Principal Component Analysis

CoE197M/EE298M (Foundations of Machine Learning)
Rowel Atienza, Ph.D.
rowel@eee.upd.edu.ph

Reference: "Mathematics for Machine Learning". Copyright 2020 by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Published by Cambridge University Press.

Motivations

Raw data representations are over-complete

Dimensionality reduction reduces the footprint of data without losing useful important information

Problem Statement

Consider a dataset $\mathcal{X} = \{x_1, ..., x_N\}$, $x_n \in \mathbb{R}^D$ with mean $\mathbf{0}$ and data covariance matrix:

$$S = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^T$$

There exists a low-dimensional compression representation (code) of x_n :

$$\mathbf{z}_n = \mathbf{B}^T \mathbf{x}_n \in \mathbb{R}^M$$

The projection matrix:

$$\boldsymbol{B} := [\boldsymbol{b}_1, ..., \boldsymbol{b}_M] \in \mathbb{R}^{D \times M}$$

With orthonormal basis $\boldsymbol{b}_i^T \boldsymbol{b}_j = 0$ with $i \neq j$ and $\boldsymbol{b}_i^T \boldsymbol{b}_i = 1$

We project x_n into a low-dimensional subspace $U \subseteq \mathbb{R}^D$ with dim(U) = M < D

The projected data is $\widetilde{m{x}}_n$ with $m{z}_n$ as the coordinates on basis $m{B}$

Dimensionality Reduction

The objective is to find $\tilde{\boldsymbol{x}}_n \in \mathbb{R}^D$ or $\boldsymbol{z}_n = [z_{1n}, \dots, z_{Mn}]^T \in \mathbb{R}^{M \times 1}$ and basis $\boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_M] \in \mathbb{R}^{D \times M}$ that minimizes the loss due to compression

Example loss: squared reconstruction loss $\|\mathbf{x}_n - \widetilde{\mathbf{x}}_n\|^2$

Finding Projective Coordinates

Projective Perspective

Assume ONB $B = (\boldsymbol{b}_1, ..., \boldsymbol{b}_D) \in \mathbb{R}^D$

$$x = \sum_{i=1}^{M} k_i \boldsymbol{b}_i + \sum_{j=M+1}^{D} k_j \boldsymbol{b}_j$$

$$\widetilde{\boldsymbol{x}}_n \in U \subseteq \mathbb{R}^D$$

where $k_i \in \mathbb{R}$

Objective Function

Minimize the average Euclidean reconstruction error:

$$J_M := \frac{1}{N} \sum_{n=1}^{N} \| \mathbf{x}_n - \widetilde{\mathbf{x}}_n \|^2$$

Where

$$\widetilde{\boldsymbol{x}}_n = \sum_{m=1}^M z_{mn} \boldsymbol{b}_m = \boldsymbol{B} \boldsymbol{z}_n \in U \subseteq \mathbb{R}^D$$

Visualizing Distance Minimization

(b) Differences $\boldsymbol{x} - \tilde{\boldsymbol{x}}_i$ for 50 different $\tilde{\boldsymbol{x}}_i$ are shown by the red lines.

Visualizing Distance Minimization

(a) Distances $\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|$ for some $\tilde{\boldsymbol{x}} = z_1 \boldsymbol{b} \in U = \operatorname{span}[\boldsymbol{b}]$; see panel (b) for the setting.

(b) The vector $\tilde{\boldsymbol{x}}$ that minimizes the distance in panel (a) is its orthogonal projection onto U. The coordinate of the projection $\tilde{\boldsymbol{x}}$ with respect to the basis vector \boldsymbol{b} that spans U is the factor we need to scale \boldsymbol{b} in order to "reach" $\tilde{\boldsymbol{x}}$.

Optimal Coordinates

Find coordinates of \mathbf{z} of $\widetilde{\mathbf{x}}_n$ for $n=1,\ldots,N$ Assume, ONB $[\mathbf{b}_1,\ldots,\mathbf{b}_M]$ of $U\subseteq\mathbb{R}^D$ Such that $||\mathbf{x}_n-\widetilde{\mathbf{x}}_n||^2$ is minimized

Assume we are given dataset: $\mathcal{X} = \{x_1, ..., x_N\}$ where $x_n \in \mathbb{R}^D$ and $\mathbb{E}[\mathcal{X}] = 0$ or all data are zero centered

Zero Centering

Assuming the mean $\mathbb{E}[\mathcal{X}] = \mu$

$$x_n = x_n - \mu$$

Optimal Coordinates

$$\frac{\partial J_M}{\partial z_{in}} = \frac{\partial J_M}{\partial \widetilde{\boldsymbol{x}}_n} \frac{\partial \widetilde{\boldsymbol{x}}_n}{\partial z_{in}}$$

$$\frac{\partial J_M}{\partial \widetilde{\boldsymbol{x}}_n} = -\frac{2}{N} (\boldsymbol{x}_n - \widetilde{\boldsymbol{x}}_n)^T \in \mathbb{R}^{1 \times D}$$

$$\frac{\partial \widetilde{\boldsymbol{x}}_n}{\partial z_{in}} = \frac{\partial}{\partial z_{in}} \left(\sum_{m=1}^M z_{mn} \boldsymbol{b}_m \right) = \boldsymbol{b}_i \in \mathbb{R}^{D \times 1}$$

Optimal Projection z_{in}

$$\frac{\partial J_M}{\partial z_{in}} = -\frac{2}{N} (\boldsymbol{x}_n - \widetilde{\boldsymbol{x}}_n)^T \boldsymbol{b}_i = -\frac{2}{N} \left(\boldsymbol{x}_n - \sum_{m=1}^M z_{mn} \boldsymbol{b}_m \right)^T \boldsymbol{b}_i$$

$$\frac{\partial J_M}{\partial z_{in}} = -\frac{2}{N} (\boldsymbol{x}_n^T \boldsymbol{b}_i - z_{in} \boldsymbol{b}_i^T \boldsymbol{b}_i)$$

$$\frac{\partial J_M}{\partial z_{in}} = -\frac{2}{N} (\boldsymbol{x}_n^T \boldsymbol{b}_i - z_{in}) = 0$$

$$z_{in} = \boldsymbol{x}_n^T \boldsymbol{b}_i = \boldsymbol{b}_i^T \boldsymbol{x}_n$$

Observations

The optimal projection $\widetilde{\boldsymbol{x}}_n$ of \boldsymbol{x}_n is an orthogonal projection The coordinates of $\widetilde{\boldsymbol{x}}_n$ with respect to $[\boldsymbol{b}_1,\dots,\boldsymbol{b}_M]$ are the coordinates of the orthogonal projection of $\widetilde{\boldsymbol{x}}_n$ on the principal subspace An orthogonal projection is the best linear mapping given the objective The coordinates z_{in} for $i=1,\dots,m$ must be the same as k_{in} for $i=1,\dots,m$

PCA on 2-dim

The coordinates of \boldsymbol{x} on \boldsymbol{b}_1 has a length $\boldsymbol{z}_1 = \sqrt{5}$.

Projection of x on b_1 has length $\sqrt{1+2^2}=\sqrt{5}$. This is split to:

$$x_1 = \sqrt{5}\cos\frac{\pi}{4} = 1.5$$
 and $x_2 = \sqrt{5}\sin\frac{\pi}{4} = 1.5$

Orthogonal Projection with ONB

Recall projection of a vector $\mathbf{x} \in \mathbb{R}^n$ onto U that is closest to \mathbf{x} is $\pi_U(\mathbf{x})$ with a basis vector $\mathbf{b} \in \mathbb{R}^n$

$$\pi_U(x) = \lambda b = b\lambda = b\frac{b^T x}{\|b\|^2} = \frac{bb^T}{\|b\|^2} x = P_{\pi} x$$

Then:

General ONB

Assume, ONB $\boldsymbol{B} = [\boldsymbol{b}_1, ..., \boldsymbol{b}_M]$ of $U \subseteq \mathbb{R}^D$

$$\widetilde{\mathbf{x}}_n = \mathbf{B}\mathbf{B}^T\mathbf{x}_n$$

 $oldsymbol{B}^T oldsymbol{x}_n$ is the projection of $oldsymbol{x}_n$ on ONB

Note that $\widetilde{x}_n \in \mathbb{R}^D$ but our coordinates $[z_1, ..., z_M]$ with respect to basis vectors $[\boldsymbol{b}_1, ..., \boldsymbol{b}_M]$ is of dimensions M < D

The other coordinates $[z_{M+1}, ..., z_D]$ with respect to basis vectors $[\boldsymbol{b}_{M+1}, ..., \boldsymbol{b}_D]$ have zero values

Finding ONB

Find the Basis $\boldsymbol{b}_1, \dots, \boldsymbol{b}_M$

$$\widetilde{\boldsymbol{x}}_n = \sum_{m=1}^{M} z_{mn} \boldsymbol{b}_m$$
 $\widetilde{\boldsymbol{x}}_n = \sum_{m=1}^{M} (\boldsymbol{x}_n^T \boldsymbol{b}_m) \boldsymbol{b}_m$
 $\widetilde{\boldsymbol{x}}_n = \left(\sum_{m=1}^{M} \boldsymbol{b}_m \boldsymbol{b}_m^T\right) \boldsymbol{x}_n$

$$\boldsymbol{x}_n = \sum_{m=1}^{M} z_m \boldsymbol{b}_m + \sum_{j=M+1}^{D} z_j \boldsymbol{b}_j$$

$$\boldsymbol{x}_n = \left(\sum_{m=1}^{M} \boldsymbol{b}_m \boldsymbol{b}_m^T\right) \boldsymbol{x}_n + \left(\sum_{j=M+1}^{D} \boldsymbol{b}_j \boldsymbol{b}_j^T\right) \boldsymbol{x}_n$$

Therefore,

$$\mathbf{x}_n - \widetilde{\mathbf{x}}_n = \left(\sum_{j=M+1}^{D} \mathbf{b}_j \mathbf{b}_j^T\right) \mathbf{x}_n = \sum_{j=M+1}^{D} (\mathbf{x}_n^T \mathbf{b}_j) \mathbf{b}_j$$

Observation on
$$\boldsymbol{x}_n - \widetilde{\boldsymbol{x}}_n = \sum_{j=M+1}^D (\boldsymbol{x}_n^T \boldsymbol{b}_j) \boldsymbol{b}_j$$

The difference is exactly the projection of the data point on the orthogonal complement of the principal subspace

Maximum Variance

Project to low-dimensional subspace while maximizing variance to retain as much information as possible

Finding the 1st Basis Vector $\boldsymbol{b}_1 \in \mathbb{R}^D$

Assumind i.i.d., maximize the variance of the first coordinate z_1 of $\mathbf{z} \in \mathbb{R}^M$:

$$V_1 = \mathbb{V}[z_1] = \frac{1}{N} \sum_{n=1}^{N} z_{1n}^2$$

Where

$$z_{1n} = \boldsymbol{b}_1^T \boldsymbol{x}_n$$

$$V_1 = \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{b}_1^T \boldsymbol{x}_n)^2 = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{b}_1^T \boldsymbol{x}_n \, \boldsymbol{x}_n^T \boldsymbol{b}_1$$

$$V_1 = \boldsymbol{b}_1^T \left(\frac{1}{N} \sum_{n=1}^N \boldsymbol{x}_n \, \boldsymbol{x}_n^T \right) \boldsymbol{b}_1 = \boldsymbol{b}_1^T \boldsymbol{S} \boldsymbol{b}_1$$

Where S is the data covariance matrix defined earlier.

We restrict $||\boldsymbol{b}_1||^2 = 1$ so that the variance comes from \boldsymbol{S} only

Direction of Maximum Variance

$$\max_{\boldsymbol{b}_1} \boldsymbol{b}_1^T \boldsymbol{S} \boldsymbol{b}_1$$

Subject to: $\| \boldsymbol{b}_1 \|^2 = 1$

The Lagrange:

$$\mathfrak{L}(\boldsymbol{b}_1, \lambda) = \boldsymbol{b}_1^T \boldsymbol{S} \boldsymbol{b}_1 + \lambda (1 - \boldsymbol{b}_1^T \boldsymbol{b}_1)$$

The partial derivative:

$$\frac{d\Omega}{d\boldsymbol{b}_1} = 2\boldsymbol{b}_1^T \boldsymbol{S} - 2\lambda \boldsymbol{b}_1^T$$

$$\frac{d\mathfrak{Q}}{d\lambda} = (1 - \boldsymbol{b}_1^T \boldsymbol{b}_1)$$

$$2\boldsymbol{b}_{1}^{T}\boldsymbol{S} - 2\lambda\boldsymbol{b}_{1}^{T} = 0 \text{ and } 1 - \boldsymbol{b}_{1}^{T}\boldsymbol{b}_{1} = 0$$
:

$$m{b}_1^T m{S} = \lambda m{b}_1^T ext{ or } m{S} m{b}_1 = \lambda m{b}_1$$

 $m{b}_1^T m{b}_1 = 1$

Rewriting:

$$V_1 = \boldsymbol{b}_1^T \left(\frac{1}{N} \sum_{n=1}^N \boldsymbol{x}_n \, \boldsymbol{x}_n^T \right) \boldsymbol{b}_1 = \boldsymbol{b}_1^T \boldsymbol{S} \boldsymbol{b}_1 = \lambda \boldsymbol{b}_1^T \boldsymbol{b}_1 = \lambda$$

The variance is equal to the eigenvalue.

To maximize the variance, we choose the eigenvector as the basis vector with the maximum eigenvalue.

This eigenvector \boldsymbol{b}_1 is called first principal component

What we have so far...

We have one basis vector $m{b}_1$ which is the eigenvector corresponding to the largest eigenvalue of $m{S}$

Problem: We need m-1 more basis vectors ${m b}_2$, ..., ${m b}_m$

Finding the 2nd Basis Vector $\boldsymbol{b}_2 \in \mathbb{R}^D$

Subtract the effect of the first principal component \boldsymbol{b}_1 from the data:

$$\widehat{\boldsymbol{x}}_n = \boldsymbol{x}_n - \widetilde{\boldsymbol{x}}_1 = \boldsymbol{x}_n - \boldsymbol{b}_1 \boldsymbol{b}_1^T \boldsymbol{x}_n$$

Then we can use the same argument:

$$V_2 = \boldsymbol{b}_2^T \left(\frac{1}{N} \sum_{n=1}^N \widehat{\boldsymbol{x}}_n \widehat{\boldsymbol{x}}_n^T \right) \boldsymbol{b}_2 = \boldsymbol{b}_2^T \widehat{\boldsymbol{S}} \boldsymbol{b}_2$$

The maximum variance is achieved at

$$\hat{\mathbf{S}}\mathbf{b}_2 = \lambda \mathbf{b}_2$$

Finding the M^{th} Basis Vector $\boldsymbol{b}_M \in \mathbb{R}^D$

Subtract the effect of the first M-1 principal components $\boldsymbol{b}_1, \dots, \boldsymbol{b}_{M-1}$ from the data:

$$\widehat{\boldsymbol{x}}_n = \boldsymbol{x}_n - \left(\sum_{m=1}^{M-1} \boldsymbol{b}_m \boldsymbol{b}_m^T\right) \boldsymbol{x}_n$$

Then we can use the same argument:

$$V_m = \boldsymbol{b}_m^T \left(\frac{1}{N} \sum_{n=1}^N \widehat{\boldsymbol{x}}_n \widehat{\boldsymbol{x}}_n^T \right) \boldsymbol{b}_m = \boldsymbol{b}_m^T \widehat{\boldsymbol{S}} \boldsymbol{b}_m$$

The maximum variance is achieved at

$$\hat{\mathbf{S}}\boldsymbol{b}_{m}=\lambda\boldsymbol{b}_{m}$$

Recall: Properties of Symmetric Matrix

Theorem (Spectral Theorem): If $A \in \mathbb{R}^{n \times n}$ is symmetric, there exists an **orthonormal basis** of vector space V from the eigenvectors of A and each eigenvalue is real.

Theorem: The eigenvectors $\{x_1, x_2, ..., x_n\}$ of matrix $A \in \mathbb{R}^{n \times n}$ with distinct eigenvalues $\{\lambda_1, \lambda_2, ..., \lambda_n\}$ are linearly independent

Theorem (SPSD): For a given matrix $A \in \mathbb{R}^{n \times n}$, we can always obtain a symmetric positive semi-definite matrix $S \in \mathbb{R}^{n \times n}$: $S = A^T A$ If rank(A) = n, then S is a symmetric positive definite (SPD) matrix

Eigenvalues/Eigenvectors

$$\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}, \, \boldsymbol{x}_n \in \mathbb{R}^D$$
:

$$S = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^T = \frac{1}{N} X X^T$$

$$X = [x_1 \quad \cdots \quad x_N] \in \mathbb{R}^{D \times N}$$

Typical Procedure to Obtain Eigenvalues/Eigenvectors

Perform Eigendecomposition on $S = BDB^{-1}$

D are eigenvalues

B are eigenvectors

Perform SVD on X

$$\mathbf{X} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}$$

$$\mathbf{S} = \frac{1}{N}\mathbf{X}\mathbf{X}^{T} = \frac{1}{N}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}\mathbf{V}\mathbf{\Sigma}^{T}\mathbf{U}^{T} = \frac{1}{N}\mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^{T}\mathbf{U}^{T}$$

Σ are eigenvalues

U are eigenvectors

Low-Rank Approximations of **X**

Consider the SVD of $X = U\Sigma V^T$

A low-rank approximation of X using the M largest eigenvalues:

$$X = U_M \Sigma_M V_M^T \in \mathbb{R}^{D \times N}$$

PCA Algorithm

- 1. Mean Subtraction : $\mathbf{x}_n = \mathbf{x}_n \boldsymbol{\mu}$ where $\boldsymbol{\mu} = [u_1 \quad \cdots \quad u_d]^T$, d is the data dimension (eg d=3 for RGB image)
- 2. Standardization by dividing the data by standard deviation: $x_n = \frac{x_n \mu}{\sigma}$, where $\sigma = [\sigma_1 \quad \cdots \quad \sigma_d]^T$
- 3. Eigendecomposition of covariance matrix $S = BDB^{-1}$
- 4. Projection: $\tilde{x}_n = B_M B_M^T x_n$ where the coordinates with respect to the M principal basis vectors subspace: $\tilde{z}_n = B_M^T x_n$
- 5. Backprojection: $\widetilde{x}_n = \widetilde{x}_n \boldsymbol{\sigma} + \boldsymbol{\mu}$

PCA Algorithm

(a) Original dataset.

(b) Step 1: Centering by subtracting the mean from each data point.

(c) Step 2: Dividing by the standard deviation to make the data unit free. Data has variance 1 along each axis.

(d) Step 3: Compute eigenvalues and eigenvectors (arrows) of the data covariance matrix (ellipse).

(e) Step 4: Project data onto the principal subspace.

(f) Undo the standardization and move projected data back into the original data space from (a).

Probabilistic Modelling

Probabilistic Model

Typical probabilistic model:

Joint probability likelihood prior
$$p(x, \theta) = p(x|\theta)p(\theta)$$

Marginal:
$$p(x) = \int p(x, \theta) d\theta$$

Posterior:
$$p(\boldsymbol{\theta}|\boldsymbol{x}) = \frac{p(\boldsymbol{x},\boldsymbol{\theta})}{p(\boldsymbol{x})}$$

Probabilistic Model DGM

$$p(x, \theta) = p(x|\theta)p(\theta) = p(\theta|x)p(x)$$

Latent Variable Model

An intermediate latent variable z is introduced as part of the model. The latent variable z is not a model parameter

The latent variable z describes both the data distribution p(x), thus the data generating process $p(\tilde{x}|z,\phi)$ where ϕ represents the model parameters

Latent Variable Model DGM

$$p(\mathbf{x}, \widetilde{\mathbf{x}}, \boldsymbol{\theta}, \boldsymbol{\phi}) = p(\mathbf{x})p(\boldsymbol{\theta}|\mathbf{x})p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})p(\boldsymbol{\phi}|\mathbf{z})p(\widetilde{\mathbf{x}}|\mathbf{z}, \boldsymbol{\phi})$$

Latent Variable Model of PCA

Probabilistic PCA (PPCA)

Can deal with noise

Can use Bayesian interpretation

Can use PCA decoder as a generator

Can generate new data points from the generator

Can extend to mixture of PCA

Can treat PCA as a special case

etc

PPCA

If $p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ and linear relationship between latent variable and observed data \mathbf{x} ,

$$\mathbf{x} = \mathbf{B}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon} \in \mathbb{R}^D$$

$$\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}), \mathbf{B} \in \mathbb{R}^{D \times M}, \boldsymbol{\mu} \in \mathbb{R}^D$$
:

$$p(\mathbf{x}|\mathbf{B},\mathbf{z},\boldsymbol{\mu},\sigma^2) = \mathcal{N}(\mathbf{x}|\mathbf{B}\mathbf{z} + \boldsymbol{\mu},\sigma^2\mathbf{I})$$

Generative Model

 $\mathbf{z}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

$$\boldsymbol{x}|\boldsymbol{z}_n \sim \mathcal{N}(\boldsymbol{x}|\boldsymbol{B}\boldsymbol{z}_n + \boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$$

Generative Model

$$p(\mathbf{x}|\mathbf{B}, \boldsymbol{\mu}, \sigma^2) = \int p(\mathbf{x}|\mathbf{B}, \boldsymbol{\mu}, \mathbf{z}, \sigma^2) p(\mathbf{z}) d\mathbf{z}$$
$$= \int \mathcal{N}(\mathbf{x}|\mathbf{B}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I}) \,\mathcal{N}(\mathbf{0}, \mathbf{I}) d\mathbf{z}$$
$$= \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{B}\mathbf{B}^T + \sigma^2 \mathbf{I})$$