Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Test 17

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^2 + z + 2 = 0 \Rightarrow z \neq 0 \text{ si } z + \frac{2}{z} = -1$	2p
	$\left(z + \frac{2}{z}\right)^2 = 1$, deci $z^2 + 4 + \frac{4}{z^2} = 1$, de unde obținem $z^2 + \frac{4}{z^2} = -3$	3 p
2.	$f\left(x+\frac{1}{2}\right) = \left\{2\left(x+\frac{1}{2}\right)\right\} = \left\{2x+1\right\} =$	2p
	$=\{2x\}=f(x)$, pentru orice număr real x	3 p
3.	$3^{x}(3-1) = 2^{x+1}(2-1) \Leftrightarrow 2 \cdot 3^{x} = 2^{x+1} \Leftrightarrow 3^{x} = 2^{x}$	3p
	x = 0	2p
4.	Mulțimea A are 23 de elemente, deci sunt 23 de cazuri posibile	2p
	Numerele a din mulțimea A astfel încât 3 , 4 și a să fie lungimile laturilor unui triunghi dreptunghic sunt $\sqrt{7}$ (dacă a este lungimea unei catete) și $\sqrt{25}$ (dacă a este lungimea ipotenuzei), deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{23}$	1p
5.	$\overrightarrow{DM} = \overrightarrow{DA} + \overrightarrow{AM} = \overrightarrow{DA} + \frac{1}{4}\overrightarrow{AC} = \overrightarrow{DA} + \frac{1}{4}\left(\overrightarrow{AB} + \overrightarrow{AD}\right) = \frac{1}{4}\left(\overrightarrow{AB} - 3\overrightarrow{AD}\right)$	2p
	$\overrightarrow{DN} = \overrightarrow{DA} + \overrightarrow{AN} = \overrightarrow{DA} + \frac{1}{3}\overrightarrow{AB} = \frac{1}{3}(\overrightarrow{AB} - 3\overrightarrow{AD}) = \frac{4}{3}\overrightarrow{DM}$, deci \overrightarrow{DM} și \overrightarrow{DN} sunt coliniari, de unde obținem că punctele D , M și N sunt coliniare	3р
6.	$\frac{AB}{AC} + \frac{AC}{AB} = \frac{AB^2 + AC^2}{AB \cdot AC}$	2p
	Cum $\cos A = \frac{AB^2 + AC^2 - BC^2}{2AB \cdot AC} < \frac{AB^2 + AC^2}{2AB \cdot AC}$, obţinem $\cos A < \frac{1}{2} \left(\frac{AB}{AC} + \frac{AC}{AB} \right)$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	1 2 1	
	$ \det(A(m)) = 2 m 1 = 2m + (-6) + 2 - m - (-3) - 8 =$	3 p
	1 -3 2	
	= m + 5 - 14 = m - 9, pentru orice număr real m	2 p
b)	Sistemul de ecuații este omogen, deci admite soluții diferite de $(0,0,0) \Leftrightarrow \det(A(m)) = 0$	3 p
	m = 9	2 p

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

c)	$A(9) = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 9 & 1 \\ 1 & -3 & 2 \end{pmatrix}, \ \det(A(9)) = 0 \ \text{si} \ \begin{vmatrix} 1 & 2 \\ 2 & 9 \end{vmatrix} \neq 0 \Rightarrow \operatorname{rang}(A(9)) = 2 \ \text{, deci soluțiile nenule}$ $\text{ale sistemului de ecuații sunt de forma} \left(-\frac{7}{5}\alpha, \frac{1}{5}\alpha, \alpha \right), \ \text{unde } \alpha \in \mathbb{R}^*$	3p
	$\frac{x_0^2 + y_0^2 - z_0^2}{x_0^2 + y_0^2 + z_0^2} = \frac{\frac{49\alpha^2}{25} + \frac{\alpha^2}{25} - \alpha^2}{\frac{49\alpha^2}{25} + \frac{\alpha^2}{25} + \alpha^2} = \frac{25\alpha^2}{75\alpha^2} = \frac{1}{3}$	2p
2.a)	$2*(-1) = 2\cdot(-1) + 5\cdot 2 + 5\cdot(-1) + 20 =$	3 p
	=-2+10+(-5)+20=23	2 p
b)	$x*(-4) = x \cdot (-4) + 5x + 5 \cdot (-4) + 20 = -4x + 5x + (-20) + 20 = x$, pentru orice număr întreg x	3 p
	$(-4)*x = (-4) \cdot x + 5 \cdot (-4) + 5x + 20 = -4x + (-20) + 5x + 20 = x$, pentru orice număr întreg x , deci $e = -4$ este elementul neutru al legii de compoziție "*"	2p
c)	Cum $0 \circ 0 = 20$, $0 \in A(0)$ și $20 \notin A(0)$, mulțimea $A(0)$ nu este parte stabilă a lui \mathbb{Z} în	1p
	raport cu legea de compoziție "*"	•
	$(x, y \in A(1)) \Rightarrow x = 3m + 1$ si $y = 3n + 1$, unde $m, n \in \mathbb{N} \Rightarrow x * y = 9mn + 18m + 18n + 31 \in A(1)$,	2p
	deci $A(1)$ este parte stabilă a lui \mathbb{Z} în raport cu legea de compoziție "*", deci $r=1$ convine	1
	$x, y \in A(2) \Rightarrow x = 3k + 2$ si $y = 3l + 2$, unde $k, l \in \mathbb{N} \Rightarrow x * y = 9kl + 21k + 21l + 44 \in A(2)$,	2p
	deci $A(2)$ este parte stabilă a lui \mathbb{Z} în raport cu legea de compoziție "*", deci $r=2$ convine	-r

	deel 11(2) este parte suicina a las 22 in raport en regen de composiçõe; , queel ? 2 convinc				
SUBI	SUBIECTUL al III-lea (30 de punc				
1.a)	$f'(x) = e^x - e + (x-1)e^x =$	3p			
	$=e^{x}-e+xe^{x}-e^{x}=xe^{x}-e, x \in (-1,+\infty)$	2p			
b)	f(1) = 0, f'(1) = 0	2p			
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 0$	3 p			
c)	$f''(x) = (x+1)e^x > 0$, pentru orice $x \in (-1,+\infty) \Rightarrow f'$ strict crescătoare pe $(-1,+\infty)$ și, cum $f'(1) = 0$, obținem că $f'(x) < 0$, pentru orice $x \in (-1,1)$ și $f'(x) > 0$, pentru orice	3р			
	$x \in (1, +\infty)$	-1			
	Cum f este strict descrescătoare pe $(-1,1)$, f este strict crescătoare pe $(1,+\infty)$ și f este continuă în $x_0 = 1$, obținem că $x_0 = 1$ este punctul de extrem al funcției f	2p			
2.a)	$\int_{0}^{1} \frac{f(x)}{\ln(x+2)} dx = \int_{0}^{1} \frac{1}{x^{2}+1} dx = \arctan x \Big _{0}^{1} =$	3р			
	$= \operatorname{arctg} 1 - \operatorname{arctg} 0 = \frac{\pi}{4}$	2p			
b)	Din regula lui l'Hospital, $\lim_{x \to 0} \frac{\int_{0}^{x} f(t)dt}{x} = \lim_{x \to 0} \frac{f(x)}{1} = \lim_{x \to 0} \frac{\ln(x+2)}{x^2+1} =$	3p			
c)	$= \ln 2$	2p			
	$\int_{0}^{1} \left(f(x) + \frac{\arctan x}{x+2} \right) dx = \int_{0}^{1} \left(\frac{1}{x^{2}+1} \cdot \ln(x+2) + \arctan x \cdot \frac{1}{x+2} \right) dx = \int_{0}^{1} \left(\arctan x \cdot \ln(x+2) \right)' dx = \int_{0}^{1} \left(\arctan x $	3р			
	$ = \operatorname{arctg} x \cdot \ln(x+2) \Big _{0}^{1} = \operatorname{arctg} 1 \cdot \ln 3 - \operatorname{arctg} 0 \cdot \ln 2 = \frac{\pi}{4} \ln 3 $	2p			