2018—2019 学年第1学期《数学分析I》第1次摸底考试

2018年10月22日

总分	 	三	四	五.	六	七

得 分 一、(共10 分) 判断题

- (1) 若存在正整数 N, 对任给的 $\varepsilon > 0$, 当 n > N 时, 有 $|x_n A| < \varepsilon$, 则数列 $\{x_n\}$ 以 A 为极限;
- (2) 设 $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$, 若 A = B, 由数列极限的唯一性可知 $\{x_n\}$ 和 $\{y_n\}$ 为同一数列;
- (3) 若数列 $\{x_n\}$ 的奇数列 $\{x_{2k-1}\}$ 和偶数列 $\{x_{2k}\}$ 及数列 $\{x_{7k}\}$ 都收敛,则数列 $\{x_n\}$ 一定收敛; ()
- (4) $\{a_{2n}\}$ 和 $\{a_{2n+1}\}$ 分别是单调递增和递减的,且满足 $\lim_{n\to\infty}(a_{n+1}-a_n)=0$,则数列 $\{a_n\}$ 必有界;
- (5) 存在上下界的数集必存在上下确界, 其上确界一定是数集中的最大元素, 其下确界一定是数集中的最小元素; ()

得 分

二、(共10分) 定理的叙述和证明

叙述并证明闭区间套定理.

得 分 三、(共10 分) 按定义证明下列极限

(1)
$$\lim_{n \to +\infty} \frac{2n^2 + 3}{n^2 - 1} = 2.$$
 (2) $\lim_{n \to +\infty} \operatorname{arccot} n = 0.$

得 分 四、(共20 分) 计算下列数列极限

(1)
$$\lim_{n \to +\infty} \left(\frac{2n+1}{2n+3}\right)^n$$
. (2) $\lim_{n \to +\infty} \frac{1}{n(n+1)} \sin n$.
(3) $\lim_{n \to +\infty} (2^n + 3^n + 6^n)^{2/n}$. (4) $\lim_{n \to +\infty} \frac{2^{n+2}\sqrt{n^2 + 2n}}{n^2 + 2n}$.

(2)
$$\lim_{n \to +\infty} \frac{1}{n(n+1)} \sin n$$

(3)
$$\lim_{n \to +\infty} (2^n + 3^n + 6^n)^{2/n}$$

(4)
$$\lim_{n \to \infty} \sqrt[2n+2]{n^2 + 2n}$$
.

五、(共20分)证明数列的敛散性

(1) 设 $\lim_{n \to +\infty} a_n = a$, 若 $p_k > 0$ $(k = 1, 2, \dots)$, 且

$$\lim_{n \to +\infty} \frac{p_n}{p_1 + p_2 + \dots + p_n} = 0.$$

证明

$$\lim_{n \to +\infty} \frac{p_1 a_n + p_2 a_{n-1} + \dots + p_n a_1}{p_1 + p_2 + \dots + p_n} = a.$$

(2) 证明数列
$$a_n = \frac{1}{2} + \frac{1}{2\sqrt{2}} + \dots + \frac{1}{2\sqrt{n}} - \sqrt{n}$$
 收敛.

得 分 六、(共16 分) 求上下确界

(1) 设A, B均为 \mathbf{R} 中有上界的非空集合, 记A的上确界为a, B的上确界 为b, 试求集合 $A \cup B$ 的上确界.

(2) 求数列
$$x_n = \frac{n}{n+1} \cos \frac{3n\pi}{2}$$
 的上下确界.

<u>得 分</u> 七、(共14 分) 证明题

(1) 设 $\lim_{n \to +\infty} (x_1 + x_2 + \dots + x_n)$ 存在, 证明 $\lim_{n \to +\infty} \frac{1}{n} (x_1 + 2x_2 + \dots + nx_n) = 0$. (2) 利用不等式 $(1 + \frac{1}{n})^n < e < (1 + \frac{1}{n})^{n+1}, n \in N^+$, 证明 $\lim_{n \to +\infty} \frac{n}{\sqrt[n]{n!}} = e$.

(共2页 第2页)