

TCS

Dr. Jürgen Koslowski

Einführung in die Logik

Aufgabenblatt 0, 2022-04-19

Präsenzaufgabe 1

Besprechung von Anhang B, Abzählbarkeit.

Präsenzaufgabe 2

Alternative Charakterisierung der Funktionen: Zeigen Sie, dass $A \xrightarrow{R} B$ genau dann eine Funktion ist, wenn eine Relation $B \xrightarrow{S} A$ existiert mit $id_A \subseteq R; S$ und $S; R \subseteq id_B$. (Kann man mehr über S sagen?)

Lösungsvorschlag:

 (\Longrightarrow) Für $A \xrightarrow{f} B$ wähle $S := f^{\operatorname{op}}$. Wegen $af[f(a)]f^{\operatorname{op}}a$ für jedes $a \in A$ folgt dann $id_A \subseteq f; f^{\operatorname{op}}$. Die Einwertigkeit von f impliziert zudem, dass aus $bf^{\operatorname{op}}afc$ folgt b = f(a) = c, also $f^{\operatorname{op}}: f \subseteq id_B$.

(\Leftarrow) Aus $id_A \subseteq R$; S folgt nach Definition der Relationenkomposition die Totalität von R, denn zu jedem $a \in A$ existiert mindestens ein $b \in B$ mit aRbSa. Für jedes $c \in B$ folgt aus aRc dann bSaRc und wegen S; $R \subseteq id_B$ somit b = c. Also ist R auch einwertig.

Wenden wir $(-)^{\text{op}}$ auf obige Bedingungen an, so erhalten wir $(id_A)^{\text{op}} = id_A \subseteq S^{\text{op}}; R^{\text{op}}$ und $R^{\text{op}}; S^{\text{op}} \subseteq id_B = (id_B)^{\text{op}}$, damit ist S^{op} ebenfalls eine Funktion. Da für jedes $a \in A$ ein $b \in B$ existiert mit aRbSa, muß b sowohl der Funktionswert von a unter R wie auch unter S^{op} sein, damit gilt $S = R^{\text{op}}$.

Präsenzaufgabe 3

Diese Aufgabe verwendet die Baumdarstellung aussagenlogischer Formeln, vergl. Folie 28.

Für A sei k(A) die Anzahl der Knoten in der Baumdarstellung, während deren Tiefe gegeben ist durch

- \triangleright t(A) = 0, falls A atomar ist;
- \triangleright $t(\neg B) = t(B) + 1$
- $\triangleright t(B*C) = \max\{t(B), t(C)\} + 1$, falls * binär ist.

Beweisen Sie mittels struktureller Induktion über den Aufbau aussagenlogischer Formeln

- (a) $|A| \le 5j_A + 1$ wobei j_A die Anzahl der Baumknoten ist, die keine Blätter und daher mit (mindestens unären) Junktoren markiert sind.
- (b) $|A| < 4 \cdot 2^{t(A)} 3$.

Lösungsvorschlag:

(a) Atomare Formeln und konstante Junktoren erfüllen k=0 und haben die Länge $1 \le 5k+1$. Falls $A = \neg B$ und B erfüllt die Behauptung, dann gilt

$$|A| = |B| + 1 \le 5j_B + 2 = 5(j_B + 1) - 3 = 5j_A - 3 \le 5j_A - 3 \le 5j_A + 1$$

Falls A = (B * C) und sowohl B als auch C erfüllen die Behauptung, dann gilt

$$|A| = |B| + |C| + 3 \le 5j_B + 5j_C + 5 = 5(j_B + j_C + 1) = 5j_A \le 5j_A + 1$$

(b) Atomare Formeln und konstante Junktoren erfüllen |A|=1 und t(A)=0, und somit $|A|\leq 4\cdot 2^0-3=1$.

Falls $A = \neg B$ und B erfüllt die Behauptung, dann gilt

$$|A| = |B| + 1 \le 4 \cdot 2^{t(B)} - 2 < 4 \cdot 2^{t(A)-1} \le 4 \cdot (2^{t(A)} - 1) \le 4 \cdot 2^{t(A)} - 3$$

Falls A = (B * C) und sowohl B als auch C erfüllen die Behauptung, dann gilt

$$|A| = |B| + |C| + 3 \le 4 \cdot \left(2^{t(B)} + 2^{t(C)}\right) - 3 \le 4 \cdot 2^{\max\{t(B), t(C)\} + 1} - 3$$

Wegen $t(A) = \max\{t(B), t(C)\} + 1$ zeigt das die Behauptung.

Hausaufgabe 4 [10 PUNKTE]

Beweisen Sie den Satz am von Anhang B
: Folgende Bedingungen für sind äquivalent für eine Menge
 $\,B\!:$

- (a) B ist abzählbar.
- (b) $B = \emptyset$ oder es gibt eine surjektive Abbildung $\mathbb{N} \xrightarrow{g} B$.
- (c) Es gibt eine surjektive partielle Abbildung (= einwertige Relation, nicht notwendig total) $\mathbb{N} \stackrel{h}{\longrightarrow} B$.

Lösungsvorschlag:

(a) \Rightarrow (b). Falls $\emptyset \neq B \xrightarrow{f} \mathbb{N}$ injektiv ist, so wähle $b_0 \in B$ und definiere $\mathbb{N} \xrightarrow{g} B$ wie folgt

$$g(n) := \begin{cases} b & \text{falls } f(b) = n \\ b_0 & \text{sonst} \end{cases}$$

Nach Konstruktion ist g total und wegen der Injektivität von f auch einwertig. Da f total war, ist g surjektiv.

- (b) \Rightarrow (c). Jede surjektive totale Abbildung ist auch eine surjektive partielle Abbildung, was den Fall $B \neq \emptyset$ erledigt. Andernfalls ist die leere Teilmenge $\emptyset \subseteq \mathbb{N} \times \emptyset$ eine, zugegeben pathologische, surjektive partielle Abbildung.
- (c) \Rightarrow (a). Wegen der Surjektivität hat jedes $b \in B$ ein nichtleeres Urbild $\emptyset \neq g^{-1}(b) \subseteq \mathbb{N}$. Daraus wählen wir eine Zahl f(b) aus, etwa die kleinste Zahl. Die Totalität und Einwertigkeit von f sind klar. Da für $b \neq c \in \mathbb{N}$ die g-Urbilder disjunkt sind, ist f in der Tat injektiv.

Hausaufgabe 5 [10 PUNKTE]

Zeigen oder widerlegen Sie: Jede transitive symmetrische totale Relation ist reflexiv.

Lösungsvorschlag:

 $A \xrightarrow{R} A$ sei transitiv, symmetrisch und total. Zu zeigen: aRa für jedes $a \in A$.

- Wegen der Totalität existiert $b \in A$ mit aRb.
- Wegen der Symmetrie gilt dann auch bRa.
- Wegen aRbRa liefert die Transitivität liefert dann aRa .

Dieser für Mathematiker typische doch recht informelle Beweis setzt die Kenntnis der Definitionen und bestimmter Schlußregeln voraus, die i.A. nicht explizit gemacht werden. Er ist aber nicht maschinen-lesbar, und in dieser Form vermutlich auch nicht von einerm Programm erzeugt worden.

Wir werden später in der Vorlesung einen algorithmisch erzeugten Beweis der obigen Behauptung kennenlernen (mit Hilfe der Tableaux-Methode der Prädikatenlogik), der dementsprechend völlig explizit ist.

Hausaufgabe 6 [14 PUNKTE]

Formeln sind bestimmte wohlgeformte Wörter (= endliche Tupel) über dem Alphabet der Aussagenlogik, welches aus Junktoren (\bot , \top , \neg , \land , \lor , \rightarrow , \leftrightarrow) und Variablen (p, q, r, ...) und ggf. Klammern besteht, letztere zwingend im Fall der Infix-Schreibweise binärer Junktoren (vergl. Folien 26–28). Teilformeln rekursiv definiert (Folien 36, 37).

- (a) Finden Sie alle Teilformeln von $A = \neg((\neg r \lor p) \land q)$ und färben Sie jeweils den entsprechenden Teil des Syntaxbaums von A ein.
- (b) Formulieren und beweisen Sie eine Vermutung über den Zusammenhang von Teilformeln und Teilwörtern der konventionellen linearen Darstellung von Formeln.

 $L\"{o}sungsvorschlag:$

Nach Definition:

$$T(A) = \{A\} \cup T(((\neg r \lor p) \land q))$$

$$= \{A, ((\neg r \lor p) \land q)\} \cup T((\neg r \lor p)) \cup T(q)$$

$$= \{A, ((\neg r \lor p) \land q), (\neg r \lor p), q\} \cup T(\neg r) \cup T(p)$$

$$= \{A, ((\neg r \lor p) \land q), (\neg r \lor p), q, \neg r, p\} \cup T(r)$$

$$= \{A, ((\neg r \lor p) \land q), (\neg r \lor p), q, \neg r, p, r\}$$

In der Baumdarstellung

Als markierte Teilwörter:

$$\neg((\neg r \lor p) \land q) \ , \ \neg((\neg r \lor p) \land q) \ , \ \neg((\neg r \lor p) \land q) \ , \ \neg((\neg r \lor p) \land q)$$

$$\neg((\neg r \lor p) \land q) \ , \ \neg((\neg r \lor p) \land q) \ , \ \neg((\neg r \lor p) \land q)$$

Vermutung: Die Teilformeln von A sind genau die zusammenhängenden Teilwörter von A, die selber Formeln darstellen.

Beweis mit struktureller Induktion:

- Klar für atomare Formeln und konstante Junktoren.
- Die Behauptung sei korrekt für Formeln mit weniger Junktoren als die molekulare Formel A. $A = \neg B$ hat als Teilformeln neben A noch diejenigen von B. Letztere sind genau die zusammenhängenden Teilwörter von B, die selber Formeln sind. Als Teilwörter von A sind diese immer noch zusammenhängend.

Ist umgekehrt das zusammenhängende Teilwort $\,C\,$ von $\,A\,$ eine Formel, sind zwei Fälle zu unterscheiden:

- Die führende Negation gehört nicht zu C: dann ist C zusammenhängendes Teilwort von B, nach Voraussetzung selber eine Formel, und damit echte Teilformel von A.
- Die führende Negation gehört zu C, etwa $C = \neg D$: Nach voraussetzung ist D auch eine Formel und damit ein zusammenhängendes Teilwort von B. Sofern D kein Atom ist, enthält es den Hauptjunktor von B. Nach Definition von Teilformeln muß dann D = B und folglich C = A gelten.

 $A=(B\star C)$ hat als Teilformeln neben A noch diejenigen von B und von C. Letztere sind genau die zusammenhängenden Teilwörter von B bzw C, die selber Formeln sind. Als Teilwörter von A sind sie immer noch zusammenhängend.

Ist umgekehrt das zusammenhängende Teilwort $\,D\,$ von $\,A\,$ eine Formel, sind zwei Fälle zu unterscheiden:

- \star gehört nicht zu D: dann ist Dzusammenhängendes Teilwort von Boder von C, nach Voraussetzung selber eine Formel, und damit echte Teilformel von A.
- $-\star$ gehört zu D, etwa $D=(E\star F)$: Nach Voraussetzung sind E und F auch Formeln und damit zusammenhängende Teilwörter von B bzw. C. Analog wie oben muß gelten E=B und F=C, also auch D=A.

Die folgende Aufgabe setzt die 2. Vorlesung am 27. April voraus.

Hausaufgabe 7 [16 PUNKTE]

(a) [3 PUNKTE] Sei φ eine Bewertung mit $\varphi(p)=1$ und $\varphi(q)=\varphi(r)=0$. Berechnen Sie den Wert

$$\widehat{\varphi}(\neg(p \to q) \lor r)$$

schrittweise gemäß der Definition.

- (b) [5 PUNKTE] Beweisen oder widerlegen Sie, dass $q \to (r \to (p \lor q))$ eine Tautologie ist.
- (c) [3 PUNKTE] Beweisen oder widerlegen Sie, dass $\{q \to p\} \models p \to q$ gilt.
- (d) [5 PUNKTE] Beweisen oder widerlegen Sie, dass $\neg p \lor \neg q \vDash \neg (p \land q)$, wobei $A \vDash B$ abkürzend für $\{A\} \vDash B$ und $\{B\} \vDash A$ steht.

Lösungsvorschlag:

Man instanziiert die Junktoren in \mathcal{J} zu Operationen auf \mathbb{B} , wie in Folie 41 angegeben und erhält eine \mathcal{J} -Algebra. Oder man verwendet die Wahrheitstabellen auf Folie 42.

Alternativ kann man auch "'algebraisch"' umformen:

$$\begin{split} \varphi(\neg(p\rightarrow q)\vee r) &= \sup\{\varphi(\neg(p\rightarrow q)), \varphi(r)\}\\ &= \sup\{1-\varphi(p\rightarrow q), 0\}\\ &= \sup\{1-\leq \langle \varphi(p), \varphi(q)\rangle, 0\}\\ &= \sup\{1-\leq \langle 1, 0\rangle, 0\}\\ &= \sup\{1-0, 0\}\\ &= \sup\{1, 0\}\\ &= 1 \end{split}$$

(b) Wir geben e_A tabellarisch an (Wahrheitstabelle):

p	q	r	q	\rightarrow	(r	\rightarrow	(p	V	q))
0	0	0	0	1	0	1	0	0	0
0	0	1	0	1	1	0	0	0	0
0	1	0		1	0		0	1	1
0	1	1	1	1	1	1	0	1	1
1	0	0	0	1	0	1	1	1	0
1	0	1	0	1	1	1	1	1	0
1	1	0	1	1	0	1	1	1	1
1	1	1	1	1	1	1	1	1	1

Da die Hauptspalte (fett gedruckt) nur Einsen enthält, ist $q \to (r \to (p \lor q))$ eine Tautologie.

- (c) Die Bedingung $\widehat{\varphi}(p \to q) = 1$ bzw. $\widehat{\varphi}(q \to p) = 1$ sind äquivalent zu $\varphi(p) \leq \varphi(q)$, bzw. $\varphi(q) \leq \varphi(p)$. Aber keine der letzten beiden Bedingungen impliziert die andere: Wähle etwa φ mit $\varphi(p) = 0$ und $\varphi(q) = 1$. Dann gilt $\widehat{\varphi}(p \to q) = 1$ aber $\widehat{\varphi}(q \to p) = 0$. Daher ist die Behauptung falsch.
- (d) Da der logische Folgerungsbegriff semantisch definiert ist, lohnt auch hier ein Blick auf die Tabellen der Boole'schen Funktionen:

p	q	$\neg p \lor \neg q$
0	0	1 0 1 1 0
0	1	1 0 1 0 1
1	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	1	0 1 0 0 1

p	q	¬	(p	\land	q)
0	0	1	0	1	0
0	1	1	0	1	1
1	0	1	1	1	0
1	1	0	1	0	1

Die Wahrheitswerte der Formel
n $\neg p \vee \neg q$ und $\neg (p \wedge q)$ stimmen für alle möglichen Belegungen überein.

(Die Behauptung ist übrigens äquivalent dazu, dass es sich bei $(\neg p \lor \neg q) \leftrightarrow (\neg (p \land q)$ um eine Tautologie handelt.)

And now for something completely different:

Hausaufgabe 8 [0 PUNKTE]

Überzeugen Sie sich selbst vom beklagenswerten Zustand der Logik im Mittelalter, speziell hinsichtlich der Identifizierung von Hexen, in folgendem halbdokumentarischen Film:

https://www.youtube.com/watch?v=yp_15ntikaU

Versuchen Sie, das Argument von Bedevere zu formalisieren. Im Laufe der Vorlesung sollten einige Fehler deutlich werden (kein Problem, wenn Sie die jetzt noch nicht finden).