

计算机组成原理实验

授课老师: 吴炜滨

大纲

- ➤ Logisim 基本功能
- ➤ Logisim中的延迟和险象
- ➤ Logisim中的震荡现象
- ➤ Logisim常用组件库

大纲

- ➤ Logisim 基本功能
 - 分析电路

■画出如图电路

♪ Logisim: 电路分析 of logisim基本功能

模拟 窗口 帮助 电路分析 线路(Wiring) ±. 逻辑门(Gates) 复用器(Plexers) 运算器(Arithmetic) 存储(Memory) 输入/输出(Input/Output) 基本(Base) 电路: 电路分析 电路名称 电路分析 共享的标签 共享的标签朝向 东 SansSerif 标准 12 共享的标签字体

♪ Logisim: 电路分析 of logisim基本功能

■ 电路表达式

■自动化简电路

♪ Logisim: 电路分析 of logisim基本功能

编辑 项目 模拟 窗口 帮助 \triangleright D D logisim基本功能* 电路分析 线路(Wiring) ±... 逻辑门(Gates) 复用器(Plexers) + ... + ... 运算器(Arithmetic) 存储(Memory) 输入/输出(Input/Output) 基本(Base) Combinational Analysis X 文件编辑 项目模拟 窗口帮助 输入 输出 真值表 表达式 最小项 电路: 电路分析 电路名称 电路分析 共享的标签 Х Z 共享的标签朝向 东 共享的标签字体 SansSerif 标准 12 建立电路

■ 实时仿真开关

□ Logisim: 电路分析 of logisim基本功能

■ 实时仿真开关

■ 实时仿真开关

大纲

- ➤ Logisim 基本功能
 - 自动生成电路

自动生成电路

- 利用真值表及表达式自动生成电路,但是只能是组合逻辑
- 输入引脚只能是一位
- 输入引脚最多是8个
- 输出引脚最多是12个

■ 一位全加器

■ 一位全加器

• 添加输入/输出变量

可以定义真值表

利用输入表达式定义电路

D Logisim: main of 自动生成电路

文件 编辑 项目 模拟 窗口 帮助

D Logisim: main of 自动生成电路

文件 编辑 项目 模拟 窗口 帮助

■ 电路转化 (不用异或)

仅有 与或非门

➤ Logisim中的延迟和险象

Logisim中的延迟和险象

- Logisim中的组件有延迟吗?
 - 是的
 - 不能精准仿真不同器件的延迟
 - 所有组件的延迟都是相同的
 - 一个独立的组件,包含一级延迟 → 竞争

■ 竞争

- 在组合电路中,同一信号或同时变化的某些信号,经过不同路径到达某一点的时间 有先有后,这种现象称为竞争
- 竞争 → 险象

Logisim中的延迟和险象

■险象

- 由于竞争而引起电路输出发生瞬间错误的现象称为险象(冒险)
- 表现为输出端出现了原设计中没有的窄脉冲, 常称为"毛刺"
- 在组合电路中, "毛刺"不一定造成严重后果
- 但当组合逻辑与时序逻辑结合在一起时,险象就可能造成严重错误,特别是当组合逻辑的输出作为时序电路的使能输入时

- 关闭持续启用信号模拟,采用单步信号传递
- 利用手形工具点击计数器的计数,可直接输入数字进行清零

■ 改变输入引脚值

♪ Logisim: 险象 of 险象

♪ Logisim: 险象 of 险象

文件 编辑 项目 模拟 窗口 帮助

♪ Logisim: 险象 of 险象

窗口 帮助 险象* □ 险象消除 □ 農荡电路 □ 险象 线路(Wiring) ±---±---±---±---±---逻辑门(Gates) 复用器(Plexers) 运算器(Arithmetic) 存储(Memory) 输入/输出(Input/Output) 基本(Base) 电路:险象 电路名称 险象 共享的标签 共享的标签朝向 SansSerif 标准 12 共享的标签字体

- ■消除竞争
 - 增加一些缓冲器 使得各个输入端 的信号的传播路 径一致
- 缓冲器
 - 起到一级延迟的作用

- 持续启用信号模拟
- 复位计数器的值
- 改变输入值
 - 计数器不计数

- 非门直接集成到与门, 成为一个组件
- 输入信号传播路径一 致

➤ Logisim中的震荡现象

Logisim中的震荡现象

■ 震荡现象

- 电路由于不恰当反馈回路的存在,无法进入稳态
- Logisim的仿真算法,会陷入死循环
- 系统的保护机制:循环次数达到事先设定的阈值的时候,系统就判定当前电路存在着震荡,从而退出自动仿真,避免系统仿真算法陷入死循环

D Logisim: 震荡电路 of 险象 模拟 窗口 帮助 启用信号模拟 Ctrl+E 重置模拟器 Ctrl+R 信号传递一步 Ctrl+l 险象消除 退出到 震荡电路 进入到 险象 线路(Wiring) 逻辑门(Gates) 时钟前进一步 Ctrl+T 复用器(Plexers 启用时钟模拟 Ctrl+K 运算器(Arithme 存储(Memory) 时钟频率 输入/输出(Inpu 基本(Base) 记录器... 引脚(Pin) 朝向 输出? 否 数据位宽 否 三态? 未定义处理 不变 标签 标签位置 西 标签字体 SansSerif 标准 12

D Logisim: 震荡电路 of 险象 项目 窗口 帮助 启用信号模拟 Ctrl+E 重置模拟器 Ctrl+R 信号传递一步 Ctrl+l 险象 险象消除 退出到 震荡电路 险象 进入到 线路(Wiring) +.. +.. 逻辑门(Gates) 时钟前进一步 Ctrl+T 复用器(Plexers 启用时钟模拟 Ctrl+K 运算器(Arithme 存储(Memory) 时钟频率 <u>+</u>.. 输入/输出(Inpu 基本(Base) 记录器... 引脚(Pin) 朝向 输出? 否 数据位宽 三态? 否 未定义处理 不变 标签 标签位置 SansSerif 标准 12 标签字体

■消除震荡

- 更改输入为0
- 重新启动持续信号模拟

➤ Logisim常用组件库

组件通用属性

#	属性	功能描述	快捷键
1	朝向	组件在画布放置的方向	光标键
2	数据位宽	引脚对应的数据宽度	alt+数字
3	引脚数	逻辑门电路输入引脚数	数字键
4	外观	可以调整组件外观属性	
5	尺寸	逻辑门电路可以设置组件的尺寸大小	
6	标签	与组件相关联的标签文字,用于注释	
7	标签位置	标签在组件上的显示位置	
8	标签字体	组件标签文字的字体	

- ➤ Logisim常用组件库
 - 线路库组件

引脚 Pin

■ 功能: 子电路输入输出接口

子电路封装

属性	朝向	输出	数据位宽	三态
功能	器件方向	输入/输出	引脚数据位宽	输入引脚 是否有三态值

探针 Probe

■ 功能: 动态监测线路值

上/下拉电阻 Pull Resistor

- 功能: 处理线路中的悬浮态、不确定值
 - 无位宽属性
 - 更改上拉/下拉,可通过更改属性中的方向实现

常量、接地、电源

■ 常量

■电源、接地

- ➤ Logisim常用组件库
 - 复用器库

多路选择器MUX

- 功能: 从多路输入中选择一路 (通过选择端选择) 进行输出
 - 选择端位宽为n,则输入源的数目为 2^n
 - 使能端默认为1,可关闭,避免误接

不恰当的级联

- 不要将MUX当if-else的实现组件使用
 - 用多路选择器代替逻辑电路 (X)
 - MUX输出级联另一MUX选择端 (x)
 - 多路选择器本身有时间延迟,采用级联会增大整个电路的延迟
- 用组合逻辑的基本门电路来完成
 - 数字逻辑的标准设计方法

解复用器DMX

■ 功能:将一路输入输出到多路输出中的其中一路 (通过选择端选择)

谢谢!