IMPORTING LIBRARIES

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
```

2. Load the dataset into the Google Colab

```
In []: df=pd.read_csv("/content/abalone.csv")
In []: df['age'] = df['Rings']+1.5
    df = df.drop('Rings', axis = 1)
```

3. UNIVARIATE ANALYSIS

:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
	Sex								
	Ī	0.427746	0.326494	0.107996	0.431363	0.191035	0.092010	0.128182	9.390462
	М	0.561391	0.439287	0.151381	0.991459	0.432946	0.215545	0.281969	12.205497
	F	0.579093	0.454732	0.158011	1.046532	0.446188	0.230689	0.302010	12.629304

3. BIVARIATE ANALYSIS & MULTIVARIATE ANALYSIS

```
In [ ]:
    numerical_features = df.select_dtypes(include = [np.number]).columns
    sns.pairplot(df[numerical_features])
```

Out[]: <seaborn.axisgrid.PairGrid at 0x7fc8fde17fd0>

Out[]

4. Descriptive statistics

In []: df.describe()

Out[]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
	count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
	mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684
	std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
	min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000
	25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000
	50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000
	75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000
	max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000

5. Check for Missing Values

6. OUTLIER HANDLING

```
In []:
    df = pd.get_dummies(df)
    dummy_data = df.copy()

In []:
    var = 'Viscera weight'
    plt.scatter(x = df[var], y = df['age'],)
    plt.grid(True)
```



```
In []:
    # outliers removal
    df.drop(df[(df['Viscera weight']> 0.5) & (df['age'] < 20)].index, inplace=True)
    df.drop(df[(df['Viscera weight'] < 0.5) & (df['age'] > 25)].index, inplace=True)
```

```
In []:
    var = 'Shell weight'
    plt.scatter(x = df[var], y = df['age'],)
    plt.grid(True)
    #Outliers removal.
    df.drop(df[(df['Shell weight']> 0.6) & (df['age'] < 25)].index, inplace=True)
    df.drop(df[(df['Shell weight']< 0.8) & (df['age'] > 25)].index, inplace=True)
```

```
25
20
15
10
00 0.2 0.4 0.6 0.8 1.0
```

```
In []:
    var = 'Shucked weight'
    plt.scatter(x = df[var], y = df['age'],)
    plt.grid(True)

#Outlier removal
    df.drop(df[(df['Shucked weight']>= 1) & (df['age'] < 20)].index, inplace=True)
    df.drop(df[(df['Shucked weight']<1) & (df['age'] > 20)].index, inplace=True)
```



```
20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.1 0.2 0.3 0.4 0.5 0.6
```


7. Categorical columns

ENCODING

8. Split the dependent and independent variables

```
In [22]: x=df.iloc[:,:5]
x
```

Out[22]:		Length	Diameter	Height	Whole weight	Shucked weight
	0	0.455	0.365	0.095	0.5140	0.2245
	1	0.350	0.265	0.090	0.2255	0.0995
	2	0.530	0.420	0.135	0.6770	0.2565
	3	0.440	0.365	0.125	0.5160	0.2155
	4	0.330	0.255	0.080	0.2050	0.0895
			***	***	en c	***
	4172	0.565	0.450	0.165	0.8870	0.3700
	4173	0.590	0.440	0.135	0.9660	0.4390
	4174	0.600	0.475	0.205	1.1760	0.5255
	4175	0.625	0.485	0.150	1.0945	0.5310
	4176	0.710	0.555	0.195	1.9485	0.9455

3995 rows × 5 columns

```
In [23]: y=df.iloc[:,5:]
y
```

Out[23]:		Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
	0	0.1010	0.1500	16.5	0	0	1
	1	0.0485	0.0700	8.5	0	0	1
	2	0.1415	0.2100	10.5	1	0	0
	3	0.1140	0.1550	11.5	0	0	1
	4	0.0395	0.0550	8.5	0	1	0
		***					***
	4172	0.2390	0.2490	12.5	1	0	0
	4173	0.2145	0.2605	11.5	0	0	1
	4174	0.2875	0.3080	10.5	0	0	1
	4175	0.2610	0.2960	11.5	1	0	0
	4176	0.3765	0.4950	13.5	0	0	1

3995 rows × 6 columns

9. Feature Scaling

In [26]:	<pre>from sklearn.preprocessing import StandardScaler ss=StandardScaler() x_train=ss.fit_transform(x_train)</pre>
In []:	<pre>mlrpred=mlr.predict(x_test[0:9])</pre>
In []:	mlrpred

10. Train , Test , Split

11. Model building

In []:
 from sklearn.linear_model import LinearRegression
 mlr=LinearRegression()
 mlr.fit(x_train,y_train)

12 & 13. Train and Test the model

```
In []: x_test[0:5]

In []: y_test[0:5]
```

14. Measure the performance using metrics

In []:
 from sklearn.metrics import r2_score
 r2_score(mlr.predict(x_test),y_test)