Chapitre X

Limites de Fonctions

I. LIMITES D'UNE FONCTION EN L'INFINI

A. Limite en $+\infty$

1. Définitions

Soit une fonction f définie au moins sur $[a; +\infty[$, où a est un réel.

— On dit que f a pour limite $+\infty$ en $+\infty$ si pour tout réel M positif, il existe un réel A, tel que x > A implique $f(x) \ge M$.

Autrement dit, lorsque x prend des valeurs de plus en plus grandes, f(x) peut être aussi grand que l'on veut.

On note:

FIGURE 10.1. – Représentation Graphique d'une Fonction qui Semble ${\rm Tendre\ vers}\ +\infty\ en\ +\infty$

— On dit que f a pour limite $-\infty$ en $+\infty$ si pout tout réel m négatif, il existe un réel A, tel que x > A, $f(x) \le m$.

Autrement dit, lorsque x prend des valeurs de plus en plus grandes, f(x) est négatif et peut être aussi grand que l'on veut en valeur absolue.

On note:

$$\lim_{x \to +\infty} f(x) = -\infty$$

FIGURE 10.2. – Représentation Graphique d'une Fonction qui Semble Tendre vers $-\infty$ en $+\infty$

— On dit que f a pour limite l en $+\infty$ où l est un réel si pour tout intervalle ouvert I contenant l, il existe un réel A tel que x > A implique $f(x) \in I$ Autrement dit, lorsque x prend des valeurs de plus en plus grandes, f(x) peut être aussi près de l que l'on veut.

On note:

FIGURE 10.3. – Représentation Graphique d'une Fonction qui Semble Tendre vers l en $+\infty$

$$\begin{aligned} \text{H.P.} : \forall \epsilon > 0, \ \exists \mathbf{A} \in \mathbb{R}, \ \forall x \in \mathcal{D}_f \\ \left(x > \mathbf{A} \implies \left| f(x) - l \right| < \epsilon \right) \text{ou} \left(x > \mathbf{A} \implies f(x) \in \left] l - \epsilon \right. ; l + \epsilon \left[\right) \end{aligned}$$

2. Définition

Soit f une fonction définie au moins sur $[A; +\infty[$, où A est un réel, et $\mathscr C$ sa courbe représentative dans un repère.

Si $\lim_{x\to +\infty} f(x) = l$ alors $\mathscr C$ admet une asymptote horizontale en $+\infty$ d'équation y=l.

3. Remarque

Une fonction n'admet pas forcément de limite en $+\infty$, par exemple, les fonctions sin et cos sont bornées et n'admettent pas de limites en l'infini.

B. Limite en $-\infty$

1. Définitions

Soit f une fonction définie au moins sur $]-\infty$; a[, où a est un réel.

— On dit que f a pour limite $+\infty$ en $-\infty$ si pour tout réel M, positif, il existe un réel A tel que x < A implique f(x) ≥ M Autrement dit, lorsque x prend des valeurs négatives de plus en plus grandes en valeur absolue, f(x) peut être aussi grand que l'on veut. On note :

FIGURE 10.4. – Représentation Graphique d'une Fonction qui Semble ${\rm Tendre\ vers}\ +\infty\ {\rm en}\ -\infty$

— On dit que f a pour limite $-\infty$ en $-\infty$ si pour tout réel m négatif, il existe un réel A tel que x < A implique $f(x) \le m$ On note :

FIGURE 10.5. – Représentation Graphique d'une Fonction qui Semble Tendre vers $-\infty$ en $-\infty$

— On dit que f a pour limite l en $-\infty$ où l est un réel, si pour tout intervalle ouvert I contenant l, on peut trouver un réel A tel que si $x \le A$, f(x) appartient à I.

Autrement dit, lorsque x prend des valeurs négatives, de plus en plus grandes en valeur absolue, f(x) peut être aussi près de l que l'on veut. On note :

Figure 10.6. – Représentation Graphique d'une Fonction qui Semble Tendre vers l en $+\infty$

$$\begin{aligned} \text{H.P.} : \forall \epsilon > 0, \; \exists \mathbf{A} \in \mathbb{R}, \; \forall x \in \mathcal{D}_f \\ \left(x < \mathbf{A} \implies \left| f(x) - l \right| < \epsilon \right) \text{ou} \left(x < \mathbf{A} \implies f(x) \in \left] l - \epsilon \; ; l + \epsilon \right[\right) \end{aligned}$$

2. Définition

Si $\mathscr C$ est la courbe représentative de f dans un repère. $\lim_{x \to -\infty} f(x) = l$ alors $\mathscr C$ admet une asymptote horizontale en $-\infty$ d'équation y = l.

II. LIMITE D'UNE FONCTION EN UN RÉEL

A. DÉFINITIONS

Soit a un réel et f une fonction définie sur un intervalle I contenant a ou tel que a est une borne de I.

Si, lorsque *x* prend des valeurs de plus en plus proches de *a* :

— f(x) est aussi grand que l'on veut, on dit que f a pour limite $+\infty$ en a. On note :

FIGURE 10.7. – Représentation Graphique d'une Fonction qui Semble Tendre vers $+\infty$ en a

— f(x) est négatif et aussi grand que l'on veut en valeur absolue, on dit que f a pour limite $-\infty$ en a.

On note:

FIGURE 10.8. – Représentation Graphique d'une Fonction qui Semble Tendre vers $-\infty$ en a

— f(x) est aussi proche que l'on veut d'un réel l, on dit que f a pour limite l en a. On note :

$$\lim_{x \to a} f(x) = l$$

1. Remarque

Si f est continue en a, l = f(a).

B. Limite à Droite ou à Gauche d'une Fonction en un Réel

1. EXEMPLE

La fonction $f: x \mapsto \frac{1}{x}$ n'a pas de limite en 0 car lorsque x tend vers 0 par des valeurs positives, $\frac{1}{x}$ tend vers $+\infty$ et lorsque x tend vers 0 par valeurs négatives, $\frac{1}{x}$ tend vers $-\infty$.

Cependant, on peut parler de limite à gauche et limite à droite.

On note:

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \qquad \lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$$

2. Remarque

Une fonction admet une limite en un réel a si la limite à droite et à gauche de f en a existent et sont égales.

C. ASYMPTOTE VERTICALE

1. Définition

Soit $\mathscr C$ la courbe représentative de la fonction f. Dire que $\mathscr C$ admet une asymptote verticale d'équation x=a, c'est dire que :

$$\lim_{x \to a} f(x) = \pm \infty \quad \text{ou} \quad \lim_{\substack{x \to a \\ x > a}} f(x) = \pm \infty \quad \text{ou} \quad \lim_{\substack{x \to a \\ x < a}} f(x) = \pm \infty$$

III. FONCTIONS USUELLES

A. Théorème

1. FONCTION RACINE CARRÉE

 $\lim_{x\to +\infty} \sqrt{x} = +\infty$ et $\lim_{x\to 0} \sqrt{x} = 0$ (la fonction racine carrée est continue en 0)

2. FONCTION INVERSE

$$\lim_{\substack{x \to +\infty \\ x > a}} \frac{1}{x} = 0, \quad \lim_{\substack{x \to a \\ x > a}} \frac{1}{x} = +\infty, \quad \lim_{\substack{x \to a \\ x < a}} \frac{1}{x} = -\infty, \quad \lim_{\substack{x \to -\infty \\ x > a}} \frac{1}{x} = 0$$

3. FONCTIONS PUISSANCES

Quel que soit $p \in \mathbb{N}^*$, $\lim_{x \to +\infty} x^p = +\infty$

Si p est pair, $\lim_{x \to -\infty} x^p = +\infty$ et si p est impair, $\lim_{x \to -\infty} = -\infty$

Quel que soit $p \in \mathbb{N}^*$, $\lim_{x \to +\infty} \frac{1}{x^p} = 0$, et $\lim_{x \to -\infty} \frac{1}{x^p} = 0$

Si p est pair, $\lim_{x\to 0} \frac{1}{x^p} = +\infty$ et si p est impair, $\lim_{\substack{x\to 0\\x>0}} \frac{1}{x^p} = +\infty$ et $\lim_{\substack{x\to 0\\x<0}} \frac{1}{x^p} = -\infty$

4. FONCTION EXPONENTIELLE

$$\lim_{x \to +\infty} e^x = +\infty, \quad \lim_{x \to -\infty} e^x = 0$$

5. FONTION LOGARITHME NÉPÉRIEN

$$\lim_{x \to +\infty} \ln(x) = +\infty, \quad \lim_{\substack{x \to 0 \\ x > 0}} \ln(x) = -\infty$$

B. Théorèmes de Croissance Comparée

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \qquad \lim_{x \to -\infty} x e^x = 0$$

1. DÉMONSTRATION

— On montre que $e^x > \frac{x^2}{2}$, pour tout x > 0 en étudiant la différence. Soit f définie sur]0; $+\infty[$ par $f(x) = e^x - \frac{x^2}{2}$. Étudions les variations de f. $f'(x) = e^x - x$ on ne conclut pas directement sur le signe. Dérivons encore : $f''(x) = e^x - 1$ et $e^x - 1 > 0 \iff e^x > 1 \iff x > 0$ Donc, f''(x) est strictement positive pour x > 0Ainsi on a f'(x) strictement croissante sur $]0; +\infty[$ et comme f'(0) = 1 > 0, f' est strictement positive sur $]0; +\infty[$:

x	0 +∞
f''(x)	0 +
f'(x)	1
f(x)	1

FIGURE 10.9. – Tableau de Variation de f

Donc, pour tout $x \in]0$; $+\infty[$, $e^x - \frac{x^2}{2} > 0$ et donc $e^x > \frac{x^2}{2}$ Comme x > 0 on peut diviser par x:

Donc, $\frac{e^x}{x} > \frac{x}{2}$ et comme $\lim_{x \to +\infty} \frac{x}{2} = +\infty$, par comparaison :

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \quad \Box$$

— On pose X = -x et alors, $\lim_{x \to -\infty} X = +\infty$ et $xe^x = -Xe^x = -\frac{X}{e^X}$ Donc, par passage à l'inverse de la limite précédente :

$$\lim_{x \to -\infty} x e^x = \lim_{X \to +\infty} -\frac{X}{e^X} = 0 \quad \Box$$

C. Théorème

Quel que soit l'entier n > 0:

$$\lim_{x \to \infty} \frac{e^x}{x^n} = +\infty \quad \text{et} \quad \lim_{x \to -\infty} x^n e^x = 0$$

D. THÉORÈMES DE CROISSANCE COMPARÉE (BIS)

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \quad \text{et} \quad \lim_{\substack{x \to 0 \\ x > 0}} x \ln(x) = 0$$

1. Démonstration

On pose le changement de variable $X = \ln(x)$ et donc $x = e^X$. On a alors $\lim_{x \to +\infty} X = +\infty$ et $\lim_{\substack{x \to 0 \\ x > 0}} X = -\infty$.

IV. OPÉRATIONS SUR LES LIMITES

A. Limites de Somme, Produit et Quotient

Dans cette sous-partie, les limites des fonctions f et g sont prises soit en $-\infty$, soit en $+\infty$ soit en un réel a. l et l' sont des nombres réels.

Lorsqu'il n'y a pas de conclusion en général, on dit alors qu'il y a un cas de forme indéterminée. (F.I.)

N.B.: $\pm \infty$ désigne $+\infty$ ou $-\infty$.

1. LIMITE DE SOMME

Si lim f	l	l	l	+∞	$-\infty$	+∞
Si lim g	l'	+∞	$-\infty$	+∞	$-\infty$	$-\infty$
$\lim(f+g)$	l+l'	+∞	-∞	+∞	-∞	F.I.

FIGURE 10.10. – Tableau des Limites de Sommes de Fonctions

2. LIMITE D'UN PRODUIT

Si lim f	l	<i>l</i> > 0	<i>l</i> > 0	<i>l</i> < 0	<i>l</i> < 0	+∞	+∞	$-\infty$	0
Si lim g	l'	+∞	$-\infty$	+∞	$-\infty$	+∞	$-\infty$	$-\infty$	±∞
$\lim(f \times g)$	$l \times l'$	+∞	$-\infty$	$-\infty$	+∞	+∞	$-\infty$	$-\infty$	F.I.

FIGURE 10.11. – Tableau des Limites des Produits de Fonctions

3. Limite d'un Quotient f/g dans le cas où la limite de g n'est pas nulle

Si lim f	l	l	+∞	+∞	$-\infty$	$-\infty$	±∞
Si lim g	$l' \neq 0$	±∞	l' > 0	l' < 0	l' > 0	l' < 0	±∞
$\lim(f/g)$	$\frac{l}{l'}$	0	+∞	$-\infty$	$-\infty$	+∞	F.I.

FIGURE 10.12. – Tableau des Limites des Quotients de Fonctions, où la Limite de *g* n'est pas nulle

4. Limite d'un Quotient f/g dans le cas où la limite de g est nulle

Si lim f	$l > 0$ ou $+\infty$	<i>l</i> > 0 ou +∞	<i>l</i> < 0 ou −∞	<i>l</i> < 0 ou −∞	0
Si lim g	0+	0-	0+	0-	0
$\lim(f/g)$	+∞	$-\infty$	$-\infty$	+∞	F.I.

FIGURE 10.13. – Tableau des Limites des Quotients de Fonctions, où la Limite de g est nulle

5. Exemples

A. SOMME

 $\lim_{x \to +\infty} x + \frac{1}{x^2} - 1 = +\infty \quad \text{(remarquons qu'on a la même limite quand } x \to 0\text{)}$

B. PRODUIT

$$\lim_{x \to 0} (-3+x) \left(1 + \frac{1}{x^2}\right) = -\infty \qquad \text{En effet, } \lim_{x \to 0} -3 + x = -3 \text{ et } \lim_{x \to 0} 1 + \frac{1}{x^2} = +\infty$$
Par contre, remarquons que
$$\lim_{x \to +\infty} (-3+x) \left(1 + \frac{1}{x^2}\right) = +\infty$$

C. QUOTIENT

$$\lim_{x \to 0} \frac{1+x}{\sqrt{x}} = +\infty$$

B. Limite d'une Composée de Deux Fonctions

1. Rappel

On note $g \circ f$ la composée de la fonction f suivie de g.

$$\forall x \in \mathcal{D}_f \text{ tel que } f(x) \in \mathcal{D}_g, (g \circ f)(x) = g(f(x))$$

2. THÉORÈME

Soient a, b et c trois réels ou $+\infty$ ou $-\infty$. Soient f et g deux fonctions, définies au bon endroit.

Alors, si
$$\lim_{x \to a} f(x) = \mathbf{b}$$
 et $\lim_{x \to \mathbf{b}} g(x) = c$, on a:

$$\lim_{x \to a} (g \circ f)(x) = c$$

Attention aux limites!

3. Exemple

$$\lim_{x \to +\infty} e^{-x^2 - 3} = 0 \quad \text{car} \quad \lim_{x \to +\infty} -x^2 - 3 = -\infty \quad \text{et} \quad \lim_{X \to -\infty} e^X = 0$$

C. Comparaison

a désigne un réel ou $+\infty$ ou $-\infty$.

1. THÉORÈME

Si f et g sont deux fonctions telles que pour tout x voisin de a, $f(x) \le g(x)$

- Si
$$\lim_{x \to a} f(x) = +\infty$$
 alors $\lim_{x \to a} g(x) = +\infty$
- Si $\lim_{x \to a} g(x) = -\infty$ alors $\lim_{x \to a} f(x) = -\infty$

2. THÉORÈME

Soient *f* , *g* et *h* trois fonctions telles que pour tout *x* voisin de *a*,

$$g(x) \le f(x) \le h(x)$$

Si
$$\lim_{x \to a} g(x) = l$$
 et $\lim_{x \to a} h(x) = l$ où l est un réel, alors $\lim_{x \to a} f(x) = l$