CS 699 Assignment 5

Katherine Rein

```
# Import libraries
library(arules)
## Loading required package: Matrix
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
       abbreviate, write
library(recommenderlab)
## Loading required package: proxy
## Attaching package: 'proxy'
## The following object is masked from 'package:Matrix':
##
##
       as.matrix
## The following objects are masked from 'package:stats':
##
##
       as.dist, dist
## The following object is masked from 'package:base':
##
       as.matrix
##
## Registered S3 methods overwritten by 'registry':
##
    method
                          from
     print.registry_field proxy
     print.registry_entry proxy
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:arules':
       intersect, recode, setdiff, setequal, union
##
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
```

```
##
      intersect, setdiff, setequal, union
library(tidyr)
##
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
##
##
      expand, pack, unpack
library(rsample)
library(tidymodels)
## -- Attaching packages ------ tidymodels 1.3.0 --
## v broom
                1.0.8
                           v recipes
                                         1.3.1
## v dials
                 1.4.0
                                         3.2.1
                           v tibble
                3.5.2
                         v tune
                                         1.3.0
## v ggplot2
## v infer
                1.0.8 v workflows 1.2.0
## v modeldata 1.4.0
                         v workflowsets 1.1.1
## v parsnip
                 1.3.2
                          v yardstick
                                       1.3.2
## v purrr
                 1.0.4
## -- Conflicts -----
                                                  ----- tidymodels_conflicts() --
## x purrr::discard()
                          masks scales::discard()
## x recipes::discretize() masks arules::discretize()
## x tidyr::expand()
                          masks Matrix::expand()
## x dplyr::filter()
                          masks stats::filter()
## x dplyr::lag()
                          masks stats::lag()
## x tidyr::pack()
                          masks Matrix::pack()
## x dplyr::recode()
                          masks arules::recode()
## x recipes::step()
                          masks stats::step()
## x tidyr::unpack()
                          masks Matrix::unpack()
## x recipes::update()
                          masks Matrix::update(), stats::update()
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
      margin
## The following object is masked from 'package:dplyr':
##
##
      combine
library(ranger)
##
## Attaching package: 'ranger'
## The following object is masked from 'package:randomForest':
##
##
      importance
```

```
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following objects are masked from 'package:yardstick':
##
##
       precision, recall, sensitivity, specificity
## The following object is masked from 'package:purrr':
##
##
       lift
## The following objects are masked from 'package:recommenderlab':
##
##
       MAE, RMSE
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
                        v readr
## v forcats
             1.0.0
                                     2.1.5
## v lubridate 1.9.4
                        v stringr
                                     1.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x readr::col_factor()
                            masks scales::col_factor()
## x randomForest::combine() masks dplyr::combine()
## x purrr::discard()
                          masks scales::discard()
                            masks Matrix::expand()
## x tidyr::expand()
## x dplyr::filter()
                            masks stats::filter()
## x stringr::fixed()
                          masks recipes::fixed()
## x dplyr::lag()
                            masks stats::lag()
## x caret::lift()
                            masks purrr::lift()
## x randomForest::margin() masks ggplot2::margin()
## x tidyr::pack()
                            masks Matrix::pack()
## x dplyr::recode()
                            masks arules::recode()
## x readr::spec()
                            masks yardstick::spec()
## x tidyr::unpack()
                            masks Matrix::unpack()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
```

Problem 1

```
Work in written document.

Part 1 Answer: {2345}, {2356}

Part 2 Answer:
{234} -> {5}
{245} -> {3}
{345} -> {2}
{24} -> {35}
{34} -> {25}
```

Problem 2

(1). Load the data, discard the transaction id feature, and convert the data frame from strings containing "True" and "False" to a matrix of logical values (TRUE and FALSE). Then convert this matrix to a transac-

tions object. Then use the an apriori rule miner with a minimum support of 15% and a minimum confidence of 50%. How many rules are mined? (2). Determine which rule has the highest confidence. What is this rule? Capture the portion of the output that states the rule, as well as the support, confidence, coverage, and lift. (3). Return to the matrix of logical values. For the rule you identified in (2), find the number of transactions with both the antecedent and consequent itemsets, the number of transactions with the antecedent itemset, and the number of transactions with the consequent itemset. Use these values to compute the coverage (LHS- support), support, confidence, and lift for the rule. Provide any code you use to do these calculations. They should match the results displayed in step (2).

```
# Load data
data = read.csv('basketanalysis.csv')
# Discard transaction ID
data = subset(data, select = -X)
# Convert True False strings to Booleans
for (col name in colnames(data)) {
  data[[col_name]] = as.logical(data[[col_name]])
# Convert to transactions object
trans = as(data, "transactions")
# Mine strong rules
rules = apriori(trans, parameter = list(supp = 0.15, conf = 0.5))
## Apriori
##
## Parameter specification:
   confidence minval smax arem aval originalSupport maxtime support minlen
##
                         1 none FALSE
                                                  TRUE
##
           0.5
                  0.1
                                                                  0.15
##
   maxlen target ext
##
        10 rules TRUE
##
## Algorithmic control:
   filter tree heap memopt load sort verbose
       0.1 TRUE TRUE FALSE TRUE
                                         TRUE
##
##
## Absolute minimum support count: 149
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[16 item(s), 999 transaction(s)] done [0.00s].
## sorting and recoding items ... [16 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 done [0.00s].
## writing ... [5 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
num_rules = length(rules)
# Find highest confidence
rules_sorted = sort(rules, by = "confidence", decreasing = TRUE)
inspect(rules_sorted[1])
##
                                       confidence coverage lift
       lhs
                             support
                 rhs
                                                                      count
```

```
## [1] {Milk} => {chocolate} 0.2112112 0.5209877 0.4054054 1.236263 211
quality(rules_sorted)[1, ]
##
       support confidence coverage
                                        lift count
## 3 0.2112112 0.5209877 0.4054054 1.236263
# Calculate LHS support
lhs_support = mean(data[, 'Milk'] == 1)
print(lhs_support)
## [1] 0.4054054
# Calculate support
support = mean((data[, 'Milk'] == 1) & (data[, 'chocolate'] == 1))
print(support)
## [1] 0.2112112
# Calculate confidence
confidence = support / lhs_support
print(confidence)
## [1] 0.5209877
# Calculate lift
rhs_support = mean(data[, 'chocolate'] == 1)
lift = confidence / rhs_support
print(lift)
## [1] 1.236263
1. There are 5 strong rules mined.
2. The highest confidence rule is {milk} -> {chocolate}. This has a support of
0.211, a confidence of 0.521, a coverage of 0.405, and a lift of 1.236.
3. The answers are the same with a support of 0.211, a confidence of 0.521, a
coverage of 0.405, and a lift of 1.236.
```

Problem 3

(1). Load the data and force the data frame to a realRatingMatrix object. Fit a user- based collaborative filtering model to all but 3 of the users (you can choose which three to hold out). (2). Use the model to make predictions for the three users you held back.

```
# Fit collaborative filtering model (all but 3 users)
holdout = 1:3
recommender = Recommender(rating_matrix[-holdout], method = "UBCF")
# Predict
pred_ratings = predict(recommender, rating_matrix[holdout], type = "ratings")
pred_list = as(pred_ratings, "list")
actual ids = ratings wide$User.ID[holdout]
top3_list <- Map(function(uid, v) {</pre>
  v <- sort(v, decreasing = TRUE)</pre>
  head(
    data.frame(user = uid, ISBN = names(v), rating = v, row.names = NULL), 3
  }, actual_ids, pred_list)
top3_df = do.call(rbind, top3_list)
print(top3_df)
     user
                ISBN
                       rating
## 1 183 840142321X 10.60825
## 2 183 8473861906 10.60825
## 3 183 0141439475 10.60825
## 4 1733 0446606189 12.70757
## 5 1733 0451132378 12.70757
## 6 1733 0671042262 12.70757
## 7 2033 0451152301 11.71970
## 8 2033 0553254030 11.71970
## 9 2033 0886777844 11.71970
```

Problem 4

Consider the following A/B testing scenario for a manufacturing plant which is having a problem with a customer refusing to buy their product because too many of the items produced have a manufacturing defect. The plant makes some changes to the production process and uses A/B testing to determine whether they have made a significant reduction of the defect rate. Before the changes, the plant manufactured 200 products for the customer, but 20 of them had defects. After making their process improvements, they made another 250 products, and only 10 of them had defects. It appears the defect rate has decreased. Use a statistical test to determine whether the reduction is statistically significant.

```
# Before improvement
nA = 200
defectA = 20
successA = nA - defectA

# After improvement
nB = 250
defectB = 10
successB = nB - defectB

# Test
prop.test(c(defectA, defectB), c(nA, nB), alt = "greater", correct = FALSE)
```

##

```
## 2-sample test for equality of proportions without continuity correction
##
data: c(defectA, defectB) out of c(nA, nB)
## X-squared = 6.4286, df = 1, p-value = 0.005615
## alternative hypothesis: greater
## 95 percent confidence interval:
## 0.01958879 1.00000000
## sample estimates:
## prop 1 prop 2
## 0.10 0.04
```

Because the p value is less than 0.05 we can reject the null hypothesis. This means that the reduction is statistically significant.

Problem 5

(1). Generate training and holdout partitions on the data set. Use 1/3 of the data in the holdout. (2). Fit a random forest model, applying a training grid to tune the parameters. Use the random forest model to make probability-metric predictions on two versions of the holdout data: one with the offer (treatment) feature set to Discount and the other with the offer feature set to No Offer. Then compute the uplift for the treatment. Obtain Q1, the median, and Q3 for the predicted uplift. Make conclusions.

```
# Load data
data = read.csv('uplift-small.csv')
# Train test split
set.seed(42)
split <- initial_split(data, prop = 2/3, strata = conversion)</pre>
train <- training(split)</pre>
test <- testing(split)</pre>
# Fit random forest model
train control <- trainControl(method="cv")</pre>
rf.grid = expand.grid(mtry = c(3, 4, 5))
model <- train(conversion ~ ., data = train,</pre>
                        trControl = train_control,
                       method = "rf", tuneGrid = rf.grid)
# Probability Metric Predictions
# No Offer
uplift_df = test
uplift_df$offer <- 'No Offer'</pre>
predTreatment <- predict(model, newdata = uplift_df, type = "prob")</pre>
predTreatment <- tibble::rowid_to_column(predTreatment, "CID")</pre>
head(predTreatment)
```

```
##
    CID
           No
                 Yes
## 1
      1 1.000 0.000
## 2
     2 0.988 0.012
## 3
      3 0.952 0.048
## 4
      4 0.884 0.116
      5 0.890 0.110
## 5
## 6
      6 0.974 0.026
```

```
# Discount
uplift_df = test
uplift_df$offer <- 'Discount'</pre>
predControl <- predict(model, newdata = uplift_df, type = "prob")</pre>
predControl <- tibble::rowid_to_column(predControl, "CID")</pre>
head(predControl)
##
    CID
            No
                 Yes
## 1
       1 0.956 0.044
       2 0.828 0.172
## 2
## 3
       3 0.966 0.034
## 4
     4 0.934 0.066
## 5
       5 0.976 0.024
## 6
      6 0.838 0.162
# Calculate uplift
upliftResult <- data.frame(CID = predTreatment$CID,</pre>
 probYesPromotion = predTreatment[, 3],
 probNoPromotion = predControl[, 3],
 uplift = predTreatment[, 3] - predControl[, 3]
head(upliftResult)
     CID probYesPromotion probNoPromotion uplift
##
## 1
       1
                    0.000
                                     0.044 - 0.044
## 2
       2
                    0.012
                                     0.172 - 0.160
## 3
      3
                    0.048
                                     0.034 0.014
## 4
       4
                    0.116
                                     0.066 0.050
## 5
       5
                    0.110
                                     0.024 0.086
## 6
       6
                    0.026
                                     0.162 -0.136
# select uplift > 5%
uplift_0.05 <- upliftResult[upliftResult$uplift > 0.05, ]
sorted_uplift <- uplift_0.05[order(-uplift_0.05$uplift), ]</pre>
sorted_uplift
##
         CID probYesPromotion probNoPromotion uplift
## 8920 8920
                        0.370
                                         0.116 0.254
## 7213 7213
                         0.266
                                         0.042 0.224
## 14
                         0.328
                                         0.120 0.208
          14
## 4284 4284
                                         0.068 0.206
                        0.274
## 5539 5539
                         0.216
                                         0.014 0.202
## 6700 6700
                        0.276
                                         0.082 0.194
## 8311 8311
                                         0.140 0.190
                        0.330
                                         0.118 0.186
## 2690 2690
                        0.304
## 8755 8755
                         0.270
                                         0.084 0.186
## 1792 1792
                        0.210
                                         0.026 0.184
## 4294 4294
                        0.198
                                         0.016 0.182
## 6119 6119
                                         0.094 0.178
                        0.272
## 7314 7314
                        0.238
                                         0.060 0.178
## 8586 8586
                        0.254
                                         0.076 0.178
## 2615 2615
                        0.200
                                         0.024 0.176
## 6166 6166
                        0.240
                                         0.064 0.176
## 890
         890
                        0.222
                                         0.052 0.170
```

##	3251	3251	0.258	0.088	0.170
##	1206	1206	0.262	0.094	0.168
##	3343	3343	0.246	0.078	0.168
##	8422	8422	0.212	0.044	0.168
##	7544	7544	0.280	0.116	0.164
##	4751	4751	0.322	0.158	0.164
##	6880	6880	0.176	0.012	0.164
##	6501	6501	0.198	0.038	0.160
##	1918	1918	0.180	0.022	0.158
##	5318	5318	0.172	0.018	0.154
##	6075	6075	0.202	0.050	0.152
##	8841	8841	0.216	0.066	0.150
##	289	289	0.204	0.056	0.148
##	1725	1725	0.192	0.048	0.144
##	4794	4794	0.154	0.010	0.144
##	7916	7916	0.212	0.068	0.144
##	4365	4365	0.326	0.184	0.142
##	1573	1573	0.150	0.008	0.142
##	5484	5484	0.246	0.106	0.140
##	5361	5361	0.262	0.124	0.138
##	5447	5447	0.196	0.058	0.138
##	8692	8692	0.200	0.062	0.138
##	9209	9209	0.322	0.184	0.138
##	3586	3586	0.144	0.010	0.134
##	1306	1306	0.156	0.026	0.130
##	6536	6536	0.194	0.064	0.130
##	9374	9374	0.176	0.046	0.130
##	2578	2578	0.248	0.120	0.128
##	8759	8759	0.164	0.036	0.128
##	1205	1205	0.148	0.022	0.126
##	1900	1900	0.248	0.122	0.126
##	2018	2018	0.130	0.004	0.126
##	2887		0.174	0.048	0.126
##	6794	6794	0.314	0.188	0.126
##	8698		0.160	0.036	0.124
##	397	397	0.174	0.052	0.122
##	5189		0.156	0.034	0.122
##	2333		0.206	0.084	0.122
##		1704	0.168	0.048	0.120
##	5257		0.186	0.066	0.120
##	6837		0.186	0.066	0.120
##	7757		0.248	0.128	0.120
##		7563	0.170	0.052	0.118
##	5567		0.134	0.016	0.118
##	606	606	0.210	0.092	0.118
##	1005	1005	0.172	0.054	0.118
##	2550		0.158	0.042	0.116
##	1583	1583	0.170	0.058	0.112
##	5581	5581	0.156	0.044	0.112
##	9316		0.162	0.050	0.112
##	1503	1503	0.152	0.040	0.112
##		7990	0.146	0.036	0.110
##	8369		0.130	0.022	0.108
##	3717	3717	0.118	0.010	0.108

##	3356	3356	0.234	0.128	0.106
##	7829		0.136	0.030	0.106
##	9102		0.116	0.010	0.106
##	7062		0.156	0.050	0.106
##		7378	0.210	0.104	0.106
##	5689		0.164	0.060	0.104
##	738	738	0.104	0.000	0.104
##	5363		0.104	0.000	0.104
##	6390		0.104	0.000	0.104
##	8399		0.104	0.000	0.104
##	8656		0.182	0.078	0.104
##		7743	0.104	0.002	0.102
##	6370		0.140	0.040	0.100
##			0.112	0.012	0.100
##	9161	9161	0.268	0.168	0.100
##	3573		0.106	0.006	0.100
##	3887		0.102	0.002	0.100
## ##	8386	1062	0.102	0.002	0.100
##	1062 1078	1078	0.100 0.128	0.002	0.098
##	5152		0.128	0.030	0.098
##	8785		0.110	0.060	0.098
##	6111		0.102	0.004	0.098
##	3941		0.134	0.038	0.096
##	4781		0.132	0.036	0.096
##	7746	7746	0.120	0.024	0.096
##	8202		0.226	0.130	0.096
##	8840		0.150	0.054	0.096
##	8944		0.108	0.012	0.096
##			0.222	0.126	0.096
##	171	171	0.098	0.004	0.094
##	2054		0.150	0.056	0.094
##	6492		0.118	0.024	0.094
##	7665	7665	0.100	0.006	0.094
##	8066	8066	0.192	0.098	0.094
##	8911		0.174	0.080	0.094
##	1251	1251	0.098	0.006	0.092
##	3463	3463	0.162	0.070	0.092
##	7755	7755	0.104	0.012	0.092
##	9339	9339	0.112	0.020	0.092
##	3144	3144	0.232	0.142	0.090
##	8040	8040	0.274	0.184	0.090
##	4348	4348	0.134	0.044	0.090
##	268	268	0.090	0.000	0.090
##	2990	2990	0.106	0.016	0.090
##	7922	7922	0.092	0.002	0.090
##	100	100	0.116	0.028	0.088
##	292	292	0.116	0.028	0.088
##	2911	2911	0.114	0.026	0.088
##	4637	4637	0.098	0.010	0.088
##	1094	1094	0.156	0.068	0.088
##	3174		0.090	0.002	0.088
##	4372		0.104	0.016	0.088
##	5155	5155	0.110	0.022	0.088

##	6024	6024	0.130	0.042	0.088
##	6057	6057	0.108	0.020	0.088
##	7691	7691	0.110	0.022	0.088
##	8863	8863	0.108	0.020	0.088
##	4037	4037	0.096	0.010	0.086
##	4219	4219	0.112	0.026	0.086
##	5018	5018	0.114	0.028	0.086
##	8349	8349	0.132	0.046	0.086
##	8709	8709	0.130	0.044	0.086
##	9108	9108	0.130	0.044	0.086
##	5	5	0.110	0.024	0.086
##	3424	3424	0.126	0.040	0.086
##	7183	7183	0.142	0.056	0.086
##	7265	7265	0.148	0.062	0.086
##	8392	8392	0.092	0.006	0.086
##	8238	8238	0.228	0.144	0.084
##	2936	2936	0.156	0.072	0.084
##	5423	5423	0.130	0.046	0.084
##	3242	3242	0.138	0.056	0.082
##	270	270	0.084	0.002	0.082
##	3960	3960	0.160	0.078	0.082
##	9100	9100	0.130	0.048	0.082
##	1390	1390	0.102	0.020	0.082
##	3925	3925	0.242	0.160	0.082
##	5530	5530	0.176	0.094	0.082
##	5835	5835	0.258	0.178	0.080
##	893	893	0.098	0.018	0.080
##	6173	6173	0.098	0.018	0.080
##	7672	7672	0.080	0.000	0.080
##	7736	7736	0.090	0.010	0.080
##	2639	2639	0.086	0.006	0.080
##	8194	8194	0.148	0.068	0.080
##	3774	3774	0.138	0.060	0.078
##	4700	4700	0.200	0.122	0.078
##	6584	6584	0.140	0.062	0.078
##	8549	8549	0.100	0.022	0.078
##	106	106	0.084	0.006	0.078
##	1917	1917	0.126	0.048	0.078
##	3456	3456	0.110	0.032	0.078
##	3757	3757	0.096	0.018	0.078
##	7986	7986	0.108	0.030	0.078
##	9010	9010	0.110	0.032	0.078
##	8949	8949	0.086	0.008	0.078
##	9159	9159	0.146	0.068	0.078
##	4495	4495	0.084	0.008	0.076
##	8685	8685	0.084	0.008	0.076
##	9363	9363	0.130	0.054	0.076
##	1340	1340	0.090	0.014	0.076
##	1605	1605	0.180	0.104	0.076
##	7494	7494	0.088	0.012	0.076
##	510	510	0.116	0.042	0.074
##	916	916	0.116	0.042	0.074
##	5588	5588	0.134	0.060	0.074
##	7012	7012	0.082	0.008	0.074

	1126		0.092	0.018	0.074
##	4444	4444	0.102	0.028	0.074
##	4448	4448	0.092	0.018	0.074
##	5358		0.092	0.018	0.074
##	5735		0.094	0.020	0.074
##	6450		0.122	0.048	0.074
##	3584	3584	0.208	0.134	0.074
##	300	300	0.128	0.056	0.072
##	1450	1450	0.224	0.152	0.072
##	2305		0.130	0.058	0.072
##	5891		0.094	0.022	0.072
##	5898		0.112	0.040	0.072
##	6272		0.080	0.008	0.072
##	6529		0.166	0.094	0.072
##	31	31	0.118	0.046	0.072
##	588	588	0.120	0.048	0.072
##	6296		0.152	0.080	0.072
##	7798		0.090	0.018	0.072
##	8102		0.174	0.102	0.072
##	8659		0.076	0.004	0.072
##	7560		0.078	0.008	0.070
##	7562		0.080	0.010	0.070
##	7818		0.084	0.014	0.070
##	8252		0.130	0.060	0.070
##	8253		0.114	0.044	0.070
##	8860 5523		0.106 0.074	0.036 0.004	0.070
##	6903		0.074	0.004	0.070
##	7300		0.118	0.048	0.070
##	8028		0.142	0.072	0.070
##	355	355	0.142	0.012	0.068
##	1422	1422	0.190	0.122	0.068
##	2316		0.070	0.002	0.068
##	2572		0.096	0.028	0.068
##	2646		0.098	0.030	0.068
##	4793		0.080	0.012	0.068
##	7423		0.126	0.058	0.068
##	8207		0.126	0.058	0.068
##		8894	0.078	0.010	0.068
##		8834	0.118	0.050	0.068
##	2857		0.068	0.002	0.066
##	3143		0.074	0.008	0.066
##	3659	3659	0.074	0.008	0.066
##	4848	4848	0.082	0.016	0.066
##	5142	5142	0.094	0.028	0.066
##	6708	6708	0.070	0.004	0.066
##	1408	1408	0.144	0.078	0.066
##	8604	8604	0.174	0.108	0.066
##	486	486	0.096	0.032	0.064
##	593	593	0.074	0.010	0.064
##	2499	2499	0.066	0.002	0.064
##		2914	0.080	0.016	0.064
##	3460	3460	0.080	0.016	0.064
##	3907	3907	0.080	0.016	0.064

##	4533	4533	0.086	0.022	0.064
##	5935	5935	0.068	0.004	0.064
	6459		0.156	0.092	0.064
##	6473	6473	0.070	0.006	0.064
##	7705	7705	0.074	0.010	0.064
##	7735	7735	0.116	0.052	0.064
##	7796	7796	0.064	0.000	0.064
##	7827	7827	0.112	0.048	0.064
##		7984	0.080	0.016	0.064
##	8279	8279	0.120	0.056	0.064
##	8446	8446	0.086	0.022	0.064
##	8486	8486	0.100	0.036	0.064
##		1945	0.136	0.074	0.062
##	8532		0.136	0.074	0.062
##	537	537	0.070	0.008	0.062
##	676	676	0.100	0.038	0.062
##	2230		0.070	0.008	0.062
##	7793		0.068	0.006	0.062
##		7834	0.084	0.022	0.062
##	47	47	0.122	0.060	0.062
##	1273		0.078	0.016	0.062
	5386		0.078	0.016	0.062
	6391		0.110	0.048	0.062
##		7305	0.092	0.030	0.062
##	7998	7998	0.082	0.020	0.062
	639	639	0.104	0.042	0.062
		3265	0.104	0.042	0.062
##	3459		0.120	0.058	0.062
	6691		0.118	0.056	0.062
##	2157		0.146	0.084	0.062
	812	812	0.114	0.054	0.060
	5500		0.116	0.056	0.060
	8762		0.066	0.006	0.060
##	1246	1246	0.086	0.026	0.060
##	1348	1348	0.092	0.032	0.060
##	1972	1972	0.194	0.134	0.060
##	2178		0.104	0.044	0.060
		2221	0.072	0.012	0.060
##	4462		0.080	0.020	0.060
##	5982		0.090	0.030	0.060
##	7064		0.072	0.012	0.060
##		7236	0.060	0.000	0.060
##		8782	0.150	0.090	0.060
##	9249	9249	0.074		0.060
##	4523	4523	0.144	0.084	
##	326	326	0.070	0.012	0.058
##	1301	1301	0.070 0.084	0.012	0.058
##	6269	6269 5067		0.026	0.058
##	5067		0.068	0.010	0.058
##		5642	0.068	0.010	0.058
##	6824 7527		0.112	0.054	0.058
##	7527	7527 2671	0.066	0.008	0.058
##	26712767	2671 2767	0.120 0.106	0.062 0.048	0.058 0.058
##	2101	2101	0.100	0.040	0.050

##	3437	3437	0.072	0.014	0.058
##	3555	3555	0.196	0.138	0.058
##	5577		0.062	0.004	0.058
##	7516	7516	0.102	0.044	0.058
##	8398	8398	0.104	0.046	0.058
##	9036	9036	0.102	0.044	0.058
##	9136	9136	0.074	0.016	0.058
##	5477	5477	0.166	0.110	0.056
##	6455	6455	0.100	0.044	0.056
##	7152	7152	0.100	0.044	0.056
##	9248	9248	0.082	0.026	0.056
##	1326	1326	0.056	0.000	0.056
##	1475	1475	0.110	0.054	0.056
##	1915	1915	0.056	0.000	0.056
##	3465	3465	0.096	0.040	0.056
##	4095	4095	0.058	0.002	0.056
##	4647	4647	0.078	0.022	0.056
##	7774	7774	0.108	0.052	0.056
##	8407	8407	0.062	0.006	0.056
##	424	424	0.150	0.094	0.056
##	3275	3275	0.118	0.062	0.056
##	4274	4274	0.076	0.020	0.056
##	4393	4393	0.104	0.048	0.056
##	4682	4682	0.060	0.004	0.056
##	5026	5026	0.122	0.066	0.056
##	6284	6284	0.072	0.016	0.056
##	7181	7181	0.060	0.004	0.056
##	7249	7249	0.076	0.020	0.056
##	8006	8006	0.104	0.048	0.056
##	317	317	0.100	0.046	0.054
##	1445	1445	0.156	0.102	0.054
##	3044	3044	0.066	0.012	0.054
##	3208	3208	0.098	0.044	0.054
##	3691	3691	0.116	0.062	0.054
##	4978	4978	0.066	0.012	0.054
##	5006	5006	0.066	0.012	0.054
##	6025	6025	0.082	0.028	0.054
##	6754	6754	0.058	0.004	0.054
##	674	674	0.064	0.010	0.054
##	2234	2234	0.054	0.000	0.054
##	2467	2467	0.060	0.006	0.054
##	5445	5445	0.060	0.006	0.054
##	5710	5710	0.056	0.002	0.054
##	5739	5739	0.078	0.024	0.054
##	5797	5797	0.054	0.000	0.054
##	7191	7191	0.054	0.000	0.054
##	8153	8153	0.062	0.008	0.054
##	8416	8416	0.096	0.042	0.054
##	9325	9325	0.078	0.024	0.054
##	2032		0.122	0.068	0.054
##	4275		0.074	0.020	0.054
##	4317		0.072	0.018	0.054
##	1295	1295	0.056	0.004	0.052
##	2611		0.100	0.048	0.052
	-			-	

```
## 2867 2867
                       0.064
                                       0.012 0.052
                                       0.012 0.052
## 3367 3367
                       0.064
## 4174 4174
                                       0.072 0.052
                       0.124
## 4732 4732
                                       0.016 0.052
                       0.068
## 8654 8654
                       0.064
                                       0.012 0.052
## 747
        747
                       0.060
                                       0.008 0.052
## 1352 1352
                       0.062
                                       0.010 0.052
                                       0.052 0.052
## 1485 1485
                       0.104
## 3564 3564
                       0.110
                                       0.058 0.052
## 3692 3692
                                       0.008 0.052
                       0.060
## 4101 4101
                       0.110
                                       0.058 0.052
## 4192 4192
                                       0.058 0.052
                        0.110
## 4206 4206
                       0.104
                                       0.052 0.052
```

```
# Q1, the median, and Q3 for the predicted uplift
summary_stats = quantile(upliftResult$uplift, probs = c(0.25, 0.5, 0.75))
print(summary_stats)
```

```
## 25% 50% 75%
## -0.036 -0.010 0.002
```

Since the median uplift is less than 0, this means the discount has an overall negative effect. Additionally the third quartile is 0.002 which is very close to 0. This means that if the discount isn't working it simply has no effect so we would be wasting resources.