Elektrotechnika

IX. Váltakozó áramú hálózatok 2.

9.1. Admittancia

Admittancia

Az impedancia reciproka ("általános vezetőképesség")

Speciális fajtái: a vezetőképesség, induktív szuszceptancia, kapacitív

szuszceptancia

Jele: Y, mértékegysége: S (siemens)

A feszültséghez és áramhoz hasonlóan vektoros mennyiség → van nagysága és

fázisszöge!!

Ellenállás admittanciája

nagysága
$$\rightarrow$$
 YR = G = 1/R

fázisszöge
$$\rightarrow$$
 ϕ R = 0°

Tekercs admittanciája

nagysága
$$\rightarrow$$
 YL = BL = 1/XL

fázisszöge
$$\rightarrow$$
 $\phi L = -90^{\circ}$

Kondenzátor admittanciája

nagysága
$$\rightarrow$$
 Yc = Bc = 1/Xc

fázisszöge
$$\rightarrow$$
 $\phi c = 90^{\circ}$

Eredő számítás

Soros kapcsolás esetén az impedanciák adódnak össze vektorosan

→ eredő impedancia

Párhuzamos kapcsolás esetén az admittanciák adódnak össze vektorosan

→ eredő admittancia

9.1. Admittancia

1. minta feladat

Mennyi lesz az eredő impedancia (Z), és mekkora áram (I) fog folyni az áramkörben, ha $U_g = 24V$ és f = 4kHz?

fázisszögek
$$\rightarrow$$
 $\phi_R = 0^\circ$ és $\phi_C = 90^\circ$

Az "ellenállások" és admittanciák:

$$Xc = 1 / (2\pi^*f^*C) = 1 / (2\pi^* 4000 \text{ Hz }^* 20^*10^{-9} \text{ F})$$

 $Xc = 1/0,000502655 = 1989,4\Omega \approx 2 \text{ k}\Omega$
 $Yc = Bc = 1/Xc = 1 / 2 \text{ k}\Omega = 0,5 \text{ mS}$
 $YR = G = 1/R = 1 / 4 \text{ k}\Omega = 0,25 \text{ mS}$

Eredő admittancia számítása → vektorosan!

$$\overline{Y}_e = \overline{Y}_R + \overline{Y}_C$$
 !! vektorosan \rightarrow

$$Ye^2 = G^2 + Bc^2 = 0.25^2 + 0.5^2 = 0.3125$$

 $Ye = 0.559 \text{ mS}$
 $Ze = 1 / Ye = 1 / 0.559 \text{ mS} = 1.79 \text{ k}\Omega$

Ohm törvénnyel:

$$I = U_g / Z_e = 24 \text{ V} / 1,79 \text{ k}\Omega = 13,416 \text{ mA}$$

Ellenörzés

Ic =U_g / Xc = 24 V / 2 k
$$\Omega$$
 = 12 mA
IR =U_g / R = 24 V / 4 k Ω = 6 mA
I² = IR² + Ic² = 6² + 12² = 180 \rightarrow I = 13,416 mA

9.1. Admittancia

2. minta feladat

Mennyi lesz az eredő impedancia (Z), és mekkora áram (I) fog folyni az áramkörben, ha U_g = 10V és f = 1600Hz ?

Az "ellenállások" és admittanciák:

Yc = Bc =
$$1/Xc = 1 / 1 k\Omega = 1 mS$$

YL = BL = $1/XL = 1 / 2 k\Omega = 0.5 mS$
YR = G = $1/R = 1 / 1 k\Omega = 1 mS$

Eredő admittancia számítása → vektorosan!

$$\overline{Y}_e = \overline{Y}_R + \overline{Y}_C + \overline{Y}_L$$
 !! vektorosan \rightarrow

$$Ye^2 = G^2 + (Bc-BL)^2 = 1^2 + 0.5^2 = 1.25$$

 $Ye = 1.118 \text{ mS}$
 $Ze = 1 / Ye = 1 / 1.118 \text{ mS} = 0.8944 \text{ k}\Omega$

Ohm törvénnyel:

$$\begin{split} I = &U_g \ / \ Z_e = \ 10 \ V \ / \ 0,8944 \ k\Omega = 11,18 \ mA \\ Ic = &U_g \ / \ X_C = 10 \ V \ / \ 1 \ k\Omega = 10 \ mA \\ I_L = &U_g \ / \ X_L = 10 \ V \ / \ 2 \ k\Omega = 5 \ mA \\ I_R = &U_g \ / \ R = 10 \ V \ / \ 1 \ k\Omega = 10 \ mA \end{split}$$

9.2. Feladatok

1. Mekkora lesz az áramkör eredő impedanciája (Ze), és mekkora áram (I) fog folyni ha Ug=10V és f=10kHz?

2. Mekkora lesz az áramkör eredő impedanciája (Ze), és mekkora áram (I) fog folyni ha Ug=10V és f=2400Hz ?

9.2. Feladatok

3. Mekkora lesz az áramkör eredő impedanciája (Ze), és mekkora áram (I) fog folyni ha Ug=10V és f=400Hz?

4. Mekkora lesz az áramkör eredő impedanciája (Ze), és mekkora áram (I) fog folyni ha Ug=10V és f=10kHz?

9.3. Soros rezgőkör

Soros RLC kapcsolás

- rezonancia frekvencia, fo \rightarrow ahol XL = XC \rightarrow fo = 1 / ($2\pi * \sqrt{L*C}$)
- az eredő impedanciája a rezonancia frekvencián a legkisebb → Ze = rs

minta feladat

 $\begin{array}{l} \text{fo} = 1 \: / \: (2\pi^* \sqrt{\: L^* C}) = 1 \: / \: (\: 2\pi^* \sqrt{\: 0,2 \: ^* \: 0,00000002}\:) \\ \text{fo} = 5000 \: / \: 2\pi \: = \: 795,775 \: \text{Hz} \\ \text{XL} = 2\pi^* f^* L \: = \: 2\pi^* \: 795,775 \: \text{Hz} \: ^* \: 0,2 \: \text{H} \\ \text{XL} = 1 \: k\Omega \: \to \: \text{XC} = 1 \: k\Omega \end{array}$

Eredő impedancia, fo frekvencián →

$$Ze^2 = rs^2 + (Xc-XL)^2 = rs^2$$

 $Ze = rs = 40 Ω$

Ohm törvénnyel: $I = U_g / Z_e = 5 \text{ V} / 40 \Omega = 125 \text{ mA}$ és $U_R = I * r_s = 125 \text{ mA} * 40 \Omega = 5 \text{ V}$ $U_L = I * X_L = 125 \text{ mA} * 1 \text{ k}\Omega = 125 \text{ V} \text{ !!}$ $U_C = I * X_C = 125 \text{ mA} * 1 \text{ k}\Omega = 125 \text{ V} \text{ !!}$

9.3. Soros rezgőkör

Soros RLC kapcsolás

- UL és Uc rezonancia frekvencián egyforma nagyságú, de elentétes irányú → Ug = UR
- rezonancia frekvencián L és C elemeken sokkal nagyobb feszültség eshet mint a generátor feszültség !!!
- jósági tényező, Q = meddő teljesítmény / valós teljesítmény → soros kapcsolásnál, rezonancia frekvencián Q₀ = X_L/ r_s (vagy X_C/ r_s)
- UL = Q0 * UR és UC = Q0 * UR
- van két határfrekvencia (fh1 és fh2) ahol $r_s = X_C X_L$ iII. $r_s = X_L X_C \rightarrow$ ezeken a frekvenciákon $Z_e = r_s * \sqrt{2}$
- sávszélesség, B = fh2 fh1
- összefüggés a sávszélesség és a jósági tényező között → B = fo / Qo

<u>minta feladat folyt.</u>

$$f_0 = 795,775 \text{ Hz}$$

$$XL = XC = 1 \text{ k}\Omega$$

$$Z_e = r_s = 40 \Omega$$

$$Q_0 = XL/r_s = 1000 / 40 = 25$$

$$U_R = U_g = 5 \text{ V}$$

$$U_L = Q_0 * U_R = 125 \text{ V}$$

$$U_C = Q_0 * U_R = 125 \text{ V}$$

$$B = f_0 / Q_0 = 795,775 \text{ Hz} / 25 = 31,83 \text{ Hz}$$

9.4. Feladatok

1. Mekkora lesz az áramkör rezonancia frekvenciája? Mekkora lesz rezonancia frekvencián az eredő impedanciája, jósági tényezője, áram felvétele, sávszélessége, az egyes alkatrészeken eső feszültség?

9.5. Párhuzamos rezgőkör

Párhuzamos RLC kapcsolás

- rezonancia frekvencia, fo \rightarrow ahol XL = XC \rightarrow fo = 1 / ($2\pi * \sqrt{L*C}$)
- az eredő impedanciája a rezonancia frekvencián a legnagyobb → Ze = Rp

minta feladat

Ohm törvénnyel:

Ic =U_g / Xc = 5 V / 500 Ω = 10 mA IL =U_g / XL = 5 V / 500 Ω = 10 mA IR =U_g / R_p = 5 V / 20 k Ω = 0,25 mA Csomóponti törvénnyel: I² = IR² + (IL-Ic)² = IR² \rightarrow I = IR = 0,25 mA

9.5. Párhuzamos rezgőkör

Párhuzamos RLC kapcsolás

- I∟ és Ic rezonancia frekvencián egyforma nagyságú, de ellentétes irányú → I = IR
- rezonancia frekvencián L és C elemeken sokkal nagyobb áram folyhat mint a generátor által leadott áram !!!
- jósági tényező, Q = meddő teljesítmény / valós teljesítmény →
 párhuzamos kapcsolásnál, rezonancia frekvencián Q₀ = Rゥ / X∟ (vagy Rゥ / Xϲ)
- $IL = Q_0 * IR$ és $IC = Q_0 * IR$
- van két határfrekvencia (fh1 és fh2) ahol $R_p = X_C X_L$ ill. $R_p = X_L X_C \rightarrow ezeken$ a frekvenciákon $Z_e = R_p / \sqrt{2}$
- sávszélesség, B = fh2 fh1
- összefüggés a sávszélesség és a jósági tényező között → B = fo / Qo

minta feladat folyt.

$$f_0 = 795,775 \text{ Hz}$$

$$X_L = X_C = 500 \Omega$$

$$Z_e = R_p = 20 \text{ k}\Omega$$

$$Q_0 = R_p / X_L = 20 / 0,5 = 40$$

$$I = I_R = 0,25 \text{ mA}$$

$$I_L = Q_0 * I_R = 40*0,25 \text{ mA} = 10 \text{ mA}$$

$$I_C = Q_0 * I_R = 40*0,25 \text{ mA} = 10 \text{ mA}$$

$$B = f_0 / Q_0 = 795,775 \text{ Hz} / 40 = 19,9 \text{ Hz}$$

9.6. Feladatok

1. Mekkora lesz az áramkör rezonancia frekvenciája? Mekkora lesz rezonancia frekvencián az eredő impedanciája, jósági tényezője, áram felvétele, sávszélessége, az egyes alkatrészeken folyó áram?

9.7. Teljesítmények

<u>Teljesítmény</u>

- Kiszámítása kicsit bonyolultabb mint egyen áram esetén (P=U*I), mivel a feszültségek és áramok vektoros jellegűek (időben változnak, és egymáshoz képest elcsúszhatnak az időben). → a teljesítmény is változik az időben → átlag teljesítményt számolunk!
- Az ellenállás, tekercs, kondenzátor által felvett teljesítmény jellege is más → tekercs és kondenzátor esetén az átlag teljesítmény 0 (egyszer teljesítményt felvesz, máskor meg lead)
- A teljesítmény típusai:

```
látszólagos, S = U * I mértékegysége: VA hatásos (wattos, ellenálláson), P = U * I * cos \varphi mértékegysége: W (watt) meddő (reaktív, tekercs és kondenzátor esetén), Q = U * I * sin \varphi mértékegysége: VAr (\varphi az U és I közötti fázisszög)
```

- Fázistényező: $\cos \varphi \rightarrow az a jó ha \varphi kicsi!$
- fázisjavítás: φ csökkentése → mivel a fogyasztók általában induktív jellegűek → kompenzáló kondenzátor bekötése az áramkörbe

9.7. Teljesítmények

Mintafeladat:

Mekkora lesz az áramkör eredő impedanciája (Ze), és mekkora áram (I) fog folyni ha Ug=10V és f=800Hz? Mekkora teljesítményt vesznek fel az egyes alkatrészek, és mekkorát a teljes áramkör (P=? Q=?)?

Csomóponti törvénnyel:

=25mW

$$I^2 = IR^2 + IL^2 = 2,5^2 + 10^2 = 106,25$$

 $I = 10,31 \text{ mA}$
Fázisszög I és Ug között:
 $tgφ = IL / IR = R / XL = 4 →$
 $φ = 75,96°$
 $S = Ug * I = 10 V * 10,31 \text{ mA} = 0,1031VA$
 $P = Ug * I * cosφ = 0.1031*0,2425$

 $Q = U_g * I * \sin \varphi = 0.1031*0.97 = 0.1VAr$

A tekercs "ellenállása": $X_L = 2\pi * f * L = 2\pi * 800 Hz * 0,2 H$ $X_L = 1005,31\Omega \approx 1 \text{ k}\Omega$ Ohm törvénnyel: $I_L = U_g / X_L = 10 \text{ V} / 1 \text{ k}\Omega = 10 \text{ mA}$ és $IR = U_g / R = 10 V / 4 k\Omega = 2.5 mA$ Ellenállás teljesítményei ($\varphi = 0$) \rightarrow $P_R = U_g * I_R * cos \varphi = 10 V * 2,5 mA = 25mW$ $Q_R = U_g * I_R * sin \varphi = 0 VAr$ $S_R = U_q * I_R = 25 \text{ mVA}$ Tekercs teljesítményei (φ = 90°) → $P_L = U_q * I_L * cos \varphi = 0 W$ $Q_L = U_g * I_L * \sin \varphi = 10 V * 10 mA = 0,1 VAr$ $S_L = U_q * I_L = 0.1 VA$

9.8. Feladatok

Mekkora lesz az áramkör eredő impedanciája (Ze), és mekkora áram (I) fog folyni ha Ug=24V és f=1200Hz? Mekkora teljesítményt vesznek fel az egyes alkatrészek, és mekkorát a teljes áramkör (P=? Q=?)?

1. feladat

2. feladat

9.9. Transzformátor

Transzformátor

- villamos gép (de mozgást nem végez)
- a váltakozó feszültségű villamos teljesítményt más feszültségűvé alakítja nagyon jó hatásfokkal (feltranszformálja vagy letranszformálja)
- a feszültség mellett áram és impedancia átalakítást is végez!
- felépítése: közös vasmagon két tekercs (primer és szekunder)
 - → közös vasmag miatt csatolás
- működése a kölcsönös indukción alapul (+ önindukció is)

Primer tekercs menetszáma → N₁ Szekunder tekercs menetszáma → N₂

Menetszám áttétel

 $a = N_1 / N_2$

9.9. Transzformátor

Ideális transzformátor, üresjárásban

1. Mintafeladat:

$$N_1 = 300 \quad N_2 = 25 \quad U_1 = 230V$$

 $U_2 = ?$

$$U_1 / U_2 = N_1 / N_2 = 300/25=12$$

 $\rightarrow U_2 = U_1 / 12 = 230V / 12$
 $\rightarrow U_2 = 19.17 V$

Nyugalmi indukció:
$$u_i = N * \frac{d\Phi}{dt}$$

$$\hat{U}_i = N * A * 2\pi * f * B_{max}$$

$$U_{i1} = 4,44 * N_1 * A * f * B_{max}$$

$$U_{i2} = 4,44 * N_2 * A * f * B_{max}$$

$$U_1 = Ui_1$$
 és $U_2 = Ui_2$

Feszültség áttétel

$$U_1 / U_2 = N_1 / N_2 = a$$

$$I_{1\ddot{0}} = U_1 / X_{L1} = U_1 / 2\pi *f*L_1$$

 $I_{1\ddot{0}}$ nagyon kicsi !!

9.9. Transzformátor

Ideális transzformátor, terhelten

2. Mintafeladat:

$$N_1 = 50$$
 $N_2 = 400$ $U_1 = 5V$
 $Z_2 = 4$ $k\Omega$
 $U_2 = ?$ $I_1 = ?$ $I_2 = ?$ $Z_1 = ?$
 $a = U_1 / U_2 = N_1 / N_2 = 50/400 = 1/8$
 $\rightarrow U_2 = U_1 / a = 5V *8 = 40V$
 $I_2 = U_2 / Z_2 = 40 V / 4$ $k\Omega = 10$ mA
 $I_1 = I_2 / a = 10$ mA / $(1/8) = 80$ mA
 $Z_1 = a^2 * Z_2 = 1/64 * 4$ $k\Omega = 62,5$ Ω

Feszültség áttétel

$$U_1 / U_2 = N_1 / N_2 = a$$

Ideális eset \rightarrow P1 \approx P2 \rightarrow U1 * I1 = U2 * I2

Áram áttétel

$$I_1 / I_2 = N_2 / N_1 = 1 / a$$

Impedancia áttétel

$$Z_1 / Z_2 = N_1^2 / N_2^2 = a^2$$

9.10. Ismétlő feladatok

1. Magyarázd el a következő villamos mennyiségeket!

frekvencia:

amplitudó:

9.11. Ismétlő feladatok

1. Magyarázd el a következő villamos mennyiségeket!

periódusidő:

effektív érték:

2.

9.12. Ismétlő feladatok

1.
$$f = 4kHz$$
, $C = 100nF \rightarrow XC = ?$
 $f = 500Hz$, $C = 300nF \rightarrow XC = ?$
 $f = 2kHz$, $L = 100mH \rightarrow XL = ?$
 $f = 300Hz$, $L = 300mH \rightarrow XL = ?$

2. Mennyi az eredő impedanciája az alábbi kétpólusnak?

