

Universidade Federal de Lavras Departamento de Biologia

Programa de Pós - Graduação em Genética e Melhoramento de Plantas Análise de Experimentos em Genética e Melhoramento de Plantas

PGM522

Lista de exercícios a ser resolvida manualmente e por meio dos softwares GENES e R. Qualquer dúvida entrar em contato com o monitor Eric Vinicius Vieira Silva (ericvinicius.vs@gmail.com).

Exercício 01: Com base na tabela abaixo discuta:

- a) A influência ambiental na seleção de indivíduos para um caractere quantitativo.
- b) Qual das frações do modelo F = G + M são mensuráveis?
- c) Explique o motivo pelo qual o estudo de caracteres quantitativos é realizado a nível de população, por meio de médias e variâncias.
- d) Qual a importância do estudo a nível de progênies para avaliar o potencial de uma população.
- e) Como a estatística experimental pode auxiliar no sucesso do melhoramento de plantas.

Tabela 1. Valores fenotípicos, genotípicos e ambientais obtidos de indivíduos de uma população F_2 .

Indivíduos	G + M = F
1	80 + 7 = 87
2	87 - 4 = 83
3	84 + 1 = 85
4	30 - 4 = 26
5	10 + 1 = 15
6	25 - 5 = 20
7	40 + 4 = 44

Exercício 02: Defina os possíveis tipos de progênies utilizadas no melhoramento de plantas e quais são utilizadas em programas de melhoramento de feijão e de milho.

Exercício 03: Qual a importância de se conhecer a natureza matemática (estatística) dos caracteres, pensando do ponto de visa de análise de experimentos em genética e melhoramento de plantas.

Exercício 04: Comente sobre o papel da estatística no melhoramento de plantas.

Exercício 05: Qual a importância da estatística na tomada de decisão de um melhorista?

Exercício 06: Dada a seguinte tabela defina e calcule:

a) Média;

- b) Mediana;
- c) Moda;
- d) Amplitude;
- e) Variância;
- f) Desvio padrão da média;
- g) Erro padrão da média;
- h) Coeficiente de variação.

Observação: Pode ser feito no Excel, desde que sejam apresentados os cálculos.

Tabela 2. Produção de grãos de feijão, g/planta, de uma amostra de plantas de uma população $F_{2.}$

5.68	2.95	1.42	12.07	3.55	38.15	11.52	17.2	15.58	5.74
10.99	3.83	33.86	4.18	5.63	18.64	12.98	23.18	24.22	4.26
7.71	1.33	11.11	7.07	3.27	10.25	19.2	16.95	9.29	1.35
0.71	18.77	2.77	2.03	6.45	29.76	3.38	18.73	3.93	6.79
0.95	25.69	17.49	4.06	13.18	3.1	6.43	11.92	12.72	6.22
12.4	10.6	6.21	3.76	3.36	5.32	2.93	13.35	3.96	32.6
21.2	10.63	20.25	0.53	19.72	13.57	21.17	7.15	19.61	11.96
7.71	17.96	5.11	16.74	7.98	45.6	3.48	14.74	24.77	8.25
6.69	15.43	2.6	5.14	5.49	9.39	9.72	3.11	4.37	2.76
11.54	9.9	5.47	7.77	15.27	21.59	4.34	4.72	15.78	24.51

Exercício 07: Com base nos dados da tabela anterior e considerando somente a primeira linha calcule o intervalo de confiança para a média dos dados.

Exercício 08: Sobre correlação apresente:

- a) Definição;
- b) A formula matemática;
- c) O que pode se inferir sobre um valor de correlação igual a zero, utilize as figuras abaixo na discussão;

- d) No âmbito genético, quais as causas da correlação;
- e) Qual a importância da correlação para o melhoramento de plantas;
- f) Pesquise um artigo científico que utiliza correlação no melhoramento de plantas. Qual o tipo de correlação foi utilizada e com que utilidade.
- g) Discuta a frase: " A correlação simples não indica relação de causa e efeito."
- h) Pesquise sobre técnicas que permitem verificar relações de causa e efeito entre caracteres.

Exercício 09: Apresente a matriz de correlação entre os seguintes caracteres. Observação: calcular manualmente duas correlações. As demais podem ser feitas na calculadora, no genes ou no R.

V1	V2	V3	V4	V5
282	614	436	335	263
618	357	380	349	521
545	415	415	384	191
603	373	427	495	212
370	419	504	299	370
598	346	303	256	568
603	649	401	259	431
646	439	294	272	487
439	381	377	291	95
541	423	291	341	671

Exercício 10: Simule um conjunto de dados no R com distribuição normal com três tamanhos populacionais (10, 50, 1000), com média 10 e variância 1000. Apresente a distribuição dos dados gerados e o box-plot.

Calcule:

- a) Média
- b) Variância

Exercício 11: Simule duas amostras no R com distribuição normal com tamanho populacional de 100. População A: média = 10 e variância = 1000; População B: média = 1000 e variância = 10. Apresente a distribuição dos dados gerados e o box-plot.

Calcule:

- a) Média;
- b) Variância;
- c) Calcule outras medidas de posição e de dispersão;
- d) Coeficiente de variação;
- e) Qual das amostras é mais homogênea (Faça com as informações originais e com as informações obtidos dos dados simulados).

Exercício 12: Defina:

- a) Inferência estatística
- b) População
- c) Amostra
- d) Parâmetro
- e) Estimador
- f) Estimativa

Exercício 13: Explique as propriedades de um estimador

Exercício 14: Verifique se os estimadores da média, variância e desvio padrão são estimadores não viesados. Demonstre numericamente.

Exercício 15: Comente sobre as três áreas de atuação da inferência estatística.