Discrete Mathematics for Computer Science

Lecture 17: Relation

Dr. Ming Tang

Department of Computer Science and Engineering Southern University of Science and Technology (SUSTech) Email: tangm3@sustech.edu.cn

This Lecture

Relation, *n*-ary Relations, Representing Relations, Closures of Relations, Relation Equivalence, Partial Orderis USTech Southern Developers

The Principle of Well-Ordered Induction

The Principle of Well-Ordered Induction: Suppose that (S, \preceq) is a well-ordered set. Suppose x_0 is the least element of a well ordered set. Then P(x) is true for all $x \in S$, if

Basic Step: $P(x_0)$ is true.

Inductive Step: For every $y \in S \setminus \{x_0\}$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is true.

Or equivalently, Inductive Step: For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is true.

The Principle of Well-Ordered Induction

The Principle of Well-Ordered Induction: Suppose that (S, \preceq) is a well-ordered set. Then P(x) is true for all $x \in S$, if

Inductive Step: For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is true.

Proof: Suppose it is not the case that P(x) is true for all $x \in S$. Then there is an element $y \in S$ such that P(y) is false.

Consequently, the set $A = \{x \in S | P(x) \text{ is false} \}$ is nonempty. Because S is well ordered, A has a least element a.

By the choice of a as a least element of A, we know that P(x) is true for all $x \in S$ with $x \prec a$. By the inductive step, P(a) is true.

This contradiction shows that P(x) must be true for all $x \in S$.

Questions from Section 5 (Induction)

The Well-Ordering Property: Every nonempty set of nonnegative integers has a least element.

The principle of mathematical induction follows from the well-ordering property.

Question from students: Consider the set of negative integers. Although it does not has a least element, it has a greatest element. Can we solve it using mathematical induction?

Yes. We can solve it using the principle of well-ordered induction if we can find a relation \leq such that (S, \leq) is a well-ordered set.

Questions from Section 5 (Induction)

(i) The principle of mathematical induction, (ii) strong induction, and (iii) well-ordering property are all equivalent principles.

That is, the validity of each can be proved from either of the other two.

- (i) → (ii): The inductive hypothesis of a proof by mathematical induction is part of the inductive hypothesis in a proof by strong induction.
- (ii) → (iii) Use strong induction to show that the set of nonnegative integers has a least element.
- ullet (iii) ullet (i) The principle of mathematical induction follows from the well-ordering property.

Questions from Section 5 (Induction)

(i) The principle of mathematical induction, (ii) strong induction, and (iii) well-ordering property are all equivalent principles.

Recall Well-Ordering Property: Every nonempty subset of the set of nonnegative integers has a least element.

- (ii) \rightarrow (iii) Use strong induction to show that the set of nonnegative integers has a least element.
 - ullet Suppose the well-ordering property were false; Let S be a nonempty set of nonnegative integers that has no least element
 - Let P(n) be the statement " $i \notin S$ for i = 0, 1, ..., n".
 - Basic Step: P(0) is true, because if $0 \in S$, then S has a least element
 - Inductive Step: Suppose P(n) is true. Then, $0 \notin S$, ..., $n \notin S$. Clearly, n+1 cannot be in S, for if it were, it would be the least element. Thus, P(n+1) is true.
 - Thus, by induction, $n \notin S$ for all nonnegative integers n. Thus, $S = \emptyset$.

Ming Tang @ SUSTech

Lexicographic Ordering

Definition: Given two posets (A_1, \preccurlyeq_1) and (A_2, \preccurlyeq_2) , the lexicographic ordering on $A_1 \times A_2$ is defined by specifying that (a_1, a_2) is less than (b_1, b_2) , i.e., $(a_1, a_2) \preccurlyeq (b_1, b_2)$, either if $a_1 \prec_1 b_1$ or if $a_1 = b_1$ then $a_2 \preccurlyeq_2 b_2$.

Example: Consider strings of lowercase English letters. A lexicographic ordering can be defined using the ordering of the letters in the alphabet. This is the same ordering as that used in dictionaries.

- discreet ≺ discreetness

The Principle of Well-Ordered Induction: Example

Example: Suppose that $a_{m,n}$ is defined recursively for $(m,n) \in \mathbf{N} \times \mathbf{N}$ by $a_{0,0} = 0$ and

$$a_{m,n} = \left\{ \begin{array}{ll} a_{m-1,n} + 1, & \text{if } n = 0 \text{ and } m > 0, \\ a_{m,n-1} + n, & \text{if } n > 0. \end{array} \right.$$

Show that $a_{m,n} = m + n(n+1)/2$ for all $(m,n) \in \mathbb{N} \times \mathbb{N}$.

- Basic Step: $a_{0,0} = 0 + 0 \cdot (0+1)/2 = 0$
- Inductive Step: Suppose that $a_{m',n'} = m' + n'(n'+1)/2$ whenever $(m',n') \prec (m,n)$. We aim to prove that $a_{m,n} = m + n(n+1)/2$.
 - ▶ n = 0, under which $a_{m,n} = a_{m-1,n} + 1$: Since $(m-1,n) \prec (m,n)$, we have $a_{m-1,n} = m-1 + n(n+1)/2$. Thus, $a_{m,n} = m + n(n+1)/2$.
 - ▶ n > 0, under which $a_{m,n} = a_{m,n-1} + n$: Since (m, n-1) < (m, n), we have $a_{m,n-1} = m + (n-1)(n-1+1)/2$. Thus, $a_{m,n} = m + n(n+1)/2$.

Hasse Diagram

A Hasse diagram is a visual representation of a partial ordering that leaves out edges that must be present because of the reflexive and transitive properties.

- A partial ordering. The loops are due to the reflexive property.
- The edges that must be present due to the transitive property are deleted.
- The Hasse diagram for the partial ordering (a).

10 / 41

Procedure for Constructing Hasse Diagram

Start with the directed graph of the relation:

- Remove the loops (a, a) present at every vertex due to the reflexive property.
- Remove all edges (x, y) for which there is an element $z \in S$ s.t. $x \prec z$ and $z \prec y$. These are the edges that must be present due to the transitive property.
- Arrange each edge so that its initial vertex is <u>below</u> the terminal vertex. Remove all the arrows, because all edges point upwards toward their terminal vertex.

Hasse Diagram Example

Maximal and Minimal Elements

Definition: a is a maximal (resp. minimal) element in poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$ (resp. $b \prec a$).

Example: Which elements of the poset $({2,4,5,10,12,20,25}, |)$ are maximal, and which are minimal?

The maximal elements are 12, 20, and 25.

The minimal elements are 2 and 5.

A poset can have more than one maximal element and more than one minimal element.

Ming Tang @ SUSTech CS201 Spring 2025 13 / 41

Greatest and Least Elements

Definition: a is the greatest (resp. least) element of the poset (S, \preccurlyeq) if $b \preccurlyeq a$ (resp. $a \preccurlyeq b$) for all $b \in S$.

- (a): a least element a, no greatest element
- (b): neither a least nor a greatest element
- (c): no least element., a greatest element d
- (d): a least element a, a greatest element d

Upper and Lower Bound

Definition: Let *A* be a subset of a poset (S, \preceq) .

- $u \in S$ is called an upper bound (resp. lower bound) of A if $a \leq u$ (resp. $u \leq a$) for all $a \in A$.
- $x \in S$ is called the least upper bound (resp. greatest lower bound) of A if x is an upper bound (resp. lower bound) that is less than any other upper bounds (resp. lower bounds) of A.

Find the greatest lower bound and the least upper bound of $\{b,d,g\}$, if they exist.

g is the least upper bound, b is the greatest lower bound. SUSTech states and a

Upper and Lower Bound

Example: Find the greatest lower bound and the least upper bound of the sets $\{3, 9, 12\}$ and $\{1, 2, 4, 5, 10\}$, if they exist, in the poset $(\mathbf{Z}^+, |)$.

- Lower bound of $\{3, 9, 12\}$: 1 and 3; the greatest lower bound: 3.
- Lower bound of $\{1, 2, 4, 5, 10\}$: 1; the greatest lower bound: 1.
- Upper bound of $\{3, 9, 12\}$: multiple of 36; the least upper bound: 36.
- Upper bound of $\{1, 2, 4, 5, 10\}$: multiple of 20; the least upper bound: 20.

Lattices

Definition: A partial ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice.

- (a) and (c): lattices
- (b): not a lattice, because the elements b and c have no least upper bound.

17 / 41

Lattices: Example

Determine whether the posets $(\{1,2,3,4,5\},|)$ and $(\{1,2,4,8,16\},|)$ are lattices.

Solution: Because 2 and 3 have no upper bounds, they certainly do not have a least upper bound. Hence, the first poset is **not** a lattice.

Every two elements of the second poset have both a least upper bound and a greatest lower bound.

- The least upper bound of two elements in this poset is the larger of the elements
- The greatest lower bound of two elements is the smaller of the elements

Hence, this second poset is a lattice.

18 / 41

Topological Sorting

Motivation: A project is made up of 20 different tasks. Some tasks can be completed only after others have been finished. How can an order be found for these tasks?

Topological sorting: Given a partial ordering R, find a total ordering \leq such that $a \leq b$ whenever aRb. \leq is said compatible with R.

Topological Sorting for Finite Posets

Lemma: Every finite nonempty poset (S, \preceq) has at least one minimal element.

ALGORITHM 1 Topological Sorting.

```
procedure topological sort ((S, \preccurlyeq): finite poset)

k := 1

while S \neq \emptyset

a_k := a minimal element of S {such an element exists by Lemma 1}

S := S - \{a_k\}

k := k + 1

return a_1, a_2, \ldots, a_n \{a_1, a_2, \ldots, a_n \text{ is a compatible total ordering of } S}
```


Topological Sorting for Finite Posets

Find a compatible total ordering for the poset $(\{1, 2, 4, 5, 12, 20\}, |)$.

This produces the total ordering

$$1 \prec 5 \prec 2 \prec 4 \prec 20 \prec 12$$

Recall the Motivation: A project is made up of 20 different tasks. Some tasks can be completed only after others have been finished. **Stacks** order be found for these tasks?

21 / 41

This Lecture

22 / 41

Example

 What is the minimum number of links to send a message from B to NO?

 Which city/cities has/have the most communication links emanating from it/them?

A: 6 links

20 links

 What is the total number of communication links?

Graph G

- Consists of a set of vertices V, |V| = n
- and a set of edges for the e
- Each edge has two endpoints

201 Spring 2025

Definition of a Graph

Definition: A graph G = (V, E) consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to be incident to (or connect) its endpoints.

Simple Graph, Multigraph, Pseudograph

• simple graph: A graph in which each edge connects two different vertices and where no two edges connect the same pair of vertices.

 Multigraph: Graphs that may have multiple edges connecting the same vertices.

• Pseudograph: Graphs that may include loops, and possibly multiple edges connecting the same pair of vertices or a vertex to itself.

26 / 41

Directed and Undirected Graph

A directed graph (or digraph) (V, E) consists of a nonempty set of vertices V and a set of directed edges (or arcs) E. The directed edge associated with the ordered pair (u, v) is said to start at u and end at v.

Graph: Example

- Computer networks
- Social networks
- Communication networks
- Information networks
- Software design
- Transportation networks
- Biological networks

Computer Networks

Vertices: computers

• Edges: connections

Social Networks

Vertices: individuals

Edges: relationships

Friendship graphs: undirected graphs where two people are connected if they are friends (in the real world, wechat, or Facebook, etc.)

Social Networks

Influence graphs: directed graphs where there is an edge from one person to another if the first person can influence the second one.

Collaboration graphs: undirected graphs where two people are connected if they collaborate in some way.

- Hollywood graph
- Academic collaboration graph

Undirected Graphs

Definition: Two vertices u, v in an undirected graph G are called adjacent (or neighbors) in G if there is an edge e between u and v. Such an edge e is called incident with the vertices u and v and e is said to connect u and v.

Definition: The set of all neighbors of a vertex v of G = (V, E), denoted by N(v), is called the neighborhood of v.

If A is a subset of V, we denote by N(A) the set of all vertices in G that are adjacent to at least one vertex in A.

Definition: The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes two to the degree of that vertex. The degree of the vertex v is denoted by deg(v).

Undirected Graphs: Example

What are the degrees and neighborhoods of the vertices in the graph G?

deg(a) = 2, deg(b) = deg(c) = deg(f) = 4, deg(d) = 1, deg(e) = 3, and deg(g) = 0.

$$N(a) = \{b, f\}, \ N(b) = \{a, c, e, f\}, \ N(c) = \{b, d, e, f\}, \ N(d) = \{c\}, \ N(e) = \{b, c, f\}, \ N(f) = \{a, b, c, e\}, \ \text{and} \ N(g) = \emptyset$$

$$N(e) = \{b, c, f\}, N(f) = \{a, b, c, e\}, \text{ and } N(g) = \emptyset.$$

deg(a) = 4, deg(b) = deg(e) = 6, deg(c) = 1, and deg(c) = 1, deg(c) =

33 / 41

Ming Tang @ SUSTech CS201 Spring 2025

Undirected Graphs

Theorem (Handshaking Theorem): If G = (V, E) is an undirected graph with m edges, then

$$2m = \sum_{v \in V} deg(v)$$

(Note that this applies even if multiple edges and loops are present.)

Because each edge contributes two degrees.

Directed Graphs

Definition: An directed graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of directed edges.

Each edge is an ordered pair of vertices. The directed edge (u, v) is said to start at u and end at v.

Definition: Let (u, v) be an edge in G. Then

- u is the initial vertex of the edge and is adjacent to v,
- \bullet and v is the terminal vertex of this edge and is adjacent from u.

The initial and terminal vertices of a loop are the same.

Directed Graphs

Definition: The in-degree of a vertex v, denoted by $deg^-(v)$, is the number of edges which terminate at v. The out-degree of v, denoted by $deg^+(v)$, is the number of edges with v as their initial vertex.

Note that a loop at a vertex contributes 1 to both the in-degree and the out-degree of the vertex.

The in-degrees are $deg^-(a)=2$, $deg^-(b)=2$, $deg^-(c)=3$, $deg^-(d)=2$, $deg^-(e)=3$, and $deg^-(f)=0$. The out-degrees are $deg^+(a)=4$, $deg^+(b)=1$, $deg^+(c)=3$ and $deg^+(f)=0$.

Directed Graphs

Theorem: Let G = (V, E) be a graph with directed edges. Then,

$$|E| = \sum_{v \in V} deg^-(v) = \sum_{v \in V} deg^+(v)$$

Complete Graphs

A complete graph on n vertices, denoted by K_n , is the simple graph that contains exactly one edge between each pair of distinct vertices.

Cycles

A cycle C_n for $n \ge 3$ consists of n vertices v_1, v_2, \ldots, v_n , and edges $\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\}.$

Wheels

A wheel W_n is obtained by adding an additional vertex to a cycle C_n .

N-dimensional Hypercube

An *n*-dimensional hypercube, or *n*-cube, Q_n is a graph with 2^n vertices representing all bit strings of length n, where there is an edge between two vertices that differ in exactly one bit position.

How many edges? $n2^{n-1}$

Construct the (n+1)-cube Q_{n+1} from the n-cube Q_n by making two copies of Q_n , prefacing the labels on the vertices with a 0 in one copy of Q_n and with a 1 in the other copy of Q_n , and adding edges connecting two vertices that have labels differing only in the first bit.