In [1]:

```
import opendatasets as od
od.download('https://www.kaggle.com/datasets/rakeshrau/social-network-ads')
```

Please provide your Kaggle credentials to download this dataset. Learn more: http://bit.ly/kaggle-creds (http://bit.ly/kaggle-creds)
Your Kaggle username: masapetaalishaanjum
Your Kaggle Key:

Downloading social-network-ads.zip to .\social-network-ads

100%

3.27k/3.27k [00:00<00:00, 1.31MB/s]

In [2]:

```
import pandas as pd
import numpy as np
df=pd.read_csv('Social_Network_Ads.csv')
df
```

Out[2]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
			•••		
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

```
In [4]:
```

```
X = df.iloc[:, [2, 3]].values
Y = df.iloc[:, 4].values
Х
             48,
                 33000],
             44, 139000],
             49,
                 28000],
                  33000],
             57,
             56,
                  600001,
             49,
                  39000],
             39,
                  71000],
                  34000],
             47,
             48,
                  35000],
             48,
                  33000],
             47,
                  230001.
             45,
                  45000],
             60,
                  42000],
             39,
                  59000],
             46,
                  41000],
             51.
                  23000],
             50,
                  20000],
             36,
                  33000],
             49,
                  36000]], dtype=int64)
```

In [5]:

```
Υ
```

Out[5]:

```
array([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
     1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
     0, 0, 0, 0, 0, 1, 0, 0,
                         0, 0, 0, 0, 0, 1, 0, 0, 0,
     0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                                               0, 0, 0,
     0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1,
     0, 1, 1, 1, 0, 0, 1,
                      1,
                         0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0,
     1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
                                              1, 0, 1,
     1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
     0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
     1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0,
     0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0,
     1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,
     0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
     1, 1, 0, 1], dtype=int64)
```

In [6]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.25, random_state =
```

In [7]:

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

In [8]:

```
from sklearn.svm import SVC

classifier_linear = SVC (kernel = 'linear', random_state = 0)

classifier_linear.fit(X_train, Y_train)

Y_pred_linear= classifier_linear.predict(X_test)
```

In [9]:

```
from sklearn.metrics import confusion_matrix
cm= confusion_matrix(Y_test, Y_pred_linear)
cm
```

Out[9]:

```
array([[66, 2], [8, 24]], dtype=int64)
```

In [10]:

```
from sklearn.metrics import classification_report
print(classification_report(Y_test, Y_pred_linear))
```

support	f1-score	recall	precision	
68	0.93	0.97	0.89	0
32	0.83	0.75	0.92	1
100	0.90			accuracy
100	0.88	0.86	0.91	macro avg
100	0.90	0.90	0.90	weighted avg

In []: