6

9

8

4

7

PRE	DICTOR	
1	2	3
4	х	Υ
7	Z	W

Get x, y, z, w:

Add neighbor pixels between number of neighbor pixels

1	2	3	
4	3	3	_
7	4	3	

0	0	0
0	2	3
0	4	6

IMAGE COMPRESSION:

(Example is made with 2 bits/p)

- Insert bit/pixel to compress
- sampleNumbers = 2^nBits
- Intervalo size:

$$\epsilon = \frac{ErrorMatrixMaxValue - ErrorMatrixMinValue}{SampleNumbers} \quad = \quad | \quad |$$

 Generate Error Matrix Quatinfied: Error matrix values will be assigned according to the intervale

IMAGE DECODING

Calculate MEQ⁻¹

Is not the normal inverse type.

Identify integer interval where value is in, substract inverval and split between 2

$$Value(i,j) = \frac{range2 + range1}{2}$$

EMQ

1	1	1
1	2	3
1	3	4

$$Value(1,1) = \frac{1.5 + 0}{2} = 0.75$$

EMQ inverse

LIVIQ IIIVEI3E						
0.75	0.75	0.75				
0.75	2.25	3.75				
0.75	3.75	5.25				

• Finally, add predictor matrix to MEQ inverse

								R	ecovered	Matrix	
EMQ i	nverse		_								
0.75	0.75	0.75		1	2	3		2	3	4	
0.75	2.25	3.75	+	4	3	3	=	5	5	7	
0.75	3.75	5.25		7	4	3		8	8	8	

IN ORDER TO CALCULATE THE NOISE BETWEEN ORIGINAL AND RECOVERED MATRIX:

$$\frac{S}{N} = 10 log_{10} \frac{\sum [O]^2}{\sum [O - R]^2}$$