

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Selected Topics in Cryptography Quantum cryptanalysis

Szymon Szozda

Department of Telecommunications

04.12.2017

Quantum crypanalysis

Agenda

- 1. Bra-ket notation
- 2. Quantum gates
- 3. Grover's Database Search
- 4. Shore's factorization algorithm
 - Fast modular exponentiation
 - Quantum Fourier Transform
- 5. Implementation of quantum computer
 - Cold. Confined Atomic Ions
 - Cold. Confined Atoms
 - Quantum Dots
 - Linear Optic Computers
 - Superconducting Devices
 - NMR

Bra-ket notation

Definition

Bra–ket notation: $\langle x|y\rangle$ is a standard notation for describing quantum states. It can also be used to denote abstract vectors, linear functionals and scalar product in mathematics.

The left part: $\langle x |$, called the bra, is a row vector.

The right part: $|y\rangle$, called the ket, is a column vector.

Qbit

Definition

A pure qubit state is a linear superposition of the basis states. This means that the gubit can be represented as a linear combination of $|0\rangle$ and $+|1\rangle$:

$$|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$$

When we measure this qubit in the standard basis, the probability of outcome $|0\rangle$ is $|\alpha|^2$ and the probability of outcome $|1\rangle$ is $|\beta|^2$. Because the absolute squares of the amplitudes equate to probabilities, it follows that α and β must be constrained by the equation

$$|\alpha|^2 + |\beta|^2 = 1$$

Gates Definition

In quantum computing and specifically the quantum circuit model of computation, a quantum gate (or quantum logic gate) is a basic quantum circuit operating on a small number of qubits.

.

Gates Example

Gate	Notation	Matrix
NOT (Pauli-X)	\overline{X}	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli- Z	<u>Z</u>	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard	-H	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
CNOT (Controlled NOT)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

Unitary Transformation

Definition

Unitary transformation is transformation that preserves the inner product (isometry).

It is a bijective function:

$$U: H_1 \rightarrow H_2$$

where H_1 and H_2 are Hilbert spaces, such that:

$$\langle Ux, Uy \rangle_{H_2} = \langle x, y \rangle_{H_1}$$

Grover's database search

Grover's database search uses ability of quantum computing to pararell process of qubits. The algorithm allows us to find selected element in unsorted set with complexity \sqrt{n}

Grover's database search

Scheme

Grover diffusion operator

Repeat $O(\sqrt{N})$ times

Group Theory

Abellian Group

In abstract algebra, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written.

Group Theory

11/16

Multiplicative group of integers modulo n

Multiplicative group of integers modulo n is an abelian group. The set of classes relatively prime to n is closed under multiplication:

$$gcd(a, n) = 1$$
 and $gcd(b, n) = 1$ => $gcd(ab, n) = 1$

Shor Overview

General Steps

Fast exponentiation

We can calculate $A^B mod C$ quickly, using modular multiplication rules:

$$A^2 modC = (A*A) modC = ((A modC)*(A modC)) modC$$

Quantum fourier transform

xyz

NNR Overview

General Steps