Skip List and Hashing

Chapter 10

Dictionary

A dictionary is a collection of pairs of the form (k, v), where k is a key and v is the value associated with the key k (equivalently, v is the value whose key is k). No two pairs in a dictionary have the same key.

The following operations are performed on a dictionary:

- Determine whether or not the dictionary is empty.
- Determine the dictionary size (i.e., number of pairs).
- Find the pair with a specified key.
- Insert a pair into the dictionary.
- Delete or erase the pair with a specified key.

ADT - Dictionary

```
AbstractDataType Dictionary
   instances
       collection of pairs with distinct keys
   operations
        empty(): return true iff the dictionary is empty;
          size(): return the number of pairs in the dictionary;
         find(k): return the pair with key k;
       insert(p): insert the pair p into the dictionary;
        erase(k): delete the pair with key k;
```

Application of Dictionary

- Collection of student records in a class
 - (key, value) =(student-number, a list of assignment and exam marks)
 - All keys are distinct
- Get the element whose key is Tiger Woods
- Update the element whose key is Seri Pak

Dictionary is used to implement SKIP LISTS

Skip Lists

- The search operation on a sorted array using the <u>binary</u> <u>search method</u> takes **O(logn)**
- The search operation on a sorted chain takes O(n)
- How can we improve the search performance of a sorted chain?
 - →By putting additional pointers in some of the chain nodes
- Chains augmented with <u>additional forward pointers</u> are called skip lists

Skip List

- A skip list is a collection of lists at different levels
- The lowest level (0) is a sorted, singly linked list of all nodes
- The first level (1) links alternate nodes
- The second level (2) links every fourth node
- In general, level i links every 2ⁱth node
- In total, \[log₂ n \] levels (i.e. O(log₂ n) levels).
- Each level has half the nodes of the one below it

Skip List

- Keys in sorted order.
- O(log n) <u>levels</u>
- Each higher level contains 1/2 the elements of the level below it.
- Header & sentinel nodes are in every level

Skip List Search

- To search for an element with a given key:
 - Find location in top list
 - Top list has O(1) elements with high probability
 - Location in this list defines a range of items in next list
 - Drop down a level and recurse
- O(1) time per level on average
- O(lg *n*) levels with high probability
- Total time: $O(\lg n)$

Skip List Search Example

Find 71

When search for k:

If k = key, done!

If k < next key, go down a level

If $k \ge next$ key, go right

Skip List Search example

Find 96

When search for k:

If k = key, done!

If k < next key, go down a level

If $k \ge next$ key, go right

Skip List Insert

- Skip list insert: analysis
 - Do a search for that key
 - Insert element in bottom-level list
 - With probability p, recurse to insert in next level
 - Expected number of lists = $1+ p + p^2 + ...$ = 1/(1-p) = O(1) if p is constant
 - Total time = Search + $O(1) = O(\lg n)$ expected
- Skip list delete: O(1)

Insertion Example

Insert 87


```
Find k
Insert node in level 0

let i = 1

while FLIP() == "heads":
    insert node into level i

i++

Just insertion into a linked list after
last visited node in level i
```

Hash Table

- A hash table is an alternative method for representing a dictionary
- In a hash table, a **hash function** is used to map keys into positions in a table. This act is called **hashing**
- The ideal hashing case: if a pair *p* has the key *k* and *f* is the hash function, then *p* is stored in position *f*(*k*) of the table
- Hash table is used in many real world applications.

Static Hashing

- Key-value pairs are stored in a fixed size table called a hash table.
 - A hash table is partitioned into many buckets.
 - Each bucket has many *slots*.
 - Each slot holds one record.
 - A hash function f(x) transforms the identifier (key) into an address in the hash table

	0	1	s slots	s-1
0				
<u>Б</u> 1				
b buckets				
S				
	•	•		•
b-1				

Ideal Hashing

- Pairs are: (22,a),(33,c),(3,d),(72,e),(85,f)
- Hash table is ht[0:7], b = 8 (where b is the number of positions in the hash table)
- Hash function f is key % b = key % 8
- Where are the pairs stored?

Collision

- Where does (25,g) go?
- The **home bucket** for (25,g) is already occupied by (33,c) This situation is called **collision**
- Keys that have the same home bucket are called synonyms
 - 25 and 33 are synonyms with respect to the hash function that is in use

Overflow

- A **collision** occurs when the home bucket for a new pair is occupied by a pair with different key
- An overflow occurs when there is no space in the home bucket for the new pair
- When a bucket can hold only one pair, collisions and overflows occur together
- Need a method to handle overflows

Overflow handling

We may handle overflows by:

- Search the hash table in some systematic fashion for a bucket that is not full.
- Linear probing (linear open addressing).
- Quadratic probing.
- Random probing.

Eliminate overflows by permitting each bucket to keep a list of all pairs for which it is the home bucket.

- Array linear list.
- Chain.

Linear Probing

- Main Idea: When collision occurs, scan down the array one cell at a time looking for an empty cell
 - $h_i(X) = (Hash(X) + i) \mod TableSize$ (i = 0, 1, 2, ...)
 - Compute hash value and increment it until a free cell is found

Linear Probing example

insert(<mark>14</mark>) 14%7 = 0		•	insert(<mark>8</mark>) 8%7 = 1		insert(<mark>21</mark>) 21%7 =0			insert(<mark>2</mark>) 2%7 = 2		
0	14	0	14		0	14		0	14	
1		1	8	-	1	8		1	8	
2		2			2	21		2	12	
3		3		-	3			3	2	
4		4			4			4		
5		5			5			5		
6		6			6			6		
						2			2	
	1		1			3			2	

- Hash Table Operations
 - Search: compute f(k) and see if a pair exists
 - Insert: compute f(k) and place it in that position
 - Delete: compute f(k) and delete the pair in that position