

50 MHz to 4000 MHz, GaAs pHEMT LOW NOISE MMIC AMPLIFIER

Product Description

The SPF5189Z is a high performance pHEMT MMIC LNA designed for operation from 50MHz to 4000MHz. The on-chip active bias network provides stable current over temperature and process threshold voltage variations. The SPF5189Z offers ultra-low noise figure and high linearity performance in a gain block configuration. Its single-supply operation and integrated matching networks make implementation remarkably simple. A high maximum input power specification make it ideal for high dynamic range receivers.

Features

- Ultra-Low Noise Figure=0.60dB at 900MHz
- Gain=18.7dB at 900 MHz
- High Linearity: OIP₃=39.5dBm at 1960MHz
- P_{1dB}=22.7dBm at 1960MHz
- Single-Supply Operation: 5V at I_{DO}=90mA
- Flexible Biasing Options: 3V to 5V, Adjustable Current
- Broadband Internal Matching

Applications

- Cellular, PCS, W-CDMA, ISM, WiMAX Receivers
- PA Driver Amplifier
- Low Noise, High Linearity Gain Block Applications

Parameter	Specification			Unit	Condition	
Farameter	Min.	Тур.	Max.	UIIIL	Condition	
Small Signal Gain		18.7		dB	0.9GHz	
	11.3	12.8	14.3	dB	1.96GHz	
Output Power at 1dB Compression		22.4		dBm	0.9GHz	
	20.7	22.7		dBm	1.96GHz	
Output Third Order Intercept Point		38.5		dBm	0.9GHz	
	36.0	39.5		dBm	1.96GHz	
Noise Figure		0.55		dB	0.9GHz	
		0.8	1.1	dB	1.96GHz	
Input Return Loss		17.5		dB	0.9 GHz	
	14.5	18.5		dB	1.96GHz	
Output Return Loss		16.0		dB	0.9GHz	
	11.0	15.0		dB	1.96GHz	
Reverse Isolation		24.0		dB	0.9GHz	
		18.0		dB	1.96GHz	
Device Operating Voltage		5	5.25	V		
Device Operating Current	75	90	105	mA	Quiescent	
Thermal Resistance		65		°C/W	Junction to lead	
	1			1		

Test Conditions: $V_D=5V$, $I_{DQ}=90$ mA, TL=25°C, OIP_3 Tone Spacing=1MHz, P_{OUT} per tone=0dBm $Z_S=Z_L=50\Omega$, 25°C, Application Circuit Data

Absolute Maximum Ratings

Parameter	Rating	Unit
Max Device Current (I _D)	120	mA
Max Device Voltage (V _D)	5.5	V
Max RF Input Power	27	dBm
Max Dissipated Power	660	mW
Max Junction Temperature (T _J)	150	°C
Operating Temperature Range (T _L)	-40 to + 85	°C
Max Storage Temperature	-65 to +150	°C
ESD Rating - Human Body Model (HBM)	Class 1B	
Moisture Sensitivity Level (MSL)	MSL 2	

Operation of this device beyond any one of these limits may cause permanent damoperation of this device beyond any one of these lifting half cause permainent dani-age. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L) / R_{TH}, j - I \text{ and } T_L = T_{LEAD}$

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in

Typical RF Performance - Application Circuit Data with V_D=5V, I_D=90mA

= -										
Parameter	Unit	0.8	0.9	1.0	1.7	1.8	1.9	2.0	2.1	2.2
		GHz								
Small Signal Gain	dB	19.6	18.7	17.9	13.8	13.5	12.9	12.7	12.2	11.9
Noise Figure	dB	0.52	0.55	0.79	0.75	0.81	0.83	0.90	0.91	0.98
Output IP3	dBm	38.4	38.5	39.0	39.2	39.5	39.5	39.8	39.8	39.9
Output P1dB	dBm	22.3	22.4	22.5	22.6	22.6	22.7	22.7	22.7	22.7
Input Return Loss	dB	17.1	17.5	17.5	17.5	17.5	18.5	18.5	18.5	18.0
Output Return Loss	dB	16.0	16.0	15.5	14.0	14.0	14.5	15.0	15.5	16.0
Reverse Isolation	dB	24.5	24.0	23.0	18.5	18.5	18.0	18.0	17.5	17.0

 $\textbf{Test Conditions: V}_{D} = \textbf{5V}, \textbf{I}_{DQ} = \textbf{90mA}, \textbf{OIP}_{\textbf{3}} \textbf{Tone Spacing} = \textbf{1MHz}, \textbf{P}_{OUT} \textbf{per tone} = \textbf{0dBm}, \textbf{T}_{L} = 25 \, ^{\circ}\text{C}, \textbf{Z}_{S} = \textbf{Z}_{L} = \textbf{50}\Omega$

Typical RF Performance - 900 MHz Application Circuit with $V_D = 5V$, $I_D = 90 \text{ mA}$

Typical RF Performance - 900 MHz Application Circuit with $V_D = 5V$, $I_D = 90 \, \text{mA}$

S21 versus Frequency 24 22 Gain (dB) 18 16 -40°C 25°C -85°C 14 0.8 0.9 1.0 1.1 1.2 Frequency (GHz)

S12 versus Frequency

S22 versus Frequency

Typical RF Performance - 1900 MHz Application Circuit with $V_D = 5V$, $I_D = 90 \text{ mA}$

Typical RF Performance - 1900MHz Application Circuit with $V_D=3V$, $I_D=90\,mA$

S12 versus Frequency

S22 versus Frequency

De-embedded Device S-parameters (Bias Tee Data)

S11 versus Frequency (5V, 90mA)

S22 versus Frequency (5V, 90 mA)

900 MHz Evaluation Board Layout

Bill of Materials (SPF5189Z, 900 MHz)

C1	ECJ-1VB1C104, Panasonic, 0.1uF
C2, C3, C4	ECJ-1VC1H101J, Panasonic, 100pF
L1	LL1608-FSL1N5, Toko, 1.5nH
L2	LL1608-FSR15J, Toko, 150nH

900 MHz Application Schematic

1900 MHz Evaluation Board Layout

Bill of Materials (SPF5189Z, 1900MHz)

C1	ECJ-1VB1C104, Panasonic, 0.1uF
C2, C4	ECJ-1VC1H101J, Panasonic, 100pF
C3	ECJ-1VC1H100, Panasonic, 10pF
L1	LL1608-FSL47N, Toko, 47 nH

1900 MHz Application Schematic

Pin Names and Description

Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC-blocking capacitor chosen for the frequency of operation.
2	GND	Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground inductance and achieve optimum RF performance.
3	RF OUT/DC BIAS	RF output and bias pin. This pin requires the use of an external DC-blocking capacitor chosen for the frequency of operation.
4	GND	Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground inductance and achieve optimum RF performance.

Package Drawing

Dimensions in inches (millimeters)

Refer to drawing posted at www.rfmd.com for tolerances.

Ordering Information

Part Number	Description		
SPF5189Z	7" Reel with 1000 pieces		
SPF5189ZSQ	Sample Bag with 25 pieces		
SPF5189ZSR	7" Reel with 100 pieces		
SPF5189ZPCK1	800MHz to 1000MHz PCBA with 5-piece Sample Bag		
SPF5189ZPCK2	1700MHz to 2200MHz PCBA with 5-piece Sample Bag		