Forelesning 8: Gjeldgrad og verdi i perfekte kapitalmarkeder

Læringsmål:

- Beregne kontantstrøm til kreditorene og overskuddet for eierne med utgangspunkt i data om et investeringsprosjekt og et finansieringsprosjekt.
- Vise med et eksempel at forventet overskudd pr. aksje stiger med stigende gjeldsgrad (mer om dette i kapittel 7)
- Forklare hva en arbitrasjemulighet er.
- Konstruere en arbitrasjestrategi for å høste en arbitrasjegevinst.
- Gjengi de to hovedresultatene til Miller og Modigliani (M&M) med formler og ord for en verden uten skatt.
- Forklare hvorfor kapitalverdimodellen kan gi to prosjekter samme kapitalkostnad selv om de ifølge M&M ikke er i samme risikoklasse.

Oppdatert: 2023-10-25

Gjeldsgrad og verdi i perfekte kapitalmarkeder

I kapittel 6 så vi at økt gjeldsgrad førte til

- 1. Økt forventet avkastning
- 2. Økt risiko (både for total risiko og systematisk risiko)

Spørsmålet vi stiller nå:

• Er den positive effekten av økt forventet avkastning større, lik (dette omtales som seperasjonsprinsippet) eller mindre en den negative effekten av økt risiko?

Oppsplitting av en kontantstrøm

Selskap uten gjeld (U)

- Til kreditorene: R = 0
- Til aksjonærene: $OER_U = OFR$
- Totalt: $R + OER_U = OFR$

Selskap med gjeld (M)

- Til kreditorene: $R = r \cdot PG$
- Til aksjonærene: $OER_M = OFR r \cdot PG$
- Totalt:

$$R + OER_M = r \cdot PG + OFR - r \cdot PG = OFR$$

Pålydende gjeld	100	200	400	600	700
Gjeldsrente	0.04	0.04	0.05	0.06	0.08
Til kreditorene	4	8	20	36	56
Til eierne	96	92	80	64	44
Totalt	100	100	100	100	100

Resultat: Gjeldsgrad påvirker kun fordelingen mellom kreditorer og eiere (interesentene), men *ikke* den totale kontantstrømmen

Arbitrasje

Dersom gjeldsgraden ikke påvirker den totale kontantstrømmen, hva betyr dette for verdien av to selskaper som *kun* utskiller seg i finansieringsform?

Eksempel 7.2: Tar utgangspunkt i to selskaper med lik total kontantstrøm (OFR), men ulik finansieringsform og verdifastsettelse

Selskap U (fullstendig egenkapitalfinansiert)

- Verdien av selskapet 1000. Hvor $V_U = E_U = 1000$ og $G_U = 0$
- Gir dividiende = OFR
- Arbitrasjestrategi (selger overvurdert):
 - Salg 10 prosent av aksjer:
 1000 · 0.1 = 100, -
 - Mister: 0.10 · OFR

Selskap M (med gjeldsfinansiering)

- Verdien av selskapet 900. Hvor V_M = 900, E_M = 400 og G_M = 500 med en pålydende gjeld på 6 prosent
- Gir dividiende = $OFR - 0.06 \cdot 500 = OFR - 30$
- Arbitrasjestrage (kjøp undervurdert for samme risikoprofil):
 - Investering: Aksjer 0.1 · 500 og
 Obligasjoner 0.1 · 400 som totalt koster 90
 - ∘ Mottar: 0.1 · OFR

Arbitrasjegevinst ("pengepumpe"): 90,- av et beløp på 100,- kan benyttes til å oppnå samme kontantstrøm.

Generell strategi:

- 1. Selg dine *aksjer* i det overprisede selskapet
- 2. Kjøp deg inn i det underprisede selskapet. Porteføljen må da tilpasses slik at
 - o Gitt uten gjeld i det overprisede selskapet, kjøper du samme andel av egenkapital og gjeld i det underprise selskapet
 - Gitt med gjeld i det overprisede selskapet, låner du privat for å få samme gjeldsgrad som i det overprisede selskapet og benytter dette beløpet til å kjøpe egenkapital i det underprisede selskapet.

Resultat: Den arbitrasjestrategien fører til at verdifastsettelsen blir lik (pga. økt tilbud av det overprisede selskapet samt økt etterspørsel av det underprise selskapet) mellom de to selskapene.

Miller & Modigliani (M&M)

Som vist vil arbitrasje føre til lik verdifastsette, men hvordan kan vi fastsette *tallverdien* som blir bestemt i markedet? Svar: Forutsetninger for verdsetting av selskaper i Miller & Modigliani:

Markedet:

- Alle investorer har full informasjon om markedsmulighetene
- For samme risiko, alle kan låne til samme rente
- Ingen transaksjonskostnader
- Alle selskapers egenkapital og gjeld er fritt omsettelige via aksjer og obligasjoner
- Ingen betaler skatt

Investeringssiden:

- Selskap U og M sin OFR er perfekt korrelerte (vi skal snart se at vi har mulighet til å lette på denne forutsetningen)
- OFR er evigvarende
- Sannsynlighetfordelingen for OFR den samme i alle perioder for begge selskaper

Finansieringsiden:

- Fast evigvarende gjeld
- OER går kun til utbytte

Basert på disse forutsetningene kan vi sette opp tre uttrykk som viser forventet avkastning for gjeld (k_G), egenkapital (k_E) og totalkapital (k_T):

$$k_G = \frac{r \cdot PG}{G}$$

$$k_E = \frac{E(OER)}{E}$$

$$k_T = \frac{E(OFR)}{V}$$

• M&M-1:

$$V = \frac{E(OFR)}{k_T} = \frac{E(OFR)}{k_U}$$

• M&M-2:

$$k_E = k_T + (k_T - k_G) \frac{G}{E} = k_U + (k_U - k_G) \frac{G}{E}$$

Seperasjonsprinsippet

- M&M impliserer at det ikke er mulig å øke bedriftens eller enkeltstående prosjekters verdi gjennom finansieringsformen:
 - 1. Økt gjeldsgrad fører til økt finansieringsrisiko og dermed en økning i *eiernes* avkastningskrav
 - 2. Men *totalkapitalkostnaden* påvirkes ikke av gjeldsgraden, og selskapsverdien foreblir derfor uendret
 - 3. Dette resultatet blir ofte omtalt som seperasjonsprinsippet

Eksempel 7.5: TV fabrikken Tittco budsert OFR = 2 mill for neste år og alle perioder framover. Selskapet disponerer avdragsfri gjeld med 250.000,- i utestående renter. En bedrift i samme risikoklasse, men som er gjeldfri, har et akvastningskrav $k_U = 0.04$

• Ifølge M&M-I vil verdien til Tittco være gitt ved

$$V = \frac{E(OFR)}{k_U} = \frac{2}{0.04} = 50$$

• Ifølge M&M-II

$$k_E = k_T + (k_T - k_G) \frac{G}{E} k_U + (k_U - k_G) \frac{G}{E}$$

Som gir oss denne figuren (gitt at vi ser bort fra konkursrisiko)

Sammenhengen mellom KVM og M&M

Vi løsner nå på forutsetningen om de to selskapene som sammenlignes skal være i samme risikoklasse (som innbærer lik total og systematisk risiko). Vi definerer istedet risikoklasse (som i KVM) some alle selskaper med en bestemt investeringsbeta.

Eksempel 7.5: For Demo ASA er β_G = 0.20 og β_E = 1.4. Selskapet er finansiert med like mye gjeld som egenkapital, w_G = w_E = 0.50. Den risikofrie renten i markedet r_f = 0.03, mens markedsporteføljen forventede avkastning $E(r_p)$ = 0.08.

Alternativ 1: KVM

Alternativ 2: M&M

$$k_E = r_f + \beta_E [E(r_m) - r_f] = 0.03 + 1.4[0.08 - 0.03] = 0.10$$

Vi har fra kapittel 6 (uten skatt)

$$\beta_I = w_E \beta_E + w_G \beta_G = 0.5 \cdot 1.4 + 0.5 \cdot 0.20 = 0.80$$

Hvor vi ved bruk av KVM kan finne både k_U og k_G

$$k_{IJ} = 0.03 + 0.80(0.08 - 0.03) = 0.074$$

$$k_G = r_f + \beta_G [E(r_m) - r_f] = 0.03 + 0.20(0.08 - 0.03) = 0.04$$

Vi kan derfor benytte M&M-2:

$$k_E = 0.074 + (0.074 - 0.04)\frac{1}{1} = 0.10$$

Konklusjon: M&Ms konklusjoner holder også under mer robuste og velkjente forutsetninger.

Appendiks: Utledning av formelen for summen av en uendlig kontantstrøm

Nåverdien av en enkelt fremtidig kontantstrøm kan finnes ved hjelp av formelen:

$$PV = \frac{C}{(1+r)^n}$$

Hvor:

- PV er nåverdien av kontantstrømmen
- C er kontantstrømmen i fremtiden
- *r* er avkastningskravet (diskonteringsrenten)
- *n* er antall perioder (for eksempel år) i fremtiden

Hvis vi tenker på en evigvarende kontantstrøm der vi mottar ${\it C}$ hvert år, kan vi begynne med å beregne nåverdien for de første få årene:

For år 1:

$$PV_1 = \frac{C}{(1+r)}$$

For år 2:

$$PV_2 = \frac{C}{\left(1+r\right)^2}$$

For år 3:

$$PV_3 = \frac{C}{(1+r)^3}$$

... og så videre.

Nåverdien av hele den evigvarende kontantstrømmen vil være summen av nåverdiene av alle disse individuelle kontantstrømmene. Matematisk kan vi skrive dette som en uendelig rekke:

$$PV = C \times \left(\frac{1}{(1+r)} + \frac{1}{(1+r)^2} + \frac{1}{(1+r)^3} + \dots \right)$$

Dette er en geometrisk rekke hvor hver term er et tall ganger forrige term. For denne rekken, er ratioen mellom etterfølgende termer $\frac{1}{(1+r)}$.

For en geometrisk rekke med ratio |r| < 1 (i vårt tilfelle er dette $\frac{1}{(1+r)}$), er summen av rekken gitt ved:

$$S = \frac{a}{1 - r}$$

Hvor a er den første termen i rekken.

For vår kontantstrømrekke er $a = \frac{C}{(1+r)}$ og $r = \frac{1}{(1+r)}$.

Setter inn verdiene vi har:

$$PV = \frac{\frac{C}{(1+r)}}{1 - \frac{1}{(1+r)}}$$

Forenkle videre:

$$PV = \frac{C}{(1+r)-1} = \frac{C}{r}$$

Og det er hvordan vi kommer frem til formelen for en evigvarende kontantstrøm:

$$PV = \frac{C}{r}$$