Nome: _____

_ Turma: _____

Valor: 10 • Nota: _____

Vetores

- 1. (1 Ponto) Observe os vetores a seguir:
 - (a) Escreva cada vetor na representação matricial (ou em soma)

$$\vec{a} = \left[egin{array}{c} 2 \\ 4 \end{array}
ight] \qquad \vec{b} = \left[egin{array}{c} 3 \\ 2 \end{array}
ight] \qquad \vec{c} = \left[egin{array}{c} 4 \\ 4 \end{array}
ight]$$

(b) Some os vetores dois a dois e escreva os resultados matricialmente (ou em soma)

Solution:

$$\vec{a} + \vec{b} = \begin{bmatrix} 5 \\ 6 \end{bmatrix} \vec{b} + \vec{c} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} \vec{a} + \vec{c} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$$

- 2. (1 Ponto) Utilizando os vetores \vec{a} e \vec{b} da questão (1), produza os seguintes vetores:
 - (a) $\vec{v} = (0,0)$

Solution:

$$\vec{v} = \vec{a} - \vec{a}$$

(b) $\vec{v} = (3,3)$

Solution:

$$\alpha \begin{pmatrix} 2 \\ 4 \end{pmatrix} + \beta \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \Longrightarrow \begin{cases} 2\alpha + 3\beta = 3 \\ 4\alpha + 2\beta = 3 \end{cases}$$
 (I)

Igualando (I) a (II), temos

$$2\alpha + 3\beta = 4\alpha + 2\beta$$
 \Rightarrow $\beta = 2\alpha$ (III)

Substituindo (III) em (II) temos

$$4\alpha + 2(2\alpha) = 3 \qquad \Longrightarrow \alpha = \frac{3}{8}$$

Substituindo α em (III), temos

$$\beta = \frac{3}{4}$$

$$\implies \vec{v} = \frac{3}{8}\vec{a} + \frac{3}{4}\vec{b} \quad \blacksquare$$

(c) $\vec{v} = (5,5)$

Solution: Se $(3,3) = \frac{3}{4} \left(\frac{1}{2}\vec{a} + \vec{b} \right)$, e como $(5,5) = \frac{5}{3}(3,3)$, então

$$(5,5) = \frac{5}{4} \left(\frac{1}{2} \vec{a} + \vec{b} \right) \quad \blacksquare$$

(d) $\vec{v} = (0, 1)$

Solution:

$$\alpha \begin{pmatrix} 2 \\ 4 \end{pmatrix} + \beta \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Longrightarrow \begin{cases} 2\alpha + 3\beta = 0 & (\mathbf{I}) \\ 4\alpha + 2\beta = 1 & (\mathbf{II}) \end{cases}$$

Fazendo 2(I)-(II) temos $4\beta=-1$. Portanto $\beta=-\frac{1}{4}$

$$4\alpha + 2\left(\frac{-1}{4}\right) \implies \alpha = \frac{3}{8}$$
$$\vec{v} = \frac{3}{8}\vec{a} - \frac{1}{4}\vec{b} \quad \blacksquare$$

(e) $\vec{v} = (1,0)$

Solution: Analogamente,

$$\begin{cases} 2\alpha + 3\beta = 1 & (\mathbf{I}) \\ 4\alpha + 2\beta = 0 & (\mathbf{II}) \end{cases}$$

Fazendo 2(I) – (II) temos $4\beta=2\Longrightarrow\beta=\frac{1}{2}$

$$4\alpha + 2\left(\frac{1}{2}\right) = 0 \implies \alpha = -\frac{1}{4}$$

$$\vec{v} = -\frac{1}{4}\vec{a} + \frac{1}{2}\vec{b} \quad \blacksquare$$

3. (3 Pontos) Utilizando quaisquer combinações lineares dos vetores apresentados na questão (1) explique com suas palavras, porque não é (ou é) possível produzir algum vetor da forma:

$$\vec{v} = (x, y, z) \quad z \in \mathbb{R}, z \neq 0$$

Solution: Não é possível pois nenhum dos vetores \vec{a} , \vec{b} e \vec{c} possui componente na direção \hat{z} . Mais precisamente, são todos L.I. com $z\hat{k}$ $\forall z \in \mathbb{R}$.

- 4. (5 Pontos) Encontre vetores perpendiculares a cada vetor apresentado a seguir e, em seguida, normalize-os.
 - (a) $\vec{v} = (5,3)$

Solution: Dizer que dois vetores são perpendiculares é o mesmo que dizer que o produto interno entre eles é nulo.

$$\vec{v} \cdot \vec{u} = 0 = 5u_x + 3u_y \implies u_y = -\frac{5u_x}{3}$$

$$\vec{u} = \left(\begin{array}{c} u\\ -\frac{5u}{3} \end{array}\right) = u \left(\begin{array}{c} 1\\ -5/3 \end{array}\right)$$

Tomando u=1, podemos normalizar o vetor dividindo-o por sua norma.

$$\vec{u} = \begin{pmatrix} 1 \\ -5/3 \end{pmatrix}$$
 $\|\vec{u}\| = \sqrt{1^2 + (-5/3)^2} = \frac{\sqrt{34}}{3}$

$$\hat{u} = \frac{\vec{u}}{\|\vec{u}\|} = \frac{3}{\sqrt{34}} \begin{pmatrix} 1\\ -5/3 \end{pmatrix} \quad \blacksquare$$

Os demais itens são de procedimento análogo.

(b) $\vec{v} = (10, 2)$

Solution:

$$10x + 2y = 0 \Longrightarrow y = \frac{-10x}{2} = -5x$$

Escolhendo x = 1 temos

$$\vec{u} = \begin{pmatrix} 1 \\ -5 \end{pmatrix} \qquad ||\vec{u}|| = \sqrt{26}$$

$$\hat{u} = \frac{\vec{u}}{\|\vec{u}\|} = \frac{1}{\sqrt{26}} \begin{pmatrix} 1\\ -5 \end{pmatrix} \quad \blacksquare$$

(c) $\vec{v} = (15, 9)$

Solution: Notemos que $\begin{pmatrix} 15 \\ 9 \end{pmatrix} = 3 \begin{pmatrix} 5 \\ 3 \end{pmatrix}$, portanto o versor perpendicular a ambos os vetores é o mesmo.

$$\hat{u} = \frac{\vec{u}}{\|\vec{u}\|} = \frac{3}{\sqrt{34}} \begin{pmatrix} 1\\ -5/3 \end{pmatrix} \quad \blacksquare$$

(d) $\vec{v} = (1, 1)$

Solution: É fácil ver que $\begin{pmatrix} 1 \\ -1 \end{pmatrix} \perp \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, bastando então apenas normaliza- $\hat{u} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\hat{u} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad \blacksquare$$

(e) $\vec{v} = (-2, 2)$

Solution: analogamente ao item anterior, $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \perp \begin{pmatrix} -2 \\ 2 \end{pmatrix}$, portanto

$$\hat{u} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \blacksquare$$