证明:用反证法。

假设不存在这样的 u,使得 u 的先驱元集中的元素均在 P_E 中。即 $\forall u \in T_E, \exists w (u \neq w)$ 使得 $w \in T_E$ 且 $w \in \Gamma^-(u)$ 。

由教材定义 14.1(2) 知,D 中有一个入度为 0 的顶点 v_1 ,而 v_1 在 P_E 中,即 T_E 中的点的先驱元集均不为空,由于 $T_E \neq \varnothing$,在 T_E 中任取一点,记为 u_1 ,由假设知 $\exists u_2(u_2 \neq u_1)u_2 \in T_E$ 且 $u_2 \in \Gamma^-(u_1)$ 。由假设知, $\exists u_3(u_3 \neq u_2)$,由 D 中无回路知: $u_3 \neq u_1, u_3 \in T_E$ 且 $u_3 \in \Gamma^-(u_1)$ 。由 D 是 n 阶图知,D 是有限图, $|T_E|$ 是有限值。继续直到 u_{T_E} ,由假设知 $u_{|T_E|+1}$, $u_{|T_E|+1} \in T_E$,由抽屉原则知, $u_{|T_E|+1}$ 必为 $u_1 \cdots u_{|T_E|}$ 中的一个。推出 D 中有回路,与教材定义 14.1 矛盾,假设错误,即存在这样的 u。

14.7

证明:用反证法。

假设不存在这样的 u,使得 u 的后继元集中的元素均在 P_L 中。即 $\forall u \in T_L, \exists w (u \neq w)$ 使得 $w \in T_L$ 且 $w \in \Gamma^+(u)$ 。

由 V_n 在 P_L 中且 D 中有一个顶点出度为 0 知,存在这样的 w。在 T_L 中任取一点 u_1 ,由假设知: $\exists u_2(u_2 \neq u_1)$ 使得 $u_2 \in T_L$ 且 $u_2 \in \Gamma^+(u_1)$ 。继续构造 u_3, u_4, \cdots ,新点不能与已构造序列中的任何一点相同,否则会产生回路。而由 D 是有限图知, T_L 为有限值,当构造完 $u_{|T_L|}$ 时,由抽屉原则知, $u_{|T_L|+1}$ 必与 $u_1, u_2, \cdots u_{|T_L|}$ 中的某一点重合,产生回路,与教材定义 14.1(1) 相矛盾。故假设错误,即存在这样的 u 。

14.8 奇度项点集 $V' = \{v_2, v_4, v_6, v_8\}$,|V'| = 4。用 Dijkatra 算法容易求出: v_2 到 v_4 的最短路径为 $v_2v_1v_4$,其权为 7; v_2 到 v_6 的最短路径为 $v_2v_5v_6$,其权为 10; v_2 到 v_8 的最短路径为 $v_2v_5v_8$,其权为 10; v_4 到 v_6 的最短路径为 $v_4v_5v_6$,其权为 7; v_4 到 v_8 的最短路径为 $v_4v_5v_8$,其权为 7; v_6 到 v_8 的最短路径为 $v_6v_5v_8$,其权为 8。 这 4 个顶点所对应的完全图 K_4 如下图所示。图中两条红色路径为最小完美匹配 $M = \{(v_2, v_4), (v_6, v_8)\}$ 。

在题图中,将 K_4 中 v_2v_4 和 v_6v_8 对应的最短路径上的各边重复一次所得到的欧拉图如下图所示。