Université Badji Mokhtar Annaba ($\mathbf{F}^{t\acute{e}}$ des sciences \mathbf{D}^{pt} de Maths.) Master1:Actuariat-P.S année 2019-2020

Série 2: Série Chronologique II Processus ARCH

Ex1:

- I) Soit le processus suivant: $X_t = u_t \sqrt{h_t}$ où $u_t \to N(0,1)$ et $h_t = 0.1 + 0.5 X_{t-1}^2$
- 1. Calculer: $E(X_t)$, $E(X_t/I_{t-1})$, $V(X_t)$ et $V(X_t/I_{t-1})$. où $I_{t-1} = (X_{t-1}, X_{t-2}, ...)$ est l'ensemble de l'information passé.
- 2. Ecrire X_t^2 sous forme AR.
- 3. Calculer la Kurtosis de ce processus. Conclure.
- II) Même questions avec $h_t = 2 + 0.3X_{t-1}^2$ et $h_t = 3 + 0.2X_{t-2}^2$.
- III) Soit le processus suivant: $X_t = u_t \sqrt{h_t}$ où $u_t \to N(0,1)$ et $h_t = 1 + 0.1X_{t-1}^2 + 0.2X_{t-2}^2$.
- 1. Calculer: $E(X_t)$, $E(X_t/I_{t-1})$ et $V(X_t/I_{t-1})$. Ecrire X_t^2 sous forme AR, en déduire $V(X_t)$.
- 2. Calculer la Kurtosis de ce processus.

Ex2:

- I) Soit le processus ARCH(1) suivant: $X_t = u_t \sqrt{h_t}$ où $u_t \to N(0,1)$ et $h_t = \alpha + 0.4X_{t-1}^2$. 1.Calculer: $E(X_t)$, $E(X_t/I_{t-1})$ et $V(X_t/I_{t-1})$. où $I_{t-1} = (X_{t-1}, X_{t-2}, ...)$ est l'ensemble de l'information passé.
- 2. Sachant que $V(X_t) = 5$, calculer α .
- 3. En prenant la valeur de α trouver en 2, calculer la Kurtosis.
- 4. Montrer que:
- i) $E(X_t/I_{t-10}) = 0$, ii) $V(X_t/I_{t-10}) = 0.4^{10}X_{t-10}^2 + 2\frac{1 0.4^{10}}{0.6}$.
- II) Soit le modèle $X_t = 0.8X_{t-1} + \varepsilon_t$ où $\varepsilon_t = u_t \sqrt{1.5 + 0.4\varepsilon_{t-1}^2}$ et $u_t \to N(0,1)$.
- 1. Calculer: $E(X_t)$, $E(X_t/I_{t-1})$, $V(X_t)$ et $V(X_t/I_{t-1})$.
- 2. Donner l'intervalle de confiance à 95% de X_{t+1} .

Ex3:

- I) Calculer les moments conditionnels et non conditionnels et la Kurtosis du processus GARCH(1,1) stationnaire.
- II) 1. Ecrire le modèle GARCH(1,1) avec les coefficients: $\alpha_0=1,\ \alpha_1=0.1,\ \beta_1=0.8$
- 2. Calculer: $E(X_t)$, $E(X_t/I_{t-1})$ et $V(X_t/I_{t-1})$. où $I_{t-1}=(X_{t-1},X_{t-2},...)$ est l'ensemble de l'information passé.
- 3. Ecrire X_t^2 sous forme ARMA, en déduire $V(X_t)$.
- 4. Calculer la Kurtosis de ce processus.
- III)- Soit le processus suivant: $Y_t = 3 + 0.7Y_{t-1} + \varepsilon_t$ où ε_t est le modèle GARCH(1,1) défini en II.
- 1. Déduire de II: $E(Y_t)$, $E(Y_t/I_{t-1})$, $V(Y_t)$ et $V(Y_t/I_{t-1})$. où $I_{t-1}=(Y_{t-1},Y_{t-2},...)$ est l'ensemble de l'information passé.
- 2. Donner l'intervalle de confiance prévisionnelle de Y_{t+1} au seuil 5%. Conclure.
- **IV)** Même questions que II avec $\alpha_0 = 1$, $\alpha_1 = 0.3$, $\beta_1 = 0.2$.
- V) Soit le processus suivant: $X_t = u_t \sqrt{h_t}$ où $u_t \to N(0,1)$ et $h_t = 1 + \alpha X_{t-1}^2 + 0.2 X_{t-2}^2$.
- 1. Sachant que $V(X_t) = \frac{10}{7}$, trouver α .
- 2. Calculer la Kurtosis de ce processus.