代数1H班作业4

2022年10月8日

- 题 1. Artin Chapter 7, 11.4
- 题 2. Artin Chapter 7, 11.5
- 题 3. Artin Chapter 7, 11.6 任选一个小问做即可.
- **题 4.** 证明 $A_n, n \geq 5$ 是单群.
- **B** 5. Prove that the map $f: S_n \to \{\pm 1\}$ defined by $f(\sigma) = (-1)^{l(\sigma)}$ is a group homomorphism. Identify this group homomorphism with the composition of injective homomorphism $S_n \to GL(n, F)$ and determinant det.
- **题 6.** 1. 请将长度最长的 $\omega \in S_n$ 写做基础对换的乘积.
 - 2. 证明 $l(\sigma) = l(\sigma^{-1})$
 - 3. 证明 $l(\sigma) + l(\sigma\omega) = \binom{n}{2}$

以下题目中 Coxeter diagram 定义的群是指由结点 s_i 生成的群,满足如下关系

- 1. $s_i^2 = e$
- 2. $(s_i s_j)^2 = e$, 如果 s_i, s_j 之间没有连线
- 3. $(s_i s_j)^3 = e$, 如果 s_i, s_j 之间有连线,且线上没有数字
- 4. $(s_i s_j)^m = e$, 如果 s_i, s_j 之间有连线,且线上有数字 m。
- **题 7.** 考虑二面体群 D_n , 证明这个群和以下 $I_2(n)$ -diagram 定义的 Coxeter 群同构。即群 $D_n \cong \langle s_1, s_2 | s_1^2, s_2^2, (s_1s_2)^n \rangle$.

题 8. 考虑正十二面体的对称群。证明这个群和以下 H_3 diagram 定义出的 Coxeter 群同构。

试找出对应的三个反射的法向量。

题 9 (Hyperoctahedral group). (对 n=3 是必做题,对一般 n 是选做题,可以不用写) The hypercube in \mathbb{R}^n is defined as convex hull of 2^n points $(\pm 1, \dots, \pm 1)$ in \mathbb{R}^n . Let $W(B_n)$ be the group of orthogonal transformations preserving this convex set, in other words, the symmetry group of the hypercube.

- 1. What is the order of $W(B_n)$?
- 2. Identify $W(B_n)$ with the following subgroup of S_{2n} . Let $-[n] = \{-1, -2, -3, \dots, -n\}$. The subgroup consists of permutations of $-[n] \sqcup [n]$ such that $\sigma(-k) = -\sigma(k)$.
- 3. Prove that $W(B_n)$ is generated by n-elements of order two $s_n = (1, -1)$ and $s_i = (i, i+1)(-i, -i-1)$ for $1 \le i \le n-1$, and the minimal number of generators needed in the expression of $\sigma \in W(B_n)$ (similar as the number of inversions for permutation groups) is given by

$$\#\{(i,j) \in [n] \times [n] | i < j, \sigma(i) > \sigma(j)\} + \#\{(i,j) \in [n] \times [n] | i \le j, \sigma(-i) > \sigma(j)\}$$

$$\tag{1}$$

4. Prove that the generators in s_i satisfy the Coxeter relations for type B_n diagram.

$$s_{n-1}$$
 s_{n-2} s_{n-3} s_2 s_1 s_n

- 5. Prove that the group given by generators s_1, \dots, s_n and relations in the type B_n diagram is isomorphic to $W(B_n)$.
- 题 10 (Free product and Ping-Pong lemma).
- 定义 1 (自由积). 如果两个群 G 和 H 分别写成生成元和关系

$$G = \langle X \mid R \rangle, \quad H = \langle Y \mid S \rangle,$$

则 G 和 H 的自由积定义为 $G \star H = \langle X \sqcup Y \mid R \sqcup S \rangle$. 或者也可定义为 G 和 H 中元素组成的 words, 在定义 words 的乘法时类似于自由群的定义一样,额外加入 G 和 H 中的乘法来消去相邻两个来自同一个群的元素.

- 1. 证明 Ping-Pong lemma. 设 G 有两个阶数不全为 2 的子群 H_1 和 H_2 , 且 H_1 和 H_2 生成群 G. 假设 G 在集合 A 上有作用,且存在 A 的两个不相交的非空子集 A_1 和 A_2 ,使得 $\forall h_1 \in H_1 \setminus \{e\}$, $h_1(A_2) \subset A_1$, $\forall h_2 \in H_2 \setminus \{e\}$, $h_2(A_1) \subset A_2$.则 G 同构于 $H_1 \star H_2$.
- 2. 证明由矩阵 $M_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ 和 $M_2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ 在 $SL(2,\mathbb{R})$ 中生成的子群 同构于两个生成元的自由群. (提示:考虑 \mathbb{R}^2 中子集 $\{(x,y) \mid |x| < |y|\}$ 以及 $\{(x,y) \mid |y| < |x|\}$)
- 3. 记 $SL(2,\mathbb{Z})$ 为行列式为 1 的 2 阶整数矩阵在矩阵乘法下组成的群,定义 $PSL(2,\mathbb{Z})$ 为商群 $SL(2,\mathbb{Z})/\pm I$. 考虑元素 $M_3=\begin{bmatrix}1 & -1\\1 & 0\end{bmatrix}$ 和 $M_4=\begin{bmatrix}0&1\\-1&0\end{bmatrix}$ 来证明 $PSL(2,\mathbb{Z})$ 同构于 $C_3\star C_2$. (提示:考虑 $PSL(2,\mathbb{Z})$ 在 \mathbb{R}^2 中所有过原点的直线的集合上的作用,分成斜率小于或等于零的部分以及其他。)
- **题 11** (Affine Coxeter group, 选做题,可以不交). 定义 \tilde{S}_n 如下. 考虑 $V = \{(x_1 \cdots x_n) \in \mathbb{R}^n \mid \sum_i x_i = 0\}$. 则 $V_{\mathbb{Z}} = V \cap \mathbb{Z}^n$ 在向量的加法下组成一个群. 对于 $\sigma \in S_n$ 和 $v = (v_1, \cdots, v_n) \in V_{\mathbb{Z}}$. 考虑 V 上由变换 $T(x_1, \cdots, x_n) = (x_{\sigma(1)}, \cdots, x_{\sigma(n)}) + v$. 由这些变换在复合下组成的群记做 G.
 - 1. 证明形如 $T(x_1,\cdots,x_n)=(x_1,\cdots,x_n)+v$ 的元素构成了 \tilde{S}_n 的一个同构于 $V_{\mathbb{Z}}$ 的正规子群. 形如 $T(x_1,\cdots,x_n)=(x_{\sigma(1)},\cdots,x_{\sigma(n)})$ 的元素构成了 \tilde{S}_n 的一个同构于 S_n 的子群. 证明 \tilde{S}_n 同构于 $V_{\mathbb{Z}}$ 和 S_n 的半直积.
 - 2. 利用以上同构,将 S_n 的生成元 s_1, \dots, s_{n-1} 作为 \tilde{S}_n 中的元素,令 s_n 为如下变换 $s_n(x_1, \dots, x_n) = (x_n+1, x_2 \dots, x_1-1)$. 证明 s_1, \dots, s_n 都是相对于某一仿射超平面的反射(不一定过原点),且是 \tilde{S}_n 的生成元. 利用法向量夹角找到这些反射之间的关系并画出对应的 Coxeter diagram. 记对应的 Coxeter 群为 G.

3. 证明对题目中给出的元素 T 写作以上生成元的最小个数为

$$l(T) = \sum_{\sigma(i) < \sigma(j)} |v_i - v_j| + \sum_{\sigma(i) > \sigma(j)} |v_i - v_j - 1|.$$

- 4. 考虑 n=3 和 \tilde{S}_3 在 V 上的作用. 证明 V 中有非平凡的稳定化子的点组成的集合是 V 上一些直线的并,且这些直线的补集是不相交的等边三角形. 如果有两个三角形落在一条直线的两边,则称这条直线将两个三角形分离. 取其中一个三角形 Δ , 证明 l(T) 等于 Δ 与 $T(\Delta)$ 之间分离的直线的数目.
- 5. 对比 \tilde{S}_3 在这些三角形所在的集合上的作用,以及 Coxeter-Todd algorithm 得到的 G 在 G 上的左乘作用,证明 G 与 \tilde{S}_3 同构.