РАЗДЕЛ КУРСОВОЙ РАБОТЫ «ПЛАНИРОВАНИЕ КАНАЛЬНОГО УРОВНЯ»

Пункт 1 Планирование виртуальных локальных сетей

Следующий этап планирования производится на уровне 2 — проектирование виртуальных локальных сетей. Виртуальные локальные сети можно разделить на сервисные VLAN, управляющие VLAN и взаимосвязанные VLAN.

В работе требуется описать преимущества и причины использования данной технологии в сетях передачи данных.

При проектировании сервисной виртуальной локальной сети следует руководствоваться тем, что она предназначена для обеспечения доступности сервисов для пользователей. Данные VLAN можно назначать на основе следующих критериев:

- назначение VLAN по географическому местоположению;
- назначение VLAN по логической области;
- назначение VLAN в зависимости от структуры персонала;
- назначение VLAN по типу услуги.

Требуется выбрать оптимальный критерий/критерии и произвести планирование сервисных VLAN для каждой площадки предприятия.

При проектировании управляющей VLAN следует руководствоваться тем, что данные VLAN используются для удаленного доступа к устройствам и управления ими. В большинстве случаев коммутаторы уровня 2 используют адреса виртуального интерфейса VLAN в качестве адресов управления. Рекомендуется, чтобы все коммутаторы в одной сети уровня 2 использовали одну и ту же управляющую VLAN, а их IP-адреса управления находились в одном сегменте сети.

При проектировании взаимосвязанных VLAN следует руководствоваться тем, что она нужна для соединения устройств при переходе

с уровня агрегации на уровень ядра. При отсутствии уровня ядра речь идет о выходном уровне. Данные VLAN требуется при использовании способа маршрутизации между VLAN с использованием коммутаторов уровня агрегации.

Пример планирования VLAN представлен в Таблице 1 при условии того, что используется маршрутизация между VLAN с использованием коммутаторов уровня агрегации. Если способ маршрутизации будет использован Router-on-a-stick, то данные VLAN не нужны.

Таблица 1 – Результат планирования VLAN

Идентификатор	Имя VLAN	Описание				
VLAN						
10	Management	VLAN отдела руководства				
11	Finance	VLAN финансового отдела				
12	Clients_managers	VLAN отдела по работе с клиентами				
13	Human_resources	VLAN отдела кадров				
14	Marketing	VLAN отдела маркетинга				
15	Household	VLAN хозяйственной службы				
16	IT	VLAN технического отдела				
17	Accounting	VLAN бухгалтерии				
100	Management_L2	Управляющая VLAN для коммутаторов				
110	Interconnected_1	Взаимосвязанная VLAN между уровнем агрегации и выходным уровнем				
111	Interconnected_2	Взаимосвязанная VLAN между уровнем агрегации и выходным уровнем				

Следующий этап планирования — назначение VLAN. Требуется выбрать способ назначения VLAN. Самым частым используемым рекомендуемым способом является назначение на основе интерфейсов. Также следует упомянуть, что у большинства вендоров виртуальная локальная сеть под номером один, является сетью по умолчанию и не рекомендована к

использованию. Также нужно обратить внимание на именование VLAN, у большей части вендоров есть возможность привязывать названия в настройках сетей удобства виртуальных локальных ДЛЯ конфигурирования использования. После формирования основных виртуальных локальных сетей нужно описать конфигурации для последующей настройки, добавив два столбца в таблицу с планом подключений. Пример представлен в Таблице 2. Данное планирование требуется провести для каждой площадки предприятия. Столбы VLAN: Access и Trunk описывают настройки для конечных типов портов устройств. В примере используется тип связи между VLAN: коммутаторы на уровне агрегации. Перед представлением обновленного плана подключений требуется описать способ маршрутизации между VLAN с обоснованием своего выбора.

Таблица 2 - План виртуальных локальных сетей по портам

Название	Порт	Описание	VLAN	
устройства		подключения	Access	Trunk
SW_1_Acc_Man	GigabitEthernet0/1-	PC_1-3_Man	10	-
	0/3			
	GigabitEthernet0/4-	PH_1-3_Man	10	-
	0/6			
	GigabitEthernet0/7	PR_1_Man	10	-
	GigabitEthernet0/8-	SW_1_Agg	-	10-17, 100
	0/10			
	GigabitEthernet0/11	SW_2_Agg	-	10-17, 100
SW_1_2_Acc_Man	GigabitEthernet0/1-	PC_1-3_Man	10	-
	0/3			
	GigabitEthernet0/4-	PH_1-3_Man	10	-
	0/6			
	GigabitEthernet0/7	PR_1_Man	10	-
	GigabitEthernet0/8-	SW_2_Agg	-	10-17, 100
	0/10			
	GigabitEthernet0/11	SW_1_Agg	-	10-17, 100
SW_2_Acc_Fin	FastEthernet0/1-0/10	PC_1-10_Fin	11	

	FastEthernet0/11-	PH_1-5_Fin	11	
	0/15			
	FastEthernet0/16-	PR_1-2_Fin	11	
	0/17			
	GigabitEthernet0/1	SW_1_Agg	-	10-17, 100
	GigabitEthernet0/2	SW_2_Agg	-	10-17, 100
SW_3_Acc_HAM	FastEthernet0/1-0/3	PC_1-3_HR	12	-
	FastEthernet0/4	PH_1_HR	13	-
	FastEthernet0/5	PR_1_HR	13	-
	FastEthernet0/6	PC_1_HH	15	-
	FastEthernet0/7	PH_1_HH	15	-
	FastEthernet0/8-0/13	PC_1-6_Mar	14	-
	FastEthernet0/14-	PH_1-3_Mar	14	-
	0/16			
	FastEthernet0/17	PR_1_Mar	14	-
	GigabitEthernet0/1	SW_1_Agg	-	10-17, 100
	GigabitEthernet0/2	SW_2_Agg	-	10-17, 100
SW_4_Acc_CLI	FastEthernet0/1-0/15	PC_1-15_Cli	12	-
	FastEthernet0/16-	PR_1-3_Cli	12	-
	0/18			
	FastEthernet0/19	SW_1_Agg	-	10-17, 100
	GigabitEthernet0/1	SW_1_Agg	-	10-17, 100
	GigabitEthernet0/2	SW_2_Agg	-	10-17, 100
SW_4_1_Acc_CLI	FastEthernet0/1-0/15	PC_1-15_Cli	12	-
	FastEthernet0/16-	PR_1-3_Cli	12	-
	0/18			
	GigabitEthernet0/1	SW_1_Agg	-	10-17, 100
	GigabitEthernet0/2	SW_2_Agg	-	10-17, 100
SW_5_Acc_CLI	FastEthernet0/1-0/10	PC_16-25_Cli	12	-
	FastEthernet0/11-	PH_1-10_Cli	12	-
	0/20			
	FastEthernet0/21	SW_1_Agg	-	10-17, 100
	GigabitEthernet0/1	SW_1_Agg	-	10-17, 100
	GigabitEthernet0/2	SW_2_Agg	-	10-17, 100

SW_5_1_Acc_CLI	FastEthernet0/1-0/10	PC_16-25_Cli	12	-
	FastEthernet0/11-	PH_1-10_Cli	12	-
	0/20			
	GigabitEthernet0/1	SW_1_Agg	-	10-17, 100
	GigabitEthernet0/2	SW_2_Agg	-	10-17, 100
SW_6_Acc_IT	GigabitEthernet0/1-	PC_1-3_IT	16	-
	0/3			
	GigabitEthernet0/4-	PH_1-3_IT	16	-
	0/6			
	GigabitEthernet0/7	PR_1_IT	16	-
	GigabitEthernet0/8-	SW_1_Agg	-	10-17, 100
	0/10			
	GigabitEthernet0/11-	SW_2_Agg	-	10-17, 100
	0/13			
SW_7_Acc_Acc	FastEthernet0/1-0/4	PC_1-4_Acc	17	-
	FastEthernet0/5	PR_1_Acc	17	-
	FastEthernet0/6-0/9	PH_1-4_Acc	17	-
	GigabitEthernet0/1	SW_1_Agg	-	10-17, 100
	GigabitEthernet0/2	SW_2_Agg	-	10-17, 100
SW_1_Agg	GigabitEthernet0/1-	SW_1_Acc_Man	-	10-17, 100
	0/3			
	GigabitEthernet0/4	SW_1_2_Acc_Man	-	10-17, 100
	GigabitEthernet0/5	SW_2_Acc_Fin	-	10-17, 100
	GigabitEthernet0/6	SW_3_Acc_HAM	-	10-17, 100
	GigabitEthernet0/7-	SW_4_Acc_CLI	-	10-17, 100
	0/8			
	GigabitEthernet0/9-	SW_5_Acc_CLI	-	10-17, 100
	0/10			
	GigabitEthernet0/11	SW_4_1_Acc_CLI	-	10-17, 100
	GigabitEthernet0/12	SW_5_1_Acc_CLI	-	10-17, 100
	GigabitEthernet0/13	SW_7_Acc_Acc	-	10-17, 100
	GigabitEthernet0/14-	SW_6_Acc_IT	-	10-17, 100
	0/16			

	GigabitEthernet0/17-	SW_2_Agg	-	10-17, 100
	0/19			
	GigabitEthernet0/20	R_1_GW	110	-
SW_2_Agg	GigabitEthernet0/1-	SW_1_2_Acc_Man	-	10-17, 100
	0/3			
	GigabitEthernet0/4	SW_1_Acc_Man	-	10-17, 100
	GigabitEthernet0/5	SW_2_Acc_Fin	-	10-17, 100
	GigabitEthernet0/6	SW_3_Acc_HAM	-	10-17, 100
	GigabitEthernet0/7	SW_4_Acc_CLI	-	10-17, 100
	GigabitEthernet0/8	SW_5_Acc_CLI	-	10-17, 100
	GigabitEthernet0/9	SW_4_1_Acc_CLI	-	10-17, 100
	GigabitEthernet0/10	SW_5_1_Acc_CLI	-	10-17, 100
	GigabitEthernet0/11	SW_7_Acc_Acc	-	10-17, 100
	GigabitEthernet0/12-	SW_6_Acc_IT	-	10-17, 100
	0/14			
	GigabitEthernet0/15-	SW_1_Agg	-	10-17, 100
	0/17			
	GigabitEthernet0/18	R_1_GW	111	-
R_1_GW	GigabitEthernet0/1	SW_1_Agg	-	-
	GigabitEthernet0/2	SW_2_Agg	-	-

Пункт 2 Планирование агрегирования каналов

Следующий шаг — планирование агрегирования канало. Первый этап выбор и обоснование способа агрегирования каналов: ручной или использование протокола управления агрегированием каналов. При чем данный выбор может быть сделан для каждой пары. Результат планирования агрегирования канало может быть представлен в виде Таблицы и должен содержать: состав пар, роли каждого устройства в паре, максимальное и минимальное кол-во активных каналов в паре(при технической возможности такой настройки), режим балансировки нагрузки и возможный другой набор настроек. Для CISCO IOS с ним можно ознакомится в официальной

документации:

https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3650/software/release/

3/command reference/b 163 consolidated 3650 cr/b 163 consolidated 3650 cr chapter 01001.html#wp1084188230. Следует обратить внимание на то, что маршрутизатор тоже может участвовать как устройство в агрегировании каналов. Пример результата планирования агрегирования каналов представлен в Таблице 3. Планирование должно быть выполнено для всех площадок предприятия. Если технология агрегирования каналов к применению не планируется, то это нужно обозначить текстом. В примере планируется применение протокола LACP.

 $ag{Taблица} 3 - \Pi$ ланирование агрегирования каналов

№	№	Первое	Приори	Интерфейсы-	Второе-	Приорит	Интерфейсы-	Минимал	Максимал	Режим
агрегирован	интерфе	устройс	тет	участники	устройство	ет	участники	ьное	ьное	балансиро
ного канала	йса-	тво-	систем	первого	участник	системы	второго	количеств	количеств	вки
	участни	участни	ы	устройства			устройства	0	0	нагрузки
	ка	к						активных	активных	
								интерфей	интерфейс	
								сов	ОВ	
1	1	SW_1_A	1000	GigabitEthern	SW_1_Acc_	32768(def	GigabitEthern	2	2	Source
		gg		et0/1	Man	ault)	et0/8			MAC-
	2			GigabitEthern			GigabitEthern	-		address(def
				et0/2			et0/9			ault)
	3	1		GigabitEthern			GigabitEthern			
				et0/3			et0/10			
2	1	SW_1_ag	1000	GigabitEthern	SW_6_Acc_I	32768(def	GigabitEthern	2	2	Source
		g		et0/14	Т	ault)	et0/8			MAC-
	2	1		GigabitEthern			GigabitEthern	-		address(def
				et0/15			et0/9			ault)
	3			GigabitEthern			GigabitEthern	-		
				et0/16			et0/10			
3	1	SW_1_ag	1000	GigabitEthern	SW_2_Agg	32768(def	GigabitEthern	1	3	Source
		g		et0/17		ault)	et0/15			MAC-

	2			GigabitEthern			GigabitEthern			address(def
				et0/18			et0/16			ault)
	3	1		GigabitEthern			GigabitEthern			
				et0/19			et0/17			
4	1	SW_2_A	1000	GigabitEthern	SW_1_2_Acc	32768(def	GigabitEthern	2	2	Source
		gg		et0/1	_Man	ault)	et0/8			MAC-
	2	1		GigabitEthern			GigabitEthern			address(def
				et0/2			et0/9			ault)
	3			GigabitEthern			GigabitEthern			
				et0/3			et0/10			
5	1	SW_2_A	1000	GigabitEthern	SW_6_Acc_I	32768(def	GigabitEthern	2	2	Source
		gg		et0/12	Т	ault)	et0/11			MAC-
	2	1		GigabitEthern			GigabitEthern			address(def
				et0/13			et0/12			ault)
	3	1		GigabitEthern			GigabitEthern			
				et0/14			et0/13			

Пункт 3 Планирование предотвращения петель канального уровня

В рамках данного пункта требуется описать причины возникновения петель канального уровня, обосновать выбор технологии для их предотвращения. Описать и обосновать причины выбора определенной версии протокола связующего дерева с учетом проприетарных технологий вендора. Описать необходимые настройки для правильного формирования связующих деревьев в сети.

В рамках данного примера планируется использовать проприетарный протокол Cisco Rapid-PVST. Планирование применения данного протокола представлено в Таблице 4. Для остальных устройств используются настройки по умолчанию.

Таблица 4 – Планирование применения протокола связующего дерева

№ связующего	Список VLAN,	Корневой	Резервный
дерева	входящих в	мост(приоритет 0)	корневой
	связующее дерево		мост(приоритет
			4096)
1	10, 11, 12	SW_1_Agg	SW_2_Agg
2	13-17, 100, 110, 111	SW_2_Agg	SW_1_Agg