

Panels and Models for Accurate Prediction of Tumor Mutation

Burden in Tumor Samples

Elizabeth Martínez Pérez¹, Miguel Angel Molina-Vila² and Cristina Marino-Buslje¹

¹ Fundacion Instituto Leloir, Buenos Aires Argentina; ² Laboratorio de Oncología/Pangaea Oncology, Quirón Dexeus. Barcelona, España. Corresponding authors: emartinezperez1990@gmail.com; cmb@leloir.org.ar

INTRODUCTION

In recent years, immunotherapies are a great promise as treatments for several cancers. An emerging biomarker for response to immunotherapy is the total number of nonsynonymous somatic mutations present in a tumor specimen, named tumor mutational burden (TMB) [1, 2]. Non synonymous mutations can generate neoantigens, which, in turn, can be recognized by the immune system, triggering an anticancer immune response [3].

High TMB correlates with a good response to checkpoint inhibitors. While treating cancer with immunotherapy can be highly effective, only some patients respond to this treatment, so, the challenge is to discriminate patients most likely to benefit from this therapy.

The goal of this work is to provide the subset of genes or exons needed to be sequenced in order to predict the TMB of cancer samples to make decisions about immunotherapy treatments and to reduce costs of sequencing. In such a way, to expand the number of people to which the evaluation could reach.

RESULTS

Mutational Burden in 42 cancer types.

Figure 2. The "Y" axis for each cancer type is the frequency of mutated samples, the "X" axis is the TMB. Black numbers are the number of samples in the dataset. Red numbers are the median of TMB. Blue numbers are the median of genes in common. The cancer types are ordered by the median of mutational burden.

FUTURE WORK

- Correlation models between and response immunotherapy is in process.
- Make a website with the obtained models per cancer types to be used for health professionals.

CONCLUSIONS

- We can predict TMB with high accuracy in 14 cancer types, validated with internal and external datasets.
- Each cancer type has a different subset of genes from which the TMB can be predicted by knowing their mutations (see Figure 3B); questioning the usefulness of using a single panel for all the malignancies.
- Models obtained with our-gene selection perform better than the other selections and require a minor number of bases to be sequenced, reducing their cost.

DATASET

MODELS

VALIDATION Internal Validation

diagram of genes emerging by

our-genes models and census

genes and panel genes

3 cancer types

TMB

Figure 1. Methods Workflow

Variable Type X Selection Type

Panel

Census

TMB can be predicted with confidence in 14 cancer types

Gene

Exon

Figure 3. A: RSE model vs length pair bases by cancer type. **B:** R² model vs length pair bases by cancer type. The red line is the amount of pair bases in with the 315 genes panel

Cancer Type	Final	Number of genes			Length pair bases			RSE model		
	Mod	Min	Max	Med	Min	Max	Med	Min	Max	Med
Breast	161	48	210	130	479061	1562855	1045792	19.	36	23
CNS_glioma	58	40	101	68	221314	524623	361376	17	21	18
Endometrium	25	16	40	28	136071	277732	211961	39	68	45
Large intestine	280	33	323	173	262885	1814292	1064564	33	123	40
Liver	250	26	278	150	233993	1737258	1031480	18	62	24
Lung non small cell	107	77	185	130	506478	1021231	785540	21	31	23
Ovary serous	30	33	67	50	225354	429223	328547	16	18	17
Pancreas carcinoma	130	30	170	94	259823	1109759	666645	17	31	19
Prostate	108	49	170	103	367953	1169163	756912	19	28	20
Skin carcinoma	31	9	40	24	67688	249940	142512	67	228	85
Skin melanoma	110	15	126	70	174743	787472	510966	38	159	52
Stomach	68	30	99	63	239251	621535	409077	37	77	42
Upper aerodigestive tract	61	36	96	66	231883	588199	431185	25	36	27
Urinary tract other	24	18	41	29	118624	284119	189464	32	47	35

Table 1. Statistics for models of the 14 cancer types with our-gene selection who pass all filters

Genes emerging from model with our strategy

REFERENCES

1. Campbell BB et. al. Cell, 171:5, 987-989. 2. Chalmers ZR et. al. Genome Medicine. 2017. **9**:34 3. Colli LM et.al. Cancer Res. 2016.

x_cancer_type