Wörter & Sprachen

- · Alphabet: nicht-leere Menge
- Wort über dem Alphabet Σ ist eine endliche Zeichenkette $w = a_1 a_2 \dots a_n$ mit $a_i \in \Sigma$. Die Länge des Wortes ist n = |w|.
- ε : Leeres Wort mit $|\varepsilon| = 0$
- Σ^* : Menge aller Wörter über Alphabet Σ ,
- Σ^+ : Menge aller nicht-leeren Wörter
- Konkatenation von Wörtern $u = a_1 \dots a_n$ und $v = b_1 \dots b_n$: $u \circ v = a_1 \dots a_n b_1 \dots b_n = \underline{u}\underline{v}$ $ightharpoonup a^n = aa \dots a (n\text{-mal})$
 - $\triangleright \prod_{i=0}^n w_i = w_0 w_1 \dots w_n$
- (Σ, \circ) : Das von Σ erzeugte **freie Monoid**
 - $\triangleright (u \circ v) \circ w = u \circ (v \circ w)$ (assoz.)
 - $\triangleright \ \varepsilon \circ u = u = u \circ \varepsilon$ (neutr.)
- Formale Sprache L über Σ : Menge $L \subseteq \Sigma^*$
 - ightharpoonup es gibt $L=\emptyset$ und $|L|=\infty$
- Grammatik: $G = (V, \Sigma, P, S)$
 - ▶ V: Alphabet der Nicht-Terminale (Variablen) Konvention: Großbuchstaben
 - \triangleright Σ : Alphabet der Terminale, $V \cap \Sigma = \emptyset$
 - $ightharpoonup P \subseteq ((V \cup \Sigma)^+ \setminus \Sigma^*) \times (V \cup \Sigma)^*$: Produktionen: Tupel (l,r) oft $l \rightarrow r$
 - $\triangleright S \in V$: Startvariable ("Axiom")
 - $ightharpoonup (V \cup \Sigma)^*$ nennt man auch Satzform
- Ableitung: $u \Rightarrow_G v$ wenn u in einem Schritt nach v übergeht
 - ▶ binäre Relation auf $(V \cup \Sigma)^*$ $\Rightarrow_G = \{(u,v) | \exists (l \to r) \in P : \exists x, y \in A\}$ $(V \cup \Sigma)^* : u = xly, v = xry$ nichtdeterministisch (keine Funktion)
 - $\triangleright u \Rightarrow_G^* v$: wenn u in mehreren Schritten nach v übergeht (reflexiv-transitive Hülle)
 - ightharpoonup Folge $w_0 \Rightarrow w_1 \Rightarrow \cdots \Rightarrow w_n$ mit $w_0 = S$ heißt Ableitung von w_n aus S
- ullet Von einer Grammatik G erzeugte Sprache: $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$

2 Chomsky-Hierarchie

Menge aller Sprachen

val. $\mathbb{R} \supset \mathbb{N}$

- ⊃ Typ-0-Sprachen (semi-entscheidbare Sprachen) ⊃ Typ-1-Sprachen (kontextsensitive Sprachen)
- ⊃ Typ-2-Sprachen (kontextfreie Sprachen)
- ⊃ Typ-3-Sprachen (reguläre Sprachen)

Typ-3-Sprachen (regulär)

- Alle Produktionen der Form $A \rightarrow a \mid A \rightarrow Ba$
- arepsilon-Sonderregelung: Produktion S
 ightarrow arepsilon ist erlaubt für Startsymbol S, als Ausnahme, wenn S in keiner rechten Seite vorkommt
- · Deterministischer endlicher Automat (DFA) $M = (Z, \Sigma, \delta, z_0, E)$
 - $\triangleright Z$: endliche Zustandsmenge
 - \triangleright Σ : Eingabealphabet ($Z \cap \Sigma = \emptyset$)
 - $\triangleright z_0 \in Z$: Startzustand
 - $ightharpoonup E \subseteq Z$: Menge der Endzustände
 - $\triangleright \delta: Z \times \Sigma \rightarrow Z$: Überführungsfunktion

- $\triangleright \hat{\delta}: Z \times \Sigma^* \to Z$: Mehr-Schritt-Übergänge
- $T(M) = \{x \in \Sigma^* | \hat{\delta}(z_0, x) \in E\}:$ vom DFA M akzeptierte Sprache
- ightharpoonup T(M) von einem DFA ist immer regulär.
- · Nichtdeterministischer endl. Automat (NFA) $M = (Z, \Sigma, \delta, S, E)$
 - $\triangleright Z$: endliche Zustandsmenge
 - \triangleright Σ : Eingabealphabet ($Z \cap \Sigma = \emptyset$)
 - $ightharpoonup S \subseteq Z$: Menge der Startzustände

- $ightharpoonup E \subseteq Z$: Menge der Endzustände
- $\triangleright \delta: Z \times \Sigma \rightarrow 2^Z$: Überführungsfunktion

- $\triangleright \ \hat{\delta}: 2^Z \times \Sigma^* \to 2^Z: M.-S.-Übergänge$ $\hat{\delta}(A,w)$ = alle Zustände, die man von Zuständen aus der Menge A durch Einlesen von w erreichen kann
- $T(M) = \{ x \in \Sigma^* | \hat{\delta}(S, x) \cap E \neq \emptyset \} :$ vom NFA M akzeptierte Sprache (Wort wird akzeptiert, wenn es min. einen Pfad zu einem Endzustand in M gibt)
- \triangleright Es gibt auch ε -Kanten in NFAs (Sofortü.)
- · NFAs und DFAs sind gleich mächtig. → Potenzmengenkonstruktion

NFA M o DFA $M' = (2^Z, \Sigma, \gamma, S, F)$

 γ : neue Übergangsfunktion, vereinige alle Ziele eines Übergangs in δ in einen einzigen Zustand in M'

Bsp.:

· Reguläre Ausdrücke

- $ightharpoonup \operatorname{Reg}(\Sigma)$: Menge aller regulären Ausdr.
- $ightharpoonup L(\emptyset) = \emptyset, L(\varepsilon) = \{\varepsilon\}$
- $\triangleright \ \forall a \in \Sigma : L(a) = \{a\}$
- $ightharpoonup L(\alpha\beta) = L(\alpha)L(\beta)$, wobei $L_1L_2 = \{w_1w_2 | w_1 \in L_1, w_2 \in L_2\}$
- $ightharpoonup L((\alpha|\beta)) = L(\alpha) \cup L(\beta)$
- $ightharpoonup L((\alpha)^*) = (L(\alpha))^*$, wobei $L^* = \{w_1 \dots w_n | n \in \mathbb{N}_0, w_i \in L\}$ – "Kleenesche Hülle" L^st (s.u.)
- ▶ Reguläre Ausdrücke sind gleichmächtig wie NFAs/DFAs (reguläre Sprachen).
- Konkatenation regulärer Sprachen:

Alle Zustände, die in DFA/NFA 1 in Endzustände übergehen, erhalten zusätzliche Übergänge zu allen Startzuständen in DFA/NFA 2 → neuer NFA für $1 \circ 2$

- ightharpoonup abgeschlossen (L_1L_2 immer regulär für L_1, L_2 regulär)
- Vereinigung regulärer Sprachen:

Zwei DFAs/NFAs können einfach parallel als neuer NFA mit mehreren Startzuständen geschrieben werden.

- riangleright abgeschlossen ($L_1 \cup L_2$ immer regulär für L_1, L_2 regulär)
- Kleenesche Hülle L^* regulärer Sprachen:
 - $ightharpoonup L^*$ enthält immer arepsilon (s. Def.)
 - > nur so kann man unendl. Spr. erzeugen
 - Alle Zustände, die im DFA/NFA in einen Endzustand übergehen, erhalten zusätzliche Übergänge zu allen Startzuständen, evtl. einen getrennten Start- + Endzustand für ε -Erkennung hinzufügen, falls L das bisher nicht akzeptierte
 - \triangleright abgeschlossen (L^* regulär $\forall L$ regulär)
- **Komplement** $\overline{L} = \Sigma^* \setminus L$ regulärer Sprachen:
 - > Alle End- und Nicht-Endzustände in einem DFA vertauschen
 - \triangleright abgeschlossen (\overline{L} regulär $\forall L$ regulär)

- · Schnitt regulärer Sprachen:
 - \triangleright abgeschlossen (\overline{L} regulär $\forall L$ regulär)
 - ightharpoonup wegen $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$ (DeMorgan)
 - ▶ Kreuzproduktautomat
 - 2 DFAs/NFAs "parallel" ausführen
 - neuer NFA mit Zuständen der Form (a,b) mit $a \in M_1, b \in M_2$
 - Start-/Endzustand, wenn a und bin ihren Automaten jeweils Start-/Endzustand sind

Pumping-Lemma (auch "uvw-Theorem") Beweis, dass eine Sprache nicht regulär ist

Die Schleife v kann gar nicht, einmal oder mehrmals durchlaufen werden. Es muss gelten:

- $|v| \ge 1$: Schleife v ist nicht trivial
- $|uv| \le n$ (n ist Anzahl Zustände eines NFA): d.h. spätestens nach n Eingaben wird der Zustand z ein 2. Mal erreicht
- $\triangleright \forall i \in \mathbb{N}_0 : uv^i w \in L$

"Kochrezept":

- \triangleright Nehme eine fest aber beliebige Zahl n.
- ightharpoonup Wähle ein geeignetes Wort $x \in L$ mit $|x| \ge n$. Hilfreich: n sollte in der Definition auftauchen (z.B. im Exponenten).
- > Betrachte alle möglichen Zerlegungen x = uvw mit o.g. Einschränkungen.
- ▶ Wähle für jede Zerlegung i, sodass $uv^iw \not\in L$. Meist i=0 oder i=2.
- · Erkennungsäquivalenz: Wenn für einen DFA-Zustand gilt: Startet man von diesem, führen alle Eingaben zum gleichen Ergebniszustand. Formal: $z_1, z_2 \in \mathbb{Z}$ sind erkennungsäquivalent, $\operatorname{gdw.} \forall w \in \Sigma^* : \hat{\delta}(z_1, w) \in E \Leftrightarrow \hat{\delta}(z_2, w) \in E$ ➤ Äquivalenzrelation (refl., symm., trans.)
- Myhill-Nerode-Äquivalenz:

Erweiterung der Erkennungsäquivalenz auf Sprachen \hat{L} allgemein

 $xR_L\,y\Leftrightarrow \forall w\in \Sigma^*\,(xw\in L\Leftrightarrow yw\in L)$ d.h.: $\hat{\delta}(z_0,x)$ erkennungsäquiv. zu $\hat{\delta}(z_0,y)$

▶ Äquivalenzklassen: Teilmengen von Σ^* , deren Elemente untereinander alle Myhill-Nerode-äquivalent sind

- ightharpoonup Anzahl der Äquivalenzkl.: $\mathrm{index}(R_L)$
- Der Minimalautomat (kleinster DFA) hat genau $\mathrm{index}(R_L)$ viele Zustände. Finden: Äquivalenzklassenautomat M_L : Äquivalenzklassen = Zustände "Kochrezept":
 - Starte Tabelle aller Zustandspaare (treppenförmig, horiz. letzten Zst. weglassen, vert. 1. Zst. wegl.)
 - Markiere $\{z,z'\}$ mit $z \in E \land z' \not\in E$.
 - \forall unmarkierten Paare: teste $\forall a \in \Sigma$, ob $\{\delta(z,a),\delta(z',a)\}$ bereits markiert. Ja \Rightarrow markiere $\{z, z'\}$.

- Wdh., bis keine Änderung der Tabelle mehr.
- → jetzt noch unmarkierten Paare gilt:
 z erkennungsäq. z'
- "Markieren" sollte mit Reihenfolgenkommentar erfolgen (Zahl in Tabelle statt nur Häkchen o.ä.)
- $ightharpoonup L \operatorname{regul\"{a}r} \Leftrightarrow \operatorname{index}(R_L) < \infty \, (M.-N.)$
- Wenn man unendlich viele Äquivalenzklassen (Wörter in versch. Äq.-kl.) finden kann, ist die Sprache nicht regulär.
- $\begin{array}{l} \rhd \text{ _{\it "}} \mathsf{Pfad\"{a}quivalenz" in DFA } M \colon \\ xR_M \, y \Leftrightarrow \hat{\delta} \, (z_0,x) = \hat{\delta} \, (z_0,y) \\ M \text{ ist minimal } \Leftrightarrow R_M = R_L \end{array}$
- · Es gibt keinen eindeutigen minimalen NFA.
- Leerheitsproblem $(T(M) = \emptyset)$ ist entscheidbar (kann man an Automatenzeichnung sehen)
- Endlichkeitsproblem $(|T(M)| < \infty)$ ist entscheidbar (siehe Pumping-L./Zyklus im Automaten)
- Inklusionsproblem ist entscheidbar: $T(M_1) \subseteq T(M_2) \Leftrightarrow \left(\overline{T(M_2)} \cap T(M_1)\right) = \emptyset$
- Äquivalenzproblem: $T(M_1) = T(M_2)$ $\Leftrightarrow T(M_1) \subseteq T(M_2) \wedge T(M_2) \subseteq T(M_1)$ oder: minimaler DFA der beiden ist isomorph
- Zum Beweisen der Abgeschlossenheit dieser Probleme: Primzahlen helfen oft!

2.2 Typ-2-Sprachen (kontextfrei)

- Alle Produktionen der Form $A \to irgendwas$, keine verkürzende Regeln ($irgendwas \ge 1$) außer ε -Produktionen (mit und ohne ε -Sonderregelung, s. 2.1)
- Chomsky-Normalform (CNF) für kontextfreie Grammatik G mit $\varepsilon \not\in L(G)$: nur Produktionen der Form $A \to BC$ und $A \to a$ erlaubt
 - ➤ Zu jeder solchen Grammatik gibt es CNF.
 - ▶ Umwandlung in CNF "Kochrezept":
 - Für jedes Terminalsymbol $a \in \Sigma$ eine neue Variable A_a mit einziger Produktion $A_a \to a$ einführen.
 - Jedes Vorkommen von jedem a auf einer rechten Seite mit dem jeweiligen neuen A_a ersetzen.
 - Kettenregeln eliminieren: $A \rightarrow B$, falls $B \rightarrow irgendwas$, ersetzen mit $A \rightarrow irgendwas$
 - Produktionen d.F. $A \rightarrow A_1 \dots A_n$ ersetzen mit $A \rightarrow A_1 B_1, B_1 \rightarrow A_2 B_2, \dots, B_{n-1} \rightarrow A_{n-1} A_n$
 - $\qquad \qquad \text{Für } \varepsilon \text{ ein Zwischen-Startsymbol } S' \rightarrow \varepsilon \\ \text{ und alle Produktionen vom "originalen" } S \\ \text{ hinzufügen } (\varepsilon\text{-Sonderregel, s. 2.1)}$
- Greibach-Normalform: Alle Produktionen der Form $A \to aB_1B_2 \dots B_k$ mit $k \ge 0$
- Pumping-Lemma (auch "uvwxy-Theorem"): Alle Wörter z mit $|z| \ge n$ mit $n = 2^k$ (k ist die Anzahl Variablen einer CNF) lassen sich für kontextfreie Spr. zerlegen als z = uvwx mit:
 - $|vx| \ge 1$
 - $|vwx| \le n$
 - $\forall i \geq 0 : uv^i w x^i y \in L$

Beweis von nicht-kontextfrei – "Kochrezept":

- \triangleright Wähle eine fest aber beliebige Zahl n.
- ightharpoonup Wähle ein geeignetes Wort $z \in L$ mit $|z| \ge n$. Hilfreich: n sollte in der Definition auftauchen (z.B. im Exponenten)
- Alle Zerlegungen z = uvwxy betrachten mit den o.g. Einschränkungen.
- ightarrow "Pumpen": Finde $uv^iwx^iy\not\in L$. Meist hilft i=0 oder i=2.

- Unäre Sprachen: Sprachen über einem einelementigen Alphabet
 - Jede unäre kontextfreie Sprache ist automatisch auch regulär.
- · Vereinigung, Konkatenation, Stern-Operator
 - ightharpoonup abgeschlossen ($L_1 \cup L_2, L_1L_2, L_1^*$ immer kontextfrei für L_1, L_2 kontextfrei)
- Schnitt und Komplement sind nicht abgeschlossen unter kontextfreien Sprachen!
 - ▶ Aber: kontextfrei ∩ regulär ∈ kontextfrei
- · Wortproblem CYK-Algorithmus:
 - ightharpoonup Wir gehen die folgende Tabelle von oben nach unten durch und suchen immer die Variablen, die in ihrer Produktionsregel die Variablenkombination der vorigen Zeile erzeugen können. Bsp.: Haben wir die Felder A und B in der vorigen Zeile, so suchen wir für das neue Feld eine Variable, die die Produktion $X \to AB$ hat.

- erste Zeile: Alle Variablen, die das darüber stehende Terminal produzieren
 - ▶ ergibt ein Feld Ø, kann man dessen Kombinationen überspringen
 - sind in einem Feld mehrere Variablen, prüft man distributiv
 - ightharpoonup wenn im untersten Feld (hier $T_{1,5}$) ein Startsymbol ist, ist das Wort $\in L$
 - ightharpoonup Komplexität: $\mathcal{O}\left(n^3\right)$
- Kellerautomaten (PDA) (nichtdeterministisch) $M=(Z,\Sigma,\Gamma,\delta,z_0,\#)$
 - $\,\,
 hd Z$: endliche Zustandsmenge
 - $ightharpoonup \Sigma$: Eingabealphabet ($Z \cap \Sigma = \emptyset$)
 - $ightharpoonup \Gamma$: Kelleralphabet
 - $ightharpoonup z_0$: Startzustand

 - $ightharpoonup \# \in \Gamma$: Kellerbodenzeichen

akzeptieren genau die kontextfreien Sprachen

- ▶ Kellerspeicher kann unendlich wachsen
- ▶ Unser PDA akzeptiert mit leerem Keller
- PDA-Konfiguration: $(z, w, \gamma) \in Z \times \Sigma^* \times \Gamma^*$
 - $\triangleright z \in Z$: aktueller Zustand
 - $\triangleright w \in \Sigma^*$: noch zu lesende Eingabe
 - $ho \ \gamma \in \Gamma^*$: aktueller Kellerinhalt ("oben" = links)
 - $\begin{array}{c} \rhd \ \, \text{ \"{U}bergang:} \left(z,aw,A\gamma\right) \vdash \left(z',w,\gamma'\gamma\right) \\ \qquad \qquad \left(A \text{ oben im K.}\right) \text{ und } \left(z',\gamma'\right) \in \delta\left(z,a,A\right) \end{array}$
- Akzeptierte Sprache eines PDA M: $N(M) = \{x \in \Sigma^* | (z_0, x, \#) \vdash^* (z, \varepsilon, \varepsilon) \}$ für ein $z \in Z$
 - Alle Wörter, mit denen man den Keller vollständig leeren kann
- · Deterministisch kontextfreie Sprache
 - ightharpoonup Akzeptiert durch det. Kellerautomaten: $M=(Z,\Sigma,\Gamma,\delta,z_0,\#,E)$
 - D(M) = akzeptierte Sprache
 - det. PDA akzeptiert mit Endzustand

- $z_{\rho} \in E$ und beliebigem Keller $\gamma \in \Gamma^*$
- ▷ det. kontextfrei ⊂ kontextfrei
- ightharpoonup Wortproblem in $\mathcal{O}(n)$ lösbar

- Vereinigung

 ▶ det. kontextfreie Grammatiken sind kom-
- plex, z.B. LR(k)-Grammatiken ightharpoonup Äquivalenzproblem entscheidbar
- > Inklusionsproblem unentscheidbar
- Leerheitsproblem $L = \emptyset$:

 - $\triangleright L \neq \emptyset \Leftrightarrow S \in W$
- · Endlichkeitsproblem
 - ightharpoonup Graph aufstellen: Wenn $(A
 ightharpoonup BC) \in P$

und
$$A,B \in W$$
 (s.o.), im Graph: $A \subset C$

- $ightarrow |L| = \infty \Leftrightarrow \max \operatorname{kommt} \operatorname{von} S$ zu einer Variable A, von der man in einem echten Zyklus zurück nach A kommen kann
- Äquivalenzproblem und Schnittproblem sind unentscheidbar

2.3 Typ-1-Sprachen (kontextsensitiv)

- Keine verkürzenden Produktionen $(l \rightarrow r \text{ mit } |l| \leq |r|)$
- ε -Sonderregelung: $S \to \varepsilon$ erlaubt (s. 2.1)
- Linear beschränkte Automaten (LBA): Turingmaschine, die ☐ nicht mit anderen Symbolen überschreiben kann (nur so viel Band benutzen, wie das Eingabewort lang war) (s. 2.4)
 - $ightharpoonup A = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$, wie TM
 - $ightharpoonup \forall a \in \Gamma \setminus \{\Box\} : \Box \not\rightarrow a \land a \not\rightarrow \Box$

 - ▶ rechtes □ zum Erkennen des Bandendes

 - Beweis durch "Simulation" der Grammatik rückwärts (wie TM)
- Man kann von jeder Typ-1-Grammatik, deren Worte alle mit dem gleichen Symbol enden oder beginnen, dieses Symbol wegschneiden und hat wieder eine Typ-1-Grammatik
- · Komplement: abgeschlossen
- · Wortproblem ist entscheidbar.

2.4 Typ-0-Sprachen (semi-entsch.)

- Keine Einschränkungen der Produktionen. Jede Grammatik ist vom Typ 0.
- · Turingmaschine (TM):
 - Maschine mit unendlichem Band, endlich vielen Zuständen und einem Schreib-Lese-Kopf (steht zu Anfang ganz links)
 - ightharpoonup Det.: $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$
 - Z: endliche Zustandmenge
 - Σ: Eingabealphabet
 - $\Gamma \supset \Sigma$: Bandalphabet
 - $z_0 \in Z$: Startzustand - $E \subseteq Z$: Endzustände
 - $\delta: (Z \setminus E) \times \Gamma \rightarrow Z \times \Gamma \times \{L,R,N\}$ Überführungsfunktion (det.): aktueller Zustand, gelesenes Bandsymbol \rightarrow neuer Zustand, neues Bandsymbol, Kopfbewegung nach rechts/links/keine

- $\delta: (Z \setminus E) \times \Gamma \rightarrow 2^{Z \times \Gamma \times \{L,R,N\}}$ Überführungsfunktion (nichtdet.)
- □: Blanksymbol ("leer")
- det. äquiv. nichtdet.

ightharpoonup Konfiguration ist ein Wort $k \in \Gamma^* Z \Gamma^+$

- Bedeutung: in zwei Hälften geteiltes Wort auf dem Band, $z \in Z$ stellt Zustand und die Stelle des Schreib-Lese-Kopfes dar (steht auf dem Symbol rechts von z)
- Übergangsrelation: \vdash_M
- Rechts von z muss immer mindestens ein Symbol (sei es \square) stehen
- $\begin{array}{l} \rhd \ \ \text{Akzeptierte Sprache} \ T(M) \\ = \left\{x \in \Sigma^* \middle| \exists k \in \Gamma^*E\Gamma^+ : z_0x \vdash_M^* k \right\} \\ \cup \left\{\varepsilon \middle| \exists k \in \Gamma^*E\Gamma^+ : z_0 \bigsqcup \vdash_M^* k \right\} \\ \text{Alle W\"{o}rter, mit denen die TM in einen} \\ \text{Endzustand gelangen kann} \end{array}$
- Komplement: nicht abgeschlossen
- Wortproblem ist nicht entscheidbar (nur semientscheidbar).
- · Zusammenfassung:

Typ-0, Typ-1 (kontexts.), Typ-2 (kontextfr.), Typ-3 (reg.), endl., unär

3 Berechnungen

3.1 Berechenbarkeit

- Partielle Funktionen: nicht überall definiert Bsp.: Subtraktion und Division auf N
- Binärdarstellung einer Zahl $n \in \mathbb{N}$: bin $(n) \in \mathbb{1}\{0,1\}^* \cup \{0\}$
- · Intuitive Berechenbarkeit:

Es gibt ein Verfahren, das in endlichen Schritten das Ergebnis einer Funktion ausgibt (oder nie terminiert, wenn nicht definiert)

- ➤ Kann nicht formal mathematisch definiert werden (Church'sche These)
- Turing-Berechenbarkeit: entspricht genau den intuitiv berechenbaren Funktionen
 - $ightharpoonup \operatorname{Funktion} f: \mathbb{N}^k
 ightharpoonup \mathbb{N}$ ist Turingberechenbar, wenn es eine det. TM gibt, die nach Eingabe von $\operatorname{bin}(n_1) \# \operatorname{bin}(n_2) \# \dots$ in endl. Schritten in einen Endzustand übergeht, wenn nur das Ergebnis $f(n_1, n_2, \dots)$ auf dem Band ist und der Kopf ganz links steht.
 - ▶ Analog dazu für Funktionen auf Wörtern
- Es gibt abzählbar viele Programme (berechenbare Funktionen), wenn man Programme als Code (= Wörter $\in \Sigma^*$) darstellen kann, aber überabzählbar viele Funktionen (Diagonalisierungsbeweis: es müsste sonst eine Funktion $F: \mathbb{N} \to \mathit{Menge aller Funktionen}$ geben)
- Es gibt nicht berechenbare Funktionen.
- Die **überall undefinierte Funktion** Ω ist Turingberechenbar (TM ohne Endzustand)
- · Mehrband-Turingmaschine:
 - $\triangleright \ \delta : (Z \setminus E) \times \Gamma^k \to Z \times \Gamma^k \times \{L, R, N\}^k$
 - ▶ Ein- und Ausgabe auf dem ersten Band. Schreib-Lese-Köpfe unabhängig.
 - Gleich mächtig wie normale TM. (Beweis: M-TM mit TM auf Tupel-Alphabet simulieren)
 - ➤ Meist kein sinnvolles Modell.

· Loop-Programme

- \triangleright Variablen x_1, x_2, \ldots , Konstanten $0, 1, \ldots$
- ightharpoonup Zuweisungen: $x_i := x_j + c$, $x_i := x_j c$ mit $i, j \in \mathbb{N}$ (i = j erlaubt)
- \triangleright Achtung: 1-2=0 (wir sind in \mathbb{N})
- \triangleright Sequentielle Ausführung: $P_1; P_2$
- Schleife: Loop x_i Do P END So oft P ausführen, wie x_i zu Beginn angibt (Anzahl ändert sich während der Schleife nicht)
- ▶ Eingabewerte stehen in den ersten n Variablen, Konvention: Ausgabe in x₁
- ▶ Loop-Pr. < Turing-Berechenbarkeit! Loop entspricht LBA (s. 2.3)

Formal:

- $ightarrow [P]_k(n_1,\ldots,n_k) = (m_1,\ldots,m_k)$ Funktion, die von P bei Eingabe von kWerten berechnet wird
- ightharpoonup Projektionsfunk.: $π_i(n_1,...,n_k) = n_i$ ⇒ $π_1([P]_k(...)) = \text{die 1. Variable}$
- "Loop-berechenbar", wenn es ein Loop-Programm gibt, das eine endliche Zahl Variablen zum Berechnen benutzt

Beweisbar erlaubte Konstrukte:

- ightharpoonup If $x_i = 0$ Then P End
- $ightharpoonup x_i := x_j + x_k \text{ für } i \neq k$
- $ightharpoonup x_i := x_j \cdot x_k \text{ für } k \neq i \neq j$

· WHILE-Programme

- ▶ Wie Loop-Programme (gleiches erlaubt)
- ightharpoonup Zusätzlich: WHILE $x_i \neq 0 \ \mathrm{Do} \ P \ \mathrm{End}$ So lange P ausführen, bis $x_i = 0$.

• Gото-Programme

- ightharpoonup Besteht aus $M_1:A_1; \quad M_2:A_2; \quad \dots \ (M_i \ \ \text{ist ein Sprungmarker}, \quad A_i \ \ \text{ein Go-To-Programm})$ Sprungmarker darf man weglassen, wenn nicht benötigt.
- ▶ Wertzuweisung wie Loop/WHILE
- ightharpoonup Unbedingter Sprung: Gото M_i
- ightharpoonup Bedingter Sprung: If $x_i = c$ Then Goto M_i
- Stoppanweisung: Halt Beendet das Programm. Ergebnis in x_1 .
- **Primitiv rekursive Funktionen**: Funktionale Programmierung, induktive Definition:
 - ➤ Konstante Funktionen:

$$k_m: \mathbb{N} \to \mathbb{N}, \quad k_m(n) = m$$

▶ Projektionen:

$$\pi_i^k: \mathbb{N}^k \to \mathbb{N}, \quad \pi_i^k(n_1, \dots, n_k) = n_i$$

- ightharpoonup Nachfolgerfunktion: $s: \mathbb{N} \to \mathbb{N}, \quad s(n) = n+1$
- Ineinander Einsetzen von primitiv rekursiven Funktionen: Sei g, f_i prim. rek., $g(f_1(n_1,...,n_k),...,f_k(n_1,...,n_k))$

ergibt immer primitiv rekursive Funktionen. Dazu: Primitive Rekursion:

- $\triangleright f(0,n_1,\ldots,n_k) = g(n_1,\ldots,n_k)$
- > $f(n+1,n_1,...,n_k) = h(f(n,n_1,...,n_k),n,n_1,...,n_k)$

Es gilt

Primitiv rekursive Berechenbarkeit entspricht genau den Loop-Programmen. Beweise für das eine können also genauso mit dem anderen geführt werden, falls dies einfacher ist.

Bsp.:

- Additions funktion add: N² → Nadd(0, m) = madd(n+1, m) = s (add(n, m))
- ightharpoonup Multiplikationsfunktion mult: $\mathbb{N}^2 \to \mathbb{N}$

$$\operatorname{mult}(0, m) = 0$$

 $\operatorname{mult}(n + 1, m) = \operatorname{add}(\operatorname{mult}(n, m), m)$

 \triangleright Dekrementierung dec(n), Subtraktion sub(n, m)

$$\triangleright n \mapsto \binom{n}{2}$$

Diese Funktionen können auch direkt zum Bauen neuer primitiv rekursiver Funktionen genutzt werden.

- ightharpoonup Paarungsfunktion $c: \mathbb{N}^2 \to \mathbb{N}$
 - Bijektion: ein Tupel kann eindeutig durch eine Zahl ∈ N kodiert werden
 - Nacheinanderanwendung: beliebige k-Tupel können kodiert werden
 - Schreibe: $\langle n_1, \dots, n_k \rangle = c(\dots) = n$
 - Dekodierungsfunktion $d_i(\langle n_1,\ldots,n_k\rangle)=n_i$
- $ightharpoonup \operatorname{Pr}{\ddot{\mathsf{a}}}{\mathsf{dikate}}$: Funktionen $P: \mathbb{N}^{k+1} \to \{0,1\}$
 - beschränktes Max.: $q_P(n, n_1, \ldots, n_k)$ (größtes x < n, für das $P(x, n_1, \ldots, n_k) = 1$ ist) ist prim. rek., wenn P prim. rek.
 - beschränkte Exist.: $Q_P(n,n_1,\ldots,n_k)$ (1, falls es ein x < n gibt, für das $P(x,n_1,\ldots,n_k) = 1$ ist, sonst 0) ist prim. rek., wenn P prim. rek.

$\cdot \ \mu$ -rekursive Funktionen

- ▶ wie prim. rek. Funktionen definiert
- ightharpoonup zusätzlich: μ -Operator verwandelt Funktion $f: \mathbb{N}^{k+1} \to \mathbb{N}$ in $\mu f: \mathbb{N}^k \to \mathbb{N}$ mit $\mu f(x_1, \dots, x_k) =$ kleinste Nullstelle von $f(n, x_1, \dots, x_n)$ bzgl. n; falls keine Nullstelle: undefiniert Berechne dazu $f(0, \dots), f(1, \dots), \dots$ Gib ersten Wert zurück. Falls Berechnung nicht terminiert, analog WHILE: n.def.
- ⊳ Bsp.:
 - $\Omega = \mu f \text{ mit } f(x, y) = 1 \ \forall x, y$
 - $\operatorname{sqrt}(n) = \lceil \sqrt{n} \rceil$ ist μ -rek.
 - $\operatorname{nlog}(b, x) = \lceil \log_b x \rceil$ ist μ -rek.
- Klasse der μ-rek. Funktionen entspricht Turing-, WHILE-, GOTO-Berechenbarkeit

3.2 Entscheidbarkeit

• Sprache $A\subseteq \Sigma^*$ ist **entscheidbar**, wenn die **charakteristische Funktion** berechenbar ist:

$$\chi_A(w) = \begin{cases} 1 & \text{falls } w \in A \\ 0 & \text{falls } w \not\in A \end{cases} \text{ mit } w \in \Sigma^*$$

d.h.: nach endlich vielen Schritten sagt TM eindeutig, ob w zur Sprache gehört oder nicht

 Sprache A ist semi-entscheidbar, wenn die halbe charakteristische Funktion berechenb.:

$$\chi_A'(w) = \begin{cases} 1 & \text{falls } w \in A \\ \text{undefiniert} & \text{falls } w \not \in A \end{cases}$$

Das entspricht genau den Typ-0-Sprachen.

ightharpoonup Zum Berechnen von χ_A' kann man eine TM der Sprache A nehmen, und statt Endzustand eine 1 aufs Band schreibt

3.3 Probleme

- Probleme auf Wörtern (charakteristische Funktion) kann man durch Kodieren der Wörter als Zahlen auch mit Funktionen berechnen
- · Allgemeines Wortproblem:

Menge $A = \{(w, \dot{G}) \mid w \in L(G)\}$ mit G = kodierte Chomsky-Grammatik

- ightharpoonup Prüfen, ob w zu einer L(G) gehört, mit TM, die w und G als Eingabe erhält
- ist unentscheidbar!

- Sprache A entscheidbar \underline{g} enau dann, wenn A entscheidbar \wedge \overline{A} entscheidbar
- A rekursiv aufzählbar, wenn $\exists f : \mathbb{N} \to \Sigma^*$ mit $A = \operatorname{im}(f)$ (f total und berechenbar)
 - ▶ mathematisch abzählbar ähnlich definiert, f muss nicht berechenbar sein
 - genau dann rekursiv aufzählbar, wenn sie semi-entscheidbar ist (Typ-0)
- Kodierung einer TM: code(M)
 - $M_w = M$, wenn $\operatorname{code}(M) = w$, oder eine "Rückfall"-TM, falls es kein gültiger Code ist
 - ➤ Es gibt eine TM, die jede andere TM damit simulieren kann ("Universelle TM")
- Allgemeines Halteproblem: Sprache $H = \{w\#x|w,x\in\{0,1\}^*,M_w \text{ angesetzt auf }x \text{ hält}\}$ = $\{w\#x|w,x\in\{0,1\}^*,x\in T(M_w)\}$
 - ightharpoonup ist unentscheidbar (aus Reduktion des speziellen Halteproblems durch f(w) = w#w, s.u.)
- Spezielles Halteproblem: Sprache $K = \{w \in \{0,1\}^* | M_w \text{ angesetzt auf } w \text{ hält} \}$ d.h.: "die TM akzeptiert ihre eigene Kodierung"
 - ist unentscheidbar! (wichtig!)
 - ightharpoonup Beweis durch Widerspruch (Diagonal.): Sei M die TM, die das spezielle Halteproblem berechnet. Dann sei M' die TM, die bei Eingabe von w genau dann in eine Endlosschleife geht, wenn M "1" ausgibt, sonst selbst 0 ausgibt. Gibt man in M' nun w' so ein, dass $M_{w'} = M'$, dann müsste sie genau dann halten, wenn sie selbst nicht hält. $\frac{1}{2}$
 - ist semi-entscheidbar
- Reduktion eines Problems $B\subseteq \Sigma^*$ auf ein Problem $A\subseteq \Gamma^*$ (schreibe $B\le A$): Zum Beweis von Unentscheidbarkeit ein Problem auf ein bereits als unentscheidbar bekanntes Problem zurückführen

 - ightharpoonup Wenn $B \leq A$: Falls A entscheidbar, ist auch B entscheidbar. Falls B unentscheidbar, ist auch A unentscheidbar.
- Halteproblem auf leerem Band: Sprache $H_0 = \{w \in \{0,1\}^* | M_w \text{ hält auf Eingabe } \varepsilon\}$
 - \triangleright ist unentscheidbar $(H \le H_0)$
- Satz von Rice: Es ist unentscheidbar, ob eine TM eine bestimmte Eigenschaft $\mathscr S$ hat. Formal: Sei $\mathscr R$ die Klasse aller Turingberechenbaren Funktionen und $\mathscr S\subseteq\mathscr R$. Dann ist die Sprache $C(\mathscr S)=\{w\in\{0,1\}^*|\text{von }M_w\text{ berechnete F. liegt in }\mathscr S\}$ unentscheidbar (Reduktion $\overline{H_0}\le C(\mathscr S)$)
 - Kein Programm kann die inhaltliche Korrektheit anderer Software überprüfen.
- Für ein Goto-Programm mit 1 Variable ist das Halteproblem entscheidbar (simulierbar mit PDA). Für mehr als 1 Variable unentscheidbar.
- Busy-Beaver-Funktion $\Sigma(n)=$ die maximale Anzahl "1"en, die von einer TM mit $\Gamma=\{1,\square\}$ und n Zuständen geschrieben werden kann, wenn sie auf dem leeren Band terminiert
 - ightharpoonup nicht berechenbar ($H_0 \leq \Sigma$)
 - ightarrow wächst extrem schnell ($\Sigma(6)>1,29\cdot 10^{865}$), bis heute nicht *genau* bekannt
- Postsches Korrespondenzproblem (PCP): Eingabe: endliche Liste von Wortpaaren $I=((x_1,y_1),\ldots,(x_k,y_k))$, Frage: Gibt es eine Folge von Indizes dieser Liste $i_1,\ldots i_n\in\{1,\ldots,k\}$, sodass gilt $x_{i_1}x_{i_2}\ldots x_{i_n}=y_{i_1}\ldots y_{i_n}$?

 - ightharpoonup Modifiziertes PCP (MPCP): Wie PCP, aber es muss $i_1=1$ sein
 - $\vdash H \leq \mathsf{MPCP} \leq \mathsf{PCP}$

- ▶ PCP_{m,n}: Beschränkung auf *n*-elem. Alphabet und maximal *m* Wortpaare
 - bereits PCP_{5,2} ist unentscheidbar.
 - $\mathsf{PCP}_{m,1}, \mathsf{PCP}_{2,n}$ sind entscheidbar.
 - PCP_{3,2}, PCP_{4,2} unbekannt.
- Schnittleerheit, Inklusions- und Äquivalenzproblem für kontextfreie Grammatiken sind unentscheidbar, weil ≥ PCP

Klasse	Modelle	Zugehörigkeit	Nicht Zugehörig	Abschlusseigenschaften	Algorithmen
regulär	reguläre Ausdrücke NFA, DFA rechts-/links lineare Grammatik ε -NFA	Satz von Myhill Nerode (endlich viele Äquivalenz- klassen) Automaten angeben Endlichkeit beweisen (Endliche Sprachen im- mer Regulär) Abschlusseigenschaften	Pumping Lemma für reg. Sprachen Satz von Myhill Nerode (unendlich viele Äquiva- lenzklassen) Abschlusseigenschaften	Schnitt, Vereinigung, Komplement, Konkaten- ation, Homomorphismus, Differenz, Kleene-Stern, +-Operator, R-Operator	Minimierung Umwandlungsalgo. Wortsuche Produktautomat Wortproblem Leerheitstest Endlichkeitstest Äquivalentztest
det. Kontextfrei	LR(k)-Grammatik det. Kellerautomaten (DPDA)	LR(k)-Grammatik angeben DPDA angeben Abschlusseigenschaften	Abschlusseigenschaften $L_7 = L'$ wenn L' nicht det. Kontextfrei, dann L_7 auch nicht, da Abschluss unter Komplement	Komplement Schnitt mit regulären Sprachen nicht: Vereinigung, Schnitt	
Kontextfrei	Kellerautomaten (PDA) Kontextfreie Grammatik	Kontextfreie Grammatik angeben PDA angeben Abschlusseigenschaften	Pumping Lemma für Kontextfreie Sprachen Abschlusseigenschaften	Vereinigung, Konkatenation, Kleen-Stern, +-Operator, Schnitt mit reg. Sprachen, Homomorphismus, R-Operator nicht: Schnitt, Komplement, Differenz	Wortproblem Umwandlung in CNF Umwandlung zwischen Modellen Leerheitstest Endlichkeitstest

Klasse	Modell	Zugehör. zeigen	Nicht-Zugeh.	Abschlusseig.
P	TM mit poly Zeit	Poly'zeit Algo Poly Red auf Problem aus P		Komplement Schnitt Vereinigung
NP	Nicht det. TM mit poly Zeit	Poly'zeit Algo mit Zusatzeingabe Poly Red auf Problem aus NP		Schnitt Vereinigung
NP-schwierig	Sprachen	Poly Red von NP-sch'g Problem Poly Red von jedem Problem aus NP		
NP-Vollständig		Zeige : • In NP • NP-schwierig		
Entscheidbar	TM, GOTO /WHILE	Algo angeben Red auf entschbare Problem	• Satz von Rice • Red von ent'bar Problem	Komplement Schnitt Vereinigung

co-RP

ZPF

Ρ

RP