EE236: Experiment 0 Familiarization with tools

Sheel F. Shah, 19D070052 January 9, 2022

1 Overview of the experiment

1.1 Aim of the experiment

The aim of this experiment was to familiarize ourselves with basic tools like ngspice and xcircuit for the use in this lab.

1.2 Methods

I ran the examples given to understand the different aspects about writing netlists in ngspice, and then tried out the exercises to practice what I learned.

2 Design

For exercise 1, the design was already given in an example, and I simply used that design. Minor changes were made by switching the terminals of the diode and the battery to obtain all the plots required.

For exercise 2, I used the standard full wave bridge rectifier that we have studied.

All circuit values can be easily deduced from the code.

Figure 1: Circuit diagram for ex1

Figure 2: Circuit diagram for $\exp 2$

3 Simulation results

3.1 Code snippet

3.1.1 Ex 1

Shunt Clipper AC analysis

.include ngspice_model-files_Lab-0/Diode_1N914.txt

```
r1 1 2 1k
* these terminals were changed diode p n
d1 3 2 1N914
* these terminals were changed
vdc 0 3 dc 2
*Independent AC source
vin 1 0 sin(0 5 1k 0 0)
*DC Analysis on source vin, to vary from -5 to +5V
.tran 0.01m 6m 0
.control
set color0 = rgb:f/f/e
set color1 = rgb:1/1/1
run
plot v(2) v(1)
plot v(2) vs v(1)
set hcopydevtype=postscript
hardcopy ee236_electronic_devices_lab/plots/lab0_ex1_4_1.ps v(2) v(1)
hardcopy ee236_electronic_devices_lab/plots/lab0_ex1_4_2.ps v(2) vs v(1)
* 1: normal, 2: diode reverse, 3: battery reverse, 4: both reverse
.endc
.end
3.1.2
     \operatorname{Ex} 2
19D070052 Sheel Shah Bridge Rectifier
.include ngspice_model-files_Lab-0/Diode_1N914.txt
* describe circuit
* <element name> <nodes list> <value>
* voltage_nodename positive_node negative_node dc_value/function
    * v 1 0 5
* sine voltage: sin(offset amplitude frequency time_delay damping_factor)
    * v 1 0 sin(0 2 1k 0 0)
* peicewise linear: pwl(time1 value1 time2 value2 ...)
    * v 1 0 pwl(0 0 10m 0 11m 5 20m 5)
* pulse waveform: pulse(initial-value pulsed-value delay_time rise_time fall_time
    * v 1 0 pulse(0 1 1m 1m 1m 6m 10m)
```

```
* v 1 0 exp(1 0 10m 10m 10m 10m)
* ac analysis: dc dc_val ac ac_val
    * v 1 0 dc 0 ac 1
* elements
* points:
    1: vin1, top point of bridge, 2: vin2, bottom point of bridge
    3: right, 4: left
v_in1 1 0 sin(0 6 50 0 0)
v_in2 2 0 sin(0 -6 50 0 0)
d1 1 3 1N914
d2 2 3 1N914
d3 4 2 1N914
d4 4 1 1N914
r_1 3 4 10k
* dc analysis: dc node_name initial_value final_value step
    * .dc v 0 5 0.1
    * .dc vdd 0 5 0.01 vgg 1 5 1
* transient analysis: tran timestep end_time
    * .tran 10u 20m
* ac analysis: ac lin/dec num_points start_freq end_freq
    * .ac dec 10 1 1k
* analysis
.tran 0.01m 0.2
* start control
.control
set color0 = rgb:f/f/e
set color1 = rgb:1/1/1
run
* plot vdb(2); plots magnitude in dB
* plot phase(v(2)); plots phase of v(2)
* plot i(v); plots current through voltage_element v, only voltage elements allowed
* plot v(1) vs v(2); for output vs input
```

* exponentioal waveform: exp(initial pulsed rise-delay rise-time fall-delay fall-t

```
* use dummy voltage elements to measure current through all elements * plotting plot v(3) - v(4), v(1)-v(2)
```

plot v(3) - v(4), v(1)-v(2)plot v(3)-v(4) vs v(1)-v(2)

set hcopydevtype=postscript

hardcopy ee236_electronic_devices_lab/plots/lab0_ex2_1.ps v(3) - v(4), v(1)-v(2) hardcopy ee236_electronic_devices_lab/plots/lab0_ex2_2.ps v(3)-v(4) vs v(1)-v(2)

- * plotting_value is what you write after plot in plot statement
- * meas ac peak MAX vmag(3)
- * meas ac fpeak WHEN vmag(3)=peak
- * let f3db = peak/sqrt(2)
- * meas ac f1 WHEN vmag(3)=f3db RISE=1
- * meas ac f2 WHEN vmag(3)=f3db FALL=1
- * end control
- .endc

.end

3.2 Simulation results

Figure 3: Ex1. Plots of v_{in} and v_{out} and v_{out} vs v_{in} for the case 1 in code

Figure 4: Ex1. Plots of v_{in} and v_{out} and v_{out} vs v_{in} for the case 2 in code

Figure 5: Ex1. Plots of v_{in} and v_{out} and v_{out} vs v_{in} for the case 3 in code

4 Experiment completion status

I was able to complete all parts of the experiment.

Figure 6: Ex1. Plots of v_{in} and v_{out} and v_{out} vs v_{in} for the case 4 in code

Figure 7: Ex2. Plots of v_{in} and v_{out} and v_{out} vs v_{in} for rectifier