Lineare Algebra II

N. Perrin

Düsseldorf Sommersemester 2013

Inhaltsverzeichnis

1	Wie	derholung	4
	1.1	Äquivalenz Relationen	4
	1.2	Lineare Abbildungen, Matrizen, Basiswechsel	5
	1.3	Äquivalenz von Matrizen	6
	1.4	Basiswechsel für Endomorphismen, Ähnlichkeit	7
	1.5	Erste Invarianten für die Ähnlichkeitsrelation	7
	1.6	Eigenwerte und Eigenvektoren	9
	1.7	Diagonalisierbare Matrizen	10
	1.8	Eigenwerte und das charakteristische Polynom	10
	1.9	Trigonalisierbarkeit	11
	1.10	Minimal Polynom	11
2 Jord	lansche Normalform	14	
	2.1	Invariante Unterräume	14
	2.2	Verallgemeinerte Eigenräume	15
	2.3	Haupträume	16
	2.4	Jordan-Kette	19

1 Wiederholung

In diesem Semester werden wir weiter mit lineare Abbildungen arbeiten. Wir nehmen an, dass alles was im Skript LA1 steht ist bekannt. Wir werden aber mit einige Wiederholungen anfangen.

1.1 Äquivalenz Relationen

Definition 1.1.1 1. Sei M eine Menge. Eine **Relation** auf M ist eine Teilmenge R von $M \times M$. Seien x, y zwei Elemente in M, für $(x, y) \in R$ schreibt man $x \sim_R y$.

- 2. R heißt **reflexiv**, wenn $x \sim_R x$ für alle $x \in M$.
- 3. R heißt symmetrisch, wenn $x \sim_R y \Rightarrow y \sim_R x$.
- 4. R heißt **transitiv**, wenn $(x \sim_R y \text{ und } y \sim_R z) \Rightarrow x \sim_R z$.

Definition 1.1.2 Eine Relation R heißt Äquivalenzrelation, wenn R reflexiv, symmetrisch und transitiv ist.

Definition 1.1.3 Sei R eine Äquivalenzrelation auf M.

1. Die **Äquivalenzklasse** [x] ist

$$[x] = \{ y \in M \mid x \sim_R y \} \subset M.$$

2. Die **Quotientenmenge** M/R ist die Gesamtheit der Äquivalenzklassen:

$$M/R \ = \{[x] \in \mathfrak{P}(M) \mid x \in M\}.$$

Satz 1.1.4 Sei R eine Äquivalenzrelation auf M. Dann sind alle Elemente aus M in genau eine Äquivalenzklasse.

Für eine Äquivalenzrelation hat sind die folgende Fragen wichtig.

Frage 1.1.5

- 1. Wann sind zwei Elemente $x, y \in M$ äquivalent?
- 2. Suche ein Element in jede Äquivalenzklasse.

1.2 Lineare Abbildungen, Matrizen, Basiswechsel

Für die Definitionen von Abbildungen, Körper, Vektorräume und Basen verweisen wir auf das Skript LA1 (Definition 2.2.1, Definition 3.1.1 und Definition 5.1.1). Sei K ein Körper und seien V und W zwei K-Vektorräume.

Definition 1.2.1 Eine Abbildung $f: V \to W$ heißt **linear**, wenn für alle $x, y \in K$ und alle $v, v' \in V$ gilt

$$f(xv + yv') = xf(v) + yf(v').$$

Sei $\mathcal{B}=(v_1,\cdots,v_n)$ eine Basis von V und $\mathcal{B}'=(w_1,\cdots,w_m)$ eine Basis von W. Da \mathcal{B}' eine Basis ist, gibt es, für alle $j\in[1,n]$, Skalare $(a_{i,j})_{i\in[1,m]}$ aus K mit

$$f(v_j) = \sum_{i=1}^m a_{i,j} w_i.$$

Für die Definition und eigenschaften von Matrizen, verweisen wir auf das Skript LA1.

Definition 1.2.2 Die Matrix $Mat_{\mathcal{B},\mathcal{B}'}(f)$ von f in den Basen \mathcal{B} , \mathcal{B}' ist

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f) = (a_{i,j})_{i \in [1,m], \ j \in [1,n]} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix}.$$

Sei $f: V \to W$ eine lineare Abbildung. Wenn wir die Basen $\mathcal{B}, \mathcal{B}'$ wechseln wird sich die Matrix $\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$ verändern. Der Basiswelchelsatz erklärt wie sich die Matrix verändert.

Satz 1.2.3 Sei $f: V \to W$ eine lineare Abbildung. Seien \mathcal{B}, \mathcal{C} Basen von V und seien $\mathcal{B}', \mathcal{C}'$ Basen von W. Sei $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$ und $B = \operatorname{Mat}_{\mathcal{C},\mathcal{C}'}(f)$. Dann gilt

$$B = QAP$$

wobei $P = \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(\operatorname{Id}_V)$ und $Q = \operatorname{Mat}_{\mathcal{B}',\mathcal{C}'}(\operatorname{Id}_W)$.

Wir werden zwei Beispiele von Äquivalenzrelationen für Matrizen einführen.

 $6 1 ext{Wiederholung}$

1.3 Äquivalenz von Matrizen

Definition 1.3.1 1. Seien $A, B \in M_{m,n}(K)$. Dann sind A und B äquivalent, falls es $P \in GL_n(K)$ und $Q \in GL_m(K)$ gibt mit

$$B = QAP$$
.

In diesem Fall schreiben wir $A \sim B$.

2. Sei R die Relation $R = \{(A, B) \in M_{m,n}(K) \mid A \sim B\}.$

Lemma 1.3.2 Die Relation R ist eine Äquivalenzrelation.

Satz 1.3.3 Seien $A, B \in M_{m,n}(K)$.

$$A \sim B \Leftrightarrow \operatorname{Rg}(A) = \operatorname{Rg}(B).$$

Wir können also die Frage: wann sind zwei Elemente $A, B \in M$ äquivalent? antworten. Zwei Matrizen A, B sind äquivalent genau dann, wenn Rg(A) = Rg(B).

Um die zweite Frage: $suche \ ein \ Element \ in \ jede \ \ddot{A}quivalenzklasse$ zu antworten brauchen wir die folgende Definition.

Definition 1.3.4 Sei $A \in M_{m,n}(K)$ mit Rg(A) = r Dann heißt

$$\left(\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array}\right) \in M_{m,n}(K)$$

die Normalform von A bzg. Äquivalenz von Matrizen.

Wir haben gesehen, dass die Äquivalenzklasse einer Matrix A mir Rg(A) = r ist die Menge

$$[A]_{\sim} = \{ B \in M_{n,m}(K) \mid \text{Rg}(B) = \text{Rg}(A) = r \}.$$

Wir haben in [A] ein sehr einfache Element: die **Normalform** von A.

$$\left(\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array}\right) \in [A]_{\sim}.$$

1.4 Basiswechsel für Endomorphismen, Ähnlichkeit

Satz 1.4.1 Sei V ein n-dimensionaler Vektorraum. Seien \mathcal{B} und \mathcal{C} Basen von V und sei $f: V \to V$ linear. Sei $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f)$ und $B = \operatorname{Mat}_{\mathcal{C},\mathcal{C}}(f)$. Dann gilt

$$B = P^{-1}AP,$$

wobei $P = \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(\operatorname{Id}_V)$.

Definition 1.4.2 1. Seien $A, B \in M_n(K)$. Dann sind A und B **ähnlich**, falls es $P \in GL_n(K)$ gibt mit

$$B = P^{-1}AP.$$

In diesem Fall schreiben wir $A \approx B$.

2. Sei R' die Relation $R' = \{(A, B) \in M_n(K) \mid A \approx B\}.$

Lemma 1.4.3 Die Relation R' ist eine Äquivalenzrelation.

Die wichtige zwei Fragen für die Ähnlichkeitrelation sind:

Frage 1.4.4

- 1. Wann sind zwei Matrizen $A, B \in M_n(K)$ ähnlich?
- 2. Suche eine Normalform bzg. Ähnlichkeit von Matrizen.

Wir werden dieses Semester diese Fragen beantworten.

1.5 Erste Invarianten für die Ähnlichkeitsrelation

Lemma 1.5.1 Seien $A, B \in M_n(K)$. Es gilt

$$A \approx B \Rightarrow A \sim B$$
.

Beweis. Seien $A, B \in M_n(K)$ mit $A \approx B$. Nach der Definition gibt es ein $P \in GL_n(K)$ mit $B = P^{-1}AP$. Sei $Q = P^{-1} \in GL_n(K)$, dann gilt B = QAP und $A \sim B$.

Korollar 1.5.2 Seien $A, B \in M_n(K)$ mit $A \approx B$. Dann gilt Rg(A) = Rg(B).

Beweis. Folgt aus Satz 1.3.3.

8 1 Wiederholung

Beispiel 1.5.3 Im Korollar 1.5.2 haben wir nicht $Rg(A) = Rg(B) \Rightarrow A \approx B$. Seien

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Für $C \approx A$ gilt: es gibt $P \in GL_2(K)$ mit

$$C = P^{-1}AP = P^{-1}I_2P = P^{-1}P = I_2 = A.$$

Es gilt also

$$[A]_{\approx} = \{A\}.$$

Die einzige Matrix die ähnlich zu A ist, ist die Matrix A. Also es gilt Rg(A) = 2 = Rg(B) (z.b. beide Determinanten sind ungleich 0) aber $A \not\approx B$.

Nächstes Semester haben wir den folgende Satz bewiesen.

Satz 1.5.4 Seien
$$A, B \in M_n(K)$$
 mit $A \approx B$. Dann gilt $\chi_A = \chi_B$.

Korollar 1.5.5 Seien $A, B \in M_n(K)$ mit $A \approx B$. Dann sind die Eigenwerte von A und B gleich.

Beispiel 1.5.6 Im Satz 1.5.4 haben wir nicht $\chi_A = \chi_A \Rightarrow A \approx B$. Seien

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Es gilt

$$\chi_A = (X - 1)^2 = \chi_B.$$

Die Eigenwerte von A und B sind gleich (die einzige Eigenwerte ist 1). Aber, wie im Beispiel 1.5.3, gilt $A \not\approx B$.

Wir geben hier eine hinreichende Bedingung für ähnlichkeit von Matrizen.

Satz 1.5.7 Seien $A \in M_n(K)$ mit n paarweise verschiedene Eigenwerte $\lambda_1, \dots, \lambda_n$ und sei $B \in M_n(K)$ mit $\lambda_1, \dots, \lambda_n$ als Eigenwerte. Dann gilt $A \approx B$.

Beweis. Wir wissen (siehe Satz 1.7.5), dass die Matrix A und auch die Matrix B diagonalisierbar mit Eigenwerte $\lambda_1, \dots, \lambda_n$ sind. Es gibt also Matrizen $P, Q \in GL_n(K)$ mit

$$P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} = Q^{-1}BQ.$$

Es gilt also $A \approx D \approx B$.

Beispiel 1.5.8 Im Satz 1.5.7 haben wir nicht

 $(A \approx B) \Rightarrow (A \text{ und } B \text{ haben die gleiche } n \text{ paarweise verschiedene Eigenwerte}).$

Seien

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) = B.$$

Dann gilt $A \approx B$ und A und B haben die gleiche Eigenwerte aber A und B haben nur eine Eigenwerte und nicht 2 paarweise verschiedene Eigenwerte.

Diese Beispiele und erste Invarianten zeigen, dass Diagonalisierbarkeit eine starke Zusammenhang mit Ähnlichkeit hat. Wir werden aber mehr brauchen. Wir wiederholen jetzt die Eigenchaften von diagonalisierbaren Matrizen.

1.6 Eigenwerte und Eigenvektoren

Definition 1.6.1 1. Sei $f: V \to V$ ein Endomorphismus von V. Ein Vektor $v \in V \setminus \{0\}$ heißt **Eigenvektor mit Eigenwerte** $\lambda \in K$ falls gilt

$$f(v) = \lambda v.$$

2. Sei $A \in M_n(K)$ eine Matrix. Ein Vektor $v \in K^n \setminus \{0\}$ heißt **Eigenvektor mit Eigenwerte** $\lambda \in K$ falls gilt

$$Av = \lambda v$$
.

Definition 1.6.2 Sei $\lambda \in K$ und $f: V \to V$ eine Endomorphismus. Der **Eigenraum** $E(f, \lambda)$ **zu** f **und** λ ist der Unterraum

$$E(f,\lambda) = \operatorname{Ker}(\lambda \operatorname{Id}_V - f) = \{ v \in V \mid f(v) = \lambda v \}.$$

Satz 1.6.3 Die Eigenwerte von f sind die Nullstelen von χ_f .

Satz 1.6.4 Sei $f \in \text{End}(V)$.

- 1. Für $\lambda \neq \mu$ gilt $E(f, \lambda) \cap E(f, \mu) = 0$.
- 2. Systeme von Eigenvektoren mit paarweise verschiedene Eigenwerte von f sind linear unabhängig.

Sei $n = \dim V$

Korollar 1.6.5 Sei $f \in \text{End}(V)$. Dann hat f höchstens n Eigenwerte.

Korollar 1.6.6 Sei $f \in \text{End}(V)$. Dann gilt

$$\sum_{\lambda \in K} E(f, \lambda) = \bigoplus_{\lambda \in K} E(f, \lambda).$$

1 Wiederholung

1.7 Diagonalisierbare Matrizen

Definition 1.7.1 Eine Matrix $A = (a_{i,j}) \in M_n(K)$ heißt diagonal wenn $a_{i,j} = 0$ gilt für alle $i \neq j$.

Definition 1.7.2 Eine Matrix $A \in M_n(K)$ ist **diagonalisierbar** falls sie ähnlich zu einer Diagonalmatrix ist *i.e.* falls es $P \in GL_n(K)$ gibt so dass PAP^{-1} eine Diagonalmatrix ist.

Bemerkung 1.7.3 Eine Matrix A is diagonalisierbar genau dann, wenn es, in der Ähnlichkeitsklasse von A eine Diagonalmatrix D gibt. Für diagonalisierbare Matrizen gibt es ein sehr einfache Element: die Diagonalmatrix D. Diese Diagonalmatrix D wird die (Jordan) Normalform von A sein.

Satz 1.7.4 Sei $A \in M_n(K)$. Dann sind folgende Aussagen äquivalent:

- 1. A ist diagonalisierbar.
- 2. Es gibt eine Basis \mathcal{B} von K^n , welche aus Eigenvektoren von A besteht.
- 3. $\sum_{\lambda \in K} \dim E(A, \lambda) = n$.

4.
$$\bigoplus_{\lambda \in K} E(A, \lambda) = K^n$$
.

Satz 1.7.5 Sei $n = \dim V$ und $f \in \operatorname{End}(V)$. Hat f genau n vershiedene Eigenwerte, dann ist f diagonalisierbar.

1.8 Eigenwerte und das charakteristische Polynom

Satz 1.8.1 Sei $A \in M_n(K)$ und sei $f \in \text{End}(V)$. Es gilt

{Eigenwerte von
$$A$$
} = {Nullstellen von χ_A } {Eigenwerte von f } = {Nullstellen von χ_f }.

Satz 1.8.2 Sei $n = \dim V$ und sei $f \in \operatorname{End}(V)$. Für jedes $\lambda \in K$ gilt dann

$$\dim E(f,\lambda) \leq m(\chi_f,\lambda),$$

wobei $m(\chi_f, \lambda)$ die Vielfachkeit von λ in χ_f ist.

Korollar 1.8.3 Sei $n = \dim V$ und sei $f \in \operatorname{End}(V)$. Das Endomorphismus f is diagonalisierbar genau dann, wenn, χ_f vollständig in Linearfaktoren zerfällt und für jedes $\lambda \in K$, gilt dim $E(f, \lambda) = m(\chi_f, \lambda)$.

1.9 Trigonalisierbarkeit

Definition 1.9.1 1. Eine Matrix $A = (a_{i,j}) \in M_n(K)$ ist eine obere Dreieckmatrix wenn $a_{i,j} = 0$ für i > j.

2. Sei $n = \dim V$ und $f \in \operatorname{End}(V)$. Das Endomorphismus f heißt **trigonalisierbar** falls es eine Basis \mathcal{B} gibt mit $\operatorname{Mat}_{\mathcal{B}}(f)$ eine obere Dreieckmatrix.

Bemerkung 1.9.2 Eine Matrix A is diagonalisierbar genau dann, wenn es, in der Ähnlichkeitsklasse von A eine obere Dreieckmatrix D gibt.

Satz 1.9.3 Sei $f \in \text{End}(V)$. Die folgende Aussagen sind äquivalent:

- 1. f ist trigonalisierbar.
- 2. χ_f zerfällt über K vollstandig in Linearfaktoren.

Korollar 1.9.4 Falls K algebraisch abgeschlossen ist, falls also jedes Polynom in $K[X] \setminus \{0\}$ über K in Linearfaktoren zerfällt, dann ist jedes $f \in \operatorname{End}(V)$ mit dim $V < \infty$ trigonalisierbar.

Bemerkung 1.9.5 Für K algebraisch abgeschlossen, gibt es immer in der Ähnlichkeitsklasse $[A]_{\approx}$ von A eine obere Dreieckmatrix. Wir können also als einfache Element in der Ähnlichkeitsklasse eine obere Dreieckmatrix wählen. Wir werden sehen, dass man noch einfachere Matrix wählen können: die (Jordan) Normalform von A.

1.10 Minimal Polynom

Sei V mit dim V = n und sei $f \in \text{End}(V)$.

Satz 1.10.1 ann existiert genau ein normiertes Polynom $\mu_f \in K[X]$, das Minimalpolynom von f mit

- 1. $\mu_f(f) = 0$
- 2. Ist $P \in K[X]$ mit P(f) = 0, so ist μ_f ein Teiler von P.

Satz 1.10.2 Dann sind folgende Aussagen äquivalent:

- 1. f ist diagonalisierbar.
- 2. μ_f zerfällt vollständig in Linearfaktoren und besitzt nur einfache Nullstellen.

Satz 1.10.3 (Satz von Cayley-Hamilton) Es gilt
$$\chi_f(f) = 0$$
.

1 Wiederholung

Korollar 1.10.4 Es gilt μ_f ist ein Teiler von χ_f .

Korollar 1.10.5 μ_f und χ_f haben die gleiche Nullstelle (die Eigenwerte). Seien λ eine solche Nullstelle, es gilt

$$m(\mu_f, \lambda) \leq m(\chi_f, \lambda).$$

Satz 1.10.6 Seien $A, B \in M_n(K)$ mit $A \approx B$. Dann gilt $\mu_A = \mu_B$.

Beweis. Sei $P \in GL_n(K)$ mit $B = P^{-1}AP$. Es gilt also auch $A = PBP^{-1}$. Eine einfache Induktion gibt für alle $i \in \mathbb{N}$:

$$B^i = P^{-1}A^iP$$

Sei $\mu_A = \sum_{i=0}^k a_i X_i \in K[X]$. Es gilt $\mu_A(A) = 0$. Wir zeigen, dass $\mu_A(B) = 0$. Es gilt

$$\mu_A(B) = \sum_{i=0}^k a_i B^k = \sum_{i=0}^k a_i P^{-1} A^k P = P^{-1} \left(\sum_{i=0}^k a_i A^k \right) P = P^{-1} \mu_A(A) P = 0.$$

Es gilt also $\mu_A(B) = 0$ und μ_B ist ein Teiler von μ_A .

Wir können A und B vertauchen und es gilt auch $\mu_B(A) = 0$. Daraus folgt, dass μ_A ein Teiler von μ_B ist. Es folgt, dass $\mu_A = \lambda \mu_B$ mit $\lambda \in K$ und weil μ_A und μ_B beide normiert sind folgt $\mu_A = \mu_B$.

Beispiel 1.10.7 Im Satz 1.10.6 haben wir nicht $\mu_A = \mu_B \Rightarrow A \approx B$. Seien

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Nach Korollar 1.10.5 hat μ_A (bzg. μ_B) die Eigenwerte von A (bzg. B) als Nullstellen. Also haben μ_A und μ_B die Zahlen 1 und 2 als Nullstellen. Die beide Matrizen A und B sind Diagonalmatrizen also diagonalisierbar. Nach Satz 1.10.2 folgt, dass μ_A und μ_B einfache Nullstellen haben. Es folgt

$$\mu_A = (X-1)(X-2) = \mu_B$$

Wir zeigen, dass $A \not\approx B$. Hätten wir $A \approx B$, dann folgt nach Satz 1.5.4 $\chi_A = \chi_B$. Aber es gilt

$$\chi_A = (X-1)^2(X-2) \neq (X-1)(X-2)^2 = \chi_B.$$

Also $A \not\approx B$.

Beispiel 1.10.8 Es gibt Matrizen A und B mit

$$Rg(A) = Rg(B), \ \chi_A = \chi_B \text{ und } \mu_A = \mu_B$$

aber mit $A \not\approx B$.

Seien

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Es gilt

$$Rg(A) = 4 = Rg(B), \ \chi_A = (X - 1)^4 = \chi_B \text{ und } \mu_A = (X - 1)^2 = \mu_B.$$

Aber es gilt $A \not\approx B$.

Übung 1.10.9 Seien A und B wie im Beispiel 1.10.8.

- 1. Zeigen Sie, dass Rg(A) = 4 = Rg(B), $\chi_A = (X-1)^4 = \chi_B$ und $\mu_A = (X-1)^2 = \mu_B$.
- 2. Zeigen Sie, dass $A \not\approx B$.

2 Jordansche Normalform

Sei V ein K-Vektorraum der Dimension n und sei $f \in \text{End}(V)$ ein Endomorphismus.

2.1 Invariante Unterräume

Definition 2.1.1 Ein Unterraum U von V heißt **invariant** für f (oder f-invariant) falls $f(U) \subset U$.

Lemma 2.1.2 Sei U ein Unterraum von V.

- (1) Wenn U f-invariant ist, dann ist U auch P(f)-invariant für alle $P \in K[X]$.
- (11) Sei $\lambda \in K$. Dann ist U f-invariant genau dann, wenn U $(f \lambda \operatorname{Id}_V)$ -invariant ist.

Beweis. (1) Sei $P \in K[X]$ und $u \in U$. Dann ist $f(u) \in U$ und per Induktion gilt $f^k(u) \in U$ für alle $k \in \mathbb{N}$. Daraus folgt $P(f)(u) \in U$.

(11) Angenommen U sei f-invariant. Dann gilt $f(u) \in U$ für alle $u \in U$. Es folgt $(f - \lambda \operatorname{Id}_V)(u) = f(u) - \lambda u \in U$ und U ist $(f - \lambda \operatorname{Id}_V)$ -invariant. Umgekehrt, sei $u \in U$, dann gilt $(f - \lambda \operatorname{Id}_V)(u) \in U$ also $f(u) - \lambda u \in U$. daraus folgt $f(u) \in U$ und U ist f-invariant.

Lemma 2.1.3 Seien U_1, \cdot, U_r f-invariante unterräume so dass, $V = U_1 \oplus \cdots \oplus U_r$.

- (1) Seien $\mathcal{B}_1, \dots, \mathcal{B}_r$ Basen von U_1, \dots, U_r . Dann ist $\mathcal{B} = \mathcal{B}_1 \cup \dots \cup \mathcal{B}_r$ eine Basis von V.
- (11) Sei $A_i = \operatorname{Mat}_{\mathcal{B}_i}(f|_{U_i})$ für $i \in [1, r]$, dann gilt

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & A_r \end{pmatrix}.$$

Beweis. Übung.

Lemma 2.1.4 Umgekehrt, sei $\mathcal{B} = (v_1, \dots, v_n)$ eine Basis mit

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & A_r \end{pmatrix}$$

wobei $A_i \in M_{n_i}(K)$. Dann sind die Unterräume

$$U_i = \langle v_{n_1 + \dots + n_{i-1} + 1}, \dots, v_{n_1 + \dots + n_{i-1} + n_i} \rangle$$

f-invariant und es gilt $V = U_1 \oplus \cdots \oplus U_r$.

Beweis. Übung.

2.2 Verallgemeinerte Eigenräume

Definition 2.2.1 Seien $k \in \mathbb{N}$ und $\lambda \in K$. Der k-te Verallgemeinerte Eigenraum zum Eigenwert λ ist $E_k(f,\lambda) = \operatorname{Ker}(f - \lambda \operatorname{Id}_V)^k$.

Bemerkung 2.2.2 Es gilt $E_1(f,\lambda) = E(f,\lambda)$ also ist der erte Verallgemeinerte Eigenraum zum Eigenwert λ der Eigenraum zum Eigenwert λ .

Lemma 2.2.3 Sei $\lambda \in K$.

- (1) Für jedes $k \in \mathbb{N}$ ist $E_k(f, \lambda)$ f-invariant.
- (11) Es gilt $E_k(f,\lambda) \subset E_l(f,\lambda)$ für $k \leq l$.
- (iii) Es gibt es ein $k \in \mathbb{N}$ mit $E_k(f, \lambda) = E_{k+1}(f, \lambda)$.
- (iv) Sei k mit $E_k(f,\lambda) = E_{k+1}(f,\lambda)$, dann gilt $E_k(f,\lambda) = E_l(f,\lambda)$ für alle $l \geq k$.

Beweis. (1) Sei $v \in E_k(f, \lambda)$. Dann gilt $(f - \lambda \operatorname{Id}_V)^k(v) = 0$. Wir zeigen, dass $f(v) \in E_k(f, \lambda)$ also $(f - \lambda \operatorname{Id}_V)^k(f(v)) = 0$. Es gilt

$$(f - \lambda \operatorname{Id}_V)^k(f(v)) = ((f - \lambda \operatorname{Id}_V)^k \circ f)(v) = f \circ (f - \lambda \operatorname{Id}_V)^k(v) = f((f - \lambda \operatorname{Id}_V)^k(v)) = 0.$$

- (n) Sei $v \in E_k(f,\lambda)$ und $l \geq k$. Dann gilt $(f \lambda \operatorname{Id}_V)^k(v) = 0$ also es gilt $(f \lambda \operatorname{Id}_V)^l(v) = (f \lambda \operatorname{Id}_V)^{l-k}((f \lambda \operatorname{Id}_V)^k(v)) = (f \lambda \operatorname{Id}_V)^{l-k}(0) = 0$. Es gilt also $v \in E_l(f,\lambda)$.
- (III) Wir betrachten $d_k = \dim E_k(f, \lambda)$. Die folge $(d_k)_{k \in \mathbb{N}}$ ist steigend und $d_k \leq n$. Es gibt also ein k mit $d_k = d_{k+1}$ also $\dim E_k(f, \lambda) = \dim E_{k+1}(f, \lambda)$. Daraus folgt $E_k(f, \lambda) = E_{k+1}(f, \lambda)$.

(iv) Sei k mit $E_k(f,\lambda) = E_{k+1}(f,\lambda)$ und sei $l \geq k$. Es gilt $E_k(f,\lambda) \subset E_l(f,\lambda)$. Umgekehrt, wir zeigen per Induktion über $l \geq k$, dass $E_l(f,\lambda) \subset E_k(f,\lambda)$. Für l = k ist es wahr.

Angenommen $E_l(f,\lambda) \subset E_k(f,\lambda)$. Wir zeigen $E_{l+1}(f,\lambda) \subset E_k(f,\lambda)$. Sei $v \in E_{l+1}(f,\lambda)$, es gilt $(f - \lambda \operatorname{Id}_V)^{l+1}(v) = 0$ also $(f - \lambda \operatorname{Id}_V)^{k+1}((f - \lambda \operatorname{Id}_V)^{l-k}(v)) = 0$. Es folgt $(f - \lambda \operatorname{Id}_V)^{l-k}(v) \in E_{k+1}(f,\lambda) = E_k(f,\lambda)$. Es gilt also $0 = (f - \lambda \operatorname{Id}_V)^k((f - \lambda \operatorname{Id}_V)^{l-k}(v)) = (f - \lambda \operatorname{Id}_V)^l(v) = 0$ und $v \in E_l(f,\lambda) \subset E_k(f,\lambda)$.

Korollar 2.2.4 Sei $\lambda \in K$, dann gibt es ein $M_{\lambda} \in \mathbb{N}$ mit $E_k(f,\lambda) \subsetneq E_{k+1}(f,\lambda)$ für $k < M_{\lambda}$ und $E_k(f,\lambda) = E_{k+1}(f,\lambda)$ für $k \ge M_{\lambda}$.

2.3 Haupträume

Definition 2.3.1 der Hauptraum zum Eigenwert λ ist $H(f,\lambda) = E_{M_{\lambda}}(f,\lambda)$.

Lemma 2.3.2 (1) Für λ ein Eigenwert von f gilt $H(f, \lambda) \neq 0$.

(11) Sonnst gilt
$$H(f,\lambda)=0$$
.

Beweis. (1) Sei v ein Eigenvektor für λ . Es gilt $v \neq 0$ und $(f - \lambda \operatorname{Id}_V)(v) = 0$. Es gilt also $0 \neq E(f, \lambda) \subset H(f, \lambda)$.

(1) Angenommen $H(f,\lambda) \neq 0$. Dann gibt es $v \in H(f,\lambda)$ mit $v \neq 0$. Es gilt $(f - \lambda)^{M_{\lambda}}(v) = 0$ und daraus folgt $(f - \lambda)^{l}(v) = 0$ für alle $l \geq M_{\lambda}$. Sei k maximal mit der Eigenschaft $(f - \lambda)^{k}(v) \neq 0$ (z.b. hat k = 0 diese Eigenschaft aber haben alle $k \geq M_{\lambda}$ diese Eigenschaft nicht mehr). Es gilt also $(f - \lambda)^{k}(v) \neq 0$ und $(f - \lambda)^{k+1}(v) = 0$. Darau folgt

$$0 = (f - \lambda)^{k+1}(v) = (f - \lambda \operatorname{Id}_V)((f - \lambda)^k(v)).$$

Also ist $(f - \lambda)^k(v)$ ein Eigenvektor für f mit dem Eigenwert λ , ein Wiederspruch.

Wir werden die Haupträume dank dem Minimalpolynom studieren. Zuerst brauchen wir ein Lemma.

Definition 2.3.3 Seien $P_1, \dots, P_r \in K[X]$. Die Polynome P_1, \dots, P_r sind **teiler-fremd** falls es kein $Q \in K[X]$ mit $\deg(Q) > 0$ und $Q|P_i$ für alle $i \in [1, r]$ gibt.

Beispiel 2.3.4 (1) X und X-1 sind teilerfremd.

- (11) Für $\lambda_1, \dots, \lambda_r$ paarweise verschieden sind $P_1 = (X \lambda_1)^{m_1}, \dots, P_r = (X \lambda_r)^{m_r}$ teilerfremd.
- (111) Für $\lambda_1, \dots, \lambda_r$ paarweise verschiden sei

$$P_i = \prod_{j \neq i} (X - \lambda_j)^{m_j}.$$

Dann sind P_1, \dots, P_r teilerfremd.

(iv) Für $P_1 = \cdots = P_r = 0$ sind P_1, \cdots, P_r nicht teilerfremd. Jedes Polynom P teilt P_1, \cdots, P_r : $P_i = 0 = 0 \cdot P$.

Lemma 2.3.5 Seien $P_1, \dots, P_r \in K[X]$ teilerfremd. Dann gibt es Polynome $Q_1, \dots, Q_r \in K[X]$ mit

$$Q_1P_1 + \dots + Q_rP_r = 1.$$

Beweis. Nach Induktion auf $N = \deg(P_1) + \cdots + \deg(P_r)$.

Für N=0 gilt $\deg(P_1)=\deg(P_r)=0$. Es gibt also Skalare $\lambda_1\cdots,\lambda_r\in K$ mit $P_i=\lambda_i$ für alle $i\in[1,r]$. Es gibt ein i mit $\lambda_i\neq 0$: wenn nicht gilt $\lambda_1=\cdots=\lambda_r=0$ also $P_1=\cdots=P_r=0$ und P_1,\cdots,P_r sind nicht teilerfremd. Sei $Q_i=\frac{1}{\lambda_i}$ und $Q_j=0$ für $j\neq i$, es gilt $Q_1P_1+\cdots+Q_rP_r=1$.

Wir nehmen an, dass für alle teilerfremde Polynome R_1, \dots, R_r mit $N \ge \deg(R_1) + \dots + \deg(R_r)$ es Polynome S_1, \dots, S_r gibt mit $S_1R_1 + \dots + S_rR_r = 1$. Seien P_1, \dots, P_r teilerfremde Polynom mit $\deg(P_1) + \dots + \deg(P_r) = N+1$. Ohne beschränkung können wir annehmen, dass $\deg(P_1) \ge \dots \deg(P_r)$. Wir wissen, dass für alle $i \in [1, r-1]$ es Polynome U_i, R_i mit $P_i = T_i P_r + R_i$ und $\deg(R_i) < \deg(P_r) \le \deg(P_i)$ gibt. Es gilt also $\deg(R_1) + \dots + \deg(R_{r-1}) + \deg(P_r) < \deg(P_1) + \dots + \deg(P_{r-1}) + \deg(P_r)$.

Wir zeigen, dass $R_1, \dots, R_{r-1}, R_r = P_r$ teilerfremd sind. Sei P mit $P|R_i$ für alle $i \in [1, r]$. Es gilt $P|R_i$ und $P|R_r = P_r$. Also teilt P alle Polynome $T_iP_r + R_i = P_i$. Da P_1, \dots, P_r teilerfremd sind gilt $\deg(P) = 0$ und R_1, \dots, R_r sind teilerfremd. Nach Induktion gibt es Polynome S_1, \dots, S_r mit $S_1R_1 + \dots + S_rR_r = 1$. Wir ersetzen $R_i = P_i - T_iP_r$ für $i \in [1, r-1]$ und $R_r = P_r$. Es gilt

$$1 = S_1 R_1 + \dots + S_r R_r = S_1 (P_1 - T_1 P_r) + \dots + S_{r-1} (P_{r-1} - T_{r-1} P_r) + S_r P_r.$$

Wir setzen $Q_i = S_i$ für $i \in [1, r-1]$ und $Q_r = S_r - (S_1T_1 + \cdots + S_{r-1}T_{r-1})$. Die gleichung $Q_1P_1 + \cdots + Q_rP_r = 1$ folgt.

Beispiel 2.3.6 Sei $P_1 = X$ und $P_2 = X - 1$. Dann sind P_1 und P_2 teilerfremd und für $Q_1 = 1$, $Q_2 = -1$ gilt $Q_1P_1 + Q_2P_2 = 1$.

Sei μ_f das Minimalpolynom von f. Wir nehmen an, dass μ_f zerfällt in Linearfaktoren:

$$\mu_f = (X - \lambda_1)^{m_1} \cdots (X - \lambda^r)^{m_r},$$

wobei $\lambda_1, \dots, \lambda_r$ paarweise verschiden sind.

Satz 2.3.7 Sei $H_i = \text{Ker}(f - \lambda_i)^{m_i}$ für $i \in [1, r]$. Es gilt

$$V = H_1 \oplus \cdots \oplus H_r$$
.

Beweis. Wir zeigen $V=H_1+\cdots H_r$. Sei $v\in V$. Wir zeigen, dass es Vektoren $v_i\in H_i$ für $i\in [1,r]$ gibt mit $v=v_1+\cdots+v_r$. Sei $P_i=\prod_{j\neq i}(X-\lambda_j)^{m_j}$ für $i\in [1,r]$. Dann sind P_1,\cdots,P_r teilerfremd. Nach dem obigen Lemma, gibt es Polynome Q_1,\cdots,Q_r mit $P_1Q_1+\cdots+P_rQ_r=1$. Es gilt also

$$v = \mathrm{Id}_V(v) = (P_1(f)Q_1(f) + \dots + P_r(f)Q_r(f))(v).$$

Sei $v_i = P_i(f)Q_i(f)(v)$. Es gilt $v = v_1 + \cdots + v_r$. Wir zeigen $v_i \in H_i$. Es gilt

$$(f - \lambda_i)_i^m(v_i) = (f - \lambda_i)_i^m P_i(f) Q_i(f)(v) = \mu_f(f) Q_i(f)(v) = 0 (f) Q_i(f)(v) = 0.$$

Daraus folgt $v_i \in H_i$.

Wir zeigen jetzt, dass die Summe $H_1 + \cdots + H_r$ eine direkte Summe ist. Seien also $v_i \in H_i$ mit $v_1 + \cdots + v_r = 0$. Wir zeigen $v_i = 0$ für alle $i \in [1, r]$. Es gilt

$$0 = P_i(f)(v_1) + \dots + P_i(f)(v_r) = P_i(f)(v_i)$$

da $(X - \lambda_j)^{m_j}$ teil P_i für alle $j \neq i$. Sei $R = (X - \lambda_i)^{m_i}$. Es gilt $R(f)(v_i)$. Die Polynome P_i und $R = (X - \lambda_i)^{m_i}$ sind teilerfremd. Es gibt also Polynome Q und S mit $QP_i + SR = 1$. Daraus folgt

$$v_i = Q(f)P_i(f)(v_i) + S(f)R(f)(v_i) = 0.$$

Da der obige Beweis für alle $i \in [1, r]$ gilt, gilt also $v_i = 0$ für alle $i \in [1, r]$.

Korollar 2.3.8 Für alle $i \in [1, r]$ gilt $H(f, \lambda_i) = H_i$ und $M_{\lambda_i} = m_i$.

Beweis. Für alle $i \in [1, r]$ und $k \leq M_{\lambda_i} \leq l$ gilt

$$\operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^k \subset \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{M_{\lambda_i}} \subset \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^l$$
.

Es gilt also $H_i \subset H(f, \lambda_i)$.

Umgekehrt, sei $v \in H(f, \lambda_i)$. Wir zeigen $v \in H_i$. Nach dem obigen Satz gilt $v = v_1 + \cdots + v_r$ mit $v_j \in H_j$ für alle $j \in [1, r]$. Sei $P_i = \prod_{j \neq i} (X - \lambda_j)^{m_j}$ und $R = (X - \lambda_i)^{M_{\lambda_i}}$. Es gilt $P_i(f)(v_j) = 0$ für alle $j \in [1, r]$ und R(f)(v) = 0. Die Polynome P_i und R(f)(v) = 0. Daraus folgt

$$v = Q(f)P_i(f)(v_1 + \dots + v_r) + S(f)R(f)(v) = Q(f)P_i(f)(v_i).$$

Da $v_i \in H_i$ und H_i ist f-invariant gilt $v = Q(f)P_i(f)(v_i) \in H_i$.

Wir zeigen $m_i = M_{\lambda_i}$. Es gilt

$$\operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i + 1} \subset \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{M_{\lambda_i}} = \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i} \subset \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i + 1}.$$

Alle Enthaltungen sind Gleichungen und es folgt $\operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i} = \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i+1}$. Aus der Definition von M_{λ_i} gilt $M_{\lambda_i} \leq m_i$. Sei

$$P = (X - \lambda_i)^{M_{\lambda_i}} \cdots (X - \lambda_r)^{M_{\lambda_r}}.$$

Wir zeigen, dass P(f) = 0. Sei also $v \in V$. Wir zeigen P(f)(v) = 0. Nach dem obigen Satz gilt $v = v_1 + \cdots + v_r$ mit $v_i \in H_i$. Es gilt also $P(f)(v_i) = 0$ für alle $i \in [1, r]$. Daraus folgt P(f)(v) = 0. Nach dem Definition von μ_f folgt, dass μ_f eine Teiler von P ist. Daraus folgt $m_i \leq M_{\lambda_i}$. Es folgt $M_{\lambda_i} = m_i$.

Korollar 2.3.9 Sei *U* ein *f*-invariant Unterraum. Dann gilt

$$U = (U \cap H_1) \oplus \cdots \oplus (U \cap H_r).$$

Beweis. Da wir eine direkte Summe $H_1 \oplus \cdots \oplus H_r$ haben ist die Summe $(U \cap H_1) + \cdots + (U \cap H_r)$ auch eine direkte Summe. Wir haben eine die Enthaltung $(U \cap H_1) \oplus \cdots (U \cap H_r) \subset U$. Umgekehrt, sei $v \in U$ und wie oben sei $P_i = \prod_{j \neq i} (X - \lambda_j)^{m_j}$ für $i \in [1, r]$. Dann sind P_1, \cdots, P_r teilerfremd und es gibt Polynome Q_1, \cdots, Q_r mit $P_1Q_1 + \cdots + P_rQ_r = 1$. Es gilt also

$$v = v_1 + \dots + v_r$$

wobei $v_i = P_i(f)Q_i(f)(v) \in H_i$. Da U ein f-invariant Unterraum ist und $v \in U$ gilt $v_i = P_i(f)Q_i(f)(v) \in U$. Es folgt $v_i \in U \cap H_i$ und $U = (U \cap H_1) \oplus \cdots \oplus (U \cap H_r)$.

Korollar 2.3.10 Sei $i \in [1, r]$. Dann gibt es ein $v \in V$ mit

$$(f - \lambda_i \operatorname{Id}_V)^{m_i - 1}(v) \neq 0 \text{ und } (f - \lambda_i \operatorname{Id}_V)^{m_i}(v) \neq 0.$$

Beweis. Es gilt $m_i = M_{\lambda_i}$. Also es gilt $\operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i - 1} = E_{m_i - 1}(f, \lambda_i) \subsetneq E_{m_i}(f, \lambda_i) = \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i}$. Sei $v \in \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i} \setminus \operatorname{Ker}(f - \lambda_i \operatorname{Id}_V)^{m_i - 1}$. Dann erfüllt v die obige Eigenschaft.

2.4 Jordan-Kette

Definition 2.4.1 Ein System (v_1, \dots, v_t) von Vektoren heißt **Jordan-Kette (für** f **zum Eigenwert** λ) falls für alle $k \in [1, t-1]$ gilt

- $v_1 \neq 0$,
- $(f \lambda \operatorname{Id}_V)(v_1) = 0$
- $(f \lambda \operatorname{Id}_V)(v_{k+1}) = v_k$.

Lemma 2.4.2 (1) Es gibt ein Vektor $v \in V$ mit $(f - \lambda_i \operatorname{Id}_V)^{m_i - 1}(v) \neq 0$ und $(f - \lambda_i \operatorname{Id}_V)^{m_i}(v) = 0$.

(n) Sei $v_k = (f - \lambda_i \operatorname{Id}_V)^{m_i - k}$. Das System (v_1, \dots, v_{m_i}) ist eine Jordan-Kette für f zum Eigenwert λ_i .

Beweis. (1) Siehe Korollar 2.3.10

(11) Folgt aus der Definition von v und Jordan-Kette.

Lemma 2.4.3 Sei (v_1, \dots, v_t) eine Jordan-Kette für f zum Eigenwert λ .

- (1) Dann ist $((f \lambda_i \operatorname{Id}_V)(v_2), \dots, (f \lambda_i \operatorname{Id}_V)(v_t)) = (v_1, \dots, v_{t-1})$ eine Jordan-Kette für f zum Eigenwert λ .
- (11) Dann ist $\langle v_1, \dots, v_t \rangle$ f-invariant und (v_1, \dots, v_t) linear unabhängig.

Beweis. (1) Folgt aus der Definition.

(11) Nach (1) folgt, dass $f - \lambda \operatorname{Id}_V$ schickt die Jordan-Kette auf $(0, v_1, \dots, v_{t-1})$. Daraus folgt, dass $\langle v_1, \dots, v_t \rangle$ $(f - \lambda \operatorname{Id}_V)$ -invariant und also f-invariant ist.

Nach Induktion auf t. Seien x_1, \dots, x_t Skalare mit $\sum_i x_i v_i = 0$. Es folgt $0 = \sum_i x_i (f - \lambda \operatorname{Id}_V)(v_i) = \sum_{i \leq r-1} x_{i+1} v_i$. Da (v_1, \dots, v_{t-1}) eine Jordan-Kette ist, ist das System linear unabhängig. Es folgt $x_2 = \dots = x_r = 0$. Es gilt dann auch $x_1 v_1 = 0$. Da $v_1 \neq 0$ folgt $x_1 = 0$. Das System (v_1, \dots, v_t) ist linear unabhängig.

Korollar 2.4.4 Sei (v_1, \dots, v_t) eine Jordan-Kette für f zum Eigenwert λ . Sei $U = \langle v_1, \dots, v_t \rangle$ und sei $\mathcal{B} = (v_1, \dots, v_t)$.

- (1) Das System \mathcal{B} ist eine Basis von U.
- (11) Es gilt

$$\operatorname{Mat}_{\mathcal{B}}(f|_{U}) = \begin{pmatrix} \lambda & 1 & \cdots & 0 \\ 0 & \lambda & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda \end{pmatrix} := J(\lambda, t).$$

Beweis. (1) Folgt vom obigen Lemma.

(11) Es gilt $(f - \lambda \operatorname{Id}_V)(v_{k+1}) = v_k$ für $k \in [1, t-1]$. Daraus folgt $f(v_{k+1}) = \lambda v_{k+1} + v_k$. Es gilt auch $(f - \lambda \operatorname{Id}_V)(v_1) = 0$, also $f(v_1) = \lambda v_1$. Das Lemma ist bewiesen.

Definition 2.4.5 Die Matrix $J(\lambda,t)$ heißt Jordan-Block der Größe t zum Eigenwert λ .