Homework 1 for Design and Analysis of Algorithms (Spring 2021)

Due: March 12th, 2021

Problem 1. (Exercise 0.1 in [DPV08]) In each of the following situations, indicate whether f = O(g), or $f = \Omega(g)$, or both (in which case $f = \Theta(g)$).

	f(n)	g(n)
(a)	n - 100	n - 200
(b)	$n^{1/2}$	$n^{2/3}$
(c)	$100n + \log n$	$n + (\log n)^2$
(d)	$n \log n$	$10n \log 10n$
(e)	$\log 2n$	$\log 3n$
(f)	$10\log n$	$\log(n^2)$
(g)	$n^{1.01}$	$n\log^2 n$
(h)	$n^2/\log n$	$n(\log n)^2$
(i)	$n^{0.1}$	$(\log n)^{10}$
(j)	$(\log n)^{\log n}$	$n/\log n$
(k)	\sqrt{n}	$(\log n)^3$
(l)	$n^{1/2}$	$5^{\log_2 n}$
(m)	$n2^n$	3 ⁿ
(n)	2^n	2^{n+1}
(o)	n!	2^n
(p)	$(\log n)^{\log n}$	$2^{(\log_2 n)^2}$
(q)	$\sum_{i=1}^{n} i^k$	n^{k+1} .

Solution.

- (a) $f = \Theta(g)$
- (b) f = O(g)
- (c) $f = \Theta(g)$
- (d) $f = \Theta(g)$
- (e) $f = \Theta(g)$
- (f) $f = \Theta(g)$
- (g) $f = \Omega(g)$
- (h) $f = \Omega(g)$
- (i) $f = \Omega(g)$

(j)
$$f = \Omega(g)$$

$$\log n = \log_{\log n} n * \log \log n$$

$$f(n) = (\log n)^{\log_{\log n} n * \log \log n}$$

$$= n^{\log \log n}$$

$$= \Omega(g(n))$$

(k)
$$f = \Omega(q)$$

(l)
$$f = O(g)$$

$$g(n) = 5^{\log_2 n} = 2^{\log_2 5 \log_2 n}$$

$$= n^{\log_2 5} = \Omega(f(n))$$

$$f = O(g)$$
(1)

(m)
$$f = O(g)$$

(n)
$$f = \Theta(g)$$

(o)
$$f = \Omega(g)$$

(p)
$$f = O(q)$$

(q) k>-1
$$f = \Theta(g)$$
, k=-1 $f = \Omega(g)$.

1 k>0

$$f(n) < \int_{1}^{n+1} x^{k} dx = \Theta(n^{k+1})$$

$$f(n) > \int_{0}^{n} x^{k} dx = \Theta(n^{k+1})$$

$$f(n) = \Theta(g(n))$$

2 k=0 Obviously, $f(n) = \Theta(g(n))$

3 -1<k<0

$$f(n) < 1 + \int_1^n x^k dx = \Theta(n^{k+1})$$

$$f(n) > \int_1^{n+1} x^k dx = \Theta(n^{k+1})$$

$$f(n) = \Theta(g(n))$$

$$4 \text{ k=-1 } f(n) = \Theta(\log n) = \Omega(g(n))$$

5 k<-1 Both f(n) and g(n) are decreasing.

Problem 2. (Exercise 0.2 in [DPV08]) Show that, if c is a positive real number, then $g(n) = 1 + c + c^2 + \cdots + c^n$ is:

- (a) $\Theta(1)$ if c < 1.
- (b) $\Theta(n)$ if c = 1.
- (c) $\Theta(c^n)$ if c > 1.

Problem 3. Show that there exists a C++ program P who can generate all pairs of natural numbers (x, y) such that $P_x(y)$ terminates 1 . That is, the program P can keep printing pairs of numbers (x, y) such that $P_x(y)$ terminates and for every (x', y') such that $P_{x'}(y')$ terminates, the program P can print it at some time.

Solution.

 $^{^{1}}$ Since the number of such pairs are infinite, the program P must run forever.

Algorithm 1: Solution 3

```
<sub>1</sub> F \leftarrow \emptyset / / pairs have been output
 2 for S = 1 : +\infty do
       for T = 1 : S do
            for x = 0 : S - T do
 4
                 y = S - T - x
 5
                 Simulate P_x(y) for T steps// (or seconds, hours, . . . )
 6
                 if P_x(y) terminates in T steps then
 7
                     if (x, y) \notin F then
 8
                          Output (x, y)
 9
                          F \leftarrow F \cup \{(x,y)\}
10
                     end
11
                 \quad \text{end} \quad
12
            end
13
       end
14
15 end
```

References

[DPV08] Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani. *Algorithms*. McGraw-Hill Higher Education New York, 2008. 1, 3