

# Основы ІРу6

- As described in RFC 4291, the preferred form is x:x:x:x:x:x:x
  - Each x is a 16-bit section



- RFC 2373 and RFC 5952 provide two helpful rules for reducing the notation involved in the preferred format
- Rule 1: Omit Leading 0s
- Rule 2: Omit All-0s Hextets
- Combining Rule 1 and Rule 2



- IPv4, with its 32-bit address space, provides for 4.29 billion
- IPv6 340,282,366,920,938,463,463,374,607,431,768,211,456 addresses





The remaining portions of IPv6 address space are reserved by IETF for future use.





## **IPv6 Unicast Adresses**

- Global unicast
- Link-local
- Loopback
- Unspecified address
- Unique local
- IPv4 embedded



### Global Unicast Address

- Global Routing Prefix
- Subnet ID
- Interface ID



#### Link-Local Unicast Address





#### Link-Local Unicast Address

- device must have an IPv6 link-local address
- Link-local addresses are not routable off the link
- Link-local addresses only have to be unique on the link
- There can be only one link-local address per interface



### Link-Local Unicast Address

- Devices dynamically (automatically) create their own link-local IPv6 address upon startup
- Link-local addresses can be manually configured
- When a device starts up, before it obtains a GUA address, the device uses its IPv6 link-local address as its source address to communicate with other devices on the network
- Devices use the router's link-local address as their default gateway address
- IPv6 routing table entries populated from dynamic routing protocols use the IPv6 link-local address as the next-hop address



#### MULTICAST ADDRESSES



## Well-Known Multicast Addresses

- ff02::1:
  - All IPv6 devices
- ff02::2:
  - All IPv6 routers
- ff02::5:
  - All OSPFv3 routers
- ff02::a:
  - All EIGRP (IPv6) routers



#### Solicited-Node Multicast Addresses

- used as a more efficient approach to IPv4's broadcast address
- used in Layer 3-to-Layer 2 address resolution, similar to how Address Resolution Protocol (ARP) is used in IPv4
- automatically created using a special mapping of the device's unicast address with the solicited-node multicast prefix ff02:0:0:0:1:ff00::/104



# Dynamic Addressing

- Method 1: Stateless Address Autoconfiguration (SLAAC)
- Method 2: SLAAC and a stateless DHCPv6 server
- Method 3: Stateful DHCPv6 server



### Method 1: SLAAC

#### R1(config)# ipv6 unicast-routing



#### Method 2: stateless DHCPv6 server



! Configure the stateless DHCPv6 server pool R1(config)# ipv6 dhcp pool STATELESS-DHCPv6 R1(config-dhcpv6)# dns-server 2001:db8:cafe:1::8888 R1(config-dhcpv6)# domain-name example.com R1(config-dhcpv6)# exit

! Set the O flag to 1 and enable DHCPv6 service R1(config)# interface gigabitethernet 0/0 R1(config-if)# ipv6 nd other-config-flag R1(config-if)# ipv6 dhcp server STATELESS-DHCPv6 R1(config-if)#

### Method 3: Stateful DHCPv6



! Configure the stateful DHCPv6 server pool
R1(config)# ipv6 dhcp pool STATEFUL-DHCPv6
R1(config-dhcpv6)# address prefix
2001:db8:cafe:1:deed::/80
R1(config-dhcpv6)# dns-server
2001:db8:cafe:1::8888
R1(config-dhcpv6)# domain-name example.com
R1(config-dhcpv6)# exit

! Set the M flag to 1, the A flag to 0 and enable DHCPv6 service on the interface R1(config)# interface gigabitethernet 0/0 R1(config-if)# ipv6 nd managed-config-flag R1(config-if)# ipv6 nd prefix 2001:db8:cafe:1::/64 no-autoconfig R1(config-if)# ipv6 dhcp server STATEFUL-DHCPv6



# ICMPv6 Neighbor Discovery

- Router-device messages used for dynamic address allocation:
  - Router Solicitation (RS) message
  - Router Advertisement (RA) message
- Device—device messages used for address resolution:
  - Neighbor Solicitation (NS) message
  - Neighbor Advertisement (NA) message
- Router-device messages used for better first-hop selection:
  - Redirect message



# Router Solicitation Message

 A host sends a Router Solicitation message when it needs to know how to dynamically obtain its addressing information. This typically occurs during startup and is the default on most host operating systems



# Router Advertisement Message

 A Cisco router sends Router Advertisement messages every 200 seconds The RA message is a suggestion to obtain addressing information dynamically. This information in the RA message includes prefix, default router, and other configuration information





# **Neighbor Solicitation**

#### ARP Request in IPv4



**Ethernet broadcast:** Data must be passed to the ARP process to determine if the device is the intended target.

#### ICMPv6 Neighbor Solicitation Message



**Ethernet multicast:** NIC card can determine whether it needs to pass the data to IPv6.



# Networking For everyone