Analysis II - Definitions

Lectured by Prof Neshan Wickramasekera

Michaelmas 2014

1 Uniform convergence

Definition 1 (Pointwise convergence). Let E be a set and $f_n, f : E \to \mathbb{R}$. We say that f_n converges to f pointwise if for each x the sequence of numbers $(f_n(x))$ converges to f(x).

Definition 2 (Uniform convergence). Let E be a set and $f_n, f : E \to \mathbb{R}$. We say that f_n converges to f uniformly if

$$\forall \epsilon > 0 \quad \exists N = N(\epsilon) \quad \text{such that} \quad \forall n \geq N, \ \forall x \in E \quad |f_n(x) - f(x)| < \epsilon$$

Definition 3 (Convergence of series). Let $g_n: E \to \mathbb{R}$ for n = 0, 1, 2, ... be functions. Let $x \in E$. The series $\sum_{n=0}^{\infty} g_n$ converges

- at x if the sequence $f_n = \sum_{j=0}^n g_j : E \to \mathbb{R}$ converges at x.
- absolutely at x if $\sum_{n=0}^{\infty} |g_n|$ converges at x.
- uniformly on E if the partial sums f_n converge uniformly on E.
- absolutely uniformly on E if $\sum_{n=0}^{\infty} |g_n|$ converges uniformly on E.

2 Uniform continuity

Definition 4 (Uniform continuity). Let $E \subseteq \mathbb{R}$ and $f : E \to \mathbb{R}$. Then f is uniformly continuous on E if for each $\epsilon > 0$ there exists $\delta > 0$ such that if $x, y \in E$ then $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$.

Definition 5 (Upper and lower sums). Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Let $a = a_0 < a_1 < \ldots < a_n = b$ be a partition P of [a, b]. Then the upper sum is

$$U(P, f) = \sum_{j=0}^{n-1} (a_{j+1} - a_j) \sup_{[a_j, a_{j+1}]} f$$

and the lower sum is

$$L(P, f) = \sum_{j=0}^{n-1} (a_{j+1} - a_j) \inf_{[a_j, a_{j+1}]} f$$

Definition 6 (Riemann integral). Let $f:[a,b]\to\mathbb{R}$ be bounded. Then the upper integral is

$$I^*(f) = \inf_p U(P, f)$$

and the lower integral is

$$I_*(f) = \sup_{p} L(P, f)$$

If $I_I(f) = I^*(f)$ then f is Riemann integrable and we define the Riemann integral to be the common value, denoted $\int_a^b f(x)dx$.

Definition 7 (Riemann integral in \mathbb{R}^n and \mathbb{C}). Let $f:[a,b] \to \mathbb{R}^n$ and write $f(x)=(f_1(x),\ldots,f_n(x))$. Then f is Riemann integrable if f_j is Riemann integrable for each $j=1,\ldots n$, and $\int_a^b f(x)dx=(\int_a^b f_1(x)dx,\ldots,\int_a^b f_n(x)dx)$.

 $j=1,\ldots n,$ and $\int_a^b f(x)dx=(\int_a^b f_1(x)dx,\ldots,\int_a^b f_n(x)dx).$ Let $f:[a,b]\to\mathbb{C}$. Then f is Riemann integrable if $\mathrm{Re}(f)$ and $\mathrm{Im}(f)$ are Riemann integrable, and $\int_a^b f(x)dx=\int_a^b \mathrm{Re}(f(x))dx+i\int_a^b \mathrm{Im}(f(x))dx.$

Definition 8 (Measure zero). Let $E \subset \mathbb{R}$. Then E has measure zero if $\forall \epsilon > 0$ there exists a countable collection of open intervals $I_j = (a_j, b_j)$ such that $E \subset \bigcup_{j=1}^{\infty} I_j$ and $\sum_{j=1}^{\infty} |I_j| < \epsilon$ (where $|I_j| = b_j - a_j$).

3 Normed spaces

Definition 9 (Norm). Let V be a vector space. A *norm* on V is a function $\|\cdot\|:V\to\mathbb{R}$ satisfying the following properties:

- (i) $||v|| \ge 0$ for all $v \in V$
- (ii) ||v|| = 0 if and only if v = 0
- (iii) $\|\alpha v\| = |\alpha| \|v\|$ for all $\alpha \in \mathbb{R}$, $v \in V$
- (iv) $||v + w|| \le ||v|| + ||w||$ for all $v, w \in V$

A normed space is a pair $(V, \|\cdot\|)$ where V is a vector space and $\|\cdot\|$ is a norm.

Definition 10 (Example norms). 1. \mathbb{R}^n with the Euclidean norm

$$\|(x_1,\ldots,x_n)\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$$

2. \mathbb{R}^n with the taxical norm

$$\|(x_1,\ldots,x_n)\|_1 = \left(\sum_{i=1}^n |x_i|\right)$$

3. \mathbb{R}^n with $(1 \le p < \infty)$

$$\|(x_1,\ldots,x_n)\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

4. \mathbb{R}^n with

$$||(x_1,\ldots,x_n)||_{\infty} = \sup\{|x_1|,\ldots,|x_n|\}$$

5. C([a,b]) with

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)||$$

6. C([a,b]) with

$$||f||_1 = \int_a^b |f(x)| dx$$

7. C([a,b]) with

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}$$

Definition 11 (Lipschitz quivalence of norms). Two norms $\|\cdot\|$ and $\|\cdot\|'$ on a vector space V are (Lipschitz) equivalent if there are numbers 0 < a < b such that $a\|v\| \le \|v\|' \le b\|v\|$ for all $v \in V$.

Definition 12 (Bounded). Let $(V, \|\cdot\|)$ be a normed space. A subset $E \subseteq V$ is bounded if there exists R > 0 such that $\|v\| < R$ for all $v \in E$.

Definition 13 (Convergence). Let $(V, \|\cdot\|)$ be a normed space. If $x_k, x \in V$ for $k = 1, 2, 3, \ldots$, then we say $x_k \to x$ if $\|x_k - x\| \to 0$ as $k \to \infty$.

Definition 14 (Equicontinuity). A family of functions $\mathcal{F} \subseteq C([0,1])$ is equicontinuous if $\forall \epsilon > 0$, $\exists \delta(\epsilon) > 0$ such that $f \in \mathcal{F}$, $x, y \in [0,1]$ with $|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$.

Definition 15 (Cauchy sequence). Let $(V, \| \cdot \|)$ be a normed space. A sequence (x_k) in V is Cauchy if $\forall \epsilon > 0$, $\exists N(\epsilon) \in \mathbb{N}$ such that $n, m \geq N \implies \|x_n - x_m\| < \epsilon$.

Definition 16 (Completeness). A normed space $(V, \| \cdot \|)$ is *complete* if every Cauchy sequence in V converges to an element in V.

Definition 17 (Open ball). Let $(V, \|\cdot\|)$ be a normed space, $y \in V$ and r > 0. The *open ball* with radius r and centre y is $B_r(y) = \{x \in V : \|x - y\| < r\}$.

Definition 18 (Open). A subset $E \subseteq V$ is open if $\forall y \in E, \exists r > 0$ such that $B_r(y) \subseteq E$.

Definition 19 (Limit point). Let $(V, \|\cdot\|)$ be a normed space, and $E \subseteq V$. An element $x \in V$ is a *limit point* of E if there exists a sequence $(x_k) \in E$ such that $x_k \neq x \ \forall k$ and $x_k \to x$.

Definition 20 (Closed). A subset $E \subseteq V$ is *closed* if it contains all of its limit points.

Definition 21 (Continuity). Let $(V, \|\cdot\|)$, $(V', \|\cdot\|')$ be normed spaces, $E \subseteq V$ and $f: V \to V'$ a mapping. Then f is continuous at $x \in E$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $y \in E$, $\|y - x\| < \delta \implies \|f(x) - f(y)\|' < \epsilon$.

Equivalently, $f(B_{\delta}^{V}(x) \cap E) \subseteq B_{\epsilon}^{V'}(f(x)) \iff B_{\delta}^{V}(x) \cap E \subseteq f^{-1}(B_{\epsilon}^{V'}(f(x))).$

We say f is *continuous* if it is continuous at each $x \in E$.

Definition 22 (Uniform continuity). Let $E \subseteq V$ and $f: E \to V'$. Then f is uniformly continuous if $\forall \epsilon > 0, \exists \delta = \delta(\epsilon) > 0$ such that

$$x, y \in E, ||x - y|| < \delta \implies ||f(x) - f(y)||' < \epsilon.$$

Definition 23 (Lipschitz function). A function $f: E \to V'$ is said to be *Lipschitz* if there exists a fixed constant c > 0 such that $||f(x) - f(y)||' \le c||x - y||$ for all $x, y \in E$.

Definition 24 (Sequentially compact). Let $(V, \|\cdot\|)$ be a normed space. A subset $K \subseteq V$ is said to be *sequentially compact* if every sequence (x_n) in K has a subsequence $(x_{n_j})_{j=1}^{\infty}$ converging to an element in K.

4 Metric spaces

Definition 25 (Metric). A *metric* on a set X is a function $d: X \times X \to \mathbb{R}$ such that for any $x, y, z \in X$,

- (i) $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y
- (ii) d(x,y) = d(y,x)
- (iii) $d(x,y) \le d(x,z) + d(z,y)$.

Definition 26 (Example metrics). 1. \mathbb{R}^n with the Euclidean metric

$$d(x,y) = \left(\sum_{j=1}^{n} (x_j - y_j)^2\right)^{\frac{1}{2}}$$

- 2. If $(V, \|\cdot\|)$ is a normed space, $d(x, y) = \|x y\|$ is the metric derived from the norm.
- 3. The discrete metric on any set X

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Definition 27 (Lipschitz equivalence of metrics). Two metrics d and d' on a set X are Lipschitz equivalent if there exist numbers A, B with 0 < A < B such that $Ad(x, y) \le d'(x, y) \le Bd(x, y)$ for all $x, y \in X$.

Definition 28 (Subspace metric). If (X,d) is a metric space and $Y \subseteq X$, then the restriction $d|_{Y\times Y}: Y\times Y\to \mathbb{R}$ is a metric on Y called the *subspace metric* (or the *induced* metric).

Definition 29 (Continuity). Let (X,d) and (X',d') be metric spaces. Then $f: X \to X'$ is continuous at $x \in X$ if $\forall \epsilon > 0$, $\exists \delta = \delta(x,t) > 0$ such that $y \in X, d(y,x) < \delta \implies d'(f(y),f(x)) < \epsilon$. We say that f is continuous if it is continuous at every $x \in X$.

Definition 30 (Uniform continuity). Let (X,d) and (X',d') be metric spaces. Then $f: X \to X'$ is uniformly continuous if $\forall \epsilon > 0$, $\exists \delta = \delta(\epsilon) > 0$ such that $x, y \in X, d(x, y) < \delta \implies d'(f(x), f(y)) < \epsilon$.

Definition 31 (Lipschitz). Let (X, d) and (X', d') be metric spaces. Then $f: X \to X'$ is *Lipschitz* if there exists c > 0 such that $d'(f(x), f(y)) \le cd(x, y)$ for all $x, y \in X$.

Definition 32 (Open ball). For a metric space (X, d), $a \in X$ and r > 0, define the open ball with centre a and radius r to be $B_r(a) = \{x \in X : d(x, a) < r\}$.

Definition 33 (Open subset). A subset $U \subseteq X$ is open if $\forall x \in U, \exists r > 0$ such that $B_r(x) \subseteq U$.

Definition 34 (Neighbourhood). For $x \in X$, a neighbourhood of x is an open set containing x.

Definition 35 (Limit point). Let (X, d) be a metric space and $E \subseteq X$. A point $x \in X$ is a *limit point* of E if $\forall \epsilon > 0, \exists y \in E$ such that $0 < d(x, y) < \epsilon$.

Equivalently, $\forall \epsilon > 0$, $(B_{\epsilon}(x) \setminus \{x\}) \cap E \neq \emptyset$.

Definition 36 (Closed). A subset $E \subseteq X$ is closed if E contains all of its limit points.

Definition 37 (Convergence). Let (X, d) be a metric space. Let $x_n, x \in X$ for $n \in \mathbb{N}$. We say that $x_n \to x$ if $\forall \epsilon > 0, \exists N = N(\epsilon) \in \mathbb{N}$ such that $n \geq N \implies d(x_n, x) < \epsilon$.

Definition 38 (Homeomorphism). Let (X, d) and (X', d') be metric spaces. A map $h: X \to X'$ is a homeomorphism if h is a bijection with h and h^{-1} both continuous.

Definition 39 (Cauchy). Let (X, d) be a metric space. A sequence $(x_n) \in X$ is Cauchy if $\forall \epsilon > 0, \exists N = N(\epsilon) \in \mathbb{N}$ such that $n, m \geq N \implies d(x_n, x_m) < \epsilon$.

Definition 40 (Completeness). A metric space (X, d) is *complete* if every Cauchy sequence in X converges to an element in X.

Definition 41 (Sequential compactness). A metric space (X, d) is sequentially compact if every sequence in X has a convergent subsequence.

Definition 42. A metric space (X, d) is bounded if $X = B_R(x_0)$ for some $x_0 \in X$ and some R > 0.

Definition 43 (Totally bounded). A metric space (X, d) is *totally bounded* if for every $\epsilon > 0$ there is a finite subset $\{x_1, x_2, \ldots, x_N\}$ such that $X = \bigcup_{j=1}^N B_{\epsilon}(x_j)$.

5 Contraction mapping theorem

Definition 44 (Contraction). Let (X,d) be a metric space. A mapping $f: X \to X$ is a contraction if there exists a λ with $0 \le \lambda < 1$ such that $d(f(x), f(y)) \le \lambda d(x, y)$ for all $x, y \in X$.

6 Differentiation in \mathbb{R}^n

Definition 45 (Limit of a function). Let (X, d) and (X', d') be metric spaces. Let $E \subseteq X$ and $a \in X$ be a limit point of E. For $b \in X'$ and $f : E \to X'$, we say f(x) tends to b as x tends to a and write $\lim_{x\to a} f(x) = b$ if

$$\forall \epsilon > 0, \ \exists \delta > 0 \ \text{such that} \ x \in E, 0 < d(x, a) < \delta \implies d'(f(x), b) < \epsilon$$

N.B. f need not be defined at x = a.

Definition 46 (Differentiability). Let $U \subseteq \mathbb{R}^n$ be open (where we take \mathbb{R}^n with the Euclidean metric). Let $f: U \to \mathbb{R}^m$ and $a \in U$. Then f is differentiable at a if there exists a linear map $A: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - Ah}{\|h\|} = 0$$

where 0 is the zero vector in \mathbb{R}^m (and $h \in \mathbb{R}^n$).

When it exists, the map A is called the *derivative* of f at a, and is denoted Df(a).

Definition 47 (Operator norm). For $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, the operator norm ||A|| is defined as

$$||A|| = \sup_{\substack{x \in \mathbb{R}^n \\ ||x|| = 1}} ||Ax||.$$

Definition 48 (Directional derivative). Let $U \subseteq \mathbb{R}^n$ be open, $f: U \to \mathbb{R}^m$. For $u \in \mathbb{R}^n$ (the *direction*), $a \in U$, the *directional derivative* of f in the direction u at a is defined by

$$D_u f(a) = \lim_{t \to 0} \frac{f(a + tu) - f(a)}{t}$$

provided the limit exists.

Definition 49 (Partial derivative). Let $\{e_1, e_2, \ldots, e_n\}$ be the standard basis for \mathbb{R}^n . Let $U \subseteq \mathbb{R}^n$ be open, $f: U \to \mathbb{R}^m$ and $a \in U$. Then jth partial derivative of f at a is the directional derivative $D_{e_i}f(a)$.

Definition 50 (Continuously differentiable). Let $U \subseteq \mathbb{R}^n$ be open. Then $f: U \to \mathbb{R}^m$ is continuously differentiable if f is differentiable at every point in U and $Df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ is continuous at every point in U. We say f is C^1 or $f \in C^1(U, \mathbb{R}^m)$ or f is of class C^1 .

Definition 51 (Path connectedness). A subset $E \subseteq \mathbb{R}^n$ is path connected if for every $x, y \in E$ there exists a continuous (path) $\gamma : [0, 1] \to E$ such that $\gamma(0) = x$ and $\gamma(1) = y$.

Definition 52 (Higher order partial derivative). Let $U \subseteq \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^m$. For $i, j \in \{1, ..., n\}$, we write

$$D_{ij}f(a) = D_i(D_jf)(a)$$

if the second partial derivative on the right hand side exists.

(This is sometimes also written $D_{ij}f = \frac{\partial^2 f}{\partial x_i \partial x_j}$).

Definition 53 (Second order derivative). Let $U \subseteq \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^m$. Define the bilinear map $D^2f(a): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m$ by

$$D^2 f(a)(u,v) = D(Df)(a)(u)(v)$$

We write $D^2 f(a)[u]^2 = D^2 f(a)(u, u)$.