TILAK PUBLIC SCHOOL JAIPUR

AISSCE- IP Project 2023-24

Project Report on

Data Wallah

Submitted to:

Mr. Praveen Gupta (PGT, IP)

Submitted By:

Arnav Vijay

TILAK PUBLIC SCHOOL

CERTIFICATE

This is to certify that the Informatics Practices titled "Data_Wallah" has been Successfully completed by Arnav vijay of class XII - A, Under the guidance of Mr. Praveen Gupta. This project is submitted as partial fulfillment for AISSCE 2023 Practical Examination

Date:_____ Mr. Praveen Gupta (Internal Examiner)

Raksha Shekhawat (Principal)

ACKNOWLEDGEMENT

I solemnly take the opportunity to thank all the helping hands who made me to complete this project. First of all I thank the Almighty for keeping me hale and healthy in order to successfully complete my work.

I wish to express my sincere gratitude to **Mrs. Raksha Shekhawat**, Principal of Tilak Public School, Triveni Nagar, Jaipur for permitting me to carry out the project and for the facilities he has provided for the fulfillment of this project work.

I am greatly indebted to **Mr. Praveen Gupta**, Teacher in Informatics Practices who gave me immense support and guidance throughout the completion of this project.

Sincerely,

Arnav Vijay

TABLE OF CONTENTS

SNO	DESCRIPTION
<u>01</u>	PROBLEM DEFINITION
02	TEAM DETAILS
03	OBJECTIVE
04	DESIGNING TOOLS
<u>05</u>	CODE
<u>06</u>	ОШТРИТ
<u>07</u>	HARDWARE AND SOFTWARE REQUIREMENTS
08	LIMITATION
<u>09</u>	BIBLIOGRAPHY

Problem definition

With the exponential growth of genomic data, there is a need for a comprehensive bioinformatics toolkit to facilitate genomic analysis using Python.

The project aims to develop a versatile toolkit that covers a range of functionalities for the analysis and interpretation of genomic data and generation of several genetic codes.

Team Details

- 1. Arnav Vijay
- 2. Divyansh Sharma

The Project "Data Wallah" is going too developed by Arnav Vijay and Divyansh Sharma. It take approx. 30 days to develop this project, working approx. 1 Hour daily. All modules will be completed by us only as per our view and knowledge.

Reason for choosing this topic

Understanding DNA and RNA manipulation is fundamental in the field of molecular biology and bioinformatics. Creating a program that performs basic operations on these sequences can serve as a practical educational tool.

1. Bioinformatics Exploration:

 Bioinformatics involves the use of computational tools to analyse biological data. Developing a program that handles DNA and RNA sequences allows individuals to explore bioinformatics concepts and gain hands-on experience.

2. Relevance to Biology:

• DNA and RNA are essential components of living organisms, and studying their properties and interactions provides insights into genetics, evolution, and disease. A program focusing on DNA and RNA manipulation aligns with the biological relevance of these molecules.

3. **Programming Practice:**

• Developing a program that involves string manipulation, data analysis, and user interaction provides an opportunity for individuals to practice their programming skills in Python.

4. Applicability in Research:

• The ability to manipulate and analyse DNA and RNA sequences is crucial in various research areas, including genetics, genomics, and medicine. A program that performs basic operations on these sequences can serve as a starting point for more complex bioinformatics tools.

5. Interactive Learning:

• Creating a user-friendly program with an interactive menu makes it accessible to a wide audience, including students, researchers, and enthusiasts. It promotes hands-on learning and experimentation.

6. **Open-Ended Nature:**

 DNA and RNA manipulation programs can be expanded with additional features and functionalities. This allows developers to continuously improve and extend the program, making it a flexible and ongoing project.

7. Combining Biology and Programming:

 For individuals with an interest in both biology and programming, a DNA and RNA sequence manipulation program provides a unique opportunity to bridge these two disciplines, fostering interdisciplinary skills.

Objective

User

Introducing users to the field of bioinformatics by incorporating fundamental concepts such as sequence manipulation and analysis.

Environment

Foster an environment where users can contribute to the program's improvement, either by suggesting enhancements or directly contributing code.

Download

We are providing the facility handling biological data, such as reading sequences from CSV files and saving results.

Designing Tools

DATA WALLAH FLOW DIAGRAM


```
In [ ]:
```

```
import random
import pandas as pd
def generate random dna sequence(length):
   return ''.join(random.choice('ACGT') for in range(length))
def generate random rna sequence(length):
    return ''.join(random.choice('ACGU') for in range(length))
def calculate gc content(dna sequence):
    gc count = dna sequence.count('G') + dna sequence.count('C')
    return (gc count / len(dna sequence)) * 100
def calculate nucleotide frequency(dna sequence):
    nucleotide_count = {'A': 0, 'C': 0, 'G': 0, 'T': 0}
    for nucleotide in dna sequence:
        if nucleotide in nucleotide count:
            nucleotide count[nucleotide] += 1
    return nucleotide count
def dna to rna(dna sequence):
   return dna sequence.replace('T', 'U')
def rna to dna(rna sequence):
   return rna sequence.replace('U', 'T')
def read csv(file path):
    try:
        df = pd.read csv(file path)
        return df['DNA Sequence'].tolist()
    except FileNotFoundError:
        print(f"Error: File '{file path}' not found.")
        return None
def read rna sequence(file path):
    try:
        df = pd.read csv(file path)
        return df['RNA Sequence'].tolist()
    except FileNotFoundError:
       print(f"Error: File '{file path}' not found.")
       return None
def save results to csv(result, file path):
    df = pd.DataFrame([result], columns=['DNA Sequence', 'GC Content', 'RNA Sequence'])
    df.to_csv(file_path, index=False)
    print(f"Result saved to '{file path}'.")
def print separator():
   print("\n=
def get_user_sequence(sequence_type):
    sequence = input(f"Enter the {sequence type} sequence: ").upper()
    if all(base in 'ACGTU' for base in sequence):
        return sequence
    else:
       print(f"Invalid {sequence type} sequence. Please use only A, C, G, T, or U.")
       return None
def main():
   while True:
        print("
        print("
        print("
        print("
```

```
print("\n")
        print("
        print(" 1. Enter DNA Sequence Manually
                                                           ")
        print(" 2. Enter RNA Sequence Manually
print(" 3. Generate Random DNA Sequence
                                                           ")
                                                           ")
        print(" 4. Generate Random RNA Sequence
                                                           ")
                                                           " )
        print(" 5. Read DNA Sequence from CSV
        print(" 6. Read RNA Sequence from CSV
                                                           ")
        print(" 7. Exit
                                                           ")
        print("L
        main choice = input("Choose an option to get started. : ")
        if main choice == '1':
            random sequence = get user sequence("DNA")
            if random sequence:
                print("\nDNA Sequence entered successfully.")
        elif main choice == '2':
            random_sequence = get_user_sequence("RNA")
            if random sequence:
                print("\n RNA Sequence entered successfully.")
        elif main choice == '3':
            random sequence = generate random dna sequence(int(input("\nEnter the length
of the DNA sequence: ")))
            print("\n Random DNA Sequence generated successfully.")
        elif main choice == '4':
            random sequence = generate random rna sequence(int(input("Enter the length o
f the RNA sequence: ")))
            print("\n Random RNA Sequence generated successfully.")
        elif main choice == '5':
            file path = input("Enter the CSV file path: ")
            dna sequences = read csv(file path)
            if dna sequences:
                random sequence = dna sequences[0]
                print("\n DNA Sequence read from CSV successfully.")
        elif main choice == '6':
            file path = input("Enter the CSV file path: ")
            rna sequences = read rna sequence(file path)
            if rna sequences:
                random sequence = rna sequences[0]
                print("\n RNA Sequence read from CSV successfully.")
        elif main choice == '5':
            random sequence = get user sequence("DNA")
            if random sequence:
                print("\n DNA Sequence entered successfully.")
        elif main choice == '6':
            random sequence = get user sequence("RNA")
            if random sequence:
                print("\n RNA Sequence entered successfully.")
        elif main choice == '7':
            print("Exiting the program. Goodbye!")
            print separator()
            break
            print("\n Invalid choice. Please enter a number between 1 and 7.")
            print separator()
            continue
        perform operations (random sequence)
```

```
def perform operations(random sequence):
   gc content = 0
   rna sequence = ""
   while True:
       print separator()
       print("\n")
       print("
       print(" 1. Calculate GC Content
                                                         " )
                                                        ")
       print(" 2. Calculate Nucleotide Frequency
       print(" 3. Convert DNA to RNA print(" 4. Convert RNA to DNA print(" 5. Go Back to Main Menu
                                                        ")
                                                         ")
       print("
       if operation choice == '1':
           gc content = calculate gc content(random sequence)
           print("\n GC Content calculated successfully:", gc content)
       elif operation choice == '2':
           nucleotide frequency = calculate nucleotide frequency(random sequence)
           print("\n Nucleotide Frequency calculated successfully:")
           for nucleotide, count in nucleotide frequency.items():
               print(f"{nucleotide}: {count}")
       elif operation choice == '3':
           rna sequence = dna to rna(random sequence)
           print("\n DNA to RNA conversion successful. RNA Sequence:", rna sequence)
       elif operation choice == '4':
           dna sequence = rna to dna(random sequence)
           print("\n RNA to DNA conversion successful. DNA Sequence:", dna sequence)
       elif operation choice == '5':
           print("\n Returning to the Main Menu.")
           print separator()
           break
           print("\n Invalid choice. Please enter a number between 1 and 5.")
           print separator()
           continue
       download choice = input("\n Do you want to download results? (y/n): ")
       if download choice.lower() == 'y':
           result = (random_sequence, gc_content, rna_sequence)
           save results to csv(result, 'results.csv')
           print("\n Results downloaded successfully.")
       more operations choice = input("\n Do you want to continue for more operations?
(y/n): ")
       if more operations choice.lower() != 'y':
           break
if name == " main ":
   main()
```


#INSERTING SEQUENCE MANUALLY

- 1. Enter DNA Sequence Manually
- 2. Enter RNA Sequence Manually
- 3. Generate Random DNA Sequence
- 4. Generate Random RNA Sequence
- 5. Read DNA Sequence from CSV
- 6. Read RNA Sequence from CSV
- 7. Exit

Choose an option to get started. : 1

Enter the DNA sequence: ATGC

DNA Sequence entered successfully.

- 1. Calculate GC Content
- 2. Calculate Nucleotide Frequency
- 3. Convert DNA to RNA
- 4. Convert RNA to DNA
- 5. Go Back to Main Menu

00000 0000 000000 : 1

GC Content calculated successfully: 50.0

Do you want to download results? (y/n): n

Do you want to continue for more operations? (y/n): y

- 1. Calculate GC Content
- 2. Calculate Nucleotide Frequency
- 3. Convert DNA to RNA
- 4. Convert RNA to DNA
- 5. Go Back to Main Menu

____ : 2

Nucleotide Frequency calculated successfully:

- A: 1
- C: 1
- G: 1
- T: 1

Do you want to download results? (y/n): n

Do you want to continue for more operations? (y/n): y

- 1. Calculate GC Content
- 2. Calculate Nucleotide Frequency
- 3. Convert DNA to RNA
- 4. Convert RNA to DNA
- 5. Go Back to Main Menu

____ : 3

DNA to RNA conversion successful. RNA Sequence: AUGC

Do you want to download results? (y/n): y Result saved to 'results.csv'.

Results downloaded successfully.

- 1. Enter DNA Sequence Manually
- 2. Enter RNA Sequence Manually
- 3. Generate Random DNA Sequence
- 4. Generate Random RNA Sequence
- 5. Read DNA Sequence from CSV
- 6. Read RNA Sequence from CSV
- 7. Exit

Choose an option to get started. : 7

Exiting the program. Goodbye!

In [2]:

#RANDOM SEQUENCE GENERATION

- 1. Enter DNA Sequence Manually
- 2. Enter RNA Sequence Manually
- 3. Generate Random DNA Sequence
- 4. Generate Random RNA Sequence
- 5. Read DNA Sequence from CSV
- 6. Read RNA Sequence from CSV
- 7. Exit

Choose an option to get started. : 3

Enter the length of the DNA sequence: 4

Random DNA Sequence generated successfully.

- 1. Calculate GC Content
- 2. Calculate Nucleotide Frequency
- 3. Convert DNA to RNA
- 4. Convert RNA to DNA
- 5. Go Back to Main Menu

_____ : 1

GC Content calculated successfully: 0.0

Do you want to download results? (y/n): N

Do you want to continue for more operations? (y/n): Y

- 1. Calculate GC Content
- 2. Calculate Nucleotide Frequency
- 3. Convert DNA to RNA
- 4. Convert RNA to DNA
- 5. Go Back to Main Menu

____ : 3

DNA to RNA conversion successful. RNA Sequence: UAAA

Do you want to download results? (y/n): Y Result saved to 'results.csv'.

Results downloaded successfully.

- 1. Enter DNA Sequence Manually
- 2. Enter RNA Sequence Manually
- 3. Generate Random DNA Sequence
- 4. Generate Random RNA Sequence
- 5. Read DNA Sequence from CSV
- 6. Read RNA Sequence from CSV
- 7. Exit

Choose an option to get started. : 7

Exiting the program. Goodbye!

#INSERTING THROUGH CSV FILE

- 1. Enter DNA Sequence Manually
- 2. Enter RNA Sequence Manually
- 3. Generate Random DNA Sequence
- 4. Generate Random RNA Sequence
- 5. Read DNA Sequence from CSV
- 6. Read RNA Sequence from CSV
- 7. Exit

Choose an option to get started. : 5

Enter the CSV file path: C:\Users\PCL\Desktop\Untitled Folder\results1.csv

DNA Sequence read from CSV successfully.

- 1. Calculate GC Content
- 2. Calculate Nucleotide Frequency
- 3. Convert DNA to RNA
- 4. Convert RNA to DNA
- 5. Go Back to Main Menu

00000 0000 000000 : 1

GC Content calculated successfully: 50.0

Do you want to download results? (y/n): n

Do you want to continue for more operations? (y/n): n

- 1. Enter DNA Sequence Manually
- 2. Enter RNA Sequence Manually
- 3. Generate Random DNA Sequence
- 4. Generate Random RNA Sequence
- 5. Read DNA Sequence from CSV
- 6. Read RNA Sequence from CSV
- 7. Exit

Choose an option to get started. : 7

Exiting the program. Goodbye!

MANUAL RESULT

1 DNA Sequence,GC Content,RNA Sequence

2 ATGC,50.0,AUGC

RANDOM RESULT

1 DNA Sequence,GC Content,RNA Sequence

2 TAAA,0.0,UAAA

HARDWARE AND SOFTWARE REQUIREMENTS

HARDWARE REQUIREMENTS:

OPERATING SYSTEM : WINDOWS 7 AND ABOVE

PROCESSOR : PENTIUM(ANY) OR AMD ATHALON(3800+

4200+ DUAL CORE)

MOTHERBOARD : 1.845 OR 915,995 FOR PENTIUM OR MSI

K9M VVIA K8M800+8237R PLUS CHIPSET FOR

AMD ATHALON

RAM : 512 MB+

SOFTWARE REQUIREMENTS:

Windows OS

Python

Limitations

- 2. More functionality can be added as per requirement.
- 3. No provision to print hard copies.

BIBLIOGRAPHY

- Computer science With Python Class XII By : Sumita Arora
- Website: https://docs.python.org/3/library/random.html
- Website: https://www.google.com
- Website: https://github.com/belugaop/data_wallah/tree/MAIN/school_src
