- 1. (20 Punkte) Klassifizieren Sie die folgenden Sprachen nach den Kategorien regulär, NKA-Sprache, nicht-NKA-Sprache. Begründen Sie Ihre Antworten entsprechend:
 - (a) $L_1 = \{ a^n b^m c^p \mid n + 2m > 3p \}$
 - (b) $L_2 = \{ w \in \{a, b\}^* \mid \#_a(w) \le \#_b(w)/2 \}$
 - (c) $L_3 = \{ w \in \{a, b\}^* \mid \#_a(w) \bmod 5 \ge \#_b(w) \bmod 3 \}$
 - (d) $L_4 = \{ w \in \{a, b\}^* \mid \#_a(w) \bmod \#_b(w) = 0 \}$
- 2. (10 Punkte) Entwerfen Sie einen NKA der die Sprache $L_{ab} = \{ a^n b^n \mid n \in \mathbb{N} \}$ akzeptiert und nur einen Zustand besitzt. Erklären Sie, wie Sie zu diesem NKA gekommen sind, und warum er funktioniert.

Geben Sie ein Beispiel für eine akzeptierende Berechnung für das Wort $aaabbb \in L_{ab}$ und erklären Sie warum es keine akzeptierende Berechnung für das Wort $aab \notin L_{ab}$ geben kann.

3. (20 Punkte) Für zwei Strings $x = x_1 \cdots x_n$ und $y = y_1 \cdots y_m$ definieren wir die Sprache merge(x, y) wie folgt:

$$merge(x, \varepsilon) = \{x\}$$

 $merge(\varepsilon, y) = \{y\}$
 $merge(x, y) = \{x_1\} \cdot merge(x_2 \cdots x_n, y) \cup \{y_1\} \cdot merge(x, y_2 \cdots y_m)$

Diese Sprache enthält also alle möglichen Worte, die x und y als einander ergänzende, nicht notwendigerweise zusammenhängende Teilstrings enthält.

Für zwei Sprachen L und L' definieren wir

$$merge(L, L') = \bigcup \{merge(x, x') \mid x \in L, x' \in L, \}.$$

- (a) Geben Sie merge(abc, bd) an.
- (b) Sind die regulären Sprachen abgeschlossen unter merge()?
- (c) Sind die NKA-Sprachen abgeschlossen unter merge()?
- (d) Wenn L eine NKA-Sprache ist und R eine reguläre Sprache, was kann man dann über die Sprache merge(L,R) sagen?

Begründen Sie Ihre Antworten.