			Mem	10 No		
Mo Tu We Th	rr Sa Su		Date	/		1
Sect	10n 30.	Second Dei	-ivatiu	Tes	· t]	
J125	. [.]]			······		
from	recalling	one-variab	le			
7	f(x=7 =0					
f'ixs	1 >0 =) 10	cal maxi mi	nimum	point	***************************************	
f"(X=		al maximu	1 1			
	- (ne	ometric possibili	如_	(not n	na x o	rmin
an other critic	cal pint in	tiry) cal	lled s	addle	pom	t
	΄ Ψ	ι /	Cpo	irtly a	pone,	, parely
Second	l Derivative	<u>Est</u>	Ь	pelow to	he ta	gent plan
1.	Find Kiy	$ \left\{ f_{x}(x,y) = \right. $	-0			
		$\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$	9			
		$(f)_{\circ} = f(x_{\circ},$				
A = A	(fxx)o,	B = (fxy) 0) = }{/x] (fyx)	0,	
,	(tyy)		,		_	
Then:						
	4c-B270	, A>0 or C	;>o =)	1/10 1's	mi	nimum
	11-82 30	Aco C	10 -16	fl 1c	max	Simon

AC-B220 > (f/s is a saddle point

Memo No. _

if AC-B=0, the test fail

Ex1:

 $W = 12x^2 + y^3 - 12xy$

 $\int U_X = 24x - 12y$ $A = W_{XX} = 24$, $B = W_{XY} = -12$

 $|w_y = 3y^2 - 12x$ $c = w_{yy} = 6y$

Wx, Wy =0

(x,y) = (0,0), (1,2) $AC-B^2 = 144y - 144y$

at 10,0) AC-B2=-144 =) a saddle point

at (1,2) AC-B2 = 144, A70 => minimum point

Proof:

131 $\beta x^2 + \beta x + c = 0 \Rightarrow x = \frac{-\beta \pm J B^2 - 4AC}{2\beta}$

14) Ax2+ 23x+c=0 =) X = -B±JB2-AC

7.4 =) x no roots, so firm must all >0 or eo, it depends on

AC-B->0, A>0 or c>0 => Ax2+2Bx+C>0 AC-13 70, Acoor (20) Ax++2BX +CCO ton all X

(1) AC-B260 => AX+2BX+C>0, CO For some X

=>(5) so they frate, (1/X,y) 1, the point is minimum

167 flx, y) I, the point is maximum

(7) in point, t'(x)y) It or I'V, is a saddle point

\text{\text{\$\}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	Z		R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			_
Date	1	1	

Problems: find and dassify all the critical points of $w = (x^3 + 1)(y^3 + 1) = x^3 \cdot y^3 + x^3 + y^3 + 1$ $\frac{\partial w}{\partial x} = \frac{\partial w}{\partial x} = \frac{3}{3} \times \frac{2}{3} + \frac{3}{3} \times \frac{2}{3} = 0 \Rightarrow y = -\frac{1}{3} (x \neq 0)$ $\left(\frac{2w}{3y} = 3x^3y^2 + 3y^2 = 0 = 0 = 0 = 0$ 50 critial psins! (0,0) and (-1,-11 $A = (\frac{\partial^2 w}{\partial x^2}) = (w_{xx})_0 = 6x \cdot y^3 + 6x = 0$ B = (Wxy)0 = 9x2y2 =0 C = (Wyy) = 6x3y + 6y =0 AC-B2 =0/test till (-1,-1) =) A=0, B=9, C=0 AC-B2 = -8/<0, A=0, C=0

the point is a saddle point