Incompressible Encryption

Mahesh Sreekumar Rajasree

Post-Doctoral Fellow
Department of Computer Science & Engineering
IIT Delhi

(This is joint work with Rishab Goyal, Venkata Koppula and Aman Verma)

Introduction

- Introduction
- Security Definitions

- Introduction
- Security Definitions
- Incompressible SKE & PKE

- Introduction
- Security Definitions
- Incompressible SKE & PKE
- Incompressible IBE & FE

- Introduction
- Security Definitions
- Incompressible SKE & PKE
- Incompressible IBE & FE
- Conclusion

Introduction

ALICE

ALICE

BOB

ALICE

BOB

Encryption Scheme ALICE EVE

Encryption Scheme ALICE BOB EVE

Encryption Scheme ALICE "Password is

Encryption Scheme ALICE BOB "Password is **EVE** 2 types:

- secret key (SKE) Both Alice and Bob have the same key.
- public key (PKE) Encryptor has public key and decrypt has secret key.

Encryption Scheme ALICE "Password is **EVE** Consists of 3 algorithms: 2 types: secret key (SKE) - Both Alice and Bob have the same key.

• public key (PKE) - Encryptor has public key and decrypt has secret key.

2 types:

- secret key (SKE) Both Alice and Bob have the same key.
- public key (PKE) Encryptor has public key and decrypt has secret key.

Consists of 3 algorithms:

• Setup(): Outputs the keys

BOB

У

"Password is

2 types:

• secret key (SKE) - Both Alice and Bob have the same key.

 public key (PKE) - Encryptor has public key and decrypt has secret key. Consists of 3 algorithms:

• *Setup*(): Outputs the keys

• Enc(pk/sk, m): Outputs ciphertext

EVE

2 types:

- secret key (SKE) Both Alice and Bob have the same key.
- public key (PKE) Encryptor has public key and decrypt has secret key.

Consists of 3 algorithms:

- *Setup*(): Outputs the keys
- Enc(pk/sk, m): Outputs ciphertext
- Dec(sk, c): Outputs message or error

• Correctness - Dec(sk, Enc(pk, m)) = m

"Password is

- Correctness Dec(sk, Enc(pk, m)) = m
- Security

Security Definitions

 $(sk, pk) \leftarrow Setup()$

pk

 $(sk, pk) \leftarrow Setup()$

$$b \leftarrow \{0,1\}$$
$$c \leftarrow Enc(pk, m_b)$$

Adversary wins if b = b'

Can Secret Key be leaked?

Can Secret Key be leaked?

• Standard security says that adversary cannot distinguish between encryptions of two different message provided **no** information of secret key is leaked.

Can Secret Key be leaked?

- Standard security says that adversary cannot distinguish between encryptions of two different message provided **no** information of secret key is leaked.
- In practice, secret key can be leaked using side-channel attacks.

Security against Leakage Challenger Adversary

 $(sk, pk) \leftarrow Setup()$

Challenger

$$(sk, pk) \leftarrow Setup()$$
 pk

Challenger

Challenger

$$b \leftarrow \{0,1\}$$
$$c \leftarrow Enc(pk, m_b)$$

Challenger

$$(sk, pk) \leftarrow Setup() \qquad pk$$

$$m_0, m_1$$

$$b \leftarrow \{0,1\}$$

$$c \leftarrow Enc(pk, m_b)$$

$$c$$

Challenger

Challenger

Adversary

Adversary wins if b = b'

Adversary

Adversary wins if b = b'

• [Canetti et al. 00] and [Dodis et al. 01] gave construction where f returns bits of sk.

- [Canetti et al. 00] and [Dodis et al. 01] gave construction where f returns bits of sk.
- [Dziembowski06], [Di Crescenzo et al.06], [Akavia et al.09], etc. considered arbitrary function *f*.

- [Canetti et al. 00] and [Dodis et al. 01] gave construction where f returns bits of sk.
- [Dziembowski06], [Di Crescenzo et al.06], [Akavia et al.09], etc. considered arbitrary function *f*.
- Other works include [Dodis et al.09], [Brakerski et al.10], [Dodis et al.10], [Faonio et al.15] and many more.

Can the entire secret key be exposed?

Can the entire secret key be exposed?

 Does not make sense if entire secret key and ciphertext is given to adversary.

Can the entire secret key be exposed?

- Does not make sense if entire secret key and ciphertext is given to adversary.
- May be possible for adversary to attain the entire secret key but store only a part of the ciphertext. For example, cloud storage.

 $(sk, pk) \leftarrow Setup()$

 $(sk, pk) \leftarrow Setup()$

pk

 $(sk, pk) \leftarrow Setup()$

$$(sk, pk) \leftarrow Setup()$$

$$pk$$

$$m_0, m_1$$

$$b \leftarrow \{0,1\}$$

$$(sk, pk) \leftarrow Setup()$$

$$pk$$

$$m_0, m_1$$

$$b \leftarrow \{0,1\}$$

$$c \leftarrow Enc(pk, m_b)$$

Adversary 1

Adversary 1

 $(sk, pk) \leftarrow Setup()$

Adversary 1

pk, sk, state

 $b \leftarrow \{0,1\}$ $c \leftarrow Enc(pk, m_b)$ c state

pk

 $|state| \leq S < |c|$

Adversary 1

 $(sk, pk) \leftarrow Setup()$

Adversary 1

Adversaries wins if b = b'

Dziembowski gave the first construction under standard assumptions (bad rate)

- Dziembowski gave the first construction under standard assumptions (bad rate)
- Guan et al. gave a rate-1 construction based on LWE and DCR (using incompressible encoding)

 Guan et al. gave a construction (bad rate) based on PKE. They also gave a rate 1 construction using Indistinguishable Obfuscator (iO).

- Guan et al. gave a construction (bad rate) based on PKE. They also gave a rate 1 construction using Indistinguishable Obfuscator (iO).
- Branco et al. gave a construction based on hardness of LWE and DDH which is rate 1.

- Guan et al. gave a construction (bad rate) based on PKE. They also gave a rate 1 construction using Indistinguishable Obfuscator (iO).
- Branco et al. gave a construction based on hardness of LWE and DDH which is rate 1.
- Our Result: a generic transformation from PKE to incompressible PKE. This also works for more advanced notions of encryption.

Incompressible SKE & PKE

 m_0, m_1

Adversary 1

 m_0, m_1

$$sk \leftarrow Setup()$$

$$b \leftarrow \{0,1\}$$

Adversary 1

 m_0, m_1

 $sk \leftarrow Setup()$ $b \leftarrow \{0,1\}$ $c \leftarrow Enc(sk, m_b)$

 $c \leftarrow Enc(sk, m_b)$

Adversary 1

sk, state

sk, state

 $b' \in \{0,1\}$

Adversaries wins if b = b'

• In OTP scheme, the key $sk \in \{0,1\}^n$ is a randomly generated string. To encrypt a message $m \in \{0,1\}^n$, compute $c = m \oplus sk$.

- In OTP scheme, the key $sk \in \{0,1\}^n$ is a randomly generated string. To encrypt a message $m \in \{0,1\}^n$, compute $c = m \oplus sk$.
- Consider $m_0 = 0^n$ and $m_1 = 1^n$. After receiving c, the first adversary creates state = c[0].

- In OTP scheme, the key $sk \in \{0,1\}^n$ is a randomly generated string. To encrypt a message $m \in \{0,1\}^n$, compute $c=m \oplus sk$.
- Consider $m_0 = 0^n$ and $m_1 = 1^n$. After receiving c, the first adversary creates state = c[0].
- Only receiving sk, the second adversary returns $b' = state[0] \oplus sk[0]$.

Adversary 1

 $0^{n}, 1^{n}$

$$sk \leftarrow \{0,1\}^n$$
$$b \leftarrow \{0,1\}$$

Adversary 1

$$sk \leftarrow \{0,1\}^n$$

 $0^{n}, 1^{n}$

$$c \leftarrow b^n \oplus sk$$

 $b \leftarrow \{0,1\}$

Adversary 1

$$sk \leftarrow \{0,1\}^n$$

$$b \leftarrow \{0,1\}$$

$$c \leftarrow b^n \oplus sk$$

$$c$$

$$state = c[0] = sk[0] \oplus b$$

Adversary 1

$$sk \leftarrow \{0,1\}^n$$

$$b \leftarrow \{0,1\}$$

$$c \leftarrow b^n \oplus sk$$

$$c$$

$$state = c[0] = sk[0] \oplus b$$

Adversary 1

$$sk \leftarrow \{0,1\}^n$$
$$b \leftarrow \{0,1\}$$
$$c \leftarrow b^n \oplus sk$$

sk, state

Adversary 1

$$sk \leftarrow \{0,1\}^n$$
$$b \leftarrow \{0,1\}$$
$$c \leftarrow b^n \oplus sk$$

 $0^{n}, 1^{n}$

Adversary 2

sk, state $state \oplus sk[0] = b$

Issue is OTP is secure when secret key is kept hidden.

- Issue is OTP is secure when secret key is kept hidden.
- Somehow generate a new key sk' from original secret key sk and then use OTP.

- Issue is OTP is secure when secret key is kept hidden.
- Somehow generate a new key sk' from original secret key sk and then use OTP.
- Secret key sk is a truly random string.

- Issue is OTP is secure when secret key is kept hidden.
- Somehow generate a new key sk' from original secret key sk and then use OTP.
- Secret key sk is a truly random string.
- To encrypt a message m, compute sk' = Ext(R; sk) which will used in OTP. Here, R is a huge random string.

- Issue is OTP is secure when secret key is kept hidden.
- Somehow generate a new key sk' from original secret key sk and then use OTP.
- Secret key sk is a truly random string.
- To encrypt a message m, compute sk' = Ext(R; sk) which will used in OTP. Here, R is a huge random string.
- Compute $c = (R, m \oplus sk')$.

 $sk \leftarrow \{0,1\}^{\ell}$

Adversary 1

$$sk \leftarrow \{0,1\}^{\ell}$$

$$b \leftarrow \{0,1\}$$

Adversary 1

$$sk \leftarrow \{0,1\}^{\ell}$$
$$b \leftarrow \{0,1\}$$
$$sk' = Ext(R; sk)$$

 $c = (R, sk' \oplus m_b)$

Adversary 1

$$sk \leftarrow \{0,1\}^{\ell}$$

$$b \leftarrow \{0,1\}$$

$$sk' = Ext(R; sk)$$

Adversary 1

$$sk \leftarrow \{0,1\}^{\ell}$$

$$b \leftarrow \{0,1\}$$

$$sk' = Ext(R; sk)$$

$$c = (R, sk' \oplus m_b)$$

Adversary 1

Adversary 1

Adversary 1

sk, state

state

Adversary 1

Adversary 1

Adversary 1

This implies that R has enough entropy even after seeing state

Adversary 1

This implies that R has enough entropy even after seeing state

(sk, Ext(R; sk)) is statistically close to a truly random string even in the presence of state

Adversary 1

$$sk \leftarrow \{0,1\}^{\ell}$$
$$b \leftarrow \{0,1\}$$

Adversary 2

sk, state

b'

This implies that R has enough entropy even after seeing state

 m_0, m_1

(sk, Ext(R; sk)) is statistically close to a truly random string even in the presence of state

Adversary 1

This implies that R has enough entropy even after seeing state

(sk, Ext(R; sk)) is statistically close to a truly random string even in the presence of state

• Primitive required - PKE, incompressible SKE and garbling scheme.

- Primitive required PKE, incompressible SKE and garbling scheme.
- Garbling scheme Given a circuit $C:\{0,1\}^n \to \{0,1\}^m$, a garbling scheme generates a new circuit \tilde{C} and 2n labels

- Primitive required PKE, incompressible SKE and garbling scheme.
- Garbling scheme Given a circuit $C:\{0,1\}^n \to \{0,1\}^m$, a garbling scheme generates a new circuit \tilde{C} and 2n labels

$$lab_{1,0}, lab_{2,0}, ..., lab_{n,0}$$

- Primitive required PKE, incompressible SKE and garbling scheme.
- Garbling scheme Given a circuit $C:\{0,1\}^n \to \{0,1\}^m$, a garbling scheme generates a new circuit \tilde{C} and 2n labels

$$lab_{1,0}, lab_{2,0}, ..., lab_{n,0}$$

$$lab_{1,1}, lab_{2,1}, ..., lab_{n,1}$$

- Primitive required PKE, incompressible SKE and garbling scheme.
- Garbling scheme Given a circuit $C:\{0,1\}^n \to \{0,1\}^m$, a garbling scheme generates a new circuit \tilde{C} and 2n labels

$$lab_{1,0}, lab_{2,0}, ..., lab_{n,0}$$

$$lab_{1,1}, lab_{2,1}, ..., lab_{n,1}$$

such that for any $(x_1, ..., x_n) \in \{0, 1\}^n$

- Primitive required PKE, incompressible SKE and garbling scheme.
- Garbling scheme Given a circuit $C:\{0,1\}^n \to \{0,1\}^m$, a garbling scheme generates a new circuit \tilde{C} and 2n labels

$$lab_{1,0}, lab_{2,0}, ..., lab_{n,0}$$

$$lab_{1,1}, lab_{2,1}, ..., lab_{n,1}$$

such that for any $(x_1, ..., x_n) \in \{0, 1\}^n$

$$\tilde{C}(lab_{1,x_1}, lab_{2,x_2}, ..., lab_{n,x_n}) = C(x_1, ..., x_n)$$

0/1 0/1

0/1 0/1

0/1 0/1

0/1 0/1

(1,0,...,1,1)

Correctness - For any x, $C(x) = \tilde{C}(\{lab_{i,x_i}\})$.

Correctness - For any x, $C(x) = \tilde{C}(\{lab_{i,x_i}\})$.

Security - Given |C|, C(x), the simulator can generate \tilde{C} and $\{lab_{i,x_i}\}$

• *Setup*():

Generate 2n public/secret key,

$$(pk_{i,b}, sk_{i,b}) \leftarrow PKE.Setup()$$

Generate $k \leftarrow incSKE$. Setup().

$$pk = \{pk_{i,b}\} \text{ and } sk = (k, \{sk_{i,k_i}\})$$

• Setup():

Generate 2n public/secret key, $(pk_{i,b}, sk_{i,b}) \leftarrow PKE . Setup()$ Generate $k \leftarrow incSKE . Setup()$. $pk = \{pk_{i,b}\} \text{ and } sk = (k, \{sk_{i,k_i}\})$

```
\begin{split} \bullet & Enc(pk,m): \\ & (\tilde{C},lab_{i,b}) \leftarrow Garble(incSKE.Enc(\cdot,m)) \\ & c_{i,b} \leftarrow PKE.Enc(pk_{i,b},lab_{i,b}) \\ & \text{Return } (\tilde{C},\{c_{i,b}\}) \end{split}
```

• Setup():

Generate 2n public/secret key, $(pk_{i,b}, sk_{i,b}) \leftarrow PKE . Setup()$ Generate $k \leftarrow incSKE . Setup()$. $pk = \{pk_{i,b}\}$ and $sk = (k, \{sk_{i,k_i}\})$

• Enc(pk, m): $(\tilde{C}, lab_{i,b}) \leftarrow Garble(incSKE . Enc(\cdot, m))$ $c_{i,b} \leftarrow PKE . Enc(pk_{i,b}, lab_{i,b})$ Return $(\tilde{C}, \{c_{i,b}\})$ • $Dec(sk, (\tilde{C}, \{c_{i,b}\}))$: $lab_{i,k_i} \leftarrow PKE . Dec(sk_{i,k_i}, c_{i,k_i})$ $incSKE . ct = \tilde{C}(\{lab_{i,k_i}\})$ $m \leftarrow incSKE . Dec(k, incSKE . ct)$ Return m

Correctness of our Incomp PKE

• Setup():

Generate 2n public/secret key, $(pk_{i,b}, sk_{i,b}) \leftarrow PKE . Setup()$ Generate $k \leftarrow incSKE . Setup()$. $pk = \{pk_{i,b}\}$ and $sk = (k, \{sk_{i,k_i}\})$

• Enc(pk, m): $(\tilde{C}, lab_{i,b}) \leftarrow Garble(incSKE . Enc(\cdot, m))$ $c_{i,b} \leftarrow PKE . Enc(pk_{i,b}, lab_{i,b})$ Return $(\tilde{C}, \{c_{i,b}\})$

```
• Dec(sk, (\tilde{C}, \{c_{i,b}\})):
lab_{i,k_i} \leftarrow PKE \cdot Dec(sk_{i,k_i}, c_{i,k_i})
incSKE \cdot ct = \tilde{C}(\{lab_{i,k_i}\})
m \leftarrow incSKE \cdot Dec(k, incSKE \cdot ct)
Return m
```

Correctness of our Incomp PKE

• Setup():

Generate 2n public/secret key, $(pk_{i,b}, sk_{i,b}) \leftarrow PKE . Setup()$ Generate $k \leftarrow incSKE . Setup()$. $pk = \{pk_{i,b}\}$ and $sk = (k, \{sk_{i,k_i}\})$

```
• Enc(pk, m):  (\tilde{C}, lab_{i,b}) \leftarrow Garble(incSKE . Enc(\cdot, m))   c_{i,b} \leftarrow PKE . Enc(pk_{i,b}, lab_{i,b})  Return (\tilde{C}, \{c_{i,b}\})
```

```
• Dec(sk, (\tilde{C}, \{c_{i,b}\})):
lab_{i,k_i} \leftarrow PKE \cdot Dec(sk_{i,k_i}, c_{i,k_i})
incSKE \cdot ct = \tilde{C}(\{lab_{i,k_i}\})
= incSKE \cdot Enc(k, m)
m \leftarrow incSKE \cdot Dec(k, incSKE \cdot ct)
Return m
```

Correctness of our Incomp PKE

• Setup():

Generate 2n public/secret key, $(pk_{i,b}, sk_{i,b}) \leftarrow PKE . Setup()$ Generate $k \leftarrow incSKE . Setup()$. $pk = \{pk_{i,b}\}$ and $sk = (k, \{sk_{i,k_i}\})$

```
• Enc(pk, m):

(\tilde{C}, lab_{i,b}) \leftarrow Garble(incSKE . Enc(\cdot, m))

c_{i,b} \leftarrow PKE . Enc(pk_{i,b}, lab_{i,b})

Return (\tilde{C}, \{c_{i,b}\})
```

```
• Dec(sk, (\tilde{C}, \{c_{i,b}\})):
lab_{i,k_i} \leftarrow PKE \cdot Dec(sk_{i,k_i}, c_{i,k_i})
incSKE \cdot ct = \tilde{C}(\{lab_{i,k_i}\})
= incSKE \cdot Enc(k, m)
m \leftarrow incSKE \cdot Dec(k, incSKE \cdot ct)
Return m
```

Security of our Incomp PKE

```
• Setup():

Generate 2n public/secret key,

(pk_{i,b}, sk_{i,b}) \leftarrow PKE . Setup()

Generate k \leftarrow incSKE . Setup().

pk = \{pk_{i,b}\} and sk = (k, \{sk_{i,k_i}\})
```

```
• Enc(pk, m):  (\tilde{C}, lab_{i,b}) \leftarrow Garble(incSKE . Enc(\cdot, m))   c_{i,k_i} \leftarrow PKE . Enc(pk_{i,b}, lab_{i,k_i})   c_{i,1-k_i} \leftarrow PKE . Enc(pk_{i,b}, lab_{i,1-k_i})   Return (\tilde{C}, \{c_{i,b}\})
```

```
• Dec(sk, (\tilde{C}, \{c_{i,b}\})):
lab_{i,k_i} \leftarrow PKE . Dec(sk_{i,k_i}, c_{i,k_i})
incSKE . ct = \tilde{C}(\{lab_{i,k_i}\})
m \leftarrow incSKE . Dec(k, incSKE . ct)
Return m
```

Security of our Incomp PKE

• Setup():

Generate 2n public/secret key, $(pk_{i,b}, sk_{i,b}) \leftarrow PKE . Setup()$ Generate $k \leftarrow incSKE . Setup()$.

 $pk = \{pk_{i,b}\} \text{ and } sk = (k, \{sk_{i,k}\})$

Return $(\tilde{C}, \{c_{i,b}\})$

• Enc(pk, m): $(\tilde{C}, lab_{i,b}) \leftarrow Garble(incSKE . Enc(\cdot, m))$ $c_{i,k_i} \leftarrow PKE . Enc(pk_{i,k_i}, lab_{i,k_i})$ $c_{i,1-k_i} \leftarrow PKE . Enc(pk_{i,1-k_i}, 0)$ • $Dec(sk, (\tilde{C}, \{c_{i,b}\}))$: $lab_{i,k_i} \leftarrow PKE . Dec(sk_{i,k_i}, c_{i,k_i})$ $incSKE . ct = \tilde{C}(\{lab_{i,k_i}\})$ $m \leftarrow incSKE . Dec(k, incSKE . ct)$ Return m

Security of our Incomp PKE

• *Setup*():

```
Generate 2n public/secret key, (pk_{i,b}, sk_{i,b}) \leftarrow PKE . Setup() Generate k \leftarrow incSKE . Setup(). pk = \{pk_{i,b}\} and sk = (k, \{sk_{i,k_i}\})
```

• Enc(pk, m): $(\tilde{C}, \{lab_{i,k_i}\}) \leftarrow Sim(incSKE . Enc(k, m))$ $c_{i,k_i} \leftarrow PKE . Enc(pk_{i,k_i}, lab_{i,k_i})$ $c_{i,1-k_i} \leftarrow PKE . Enc(pk_{i,1-k_i}, 0)$ Return $(\tilde{C}, \{c_{i,b}\})$

•
$$Dec(sk, (\tilde{C}, \{c_{i,b}\}))$$
:
$$lab_{i,k_i} \leftarrow PKE . Dec(sk_{i,k_i}, c_{i,k_i})$$

$$incSKE . ct = \tilde{C}(\{lab_{i,k_i}\})$$

$$m \leftarrow incSKE . Dec(k, incSKE . ct)$$
Return m

Incompressible IBE & FE

• Setup(): Outputs master public and secret key (mpk, msk).

- Setup(): Outputs master public and secret key (mpk, msk).
- Enc(mpk, m, id): Outputs ciphertext c.

- Setup(): Outputs master public and secret key (mpk, msk).
- Enc(mpk, m, id): Outputs ciphertext c.
- KeyGen(msk, id): Outputs secret key sk_{id} .

- Setup(): Outputs master public and secret key (mpk, msk).
- Enc(mpk, m, id): Outputs ciphertext c.
- KeyGen(msk, id): Outputs secret key sk_{id} .
- $Dec(sk_{id}, c)$: Outputs a message or error.

Incompressible (IBE) Security

Adversary 1

 $(msk, mpk) \leftarrow Setup()$

 $(msk, mpk) \leftarrow Setup()$ mpk

 $(msk, mpk) \leftarrow Setup()$

Adversary 1

mpk

 $(msk, mpk) \leftarrow Setup()$

Adversary 1

mpk

Adversary 1

Adversaries wins if b = b'

Our Results

Our Results

• Gave an incompressible IBE scheme where second adversary gets sk_{id^*} , i.e., the secret key for the target identity.

Our Results

- Gave an incompressible IBE scheme where second adversary gets sk_{id^*} , i.e., the secret key for the target identity.
- Replace the PKE in the incompressible PKE construction with IBE.

• Setup(): Outputs master public and secret key (mpk, msk).

- Setup(): Outputs master public and secret key (mpk, msk).
- Enc(mpk, m): Outputs ciphertext c.

- Setup(): Outputs master public and secret key (mpk, msk).
- Enc(mpk, m): Outputs ciphertext c.
- KeyGen(msk, f): Outputs secret key sk_f .

- Setup(): Outputs master public and secret key (mpk, msk).
- Enc(mpk, m): Outputs ciphertext c.
- KeyGen(msk, f): Outputs secret key sk_f .
- $Dec(sk_f, c)$: Outputs f(m) or error.

 $(msk, mpk) \leftarrow Setup()$

 $(msk, mpk) \leftarrow Setup()$ mpk

 $(msk, mpk) \leftarrow Setup()$ mpk

 m_0, m_1

$$(msk, mpk) \leftarrow Setup()$$
 mpk

$$b \leftarrow \{0,1\}$$

$$c \leftarrow Enc(pk, m_b)$$

$$(msk, mpk) \leftarrow Setup()$$
 mpk

$$b \leftarrow \{0,1\}$$

$$c \leftarrow Enc(pk, m_b)$$

$$c$$

$$(msk, mpk) \leftarrow Setup()$$
 mpk

$$(msk, mpk) \leftarrow Setup()$$
 mpk

Adversary wins if b = b'

Adversary wins if b = b'

Adversary 1

 $(msk, mpk) \leftarrow Setup()$

 $(msk, mpk) \leftarrow Setup()$ mpk

 $(msk, mpk) \leftarrow Setup()$

Adversary 1

mpk

 $(msk, mpk) \leftarrow Setup()$

Adversary 1

mpk

mpk, msk, state

 $b' \in \{0,1\}$

Adversaries wins if b = b'

 $(msk, mpk) \leftarrow Setup()$

 $(msk, mpk) \leftarrow Setup()$ mpk

Adversary 1

mpk, $\{sk_{f_i}\}$, state

mpk, $\{sk_{f_i}\}$, state

 $b' \in \{0,1\}$

Adversaries wins if b = b'

Regular Incompressible (FE) Security

Adversary 1

 $(msk, mpk) \leftarrow Setup()$

 $(msk, mpk) \leftarrow Setup()$ mpk

Adversary 1

mpk, sk_f , state

Adversaries wins if b = b'

Our Results

Our Results

 Gave an incompressible FE scheme where second adversary can ask for polynomially many distinguishing keys.

Our Results

- Gave an incompressible FE scheme where second adversary can ask for polynomially many distinguishing keys.
- Construction is based on "Trojan Horse" technique.

Discussed different security notion for encryption schemes.

- Discussed different security notion for encryption schemes.
- Focussed on constructions for incompressible SKE and PKE.

- Discussed different security notion for encryption schemes.
- Focussed on constructions for incompressible SKE and PKE.
- Looked at incompressible IBE & FE security definition.

- Discussed different security notion for encryption schemes.
- Focussed on constructions for incompressible SKE and PKE.
- Looked at incompressible IBE & FE security definition.
- Open problem: Is it possible to define incompressible version of other primitive and give a construction?

Thank You

 Adversary's memory is bounded but not time. Honest parties communicate lot of information that the adversary cannot store them.

- Adversary's memory is bounded but not time. Honest parties communicate lot of information that the adversary cannot store them.
- Unconditional proofs of security. Security still hold even if adversary get more memory in the later stage.

- Adversary's memory is bounded but not time. Honest parties communicate lot of information that the adversary cannot store them.
- Unconditional proofs of security. Security still hold even if adversary get more memory in the later stage.
- Tools used are Birthday attacks and space lower bounds [Raz,FOCS17].

- Adversary's memory is bounded but not time. Honest parties communicate lot of information that the adversary cannot store them.
- Unconditional proofs of security. Security still hold even if adversary get more memory in the later stage.
- Tools used are Birthday attacks and space lower bounds [Raz, FOCS17].
- CPA encryption [CM97,AR99,Raz17,GZ19]

- Adversary's memory is bounded but not time. Honest parties communicate lot of information that the adversary cannot store them.
- Unconditional proofs of security. Security still hold even if adversary get more memory in the later stage.
- Tools used are Birthday attacks and space lower bounds [Raz,FOCS17].
- CPA encryption [CM97,AR99,Raz17,GZ19]
- Key agreement [CM97,GZ19,DQW21], Commitment [DLN15,GZ19], etc.

Standard Security (CCA)

Standard Security (CCA)

Standard Security (CCA) Challenger Adversary

 $(sk, pk) \leftarrow Setup()$

Challenger

$$(sk, pk) \leftarrow Setup()$$
 pk

Challenger

$$(sk, pk) \leftarrow Setup() \qquad pk$$

$$m_0, m_1$$

 $b \leftarrow \{0,1\}$

$$(sk, pk) \leftarrow Setup() \qquad pk$$

$$m_0, m_1$$

$$(sk, pk) \leftarrow Setup()$$

$$m_0, m_1$$

$$b \leftarrow \{0,1\}$$
$$c \leftarrow Enc(pk, m_b)$$

Challenger

$$(sk, pk) \leftarrow Setup()$$

$$m_0, m_1$$

$$b \leftarrow \{0,1\}$$
$$c \leftarrow Enc(pk, m_b)$$

 $\boldsymbol{\mathcal{C}}$

$$(sk, pk) \leftarrow Setup()$$
 pk

$$m_0, m_1$$

$$b \leftarrow \{0,1\}$$
$$c \leftarrow Enc(pk, m_b)$$

$$\boldsymbol{\mathcal{C}}$$

$$b' \in \{0,1\}$$

Challenger

Challenger

Adversary wins if b = b'

Due to Guan et al.

- Due to Guan et al.
- Uses incompressible encoding no adversary can decode a compressed version of an encoding.

- Due to Guan et al.
- Uses incompressible encoding no adversary can decode a compressed version of an encoding.
- Enc(sk = (crs, k), m): Compute $c_0 = Encode(crs, PRG(s) \oplus m)$. Set $c_1 = Ext(c_0; k) \oplus s$. Return (c_0, c_1) .