4005-800 Algorithms

Homework 7

Christopher Wood May 11, 2012

Solution. By the defintion of graph isomorphism, two graphs G_1 and G_2 are isomorphic if and only if there exists a bijection $m: V(G_1) \to V(G_2)$ such that any two vertices v_i and v_j of G_1 are adjacent in G_1 if and only if $m(v_i)$ and $m(v_j)$ are adjacent in G_2 . With this definition, it is enough to check the bijection m to see if it fulfills this property to verify that two graphs isomorphic. We can easily devise a polynomial-time algorithm to solve this as follows:

ALGORITHM 1: GRAPH-ISOMORPHISM-VERIFIER

```
1: function VerifyGraphIsomorphism(m)
 2:
       for all v_i \in V(G_1) do
 3:
           vCount = 0
                                                              \triangleright Count number of times v_i appears in G_2
           for all v_i \in V(G_2) do
 4:
               if m(v_i) == v_i then
 5:
                   vCount = vCount + 1
 6:
               end if
 7:
           end for
 8:
           if vCount \neq 1 then
                                                                       \triangleright v_i should only appear once in G_2
 9:
               return False
10:
           end if
11:
       end for
12:
13:
       for all v_i \in V(G_1) do
14:
           for all v_i \in V(G_1) do
15:
               if (v_i, v_i) \in E(G_1) and (m(v_i), m(v_i)) \notin E(G_2) then
16:
                   return False
17:
               end if
18:
           end for
19:
       end for
20:
21:
22:
       for all v_i \in V(G_1) do
```

```
for all v_i \in V(G_1) do
23:
               if (m(v_i), m(v_j)) \in E(G_2) and (v_i, v_j) \notin E(G_1) then
24:
                   return False
25:
               end if
26:
           end for
27:
28:
       end for
29:
30:
       return True
31: end function
```

Note that m denotes the bijective mapping (the permutation) from $V(G_1)$ to $V(G_2)$. It is clear that the permutation check runs in O(V) time and the edge check runs in $O(V^2)$ time. Thus, we conclude that this algorithms runs in $O(V^2)$ time and thus verifies the solution (i.e. the permutation mapping m) to the GRAPH-ISOMORPHISM problem in polynomial time.

PROBLEM 2 - 34.2-10. Prove that if $NP \neq co-NP$, then $P \neq NP$.

Solution. If $NP \neq co\text{-}NP$, then we know there exists a problem $Q \in NP$ such that $Q \notin co\text{-}NP$. Furthermore, by definition, we know that $P \in co\text{-}NP \cap NP$. Now, let Q be a problem in NP that is not in co-NP. By the definition of the set intersection, that means that $Q \notin co\text{-}NP \cap NP$, and thus we know that $Q \in NP$ and $Q \notin P$ (because P is a subset of $co\text{-}NP \cap NP$). Therefore, since there exists a problem that is in NP but not in P, we conclude that $P \neq NP$.

PROBLEM 3 - 34.3-1. Verify that the circuit in Figure 34.8(b) is unsatisfiable.

Solution.

The logical equivalent expression for this circuit is as follows:

$$((x_1 \lor x_2) \land x_3) \land (x_3 \lor (x_1 \land x_2 \land \neg x_3)) \land (x_1 \land x_2 \land \neg x_3)$$

x_1, x_2, x_3	$x_1 \lor x_2$	$(x_1 \vee x_2) \wedge x_3$	$x_1 \wedge x_2 \wedge \neg x_3$	$x_3 \lor (x_1 \land x_2 \land \neg x_3)$	Final AND Gate
F,F,F	F	F	F	F	F
F,F,T	F	F	F	T	F
F,T,F	$\mid \mathrm{T} \mid$	F	F	F	F
F,T,T	$\mid \mathrm{T} \mid$	\mid T	F	Т	F
$_{\mathrm{T,F,F}}$	$\mid T \mid$	F	F	F	F
$_{\mathrm{T,F,T}}$	$\mid T \mid$	T	F	Т	F
$_{\mathrm{T,T,F}}$	$\mid T \mid$	F	T	Т	F
T,T,T	\mid T	\mid T	F	Т	F

Table 1: Truth table for problem #3, where T = True and F = False.

To show that this circuit is unsatisfiable, we simply build a truth table for the boolean expression that considers all logical values for x_1, x_2 , and x_3 , as shown in table :

Therefore, since there is no possible combination of logical values for x_1 , x_2 , and x_3 such that the boolean expression is true, we conclude that it is unsatisfiable.

PROBLEM 4 - 34.4-5. Show that the problem of determining the satisfiability of boolean formulas in disjunctive normal form is polynomial-time solvable.

Solution. We show that the problem of determining the satisfiability of boolean formulas in disjunctive normal form is polynomial-time solvable by providing a polynomial-time algorithm that performs this task. This algorithm is realized below in Algorithm 2.

ALGORITHM 2: DNF-SOLVER

```
1: function SolveDNF(\psi)
       for all v_i \in V(G_1) do
2:
           vCount = 0
                                                              \triangleright Count number of times v_i appears in G_2
3:
           for all v_i \in V(G_2) do
4:
               if m(v_i) == v_i then
                   vCount = vCount + 1
6:
               end if
7:
           end for
8:
           if vCount \neq 1 then
                                                                      \triangleright v_i should only appear once in G_2
9:
               return False
10:
           end if
11:
12:
       end for
13:
       return True
14:
15: end function
```

PROBLEM 5 - 34.5-5. The set-partition problem takes as input a set S of numbers. The question is whether the numbers can be partitioned into two sets A and A' = S - A such that $\sum_{x \in A} x = \sum_{x \in A'} x$. Show that the set-partition problem is NP-complete.

Solution. In order to show that the set-partition problem, Q is NP-complete, we show that it reduces to the subset-sum problem, Q'. That is, we prove $Q \leq_p Q'$.

PROBLEM 6. TODO

Solution.

ALGORITHM 3: RECURSIVE-KNAPSACK

1: TODO