

EOSC 350 : Environmental, Geotechnical and Exploration Geophysics I EM Inversion

September – December, 2017

Workflow

Geophysical Inversions

Forward and Inversion

observed data

1D layered **model** $m = (\sigma_1, \sigma_2, \cdots, \sigma_n)^{\top}$

depth	$\sigma_{\scriptscriptstyle 1}$
	σ_2
	σ_3
	σ_4
	σ_{5}
	•

Forward $d = F(m) + \epsilon$

 $m^* = F^{-1}(d)$ **Inverse**

- m: model vector
- F: forward operator (e.g. Maxwell's equation, Poisson's equation)
- ε: noise
- m*: inferred model

Question: What problems can you expect in the process of recovering the true model by fitting the field data?

Non-uniqueness

- The data will not change if σ_4 changes
- An infinite number of feasible models
- Regularized inversion
 - fit the data
 - model as simple as possible

Objective functional

$$\phi = \phi_d + \beta \phi_m$$

$$\phi_d = \sum_{i=1}^N \left(\frac{F_i[m] - d_i}{\epsilon_i} \right)^2$$

$$\phi_m = \alpha_s \|\mathbf{W}_s(m - m^{\text{ref}})\|^2 + \alpha_z \|\mathbf{W}_z(m - m^{\text{ref}})\|^2$$

1D Forward Modeling

Minimize $\phi = \phi_d + \beta \phi_m$

- Regularization (trade-off) parameter β controls relative importance of data fitting and simplicity of model
- Under-fit: Did not squeeze all the information out of the data
- Over-fit: Converting noise to model structures

Minimize $\phi = \phi_d + \beta \phi_m$

- Regularization (trade-off) parameter β controls relative importance of data fitting and simplicity of model
- Under-fit: Did not squeeze all the information out of the data
- Over-fit: Converting noise to model structures

In practice, the noise is non-Gaussian and not exactly unknown. So geologic or other a prior information is critical in choosing an appropriate inversion model.

Joint Inversion

3D Inversion

Difficulty

Concentric Tx-Rx Time-domain EM

1D TEM Inversion

Simplified porphyry model

Stitched 1D layered inversion

3D TEM Inversion

3D voxel inversion

- High sensitivity in high induced currents
- Need to model the 3D current distribution
- 3D inversion: key in complex geology

Summary

- Concepts about inversion
 - 1D, 2D, 3D, parametric
 - Data and model, forward and inverse
 - Non-uniqueness
 - Regularized inversion: trade-off between data misfit and model complexity
 - Joint inversion
 - 3D inversion
- How do you work with geophysicists?
 - Check the validity of model dimensionality
 - Ask about uncertainty and alternative models