1. Álgebra lineal

Introducción

En la presente unidad de aprendizaje introduciremos una serie de técnicas matemáticas encuadradas dentro de lo que se conoce como el **Álgebra lineal**, que nos proporcionarán un lenguaje eficiente para el tratamiento de una gran cantidad de fenómenos económicos.

1.1. Vectores

1.1.1. Definición

Definición 1.1 Para cada entero positivo n, definimos el espacio Euclidiano n-dimensional como:

$$\mathbb{R}^n = \{(x_1, ..., x_n) \mid x_i \in \mathbb{R}, i = 1, 2, ..., n\}$$

Un elemento particular de \mathbb{R}^n , digamos $x = (x_1, ..., x_n)$ también pueden denotarse como vector columna

$$x^T = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

se le llama vector (o vector columna). Las cantidades x_i se le llaman componentes (o elementos de x), a n se le llama el orden de x. Los vectores de orden 1 se les llaman escalares.

1.1.2. Operaciónes de vectores

La operación de suma entre dos vectores $x, y \in \mathbb{R}^n$ se define como:

$$x + y = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

y el producto de un escalar λ por un vector $x \in \mathbb{R}^n$ se define como:

$$\lambda x = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix}$$

Ejemplo 1 Sea

$$x = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} \quad y \quad y = \begin{pmatrix} 7 \\ -1 \\ 2 \end{pmatrix}$$

Calcule x + y, 3x, -y, y 5x - 2y.

Solución:

$$x+y=\begin{pmatrix}8\\1\\-1\end{pmatrix}$$
, $3x=\begin{pmatrix}3\\6\\-9\end{pmatrix}$, $-y=\begin{pmatrix}-7\\1\\-2\end{pmatrix}$ $5x-2y=\begin{pmatrix}-9\\12\\-19\end{pmatrix}$

1.1.3. Representación gráfica.

La suma y multiplicación por escalar definidas anteriormente tienen un significado geométrico. La representación geométrica en \mathbb{R}^3 de la suma de vectores $x=(x_1,x_2,x_3)$ y $y=(y_1,y_2,y_3)$ se obtiene trasladando a uno de ellos al extremo del otro, formando un paralelogramo, una de cuyas diagonales representa el vector resultante $x+y=(x_1+y_1,x_2+y_2,x_3+y_3)$. A esta representación de la suma de vectores es a lo que se le llama la ley del paralelogramo.

El producto de un escalar por un vector se interpreta de la siguiente manera: sí el escalar λ es positivo y diferente de uno, al multiplicar el escalar λ por el vector $x = (x_1, x_2, x_3)$, el vector resultante es $\lambda x = (\lambda x_1, \lambda x_2, \lambda x_3)$, el cual se obtiene del vector x multiplicando su magnitud por λ ; si el escalar es negativo y diferente de menos uno, el vector cambia su magnitud y sentido ; si el escalar es cero, el vector se hace cero.

Figura 1: Paralelogramo

1.2. Producto punto

Una aplicación del Teorema de Pitágoras en el espacio permite definir la distancia del origen de coordenadas al punto que determina un vector α .

Definición 1.2 Dados los vectores $x, y \in \mathbb{R}^n$, se define su producto punto como:

$$x \cdot y = \sum_{i=1}^{n} x_i y_i$$

El producto punto satisface las siguientes propiedades:

- El producto interno de dos vectores en \mathbb{R}^n es un escalar único.
- $x \cdot y = y \cdot x$
- $\lambda x \cdot y = x \cdot \lambda y = \lambda (x \cdot y)$
- $(x+y) \cdot z = x \cdot z + x \cdot z$
- $x \cdot x > 0$ si $x \neq 0$. $x \cdot x = 0$ si $\alpha = 0$.

Ejemplo 2 Si

$$x = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} \quad y = \begin{pmatrix} 4 \\ -5 \\ 1 \end{pmatrix}$$

Calcular $x \cdot y$:

Solución:

$$x \cdot y = (1)(4) + (2)(-5) + (-3)(1) = -9.$$

Norma de un vector

Definición 1.3 Dado un vector $x \in \mathbb{R}^n$, se define su norma o longitud como

$$||x|| = \sqrt{x \cdot x}.$$

Ejemplo 3 Calcule la norma del vector $x = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$

Solución:

$$||x|| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5.$$

La norma de cualesquirera vectores $x, y \in \mathbb{R}^n$ tiene las siguientes propiedades:

- $||x|| \ge 0$. ||x|| = 0 si y solo si x = 0.
- $\blacksquare \|\lambda x\| = |\lambda| \|x\|.$
- $\|x + y\| \le \|x\| + \|y\|.$

Ángulo entre vectores 1.2.2.

El ángulo entre dos vectores x y y se puede obtener a través de la ecuación:

$$\cos(\theta) = \frac{x \cdot y}{\|x\| \|y\|}.$$

Notemos que la ecuación anterior estable que los vectores x y y son perpendiculares si y solo si $x \cdot y = 0$, pues para $0 \le \theta \le \pi$, $\cos(\theta) = 0$ si y solo si $\theta = \frac{\pi}{2}$.

Ejemplo 4 Calcular el ángulo entre los vectores:

$$x = \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix} \quad y \quad y = \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}$$

El producto escalar de los vectores es

$$x \cdot y = -10 - 3 + 6 = -7$$

entonces como

$$\cos(\theta) = \frac{x \cdot y}{\|x\| \|y\|} = \frac{-7}{22.7} = -0.31$$

de lo cual se sigue que el ángulo θ entre los vectores x y y es

$$\theta = 108.31^o$$

1.2.3. Vectores ortogonales

Definición 1.4 Dos vectores no nulos x y y en \mathbb{R}^n son llamados ortogonales o perpendiculares si y solo si $x \cdot y = 0$, y se escribe $x \perp y$.

Ejemplo 5 Determine todos los vectores que son ortogonales a:

$$x = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

 $Soluci\'{o}n:$

Todos los vectores $y \in \mathbb{R}^2$ que son ortogonales a x cumplen $x \cdot y = 0$, es decir, si $y = (y_1, y_2)$, entonces

$$x \cdot y = (1,2) \cdot (y_1, y_2) = y_1 + 2y_2 = 0,$$

de lo cual se sique que

$$y = \lambda \begin{pmatrix} -2\\1 \end{pmatrix} \quad (\lambda \in \mathbb{R}).$$

La norma ||x|| también se usa para definir la función distancia d en \mathbb{R}^n como sigue:

Definición 1.5 Para todo $\alpha, \beta \in \mathbb{R}^n$,

$$d(x,y) = \|x - y\|.$$

La función distancia d satisface las siguientes propiedades:

- $d(x,y) \ge 0$. Además, $d(\alpha,\beta) = 0$ si y solo si $\alpha = \beta$.
- $d(x,y) = d(\beta,\alpha)$
- $d(x,y) \le d(x,z) + d(z,y)$.

Ejemplo 6 Si

$$x = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \quad y \quad y = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$$

 $Calcule\ la\ distancia\ entre\ los\ vectores\ x\ y\ y:$

Solución:

$$d(x,y) = ||x - y|| = \sqrt{(-6)^2 + (-6)^2} = 8.48.$$

1.3. Producto cruz

Definición 1.6 Para cualquier par de vectores:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

en \mathbb{R}^3 , el **producto cruz** se define como:

$$x \times y = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = (x_2y_3 - y_2x_3)\vec{i} - (x_1y_3 - y_1x_3)\vec{j} + (x_1y_2 - y_1x_2)\vec{k},$$

en donde

$$\vec{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \vec{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \vec{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Ejemplo 7 Dados

$$x = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad y = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$

calcule $x \times y$,

Solución:

De acuerdo con la definición del producto cruz tenemos:

$$x \times y = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{vmatrix} = (2 \cdot 0 - 3 \cdot 0)\vec{i} + (1 \cdot 0 - 1 \cdot 0)\vec{j} + (3 - 2)\vec{k} = \vec{k}.$$

Por tanto

$$x \times y = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Se puede demostrar que:

$$||x \times y|| = ||x|| \, ||y|| \operatorname{sen}(\theta)$$

donde θ es el ángulo formado por $\vec{\alpha}$ y $\vec{\beta}$.

La ecuación (1.3) proporciona una forma de calcular **el área del para-**lelogramo determinado por los vectores x y y. También proporciona una alternativa para calcular el ángulo entre dos vectores.

1.3.1. Propiedades del producto cruz

Si x, y y z son vectores y λ es un escalar, entonces:

- $x \times y = -(y \times x)$
- $\quad \bullet \ \lambda(x \times y) = (\lambda x) \times y = x \times (\lambda y)$
- $x \times (y+z) = x \times y + x \times z$

Ecuación del plano 1.3.2.

La ecuación del plano que pasa por un punto (x_0, y_0, z_0) y cuyo vector normal es (a, b, c) es :

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$
(1)

Ejemplo 8 Determinar la ecuación del plano perpendicular al vector (1, 1, 1) que contiene al punto (1,0,0).

жиль. De la ecuación (1), la ecuación del plano es 1(x-1)+1(y-0)+1(z-0)=0; x+y+z=1.Solución: De la ecuación (1), la ecuación del plano es

$$1(x-1) + 1(y-0) + 1(z-0) = 0;$$

esto es,

$$x + y + z = 1.$$