安徽大学 2019 — 2020 学年第2 学期

《 离散数学 》考试试卷 (A卷)

(闭卷

时间 120 分钟)

考场登记表序号

题 号	_	11	111	四	五	总分
得 分						
阅卷人						

一、解答题(每小题10分,共20分)

得 分

1. 设集合 $S = \{a, b, c, d\}$, S 上的运算 "*" 由右边的运算表给出,回答下列问题:

(1) 代数 $\langle S, * \rangle$ 中,幺元和零元分别是哪个元素? (如不存在则写"不存在");

*	a	b	c	d
а	а	b	c	d
a b	b	а	d	c
c	а b с	d	b	a
d	d	c	a	b

- (2) 代数<S, *>中,每个元素的逆元分别是哪个元素?(如不存在则写"不存在");
- (3) 代数<S, *>中,运算"*"是否满足交换律?如果是,请说明理由,如果不是,请举出反例;
- (4) 代数<S, *>中, 是否存在等幂元素? 如果存在, 请指出。

- 2. 设 $f: N \times N \rightarrow N$, $f(\langle x, y \rangle) = x + y + 1$, 回答下列问题:
- (1) 指出 f 是否为单射、满射、双射。
- (2) 令 $A = \{ \langle x, y \rangle / x, y \in \mathbb{N}, f(\langle x, y \rangle) = 3 \}$, 用列举法写出 A 。
- (3) 令 $B = \{f(\langle x, y \rangle) | x, y \in \{1,2,3\}, x = y\}$,用列举法写出 B 。
- (4) 给出下列映射的结果:

超羧

B

늮

年级

- ①若 $C = \{<0,0>,<0,1>\}$, 写出 $f^{-1}(f(C))$ 的结果;
- ②若 $D = \{0,1,2\}$,写出 $f(f^{-1}(D))$ 的结果。

_	计角距	(伝小師	10 🛆	共30分)
<u> </u>	り昇咫	しず小殴	10%	ガラリカノ

得 分

1 计算命题公式 $(P \to Q) \land (P \to R)$ 的主析取范式和主合取范式(结果中的极大/小项必须编号)

- 2. 设集合 A={ a,b,c,d} 上关系 R={<a,b>,<b,a>,<b,c>,<c,d>}, 求解如下问题:
- (1) 写出 R 的关系矩阵;
- (2) 求出关系 R 的幂 R^0 , R^2 , R^3 , R^4 的关系矩阵;
- (3) 求出 R 的自反闭包 r(R) 、对称闭包 s(R) 、传递闭包 t(R) 的关系矩阵;
- (4) 求出 R 诱导的等价关系的关系矩阵, 并写出其所有等价类。

超羧

- 3. 有向图G如右图所示,试求:
- (1) 求G的邻接矩阵A。
- (2) 求出 $A^{(2)}$ 、 $A^{(3)}$ 和 $A^{(4)}$, $\nu_{_1}$ 到 $\nu_{_4}$ 长度为 1、2、3 和 4 的路径各有多少?

(4) 求出各强分图的顶点集。

三、证明题(每小题10分,共20分)

得分

1. 用推理规则证明:

前提 $\forall x(F(x) \rightarrow G(x) \land H(x)), \exists x(F(x) \land R(x))$

结论 $\exists x (F(x) \land R(x) \land G(x))$

2. 在布尔代数中,证明恒等式

 $(a \oplus b')*(b \oplus c')*(c \oplus a')=(a' \oplus b)*(b' \oplus c)*(c' \oplus a)$

四、综合分析题 (每小题 10 分, 共 20 分)

得分

- 1. 已知 $G = \{1, 2, 3, 4, 5, 6\}$, \times_7 为模 7 乘法, 求解如下问题:
- (1) 构造 < G,* > 的运算表;
- (2) 证明 < G, * > 是群;
- (3) < G, * > 是否为循环群?若是,请证明。
- (4) 写出群< G, *>的所有子群。

- 2. 对于集合 $S=\{a, b, c\}$, 求解如下问题:
- (1) $\rho(S)$ 表示 S 的幂集合, $\pi(S)$ 表示 S 所有划分构成的集合,分别写出集合 $\rho(S)$ 与 $\pi(S)$;
- (2) 分别画出偏序 $< \rho(S), \subseteq >$ 与 $< \pi(S), F >$ 的哈斯图 (F 表示细分);
- (3)分别基于偏序 $< \rho(S)$, $\subseteq >$ 与 $< \pi(S)$,F >,在下表中填入集合 $\rho(S)$ 与 $\pi(S)$ 的最大元素、极大元素、下界和最小上界;

集合	最大元素	极大元素	下界	最大下界
$\rho(S)$				
$\pi(S)$				

- (4) 判断偏序 $< \rho(S)$, $\subseteq >$ 与 $< \pi(S)$,F >是否为格?
- (5) 判断偏序 $< \rho(S), \subseteq >$ 与 $< \pi(S), F >$ 是否为布尔代数?如果是,请指出其所有子布尔代数的载体。

死/米

勿超

五、应用题(每小题 10 分, 共 10 分)

得分

如图给出的赋权图表示八个城市 v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 , v_8 及在城市间修建直接通讯线路的预测造价。试给出一个设计方案使得各城市间能够通讯且总造价最小(要求给出详细的算法过程),计算出最小总造价,并画出设计的通讯网络。

