Module 1: AI for Channel Decoding

You will learn:

- How to use colab
- Basics of channel coding
- Support vector machine
- Deep learning

• Grading:

- Syndrome Decoding, 20% ML decoding 10%
- Classification with support vector machine 20%
- Deep Learning 20%
- Mini project 20%
- Report (no more than 10 pages) 10%

Error Correction Codes

Terminology

- Message: Sequence of bits representing your date (link to the website)
- Codeword: Sequence of bits forming your QR code

- Example:
 - Message = 1 1 0 1
 - Codeword = 1 1 0 1 0 1 0

These bits are added for error correction

It is everywhere!!! Even in string theory!!!

A digital communication system over wireless channel

Channel enc/dec allows error correction by adding redundancy

How it works? How to create those bits?

Index: 1234567 Codeword: 1101100

The last 3 bits are added such that inside every circle the number of 1s are even

Suppose 1 bit is erased, we can fix it by checking the parity of each circle

Index: 1234567 Codeword: 0101???

It's your turn

What if 2 bits are erased?

Index: 1234567 Codeword: 1101010

It can also correct 1 bit flip

Suppose 1 bit is flipped, we can fix it by flipping 1 bit to meet all constraints

Index: 1234567 Codeword: 1101100

It can also correct 1 bit flip

Suppose 1 bit is flipped, we can fix it by flipping 1 bit to meet all constraints

(n,k)-Linear Block Codes

- k-bit message m, n-bit codeword c
- Relationship: c = mG
- The code C contains all (2^k in total) such codewords
 - C is the row space of $G(k \times n)$
 - Call it a generator matrix
- There exists $H(n-k\times n)$ such that $cH^T=Hc^T=0$
 - Rows of *H* span the nullspace of *G*
 - Call it a parity check matrix

(7,4)-Hamming Codes

- 4-bit message m, 7-bit codeword c
- Relationship: c = mG

•

$$\mathbf{G} := egin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

•

$$\mathbf{H} := egin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 1 & 0 & 1 & 0 \ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

System Model

- When transmit, we map coded bits to baseband signal
- ullet Binary phase shift keying (BPSK) for sending the bit c_i

$$x_i = \sqrt{P}(2c_i - 1), \qquad \mathbf{x} = [x_1, ..., x_n]$$

Additive white Gaussian noise (AWGN) channel

$$y_i = x_i + w_i, \quad w_i \sim N(0, \sigma^2), \quad y = [y_1, ..., y_n]$$

BER in Uncoded System

• Detection of x_i from y_i

$$\hat{x}_i = sign(y_i)$$
 and $\hat{r}_i = (\hat{x}_i + 1)/2$

• Error if $\hat{x}_i \neq x_i$

• Bit error rate: $p_e = \sum 1(\{\hat{x}_i \neq x_i\})/n$

Maximum Likelihood Decoding

MLD:
$$\hat{c} = arg\min_{c \in C} ||y - x||^2$$

This is optimal in AWGN channel with equiprobable inputs

- Complexity is very high, especially when k is large
 - Need to check 2^k codewords

Syndrome Decoding

First make a hard decision

$$\hat{x}_i = sign(y_i)$$
 and $\hat{r}_i = (\hat{x}_i + 1)/2$

- Construct the standard array
- Compute the syndrome $\hat{r}H^T = s$
- Decide $\hat{e} = \operatorname{coset} \operatorname{leader}(s)$
- Decode to $\hat{\pmb{c}} = \pmb{r} + \hat{\pmb{e}}$

Standard Array

		<u>C</u> i	Czr & Loset (2)
e, 6+e,		<u>C: + ez</u>	Cirtle & 658 t (les H7)
e3 C2+e3	· · ·	Ci + Q1	C2 × + 63
: ;			
ej Cz+ej	v - 1	Ci +ej	Cx+e, & bosak (e; H?)
Eznak Czte, nak	~ - 1	Ci + 0, n-k	Cx+e,n-k & 656 (e, K H7)

Decoding via Learning

Decoding is nothing but classification

• (n,k)-linear block code has 2^k classes

• We can generate a lot of training data (y,c)

This is a supervise, batch, passive, and statistical learning