Category Theory for Algebra II

January 27, 2024

Contents

1	Examples of Categories	2
2	Initial and Final Objects	2
3	Categories	2
4	Some Classes of Morphisms	4

1 Examples of Categories

Before formally defining a category, we shall look at some examples of familiar categories. A category consists of a collection of obects and a collection of morphisms satisfying certain conditions that will be discussed later.

- 1. The category Set has sets as objects and functions as morphisms.
- 2. The collection of groups and group homomorphisms forms a category denoted by Grp.
- 3. The collection of vector spaces over a fixed field F, together with F-linear transformations forms the category $Vect_F$.
- 4. The collection of sets and relations forms the category Rel.

2 Initial and Final Objects

An initial object in a category C is an object A such that for all objects X of C, there exists a unique morphism from A to X. A final object in C is an object A such that for all objects X of C, there exists a unique morphism from X to A. A zero object is an object that is both initial and final.

Example 2.1. 1. The empty set \emptyset is the initial object and any singleton set is a final object in Set.

- 2. The trivial group is both the initial and final object in Grp.
- 3. The zero-dimensional vector space is the zero object in $Vect_F$.
- 4. The empty set is the zero object in Rel.

3 Categories

A category C is a collection Ob(C) of objects and, for every two objects X and Y a collection Hom(X,Y) of morphisms or arrows, together with operations

$$\circ : \operatorname{Hom}(Y, Z) \times \operatorname{Hom}(X, Y) \to \operatorname{Hom}(X, Z)$$

for all $X, Y, Z \in Ob(C)$, satisfying the following:

- (C1) $\operatorname{Hom}(X_1, Y_1)$ and $\operatorname{Hom}(X_2, Y_2)$ are disjoint unless $X_1 = X_2$ and $Y_1 = Y_2$.
- (C2) For each $X \in \mathrm{Ob}(\mathsf{C})$, there exists an identity morphism id_X or 1_X such that if $f \in \mathrm{Hom}(X,Y)$, there $f \circ \mathrm{id}_X = f$ and if $g \in \mathrm{Hom}(Z,X)$, then $\mathrm{id}_X \circ g = g$.
- (C3) If $F \in \text{Hom}(X, Y)$, $g \in \text{Hom}(Y, Z)$, and $h \in \text{Hom}(Z, W)$, then

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

This is the law of associativity.

The collection of all morphisms of C is denoted by Mor(C). If $f \in Hom(X, Y)$, then we write $f: X \to Y$ or $X \xrightarrow{f} Y$ and say that f is a morphism from X to Y, or that $X = \operatorname{dom} f$ is the domain and $Y = \operatorname{cod} f$ is the codomain of f.

Example 3.1. 1. $C = \{X, Y\}$, $Mor(C) = \{1_X, 1_Y, f : X \to Y, g : Y \to X\}$ with 1_X and 1_Y as identity morphisms and $f \circ g = 1_Y$, $g \circ f = 1_X$. Graphically,

$$1_X \xrightarrow{f} X \xrightarrow{g} Y \xrightarrow{1_Y} 1_Y$$

- 2. $C = \{\bullet\}, Mor(C) = \{1\}.$
- 3. Ring is the category of unital rings and unital ring homomorphisms.
- 4. Mon is the category of monoids and monoid homomorphisms.
- 5. Top is the category of topological spaces and continuous maps.
- 6. AbGrp is the category of Abelian groups and group homomorphisms.

Exercise 3.1. 1. In the category C given below, determine the compositions of all the non-identity morphisms.

2. In the category C given below, determine the compositions of all the non-identity morphisms.

- 3. If C is a category with $Ob(C) = \{\bullet\}$ and $Mor(C) = \{1, f, g\}$, such that $f \circ g = 1$. Then determine $f \circ f$, $g \circ g$, and $g \circ f$.
- 4. Show that the following is not a valid category.

5. Let X be an object of a category C. Denote by C/X the category whose objects are

$$\mathrm{Ob}(\mathsf{C}/X) = \{\, f \colon Y \to X \mid Y \in \mathrm{Ob}(\mathsf{C}) \,\}$$

morphisms are

$$\operatorname{Hom}(f,g) = \{ h \colon Y \to Z \mid g \circ h = f \}$$

for all $Y, Z \in \mathrm{Ob}(\mathsf{C})$, $f: Y \to X$, $g: Z \to X$, and the composition of $m \in \mathrm{Hom}(f,g)$ and $n \in \mathrm{Hom}(g,h)$ is defined to be the morphism $n \circ m$ of C . Show that C/X is indeed a category.

3

- 6. Define a category X/C analogous to C/X and show that it is a category.
- 7. Let C be a category. Define a new category C^{op} whose objects are the same as those of C, with a morphism $f^{op}: Y \to X$ corresponding to every morphism $f: X \to Y$ in C, and composition defined by

$$f^{\mathsf{op}} \circ g^{\mathsf{op}} = (g \circ f)^{\mathsf{op}}$$

for all $f^{op}: Y \to X$, $g^{op}: Z \to Y$. Show that C^{op} is indeed a category.

- 8. What is the category $(C/X)^{op}$?
- 9. Can the following be a category? If so, how?

10. Can the following be a category? If so, how?

11. Can the following be a category? If so, how?

A category is small if its collections of objects and morphisms are sets – note that this is equivalent to simply saying that its collection of morphisms, as the objects are in one-to-one correspondence with the identity morphisms. A category that is not small is large. A category is locally small if $\operatorname{Hom}(X,Y)$ is a set for every two objects X and Y of the category. In this case, $\operatorname{Hom}(X,Y)$ is said to be a hom-set.

In Example 3.1, the categories given in 1 and 2 are small (and hence also locally small), whereas the ones given in 3, 4 and 6 are large but locally small.

4 Some Classes of Morphisms

A morphism $f: X \to Y$ in a category C is an isomorphism if there exists a morphism $g: Y \to X$ in C such that $g \circ f = 1_X$ and $f \circ g = 1_Y$. Such a morphism g is an inverse of f. If there exists an isomorphism $f: X \to Y$, then X is isomorphic to Y, written $X \cong Y$.

Exercise 4.1. 1. Show that each identity morphism is an isomorphism.

- 2. Show that if f is an isomorphism, then it has a unique inverse, and the inverse is also an isomorphism.
- 3. Show that the composition of two compatible isomorphisms is also an isomorphism.
- 4. Show that the isomorphism relation \cong is an equivalence relation on the collection of objects of a category.

Example 4.1. 1. In Set, the isomorphisms are exactly the bijective functions.

- 2. In Grp, Mon, Ring, and AbGrp, the isomorphisms are the bijective homomorphisms of the respective algebraic structures.
- 3. In $Vect_F$, the isomorphisms are the bijective linear transformations.
- 4. In Top, the isomorphisms are the homeomorphisms. Note that a homeomorphism is not simply a bijective continuous map (i.e. a morphism in Top that is bijective as a function). Why?
- 5. In the category given in Example 3.1, 1, all the morphisms are isomorphisms.