Classification on Provided Dataset

₽		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balanc
	0	1	15634602	Hargrave	619	France	Female	42	2	0.0
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.8
	2	3	15619304	Onio	502	France	Female	42	8	159660.8
	3	4	15701354	Boni	699	France	Female	39	1	0.0
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.8

```
import sklearn
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
    /usr/local/lib/python3.6/dist-packages/statsmodels/tools/ testing.py:19: FutureWarning:
       import pandas.util.testing as tm
# Plot a confusion matrix.
# cm is the confusion matrix, names are the names of the classes.
def plot confusion matrix(cm, names, title='confusion matrix', cmap=plt.cm.PuBuGn):
   plt.imshow(cm, interpolation='nearest', cmap=cmap)
   plt.title(title)
   plt.colorbar()
   tick_marks = np.arange(len(names))
   plt.xticks(tick marks, names, rotation=45)
   plt.yticks(tick_marks, names)
   plt.tight lavout()
```

```
plt.ylabel('True label')
plt.xlabel('Predicted label')
```

▼ Churn_Modelling Dataset

```
import pandas as pd
import pandas.util.testing as tm
import seaborn as sns

data = pd.read_csv('Churn_Modelling.csv',header='infer')
data
```

₽		RowNumber CustomerId Surnar		Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
	0	1	15634602	Hargrave	619	France	Female	42	2	
	1	2	15647311	Hill	608	Spain	Female	41	1	838
	2	3	15619304	Onio	502	France	Female	42	8	1596
	3	4	15701354	Boni	699	France	Female	39	1	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	573
	9997	9998	15584532	Liu	709	France	Female	36	7	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75(
	9999	10000	15628319	Walker	792	France	Female	28	4	130 ⁻

10000 rows × 14 columns

Suppose we convert the problem into a binary classification task (Exited versus Continued), given lim by replacing the class labels of the instances 0 to Continued and 1 to Exited

```
data['Exited'] = data['Exited'].replace([0],'Continued')
data['Exited'] = data['Exited'].replace([1],'Exited')
data
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	838
2	3	15619304	Onio	502	France	Female	42	8	1596
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125
				•••					
9995	9996	15606229	Obijiaku	771	France	Male	39	5	
9996	9997	15569892	Johnstone	516	France	Male	35	10	573
9997	9998	15584532	Liu	709	France	Female	36	7	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75(
9999	10000	15628319	Walker	792	France	Female	28	4	130′

10000 rows × 14 columns

sns.pairplot(data[['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography', 'Gender'

₽

[#] Paired plot using seaborn
sns.set()

<seaborn.axisgrid.PairGrid at 0x7fb7c5e96f28>

Assignment3Classification Model on Provided Dataset.ipynb - Colaboratory
--

4/20/2020

Applying Pandas cross-tabulation to examine the relationship between the Gender and Age attributes
<pre>pd.crosstab([data['Gender'],data['Age']],data['Exited'])</pre>
[→

	Exited	Continued	Exited
Gender	Age		
Female	18	4	0
	19	8	1
	20	12	1
	21	31	2
	22	36	6
Male	81	2	0
	83	1	0
	84	1	0
	88	1	0
	92	2	0

135 rows × 2 columns

▼ Decision Tree Classifier

In this section, we apply a decision tree classifier to the Churn_Modelling dataset described in the pre

```
from sklearn import tree

Y = pd.DataFrame(data, columns=['Exited'])

X = data.drop(['Gender', 'Surname', 'Geography', 'Exited'],axis=1)

clf = tree.DecisionTreeClassifier(criterion='entropy',max_depth=3)

clf = clf.fit(X, Y)

X

C + Criterion='entropy',max_depth=3)
```

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCa
0	1	15634602	619	42	2	0.00	1	
1	2	15647311	608	41	1	83807.86	1	
2	3	15619304	502	42	8	159660.80	3	
3	4	15701354	699	39	1	0.00	2	
4	5	15737888	850	43	2	125510.82	1	
9995	9996	15606229	771	39	5	0.00	2	
9996	9997	15569892	516	35	10	57369.61	1	
9997	9998	15584532	709	36	7	0.00	1	
9998	9999	15682355	772	42	3	75075.31	2	
9999	10000	15628319	792	28	4	130142.79	1	

10000 rows × 10 columns

Next, suppos decision tree is applied to classify the following test examples.

Гэ

We first extract the predictor and target class attributes from the test data and then apply the decision

```
testY = pd.DataFrame(test_Data, columns=['Exited'])
testX = test_Data.drop(['Surname','Gender','Geography','Exited'],axis=1)
predY = clf.predict(testX)
predictions = pd.concat([test_Data['Exited'],pd.Series(predY,name='Predicted Exit')], axis=1)
predictions
```

```
Exited Predicted Exit

O Continued Continued

1 Exited Continued

2 Continued Continued

3 Exited Exited
```

```
print('Number of instances remaining in D1 = %d' % (data.shape[0]))
numInstances = (data.shape[0])
```

```
Number of instances remaining in D1 = 10000
```

```
from sklearn.model_selection import train_test_split
numTrain = 49730  # number of training instances
numTest = numInstances - numTrain

Y = pd.DataFrame(data, columns=['Exited'])
X = data.drop(['Gender', 'Surname', 'Geography', 'Exited'],axis=1)

print('X size \n', X.size)
print('Y size \n', Y.size)
```

```
∑→ X size
100000
Y size
10000
```

Splitting the data

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=123)
```

from sklearn.metrics import accuracy_score, confusion_matrix, f1_score, precision_score, recal

confusion = confusion_matrix(testY, predY)
print(confusion)

plot_confusion_matrix(confusion, data.Exited.unique(), title ='confusion matrix', cmap=plt.cm
print('Accuracy on test data is %.2f' % (accuracy_score(testY, predY)))
print('F1 score on test data is %.2f' % (f1_score(testY, predY,pos_label='Exited')))
print('Precision Score on test data is %.2f' % (precision_score(testY, predY,pos_label='Exite
print('Recall score on test data is %.2f' % (recall_score(testY, predY,pos_label='Exited')))
print(classification_report(testY,predY))

[2 0] [1 1]]

Accuracy on test data is 0.75 F1 score on test data is 0.67 Precision Score on test data is 1.00 Recall score on test data is 0.50

	precision	recall	f1-score	support
Continued	0.67	1.00	0.80	2
Exited	1.00	0.50	0.67	2
accuracy			0.75	4
macro avg	0.83	0.75	0.73	4
weighted avg	0.83	0.75	0.73	4

list(data.Exited.unique())

```
['Exited', 'Continued']
```

▼ Logistic Regression

In this section, we apply a Logistic Regression to the Churn_Modelling dataset described in the previo

```
from sklearn.linear_model import LogisticRegression
C = [0.01, 0.1, 0.2, 0.5, 1]
LRtestAcc = []
LRtrainAcc = []
for param in C:
    clf = LogisticRegression(C=param)
    clf.fit(X,Y)
    log_reg_pred = clf.predict(testX)
    log_reg_pred_train = clf.predict(X)
    print(log_reg_pred)
    LRtestAcc.append(accuracy score(testY, log reg pred))
    LRtrainAcc.append(accuracy_score(Y,log_reg_pred_train))
plt.plot(C, LRtestAcc, 'bv--', C, LRtrainAcc, 'ro--')
plt.legend(['Test Accuracy','Train Accuracy'])
plt.xlabel('C')
plt.xscale('log')
plt.ylabel('Accuracy')
 С→
```

```
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
  y = column_or_1d(y, warn=True)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
  y = column or 1d(y, warn=True)
['Continued' 'Continued' 'Continued']
['Continued' 'Continued' 'Continued']
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
 y = column or 1d(y, warn=True)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
 y = column or 1d(y, warn=True)
['Continued' 'Continued' 'Continued' 'Continued']
['Continued' 'Continued' 'Continued']
['Continued' 'Continued' 'Continued']
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
 y = column or 1d(y, warn=True)
Text(0, 0.5, 'Accuracy')
   0.80
   0.75
   0.70
Accuracy
                                      Test Accuracy
   0.65
                                      Train Accuracy
   0.60
```

```
model_lg=clf.fit(X_train,Y_train).predict(X_test)
```

C

/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
y = column_or_1d(y, warn=True)

100

print('Accuracy on test data is %.2f for logistic regression' % (accuracy_score(Y_test,model_

Accuracy on test data is 0.79 for logistic regression

Naive Bayes Classifier

0.55

0.50

 10^{-2}

In this section, we apply a Naise Bayes classifier to the Churn _Modelling dataset described in the pre

```
from sklearn.naive bayes import GaussianNB
```

```
clf NR = GaussianNR()
```

```
cli_nb = ddd3sldind()
clf_NB.fit(X,Y)
NB_pred = clf_NB.predict(testX)
print(NB_pred)

# print('Accuracy on test data is %.2f' % (accuracy_score(testY, NB_pred)))

[> ['Continued' 'Continued' 'Continued']
    /usr/local/lib/python3.6/dist-packages/sklearn/naive_bayes.py:206: DataConversionWarning
    y = column_or_ld(y, warn=True)

model_nb=clf_NB.fit(X_train,Y_train).predict(X_test)

[> /usr/local/lib/python3.6/dist-packages/sklearn/naive_bayes.py:206: DataConversionWarning
    y = column_or_ld(y, warn=True)

print('Accuracy on test data is %.2f for Naive Bayes' % (accuracy_score(Y_test,model_nb)))

[> Accuracy on test data is 0.78 for Naive Bayes
```

▼ Decision Tree Classifier

```
from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier()

model_dt=dt.fit(X_train,Y_train).predict(X_test)

accuracy_score(Y_test,model_dt)

_> 0.766

print('Accuracy on test data is %.2f for Decision Tree Classifier' % (accuracy_score(Y_test,model_dt))

Accuracy on test data is 0.77 for Decision Tree Classifier
```

▼ Support Vector Machine (SVM) Classifier

In this section, we apply a SVM classifier to the Churn_Modelling dataset described in the previous su parameter and different kernals and see how it effects the performance of the model.

▼ Linear Decision Boundary

```
from sklearn.svm import SVC
C = [0.01, 0.1, 0.5, 1]
SVMLtestAcc = []
SVMLtrainAcc = []
for param in C:
    clf linear = SVC(param,kernel='linear')
    clf_linear.fit(X,Y)
    svml_pred = clf_linear.predict(testX)
    svml_pred_train = clf_linear.predict(X)
    print(svml_pred)
    SVMLtestAcc.append(accuracy_score(testY, svml_pred))
    SVMLtrainAcc.append(accuracy_score(Y,svml_pred_train))
plt.plot(C, SVMLtestAcc, 'ro--', C,SVMLtrainAcc, 'bv--')
plt.legend(['Test Accuracy','Train Accuracy'])
plt.xlabel('C')
plt.xscale('log')
plt.ylabel('Accuracy')
 Гэ
```

```
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
  y = column_or_1d(y, warn=True)
['Continued' 'Continued' 'Continued']
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
  y = column or 1d(y, warn=True)
['Continued' 'Continued' 'Continued']
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
  y = column or 1d(y, warn=True)
['Continued' 'Continued' 'Continued']
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
  y = column or 1d(y, warn=True)
['Continued' 'Continued' 'Continued']
Text(0, 0.5, 'Accuracy')
   0.80
   0.75
   0.70
Accuracy
                                      Test Accuracy
   0.65
                                      Train Accuracy
   0.60
```

```
model_svml=clf_linear.fit(X_train,Y_train).predict(X_test)
```

10 ⁻¹ C

/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
y = column_or_1d(y, warn=True)

100

print('Accuracy on test data is %.3f for SVM Linear' % (accuracy score(Y test, model svml)))

Accuracy on test data is 0.793 for SVM Linear

▼ Non Linear Decision Boundary

```
C = [0.01, 0.1, 0.2, 0.5,1]
SVMLtestAcc = []
SVMLtrainAcc = []
```

0.55

0.50

 10^{-2}

```
for param in C:
   clf non = SVC(C=param, kernel='rbf', gamma='auto')
   clf non.fit(X,Y)
   svml pred n = clf non.predict(testX)
   svml pred train n = clf non.predict(X)
   print(svml pred)
   SVMLtestAcc.append(accuracy score(testY, svml pred n))
   SVMLtrainAcc.append(accuracy score(Y,svml pred train n))
plt.plot(C, SVMLtestAcc, 'ro--', C,SVMLtrainAcc, 'bv--')
plt.legend(['Test Accuracy','Train Accuracy'])
plt.xlabel('C')
plt.xscale('log')
plt.ylabel('Accuracy')
    /usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
      y = column or 1d(y, warn=True)
     ['Continued' 'Continued' 'Continued']
     /usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
       y = column or 1d(y, warn=True)
     ['Continued' 'Continued' 'Continued']
     /usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
      y = column or 1d(y, warn=True)
     ['Continued' 'Continued' 'Continued']
     /usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
       y = column or 1d(y, warn=True)
     ['Continued' 'Continued' 'Continued']
     /usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
      y = column_or_1d(y, warn=True)
     ['Continued' 'Continued' 'Continued']
    Text(0, 0.5, 'Accuracy')
        1.0

    Test Accuracy

             ■▼ Train Accuracy
        0.9
        0.8
        0.7
        0.6
        0.5
           10^{-2}
                               10^{-1}
                                                   100
                                C
```

```
model_svmnl=clf_non.fit(X_train,Y_train).predict(X_test)
print('Accuracy on test data is %.3f for SVM non Linear' % (accuracy_score(Y_test, model_svmn))
```

```
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:760: DataConversionWa
  y = column_or_1d(y, warn=True)
Accuracy on test data is 0.793 for SVM non Linear
```

▼ K Nearest Neighbor (KNN) Classifier

In this section, we apply a K - Nearest Neighbor classifier to the Churn_Modelling dataset described in look at how the K value effect the performance of the Model.

```
from sklearn.neighbors import KNeighborsClassifier
numNeighbors = [1, 5, 10]
testAcc = []
trainAcc = []
for k in numNeighbors:
 clf k = KNeighborsClassifier(n neighbors=k, metric='minkowski', p=2)
 clf_k.fit(X, Y)
 knn pred = clf k.predict(testX)
 knn pred train = clf k.predict(X)
 print(knn_pred)
 testAcc.append(accuracy score(testY, knn pred))
 trainAcc.append(accuracy_score(Y,knn_pred_train))
plt.plot(numNeighbors, testAcc,'bv--',numNeighbors, trainAcc, 'ro--')
plt.legend(['Test Accuracy','Train Accuacy'])
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
С
```

```
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:9: DataConversionWarning: A
   if __name__ == '__main__':
['Continued' 'Exited' 'Continued' 'Exited']
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:9: DataConversionWarning: A
   if __name__ == '__main__':
['Continued' 'Continued' 'Exited']
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:9: DataConversionWarning: A
   if __name__ == '__main__':
['Continued' 'Continued' 'Exited']
Text(0, 0.5, 'Accuracy')
```



```
model_kn=clf_k.fit(X_train,Y_train).predict(X_test)
print('Accuracy on test data is %.2f for KNN' % (accuracy_score(Y_test, model_kn)))
```

Accuracy on test data is 0.79 for KNN /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:1: DataConversionWarning: A """Entry point for launching an IPython kernel.