인공지능

- 숫자인식 프로젝트 (MLP 사용) -

지도 교수님: 공용해 교수님

제출일: 2019.06.18.

소속: 순천향대학교 의료IT공학과

성명: 20165215 위예진

<참조한 소스코드>

- 참고한 코딩 링크 : https://github.com/park-ju1008/Neural-Network

- 설명: https://juyoung-1008.tistory.com/5

- 사용한 데이터 : MNIST data (손글씨 데이터, 255 gray scale 이미지를 변환)

- 입력 개수: 28×28=784

<데이터의 사용>

- 사용한 데이터 : 32명이 만든 데이터(7×7행렬, 0또는 1의 값 가짐)

- 입력 개수 : 7×7=49

- 데이터의 순서

: 숫자당 10개씩 만든 학생 데이터 순서대로

<MLP 학습 과정>

<특징들>

1) 프로젝션

- 각각의 행과 열에 대해 값이 1인 인덱스의 개수를 더하였다.

[그림 3. 프로젝션 방식의 특징추출 예시]

3) 교차 특징

- 각각의 행과 열에서 값이 <u>토글(0에서</u> 1로 변화/1에서 0으로 변화)되는 횟수를 구한다
- 예시

[그림 5. 교차특징 추출 예시]

2) 행, 열의 분산 값

- 값이 1인 위치의 행과 열의 분산값을 구한다.
- 예시

(1,2)	(1,3)	(1,4)	
(2,2)		(2,4)	
(3,2)		(3,4)	
(4,2)		(4,4)	
(5,2)	(5,3)	(5,4)	

[그림 4. 행, 열의 분산값 특징추출 예시]

4) 망 특징

- 전체를 4칸으로 나눠서 각 칸의 1인 인덱스의 개수를 더하였다.
- 7*7 행렬이므로 똑같이 4칸으로 나뉘지 않는다. 따라서 8*8 행렬로 늘려주었다. 늘어난 칸에 대한 값들은 바깥의 값을 그대로 복제하였다.
- 예시

[그림 6. 망특징 추출 예시]

<변이들>

1) 학습률

	오차율	학습시간(sec)	전체 정확도(%)
0.5	0.016013	44	73.1875
0.1	0.031213	44	67.3125
0.05	0.044556	44	62.875
0.01	0.072013	44	43.3125
0.005	0.082759	45	30.4375

[표 2. 학습률 변화와 그에 따른 영향 (원본 데이터)]

	오차율	학습시간(sec)	전체 정확도(%)
0.5	0.000577	42	88.125
0.1	0.0028	41	87.0625
0.05	0.007153	41	84.75
0.01	0.029755	41	76.625
0.005	0.043428	41	71.3125

[표 3. 학습률 변화와 그에 따른 영향 (특징추출 데이터)]

2) 학습횟수

	0.11.0	44.4317.)	TI-11 TI = (0()
	오차율	학습시간(sec)	전체 정확도(%)
10	0.089922	2	13.0625
20	0.088194	4	18.3125
50	0.079426	11	35.5625
100	0.06726	22	52.0625
200	0.043541	44	61.875
500	0.026578	110	66.3125
1000	0.023221	220	67.9375

[표 4. 학습횟수 변화와 그에 따른 영향 (원본 데이터)]

	오차율	학습시간(sec)	전체 정확도(%)
10	0.072193	2	41.4375
20	0.055472	4	61
50	0.038603	10	71
100	0.021446	21	79
200	0.006714	42	85.875
500	0.001932	104	87.6875
1000	0.001547	206	89.0625

[표 5. 학습횟수 변화와 그에 따른 영향 (특징추출 데이터)]

<변이들>

3) 학습과 테스트 데이터의 수(비율)

train	test	오차율	학습시간(sec)	전체 정확도(%)
1600	1600	0.045856	44	62.3125
2600	600	0.031185	72	62
1600	3200	0.043376	44	65.5
3200	3200	0.032581	87	74.125

[표 6. 데이터의 수 변화와 그에 따른 영향 (원본 데이터)]

train	test	오차율	학습시간(sec)	전체 정확도(%)
1600	1600	0.008107	41	85.3125
2600	600	0.003758	67	86.833333
1600	3200	0.007177	42	91.25
3200	3200	0.00362	52	97.8125

[표 7. 데이터의 수 변화와 그에 따른 영향 (표본추출 데이터)]

4) 중간층의 노드의 개수

은닉층 1	<i>은닉층2</i>	오차율	학습시간(sec)	전체 정확도(%)
50	50	0.43125	31	62.8125
50	100	0.045543	44	62.0625
50	150	0.045442	58	62.0625
50	200	0.046484	72	62.4375
100	50	0.045198	57	63.25
100	100	0.045091	80	61.5625
100	200	0.048282	129	62.25

[표 8. 중간노드 수 변화와 그에 따른 영향 (원본 데이터)]

은닉층1	<i>은닉층2</i>	오차율	학습시간(sec)	전체 정확도(%)
50	50	0.007669	28	85.5625
50	100	0.007764	41	85.4375
50	150	0.006095	55	86.6875
50	200	0.008415	69	84.625
100	50	0.007546	50	84.625
100	100	0.006556	75	85.625
100	200	0.009197	124	86

[표 9. 중간노도 수 변화와 그에 따른 영향 (표본추출 데이터)]

<제일 좋은 조건들과 그 결과>

	학습률	학습횟수	테스트 데이터의 수	학습 데이터의 수	중간 노드의 수 m0	중간노드의 수m1
best	0.5	1000	3200	3200	50	50

[표 10. 결과가 가장 좋았던 변이 (원본 데이터)]

	학습률	학습횟수	테스트 데이터의 수	학습 데이터의 수	중간 노드의 수 m0	중간노드의 수m1
best	0.5	1000	3200	3200	50	50

[표 11. 결과가 가장 좋았던 변이 (특징추출 데이터)]

오차율	학습시간	전체정확도
0.01739	304	82.75

[표 12. 가장 좋은 변이들로 설정 후 결과 (원본 데이터)]

오차율	학습시간	전체정확도
0.000315	273	99.6875

[표 13. 가장 좋은 변이들로 설정 후 결과 (특징추출 데이터)]

감사합니다.