Рабочий лист	Рабочий лист

ОНПУ Кафедра физики

	Групі	та		
	Ст-т	(ка)		
————————————————————————————————————				
Лабораторная работа №1-01 Измерение геометрических размеров тел и определение их объема и площади поверхности				
площиди поверхности				
Замечания преп	одавателя:			

Одесса-201..

Упражнение 1

Измерение с помощью микрометра диаметра шара и вычисление егоо бъема

1. Измеряют 5 раз диаметр шара D и находят среднее арифметическое значение диаметра

$$\overline{D} = \frac{\sum_{i=1}^{5} D_i}{5}$$

2. Находят абсолютные погрешности отдельных измерений (5 погрешностей)

$$\Delta D_i = \overline{D} - D_i$$

3. Вычисляют квадраты погрешностей отдельных измерений $(\Delta D_i)^2$ и по формуле

$$\sigma = \sqrt{\frac{\sum_{i=1}^{5} \Delta D_i^2}{N(N-1)}}$$

находят среднюю квадратичную ошибку определения среднего арифметического значения диаметра. Все результаты измерений и промежуточных вычислений заносят в таблицу

№ п/п	D_i , $_{ m MM}$	ΔD_i , mm	ΔD_i^2
1			
2			
3			
4			
5			
	\overline{D} =	σ =	

4. По таблице коэффициентов Стьюдента для N=5 и надежности p = 0.95 определяют коэф.

$$\Delta_D = t_s \cdot \boldsymbol{\sigma}$$

6. Определяют полную погрешность измерения диаметра шара

$$\Delta_D^{\Sigma} = \sqrt{\Delta_D^2 + \Delta_{cucm}^2}$$

7. Вычисляют наиболее вероятное значение объема шара

$$\overline{V} = \frac{1}{6}\pi \overline{D}^3$$

 Вычисляют погрешность косвенных измерений объема шара

$$\Delta_V = \left| \frac{dV}{dD} \right| \Delta_D^{\Sigma} = \frac{1}{2} \pi \cdot \overline{D}^2 \cdot \Delta_D^{\Sigma}$$

9. Вычисляют относительную погрешность

$$\varepsilon = \frac{\Delta_V}{\overline{V}} \cdot 100 \,\%$$

 Записывают окончательный результат измерения объема шара

$$V = (\overline{V} \pm \Delta_V)$$
 мм³ при p=0,95

Упражнение 2

Измерение с помощью штангенциркуля диаметра и высоты цилиндра и определение площади его боковой поверхности

1. Измеряют 5 раз диаметр D и высоту H цилиндра и находят их средние арифметические значения

$$\overline{D} = \frac{\sum_{i=1}^{5} D_i}{5}, \qquad \overline{H} = \frac{\sum_{i=1}^{5} H_i}{5}.$$

2. Находят абсолютные погрешности отдельных измерений диаметра и высоты

$$\Delta D_i = \overline{D} - D_i; \quad \Delta H_i = \overline{H} - H_i$$

3. Вычисляют квадраты погрешностей отдельных измерений $(\Delta D_i)^2$ и $(\Delta H_i)^2$, затем по формулам

$$\sigma_{\overline{D}} = \sqrt{\frac{\sum_{i=1}^{5} \Delta D_i^2}{N(N-1)}} \quad ; \qquad \sigma_{\overline{H}} = \sqrt{\frac{\sum_{i=1}^{5} \Delta H_i^2}{N(N-1)}}$$

находят среднюю квадратичную ошибку определения среднего арифметического значения диаметра и высоты. Все результаты измерений и промежуточных вычислений заносят в таблицу

No	$D_{i,MM}$	ΔD_{i} , mm	ΔD_i^2
п/п			l ·

1				
2				
3				
4				
5				
	\overline{D} =		$\sigma_{\scriptscriptstyle D}$	
№ п/п	H_i , mm	ΔH_{i}	, MM	ΔH_i^2
1				
2				
3				
4				
5				
	\overline{H} =		<u> </u>	
	П =		$\sigma_{\scriptscriptstyle H}$ =	

4. По таблице коэффициентов Стьюдента для N=5 и надежности p=0,95 определяют коэф. Стьюдента

 t_s =2,78. Вычисляют случайную погрешность

$$\Delta_D = t_s \cdot \sigma_D; \qquad \Delta_H = t_s \cdot \sigma_H$$

5. Вычисляют систематическую погрешность штангенциркуля по формуле

$$\Delta_{cucm} = p \cdot \Delta_{cucm}^{\max}$$

Для штангенциркуля $\Delta_{cucm}^{\max} = 0,\!1$ мм или $0,\!05$ мм в зависимости от типа.

6. Определяют полную погрешность измерения диаметра и высоты

$$\Delta_D^{\Sigma} = \sqrt{\Delta_D^2 + \Delta_{cucm}^2}$$

$$\Delta_H^{\Sigma} = \sqrt{\Delta_H^2 + \Delta_{cucm}^2}$$

7. Вычисляют наиболее вероятное значение площади боковой поверхности

$$\overline{S} = \pi \cdot \overline{D} \cdot \overline{H}$$

8. Вычисляют погрешность косвенных измерений площади боковой поверхности

$$\Delta_S == \sqrt{(\pi \overline{H} \Delta_D^{\Sigma})^2 + (\pi \overline{D} \Delta_H^{\Sigma})^2}$$

9. Вычисляют относительную погрешность

$$\varepsilon = \frac{\Delta_S}{\overline{S}} \cdot 100 \%$$

10. Записывают окончательный результат измерения

$$S = (\overline{S} \pm \Delta_s) M M^2$$
 при p=0,95