Package 'sdcn'

March 27, 2015

Type P	Package
Title S	tructures and Dynamics on (of) Complex Networks (sdcn)
Version	n 0.0.0.9000
Date 20	015-02-10
Author	
Mainta	winer Wenfeng Feng <fengwenfeng@gmail.com></fengwenfeng@gmail.com>
w an M 1) m 2) an (a 3) 4)	otion The package intends to implement general simulation of dynamics on (of) networks which have different structural features. The current goal is to simuate ecological interactions mong species in ecological networks, as the first instance of complex networks. Modules should include: Dynamic models. Holling Type I, II dynamic models should be implemented for nutualistic networks, food webs, competitive networks, and mixed networks. Environmental Perturbations. Two types of perturbations: continuously pressed env. nd repeated pulsed env. (stochastics). The perturbations can effect not only on all or part of) species(nodes) but also on (all or part of) interactions(links). Null models of different structural features such as degree heterogeneity and modularity. Analysis of simulation results.
si ro pl	ss deSolve (>= 1.10-8), imecol (>= 0.8-4), botSolve (>= 1.6.5), lyr (>= 1.8.1), graph (>= 0.7.1)
License	e What license is it under?
	ts knitr, estthat
Vignett	teBuilder knitr
LazyDa	ata true
R top	pics documented:
	fragility

	2	fragility
4	2	fragility

Index	swaplinks	14 15
	sim_ode_press	13
	sim_ode_auto	12
	sden	11
	runif2	11
	resistance	11
	perturb_primary_extinct	10
	perturb_mutualistic_strength	10
	perturb_growthrate_part	9
	perturb_growthrate	9
	parms_mutual_interactions	8
	parms_lv2_cm	8
	parms_lv2_ca	7
	parms_competitive_interactions	6
	parms_antago_interactions	6
	M_PL_001	5
	model_lv2_cm	5

fragility

 $compute\ fragility\ of\ mutualistic\ communities\ in\ gradual\ pressed\ context$

Description

compute fragility of mutualistic communities in gradual pressed context

Usage

```
fragility(sim.out)
```

Arguments

sim.out output of simulation under gradual pressed conditions (sim_ode_press)

Value

resistance measured by the length of community trajectory fragility measured by the variance of community trajectory

graph_connected 3

graph_connected

Generate a connected graph using package [igraph]

Description

Generate a connected graph using package [igraph]

Usage

```
graph_connected(s, k, gtype, maxtried = 100, expower = 2.5, ...)
```

Arguments

s, size of network. if graph type is bipartite, s[1], s[2] represent size of two groups;

else s is size of network

k, average degree for the network. 1 < k < s for unipartite network, 1 < k < s

s[1]*s[2]/(s[1]+s[2]) for bipartite network.

gtype, Graph type generated: 'bipartite', 'sf', 'er', 'regular'.

maxtried, the maximum number of tried times. If have tried [maxtried] times, the function

will return no matter whether the connected graph is generated.

expower exponent coefficient of Scale-Free network

... the parms conform to the implementation functions of [igraph]

Details

•

Value

the connected graph

inc_to_adj

transfer an incidence matrix to an adjacency matrix

Description

transfer an incidence matrix to an adjacency matrix

Usage

```
inc_to_adj(inc)
```

Arguments

inc, an incidence matrix

Value

adj, an adiacency matrix

4 model_lv2_ca

init_lv2_cm

initial values of state variables, i.e., abundances of species

Description

Assign initial values according to two criteria: 1. using the equilibrium values of LV1 model as initial values. 2. If any of the initial values is less than 0, using the intrinsic growth rates as initial values.

Usage

```
init_lv2_cm(parms)
```

Arguments

parms,

the parameters assigned to LV2 model

model_lv2_ca

Lotka-Volterra (LV) Equations of Holling type II for a community mixed by Competition and Antagonistic interactions

Description

Lotka-Volterra (LV) Equations of Holling type II for a community mixed by Competition and Antagonistic interactions

Usage

```
model_lv2_ca(time, init, parms, ...)
```

Arguments

time, time step of simulation

init, the initial state of the LV system, a vector parms, parameters passed to LV model, a list of:

r a vector of the intrinsic growth rates of species

C a matrix of intra-species and inter-species competitions
A a matrix of antagonistic interactions among species
h the saturate coefficient, handling time of species feed
g the conversion efficiency of antagonistic interactions

Value

the derivation

model_lv2_cm 5

model_lv2_cm	Lotka-Volterra (LV) Equations of Holling type II for a community
	mixed by Competition and Mutualism interactions

Description

Lotka-Volterra (LV) Equations of Holling type II for a community mixed by Competition and Mutualism interactions

Usage

```
model_lv2_cm(time, init, parms, ...)
```

Arguments

time, time step of simulation

init, the initial state of the LV system, a vector parms, parameters passed to LV model, a list of:

r a vector of the intrinsic growth rates of species

C a matrix of intra-species and inter-species competitions
M a matrix of mutualism interactions among species
h the saturate coefficient, handling time of species feed

Value

the derivation

M_PL_001

web-of-life data sets from Bascompte et atl.

Description

web-of-life data sets from Bascompte et atl.

Usage

M_PL_001

Format

data frames with rows and cols represent two different species groups

Source

```
http://www.web-of-life.es/map.php
```

parms_antago_interactions

generate the antagonistic interaction matrix according to the antagonistic network and coefficients

Description

generate the antagonistic interaction matrix according to the antagonistic network and coefficients

Usage

```
parms_antago_interactions(graph, gamma.mu, gamma.sd)
```

Arguments

graph the antagonistic interaction topology of communities, which is a bi-directional

network

gamma.mu

gamma.sd coefficients that determin a uniform distribution of antagonistic interaction strengths

parms_competitive_interactions

generate the competitive interaction matrix according to the competitive network and coefficients

Description

generate the competitive interaction matrix according to the competitive network and coefficients

Usage

```
parms_competitive_interactions(graph, beta0.mu, beta0.sd, beta1.mu, beta1.sd)
```

Arguments

graph	the competitive interaction topology of communities, which is the adjacency matrix of a network
beta0.mu	
beta0.sd	coefficients that determin a uniform distribution of intra-species interaction strengths
beta1.mu	
beta1.sd	coefficients that determin a uniform distribution of inter-species interaction strengths

parms_lv2_ca 7

parms_lv2_ca

parmaters for antagonism LV2 model according to the network and the coefficients

Description

parmaters for antagonism LV2 model according to the network and the coefficients

Usage

```
parms_lv2_ca(antago_graph, competitive_graph, coeff)
```

Arguments

antago_graph

the antagonistic interaction topology of communities, which is the adjacency

matrix of a network

competitive_graph

the competitive interaction topology of communities

coeff, a list of coefficients:

alpha.mu, alpha.sd coefficients of the intrinsic growth rates of species

beta0.mu, beta0.sd the intra-species competition coefficients which determin

a uniform distribution in [beta.mu - beta.sd, beta.mu + beta.sd]

beta1.mu, beta1.sd the inter-species competition coefficients

gamma.mu, gamma.sd the inter-species antagonism coefficients

g.mu, g.sd conversion efficiency of antagonistic interactions

h.mu, h.sd coefficients of the handling time of species

Value

a list of parameters for ode model:

r a vector of the intrinsic growth rates of species

C a matrix of intra-species and inter-species competitions

A a matrix of antagonistic interactions among species

h the saturate coefficient, handling time of species feed

g the conversion efficiency of antagonistic interactions

parms_lv2_cm

parmaters for mutualism LV2 model according to the network and the coefficients

Description

parmaters for mutualism LV2 model according to the network and the coefficients

Usage

```
parms_lv2_cm(mutual_graph, competitive_graph, coeff)
```

Arguments

mutual_graph

the mutualistic interaction topology of communities, which is the adjacency ma-

trix of a network

competitive_graph

the competitive interaction topology of communities

coeff, a list of coefficients:

alpha.mu, alpha.sd coefficients of the intrinsic growth rates of species

beta0.mu, beta0.sd the intra-species competition coefficients which determin

a uniform distribution in [beta.mu - beta.sd, beta.mu + beta.sd]

beta1.mu, beta1.sd the inter-species competition coefficients

gamma.mu, gamma.sd the inter-species mutualism coefficients

delta trade-off coefficients of mutualistic interaction strengths **h.mu, h.sd** coefficients of the handling time of species

Value

a list of parameters for ode model:

r a vector of the intrinsic growth rates of species

C a competitive interaction matrix

M a mutualistic interaction matrix among species

h the saturate coefficient, handling time of species feed

```
parms_mutual_interactions
```

generate the mutualistic interaction matrix according to the mutualistic network and coefficients

Description

generate the mutualistic interaction matrix according to the mutualistic network and coefficients

Usage

```
parms_mutual_interactions(graph, gamma.mu, gamma.sd, delta)
```

perturb_growthrate 9

Arguments

graph the mutualistic interaction topology of communities, which is the adjacency ma-

trix of a network

gamma.mu

gamma . sd coefficients that determin a uniform distribution of mutualistic interaction strengths delta coefficient that determin the trade-off between the interaction strength and width(node

degree) of species

 $\verb"perturb_growth" rate"$

perturbations that effect on species by increasing/decreasing the intrinsic growth rates of all species

Description

perturbations that effect on species by increasing/decreasing the intrinsic growth rates of all species

Usage

```
perturb_growthrate(parms, nstar, r.delta.mu = 0.01, r.delta.sd = 0.01)
```

Arguments

parms parameters assigned to the ODE model

nstar state values at equilibrium

r.delta deviation of intrinsic growth rates at each iterating step

perturb_growthrate_part

perturbations that effect on species by increasing/decreasing the intrinsic growth rates of a part of species

Description

perturbations that effect on species by increasing/decreasing the intrinsic growth rates of a part of species

Usage

```
perturb_growthrate_part(parms, nstar, r.delta.mu = 0.01, r.delta.sd = 0.01,
    perturbed_species)
```

Arguments

parms parameters assigned to the ODE model

nstar state values at equilibrium

perturbed_species

the index of perturbed species

r.delta deviation of intrinsic growth rates at each iterating step

```
perturb_mutualistic_strength
```

perturbations that effect on mutualistic interactions by increasing/decreasing strengths of them

Description

perturbations that effect on mutualistic interactions by increasing/decreasing strengths of them

Usage

```
perturb_mutualistic_strength(parms, nstar, gamma.delta.mu = 0.01,
    gamma.delta.sd = 0.01)
```

Arguments

parms parameters assigned to the ODE model

nstar state values at equilibrium

gamma.delta deviation of mutualistic interaction strengths at each iterating step

perturb_primary_extinct

perturbations that remove one species

Description

perturbations that remove one species

Usage

```
perturb_primary_extinct(parms, nstar, extinct_species)
```

Arguments

parms parameters assigned to the ODE model

nstar state values at equilibrium

extinct_species

the removed species

resistance 11

resistance compute resistance of mutualistic communities in gradual pressed context

Description

compute resistance of mutualistic communities in gradual pressed context

Usage

```
resistance(sim.out)
```

Arguments

sim.out

output of simulation under gradual pressed conditions (sim_ode_press)

Value

resistance measured by the length of community trajectory

runif2

another form of uniform distribution between [mean - sd, mean + sd]

Description

another form of uniform distribution between [mean - sd, mean + sd]

Usage

```
runif2(n, mean, sd)
```

sdcn

sdcn: Structures and Dynamics on (of) Complex Networks.

Description

The sdcn package provides three categories of functions:

- 1. Structures
- 2. Dynamics
- 3. Analysis

Structures functions

swaplinks

Dynamics functions

```
model_lv2, parms_lv2
```

12 sim_ode_auto

sim_ode_auto	Simulate ODE dynamics of autonomous systems. The dynamic starts at initialized state variables, and ends in equilibrium (or error where some values of state variables approach infinity?)
	some values of state variables approach infinity:)

Description

Simulate ODE dynamics of autonomous systems. The dynamic starts at initialized state variables, and ends in equilibrium (or error where some values of state variables approach infinity?)

Usage

```
sim_ode_auto(model, parms, init, steps = 1000, stepwise = 1,
   extinct_threshold)
```

Arguments

model model of ODE dynamics

parms parameters assigned to the model

init initial values of the model according to the parameters

steps steps of simulation

stepwise step length

extinct_threshold

abundance threshold, species with abundance less than that is considered to be

exintct

Value

a list of:

out output of one ODE simulation, including the trajectory of values of state variables

nstar the values of state variables in equilibrium

Phi the Jacobian matrix in equilibrium

model model of ODE dynamics

parms parameters assigned to the model

extinct number of extinct species

survived number of survived species

sim_ode_press 13

sim_ode_press	Simulate ODE dynamics of non-autonomous systems. A example is ecosystems under "press" perturbations. The dynamic is iteration of successive ODE dynamics of automous sytems (sim_ode_auto), while
	at each iterating step, the parameters and/or state values of systems are changed to reflect "press" perturbations.

Description

Simulate ODE dynamics of non-autonomous systems. A example is ecosystems under "press" perturbations. The dynamic is iteration of successive ODE dynamics of automous systems (sim_ode_auto), while at each iterating step, the parameters and/or state values of systems are changed to reflect "press" perturbations.

Usage

```
sim_ode_press(model, parms, init, steps = 1000, stepwise = 1,
    extinct_threshold, perturb, iter_steps = 500, isout = TRUE, ...)
```

Arguments

model model of ODE dynamics parms parameters assigned to the model init initial values of the model according to the parameters steps steps of simulation step length stepwise extinct_threshold abundance threshold, species with abundance less than that is considered to be exintct a function that change the parameters and state values after each iteration step perturb iter_steps possiblely maximum iteration steps if output the transiting trajectory of each ODE iterate step isout any arguments which are transfered to perturbation function

Value

```
a list of lists:
```

out output of one ODE simulation, including the trajectory of values of state variables
nstar the values of state variables in equilibrium
Phi the Jacobian matrix in equilibrium
parms parameters assigned to the model
extinct.species a vector of species that extincted

14 swaplinks

swaplinks	Swapping links Algorithm for null model of bipartite networks, that generates random network (ensembles) which keep the node degree
	distribution of a real network.

Description

Swapping links Algorithm for null model of bipartite networks, that generates random network (ensembles) which keep the node degree distribution of a real network.

Usage

```
swaplinks(bigraph, ntry = 5000)
```

Arguments

bigraph, incidence matrix of a bipartite network, rows and cols represent two groups of

nodes/species

ntry, the maximum possible times of swapping links to try

Value

an incidence matrix of bipartite network whose links being randomly swapped.

Examples

```
## Not run:
require(bipartite) # for plot
data(M_PL_003)
# M_PL_003 <- as.matrix(M_PL_003)
bipartite::visweb(M_PL_003)
M_PL_003.rand = swaplinks(M_PL_003)
bipartite::visweb(M_PL_003.rand)
## End(Not run)</pre>
```

Index

```
*Topic datasets
    M_PL_001, 5
fragility, 2
graph_connected, 3
inc_to_adj, 3
init_lv2_cm, 4
M_PL_001, 5
model_lv2, 11
model_lv2_ca, 4
model_1v2_cm, 5
{\tt parms\_antago\_interactions}, \\ 6
parms_competitive_interactions, 6
parms_lv2, 11
parms_lv2_ca, 7
{\tt parms\_lv2\_cm,\,8}
parms_mutual_interactions, 8
perturb_growthrate, 9
perturb\_growthrate\_part, 9
\verb"perturb_mutualistic_strength", 10
perturb_primary_extinct, 10
resistance, 11
runif2, 11
sdcn, 11
sdcn-package (sdcn), 11
sim_ode_auto, 12, 13
sim\_ode\_press, 2, 11, 13
swaplinks, 11, 14
```