Fysik og Mekanik – formelsamling

Noah Rahbek Bigum Hansen

Efteråret 2024

Indhold

1	Gru	ındlæg	gende og afledte SI-enheder	3		
	1.1	SI-pre	fixer	3		
	1.2	De 7 g	grundlæggende SI-enheder	3		
	1.3	De 22	afledte SI-enheder	4		
	1.4	Andre	hyppigt brugte enheder	4		
2	Enh	neder,	fysiske størrelser og vektorer	5		
	2.1	Vekto	rprodukter (1.10)	1.0		
		2.1.1	Skalarproduktet	15		
		2.1.2	Krydsproduktet	5		
3	Bev	ægelse	e langs en ret linje	5		
	3.1	3.1 Strækning, tid og hastighed (2.1-2)				
		3.1.1	Gennemsnitlig hastighed	1		
		3.1.2	Øjeblikshastighed (Eng: Instantaneous velocity)	Ę		
	3.2	Accele	eration (2.3)	6		
		3.2.1	Gennemsnitlig acceleration	6		
		3.2.2	Øjebliksacceleration (End: Instantaneous acceleration)	6		
	3.3	Bevæg	gelse med konstant acceleration	6		
		3.3.1	Hastighed ved konstant acceleration	6		
		3.3.2	Position ved konstant acceleration	6		
	3.4	Hastig	ghed og position ved integration (2.6)	7		
		3.4.1	Hastighed som integralet af acceleration	7		
		3.4.2	Position som integralet af hastighed	7		
4	Bev	ægelse	e i to eller tre dimensioner	7		
	4.1	Hastie	chedsvektorer (3.1)	7		

INDHOLD

		4.1.1	Gennemsnitshastigshedsvektor (Eng. Average velocity vector)	7	
		4.1.2	Øjeblikshastighedsvektor (Eng: $instantaneous\ velocity\ vector$)	7	
		4.1.3	Hastighedskomposanter	7	
		4.1.4	Størrelsen af hastighedsvektoren fra komposanter	7	
	4.2	2 Accelerationsvektorer (3.2)			
		4.2.1	Gennemsnitsaccelerationsvektor (Eng. $Average\ acceleration\ vector$)	8	
		4.2.2	Øjebliksaccelerationssvektor (Eng. $instantaneous\ acceleration\ vector$)	8	
		4.2.3	Accelerationskomposanter	8	
		4.2.4	Størrelsen af accelerationsvektoren fra komposanter	8	
	4.3	Det sk	rå kast (Eng: Projectile motion) (3.3)	8	
		4.3.1	Afstand ved skråt kast	8	
		4.3.2	Højde ved skråt kast	8	
		4.3.3	Horisontal hastighed ved skråt kast	8	
		4.3.4	Vertikal hastighed ved skråt kast	9	
	4.4	I.4 Bevægelse i en cirkel (3.4)		9	
		4.4.1	$\label{eq:continuous} Acceleration for uniform cirkulær bevægelse - (Centripetal acceleration) $	9	
4.5		Relati	v hastighed (3.5)	9	
		4.5.1	Den gallilæiske hastighedstransformation (Eng: The Galilean velocity transformation)	9	
5	Nev	vtons l	pevægelseslove	9	

1 Grundlæggende og afledte SI-enheder

1.1 SI-prefixer

Navn	Symbol	Størrelse
quetta	Q	10^{30}
ronna	R	10^{27}
yotta	Y	10^{24}
zetta	Z	10^{21}
exa	Е	10^{18}
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hekto	h	10^{2}
deka	da	10^{1}
-	-	10^{0}
deci	d	10^{-1}
centi	c	10^{-2}
mili	m	10^{-3}
mikro	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}
zepto	Z	10^{-21}
yocto	у	10^{-24}
ronto	r	10^{-27}
quecto	q	10^{-30}

1.2 De 7 grundlæggende SI-enheder

Størrelse	Grundenhed	Enhedssymbol
Tid	Sekund	s
Længde	Meter	m
Masse	Kilogram	kg
Strømstyrke	Ampere	A
Temperatur	Kelvin	K
Stofmængde	Mol	mol
Lysintensitet	Candela	cd

1.3 De 22 afledte SI-enheder

Enhedsnavn	Symbol	Størrelse	I standard enheder	I andre SI-enheder
Radian	rad	Planvinkel	$ m mm^{-1}$	1
Steradian	sr	Rumvinkel	${ m m}^2{ m m}^{-2}$	1
Hertz	Hz	Frekvens	s^{-1}	
Newton	N	Kraft	$ m kgms^{-2}$	
Pascal	Pa	Tryk	${\rm kg}{\rm m}^{-1}{\rm s}^{-2}$	$N \mathrm{m}^{-2} = J \mathrm{m}^{-3}$
Joule	J	Energi, arbejde	$\mathrm{kg}\mathrm{m}^2\mathrm{s}^{-2}$	$N m = Pa m^3$
Watt	W	Effekt	$ m kgm^2s^{-3}$	$\mathrm{J}\mathrm{s}^{-1}$
Coulomb	С	Elektrisk ladning	s A	
Volt	V	Elektrisk spænding	${\rm kg}{\rm m}^2{\rm s}^{-3}{\rm A}^{-1}$	$WA^{-1} = JC^{-1}$
Farad	F	Kapacitans	${\rm kg^{-1}m^{-2}s^4A^2}$	$W A^{-1} = J C^{-1}$
Ohm	Ω	Modstand	${ m kg}{ m m}^2{ m s}^{-3}{ m A}^{-2}$	$V A^{-1} = J s C^{-2}$
Siemens	S	Konduktans	${\rm kg}^{-1}{\rm m}^{-2}{\rm s}^3{\rm A}^2$	$\Omega^{-}1$
Weber	Wb	Magnetisk flux	${\rm kg}{\rm m}^2{\rm s}^{-2}{\rm A}^{-1}$	Vs
Tesla	Т	Magnetisk fluxtæthed	${\rm kg}{\rm s}^{-2}{\rm A}^{-1}$	${ m Wbm^{-2}}$
Henry	Н	Induktans	${\rm kg}{\rm m}^2{\rm s}^{-2}{\rm A}^{-2}$	$\mathrm{Wb}\mathrm{A}^{-1}$
Grader Celsius	$^{\circ}\mathrm{C}$	Temperatur	K	
Lumen	lm	Lysflux	$\mathrm{cd}\mathrm{m}^{2}\mathrm{m}^{-2}$	$\operatorname{cd}\operatorname{sr}$
Lux	lx	Illuminans	$ m cdm^2m^{-4}$	$lm m^{-2} = cd sr m^2$
Becquerel	Bq	Radioaktiv aktivitet	s^{-1}	
Gray	Gy	Absorberet dosis	${ m m}^2{ m s}^{-2}$	Jkg^{-1}
Sievert	Sv	Ækvivalent dosis	${ m m}^2{ m s}^{-2}$	Jkg^{-1}
Katal	kat	Katalytisk aktivitet	$ m mols^{-1}$	

1.4 Andre hyppigt brugte enheder

Længde:

 $1\,\mathrm{light-year} = 9{,}461\cdot10^{15}\,\mathrm{m}$

Tid:

 $1 \min = 60 \mathrm{s}$

 $1\,\mathrm{h} = 3600\,\mathrm{s}$

1 d = 86400 s

 $1 \, y = 365,24 \, d = 3,156 \cdot 10^7 \, s$

Vinkel:

 $1 \, \mathrm{rad} = 57,\! 30^{\circ} = 180^{\circ} / \pi$

 $1^{\circ} = 0.01745 \, \text{rad} = \pi/180 \, \text{rad}$

 $1\,\mathrm{rev} = 360^\circ = 2\pi\mathrm{rad}$

 $1\,\mathrm{rev/min(rpm)} = 0.1047\,\mathrm{rad/s}$

2 Enheder, fysiske størrelser og vektorer

2.1 Vektorprodukter (1.10)

2.1.1 Skalarproduktet

Lad \vec{A} og \vec{B} være to vektorer. Prikproduktet $\vec{A} \cdot \vec{B}$ er da defineret som

$$\vec{A} \cdot \vec{B} = AB\cos\phi = \left| \vec{A} \right| \left| \vec{B} \right| \cos\phi$$

Hvor A og $|\vec{A}|$ er størrelsen af \vec{A} , B og \vec{B} er størrelsen af \vec{B} og ϕ er vinklen mellem de to vektorer, hvis de lægges så deres "startpunkter" er sammenfaldende. For $0^{\circ} < \phi < 90^{\circ}$ er skalarproduktet positivt mens det for $90^{\circ} < \phi < 180^{\circ}$ er negativt – for $\phi = 90^{\circ}$ er skalarproduktet 0.

Skalarproduktet kan også skrives som

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z.$$

Hvor $\vec{A} = (A_x, A_y, A_y)$ og $\vec{B} = (B_x, B_y, B_z)$.

2.1.2 Krydsproduktet

Lad \vec{A} og \vec{B} være to vektorer. Krydsproduktet $\vec{A} \times \vec{B}$ er da defineret som

$$\left| \vec{C} \right| = \left| \vec{A} \right| \left| \vec{B} \right| \sin \phi.$$

Hvor $|\vec{C}|$ er længden af den resulterende vektor som fås fra krydsproduktet. $|\vec{A}|$ og $|\vec{B}|$ er længden af hhv. \vec{A} og \vec{B} mens ϕ er vinklen mellem de to vektorer, hvis de lægges så deres "startpunkter" er sammenfaldende.

Komposanterne til den resulterende vektor af krydsproduktet $\vec{C} = (C_x, C_y, C_z)$ kan findes som

$$C_x = A_y B_z - A_z B_y$$
, $C_y = A_z B_z - A_x B_z$, $C_z = A_x B_y - A_y B_x$.

Hvor $\vec{A} = (A_x, A_y, A_y)$ og $\vec{B} = (B_x, B_y, B_z)$.

3 Bevægelse langs en ret linje

3.1 Strækning, tid og hastighed (2.1-2)

3.1.1 Gennemsnitlig hastighed

Den gennemsnitlige hastighed er givet som ændringen i strækning $\Delta x = x_2 - x_1$ over ændringen i tid $\Delta t = t_2 - t_1$. Altså har vi at

$$v_{av_x} = \frac{\Delta}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}.$$

3.1.2 Øjeblikshastighed (Eng. Instantaneous velocity)

Øjeblikshastigheden i x-retningen v_x er givet ved den gennemsnitlige hastighed når $\Delta \to 0$. Altså

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}x}{\mathrm{d}t}.$$

3.2 Acceleration (2.3)

3.2.1 Gennemsnitlig acceleration

Vi betragter en partikel der bevæger sig langs x-aksen. Lad P_1 angive et punkt hvor partiklen har hastighed v_{1x} til tiden t_1 og P_2 angive et tilsvarende punkt hvor partiklen istedet har hastigheden v_{2x} til tiden t_2 . Idet partiklen bevæger sig fra P_1 til P_2 på $\Delta t = t_2 - t_1$ og ændrer sin hastighed med $\Delta v_x = v_{2x} - v_{1x}$ så er den gennemsnitlige acceleration givet som

$$a_{av_x} = \frac{\Delta v_x}{\Delta t} = \frac{v_{2x} - v_{1x}}{t_2 - t_1}.$$

3.2.2 Øjebliksacceleration (End: Instantaneous acceleration)

Øjebliksaccelerationen i x-retningen a_x er defineret som den gennemsnitlige acceleration når $\Delta t \to 0$. Altså

$$a_x = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} = \frac{\mathrm{d}v_x}{\mathrm{d}t}.$$

3.3 Bevægelse med konstant acceleration

3.3.1 Hastighed ved konstant acceleration

Vi betragter en partikel, der bevæger sig langs x-aksen. Lad v_{0x} være partiklens hastighed til t = 0, a_x være partiklens konstante acceleration og t være tiden. Hastigheden i x-retningen v_x til tiden t er da givet som

$$v_x = v_{0x} + a_x t.$$

Har man i stedet fået givet to punkter x og x_0 men ingen tid t kan følgende formel benyttes i stedet

$$v_x^2 = v_{0x}^2 + 2a_x(x - x_0).$$

3.3.2 Position ved konstant acceleration

Vi betragter en partikel, der bevæger sig langs x-aksen. Lad x_0 være partiklens position til t = 0, v_{0x} være partiklens hastighed til t = 0, a_x være partiklens konstante acceleration og t være tiden. Positionen af partiklen til tiden t er da givet som

$$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2.$$

Har man ikke fået opgivet den konstante acceleration a_x men i stedet en start og en sluthastighed v_{0x} og v_x kan følgende formel benyttes

$$x - x_0 = \frac{1}{2}(v_{0x} + v_x)t.$$

Her er det værd at bemærke at formlen ovenfor kun kan benyttes for konstant acceleration, dette gælder selvom denne acceleration ikke er givet.

3.4 Hastighed og position ved integration (2.6)

3.4.1 Hastighed som integralet af acceleration

Har man fået oplyst en funktion a_x der beskriver accelerationen som funktion af tid samt en initialhastighed v_{0x} kan hastigheden v_x til tiden t findes som

$$v_x = v_{0x} + \int_0^t a_x \, \mathrm{d}t.$$

3.4.2 Position som integralet af hastighed

Har man fået oplyst en funktion v_x der beskriver hastigheden som funktion af tid samt en initialposition x_0 kan positionen x til tiden t findes som

$$x = x_0 + \int_0^t v_x \, \mathrm{d}t.$$

4 Bevægelse i to eller tre dimensioner

4.1 Hastighedsvektorer (3.1)

4.1.1 Gennemsnitshastigshedsvektor (Eng. Average velocity vector)

På samme måde som i **3.1.1: Gennemsnitlig hastighed** kan vi finde gennemsnitshastighedsvektoren $\vec{v_{av}}$ som kvotienten mellem ændringen i positionsvektoren $\Delta \vec{r}$ og ændringen i tid Δt . Altså

$$\vec{v_{av}} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r_2} - \vec{r_1}}{t_2 - t_1}.$$

4.1.2 Øjeblikshastighedsvektor (Eng. instantaneous velocity vector)

På samme måde som i 3.1.2: Øjeblikshastighed (Eng: Instantaneous velocity) kan vi finde øjeblikshastighedsvektoren \vec{v} som kvotienten mellem ændringen i positionsvektoren $\Delta \vec{r}$ og ændringen i tid Δt når $\Delta t \to 0$. Altså

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}.$$

4.1.3 Hastighedskomposanter

Hastigheden i en given retning er blot ændringen i position i denne retning over tid. Altså

$$v_x = \frac{\mathrm{d}x}{\mathrm{d}t}, v_y = \frac{\mathrm{d}y}{\mathrm{d}t}, v_z = \frac{\mathrm{d}z}{\mathrm{d}t}.$$

4.1.4 Størrelsen af hastighedsvektoren fra komposanter

Givet størrelen på komposanterne, (v_x, v_y, v_z) til hastighedsvektoren \vec{v} kan størrelsen af hastighedsvektoren $|\vec{v}|$ findes med Pythagoras som

$$|\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}.$$

4.2 Accelerationsvektorer (3.2)

4.2.1 Gennemsnitsaccelerations vektor (Eng. Average acceleration vector)

På samme måde som i 3.2.1: Gennemsnitlig acceleration kan vi finde gennemsnitsaccelerationsvektoren $\vec{a_{av}}$ som kvotienten mellem ændringen i hastighedsvektoren $\Delta \vec{v}$ og ændringen i tid Δt . Altså

$$\vec{v_{av}} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v_2} - \vec{v_1}}{t_2 - t_1}.$$

4.2.2 Øjebliksaccelerationssvektor (Eng. instantaneous acceleration vector)

På samme måde som i 3.2.2: Øjebliksacceleration (End: Instantaneous acceleration) kan vi finde øjebliksaccelerationsvektoren \vec{a} som kvotienten mellem ændringen i hastighedsvektoren $\Delta \vec{v}$ og ændringen i tid Δt når $\Delta t \to 0$. Altså

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t}.$$

4.2.3 Accelerationskomposanter

Accelerationen i en given retning er blot ændringen i position i denne retning over tid. Altså

$$a_x = \frac{\mathrm{d}v_x}{\mathrm{d}t}, a_y = \frac{\mathrm{d}v_y}{\mathrm{d}t}, a_z = \frac{\mathrm{d}v_z}{\mathrm{d}t}.$$

4.2.4 Størrelsen af accelerationsvektoren fra komposanter

Givet størrelen på komposanterne, (a_x, a_y, a_z) til accelerationsvektoren \vec{a} kan størrelsen af accelerationsvektoren $|\vec{a}|$ findes med Pythagoras som

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}.$$

4.3 Det skrå kast (Eng. Projectile motion) (3.3)

4.3.1 Afstand ved skråt kast

Givet en initialhastighed v_0 , en kastevinkel α_0 og en tid t kan den tilbagelagte horisontale afstand for et skråt kast findes som

$$x = (v_0 \cos \alpha_0)t$$
.

4.3.2 Højde ved skråt kast

Givet en initialhastighed v_0 , en kastevinkel α_0 kan højden y til tiden t findes som

$$y = (v_0 \sin \alpha_0)t - \frac{1}{2}gt^2.$$

4.3.3 Horisontal hastighed ved skråt kast

Givet en initalhastighed v_0 og en kastevinkel α_0 kan hastigheden i x-retningen v_x findes som

$$v_x = v_0 \cos \alpha_0$$
.

4.3.4 Vertikal hastighed ved skråt kast

Givet en initialhastighed v_0 og en kastevinkel α_0 kan den vertikale hastighed v_y til tiden t findes som

$$v_y = v_0 \sin \alpha_0 - gt.$$

4.4 Bevægelse i en cirkel (3.4)

4.4.1 Acceleration for uniform cirkulær bevægelse – (Centripetalacceleration)

Idet et objekt i cirkulær bevægelse er nødt til konstant at ændre sin bevægelsesretning for at følge cirkelbevægelsen rundt. Dette betyder at objektet er nødt til at have en acceleration selvom størrelsen på dens hastighed ikke ændrer sig. Denne acceleration kaldes centripetalaccelerationen og kan findes ud fra en given hastighed v og radiussen af cirkelbevægelsen R som

$$a_{cp} = \frac{v^2}{R}.$$

Idet hastigheden kan findes ud fra radiussen R og perioden T som

$$v = \frac{2\pi R}{T}$$

kan centripetalaccelerationen findes som

$$a_{rad} = \frac{4\pi^2 R}{T^2}.$$

4.5 Relativ hastighed (3.5)

4.5.1 Den gallilæiske hastighedstransformation (Eng. The Galilean velocity transformation)

Givet et objekt P's hastighed, i forhold til et referencesystem B, $\vec{v}_{P/B}$ og referencesystem B's hastighedm i forhold til et andet referencesystem A, $\vec{v}_{B/A}$ kan objektet P's hastighed i forhold til A findes som

$$\vec{v}_{P/A} = \vec{v}_{P/B} + \vec{v}_{B/A}.$$

5 Newtons bevægelseslove