Dynamic Programming

By

Prasanta K. Jana, IEEE Senior Member

Department of Computer Science and Engineering Indian Institute of Technology (ISM), Dhanbad

E-mail: prasantajana@iitism.ac.in

Dynamic Programming

- 1) Solution: Result of a sequence of decisions.
- 2) Why Dynamic Programming,
- 3) Principle of optimality,
- 4) Difference between DP & Greedy Method.
- 5) Similar to divide and conquer, DP solves a problem by combining solutions of subproblems
 - Subproblems are independent for D&C so more works as it solves common subproblems
 - In contrast the subproblems are not independent rather they are overlapped in DP.
 So, DP solves every subproblem just once and saves its answer in a table, thereby avoiding re-computation of the answer every time the subproblem is encountered.

Single Source Shortest Paths

Note: If there is no cycle of negative length, any shortest path has at most n-1 edges for a graph of nodes n.

 $dist^{k}[u]$: Length of the shortest path from source v to u having at most k edges.

$$\therefore \operatorname{dist}^{1}[u] = \operatorname{cost}(v, u)$$

We have to find out $\operatorname{dist}^{n-1}[u] \ \forall \ u$.

- 1. If the shortest path from v to u with at most k, k > 1, edges has no more than k-1 edges, then $dist^k[u] = dist^{k-1}[u]$.
- 2. If it has exactly k edges,

then
$$dist^{k}[u] = dist^{k-1}[i] + cost[i, u]$$

$$dist^{k}[u] \ = \ \min \ \{dist^{k-1}[u], \ \min_{i} \ \{dist^{k-1}[i] \ + \ cost[i,u]\}\}$$

This recurrence can be used to compute $dist^k$ from $dist^{k-1}$, for $k=2,3,\ldots,n-1$.

An Illustration:

(a) A directed graph

		dist ^k [17]							
k	ľ	1	2	3	4	5	6	7	
1		0	6	5	5	∞	∞	∞	
2		0	3	3	5	5	4	∞	
3		0	1	3	5	2	4	7	
4		0	1	3	5	0	4	5	
5		0	1	3	5	0	4	3	
6		0	1	3	5	0	4	3	

(b) $dist^k$

```
Algorithm BellmanFord(v, cost, dist, n)
// Single-source/all-destinations shortest
// paths with negative edge costs
{

for i := 1 to n do // Initialize dist.

dist[i] := cost[v, i];
for k := 2 to n-1 do

for each u such that u \neq v and u has at least one incoming edge do

for each \langle i, u \rangle in the graph do

if dist[u] > dist[i] + cost[i, u] then dist[u] := dist[i] + cost[i, u];
}
```

 $\mathbf{A} \longrightarrow \text{requires } O(n^2) \text{ for adjacency matrix (or) } O(e) \text{ for adjacency list.}$

 \therefore Time complexity: $O(n^3)$ for adjacency matrix, O(ne) for adjacency list.

All Pairs Shortest Path

(Floyd Warshall Algorithm)

Statement: To determine a matrix A such that A(i, j) is the length of the shortest path from i to j.

Assumption: No negative cycles.

Let $A^k(i, j)$ be the shortest path going through no vertex higher than k.

Then,
$$A^0(i, j) = \cos(i, j)$$

If the shortest path goes through *k*

$$A^{k}(i,j) = A^{k-1}(i,k) + A^{k-1}(k,j) \longrightarrow (1)$$

If not

$$A^{k}(i,j) = A^{k-1}(i,j) \longrightarrow (2)$$

Combining (1) and (2), we get

$$A^{k}(i,j) = \min \{A^{k-1}(i,j), A^{k-1}(i,k) + A^{k-1}(k,j)\}$$

Time Complexity: $O(n^3)$

An Illustration:

Let
$$A = 0 4 11$$
 $6 0 2$
 $3 \infty 0$

A^0	1	2	3			1		
1	0	4 0 ∞	11		1	0 6 3	4	11
2	6	0	2		2	6	0	2
3	3	∞	0		3	3	7	0
(b) A ⁰				$(c) A^1$				

		2			A^3	1	2	3
1	0	4	6		1	0	4	6
2	6	0	2		2	5	0	2
3	3	0 7	0		3	3	0 7	0
$(d) A^2$				(e) A^3				

Longest Common Subsequence Problem

Subsequence: Z = (B, C, D, B) is a subsequence of X = (A, B, A, C, D, A, D, A, B)

Common subsequence: (B, C, A) is a common subsequence of

$$X = (A, B, C, B, D, A, B)$$
 and $Y = (B, D, C, A, B, D)$

Longest common subsequence: The common subsequence of two sequences with largest length.

(B, C, A, B) is a LCS of X and Y

(B, C, B, D) is another LCS of X and Y.

NOTE – Thus LCS of two sequence is not unique.

Longest-common-subsequence problem: Given two sequences $X = (x_1, x_2,..., x_m)$ and $Y = (y_1, y_2,...., y_n)$ and wish to find a maximum length common subsequence of X and Y.

Brute Force Approach:

Step1: Enumerate all subsequence of X.

Step2: check each subsequence to see if it is also subsequence of Y.

Step3: Find the largest one of them in step 2.

Time Complexity:

- 1) $\exists 2^m$ subsequences of X
- 2) So, it has exponential time complexity

Dynamic Programming Approach:

NOTE –LCS problem has optimal substructure property as noted by the following theorem

$$X = (x_1, x_2, ..., x_m)$$
 and $Y = (y_1, y_2, ..., y_n)$

 $X = (x_1, x_2, ..., x_i)$, i = 0, 1, ..., m is defined as the ith prefix of X.

e.g. X = (A, B, C, B, D) then $X_4 = (A, B, C, B)$, X_0 is the empty sequence.

 $Z = (z_1, z_2, ..., z_k)$ be any LCS X and Y.

- 1) If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2) If $x_m \neq y_n$ then $z_k \neq x_m$ implies Z is an LCS of $X_{m\text{-}1}$ and Y.
- 3) If $x_m \neq y_n$ then $z_k \neq y_n$ implies Z is an LCS of X and $Y_{n\text{-}1}$.

A recursive solution to problem:

Theorem implies that there are either one or two subproblems when finding an LCS of X and Y.

- 1) If $x_m = y_n$ then we are to find an LCS of X_{m-1} and Y_{n-1} .
- 2)If $x_m \neq y_n$ then we are to solve two subproblems
 - 2.1) we have to find LCS of X_{m-1} and Y.
 - 2.2) we have to find LCS of X and Y_{n-1} .

Whichever is longer will be LCS of X and Y.

Therefore, if c[i, j] denotes the length of LCS of X_i and Y_i , then:

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

NOTE – if either i=0 or j=0, one of the sequence has length 0, so the LCS has length 0.

i-1, *j*-1 *i*-1, *j* Computing the length of the LCS LCS-LENGTH(X, Y) $1 \quad m = X.length$ $2 \quad n = Y.length$ 3 let b[1..m, 1..n] and c[0..m, 0..n] be new tables 4 for i = 1 to m5 c[i, 0] = 06 for j = 0 to nc[0, j] = 0for i = 1 to mfor j = 1 to n9 10 if $x_i == y_i$ c[i, j] = c[i-1, j-1] + 1 b[i, j] ="\\" 11 12 elseif $c[i - 1, j] \ge c[i, j - 1]$ 13 c[i, j] = c[i - 1, j] b[i, j] = ``'' else c[i, j] = c[i, j - 1] b[i, j] = ``-''14 15 16 17

Time complexity: entries are captured in row-major order from left to right, and each entry take O(1) time to execute. Since there are 'm' rows and 'n' columns it require O(m*n) time to execute.

18

return c and b

An Illustration:

$$X = (A,B,C,B,D,A,B)$$
 and $Y = (B,D,C,A,B,A)$

We simply begin at b[m,n] and trace through the table by following the arrows. Whenever we encounter a " $\$ " in entry b[i,j] it implies that $x_m = y_n$ is an element of the LCS .

NOTE: the element of the LCS are encountered in reverse order using this method.

Thus following the "\" we got BCBA as the LCS.

Following procedure runs it

```
PRINT-LCS(b, X, i, j)
   if i == 0 or j == 0
1
2
        return
   if b[i, j] == "
"
3
        PRINT-LCS(b, X, i-1, j-1)
4
5
        print x_i
   elseif b[i, j] == "\uparrow"
6
        PRINT-LCS(b, X, i - 1, j)
7
   else Print-LCS(b, X, i, j - 1)
8
```

Time Complexity: Since at least one of i and j is decremented at each stage in the recursion, it requires O(m+n).

Overall Time Complexity: O(m*n)

Overall Space Complexity: O(m*n)

Tutorial: Determine an LCS of <1,0,0,1,0,1,0,1> and <0,1,0,1,1,0,1,1,0>

Ans: 100110

Multistage graph problem

A multistage graph: A directed graph in which vertices are partitioned into $k \ge 2$ disjoint sets $V_1, V_2, ..., V_k$ such that

1)
$$|V_1| = |V_k| = 1$$

2) If there exists an edge $\langle u, v \rangle$ then if $u \in V_i$ then v must belong to V_{i+1} .

V₁: source (s) and V_k: sink (t)

Problem Statement: To determine a minimum-cost path from s to t.

Let c[i, j] be the cost of the edge $\langle i, j \rangle$

Let P(i, j) be the minimum cost path from vertex j in V_i to t and

Let cost (i, j) be its cost.

Initialization: cost (k-1, j) = c[j, t]

Solution: We have to find the Cost(1, s).

Vi Vi+1

Intermediate Calculations:

$$cost(i,j) = \min_{\substack{l \in V_{i+1} \\ \langle j,l \rangle \in E}} \{c(j,l) + cost(i+1,l)\}$$

Let d(i, j) be the value of l that minimizes Cost(i+1, l) + c(j, l).

Then
$$d(3, 6) = 10$$
, $d(3, 7) = 10$, $d(3, 8) = 10$;

$$d(2, 2) = 7$$
, $d(2, 3) = 6$, $d(2, 4) = 8$, $d(2, 5) = 8$;

$$d(1, 1) = 2$$

Then minimum cost path is 1, v1, v2, ..., vk-1, t.

Here,
$$v2 = d(1, 1) = 2$$
;

$$v3 = d(2, d(1, 1)) = d(2, 2) = 7$$

$$v4 = d(3, d(2, d(1, 1))) = d(3, 7) = 10$$

Therefore, the minimum cost path is 1, 2, 7, 10, 12

Algorithm using Forward Approach:

$$cost(i,j) = \min_{\substack{l \in V_{i+1} \\ \langle j,l \rangle \in E}} \{c(j,l) + cost(i+1,l)\}$$


```
Algorithm FGraph(G,k,n,p)
// The input is a k-stage graph G=(V,E) with n vertices
// indexed in order of stages. E is a set of edges and c[i,j]
// is the cost of \langle i,j \rangle. p[1:k] is a minimum-cost path.

{

cost[n] := 0.0;
for j := n-1 to 1 step -1 do

{ // Compute cost[j].

Let r be a vertex such that \langle j,r \rangle is an edge of G and c[j,r] + cost[r] is minimum;

cost[j] := c[j,r] + cost[r];

d[j] := r;
}

// Find a minimum-cost path.

p[1] := 1; p[k] := n;
for j := 2 to k-1 do p[j] := d[p[j-1]];
```

Time Complexity: If the graph is represented by **adjacency list**, then it is:

$$\Theta(|V| + |E|)$$

Solution Using Backward Approach:

The multistage graph problem can also be solved using the backward approach. Let bp(i,j) be a minimum-cost path from vertex s to a vertex j in V_i . Let bcost(i,j) be the cost of bp(i,j). From the backward approach we obtain

min $\{bcost(2,2) + c(2,6), bcost(2,3) + c(3,6)\}$

$$bcost(i, j) = \min_{\substack{l \in V_{i-1} \\ \langle l, j \rangle \in E}} \{bcost(i-1, l) + c(l, j)\}$$

bcost(3,6)

```
min \{9+4,7+2\}
               9
bcost(3,7)
               11
bcost(3,8)
               10
bcost(4,9)
               15
bcost(4, 10) =
               14
bcost(4,11)
               16
bcost(5, 12) =
               16
Algorithm BGraph(G, k, n, p)
// Same function as FGraph
     bcost[1] := 0.0;
     for j := 2 to n do
     \{ // \text{ Compute } bcost[j].
          Let r be such that \langle r, j \rangle is an edge of
          G and bcost[r] + c[r, j] is minimum;
          bcost[j] := bcost[r] + c[r, j];
          d[j] := r;
     // Find a minimum-cost path. p[1] := 1; p[k] := n;
     for j := k-1 to 2 do p[j] := d[p[j+1]];
}
```

Travelling Sales Person Problem

Let g(i, S) be the length of a shortest path starting at vertex i, going through all vertices in S, and terminating at vertex 1.

Then $g(1, V - \{1\})$ is the length of an optimal salesperson tour.

From the principle of optimality,

$$g(1, V - \{1\}) = \min_{2 \le k \le n} \{c_{1k} + g(k, V - \{1, k\})\} \longrightarrow (1)$$

Generalizing (1), we obtain (for $i \notin S$)

$$g(i,S) = \min_{j \in S} \{c_{ij} + g(j,S - \{j\})\} \longrightarrow (2)$$

Equation (1) can be solved for $g(1, V - \{1\})$ if we know $g(k, V - \{1, k\})$ for all choices of k. The g values can be obtained by using $\{2\}$). Clearly,

$$g(i,\phi) = c_{i1}, \ 1 \le i \le n$$

Thus $g(2,\phi) = c_{21} = 5$, $g(3,\phi) = c_{31} = 6$, and $g(4,\phi) = c_{41} = 8$. Using (2), we obtain

Next, we compute g(i, S) with |S| = 2, $i \neq 1$, $1 \notin S$ and $i \notin S$.

$$g(2, \{3,4\}) = \min \{c_{23} + g(3, \{4\}), c_{24} + g(4, \{3\})\} = 25$$

 $g(3, \{2,4\}) = \min \{c_{32} + g(2, \{4\}), c_{34} + g(4, \{2\})\} = 25$
 $g(4, \{2,3\}) = \min \{c_{42} + g(2, \{3\}), c_{43} + g(3, \{2\})\} = 23$

Finally, from (1) we obtain

$$g(1, \{2, 3, 4\}) = \min\{c_{12} + g(2, \{3, 4\}), c_{13} + g(3, \{2, 4\}), c_{14} + g(4, \{2, 3\})\}\$$

= $\min\{35, 40, 43\}$
= 35

An optimal tour of the graph of has length 35.

A tour of this length can be constructed if we retain with each $g(\underline{i},\underline{S})$ the value of \underline{i} that minimizes the right-hand side of (2).

Let J(i_S) be this value.

Then,
$$J(1, \{2, 3, 4\}) = 2$$
.

$$J(2, \{3, 4\}) = 4.$$

$$J(4, \{3\}) = 2.$$

The optimal tour is 1, 2, 4, 3, 1.

Time Complexity:

Let N be the number of g(i, S)'s that have to be computed before (1) can be used to compute $g(1, V - \{1\})$. For each value of |S| there are choices for i. The number of distinct sets S of size k not including 1 and i

is
$$\binom{n-2}{k}$$
. Hence $N = \sum_{k=0}^{n-2} (n-1) \binom{n-2}{k} = (n-1)2^{n-2}$

 \therefore time complexity is $O(n \ 2^{n-2}) \ n = O(n^2 * 2^{n-2})$

Note: This is better than n! for all possible tours. Serious drawback of this D.P solution is the space needed, $O(n2^n)$

MATRIX CHAIN MULTIPLICATION

Consider $< A_1 A_2 A_3 >$ chain where $[A_1]_{10 \times 100}$, $[A_2]_{100 \times 5}$, $[A_3]_{5 \times 50}$.

- $((A_1 A_2) A_3)$ requires $10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$ scalar multiplications.
- $(A_1(A_2 A_3))$ requires $100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000$ scalar multiplications.

So $((A_1 A_2) A_3)$ is 10 times faster than $(A_1(A_2 A_3))$.

Now consider: $\langle A_1 A_2 A_3 A_4 \rangle$

Then several ways to fully parenthesize:

$$\begin{array}{l} (A_1(A_2(A_3A_4))) \\ (A_1((A_2A_3)A_4)) \\ ((A_1A_2)(A_3A_4)) \\ ((A_1(A_2A_3))A_4) \\ (((A_1A_2)A_3)A_4) \end{array}$$

Problem Statement: Given a chain < A_1 , A_2 , A_3 ,..., A_n > of n matrices, where A_i has dimension $p_{i-1} \times p_i$, for i = 1..., n, fully parenthesize the product in a way that minimizes the number of scalar multiplications.

Brute force approach:

 $P(n) \rightarrow$ Number of alternative parenthesizations. Then,

$$P(n) = \begin{cases} 1 & \text{, if } n = 1\\ \sum_{k=0}^{n} P(k)P(n-k) & \text{, if } n >= 2 \end{cases}$$

P(n) = C(n-1) is the solution of this recurrence equation where,

$$C(n) = \frac{1}{n+1} \binom{2n}{n}$$

And
$$C(n) = \Omega (4^n / n^{3/2})$$

Let $A_{i...j}$ denote $A_i A_{i+1} ... A_j$

Let m[i, j] be the minimum number of scalar multiplications needed to compute the product $A_{i...j.}$

Then m[i, j] would be the minimum number of scalar multiplications needed to compute the product $A_{i...k}$ and be the minimum number of scalar multiplications needed to compute the product $A_{k+1...j}$ plus number of scalar multiplications for multiplying them. Therefore,

 A_i has dimension $p_{i-1} \times p_i$.

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \ , \\ \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \ . \end{cases}$$

```
m[i,j] = \begin{cases} 0 & \text{if } i = j \ , \\ \min_{i \leq k < j} \left\{ m[i,k] + m[k+1,j] + p_{i-1} p_k p_j \right\} & \text{if } i < j \ . \end{cases}
```

MATRIX-CHAIN-ORDER (p)

```
n \leftarrow length[p] - 1
      for i \leftarrow 1 to n
            do m[i, i] \leftarrow 0
 3
      for l \leftarrow 2 to n
                                   \triangleright l is the chain length.
 4
 5
            do for i \leftarrow 1 to n - l + 1
                      do j \leftarrow i + l - 1
 6
                          m[i, j] \leftarrow \infty
 7
                           for k \leftarrow i to j-1
 8
                                do q \leftarrow m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j
 9
                                     if q < m[i, j]
10
                                        then m[i, j] \leftarrow q
11
12
                                              s[i, j] \leftarrow k
13
      return m and s
```

Time Complexity: $O(n^3)$

An Illustration:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \ , \\ \min_{i \leq k < j} \left\{ m[i,k] + m[k+1,j] + p_{i-1} p_k p_j \right\} & \text{if } i < j \ . \end{cases}$$

$$m[2,5] = \min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 = 0 + 2500 + 35 \cdot 15 \cdot 20 &= 13000 ,\\ m[2,3] + m[4,5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \cdot 5 \cdot 20 = 7125 ,\\ m[2,4] + m[5,5] + p_1 p_4 p_5 = 4375 + 0 + 35 \cdot 10 \cdot 20 &= 11375 \end{cases}$$

$$= 7125 .$$


```
PRINT-OPTIMAL-PARENS(s, i, j)

1 if i == j

2 print "A";

3 else print "("

4 PRINT-OPTIMAL-PARENS(s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS(s, s[i, j])

6 print ")"
```

To be initially called with Print Optimal-Parents(S, 1, n)

Hence the solution is $((A_1(A_2A_3))((A_4A_5)A_6))$

Optimal Triangulation:

Triangulation: A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals.

Note: Triangulations are usually not unique.

Theorem: Every simple polygon admits triangulations it consists of exactly *n*-2 triangles.

Figure 16.4 Two ways of triangulating a convex polygon. Every triangulation of this 7-sided polygon has 7 - 3 = 4 chords and divides the polygon into 7 - 2 = 5 triangles.

Figure 16.5 Parse trees. (a) The parse tree for the parenthesized product $((A_1(A_2A_3))(A_4(A_5A_6)))$ and for the triangulation of the 7-sided polygon from Figure 16.4(a). (b) The triangulation of the polygon with the parse tree overlaid. Each matrix A_i corresponds to the side $\overline{v_{i-1}v_i}$ for $i=1,2,\ldots,6$.

 $((A_1(A_2A_3))((A_4A_5)A_6))$