Comparison

Module 03

Partha Pratio

Objectives Outline

File Systems v Databases

Python viz-a-viz SC Parameterized Comparison

Module Summa

Parameter	File Handling via Python	DBMS	
Scalability with re-	Very difficult to handle insert, update and	In-built features to provide high scalability for	
spect to	querying of records	a large number of records	
amount of data			
Scalability with re-	Extremely difficult to change the structure of	Adding or removing attributes can be done	
spect to changes	records as in the case of adding or removing	seamlessly using simple SQL queries	
in structure	attributes		
Time of execution	In seconds	In milliseconds	
Persistence	Data processed using temporary data struc-	Data persistence is ensured via automatic, sys-	
	tures have to be manually updated to the file	tem induced mechanisms	
Robustness	Ensuring robustness of data has to be done	Backup, recovery and restore need minimum	
	manually	manual intervention	
Security	Difficult to implement in Python (Security at	User-specific access at database level	
	OS level)		
Programmer's	Most file access operations involve extensive	Standard and simple built-in queries reduce the	
productivity	coding to ensure persistence, robustness and	effort involved in coding thereby increasing a	
	security of data	programmer's throughput	
Arithmetic opera-	Easy to do arithmetic computations	Limited set of arithmetic operations are avail-	
tions		able	
Costs	Low costs for hardware, software and human	High costs for hardware, software and human	
	resources	resources	

Levels of Abstraction

Module 04

Partha Pratim Das

Objectives Outline

Levels of Abstraction

Schema and Instance

Data Model

DDL and DM

. . .

Database Design

Module Summary

• Physical level: describes how a record (for example, instructor) is stored

 Logical level: describes data stored in database, and the relationships among the data fields

```
type instructor = record
ID : string;
  name : string;
  dept_name : string;
  salary : integer;
end;
```

- View level: application programs hide details of data types
 - Views can also hide information (such as an employee's salary) for security purposes

only 1 physical and logical level, multiple view levels possible

Schemas and Instances

Module 04

Schema and

Instance

schema is the way data will be organized, instance is the actual value of that

- Similar to type of a variable and value of the variable at run-time in programming languages
- Schema
 - Logical Schema the overall logical structure of the database
 - ▷ Analogous to type information of a variable in a program
 - Example: The database consists of information about a set of customers and accounts in a bank and the relationship between them
 - Name | Customer ID | Account # | Aadhaar ID Mobile # Customer Schema Account # | Account Type | Interest Rate | Min. Bal. Balance
 - ▶ Account Schema
 - Physical Schema— the overall physical structure of the database

Module 04

Partha Pratii Das

Objectives Outline

Abstractio

Schema and Instance

Data Mada

DDL and DI

SQ

Database Design

Module Summary

Instance

- The actual content of the database at a particular point in time
- Analogous to the value of a variable

Name	Customer ID	Account #	Aadhaar ID	Mobile #
Pavan Laha	6728	917322	182719289372	9830100291
Lata Kala	8912	827183	918291204829	7189203928
Nand Prabhu	6617	372912	127837291021	8892021892

- o Customer Instance
- Account Instance

Account #	Account Type	Interest Rate	Min. Bal.	Balance
917322	Savings	4.0%	5000	7812
372912	Current	0.0%	0	291820
827183	Term Deposit	6.75%	10000	100000

instance may be added/removed and the schema remains the same, vice versa is NOT true

Schema and Instances

Module 04

Partha Pratin Das

Objectives Outline

Levels of Abstraction

Schema and Instance

matanec

DDI and DN

Database De

Module Summar

• Physical Data Independence – the ability to modify the physical schema without changing the logical schema

- Analogous to independence of *Interface* and *Implementation* in Object-Oriented
 Systems
- Applications depend on the logical schema
- In general, the interfaces between the various levels and components should be well
 defined so that changes in some parts do not seriously influence others.

Data Models

Module 04

Data Models

- A collection of tools for describing
 - Data
 - Data relationships
 - Data semantics
 - Data constraints
- Relational model (we focus in this course)
- Entity-Relationship data model (mainly for database design)
- Object-based data models (Object-oriented and Object-relational)
- Other older models
 - Network model
 - Hierarchical model
- Recent models for Semi-structured or Unstructured data
 - Converted to easily manageable formats
 - Content Addressable Storage (CAS) with metadata descriptors
 - XML format.

Relational Model

Module 04

Partha Pratin

Objectives Outline

Levels of Abstraction

Schema and Instance

Data Models

DDL and DN

SQL

Database Desig

Module Summar

All the data is stored in various tables

• Example of tabular data in the relational model

columns-attributes, rows-values

ID	name	dept_name	salary
22222	Einstein	Physics	95000 ← Rows
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Columns

(a) The instructor table

Data Definition Language (DDL)

Module 04

Partha Pratim Das

Objectives Outline

Levels of Abstraction

Schema and Instance

Data Wodel

DDL and DML

. . .

Database Design

Module Summary

```
    Specification notation for defining the database schema
```

```
    Example:
    create table instructor (
    ID char(5),
    name varchar(20),
    dept_name varchar(20),
    salary numeric(8,2))
```

- DDL compiler generates a set of table templates stored in a data dictionary
- Data dictionary contains metadata (that is, data about data)
 - Database schema
 - Integrity constraints
 - Primary key (ID uniquely identifies instructors)
 - Authorization
 - ▶ Who can access what

Data Manipulation Language (DML)

Module 04

Partha Pratir Das

Objectives Outline

Levels of Abstractio

Schema and Instance

.....

DDL and DML

JŲL

Database Design

Module Summar

- Language for accessing and manipulating the data organized by the appropriate data model
 - DML: also known as Query Language
- Two classes of languages
 - Pure used for proving properties about computational power and for optimization
 - ▶ Relational Algebra (we focus in this course)
 - Tuple relational calculus
 - Domain relational calculus
 - Commercial used in commercial systems
 - ▷ SQL is the most widely used commercial language

SQL

Module 04

Partha Pratin Das

Objectives Outline

Abstraction
Schema and

Schema and Instance

DDL and DN

5QL

Database Design

Module Summary

- The most widely used commercial language

 all programs you write in C you cannot write in SQL, HOWEVER

 vice versa is TRUF!
- SQL is NOT a Turing Machine equivalent language
 - $\circ\,$ Cannot be used to solve all problems that a C program, for example, can solve
- To be able to compute complex functions, SQL is usually embedded in some higher-level language
- Application programs generally access databases through one of
 - Language extensions to allow embedded SQL
 - Application Programming Interface or API (for example, ODBC/JDBC) which allow SQL queries to be sent to a database

Database Design

Module 05

Partha Pratio

Objectives Outline

Database Design

Object-Relational Data Models XML: Extensible Markup Language

Database Engine
Database System
Internals

Database Users & Administrators

Module Summar

The process of designing the general structure of the database:

Logical Design

- Deciding on the database schema. Database design requires that we find a good collection of relation schema.
- o Business decision
 - ▶ What attributes should we record in the database?
- Computer Science decision
 - ▶ What relation schemas should we have and how should the attributes be distributed among the various relation schemas?

Physical Design

Deciding on the physical layout of the database

Design Approaches

Module 05

Partha Pratin Das

Objectives Outline

Database Design

Object-Relational Data Models XML: Extensible Markup Language

Database Engine
Database System
Internals

Database Users & Administrators

Module Summai

- Need to come up with a methodology to ensure that each relations in the database is good
- Two ways of doing so:
 - Entity Relationship Model (Chapter 7)
 - ▶ Models an enterprise as a collection of entities and relationships
 - ▷ Represented diagrammatically by an entity-relationship diagram
 - Normalization Theory (Chapter 8)
 - ▷ Formalize what designs are bad, and test for them

Object-Relational Data Models

Module 05

Partha Pratin Das

Objectives Outline

Object-Relational
Data Models

Database Engine Database System

Database Users & Administrators

Module Summar

- Relational model: flat, atomic values
- Object Relational Data Models
 - Extend the relational data model by including object orientation and constructs to deal with added data types
 - Allow attributes of tuples to have complex types, including non-atomic values such as nested relations
 - Preserve relational foundations, in particular the declarative access to data, while extending modeling power
 - o Provide upward compatibility with existing relational languages

XML: Extensible Markup Language

Module 05

Partha Pratir Das

Objectives Outline

Object-Relational Data Models

XML: Extensible Markup Language

Database Engine
Database System
Internals

Database Users & Administrators

Module Summar

- Defined by the WWW Consortium (W3C)
- Originally intended as a document markup language not a database language
- The ability to specify new tags, and to create nested tag structures made XML a great way to exchange data, not just documents
- XML has become the basis for all new generation data interchange formats
- A wide variety of tools is available for parsing, browsing and querying XML documents/data

Database Management Systems Partha Pratim Das 05.13

Database Engine

Module 05

Partha Pratii Das

Objectives Outline

Database Design Object-Relational Data Models

XML: Extensible Markup Languag

Database Engine

Database Users

Module Summary

- Storage manager
- Query processing
- Transaction manager

Storage Management

Module 05

Partha Pratir Das

Objectives Outline

Object-Relational
Data Models

XML: Extensible
Markup Language

Database Engine
Database System
Internals

Database Users & Administrators

Module Summar

- **Storage manager** is a program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system
- The storage manager is responsible to the following tasks:
 - Interaction with the OS file manager
 - Efficient storing, retrieving and updating of data
- Issues:
 - Storage access
 - File organization
 - Indexing and hashing

Query Processing

Module 05

Partha Pratin Das

Objectives Outline

Object-Relational
Data Models

XML: Extensible Markup Languag

Database Engine

Internals

Database Users & Administrators

Module Summary

- a) Parsing and translation
- o) Optimization
- c) Evaluation

Query Processing (2)

Module 05

Partha Pratin Das

Objectives Outline

Database Design Object-Relational Data Models XML: Extensible Markup Language

Database Engine

Database System
Internals

Database Users & Administrators

Module Summar

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - o Different algorithms for each operation
- Cost difference between a good and a bad way of evaluating a query can be enormous
- Need to estimate the cost of operations
 - Depends critically on statistical information about relations which the database must maintain
 - Need to estimate statistics for intermediate results to compute cost of complex expressions

Transaction Management

Module 05

Partha Pratir Das

Objectives Outline

Database Design
Object-Relational
Data Models
XML: Extensible
Markup Language

Database Engine Database System

Database Users & Administrators

Module Summary

What if the system fails?

- What if more than one user is concurrently updating the same data?
- A **transaction** is a collection of operations that performs a single logical function in a database application
- Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
- **Concurrency-control manager** controls the interaction among the concurrent transactions, to ensure the consistency of the database.

Database System Internals

Module 05

Partha Pratin

Objectives of Outline

Database Design

XML: Extensible

Database Engin

Database Users

Module Summary

Database Architecture

Module 05

Partha Pratio

Objectives Outline

Database Design
Object-Relational
Data Models
XML: Extensible
Markup Language

Database Engine
Database System

Database Users & Administrator

Module Summar

The architecture of a database system is greatly influenced by the underlying computer system on which the database is running:

- Centralized
- Client-server
- Parallel (multi-processor)
- Distributed
- Cloud