Homework 4: due 17:00, Monday, 19 December 2016

- (1) Describe intuitively the TMs that decide the following languages.
 - $L_1 = \Sigma^*$, where Σ is the input alphabet.
 - $L_2 = \emptyset$.
 - $L_3 = \{w \mid w \text{ is the binary representation of an even number}\}.$
 - $L_4 = \{ w \mid w \text{ is the binary representation of a prime number} \}.$
- (2) Bob defines the following hypothetical language L depending on whether there is a parallel universe.
 - If there is a parallel universe, $L = \{0^n \mid n \ge 0\}$.
 - If there is no parallel universe, $L = \{1^n \mid n \ge 0\}$.

Is L decidable? Please explain.

(3) In the class we define that an NTM \mathcal{M} accepts an input word w, if there is an accepting run of \mathcal{M} on w, and it rejects w, if all its runs are rejecting.

Now, Bob does not like this definition. He wants to define the acceptance and rejection conditions as follows.

- An ANTM \mathcal{M} accepts w, if there is an accepting run of \mathcal{M} on w and there is no rejecting run.
- Likewise, an NTM \mathcal{M} rejects an input word w, if there is a rejecting run of \mathcal{M} on w and there is no accepting run.

What do you think of Bob's definition? Please explain.

(4) Prove that the following problem is undecidable.

Input: A CFG \mathcal{G} and a DFA \mathcal{A} .

Task: Decide whether $L(\mathcal{G}) = L(\mathcal{A})$. That is, return True, if $L(\mathcal{G}) = L(\mathcal{A})$. Otherwise, return False.

(5) Prove that the following problem is undecidable.

Input: A CFG \mathcal{G} with the set of terminals Σ .

Task: Decide whether $\Sigma^* - L(\mathcal{G})$ is CFL. That is, return True, if $\Sigma^* - L(\mathcal{G})$ is CFL. Otherwise, return False.