Notations de Dynamique

(Version du 01/08/18)

1 Packages requis

- **ifthen**: Package permettant une compilation à choix multiple,
- mathrsfs : Package qui rajoute des polices d'écritures mathématiques.
- Raf_Notations_Actions-Meca: Package de notations d'actions mécaniques.
- Raf_Notations_Torseurs : Package de notations des torseurs.

2 Appel du package

Le package est appelé en début de document par la commande :

\usepackage{Raf_Notations_Dynamique}

Par défaut, ce package utilise un certain nombre de notations raccourcies, susceptibles de rentrer en conflit avec d'autre package (mais tellement plus rapide à taper!). De plus, certaines commandes ont été rebaptisée. Ces raccourcis et renommages seront cités ((Raccourci) ou (Renommé)) dans les tableaux suivants. Pour ne pas créer ces raccourcis/renommage, il faut rentre l'option noRaccourci à l'appel du package.

usepackage[noRaccourci]{Raf_Notations_Dynamique}

3 Masse

Commandes	Rendus	Commentaires
\ddm	dm	Masse élémentaire

4 Inertie

Commandes	Rendus	Commentaires
\matInertie{P}{S}	$\overline{I_{(P,S)}}$	Matrice d'inertie.
\IGS	$\overline{I_{(G,S)}}$	Matrice d'inertie au point G de S .
\matInertieComposantes {G}{1&2&3\\4&5&6\\7&8 &9}{R}	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}_{R}$	Composantes de la matrice
\IGSABCDEF	$\begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{R_0}$	Composantes du tenseur en G dans le repere R .
\IGSABCDEF[G_1][R_1]	$\begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{R}$	Composantes du tenseur en un autre point et une autre base.
\IGSABC	$\begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}_{R}$	Composantes du tenseur diagonal (similaire à \IGSABCDEF)
\IGSABC[G_3][R][A_3] [B_3][C_3]	$\begin{bmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{bmatrix}_R$	Composantes du ten- seur diagonal en choisis- sant les valeurs
\IGSParallelepipede {a}{b}{c}	$\begin{bmatrix} \frac{M\left(b^2+c^2\right)}{12} & 0 \\ 0 & \frac{M\left(a^2\right)}{1} \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & & & & & \\ & +c^2 & & & \\ & \text{Matrice d'inertie d'un} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{bmatrix}_R$
\IGSParallelepipede[A] [M_2]{a}{b}{c}[R_1]	$\begin{bmatrix} \frac{M_2 \left(b^2+c^2\right)}{12} \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ a^2 + c^2 \\ \text{idem,} \text{ en un autge point,} \\ 1 \\ \frac{1}{6} \text{t un autre repère.} \\ 0 & \frac{M_2 \left(a^2 + b^2\right)}{12} \end{bmatrix}_R$
\IGSCylindre {R}{H}	$\begin{bmatrix} \frac{M\left(3R^2 + H^2\right)}{12} \\ 0 & \frac{M}{2} \end{bmatrix}$	0 0 $(3R^2 + H^2)$ inertie d'un cylindre de rayon R et de hauteur $H = 12$

5 Cinétique

Commandes	Rendus	Commentaires
\CCallig	\mathscr{C}	C calligraphié
$\label{localization} $$\tCinetique{S_1}{S_2}$$	$\left\{\mathscr{C}_{(S_1/S_2)} ight\}$	Torseur cinétique
\tCinetique[2]{S_1}{S_2}	$\left\{\mathscr{C}^2_{(S_1/S_2)}\right\}$	Torseur cinétique avec
		exposant
\resCinetique{S_1}{S_2}	$\overrightarrow{p_{(S_1/S_2)}}$	Résultante cinétique
\momCinetique{P}{S_1}	$\overrightarrow{\sigma_{(P \in S_1/S_2)}}$	Moment cinétique au
{S_2}	-, -,	point P

6 Dynamique

Commandes	Rendus	Commentaires
\ACallig	A	<i>A</i> calligraphié
\dA	d.	Quantité d'accélération (scalaire)
\vdA	$\overrightarrow{\mathrm{d}}\overrightarrow{A}$	Quantité d'accélération (vecteur)
\resDynamique{S}{R}	$\overrightarrow{\mathscr{A}_{(S/R)}}$	Résultante dynamique
\momDynamique{A}{S}{R}	$\overrightarrow{\delta_{(A \in S/R)}}$	moment dynamique au point A
\tDynamique{S}{R}	$\left\{\mathscr{D}_{(S/R)} ight\}$	Torseur dynamique
\tDynamique[2]{S}{R}	$\left\{\mathscr{D}^2_{(S/R)} ight\}$	Torseur dynamique avec exposant