Induction Proof and Loop Invariants

Mathematical Induction

- First Principle
- Second Principle

The First Principle of Mathematical Induction

Induction hypothesis

P(a)

 $\forall k \geq a$

 $(P(k) \to P(k+1))$

 $\forall n \geq a \qquad P(n)$

Induction basis
Induction step

• Show that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \quad n \ge 1.$

? What is P(n)? What is a?

- What is I (ii): What is u.
- Induction Basis

Example

- Induction Step
 - · Induction hypothesis

The Second Principle of Mathematical Induction

$$\forall a \le k \le b, \quad P(k)$$
 Induction basis
$$\frac{\forall k \ge b, \quad (\forall a \le j \le k, P(j) \to P(k+1))}{\forall n \ge a, \quad P(n)}$$
 Induction step

Induction hypothesis

Example

```
double fibRecursive(int n) {
    double ret;
    if (n<2)
        ret = (double)n;
    else
        ret = fibRecursive(n-1) +
            fibRecursive(n-2);
    return ret;
}

How many additions in terms of n?

Assume the total additions is g(n).

g(n) = 0, n = 0, 1

g(n) = g(n-1) + g(n-2) + 1, n \ge 2
```

Example

- Define $f_n = \begin{cases} n, & n = 0,1 \\ f_{n-1} + f_{n-2}, & n \ge 2 \end{cases}$
- Show that $f_n = \frac{1}{\sqrt{5}} [\phi^n (-\phi)^{-n}], \quad \phi = \frac{1 + \sqrt{5}}{2}$
 - ? What is P(n)? What are a and b?
 - Induction Basis
 - Induction Step
 - · Induction hypothesis

f_n versus g(n)

n	0	1	2	3	4	5	6	7	8
f_n	0	1	1	2	3	5	8	13	21
g(n)	0	0	1	2	4	7	12	20	33
2 f _n	0	2	2	4	6	10	16	26	42

Prove by induction that

$$\forall n \ge 2, f_n \le g(n)$$

Loop Invariants

- To prove some statement S about a loop is correct. Define S in terms of a series of smaller statements, $S_0, S_1, ..., S_k$, where
 - The initial claim, S_0 , is true before loop begins
 - Initialization (compared to induction basis)
 - If $S_{i,I}$ is true before iteration i begins, then S_i will be true after iteration i is over
 - Maintenance (compared to induction step)
 - The final statement implies *S*
 - Termination (conclusion. This step is different from a typical induction proof)

Example: minArray

```
// return the value of the minimum // element of array a // n \ge 1 int minArray(int a[n]) { int m = a[0]; for (i=1; i<n; i++) if (a[i] < m) m = a[i]; return m; }
```

Show that the algorithm returns min(a[0..n-1]).

What is S_i ?

 S_i : m = min(a[0..i])

Prove Fn = fn

```
double fibIterative(int n)
{
  double Fn_1, Fn_2, Fn;
  int i;

  if (n<2)
    return ((double)n);

  Fn_2 = 0;
  Fn_1 = 1;
  for (i=2; i<=n; i++) {
    Fn = Fn_1 + Fn_2;
    Fn_2 = Fn_1;
    Fn_1 = Fn;
  }
  return Fn;
}</pre>
```

 S_i : $Fn_1=f_i$; $Fn_2=f_{i-1}$; $Fn=f_i$, i=1,2,...,n

- Initialization: Prove initial claim S₁
- Maintenance: Prove: S_{i-1} → S_i
- Termination: S = Sn

Insertion sort

```
void insertionSort(int A[0..n-1], int n)
{
  int i, j, tmp;

  for (i=1; i<n; i++) {
     tmp = A[i];
     j = i-1;
     while (j>=0 && tmp<A[j]) {
        A[j+1] = A[j];
     j--;
     }
     A[j+1] = key;
}
</pre>
```

 S_{i} : A[0..i] is a permutation of the original sub-array and sorted