MPS based on Genetic Algorithms implemented in a (Distributed)Shared-Memory Supercomputer

Oscar Peredo¹, Julián M. Ortiz²

- 1: Computer Applications in Science & Engineering Department, Barcelona Supercomputing Center
 - 2: Advanced Lab for Geostatistical Supercomputing, Advanced Mining Technology Center

Objectives of this talk

Genetic algorithms (GAs)

Implementation

Exploiting parallelism in GAs Speedup results

Outline

Objectives of this talk

Genetic algorithms (GAs)

Implementation

Exploiting parallelism in GAs Speedup results

 We want to generate realizations that reproduce multiple-point statistics (MPS) inferred from a 2D training image.

Training image

Realization A

Realization B

Realization C

Realization D

- Several methods to do this task: snesim, unilateral path, neural networks, simulated annealing...
- How good are genetic algorithms to reproduce MPS?

Objectives of this talk

Genetic algorithms (GAs)

Implementation
Exploiting parallelism in GAs
Speedup results

GAs: overview

- 1: Initial population: *N* random individuals
- 2: $k \leftarrow 0$
- 3: Evaluate a **fitness function** f in each individual
- 4: while termination criteria is not achieved do
- 5: $\{generation k\}$
- 6: **Selection**: select best individuals using f values
- 7: Crossover: breed new individuals crossing bits
- 8: Mutation: breed new individuals mutating some bits
- 9: Replace old individuals by new ones
- 10: $k \leftarrow k + 1$
- 11: Evaluate a fitness function f in each individual
- 12: end while

GAs: overview

- 1: Initial population: *N* random individuals
- 2: $k \leftarrow 0$
- 3: Evaluate a **fitness function** f in each individual
- 4: while termination criteria is not achieved do
- 5: $\{generation k\}$
- 6: **Selection**: select best individuals using *f* values
- 7: Crossover: breed new individuals crossing bits
- 8: Mutation: breed new individuals mutating some bits
- 9: Replace old individuals by new ones
- 10: $k \leftarrow k + 1$
- 11: Evaluate a fitness function f in each individual
- 12: end while

Individuals 1D $(nm) \iff$ Realization images 2D $(n \times m)$

GAs: fitness function

• It depends on a user-defined template T:

• Using Patterns(T), we calculate:

$$fitness(indiv_k) = \sum_{p \in Patterns(T)} \left(\#pattern_p^{TI} - \#pattern_p^{indiv_k} \right)^2$$

 This function measures the mismatch between the target statistics (from the training image) and the current statistics for each individual.

GAs: selection

P% of the population "survives". The rest is generated using crossover/mutation.

GAs: crossover

• Choose cut points

cut points

Choose sections

1 1

 Breed new individual with the chosen sections

GAs: mutation

Choose mutation bit

 Breed new individual changing its value with probability m := m(t)

GAs: examples, (non)-conditional realizations

 $100\!\times\!100$ images, 10000 generations, 4000 individuals, 20% selection, dynamic mutation probability, 100 cut-points Template 17 nodes disconnected

No conditionants

No conditionants

No conditionants

Training image

5% conditionants

5% conditionants

5% conditionants

GAs: examples, dynamic template utilization

 100×100 images, 10000 generations, 4000 individuals, 20% selection, dynamic mutation probability, 100 cut-points, no conditionants

Template: first half with template T_1 , second half with template T_2

GAs: remarks

Advantages:

- Reasonable good realizations (the quality depends on the number of template's nodes).
- straightforward and easy implementation (Fortran90)
- the initial population can be enhanced with external information from different models to improve or refine the results.

Disadvantages:

- adjustment of several parameters (mutation probability, crossover cut points, population size,...)
- time and memory expensive

GAs: remarks

Advantages:

- Reasonable good realizations (the quality depends on the number of template's nodes).
- straightforward and easy implementation (Fortran90)
- the initial population can be enhanced with external information from different models to improve or refine the results.

Disadvantages:

- adjustment of several parameters (mutation probability, crossover cut points, population size,...)
- time and memory expensive ⇒ can we use parallel computing?

Outline

Objectives of this talk

Genetic algorithms (GAs)

Implementation

Exploiting parallelism in GAs Speedup results

Outline

Objectives of this talk

Genetic algorithms (GAs)

Implementation
Exploiting parallelism in GAs
Speedup results

CPU trends

Moore's law:
 2×#transistors every 2
 years

 Future trends: more processors in a single chip + hardware accelerators

We have to adapt our CPU/memory intensive algorithms (like GAs) to parallel computer architectures in order to exploit all their capabilities.

Examples of parallel computer architectures

Programming models

- Shared memory: OpenMP
 (addition of #pragmas, minimal modifications in the code)
- Distributed memory: MPI
 (synchronization of low-level network messages between nodes, considerable modifications in the code)
- Distributed-shared memory: MPI+OpenMP

Programming models

- Shared memory: OpenMP
 (addition of #pragmas, minimal modifications in the code)
- Distributed memory: MPI
 (synchronization of low-level network messages between nodes, considerable modifications in the code)
- Distributed-shared memory: MPI+OpenMP (best performance)

Exploiting parallelism in GAs

Task: we need to calculate the fitness function of N individuals.

Elements: *P* nodes, *C* processors per node.

Proposed solution: MPI+OpenMP based solution

- Distribute the population in N/P individuals per node (MPI).
- Each node calculates the fitness function of N/P individuals using C processors (OpenMP parallel loops).
- Each node shares its best individuals with the other nodes (MPI).

Outline

Objectives of this talk

Genetic algorithms (GAs)

Implementation

Exploiting parallelism in GAs Speedup results

Speedup results

- Hardware: 126 nodes (12 CPUs, 2.53 GHz), 24 GB RAM/node.
- OpenMP: fitness function for an individual of size 1000×1000, 17-node template

CPUs	Time(secs)	Speedup
1	0.402347	1x
1+code opts	0.243200	1.65x
2+code opts	0.1280000	3.14x
4+code opts	0.076800004	5.23x
6+code opts	0.044799998	8.98x
8+code opts	0.038400002	10.47x
10+code opts	0.032000002	12.57x
12+code opts	0.025599999	15.71x

^{*}code opts: techniques adapted from stencil optimization in Finite Differences methods, like memory accesses minimization, SIMDization, blocking,

Speedup results

- Hardware: 126 nodes (12 CPUs, 2.53 GHz), 24 GB RAM/node.
- MPI+OpenMP: 30 generations, 1000 individuals of size 1000×1000, 17-node template

Nodes/CPUs	Time(secs)	Speedup
1/1	9364	1x
1/12	1525	6.14x
2/12	781	11.98x
4/12	394	23.76x
8/12	203	46.12x

Objectives of this talk

Genetic algorithms (GAs)

Exploiting parallelism in GAs
Speedup results

- Easy implementation and parallelization: unfortunately it takes too much time to converge...
- Dynamic mutation rate (annealing-style) and dynamic template accelerates the convergence of MPS-GAs.
- Refinement of realizations: adding realizations generated with other methods to the initial population.
- Future work: inclusion of hardware accelerators (GPUs) with new pragma-based programming models
 MPI+OpenMP+{OpenACC,OmpSs,...}

Thanks for your attention!

Contact: oscar.peredo [at] bsc.es
Contact: jortiz [at] ing.uchile.cl

http://www.bsc.es
http://www.alges.cl
http://www.amtc.cl