CODECHECK certificate 2020-010

http://doi.org/10.5281/zenodo.3865491

Item	Value
Title	Report 9: impact of non-pharmaceutical interventions (NPIs) to
	reduce COVID-19 mortality and healthcare demand. March 16,
	2020.
Authors	Neil Ferguson, COVID-19 Response Team
Reference	Imperial College Preprint http://doi.org/10.25561/77482
Codechecker	Stephen J. Eglen 👨
Date of check	2020-05-29 12:20:00
Summary	Replication of key findings from Report 9 using CovidSim reim-
•	plementation.
Repository	https://github.com/codecheckers/covid-report9

Table 1: CODECHECK summary

Output	Comment	Size (b)
GB_mitigation_release/table3.png	manuscript Table 3 (mitigation strategies)	106022
GB_mitigation_release/tablea1.png	manuscript Table A1 (mitigation strategies)	81267
GB_suppress_release/table4.png	manuscript Figure 4 (suppression strategies)	175622
GB_suppress_release/table5.png	manuscript Figure 5 (suppression strategies)	46481

Table 2: Summary of output files generated

WARNING: this is work in progress, please do not cite or redistribute.

Summary

Given the large size of each simulation, and the number of simulations, this took significant time (about 24 hours on a departmental HPC server) to reproduce all the findings. Simulations were repeated using the public CovidSim implementation that was first released in April 2020 onto Github rather than the private code used to generate the initial findings. Small variations (typically a few percent) in the numbers were observed between Report 9 and my runs which are due to several factors:

1. The CovidSim codebase is now deterministic.

- 2. Slightly different population input files have been used.
- 3. These results are the average of NR=10 runs, rather than just one simulation as used in Report 9.

However, although the absolute values do not match the initial report, the overall trends are consistent with the original report. Note also that my independent run matches runs by the Imperial team as of 2020-05-28.

CODECHECK notes

Installation of CovidSim

The public version of CovidSim was cloned from https://github.com/mrc-ide/covid-sim. For these runs, the master version from commit b125307 (2020-05-27) was used. This version is deterministic across all platforms. This was compiled for local workstations and for a departmental HPC resource.

Input parameter files

Input parameter files were provided by Prof Ferguson and are now available at XXXX.

Running the model

Powershell scripts to generate the suppression and mitigation results were converted to bash and are provided in the codecheck repository. These bash scripts generate a list of jobs that can then be executed on a local machine or submitted as jobs to a cluster. More details below.

Initialisation steps

In each of the Suppression and Mitigation folders, the output from runonce.sh was run to generate two further input files, *NetworkGB_8T.bin* and *NoInt_R0=2.4.avNE.severity.xls*. These files were identical in the two folders.

Two folders were then generated to store the results of the batch runs:

```
mkdir GB_suppress_release/mean8
mkdir GB_mitigation_release/MeanT8_NR10a
```

Batch jobs

The list of jobs to run for each scenario was generated from the bash scripts GB_suppress_release/batch.sh and GB_mitigation_release/batch.sh. These generated two job lists: GB_suppress_release/batch-jobs.txt and GB_mitigation_release/batch-jobs.txt

These jobs were then run, and on a high-performance workstation took about 3 days, and about 1 day on a departmental HPC cluster. To repeat these runs on other computers will depend on your job submission system. However on a linux machine, one simple way to start the jobs (with -j being the number the number of jobs to run in parallel) is:

```
parallel -j8 < batch-jobs.txt</pre>
```

Analysis

Each run generated a CSV (labelled as an .xls) file in the output folder. Two R scripts [xxx] provided by Prof Ferguson was used to summarise these runs into two summary files: GB_suppress_release/mean8/stats_contain.csv and GB_mitigation_release/MeanT8_NR10/stats_mitigation.csv.

These files were compared against the values generated by Prof Ferguson and stored in the Excel spreadsheets using an R script. These were found to be identical. Inserting my results into his Excel spreadsheet generated the same pivot tables. I took screenshots of these pivot tables to include for this report. The excel summary spreadsheets are available in the repository.

Acknowledgements

I would like to thank Prof Ferguson and colleagues for promptly answering any queries I had with this reproduction. Dr Kacper Kornet at the Faculty of Mathematics, University of Cambridge helped with

installation of CovidSim and job submission scripts for the HPC cluster. CODECHECK is financially supported by the Mozilla foundation.

Citing this document

Eglen, Stephen J. (2020). CODECHECK Certificate 2020-010. Zenodo. http://doi.org/10.5281/zenodo.38654

Please note that DOIs can take 1-2 days to register after the certificate is registered. A copy of the certificate is available in at https://github.com/codecheckers/covid-report9/blob/master/codecheck/codecheck.pdf.

About CODECHECK

This certificate confirms that the codechecker could independently reproduce the results of a computational analysis given the data and code from a third party. A CODECHECK does not check whether the original computation analysis is correct. However, as all material required for the reproduction are freely available by following the links in this document, the reader can then study for themselves the model and data.

	Trigger (cumulative ICU								
	cases)	PC	CI	CI HQ	CI_HQ_SD	CI SD	HQ SDOL	I HQ SDO	OL70
	100	15%	34%	52%	35%	53%	66%	71%	
R0=2.4	300	15%	34%	52%	35%	59%	66%	73%	
Peak beds	1000	15%	34%	52%	41%	66%	66%	79%	
	3000	12%	34%	52%	53%	77%	66%	79%	
	'				•				
	100	21%	35%	55%	22%	39%	67%	49%	
R0=2.2	300	21%	35%	55%	25%	42%	68%	53%	
Peak beds	1000	20%	35%	55%	32%	52%	68%	63%	
	3000	14%	35%	55%	45%	68%	68%	80%	
	100	2%	18%	30%	13%	20%	48%	29%	
R0=2.4	300	2%	18%	30%	13%	23%	48%	30%	
Total deaths	1000	2%	18%	30%	15%	27%	48%	31%	
	3000	2%	18%	30%	19%	32%	48%	32%	
	100	2%	21%	32%	9%	15%	48%	21%	
R0=2.2	300	3%	21%	32%	10%	17%	48%	21%	
Total deaths	1000	4%	21%	32%	11%	21%	49%	23%	
	3000	3%	21%	32%	15%	27%	49%	28%	

Figure C1: manuscript Table 3 (mitigation strategies)

	Trigger (cumulative ICU							
	cases)	PC	CI	CI HQ	CI HQ SD	CI SD	CI HQ SDOL70	PC CI HQ SDOL70
	100	154	119	87	118	84	62	52
R0=2.4	300	153	119	87	118	75	62	50
Peak beds	1000	155	119	87	107	61	62	39
	3000	160	119	87	85	41	62	37
	•							
	100	121	101	70	119	94	50	78
R0=2.2	300	121	101	70	115	89	50	72
Peak beds	1000	123	101	70	104	73	50	56
	3000	131	101	70	85	49	50	30
	100	497	417	356	441	403	262	357
R0=2.4	300	495	417	356	438	391	261	357
Total deaths	1000	495	417	356	428	370	261	350
	3000	495	417	356	412	346	262	342
	100	448	365	311	418	388	238	364
R0=2.2	300	445	365	311	415	379	237	361
Total deaths	1000	442	365	311	407	361	235	352
	3000	445	365	311	392	335	235	330

Figure C2: manuscript Table A1 (mitigation strategies)

	Total deaths						Pea	k ICU beds		Proportion of time with SD in place			
RO	Trigger	Do nothing	CI_HQ_SD	PC_CI_SD	PC_CI_HQ_SD	Do nothin	CI_HQ_SD	PC_CI_SD	PC_CI_HQ_SD	CI_HQ_SD	PC_CI_SD	PC_CI_HQ_SD	
	60	410,000	49,000	7,300	6,000	130,000	3,600	1,000	990	96	73%	61%	
	100	410,000	49,000	11,000	8,700	130,000	3,700	1,400	1,400	95	72%	59%	
2	200	410,000	48,000	18,000	15,000	130,000	3,900	2,100	2,000	95	67%	58%	
	300	410,000	47,000	24,000	21,000	130,000	4,000	2,600	2,400	94'	64%	56%	
	400	410,000	47,000	31,000	27,000	130,000	4,100	3,200	2,900	91'	63%	55%	
	60	460,000	65,000	9,800	7,500	150,000	8,100	1,100	1,100	96	82%	71%	
	100	460,000	65,000	15,000	11,000	150,000	8,000	1,700	1,600	90	80%	69%	
2.2	200	460,000	66,000	24,000	19,000	150,000	7,700	2,700	2,500	89	75%	65%	
	300	460,000	69,000	35,000	26,000	150,000	7,500	3,500	3,200	84	73%	64%	
	400	460,000	72,000	44,000	33,000	150,000	7,300	4,200	3,700	82	72%	62%	
	60	510,000	89,000	13,000	9,500	180,000	11,000	1,200	1,100	84'	89%	79%	
	100	510,000	90,000	19,000	14,000	180,000	11,000	1,700	1,600	80	88%	77%	
2.4	200	510,000	94,000	32,000	25,000	180,000	10,000	3,200	2,800	73'	82%	75%	
	300	510,000	98,000	46,000	35,000	180,000	11,000	4,500	3,800	70'	81%	74%	
	400	510,000	100,000	56,000	42,000	180,000	11,000	5,300	4,500	67'	80%	72%	
	60	550,000	120,000	23,000	13,000	220,000	16,000	1,700	1,500	68'	94%	86%	
	100	550,000	120,000	28,000	19,000	220,000	16,000	2,300	2,100	66	92%	84%	
2.6	200	550,000	120,000	45,000	33,000	220,000	16,000	4,000	3,600	61'	88%	82%	
	300	550,000	120,000	58,000	43,000	220,000	16,000	5,400	4,700	58'	85%	78%	
	400	550,000	130,000	71,000	53,000	220,000	16,000	6,700	5,700	56'	82%	75%	

Figure C3: manuscript Figure 4 (suppression strategies)

			Total deaths								
	Off trigger										
	as										
	proportio										
	n of on										
On trigger	trigger	CI_	HQ	SD	PC_	_CI_	SD	PC_	CI	HQ	_SD
	0.25			89,000		13	,000				9,500
60	0.5			89,000		14	,000				11,000
	0.75			89,000		15	,000				11,000
	0.25			90,000		19	,000				14,000
100	0.5			91,000		21	,000				16,000
	0.75			92,000		22	,000				17,000
	0.25			94,000		32	,000				25,000
200	0.5			96,000		36	,000				28,000
	0.75			97,000		40	,000				30,000
	0.25			98,000		46	,000				35,000
300	0.5			100,000		51	,000				39,000
	0.75			100,000		54	,000				43,000
	0.25			100,000		56	,000				42,000
400	0.5			100,000		62	,000				49,000
	0.75			110,000		67	,000				52,000

Figure C4: manuscript Figure 5 (suppression strategies)

About this document

This document was created using R Markdown using the codecheck R package. make codecheck.pdf will regenerate the report file.

sessionInfo()

```
## R version 4.0.0 (2020-04-24)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Manjaro Linux
## Matrix products: default
           /usr/lib/libopenblasp-r0.3.9.so
## BLAS:
## LAPACK: /usr/lib/liblapack.so.3.9.0
##
## locale:
## [1] LC_CTYPE=en_GB.UTF-8
                                   LC_NUMERIC=C
  [3] LC_TIME=en_GB.UTF-8
                                   LC_COLLATE=en_GB.UTF-8
  [5] LC_MONETARY=en_GB.UTF-8
                                   LC_MESSAGES=en_GB.UTF-8
##
   [7] LC_PAPER=en_GB.UTF-8
                                   LC_NAME=C
## [9] LC_ADDRESS=C
                                   LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets
## [6] methods
                 base
##
## other attached packages:
## [1] readr 1.3.1
                             tibble_3.0.1
## [3] rprojroot_1.3-2
                             codecheck 0.0.0.9003
## [5] knitr_1.28
                             rmarkdown_2.1.10
## [7] parsedate_1.2.0
                             assertthat_0.2.1
##
  [9] R.cache_0.14.0
                             gh_1.1.0
## [11] stringr_1.4.0
                             yaml_2.2.1
## [13] xtable_1.8-4
                             zen4R_0.3-1
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.4.6
                          highr_0.8
                                            compiler_4.0.0
                          R.methodsS3_1.8.0 R.utils_2.9.2
   [4] pillar_1.4.4
## [7] tools_4.0.0
                          digest_0.6.25
                                            jsonlite_1.6.1
## [10] evaluate 0.14
                          lifecycle 0.2.0
                                            pkgconfig 2.0.3
## [13] rlang_0.4.6
                          cli_2.0.2
                                            xfun_0.14
## [16] httr 1.4.1
                          xm12_1.3.2
                                            hms 0.5.3
## [19] vctrs_0.3.0
                          glue_1.4.1
                                            R6_2.4.1
## [22] fansi 0.4.1
                          magrittr_1.5
                                            backports_1.1.6
                                            rvest_0.3.5
## [25] htmltools_0.4.0
                          ellipsis_0.3.1
## [28] stringi_1.4.6
                          crayon 1.3.4
                                            R.oo 1.23.0
```