CSD1241 Extra Exercises

Problem 1. Consider two vectors
$$\vec{u} = \begin{bmatrix} 2 \\ -4 \\ c \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1 \\ c \\ -1 \end{bmatrix}$. Find c such that

- (a) \vec{u} is parallel to \vec{v} .
- (b) \vec{u} is perpendicular to \vec{v} .
- (c) In each case in part a, b, find the area of the parallelogram formed by \vec{u}, \vec{v} if c exists.

Problem 2. Given 3 points A = (1,2,0), B = (0,3,1), C = (-1,0,1) and the line $l:(x,y,z) = (3,5,-1) + t \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$.

- (a) Let m be the line containing A, B. Find the intersection, the angle and the distance between l and m.
- (b) Let α be the plane through A,B,C. Find the intersection and the angle between l and α .

Problem 3. In this problem, we find the angle between 2 planes by definition.

Consider 2 planes $\alpha: x - y + 2z = 1$ and $\beta: 2x - y = 0$.

- (a) Find the line l which is the intersection of α and β .
- (b) Find the plane γ containing the point (1,3,5) and perpendicular to l.
- (c) Let l_1 be the intersection between γ and α . Let l_2 be the intersection between γ and β . Find the direction vectors $\vec{d_1}$, $\vec{d_2}$ of l_1 , l_2 .
- (d) Find the angle a between l_1 and l_2 . Verify that the value of a is the same as the value of the angle between α and β which is computed by $\angle(\alpha, \beta) = \cos^{-1}\left(\frac{|\vec{n}_{\alpha} \cdot \vec{n}_{\beta}|}{||\vec{n}_{\alpha}||||\vec{n}_{\beta}||}\right)$.

Problem 4. The parallelogram formed by two vectors $\vec{u}, \vec{v} \in \mathbb{R}^2$ of equal length is called a **rhombus**. Show that the diagonals of this rhombus are perpendicular.

Problem 5. (a) Given 3 points A, B, C in \mathbb{R}^2 . Find a method to determine whether they lie on a line? Further, give two examples of 3 points in \mathbb{R}^2 (one for 3 points on a line, and one for 3 points not a line) and illustrate your method on these examples.

(b) Given 4 points A, B, C, D in \mathbb{R}^3 . Find a method to determine whether they lie on a plane. Further, give two examples of 4 points in \mathbb{R}^3 (one for 4 points on a plane, and one for 4 points not on a plane) and illustrate your method on these examples.