

planetmath.org

Math for the people, by the people.

invariant forms on representations of compact groups

 ${\bf Canonical\ name} \quad {\bf Invariant Forms On Representations Of Compact Groups}$

Date of creation 2013-03-22 13:23:40 Last modified on 2013-03-22 13:23:40

Owner bwebste (988) Last modified by bwebste (988)

Numerical id 11

Author bwebste (988) Entry type Theorem Classification msc 54-00 Let G be a real Lie group. TFAE:

- 1. Every real representation of G has an invariant positive definite form, and G has at least one faithful representation.
- 2. One faithful representation of G has an invariant positive definite form.
- 3. G is compact.

Also, any group satisfying these criteria is reductive, and its Lie algebra is the direct sum of simple algebras and an abelian algebra (such an algebra is often called reductive).

Proof. $(1) \Rightarrow (2)$: Obvious.

 $(2) \Rightarrow (3)$: Let Ω be the invariant form on a faithful representation V. Let then representation gives an embedding $\rho: G \to \mathrm{SO}(V,\Omega)$, the group of automorphisms of V preserving Ω . Thus, G is homeomorphic to a closed subgroup of $\mathrm{SO}(V,\Omega)$. Since this group is compact, G must be compact as well.

(Proof that $SO(V,\Omega)$ is compact: By induction on dim V. Let $v \in V$ be an arbitrary vector. Then there is a map, evaluation on v, from $SO(V,\Omega) \to S^{\dim V-1} \subset V$ (this is topologically a sphere, since (V,ω) is isometric to $\mathbb{R}^{\dim V}$ with the standard norm). This is a a fiber bundle, and the fiber over any point is a copy of $SO(v^{\perp},\Omega)$, which is compact by the inductive hypothesis. Any fiber bundle over a compact base with compact fiber has compact total space. Thus $SO(V,\Omega)$ is compact).

 $(3) \Rightarrow (1)$: Let V be an arbitrary representation of G. Choose an arbitrary positive definite form Ω on V. Then define

$$\tilde{\Omega}(v,w) = \int_{G} \Omega(gv, gw) dg,$$

where dg is Haar measure (normalized so that $\int_G dg = 1$). Since K is compact, this gives a well defined form. It is obviously bilinear, $bSO(V, \Omega)y$ the linearity of integration, and positive definite since

$$\tilde{\Omega}(gv, gv) = \int_{G} \Omega(gv, gv) dg \ge \inf_{g \in G} \Omega(gv, gv) > 0.$$

Furthermore, $\tilde{\Omega}$ is invariant, since

$$\tilde{\Omega}(hv,hw) = \int_{G} \Omega(ghv,ghw)dg = \int_{G} \Omega(ghv,ghw)d(gh) = \tilde{\Omega}(v,w).$$

For representation $\rho: T \to \operatorname{GL}(V)$ of the maximal torus $T \subset K$, there exists a representation ρ' of K, with ρ a T-subrepresentation of ρ' . Also, since every conjugacy class of K intersects any maximal torus, a representation of K is faithful if and only if it restricts to a faithful representation of T. Since any torus has a faithful representation, K must have one as well.

Given that these criteria hold, let V be a representation of G, Ω is positive definite real form, and W a subrepresentation. Now consider

$$W^\perp = \{v \in V | \Omega(v,w) = 0 \, \forall w \in W\}.$$

By the positive definiteness of Ω , $V=W\oplus W^{\perp}$. By induction, V is completely reducible.

Applying this to the adjoint representation of G on \mathfrak{g} , its Lie algebra, we find that \mathfrak{g} in the direct sum of simple algebras $\mathfrak{g}_1, \ldots, \mathfrak{g}_n$, in the sense that \mathfrak{g}_i has no proper nontrivial ideals, meaning that \mathfrak{g}_i is simple in the usual sense or it is abelian.