2014—2015 学年 第一学期《高等数学 I、Ⅱ》(上)期末考试试卷(B)

大题	_	 三	四	五.	总分
得分					

2.
$$\int_0^2 f x dx = \frac{7}{3}$$
, $\sharp + f(x) = \begin{cases} x^2 & 0 \le x \le 1 \\ 2 & 1 < x < 2 \end{cases}$

3 由参数方程 $\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}$ 确定的函数的二阶导数 $\frac{d^2y}{dx^2} = \frac{1+t^2}{4t}$ 。

$$4. \cancel{R} \lim_{x \to \infty} x \ln \left(1 + \frac{3x}{x^2 + 1} \right) = \underline{\qquad \qquad 3 \qquad \qquad }_{\circ}$$

$$5. \cancel{R} \lim_{x \to 0} \frac{\int_0^x \sin^2 t dt}{\sin x^3} = \frac{1}{3}$$

6.设
$$f'(x_0)$$
 存在,则 $\lim_{\Delta x \to 0} \frac{f(x_0 + 2\Delta x + (\Delta x)^2) - f(x_0)}{\Delta x} = \underline{2f'(x_0)}$

7. 设函数
$$f(x) = \begin{cases} \frac{a(1-\cos x)}{x^2} & x < 0 \\ 1 & x = 0 \\ \ln(b+x^2) & x > 0 \end{cases}$$
 在 $x = 0$ 连续,则

$$a = \underline{\qquad 2 \qquad} , b = \underline{\qquad e \qquad}$$
 \circ

8. 微分方程 $y'' - 6y' + 8y = e^x + e^{2x}$ 的一个特解 y^* 具有的形式为

$$y^* = \underline{\qquad} ae^x + bxe^{2x} \qquad \circ$$

二、单项选择题(每小题3分,表	共 18 分 得 分						
9.若 <i>f</i> (<i>x</i>) 是奇函数且 <i>f</i> ′(0) 存在,	则 $x = 0$ 是函数 $F(x) = \frac{f(x)}{x}$ 的						
(A) 无穷间断点	(B) 可去间断点	(B)					
(C) 连续点	(D) 振荡间断点						
10.在区间[0,8]内,对函数 $f(x)=\frac{1}{2}$	$\sqrt[3]{8x-x^2}$ 罗尔定理	(C)					
(A) 不成立	(B) 成立, 并且 f'(2)=0						
(C) 成立, 并且 f'(4)=0	(D) 成立, 并且 f'(8)=0						
11. 没 $f(x) = \int_0^x \sin t^2 dt$, $g(x) = x^3$	$+x^4$,则当 $x \to 0$ 时, $f(x)$ 是 $g(x)$ 的	(B)					
(A)等价无穷小	(B) 同价但非等价无穷小						
(C) 高阶无穷小	(D) 低阶无穷小						
12. 由曲线 $y = \sin^{\frac{3}{2}} x$ $(0 \le x \le \pi)$	与x轴围成的图形绕x轴旋转所成旋	转体的体					
积为	4	(C)					
(A) $\frac{4}{3}$ (B) $\frac{2}{3}$	(C) $\frac{4}{3}\pi$ (D) $\frac{2}{3}\pi$						
13.设 $f(x)$ 在 $[a,b]$ 上可导,且 $f'(x) > 0$,若 $\Phi(x) = \int_a^x f(t) dt$,则下列说法正确的							
是		(C)					
(A) $\Phi(x)$ 在 $[a,b]$ 上单调减少	(B) $\Phi(x)$ 在 $[a,b]$ 上单调增加						

(C) $\Phi(x)$ 在[a,b]为凹函数 (D) $\Phi(x)$ 在[a,b]为凸函数

设 y = f(x) 是微分方程 y'' - 2y' + 4y = 0的一个解,若 $f(x_0) > 0$ 且 $f'(x_0) = 0$, 则函数 f(x) 在 x_0 处 (A)(A) 取得极大值 (B) 取得极小值 (C) 某个邻域内单调增加 (D) 某个领域内单调减少 三.解答题(每小题5分,共30分) 得分 15. 设 $f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$, 讨论 f(x) 在 x = 0 处的连续性与可导性。 解: 因 $\lim_{x\to 0} f(x) = \lim_{x\to 0} x \sin \frac{1}{x} = 0 = f(0)$(2) 所以 f(x)在 x=0 连续 因: $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{x\sin\frac{1}{x}}{x} = \lim_{x\to 0} \sin\frac{1}{x}$ 不存在 所以 f(x) 在 x=0 处不可导 16. 求函数 $y = x \ln x$ 的极值。 解: 定义域(0,+∞) 又因 $y'' = \frac{1}{r} > 0$ $y''\left(\frac{1}{e}\right) > 0$(2)

所以
$$x = \frac{1}{e}$$
 是极小值点,极小值为: $y\left(\frac{1}{e}\right) = -\frac{1}{e}$ (1)

17. 计算不定积分 $\int \frac{x^3}{4+x^2} dx$ 。

解:
$$\int \frac{x^3}{4+x^2} dx = \frac{1}{2} \int \frac{x^2}{4+x^2} dx^2$$
(2)

$$= \frac{1}{2} \int \left(1 - \frac{4}{4 + x^2} \right) dx^2 \qquad \dots (2)$$

$$= \frac{1}{2}x^2 - 2\ln(4+x^2) + C \qquad \dots (1)$$

18. 计算反常积分
$$\int_0^{+\infty} \frac{dx}{x^2 + 4x + 8}$$
 。

解:
$$\int_0^{+\infty} \frac{dx}{x^2 + 4x + 8} = \int_0^{+\infty} \frac{d^2x + 2}{x + 2^2 + 4}$$
(2)

$$=\frac{\pi}{4}-\frac{1}{2}\cdot\frac{\pi}{4}=\frac{\pi}{8}$$
(1)

19. 求微分方程: (6x+y)dx+xdy=0的通解。

解: 原方程可化为:
$$\frac{dy}{dx} + \frac{1}{x}y = -6$$
(1)

由一阶线性微分方程的通解公式得

$$y = e^{-\int_{-x}^{1} dx} \left[\int (-6)e^{\int_{-x}^{1} dx} + C \right]$$
(3)

$$=\frac{1}{x}\left(C-3x^2\right)$$

20. 设曲线 $y = x^2$ 与 $y = cx^3$ (c > 0)所围成的面积为 $\frac{2}{3}$,求常数 c 的值。 解: 两曲线的交点 $\begin{cases} y = x^2 \\ v = cx^3 \end{cases}$, 解得 (0,0), $\left(\frac{1}{c}, \frac{1}{c^2}\right)$ (1) $S = \int_0^{\frac{1}{c}} x^2 - cx^3 dx$ $= \left[\frac{1}{3}x^3 - c \cdot \frac{x^4}{4} \right] \frac{1}{c} = \frac{1}{3c^2} - \frac{1}{4} \cdot \frac{1}{c^3} = \frac{1}{12c^3}$ $\Rightarrow: \frac{1}{12c^3} = \frac{2}{3}, \quad c^3 = \frac{1}{8}, \quad \text{MU} \ c = \frac{1}{2}$ 四.解答题(每小题6分,共18分) 得分 **21.**设 f(x) 连续,且满足 $f(x) = \int_0^{2x} f\left(\frac{t}{2}\right) dt + \ln 2$,求 f(x)。 解: 原方程两边求导得: f'(x) = 2f(x), 即 $\frac{f'(x)}{f(x)} = 2$ 积分得: $f(x) = ce^{2x}$ 由 $f(0) = \ln 2$, 得 $c = \ln 2$, 从而 $f(x) = e^{2x} \ln 2$ **22.**计算定积分 $\int_{\underline{1}}^{1} e^{\sqrt{2x-1}} dx$ 。 解: 设 $\sqrt{2x-1} = t$, 则 $x = \frac{1+t^2}{2}$, dx = tdt因此,原式= $\int_{0}^{1} te^{t} dt$(2) $= \int_0^1 t de^t = t e^t \Big|_0^1 - \int_0^1 e^t dt$ $=e-e^{t}|_{0}^{1}=1$

23.求极限: $\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}}-e}{1}$

解: 原式 =
$$\lim_{x \to 0} \frac{e^{\frac{1}{x}\ln(1+x)} - e}{-\frac{1}{2}x}$$
(2)

$$= \lim_{x \to 0} \frac{e^{\left[e^{\frac{1}{x}\ln(1+x)-1} - 1\right]}}{-\frac{1}{2}x} = e \lim_{x \to 0} \frac{\frac{1}{x}\ln(1+x)-1}{-\frac{1}{2}x} .$$

$$= -2e \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} = -2e \lim_{x \to 0} \frac{\frac{1}{(1+x)} - 1}{2x} \qquad(3)$$
$$= -2e \lim_{x \to 0} \frac{-\frac{1}{(1+x)^2}}{2} = e \qquad(1)$$

五、证明题(每小题 5 分, 共 10 分) 得 分

24. 设 f(x) 在 [0,a] 上二阶可导 (a>0), f(0)=0, f''(x)>0,证明: $F(x)=\frac{f(x)}{x}$ 在 (0,a) 单调递增。

因
$$g'(x) = f'(x) + xf''(x) - f'(x) = xf''(x)$$

以及
$$f''(x) > 0$$
, $x \in [0, a]$

所以:
$$g'(x) = xf''(x) > 0$$
 $x \in [0, a]$

由己知: f(0) = 0

知:
$$g(0) = 0 - f(0) = 0$$
 ...

所以: $g(x) > g(0) = 0$ $x \in [0, a]$ (1)

故 $F'(x) = \frac{g(x)}{x^2} > 0$ $x \in (0, a)$

所以 $\xi \in (0,1)$ 是f(x)在(0,1)内的零点