6. FUNCTIONAL AND PERFORMANCE TESTING

Date	28 June 2025	
Team ID	LTVIP2025TMID35678	
Project Name	Pattern Sense: Classifying Fabric Patterns Using	
	Deep Learning	
Maximum Marks	Marks	

6.1 Performance Testing:

In this phase, we evaluated the performance and reliability of our Pattern Sense model using key metrics such as training accuracy, validation accuracy, and fine-tuning results. Functional testing verified whether the CNN model correctly classifies fabric patterns into predefined categories (striped, plain, polka-dotted, and checked). Performance testing focused on the accuracy of the model and improvements achieved after fine-tuning.

We used TensorFlow/Keras to build and evaluate the model. The CNN architecture included multiple convolutional and pooling layers followed by dense layers with dropout to prevent overfitting. The model was trained on a labeled dataset of fabric pattern images, and the results were tracked using graphs and logs.

S.No.	Parameter	Values	Screenshot	
1.	1. Model Summary -The model includes: • Input Layer (224x224x3)		model.summary() ™ Model: "sequential"	
		 3 Convolutional Layers + ReLU + MaxPooling Flatten Dense Layer (128 units) + Dropout Output Layer (4 classes, Softmax) 	Layer (type) Output Shaper conv2d (Comv00) (tune, 255, 255, 325) 856 mac_pooling2d (NumPooling20) (tune, 127, 127, 32) 0 conv2d (Comv00) (tune, 127, 127, 32) 0 exception (tune) (tune, 127, 127, 32) 4,128 mac_pooling2d (tunePooling20) (tune, 63, 63, 52) 0 dropout (Dropout) (tune, 63, 63, 52) 0 conv2d (Comv00) (tune, 63, 63, 52) 4,128 mac_pooling2d (TunePooling20) (tune, 63, 63, 52) 0 dropout (Dropout) (tune, 31, 31, 32) 1 dropout (Dropout) (tune, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32	

_		T =	
2.	Accuracy	Training Accuracy: 95.6%	
		 Validation Accuracy: 92.8% 	
		·	
			Training and Validation Accuracy
			0.300 -
			0.275
			0.250
			0.225 -
			0.200 -
			0.175
			0.150 - Training Accuracy
			0.125 Validation Accuracy 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
	Fine Tunning Decult/ if	a Malidation Assumption of the fine	0.0 2.3 3.0 7.3 10.0 12.3 13.0 17.3
3.	Fine Tunning Result(if	Validation Accuracy after fine-	
	Done)	tuning: 94.2 % (using data	
		augmentation + lower learning rate	
		for fine-tuning pre-trained layers)	
			0.95
			· •
			0.92
			0.89
			0.86
			0.83
			0.80
			1 2 3 4 5 6 7 8 9 10
			Epoch
		1	