

Maestría en Ciencia de Datos y Máquinas de Aprendizaje Inteligencia Artificial: Data Minning I

Regression, Neural Networks - Database: Cancer de mama (Breast Cancer Wisconsin)

Introducción

El Breast Cancer Wisconsin Diagnostic Dataset es un conjunto de datos ampliamente utilizado en proyectos de ciencia de datos y aprendizaje automático, especialmente para prácticas de clasificación y agrupamiento. Fue recopilado por el Dr. William H. Wolberg en la Universidad de Wisconsin, y contiene información sobre características de células tumorales obtenidas a partir de imágenes digitales de biopsias de tejido mamario. El objetivo de estos datos es analizar las características físicas de los núcleos celulares para ayudar a distinguir entre tumores malignos y benignos.

Objetivo General

Aplicar técnicas de **regresión**, **clasificación** y **redes neuronales** para explorar y analizar patrones en los datos del cáncer de mama, con el fin de:

- 1. Identificar relaciones entre variables mediante regresión lineal y logística.
- 2. Evaluar el desempeño de un modelo de red neuronal para clasificación.
- 3. Comparar resultados y probabilidades predichas por cada modelo.

Objetivos Específicos

- Realizar análisis exploratorio del dataset.
- Implementar regresión lineal multivariable para predecir características continuas.
- Implementar regresión logística para clasificar tumores malignos y benignos.
- Diseñar y entrenar un MLP en PyTorch para clasificación binaria.
- Visualizar resultados y comparar desempeño entre métodos.

Metodología

1. Exploración inicial del conjunto de datos

2. Regresión lineal multivariable

- 1. Selección de variables predictoras y variable objetivo continua (por ejemplo, mean area, mean perimeter).
- 2. Ajuste de modelo de regresión lineal multivariable.
- 3. Evaluación:
 - o Coeficientes y su interpretación.
 - o Error cuadrático medio (MSE).
- 4. Visualización:

Maestría en Ciencia de Datos y Máquinas de Aprendizaje Inteligencia Artificial: Data Minning I

Regression, Neural Networks – Database: Cancer de mama (Breast Cancer Wisconsin)

- o Predicciones vs valores reales.
- o Tabla con algunas predicciones y sus errores.

3. Regresión logística

- 1. Selección de características relevantes para clasificación binaria.
- 2. Ajuste de un modelo de regresión logística:
 - o Mostrar probabilidades de cada muestra de pertenecer a cada clase.
- 3. Evaluación:
 - o Exactitud, matriz de confusión.
- 4. Visualización:
 - o Probabilidades predichas.
 - o Comparación de predicciones con clase real.

4. Red neuronal con PyTorch

- 1. Construcción de un MLP simple:
 - o Input: número de características seleccionadas.
 - o Capas ocultas con ReLU.
 - o Output: 1 neurona con Sigmoid.
- 2. Entrenamiento:
 - o Función de pérdida: BCE.
 - o Optimizador: Adam.
 - o Número de épocas y batch size.
- 3. Evaluación:
 - o Exactitud en test.
 - o Probabilidades predichas.
- 4. Visualización:
 - o Curva de pérdida por época.
 - o Comparación de predicciones con datos reales.
 - o Subplots mostrando algunas predicciones correctas e incorrectas.

5. Comparación y análisis

- 1. Comparar regresión logística y red neuronal:
 - o Exactitud.
 - o Probabilidades predichas.
 - o Ventajas y limitaciones de cada método.
- 2. Reflexión sobre cómo los modelos podrían aplicarse en un contexto médico.

Maestría en Ciencia de Datos y Máquinas de Aprendizaje Inteligencia Artificial: Data Minning I

Regression, Neural Networks - Database: Cancer de mama (Breast Cancer Wisconsin)

Preguntas reflexivas

- 1. ¿Qué modelo te pareció más adecuado para este conjunto de datos y por qué?
- 2. ¿Qué criterios utilizaste para seleccionar las variables predictoras?
- 3. ¿Cómo influyó el número de capas y neuronas en la red neuronal en el desempeño del modelo?
- 4. ¿Qué ventajas observaste al usar redes neuronales frente a regresión logística?
- 5. ¿Cómo podrían usarse los resultados de los modelos en decisiones médicas o investigación clínica?

Entregables

- Notebook de Jupyter (.ipynb) con:
 - o Código comentado de regresión lineal, regresión logística y red neuronal.
 - o Visualizaciones y tablas de predicciones.
- Informe PDF:
 - o Explicación del análisis realizado.
 - Resultados comparativos.
 - o Respuestas a las preguntas reflexivas.

Maestría en Ciencia de Datos y Máquinas de Aprendizaje Inteligencia Artificial: Data Minning I Regression, Neural Networks - Database: Cancer de mama (Breast Cancer Wisconsin)

Rúbrica de evaluación

Criterio	Descripción	Puntaje Máximo
1. Exploración inicial de	Carga correcta del dataset, revisión de estructura,	10
datos	tipos de datos, valores faltantes, y estadísticas básicas.	
2. Selección y	Elección de variables adecuada y justificación	10
justificación de variables	razonada. Inclusión de visualización inicial.	
3. Regresión lineal multivariable	Implementación correcta y análisis de coeficientes y error.	10
4. Regresión logística	Implementación correcta, exactitud y probabilidades de cada clase.	10
5. Red neuronal PyTorch	Implementación correcta, entrenamiento, curvas de pérdida y exactitud.	15
6. Comparación de resultados	Comparación entre regresión logística y red neuronal, con análisis de ventajas y limitaciones.	15
7. Visualización de resultados	Subplots de predicciones correctas e incorrectas, y gráficas claras.	10
8. Respuestas reflexivas	Respuestas completas y coherentes a las preguntas asignadas.	10
9. Presentación del informe o notebook	Claridad en formato, títulos, etiquetas y comentarios.	5
10. Ortografía, redacción y estilo	Buena redacción y uso técnico adecuado.	5