Module

Observability Fundamentals

Topics

- Observability with the Elastic Stack
- Logs
- Metrics
- APM

Lesson 1

Observability with the Elastic Stack

Observability

- It is not a technology
- It is an attribute of a system
 - like high availability, stability and usability
- It helps detect undesirable behaviors
 - e.g. errors, service downtime and slow responses
- It provides granular information to debug production issues quickly and efficiently
 - e.g. application traces, event logs and resource information

The Pillars of Observability

Extra Pillars of Observability

Uptime Monitoring

- it backs to old school monitoring
- but it still provides important data for observability
- because it indicates how often a service is available
- Machine Learning

- only collecting data is not enough
- data should be actionable
- ML detects and alerts about anomalies in observability data

Observability with the Elastic Stack

- With different vendors observability data get isolated
- With the Elastic Stack you can unify your observability data

Dev & Ops Teams

Filebeat Metricbeat Elastic APM Heartbeat

Web Logs
App Logs
Database Logs
Container Logs

Container Metrics
Host Metrics
Database Metrics
Network Metrics
Storage Metrics

Real User Monitoring Transaction Monitoring Distributed Tracing Dependency Mapping

Uptime
Response
Correctness
Certificate Validation

Elastic Common Schema

Unified User Interface

Same UI for KPI summaries and root cause analysis

Unified Machine Learning

Correlate multiple data sources for better anomaly detection

Unified Alerting

Trigger off any operational data to provide unified SLA monitoring

Observability Data Flow

Elasticsearch Indices

- Once the data starts flowing from Beats to Elasticsearch, it is possible to look at the data
- By default, all Beats group data by day using the format:
 - {type}beat-{version}-{yyyy-MM-dd}-XXXXXX

Data in Elasticsearch

 To see what the data looks like, it is possible to send a query to Elasticsearch

```
Console
           Search Profiler
                             Grok Debugger
 1 GET heartbeat-*/_search
                                                 1 - {
                                                       "took" : 2,
                                                       "timed_out" : false,
                                                       "_shards" : {
                                                 5
                                                        "total" : 1,
                                                 6
                                                         "successful" : 1,
                                                 7
                                                        "skipped" : 0,
                                                 8
                                                        "failed": 0
                                                 9 .
                                                10 -
                                                       "hits" : {
                                                11 -
                                                        "total" : {
                                                          "value" : 98,
                                                12
                                                13
                                                           "relation" : "eq"
                                                14 -
                                                15
                                                         "max_score" : 1.0,
                                                         "hits" : [
                                                16 -
                                                17 -
                                                             "_index" : "heartbeat-7.3.2-2020.02.27-000001",
                                                18
                                                             "_type" : "_doc",
                                                19
                                                             "_id" : "Rz6mhnABS1cMEXrktT5F",
                                                20
                                                21
                                                             "_score" : 1.0,
                                                22 +
                                                             "_source" : {
                                                23
                                                               "@timestamp" : "2020-02-27T12:37:16.174Z",
                                                24 -
                                                               "event" : {
                                                25
                                                                "dataset" : "uptime"
                                                26 -
                                                27 -
                                                               "host" : {
```

Indices and Index Pattern

- Unified UI is nice, but which dataset is being used?
 - when you search or analyze data, you do that on top of a dataset

Index Patterns

Default Visualizations

- Every Beats come with a set of pre-build visualizations
- Kibana can help visualizing different kinds of observability data based on the service or the system monitored
- There are two main ways to load default visualizations
 - setup command (covered in the labs)
 - configuration file (not covered in this training)

Elastic Common Schema

- Observability data comes from different sources
- Visualizations are built on top of observability data
 - so operators can pin down the root cause of issues
- How to correlate data from different sources?
- ECS is a specification on how data should be formatted before being index into Elasticsearch
- Beats apply this standard automatically
- ECS allows the analysis of data coming from different sources

Lesson 1

Review - Observability with the Elastic Stack

Summary

- Observability is a search use case
- Observability helps detect undesirable behaviors and provides granular information to debug production issues quickly and efficiently
- The three main pillars of observability are logs, metrics and application traces, but uptime and machine learning are extra pillars often present in observable systems
- The Elastic Stack provides a way to have a unified implementation of observability
- Elastic Common Schema is a standard defined by Elastic to make sure that all the data collected from different sources can be correlated

Quiz

- 1. True or False: Observability is just a new name for old school monitoring.
- 2. Which are the three main pillars of observability?
- 3. **True or False:** One of the benefits of using the Elastic Stack to implement observability is to have all information in a single operational source with the ability to automatically correlate this data in an intuitive user interface.

Lesson 1

Lab - Observability with the Elastic Stack

Lab Environment

- Visit Strigo using the link that was shared with you, and log in if you haven't already done so
- Click on "My Lab" on the left

Lab Environment

 Click on the gear icon next to "My Lab" and select "Machine Info"

Lab Environment

- From here you can access lab instructions and guides
 - You also have them in your .zip file, but it is easier to access and use the lab instructions from here:

Welcome to Observability Fundamentals

- Lab Instructions
- Virtual Classroom User Guide
- Kibana

© Elasticsearch BV 2015-2020. All rights reserved. Decompiling, copying, publishing and/or distribution without written consent of Elasticsearch BV is strictly prohibited.

Observability Fundamentals

Lesson 2 Logs

Business Questions

How many users visited our new training landing page?

Why is our Javascript application slow?

When should we schedule download service maintenance?

???

How many
webinar signups did
we get from
Europe?

It's all in the logs!

- Jordan Sissel

What is a log?

- logs are records of activities
 - by a system
 - by an application
 - by a device
 - by a human
 - **–** ...
- timestamp + data

What are Logs?

Application Logs

```
66.249.73.185 - - [16/Feb/2014:09:47:54 -0500] "GET / HTTP/1.1" 200 37932 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"
```

```
120707 0:37:09 [Note] Plugin 'FEDERATED' is disabled.
120707 0:37:09 InnoDB: The InnoDB memory heap is disabled
```


A Note About Timestamp

- Timestamps can be difficult to deal with
 - many different formats
 - time zones can be challenging
- Elasticsearch prefers ISO 8601 format
 - but can ingest multiple time formats, if configured
- The ISO 8601 format was designed to be unambiguous
 - it is a good practice to represent timestamps in ISO 8601
- UI applications (e.g. Kibana) can adjust the displayed time
 - combine the stored time with the user's local time
- Example: "2018-10-05T14:30:00Z"

Common Problems

- Consistency
 - every application and device logs in its own format
- Time Formats
 - "Oct 11 20:21:47", "020805 13:51:24"
- Decentralized
 - logs are spread across all of your servers
 - SSH + grep aren't scalable
- Experts Required
 - limited access to log files on servers
 - limited knowledge of the log format

Logs Lifecycle

Beats

Multiple flavors

- Beats can resolve different issues
 - reading files
 - retrieving metrics
 - retrieving network data
 - testing services availability

Filebeat

- Filebeat Modules
 - simplify the collection, parsing, and visualization of common log formats

Filebeat

- Open source data shippers
- Lightweight agent collecting logs

Getting Started with Filebeat

- 1. Download Filebeat on the host where the logs reside
- 2. Configure Filebeat
- 3. Start Filebeat
- 4. Verify that the data has arrived in Elasticsearch

Lesson 2

Review - Logs

Summary

- Logs can give us the answers to many questions which we ask of our data
- A log consists of a message with both a timestamp and some piece(s) of data
- Filebeat monitors log directories or specific log files
- Filebeat Modules simplify the collection, parsing, and visualization of common log formats
- Once the data is sent to Elasticsearch, it is possible to query Elasticsearch to explore the data

Quiz

- 1. What are the two elements of a log message?
- 2. **True or False**: It's OK to give Scott from Marketing ssh access to the web server so he can see how many people signed up for his latest webinar.
- 3. **True or False**: Filebeat Modules simplify the collection, parsing, and visualization of common log formats.

Observability Fundamentals

Lesson 2

Lab - Logs

Lesson 3 Metrics

Monitoring

- Systems and services are generating a lot of data that should be:
 - stored
 - analyzed
 - monitored

Monitoring Example

Logs x Metrics

- There are some similarities between logs and metrics
 - they are both time series oriented
 - both can contain keywords
- But they have fundamental differences
 - metrics focus on a periodic measurement of a system
 - metrics focus on numerical values and keywords
 - logs describe an event that happened (what and when)
 - logs often contain text that needs to be parsed

Logs x Metrics Example

Logs are recorded as events occur

[2018-09-07T07:48:00,127][INFO][o.e.x.m.MIDailyMaintenanceService] triggering scheduled [ML] maintenance tasks

[2018-09-07T07:48:00,381][INFO][o.e.x.m.a.TransportDeleteExpiredDataAction] [_8LMCWq] Deleting expired data

[2018-09-07T07:48:00,648][INFO][o.e.x.m.MIDailyMaintenanceService] Successfully completed [ML] maintenance tasks

Metrics are recorded based on a schedule

[2018-09-07T06:00:00,000][filesystem] 50085941248 overlay / 67371577344

[2018-09-07T06:05:00,000][filesystem] 50085917352 overlay / 67371577344

[2018-09-07T06:10:00,000][filesystem] 50075903715 overlay / 67371577344

Timestamps

- Elasticsearch prefers the ISO 8601 format
- The timezone is included in the timestamp
- Kibana can adapt to the local timezone of the user

Which time zone are we speaking about?

2018-09-07T06:10:00

2018-09-07 06:10:00 -0400

Oh ok! New York time zone!

Metrics Lifecycle

Beats

Multiple flavors

Community Beat

- Beats can resolve different issues
 - reading files
 - retrieving metrics
 - retrieving network data
 - testing services availability

Metricbeat

Collects metrics from the operating system and from services running on the server

System module

Nginx

MongoDB

MySQL

PostgreSQL

Redis

ZooKeeper

Apache

Metricbeat

- Open source data shippers
- Lightweight agent collecting metrics

Getting Started with Metricbeat

- 1. Download Metricbeat on the host you want to monitor
- 2. Configure Metricbeat
- 3. Start Metricbeat
- 4. Verify that the data is in Elasticsearch

Lesson 3

Review - Metrics

Summary

- Metrics and Logs provide important observability data
- Logs are about what happened and when it happened
- Metrics are about collecting a certain information periodically
- Metricbeat can collect multiple metrics from systems and services
- Once the data is sent to Elasticsearch, it is possible to query Elasticsearch to explore the data

Quiz

- 1. True or False: Metrics only contain numeric values.
- 2. What is the main difference between logs and metrics?
- 3. **True** or **False**: It is better to use timestamps that follow the ISO 8601 format with timezone information when implementing Observability with the Elastic Stack.

Lesson 3

Lab - Metrics

Lesson 4
APM

What is APM?

Application Performance Monitoring

Why APM?

- It records traces for database queries, external HTTP requests, and other slow operations that happen during requests to your application
 - it is easier to see where your application is spending time
- It also collects errors and exceptions that are not handled by your application
 - it is easier to debug errors that might happen in your application
- You can find performance bottlenecks and errors before your customers face them
- You can increase the productivity of your development team

How APM Works?

This is how Application Performance Monitoring works in general

Elastic APM Components

APM Agents Overview

APM agents are written in the same language as your service

automatic
instrumentation for the
most popular frameworks
and routers

APM agents also allow you to manually instrument your application

Available Agents

These are the Elastic agents, but there are community agents too.

APM Server Overview

APM server works by exposing an HTTP server to which agents ship the APM data they collect

APM server is built with the Beats framework, and as such it leverages its functionality

Why is APM Server a Separate Component?

Performance

- it can be scaled independently since it is a stateless component
- it controls the amount of data flowing into Elasticsearch
- it can buffer data when Elasticsearch becomes unresponsive

Security

- it prevents browsers from interacting with Elasticsearch
- Interoperability
 - it acts as a middleware for JavaScript source mapping
 - it provides a JSON API for agents

Data Model

- What kind of data agents send to the APM server?
 - spans, transactions, errors or metrics
 - which are known as events
 - and can contain additional metadata
 - such as labels, custom context and user context

Spans

- Spans contain information about a specific code path that has been executed
- They measure from the start to end of an activity
 - and they can have a parent/child relationship with other spans
- A span contains
 - a transaction id attribute that refers to their parent transaction
 - a parent id attribute that refers to their parent span or transaction
 - start time and duration
 - name
 - type
 - stack trace (optional)

Transactions

- Transactions are a special kind of span that have additional attributes associated with them
- They describe an event captured by an Elastic APM agent instrumenting an application
 - e.g., a HTTP request or an asynchronous background job
 - it includes the timestamp of the event, a unique id, type, name, data about the environment and other relevant information
- Together, transactions and spans form a trace

Errors

- An error is either a captured exception or a captured log
 - it can contain a stack trace, which is helpful for debugging
 - the culprit of the error indicating where it originated
 - and might relate to the transaction during which it happened
- For simplicity, errors are represented by a unique ID

```
server/top.js in <anonymous> at line 27

25.
26. app.get('/top/10', function (req, res) {
27. apm.captureError('this is a string', function (err) {
28. if (err) {
29. res.status(500).send('could not capture error: ' + err.message)

server.js in <anonymous> at line 75

73. })
74.
75. next()
76. })
77.
```

Metrics

- APM agents automatically pick up basic host-level metrics
 - including system and process-level CPU and memory metrics
- Agents specific metrics are also available
 - like JVM metrics in the Java agent
 - and Go runtime metrics in the Go agent

Distributed Tracing

- One trace that spans multiple transactions
- APM does that by giving each trace a unique ID
 - it uses OpenTracing IDs
 - and passes that ID on through the transactions
 - thereby creating an end-to-end trace for multiple applications

Logs x Metrics x APM

- Full-stack monitoring with Elastic APM
- Adds end-user experience and application-level monitoring to the Elastic Stack

Getting Started with Elastic APM

- 1. Start an Elasticsearch cluster with Kibana (version > 5.6)
- 2. Start APM server
- 3. Setup APM agents in your applications
- 4. Verify that the data is in Elasticsearch

Lesson 4

Review - APM

Summary

- Elastic APM allows you to monitor software services and applications in real time, collecting detailed performance information on response time for incoming requests, database queries, calls to caches, external HTTP requests, etc
- Elastic APM also automatically collects unhandled errors and exceptions
- Elastic APM consists of four components: Elasticsearch, APM agents, APM server, and Kibana APM UI
- Distributed Tracing enables you to analyze performance throughout your micro services architecture all in one view
- Once the data is sent to Elasticsearch, it is possible to query Elasticsearch to explore the data

Quiz

- 1. How Elastic APM helps monitoring your application?
- 2. How Elastic APM helps debugging your application?
- 3. What are the four components of Elastic APM?

Lesson 4

Lab - APM

Quiz Answers

Observability with the Elastic Stack

- 1. False. Observability is more than just detecting undesirable behaviors and it is also about providing operators with granular information to debug production issues quickly and efficiently.
- 2. Logs, Metrics and APM.
- 3. True. Implementing observability with the Elastic Stack allows the correlation of data through unified UIs, machine learning and alerting.

Logs

- 1. Timestamp + Data
- 2. False. A better option is to give Scott access to Kibana, so he can run queries and check visualizations on log data.
- 3. True. Filebeat includes many modules to make it easier parsing and visualizing logs from common formats.

Metrics

- 1. False. They can also contain keywords.
- Logs are about what happened and when it happened, while metrics are about collecting the same information periodically.
- 3. Elasticsearch prefers the ISO 8601 format for timestamps with the timezone included, so Kibana can adapt to the local timezone of the user.

APM

- 1. By collecting detailed performance information about requests to your application
- 2. By collecting unhandled errors and exceptions
- APM agents, APM server, Elasticsearch and Kibana APM UI