Serial No.: To Be Assigned

Filed : Herewith Page : 3 of 27

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (Original) A protected monomer having a formula (I)

$$X^{5"}$$
 $X^{5"}$ $X^{5"}$ $X^{5"}$ $X^{5"}$ X^{5} X^{5} X^{5} X^{5} X^{5} X^{5} X^{5} X^{5}

wherein,

B is selected from the group consisting of:

Serial No.: To Be Assigned
Filed: Herewith

Page : 4 of 27

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{7}
 R^{10}
 R^{8}
 R^{12}
 R^{15}
 R^{16}
 R^{17}
 R^{18}
 R^{19}
 R^{20}
 R^{23}
 R^{24}
 R^{24}
 R^{25}
 R^{26}
 R^{26}
 R^{26}

anthracenyl, pyrenyl,

Serial No. : To Be Assigned

Filed : Herewith Page : 5 of 27

$$R^{51}$$
 R^{54}
 R^{54}
 R^{55}
 R^{55}
 R^{56}

$$R^{61} = R^{62} = R^{62} = R^{63} = R^{63} = R^{64} = R^{67} = R$$

Serial No.: To Be Assigned

Filed : Herewith
Page : 6 of 27

X² is an ortho ester protecting group, hydrogen, ethers, alkyl ethers, esters, halogens, protected amines, or protected hydroxyl moieties;

$$X^3$$
 is -O-P(OR²⁷)N(R²⁸)₂ or -O-L-R²⁹;

X⁵', X⁵'', X⁵''' include at least one alkoxy or siloxy substituent;

R¹ is hydrogen or C₁-C₄ alkyl;

 R^2 is hydrogen, C_1 - C_4 alkyl, or C_2 - C_6 alkenyl optionally substituted with hydroxy, or $C(O)NHR^a$;

R³ is hydrogen, halo, C1-C4 alkyl, C1-C4 thioalkoxy, NH2, NHRb, or NRbRc;

R⁴ when taken together with R⁴ forms oxo, or R⁴ when taken together with R⁵ forms a double bond between the carbon and nitrogen atoms to which they are attached;

R⁴ when taken together with R⁴ forms oxo, or is O⁻;

R⁵ is hydrogen, C₁-C₄ alkyl, or when taken together with R⁴ forms a double bond between the carbon and nitrogen atoms to which they are attached;

R⁶ is hydrogen, halo, NH₂, NHR^b, or NR^bR^c;

R⁷ is an unshared electron pair, or C₁-C₄ alkyl;

R⁸ when taken together with R⁹ forms a double bond between the carbon and nitrogen atoms to which they are attached, or R⁸ when taken together with R¹¹ forms a double bond between the carbon and nitrogen atoms to which they are attached;

R⁹ is hydrogen, C₁-C₄ alkyl, or when taken together with R⁸ forms a double bond between the carbon and nitrogen atoms to which they are attached;

R¹⁰ is hydrogen or is absent;

R¹¹ is hydrogen, C₁-C₄ alkyl, or when taken together with R⁸ forms a double bond between the carbon and nitrogen atoms to which they are attached;

 R^{12} is hydrogen, formyl, or $C_1\text{-}C_4$ alkyl optionally substituted with hydroxy or protected hydroxy;

 R^{13} and R^{14} are each independently hydrogen or C_1 - C_4 alkyl;

R¹⁵ is hydrogen, C₁-C₄ alkyl, or (CH₂)_nCH(R^d)CH(NHR^e)(COOR^g);

 R^{16} is hydrogen or C_1 - C_4 alkyl;

Serial No.: To Be Assigned

Filed : Herewith Page : 7 of 27

R¹⁷ is halo, NH₂, NHR^b, or NR^bR^c;

 R^{18} is cyano, $C(=NH)NH_2$, or $CH_2NH(R^h)$;

R¹⁹ is hydrogen, or C₁-C₄ alkyl;

R²⁰ is:

- (i) hydrogen;
- (ii) hydroxy or protected hydroxy;
- (iii) C₁-C₄ alkoxy optionally substituted with COOR^f; or
- (iv) C₁-C₄ alkyl optionally substituted with hydroxy and/or COOR^f, NH₂, NHR^m, or CONH₂;

 R^{21} is hydrogen, or when taken together with R^{23} forms a double bond between the carbon atoms to which they are attached;

R²² is hydrogen;

 R^{23} is hydrogen, or when taken together with R^{21} forms a double bond between the carbon atoms to which they are attached;

R²⁴ and R²⁵ are each, independently, hydrogen or C₁-C₄ alkyl;

 R^{26} is $(CH_2)_nCH(R^d)CH(NHR^e)(COOR^g)$;

 R^{27} is C_1 - C_6 alkyl optionally substituted with cyano, or C_2 - C_6 alkenyl;

 R^{28} is C_1 - C_{10} alkyl;

R²⁹ is a liquid or solid phase support reagent;

Q is N or CR⁴⁴;

Q' is N or CR⁴⁵;

Q" is N or CR^{47} ;

Q" is N or CR⁴⁹;

Qiv is N or CR50;

 R^{44} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, a ligand, a tethered ligand, or when taken together with R^{45} forms –OCH₂O-;

Serial No.: To Be Assigned

Filed : Herewith
Page : 8 of 27

 R^{45} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, a ligand, a tethered ligand, or when taken together with R⁴⁴ or R⁴⁶ forms –OCH₂O-;

 R^{46} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, a ligand, a tethered ligand, or when taken together with R^{45} or R^{47} forms –OCH₂O-;

 R^{47} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, a ligand, a tethered ligand, or when taken together with R^{46} or R^{48} forms –OCH₂O-;

 R^{48} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, a ligand, a tethered ligand, or when taken together with R^{47} forms –OCH₂O-;

 $R^{49}\,R^{50},\,R^{51},\,R^{52},\,R^{53},\,R^{54},\,R^{57},\,R^{58},\,R^{59},\,R^{60},\,R^{61},\,R^{62},\,R^{63},\,R^{64},\,R^{65},\,R^{66},\,R^{67},\,R^{68},\,R^{69},\,R^{70},\,R^{71},\,$ and R^{72} are each independently selected from hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R⁰;

 R^{55} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R^o, or when taken together with R⁵⁶ forms a fused aromatic ring which may be optionally substituted;

 R^{56} is hydrogen, halo, hydroxy, nitro, protected hydroxy, NH₂, NHR^b, or NR^bR^c, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₆-C₁₀ aryl, C₆-C₁₀ heteroaryl, C₃-C₈ heterocyclyl, NC(O)R¹⁷, or NC(O)R^o, or when taken together with R⁵⁵ forms a fused aromatic ring which may be optionally substituted;

X is O, S, or Se;

Y is O or S;

L is $-C(O)(CH_2)_qC(O)$ -, or $-C(O)(CH_2)_qS$ -;

Serial No.: To Be Assigned

Filed : Herewith Page : 9 of 27

Provided that R^1 , R^2 , and R^3 cannot all be hydrogen; further provided that when R^5 is hydrogen, R^6 cannot be NH₂, NH(protecting group), or NH(iBu); further provided that when R^{12} is hydrogen and R^8 and R^{11} together form a double bond between the carbon and nitrogen atoms to which they are attached, R^9 and R^{10} cannot both be hydrogen; further provided that when X and Y are O, R^{19} is hydrogen, and R^{21} and R^{23} together form a double bond between the carbon atoms to which they are attached, R^{20} cannot be hydrogen or CH₃;

R^a is glycinyl, threonyl, or norvalyl, each of which may optionally be partially or fully protected;

R^b is C₁-C₆ alkyl or a nitrogen protecting group;

 R^{c} is C_1 - C_6 alkyl;

R^d is hydrogen, hydroxy, protected hydroxy, or OOH;

R^e is hydrogen, a nitrogen protecting group, or COOR^g;

 R^f is hydrogen, or C_1 - C_6 alkyl;

 R^g is C_1 - C_{10} alkyl;

Rh is hydrogen, or

$$R_kO$$
 R_i
 R_i

 R_i and R_j when taken together forms a double bond between the carbon atoms to which they are attached, or R_i and R_j when taken together form -O- between the carbon atoms to which they are attached;

 R_k and R^1 are each, independently, hydrogen, a hydroxyl protecting group, a sugar, or a fully or partially protected sugar;

 R^{m} is C_1 - C_4 alkyl optionally substituted with COOH;

Serial No.: To Be Assigned

Filed: Herewith Page: 10 of 27

 R^{o} is alkyl optionally substituted with halo, hydroxy, nitro, protected hydroxy, NH_{2} , NHR^{b} , or $NR^{b}R^{c}$, C_{1} - C_{6} alkyl, C_{2} - C_{6} alkynyl, C_{6} - C_{10} aryl, C_{6} - C_{10} heteroaryl, C_{3} - C_{8} heterocyclyl, $NC(O)R^{17}$, or $NC(O)R^{o}$;

n is 1-4; and

q is 0-4.

2-17. (Canceled)

- 18. (Original) The monomer of claim1, wherein R²⁸ is isopropyl.
- 19. (Original) The monomer of claim 1, wherein $X^{5'}$, $X^{5''}$, and $X^{5'''}$ are any combination of the following formula:

Attorney's Docket No.: 14174-070US1 / ALN014PC

Applicant: Alnylam Pharmaceuticals, Inc.

Serial No.: To Be Assigned

Filed : Herewith Page : 11 of 27

20. (Original) The compound of claim 1, wherein $X^{5''}$ and $X^{5'''}$ are siloxy and $X^{5'''}$ is cycloalkoxy.

Serial No.: To Be Assigned

Filed : Herewith Page : 12 of 27

21. (Original) The monomer of claim 1, wherein the orthoester protecting group has a formula (III):

$$R^{32}O$$
 OR^{31} (III)

22. (Original) The monomer of claim 21, wherein R^{31} and R^{32} are the same or different and are any combination of the following formulae:

Attorney's Docket No.: 14174-070US1 / ALN014PC

Applicant: Alnylam Pharmaceuticals, Inc.

Serial No.: To Be Assigned Filed: Herewith

Page: 13 of 27

wherein R^{33} , R^{34} , R^{35} , R^{36} , and R^{37} is a compatible ligand, or hydrogen, or halogen, alkyl, or cyano substituent, and R^{38} is compatible ligand.

Serial No.: To Be Assigned

Filed : Herewith Page : 14 of 27

23. (Original) The monomer of claim 21, wherein the orthoester is:

$$H_3C$$
 O O CH_3

24. (Original) The monomer of claim 1, wherein R^{29} is a fluoride-stable polystyrene based solid support or PEG.

25-40. (Canceled)

41. (Original) The monomer of claim 1, wherein B is selected from the group consisting of:

2-aminoadeninyl

2-methyladeninyl,

N6-methyladeninyl,

2-methylthio-N6-methyladeninyl,

N6-isopentenyladeninyl,

Serial No.: To Be Assigned

Filed: Herewith Page: 15 of 27

2-methylthio-N6-isopentenyladeninyl,

N6-(cis-hydroxyisopentenyl)adeninyl,

2-methylthio-N6-(cis-hydroxyisopentenyl) adeninyl,

N6-glycinylcarbamoyladeninyl,

N6-threonylcarbamoyladeninyl,

2-methylthio-N6-threonyl carbamoyladeninyl,

N6-methyl-N6-threonylcarbamoyladeninyl,

N6-hydroxynorvalylcarbamoyladeninyl,

2-methylthio-N6-hydroxynorvalyl carbamoyladeninyl,

N6,N6-dimethyladeninyl,

3-methylcytosinyl,

5-methylcytosinyl,

2-thiocytosinyl,

5-formylcytosinyl,

N4-methylcytosinyl,

5-hydroxymethylcytosinyl,

1-methylguaninyl,

N2-methylguaninyl,

7-methylguaninyl,

N2,N2-dimethylguaninyl,

Serial No. : To Be Assigned

Filed : Herewith
Page : 16 of 27

N2,7-dimethylguaninyl,

Serial No.: To Be Assigned

Filed : Herewith Page : 17 of 27

N2,N2,7-trimethylguaninyl,

1-methylguaninyl,

7-cyano-7-deazaguaninyl,

7-aminomethyl-7-deazaguaninyl,

pseudouracilyl,

dihydrouracilyl,

5-methyluracilyl,

1-methylpseudouracilyl,

2-thiouracilyl,

4-thiouracilyl,

5-methyl-2-thiouracilyl,

3-(3-amino-3-carboxypropyl)uracilyl,

5-hydroxyuracilyl,

5-methoxyuracilyl,

uracilyl 5-oxyacetic acid,

uracilyl 5-oxyacetic acid methyl ester,

5-(carboxyhydroxymethyl)uracilyl,

5-(carboxyhydroxymethyl)uracilyl methyl ester,

5-methoxycarbonylmethyluracilyl,

5-methoxycarbonylmethyl-2-thiouracilyl,

5-aminomethyl-2-thiouracilyl,

5-methylaminomethyluracilyl,

5-methylaminomethyl-2-thiouracilyl,

5-methylaminomethyl-2-selenouracilyl,

5-carbamoylmethyluracilyl,

5-carboxymethylaminomethyluracilyl,

5-carboxymethylaminomethyl-2-thiouracilyl,

3-methyluracilyl,

Serial No.: To Be Assigned Filed : Herewith Page : 18 of 27

1-methyl-3-(3-amino-3-carboxypropyl) pseudouracilyl,

5-carboxymethyluracilyl,

5-methyldihydrouracilyl,

3-methylpseudouracilyl,

$$H_3C$$
 CH_3
 N
 N
 N
 CH_3
 CH

Serial No.: To Be Assigned

Filed : Herewith Page : 19 of 27

42. (Original) The monomer of claim 1, wherein X^2 is $-OC[OCH_2CH_2OC(O)CH_3]_2$; R^{27} is CH_3 ; R^{28} is $(CH_3)_2CH_3$; R^{28}

2-aminoadeninyl,

2-methyladeninyl,

N6-methyladeninyl,

2-methylthio-N6-methyladeninyl,

N6-isopentenyladeninyl,

2-methylthio-N6-isopentenyladeninyl,

N6-(cis-hydroxyisopentenyl)adeninyl,

2-methylthio-N6-(cis-hydroxyisopentenyl) adeninyl,

N6-glycinylcarbamoyladeninyl,

N6-threonylcarbamoyladeninyl,

2-methylthio-N6-threonyl carbamoyladeninyl,

N6-methyl-N6-threonylcarbamoyladeninyl,

N6-hydroxynorvalylcarbamoyladeninyl,

2-methylthio-N6-hydroxynorvalyl carbamoyladeninyl,

N6,N6-dimethyladeninyl,

3-methylcytosinyl,

5-methylcytosinyl,

2-thiocytosinyl,

5-formylcytosinyl,

N4-methylcytosinyl,

5-hydroxymethylcytosinyl,

Serial No.: To Be Assigned
Filed: Herewith

Filed : Herewith Page : 20 of 27

1-methylguaninyl,

N2-methylguaninyl,

7-methylguaninyl,

N2,N2-dimethylguaninyl,

HO

N2,7-dimethylguaninyl,

Serial No. : To Be Assigned

Filed : Herewith Page : 21 of 27

N2,N2,7-trimethylguaninyl,

1-methylguaninyl,

7-cyano-7-deazaguaninyl,

7-aminomethyl-7-deazaguaninyl,

pseudouracilyl,

dihydrouracilyl,

5-methyluracilyl,

1-methylpseudouracilyl,

2-thiouracilyl,

4-thiouracilyl

5-methyl-2-thiouracilyl,

3-(3-amino-3-carboxypropyl)uracilyl,

5-hydroxyuracilyl,

5-methoxyuracilyl,

uracilyl 5-oxyacetic acid,

uracilyl 5-oxyacetic acid methyl ester,

5-(carboxyhydroxymethyl)uracilyl,

5-(carboxyhydroxymethyl)uracilyl methyl ester,

5-methoxycarbonylmethyluracilyl,

5-methoxycarbonylmethyl-2-thiouracilyl,

5-aminomethyl-2-thiouracilyl,

5-methylaminomethyluracilyl,

5-methylaminomethyl-2-thiouracilyl,

5-methylaminomethyl-2-selenouracilyl,

5-carbamoylmethyluracilyl,

5-carboxymethylaminomethyluracilyl,

5-carboxymethylaminomethyl-2-thiouracilyl,

3-methyluracilyl,

Serial No.: To Be Assigned Filed: Herewith

Filed : Herewith Page : 22 of 27

1-methyl-3-(3-amino-3-carboxypropyl) pseudouracilyl,

5-carboxymethyluracilyl,

5-methyldihydrouracilyl,

3-methylpseudouracilyl,

$$H_3C$$
 F
 F
 CH_3
 NH_2
 NH_2

$$CH_3$$
 , and $N=$

Attorney's Docket No.: 14174-070US1 / ALN014PC

Applicant: Alnylam Pharmaceuticals, Inc.

Serial No.: To Be Assigned

Filed : Herewith Page : 23 of 27

43. (Original) The monomer of claim 1, wherein X^2 is fluoro.

44. (Original) The monomer of claim 1, wherein B is:

- 45. (Original) The monomer of claim 1, wherein B is substituted or unsubstituted aryl attached to a tethered or untethered ligand.
 - 46. (Original) A protected monomer having a formula:

-----_u(H₂C)
$$\stackrel{\xi}{N}$$

in which

u is 1 or 2; the wavy line represents a point of attachment for a ligand or a tethered ligand; and the dotted lines represent points of attachment for a first functionalized hydroxyl group; a second functionalized hydroxyl group; and an unfunctionalized hydroxyl group, a protected hydroxyl group, or hydrogen.

Serial No.: To Be Assigned

Filed : Herewith Page : 24 of 27

47. (Original) The monomer of claim 46, wherein the first functionalized hydroxyl group has the formula:

$$X^{5"}$$
 $X^{5"}$ $X^{5"}$ $X^{5"}$ $X^{5"}$ $X^{5"}$

; in which

X⁵', X⁵'', and X⁵''' include at least one alkoxy or siloxy substituent.

48. (Original) The monomer of claim 46, wherein the second functionalized hydroxyl group has one of the following formulas:

$$(R^{28})_2N$$
 or R^{27}

; in which

 R^{27} is C_1 - C_6 alkyl optionally substituted with cyano or C_2 - C_6 alkenyl; R^{28} is C_1 - C_{10} alkyl; \bullet is a solid or liquid support reagent; and L is a linker.

- 49. (Original) The monomer of claim 46, wherein the ligand is a targeting group.
- 50. (Original) The monomer of claim 49, wherein the targeting group is a lipid, steroid, vitamin, carbohydrate, polyamine, amino acid, peptide, peptide mimetic or cleaving molecule.

Serial No.: To Be Assigned

Filed: Herewith Page: 25 of 27

51. (Original) The monomer of claim 50, wherein the steroid is cholesterol.

- 52. (Original) The monomer of claim 46, wherein the ligand is a diagnostic group.
- 53. (Original) The monomer of claim 52, wherein the diagnostic group is biotin, a fluorophore, an antibody or an antigen.
- 54. (Original) The monomer of claim 46, wherein the ligand has a formula $(G)C(=H)NHR^n$, in which G is -O-, -NH-, or -CH₂-; H is O or NH; and R^n is H, C_1 - C_6 alkyl, C_6 - C_{10} aryl, or C_5 - C_{10} heteroaryl.
- 55. (Original) The monomer of claim 46, wherein the monomer has a tethered ligand.
- 56. (Original) The monomer of claim 55, wherein the ligand is tethered with a tether selected from the group consisting of: $-C(O)-(CH_2)_s-C(O)-(ligand)$; $-C(O)-(CH_2)_s-C(O)O-(ligand)$; -C(O)-(ligand); $-C(O)-(CH_2)_s-NH-$; $-C(O)-(CH_2)_s-NH-$ C(O)-(ligand); $-C(O)-(CH_2)_s-(ligand)$; -C(O)-(ligand); -C(O)-(

Serial No.: To Be Assigned Filed: Herewith Page: 26 of 28

57. (Original) The monomer of claim 46, wherein the monomer has the formula:

$$X^{5}$$
" X^{5} " X

$$X^{5}$$
 X^{5} X^{5

wherein, $X^{5'}$, $X^{5''}$, and $X^{5'''}$ include at least one alkoxy or siloxy substituent, ipr is an isopropyl group, and chol is a cholesterol radical.

- 58. (Currently amended) An iRNA agent having a monomer of claim 1 or 46.
- 59. (Currently amended) A method of making an iRNA agent, the method comprising providing an iRNA agent a first RNA sequence having a monomer of claim 1 or 46 and allowing it the first RNA sequence to anneal to a complementary RNA sequence to form an iRNA agent.

Serial No.: To Be Assigned

Filed : Herewith Page : 27 of 28

60. (New) A method of synthesizing an iRNA agent, the method comprising incorporating a monomer of claim 1 into a first RNA sequence and allowing the first RNA sequence to anneal to a complementary RNA sequence to form an iRNA agent.