

RNN Question

BITS WILP M Tech Data Science & Engineering (Birla Institute of Technology and Science, Pilani)

Scan to open on Studocu

Birla Institute of Technology and Science, Pilani

Work Integrated Learning Programmes Division

Sample RNN Question

Compute the outputs in each timestep and the state after timestep=3 for the Vanilla RNN given below. Assume the biases as zeros. [5]

$$X = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}$$

$$W = \begin{bmatrix} 0.2 & 0.3 & 0.8 \end{bmatrix}^{\top}$$

$$U = \begin{bmatrix} 0.5 & 0.6 & 0.2 \end{bmatrix}^{\top}$$

$$V = \begin{bmatrix} 0.4 & 0.2 & 0.1 \end{bmatrix}^{\top}$$

Solution

$$X = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}$$

$$W = \begin{bmatrix} 0.2 & 0.3 & 0.8 \end{bmatrix}^{\top}$$

$$U = \begin{bmatrix} 0.5 & 0.6 & 0.2 \end{bmatrix}^{\top}$$

$$V = \begin{bmatrix} 0.4 & 0.2 & 0.1 \end{bmatrix}^{\top}$$

$$s_t = \sigma(Ux_t + Ws_{t-1} + b)$$

$$\hat{y}_t = Relu(Vs_t + c) \qquad \text{Relu is assumed}$$

$$s_0 = 0 \qquad b = 0 \qquad c = 0$$

$$s_1 = \sigma(0.5 * 1 + 0.2 * 0 + 0) = 0.6$$

$$\hat{y}_1 = \max(0, 0.4 * 0.6 + 0) = 0.24$$

$$s_2 = \sigma(0.6 * 1 + 0.3 * 0.6 + 0) = 0.68$$

$$\hat{y}_2 = \max(0, 0.2 * 0.68 + 0) = 0.136$$

$$s_3 = \sigma(0.2 * 0 + 0.8 * 0.68 + 0) = 0.63$$

$$\hat{y}_3 = \max(0, 0.1 * 0.63 + 0) = 0.063$$

Downloaded by Gulam Sardvar (ssarwar.g@gmail.com)

Sample LSTM Question

Compute the outputs in each timestep and the state after timestep=3 for the LSTM given below. Assume the biases as zeros.

Solution

$$s_{t} = \sigma(Ux_{t} + Ws_{t-1} + b)$$

$$\hat{y}_{t} = Relu(Vs_{t} + c) \qquad \text{Relu is assumed}$$

$$s_{0} = 0 \qquad h_{0} = 0 \qquad b = 0 \qquad c = 0$$

$$o_{1} = \sigma(0.9 * 0 + 0.4 * 1 + 0) = 0.598$$

$$i_{1} = \sigma(0.1 * 0 + 0.3 * 1 + 0) = 0.574$$

$$f_{1} = \sigma(0.5 * 0 + 0.6 * 1 + 0) = 0.645$$

$$\hat{s}_{t} = \sigma(Wh_{0} + Ux_{1} + b)$$

$$\hat{s}_{1} = \sigma(0.2 * 0 + 0.5 * 1 + 0) = 0.62$$

$$s_{t} = f_{t} \odot s_{t-1} + i_{t} \odot \hat{s}_{t}$$

$$s_{1} = f_{1} \odot s_{0} + i_{1}\hat{s}_{1} = 0.645 * 0 + 0.574 * 0.62 = 0.355$$

$$h_{1} = o_{1} \odot \sigma(s_{1})$$

$$= 0.598 * \sigma(0.355) = 0.351$$

$$\hat{y}_{1} = \sigma(0.4 * 0.355 + 0)$$