Table 2 Examples of CTL[⋆] formulas and respective counterexamples

	Sub-logic	Formula	Intuition	Counterexample
1	CTL, LTL	$\mathbf{AG}p$	p is an invariant	finite path leading to $\neg p$
2	CTL, LTL	$\mathbf{AF}p$	p must eventually hold	infinite path (lasso-shaped) without p
3	CTL, (negated) LTL	EF¬p	$\neg p$ is reachable	substructure with all reachable states, all containing p
4	CTL, LTL	$\mathbf{AG}(p \vee \mathbf{X}p) = \mathbf{AG}(p \vee \mathbf{AX}p)$	p holds at least every other state	finite path leading to $\neg p$ twice in a row
5	CTL, LTL	$\mathbf{AGF}p = \mathbf{AGAF}p$	p holds infinitely often	infinite path (lasso) on which <i>p</i> occurs only finitely often
6	CTL, LTL	$\mathbf{AG}(p \to \mathbf{F}q) = \mathbf{AG}(p \to \mathbf{AF}q)$	every p is eventually followed by q	finite path leading to p , but no q now nor on the infinite path (lasso) afterwards
7	CTL, (boolean combination of) LTL	$(\mathbf{AGF}p) \wedge \mathbf{EF} \neg p$	both 3 and 5 hold	either counterexample for AGF p or for EF $\neg p$
8	CTL only	$\mathbf{AGEX}p$	reachability of p in one step is an invariant	finite path leading to a state whose successors all have $\neg p$
9	CTL only	$\mathbf{AG}(p \vee \mathbf{AXAG}q \vee \mathbf{AXAG}\neg q)$	once p does not hold, either q or $\neg q$ become invariant in one step	finite path leading to $\neg p$ from which two finite extensions reach q and $\neg q$
10	LTL only	AFG p	p must eventually become an invariant	infinite path (lasso) on which $\neg p$ occurs infinitely often
11	LTL only	$\mathbf{A}(\mathbf{GF}p \to \mathbf{GF}q)$	if p holds infinitely often, so does q	infinite path (lasso) on which p occurs infinitely often, but q does not