Abstract-HTN procedure, 248–250	deterministic, 145
generalizing, for temporal planning, 256	duration, 13
illustrated, 249	DWR domain, 15
as "lifted" procedure, 249	encoding of, 160–164
nonprimitive tasks and, 249	executable, 380
planning graphs and, 256	
See also Hierarchical Task Network (HTN) planning	as ground operators, 30, 44
abstraction hierarchies, 532–533	inclusive disjunction of, 118
	independent, 119–120, 134, 208, 309
Abstract-search procedure, 193, 194	mutex, 122
as branch-and-bound procedure, 197	negative effects, 121
branching step, 194	nominal outcomes, 376
extending, 196	nonblocking, 481
illustrated, 195	nonnominal outcomes, 376
with iterative-deepening control strategy, 195	nonpreemptive, 352
nondeterministic step, 196	over time, 281
pruning step, 194	overlapping, 281–282
refinement step, 194	parallel, 138
steps, 194, 195	partial plan, 93
AC3 algorithm, 181, 190	as partially instantiated planning operators, 315
action axioms, 273	in planning graphs, 123
Action Description Language (ADL), 50, 104	planning problems, 27
action effects, 266	planning-graph techniques, 113
axioms, 268	positive effects, 121
conditional, 266	preconditions, 126, 266
negative, 266	preemptive, 352
positive, 266	relevant for goals, 22
action precondition axioms, 266	resource requirements of, 354
actions, 6	search for, 128
adding, 86	sequence of sets of, 118
applicable, 316, 336	situation calculus, 265-267
applicable in states, 44	state-variable representation, 43-44
blocking, 481	test, 269
classical representation, 28-30	value maintenance, 282
concurrent, 13, 321–323, 351	without flaws, 93
conditional, 447	active CSPs, 185–186
as conditional threats, 101	example, 185–186
conflicting, 163	network illustration, 186
constraints encoding, 175–176	transforming, 186
dependent, 119, 121	See also constraint satisfaction problems (CSPs)
	or and sometime summer problems (Ool s)

active variables, 185	assumptions
ad hoc operators, 321	A0, 9, 11
admissibility, 544	
admissible state-space heuristics, 205–207	A1, 9, 11 A2, 10, 12
after-constraints, 245	
allowance relation, 134	A3, 10, 12
,	A4, 10, 12
benefit, 135	A5, 10, 12–13
independence vs., 135	A6, 10, 13
planning graphs for, 136	A7, 10, 13
See also relations	closed-world, 28, 47, 50
alpha-beta algorithm, 553	default value, 47
alternative resources, specifying, 354	restrictive, 9–10
AND/OR graphs	at-least-one axioms, 162
acyclic subgraph of, 430	atoms, 265, 557
conditional graph correspondence,	classical planning, 265
431	attached procedures, 253
illustrated, 548, 549	computations with, 39
over belief states, 429	HTN planning, 253
search space as, 430	STL-plan, 224
searching, 431, 553	use of, 39
AND/OR trees	See also procedures
basic pattern, 211	Automated Ground Vehicles (AGVs), 487–488
for flaw repair, 209	automated planning. See planning
illustrated, 211	automatic domain knowledge acquisition, 536
serialization of, 208, 209, 210	Autonomous Remote Agent. See Remote Agent (RA)
smallest possible serialization, 211	axiomatic inference, 38-39
AND-branches, 127	axioms
decomposition tree, 236	action, 273
illustrated, 548	action effect, 268
task decomposition, 234	action precondition, 266
AND-connectors, 481	classical frame, 162–163
applications, 449–540	complete exclusion, 149, 177
bridge, 517–524	domain, 273, 317-319
emergency evacuation planning,	dynamic logic, 273
505–516	exclusion, 155, 163
manufacturing analysis, 493-503	frame, 162-164, 267, 268, 273, 274, 439
robotics, 469–491	Horn-clause, 253, 254
space, 451-467	HTN planning, 253
arc consistency, 181	initial situation, 268
AC3, 181, 190	restricting, to Horn clauses, 253
algorithm illustration, 182	STL-plan procedure, 224
checking, 341	unsatisfied, 325
arcs	
negative, 118	backjumping algorithm, 180
plan-space planning, 85	backtracking, 178–180
positive, 118	algorithm illustration, 179
precondition, 118	dependency-directed, 180
state-space planning, 85	flaw with no resolver and, 338
ASPEN, 466	improvements, 179–180
1302 22 19 100	improveniento, 177 100

intelligent, 180 SHOP integrated with NaCoDAE (SiN), 510 See also constraint satisfaction problems (CSPs) backward search state-space algorithms, 73–76 example, 73–74 heuristically guided, 204–205	in state-variable representation, 174 strong encoding, 442 See also planning problems branch-and-bound algorithms, 553 branch-and-bound search, 197 breadth-first iterative deepening, 547
infinite branch failure, 75 lifted version, 75	breadth-first search, 544–545 bridge, 517–524
loop iterations, 74	bidding, 517–518
nondeterministic, 73	game-tree search, 519–521
STRIPS algorithm vs., 76	hands, 518
TFD procedure comparison, 239	HTN planning for, 521-524
See also state-space planning	implementation and results, 524
backward shifting, 568	introduction, 517
before-constraints, 245	overview, 517-519
belief states, 393–395	play, 518
action execution, 394-395	tricks, 518
AND/OR graph over, 429	Bridge Baron, 524
examples, 394, 395	
nonempty, 428	CaMeL, 536
plans as policies on, 395-396	CaPER, 528
transitions on, 394	CAPlan/CbC, 528, 529
Bellman Equation, 387	case adaptation, 528–529
best-first iterative deepening, 547, 553	CaseAdvisor, 516
best-first search, 545–546	case-based planning, 527–529
between-constraints, 245	case adaptation, 528–529
binary constraint network, 291–292, 296	case library, 527
binary constraints, 97	performance, 529
binary counters, 60–61	problem-solving cycle, 528
binary CSPs, 169	revisions, 529
algorithms for, 178	similarity metrics, 528
consistency problem of, 172	cases, 508
See also constraint satisfaction	cashing out, 524 CASPER, 466
problems (CSPs)	casual links, 87
binary decision diagrams (BDDs), 404, 570 for Boolean formulas, 570	adding, 87–88
in classical planners, 433	threats, 92
control automation implementation with, 421	CHEF, 515, 528
symbolic model checking, 570–572	chronicle planning operators, 334–336
binding constraints, 93, 311, 313	classical planning operators vs., 335
consistent, 91	example, 334–335
variable, 88–90	illustrated, 335
bitwise, 162	chronicle recognition problem, 539
BlackBox planning system, 165	chronicles, 330
blocking actions, 481	applying instances to, 335
blocks world, 81	approach, 326
bounded planning problem, 147, 151, 440	consistent, 331–334, 336, 365
encoding, 148, 149	CP procedure, 338–339
extending, 148	interpretation, 331
-	

chronicles (continued)	plans, 32
planning procedures, 336–339	quantified expressions, 36–37
planning with, 326–343	semantics, 33
resource use in, 363	states, 27–28
set of, 335, 336	syntactical extensions, 34
support, 334	translating state-variable representation into, 47–48
timelines, 330	typed variables and relations, 34
classical frame axioms, 162–163	closed formulas, 558
classical planning, 17–109	closed-loop controllers, 471
atoms, 265	closed-world assumption, 28, 47, 50
classical representation, 19, 27–33	communication planning, 3
complexity, 5567	complete exclusion axioms, 149, 177
dynamic logic vs., 271	completeness, 544
extended goals and, 40	complexity
extending, 58	classes (space), 552
first-order language, 33	classes (time), 551–552
main issues, 18	HTN planning, 231
neoclassical vs., 111	of machine scheduling, 358–360
plan existence, 55	plan existence for HTN planning, 252
•	of problems, 551–552
planning operators, 28–30	of procedures, 550
plan-space, 85–109 representations, 19–20	complexity (classical planning), 55–67
search space nodes, 111	comparing, 64
set-theoretic representation, 19, 20–27	parameters affecting, 63–64
situation calculus vs., 265	propositional planning, 66
	results, 59–65
states, 264	worst-case, 65
state-space, 69–83 state-variable representation, 19, 41–47	composition operations, 295
study motivations, 17–18	compound tactics, 276
unrestricted, 61–65	compound tasks, 507
classical planning domains, 31	computation
interpretation of, 33	with attached procedures, 39
as restricted state-transition system, 31	minimax, 520
classical planning problems, 31	set-theoretic representation, 25
mapping extended goals into, 40	Computation Tree Logic (CTL), 416
statement of, 31	AF operator, 417
syntactical specification, 33	formula AG, 417
classical representation, 19, 27–33	goal planning, 418
actions, 28–30	weak until operator, 418
attached procedures, 39	Computer-Aided Process Planning (CAPP), 493
axiomatic inference, 38–39	conceptual planning model, 5–9
conditional planning operators, 34–36	component interaction, 8
disjunctive preconditions, 37	dynamic, 9
expressivity, 47, 48	for goal-directed behavior, 9
extended goals, 39–41	illustrated, 8
extending, 34–41	concurrent actions, 321–323
function symbols, 39	with interfering effects, 322
ground, 48	resource use, 351
operators, 28–30	See also actions
operators, no so	

conditional actions, 447	heuristics, 178
conditional effects, 132–133, 266	instances, 167
conditional operators, 34–36	k-consistent, 183
example, 36	minimal, 170
ground instance, 35	mixed, 185
plan-space planning and, 100–101	network, 170
conditional planning, 447	over finite domains, 167
conditional plans, 427	path-consistent, 183
AND/OR graph corresponding to, 431	planning problems as, 172–178
execution of, 429	planning relevance, 167–168
configuration space, 472	for planning-graph techniques, 188–189
conflict exclusion, 156	in plan-space search, 187–188
conflicting actions, 163	relaxing, 171
conformant planning, 12, 447	solutions, 170
DWR domain for, 445	solvers, 178
planning graphs for, 446	
planning graphs for, 440 planning-graph techniques and, 447	strongly k-consistent, 183
uncertainty and, 447	symmetrical, 169
weak, 444	tightening, 170, 171 valued, 187
Conjunctive Normal Form (CNF), 556	variables, 128, 174
connectives, 555	
consistency conditions, 318–319	See also CSP encoding; CSP techniques/algorithms
set of constraints, 319	constraint satisfaction techniques, 112, 167–191
consistency problems, 172	See also neoclassical planning
consistent chronicles, 331–334	constraints
assertion support, 332, 333	after, 245
chronicle support, 332, 334	before, 245
example, 332	between, 245
See also chronicles	binary, 97
constant symbols	binding, 311, 313
·	conjunction of, 168
container-stacking problem, 222 partitioning, 310	consistent, 171
See also object symbols	consistent binding, 91 convex, 301
constraint management, 339–341	enabling conditions, 313
meta-CSP for pending enablers, 340–341	encoding, 175
object constraints manager, 340	encoding actions, 175–176
Time-Map Manager, 339–340, 344	encoding frame axioms, 176
See also CP procedure	explicit specification, 168
constraint propagation, 180–181	IA, 302
filtering through, 181	implicit specification, 168–169
operations, 180	kinematics, 471
constraint satisfaction problems (CSPs), 168–172	machine scheduling problem, 357
active, 185–186	networks of, 287
arc-consistent, 181	object, 311
binary, 169, 178	ordering, 86–87, 92, 499
consistent, 168	precedence, 245
development, 189	qualitative, 289
extended models, 185–187	quantitative, 289 quantitative, 289
formulation, 167	separation, 331
Totalululoii, 10/	separation, 221

	situation colorlys 264, 270
constraints (continued)	situation calculus, 264–270
space, 15–16	user-defined, 275–276
temporal, 302–306, 311, 313	control variables, 483
unary, 97	choice of, 483
universal, 169	elements, 483–484
utility values, 187	controllers, 8
variable binding, 88–90	closed-loop, 471
consumable resources, 353	open-loop, 11
produced by actions, 353	plan-based, 491
See also resources	reactive, 470
containers, 78–79	reactive loop, 406
container-stacking domain, 78-79	robotics, 483-486, 491
auxiliary piles, 79	robustness, 9
containers, 78–79	convex constraints, 301
deleted-condition interactions and, 80	convexity, 302
as DWR adaptation, 81	cost functions, 384
language for, 78	cost(s)
piles, 78–79	optimal, 386
planning algorithm, 79-81	resource setup, 355
primary piles, 79	rewards and, 384
Sussman anomaly and, 80	of solving open goals, 342
container-stacking problems	utility function determined by, 389
constant symbols, 222	counters
HTN planning representation, 253-254	binary, 60–61
solving, 217	<i>n</i> -bit, 61
contingent temporal variables, 307, 340	coverage domains, 474
control automaton, 484	covering model, 538
constructing, 421	CP procedure, 338–339
illustrated example, 420	constraint management, 339-341
as MDP, 484	implementation into planners, 339
nondeterminism, 484	implementation steps, 338-339
parameter estimation, 486	meta-CSP for pending enablers, 340-341
use, 420	object constraints manager, 340
control policy, 486	search control in, 341-343
control rules, 217–228	Time-Map Manager, 339-340, 344
extended goals, 224–226	See also chronicles
extensions, 223–224	CPR procedure, 370–371
HTN methods vs., 251-252	CSP encoding, 174–177
introduction, 217–218	analysis, 177–178
planning procedure, 222–223	constraints encoding, 175
progression, 220–222	constraints encoding actions, 175-176
Simple Temporal Logic (STL), 218–220	constraints encoding frame actions, 176
control states, 484	CSP variables, 174
as heuristic projection, 486	plan extraction, 176–177
same color, 485	See also constraint satisfaction
control strategies	problems (CSPs)
in deductive planning, 263–279	CSP techniques/algorithms, 178–185
domain-dependent, 263	filtering, 180–184
dynamic logic, 270–276	hybrid, 184–185
	•

local search, 184–185	validation objectives, 462-463
search, 178-180	See also space applications
See also constraint satisfaction problems (CSPs)	default value assumption, 47
CSP-based planning	deleted-condition interactions, 77, 80
branching, 196	Delta algorithm, 202
nodes, 194	for computing, 205
See also constraint satisfaction problems (CSPs)	generalization, 203
current-state variables, 568	initial run, 205
	reachability analysis, 207
data gathering, 3	use of, 204
Davis-Putnam procedure, 151, 152-156	dependency-directed backtracking, 180
depth-first search, 152	dependent actions, 119, 121
partial assignments, 156	depth-first branch-and-bound search, 546
search tree example, 153	depth-first search, 200, 545
sound and complete, 156	derivational analogy, 528
unit propagation, 152–154	DerSNLP, 515, 516, 528, 529
variable selection, 153	derUCP, 528
See also satisfiability problems	Descartes planner, 188
decidability, 56	design tolerance specifications, 494
of plan-existence, 57	determinism, 375
results, 57–59	of transition relations, 443
decomposition trees, 236–238	deterministic effects, 438
for DWR problem, 240	DIAL, 515, 528
interleaved, 241	directed acyclic graphs (DAGs), 570
noninterleaved, 242	directed layered graphs, 118
in partial-order STN domains, 241	DISCOPLAN, 534
production details, 237–238	discount factor, 385
root of, 237	discrete-event systems, 5
See also tasks	disjunctive preconditions, 37, 101
deductive machinery, 273	backtrack point, 101
deductive planning, 263	disjunctive refinement, 113–114, 188
advantages, 277	in planning-graph techniques, 114
control strategies, 263-279	techniques, 342
expressive frameworks, 264	distance-based heuristics, 213
Deep Space One (DS1), 451, 461–462	Dock-Worker Robots (DWR) domain, 13-16,
6 days high-level autonomy scenario,	487–490
463–464	abstract version, 14
12 hours low-level autonomy scenario, 463	actions, 15
2 days high-level autonomy scenario, 464	for conformant planning, 445
Autonomous RA, 451–453	decomposition tree, 240
experiment, 461–466	initial state, 240
experimental results, 464–465	planning operators, 29, 65
first alarm results, 464–465	predicate instances, 14–15
pictures of Comet Borrelly, 452	Simplified, 15
PS architecture, 457–461	space constraints and, 15-16
RA architecture, 453–457	Sussman anomaly, 78
scenarios, 463–464	topology, 14
second alarm results, 465	variants, 15-16
third alarm results, 465	domain analysis, 534–535

domain axioms, 273, 317-319	deductive machinery, 273
consistency condition, 318	extensions, 274–275
examples, 317–318	language of, 271–272
form, 317	planning domain, 273
semantics, 318	planning problem, 274
Domain Description Language (DDL), 460	semantics, 272
Domain Model (DM), 457–458, 459	situation calculus vs., 271
basis, 459	user-defined control strategies, 275–276
state variables, 459	dynamic planning, 9
timelines, 459	dynamic similarity measures, 528
See also Planner and Scheduler (PS)	u/
domain-independent planning, 3–5	eager commitment strategy, 103
computational tools, 4	EaGle language, 423
models, 4	elastic band, 479
plan merging, 532	emergency evacuation planning, 505–516
plan merging, 332 plan synthesis, 5	HICAP, 505, 507–512
= :	introduction, 505–506
project planning, 4	
scheduling and resource allocation, 5	enablers, 333, 334
domains, 405, 406	enabling conditions, 313
application, 449	interactions, 65
classical planning, 31, 33	encoding(s), 160–164
coverage, 474	action alternatives, 161–162
dynamic logic, 273	of actions, 160–161
encoding, 440	bounded planning problem, 148, 149
extended goals, 414–415, 417	classifications, 161
fully observable, 380-392	compact, 172
HTN planning, 247	constraints, 175
as language-recognition problems, 552–553	constraints, actions, 175–176
nondeterministic, 376	constraints, frame axioms, 176
partially observable, 392–393, 426	explanatory, 163
policies for, 406	of frame problem, 161
policy execution in, 406, 407	Graphplan-based, 165
reachability goals, 406–407	planning problems into CSPs, 174–177
set-theoretic planning, 20	regular, 161
in situation calculus, 267	SAT, 177
state-variable planning, 45	size, 164
STN planning, 235	states as propositional formulas, 145
as stochastic systems, 380	strong, 442
temporal planning, 320	equivalent expressivity, 50
total-order planning, 236	evacuation
domain-specific state-space planning,	operations, 506–507
78–81	plan formulation, 505
container-stacking domain, 78-79	See also emergency evacuation planning
planning algorithm, 79–81	events, 6, 329
See also state-space planning	exclusion axioms, 155
downward monotonicity, 533	complete, 155
dynamic logic, 270-276	limiting, 163
axioms, 273	executable actions, 380
classical planning vs., 271	execution paths, 407

execution structures, 407, 416	feasible solution, 530
Expand algorithm, 207	feature-based models (FBMs), 497
explanation-based learning (EBL), 529	generating/testing, 499
explanatory frame axioms, 163–164	illustrated example, 498
exponentially bounded functions, 550	number of, 497
expressivity	features
classical representation, 47, 48	
equivalent, 50	end-milling, 497
HTN planning, 231	extraction, 495–497
	machining, 495
set-theoretic representation, 25	nonprimary, 496
state-variable representation, 47, 48	primary, 495, 496
EXPSPACE-bounded Turing Machine problem,	See also manufacturing analysis
39, 60	fewest alternatives first (FAF) heuristics, 210
extended goals, 12, 39–41, 224–226, 377–378	filtering
classical planning and, 40	arc consistency, 181, 182
control automation, 420	constraint propagation operation and, 180
domain example, 419	levels of, 172
HTN planning, 256–257	path consistency, 181–184
plan example, 415	problems, 172, 180
planning algorithms, 418–421	techniques for CSP, 180-184
planning domains, 414-415, 417	first-order logic, 555-560
planning problems, 418	formulas, 557–558
plans, 415–416	fundamental constituents, 555
policies, 414	resolution principle, 559
reachability and, 397-398	resolvent, 560
representation, 377	simplicity, 557
in STL planning problems, 225	fixed-point level, 125, 129
temporally, 433	Fixedpoint procedure, 129
uncertainty and, 378	flaw agenda, 461
See also goals	flaw-ordering heuristics, 342
extended models, 11-13	flaw-repair refinement, 188
extensions	flaws, 92, 95
classical representation, 34	with no resolvers, 338
control rules, 223-224	open goals, 325, 337
Graphplan algorithm, 131–137	processing order, 95–96
HTN planning, 252–256	PSP procedure, 99
PFD procedure, 252–255	resolvers, 94
plan-space planning, 100-101	resource conflict, 367
STL-plan procedure, 223–224	selection of, 95
TFD procedure, 252–255	threats, 325, 326, 338
external conditions, 535	unsatisfied axioms, 325
external preconditions, 255	flaw-selection heuristics, 208-212
declarations of, 258	FLECS planner, 103, 104
,	STRIPS vs., 103
failure recovery, 456–457	flow-shop machine problems, 357
at execution level, 456–457	fluent relations, 28
illustrated, 456	fluents, 148, 265
at planning level, 457	changed, 149
See also Remote Agent (RA)	FORBIN planner, 373
oce and remote rigent (101)	TORDITY Plainier, 3/3

f1 557 550	minimum commutation 520
formulas, 557–558	minimax computation, 520
bound, 558	See also bridge
closed, 558	goal formula, 268, 269
goal, 268, 269	goal states, 7 in control space, 484–486
quantified, 39	•
STL, 218, 219–220	reachability, 23
forward search state-space algorithms, 69–73	See also states
branching factor reduction, 72	goals
deterministic implementations, 72–73	conditioning, 544
formal properties, 70–72	extended, 39–41, 224–226, 256–257, 377, 414–425
heuristically guided, 203	open, 325, 337
input, 69	Planner and Scheduler (PS), 460
loop iterations, 70–71	reachability, 375, 403, 404-414
partial solution, 69	regression sets, 22
pruning technique, 71–72	relevant actions for, 22
recursive version, 82	states, 149
search space size, 71	state-variable representation, 44
TFD procedure comparison, 239	unground expressions, 45
See also state-space planning	as utility functions, 379, 383–385
forward shifting, 568	GOLOG, 278
forward-checking search algorithm, 180	GP-Search procedure, 128
forward-checking technique, 134	as CSP solver, 128
frame axioms, 162–164, 267, 273, 274	focus, 134
classical, 162–163	Graphplan algorithm, 123–131
constraints encoding, 176	analysis, 129–131
explanatory, 163-164, 439	attention, 137
situation calculus, 268	backward constraint-directed search, 131
frame problem, 266	extensions and improvements, 131-137
encoding of, 161	features, 131
free-flying rigid bodies, 472	generalizing, 132
full observability, 375	as heuristic search planner, 207-208
modeling, 425	iterative loop, 123
planning under, 380-392	nodes, 194
See also observability	planning graph expansion, 123-125
function symbols, 39, 60	planning graph search, 125-129
HTN planning, 253	proof, 130
PFD procedure, 253	soundness, 129-130
STL-plan procedure, 223–224	specifying, 128–129
TFD procedure, 253	Graphplan-based encoding, 165
use of, 39	greedy search, 546
	algorithms, 203
game trees, 519	See also searches
branches, 524	ground atomic formulas, 148
leaf nodes, 519	ground substitution, 559
size produced by bridge, 521	GSAT algorithm, 157–158
size reduction, 520	basic, 157–158
from task networks, 523	•
game-tree search, 519–521	Herbrand interpretation, 558
bridge adaptation, 520	Heuristic Scheduling and Testbed System (HSTS), 458
U 1 '	7 (== 7, == =

heuristically guided backward-search algorithm,	function symbols, 253
204–205	HICAP, 507–508
heuristics, 199–215	high-level effects, 255
admissible state-space, 205-208	introduction, 229–231
design principle for, 199–201	plan existence complexity, 252
distance-based, 213	planning graphs, 256
domain-independent, 196	plans as programs approach vs., 276–277
domain-specific, 196	problem description, 230
fewest alternatives first (FAF), 210	problems, 247–248
flaw-ordering, 342	procedures, 248–249
flaw-selection, 208-212	solutions, 248
node-selection, 199	STN planning vs., 250–251
for plan-space planning, 208–213	task networks, 244–245
resolver-selection, 212-213, 342	theoretical model, 258
for state-space planning, 201–208	time, 256
Hierarchical Interactive Case-Based Architecture for	use of, 229, 257
Planning (HICAP), 505	See also HTN methods
cases, 508	high-level effects, 255
development, 515	history, 258
HTE, 505, 508–509	in practical applications, 255
HTNs, 507-508	Hilare robot, 473
integrated elements, 505	hill-climbing search, 547
interface, 515	histories, 382
knowledge representation, 507-508	policies and, 383
SiN, 505, 509–512, 514–515	of stochastic systems, 382–383
system illustration, 506	utility of, 385
See also emergency evacuation planning	Horn clauses, 253, 254
Hierarchical Task Editor (HTE), 505, 508-509	HS algorithm, 553
interface, 513	HSP planner, 213, 214
knowledge base, 509	HTN methods, 245–247
uses, 509	control rules vs., 251-252
See also Hierarchical Interactive Case-Based	rewriting STN methods as, 246-247
Architecture for Planning (HICAP)	See also Hierarchical Task Network (HTN)
Hierarchical Task Network (HTN) planning, 103,	planning
214, 229–261	HTN planners, 229, 257
Abstract-HTN procedure, 248-250	advantages/disadvantages, 259
attached procedures, 253	comparing, 259
axioms, 253	list of, 258
for bridge, 521–524	See also Hierarchical Task Network (HTN)
comparisons, 250–252	planning; planners
complexity, 231	
container-stacking problem representation,	ICAPS, 373
253–254	identical parallel machines, 356
domain, 247	IMACS (Interactive Manufacturability Analysis and
expressivity, 231	Critiquing System), 493
extended goals, 256–257	algorithms, 495
extensions, 252–256	approach illustration, 494
external conditions, 535	concluding remarks, 503
external preconditions, 255	efficiency considerations, 502-503

IMACS (Interactive Manufacturability Analysis and	subset restricted to convex constraints, 302
Critiquing System) (continued)	tractable subclasses, 307
FBM generation/testing, 499	See also qualitative temporal relations
ordering constraints, 499	intervals, 286
steps, 499–502	end points, 288
task decomposition in, 501	inspect, 296
See also manufacturing analysis	networks of constraints over, 287, 288
inactive variables, 185	seal, 296
incomplete satisfiability decision	transitive composition and conjunction over, 296
procedures, 157	variables, 298, 299
independence relation	IPP planner, 138
allowance vs., 135	iterative deepening, 123, 129, 547
extending, 134–137	iterative repair algorithms, 158–159
planning graphs for, 136	illustrated, 158
See also relations	Random-walk, 158–159
independent actions, 119–120, 208	IxTeT system, 344
applicable, 120	
unordered, 309	job-shop machine problems, 357
initial situation axiom, 268	example, 357
initial situations, 268	schedule for, 358
initial states, 148, 150	JSHOP, 509–510
encoding, 148	algorithm correctness, 511
paths for, 439	task decomposition, 511
instants	See also SHOP integrated with NaCoDAE (SiN)
network of numerical constraints over, 289	
networks of constraints over, 287	k-ary state variables, 42
Integer Linear Programming (ILP), 190	keyhole plan recognition problem, 538
integer programs (IPs), 529–530	kinematics, 471
format, 529	kinematics steering algorithm, 473, 474
formulation development, 530	Kripke Structures, 418, 561, 563
intelligent backtracking, 180	example, 563–564
intentional plan recognition problem, 538	illustrated, 564
interactions	states of, 567
deleted-condition, 77, 80	
enabling-condition, 65	labeled constraints, 307
between robots, 490	language-recognition problems, 56, 551
interpretations, 33	EXPSPACE-complete, 60
Interval Algebra (IA), 293–302	planning domains as, 552–553
binary constraint network, 296	language(s), 551, 555
composition table, 295	EaGle, 423
constraints, 302	first-order, 557
convex constraints in, 301	PDDL planning, 34, 35
geometric interpretation, 299-301	PLAN-EXISTENCE, 552
inconsistent network, 298	PLAN-LENGTH, 552, 553
incremental consistency checking of, 307	state-variable representation, 45
network illustration, 297	layered plans, 119–120
networks, 297	LCGP planner, 138
Point Algebra (PA) vs., 301-302	learning apprentices, 535
primitive relations, 294	least commitment principle, 85, 86, 113

lifted backward search algorithm, 75	uniform parallel, 356
Lifted-PFD procedure, 253, 258	unrelated parallel, 357
Lifted-TFD procedure, 253	machining features, 495
linear programs (LPs), 529-530	machining operations
Linear Temporal Logic (LTL), 226, 432	elementary actions correspondence, 497
formulas, 433	illustrated, 496
temporal extended goal specification, 433	Manhattan paths, 473
liveness requirements, 563	manipulation planning, 3
Livingstone, 455	manufacturing analysis, 493-503
LLP, 278	abstract plan generation, 497-499
local propagation operations, 181	efficiency considerations, 502-503
local search method, 184	feature extraction, 495–497
approximation approaches, 187	goal interaction resolution, 499
See also CSP techniques/algorithms	introduction, 493
localization	machined parts, 493-495
absolute, 479	operation plan evaluation, 502
on visual landmarks, 478–479	See also IMACS (Interactive Manufacturability
segment-based, 478	Analysis and Critiquing System)
Local-Search-SAT, 157	Markov Chains, 382
logarithmically bounded functions, 550	Markov Decision Processes (MDPs), 379
logical connectives, 220	factorized, 432
look-ahead improvement, 180	framework, 397
•	model checking vs., 432
machine scheduling, 356–362	over infinite horizons, 399
ad hoc model, 362	Partially Observable (POMDPs),
classes, 356-358	393–397
complexity, 358–360	planning based on, 383
conclusion, 362	view, 398
constraints, 357	See also MDP planning
flow-shop, 357	Markov games, 400
job-shop, 357	Martha project, 487–490
makespan problem, 359	environment map, 488
max-tardiness problem, 358-359	transshipment task management, 488
multi-stage, 357	maximum distance, 205
open-shop, 357	MCS-expand algorithm, 368-369
optimization criteria, 357	search tree, 369
planning and, 360–362	sound and complete, 369
problem solving, 360	MDP planning, 379–401
problems, 356–362	algorithms, 386–392
reductions between problems, 359	conventions, 379
single-stage, 356	in fully observable domains, 380–392
See also scheduling; scheduling problems	as heuristic search extension, 399
machined parts, 493-495	Policy-Iteration algorithm, 387–389
example, 493–494	reachability and extended goals, 397–398
machining feature, 495	under partial observability, 392-397
workpiece, 494	Value-Iteration algorithm, 389-390
See also manufacturing analysis	MEDIC, 534
Machines, 356	memory management, 133
identical parallel, 356	merging plans, 431-432

planning under partial observability, 425-431
problem, 563–565
reachability goals planning, 404–414
symbolic, 567–570
modes of behavior, 477
MOLGEN, 528
motion planning, 2-3, 472
as advanced research, 490
See also robotics
multiagent planning (MAP), 530-531
approaches, 531
plan-space paradigm, 531
mutual exclusive relations, 120–123, 134
example, 121
See also relations
navigation planning, 3
negative effects, 266
neoclassical planning, 111–191
classical vs., 111
constraint satisfaction techniques, 112, 167–191
planning-graph techniques, 112, 113–141
propositional satisfiability techniques, 112,
143–166
search space nodes, 111
uncertainty with, 437–447
networks of constraints, 287
numerical, 289
over instants, 287
over intervals, 287, 288
NEXPSPACE, 62
next-state variables, 568
NOAH planner, 103
nodes
classical planning, 111
CSP-based planning, 194
Graphplan algorithm, 194
neoclassical planning, 111
plan-space planning, 85, 193
pruning, 217
SAT-based planning, 194
search space, 102
state-space planning, 85, 193
node-selection heuristics, 199–201
admissible, 201
plan-space planning and, 208
relaxation principle, 200
uses, 199
node-selection techniques, 547

nogood tuples, 134	for constraint satisfaction, 296
nonblocking actions, 481	entering, 287
nondeterminism, 375–376	inspecting, 288
modeling, 376, 405	loading, 287, 288
nondeterministic domains, 376	machining, 496, 497
nondeterministic effects, 438	moving, 288
nondeterministic iterations, 269	sealing, 288
nondeterministic problem solving, 543-544	set, 25
nondeterministic state-transition system, 405, 413	transshipment, 487
nonempty belief states, 428	unloading, 288
NONLIN planner, 103-104, 258, 532	operator graphs, 534
nonpreemptive actions, 352	operator splitting, 161–162
nonprimitive task symbols, 231	overloaded, 162
nonprimitive tasks, 229	simple, 161
null observability, 425	operators, 28–30, 43, 173, 544
77	actions as ground instances of, 30
object constraints, 311	chronicle planning, 334–336
object constraints manager, 340	chronicles as, 334–336
object symbols, 41, 45, 311	conditional, 34–36
unrestricted classical planning, 62	with conditional effects, 132
object variable symbols, 45, 173	defining, 29
object variables 41,328	DWR domain, 29, 65
range, 41	extending, 64
observability	flows in, 92
full, 375, 425	instances, 29
null, 425	merging, 532
partial, 376–377, 425–431	modal, 218, 220, 226
observation function, 425	name, 29
observation variables	partially instantiated, 315
evaluation of, 426	precondition restriction, 64
evaluations of, 426	state-transition, 11
partial observability with, 427	state-variable representation, 43–44
observations	STRIPS-style, 49
given as input, 538	syntactic restrictions, 55
set of, 425	temporal, 314–317
open goals, 325, 337	unrestricted classical planning, 62–63
cost of solving, 342	O-Plan planner, 257, 258, 343
resolution of, 342	optimal cost, 386
See also goals	optimal policies, 385
OpenGoals procedure, 96	optimal solutions, 530
open-loop controller, 11	optimal values, 530
open-shop machine problems, 357	optimization problems, 197, 379
operation plans, 494	planning problems as, 385–386
cutting parameters for, 501	OR-branches, 127
evaluation, 502	illustrated, 549
illustrated, 500	unary, 212
production time estimation, 502	ordering constraints, 92, 499
operations	adding, 86–87
composition, 295	identifying, 499

overconsuming clique, 367	incremental algorithm, 183–184
overlapping actions, 281–282	path planning, 2, 471
interacting effects, 282	problem, 472
joint effects, 282	problem configuration, 476
overloaded operator splitting, 162	roadmap, 474, 475
	See also robotics
ParcPlan, 344	paths
PARIS, 515, 528, 529	execution, 407
partial assignments, 156	feasible geometric, 471
partial observability, 376–377	for initial states, 439
belief states, 393–395	Manhattan, 473
domains, 392-393, 426	PDDL planning language, 34, 35
formalization, 425	perception planning, 3
modeling, 379	persistence conditions, 329
with observation variables, 427	PFD procedure, 243
planning algorithms, 396–397	extensions, 252–255
planning problems as optimization problems, 396	generalizing, for temporal planning, 256
planning under, 377, 392-397, 425-4321	STL-plan procedure vs., 251
plans as policies on belief states, 395-396	PHI system, 278
stochastic system, 393	piecewise constant functions, 329
technical consequence, 377	piles, 78–79
See also observability	auxiliary, 79
Partial Observability in MDPs (POMDPs), 392	primary, 79
algorithms, 396–397	plan existence, 56
planning problem, 396	complexity comparison, 64
solving, 396	complexity for HTN planning, 252
partial plans, 85, 90	complexity results, 63
actions, 93	decidable, 55, 56, 57
actions, adding, 86	EXPSPACE-complete, 61, 64
casual links, adding, 87–88	in polynomial time, 65
for interchanging variable, 105	in PSPACE, 65
ordering constraints, adding, 86–87	semidecidable, 55, 56, 57, 58
refinement, 90, 94	plan length, 56
search space of, 86–90	complexity, 65
solution, 91	complexity results, 63
subgoals, 86, 87	decidable, 57
update analysis, 86	NEXPTIME-complete, 64
variable binding constraints, adding, 88-90	in PSPACE, 65
for washing, 108	plan recognition, 537–540
See also plan-space planning	chronicle problem, 539
partial solutions, 69	intentional problem, 538
partially specified functions, 327	keyhole problem, 538
partial-order STN planning, 240–244	settings, 537–538
decomposition trees, 241–242	plan refinement operations, 85
PFD procedure, 243	plan spaces, 88
See also Simple Task Network (STN) planning	planning in, 89
path consistency, 181–184	PLAN-EXISTENCE, 552
algorithm illustration, 183	PLAN-LENGTH, 552, 553
algorithms, 292	plan-merging technique, 489

Planner and Scheduler (PS), 454 architecture, 457–461 architecture illustration, 458 Domain Model (DM), 457–458, 459 failure recovery, 456–457 functions, 454 goals, 460	conformant, 12 control rules in, 217–228 deductive, 263–279 domain-independent, 3–5 domains, 13 dynamic, 9 emergency evacuation, 505–516
Heuristic Scheduling and Testbed System (HSTS), 458	for extended goals, 414–425 first institutions, 1–2
integration, 458	forms, 2–3
objectives, 462	hierarchical task network, 229–261
plans, 461	HTN, 103, 214
Search Engine (SE), 457, 458, 461	learning and, 535-536
Temporal Database (TDB), 457	machine scheduling and, 360–362
See also Deep Space One (DS1)	manipulation, 3
planners, 8	manufacturing analysis, 493-503
Descartes, 188	MDP-based, 379-401
FLECS, 103, 104	mission, 471
FORBIN, 373	model checking-based, 403-435
Graphplan, 123-131	motion, 2, 471–477
HSP, 213, 214	motivations, 1–2
HTN, 229, 257	multiagent, 530-531
IPP, 138	navigation, 3
LCGP, 138	neoclassical, 111–191
MDP-based, 432	paradigms, 449, 450
NOAH, 103	path, 2, 471–477
NONLIN, 103–104, 258, 532	perception, 3
O-Plan, 257, 258, 343	plan-space, 78, 85–109
SAPA, 343	process, 527
SHOP2, 258, 343	project, 4
SIPE-2, 257, 258, 343	propositional, 66
SIPE, 532	QBF, 442–443
SPUDD, 434	for reachability goals, 404–414
STAN, 138	in robotics, 469–491
TALplanner, 227	as satisfiability, 437–443
TGP, 343	scheduling and, 349–374 set-theoretic, 20–27
TLPlan, 226, 227 TPSYS, 343	in social/economic realms, 3
TWEAK, 104	state-space, 69–93
UCPOP, 138	STN, 231–238
UMCP, 190, 258	STRIPS-style, 49
UMOP, 433	strong, 408–410
Planning, 1	strong cyclic, 411–414
in bridge, 517–524	temporal, 309–347
case-based, 527–529	with temporal operators, 310–326
classical, 17–109	time for, 285–308
communication, 3	with time/resources, 281–374
conceptual model, 5–9	uncertainty, 375–447
conditional, 447	weak, 410–411
,	•

planning algorithms	STL, 224–226
domain-specific state-space planning, 79-81	STN, 236
extended goals, 418-421	temporal, 320
partial observability, 396-397	planning procedure, 222-223
reachability goals, 408–414	planning-graph techniques, 112-141
symbolic, 421	actions, 113
planning domains. See domains	commitments, 113
planning graphs, 112, 114–123, 443–446	conformant planning and, 447
Abstract-HTN procedure and, 256	CSPs for, 188–189
allowance relation, 136	disjunctive refinement, 114
for conformant planning, 446	Graphplan algorithm, 123-131
as directed layered graphs, 118	Graphplan extensions/improvements,
extending, 123–131	131–137
fixed-point level, 125	reachability analysis, 113–114
inclusive disjunction of actions, 118	plans, 7
independence relation, 136	actions in, 92
independent actions, 119-120	classical representation, 32
layered plans, 119–120	conditional, 427, 429
monotonic properties, 133	extended goals, 415-416
mutual exclusive relations, 120–123	extraction of, 127, 176-177
properties, 124	layered, 119-120
reachability trees, 114–117	merging, 531–532
reachability with, 117–119	operation, 494, 500, 501
searching, 125-129	partial, 85, 86–90
size, 124	Planner and Scheduler (PS), 461
See also planning-graph techniques	as policies, 381–383
planning operators. See operators	as policies on belief states, 395-396
planning problem encoding, 174–177	provisional, 489
analysis, 177–178	rewriting, 532
constraints, 175	scheduled, 349
constraints encoding actions, 175-176	semantics, 272
constraints encoding frame axioms, 176	set-theoretic representation, 21
CSP variables, 174	situation calculus, 267
HTN, 247–248	synthesis, 5
plan extraction, 176-177	plans as programs, 264, 269-270
planning problems, 438–439	HTN planning vs., 276–277
bounded, 147, 151, 440	in logical frameworks, 277
classical, 31, 33, 40	modal logic reliance, 278
as CSPs, 172–178	plan-space planning, 78, 85–109
dynamic logic, 274	algorithms, 94–100
encoded, 150-151	conditional operators, 100-101
extended goals, 418	disjunctive preconditions, 101
as optimization problems, 385-386	experimental comparisons, 214
as propositional formulas, 147-151, 439-442	extensions, 100–101
"pure," 350	flaw-repair refinement, 188
reachability goals, 407	heuristics for, 208–213
as satisfiability problems, 144–151	nodes, 193
situation calculus, 268	node-selection heuristics, 208
state-variable, 45–46	partial plans, 85, 86–90

plan refinement operations, 85	neggo dition area 110
PoP procedure, 99–100	precondition alimination sharmation 522
PSP procedure, 94–99	precondition-elimination abstraction, 533 preconditions
quantified conditional effects, 101	action, 266
search space, 85	
solution plans, 91–94	disjunctive, 37, 101
state-space planning vs., 85, 101–103	external, 255, 258 methods, 232, 242
See also classical planning	
plan-space searches, 187–188	preemptive actions, 352
	preference rules, 535
Point Algebra (PA), 290–293	PRIAR, 528
binary constraint network, 291–292	primary relations, 38
composition table, 291	primitive relation symbols, 290, 294
incremental consistency checking of, 307	primitive relations
Interval Algebra (IA) vs., 301–302	disjunction of, 294
introduction of, 306	Interval Algebra (IA), 294
networks, 292	single, 297
path-consistent network, 293	See also relations
time, 291	primitive tactics, 275–276
See also qualitative temporal relations	illustrated, 276
policies	See also tactics
control, 486	primitive tasks, 229, 231, 507
example, 381–382	Probabilistic-Roadmap algorithm, 475–476
execution, 382, 406, 407	problem-reduction searches, 548–550
execution structure, 407	problem-solving procedures, 543
expected utilities, 385, 386	deterministic, 543
extended goals, 414	nondeterministic, 543-544
generation, 381	properties, 544
histories and, 383	Procedural Reasoning System (PRS), 537
iteration, 387	procedures
on belief states, 395–396	attached, 39, 224, 253
optimal, 385	complexity, 550
plans as, 381–383	HTN planning, 248–249
reachability goals, 406–407	incomplete satisfiability decision, 157
Policy-Iteration algorithm, 387–389	problem-solving, 543–544
example, 388–389	search, 543–544
illustrated, 388	stochastic, 156-160
policy improvement phase, 387	See also specific procedures
value determination phase, 387	process planning, 527
Value-Iteration algorithm vs., 390-391	PRODIGY, 226, 529
polynomially bounded functions, 550	PRODIGY/Analogy, 515, 516, 528
PoP procedure, 99–100	programming by demonstration, 535
illustrated, 100	programs, plans as, 264, 269-270, 276-277
Providers procedure, 99	progression, 220–222
subgoals and, 99–100	computing, 220
threats and, 100	formula, 221
positive effects, 266	result, 221
Possibly Intersecting Assertions (PIA), 367	proof theory, 555
precedence constraints, 245	Propositional Dynamic Logic (PDL),
precedence graphs, 293	274–275

propositional formulas, 144–151	OpenGoals procedure, 96
encoding states as, 145	organization, 98
examples, 556	proof, 98–99
intended model, 145	Refine procedure, 97
models of, 144	Resolve procedure, 96
planning problems as, 147–151,	Threats procedure, 96
439–442	variables/procedures, 95
state transitions as, 145-147	1
states as, 144–145	qualitative temporal relations, 290–302
translating elements to, 144	Interval Algebra (IA), 293–302
unintended model, 145	Point Algebra (PA), 290–293
propositional logic, 555–557	See also relations
propositional planning, 66	Quantified Boolean Formulas, 437,
propositional satisfiability problem,	442–443, 569
143	compact representation, 569
planning problems as, 144–151	logic, 443
propositional satisfiability techniques,	planning, 442–443
112, 143–166	quantified conditional effects, 101
encodings, 160–164	quantified expressions, 36–37
planning problems and, 144–151	for specifying states/goals, 37
satisfiability planning, 151–160	quantified formulas, 39
See also neoclassical planning	quantitative temporal constraints,
propositional variables, 146, 160, 555	302–306
in different states, 146 propositions	networks, 305–306
	simple, 303–305
consumer, 87	See also temporal constraints
models of, 556	railway ayitah ayamula 422
mutex, 122	railway switch example, 422
in planning graphs, 123	ramification problem, 343 randomized local search, 157
provider, 87	
reachable, 123 union of sets of, 117–118	Random-walk algorithm, 158–159
	reachability analysis, 113
Providers procedure, 99, 101	as driving mechanism, 114
provisional plans, 489 Prune function, 217	reachability goals, 375, 403, 414
	classical planning goals vs., 407
pruning, 547	planning, 404–414
Abstract-search procedure step, 194	planning algorithms, 408–414
nodes, 217	planning domains, 405
rules, writing, 218	planning problems, 407
safe, 205–206	solution to, 404
technique, 71–72	reachability trees, 114–117
PSP procedure, 94–99	example, 114–115
base step, 98	illustrated, 116
calling, 95	nodes, 115, 116
deterministic implementation of, 99	reactive action packages (RAP), 536
flaws, 99	reactive controllers, 470
as generic schema, 99	readability
illustrated, 95	with planning graphs, 117–119
induction step, 99	set-theoretic representation, 24–25

201 202	
real-time value iteration, 391–392	extension examples, 20
experimental results, 392	set-theoretic, 19, 20–27
optimal solutions and, 391	state-variable, 19, 41–47
trade-off, 392	resolution
Reed&Shepp curves, 473	goal interaction, 499
Refine procedure, 97	inference rule, 556
refinement	of open goals, 342
SAT-based planning, 195	problems, 172
search, 196	Resolve procedure, 96
refinement operation, 88	resolvent, 560
regression principle, 342	resolvers, 95
regression sets, 22	choice of, 95
set of, 23, 32	of flaws, 94
rejection rules, 535	for threats, 100
relation symbols, 45, 173	resolver-selection heuristics,
types, 311	212–213, 342
relations	resource allocation, 5
allowance, 134	resource conflict flaws, 367
flexible, 38	detecting, 367-369
fluent, 28	managing, 370–372
independence, 134–137	resource constraints manager, 372
mutual exclusive, 120–123, 134	resource profiles, 353
primary, 38	examples of, 353
rigid, 28, 29, 366	initial, 366
secondary, 38	resource variables
transition, 443	changing, 354
relaxation, 199–201	finite set of, 362
principle, 200, 342	move operator with, 366
state reachability, 201–204	set of, 362–363
Remote Agent (RA), 451–453	temporal assertion on, 363
AI technique basis, 452	resources, 352–354
architecture, 453–457	allocations set, 352
architecture illustration, 454	alternative, 354
autonomy levels, 463	borrowing, 363
EXEC, 453	constraints, 355
failure recovery, 456–457	consumable, 353
failures/anomalies and, 453	efficiency parameter, 354
goal translation, 454	independent, 364
MIR, 453	nonconflicting, 370
Mission Manager (MM), 453	possible states, 354
plan generation, 452	requirements of actions, 354
PS, 453	reusable, 353, 363
spacecraft autonomy and, 453	setup costs, 355
See also Deep Space One (DS1)	state variables vs., 351
representations	states, 354
ADL, 50	use in chronicles, 363
classical, 19, 27–33	restricted model, 9–11
classical planning, 19–20	
comparison, 47–48	restrictive assumptions, 9–10 restricted state-transition systems, 17
Companion, 17—10	restricted state-transition systems, 17

252	-Lineting mitagin 255
reusable resources, 353	objective criteria, 355
continuous, 353	planning integration, 362–372
discrete, 353, 363	systems, 372–373
See also resources	tools, 5
reward functions, 384	scheduling problems, 349
rewriting plans, 532	actions, 352
rigid relations, 28, 29, 366	constraints and cost functions, 354–356
roadmaps, 474	elements of, 351–356
probabilistic, 475, 476	machine, 356–362
ROBEL control system, 485	resources, 352–354
robotics, 469–491	specifying, 351–352
approach analysis, 487	temporal constraints in, 354
control automation, 484	types of, 352
controller, 483–486	SCOPE, 535
environments/tasks, 469	search algorithms (CSPs), 178-180
introduction, 469–471	backjumping, 180
modalities, 480–483	backtrack improvements, 179-180
path and motion planning, 471–477	backtracking, 178–179
planning maturity, 470-471	forward-checking, 180
planning requirements, 470	Search Engine (SE), 457, 458, 461
robust controller design, 477-487	candidate plan, 461
sensory-motor functions, 478-480	flaw agenda, 461
robots, 469	See also Planner and Scheduler (PS)
architecture, 491	search space, 544
carlike, 474	as AND/OR graph, 430
configuration, 472	forward search state-space algorithms, 71
configuration space, 472	nodes, 102
Dock-Worker, 487–490	partial plans, 86–90
Hilare, 473, 476	plan-space planning, 85
planning capabilities and, 470	problem-reduction, 548
total interaction between, 490	state-space planning, 85
variables, 472	STRIPS algorithm, 77
RS, 536	searches
,	for actions, 128
SAPA planner, 343	best-first, 545–546
SAT-based planning	breadth-first, 544–545
nodes, 194	depth-first, 545
refinement, 195	depth-first branch-and-bound, 546
satisfiability problems, 144	focusing, 133–134
encoding planning problem to, 151	greedy, 546
planning problems as, 144–151	hill-climbing, 547
SATPLAN, 534	nondeterministic procedures, 543–544
scheduled plans, 349	planning graphs, 125–129
schedules, 352	plan-space, 187–188
•	problem-reduction, 548–550
for job-shop problems, 358 scheduling	refinement, 196
as active field, 372	
	state-space, 544–547
costs, 355	secondary relations, 38
decomposition scheme, 350	selection rules, 535

comenties EEE	tasks and methods, 231-235
semantics, 555	total-order, 238–239
of domain axioms, 318	
formulas, 272	See also hierarchical task network (HTN) planning
plans, 272	simple task networks, 231
sensory-motor functions, 478–480	simple temporal constraints (STP), 303–305
absolute localization, 479	consistent, 303
elastic band for plan execution, 479	distributivity, 304
localization on visual landmarks, 478–479	path-consistency algorithm, 303
reactive obstacle avoidance, 479–480	Simple Temporal Logic (STL), 218–220, 226
segment-based localization, 478	control formula, 224
See also robotics	formulas, 218
separation constraints, 331	formulas, writing, 219–220
set operations, 25	modal operators, 226
set-theoretic planning domain, 20	Simplified DWR domain, 15
set-theoretic planning problems, 20–21	simplified path-consistency algorithm, 304
actions, 27	Simultaneous Localization and Mapping (SLAM)
solution, 22	technique, 478, 490
stating, 23–24	SIPE-2 planner, 257, 258, 343
set-theoretic representation, 19, 20–27	SIPE planner, 532
computation, 25	situation calculus, 264–270
example, 21	action effects, 266
planning problem statement, 23-24	actions, 265–267
plans, 21	classical planning vs., 265
properties, 24–27	dynamic logic vs., 271
proposition symbols, 20	frame problem and, 266
readability, 24	language of, 265
state reachability, 22-23	logical theory, 265
translating, 48	planning domains, 267
See also classical planning; representations	planning problems, 268
SHOP2 planner, 258, 343	plans, 267
SHOP integrated with NaCoDAE (SiN), 505, 509	plans as programs in, 269-270
backtracking, 510	situations, 147, 264–265
cases, 512	fluents, 265
correctness, 511	initial, 268
functioning of, 509-510	SKICAT system, 466
imperfect world information, 511–512	Smart Executive (EXEC), 455
JSHOP, 509–510	failure recovery, 456–457
summary, 514-515	objectives, 462
See also Hierarchical Interactive Case-Based	tasks, 455
Architecture for Planning (HICAP)	See also Deep Space One (DS1)
similarity metrics, 528	solution plans, 91–94
SimPlan, 433	consistent binding constraints, 91
simple operator splitting, 161	consistent partial order, 91
Simple Task Network (STN) planning, 231–238	example, 93
domain, 235	illustrated, 94, 126
HTN planning vs., 250–251	incorrect sequence, 92
partial-order, 240–244	refining partial plans towards, 94
PFD procedure, 243	See also plan-space planning
problems and solutions, 235–238	solution trees, 208
problems and solutions, 200-200	oriental most, and

•	
soundness, 544	as propositional formulas, 144-145
SPA, 528	reachable, 114
space applications, 451–467	resource, 354
Deep Space One (DS1), 451, 461–466	symbolic representation of, 567–568
discussion and historical remarks,	terminal, 407
466–467	state-space planning, 69-83
introduction, 451	arcs, 85
Remote Access (RA), 451–461	backward search, 73-76
SPUDD planner, 434	domain-specific, 78-81
STAN planner, 138	forward search, 69-73
state reachability	heuristically guided, 202
goal, 23	nodes, 85, 193
relaxation, 201–208	plan-space planning vs., 85, 101–103
set-theoretic representation, 22-23	search space, 85
state space, 544	state-space search, 544-547
size, 391	best-first, 545–546
state transitions, 6	breadth-first, 544-545
deterministic, 6	depth-first, 545
example, 146	depth-first branch-and-bound, 546
as propositional formulas, 145–147	greedy, 546
state variable symbols, 41, 45, 173	hill-climbing, 547
timeline for, 330	See also searches
state variables, 41–43, 173, 327	state-transition functions, 21
chronicles for, 330	state-transition operators, 11
current state and, 42	state-transition systems, 5
Domain Model (DM), 459	dynamics, 8
examples, 42–43, 328–329	evolution, 8
functions, 41, 42	illustrated, 7
ground, 42	nondeterministic, 405, 413
imprecise specification, 328	representation, 6
incomplete specification, 328	restricted, 17, 31 state-variable planning domain, 45
k-ary, 42	
n-ary, 331	state-variable planning problem, 45–46
as partial functions of time, 328	statement, 46
as partially specified functions, 327	state-variable representation, 19
as piecewise constant functions, 329	actions, 43–44
resources vs., 351	advantages, 47
temporal assertion on, 329	constant symbols, 45
timeline for, 330, 331	elements, 44–45
state-oriented view, 283	expressivity, 47, 48
states, 27	extending, 58
belief, 393–395	ground, 46, 48
classical planning, 264	object variable symbols, 45
classical representation, 27–28	planning domain, 45
control, 484	planning language, 45
goal, 46, 149, 484–486	planning operators, 43–44, 45
initial, 148, 150, 439	properties, 46-47
intermediate, 101	relation symbols, 45
of Kripke Structures, 567	state variable symbols, 45

state variables, 41–43	strong conformant solutions, 438, 440
translating, into classical representation,	generating/testing algorithm, 443
47–48	strong cyclic solutions, 408
STATIC, 535	planning algorithm, 411–414
static similarity measures, 528	strong solutions, 408
STL planning problem, 224	planning algorithm, 408–410
example, 226	Strong-Cyclic-Plan algorithm, 411-414
expression as, 225	elimination loop, 412
extended goals, 225	example, 411–412
solution, 224–225	illustrated, 412
See also Simple Temporal Logic (STL)	subroutines, 413
STL-plan, 222–223	termination, 414
attached procedures, 224	Strong-Plan algorithm, 408-410
axioms, 224	example, 409–410
extensions, 223–224	illustrated, 409
function symbols, 223–224	termination, 409, 410
illustrated, 223	subtasks, 232, 233
modal formulas, 226	interleaved, 241
as nondeterministic, 226	of root, 241
PFD procedure vs., 251	See also tasks
soundness, 222	Sussman anomaly, 77–78
TFD procedure vs., 251	DWR version, 78
time, 223	shortest plan for, 77
stochastic CSPs, 185	Stack-containers algorithm, 80
stochastic procedures, 151, 156–160	symbolic model checking, 567–570
example, 159–160	advantages, 568
GSAT, 157–158	BDD-based, 570–572
iterative repair algorithms, 158–159	fundamental ideas, 567
randomized local search, 157	representation of algorithms, 569–570
stochastic systems, 379	representation of sets of states,
for continuous delivery, 398	567–568
domains as, 380	representation of transition relations,
histories of, 382–383	568–569
illustrated, 381	techniques, 403
partially observable, 393	See also model checking
STRIPS algorithm, 76–78	symbolic planning algorithm, 421
backward-search algorithm vs., 76	symmetrical binary CSPs, 169
deleted-condition interactions, 77	syntactic constructs, 50
example, 77	symactic constructs, 50
FLECS vs., 103	tactical theorem proving, 275
ground version, 76	tactics, 264, 275
incomplete, 77	compound, 276
•	primitive, 275
original version, 81	
recursive calls, 76	user-defined control strategies as,
search space, 77	275–276
solutions, 77	TALplanner, 227
Sussman anomaly, 77–78	Task Control Architecture (TCA), 537
STRIPS-style operators, 49	task networks, 235, 244–245
STRIPS-style planning, 49	constraints, 245

task symbols, 231	temporal references, 285–289
tasks, 231	example, 286
compound, 507	of propositions, 286
decomposing, 234, 235	temporal relations between, 287
decomposing (IMACS), 501	as time periods, 286
decomposition trees, 237	temporal relations, 285–289
ground, 231	handling, 285
nonprimitive nodes, 236	qualitative, 290–302
primitive, 231, 507	quantitative, 289
STN planning, 231–235	between temporal references, 287
subtasks, 232, 241	See also relations
unground, 231	temporal variables, 311, 328
temporal assertions, 329	contingent, 307, 340
conflicting, 364	numerical instantiation, 339
conjunction of, 331	terminal states, 407
on resource variables, 363	terms, 557
set of, 330, 364, 365	test actions, 269
temporal constraint network problems	
(TCSPs), 305–306	TFD procedure, 238–239
consistency, 305	Backward-search comparison, 239
minimality, 305	example, 238–239
temporal constraints, 302–306, 311, 313	extensions, 252–255
in DDL, 460	Forward-search comparison, 239
	STL-plan procedure vs., 251
networks, 305–306	TGP planner, 343
in scheduling problems, 354	threats, 92, 325, 326, 338
simple, 302–305	conditional, 101
temporal databases, 310–314	managing, with disjunctive-refinement techniques,
approach, 326	342
assertion representation, 312	PoP solution of, 99–100
entailing, 313	resolver for, 100
illustrated, 312	Threats procedure, 96
support, 313	Tignum 2 algorithm, 521–524
temporal expressions, 310–314	belief functions, 524
set of, 313	implementation, 524
temporal operators, 314–317	structures, 521
move, 315	task network generation, 522
temporal planning, 309–347	value calculation, 524
Abstract-HTN procedure and,	TIM, 534
256	time, 285–308
with chronicles, 326–343	actions over, 281
concurrent actions, 321–323	complexity classes, 551–552
domains, 320, 336	as essential component, 306
operators, 310–326	forms, 282
PFD procedure and, 256	HTN planning, 256
problem statements, 320	partial functions of, 328
problems, 320, 336	as resource, 282
procedure, 323–326	STL-plan, 223
solutions, 320	Timelines, 330
STL-plan and, 224	consistent, 331

D 1 1 (D) () (F)	1 1 62
Domain Model (DM), 459	constant symbols, 62
example, 332	goal condition, 63
for state variables, 330, 331	initial state, 63
Time-Map Manager, 339–340, 344	operators, 62–63
time-oriented view, 283	predicates, 62
advantages, 284	See also classical planning
reasons for adopting, 284	unsatisfied axioms, 325
TLPlan system, 226, 227	use assertions, 364
total assignments, 156	utility functions, 379, 384
total-order STN planning, 238–239	assumption, 399
domain, 236	determined by costs, 389
problem, 250–251	goals as, 383–385
restricting, 251	utility values, 187
TFD procedure, 238–239	
See also Simple Task Network (STN) planning	valued CSPs, 187
TPS procedure, 323–336, 337	Value-Iteration algorithm, 389-390
features, 324	example, 390
as general schema, 326	illustrated, 390
illustrated, 324	Policy-Iteration algorithm vs., 390–391
TPSYS planner, 343	variable binding constraints, 88
transformational analogy, 528	adding, 88–90
transition function, 6	variable selection, 153
transition probabilities, 399	variable symbols, 311
transition relations, determination, 443	variables
transhipment operations, 487	active, 185
Turing Machine	control, 483
current state, 62	CSP, 128, 174
EXPSPACE-bounded, 60	current-state, 568
TWEAK planner, 104	flipping, 157
typed variables, 34	inactive, 185
typed variables, 34	interchanging, 105
UCPOP planner, 104	interval, 298, 299
UMCP planner, 190, 258	next-state, 568
unary constraints, 97	observation, 426
uncertainty	propositional, 146, 160, 555
conformant planning and, 447	PSP procedure, 95
dimensions, 377	resource, 354, 362
extended goals and, 378	state, 327
in initial conditions, 444	temporal, 307, 339, 340
with neoclassical techniques, 437–447	temperas, 507, 552, 510
planning under, 375–447	weak conformant solutions, 438
undecidability results, 57–59	algorithms for, 444
	weak solutions, 408
uniform parallel machines, 356	
unit propagation, 152, 153	planning algorithm, 410–411
calls to, 155	Weak-Plan algorithm, 410–411
example, 153–154	example, 410
universal constraints, 169	illustrated, 411
unrelated parallel machines, 357	7ENIO 244
unrestricted classical planning, 61–65	ZENO, 344