Final Exam — Review

Spring 2018

Compute the closed-loop gain and phase shift for the circuit in Fig. 10.33. Assume that $R_1 = R_2 = 10 \text{ k}\Omega$, $C_1 = 2 \mu\text{F}$, $C_2 = 1 \mu\text{F}$, and $\omega = 200 \text{ rad/s}$.

$$\mathbf{Z}_f = R_2 \left\| \frac{1}{j\omega C_2} = \frac{R_2}{1 + j\omega R_2 C_2} \right\|$$

$$\mathbf{Z}_i = R_1 + \frac{1}{j\omega C_1} = \frac{1 + j\omega R_1 C_1}{j\omega C_1}$$

$$\frac{\mathbf{V}_o}{\mathbf{V}_s} = -\frac{\mathbf{Z}_f}{\mathbf{Z}_i} = \frac{-j\omega C_1 R_2}{(1+j\omega R_1 C_1)(1+j\omega R_2 C_2)} = \frac{-j4}{(1+j4)(1+j2)} = 0.434 / 130.6^{\circ}$$

Calculate i(t)

$$i(t) = I + (i(0) - I)e^{-\frac{t}{\tau}}$$

Find the Thévenin equivalent circuit

Calculate node voltages

At node a:
$$i_x = \frac{v_a - v_b}{6}$$

$$v_a = 8 V$$

$$i_{x} = \frac{8 - v_b}{6}$$

At node c:

$$v_c = 3i_x = 3\frac{(8 - v_b)}{6} = 4 - \frac{v_b}{2}$$

At node b:

$$\frac{8 - v_b}{6} + 2 - \frac{v_b - v_c}{3} = 0$$

$$v_b = 7 V$$

$$v_c = 4 - \frac{v_b}{2} = \frac{1}{2} V$$

Find $i_{\rm o}$ and $v_{\rm o}$ if $v_{\rm s}$ = 1 V, R_1 = 10 Ω , R_2 = 50 Ω , R_3 = 20 Ω and R_4 = 80 Ω

1st circuit:
$$\frac{v_{out}}{v_{in}} = -\frac{R_2}{R_1} = -\frac{50}{10} = -5$$

2nd circuit:
$$\frac{v_{out}}{v_{in}} = -\frac{R_4}{R_3} = -\frac{80}{20} = -4$$

Gain =
$$-5 \cdot -4 = 20$$

$$v_{out} = -5 \cdot -4 \cdot v_s = -5 \cdot -4 \cdot 1V = 20 \text{ V}$$

KCL at node a (note that $V_a = -5V$):

$$\frac{0 - V_a}{R_2} - \frac{V_a - 0}{R_3} = i$$

Then solve for $i_0 = 0.35 \text{ A}$

Obtain the Norton equivalent circuit

Determine the steady-state voltage v(t) and current i(t) for the circuit below

(b) Represent the circuit in the frequency domain using phasors and impedances.

Where
$$Z_1 = 40 + j(10)3 + \frac{1}{j(10)(0.005)} = 40 + j10 = 41.23 \angle 26.6^{\circ} \Omega$$

And $Z_2 = \frac{j(10)2 \cdot 10}{j(10)2 + 10} = 8 + j4 = 8.944 \angle 26.6^{\circ} \Omega$

Using KCL and then KVL gives

Then
$$20 \angle 15^{\circ} = \mathbf{Z}_{1}\mathbf{I} + 5\mathbf{Z}_{2}\mathbf{I} \implies \mathbf{I} = 0.234 \angle -5.6^{\circ} \text{ A}$$
 $\mathbf{V} = \mathbf{Z}_{2}(5\mathbf{I}) = 10.47 \angle 21^{\circ} \text{ A}$

so $i(t) = 0.234 \cos(10t - 5.6^{\circ}) \text{ A}$
 $v(t) = 10.47 \cos(10t + 21^{\circ}) \text{ V}$