Лекция 6:

С. Первый замечательный предел

Dokamen, mo lim Sinx = 1.

Пусть угол $0 < x < \frac{\pi}{2}$. Рассиотрим сектора 4 ADB, 4 DOC и треугольник 4 ADB. Die

площадей этих объектов справедливо неравенетво:

SADOC < SLADB < SKADB. Учен самым имем

 $\frac{1}{2} \left(\text{losz} \left(x \text{loszc} \right) < \frac{1}{2} \text{ Sin} x < \frac{1}{2} x$. $0 \text{mayga} \quad \text{gesenses na } \frac{1}{2} x \quad \text{nosyness, zmo los} x < \frac{\text{Sin} x}{x} < 1 \quad \text{nps} \quad 0 < x < \frac{\pi}{2}$. Госкольку все функции, угаствующие в этом неравенстве, гвляются remnoun, mo

 $\log^2 x < \frac{\sin x}{x} < 1$ npu $0 < |x| < \frac{\pi}{2}$. (1)

Из перавенства (1) вытекает, гто

 $|Sinz| \le |x|$ gua $bcex x \in |R|$

Госкольну |Sinx| ≤ 1, $a |x| ≥ \frac{\pi}{2} > 1$. Равенство возможно тольно в теке x=0.

Frak ROK $0 \le |S_{1} \times |S_{2}| \le |x|$ u $\lim_{x \to 0} |x| = 0$, mo no meopene 2 rekyun VJakALOZARU, 2000 lim [Sinx] = 0 zmo paluocursto lim Sinx = 0

Dia $0 < |x| < \frac{\pi}{2}$ us (1) barrencem oyerka

1- Sin'x < Sinx < 1.

Заметим, гто lim $(1-\sin^2 x)=1-\left(\lim_{x\to 0}\sin x\right)\left(\lim_{x\to 0}\sin x\right)=1-0.0=1$. Поэтому по теорене 2 лекуни V полугаем, гто

 $\lim_{x\to 0} \frac{\sin x}{x} = 1.$

6.1) Kpumepuñ Kouw

Определение 1: Колебанием функции f:X
ightharpoonup R на мижестве $E \subset R$ mazn basmas besuzuna $\omega(f,E) := \sup_{x_1,x_2\in E} |f(x_1) - f(x_2)|.$

 $\omega(x; [-1;1]) = 2, \quad \omega(x, (-1;1)) = 2, \quad \omega(x^2; [-1;3]) = 9,$ Ppuner 1: ω(sgnx; [0;3])=1, ω(sgnz; (0;3])=0.

Теорема 1: Густь тогка x_0 - предельная для области определения X сручниции f. Глогда срушкумя f имеет предел в тогле $x_0 \Leftrightarrow Korga$ $\forall E>0$ \exists окрестност $u(x_0)$ такая, $z \to \omega(f; u(x_0) \land X) < E$

Josmony gas NOONS $x_1, x_2 \in \mathcal{U}(z_0) \cap X$ barousemes $|f(x_1) - f(x_2)| = |f(x_1) - A| + (A - f(x_2))| \le |f(x_1) - A| + |f(x_2) - A| < \frac{2}{3} \xi_2$ a, znariem, $u \quad \omega(f; \mathcal{U}(x_0) \cap X) \le \frac{2}{3} < \varepsilon$.

© Diz $\ell=1$ $\exists \mathring{\mathcal{U}}_1(x_0)$ makaz, z_{m0} $\omega(f; \mathring{\mathcal{U}}_1(z_0) \wedge X) < 1;$ giz $\xi=\frac{1}{2}$ $\exists \mathring{\mathcal{U}}_2(x_0)$ makaz, z_{m0} $\omega(f; \mathring{\mathcal{U}}_2(z_0) \wedge X) < 1\mathring{\mathcal{U}}_i$

Early $x \in \mathcal{U}_n(x_0) \cap \mathcal{U}_m(x_0) \cap \mathcal{X}, mo |f(x_n) - f(x_m)| =$

(3) = $|f(x_n) - f(x)| + (f(x) - f(x_m))| \le |f(x_n) - f(x)| + |f(x) - f(x_m)| \le \frac{1}{n} + \frac{1}{m}$. From one no chegobarent nocité $\{f(x_n)\}_{n=1}^\infty$ shietemes programent authori, a zureme no komme pure Komme gue nocingobarent nocité $\lim_{n\to\infty} f(x_n) = A$ the Repeace $f(x_n) = A$ the shift $f(x_n) = A$ to the shift $f(x_n) = A$ the shift $f(x_n) = A$ to the shift $f(x_n) = A$ the shift $f(x_n$

 $\begin{array}{l} |f(x_n) - A| \leq \frac{1}{h}, \\ |f(x) - A| \leq \frac{1}{h}, \\ |f(x) - A| = |(f(x) - f(x_n)) + (f(x_n) - A)| \leq |f(x) - f(x_n)| + |f(x_n) - A| < \frac{1}{h} + \frac{1}{h} \leq \varepsilon, \end{array}$

Takun oбразом, lim f(x) = A.

6.3 Предел композиции функций

Пуст $f: X \to \mathbb{R}$, $g: Y \to \mathbb{R}$, m.z. $\mathcal{E}(f) \subset X$. Тогда определена рушкумя $g \circ f: X \to \mathbb{R}$, $(g \circ f)(x) := g(f(x))$, которая наупвается композицией функумый f и g или спотной рушкумый.

Теорема 2: (о пределе композицим функций): $\iint_{Y \subset Tb} g: Y \to \mathbb{R}$, тогка у предельная для V и ещирествует $V_{y-y_0} = V_y =$

(ж и у почт быт и бесконегно удалениями тогками)

Aоказательство: Композиция до $f: X \to \mathbb{R}$ определена, т.к. $\mathcal{E}(f) \subset Y$. Пусть lim g(y) = A. Яго определению продола gra riodos oppectivosmu V(A) naugemas $\mathcal{U}_{y}(y_{0})$, m.z. $g(\mathcal{U}_{y}|y_{0})\subset V(A)$ (m.e. giz $y \in \mathcal{U}_{\gamma}(y_0)$ znazenus $g(y) \in V(A)$). По условию gre ly (%) rangemes lx(x), m.z. f(lx(x))< ly(%) $(g \circ f)(\mathcal{U}_X(x_0)) := g(f(\mathcal{U}_X(x_0)) - g(\mathcal{U}_Y(y_0)) - V(A).$ Omeyga, caequem, uno lim $(g \circ f)(x) = A$. Πρимер 2: Hangen lim $\frac{\sin 2x}{2x}$. Зададии $g(y) = \frac{\sin y}{y}$, $Y = \mathbb{R} \setminus \{0\}$ и f(x) = 2x, $X = \mathbb{R}$. Мог уте знаги, гто у зто в (первый запегательный предел) Ягогому, гтобы воспользоваться терреной г. пунно показай, гто gue bervoi rporovotoù orpeanucemu $\hat{U}_{y}(0)$ raugance $\hat{U}_{x}(0)$, m.z. $f(\hat{U}_{x}(0)) < \hat{U}_{y}(0)$ $\lim_{x\to 0} \frac{\sin 2x}{2x} = \lim_{y\to 0} \frac{\sin y}{y} = 0.$ Пример 3: Рассиотрии g(y) = |sgn(y)|, дле которой $\lim_{y \to 0} g(y) = 1$, и функцию $\lim_{y \to 0} g(x) = x \sin \frac{1}{x}$, определениую на $X = \mathbb{R} \setminus \{0\}$, дле komepoù lim f(x) = 0Однано функция $(g \circ f)(x) = \left| \operatorname{sgn}(x \operatorname{Sin} \frac{1}{x}) \right|$ не инег предля при $x \to 0$, m. x при $x_n' = \frac{1}{7n}$ последовательность $(g \circ f)(x_n') = 0$ $\underset{n \to \infty}{\longrightarrow} 0$, а при $x_n'' = \frac{1}{7+2n}$ noccegobamersnocms $(g \circ f)(x_n^n) = 1 \xrightarrow{n \to \infty} 1$ There 4: Dokamer, and $\lim_{x\to\infty} (1+\frac{1}{x})^x = e$. Ny cro V=N $\mathcal{U}_{V}(\infty)=\{n\in N: n>N\}$ $X=\{x\in R: x>0\}$ $\mathcal{U}_{X}(+\infty)=\{x\in R: x>R\}$ $2ge\ N\in N\ u\ R>0$. Ny orno $f:X\to V$, $m.z.\ f(z)=[x]$, $zge\ [x]$ - $yee ax\ za=x$ x. Des Scanori My (00) = {n > N} nomeno marine PX (+00) = {2 > N+1} eo chonicibou, zono que $x \in \{x>N+1\}$ yeras zacz $[x] \in \{n>N\}$. Paccuompun $g(n) = (1 + \frac{1}{n})^n$, $g_1(n) = (1 + \frac{1}{n+1})^n$ in $g_2(n) = (1 + \frac{1}{n})^n$, comopne unesom cloud spegered sym $n \to \infty$ rucio e. Torge no teoprese 2 $(g \circ f)(x) = (1 + \frac{1}{(x)})^{[2]}$ $(g_* \circ f)(x) = (1 + \frac{1}{(x)})^{[2]}$, $(g_* \circ f)(x) = (1 + \frac{1}{(x)})^{[2]+1}$ compensance spu $x \to +\infty$ k ruciy e. Banemuse, 2mo npu 221 $\left(1+\frac{1}{[x]H}\right)^{[x]} < \left(1+\frac{1}{x}\right)^{x} < \left(1+\frac{1}{[x]}\right)^{[x]+1}$ normany lim $(1+\frac{1}{x})^x = \ell$. Dare $\lim_{t \to -\infty} (1+\frac{1}{x})^x = \lim_{t \to +\infty} (1-\frac{1}{t})^x = \lim_{t \to +\infty} (1+\frac{1}{t-1})^x = \lim_{t \to +\infty$ $= \lim_{t \to +\infty} \left(1 + \frac{1}{t-t}\right)^{t-1} \lim_{t \to +\infty} \left(1 + \frac{1}{t-t}\right) = \lim_{t \to +\infty} \left(1 + \frac{1}{t-t}\right)^{t-1} = \lim_{t \to +\infty} \left(1 + \frac{1}{t}\right)^{t} = e$

Demandes morror gamemums, zmo us $\lim_{x\to+\infty} (1+\frac{1}{x})^x = e$ u $\lim_{x\to-\infty} (1+\frac{1}{x})^x = e$

 $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = \ell.$

B carry $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$, gre $\forall \varepsilon > 0$ $\exists S_+ > 0$ $\forall x \left(x>S_+\right) \Rightarrow \left|\left(1+\frac{1}{x}\right)^x - e\right| < \varepsilon$, a ε carry $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$, gre $\forall \varepsilon > 0$ $\exists S_- > 0$ $\forall x \left(x<S_-\right) \Rightarrow \left|\left(1+\frac{1}{x}\right)^x - e\right| < \varepsilon$. To $z = \infty$ gre $\forall \varepsilon > 0$ rate $|x| > S = \max\{|S_-|, |S_+|\}$ by great unitary, $z = \infty$ $\left|\left(1+\frac{1}{x}\right)^x - e\right| < \varepsilon$.

 J_{10} определению это и однагает, это $\lim_{z\to\infty}\left(1+\frac{1}{z}\right)^z=e$.