Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition and Simple Examples

Substitution Estimator for Causal Parameters:

Stratified ATE

Complex

Marginal Structu

Other Potential Use

Potential Use

Substitution Estimators

SSE 708: Machine Learning in the Era of Big Data

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

July 7-11 2025

Table of Contents

Substitution Estimators

David McCoy PhD. MSc Division of Biostatistics. **UC** Berkeley Edward's Lifesciences

Definition and Simple Examples

Substitution Estimator for Causal Parameters: ATE

Stratified ATF

Complex Examples

Marginal Structural Model (MSM)

Other Potential Uses

Practice problem

Summary

What is a substitution estimator?

Substitution Estimators

David McCoy PhD. MSc Division of Biostatistics. **UC** Berkeley Edward's Lifesciences

Definition and Simple Examples

Marginal Structural

• If the parameter of interest is some algorithm (mapping), Ψ applied to the true data-generating distribution, P_0 , so $\Psi(P_0)$ equals the quantity of interest, a substitution substitutes an estimate of P_0 , say P_n^* and then uses the same mapping, or $\Psi(P_n^*)$.

- For example, consider a simple situation with $O = Y \sim P_0$, $\Psi(P_0) = E_0(Y) = \sum_{y} y * P_0(Y = y).$
- Then, $\Psi(P_n) = \sum_{y} y * P_n(Y = y)$ is the substitution estimator.
- Assume the data are *n* independent observations of Y_i , i = 1, ..., n.
- The empirical distribution P_n just assigns probability 1/n to every observation, so the substitution estimator can be rewritten as:

$$\Psi(P_n) = \frac{1}{n} \sum_{i=1}^n Y_i = \bar{Y}$$

or just the sample average.

Example: Sample Variance

Substitution Estimators

David McCoy PhD. MSc Division of Biostatistics. **UC** Berkeley Edward's Lifesciences

Definition and Simple

Examples

Marginal Structural

Setup

Data =
$$Y_i$$
, $i = 1, ..., n$,
 $\Psi(P_0) = var_0(Y) = E_0(Y - E_0)^2$
= $\sum_{Y} (y - E_0 Y)^2 P_0(Y = y)$

- We derived the substitution estimator for the mean $E_0(Y)$ is \overline{Y}
- Again, we plug in P_n for the unknown P_0 and get

$$\Psi(P_n) = var_n(Y) =$$

$$= \sum_{y} (y - \bar{Y})^2 P_n(Y = y)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Substitution Estimator for Average Treatment Effect (ATE), $\Psi(P_X) = (Y_1 - Y_0)$

Substitution Estimators

David McCoy PhD. MSc Division of Biostatistics. **UC** Berkeley Edward's Lifesciences

Substitution Estimator for Causal Parameters: ATE

Marginal Structural

[Robins(1999)] proposed substitution estimators (G-computation) for causally inspired estimands.

Recall that under assumptions:

$$E(Y(1)-Y(0))=E_{W,0}\{E_0(Y|A=1,W)-E_0(Y|A=0,W)\}$$

- \rightarrow Data is: $O = (W, A, Y) \sim P_0 \in \mathcal{M}^{NP}$
- → Under assumptions discussed earlier. $\Psi(P_X) = \Psi(P_0) = \Psi(Q_0)$, where Q_0 represents both the distribution of $Y \mid W, A$ and distribution of W.

$$\Psi(Q_0) = E_{W,0}\{E_0(Y \mid A = 1, W) - E_0(Y \mid A = 0, W)\}\$$

 \rightarrow Let $Q_0(A, W) \equiv E_0(Y \mid A, W)$ and $Q_{0 W}(w) = P_{0}(W = w)$, then

$$\Psi(Q_0) = \sum \{Q_0(1, w) - Q_0(0, w)\} Q_{0, W}(w)$$

Substitution Estimator for ATE

Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition an Simple Examples

Substitution Estimator for Causal Parameters: ATE

Stratified AT

Exampl

Marginal Structural Model (MSM)

Other Potential Use

Practice

• The estimand (parameter) of interest is:

$$\Psi(Q_0) = \sum_{w} \{Q_0(1, w) - Q_0(0, w)\} Q_{0, W}(w)$$

• The Substitution Estimator

$$\Psi(Q_n) = \frac{1}{n} \sum_{i=1}^n \{ Q_n(1, W_i) - Q_n(0, W_i) \}$$

- \rightarrow $Q_{n,W}(W_i) = 1/n$ (the empirical) and $Q_n(A, W)$ is a regression (or machine learning) regression of Y on (A, W).
- Provides a general approach for nonparametric estimation of parameters using machine learning.

Another Example: Counterfactual Mean Difference within Subgroups

Substitution Estimators

David McCoy PhD. MSc Division of Biostatistics. **UC** Berkeley Edward's Lifesciences

Stratified ATE

Marginal Structural

• Data is like above $(O = (W, A, Y) \sim P_0 \in \mathcal{M}^{NP})$.

Additionally define a variable V which is one of the W's, so $V \subset W$.

• Causal Parameter is $\Psi(P_X)(v) = E_X(Y_1 - Y_0 \mid V = v)$.

• Say V is categorical age, then the parameter above is the stratified average treatment effect, within strata of age V = v.

Estimand With assumptions, then $\Psi(P_X)(v) =$

$$\Psi(P_0)(\nu) = E_0\{E_0(Y \mid A=1,W) - E_0(Y \mid A=0,W) \mid V=\nu\}$$

Substitution Estimator

$$\Psi(Q_n)(v) = \frac{1}{n_v} \sum_{i=1}^{n_v} I(V_i = v) \{ Q_n(1, W_i) - Q_n(0, W_i) \}$$

where n_{v} is the number of observations with $V_{i} = v$.

< (₹) ►

Understanding concepts in statistics from simulation

Substitution Estimators

David McCoy PhD. MSc Division of Biostatistics. **UC** Berkeley Edward's Lifesciences

Complex

Examples

- One of the best methods to understand:
 - how causal graphs are connected to data,
 - understanding what the target estimand (parameter of interest)
 - 1 how to estimate from data the parameter of interest, and
 - 4 what statistical measures of uncertainty mean (the sampling distribution).
- We will now use this tool to solidify the understanding thus far of the topics we've been discussing (defining parameter of interest, data-generating mechanism, parameter of interest, estimation and inference).

Simulation that goes from the causal graph to simulated data

Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Simple Examples

Substitution Estimator fo Causal Parameters: ATE

Stratified AT

Complex

Examples Marginal Struc

Other

Potential Use

Practice problem

The Causal Model

The Data Generating Distribution

- $W_1 = \sim N(0, \sigma_W^2)$
- $V = W_2 = Uniform(0, 1, 2, 3, 4)$

- $log\{\frac{P(A=1|W)}{1-P(A=1|W)}\} = \alpha_0 + \alpha_1 * W_1 + \alpha_2 * V + \alpha_3 * W_1 * V = logit(g(W))$
 - \rightarrow So, distribution of $A \mid W$ is a coin flip with probability of A=1 being g(W).
- $log\{\frac{P(Y=1|A,W)}{1-P(Y=1|A,W)}\} =$ - $\beta_0 + \beta_1 * W_1 + \beta_2 * V + \beta_3 *$ $A + \beta_4 A * V = logit(Q(A, W))$
 - → Distribution of $Y \mid W, A$ is a coin flip with probability of Y = 1 being Q(A, W).

R-code

Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition and Simple Examples

Substitution Estimator for Causal Parameters:

Stratified ATI

Examples

Marginal Structural

Marginal Structure Model (MSM)

Other Potential Uses

Practice

```
## Sample size is n
set.seed(1231231)
n<-500
sigmaW<-0.5
## Generate random W and V
W1<-rnorm(n,0,sigmaW)
V<-sample(0:4,n,replace=T)
## Generate random A given W.V
alpha0<-0
alpha1<-1
alpha2<--1
alpha3<-0.5
PA.1givenWV<-1/(1+exp(-(alpha0+alpha1*W1+alpha2*V+alpha3*W1*V)))
A<-rbinom(n.size=1.PA.1givenWV)
## Generate random Y given A,W,V
beta0<--2
heta1<-1
beta2<--1
beta3<-0.5
beta4<-0.7
PY.1givenAWV<-1/(1+exp(-(beta0+beta1*W1+beta2*V+beta3*A+beta4*A*V)))
Y<-rbinom(n,size=1,PY.1givenAWV)
```

Making Substitution Estimator

Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

```
Definition and Simple Examples
```

Substitution Estimator for Causal Parameters: ATE

Stratified AT

Complex

Examples Marginal Struct

Other

Potential Use

```
> head(data.frame(W1,V,A,Y))

W1 V A Y
1 -0.74076009 4 0 0
2 0.02393476 2 0 0
3 0.11965807 1 0 0
```

4 0.69188911 1 1 0 5 -0.29255064 0 0 0

Now we simply do the substitution estimator by:

- **1** Fit a model for Q_0 , that is $Q_n(A, W)$ in this case we do simply logistic regression
- ② For an observation, get a prediction for A = 1 and A = 0, so $(Q_n(1, W), Q_n(0, W))$ and thus the difference of these two, say $Diff(W) = Q_n(1, W) Q_n(0, W)$
- **3** Get the average of these differences, Diff(W), for all groups separate for each v = 1, 2, ..., so $\theta_n(v) = E_n(Diff(W) \mid V = v)$.
- 4 Plot these $\theta_n(v)$ vs. v.

R code for Substitution Estimator Using Traditional Regression Estimators

```
Substitution
Estimators
```

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition an Simple Examples

Substitution Estimator for Causal

ATE

Stratified AT

Complex

Examples

Marginal Structural

Other

Potential Use

```
Practice problem
```

ATC: 192.06

```
dat=data.frame(W1,V,A,Y)
### Model fit for Y | A,W1,V
AV<-A*V
glm.YgivenAWV<-glm(Y~W1+V+A+AV,family=binomial,data=dat)
summary(glm.YgivenAWV)</pre>
```

```
Call:
glm(formula = Y ~ W1 + V + A + AV, family = binomial, data = dat)
Deviance Residuals:
    Min
               10
                    Median
                                  30
                                           Max
-0.90378 -0.39486 -0.13500 -0.06411
                                       2.95951
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.9282 0.4111 -4.690 2.73e-06 ***
             0.8883 0.4115 2.159 0.030887 *
            -1.2457 0.3768 -3.306 0.000946 ***
            0.3369 0.5356 0.629 0.529303
ΑV
             1.2153
                   0.4361 2.787 0.005323 **
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
   Null deviance: 243.17 on 499 degrees of freedom
Residual deviance: 182.06 on 495 degrees of freedom
```

R code for Substitution Estimator

Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition an Simple Examples

Substitution Estimator for Causal Parameters:

Stratified ATE

Examples

Marginal Structural

Model (MSM)

Potential Use

Practice

```
Get the predicted values for each observation at A = 1 and A = 0 (Q_n(1, W), Q_n(0, W)) and was their difference, diff(W).
```

```
### Setting a = 0, and getting P(0,W)
p0.W<-predict.glm(glm.YgivenAWV,newdata=data.frame(W1=W1,V=V,A=rep(0,n),
AV=rep(0,n)),type="response")

### Setting a = 1, and getting P(1,W)
p1.W<-predict.glm(glm.YgivenAWV,newdata=data.frame(W1=W1,V=V,A=rep(1,n),
AV=V),type="response")</pre>
```

 $\label{lem:head} \\ \text{head}(\text{data.frame}(\texttt{Y},\texttt{A},\texttt{V},\text{round}(\texttt{W1},\texttt{4}),\text{predA0=round}(\texttt{p0}.\texttt{W},\texttt{3}),\text{predA1=round}(\texttt{p1}.\texttt{W},\texttt{3}),\\ \\ \text{diff=round}(\texttt{p0}.\texttt{W-p1}.\texttt{W},\texttt{3}),\\ \text{diff=round}(\texttt{p0}.\texttt{W}-\texttt{p1}.\texttt{W},\texttt{3}),\\ \text{diff=round}(\texttt{p0}.\texttt{W}-\texttt{p1}.\texttt{W}-\texttt{p1}.\texttt{W},\texttt{3}),\\ \text{diff=round}(\texttt{p0}.\texttt{W}-\texttt{p1}.\texttt{W}-\texttt{p1}.\texttt{W}-\texttt{p1}.\texttt{W}-\texttt{p1}.\texttt{W}-\texttt{p1}.\texttt{W}-\texttt{p1}.\texttt{W}-\texttt{p1}.$

```
Y A V W1 predA0 predA1 diff

1 0 0 4 -0.7408 0.001 0.085 -0.085

2 0 0 2 0.0239 0.012 0.164 -0.152

3 0 0 1 0.1197 0.044 0.180 -0.136

4 0 1 1 0.6919 0.072 0.268 -0.196

5 0 0 0 0 -0.2926 0.101 0.136 -0.035

6 0 0 0 2 -0.6378 0.007 0.098 -0.091
```

Distribution of Predicted Values at A=0 and A=1 ($Q_n(a,W)$

Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition and Simple Examples

Substitution Estimator for Causal Parameters:

Stratified ATE

Complex Examples

Marginal Structural Model (MSM)

Other Potential Use

Practice

R code for Substitution Estimator, cont.

Substitution Estimators

David McCoy PhD. MSc Division of Biostatistics. **UC** Berkeley Edward's Lifesciences

Complex

Examples

Get estimates of the $E(Q_0(1, W) - Q_0(0, W) \mid V = v)$ for each of the V = (0, 1, 2, 3, 4).

```
## Estimate E{E[Y|A=a,W]|V} with smooth regression
## First a=0 (just gets average of the predicted
   values at each V=v
EYO.WgivenV<-lm(pO.W~factor(V))
at.V<-0.4
EYO. V<-predict(EYO. WgivenV.newdata=data.frame(V=atV))
## Then a=1
EY1.WgivenV<-lm(p1.W~factor(V))
EY1.V<-predict(EY1.WgivenV.newdata=data.frame(V=atV))
par(mfrow=c(1,1))
plot(atV,EY0.V,type="p",xlab="V",
      vlab=expression(paste("E(",Y[a],"| V)",sep="")).
  vlim=c(0.0.38), xlim=c(0.4), pch=1)
points(atV,EY1.V,pch=2,col=2,lwd=2)
legend(0.25..25.
     c(expression(paste("E(",Y[1],"| V)",sep="")),
     expression(paste("E(",Y[0],"| V)",sep=""))),
     pch=c(2,1),col=c(2,1),bty="n")
```


Marginal Structural Models (MSM)

Substitution Estimators

David McCoy PhD. MSc Division of Biostatistics. **UC** Berkeley Edward's Lifesciences

Marginal Structural Model (MSM)

• Returning to simulated example, where the parameter of interest is E(Ya|V).

 As opposed to just getting empirical fit (connecting the averages), we now assume a model, or, for instance:

$$E(Y_a \mid V) = m(a, V; \beta) \stackrel{e.g.}{=} \beta_0 + \beta_1 a + \beta_2 V + \beta_3 a * V$$

or if outcome is binary:

$$\textit{m(a,V;\beta)} \stackrel{\textit{e.g.}}{=} \frac{1}{1 + e^{-(\beta_0 + \beta_1 a + \beta_2 V + \beta_3 a * V)}}$$

- What one gains and loses is same as fitting a line through a set of averages as opposed to just reporting these averages:
 - → Gains power (reduction of variance of estimation) and simplicity of reporting by borrowing across the different estimates of $E(Y_a \mid V)$
 - \rightarrow Loses by adding bias (typically $m(\cdot)$ is not the true model).

R code for Substitution based MSM

Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition an Simple Examples

Substitution Estimator for Causal

Stratified ATE

.

Marginal Structural Model (MSM)

Other Potential Use

Practice problem

```
pred=c(p0.W,p1.W)
### Then, corresponding covariates in MSM
Vn=rep(V,2)
An=c(rep(0,n),rep(1,n))
datn=data.frame(Ystar=pred,V=Vn,A=An,AV=An*Vn)
glm.msm=glm(Ystar~A+V+AV,data=datn,family=binomial)
### Fit logit-linear model of prediction versus
### Get Results
summary(glm.msm)
## Function to get estimates and inference on
## exponentiated scale
## (e.g., get back OR's after logistic regression)
lreg.or <- function(glm.mod,robust=FALSE) {</pre>
    if(robust==TRUE){
      glm.1<-robcov(glm.mod)
      se=sqrt(diag(glm.1$var))
      cf=glm.1$coefficients
      lreg.coeffs=cbind(cf.se) }
     if(robust==FALSE) {
      lreg.coeffs <- coef(summary(glm.mod))}</pre>
     p=dim(lreg.coeffs)[1]
     195ci <- exp(lreg.coeffs[2:p.1] -
       1.96 * lreg.coeffs[2:p ,2])
     or <- exp(lreg.coeffs[ 2:p,1])
     u95ci <- exp(lreg.coeffs[2:p ,1] +
    1.96 * lreg.coeffs[2:p ,2])
    pvalue=(2*(1-
       pnorm(abs(lreg.coeffs[,1]/lreg.coeffs[,2]))))[2:p]
    lreg.or <- cbind(195ci, or, u95ci,pvalue)
    lreg.or
lreg.or(glm.msm)
```

Results - ignore the inference (need to take another approach to get correct SE's).

```
> summary(glm.msm)
Call:
glm(formula = Ystar ~ A + V + AV, family = binomial, data
Deviance Residuals:
               10
                     Median
-0 38679 -0 08478 -0 00567
                              0.04823
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.7877
                        0.2610 -6.850 7.36e-12 ***
             0.2819
                        0.3280 0.859 0.390158
                        0.3191 -4.127 3.68e-05 ***
            -1.3168
             1.2586
                        0.3303 3.810 0.000139 ***
> round(lreg.or(glm.msm).4)
             or u95ci pvalue
A 0.6970 1.3256 2.5213 0.3902
V 0.1434 0.2680 0.5009 0.0000
AV 1.8424 3.5203 6.7262 0.0001
```

R code for Displaying Results

Substitution Estimators David McCoy

PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition and Simple Examples

Estimator fo Causal Parameters:

Stratified ATE

Examples

Marginal Structural Model (MSM)

Other Potential Use

Practice problem

```
*** Get contrasts
glm.post.estimate=function(glmob.comps.
  exponentiate=TRUE) {
    if(is.matrix(comps) == FALSE) {
     comps=t(as.matrix(comps))}
vc=vcov(glmob)
ests = coef(glmob)
linear.ests=as.vector(comps%*%ests)
vcests=comps%*%vc%*%t(comps)
ses=sqrt(diag(vcests))
    pvalue=(2*(1-pnorm(abs(linear.ests/ses))))
    if(exponentiate) {
      195ci <- exp(linear.ests - 1.96 * ses)
      or <- exp(linear.ests)
      u95ci <- exp(linear.ests + 1.96 * ses)
      summ <- cbind(195ci, or, u95ci,pvalue)
          if(exponentiate==FALSE) {
      195ci <- (linear.ests - 1.96 * ses)
      logor <- (linear.ests)</pre>
      u95ci <- (linear.ests + 1.96 * ses)
      summ <- cbind(195ci, logor, u95ci,pvalue)
      return(summ) }
     Get OR of E(Y(1)|V=0) vs. E(Y(0)|V=0) and
       E(Y(1)|V=2) vs. E(Y(0)|V=2)
###
comps=rbind(c(0,1,0,0)).
            c(0,1,0,2))
rownames(comps)=c("Caus.OR: V=0", "Caus.OR: V=2")
```

```
> round(glm.post.estimate(glm.msm.comps).4)
              195ci
                              u95ci pvalue
                         or
Caus.OR: V=0 0.6970 1.3256
                             2.5213 0.3902
Caus OR: V=2 5 3365 16 4278 50 5714 0 0000
## Plot Results
predV.O=predict(glm.msm,newdata=
data.frame(A=rep(0,5),V=0:4,AV=rep(0,5)),
type="response")
lines(0:4,predV.0,lwd=4)
predV.1=predict(glm.msm.newdata=
data.frame(A=rep(1,5),V=0:4,AV=0:4),
type="response")
lines(0:4.predV.1.ltv=2.col=2.lwd=4)
```


Use the tangibility and form of substitution estimators to inspire other parameters

Substitution Estimators

David McCoy PhD. MSc Division of Biostatistics. **UC** Berkeley Edward's Lifesciences

Other Potential Uses Other types of parameters can be motivated and estimated using substitution methods.

- Consider counterfactual rules, not simply treatment levels.
- For example, if we have the same model as we just discussed $V \subset W \to A \to Y$.
- Consider a counterfactual based on the application of a rule of the form d(V), where one wants the mean if everyone were given treatment according to A = I(d(V) < v), that is, for everyone younger than a particular age v.
- Often time, these counterfactual scenarios are much more practical than giving everyone the same treatment, particularly in biomedical applications.

Treatment rule impacts from substitution estimator, cont.

Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition and Simple Examples

Substitution Estimator for Causal Parameters: ATE

Stratified AT

Example

Marginal Structu Model (MSM)

Other Potential Uses • One might be interested in the causal parameter $EY_{d(v;V)}$, where d(v;V) = I(V < v), so = 1 (e.g. give tx) if age is less than v, but 0 (no tx) otherwise.

• One could estimate this parameter for different values of V=v and plot them to find an optimal v to use.

Practice problem

Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition ar Simple Examples

Substitution Estimator fo Causal Parameters: ATE

Stratified A

Complex Examples

Marginal Structural Model (MSM)

Other Potential Use

Practice problem

MOVE INTO THE RMD FILE FOR PRACTICE

- Consider the data on canvas called Rule.csv, which has the data of V ⊂ W → A → Y generated according to same causal model as above.
- Estimate the regression model $Q(A, W) = E(Y \mid A, W)$ using Im in R and the following functional form: $Q(A, W) = b_0 + b_1 A + b_2 V + b_3 W_1 + b_4 A * V + b_5 A * V^2$.
- Use the fit to estimate $E(Y_{d(v;V)})$ for v = 0, 1, 2, 3, 4.
- Plot $\hat{E}(Y_{d(v;V)})$ vs. v.

Summary

Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition an Simple Examples

Substitution Estimator for Causal Parameters: ATE

Stratified ATI

Examples

Marginal Structu

Model (MSM)

Potential Uses

Practice

- Same method can be used for many parameters related to theoretical interventions at one time (point treatment cases), including:
 - → treatment rules,
 - → mediation impacts (direct and indirect effects),
 - → stochastically assigned interventions,
 - → etc.
- Substitution estimators are "relatively" intuitive.
- When estimating the regressions with parameteric models, can use the (nonparametric) bootstrap to get inference (or the delta-method).
- Though these estimators work when machine learning is used, the don't result in an estimator with predictable sampling distribution.

< Æ ▶

References

Substitution Estimators

David McCoy PhD, MSc Division of Biostatistics, UC Berkeley Edward's Lifesciences

Definition and Simple Examples

Substitution Estimator for Causal Parameters: ATE

Stratified ATI

Complex

Marginal Structural Model (MSM)

Other Potential Use

Practice

🧃 J.M. Robins.

Association, causation, and marginal structural models. *Synthese*, 121:151–179, 1999.