MA211

Lecture 20: Improper Integrals – Type 2

Monday 17th Nov 2008

Topics of the day...

1 Improper Integrals: Type 2

2 The Comparison Test

See also Section 7.7 of Stewart.

Last week we saw how to evaluate improper integrals of *Type 1* where the limits of integration include one or both of $-\infty$ or ∞ , e.g.,

Improper Integrals: Type 1

$$\int_{-\infty}^{b} f(x)dx, \qquad \int_{a}^{\infty} f(x)dx, \qquad \int_{-\infty}^{\infty} f(x)dx$$

How we'll look at Improper Integrals of Type 2

$$\int_a^b f(x)dx, \quad \text{where } f(x) \to \pm \infty$$

at a, b or somewhere in between.

In particular, we want to evaluate

$$\int_{a}^{b} f(x) \, dx$$

where f(x) may be unbounded at a or b, or at some point in between.

$$f(x)$$
 unbounded at $x = a$

When function f(x) is defined for $a < x \le b$ then evaluate

$$\mathcal{I}(t) = \int_{t}^{b} f(x)dx$$
 and then use that:

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx.$$

So:

1 Evaluate
$$\mathcal{I}(t) = \int_{t}^{b} f(x) dx$$

- 2 Compute the limit $L = \lim_{t \to 2^+} \mathcal{I}(t)$
- If L is finite then $\int_a^b f(x) dx = L$, and we can say that $\int_a^b f(x) dx$ converges to L.
 - If L is not finite, then integral is said to diverge.

Example

Does the integral $\int_0^1 \frac{1}{x} dx$ converge?

Example

Evaluate the improper integral $\int_0^1 \frac{1}{x^2} dx$

Example

Evaluate the TYPE 2 Improper Integral $\int_0^1 \frac{1}{\sqrt{x}} dx$

$$\int_{0}^{1} x^{-p} dx \text{ will } converge \text{ when } p < 1, \text{ and } diverge \text{ for } p \ge 1.$$

Proof: If p = 1 then

$$\int_{t}^{1} x^{-p} dx = \int_{t}^{1} \frac{1}{x} dx = \ln(x) \Big|_{t}^{1} = \ln(t) - \ln(1) = \ln(t).$$

But $\lim_{t\to 0} \ln(t)$ does not exists, so $\int_0^1 \frac{1}{x} dx$ diverges.

If
$$p \neq 1$$
 then $\int_{t}^{1} x^{-p} dx = \frac{x^{1-p}}{1-p} \Big|_{1}^{1} = \frac{1-t^{1-p}}{1-p}$.

If p < 1 then 1 - p > 0 so the limit $\lim_{t \to 0} t^{1-p} = 0$. So the integral

converges to
$$\frac{1}{1-p}$$
.

If however p>1 then 1-p<0 and $\lim_{t\to 0}t^{1-p}$ does not exist, so the integral **diverges**.

If f is defined on [a,b) and $\lim_{t\to b^-}\int_a^t f(x)\,dx$ exists, call the limit L and write

$$\int_{a}^{b} f(x) dx = L.$$

Again, $\int_a^b f(x) dx$ is said to **converge to** *L*. If no such limit exists, the integral is divergent.

Example

Does the $\int_0^4 \frac{dx}{\sqrt{4-x}}$ converge or diverge?

If a function f is defined on [a,b] except at some point c in (a,b) at which f is *unbounded*, then use that

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

The integral converges if and only if $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ both converge.

Example

Does the improper integral $\int_{1}^{1} \frac{dx}{x}$ converge or diverge?

Earlier we saw how to evaluate $\int_{1}^{\infty} \frac{1}{1+x^2} dx$.

But suppose we just wanted to determine if it converges or diverges...

Often, we just want to know if some integral converges or diverges – and not necessarily evaluate the integral.

In that case we can compare the integral with one that we know. This is helpful because we can use the *Comparison Test*...

Comparison Test

Suppose f and g are defined on $[a, \infty)$ and

$$0 \le f(x) \le g(x)$$
 for all $x \in [a, \infty)$.

Then

$$\int_{a}^{\infty} f(x)dx \le \int_{a}^{\infty} g(x)dx.$$

Therefore

- If $\int_a^\infty g(x) dx$ converges, so does $\int_a^\infty f(x) dx$
- 2 if $\int_{a}^{\infty} f(x) dx$ diverges, so does $\int_{a}^{\infty} g(x) dx$

There are corresponding results for the other types of improper integrals.

Example

Does the integral $\int_{1}^{\infty} \frac{dx}{x^2 + x^3}$ converge or diverge?

Example

Does the improper integral $\int_0^1 \frac{dx}{2x^2 + 3x^3}$ converge or diverge?

Example

Establish if $\int_{0}^{1} \frac{dx}{2\sqrt{x} + x^2}$ is convergent or divergent.

NOTE: The solution given to this one in class was wrong.

Correct answer: For $0 \le x \le 1$ we know that $\sqrt{x} \ge x^2$, so

$$2\sqrt{x} + x^2 \ge 3\sqrt{x}.$$

Thus

$$\frac{1}{2\sqrt{x}+x^2} \leq \frac{1}{3}\frac{1}{\sqrt{x}} \leq \frac{1}{\sqrt{x}}.$$

But we know that $\int_0^1 x^{-1/2} dx$ converges, so by the Comparison

Principal, so too does $\int_{0}^{1} \frac{dx}{2\sqrt{x} + x^{2}}.$

Example

Test for convergence of the following integral:

$$\int_{1}^{\infty} \frac{\cos x \, dx}{1 + x^2}$$

Exercise (Q20.1)

For each of the following integrals, determine if they *converge* or *diverge*

(i)
$$\int_{1}^{\infty} \frac{|\cos(x)|}{x^3 + 2} dx.$$

(iii)
$$\int_0^1 \frac{dx}{x^{3/5}} dx.$$

(v)
$$\int_{-2}^{2} \frac{1}{\mathbf{x}^2} dx$$

$$(ii) \int_0^1 \frac{dx}{x^{5/3}} dx.$$

(iv)
$$\int_0^\infty \frac{x}{x^{3/2} + 2x^2} dx$$
.

(vi)
$$\int_{1}^{\infty} \frac{1}{\sqrt{x+x^4}} dx$$