Ogniwo słoneczne

Miron Markowski, Łukasz Nawojowski 11 października 2016

1 Cel ćwiczenia

Zapoznanie się z działaniem ogniwa słonecznego i wyznaczenie:

- charakterystyk prądowo-napięciowych dla różnych rodzajów ogniw przy ustalonym oświetleniu
- Zależności gęstości prądu ogniwa jako funkcji napięcia na sekcję
- Sprawności badanych ogniw

2 Przebieg ćwiczenia

2.1 Układ doświadczalny

Skonstruowano obwód z rys.1a i układ jak na rys. 1b.

(a) Obwód z ogniwem

(b) Lampa i ogniwo słoneczne

Rysunek 1: Układ doświadczalny

2.2 Wyniki pomiarów

Tabela 1: Natężenie światła

$\phi [W/m^2]$	$\phi \text{ śr. } [W/m^2]$
60,0	58,9
65,2	
54,5	
55,8	

Tabela 2: Ogniwo polikrystaliczne - stałe

N	$S[cm^2]$	$N*S [cm^2]$
8	7,8	62,4

Tabela 3: Ogniwo polikrystaliczne - pomiary

I [mA]	U [V]	P [mW]	U/n [V]	$I/S [A/m^2]$
0,12	2,63	0,33	0,33	0,16
0,17	2,62	0,44	0,33	0,22
0,20	2,61	0,52	0,33	0,26
0,60	2,53	1,52	0,32	0,77
1,00	2,46	2,46	0,31	1,28
1,43	2,37	3,39	0,30	1,83
1,63	2,33	3,80	0,29	2,09
1,85	2,28	4,22	0,29	2,37
2,00	2,25	4,50	0,28	2,56
2,24	2,18	4,88	0,27	2,87
2,43	2,12	5,15	0,27	3,12
2,69	2,05	5,51	0,26	3,45
2,99	1,97	5,88	0,25	3,83
3,22	1,89	6,09	0,24	4,13
3,37	1,89	6,37	0,24	4,32
3,55	1,74	6,16	0,22	4,55
3,59	1,80	6,46	0,23	4,60
3,87	1,52	5,86	0,19	4,96
4,07	1,33	5,41	0,17	5,22
4,25	1,11	4,71	0,14	5,45
4,41	0,79	3,50	0,10	5,65
4,51	0,67	3,03	0,08	5,78
4,69	0,53	2,49	0,07	6,01

Tabela 4: Ogniwo monokrystaliczne - stałe

N	$S[cm^2]$	$N*S [cm^2]$
1	63,0	63,0

Tabela 5: Ogniwo monokrystaliczne - pomiary

I[mA]	U [V]	P [mW]	U/N[V]	$I/S [A/m^2]$
0,6	0,46	0,27	0,46	0,10
1	0,46	0,46	0,46	0,16
1,7	0,46	0,78	0,46	0,27
2,2	0,46	1,01	0,46	0,35
3,6	0,46	1,64	0,46	0,57
5,2	0,45	2,36	0,45	0,83
7,1	0,45	3,21	0,45	1,13
10,6	0,45	4,76	0,45	1,68
15,7	0,44	6,96	0,44	2,49

Zależność gęstości prądu od napięcia na sekcję

2.3 Omówienie wyników

Pomiar napięcia i natężenia dla ogniwa polikrystalicznego dał o wiele ciekawszą krzywą, mówiącą więcej o ogólnym kształcie funkcji niż ogniwo monokrystaliczne, gdyż zakres oporu jakim dysponowaliśmy nie pozwolił na znaczne zmiany napięcia na tym ogniwie (różnica 0,02 V między napięciami na najmniejszym a największym możliwym oporze). Dlatego też choć maksymalna moc dla obu ogniw jest podobna, około 7 mW, można podejrzewać, że maksimum mocy dla ogniwa monokrystalicznego można zaobserwować dla oporu mniejszego niż najmniejszy dostępny przy oporniku, którym dysponowaliśmy. W punkcie największej zmierzonej mocy ogniwo monokrystaliczne ma większe napięcie na sekcję, zaś ogniwo polikrystaliczne ma większą gęstość prądu.

Sprawność ogniwa wynosi
$$\eta=\frac{P}{P_{\text{źródła}}}=\frac{P}{\phi\times S}$$
 zatem dla ogniwa: polikrystalicznego $\eta=\frac{6,46\times 10^{-3}W}{58,9\frac{W}{m^2}\times 62,4\times 10^{-4}m^2}\approx 1,76\%$ monokrystalicznego: $\eta=\frac{6,96\times 10^{-3}W}{58,9\frac{W}{m^2}\times 62,4\times 10^{-4}m^2}\approx 1,89\%$

Tak niska sprawność może wynikać np. z faktu, że ogniwo jest już stare i zużyte, może mieć też zanieczyszczoną powierzchnię, ponadto światło lampy mogło mieć niewłaściwą długość fali, przez co efekt fotowoltaiczny nie był odpowiednio wydajny.

2.4 Dyskusja błędu

DAWAJ ŁUKASZ