TP1-ADM

Guillaume Bernard-Reymond et Lorenzo Gaggini

October 2023

1 Partie 1

Dans cette partie, nous désignerons par (x_i) où $i \in \{1; ...; 21\}$ les individus et (x^j) où $j \in \{1; ...; 32\}$ les variables, qu'elles soient quantitatives ou bien qualitatives. Enfin nous noterons (z^j) où $j \in \{4; ...; 32\}$ les variables quantitatives centrées-réduites.

- 1. Dans cette question nous placerons dans le cas général où $i \in \{1;...;n\}$ et $j \in \{1;...;p\}$
 - On considère $(w_i)_{i \in \{1...n\}}$ une suite de poids telle que $\sum_{i=1}^n = 1$ et soit $j \in \{1, ..., p\}$. On peut alors écrire :

$$\sum_{i=1}^{n} w_i z_i^j = \sum_{i=1}^{n} w_i \left(\frac{x_i^j - \overline{x^j}}{\sigma_{x^j}} \right)$$

$$= \frac{1}{\sigma_{x^j}} \sum_{i=1}^{n} \left(w_i x_i^j - w_i \overline{x^j} \right)$$

$$= \frac{1}{\sigma_{x^j}} \left(\overline{x^j} - \overline{x^j} \sum_{i=1}^{n} w_i \right)$$

$$= 0$$

Le barycentre du nuage est donc bien $0_{\mathbb{R}^p}$.

$$In_O(\{z_i; w_i\}_{i=1,...,n}) = \sum_{i=1}^n w_i ||z_i||^2$$

$$= \sum_{i=1}^n w_i \left(\sum_{j=1}^p z_i^{j^2}\right)$$

$$= \sum_{i=1}^n \left(\sum_{j=1}^p w_i z_i^{j^2}\right)$$

$$= \sum_{j=1}^p \left(\sum_{i=1}^n w_i z_i^{j^2}\right)$$

Or l'expression $\sum_{i=1}^n w_i z_i^{j^2}$ n'est rien d'autre que l'expression de la variance de notre variable quantitative centrée réduite qui vaut donc

١.

Ainsi : $In_O(\{z_i; w_i\}_{i=1,...,n}) = p$ c'est à dire le nombre de variables quantitatives.

2.