

Приложения векторных представлений слов.

Попов Артём, OzonMasters, весна 2022 Natural Language Processing

Напоминание: векторные представления слов

Векторным представлением (эмбеддингом) слова $w \in W$ называется вектор $v_w \in \mathbb{R}^m$, где W – словарь коллекции, а m – размер представления.

На прошлом занятии мы изучили несколько подходов к построению эмбеддингов:

- SVD, Glove
- CBOW, Skip-gram
- FastText

Интерпретация векторных представлений

Что такое Intrinsic и Extrinsic подходы?

Skip-gram как count-based метод

$$\mathcal{L} = \sum_{i=1}^{N} \sum_{c \in C(i)} \log p(c|w_i) = \sum_{w \in W} \sum_{c \in W} n_{wc} \log p(c|w) =$$

$$= \sum_{w \in W} n_w \sum_{c \in W} \frac{n_{wc}}{n_w} \log p(c|w) \to \max_{V,U}$$

Skip-gram как count-based метод

$$\mathcal{L} = \sum_{i=1}^{N} \sum_{c \in C(i)} \log p(c|w_i) = \sum_{w \in W} \sum_{c \in W} n_{wc} \log p(c|w) =$$

$$= \sum_{w \in W} n_w \sum_{c \in W} \frac{n_{wc}}{n_w} \log p(c|w) \to \max_{V,U}$$

Добавление константы не меняет оптимизационную задачу:

$$\sum_{w \in W} n_w \sum_{c \in W} \frac{n_{wc}}{n_w} \left(\log p(c|w) - \log \frac{n_{wc}}{n_w} \right) =$$

$$= -\sum_{w \in W} n_w \sum_{c \in W} \hat{p}(c|w) \left(\log \frac{\hat{p}(c|w)}{p(c|w)} \right) \to \max_{V,U}$$

Skip-gram как count-based метод

Запишем функционал как минимизацию взвешенной КL-дивергенции:

$$\sum_{w \in W} n_w \sum_{c \in W} \frac{n_{wc}}{n_w} \left(\log \frac{\hat{p}(c|w)}{p(c|w)} \right) = \sum_{w \in W} n_w \sum_{c \in W} KL(\hat{p}(c|w)||p(c|w)) \to \min_{V,U}$$

Skip-gram это матричное разложение матрицы $X_{cw} = \hat{p}(c|w)$

Интересный факт. Тематическая модель PLSA имеет схожий функционал при специальном задании коллекции.

Интерпретация негативного сэмплирования

Напоминание. Функционал skip-gram negative sampling:

$$\sum_{i=1}^{N} \left(\sum_{c \in C(i)} \log p(1|c, w_i) + \sum_{c' \sim p(w)^{3/4}} \log p(0|c', w_i) \right) \to \max_{U, V}$$

Утверждение (Леви).

Пусть для любых $w, c \in W$ результат $\langle v_w, u_c \rangle$ не зависит от других пар слов. Тогда, в точке максимума SGNS для любых $w, c \in W$ будет выполнено:

$$\langle v_w, u_c \rangle = PMI(w, c) - \log k$$

Интерпретация skip-gram negative sampling

На практике эффект наблюдается при больших размерностях.

Оценивание качества векторных представлений слов

Что такое Intrinsic и Extrinsic подходы?

Extrinsic оценивание представлений

Фиксируем: постановку задачи, данные для обучения и тестирования и архитектуру для решения задачи.

Подставляем в архитектуру разные типы эмбеддингов и **сравниваем** качество.

Пример. Используем задачу классификации с метрикой ассигасу на датасете 20newsgroups. В качестве архитектуры используем линейный классификатор поверх усреднённых эмбеддингов слов.

Intrinsic оценивание представлений: близость

Оцениванием качества представлений на задачах, которые не требуют наличия дополнительной архитектуры.

Задача близости

Данные. Список из пар слов w, u и близостью между ними, посчитанной асессорами.

Модель. Измеряем близость между парами слов, например $\cos(v_w, v_u)$ или $\langle v_w, v_u \rangle$

Метрика. Считаем корреляцию Спирмена между списками близости согласно модели и согласно асессорам.

Примеры. Датасет близости wordsim353

первое слово	второе слово	близость
book	paper	7.46
five	month	3.38
king	cabbage	0.23
king	queen	8.58
money	dollar	8.42
cup	article	2.40
computer	laboratory	6.78

Intrinsic оценивание представлений: аналогии

Задача аналогий

Данные. Список четвёрок слов w_1, w_2, w_3, w_4 , в котором w_1 относится к w_2 так же, как и w_3 к w_4

Модель. Находим самое близкое слово к $v(w_3) - v(w_1) + v(w_2)$ кроме самих слов w_1, w_2, w_3

Метрика. Доля правильно найденных слов

Семантика: $v(king) - v(boy) + v(girl) \approx v(queen)$

Синтаксис: $v(kings) - v(king) + v(queen) \approx v(queens)$

Как можно понимать задачу аналогий?

Так как же оценивать представления?

- Качество на intrinsic задачах слабо коррелирует с качеством решения итоговой задачи
- Intrinsic подход может быть полезен для быстрой оценки модели (проверить, что слова, специфичные для вашего датасета, имеет адекватных ближайших соседей)
- Intrinsic подход может быть полезен при интерпретации ошибок
- При extrinsic подходе, необходимо учитывать влияние архитектуры модели, решающей задачу
- В качестве extrinsic задачи лучше использовать конечную задачу, для которой строится решение

Эксперимент

Обучение на разных коллекциях

Эксперимент

Рассмотрим модели, обученные по двум датасетам:

- статьи Википедии + Национальный корпус русского языка
- статьи сайта Lurkmore (3.5К статей)

Для Википедии используем модель с сайта RusVectores.

Для Lurkmore обучим модель с нуля с помощью пакета Gensim.

Детали предобработки

Коллекция Луркморье:

- Все символы кроме букв были удалены
- Все слова лемматизированы (pymorphy2)
- Один документ один абзац (важно при учёте контекста)
- Абзацы меньше двух слов были удалены

Коллекция Википедии:

- Все слова лемматизированы (UDPipe)
- Каждое слово преобразовано в слово_{часть речи}

Похожие слова

most_similar(россия_PROPN)

страна 0.695

европа 0.679

российский 0.604

франция 0.582

германия 0.574

most_similar(полковник_NOUN)

подполковник 0.904

майор 0.875

генерал 0.805

генерал-майор 0.799

ротмистр 0.770

most_similar(россия)

cccp 0.759

сша 0.754

германия 0.741

рашка 0.730

грузия 0.719

most_similar(полковник)

генерал 0.648

подполковник 0.647

майор 0.599

генералмайор 0.573

адмирал 0.557

Похожие слова

most_similar(тролль_NOUN) most_similar(тролль)

гном 0.661 троллинг 0.668

троллый 0.656 лурко** 0.538

эльф 0.627 провокатор 0.530

тролли 0.609 фрик 0.517

гоблин 0.589 быдло 0.516

most_similar(музыка_NOUN) most_similar(музыка)

мелодия 0.702 мелодия 0.668

джаз 0.669 рэп 0.647

пение 0.649 попёс 0.642

песня 0.642 песнь 0.641

танец 0.630 звук 0.630

Похожие слова

most_similar(мгу_PROPN) most_similar(мгу)

мгу 0.843 университет 0.755

лгу 0.773 вуз 0.665

м::в::ломоносов 0.728 пту 0.656

мпгу 0.701 мгимо 0.646

спбгу 0.697 аспирант 0.640

most_similar(физтех_PROPN) most_similar(физтех)

физтех_NOUN 0.701 мехмат 0.537

мфти 0.694 мифь 0.524

мифи 0.632 мгимо 0.518

физтех_DET 0.580 мгу 0.502

мирэа 0.578 филфак 0.496

Арифметические операции (триплеты)

яндекс - россия + сша

гугл 0.518 гугл 0.593

yahoo 0.467 google 0.508

пентагон 0.464 гуголь 0.504

symantec 0.443 rm 0.502

яндексяча 0.441 кэш 0.497

король - мужчина + женщина

королева_NOUN 0.754 император 0.583

королева_ADV 0.672 королевский 0.555

принц 0.627 фараон 0.548

королева_ADJ 0.625 халиф 0.523

король 0.623 герцог 0.523

Приложения

Поиск близких документов и классификация

Как можно использовать эмбеддинги?

- 1. Решение задачи поиска близких слов
- 2. Построение векторного представления документа **Внимание.** Векторным представлением документа может быть и вектор, и матрица (последовательность векторов)
- 3. Использование представлений в сложной архитектуре
- 4. Использование представлений для инициализации части весов в сложной архитектуре

Векторное представление документа

Самый простой и очевидный вариант – усреднение (сумма):

$$v_d = \frac{1}{|d|} \sum_{w \in d} v_w$$

Для разного учёта редких и частных слов, можно пробовать взвешенное усреднение (сумму):

$$v_d = \frac{1}{\sum_{w \in d} \alpha_{wd}} \sum_{w \in d} \alpha_{wd} v_w, \qquad \alpha_w \ge 0$$

В качестве α_{wd} часто используют iDF значения.

Векторное представление документа

Можно использовать max-pooling / min-pooling / их конкатенацию:

$$v_{d,j} = \max(\{v_{w,j} \mid w \in d\}), \quad j \in \{1, ..., m\}$$

Иерархический max-pooling, добавляющий учёт порядка слов:

Альтернативные представления

Можно заменить вектор слова v_w на вектор близостей слова w со всеми словами из W (или только с самыми частотными словами):

$$v_w^{new} = v_w V^T$$
, $V = \left[v_1^T, \dots, v_{|W|}^T\right] \in \mathbb{R}^{|W| \times m}$

Можно провести кластеризацию матрицы эмбеддингов и использовать вектор близостей слова с центрами кластеров.

Можно в качестве v_w использовать случайный вектор $\in \mathbb{R}^m$ Почему это может работать?

Альтернативные представления

Можно заменить вектор слова v_w на вектор близостей слова w со всеми словами из W (или только с самыми частотными словами):

$$v_w^{new} = v_w V^T$$
, $V = \left[v_1^T, \dots, v_{|W|}^T\right] \in \mathbb{R}^{|W| \times m}$

Можно провести кластеризацию матрицы эмбеддингов и использовать вектор близостей слова с центрами кластеров.

Можно в качестве v_w использовать случайный вектор $\in \mathbb{R}^m$ Почему это может работать?

Такое представление будет схоже с использованием one-hot векторов с дополнительным шумом.

Задача классификации документов

Дана коллекция документов D, для каждого документа $d \in D$ известна метка класса $y_d \in \mathcal{C}$ – множеству классов

Найти для любого документа d его метку класса y_d

Метрики качества:

- accuracy (точность) классификации
- бинарная: precision (точность), recall (полнота), f-score (f-мера)
- многоклассовые: микро/макро-усреднения
- бинарная (скоринг): AUC ROC, logloss

Модель Deep Averaging Network

- 1. Усредняем эмбеддинги слов документа
- 2. Применяем последовательно несколько feed-forward (линейный + активация) слоёв
- 3. На выходе применяем softmax

Можно обучать эмбеддинги вместе с моделью или использовать предобученные.

На обучении можно использовать Word Dropout: случайно удаляем некоторые слова при усреднении.

Модель FastText Classifier

- По структуре идентична DAN с одним слоем
- На входе модели слова, n-граммы слов и символов
- Для уменьшения размерности применяется hashing trick
- При большом количестве классов вместо feed-forward слоя с софтмаксом используется иерархический софтмакс на множестве классов
- Есть встроенная процедура подбора гиперпараметров (не всегда работает лучше чем ручной подбор)
- Есть встроенная процедура сжатия эмбеддингов

Сжатие FastText: product quantization

- 1. Каждый вектор делится на части из двухмерных векторов.
- 2. Двухмерные вектора кластеризуются при помощи K-means
- 3. Каждый двухмерный вектор заменяется на номер центра его кластера
- 4. Дополнительно удаляем все представления с малой нормой

Задача поиска близких документов (без учителя)

Дано: коллекция документов $D = \{d_1, ..., d_N\}$

Найти: близкие (релевантные) документы $d \in D$ для пришедшего нового документа q

Метрика качества: любые метрики из задачи ранжирования (reciprocal rank, precision@k, average-precision@k)

- Выход модели упорядоченное множество $D' \subset D$ (выдача), чем выше элемент, тем он релевантнее для q
- Если на обучении доступно множество близких пар документов (d,d'), то задача решается в формате обучения с учителем

Поиск на основе эмбеддингов

- 1. Строим представления всех документов из D
- 2. Строим представление для документа-запроса q
- 3. Ищем в D ближайшие документы к q

В качестве меры близости можно использовать:

- скалярное произведение $\langle v_d, v_q \rangle$
- косинусную близость $-\frac{\langle v_d, v_q \rangle}{\|v_d\|^2 \left\|v_q\right\|^2}$

Поиск на основе эмбеддингов: анализ

Пусть v_d задаётся средним эмбеддингов, а близость скалярным произведением:

$$\langle v_d, v_q \rangle = \left\langle \frac{1}{|d|} \sum_{w \in d} v_w, \frac{1}{|q|} \sum_{u \in q} v_u \right\rangle = \frac{1}{|d||q|} \sum_{w \in d} \sum_{u \in q} \langle v_w, v_u \rangle$$

Если мы сравниваем два длинных документа, нужно ли учитывать всевозможные попарные близости слов?

Идея. Каждому слову в одном документе сопоставить слово в другом документе и суммировать близости только между соответствующими словами.

Word Mover's Distance (WMD): идея

The Sicilian gelato was extremely rich.

The Italian ice-cream was very velvety.

Word Mover's Distance: определение

Расстояние WMD задаётся как решение оптимизационной задачи:

$$\begin{cases} WMD(d,q) = \min_{T_{wu} \ge 0} \sum_{w \in W'} \sum_{u \in W'} T_{wu} \rho(w,u) \\ \sum_{w \in W'} T_{wu} = n_{uq}, \quad \forall u \in W' \\ \sum_{u \in W'} T_{wu} = n_{wd}, \quad \forall u \in W' \end{cases}$$

 n_{wd} – количество появлений слова w в документе d

$$T \in \mathbb{R}^{|W'| \times |W'|}, \ W' = set(d) \cup set(q) \subset W$$

Word Mover's Distance на практике

- Перед подсчётом следует исключить из предложений стоп-слова
- Можно заранее предпосчитать $\rho(u,w)$, чтобы уменьшить количество вычислений
- Сложность вычисления WMD: $O(WMD) = O(|W'|^3 \log |W'|)$
- Для понижения сложности можно использовать Relaxed WMD, имеющей сложность $O(|W'|^2)$
 - $WMD_{less}(d,q)$ решение задачи без второго ограничения $RelaxedWMD(d,q) = \max(WMD_{less}(d,q) + WMD_{less}(q,d))$

Полезные ссылки

- Gensim пакет, позволяющий легко работать с различными моделями эмбеддингов (в том числе учить с нуля)
- fasttext библиотека для обучения fasttext эмбеддингов с нуля
- Wikipedia2Vec эмбеддинги для разных языков
- RusVectores сайт с эмебеддингами для русского языка
- StarSpace любопытная библиотека/модель, позволяющая учить эмбеддинги под конечную задачу

Итоги занятия

- Существует два подхода к оцениванию представлений: intrinsic и extrinsic.
- Extrinsic подход лучше работает на практике
- Представление документа можно задавать как агрегацию эмбеддингов входящих в него слов
- При классификации документов можно использовать полносвязные сети
- При поиске близких документов можно использовать метод WMD

Бонус!

Если успели до конца лекции

Модель Distributed Memory (paragraph2vec)

Distributed Memory – обобщение модели CBOW для построения представления документа.

$$\mathcal{L} = \sum_{d \in D} \sum_{i=1}^{n_d} \log p(w_i | C(i), d) \to \max_{U, V, \Theta} , \qquad U, V \in \mathbb{R}^{|W| \times m}, \Theta \in \mathbb{R}^{|D| \times m}$$

$$C(i) = \{w_{i-k}, ..., w_{i-1}, w_{i+1}, ..., w_{i+k}\}$$
 – локальный контекст w_i

Чтобы оценить вероятность, вычисляем вектора контекста и применяем к нему линейный слой с softmax активацией:

$$v_d^{-i} = \frac{1}{2k+1} \left(\sum_{w \in C(i)} v_w + \theta_d \right)$$

$$p(w|C(w_i)) = softmax_w (Uv_d^{-i})$$

Модель Distributed Bag of Words (paragraph2vec)

Distributed Bag of Words— обобщение модели Skip-gram для построения представления документа.

$$\mathcal{L} = \sum_{d \in D} \sum_{c \in d} \log p(c|d) \to \max_{U,\Theta} \quad , \quad U \in \mathbb{R}^{|W| \times m}, \quad \Theta \in \mathbb{R}^{|D| \times m}$$
$$p(c|d) = softmax_c(U\theta_d)$$

43

Стоит ли использовать paragraph2vec?

Скорее нет, чем да.

- 1. Результат часто оказывается хуже чем усреднение эмбеддингов
- 2. Нет нормального способа получить представление для документа не из коллекции