Andreas Windorfer

2. März 2020

Übersicht

Aufbau des Splaybaum

Operationen

Laufzeitverhalten

Besondere Eigenschafter

links kleinere Schlüssel

• rechts größere Schlüssel

links kleinere Schlüssel

• rechts größere Schlüssel

Suche nach Schlüssel 6

Suche nach Schlüssel 6

Einfügen von Schlüssel 8

Einfügen von Schlüssel 8

Einfügen von Schlüssel 8

Einfügereihenfolgen

Aufbau des Splaybaum

Besonderheiten

Aufbau des Splaybaum

Besonderheiten

selbstorganisierend / dynamisch

Besonderheiten

- selbstorganisierend / dynamisch
- häufig benutzte Elemente oben

Aufbau des Splaybaum

Besonderheiten

- selbstorganisierend / dynamisch
- häufig benutzte Elemente oben
- i.d.R. kürzere Pfadlängen

Operationen

Operationen

- splay
- suchen
- aufteilen
- vereinigen
- einfügen
- löschen

- normale Suche
- Rotationen
 - zig / zag
 - zig-zag / zag-zig
 - zig-zig /zag-zag

tree splay(key x, tree s)

- normale Suche
- Rotationen
 - zig / zag
 - zig-zag / zag-zig
 - zig-zig /zag-zag
- x neue Wurzel

- normale Suche
- Rotationen
 - zig / zag
 - zig-zag / zag-zig
 - zig-zig /zag-zag
- x neue Wurzel
- links-rechts Anordnung

- normale Suche
- Rotationen
 - zig / zag
 - zig-zag / zag-zig
 - zig-zig /zag-zag
- x neue Wurzel
- links-rechts Anordnung
- halbierte Pfadlängen

zig Rotation

- x liegt direkt unter Wurzel
- x ist linker Nachfolger

zig Rotation

- x liegt direkt unter Wurzel
- x ist linker Nachfolger

zag Rotation

- x liegt direkt unter Wurzel
- x ist rechter Nachfolger
- symmetrisch zu zig

zag Rotation

- x liegt direkt unter Wurzel
- x ist rechter Nachfolger
- symmetrisch zu zig

- x ist linker Nachfolger von y
- y ist rechter Nachfolger

zig-zag Rotation

- x ist linker Nachfolger von y
- y ist rechter Nachfolger

zag-zig Rotation

- x ist rechter Nachfolger von y
- y ist linker Nachfolger
- symmetrisch zu zig-zag

zag-zig Rotation

- x ist rechter Nachfolger von y
- y ist linker Nachfolger
- symmetrisch zu zig-zag

zig-zig Rotation

- x ist linker Nachfolger von y
- y ist linker Nachfolger

zig-zig Rotation

- x ist linker Nachfolger von y
- y ist linker Nachfolger

zag-zag Rotation

- x ist rechter Nachfolger von y
- y ist rechter Nachfolger
- symmetrisch zu zig-zig

zag-zag Rotation

- x ist rechter Nachfolger von y
- y ist rechter Nachfolger
- symmetrisch zu zig-zig

splay gesamt

• tree splay(key 2, tree s)

• tree splay(key 2, tree s)

• tree splay(key 2, tree s)

halbierte Pfadlängen

Aufbau des Splaybaum

• halbierte Pfadlängen

Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):652-686, July 1985.

Operationen

- splay
- suchen
- aufteilen
- vereinigen
- einfügen
- löschen

suchen (2, s)

1. splay (2 , s)

suchen (2, s)

1. splay (2, s)

suchen (2, s)

- 1. splay (2, s)
- 2. Test der Wurzel

Operationen

- splay
- suchen
- aufteilen
- vereinigen
- einfügen
- löschen

tree, tree aufteilen(key x, tree s)

aufteilen (5, s)

1. splay (5 , s)

tree, tree aufteilen(key x, tree s)

aufteilen (5, s)

1. splay (5, s)

tree, tree aufteilen(key x, tree s)

aufteilen (5, s)

- 1. splay (5, s)
- 2. rechts abtrennen

Operationen

- splay
- suchen
- aufteilen
- vereinigen
- einfügen
- löschen

tree vereinigen(tree t1 , tree t2)

vereinigen (t1, t2)

Bedingung

maxKey(t1) < minKey(t2)

1. splay (maxValue, t1)

tree vereinigen(tree t1 , tree t2)

vereinigen (t1, t2)

Bedingung

maxKey(t1) < minKey(t2)

1. splay (maxValue, t1)

tree vereinigen(tree t1 , tree t2)

vereinigen (t1, t2)

Bedingung

maxKey(t1) < minkey(t2)

- 1. splay (maxValue, t1)
- 2. t2 rechts anhängen

Operationen

- splay
- suchen
- aufteilen
- vereinigen
- einfügen
- löschen

tree einfügen(key x, tree s)

einfügen (6, s)

1. aufteilen (6, s)

tree einfügen(key x, tree s)

einfügen (6, s)

1. aufteilen (6, s)

einfügen (6, s)

- 1. aufteilen (6, s)
- 2. t1, t2 über x zusammenfügen

Operationen

- splay
- suchen
- aufteilen
- vereinigen
- einfügen
- löschen

löschen (5, s)

1. suchen (5, s)

löschen (5, s)

1. suchen (5, s)

löschen (5, s)

- 1. suchen (5, s)
- 2. Wurzel entfernen

löschen (5, s)

- 1. suchen (5, s)
- 2. Wurzel entfernen
- 3. vereinigen (t1, t2)

Übersicht

Laufzeitverhalten

Einfügereihenfolge: 1, 2, 3, 4, 5

Laufzeit Einzeloperationen

• splay: n Ebenen

Laufzeit Einzeloperationen

• splay: n Ebenen

- Operationsfolgen im schlechtesten Fall
 - Bankkontomethode
 - Potentialfunktionmethode

- Operationsfolgen im schlechtesten Fall
 - Bankkontomethode
 - Potentialfunktionmethode
- Bei Splaybaum Potentialfunktionmethode

- günstige Operationen subventionieren teure
- amortisierte Kosten sind obere Schranke

- günstige Operationen subventionieren teure
- amortisierte Kosten sind obere Schranke
- Beispiel Stack mit Operationen
 - pop() mit Kosten y = O(1)
 - popAll() mit Kosten ny = O(n)
 - push() mit Kosten x = O(1)

- Guthaben G
- tatsächliche Kosten ci
- amortisierte Kosten $a_i = c_i + G_i G_{i-1}$

•
$$\sum_{i=1}^{n} (a_i - c_i) \geq 0$$

• push() zahlt y ein

pop() entnimmt y

baut auf Bankkontomethode auf

- Φ_i bestimmt Guthaben
- amortisierte Kosten $a_i = c_i + \Phi_i \Phi_{i-1}$
- amortisierte Gesamtosten $(\sum_{i=1}^{n} c_i) + \Phi_n + \Phi_0$

baut auf Bankkontomethode auf

- Φ_i bestimmt Guthaben
- amortisierte Kosten $a_i = c_i + \Phi_i \Phi_{i-1}$
- amortisierte Gesamtosten $(\sum\limits_{i=1}^{n}c_{i})+\Phi_{n}+\Phi_{0}$
- Beim Stack-Beispiel $\Phi_i = y * Anzahl Elemente$

amortisierte splay-Kosten

• Gewichtsfunktion $iw(i) \ge 1$ für Schlüssel i

- Gewichtsfunktion $iw(i) \ge 1$ für Schlüssel i
- Gesamtgewichtsfunktion $tw(n) = \sum iw(i)$ für Knoten n

- Gewichtsfunktion $iw(i) \ge 1$ für Schlüssel i
- Gesamtgewichtsfunktion $tw(n) = \sum_{i \in t_n} iw(i)$ für Knoten n
- Rang $r(n) = \lfloor \log_2(tw(n)) \rfloor$

amortisierte splay-Kosten

- Gewichtsfunktion $iw(i) \ge 1$ für Schlüssel i
- Gesamtgewichtsfunktion $tw(n) = \sum_{i \in t_n} iw(i)$ für Knoten n
- Rang $r(n) = \lfloor \log_2(tw(n)) \rfloor$
- Potential funktion $\phi = \sum_{n \in T} r(n)$

amortisierte splay-Kosten

Zugriffslemma:

Eine splay Operation mit Knoten x in einem Baum mit Wurzel v hat maximal amortisierte Kosten a von 3(r(v) - r(x)) + 1 = O(log((tw(v)/tw(x)))

amortisierte splay-Kosten

Zugriffslemma:

Eine splay Operation mit Knoten x in einem Baum mit Wurzel v hat maximal amortisierte Kosten a von 3(r(v) - r(x)) + 1 = O(log((tw(v)/tw(x)))

zig bzw zag : 3(r('x) - r(x)) + 1

zigZag bzw zagZig : 3(r'(x) - r(x))zigZig bzw zagZag : 3(r'(x) - r(x))

$$\phi' - \phi = r'(x) + r'(y) + r'(z) - r(x) - r(y) - r(z)$$

$$\phi' - \phi = r'(x) + r'(y) + r'(z) - r(x) - r(y) - r(z)$$

= $r'(y) + r'(z) - r(x) - r(y) \le 2(r'(x) - r(x))$

Fall:
$$r'(x) > r(x)$$

 $3(r'(x) - r(x)) - 2(r'(x) - r(x)) > 0$

Fall:
$$r'(x) = r(x)$$

 $\Rightarrow r'(x) = r(y) = r(z) = r(x)$
 $\Rightarrow r(z') < r(z) \text{ und } r'(y) \le r(y)$
 $\Rightarrow \phi' < \phi$

$$3(r'(x) - r(x)) + 3(r''(x) - r'(x)) + 3(r'''(x) - r''(x)) + 1$$

$$3(r'(x) - r(x)) + 3(r''(x) - r'(x)) + 3(r'''(x) - r''(x)) + 1$$

= $3r'''(x) + 3r''(x) - 3r''(x) + 3r'(x) - 3r(x) + 1$

$$3(r'(x) - r(x)) + 3(r''(x) - r'(x)) + 3(r'''(x) - r''(x)) + 1$$

$$= 3r'''(x) + 3r''(x) - 3r''(x) + 3r'(x) - 3r(x) + 1$$

$$= 3r'''(x) - 3r(x) + 1$$

$$3(r'(x) - r(x)) + 3(r''(x) - r'(x)) + 3(r'''(x) - r''(x)) + 1$$

$$= 3r'''(x) + 3r''(x) - 3r''(x) + 3r'(x) - 3r'(x) - 3r(x) + 1$$

$$= 3r'''(x) - 3r(x) + 1$$

$$= 3(r(v) - 3r(x)) + 1$$

Übersicht

Aufbau des Splaybaum

Operationen

Laufzeitverhalter

Besondere Eigenschaften

- Elemente E_1 , E_2 , E_3 ... E_n
- Zugriffshäufigkeit $p(E_1)$, $p(E_2)$, $p(E_3)...p(E_n)$

- Elemente *E*₁, *E*₂, *E*₃..*E*_n
- Zugriffshäufigkeit $p(E_1)$, $p(E_2)$, $p(E_3)$... $p(E_n)$
- ---> statisch optimaler Suchbaum konstruierbar

statische Optimalität

Satz zur statischen Optimalität:

Es sei q(i) die Anzahl der Zugriffe auf den Schlüssel i. n die Anzahl der Knoten und m die Anzahl der Zugriffe insgesamt. Gilt für jeden Schlüssel i, $q(i) \geq 1$. Dann gilt für die Kosten k des Gesamtzugriffes $k = O(m + \sum\limits_{i=1}^{n} q(i)log(\frac{m}{q(i)}))$.

Beweis:

Nachvollziehbar in Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):652–686, July 1985.).

dynamische Optimalität

Sei A ein binärer Suchbaumalgorithmus mit den Eigenschaften:

- 1. Start ab Wurzel
- 2. komplette Pfade
- 3. Knotenzugriff in konstanter Zeit
- 4. Rotation in konstanter Zeit
- 5. beliebig viele Rotationen

dynamische Optimalität

Sei A ein binärer Suchbaumalgorithmus mit den Eigenschaften:

- 1. Start ab Wurzel
- 2. komplette Pfade
- 3. Knotenzugriff in konstanter Zeit
- 4. Rotation in konstanter Zeit
- 5. beliebig viele Rotationen

Vermutung: Splaybaum ist dynamisch optimal.