MHC-Peptide Binding Prediction

Peter Ziribagwa Sabakaki

@CancerGenomicsWorkingGroup

What are we doing?

 Identify mutated proteins that can bind to any of the genotyped HLA alleles with a high binding affinity

VCF

60	#CHROM	POS ID	REF	ALT	QUAL	_	FILTER INFO F	
61	chr1	116549		C	T		SuspiciousHomAlt	
62	chr1	120458		Ť	Ċ		SuspiciousHomAlt	
63	chr1	125271		C	Ť		SuspiciousHomAlt	
64	chr1	126113		Č	A		PASS MTD=isaac	
65	chr1	128798		Ċ	Т		SuspiciousHomAlt	
66	chr1	129963		Т	Α		SuspiciousHomAlt	
67	chr1	139967		Т	С		SuspiciousHomAlt	
68	chr1	172595		G	A		SuspiciousHomAlt	
69	chr1	173173		Α	G		SuspiciousHomAlt	
70	chr1	229673		Α	С		SuspiciousHomAlt	
71	chr1	241369		С	Т		SuspiciousHomAlt	
72	chr1	321466		G	Т		SuspiciousHomAlt	
73	chr1	356443		Α	G		SuspiciousHomAlt	
74	chr1	356537		G	Α		SuspiciousHomAlt	
75	chr1	523471		Т	С		SuspiciousHomAlt	

Extract Mutated peptide

HLA-genotypes

A*33:01 A*01:02 B*49:0	D1 B*14:02	C*07:01	C*08:02
------------------------	------------	---------	---------

What is Binding affinity?

- BA is the strength of interaction between HLA and peptide
- BA is measured as 50% inhibitory concetration (IC50) in nanomolar units (nM)
- IC50 is the concentration of a peptide that is required to inihibit 50% of the binding of that peptide to an MHC molecule
- pMHC is considered strong if IC50 > 150nM
- pMHC is considered week if IC50 is between 150 500nM
- pMHC is non-binding if IC50 is < 500nM

Tools that can predict pMHC binding affinity

- pVAC-seq
- TSNAD
- CloudNeo
- MuPeXI
- INTEGRATE-Neo
- NeoanitigenR
- HLAthena

NB: All these tools use NetMHCpan machine learning tool

How NetMHCpan Works!

- Data: NetMHCpan was trained with a large database of known peptide-MHC binding interactions, with experimentally determined binding affinities, expressed as IC50 values.
- **Feature Extraction**: Utilises relevant features from both **the peptide sequences** and the **MHC molecule** sequences. These features include <u>amino acid properties</u> and <u>sequence</u> motifs that are important for binding.
- **Model Training**: Using these features, NetMHCpan trained an artificial neural networks to predict the binding affinity of **any given peptide** to any **MHC** molecule.
- **Prediction**: the trained model can now predict the binding affinity (IC50 value) for new peptide-MHC pairs.
- **Validation**: The predictions are validated against experimental data to ensure reliability. This involves cross-validation and prospective validation with new data.

PVAC-seq

TSNAD

What next!

- All these tools require a fasta file of mutated peptides.
- Lets' Prepare mutated fasta files for all samples (we can use MuPeXI)
- Where are the VCF files?

END THANKS