ECE 472F Problem Set #6 Solutions – Fall, 2015

Question 1 (a)	Α	В	С			
B - Recreation	420	260	590			
D - Congestion	55	50	90			
D - Pollution	7	5	15			
C - Construction	275	225	440			
R - Fees	40	10	70			
First Line		Benefits	Disbenefits	Fees	Net Ben. Net	B/C
Second Line		Costs		Fees	Costs	
Step 1: Least expensive (B) versus "Do Nothing":						
	B/C =	260 225	55	10 10	195 215	0.91

Therefore, "Do Nothing" wins.

Step 2: Next most expensive versus winner of Step 1 (A versus "Do Nothing"):

B/C =	420	62	40	318	1.35
	275		40	235	

Therefore, "A" wins.

Step 3: Next most expensive versus winner of Step 2 (C versus A):

B/C =	170	43	30	97	0.72
	165		30	135	

Therefore, "A" wins.

Recommend Alternative A as being the best proposal.

Use sensitivity analysis and multiply the Fee Revenue in C by (1 + x) in Step 3. Let B/C = 1.0 and solve for x. Any percentage increase above x in Fee Revenue would make Alternative C the best.

Let B/C = 1 and solve for x.

This equation does not have a solution for x; therefore, no amount of revenue fee increase will make Alternative C better than Alternative A.

Question 2

(a) With B/c ratio analysis, must use incremental analysis starting with least cost alternative and compare it to the next most costly alternative.

	Annual Costs	Annual Benefits
Ferry	5,000,000	6,000,000
Low Bridge	30,000,000 (AIP 8,15)	9,000,000
,	+ 1,800,000 = 5,304,000	
2 nd Bridge Design	37,000,000 (AIP 8,15) +2,500,000 = 6,821,600	11,200,000

Ferry vs. "Do Nothing"

$$\Delta B/C = \frac{6,000,000}{5,000,000} = 1.2$$

Accept ferry contract.

Low Bridge us Ferry

Accept low bridge.

Second Bridge Design vs. Low Bridge

$$\Delta B/c = \frac{2,200,000}{1,517,600} = 1.5$$

Accept second bridge design,

·· Recommend the second bridge design

(b) The opportunity cost approach involves raising the interest rate to the point where the projects with Blc > 1 remaining have a first cost intotal that is less the budget. Therefore, sewen projects will be acepted.

(c) Re-evaluate the recommedation to go from low bridge to second design:

B/C = 2,200,000 where ? is the break-even interest rate.

(AIP?,15) = 0.214

Therefore the second bridge is noting the public.

Therefore, the second bridge is not in the public =>[208].
interest if the interest rate is greater than 20%.

ECE 472F Problem Set #6 Solutions – Fall, 2015

Question 3

Construction Costs	100,000	
Useful life	10	
Residual Value	20,000	
Op Costs	18,000	
Hours/day	14	
Days/year	320	
Hourly charge	\$4.50	per court
MARR	10%	

(a) There are two courts and each goes for \$4.50 per hour. Let x equal the number of hours that the courts, in total, are rented and solve for AW = 0.

$$AW = -100,000 (A|P 10\%,10) + 20,000 (A|F 10\%,10) - 18,000 + 4.50x$$

$$x =$$
 _ -33,016 _ 7,337 hours per year. -4.5

(b) To determine the utilization rate, first calculate the total number of bookable hours (BH) per year.

Therefore the answer in (a) represents a utilization rate of:

To develop the table, use the following data points:

MARR	(A P i,10)	(A F i,10)	х	Util. Rate
10%	0.1627	0.0627	7,337	81.88%
12%	0.177	0.0570	7,680	85.71%
15%	0.1993	0.0493	8,210	91.63%
20%	0.2385	0.0385	9,129	101.88%

Question 3 cont'd

Given the high utilization rate required, even at a 10% MARR, this may not be a good investment. The investors would have to decide if both courts can be kept busy at least 82% of the time - 14 hours per day and 320 days per year.

Question 4