

最优化基础、MATLAB优化工具箱简介

一、最优化简介

- 最优化是近几十年形成的一门学科,它主要运用数学方法寻找待优化问题的最佳决策方案,为决策者提供科学依据。
- 最优化方法已经在经济管理,科学计算、工程设计等 领域得到了广泛地应用。
- 从数学上讲,最优化方法就是求解一元或多元函数的 极小值或最小值的计算方法。

二、最优化数学模型

$$\min f(x_1, \dots, x_n)$$
s.t.
$$h_i(x_1, \dots, x_n) = 0, i = 1, \dots, m;$$

$$g_j(x_1, \dots, x_n) \ge 0, j = 1, \dots, n.$$

二、最优化数学模型

目标函数

$$\min f(x_1, \dots, x_n)$$

s.t.

$$h_i(x_1,\dots,x_n) = 0, i = 1,\dots,m;$$

$$g_{j}(x_{1},\dots,x_{n}) \geq 0, \ j=1,\dots,n.$$

极小化

$$\min f(x_1, \dots, x_n)$$

s.t.

$$h_i(x_1,\dots,x_n) = 0, i = 1,\dots,m;$$

$$g_{j}(x_{1},\dots,x_{n}) \geq 0, \ j=1,\dots,n.$$

受限制于

$$\min f(x_1, \dots, x_n)$$

s.t.

$$h_i(x_1,\dots,x_n) = 0, i = 1,\dots,m;$$

 $g_j(x_1,\dots,x_n) \ge 0, j = 1,\dots,n.$

等式约束

$$\min f(x_1, \dots, x_n)$$
s.t.
$$h_i(x_1, \dots, x_n) = 0, i = 1, \dots, m;$$

$$g_j(x_1, \dots, x_n) \ge 0, j = 1, \dots, n.$$

不等式约束

$$\min f(x_1, \dots, x_n)$$
s.t.
$$h_i(x_1, \dots, x_n) = 0, i = 1, \dots, m;$$

$$g_j(x_1, \dots, x_n) \ge 0, j = 1, \dots, n.$$

四、迭代下降算法

- (1) 首先给出目标函数 f(X) 的一个初始迭代点 X^k , 置 k=0;
- (2) 然后按照一定规则产生 X^k 处的一个下降方向 P^k ;
- (3) 再沿方向 P^k 搜索得到下一个迭代点 X^{k+1} , 使得 $f(X^{k+1}) < f(X^k)$;
- (4) 若满足停机条件则算法终止迭代,并输出 X^k ; 否则置 k = k+1, 转步骤(2)。

按照上面的过程,一般会产生一个收敛的迭代序列 {X^k}。在实际计算中,若满足停机条件,则将当前迭代点当作准确解的近似值。

五、局部极小点和全局极小点

设 $f: D \subset \mathbb{R}^n \to \mathbb{R}$,若存在 $X^* \in D$ 及实数 $\delta > 0$,使得 $\forall X \in N^0(X^*, \delta) \cap D$ 都有 $f(X^*)$ f(X),则称 $X^* \to f(X)$ 的局部极小点;若 $f(X^*) < f(X)$,则称 $X^* \to f(X)$ 的局部严格极小点。

五、局部极小点和全局极小点

设 $f: D \subset \mathbb{R}^n \to \mathbb{R}$, 若存在 $X^* \in D$, 若对 $\forall X \in D$, 都有 $f(X^*)$ f(X),则称 X^* 为 f(X) 的全局极小点;若 $f(X^*) < f(X)$,则称 X^* 为 f(X) 的全局严格极小点。

极小点处的函数 值称为极小值。

极小点(值)也称为 最优解(值)。

命令:

fminbnd()

解释:

求单变量无约束(箱约束,边界约束)最优化问题 数学模型:

$$\min_{x_1 \le x \le x_2} f(x)$$

算法:

黄金分割法, 抛物线插值法

命令:

fminsearch()

解释:

求解多变量无约束最优化问题

数学模型:

 $\min f(x_1, \dots, x_n)$

算法:

基于免导数的算法: Nelder-Mead单纯形方法

命令:

fminunc()

解释:

求解多变量无约束最优化问题

数学模型:

 $\min f(x_1, \dots, x_n)$

算法:

基于导数的算法: 拟牛顿方法、信赖域方法

命令:

fmincon()

解释:

求解多变量有约束最优化问题

数学模型: $\min f(x_1, \dots, x_n)$

s.t.
$$h_i(x_1,\dots,x_n) = 0, i = 1,\dots,m;$$

$$g_j(x_1,\dots,x_n)\geq 0, j=1,\dots,n.$$

算法:

信赖域法、有效集法、内点法、序列二次规划

命令:

linprog()

解释:

求解线性规划问题

数学模型:

 $\min C^T X$

s.t. AX = b

 $X \geq 0$

算法:

内点法、(对偶)单纯形法、有效集法

命令:

MATLAB r2014b 及其以后版本

intlinprog()

解释:

求解混合整数线性规划问题

数学模型:

 $\min C^T X$

s.t. $AX = b; X \ge 0$

 $\exists x_i \in \mathbf{Z}$

算法:

分支定界法

命令:

ga()

MATLAB r2008a 及其以后版本

解释:

求解困难、复杂、多态最优化问题的全局最优解

算法:

遗传算法

MATLAB优化工具箱主要命令简介

命令名	解释	命令名	解释
fminbnd()	求单变量无约束(箱约束,边 界约束)最优化问题 黄金分割法,抛物线插值法	linprog()	求解线性规划问题 内点法、(对偶)单纯形法、 有效集法
fmincon()	求解多变量有约束最优化问题 信赖域法、有效集法、内点法、 序列二次规划	bintprog()	求解 0-1整数规划问题 Matlab r2014b及其以后版本中已被intlinprog代替。
fminsearch()	求解多变量无约束最优化问题 基于免导数的算法: Nelder- Mead单纯形方法	fminunc()	求解多变量无约束最优化问题 基于导数的算法:拟牛顿方法、信赖域方法
ga()	求解困难、复杂、多态最优化 问题的全局最优解 遗传算法 Matlab r2008a及其以后版本	intlinprog()	求解混合整数线性规划问题 分支定界法 Matlab r2014b及其以后版本