NONLINEAR PROBLEMS

$$I = \frac{E - V}{R} \tag{1}$$

ALSO, FOR THE DIODE:

$$I = I_{s} (e^{gV/kT} - 1)$$

$$\frac{kT}{q} \sim 25 \text{ mV}$$
REVERSE SATURATION Q AT 300 K
CURRENT

COMBINING (1) AND (2):

$$\frac{E-V}{R} = I_s (e^{gV/kT}-1)$$

OR,

$$V = E - RI_{s}(e_{A}^{gV/kT} - 1)$$
NONLINEAR IN V

LET

$$f(V) \equiv V - E + RT_s (e^{gV/kT} - 1)$$

THEN, THE PROBLEM TO BE SOLVED IS:

$$f(\vee) = 0.$$

SUCCESSIVE SUBSTITUTION

1. SOLVE FOR
$$V^{(k+1)}$$
:
$$V^{(k+1)} - E + R I_s (e^{gV^{(k)}/kT} - 1) = 0$$
or,
$$V^{(k+1)} - V^{(k)} + f^{(k)} = 0$$

SUCCESSIVE SUBSTITUTION E = 100 mV, $I_s = 1\mu\text{A}$, $R = 500 \Omega$

k	V	f	
<u> </u>	0.000000	-0.100000	
1	0.100000	0.026799	
2	0.073201	-0.017954	
3	0.091155	0.009819	
4	0.081336	-0.006224	
5	0.087560	0.003658	
6	0.083902	-0.002259	
7	0.086162	0.001356	
8	0.084805	-0.000829	
9	0.085634	0.000501	
10	0.085133	-0.000305	
11	0.085438	0.000185	
12	0.085253	-0.000112	
13	0.085365	0.000068	
14	0.085297	-0.000041	
15	0.085339	0.000025	
16	0.085314	-0.000015	
17	0.085329	0.000009	
18	0.085320	-0.000006	
19	0.085325	0.000003	
20	0.085322	-0.000002	
21	0.085324	0.00001	
22	0.085323	-0.000001	
23	0.085323	85323 0.000000	

NEWTON - RAPHSON

- O. Guess $V^{(0)}$, e.g. $V^{(0)} = 0$.

 SET k = 0.
- 1. SOLVE FOR V (k+1):

$$f'^{(k)}(V^{(k+1)}-V^{(k)})+f^{(k)}=0$$

WHERE

$$f'(R) = \frac{df}{dV}\Big|_{V=V^{(R)}}$$

- 2. If f(V(R+1))

 IS SMALL ENOUGH, STOP.
 ELSE:
- 3. SET R = k+1.

 GOTO 1.

NEWTON-RAPHSON $E = 100 \text{ mV}, I_s = 1\mu\text{A}, R = 500 \Omega$

k	V	f	f'
0	0.000000	-0.100000	1.020000
1	0.098039	0.022779	2.009591
2	0.086704	0.002243	1.641555
3	0.085338	0.000024	1.607432
4	0.085323	0.000000	1.607077

QUADRATIC CONVERGENCE:

EXPAND F IN A TAYLOR SERIES ABOUT V(R):

$$f(V) = f^{(k)} + f'^{(k)}(V-V^{(k)}) + \frac{1}{2} f''^{(k)}(V-V^{(k)})^{2} + \cdots$$

IN PARTICULAR, IF V= Vs, THE SOLUTIONS

$$f(V_s) = f^{(k)} + f'^{(k)}(V_s - V^{(k)})$$

$$+ \frac{1}{2} f''^{(k)} \left(\underbrace{V_s - V^{(k)}}_{TGNORE} \right)^2 + \cdots$$

$$= 0$$

$$E_k = |V_s - V^{(k)}| \quad \text{TO } V_s$$

THUS,

$$f^{(k)} + f'^{(k)} (V_s - V^{(k)}) + \frac{1}{2} f''^{(k)} \xi^2 = 0$$

DIVIDE BY f'(k):

$$\frac{f^{(h)}}{f^{\prime(h)}} + (V_{s} - V^{(h)}) + \frac{1}{2} \frac{f^{\prime\prime(h)}}{f^{\prime(h)}} \varepsilon_{h}^{2} = 0$$

RE-ARRANGE:

$$V_{S} - \left(\frac{V^{(k)} - f^{(k)}}{f'(k)}\right) = -\frac{1}{2} \frac{f''(k)}{f'(k)} \varepsilon_{k}^{2}$$

$$= V^{(k+1)}$$

$$\frac{V_{s} - V^{(k+1)}}{\sum_{k+1}^{k} = |V_{s} - V^{(k+1)}|} = -\frac{1}{2} \frac{f''(k)}{f'(k)} \leq \frac{2}{k}$$

$$\varepsilon_{k+1} = \frac{1}{2} \left| \frac{f''(k)}{f'(k)} \right| \varepsilon_{k}^{2}$$

THEN

Suppose

THEN

NONLINEAR NETWORKS

e.g., DIODE:

$$J_k = -J_s \left(e^{qV_k/kT} - 1 \right)$$

NETWORK EQUATIONS :

KVL :
$$\underline{\underline{\underline{Y}}} = \underline{\underline{\underline{A}}}^{\mathsf{T}} \underline{\underline{\underline{Y}}}_{\mathsf{N}} \leftarrow \mathsf{NODAL} \ \mathsf{VOLTAGES}$$

BRANCH

COMBINING :

LET

$$- \vec{\theta} \hat{I} [\vec{\theta}_L \vec{\lambda}^{\vee}] + \vec{\theta} \vec{\lambda} \vec{E}$$

$$\vec{\xi} [\vec{\lambda}^{\vee}] = (\vec{\theta} \vec{\lambda} \vec{\theta}_L) \vec{\lambda}^{\vee}$$

THEN THE PROBLEM TO BE SOLVED IS:

$$\bar{\mathbf{t}}[\bar{\lambda}^{\prime}] = 0$$

SUCCESSIVE SUBSTITUTION:

FIXED AND SOLVE A LINEAR

PROBLEM.

Successive Substitution

- O. GUESS $Y_n^{(0)}$, e.g., $Y_n^{(0)} = 0$ SET k = 0.
- 1. SOLVE FOR Y (k+1):

or, $\left(\underline{A} \not \underline{A}^{\mathsf{T}}\right) \left(\underline{\nabla}_{0}^{(\mathsf{R}+\mathsf{i})} - \underline{\nabla}_{n}^{(\mathsf{k})}\right) + \underline{f}^{(\mathsf{k})} = 0$

- 2. IF $f^{(k+1)}$ IS SHALL ENOUGH, STOP. ELSE:
- 3. SET k= k+1. GOTO 1.

TO GET NEWTON-RAPHSON, REPLACE:

$$\left(\underline{A} \stackrel{?}{\neq} \underline{A}^{T}\right)\left(\underline{Y}_{n}^{(k+1)} - \underline{Y}_{n}^{(k)}\right) + \underline{f}^{(k)} = 0$$

BY:

$$\frac{q\bar{t}_{(k)}}{q\bar{t}_{(k)}}\left(\bar{\lambda}^{\nu}_{(k+1)}-\bar{\lambda}^{\nu}_{(k)}\right)+\bar{t}_{(k)}=0$$

JACOBIAN MATRIX 3 (k)

$$\mathfrak{F}_{ij}^{(k)} = \frac{3\lambda^{2}}{3\lambda^{2}} \left| \lambda^{2} = \lambda^{2} \right|_{(k)}$$

RECALL,

THUS,

$$= \frac{9\overline{\lambda}^{\nu}}{9} \left(\overline{\overline{a}}_{1} \overline{\lambda}^{\nu} \right) = \overline{\overline{a}}_{1}$$

$$= \frac{9\overline{\lambda}}{9\overline{a}} \frac{9\overline{\lambda}^{\nu}}{9\overline{\lambda}^{\nu}}$$

$$= \frac{9\overline{\lambda}^{\nu}}{9\overline{a}} \frac{9\overline{\lambda}^{\nu}}{2\overline{a}}$$

$$= (\overline{\overline{a}}_{1} \overline{\overline{a}}_{1}) - \overline{\overline{a}}_{2} \frac{9\overline{\lambda}^{\nu}}{2\overline{a}}$$

HENCE,

$$\frac{\partial \vec{r}}{\partial \vec{r}} = (\vec{E} \vec{A} \vec{A}) - \vec{A} \vec{D} \vec{A} \vec{A}$$
Available from Device characteristics

SUCCESSIVE SUBSTITUTION:

$$\left(\underline{\underline{A}}\,\underline{\underline{A}}\,\underline{\underline{A}}^{T}\right)\left(\,\underline{\underline{A}}^{(k+1)}\,-\,\underline{\underline{A}}^{(k)}\,\right)\,+\,\underline{\underline{L}}^{(k)}=0$$

NEWTON- RAPHSON:

$$\left(\vec{b}\vec{\lambda}\vec{b}_{\perp} - \vec{b}\frac{\partial\vec{\lambda}}{\partial\vec{\lambda}}\vec{b}_{\perp}\right)\left(\vec{\lambda}_{(k+1)}^{(k+1)} - \vec{\lambda}_{(k)}^{(k)}\right) + \ell_{(k)}=0$$

TRANSISTOR (EBERS- MOLL):

DEPENDENT

CURRENT SOURCE

MAGNETIC CIRCUITS

NL 21

$$(R_g + R_e) \gamma = M$$

$$R_e = \frac{L_e}{S\mu}$$

$$\mu = \frac{B}{H}$$

$$= \mu(B)$$

$$B = FLUX DENSITY$$

$$= \gamma / 5$$

THUS,

$$(R_g + R(Y))Y = M$$
Nonlinear in Y