Kryptografia z elementami algebry

Laboratorium 4, Kryptosystem ElGamala na krzywej eliptycznej (Moduł 3)

Niech

$$E: Y^2 = X^3 + AX + B \pmod{p}, \qquad p = 3 \pmod{4}$$

1. Zaimplementuj algorytm generowania kluczy kryptosystemu ElGamala na krzywej eliptycznej.

Dane: k liczba bitów p

Wynik: $K_A = [E = [A, B, p], p, Q, P]$,- klucz publiczny, $k_A = [E = [A, B, p], p, x, Q, P]$ -klucz tajny, gdzie $p = 3 \pmod{4}$, $Q, P \in E(\mathbb{F}_p)$

2. Zaimplementuj algorytm, który oblicza wielokrotność punktu na krzywej eliptycznej.

Dane: $P = (x, y) \in E(\mathbb{F}_p), n \in \mathbb{N}, E = [A, B, p]$

Wynik: $Q = nP \in E(\mathbb{F}_p)$

3. Zaimplementuj algorytm, który koduje wiadomość na punkt na krzywej eliptycznej.

Dane: M, E = [A, B, p]

Wynik: $P_M = (x, y) \in E(\mathbb{F}_p)$ zakodowana wiadomość M

4. Zaimplementuj algorytm szyfrowania ElGamala na krzywej eliptycznej.

Dane: $P_M, K_A = [E = [A, B, p], p, Q, P]$,- klucz publiczny

Wynik: $C = [C_1, C_2], C_1, C_2 \in E(\mathbb{F}_p)$

5. Zaimplementuj algorytm deszyfrowania ElGamala na krzywej eliptycznej.

Dane: $C = [C_1, C_2] P_M, K_A = [E = [A, B, p], p, x, Q, P]$, tajny

Wynik: $P_M = (x, y) \in E(\mathbb{F}_p)$

6. Zaimplementuj algorytm, który dekoduje punkt krzywej eliptycznej.

Dane: $P_M = (x, y) \in E(\mathbb{F}_p)$ E = [A, B, p]

Wynik: M wiadomość - zdekodowany punkt P