6	(a)	Define electric potential difference.	
			[1]
	(b)	A battery is connected to two resistors X and Y, as shown in Fig. 6.1.	

Fig. 6.1

The resistance of resistor X is greater than the resistance of resistor Y.

State and explain which resistor dissipates more power.

(c) A battery of electromotive force (e.m.f.) 9.0 V and internal resistance *r* is connected to two resistors P and Q, as shown in Fig. 6.2.

Fig. 6.2

e.m	n.f. of the battery remains constant.			
Calculate:				
(i)	the current in resistor P			
	current =A [2]			
(ii)	the potential difference across resistor P			
	potential difference =			
(iii)	the internal resistance r of the battery.			
	$r = \dots \Omega$ [2]			
	[Total: 10]			

A total charge of $650\,\mathrm{C}$ moves through resistor P in a time interval of $540\,\mathrm{s}$. During this time resistor P dissipates $4800\,\mathrm{J}$ of energy. The current in resistor Q is $4.5\,\mathrm{A}$. Assume that the