

LFA0001 – Linguagens Formais e Autômatos Aula 06 Expressões Regulares

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2016

Karina G. Roggia 2016 LFA0001 - Aula06 1 / 21

Sumário

Introdução

Expressão Regular

ER denota linguagens regulares

Exercícios

Expressão Regular

Formalismo denotacional (gerador)

Definida a partir de

- conjuntos básicos
- concatenação e união

Adequadas para a comunicação

- humano X humano
- humano X máquina

Expressão Regular

Definição

Uma Expressão Regular (ER) sobre o alfabeto Σ é indutivamente definida como segue:

Base

- Ø é ER denota a linguagem vazia: Ø
- ε é ER denota a linguagem $\{\varepsilon\}$
- $x \in ER$ (para qualquer $x \in \Sigma$) denota a linguagem $\{x\}$

Expressão Regular

Passo se r e s são ER e denotam as linguagens R e S respectivamente

União
$$(r+s)$$
 é ER
denota a linguagem $R \cup S$
Concatenação (rs) é ER
denota a linguagem
 $RS = \{uv \mid u \in R \text{ e } v \in S\}$

Concatenação Sucessiva (r^*) é ER denota a linguagem R^*

Linguagem Gerada

Definição (Linguagem Gerada por ER)

Se r é uma ER, a correspondente linguagem denotada é chamada de **linguagem gerada por** r e escrita como L(r) ou GERA(r).

Usualmente omite-se os parênteses em uma ER. Precedência de operadores:

Concatenação Sucessiva > Concatenação > União

ER	Linguagem Gerada	
aa ba*		
$(a+b)^*$ $(a+b)^*aa(a+b)^*$		
a* ba* ba*		
$(a+b)^*(aa+bb)$		
$(a+\varepsilon)(b+ba)^*$		
	aa ba^* $(a + b)^*$ $(a + b)^*aa(a + b)^*$ $a^*ba^*ba^*$ $(a + b)^*(aa + bb)$	aa ba^* $(a + b)^*$ $(a + b)^*aa(a + b)^*$ $a^*ba^*ba^*$ $(a + b)^*(aa + bb)$

ER	Linguagem Gerada
aa	somente a palavra <i>aa</i>
ba*	
$(a + b)^*$	
$(a+b)^*aa(a+b)^*$	
a* ba* ba*	
$(a+b)^*(aa+bb)$	
(a + b) (aa + bb)	
$(a+arepsilon)(b+ba)^*$	

Karina G. Roggia 2016 LFA0001 - Aula06 7 / 21

ER	Linguagem Gerada
aa	somente a palavra <i>aa</i>
ba*	todas as palavras iniciadas por b ,
	seguido por zero ou mais <i>a</i>
$(a+b)^* (a+b)^* aa(a+b)^*$	
a* ba* ba*	
$(a+b)^*(aa+bb)$	
$(a+arepsilon)(b+ba)^*$	

ER	Linguagem Gerada
aa	somente a palavra <i>aa</i>
ba*	todas as palavras iniciadas por <i>b</i> ,
	seguido por zero ou mais <i>a</i>
$(a + b)^*$	todas as palavras sobre $\{a, b\}$
$(a + b)^* aa(a + b)^*$	
a* ba* ba*	
$(a+b)^*(aa+bb)$	
$(a+arepsilon)(b+ba)^*$	

Karina G. Roggia 2016 LFA0001 - Aula06 7 / 21

ER	Linguagem Gerada
aa	somente a palavra <i>aa</i>
ba*	todas as palavras iniciadas por b ,
	seguido por zero ou mais <i>a</i>
$(a + b)^*$	todas as palavras sobre $\{a,b\}$
$(a+b)^*aa(a+b)^*$	todas as palavras contendo
	aa como subpalavra
a* ba* ba*	
$(a+b)^*(aa+bb)$	
$(a+arepsilon)(b+ba)^*$	

Karina G. Roggia 2016 LFA0001 - Aula06 7 / 21

ER	Linguagem Gerada
aa	somente a palavra <i>aa</i>
ba*	todas as palavras iniciadas por <i>b</i> ,
	seguido por zero ou mais <i>a</i>
$(a + b)^*$	todas as palavras sobre $\{a, b\}$
$(a+b)^*aa(a+b)^*$	todas as palavras contendo
	aa como subpalavra
a* ba* ba*	todas as palavras contendo
	exatamente dois <i>b</i>
$(a+b)^*(aa+bb)$	
$(a+arepsilon)(b+ba)^*$	

ED	L'an annu Canala
ER	Linguagem Gerada
aa	somente a palavra <i>aa</i>
ba*	todas as palavras iniciadas por b ,
	seguido por zero ou mais <i>a</i>
$(a + b)^*$	todas as palavras sobre $\{a,b\}$
$(a+b)^*$ aa $(a+b)^*$	todas as palavras contendo
	aa como subpalavra
a* ba* ba*	todas as palavras contendo
	exatamente dois <i>b</i>
$(a+b)^*(aa+bb)$	todas as palavras que terminam
	com <i>aa</i> ou <i>bb</i>
$(a+arepsilon)(b+ba)^*$	

ER	Linguagem Gerada
	0 0
aa	somente a palavra <i>aa</i>
ba*	todas as palavras iniciadas por b ,
	seguido por zero ou mais <i>a</i>
$(a + b)^*$	todas as palavras sobre $\{a,b\}$
$(a+b)^*aa(a+b)^*$	todas as palavras contendo
	aa como subpalavra
a* ba* ba*	todas as palavras contendo
	exatamente dois <i>b</i>
$(a+b)^*(aa+bb)$	todas as palavras que terminam
	com <i>aa</i> ou <i>bb</i>
$(a+arepsilon)(b+ba)^*$	todas as palavras que não possuem
	dois <i>a</i> consecutivos

Linguagem gerada pela ER $(a + b)^*(aa + bb)$

- $a \in b$ denotam $\{a\} \in \{b\}$, respectivamente
- a + b denota $\{a\} \cup \{b\} = \{a, b\}$
- $(a+b)^*$ denota $\{a,b\}^*$
- $aa \ e \ bb \ denotam \ \{a\}\{a\} = \{aa\} \ e \ \{b\}\{b\} = \{bb\}$, respectivamente
- (aa + bb) denota $\{aa\} \cup \{bb\} = \{aa, bb\}$
- $(a + b)^*(aa + bb)$ denota $\{a, b\}^*\{aa, bb\}$

Portanto,
$$GERA((a+b)^*(aa+bb))$$
 é

{aa, bb, aaa, abb, baa, bbb, aaaa, aabb, abaa, abbb, baaa, babb, bbaa, bbbb, . . .}

ER denota linguagens regulares

A classe das linguagens denotadas por ER é a classe das linguagens regulares.

Para provar a afirmação acima, é necessário:

- Dada uma ER r, construir um autômato finito (neste caso, iremos construir um AF ε M_r) que reconheça L(r)
- Dado um autômato finito M, construir uma expressão regular r_M que denote L(M)

Teorema: Se r é ER, então L(r) é linguagem regular.

Prova: por indução no número de operadores de r.

Base: r é ER com zero operadores.

• $r = \emptyset$. Autômato:

Teorema: Se r é ER, então L(r) é linguagem regular.

Prova: por indução no número de operadores de r.

Base: $r \in ER$ com zero operadores.

• $r = \emptyset$. Autômato: $M_1 = \langle \emptyset, \{q_0\}, \delta_1, q_0, \emptyset \rangle$

• $r = \varepsilon$. Autômato:

• $r = \varepsilon$. Autômato: $M_2 = \langle \varnothing, \{q_f\}, \delta_1, q_f, \{q_f\} \rangle$

• r = x, sendo $x \in \Sigma$. Autômato:

Karina G. Roggia 2016 LFA0001 - Aula06 11 / 21

• $r = \varepsilon$. Autômato: $M_2 = \langle \varnothing, \{q_f\}, \delta_1, q_f, \{q_f\} \rangle$

• r = x, sendo $x \in \Sigma$. Autômato:

$$M_3 = \langle \{x\}, \{q_0, q_f\}, \delta_3, q_0, \{q_f\} \rangle$$

Karina G. Roggia 2016 LFA0001 - Aula06 11 / 21

Hipótese: r é ER com até n > 0 operadores. r terá um AF ε R tal que L(r) = L(R).

Passo: $r \in ER \text{ com } n+1 \text{ operadores}.$

Portanto r se enquadrará em um dos seguintes três casos:

- $r = r_1 + r_2$
- $r = r_1 r_2$
- $r = r_1^*$

onde r_1 e r_2 possuem no máximo n operadores Pela hipótese de indução, existem

$$M_1 = \langle \Sigma_1, Q_1, \delta_1, q_{0_1}, \{q_{f_1}\} \rangle$$

 $M_2 = \langle \Sigma_2, Q_2, \delta_2, q_{0_2}, \{q_{f_2}\} \rangle$

tais que

$$L(M_1) = L(r_1) \in L(M_2) = L(r_2)$$

• $r = r_1 + r_2$. Autômato:

• $r = r_1 + r_2$. Autômato: $M = \langle \Sigma_1 \cup \Sigma_2, Q_1 \cup Q_2 \cup \{q_0, q_f\}, \delta, q_0, \{q_f\} \rangle$

Karina G. Roggia 2016 LFA0001 - Aula06 13 / 21

• $r = r_1 r_2$. Autômato:

• $r = r_1 r_2$. Autômato: $M = \langle \Sigma_1 \cup \Sigma_2, Q_1 \cup Q_2, \delta, q_{0_1}, \{q_{f_2}\} \rangle$

• $r = r^*$. Autômato:

Karina G. Roggia 2016 LFA0001 - Aula06 14 / 21

• $r=r_1r_2$. Autômato: $M=\langle \Sigma_1 \cup \Sigma_2, Q_1 \cup Q_2, \delta, q_{0_1}, \{q_{f_2}\} \rangle$

• $r=r^*$. Autômato: $M=\langle \Sigma_1, Q_1 \cup \{q_0,q_f\}, \delta, q_0, \{q_f\} \rangle$

Karina G. Roggia 2016 LFA0001 - Aula06 14 / 21

Construção do AF ε de $a^*(aa+bb)$

Autômato Final: $a^*(aa + bb)$

AFD→ER

Teorema: Se L é linguagem regular, então existe uma ER r tal

que L(r) = L.

Prova: (Não será esmiuçada na disciplina)

Pode ser encontrada nas páginas 98 à 109 de

Hopcroft, J. E., Ullman, J. D. e Motwani, R. Introdução à Teoria de Autômatos, Linguagens e Computação. Tradução da segunda edição americana. Editora Campus, 2003.

Exercícios

• O que aconteceria caso não se inserissem os estados novos q_0 e q_f e, ao invés disso, unificásse-mos os estados iniciais ou finais de M_1 e M_2 no caso abaixo da construção de um AF ε a partir de uma ER?

Exercícios

② O que aconteceria caso não se introduzisse o estado q_f , mantendo q_{f_1} como o estado final e passando a transição vazia de q_0 para q_{f_1} de M_1 no caso abaixo da construção de um AF ε a partir de uma ER?

Exercícios

- 3 Desenvolva expressões regulares que gerem as seguintes linguagens sobre $\{a, b\}$
 - (a) {w | w tem no máximo um par de a como subpalavra e no máximo um par de b como subpalavra}
 - (b) $\{w \mid \text{qualquer par de } a \text{ antecede qualquer par de } b\}$
 - (c) {w | wnão possui abacomo subpalavra}