REPU 2020

Plasmonic enhancement of single quantum emitters (SQE) in TMDs heterostructures

Presenter: Sebastian Escalante

Quantum Matter and Devices Lab

Mentor: Andres Llacsahuanga

Universidad de Ingeniería y Tecnología - Purdue University

Esquema

Introducción

- Desafíos
- Single Quantum Emitters
- Sources of them
- TMDs WSe2 MoSe2 MoS2

Objective

Methodology and Results

- Sample fabrication

Future Steps

Summary

2D Materials

Semi-metal

Semiconductors

Insulators

Transition Metal Dichalcogenides

- Atomically thin structures
- They differentiate from the band gap

Transition Metal Dichalcogenides (TMDs) **Properties**

Tungsten Diselenide Molybdenum (WSe2)

Diselenide (MoSe2)

- Direct band-gap semiconductor
- Strong light-matter interactions
- Transistors, memory devices, ultrathin photodetectors, and recently Single Quantum Emitters (SQE)

Sources of Single Quantum Emitters (SQE)

What is an exciton?

Scanning confocal microscope image of the PL (localized excitons)

 Single quantum emitters (SQE) are thought to arise from excitons bound to defects, impurities or potential traps

Intralayer Excitons are formed by stacking TMDs monolayers

 $\mathsf{MoX}_{\scriptscriptstyle 2}$ $\mathsf{WX}_{\scriptscriptstyle 2}$

Type II alignment for a heterojunction

Crystal alignment is crucial on experiments

Bilayer heterostructure

PL comparison between different angle alignments -> 2 and 20 degrees

Objective

Enhance the emission of TMDs heterostructure of MoSe2-Wse2 single quantum emitters

Characterization Techniques

- Optical Microscopy
- Raman Spectroscopy
- Photoluminescence (PL)
- Atomic Force Microscopy

Mechanical exfoliation of TMDs

Exfoliated MoSe2

SiO2 with mechanical exfoliated MoSe2

MoSe2 Monolayer

WSe2 Monolayer

hBN few layers

Monolayer identification with Optical Microscopy

Thin layer of MoSe2 at 100x

Thin layer of hBN at 100x

Photoluminescence Characterization

Monolayer MoS2 crystals

Photoluminescence

Raman Spectroscopy Tests

Monolayer MoS2 crystals

Raman Spectroscopy

Atomic Force Microscopy Tests

WSe2 Atomic Force Microscope image

Heterostructure fabrication

Dry-Transfer

Heterostructure fabrication

Dry-Transfer

Mose2 - WSe2 Heterostructure

PL at Room temperature and 10% laser power

Last heterostructure

1.30 - 1.38 eV Integration

Atomic Force Microscopy confirmed the transfer

AFM Microscopy of a Mose2 - WSe2 Heterostructure

Plasmonic enhancement to improve SQE

Trap and squeeze light into nanometer sized gaps between the metal nanocube and metal surface.

- Shorter lifetime, desirable for applications
- Higher efficiency of emission

PL at Room temperature and 10% laser power

Summary

- Two TMDs Heterostructures were manufactured.
- Experiments and literature suggest that alignment of the crystals in the heterostructure affect the response of the single quantum emitters.
- Impurities in the heterostructure can significatively quench the emission of SQE. Thus, a cleaning technique is required.
- SQE formed from TMDs is a promising field because of its scalability, efficiency and its application to Quantum Information Technologies.

Acknowledgement

Mentor Andres Llacsahuanga Msc.

PI Yong P. Chen PhD.

Post doc Demid Sychev

REPU 2020

Thank you!

Questions?

Universidad de Ingeniería y Tecnología - Purdue University