Step-1

We have to find all the 1 by 1 matrices that are Hermitian and also unitary.

Step-2

We know that a matrix A is Hermitian if $A^H = A$ and matrix B is unitary if $B^H B = I$.

Let us consider the 1 by 1 matrices $\begin{bmatrix} 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \end{bmatrix}$

Let U = [1]

Then

$$U^{H}U = [1][1]$$

= [1]
= I

Therefore $U = [1]_{is unitary.}$

And $U^H = [1] = U$

Hence U is Hermitian matrix.

Therefore, $U = [1]_{is both Hermitian and unitary.}$

Step-3

Let us consider U = [-1]

Now $U^H = [-1] = U$

Therefore, U is Hermitian.

Now

$$U^{H}.U = [-1][-1]$$

= [1]
= I

Therefore, U is unitary.

Hence U is Hermitian and unitary matrix.

Step-4

Now we have to find all the 2 by 2 matrices that are both Hermitian and unitary.

Let us consider 2×2 matrix

$$U = \begin{bmatrix} a & b+ic \\ b-ic & -a \end{bmatrix}$$
 with $a^2 + b^2 + c^2 = 1$

Then

$$U^{H} = \begin{bmatrix} a & b+ic \\ b-ic & -a \end{bmatrix}$$

=U

Since $U^H = U$

So *U* is Hermitian.

Step-5

Now

$$U^{H}U = \begin{bmatrix} a & b+ic \\ b-ic & -a \end{bmatrix} \begin{bmatrix} a & b+ic \\ b-ic & -a \end{bmatrix}$$

$$= \begin{bmatrix} a(a)+(b+ic)(b-ic) & a(b+ic)-(b+ic)a \\ (b-ic)(a)-a(b-ic) & +(b+ic)(b-ic)+a(a) \end{bmatrix}$$

$$= \begin{bmatrix} a^{2}+b^{2}+c^{2} & ab+iac-ab-aic \\ ab-iac-ab+aic & b^{2}+c^{2}+a^{2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Since $U^H U = I$

So U is unitary.

Therefore $\begin{bmatrix} a & b+ic \\ b-ic & -a \end{bmatrix}, a^2+b^2+c^2=1$ is Hermitian and unitary matrix.