Advertisement targeting with machine learning

Story about keywords and Adtech

Agenda

- 1. Data analysis
- 2. Data Parsing
- 3. Sentence as vector
- 4. TFIDF
- 5. LSA
- 6. Clustering + k-means
- 7. Conclusion + future

Boring slide with me

- 1. I'm a Python Programmer
- 2. I'm a Hackerspace Silesia's board member
- 3. I'm working in the adtech area
- 4. My job is counting site visits, purchases and reporting

Problem

- Client supports advertisement's campaigns in many shops
- He dreams about machine learning
- What we only have is NGINX logs from trackers
- Data must be transformed to keywords per line

Analise

- What type is this data?
- How is look this data?
- Do we need all words?

Parsing

- 1. We have only logs from NGINX/Apache
- 2. We only interested with URL (without host)
- 3. We discard URLs like a admin / login / logout
- 4. We discard numbers (useless IDs)
- 5. We discard common and useless words and special characters
- 6. Keywords group by IP or cookieID
- 7. Document = keywords per cookieID

Parsing

```
YY.YY.YY.YY - - [DATE] "GET /xxx HTTP/1.1" 200 72 "https://www.url.pl/womens-road-shoes"
YY.YY.YY.YY - - [DATE] "GET /xxx HTTP/1.1" 200 72 "https://www.url.pl/mens-road-shoes"
ZZ.ZZ.ZZ.ZZ - - [DATE] "GET /xxx HTTP/1.1" 200 72 "http://www.url.pl/ShoeFinder"
```

www url pl womens road shoes www url pl mens road shoes www url pl ShoeFinder

Machine learning

- We need transform data to "countable"
- If we make it to matrix of numbers, then we can make model to machine learning

Sentence as vector

- Document = 1 line of grouped keywords (per IP/cookieID)
- Document has "Terms"
- Term can be a char, word, pair words, source link etc.
- Document can be as a vector with frequency of terms
- Many document = many vectors = many columns = matrix ^_^

- 1. John has cats
- 2. Cat has claws
- 3. Mark has cats

Row	John	has	cats	cat	claws	Mark
1	1	1	1	0	0	0
2	0	1	0	1	1	0
3	0	1	1	0	0	1

John has cats Mark has cats

Wiersz	John	John has	Has cats	cats	Mark	Mark has
1	1	1	1	1	0	0
2	0	0	1	1	1	1

TFIDF

- TF = Term Frequency (in document)
- IDF = Inverse Document Frequency (rarer terms in document has a higher ranking)

```
TFIDF(term, doc) = TF(term, doc) \times IDF(term)
TF = count(term) / count(terms in doc)
IDF = log<sub>10</sub>( count(docs) / count(docs with term) )
```

term	TF	IFD	TFIFD
John	0.33	log(3/1) ≈ 1.1	0.363
has	0.33	log(3/3) = 0	0
cats	0.33	log(3/2) ≈ 0.4	0.132

1.	John has cats
2.	Cat has claws
3.	Mark has cats

term	TF	IFD	TFIFD
Cat	0.33	log(3/1) ≈ 1.1	0.363
has	0.33	log(3/3) = 0	0
claws	0.33	log(3/1) ≈ 1.1	0.363

term	TF	IFD	TFIFD
Mark	0.33	log(3/1) ≈ 1.1	0.363
has	0.33	log(3/3) = 0	0
cats	0.33	log(3/2) ≈ 0.4	0.132

LSA

- LSA Latent semantic analysis
- Groups vectors according to rank terms (ex. TFIDF)
- Groups terms according to similarities ranks
- I can't explain without animation:
 https://commons.wikimedia.org/wiki/File:Topic_model_scheme.webm

Clustering

- We don't know nothing about what we can get from data
- We need to use unsupervised learning
- Clustering accordion to values of vectors we can classificate group of terms, see next slide

Clustering

- Every one row from matrix we can treat as vector in N-dimension
- K-means algorithm find the N nearest vectors to create group

Clustering

```
www url pl womens road shoes www url pl mens road shoes www url pl ShoeFinder
```

Clustering...

Cluster 01: sports, track, spikes, bras, bra, purecadence, impact, walking, juno, apparel Cluster 02: show, coshipping, cosummary, submit, start, account, adrenaline, apparel, home, road Cluster 03: start, coshipping, cosummary, submit, adrenaline, apparel, ghost, locator, returns, return

Classification

- According to created groups (cluster), we can make a classificator.
- Created classificator will be select 'group' based on input (ex. Keywords from visited sites)

Classification

WELCOME TO SOCEK STORE

Your label is: 11

Your favorite words is: walking, addiction, walker, adrenaline, lifestyle, beast, shoefinder, dyad, road, ariel

Your are in subpage womens-walking-shoes

Classified to Cluster

Sites:

- socek-ravenna-9-womens-running-shoe
- uplift-crossback-sports-bra
- womens-running-outerwear
- · womens-walking-shoes
- mens-apparel-sale
- new-apparel-arrivals
- socek-adrenaline-asr-14-mens-trail-running-shoes
- socek-launch-5-mens-running-shoes
- about-socek-sports-bras
- socek-ghost-10-gtx-womens-running-shoe
- adrenaline-gts-17-womens-running-shoes

Conclusion + future

- With clustering keywords, we can make special ad campaigns or change product categories on site.
- Based on cookieID and keywords used by visitor, we can show special targeted ads or propose another products
- MORE DATA from many days + another metrics (like age or city)

Source

- 1. https://en.wikipedia.org/wiki/Latent semantic analysis
- 2. http://scikit-learn.org/stable/auto_examples/text/document_clustering.html
- 3. http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
- 4. http://scikit-learn.org/stable/auto-examples/cluster/plot-cluster-comparison.html
- 5. https://pandas.pydata.org/
- 6. https://github.com/firemark/word-analyser