Intégrale dépendant d'un paramètre

I. Convergence dominée

I.1. Cas discret

Théorème I.1. Soit (f_n) une suite de fonctions de I dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On suppose que :

- i. la suite (f_n) converge simplement sur I vers une fonction f;
- ii. les fonctions f_n et f sont continues par morceaux sur I;
- iii. il existe une fonction $\varphi:I\longrightarrow\mathbb{R}$, continue par morceaux et intégrable sur I, telle que

$$\forall n \in \mathbb{N} \quad \forall t \in I \quad |f_n(t)| \leqslant \varphi(t)$$

Alors, les fonctions f_n et f sont intégrables sur I, et $\int_I f_n(t) dt \xrightarrow[n \to +\infty]{} \int_I f(t) dt$.

L'hypothèse iii. est appelée hypothèse de domination.

Dans le cas où I est un intervalle **borné**, il suffit que les fonctions $|f_n|$ soient toutes majorées par une même constante M pour que cette hypothèse soit vérifiée.

I.2. Cas continu

Théorème I.2. Soit $(f_{\lambda})_{{\lambda}\in J}$ une famille de fonctions de I dans $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} , indexée par un intervalle J de \mathbb{R} . Soit μ un point adhérent à J (éventuellement $\mu=\pm\infty$). On suppose que :

- i. il existe une fonction $f: I \longrightarrow \mathbb{K}$, telle que, pour tout $t \in I$, $f_{\lambda}(t) \xrightarrow[\lambda \to \mu]{} f(t)$;
- ii. les fonctions f_{λ} et f sont continues par morceaux sur I;
- iii. il existe une fonction $\varphi:I\longrightarrow\mathbb{R},$ continue par morceaux et intégrable sur I, telle que

$$\forall \lambda \in J \quad \forall t \in I \quad |f_{\lambda}(t)| \leqslant \varphi(t)$$

Alors, les fonctions f_{λ} et f sont intégrables sur I, et $\int_{I} f_{\lambda}(t) dt \xrightarrow{\lambda \to \mu} \int_{I} f(t) dt$.

II. Intégrale dépendant d'un paramètre

Soit $f: A \times B \longrightarrow C$, $(a,b) \longmapsto f(a,b)$ une fonction de deux variables. Pour tout $a_0 \in A$ (resp^t $b_0 \in B$), on note $f(a_0, \cdot)$ (resp^t $f(\cdot, b_0)$) la fonction $b \longmapsto f(a_0, b)$ de B dans C (resp^t $a \longmapsto f(a, b_0)$ de A dans C).

II.1. Continuité

Théorème II.1. Soit E un espace normé de dimension finie. Soient $A \subset E$ et I un intervalle de \mathbb{R} . Soit $f: A \times I \longrightarrow \mathbb{K}$, $(x,t) \longmapsto f(x,t)$. On suppose que :

- **i.** pour tout $t_0 \in I$, la fonction $f(\cdot, t_0)$ est continue sur A;
- ii. pour tout $x_0 \in A$, la fonction $f(x_0, \cdot)$ est continue par morceaux sur l'intervalle I:
- iii. il existe une fonction $\varphi: I \longrightarrow \mathbb{R}$, continue par morceaux et intégrable sur I, telle que

$$\forall (x,t) \in A \times I \quad |f(x,t)| \leqslant \varphi(t)$$

Alors, la fonction $F: x \longmapsto \int_I f(x,t) dt$ est définie et continue sur A.

Remarque 1: si l'on veut simplement démontrer la continuité de F en un point $a \in A$, on peut, dans les hypothèses, remplacer la partie A par un voisinage (relatif) V de a.

Remarque 2: dans le cas où A est un intervalle de \mathbb{R} , on peut remplacer l'hypothèse iii. par l'hypothèse plus faible suivante : pour chaque segment $S \subset A$, il existe une fonction $\varphi_S: I \longrightarrow \mathbb{R}$, continue par morceaux et intégrable sur I, telle que $\forall (x,t) \in S \times I \quad |f(x,t)| \leq \varphi_S(t)$.

Remarque 3: si A est un intervalle de \mathbb{R} , si l'intervalle d'intégration I = [a, b] est un segment, et si f est continue sur $A \times I$ en tant que fonction de deux variables, alors, pour chaque segment $S \subset A$, f est bornée sur le compact $S \times [a, b]$; on peut donc utiliser un majorant de f comme fonction de domination sur $S \times [a, b]$.

II.2. Dérivation

Théorème II.2. Soient I et J deux intervalles de \mathbb{R} ; soit $f: J \times I \longrightarrow \mathbb{K}$, $(x,t) \longmapsto f(x,t)$. On suppose que :

- i. pour tout $x_0 \in J$, la fonction $f(x_0, \cdot)$ est continue par morceaux et intégrable sur l'intervalle I;
- ii. en tout point de $J \times I$, f admet une dérivée partielle par rapport à sa première variable x;
- iii. pour tout $t_0 \in I$, la fonction $\frac{\partial f}{\partial x}(\cdot, t_0)$ est continue sur J;
- iv. pour tout $x_0 \in J$, la fonction $\frac{\partial f}{\partial x}(x_0, \cdot)$ est continue par morceaux sur l'intervalle I:
- **v.** il existe une fonction $\varphi: I \longrightarrow \mathbb{R}$, continue par morceaux et intégrable sur I, telle que

$$\forall (x,t) \in J \times I \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \varphi(t)$$

Alors, la fonction $F: x \longmapsto \int_I f(x,t) dt$ est de classe C^1 sur J, et $F'(x) = \int_I (\partial f/\partial x)(x,t) dt$ sur J.

Remarque 1 : on peut résumer les hypothèses **iii.** à **v.** en disant que $\partial f/\partial x$ vérifie les hypothèses du théorème ?? (de continuité).

Remarque 2: comme pour le théorème ?? (de continuité), on peut remplacer l'hypothèse de domination **v.** par une hypothèse de domination sur les segments : pour chaque **segment** $S \subset J$, il existe une fonction $\varphi_S : I \longrightarrow \mathbb{R}$, continue par morceaux et intégrable sur I, telle que $\forall (x,t) \in S \times I \mid (\partial f/\partial x)(x,t) \mid \leqslant \varphi_S(t)$.

II.3. Dérivées d'ordre supérieur

Théorème II.3. Soient I et J deux intervalles de \mathbb{R} ; soit $f: J \times I \longrightarrow \mathbb{K}$, $(x,t) \longmapsto f(x,t)$; soit $p \in \mathbb{N}^*$. On suppose que:

- **i.** pour tout $t_0 \in I$, la fonction $f(\cdot, t_0)$ est p fois dérivable sur J;
- ii. pour tout $x_0 \in J$ et tout $k \in [0, p-1]$, la fonction $\frac{\partial^k f}{\partial x^k}(x_0, \cdot)$ est continue par morceaux et intégrable sur l'intervalle I;
- iii. pour tout $t_0 \in I$, la fonction $\frac{\partial^p f}{\partial x^p}(\cdot, t_0)$ est continue sur J;
- iv. pour tout $x_0 \in J$, la fonction $\frac{\partial^p f}{\partial x^p}(x_0, \cdot)$ est continue par morceaux sur l'intervalle I:
- **v.** il existe une fonction $\varphi: I \longrightarrow \mathbb{R}$, continue par morceaux et intégrable sur I, telle que

$$\forall (x,t) \in J \times I \quad \left| \frac{\partial^p f}{\partial x^p}(x,t) \right| \leqslant \varphi(t)$$

Alors, la fonction $F: x \longmapsto \int_I f(x,t) dt$ est de classe C^p sur J, et, pour tout $x \in J$, $F^{(p)}(x) = \int_I \frac{\partial^p f}{\partial x^p}(x,t) dt$.

Remarque 1: encore une fois, les hypothèses iii. à v. affirment que $\partial^p f/\partial x^p$ vérifie les hypothèses du théorème ?? (de continuité).

Remarque 2: comme pour les théorèmes précédents, on peut remplacer l'hypothèse de domination \mathbf{v} . par une hypothèse de domination sur les segments : pour chaque **segment** $S \subset J$, il existe une fonction $\varphi_S : I \longrightarrow \mathbb{R}$, continue par morceaux et intégrable sur I, telle que $\forall (x,t) \in S \times I \mid (\partial^p f/\partial x^p)(x,t)| \leq \varphi_S(t)$.