# EIE2050 Assignment 4

1.

For the ripple counter in Figure 9–66, show the complete timing diagram for sixteen clock pulses. Show the clock,  $Q_0$ ,  $Q_1$ , and  $Q_2$  waveforms.



### FIGURE 9-66



Show the complete timing diagram for the 5-stage synchronous binary counter in Figure 9–67. Verify that the waveforms of the Q outputs represent the proper binary number after each clock pulse.



**FIGURE 9-67** 



3.

Design a counter to produce the following sequence. Use J-K flip-flops.

$$00, 10, 01, 11, 00, \dots$$

# NEXT-STATE TABLE

| Preser | ıt State | Next State |       |  |  |  |  |
|--------|----------|------------|-------|--|--|--|--|
| $Q_1$  | $Q_0$    | $Q_1$      | $Q_0$ |  |  |  |  |
| 0      | 0        | 1          | 0     |  |  |  |  |
| 1      | 0        | 0          | 1     |  |  |  |  |
| 0      | 1        | 1          | 1     |  |  |  |  |
| 1      | 1        | 0          | 0     |  |  |  |  |

## TRANSITION TABLE

| Output Stat    | e Transitions    | Flip-Flop Inputs |       |       |       |  |  |  |
|----------------|------------------|------------------|-------|-------|-------|--|--|--|
| (Present state | e to next state) |                  |       |       |       |  |  |  |
| $Q_1$          | $Q_0$            | $J_1$            | $K_1$ | $J_0$ | $K_0$ |  |  |  |
| 0 to 1         | 0 to 0           | 1                | X     | 0     | X     |  |  |  |
| 1 to 0         | 0 to 1           | X                | 1     | 1     | X     |  |  |  |
| 0 to 1         | 1 to 1           | 1                | X     | X     | 0     |  |  |  |
| 1 to 0         | 1 to 0           | X                | 1     | X     | 1     |  |  |  |

See Figure 9-14.



Design a counter to produce the following binary sequence. Use J-K flip-flops.

$$0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 0, \dots$$

#### NEXT-STATE TABLE

| P     | resen | t Sta | te    | Next State |       |       |       |  |  |
|-------|-------|-------|-------|------------|-------|-------|-------|--|--|
| $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ | $Q_3$      | $Q_2$ | $Q_1$ | $Q_0$ |  |  |
| 0     | 0     | 0     | 0     | 1          | 0     | 0     | 1     |  |  |
| 1     | 0     | 0     | 1     | 0          | 0     | 0     | 1     |  |  |
| 0     | 0     | 0     | 1     | 1          | 0     | 0     | 0     |  |  |
| 1     | 0     | 0     | 0     | 0          | 0     | 1     | 0     |  |  |
| 0     | 0     | 1     | 0     | 0          | 1     | 1     | 1     |  |  |
| 0     | 1     | 1     | 1     | 0          | 0     | 1     | 1     |  |  |
| 0     | 0     | 1     | 1     | 0          | 1     | 1     | 0     |  |  |
| 0     | 1     | 1     | 0     | 0          | 1     | 0     | 0     |  |  |
| 0     | 1     | 0     | 0     | 0          | 1     | 0     | 1     |  |  |
| 0     | 1     | 0     | 1     | 0          | 0     | 0     | 0     |  |  |

#### TRANSITION TABLE

| Output State Transition       |        |        |        |       | Flip-flop Inputs |  |       |       |       |   |       |       |
|-------------------------------|--------|--------|--------|-------|------------------|--|-------|-------|-------|---|-------|-------|
| (Present State to next state) |        |        |        |       |                  |  |       |       |       |   |       |       |
| $Q_3$                         | $Q_2$  | $Q_1$  | $Q_0$  | $J_3$ | $K_3$            |  | $J_2$ | $K_2$ | $J_1$ | K | $J_0$ | $K_0$ |
| 0 to 1                        | 0 to 0 | 0 to 0 | 0 to 1 | 1     | X                |  | 0     | X     | 0     | X | 1     | X     |
| 1 to 0                        | 0 to 0 | 0 to 0 | 0 to 1 | X     | 1                |  | 0     | X     | 0     | X | X     | 0     |
| 0 to 1                        | 0 to 0 | 0 to 0 | 1 to 0 | 1     | X                |  | 0     | X     | 0     | X | X     | 1     |
| 1 to 0                        | 0 to 0 | 0 to 1 | 0 to 0 | X     | 1                |  | 0     | X     | 1     | X | 0     | X     |
| 0 to 0                        | 0 to 1 | 1 to 1 | 0 to 1 | 0     | X                |  | 1     | X     | X     | 0 | 1     | X     |
| 0 to 0                        | 1 to 0 | 1 to 1 | 1 to 1 | 0     | X                |  | X     | 1     | X     | 0 | X     | 0     |
| 0 to 0                        | 0 to 1 | 1 to 1 | 1 to 0 | 0     | X                |  | 1     | X     | X     | 0 | X     | 1     |
| 0 to 0                        | 1 to 1 | 1 to 0 | 0 to 0 | 0     | X                |  | X     | 0     | X     | 1 | 0     | X     |
| 0 to 0                        | 1 to 1 | 0 to 0 | 0 to 1 | 0     | X                |  | X     | 0     | 0     | X | 1     | X     |
| 0 to 0                        | 1 to 0 | 0 to 0 | 1 to 0 | 0     | X                |  | X     | 1     | 0     | X | X     | 1     |

Binary states for 10, 11, 12, 13, 14, and 15 are unallowed and can be represented by don't cares. See Figure 9-16. Counter implementation is straightforward from input expressions.



For the 4-bit binary counter connected to the decoder in Figure 9–77, determine each of the decoder output waveforms in relation to the clock pulses.



#### FIGURE 9-77



Show how the PAL-type array in Figure 10-64 should be programmed to implement each of the following SOP expressions. Use an X to indicate a connected link.

(a) 
$$Y = A\overline{B}C + \overline{A}B\overline{C} + ABC$$
  
(b)  $Y = A\overline{B}C + \overline{A}BC + \overline{A}BC$ 

**(b)** 
$$Y = ABC + ABC + ABC$$



#### FIGURE 10-64



Modify the array in Figure 10–67 to produce an output  $X = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + ABC + A\overline{B}C$ 



### **FIGURE 10–67**



8.

Write a VHDL program for the logic described by the following Boolean expression.

$$X = \bar{A}B\bar{C} + ABC + \bar{B}\bar{C}$$

Omitted.

9.

Draw a basic logic diagram for a  $512 \times 4$ -bit static RAM, showing all the inputs and outputs.



Using a block diagram, show how 64k  $\times$  1 dynamic RAMs can be expanded to build a 256k  $\times$  4 RAM.



**FIGURE 12-5**