Complexité paramétrée (2) : Recherche de noyaux - bornes supérieures

Christophe PAUL (CNRS - LIRMM)

October 5, 2011

Un premier exemple: VERTEX COVER

Définitions

Autres exemples de noyaux quadratiques

Règles de réduction en SUNFLOWER Analyse de la structure de la solution Analyse par comptage

Programmation linéaire

Règles de réduction globales

Réduction en couronne pour VERTEX COVER Un noyau linéaire pour le CLUSTER EDITING Un noyau linéaire pour FAST à l'aide de couplages

Un premier exemple: VERTEX COVER

Définitions

Autres exemples de noyaux quadratiques

Règles de réduction en SUNFLOWER Analyse de la structure de la solution Analyse par comptage

Programmation linéaire

Règles de réduction globales

Réduction en couronne pour VERTEX COVER Un noyau linéaire pour le CLUSTER EDITING Un noyau linéaire pour FAST à l'aide de couplages

Règles de réduction pour VERTEX COVER

1. Si x est un sommet isolé, alors x n'appartient à aucune solution optimale.

Vertex Cover
$$(G, k)$$
 = Vertex Cover $(G - x, k)$

Règles de réduction pour VERTEX COVER

1. Si x est un sommet isolé, alors x n'appartient à aucune solution optimale.

Vertex Cover
$$(G, k)$$
 =Vertex Cover $(G - x, k)$

2. Si x est un sommet de degré 1 voisin de y, alors il existe une solution optimale contenant y.

Vertex Cover
$$(G, k)$$
 =Vertex Cover $(G - \{y, x\}, k - 1)$

Règles de réduction pour VERTEX COVER

1. Si x est un sommet isolé, alors x n'appartient à aucune solution optimale.

Vertex Cover
$$(G, k)$$
 =Vertex Cover $(G - x, k)$

2. Si x est un sommet de degré 1 voisin de y, alors il existe une solution optimale contenant y.

Vertex Cover
$$(G, k)$$
 = Vertex Cover $(G - \{y, x\}, k - 1)$

3. Si x est de degré $\geqslant k+1$, alors si G possède une solution de taille k, elle contient le sommet x.

VERTEX COVER
$$(G, k)$$
 = VERTEX COVER $(G - x, k - 1)$

Si G possède un VERTEX COVER de taille k, alors le graphe réduit possède au plus k^2+k sommets au plus k^2 arêtes.

Si G possède un VERTEX COVER de taille k, alors le graphe réduit possède au plus $k^2 + k$ sommets au plus k^2 arêtes.

Preuve

1. Le graphe réduit possède au plus k^2 arêtes.

Si G possède un VERTEX COVER de taille k, alors le graphe réduit possède au plus $k^2 + k$ sommets au plus k^2 arêtes.

Preuve

1. Le graphe réduit possède au plus k^2 arêtes.

Si S est un VERTEX COVER, alors toute arête est incidente à un sommet de S.

Or $d(x) \leqslant k$ et $\Rightarrow k^2$ arêtes au plus.

Si G possède un VERTEX COVER de taille k, alors le graphe réduit possède au plus k^2+k sommets au plus k^2 arêtes.

Preuve

- 1. Le graphe réduit possède au plus k^2 arêtes.
- 2. Le graphe réduit possède au plus $k^2 + k$ sommets.

Si G possède un VERTEX COVER de taille k, alors le graphe réduit possède au plus k^2+k sommets au plus k^2 arêtes.

Preuve

- 1. Le graphe réduit possède au plus k^2 arêtes.
- 2. Le graphe réduit possède au plus $k^2 + k$ sommets.

S possède au plus k sommets de degré $\leqslant k$ \Rightarrow il y a au plus $k^2 + k$ sommets

Un premier exemple: VERTEX COVER

Définitions

Autres exemples de noyaux quadratiques

Règles de réduction en SUNFLOWER Analyse de la structure de la solution Analyse par comptage

Programmation linéaire

Règles de réduction globales

Réduction en couronne pour VERTEX COVER Un noyau linéaire pour le CLUSTER EDITING Un noyau linéaire pour FAST à l'aide de couplages

Définition

Soit (Q, κ) un problème paramétré sur l'alphabet Σ . Une fonction calculable en temps polynomiale

$$K:\Sigma^*\to\Sigma^*$$

est une **kernalisation** de (Q, κ) s'il existe une fonction

$$h: \mathbb{N} \to \mathbb{N}$$

telle que pour tout $x \in \Sigma^*$, on a

$$(x \in Q \Leftrightarrow K(x) \in Q)$$

$$|K(x)| \le h(\kappa(x))$$
 et $\kappa(K(x)) \le \kappa(x)$

Pour tout problème paramétré (Q, κ) , les conditions suivantes sont équivalentes

- 1. $(Q, \kappa) \in \mathsf{FPT}$
- 2. Q est décidable et (Q, κ) possède un kernel.

Pour tout problème paramétré (Q, κ) , les conditions suivantes sont équivalentes

- 1. $(Q, \kappa) \in \mathsf{FPT}$
- 2. Q est décidable et (Q, κ) possède un kernel.

Preuve

- ▶ (2) \Rightarrow (1) : Soit K la kernalisation de (Q, κ) . Considérons l'algorithme \mathcal{A} suivant:
 - 1. calculer K(x)
 - 2. décider si $K(x) \in Q$ avec un algorithme A'

Pour tout problème paramétré (Q, κ) , les conditions suivantes sont équivalentes

- 1. $(Q, \kappa) \in \mathsf{FPT}$
- 2. Q est décidable et (Q, κ) possède un kernel.

Preuve

- ▶ (2) \Rightarrow (1) : Soit K la kernalisation de (Q, κ) . Considérons l'algorithme \mathcal{A} suivant:
 - 1. calculer K(x)
 - 2. décider si $K(x) \in Q$ avec un algorithme \mathcal{A}'

Le calcul de K(x) se fait en $|x|^{O(1)}$ L'algorithme \mathcal{A}' coûte $|K(x)|^{O(1)}$

Pour tout problème paramétré (Q,κ) , les conditions suivantes sont équivalentes

- 1. $(Q, \kappa) \in \mathsf{FPT}$
- 2. Q est décidable et (Q, κ) possède un kernel.

Preuve

- ▶ (2) \Rightarrow (1) : Soit K la kernalisation de (Q, κ) . Considérons l'algorithme \mathcal{A} suivant:
 - 1. calculer K(x)
 - 2. décider si $K(x) \in Q$ avec un algorithme \mathcal{A}'

Le calcul de K(x) se fait en $|x|^{O(1)}$ L'algorithme \mathcal{A}' coûte $|K(x)|^{O(1)}$

 \Rightarrow Puisque $|K(x)| \leq h(\kappa(x))$, l'algorithme \mathcal{A} est **FPT**.

Pour tout problème paramétré (Q, κ) , les conditions suivantes sont équivalentes

- 1. $(Q, \kappa) \in \mathsf{FPT}$
- 2. Q est décidable et (Q, κ) possède un kernel.

Preuve

▶ (1) \Rightarrow (2) : Soit \mathcal{A} un algorithme **FPT** pour (Q, κ) de complexité $f(\kappa(|x|)).p(|x|)$

Pour tout problème paramétré (Q, κ) , les conditions suivantes sont équivalentes

- 1. $(Q, \kappa) \in \mathsf{FPT}$
- 2. Q est décidable et (Q, κ) possède un kernel.

Preuve

▶ (1) \Rightarrow (2) : Soit \mathcal{A} un algorithme **FPT** pour (Q, κ) de complexité $f(\kappa(|x|)).p(|x|)$

Si
$$Q=\emptyset$$
 ou $Q=\Sigma^*$, alors (Q,κ) a une kernalisation triviale. Soit $x_1\in Q$ et $x_0\in\Sigma^*\setminus Q$

Soit l'algorithme \mathcal{A}' suivant :

Pour tout problème paramétré (Q, κ) , les conditions suivantes sont équivalentes

- 1. $(Q, \kappa) \in \mathsf{FPT}$
- 2. Q est décidable et (Q, κ) possède un kernel.

Preuve

▶ (1) \Rightarrow (2) : Soit \mathcal{A} un algorithme **FPT** pour (Q, κ) de complexité $f(\kappa(|x|)).p(|x|)$

Si
$$Q=\emptyset$$
 ou $Q=\Sigma^*$, alors (Q,κ) a une kernalisation triviale. Soit $x_1\in Q$ et $x_0\in\Sigma^*\setminus Q$

Soit l'algorithme \mathcal{A}' suivant :

- 1. Exécuter les p(|x|).|x| premières étapes de A
- 2. \mathcal{A} stoppe et accepte (réfute) $x \Rightarrow K(x) = x_1$ ($K(x) = x_0$)
- 3. Sinon (\mathcal{A} ne s'arrête pas en p(|x|).|x| étapes) K(x) = x

Pour tout problème paramétré (Q, κ) , les conditions suivantes sont équivalentes

- 1. $(Q, \kappa) \in \mathsf{FPT}$
- 2. Q est décidable et (Q, κ) possède un kernel.

Preuve

- ▶ $(1) \Rightarrow (2)$:
 - 1. Exécuter les p(|x|).|x| premières étapes de A
 - 2. A stoppe et accepte (réfute) $x \Rightarrow K(x) = x_1$ ($K(x) = x_0$)
 - 3. Sinon (\mathcal{A} ne s'arrête pas en p(|x|).|x| étapes) K(x) = x

K est bien une kernalisation:

- ightharpoonup K(x) est calculé en temps polynomial
- ▶ $|K(x)| \leq |x_0| + |x_1| + f(\kappa(x))$ car

$$p(|x|).|x| \leqslant f(\kappa(x)).p(|x|)$$

VERTEX COVER ne possède pas de noyau formé par un graphe de taille 1,36k sommets à moins que P = NP.

VERTEX COVER ne possède pas de noyau formé par un graphe de taille 1,36k sommets à moins que $\mathbf{P}=\mathbf{NP}$.

Preuve

Supposons qu'un tel noyau existe. Alors cet ensemble de 1,36k sommets serait une approximation polynomiale de la solution optimale.

 \Rightarrow Impossible par des résultats de la théorie de l'approximabilité (Théorème PCP), à moins que ${f P}={f NP}.$

Un premier exemple: VERTEX COVER

Définitions

Autres exemples de noyaux quadratiques

Règles de réduction en SUNFLOWER Analyse de la structure de la solution Analyse par comptage

Programmation linéaire

Règles de réduction globales

Réduction en couronne pour VERTEX COVER Un noyau linéaire pour le CLUSTER EDITING Un noyau linéaire pour FAST à l'aide de couplages

▶ **Entrée** : Un ensemble *S* de *n* points dans le plan

▶ Paramètre : $k \in \mathbb{N}$

▶ **Question**: Existe-t-il *k* lignes couvrant l'ensemble *S* ?

•

•

• • •

•

•

▶ **Entrée** : Un ensemble *S* de *n* points dans le plan

▶ Paramètre : $k \in \mathbb{N}$

▶ **Question**: Existe-t-il *k* lignes couvrant l'ensemble *S* ?

Observation

L'ensemble des lignes nécessaires pour couvrir S est un sous-ensemble des lignes générées par l'ensembles des paires de points de S

▶ **Entrée** : Un ensemble *S* de *n* points dans le plan

▶ Paramètre : $k \in \mathbb{N}$

▶ **Question**: Existe-t-il *k* lignes couvrant l'ensemble *S* ?

Règle de réduction

Si une ligne contient au moins k+1 points, alors elle appartient la solution (si elle existe)

e.g. Ici k = 3

▶ **Entrée** : Un ensemble *S* de *n* points dans le plan

▶ Paramètre : $k \in \mathbb{N}$

▶ **Question**: Existe-t-il *k* lignes couvrant l'ensemble *S* ?

Théorème

Le problème de la couverture de points par des lignes admet un noyau quadratique.

Preuve:

Si l'instance est positive, alors l'instance réduite peut être couverte par au plus k lignes contenant chacune au plus k points

 \Rightarrow l'instance réduite contient au plus k^2 points.

Exercice

Montrer que 3-HITTING SET possède un noyau de taille k^3 à l'aide de règles du type sunflower. Notez que 3-HITTING SET est une généralisation de vertex cover, qui est en fait 2-HITTING SET. Il faut donc généraliser le lemme de Buss.

Un premier exemple: VERTEX COVER

Définitions

Autres exemples de noyaux quadratiques

Règles de réduction en SUNFLOWER Analyse de la structure de la solution Analyse par comptage

Programmation linéaire

Règles de réduction globales

Réduction en couronne pour VERTEX COVER Un noyau linéaire pour le CLUSTER EDITING Un noyau linéaire pour FAST à l'aide de couplages

k-Cluster Editing Problem

Etant donné un graphe G = (V, E), existe-t-il un ensemble $F \subseteq V \times V$ tel que:

- ▶ $|F| \leq k$ et
- ▶ $H = (V, E \triangle F)$ est une union disjointe de cliques (graphes complets)

k-Cluster Editing Problem

Etant donné un graphe G = (V, E), existe-t-il un ensemble $F \subseteq V \times V$ tel que:

- ▶ $|F| \leq k$ et
- ▶ $H = (V, E \triangle F)$ est une union disjointe de cliques (graphes complets)

Un sommet est **affecté** s'il est incident à une arète de F.

1. Il y a au plus 2k sommets affectés par une k-édition F

Un sommet est **affecté** s'il est incident à une arète de F.

- 1. Il y a au plus 2k sommets affectés par une k-édition F
- 2. Si F est une k-édition de G = (V, E), alors $H = (V, E \triangle F)$ possède au plus 2k clusters.

Clique critique

L'ensemble S des sommets non-affectés d'un cluster de $H = (V, E \triangle F)$ induit une clique module dans G.

Clique critique

- L'ensemble S des sommets non-affectés d'un cluster de $H = (V, E \triangle F)$ induit une clique module dans G.
- ▶ Un ensemble *S* de sommets de *G* est une **clique critique** si c'est une clique module maximale.

Règles de réduction

1. Supprimer les composantes connexes de G qui sont des cliques.

Règles de réduction

- 1. Supprimer les composantes connexes de *G* qui sont des cliques.
- 2. Si G possède un clique critique K de taille |K|>k+1, alors supprimer |K|-k+1 sommets de K.

Le problème k-Cluster Editing admet un noyau de taille $4k^2 + 2k$. Ce noyau est calculable en temps O(n+m)

Preuve

Dans une instance réduite:

1. Chaque cluster est bipartitionné en une clique critique et un ensemble de sommets affectés;

Le problème k-Cluster Editing admet un noyau de taille $4k^2 + 2k$. Ce noyau est calculable en temps O(n+m)

Preuve

Dans une instance réduite:

- 1. Chaque cluster est bipartitionné en une clique critique et un ensemble de sommets affectés;
- 2. Il y a au plus 2k clusters, 2k sommets affectés;

Le problème k-Cluster Editing admet un noyau de taille $4k^2 + 2k$. Ce noyau est calculable en temps O(n+m)

Preuve

Dans une instance réduite:

- 1. Chaque cluster est bipartitionné en une clique critique et un ensemble de sommets affectés;
- 2. Il y a au plus 2k clusters, 2k sommets affectés;
- 3. If y a au plus 2k cliques critiques, chacune de taille au plus k+1.

Le problème k-Cluster Editing admet un noyau de taille $4k^2 + 2k$. Ce noyau est calculable en temps O(n+m)

Preuve

Dans une instance réduite:

- 1. Chaque cluster est bipartitionné en une clique critique et un ensemble de sommets affectés;
- 2. Il y a au plus 2k clusters, 2k sommets affectés;
- 3. If y a au plus 2k cliques critiques, chacune de taille au plus k+1.

En fait, le k-Cluster Editing admet un noyau linéaire de taille 4k.

COMPLÉTION EN GRAPHE TRIANGULÉ

- **Entrée**: Un graphe G = (V, E) (non-orienté)
- ▶ Paramètre : $k \in \mathbb{N}$
- Question : Existe-t-il un ensemble de k arêtes F disjoint de E tel que H = (V, E ∪ F) est triangulé ? (H est triangulé ssi tout cycle de longeur au moins 4 possède une corde)

Règles de réduction

1. **[Sunflower]** Soit $xy \notin E$, $A_{xy} = \{z \mid xzy \text{ consécutifs dans un cycle sans corde}\}$ Si $|A_{xy}| > 2k$, alors ajouter xy et décrementer k

COMPLÉTION EN GRAPHE TRIANGULÉ

- ▶ **Entrée :** Un graphe G = (V, E) (non-orienté)
- ▶ Paramètre : $k \in \mathbb{N}$
- ▶ **Question**: Existe-t-il un ensemble de k arêtes F disjoint de E tel que $H = (V, E \cup F)$ est triangulé ?

Règles de réduction

- 1. [Sunflower] Soit $xy \notin E$, $A_{xy} = \{z \mid xzy \text{ consécutifs dans un cycle sans corde}\}$ Si $|A_{xy}| > 2k$, alors ajouter xy et décrementer k
- [Irrevelant vertices] Supprimer les points d'articulations et les sommets simpliciaux de G (i.e. les sommets x tels que N(x) est une clique).

COMPLÉTION EN GRAPHE TRIANGULÉ

- ▶ Entrée : Un graphe G = (V, E) (non-orienté)
- ▶ Paramètre : $k \in \mathbb{N}$
- ▶ Question : Existe-t-il un ensemble de k arêtes F disjoint de E tel que $H = (V, E \cup F)$ est triangulé ?

Théorème

Le problème de la complétion en graphe triangulé possède un noyau quadratique.

Preuve : Tout sommet non affecté n'est ni simplicial, ni un séparateur, donc son voisinage contient une arête de F. Pour chaque arête de F, au plus 2k voisins non affectés

 \Rightarrow noyau de taille $4k^2 + 2k$

Un premier exemple: VERTEX COVER

Définitions

Autres exemples de noyaux quadratiques

Règles de réduction en SUNFLOWER Analyse de la structure de la solution Analyse par comptage

Programmation linéaire

Règles de réduction globales

Réduction en couronne pour VERTEX COVER Un noyau linéaire pour le CLUSTER EDITING Un noyau linéaire pour FAST à l'aide de couplages

- ▶ *Données :* Une formule sous forme normale conjonctive $\Phi: (x \vee \overline{y} \vee z) \wedge (u \vee \overline{w} \vee y \vee \overline{z}) \wedge (w \vee y \vee \overline{z}) \wedge (z \vee v)$
- ▶ Paramètre : un entier k
- Question : Existe-t'il une affectation satisfaisant au moins k clauses ?

- ▶ *Données :* Une formule sous forme normale conjonctive $\Phi: (x \vee \overline{y} \vee z) \wedge (u \vee \overline{w} \vee y \vee \overline{z}) \wedge (w \vee y \vee \overline{z}) \wedge (z \vee v)$
- ▶ Paramètre : un entier k
- Question : Existe-t'il une affectation satisfaisant au moins k clauses ?

Observation 1

Il existe toujours une affectation satisfaisant $\frac{m}{2}$ clauses. (Donc on peut poser $k>\frac{m}{2}$.)

- ▶ *Données* : Une formule sous forme normale conjonctive $\Phi: (x \vee \overline{y} \vee z) \wedge (u \vee \overline{w} \vee y \vee \overline{z}) \wedge (w \vee y \vee \overline{z}) \wedge (z \vee v)$
- ▶ Paramètre : un entier k
- Question : Existe-t'il une affectation satisfaisant au moins k clauses ?

Observation 1

Il existe toujours une affectation satisfaisant $\frac{m}{2}$ clauses. (Donc on peut poser $k > \frac{m}{2}$.)

Preuve : Soit A une affectation quelconque. Si A ne satisfait pas $\frac{m}{2}$ clauses, alors l'affectation complémentaire \overline{A} satisfait $\frac{m}{2}$ clauses.

$$\Phi = \Phi_I \wedge \Phi_s$$

 Φ_I la formule restreinte aux clauses de taille $\geqslant k$, $L = |\Phi_I|$ Φ_s la formule restreinte aux clauses de taille < k, $S = |\Phi_s|$

$$\Phi = \Phi_I \wedge \Phi_s$$

 Φ_I la formule restreinte aux clauses de taille $\geqslant k$, $L = |\Phi_I|$ Φ_s la formule restreinte aux clauses de taille < k, $S = |\Phi_s|$

Observation 2

Si $L \geqslant k$, alors il existe un affectation de Φ satisfaisant au moins k clauses: (Φ, k) est vraie.

(Donc on peut poser L < k)

$$\Phi = \Phi_I \wedge \Phi_s$$

 Φ_I la formule restreinte aux clauses de taille $\geqslant k$, Φ_S la formule restreinte aux clauses de taille < k,

 $L = |\Phi_I|$ $S = |\Phi_S|$

Observation 3

Si L < k, alors (Φ, k) est vraie ssi $(\Phi_s, k - L)$ est vraie.

$$\Phi = \Phi_I \wedge \Phi_s$$

 Φ_I la formule restreinte aux clauses de taille $\geqslant k$, $L = |\Phi_I|$ Φ_s la formule restreinte aux clauses de taille < k, $S = |\Phi_s|$

Observation 3

Si L < k, alors (Φ, k) est vraie ssi $(\Phi_s, k - L)$ est vraie.

Preuve:

- ▶ Si (Φ, k) est vraie alors Φ_I est satisfiable.
- ▶ Si $(\Phi_s, k L)$ est vraie, alors il reste au moins k (k L) variable libres pour chaque clause de Φ_I .

$$\Phi = \Phi_I \wedge \Phi_s$$

 Φ_I la formule restreinte aux clauses de taille $\geqslant k$, Φ_s la formule restreinte aux clauses de taille < k,

 $L = |\Phi_I|$ $S = |\Phi_s|$

Observation 2

Observation 3

Si L < k, alors (Φ, k) est vraie ssi $(\Phi_s, k - L)$ est vraie.

Lemme

La taille de Φ_s est quadratique en k: i.e. $|\Phi_S| \in O(k^2)$

$$\Phi = \Phi_I \wedge \Phi_s$$

 Φ_I la formule restreinte aux clauses de taille $\geqslant k$,

$$L = |\Phi_I|$$

 Φ_s la formule restreinte aux clauses de taille < k,

$S = |\Phi_s|$

Observation 3

Si L < k, alors (Φ, k) est vraie ssi $(\Phi_s, k - L)$ est vraie.

Lemme

La taille de Φ_s est quadratique en k: i.e. $|\Phi_S| \in O(k^2)$

Preuve : Φ_s possède m-L clauses de taille < k. Or m < 2k, donc Φ_s contient au plus $2k^2$ littéraux.

$$\Phi = \Phi_I \wedge \Phi_s$$

 Φ_I la formule restreinte aux clauses de taille $\geqslant k$, Φ_s la formule restreinte aux clauses de taille < k,

$$L = |\Phi_I|$$
$$S = |\Phi_S|$$

Observation 3

Si L < k, alors (Φ, k) est vraie ssi $(\Phi_s, k - L)$ est vraie.

Lemme

La taille de Φ_s est quadratique en k: i.e. $|\Phi_S| \in O(k^2)$

Preuve finie?

$$\Phi=\Phi_I\wedge\Phi_s$$

 Φ_I la formule restreinte aux clauses de taille $\geqslant k$, $L = |\Phi_I|$ Φ_s la formule restreinte aux clauses de taille < k, $S = |\Phi_s|$

Observation 3

Si L < k, alors (Φ, k) est vraie ssi $(\Phi_s, k - L)$ est vraie.

Lemme

La taille de Φ_s est quadratique en k: i.e. $|\Phi_S| \in O(k^2)$

Preuve finie?

Il reste à préciser que le kernel $(\Phi_s, k-L)$ est calculable en temps polynomial !

FEEDBACK ARC SET IN TOURNAMENTS (FAST)

Entrée: Un tournoi $T = (V, \overrightarrow{A})$

▶ Paramètre : $k \in \mathbb{N}$

▶ **Question**: Peut-on retourner au plus k arcs de \overrightarrow{A} pour obtenir un tournoi transitif?

Règles de réduction

- 1. Si un sommet x n'appartient à aucun triangle, supprimer x.
- 2. Si un arc \overrightarrow{xy} appartient à au moins k+1 triangles, retourner \overrightarrow{xy}

Règles de réduction

- 1. Si un sommet x n'appartient à aucun triangle, supprimer x.
- 2. Si un arc \overrightarrow{xy} appartient à au moins k+1 triangles, retourner \overrightarrow{xy}
- 3. Si M est un module transitive de taille p tel que $|Z = \{\overrightarrow{xy} \mid x \in N^+(M), y \in N^-(M)\}| < p$, alors retourner tous les arcs de Z.

Théor eme

Le problème FAST possède un noyau avec $k\sqrt{k}$ sommets.

Preuve:

- ▶ au plus 2*k* sommets affectés, dont la source et le puits de la solution.
- ▶ le *span* d'un arc retour est au plus 2k + 2 (sinon, il y aura k triangles partageant cet arc) $\sum span(e) \leq 2k^2 + 2k$

Théor eme

Le problème FAST possède un noyau avec $k\sqrt{k}$ sommets.

Preuve:

- ▶ au plus 2k sommets affectés, dont la source et le puits de la solution.
- ▶ le *span* d'un arc retour est au plus 2k + 2 (sinon, il y aura k triangles partageant cet arc) $\sum span(e) \leq 2k^2 + 2k$
- ▶ chaque module transitif M_i possède au plus m_i arcs retour, chacun de longueur au moins m_i , donc

$$\sum m_i^2 \leqslant \sum span(e) \leqslant 2k^2 + 2k$$

 $\Rightarrow \sum m_1 \leqslant O(k\sqrt{k})$

Un premier exemple: VERTEX COVER

Définitions

Autres exemples de noyaux quadratiques

Règles de réduction en SUNFLOWER Analyse de la structure de la solution Analyse par comptage

Programmation linéaire

Règles de réduction globales

Réduction en couronne pour VERTEX COVER Un noyau linéaire pour le CLUSTER EDITING Un noyau linéaire pour FAST à l'aide de couplages

Vertex Cover et programmation linéaire

Soit un graphe G = (V, E). Alors le programme linéaire $L_{vc}(G)$ a une solution optimale semi-entière.

$$L_{vc}(G) = \min \sum_{v \in V} x_v \text{ tel que } \begin{cases} x_u + x_v \geqslant 1 & \forall uv \in E \\ 0 \leqslant x_v \leqslant 1 & \forall v \in V \end{cases}$$

Vertex Cover et programmation linéaire

Soit un graphe G = (V, E). Alors le programme linéaire $L_{vc}(G)$ a une solution optimale semi-entière.

$$L_{vc}(G) = \min \sum_{v \in V} x_v \text{ tel que } \begin{cases} x_u + x_v \geqslant 1 & \forall uv \in E \\ 0 \leqslant x_v \leqslant 1 & \forall v \in V \end{cases}$$

Soit $(x_v)_{v \in V}$ une solution optimale demi-entière de $L_{vc}(G)$. Pour $r \in \{0, \frac{1}{2}, 1\}$, on note

- ▶ $V_r = \{v \in V \mid x_v = r\}$ et
- $G_r = G[V_r].$

Soient un graphe G = (V, E) et $(x_v)_{v \in V}$ une solution optimale demi-entière de $L_{vc}(G)$. Alors

- 1. $VC(G_{\frac{1}{2}}) \geqslant |V_{\frac{1}{2}}| / 2$
- 2. $VC(G_{\frac{1}{2}}) = VC(G) |V_1|$

Soient un graphe G = (V, E) et $(x_v)_{v \in V}$ une solution optimale demi-entière de $L_{vc}(G)$. Alors

- 1. $VC(G_{\frac{1}{2}}) \geqslant |V_{\frac{1}{2}}| / 2$
- 2. $VC(G_{\frac{1}{2}}) = VC(G) |V_1|$

Preuve

(i) Si S est un V.C. de G, alors $S_r = S \cap V_r$ est un V.C. de G_r .

Soient un graphe G = (V, E) et $(x_v)_{v \in V}$ une solution optimale demi-entière de $L_{vc}(G)$. Alors

- 1. $VC(G_{\frac{1}{2}}) \geqslant |V_{\frac{1}{2}}| / 2$
- 2. $VC(G_{\frac{1}{2}}) = VC(G) |V_1|$

Preuve

(i) Si S est un V.C. de G, alors $S_r = S \cap V_r$ est un V.C. de G_r .

(ii) Si S' est un V.C. de $G_{\frac{1}{2}}$, alors $S' \cup V_1$ est un V.C. de G.

Soient un graphe G = (V, E) et $(x_v)_{v \in V}$ une solution optimale demi-entière de $L_{vc}(G)$. Alors

- 1. $VC(G_{\frac{1}{2}}) \geqslant |V_{\frac{1}{2}}| / 2$
- 2. $VC(G_{\frac{1}{2}}) = VC(G) |V_1|$

Preuve

(i) Si S est un V.C. de G, alors $S_r = S \cap V_r$ est un V.C. de G_r .

(ii) Si S' est un V.C. de $G_{\frac{1}{2}}$, alors $S' \cup V_1$ est un V.C. de G.

$$|S'| + |V_1| \geqslant VC(G) \geqslant \sum_{v \in V} x_v = \frac{1}{2} |V_{\frac{1}{2}}| + |V_1|$$

k-VERTEX COVER possède un kernel de taille au plus 2k.

k-VERTEX COVER possède un kernel de taille au plus 2k.

Preuve

▶ $k - |V_1| < 0$: *G* ne possde pas de VC de taille *k*

k-VERTEX COVER possède un kernel de taille au plus 2k.

Preuve

- $ightharpoonup k |V_1| < 0$: G ne possde pas de VC de taille k
- ▶ $k |V_1| = 0$: Si $G_{\frac{1}{2}}$ possède une arête alors G ne possède pas de solution sinon G possède un VC de taille k

Théorème

k-Vertex Cover possède un kernel de taille au plus 2k.

Preuve

- ▶ $k |V_1| < 0$: *G* ne possde pas de VC de taille *k*
- ▶ $k |V_1| = 0$: Si $G_{\frac{1}{2}}$ possède une arête alors G ne possède pas de solution sinon G possède un VC de taille k
- ▶ $k-|V_1|>0$ et $|V_{\frac{1}{2}}|>2(k-|V_1|)$: $G_{\frac{1}{2}}$ ne possède pas de VC de taille $k-|V_1|\Rightarrow G$ ne possède pas de VC de taille k.

Théorème

k-Vertex Cover possède un kernel de taille au plus 2k.

Preuve

- ▶ $k |V_1| < 0$: *G* ne possde pas de VC de taille *k*
- ▶ $k |V_1| = 0$: Si $G_{\frac{1}{2}}$ possède une arête alors G ne possède pas de solution sinon G possède un VC de taille k
- ▶ $k |V_1| > 0$ et $|V_{\frac{1}{2}}| > 2(k |V_1|)$: $G_{\frac{1}{2}}$ ne possède pas de VC de taille $k |V_1| \Rightarrow G$ ne possède pas de VC de taille k.
- ▶ Sinon, le noyau est l'instance $(G_{\frac{1}{2}}, k |V_1|)$.

Un premier exemple: VERTEX COVER

Définitions

Autres exemples de noyaux quadratiques Règles de réduction en SUNFLOWER

Analyse par comptage

Programmation linéaire

Règles de réduction globales

Réduction en couronne pour VERTEX COVER Un noyau linéaire pour le CLUSTER EDITING Un noyau linéaire pour FAST à l'aide de couplages

Couronne

Une couronne dans un graphe G=(V,E) est un graphe biparti $B=(I,N,E^\prime)$ tel que

- 1. I est un ensemble indépendant et N = N(I);
- 2. E' est le sous-ensemble d'arètes de E entre I et N;
- 3. B possède un couplage de taille |N|

Lemme

Soit B = (I, N, E') une couronne dans un graphe G = (V, E), alors VERTEX COVER(G) =VERTEX COVER $(G \setminus B)$ + |N|

Lemme

Soit B = (I, N, E') une couronne dans un graphe G = (V, E), alors VERTEX COVER(G) = VERTEX COVER $(G \setminus B)$ + |N|

Théorème

Si G est un graphe sans couronne admettant un VERTEX COVER de taille k, alors G possède au plus 3k sommets.

Lemme

Soit B = (I, N, E') une couronne dans un graphe G = (V, E), alors VERTEX COVER(G) = VERTEX COVER $(G \setminus B)$ + |N|

Théorème

Si G est un graphe sans couronne admettant un VERTEX COVER de taille k, alors G possède au plus 3k sommets.

Remarque

L'intérêt de cette règle est qu'elle ne dépend pas du paramètre k. La taille du noyau est donc meilleure. Ce type de règle est en général plus difficile à obtenir.

Un premier exemple: VERTEX COVER

Définitions

Autres exemples de noyaux quadratiques Règles de réduction en SUNFLOWER

Analyse par comptage

Programmation linéaire

Règles de réduction globales

Réduction en couronne pour VERTEX COVER Un noyau linéaire pour le CLUSTER EDITING Un noyau linéaire pour FAST à l'aide de couplages

Décomposition en couronne

Une décomposition en couronne d'un graphe G = (V, E) est une partition (C, H, N, X) des sommets V telle que:

- 1. C est une clique;
- 2. tout sommet de C est adjacent à tout sommet de H;
- 3. H est un séparateur pour C et $N \cup H$;
- 4. $N = \{v \in V \setminus (H \cup C) \mid \exists u \in H, uv \in E\}.$

Règle de réduction en couronne

Si (G, k) une instance de CLUSTER EDITING admet une décomposition en couronne (C, H, N, X) telle que

$$|C|\geqslant |H|+|N|-1$$

alors transformer (G, k) en (G', k') avec $G' = G - (C \cup H)$ et $k' = k - |E \cap H^2| - |E \cap (H \times N)|$.

Règle de réduction en couronne

Si (G, k) une instance de CLUSTER EDITING admet une décomposition en couronne (C, H, N, X) telle que

$$|C|\geqslant |H|+|N|-1$$

alors transformer (G, k) en (G', k') avec $G' = G - (C \cup H)$ et $k' = k - |E \cap H^2| - |E \cap (H \times N)|$.

Théorème

Si (G, k) est une instance de CLUSTER EDITING sans décomposition en couronne, alors G possède au plus 6k sommets.

Un premier exemple: VERTEX COVER

Définitions

Autres exemples de noyaux quadratiques Règles de réduction en SUNFLOWER

Analyse par comptage

Programmation linéaire

Règles de réduction globales

Réduction en couronne pour VERTEX COVER Un noyau linéaire pour le CLUSTER EDITING Un noyau linéaire pour FAST à l'aide de couplages

Observation : un tournoi est transitif (ou acyclique) ssi il ne contient pas de triangle (orienté).

Définitions / terminologie

▶ On note $T_{\sigma} = (V, A, \sigma)$ un tournoi dont les sommets sont ordonnés selon une permutation σ

Observation : un tournoi est transitif (ou acyclique) ssi il ne contient pas de triangle (orienté).

Définitions / terminologie

▶ On note $T_{\sigma} = (V, A, \sigma)$ un tournoi dont les sommets sont ordonnés selon une permutation σ

- ▶ Un arc \overrightarrow{uv} de T_{σ} est un arc retour si $u <_{\sigma} v$.
- ▶ Soit \overrightarrow{uv} un arc retour $span(\overrightarrow{uv}) = \{w \in V : u <_{\sigma} w <_{\sigma} v\}$

FAST - certificats

- ▶ Si \overrightarrow{uv} est un arc retour de T_{σ} et $w \in span(\overrightarrow{uv})$ n'est incident à aucun arc retour, $c(\overrightarrow{uv}) = \{u, w, v\}$ est un certificat pour \overrightarrow{uv}
- ▶ Si F est un ensemble d'arcs retours, un F-certificat est un ensemble $c(F) = \{c(f) : f \in F\}$ de certificats arc-disjoints.

FAST - certificats

- ▶ Si \overrightarrow{uv} est un arc retour de T_{σ} et $w \in span(\overrightarrow{uv})$ n'est incident à aucun arc retour, $c(\overrightarrow{uv}) = \{u, w, v\}$ est un certificat pour \overrightarrow{uv}
- ▶ Si F est un ensemble d'arcs retours, un F-certificat est un ensemble $c(F) = \{c(f) : f \in F\}$ de certificats arc-disjoints.
- Une partition ordonnée $\mathcal{P} = \{V_1, \dots V_l\}$ d'un tournoi T_σ est saine si l'ensemble F des arcs retours externes peut être certifié uniquement avec des arcs externes.

FAST - règles de réduction

FAST - règles de réduction

- 1. [Sommet inutile] Supprimer les sommets n'appartenant à aucun triangle orienté
- 2. [Partition saine] Si \mathcal{P} est une partition saine de T_{σ} , retourner les arcs retours externes et décrémenter k en conséquence.

FAST - règles de réduction

- 1. [Sommet inutile] Supprimer les sommets n'appartenant à aucun triangle orienté
- 2. [Partition saine] Si \mathcal{P} est une partition saine de T_{σ} , retourner les arcs retours externes et décrémenter k en conséquence.

- Comment calculer une partition saine en temps polynomial ?
- ► Montrer que ces deux règles permettent d'obtenir un noyau de taille 4k

FAST - conflict packing

Un conflict packing est un ensemble maximal $\mathcal C$ de certificats arcs disjoints. On note $V(\mathcal C)$ les sommets couverts par $\mathcal C$.

FAST - conflict packing

Un conflict packing est un ensemble maximal $\mathcal C$ de certificats arcs disjoints. On note $V(\mathcal C)$ les sommets couverts par $\mathcal C$.

Lemme 1

Si $\mathcal C$ est un conflict packing d'une instance positive (T,k) de FAST, alors $|V(\mathcal C)|\leqslant 3k$

FAST - conflict packing

Un conflict packing est un ensemble maximal $\mathcal C$ de certificats arcs disjoints. On note $V(\mathcal C)$ les sommets couverts par $\mathcal C$.

Lemme 1

Si $\mathcal C$ est un conflict packing d'une instance positive (T,k) de FAST, alors $|V(\mathcal C)| \leqslant 3k$

Lemme 2

Si $\mathcal C$ est un conflict packing d'une instance $(\mathcal T,k)$ de FAST, alors \exists une permutation σ tq $\forall \overrightarrow{uv}$ arc retour de $\mathcal T_\sigma$, $\{u,v\}\subseteq V(\mathcal C)$

Lemme 3 : Si le tournoi \mathcal{T} possède au moins 4k sommets, alors on peut calculer une partition saine en temps polynomial.

Lemme 3 : Si le tournoi T possède au moins 4k sommets, alors on peut calculer une partition saine en temps polynomial.

- \triangleright il existe un couplage, et donc un vertex cover S de taille k
- ▶ \mathcal{P} est la partition obtenue en isolant les sommets libres n'appartenant pas à S (il en existe car |V| > 4k).

Lemme 3 : Si le tournoi T possède au moins 4k sommets, alors on peut calculer une partition saine en temps polynomial.

- \triangleright il existe un couplage, et donc un vertex cover S de taille k
- ▶ \mathcal{P} est la partition obtenue en isolant les sommets libres n'appartenant pas à S (il en existe car |V| > 4k).

 ${\cal P}$ est une partition saine.

Lemme 3 : Si le tournoi T possède au moins 4k sommets, alors on peut calculer une partition saine en temps polynomial.

- \triangleright il existe un couplage, et donc un vertex cover S de taille k
- ▶ \mathcal{P} est la partition obtenue en isolant les sommets libres n'appartenant pas à S (il en existe car |V| > 4k).

 ${\cal P}$ est une partition saine.

Théorème : FAST (paramétré par la taille k de la solution) admet un noyau de taille au plus 4k