Règle de Résolution Avec Contrainte Equation de Contraint Additionnel:

La forme lineavisée:

Cx + Wc=0

la Solution est donné pars

$$\hat{X} = (A^{T}MA)^{-1} \left[-A^{T}M^{-1}W + C^{T}(C(A^{T}M^{-1}A)^{-1}C^{T})^{-1} \cdot \left[-W_{c+C}(A^{T}M^{-1}A)^{-1}A^{T}M^{-1}W \right] \right]$$

Dons notre las: P=M?; B-II; N= ATPA; V= ATM^W

$$\hat{X}_{c} = \hat{X} + N^{2}C^{T} \left(C[CN^{-1}C^{T}]^{T} [-W_{c} + CN^{-1}V] \right)$$

$$\left| \frac{1}{3} \right| = 7,8 \times 10^{-7}$$

 $\hat{T}_{c} = T + V_{c} = \begin{bmatrix} 39,1862 & 17,75 & 32.415 & 57.9362 & 51.116 & 90.3512 \end{bmatrix}^{T}$

K0	n = 6
Condition	n, =3
Confilolo	¬ = 3
Anolyse de	μ = 0
problème:	n =3
	$ \begin{bmatrix} \alpha_1 & \overline{\alpha}_2 & \overline{\alpha}_3 & \overline{\alpha}_4 & \overline{\alpha}_5 & \overline{\alpha}_6 \end{bmatrix}^{T} $
	$\hat{V}_{cn,0} = [\hat{v}_{s} \hat{v}_{s} \hat{v}_{s} \hat{v}_{s} \hat{v}_{s} \hat{v}_{s}]^{T}$
I denti frien	
les variables.	odile Explicite: $\hat{\alpha}_{3} + \hat{\alpha}_{3} - \hat{\alpha}_{4} = $ $\hat{\alpha}_{4} + \hat{\alpha}_{3} - \hat{\alpha}_{4} = $ $\hat{\alpha}_{2} + \hat{\alpha}_{3} - \hat{\alpha}_{5} = $
•	α ₁ + α ₂ - α ₁ =
Modèle Mathematique:	C
	Forme de méthode de Condition:
	F(Î) = C
	(L) = C
	Forme linearisée BV + W = 0
C	
Evo	$\mathcal{B} = \mathcal{D} F(\hat{\mathfrak{c}})$
luen Bet W ;	$B = \frac{DF(\hat{t})}{D\hat{t}} E = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 \end{pmatrix}$
0 0 00 ү	
	$W = F(\bar{L}) - C = [-4.10^{4}, 12.10^{-3}, -1.4.10^{-3}]^{T}$
La baleur de R	$K = -M^{-1}W = [0,00015 -0,0007]$
La Volur de V	$V = P^{-1} R^{T} L = \begin{bmatrix} -0.55 & 0.05 & 0.7 & -96 & 0.15 \end{bmatrix}^{T}$
al lu i	F 7 [29 1017 12 76]) 29115
Observation estime	$\hat{L} = L + 0 = \begin{bmatrix} 39, 1847 & 17.7511 & 32,4150 \\ & & & & & & & & & & & & & & & & & & $
	57.9373 51.1634 90,3517

Shèma

Anolyse de problème:

$$n = 6$$

$$n_0 = 3$$

$$0 = 3$$

$$0 = 4$$

Forme Générale

I destifier les variables:

Model Morthematique

$$\hat{X}_{1} - \hat{x}_{1} = 0$$

$$\hat{X}_{1} + \hat{x}_{2} - \hat{x}_{1} = 0$$

$$\hat{X}_{1} - \hat{x}_{3} + \hat{x}_{5} = 0$$

$$\hat{X}_{1} + \hat{x}_{6} + \hat{x}_{2} + \hat{x}_{3} = 0$$

Forme linearisée:

· evaluer A, B et W:

$$A = \frac{\Im F(\hat{X}, \hat{L})}{\Im \hat{X}} = \frac{1}{1}$$

$$W = F(\bar{L}, \bar{X}) = [0, -4x10^{-4}, -2,6x10^{-3}, -1,4,10^{-3}]$$

LePoids: P_I6

$$N = (A^{T}M^{-1}A)^{-1} = 2,5$$
 $N^{A} = 0, H$ $U = -0,000 275$

$$\hat{X} = -(A^T m^A)^A (A^T m^A \omega) = 0.00 \text{ A}$$

$$\hat{X} = \hat{X} + \hat{X} = 39,1863$$

$$\hat{k} = \begin{bmatrix} -0.0011 & -0.0017 & 0.0011 & 0.0007 \end{bmatrix}^{T}$$

$$\hat{V} = \begin{bmatrix} 1.1.5 & 0.07 & 0.7 & -1.7 & 0.11 \end{bmatrix}^{T}$$