Intermediate research project defense

Extensional equalities in combinatory logic and λ -calculus 15.01.2025

Rémi Germe, supervised by Samuel Mimram

0.a - Introduction "with hands"	3
1 - Lambda calculus	4
1.a - Definition	5
1.b - Reductions	6
1.c - Extensionality	7
2 - Combinatory logic	
2.a - S, K, I	
2.b - Abstractions for CL	10
2.c - Problem for extensionality	11
2.d - Extensionality axioms	12
3 - Linear combinatory logic	
3.a - B, C, I	

Introduction "with hands"

Field	Computer science	Mathematics
Studied objects	algorithms, programs	functions
Natural equality	do programs compute the same operations in the same order? Are they rigorously defined in the exact same way?	$\forall x, f(x) = g(x) \Rightarrow f = g$
Equality requirements	results of programstemporal complexityspatial complexity	• results of functions
Equality type	intensional (syntactic)	extensional

GOAL: MOVE FROM INTENSIONAL EQUALITIES TO EXTENSIONAL EQUALITIES

1 - Lambda calculus

Definition

 $V = \{x, y, z, \ldots\}$: set of variables

λ -terms

• variable : $x \in V$

• **application** : for all λ -terms M and N, MN is a λ -term

• **abstraction** : for all λ -term M and variable x, $\lambda x.M$ is a λ -term

Examples:

- $\lambda x.x$ is the identity, yet intensionally $\lambda x.x \not\equiv \lambda y.y$
- $\lambda xy.x \equiv \lambda x.(\lambda y.x)$ is the first projection

Goal: extensional equality

An equivalence relation such that $Mx = Nx \Rightarrow M = N$.

Reductions

α -reduction

Up to a change of bound variables, terms are equivalent.

Example : $\lambda x.x = \lambda y.y$

β -reduction, η -reduction

The evaluation (computation) of a term corresponds to the β -reduction : $(\lambda x.M)U \triangleright_{\beta} [U/x]M$ where [U/x]M denotes M where all free occurrences of x in M have been replaced by U.

Moreover, the η -reduction allows us to simplify terms : $\lambda x.Mx \triangleright_{\eta} M$ if $x \notin FV(M)$.

Examples:

- $(\lambda x.xw)(\lambda y.y) \triangleright_{\beta} (\lambda y.y)w \triangleright_{\beta} w$
- $(\lambda xy.xy)(\lambda z.wz)\triangleright_{\beta}\lambda y.(\lambda z.wz)y\triangleright_{\beta}\lambda y.wy\triangleright_{\eta}w$
- so $w \equiv_{\beta\eta} (\lambda x.xw)(\lambda y.y) \equiv_{\beta\eta} (\lambda xy.xy)(\lambda z.wz)$

For extensionality:

$$(\zeta) \frac{Mx = Nx}{M = N} \text{ if } x \notin FV(MN)$$

Extensionality of $\alpha\beta\eta$

The $\frac{}{\beta\eta}$ relation is extensional (α is always implied).

In fact, it is equivalent to have (ζ) or $(\xi + \eta)$:

$$(\xi) \frac{M = N}{\lambda x \cdot M = \lambda x \cdot N}$$

$$(\eta) \ \lambda x. Mx = M \ \text{if} \ x \notin \mathrm{FV}(M)$$

2 - Combinatory logic

S, K, I

Combinators

- S, K and I are combinators
- for all combinators U and V, UV is a combinator

No variables required, still expressive

Reducing S, K and I (weak reduction):

IU
$$\triangleright_w U$$
 identity

$$\mathbf{K}UV \triangleright_w U$$
 first projection

 $\mathbf{S}UVZ \triangleright_w UZ(VZ)$ distribution of a variable

Abstractions for CL

•••••••

Example : $\lambda xy.yx$

$$\mathbf{S}(\mathbf{K}(\mathbf{SI}))(\mathbf{S}(\mathbf{KK})\mathbf{I})xy \triangleright_w \mathbf{K}(\mathbf{SI})x(\mathbf{S}(\mathbf{KK})\mathbf{I}x)y$$
$$\triangleright_w \dots$$
$$\triangleright_w yx$$

Procedure for abstractions

Adding variables :

- $[x].x \equiv \mathbf{I}$
- $[x].U \equiv \mathbf{K}U \text{ if } x \notin FV(U)$
- (η) $[x].Ux \equiv U$ if $x \notin FV(U)$: cas supplémentaire utilisé dans le livre, omis ici
- $[x].UV \equiv \mathbf{S}([x].U)([x].V)$

$$[x, y].yx \equiv ... \equiv \mathbf{S}(\mathbf{K}(\mathbf{SI}))(\mathbf{S}(\mathbf{KK})\mathbf{I})$$

Problem for extensionality

Problem :
$$(\xi) \frac{M = N}{[x].M = [x].N}$$
 does not stand !

 $\mathbf{I}x = x$ but

- $[x].x \equiv \mathbf{I}$
- $[x].\mathbf{I}x \equiv \mathbf{S}(\mathbf{K}\mathbf{I})\mathbf{I}$
- for now, $\mathbf{I} \neq \mathbf{S}(\mathbf{KI})\mathbf{I}$

Obtain extensionality

Several options :

- add (ζ) in the definition of the extensional equality
- add both (ξ) and (η)
- add a finite number of axioms to have (ξ) and (η)

Extensionality axioms

Process for I:

- we have $\mathbf{I}U = U$
- we want $[x].\mathbf{I}U = [x].U$

$$[x].\mathbf{I}U \equiv \mathbf{S}(\mathbf{K}\mathbf{I})([x].U)$$

$$\equiv ([u].\mathbf{S}(\mathbf{K}\mathbf{I})u)([x].U)$$

$$\equiv ([u].u)([x].U)$$

$$\equiv [x].U$$

Here we found an axiom : $[u].\mathbf{S}(\mathbf{KI})u = [u].u$ (there are no variables left in this equality).

Same processes for **K** and **S**, with KUV = U and SUVZ = UZ(VZ).

Extensionality axioms (ii)

•••••••

Process for (η) , $x \notin FV(U)$:

- we want [x].Ux = U
 - $[x].Ux \equiv \mathbf{S}(\mathbf{K}U)\mathbf{I}$
 - we'd like to add $\mathbf{S}(\mathbf{K}U)\mathbf{I} = U$ as an axiom BUT we'd need to add it for all U

Solution : "close" the term and ask for [U, x].Ux = [U].U

It is then possible to use the previous obtained axiom to simulate an (η) -reduction.

3 - Linear combinatory logic

B, C, I

•••••

Linear λ -calculus / combinatory logic

Linear λ -calculus : bound variables are used once and only once.

The corresponding linear combinatory logic is defined using ${\bf B}, {\bf C}$ and ${\bf I}$ such that :

- B $UVZ \triangleright_w U(VZ)$ the variable is distributed on the right
- $CUVZ \triangleright_w UZV$ the variable is distributed on the left
- $\mathbf{I}U \triangleright_w U$ the identity

Some processes to get extensionality axioms (some details).

For second trimester : formal proofs of results in Agda.