CS 277, Data Mining

Topic Modeling for Text Documents

Padhraic Smyth
Department of Computer Science
Bren School of Information and Computer Sciences
University of California, Irvine

Project Progress Report 1

- Grade distribution
 - A few 9's: excellent reports
 - Many 8's: good reports, nothing outstanding
 - Many 7's: good, but could be improved, e.g., missing key information
 - Below 7: needs improvement

Project Progress Report 1

- Grade distribution
 - A few 9's: excellent reports
 - Many 8's: good reports, nothing outstanding
 - Many 7's: good, but could be improved, e.g., missing key information
 - Below 7: needs improvement
- What is required to get a top score?
 - 1. Technical progress on your project
 - Not just summarizing well-known knowledge (e.g., known algorithms)
 - Insights, figures, details: show me what you have learned so far
 - Clear that you have spent time on this project (note that spending time alone is not sufficient to get a high score)
 - 2. Clearly written report
 - Well organized, each section builds on the preceding section
 - Good use of figures and graphs
 - Goals, methods, results are clearly explained: reader is not guessing what you did
 - Appropriate level of detail (not too much...but some details are good)

TimeTable (Updated)

- Progress Report 2: now due Wednesday Feb 26th (1 week away)
 - Hand in hardcopy in class
 - AND submit electronic copy online via EEE
 - You can re-use a small amount of figures/text that you think is necessary/helpful from your earlier report, but clearly point this out. At least 80% of what you report should be new.

Final Report

- Due noon Friday March 14th (electronically to EEE)
- Will discuss the format and expectations in more detail later in the quarter

Basis of Final Grade

- Weighted combination of Assignments and Reports
 - 10% for Assignment 1
 - 20% for each of the Progress Reports
 - 30% for the Final Report

Topic Models for Text

Examples of Large Text Corpora

Unsupervised Learning from Text

- Large collections of unlabeled documents...
 - Web
 - Digital libraries
 - Email archives, etc
- Often wish to organize/summarize/index/tag these documents automatically
- We will look at probabilistic techniques for clustering and topic extraction from sets of documents

Problems of Interest

- What topics do these documents "span"?
- Which documents are about a particular topic?
- How have topics changed over time?
- What does author X write about?
- Who is likely to write about topic Y?
- Who wrote this specific document?
- and so on.....

"Bag of Words" Matrix for Documents

	water	rights	cattle	hunting	land	use	dust	maize	chumash	navajo	reservation	war	disease
doc1	1	1			2								
doc2			1	4	1								1
doc3	2	1	1		1	1	1						
doc4			2		1						1		
doc5	1	1	1	1	3	1	1						
doc6		1		2									
doc7									1	1	1	3	
doc8					1			1	1				
doc9										1	1		
doc10									1		1		1

Statistical Topic Models for Count Data

- Simple hypothetical "generative" models for sparse counts
 - A description of how the data might have been generated
 - Simple in nature ("all models are wrong but some are useful")
 - Can handle counts, metadata, etc
- Learning the parameters given the data
 - Generative model = P(D | θ): how likely data D are given the parameters θ
 - Use Bayes rule to get P(θ | D): how likely parameters θ are given data D

Statistical Topic Models for Count Data

- Simple hypothetical "generative" models for sparse counts
 - A description of how the data might have been generated
 - Simple in nature ("all models are wrong but some are useful")
 - Can handle counts, metadata, etc
- Learning the parameters given the data
 - Generative model = P(D | θ): how likely data D are given the parameters θ
 - Use Bayes rule to get P($\theta \mid D$): how likely parameters θ are given data D
- Key Features
 - Multimembership: rows can "belong" to multiple factors
 - Leverage sparsity: computational advantages
 - Can build in dependence on metadata (e.g., document authors)

Modeling Word Frequencies given Count Data

Tossing a die: 6 sides, equally likely, memoryless

Parameters of a "model" for a die:

A vector of 6 probabilities $\theta_1, ... \theta_6$ sum to 1, $\Sigma \theta = 1$

Modeling Word Frequencies given Count Data

Tossing a die: 6 sides, equally likely, memoryless

Parameters of a "model" for a die:

A vector of 6 probabilities $\theta_1, ... \theta_6$ sum to 1, $\Sigma \theta = 1$

Same model for text?

Now we have a K-sided die, where K could be 100,000

A vector of K probabilities $\underline{\theta}$, sum to 1, $\Sigma \theta = 1$

Modeling Word Frequencies given Count Data

Tossing a die: 6 sides, equally likely, memoryless

Parameters of a "model" for a die:

A vector of 6 probabilities $\theta_1, ... \theta_6$ sum to 1, $\Sigma \theta = 1$

Same model for text?

Now we have a K-sided die, where K could be 100,000

A vector of K probabilities $\underline{\theta}$, sum to 1, $\Sigma \theta = 1$

Can learn these probabilities from a corpus, via smoothed frequency counts

Applications? detecting shifts in language usage in scientific literature, in customer complaints, in social media, etc

Topic = "Focused" Probability Distribution over Words

Word	Probability
president	0.129
roosevelt	0.032
congress	0.030
johnson	0.026
office	0.021
wilson	0.021
nixon	0.020
reagan	0.018
kennedy	0.018
•••	•••

Different Topics for Different Semantic Concepts

Word	Probability	Word	Probability
red	0.202	presiden	t 0.129
blue	0.099	roosevel	t 0.032
green	0.096	congress	0.030
yellow	0.073	johnson	0.026
white	0.048	office	0.021
color	0.030	wilson	0.021
bright	0.029	nixon	0.020
colors	0.027	reagan	0.018
brown	0.027	kennedy	0.018
••••	••••	••••	••••

Key Idea: Documents as Mixtures of Topics

```
Topic 1: search_query (0.4), precision (0.3), retrieval (0.3)
```

```
Topic 2: classification (0.5), neural_network (0.3), labels (0.2)
```

Topic 3: experiment (0.6), result (0.2), significance (0.2)

Key Idea: Documents as Mixtures of Topics

Topic 1: search_query (0.4), precision (0.3), retrieval (0.3)

Topic 2: classification (0.5), neural_network (0.3), labels (0.2)

Topic 3: experiment (0.6), result (0.2), significance (0.2)

Topic model: documents = convex combinations of Topics 1, 2, 3: e.g.,

P(Words) for Doc 1 = 0.4 * Topic 1 + 0.4 * Topic 2 + 0.2 * Topic 3

P(Words) for Doc 2 = 0.0 * Topic 1 + 0.8 * Topic 2 + 0.2 * Topic 3

Key Idea: Documents as Mixtures of Topics

Topic 1: search_query (0.4), precision (0.3), retrieval (0.3)

Topic 2: classification (0.5), neural_network (0.3), labels (0.2)

Topic 3: experiment (0.6), result (0.2), significance (0.2)

A Generative Model for Documents

- Our topic model is a simple "forward generative" model for observed data (i.e., counts of words in documents)
- We can think of it as a simulator (with pseudocode)

```
For each document in our corpus

For each word in our document

Sample a topic from P(topics | document)

Given the topic, sample a word from P(words | topic)

End

End
```


A Generative Model for Documents

- Our topic model is a simple "forward generative" model for observed data (i.e., counts of words in documents)
- We can think of it as a simulator (with pseudocode)

```
For each document in our corpus

For each word in our document

Sample a topic from P(topics | document)

Given the topic, sample a word from P(words | topic)

End

End
```

- Key points:
 - Many useful statistical models in machine learning have a very simple "forward mechanism" (a few lines of pseudocode)
 - Learning this model is essentially "inverting" this code via Bayes rule
 - The reverse "inference" step is usually much harder than the forward step!

Generative Statistical Models for Data

A Graphical Model

$$p(doc | \phi) = \Pi p(w_i | \phi)$$

Another view....

$$p(doc | \phi) = \Pi p(w_i | \phi)$$

This is "plate notation"

Items inside the plate are conditionally independent given the variable outside the plate

There are "n" conditionally independent replicates represented by the plate

Being Bayesian....

Being Bayesian....

Multiple Documents

$$p(corpus | \phi) = \Pi p(doc | \phi)$$

Different Document Types

p(w | φ , z_d) is a multinomial over words z_d is the "label" for each doc

Different Document Types

p(w | ϕ , z_d) is a multinomial over words

z_d is the "label" for each doc

Different multinomials, depending on the value of z_d (discrete)

Unknown Document Types

Now the values of z for each document are unknown - hopeless?

Unknown Document Types

Now the values of z for each document are unknown - hopeless?

Not hopeless:)

Can learn about both z and θ

e.g., EM algorithm

This gives probabilistic clustering

 $p(w \mid z=k, \phi)$ is the kth multinomial over words

Topic Model

z_i is a "label" for each <u>word</u>

$$p(w | \phi, z_i = k)$$

= multinomial over words
= a "topic"

p($z_i \mid \theta_d$) = distribution over topics that is document specific

Mixture Model Equation for Topic Models

Key Features of Topic Models

- Generative model for documents in form of bags of words
- Allows a document to be composed of multiple topics
 - More flexible than clustering which assumes 1 cluster for each document
- Completely unsupervised
 - Topics learned directly from data
 - Leverages strong dependencies at word level AND large data sets
- Learning algorithm
 - Collapsed Gibbs sampling is the method of choice
- Scalable
 - Linear in number of word tokens
 - Can be run on millions of documents

Learning the Model

- Three sets of latent variables we can learn
 - topic-word distributions ϕ
 - document-topic distributions ϑ
 - topic assignments for each word z

Options:

- $-\hspace{0.1cm}$ EM algorithm to find point estimates of φ and Θ
 - e.g., Chien and Wu, IEEE Trans ASLP, 2008
- Gibbs sampling
 - Find $p(\phi \mid data)$, $p(\theta \mid data)$, $p(z \mid data)$
 - Can be slow to converge
- Collapsed Gibbs sampling
 - Most widely used method

[See also Asuncion, Welling, Smyth, Teh, UAI 2009 for additional discussion]

Gibbs Sampling

- Say we have 3 parameters x,y,z, and some data
- Bayesian learning:
 - We want to compute $p(x, y, z \mid data)$
 - But frequently it is impossible to compute this exactly
 - However, often we can compute conditionals for individual variables, e.g.,
 p(x | y, z, data)
 - Not clear how this is useful yet, since it assumes y and z are known (i.e., we condition on them).

Gibbs Sampling 2

- Example of Gibbs sampling:
 - Initialize with x', y', z' (e.g., randomly)
 - Iterate:
 - Sample new $x' \sim P(x \mid y', z', data)$
 - Sample new y' ~ P(y | x', z', data)
 - Sample new z' ~ P(z | x', y', data)
 - Continue for some number (large) of iterations
 - Each iteration consists of a sweep through the hidden variables or parameters (here, x, y, and z)
 - Gibbs = a Markov Chain Monte Carlo (MCMC) method

In the limit, the samples x', y', z' will be samples from the true joint distribution $P(x, y, z \mid data)$

This gives us an *empirical estimate* of $P(x, y, z \mid data)$

Example of Gibbs Sampling in 2d

From online MCMC tutorial notes by Frank Dellaert, Georgia Tech

Gibbs Sampling for the Topic Model

- Recall: 3 sets of latent variables we can learn
 - topic-word distributions ϕ
 - document-topic distributions $\,artheta$
 - topic assignments for each word z

- Gibbs sampling algorithm
 - Initialize all the z's randomly to a topic, z_1 , z_N
 - Iteration
 - For i = 1,.... N
 - Sample $z_i \sim p(z_i \mid all other z's, data)$
 - Continue for a fixed number of iterations or convergence
 - Note that this is collapsed Gibbs sampling
 - Sample from p(z₁, z_N | data), "collapsing" over ϕ and θ

Review of Topic Models.....

- A topic model represents:
 - Documents as probability distributions over topics
 - Topics as probability distributions over words
- The model is learned from bag-of-words data (docs x words count matrix) using unsupervised learning
- The most commonly used learning algorithm is based on a technique called Gibbs sampling

Topic Model Learning Algorithm

- Input:
 - N documents as count vectors, number of topics T
- Output:
 - T topics, i.e., T topic-word probability vectors
 - N sets of topic weights, one per document
 - Assignment of each word in each document to 1 of T topics
- Algorithm (based on Gibbs Sampling)
 - Randomly initialize all word tokens to a topic (a number from 1 to T)
 - For each iteration
 - Sample a new topic for each word token, keeping all other assignments fixed
 - Iterate through all word tokens in all documents
 - Typically converges quickly (20 to 100 iterations)
 - Each iteration is linear in the number of word tokens

Collapsed Gibbs Sampling Equation for Topic Modeling

Word/Document counts for 16 Artificial Documents

documents

Can we recover the original topics and topic mixtures from this data?

Example of Collapsed Gibbs Sampling

Assign word tokens randomly to 2 topics:

stream	river	bank	money	loan
		0000	lacktriangle	lacktriangledown
		0000	\bullet \bullet \bullet \bullet \bullet \bullet	\bullet \circ \circ \bullet
		000000	$\circ \bullet \circ \bullet \circ$	• 0 0 0
		$\bullet \bullet \bullet \circ \bullet \circ \circ$	$\circ \bullet \bullet \circ \circ \circ$	000
		$\bullet \bullet \circ \bullet \circ \bullet \circ$	• 0	0 • 0 0 0 0 0
		$\circ \bullet \bullet \circ \bullet \bullet \bullet \bullet$	$lackbox{}{\circ}$	$\circ \circ \bullet \bullet$
0		$\circ \bullet \bullet \bullet$	\bullet \bullet \circ \circ \bullet \circ	$\circ \bullet \bullet \bullet \circ$
•	0 •	$\circ \circ \bullet \bullet \bullet \bullet$	$\circ \bullet \bullet \circ$	• • 0
•	○ ○ ●	00000	$\bullet \circ \bullet \bullet$	0 •
• 0	• • 0	• 0 0 0 0	•	\bullet \circ \circ \bullet
○ ●	$\circ \bullet \bullet$	000000	• • •	•
000	000000	\bullet \circ \bullet \bullet \circ	0	
$\circ \circ \circ \bullet \bullet \bullet$	0 • 0	\bullet \circ \circ \bullet \bullet		0
0 0	$\bullet \bullet \circ \circ \circ \bullet \bullet \bullet$	\bullet \bullet \circ \bullet \circ		
$\circ \bullet \bullet \bullet$	$\bullet \bullet \bullet \circ \circ \bullet \circ$	\bullet \circ \bullet \circ \bullet		
$\bullet \circ \bullet \bullet \circ$	\bullet \bullet \circ \circ \circ \bullet	\bullet \bullet \bullet		

After 1 iteration

stream	river	bank	money	loan
		lacktriangledown	00000	• 0 0 0 0 0
		• 0 0 0 0	$\circ \bullet \bullet \bullet \bullet \circ$	000 •
		000000	0000	0 0 • 0
		000000	• 0 0 0 0 0	000
		• • • • • •	• •	$\bullet \circ \bullet \circ \bullet \bullet \bullet$
		$\bullet \circ \bullet \circ \bullet \bullet \circ \circ$	• • •	$\bullet \circ \bullet \bullet$
•		• • • •	• • • • •	• • • •
0	• 0	• • • • •	• • • •	• • •
•	$\circ \bullet \bullet$	000000	$\circ \bullet \bullet \bullet$	• •
○ ●	0 0 0	000000	0	• 0 0 0
○ ●	• • 0		0 0 •	0
$\circ \bullet \bullet$	00000	00000	0	
\bullet \bullet \bullet \bullet \bullet	○ ● ○	000000		•
• •	0000000	$\circ \bullet \bullet \bullet \circ \bullet$		
• 0 0 0	0000 • 00	00000		
• • • • •	$\circ \bullet \circ \bullet \circ \bullet$	$\bullet \circ \bullet \bullet$		

After 4 iterations

stream	river	bank	money	loan
		$\bullet \bullet \bullet \bullet$	• • • • •	• • • • •
		$lackbox{0}$	$\bullet \circ \bullet \bullet \bullet \bullet$	• • • •
		$\circ \circ \bullet \circ \bullet \bullet \bullet$	\bullet \bullet \circ \bullet	○ ○ ○ ●
		0000000	$\circ \bullet \bullet \bullet \circ$	$\circ \bullet \circ$
		$\bullet \circ \bullet \bullet \bullet \bullet$	• •	• • • • • •
		• • • • • • •	• • •	• • • •
•		• • • •	• • • • •	• • • •
0	0 0	$\circ \bullet \circ \circ \bullet \circ$	$\bullet \circ \bullet \bullet$	• • •
•	● ○ ●	\bullet \bullet \bullet \bullet \bullet	• • • •	• •
• 0	000	$\circ \bullet \bullet \circ \circ \bullet$	0	\bullet \bullet \circ \circ
0 0	000	0 • 0 • 0 0 0	• 0 0	0
0 0 0	00000	• 0 0 0 0 0	0	
00000	0 0 0	0 • • 0 0 0		•
0 0	0000000	00000		
0 0 0 0	000000	00000		
0 0 0 0 0	000000	0000		

After 32 iterations

topic 1
stream .40
bank .35
river .25

topic 2
bank .39
money .32
loan .29

stream	river	bank	money	loan
		• • • •	• • • • •	• • • • •
			• • • • •	• • • •
		• • • • • •	• • • • •	• • •
		$\bullet \bullet \bullet \circ \bullet \bullet \bullet$	• •	• • • • • •
		•••••	• • • •	• • • •
0		lacktriangledown	• • • • •	\bullet \bullet \bullet \bullet
0	0 0	\bullet \circ \circ \bullet \circ	• • • •	• • •
0	0 0 0	$\bullet \circ \bullet \bullet \bullet$	• • • •	• •
0 0	0 0 0	$\circ \bullet \bullet \bullet \bullet$	•	• • • •
0 0	0 0 0	000 • 000	• • •	•
000	00000	$\circ \bullet \circ \bullet \bullet \bullet$	•	
00000	0 0 0	• 0 0 0 0 0		•
0 0	0000000	00000		
0000	000000	00000		
00000	000000	0000		

Computational Aspects

- Convergence
 - In the limit, samples x', y', z' are from P(x, y, z | data)
 - How many iterations are needed?
 - Cannot be computed ahead of time
 - Early iterations are discarded ("burn-in")
 - Typically monitor some quantities of interest to monitor convergence
 - Detecting convergence in Gibbs/MCMC is a tricky issue!

- Complexity per iteration
 - Linear in number of hidden variables and parameters
 - Times the complexity of generating a sample each time

Convergence Example

(from Newman et al, JMLR, 2009)

The New York Times

music	book	art museum show exhibition artist artists paintings painting century works	game	show
band	life		knicks	film
songs	novel		nets	television
rock	story		points	movie
album	books		team	series
jazz	man		season	says
pop	stories		play	life
song	love		games	man
singer	children		night	character
night	family		coach	know
theater play production show stage street broadway director musical directed	clinton bush campaign gore political republican dole presidential senator house	stock market percent fund investors funds companies stocks investment trading	restaurant sauce menu food dishes street dining dinner chicken served	budget tax governor county mayor billion taxes plan legislature fiscal

Each box contains the high-probability words from each topic

Note that this is entirely unsupervised – no human labeling, just the words

Example from Hoffman et al, 2013

3 of 300 example topics (from TASA Corpus)

Example from Mark Steyvers

TOPIC 82				
WORD PROB.				
PLAY	0.0601			
PLAYS	0.0362			
STAGE	0.0305			
MOVIE	0.0288			
SCENE	0.0253			
ROLE	0.0245			
AUDIENCE	0.0197			
THEATER	0.0186			
PART	0.0178			
FILM	0.0148			
ACTORS	0.0145			
DRAMA	0.0136			
REAL	0.0128			
CHARACTER	0.0122			
ACTOR	0.0116			
ACT	0.0114			
MOVIES	0.0114			
ACTION	0.0101			
SET	0.0097			
SCENES	0.0094			

TOPIC 77			
WORD	PROB.		
MUSIC	0.0903		
DANCE	0.0345		
SONG	0.0329		
PLAY	0.0301		
SING	0.0265		
SINGING	0.0264		
BAND	0.0260		
PLAYED	0.0229		
SANG	0.0224		
SONGS	0.0208		
DANCING	0.0198		
PIANO	0.0169		
PLAYING	0.0159		
RHYTHM	0.0145		
ALBERT	0.0134		
MUSICAL	0.0134		
DRUM	0.0129		
GUITAR	0.0098		
BEAT	0.0097		
BALLET	0.0096		

TOPIC 166			
WORD	PROB.		
PLAY	0.1358		
BALL	0.1288		
GAME	0.0654		
PLAYING	0.0418		
HIT	0.0324		
PLAYED	0.0312		
BASEBALL	0.0274		
GAMES	0.0250		
BAT	0.0193		
RUN	0.0186		
THROW	0.0158		
BALLS	0.0154		
TENNIS	0.0107		
HOME	0.0099		
CATCH	0.0098		
FIELD	0.0097		
PLAYER	0.0096		
FUN	0.0092		
THROWING	0.0083		
PITCHER	0.0080		

Topic Modeling on different text sources ...

Collection	# docs	Description
New York Times	1,500,000	News articles from New York Times
Austen	1,400	The six Jane Austen novels, broken up into 100-line sections
Blogs	4,000	Blog entries harvested from Daily Kos
Bible	1,200	Chapters in the bible (KJV)
Police Reports	250,000	Police accident reports from North Carolina
CiteSeer	750,000	Abstracts from research publications in computer science and engineering
Search Queries	1,000,000	Queries issued to web search engine
Enron	250,000	Enron emails seized by the US Government for the federal case against the company

... sample topics

Collection	Sample Topic
New York Times	[WMD] IRAQ iraqi weapon war SADDAM_HUSSEIN SADDAM resolution UNITED_STATES military inspector U_N UNITED_NATION BAGHDAD inspection action SECURITY_COUNCIL
Austen	[SENTIMENT] felt comfort feeling feel spirit mind heart ill evil fear impossible hope poor distress end loss relief suffering concern dreadful misery unhappy
Blogs	[ELECTIONS] november poll house electoral governor polls account ground republicans trouble
Bible	[COMMANDS] thou thy thee shalt thine lord god hast unto not shall
Police Reports	[RAN OFF ROAD] v1 off road ran came rest ditch traveling struck side shoulder tree overturned control lost
CiteSeer	[GRAPH THEORY] graph edge vertices edges vertex number directed connected degree coloring subgraph set drawing
Search Queries	[CREDIT] credit card loans bill loan report bad visa debt score
Enron	[ENERGY CRISIS] state california power electricity utilities davis energy prices generators edison public deregulation billion governor federal consumers commission plants companies electric wholesale crisis summer

Enron Email Topics

TOPIC 36			
WORD	PROB.		
FEEDBACK	0.0781		
PERFORMANCE	0.0462		
PROCESS	0.0455		
PEP	0.0446		
MANAGEMENT	0.03		
COMPLETE	0.0205		
QUESTIONS	0.0203		
SELECTED	0.0187		
COMPLETED	0.0146		
SYSTEM	0.0146		

TOPIC 72			
WORD	PROB.		
PROJECT	0.0514		
PLANT	0.028		
COST	0.0182		
CONSTRUCTION	0.0169		
UNIT	0.0166		
FACILITY	0.0165		
SITE	0.0136		
PROJECTS	0.0117		
CONTRACT	0.011		
UNITS	0.0106		

	TOPIC 54	
ı	WORD	PROB.
ı	FERC	0.0554
ı	MARKET	0.0328
ı	ISO	0.0226
ı	COMMISSION	0.0215
ı	ORDER	0.0212
ı	FILING	0.0149
ı	COMMENTS	0.0116
ı	PRICE	0.0116
ı	CALIFORNIA	0.0110
ı	FILED	0.0110
ı		

TOPIC 23		
WORD	PROB.	
ENVIRONMENTAL	0.0291	
AIR	0.0232	
MTBE	0.019	
EMISSIONS	0.017	
CLEAN	0.0143	
EPA	0.0133	
PENDING	0.0129	
SAFETY	0.0104	
WATER	0.0092	
GASOLINE	0.0086	

"Personal" Topics...

TOPIC 66		
WORD	PROB.	
HOLIDAY	0.0857	
PARTY	0.0368	
YEAR	0.0316	
SEASON	0.0305	
COMPANY	0.0255	
CELEBRATION	0.0199	
ENRON	0.0198	
TIME	0.0194	
RECOGNIZE	0.019	
MONTH	0.018	

TOPIC 182		
WORD	PROB.	
TEXANS	0.0145	
WIN	0.0143	
FOOTBALL	0.0137	
FANTASY	0.0129	
SPORTSLINE	0.0129	
PLAY	0.0123	
TEAM	0.0114	
GAME	0.0112	
SPORTS	0.011	
GAMES	0.0109	
FANTASY SPORTSLINE PLAY TEAM GAME SPORTS	0.0129 0.0129 0.0123 0.0114 0.0112	

	TOPIC 113	
	WORD	PROB.
	GOD	0.0357
	LIFE	0.0272
	MAN	0.0116
	PEOPLE	0.0103
	CHRIST	0.0092
	FAITH	0.0083
	LORD	0.0079
	JESUS	0.0075
	SPIRITUAL	0.0066
	VISIT	0.0065
ı		

TOPIC 109		
WORD	PROB.	
AMAZON	0.0312	
GIFT	0.0226	
CLICK	0.0193	
SAVE	0.0147	
SHOPPING	0.0140	
OFFER	0.0124	
HOLIDAY	0.0122	
RECEIVE	0.0102	
SHIPPING	0.0100	
FLOWERS	0.0099	

Political Topics

TOPIC 18	
WORD	PROB.
POWER	0.0915
CALIFORNIA	0.0756
ELECTRICITY	0.0331
UTILITIES	0.0253
PRICES	0.0249
MARKET	0.0244
PRICE	0.0207
UTILITY	0.0140
CUSTOMERS	0.0134
ELECTRIC	0.0120

TOPIC 22	
WORD	PROB.
STATE	0.0253
PLAN	0.0245
CALIFORNIA	0.0137
POLITICIAN Y	0.0137
RATE	0.0131
BANKRUPTCY	0.0126
SOCAL	0.0119
POWER	0.0114
BONDS	0.0109
MOU	0.0107

	TOPIC 114	
	WORD	PROB.
	COMMITTEE	0.0197
	BILL	0.0189
	HOUSE	0.0169
	WASHINGTON	0.0140
ı	SENATE	0.0135
ı	POLITICIAN X	0.0114
ı	CONGRESS	0.0112
ı	PRESIDENT	0.0105
	LEGISLATION	0.0099
	DC	0.0093
ı		

TOPIC 194		
WORD	PROB.	
LAW	0.0380	
TESTIMONY	0.0201	
ATTORNEY	0.0164	
SETTLEMENT	0.0131	
LEGAL	0.0100	
EXHIBIT	0.0098	
CLE	0.0093	
SOCALGAS	0.0093	
METALS	0.0091	
PERSON Z	0.0083	

Automated Tagging of Words

(numbers & colors → topic assignments)

Example from Mark Steyvers

A Play⁰⁸² is written⁰⁸² to be performed⁰⁸² on a stage⁰⁸² before a live⁰⁹³ audience⁰⁸² or before motion²⁷⁰ picture⁰⁰⁴ or television⁰⁰⁴ cameras⁰⁰⁴ (for later⁰⁵⁴ viewing⁰⁰⁴ by large²⁰² audiences⁰⁸²). A Play⁰⁸² is written⁰⁸² because playwrights⁰⁸² have something

He was listening⁰⁷⁷ to music⁰⁷⁷ coming⁰⁰⁹ from a passing⁰⁴³ riverboat. The music⁰⁷⁷ had already captured⁰⁰⁶ his heart¹⁵⁷ as well as his ear¹¹⁹. It was jazz⁰⁷⁷. Bix beiderbecke had already had music⁰⁷⁷ lessons⁰⁷⁷. He wanted²⁶⁸ to play⁰⁷⁷ the cornet. And he wanted²⁶⁸ to play⁰⁷⁷ jazz⁰⁷⁷

Jim²⁹⁶ plays¹⁶⁶ the game¹⁶⁶. Jim²⁹⁶ likes⁰⁸¹ the game¹⁶⁶ for one. The game¹⁶⁶ book²⁵⁴ helps⁰⁸¹ jim²⁹⁶. Don¹⁸⁰ comes⁰⁴⁰ into the house⁰³⁸. Don¹⁸⁰ and jim²⁹⁶ read²⁵⁴ the game¹⁶⁶ book²⁵⁴. The boys⁰²⁰ see a game¹⁶⁶ for two. The two boys⁰²⁰ play¹⁶⁶ the game¹⁶⁶.

What is this paper about?

Empirical Bayes screening for multi-item associations Bill DuMouchel and Daryl Pregibon, ACM SIGKDD 2001

Most likely topics according to the model are...

- 1. data, mining, discovery, association, attribute...
- 2. set, subset, maximal, minimal, complete,...
- 3. measurements, correlation, statistical, variation,
- 4. Bayesian, model, prior, data, mixture,.....

Original article

TECHVIEW: DNA SEQUENCING

Sequencing the Genome, Fast

Gthe genetic makeup of an organism by reading off the sequence of the DNA bases, which encodes all of the information necessary for the life of the organism. The base sequence contains four nu-cleotides—admine, thyroidine, guaronine, and cytosine-which are linked together into long double-belical chains. Over the last two decades, automated DNA sequencers have made the process of obtaining the base-by-base sequence of DNA casier. By application of an electric field across a gel matrix, these sequencers separate fluorescently labeled DNA molecules that differ in size by one base. As the molecules move past a given point in the gel, laser excitation of a fluorescent dye specific to the base at the end of the molecule yields a base-specific signal that can be automatically recorded.

The latest sequencer to be launched is Perkin-Elmer's much-anticipated ARI Prism 3700 DNA Analyzer which, like the Molecular Dynamics MegaBACE 1000 tube to hold the sequence gel rather than a traditional slab-shaped gel apparatus. Extra interest in the ABI 3700 has been generaled because Craig Venter of Celera Ge nomics Corporation anticipates that ~230 of these machines (1) will enable the comname to renduce the sequence for the enire 3 gigabases (Gh) of the human genome in 3 years. The specifications of the ABI 3700 machine say that, with less than 1 hour of human labor per day, it can se-quence 768 samples per day. Assuming that each sample gives an average of 400 base pairs (bp) of unable sequence data (its read length) and any section from the entire human genome is covered by an average of 10 overlapping independent reads (2), the 75 million samples that Celera must process will require -100,000 ABI 3700 machine days. With -230 machines, that works out to less than 2 years or about 434 days, which affords some margin of ortor for unexpected developments.

At the Sanger Centre, we have finished

146 Mb of genomic sequence from a vari-

The authors are at The Sanger Centre, Wellcome Sust Genote Campus, Historia, Cardo, CB10: 15A, UK. 6-mail: profitangeras: al.

ety of genomes, including 81 Mb of sequence from the human genome, the are aiming to sequence 1 Gb of human sequence in rough-draft farm by 2001, with a finished version by 2003. Our sequencing equipment includes 44 ABS 375XL, 61 ABS 377XL, and 31 ABS 377XL-96 slab gel sequences from Perkin-Elmer plus 6 Molecular Donamics MegaBACE 1000 capillary sequences, allowing a maximum

throughput of 32,000 samples per day. Two ABI 3700 capillary sequencers—delivered

in collected with the All 1700 capillary machine and the ABI STYN, 96 stab get machine. The capitary machine under-performs the stab get machine by about 200 bases. Both with of much are from non with All Rig Due Terroina. for characteries, fixed length is computed as the number of basis per mad where the predicted error rate is less than or equal to 1.0% (Q > 20). The "phred" Q value was recall:
brased for each type of read.

So possible for a given sample of

are in our Research and Development denest for evaluation. Thus, the AM 3700 will ultimately be added to our pres-

The ABE 3700 DNA sequencer is built into a floor-standing cubinet, which contains in its base all the magents required for its operation. The reagent containers are readily accessible for replanishment, which is required every day under high-throughput operation. At bench height within the cabinet is a finar-position bed, on which microtter plates of DNA samples are located. The operator places the prepared plates into position, closes the frost of the machine and programs it by using a personal computer. A robotic arm transfers DNA sum-

ples from the plates into wells that open into the capillaries. This and the rest of the meing operation is fully automatic The machine can currently process four 96-well plates of DNA samples unattended, taking approximately 16 hours before operator intervention is required. This rate falls short of the design specification of four

96-well plates in 12 hours.
The main innovation of the ABI 3700 is the use of a sheath flow fluorescence detec-tion system (4). Detection of the DNA fragmems occurs 300 µm past the end of the capillury within a fused silica cuvette. A laminar fluid flows over the ends of the capillaries drawing the DNA fragments as they emerge from the capillaries through a fixed la beam that simultaneously intersects with all detected with a spectral CCD (charge-conpled device) detector. This arrangement means that there are no moving parts in the direction system, other than a shutter in front of the CCD detector.

We have evaluated these machines for their performance, op-eration, case of use, and reliability in comparison to the more commonly used slab gel sequencing machines. In automat ed sequencers, there are two methods for containing the gel matrix. One is to polymerize a gel matrix between two finely separated glass plates (9.4 mm or other is to inject a polymer matrix into a capillary (internal diameter < 0.2 mm). Most sequence ing facilities use the slab gel method, because multicapillary

as possible for a given sample or DNA-that is, long read lengths

read twice as musty bases but at half the both systems cost the same. This is because assembling relatively fewer long-sequenced fragments is easier than assembling many short ones. So, read length is an important parameter when evaluating new sequencing technologies.

We have directly compared the ABI 3700 sequencer to the ABI 377XL slab gel sequencer by evaluating the sequence data obtained from both machines with human DNA samples. These samples were subclosed into plaunid or m13 phage and prepared and sequenced with our standard protocols for Perkin-Elmer Big Dye Terminutes of bemiers

svenusciencemagung SCENCE VOLUBB 19 MARCH 1999

Most likely words from top topics

sequence aenome genes sequences human gene dna sequencing chromosome regions analysis data genomic number

devices device materials current high gate light silicon material technology electrical fiber power based

data information network web computer language networks time software system words algorithm number internet

Example courtesy of David Blei, Princeton

Temporal patterns in Topics: Hot and Cold Topics

- CiteSeer papers from 1986-2002, about 200k papers
- For each year, calculate the fraction of words assigned to each topic
- This gives us time-series for topics
 - Hot topics become more prevalent
 - Cold topics become less prevalent

NIPS: SVM Topic

NIPS: neural network topic

Topics over Time for NIPS Proceedings

Figure courtesy of Xuerie Wang and Andrew McCallum, U Mass Amherst

All NIPS Topics over Time

Figure courtesy of Xuerie Wang and Andrew McCallum, U Mass Amherst

Topics from the Pennsylvania Gazette

Size	Most likely words in topic
6%	away reward servant named feet jacket high paid hair coat run inches master
5%	state government constitution law united power citizen people public congress
5%	good house acre sold land meadow mile premise plantation stone mill dwelling
4%	silk cotton ditto white black linen cloth women blue worsted fine thread plain
2%	church life god society great friend christian good virtue religion minister rev

(from Dave Newman and Sharon Block, UC Irvine)

Historical Trends in Pennsylvania Gazette Data

Topics from DNA Microarray Literature

49,000 PubMed abstracts related to DNA Microarrays

Displayed below are the top 5 highest probability words for 5 selected topics

Microarray Chip Technology	Classification Methods	Databases and Annotation	Regulatory Networks	Cancer
detection	classification	databases	network	patient
surface	selection	tool	regulatory	tumor
fluorescence	cancer	annotation	pathway	cancer
hybridization	algorithm	data set	interaction	survival
array	feature	web	transcriptional	prognostic

From basic technology to applications

Technology v. Application Topics

Technology v. Application Topics

Topic Trends (New York Times articles)

Topic Models and Related Approaches

Topics as Matrix Factorization

Probability of Observed Words Rows = Docs, Cols = Words

Rows = T topic weights for each document

Topics as Matrix Factorization

Probability of Observed Words Rows = Docs, Cols = Words Rows = T topic weights for each document

Directly analogous to principal components and factor models:

data matrix

 \approx

weights

basis functions

Clusters v. Topics

Original Document

Hidden Markov Models in Molecular Biology: New Algorithms and Applications

Pierre Baldi, Yves C Hauvin, Tim Hunkapiller, Marcella A. McClure

Hidden Markov Models (HMMs) can be applied to several important problems in molecular biology. We introduce a new convergent learning algorithm for HMMs that, unlike the classical Baum-Welch algorithm is smooth and can be applied on-line or in batch mode, with or without the usual Viterbi most likely path approximation. Left-right HMMs with insertion and deletion states are then trained to represent several protein families including immunoglobulins and kinases. In all cases, the models derived capture all the important statistical properties of the families and can be used efficiently in a number of important tasks such as multiple alignment, motif detection, and classification.

Clusters v. Topics

Original Document

Hidden Markov Models in Molecular Biology: New Algorithms and Applications

Pierre Baldi, Yves C Hauvin, Tim Hunkapiller, Marcella A. McClure

Hidden Markov Models (HMMs) can be applied to several important problems in molecular biology. We introduce a new convergent learning algorithm for HMMs that, unlike the classical Baum-Welch algorithm is smooth and can be applied on-line or in batch mode, with or without the usual Viterbi most likely path approximation. Left-right HMMs with insertion and deletion states are then trained to represent several protein families including immunoglobulins and kinases. In all cases, the models derived capture all the important statistical properties of the families and can be used efficiently in a number of important tasks such as multiple alignment, motif detection, and classification.

One Cluster

[cluster 88]
model data
models time
neural figure state
learning set
parameters
network
probability
number networks
training function
system algorithm
hidden markov

Clusters v. Topics

Original Document

Hidden Markov Models in Molecular Biology: New Algorithms and Applications

Pierre Baldi, Yves C Hauvin, Tim Hunkapiller, Marcella A. McClure

Hidden Markov Models (HMMs) can be applied to several important problems in molecular biology. We introduce a new convergent learning algorithm for HMMs that, unlike the classical Baum-Welch algorithm is smooth and can be applied on-line or in batch mode, with or without the usual Viterbi most likely path approximation. Left-right HMMs with insertion and deletion states are then trained to represent several protein families including immunoglobulins and kinases. In all cases, the models derived capture all the important statistical properties of the families and can be used efficiently in a number of important tasks such as multiple alignment, motif detection, and classification.

One Cluster

[cluster 88]
model data
models time
neural figure state
learning set
parameters
network
probability
number networks
training function
system algorithm
hidden markov

Multiple Topics

[topic 10] state hmm markov sequence models hidden states probabilities sequences parameters transition probability training hmms hybrid model likelihood modeling

[topic 37] genetic structure chain protein population region algorithms human mouse selection fitness proteins search evolution generation function sequence sequences genes

Methodological Issues

- Selection of smoothing parameters/priors
- Convergence of the sampler?
- Consistency of results across sampling runs?
- Selecting the numbers of topics
- Publicly available code?
 - Mallet from U Mass
 - See also David Blei's Web page

Methods for Evaluating Topic Models

- Human inspection
 - e.g., coherence of high probability words
- Log Probability of Test Documents
 - Better models assign higher probability to unseen documents
- Performance on specific tasks
 - Information retrieval
 - Document classification

Extensions to Topic Models

Adding Metadata to Topic Models?

- Topic models with metadata? With time? With spatial information?
 - Yes: can write down simple generative models and then "invert"
- Example: Probabilistic Pseudocode for Author-Topic Model

```
For each document in our corpus

For each word in our document

Randomly select an author of the document

Sample a topic from P(topics | author)

Given the topic, sample a word from P(words | topic)

End

End
```

- We can write down many interesting models in a similar way
 - Much harder to do inference, i.e., "invert" these models given data

The Author-Topic Model

Steyvers et al, 2004; Rosen-Zvi et al, 2010

Examples of Author-Topic Models

Learned using an author-topic model applied to 20 years of papers from the NIPS conference on machine learning

TOPIC 4	
WORD	PROB.
LIGHT	.0306
RESPONSE	.0282
INTENSITY	.0252
RETINA	.0241
OPTICAL	.0233
KOCH	.0190
BACKGROUND	.0162
CONTRAST	.0145
CENTER	.0124
FEEDBACK	.0118
AUTHOR	PROB.
AUTHOR Koch_C	PROB. .0903
Koch_C Boahen_K	.0903
Koch_C Boahen_K	.0903 .0320
Koch_C Boahen_K Skrzypek_J	.0903 .0320 .0283
Koch_C Boahen_K Skrzypek_J Liu_S Delbruck_T	.0903 .0320 .0283 .0250
Koch_C Boahen_K Skrzypek_J Liu_S Delbruck_T	.0903 .0320 .0283 .0250 .0232
Koch_C Boahen_K Skrzypek_J Liu_S Delbruck_T Etienne-CR	.0903 .0320 .0283 .0250 .0232
Koch_C Boahen_K Skrzypek_J Liu_S Delbruck_T Etienne-CR Bair_W	.0903 .0320 .0283 .0250 .0232 .0210

TOPIC 13	
WORD	PROB.
RECOGNITION	.0500
CHARACTER	.0334
TANGENT	.0246
CHARACTERS	.0232
DISTANCE	.0197
HANDWRITTEN	.0166
DIGITS	.0154
SEGMENTATION	.0142
DIGIT	.0124
IMAGE	.0111
AUTHOR	PROB.
Simard_P	.0602
Martin_G	.0340
LeCun_Y	.0339
LeCun_Y Henderson_D	.0339 .0289
_	
Henderson_D	.0289
Henderson_D Denker_J	.0289 .0245
Henderson_D Denker_J Revow_M	.0289 .0245 .0206
Henderson_D Denker_J Revow_M Rashid_M	.0289 .0245 .0206 .0205

TOPIC 2	8
WORD	PROB.
KERNEL	.0547
VECTOR	.0293
SUPPORT	.0293
MARGIN	.0239
SVM	.0196
DATA	.0165
SPACE	.0161
KERNELS	.0160
SET	.0146
MACHINES	.0132
AUTHOR	PROB.
Scholkopf_B	.0774
Smola_A	.0685
Vapnik_V	.0487
Burges_C	.0411
Ratsch_G	.0296
Mason_L	.0232
_	
Platt_J	.0225
_	
Platt_J	

TOPIC 9	
WORD	PROB.
SOURCE	.0389
INDEPENDENT	.0376
SOURCES	.0344
SEPARATION	.0322
INFORMATION	.0319
ICA	.0276
BLIND	.0227
COMPONENT	.0226
SEJNOWSKI	.0224
NATURAL	.0183
AUTHOR	PROB.
Sejnowski_T	.0627
Bell_A	.0378
Yang_H	.0349
Lee_T	.0348
Attias_H	.0290
Parra_L	.0271
Cichocki_A	.0262
Hyvarinen_A	.0242
Amari_S	.0160
Oja_E	.0143

Author-Topic Models for CiteSeer

TOPIC 205	
WORD	PROB.
DATA	0.1563
MINING	0.0674
ATTRIBUTES	0.0462
DISCOVERY	0.0401
ASSOCIATION	0.0335
LARGE	0.0280
KNOWLEDGE	0.0260
DATABASES	0.0210
ATTRIBUTE	0.0188
DATASETS	0.0165
AUTHOR	PROB.
Han_J	0.0196
Rastogi_R	0.0094
1	0.0094
Zaki_M	0.0094
Zaki_M	0.0084
Zaki_M Shim_K	0.0084 0.0077
Zaki_M Shim_K Ng_R	0.0084 0.0077 0.0060
Zaki_M Shim_K Ng_R Liu_B	0.0084 0.0077 0.0060 0.0058
Zaki_M Shim_K Ng_R Liu_B Mannila_H	0.0084 0.0077 0.0060 0.0058 0.0056

TOPIC 209)
WORD	PROB.
PROBABILISTIC	0.0778
BAYESIAN	0.0671
PROBABILITY	0.0532
CARLO	0.0309
MONTE	0.0308
DISTRIBUTION	0.0257
INFERENCE	0.0253
PROBABILITIES	0.0253
CONDITIONAL	0.0229
PRIOR	0.0219
AUTHOR	PROB.
AUTHOR Friedman_N	PROB. 0.0094
1	0.0094
Friedman_N	0.0094
Friedman_N Heckerman_D	0.0094 0.0067
Friedman_N Heckerman_D Ghahramani_Z	0.0094 0.0067 0.0062
Friedman_N Heckerman_D Ghahramani_Z Koller_D	0.0094 0.0067 0.0062 0.0062
Friedman_N Heckerman_D Ghahramani_Z Koller_D Jordan_M	0.0094 0.0067 0.0062 0.0062 0.0059
Friedman_N Heckerman_D Ghahramani_Z Koller_D Jordan_M Neal_R	0.0094 0.0067 0.0062 0.0062 0.0059
Friedman_N Heckerman_D Ghahramani_Z Koller_D Jordan_M Neal_R Raftery_A	0.0094 0.0067 0.0062 0.0062 0.0059 0.0055 0.0054

TOPIC 289	<u>, </u>
WORD	PROB.
RETRIEVAL	0.1179
TEXT	0.0853
DOCUMENTS	0.0527
INFORMATION	0.0504
DOCUMENT	0.0441
CONTENT	0.0242
INDEXING	0.0205
RELEVANCE	0.0159
COLLECTION	0.0146
RELEVANT	0.0136
AUTHOR	PROB.
AUTHOR Oard_D	PROB. 0.0110
Oard_D	0.0110
Oard_D Croft_W	0.0110 0.0056
Oard_D Croft_W Jones_K	0.0110 0.0056 0.0053
Oard_D Croft_W Jones_K Schauble_P	0.0110 0.0056 0.0053 0.0051
Oard_D Croft_W Jones_K Schauble_P Voorhees_E Singhal_A	0.0110 0.0056 0.0053 0.0051 0.0050
Oard_D Croft_W Jones_K Schauble_P Voorhees_E Singhal_A	0.0110 0.0056 0.0053 0.0051 0.0050 0.0048
Oard_D Croft_W Jones_K Schauble_P Voorhees_E Singhal_A Hawking_D	0.0110 0.0056 0.0053 0.0051 0.0050 0.0048
Oard_D Croft_W Jones_K Schauble_P Voorhees_E Singhal_A Hawking_D Merkl_D	0.0110 0.0056 0.0053 0.0051 0.0050 0.0048 0.0042

TOPIC 10	
WORD	PROB.
QUERY	0.1848
QUERIES	0.1367
INDEX	0.0488
DATA	0.0368
JOIN	0.0260
INDEXING	0.0180
PROCESSING	0.0113
AGGREGATE	0.0110
ACCESS	0.0102
PRESENT	0.0095
AUTHOR	PROB.
Suciu_D	0.0102
Naughton_J	0.0095
Levy_A	0.0071
DeWitt_D	0.0068
Wong_L	0.0067
Chakrabarti_K	0.0064
Ross_K	0.0061
Hellerstein_J	0.0059
Lenzerini_M	0.0054
Moerkotte_G	0.0053

Author-Profiles

Author = Andrew McCallum, U Mass:.

- Topic 1: classification, training, generalization, decision, data,...
- Topic 2: learning, machine, examples, reinforcement, inductive,....
- Topic 3: retrieval, text, document, information, content,...

Author = Hector Garcia-Molina, Stanford:

- Topic 1: query, index, data, join, processing, aggregate....
- Topic 2: transaction, concurrency, copy, permission, distributed....
- Topic 3: source, separation, paper, heterogeneous, merging.....

Author = Jerry Friedman, Stanford:

- Topic 1: regression, estimate, variance, data, series,...
- Topic 2: classification, training, accuracy, decision, data,....
- Topic 3: distance, metric, similarity, measure, nearest,...

Learning Word Combinations

Terrorism

SEPT 11 WAR **SECURITY IRAQ TERRORISM NATION** KILLED **AFGHANISTAN** ATTACKS OSAMA_BIN_LADEN **AMERICAN** ATTACK NEW YORK REGION NEW **MILITARY** NEW YORK WORLD NATIONAL **QAEDA** TERRORIST_ATTACKS

Wall Street Firms

WALL STREET ANALYSTS **INVESTORS** FIRM GOLDMAN_SACHS FIRMS **INVESTMENT** MERRILL LYNCH **COMPANIES SECURITIES** RESEARCH STOCK BUSINESS ANALYST WALL_STREET_FIRMS SALOMON_SMITH_BARNEY CLIENTS INVESTMENT BANKING INVESTMENT_BANKERS INVESTMENT_BANKS

Stock Market

WEEK DOW_JONES POINTS 10 YR TREASURY YIELD **PERCENT** CLOSE NASDAQ_COMPOSITE STANDARD_POOR **CHANGE** FRIDAY DOW_INDUSTRIALS GRAPH_TRACKS **EXPECTED BILLION** NASDAQ_COMPOSITE_INDEX EST_02 PHOTO_YESTERDAY YEN 10 500_STOCK_INDEX

Bankruptcy

BANKRUPTCY CREDITORS BANKRUPTCY PROTECTION ASSETS **COMPANY** FILED BANKRUPTCY FILING **ENRON** BANKRUPTCY COURT KMART CHAPTER 11 **FILING** COOPER **BILLIONS COMPANIES** BANKRUPTCY PROCEEDINGS DEBTS RESTRUCTURING CASE **GROUP**

Reinforcement Learning Topic with Topical N-grams

LDA Topical N-grams (2+

state reinforcement learning

learning optimal policy

policy dynamic programming

action optimal control

reinforcement function approximator states prioritized sweeping time finite-state controller optimal learning system

actions reinforcement learning RL function function approximators algorithm markov decision problems reward markov decision processes

step local search dynamic state-action pair

control markov decision process

sutton belief states

rl stochastic policy decision action selection upright position

agent reinforcement learning methods

Support Vector Machine Topic with Topical N-grams

LDA	Topical N-grams	(2+)
-----	-----------------	------

kernel support vectors

linear test error

vector support vector machines

support training error set feature space nonlinear training examples data decision function algorithm cost functions

algorithm cost function space test inputs

pca kkt conditions

function leave-one-out procedure

problem soft margin

margin bayesian transduction

vectors training patterns solution training points training maximum margin sym strictly convex

kernels regularization operators

matrix base classifiers convex optimization

Figure courtesy of Xuerie Wang and Andrew McCallum, U Mass Amherst

Scaling to Large Corpora

- Time complexity: linear in number of word tokens and topics
 - But even this can be slow on millions of documents
- Distributed algorithms
 - Distribute documents across multiple processors (Newman et al, 2009)
 - Approximate, but works very well in practice
- Fast sampling tricks
 - Inner sampling loop is computed billions of times
 - Can re-order operations to get order of magnitude speedup (Porteous et al, 2006)
- Stochastic gradient methods
 - Standard: 1 iteration = full sweep through all words in the corpus
 - Stochastic/online: update parameters after every few documents
 - Algorithm can converge even before a single iteration is complete!

Distributed Topic Modeling

Globally share counts after each local sampling pass

Parallel-LDA [Newman, Asuncion, Smyth, Welling, NIPS 2007, JMLR 2009]

- Each processor performs Gibbs sampling over local set of documents
- At the end of each iteration, all processors combine topic counts to create global model

Parallel-LDA Results

[Newman, Asuncion, Smyth, Welling, NIPS 2007, JMLR 2009]

Experiments with 8 Million Documents

All of MEDLINE 8 million abstracts 1 billion words 2000 topics

Experiments with 1000 processors at the San Diego Supercomputing Center (SDSC)

Time goes from 4 months to a few hours

Real-Time Topic Modeling

Asuncion et al, 2009

Real-Time Topic Modeling of Search Results

TASER

mouse

Search

○ Web News

Theme-Assisted Search Engine in Real-time

Themes found:

T1: mouse school cartilage skin cell team mice worship pyramid messages

[order by] [zoom]

T2: mouse ces multitouch show consumer microsoft electronic scanner vegas

[order by] [zoom]

T3: model cell stem gene blood disorder inherited children embryonic lines [order by] [zoom]

T4: mouse haifa prweb disney big amusement park january mickey

[order by] [zoom]

T5: mouse click computer control surface coming xbox super cost world [order by] [zoom]

T6: mouse touch microsoft gestures based looking research window top june

[order by] [zoom]

T7: mouse magic microsoft apple touch air multi function finally sensitive

[order by] [zoom]

The \$130 TRON mouse and mouse surface: beautiful overkill

It's going to take a lot of convincing to get us to give our blessing to a mouse and surface that cost \$130. It is covered with TRON branding and style, so fans of the franchise have a little extra reason to pick it up, but that's a very expensive mouse, accessory, collectible, or whatever it is. The packaging is suitably high-end, as the mouse and the surface are displayed in heavy cardboard ...

http://arstechnica.com/gaming/reviews/2011/01/the-130-tron-mouse-and-mouse-surface-beautifuloverkill.ars?utm_source=rss&utm_mediu_m=rss&utm_campaign=rss_-- 0kb -- 2011/01/10

Similar Pages

Thematic Markup

Microsoft Touch Mouse Announced for June Release

Microsoft is looking to enhance your Window 7 navigating experience with its new gesture-based Touch Mouse. http://www.pcmag.com/article2/0,2817,2375277,00.asp?kc=PCRSS03069TX1K0001121 -- 0kb -- 2011/01/06

Similar Pages

Thematic Markup

Microsoft Touch Mouse due midvear

Microsoft has announced the Touch Mouse, the company's answer to Apple's Magic Mouse, Designed for use with Windows 7, it uses capacitative multitouch technology.

http://www.itwire.com/business-it-news/technology/44261-microsoft-touch-mouse-due-midyear -- 0kb -- 2011/01/09

Similar Pages

Thematic Markup

See how they run (amok): Mouse calls are up this year

Big snowdrifts and recent mild winters are being blamed for more mouse calls from Twin Cities residents. The best mouse trap? Prevention.

http://www.startribune.com/local/113177959.html -- 0kb -- 2011/01/10

Similar Pages

Thematic Markup

Julia Gillard's 'Mouse Pack' and other dumb stuff

Julia Gillard is "not well informed" and is part of a Melbourne-based gang called The Mouse Pack, , while Tony Abbott has "good manners", is "formidable" and possessed of a "first-class mind".

http://www.brisbanetimes.com.au/entertainment/books/julia-gillards-mouse-pack-and-other-dumb-stuff-20110110-19kbe.html -- 0kb -- 2011/01/10

Similar Pages

Thematic Markup

Learned

Topics

Fast Topic Learning with Stochastic Methods

(From Hoffmann et al, 2013)

Y-axis = predictive log probability on test documents: higher is better X-axis = time on a log-scale

Stochastic algorithm learns a better model in minutes than batch algorithm does in hours

Applications of Topic Modeling

Application: Calit2 Research Browser

- System crawled UCI/UCSD faculty websites
- Browser built on topic model learned from faculty papers
- Query-answering = computation of conditional probabilities

Topic Modeling of Researchers and Research at UCSD and UCI

After automatically collecting 12,000 publications from 460 UCSD and UCI faculty, we used our probabilistic topic model to characterize the nature of each researcher's work and find researchers with similar interests.

all 460

researchers ...

Nancy Allbritton Ender Ayanoglu Dimitri Basov Andrew Chien Paul Dourish Magda El Zarki Steven George Rajesh Gupta

Researchers (more...)

home | researchers | research topics

one topic

most prolific researchers for this topic

neural network models and algorithms

network input unit learning output training pattern neural_network representation weig grammar class structure connectionist learn net performance simple prediction connected elman classes experiment features architecture modeling training_set recognition initial vowel mit_press chaotic epoch mapping rules dynamical feature label

Other researchers in neural network models and algorithms (UCSD, UCI):

- (19%) DE SA, VIRGINIA
- (11%) COTTRELL, GARRISON
- (11%) ELMAN, JEFFREY L.
- (5%) MJOLSNESS, ERIC D.
- (4%) BELEW, RICHARD K.
- (4%) YOUSEFIZADEH, HOMAYOUN
- (3%) GRANGER, RICHARD H.
- (3%) BALDI, PIERRE F.
- (2%) WELLING, MAX
- (2%) ABARBANEL, HENRY D.
- (2%) BORK, ALFRED
- (1%) KIBLER, DENNIS F.
- (1%) CHANCE, FRANCES S.
- (1%) TRIESCH, JOCHEN
- (1%) STEYVERS, MARK
- (1%) TODOROV, EMANUEL
- (1%) BATALI, JOHN D.
- (1%) ESKIN, ELEAZAR

one researcher

COTTRELL, GARRISON

COG SCI DIVISION OF SOCIAL SCIENCES UCSD

email: gary@ucsd.edu

publications URL: http://www-cse.ucsd.edu/users/gary/ (53 papers collected)

Research topics:

(28%) [neural network models and algorithms] network input unit learning output (14%) [image and vision modeling] image images face recognition pixel features (7%) [information retrieval] query retrieval feature image user document syster (7%) [cognitive experiments] subject word memory experiment task participant (4%) [data analysis] data correlation analysis sample average estimates param (4%) [cognition and EEG] word erp processing brain sentence language semant (4%) [language modeling] language verb theory sense structure word meaning (4%) [human learning and development] children word development learning ag (3%) [modeling] model simulation parameter modeling process

other researchers with similar topical interests

topics this

researcher

works on

Related researchers (UCSD, UCI):

- (0.9) DE SA, VIRGINIA
- (0.7) ELMAN, JEFFREY L.
- (0.6) MJOLSNESS, ERIC D.
- (0.5) BELONGIE, SERGE J.
- (0.5) VASCONCELOS, NUNO
- (0.5) BELEW, RICHARD K.
- (0.5) TRIESCH, JOCHEN
- (0.4) KREIGMAN, DAVID
- (0.4) WELLING, MAX
- (0.3) STEYVERS, MARK
- (0.3) ESKIN, ELEAZAR
- (0.3) KIRSH, DAVID J.
- (0.3) BROWN, SCOTT D.
- (0.3) GRANGER, RICHARD H.
- (0.3) JAIN, RAMESH CHANDRA

VII: Aligned topics in English (AJP), in dark gray extending upwards, and German (Hermes), in light gray extending downwards. Lines are at 1920, 1940, 1960, 1980 and 2000.

case languages language example nominative english genitive means cases object dative subject grammatical accusative article finnish like noun feminine

sanskrit self vedic mind buddhist three nature buddhism hindu type means through buddha reality meditation practice veda seeing compound

linguistics context words use specific type example particular meanings linguistic same terms different lexical analysis sound function literal within

rhetoric demosthenes cicero against speeches isocrates speech orator others style public along should teacher important private orators ten funeral law legal court case criminal laws under right rule principle will act crime civil cases decision parties judge courts

she daughter wife married mother sister marriage husband child children became queen gave bore woman named father birth herself

women woman men man female young male considered famous seen than sexual feminine beautiful role make reports sex parallel sprachen sprache kasus beispiel fall akkusativ haus genitiv grammatik deutschen dativ latein beispiele kennt deutsch person ausdrücken präposition regel

sanskrit drei vier buddhismus indischen lehre bedeutet prakriti purusha dukkha wesen hinduismus zustand buddhistischen buddha meditation yoga

bedeutung zwischen beispiel verschiedene linguistik also beispielsweise wort verschiedenen zeichen lassen wörtern kontext sprachwissenschaft englisch gegenstand siehe unterscheidung spricht

cicero rede rhetorik reden redner allem ersten demosthenes ciceros bedeutung tod prozess seinem letzte wobei damit rhetor auseinandersetzung meidias recht gesetz wenn also lat law keine

recht gesetz wenn also lat law keine ohne wegen liegt tat non sog strafe gemäß deutschen grundsatz vertrag deutschland

tochter mutter ihr frau schwester vater ihrem ihre ihrer ihres heiratete ehe gattin kind verheiratet ihren kinder ehefrau geboren

frauen männer gehört mädchen männlichen frau anderen personen jungen junge ihre weiblichen mann männern bestand tritt bringen weiblicher männliche

From Nguyen et al., Modeling topic control to detect influence in conversations, *Machine Learning Journal*, 2013

Fig. 6: Topic shift tendency π of speakers in the 2012 Republican Primary Debates (larger means greater tendency). King, Blitzer and Cooper are moderators in these debates; the rest are candidates.

Analyzing Psychotherapy Trancripts

(joint work with Mark Steyvers, Cognitive Science, UCI)

Each transcript treated as a document

"Subject" and "Symptom" labels manually assigned to some transcripts

Can build in sequential dependence, talk turns, etc

Label Type	Label	High Probability Words
Subject	Medications	dose, mg, medicine, need, wellbutrin, lamictal, mood, sleep, medicines, prescription, medication, use, xanax, klonopin, lexapro, morning, blood, zoloft
	Spousal relationships	wife, married, marriage, home, husband, children, relationship, situation, talked, love, guy, problems, course, work, accept, divorce, couple, meet, girl, attitude, happy, type
Symptom	Fatigue	sleep, blood, depression, energy, tired, low, thyroid, pressure, hormone, fatigue, problems, pituitary, months, growth, level, exercise, treatment, depakote, pharmacy
	Depression	depressed, depression, doctor, sleep, worse, pain, problems, upset, tired, afraid, care, sad, crying, medication, feels, help, sorry, left, understand, hurt, lexapro, remember

Analyzing Psychotherapy Trancripts

(joint work with Mark Steyvers, Cognitive Science, UCI)

Each transcript treated as a document

"Subject" and "Symptom" labels manually assigned to some transcripts

Can build in sequential dependence, talk turns, etc

Label Type	Label	High Probability Words	Example Talk Turn Assigned by Model
Subject	Medications	dose, mg, medicine, need, wellbutrin, lamictal, mood, sleep, medicines, prescription, medication, use, xanax, klonopin, lexapro, morning, blood, zoloft	[THERAPIST] so risperdal, geodon, i like geodon, you haven't been on that. so, we got risperdal, geodon and invega.
	Spousal relationships	wife, married, marriage, home, husband, children, relationship, situation, talked, love, guy, problems, course, work, accept, divorce, couple, meet, girl, attitude, happy, type	[PATIENT] see, because by saying like, ``yes, i'll go home with my wife and i'll stay home, "then i reaffirm my way of life and my relationship with my wife.
Symptom	Fatigue	sleep, blood, depression, energy, tired, low, thyroid, pressure, hormone, fatigue, problems, pituitary, months, growth, level, exercise, treatment, depakote, pharmacy	[PATIENT] pretty good, i'm still having such trouble with being able to have energy. my energy level is down and i am just sleepy, sleepy all day long.
	Depression	depressed, depression, doctor, sleep, worse, pain, problems, upset, tired, afraid, care, sad, crying, medication, feels, help, sorry, left, understand, hurt, lexapro, remember	[PATIENT] and it's sort of - i don't know. i just really don't want to be stuck, like i really don't want to wake up one morning and realize that i hate my life completely. that i'm really miserable where i am or where i decided to go.

Topic Models for Supervised Learning with Multilabel Documents

Multilabel Document Data Sets

Real-World Multilabel Data Sets

- Annotated New York Times
 - 1.5 million news articles
 - Thousands of topics
 - Tagged by team of librarians

- Open Directory Project (ODP)
 - Science subtree
 - 10,817 categories
 - 78k Web pages
 - 11-level hierarchy

- Wikipedia
 - O(100k) categories
 - Network of relationships
 - Wiki pages tagged with categories

MultiLabel Document Data Sets

Data Set	Number of Unique Labels	Median Number of Documents per Label
RCV1-V2	103	7410
Yahoo! Arts	14	530
Yahoo! Health	19	500

MultiLabel Document Data Sets

Data Set	Number of Unique Labels	Median Number of Documents per Label
RCV1-V2	103	7410
Yahoo! Arts	14	530
Yahoo! Health	19	500
EUR-Lex	3993	6
New York Times	4185	3

Prior Work in Multilabel Text Classification

Unrealistically small numbers of labels are often used, e.g.,

- Yahoo! directories: ~20 labels
- RCV-1 ~ 100 labels
- OHSUMED ~ 100 labels

SVMs do well on common labels, but do poorly when there are few documents per label

See study by Liu et al (SIGKDD Explorations, 2005)

Room for new approaches for data sets with many labels

Discriminative Learning

- "One-versus-all" discriminative learning
 - Learn a binary classifier for each label
 - e.g., SVMs, logistic regression
- Potential limitations of discriminative approach
 - documents with many labels
 - labels with few documents
- Differences with generative (topic) model
 - Discriminative: assigns labels at the document level
 - Generative: assigns labels at the word level

Applying Topic Models to Multilabel Classification

Rubin, Chambers, Smyth, Steyvers, MLJ 2012

Simple idea:

- Associate each label with a topic (see Ramage et al, EMNLP, 2009)
- During learning, restrict the sampler to the known labels for the document
- Algorithm learns a distribution over words for each label
- Key difference with discriminative methods: labels are assigned per word, not per document

Modeling label dependencies

 Extend standard LDA to allow for label (topic) dependencies – significantly improves performance

Topic Modeling with Labels

- Say our documents can have multiple labels (supervised data)
- Simple observation:
 - Labels and topics: 1-1 correspondence
 - When sampling with Gibbs sampler, we can restrict sampling to "topics" (labels) assigned to that document
- Algorithm learns
 - Which labels are associated with each word within a document
 - Probability distribution over words for each label
- Probabilistic basis for multi-label document classification

NY Times Article

Document Labels	Label Freq.	SVM (weight)
ANTITRUST ACTIONS AND LAWS	19	nintendo
SUITS AND LITIGATION	67	mcgowan
VIDEO GAMES	1	futuristic
		compatible
Document Excerpt		illusion
bocament Excerpt		shrewd
A flurry of lawsuits, s	_	inception
small American software	± '	truthful
now surrounds the		profiles
Entertainment System,		billionayear
selling toy in the Un		suing
last yearAtari Games Nintendo's high degree of	_	infringement
tantamount to monopoly,		architecture
Nintendo for antitrust v	_	handheld
		tantamount
		payoff

NY Times Article

Models for VIDEO GAMES

Document Labels	Label Freq.	SVM (weight)	LDA (prob.)
ANTITRUST ACTIONS AND LAWS	19	nintendo	nintendo
Suits and Litigation	67	mcgowan	games
VIDEO GAMES	1	futuristic	software
		compatible	video
Document Excerpt		illusion	system
Document Excerpt		shrewd	game
A flurry of lawsuits, st	arted by a	inception	chip
small American software	<u>-</u> ·	truthful	control
now surrounds the	Nintendo	profiles	market
Entertainment System,		billionayear	home
selling toy in the Uni		suing	computer
last yearAtari Games a	_	infringement	shortage
Nintendo's high degree of tantamount to monopoly, as		architecture	say
Nintendo for antitrust vic	_	handheld	buy
Willedias for difference vis	014610110	tantamount	demand
		payoff	developer

From Rubin, Chambers, Smyth, Steyvers, MLJ 2012

Data Set	Median Number of Documents per Label	Metrics where Topics were better	Metrics where SVMs were better
RCV1-V2	7410	1	24
Yahoo! Arts	530	11	13
Yahoo! Health	500	13	12
EUR-Lex	6	18	6
New York Times	3	22	1

From Rubin, Chambers, Smyth, Steyvers, MLJ 2012

Background Reading on Topic Models

David Blei's Topic Modeling Web page:

https://www.cs.princeton.edu/~blei/topicmodeling.html

See introductry papers and slides from various tutorials See also code, browsers, visualizations, discussion list, etc

Original paper on topic modeling,

Latent Dirichlet allocation, David Blei, Andrew Y. Ng and Michael Jordan. *Journal of Machine Learning Research*, 3:993-1022, 2003.

Probabilistic topic models, Steyvers, M. & Griffiths, T. (2006). In T. Landauer, D McNamara, S. Dennis, and W. Kintsch (eds), *Latent Semantic Analysis: A Road to Meaning*. Laurence Erlbaum

Distributed algorithms for topic models, D. Newman, A. Asuncion, P. Smyth, and M. Welling, *Journal of Machine Learning Research*, 10(Aug):1801-1828, 2009.

