Problem Framing

	qualitative	quantitative	question
Current State	too many fraudulent transactions => less customers => less revenue => loss to the bank	10% fraudulent transactions => 5% less customers => 5% loss in revenue	what is the avg. number of fraudulent transactions in the current situation and what we can do to decrease the number?
Objectives	 build a model that can detect fraud transaction before it gets completed decrease fraudulent transaction => improve customer experience => more revenue 	reduce fraudulent transaction by at least 5% => 5% more revenue	How we can detect the fraudulent transactions?
Benefit/ Cost Tradeoff and Prioratizati on	 cost of errors: FN => Fraudulent transaction marked as non-fraudulent => risk increases => bad user experience => loss of revenue FP => non-fraudulent transaction marked as fraudulent => less revenue	cost-benefit matrix c(TP) c(FP) c(FN) c(TN) 1% TP => + 0.5% revenue 1% FN => 1% very bad experiences => 0.1% risk of customers' assets => 10% less revenue 1% FP => -0.5% revenue 1% TN => no significant impact on revenue	what is the cost of errors/benefits of correct predictions and why?

Constraints	can only afford a small FN percent => very small percent of very bad user experience => limited risk of customers' assets => limited loss of revenue	at most 10% FN => 1% very bad experiences => 0.1% churn => 0.1% risk of revenue loss => acceptable risk for 5% potential upside in revenue	what are the acceptable risks/budgets and why?
Desired State	 benefit: significantly lesser fraudulent transactions => significantly better user experience => significantly more customers => significantly better revenue cost: very few false negatives => limited risk of very bad user experience => limited risk of customers' assets => limited risk to revenue 	 at least 50% decrease in fraudulent transaction s (from 20% to 10%) => 5% more revenue at most 10% false negatives => 1% very bad experience => 0.1% risk to revenue 	what is the desired outcome (benefits/costs) that we want to see and why?

Why ML

	qualitative	quantitative	question
best non-ML alternative hypothesis	classify based on amount of money transaction => too many FP and FN => very bad user experience => lesser customer => loss of revenue	50% FN 70% FP => not cleaning enough fraudulent transactions and causing more complaints for misplacing fraudulent transactions as genuine => 5% revenue loss risk	what are the non-ML alternatives and why are they problematic? (pains/missed gains)?
ML value proposition hypothesis	much fewer FP and FN => much better user experience => much better revenue	10% FN 50% FP => 50% decrease in fraudulent transactions (from 20% to 10%) at the expense of 1% bad	what are the advantages (pain relievers/gain creators) of ML solution and why?

		engagements => 5% increase in revenue at the expense of 0.1% risk	
ML feasibility hypothesis	 data: labelled samples of each person's transaction data model: state of the art review suggests promising candidates are available 	 data: around five thousand samples model: state of the art claim solutions with 10% FN 20% FP 	what data and model are good candidates and why?

ML Solution Design

	choices	metrics	experiment
data	(labelled) money transaction data	label imbalance	 randomized 70/15/15 train/validatio n/test split
model	pr(fraud)	AUCPR (Precision recall curve)	rule based heuristic tf-idf + logistic regression tf-idf + random forest BERT + logistic regression train these benchmark models (from simpler to more complex) using train data. validate and tune using validation data. select the model with best AUCPR on test data
action	if pr(fraud) >	precision	• choose a

	threshold: auto take down	recallconfusion matrix	threshold to maximize the recall (estimated reward) subject to recall > 90%
reward	 decrease in fraudulent transaction cost of misclassificat ion 	 % decrease in fraud % increase in daily active users 	shadow testA/B test