

Universidade do Minho

Escola de Engenharia Departamento de Informática

Desenvolvimento de Sistemas de Software

LEI/MiEI - 3° ano / 1° semestre

Apresentação 2022/2023

José Creissac Campos jose.campos@di.uminho.pt

António Nestor Ribeiro anr@di.uminho.pt

http://www.di.uminho.pt

Desenvolvimento de Sistemas Software 2019/20

Equipa Docente

José C. Campos (T/PL) jose.campos@di.uminho.pt

António N. Ribeiro (PL)
anr@di.uminho.pt

Óscar R. Ribeiro (PL) d2680@di.uminho.pt

- Canais de comunicação
 - Aulas teóricas (canal principal)
 - Aulas PL (turno)
 - Blackboard

Dívida técnica (technical debt)...

Version 2 announcement:

Among Us 1 (...) started as a tiny local-multiplayer-only game and has grown and grown and grown. (...) Because of this, it's extremely hard to add more things (...) because the game is so fragile. Fixing [it would be] (...) harder than just making a new game.

So the first goal of **Among Us 2 is to be made to withstand growth**. We want to add to it at least as long as Among Us, but **with fewer bugs along the way**.

Como vai o desenvolvimento de Software?

Standish Group CHAOS Report 2020

- Top 5 Factors in Successful IT Projects
 - User involvement
 - 2. Executive management support
 - 3. Clear Statement of Requirements
 - 4. Proper planning
 - 5. Realistic expectations

- Top 5 Indicators in Challenged IT Projects
 - 1. Lack of user input
 - Incomplete Requirements & Specifications
 - 3. Changing Requirements & Specifications
 - 4. Lack of executive support
 - 5. Technical incompetence

- Top Factors in Failed IT Projects
 - 1. Incomplete Requirements
 - 2. Lack of user involvement
 - 3. Lack of resources
 - 4. Unrealistic expectations
 - 5. Lack of executive support
 - 6. Changing Requirements & Specifications
 - 7. Lack of planning
 - 8. Didn't need it any longer
 - 9. Lack of IT management
 - 10. Technical illiteracy

Semanas 3-4

Semanas 5-8

<u>Aulas Teóricas - Programa</u>

- O ciclo de vida do Desenvolvimento de Software
- Desenvolvimento de Software baseado em modelos: análise e concepção orientada aos objectos, com UML
 - Modelação de Domínio
 - Análise e modelação de requisitos
 - Concepção da solução
 - Refinamento e implementação da solução mapeamento de objectos no modelo relacional
 - Modelação de comportamento

• Pré-requisito (oficioso): POO!

<u>UML - Diagramas de Classe</u>

(*) retirado de Java Program Design, E. Sciore, 2019

Low-code development

- Desenvolvimento com recurso a linguagens visuais, minimizando a necessidade de escrever código.
- The 9 Essential Principles
 - 1. Model-driven development
 - Collaboration
 - 3. Agility
 - 4. The cloud
 - 5. Openness
 - 6. Multi-User Development
 - 7. Experimentation & Innovation
 - 8. Governance & Control
 - 9. Community

<u>Práticas Laboratoriais - Programa</u>

- Estudos de caso:
 - pequenos exemplos para aprendizagem dos conceitos
 - realização do projecto
- Apresentação da Ferramenta de Modelação Visual Paradigm:
 - modelação em UML (Unified Modelling Language)
 - geração de código

Objectivos de aprendizagem

No final da UC os alunos deverão ser capazes de:

- Caracterizar as fases típicas de um processo de desenvolvimento de software
- 2. Interpretar os diferentes tipos de diagramas da UML
- 3. Avaliar qual o diagrama mais adequado em função das diferentes necessidades de modelação
- Avaliar criticamente modelos (de requisitos / estruturais / comportamentais)
- 5. Conceber sistemas de software utilizando modelos
- 6. Implementar sistemas de software a partir de modelos

Bibliografia

Dennis, Wixom & Tegarden. System Analysis & Design (5th ed). Wiley, 2015.

Blaha & Rumbaught. Object-Oriented Modeling and Design with UML (2nd ed). Prentice Hall, 2005.

Fowler. UML Distilled (3rd ed). Addison-Wesley, 2004.

Wembler, The Elements of UML 2.0 Style. Cambridge University Press, 2005.

Nunes & O'Neill. Fundamental de UML (3^a ed). FCA, 2007.

Wazlawick. Análise e Design Orientados a Objetos para Sistemas de Informação (3^a ed). Grupo GEN, 2014.

v. 2022/23

* 〇

Funcionamento

- Aulas T (1h+1h)
 - Apresentação e discussão da matéria
 - Interacção no Blackboard e VoxVote

- Aulas PL (2h)
 - Realização de exercícios e esclarecimento de dúvidas (aplicação da matéria leccionada nas aulas T)
 - Fichas práticas disponibilizadas com antecedência
- Horário de atendimento
 - Sextas 15:30-17:30
 - Horário flexível (marcar com antecedência)

/ António Nestor Ribeiro Desenvolvimento de Sistemas de Software

Avaliação

- Trabalho Prático (≥ 10.0)
 - projecto de análise e desenvolvimento de software, em grupo
- Teste/Exame (≥ 8.0)
 - prova individual escrita
- Avaliação Contínua (s/ nota mínima)
 - participação nas aulas

.45 Exame + .45 Trabalho + .10 Avaliação continua

IMPORTANTE:

Mínimos são condição necessária, mas não suficiente, para garantir aprovação à UC.

Congelamentos de nota prática

- É possível reutilizar a nota do trabalho do ano passado
 - Só notas de 2021/22

- · Pedidos até à entrega da fase 1 do trabalho
 - · Foi criado um grupo no Blackboard

Notas "congeladas" sujeita a um tecto de 14 valores

Teste / Exame

- Individual
- Com consulta de apontamentos
 - Podem levar duas folhas com a informação que considerarem relevante
- No exame aplicam-se as mesma regras de cálculo da nota que para o teste
- Datas
 - Teste: 6 de Janeiro
 - Exame de recurso: 30 de Janeiro

Trabalho Prático

- Grupos de 3-5 elementos
 - Discussão de soluções alternativas
- A realizar durante o semestre 5 momentos relevantes:
 - 1) Apresentação do enunciado aula T de **26 de Setembro**
 - 2) Entrega intermédia 1 até às 24h00 de **20 de Outubro** (3.5 semanas)
 - Análise de requisitos 1ª parte do relatório
 - 3) Entrega intermédia 2 até às 24h00 de 17 de Novembro (5 semanas)
 - Concepção da solução 2ª parte do relatório
 - 4) Entrega final até às 24h00 de **7 de Janeiro** (4 semanas)
 - 3ª parte do relatório + sistema desenvolvido
 - 5) Apresentação e discussão: terceira semana de Janeiro de 2023
 - Todos os elementos do grupo presentes; avaliação será individualizada

Desenvolvimento de Sistemas de Software

Sobre a quantidade trabalho...

- ECTS European Credit Transfer System
 - 1 ECTS = 28h de trabalho
 - 5 ECTS = 140h
 - 15 semanas -> 140/15 = 9h20m/semana (para DSS!)
 - Aulas = 4h/semana (na verdade são só 13 semanas!)
 - Trabalho autónomo = 5h20m/semana = ~1h/dia útil
 - 1h por dia = 65h em 13 semanas → ~50h para o Trabalho Prático!

Calendário

2023-01-02 2023-01-08	SD CC		IA		DSS	DSS
2023-01-09 2023-01-15	SD		СС	СР	СР	LI4
	DSS, IA, CC, SD	DSS, IA, CC, SD	DSS, IA, CC, SD	DSS, IA, CC, SD,	DSS, IA, CC, SD,	
2023-01-16 2023-01-22	30,30	CC, 3D	CC, 3D	СР	СР	

Trabalho Prático - Avaliação por Pares

- Avaliação dos estudantes pelos seus colegas
- Objectivos
 - Responsabilizar o grupo pelo seu desempenho colectivo/de cada elemento
 - Classificar individualmente cada aluno de acordo com a sua contribuição e empenho, tal como precepcionada pelo grupo (incluindo o próprio aluno)
 - Avaliação como parte do processo de aprendizagem (feedback)
 - Maior comprometimento e autonomia

Peer Assessment allows students to make judgements about others work while reflecting on their own.

<u>Avaliação por pares</u>

• Realizada três vezes ao longo do semestre

• 24-28 de Outubro após entrega 1 (peso: 20%)

• 21-25 de Novembro após entrega 2 (peso: 40%)

• 10-11 de Janeiro após entrega final (peso: 40%)

- Preenchimento online de uma grelha de avaliação multi-critério
 - Para cada critério há p*n pontos a distribuir (sendo p o peso do critério e n o número de elementos do grupo $\sum p/n=100$)
- CAIG Coeficiente de Avaliação Intra-Grupo
 - O resultado da avaliação por pares
 - CAIG final média ponderada dos CAIG de cada etapa

Avaliação por pares - Exemplo

0.74

Avaliação feita pelo Aluno 2

Avaliação feita	pelo Aluno	1
011/1		

Critério	Aluno 1	Aluno 2	Alu
Ideias	24	20	
Realização	26	18	
Empenho	24	24	
Assiduídade	23	23	
Relações	22	22	
CAIG (parcial)	1.19	1.07	

Critério	Aluno 1	Aluno 2	Aluno 3	Total
Ideias	20	20	20	60
Realização	22	20	18	60
Empenho	24	20	16	60
Assiduídade	22	20	18	60
Relações	22	22	16	60
CAIG (parcial)	1.10	1.02	0.88	

Avaliação feita pelo Aluno 3

Critério	Aluno 1	Aluno 2	Aluno 3
Ideias	20	20	20
Realização	20	20	20
Empenho	20	20	20
Assiduídade	20	20	20
Relações	20	20	20
CAIG (parcial)	1.00	1.00	1.00

Final	Aluno 1	Aluno 2	Aluno 3
CAIG	1.097	1.030	0.873
Trabalho: 11	12.07	11.33	9.60
Trabalho: 14	15.36	14.42	12.22
Trabalho: 18	19.75	18.54	15.71
60			

<u>Avaliação por pares</u>

- A avaliação individual será: avaliação_do_proj * CAIG
 - CAIG = 1 a nota individual será a da avaliação do trabalho
 - CAIG < 1 a nota individual será inferior à avaliação do trabalho
 - CAIG > 1 a nota individual será superior à avaliação do trabalho
- CAIG < 0.75 não é atribuída nota prática
- CAIG > 1.00 subida de nota limitada a dois valores
- Atenção
 - Fundamental realizar a avaliação com seriedade
 - Não se estão a avaliar amizades mas o contributo de cada um para o grupo
 - Fundamental acordo quanto a critérios de avaliação e sua ponderação

Avaliação por pares

Critérios propostos

Critério		Peso	Descrição
C 1	ldeias para o trabalho	20%	Contribuição com ideias e sugestões para a condução dos trabalhos e resolução de problemas
C2	Realização do trabalho	30%	Qualidade da execução das tarefas necessárias à realização do trabalho
C 3	Empenho no trabalho	25%	Esforço realizado para que o trabalho seja entregue no prazo
C4	Assiduídade	15%	Contribuição para a marcação de reuniões do grupo e comparência nas mesmas
C 5	Relações interpessoais	10%	Contribuição para a motivação, manutenção de bom ambiente e para a resolução de eventuais conflitos

- Estes critérios estarão à discussão até 10 de Outubro
 - enviem comentários e sugestões!!

<u>Desenvolvimento de Sistemas de Software</u>

Programming is fun, but developing quality software is hard.

(Philippe Kruchten)

