Basics

Notations

- $\bullet \ \left(\begin{smallmatrix} V\\ k \end{smallmatrix}\right) \coloneqq \{A: A \subseteq V \land |A| = k\}$
- $[n] := \{1, \ldots, n\} \subset \mathbb{N}$
- Power set $2^X := \{A : A \subseteq X\}$

GRAPHS

- **Definition**: G = (V, E) with $E \subseteq V^2, V \cap E = \emptyset$
- **Vertex**: $v \in V$ for graph G = (V, E)
 - $\circ \ \ v \ incident \ with \ e \Leftrightarrow v \in e$
 - $\circ v_1, v_2 \text{ ends of } e \Leftrightarrow e = v_1 v_2$
 - $\circ v_1, v_2 \text{ adjacent/neighbors} \Leftrightarrow v_1 v_2 \in E$
- Edge: $e = \{x, y\} \in E$ for graph G = (V, E) (short e = xy)
- \circ e edge at $v \Leftrightarrow v$ incident with e
- \circ e joins $v_1, v_2 \Leftrightarrow e = v_1 v_2$
- o xy is X-Y- $edge \Leftrightarrow x \in X \land y \in Y$
- $\circ e_1, e_2 \ adjacent/neighbors \Leftrightarrow \exists \ v : v \in e_1 \land v \in e_2$
- Vertex sets:
- $\circ V(G) = V \text{ for graph } G = (V, E)$
- o $X \subset V(G)$ independent \Leftrightarrow no $x_1, x_2 \in X$ are adjacent
- \circ neighborhood of $v \in V(G)$: $N(v) = \{u \in V(G) : uv \in E(G)\}$
- Edge sets:
- $\circ E(G) = E \text{ for graph } G = (V, E)$
- o $\mathit{E}(X, \mathit{Y})$: set of edges between $X \subset \mathit{V}(G)$ and $\mathit{Y} \subset \mathit{V}(G)$
- ∘ E(x, Y): set of edges between vertex $x \in V(G)$ and $Y \subset V(G)$
- E(v): set of edges at $v \in V(G)$
- Order: = |V(G)|, short |G|
- **Size**: = |E(G)|, short ||G||
- Trivial graph: graph of order 0 or 1
- Incidence graph of $G: IG = (V \cup E, \{\{v, e\} : v \in e, e \in E\})$
- **Isomorphic** (G_1 to another graph G_2 , write $G_1 \cong G_2$ or even $G_1 = G_2$): \exists bijection $f: V_1 \rightarrow V_2: \{u, v\} \in E_1 \Leftrightarrow \{f(u), f(v)\} \in E_2$
- Graph union: $G \cup G' = (V(G) \cup V(G'), E(G) \cup E(G'))$
- Graph intersection: $G \cap G' = (V(G) \cap V(G'), E(G) \cap E(G'))$
- Graph multiplication: G * G': join all $v \in G$ with all $v' \in G'$ (with $V(G) \cap V(G') = \emptyset$)
- **Subgraph** G' of G (write $G' \subseteq G$): if $V(G') \subseteq V(G)$ and $E(G') \subseteq E(G)$
 - ∘ G contains G'
 - o G' proper subgraph of G: if $G' \subseteq G$ and $G' \neq G$
 - o G' induced subgraph of $G: G' \subseteq G$ and E(G') contains all edges of G with both ends in V(G'), V(G') induces G', write G' = G[X] (with X = V(G'))
 - ∘ *Edge-induced subgraph*: subgraph induced by $X \subseteq E(G)$, note G[X]
 - \circ G' spanning subgraph of G: V(G') = V(G)
- **Supergraph**: G of G' (write $G \supseteq G'$): as above.
- Vertex cover: $V' \subseteq V(G)$ s.t. any $e \in E(G)$ is incident to a vertex in V'
- Graph subtraction:
 - $\circ G U = G[V(G) \setminus U]$ for some vertex set U
 - $\circ G v = G[V(G) \setminus \{v\}]$ for some vertex v
 - $\circ G G' = G[V(G) \setminus V(G')]$ for some graph G'
- Edge addition: $G + F = (V(G), V(E) \cup F)$ for some $F \subseteq V(G)^2$
- Complement: $\overline{G} = (V(G), V^2 \setminus E(G))$
- Line graph of $G: L(G) = (E(G), \{xy \in E(G)^2 : x, y \text{ adjacent in } G\})$
- Complete graph: (X, X^2) with vertex set X
 - o K_n : complete graph on n vertices

VERTEX DEGREES

- **Degree** of $v \in V$: $d(v) = \deg(v) = |N(v)|$
 - $\circ \ v \in V(G) \ isolated: d(v) = 0$
 - $\circ \ v \in V(G) \ leaf: d(v) = 1$
- o number of vertices of odd degree is even
- Minimum degree of graph $G: \delta(G) = \min\{d(v) : v \in V(G)\}$
- Maximum degree of graph $G: \Delta(G) = \max\{d(v) : v \in V(G)\}$
- Degree sum: $\sum_{v \in V(G)} \deg(v) = 2|E(G)|$
- Average degree of graph $G: d(G) = \frac{1}{|G|} \sum_{v \in V} d(v)$ $\circ \ \delta(G) \le d(G) \le \Delta(G)$
- k-regular graph: $\forall v \in V(G) : d(v) = k$
- o cubic graph: 3-regular graph
- Vertex-Edge-ratio of graph G: $\varepsilon(G) = \frac{\|G\|}{|G|}$
- $\circ \ \varepsilon(G) = \frac{1}{2}d(G)$
- $\circ \ \ \text{every graph with} \ \|G\| \geq 1 \ \text{has} \ H \subseteq G \ \text{with} \ \delta(H) > \varepsilon(H) \geq \varepsilon(G)$

PATHS

• Path: $(\{v_1,\ldots,v_n\},\{\{v_1,v_2\},\ldots,\{v_{n-1},v_n\}\})$ (read: v_0v_n -path)

- \circ shorthand: $v_1 \dots v_n$
- $\circ v_0, v_n$ *linked* by path
- $\circ \ \upsilon_0, \, \upsilon_n \ \textit{end-vertices/ends} \ \text{of path}$
- $\circ v_1, \ldots, v_{n-1}$ inner vertices of path
- Length: $|E(P)| \neq |V(P)|$
- Shorthands $(0 \le i \le j \le k)$:
 - $P = x_0 \dots x_k, \, P = x_1 \dots x_{k-1}$
 - $Px_i = x_0 \dots x_i, Px_i = x_0 \dots x_{i-1}$
 - $\circ \ x_i P = x_i \dots x_k, \, \mathring{x_i} P = x_{i+1} \dots x_k$
 - $x_i P x_j = x_i \dots x_j, \, \mathring{x_i} P \mathring{x_j} = x_{i+1} \dots x_{j-1}$
- Path concatenation: $Px \cap xQy \cap yR = PxQyR$
- A-B-path: $V(P) \cap A = \{x_0\} \land V(P) \cap B = \{x_n\}$
- **H-path**: graph H, P meets H exactly in its ends
- **Independent**: two ab-paths are independent \Leftrightarrow they only share a and b
- Path existence: Every G with $\delta(G) \ge 2$ contains path of length $\delta(G)$
- **Distance**: $d_G(x, y) = \min(\{k : \exists x y \text{path of length } k\} \cup \{\infty\})$
- Central: $v \in V(G)$ where cen = $\max\{d_G(v, x) : v \neq x \in V(G)\}$ is minimal
- Radius: $rad(G) = minimal cen = min_{x \in V(G)} max_{u \in V(G)} d_G(x, y)$
- **Diameter** of G: diam $(G) = \max\{d_G(x, y) : x, y \in V(G)\}$
- \circ radius-diameter-relation: $rad(G) \le diam(G) \le 2rad(G)$
- o radius-degree-vertex-restriction:

$$\operatorname{rad}(G) \leq k \wedge \Delta(G) \leq d \geq 3 \Rightarrow |G| \leq \frac{d}{d-2}(d-1)^k$$
• Walk: alternating sequence $v_0e_0\dots e_{k-1}v_k$ s.t. $e_i = v_iv_{i+1}$ ($\forall i < k$)

- \circ closed walk: $v_k = v_0$
- walk-path-relation: all vertices in walk distinct → path
- \circ walk-path-induction: $\exists v_0 v_k$ -walk $\Rightarrow \exists v_0 v_k$ -path

CYCLES

- Cycle: $C = P + x_{k-1}x_0$ with path $P = x_0 \dots x_{k-1}$ $(k \ge 3)$
 - \circ shorthand: $x_0 \dots x_{k-1} x_0$
- Length: = |C| = ||C||
- **k-cycle**: C_k = cycle of length k
- **Girth** of graph $G: g(G) = \min(\{k : G \text{ contains } C_k\} \cup \{\infty\})$
- \circ girth-diameter-relation: $g(G) \le 2 \operatorname{diam}(G) + 1$
- ∘ girth-vertex-relation: $\delta(G) \ge 3 \Rightarrow g(G) < 2 \log |G|$
- Circumference of graph $G = \max(\{k : G \text{ contains } C_k\} \cup \{0\})$
- **Chord** of cycle $C \subseteq G := xy \in E(G)$ with $xy \notin E(C)$, but $x, y \in V(C)$
- Induced cycle: induced subgraph of G that is a cycle (= cycle in G with no chords)
- Cycle existence: Every G with $\delta(G) \geq 2$ contains cycle of length $\geq \delta(G) + 1$
- Odd closed walk, odd cycle: G has odd closed walk \Rightarrow G has odd cycle

CONNECTIVITY

- Connected graph $G: \forall x, y \in V(G): \exists xy$ -path
- \circ connected subset $U \subseteq V(G)$: if G[U] is connected
- Vertex enumeration: G connected \Rightarrow vertices can be enumerated v_1, \ldots, v_n s.t. $G_i := G[v_1, \ldots, v_i]$ is connected $(\forall i \leq n)$
- · Component: maximal connected subgraph
 - \circ graph partitioning: components partition G
- Subgraph separation: $X \subset V(G)$ separates $A, B \subset V(G) \Leftrightarrow$ any A-B-path has vertex in X
- separator X
- Cut-Vertex: vertex separating two other vertices of the component
- Bridge: edge separating its ends (= edges of component not lying on any cycle)
- **k-connected**: if $|G| > k \land G X$ is connected $\forall X \subseteq V(G)$ with |X| < k
- \rightarrow no two vertices in G are separated by fewer than k other vertices
- \rightarrow any two vertices can be joined by k independent paths
- k-linked: if for any 2k vertices $(s_1, \ldots, s_k, t_1, \ldots, t_k) \exists$ pairwise disjoint $s_i t_i$ -paths (note: k-connected \Rightarrow k-linked)
- Connectivity: $\kappa(G) = \max\{k : G \text{ is } k\text{-connected}\}$
- **l-edge-connected**: if $|G| > 1 \land G F$ is connected $\forall F \subseteq E(G)$ with |F| < l
- **Edge-connectivity**: $\kappa'(G) = \lambda(G) = \max\{l : G \text{ is } l\text{-edge-connected}\}$
- Connectivity and smallest degree: $\kappa(G) \le \kappa'(G) \le \delta(G)$
- Connectivity and average degree: $d(G) \ge 4k \Rightarrow G$ has k-connected subgraph
- Menger's theorem: for $A, B \subseteq V(G)$:
 - min # of vertices separating A and $B = \max \#$ of disjoint A-B-paths
 - \circ edge corollary: minimum number of edges separating a and b = maximum number of edge-disjoint a-b-paths
- Menger global:
 - o k-connected $\Leftrightarrow \forall a, b \in V(G) \exists k$ pairwise independent ab-paths
 - o k-edge-connected $\Leftrightarrow \forall a, b \in V(G) \exists k$ pairwise edge-disjoint ab-paths

TREES AND FORESTS

· Forest: Graph with no cycle as subgraph

- Tree: Graph that is connected and acyclic
- \Leftrightarrow *G* is connected and $\forall e \in E(G) : G e$ is disconnected (*minimal-connected*)
- \Leftrightarrow *G* is acyclic and $\forall xy \notin E(G) : G \cup xy$ has cycle (maximal-acyclic)
- \Leftrightarrow G is connected and 1-degenerate $(\forall G' \subseteq G : \delta(G') \leq 1)$
- \Leftrightarrow G is connected and ||G|| = |G| 1
- \Leftrightarrow G is acyclic and ||G|| = |G| 1
- $\Leftrightarrow \forall u, v \in V(G) \exists \text{ unique } uv\text{-path}$
- Special trees: path, star, spider, caterpillar, broom
- Leaf existence: Tree T, $|T| \ge 2 \Rightarrow T$ has leaf
- Edge count: Tree T, $|T| = n \Rightarrow ||T|| = n 1$

BIPARTITE GRAPHS

- **r-partite** graph G: V(G) allows partitioning in r classes s.t. $\forall e = xy \in E(G): x$ and y are in different classes
- Bipartite graph: 2-partite graph
- $\Leftrightarrow G$ contains no cycles of odd length
- \circ complete bipartite: $K_{m,n} = (A \cup B, \{a, b\} : a \in A, b \in B)$

CONTRACTION AND MINORS

- **Subdivision** of graph *G*: any graph obtained from *G* by subdividing edges
- Topological minor: H is topological minor if $TH\subseteq G$ where TH is built from H by subdividing edges
 - $\circ~$ branch vertices: original vertices of H
 - o subdividing vertices: vertices placed on edges joining branch vertices
- **MH**: $G \stackrel{(*)}{=} MH$ is minor of H if
- $\circ V(G) = V_1 \stackrel{\cdot}{\cup} \cdots \stackrel{\cdot}{\cup} V_n \text{ with } n = |H|$
- $\circ G[V_i]$ connected $(\forall i = 1, \ldots, n)$
- o If $V(H) = \{v_1, \, \dots, \, v_n\}$ and $v_i v_j \in E(H)$, then \exists edge between V_i and V_j
- (*): Notation abuse: MH is class of graphs
- Branch sets: V_i's from above
- Extended branch graph: Branch set together with incident edges
- **Minor** (H of G, noted $H \leq G$): $\Leftrightarrow MH \subseteq G$
- \rightarrow $H \leq G \Leftrightarrow H$ can be obtained by edge/vertex deletions + **contractions**.
- Note: $TH \subseteq MH$
- · Edge contraction:

$$G\circ xy=((V\setminus\{x,\,y\})\cup v_{xy},$$

$$(E\setminus\{e:x\in E\vee y\in e\})\cup \{v_{xy}z:z\in (N_G(x)\cup N_G(y))\setminus\{x,\,y\}\})$$
 with $xy\in E(G)$

• **De-contraction**: if $\exists xy \in E(G) : \kappa(G \circ xy) \ge 3$ (for G with $\kappa(G) \ge 3$, $|G| \ge 5$)

EULER TOURS

- · Definition: closed walk with
- \circ no edges of G are repeatedly used
- o all edges of G are used
- Eulerian graph: graph containing an Euler tour $\Leftrightarrow \forall v \in V(G) : d(v)$ even

ALGEBRAIC ASSETS

• Adjacency matrix: $A(G) = \mathbb{R}^{n \times n} \ni A_{i,j} = \begin{cases} 1, & ij \in E \\ 0, & \text{else} \end{cases}$

OTHER GRAPH NOTIONS

- Digraph: G=(V,E) with vertex set V and edge set $E\subseteq\{(u,v):u,v\in V,u\neq v\}$
- **Multigraph**: G = (V, E) with vertex set V and multiset E of V-pairs
- Multigraph: G=(V,E) with vertex set V and edge set $E\subseteq 2^V=\{A:A\subseteq V\}$

Matching, Covering, Packing

MATCHING IN BIPARTITE GRAPHS

- Vertex cover: $U \subseteq V(G)$ s.t. all edges in G are incident to a vertex $\in U$
- Matching M: set of independent edges in a graph
 - \circ matching graph: $\delta(G) = \Delta(G) = 1$
 - ∘ saturating: $G = (A \cup B, E)$ has matching saturating A⇔ $\forall S \subseteq A : N(S) \ge |S| \quad (N(S) := \{b \in B : ab \in E, a \in S\})$

- $\begin{array}{l} \circ \ \textit{nearly} \colon G = (A \cup B, \, E), \, \forall S \subseteq A : |N(S)| \geq |S| d \quad (d \geq 1). \\ \\ \Rightarrow \ \exists \ \mathsf{matching} \ M \ \mathsf{saturating} \ \mathsf{all} \ \mathsf{but} \ \mathsf{at} \ \mathsf{most} \ d \ \mathsf{vertices} \ \mathsf{of} \ A \\ \end{array}$
- k-factor: k-regular spanning subgraph
- Matching vs vertex cover: size of largest matching = size of smallest vertex cover

(Königs theorem)

- · Matching existence:
 - o neighbor-based: $G = (A \cup B, E)$ contains matching of $A \Leftrightarrow |N(S)| \ge |S|$
- \circ regular + bipartite: G is k-regular + bipartite ($k \ge 1$) $\Rightarrow G$ has 1-factor
- 2k-regular: graph 2k-regular $(k \ge 1) \Rightarrow$ has 2-factor
- Marriages: make matchings based on preferences
 - preferences: family $(\leq_{\upsilon})_{\upsilon \in V}$ of linear orderings \leq_{υ} on $E(\upsilon)$
 - stable matching M:
 - $\forall e \in E \setminus M \exists f \in M : e \text{ and } f \text{ have common vertex } v \text{ with } e <_v f$
 - \circ stable matching existence: For every set of preferences, G has stable matching
- **f-factor**: spanning subgraph $H \subseteq G$ with $\deg_H(v) = f(v)$, $f: V(G) \to \{0, 1, \dots\}$ with $f(v) \le \deg(v) \quad (\forall v \in V)$
- **H-factor** (aka *perfect H-packing*): spanning subgraph s.t. each component is
 - existence: if $\delta(G) \ge \left(1 \frac{1}{k} |V(G)|\right)$ and k divides |G|, then G has K_k -factor

MATCHINGS IN GENERAL GRAPHS

- **Perfect matching**: spanning + matching subgraph of *G* (aka *1-factor*)
- existence (Tutte): G has perfect matching $\Leftrightarrow \forall S \subseteq V(G): q(G-S) \leq S$ (Tutte's condition, q(G) = number of components in G with odd order)
- \circ existence (Petersen): G bridgeless + cubic \Rightarrow G has 1-factor

Connectivity

2-CONNECTED GRAPHS AND SUBGRAPHS

- 2-connected construction: G is 2-connected

 it can be constructed by successively adding paths to a cycle (removing those paths: ear-decomposition)
- Block: maximal 2-connected subgraph or bridge
- \circ share ≤ 1 vertices with another
- \circ cycles of G = cycles of its blocks
- \circ bounds of G = minimal cuts of its blocks
- Block-cut-vertex graph
- \circ *V* = set of blocks \cup set of vertices
- $\circ E = \{\{v, B\} : v \in V(B), \text{ cut-vertex } v, \text{ block } B\}$
- block-cut-vertex graph of connected graph is tree

STRUCTURE OF 3-CONNECTED GRAPHS

- 3-connected + decontraction: all 3-connected graphs can be built by iteratively de-contracting vertices of K₄
- 3-connected + contraction: 3-connected $\Leftrightarrow \exists$ separate G_0, \ldots, G_k with $G_0 = K_4, \ G_k = G, \ G_i = G_{i+1} \circ xy$ with $\deg(x), \deg(y) \geq 3$

REST

- **Degree sequence**: multiset of degrees of vertices in V(G)
 - graphic: deg. seq. (d_1, \ldots, d_n) , iff
 - 1. $d_1 + \cdots + d_n$ even
 - 2. $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=1}^{k} i = k+1^n \min(d_i, k)$ $(\forall 1 \le k \le n)$

Planar graphs

BASIC DEFINITIONS

- Plane graph: graph drawn without intersecting edges
- Planar graph: graph that can be dran as plane graph
- Homeomorphism: $f: \mathbb{R}^n \to \mathbb{R}^n$ continuous s.t. f^{-1} is also continuous
- Arc: homeomorphic image of [0, 1] in \mathbb{R}^2 under f
 - \circ endpoints: f(0) and $f(1) \rightarrow \text{arc "joins" endpoints}$
 - o polynomial arc: arc that is union of finitely many straight line segments
- Region $Y\subseteq \mathbb{R}^2\setminus X$: any two points $\in Y$ could be joined by arc and Y is maximal $(X\subseteq \mathbb{R}^2)$
- Boundary of $X \subseteq \mathbb{R}^2$:
 - $\delta X = \{y \mid \forall \varepsilon > 0 : B(y, \varepsilon) \text{ contains points of } X \text{ and not of } X\}$
- **Jordan curve theorem**: If $X \subseteq \mathbb{R}^2$ and homeomorphic to $\{\overline{x} : \operatorname{dist}(\overline{x}, 0) = 1\}$ (*unit circle*), then $\mathbb{R}^2 \setminus X$ has two regions R_1 , R_2 and $\delta R_1 = X = \delta R_2$.

PLANE GRAPHS

- **Definition**: graph such that E(G) is set of arcs in \mathbb{R}^2 and endpoints of arcs in
 - $\lor \forall e, e' \in E, e \neq e' : e \text{ and } e' \text{ have distinct sets of edge sets}$
- ∘ $\forall e \in E, e = e \setminus \{\text{endpoints}\}\$ doesn't contain any vertices and points from other arcs
- **Faces**: regions of $\mathbb{R}^2 \setminus (\bigcup_{e \in E} e \cup V)$
- ∘ face set of graph G: F(G)
- · Maximally plane: no edges can be added without breaking planarity
- o plane triangulation: every face is bounded by triangle ⇔ graph is maximally
- Edge limitation 1: Plane graph: $|G| \ge 3 \Rightarrow ||G|| \le 3n 6$
- Edge limitation 2: Plane graph with no Δ : $||G|| \le 2|G|-4$
- **Properties**: Let G be plane graph and $H \subseteq G$.
- \circ face inheritance: $\forall f \in F(G) \exists f' \in F(H) : f' \supseteq f$
- \circ border inheritance: $\delta f \subseteq H \Rightarrow f' = f$
- \circ edge-border relations: $e \in E(G), f \in F(G) \Rightarrow e \subseteq \delta f \lor \delta f \cap \mathring{e} = \emptyset$
- o edges in circles:
 - $e \in E(G)$ is edge of a cycle $\Rightarrow e$ is on boundary of exactly 2 faces
 - not edge of a cycle $\Rightarrow e$ is on boundary of exactly 1 face
- ∘ faces in cycles: $f_1, f_2 \in F(G)$. $f_1 \neq f_2 \land \delta f_1 = \delta f_2 \Rightarrow G$ is cycle
- ∘ *cyclic boundaries*: $\kappa(G) \ge 2 \Rightarrow$ each face is bounded by cycle
- o plane forests: plane forests have exactly 1 face
- o 2-connected: 2-connected plane graph $\Rightarrow \forall f \in F(G)$ bounded by cycle
- o 3-connected: boundaries of 3-connected plane graph = its non-separating induced cycles
- $\circ \ \textit{order} \geq 3 \text{: plane graph of order} \geq 3 \ \text{maximally plane} \Leftrightarrow \text{is plane triangula-}$
- **Euler's formula**: If G is connected plane graph with f faces, then |G| - ||G|| + f = 2
- **Dual multigraph**: Given plane *G*:
- 1. Insert vertex in each face
- 2. Put edge \tilde{e} between vertices if respective faces share e (s.t. \tilde{e} and e cross once)
- 3. Result: Dual graph G' of G (plane multigraph)
- \rightarrow faces of G properly k-colored $\Leftrightarrow \exists$ proper k-coloring of vertices of G'

PLANAR GRAPHS

- **Definition**: graph s.t. \exists plane graph G' and bijection $f:V(G)\to V(G')$ s.t. $\forall u, v \in V(G), uv \in E(G): f(u), f(v)$ are endpoints of arc in G'
- Planar embedding of G: f from the definition
- Planar because of minors: The following statements are equivalent:
- \circ G is planar
- $\circ \ G \not\supseteq MK_5 \wedge G \not\supseteq MK_{3,3}$
- \circ $G \not\supseteq TK_5 \wedge G \not\supseteq TK_{3,3}$
- $\delta(G)$ **limitation**: Planar graph $\delta(G) \leq 5$
- Non-planar graphs: K_5 and $K_{3,3}$ are not planar
- Kuratowski's lemmas:
- 1. $(TK_5 \subseteq G \lor TK_{3,3} \subseteq G) \Leftrightarrow MK_5 \subseteq G \lor MK_{3,3} \subseteq G$
- 2. $\kappa(G) \geq 3 \land MK_5 \nsubseteq G \land MK_{3,3} \nsubseteq G \Rightarrow G$ is planar
- 3. $\kappa(G) \geq 3$, G edge-maximal wrt not containing TX. If S is vertex-cut of G, $|S| \le 2 \land G = G_1 \cup G_2, S = V(G_1) \cap V(G_2)$, then G_i is edge-maximal with no TX and S induces an edge
- 4. $|G| \ge 3$, G edge-maximal wrt not containing TK_5 and $TK_{3,3} \Rightarrow \kappa(G) \ge 3$
- 2-cell (embedding of G on surface S): any closed simple curve in any region of S-G is continuously contractible into a point
- **Euler characteristic**: G embedded on surface $S \Rightarrow n e + f = Euler$ characteristic is invariant
- **Euler genus**: $n e + f = 2 2\gamma \Rightarrow Euler genus 2\gamma$ of S
- Heawood's formula: $\chi(G) \le \left| \frac{7 + \sqrt{1 + 48\gamma}}{2} \right|$

(for G embedded on S with Euler char $2 - 2\gamma$)

- Klein bottle: $K_{f(\gamma)}$ is embeddable on S, unless S is $\emph{klein bottle}$

ALGEBRAIC PLANARITY CRITERIA — POSETS

- Definition: antisymmetric, reflexive, transitive relation on X (write $x \le y$ instead of (x, y))
- Incidence poset of G: poset whose cover diagram is represented by IG with vertices all below the edges
- Poset dimension: $\dim(R) = \text{smallest } k \in \mathbb{N} : R \text{ is intersection of } k \text{ total}$
- Poset dimension in planar graphs: G planar \Leftrightarrow dim(incidence poset) ≤ 3

Coloring

BASE DEFINITIONS

- Vertex coloring: map $c:V(G)\to S$ with $c(v)\neq c(w)$ for adjacent $v,\,w$
 - \circ *k-coloring*: coloring $c:V(G)\to S$ with |S|=k
- (Vertex) chromatic number: = $\chi(G) := \min\{k \in \mathbb{N} : G \text{ has } k\text{-coloring}\}$
- $\circ \chi(G) \ge \omega(G)$
- $\chi(G) \ge \frac{|G|}{\alpha(G)}$ $\chi(G) \le \Delta(G) + 1 \text{ (greedy coloring)}$
- $\circ \ \ G \ \text{connected}, \ \text{not complete}, \ \text{no odd cycles} \Rightarrow \chi(G) \leq \Delta(G)$
- k-chromatic graph: $\chi(G) = k$
- ∘ *k-colorable* graph: $\chi(G) \leq k$
- **Color classes**: partitions of V(G) with same color
- Equitable coloring: proper coloring + color classes have almost (± 1) equal
 - existence: any graph has equitable coloring in $(\Delta(G) + 1)$ colors
- ij-flip: $c': V(G) \rightarrow [k]$ is ij-flip at $v \in V(G)$ \Leftrightarrow c' obtained by flipping colors i and j in max. conn. component containing
- Edge coloring: map $c: E(G) \to S$ with $c(e) \neq c(f)$ for adjacent e, f
 - \circ edge coloring of $G \Leftrightarrow$ vertex coloring of L(G)
- \circ *k-edge-coloring*: edge-coloring $c: E(G) \rightarrow S$ with |S| = k
- Edge chromatic number: = $\chi'(G) := \min\{k \in \mathbb{N} : G \text{ has } k\text{-edge-coloring}\}$

COLORING MAPS AND PLANAR GRAPHS

- · 4-color-theorem: every planar graph is 4-colorable
- 3-color-theorem: every triangle-free planar graph is 3-colorable

COLORING VERTICES

- Chromatic number upper bound: $\chi(G) \le \frac{1}{2} + \sqrt{2\|G\| + \frac{1}{4}}$
- **Greedy coloring**: sort vertices v_1, \ldots, v_n , color them with the smallest possible color starting at v_1
- \rightarrow never uses more than $\Delta(G) + 1$ colors
- coloring number of graph G: col(G) := smallest k s.t. G has vertex enumeration where each vertex is preceded by < k neighbors

COLORING EDGES

- Vizing's theorem: for every graph $G, \chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$
- Bipartite graphs: $\chi'(G) = \Delta(G)$

LIST COLORING

- L-list-colorable: if $\exists c: V \to \mathbb{N} \ \forall v \in V : c(v) \in L(v)$ (for *list of colors* $L(v) \subseteq \mathbb{N}$ for each vertex, adjacent vertices receive different colors)
- **k-list-colorable**/-**choosable**: if *G* is *L*-list-colorable for each list *L*
- List chromatic number: $\chi_l(G) = \operatorname{ch}(G)$ $= \min \left\{ k : G \text{ is } L\text{-colorable } \forall L : V \to 2^{\mathbb{N}} : |L(v)| = k \forall v \in V(G) \right\}$ ∘ $\chi_I(G) \ge \chi(G)$ because we can choose $L(v) = \{1, ..., k\}$ ($\forall v \in V(G)$) often $\chi_l(G) \gg \chi(G)$ (see $K_{m,n}$: $\chi = 2$, $\chi_l \approx \log n$)
- Planar graphs: $\chi_l(G) \leq 5$
- Locally planar graphs: $\chi_l(G) \le 5$

PERFECT GRAPHS

- Clique number of graph $G: \omega(G) := \max\{k \in \mathbb{N} : K_k \subseteq G\}$
- Co-clique number of graph $G: \alpha(G) :=$ largest order of independent set in
- Independence number of graph G: size of largest independent vertex set
- Perfect graph: $\forall H \subseteq G: \chi(H) = \omega(H)$
- **Perfect complement**: G is perfect $\Leftrightarrow \overline{G}$ is perfect
- Perfect graph conjecture: G is perfect ⇔
 - $C_{2k+1} \nsubseteq G \text{ for } k \geq 2 \land C_{2k+1} \nsubseteq G$

Extremal Graph Theory

BASE DEFINITIONS

- **Sparse** graph: $||G|| \sim |G|$
- Dense graph: ||G|| ~ |G|²
- **Density**: ||X, Y|| := # edges between X and Y, $d(X, Y) := \frac{||X, Y||}{||X|||Y||}$

- Edge density of graph $G: ||G||/{|G| \choose 2}$
- ε -regular pair (X, Y): if $|d(X, Y) d(A, B)| \le \varepsilon$ for $\varepsilon > 0$ and all $A \subseteq X$, $B \subseteq Y \text{ with } |A| \ge \varepsilon |X|, |B| \ge \varepsilon |Y|$
- ε -regular partition: = $V_0 \dot{\cup} \cdots \dot{\cup} V_k = V$ with
- 1. $|V_0| \leq \varepsilon |V|$
- 2. $|V_1| = \cdots = |V_k|$
- 3. all but at most εk^2 of (V_i, V_j) -pairs $(1 \le i < j \le k)$ are ε -regular

SUBGRAPHS

- Extremal number: $ex(n, H) := max\{||G|| : |G| = n \land H \nsubseteq G\}$
- Extremal set: $\mathsf{EX}(n,H) \coloneqq \{G: |G| = n \land \|G\| = \mathsf{ex}(n,H) \land H \nsubseteq G\}$
- Turán graph: T(n, r) = unique complete r-partite graph with |T(n, r)| = n, partite sets differing at most by 1 ($1 \le r \le n$)
- \circ $K_{r+1} \nsubseteq T(n, r)$
- o size: ||T(n, r)|| =: t(n, r)
- o special Turán graph: $K_r^s := T(n, r)$ if n = r * s
- o Turán-graphs edge-maximal: among all r-partite graphs of order n, T(n, r)has largest size
- $\circ t(n, r) = t(n-r, r) + (n-r)(r-1) + {r \choose 2}$

o size difference to complete graph:
$$\lim_{n\to\infty} \frac{t(n-r)}{\binom{n}{2}} = \left(1 - \frac{1}{r}\right)$$

- Turán's theorem: $\forall r > 1, n \ge 1$, any graph G with |G| = n, ||G|| = $\operatorname{ex}(n, K_r)$ and $K_r \nsubseteq G$ is a T(n, r-1)
- \Leftrightarrow EX $(n, K_r) = \{T(n, r-1)\}$
- Szemerédi's regularity lemma: $\forall \varepsilon > 0 \forall 1 \le m \in \mathbb{N} \exists M \in \mathbb{N}$: every graph G with $|G| \ge m$ has ε -regular partition $V_0 \dot{\cup} \cdots \dot{\cup} V_k$ with $m \le k \le M$.
- Erdős-Stone theorem: \forall integers $r>s\geq 1$ and any $\varepsilon>0$ \exists $n_0\in\mathbb{N}$: every graph with $|G| = n \ge n_0$ and $||G|| \ge t(n, r-1) + \varepsilon n^2$ has $K_r^s \subseteq G$.
 - o corollary: the theorem together with the size difference to complete graph

$$\lim_{n\to\infty} \frac{ex(n,H)}{\binom{n}{2}} = \frac{\chi(H)-2}{\chi(H)-1}$$

- yields $\lim_{n\to\infty}\frac{ex(n,H)}{\left(\frac{n}{2}\right)}=\frac{\chi(H)-2}{\chi(H)-1}$ Chvátal-Szemerédi theorem: $\forall \varepsilon>0$ and any integer $r\geq 3$, any graph with |G|=n and $\|G\|\geq (1-\frac{1}{r-1}+\varepsilon)\left(\frac{n}{2}\right)$ has $K_r^t\subseteq G$ with $t=\frac{\log n}{500\log\left(\frac{1}{\varepsilon}\right)}$
 - existance: $\exists G \text{ with } |G| = n \text{ and } ||G|| = (1 \frac{1+\epsilon}{r-1}) \binom{n}{2}$ with $G \nsubseteq K_r^t$ for $t = \frac{5\log n}{1-(1+\epsilon)}$ $\log\left(\frac{1}{\varepsilon}\right)$
- Zarankiewicz function: z(m, n; s, t) = maximum # of edges that bipartitegraph with parts of size m and n can have without containing $K_{s,t}$
- Kővári-Sós-Turán: $z(m, n; s, t) \le (s-1)^{\frac{1}{t}} (n-t+1) m^{1-\frac{1}{t}} + (t-1) m$ $om=n, t=s: z(n, n; t, t) \le c_1 n n^{1-\frac{1}{t}} + c_2 n = O(n^{2-\frac{1}{t}})$
- Bound for $ex(n, K_{t,s})$: $\leq \frac{1}{2}z(n, n; s, t) \leq cn^{2-\frac{1}{s}} \ (t \geq s \geq 1)$ $\circ t = s = 2$: $ex(n, C_4) \le \frac{n}{4}(1 + \sqrt{4n - 3})$
- Bound for $ex(n, K_{r,r}) \ge c n^{2-\frac{2}{r+1}} \ (\forall n, r \in \mathbb{N})$
- Bound for $ex(n, P_{k+1})$: $\leq \frac{n(k-1)}{2}$

MINORS

- Hadwiger conjecture: $\chi(G) \ge r \Rightarrow MK_r \subseteq G$
 - $\circ r \in \{1, 2, 3, 4\}$: easy to see
- $\circ r \in \{5, 6\}$: proven using 4-color theorem
- ∘ $r \ge 7$: still open
- Bollobás-Thomason theorem: $d(G) \ge cr^2 \Rightarrow TK_r \subseteq G$
- Minimum degree + girth = minor: $\delta(G) \ge d$, $g(G) \ge 8k + 3$ $(d, k \in \mathbb{N},$ $d \leq 3$). Then $MH \subseteq G$ with $\delta(H) \geq d(d-1)^k$.
- Thomassen's theorem: $\forall r \in \mathbb{N} \ \exists \ f : \mathbb{N} \to \mathbb{N} \ \text{s.t. every} \ G \ \text{with} \ \delta(G) \geq 3 \ \text{and}$ $q(G) \geq f(r)$ has K_r minor
- **Kühn-Osthus theorem**: $\forall r \in \mathbb{N} \exists q \in \mathbb{N} : TK_r \subseteq G \text{ for all } G \text{ with } \delta(G) \geq G$ r-1 and $g(G) \ge g$

Ramsey theory

BASE DEFINITIONS

- · Monochromatic edge coloring: all edges have same color
- · Rainbow edge coloring: no two edges have same color
- . Lexical edge coloring: two edges have same color

 have same lower endpoint in some vertex ordering
- Ramsey number $R(k) \in \mathbb{N}$: smallest n s.t. every 2-edge-coloring of K_n contains monochromatic K_k $(n \in \mathbb{N})$
- Asymmetric Ramsey number R(k, l): smallest $n \in \mathbb{N}$ s.t. every 2-edgecoloring of K_n contains red K_k or blue K_l $(k, l \in \mathbb{N})$

- Graph Ramsey number R(G, H): smallest $n \in \mathbb{N}$ s.t. every 2-edge-coloring of K_n contains red G or blue H
- Hypergraph Ramsey number $R_r(l_1, \ldots, l_k)$: smallest $n \in \mathbb{N}$ s.t. for every *k*-coloring of $\binom{[n]}{r}$ $\exists i \in \{1, \ldots, k\}$ and a $V \subseteq [n]$ with |V| = l s.t. all sets in $\binom{V}{r}$ have color i
- Induced Ramsey number $R_{\text{ind}}(G, H)$: smallest $n \in \mathbb{N}$ s.t. \exists graph F with |F| = n with every 2-coloring of it containing red G or blue H
- Anti Ramsey number AR(n, H): maximum number of colors that edgecoloring on K_n can have without containing rainbow copy of H
- r-regular matrix: if there is a monochromatic solution of Ax = 0 for any r-coloring $c: \mathbb{N} \to [r]$ of \mathbb{N}
- **column condition**: matrix fulfills it if there is partition $C_1 \dot{\cup} \cdots \dot{\cup} C_l$ of Acolumns s.t. the following holds:
- Let $s_i \coloneqq \sum_{c \in C_i} c$ for $i \in [l]$. Then $s_1 = 0$ and every s_i is linear combination of columns in $C_1 \dot{\cup} \cdots \dot{\cup} C_{i-1} (2x_1 + x_2 + x_3 - 4x_4)$ fulfills: 2 + 1 + 1 - 4 = 0

OBSERVATIONS

- R(3) = 6
- R(2, k) = R(k, 2) = k
- Ramsey theorem: $\forall k \in \mathbb{N} : \sqrt{2}^k \le R(k) \le 4^k$
- → (Asymmetric) Ramsey numbers and graph Ramsey numbers are finite
- Induction theorem: $\forall k, l \in \mathbb{N} : R(k, l) \leq R(k-1, l) + R(k, l-1)$
- $\rightarrow R(k, l) \leq \binom{k+l-2}{k-1}$
- · Hypergraph recursion:

 $\forall r, p, q \in \mathbb{N} : R_r(p, q) \le R_{r-1}(R_r(q-1, q), R_r(p, q-1)) + 1$

• 2-Hypergraph boundary: $c_1 2^k \le R_2 (3 * \cdots * 3) \le c_2 k!$ for some $c_1, c_2 > 0$ k times

RAMSEY THEORY APPLICATIONS

- Erdős-Szekeres subsequences: Any sequence of (r-1)(s-1)+1 distinct real numbers contains increasing subsequence of length \boldsymbol{r} or a decreasing subsequence of length s
- Erdős-Szekeres m-gons: $\forall m \in \mathbb{N} \; \exists \; N \in \mathbb{N} : \text{every set of} \geq N \; \text{points in}$ general position in \mathbb{R}^2 contains the vertex set of a convex m-gon
- **Schur**: Let $c : \mathbb{N} \to [r]$ be coloring of the natural numbers with $r \in \mathbb{N}$ colors. Then there are $x, y, z \in \mathbb{N}$ of same color with x + y = z
- Rado theorem: A fulfills column condition \Rightarrow A is r-regular $\forall r \in \mathbb{N}$ $(A \in \mathbb{Z}^{n \times k})$
- $\forall s, t \in \mathbb{N} \text{ with } s \ge t \ge 1$: $R(sK_2, tK_2) = 2s + t 1$
- $\forall s, t \in \mathbb{N} \text{ with } s \ge t \ge 1$: $R(sK_3, tK_3) = 3s + 2t$
- Chvátal-Harary: $R(G, H) \ge (\chi(G) 1)(c(H) 1) + 1$ (c(H) order of largest component of H)
- $R_{ind}(G, H)$ is finite for all graphs G, H
- Canonical Ramsey theorem: $\forall k \in \mathbb{N} \exists n \in \mathbb{N} : \text{any edge coloring of } K_n$ with arbitrarily many colors contains monochromatic, rainbow or lexical K_k
- $\forall \Delta \in \mathbb{N} \exists c \in \mathbb{N}$: for every graph H with $\Delta(H) = \Delta$ we have $R(H, H) \leq$ c |V(H)|
- For any *n*-vertex graph H with $\Delta(H)=3$ we have $R(H,H)\leq cn$ for some c > 0, which grows way slower than $R(K_n, K_n) \ge \sqrt{2}'$
- Anti-Ramsey theorem:

$$\forall n, r \in \mathbb{N} : AR(n, K_r) = {n \choose 2} \left(1 - \frac{1}{r-2}\right) \left(1 - o(1)\right)$$

Flows

CIRCULATIONS

- · Circulation:
 - \circ $H \coloneqq$ abelian semigroup, G multigraph, $\widetilde{E} \coloneqq \{(x, y) : xy \in E(G)\}$ $\circ \ f:\widetilde{E} \to H, X, Y \overset{\circ}\subseteq V \overset{\circ}{\leadsto} f(X,Y) \coloneqq \textstyle \sum_{(x,y) \in (X \times Y) \cap \widetilde{E}} f(x,y)$
 - $\circ \ f: \widetilde{E} \to H \text{ is } \textit{circulation} \text{ on } G \Leftrightarrow$
 - 1. $f(x, y) = -f(y, x) (\forall xy \in E(G)),$
 - 2. $f(v, V) = 0 \ (\forall v \in v)$.
- **H-flow**: circulation $f: \widetilde{E} \to H$ with abelian *group* H
- nowhere-zero-flow: $\forall xy \in E : f(x, y) \neq 0$
- **k-flow**: \mathbb{Z} -flow f with $\forall xy \in E : 0 < |f(x, y)| < k$
- flow number $\varphi(G)$: min $\{k \in \mathbb{N} : G \text{ has } k\text{-flow}\}$

NETWORKS

- Network:
 - $\circ \ s,\, t \in V, \, s \neq t, \, c : \widetilde{E} \to \mathbb{N}_0$
- o network (G, s, t, c) with
 - source s
 - sink t

- capacity function c

• Network flow: $f: \widetilde{E} \to \mathbb{R}$ with $\forall x, y \in V$:

1.
$$f(x, y) = -f(y, x)$$

$$2. \ x \notin \{s, t\} \Rightarrow f(x, V) = 0$$

 $3. \ f(x,y) \le c(x,y)$

• Cut: $(S, V \setminus S)$ with $s \in S, t \notin S$ (for any $S \subseteq V$)

 \circ capacpity $c(S, V \setminus S)$

• **Value** of f := |f| := f(s, V)

Basic network properties:

 $\circ \ \forall \ \mathsf{circulation} \ f, \ X \subseteq V \colon \underline{f(X,X)} = f(X,V) = f(X,V \setminus X) = 0$

∘ \forall network flow f, cut S, \overline{S} : $f(S, \overline{S}) = |f|$

Ford-Fulkerson: ∀ networks:

o max value of a flow = min capacity of a cut

 $\circ \exists$ integral flow $f : \widetilde{E} \to \mathbb{N}_0$ with max flow value

• Tutte: \forall multigraph $G \exists$ polynomial $P \in \mathbb{Z}[X] : \forall$ finite Abelian group H: number of nowhere-zero H-flows on G is P(|H|-1)

• Abelian group can be exchanged: H-flow on G exists (Abelian group H) $\Rightarrow \exists \widetilde{H}$ -flow on G (\forall finite Abelian groups \widetilde{H} with $|\widetilde{H}| = |H|$)

 $\rightarrow \mathbb{Z}_4$ -flow exists $\Rightarrow \mathbb{Z}_2 \times \mathbb{Z}_2$ -flow exists

• Flow can be \mathbb{Z}_k -substituted: multigraph admits k-flow \Leftrightarrow admits \mathbb{Z}_k -flow

• Flows in planar graphs: planar graph G, dual G^* : $\chi(G) = \varphi(G^*)$

• 2-flow only on even degrees: graph has 2-flow \Leftrightarrow all degrees are even

• 3-flow on bipartite graphs: 3-regular graph has 3-flow ⇔ bipartite

• Tutte on 5-flows: every bridgeless multigraph has flow number ≤ 5

• **Seymour on 6-flows**: every brigeless graph has flow number ≤ 6

Random Graphs

ERDŐS-RÉNYI MODEL

- Erdős-Renyi Model: $\mathcal{G}(n,p)$ probability space on n-vertex graphs resulted by independently deciding whether to include each of the $\binom{n}{2}$ possible edges with fixed probability $p \in [0,1]$
- **Property** \mathcal{P} : set of graphs (e.g. $\mathcal{P} = \{G : G \text{ is } k\text{-connected}\}$)
- Almost always: let $(p_n) \in [0,1]^{\mathbb{N}}$. $G \in \mathcal{G}(n,p_n)$ has property \mathcal{P} almost always $\Leftrightarrow \lim_{n \to \infty} \operatorname{Prob}(G \in \mathcal{G}(n,p_n) \cap \mathcal{P}) = 1$
- Almost all: like almost always, but $(p_n) = \text{constant } p$
- Threshold function: $f(n): \mathbb{N} \to [0, 1]$ threshold function for property $\mathcal P$ if
- 1. $\forall (p_n) \in [0,1]^{\mathbb{N}}, p_n/f(n) \xrightarrow{n \to \infty} 0 : G \in \mathcal{G}(n,p_n)$ almost always does **not** have property \mathcal{P}
- 2. $\forall (p_n) \in [0,1]^{\mathbb{N}}, \ p_n/f(n) \xrightarrow{n \to \infty} \infty : G \in \mathcal{G}(n,p_n)$ almost always has propertpy \mathcal{P}
- ! not all properties ${\cal P}$ have a threshold function

BASIC PROBABILITY PROPERTIES

- G with |G|=n, ||G||=m: $\operatorname{Prob}(G=\mathcal{G}(n,p))=p^m(1-p)^{\binom{n}{2}-m}$
- $\operatorname{Prob}(G \in \mathcal{G}(n, p), \alpha(G) \ge k) \le {n \choose k} (1 p)^{{k \choose 2}} \quad (n \ge k \ge 2)$
- $\operatorname{Prob}(G \in \mathcal{G}(n, p), \omega(G) \ge k) \le \binom{n}{k} p^{\binom{n}{k}}$

More complex results

- Exp(#k-cycles in $G \in \mathcal{G}(n,p)$) = $\frac{n_k}{2k}p^k$ $(n_k = n(n-1)\cdots(n-k+1))$
- **Erdős**: $\forall k \in \mathbb{N} \exists \operatorname{graph} H : g(H) \geq k \land \chi(H) \geq k$
- $\forall p \in (0, 1)$, graph H, almost all $G \in \mathcal{G}(n, p)$ contain H as induced subgraph
- $\forall p \in (0, 1), \varepsilon > 0$, almost all $G \in \mathcal{G}(n, p)$ fulfill

$$\chi(G) > \frac{\log(1/(1-p))}{2+\varepsilon} \frac{n}{\log n}$$

• Asymptotic behaviour of $\mathcal{G}(n, p)$ for some properties:

- $p_n = \sqrt{n}/n^2 \Rightarrow G$ almost always has component with > 2 vertices
- o $p_n = 1/n \Rightarrow G$ almost always has a cycle
- $p_n = \log n/n \Rightarrow G$ is almost always connected
- o $p_n = (1 + \varepsilon) \log n / n \Rightarrow G$ almost always has Hamiltonian cycle
- $p_n = n^{-2/(k-1)}$ is the threshold function for containing K_k
- Lovász Local: A_1,\ldots,A_n events in some probabilistic space. If $\operatorname{Prob}(A_i) \leq p \in (0,1)$, each A_i is mutually independent from all but at most $d \in \mathbb{N}$ A_i s and $\operatorname{ep}(d+1) \leq 1$, then

$$\operatorname{Prob}\left(\bigwedge^{n} \overline{A_{i}}\right) > 0$$

- Van der Waerden's number: W(k) = smallest n s.t. any 2-coloring of [n] contains monochromatic arithmetic progression of length k
- \rightarrow using Lovász Local Lemma: $W(k) \ge 2k 1/(ek^2)$

Hamiltonian Cycles

DEFINITIONS

- Hamiltonian cycle: Closed walk on G containing all $v \in V(G)$ exactly once
- Hamiltonian graph: graph containing Hamiltonian cycle
- Hamiltonian path: Path on G containing all $v \in V(G)$ exactly once
- **Square** of graph $G: G^2 := (V, E')$ with $E' := \{uv : u, v \in V, d_G(u, v) \le 2\}$

RESULTS

- Necessary condition: G has Hamiltonian cycle $\Rightarrow \forall \emptyset \neq S \subseteq V$: graph G S cannot have more than |S| components
- **Dirac**: Every graph with $|G| \ge 3$ and $\delta(G) \ge \frac{n}{2}$ has Hamiltonian cycle
- **Clique**: Every graph with $|G| \ge 3$ with $\alpha(G) \le \kappa(G)$ is Hamiltonian
- **Fleischner**: G is 2-connected $\Rightarrow G^2$ is Hamiltonian
- Chvátal: graph with degree sequence a_1,\ldots,a_n is Hamiltonian $\Leftrightarrow a_i \leq i$ implies $a_{n-i} \geq n-1$ ($\forall i < n/2, 0 \leq a_1 \leq \cdots \leq a_n < n$)