WaveNet

WaveNet V1

DeepMind splash in 2016

Image Source: Blog WaveNet: A Generative Model for Raw Audio

Let's hear the difference

Blog WaveNet: A Generative Model for Raw Audio

- Parametric (RNN + LSTM + some staff)
- Concatenative (HMM)
- WaveNet

Audio Samples from Network

- Data output:
 - 16 KHz (24 KHz) rate with 8-bit (16-bit) resolution

1 Second

Image Source: Blog WaveNet: A Generative Model for Raw Audio

CNN instead of RNN

Note the «Linear Footprint»

Image Source: Paper WaveNet: A Generative Model for Raw Audio

Dilated CNN

Note the «Exponential Footprint»

Image Source: Paper WaveNet: A Generative Model for Raw Audio

Dilated CNN

dilation rate (or factor) of 1 dilation rate (or factor) of 2 dilation rate (or factor) of 4

Image Source: http://sergeiturukin.com/2017/03/02/wavenet.html

CNN PRO/CON

- ADVANTAGES:
 - In general CNNs are faster to train
 - The «look back» is exponential
- DISADVANTAGES:
 - No «next sample» scheme

Sigmoid Gate of Tanh Units

Each CNN node includes Gating and ResNet

Output of Distribution

- No pooling layers the output has the same time dimensionality as the input.
- Output categorical distribution for each time step.

$$F(x)= ext{sgn}(x)rac{\ln(1+\mu|x|)}{\ln(1+\mu)} - 1 \leq x \leq 1$$

μ-law

Output of Distribution

Before µ-law

After µ-law

Image Source: http://sergeiturukin.com/2017/03/02/wavenet.html

Computational Burden

- Training can be QUICK:
 - Parallel training at all time steps.
- Actual running is SLOW:
 - 1 sec of output = 1-2 minute of GPU

Fast WaveNet

Use queues for smarter calculations

Parallel WaveNet

Parallel WaveNet

Image Source: https://arxiv.org/pdf/1711.10433.pdf

Now It Can Be Used

WaveNet launches in the Google Assistant

Mean Opinion Scores

Image Source: https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/

NSynth: Neural Audio Synthesis

Sample RNN

- WAVENET: A GENERATIVE MODEL FOR RAW AUDIO
- FAST WAVENET GENERATION ALGORITHM
- Parallel WaveNet: Fast High-Fidelity Speech Synthesis
- https://deepmind.com/
- Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders
- NSynth: Neural Audio Synthesis