Constantes

$$\begin{split} k_B &= 1.381 \times 10^{-23} J K^{-1} = 8.26 \times 10^{-5} eV K^{-1} \\ m_e &= 9.11 \times 10^{-31} kg = 0.511 MeV c^{-2} \\ \varepsilon_0 &= \frac{1}{4\pi K} = 8.85 \times 10^{-12} Fm^{-1} \\ \hbar &= 1.055 \times 10^{-34} Js = 6.58 \times 10^{-16} eVs \\ e &= 1.602 \times 10^{-19} C \end{split}$$

Estructura cristalina 1

Redes de Bravais 1.1

a	triclínica
m	monoclínica
О	ortorómbica
t	tetragonal
h	hexagonal
c	cúbica

P	Primitiva
S	Centrada en una cara
I	Centrada en el cuerpo
R	Centrada romboidal
F	Centrada en las caras

14 posibles redes de Bravais

Tric.	Monoc.	Ortor.	Tetra.	Hex.	Cúbico
D	D C		1011	1 D 1 D	

1.2 Cosas

Base dual v matriz métrica

$$a^* = \frac{b \times c}{V}, \quad b^* = \frac{c \times a}{V}, \quad c^* = \frac{a \times b}{V}, \quad V = \det(\overline{a}, \overline{b}, \overline{c})$$
$$(\overline{a}^*, \overline{b}^*, \overline{c}^*) = \begin{pmatrix} \overline{a}^T \\ \overline{b}^T \\ \overline{c}^T \end{pmatrix}^{-1}, G = \begin{pmatrix} a \cdot a & a \cdot b & a \cdot c \\ b \cdot a & b \cdot b & b \cdot c \\ c \cdot a & c \cdot b & c \cdot c \end{pmatrix}, G^* = G^{-1}$$

Cambio de base

$$(\overline{a}', \overline{b}', \overline{c}') = (\overline{a}, \overline{b}, \overline{c})P, \quad \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = P^{-1} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$(x, y, z) = (x^*, y^*, z^*)P, \quad \begin{pmatrix} a'^* \\ b'^* \\ z'^* \end{pmatrix} = P^{-1} \begin{pmatrix} a^* \\ b^* \\ c^* \end{pmatrix}$$

Red recíproca y distancia interplanar $g_{hkl} = \frac{1}{d_{hkl}}$

Transferencia de momento $Q = \frac{4\pi \sin \theta}{\lambda}$

Condiciones de Laue $\overline{Q} = 2\pi \overline{g}_{hkl}$

Ley de Bragg $g_{hkl} = \frac{2 \sin \theta_{hkl}}{\lambda}$

Módulo de Young $\nu_s = \sqrt{\frac{\gamma}{a}}$

Factor de estructura

$$F_{hkl} = \sum_{p} f_{p} e^{-i2\pi \overline{g}_{hkl} \cdot \overline{r}_{p}}, \quad I \propto |F_{hkl}|^{2}$$

1.3 Estructuras comunes

FCC

$$\begin{cases} \overline{a} = \frac{1}{2}(1 \ 1 \ 0) \\ \overline{b} = \frac{1}{2}(0 \ 1 \ 1) \\ \overline{c} = \frac{1}{2}(1 \ 0 \ 1) \end{cases} \begin{cases} \overline{a}^* = (1 \ 1 \ -1) \\ \overline{b}^* = (-1 \ 1 \ 1) \\ \overline{c}^* = (1 \ -1 \ 1) \end{cases}$$

BCC

$$\begin{cases} \overline{a} = \frac{1}{2}(1 \ 1 \ -1) \\ \overline{b} = \frac{1}{2}(-1 \ 1 \ 1) \\ \overline{c} = \frac{1}{2}(1 \ -1 \ 1) \end{cases} \qquad \begin{cases} \overline{a}^* = (1 \ 1 \ 0) \\ \overline{b}^* = (0 \ 1 \ 1) \\ \overline{c}^* = (1 \ 0 \ 1) \end{cases}$$

Hexagonal

$$\begin{cases} \overline{a} = (1,0) \\ \overline{b} = (-\frac{1}{2}, \frac{\sqrt{3}}{2}) \end{cases} \begin{cases} \overline{a}^* = \frac{2\sqrt{3}}{3} (\frac{\sqrt{3}}{2}, \frac{1}{2}) \\ \overline{b}^* = \frac{2\sqrt{3}}{3} (0,1) \end{cases}$$

$$\frac{aP \mid mP, mS \mid oP, oS, oF, oI \mid tP, tI \mid hP, hR \mid cP, cF, cI}{aP \mid mP, mS \mid oP, oS, oF, oI \mid tP, tI \mid hP, hR \mid cP, cF, cI} G = \begin{pmatrix} a^2 & -\frac{a^2}{2} & 0 \\ -\frac{a^2}{2} & a^2 & 0 \\ 0 & 0 & c^2 \end{pmatrix}, \quad G^* = \begin{pmatrix} \frac{4}{3g^2} & \frac{2}{3q^2} & 0 \\ \frac{2}{3a^2} & \frac{4}{3a^2} & 0 \\ 0 & 0 & \frac{1}{c^2} \end{pmatrix}$$

En una hcp c = 1.633a

Grupos

$$m_{100} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} n_{001} = \begin{pmatrix} \cos\left(\frac{360}{n}\right) & -\sin\left(\frac{360}{n}\right) & 0 \\ \sin\left(\frac{360}{n}\right) & \cos\left(\frac{360}{n}\right) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Cambio de base a $\mathcal{B} = \{\overline{u}, \overline{v}, \overline{w}\}\$

$$M_{\mathcal{C}} = M_{\mathcal{B} \to \mathcal{C}} M_{\mathcal{B}} M_{\mathcal{B} \to \mathcal{C}}^{-1}, \quad M_{\mathcal{B} \to \mathcal{C}} = (\overline{u}, \overline{v}, \overline{w})$$

Reflexión vector director (a, b

$$M = \frac{1}{a^2 + b^2 + c^2} \begin{pmatrix} -a^2 + b^2 + c^2 & -2ab & -2ac \\ -2ab & a^2 - b^2 + c^2 & -2bc \\ -2ac & -2bc & a^2 + b^2 - c^2 \end{pmatrix}$$

Rotación respecto $\hat{u} = (u_x, u_y, u_z)$ $(c = \cos \theta, s = \sin \theta)$.

$$\begin{pmatrix} c + u_x^2(1-c) & u_x u_y(1-c) - u_z s & u_x u_z(1-c) + u_y s \\ u_y u_x(1-c) + u_z s & c + u_y^2(1-c) & u_y u_z(1-c) - u_x s \\ u_z u_x(1-c) - u_y s & u_z u_y(1-c) + u_x s & c + u_z^2(1-c) \end{pmatrix}$$

Centrosimétricos $(x,y,z) \to (-x,-y,-z)$ no tienen polarización espontánea

2 Dinámica de cristales

2.1 Densidad de estados

$$\overline{k} = \begin{pmatrix} \frac{2\pi}{L}n & \frac{2\pi}{L}m & \frac{2\pi}{L}l \end{pmatrix} \ \forall n, m, l \in \mathbb{Z}$$

Número de estados hasta k

$$N(k) = \int_{(\frac{2\pi}{6\pi})^2 (n^2 + m^2 + l^2) < k^2} dV = \frac{L^3}{6\pi^2} k^3 = \frac{V}{6\pi^2} k^3$$

1, 2 y 3 dimensiones respectivamente (y se cumple $\omega = \nu_s k$)

$$\begin{cases} g(k) = \frac{L}{\pi} \\ g(\omega) = \frac{L}{\pi \nu} \end{cases} \begin{cases} g(k) = \frac{L^2}{2\pi} k \\ g(\omega) = \frac{L^2}{2\pi \nu^2} \omega \end{cases} \begin{cases} g(k) = \frac{V}{2\pi^2} k^2 \\ g(\omega) = \frac{V}{2\pi^2 \nu_s^3} \omega^2 \end{cases}$$

2.2 Dispersión

Oscilador con masa m y constante k_s

$$F_n = m\ddot{x}_n = k_s(x_{n+1} + x_{n-1} - 2x_n)$$

$$- m\omega^2 A e^{i(kna - \omega t)} = k_s A e^{i(kna - \omega t)} (e^{ika} + e^{-ika} - 2) =$$

$$= -4k_s \sin^2\left(\frac{ka}{2}\right) \Rightarrow \omega = 2\sqrt{\frac{k_s}{m}} \left|\sin\left(\frac{ka}{2}\right)\right|$$

Oscilador con masa m y constantes alternadas k_1, k_2

$$\begin{cases} m\ddot{x}_n = k_1(y_{n-1} - x_n) + k_2(y_n - x_n) \\ m\ddot{y}_n = k_1(x_{n+1} - y_n) + k_2(x_n - y_n) \end{cases}$$

Ansatz

$$x_n = Ae^{i(kna - \omega t)}$$
 $y_n = Be^{i(kna - \omega t)}$

Ecuaciones

$$\begin{cases}
-m\omega^2 A = -A(k_1 + k_2) + B(k_1 e^{ika} + k_2) \\
-m\omega^2 B = -A(k_1 e^{ika} + k_2) + B(-k_1 - k_2)
\end{cases}$$

Forma matricial

$$m\omega^2 \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} (k_1 + k_2) & -k_2 - k_1 e^{ika} \\ -k_2 - k_1 e^{ika} & (k_1 + k_2) \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = K \begin{pmatrix} A \\ B \end{pmatrix}$$

$$0 = \det(K - m\omega^2 I) = |(k_1 + k_2) - m\omega^2|^2 - |k_2 + k_1 e^{ika}|^2$$

$$\omega_{\pm}(k) = \sqrt{\frac{k_1 + k_2}{m} \pm \frac{1}{m} \sqrt{(k_1 + k_2)^2 - 4k_1 k_2 \sin^2(ka/2)}}$$

Si $m_1 \neq m_2$ y k_s es la misma, sea $K_i = \frac{k}{m_i},$ entonces

$$\omega_{\pm}(k) = \sqrt{(K_1 + K_2) \pm \sqrt{(K_1 + K_2)^2 - 4K_1K_2\sin^2(ka/2)}}$$

2.3 Modelo de Einstein

$$E_n = \hbar\omega(n + \frac{1}{2}) \quad \Rightarrow \quad Z_1 = \frac{1}{2\sinh(\frac{\beta\hbar\omega}{2})}$$
$$\langle E_1 \rangle = -\frac{\partial}{\partial\beta}\ln Z_1 = \frac{\hbar\omega}{2}\coth\left(\frac{\beta\hbar\omega}{2}\right)$$

Energía y capacidad calorífica

$$\begin{split} \langle E \rangle &= \frac{3}{2} N \hbar \omega \coth \left(\frac{\beta \hbar \omega}{2} \right) \\ C_v &= \frac{\partial \langle E \rangle}{\partial T} = 3 N k_B (\beta \hbar \omega)^2 \frac{e^{\beta \hbar \omega}}{(e^{\beta \hbar \omega} - 1)^2} \end{split}$$

Definimos ahora $T_E = \frac{\hbar \omega_E}{k_B}$. En los límites

- Si $T \gg T_E \implies C_v = 3Nk_b$
- Si $T \ll T_E$ \Rightarrow $C_v = 3Nk_b(\frac{T_E}{T})^2 \frac{1}{\sinh^2(\frac{T_E}{2T})}$

2.4 Modelo de Debye

Aproximamos la ecuación de dispersión para kbaja como $\omega = \nu k$

$$3N = \int_0^{\omega_D} 3g(\omega) d\omega = \frac{V}{2\pi^2 \nu^3} \omega_D^3 \Rightarrow \boxed{\omega_D = \sqrt[3]{\frac{6\pi^2 \nu^3 N}{V}}}$$

donde hemos contado cada partícula y cada estado 3 veces y hemos usado $\!\!$

$$\omega = \nu k, \qquad g(k) = \frac{V}{2\pi^2} k^2, \qquad g(\omega) = \frac{V}{2\pi^2 \nu^3} \omega^2$$

La energía y la capacidad calorífica

$$\begin{split} \langle E \rangle &= \int_0^{\omega_D} \hbar \omega 3 g(\omega) \left(\frac{1}{e^{\beta \hbar \omega} - 1} + \frac{1}{2} \right) d\omega = \\ &= E_0 + \frac{3V\hbar}{2\pi^2 \nu^3} \int_0^{\omega_D} \frac{\hbar \omega^3}{e^{\beta \hbar \omega} - 1} d\omega \qquad (x = \frac{\hbar \omega}{k_B T}) \\ T_D &:= \frac{\hbar \omega}{k_B} \quad \Rightarrow \left| \langle E \rangle = \frac{3V k_B^4 T^4}{2\pi^2 \nu^3 \hbar^3} \int_0^{\frac{T_D}{T}} \frac{x^3}{e^x - 1} dx \right| \end{split}$$

La capacidad calorífica $C_v = \frac{\partial \langle E \rangle}{\partial T}$ en los extremos:

- Si $T \gg T_D$ \Rightarrow $\langle E \rangle \sim 3Nk_BT$ \Rightarrow $C_v \sim 3Nk_B$
- Si $T \ll T_D$ \Rightarrow $\langle E \rangle \sim \frac{3\pi^4 N k_B T^4}{5T_D^3}$ \Rightarrow $C_v \sim \frac{12\pi^4}{5} N k_B \left(\frac{T}{T_D}\right)^3$

3 No se, cuanticocosas

3.1 Drude model

$$\begin{split} n &= \frac{N}{V}; \quad \frac{dp}{dt} = F - \frac{p}{\tau}, \overline{j} = -ne\overline{v} = \sigma \overline{E} \\ mv &= p = -e\tau E; \quad R_H = \frac{-1}{ne} = \frac{\rho_{yx}}{|B|} \\ \overline{E} &= \tilde{\rho}\overline{j}; \quad \rho_{xx} = \rho_{yy} = \rho_{zz} \frac{m}{ne^2\tau} \end{split}$$

Hall resistivity $\rho_{xy} = -\rho_{yx} = \frac{B}{ne} \ (\overline{B} \propto \hat{z})$

Peltier coefficient $\Pi = -\frac{k_B T}{2e} = \frac{-c_v T}{3e}$

Seebeck coefficient $S = \frac{\Pi}{T}$

$$< v>_{gasid.} = \sqrt{\frac{8k_BT}{\pi m}}; \quad \kappa = \frac{1}{3}nc < v>^2 \tau = \frac{4}{\pi} \frac{n\tau k_B^2T}{m}$$

3.2 Gas de electrones libre

$$\begin{split} \overline{k} &= \frac{2\pi}{L}(n_1,n_2,n_3), \quad E(\overline{k}) = \frac{\hbar^2}{2m}|\overline{k}|^2, \quad n_F(x) = \frac{1}{e^x + 1} \\ N &= 2\sum_{\overline{k}} n_F(\beta(E(\overline{k}) - \mu)) = 2\frac{V}{(2\pi)^3} \int d\overline{k} n_F(\beta(E(\overline{k}) - \mu)) \end{split}$$

Fermi energy $(E_F = \mu(T \to 0))$

$$\begin{split} E_F &= \frac{\hbar^2 k_F^2}{2m} = k_B T_F, \quad p_F = \hbar k_F \\ N &= 2 \frac{V}{(2\pi)^3} \int_{|k| < k_F} dk \Rightarrow k_F = (3\pi^2 n)^{\frac{1}{3}}, \quad E_F = \frac{\hbar^2 (3\pi^2 n)^{\frac{2}{3}}}{2m} \end{split}$$

3.3 Capacidad calorífica

g densidad de estados / V

$$\begin{split} g(\varepsilon) &= \frac{3n}{2(E_F)^{\frac{3}{2}}} \varepsilon^{\frac{1}{2}} = \frac{(2m)^{\frac{3}{2}}}{2\pi^2\hbar^3} \varepsilon^{\frac{1}{2}}, \quad k = \sqrt{\frac{2\varepsilon m}{\hbar^2}} \\ N &= \int_0^\infty \!\! d\varepsilon g(\varepsilon) n_F(\beta(\varepsilon-\mu)), \quad E_T = \int_0^\infty \!\! d\varepsilon \varepsilon g(\varepsilon) n_F(\beta(\varepsilon-\mu)) \\ C &= \frac{\pi^2}{3} \left(\frac{3Nk_B}{2}\right) \left(\frac{T}{T_F}\right) \\ \overline{M} &= g(E_F) \mu_B^2 \overline{B}; \quad \mu_B = 0.67 \left(\frac{K}{Tesla}\right) k_B \end{split}$$

3.4 Teorema de Bloch

$$\psi_{\overline{k}}(\overline{r}) = u_{\overline{k}}(\overline{r})e^{i\overline{k}\cdot\overline{r}}, \quad E(\overline{k}) = E(\overline{k} + \overline{G})$$

Electrones casi-libres

$$\begin{split} &\psi_{+}\sim\cos(\pi\frac{x}{a}),\quad \psi_{-}\sim\sin(\pi\frac{x}{a})\\ &E^{\pm}=\frac{1}{2}(E^{0}_{\overline{k}-\overline{G}}+E^{0}_{\overline{k}})\pm\sqrt{\frac{1}{4}(E^{0}_{\overline{k}-\overline{G}}-E^{0}_{\overline{k}})+|V_{\overline{G}}|^{2}} \end{split}$$

Enlace fuerte, celda primitiva cúbica

$$\begin{split} E(\overline{k}) &\approx E_i - A - 2B(\cos k_x a + \cos k_y a + \cos k_z a) \\ A &= -\langle \varphi_{i,n} | v | \varphi_{i,n} \rangle, \quad B = -\langle \varphi_{i,m} | v | \varphi_{i,n} \rangle \\ \overline{v} &= \nabla_{\overline{k}} \omega(\overline{k}) = \frac{1}{\hbar} \nabla_{\overline{k}} E(\overline{k}) \end{split}$$

Carga de un campo $\overline{\mathcal{E}}$

$$\dot{v}_i = \frac{1}{\hbar^2} \sum_j \frac{\partial^2 E}{\partial k_i \partial k_j} (-e \mathcal{E}_j), \quad \left(\frac{1}{m^*}\right)_{ij} = \frac{1}{\hbar^2} \frac{\partial^2 E(\overline{k})}{\partial k_i \partial k_j}$$

Caso totalmente degenerado

$$m^* = \frac{\hbar^2}{\left(\frac{d^2 E}{dk^2}\right)}, \quad E(\overline{k}) = E_0 + \frac{\hbar^2}{2m^*}|k|^2, \quad \sigma \simeq \frac{e^2 \tau(E_F)n}{m^*}$$

Semiconductores

Densidad de estados

$$D_{C} = \frac{(2m_{n}^{*})^{2/3}}{2\pi^{2}\hbar^{3}} \sqrt{E - E_{C}}, \quad D_{V} = \frac{(2m_{p}^{*})^{2/3}}{2\pi^{2}\hbar^{3}} \sqrt{E_{V} - E}$$
Fermi energy $(E_{F} = \mu(T \to 0))$

$$n = 2\left(\frac{2\pi m_{n}^{*}k_{B}T}{\hbar^{2}}\right)^{3/2} e^{\beta(E_{F} - E_{C})} = N_{eff}^{C}e^{\beta(E_{F} - E_{C})}$$

$$E_{F} = \frac{\hbar^{2}k_{F}^{2}}{2m} = k_{B}T_{F}, \quad p_{F} = \hbar k_{F}$$

$$N = 2\frac{V}{(2\pi)^{3}} \int_{|k| < k_{F}} dk \Rightarrow k_{F} = (3\pi^{2}n)^{\frac{1}{3}}, \quad E_{F} = \frac{\hbar^{2}(3\pi^{2}n)^{\frac{2}{3}}}{2m} \quad n_{F} = N_{eff}^{C}N_{eff}^{C}e^{-\beta E_{g}} = 4\left(\frac{k_{B}T}{2\pi\hbar^{2}}\right)^{3} (m_{n}^{*}m_{p}^{*})^{3/2}e^{-\beta E_{g}}$$

$$e^{2\beta E_{F}} = \frac{N_{eff}^{V}}{N_{eff}^{C}}e^{\beta(E_{V} + E_{C})}, \quad E_{F} = \frac{E_{C} + E_{V}}{2} + \frac{3}{4}k_{B}T \ln\left(\frac{m_{p}^{*}}{m_{n}^{*}}\right)$$

$$\mu = \frac{e\tau}{m^{*}}, \quad \sigma = e(n\mu_{n} + p\mu_{p}), \quad E_{g} = E_{C} - E_{V}$$

Semiconductores dopados

$$\begin{split} E_n &= \frac{m^*e^4}{2(4\pi\varepsilon\hbar)^2}\frac{1}{n^2}, \quad r = \varepsilon\frac{h^2}{\pi m^*e^2}\\ n &\approx \frac{2N_D}{1+\sqrt{1+4\frac{N_D}{N_{eff}^G}}e^{\beta E_d}} \end{split}$$

Unión p-n

$$n_{n} = N_{eff}^{C} e^{\beta(E_{F} - E_{C}^{n})}; \quad p_{p} = N_{eff}^{V} e^{\beta(E_{V} - E_{F})}$$

$$d_{n}^{0} = \sqrt{\frac{2\varepsilon V_{D}}{e} \frac{N_{A}/N_{D}}{N_{A} + N_{D}}}; \quad d_{p}^{0} = \sqrt{\frac{2\varepsilon V_{D}}{e} \frac{N_{D}/N_{A}}{N_{A} + N_{D}}}$$

$$d_{n}(U) = d_{n}^{0} \sqrt{1 - \frac{U}{V_{D}}}; \quad d_{p}(U) = d_{p}^{0} \sqrt{1 - \frac{U}{V_{D}}}$$

$$eV_{D} = k_{B}T \ln\left(\frac{n_{n}p_{p}}{n_{s}^{2}}\right); \quad I(U) = (I_{n}^{gen} + I_{p}^{gen})(e^{\beta eU} - 1)$$

5 Mates

$$\sin^2\left(\frac{x}{2}\right) = \frac{1-\cos a}{2}$$

$$\int_0^\infty \frac{1}{e^x - 1} dx = +\infty, \quad \int_0^\infty \frac{1}{e^x + 1} dx = \ln(2)$$

$$\int_0^\infty \frac{x}{e^x - 1} dx = \frac{\pi^2}{6}, \quad \int_0^\infty \frac{x}{e^x + 1} dx = \frac{\pi^2}{12}$$

$$\int_0^\infty \frac{x^2}{e^x - 1} dx = 2\zeta(3), \quad \int_0^\infty \frac{x^2}{e^x + 1} dx = \frac{3}{2}\zeta(3)$$

$$\int_0^\infty \frac{x^3}{e^x - 1} dx = \frac{\pi^4}{15}, \quad \int_0^\infty \frac{x^3}{e^x + 1} dx = \frac{7\pi^4}{120}$$