The starting idea for this section, is to understand the difference between linear equations of the form ax = b and matrix equations of the form AX = B:

$$ax = b$$

$$a = b/a$$
 IF $a \neq 0$.

For matrices this is slightly different as they lack division. Go back to the above equation, we can rewrite it as

$$a = b(\frac{1}{a}) = b \cdot a^{-1}$$

We simply multiply b by the inverse of a. That same principle can be used for matrices! Remember, division doesn't actually exist, it's just multiplication times an inverse.

$$A^{-1} \cdot (AX = B)$$

If $A^{-1} \cdot A = 1$, then

$$A^{-1} \cdot (AX) = A^{-1}B$$

$$x = A^{-1}B$$

I. The Identity Matrix $\mathbf{I_n}$

Step 1: What does it mean that a matrix A has an inverse?

A has an inverse if I can reverse multiplying by A.

Note! Order of multiplication matters here, we need $AA^{-1} = 1$

Step 2: What is the equivalent of "1" in the matrix universe?

One is $1 \cdot X = X$ for any matrix.

Definition 1. The identity matrix $\mathbf{I_n}$ is the matrix:

$$\mathbf{I_n} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

So

$$I_n = (\vec{e_1}, \vec{e_2}, \vec{e_n})$$

Examples:

Recall matrix multiplication

$$A + 0n = A \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Matrix Multiplication

$$A \cdot I_n = A$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Notes on Identity Matrix

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Note that only square matrices might have an inverse.

The identity matrix is always a square matrix.

II. The Inverse Matrix A^{-1}

Definition 2. Given a square $n \times n$ matrix A, we say that A has an inverse, A^{-1} if:

$$AA^{-1} = A^{-1}A = \mathbf{I_n}$$

Example 3. Consider the matrix we talked about last time, $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. Recall that this represents a linear transformation that:

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$$

What would the inverse matrix mean in the geometric description? What is the inverse here?

Here $A \cdot A = I_2$

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Example 4. Find another matrix A such that: $A^2 = I_2$

For example, A = symmetry over y-axis:

$$A\vec{v} = A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}, A = \begin{pmatrix} -1 & 0 & 0 & 1 \end{pmatrix}$$

Then $A^2 = I_2$

III. An Algebraic Method to Find the Inverse Matrix A^{-1}

Recall that, by definition, we need to solve the equation $AA^{-1} = \mathbf{I_n}$:

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A(col_1) = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

Let's set up some arbitrary A

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$\begin{pmatrix} & & | & 1 \\ A & | & 0 \\ & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | \\ 0 & 1 & 0 & | & A_1^{-1} \\ 0 & 0 & 1 & | & \end{pmatrix}$$

To explain the weird notation here, A_1^{-1} is the first column of the inverse matrix.

We do this same process and multiply the original matrix of A by each column of its inverse, which gets us each column of the identity matrix!

So...

We can take A, place the first column as the

Example 5. Use the above method to find the inverse of
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix}$$
. Check your answer!

IV. The 2D Case

Find the inverse of the general 2D matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$:

Example 6. Use the formula derived above to find the inverse of the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$

What is the connection between matrices A that have no inverses and the system AX = B?