

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T Y \text{ им. H. 9. Баумана})$

ФАКУЛЬТЕТ	Фундаментальные науки	
КАФЕЛРА	Приклалная математика	

Отчет по лабораторной работе №3 на тему:

" Численное решение краевых задач для двумерного уравнения Пуассона"

Студент	ФН2-61Б		М. А. Каган
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Студент	ФН2-61Б		И. А. Яковлев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Проверил			А. О. Гусев
r · · · r		(Подпись, дата)	(И.О. Фамилия)

ОГЛАВЛЕНИЕ 2

()	Γ . Π .	a_{BJ}	ен	ие
\sim	TOT	CUDU.		

Контрольные вопросы	3
---------------------	---

Контрольные вопросы

1. Оцените число действий, необходимое для перехода на следующий слой по времени методом переменных направлений.

Omeem:

Запишем схему переменных направлений. Примем

$$F(y) = \frac{2}{\tau}y + \Lambda_2 y + \phi, \quad F_{ij}^k = F(y_{ij}^k),$$
$$\hat{F}(y) = \frac{2}{\tau}y + \Lambda_1 y + \phi, \quad \hat{F}_{ij}^{k+1/2} = \hat{F}(y_{ij}^{k+1/2}),$$

преобразовав уравнения с помощью введенных величин, получим

$$\frac{1}{h_1^2} y_{i-1,j}^{k+1/2} - 2\left(\frac{1}{h_1^2} + \frac{1}{\tau}\right) y_{ij}^{k+1/2} + \frac{1}{h_1^2} y_{i+1,j}^{k+1/2} = -F_{ij}^k,$$

$$u_{0,j} = \Omega_{0,j}, \quad u_{N_1,j} = \Omega_{N_1,j}, \quad j = 1, 2, \dots, N_2 - 1,$$

где $\Omega_{i,j} = \xi(x_{i,1}, x_{2,j})$ — значения искомой функции в граничых узлах области. Для вычисления F_{ij}^k требуется порядка $3N_1N_2$ умножений. 2 и 3 строки представляет собой N_2-1 трехдиагональных СЛАУ размерности N_1-1 . Для их решения требуется примерно $5N_1N_2$ операций. Такой же порядок операций получается и для остальных этапов:

$$\frac{1}{h_2^2} y_{i,j-1}^{k+1} - 2\left(\frac{1}{h_2^2} + \frac{1}{\tau}\right) y_{ij}^{k+1} + \frac{1}{h_2^2} y_{i,j+1}^{k+1} = -\hat{F}_{ij}^{k+1/2},$$

$$u_{i,0} = \Omega_{i,0}, \quad u_{i,N_2} = \Omega_{i,N_2}, \quad i = 1, 2, \dots, N_1 - 1.$$

Таким образом, для перехода на следующий слой по времени требуется порядка $16N_1N_2$ операций.

2. Почему при увеличении числа измерений резко возрастает количество операций для решения неявных схем (по сравнению с одномерной схемой)?

При решении одномерной задачи аппроксимирующие уравнения зависят только от количества узлов на одной оси. Для n-мерных случаев количество неизвестных кратно количеству узлов на оси. Таким образом, если, например, СЛАУ решается методом Гаусса, то сложность алгоритма $O(N_1^3)$ для одномерного случая, а для n-мерного $O((N_1N_2...N_n)^3)$ *Ответ:*