Lecture 6: Iterative methods

Michael S. Floater

September 19, 2018

These notes are based on Sections 2.11–2.12 of Chapter 2 of the book.

1 Iterative schemes and splitting

Given a linear system $A\mathbf{x} = \mathbf{b}$ where A is an $n \times n$ matrix and $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$, solving it by factorization can be expensive for large n. It might be more efficient to use an iterative method. The simplest iterative schemes are based on so-called *splitting*. We choose a matrix B and rewrite the system as

$$(A - B)\mathbf{x} = -B\mathbf{x} + \mathbf{b}. (1)$$

We choose B such that A - B is non-singular and such that the system

$$(A - B)\mathbf{x} = \mathbf{y}$$

is easy to solve for any right-hand side y. For example, we might choose B to make A - B diagonal or triangular.

Having chosen B we use an iterative method to find \mathbf{x} . We make an initial guess (approximation) $\mathbf{x}^{(0)}$ for the solution \mathbf{x} although $\mathbf{x}^{(0)}$ can be arbitrary. We then generate a sequence $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, $\mathbf{x}^{(3)}$, and so on, by solving

$$(A-B)\mathbf{x}^{(k+1)} = -B\mathbf{x}^{(k)} + \mathbf{b}, \qquad k = 0, 1, 2, \dots$$
 (2)

If this sequence converges to a limit

$$\mathbf{x} = \lim_{k \to \infty} \mathbf{x}^{(k)},$$

then by taking the limit of both sides of (2), we obtain equation (1) and therefore \mathbf{x} solves $A\mathbf{x} = \mathbf{b}$.

What are the necessary and sufficient conditions for convergence? Suppose that A is non-singular so that there is a unique solution \mathbf{x} . Consider the k-th error,

$$\mathbf{e}^{(k)} := \mathbf{x}^{(k)} - \mathbf{x}.$$

By subtracting equation (1) from equation (2), we deduce that

$$(A-B)e^{(k+1)} = -Be^{(k)}, k = 0, 1, 2, \dots$$

Under our assumption that A - B is non-singular this means that

$$\mathbf{e}^{(k+1)} = H\mathbf{e}^{(k)}, \qquad k = 0, 1, 2, \dots,$$
 (3)

where the matrix

$$H := -(A - B)^{-1}B$$

is the *iteration matrix*. In practical applications we do not calculate H. We are just using it here to analyze the convergence of (2). Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues (real or complex) of H. Recall that the *spectral radius* of H is

$$\rho(H) = \max_{i=1,\dots,n} |\lambda_i|.$$

Theorem 1 The error vectors $\mathbf{e}^{(k)}$ converge to zero as $k \to \infty$ if and only if $\rho(H) < 1$.

Proof. Applying (3) recursively gives

$$\mathbf{e}^{(k)} = H^k \mathbf{e}^{(0)}.$$

Thus the theorem is equivalent to the fact that $H^k \to 0$ as $k \to \infty$ if and only if $\rho(H) < 1$. This can be proved using the Jordan normal form of H (see R. Varga, *Matrix iterative analysis*).

2 Jacobi and Gauss-Seidel iterations

Both of these splitting methods can be used when A has non-zero diagonal elements. We write A in the form A = L + D + U where L is the strictly lower triangular (subdiagonal) part of A, D is the diagonal, and U is the strictly upper triangular (superdiagonal) part of A.

2.1 Jacobi iteration

We choose B = L + U, so that A - B = D, the diagonal part of A. Then

$$D\mathbf{x}^{(k+1)} = -(L+U)\mathbf{x}^{(k)} + \mathbf{b}, \qquad k = 0, 1, 2, \dots$$

Written out in full,

$$x_i^{(k+1)} = \frac{1}{A_{i,i}} \left(-\sum_{j \neq i} A_{i,j} x_j^{(k)} + b_i \right), \quad i = 1, \dots, n.$$

2.2 Gauss-Seidel iteration

We choose B = U, so that A - B = L + D, which is lower triangular. Then

$$(L+D)\mathbf{x}^{(k+1)} = -U\mathbf{x}^{(k)} + \mathbf{b}, \qquad k = 0, 1, 2, \dots$$

There is no need to invert L + D: we just use forward substitution,

$$x_i^{(k+1)} = \frac{1}{A_{i,i}} \left(-\sum_{j < i} A_{i,j} x_j^{(k+1)} - \sum_{j > i} A_{i,j} x_j^{(k)} + b_i \right), \qquad i = 1, \dots, n.$$

An advantage of Gauss-Seidel iteration compared to Jacobi iteration is that in the implementation we do not need to keep both of the vectors $\mathbf{x}^{(k)}$ and $\mathbf{x}^{(k+1)}$. We just maintain a single vector \mathbf{y} and update it, replacing y_i by

$$\frac{1}{A_{i,i}} \left(-\sum_{j \neq i} A_{i,j} y_j + b_i \right)$$

in sequence for $i = 1, \ldots, n$.

Sufficient conditions for these two iterations to converge are as follows. A matrix A is said to be *strictly diagonally dominant* if

$$|A_{i,i}| > \sum_{\substack{j=1\\j\neq i}}^{n} |A_{i,j}|$$
 for $i = 1, \dots, n$.

Strictly diagonally dominant matrices are non-singular (due to the Gerschgoring theorem).

Theorem 2 If A is strictly diagonally dominant, then both the Jacobi and the Gauss-Seidel methods converge.

Theorem 3 If A is symmetric and positive definite, then the Gauss-Seidel method converges. If A is symmetric and both A and 2D - A are positive definite, then the Jacobi method converges.

We will just go through the proof of the first one.

Proof of Theorem 2. For the Jacobi method we need to show that the eigenvalues of

$$H = -D^{-1}(L+U)$$

are less than one in absolute value. Suppose λ is an eigenvalue of H. Then

$$\det(H - \lambda I) = 0.$$

Since A is strictly diagonally dominant, D is non-singular and we can multiply by det(D) so that

$$\det(L + U + \lambda D) = 0.$$

Suppose that $|\lambda| \geq 1$. Then since A is strictly diagonally dominant, so is $L + U + \lambda D$ which is therefore non-singular and its determinant cannot be zero. We thus have a contradiction and we conclude that $|\lambda| < 1$ as required.

For the Gauss-Seidel method we need to show that the eigenvalues of

$$H = -(L+D)^{-1}U$$

are less than one in absolute value. We suppose that

$$\det(H - \lambda I) = 0.$$

Since L+D is non-singular, we can multiply by $\det(L+D)$ so that

$$\det(U + \lambda(L+D)) = 0.$$

Suppose that $|\lambda| \geq 1$. Then since A is strictly diagonally dominant, so is $U + \lambda(L + D)$ which is therefore non-singular and its determinant cannot be zero. This is a contradiction and we conclude that $|\lambda| < 1$.

3 Exercises

Exercise 2.10 Consider the iteration $e^{(k+1)} = He^{(k)}$ for k = 0, 1, 2, ..., where

 $H = \begin{bmatrix} \alpha & \gamma \\ 0 & \beta \end{bmatrix},$

with $\alpha, \beta, \gamma \in \mathbb{R}$ and γ large and $|\alpha| < 1$, $|\beta| < 1$. Calculate H^k and show that its elements tend to zero as $k \to \infty$. Hence deduce that $\mathbf{e}^{(k)} \to 0$ as $k \to \infty$.

Exercise 2.11 Starting with an arbitrary $\mathbf{x}^{(0)}$ the sequence $\mathbf{x}^{(k)}$, k = 1, 2, ..., is calculated by

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x}^{(k+1)} + \begin{bmatrix} 0 & 0 & 0 \\ \alpha & 0 & 0 \\ \gamma & \beta & 0 \end{bmatrix} \mathbf{x}^{(k)} = \mathbf{b}$$

in order to solve the linear system

$$\begin{bmatrix} 1 & 1 & 1 \\ \alpha & 1 & 1 \\ \gamma & \beta & 1 \end{bmatrix} \mathbf{x} = \mathbf{b},$$

where α, β, γ are constants. Find all values for α, β, γ such that the sequence converges for every $\mathbf{x}^{(0)}$ and \mathbf{b} . What happens when $\alpha = \beta = \gamma = -1$ and when $\alpha = \beta = 0$?