

(Multivariate Linear Regression)

- until now, we learned about univariate linear regression which uses only I variable (feature)
- Multiple features (Variables)

Size in feet ² X1	Number of bedrooms	Number of Hoors X3	Age of home in years	Price (\$) in \$ 1.000'5	
2104	5	1	45	460	M=47
1416	3	2	40	232	
1534	3	2	30	315	
852	2	1	36	1778	
			•		

(example)
$$j=2 \Rightarrow \mathcal{X}_{1} = column \text{ of }$$

$$number \text{ of bedrooms}$$

$$n = 4 \text{ (4 features)}$$

$$m = 47$$

$$\frac{2}{2} = [1416, 3, 2, 40]$$

$$m(2) = 2$$

- Model (hypothesis)

- 10 thear regression with sigle feature: fw, b(x) = wx + b
- @ linear regression with multiple features: fw,b(x) = W,x, + W2x2+ ... + Wnxn+b (example with sample training set)