### PRESENTATION

By Rishabh Dubey

### AGENDA



- Quick Revision Quiz (Pandas)
- 2 Introduction to Data Visualization
- 3 Core Graphs
- 4 Essential Matploltlib Functions
- 6 Class Hands-on Exercise
- 7Q&A & Wrap-up

### Quiz Time

- Q1: What is Pandas primarily used for?
  - A) Web development
  - B) Data manipulation and analysis
  - C) Image processing
  - D) Machine learning models

Q2: Which data structure in Pandas is used to represent a table with labeled axes?

- A) Series
- B) DataFrame
- C) Array
- D) Dictionary

Q3: How do you check the first 5 rows of a DataFrame named df?

- A) df.head(5)
- B) df.tail(5)
- C) df.show(5)
- D) df.first(5)

Q4: What function is used to remove missing values from a DataFrame?

- A) dropna()
- B) fillna()
- C) replace()
- D) remove\_na()

- Q5: What does the interpolate() function do in Pandas?
- A) Removes missing values
- B) Fills missing values using interpolation
- C) Drops duplicate values
- D) Sorts the DataFrame

# Introduction to Data Visualization

### INTRODUCTION TO MATPLOTLIB

### What is Matplotlib?

- A Python library for visualization
- Works with NumPy & Pandas
- Creates static, animated, and interactive plots

### IMPORTANT GRAPHS IN MATPLOTLIB

| <b>Graph Type</b> | Function      | Use Case                       |
|-------------------|---------------|--------------------------------|
| Line Plot         | plt.plot()    | Trends over time               |
| Bar Chart         | plt.bar()     | Comparing categories           |
| Histogram         | plt.hist()    | Distribution of data           |
| Scatter Plot      | plt.scatter() | Relationship between variables |
| Box Plot          | plt.boxplot() | Detecting outliers             |
| Pie Chart         | plt.pie()     | Showing proportions            |

### LINE PLOT — TRENDS OVER TIME

- What is a Line Plot?
  - A continuous line connecting data points
  - Used to show trends, patterns, and changes over time

#### When to Use?

- When analyzing time-series data
- When tracking continuous data changes

### **When NOT to Use?**

- X When comparing categories (Use bar chart instead)
- X When dealing with discrete variables

### import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5]y = [10, 20, 15, 25, 30]plt.plot(x, y, marker='o', linestyle='--', color='r') plt.xlabel("Time") plt.ylabel("Value") plt.title("Line Plot Example")

plt.show()

### BAR CHART - COMPARING CATEGORIES

- > What is a Bar Chart?
  - Represents categorical data with rectangular bars
  - Bar height represents value/count

- **When to Use?**
- When comparing categories or groups
- When showing discrete data distributions

- **When NOT to Use?**
- XWhen visualizing continuous trends (Use line plot instead)
- X When displaying too many categories (Use grouped bar charts or different visualization)

```
categories = ["A", "B", "C", "D"]
values = [10, 15, 7, 12]
plt.bar(categories, values, color='blue')
plt.xlabel("Categories")
plt.ylabel("Values")
plt.title("Bar Chart Example")
plt.show()
```

### HISTOGRAM – DATA DISTRIBUTION

- What is a Histogram?
  - Shows frequency distribution of a dataset
  - Bins group data into ranges

#### When to Use?

- When analyzing distribution & shape of data
- When checking skewness or normality

### **When NOT to Use?**

- X When comparing individual values (Use bar chart)
- X When dealing with categorical data

```
import numpy as np
data = np.random.randn(1000)
plt.hist(data, bins=20, color='green', alpha=0.7)
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.title("Histogram Example")
plt.show()
```

### SCATTER PLOT – RELATIONSHIPS BETWEEN VARIABLES

- ★ What is a Scatter Plot?
  - Represents individual data points
  - Helps to identify correlations & patterns

#### When to Use?

- When analyzing relationships between two variables
- When checking for clusters or trends

### **When NOT to Use?**

- X When one variable is categorical (Use bar chart instead)
- X When there's too much overlapping data (Use hexbin plot)

```
x = [10, 20, 30, 40, 50]
y = [5, 15, 25, 35, 45]
plt.scatter(x, y, color='red')
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.title("Scatter Plot Example")
plt.show()
```

### BOX PLOT – DETECTING OUTLIERS

- ★ What is a Box Plot?
  - Displays data distribution, median, and outliers
  - Uses quartiles to summarize spread
- **When to Use?**
- When detecting outliers & anomalies
- When comparing multiple distributions

- **When NOT to Use?**
- X When visualizing exact values (Use scatter plot)
- X When comparing few data points

data = [7, 8, 5, 12, 15, 9, 10, 18, 25, 30] plt.boxplot(data) plt.title("Box Plot Example") plt.show()

### PIE CHART – SHOWING PROPORTIONS

- What is a Pie Chart?
  - Represents parts of a whole
  - Each slice = percentage of total

### **★**When to Use?

- When showing proportions & percentages
- When comparing a few categories

### **When NOT to Use?**

- X When categories exceed 5-6 (Use bar chart instead)
- X When values are similar in size (Difficult to differentiate)

labels = ["A", "B", "C", "D"]sizes = [30, 20, 25, 25]plt.pie(sizes, labels=labels, autopct="%1.1f%%", colors=["red", "blue", "green", "yellow"]) plt.title("Pie Chart Example") plt.show()

### BAR GRAPH VS HISTOGRAM



### Key Differences

| Feature                  | Bar Graph                                       | Histogram                                        |
|--------------------------|-------------------------------------------------|--------------------------------------------------|
| Purpose                  | Compares categories                             | Shows data distribution                          |
| Data Type                | Categorical data (e.g., colors, brands, cities) | Continuous data (e.g., age, height, temperature) |
| Bars Touch?              | X No (Bars have gaps)                           | ✓ Yes (Bars are connected)                       |
| X-Axis<br>Representation | Discrete categories                             | Ranges (bins)                                    |
| Use Case                 | Comparing different groups                      | Understanding spread & frequency                 |

### MATPLOTLIB IMPORTANT FUNCTIONS

| Function      | Purpose                   |
|---------------|---------------------------|
| plt.plot()    | Creates a line plot       |
| plt.bar()     | Creates a bar<br>chart    |
| plt.hist()    | Creates a<br>histogram    |
| plt.scatter() | Creates a scatter<br>plot |
| plt.boxplot() | Creates a box plot        |

| plt.pie()    | Creates a pie<br>chart |
|--------------|------------------------|
| plt.xlabel() | Adds X-axis label      |
| plt.ylabel() | Adds Y-axis label      |
| plt.title()  | Adds title             |
| plt.legend() | Adds legend            |
| plt.grid()   | Adds gridlines         |
| plt.show()   | Displays the plot      |

### LINK TO MATPLOTLIB GIST

https://gist.github.com/Rishabh7406/135b59cb8133e03d7

3cdd9ddb121090a



### Practice Task: Matplotlib Hands-On (15-20 mins)

Task: Practice Key Matplotlib Functions

Complete the following tasks using Matplotlib:

#### Line Plot:

- Plot x = [1, 2, 3, 4, 5] and y = [5, 10, 5, 15, 10].
- Add a title, labels, and a grid.

#### 2 Bar Chart:

- Create a bar chart for Categories = ["A", "B", "C", "D"] with values [12, 7, 15, 10].
- Customize colors and add axis labels.

### 3 Histogram:

- Generate 500 random numbers and plot a histogram.
- Use 20 bins and apply transparency (alpha=0.7).

### Practice Task: Matplotlib Hands-On (15-20 mins)

- 4 Scatter Plot:
  - Generate two sets of random numbers (size 50) and plot a scatter plot.
  - Customize markers and add a title.

- 5 Subplots(optional):
  - Create a 1x2 subplot:
    - First Plot: Line Plot
    - Second Plot: Bar Chart
  - Use plt.tight\_layout() for spacing.

### THANK YOU