse from a non-3 delayed signal pulse.
- 5. The apparatus of claim 4, wherein the delayed signal pulse is orthogonal to the non-delayed signal pulse.
- 1 6. The apparatus of claim 1, further comprising:
- a time-hopping controller for time-hopping the signal pulse as selectively inverted and delayed.

MATI-227US

1 2 3 .	7. The apparatus of claim 1, wherein the first and second data bits are consecutive bits that are represented by the signal pulse as selectively delayed and inverted.
1	8. The apparatus of claim 1, wherein the pulse generator comprises:
2	a first pulse generator that generates a non-inverted signal pulse with no delay;
3	a second pulse generator that generates a non-inverted signal pulse with a delay;
4	a third pulse generator that generates an inverted signal pulse with no delay;
5	a fourth pulse generator that generates an inverted signal pulse with the delay; and
6 7	a selector coupled to said first, second, third, and fourth pulse generators, the selector selecting the signal pulse generated by one of the first, second, third, and fourth
8	pulse generators responsive to the phase signal and the delay signal.
9	The apparatus of claim 1, wherein the pulse generator comprises:
0 · 1 2	a pulse generator that generates a signal pulse, the pulse generator configured to selectively invert the signal pulse responsive to the phase signal and to selectively delay the signal pulse responsive to the delay signal.
1	10. The apparatus of claim 1, wherein the pulse generator comprises:
2	a first pulse generator that generates a first pulse;
3	a second pulse generator that generates a second pulse, the second pulse being inverted with respect to the first pulse;
5	a selector coupled to the first and second pulse generator, the selector selecting the
6	first pulse generated by the first pulse generator or the second pulse generated by the
7	second pulse generator responsive to the phase signal; and

- 8 a delay circuit coupled to the selector, the delay circuit introducing delay to the 9 pulse selected by the selector responsive to the delay signal. 1 11. A method for modulating a bit stream onto a pulse signal for transmission, 2 the method comprising the steps of: 3 selectively inverting a signal pulse responsive to a first bit of the bit stream; and selectively delaying the signal pulse responsive to a second bit of the bit stream. 4 1 12. The method of claim 11, wherein the signal pulse is a monocycle signal 2 pulse and wherein the inverting and delaying steps, respectively, comprise the steps of: selectively inverting the monocycle signal pulse responsive to the first bit of the bit 3 4 stream; and 5 selectively delaying the monocycle signal pulse responsive to the second bit of the 6 bit stream. 13. 1 The method of claim 12, wherein the monocycle signal pulse is an Ultra 2 Wideband (UWB) signal pulse. 14. The method of claim 11, wherein the delaying step comprises the step of: 1 2 selectively delaying the signal pulse responsive to the second bit of the bit stream 3 by an amount sufficient to substantially decorrelate the delayed signal pulse from the 4 original signal pulse. 1 15. The method of claim 14, wherein the delaying step comprises the step of: selectively delaying the signal pulse such that the delayed signal pulse is 2 3 orthogonal to the signal pulse prior to delay.
 - 16. The method of claim 11, further comprising:

1

3	generating a non-inverted signal pulse with no delay, a non-inverted signal pulse
4	with delay, an inverted signal pulse without delay, and an inverted signal pulse with delay;
5	and
6	colocting and of the generated signal nulses recovering to the first and according
6	selecting one of the generated signal pulses responsive to the first and second bits
7	of the bit stream.
8	22. The method of claim 21, wherein the selecting step comprises the steps of:
9	generating a phase signal and a delay signal responsive the first and second bits;
10	and
10	anu
11	selecting one of the generated signal pulses responsive to the phase signal and the
12	delay signal.
1	23. The method of claim 19, wherein the inverting and delaying step comprises
2	the steps of:
۷	the steps on
3	generating a non-inverted signal pulse and an inverted signal pulse;
4	selecting one of the generated signal pulses responsive to the first bit of the bit
5	stream; and
6	selectively delaying the selected one of the generated signal pulses responsive to
	•
7	the second bit of the bit stream.
1	24. A system for modulating a bit stream onto a pulse signal for transmission,
2	the system comprising:
3	means for selectively inverting a signal pulse responsive to a first bit of the bit
4	stream; and
5	means for selectively delaying the signal pulse responsive to a second bit of the bit
6	stream.

I	25. The system of claim 24, further comprising:
2	means for time-hopping the signal pulse as selectively inverted and delayed.
1	26. The system of claim 24, wherein the inverting means comprises:
2	means for generating a phase signal responsive to the first bit; and
3	means for selectively inverting the signal pulse responsive to the phase signal.
1	27. The system of claim 24, wherein the delaying means comprises:
2	means for generating a delay signal responsive to the second bit; and
3	means for selectively delaying the signal pulse responsive to the delay signal.
1	28. A computer readable carrier including software that is configured to control
2	a computer to implement a modulation method embodied in a computer readable medium, the modulation method including the steps of:
4	selectively inverting a signal pulse responsive to a first bit of the bit stream; and
5	selectively delaying the signal pulse responsive to a second bit of the bit stream.
1	29. The computer readable carrier of claim 28, wherein the inverting step for
2	implementation by the computer comprises the steps of:
3	generating a phase signal responsive to the first bit; and
4	selectively inverting the signal pulse responsive to the phase signal.
1	30. The computer readable carrier of claim 28, wherein the delaying step for
2	implementation by the computer comprises the steps of:

- generating a delay signal responsive to the second bit; and
- selectively delaying the signal pulse responsive to the delay signal.
- 1 31. The computer readable carrier of claim 28, wherein the method
- 2 implemented by the general purpose computer further includes the step of:
- time-hopping the selectively inverted and delayed signal pulse.