Dominika Dolik, 235853

Prowadzący: dr inż. Dariusz Banasiak

Termin: środa, 17:25

Projektowanie Efektywnych Algorytmów Zadanie projektowe nr 2 Rozwiązanie problemu komiwojażera przy użyciu metody symulowanego wyżarzania

Wstęp teoretyczny

Algorytmy metaheurystyczne służą do rozwiązywania problemów optymalizacyjnych, bazują na analogiach do procesów ze świata rzeczywistego. Prowadzą do uzyskania wyników bliskich (lub równych) wynikom optymalnym.

Algorytm symulowanego wyżarzania nawiązuje do zjawiska fizycznego, polegającego na nagrzaniu materiału do określonej temperatury, wytrzymaniu przy tej temperaturze oraz ponownym studzeniu. Celem takiej obróbki w metalurgii jest przybliżenie stanu materiału do warunków równowagi termodynamicznej w stosunku do stanu wyjściowego oraz osiągnięcie pożądanych cech (np. twardości).

Różnicą między symulowanym wyżarzaniem a pierwotnymi metodami iteracyjnymi jest możliwość w wyboru przez niego gorszego rozwiązania. Wybór taki jest dokonywany z pewnym prawdopodobieństwem. Dzięki temu algorytm symulowanego wyżarzania może w określonych warunkach wyjść ze znalezionego minimum lokalnego i dalej podążać w kierunku rozwiązania optymalnego.

Parametrem, który ma wpływ na to prawdopodobieństwo, jest temperatura. Im wyższa, tym prawdopodobieństwo wyboru gorszego rozwiązania jest większe. Wraz z kolejnymi iteracjami temperatura spada i wybierane są częściej rozwiązania lepsze. Pod koniec pracy algorytmu temperatura jest na tyle niska, że prawdopodobieństwo wyboru gorszego rozwiązania jest bliskie zeru.

Opis algorytmu dla problemu TSP w krokach

- 1. Wybór rozwiązania początkowego R i obliczenie wartości ścieżki początkowej W
- 2. Dopóki T_A > T_{K:}
 - 2.1. Dopóki i < limit iteracji:
 - 2.1.1. Stworzenie nowego rozwiązania R_T przez zamianę dwóch losowych elementów w R
 - 2.1.2. Obliczenie wartości ścieżki dla nowego rozwiązania W_T
 - 2.1.3. Jeśli $W_T < W$ lub prawdopodobieństwo > random() to $W = W_T$, $R = R_T$
 - 2.2.Obniżenie temperatury

Implementacja algorytmu

Implementacja algorytmu powstała w środowisku Microsoft Visual Studio w języku C++.

Do opisu algorytmu została utworzona klasa SimulatedAnnealing, która w konstruktorze przyjmuje rozmiar wczytanej instancji jako parametr. Wczytywanie grafu odbywa się za pomocą klasy Reader. Na tej podstawie tworzone są dwie tablice zawierające kolejne wierzchołki grafu (permutowana ścieżka i przechowująca najlepsze rozwiązanie), co jest też rozważane jako początkowa ścieżka.

Metoda execute() jest metodą główną klasy i to ona odpowiada za przebieg algorytmu. Wywołuje w czasie działania inne zaimplementowane metody, odpowiadające za wyliczanie aktualnych wartości parametrów. Są to: acceptanceProb() – obliczająca prawdopodobieństwo akceptacji gorszego rozwiązania, sumCosts() – obliczająca wartość ścieżki. RandomSwap()

odpowiada za zamianę kolejności dwóch losowych wierzchołków. Pozostałe metody copyArray() i printResult() odpowiadają kolejno za kopiowanie wartości z jednej tablicy do drugiej oraz wydrukowanie wyniku na ekran.

Wartości parametrów charakterystycznych dla algorytmu (temperatura, współczynnik studzenia α) są podane bezpośrednio w kodzie. Największym problemem przy implementacji tej metody, było odpowiednie ich dobranie.

Dane testowe

Do testów użyto gotowych plików tekstowych, zawierających liczbę wierzchołków grafu i macierz z wartościami odległości między wierzchołkami. Dane pochodzą ze strony uniwersytetu w Heidelbergu. Pomiary zostały wykonane na siedmiu rozmiarów instancji (n = 6, 17, 33, 47, 64, 70, 170). Każda instancja ma wyznaczone optymalne rozwiązanie, co umożliwiło ocenę jakości rozwiązań proponowanych przez program. Parametry (temperatura początkowa, temperatura końcowa, współczynnik studzenia α) zostały wyznaczone metodą "prób i błędów". Do testów zostały wykorzystane następujące wartości:

temperatura pocz	ątkowa	temperatura końcowa	współczynnik studzenia α
10000.0		0.0001	$\alpha \in \{ 0.99, 0.999, 0.9999 \}$

Do weryfikacji odchyleń rozwiązań zwróconych przez program od rzeczywistej wartości wyliczono procentowy błąd korzystając ze wzoru:

$$B = \frac{(DrogaWyliczona - DrogaOptymalna)}{DrogaOptymalna} * 100$$

Dla każdej wielkości parametru alfa testy zostały przeprowadzone 10 razy, a wyniki uśrednione.

Wyniki pomiarów

n = 6 (tsp_6_2.txt), rozwiązanie optymalne: 80

α	0,99	0,999	0,9999	
	wynik			
	80 80 80			
	czas [s]			
	0,008 0,086 0,901			
	błąd [%]			
	0	0	0	

Wykres zależności błędów od wielkości parametru α został pominięty.

n = 17 (gr17.txt), rozwiązanie optymalne: 2085

α	0.99	0.999	0.9999	
	wynik			
	2853 2519 2495			
	czas [s]			
	0,04 0,6 4,			
	błąd [%]			
	36	20	19	

n = 33 (ftv33.txt), rozwiązanie optymalne: 1286

α	0,99	0,999	0,9999	
	wynik			
	2878 2754 2745			
	czas [s]			
	0,3 3,3 49,6			
	błąd [%]			
	123	114	113	

n = 47 (ftv47.txt), rozwiązanie optymalne: 1776

α	0.99	0.999	0.9999	
	wynik			
	4749 4723 4620			
	czas [s]			
	0,6 4,8 57			
	błąd [%]			
	167	165	160	

n = 64 (ftv64.txt), rozwiązanie optymalne: 1839

α	0.99	0.999	0.9999	
	wynik			
	6460 6374 6334			
	czas [s]			
	1,1	10,5	129,3	
	błąd [%]			
	251	246	244	

n = 70 (ftv70.txt), rozwiązanie optymalne: 1950

α	0.99	0.999	0.9999	
	wynik			
	7433 7246 7015			
	czas [s]			
	0,9 13,8 133,9			
	błąd [%]			
	281	271	259	

n = 170 (ftv170.txt), rozwiązanie optymalne: 2755

α	0.99	0.999	0.9999	
	wynik			
	22453 21452 21326			
	czas [s]			
	15,8	176,7	1865	
	błąd [%]			
	715	678	674	

Wnioski

- Na podstawie wykresów można zaobserwować, że czas obliczeń zwiększa się wykładniczo w funkcji temperatury chłodzenia. Algorytm wykonuje się dłużej, im wyższe są obie wartości. Wraz ze wzrostem czasu działania algorytmu, odpowiedzi zbliżają się coraz bardziej do wyników optymalnych. Im większą wartość ma współczynnik chłodzenia, tym uzyskiwany wynik jest bliższy optymalnemu.
- Algorytm symulowanego wyżarzania umożliwia znalezienie w krótkim czasie rozwiązania tworzącego cykl Hamiltona. Nie daje jednak gwarancji, że odnaleziona ścieżka będzie rozwiązaniem optymalnym.
- Zawyżone wartości błędu dla poszczególnych instancji użytych do testów mogą wynikać z tego, że wciąż przyjęto za małą wartość parametru α. Można dojść zatem do wniosku, że ustawianie parametrów metodą prób i błędów jest żmudne i nieefektywne istnieje dużo możliwości ustawienia liczby z przedziału od 0 do 1 i nadal ciężko stwierdzić ile jeszcze trzeba zmienić parametr aby zbliżyć się do optimum.

Źródła

- http://155.158.112.25/~algorytmyewolucyjne/materialy/algorytm_symulowanego_wy zarzania.pdf
- https://pl.wikipedia.org/wiki/Symulowane wyżarzanie