Polynômes orthogonaux :

I Le développement

Le but de ce développement est de montrer que les polynômes orthogonaux associés à un certain poids ρ forment une base hilbertienne de $L^2(]a;b[,\rho)$.

Théorème 1 : [El Amrani, p.47]

Soit ρ une fonction poids sur $I =]a; b \subseteq \mathbb{R}$.

S'il existe $\alpha > 0$ tel que $\int_I e^{\alpha |x|} \rho(x) dx < +\infty$, alors les polynômes orthogonaux normalisés associés à ρ forment une base hilbertienne de $L^2(I, \rho)$.

Preuve:

Soit ρ une fonction poids sur $I =]a; b \subseteq \mathbb{R}$.

Supposons qu'il existe $\alpha > 0$ tel que $\int_I e^{\alpha |x|} \rho(x) dx < +\infty$.

Pour montrer que les polynômes orthogonaux normalisés associés à ρ forment une base hilbertienne de $L^2(I,\rho)$, on va montrer que l'orthogonal de l'espace qu'ils engendrent est réduit à $\{0\}$:

Soit $f \in L^2(]a; b[, \rho)$ tel que pour tout $n \in \mathbb{N}, \langle f, x^n \rangle_{\rho} = 0$. Considérons la fonction :

$$\Psi: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \left\{ \begin{array}{ccc} f(x)\rho(x) & \text{si } x \in]a; b[\\ 0 & \text{sinon} \end{array} \right.$$

Pour tout réel $t\geq 0,$ on a $t\leq \frac{1+t^2}{2}$ (polynôme du second degré s'annulant en 1 uniquement) et donc :

$$\forall x \in]a; b[, |f(x)|\rho(x) \le \frac{1}{2} (1 + |f(x)|^2) \rho(x)$$

Et puisque ρ et ρf^2 sont intégrables (par hypothèse) sur]a;b[, on en déduit que $\Psi\in L^1(\mathbb{R}).$

Posons à présent l'application :

$$g: \left| \begin{array}{ccc} \mathbb{R} \times \mathbb{C} & \longrightarrow & \mathbb{C} \\ (x,z) & \longmapsto & f(x)\rho(x)e^{-izx} \end{array} \right|$$

et considérons la bande $B_{\alpha} = \Big\{z \in \mathbb{C} \text{ tq } |\mathrm{Im}(z)| < \frac{\alpha}{2}\Big\}.$

Ainsi que l'application:

$$F: \begin{vmatrix} B_{\alpha} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \int_{a}^{b} f(x)\rho(x)e^{-izx} dx = \int_{a}^{b} g(x,z) dx \end{vmatrix}$$

Pour tout $z \in B_{\alpha}$, on a alors $|g(x,z)| \leq e^{\frac{\alpha|x|}{2}} |f(x)| \rho(x)$.

En utilisant l'inégalité de Cauchy-Schwarz, on obtient de plus :

$$\int_{a}^{b} e^{\frac{\alpha|x|}{2}} |f(x)| \rho(x) dx \le \left(\int_{a}^{b} e^{\alpha|x|} \rho(x) dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} |f(x)|^{2} \rho(x) dx \right)^{\frac{1}{2}} < +\infty \quad (*)$$

L'inégalité (*) montre ainsi que F est bien définie et pour tout $z \in B_{\alpha}$, on a $|g(x,z)| \leq e^{\frac{\alpha|x|}{2}}|f(x)|\rho(x) = h(x)$ (avec $h \in L^1(]a;b[)$ d'après (*) et qui ne dépend pas de z).

Comme de plus, l'application $x \longmapsto g(x,z)$ est intégrable pour tout $z \in B_{\alpha}$ et que l'application $z \longmapsto g(x,z)$ est holomorphe pour presque tout $x \in]a;b[$, le théorème d'holomorphie sous le signe intégral montre que la fonction F est holomorphe sur B_{α} et de plus :

$$\forall n \in \mathbb{N}, \ \forall z \in B_{\alpha}, \ F^{(n)}(z) = (-i)^n \int_a^b x^n f(x) \rho(x) e^{-izx} dx$$

On obtient en particulier que :

$$\forall n \in \mathbb{N}, \ F^{(n)}(0) = (-i)^n \int_a^b x^n f(x) \rho(x) \mathrm{d}x = (-i)^n < f; x^n >_{\rho} = 0 \text{ (par hypothèse)}$$

L'unicité du développement en série entière d'une fonction holomorphe montre alors que F=0 sur un voisinage de 0. Le théorème du prolongement analytique implique alors que F=0 sur l'ouvert connexe B_{α} (car convexe) tout entier, et donc en particulier sur l'axe réel.

On en déduit que $F = \widehat{\Psi} = 0$, et puisque $\Psi \in L^1(\mathbb{R})$, l'injectivité de la transformée de Fourier implique que $\Psi = 0$. Enfin, puisque $\rho > 0$ (car il s'agit d'un poids), on en déduit que f est presque partout nulle sur a; b.

Finalement, on a montré que les polynômes orthogonaux orthogonaux normalisés associés à ρ forment une base hilbertienne de $L^2(I,\rho)$.

II Remarques sur le développement

II.1 Résultat(s) utilisé(s)

Dans ce développement, on a utilisé le théorème d'holomorphie sous le signe \int ainsi que le principe du prolongement analytique dont on rappelle les énoncés :

Théorème 2: Théorème d'holomorphie sous le signe [El Amrani, p.411]:

Soient Ω un ouvert non vide de \mathbb{C} et $f: X \times \Omega$ à valeurs dans \mathbb{C} .

Si les trois hypothèses suivantes sont satisfaites :

- * Pour tout $z \in \Omega$, la fonction $x \mapsto f(x, z)$ est intégrable.
- * Pour tout $x \in X$, la fonction $z \mapsto f(x, z)$ est analytique dans Ω .
- * Pour tout compact $K \subseteq \Omega$, il existe une fonction intégrable positive g_K telle que pour tout $(x,z) \in X \times \Omega$, $|f(x,z)| \leq g_K(x)$.

alors la fonction $F: z \mapsto \int_X f(x,z) dx$ est analytique dans Ω , et de plus, on a, pour tout $n \in \mathbb{N}: F^{(n)}(z) = \int_X \frac{\partial^n f}{\partial z^n}(x,z) d\mu(x)$.

Théorème 3 : Principe du prolongement analytique [Tauvel, p.52] :

Soient U un ouvert connexe de \mathbb{C} , $a \in U$ et $f \in \mathcal{H}(U)$.

Les assertions suivantes sont équivalentes :

- * f est identiquement nulle dans U.
- * f est identiquement nulle dans un voisinage de a.
- * Pour tout $n \in \mathbb{N}$, on a $f^{(n)}(a) = 0$.

Corollaire 4: [Tauvel, p.52]

Soient U un ouvert connexe de \mathbb{C} et $f, g \in \mathcal{H}(U)$.

Si f et g coïncident sur un voisinage de U, alors f = g sur U.

Enfin, on a également utilisé l'injectivité de la transformée de Fourier sur $L^1(\mathbb{R})$:

Théorème 5 : [El Amrani, p.115]

La transformation de Fourier :

$$\mathcal{F}: \left| \begin{array}{ccc} L^1(\mathbb{R}) & \longrightarrow & \mathcal{C}^0_0(\mathbb{R}, \mathbb{R}) \\ f & \longmapsto & \widehat{f}: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ \xi & \longmapsto & \int_{\mathbb{R}} f(x) e^{-ix\xi} \mathrm{d}x \end{array} \right.$$

est une application injective.

II.2 Pour aller plus loin...

II.2.1 Sur les bases hilbertiennes...

Si l'intervalle I précédent est borné alors l'hypothèse est vraie pour $\alpha=1$ et donc on obtient une base hilbertienne de $L^2(I,\rho)$. Cependant, sans l'hypothèse du théorème le résultat n'est plus vrai. En effet, considérons l'intervalle $]a;b[=]0;+\infty[$, le poids $\rho(x)=x^{-\ln(x)}$ et la fonction $f(x)=\sin(2\pi\ln(x))$.

Pour tout entier naturel n, on a alors :

$$< x^n; f>_{\rho} = \int_0^{+\infty} x^n \sin(2\pi \ln(x)) x^{-\ln(x)} dx$$

Le changement de variable bijectif $y = \ln(x)$ permet d'écrire :

$$\langle x^n; f \rangle_{\rho} = \int_{-\infty}^{+\infty} e^{(n+1)y} \sin(2\pi y) e^{-y^2} dy = e^{\frac{(n+1)^2}{4}} \int_{-\infty}^{+\infty} e^{-\left(y - \frac{n+1}{2}\right)^2} \sin(2\pi y) dy$$

Et un deuxième changement de variable $t = y - \frac{n+1}{2}$ donne alors :

$$< x^n; f>_{\rho} = (-1)^{n+1} e^{\frac{(n+1)^2}{4}} \int_{-\infty}^{+\infty} \sin(2\pi t) e^{-t^2} dt = 0$$
 (car l'intégrande est impaire)

Ainsi, la famille des $(x^n)_{n\in\mathbb{N}}$ n'est pas maximale dans l'espace de Hilbert $L^2\left(]0;+\infty[;x^{-\ln(x)}\right)$, donc n'est pas totale. La famille des polynômes orthogonaux associée à ce poids particulier n'est donc pas totale non plus : ce n'est donc pas une base hilbertienne.

On peut cependant montrer que toute espace de Hilbert possède une base hilbertienne :

Théorème 6 : [El Amrani, p.49]

- * Tout espace de Hilbert E sur un corps $\mathbb K$ possède une base hilbertienne.
- * Si $(e_i)_{i\in I}$ est une base hilbertienne de E, alors l'application :

$$\varphi: \left| \begin{array}{ccc} E & \longrightarrow & \ell_{\mathbb{K}}^2(I) \\ x & \longmapsto & (< x; e_i >)_{i \in I} \end{array} \right.$$

est un isomorphisme d'espaces hilbertiens.

II.2.2 Base hilbertienne sur $L^2(\mathbb{R})$

L'espace $L^2(\mathbb{R})$ est séparable, donc les bases hilbertiennes de $L^2(\mathbb{R})$ sont dénombrables. Le théorème permet alors d'en exhiber une :

On considère $I = \mathbb{R}$, la fonction poids $\rho(x) = e^{-x^2}$.

On sait alors que $L^2(I,\rho)$ est muni d'une base hilbertienne qui est constituée des polynômes de Hermite donnés par :

$$\forall n \in \mathbb{N}, \ P_n(x) = \frac{(-1)^n}{2^n} e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(e^{-x^2}\right)$$

De plus, les applications :

$$\Psi: \left| \begin{array}{ccc} L^2(\mathbb{R}, \rho) & \longrightarrow & L^2(\mathbb{R}) & \text{et} & \Phi: \left| \begin{array}{ccc} L^2(\mathbb{R}) & \longrightarrow & L^2(\mathbb{R}, \rho) \\ f & \longmapsto & f\sqrt{\rho} \end{array} \right| \right.$$

sont des isométries bijectives inverses l'une de l'autre. Ainsi, comme les polynômes de Hermite $(P_n)_{n\in\mathbb{N}}$ forment une base hilbertienne de $L^2(\mathbb{R},\rho)$, l'isométrie assure que $\left(P_ne^{-x^2}\right)_{n\in\mathbb{N}}$ est une base hilbertienne de $L^2(\mathbb{R})$.

Remarque 7: [Beck, p.112]

Grâce à cette même méthode, on peut construire une base hilbertienne de $L^2(\mathbb{R}^+)$ à l'aide des polynômes de Laguerre.

II.3 Recasages

Recasages: 201 - 208 - 209 - 213 - 245 - 250.

III Bibliographie

- Mohammed El Amrani, Analyse de Fourier dans les espaces fonctionnels.
- Patrice Tauvel, Analyse complexe pour la licence 3.
- Vincent Beck, $Objectif\ agr\'egation.$