IAD DABAGHI

Enseignant-Chercheur en Mathématiques jad.dabaghi@devinci.fr

Table des matières

- Introduction
- 2 Analyse réelle
- Relations de comparaison
- 4 Développements limités

Objectifs

- Comprendre les comportements locaux et asymptotiques des fonctions
- Savoir manipuler les développements limités
- Connaître les principales propriétés des fractions rationnelles
- Savoir calculer plusieurs familles d'intégrales

3/35

Contenu du module

- Chapitre 1 : Analyse réelle (CMO 1)
 - Un peu de topologie, continuité d'une fonction en un point.
- Chapitre 2: Relations de comparaison (CMO 1)
 - Fonctions dominées, fonctions négligeables, fonctions équivalentes.
- Chapitre 3: Développements limités (CMO 1 & CMO 2)
 - Formules de Taylor, opérations sur les développements limités, applications.
 - Contrôle continu 45 minutes 11 Mars 2023
- Chapitre 4: Fractions rationnelles (CMO 3)
- Chapitre 5 : Calcul d'intégrales (CMO 4)

4/35

Analyse réelle

000

Analyse réelle

Definition (distance)

Soit *E* un ensemble non vide. Une **distance** sur *E* est une application $d: E \times E \to \mathbb{R}^+$ qui vérifie $\forall (x, y, z) \in E \times E \times E$

$$d(x,y)=0 \iff x=y$$
 (homogénéité)
 $d(x,y)=d(y,x)$ (symétrie)
 $d(x,z)\leq d(x,y)+d(y,z)$ (inégalité triangulaire).

Le couple (E, d) est appelé **espace métrique**.

Exemple:

- Sur \mathbb{R} , la métrique usuelle est d(x,y) = |x-y|
- Sur \mathbb{C} , la métrique usuelle est $d(z_1, z_2) = |z_2 z_1|$

19 lanvier 2023

Definition (Ouvert)

Soit (E, d) un espace métrique. On dit que $A \in \mathcal{P}(E)$ est un ouvert de E si A contient une boule ouverte. Autrement dit, si

$$\forall x \in \mathcal{A}, \ \exists r > 0 \ \text{tel que } B(x,r) \subset \mathcal{A}.$$

Exemples ouverts:

-]a, b[

• (E, d) espace métrique et $a \in E$.

On dit que $\mathcal{V} \subset E$ est un voisinage de a si, et seulement si, il existe un ouvert $O \subset \mathcal{V}$ contenant a. Autrement dit s'il existe $B(a, r) \subset \mathcal{V}$.

Une fonction f est dite continue en $a \in I$ si

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, |x - a| \le \eta \Rightarrow |f(x) - f(a)| \le \varepsilon \quad (\lim_{\alpha \to \infty} f(x) = f(\alpha)).$$

Fonctions dominées

Definition

Soit $f:I\to\mathbb{R}$ et $\varphi:I\to\mathbb{R}$ et $a\in I$. Alors f est **dominée** par φ au voisinage de a, s'il existe une $u:I\to\mathbb{R}$ bornée au voisinage de a et telle que $f=\varphi u$ au voisinage de a. On note

$$f = \mathcal{O}(\varphi)$$

Definition

Soit $f: I \to \mathbb{R}$ et $\varphi: I \to \mathbb{R}$ et $\alpha \in I$. Alors f est **dominée** par φ au voisinage de α , s'il existe une $u: I \to \mathbb{R}$ bornée au voisinage de a et telle que $f = \varphi u$ au voisinage de a. On note

Relations de comparaison

$$f = \mathcal{O}(\varphi)$$

Exemple: $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ sur \mathbb{R} et $\varphi(x) = x^2$. Alors

$$f(x) = \varphi(x)u(x)$$
 avec $u(x) = \sin\left(\frac{1}{x}\right)$. borne!

Ainsi,
$$f = \mathcal{O}(\varphi)$$
.

Definition

on dit que f est **négligeable** devant φ au voisinage de a, s'il existe une fonction ε définie sur I tel que $f = \varphi \varepsilon$ au voisinage de α et $\lim_{\alpha} \varepsilon = 0$. On note $f = o(\varphi)$.

12/35

Fonctions négligeables

Definition

on dit que f est **négligeable** devant φ au voisinage de a, s'il existe une fonction ε définie sur I tel que $f = \varphi \varepsilon$ au voisinage de a et $\lim_{\alpha} \varepsilon = 0$. On note $f = o(\varphi)$.

Exemple: $x^3 = o(x^2)$ au voisinage de 0 car $x^3 = x \times x^2$ avec $\varepsilon(x) = x$ et $\lim_{x \to 0} \varepsilon(x) = 0$.

Quelques résultats

Propriété

Soit $f: I \to \mathbb{R}$ *une fonction et* $a \in I$.

- **1** La fonction f est bornée au voisinage de a si, et seulement si $f = \mathcal{O}(1)$.
- 2 La fonction f tend vers 0 en a si, et seulement si f = o(1).

Quelques résultats

Propriété

Soit $f: I \to \mathbb{R}$ *une fonction et* $a \in I$.

- 1 La fonction f est bornée au voisinage de a si, et seulement si $f = \mathcal{O}(1)$.
- La fonction f tend vers 0 en a si, et seulement si f = o(1).

Démonstration:

 (\Rightarrow) f bornée au voisinage de α où $\mathcal{V}_{\alpha} = |\alpha - \eta, \alpha + \eta|$. Donc $f(x) = f(x) \times 1 \ \forall x \in \mathcal{V}_{\alpha}$. Alors, $f = \mathcal{O}(1)$.

Propriété

Soit $f: I \to \mathbb{R}$ *une fonction et* $a \in I$.

- 1 La fonction f est bornée au voisinage de a si, et seulement si $f = \mathcal{O}(1)$.
- La fonction f tend vers 0 en a si, et seulement si f = o(1).

Démonstration:

- (\Rightarrow) f bornée au voisinage de α où $\mathcal{V}_{\alpha} =]\alpha \eta, \alpha + \eta[$. Donc $f(x) = f(x) \times 1 \ \forall x \in \mathcal{V}_{\alpha}$. Alors, $f = \mathcal{O}(1)$.
 - $(\Leftarrow) f = \mathcal{O}(1)$. Alors $\exists \varphi$ bornée sur \mathcal{V}_q tel que $f = \varphi \times 1$ sur \mathcal{V}_q . Donc f bornée sur \mathcal{V}_{α} . ◆□▶ ◆問▶ ◆三▶ ◆三▶ ● めぬぐ

 (\Rightarrow) f tend vers 0 en a donc:

$$\forall \varepsilon > 0 \ \exists \eta_1 > 0 \ \forall x \in [a - \eta_1, a + \eta_1], \ |f(x)| \leq \varepsilon.$$

Relations de comparaison

On pose

$$\varphi: \mathcal{D}_f \to \mathbb{R}$$
 $X \mapsto f(X)$
 $\lim_{x \to a} \varphi(x) = 0$

Alors f = o(1).

 (\Rightarrow) f tend vers 0 en a donc:

$$\forall \varepsilon > 0 \ \exists \eta_1 > 0 \ \forall x \in [a - \eta_1, a + \eta_1], \ |f(x)| \leq \varepsilon.$$

Relations de comparaison

On pose

$$\varphi$$
: $\mathcal{D}_f \to \mathbb{R}$
 $X \mapsto f(X)$ $\lim_{x \to a} \varphi(x) = 0$

Alors f = o(1).

 (\Leftarrow) f = o(1) au voisinage de g. Alors $\exists \varphi$ définie au voisinage de g tel que $f = \varphi 1$ au voisinage de a avec $\lim_{a} \varphi = 0$. Or $\lim_{a} \varphi \in \mathcal{V}_{a}$ donc $\lim_{a} f = \lim_{a} \varphi = 0$.

Quelques remarques

① Lorsque f = o(g) au voisinage de $a \in I$, $f = g \times \varepsilon$ au voisinage de a et $\lim_{a} \varepsilon = 0$. Mais, $\lim_{\alpha} \varepsilon \not\to 0$ sur *I* tout entier.

Contre exemple:

$$f: x \mapsto x^3$$
 et $g: x \mapsto x^2$ sur \mathbb{R} .

Relations de comparaison

On a f = o(g) au voisinage de 0 ($\varepsilon(x) = x$) mais $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$.

Quelques remarques

① Lorsque f = o(g) au voisinage de $a \in I$, $f = g \times \varepsilon$ au voisinage de a et $\lim_{a} \varepsilon = 0$. Mais, $\lim_{\alpha} \varepsilon \not\to 0$ sur *I* tout entier.

Contre exemple:

$$f: x \mapsto x^3$$
 et $g: x \mapsto x^2$ sur \mathbb{R} .

Relations de comparaison

On a f = o(g) au voisinage de 0 ($\varepsilon(x) = x$) mais $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$.

② Si f = o(h) et g = o(h) au voisinage de a alors f n'est pas forcément égal à g.

Contre exemple:

$$f: x \mapsto x^3$$
 $g: x \mapsto x^4$ $h: x \mapsto x^2$.

On a f = o(h) au voisinage de 0 et g = o(h) au voisinage de 0 mais $f \neq g$.

15/35

Quelques remarques

① Lorsque f = o(g) au voisinage de $a \in I$, $f = g \times \varepsilon$ au voisinage de a et $\lim_{a} \varepsilon = 0$. Mais, $\lim_{\alpha} \varepsilon \not\to 0$ sur *I* tout entier.

Contre exemple:

$$f: x \mapsto x^3$$
 et $g: x \mapsto x^2$ sur \mathbb{R} .

Relations de comparaison

On a f = o(g) au voisinage de 0 ($\varepsilon(x) = x$) mais $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$.

② Si f = o(h) et g = o(h) au voisinage de a alors f n'est pas forcément égal à g.

Contre exemple:

$$f: x \mapsto x^3$$
 $g: x \mapsto x^4$ $h: x \mapsto x^2$.

On a f = o(h) au voisinage de 0 et g = o(h) au voisinage de 0 mais $f \neq g$.

Le même phénomène s'observe pour la notation \mathcal{O} .

15/35

Règles de calcul

Propriété

2
$$f_1 = \mathcal{O}(\varphi)$$
 et $f_2 = \mathcal{O}(\varphi) \Rightarrow f_1 + f_2 = \mathcal{O}(\varphi)$

3
$$f_1 = \mathcal{O}(\varphi_1)$$
 et $f_2 = \mathcal{O}(\varphi_2) \Rightarrow f_1 f_2 = \mathcal{O}(\varphi_1 \varphi_2)$

4
$$f_1 = o(\varphi)$$
 et $f_2 = o(\varphi) \Rightarrow f_1 + f_2 = o(\varphi)$

5
$$f_1 = o(\varphi_1)$$
 et $f_2 = o(\varphi_2) \Rightarrow f_1 f_2 = o(\varphi_1 \varphi_2)$

6
$$f = \mathcal{O}(\varphi_1)$$
 et $\varphi_1 = \mathcal{O}(\varphi_2) \Rightarrow f = \mathcal{O}(\varphi_2)$

$$f = o(\varphi_1)$$
 et $\varphi_1 = o(\varphi_2) \Rightarrow f = o(\varphi_2)$

Démonstration

1 $f = o(\varphi)$ au voisinage d'un point $a \Rightarrow f = g\varphi$ au voisinage de a et $\lim_a g = 0$.

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in [\alpha - \eta, \alpha + \eta], \ |g(x)| \le \varepsilon.$$

Relations de comparaison

La fonction g est donc bornée au voisinage de α . Alors, $f = \mathcal{O}(\varphi)$.

(1) $f = o(\varphi)$ au voisinage d'un point $a \Rightarrow f = g\varphi$ au voisinage de a et $\lim_a g = 0$.

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in [a - \eta, a + \eta], \ |g(x)| \le \varepsilon.$$

Relations de comparaison

La fonction g est donc bornée au voisinage de g. Alors, $f = \mathcal{O}(\varphi)$.

2) $f_1 = \mathcal{O}(\varphi)$ et $f_2 = \mathcal{O}(\varphi)$ donc $f_1 = \varphi u$ au voisinage de α et $f_2 = \varphi v$ au voisinage de α avec u et v bornées au voisinage de a.

$$\exists \eta_1 > 0 \ \forall x \in]a - \eta_1, a + \eta_1[, f_1(x) = \varphi(x)u(x).$$

$$\exists \eta_2 > 0 \ \forall x \in]\alpha - \eta_2, \alpha + \eta_2[, f_2(x) = \varphi(x)v(x).$$

Pour $\eta = \min(\eta_1, \eta_2)$ on a $\forall x \in]\alpha - \eta, \alpha + \eta[(f_1 + f_2)(x) = \varphi(x)(u + v)(x)]$. Or u + vbornée au voisinage de α donc $f_1 + f_2 = \mathcal{O}(\varphi)$.

Puisque $f_1 = o(\varphi)$ et $f_2 = o(\varphi)$ au voisinage de a il existe une fonction ε_1 définie au voisinage de α et il existe une fonction ε_2 définie au voisinage de α tel que

$$\lim_{x \to a} \varepsilon_1(x) = 0$$
 et $\lim_{x \to a} \varepsilon_2(x) = 0$

Relations de comparaison

et vérifiant $f_1 = \varepsilon_1 \varphi$ au voisinage de g et $g = \varepsilon_2 \varphi$ au voisinage de g. Ainsi, la

fonction $\varepsilon = \varepsilon_1 + \varepsilon_2$ est bien définie au voisinage de a et $\lim_{x\to a} \varepsilon(x) = 0$. Alors, $f_1 + f_2 = o(\varphi)$.

Règle pratique

Propriété

Soit I un intervalle de \mathbb{R} et $a \in I$. Supposons que φ ne s'annule pas sur $I \setminus a$. Alors au voisinage de a

- **1** f est dominée par φ si, et seulement si, $\frac{f}{\varphi}$ est bornée au voisinage de a.
- 2 f est négligeable devant φ si, et seulement si, $\lim_{x\to a} \frac{f(x)}{\varphi(x)} = 0$.

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de a, s'il existe une fonction h définie sur I telle que f = gh au voisinage de a et $\lim_{x\to a}h(x)=1$. On note $f\sim g$.

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de α , s'il existe une fonction h définie sur l telle que f = gh au voisinage de α et $\lim_{x\to a} h(x) = 1$. On note $f \sim g$.

Relations de comparaison

Exercice: Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = \sin(x)$ et g(x) = x. Montrer que f et g sont équivalentes en 0.

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de a, s'il existe une fonction h définie sur I telle que f = gh au voisinage de a et $\lim_{x\to a}h(x)=1$. On note $f\underset{a}{\sim}g$.

Exercice: Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = \sin(x)$ et g(x) = x.

Montrer que f et g sont équivalentes en 0.

Correction : On a $f \sim g$. En effet

$$\forall x \in \mathbb{R}^*$$
 $f(x) = h(x) \times g(x)$ avec $h(x) = \frac{\sin(x)}{x} \xrightarrow{0} 1$.

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de a, s'il existe une fonction h définie sur I telle que f = gh au voisinage de a et $\lim_{x\to a}h(x)=1$. On note $f\underset{a}{\sim}g$.

Relations de comparaison

Exercice: Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = \sin(x)$ et g(x) = x.

Montrer que f et g sont équivalentes en 0.

Correction : On a $f \sim g$. En effet

$$\forall x \in \mathbb{R}^*$$
 $f(x) = h(x) \times g(x)$ avec $h(x) = \frac{\sin(x)}{x} \xrightarrow{0} 1$.

Remarque : $x \mapsto x$ est un DL à l'ordre 1 de la fonction $x \mapsto \sin(x)$ au voisinage de 0.

Équivalent pour les polynômes

$$f(x) = \sum_{k=p}^{n} a_k x^k$$
 avec $a_p \neq 0$ et $a_n \neq 0$.

Relations de comparaison 000000000000000000

Étude en 0 : Pour $x \in \mathbb{R}$, on a

$$f(x) = a_p x^p + a_{p+1} x^{p+1} + \dots + a_n x^n = a_p x^p \underbrace{\left(1 + \frac{a_{p+1}}{a_p} x + \dots + \frac{a_n}{a_p} x^{n-p}\right)}_{\to 1}$$

Donc $f(x) \sim a_p x^p$.

Équivalent pour les polynômes

$$f(x) = \sum_{k=p}^{n} a_k x^k$$
 avec $a_p \neq 0$ et $a_n \neq 0$.

Relations de comparaison

Étude en 0 : Pour $x \in \mathbb{R}$, on a

$$f(x) = a_p x^p + a_{p+1} x^{p+1} + \dots + a_n x^n = a_p x^p \underbrace{\left(1 + \frac{a_{p+1}}{a_p} x + \dots + \frac{a_n}{a_p} x^{n-p}\right)}_{\to 1}$$

Donc $f(x) \sim a_p x^p$.

Étude en $+\infty$: Pour $x \in \mathbb{R}$ on a

$$f(x) = a_n x^n \left(1 + \frac{a_{n-1}}{a_n} x^{-1} + \frac{a_{n-2}}{a_n} x^{-2} + \dots + \frac{a_p}{a_n} x^{p-n} \right)$$

Donc $f(x) \sim a_n x^n$.

Cas pratique

Comment montrer que deux fonctions sont équivalentes au voisinage d'un point?

Propriété

Soient f et g deux fonctions définies sur un intervalle I et $a \in I$. On suppose que g ne s'annule pas sur I\a. Alors, la fonction f est équivalente à la fonction g au voisinage de a, si et seulement si.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Résultats fondamentaux

Propriété

Soient f et g deux fonctions équivalentes en $a \in I$.

- ① Si g a une limite finie ou infinie en a alors f a une limite finie en a et : $\lim_a f = \lim_a g$.
- Si g est positive sur l alors f est positive au voisinage de a.
- 3 Si g ne s'annule pas sur l alors f ne s'annule pas au voisinage de a.

Obtention d'équivalents : Si f est dérivable en $a \in I$ et si $f'(a) \neq 0$, alors au voisinage de a :

$$f(x) - f(a) \sim f'(a)(x - a)$$

Montrer que $e^x - 1 \sim x$ au voisinage de 0 **Correction :** Comme $x \mapsto e^x$ est dérivable en 0 et que $e^0 = 1$ on a

$$e^{x}-e^{0}\underset{0}{\sim}e'(0)(x-0)\Rightarrow e^{x}-1\underset{0}{\sim}x.$$

Montrer que $e^x - 1 \sim x$ au voisinage de 0 **Correction :** Comme $x \mapsto e^x$ est dérivable en 0 et que $e^0 = 1$ on a

$$e^x - e^0 \underset{0}{\sim} e'(0)(x-0) \Rightarrow e^x - 1 \underset{0}{\sim} x.$$

Relations de comparaison

Montrer que $ln(1+x) \sim x$ au voisinage de 0 **Correction :** $x \mapsto \ln(1+x)$ est dérivable en 0 et possède une dérivée non nulle

$$\ln(1+x) - \ln(1+0) \sim \frac{1}{1+0}(x-0) \Rightarrow \ln(1+x) \sim x.$$

Montrer que $e^x - 1 \sim x$ au voisinage de 0 **Correction :** Comme $x \mapsto e^x$ est dérivable en 0 et que $e^0 = 1$ on a

$$e^x - e^0 \underset{0}{\sim} e'(0)(x-0) \Rightarrow e^x - 1 \underset{0}{\sim} x.$$

Relations de comparaison

Montrer que $ln(1+x) \sim x$ au voisinage de 0 **Correction :** $x \mapsto \ln(1+x)$ est dérivable en 0 et possède une dérivée non nulle

$$\ln(1+x) - \ln(1+0) \sim \frac{1}{0} \frac{1}{1+0} (x-0) \Rightarrow \ln(1+x) \sim x.$$

Montrer que $sin(x) \sim x$ au voisinage de 0

Correction : $x \mapsto \sin(x)$ est dérivable en 0 et et possède une dérivée non nulle

$$\sin(x) - \sin(0) \sim \sin'(0)(x - 0) \Rightarrow \sin(x) \sim x.$$

Propriété

Soient f et g définies sur l et équivalentes en a. Si $u: \Delta \to l$ et telle que $\lim_{t\to \alpha} u(t) = a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Relations de comparaison

Propriété

Soient f et g définies sur I et équivalentes en a. Si $u: \Delta \to I$ et telle que $\lim_{t\to \alpha} u(t) = a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Relations de comparaison

Application : Déterminer les équivalents des fonctions suivantes en 0 :

Propriété

Soient f et g définies sur I et équivalentes en a. Si $u: \Delta \to I$ et telle que $\lim_{t\to \alpha} u(t) = a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Relations de comparaison

Application : Déterminer les équivalents des fonctions suivantes en 0 :

Propriété

Soient f et g définies sur l et équivalentes en a. Si $u:\Delta\to l$ et telle que $\lim_{t\to\alpha}u(t)=a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Relations de comparaison

Application : Déterminer les équivalents des fonctions suivantes en 0 :

- ρ $\sin t = 1$
 - **Correction :** $u(t) = \sin t$, $f(x) = e^x 1$ et g(x) = x. On a $f \sim g$ et $\lim_{t \to 0} u(t) = 0$ donc
 - $f(u(t)) \sim g(u(t))$. Finalement, $e^{\sin t} 1 \sim \sin t$.
- In(cos(t))

Propriété

Soient f et g définies sur I et équivalentes en a. Si $u: \Delta \to I$ et telle que $\lim_{t \to \alpha} u(t) = a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Application : Déterminer les équivalents des fonctions suivantes en 0 :

- $e^{\sin t} 1$
 - **Correction :** $u(t) = \sin t$, $f(x) = e^x 1$ et g(x) = x. On a $f \sim g$ et $\lim_{t \to 0} u(t) = 0$ donc

Relations de comparaison

- $f(u(t)) \sim g(u(t))$. Finalement, $e^{\sin t} 1 \sim \sin t$.
- \bigcirc In(cos(t))

Correction : On a $\ln(\cos(t)) = \ln(1 + \cos(t) - 1)$. Posons $u(t) = \cos(t) - 1$. Alors, $\lim_{t\to 0} u(t) = 0$. De plus, $\ln(1+y) \sim y$. Donc, $\ln(1+u(t)) \sim u(t)$. Ainsi,

$$\ln(\cos(t)) \sim \cos(t) - 1.$$

4 D > 4 B > 4 B > 4 B > 9 Q C

Opération sur les fonctions équivalentes

Propriété

Si au voisinage de a on a

- 1 $f_1 \sim g_1$ et $g_1 \sim g_2$ alors $f_1 \sim g_2$ en a (transitivité).
- 2) Si $f_1 \sim g_1$ et $f_2 \sim g_2$ alors $f_1 f_2 \sim g_1 g_2$ en a (produit).
- 3 Si $f_1 \sim g_1$ et $f_2 \sim g_2$ et si aucune de ces fonctions ne s'annule sur $I \setminus a$ alors $\frac{f_1}{f_2} \sim \frac{g_1}{g_2}$.

Relations de comparaison

Propriété

- ① Si g = o(f) au voisinage d'un point $a \in I$, alors $f + g \sim f$.
- 2 Soient f et g deux fonctions définies sur un intervalle I et $a \in I$. Si $f \underset{a}{\sim} g$ alors $f = \mathcal{O}(g)$ au voisinage de a.

Déterminer un équivalent de f au voisinage de $+\infty$ définie sur \mathbb{R}_+^* par

$$f(x) = e^{\frac{1}{x^2}} - e^{\frac{1}{(x+1)^2}}.$$

Relations de comparaison

Déterminer un équivalent de f au voisinage de $+\infty$ définie sur \mathbb{R}_{+}^{*} par

$$f(x) = e^{\frac{1}{X^2}} - e^{\frac{1}{(X+1)^2}}$$

Correction: On a

$$\forall x \in \mathbb{R}_+^*, f(x) = e^{\frac{1}{X^2}} \left(1 - e^{\frac{1}{(x+1)^2}} - \frac{1}{x^2} \right) = e^{\frac{1}{X^2}} \left(1 - e^{\frac{-2x-1}{x^2(x+1)^2}} \right).$$

Or
$$1 - e^y \sim y$$
 et $\lim_{x \to +\infty} \frac{-2x - 1}{x^2(x+1)^2} = 0$. Donc, $1 - e^{\frac{-2x - 1}{x^2(x+1)^2}} \sim \frac{-2x - 1}{x^2(x+1)^2} \sim \frac{-2}{x^3}$. De

Relations de comparaison

plus,
$$e^{\frac{1}{X^2}} \underset{\text{JAD DABAGHI}}{\sim} 1$$
. Ainsi, $f(x) \underset{+\infty}{\sim} -\frac{2}{x^3}$.

27/35

Déterminer un équivalent en 0 de ln(sin(x))

Correction:

Relations de comparaison 0000000000000000000

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Relations de comparaison

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Relations de comparaison 0000000000000000000

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)} \ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Relations de comparaison

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)}\ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

Donc

$$\ln\left(\frac{\sin(x)}{x}\right) + \ln(x) \sim \ln(x).$$

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Relations de comparaison 0000000000000000000

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)}\ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

Donc

$$\ln\left(\frac{\sin(x)}{x}\right) + \ln(x) \sim \ln(x).$$

Ainsi

$$ln(\sin(x)) \sim \ln(x).$$

1 Composition d'équivalents : Si $f \sim g$ on ne peut rien dire à priori de $u \circ f$ et $u \circ g$. **Exemple :** Soient $f : \mathbb{R} \to \mathbb{R}$ et $g : \mathbb{R} \to \mathbb{R}$ définies par

$$f(x) = x$$
 et $g(x) = x + \sqrt{x} \Rightarrow f(x) \sim g(x)$ mais $e^{f(x)} = o(e^{g(x)})$

Relations de comparaison

Remarques importantes

1 Composition d'équivalents : Si $f \sim g$ on ne peut rien dire à priori de $u \circ f$ et $u \circ g$. **Exemple :** Soient $f : \mathbb{R} \to \mathbb{R}$ et $g : \mathbb{R} \to \mathbb{R}$ définies par

$$f(x) = x$$
 et $g(x) = x + \sqrt{x} \Rightarrow f(x) \sim g(x)$ mais $e^{f(x)} = o(e^{g(x)})$

Relations de comparaison

2 Somme d'équivalents : Si $u_1 \sim u_2$ et $v_1 \sim v_2$ alors $u_1 + v_2 \not\sim u_2 + v_2$. **Exemple :**

$$u(x) = \sin(2x) + \cos(x) - 1.$$

On a

$$\sin(y) \sim y$$
 et $\lim_{x \to 0} 2x = 0 \Rightarrow \sin(2x) \sim 2x$ $\cos(x) - 1 = -2\sin^2(\frac{x}{2}) \sim -\frac{x^2}{2}$

Or

$$\lim_{x\to 0}\frac{u(x)}{2x}=\left(\frac{\sin(2x)}{2x}+\frac{\cos(x)-1}{2x}\right)=1 \ \Rightarrow u(x) \underset{0}{\sim} \ \underset{0}{\sim} \ 2x$$

Theorem (Formule de Taylor avec reste intégral)

Soient I un intervalle et $a, b \in I$ tels que a < b. Si $f \in C^{n+1}(I)$ alors :

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Theorem (Formule de Taylor avec reste intégral)

Soient I un intervalle et $a, b \in I$ tels que a < b. Si $f \in C^{n+1}(I)$ alors :

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Application : Montrez que $\forall x \in [-\pi, \pi]$, $\cos(x) \ge 1 - \frac{x^2}{2}$

Theorem (Formule de Taylor avec reste intégral)

Soient I un intervalle et $a, b \in I$ tels que a < b. Si $f \in C^{n+1}(I)$ alors :

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Application : Montrez que $\forall x \in [-\pi, \pi]$, $\cos(x) \ge 1 - \frac{x^2}{2}$

Correction : Formule de Taylor avec reste intégral à la fonction cos à l'ordre 2 :

$$\cos(x) = \sum_{k=0}^{2} \frac{x^{k}}{k!} \cos^{(k)}(0) + \int_{0}^{x} \frac{(x-t)^{2}}{2} \cos^{(3)}(t) dt = 1 - \frac{x^{2}}{2} + \int_{0}^{x} \frac{(x-t)^{2}}{2} \sin(t) dt.$$

Theorem (Inégalité de Taylor Lagrange)

Soit f une fonction de classe C^{n+1} sur I. Si M majore $|f^{(n+1)}|$ sur le segment [a,b], on a :

$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) \right| \leq M \frac{|b-a|^{n+1}}{(n+1)!}.$$

Theorem (Inégalité de Taylor Lagrange)

Soit f une fonction de classe C^{n+1} sur I. Si M majore $|f^{(n+1)}|$ sur le segment [a,b], on a:

$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) \right| \leq M \frac{|b-a|^{n+1}}{(n+1)!}.$$

Exercice : Montrer que
$$\forall x \in \mathbb{R}$$
, $\left| \sin(x) - x + \frac{x^3}{6} \right| \leq \frac{x^4}{24}$.

Theorem (Inégalité de Taylor Lagrange)

Soit f une fonction de classe C^{n+1} sur I. Si M majore $|f^{(n+1)}|$ sur le segment [a, b], on a :

$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) \right| \leq M \frac{|b-a|^{n+1}}{(n+1)!}.$$

Exercice : Montrer que $\forall x \in \mathbb{R}$, $\left| \sin(x) - x + \frac{x^3}{6} \right| \leq \frac{x^4}{24}$.

Correction : On applique l'inégalité de Taylor-Lagrange à l'ordre 3 à la fonction sin de classe C^{∞} sur \mathbb{R} et vérifiant $\forall n \in \mathbb{N}$, $\sup_{\mathbf{x} \in \mathbb{R}} |f^{(n)}(\mathbf{x})| \leq 1$.

$$\left| \sin(x) - \sum_{k=0}^{3} \frac{x^{k}}{k!} f^{(k)}(0) \right| = \left| \sin(x) - x - \frac{x^{3}}{6} \right| \le \frac{|x|^{4}}{4!} = \frac{x^{4}}{24!} = \frac{x^{4}}{$$

IAD DABAGHI

Theorem (Formule de Taylor-Young)

Si f est une fonction de classe C^n sur I, il existe une fonction ε définie sur I telle que :

$$\forall x \in I, f(x) = \sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a) + (x-a)^{n} \varepsilon(x) \quad avec \quad \lim_{x \to a} \varepsilon(x) = 0.$$

$$\iff f(x) = \sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a) + o((x-a)^{n})$$

Formule très importante! Elle permet de déterminer le développement limité de f à l'ordre n.

Mais... peu commode en pratique...

Développement limité de $x \mapsto e^x$ au voisinage de 0. **Correction :** La fonction $x \mapsto e^x$ est de classe \mathcal{C}^{∞} . La formule de Taylor-Young donne

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

34/35

1 Développement limité de $x \mapsto e^x$ au voisinage de 0. **Correction :** La fonction $x \mapsto e^x$ est de classe \mathcal{C}^{∞} . La formule de Taylor-Young donne

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

Développement limité de $x \mapsto \cos(x)$ au voisinage de 0. **Correction:** La fonction $x \mapsto \cos(x)$ est de classe \mathcal{C}^{∞} . La formule de Taylor-Young donne

$$cos(x) = 1 + \frac{x}{1!}\cos'(0) + \frac{x^2}{2!}\cos^{(2)}(0) + \frac{x^3}{3!}\cos^{(3)}(0) + \frac{x^4}{4!}\cos^{(4)}(0) + \dots + o(x^n)$$
$$= 1 - \frac{x^2}{2} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{2n!} + o(x^{2n})$$

Développement limité de $x \mapsto \sin(x)$ au voisinage de 0. **Correction**: La fonction $x \sin(x)$ de classe \mathcal{C}^{∞} . La formule de Taylor-Young donne

$$\sin(x) = \frac{x}{1!}\sin'(0) + \frac{x^2}{2!}\sin^{(2)}(0) + \frac{x^3}{3!}\sin^{(3)}(0) + \frac{x^4}{4!}\sin^{(4)}(0) + \dots + \frac{x^n}{n!}\sin^{(n)}(0) + o(x^n)$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n o(x^{2n+1})$$

Développement limité de $x \mapsto \sin(x)$ au voisinage de 0. **Correction**: La fonction $x \sin(x)$ de classe \mathcal{C}^{∞} . La formule de Taylor-Young donne

$$\sin(x) = \frac{x}{1!}\sin'(0) + \frac{x^2}{2!}\sin^{(2)}(0) + \frac{x^3}{3!}\sin^{(3)}(0) + \frac{x^4}{4!}\sin^{(4)}(0) + \dots + \frac{x^n}{n!}\sin^{(n)}(0) + o(x^n)$$

$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n o(x^{2n+1})$$

4 Développement limité de $(1+x)^{\alpha}$ où x>-1 et $\alpha\in\mathbb{R}$. **Correction :** La fonction $x \mapsto (1+x)^{\alpha}$ est \mathcal{C}^{∞} sur $]-1,+\infty[$. La formule de Taylor-Young donne

$$(1+x)^{\alpha} = 1 + \alpha x + \alpha(\alpha - 1)\frac{x^{2}}{2} + \alpha(\alpha - 1)(\alpha - 2)\frac{x^{3}}{3!} + \dots + \alpha(\alpha - 1) + \alpha(\alpha - n + 1)\frac{x^{n}}{n!} + o(x^{n})$$