Numerical Analysis FMN011

Carmen Arévalo
Lund University
carmen@maths.lth.se

Lecture 2

Solving nonlinear equations

The annuity-due equation is $A = \frac{P}{I/12} \left((1 + \frac{I}{12})^N - 1 \right)$

P monthly deposit, I annual interest, A amount after N deposits

You save Kr. 300 per month; what interest rate would allow you to have Kr. 50.000 after 12 years (N=144)?

$$A(I) = \frac{300}{I/12} \left((1 + \frac{I}{12})^{144} - 1 \right) = 50.000$$

$$A(0.04) = 55.331;$$

$$A(0.03) = 51.922;$$

A(0.02) = 48.779.

Answer lies in [0.02, 0.03].

A(0.025) = 50.319, answer is in [0.020, 0.025].

After a few more tries, A(0.024)=50.006, so you must find a bank that will give you a yearly interest rate of 2.4%

Bisection method

Problem: find a zero of a continuous f(x)

First bracket: [1,2], where f(1) < 0, f(2) > 0

First bracket: [1,2], where f(1) < 0, f(2) > 0

Midpoint: x = 1.5, $f(1.5) < 0 \Rightarrow [1.5, 2]$

First bracket: [1,2], where f(1) < 0, f(2) > 0

Midpoint: x = 1.5, $f(1.5) < 0 \Rightarrow [1.5, 2]$

Midpoint: x = 1.75, $f(1.75) > 0 \Rightarrow [1.5, 1.75]$

[1,2], where f(1) < 0, f(2) > 0

Midpoint: x = 1.5, $f(1.5) < 0 \Rightarrow [1.5, 2]$

Midpoint: x = 1.75, $f(1.75) > 0 \Rightarrow [1.5, 1.75]$

Midpoint: x = 1.625, $f(1.625) > 0 \Rightarrow [1.5, 1.625]$

Approximate solution: x = 1.5625

Bisection algorithm

```
function [c,possible_err,res] = bisection(f,a,b,tol)
% f(a), f(b) must have opposite signs
% x is the approximate solution
while (b-a)/2>tol
    c = (a+b)/2; \% midpoint
    if f(c)*f(a)>0
        a=c;
    elseif f(c)*f(b)>0
        b=c;
    else break
    end
end
possible_err = (b-a)/2;
res = f(c);
```

Bisection theorem

Suppose

- f is continuous in [a,b]
- f(r) = 0 for some $r \in [a, b]$
- f(a) and f(b) have opposite signs

If $\{c_n\}$ is the sequence produced by the bisection method, then

$$|r - c_n| \le \frac{b_n - a_n}{2} = \frac{b - a}{2^{n+1}}$$

so
$$\lim_{n\to\infty} c_n = r$$

Initial approximation

If f(x) has several zeros in [a,b] we must use a different starting interval for each root.

Finding the initial interval can be done graphically.

Example:

Find the smallest root of $p(x) = 64x^3 - 208x^2 + 220x - 75$

Bisection algorithm in [0.7, 0.85] with $tol = 10^{-6}$ gives $p(0.750000381469726) = 6.1035 \times 10^{-6}$; $tol = 10^{-16}$ gives p(0.75) = 0.

Backward and Forward Errors

Suppose f(r) = 0 and \hat{x} approximates r.

The backward error is $|f(\hat{x})|$ and the forward error is $|r-\hat{x}|$

Example, $f(x) = x^3 - 2x + 4/3x - 8/27$, $\hat{x} = 0.6666565$, r = 2/3.

Backward error: $|f(\hat{x})|=1.110223\times 10^{-15}$ and forward error: $|r-\hat{x}|=1.0166666666\times 10^{-5}$ (usually cannot be evaluated, as we do not know the exact solution r).

The backward error is the absolute value of the residual.

Backward error vs forward error

Desirable: small backward error ⇒ small forward error

Actually, this is not always so. In this case the difficulty is due to 2/3 being a multiple root.

Notice the graph is "flat" near the multiple root.

Arévalo FMN011

12

Fixed Points

 \mathbf{x} is a fixed point of the function \mathbf{g} if $\mathbf{x} = \mathbf{g}(\mathbf{x})$

They are the points of intersection of curves y=g(x) and y=x

Fixed Point Iteration

A fixed point iteration has the form $p_{k+1} = g(p_k)$

If g is continuous and $\lim_{n\to\infty}g(p_n)=P$, then P is a fixed point of g.

Theorem

If g and g' are continuous in [a,b], $g(x) \in [a,b]$ for all $x \in [a,b]$ and $p_0 \in [a,b]$, then

- $|g'(P)| \le K < 1 \Rightarrow \{p_n\} \longrightarrow P$
- $|g'(P)| > 1 \Rightarrow \{p_n\}$ will not converge to P

Convergent Iteration

$$x - e^{-x} = 0$$
 \Rightarrow $x_{k+1} = e^{-x_k}, \ x_0 = 0$
$$g(x) = e^{-x},$$

$$g: [0,1] \to [0,1]$$

$$|g'(x)| = e^{-x} < 1 \text{ for } x > 0$$

Example: Fixed Point Iteration

Find the largest root of $16x^2 - 32x + 15 = 0$ by fixed point iteration.

Some possibilities:

1.
$$x = 16x^2 - 31x + 15$$

2.
$$x = \sqrt{32x - 15}/4$$

3.
$$x = x^2/2 + 15/32$$

4.
$$x = -15/16(x-2)$$

5.
$$x = 2 - 15/16x$$

Plot of $f(x) = 16x^2 - 32x + 15$

Take $x \in [1.2, 1.3]$

Check hypothesis

1.
$$g(x) = 16x^2 - 31x + 15$$

 $|g'(x)| = |32x - 31| > 1$

2.
$$g(x) = \sqrt{32x - 15}/4$$
 $|g'(x)| = 4/\sqrt{32x - 15} < 1$ and $g: [1.2, 1.3] \rightarrow [1.2, 1.3]$

3.
$$g(x) = x^2/2 + 15/32$$
, $|g'(x)| = |x| > 1$

4.
$$g(x) = -15/16(x-2)$$
, $g: [1.2, 1.3] \rightarrow [1.17, 1.34]$

5.
$$g(x) = 2 - 15/16x$$
 $g: [1.2, 1.3] \rightarrow [1.21, 1.28]$ and $|g'(x)| = 15/16x^2 < 1$

Fixed point method for formulations 2 and 5

$g(x) = \sqrt{32x - 15}/4$	g(x) = 2 - 15/16x
$x_0 = 1.2000$	$x_0 = 1.2000$
$x_1 = 1.2093$	$x_1 = 1.2188$
$x_2 = 1.2170$	$x_2 = 1.2308$
i i	!
$x_{12} = 1.2463$	$x_{12} = 1.2499$
$x_{13} = 1.2470$	$x_{13} = 1.2499$
:	
$x_{27} = 1.2499$	
$x_{28} = 1.2499$	
g'(1.25) = 0.8	g'(1.25) = 0.6

Stopping criteria

We would like $f(p_n) \approx 0$ and $p_n \approx p_{n-1}$

The criteria can be

- For the ordinate: $|f(p_n)| < \epsilon$
- For the abscissa:

 - for the absolute error: $|p_n-p_{n-1}|<\delta$ for the relative error: $\frac{2|p_n-p_{n-1}|}{|p_n|+|p_{n-1}|}<\delta$