../../psulogo_horiz_bw-eps-converted-to.pdf

STAT 672

Statistical Learning II

Fall 2019 Homework 2 Due February 5^{th} at the beginning of class

1 Kernel centering

Let \mathcal{X} be a non empty set, K a kernel over \mathcal{X} and H the RKHS with kernel K. Let x_1, \ldots, x_n , be n points in \mathcal{X} .

Let K_c like "K centered" be another kernel over \mathcal{X} defined by

$$K_c(x,y) = \langle K(.,x) - \bar{f}(.), K(.,y) - \bar{f}(.) \rangle_H, \text{ with } \bar{f}(.) = \frac{1}{n} \sum_{i=1}^n K(.,x_i)$$
 (1)

- 1. Verify that K_c is a positive definite kernel; Let H_c be the RKHS with reproducing kernel H_c .
- 2. (**) Verify that for any $f \in H_c$,

$$\frac{1}{n}\sum_{i=1}^{n}f(x_i) = 0 (2)$$

In homework 1, you have learned to sample functions from a RKHS with kernel K over the set $\mathcal{X} = \{-m, \ldots, m\}$ according to the probability

$$p(f) = Ce^{-\frac{||f||^2}{2}} \tag{3}$$

Here, you are asked to do the same thing but over the RKHS of a centered kernel K_c . Specifically, choose m = 10, n = 11, $x_1 = -10$, $x_2 = -9$, ..., $x_{11} = 0$.

- 3. (**) Write K_c in term of K using matrix operations.
- 4. Choose the Gaussian kernel with $\tau = 10$, and show 10 samples. Figure ?? shows examples of what you should find. Check that for each curve f,

$$\frac{1}{11} \sum_{i=-10}^{0} f(i) = 0 \tag{4}$$

up to numerical errors.

Figure 1: Example of 10 samples of "functions" of the RKHS over $\{-10, \ldots, 10\}$ with the Gaussian kernel, $\tau = 10$ under the centering constraint $\frac{1}{11} \sum_{i=-10}^{0} f(i) = 0$

Figure 2: Example of resu;ts with Kernel PCA

2 Kernel PCA

 \mathcal{X} a non empty set, $x_1, \ldots, x_n \in \mathcal{X}$, K a centered kernel, that is, starting with a kernel G over \mathcal{X} ,

$$K(x,y) = \langle G(.,x) - \bar{f}, G(.,y) - \bar{f} \rangle_H, \text{ with } \bar{f} = \frac{1}{n} \sum_{i=1}^n G(.,x_i)$$
 (5)

Assume for simplicity that K is full rank. Notate $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n > 0$ the e-values and u_1, \ldots, u_n the corresponding e-vectors. We have seen in class that the principal directions f_1, \ldots, f_n are

$$f_i = \sum_{j=1}^n \alpha_{ij} K(., x_j), \text{ with } \alpha_i = \lambda_i^{-\frac{1}{2}} u_i$$
 (6)

1. verify that

$$\langle f_i, f_k \rangle_H = \delta_{ik} \tag{7}$$

where $\delta_{ik} = 1$ if i = k and $\delta_{ik} = 0$ if $i \neq k$.

2. Show that the orthogonal projection of any $f \in H$, the RKHS with kernel K onto

$$V = span\{f_1, \dots, f_n\} \tag{8}$$

is

$$\pi_v(f) = \langle f, f_1 \rangle_H f_1 + \dots, \langle f, f_n \rangle_H f_n \tag{9}$$

Now, let us project the feature functions of x_1, \ldots, x_n , that is $K(., x_1), \ldots K(., x_n)$. Show that

$$\langle K(., x_k), f_i \rangle = \lambda_i^{\frac{1}{2}} u_{ki} \tag{10}$$

- 3. Perform kernel PCA on the MNIST dataset. Choose the digits 1 and 7. Start with the linear kernel $G(x,y) = x^T y$. Sample n = 500 digits. Show 8 projections onto the first 8 principal directions. Do not forget to center the kernel, your result should look like Figure ??.
- 4. Redo the same but this time with a non linear kernel of your choice.