\Box	7
E	沤

目录

1	问题 1	2
2	问题 2(重要!!)	3
3	问题 3	4
4	问题 4	5
5	问题 5	6
6	问题 6	7
7	问题 7	9

期末题目

202011010101 物理 2001 孙陶庵

2023年5月27日

1 问题 1

题目: G_1, G_2 都是 \mathbb{C}^n 中的全纯域,若有在 $f: G_1 \to \mathbb{C}^n$ 全纯映射,请证明: $G_1 \cap f^{-1}(G_2)$ 也是全纯的

ANS:

为了证明 $G_1 \cap f^{-1}(G_2)$ 是全纯的,我们需要验证它满足全纯域的定义,即对于域中的每个点,存在一个邻域内的全纯函数。

设 z_0 是 $G_1 \cap f^{-1}(G_2)$ 中的任意点。由于 $z_0 \in G_1$ 且 f 是 G_1 到 \mathbb{C}^n 的全纯映射,因此存在 G_1 中 z_0 的一个邻域 U_1 ,在该邻域上 f 是全纯的。

另一方面,由于 $z_0 \in f^{-1}(G_2)$,即 $f(z_0) \in G_2$,因此存在 G_2 中 $f(z_0)$ 的一个邻域 U_2 。

我们考虑 $U_1 \cap f^{-1}(U_2)$,由于 U_1 和 U_2 都是开集, $U_1 \cap f^{-1}(U_2)$ 也是开集。另外,由于 f 是全纯映射, $U_1 \cap f^{-1}(U_2)$ 中的每个点也是 f 的全纯性的继承者。

现在我们证明 $U_1 \cap f^{-1}(U_2) \subseteq G_1 \cap f^{-1}(G_2)$,即 $U_1 \cap f^{-1}(U_2)$ 中的每个点都属于 $G_1 \cap f^{-1}(G_2)$ 。

对于任意的 $z \in U_1 \cap f^{-1}(U_2)$,我们有 $f(z) \in U_2$ 且 $z \in U_1$ 。由于 $f(z) \in U_2$,而 $U_2 \subseteq G_2$,所以 $f(z) \in G_2$ 。另一方面,由于 $z \in U_1$,而 $U_1 \subseteq G_1$,所以 $z \in G_1$ 。

2 问题 2 (重要!!) 3

综上所述,我们证明了 $U_1 \cap f^{-1}(U_2) \subseteq G_1 \cap f^{-1}(G_2)$ 。由于 $U_1 \cap f^{-1}(U_2)$ 是 $G_1 \cap f^{-1}(G_2)$ 的开子集,并且其中的每个点都有邻域内的全纯函数,因此 $G_1 \cap f^{-1}(G_2)$ 也是全纯的。 因此,我们证明了 $G_1 \cap f^{-1}(G_2)$ 是全纯域。

2 问题 2 (重要!!)

 $D=z\in\mathbb{C}||z|C|\subset\mathbb{C}$ 中的圆盘, $z\subset D$ 可为全纯函数的 xxxx 证明: $D\backslash z$ 是连通的 ANS:

要证明 $D \setminus z$ 是连通的,我们可以使用反证法。假设存在 $D \setminus z$ 的一个分离集,即存在两个开集 U_1 和 U_2 ,满足以下条件:

 $1.U_1 \cup U_2 = D \setminus z$;

 $2.U_1 \cap U_2 = \varnothing$;

 $3.U_1$ 和 U_2 都非空。

我们将证明这种情况是不可能的,即不存在这样的分离集。

考虑 D 中的任意一点 p, 根据 D 的定义,我们有 |p| < C。因此,对于任意 $p \in D \setminus z$,我们可以选择足够小的半径 r,使得以 p 为圆心、r 为半径的圆盘 B(p,r) 完全包含在 D 中。这是因为我们可以选择 r 满足 $0 < r < \min(C - |p|, \epsilon)$,其中 ϵ 是一个正数,使得 B(p,r) 不与 C 上的任何点相交。

现在考虑 U_1 和 U_2 。根据 $U_1 \cup U_2 = D \setminus z$,我们知道 U_1 和 U_2 的并集覆盖了 $D \setminus z$ 中的所有点。由于 $D \setminus z$ 中的每个点都可以找到一个包含它的圆盘,我们可以断言至少有一个圆盘完全包含在 U_1 或 U_2 中。

假设 $B(p_1,r_1)\subset U_1$,其中 $p_1\in D\setminus z$ 。我们可以选择另一个点 p_2 ,使得 $B(p_2,r_2)\subset U_2$,其中 $p_2\in D\setminus z$ 且 $p_2\neq p_1$ 。由于 $D\setminus z$ 是连通的,我们可以选择适当的路径从 p_1 到 p_2 ,并在路径上选择一个点 p_3 。

现在考虑 $B(p_3, r_3)$, 其中 r_3 足够小, 使得 $B(p_3, r_3)$ 不与 C 上的任何点相交。由于

3 问题 3 4

 $B(p_3,r_3)$ 与 $B(p_1,r_1)$ 和 $B(p_2,r_2)$ 有交点(例如,路径上的点),根据连通性, $B(p_3,r_3)$ 必须完全包含在 U_1 或 U_2 中。

然而,这与我们的选择相矛盾,因为 $p_3 \notin U_1$ 且 $p_3 \notin U_2$ 。因此,我们得出结论:不存在这样的分离集 U_1 和 U_2

3 问题 3

题目:设 $T: H_1 \to H_2$ 为无界算子,如果 y 垂直于 Ran(T)则 $y \in Dom(T^*)$ 且 $T^*y=0$.若 T 是闭算子且 $Dom(T^*)$ 稠密,则 $x \perp k_r T$ 可知 $x \in \overline{Ran(T^*)}$ ANS:根据题目给出的条件:

1. 如果 y 垂直于 Ran(T),则 $y \in Dom(T^*)$ 且 $T^*y = 0$ 。2. T 是闭算子且 $Dom(T^*)$ 稠密。3. 我们需要证明如果 $x \perp \ker(T)$,则 $x \in \overline{\mathrm{Ran}(T^\wedge)}$,即 $x \vdash T^\wedge$ 的每个元素都正交。

设 $z \in Dom(T^*)$,我们有 $T^*z \in H_2$ 。由于 $x \perp \ker(T)$,我们知道对于任意的 $t \in \mathbb{C}$,有 $\langle x, Tk(t) \rangle = 0$ 。

考虑内积 $\langle x, T^z \rangle$, 根据 T^{\wedge} 的定义, 我们有:

$$\langle x, T^z \rangle = \langle Tx, z \rangle \quad (\stackrel{\circ}{\mathbb{Z}} \stackrel{\circ}{\mathbb{Z}} T^{\wedge})$$

$$=\langle T(k(1)x), z\rangle$$
 (由于 $k(1)x = x$)

$$=\langle x, T^{\wedge}(k(1)z)\rangle$$
 (定义 T^{\wedge})

4 问题 4 5

因此, $\langle x, T^z \rangle = \langle x, T^{\wedge}(z) \rangle$ 。

由于 $\langle x,T^z\rangle=\langle x,T^\wedge(z)\rangle$ 对于所有 $z\in Dom(T^*)$ 成立,我们可以推断 $x\perp T^z$ 对于所有 $z\in Dom(T^*)$ 成立。

由于 $Dom(T^*)$ 稠密且 $x \perp T^z$ 对于所有 $z \in Dom(T^*)$ 成立,我们可以将 x 延拓为 $x' \in \overline{Dom(T^*)}$,且 $x' \perp T^{z'}$ 对于所有 $z' \in \overline{Dom(T^*)}$ 成立。

因此,根据内积空间的性质,我们可以得出 $x' \in \overline{\text{Ran}(T^*)}$ 。

因此,如果 $x \perp \ker(T)$,则 $x \in \overline{\operatorname{Ran}(T^*)}$,即 $x 与 T^*$ 的每个元素都正交。

4 问题 4

令 M 为半正定的 m 阶方阵,若 $F = (f_1, f_2, ..., f_m)$ 是全纯函数,请证明: $FM^t\bar{F}$ 是多重次调和函数

ANS:

要证明 $FM^t\bar{F}$ 是多重次调和函数,我们需要验证它满足多重次调和方程的性质。

首先,我们注意到 $F = (f_1, f_2, ..., f_m)$ 是全纯函数,因此每个 f_i 都是全纯函数。根据全纯函数的性质, f_i 的共轭 \bar{f}_i 也是全纯函数。

接下来,考虑 $FM^t\bar{F}$ 。我们将其写为分量形式:

$$FM^{t}\bar{F} = \left(\sum_{k=1}^{m} f_{k}M^{t}\bar{f}_{1}, \sum_{k=1}^{m} f_{k}M^{t}\bar{f}_{2}, ..., \sum_{k=1}^{m} f_{k}M^{t}\bar{f}_{m}\right)$$

现在我们验证 $FM^t\bar{F}$ 满足多重次调和方程。

对于每个分量 $\sum_{k=1}^m f_k M^t \bar{f}_i$,我们需要验证它满足拉普拉斯方程 $\Delta(\sum_{k=1}^m f_k M^t \bar{f}_i)=0$ 。

由于 Δ 是一个微分算子, 我们可以将其作用于每个分量上:

5 问题 5

$$\Delta(\sum_{k=1}^{m} f_k M^k \bar{f}_i) = \sum_{k=1}^{m} \Delta(f_k M^t \bar{f}_i)$$

由于 f_k 和 \bar{f}_i 都是全纯函数,它们满足全纯函数的拉普拉斯方程 $\Delta f_k = 0$ 。此外,矩阵 M 是半正定的,因此 M^t 也是半正定的。因此,我们有 $M^t \Delta \bar{f}_i = 0$ 。

综上所述,我们得到:

$$\Delta(\sum_{k=1}^{m} f_k M^t \bar{f}_i) = \sum_{k=1}^{n} \Delta(f_k M^t \bar{f}_i) = \sum_{k=1}^{m} f_k M^k \Delta \bar{f}_i = 0$$

因此, $FM^t\bar{F}$ 满足多重次调和方程,即 $FM^t\bar{F}$ 是多重次调和函数。

因此,我们证明了 $FM^t\bar{F}$ 是多重次调和函数。

5 问题 5

题目:请证明: f 是 $D \subset \mathbb{C}^n$ 上的全纯函数 $a \in f(D)$,则 $f^{-1}(a)$ 不包含在任何 D 的紧子集中

ANS:

为了证明 $f^{-1}(a)$ 不包含在任何 D 的紧子集中,我们可以使用反证法。假设存在 D 的一个紧子集 K,使得 $f^{-1}(a)$ 包含在 K 中。

由于 f 是从 D 到 \mathbb{C}^n 的全纯函数,根据连续映射的性质,f(K) 是 \mathbb{C}^n 中的一个紧集。因为 $a \in f(D)$,所以 $a \in f(K)$ 。由于 a 是 f(K) 中的一个点,根据紧集的定义,我们可以选择一个足够小的 $\epsilon > 0$,使得 $B(a,\epsilon)$ 完全包含在 f(K) 中,其中 $B(a,\epsilon)$ 表示以 a 为中心、半径为 ϵ 的开球。

现在考虑 $f^{-1}(B(a,\epsilon))$,即原点 a 的原像的 ϵ -邻域。由于 $f^{-1}(a) \subseteq f^{-1}(B(a,\epsilon))$,所以 $f^{-1}(B(a,\epsilon))$ 至少包含 $f^{-1}(a)$ 。

由于 K 是紧集,它是有界的。因此,我们可以选择一个足够大的正数 R,使得 $K\subseteq B(0,R)$,其中 B(0,R) 表示以原点为中心、半径为 R 的开球。

6 问题 6

现在我们来看 $K' = K \cap B(0,R)$,即将 K = B(0,R) 取交集后得到的集合。K' 是一个紧子集,因为它是一个有界闭集的交集。

由于 f 是从 D 到 \mathbb{C}^n 的全纯函数,根据全纯函数的性质,它在紧子集 K' 上是有界的。也就是说,存在一个正数 M,使得对于任意 $z \in K'$,有 $|f(z)| \leq M$ 。

现在我们考虑 f(K'),它是一个有界闭集的连续映射,因此它也是一个有界闭集。 因此,f(K') 是一个紧集。

然而,根据我们之前的选择, $B(a,\epsilon)$ 是 f(K) 的一个真子集,而 $f(K')\subseteq f(K)$ 。这与 f(K') 是一个紧集相矛盾,因为真子集不可能是紧集。

因此,我们得出矛盾,假设不成立。即, $f^{-1}(a)$ 不包含在任何 D 的紧子集中。

因此,我们证明了如果 f 是 $D \subset \mathbb{C}^n$ 上的全纯函数, $a \in f(D)$,那么 $f^{-1}(a)$ 不包含在任何 D 的紧子集中。

6 问题 6

题目:设 $D:=\Delta(0,1)\subset\mathbb{C}^2$ 中的多重圆盘,取 $a\subseteq D$ 且设有聚点但是 $\forall a\in bD$ 都是 a_j 的聚点,定义 $u(z)=\sigma_j\frac{1}{j^2}\log|z-a_j|/2$ ANS:

根据问题描述,我们有一个多重圆盘 $D=\Delta(0,1)\subset\mathbb{C}^2$,其中包含一些点 a_j ,并且这些点具有一个聚点 a。我们定义函数 $u(z)=\sum_j\sigma_j\frac{1}{j^2}\log\left(\frac{|z-a_j|}{2}\right)$,其中 σ_j 是任意的复数。

我们的目标是证明 u(z) 是 D 中的次调和函数。首先,我们需要证明对于任意的 $z \in D$,u(z) 满足亚调和性质,即 $\Delta u(z) \geq 0$,其中 Δ 是 Laplace 算子。

计算 $\Delta u(z)$ 的步骤如下:

首先,我们注意到对于任意的 j,函数 $\log\left(\frac{|z-a_j|}{2}\right)$ 是 z 的次调和函数。这是因为 $\log\left(\frac{|z-a_j|}{2}\right)$ 是实部的调和函数,而调和函数的实部是次调和的。

由次调和函数的线性组合仍然是次调和函数,我们可以得到 u(z) 也是次调和函数。

问题 6 8

接下来,我们需要证明 $\Delta u(z) \geq 0$ 。为此,我们计算 $\Delta u(z)$ 的实部部分,即 $\mathrm{Re}(\Delta u(z))$ 。由于 Δ 是 Laplace 算子,对于任意的次调和函数 u(z),我们有 $\mathrm{Re}(\Delta u(z)) = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$,其中 z = x + iy。

计算
$$\frac{\partial^2 u}{\partial x^2}$$
 和 $\frac{\partial^2 u}{\partial y^2}$ 的结果如下:

$$\frac{\partial^2 u}{\partial x^2} = \sum_{j} \sigma_j \frac{\partial^2}{\partial x^2} \left(\frac{1}{j^2} \log \left(\frac{|z - a_j|}{2} \right) \right)$$

$$\frac{\partial^2 u}{\partial y^2} = \sum_j \sigma_j \frac{\partial^2}{\partial y^2} \left(\frac{1}{j^2} \log \left(\frac{|z - a_j|}{2} \right) \right)$$

对于每个 j,我们有:

$$\begin{split} \frac{\partial^2}{\partial x^2} \left(\frac{1}{j^2} \log \left(\frac{|z - a_j|}{2} \right) \right) &= -\frac{1}{j^2} \frac{x - a_j x}{|z - a_j|^2} \\ \frac{\partial^2}{\partial y^2} \left(\frac{1}{j^2} \log \left(\frac{|z - a_j|}{2} \right) \right) &= \frac{1}{j^2} \frac{y - a_j y}{|z - a_j|^2} \end{split}$$

其中 $a_j = a_{jx} + ia_{jy}$ 是 a_j 的实部和虚部。

将以上结果代入 $\frac{\partial^2 u}{\partial x^2}$ 和 $\frac{\partial^2 u}{\partial y^2}$ 的表达式中,我们得到:

$$\frac{\partial^2 u}{\partial x^2} = -\sum_j \frac{\sigma_j}{j^2} \frac{x - a_{jx}}{|z - a_j|^2}$$

$$\frac{\partial^2 u}{\partial y^2} = -\sum_j \frac{\sigma_j}{j^2} \frac{y - a_{jy}}{|z - a_j|^2}$$

将 $\frac{\partial^2 u}{\partial x^2}$ 和 $\frac{\partial^2 u}{\partial y^2}$ 相加,我们得到:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\sum_j \frac{\sigma_j}{j^2} \left(\frac{x - a_{jx}}{|z - a_j|^2} + \frac{y - a_{jy}}{|z - a_j|^2} \right)$$

我们注意到 $\frac{x-a_{jx}}{|z-a_j|^2}+\frac{y-a_{jy}}{|z-a_j|^2}$ 可以简化为 1,因为 $x-a_{jx}+y-a_{jy}=x+y-(a_{jx}+a_{jy})=x+y-\operatorname{Re}(a_j)=x+y-\operatorname{Re}(a)$,而 a 是 a_j 的聚点,所以 $x+y-\operatorname{Re}(a)\geq 1$ 。因此, $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}$ 变为:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\sum_j \frac{\sigma_j}{j^2}$$

7 问题 7 9

由于 σ_j 是任意的复数, $\sum_j \frac{\sigma_j}{j^2}$ 的实部可以为任意值。然而,注意到我们有 $\sum_j \frac{\sigma_j}{j^2} \log \left(\frac{|z-a_j|}{2} \right) = u(z)$,因此 $\sum_j \frac{\sigma_j}{j^2}$ 的实部必须为非负值,即 $\operatorname{Re} \left(\sum_j \frac{\sigma_j}{j^2} \right) \geq 0$ 。

综上所述,我们得出结论: u(z) 是 D 中的次调和函数,即 $\Delta u(z) \geq 0$,其中 Δ 是 Laplace 算子。

因此,我们证明了函数 $u(z) = \sum_{j} \sigma_{j} \frac{1}{j^{2}} \log \left(\frac{|z - a_{j}|}{2} \right)$ 是 D 中的次调和函数。

7 问题 7

ANS:

要证明 Ω 是拟凸的,我们需要证明对于任意的 $z_1,z_2\in\Omega$ 以及 $t\in[0,1]$,都有 $tz_1+(1-t)z_2\in\Omega$ 。

设 $z_1 = (z_1', w_1')$ 和 $z_2 = (z_2', w_2')$,其中 $z_1' = (z_1, w_1)$ 和 $z_2' = (z_2, w_2)$ 。根据 Ω 的定义,我们有 $|z_1| < 1$ 、 $|z_2| < 1$ 和 $|w_1| < \exp(-u(z_1))$ 、 $|w_2| < \exp(-u(z_2))$ 。

考虑 $tz'_1 + (1-t)z'_2 = (tz_1 + (1-t)z_2, tw_1 + (1-t)w_2)$,我们需要证明:

 $|tz_1 + (1-t)z_2| < 1$ 。 $|tw_1 + (1-t)w_2| < \exp(-u(tz_1 + (1-t)z_2))$ 。首先,对于 1,我们有:

$$|tz_1 + (1-t)z_2| \le |tz_1| + |(1-t)z_2|$$
 (三角不等式)
= $t|z_1| + (1-t)|z_2|$
 $< t + (1-t)$ (因为 $|z_1| < 1$ 和 $|z_2| < 1$)
= 1.

7 问题 7 10

因此, $|tz_1+(1-t)z_2|<1$ 。

接下来,对于2,我们有:

$$|tw_1 + (1-t)w_2| \le |tw_1| + |(1-t)w_2|$$
 (三角不等式)
= $t|w_1| + (1-t)|w_2|$
< $t\exp(-u(z_1)) + (1-t)\exp(-u(z_2))$.

由于 u(z) 是连续的次调和函数,根据次调和函数的性质,我们知道

$$u(z_1') = u(z_1) \le u(tz_1 + (1-t)z_2)$$
 $\pi u(z_2') = u(z_2) \le u(tz_1 + (1-t)z_2).$

因此,

$$\exp(-u(z_1')) \ge \exp(-u(tz_1 + (1-t)z_2)) \Re \exp(-u(z_2')) \ge \exp(-u(tz_1 + (1-t)z_2)).$$

将上述不等式代入上式, 我们得到:

$$|tw_1 + (1-t)w_2| < t \exp(-u(z_1)) + (1-t) \exp(-u(z_2))$$

$$\leq t \exp(-u(z_1')) + (1-t) \exp(-u(z_2'))$$

$$= \exp(-u(tz_1 + (1-t)z_2)).$$

因此, $|tw_1 + (1-t)w_2| < \exp(-u(tz_1 + (1-t)z_2))$ 。

综上所述,我们证明了对于任意的 $z_1, z_2 \in \Omega$ 以及 $t \in [0,1]$,都有 $tz_1 + (1-t)z_2 \in \Omega$ 。 因此, Ω 是拟凸的。