Fundamentals of Programming Languages Assignment 2

Cost Semantics and Higher-Order Recursion

Guilherme João Correia Lopes fc52761

2022/2023

1 Big-step semantics with cost

Assuming all the problem context given for the questions in group 1, we have the following as the answer for each question:

A. The big step evaluation rules

B. Example of reduction

$$\underbrace{ \begin{array}{c} \frac{0 \ \hspace{-0.1cm} \downarrow^0 \ \hspace{-0.1cm} 0}{\text{succ } 0 \ \hspace{-0.1cm} \downarrow^{0+1} \text{ succ } 0} }_{\text{Succ } 0 \ \hspace{-0.1cm} \downarrow^{0+1} \text{ succ } 0} \xrightarrow{\text{B-SUCC}} \\ \frac{\text{succ } (\text{succ } 0) \ \hspace{-0.1cm} \downarrow^{0+1} \text{ succ } (\text{succ } 0)}{\text{succ } (\text{succ } 0)} \xrightarrow{\text{B-PREDSUCC}} \\ \frac{\text{*clacking space for } 2^{nd} \ \text{B-APP, see below})}{2 \ \hspace{-0.1cm} \downarrow^0 \ \hspace{-0.1cm} 2} \xrightarrow{2 \ \hspace{-0.1cm} \downarrow^{0} \ \hspace{-0.1cm} \downarrow^{0} \ \hspace{-0.1cm} \downarrow^{0+1} \ \hspace{-0.1cm} 0} \xrightarrow{\text{B-PREDSUCC}} \\ \frac{\text{*clacking space for } 2^{nd} \ \text{B-APP, see below})}{\lambda f. \lambda x. f(fx) \ \text{pred } 2 \ \hspace{-0.1cm} \downarrow^{1+0+4} \ 0} \xrightarrow{\text{B-APP}} \xrightarrow{\text{B-APP}}$$

$$* \frac{\frac{\text{B-VALUE}}{\lambda \mathbf{f}.\lambda \mathbf{x}.\mathbf{f}(\mathbf{f}\mathbf{x}) \Downarrow^{0} \lambda \mathbf{f}.\lambda \mathbf{x}.\mathbf{f}(\mathbf{f}\mathbf{x})}{\rho \mathbf{red} \Downarrow^{0} \rho \mathbf{red}} \frac{\partial \mathbf{f}.\lambda \mathbf{x}.\mathbf{f}(\mathbf{f}\mathbf{x}) \Downarrow^{0} \lambda \mathbf{x}.\mathbf{pred}(\rho \mathbf{red} \mathbf{x})}{\rho \mathbf{red} \psi^{0} \rho \mathbf{red} \psi^{0}} \frac{\partial \mathbf{f}.\lambda \mathbf{x}.\mathbf{f}(\mathbf{f}\mathbf{x}) \psi^{0} \lambda \mathbf{x}.\mathbf{pred}(\rho \mathbf{red} \mathbf{x})}{\rho \mathbf{red} \psi^{0} \rho \mathbf{red} \psi^{0}} \frac{\partial \mathbf{f}.\lambda \mathbf{x}.\mathbf{f}(\mathbf{f}\mathbf{x}) \psi^{0} \lambda \mathbf{x}.\mathbf{pred}(\rho \mathbf{red} \mathbf{x})}{\rho \mathbf{f}.\lambda \mathbf{x}.\mathbf{f}(\mathbf{f}\mathbf{x}) \rho \mathbf{red} \psi^{0} \rho \mathbf{red} \psi^{0} \rho \mathbf{red}} \frac{\partial \mathbf{f}.\lambda \mathbf{x}.\mathbf{f}(\mathbf{f}\mathbf{x}) \psi^{0} \lambda \mathbf{x}.\mathbf{f}(\mathbf{f}\mathbf{x}) \psi^$$

We can conclude that we have $applyTwice \text{ pred 2} \downarrow^k v \text{ for: cost } k = 5; \text{ value } v = 0;$

C. Evaluation returns a value

Induction on the rules for $t \downarrow n v$

1. Induction on B-VALUE: $v \downarrow^0 v$ This is straightforward, because the rule tells that every value reduces to a value in 0 steps.

2. Induction on B-APP:

Similarly to the B-SUCC, PREDZERO and B-PREDSUCC cases below, the rule B-APP tells us that $t \downarrow n^n v$ is true if it is confirmed to be the case that $t_1 \downarrow n^n \lambda x.t_1'$ and $t_2 \downarrow n^m v_2$ and $[x \to v_2]t_1' \downarrow n^0 v_1$. In this case, we have to explore 3 subcases for each premise.

(a) Subcase $t_1 \Downarrow^n \lambda x.t_1'$

This is somewhat straightforward, because t_1 reduces to $\lambda x.t_1'$, and $\lambda x.t_1'$ is a value.

(b) Subcase $t_2 \downarrow^m v_2$

This is straightforward, because t_2 reduces to a value.

(c) Subcase $[x \rightarrow v_2]t_1' \Downarrow^o v_1$

This is also straightforward, because the substitution $[x \to v_2]t_1'$ reduces to a value.

We can then see that, when applying B-APP, every subcase meets the requirements, so we can then conclude that v1 is a value and have $t \downarrow v^n v$ for B-APP.

3. Induction on B-SUCC:

The rule B-SUCC tells us that $t \downarrow^n v$ is true if it is confirmed to exist a $t1 \downarrow^n nv1$. If so, by applying the induction hypothesis, for $t1 \downarrow^n nv1$, we conclude that nv1 is a value, and so we have $t \downarrow^n v$ for B-SUCC.

4. Induction on B-PREDZERO:

The rule B-PREDZERO tells us that $t \downarrow ^n v$ is true if it is confirmed to exist a $t1 \downarrow ^n 0$. If so, by applying the induction hypothesis, for $t1 \downarrow ^n 0$, we conclude that 0 is a value, and so we have $t \downarrow ^n v$ for B-PREDZERO.

5. Induction on B-PREDSUCC:

Similarly to the B-SUCC and PREDZERO cases, the rule B-PREDSUCC tells us that $t \Downarrow^n v$ is true if it is confirmed to exist a $t1 \Downarrow^n succ\ nv1$. If so, by applying the induction hypothesis, for $t1 \Downarrow^n succ\ nv1$, we conclude that $succ\ nv1$ is a value (proved in the B-SUCC case), and so we have $t \Downarrow^n v$ for B-PREDSUCC.

D. The cost of big step and small step semantics coincide

1. Proof by rule induction:

(a) Case B-VALUE:

The rule says that a value reduces to a value in 0 steps, in other words, $v \downarrow^0 v$, so it is equal to $v \to^0 v$ according to the reflexibility of the multi-step evaluation.

(b) Case B-APP:

$$t = t_1 t_2$$
, $v = v_1$ and $k = n + m + o + 1$

The rule says that $t \downarrow k^{k} v$ only if we have the following:

- i. $t_1 \Downarrow^n \lambda x.t_1'$, so by the induction hypothesis, we have $t_1 \to^n \lambda x.t_1'$.
- ii. $t_2 \downarrow^m v_2$, so by the induction hypothesis, we have $t_2 \to^m v_2$.
- iii. $[x \to v_2]t_1' \Downarrow^o v_1$, so by the induction hypothesis, we have $[x \to v_2]t_1' \to^o v_1$.

So we can conclude that if $t \downarrow k^k v$, then $t \rightarrow k^k v$.

(c) Case B-SUCC:

 $t = succ t_1$, $v = succ nv_1$ and k = n + 1

The rule says that $t \downarrow v$ only if we have $t_1 \downarrow n nv_1$. By the induction hypothesis, having $t_1 \downarrow n nv_1$ then we have $t_1 \rightarrow n nv_1$, so we can conclude that if $t \downarrow v$, then $t \rightarrow v$.

(d) Case B-PREDZERO:

 $t = pred t_1$, v = 0 and k = n + 1

The rule says that $t \downarrow ^k v$ only if we have $t_1 \downarrow ^n 0$. By the induction hypothesis, having $t_1 \downarrow ^n 0$ then we have $t_1 \rightarrow ^n 0$, so we can conclude that if $t \downarrow ^k v$, then $t \rightarrow ^k v$.

(e) Case B-PREDSUCC:

 $t = pred t_1$, $v = nv_1$ and k = n + 1

The rule says that $t \downarrow ^k v$ only if we have $t_1 \downarrow ^n succ\ nv_1$. By the induction hypothesis, having $t_1 \downarrow ^n succ\ nv_1$ then we have $t_1 \rightarrow ^n succ\ nv_1$, so we can conclude that if $t \downarrow ^k v$, then $t \rightarrow ^k v$.

2. Proof by induction on k:

(a) Case k = 0:

The only case in which k=0 is when we have the rule B-VALUE $v\to^0 v$, which says that a value reduces to a value in 0 steps, so by induction hypothesis we conclude $v\downarrow^0 v$.

- (b) Case k = n
 - i. Case B-APP:

 $t = t_1 t_2$ and $v = v_1$

The rule says that $t \to^k v$ only if we have the following:

A. $t_1 \to^p \lambda x.t_1'$, so by the induction hypothesis, we have $t_1 \Downarrow^p \lambda x.t_1'$.

B. $t_2 \to^m v_2$, so by the induction hypothesis, we have $t_2 \Downarrow^m v_2$.

C. $[x \to v_2]t'_1 \to^o v_1$, so by the induction hypothesis, we have $[x \to v_2]t'_1 \Downarrow^o v_1$.

So we can conclude that if $t \to^k v$, then $t \Downarrow^k v$.

ii. Case B-SUCC:

 $t = succ \ t_1 \ and \ v = succ \ nv_1$

The rule says that $t \to^k v$ only if we have $t_1 \to^{k-1} nv_1$. By the induction hypothesis, having $t_1 \to^{k-1} nv_1$ then we have $t_1 \Downarrow^{k-1} nv_1$, so we can conclude that if $t \to^k v$, then $t \Downarrow^k v$.

iii. Case B-PREDZERO:

 $t = pred t_1$ and v = 0

The rule says that $t \to^k v$ only if we have $t_1 \to^{k-1} 0$. By the induction hypothesis, having $t_1 \to^{k-1} 0$ then we have $t_1 \Downarrow^{k-1} 0$, so we can conclude that if $t \to^k v$, then $t \Downarrow^k v$.

iv. Case B-PREDSUCC:

 $t = pred \ t_1 \ \text{and} \ v = nv_1$

The rule says that $t \to^k v$ only if we have $t_1 \to^{k-1} succ\ nv_1$. By the induction hypothesis, having $t_1 \to^{k-1} succ\ nv_1$ then we have $t_1 \Downarrow^{k-1} succ\ nv_1$, so we can conclude that if $t \to^k v$, then $t \Downarrow^k v$.

2 Godel's system T

Assuming all the problem context given for the questions in group 2, we have the following as the answer for each question:

A. Example of reduction

$$\frac{\text{E-RRANSITIVITY}}{\text{t} \rightarrow \text{t}' \quad \text{t}' \rightarrow^* \text{t}''}{\text{t} \rightarrow^* \text{t}''} \qquad \qquad \frac{\text{E-REFLEXIVITY}}{\text{t} \rightarrow^* \text{t}}$$

For the sake of space and readability, it will only be expressed the $t \to t'$ derivation directly, in multiple one-step transitions, correspondent to what the derivation tree using E-TRANSITIVITY and E-REFLEXIVITY rules would look like.

$$(\lambda \mathtt{n} : \mathsf{Nat.rec}(\mathtt{0}; \mathtt{x.y.}(\mathtt{succ}\ \mathtt{x}) + \mathtt{y})(\mathtt{n}))(\mathtt{succ}(\mathtt{succ}(\mathtt{succ}\ \mathtt{0}))) \to \\ \mathtt{rec}(\mathtt{0}; \mathtt{x.y.}(\mathtt{succ}\ \mathtt{x}) + \mathtt{y})(\mathtt{succ}(\mathtt{succ}(\mathtt{succ}\ \mathtt{0}))) \to \\$$

$$(\verb+succ(succ(succ(0))) + (\verb+rec(0; x.y.(succ x) + y)(succ(succ 0))) \rightarrow \\ (\verb+succ(succ(succ 0))) + (\verb+succ(succ 0)) + (\verb+rec(0; x.y.(succ x) + y)(succ 0)) \rightarrow \\ (\verb+succ(succ(succ 0))) + (\verb+succ(succ 0)) + (\verb+succ(0; x.y.(succ x) + y)(0)) \rightarrow \\ (\verb+succ(succ(succ(succ(succ(succ 0)))))))$$

B. A definition for +

 $\mathtt{sum} = \lambda \mathtt{n}.\lambda \mathtt{m}.\mathtt{rec}(\mathtt{m}; \mathtt{x}.\mathtt{y}.\mathtt{succ}\; \mathtt{y})(\mathtt{n})$

C. Typing the recursor

$$\frac{\Gamma \vdash \texttt{t}_0 : \mathsf{T} \qquad \Gamma, \texttt{x} : \mathsf{Nat}, \texttt{y} : \mathsf{T} \vdash \texttt{t}_1 : \mathsf{T} \qquad \Gamma \vdash \texttt{t} : \mathsf{Nat}}{\Gamma \vdash \mathsf{rec}(\texttt{t}_0; \texttt{x}. \texttt{y}. \texttt{t}_1)(\texttt{t}) : \mathsf{T}} \ \, \mathsf{^{T-REC}}$$

D. A typing derivation

Assuming the existence of the arithmetic expressions typing rules for numbers (e.g. T-ZERO) and of the simply typed lambda-calculus typing rules (e.g. T-VAR and T-ABS).

$$\frac{\frac{n: \mathsf{Nat} \vdash 0: \mathsf{Nat}}{x: \mathsf{Nat}, y: \mathsf{Nat}, n: \mathsf{Nat} \vdash (\mathsf{succ}\, x) + y: \mathsf{Nat}}{n: \mathsf{Nat} \vdash \mathsf{nec}(0; x.y. (\mathsf{succ}\, x) + y) (n): \mathsf{Nat}} \xrightarrow{n: \mathsf{Nat} \vdash n: \mathsf{Nat}} \frac{\mathsf{T}\text{-}\mathsf{VAR}}{\mathsf{T}\text{-}\mathsf{REC}} \times \mathsf{T}\text{-}\mathsf{Nat}} \times \mathsf{T}\text{-}\mathsf{Nat}$$

A term t is typable (or well typed) if there is some T such that t: T. With this, it is observable, that for the term S there is a T such that S: T, because, as the derivation shows, S: Nat \to Nat, in other words, $T = \text{Nat} \to \text{Nat}$.

E. Progress

[Proof] By induction on a derivation of t:T. The T-ZERO and T-ABS cases are immediate, since t in these cases is a value. For the other cases, we argue as follows.

1. Case T-SUCC:

 $t = succ t_1$ and $t_1 : Nat$

By induction hypothesis, either t_1 is a value or else there is some t'_1 such that $t_1 \to t'_1$. If t_1 is a value, then the canonical forms lemma assures us that it must be a numeric value, in which case so is t. On the other hand, if $t_1 \to t'_1$, then, by E-SUCC, succ $t_1 \to \text{succ } t'_1$.

2. Case T-VAR:

This case cannot occur, because t is closed.

3. Case T-APP:

Using the Inversion of Typing Relation, we know that $t = t_1t_2$, $\Gamma \vdash t_1 : T_{11} \to T_{12}$ and $\Gamma \vdash t_1 : T_{11}$. By induction hypothesis, either t_1 is a value or else there is some t_1' such that $t_1 \to t_1'$. By induction hypothesis, either t_2 is a value or else there is some t_2' such that $t_2 \to t_2'$. With that said, we have the following:

- (a) If $t_1 \to t_1'$, then apply E-APP1.
- (b) If t_1 is a value and $t_2 \rightarrow t_2'$, then apply E-APP2.
- (c) If t_1 is a value and t_2 is also a value, we know that $\vdash t_1 : T_{11} \to T_{12}$ and the canonical form tells that $t_1 = \lambda x.t_1$, then we apply E-APPABS.

4. Case T-REC:

 $t = rec(t_0; x.y.t_1)(t_2)$, $\Gamma \vdash t_0 : T$, Γ , x: Nat, y: $T \vdash t_1 : T$ and $\Gamma \vdash t_2 : Nat$ By induction hypothesis, either t_2 is a value or else there is some t_2' such that $t_2 \to t_2'$. If t_2 is a value, then the canonical forms lemma assures us that it must be a numeric value, in other words, either 0 or $succ\ nv$, and one of the rules E-REC-Z or E-REC-S applies to t. On the other hand, if $t_2 \to t_2'$, then, by E-REC-A, $rec(t_0; x.y.t_1)(t_2) \to rec(t_0; x.y.t_1)(t_2')$.

F. Preservation

[Proof] By induction on a derivation of t:T. At each step of the induction, we assume that the desired property holds for all subderivations (i.e., that if s:S and $s\to s'$, then s':S whenever s:S is proved by a subderivation of the present one) then and proceed by case analysis on the final rule in the derivation.

1. Case T-ZERO:

t = 0 and T = Nat

If the last rule in the derivation is T-ZERO, then we know from the form of this rule that t must be a value and T must be: Nat. But if t is a value, then it cannot be the case that $t \to t'$ for any t', and the requirements of the theorem are vacuously satisfied.

2. Case T-SUCC:

 $t = succ t_1$, $T = Nat and t_1 : Nat$

By inspecting the evaluation rules, we see that there is just one rule, E-SUCC, that can be used to derive $t \to t'$. The form of this rule tells us that $t_1 \to t'_1$. Since we also know t_1 : Nat, we can apply the induction hypothesis to obtain t'_1 : Nat, from which we obtain $succ(t'_1)$: Nat, i.e., t': T, by applying rule T-SUCC.

3. Case T-VAR:

t = x and x : T

If the last rule in the derivation is T-VAR, then we know from the form of this rule that t must be a value and T must be : T. But if t is a value, then it cannot be the case that $t \to t'$ for any t', and the requirements of the theorem are vacuously satisfied.

4. Case T-ABS:

$$t = \lambda x : T_1.t_2$$
, $T = T_1 \rightarrow T_2$ and $t_2 : T_2$

If the last rule in the derivation is T-ABS, then we know from the form of this rule that t must be a value and T must be : $T_1 \rightarrow T_2$. But if t is a value, then it cannot be the case that $t \rightarrow t'$ for any t', and the requirements of the theorem are vacuously satisfied.

5. Case T-APP:

If the last rule in the derivation is T-APP, then, using the Inversion of Typing Relation, we know that $t=t_1t_2$, $T=T_{12}$, $\Gamma\vdash t_1:T_{11}\to T_{12}$ and $\Gamma\vdash t_2:T_{11}$. By inspecting the evaluation rules, we find that there are three rules, E-APP1, E-APP2 and E-APPABS, that can be used to derive $t\to t'$.

- (a) E-APP1: $t_1 \to t_1'$, $t' = t_1't_2$ Since we know $\Gamma \vdash t_1 : \mathsf{T}_{11} \to \mathsf{T}_{12}$, we can apply the induction hypothesis to obtain $\Gamma \vdash t_1' : \mathsf{T}_{11} \to \mathsf{T}_{12}$, from which we obtain $\Gamma \vdash t_1't_2 : \mathsf{T}$, i.e., $t' : \mathsf{T}$, by applying rule T-APP.
- (b) E-APP2: $t_2 \to t_2'$, $t' = v_1 t_2'$ Since we know $\Gamma \vdash t_2 : T_{11}$, we can apply the induction hypothesis to obtain $\Gamma \vdash t_2' : T_{11}$, from which we obtain $\Gamma \vdash v_1 t_2' : T$, i.e., t' : T, by applying rule T-APP.
- (c) E-APPABS: $\mathbf{t}' = \Gamma \vdash [\mathbf{x} \to \mathbf{t}_2]\mathbf{t}_1'$ We know that $\vdash t_1 : \mathsf{T}_{11} \to \mathsf{T}_{12}$ and the canonical form tells that $t_1 = \lambda x.t_1'$ $\Gamma, \mathbf{x} : \mathsf{T}_{11} \vdash \mathbf{t}_1' : \mathsf{T}_{12}$ t_2 is a value $\Gamma \vdash \mathbf{t}_2 : \mathsf{T}_{11}$

We obtain $\Gamma \vdash [x \to t_2]t'_1$: T, i.e., t': T, by applying the Preservation of Types Under Substitution, in which its result preserves the type T.

6. Case T-REC:

 $t = rec(t_0; x.y.t_1)(t_2)$, $\Gamma \vdash t_0 : T$, Γ, x : Nat, $y : T \vdash t_1 : T$ and $\Gamma \vdash t_2 : Nat$ By inspecting the evaluation rules, we see that there are three rules, E-REC-A, E-REC-Z and E-REC-S, that can be used to derive $t \to t'$.

- (a) E-REC-A: $\mathbf{t}_2 \to \mathbf{t}_2'$, $\mathbf{t}' = \mathtt{rec}(\mathbf{t}_0; \mathbf{x}.\mathbf{y}.\mathbf{t}_1)(\mathbf{t}_2')$ Since we know $\Gamma \vdash t_2$: Nat, we can apply the induction hypothesis to obtain $\Gamma \vdash t_2'$: Nat, from which we obtain $\mathtt{rec}(\mathbf{t}_0; \mathbf{x}.\mathbf{y}.\mathbf{t}_1)(\mathbf{t}_2')$: T, i.e., \mathbf{t}' : T, by applying rule T-REC.
- (b) E-REC-Z: $t_2 = 0$, $t' = t_0$ If $t \to t'$ is derived using E-REC-Z, then from the form of this rule we see that t_2 must be 0 and the resulting term t' is t_0 . This mean we are finished, since we know (by de assumptions of the T-REC case) that t_0 : T, which is what we need.
- (c) E-REC-S: $t_2 = succ\ nv,\ t' = \Gamma \vdash [x \to nv][y \to s]t_1$ If $t \to t'$ is derived using E-REC-S, then from the form of this rule we have the following:
 - i. First Substitution:

 $\Gamma, \mathtt{x} : \mathsf{Nat} \vdash \mathtt{t_1} : \mathsf{T}$

 $t_2 = \mathtt{succ} \ \mathtt{nv} \ \mathtt{and} \ \Gamma \vdash \mathtt{t_2} : \mathsf{Nat}$

We obtain $\Gamma \vdash [x \to nv]t_1$: T, i.e., t': T, by applying the Preservation of Types Under Substitution, in which its result preserves the type T.

ii. Second Substitution:

Assuming t' to be the result of the first substitution.

 $\Gamma, y : T \vdash t' : T$

 $s = rec(t_0; x.y.t_1)(nv)$ and s: T

We obtain $\Gamma \vdash [y \to s]t'$: T, i.e., t'': T, by applying the Preservation of Types Under Substitution, in which its result preserves the type T.