Factors Batch Siba Momentum Regularitation 100.00000 32.00000 0.20000 0.50000	C-SOURCE SAID	Processing inguities 5xm 110000 2048.0000	ples Activation Fun linear	Loss Fun bpr-max	LR 0.06000	Epochs 10.00000																																						
Experiment x-2-a	Operations 1 o	2-a-3(Long).cev	10201	Manuel	W00011	MODELLIN CO.	availet e	cultiffit Str	cuités Baco	2-0	2 (intermediate)).csv	9A1 199	ons I wo	DAM MDO	an Per	alifit Par	califor Rec	with Rec	ulidas Occasi	a-1 Short .csv	77 19:01 M00:0	n l was	ons wood	11 100	400																		
Recalign Recalign Recalign Recalign	0.40556 0.21200 0.06232 0.15453	153415 0.00002 131523 0.03275 108880 0.01207 130788 0.03070	0.11896 0.05475 0.02745 0.04908	0.13823 0.06515 0.02905 0.05583	0.15515 0.27588 0.34033 0.36229	0.16412 0.06293 0.06299 0.06601	0.07313 0. 0.03531 0. 0.01583 0. 0.03900 0.	20402 0. 08415 0. 08054 0. 10207 0.	29064 0.45 14014 0.25 05804 0.06 15264 0.25	992 0.5 934 0.3 576 0.1 010 0.2	5663 021 2827 021 1823 021 9547 021	P212 0.1 2521 0.0 1562 0.0 2920 0.0	2941 0.14 6020 0.00 0024 0.00 6625 0.00	0073 0.1 7067 0.0 3019 0.0 7681 0.0	6747 0.13 8237 0.08 0396 0.03 8564 0.09	960 0.00 965 0.01 917 0.01 089 0.03	6544 0.1 9540 0.6 1292 0.6 9824 0.1	19989 02 09003 02 09135 03 11425 02	19226 0.4 12226 0.3 14480 0.5 15691 0.3	e0961 0.537 21e06 0.311 06516 0.080 22055 0.280	798 0.00 589 0.03 547 0.01 502 0.03	8544 0.1215 1540 0.0582 11292 0.0296 19934 0.0710	5 0.14 9 0.00 7 0.02 H 0.08	M128 0.150 M803 0.278 M375 0.226 M085 0.089	00 0.160 91 0.080 86 0.020 28 0.080	1724 1565 1793 1590																		
Experiment x-2-c	- Qualifita Q	2-c-1(2days).csv	M02/01	Manuel	woons	MODELL CO.	avuiet I e	(100 P	cuids for	MAN Dec	2-c-2(7dayx).cs	W MD	an I wa	ons I wo	pan I upo	an Bu	alifet Par	cates I su	uins Du-	24	c-b(tfdsys).cs	IV	n was	ons word	10 100	de Service	ids Buralis	n Parallel	Burster	2-c-4(2	Odaya).cav	MEGAN	weens	I MOONIN	MEGAM									
	0.42532 0.22223 0.08125 0.22581	154642 0.08020 132823 0.04130 111323 0.01560 128543 0.08270	0.13206 0.06742 0.02542 0.09102	0.15163 0.07703 0.02908 0.10200	0.16995 0.09724 0.03255 0.10991	0.17944 0.09460 0.09476 0.11150	0.07720 0. 0.04142 0. 0.01522 0. 0.04282 0.	20517 0. 09872 0. 08034 0. 12346 0.	29030 0.45 14331 0.25 05769 0.06 13801 0.16	109 0.5 119 0.3 677 0.1 979 0.2	5566 0.01 2107 0.04 2075 0.01 4827 0.04	7720 0.1 4142 0.0 1532 0.0 4292 0.0	3179 0.11 6528 0.61 2596 0.63 6909 0.63	5179 0.1 7536 0.0 2965 0.0 7642 0.0	7036 0.17 8599 0.09 0276 0.03 8278 0.08	996 0.07 023 0.02 611 0.01 792 0.06	7265 0.2 2817 0.0 1572 0.0 4002 0.1	20339 0.1 09739 0.1 04330 0.0 10411 0.1	19930 0.4 14086 0.3 16187 0.5 16462 0.3	43060 0.556 22616 0.335 09150 0.126 22347 0.270	665 0.07 537 0.03 522 0.01 566 0.06	7266 0.1278 0817 0.0631 11573 0.0274 H002 0.0674	9 0.54 6 0.07 8 0.03 0 0.07	16742 0.160 17296 0.084 13170 0.039 17664 0.086	000 0.177 19 0.09 84 0.00 89 0.08	1927 0.065 1192 0.036 1901 0.017 1904 0.041	566 0.2236 563 0.0976 704 0.0603 170 0.1546	0.29015 8 0.14701 3 0.00219 4 0.15035	0.43566 0.23846 0.09471 0.20844	0.50815 0.35399 0.12743 0.27448	0.06566 0.03443 0.01704 0.04170	0.12382 0.06123 0.02290 0.06906	0.14412 0.07247 0.03583 0.07966	0.16210 0.08471 0.09603 0.08744	0.17297 0.09054 0.09364 0.09190									
Experiment x-2-d	I grandes I g	2-d-1 (recent) cav	10101	HIDDS	worders.	uniau (2-d-2(old).csv	004 100		204 10			-101				2-d-3(mix).csv			noar word																				
	0.42745 0.31982 0.08783 0.20547	155893 0.08946 132207 0.0364 12225 0.01570 127236 0.04327	0.12603 0.06100 0.02652 0.07124	0.14583 0.07120 0.03063 0.08041	0.10431 0.00176 0.03440 0.00772	0.17350 0.08947 0.09075 0.09099	0.0356 0. 0.0384 0. 0.01158 0. 0.03772 0.	12990 0. 09099 0. 02058 0. 09512 0.	21291 0.31 12912 0.20 04245 0.06 12243 0.16	962 0.4 125 0.2 187 0.0 901 0.2	0N3 021 9898 021 8366 021 6367 021	2556 0.0 2894 0.0 1158 0.0 2772 0.0	7916 0.00 8020 0.00 1996 0.00 6225 0.00	9670 0.1 9894 0.0 2222 0.0 7070 0.0	0968 0.11 P829 0.08 D491 0.02 P815 0.08	565 0.06 634 0.06 540 0.01 040 0.04	6817 0.1 6027 0.6 1387 0.6 6648 0.1	19971 0.1 09967 0.1 03909 0.1 10757 0.1	19022 0.4 13678 0.3 15225 0.6 16927 0.3	43008 0.562 21867 0.311 07609 0.100 20478 0.266	207 0.00 775 0.06 866 0.01 816 0.06	10017 0.1237 10027 0.0638 11397 0.0234 10048 0.0722	2 0.56 0 0.07 0 0.00 0 0.00	94433 0.163 17296 0.083 12700 0.030 16176 0.089	16 0.17: P1 0.08 64 0.00 19 0.08	9241 9651 962 937																		
Experiment x-2-e-1		2+-1(test-short).csv								2-e-2)ast-interneda	rie).cav								2-4	-3(test-long) co	Cev																						
Recaligit Reca	0.48278 0.48278 0.35517 0.09589 0.29705	Calig20 MRRg1 ISBR05 0.08655 I3SR70 0.0805 I12919 0.0006 I37023 0.07011	MRRg3 0.16094 0.00965 0.03400 0.10979	MARQS 0.18295 0.00197 0.02776 0.12252	9988919 0.20227 0.09275 0.04132 0.13405	MRRQ20 F 0.20909 0.10160 0.54363 0.13922	0.07960 0. 0.04796 0. 0.04796 0. 0.00007 0. 0.00796 0.	20529 0. 11077 0. 05079 0. 11481 0.	2008 0.43 2008 0.43 16872 0.25 06797 0.05 15556 0.21	8g10 Reci 572 0.5 829 0.3 613 0.1 759 0.3	1000 MRI 7093 031 7288 034 2614 033 0663 031	980 MR 7960 0.1 47% 0.0 2007 0.0 2796 0.0	9482 MS0 2002 0.11 7405 0.00 0016 0.00 7176 0.00	Rgs MR 5292 0.1 8744 0.0 3706 0.0 8088 0.0	Rg50 MRR 7191 0.18 8903 0.10 8084 0.04 8902 0.09	@20 Reca 1548 0.00 722 0.00 292 0.01 490 0.00	angt Rec 6486 0.1 9290 0.6 1275 0.6 9009 0.6	catig3 Rec 50351 02 08640 0.1 02361 03 04622 03	14941 0.3 13466 0.3 14912 0.5 17033 0.1	2066 0.500 2066 0.500 22902 0.306 07450 0.101 11253 0.156	1920 MRR 166 0.06 162 0.03 197 0.01 173 0.02	98g1 MRRg 6666 0.1063 9293 0.0556 91275 0.0219 9009 0.0327	0 0.12 0 0.00 0 0.00 0 0.02 0 0.03	19:05 MRRS 0526 0:142 8645 0:277 0514 0:29 0649 0:041	100 MRRN 12 0.150 83 0.081 88 0.001 89 0.041	1920 012 1590 1077 1506																		
Experiment x-2-e-2		freq_threshold = 50								to.	o_threshold * '	100								freq	_threshold = 2	200								freq_the	sshold = 300								Same As	Experiment (1)	2-cj : 2-c-1 2days).cev		
Recologs	0.30308 0.09811 0.0909 0.0909	CASSQ20 MIRROR (41628 0.05181 0.05181 0.05407 0.01407 0.01405 0.01408 0.01425	MRRg3 0.09930 0.02285 0.02136 0.02245	MRRGS 0.10311 0.03665 0.02665 0.02264	8988913 0.11669 0.02282 0.022989 0.022786	0.12452 0.02790 0.02995 0.02990	0.00584 0. 0.00584 0. 0.00484 0. 0.01482 0. 0.02111 0.	Call@3 Ra 17402 0. 07321 0. 03588 0. 08238 0.	2469 8942 2469 036 11041 0.16 05060 0.07 09361 0.13	880 0.4 540 0.3 950 0.1 743 0.1	8990 035 9990 035 9990 035 9994 035	R@1 MR 6594 0.1 2414 0.0 1462 0.0 2111 0.0	9883 MS0 1189 0.11 6449 0.00 2380 0.00 0877 0.04	Rgs MR 2806 0.1 5297 0.0 2666 0.0 6563 0.0	Rg10 MRR 4158 0.14 6290 0.06 0035 0.03 5182 0.05	@20 Reca 862 0.07 869 0.05 256 0.07 558 0.05	2004 0.0	CARGO Rec 19060 02 08171 02 02728 02 08191 02	28105 Rec. 10802 0.3 12816 0.3 15308 0.5 11728 0.1	20057 0.474 27057 0.474 27417 0.321 07905 0.110 17736 0.226	1920 MRR 192 0.03 117 0.02 189 0.01 168 0.02	98g1 MRRg (9413 01240 0974 0.0511 11541 0.0247 0064 0.0470	9 0.06 9 0.00 2 0.00 0 0.00	90gs WRRg 9179 0155 9170 0373 9828 0331 9607 0363	193 MRRN 57 0.160 05 0.081 58 0.000 11 0.060	920 Recali 987 0.077 934 0.035 983 0.015 982 0.038	1001 Recall 1773 0.1946 1877 0.0927 1876 0.0386 1800 0.0874	2 Recall@1 6 0.26617 9 0.13817 3 0.00360 7 0.13227	8 Recatign 0.27344 0.22414 0.07881 0.20427	0 Recatigos 0.47746 0.33860 0.11158 0.27093	MRRQ1 027772 022587 021576 022900	0.12742 0.05977 0.0550 0.05378	M592gs 0.14373 0.07005 0.02985 0.06403	MRR@10 0.15814 0.08132 0.03222 0.07365	0.16542 0.09921 0.03448 0.07921	Recalight 0.09220 0.05191 0.01560 0.03290	Recatig3 0.20197 0.12813 0.03865 0.10677	Recaligs 0.28808 0.17671 0.25477 0.15911	0.42632 0.42632 0.27309 0.08105 0.34022	0.54642 0.54642 0.38908 0.11323 0.31513	0.00020 0 0.05181 0 0.01560 0	8RRg3 8 0.13206 0 0.08467 0 0.02542 0.06407	MRRGS MS 0.15163 0. 0.06652 0. 0.02908 0. 0.027583 0.	RRG19 MRRG: 19995 0.1794 19920 0.1160 02255 0.2347 09986 0.0920
Experiment x-4		4-1/2 portion\cay									-210 partiani ca	IV.								4-3	illé portioni ce	37								4-054	tertion).csv									4-5/256 por	rion).csv	_		
	0.32345 0.31819	CASE 0.00913 123795 0.00109	MRR@3 0.06400 0.06845	007014 007071	000472 000770	0.09235 0.09235	Recaligit Ra 0.06719 0. 0.03420 0. 0.01223 0. 0.03459 0.	Call@3 Ra 18664 0. 08272 0. 03175 0. 08821 0.	026768 026 11624 026 04640 026 12060 037	881 0.5 081 0.5 656 0.2 Nos 0.0 925 0.2	1018 000 9100 001 9129 001 1678 001	R@1 MR 6719 0.1 0420 0.0 1233 0.0 0459 0.0	R@ MR0 1789 0.11 5661 0.00 0061 0.00 6751 0.00	R@S MR 3632 0.1 8220 0.0 2371 0.0 6489 0.0	Rg10 MRR 5210 0.16 0273 0.07 0866 0.02 0200 0.07	@20 Reca 131 0.00 931 0.01 947 0.01 966 0.04	align Rec 6524 0.1 5123 0.6 1322 0.6 6017 0.6	Calig3 Rec 17289 0.1 07917 0.1 03258 0.0 09009 0.1	18069 0.3 11797 0.1 16575 0.5 11797 0.1	28415 0.480 18036 0.280 08852 0.091 18728 0.202	1220 MRR 1222 0.00 1866 0.02 1986 0.01 1223 0.04	Rg1 MRRg 6524 0.119 0123 0.0509 1122 0.0214 16017 0.0619	0 0.12 0 0.03 0 0.03 9 0.03	IRGS MRRG 0911 0.146 0994 0.066 0446 0.023 N786 0.073	150 MRRR 200 0.152 64 0.074 67 0.024 50 0.074	@20 Recali 229 0.050 Va1 0.038 Se5 0.015 Va1 0.042	1001 Recallo 043 0.1375 182 0.0901 180 0.0346 040 0.0875	23 Recalige 5 0.19120 1 0.12938 3 0.04823 6 0.11521	8 Recalign 0.26832 0.1660 0.07106 0.16839	0 Recaligido 0 39030 0 29993 0 09703 0 19633	MRR@1 025043 023992 021590 034340	MRR.gg 0.08771 0.08025 0.02384 0.06206	MFRQS 0.09999 0.09912 0.09993 0.06999	MRR@10 0.11014 0.07768 0.02994 0.07303	MFR-g00 0.11652 0.08271 0.03173 0.07567	Recalig1 0.05219 0.01665	Recali@3 0.12152 0.04044	Recaligis 0.17083 0.05538	Recatig18 0.23665 0.08197	Recali@29 0.30497 0.11190	0.05219 0 0.05219 0	80997 0 0.0997	MRRgs MR 0.0017 0. 0.0026 0	Ages MRRg 10188 0.1067 22274 0.2261
Experiment x-5								All Dafacet																																				
Recalign Recalign	0.36415 0.36470 0.06853 0.39322	CARGO MRRES 148033 0.06524 137160 0.03755 109766 0.01322 131513 0.03290	MRR@3 0.11102 0.06518 0.02149 0.06607	MRR@5 0.12911 0.07680 0.02446 0.07583	0.14428 0.00911 0.02747 0.0000	MRR@20 Cu 0.15239 0.09758 0.02945 0.0909	0.13977 0. 0.03729 0. 0.03729 0. 0.03042 0. 0.03084 0.	22884 0. 08051 0. 16567 0. 05086 0.	wage@5 Covera 29948 0.36 .11054 0.16 .22742 0.33 .07498 0.12	ge@18 Cover 415 0.5 629 0.2 963 0.4 900 0.1	99920 Popula 0002 033 6609 033 6855 033 8105 030	arky@1 Popul 3742 0.0 8032 0.0 3900 0.0 6033 0.0	arite@3 Popula 0641 0.00 0451 0.00 0213 0.00 5303 0.00	2564 0.0 2000 0.0 2000 0.0 2000 0.0	0487 0.03 6510 0.05 0586 0.02 8567 0.04	10µ@20 H20 B45 297 155																												