Part IB — Analysis and Topology

Based on lectures by Dr P. Russell

Michaelmas 2022

Contents

	Generalizing continuity and convergence
	Three Examples of Convergence 1.1 Convergence in \mathbb{R}
2	Metric Spaces
3	Topological Spaces

Part I Generalizing continuity and convergence

§1 Three Examples of Convergence

§1.1 Convergence in \mathbb{R}

Let (x_n) be a sequence in \mathbb{R} and $x \in \mathbb{R}$. We say (x_n) converges to x and write $x_n \to x$ if

$$\forall \epsilon > 0 \quad \exists N \quad \forall n \ge N \quad |x_n - x| < \epsilon.$$

Useful fact: $\forall a, b \in \mathbb{R} |a+b| \leq |a| + |b|$ (Triangle Inequality).

Bolzano-Weierstrass Theorem (BWT) A bounded sequence in \mathbb{R} must have a convergent subsequence (Proof by interval bisection).

Recall: A sequence (x_n) in \mathbb{R} is Cauchy if

$$\forall \epsilon > 0 \quad \exists N \quad \forall m, n \ge N \quad |x_m - x_n| < \epsilon.$$

Easy exercise Convergent \implies Cauchy

General Principle of Convergence (GPC) Any Cauchy sequence in \mathbb{R} converges.

Outline. If (x_n) Cauchy then (x_n) bounded so by BWT has a convergent subsequence, say $x_{n_j} \to x$. But as (x_n) Cauchy, $x_n \to x$.

§1.2 Convergence in \mathbb{R}^2

Remark 1. This all works in \mathbb{R}^n

Let (z_n) be a sequence in \mathbb{R}^2 and $z \in \mathbb{R}^2$. What should $z_n \to z$ mean?

In \mathbb{R} : "As n gets large, z_n gets arbitrarily close to z."

What does 'close' mean in \mathbb{R}^2 ?

In \mathbb{R} : a, b close if |a - b| small. In \mathbb{R}^2 : Replace $|\cdot|$ by $||\cdot||$

Recall: If z = (x, y) then $||z|| = \sqrt{x^2 + y^2}$.

Triangle Inequality If $a, b \in \mathbb{R}^2$ then $||a + b|| \le ||a|| + ||b||$.

Definition 1.1

Let (z_n) be a sequence in \mathbb{R}^2 and $z \in \mathbb{R}^2$. We say (z_n) converges to z and .. $z_n \to z$ if $\forall \epsilon > 0 \exists N \ \forall n \geq N \ \|z_n - z\| < \epsilon$.

Equivalently, $z_n \to z$ iff $||z_n - z|| \to 0$ (convergence in \mathbb{R}).

Example 1.1

Let $(z_n), (w_n)$ be sequences in \mathbb{R}^2 with $z_n \to z, w_n \to w$. Then $z_n + w_n \to z + w$.

Proof.

$$||(z_n + w_n) - (z + w)|| \le ||z_n - z|| + ||w_n - w||$$

 $\to 0 + 0 = 0$ (by results from IA).

In fact, given convergence in \mathbb{R} , convergence in \mathbb{R}^2 is easy:

Proposition 1.1

Let (z_n) be a sequence in \mathbb{R}^2 and let $z \in \mathbb{R}^2$. Write $z_n = (x_n, y_n)$ and z = (x, y). Then $z_n \to z$ iff $x_n \to x$ and $y_n \to y$.

Proof. (\Longrightarrow): $|x_n - x|, |y_n - y| \le ||z_n - z||$. So if $||z_n - z|| \to 0$ then $|x_n - x| \to 0$ and $|y_n - y| \to 0$.

 (\Leftarrow) : If $|x_n - x| \to 0$ and $|y_n - y| \to 0$ then $||z_n - z|| = \sqrt{(x_n - x)^2 + (y_n - y)^2} \to 0$ by results in \mathbb{R} .

Definition 1.2 (Bounded Sequence)

A sequence (z_n) in \mathbb{R}^2 is **bounded** if $\exists M \in \mathbb{R}$ s.t. $\forall n ||z_n|| \leq M$.

Theorem 1.1 (BWT in \mathbb{R}^2)

A bounded sequence in \mathbb{R}^2 must have a convergent subsequence.

Theorem 1.2 (GPC for \mathbb{R}^2)

Any Cauchy sequence in \mathbb{R}^2 converges.

```
Proof. Let (z_n) be a Cauchy sequence in \mathbb{R}^2. Write z_n = (x_n, y_n). For all m, n, |x_m - x_n| \le ||z_m - z_n|| so (x_n) is a Cauchy sequence in \mathbb{R}, so converges by GPC. Similarly, (y_n) converges in \mathbb{R}. So by 1.1, (z_n) converges.
```

Thought for the day What about continuity? Let $f: \mathbb{R}^2 \to \mathbb{R}$. What does it mean for f to be continuous? (Simple modification of defin for $\mathbb{R} \to \mathbb{R}$).

What can we do with it?

Big theorem in IA: If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function on a closed bounded interval then f is bounded and attains its bounds.

Is there a similar theorem for $\mathbb{R}^2 \to \mathbb{R}$. What do we replace 'closed bounded interval' by? We proved the theorem using BWT. Why did it work? Why did we need a closed bounded interval to make it work? What can we do in \mathbb{R}^2 ?

§1.3 Convergence of Functions

Let $X \subset \mathbb{R}^1$, let $f_n : X \to \mathbb{R}$ $(n \ge 1)$ and let $f : X \to \mathbb{R}$. What does it mean for f_n to converge to f.

Obvious idea:

Definition 1.3 (Pointwise convergence)

Say (f_n) converges pointwise to f and write $f_n \to f$ pointwise if $\forall x \in X$ $f_n(x) \to f(x)$ as $n \to \infty$.

Pros

- Simple
- Easy to check
- Defined in terms of convergence in \mathbb{R}

Cons

- Doesn't preserve 'nice' properties.
- 'Doesn't feel right'.

In all three examples, have $X = [0, 1], f_n \to f$ pointwise.

¹Mostly can think of $X = \mathbb{R}$ or some interval

Example 1.2 (Every f_n continuous but f not)

$$f_n(x) = \begin{cases} nx & x \le \frac{1}{n} \\ 1 & x \ge \frac{1}{n} \end{cases}$$
$$f(x) = \begin{cases} 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

Clearly f_n continuous for all n but f not. If x = 0, $\forall n f_n(0) = 0 = f(0)$. If x > 0, for sufficiently large n $f_n(x) = 1 = f(x)$ so $f_n(x) \to f(x)$.

Example 1.3 (Every f_n integrable but f not)

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}.$$

This is a non integrable function so now we want to find f_n such that they converge pointwise to this. Enumerate the rationals in [0,1] as q_1,q_2,\ldots For $n \geq 1$, set $f_n(x) = \mathbb{1}_{q_1,\ldots,q_n}$. f_n integrable as it is nonzero at finitely many points.

^aN.B. As in IA 'integrable' means 'Riemann integrable'

Example 1.4 (Every f_n and f integrable but $\int_0^1 f_n \not\to \int_0^1 f$) Let f(x) = 0 for all x, so $\int_0^1 f = 0$. Define f_n s.t. $\int_0^1 f_n = 1$ for all n.

Better definition:

Definition 1.4 (Uniform convergence)

Let $X \subset \mathbb{R}$, $f_n : X \to \mathbb{R}$ $(n \ge 1)$, $f : X \to \mathbb{R}$. We say (f_n) converges uniformly to f and write $f_n \to f$ uniformly if $\forall \epsilon > 0 \exists N \forall x \in X \forall n \ge N |f_n(x) - f(x)| < \epsilon$.

cf $f_n \to f$ pointwise: $\forall \epsilon > 0 \ \forall \ x \in X \ \exists \ N \ \forall \ n \geq N \ |f_n(x) - f(x)| < \epsilon$. (We have swapped the $\forall \ x \in x \ \text{and} \ \exists \ N$). Pointwise convergence allows for N to be a function of x whilst uniform convergence requires N to work for all x even the worst case. In particular, $f_n \to f$ uniformly $\Longrightarrow f_n \to f$ pointwise.

Equivalently, $f_n \to f$ uniformly if for sufficiently large n $f_n - f$ is bounded and $\sup_{x \in X} |f_n - f| \to 0$.

Theorem 1.3 (A uniform limit of cts functions is cts)

Let $X \subset \mathbb{R}$, let $f_n : X \to \mathbb{R}$ be continuous $(n \ge 1)$ and let $f_n \to f : X \to \mathbb{R}$ uniformly. Then f is cts.

Proof. Let $x \in X$. Let $\epsilon > 0$. As $f_n \to f$ uniformly, we can find N s.t. $\forall n \ge N \ \forall y \in X \ |f_n(y) - f(y)| < \epsilon$. In particular, $\forall y \in X \ |f_N(y) - f(y)| < \epsilon$. As f_N is cts, we can find $\delta > 0$ s.t. $\forall y \in X, \ |y - x| < \delta \implies |f_N(y) - f_N(x)| < \epsilon$. Now let $y \in X$ with $|y - x| < \delta$. Then

$$|f(y) - f(x)| \le |f(y) - f_N(y)| + |f_N(y) - f_N(x)| + |f_N(x) - f(x)|^a$$

 $< \epsilon + \epsilon + \epsilon = 3\epsilon.$

Hence f is cts.

Remark 2. This is often called a '3 ϵ proof' (or an $\frac{\epsilon}{3}$ proof).

Theorem 1.4

Let $f_n:[a,b]\to\mathbb{R}\ (n\geq 1)$ be integrable and let $f_n\to f:[a,b]\to\mathbb{R}$ uniformly. Then f is integrable and $\int_a^b f_n\to \int_a^b f$ as $n\to\infty$.

Proof. As $f_n \to f$ uniformly, we can pick n suff. large s.t. $f_n - f$ is bounded. Also f_n is bounded (as integrable). So by triangle inequality, $f = (f - f_n) + f_n$ is bounded. Let $\epsilon > 0$. As $f_n \to f$ uniformly there is some N s.t. $\forall n \geq N \ \forall x \in [a, b]$ we have $|f_n(x) - f(x)| < \epsilon$.

In particular, $\forall x \in [a, b] |f_N(x) - f(x)| < \epsilon$.

By Riemann's criterion, there is some dissection \mathcal{D} of [a,b] for which $S(f_n,\mathcal{D}) - s(f_n,\mathcal{D}) < \epsilon$. Let $\mathcal{D} = \{x_0, x_1, x_2, \dots, x_k\}$ where $a = x_0 < x_1 < \dots < x_k = b$. Now

$$S(f, \mathcal{D}) = \sum_{i=1}^{k} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} f(x)$$

$$\leq \sum_{i=1}^{k} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} (f_N(x) + \epsilon)$$

$$= \sum_{i=1}^{k} (x_i - x_{i-1}) \left(\left(\sup_{x \in [x_{i-1}, x_i]} f_N(x) \right) + \epsilon \right)$$

$$= \sum_{i=1}^{k} (x_i - x_{i-1}) \sup_{x \in [x_{i-1}, x_i]} f_N(x) + \sum_{i=1}^{k} (x_i - x_{i-1}) \epsilon$$

^aThe core of this proof is this inequality.

$$= S(f_N, \mathcal{D}) + (b - a)\epsilon.$$

That is $S(f, \mathcal{D}) \leq S(f_N, \mathcal{D}) + (b-a)\epsilon$. Similarly $s(f, \mathcal{D}) \geq s(f_N, \mathcal{D}) - (b-a)\epsilon$. Hence

$$S(f, \mathcal{D}) - s(f, \mathcal{D}) \le S(f_N, \mathcal{D}) - s(f_N, \mathcal{D}) + 2(b - a)\epsilon$$

 $< (2(b - a) + 1)\epsilon$

But 2(b-a)+1 is a constant so $(2(b-a)+1)\epsilon$ can be made arbitrarily small. Hence by Riemann's criterion, f is integrable over [a,b].

Now, for any n suff. large that $f_n - f$ is bounded,

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| = \left| \int_{a}^{b} (f_{n} - f) \right|$$

$$\leq \int_{a}^{b} |f_{n} - f|$$

$$\leq (b - a) \sup_{x \in [a, b]} |f_{n} - f|$$

$$\to 0 \text{ as } n \to \infty \text{ since } f_{n} \to f \text{ uniformly.}^{a}$$

^aNote we said that $f_n \to f$ uniformly if $\sup |f_n - f| \to 0$.

- §2 Metric Spaces
- §3 Topological Spaces

Part II

Generalizing differentiation