Adopted Levels, Gammas

 $Q(\beta^{-}) = -11874.4 \ 9; \ S(n) = 12740.3 \ 7; \ S(p) = 5896.2 \ 7; \ Q(\alpha) = -6429.7 \ 7$ 2021Wa16

 $Q(\beta^- n) = -29632$ 17, from mass excesses of -1487 17 for ³⁴K measured by 2024Dr01; -23047.3 7 for ³⁵Ar from 2021Wa16. Value from 2021Wa16: $Q(\beta^- n) = -29900$ 200 (syst).

 $S(2n)=29805.6 \ 8, \ S(2p)=11039.4 \ 7, \ Q(\varepsilon)=5966.2 \ 7 \ (2021Wa16).$

Isotope discovery (2012Th10): ${}^{32}S(\alpha,n){}^{35}Ar$ at Purdue (1940Ki12,1941Ki01,1941El04).

³⁵Ar production:

2012Zh06: ⁹Be, ¹⁸¹Ta(⁴⁰Ar,X) at E(⁴⁰Ar)=57 MeV/nucleon at HIRFL. Measured momentum distributions and production cross sections of fragments. Observed competition between projectile fragmentation and other mechanisms. Compared with EPAX, abrasion- ablation, and HIPSE models. Studied target dependence of fragment cross sections.

2007No13: ¹⁸¹Ta(⁴⁰Ar,X) at E(⁴⁰Ar)=100 MeV/nucleon at RIKEN. Measured fragment momentum distributions and production cross sections.

³⁵Ar radius measurements:

2002Oz03: C(³⁵Ar,X) at E(³⁵Ar)≈950 MeV/nucleon at RIKEN. Measured interaction cross sections. Deduced effective radii and proton skin features.

2000Ge20: 35 Ar produced at ISOLDE. Measured β asymmetry and hyperfine structure using β -NMR spectroscopy. Deduced mean squared charge radii and quadrupole moments.

1996Kl04,1995KlZZ: ³⁵Ar produced by ISOLDE. Measured isotope shifts and hyperfine structure using collinear fast-beam laser spectroscopy. Deduced mean square charge radii and electric quadrupole moments.

³⁵Ar mass measurement: 2011Tu09.

Theoretical calculations: 2020Ri06, 2020RiZX, 2020RiZZ.

35 Ar Levels

Cross Reference (XREF) Flags

Α	35 K ε decay (175 ms)	E	24 Mg(16 O, α n γ)	I	36 Ar(p,d)
В	36 Ca ε p decay (100.9 ms)	F	$^{32}S(\alpha,n)$	J	36 Ar(d,t)
C	1 H(36 Ar,d)	G	$^{33}S(^{3}He,n\gamma)$	K	36 Ar(3 He, α)
D	$^{16}\mathrm{O}(^{24}\mathrm{Mg},\alpha\mathrm{n}\gamma)$	H	$^{35}\text{Cl}(^{3}\text{He,t})$		

E(level) [†]	J^π	T _{1/2}	XREF	Comments
0.0	3/2+	1.7756 s <i>14</i>	ABCDEFG IJK	$\%\varepsilon + \%\beta^{+} = 100$
				μ =+0.6322 2 (2002Ma41,2019StZV)
				Q=-0.084 15 (1996Kl04,2021StZZ)
				μ : β -NMR (2002Ma41). Others: +0.633 2 (1965Ca04), +0.633 7 (1996Kl04) using β -NMR.
				Q: β-NMR (1996Kl04).
				J^{π} : L(p,d)=L(d,t)=L(3 He, α)=L 1 H(36 Ar,d)=2 from 0 ⁺ . Allowed ε + β ⁺
				feedings to $1/2^+$ levels in 35 Cl. Mirror level: $3/2^+$ 35 Cl g.s.
				$T_{1/2}$: weighted average of 1.83 s 3 (1956Ki29), 1.83 s 2 (1959Al10), 1.79
				s 1 (1960Ja12), 1.84 s 10 (1960Wa04), 1.76 s 3 (1963Ne05), 1.770 s 6
				(1969Wi18), 1.787 s <i>12</i> (1971Ge04), 1.774 s <i>4</i> (1977Az01), and 1.7754 s <i>11</i> (2006Ia05).
				Evaluated rms nuclear charge radius R=3.3636 fm 42 (2013An02).
1184.08 25	$1/2^{+}$		ABC FG IJK	XREF: F(890)
				E(level): 1963Ne05 (α ,n) observed the first excited state in 35 Ar at 890 50 keV.
				J^{π} : L(p,d)=L(d,t)=L(^3He, α)=0 from 0 ⁺ .
1750.78 22	$(5/2)^+$		A DEFG IJK	XREF: F(2030)I(1700)J(1700)
				E(level): 1963Ne05 (α ,n) observed the second excited state in 35 Ar at 2030 80 keV.
				J^{π} : L(${}^{3}\text{He},\alpha$)=2 from 0 ⁺ . Mirror level: 5/2 ⁺ at 1763 keV in ${}^{35}\text{Cl}$.
2603.22 28	$7/2^{(+)}$		DE G	J^{π} : $\Delta J=2 \gamma$ to $3/2^+$ in ($^{16}O,\alpha n\gamma$). Mirror level: $7/2^+$ at 2646 keV in 35 Cl.
2638.01 26	3/2+		A IJK	XREF: I(2615)K(2649)
	/			

³⁵Ar Levels (continued)

E(level) [†]	J^{π}	XREF	Comments			
2982.79 12	5/2+	A C IJK	J^{π} : L(p,d)=L(3 He, α)=2 from 0 ⁺ with J dependence in (p,d). XREF: I(2970)			
3196.98 [‡] 26	7/2-	CDE G IJK	J^{π} : L(p,d)=L(d,t)=L(3 He, α)=2 from 0 ⁺ with J dependence in (p,d). J^{π} : L(p,d)=L(3 He, α)=3 from 0 ⁺ . Δ J=1 γ to (5/2) ⁺ and Δ J=2 γ to 3/2 ⁺ in (16 O, α n γ) and (24 Mg, α n γ); band assignment.			
3882 <i>5</i> 4001 <i>3</i>	1/2 ⁺ 1/2 ⁻ ,3/2 ⁻	K K	J^{π} : $L(^{3}\text{He},\alpha)=0$ from 0^{+} . J^{π} : $L(^{3}\text{He},\alpha)=1$ from 0^{+} .			
4065.0? 4	$(1/2^+, 3/2^+, 5/2^+)$	A	XREF: A(?) J ^{π} : possibly allowed ε + β ⁺ feeding from 3/2 ⁺ parent with log ft =5.6 +4-2.			
4113 4	1/2- 2/2-	K K	J^{π} : L(³ He, α)=1 from 0 ⁺ .			
4135 <i>4</i> 4359.0 <i>5</i>	1/2 ⁻ ,3/2 ⁻ (9/2 ⁻)	DE K	J^{π} : $\Delta J=(1) \gamma$ to $7/2^-$ in $(^{16}O,\alpha n\gamma)$. Possible mirror level: $9/2^-$ at 4348 keV in 35 Cl.			
4528.3 4	$(1/2^+,3/2^+,5/2^+)$	A K	XREF: K(4515) J^{π} : possibly allowed $\varepsilon + \beta^{+}$ feeding from $3/2^{+}$ parent with log $ft = 5.4 + 4 - 2$.			
4725.9 6	1/2+	A Hi K	3. possiony anowed ε+ρ recenting from $3/2$ parent with log $jt=3.4+4=2$. XREF: i(4756)K(4713) J ^π : L(3 He, α)=0 from 0 ⁺ . Other: L(p,d)=0 from 0 ⁺ for a group at 4756 28.			
4785.8 11	1/2+,3/2+,5/2+	A Hi K	XREF: $i(4756)K(4774)$ J^{π} : allowed $\varepsilon + \beta^+$ feeding from $3/2^+$ parent with log $ft = 5.2$ 2. Other: $L(p,d) = 0$ from 0^+ for a group at 4756 28.			
5059 11		K				
5116 2	3/2+,5/2+	ні к	E(level): weighted average of 5102 20 from (p,d) and 5116 2 from (3 He, α). J^{π} : L(3 He, α)=2 from 0 $^+$. Discrepancy: L(p,d)=3 from 0 $^+$ (1968Ko04). 1973Be26 also considered L=3 but found L=2 gives a much better fit of the data than L=3 does.			
5207 3		H K	E(level): from $(^3\text{He},\alpha)$.			
5384.2 [‡] 4	(11/2 ⁻)	DE HIK	XREF: I(5400) J ^{π} : $\Delta J=2 \gamma$ to 7/2 ⁻ in ($^{16}O,\alpha n\gamma$) and ($^{24}Mg,\alpha n\gamma$); band assignment. γ to (9/2 ⁻) in ($^{16}O,\alpha n\gamma$) and ($^{24}Mg,\alpha n\gamma$). Possible mirror level: 11/2 ⁻ at 5407 keV in ^{35}Cl .			
5482 2	3/2+,5/2+	Н К	E(level): from (3 He, α). J^{π} : L(3 He, α)=2 from 0 $^{+}$.			
5572.67 15	3/2+	A G	T=3/2 XREF: G(5537)			
			J^{π} : isobaric analog state of $3/2^+$ 35 K g.s. with log $ft=3.31$ 4. L(3 He,n)=(0) from $3/2^+$. 35 Cl(3 He,t) attempted to search this T=3/2 level, but did not find it.			
5594 2	3/2+,5/2+	C HIK	XREF: C(5570) E(level): weighted average of 5598 20 from (p,d) and 5594 2 from (3 He, α). J ^{π} : L(p,d)=L(3 He, α)=2 from 0 ⁺ . Evaluators consider the 5994 level to be different from the 5572.67 T=3/2 level because (p,d) and (3 He, α) from T=0 targets should not populate T=3/2 levels.			
5613.6 9 5765.8 <i>5</i>	(11/2 ⁻) (13/2 ⁻)	E DE	J ^π : Possible mirror level: 11/2 ⁻ at 5927 keV in ³⁵ Cl. J ^π : $\Delta J=1$ γ to (11/2 ⁻) in (¹⁶ O, α n γ) and (²⁴ Mg, α n γ). $\Delta J=(2)$ γ to (9/2 ⁻) in (¹⁶ O, α n γ). Possible mirror level: 13/2 ⁻ at 6087 keV in ³⁵ Cl.			
5915 <i>3</i> 5991 <i>3</i>		Н ЈК Ј	E(level): weighted average of 5913 5 from (d,t) and 5916 3 from (${}^{3}\text{He},\alpha$).			
6037 3	3/2+,5/2+	ніјк	XREF: I(6024) E(level): weighted average of 6037 3 from (d,t) and 6036 3 from (3 He, α). Other: 6024 20 from (p,d). J^{π} : L(p,d)=L(3 He, α)=2 from 0 ⁺ .			

³⁵Ar Levels (continued)

E(level) [†]	J^{π}		XREF	Comments
6055? 3			J	XREF: J(?)
6076 <i>3</i>			J	2
6163 2			JK	E(level): weighted average of 6164 3 from (d,t) and 6162 2 from (3 He, α).
6253 <i>3</i> 6273 <i>3</i>			Jk Jk	XREF: k(6262) XREF: k(6262)
6302 3			J	AREF: K(0202)
6332 3			j	
6345 <i>3</i>	(1/2,3/2,5/2)	Α	J	E(level): From (d,t). Other: 6348 11 from 35 K ε decay.
				J^{π} : $\varepsilon + \beta^+$ feeding from 3/2 ⁺ parent with log ft=7.2 1.
6415 2			J	AND TO A CO.
6439? 4			J	XREF: J(?)
6460 <i>3</i> 6523 <i>3</i>			J J	
6557 3			j	
6585 <i>3</i>			J	
6606 <i>3</i>			iJ	XREF: i(6620)
6616 2	1/2+		iJK	XREF: i(6620)
				E(level): weighted average of 6617 2 from (d,t) and 6615 3 from (3 He, α). Other: 6620 30 from (p,d).
				J^{π} : $L(^{3}He,\alpha)=L(p,d)=0$ from 0^{+} .
6644 3			iJ	XREF: i(6620)
6651 <i>3</i> 6673 <i>4</i>	5/2-,7/2-		iJ IJ	XREF: i(6620) XREF: I(6700)
0075 4	3/2 ,1/2		13	E(level): weighted average of 6700 20 from (p,d) and 6672 3 from (d,t).
				J^{π} : L(p,d)=3 from 0^+ .
6823 2	3/2+,5/2+		ΙK	E(level): from (3 He, α). Other: 6820 30 from (p,d). J^{π} : L(p,d)=2 from 0 $^{+}$.
6948 2			K	
7044 <i>4</i>	3/2+,5/2+	Α	ΙK	XREF: I(7030)
				E(level): weighted average of 7053 11 from 35 K ε decay, 7030 20 from (p,d),
				and 7043 4 from (${}^{3}\text{He},\alpha$). J^{π} : L(p,d)=2 from 0 ⁺ .
7117 10			K	
7255 11		A	17	E(level): weighted average of 7283 11 from 35 K ε decay and 7293 10 from
7289 10		A	K	$(^{3}\mathrm{He},\alpha)$.
7427 10		A	K	E(level): weighted average of 7431 11 from 35 K ε decay and 7423 10 from (3 He, α).
7509 10	1/2+,3/2+,5/2+	Α	K	E(level): weighted average of 7518 11 from 35 K ε decay and 7502 10 from
				$(^{3}\text{He},\alpha)$.
7840 <i>10</i>			v	J^{π} : allowed $\varepsilon + \beta^+$ feeding from $3/2^+$ parent with log $ft < 5.0$.
8019 <i>10</i>			K K	
8109.7 [‡] <i>13</i>	$(15/2^{-})$		E	J^{π} : γ to $(11/2^{-})$ and $(13/2^{-})$ in $(^{16}O,\alpha n\gamma)$; band assignment. Possible mirror
0107.7 13	(13/2)			level: 15/2 ⁻ at 8319 keV in ³⁵ Cl.
8212.6 8	$(15/2^{-})$		E	J^{π} : $\Delta J=2 \gamma$ to $(11/2^-)$ and γ to $(13/2^-)$ in $(^{16}O,\alpha n\gamma)$. Possible mirror level:
				15/2 ⁻ at 8487 keV in ³⁵ Cl.
8393? 20	1/2+,3/2+,5/2+	Α		XREF: A(?)
				E(level): From (35 K ε decay).
				J^{π} : allowed $\varepsilon + \beta^+$ feeding from $3/2^+$ parent with log $ft = 4.6 + 3 - 2$.
9906.0 [‡] 20	(19/2 ⁻)		E	J^{π} : $\Delta J=2$ γ to $(15/2^-)$ in $(^{16}O,\alpha n\gamma)$; band assignment. Possible mirror level: $19/2^-$ at 10180 keV in 35 Cl.
12277.0 [‡] <i>3</i> 2	$(23/2^{-})$		E	J^{π} : $\Delta J=2 \gamma$ to $(19/2^{-})$ in $(^{16}O,\alpha n\gamma)$; band assignment. Possible mirror level:
	. , ,			23/2 ⁻ at 12571 keV in ³⁵ Cl.

³⁵Ar Levels (continued)

[†] E(level) from a least-squares fit to γ -ray energies for levels connected with γ transitions; from particle-transfer reactions or 35 K ε + β ⁺-delayed proton decays for other levels. ‡ Band(A): Band based on $f_{7/2}$ orbital.

γ(35	A	r)

$E_i(level)$	J_i^{π}	${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult.‡	Comments
1184.08	1/2+	1184.1 3	100	0.0	3/2+		E_{γ} : weighted average of 1184.0 3 from 35 K ε decay and 1184.3 4 from 36 Ca εp decay.
1750.78	(5/2)+	1750.6 3	100	0.0	3/2+		E _{γ} : weighted average of 1750.5 3 from 35 K ε decay, 1750.7 4 from $^{(24}$ Mg, α n γ), and 1750.8 5 from $^{(16}$ O, α n γ).
2603.22	7/2 ⁽⁺⁾	851.9 9	12.3 33	1750.78	(5/2)+		E _{γ} : weighted average of 852 <i>I</i> from (24 Mg, α n γ) and 851.8 <i>9</i> from (16 O, α n γ). I _{γ} : weighted average of 10 <i>5</i> from
							$(^{24}\text{Mg},\alpha$ nγ) and 13.3 33 from $(^{16}\text{O},\alpha$ nγ).
		2603.0 5	100 10	0.0	3/2+	Q	E _{γ} : weighted average of 2603.0 5 from (24 Mg, α n γ) and 2602.6 15 from (16 O, α n γ).
		#	#				I_{γ} : other: 100 22 from ($^{24}Mg_{,\alpha}n\gamma$).
2638.01	3/2+	886.8 [#] 5 2638.0 [#] 4	16 [#] 6 100 [#] 13	1750.78			
2982.79	5/2+	2638.0" 4 1798.9 [#] 5	3.5 [#] 6	0.0 1184.08	3/2+		
2902.19	3/2	2982.68 [#] 13	100 [#] 4	0.0	3/2+		
3196.98	7/2-	593.7 2	16.4 30	2603.22			E _{γ} : weighted average of 593 I from $(^{24}\text{Mg},\alpha n\gamma)$ and 593.7 2 from $(^{16}\text{O},\alpha n\gamma)$. I _{γ} : weighted average of 16 8 from $(^{24}\text{Mg},\alpha n\gamma)$ and 16.4 30 from
		1446.2 2	100 8	1750.78	(5/2)+	D	$(^{16}O, \alpha n \gamma)$. E _γ : weighted average of 1446.2 2 from $(^{24}Mg, \alpha n \gamma)$, 1446.1 6 from $(^{16}O, \alpha n \gamma)$, and 1446.0 6 from $(^{3}He, n \gamma)$. I _γ : other: 100 9 from $(^{24}Mg, \alpha n \gamma)$.
		3197.0 7	21 5	0.0	3/2+	Q	E _{γ} : from (24 Mg, α n γ). Other: 3197 6 from (16 O, α n γ). I _{γ} : weighted average of 18 5 from (24 Mg, α n γ) and 24 5 from (16 O, α n γ).
4065.0?	$(1/2^+, 3/2^+, 5/2^+)$	1426.8 [#] 4	100	2638.01	3/2+		(-1-8,1-17) 11-11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
4359.0	(9/2-)	1162.0 8	65 24	3196.98		(D)	E_{γ} : weighted average of 1162 I from (24 Mg, α n γ) and 1162.0 8 from (16 O, α n γ).
							I _γ : unweighted average of 41 11 from $(^{24}\text{Mg},\alpha\text{n}\gamma)$ and 88 18 from $(^{16}\text{O},\alpha\text{n}\gamma)$.
		1756 <i>1</i>	100 15	2603.22	7/2 ⁽⁺⁾		E _{γ} : weighted average of 1756 <i>I</i> from (24 Mg, α n γ) and 1756.3 <i>I4</i> from

γ (35Ar) (continued)

$E_i(level)$	J_i^π	${\rm E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}^{π}_f	Mult.‡	Comments
							$(^{16}\text{O},\alpha \text{n}\gamma)$. I_{γ} : from $(^{24}\text{Mg},\alpha \text{n}\gamma)$. Other: $100~53~\text{from}~(^{16}\text{O},\alpha \text{n}\gamma)$.
4528.3	$(1/2^+, 3/2^+, 5/2^+)$	4527.9 [#] 7	100	0.0	3/2+		
4725.9	1/2+	3542.0 [#] 6	100 [#] 21	1184.08	1/2+		
		4724.5 [#] 11	41 [#] <i>17</i>	0.0	3/2+		
4785.8	1/2+,3/2+,5/2+	4785.4 [#] 11	100	0.0	3/2+		
5384.2	(11/2 ⁻)	1025.2 4	14 4	4359.0	(9/2-)		E _γ : weighted average of 1025 I from (24 Mg, α n γ) and 1025.2 4 from (16 O, α n γ). I _γ : weighted average of 21 8 from (24 Mg, α n γ) and 12 4 from (16 O, α n γ).
		2187.1 <i>4</i>	100 6	3196.98	7/2-	Q	E_{γ} : weighted average of 2187.4 4 from (24 Mg,αηγ) and 2186.8 4 from (16 O,αηγ). I_{γ} : other: 100 $I3$ from (24 Mg,αηγ).
5572.67	3/2+	1044.4 [#] 4	2.5 [#] 8	4528.3	$(1/2^+,3/2^+,5/2^+)$		(8) 77
	,	1507.4 [#] 5	3.7 [#] 8		$(1/2^+,3/2^+,5/2^+)$		
		2589.8 [#] 1	100 [#] 4	2982.79			
		2934.5 [#] 5	6.7 [#] 12	2638.01	3/2+		
		3821.7 [#] 7	6.7 [#] <i>14</i>	1750.78	·		
		4387.2 [#] 9	6.7 [#] 16	1184.08	1/2+		
		5572.3 [#] 10	11.7 [#] <i>31</i>	0.0	3/2+		
5613.6	$(11/2^{-})$	1254.6 8	100	4359.0	(9/2-)	_	
5765.8	(13/2 ⁻)	381.6 <i>1</i>	100 10	5384.2	(11/2 ⁻)	D	E _y : weighted average of 381.6 I from (24 Mg, α ny) and 381.5 3 from (16 O, α ny).
		1406.9 7	17.2 35	4359.0	$(9/2^{-})$	(Q)	301.3 3 110111 (3,4117).
8109.7	$(15/2^{-})$	2342.6 28	100 25	5765.8	$(13/2^{-})$		
9212.6	(15/2-)	2725.7 14	50 13	5384.2	$(11/2^{-})$		
8212.6	$(15/2^{-})$	2446.6 <i>16</i> 2828.3 <i>7</i>	21 <i>7</i> 100 <i>18</i>	5765.8 5384.2	(13/2 ⁻) (11/2 ⁻)	0	
9906.0	$(19/2^{-})$	1693.3 27	100 20	8212.6	$(15/2^{-})$	Q	
		1796.3 25	67 20	8109.7	$(15/2^{-})$	Q Q Q Q	
12277.0	$(23/2^{-})$	2370.9 25	100	9906.0	$(19/2^{-})$	Q	

[†] From ($^{16}\text{O},\alpha$ n γ), unless otherwise noted. [‡] Deduced by evaluators from measured $\gamma\gamma(\theta)(\text{ADO})$ in ($^{16}\text{O},\alpha$ n γ) and ratios of yields R($\gamma(\theta)$) in ($^{24}\text{Mg},\alpha$ n γ), unless otherwise noted. # From 35 K ε decay.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

 $\begin{array}{c} \textbf{Band(A): Band based on } f_{7/2} \\ \textbf{orbital} \end{array}$

