E-Commerce Analytics DATA SCIENCE PRODEGREE PROJECT GROUP- 1

Dhanyashree Gowda

Nitin Satija

Sahil Behra

Shilpa Pelwar

TABLE OF CONTENTS

- 1. Introduction
- 2. Exploratory Data Analysis(EDA)
- 3. Data Pre-processing
- 4. RFM
- 5. Model building
- 6. Conclusion

WORK FLOW

INTRODUCTION

> Aim of the project

Build an unsupervised learning model which can enable your company to analyze their customers via RFM (recency, frequency and monetary value) approach.

> Problem

We have to draw meaningful insights from 1 year of data & provide brief details based on the monetary value, frequency of buy, etc.

➤ <u>Format</u>

System Elements	Details
Designing Tool	Jupyter Notebook, Tableau
Programming Language	Python
Dataset Format	CSV Files

Data information

➤ Data Info: (537979,12)

Columns(Original)	Data Type	Null Values	Unique Values
CustomerID	Float64	133790	4349
Item Code	Object	0	4009
InvoieNo	Float64	0	24928
Date of purchase	Object	0	381
Quantity	Float64	0	462
Time	Object	0	770
price per Unit	Float64	0	2900
Price	Float64	0	13529
Shipping Location	Object	0	20
Cancelled_status	Object	529634	1
Reason of return	Object	537979	2
Sold as set	Float64	537979	0

[➤] The data representation is from 2016-12-02 to 2017-12-19

EXPLORATORY DATA ANALYSIS (EDA)

Before Data Pre-Processing

- ➤ There are 4349 unique customers
- ➤ There are 9 duplicate rows
- ➤ There are 24.9%(136927) of missing customer id
- There are 4009 unique items
- ➤ There are 24928 unique invoice numbers
- ➤ Highest number of products shipped is from location 36 (501963:quantities)
- ➤ There are 4 continuous and 5 non-continuous features.

DATA PRE-PROCESSING

Dropping missing values:

<u>CustomerID</u>: We check in the data files for the null values and we remove them from those data files containing them. We delete 133790 empty rows from CustomerID, because of its unique feature, we are unable to impute it.

<u>Dropping Features</u>: As we can see from above that 'Cancelled status', 'Reason of Return', 'Sold as set' and 'Price per Unit' are mostly null and not provide any information for decision making so we can remove them.

<u>Dropping Duplicate Values:</u> Remove all duplicate rows except the first one. There are 9 duplicate values.

<u>Dropping Negative values:</u> Drop all negative values from Quantity which indicates returned product and not impacting business in Sales/Monetary Terms

Change Data Type: We will convert the datatype of 'Date of purchase' to datetime format.

After Data Pre-processing:

- ➤ There are 4324 unique customers
- ➤ There are 0 duplicate rows
- ➤ There are no missing customer id
- ➤ There are 3637 unique items
- ➤ There are 18305 unique invoice numbers
- ➤ Highest number of Products is shipping from Location 36 (368829 quantities)
- ➤ Data shape is (395998,9)

Columns(Original)	Columns(New)	Data Type	Null Values	Unique Values	
CustomerID	CustomerID	Float64	0	4324	Continuous
Item Code	Item_Code	Object	0	3637	Non continuous
InvoieNo	InvoiceNo	Float64	0	18305	Continuous
Date of purchase	Date_of_purchase	Object	0	381	Non continuous
Quantity	Quantity	Float64	0	280	Continuous
Time	Time	Object	0	740	Non continuous
Price	Revenue	Float64	0	10681	Continuous
Shipping Location	Shipping_Location	Object	0	20	Non continuous

RFM

- ➤ Recency, frequency, monetary value is a Marketing analysis tool used to identify an organization's best customers by measuring and analyzing spending habits.
- ➤ RFM metrics:

> Steps of RFM(Recency, Frequency, Monetary):

- 1. Calculate the Recency, Frequency, Monetary values for each customer.
- 2. We will Make RFM Table.

```
In [35]: RFM = FullRaw.groupby('CustomerID').agg({'Date_of_purchase':lambda x:(maxi-x.max()).days,
                                                     'InvoiceNo':lambda x:x.nunique(), 'Revenue':lambda x:x.sum()})
          RFM = RFM.reset_index()
         RFM.head()
Out[35]:
             CustomerID Date_of_purchase InvoiceNo Revenue
                    2.0
                                              7 553704.0
                    3.0
                                    77
                                              4 257404.0
                                              1 176613.0
                    4.0
                                    19
                                   311
                    5.0
                                              1 41976.0
                                              7 166972.0
                    6.0
                                    37
```


- 3. Now we will calculate score for each customer.
- 4. Add segment bin values to RFM table using quartile.

	CustomerID	Recency	Frequency	Monetary	r_quartile	f_quartile	m_quartile	RFM_Score
0	2.0	4	7	553704.0	4	4	4	444
1	3.0	77	4	257404.0	2	3	4	234
2	4.0	19	1	176613.0	4	1	3	413
3	5.0	311	1	41976.0	1	1	2	112
4	6.0	37	7	166972.0	3	4	3	343

5. To make score simple and easy to interpret, we add the score(4+4+4).

In [46]:		M_Score_Seg M_Score_Seg	_	ore_Sum']	= RFM_Sc	ore_Seg['r_quart	ile','f_q	uartile','	m_quartile']].s
Out[46]:		CustomerID	Recency	Frequency	Monetary	r_quartile	f_quartile	m_quartile	RFM_Score	RFM_Score_Sum
	0	2.0	4	7	553704.0	4	4	4	444	12
	1	3.0	77	4	257404.0	2	3	4	234	9
	2	4.0	19	1	176613.0	4	1	3	413	8
	3	5.0	311	1	41976.0	1	1	2	112	4
	4	6.0	37	7	166972.0	3	4	3	343	10

6. As per score, we segment each customer into four categories as: Platinum, Gold, Silver and Bronze.

```
In [47]: Loyalty_Level = ['Bronze','Silver','Gold','Platinum']
          Score_Qant = pd.qcut(RFM_Score_Seg.RFM_Score_Sum, q = 4, labels = Loyalty_Level)
         RFM_Score_Seg['RFM_Loyalty_Level'] = Score_Qant.values
         RFM_Score_Seg.head()
Out[47]:
             CustomerID Recency Frequency Monetary r_quartile f_quartile m_quartile RFM_Score RFM_Score_Sum RFM_Loyalty_Level
                                       7 553704.0
                                                                                                                Platinum
                                       4 257404.0
                                                                                                                   Gold
                                       1 176613.0
                                                                                    413
          2
                                                                                                     8
                                                                                                                   Gold
                    4.0
                            19
                                                                            3
                    5.0
                            311
                                       1 41976.0
                                                                            2
                                                                                    112
                                                                                                                 Bronze
                    6.0
                            37
                                       7 166972.0
                                                                            3
                                                                                    343
                                                                                                    10
                                                                                                                   Gold
```

MODEL BUILDING

- ➤ We are using unsupervised Modelling (K-Means clustering)
- ➤ Start clustering with main data set. Shape is (395998,9)
- ➤ Remove Features which are not contributing in decision making. (Time, price per unit and Quantity columns)
- ➤ Above step is crucial as we start to transform our raw data to the data with the appropriate format for the upcoming clustering algorithm to consume. New shape is (395998,6).

➤ Changing Non-Continuous to Continuous variables.

```
In [56]: encoder = LabelEncoder()

FullRaw_Clustering['Item_Code'] = encoder.fit_transform(FullRaw_Clustering['Item_Code'])
FullRaw_Clustering['Date_of_purchase'] = encoder.fit_transform(FullRaw_Clustering['Date_of_purchase'])
FullRaw_Clustering['Shipping_Location'] = encoder.fit_transform(FullRaw_Clustering['Shipping_Location'])
```

➤ Now we standardize data.

```
In [59]: FullRaw_Clustering_Scaling = StandardScaler().fit(FullRaw_Clustering)
    FullRaw_Clustering_Std = FullRaw_Clustering_Scaling.transform(FullRaw_Clustering)
    FullRaw_Clustering_Std = pd.DataFrame(FullRaw_Clustering_Std, columns = FullRaw_Clustering.columns)
    FullRaw_Clustering_Std.head()
```

➤ Calculating number of cluster by "Elbow Method".

```
In [60]: WSS = []
         for k in range(1, 15):
             kmeans = KMeans(n_clusters=k, random_state = 123).fit(FullRaw_Clustering_Std)
             WSS.append(kmeans.inertia_)
         WSS
Out[60]:
        [2375987.9999999353,
          1764897.677933506,
          1431517.6495252794,
          1260673.6357591867,
          1032561.022396422,
          902787.7785971275,
          812463.5072577209,
          741282.3224805972,
          687240.3039619938,
          643877.5153796239,
          601870.2663092331,
          572995.8100097922,
          542821.8734511508,
          519725.1596351662]
```


➤ From above graph, number of clusters are not clear. So based on Silhouette Score we are going with 3 cluster model.

- ➤ Now we standardize data.
- ➤ Calculating number of cluster by "Elbow Method".

➤ From above graph, number of clusters are not clear. So based on silhouette we are going with 3 cluster model.

- ➤ Combining cluster info with the main data (395598,7)
- ➤ Below is the cluster size.

➤ Number of unique customers in each clusters.

22

➤ Merging loyalty levels from RFM segmentation data with clustering data.

[68]:	newdf newdf		Frame(RFM_Score_S	Seg, columns = ['CustomerID','RFM_Loyalty_Level
[68]:		CustomerID	RFM_Loyalty_Level	
	0	2.0	Platinum	
	1	3.0	Gold	
	2	4.0	Gold	
	3	5.0	Bronze	
	4	6.0	Gold	
	4319	4368.0	Bronze	
	4320	4369.0	Bronze	
	4321	4370.0	Silver	
	4322	4371.0	Platinum	
	4323	4372.0	Gold	
	4324	rows × 2 colu	mne	

]:		CustomerID	Item_Code	InvoiceNo	Date_of_purchase	Revenue	Shipping_Location	Cluster
	0	4355.0	2031	398177	329	1926.0	0	2
	1	4352.0	975	394422	305	1740.0	0	2
	2	4352.0	973	394422	312	1866.0	0	2
	3	4352.0	3303	388633	261	1869.0	0	2
	4	4352.0	1685	394422	310	1888.0	0	2
395	993	37.0	1040	402292	359	384.0	19	0
395	994	37.0	1040	402292	358	398.0	19	0
395	995	21.0	2939	363890	19	2464.0	19	1
395	996	21.0	3412	363890	19	4068.0	19	1
395	997	21.0	1040	363890	15	4940.0	19	1

	CustomerID	Item_Code	InvoiceNo	Date_of_purchase	Revenue	Shipping_Location	Cluster	RFM_Loyalty_Level
0	4355.0	2031	398177	329	1926.0	0	2	Silver
1	4355.0	1239	390525	285	1020.0	15	0	Silver
2	4355.0	1311	390525	278	1032.0	15	0	Silver
3	4355.0	1312	390525	277	1392.0	15	0	Silver
4	4355.0	2018	390525	278	1491.0	15	0	Silver
395993	5.0	4	368101	66	3168.0	15	1	Bronze
395994	5.0	1303	368101	64	3180.0	15	1	Bronze
395995	5.0	1114	368101	66	3672.0	15	1	Bronze
395996	5.0	762	368101	66	3696.0	15	1	Bronze
395997	3244.0	2568	369050	74	501.0	17	1	Bronze

MODEL BUILDING CONTINUOUS...

➤ Below, we can see Unique customers with their loyalty levels in each clusters.

```
In [73]: Clusters_Seg = Final_df.groupby(['Cluster', 'RFM_Loyalty_Level'])['CustomerID'].nunique()
         Clusters_Seg.columns = ['Cluster', 'RFM_Loyalty_Level', 'Unique Customers']
         Clusters_Seg
Out[73]: Cluster RFM_Loyalty_Level
                  Bronze
         0
                                        637
                  Silver
                                        757
                  Gold
                                       1216
                  Platinum
                                        793
                  Bronze
                                        891
                  Silver
                                        454
                  Gold
                                        936
                  Platinum
                                        732
                                         575
                  Bronze
                  Silver
                                         562
                  Gold
                                        974
                  Platinum
                                        721
         Name: CustomerID, dtype: int64
```


CONCLUSION

After observation, we have concluded from out model that,

- 1. RFM analysis can help in answering many questions with respect to their customers and this can help companies to make marketing strategies for their customers, retaining their slipping customers and providing recommendations to their customer based on their interest.
- 2. From RFM segmentation, we got 4324 unique customers into 4 levels :Platinum(793), Gold(884),Silver(1,235) and Bronze(1,412)
- 3. After modeling we have got 3 clusters. 0:213312, 1:164027, 2:18659.
- 4. Customers in Cluster 0 has the maximum revenue generation as well as Maximum number of transactions.
- 5.Cluster 0 and 1 has the maximum revenue generation as one of the major factor is <u>Location 36</u> which is contributing the most in it and it is not included in Cluster 2 hence the revenue is less.

CUSTOMER SEGMENT	<u>ACTIVITY</u>	ACTIONABLE TIP
PLATINUM	Bought recently, buy often and spend the most!	Reward them. Can be early adopters for new products. Will promote your brand.
GOLD	Spend good money with us often. Responsive to promotions.	Upsell higher value products. Ask for reviews. Engage them.
SILVER	Recent shoppers, but haven't spent much.	Create brand awareness, offer free trials
BRONZE	Lowest recency, frequency and monetary scores.	Send personalized emails to reconnect, offer renewals, provide helpful resources.

29

Bonus

Hourly Sales as per Quantity 78,246 Price 160M 48,527 167M -33,674 76,945 71,850 140M 57,229 67,011 120M 34,051 54,141 60M 28,281 8,839 20M 7,901 7:00 AM 9:00 AM 11:00 AM 1:00 PM 3:00 PM 5:00 PM 7:00 PM Hour of Time * At 12pm the sale is Highest. Between 10am and 3pm there is maximum engagement of the Customers.

Business Suggestions/Insights Based on Analysis

- ➤ Company should provide offers and discounts in the months like in the **first quartile** of the year so as to increase sales as these months have the lowest sales.
- ➤ Location 24, 34, 31, 7, 10, 8 and 28 have fewer sales as compared to other Locations. The company should look for the **reasons** behind it to boost up the sales.
- ➤ 85123A is the maximum sold items. Hence, company should take care of **inventory** of 85123A.
- ➤ Item code 14846 is the maximum revenue generated item.
- ➤ Company can work on **price**—strategy as per insights.
- ➤ Around 10:00 am to 3:00 pm there has been maximum sale.
- ➤ And the least is before 10:00 am and after 3:00 pm so we can focus during these time to offer deals or discounts by advertising. To maximize the likelihood of customers buying the product/s.

THANK YOU!