Оглавление

1	Ана	Анализ типов 2			
	1.1	Что будет, если в нашу систему типов ввести тип $Bool?$			
		1.1.1 Будет ли анализ более полным?			
		1.1.2 Будет ли анализ более точным?			
	1.2	Что будет, если в нашу систему типов ввести тип Array?			
		1.2.1 Придумайте правила вывода для новых операторов 4			
		1.2.2 Попробуйте протипизировать программу			
	1.3	Дополнительные задания			
	1.4	Результат реализации TypeAnalysis в TIP			
2	Теория решёток 8				
	2.1	Почему нам не подходит конкретный домен?			
	2.2	У решетки есть максимальный и минимальный элементы 8			
		2.2.1 Являются ли они точной верхней или нижней гранью			
		какого-либо подмножества S?			
		2.2.2 Уникальны ли они?			
	2.3	Произведения решёток			
		2.3.1 Как выглядит \sqcup и \sqcap для $L_1 \times L_2 \times \times L_n$?			
		2.3.2 Какая высота у произведения решеток $L_1 \times L_2 \times \times L_n$? 10			
	2.4	Точная верхняя/нижняя грань решётки отображений 10			
	2.5	Высота решётки отображений			
	2.6	Почему нельзя использовать унификационный решатель? 10			
	2.7	Результат реализации SignAnalysis в TIP			

Глава 1

Анализ типов

1.1 Что будет, если в нашу систему типов ввести тип Bool?

Продублируем изначальные правила:

I	[[I]] = int
$E_1 == E_2$	$[[E_1]] == [[E_2]] \wedge [[E_1 \ op \ E_2]] = int$
$E_1 op E_2$	$[[E_1]] == [[E_2]] == [[E_1 \ op \ E_2]] = int$
input	[[input]]=int
X = E	[[X]] = [[E]]
$output\ E$	[[E]]=int
$if(E) \ \{S_1\}$	[[E]]=int
$if(E) \{S_1\} \ else \{S_2\}$	[[E]]=int
$while \; (E) \; \{S\}$	[[E]]=int
$f(X_1,,X_n)$ { $return\ E;$ }	$[[f]] = ([[X_1]],, [[X_n]]) \to [[E]]$
$(E) (E_1,,E_n)$	$[[E]] = ([[E_1]],, [[E_n]]) \rightarrow [[(E)(E_1,, E_n)]]$
&E	[[&E]] = &[[E]]
alloc	$[[alloc]] = \&\alpha$
null	$[[null]] = \& \alpha$
*E	[[E]] = &[[*E]]
*X = E	[[X]] = &[[E]]

Тогда, перво-наперво введём булевый литерал в пару к I - целочисленном литералу:

$$B \Rightarrow [[B]] = boolean$$

Понятно, что возможные значения - это True или False. Следовательно меняется тип выражений в инструкциях, а также у бинарных операторов - теперь стоило бы выделить логические операторы и арифметические операторы, но т.к. в TIP есть только два логических оператора то нет нужды выписывать какой-нибудь logOp.

Ещё одно следствие - мы не знаем тип input и output. Выпишем изменившиеся правила:

I	[[I]]=int
B	[[B]]] = boolean
$E_1 > E_2$	$[[E_1]] == [[E_2]] = int \wedge [[E_1 > E_2]] = boolean$
$E_1 == E_2$	$[[E_1]] == [[E_2]] == [[E_1 == E_2]] = boolean$
E_1 op E_2	$[[E_1]] == [[E_2]] == [[E_1 \ op \ E_2]] = int$
input	$[[input]] = \alpha$
X = E	[[X]] = [[E]]
$output\ E$	$[[E]] = \alpha$
$if(E) \ \{S_1\}$	[[E]] = boolean
$if(E) \ \{S_1\} \ else \ \{S_2\}$	[[E]] = boolean
$while\ (E)\ \{S\}$	[[E]] = boolean
$f(X_1,,X_n)$ { $return\ E;$ }	$[[f]] = ([[X_1]],, [[X_n]]) \to [[E]]$
$(E) (E_1,,E_n)$	$[[E]] = ([[E_1]],, [[E_n]]) \rightarrow [[(E)(E_1,, E_n)]]$
&E	[[&E]] = &[[E]]
alloc	$[[alloc]] = \&\alpha$
null	$[[null]] = \& \alpha$
*E	[[E]] = &[[*E]]
*X = E	[[X]] = &[[E]]

1.1.1 Будет ли анализ более полным?

Учитывая, что теперь в инструкциях *if* и *while* условие может быть только типа *Bool*, следовало бы что полнота анализа увеличилась, например можно было бы найти ошибки когда в этих инструкциях условие - это арифметическое выражение, однако семантика языка не совпадает с этим правилом (в обоих инструкциях можно вставить целочисленное значение как условие), поэтому полнота всё-таки упадёт.

1.1.2 Будет ли анализ более точным?

Точность не изменится. Soundness как была такая и осталась.

"...if typable, then no runtime type errors occurs..."

1.2 Что будет, если в нашу систему типов ввести тип Array?

По аналогии введём литера массива, а также пустой массив:

Все элементы массива долнжы иметь один тип, а вообще-то то есть это либо int либо unit (пустой массив), либо также массив, обозначим тип массива как [< typename >].

1.2.1 Придумайте правила вывода для новых операторов

Введём операцию взятия индекса:

$$E[E_1] \Rightarrow [[E]] == [\alpha] \ \land \ [[E_1]] == int \ \land \ [[\ E[E_1]\]] = \alpha$$

$$E[E_1] = E_2 \Rightarrow [[E]] == [\alpha] \ \land \ [[E_1]] == int \ \land \ [[\ E[E_1]\]] == [[E_2]] \ \land \ E_2 = \alpha$$

Индексация происходит по числу, следовательно тип индекса - это int, также тип присваемого значения должен соответсвовать типу элемента массива, говоря иначе типу выражения, которое возвращает операция взятия индекса.

1.2.2 Попробуйте протипизировать программу

Используя добавленые правила протипизируем программму:

```
\begin{array}{lll} & \min{()} \ \{ & \text{var } x,y,z\,,t\,; \\ x = \{2,4,8,16,32,64\}; & \text{[[x]]=[[2]]} \ ] = [\text{ int }] \\ & y = x[x[3]]; & \text{[[3]]=int} ^x = [\text{int}] = > [[x[3]]] = \text{int} = > [[x[x[3]]]] = \text{int} \\ & z = \{\{\},x\}; & \text{[[\{\}]]=[a]}^{n}[[x]] = [\text{int}] = > [[x[x[3]]]] = \text{int} \\ & t = x[1]; & \text{[[z]]=[[int]]}^{n}[[1]] = \text{int} = > [[t]] = [\text{int}] \\ & t = x[2] = y; & \text{[[y]]=int}^{n}[[2]] = \text{int}^{n}[[t]] = \text{int} = > [[t[2]]] = \text{int} \\ & t = x[2] = y; & \text{[[y]]=int}^{n}[[2]] = \text{int}^{n}[[t]] = \text{int} = > [[t[2]]] = \text{int} \\ & t = x[2] = y; & \text{[[y]]=int}^{n}[[2]] = \text{int}^{n}[[t]] = \text{int} = > [[t[2]]] = \text{int} \\ & t = x[2] = y; & \text{[[y]]=int}^{n}[[2]] = \text{int}^{n}[[t]] = \text{int} = > [[t[2]]] = \text{int} \\ & t = x[2] = y; & \text{[[y]]=int}^{n}[[2]] = \text{int}^{n}[[t]] = \text{int} \\ & t = x[2] = y; & \text{[[y]]=int}^{n}[[t]] = \text{int}^{n}[[t]] = \text{int}^{n}[[t]] = \text{int} \\ & t = x[2] = y; & \text{[[y]]=int}^{n}[[t]] = \text{int}^{n}[[t]] = \text{int}
```

В результате получаем:

1.3 Дополнительные задания

Exercise 3.9, p. 24: This exercise demonstrates the importance of the term equality axiom. First explain what the following TIP code does when it is executed:

```
var x,y;
x = alloc 1;
y = alloc (alloc 2);
x = y;
```

Then generate the type constraints for the code, and apply the unification algorithm (by hand).

Что делает этот код:

- 1. Объявляет две перемеенные X и Й
- 2. Аллоцирует ячейку памяти со значением 1 (Х поинтер)

- 3. Аллоцирует ячейку памяти со значением аллокации ячейки памяти со значением 2, иначе говоря $\ddot{\Pi}$ это птр на птр со значением 2
- 4. X приравнивается к $\Breve{H} o$ икс теперь хранит ссылку на п.3

Протипизируем программу:

1.4 Результат реализации TypeAnalysis в TIP

Тестировал на программе:

```
g(a){
    return *a;
}

f(){
    var a;
    var b;
    a=10;
    if( a == 10 ){
        b=g(&a);
    }

    return a;
}
```

```
[info] Inferred types:
  [a[6:9]] = int
  [b[7:9]] = int
  [g(a[1:3]){...}:1:1] = (\text{int}) -> int
  [(*a)[2:12]] = int
  [a[1:3]] = \text{int}
  [g(&a)[10:11]] = int
  [f(){...}:5:1] = () -> int
  [&a[0:13]] = \text{int}
  [10[8:7]] = int
  [10[9:14]] = int
  [10[9:14]] = int
  [(a == 10)[9:10]] = int
  [info] Results of types analysis of examples/locals.tip written to ./out/locals.tip__types.ttip
[success] Total time: 1 s, completed Jun 4, 2025, 11:27:06 PM
```

Рис. 1.1: Результат TypeAnalysis

Глава 2

Теория решёток

2.1 Почему нам не подходит конкретный домен?

Для начала я обратился к [1] чтобы понять вообще разницу между абстрактным и конкретным доменами (пусть и кажется оно интуитивным). Там приводится пример complete lattice, которую называюь concrete semantic domain. Используется анализ множества возможных состояний программы, имея такую решётку и функции трансформации можно теоритически вывести все 'контексты', возможные состояния программы, однако это было бы просто невычислимо, учитывая точность такого анализа.

Если бы нам хотелось использовать конкретный домен для определения знака в выражении, тогда мы могли бы выбрать например домен целых чисел. Тогда необходимо было бы знать конкретное значение числа для переменной, что конечно делает анализ бесконечно сложным в теории.

2.2 У решетки есть максимальный и минимальный элементы...

2.2.1 Являются ли они точной верхней или нижней гранью какого-либо подмножества S?

Да! Доказать это можно через следующие определения [2]:

A semilattice is a partial order (X, \leq) in which every doubleton $\{x,y\}$ has a least upper bound, denoted $x \vee y$ and called the *join* of x and y. Even though the relation \leq is partial (i.e., not linear as an order), the operation \vee is total $(x \vee y)$ is well-defined for all elements $x,y \in X$).

With this definition there is a dual notion, that of lower semilattice (so "semilattice" in the above means "upper semilattice"), in which every doubleton has a greatest lower bound, denoted $x \wedge y$ and called their meet.

Определение решётки затем складывается из нижней полурешётки и верхней полурешётки:

A *lattice* is a poset that is simultaneously an *upper semilattice* and a *lower semilattice*.

Для upper semilattice и lower semilattice определены join и meet, следовательно они присущи и решётке.

Из чего можно сделать вывод: решётка всегда имеет как точную верхнюю грань, так и точную нижнюю грань для любого конечного подмножества S, поскольку операции join и meet определены для всех пар элементов. Максимальный элемент решётки является точной верхней гранью всего множества, а минимальный — его точной нижней гранью.

2.2.2 Уникальны ли они?

Least upper bound и greatest lower bound решётки должны быть уникальны, но просто upper bound и lower bound для каких-либо $\{a,b\}$ не обязаны быть уникальными.

2.3 Произведения решёток

2.3.1 Как выглядит \sqcup и \sqcap для $L_1 \times L_2 \times ... \times L_n$?

Напомню сам себе определения:

- $\sqcup L$ $X \sqsubseteq \bigsqcup X \lor \forall y \in S : X \sqsubseteq y \Rightarrow \bigsqcup X \sqsubseteq y$
- $\sqcap L \prod X \sqsubseteq X \lor \forall y \in S : y \sqsubseteq X \Rightarrow y \sqsubseteq \prod X$

Достаточно посмотреть на получившуюся после перемножения решётку:

Рис. 2.1: Перемножение решёток

На ней и видно, что операции \sqcup и \sqcap определяются nokoopduhamho следующим образом:

$$(a_1, a_2, \dots, a_n) \sqcup (b_1, b_2, \dots, b_n) = (a_1 \sqcup b_1, \ a_2 \sqcup b_2, \ \dots, \ a_n \sqcup b_n)$$

 $(a_1, a_2, \dots, a_n) \sqcap (b_1, b_2, \dots, b_n) = (a_1 \sqcap b_1, \ a_2 \sqcap b_2, \ \dots, \ a_n \sqcap b_n)$

2.3.2 Какая высота у произведения решеток $L_1 \times L_2 \times ... \times L_n$?

$$height(L_1 \times ... \times L_n) = height(L_1) + ... + height(L_n)$$

2.4 Точная верхняя/нижняя грань решётки отображений

Пусть f — функция отображения. Тогда:

$$f_{\top}(x) = \top \forall x \in A,$$

$$f_{\perp}(x) = \bot \forall x \in A.$$

Эти отображения являются соответственно наибольшим и наименьшим элементами решётки отображений $A \to L$.

2.5 Высота решётки отображений

Высота решётки отображений $A \to L$ выражается через мощность области определения A и высоту базовой решётки L:

$$height(A \rightarrow L) = |A| \cdot height(L).$$

2.6 Почему нельзя использовать унификационный решатель?

Потому что у нас data-flow sensitive анализ, надо знать о предыдущих состояниях. Особенно когда, например, мы приходим из разных веток if-else. Поэтому у нас и существует JOIN операция.

2.7 Результат реализации SignAnalysis в TIP

Тестил над файлом:

```
fun(x) {
    var y;
    var k ;
    k = 8;
    y = 7;
    while (k > y) {
       k = k - 1;
    return 0;
}
main() {
    var pos, neg, top, zero;
    var later;
    pos = 5 + 5;
    pos = 5 * 5;

    \text{neg} = -5 - 5;

    \text{neg} = -5 * 5;

    neg = 5 * -5;
    top = 5 - 5;
    top = top * 5;
    zero = top * 0;
    zero = 5 * zero;
    later = 7;
    return 0;
}
   Вывод в виде графа:
```


Рис. 2.2: Резульат SignAnalysis

Список литературы

- [1] Stefan Bydge. «Abstract Interpretation and Abstract Domains». B: Department of Computer Science and Electronics M"alardalen University V"asteras, Sweden (2006).
- [2] Lattice Theory. URL: http://boole.stanford.edu/cs353/handouts/book1.pdf.