Data Augmentation using Variational Autoencoder for Embedding based Speaker Verification

Zhanghao Wu, Shuai Wang, Yanmin Qian, Kai Yu

Speech Lab, Shanghai Jiao Tong University, China

September 2019

Overview Background

- Speaker embeddings are now the main approach for speaker identity modelling
- SV systems still suffer from performance degradation due to the complex environment in real applications
- ► How to improve the noise-robustness of the SV systems?
 - Data augmentation is proved to be simple but effective
 - A robust PLDA back-end is also helpful

- ► Use Variational Auto-Encoder to generate more diverse speaker embeddings
- Train a more robust PLDA with the augmented speaker embeddings
- Why at embedding level?
 - ► The final representation used for scoring
 - Get rid of the complexity of tying different frames
 - Simple yet effective

Related Work

Embedding based Speaker Verification

x-vector:

i-vector:

$$\mathbf{M} = \mathbf{m} + \mathbf{T}\mathbf{x} + \epsilon,$$

PLDA

$$\begin{aligned} \mathbf{x}_{j}^{(s)} &\sim \mathcal{N}(\mathbf{y}^{(s)}, \mathbf{W}^{-1}) \\ \mathbf{y}^{(s)} &\sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{B}^{-1}) \end{aligned}$$

Related Work

Traditional Data Augmentation Method

- 1. Manually add noise to the raw audios
- Generate more features from the augmented audios, train a speaker embedding extractor in the normal way
- 3. Extract the embeddings from augmented audios, train a noise-robust PLDA

Related Work

Variational Autoencoder¹

- Widely used generative model
- ► Generate new samples with the decoder network

Can we use it to generate more diverse speaker embeddings?

¹Kingma et al., Auto-Encoding Variational Bayes

Conditional VAE²

CVAE for speaker embedding generation

- ► The generation process should preserve speaker identity
- Use conditional VAE, which conditions on speaker identity
- The target for the CVAE model is to maximize the likelihood of generated noise speaker embeddings conditioned on the clean embeddings.
- ▶ By sampling from normal distribution, we can generate noisy speaker embeddings based on a given clean speaker embedding with the CVAE model(the decoder part).

²Sohn *et al.*, Learning Structured Output Representation using Deep Conditional Generative Models

Lower bound of log-likelihood in VAE:

$$\begin{split} \log p_{\theta}(\mathbf{x}) &\geq \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[-\log q_{\phi}(\mathbf{z}|\mathbf{x}) + \log p_{\theta}(\mathbf{x}, \mathbf{z})] \\ &= -D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z})) + \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] \end{split}$$

Introducing conditions:

$$\log p_{\theta}(\mathbf{x}|\mathbf{c}) \geq -D_{\mathsf{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x},\mathbf{c})||p_{\theta}(\mathbf{z}|\mathbf{c})) + \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x},\mathbf{c})}[\log p_{\theta}(\mathbf{x}|\mathbf{z},\mathbf{c})]$$

z: latent variable, x: data from the dataset, c: condition.

Data Augmentation with CVAE

Figure: Framework and detailed neural network configuration of the proposed CVAE based data augmentation.

$$\mathcal{L}_{KL} = D_{KL}(q_{\phi}(\mathbf{z}|\hat{\mathbf{x}}, \mathbf{y})||\mathcal{N}(0, \mathbf{I}))$$

$$\mathcal{L}_{recon} = \mathsf{BCE}(\hat{\mathbf{x}}_{u}^{(s)}, \hat{\mathbf{x}}_{u}^{\prime(s)})$$

$$\mathcal{L}_{total} = \mathcal{L}_{KL} + \mathcal{L}_{recon}$$

s: s-th speaker, u: u-th utterance, y: clean speaker embedding.

Setups

Dataset

Training data:

SWBD + SRE

Evaluation data:

SRE16 evaluation set

Training Settings:

All speaker embedding systems are trained on both training data. The PLDA and CVAE are only trained on SRE.

CVAE model

- Condition on the clean speaker embedding and trained on the manually augmented data.
- ► Each clean embedding corresponds to 4 noisy embeddings extracted from the manually augmented audios(Reverb, MUSAN noise, music, and speech).

Results: Augmenting i-vector/PLDA SV system

Table: Performance comparison for i-vector/PLDA SV system using different data augmentation methods. The amount of augmented data for different methods are comparable.

	Data	SRE16 Tagalog		SRE16 Cantonese	
	Augmentation	EER (%)	minDCF	EER (%)	minDCF
PLDA	none	18.13	0.7068	9.82	0.3951
+Adaptation		17.84	0.6338	8.82	0.3591
PLDA	manual	17.63	0.6961	9.42	0.3827
+Adaptation		16.94	0.6105	8.30	0.3411
PLDA	VAE	17.45	0.7185	10.14	0.4088
+Adaptation		15.83	0.5981	8.32	0.3461
PLDA	VAE & manual	17.20	0.7106	9.62	0.3940
+Adaptation		15.54	0.5897	7.84	0.3331
				11002	

Results: Augmenting x-vector/PLDA SV system

Table: Performance comparison of different data augmentation methods for *x*-vector/PLDA based SV system.

	Data	SRE16 Tagalog		SRE16 C	SRE16 Cantonese	
	Augmentation	EER (%)	minDCF	EER (%)	minDCF	
PLDA	none	16.63	0.7121	7.57	0.3451	
+Adaptation		14.10	0.5420	5.77	0.2523	
PLDA	manual	16.16	0.7248	7.45	0.3368	
+Adaptation		12.79	0.5144	5.26	0.2357	
PLDA	GAN	16.54	0.7004	7.09	0.3363	
+Adaptation		12.42	0.5196	4.66	0.2379	
PLDA	GAN & manual	16.59	0.7182	6.85	0.3256	
+Adaptation		11.68	0.4886	4.43	0.2160	
PLDA	VAE	16.44	0.7150	6.705	0.3187	
+Adaptation		12.04	0.4844	4.29	0.2051	
PLDA	VAE & manual	16.13	0.7114	6.60	0.3082	
+Adaptation		11.86	0.4799	4.20	0.2032	

Results: Detection Error Trade-off

Figure: DET on Cantonese for x-vector based system. The dotted and concrete lines represent the non-adapted and adapted PLDA systems respectively.

Conclusions

- ▶ We proposed to use conditional variational autoencoder for data augmentation in the speaker verification task.
- Different from most data augmentation methods which are operated on the input audios, we directly augment the speaker embeddings and aim to train a more robust PLDA
- Our proposed model achieves promising results for both i-vector and x-vector framework.