GANISATION FUR GEISTIGES EIGENTUM

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/81, 15/00, C12Q 1/68, C12N 1/19, C12Q 1/18

(11) Internationale Veröffentlichungsnummer:

(43) Internationales Veröffentlichungsdatum:

8. Oktober 1998 (08.10.98)

WO 98/44135

(21) Internationales Aktenzeichen:

PCT/EP98/01904

A2

(22) Internationales Anmeldedatum:

2. April 1998 (02.04.98)

(30) Prioritätsdaten:

197 13 572.2

2. April 1997 (02.04.97)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): AKTIENGESELLSCHAFT [DE/DE]; HOECHST Brüningstrasse 50, D-65929 Frankfurt am Main (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HINNEN, Albert [DE/DE]; Scheidlerstrasse 17, D-07745 Jena (DE). HEGEMANN, Johannes [DE/DE]: In den Gärten 33, D-35398 Giessen (DE). MUNDER, Thomas [DE/DE]; Engelplatz 3, D-07743 Jena (DE). SCHUSTER, Tilmer [DE/DE]; Eichenweg 40, D-97440 Werneck (DE). FELDMANN, Horst [DE/DE]; Pasinger Heuweg 86, D-80999 München (DE). KRAMER, Wilfried [DE/DE]; Strasse an der St. Vinzenz Kirche 10, D-37077 Göttingen (DE). ZIMMERMANN, Friedrich, Karl [DE/DE]: Goethestrasse 12, D-64372 Ober-Ramstadt (DE). ENTIAN, Karl-Dieter [DE/DE]; Oberurseler Strasse 43. D-61440 Oberursel (DE). ROSE, Matthias [DE/DE]; Theodor-Heuss-Strasse 4, D-61267 Neu-Anspach (DE).

KÖTTER, Peter [DE/DE]; Industriestrasse 3A, D-61440 Oberursel (DE).

(81) Bestimmungsstaaten: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, GW, HU, ID, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MW, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: METHOD FOR SCREENING ANTIMYCOTICALLY ACTIVE SUBSTANCES

(54) Bezeichnung: VERFAHREN ZUM SCREENING VON ANTIMYKOTISCH WIRKENDEN SUBSTANZEN

(57) Abstract

The invention relates to a method for screening antimycotically active substances, whereby essential genes from mycetes, especially of Saccaromyces cerevisae, and functionally homologous and/or sequentially homologous mycetes genes are used as targets. Said method is thus characterized in that essential genes from mycetes are used as targets.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zum Screening von antimykotisch wirksamen Substanzen, wobei essentielle Gene aus Myceten, insbesondere von Saccaromyces cerevisae sowie funktionshomologe und/oder sequenzhomologe Mycetengene als Targets eingesetzt werden. Verfahren zum Auffinden von antimykotisch wirkenden Substanzen, dadurch gekennzeichnet, daß essentielle Gene aus Myceten als Targets eingesetzt werden.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	1.T	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	ТJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
ВJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan -
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimhabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
ĊU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	I.C	St. Lucia	RU	Russische Föderation		
DE	Deutschland	Ll	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Verfahren zum Screening von antimykotisch wirkenden Substanzen

Die Erfindung betrifft ein Verfahren zum Screening von antimykotisch wirksamen Substanzen, wobei essentielle Gene aus Myceten, insbesondere von Saccharomyces cerevisiae sowie funktionshomologe und/oder sequenzhomologe Mycetengene als Targets eingesetzt werden.

Das Spektrum der bekannten Pilzinfektionen reicht von Pilzbefällen an der Hautoberfläche oder der Nägel bis hin zu potentiell lebenbedrohlichen mykotischen Infektionen der inneren Organe. Derartige Infektionen und damit einhergehende Folgeerkrankungen, werden als Mykosen bezeichnet.

Zur Behandlung von Mykosen werden antimykotisch (fungistatisch oder fungizid) wirkende Substanzen eingesetzt. Bisher gibt es aber nur relativ wenige pharmakologisch wirksame Substanzen, wie beispielsweise Amphotericin B, Nystatin, Pimaricin, Griseofulvin, Clotrimazol, 5-Fluorcytosin und Batraphen. Die medikamentiöse Behandlung von Pilzinfektionen ist außerordentlich schwierig, insbesondere deshalb, weil es sich sowohl bei den Myceten als auch bei den Wirtszellen um eukaryotische Zellen handelt. Die Einnahme von Arzneimitteln, die die bekannten antimykotischen Wirkstoffe enthalten ist deshalb oft mit unerwünschten Nebenwirkungen verbunden, beispielsweise wirkt Amphotericin B nephrotoxisch. Es besteht also ein starker Bedarf an pharmakologisch wirksamen Substanzen, die zur Herstellung von Medikamenten eingesetzt werden können, die bei einer Schwächung des Immunsystems prophylaktisch oder im Falle einer bereits vorliegenden Infektion zur Behandlung von Mykosen eingesetzt werden können. Dabei sollten die Substanzen ein spezifisches Wirkprofil aufweisen, so daß selektiv das Wachstum und die Vermehrung von Myceten verhindert werden kann, ohne dabei den Wirtsorganismus zu schädigen.

Für die Identifizierung antimykotisch wirksamer Substanzen fehlt es bisher an kompatiblen, aussagekräftigen Testverfahren.

In WO 95/11969 wird ein Verfahren zum Screening von antimykotischen Substanzen beschrieben, wobei der Effekt von zu testenden Substanzen auf die Translation eines Proteins als Maß für die Wirkung der zu testenden Substanz bestimmt wird.

Eine Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Identifizierung von antimykotisch wirkenden Substanzen zu entwickeln, welches möglichst universell einsetzbar ist und die Testung einer Vielzahl von potentiellen Wirkstoffen in einer möglichst effektiven Weise ermöglicht.

Ein wesentliches Merkmal des Verfahrens ist, daß essentielle Gene aus Myceten als Targets für das Screening verwendet werden. Dieses Verfahren unterscheidet sich insbeondere dadurch von bekannten Verfahren, daß keine detaillierten Kenntnisse über die biochemische Funktion des durch das essentielle Gen kodierten Proteins notwendig sind.

Die Erfindung betrifft ein Verfahren zum Auffinden von antimykotisch wirkenden Substanzen, wobei essentielle Gene aus Myceten und/oder die Genprodukte dieser essentiellen Gene als Targets eingesetzt werden. Insbesondere werden antimykotisch wirkende Substanzen dadurch aufgefunden, daß sie die funktionelle Expression der essentiellen Gene (Transkription und Translation) aus Myceten oder die funktionelle Aktivität der kodierten Proteine ganz oder teilweise inhibieren.

Die Erfindung betrifft ein Verfahren zum Auffinden von antimykotisch wirkenden Substanzen, wobei in dem Verfahren

- a) eine Nukleinsäure, die die Expression eines essentiellen Proteins aus Saccharomyces cerevisiae kontrolliert und/oder die für ein essentielles Protein aus Saccharomyces cerevisiae oder einen Teil desselben kodiert oder das kodierte essentielle Protein selbst oder
- b) eine andere Nukleinsäure, die die Expression eines zu dem unter a) genannten Proteins funktionsähnlichen Proteins aus einer anderen Mycetenspezies kontrolliert und/oder die für ein zu dem unter a) genannten Protein funktionsähnliches Protein aus einer anderen Mycetenspezies kodiert oder das kodierte funktionsähnliche

WO 98/44135

3

Protein selbst als Target eingesetzt wird, wobei dann entweder

a) der Effekt einer zu untersuchenden Substanz auf die Expression des essentiellen Proteins aus Saccharomyces cerevisiae oder die funktionelle Aktivität des kodierten essentiellen Proteins selbst oder

b) der Effekt einer zu untersuchenden Substanz auf die Expression des funktionsähnlichen Proteins aus einer anderen Mycetenspezies oder die funktionelle Aktivität des kodierten funktionsähnlichen Proteins selbst bestimmt wird.

In einer Ausführungsform des Verfahrens ist die Nukleinsäure ein essentielles Gen oder ein Teil desselben, beispielsweise der Promotor des essentiellen Gens oder ein Enhancer des essentiellen Gens.

Die Erfindung beinhaltet, daß essentielle Gene in Myceten identifiziert werden, die dann in dem Screeningverfahren eingesetzt werden können.

Die Erfindung beinhaltet, daß zuerst essentielle Gene in Saccharomyces cerevisiae identifiziert werden. Die Erfindung beinhaltet auch, daß ausgehend von identifizierten essentiellen Genen in Saccharomyces cerevisiae (S. cerevisiae) funktionsähnliche Gene in anderen Myceten identifiziert werden. Diese funktionsähnlichen Genen können gegebenfalls essentielle Gene in anderen Myceten sein.

Um essentielle Gene in S. cerevisiae zu identifizieren, werden einzelne Gene von S. cerevisiae durch homologe Rekombination aus dem Genom der S. cerevisiae entfernt. Handelt es sich bei dem entfernten DNA-Abschnitt um ein essentielles Gen, dann ist die Deletion letal für die S. cerevisiae Zellen.

Um entsprechende Deletionen im Genom von S. cerevisiae zu erzeugen und solche S. cerevisiae Zellen, die die Deletion tragen selektionieren zu können, wird eine Methode verwendet, bei dem das zu untersuchende S. cerevisiae Gen durch ein Markergen ersetzt wird. Über dieses Markergen (Gen eines Selektionsmarkers) können die Zellen selektioniert werden, bei denen eine homologe Rekombination stattgefunden hat, da bei ihnen das zu untersuchende Gen durch das Gen eines

Selektionsmarkers ersetzt worden ist. Als Selektionsmarker können z. B. dominante Selektionsmarker oder Auxotrophiemarker verwendet werden.

Als Auxotrophiemarker werden Gene benutzt, die für Schlüsselenzyme der Aminosäure- oder Nukleobasen-Synthesewege kodieren. Beispielsweise können S. cerevisiae Gene die für Enzyme aus dem Aminosäurestoffwechsel von Leucin (z. B. LEU2-Gen), Histidin (z. B. HIS3-Gen) oder Tryptophan (z. B. TRP1-Gen) oder aus dem der Stoffwechsel der Nukleobase Uracil (z. B. URA3-Gen) kodieren, als Marker verwendet werden.

Das Verfahren beinhaltet, daß auxotrophe S. cerevisiae Zellen bzw. Stämme verwendet werden können, d. h. Zellen bzw. Stämme, in denen das für den jeweils verwendeten Marker kodierende Gen ein oder mehrere Mutationen aufweist, wodurch gewährleistet wird, daß kein funktionell aktives Enzym exprimiert wird. Diese auxotrophen Zellen bzw. Stämme können nur in Nährmedien wachsen, in denen die entsprechenden Aminosäuren oder Nukleobasen enthalten sind. Als Stämme können beispielsweise alle S. cerevisiae Laborstämme verwendet werden, die Auxotrophie- und/oder Nukleobasen-Marker besitzen. Werden diploide S. cerevisiae Zellen bzw. Stämme eingesetzt dann, müssen die entsprechenden Markergene homozygot mutiert vorliegen. Insbesondere wird der Stamm CEN.PK2 (Scientific Research & Development GmbH, Oberursel, Deutschland) oder isogene Derivate dieses Stamms eingesetzt.

Das Verfahren beinhaltet auch, daß S. cerevisiae Zellen bzw. Stämme verwendet werden, die keine geeigneten Auxotrophiemarker besitzen beispielsweise prototrophe S. cerevisiae Zellen bzw. Stämme. Dann können dominante Selektionsmarker, beispielsweise Resistenzgene, wie das Kanamycin-Resistenzgen als Marker eingesetzt werden.

Für die homologe Rekombination, bei der in Genen von S. cerevisiae die DNA-Sequenz des zu untersuchenden S. cerevisiae Gens ganz oder teilweise durch die Sequenz des Markergens ersetzt wird, werden DNA-Fragmente eingesetzt, bei denen das Markergen am 5'- und am 3'-Ende von Sequenzen flankiert wird, die zu

Sequenz-Abschnitten am 5'- und 3'-Ende des zu untersuchenden S. cerevisiae Gens homolog sind.

Für die Herstellung entsprechender DNA-Fragmente sind verschiedene Verfahren möglich, die zur Deletion spezifischer S. cerevisiae Gene etwa gleich gut geeignet sind. Für die Transformation in eine geeignete S. cerevisiae Zelle bzw. einen Stamm wird ein lineares DNA-Fragment eingesetzt. Dieses wird durch die homologe Rekombination ins S. cerevisiae Genom integriert.

In dem Verfahren können drei verschiedene Methoden verwendet werden:

- 1. "Klassische Methode" zur Erzeugung von Deletionskassetten (Rothstein, R. J. (1983) Methods in Enzymology Vol. 101, 202 211).
- 2. "Klassische Methode" unter Verwendung der PCR-Technik ("Modifizierte Klassische Methode").
- 3. SFH (short flanking homology)-PCR-Methode (Wach, A. et al. (1994) Yeast 10: 1793 1808; Güldner, U. et al. (1996) Nucleic Acids Research 24: 2519 2524).
- 1. Bei der "Klassischen Methode" zur Erzeugung von Deletionskassetten im S. cerevisiae Genom liegt das zu untersuchende Gen entweder bereits in einem geeigneten Vektor vor oder es wird in einen solchen integriert. Bei dieser Methode können beispielsweise alle pBR-, pUC- und pBluescript®-Derivate verwendet werden. Aus diesen Vektoren wird, z. B. unter Verwendung geschickt ausgewählter Restriktionsschnittstellen, ein Großteil der Sequenz des zu untersuchenden Gens entfernt, wobei aber die 5′- und 3′-Bereiche des zu untersuchenden Gens im Vektor verbleiben. Zwischen diese verbleibenden Bereiche wird das Gen des ausgewählten Selektionsmarkers integriert.
- 2. Bei einer modifizierten Form dieser "Klassischen Methode" wird die PCR-Technik eingesetzt. Bei dieser Methode werden die Bereiche des zu untersuchenden S. cerevisiae Gens, die sich am 3'- beziehungsweise 5'-Ende der

6

kodierenden Sequenz befinden mit Hilfe der PCR-Technik amplifiziert. Bei diesem Verfahren werden ausschließlich die Randbereiche beidseitig des zu untersuchenden Gens amplifiziert, weshalb für jedes zu untersuchende Gen zwei PCR-Reaktionen durchgeführt werden müssen, wobei einmal das 5'- und einmal das 3'-Ende des Gens amplifiziert wird. Die Länge der amplifizierten DNA-Abschnitte der Randbereiche hängt beispielsweise von den in diesen Bereichen vorhandenen Restriktionsschnittstellen ab. Die amplifizierten Randbereiche des zu untersuchenden Gens haben in der Regel eine Länge von 50 bis 5000 Basenpaaren, besonders bevorzugt eine Länge zwischen 500 und 1000 Basenpaaren (Bp).

Als Template für die PCR-Reaktion kann beispielsweise genomische DNA aus S. cerevisiae eingesetzt werden. Als Template für die PCR-Reaktionen können Wildtyp-Gene oder modifizierte Wildtyp-Gene verwendet werden. Die Primer-Paare (jeweils ein Sense- und ein Antisense-Primer) werden so konstruiert, daß sie Sequenz-Abschnitten am 3'- bzw. 5'-Ende des zu untersuchenden S. cerevisiae Gens entsprechen. Insbesondere werden die Primer so gewählt, daß eine Integration über geeignete Restriktionsschnittstellen in den Vektor möglich ist.

Als Vektoren können Derivate des pUC-, pBR- und pBluescript®-Vektors eingesetzt werden. Insbesondere sind Vektoren geeignet, die bereits ein Gen, das für einen Selektionsmarker kodiert, enthalten. Insbesondere können hierzu Vektoren verwendet werden, die die Gene der Selektionsmarker HIS3, LEU2, TRP1 oder URA3 enthalten. Beispielsweise können hierzu die Plasmide pPK5/6 (SEQ ID NO. 18), pPK7/8 (SEQ ID NO. 19), pPK9/10 (SEQ ID. NO. 20) und pPK13/14 (SEQ ID NO. 21) verwendet werden. Die Nukleotidsequenz der Plasmide pPK5/6, pPK7/8, pPK9/10 und pPK13/14 ist im Sequenzprotokoll angegeben. Die Herstellung dieser Plasmide ist in den Beispielen 2 bis 6 beschrieben.

Die mittels PCR erzeugten DNA-Abschnitte des zu untersuchenden S. cerevisiae Gens werden beiderseits des im Vektor bereits vorhandenen Gens, das für den Selektionsmarker kodiert, in den Vektor integriert, so daß anschließend, wie bei der "Klassischen Methode", der verwendete Selektionsmarker beidseitig von homologen

7

DNA-Sequenzen des zu untersuchenden Gens flankiert vorliegt.

3. Da überraschenderweise die homolge Rekombination an S. cerevisiae sehr effizient und präzise verläuft, kann die Länge der zu dem zu untersuchenden S. cerevisiae Gen homologen DNA-Abschnitte, die das Gen des Selektionsmarkers flankieren, gegebenenfalls deutlich kürzer gewählt werden als bei der "Modifizierten Klassischen Methode". Die flankierenden, zu dem zu untersuchenden Gen homologen Bereiche brauchen nur eine Länge von etwa 20 - 60 Basenpaaren, besonders bevorzugt von 30 - 45 Basenpaaren, aufzuweisen. Besonders vorteilhaft an der SFH-PCR-Methode ist, daß aufwendige Klonierungsschritte entfallen.

An einem DNA-Template, daß das Gen für den zu verwendenden Selektionsmarker enthält, wird eine PCR-Reaktion durchgeführt, wobei die verwendeten Primer so konstruiert werden, daß die DNA-Sequenz des Sense-Primers dem 5'- Ende der Sequenz des Selektionsmarkers homolog ist und daß der Primer zusätzlich an seinem 5'-Ende einen vorzugsweise 40 Nukleotide langen Bereich aufweist, der der Sequenz am 5'-Ende des zu untersuchenden S. cerevisiae Gens entspricht. Analog wird der Antisense-Primer so konstruiert, daß er zu dem 3'-Ende der Sequenz des Gens des Selektionsmarkers komplementär ist, wobei dieser Primer an seinem 5'-Ende einen vorzugsweise ebenfalls 40 Nukleotide langen Bereich enthält, der der Sequenz am 3'-Ende des zu untersuchenden Gens entspricht.

Für die Amplifikation von zu untersuchenden S. cerevisiae Genen mit Hilfe der SFH-PCR-Methode werden beispielsweise Vektoren verwendet, die bereits das Gen für einen Auxotrophie- oder einen Selektionsmarker enthalten. Insbesondere wird das Plasmid pUG6 als Template verwendet. Dieses Plasmid enthält eine loxP-KanMX-loxP Kassette (Güldener, U. et al. (1996) Nucleic Acids Research 24: 2519 - 2524). Das heißt, ein Kanamycin-Resistenzgen ist beidseitig von einer loxP-Sequenz (loxP-KanMX-loxP Kassette) flankiert. Die Verwendung dieser Kassette hat den Vorteil, daß nach der Integration der loxP-KanMX-loxP Kassette an den Genort an dem das zu untersuchende S. cerevisiae Gen lokalisiert war, das Kanamycin-Resistenzgen gegebenenfalls wieder aus dem S. cerevisiae Genom entfernt werden kann. Dafür kann die Cre-Rekombinase des Bakteriophagen P1 verwendet werden.

Die Cre-Rekombinase erkennt die loxP-Sequenzen und entfernt die zwischen den beiden loxP-Sequenzen liegende DNA durch einen homologen Rekombinationsprozeß. Als Ergebnis bleibt nur eine loxP-Sequenz zurück und es kommt zur sogenannten Marker-Rückgewinnung, d. h. der S. cerevisiae Stamm kann erneut mit loxP-KanMX-loxP Kassette transformiert werden. Dies ist besonders vorteilhaft, wenn zwei oder mehrere funktionshomologe Gene deletieren werden sollen, um einen letalen Phänotyp zu erhalten.

Bei der SFH-PCR-Methode werden in der PCR-Reaktion Primer verwendet, die an ihrem 3'-Ende einen vorzugsweise etwa 20 Nukleotide langen Bereich aufweisen, der zu Sequenzen links beziehungsweise rechts von der loxP-KanMX-loxP Kassette homolog ist, wobei die Primer jeweils an ihrem 5'-Ende einen vorzugsweise 40 Nukleotide langen Bereich aufweisen, der Sequenzabschnitten an den Enden des zu untersuchenden Gens homolog ist.

Mit allen drei Methoden werden lineare Deletionskassetten erhalten, die das Gen für einen ausgewählten Selektionsmarker enthalten, der beidseitig von homologen Sequenzen des zu untersuchenden Gens flankiert wird. Diese Deletionskassetten werden für die Transformation diploider S. cerevisiae Stämme eingesetzt. Beispielsweise kann hierfür der diploide S. cerevisiae Stamm CEN.PK2 (Scientific Research & Development GmbH, Oberursel, Deutschland) verwendet werden.

CEN.PK2 Mata/MAT α ura3-52/ura3-52 leu2-3, 112/leu2-3, 112 his3 Δ 1/his3 Δ 1 trp1-289/trp1-289 MAL2-8 $^{\circ}$ /MAL2-8 $^{\circ}$ SUC2/SUC2

Der Stamm CEN.PK2 wird nach bekannten Verfahren angezogen und kultiviert (Gietz, R. D. et al. (1992) Nucleic Acids Research 8: 1425; Güldener, U. et al. (1996) Nucleic Acids Research 24: 2519 - 2524).

Die Zellen des verwendeten S. cerevisiae Stammes werden mit einer entsprechenden Menge DNA der linearen Deletionskassette nach bekannten Verfahren transformiert (beispielsweise Sambrook et al. (1989) Molecular Cloning, A Laboratory Manual. Cold Spring Habor Laboratory Press). Danach wird das Medium

9

in dem die Zellen kultiviert werden gegen neues Medium, sogenanntes Selektivmedium, das die entsprechende Aminosäure (beispielsweise Histidin, Leucin oder Tryptophan) oder Nukleobase (beispielsweise Uracil) nicht enthält bzw. bei Verwendung einer Deletionskassette die das Kanamycin-Resistenzgen enthält, in Medien mit Geniticin (G418®) kultiviert. Alternativ können die transformierten Zellen auf mit entsprechendem Medium hergestellten Agarplatten ausplattiert werden. Auf diese Weise werden die Transformanden selektioniert, bei denen eine homologe Rekombination stattgefunden hat, da nur diese Zellen unter den veränderten Bedingungen wachsen können.

In den meisten Fällen wird bei der Transformation einer diploiden S. cerevisiae Zelle bzw. eines Stammes aber nur eine der beiden in dem doppelten Chromosomensatz vorliegenden Kopien des zu untersuchenden Gens durch die DNA der Deletions-Kassette ersetzt, so daß eine heterozygot-diploide S. cerevisiae Zelle bzw. ein heterozygot-diploider S. cerevisiae Mutantenstamm entsteht, bei der/dem eine Kopie des zu untersuchenden Gens durch das Gen des Selektionsmarkers ersetzt wird, während die andere Kopie des zu untersuchenden Gens im Genom erhalten bleibt. Das hat den Vorteil, daß falls auf diese Weise ein essentielles Gen deletiert wird, die heterozygot-diploide Zelle bzw. der S. cerevisiae Mutantenstamm aufgrund der noch vorhandenen zweiten Kopie des essentiellen Gens weiterhin lebensfähig ist.

Die korrekte Integration der DNA der Deletionskassette an den vorbestimmen chromosomalen Genlocus (Genlocus des zu untersuchenden Gens) kann gegebenenfalls mit Hilfe der Southern-Blot-Analyse (Southern, E. M. (1975) J. Mol. Biol. 98: 503 - 517) oder mit Hilfe der diagnostischen PCR-Analyse unter Verwendung spezifischer Primer überprüft werden (Güldener, U. et al. (1996) Nucleic Acids Research 24: 2519 - 2524).

Die genetische Aufspaltung einzelner diploider Zellen läßt sich mit einer Tetradenanalyse verfolgen. Dazu werden diploide Stämme, insbesondere heterozygot-diploide Mutantenstämme, mit Hilfe von bekannten Verfahren zur Reduktionsteilung (Meiose) angeregt, beispielsweise durch Stickstoffverarmung auf

Kaliumacetat-Platten (Sherman, F. et al. (1986) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.; Guthrie, C. und Fink, G. R. (1991) Methods in Enzymology. Volume 194. Academic Press, San Diego, 3 - 21; Ausubel, F. M. et al. (1987) Current Protocols in Molecular Biology, John Wiley & Sons, Inc., Chapter 13). Die Meiose resultiert in Asci mit vier Ascosporen (Segreganten), die nach enzymatischen Partialverdauung der Ascussporenwand mit Zymolyase (Ausubel et al. (1987)) mit Hilfe eines Mikromanipulators (z.B. Firma SINGER) vereinzelt werden können. Wird beispielsweise ein heterozygot-diploider Mutantenstamm, bei dem ein essentielles Gen im doppelten Chromosomensatz durch die homologe Rekombination ausgetauscht wurde einer Tetraden-Analyse unterzogen, dann überleben nur zwei Segreganten, nämlich die, die das essentielle Gen noch tragen. Die beiden anderen Segreganten sind nicht lebensfähig, weil bei ihnen das zu untersuchende, in diesem Fall essentielle Gen, fehlt.

Zur Verifikation, ob die auf diese Weise untersuchten Gene tatsächlich essentiell sind oder ob dem Genlocus des zu untersuchenden Gens benachbarte, möglicherweise essentielle Gene durch die homologe Rekombination "beschädigt" wurden, werden die heterozygot-diploiden S. cerevisiae Mutantenstämme mit einem Centromerplasmid, in dem das zu untersuchende Gen vorliegt, transformiert. Die Transformanden werden einer Tetraden-Analyse unterzogen. Werden dann wieder vier anstelle von zwei lebensfähigen Segreganten erhalten, so kann das im Centromerplasmid vorliegende zu untersuchende Gen den Defekt der zwei nicht lebensfähigen haploiden S. cerevisiae Zellen/Mutantenstämme komplementieren, womit bewiesen ist, daß das untersuchte S. cerevisiae Gen essentiell ist.

Vorzugsweise werden als Centromerplasmide Plasmide verwendet, die in niedriger Kopienzahl, beispielsweise in 1 oder 2 Kopien pro Zelle vorliegen. Beispielsweise können hierzu die Plasmide pRS313, pRS314, pRS315 und pRS316 (Sikorski, R. S. und Hieter, P. (1989) Genetics 122: 19 - 27) oder ähnliche Plasmide verwendet werden. Dabei werden die zu untersuchenden Gene vorzugsweise einschließlich ihrer 5'- und 3'-nichtkodierenden Bereiche in diese Plasmide integriert.

Mit den beschriebenen Methoden lassen sich einzelne Gene von Saccharomyces cerivisae, deren DNA-Sequenz ganz oder teilweise bekannt ist, untersuchen. Die komplette DNA-Sequenz des S. cerevisiae Genoms wurde am 24. April 1996 über das World Wide Wep (WWW) veröffentlicht.

Folgende Möglichkeiten bestehen, um auf DNA-Sequenzen des S. cerevisiae Genoms übers WWW zuzugreifen.

MIPS (Munich Information Centre of Protein Sequence)

Adresse http://speedy.mips.biochem.mpg.de/mips/yeast/yeast-genom.htmlx

SGD (Saccharomyces Genome Database, Stanford)

Adresse http://genome-www.stanford.edu/Saccharomyces

YPD (Yeast Protein Database, Cold Spring Harbor)

Adresse: http://www.prteome.com/YPDhome.html

Die vollständige DNA-Sequenz des S. Cerevisiae Genoms ist auch über FTP (file transfer protocol) in Europa (z.B. unter der Adresse: ftp.mips.embnet.org) in den USA (Adresse: genome-ftp.stanford.edu) oder in Japan (Adresse: ftp.nig.ac.jp) zugänglich.

Unter Verwendung der beschriebenen Methoden kann mit Hilfe dieser Sequenzinformation für jedes einzelne Saccharomyces cerevisiae Gen bestimmt werden, ob das jeweilige Gen für S. cerevisiae essentiell ist.

Im Genom von S. cerevisiae wurden auf diese Weise die Gene YGR046w, YGR048w, YGR060w, YJL074c, YJR136c, YJR141w, YBR167c, YPL252c, YPL242c, YOR119c, YPL235w, YOR110w, YNL182c, YOR206w, YJL054w, YJL039c, YNL258c, YNL245c, YNL038w, YNL251c, YNL256w, YNL260c, YIR012w, YLR086w, YLR076c, YLR100w, YIR010w, YIL003w, YBR102c, YOL010w, YKL013c, YKL018w und YLL003w als essentiell identifiziert.

Tabelle 6 gibt einen Überblick über diese essentiellen Gene und die damit in Zusammenhang stehenden Informationen. In Spalte 1 sind die Bezeichnungen für die erzeugten Mutantenstamm (CEN.PK2 Stämme, in denen das essentielle Gen durch ein Markergen ausgetauscht wurde), in Spalte 2 die systematischen Gen-Namen der essentiellen Gene (Bezeichnung unter der die entsprechenden DNA-Sequenzen in Datenbanken geführt werden), in Spalte 3 die zur Herstellung des Mutantenstämme verwendeten Selektionsmarker sowie in den Spalten 4 und 5 die deletierten Nukleotide und die dazu korrespondierenden Aminosäuren der essentiellen Gene (als Bezugspunkt dient die Position 1; Position 1 ist das A des voraussichtlichen Start-Codons ATG des offenen Leserahmens) angegeben. Soweit verfügbar, sind auch die Gen-Namen (Spalte 6) und Einträge in Datenbanken DB (Spalte 7), angegeben. Insbesondere sind dort Eintragungen aus Datenbanken über die Essentialität der Gene vermerkt. Beispielsweise bei dem Gen YGR060w ist vermerkt, daß dieses Gen zuvor als nicht essentiell klassifiziert wurde. Unter Verwendung des CEN.PK2 Stammes wurde nun überraschenderweise gefunden, daß das YGR060w Gen doch essentiell ist. Darüber hinaus sind in Spalte 8, soweit vorhanden, weitere Informationen z.B. bzgl. der Funktion der als essentiell identifizierten Gene oder der kodierten Proteine und/oder Homologien/Ähnlichkeiten zu anderen Genen oder Proteinen angegeben.

Die Angaben in Tabelle 6 unterstreichen, daß obwohl die DNA-Sequenzen der S. cerivisae Gene (Spalte 2) bekannt sind, über die Funktion, oder die charakteristischen Eigenschaften dieser Gene bzw. der kodierten Proteine bisher kaum etwas bekannt ist und auch die essentielle Funktion dieser Gene oder der durch diese Gene kodierten Proteine bisher nicht bekannt war.

Unter dem systematischen Gennamen (Spalte 2 in Tabelle 6) sind die Sequenzen der als essentiell identifizierten Gene in Gendatenbanken, z.B. den o.g. zugänglich. Die Erfindung betrifft die Verwendung der essentiellen Gene YGR046w, YGR048w, YGR060w, YJL074c, YJR136c, YJR141w, YBR167c, YPL252c, YPL242c, YOR119c, YPL235w, YOR110w, YNL182c, YOR206w, YJL054w, YJL039c, YNL258c, YNL245c, YNL038w. YNL251c, YNL256w, YNL260c, YIR012w,

YLR086w, YLR076c, YLR100w, YIR010w, YIL003w, YBR102c, YOL010w, YKL013c, YKL018w und YLL003w.

Ausgehend von dem Stamm CEN.PK2 (Scientific Research & Technologie GmbH, Oberursel, Deutschland) wurden unter Verwendung einer der drei genannten Methoden die in Tabelle 6, Spalte 1 genannten Saccharomyces cerevisiae Stämme CEN.EN27, CEN.EN28, CEN.EN8, CEN.RO23, CEN.RO30, CEN.RO6, CEN.RO8, CEN.SR14, CEN.SR15, CEN.SR2, CEN.SR26, CEN.SR41, CEN.SR55, CEN.SR66, CEN.SR80, CEN.SR81, CEN.HE1, CEN.HE17, CEN.HE18, CEN.HE2, CEN.HE4, CEN.HE9, CEN.HI10, CEN.HI23, CEN.HI28, CEN.HI31, CEN.HI5, CEN.HI7, CEN.FE8, CEN.KR28, CEN.TS02, CEN.TS04 und CEN.ZI26 erzeugt. Diese Stämme sind dadurch definiert, daß die in Tabelle 6, Spalte 4 angegebenen Nukleotide (bzw. die in Spalte 5 angegebenen Aminosäuren) durch die in Tabelle 6, Spalte 3 angegeben Selektionsmarker ersetzt wurden.

Die Erfindung betrifft die Stämme CEN.EN27, CEN.EN28, CEN.EN8, CEN.RO23, CEN.RO30, CEN.RO6, CEN.RO8, CEN.SR14, CEN.SR15, CEN.SR2, CEN.SR26, CEN.SR41, CEN.SR55, CEN.SR66, CEN.SR80, CEN.SR81, CEN.HE1, CEN.HE17, CEN.HE18, CEN.HE2, CEN.HE4, CEN.HE9, CEN.HI10, CEN.HI23, CEN.HI28, CEN.HI31, CEN.HI5, CEN.HI7, CEN.FE8, CEN.KR28, CEN.TS02, CEN.TS04 und CEN.ZI26 sowie Verfahren zur Herstellung dieser Stämme und die Verwendung dieser Stämme.

Eine Ausführungsform des Verfahrens ist, daß die essentiellen Gene von Saccharomyces cerevisiae, insbesondere die Gene YGR046w, YGR048w, YGR060w, YJL074c, YJR136c, YJR141w, YBR167c, YPL252c, YPL242c, YOR119c, YPL235w, YOR110w, YNL182c, YOR206w, YJL054w, YJL039c, YNL258c, YNL245c, YNL038w, YNL251c, YNL256w, YNL260c, YIR012w, YLR086w, YLR076c, YLR100w, YIR010w, YIL003w, YBR102c, YOL010w, YKL013c, YKL018w und YLL003w oder Teile derselben eingesetzt werden, um korrespondierende Gene, insbesondere sequenz- und/oder funktionsähnliche Gene, in anderen Myceten zu identifizieren.

Sequenzhomologe Gene können nach bekannten Verfahren z. B. mit Hilfe des Homologiescreenings (Sambrook, J. et al. (1989) Molecularcloning. Cold Spring Harbor Laboratory Press, N. Y.) oder mit Hilfe der PCR-Technik unter Verwendung von spezifischen Primern aus genomischen Banken und/oder cDNA Banken der entsprechenden Myceten isoliert werden.

Funktionsähnliche Gene in anderen Mycetenspezies sind Gene, die in dem anderen Mycetenspezies eine ähnliche oder die gleiche Funktion innehaben wie die identifizierten essentiellen Gene in S. cerevisiae. Die funktionsähnlichen Gene können gegebenenfalls funktionshomolog zu den entsprechenden S. cerevisiae Genen sein. Funktionsähnliche Gene können gegebenfalls sequenzhomolog zu den entsprechenden essentiellen S. cerevisiae Genen sein. Funktionsähnliche bzw. funktionshomologe Gene aus anderen Myceten kodieren vorzugsweise für Proteine, die in ihrer Funktion den entsprechenden S. cerevisiae Proteinen ähnlich sind (funktionsähnliche Froteine) bzw. die in ihrer Funktion zu den entsprechenden S. cerevisiae Proteinen homolog sind (funktionshomologe Proteine). Funktionsähnliche bzw. funktionshomologe Gene aus anderen Myceten bzw. die durch diese Gene kodierten Proteine können die Funktion des entsprechenden essentiellen S. cerevisiae Gens bzw. des durch dieses Gen kodierten Proteins ganz oder teilweise komplementieren.

Die Erfindung betrifft deshalb auch Verfahren mit denen Gene in anderen Myceten identifiziert werden können, die zu den essentiellen Genen in S. cerevisiae funktionsähnlich sind. Die Erfindung betrifft insbesondere Verfahren zur Identifizierung von funktionsähnlichen Genen in anderen Myceten, wobei die essentiellen Gene aus Saccharomyces cerevisiae eingesetzt werden.

Vorzugsweise werden in diesen Verfahren zur Identifizierung von funktionsähnlichen Genen in anderen Myceten Saccharomyces cerevisiae Zellen erzeugt, in denen ein essentielles Gen von Saccharomyces cerevisiae unter die Kontrolle eines regulierbaren Promotors gestellt wird. Die auf auf diese Weise veränderten Saccharomyces cerevisiae Zellen werden dann vorzugsweise unter Wachstumsbedingungen angezogen, unter denen der regulierbare Promotor aktiv

ist und die veränderten S. cerevisiae Zellen mit cDNA, die aus der anderen Mycetenspezies hergestellt wurde und in einem Expressionsvektor vorliegt, transformiert, woraufhin der regulierbare Promotor, beispielsweise durch Veränderung der Kulturbedingungen, abgeschaltet wird, so daß auf diese Weise die Saccharomyces cerevisiae Zellen selektiert werden, in denen die cDNA, die für ein funktionsähnliches Protein aus der anderen Mycetenspezies kodiert, exprimiert wird.

Aus den selektierten S. cerevisiae Zellen kann dann gegebenfalls die cDNA, die das zu dem essentiellen Gen von Saccharomyces cerevisiae funktionsähnliche Gen aus der anderen Mycetenspezies repräsentiert, isoliert und analysiert wird. Auf diese Weise ist direkt die kodierende Sequenz eines funktionsähnlichen Gens aus einer anderen Mycetenspezies zugänglich. Mit Hilfe der cDNA kann nach bekannten Verfahren, z.B. mit Hilfe des Homologiescreenings einer genomischen Bank hergestellt aus der anderen Mycetenspezies, das funktionsähnliche Gen in der anderen Mycetenspezies identifiziert werden. Auf diese Weise sind dann auch die regulatorischen Sequenzen, z.B. Promotor und Enhancer des funktionsähnlichen Gens zugänglich.

In einem solchen Verfahren wird vorzugsweise eines der essentiellen Gen von Saccharomyces cerevisiae ausgewählt aus der Gruppe der Gene YGR046w, YGR048w, YGR060w, YJL074c, YJR136c, YJR141w, YBR167c, YPL252c, YPL242c, YOR119c, YPL235w, YOR110w, YNL182c, YOR206w, YJL054w, YJL039c, YNL258c, YNL245c, YNL038w, YNL251c, YNL256w, YNL260c, YIR012w, YLR086w, YLR076c, YLR100w, YIR010w, YIL003w, YBR102c, YOL010w, YKL013c, YKL018w und YLL003w unter die Kontrolle eines regulierbaren Promotors gestellt.

Zur Auffindung von funktionsähnlichen Genen in anderen Myceten kann beispielsweise aus einer zu untersuchenden Mycetenspezies mRNA nach bekannten Verfahren isoliert (Sambrock et al., 1989) und nach ebenfalls bekannten Verfahren aus der mRNA cDNA hergestellt (Sambrock et al., 1989; oder cDNA Synthese Kits, z. B. Firma Stratagene) werden.

Die hergestellte cDNA kann gerichtet in einen geeigneten Expressionsvektor integriert werden.

Beispielsweise kann die Synthese des ersten cDNA Strangs in Gegenwart von Primern durchgeführt werden, die geeignete Restriktionsschnittstellen aufweisen, um eine spätere Klonierung in der richtigen Orientierung vor den jeweiligen Promotor des Expressionsvektors ermöglichen. Als Restriktionsschnittstellen können alle bekannten Restriktionsschnittstellen verwendet werden. Als Primer kann beispielsweise der nachfolgend beschriebene ca. 50 Nukleotide lange Primer verwendet werden.

Die Sequenz (X)₆ steht für eine geeignete Restriktionsschnittstelle, beispielsweise für Xhol.

Nach der Zweitstrang-Synthese können die kohäsiven Enden der doppelsträngigen cDNA aufgefüllt (blunt end) und die Enden der cDNA dann mit geeigneten DNA-Adaptersequenzen ligiert werden. Die DNA-Adaptersequenzen sollten eine Restriktionsschnittstelle beinhalten, die verschieden von der Restriktionsschnittstelle sein sollte, die in dem Primer für die Synthese des ersten cDNA-Stranges verwendet wurde. Die DNA-Adapter können beispielsweise aus 9-und 13-mer Oligonukleotiden, die zueinander komplementär sind und an ihrem Ende das kohäsive Ende einer Restriktionsschnittstelle darstellen, bestehen. Beispielsweise können diese Enden eine EcoRI-Schnittstelle sein:

```
SEQ ID NO. 2: 5' XXXXXGGCACGAG 3' XCCGTGCTC 5'
```

Die X in der dargestellten Adaptersequenz stellen das kohäsive Ende einer Restriktionsschnittstelle dar.

Die mit entsprechenden Adaptersequenzen versehene cDNA wird anschließend mit der Restriktionsendonuklease, deren Erkennungsstelle im Primer für die Synthese des ersten cDNA Strangs verwendet wurde, geschnitten, beispielsweise mit Xhol. Die erhaltene cDNA hätte in diesem Beispiel somit an ihrem 3'-Ende ein Xhol und am 5'-Ende ein EcoRl überstehendes Ende und könnte somit gerichtet in einen mit der Restriktionsenzymen Xhol und Eco Rl geschnittenen Expressionsvektor integriert werden.

Als Expressionsvektoren eignen sich unter anderem E. coli/S. cerevisiae Pendel-Vektoren d. h. Vektoren, die sowohl für E. coli als auch für S. cerevisiae verwendet werden können. Solche Vektoren können dann z. B. in E. coli vermehrt werden. Als Expressionsvektoren können sowohl solche Vektoren, die in hoher als auch solche, die in niedriger Kopien-Zahl in S. cerevisiae Zellen vorliegen, verwendet werden. Hierfür eignen sich beispielsweise Vektoren aus der Serie pRS423 - pRS426 (pRS423, pRS424, pRS425, pRS426) bzw. pRS313 -pRS316 (pRS313, pRS314, pRS315, pRS316) (Sikorski, R.S. und Hieter P., (1989) Genetics 122: 19 - 27; Christianson, T. W. et al., (1992) Gene 110: 119 - 122).

Die Expressionsvektoren sollten geeignete S. cerevisiae Promotoren und Terminatoren aufweisen. Haben die verwendeten Expressionsvektoren diese nicht, so werden entsprechende Promotoren und Terminatoren so inseriert, daß ein nachfolgender Einbau der erzeugten cDNA möglich bleibt. Insbesondere eigenen sich die Promotoren der S. cerevisiae Gene MET25, PGK1, TPI1, TDH3, ADHI, URA3. Es können sowohl Promotoren der Wildtyp-Gene in unveränderter Form als auch Promotoren, die in der Art verändert wurden, daß bestimmte Aktivatorsequenzen und/oder Repressorsequenzen entfernt wurden, verwendet werden. Als Terminatoren eignen sich beispielsweise die Terminatoren der S. cerevisiae Gene MET25, PGK1, TPI1, TDH3, ADHI, URA3.

In Verfahren zur Auffindung von funktionsähnlichen Genen in anderen Mycetenspezies, wird ein essentielles Gen von S. cerevisiae ausgewählt und dieses Gen entweder integrativ (1) oder extrachomosomal (2) unter die Kontrolle eines regulierbaren Promotors gestellt.

1. Für die Integration eines regulierbaren Promotors in das S. cerevisiae Genom, wird dieser gegen den nativen Promoter des ausgewählten essentiellen Gens ausgetauscht, beispielsweise mittels PCR-vermittelter homolger Rekombination (Güldener et al., 1996). Die PCR-vermittelte homologe Rekombination kann beispielsweise in dem diploiden S. cerevisiae Stamm CEN.PK2 durchgeführt werden. Die genetische Aufspaltung kann durch Tetraden-Analyse überprüft werden.

Bei der Tetraden-Analyse werden vier lebensfähige Ascosporen erhalten, wobei das ausgewählte essentielle Gen bei zwei haploiden Segreganten unter der Kontrolle des nativen Promotors steht, während das essentielle Gen bei den beiden anderen Segreganten unter der Kontrolle des regulierbaren Promotors steht. Die letztgenannten haploiden Segreganten werden für die Transformation mit der in dem Expressionsvektor vorliegenden cDNA eingesetzt.

2. Bei der extrachromosomalen Variante wird zunächst das ausgewählte essentielle Gen von S. cerevisiae mit der in dem Expressionsvektor vorliegenden cDNA hinter einen regulierbaren S. cerevisiae Promotor in einen geeigneten Expressionsvektor inseriert, beispielsweise einen E. coli/ S. cerevisiae Pendel-Vektor. Beispielsweise kann dazu das essentielle Gen mittels PCR an genomischer DNA von S. cerevisiae vom ATG Start -Codon bis einschließlich der Terminationssequenz amplifiziert werden. Die dazu eingesetzten Primer können so konstruiert werden, daß sie Erkennungsstellen für geeignete Restriktionsenzyme enthalten, die eine nachfolgende Insertion hinter den regulierbaren Promotor eines Expressionsvektors erleichtern.

Der rekombinante Expressionsvektor mit einer plasmidkodierten Kopie des ausgewählten essentiellen S. cereviaise Gens unter der Kontrolle eines regulierbaren Promotors dient nachfolgend zur Transkomplementation des entsprechenden Mutanten-Allels. Das entsprechende Mutanten-Allel kann aus den in Tabelle 6 aufgeführten, durch homloge Rekombination hergestellten heterozygotdiploiden Mutanten-Stämmen (1. Spalte in Tabelle 6) ausgewählt werden.

Der Expressionsvektor mit dem ausgewählten essentiellen S. cerevisiae Gen wird in den entsprechenden heterozygot-diploiden Mutanten-Stamm, der anstelle des ausgewählten essentiellen S. cerevisiae Gens das Gen eines Selektionsmarkers trägt, transformiert. Die Transformanden werden durch Selektion auf den im verwendeten Expressionsvektor enthaltenen Auxotrophie- bzw. Nukleobasen-Marker isoliert. Die erhaltenen transformierten heterozygot-diploiden Mutanten-Stämme werden einer Tetraden-Analyse unterzogen. Dabei werden vier lebensfähige Segreganten erhalten. Durch Rückverfolgung der entsprechenden Marker des Mutanten-Allels und des Expressionsvektors lassen sich transformierte Wildtyp-Segreganten von Segreganten, bei denen die genomische Kopie des essentiellen Gens entfernt wurde, unterscheiden. Segreganten, bei denen die genomische Kopie des ausgewählten essentiellen Gens entfernt wurde, werden als trans-komplementierte haploide Mutanten-Stämme bezeichnet. Sie werden für die Transformation mit der in dem Expressionsvektor vorliegenden cDNA der zu untersuchenden Mycetenspezies eingesetzt.

Insbesondere werden heterozygot-diploide Saccharomyces cerevisiae Zellen, bei denen eines der essentiellen Gene durch ein Markergen ersetzt ist, mit einem rekombinanten Expressionsvektor, der den kodierenden Teil des essentiellen Saccharomyces cerevisiae Gens unter der Kontrolle eines regulierbaren Promotors enthält, transformiert. Beispielsweise wird in den heterozygot-diploiden Saccharomyces cerevisiae Zellen ein essentielles Gen durch ein Gen, das für einen Auxotrophiemarker kodiert oder durch ein Resistenzgen ersetzt.

In dem Verfahren werden vorzugsweise Saccharomyces cerevisiae Zellen des Stammes CEN.PK2 verwendet. Es werden darüberhinaus mit diesem Stamm vorzugsweise Saccharomyces cerevisiae Zellen erzeugt werden, in deren Genom der native Promotor des essentiellen Gens durch einen regulierbaren Promotor ersetz wird oder solche Zellen, bei denen der native Promoter des essentiellen Gens extrachromosomal durch einen regulierbaren Promotor ersetzt wird.

Die Erfindung betrifft die Verwendung von Saccharomyces cerevisiae Zellen der Stämme CEN.EN27, CEN.EN28, CEN.EN8, CEN.RO23, CEN.RO30, CEN.RO6,

CEN.RO8, CEN.SR14, CEN.SR15, CEN.SR2, CEN.SR26, CEN.SR41, CEN.SR55, CEN.SR66, CEN.SR80, CEN.SR81, CEN.HE1, CEN.HE17, CEN.HE18, CEN.HE2, CEN.HE4, CEN.HE9, CEN.HI10, CEN.HI23, CEN.HI28, CEN.HI31, CEN.HI5, CEN.HI7, CEN.FE8, CEN.KR28, CEN.TS02, CEN.TS04 und CEN.ZI26 in einem Verfahren zur Identifizierung von funktionsähnlichen Genen und/oder funktionsähnlichen Proteinen in anderen Myceten, insbesondere zur Identifizierung von funktionsähnlichen Genen in Candida albicans und Aspargillus fumigatus. Darüber hinaus betrifft die Erfindung die Verwendung dieser Saccharomyces cerevisiae Zellen zur Identifizierung von funktionsähnlichen menschlichen, tierischen oder pflanzlichen Genen bzw. der durch diese Gene kodierten Proteine (bzw. zur Überprüfung, ob funktionsähnliche menschliche, tierische oder pflanzliche Gene bzw. der durch solche Gene kodierten Proteine überhaupt existieren).

Als regulierbare Promotoren können aktivierbare und/oder nicht aktivierbare bzw. reprimierbare Promotoren eingesetzt werden. Diese Promotoren können aus natürlich und/oder künstlich angeordneten Promotorsequenzen bestehen.

Als regulierbare Promotoren können beispielsweise die Promotoren der Gene GAL1 und entsprechende Promotor-Derivate, beispielsweise solche, bei denen verschiedene UAS (upstream activatory sequence)-Elemente entfernt wurden (GALS, GALL; Mumberg, J. et al., (1994) Nucleic Acids Research 22: 5767 - 5768) verwendet werden. Als regulierbare Promotoren können auch die Promotoren gluconeogenetischer Gene, wie z.B. FBP1, PCK1, ICL1 oder Teile davon, beispielsweise deren Aktivator- (UAS1 bzw. UAS2) oder Repressor- (URS, upstream repression sequence) Sequenzen eingesetzt werden (Niederacher et al. (1992) Curr. Genet. 22: 363 - 370; Proft et al. (1995) Mol. Gen. Genet. 246: 367 - 373; Schüller et al., (1992) EMBO J. 11: 107 - 114; Guarente et al., (1984) Cell 36: 503 - 511).

Das Verfahren beinhaltet, daß ein auf diese Weise veränderter S. cerevisiae Mutanten-Stamm (d.h. mit regulierbarem Promotor) unter Wachstumsbedingungen angezogen wird, unter denen der regulierbare Promotor aktiv ist, so daß das essentielle S. cervisae Gen exprimiert wird. Die S. cerevisiae Zellen werden dann

mit einer repräsentativen Menge des rekombinanten Expressionsvektors, der die cDNA der zu untersuchenden Mycetenspezies enthält, transformiert. Die Transformanden exprimieren dann zusätzlich das Protein, dessen cDNA in dem rekombinanten Expressionsvektor vorliegt.

Das Verfahren beinhaltet, daß die Wachstumsbedingungen in der Weise verändert werden, daß der regulierbare Promotor unter dessen Kontrolle das ausgewählte essentielle Gen von S. cerevisiae exprimiert wird, abgeschaltet wird. Beispielsweise können die Wachstumsbedingungen durch einen Wechsel des Mediums verändert werden. Wenn beispielsweise der GAL1 Promotor oder ein Derivat dieses Promotors verwendet wird, kann von einem Medium mit Galaktose (induzierter Zustand) zu Glukose haltigem Medium (reprimierter Zustand) gewechselt werden.

Diese veränderten Bedingungen sind für die S. cerevisiae Zellen, in denen der rekombinante Expressionsvektor nicht die cDNA des funktionsähnlichen Gens der anderen Mycetenspezies trägt (d.h. in denen die Funktion des essentiellen Gens nicht durch ein funkrtionsähnliches Gen komplementiert werden kann), letal. Dagegen können S. cerevisiae Zellen überleben, in denen ein funktionsähnliches Gen der anderen Mycetenspezies exprimiert wird, da diese Zellen den letalen Stoffwechseldefekt mit dem durch das funktionsähnliche Gen kodierten Protein komplementieren können.

Das Verfahren beinhaltet, daß aus den überlebenden Transformanden der Expressionsvektor (das Plasmid) nach bekannten Verfahren isoliert wird (Strathern, J. N. und Higgins, D. R. (1991) Recovery of Plasmids from Yeast into Escherichia coli: Shuttle Vectors in: Guthrie, C. und Fink, G. R. Methods in Enzymology. Volume 194. Guide to yeast genetics and molecular biology. Academic Press, San Diego, 319 - 329) und die cDNA mit Methoden der DNA-Analyse, beispielsweise mit Hilfe der DNA Sequenzierung, analysiert wird (Sanger et al., (1977) Proc. Natl. Acad. Sci. USA 74; 5463 - 5467).

Das Verfahren beinhaltet, daß essentielle Gene aus S. cerevisiae eingesetzt werden, um funktionsähnliche und/oder sequenzhomologe Gene in anderen

Myceten, insbesondere Gene funktionsähnlicher und/oder sequenzhomologer human-, tier und pflanzenpathogener Myceten zu identifizieren. Beispielsweise können dafür Myceten der Klassen Phycomyceten oder Eumyceten, besonders der Unterklassen Basidiomyceten, Ascomyceten, insbesondere Hemiascomycetales (Hefen) und Plectascales (Schimmelpilze) und Gymnascales (Haut- und Haarpilze) oder der Klasse Hyphomyceten, insbesondere der Unterklassen Conidiosporales (Hautpilze) und Thallosporales (Sproßpilze), wobei insbesondere die Gattungen Mucor, Rhizopus, Coccidioides, Paracoccidioides (brasiliensis) (Blasomyces brasiliensis), Endomyces (Blastomyces), Aspergillus, Penicillium (Scopulariopsis), Trichophyton (Ctenomyces), Epidermophyton, Microsporon, Piedraia, Hormodendron, Phialophora, Sporotrichon, Cryptococcus, Candida, Geotrichum und Trichosporon verwendet werden.

Besonders hervorzuheben ist die Verwendung von Candida albicans, Aspargillus fumigatus, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum, Blasomyces dermatitidis, Paracoccidioides brasiliens und Sporothrix schenckii.

Das Verfahren beinhaltet, daß essentielle Gene aus Saccharomyces cerevisiae und funktionsähnliche Gene aus anderen Myceten eingesetzt werden, um Substanzen zu identifizieren, die die funktionelle Expression dieser essentiellen Gene aus S. cerevisiae bzw. der funktionsähnlichen Gene und/oder die funktionelle Aktivität der kodierten Proteine ganz oder teilweise inhibieren können. Vorzugsweise sind die funktionsähnlichen Genen bzw. die durch diese Gne kodierten Proteine in den anderen Myceten ebenfalls essentiell. Mit Hilfe dieses Verfahren können Substanzen identifiziert werden, die das Wachstum von Myceten inhibieren und die als Antimykotika, beispielsweise zur Herstellung von Arzneimitteln, eingesetzt werden können.

Ein besonderes Merkmal des Verfahrens ist, daß für das Screening der Substanzen essentielle Gene aus Saccharomyces cerevisiae bzw. funktionsähnliche Gene aus anderen Myceten, insbesondere solche, die für die andere Mycetenspezies essentiell sind, als Targets eingesetzt werden. Das Verfahren beinhaltet, daß als Targets sowohl die essentiellen Gene aus S. cerevisiae. als auch funktionsähnliche

und/oder sequenzhomologe der essentiellen S. cerevisiae Gene aus anderen Myceten verwendet werden können.

Eine Ausführungsform des Verfahrens ist, daß Zellen, insbesondere Mycetenzellen, die ein essentielles Gen, das als Target eingesetzt wird überexprimieren, bereitgestellt werden und daß diese Zellen mit einer zu testenden Substanz inkubiert werden. Auf diese Weise kann die wachstumsinhibierende Wirkung dieser Substanz im Bezug auf das essentielle Target-Gen bestimmt werden. Ein einzelnes Gen, welches in diesem Verfahren untersucht wird, wird auch als Target-Gen bzw. zu untersuchendes Gen bezeichnet. Ein Target Gen kann ein essentielles S. cerevisiae Gen, insbesondere eines der Gene YGR046w, YGR048w, YGR060w, YJL074c, YJR136c, YJR141w, YBR167c, YPL252c, YPL242c, YOR119c, YPL235w, YOR110w, YNL182c, YOR206w, YJL054w, YJL039c, YNL258c, YNL245c, YNL038w, YNL251c, YNL256w, YNL260c, YIR012w, YLR086w, YLR076c, YLR100w, YIR010w, YIL003w, YBR102c, YOL010w, YKL013c, YKL018w oder YLL003w sein oder ein funktionsähnliches Gen aus einer anderen Mycetenspezies sein.

In dem Verfahren wird der wachstumsinhibierende Effekt einer Substanz auf eine Zelle, in der ein Target-Gen überexprimiert wird, bestimmt. Dabei kann die Substanz entweder die Expression des essentiellen Gens oder des funktionsähnlichen Gens und/oder die funktionelle Aktivität des kodierten Proteins inhibieren.

Eine weitere Ausführungsform ist, daß Zellen, insbesondere Mycetenzellen, die ein Target-Gen in unterschiedlichem Maße exprimieren, bereitgestellt werden und daß diese Zellen dann mit einer zu testenden Substanz inkubiert werden und die wachstumsinhibierende Wirkung dieser Substanz auf die Zellen vergleichend bestimmt wird.

Das Verfahren beinhaltet, daß zwei oder mehrere Zellen, insbesondere Mycetenzellen, beziehungsweise davon abgeleitete Stämme, die sich dadurch unterscheiden, daß sie das Target-Gen in unterschiedlichem Maße exprimieren, verwendet werden. Beispielsweise können zwei, drei, vier, fünf, zehn oder mehr Zellen bzw. die dazu korrespondierenden Stämme im Bezug auf die

wachstumsinhibierende Wirkung einer Substanz, die in einer definierten Konzentration eingesetzt wird, vergleichend analysiert werden. Durch solche Konzentrationsreihen können beispielsweise antimykotisch wirkende Substanzen von cytotoxischen oder nicht wirksamen Substanzen unterschieden werden.

Eine besondere Ausführungsform des Verfahrens ist, daß haploide Mycetenzellen/ Stämme für das Screening eingesetzt werden, insbesondere können haploide S. cerevisiae Zellen/Stämme dafür verwendet werden.

Das Verfahren beinhaltet, daß das als Target ausgewählte essentielle Gen in einen geeigneten Expressionsvektor integriert wird.

Als Expressionsvektoren eignen sich beispielsweise E. coli/S. cerevisiae Pendel-Vektoren. Insbesondere können Vektoren eingesetzt werden, die sich in ihrer Kopienzahl pro Zelle unterscheiden. Beispielsweise können einerseits Vektoren verwendet werden, die in hoher Kopien-Zahl in transformierten S. cerevisiae Zellen vorliegen als auch solche Vektoren, die in niedriger Kopienzahl vorliegen. Eine Ausführungsform ist, daß Expressionsvektoren eingesetzt werden, die eine Integration des Target-Gens ins S. cerevisiae Genom erlauben.

Als Expressionsvektoren eignen sich beispielsweise die Vektoren pRS423, pRS424, pRS425, pRS426, pRS313, pRS314, pRS315, pRS316, pRS303, pRS304, pRS305, pRS306 (Sikorski und Hieter, 1989; Christianson, et al., 1992).

Die Vektoren der Serie pRS423-pRS426 liegen in hoher Kopienzahl (etwa 50 - 100 Kopien/Zelle) vor. Im Gegensatz dazu liegen die Vektoren der Serie pRS313-pRS316 in niedriger Kopienzahl (1 - 2 Kopien/Zellen) vor. Werden Expressionsvektoren aus diesen beiden Serien verwendet, dann liegt das Target-Gen als extrachromosomale Kopie vor. Mit Hilfe der Vektoren der Serie pRS303-pRS306 können die Target-Gene ins Genom integriert werden. Durch die Verwendung dieser drei verschiedenen Expressionsvektor-Typen, die sich nur bezüglich ihrer in S. cerevisiae Zellen vorliegenden Kopienzahl unterscheiden, ist

eine differenzierte bzw. abgestufte Expression des essentiellen S. cerevisiae Gens bzw. des funktionsähnlichen Gens möglich.

Das Verfahren beinhaltet, daß vergleichend die wachstumsinhibierende Wirkung von Substanzen im Bezug auf Zellen (z.B. Mycetenzellen)/Stämme, die mit unterschiedlichen Expressionsvektoren, die sich z. B. in der Kopienzahl des Vektors/Zelle unterscheiden, bestimmt wird. Solche Zellen können das essentielle Target-Gen in unterschiedlichem Maße exprimieren und eine abgestufte Reaktion auf die Substanz zeigen.

Das Verfahren beinhaltet auch, daß eine unterschiedlich starke Expression des Target-Gens in verschiedenen Zellen, insbesondere Mycetenzellen (geregelte Überexpression) dadurch erreicht wird, daß das Target-Gen in Expressionsvektoren zwischen speziell ausgewählte Promotoren und Terminatoren, beispielsweise S. cerevisiae Promotoren und Terminatoren inseriert wird. Beispielsweise eignen sich dafür Promotoren der S. cerevisiae Gene die konstitutiv, aber unterschiedlich stark exprimiert werden. Beispiele für solche Promotoren sind die nativen Promotoren der S. cerevisiae Gene MET25, PGK1, TPI1, TDH3, ADHI, URA3, TRP1, sowie entsprechende Derivate dieser Promotoren, beispielsweise Promotor-Derivate, die bestimmte Aktivatorsequenzen und/oder Repressorsequenzen nicht enthalten.

Für die geregelte Überexpression des Target-Gens eignen sich auch regulierbare Promotoren. Beispielsweise können die nativen Promotoren der Gene GAL1 bzw. entsprechende Derivate der Promotoren, z. B. solche, bei denen verschiedene UAS-Elemente entfernt wurden (GALS, GALL; Mumberg et al., (1994) Nucleic Acids Research 22: 5767 - 5768) sowie Promotoren gluconeogenetischer Gene, z. B. die Promotoren FBP1, PCK1, ICL1 oder Teile dieser Promotoren, z. B. deren Aktivator-(UAS1 bzw. UAS2) oder Repressor- (URS) Sequenzen in entsprechenden nicht aktivierbaren bzw. reprimierbaren Test-Promotoren (Schüller et al., (1992) EMBO J. 11: 107 - 114) Guarente et al., (1984) Cell 36: 503 - 511; Niederacher et al. (1992) Curr. Genet. 22: 363 - 370; Proft et al. (1995) Mol. Gen. Genet. 246: 367 - 373;) eingesetzt werden.

In den Expressionsvektoren können als Terminatoren beispielsweise die Terminatorsequenzen der S. cerevisiae Gene MET25, PGK1, TPI1, TDH3, ADHI, URA3 verwendet werden.

Das Verfahren beinhaltet, daß durch die Verwendung, geschickt ausgewählter Expressionsvektor-Typen und/oder die Herstellung von geeigneten Expressionsvektoren, gegebenenfalls unter Benutzung verschiedenen starker Promotoren und/oder unterschiedlich regulierter Promotoren, eine Reihe von Expressionsvektoren hergestellt werden können, die alle das gleiche Target-Gen enthalten, sich aber dadurch unterscheiden, daß sie das Target-Gen in unterschiedlichem Maße (unterschiedlich stark) exprimieren. Mit Hilfe solcher Reihen von Expressionsvektoren ist es möglich, eine in ihrer Stärke fein abgestufte Expression des Target-Gens zu erzielen. Mit Hilfe solcher Reihen von Expressionsvektoren ist es möglich, Mycetenzellen/Mycetenstämme herzustellen, die das Target-Gen in unterschiedlichem Maße exprimieren.

Das Verfahren beinhaltet, daß die Expressionsvektoren in haploide Wildtyp-Zellen von S. cerevisiae transformiert werden. Die so erhaltenen Zellen/Stämme werden in Flüssigmedium angezogen, mit verschiedenen Konzentrationen der zu untersuchenden Substanz inkubiert und die Wirkung dieser Substanz auf das Wachstumsverhalten der Zellen/Stämme vergleichend analysiert, die das Target-Gen in unterschiedlichem Maße exprimieren. Das Verfahren beinhaltet auch, daß als Referenz haploide S. cerevisiae Zellen/Stämme, die mit dem jeweiligen Expressionsvektor-Typ ohne Target-Gen transformiert wurden, verwendet werden.

Das Verfahren beinhaltet, daß bei der Verwendung von regulierbaren Promotoren, insbesondere beim Einsatz des GAL1 Promotors und dessen Derivaten (GALS und GALL) das Screening von Substanzen in verschiedenen Medien durchgeführt werden kann, da hier die Expressionsstärke durch die Wahl des jeweiligen Mediums stark zu beeinflussen ist. So nimmt die Expressionsstärke des GAL1 Promotors in folgender Weise ab: 2 % Galaktose > 1 % Galaktose + 1 % Glukose > 2 % Glycerin > 2 % Glukose.

Die wachstumsinhibierende Wirkung von Substanzen, die Wildtyp-Zellen von S. cerevisiae in ihrem Wachstum inhibieren, kann durch die Überexpression des essentiellen S. cerevisiae Gens bzw. des funktionsähnlichen Gens aus einer anderen Mycetenspezies ganz oder teilweise aufgehoben werden.

Das Verfahren beinhaltet auch, daß funktionsähnliche und/oder sequenzhomologe der essentiellen S. cerevisiae Gene beim Menschen, bei Tieren oder Pflanzen identifiziert werden. Die entsprechenden menschlichen, tierischen oder pflanzlichen Gene könnten ebenfalls als Target-Gene in dem Verfahren eingesetzt werden, um zu Überprüfen, ob antimykotisch wirkende Substanzen auf diese Target-Gene auch eine Wirkung haben. Dies ist ein besonderer Vorteil des Verfahrens, denn auf diese Weise können Substanzen identifiziert werden, die spezifisch das Wachstum von Myceten (bzw. von bestimmten Mycetenspezies) inhibieren. Spezifische antimykotisch wirksame Substanzen sollten auf entsprechende funktionsähnliche und/oder sequenzhomologe menschliche, tierische oder pflanzliche Gen bzw. die durch diese Gene kodierten Protein entweder einen vergleichsweise geringeren bzw. keinen Effekt haben.

Das Verfahren beinhaltet auch die Möglichkeit zu überprüfen, ob überhaupt funktionsähnliche und/oder sequenzhomologe menschliche, tierische oder pflanzliche Gene zu den entsprechenden essentiellen Mycetengenen existieren. Beispielsweise dadurch, daß die Homologie der identifizierten essentiellen Mycetengene oder von Teilen dieser Gene mit den in Datenbanken verfügbaren menschlichen, tierischen oder pflanzlichen Sequenzen/Genen überprüft wird. Dadurch können aus den identifizierten essentiellen Mycetengenen bereits im Vorfeld, je nach Aufgabenstellung, diejenigen Gene ausgewählt werden, zu denen es z. B. beim Menschen keine sequenzhomologen und/oder funktionsähnlichen Gene gibt.

Dadurch bietet das Verfahren eine Vielzahl von Möglichkeiten gezielt antimykotisch wirkende Substanzen zu identifizieren, die dann z. B. den menschlichen Organismus nicht schädigen. Beispielsweise können Substanzen identifiziert werden, die zur Herstellung von Arzneimitteln zur Behandlung von Mykosen oder zur Prophylaxe bei einer Schwächung des Immunsystems verwendet werden

können. Beispielsweise können diese Substanzen z.B. zur Herstellung von Medikamenten, die zur Behandlung von mykotischen Infektionen, die z.B. im Verlauf der HIV-Infektion bzw. Aids oder Krankheiten wie Diabetis auftreten, eingesetzt werden. Mit Hilfe des Verfahrens können auch Substanzen identifiziert werden, die zur Herstellung von Fungiziden verwendet werden können. Insbesondere zur Herstellung von Fungiziden, die für Mensch und Tier unschädlich sind. Mit Hilfe des Verfahrens können auch spezifische antimykotisch wirksame Substanzen identifiziert werden, die zur Konservierung, z.B. von Lebensmitteln und Körperpflegemitteln verwendet werden können.

Weiterhin bietet das Verfahren auch die Möglichkeit antimykotisch wirksame Substanzen zu identifizieren, die ganz gezielt nur das Wachstum bestimmter Spezies von Myceten inhibieren, da im ersten Schritt mit Hilfe dieses Verfahrens überprüft werden kann, ob in einer anderen Mycetenspezies funktionsähnliche Gene überhaupt existieren. Andererseits können mit Hilfe dieses Verfahrens auch Substanzen identifiziert werden, die gegen eine Vielzahl von Mycetenspezies gleichzeitig wirksam sind ("Breitband-Antimykotika"), da mit Hilfe des Verfahrens in einem ersten Schritt festgestellt werden kann, ob zu einem essentiellen Gen in S. cerevisiae funktionsähnliche Gene in möglichst vielen anderen Mycetenspezies (z.B. humanpathogenen Mycetenspezies) existieren.

Ein besonderer Vorteil des Screeningverfahrens ist, daß es ausreicht zu wissen, daß die verwendeten Gene essentiell sind; über die Funktion der essentiellen Gene oder die Funktion der kodierten Proteine sind keine weiteren Informationen notwendig. Das ist insbesondere für die Identifikation von funktionsähnlichen Genen in anderen Mycetenspezies mit Hilfe der essentiellen Gene von S. cerevisiae vorteilhaft, da von vielen dieser Gene die DNA-Sequenzen nicht verfügbar sind.

Besondere Vorteile des Verfahrens sind:

- Es ist keinerlei Kenntnis über die biochemische Funktion der essentiellen Gene aus S. cerevisiae notwendig. Es können alle Genen im Bezug auf ihre Essentialität untersucht werden, deren Sequenz ganz oder teilweise bekannt ist.
- Mit Hilfe der essentiellen Genen aus S. cerevisiae k\u00f6nnen funktions\u00e4hnliche

Gene aus anderen Mycetenspezies identifiziert werden, wobei wiederum nichts über deren biochemische Funktion bekannt sein muß.

- Darüber hinaus muß auch die Sequenz potentieller funktionsähnlicher Gene aus anderen Mycetenspezies nicht bekannt sein. Es wird nur die Sequenz von identifizierten funktionsähnlichen cDNAs bzw. Genen aufgeklärt.
- In dem Verfahren zum Auffinden antimykotisch wirksamer Substanzen wird nicht differenziert, ob die Substanz die funktionelle Expression des essentiellen bzw. funktionsähnlichen Gens inhibiert oder ob sie die funktionelle Aktivität des kodierten Proteins inhibiert.
- Gleichzeitig kann der Effekt der Substanzen auf funktionsähnliche menschliche, tierische und pflanzlichen Gene bzw. die kodierten Proteine getestet werden bzw. es kann überprüft werden, ob funktionsähnliche bzw. sequenzhomologe Gene überhaupt existieren.
- Einzelne Substanzen können auf diese Weise effizient auf ihre spezifische Wirksamkeit getestet werden.

Beispiele:

Beispiel 1: Die "Klassische Methode" zur Erzeugung von Deletions-Kassetten dargestellt für den YJR141w (Tabelle 6).

Deletion des ORF YJR141w-Gens aus S. cerevisiae unter Verwendung des HIS3-Gens von S. cerevisiae:

- 1) Klonierung eines 1,7kB Xbal-Fragments (enthalten entweder aus genomische S. cerevisiae DNA bzw. aus einem entsprechenden Cosmid-Klon, der das YJR141w-Gen beinhaltet) in einem puC18 Vektor, der mit dem Restriktionsenzym Xbal linearisiert wurde.
- 2) Das aus 1.) erhaltene Plasmid wurde zunächst mit dem Restriktionsenzym BstEll geschnitten und nach dem Auffüllen der überstehenden DNA-Enden mit Hilfe des Enzyms Klenow-Polymerase (Sambrook et al., 1989) das erhaltene lineare

DNA-Fragment mit dem Restriktionsenzym Clal geschnitten. Dadurch wurde ein 3,52kB und ein 0,87kB (Kilobasenpaare) großes DNA-Fragment erhalten.

- 3) Das HIS3-Gen von S. cerevisiae wird als genomisches 1,6kB BamHI-Fragment in den mit dem Restriktionsenzym BamHI geschnittenen Vektor pBluescript IIKS+ (Stratagene) inseriert und auf diese Weise das Plasmid pMR240 hergestellt.
- 4) Das Plasmid pMR240 wurde zunächst mit dem Restriktionsenzym Xhol geschnitten und dann die überstehenden DNA-Enden mit Hilfe der Klenow-Polymerase aufgefüllt. Das lineare DNA-Fragment wurde mit dem Restriktionsenzym Clal geschnitten. Dadurch wurde ein 1,36kB DNA-Fragment, daß das HIS3-Gen von S. cerevisiae enthält, erhalten.
- Das 3,52kB DNA-Fragment aus 2.) wurde mit dem aus 4.) erhaltenen 1,36kB DNA-Fragment ligiert und auf diese Weise das Plasmid pRO6 erzeugt. Im Plasmid pRO6 wurde ein 870Bp langer DNA-Abschnitt des kodierenden Bereichs von YJR 141w deletiert und gegen den Selektionsmarker HIS3 ersetzt.
- 6) Das Plasmid pR06 wurde mit der Restriktionsendonuklease Pvull linearisiert und zur Transformation von S. cerevisiae eingesetzt.
- Beispiel 2: Konstruktion von Plasmiden für die SFH-Methode.
- 1) Als Ausgangsvektor wurde der Vektor pBluescript®II KS+ (Stratagene; Sequenz verfügbar: Genbank® X52327) verwendet.
- 2) Der Vektor pBluescript®II KS+ wurde mit dem Restriktionsenzym NotI linearisiert und die überstehenden Enden durch anschließende Inkubation mit Mungbohnen 5'-3'Exonuklease entfernt. Durch Religation des verkürzten DNA-Fragments wurde der Vektor pKS+ΔNotI hergestellt (Vektor pBluescript®II KS ohne die NotI Restriktionsschnittstelle).

3) Das Plasmid pKS+ΔNotI wurde mit den Restriktionsenzymen PstI und BamHI geschnitten und das DNA-Oligonuleotid, welches aus dem Primer-Paar PK3/PK4 erzeugt wurde, in das geöffnete Plasmid ligiert. Das auf diese Weise erzeugte Plasmid pKS+neu (SEQ ID. NO. 17) enthält zwischen der PstI und BamHI Restriktionsschnittstelle die neuen Restriktionsschnittstellen NotI, Stul, Sfil und Ncol:

Pstl-Notl-Stul-Sfil-Ncol-BamHl

SEQ ID NO. 3: 5'-GCGGCCGCAAGGCCTCCATGGCCG-3' PK3
SEQ ID NO. 4: 5'-GATCCGCCCATGGAGGCCTTGCGCCGCTGCA-3' PK4

4) Das Plasmid pKS+neu (SEQ ID. NO. 17) diente als Ausgangsvektor zur Herstellung der Plasmide pPK5/6 (SEQ ID NO. 18), pPK7/8 (SEQ ID NO. 19), pPK9/10 (SEQ ID NO. 20) und pPK13/14 (SEQ ID NO. 21). Die Gene für die entsprechenden Aminosäure-/Nukleobasen-Auxotrophie-Marker wurden mittels PCR unter Verwendung geeigneter Primer an den Wildtyp- bzw. modifizierten Wildtyp-Genen (Beispiel 4 und Beispiel 5) amplifiziert.

Beispiel 3: Konstruktion des Plasmids pPK5/6 (pKS+neu - HIS 3) (SEQ ID NO. 18):

Unter Verwendung der Primer PK5 und PK6 wurde mittels PCR an genomischer S. cerevisiae DNA das HIS3-Gen amplifiziert, anschließend mit den Restriktionsenzymen BamHI und NotI geschnitten und in das mit BamHI und NotI geschnittene Plasmid pKS+neu inseriert. Die unterstrichenen DNA-Abschnitte der Primer entsprechen den Abschnitten, die der jeweiligen homologen Sequenzen der S. cerevisiae Gene entsprechen.

..NotI..

SEQ ID NO. 5: 5'-ATCTGCAGCGGCGGCGTTTTAAGAGCTTGGTGAGCGC-3' PK5

PstI
....SfiI.....

32

SEQ ID NO. 6: 5'-ATGGATCCGGCCATGGAGGCCTCGTTCAGAATGACACGTAT-3' PK6
Bamhi

Beispiel 4: Konstruktion des Plasmids pK7/8 (pKS+neu - LEU2) (SEQ ID NO. 19):

Unter Verwendung der Primer PK7 und PK8 wurde mittels PCR an Ycplac111 Vektor-DNA (Gietz, R. D. und Sugino, A. (1988) Gene 74: 527 - 534) als Matrize (modifiziertes Wildtyp-Gen) das LEU2 Gen von S. cerevisiae amplifiziert, die amplifizierte DNA anschließend mit den Restriktionsenzymen BamHI und NotI geschnitten und in ein mit BamHI und NotI geschnittenes Plasmid pKS+neu inseriert.

....SfiI.....

SEQ ID No. 7: 5'-ATGGATCCGGCCATGGAGGCCTGTGGGAATACTCAGGTATCG-3' PK7

..NotI..

SEQ ID NO. 8: 5'-ATCTGCAGCGGCGGCGTCTACCCTATGAACATATTCCATT-3' PK8
Pst1

Beispiel 5: Konstruktion des Plasmids pPK9/10 (pKS+neu - URA3) (SEQ ID NO. 20):

Unter Verwendung der Primer PK9 und PK10 wurde mittels PCR an Ycplac33 Vektor-DNA (Gietz, R. D. und Sugino, A. (1988) Gene 74: 527 - 534) als Matrize (modifiziertes Wildtyp-Gen) das URA3 Gen von S. cerevisiae amplifiziert, die amplifizierte DNA anschließend mit den Restriktionsenzymen BamHI und Notl geschnitten und in das mit BamHI und Notl geschnittene Plasmid pKS+neu inseriert.

..NotI..

SEQ ID NO. 9: 5'-ATCTGCAGCGGCCG<u>CAAACATGAGAATTGGGTAATAACTG</u>-3' PK9

33

SEQ ID NO. 10:
....SfiI.....
5'-ATGGATCCGGCCATGGAGGCCTTCAAGAATTAGCTTTTCAATTCATC-3' PK10
BamHI

Beispiel 6: Konstruktion des Plasmids pPK13/14 (pKS+neu - TRP1) (SEQ ID NO. 21):

Unter Verwendung der Primer PK13 und PK14 wurde mittels PCR an genomischer S. cerevisiae DNA das TRP1-Gen amplifiziert, die amplifizierte DNA anschließend mit den Restriktionsenzymen BamHI und PstI geschnitten und in das mit BamHI und PstI geschnittene Plasmid pKS+neu inseriert.

..Noti..

SEQ ID NO. 11: 5'-ATCTGCAGCGGCCGCATTTAATAGAACAGCATCG-3' PK13

PstI

....SfiI.....

SEQ ID NO. 12: 5'-ATGGATCCGGCCATGGAGGCCACACCGCATAGATCGGC-3' PK14

BamHI

- Beispiel 7: "Klassische Methode" unter Verwendung der PCR-Technik ("Modifizierte klassische Methode") dargestellt für den YGR046w.
- 1) Unter Verwendung der Primer XSL-2N2 und G385-1 (vergleiche Punkt 4.) wurde der 3'-Bereich des YGR046w an genomischer S. cerevisiae DNA als Matrize amplifiziert. Die amplifizierte DNA wurde anschließend mit den Restriktionsenzymen Clal und EcoRI geschnitten und das erhaltene 508Bp DNA-Fragment in das zuvor mit den Restriktionsenzymen Clal und EcoRI geschnittene Plasmid pPK9/10 ligiert. Das resultierende Plasmid wurde mit p119-58 bezeichnet.
- 2) Unter Verwendung der Primer G385-3 und X9R2 (vergleiche Punkt 4.) wurde der 5'-Bereich des YGR046w an genomischer S. cerevisiae DNA als Matrize

amplifiziert. Die amplifizierte DNA wurde anschließend mit den Restriktionsenzymen BamHI und BgIII geschnitten und das erhaltene 1336Bp Fragment in das Plasmid p119-58, das zuvor mit BamHI geschnitten worden war, inseriert. Das resultierende Plasmid wurde mit pEN27 bezeichnet.

- Das Plasmid pEN27 wurde nach der Linearisierung mit den Restriktionsenzymen Sacl und Asp7 18 zur Transformation von S. cerevisiae eingesetzt.
- 4) Verwendete Primer:

Beispiel 8:

S. cerevisiae Zellen vom Stamm CEN.PK2 wurden mit jeweils ca. 5 µg DNA einer linearen Deletionskassette nach bekannten Verfahren transformiert (Gietz et al., 1992; Güldener et al., 1996). Der Transformationsansatz wurde auf entsprechenden Selektivmedien ausplattiert.

Bei Verwendung einer Deletionskassette die das Kanamycinresistenzgen enthielt,wurde auf Vollmedium (YEPD) mit Geniticin (G418®) ausplattiert. Bei der Verwendung einer Deletionskassette die sogenannte Auxotrophie-Marker enthielt wurde auf synthetischen Minimalmedien (SCD), die die entsprechende Aminosäure

WO 98/44135 PCT/EP98/01904

35

(Histidin, Leucin oder Tryptophan) bzw. Nukleobase (Uracil) nicht enthielten, ausplattiert. Auf diese Weise wurde auf die Transformanden selektioniert, bei denen eine homologe Rekombination stattgefunden hatte, da nur diese Zellen unter den veränderten Bedingungen wachsen konnten.

Tabelle 6

Name des	systematischer	Selektions-	deletierte	deletierte	Name des Gens	DB Eintrag	Bemerkungen
erzeugten	Gen-Name	marker	Nukleotide	Aminosäuren			
Stammes							
CEN EN27	YGR046w	URA3	18-1143	9-381	₹		
CEN EN28	YGR048w	LEU2	73-1077	25-359	UFD1	YPD kein Eintrag	ubiquitin fusion degradation protein
CEN EN8	YGR060w	HIS3	(-)231-836	(-)77-279	ERG25	viable,	C-4 sterol methy oxidase
						temperatursensitiv	
CEN.RO23	YJL074c	HIS3	169-3114	56-1038	ì		similarity to Emericella nidulans
							chromosome scaffold protein
CEN.RO30	YJR136c	loxP-KanMX-loxP	4-1236	2-421			
CEN RO6	YJR141w	HIS3	27-891	10-297	,		
CEN RO8	YBR167c	HIS3	110-330	37-110	,		
CEN.SR14	YPL252c	loxP-KanMX-loxP	4-516	2-172			similarity to adrenoxin and
							ferrrodoxin
CEN SR15	YPL242c	loxP-KanMX-loxP	91-4485	31-1495			
CEN.SR2	YOR119c	loxP-KanMX-loxP	4-1452	2-484	RIO1	YPD kein Eintrag	similarity to C. elegans ZK632.3
	:						protein; function unknown
CEN.SR26	YPL235w	loxP-KanMX-loxP	4-1413	2-471			homology to hypothetical protein
			:				YDR190c
CEN.SR41	YOR110w	LEU2	61-1197	21-399			homology to hypothetical protein
•							YNL108c
CEN SR55	YNL182c	loxP-KanMX-loxP	4-1665	2-555			
CEN.SR66	YOR206w	loxP-KanMX-loxP	73-2130	25-710			homology to RAD4 (Frameshift)
CEN.SR80	XJL054w	loxP-KanMX-loxP	82-1352	28-450			

Name des	systematischer	Selektions-	deletierte	deletierte	Name des Gens	DB Eintrag	Bemerkungen
erzeugten	Gen-Name	marker	Nukleotide	Aminosäuren			
Stammes							
CEN.SR81	YJL039c	loxP-KanMX-loxP	4-5049	2-1683			similarity to HSP70 family
CEN HE1	YNL258c	TRP1					
CEN.HE17	YNL245c	loxP-KanMX-loxP					
CEN HE18	YNL038w	loxP-KanMX-loxP					probable membrane protein
CEN.HE2	YNL251c	loxP-KanMX-loxP			NRD1		plays a role in sequence specific
-					- "		regulation of nuclear pre m-RNA
							abundancer
CEN.HE4	YNL256w	loxP-KanMX-loxP					similarity to bacterial
							dihydropteroate synthas
CEN HE9	YNL260c	loxP-KanMX-loxP					
CEN HI10	YIR012w	URA3					beta transducin repeats
CEN.HI23	YLR086w	loxP-KanMX-loxP					similarity to S. pombe cut3 protein
CEN.HI28	YLR076c	loxP-KanMX-loxP					
CEN.HI31	YLR100w	loxP-KanMX-loxP					
CEN.HIS	YIR010w	URA3					EF-hand calcium binding domain
CEN.HI7	YILOO3w	URA3					similarity to E. coli MRP protein;
							ATPase
CEN.FE8	YBR102c	URA3					hypothetical membrane protein
CEN.KR28	YOL010w	loxP-KanMX-loxP					homology to S. pombe
							SPAC12g12.06c protein
CEN.TS02	YKL013c	loxP-KanMX-loxP					strong similarity to unknown C.
							elegans protein
CEN.TS04	YKL018w	loxP-KanMX-loxP					
CEN.ZI26	YLL003w	LEU2			"SFI1"		protein of unknown funktion

Tabelle 7: Verwendete Primer für die PCR vermittelte Gendeletion:

SEQ ID NO. 22:	
YPL252c-S1	5' ATA GGC GCT TCT CGT ATC TAT ACT CAA CCC GCC CCC AAT G CA GCT GAA GCT TCG TAC GC 3'
SEQ ID NO. 23:	
YPL252c-S2	5' AAA TTG GGG GCA CAA ATG AGG GGT AAA AAT GCA GAC ATT A GC ATA GGC CAC TAG TGG ATC TG 3'
SEQ ID NO. 24:	
YPL242c-S1	5' TCT AAA TCG TTA TGT TGA AAA CCT AGG CAC CAA TGT GAC T CA GCT GAA GCT TCG TAC GC 3'
SEQ ID NO. 25:	
YPL242c-S2	5' CAG CTT TTG CCC AAT ATG CTC AAA ACC GAG TTA TCT ATT A GC ATA GGC CAC TAG TGG ATC TG 3'
SEQ ID NO. 26:	
YPL235w-S1	5' CAA GTT ACT TTG AAA GGA AAT AAA AAA AAT TGT CAG
	CAT GCA GCT GAA GCT TCG TAC GC 3'
SEQ ID NO. 27:	
YPL235w-S2	5' ATA TTT GAT GCA ATT TCT GCC TTA AAG TAC AAA ATG
	CTT AGC ATA GGC CAC TAG TGG ATC TG 3"
SEQ ID NO. 28:	
YNL182c-S1	5' AAT ATT CAT AAA ACA GGA TCT TTC AAG GGA CGA TAA AAT G CA GCT GAA GCT TCG TAC GC 3'
SEQ ID NO. 29:	
YNL182c-S2	5' TTC CTA TTT TAT TGT ACA AAA TGC GCG ACT ATT CCG
	TTT AGC ATA GGC CAC TAG TGG ATC TG 3'
SEQ ID NO. 30:	
YOR206w-S1	5' TCA ATC GAA GCA TTT GAA GCA TAC TCT AGA CCA AAG
	AAG ACA GCT GAA GCT TCG TAC GC 3'
SEQ ID NO. 31:	
YOR206w-S2	5' TTG AAT TCA AGA CAA AAA ATC AAA TCT TGC TGA GTT
	GTT AGC ATA GGC CAC TAG TGG ATC TG 31
SEQ ID NO. 32:	5: 0.4. 0.00 TOO 0TA TAO 0AA TOO 000 TTT 444 400 000
YJL054w-S1	5' GAA GCC TGG CTA TAC CAA TCC GGC TTT AAA AGC CCT
	TGG T CA GCT GAA GCT TCG TAC GC 3'

SEQ ID NO. 33:	
YJL054w-S2	5' CTT TAC CCT GTT TGA CCC AGT TCT GTG GCC AAT CTT
	TTT CGC ATA GGC CAC TAG TGG ATC TG 3"
SEQ ID NO. 34:	
YJL039c-S1	5' TTC CTA AAA GTA ATT CTT AAA AGT GAT AAT GAA TGA
	CTT ACA GCT GAA GCT TCG TAC GC 3"
SEQ ID NO. 35 :	
YJL039c-S2	5' ACC TAG TTG AAA AGA TTT GTT CCG CAG ATA AGA AAA
	AAT GGC ATA GGC CAC TAG TGG ATC TG 3
SEQ ID NO. 36:	
YOR119c-S1	5' CAC AGG GCC GCA TTA TTT CTT TGA TTT CGT TTT TTT
	CAC C CA GCT GAA GCT TCG TAC GC 3´
SEQ ID NO. 37:	
YOR119c-S2	5' GAT TTA GAG ATT CAA ACT CCG TTA TTT TTA GAA GGT

CAT GGC ATA GGC CAC TAG TGG ATC TG 3"

40

SEQUENZPROTOKOLL

- (1) ALLGEMEINE INFORMATION:
 - (i) ANMELDER:
 - (A) NAME: Hoechst Aktiengesellschaft
 - (B) STRASSE: -
 - (C) ORT: Frankfurt
 - (D) BUNDESLAND: -
 - (E) LAND: Deutschland
 - (F) POSTLEITZAHL: 65926
 - (G) TELEPHON: 069-305-7072
 - (H) TELEFAX: 069-35-7175
 - (I) TELEX: -
 - (ii) ANMELDETITEL: Verfahren zum Screening von antimykotisch wirkenden Substanzen
 - (iii) ANZAHL DER SEQUENZEN: 37
 - (iv) COMPUTER-LESBARE FORM:
 - (A) DATENTRÄGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)
- (2) INFORMATION ZU SEQ ID NO: 1:
 - (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 50 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: DNS (genomisch)
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: exon
 - (B) LAGE: 1..50
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

GAGAGAGA GAGAGAGA ACTAGXXXXX XTTTTTTTT TTTTTTTTT

(2) INFORMATION ZU SEQ ID NO: 2:

(i) SEQUENZ CHARAKTERISTIKA:

		(A) LÄNGE: 13 Basenpaare	
		(B) ART: Nukleinsäure	
		(C) STRANGFORM: Einzel	
		(D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: DNS (genomisch)	
	(ix)	MERKMALE:	
		(A) NAME/SCHLÜSSEL: exon	
		(B) LAGE: 113	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 2:	
XXXX	(XGGC	AC GAG	13
(2)	INFO	RMATION ZU SEQ ID NO: 3:	
	(:)	CHOURNE CUADAVERTICATVA.	
	(1)	SEQUENZ CHARAKTERISTIKA:	
		(A) LÄNGE: 24 Basenpaare	
		(B) ART: Nukleinsäure	
		(C) STRANGFORM: Einzel	
		(D) TOPOLOGIE: linear	
	/ i i i i	ART DES MOLEKÜLS: DNS (genomisch)	
	(11)	ART DES MOLEROES. DNS (genomisen)	
	(ix)	MERKMALE:	
	(=== ,	(A) NAME/SCHLÜSSEL: exon	
		(B) LAGE: 124	
		(0) =	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 3:	
	,		
GCG	GCCGC	AA GGCCTCCATG GCCG	24
(2)	INFO	RMATION ZU SEQ ID NO: 4:	
	(i)	SEQUENZ CHARAKTERISTIKA:	
		(A) LÄNGE: 32 Basenpaare	
		(B) ART: Nukleinsäure	
		(C) STRANGFORM: Einzel	-
		(D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: DNS (genomisch)	

(ix) MERKMALE:

	(A) NAME/SCHLÜSSEL: exon (B) LAGE: 132	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:	
GATO	CCGGCCA TGGAGGCCTT GCGGCCGCTG CA	32
(2)	INFORMATION ZU SEQ ID NO: 5:	
	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 37 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 137	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:	
ATCT	TGCAGCG GCCGCGTTTT AAGAGCTTGG TGAGCGC	37
(2)	INFORMATION ZU SEQ ID NO: 6:	
	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 41 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 141	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:	
ATG	GATCCGG CCATGGAGGC CTCGTTCAGA ATGACACGTA T	41

(2) INFORMATION ZU SEQ ID NO: 7:

	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 42 Basenpaare	
	(B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel	
	• •	
	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE:	
	(A) NAME/SCHLÜSSEL: exon	
	(B) LAGE: 142	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	
> maa	ATCCGG CCATGGAGGC CTGTGGGAAT ACTCAGGTAT CG	40
ATGG.	ATCCGG CCATGGAGGC CIGIGGGAAT ACTCAGGTAT CG	42
(2)	INFORMATION ZU SEQ ID NO: 8:	
	(i) SEQUENZ CHARAKTERISTIKA:	
	(A) LÄNGE: 40 Basenpaare	
	(B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel	
	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE:	
	(A) NAME/SCHLÜSSEL: exon	
	(B) LAGE: 140	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:	
ATCT	GCAGCG GCCGCGTCTA CCCTATGAAC ATATTCCATT	40
(2)	INFORMATION ZU SEQ ID NO: 9:	
. ,		
	(i) SEQUENZ CHARAKTERISTIKA:	
	(A) LÄNGE: 40 Basenpaare	
	(B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel	
	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	

	(14)	(A) NAME/SCHLÜSSEL: exon (B) LAGE: 140	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 9:	
ATC	rgcag	CG GCCGCAAACA TGAGAATTGG GTAATAACTG	40
(2)	INFO	RMATION ZU SEQ ID NO: 10:	
	(i)	SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 47 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: DNS (genomisch)	
	(ix)	MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 147	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 10:	
ATGO	GATCC	GG CCATGGAGGC CTTCAAGAAT TAGCTTTTCA ATTCATC	47
(2)	INFO	RMATION ZU SEQ ID NO: 11:	
	(i)	SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 34 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: DNS (genomisch)	
	(ix)	MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 134	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 11:	
» ma	rccac	CC CCCCATTTA ATACAACAC ATCC	2.4

(2) INFORMATION ZU SEQ ID NO: 12:	
 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 38 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
(ii) ART DES MOLEKÜLS: DNS (genomisch)	
(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 138	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:	
ATGGATCCGG CCATGGAGGC CACACCGCAT AGATCGGC	38
(2) INFORMATION ZU SEQ ID NO: 13:	
 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 19 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
(ii) ART DES MOLEKÜLS: DNS (genomisch)	
(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 119	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:	
AGGCAGACTA CAACTTAGG	19
(2) INFORMATION ZU SEQ ID NO: 14:	
 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	

	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:	
CTGA	ATTCGA TGAGGAGAAG CTAGT	25
(2)	INFORMATION ZU SEQ ID NO: 15:	
	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 23 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 123	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:	
CTTC	CAAACGC TTGTTAAATC TTG	23
(2)	INFORMATION ZU SEQ ID NO: 16:	
	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID No: 16:	

WO 98/44135 PCT/EP98/01904

47

CAGGATCCGT AGACCATTTT CAGAA

25

(2) INFORMATION ZU SEQ ID NO: 17:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 2973 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: DNS (genomisch)

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: exon
- (B) LAGE: 1..2973

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:

ATTGTAAGCG	TTAATATTTT	GTTAAAATTC	GCGTTAAATT	TTTGTTAAAT	CAGCTCATTT	60
TTTAACCAAT	AGGCCGAAAT	CGGCAAAATC	CCTTATAAAT	CAAAAGAATA	GACCGAGATA	120
GGGTTGAGTG	TTGTTCCAGT	TTGGAACAAG	AGTCCACTAT	TAAAGAACGT	GGACTCCAAC	180
GTCAAAGGGC	GAAAAACCGT	CTATCAGGGC	GATGGCCCAC	TACGTGAACC	ATCACCCTAA	240
TCAAGTTTTT	TGGGGTCGAG	GTGCCGTAAA	GCACTAAATC	GGAACCCTAA	AGGGAGCCCC	300
CGATTTAGAG	CTTGACGGGG	AAAGCCGGCG	AACGTGGCGA	GAAAGGAAGG	GAAGAAAGCG	360
AAAGGAGCGG	GCGCTAGGGC	GCTGGCAAGT	GTAGCGGTCA	CGCTGCGCGT	AACCACCACA	420
ccccccccc	TTAATGCGCC	GCTACAGGGC	GCGTCCCATT	CGCCATTCAG	GCTGCGCAAC	480
TGTTGGGAAG	GGCGATCGGT	GCGGGCCTCT	TCGCTATTAC	GCCAGCTGGC	GAAAGGGGGA	540
TGTGCTGCAA	GGCGATTAAG	TTGGGTAACG	CCAGGGTTTT	CCCAGTCACG	ACGTTGTAAA	600
ACGACGGCCA	GTGAGCGCGC	GTAATACGAC	TCACTATAGG	GCGAATTGGA	GCTCCACCGC	660
GGTGGCGCTC	TAGAACTAGT	GGATCCGGCC	ATGGAGGCCT	TGCGGCCGCT	GCAGGAATTC	720
GATATCAAGC	TTATCGATAC	CGTCGACCTC	GAGGGGGGC	CCGGTACCCA	GCTTTTGTTC	780
CCTTTAGTGA	GGGTTAATTG	CGCGCTTGGC	GTAATCATGG	TCATAGCTGT	TTCCTGTGTG	840
AAATTGTTAT	CCGCTCACAA	TTCCACACAA	CATACGAGCC	GGAAGCATAA	AGTGTAAAGC	900

CTGGGGTGCC	TAATGAGTGA	GCTAACTCAC	ATTAATTGCG	TTGCGCTCAC	TGCCCGCTTT	960
CCAGTCGGGA	AACCTGTCGT	GCCAGCTGCA	TTAATGAATC	GGCCAACGCG	CGGGGAGAGG	1020
CGGTTTGCGT	ATTGGGCGCT	CTTCCGCTTC	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT	1080
TCGGCTGCGG	CGAGCGGTAT	CAGCTCACTC	AAAGGCGGTA	ATACGGTTAT	CCACAGAATC	1140
AGGGGATAAC	GCAGGAAAGA	ACATGTGAGC	AAAAGGCCAG	CAAAAGGCCA	GGAACCGTAA	1200
AAAGGCCGCG	TTGCTGGCGT	TTTTCCATAG	GCTCCGCCCC	CCTGACGAGC	ATCACAAAAA	1260
TCGACGCTCA	AGTCAGAGGT	GGCGAAACCC	GACAGGACTA	TAAAGATACC	AGGCGTTTCC	1320
CCCTGGAAGC	TCCCTCGTGC	GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCTGTC	1380
CGCCTTTCTC	CCTTCGGGAA	GCGTGGCGCT	TTCTCATAGC	TCACGCTGTA	GGTATCTCAG	1440
TTCGGTGTAG	GTCGTTCGCT	CCAAGCTGGG	CTGTGTGCAC	GAACCCCCCG	TTCAGCCCGA	1500
CCGCTGCGCC	TTATCCGGTA	ACTATCGTCT	TGAGTCCAAC	CCGGTAAGAC	ACGACTTATC	1560
GCCACTGGCA	GCAGCCACTG	GTAACAGGAT	TAGCAGAGCG	AGGTATGTAG	GCGGTGCTAC	1620
AGAGTTCTTG	AAGTGGTGGC	CTAACTACGG	CTACACTAGA	AGGACAGTAT	TTGGTATCTG	1680
CGCTCTGCTG	AAGCCAGTTA	CCTTCGGAAA	AAGAGTTGGT	AGCTCTTGAT	CCGGCAAACA	1740
AACCACCGCT	GGTAGCGGTG	GTTTTTTGT	TTGCAAGCAG	CAGATTACGC	GCAGAAAAA	1800
AGGATCTCAA	GAAGATCCTT	TGATCTTTTC	TACGGGGTCT	GACGCTCAGT	GGAACGAAAA	1860
CTCACGTTAA	GGGATTTTGG	TCATGAGATT	ATCAAAAAGG	ATCTTCACCT	AGATCCTTTT	1920
AAATTAAAAA	TGAAGTTTTA	AATCAATCTA	AAGTATATAT	GAGTAAACTT	GGTCTGACAG	1980
TTACCAATGC	TTAATCAGTG	AGGCACCTAT	CTCAGCGATC	TGTCTATTTC	GTTCATCCAT	2040
AGTTGCCTGA	CTCCCCGTCG	TGTAGATAAC	TACGATACGG	GAGGGCTTAC	CATCTGGCCC	2100
CAGTGCTGCA	ATGATACCGC	GAGACCCACG	CTCACCGGCT	CCAGATTTAT	CAGCAATAAA	2160
CCAGCCAGCC	GGAAGGGCCG	AGCGCAGAAG	TGGTCCTGCA	ACTTTATCCG	CCTCCATCCA	2220
GTCTATTAAT	TGTTGCCGGG	AAGCTAGAGT	AAGTAGTTCG	CCAGTTAATA	GTTTGCGCAA	2280
CGTTGTTGCC	ATTGCTACAG	GCATCGTGGT	GTCACGCTCG	TCGTTTGGTA	TGGCTTCATT	2340
CAGCTCCGGT	TCCCAACGAT	CAAGGCGAGT	TACATGATCC	CCCATGTTGT	GCAAAAAAGC	2400
GGTTAGCTCC	TTCGGTCCTC	CGATCGTTGT	CAGAAGTAAG	TTGGCCGCAG	TGTTATCACT	2460

PCT/EP98/01904

CATGGTTATG	GCAGCACTGC	ATAATTCTCT	TACTGTCATG	CCATCCGTAA	GATGCTTTTC	2520
TGTGACTGGT	GAGTACTCAA	CCAAGTCATT	CTGAGAATAG	TGTATGCGGC	GACCGAGTTG	2580
CTCTTGCCCG	GCGTCAATAC	GGGATAATAC	CGCGCCACAT	AGCAGAACTT	TAAAAGTGCT	2640
CATCATTGGA	AAACGTTCTT	CGGGGCGAAA	ACTCTCAAGG	ATCTTACCGC	TGTTGAGATC	2700
CAGTTCGATG	TAACCCACTC	GTGCACCCAA	CTGATCTTCA	GCATCTTTTA	CTTTCACCAG	2760
CGTTTCTGGG	TGAGCAAAAA	CAGGAAGGCA	AAATGCCGCA	AAAAAGGGAA	TAAGGGCGAC	2820
ACGGAAATGT	TGAATACTCA	TACTCTTCCT	TTTTCAATAT	TATTGAAGCA	TTTATCAGGG	2880
TTATTGTCTC	ATGAGCGGAT	ACATATTTGA	ATGTATTTAG	AAAAATAAAC	AAATAGGGGT	2940
TCCGCGCACA	TTTCCCCGAA	AAGTGCCACC	TAA			2973

(2) INFORMATION ZU SEQ ID NO: 18:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 4088 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: DNS (genomisch)
- (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: exon
 - (B) LAGE: 1..4088
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

ATTGTAAGCG	TTAATATTTT	GTTAAAATTC	GCGTTAAATT	TTTGTTAAAT	CAGCTCATTT	60
TTTAACCAAT	AGGCCGAAAT	CGGCAAAATC	CCTTATAAAT	CAAAAGAATA	GACCGAGATA	120
GGGTTGAGTG	TTGTTCCAGT	TTGGAACAAG	AGTCCACTAT	TAAAGAACGT	GGACTCCAAC	180
GTCAAAGGGC	GAAAAACCGT	CTATCAGGGC	GATGGCCCAC	TACGTGAACC	ATCACCCTAA	240
TCAAGTTTTT	TGGGGTCGAG	GTGCCGTAAA	GCACTAAATC	GGAACCCTAA	AGGGAGCCCC	300
CGATTTAGAG	CTTGACGGGG	AAAGCCGGCG	AACGTGGCGA	GAAAGGAAGG	GAAGAAAGCG	360
AAAGGAGCGG	GCGCTAGGGC	GCTGGCAAGT	GTAGCGGTCA	CGCTGCGCGT	AACCACCACA	420

CCCGCCGCGC	TTAATGCGCC	GCTACAGGGC	GCGTCCCATT	CGCCATTCAG	GCTGCGCAAC	480
TGTTGGGAAG	GGCGATCGGT	GCGGGCCTCT	TCGCTATTAC	GCCAGCTGGC	GAAAGGGGGA	540
TGTGCTGCAA	GGCGATTAAG	TTGGGTAACG	CCAGGGTTTT	CCCAGTCACG	ACGTTGTAAA	600
ACGACGGCCA	GTGAGCGCGC	GTAATACGAC	TCACTATAGG	GCGAATTGGA	GCTCCACCGC	660
GGTGGCGCTC	TAGAACTAGT	GGATCCGGCC	ATGGAGGCCT	CGTTCAGAAT	GACACGTATA	720
GAATGATGCA	TTACCTTGTC	ATCTTCAGTA	TCATACTGTT	CGTATACATA	CTTACTGACA	780
TTCATAGGTA	TACATATATA	CACATGTATA	TATATCGTAT	GCTGCAGCTT	TAAATAATCG	840
GTGTCACTAC	ATAAGAACAC	CTTTGGTGGA	GGGAACATCG	TTGGTACCAT	TGGGCGAGGT	900
GGCTTCTCTT	ATGGCAACCG	CAAGAGCCTT	GAACGCACTC	TCACTACGGT	GATGATCATT	960
CTTGCCTCGC	AGACAATCAA	CGTGGAGGGT	AATTCTGCTA	GCCTCTGCAA	AGCTTTCAAG	1020
AAAATGCGGG	ATCATCTCGC	AAGAGAGATC	TCCTACTTTC	TCCCTTTGCA	AACCAAGTTC	1080
GACAACTGCG	TACGGCCTGT	TCGAAAGATC	TACCACCGCT	CTGGAAAGTG	CCTCATCCAA	1140
AGGCGCAAAT	CCTGATCCAA	ACCTTTTTAC	TCCACGCGCC	AGTAGGGCCT	CTTTAAAAGC	1200
TTGACCGAGA	GCAATCCCGC	AGTCTTCAGT	GGTGTGATGG	TCGTCTATGT	GTAAGTCACC	1260
AATGCACTCA	ACGATTAGCG	ACCAGCCGGA	ATGCTTGGCC	AGAGCATGTA	TCATATGGTC	1320
CAGAAACCCT	ATACCTGTGT	GGACGTTAAT	CACTTGCGAT	TGTGTGGCCT	GTTCTGCTAC	1380
TGCTTCTGCC	TCTTTTTCTG	GGAAGATCGA	GTGCTCTATC	GCTAGGGGAC	CACCCTTTAA	1440
AGAGATCGCA	ATCTGAATCT	TGGTTTCATT	TGTAATACGC	TTTACTAGGG	CTTTCTGCTC	1500
TGTCATCTTT	GCCTTCGTTT	ATCTTGCCTG	CTCATTTTTT	AGTATATTCT	TCGAAGAAAT	1560
CACATTACTT	TATATAATGT	ATAATTCATT	ATGTGATAAT	GCCAATCGCT	AAGAAAAAA	1620
AAGAGTCATC	CGCTAGGGGA	AAAAAAAAA	TGAAAATCAT	TACCGAGGCA	TAAAAAAATA	1680
TAGAGTGTAC	TAGAGGAGGC	CAAGAGTAAT	AGAAAAAGAA	AATTGCGGGA	AAGGACTGTG	1740
TTATGACTTC	CCTGACTAAT	GCCGTGTTCA	AACGATACCT	GGCAGTGACT	CCTAGCGCTC	1800
ACCAAGCTCT	TAAAACGCGG	CCGCTGCAGG	AATTCGATAT	CAAGCTTATC	GATACCGTCG	1860
ACCTCGAGGG	GGGGCCCGGT	ACCCAGCTTT	TGTTCCCTTT	AGTGAGGGTT	AATTGCGCGC	1920
TTGGCGTAAT	CATGGTCATA	GCTGTTTCCT	GTGTGAAATT	GTTATCCGCT	CACAATTCCA	1980

CACAACATAC	GAGCCGGAAG	CATAAAGTGT	AAAGCCTGGG	GTGCCTAATG	AGTGAGCTAA	2040
CTCACATTAA	TTGCGTTGCG	CTCACTGCCC	GCTTTCCAGT	CGGGAAACCT	GTCGTGCCAG	2100
CTGCATTAAT	GAATCGGCCA	ACGCGCGGG	AGAGGCGGTT	TGCGTATTGG	GCGCTCTTCC	2160
GCTTCCTCGC	TCACTGACTC	GCTGCGCTCG	GTCGTTCGGC	TGCGGCGAGC	GGTATCAGCT	2220
CACTCAAAGG	CGGTAATACG	GTTATCCACA	GAATCAGGGG	ATAACGCAGG	AAAGAACATG	2280
TGAGCAAAAG	GCCAGCAAAA	GGCCAGGAAC	CGTAAAAAGG	CCGCGTTGCT	GGCGTTTTTC	2340
CATAGGCTCC	GCCCCCTGA	CGAGCATCAC	AAAAATCGAC	GCTCAAGTCA	GAGGTGGCGA	2400
AACCCGACAG	GACTATAAAG	ATACCAGGCG	TTTCCCCCTG	GAAGCTCCCT	CGTGCGCTCT	2460
CCTGTTCCGA	CCCTGCCGCT	TACCGGATAC	CTGTCCGCCT	TTCTCCCTTC	GGGAAGCGTG	2520
GCGCTTTCTC	ATAGCTCACG	CTGTAGGTAT	CTCAGTTCGG	TGTAGGTCGT	TCGCTCCAAG	2580
CTGGGCTGTG	TGCACGAACC	CCCCGTTCAG	CCCGACCGCT	GCGCCTTATC	CGGTAACTAT	2640
CGTCTTGAGT	CCAACCCGGT	AAGACACGAC	TTATCGCCAC	TGGCAGCAGC	CACTGGTAAC	2700
AGGATTAGCA	GAGCGAGGTA	TGTAGGCGGT	GCTACAGAGT	TCTTGAAGTG	GTGGCCTAAC	2760
TACGGCTACA	CTAGAAGGAC	AGTATTTGGT	ATCTGCGCTC	TGCTGAAGCC	AGTTACCTTC	2820
GGAAAAAGAG	TTGGTAGCTC	TTGATCCGGC	AAACAAACCA	CCGCTGGTAG	CGGTGGTTTT	2880
TTTGTTTGCA	AGCAGCAGAT	TACGCGCAGA	AAAAAAGGAT	CTCAAGAAGA	TCCTTTGATC	2940
TTTTCTACGG	GGTCTGACGC	TCAGTGGAAC	GAAAACTCAC	GTTAAGGGAT	TTTGGTCATG	3000
AGATTATCAA	AAAGGATCTT	CACCTAGATC	CTTTTAAATT	AAAAATGAAG	TTTTAAATCA	3060
ATCTAAAGTA	TATATGAGTA	AACTTGGTCT	GACAGTTACC	AATGCTTAAT	CAGTGAGGCA	3120
CCTATCTCAG	CGATCTGTUT	ATTTCGTTCA	TCCATAGTTG	CCTGACTCCC	CGTCGTGTAG	3180
ATAACTACGA	TACGGGAGGG	CTTACCATCT	GGCCCCAGTG	CTGCAATGAT	ACCGCGAGAC	3240
CCACGCTCAC	CGGCTCCAGA	TTTATCAGCA	ATAAACCAGC	CAGCCGGAAG	GGCCGAGCGC	3300
AGAAGTGGTC	CTGCAACTTT	ATCCGCCTCC	ATCCAGTCTA	TTAATTGTTG	CCGGGAAGCT	3360
AGAGTAAGTA	GTTCGCCAGT	TAATAGTTTG	CGCAACGTTG	TTGCCATTGC	TACAGGCATC	3420
GTGGTGTCAC	GCTCGTCGTT	TGGTATGGCT	TCATTCAGCT	CCGGTTCCCA	ACGATCAAGG	3480
CGAGTTACAT	GATCCCCCAT	GTTGTGCAAA	AAAGCGGTTA	GCTCCTTCGG	TCCTCCGATC	3540

GTTGTCAGAA GTAAGTTGGC CGCAGTGTTA TCACTCATGG TTATGGCAGC ACTGCATAAT 3600 TCTCTTACTG TCATGCCATC CGTAAGATGC TTTTCTGTGA CTGGTGAGTA CTCAACCAAG 3660 TCATTCTGAG AATAGTGTAT GCGGCGACCG AGTTGCTCTT GCCCGGCGTC AATACGGGAT 3720 ANTACCGCGC CACATAGCAG AACTTTAAAA GTGCTCATCA TTGGAAAACG TTCTTCGGGG 3780 CGAAAACTCT CAAGGATCTT ACCGCTGTTG AGATCCAGTT CGATGTAACC CACTCGTGCA 3840 CCCAACTGAT CTTCAGCATC TTTTACTTTC ACCAGCGTTT CTGGGTGAGC AAAAACAGGA 3900 AGGCAAAATG CCGCAAAAAA GGGAATAAGG GCGACACGGA AATGTTGAAT ACTCATACTC 3960 TTCCTTTTC AATATTATTG AAGCATTTAT CAGGGTTATT GTCTCATGAG CGGATACATA 4020 TTTGAATGTA TTTAGAAAAA TAAACAAATA GGGGTTCCGC GCACATTTCC CCGAAAAGTG 4080 CCACCTAA 4088

(2) INFORMATION ZU SEQ ID NO: 19:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 4583 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: DNS (genomisch)
- (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: exon
 - (B) LAGE: 1..4583
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:

ATTGTAAGCG TTAATATTT GTTAAAATC GCGTTAAATT TTTGTTAAAT CAGCTCATTT 60

TTTAACCAAT AGGCCGAAAT CGGCAAAATC CCTTATAAAT CAAAAGAATA GACCGAGATA 120

GGGTTGAGTG TTGTTCCAGT TTGGAACAAG AGTCCACTAT TAAAGAACGT GGACTCCAAC 180

GTCAAAGGGC GAAAAACCGT CTATCAGGGC GATGGCCCAC TACGTGAACC ATCACCCTAA 240

TCAAGTTTTT TGGGGTCGAG GTGCCGTAAA GCACTAAATC GGAACCCTAA AGGGAGCCCC 300

CGATTTAGAG CTTGACGGGG AAAGCCGCG AACGTGGCGA GAAAGGAAGG GAAGAAAGCG 360

AAAGGAGCGG	GCGCTAGGGC	GCTGGCAAGT	GTAGCGGTCA	CGCTGCGCGT	AACCACCACA	420
ccccccccc	TTAATGCGCC	GCTACAGGGC	GCGTCCCATT	CGCCATTCAG	GCTGCGCAAC	480
TGTTGGGAAG	GGCGATCGGT	GCGGGCCTCT	TCGCTATTAC	GCCAGCTGGC	GAAAGGGGGA	540
TGTGCTGCAA	GGCGATTAAG	TTGGGTAACG	CCAGGGTTTT	CCCAGTCACG	ACGTTGTAAA	600
ACGACGGCCA	GTGAGCGCGC	GTAATACGAC	TCACTATAGG	GCGAATTGGA	GCTCCACCGC	660
GGTGGCGCTC	TAGAACTAGT	GGATCCGGCC	ATGGAGGCCT	GTGGGAATAC	TCAGGTATCG	720
TAAGATGCAA	GAGTTCGAAT	CTCTTAGCAA	CCATTATTTT	TTTCCTCAAC	ATAACGAGAA	780
CACACAGGGG	CGCTATCGCA	CAGAATCAAA	TTCGATGACT	GGAAATTTTT	TGTTAATTTC	840
AGAGGTCGCC	TGACGCATAT	ACCTTTTTCA	ACTGAAAAAT	TGGGAGAAAA	AGGAAAGGTG	900
AGAGGCCGGA	ACCGGCTTTT	CATATAGAAT	AGAGAAGCGT	TCATGACTAA	ATGCTTGCAT	960
CACAATACTT	GAAGTTGACA	ATATTATTTA	AGGACCTATT	GTTTTTTCCA	ATAGGTGGTT	1020
AGCAATCGTC	TTACTTTCTA	ACTTTTCTTA	CCTTTTACAT	TTCAGCAATA	татататата	1080
TTTCAAGGAT	ATACCATTCT	AATGTCTGCC	CCTATGTCTG	CCCCTAAGAA	GATCGTCGTT	1140
TTGCCAGGTG	ACCACGTTGG	TCAAGAAATC	ACAGCCGAAG	CCATTAAGGT	TCTTAAAGCT	1200
ATTTCTGATG	TTCGTTCCAA	TGTCAAGTTC	GATTTCGAAA	ATCATTTAAT	TGGTGGTGCT	1260
GCTATCGATG	CTACAGGTGT	CCCACTTCCA	GATGAGGCGC	TGGAAGCCTC	CAAGAAGGTT	1320
GATGCCGTTT	TGTTAGGTGC	TGTGGGTGGT	CCTAAATGGG	GTACAGGTAG	TGTTAGACCT	1380
GAACAAGGTT	TACTAAAAAT	CCGTAAAGAA	CTTCAATTGT	ACGCCAACTT	AAGACCATGT	1440
AACTTTGCAT	CCGACTCTCT	TTTAGACTTA	TCTCCAATCA	AGCCACAATT	TGCTAAAGGT	1500
ACTGACTTCG	TTGTTGTCAG	AGAATTAGTG	GGAGGTATTT	ACTTTGGTAA	GAGAAAGGAA	1560
GACGATGGTG	ATGGTGTCGC	TTGGGATAGT	GAACAATACA	CCGTTCCAGA	AGTGCAAAGA	1620
ATCACAAGAA	TGGCCGCTTT	CATGGCCCTA	CAACATGAGC	CACCATTGCC	TATTTGGTCC	1680
TTGGATAAAG	CTAATGTTTT	GGCCTCTTCA	AGATTATGGA	GAAAAACTGT	GGAGGAAACC	1740
ATCAAGAACG	AATTTCCTAC	ATTGAAGGTT	CAACATCAAT	TGATTGATTC	TGCCGCCATG	1800
ATCCTAGTTA	AGAACCCAAC	CCACCTAAAT	GGTATTATAA	TCACCAGCAA	CATGTTTGGT	1860
GATATCATCT	CCGATGAAGC	CTCCGTTATC	CCAGGTTCCT	TGGGTTTGTT	GCCATCTGCG	1920

TCCTTGGCCT	CTTTGCCAGA	CAAGAACACC	GCATTTGGTT	TGTACGAACC	ATGCCACGGT	1980
TCTGCTCCAG	ATTTGCCAAA	GAATAAGGTT	GACCCTATCG	CCACTATCTT	GTCTGCTGCA	2040
ATGATGTTGA	AATTGTCATT	GAACTTGCCT	GAAGAAGGTA	AGGCCATTGA	AGATGCAGTT	2100
AAAAAGGTTT	TGGATGCAGG	TATCAGAACT	GGTGATTTAG	GTGGTTCCAA	CAGTACCACC	2160
GAAGTCGGTG	ATGCTGTCGC	CGAAGAAGTT	AAGAAAATCC	TTGCTTAAAA	AGATTCTCTT	2220
TTTTTATGAT	ATTTGTACAT	AAACTTTATA	AATGAAATTC	ATAATAGAAA	CGACACGAAA	2280
TTACAAAATG	GAATATGTTC	ATAGGGTAGA	CGCGGCCGCT	GCAGGAATTC	GATATCAAGC	2340
TTATCGATAC	CGTCGACCTC	GAGGGGGGC	CCGGTACCCA	GCTTTTGTTC	CCTTTAGTGA	2400
GGGTTAATTG	CGCGCTTGGC	GTAATCATGG	TCATAGCTGT	TTCCTGTGTG	AAATTGTTAT	2460
CCGCTCACAA	TTCCACACAA	CATACGAGCC	GGAAGCATAA	AGTGTAAAGC	CTGGGGTGCC	2520
TAATGAGTGA	GCTAACTCAC	ATTAATTGCG	TTGCGCTCAC	TGCCCGCTTT	CCAGTCGGGA	2580
AACCTGTCGT	GCCAGCTGCA	TTAATGAATC	GGCCAACGCG	CGGGGAGAGG	CGGTTTGCGT	2640
ATTGGGCGCT	CTTCCGCTTC	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT	TCGGCTGCGG	2700
CGAGCGGTAT	CAGCTCACTC	AAAGGCGGTA	ATACGGTTAT	CCACAGAATC	AGGGGATAAC	2760
GCAGGAAAGA	ACATGTGAGC	AAAAGGCCAG	CAAAAGGCCA	GGAACCGTAA	AAAGGCCGCG	2820
TTGCTGGCGT	TTTTCCATAG	GCTCCGCCCC	CCTGACGAGC	ATCACAAAAA	TCGACGCTCA	2880
AGTCAGAGGT	GGCGAAACCC	GACAGGACTA	TAAAGATACC	AGGCGTTTCC	CCCTGGAAGC	2940
TCCCTCGTGC	GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCTGTC	CGCCTTTCTC	3000
CCTTCGGGAA	GCGTGGCGCT	TTCTCATAGC	TCACGCTGTA	GGTATCTCAG	TTCGGTGTAG	3060
GTCGTTCGCT	CCAAGCTGGG	CTGTGTGCAC	GAACCCCCCG	TTCAGCCCGA	CCGCTGCGCC	3120
TTATCCGGTA	ACTATCGTCT	TGAGTCCAAC	CCGGTAAGAC	ACGACTTATC	GCCACTGGCA	3180
GCAGCCACTG	GTAACAGGAT	TAGCAGAGCG	AGGTATGTAG	GCGGTGCTAC	AGAGTTCTTG	3240
AAGTGGTGGC	CTAACTACGG	CTACACTAGA	AGGACAGTAT	TTGGTATCTG	CGCTCTGCTG	3300
AAGCCAGTTA	CCTTCGGAAA	AAGAGTTGGT	AGCTCTTGAT	CCGGCAAACA	AACCACCGCT	3360
GGTAGCGGTG	GTTTTTTTGT	TTGCAAGCAG	CAGATTACGC	GCAGAAAAA	AGGATCTCAA	3420
GAAGATCCTT	TGATCTTTTC	TACGGGGTCT	GACGCTCAGT	GGAACGAAAA	CTCACGTTAA	3480

GGGATTTTGG TCATGAGATT ATCAAAAAGG ATCTTCACCT AGATCCTTTT AAAATTAAAAA 3540 TGAAGTTTTA AATCAATCTA AAGTATATAT GAGTAAACTT GGTCTGACAG TTACCAATGC 3600 TTAATCAGTG AGGCACCTAT CTCAGCGATC TGTCTATTTC GTTCATCCAT AGTTGCCTGA 3660 CTCCCGTCG TGTAGATAAC TACGATACGG GAGGGCTTAC CATCTGGCCC CAGTGCTGCA 3720 ATGATACCGC GAGACCCACG CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC 3780 GGAAGGCCG AGCGCAGAAG TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT 3840 TGTTGCCGGG AAGCTAGAGT AAGTAGTTCG CCAGTTAATA GTTTGCGCAA CGTTGTTGCC 3900 ATTGCTACAG GCATCGTGGT GTCACGCTCG TCGTTTGGTA TGGCTTCATT CAGCTCCGGT 3960 TCCCAACGAT CAAGGCGAGT TACATGATCC CCCATGTTGT GCAAAAAAGC GGTTAGCTCC 4020 TTCGGTCCTC CGATCGTTGT CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG 4080 GCAGCACTGC ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT 4140 GAGTACTCAA CCAAGTCATT CTGAGAATAG TGTATGCGGC GACCGAGTTG CTCTTGCCCG 4200 GCGTCAATAC GGGATAATAC CGCGCCACAT AGCAGAACTT TAAAAGTGCT CATCATTGGA 4260 AAACGTTCTT CGGGGCGAAA ACTCTCAAGG ATCTTACCGC TGTTGAGATC CAGTTCGATG 4320 TAACCCACTC GTGCACCCAA CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG 4380 TGAGCAAAAA CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT 4440 TGAATACTCA TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG TTATTGTCTC 4500 ATGAGCGGAT ACATATTTGA ATGTATTTAG AAAAATAAAC AAATAGGGGT TCCGCGCACA 4560 TTTCCCCGAA AAGTGCCACC TAA 4583

(2) INFORMATION ZU SEQ ID NO: 20:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 4102 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: DNS (genomisch)
- (ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: exon
- (B) LAGE: 1..4102

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:

ATTGTAAGCG	TTAATATTTT	GTTAAAATTC	GCGTTAAATT	TTTGTTAAAT	CAGCTCATTT	60
TTTAACCAAT	AGGCCGAAAT	CGGCAAAATC	CCTTATAAAT	CAAAAGAATA	GACCGAGATA	120
GGGTTGAGTG	TTGTTCCAGT	TTGGAACAAG	AGTCCACTAT	TAAAGAACGT	GGACTCCAAC	180
GTCAAAGGGC	GAAAAACCGT	CTATCAGGGC	GATGGCCCAC	TACGTGAACC	ATCACCCTAA	240
TCAAGTTTTT	TGGGGTCGAG	GTGCCGTAAA	GCACTAAATC	GGAACCCTAA	AGGGAGCCCC	300
CGATTTAGAG	CTTGACGGGG	AAAGCCGGCG	AACGTGGCGA	GAAAGGAAGG	GAAGAAAGCG	360
AAAGGAGCGG	GCGCTAGGGC	GCTGGCAAGT	GTAGCGGTCA	CGCTGCGCGT	AACCACCACA	420
ccccccccc	TTAATGCGCC	GCTACAGGGC	GCGTCCCATT	CGCCATTCAG	GCTGCGCAAC	480
TGTTGGGAAG	GGCGATCGGT	GCGGGCCTCT	TCGCTATTAC	GCCAGCTGGC	GAAAGGGGGA	540
TGTGCTGCAA	GGCGATTAAG	TTGGGTAACG	CCAGGGTTTT	CCCAGTCACG	ACGTTGTAAA	600
ACGACGGCCA	GTGAGCGCGC	GTAATACGAC	TCACTATAGG	GCGAATTGGA	GCTCCACCGC	660
GGTGGCGCTC	TAGAACTAGT	GGATCCGGCC	ATGGAGGCCT	TCAAGAATTA	GCTTTTCAAT	720
TCAATTCATC	ATTTTTTTT	TATTCTTTTT	TTTGATTTCG	GTTTCTTTGA	AATTTTTTTG	780
ATTCGGTAAT	CTCCGAACAG	AAGGAAGAAC	GAAGGAAGGA	GCACAGACTT	AGATTGGTAT	840
ATATACGCAT	ATGTAGTGTT	GAAGAAACAT	GAAATTGCCC	AGTATTCTTA	ACCCAACTGC	900
ACAGAACAAA	AACATGCAGG	AAACGAAGAT	AAATCATGTC	GAAAGCTACA	TATAAGGAAC	960
GTGCTGCTAC	TCATCCTAGT	CCTGTTGCTG	CCAAGCTATT	TAATATCATG	CACGAAAAGC	1020
AAACAAACTT	GTGTGCTTCA	TTGGATGTTC	GTACCACCAA	GGAATTACTG	GAGTTAGTTG	1080
AAGCATTAGG	TCCCAAAATT	TGTTTACTAA	AAACACATGT	GGATATCTTG	ACTGATTTTT	1140
CCATGGAGGG	CACAGTTAAG	CCGCTAAAGG	CATTATCCGC	CAAGTACAAT	TTTTTACTCT	1200
TCGAAGACAG	AAAATTTGCT	GACATTGGTA	ATACAGTCAA	ATTGCAGTAC	TCTGCGGGTG	1260
TATACAGAAT	AGCAGAATGG	GCAGACATTA	CGAATGCACA	CGGTGTGGTG	GGCCCAGGTA	1320
TTGTTAGCGG	TTTGAAGCAG	GCGGCAGAAG	AAGTAACAAA	GGAACCTAGA	GGCCTTTTGA	1380

TGTTAGCAGA	ATTGTCATGC	AAGGGCTCCC	TATCTACTGG	AGAATATACT	AAGGGTACTG	1440
TTGACATTGC	GAAGAGCGAC	AAAGATTTTG	TTATCGGCTT	TATTGCTCAA	AGAGACATGG	1500
GTGGAAGAGA	TGAAGGTTAC	GATTGGTTGA	TTATGACACC	CGGTGTGGGT	TTAGATGACA	1560
AGGGAGACGC	ATTGGGTCAA	CAGTATAGAA	CCGTGGATGA	TGTGGTCTCT	ACAGGATCTG	1620
ACATTATTAT	TGTTGGAAGA	GGACTATTTG	CAAAGGGAAG	GGATGCTAAG	GTAGAGGGTG	1680
AACGTTACAG	AAAAGCAGGC	TGGGAAGCAT	ATTTGAGAAG	ATGCGGCCAG	CAAAACTAAA	1740
AAACTGTATT	ATAAGTAAAT	GCATGTATAC	TAAACTCACA	AATTAGAGCT	TCAATTTAAT	1800
TATATCAGTT	ATTACCCAAT	TCTCATGTTT	GCGGCCGCTG	CAGGAATTCG	ATATCAAGCT	1860
TATCGATACC	GTCGACCTCG	AGGGGGGCC	CGGTACCCAG	CTTTTGTTCC	CTTTAGTGAG	1920
GGTTAATTGC	GCGCTTGGCG	TAATCATGGT	CATAGCTGTT	TCCTGTGTGA	AATTGTTATC	1980
CGCTCACAAT	TCCACACAAC	ATACGAGCCG	GAAGCATAAA	GTGTAAAGCC	TGGGGTGCCT	2040
AATGAGTGAG	CTAACTCACA	TTAATTGCGT	TGCGCTCACT	GCCCGCTTTC	CAGTCGGGAA	2100
ACCTGTCGTG	CCAGCTGCAT	TAATGAATCG	GCCAACGCGC	GGGGAGAGGC	GGTTTGCGTA	2160
TTGGGCGCTC	TTCCGCTTCC	TCGCTCACTG	ACTCGCTGCG	CTCGGTCGTT	CGGCTGCGGC	2220
GAGCGGTATC	AGCTCACTCA	AAGGCGGTAA	TACGGTTATC	CACAGAATCA	GGGGATAACG	2280
CAGGAAAGAA	CATGTGAGCA	AAAGGCCAGC	AAAAGGCCAG	GAACCGTAAA	AAGGCCGCGT	2340
TGCTGGCGTT	TTTCCATAGG	CTCCGCCCCC	CTGACGAGCA	TCACAAAAAT	CGACGCTCAA	2400
GTCAGAGGTG	GCGAAACCCG	ACAGGACTAT	AAAGATACCA	GGCGTTTCCC	CCTGGAAGCT	2460
CCCTCGTGCG	CTCTCCTGTT	CCGACCCTGC	CGCTTACCGG	ATACCTGTCC	GCCTTTCTCC	2520
CTTCGGGAAG	CGTGGCGCTT	TCTCATAGCT	CACGCTGTAG	GTATCTCAGT	TCGGTGTAGG	2580
TCGTTCGCTC	CAAGCTGGGC	TGTGTGCACG	AACCCCCCGT	TCAGCCCGAC	CGCTGCGCCT	2640
TATCCGGTAA	CTATCGTCTT	GAGTCCAACC	CGGTAAGACA	CGACTTATCG	CCACTGGCAG	2700
CAGCCACTGG	TAACAGGATT	AGCAGAGCGA	GGTATGTAGG	CGGTGCTACA	GAGTTCTTGA	2760
AGTGGTGGCC	TAACTACGGC	TACACTAGAA	GGACAGTATT	TGGTATCTGC	GCTCTGCTGA	2820
AGCCAGTTAC	CTTCGGAAAA	AGAGTTGGTA	GCTCTTGATC	CGGCAAACAA	ACCACCGCTG	2880
GTAGCGGTGG	TTTTTTTGTT	TGCAAGCAGC	AGATTACGCG	CAGAAAAAAA	GGATCTCAAG	2940

AAGATCCTTT	GATCTTTTCT	ACGGGGTCTG	ACGCTCAGTG	GAACGAAAAC	TCACGTTAAG	3000
GGATTTTGGT	CATGAGATTA	TCAAAAAGGA	TCTTCACCTA	GATCCTTTTA	AATTAAAAAT	3060
GAAGTTTTAA	ATCAATCTAA	AGTATATATG	AGTAAACTTG	GTCTGACAGT	TACCAATGCT	3120
TAATCAGTGA	GGCACCTATC	TCAGCGATCT	GTCTATTTCG	TTCATCCATA	GTTGCCTGAC	3180
TCCCCGTCGT	GTAGATAACT	ACGATACGGG	AGGGCTTACC	ATCTGGCCCC	AGTGCTGCAA	3240
TGATACCGCG	AGACCCACGC	TCACCGGCTC	CAGATTTATC	AGCAATAAAC	CAGCCAGCCG	3300
GAAGGGCCGA	GCGCAGAAGT	GGTCCTGCAA	CTTTATCCGC	CTCCATCCAG	TCTATTAATT	3360
GTTGCCGGGA	AGCTAGAGTA	AGTAGTTCGC	CAGTTAATAG	TTTGCGCAAC	GTTGTTGCCA	3420
TTGCTACAGG	CATCGTGGTG	TCACGCTCGT	CGTTTGGTAT	GGCTTCATTC	AGCTCCGGTT	3480
CCCAACGATC	AAGGCGAGTT	ACATGATCCC	CCATGTTGTG	CAAAAAAGCG	GTTAGCTCCT	3540
TCGGTCCTCC	GATCGTTGTC	AGAAGTAAGT	TGGCCGCAGT	GTTATCACTC	ATGGTTATGG	3600
CAGCACTGCA	TAATTCTCTT	ACTGTCATGC	CATCCGTAAG	ATGCTTTTCT	GTGACTGGTG	3660
AGTACTCAAC	CAAGTCATTC	TGAGAATAGT	GTATGCGGCG	ACCGAGTTGC	TCTTGCCCGG	3720
CGTCAATACG	GGATAATACC	GCGCCACATA	GCAGAACTTT	AAAAGTGCTC	ATCATTGGAA	3780
AACGTTCTTC	GGGGCGAAAA	CTCTCAAGGA	TCTTACCGCT	GTTGAGATCC	AGTTCGATGT	3840
AACCCACTCG	TGCACCCAAC	TGATCTTCAG	CATCTTTTAC	TTTCACCAGC	GTTTCTGGGT	3900
GAGCAAAAAC	AGGAAGGCAA	AATGCCGCAA	AAAAGGGAAT	AAGGGCGACA	CGGAAATGTT	3960
GAATACTCAT	ACTCTTCCTT	TTTCAATATT	ATTGAAGCAT	TTATCAGGGT	TATTGTCTCA	4020
TGAGCGGATA	CATATTTGAA	TGTATTTAGA	ААААТАААСА	AATAGGGGTT	CCGCGCACAT	4080
TTCCCCGAAA	AGTGCCACCT	AA				4102

(2) INFORMATION ZU SEQ ID NO: 21:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 3956 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: DNS (genomisch)

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: exon
- (B) LAGE: 1..3956

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:

ATTGTAAGCG	TTAATATTT	GTTAAAATTC	GCGTTAAATT	TTTGTTAAAT	CAGCTCATTT	60
TTTAACCAAT	AGGCCGAAAT	CGGCAAAATC	CCTTATAAAT	CAAAAGAATA	GACCGAGATA	120
GGGTTGAGTG	TTGTTCCAGT	TTGGAACAAG	AGTCCACTAT	TAAAGAACGT	GGACTCCAAC	180
GTCAAAGGGC	GAAAAACCGT	CTATCAGGGC	GATGGCCCAC	TACGTGAACC	ATCACCCTAA	240
TCAAGTTTTT	TGGGGTCGAG	GTGCCGTAAA	GCACTAAATC	GGAACCCTAA	AGGGAGCCCC	300
CGATTTAGAG	CTTGACGGGG	AAAGCCGGCG	AACGTGGCGA	GAAAGGAAGG	GAAGAAAGCG	360
AAAGGAGCGG	GCGCTAGGGC	GCTGGCAAGT	GTAGCGGTCA	CGCTGCGCGT	AACCACCACA	420
ccccccccc	TTAATGCGCC	GCTACAGGGC	GCGTCCCATT	CGCCATTCAG	GCTGCGCAAC	480
TGTTGGGAAG	GGCGATCGGT	GCGGGCCTCT	TCGCTATTAC	GCCAGCTGGC	GAAAGGGGGA	540
TGTGCTGCAA	GGCGATTAAG	TTGGGTAACG	CCAGGGTTTT	CCCAGTCACG	ACGTTGTAAA	600
ACGACGGCCA	GTGAGCGCGC	GTAATACGAC	TCACTATAGG	GCGAATTGGA	GCTCCACCGC	660
GGTGGCGCTC	TAGAACTAGT	GGATCCGGCC	ATGGAGGCCA	CACCGCATAG	ATCGGCAAGT	720
GCACAAACAA	TACTTAAATA	AATACTACTC	AGTAATAACC	TATTTCTTAG	CATTTTTGAC	780
GAAATTTGCT	ATTTTGTTAG	AGTCTTTTAC	ACCATTTGTC	TCCACACCTC	CGCTTACATC	840
AACACCAATA	ACGCCATTTA	ATCTAAGCGC	ATCACCAACA	TTTTCTGGCG	TCAGTCCACC	900
AGCTAACATA	AAATGTAAGC	TTTCGGGGCT	CTCTTGCCTT	CCAACCCAGT	CAGAAATCGA	960
GTTCCAATCC	AAAAGTTCAC	CTGTCCCACC	TGCTTCTGAA	TCAAACAAGG	GAATAAACGA	1020
ATGAGGTTTC	TGTGAAGCTG	CACTGAGTAG	TATGTTGCAG	TCTTTTGGAA	ATACGAGTCT	1080
TTTAATAACT	GGCAAACCGA	GGAACTCTTG	GTATTCTTGC	CACGACTCAT	CTCCATGCAG	1140
TTGGACGATA	TCAATGCCGT	AATCATTGAC	CAGAGCCAAA	ACATCCTCCT	TAGGTTGATT	1200
ACGAAACACG	CCAACCAAGT	ATTTCGGAGT	GCCTGAACTA	TTTTTATATG	CTTTTACAAG	1260
ACTTGAAATT	TTCCTTGCAA	TAACCGGGTC	AATTGTTCTC	TTTCTATTGG	GCACACATAT	1320

AATACCCAGC	AAGTCAGCAT	CGGAATCTAG	AGCACATTCT	GCGGCCTCTG	TGCTCTGCAA	1380
GCCGCAAACT	TTCACCAATG	GACCAGAACT	ACCTGTGAAA	TTAATAACAG	ACATACTCCA	1440
AGCTGCCTTT	GTGTGCTTAA	TCACGTATAC	TCACGTGCTC	AATAGTCACC	AATGCCCTCC	1500
CTCTTGGCCC	TCTCCTTTTC	TTTTTTCGAC	CGAATTAATT	CTTAATCGGC	AAAAAAGAA	1560
AAGCTCCGGA	TCAAGATTGT	ACGTAAGGTG	ACAAGCTATT	TTTCAATAAA	GAATATCTTC	1620
CACTACTGCC	ATCTGGCGTC	ATAACTGCAA	AGTACACATA	TATTACGATG	CTGTTCTATT	1680
AAATGCGGCC	GCTGCAGGAA	TTCGATATCA	AGCTTATCGA	TACCGTCGAC	CTCGAGGGG	1740
GGCCCGGTAC	CCAGCTTTTG	TTCCCTTTAG	TGAGGGTTAA	TTGCGCGCTT	GGCGTAATCA	1800
TGGTCATAGC	TGTTTCCTGT	GTGAAATTGT	TATCCGCTCA	CAATTCCACA	CAACATACGA	1860
GCCGGAAGCA	TAAAGTGTAA	AGCCTGGGGT	GCCTAATGAG	TGAGCTAACT	CACATTAATT	1920
GCGTTGCGCT	CACTGCCCGC	TTTCCAGTCG	GGAAACCTGT	CGTGCCAGCT	GCATTAATGA	1980
ATCGGCCAAC	GCGCGGGGAG	AGGCGGTTTG	CGTATTGGGC	GCTCTTCCGC	TTCCTCGCTC	2040
ACTGACTCGC	TGCGCTCGGT	CGTTCGGCTG	CGGCGAGCGG	TATCAGCTCA	CTCAAAGGCG	2100
GTAATACGGT	TATCCACAGA	ATCAGGGGAT	AACGCAGGAA	AGAACATGTG	AGCAAAAGGC	2160
CAGCAAAAGG	CCAGGAACCG	TAAAAAGGCC	GCGTTGCTGG	CGTTTTTCCA	TAGGCTCCGC	2220
CCCCTGACG	AGCATCACAA	AAATCGACGC	TCAAGTCAGA	GGTGGCGAAA	CCCGACAGGA	2280
CTATAAAGAT	ACCAGGCGTT	TCCCCTGGA	AGCTCCCTCG	TGCGCTCTCC	TGTTCCGACC	2340
CTGCCGCTTA	CCGGATACCT	GTCCGCCTTT	CTCCCTTCGG	GAAGCGTGGC	GCTTTCTCAT	2400
AGCTCACGCT	GTAGGTATCT	CAGTTCGGTG	TAGGTCGTTC	GCTCCAAGCT	GGGCTGTGTG	2460
CACGLACCCC	CCGTTCAGCC	CGACCGCTGC	GCCTTATCCG	GTAACTATCG	TCTTGAGTCC	2520
AACCCGGTAA	GACACGACTT	ATCGCCACTG	GCAGCAGCCA	CTGGTAACAG	GATTAGCAGA	2580
GCGAGGTATG	TAGGCGGTGC	TACAGAGTTC	TTGAAGTGGT	GGCCTAACTA	CGGCTACACT	2640
AGAAGGACAG	TATTTGGTAT	CTGCGCTCTG	CTGAAGCCAG	TTACCTTCGG	AAAAAGAGTT	2700
GGTAGCTCTT	GATCCGGCAA	ACAAACCACC	GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG	2760
CAGCAGATTA	CGCGCAGAAA	AAAAGGATCT	CAAGAAGATC	CTTTGATCTT	TTCTACGGGG	2820
TCTGACGCTC	AGTGGAACGA	AAACTCACGT	TAAGGGATTT	TGGTCATGAG	ATTATCAAAA	2880

AGGATCTTCA	CCTAGATCCT	TTTAAATTAA	AAATGAAGTT	TTAAATCAAT	CTAAAGTATA	2940
TATGAGTAAA	CTTGGTCTGA	CAGTTACCAA	TGCTTAATCA	GTGAGGCACC	TATCTCAGCG	3000
ATCTGTCTAT	TTCGTTCATC	CATAGTTGCC	TGACTCCCCG	TCGTGTAGAT	AACTACGATA	3060
CGGGAGGGCT	TACCATCTGG	CCCCAGTGCT	GCAATGATAC	CGCGAGACCC	ACGCTCACCG	3120
GCTCCAGATT	TATCAGCAAT	AAACCAGCCA	GCCGGAAGGG	CCGAGCGCAG	AAGTGGTCCT	3180
GCAACTTTAT	CCGCCTCCAT	CCAGTCTATT	AATTGTTGCC	GGGAAGCTAG	AGTAAGTAGT	3240
TCGCCAGTTA	ATAGTTTGCG	CAACGTTGTT	GCCATTGCTA	CAGGCATCGT	GGTGTCACGC	3300
TCGTCGTTTG	GTATGGCTTC	ATTCAGCTCC	GGTTCCCAAC	GATCAAGGCG	AGTTACATGA	3360
TCCCCCATGT	TGTGCAAAAA	AGCGGTTAGC	TCCTTCGGTC	CTCCGATCGT	TGTCAGAAGT	3420
AAGTTGG CCG	CAGTGTTATC	ACTCATGGTT	ATGGCAGCAC	TGCATAATTC	TCTTACTGTC	3480
ATGCCATCCG	TAAGATGCTT	TTCTGTGACT	GGTGAGTACT	CAACCAAGTC	ATTCTGAGAA	3540
TAGTGTATGC	GGCGACCGAG	TTGCTCTTGC	CCGGCGTCAA	TACGGGATAA	TACCGCGCCA	3600
CATAGCAGAA	CTTTAAAAGT	GCTCATCATT	GGAAAACGTT	CTTCGGGGCG	AAAACTCTCA	3660
AGGATCTTAC	CGCTGTTGAG	ATCCAGTTCG	ATGTAACCCA	CTCGTGCACC	CAACTGATCT	3720
TCAGCATCTT	TTACTTTCAC	CAGCGTTTCT	GGGTGAGCAA	AAACAGGAAG	GCAAAATGCC	3780
GCAAAAAAGG	GAATAAGGGC	GACACGGAAA	TGTTGAATAC	TCATACTCTT	CCTTTTTCAA	3840
TATTATTGAA	GCATTTATCA	GGGTTATTGT	CTCATGAGCG	GATACATATT	TGAATGTATT	3900
TAGAAAAATA	AACAAATAGG	GGTTCCGCGC	ACATTTCCCC	GAAAAGTGCC	ACCTAA	3956

(2) INFORMATION ZU SEQ ID NO: 22:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 59 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: DNS (genomisch)

	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 159	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 22:	
ATAG	GCGCTT CTCGTATCTA TACTCAACCC GCCCCCAATG CAGCTGAAGC TTCGTACGC	59
(2)	INFORMATION ZU SEQ ID NO: 23:	
	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 62 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 162	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:	
AAAT	TTGGGGG CACAAATGAG GGGTAAAAAT GCAGACATTA GCATAGGCCA CTAGTGGATC	60
ΤG		62
(2)	INFORMATION ZU SEQ ID NO: 24:	
	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 59 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 159	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 24:	

TCTAAATCGT TATGTTGAAA ACCTAGGCAC CAATGTGACT CAGCTGAAGC TTCGTACGC	59
(2) INFORMATION ZU SEQ ID NO: 25:	
 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 62 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
(ii) ART DES MOLEKÜLS: DNS (genomisch)	
(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 162	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 25:	
CAGCTTTTGC CCAATATGCT CAAAACCGAG TTATCTATTA GCATAGGCCA CTAGTGGATC	60
TG	62
(2) INFORMATION ZU SEQ ID NO: 26:	
 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 59 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
(ii) ART DES MOLEKÜLS: DNS (genomisch)	
(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 159	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 26:	
CAAGTTACTT TGAAAGGAAA TAAAAAAAAT TGTCAGCATG CAGCTGAAGC TTCGTACGC	59
(2) INFORMATION ZU SEQ ID NO: 27:	٠
(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 62 Basenpaare (B) ART: Nukleinsäure	

	(C) STRANGFORM: ETHZET	
	(D) TOPOLOGIE: linear	
(ii	i) ART DES MOLEKÜLS: DNS (genomisch)	
. 1		
(1)	() MERKMALE: (A) NAME/SCHLÜSSEL: exon	
	(B) LAGE: 162	
(x i	L) SEQUENZBESCHREIBUNG: SEQ ID NO: 27:	
ATATTTO	GATG CAATTTCTGC CTTAAAGTAC AAAATGCTTA GCATAGGCCA CTAGTGGATC	60
TG		62
(2) IN	FORMATION ZU SEQ ID NO: 28:	
(:	i) SEQUENZ CHARAKTERISTIKA:	
	(A) LÄNGE: 59 Basenpaare	
	(B) ART: Nukleinsäure(C) STRANGFORM: Einzel	
	(D) TOPOLOGIE: linear	
(i:	i) ART DES MOLEKÜLS: DNS (genomisch)	
(i:	k) MERKMALE:	
•	(A) NAME/SCHLÜSSEL: exon	
	(B) LAGE: 159	
(x:	i) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:	
AATATT	CATA AAACAGGATC TTTCAAGGGA CGATAAAATG CAGCTGAAGC TTCGTACGC	59
(2) IN:	FORMATION ZU SEQ ID NO: 29:	
,	i) SEOUENZ CHARAKTERISTIKA:	
,	(A) LÄNGE: 62 Basenpaare	
	(B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel	
	(D) TOPOLOGIE: linear	
(i	i) ART DES MOLEKÜLS: DNS (genomisch)	
(i	x) MERKMALE:	
` -	,	

PCT/EP98/01904

	(A) NAME/SCHLÜSSEL: exon (B) LAGE: 162	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:	
TTC	CTATTTT ATTGTACAAA ATGCGCGACT ATTCCGTTTA GCATAGGCCA CTAGTGGATC	60
TG		62
(2)	INFORMATION ZU SEQ ID NO: 30:	
	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 59 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 159	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 30:	
TCA	ATCGAAG CATTTGAAGC ATACTCTAGA CCAAAGAAGA CAGCTGAAGC TTCGTACGC	59
(2)	INFORMATION ZU SEQ ID NO: 31:	
	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 62 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 162	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 31:	
ттс	AATTCAA GACAAAAAT CAAATCTTGC TGAGTTGTTA GCATAGGCCA CTAGTGGATC	60

TG	62
(2) INFORMATION ZU SEQ ID NO: 32:	
 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 59 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
(ii) ART DES MOLEKÜLS: DNS (genomisch)	
(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 159	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 32:	
GAAGCCTGGC TATACCAATC CGGCTTTAAA AGCCCTTGGT CAGCTGAAGC TTCGTACGC	59
(2) INFORMATION ZU SEQ ID NO: 33:	
 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 62 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) 	
(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 162	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 33:	
CTTTACCCTG TTTGACCCAG TTCTGTGGCC AATCTTTTTC GCATAGGCCA CTAGTGGATC	60
TG	62
(2) INFORMATION ZU SEQ ID NO: 34:	
(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 59 Basenpaare	

	(B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel	
	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 159	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 34:	
TTCC	CTAAAAG TAATTCTTAA AAGTGATAAT GAATGACTTA CAGCTGAAGC TTCGTACGC	59
(2)	INFORMATION ZU SEQ ID NO: 35:	
	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 62 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 162	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 35:	
ACCI	FAGTTGA AAAGATTTGT TCCGCAGATA AGAAAAAATG GCATAGGCCA CTAGTGGATC	60
TG		62
(2)	INFORMATION ZU SEQ ID NO: 36:	
	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 59 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	

(IX) MERRMALE:	
(A) NAME/SCHLÜSSEL: exon	
(B) LAGE: 159	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 36:	
CACAGGGCCG CATTATTTCT TTGATTTCGT TTTTTTCACC CAGCTGAAGC TTCGTACGC	59
(2) INFORMATION ZU SEQ ID NO: 37:	
· ·	
(i) SEQUENZ CHARAKTERISTIKA:	
(A) LÄNGE: 62 Basenpaare	
(B) ART: Nukleinsäure	
(C) STRANGFORM: Einzel	
(D) TOPOLOGIE: linear	
(ii) ART DES MOLEKÜLS: DNS (genomisch)	
(ix) MERKMALE:	
(A) NAME/SCHLÜSSEL: exon	
(B) LAGE: 162	
(2) 2.132. 1.132	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 37:	
(n=) == x==n=============================	
GATTTAGAGA TTCAAACTCC GTTATTTTTA GAAGGTCATG GCATAGGCCA CTAGTGGAT	c 60
TG	62

Patentansprüche:

- 1. Verfahren zum Auffinden von antimykotisch wirkenden Substanzen, dadurch gekennzeichnet, daß
 - a) eine Nukleinsäure, die die Expression eines essentiellen Proteins aus Saccharomyces cerevisiae kontrolliert und/oder die für ein essentielles Protein aus Saccharomyces cerevisiae oder einen Teil desselben kodiert oder das kodierte essentielle Protein selbst oder
 - b) eine andere Nukleinsäure, die die Expression eines zu dem unter a) genannten Proteins funktionsähnlichen Proteins aus einer anderen Mycetenspezies kontrolliert und/oder die für ein zu dem unter a) genannten Protein funktionsähnlichen Protein aus einer anderen Mycetenspezies kodiert oder das kodierte funktionsähnliche Protein selbst
 - als Target eingesetzt wird, wobei dann entweder
 - a) der Effekt einer zu untersuchenden Substanz auf die Expression des essentiellen Proteins aus Saccharomyces cerevisiae oder die funktionelle Aktivität des kodierten essentiellen Proteins selbst oder
 - b) der Effekt einer zu untersuchenden Substanz auf die Expression des funktionsähnlichen Proteins selbst aus einer anderen Mycetenspezies oder die funktionelle Aktivität des kodierten funktionsähnlichen Proteins bestimmt wird.
- 2. Verfahren nach Anspruch 1, wobei die Nukleinsäure ein essentielles Gen ist.
- 3. Verfahren nach einem oder mehreren der Ansprüche 1 und 2, wobei das Gen ausgewählt wird aus der Gruppe der Gene YGR046w, YGR048w, YGR060w, YJL074c, YJR136c, YJR141w, YBR167c, YPL252c, YPL242c, YOR119c, YPL235w, YOR110w, YNL182c, YOR206w, YJL054w, YJL039c, YNL258c, YNL245c, YNL038w, YNL251c, YNL256w, YNL260c, YIR012w, YLR086w, YLR076c, YLR100w, YIR010w, YIL003w, YBR102c, YOL010w, YKL013c, YKL018w und YLL003w.
- Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, wobei die andere Nukleinsäure ein Gen aus einer anderen Mycetenspezies ist, welches zu einem der Gene YGR046w, YGR048w, YGR060w, YJL074c, YJR136c, YJR141w, YBR167c, YPL252c, YPL242c, YOR119c, YPL235w, YOR110w, YNL182c, YOR206w, YJL054w, YJL039c, YNL258c, YNL245c, YNL038w, YNL251c, YNL256w, YNL260c, YIR012w, YLR086w, YLR076c, YLR100w, YIR010w, YIL003w, YBR102c, YOL010w, YKL013c, YKL018w und YLL003w

funktionsähnlich ist.

- 5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, wobei die Nukleinsäure der Promotor eines essentiellen Gens ist.
- 6. Verfahren nach Anspruch 5, wobei der Promotor ausgewählt wird aus der Reihe der Promotoren der Gene YGR046w, YGR048w, YGR060w, YJL074c, YJR136c, YJR141w, YBR167c, YPL252c, YPL242c, YOR119c, YPL235w, YOR110w, YNL182c, YOR206w, YJL054w, YJL039c, YNL258c, YNL245c, YNL038w, YNL251c, YNL256w, YNL260c, YIR012w, YLR086w, YLR076c, YLR100w, YIR010w, YIL003w, YBR102c, YOL010w, YKL013c, YKL018w und YLL003w.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, wobei das essentielle Protein durch eines der Gene ausgewählt aus YGR046w, YGR048w, YGR060w, YJL074c, YJR136c, YJR141w, YBR167c, YPL252c, YPL242c, YOR119c, YPL235w, YOR110w, YNL182c, YOR206w, YJL054w, YJL039c, YNL258c, YNL245c, YNL038w, YNL251c, YNL256w, YNL260c, YIR012w, YLR086w, YLR076c, YLR100w, YIR010w, YIL003w, YBR102c, YOL010w, YKL013c, YKL018w und YLL003w kodiert wird.
- 8. Verfahren nach einem der Ansprüche 1 bis 7, wobei das Protein aus einer anderen Mycetenspezies zu einem essentiellen Protein, das durch eines der Gene ausgewählt aus YGR046w, YGR048w, YGR060w, YJL074c, YJR136c, YJR141w, YBR167c, YPL252c, YPL242c, YOR119c, YPL235w, YOR110w, YNL182c, YOR206w, YJL054w, YJL039c, YNL258c, YNL245c, YNL038w, YNL251c, YNL256w, YNL260c, YIR012w, YLR086w, YLR076c, YLR100w, YIR010w, YIL003w, YBR102c, YOL010w, YKL013c, YKL018w und YLL003w kodiert wird, funktionsähnlich ist.
- 9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, wobei die andere Mycetenspezies ausgewählt wird aus den Basidiomyceten, Ascomyceten und Hyphomyceten.
- 10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, wobei die andere Mycetenspezies ausgewählt wird aus Hemiascomycetales (Hefen), Plectascales (Schimmelpilze), Gymnascales (Haut- und Haarpilze), Conidiosporales (Hautpilze), Thallosporales (Sproßpilze), Mucor, Rhizopus, Coccidioides, Paracoccidioides (brasiliensis) (Blasomyces brasiliensis), Endomyces

(Blastomyces), Aspergillus, Penicillium (Scopulariopsis), Trichophyton (Ctenomyces), Epidermophyton, Microsporon, Piedraia, Hormodendron, Phialophora, Sporotrichon, Cryptococcus, Candida, Geotrichum und Trichosporon.

- 11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, wobei die andere Mycetenspezies ausgewählt wird aus Candida albicans, Aspargillus fumigatus, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum, Blasomyces dermatitidis, Paracoccidioides brasiliens und Sporothrix schenckii.
- 12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11, wobei eine Zelle bereitgestellt wird, die ein essentielles Gen von Saccharomyces cerevisiae oder ein funktonsähnliches Gen aus einer anderen Mycetenspecies überexprimiert, diese Zelle mit einer zu untersuchenden Substanz inkubiert wird und die wachstumsinhibierende Wirkung dieser Substanz bestimmt wird.
- 13. Verfahren nach einem oder mehreren der Ansprüche 1 bis 12, wobei mindestens zwei Zellen bereitgestellt werden, die ein essentielles Gen aus Saccharomyces cerevisiae oder ein funktionsähnliches Gen aus einer anderen Mycetenspezies in unterschiedlichem Maße exprimieren, diese Zellen mit einer zu untersuchenden Substanz inkubiert werden und die wachstumsinhibierende Wirkung dieser Substanz vergleichend bestimmt wird.
- 14. Verfahren nach einem oder mehreren der Ansprüche 1 bis 13, wobei die Zellen Saccharomyces cerevisiae Zellen des Stammes CEN.PK2 oder Derivate desselben sind.
- 15. Verfahren nach einem oder mehreren der Ansprüche 1 bis 14, wobei die Zellen haploide Saccharomyces cerevisiae Zellen sind.
- Verfahren nach einem oder mehreren der Ansprüche 1 bis 15, wobei ein funktionsähnliches Gen in einer anderen Mycetenspezies dadurch identifiziert wird, daß
 - Saccharomyces cerevisiae Zellen erzeugt werden, in denen ein essentielles Gen von Saccharomyces cerevisiae unter die Kontrolle eines regulierbaren Promotors gestellt wird,
 - b) die auf diese Weise veränderten Saccharomyces cerevisiae Zellen unter Wachstumsbedingungen angezogen werden, unter denen der regulierbare

- Promotor aktiv ist,
- die verändereten Saccharomyces cerevisiae Zellen mit cDNA, hergestellt aus der anderen Mycetenspezies und vorliegend in einem Expressionsvektor, transformiert werden,
- d) der regulierbare Promotor durch Veränderung der Kulturbedingungen abgeschaltet wird, so daß nur die Saccharomyces cerevisiae Zellen überleben, in denen die cDNA, die für ein funktionsähnliches Protein in der anderen Mycetenspezies kodiert, exprimiert wird und
- e) die cDNA, die das zu dem essentiellen Gen von Saccharomyces cerevisiae funktionsähnliche Gen in der anderen Mycetenspezies repräsentiert, gegebenenfalls isoliert und analysiert wird.
- 17. Verfahren nach Anspruch 16, wobei das essentielle Gen von Saccharomyces cerevisiae ausgewählt wird aus der Gruppe der Gene YGR046w, YGR048w, YGR060w, YJL074c, YJR136c, YJR141w, YBR167c, YPL252c, YPL242c, YOR119c, YPL235w, YOR110w, YNL182c, YOR206w, YJL054w, YJL039c, YNL258c, YNL245c, YNL038w, YNL251c, YNL256w, YNL260c, YIR012w, YLR086w, YLR076c, YLR100w, YIR010w, YIL003w, YBR102c, YOL010w, YKL013c, YKL018w und YLL003w.
- 18. Verfahren nach einem oder mehreren der Ansprüche 16 und 17, wobei die Saccharomyces cerevisiae Zellen Zellen des Stammes CEN.PK2 sind.
- 19. Verfahren nach einem oder mehreren der Ansprüche 16 bis 18, wobei Saccharomyces cerevisiae Zellen erzeugt werden, in deren Genom der native Promotor des essentiellen Gens durch einen regulierbaren Promotor ersetzt wird.
- 20. Verfahren nach Anspruch 19, wobei Saccharomyces cerevisiae Zellen, bei denen eines der essentiellen Gene durch ein Markergen ersetzt ist, mit einem rekombinanten Expressionsvektor, der den kodierenden Teil des essentiellen Saccharomyces cerevisiae Gens unter der Kontrolle eines regulierbaren Promotors enthält, transformiert werden.
- 21. Verfahren nach einem der Ansprüche 19 und 20, wobei die Sccharomyces cerevisiae heterozygot-diploid sind.
- 22. Verfahren nach einem oder mehreren der Ansprüche 19 bis 21, wobei in den heterozygot-diploiden Saccharomyces cerevisiae Zellen ein essentielle Gen durch

- ein Gen, das für einen Auxotrophiemarker kodiert, ersetzt ist.
- 23. Verfahren nach einem oder mehreren der Ansprüche 19 bis 21, wobei in den heterozygot-diploiden Saccharomyces cerevisiae Zellen ein essentielles Gen durch ein Resistenzgen ersetzt ist.
- 24. Verfahren nach Anspruch 19, wobei Saccharomyces cerevisiae Zellen erzeugt werden, bei denen der native Promoter des essentiellen Gens extrachromosomal durch einen regulierbaren Promotor ersetzt wird.
- 25. Verfahren nach einem oder mehreren der Ansprüche 12 bis 24, wobei die Saccharomyces cerevisiae Zellen ausgewählt werden aus Zellen der Stämme CEN.EN27, CEN.EN28, CEN.EN8, CEN.RO23, CEN.RO30, CEN.RO6, CEN.RO8, CEN.SR14, CEN.SR15, CEN.SR2, CEN.SR26, CEN.SR41, CEN.SR55, CEN.SR66, CEN.SR80, CEN.SR81, CEN.HE1, CEN.HE17, CEN.HE18, CEN.HE2, CEN.HE4, CEN.HE9, CEN.HI10, CEN.HI23, CEN.HI28, CEN.HI31, CEN.HI5, CEN.HI7, CEN.FE8, CEN.KR28, CEN.TS02, CEN.TS04 und CEN.ZI26.
- 26. Saccharomyces cerevisea Zelllen der Stämme CEN.EN27, CEN.EN28, CEN.EN8, CEN.RO23, CEN.RO30, CEN.RO6, CEN.RO8, CEN.SR14, CEN.SR15, CEN.SR2, CEN.SR26, CEN.SR41, CEN.SR55, CEN.SR66, CEN.SR80, CEN.SR81, CEN.HE1, CEN.HE17, CEN.HE18, CEN.HE2, CEN.HE4, CEN.HE9, CEN.HI10, CEN.HI23, CEN.HI28, CEN.HI31, CEN.HI5, CEN.HI7, CEN.FE8, CEN.KR28, CEN.TS02, CEN.TS04 und CEN.ZI26 nach Anspruch 25.
- 27. Verwendung von Saccharomyces cerevisiae Zellen der Stämmen nach Anspruch 25 in einem Verfahren zur Identifizierung von funktionsähnlichen Genen in anderen Mycetenspezies.
- 28. Verwendung von Saccharomyces cerevisiae Zellen nach einem oder mehreren der Ansprüche 26 und 27 zur Identifizierung von funktionsähnlichen Genen in Candida albicans und Aspargillus fumigatus.
- 29. Verwendung von Saccharomyces cerevisiae Zellen nach Anspruch 26 zur Identifizierung von funktionsähnlichen menschlichen, tierischen oder pflanzlichen Genen.
- 30. Verwendung von Saccharomyces cerevisiae Zellen nach Anspruch 26 in einem

Verfahren zur Identifizierung von antimykotisch wirkenden Substanzen.

- 31. Verfahren nach einem der Ansprüche 1 bis 15, wobei die essentiellen Gene von S. cerevisiae durch Austausch einzelner Gene im Genom von S. cerevisiae gegen Markergene mit Hilfe der Plasmide pPK5/6, pPK7/8, pPK9/10 oder pPK13/14 identifiziert werden.
- 32. Plasmid pPK5/6 gemäß SEQ ID NO. 18.
- 33. Plasmid pPK7/8 gemäß SEQ ID NO. 19.
- 34. Plasmid pPK9/10 gemäß SEQ ID NO. 20.
- 35. Plasmid pPK13/14 gemäß SEQ ID NO. 21.

PCT

WELT GANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

(51) Internationale Patentklassifikation 6:

C12N 15/81, 1/19, 15/00, C12Q 1/18, 1/68

A3

(11) Internationale Veröffentlichungsnummer: WO 98/44135

(43) Internationales

Veröffentlichungsdatum:

8. Oktober 1998 (08.10.98)

(21) Internationales Aktenzeichen:

PCT/EP98/01904

(22) Internationales Anmeldedatum:

2. April 1998 (02.04.98)

(30) Prioritätsdaten:

197 13 572.2

2. April 1997 (02.04.97)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
HOECHST AKTIENGESELLSCHAFT [DE/DE];
Brüningstrasse 50, D-65929 Frankfurt am Main (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HINNEN, Albert [DE/DE]; Scheidlerstrasse 17, D-07745 Jena (DE). HEGEMANN, Johannes [DE/DE]; In den Gärten 33, D-35398 Giessen (DE). MUNDER, Thomas [DE/DE]; Engelplatz 3, D-07743 Jena (DE). SCHUSTER, Tilmer [DE/DE]; Eichenweg 40, D-97440 Werneck (DE). FELDMANN, Horst [DE/DE]; Pasinger Heuweg 86, D-80999 München (DE). KRAMER, Wilfried [DE/DE]; Strasse an der St. Vinzenz Kirche 10, D-37077 Göttingen (DE). ZIMMERMANN, Friedrich, Karl [DE/DE]; Goethestrasse 12, D-64372 Ober-Ramstadt (DE). ENTIAN, Karl-Dieter [DE/DE]; Oberurseler Strasse 43, D-61440 Oberursel (DE). ROSE, Matthias [DE/DE]; Theodor-Heuss-Strasse 4, D-61267 Neu-Anspach (DE).

KÖTTER, Peter [DE/DE]; Industriestrasse 3A, D-61440 Oberursel (DE).

(81) Bestimmungsstaaten: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, GW, HU, ID, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MW, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 17. Dezember 1998 (17.12.98)

(54) Title: METHOD FOR SCREENING ANTIMYCOTICALLY ACTIVE SUBSTANCES

(54) Bezeichnung: VERFAHREN ZUM SCREENING VON ANTIMYKOTISCH WIRKENDEN SUBSTANZEN

(57) Abstract

The invention relates to a method for screening antimycotically active substances, whereby essential genes from mycetes, especially of Saccaromyces cerevisae, and functionally homologous and/or sequentially homologous mycetes genes are used as targets. Said method is thus characterized in that essential genes from mycetes are used as targets.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zum Screening von antimykotisch wirksamen Substanzen, wobei essentielle Gene aus Myceten, insbesondere von Saccaromyces cerevisae sowie funktionshomologe und/oder sequenzhomologe Mycetengene als Targets eingesetzt werden. Verfahren zum Auffinden von antimykotisch wirkenden Substanzen, dadurch gekennzeichnet, daß essentielle Gene aus Myceten als Targets eingesetzt werden.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	Fl	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΛZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	ΙL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

A. CLASSIFICATION OF SUBJECT MATTER

IPC⁶: C12N15/81 C12N1/19 C12N15/00 C12Q1/18 C12Q1/68 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC⁶: C12N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C.	DOCUMENTS	CONSIDERED	TO BE RELEVANT

Further documents are listed in the continuation of Box C.

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 95 11969 A (RIBOGENE INC), 04 May 1995 (04.05.95), cited in the application	1.2,5, 9-13,15,16, 19-22,24
Y	see abstract see page 8 - page 13 see page 21, line 14 - line 37 see page 32, line 1 - line 16 see page 33. line 20 - line 37 see page 34, line 26 - line 30 see page 48, line 18 - line 27 see page 65, line 25 - line 70, line 17 see claim 62	14,18,23

Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance.	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone	
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than	combined with one or more other such documents, such combination being obvious to a person skilled in the art	
the priority date claimed	"&" document member of the same patent family	
Date of the actual completion of the international search	Date of mailing of the international search report	
14 August 1998 (14.08.98)	03 November 1998 (03.11.98)	
Name and mailing address of the ISA/	Authorized officer	
EUROPEAN PATENT OFFICE Facsimile No.	Telephone No.	

See patent family annex.

INTERNATIONAL SEARCH REPORT

ernational application No. PCT/EP 98/01904

Catacaca	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.
Х	WO 95 34678 A (AMERICAN CYANAMID CO). 21 Decemb (21.12.95), see abstract see page 3. line 22 - line 29	er 1995	1,12.13.15
X	US 5 614 377 A (BULAWA CHRISTINE E), 25 March 1 (25.03.97), see abstract see column 5, line 20 - line 44 see examples 4,5 see claim 1	997	1,13,15
Х	EP 0 627 491 A (AMERICAN CYANAMID CO), 7 Decemb (07.12.94), see_abstract see claims 1,2	oer 1994	1,12,15
X	WO 95 06132 A (MYCO PHARM INC; UNIV GEORGIA (US 2 March 1995 (02.03.95), see abstr <u>act</u>	5)).	1,2,13,15
Y	GÜLDENER U. ET AL.: "A new efficient gene disrusette for repeated use in budding yeast". NUCL. ACIDS. RES., Vol. 24. Nr 13. 1996. pages XP002074211 cited in the application		14,18,23
	see the whole document		
А	TUITE M.F.: "Antifungal drug development: the tion of new targets", TRENDS IN BIOTECHNOLOGY, Vol. 10. July 1992, pages 235-239, XP002074212 see the whole document	identifica-	1-31
А	VAHLENSIECK H F ET AL: "IDENTIFICATION OF THE YGENE PRODUCT (ACETYL-COA CARBOXYLASE) AS THE TAPOLYKETIDE FUNGICIDE SORAPHEN A" CURRENT GENETION OF THE YOL. 25. Nr 2. 1 February 1994 (01.02.94). pages 95-100. XP000196332 see the whole document	RGET OF THE	1-31
А	DATABASE SWISS PROT Accession Nr P53230, 1 October 1996 (01.10.96). ENTIAN K.D. ET AL.: "YGR046W, hypothetical 44.2 protein; from S. cerevisiae chromosome VII" XP002074214 see the whole document	, 2 kDa	3.4.6-8.17. 25-30
А	MUMBERG D. ET AL.: "Regulatable promoters of Sae: comparison of transcriptional activity and for heterologous expression" NUCL. ACIDS RES., Vol. 22, Nr 25, 1994, pages 5767-5768, XP00207 cited in the application see the whole document	their use	12.19
Х,Р	EP 0 816 511 A (HANS KNOELL INST FUER NATURSTO 07 January 1998 (07.01.93), see the whole docur see examples 4.7,8,10		1,2,12,13

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONA ARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
	ernational Searching Authority found multiple inventions in this international application, as follows: See ADDITIONAL MATTER				
1	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
	See Invention 1.				
Remar	k on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

PCT/ EP 98/01904

The International Searching Authority has found that this international application contains several (groups of) inventions, as follows:

1. Claims: (1-31) in part

Method for identifying antimycotics characterized in that

- (1) an essential gene in the S. cerevisae genome is inactivated by interruption (or by promoter exchange);
- (2) the inactivated gene [the verb is missing in the German text] by a copy of the same or by a copy of functionally similar gene (optionally to be identified) from another mycete class, whereby
- (3) the replaced gene is expressed in various quantities (under to over-expresses) e.g. on the basis of a regulatable promoter or using plasmids which lead to different copy figures in the cell.

The cited method, wherein the essential inventive YGR046w gene of S. cerevisiae in strain CEN.EN27 was interrupted.

Cited strains and the use thereof to identify the gene functionally similar to YGR048w in other mycete classes.

2. Claims: (1-13) in part

Same as subject 1 but relating to Gene YGR048w and strain CEN.EN8.

3. Claims: (1-31) in part

Same as subject 1 but relating to Gene YGR060w and strain CEN.R023

4. Claims: (1-31) in part

Same as subject 1 but relating to Gene YJL074c and strain CEN.R030.

5. Claims: (1-31) in part

Same as subject 1 but relating to Gene YJR136c and strain CEN.R06.

Form PCT/ISA/210 (extra sheet) (July 1992)

6. Claims: (1-31) in part

Same as subject 1 but relating to Gene YJR141w and strain CEN.R08.

7. Claims: (1-31) in part

Same as subject 1 but relating to Gene YBR167c and strain CEN.SR14.

8. Claims: (1-31) in part

Same as subject 1 but relating to Gene YPL252c and strain CEN.SR15.

9. Claims: (1-31) in part

Same as subject 1 but relating to Gene YPL242c and strain CEN.SR2.

10. Claims: (1-31) in part

Same as subject 1 but relating to Gene YOR119c and strain CEN.SR26.

11. Claims: (1-31) in part

Same as subject 1 but relating to Gene YPL235w and strain CEN.SR41.

12. Claims: (1-31) in part

Same as subject 1 but relating to Gene YOR110w and strain CEN.SR55.

13. Claims: (1-31) in part

Same as subject 1 but relating to Gene YNL182c and strain CEN.SR66.

14. Claims: (1-31) in part

Same as subject 1 but relating to Gene YOR206w and strain CEN.SR80.

Form PCT/ISA/210 (extra sheet) (July 1992)

15. Claims: (1-31) in part

Same as subject 1 but relating to Gene YJL054w and strain CEN.SR81.

16. Claims: (1-31) in part

Same as subject 1 but relating to Gene YJL039c and strain CEN.HE1.

17. Claims: (1-31) in part

Same as subject 1 but relating to Gene YNL258c and strain CEN.HE17.

18. Claims: (1-31) in part

Same as subject 1 but relating to Gene YNL245c and strain CEN.HE18.

19. Claims: (1-31) in part

Same as subject 1 but relating to Gene YNL038w and strain CEN.HE2.

20. Claims: (1-31) in part

Same as subject 1 but relating to Gene YJL074c and strain CEN.R030.

21. Claims: (1-31) in part

Same as subject 1 but relating to Gene YNL256w and strain CEN.HE9.

22. Claims: (1-31) in part

Same as subject 1 but relating to Gene YNL260c and strain CEN.HI10.

23. Claims: (1-31) in part

Same as subject 1 but relating to Gene YIR012w and strain CEN.HI23.

24. Claims: (1-31) in part

Same as subject 1 but relating to Gene YLR086w and strain CEN.HI28.

25. Claims: (1-31) in part

Same as subject 1 but relating to Gene YLR076c and strain CEN.HI31.

26. Claims: (1-31) in part

Same as subject 1 but relating to Gene YLR100w and strain CEN.HI5.

27. Claims: (1-31) in part

Same as subject 1 but relating to Gene YIR10w and strain CEN.HI7.

28. Claims: (1-31) in part

Same as subject 1 but relating to Gene YIL003w and strain CEN.FE8.

29. Claims: (1-31) in part

Same as subject 1 but relating to Gene YBR102c and strain CEN.KR28.

30. Claims: (1-31) in part

Same as subject 1 but relating to Gene Y0L010w and strain CEN.TS02.

31. Claims: (1-31) in part

Same as subject 1 but relating to Gene YKL013c and strain CEN.TS04.

32. Claims: (1-31) in part

Same as subject 1 but relating to Gene YKL018w and strain CEN.ZI26.

33. Claims: (1-31) in part

Same as subject 1 but relating to Gene YLL003w and strain CEN.EN28.

34. Claims: (32) in full

Newly arising vectors pPk5/6 (seq. ID 18) from pKS(+) suitable for gene interruption in S. cervisiae.

PCT/ EP 98/01904

35. Claims: (33) in full

Newly arising vectors pPk7/8 (seq. ID 19) from pKS(+) suitable for gene interruption in S. cervisiae.

36. Claims: (34) in full

Newly arising vectors pPk9/10 (seq. ID 20) from pKS(+) suitable for gene interruption in S. cervisiae.

37. Claims: (35) in full

Newly arising vectors pPk13/14 (seq. ID 21) from pKS(+) suitable for gene interruption in S. cervisiae.

Form PCT/ISA/210 (extra sheet) (July 1992)

Information on patent family members

International Application No PCT/EP 98/01904

Patent document cited in search report		Publication date	Patent familiy member(s)		Publication date	
WO 9511969	Α	04-05-1995	AU AU EP JP US	686685 B 8088494 A 0725818 A 9504176 T 5641627 A	12-02-1998 22-05-1995 14-08-1996 28-04-1997 24-06-1997	
WO 9534678	Α	21-12-1995	US AU CA EP	5561051 A 2699595 A 2194983 A 0765400 A	01-10-1996 05-01-1996 21-12-1995 02-04-1997	
US 5614377	Α	25-03-1997	WO	9523235 A	31-08-1995	
EP 0627491	Α	07-12-1994	US	5527687 A	18-06-1996	
WO 9506132	Α	02-03-1995	NONE	•••••		
EP 0816511	Α	07-01-1998	NONE			

INTERNATIONALER RECHERCHENBERICHT

C12Q1/68

C12Q1/18

a. klassifizierung des anmeldungsgegenstandes IPK 6 C12N15/81 C12N1/19

C12N15/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprufstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 C12N C12Q

Recherchierte aber nicht zum Mindestprufstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegniffe)

C. ALS WE	C. ALS WESENTLICH ANGESEHENE UNTERLAGEN			
Kategone ²	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.		
X	WO 95 11969 A (RIBOGENE INC) 4.Mai 1995 in der Anmeldung erwähnt	1,2,5, 9-13,15, 16, 19-22,24		
	siehe Zusammenfassung siehe Seite 8 - Seite 13 siehe Seite 21, Zeile 14 - Zeile 37 siehe Seite 32, Zeile 1 - Zeile 16 siehe Seite 33, Zeile 20 - Zeile 37 siehe Seite 34, Zeile 26 - Zeile 30 siehe Seite 48, Zeile 18 - Zeile 27 siehe Seite 65, Zeile 25 - Seite 70, Zeile			
Υ	siehe Anspruch 62	14,18,23		
	-/			

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie			
Besondere Kategorien von angegebenen Veroffentlichungen	*T* Spatere Veröffentlichung, die nach dem internationalen Anmeidedatum oder dem Pnoritätsdatum veröffentlicht worden ist und mit der Anmeidung nicht köllidiert, sondern nur zum. Verstandnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist.			
"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist				
E afteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veroffentlicht worden ist				
"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer	"X" Veröffentlichung von besonderer Bedeutung; die beansprüchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit berühend betrachtet werden.			
anderen im Recherchenbericht genannten Veröffentlichung beiegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgefuhrt)	'Y' Veröffentlichung von besonderer Bedeutung, die beansprüchte Erfindung kann nicht als auf erfinderischer T\u00e4tigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen			
O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht	Veroffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegeng ist			
P Veröffentlichung, die vor dem internationalen Anmeidedatum, aber nach dem beanspruchten Pnoritätsdatum veröffentlicht worden ist	*&* Veroffentlichung, die Mitglied derseiben Patentfamilie ist			
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts			
14 August 1008	0 3. 11. 1998			

14.August 1998

Bevoilmachtigter Bediensteter

Name und Postanschrift der Internationalen Recherchenbehorde Europaisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Galli, I

Fax: (+31-70) 340-3016

2

Combiatt PCT/(SA/210 (Blatt 2) (Jul 1992)

INTERNATIONALER RECEPTION REPORTS

PCT/El 3/01904

C.(Fortsetz	ALS WEST THE ANGEST OF THE PROPERTY AS A SECOND	
	rung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategone	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommender	n Teile Betr. Anspruch Nr.
X	WO 95 34678 A (AMERICAN CYANAMID CO) 21.Dezember 1995 siehe Zusammenfassung siehe Seite 3, Zeile 22 - Zeile 29	1,12,13, 15
X	US 5 614 377 A (BULAWA CHRISTINE E) 25.März 1997 siehe Zusammenfassung siehe Spalte 5, Zeile 20 - Zeile 44 siehe Beispiele 4,5 siehe Anspruch 1	1,13,15
X	EP 0 627 491 A (AMERICAN CYANAMID CO) 7.Dezember 1994 siehe Zusammenfassung siehe Ansprüche 1,2	1,12,15
X	WO 95 06132 A (MYCO PHARM INC ;UNIV GEORGIA (US)) 2.März 1995 siehe Zusammenfassung	1,2,13, 15
Y	GÜLDENER U. ET AL.: "A new efficient gene disruption cassette for repeated use in budding yeast" NUCL. ACIDS. RES., Bd. 24, Nr. 13, 1996, Seiten 2519-2524, XP002074211 in der Anmeldung erwähnt siehe das ganze Dokument	14,18,23
Α	TUITE M.F.: "Antifungal drug development: the identification of new targets" TRENDS IN BIOTECHNOLOGY, Bd. 10, Juli 1992, Seiten 235-239, XP002074212 siehe das ganze Dokument	1-31
А	VAHLENSIECK H F ET AL: "IDENTIFICATION OF THE YEAST ACC1 GENE PRODUCT (ACETYL-COA CARBOXYLASE) AS THE TARGET OF THE POLYKETIDE FUNGICIDE SORAPHEN A" CURRENT GENETICS, Bd. 25, Nr. 2, 1.Februar 1994, Seiten 95-100, XP000196332 siehe das ganze Dokument	1-31
A	DATABASE SWISS PROT Accession No. P53230, 1.0ktober 1996 ENTIAN K.D. ET AL.: "YGR046W, hypothetical 44.2 kDa protein; from S. cerevisiae Chromosome VII" XP002074214 siehe das ganze Dokument	3,4,6-8, 17,25-30
	-/	

INTERNATIONALER RECHERCHENBERICHT

itegone'	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, sowert erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	MUMBERG D. ET AL.: "Regulatable promoters of S. cerevisiae: comparison of transcriptional activity and their use for heterologous expression" NUCL. ACIDS RES., Bd. 22, Nr. 25, 1994, Seiten 5767-5768, XP002074213 in der Anmeldung erwähnt siehe das ganze Dokument	12,19
, P	EP 0 816 511 A (HANS KNOELL INST FUER NATURSTO) 7.Januar 1998 siehe das ganze Dokument siehe Beispiele 4,7,8,10	1,2,12,

INTERNATIONALER RECHERCHENBERICHT

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht rech rchierbar rwiesen haben (Fortsetzung von Punkt 1 auf Blatt 1)
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
Ansprüche Nr. weil Sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
Ansprüche Nr weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regei 6 4 a) abgefaßt sind.
Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 2 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält: Siehe WEITERE ANGABEN
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche der internationalen Anmeldung.
2 Da für alle recherchierbaren Ansprücne die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde nicht zur Zahlung einer solchen Gebühr aufgefordert
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr
Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt: Siehe Enfindung 1.
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 1 (1))(Juli 1992)

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mennere (Gruppen von) Erfindungen enthält, namiich:

1. Ansprücne: (1-31) - teilweise

Methode zur Indentifizierung von Antimykotika, dadurch characterisiert, dass

- (1) ein essentielles Gen im S. cerevisiae-Genom durch Unterbrechung (oder durch Promoteraustausch) ausgeschaltet wird;
- (2) das ausgeschaltete Gen durch eine Kopie desselben, oder durch eine Kopie eines funktionsähnlichen (ggf. noch zu identifizierenden) Gen aus einer anderen Myzetenart, wobei
- das ersetzte Gen in verschiedenen Mengen exprimiert wird (Unter- bis Ueberexpression), zum Beispiel annand eines regulierbaren Promoter oder unter Verwendung von Plasmiden, die in der Zelle zu verschiedene Kopiezahlen führen.

Genannte Methode, wobei das als essentiell erfundene YGR046w Gen von S. cerevisiae im Stamm CEN.EN27 unterbrochen wurde.

Genannter Stamme und dessen Verwendung zur Identifizierung des funktionsahnlichen Gen zu YGRO46w in anderen Myzetenarten.

2. Anspruche: (1-31) - teilweise

Idem wie Subjekt 1. aber betreffend Gen YGR048w und Stamm CEN.EN8.

3. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YGR060w und Stamm CEN.R023.

4. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1. aber betreffend Gen YJL074c und Stamm CEN.R030.

5. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1. aber betreffend Gen YJR136c und Stamm CEN.RO6.

PCT/ISA/ 210

6. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YJR141w und Stamm CEN.RO8.

7. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YBR167c und Stamm CEN.SR14.

8. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YPL252c und Stamm CEN.SR15.

9. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YPL242c und Stamm CEN.SR2.

10. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YOR119c und Stamm CEN.SR26.

11. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YPL235w und Stamm CEN.SR41.

12. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1. aber betreffend Gen YOR110w und Stamm CEN.SR55.

13. Anspruche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YNL182c und Stamm CEN.SR66.

14. Anspruche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YOR206w und Stamm CEN.SR80.

PCT/ISA/ 210

- 15. Ansprüche: (1-31) teilweise
 - Idem wie Subjekt 1, aber betreffend Gen YJL054w und Stamm CEN.SR81.
- 16. Ansprüche: (1-31) teilweise

Idem wie Subjekt 1, aber betreffend Gen YJL039c und Stamm CEN.HEl.

17. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1. aber betreffend Gen YNL258c und Stamm CEN.HE17.

18. Anspruche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YNL245c und Stamm CEN.HE18.

19. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YNLO38w und Stamm CEN.HE2.

20. Ansprücne: (1-31) - teilweise

Idem wie Subjekt 1. aber betreffend Gen YNL251c und Stamm CEN.HE4.

21. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1. aber betreffend Gen YNL256w und Stamm CEN.HE9.

22. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1. aber betreffend Gen YNL260c und Stamm CEN.HI10.

23. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1. aber betreffend Gen YIRO12w und Stamm CEN.HI23.

24. Ansprüche: (1-31) - teilweise

PCT/ISA/ 210

Idem wie Subjekt 1, aber betreffend Gen YLR086w und Stamm CEN.HI28.

25. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YLR076c und Stamm CEN.HI31.

26. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YLR100w und Stamm CEN.HI5.

27. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YIRO10w und Stamm CEN.HI7.

28. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YIL003w und Stamm CEN.FE8.

29. Anspruche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YBR102c und Stamm CEN.KR28.

30. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1, aber betreffend Gen YOLO10w und Stamm CEN.TSO2.

31. Ansprüche: (1-31) - teilweise

Idem wie Subjekt 1. aber betreffend Gen YKL013c und Stamm CEN.TS04.

32. Anspruche: (1-31) - teilweise

Idem wie Subjekt 1. aber betreffend Gen YKL018w und Stamm CEN.ZI26.

33. Anspruche: (1-31) - teilweise

PCT/ISA/ 210

Idem wie Subjekt 1, aber betreffend Gen YLL003w und Stamm CEN.EN28.

34. Ansprüche: (32) - vollständig

Zur Genunterbrechung in S. cerevisiae geeignete, aus pKS(+)-neu stammende Vektoren pPK5/6 (Seq. ID 18).

35. Ansprüche: (33) - vollständig

Zur Genunterbrechung in S. cerevisiae geeignete, aus pKS(+)-neu stammende Vektoren pPK7/8 (Seq. ID 19).

36. Ansprüche: (34) - vollständig

Zur Genunterbrechung in S. cerevisiae geeignete, aus pKS(+)-neu stammende Vektoren pPK9/10 (Seq. ID 20).

37. Ansprüche: (35) - vollständig

Zur Genunterbrechung in S. cerevisiae geeignete, aus pKS(+)-neu stammende Vektoren pPK13/14 (Seq. ID 21).

INTERNATIONALER RECHERCHENBERICHT Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

PCT/EP 98/01904

Im Rech rch nb richt ngeführtes Patentdokument			Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO	9511969	A	04-05-1995	AU EP JP US	686685 B 8088494 A 0725818 A 9504176 T 5641627 A	12-02-1998 22-05-1995 14-08-1996 28-04-1997 24-06-1997
WO	9534678	Α	21-12-1995	US AU CA EP	5561051 A 2699595 A 2194983 A 0765400 A	01-10-1996 05-01-1996 21-12-1995 02-04-1997
US	5614377	Α	25-03-1997	MO	9523235 A	31-08-1995
EP	0627491	Α	07-12-1994	US	5527687 A	18-06-1996
WO	9506132	Α	02-03-1995	KEINE		
EP	0816511	Α	07-01-1998	KEINE		

