

TENTAMEN

Kursnummer:	HF0024		
	Matematik för basår II		
Moment:	TENA		
Program:	Tekniskt basår		
Rättande lärare:	Staffan Linnaeus & Maria Shamoun		
Examinator:	Niclas Hjelm		
Datum:	2019-10-23		
Tid:	08:00-12:00		
Hjälpmedel:	Formelsamling: ISBN 978-91-27-72279-8 eller ISBN		
	978-91-27-42245-2 (utan anteckningar).		
	Inga andra formelsamlingar är tillåtna!		
	Miniräknare, penna, radergummi, linjal, gradskiva		
Omfattning och			
betygsgränser:	Poäng Betyg 11 Fx 12 – 14 E 15 – 17 D 18 – 20 C 21 – 23 B 24 – 26 A		
	Till samtliga uppgifter krävs fullständiga		
	lösningar. Lösningarna skall vara tydliga och lätta		
	att följa. Införda beteckningar skall definieras.		
	Uppställda samband skall motiveras.		
	Skriv helst med blyertspenna!		
	Svaret ska framgå tydligt och vara förenklat så		
	långt som möjligt. Svara med enhet och lämplig		
	avrundning på tillämpade uppgifter. Svara exakt på		
	övriga uppgifter, om inte annat anges. Lycka till!		

- 1. För vinkeln v mellan 0 och 360° gäller att sin v = -0.625 och cos v < 0. Vilken är vinkeln? Svara i hela grader. 2 p
- 2. Beräkna derivatan av funktionerna

a)
$$f(x) = \sqrt{1 - x^2}$$

b)
$$g(x) = \frac{x^3}{1+x^2}$$

3. Visa att
$$\frac{\tan^2 x}{1 + \tan^2 x} = \sin^2 x$$
 2 p

4. Beräkna
$$\int_{\frac{\pi}{9}}^{\frac{\pi}{3}} \sin(3x) dx$$
. 2 p

- 5. Beräkna arean av det område som begränsas av kurvan $y = 4x x^3$ och positiva x-axeln. 3 p
- 6. Lös ekvationen $\sin(2x) + \cos x = 0$.
- 7. I figuren visas kurvan $y = a + b \sin(cx + d)$, där a > 0 och $0 \le d \le 2\pi$ Bestäm konstanterna a, b, c och d. Alla avläsningar i figuren ska redovisas noga.

- 8. Bestäm en ekvation för tangenten till kurvan $y = \frac{\sin x}{x}$ i den punkt där $x = \pi$.
- 9. Beräkna derivatan av funktionen $f(x) = \ln(1 + x\sin(x^2))$ 2 p
- 10. En vikt hänger i en fjäder och utför vertikala dämpade svängningar. Viktens höjd y i cm över bordsytan ges av $y = 15 + 12e^{-0.25x} \sin 0.75x$, $0 \le x \le 10$, där x är tiden i sekunder. Beräkna viktens största och minsta höjd.
- 11. En Pytagoreisk triangel är en rätvinklig triangel där alla sidorna a, b och c är heltal. Visa att a, b och c inte alla kan vara udda.

Lösningsförslag

- 1. Ekvationen sin v = -0.625 har lösningarna $v = \arcsin(-0.625) + n \cdot 360^{\circ}$ och $v = 180^{\circ}$ arcsin $(-0.625) + n \cdot 360^{\circ}$. Eftersom både sin v och cos v är negativa, ligger vinkeln i tredje kvadranten $(180^{\circ} < v < 270^{\circ})$, och arcsinusfunktionen ger ett värde mellan 90° och 0. Den enda lösning som ligger i tredje kvadranten är $v = 180^{\circ}$ arcsin $(-0.625) \approx 219^{\circ}$. Svar: 219° .
- 2. a) Kedjeregeln med $u = 1 x^2$ ger $f'(x) = -2x \cdot \frac{1}{2\sqrt{u}} = -\frac{x}{\sqrt{1 x^2}}$.
 - b) Kvotregeln ger $g'(x) = \frac{3x^2 \cdot (1+x^2) x^3 \cdot 2x}{(1+x^2)^2} = \frac{3x^2 + x^4}{(1+x^2)^2}$.

Svar: a)
$$f'(x) = -\frac{x}{\sqrt{1-x^2}}$$
, b) $g'(x) = \frac{3x^2 + x^4}{(1+x^2)^2}$.

3. $VL = \frac{\tan^2 x}{1 + \tan^2 x} = \frac{\frac{\sin^2 x}{\cos^2 x}}{1 + \frac{\sin^2 x}{\cos^2 x}} = \frac{\frac{\sin^2 x}{\cos^2 x}}{\frac{\cos^2 x}{\cos^2 x}} = \frac{\frac{\sin^2 x}{\cos^2 x}}{\frac{1}{\cos^2 x}} = \frac{\sin^2 x}{\cos^2 x} = \frac{\sin^2 x}{\cos^2 x}$

 $=\sin^2 x = HL$

V.S.B.

4.
$$\int_{\frac{\pi}{9}}^{\frac{\pi}{3}} \sin 3x dx = \left[-\frac{1}{3} \cos 3x \right]_{\frac{\pi}{9}}^{\frac{\pi}{3}} = -\frac{1}{3} \cos \pi + \frac{1}{3} \cos \frac{\pi}{3} = -\frac{1}{3} \cdot (-1) + \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{2} \cdot \underline{\text{Svar: }} \frac{1}{2}.$$

5. Skärningspunkterna med x-axeln ges av $4x - x^3 = 0 \Leftrightarrow x(4-x^2) = 0$ med lösningarna x = -2, x = 0 och x = 2. De positiva nollställena = 0 och x = 2 begränsar integrationsområdet. Eftersom t.ex. y(1) = 3 > 0, ligger kurvan ovanför x-axeln för 0 < x < 2.

$$A = \int_0^2 (4x - x^3) dx = \left[2x^2 - \frac{x^4}{4} \right]_0^2.$$

$$= 2 \cdot 4 - \frac{16}{4} - 0 = 4$$
Svar: 4 a.e.

6.
$$\sin 2x + \cos x = 0 \Leftrightarrow 2\sin x \cos x + \cos x = 0 \Leftrightarrow \cos x (2\sin x + 1) = 0$$
.

En uppsättning lösningar ges av
$$\cos x = 0 \Rightarrow x = \frac{\pi}{2} + n\pi$$
; *n* godtyckligt heltal.

Övriga lösningar ges av
$$2\sin x + 1 = 0 \Leftrightarrow \sin x = -\frac{1}{2}$$
. Lösningar $x = -\frac{\pi}{6} + n \cdot 2\pi$ och

$$x = \frac{7\pi}{6} + n \cdot 2\pi$$

Svar:
$$x = \frac{\pi}{2} + n\pi$$
, $x = -\frac{\pi}{6} + n \cdot 2\pi$ och $x = -\frac{5\pi}{6} + n \cdot 2\pi$.

7. I figuren avläses
$$y_{\min} = -1$$
 och $y_{\max} = 3$. Konstanten a ges av medelvärdet av y_{\max} och y_{\min} ; $a = \frac{y_{\min} + y_{\max}}{2} = 1$. Konstanten b ges av $b = \frac{y_{\max} - y_{\min}}{2} = 2$. Perioden P avläses till $\frac{2\pi}{3}$.

Konstanten c ges av:
$$c = \frac{2\pi}{P} = 3$$
. Konstanten d får man t.ex. genom att $y = 2$ för $x = 0$:

$$1 + 2\sin d = 2 \Leftrightarrow \sin d = \frac{1}{2}$$
. Möjliga lösningar $d = \frac{\pi}{6}$ och $d = \frac{5\pi}{6}$. För att välja rätt lösning,

studerar vi derivatan
$$y' = bc \cos(cx+d) = 6\cos(3x+d)$$
. Med $d = \frac{\pi}{6}$ får vi $y'(0) = \frac{\sqrt{3}}{2}$. Med

$$d = \frac{5\pi}{6}$$
 får vi $y'(0) = -\frac{\sqrt{3}}{2}$. Eftersom $y'(0)$ är positiv i figuren, måste vi välja $d = \frac{\pi}{6}$.

Svar:
$$a = 1, b = 2, c = 3, d = \frac{\pi}{6}$$
.

Tangentens ekvation är
$$y_t = kx + m$$
, där $k = y'(\pi)$.
$$y'(x) = \frac{\cos x \cdot x - \sin x \cdot 1}{x^2} = \frac{x \cos x - \sin x}{x^2} \Rightarrow y'(\pi) = -\frac{1}{\pi}$$
, vilket ger k -värdet.

För
$$x = \pi$$
 antar y värdet 0. Tangenten ska därför gå genom punkten $(\pi, 0)$. Detta ger $k \cdot \pi + m = 0 \Leftrightarrow m = -k\pi = 1$.

Svar: Tangentens ekvation är
$$y = 1 - \frac{x}{\pi}$$
.

9. Kedjeregeln med
$$f(u) = \ln u$$
 och $u = 1 + x \sin(x^2)$ samt produkt- och kedjeregeln för inre

derivatan ger
$$f'(x) = \frac{1}{u} (1 \cdot \sin x^2 + x \cdot 2x \cos x^2) = \frac{\sin x^2 + 2x^2 \cos x^2}{1 + x \sin x^2}$$

$$\frac{\text{Svar:}}{1+x\sin x^2} \frac{\sin x^2 + 2x^2\cos x^2}{1+x\sin x^2}.$$

10. Undersök derivatan: $y' = 12 \cdot (-0.25) \cdot e^{-0.25x} \sin 0.75x + 12e^{-0.25x} \cdot 0.75 \cos 0.75x$ = $12e^{-0.25x} (0.75 \cos 0.75x - 0.25 \sin 0.75x)$.

Då $e^{-0.25x} \neq 0$ för alla x fås derivatans nollställen av $0,75\cos 0,75x - 0,25\sin 0,75x = 0 \Leftrightarrow \tan 0,75x = 3,0 . \Rightarrow 0,75x_n = 1,249 + n\pi, n = 0, 1, 2, \Leftrightarrow x_n \approx 1,665 + 4,189n$. Inom definitionsområdet ligger

$$x_0 \approx 1,665$$
; $y(x_0) \approx 22,51$.

$$x_1 \approx 5,854$$
; $y(x_1) \approx 12,37$.

Ändpunkterna: y(0) = 15, $y(10) \approx 15{,}01$

Svar: Största höjd 23 cm, minsta höjd 12 cm.

11. Enligt Pytagoras sats är $a^2 + b^2 = c^2$.

Vi ska nu visa med ett motsägelsebevis att *a*, *b* och *c* inte alla kan vara udda heltal.

Antag att a, b och c alla är udda heltal. Då kan vi sätta

$$a = 2m + 1$$
, $b = 2n + 1$ och $c = 2k + 1$,

där m, n och k är heltal. Detta ger

$$a^2 + b^2 = (2m+1)^2 + (2n+1)^2$$

$$=4m^2+4m+1+4n^2+4n+1$$

$$= 2(2m^2 + 2m + 2n^2 + 2n + 1).$$

Alltså är $a^2 + b^2$ ett jämnt tal.

Men
$$c^2 = (2k+1)^2 = 4m^2 + 4m + 1 = 2(2m^2 + 2m) + 1$$

är ett udda tal. Därför kan det inte gälla att $a^2 + b^2 = c^2$, och vi har en motsägelse. Antagandet att a, b och c alla är udda heltal måste vara felaktigt, vilket skulle bevisas.

Rättningsmall

ixai	Kattilingsinan			
1.	Svarar med -39 $^{\circ}$ / Svarar även med v=321 $^{\circ}$ / Svarar bara med v=321 $^{\circ}$	-1p		
2a.	-			
2b.	-			
3.	Flyttar termer mellan leden	-2p		
4.	Fel primitiv funktion	-2 p		
	Anger enhet, t.ex. a.e.	-1 p		
5.	Integrationsgränserna ej analytiskt bestämda	-1 p		
	Korrekt ekvation för integrationsgränserna, men räknefel vid bestämning av dessa -1p			
	Fel primitiv funktion (utom enkelt räknefel):	-3 p		
	Använder alla tre skärningspunkterna mellan kurvan och x-axeln (beräknar alltså två			
	areor/integraler	-2p		
	Svarar med negativ area eller får negativ area, tar bort minustecken utan t	ydlig motivering:		
	-1 p			
6.	Varje saknad lösningsfamilj	-1p		
	Fel period/period saknas	-1p		
7.	Varje felaktig konstant	-1 p		
	Avläser fasförskjutning, vilket här motsvarar $-\frac{d}{c}$, till $\frac{11\pi}{18}$	OK		
	Rätt ekvation för d men motiverar inte valet av lösning.	-1p		
8.	Linjens lutning korrekt beräknad och k-värdet framgår tydligt	+1p		
9.	Deriveringsfel	-2p		
	Mindre räknefel	-1 p		
		1		
10.	Deriveringsfel som gör uppgiften enklare	-3p		
	Deriveringsfel	-2p		
	Antar att störstvärde då $\sin 0.75x = 1$, på samma sätt för minstvärde.	-3p		
	Fel period vid lösning av ekvationen $\tan 0.75x = 3.0$	-1p		
	Undersöker inte intervallets ändpunkter	-1 p		
	Svarar med x-värden eller med punkter	-1 p		
11.	Visar bara att c ² är jämn	-2p		
	Visar att c^2 är jämn och visar sedan att c jämn medför c^2 jämn.	-2p		
	Påstår utan bevis att kvadraten på ett jämnt/udda tal är jämn/udda:	-1 p		
	Påstår utan bevis att summan av två udda tal är jämn:	-1 p		
	·	*		