

Software Develpoment for Industrial Robots

Slide 1 07.11.2013

3. Homogenous coordinates

Define some new mapping:

$$V \longrightarrow V \times R$$
 $\begin{pmatrix} v_1 \\ \dots \\ v_n \end{pmatrix} \longmapsto \begin{pmatrix} v_1 \\ \dots \\ v_n \\ 1 \end{pmatrix}$

 The new (n+1)-dimensional vector space is called homogenous coordinates

 Benefit: Rotations <u>and</u> translations may be described as matrix operations

Example: Rotation in 2D

$$A_{\alpha} := \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Example: Translation in 2D

$$A_{\binom{x}{y}} \coloneqq \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

Rotation&Translation

In general:

$$T(\alpha, \vec{p}): V \to V$$

$$v \mapsto \begin{pmatrix} R_{\alpha} & \vec{p} \\ 0 & 1 \end{pmatrix} v = \begin{pmatrix} \cos \alpha & -\sin \alpha & p_1 \\ \sin \alpha & \cos \alpha & p_2 \\ 0 & 0 & 1 \end{pmatrix} v$$

Inverse of this mapping:

$$T^{-1}(\alpha, \vec{p}): V \to V$$

$$v \mapsto \begin{pmatrix} R_{\alpha}^{-1} & -R_{\alpha}^{-1} \vec{p} \\ 0 & 1 \end{pmatrix} v = \begin{pmatrix} \cos \alpha & \sin \alpha & -p_1 \cos \alpha - p_2 \sin \alpha \\ -\sin \alpha & \cos \alpha & p_1 \sin \alpha - p_2 \cos \alpha \\ 0 & 0 & 1 \end{pmatrix} v$$

Transformation of coordinate systems

Definition: Co-Sys Transformation

Let CS' be some coordinate system defined by some translation-rotation $T\left(\alpha, \binom{x}{y}\right)$ in CS. Then some point P with coordinate vector v' in CS', can also be described by the coordinate vector

$$v = T\left(\alpha, \begin{pmatrix} x \\ y \end{pmatrix}\right) v'$$

in CS.

Transformation of coordinate systems

Corollar:

Consequently, a point P with coordinate vector v' in CS', can also be described by the coordinate vector

$$v' = T^{-1} \left(\alpha, \begin{pmatrix} x \\ y \end{pmatrix} \right) v$$

in CS'.

Consequence:

Switiching coordinate systems is very easy!

Enough theory!

→ Let's use this stuff!

Slide 7 07.11.2013

4. (2D) Direct kinematics

Example: 2-arm robot (in some 2D disc world)

Slide 8 07.11.2013

Definition:

The direct kinematics of a robot is an operation which takes joint angles as input and calculates the position of the robot's hand.

Core idea:

Direct kinematics is simply a set of welldefined coordinate system transformations

Slide 9 07.11.2013

Chains of coordinate systems

 Convention: Put one coordinate system into each joint, such that the X axis is pointing towards the next joint.

Slide 10 07.11.2013

Chains of coordinate systems

Now it's simple to express any point in K0!

Slide 11 07.11.2013

- The direct kinematics of a robot can be understood as a simple chain of coordinate system transformations.
- This works for
 - 2D and 3D analogously
 - Rotational as well as translational joints
- Question:
 Which types of robot kinematics may not be solved with this approach?

Slide 12 07.11.2013

Which angles place the robot's hand to the desired point?

Slide 13 07.11.2013

5. (2D) Inverse kinematics

Definition:

The inverse kinematics of a robot is an operation which takes the position of the robot's hand as input and calculates joint angles.

- Possible startegies for solution:
 - Analytical: take the direct kinematics formula and isolate all angles
 - Numerical: use some apporixmation algorithm for computing the solution
 - Geometric: use geometric understanding of the robot's layout

07.11.2013

Geometric solution

Core idea: Use the first two joints for bringing the robot's wrist to a desired position, then use the third axis to find the correct orientation!

0. Compute wrist position

$$T\left(-55^{\circ}, T\left(-55^{\circ}, \binom{9}{5}\right) \binom{-2}{0}\right)$$

$$T\left(-55^{\circ}, \binom{9}{5}\right)$$

$$T\left(-55^{\circ}, \binom{9}{5}\right)$$

1. Compute angle α_2

$$\cos \rho = -\cos(\pi - \rho)$$

$$c^2 = a^2 + b^2 - 2ab\cos \gamma$$

$$\frac{21}{84} = \cos 180 - \alpha_2 \Rightarrow \alpha_2 = \pm 73^\circ$$

2. Compute angle α_1

$$\delta = \arctan 2(9;5)$$

$$d_3^2 = d_2^2 + (x^2 + y^2) - 2d_2\sqrt{x^2 + y^2}\cos\beta$$

$$\alpha_1 = \delta + \beta = 29^{\circ} \pm 34^{\circ}$$

2 possible solutions

Slide 19 07.11.2013

Orientation of the hand

3. Compute axis α_3

$$\alpha_3 = -55 - \alpha_2 - \alpha_1$$

$$\alpha_{3,elbow_up} = -45^{\circ}$$
 $\alpha_{3,elbow_down} = -123^{\circ}$

- Orthonormal (right-handed) coordinate systems differ only in a translation and one rotation.
- For kinematics computation, it is very useful to place one coordinate system into each joint.
- A simple geometric solution to the inverse kinematics problem is to compute first position of the robot's wrist and then it's orientation.

07.11.2013

4. Basic concept of industrial robots

Slide 22 07.11.2013

How are industrial robots programmed?

- Programming languages?
- Atomic operations?
- Specific challenges?
- Process of programming?

Slide 23 07.11.2013

- Programming languages?
- Atomic operations?
- Specific challenges/programming layers?
- Programming process?

Some first ideas

Programming languages?

- Feedback, Events, Responses
- Schleifen, Verzweigung, Rekursion, OO
- Regel-basiert / deklarativ / Unterspezifikation

Atomic operations?

- Sollwerte f
 ür Gelenke setzen + Zeitinformation
- Zielpunkt in Koordinaten angeben
- LIN (kartesisch), SPLINE
- Atomic commands sollen "thread safe"

Specific challenges/programming layers?

- Low level: HW-Gelenke, Top level: Geometrie
- Aufteilung: Hersteller-spezifisch vs. anwendungs-spezifisch

Programming process?

- Testen ist schwieriger
- Auswahl HW, Auswahl Progsprache in Abhänigkeit von Aufgabe
- Modularisierung der SW / SW-Architektur
- Mischen von Offline-Programmierung mit Teachen

Slide 25 07.11.2013

- Often people only describe movements by pathes (e.g. move on a straight line). A path (ger. **Bahn**) is a subset of 3D (resp. 6D) space.
- However, in most applications not pathes but trajectories (ger. **Trajektorie**) are intended. A trajectory is a mapping of time to a path.

Slide 26 07.11.2013

Atomic commands

- Different pathes:
 - Linear movement
 - Point-to-point movement
 - Circular movement
 - Modern: (cubic) spline movement
- Different trajectories:
 - Velocity profiles
 - Acceleration profiles
 - Total movement time

Slide 27 07.11.2013

- Very simple programming languages
 - No recursion
 - No object

Electrical control:

"How do I need to control voltage, such that the arm reaches/holds a position without tremor?"

Realtime control:

"How can I guarantee, that intended values are always available in time?"

Robot control/path planing:

"How do I calculate (sequences of) intended values for all axis of a robot?"

High-level functionalities:

"How can I specify and calculate a collision-free trajektory efficiently?"

5. Industrial 6 axis robots

Slide 30 07.11.2013

"Standard-" industrial robots

Slide 31 07.11.2013

"Standard-" industrial robots

- Design:
 - 6 rotational joints
 - Anthropomorphic hand (i.e. the last three axis intersect in one point)
- Our goal: Design and implementation of a control for such a robot.

07.11.2013

- Control should in theory be capable of control any standard robot
- Necessary commands:
 - Movement in axis space
 - Movement in Cartesian space: LIN, PTP
 - Velocity profiles
 - Synchronuous and asynchronuous movements

07.11.2013

- Identification of necessary subtasks
- Solving these subtask in separate groups
 - We will give support to each group during the next two weeks
 - Result: Presentation of necessary concepts, such that everybody else understands it (and can implement it)

• Important:

- Early specification is important for
 - More easy system integration
 - Better understanding of you problems

Slide 34 07.11.2013

What subtasks do we need to solve?

Slide 35 07.11.2013

- Positioning of the wrist Grotzke
- 2. Orientation of the wrist Stellmacher,
- 3. Standardized coordinate systems / layouts of robots Gonschorek, Bahl, Sulkowski
- 4. Computation of trajectories / velocity profiles Belov, Baier, Hagemann
- 5. Selection of solution /singularities Schubert,
- Software architecture
- Robot prgramming framework (openRAVE) Meuschke, Pauksch, Hettig

Slide 36 07.11.2013

Kleine Zusatzkomplikation

- Eine Anforderung wurde vergessen!
- Wer macht die Vorwärtskinematik?
- Entscheiden Sie selbst, welche Gruppe am Sinnvollsten dieses Zusatzproblem mit bearbeitet!

Slide 37 07.11.2013