Teoremi rilevanti sui campi finiti

§1.1 Campo di spezzamento di un irriducibile in \mathbb{F}_p

Teorema 1.1.1

Sia f(x) un polinomio irriducibile in \mathbb{F}_p e sia n il suo grado. Allora \mathbb{F}_{p^n} è il suo campo di spezzamento.

Dimostrazione. Dacché f(x) è irriducibile, $\mathbb{F}_p/((f(x))$ è un campo con p^n elementi, ed è quindi isomorfo a \mathbb{F}_{p^n} .

Sia $\alpha = x + (f(x))$ una radice di f(x) in \mathbb{F}_{p^n} . Dal momento che f(x) è irriducibile in \mathbb{F}_p , esso è il polinomio minimo di α . Tuttavia, poiché $\alpha \in \mathbb{F}_{p^n}$, α è anche radice di $x^{p^n} - x$. Pertanto si deduce che f(x) divide $x^{p^n} - x$.

Dunque, poiché $x^{p^n}-x$ in \mathbb{F}_{p^n} è prodotto di fattori lineari, tutte le radici di f(x) sono già in \mathbb{F}_{p^n} .

Inoltre, \mathbb{F}_{p^n} è il più piccolo sottocampo contenente α , dacché $\mathbb{F}_{p^n} \cong \mathbb{F}_p/(f(x)) \cong \mathbb{F}_p(\alpha)$. Quindi si deduce che \mathbb{F}_{p^n} è un campo di spezzamento per f(x), ossia la tesi. \square

Lemma 1.1.2

Sia f(x) un irriducibile di grado n su $\mathbb{F}_p[x]$ e sia α una sua radice in \mathbb{F}_{p^n} . Allora $f(\mathcal{F}^k(\alpha)) = 0, \forall k \geq 0$ ^a.

 ${}^a\mathcal{F}$ è l'omomorfismo di Frobenius, definito come $\mathcal{F}: \mathbb{F}_p \to \mathbb{F}_p, \ a \mapsto a^p$.

Dimostrazione. Sia $f(x) = a_n x^n + \ldots + a_0$ a coefficienti in \mathbb{F}_p . Si dimostra la tesi applicando il principio di induzione su k.

(passo base)
$$f(\mathcal{F}^0(\alpha)) = f(\alpha) = 0$$
.

(passo induttivo) Per l'ipotesi induttiva, $f(\mathcal{F}^{k-1}(\alpha)) = 0$. Allora, si verifica algebricamente che:

$$f(\mathcal{F}^k(\alpha)) = a_n(\mathcal{F}^k(\alpha))^n + \ldots + a_0 = \mathcal{F}(a_n)\mathcal{F}((\mathcal{F}^{k-1}(\alpha))^n) + \ldots + \mathcal{F}(a_0) = \mathcal{F}(f(\mathcal{F}^{k-1}(\alpha))) = \mathcal{F}(0) = 0,$$

dove si è usato che $\mathcal{F}(a_i) = a_i, \forall 0 \leq i \leq n$, dacché ogni elemento di \mathbb{F}_p è radice di $x^p - x$.

Teorema 1.1.3

Sia f(x) un irriducibile di grado n su $\mathbb{F}_p[x]$ e sia α una sua radice in \mathbb{F}_{p^n} . Allora vale la seguente fattorizzazione in \mathbb{F}_{p^n} :

$$f(x) = \prod_{i=0}^{n-1} \left(x - \alpha^{p^i} \right) = \prod_{i=0}^{n-1} \left(x - \mathcal{F}^i(\alpha) \right),$$

dove ogni fattore non è associato.

Dimostrazione. Si verifica innanzitutto che vale chiaramente che $\alpha^{p^i} = \mathcal{F}^i(\alpha)$. Dal momento che α è radice, allora ogni α^{p^i} lo è, per il Lemma 1.1.2.

Affinché tutti i fattori della moltiplicazione non siano associati è sufficiente dimostrare che n è il più piccolo esponente j per cui $\mathcal{F}^{j}(\alpha) = \alpha$. Infatti, siano $\mathcal{F}^{i}(\alpha) = \mathcal{F}^{j}(\alpha)$ con $0 \leq j < i < n$, allora, applicando più volte \mathcal{F} , si ricava che:

$$\mathcal{F}^n(\alpha) = \mathcal{F}^{j+n-i}(\alpha) \implies \mathcal{F}^{j+n-i}(\alpha) = \alpha,$$

che è assurdo, dacché $j < i < n \implies j + n - i < n, \pounds$.

Innanzitutto, si verifica che $\mathcal{F}^n(\alpha) = \alpha^{p^n} = \alpha$, dacché $\alpha \in \mathbb{F}_{p^n}$. Infine, sia t il più piccolo esponente j per cui $\mathcal{F}^j(\alpha) = \alpha$. Se j fosse minore di n, α sarebbe radice di $x^{p^t} - x$. Tuttavia questo è assurdo, dal momento che così α apparterrebbe a $\mathbb{F}_{p^t} \neq \mathbb{F}_{p^n}$, quando invece il più piccolo campo che lo contiene è $\mathbb{F}_p(\alpha) \cong \mathbb{F}_p[x]/(f(x)) \cong \mathbb{F}_{p^n}$, f.

§1.2 L'inclusione $\mathbb{F}_{p^m}\subseteq \mathbb{F}_{p^n}$ e il polinomio $x^{p^n}-x$

Lemma 1.2.1

Sia α una radice di $x^{p^d} - x$ con $d \mid n$. Allora α è anche una radice di $x^{p^n} - x$.

Dimostrazione. Sia $s \in \mathbb{N}$ tale che n = ds. Si verifica la tesi applicando il principio di induzione su $k \in \mathbb{N}$.

(passo base) Per ipotesi, $\alpha^{p^d} = \alpha$.

(passo induttivo) Per ipotesi induttiva, $\alpha^{p^{(k-1)d}} = \alpha$. Allora si ricava che:

$$\alpha^{p^{(k-1)d}} = \alpha \implies \alpha^{p^{kd}} = \alpha^{p^d} = \alpha.$$

In particolare, $\alpha^{p^n} = \alpha^{p^{ds}} = \alpha$, da cui la tesi.

Teorema 1.2.2

 $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$ se e solo se $m \mid n$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Dal momento che $\mathbb{F}_{p^m}\subseteq\mathbb{F}_{p^n}$, si ricava la seguente catena di estensioni:

$$\mathbb{F}_p \subseteq \mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n},$$

dalla quale, applicando il Teorema delle Torri Algebriche, si desume la seguente equazione:

$$\underbrace{\left[\mathbb{F}_{p^n}:\mathbb{F}_p\right]}_n = \left[\mathbb{F}_{p^n}:\mathbb{F}_{p^m}\right]\underbrace{\left[\mathbb{F}_{p^m}:\mathbb{F}_p\right]}_d,$$

e quindi che m divide n.

(\Leftarrow) Sia $m \mid n$. Si consideri $\alpha \in \mathbb{F}_{p^m}$. α è sicuramente radice di $x^{p^m} - x$, e poiché m divide n, è anche radice di $x^{p^n} - x$, per il Lemma 1.2.1. Allora α appartiene al campo di spezzamento di $x^{p^n} - x$ su \mathbb{F}_p , ossia \mathbb{F}_{p^n} . Pertanto $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$.

Corollario 1.2.3

 $\forall 1 \leq i \leq n$. Allora, detta m_i il grado di $g_i(x)$, il campo di spezzamento di f(x) è \mathbb{F}_{p^k} , dove $k = \text{mcm}(m_1, m_2, \dots, m_n)$.

Dimostrazione. Il campo di spezzamento di f(x) è il più piccolo campo rispetto all'inclusione che ne contenga tutte le radici, ossia il più piccolo campo che contenga $\mathbb{F}_{p^{m_1}}$, $\mathbb{F}_{p^{m_2}}$, ..., $\mathbb{F}_{p^{m_n}}$. Si dimostra che tale campo è proprio \mathbb{F}_{p^k} .

Innanzitutto \mathbb{F}_{p^k} , per il *Teorema 1.2.2*, contiene tutti i campi di spezzamento dei fattori irriducibili di f(x), dacché m_i divide $k \ \forall 1 \leq i \leq n$.

Sia supponga esista adesso un altro campo $\mathbb{F}_{p^t} \subseteq \mathbb{F}_{p^k}$ con tutte le radici. Sicuramente $t \mid k$, per il Teorema 1.2.2. Inoltre, dal momento che dovrebbe includere ogni campo $\mathbb{F}_{p^{m_i}}$, sempre per il Teorema 1.2.2, m_i divide $t \forall 1 \leq i \leq n$.

Allora t è un multiplo comune di tutti i m_i , e quindi k, in quanto minimo comune multiplo, lo divide. Si conclude allora che t = k, e quindi che \mathbb{F}_{p^k} è un campo di spezzamento di f(x).

Teorema 1.2.4

 $x^{p^n} - x$ è il prodotto di tutti i polinomi irriducibili in \mathbb{F}_p di grado divisore di n.

Dimostrazione. La proposizione è equivalente a affermare che ogni polinomio irriducibile in \mathbb{F}_p ha grado divisore di n se e solo se divide $x^{p^n} - x$. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia f(x) un polinomio irriducibile in \mathbb{F}_p di grado d, con $d \mid n$. Si consideri allora il campo $\mathbb{F}_{p^d} \cong \mathbb{F}_p/(f(x))$, e sia α una radice di f(x) in tale campo.

Per il Lemma 1.2.1 si verifica che α è anche una radice di $x^{p^n} - x$. Poiché f(x) è irriducibile, esso è il polinomio minimo di α , e quindi si deduce che f(x) divide $x^{p^n} - x$.

(\Leftarrow) Sia f(x) un polinomio irriducibile in \mathbb{F}_p di grado d che divide $x^{p^n} - x$. Si consideri allora il campo $\mathbb{F}_{p^d} \cong \mathbb{F}_p/(f(x))$, e sia α una radice di f(x) in tale campo. Allora $\mathbb{F}_{p^d} \cong \mathbb{F}_p(\alpha)$, dacché f(x), in quanto irriducibile, è il polinomio minimo di α .

Dacché f(x) divide $x^{p^n} - x$, α è anche una radice di $x^{p^n} - x$, e quindi che $\alpha \in \mathbb{F}_{p^n}$. Dal momento che chiaramente anche $\mathbb{F}_p \subseteq \mathbb{F}_{p^n}$, si deduce che $\mathbb{F}_{p^d} \cong \mathbb{F}_p(\alpha) \subseteq \mathbb{F}_{p^n}$. Allora, per il Teorema~1.2.2, d divide n.