

中国科技大学信息学院 陆伟 luwei@ustc.edu.cn

本讲内容

part1: 二维绘图

part2: 三维绘图

part3: 动态显示

Part1:

二维绘图

主要内容

- 基本绘图函数: plot函数
 - 线型 (Line Style)、 点型 (Marker)、颜色 (Color)
- 二维绘图的辅助操作
 - 标注:图形名称、坐标轴名称、曲线标注、图例
 - 坐标轴控制
 - 图形保持(同一坐标轴绘制多个图形)
 - 窗口分割 (同一窗口含有多个坐标轴)
 - 复数情况

- plot: 最基本的绘图指令
- ■对x坐标及对应的y坐标绘图
- 例:

```
x = 0 : 0.01*pi : 2*pi ;

y = sin(x) ;

plot(x,y) ;
```


- 要求x向量、y向量长度 必须相同!
- · 若只给定一个向量。则 横坐标是索引值 plot(y)

- 一次画出多条曲线
- 例:

```
x = 0 : 0.01*pi : 2*pi ;
y1 = sin(x);
y2 = cos(x);
y3 = sin(x)+cos(x);
plot(x, y1, x, y2, x, y3);
```


- •画多条曲线时,Matlab自动赋予每条曲线不同的颜色。
- •也可以把y1、y2、y3组成一个矩阵,此时会对矩阵的每个行向量作图。

- x和y都是矩阵
- 则plot(x,y)用x的每一个行向量与y对应行 向量作图

—设置曲线的线型(Line Style)

例:

plot(x,y1,'-',x,y2,'--',x,y3,':');

—设置曲线的线型(Line Style)

plot 函数的Line Style	说明
_	实线(默认值)
	虚线
:	点线
	点虚线

—设置曲线的点型(Marker)

```
x = 0 : pi / 10 : 2*pi;

y = sin(x);

plot(x,y,'*')
```


—设置曲线的点型(Marker)

■也可以同时设置画线与点型

```
x = 0 : pi / 10 : 2*pi;

y = sin(x);

plot(x,y,'*-')
```


—设置曲线的点型(Marker)

plot 函数的点型(Marker)	说明
0	圆形
+	加号
X	叉号
*	星号
•	点号
^	朝上三角形
V	朝下三角形

—设置曲线的点型(Marker)

plot 函数的点型(Marker)	· 说明
>	朝右三角形
<	朝左三角形
square	方形
diamond	菱形
pentagram	五角星形
hexagram	六角星形
None	无点型(默认值)

—设置曲线的颜色(Color)

- ■用黑色點線畫出正弦波
- 每一資料點畫上一個小菱形

```
x = 0 : pi /10 : 2*pi;
y = sin(x);
plot(x,y,'k:diamond') %其中 "k"代表黑色,
% ": "代表线型
% "diamond"代表菱形的点
```


—设置曲线的颜色(Color)

Plot函数的曲线颜色	曲线颜色	RGB值
b	蓝色(Blue)	(0,0,1)
С	青蓝色(Cyan)	(0,1,1)
g	绿色(Green)	(0,1,0)
k	黑色(Black)	(0,0,0)
m	紫黑色(Magenta)	(1,0,1)
r	紅色(Red)	(1,0,0)
W	白色	(1,1,1)
У	黄色(Yellow)	(1,1,0)

—加入说明文字

为增进图形的可读性,常常需要对图形或坐标 轴加入说明。

指令	說明
title	图形的标题
xlabel	X轴的說明
ylabel	y 轴的說明
legend	标注图例
text	图形中加入文字
gtext	使用鼠标定位文字位置

—加入说明文字

9

```
x = 0:pi/30:2*pi;
y1 = sin(x);
y2 = \exp(-x);
plot(x, y1, '--*', x, y2, ':o');
xlabel('t = 0 to 2\pi');
ylabel('values of sin(t) and e^{-x}')
title('Function Plots of sin(t) and e^{-x}');
legend('sin(t)','e^{-x}');
```

—加入说明文字

- •legend指令:画出一小方块,给出每条曲线的说明
- "\"为特殊符号,用于产生上标、下标、希腊字母、数学符号等;遵循LaTex数学模式
- ■标题、坐标轴说明等的文字大小、位置也是可以修改的,见Matlab Help

■常用Latex用法

$$a^2 \ a^{\hat{}} \{2\}$$

$$a_2 \ a_{2} \{2\}$$

$$\infty \setminus \inf ty$$

$$\times \setminus times$$

$$\oplus \times \setminus oplus$$

$$\otimes \times \setminus otimes$$

 $\alpha \setminus alpha$

 $\beta \setminus beta$

 $\gamma \setminus gamma$

 $\pi \setminus pi$

 $\tau \setminus tall$

 $\Delta \setminus Delta$

 $\delta \setminus delta$

 $\Omega \setminus Omega$

—加入说明文字

■ text(x, y, 'string')
x、y: 文字起始坐标位置
string: 文字内容

■ 例

```
x = 0:pi/20:2*pi;
plot(x,sin(x))
text(pi,0,' \leftarrow
sin(\pi)','FontSize',18)
```

plot基本绘图 —加入说明文字

—加入说明文字

- 有时不确定说明文字位置,可用鼠标确定文字位置。
- gtext('string')

用鼠标单击图形,在选中点处放入说明文字string

—hold函数

有时希望在已经画了一条曲线的图上再添加一条曲线。

```
x = 0:pi/20:2*pi;
plot(x,sin(x),'g');
%再添加一条曲线
plot(x,cos(x),'r');
```

■ 会得到想要的结果吗?

只画了后面一条 曲线,第一条被 擦除了。

—hold函数

x = 0:pi/20:2*pi;

plot(x,sin(x),'g');

hold on

plot(x,cos(x),'r');

hold off

一给图形加上网格

- 有时希望在图形上加上网格,以便更好地观察波形的变化。
- grid函数

```
x = 0:pi/100:2*pi;
y = exp(-x).*sin(10*x);
plot(x,y)
grid on %给图形加上网格
```

一给图形加上网格

- 去掉网格: grid off
- 只用grid 则在 on、off状态间切 换
- grid minor

—双坐标轴

plotyy函数

在同一窗口画幅度相差很大的两条曲线,采用不同的y轴刻度。

```
x = 0:0.01:20;

y1 = 200*exp(-0.05*x).*sin(x);

y2 = 0.8*exp(-0.5*x).*sin(10*x);

plotyy(x,y1,x,y2,'plot');
```

plot基本绘图 —双坐标轴

—坐标轴控制

- 坐标轴刻度与长宽比控制
 - 默认坐标轴长宽比是窗口的长宽比
 - 可用axis指令加以修改

```
axis ([xmin xmax ymin ymax])
axis normal 默认的长宽比
axis square 长宽比为1
axis equal 长宽比不变,但两轴刻度比例一致
axis tight 图轴紧贴图形
axis off
axis on
```

画一个员

```
r = 2;
theta = 0:pi/20:2*pi;
x = r*cos(theta) +3;
y = r*sin(theta) +4;
plot(x,y,'r');
axis equal
```


练习: 画一个五角星

一在一个窗口中画多个图形

- 若要画多条曲线,我们可以:
 - 在同一窗口中画多条曲线
 - 打开多个窗口, 在每个窗口中画一条曲线
 - 还可以利用subplot函数,在同一窗口中开设多个子窗口,每个子窗口画一条曲线。

```
x=0:pi/30:2*pi;
subplot(2,1,1); plot(x,sin(x))
subplot(2,1,2); plot(x,cos(x))
```


一在一个窗口中画多个图形

- subplot(m,n,p)
 - 将窗口分成 m ×n 个子窗口
 - 下一个 plot 指令绘图于第 p 个子窗口
 - p 的算法为由左至右,一列一列
 - 也可写成: subplot (mnp)

```
x = 0:pi/30:2*pi
subplot(2,2,1) ;
plot(x,sin(x)) ;title('sin(x)') %左上角
subplot(2,2,2) ;
plot(x,cos(x)) ;title('cos(x))') %右上角
subplot(2,2,3); plot(x,exp(-x).*sin(3*x));
subplot(2,2,4); plot(x, x.^2);
```

一在一个窗口中画多个图形

一在一个窗口中画多个图形

■还可以组合子窗口

```
x = 0:pi/30:2*pi;
subplot(2,2,[1,3]);
plot(x,sin(x)); title('sin(x)')
subplot(2,2,2);
plot(x,cos(x)); title('cos(x))')
subplot(2,2,4);
plot(x,exp(-x).*sin(3*x));
```


一当数组值为复数

- z是一个复数向量
- plot(z)将z 的实部和虚部当成x坐标和y坐标来画图,即 plot(real(z),imag(z))

```
>> x = 1:10;
>> y = x.^2;
>> z =
complex(x,y)
>>plot(z)
```


一当数组值为复数

```
theta = pi/2 :
2*pi/5 : (2*pi+pi/2);
z = exp(j*theta);
colordef black
plot(z)
axis equal tight
```


Part2:

三维绘图

- 三维曲线
- ■空间曲面
- ●等高线
- v=f(x,y,z)的可视化

绘制三维曲线: x=x(t) ,y=y(t),z=z(t)

```
plot3(x,y,z,)
```

```
例:绘制三维螺旋线:
t = 0:pi/20:8*pi;
x = \sin(t);
y = cos(t);
z = 1.5*t;
hp = plot3(x,y,z);
set(hp,'linewidth',2,'c
olor', 'b');
grid on
axis square
```


■ 空间曲面: z = f(x,y) 10 5 0 -5 -10 2 2 0 0 -2 -2

- \blacksquare mesh (X,Y,Z)
 - ■网格生成函数: meshgrid

x,y为给定的向量,X,Y是网格划分后得到的网格矩阵

若 x = y, 则可简写为 [X,Y] = meshgrid(x)

```
例: [X,Y] = meshgrid(-3 : 0.1 :3);
Z = peaks(X,Y);
mesh(X,Y,Z)
```

>> peaks %matlab自带的测试函数
z = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
- 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
- 1/3*exp(-(x+1).^2 - y.^2)

meshgrid 函数

$$y = -2 -2 -2$$

$$-1 -1 -1$$

$$0 0 0$$

$$1 1 1$$

$$2 2 2$$

■ 练习: "墨西哥帽子"

由函数 $z = \sin(r)/r$, 其中 $r = \sqrt{x^2 + y^2}$ 确定的曲面

■ 练习: 画一个球体

- meshc: 绘制有登高线的空间曲面
- meshz: 绘制含0平面的空间曲面

```
[X,Y] = meshgrid(-3:.4:3);
Z = peaks(X,Y);
meshc(X,Y,Z),title('meshc')
figure
meshz(X,Y,Z),title('meshz')
```

4

waterfall:只绘制x轴方向的网格线

surf(X,Y,Z) 绘制由矩阵 X,Y,Z 所确定的曲面图, 参数含义同 mesh。

mesh 绘制网格图, surf 绘制着色的三维表面图

三生

三维作图

- 曲面颜色的控制:
- colorbar: 显示 MATLAB 如何以不同颜色代表曲面的高度。

例:

```
peaks;
```

colorbar;

■ 曲面颜色的控制:

顏色	Red (紅色)	Green (綠色)	Blue (藍色)
black (黑)	0	0	0
white (白)	1	1	1
red (紅)	1	0	0
green (綠)	0	1	0
blue (藍)	0	0	1
yellow (黄)	1	1	0
magenta (錳紫)	1	0	1
cyan (青藍)	0	1	1
gray (灰)	0.5	0.5	0.5
dark red (暗紅)	0.5	0	0
copper (銅色)	1	0.62	0.4
aquamarine (碧綠)	0.49	1	0.83

■ 颜色映射图 colormap

```
cm = colormap;
size(cm)
ans =
64 3
```

- cm是64*3的矩阵,每行代表RGB的成分,即一种颜色。
- matlab在画图时,把第一行的颜色对应曲面的最高点,最后一行颜色对应曲面最低点。其余高度颜色依照线性内插法给出。

4

三维作图

■ 改变颜色映射图,可得到不同颜色的曲面。

例:

```
peaks;
colormap(rand(64,3));
colorbar;
```


colormap('copper')

■ matlab预设的颜色映射图

指令	說明
colormap hsv	HSV 的顏色對應表(預設值)
colormap hot	代表"熱"的顏色對應表
colormap cool	代表"冷"的顏色對應表
colormap summer	代表"夏天"的顏色對應表
colormap gray	代表"灰階"的顏色對應表
colormap copper	代表"銅色"的顏色對應表
colormap autumn	代表"秋天"的顏色對應表
colormap winter	代表"冬天"的顏色對應表
colormap spring	代表"春天"的顏色對應表
colormap bone	代表"X光片"的顏色對應表
colormap pink	代表"粉紅"的顏色對應表
colormap flag	代表"旗幟"的顏色對應表

■ 以曲面梯度大小设定颜色:

```
[x,y,z] = peaks;
surf(x,y,z,gradient(z));

U曲面曲率大小设定颜色:
[x,y,z] = peaks;
surf(x,y,z,del2(z));

使得表面颜色连续变化
surf(peaks)
axis tight
shading interp
```

colormap gray

- ■改变图形的观察视角:
- ■同一物体,从不同角度看, 图形也不同,比如一个椭球体。

```
view(az,el);
   az:方位角
   el: 仰角
view(x,y,z)
view(2);   az=0, el=90
view(3);   az=-37.5,el=30
```


■ 试试这个效果:

■ 绘制等高线图:

contour: 平面上的等高线

contour3: 空间中的等高线

pcolor: 在二维平面中以颜色表示曲面的高度

contourf:

clabel: 标注等高线高度

• 给等高线加高度标注

```
[X,Y,Z] = peaks;
C = contour(X,Y,Z,12);
clabel(C)
```

Contour plot with labels

 $\mathbf{v} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ 的可视化:

比如:空间各点的温度(标量场);

海洋中各处水的流速与方向(矢量场)。

常用方法:对三维体切片,在截面处用不同颜色表征 在该点的函数值大小。

slice(X,Y,Z,V,sx,sy,sz)

```
\mathbf{v} = \mathbf{x} \mathbf{e}^{(-\mathbf{x}^2 - \mathbf{y}^2 - \mathbf{z}^2)}
```

```
[x,y,z] = meshgrid(-2:.2:2,-2:.25:2, ...
-2:.16:2); %产生三维网格
v = x.*exp(-x.^2-y.^2-z.^2); % 待绘制的函数
xslice = [-1.2,.8,2]; % x=-1.2平面...
yslice = 2;
zslice = [-2,0];
slice(x,y,z,v,xslice,yslice,zslice)
colormap hsv
```



```
slice(x,y,z,v,...
[-1 0 1],[],[])
```



```
slice(x,y,z,v,...
[],[-1 0 1], [])
```

练习

■ 用 ezmesh 和 ezsurf 分别绘制一个圆环面,并将它们放在一个图形界面内,观察它们的三维内插不同之处。

$$\begin{cases} x = (R + r\cos u)\cos v \\ y = (R + r\cos u)\sin v \\ z = r\sin u \end{cases}$$

Part3:

动态演示

■ 一个点在曲线上移动:

■ 一个点在曲线上移动:

```
t=0:0.05:4*pi;

N = length(t);

y = sin(2*t).*exp(-t/2);

h=plot(t, y);

hold on
```

```
hp = plot(t(1),y(1),'marker','o',
    'markersize',10,
    'markerfacecolor','r');
for k=2:N
set(hp,'xdata',t(k),'ydata',y(k));
%drawnow
    pause(0.05)
end
```

将动画存为GIF文件

■ imwrite 函数

```
F = getframe;
im = frame2im(F);
[I,map] = rgb2ind(im,256); %Gif,只能用256色
%写入 GIF89a 格式文件
if k == 1;
imwrite(I,map,'test.gif','GIF', 'Loopcount',inf,'DelayTime',0.1);
else
imwrite(I,map, 'test.gif', 'GIF', 'WriteMode', 'append',
'DelayTime',0.1);
end
```

内摆线Hypocycloid

■ 定义: 一个动圆紧贴另一个圆的内部滚动时,动圆上一定点P的运动轨迹。

$$\begin{cases} x = (R - r)\cos\theta + r\cos\left(\frac{R - r}{r}\theta\right) \\ y = (R - r)\sin\theta - r\sin\left(\frac{R - r}{r}\theta\right) \end{cases}$$

内摆线

