LIST OF SYMBOLS AND ABREVIATIONS

 θ = soil water content

 λ = dispersivity

 A_{adi} = adjunct impervious area

 A_{dam} = dam area

 A_{dis} = disjunct impervious area

 A_{gls} = gross net land segment area

 A_{irrig} = irrigated land area

 A_s = the surface area at various storage volumes of the reservoir

BF = volume of baseflow release for the day

BTC = break-through curves
C = solute concentration

 C_{bf} = baseflow salt concentration

 C_{chnl} = TDS concentration of flow at the channel reach

CDE = convection-dispersion equation

 C_{dsf} = salt concentration of delayed stormflow

 C_e = solute equilibrium

 C_{gw} = salt concentration of the groundwater store before salt generation

 C_i = salt concentration of the i-th horizon before salt generation or reservoir

salinity at the end of the current day of simulation

 C_{i-1} = reservoir salinity at the end of the previous day

 C_{in} = TDS concentration in water infiltrating to a particular layer

 Cin_i = average salt concentration of reservoir inflowing water on the current day of

simulation

 C_{iw} = irrigation water salinity

 C_{nf} = salt concentration of normal (legal) flow release

 C_{of} = salt concentration of overflow

 C_{qf} = quickflow salinity C_r = rainfall salinity

 C_{run} = salt concentration of runoff water

 $C_{run\ adj}$ = salt concentration of runoff from adjunct impervious areas

 $C_{run\ imp}$ = salt concentration of runoff water from impervious areas

 C_{run_irr} = salt concentration of runoff water from irrigated areas

 $C_{run\ ni}$ = Salt concentration of runoff from non-irrigated lands

 C_{sat} = the equilibrium value

 C_{seep} = salt concentration of seepage water

 C_{sf} = stormflow salinity

CSIR = council for scientific research

 $C_{upd\ gw}$ = updated groundwater salinity (after salt generation)

 $C_{upd\ i}$ = updated horizon salinity (after salt generation)

 D_* = coefficient of molecular or ionic diffusion for the liquid phase of the soil

 D_{dis} = coefficient of mechanical dispersion

 D_{o} = coefficient of molecular diffusion for a free or bulk solution

DUL = drained upper limit

DWAF = department of water affairs and forestry

EC = electrical conductivity

ECe = soil salinity

ECw = electrical conductivity of applied irrigation water

ER = volume of effective rainfall

 Fc_i = drained upper limit of the i-th layer

 f_{dam} = fraction of the gross catchment area contributing its flow to the dam

GW = volumetric groundwater content after baseflow release

Ia = initial abstractions before stormflow commences

 I_{dam} = total water inflow to the dam on the day including rain falling on surface of

the dam

IW = volume of irrigation water

IWR = institute for water research

Jc = convective flux of solute

 J_{dif} = solute flux due to molecular diffusion

 J_{dis} = dispersive solute flux

Js = total solute flux due to the joint effects of diffusion and convection

k = salt uptake rate constant

L = straight length of the soil

 L_* = actual path length for diffusion in the soil

LAI = leaf area index

LF = fraction of applied volume of water leached below the root zone

LNLSA i = lower net land segment area under the i-th sub-catchment configuration

MAP = mean annual precipitation NF_{dam} = legal flow release volume

NLSA = total area of the non-irrigated land in a sub-catchment

 OF_{dam} = dam overflow volume

Pg = gross daily precipitation amount

 PW_i = volume of percolated water out of the i-th horizon

Q = discharge

q = rate of volumetric water flow

 Q_a = local concentration of solute in the adsorbed phase

QF = quickflow volume

QF = total quickflow volume

 QF_a = actual quickflow, i.e. fraction of the total stormflow leaving the land on the

same day

 Qin_i = water inflow to the reservoir on the current day of simulation

 $Qout_i$ = water outflow from the reservoir for the current day of simulation

(excluding evaporation loss)

R = volumetric ratio of "new" to "old" water

 RFL_{dam} = volume of rain falling on the dam surface

RUN = the total runoff volume from non-irrigated land in a sub-catchment

 RUN_{adi} = runoff volume from the adjunct impervious areas

 $RUN_{adj\ dam}$ = runoff from adjunct impervious areas inflowing to the dam

 RUN_{chnl} = runoff volume inflowing to the channel

 RUN_{dam} = runoff volume entering to the dam

 RUN_{dis} = runoff volume from disjunct impervious area

 RUN_{imp} = depth of runoff from impervious area

 RUN_{irr} = runoff from irrigated areas

 RUN_{ni} = runoff flowing into the dam from non-irrigated lands

S = solute loss (sink) or gain (source)

 $SEEP_{dam}$ = volume of seepage water from the dam

 SF_d = fraction of delayed stormflow contributing to quickflow

Sgen = total daily salt mass generated per soil layer

 S_i = volume of water stored in the reservoir at the current day of simulation

 S_{i-1} = volume of water stored in the reservoir at the end of the previous day

SL = total salt load associated with runoff from the non-irrigated land SL_{adj_chnl} = salt load flowing into the channel from adjunct impervious areas

 $SL_{adi\ dam}$ = the salt load flowing into the dam from adjunct impervious areas

 SL_{aiw} = salt load input to topsoil associated with irrigation water

 SL_{bf} = salt load associated with baseflow release

 SL_{chnl} = salt load entering to the channel SL_{dam} = salt load inflowing to the dam

 $SL_{dam\ of}$ = total salt load released from the dam to downstream reaches

 SL_{dis} = salt load associated with runoff from disjunct impervious areas

 SL_{er} = salt load input to topsoil associated with rainfall

 SL_{gen_gw} = salt load generated for the day in groundwater store SL_{gen_i} = salt load generated for the day in the i-th soil horizon

 SL_{gw} = groundwater store salt load before salt generation

 SL_i = current salt load of the i-th horizon before salt generation

 $SL_{inf t}$ = daily total salt load stored in the channel reach

 $SL_{p i}$ = the salt load associated with the percolation water out of the i-th horizon

 SL_{af} = salt load associated with the total quickflow volume for the day

 SL_{run} = the salt load associated with runoff water

 SL_{upd_gw} = salt load of groundwater store after salt generation

 $SL_{upd\ i}$ = salt load in the i-th horizon after salt generation

 SL_{upf} = upward salt flux from topsoil to quickflow

SMCs = soil moisture content

 SP_i = saturation water content

STFL = volume of streamflow at the channel reach

Sv = storage (volume) of water

 SW_i = volumetric soil water content of the i-th horizon after percolation has taken

place out of the horizon

TDS = total dissolved solutes

UML = unified modelling language

UNLSA i = upper net land segment area under the i-th sub-catchment configuration

V = average flow velocity

x = distance

X(LF) = concentration factor