

INTRODUCTION:

- System can support any degree of dataset as input.
- System focuses on classification task of data mining and high dimenstional issue of preprocessing.
- Create groups of similar weight data and select best from group.
- Drop unnecessary data using CCE and SU.
- Gives best features set.

SCOPE:

- 1. Feature selection using CCE and SU.
- 2. Make groups of same priority and out of them select best.
- 3. removes redundant and independent attributes with class level.
- 4. CCE is considered for relationship between two variables.
- 5. SU is considered to fix minimum value of weight

OBJECTIVE:

- Extracting the better features.
- To increase the classification performance.
- Reduce high dimensionality.
- To reduce dimensionality using CCE and SU.
- To devolope methodology to address the high dimensionality issue using clustering and filter based methods.
- To devolope and compare with the existing methods using various classifiers.

SYSTEM ARCHITECTURE

Input data set

Compare with existing Subset of features

PROPOSED METHODOLOGY WORKING

CSV File as input

X	У		
43	99		
	10	20	
21	65		
25	79		
10	12	58	
42	75		
57	87		
59	81		
10			

Data Preprocessing
Noisy and Missing values
Mislabeled Imbalanced

- 3 rows are drop due to invalid data
- 6 rows are selected for next processing

X	У		
43	99		
	10	20	
21	65		
25	79		
10	12	58	
42	75		
57	87		
59	81		
10	"a6"		

Generate the Correlation coefficient symmetrical matrix

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{\left[n\sum x^2 - (\sum x)^2\right] \left[n\sum y^2 - (\sum y)^2\right]}}$$

Feature Id	а	b	С	d	е	f	g	h	i	j
а	1	-0.08	-0.03	-0.15	-0.16	-0.05	-0.11	0.31	-0.28	0.29
b	-0.08	1	0.05	0.09	-0.11	-0.04	-0.13	-0.28	0.21	-0.37
С	-0.03	0.05	1	-0.07	0.05	-0.01	0.27	-0.1	0.12	-0.07
d	-0.15	0.09	-0.07	1	0.29	0.01	0.09	-0.23	0.29	-0.31
е	-0.16	-0.11	0.05	0.29	1	0.12	0.23	-0.12	0.56	-0.27
f	-0.05	-0.04	-0.01	0.01	0.12	1	0.01	0.04	0.03	-0.03
g	-0.11	-0.13	0.27	0.09	0.23	0.01	1	0.05	0.27	-0.14
h	0.31	-0.28	-0.1	-0.23	-0.12	0.04	0.05	1	-0.43	0.46
i	-0.28	0.21	0.12	0.29	0.56	0.03	0.27	-0.43	1	-0.47
j	0.29	-0.37	-0.07	-0.31	-0.27	-0.03	-0.14	0.46	-0.47	1

Find SU for each feature and sort decending order by SU

SU	Feature No	Feature Name
.19	10	j
.19	8	h
.19	7	g
.18	9	i
.15	2	b
.09	1	а
.07	4	d
.06	3	С
.06	5	е
.02	6	f

SU=
$$(2*IG)/(H(X)+X(Y))$$

H(X)=- $\int p(x)\log(p(x))\partial x$

Supervised Feature Selection - Information Gain

$$IG(t) = -\sum_{i=1}^{m} p(c_i) \log p(c_i)$$

$$+ p(t) \sum_{i=1}^{m} p(c_i | t) \log p(c_i | t) + p(\bar{t}) \sum_{i=1}^{m} p(c_i | \bar{t}) \log p(c_i | \bar{t})$$

 c_i represents the i th category, $P(c_i)$ is the probability of the i th category.

P(t) and $P(\bar{t})$ are the probabilities that the term t appears or not in the documents.

 $P(c_i|t)$ is the conditional probability of the i th category given that term t appeared, and $P(c_i|\bar{t})$ is the conditional probability of the i th category given that term t does not appeared.

Choose the middle feature's SU value as t

SU	Feature No	Feature Name
.19	10	j
.19	8	h
.19	7	g
.18	9	i
.15	2	b
.09	1	a
.07	4	d
.06	3	С
.06	5	е
.02	6	f

t=.15

Transform CCE matrix to binary matrix as compare each value to t if less represent as 0 else 1

Feature Id	а	b	С	d	е	f	g	h	i	j
a	1	-0.08	-0.03	-0.15	-0.16	-0.05	-0.11	0.31	-0.28	0.29
b	-0.08	1	0.05	0.09	-0.11	-0.04	-0.13	-0.28	0.21	-0.37
С	-0.03	0.05	1	-0.07	0.05	-0.01	0.27	-0.1	0.12	-0.07
d	-0.15	0.09	-0.07	1	0.29	0.01	0.09	-0.23	0.29	-0.31
е	-0.16	-0.11	0.05	0.29	1	0.12	0.23	-0.12	0.56	-0.27
f	-0.05	-0.04	-0.01	0.01	0.12	1	0.01	0.04	0.03	-0.03
g	-0.11	-0.13	0.27	0.09	0.23	0.01	1	0.05	0.27	-0.14
h	0.31	-0.28	-0.1	-0.23	-0.12	0.04	0.05	1	-0.43	0.46
i	-0.28	0.21	0.12	0.29	0.56	0.03	0.27	-0.43	1	-0.47
j	0.29	-0.37	-0.07	-0.31	-0.27	-0.03	-0.14	0.46	-0.47	1

t=0.15

	Feature Id	а	b	С	d	е	f	g	h	i	j
	а	1	0	0	0	0	0	0	1	0	1
	b	0	1	0	0	0	0	0	0	1	0
	С	0	0	1	0	0	0	1	0	0	0
	d	0	0	0	1	1	0	0	0	1	0
•	е	0	0	0	1	1	0	1	0	1	0
	f	0	0	0	0	0	1	0	0	0	0
	g	0	0	1	0	1	0	1	0	1	0
	h	1	0	0	0	0	0	0	1	0	1
	i	0	1	0	1	1	0	1	0	1	0
	j	1	0	0	0	0	0	0	1	0	1

Calculate the total weight using binary matrix row wise

Feature Id	а	b	С	d	е	f	g	h	İ	j
а	1	0	0	0	0	0	0	1	0	1
b	0	1	0	0	0	0	0	0	1	0
С	0	0	1	0	0	0	1	0	0	0
d	0	0	0	1	1	0	0	0	1	0
е	0	0	0	1	1	0	1	0	1	0
f	0	0	0	0	0	1	0	0	0	0
g	0	0	1	0	1	0	1	0	1	0
h	1	0	0	0	0	0	0	1	0	1
i	0	1	0	1	1	0	1	0	1	0
j	1	0	0	0	0	0	0	1	0	1

Weight	Featur e
3	а
2	b
2 2 3	С
3	d
4	е
1	f
4	g
3	h
5	i
3	j

Group the feature which having same weight

Weight	Feature
3	a
2	b
2	С
3	d
4	е
1	f
4	g
3	h
5	i
3	j

Select the one feature from group by first appearance in SU Table

SU	Feature No	Feature Name
.19	10	j
.19	8	h
.19	7	g
.18	9	i
.15	2	b
.09	1	а
.07	4	d
.06	3	С
.06	5	е
.02	6	f

Group id	Weight	F_name	Selected feature
1	1	f	f
2	2	{b, c}	b
3	3	{a,d,h,j}	j
4	4	{g,e}	g
5	5	i	i

Final candidate feature set:

CFS={ f, b, j, g, 1 }

Data sets description

Data set ID	Name of the Data Set	# Instances	# Features	# Features Selected	# Class
1	Ionosphere	351	34	13	2
2	Dermatology	366	34	13	6
3	Biodegradation	1055	41	23	2
4	Cardiotocography	2126	22	12	3
5	Lung Cancer	33	56	15	3
6	Libras Movement	360	90	21	15
7	Connectionist Bench(Sonar)	208	60	28	2
8	Spambase	4601	57	16	2
9	Breast Cancer(WDBC)	569	30	15	2
10	Musk (V 2)	476	166	54	2

CONCLUSION:

- It reduce the data set dimensionality by selecting the best features in it to boosts-up the classification performance.
- method was compared with four existing filter based methods namely, information gain(IG),
 Chi-Square (Chi), Grain Ratio (GR), and Relief.
- For testing the our proposed method, six different classifiers Jrip, Ridor, J48, Simple cart,
 Naive Bayes, IBk are applied on Ten different real time data sets.
- method displayed better results than existing IG and GR on 7 data sets,

FUTURE SCOPE

The same technique can be implemented using Hadoop framework.

Final candidate feature set:

CFS={ f, b, j, g, 1 }

REFERENCES

Correlation Coefficient Based Candidate Feature Selection Framework Using Graph Construction

SP Potharaju, M Sreedevi

Gazi University Journal of Science 31 (3), 775-787