WHAT IS CLAIMED IS:

1	1.	A method comprising the steps of.
2		chilling a protectant to cause an irreversible release of energy from the
3		protectant;
4		treating biologically active material with the protectant; and
5		freezing the treated biologically active material.
1	2.	The method as in Claim 1, wherein said pre-conditioned solute is a solute
2		having been conditioned by being super-cooled at an average rate of at least
3		about 6.5°C per minute.
1	3.	The method as in Claim 1, wherein said pre-conditioned solute is a solute
2		having been conditioned by being super-cooled from room temperature to a
3		temperature of less than about -23°C.
1	4.	The method as in Claim 1, wherein said pre-conditioned solute is a solute
2		having been conditioned by being super-cooled from room temperature to
3		between about -23°C and -26°C.
1	5.	The method as in Claim 1, wherein said pre-conditioned solute is a solute
2		having been conditioned by being super-cooled at an average rate of between
3		about 6.5°C and 8.5°C per minute.
1	6.	The method as in Claim 1, wherein said pre-conditioned solute is a solute
2		having been conditioned by being super-cooled, for at least a portion of time,
3		at an average rate of at least about 17°C per minute

1

2

1

1

1 2 3	7.	The system as in Claim 1, wherein the heat absorption rate of the preconditioned solute is about 135 BTU at a temperature of between about -23°C and -26°C.
1	8.	The method as in Claim 1, further including the step of warming the protectant
2		prior to the step of treating the biologically active material.

- 9. The method as in Claim 8, wherein the step of warming the protectant includes warming the protectant to above 0 degrees Celsius.
 - 10. The method as in Claim 1, wherein the protectant includes propylene glycol.
 - 11. The method as in Claim 1, wherein the protectant includes glycerol.
- 1 12. The method as in Claim 1, wherein the protectant includes DMSO.
- 1 13. The method as in Claim 1, wherein the biologically active material includes:
 2 viable single cells, viable tissues, viable organs, viable nucleic acids, viable
 3 ribonucleic acids, viable amino acid based compounds and viable lipid based
 4 compounds.

1	14.	A method comprising the steps of:
2		chilling a protectant to below about -23 degrees Celsius to cause an
3		irreversible release of energy from the protectant;
4		warming the protectant to above 0 degrees Celsius;
5		treating biologically active material with the protectant; and
6		freezing the treated biologically active material.
1	15.	The method as in Claim 14, wherein said pre-conditioned solute is a solute
2	15.	having been conditioned by being super-cooled at an average rate of at least
3		about 6.5°C per minute.
1	16.	The method as in Claim 14, wherein said pre-conditioned solute is a solute
2		having been conditioned by being super-cooled from room temperature to a
3		temperature of less than about -23°C.
1	17.	The method as in Claim 14, wherein said pre-conditioned solute is a solute
2	17.	having been conditioned by being super-cooled from room temperature to
3		between about -23°C and -26°C.
-		
1	18.	The method as in Claim 14, wherein said pre-conditioned solute is a solute
2		having been conditioned by being super-cooled at an average rate of between
3		about 6.5°C and 8.5°C per minute.
1	19.	The method as in Claim 14, wherein said pre-conditioned solute is a solute
2	15.	having been conditioned by being super-cooled, for at least a portion of time,
3		at an average rate of at least about 17°C per minute.
		•
1	20.	The method as in Claim 14, wherein the heat absorption rate of the pre-

1

1

2

4

2		conditioned solute is about 135 B10 at a temperature of between about -23°C
3		and -26°C.
1	21.	The method as in Claim 14, wherein the protectant includes propylene glycol.
1	22.	The method as in Claim 14, wherein the protectant includes glycerol.

- 23. The method as in Claim 14, wherein the protectant includes DMSO.
 - 24. The method as in Claim 14, wherein the biologically active material includes: viable single cells, viable tissues, viable organs, viable nucleic acids, viable ribonucleic acids, viable amino acid based compounds and viable lipid based compounds.

1	25.	A biological material having been subjected to a cryopreservation process, the
2		cryopreservation process comprising:
3		chilling a protectant to cause an irreversible release of energy from the
4		protectant;
5		treating biologically active material with the protectant; and
6		freezing the treated biologically active material.
1	26.	The biological material as in Claim 25, wherein said pre-conditioned solute is
2		a solute having been conditioned by being super-cooled at an average rate of at
3		least about 6.5°C per minute.
1	27.	The biological material as in Claim 25, wherein said pre-conditioned solute is
2		a solute having been conditioned by being super-cooled from room
3		temperature to a temperature of less than about -23°C.
1	28.	The biological material as in Claim 25, wherein said pre-conditioned solute is
2		a solute having been conditioned by being super-cooled from room
3		temperature to between about -23°C and -26°C.
1	29.	The biological material as in Claim 25, wherein said pre-conditioned solute is
2		a solute having been conditioned by being super-cooled at an average rate of
3		between about 6.5°C and 8.5°C per minute.
1	30.	The biological material as in Claim 25, wherein said pre-conditioned solute is
2		a solute having been conditioned by being super-cooled, for at least a portion
3		of time, at an average rate of at least about 17°C per minute.
1	31.	The biological material as in Claim 25, wherein the heat absorption rate of the

3		pre-conditioned solute is about 135 BTU at a temperature of between about - 23°C and -26°C.
1 2 3	32.	The biological material as in Claim 25, wherein the cryopreservation process includes warming the protectant prior to the step of treating the biologically active material.
1 2	33.	The biological material as in Claim 32, wherein the cryopreservation process includes warming the protectant to above 0 degrees Celsius.
1 2	34.	The biological material as in Claim 25, wherein said biological material comprises viable single cells.
1 2	35.	The biological material as in Claim 25, wherein said biological material comprises viable tissues.
1 2	36.	The biological material as in Claim 25, wherein said biological material comprises viable organs.
1 2	37.	The biological material as in Claim 25, wherein said biological material comprises viable nucleic acids.
1 2	38.	The biological material as in Claim 25, wherein the biological material comprises viable ribonucleic acids.
1 2	39.	The biological material as in Claim 25, wherein the biological material comprises viable amino acid based compounds.

- 1 40. The biological material as in Claim 25, wherein the biological material
- 2 comprises viable lipid based compounds.