- b) Using the calculator, we obtain $\cos^{-1}(-\frac{1}{2})=120^\circ=\frac{2\pi}{3}$. Note that this is *not* the same as the negative of $\cos^{-1}(\frac{1}{2})=60^\circ$, but the identity (19.3) holds: $\cos^{-1}(-\frac{1}{2})=180^\circ-\cos^{-1}(\frac{1}{2})$, that is, $120^\circ=180^\circ$
- c) $\cos^{-1}(4.3)$ is undefined, since the domain of $y=\cos^{-1}(x)$ is D=

Exercises 19.2

Exercise 19.1

Graph the function with the calculator. Use both radian and degree mode to display your graph. Zoom to an appropriate window for each mode to display a graph which includes the main features of the graph.

a)
$$y = \sin^{-1}(x)$$

a)
$$y = \sin^{-1}(x)$$
 b) $y = \cos^{-1}(x)$ c) $y = \tan^{-1}(x)$

c)
$$y = \tan^{-1}(x)$$

Exercise 19.2

Find the exact value of the inverse trigonometric function.

(a)
$$\tan^{-1}(\sqrt{3})$$
 (b) $\sin^{-1}(\frac{1}{2})$ (c) $\cos^{-1}(\frac{1}{2})$ (d) $\tan^{-1}(0)$ (e) $\cos^{-1}(\frac{\sqrt{2}}{2})$ (f) $\cos^{-1}(-\frac{\sqrt{2}}{2})$ (g) $\sin^{-1}(-1)$ (l) $\tan^{-1}(-\sqrt{3})$ (l) $\tan^{-1}(-\frac{1}{\sqrt{3}})$

Exercise 19.3

Find the inverse trigonometric function value using the calculator. Approximate your answer to the nearest hundredth.

• For parts (a)-(f), write your answer in radian mode.

d)
$$\cos^{-1}(0.2)$$
 b) $\sin^{-1}(-0.75)$ c) $\cos^{-1}(\frac{1}{3})$ d) $\tan^{-1}(100,000)$ e) $\tan^{-1}(-2)$ f) $\cos^{-1}(-2)$

• For parts (g)-(l), write your answer in degree mode.

$$\sqrt{g}$$
) $\cos^{-1}(0.68)$

$$h) \tan^{-1}(-1)$$

$$\sqrt{1} \sin^{-1}(\frac{\sqrt{2}+\sqrt{6}}{4})$$

j)
$$\tan^{-1}(100,000)$$

k)
$$\cos^{-1}(\frac{\sqrt{2-\sqrt{2}}}{2})$$

g)
$$\cos^{-1}(0.68)$$
 h) $\tan^{-1}(-1)$ l) $\sin^{-1}(\frac{\sqrt{2}+\sqrt{6}}{4})$
j) $\tan^{-1}(100,000)$ k) $\cos^{-1}(\frac{\sqrt{2}-\sqrt{2}}{2})$ l) $\tan^{-1}(2+\sqrt{3}-\sqrt{6}-\sqrt{2})$