

#### A. Course General Information:

| Course Code:            | CSE43                 |
|-------------------------|-----------------------|
| Course Title:           | Bioinformatics        |
| Credit Hours (Theory ): | 3                     |
| Contact Hours (Theory): | 3                     |
| Category:               | Program Elective      |
| Type:                   | Theory, Lecture + Lab |
| Prerequisites:          | CSE221: Algorithms    |
| Co-requisites:          | None                  |

#### **B.** Course Catalog Description (Content):

Introduction to molecular biology and genetics: cell structure, central dogma, regulation of gene expression, Mendel's laws; Sequencing based assays: RNA-seq, ChIP-seq; Genome assembly; Sequence alignment and multiple sequence alignment: Needleman-Wunsch algorithm, Smith-Waterman algorithm; Phylogenetics: neighbor joining, statistical phylogenetics; Biological Databases: gene ontology, protein and nucleotide databases, data retrieval; Genome annotation: gene finding, regulatory motifs; Gene expression analysis: clustering, classification; Association Mapping; Single Cell RNA-Seq: challenges and applications; Structure, alignment and function prediction of RNA and Proteins; Protein Translational Modifications; Protein-protein interactions (PPI): introduction, experimental detection, prediction, dynamic PPI, PPI network; Drug design: docking and binding; Epigenetics; Gene Editing; Topics in population genetics: mutation, fixation, selection, drift, migration; Systems biology: pathways, networks.

#### C. Course Objective:

- 1. Understand the fundamentals of molecular biology, genetics, and gene regulation.
- 2. Learn core sequencing technologies (e.g., RNA-seq, ChIP-seq) and genome assembly methods.
- 3. Apply sequence alignment and phylogenetic techniques to analyze biological data.
- 4. Use biological databases for gene, protein, and functional annotation.
- 5. Analyze gene expression data through clustering, classification, and association mapping.
- 6. Explore protein structure, function prediction, interactions, and drug design principles.
- 7. Examine advanced topics including single-cell RNA-seq, epigenetics, gene editing, and systems biology.



#### **D.** Course Outcomes:

| #   | Course Outcome                                                                                                                            | PO | Bloom's<br>Taxonomy<br>Level | Delivery<br>methods<br>and<br>activities | Assessment tools |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------|------------------------------------------|------------------|
| CO1 | Apply fundamental biological concepts and computational methods to analyze DNA, RNA, and protein sequences.                               | b  |                              |                                          |                  |
| CO2 | Utilize bioinformatics tools and databases (e.g., BLAST, GenBank, UniProt) for sequence alignment, annotation, and functional prediction. | e  |                              |                                          |                  |
| CO3 | Interpret results from genome assembly, phylogenetic analysis, and structural bioinformatics to solve biological problems.                | d  |                              |                                          |                  |
| CO4 | Design and implement basic pipelines for high-throughput biological data analysis using scripting languages and statistical approaches.   | с  |                              |                                          |                  |

#### E. Text and Reference Books:

- 1. [B1] Bioinformatics Algorithms: An Active Learning Approach Vol I&II Book by Pavel A. Pevzner and Phillip Compeau
- 2. [B2] Genome-Scale Algorithm Design Bioinformatics in the Era of High-Throughput Sequencing, Second Edition, Makinen et al.
- 3. Understanding Bioinformatics by Jeremy Baum and Marketa J. Zvelebil
- 4. A First Course in Systems Biology Book by Eberhard Voit

#### F. Lesson Plan

| Lectu<br>re | Topic                                                                 | СО  | Text<br>Book<br>Ref |
|-------------|-----------------------------------------------------------------------|-----|---------------------|
| 1           | Introduction to Molecular Biology and Bioinformatics, Introduction to | CO1 |                     |



|     | genomic technologies, History of Bioinformatics                                     |     |
|-----|-------------------------------------------------------------------------------------|-----|
| 2   | Finding Origin of Replication                                                       | CO1 |
| 3+4 | Finding Regulatory Motifs                                                           | CO2 |
| 5   | Genome Assembly: De bruijn Graphs                                                   |     |
| 6+7 | Understanding Sequencing Data, Error and Read Mapping                               |     |
| 8   | Sequence Alignment: Global and Local, Blast, Gapped Blast, Dynamic Programming      |     |
| 9   | Hidden Markov Models and Predictions, Coding Region Prediction, HMM Profile         | CO3 |
| 10  | Gene Expression Analysis: Clustering, Visualization, Dimensionality Reduction       | CO2 |
| 11  | Single Cell RNA-Seq Data and Spatial Transcriptomics Data: Data Processing Pipeline | CO2 |
|     | Mid Exam                                                                            |     |
| 7   | Phylogenetic Trees                                                                  | CO3 |
| 8   | Biological Networks                                                                 | CO4 |
| 9   | Gene Ontology and Biological Pathways                                               | CO4 |
| 10  | Evolutionary Genomics, Comparative Genomics                                         | CO4 |
| 11  | Deep Learning in Bioinformatics                                                     | CO1 |
| 12  | Drug and Protein Structures, Proteomics, Generative AI                              | CO3 |
|     | Final Exam                                                                          |     |

### **G.** Assessment Tools:

| Assessment Tools | Weightage (%) |
|------------------|---------------|
| Quiz             | 15            |
| Assignment       | 10            |
| Term Project     | 20            |
| Midterm          | 25            |
| Final            | 30            |



- **H. CO Attainment Policy:** As per the course outcome attainment policy of the Department of Computer Science and Engineering.
- I. Grading policy: As per the grading policy of the Department of Computer Science and Engineering.