Network tour of mice genetics.

An Approach to Genetic and Expression based Phenotype Prediction on Mouse

Pipeline

Introduction Background Informations

Gigi - Intro (~30sec-1 minute)

Gianni - Acquisition / Exploration (2 minutes)

Yann - Grid Search

Raph - Network simulation

Yannos - Results from Yann - Exploitation Phenotype prediction (Harmonic, LReg, tikho Class)

Raph - Feature Imputation (Baseline & Tikhonov)

Lucas - Features Imputation (Logistic Regression and GNN) / Results

X - Conclusion / Discussion

Introduction

Background and motivation

- Systems genetics approaches such as GWAS or PheWAS are suitable tool to examine different phenotypes
- Graph methods are gaining popularity due to their flexibility and high representative power

_

Introduction

Background and motivation

- Systems genetics approaches such as GWAS or PheWAS are suitable tool to examine different phenotypes
- Graph methods are gaining popularity due to their flexibility and high representative power

Goal

- Take advantage of the network structure of the data to impute missing values
- Build a classifier able to predict the phenotype based on the underlying genotype

Introduction

Background and motivation

- Systems genetics approaches such as GWAS or PheWAS are suitable tool to examine different phenotypes
- Graph methods are gaining popularity due to their flexibility and high representative power

Goal

- Take advantage of the network structure of the data to impute missing values
- Build a classifier able to predict the phenotype based on the underlying genotype

Challenges

• Deal with the large amount of missing values (~50%)

Acquisition

- 3 types of file
 - o genetic file
 - o phenotype file
 - o expression file (about 71'000 genes)
- Network build based on the genetic file (no missing information)
 - Nodes represent mouse strains
 - Edges represent 'similarities' between mouse strains
- Lots of missing values in expression files

Exploration

- Cosine similarity measurement
- Gaussian kernel (σ =0.53, ϵ =0.27)
- Property: connected network

Genetic Graph											
Number of nodes	93										
Number of edges	373										
Graph density	8.72%										
Average degree	8.02										
Nb of connected components	1										
Diameter of the network	6										
Avg clustering coefficient	0.26										

- Modularity maximization
- Low avg. clustering
- High diameter
- No small world property

Network Simulation

- SNP* random inheritance suggests random network structure
- Degree distribution closer to random than scale-free network

Many parameters (sigma, epsilon, distance metric,tau etc)

- Many parameters (sigma, epsilon, distance metric, tau etc)
- Sparse dataset (extensive amount of nan values)

- Many parameters (sigma, epsilon, distance metric, tau etc)
- Sparse dataset (extensive amount of nan values)
- Choice between genetic and expressive datasets to build a network

- Many parameters (sigma, epsilon, distance metric,tau etc)
- Sparse dataset (extensive amount of nan values)
- Choice between genetic and expressive datasets to build a network

Solution: GridSearch approach!

- Many parameters (sigma, epsilon, distance metric, tau etc)
- Sparse dataset (extensive amount of nan values)
- Choice between genetic and expressive datasets to build a network

Solution: GridSearch approach!

• Implementation of a CV method on graphs dealing with nan values

Result: list of 12 continuous and discrete genes reaching an accuracy > 0.6

- Many parameters (sigma, epsilon, distance metric,tau etc)
- Sparse dataset (extensive amount of nan values)
- Choice between genetic and expressive datasets to build a network

Solution: GridSearch approach!

• Implementation of a CV method on graphs dealing with nan values

Result: list of 12 continuous and discrete genes reaching an accuracy > 0.6 R2 > 0.1

Exploitation - Feature Imputation

- 1. Build a baseline: Mean imputation
 - a. Pros:
 - . Does not change the sample mean of the feature
 - ii. Make sense for univariate analysis
 - b. Cons:
 - i. Attenuate correlation between imputed variables
 - ii. Becomes problematic for multivariate analysis
- 2. Tikhonov regression imputation
 - a. Pros:
 - i. Use same feature from other mouse to impute data (unlike standard regression)
 - ii. Use graph similarity to impute data
 - b. Cons:
 - i. No error term include in the estimation (fit exactly the model without residual variance)
- 3. Missing data imputation by signal filtering (no relevant results)
- 4. Linear regression (to do)
- 5. Stochastic regression (to do)

Exploitation - Phenotype Prediction

- Harmonic function¹
- Logistic regression and RFE
- Tikhonov Classification

¹ Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. "Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions". en. In: (), p. 8.

Results

Model		Graph Based		Features	X	FS method	X	Imputation Method	Acc.		МСС	
Logistic Regression	X	no)(Genetic (7324 / 2)) (RFE		None	0.60 / 0.98		0.47 / 0.99	
Tikhonov Classification)	Genetic (7324 / 2)		no		RFE		None	0.52 / 0.98		0.40 / 0.98	Genetic data only
Harmonic function	X	Genetic (7324)		no		None		None	0.56	I	0.39	

Results

Model	X	Graph Based)(Features	X	FS method	X	Imputation Method	I	Acc.)(MCC	
Logistic Regression	X	no		Genetic (7324 / 2)		RFE		None		0.60 / 0.98)	0.47 / 0.99	
Tikhonov Classification	X	Genetic (7324 / 2)		no		RFE		None		0.52 / 0.98	\mathcal{L}	0.40 / 0.98	Genetic data only
Harmonic function)	Genetic (7324)		no		None	X	None		0.56	X	0.39	
Logistic Regression		no		Express. (30)		MI / CHI2 / RF		Mean		0.78		0.704	Expression data
Logistic Regression		no		Express. (30)		MI / CHI2 / RF		Tikhonov		0.74		0.632	only

Results

Model	X	Graph Based		Features)(FS method	X	Imputation Method	Acc.	МСС	
Logistic Regression)(no		Genetic (7324 / 2)		RFE		None	0.60 / 0.98	0.47 / 0.99	
Tikhonov Classification)(Genetic (7324 / 2)		no		RFE		None	0.52 / 0.98	0.40 / 0.98	Genetic data only
Harmonic function)(Genetic (7324)		no		None		None	0.56	0.39	
Logistic Regression	X	no	X	Express. (30)		MI / CHI2 / RF	X	Mean	0.78	0.704	Expression data
Logistic Regression	X	no		Express. (30)		MI / CHI2 / RF		Tikhonov	0.74	0.632	only
Graph Neural Network		Genetic (7324)		Express. (30)) (MI / CHI2 / RF) (Mean	0.609	0.418	 Genetic data +
Graph Neural Network	X	Genetic (7324)	X	Express. (30)		MI / CHI2 / RF		Tikhonov	0.687	0.537	Expression data

Improvement & Futur work:

Improvement & Futur work:

• Acquisition of more data

Improvement & Futur work:

- Acquisition of more data
- Regression for a continuous phenotype label instead of classification on discrete label

Improvement & Futur work:

- Acquisition of more data
- Regression for a continuous phenotype label instead of classification on discrete label
- Skin color for instance is regulated by >11 loci in the human genome

Questions?