

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

PUB-NO: DE004234026C1

DOCUMENT-IDENTIFIER: DE 4234026 C1

TITLE: Inertial measurement unit for missile or projectile -
aligns optical rotation sensor axis with drift axis of
two-axis mechanical gyroscope and with axis of high
acceleration of launch

PUBN-DATE: February 10, 1994

INVENTOR-INFORMATION:

NAME	COUNTRY
SCHWIEDER, WILHELM DIPL ING	DE

ASSIGNEE-INFORMATION:

NAME	COUNTRY
BODENSEEWERK GERAETETECH	DE

APPL-NO: DE04234026

APPL-DATE: October 9, 1992

PRIORITY-DATA: DE04234026A (October 9, 1992)

INT-CL (IPC): G01C023/00, G01P007/00 , G01P015/02 , G01P009/02 , G01C019/00
, G01C019/62 , B64G001/28

EUR-CL (EPC): B64G001/28 ; G01C019/02, G01P009/02

ABSTRACT:

Within the launching tube (10), a cylindrical missile (12) contains an inertial measurement unit (16) which senses the angular velocity of rotation

about the longitudinal axis (14) and two other input axes (18,20) at right angles to each other. A dynamically-adjusted two-axis gyroscope (22) has its drift axis (24) aligned with the longitudinal axis of the missile. The rate of rotation about this axis is measured by an optical sensor (26) whose optical path follows the internal surface of the fuselage (30), ahead of an electronic control unit (32) and interface (34). ADVANTAGE - Very compact device exhibits little drift even under high acceleration along particular axis.

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Patentschrift
⑯ DE 42 34 026 C 1

⑮ Int. Cl. 5:
G 01 C 23/00

G 01 P 7/00
G 01 P 15/02
G 01 P 9/02
G 01 C 19/00
G 01 C 19/62
B 64 G 1/28
// F41G 9/00

DE 42 34 026 C 1

⑯ Aktenzeichen: P 42 34 026.8-52
⑯ Anmeldetag: 9. 10. 92
⑯ Offenlegungstag: —
⑯ Veröffentlichungstag der Patenterteilung: 10. 2. 94

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

⑯ Patentinhaber:
Bodenseewerk Gerätetechnik GmbH, 88662
Überlingen, DE

⑯ Vertreter:
Weisse, J., Dipl.-Phys.; Wolgast, R., Dipl.-Chem. Dr.,
Pat.-Anwälte, 42555 Velbert

⑯ Erfinder:
Schwieder, Wilhelm, Dipl.-Ing., 7770 Überlingen, DE

⑯ Für die Beurteilung der Patentfähigkeit
in Betracht gezogene Druckschriften:
DE 36 00 763 A1
DE 28 11 448 A1
US 49 01 565

⑯ Inertiale Meßeinheit für drei zueinander orthogonale Achsen zur Verwendung in hochbeschleunigten Flugkörpern oder Geschossen

⑯ Eine inertiale Meßeinheit (16) mit Drehgeschwindigkeits-Sensoren für drei zueinander orthogonale Achsen (14, 18, 20) zur Verwendung in hochbeschleunigten Flugkörpern oder Geschossen (12) enthält einen zweiachsigen mechanischen Kreisel (22) mit einer Drallachse (24) und dazu und zueinander senkrechten ersten und zweiten Eingangssachsen (18, 20) und einen optischen Drehgeschwindigkeits-Sensor (26), dessen Eingangsachse (28) parallel zu der Drallachse (24) des mechanischen Kreisels (22) ist.

DE 42 34 026 C 1

Beschreibung

Die Erfindung betrifft eine inertiale Meßeinheit für drei zueinander orthogonale Achsen zur Verwendung in Flugkörpern mit einem optischen Drehgeschwindigkeits-Sensor (26) und mechanischen, inertialen Sensormitteln zur Messung der Flugkörper-Bewegung um zwei zu der Eingangsachse des optischen Drehgeschwindigkeits-Sensors senkrechte Achsen.

Zur Navigation und Flugregelung sind inertiale Meßeinheiten bekannt, die auf Lageänderungen gegenüber dem inertialen Raum ansprechen. Solche Meßeinheiten messen Drehgeschwindigkeiten oder die Lage um drei zueinander orthogonale Eingangsachsen. Es sind Meßeinheiten dieser Art bekannt, die mit mechanischen Kreiseln aufgebaut sind. Solche mechanische Kreisel können von dynamisch abgestimmten Kreiseln gebildet sein. Bei Verwendung von mechanischen Kreiseln, z. B. zwei dynamisch abgestimmten Kreiseln mit je zwei Eingangsachsen, ist wenigstens einer der Kreisel mit seiner Drallachse senkrecht zu der Längsachse des Flugkörpers oder Geschosses angeordnet. In Richtung dieser Längsachse treten hohe Beschleunigungen auf. Dadurch kann infolge Masseunwucht des Kreiselrotors eine unerwünscht hohe Drift dieses Kreisels auftreten.

Es sind optische Drehgeschwindigkeits-Sensoren beispielsweise in Form von Faser- oder Laserkreiseln bekannt. Solche optischen Drehgeschwindigkeits-Sensoren beruhen auf dem Sagnac-Effekt. Sie enthalten einen in einer Ebene verlaufenden geschlossenen Lichtweg und sprechen auf Drehgeschwindigkeiten um eine zu der besagten Ebene senkrechte Eingangsachse an. Eine mit drei solchen optischen Drehgeschwindigkeits-Sensoren aufgebaute Meßeinheit erfordert ein recht großes Einbauvolumen. Die durch den Sagnac-Effekt erhaltenen optischen Wegdifferenzen sind proportional der von dem Lichtweg umschlossenen Fläche.

Der Aufbau der inertialen Meßeinheit in einheitlicher Technik, als entweder nur mit mechanischen Kreiseln oder nur mit optischen Drehgeschwindigkeits-Sensoren, hat den weiteren Nachteil, daß die Ausrichtung der verschiedenen Sensoren zueinander recht aufwendig ist.

Durch die US-PS 4 901 565 ist eine inertiale Meßeinheit für Flugkörper bekannt, die aus einem optischen Drehgeschwindigkeits-Sensor zur Messung der Rollgeschwindigkeit und zwei mechanischen, inertialen Sensoren, nämlich zwei micromechanischen Drehbeschleunigungs-Sensoren besteht. Aus diesen Sensoren soll eine nach Art einer integrierten Schaltung aufgebaute Meßeinheit geschaffen werden.

Der Erfindung liegt die Aufgabe zugrunde, eine inertiale Meßeinheit zu schaffen, die hohe Beschleunigungen längs einer vorgegebenen Achse aushält, möglichst kompakt ist und auch bei hohen Beschleunigungen längs der besagten Achse nur geringe Drift aufweist.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß zur Verwendung in hochbeschleunigten Flugkörpern oder Geschossen die mechanischen, inertialen Sensorsmittel von einem zweiaxisigen, mechanischen Kreisel gebildet sind, dessen Drallachse parallel zu der Eingangsachse des optischen Drehgeschwindigkeits-Sensors angeordnet ist.

Dabei kann die Meßeinrichtung in den Flugkörper oder das Geschöß mit der Drallachse parallel zur Längsachse des Flugkörpers oder Geschosses eingebaut sein.

Auf diese Weise ist der mechanische Kreisel gegen die in Richtung der Längsachse des Flugkörpers oder Geschosses wirkende hohe Beschleunigung weitgehend

unempfindlich. Es tritt keine Drift des Kreisels infolge Masseunwucht auf, auf welche die Beschleunigung wirkt. Der mechanische Kreisel erfaßt die Drehgeschwindigkeiten um zwei zur Drallachse des Kreisels und damit der Längsachse des Flugkörpers senkrechte Achsen. Der optische Drehgeschwindigkeits-Sensor erstreckt sich im wesentlichen in einer zur Flugkörperlängsachse senkrechten Ebene und bildet einen ring- oder scheibenförmigen Bauteil. Der eine optische Drehgeschwindigkeits-Sensor erfordert daher nur ein geringes Einbauvolumen. Der optische Drehgeschwindigkeits-Sensor kann erforderlichenfalls den gesamten Innenquerschnitt des Flugkörpers oder Geschosses ausfüllen oder umschließen, so daß sich eine große umschlossene Fläche und damit bestmögliche Genauigkeit ergibt. Der optische Drehgeschwindigkeits-Sensor ist in Richtung der Beschleunigung sehr stabil. Der optische Drehgeschwindigkeits-Sensor erfaßt die Drehgeschwindigkeit um die Drallachse des mechanischen Kreisels und damit um die Längsachse des Flugkörpers oder Geschosses.

Ein Ausführungsbeispiel der Erfindung ist in der Figur dargestellt und im folgenden beschrieben.

Die Figur zeigt schematisch einen Längsschnitt eines Flugkörpers oder Geschosses in einem Abschußrohr.

In der Fig. ist mit 10 ein Abschußrohr bezeichnet. In dem Abschußrohr 10 sitzt ein im wesentlichen zylindrischer Flugkörper oder ein Geschöß 12. Die Längsachse des Flugkörpers oder Geschosses ist mit 14 bezeichnet. In dem Flugkörper oder Geschöß 12 sitzt eine inertiale Meßeinheit 16. Die inertiale Meßeinheit 16 mißt u. a. die Drehgeschwindigkeiten des Flugkörpers 12 um die Flugkörperlängsachs 14 und um zwei zu der Flugkörperlängsachse 14 und zueinander senkrechte Eingangsachsen 18 und 20. Die Eingangsachse 18 ist dabei in der Papierebene der Figur dargestellt. Die Eingangsachse 20 liegt dann senkrecht zur Papierebene in der Figur.

Der Flugkörper 12 ist starken Beschleunigungen in Richtung seiner Längsachse 14 unterworfen.

Die Meßeinheit 16 enthält einen dynamisch abgestimmten, zweiachsigen Kreisel 22. Die Drallachse 24 des Kreisels 22 fällt mit der Längsachse 14 des Flugkörpers 12 zusammen. Die beiden Eingangsachsen des Kreisels 22 stehen senkrecht auf der Drallachse 24 und sind zueinander senkrecht. Diese Eingangsachsen bilden die beiden Eingangsachsen 18 und 20 der Meßeinheit.

Zur Messung der Drehgeschwindigkeit des Flugkörpers 12 um die Längsachse 14 ist ein optischer Drehgeschwindigkeits-Sensor 26 vorgesehen. Der optische Drehgeschwindigkeits-Sensor 26 ist ring- oder scheibenförmig. Der optische Drehgeschwindigkeits-Sensor erstreckt sich senkrecht zu der Längsachse 14 des Flugkörpers. Die Eingangsachse 28 des optischen Drehgeschwindigkeits-Sensors 26 fällt ebenfalls mit der Längsachse 14 des Flugkörpers 12 zusammen. Der optische Weg des optischen Drehgeschwindigkeits-Sensors 26 verläuft längs der Innenfläche der Flugkörperzelle 30. Dieser optische Weg umschließt daher eine optimal große Fläche. Die Meßeinheit 16 mit dem dynamisch abgestimmten Kreisel 22 und dem optischen Drehgeschwindigkeits-Sensor 26 ist sehr kompakt und raumsparend. Der Kreisel 22 ist in Richtung der Beschleunigung sehr stabil. Die Beschleunigung in Richtung der Längsachse 14 führt auch bei Vorhandensein einer Unwucht des Kreisels 22 nicht zu einer Drift. Auch der optische Drehgeschwindigkeits-Sensor ist in Richtung der Beschleunigung sehr stabil.

Hinter dem optischen Drehgeschwindigkeits-Sensor

26 sitzt die Betriebselektronik 32 der Meßeinheit 16.
Dahinter ist eine Schnittstelle 34 angeordnet.

Patentanspruch

5

Inertiale Meßeinheit für drei zueinander orthogonale Achsen zur Verwendung in Flugkörpern mit einem optischen Drehgeschwindigkeits-Sensor (26) und mechanischen, inertialen Sensormitteln zur Messung der Flugkörper-Bewegung um zwei zu 10 der Eingangsachse des optischen Drehgeschwindigkeits-Sensors senkrechte Achsen, dadurch gekennzeichnet, daß zur Verwendung in hochbeschleunigten Flugkörpern oder Geschossen die mechanischen, inertialen Sensormittel von einem 15 zweiachsigen, mechanischen Kreisel gebildet sind, dessen Drallachse parallel zu der Eingangsachse des optischen Drehgeschwindigkeits-Sensors angeordnet ist.

20

Hierzu 1 Seite(n) Zeichnungen

25

30

35

40

45

50

55

60

65

Invention Disclosure No. D- 1509

Received Law Department

AAI CORPORATION

RECORD AND DISCLOSURE OF INVENTION

Figure 5: ABE System Overview

READ AND UNDERSTOOD BY:

Witness: J.C. Vitz Date 5/19/03
Witness: John J. Johnson Date 5/19/03
(Witness to this written disclosure)

INVENTED BY:

Inventor: James J. Johnson Date 5/19/03
Inventor: John J. Johnson Date 5/19/03
Inventor: Ray J. McCall Date 5/19/03
Inventor: Craig C. Clegg Date 5/19/03
Page 20 of 31 Craig Clegg Date 5/19/03

Invention Disclosure No. D-1501

Received Law Department

AAI CORPORATION

RECORD AND DISCLOSURE OF INVENTION

Figure 6:
MEASURING MIRROR ALIGNMENT
WITH AUTOCOLLIMATOR

READ AND UNDERSTOOD BY:

Witness: J. C. Whit Date 5/19/03

Witness: John M. Date 5/19/03

(Witness to this written disclosure)

INVENTED BY:

Inventor: Jones Date 5/19/03
Inventor: James J. Jones Date 5/19/03

Inventor: Jay T. M. G. Date 5/19/03
Inventor: Jay T. M. G. Date 5/19/03
Page 21 of 31 Allen Elchart Date 5/19/03
Coy Smith Date 5/19/03

