PhD

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

2020/03/10 10:16 PM

Introduces a new methodology of scaling CNN architectures using a compound scaling coefficient ϕ , that scales

```
\begin{aligned} \text{Depth} &= L \\ \text{Width} &= C \\ \text{Resolution} &= H \times W \\ \text{With ratios such that :} \\ \text{Depth} &= L \cdot d \\ \text{Width} &= C \cdot w \\ \text{Resolution} &= H \cdot r \times W \cdot r \\ \text{And,} \\ d &= \alpha \\ w &= \beta \\ r &= \gamma \end{aligned}
```

Under the constraints, $\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$ and, $\alpha \geq 1, \beta \geq 1, \gamma \geq 1$

Because $\alpha \cdot \beta^2 \cdot \gamma^2 \propto FLOPs$ and with these constraints flops increase in the order of 2 as ϕ increases.

Intuitively, ϕ represents the amount of more computation resources available, through which the model can be scaled accordingly. [α , β , γ calculated using a small grid search]

The base Architecture named - EfficientNet-B0 formulated using a Network architecture search on the constraint - $ACC(m) \times [FLOPS(m)/T]^{\omega}$, where ACC(m) \rightarrow accuracy of model m, FLOPS(m) \rightarrow FLOPS of model m, T \rightarrow Target FLOPS, ω \rightarrow hyperparameter for tradeoff b/w accuracy and flops.

MBConv Block used (Inverted Residual Block from MobileNet-V2)