

Preet Kanwal

Department of Computer Science & Engineering

Unit 1

Preet Kanwal

Department of Computer Science & Engineering

Automata Formal Languages and Logic Unit 1 - Conversion of NFA to DFA

NFA -> DFA (Subset Construction)

- The initial state is the start state, plus all states reachable from the start state via λ -transitions (Called λ -closure).
- Transition from a state S on character a is found by following all possible transitions on a for each state in S, then taking the set of states reachable from there by λ -transitions.
- Accepting states are any set of states where some state in the set is an accepting state.

Automata Formal Languages and Logic Unit 1 - Conversion of NFA to DFA

NFA -> DFA (Subset Construction)

- In converting an NFA to a DFA, the DFA's states correspond to set of NFA states.
- In the worst-case, the construction can result in a DFA that is exponentially larger than the original NFA.
- Minimization of a DFA ensures that the resulting DFA (after minimization) has the least possible states. The advantages of having a minimal DFA are: Faster Execution: The more the number of states the more time the DFA will take to process a string, hence minimization ensures faster execution.

PES UNIVERSITY ONLINE

NFA -> DFA (Subset Construction)

Unit 1 - Conversion of NFA to DFA

Given an NFA with states Q, inputs Σ , transition function δ_N , state state q0, and final states F, construct equivalent DFA with:

- * States 2^Q (Set of subsets of Q).
- * Inputs Σ.
- * Start state {q0}.
- * Final states = all those with a member of F.
- The DFA states have names that are sets of NFA states.
- But as a DFA state, an expression like {p,q} must be read as a single symbol, not as a set.

Automata Formal Languages and Logic Unit 1 - Conversion of NFA to DFA

PES UNIVERSITY

Example 1: Convert the following NFA, Σ ={a,b},L={Strings where the second symbol from RHS is a} to DFA.

Unit 1 - Conversion of NFA to DFA

Solution:

	a	b
q0	{q0,q1}	q0
{q0q1}	{q0,q1,q2}	{q0,q2}
{q0,q1,q2}	{q0,q1,q2}	{q0,q2}
{q0,q2}	{q0q1}	q0

States= $[\{q0\}, \{q0q1\}, \{q0q1q2\}, \{q1q2\}]$ Can rename the states as $q0=q0, \{q0q1\}=q1, \{q0,q1,q2\}=q2, \{q0,q2\}=q3$

Unit 1 - Conversion of NFA to DFA

PES UNIVERSITY ONLINE

Example 2: Convert the following NFA to DFA.

Unit 1 - Conversion of NFA to DFA

Solution:

	0	1
> q0	{q1,q2,q3}	Φ
{q1,q2,q3}	Φ	{q0,q1,q4 }
*{q0,q1,q4}	{q1,q2,q3}	q0
Φ	Φ	Φ

States: $[\{q0\},\{q0q1q2\},\{q0q1q4\},\Phi\}$

Rename the states as q0=q0,q0q1q2=q1, q0q1q4=q2, Φ = q3

Unit 1 - Conversion of NFA to DFA

Example 3: Convert the following λ -NFA L={aⁿb^mc^k, n,m,k>=0} to DFA.

Unit 1 - Conversion of NFA to DFA

Solution:

	a	b	c
->*{q0q1q2}	{q0q1q2}	{q1q2}	q2
*{q1q2}	Φ	{q1q2}	q2
*q2	Φ	Φ	q2
Φ	Φ	Φ	Φ

Rename the states as: {q0q1q2} as q0, {q1q2} as q1, q2 as

Unit 1 - Conversion of NFA to DFA

Example 4: Convert the following λ -NFA to DFA.

Unit 1 - Conversion of NFA to DFA

Solution:

Transition Table

	a	b	c
->*{q0q1q2}	{q0q1q2}	{q1q2}	{q0q1q2}
*{q1q2}	{q0q1q2}	q2	Φ
*q2	Φ	Φ	Φ
Φ	Φ	Φ	Φ

Unit 1 - Conversion of NFA to DFA

PES UNIVERSITY ON LINE

Example 5: Convert the following λ -NFA to DFA.

Unit 1 - Conversion of NFA to DFA

Solution:

Transition Table

	a	b
->q0	{q0q1}	q1
q1	{q1q2}	{q1q2}
$\{q0q1\}$	{q0q1q2}	{q0q2}
*{q1q2}	{q0q1q2}	{q1q2}
*{q0q1q2}	{q0q1q2}	{q1q2}

DFA

THANK YOU

Preet Kanwal

Department of Computer Science & Engineering

preetkanwal@pes.edu

+91 80 6666 3333 Extn 724