COMP9334 ASS1

Z5141180 YIZHENG YING

Comp 9334	Assignment z5141180
	Yizheng Ying
Question 1.	0 0
(a).	
Se	vice demand of a job at the device j is the total service time
169	of that job. As we know the demand law:
	$(D(j) = V(j)S(j)$ $V(j) = \frac{\times (j)}{\times (0)}$ in which $V(j)$ is the visit ratio.
Sci) is the service time
X	i) is the output of device i -> Drin- V(i)
	j) is the output of device $j \Rightarrow D(j) = \frac{U(j)}{X(0)}$, $X(0)$ is the output of CP we can get $V(j) = \frac{U(j)}{X(0)}$ $V(j) = \frac{B(j)}{C(0)}$ $V(j) = \frac{B(j)}{C(0)}$
50	we can get + Uin = Bis
	$(x(0) - \overline{C(0)}) \rightarrow (1) - \overline{C(0)}$
	7(0) = 7
Bcj) = 25655, c(0) = Number of requests completed.
	50 c(0)=676 jobs
	$D(cpv) = D(0) = \frac{B(0)}{C(0)} = \frac{4729}{676} \approx 6.996$ seconds
	$D(disk) = D(j) = \frac{B(j)}{C(0)} = \frac{2565}{676} \approx 3.794 \text{ seconds}.$
,1 >	الرام المرام
(b)	Yes, it is possible. If cpu is bottleneck, ! If disk is bottleneck.
	11 COUN - SCOULLY YOU 1// 1/2 - SCIENCE
	$V(cpv) = S(CPv) \cdot X(o)$ $V(disk) = S(disk) X(o)$ $M = \frac{1}{5} = \frac{676}{47729}$ $S(disk) = \frac{676}{2565}$
S	$\chi(0) = \frac{1}{5}$ where $\chi(0) = \frac{1}{5}$ is possible to determine the bottleneck
	, it is possible w decermine the breaking
(C)	the bottleneck analysis is
	$(0) \leq \min \left[\frac{N}{\max D_i'}, \frac{1}{\sum_{i=1}^{k} D_i + T} \right]$
	<u> </u>
	the maxp; is $\overline{D(CPU)} = \overline{6.996} \approx 0.143 \text{ jobs/s}$
	N 30 ~ 718 ighs/
	21:17:+7 - 6.996+3.794+31 ~ 0.110 Jose/5
	$\frac{N}{\Sigma_{i=1}^{1}D_{i}+T} = \frac{30}{6.996+3.794+31} \approx 0.718 \text{ jobs/s}$ So the asymptotic bound will be 0.143 jobs/s .

(d),	ninimum response time
	$M = X_0(R+z)$
	$S_0 R = \frac{M}{X(0)} - \frac{30}{0.143} - \frac{31}{2} \approx 178.85$
	X(0) — 0.143 ·
Q ₍₂₎	
(2)	a) This is a system with two $M/M/I$ $\lambda = 20, M_1 = 10, M_2 = 15$
	X=20, M1=10, M2=15
	$ \frac{V_1 = \frac{\lambda_1}{M_1} = \frac{\lambda_1^2}{M_1}}{V_2 = \frac{\lambda_2^2}{M_2}} = \frac{\lambda(1-p)}{M_2} \implies V_1 = V_2 $
	$V_1 = V_2$
	$V_2 = \frac{\Lambda_2}{M_2} = \frac{\Lambda_2}{M_2}$
	, , , , , , , , , , , , , , , , , , , ,
	$\frac{20P}{10} = \frac{20(1-P)}{15} \Rightarrow P = 0.4$
(b	$T = \frac{\rho}{\lambda(1-\rho)} = \frac{1}{\lambda(1-\rho)}$, $\rho = \frac{\lambda}{\lambda}$
	$T_1 = \overline{\mu_1 - \lambda_1} = 10 - 20 \times 0.4 = \frac{1}{2} $
	- <u> </u>
	$T_2 = \frac{1}{M_2 - \lambda_2} = \frac{1}{15 - 20 \times 66} = \frac{1}{3} S$
	Tmean = 0.4T, + 0.6T, = 0.45
	So the mean response time is 0.45
(C)	
100	We can get that $R = P \cdot \frac{1}{M_1(1-P_1)} + (1-P) \cdot \frac{1}{M_2(1-P_2)}$
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	$= P \cdot \frac{1}{10(1-\frac{20P}{10})} + (1-P) \frac{1}{15(1-\frac{20(1-P)}{15})}$
	S 1- 20p >0
	1-20(1-p) >0 0.25 <p<0.5.< td=""></p<0.5.<>
	15
5	o I write a python program 926.P4 with a for loop increase by pool and
	From the program I get that when P=0.388 the small
	o I write a python program 920.Py with a for loop increase by 0.001 each From the program I get that when P=0.388, the small mean response time is 0.3955.
	13 5 7 9 5

Q 3 入=600 for team leader MI= 60, for trainee Mt= 10 diagram as follow: can get the 0,0,0 4,1,1 (b) 150.P(0,0,0) - 90.P(1,0,1) + ONP(2,1,1) + 0.P(3,1,1) + 0.P(4,1,1) - 60.P(1,1,0) = 0 $-\frac{1}{150}P(0,0,0)+\frac{29}{1800}P(1,0,1)-\frac{1}{60}P(2,1,1)+0.P(3,1,1)+0.P(4,1,1)+0.P(1,1,0)=0$ $0.P(0,0,0) = \frac{1}{200}P(1,0,1) + \frac{1}{225}P(2,1,1) = \frac{1}{36}P(3,1,1) + 0.P(4,1,1) = \frac{1}{200}P(1,1,0) = 0$ $0.P(0,0.0) + 0.P(1.0,1) - \frac{1}{300}P(2.1.1) + \frac{1}{225}P(3.1.1) - \frac{1}{36}P(4.1.1) + 0.P(1.1.0) = 0$ 0.P(0,0,0)+0.P(1,0,1)+0.P(2.1,1) +- to P(3,1.1)+ 36 P(4,1,1)+0.P(1,1,0)=0 0.P(0,0,0) +0.P(1,0,1) 1-q0P(2,1,1) +0.P(3,1,1) +0.P(4,1,1)+13 P(1,1,0)=0 (C) with the python go program 93 C.P. I get probability P(0,0,0)=X, P(1,0,1)=4, P(2,1,1)=Z In the program. I set P(3,1,1)=m, P(4,1,1)=n, P(1,1,0)=0 N=a, Mi=b and Mt=C p(0,0,0) \$ 0.5918 P(1,0,1) \times 0.3081 P(2,1,1) = 0.0611 P(3,1,1) \approx 0.0073 P(1,1,0) \$ 0.0313 P(4,1,1) & 0.0004 (d) The probability of at least three machines are available are. P(0,0,0), P(1,1,0) and P(1,0.1) So P(0,0,0) +P(1,1,0) +P(1,0,1) ≈ 0.9312 (e) Navg=0.P(0,0,0)+1xP(1,0,1)+P(1,1,0)+2.P(2,1,1)+3P(3,1,1)+4P(4,1,1)=0.485] so mean number of failed machines is 0.485 (f) Ravg = Navg, we already know Navg, so we just need x $X = 4\lambda \int_{[0,0,0]} (0,0,1) + 3\lambda \int_{[0,1]} (1,0,1) + 3\lambda \int_{[0,1]} (1,1,0) + 2\lambda \int_{[0,1]} (2,1,1) + 2\lambda \int_{[0,1]} (3,1,1) + 0 \int_{[0,1]} (4,1,1) \approx 0.0059$ So Ravg = $\frac{0.4851}{0.0059} \approx 82.2203 \text{ s}$.