5

10

15

WE CLAIM

- 1. Apparatus for data processing, said apparatus comprising:
 - (i) a shifting circuit;
 - (ii) an arithmetic circuit; and
- (iii) an instruction decoder responsive to an instruction to control said shifting circuit and said arithmetic circuit to perform an operation upon a data word Rn and a data word Rm, wherein said operation yields a value given by:
- (iv) selecting a plurality of non-adjacent multibit portions of said data word Rm to form a plurality of multibit portions each of bit length A;
- (v) optionally shifting said plurality of multibit portions by a common shift amount to shifted bit positions;
- (vi) promoting each of said plurality of multibit portions from said bit length of A to a bit length of B to form a plurality of promoted multibit portions, such that said promoted multibit portions may be abutted to form a promoted data word P; and
- (vii) performing a plurality of independent arithmetic operations using as input operands respective bit position portions of bit length B from both said promoted data word P and said data word Rn to form a result data word Rd.
- 20 2. Apparatus as claimed in claim 1, wherein B = 2 * A.
 - 3. Apparatus as claimed in claim 1, wherein said plurality of multibit portions are shifted to shifted bit positions such that a lowest bit position multibit portion extends up from a zeroth order bit position.
 - 4. Apparatus as claimed in claim 1, wherein promoting said multibit portions from a bit length of A to a bit length of B comprises one of:
 - (i) sign extending said multibit portions to a bit length of B; and
 - (ii) zero extending said multibit portions to a bit length of B.

25

10

15

25

- 5. Apparatus as claimed in claim 1, wherein said plurality of independent arithmetic operations are independent add operations.
- 6. Apparatus as claimed in claim 1, wherein said data words have a bit length of C and C = N * B, where N is an integer greater than 1.
 - 7. Apparatus as claimed in claim 2, wherein C = B * 2.
 - 8. Apparatus as claimed in claim 1, wherein B = 16 and A = 8.
 - 9. Apparatus as claimed in claim 1, wherein said common shift amount is B A.
 - 10. Apparatus as claimed in claim 1, wherein said instruction is a single-instruction-multiple-data instruction.
 - 11. Apparatus as claimed in claim 1, wherein said instruction combines a data value unpack operation with an arithmetic operation.
- 12. Apparatus as claimed in claim 1, wherein said shifting circuit is upstream of said arithmetic circuit in a data path of said apparatus.
 - 13. Apparatus as claimed in claim 1, wherein a promoting circuit operable to promote said multibit portions from a bit length of A to a bit length of B is disposed in parallel to a portion of said shifting circuit, said shifting circuit being operable to provide a restricted range of common shift amounts for data values passing through said shifting circuit when executing said instruction compared to a range of common shift amounts provided by said shifting circuit when executing other instructions.
- 14. A method of data processing, said method comprising the steps of decoding30 and executing an instruction that yields a value given by:
 - (i) selecting a plurality of non-adjacent multibit portions of said data word Rm to form a plurality of multibit portions of bit length A;

- (ii) optionally shifting said plurality of multibit portions by a common shift amount to shifted bit positions;
- (iii) promoting each of said plurality of multibit portions from said bit length of A to a bit length of B to form a plurality of promoted multibit portions, such that said promoted multibit portions may be abutted to form a promoted data word P; and
- (iv) performing a plurality of independent arithmetic operations using as input operands respective bit position portions of bit length B from both said promoted data word P and said data word Rn to form a result data word Rd.

15. A computer program product comprising a computer program for controlling a computer to perform a method as claimed in claim 14.

15

10

5