3.4 1)
$$\log_2(12) = \log_2(2^2 \cdot 3)$$

= $\log_2(2^2) + \log_2(3)$
 $\approx 2 + 1.58 = 3.58$

2)
$$\log_2(\sqrt{5}) = \log_2(5^{\frac{1}{2}})$$

= $\frac{1}{2} \log_2(5)$
 $\approx \frac{1}{2} \cdot 2.32 = 1.16$

3)
$$\log_2(45) = \log_2(3^2 \cdot 5)$$

 $= \log_2(3^2) + \log_2(5)$
 $= 2 \log_2(3) + \log_2(5)$
 $\approx 2 \cdot 1.58 + 2.32 = 5.48$

4)
$$\log_2(60) = \log_2(2^2 \cdot 3 \cdot 5)$$

= $\log_2(2^2) + \log_2(3) + \log_2(5)$
 $\approx 2 + 1.58 + 2.32 = 5.9$

5)
$$\log_2(0,3) = \log_2(\frac{3}{10})$$

 $= \log_2(\frac{3}{2\cdot 5})$
 $= \log_2(3) - \log(2 \cdot 5)$
 $= \log_2(3) - (\log_2(2) + \log_2(5)) = \log_2(3) - \log_2(2) - \log_2(5)$
 $\approx 1,58 - 1 - 2,32 = -1,74$

6)
$$\log_2(\frac{3}{5}) = \log_2(3) - \log_2(5)$$

 $\approx 1.58 - 2.32 = -0.74$

7)
$$\log_2(1000) = \log_2(2^3 \cdot 5^3)$$

 $= \log_2(2^3) + \log_2(5^3)$
 $= 3 \log_2(2) + 3 \log_2(5)$
 $\approx 3 \cdot 1 + 3 \cdot 2,32 = 9,96$

8)
$$\log_2(\frac{25}{6}) = \log_2(\frac{5^2}{2\cdot 3})$$

 $= \log_2(5^2) - \log_2(2\cdot 3)$
 $= 2 \log_2(5) - (\log_2(2) + \log_2(3)) = 2 \log_2(5) - \log_2(2) - \log_2(3)$
 $\approx 2 \cdot 2.32 - 1 - 1.58 = 2.06$