```
In [1]: # Musterlösung Aufg. 3 LE1 11r
```

```
In [2]: # libraries laden
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

# Read data from file 'filename.csv'
#https://www.kaggle.com/HRAnalyticRepository/absenteeism-dataset
data = pd.read_csv("employees.csv")
# Preview the first 5 lines of the loaded data
data.head()
```

Out[2]:

	EmployeeNumber	Surname	GivenName	Gender	City	JobTitle	DepartmentName	StoreLocation	Division	Age
(1	Gutierrez	Molly	F	Burnaby	Baker	Bakery	Burnaby	Stores	32.02
-	2	Hardwick	Stephen	М	Courtenay	Baker	Bakery	Nanaimo	Stores	40.32
2	2 3	Delgado	Chester	М	Richmond	Baker	Bakery	Richmond	Stores	48.82
;	3 4	Simon	Irene	F	Victoria	Baker	Bakery	Victoria	Stores	44.59
4	5	Delvalle	Edward	М	New Westminster	Baker	Bakery	New Westminster	Stores	35.69


```
In [4]: # wir sehen Datenprobleme, da gewisse Absenzen mit 0 h eingetragen wurden.
# hier finden wir sie mittels where
index = np.where(data['AbsentHours'] == 0)
print(index)
```

(array([4, 11, 12, ..., 8325, 8327, 8332]),)

In [5]: # hier werden unbrauchbare Zeilen entfernt
data.drop(data.index[index],inplace=True, axis=0)


```
In [7]: from sklearn.linear model import LinearRegression
In [8]: # Fit Alter
                     = data['Age'].values.reshape(-1,1)
         age
         absenthours = data['AbsentHours'].values.reshape(-1,1)
         model = LinearRegression().fit(age,absenthours)
         # values.reshape ist notwendig wegen depreciation Warnung
In [9]: #Berechnung R2, slope und intercept
         r_sq = model.score(age,absenthours)
         print(r sq)
         print('intercept:', model.intercept_)
         print('slope:', model.coef_)
         #R2 ist 0.65, i.e. nicht perfekt (das waere 1), aber es ist nicht schlecht.
         0.6493487820751211
         intercept: [-118.51170857]
         slope: [[4.30605265]]
In [10]: #overplot regression line
         # x-Achse erstellen von 20-80
         x_{new} = np.arange(60).reshape((-1,1))+20
         y_new = model.predict(x_new)
         data.plot.scatter(x='Age',y='AbsentHours')
         plt.plot(x_new, y_new, color='r')
         plt.show()
            250
            200
           150
           100
            50
                                   50
                                                      80
In [11]: #Residuen
         fig = plt.figure(figsize=(10,6))
         #Vorhersage durchfuehren und Residuen berechnen
         predictedabsence = model.predict(age)
         resid = absenthours-predictedabsence #Residuen
         plt.plot(age, resid, 'o',color='r')
         plt.show()
           100
            50
            0
           -50
          -100
```

-150

20

30

50

60

70

```
In [12]: # Test ob Residuen normalverteilt via Histogramm
    #import matplotlib.mlab as mlab -> funktioniert in neueren python Versionen nicht mehr
    from scipy.stats import norm # neu statt mlab

n, bins, patches = plt.hist(resid, bins=150, facecolor='blue', stacked=True, density=True)
    plt.xlabel('Residuen')
    plt.ylabel('Haeufigkeit')

mu = np.average(resid)
    sigma = np.std(resid)

#normalverteilung mit diesem Mittelwert und Standardabweichung
    y = norm.pdf(bins, mu, sigma)
    plt.plot(bins, y, 'r--')

plt.show()

#dieses Histogram ist gut genug, um als normalverteilt zu gelten.
```


Fit der Laenge der Beschaeftigung

```
In [13]: #plot of service length
    data.plot.scatter(x='LengthService',y='AbsentHours')
    plt.show()
    # man sieht, dass wohl keine Korrelation existiert
```



```
In [14]: service = data['LengthService'].values.reshape(-1,1)
model2 = LinearRegression().fit(service, absenthours)
```

```
In [15]: #Berechnung R2, slope und intercept
    r_sq = model2.score(service, absenthours)
    print(r_sq)
    print('intercept:', model2.intercept_)
    print('slope:', model2.coef_)

#R2 ist 0.001, i.e. das Modell ist sehr schlecht.
```

0.0005010210095048873 intercept: [74.99104238] slope: [[-0.46065175]]

```
In [16]: #overplot regression line
    # X Achse erstellen fuer 0-40
    x_new2 = np.arange(40).reshape((-1,1))
    y_new2 = model2.predict(x_new2)

    data.plot.scatter(x='LengthService',y='AbsentHours')
    plt.plot(x_new2, y_new2, color='r')
    plt.show()
```



```
In [17]: #Residuen
fig = plt.figure(figsize=(10,6))

#Residuen berechnen
predictedabsence2 = model2.predict(service)
resid2 = absenthours-predictedabsence2

plt.plot(service, resid2, 'o',color='r')
plt.show()
```



```
In [18]: n, bins, patches = plt.hist(resid2, 150, facecolor='blue',stacked=True,density=True)
    plt.xlabel('Residuen')
    plt.ylabel('Haeufigkeit')

mu = np.average(resid2)
    sigma = np.std(resid2)

#normalverteilung mit diesem Mittelwert und Standardabweichung
    y = norm.pdf(bins, mu, sigma)
    plt.plot(bins, y, 'r--')

plt.show()

#dieses Histogram ist nicht normalverteilt.
```


Mittels OLS kann man mehr Output zur Qualitaet der Fits darstellen. Die Regression ist identisch.

```
In [19]: #advanced regression (advantage: provides summary of fit)
import statsmodels.api as sm

#add b0 (die Konstante ist by default nicht inbegriffen)
age = sm.add_constant(age)
model = sm.OLS(absenthours, age) #y zuerst!
results = model.fit()
print(results.summary())
# Der Output ist aehnlich zu R. Man sieht z.B., dass man 7016 Datenpunkte hat,
# 7014 degrees of freedom (d.h. 7016-Steigung-Intercept), und wie dann in LE2
# und LE3 erklaert wird, auch den t-Wert und die probability (P>/t).
```

		OLS	Regress	ion Res	sults 		
Dep. Vari	 able:		У	R-squa	 ared:		0.649
Model:			OLS	Adj. R-squared:			0.649
Method:		Least So	uares	F-statistic:			1.299e+04
Date:		Fri, 15 Oct	i, 15 Oct 2021		F-statistic):	0.00
Time:		16:	16:52:34		Log-Likelihood:		
No. Obser	vations:		7016	AIC:			6.595e+04
Df Residuals:			7014	BIC:			6.596e+04
Df Model:			1				
Covarianc	e Type:	nonr	obust				
	coe	f std err			P> t	=	_
		7 1.709					
x1	4.306	1 0.038	113	.968	0.000	4.232	4.380
Omnibus:		 3	34.863		 n-Watson:		 1.985
Prob(Omni		0.000		Jarque-Bera (JB):		47.129	
Skew:			0.051		JB):		5.83e-11
Kurtosis:			3.388		Cond. No.		243.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [20]: #zweite Regression (mit der anderen Variablen)
 service = sm.add_constant(service)
 model = sm.OLS(absenthours, service) #y zuerst!
 results = model.fit()
 print(results.summary())

OLS Regression Results

Dep. Variable	:		У	R-sq	uared:		0.001		
Model:		C	LS	Adj. R-squared:			0.000		
Method:		Least Squar	es	F-statistic:			3.516		
Date:		Fri, 15 Oct 20	21	Prob	(F-statistic):		0.0608		
Time:		16:52:	16:52:34 Log-1			og-Likelihood:			
No. Observati	ons:	70	16	AIC:			7.330e+04		
Df Residuals:		70	14	BIC:			7.331e+04		
Df Model:			1						
Covariance Ty	nonrobu	ıst							
	coef	std err		t	P> t	[0.025	0.975]		
const	74.9910	1.279	58	3.640	0.000	72.484	77.498		
x1	-0.4607	0.246	-1	1.875	0.061	-0.942	0.021		
Omnibus:		470.8	==== 357	Durb:	======== in-Watson:		2.036		
Prob(Omnibus)	0.0	00	Jarqı	ue-Bera (JB):		568.673			
Skew:	0.6	0.681		Prob(JB):		3.27e-124			
Kurtosis:	3.2	98	Cond	. No.		12.8			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []: