The Riemann Hypothesis

Student ID

February 18, 2025

Abstract

The Riemann hypothesis is one of the most famous and important unsolved problems in mathematics. It is about the distribution of prime numbers and the properties of a complex function called the Riemann zeta function. The Riemann hypothesis states that all the non-trivial zeros of the zeta function have real part equal to $\frac{1}{2}$. In this document, we will introduce the zeta function, its functional equation, and some equivalent statements of the Riemann hypothesis.

1 The Riemann zeta function

The Riemann zeta function is defined as:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

$$= \prod_{\substack{p \text{ prime}}} \frac{1}{1 - p^{-s}}, \quad \text{for } \Re(s) > 1$$
(1)

In Equation 1, s is a complex variable and $\Re(s)$ is its real part. The zeta function can be extended to the whole complex plane (except for a simple pole at s=1) by using a formula called the Euler product.

The zeta function satisfies a remarkable symmetry relation known as the functional equation, which relates the values of the zeta function at s and 1-s. The functional equation can be written as in Equation 2.

$$\xi(s) = \xi(1-s) \tag{2}$$

In Equation 2 $\xi(s)$ is a function derived from $\zeta(s)$ by multiplying it with some factors involving $\Gamma(s)$, the gamma function, and π^s , the power of pi. The exact form of $\xi(s)$ is not important for our purposes, but it can be found in any standard reference on the zeta function.

2 The Riemann hypothesis

A zero of the zeta function is a complex number s such that $\zeta(s) = 0$. The trivial zeros are the negative even integers, and they are easy to find. The non-trivial zeros are more mysterious, and their locations have deep implications for number theory.

The Riemann hypothesis states that all the non-trivial zeros of the zeta function have real part equal to $\frac{1}{2}$. In other words, if $\zeta(s) = 0$ and $s \neq -2n$ for any positive integer n, then $s = \frac{1}{2} + it$ for some real number t.

The Riemann hypothesis is equivalent to many other statements, such as the following:

- The error term in the prime number theorem is $O(\sqrt{x} \log x)$, where x is a positive real number and $\pi(x)$ is the number of primes less than or equal to x.
- The error term in the Dirichlet divisor problem is $O(x^{1/4+\epsilon})$, where x is a positive real number, D(x) is the sum of the number of divisors of the integers up to x, and ϵ is any positive real number.
- The Mangoldt function $\Lambda(n)$, which is equal to $\log p$ if n is a power of a prime p and zero otherwise, satisfies the orthogonality relation:

$$\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} \overline{\left(\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{1-s}}\right)} = 0, \quad \text{for } \Re(s) > 1$$
 (3)

In Equation 3, \overline{z} denotes the complex conjugate of z.

These statements are just a few examples of the many consequences and connections of the Riemann hypothesis.

Tasks

- 1. Replicate at least 3 inline mathematical expressions
- 2. Replicate all the numbered display mode expressions
- 3. Replicate the references to the numbered equations