

Semi-supervised Vocabulary-informed Learning

Yanwei Fu*

Leonid Sigal

* School of Data Science, Fudan University

Problem Definition

Semantic labels Visual feature space x_1 airplane car unicycle tricycle

 x_2

Learning

Semantic labels Visual feature space

airplane car

unicycle tricycle

Learning

Semantic labels

Visual feature space

Inference

Semantic labels

Visual feature space

Zero-shot Learning

Problem Definition

Semantic labels

Visual feature space

 $x_1 +$

We do not have any visually labeled instances of what these look like

bicycle

truck

Zero-shot Learning

Zero-shot Learning Inference f(x)Semantic label space Visual feature space x_1 v_1 unicycle bicycle Word vector-feature v_2 category mapping: v = f(x)truck v_3

Key Question: How do we define semantic space?

 x_2

Semantic Label Vector Spaces

Spaces	Type	Advantages	Disadvantages
Semantic Attributes	Supervised	Good interpretability of each dimension: airplane := fixed_wing, propelled, has_pilot	Manual annotation Limited vocabulary
Semantic Word Vectors (e.g. word2vec)	Unsupervised	Good vector representation for millions of vocabulary $v\left(\text{Berlin}\right)-v\left(\text{Germany}\right)=v\left(\text{Paris}\right)-v\left(\text{France}\right)$	Limited interpretability of each dimension

Zero-shot Learning

Open-set Recognition

Summary:

Supervised Learning: [Fei-Fei et al. TPAMI'06], [Deng et al. ECCV'14], [Torralba et al. TPAMI'08], [Weston et al. IJCAI'11]

Pros: Very good quantitative performance

Cons: Relatively small vocabulary (~1,000 classes)

Requires *manual labeling* of all the data

Zero-shot Learning: [Palatucci et al. NIPS'09], [Lampert et al. CVPR'09], [Farhadi et al. CVPR'09], [Rohrbach et al. CVPR'10]

Pros: Does not require instance labeling for target classes

Cons: Typically limited to recognition with target classes only

Relatively *small vocabulary* (~50-200 classes typically)

Open-set Learning: [Scheirer et al. TPAMI'13], [Sattar et al. CVPR'15], [Bendale et al. CVPR'15] [Guadarrama et al. RSS'14]

Pros: Does not require instance labeling for target classes

Large vocabulary (up to 310K classes)

Key Question: Can this large vocabulary be actually useful for recognition?

Vocabulary-Informed Recognition

Vocabulary-Informed Recognition

Vocabulary-Informed Recognition

Formulation

Semi-Supervised Vocabulary-Informed Learning (SS-Voc)

Regression term

$$\sum \mathcal{L}_{\epsilon}(f(\mathbf{s},W),\mathbf{u}_{\mathrm{airplane}})$$

Semi-Supervised Vocabulary-Informed Learning (SS-Voc)

Semi-Supervised Vocabulary-Informed Learning (SS-Voc)

Final full objective

$$\sum \mathcal{L}_{\epsilon}(f(\mathbf{w}, W), \mathbf{u}_{\text{airplane}} \mathbf{V}) + \sum \left[C - \frac{1}{2}\mathcal{L}_{\epsilon}(f(\mathbf{w}), \mathbf{u}_{\text{airplane}} \mathbf{V}) + \frac{1}{2}\mathcal{L}_{\epsilon}(f(\mathbf{w}), \mathbf{u}_{\text{helicopter}} \mathbf{V})\right]$$

Regression Term

Word-vector st Max-margin Term mation

Advantages of the Approach

- A new paradigm for learning informed by very large vocabulary
- A unified framework for supervised, zero-shot learning
- Competitive quantitative performance
- Our framework can even scale up to open set image recognition with 310,000 vocabulary entities

Evaluation

Datasets

Animals with Attributes(AwA) [Lampert et al. CVPR 2009]:

40 auxiliary classes (24295 images), 10 target classes (6180 images); We use 5 instances per auxiliary class for learning;

ImageNet 2012/2010 [Deng et al. CVPR 2009]:

1000 auxiliary classes (from ImageNet 2012); 360 target classes (from ImageNet 2010). We use 3 instance per auxiliary class for learning;

Recognition Tasks

Avv A /Imaga Not	No. Testing Classes			No. Testing Words		
AwA/ImageNet	Auxiliary	Target	Total	Vocabulary	Chance(%)	
SUPERVISED			40/1000	40/1000	2.5/0.1	
ZERO-SHOT			10/360	10/360	10/0.28	
OPEN-SET			50/1360	310K/310K	3.2E-04	

The tasks are only separated in evaluation;

We train one unified SS-Voc model for all the settings

Baselines

SUPERVISED LEARNING

SVM: Input Features —> Semantic Labels
SVR-Map:Input Features —> Semantic Word Vectors

One-shot Learning: Bart et al. CVPR 2005; Fei-Fei et al. TPAMI 2006; Mensink et al. ECCV 2012; Fu et al. TPAMI 2013;

Baselines

SUPERVISED LEARNING SVM: Input Features —> Semantic Labels
SVR-Map:Input Features —> Semantic Word Vectors

ZERO-SHOT LEARNING

DAP/IAP, DeViSE, ConSE, AMP, PST, HEX, TMV-BLP

DAP/IAP(Lampert *et al.* TPAMI 2013); DeViSE(Frome *et al.* NIPS 2013); ConSE(Norouzi *et al.* ICLR 2014); AMP(Fu et al. CVPR 2015), PST(Rohrbach et al. NIPS 2013).

Baselines

Schemer et al. TPAMI 2013, TPAMI 2014; Sattar et al. CVPR 2015; Bendale et al. CVPR 2015;

Variants of Our Model

SS-Voc(W,V):

$$\sum \mathcal{L}_{\epsilon}(f(\mathbf{w}, W), \mathbf{u}_{\text{airplane}}V) + \sum \left[C - \frac{1}{2}\mathcal{L}_{\epsilon}(f(\mathbf{w}), \mathbf{u}_{\text{airplane}}V) + \frac{1}{2}\mathcal{L}_{\epsilon}(f(\mathbf{w}), \mathbf{u}_{\text{helicopter}}V)\right]$$
Word-vector space global transformation

Regression Term

Max-margin Term

SS-Voc(W):

$$\sum \mathcal{L}_{\epsilon}(f(\mathbf{w}, W), \mathbf{u}_{\text{airplane}}) + \sum [C - \frac{1}{2}\mathcal{L}_{\epsilon}(f(\mathbf{w}), \mathbf{u}_{\text{airplane}}) + \frac{1}{2}\mathcal{L}_{\epsilon}(f(\mathbf{w}), \mathbf{u}_{\text{helicopter}})]$$

Regression Term

Max-margin Term

SVR-Map:
$$\sum \mathcal{L}_{\epsilon}(f(\mathbf{w}W) \mathbf{u}_{airplane})$$

Regression Term

t-SNE Visualization of AwA 10 Testing Classes

SS-Voc: **persian_cat,** siamese_cat, hamster, weasel, rabbit, monkey, zebra, owl, anthropomorphized, cat

SVR-Map: hamster, squirrel, rabbit, raccoon, kitten, siamese_cat, stuffed_toy, persian_cat, ladybug, puppy

Semi-Supervised Vocabulary-informed Learning (SS-Voc)

Support Vector Regression (SVR)

Supervised Results

AwA dataset

Method	Accuracy		
SS-Voc (W,V)	59.1		
SS-Voc (W)	58.6		
SVM	52.1		
SVR-Map	57.1		

ImageNet dataset

Method	Accuracy	
SS-Voc (W,V)	37.1	
SS-Voc (W)	36.3	
SVM	33.8	
SVR-Map	25.6	

Zero-shot Results—AwA dataset

0.82%

3.3% Method	Features	Accuracy
SS-Voc: full instances	CNN _{OverFeat}	78.3
800 instances (20 inst*40 class);	CNN _{OverFeat}	74.4
200 instances (5 inst*40 class);	CNNoverFeat	68.9
Akata et al. CVPR 2015	CNNGoogLeNet	73.9
TMV-BLP (Fu et al. ECCV 2014)	CNNoverFeat	69.9
AMP (SR+SE) (Fu et al. CVPR 2015)	CNN _{OverFeat}	66.0
DAP (Lampert et al. TPAMI 2013)	CNNvgg19	57.5
PST (Rohrbach et al. NIPS 2013)	CNNoverFeat	53.2
DS (Rohrbach et al. CVPR 2010)	CNN _{OverFeat}	52.7
IAP (Lampert et al. TPAMI 2013)	CNN _{OverFeat}	44.5
HEX (Deng et al. ECCV 2014)	CNN _{DECAF}	44.2

Zero-shot Results—ImageNet

Method	Features	T-1 Accuracy (full instances)	T-5 Accuracy (full instances)	T-1 Accuracy (3000 instances)	T-5 Accuracy (3000 instances)
SS-Voc	CNNvgg-19	9.5	16.8	8.9	14.9
ConSE	CNNvgg-19	7.8	15.5	5.5	13.1
DeViSE	CNNvgg-19	5.2	12.8	3.7	11.8
AMP	CNNvgg-19	6.1	13.1	3.5	10.5

Open-Set Image Recognition — AwA dataset

Δ Δ	Testing Classes				
AwA	Auxiliary	Target	Total	Vocabulary	
OPEN-SET $_{1K-NN}$	(LEFT)		40/10	1000*	
OPEN-SET $_{1K-RND}$		(RIGHT)	40/10	1000	
OPEN-SET $_{310K}$			40/10	310K	

\textsc{\small Open-Set}\$_{1K-NN}\$

OPEN-SET $_{1K-NN}$	1000 candidate labels (of 310K labels) sampled from nearest neighbor set of ground-truth class prototypes
Open-Set $_{1K-RND}$	1000 candidate labels randomly sampled from 310K vocabulary set.
Open-Set $_{310K}$	the large vocabulary of approximately 310K entities

Open-Set Image Recognition — AwA dataset

A A	Testing Classes				
AwA	Auxiliary	Target	Total	Vocabulary	
OPEN-SET $_{1K-NN}$			40/10	1000*	
OPEN-SET $_{1K-RND}$	(LEFT)	(RIGHT)	40/10 1000	1000	
OPEN-SET $_{310K}$	\		40/10	310K	

\textsc{\small Open-Set}\$_{1K-NN}\$

Take-home

- 1. A new learning paradigm vocabulary-informed learning
- 2. A unified semantic embedding framework for supervised, zero-shot and open-set image recognition

