

Probabilidade e Estatística

Medidas de tendência central

Prof. Ruana Maíra Schneider Ruana.Schneider@farroupilha.ifrs.edu.b r

Medidas de tendência central

As medidas de tendência central ou medidas de posição mostram o valor em torno do qual se agrupam as observações (resume um conjunto de dados).

- Médias
- Mediana
- Moda

Média aritmética simples: é a divisão da soma de todos os valores pela quantidade de dados:

$$\overline{x} = \frac{soma\ de\ todos\ os\ valores}{quantidade\ de\ valores}$$

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$\overline{\boldsymbol{x}} = rac{\sum_{i=1}^{n} x_i}{n}$$
 ou $\overline{\boldsymbol{x}} = rac{\sum x_i}{n}$

Exemplo: Calcule a média entre os valores

3 6 9 12 14 15 17 20

Resposta: 12

2) Calcule a média entre os valores

14	12	13	11	12	13	16	14	14	15	17	14	11
13	14	15	13	12	14	13	14	13	15	16	12	12

No Excel (exemplo):

somar todos os valores e dividir por "contavalores" Ex: =SOMA(A1:A10) : CONTA.VALORES(A1:A10)

Ou

=MÉDIA(A1:A10)

Pergunta: como você faria para calcular a média aritmética dos valores apresentados em uma tabela da frequência por categoria?

Operações fechadas por dia	Frequências absolutas	Frequências relativas %	
11	2	7,69%	
12	5	19,23%	
13	6	23,08%	
14	7	26,92%	
15	3	11,54%	
16	2	7,69%	
17	1	3,85%	
Total	26	100,00%	

ATIVIDADE 1

Utilize os dados e a tabela 1 (DADOS DISCRETOS) construídos nas aulas anteriores

-Calcular a **média** (apenas dados discretos) utilizando a tabela e em seguida verificar o valor calculando a média utilizando o Rol

Média Ponderada: neste tipo de média os dados possuem pesos diferentes.

$$\frac{\sum_{i=1}^{n} x_i . P_i}{\sum_{i=1}^{n} P_i}$$

$$x_i = Dado;$$

$$P_i$$
 = Pesos;

Exemplo: Um aluno obteve as seguintes notas em uma disciplina:

Prova 1: 6,0;

Prova 2: 3,0;

Trabalho: 10,0;

Trabalho: 8,0;

Sabendo que os pesos são respectivamente: 5, 4, 2 e 1, calcule a média final

Média aritmética "ponderada" para dados agrupados em classes de frequência

$$\bar{x}_w = \frac{\sum_{i=1}^{n} (PM_i . F_i)}{\sum_{i=1}^{n} F_i}$$

 $-PM_i$ é o ponto médio de cada classes

Resposta: 610/20 = 30,5

Classec	Fi	PMi	Fi*PMi
0 10	2		
10 20	1		
20 30	5		
30 40	8		
40 50	4		

Se os dados originais agrupados em classe da tabela anterior fossem:

{8, 6, 14, 21, 24, 28, 22, 22, 31, 33, 33, 36, 37, 38, 38, 39, 42, 45, 46, 49}

a média seria a mesma?

- verifique se satisfaz a tabela
- verifique se a média seria a mesma

ATIVIDADE 2

Utilize os dados e a tabela 2 (DADOS CONTÌNUOS) construidos nas aulas anteriores

-Calcular a média utilizando a tabela por classes e em seguida verificar o valor calculando a média utilizando o Rol

Média Harmônica

É o inverso dos inversos.

$$\bar{x}_h = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}}$$

A principal utilização prática é em problemas que envolvem obtenção de velocidades ou tempos médios, por exemplo.

Exemplo: calcular a média aritmética e a harmônica de um aluno que obteve notas 8, 4 e 6.

Aplicação (média harmônica) : Velocidade média

Problema: Um veículo realizou o trajeto de ida e volta entre as cidades A e B. Na ida ele desenvolveu uma velocidade média de 80 km/h, na volta a velocidade média desenvolvida foi de 120 km/h. Qual a velocidade média para realizar todo o percurso de ida e volta?

Média geométrica:

Usada sobretudo em situações onde se queira analisar um certo padrão ou razão de crescimento.

$$\bar{x}_g = \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \dots x_n} = \sqrt[n]{\prod_{i=1}^n x_i}$$

Exemplo: calcule a média geométrica de 8, 4 e 6.

Aplicação: Um investimento rende no primeiro ano 5%, no segundo ano 7% e no terceiro ano 8%. Qual o rendimento médio desse investimento?

Fatores de crescimento:

- •1.º ano: fator de crescimento de 1,05
- •2.º ano: fator de crescimento de 1,07
- •3.º ano: fator de crescimento de 1,08

$$M_g = \sqrt[3]{1,05 * 1,07 * 1,08} = 1,0632$$

Rendimento médio: 0,0632 ou seja 6,32%

Mediana:

É o valor que ocupa a posição central do Rol (dados ordenados) na ordem crescente ou decrescente Exemplo:

Mediana: 3,4

OBS: A mediana é considerada uma medida separatriz, pelo fato de separar o rol em duas partes iguais. Muito usada em "Box Plot", é linha central da caixa

Se quantidade de dados é ímpar: existe um único valor central.

Se quantidade de dados é par: a mediana é a média simples entre os dois valores centrais:

Mediana:
$$\frac{8+9}{2} = 8,5$$

Exemplo: determine a mediana

a) { 18,4,38, 29, 30, 21, 23, 12}

b) { 2, 4,7, 3, 6, 5, 1, 6, 8}

Pergunta: como você faria para encontrar a mediana de um conjunto de dados apresentados somente em forma de tabela de frequência (por categoria):

Operações fechadas por dia	Frequências absolutas	Frequências relativas %
11	2	7,69%
12	5	19,23%
13	6	23,08%
14	7	26,92%
15	3	11,54%
16	2	7,69%
17	1	3,85%
Total	26	100,00%

Frequência acumulada

Operações	Frequências acumuladas					
fechadas por dia	Absolutas	Relativas %				
11	2	7,69%				
12	7	26,92%				
13	13	50,00%				
14	20	76,92%				
15	23	88,46%				
16	25	96,15%				
17	26	100,00%				

Mediana: 13,5 ??

Ordene os dados e verifique.

Abra uma planilha no Excel, digite os valores e verifique (exemplo usuários no Moodle)

14	12 14	13	11	12	13	16	14	14	15	17	14	11
13	14	15	13	12	14	13	14	13	15	16	12	12

Função do Excel para Mediana (exemplo): =MED(A1:A10)

ATIVIDADE 3

Utilize os dados e a tabela 1 (DADOS DISCRETOS) construídos nas aulas anteriores

-Calcular a mediana (dados discretos) utilizando a tabela e em seguida verificar o valor calculando a média utilizando o Rol

Mediana para dados e tabela por classes

Existem duas formas de calcular:

1º método: (interpolada) Calcular a frequência acumulada e identificar a classe que possui a mediana. Essa classe servirá de base para aplicação da fórmula:

$$Md = I_i + \frac{(\frac{n}{2} - F_{ant})}{F_i}.h$$

onde: I_i = limite inferior da classe mediana

h = amplitude de classe

n = tamanho da amostra

F_{ant} = frequência acumulada anterior a classe mediana

F_i = frequência simples da classe mediana

Exemplo: 1º método (mediana interpolada)

Classec	Fi	Fac
0 10	2	2
10 20	1	3
20 30	5	8
30 40	8	16
40 50	4	20

$$I_i = 30$$
 $h = 10$ $n = 20$ $F_{ant} = 8$ $F_i = 8$ $Md = I_i + \frac{(\frac{n}{2} - F_{ant})}{F_i}$ $h = 30 + \frac{(\frac{20}{2} - 8)}{8}$ $10 = 32,5$

2º método: utilizando o ponto médio de classe onde se observa a mediana.

Ponto médio da classe: $PM = \frac{limite superior + limite inferior}{2}$

Classe	Fi	Fac
0 10	2	2
10 20	1	3
20 30	5	8
30 40	8	16
40 50	4	20

Ponto médio da classe que contém a mediana: (30+40)/2 = 35

ATIVIDADE 4

Utilize os dados e a tabela 2 (DADOS CONTÌNUOS) construidos nas aulas anteriores

-Calcular a mediana utilizando a tabela por classes e em seguida verificar o valor calculando a média utilizando o Rol

MODA: é o valor que ocorre com maior frequência.

Exemplo:

 $\{2, 4, 7, 5, 2, 2, 2, 1, 2, 1, 6, 8, 2\}$

Moda: 2

Conjunto amodal: Não existe valor que aparece mais que outro;

Conjunto bimodal: dois valores aparecem com a mesma frequência (maior):

Conjunto trimodal: três valores como moda

$$\{2, 4, 2, 3, 5, 8, 6, 5, 8\}$$

Conjunto multimodal: mais de três valores aparecem com a mesma frequência em relação aos outros:

{ 2, 2, 2, 3, 3, 3, 4,4,4, 5,5,5,6,7,8,9}

Pergunta: como obter a moda a partir de uma tabela de frequência por categorias?

Operações fechadas por dia	Frequências absolutas	Frequências relativas %
11	2	7,69%
12	5	19,23%
13	6	23,08%
14	7	26,92%
1.5	3	11,54%
16	2	7,69%
17	1	3,85%
Total	26	100,00%

Teste: Abra uma planilha no Excel, digite os valores e verifique

14	12	13	11	12	13	16	14	14	15	17	14	11
13	14	15	13	12	14	13	14	13	15	16	12	12

Função do Excel para Moda (exemplo): =MODO(A1:A10)

ATIVIDADE 5

Utilize os dados e a tabela 1 (DADOS DISCRETOS) construídos nas aulas anteriores

-Calcular a moda (dados discretos) utilizando a tabela e em seguida verificar o valor calculando a média utilizando o Rol

Moda para dados e tabela por classes

Existem algumas fórmulas que calculam a moda.

1. Moda bruta: Ponto médio da classe modal

2. Fórmula de Pearson:

$$Mo = 3.M_d - 2.\bar{x}$$

Em que M_d é a mediana (interpolada) e \bar{x} é a media aritmética.

No exemplo anterior:

Classe	Fi	Fac
0 10	2	2
10 20	1	3
20 30	5	8
30 40	8	16
40 50	4	20

$$M_d = 32,5 \ (10 \ m\acute{e}todo)$$
 $\bar{x} = \frac{610}{20} = 30,5$

$$Mo = 3. M_d - 2. \bar{x} = 3.32,5 - 2.30,5 = 36,5$$

3. Fórmula de KING (moda):

$$Mo_K = linf + \left[h \cdot \left(\frac{F_{post}}{F_{ant} + F_{post}} \right) \right]$$

Em que

linf= limite inferior da classe modal

h= amplitude da classe modal

 F_{post} = frequência da classe posterior à modal

No exemplo anterior:

$$Mo_K = linf + \left[h \cdot \left(\frac{F_{post}}{F_{ant} + F_{post}} \right) \right]$$

Em que

linf= 30

h = 10

 $F_{post} = 4$

Classe	Fi	Fac
0 10	2	2
10 20	1	3
20 30	5	8
30 40	8	16
40 50	4	20

No exemplo anterior:

$$Mo_K = 30 + \left[10 \cdot \left(\frac{4}{5+4}\right)\right]$$

= $30 + \frac{80}{9} = \frac{350}{9} = 34,44$

4. Fórmula de Czuber

$$Mo_{CZ} = l_{inf} + \left[h \cdot \left(\frac{F_{modal} - F_{ant}}{2F_{modal} - F_{ant} - F_{post}} \right) \right]$$

Em que

 l_{inf} = limite inferior da classe modal

h = amplitude da classe modal

 F_{post} = frequência (abs) da classe posterior à modal

 F_{ant} =frequência (abs) da classe anterior à modal

No exemplo anterior:

$$Mo_{CZ} = l_{inf} + \left[h \cdot \left(\frac{F_{modal} - F_{ant}}{2F_{modal} - F_{ant} - F_{post}} \right) \right]$$

Em que

$$l_{inf} = 30$$

$$h = 10$$

$$F_{post} = 4$$

Classe	Fi
0 10	2
10 20	1
20 30	5
30 40	8
40 50	4

No exemplo anterior:

$$Mo_{CZ} = l_{inf} + \left[h \cdot \left(\frac{F_{modal} - F_{ant}}{2F_{modal} - F_{ant} - F_{post}} \right) \right]$$

$$Mo_{CZ} = 30 + \left[10 \cdot \left(\frac{8-5}{2 \cdot 8 - 5 - 4}\right)\right]$$

= $30 + 10 \cdot \left(\frac{3}{7}\right) = 30 + \frac{30}{7} = \frac{210}{7} + \frac{30}{7}$

Observações:

- 1) Para utilizar a moda de Pearson é necessário calcular média e mediana separadamente
- 2) A moda de King utiliza informações das classes adjacentes
- 3) A moda de Czuber utiliza informações das classes adjacentes E da classe modal. (mais aproximada da realidade)

Comparando média, mediana e moda

Há vantagens e desvantagens no uso de cada medida de tendência:

 A média leva em conta cada elemento de um conjunto de dados Mas pode ser muito afetada por valores discrepantes (outliers).

Exemplo: Encontre a média, a mediana e a moda da amostra das idades dos alunos de uma turma mostradas a seguir.

20 20 20 20 20 21 21 21 21 22 22 23 23 23 23 24 24 65

Qual medida de tendência central melhor descreve esse conjunto de dados? Há *outliers*?

Agora: Remova o valor 65 do conjunto de dados e calcule as 3 medidas novamente e compare.

Como a ausência desse *outlier* muda cada uma das medidas?

ATIVIDADE 6

Utilize os dados e a tabela 2 (DADOS CONTÌNUOS) construidos nas aulas anteriores

-Calcular a moda (bruta, pearson, king e Czuber) utilizando a tabela por classes e em seguida verificar o valor calculando a média utilizando o Rol

Qual das modas calculadas mais se aproxima da verdadeira?

Responda:

- Qual das modas calculadas mais se aproxima da verdadeira?
 - Há outliers no no seu conjunto de dados?
 - Como você poderia verificar a existência de outliers sem ter acesso ao Rol ?

