Hardware

4. USB 4. ročník

- Universal Serial Bus
- Pro připojení nejrůznějších periférií k danému zařízení
 - Navrženo kvůli sjednocení připojování periférií
- Nástupce RS-232 (COM)
 - · Jednodušší na správu, ale pomalejší na přenos
 - · Také náhrada za IEEE 1284 (LPT), PS/2, GamePort, ...

Umožňuje:

- Přenos informací mezi zařízeními
 - PC mobil | PC ext. disk | mobil flash disk
- Napájet nejrůznější zařízení
 - Lampičky, ohřívače, větráčky, mobily, tablety, powerbanky
- Podpora "Plug & play"
 - Možnost připojení za chodu a není nutný restart zařízení
 - · Během "chvíle" je možno periferii používat
 - Známé ovladače se instalují automaticky, jinak ručně
- Komunikační vzdálenost do 5m s využitím TP

- Využívá tzv. vrstvenou hvězdicovou architekturu
 - V centru je vždy jeden USB HUB (max. 5)
- Možnost připojit až 127 zařízení
 - Každé zařízení má přidělenu jedinečnou adresu
 - Získána po připojení ke sběrnici
 - Během inventarizace sběrnice (Enumerated)
- Jedná se o řízenou sběrnici
 - Veškeré datové přenosy inicializuje hostitelský řadič spolu s operačním systémem
 - · Žádné dvě USB zařízení spolu nemohou komunikovat přímo

USB - logická struktura

Hostitelský řadič

- Host Controller
- · Rozhraní mezi USB systémem a hostitelským PC
- Implementace bud' SW nebo HW typu
- Společně je implementován i "kořenový rozbočovač" a nabízí tak možnost připojení ke sběrnici

Kořenový rozbočovač

- Root Hub (master)
- Nejvyšší úroveň, k níž se připojují zařízení (slave)
- Může požadovat data od jed. zařízení, ale žádné zař. nemůže samo vysílat

- Firmy podílející se na vývoji:
 - Compaq
 - Hewlett-Packard
 - Intel
 - Lucent
 - NEC
 - Microsoft
 - Philips

PHILIPS

USB - konkurenti

FireWire

- V každé specifikaci vždy rychlejší než USB
- · Využití u dig. kamer, automobilů, větrných turbín, armáda
- Dražší na výrobu (nutná řídící jednotka v zařízení)
- Vývoj: Apple, Texas Instruments, Sony, DEC, IBM (1986)

Thunderbolt

- · Výhrada zařízení firmy Apple
- Podporuje PCI Express, DisplayPort, dodávku energie až 100W, možnost připojit až 6 zařízení za sebou
- Rychlejší (až 40Gb/s), dražší, spec. kab.
- Vývoj: Intel (2011)

THUNDERBOLT..

USB - krátká historie (od 1994)

- ▶ USB 1.0
 - 1996
- ▶ USB 1.1
 - 1998
- ▶ USB 2.0
 - 2000

- ▶ USB 3.0-> 3.1 gen. 1
 - 2008
- ▶ USB 3.1 gen. 2
 - 2013
- ▶ USB 3.2
 - · 2017 2020

USB 1.x

- Low Speed: 1,5 Mbit/s
- Full Speed: 12 Mbit/s
- Čtyř pinový konektor
 - 2x data
 - Vcc a GND
- Pouze jeden datový proud
 - Data vždy jedním směrem v jednom časovém okamžiku
 - Half-duplex

USB 1.x

- Bez podpory prodlužovacího kabelu
 - · Špatné časování a omezený výkon
- ▶ USB 1.1
 - · Přijata širokou veřejností
- Pouze konektory
 - A
 - B

USB 2.0

Navýšení rychlosti

- Zpětně kompatibilní s USB 1.x
- High Speed: 480 Mbit/s
 - Bohužel díky omezení přístupu ke sběrnici je možné dosáhnout pouze rychlosti 280 Mbit/s
- Half-duplex

USB 2.0

- Odběr do 100mA na port
 - Max. 500mA jedno zařízení na celé sběrnici
 - Většinou podpora jediného portu na MB
- Definice malých portů
 - Mini-A, Mini-B
 - Specifikace kabelů a konektorů Micro-USB (A/B)

USB 1.x a 2.0 - konektory

USB 3. generace

USB 3. generace

USB LOGO

USB Generation	USB 2.0 (HI-SPEED)	USB 3.0 (SUPERSPEED)	USB 3.1 (SUPERSPEED+)
Backward Compatible	USB 1.1	USB 1.1/2.0	USB 1.1/2.0/3.0
Max. Transfer Rate	480Mb/s	4.8Gb/s	10G/s
Charging Power	100 mA	900 mA	900 mA

HAW 4. ročník | 2018 | rev.1

USB 3. generace

	Version	Speed	Bits/sec	HD movie 25GB
-USB	USB 1.1	Low speed (LS) Full speed (FS)	1.5 Mbps 12 Mbps	~9.25 hours
USB	USB 2.0	High speed (HS)	480 Mbps	~14 mins
USB	USB 3.0	SuperSpeed (SS)	5 Gbps	~70 sec
USB	USB 3.1	SuperSpeedPlus (SSP)	10 Gbps	~35 sec

USB - princip přenosu

- Data jsou přenášena v tzv. "rámcích", kde každý má délku 1ms
 - Rámec se skládá z paketů
- Druhy paketů
 - Token paket
 - Datový paket
 - Handshake paket

USB - paket

- Základní prvek USB přenosu
- Token paket
 - Definuje typ transakce na USB
 - SOF StartOfFrame
 - IN přenos od hostitele k zařízení
 - OUT přenos od zařízení k hostiteli
 - SETUP start řídícího přenosu
- Datový paket
 - Samotná data, identifikátor se pravidelně mění, ošetření ztráty paketu; přenos od LSB po MSB
 - Data0
 - Data1

USB - paket

- Handshake paket
 - Potvrzovací paket
 - ACK kladné potvrzení (data přišla v pořádku)
 - NAK záporné potvrzení (data nelze přijmout)
 - STALL využito pokud není přenos kompletní
- Preamble paket
 - · Přepínání sběrnice mezi Low a Full Speed

USB protokol

- Využívá tzv. pozitivní potvrzování
 - Dojdou-li data v pořádku vyšle přijímač ACK paket
 - Nastane-li chyba při přenosu, přijímač mlčí a přijatá data zahodí
 - Po určité době odesílatel pošle data znovu
- Paket NAK je vysílán
 - · Když není zařízení schopno přijmout data
 - Většinou dočasný problém
 - Přenos typu OUT -> přijímač má plný vstupní buffer
 - V případě přenosu IN je vyslán paket NAK, pokud již nejsou další data pro hostitele k odeslání
 - Paket NAK nikdy neposílá hostitel

USB protokol

- Pro komunikaci mezi hostitelem a EP je využíváno tzv. roury (pipe)
 - Na jedné straně EndPoint (samotné zařízení)
 - Na druhé straně vyrovnávací paměť (hostitel)
- Komunikace v rámci roury je jednosměrná
 - Pro případ obousměrné komunikace je nutno vytvořit dvě roury
- Typy rour
 - Messages
 - Streams

USB - inventarizace sběrnice

- Bus Enumeration
- Prováděna průběžně z důvodu možnosti připojení/odpojení zařízení v libovolném okamžiku
- Identifikace zařízení -> přidělení adresy
- Detekování zpráv o odpojení zařízení

USB – zjednodušená činnost

- Po sběrnici neustále kolují rámce, jak datové, tak servisní
- Chce-li zařízení vysílat/přijímat, čeká na servisní rámec
 - Zde zapíše své informace a čeká na potvrzení od Root Hub
- Po potvrzení s dalším příchozím datovým rámcem může začít komunikovat (číst/zapisovat)
- Podpora CRC
 - · Jak HW, tak SW

USB - činnost podrobněji

- Většina přenosů dat (transakcí) je složena z vysílání 3 paketů
- 1) Hostitelský řadič vyšle USB paket popisující typ a směr přenosu, adresu zařízení a číslo koncového bodu (token paket)
 - · Konkrétní zařízení rozpozná svou adr. a připraví se k přenosu
- Zařízení nebo systém vysílají datový paket, případně oznámí, že nemají co vysílat (součástí jsou i kontrolní bity)
- 3) Ukončení transakce nastává vysláním handshake paketu, jímž se potvrdí úspěšnost

USB – typy přenosů

USB rozlišuje celkem 4 typy EP -> 4 typy přenosů

Control Transfer

- Pouze pomocí roury zpráv
- Využit k detekci a konfiguraci zařízení při jeho připojení
- Vysoká priorita a hlídání chyb

Interrupt Transfer

- Tam kde se periodicky vysílá malý objem dat (myš, klávesnice)
- Systém se periodicky dotazuje na nová data (cca 100ms)
- V případě chyby nastává opakování
- Náročné na časování

USB – typy přenosů

Isochronous Transfer

- Probíhá v reálném čase (audio, video)
- Nutné zajištění konstantní přenosové rychlosti
- · Chyby se neopravují, chybná data jsou zahozena
- Náročné na časování

Bulk Transfer

- Přenos většího množství dat, jež vyžadují detekci chyb, ale nejsou časově kritická (skener, tiskárna, externí disk)
- Rychlost je dána vytížením sběrnice
- Opakování přenosu v případě chyb

KONEC

Zdroje

- https://vyvoj.hw.cz/navrh-obvodu/rozhrani/usb/usb-universal-serialbus-popis-rozhrani.html [11. 11. 2018]
- https://cs.wikipedia.org/wiki/Universal_Serial_Bus#USB_1.1 [11. 11. 2018]
- https://cs.wikipedia.org/wiki/FireWire [11. 11. 2018]
- https://en.wikipedia.org/wiki/USB [11. 11. 2018]
- https://www.quora.com/Who-designed-the-USB-symbol-Whats-thestory-behind-the-individual-or-group-who-designed-it-and-thedesign-process-they-pursued [11. 11. 2018]
- https://www.backblaze.com/blog/whats-diff-thunderbolt-vs-usb/ [11. 11. 2018]
- https://cdr.cz/clanek/usb-3-1-konektor-typ-c [11. 11. 2018]

Zdroje

- https://www.kingston.com/us/usb/usb_30 [2. 12. 2018]
- http://alienware-forum.de/index.php/Thread/7397-USB-3-1-Ports/ [2. 12. 2018]
- http://www.fit.vutbr.cz/study/courses/PZ2/public/TEXTY/USB.pdf [16. 12. 2018]
- https://vyvoj.hw.cz/navrh-obvodu/rozhrani/rs-485-rs-422/usb-20-typy-a-formaty-prenosu.html [16. 12. 2018]
- http://home.zcu.cz/~eckhardt/popis.html [16. 12. 2018]
- https://vyvoj.hw.cz/navrh-obvodu/rozhrani/usb/usb-universal-serial-bus-popis-rozhrani.html [16. 12. 2018]
- https://thunderbolttechnology.net/ [13. 1. 2019]
- https://jablickar.cz/konektor-neni-to-stejne-jako-rozhrani-aneb-usb-c-a-thunderbolt-3/ [13. 1. 2019]
- https://cs.wikipedia.org/wiki/FireWire [13. 1. 2019]