Introduction to Kernels and Regularization

M. Vazirgiannis

BOSCIM, LIX, École Polytechnique

October, 2022

Outline

Kernels

Suppot Vector Machines

Regularization

Mapping

- Map data points into an inner product space H with some function $\varphi: \varphi: x \to \varphi(x) \in H$
- \bullet The map φ aims to convert the nonlinear relations into linear ones.

Constructing Features

Problems

- Need to be an expert in the domain
- Features may not be adequate
- Extracting features can sometimes be computationally expensive
 - Example: second order features in 1000 dimensions.

Solutions

- Calculate a similarity measure in the feature space instead of the coordinates of the vectors there,
- apply algorithms that only need the value of this measure

Kernels as distance matrices

- ullet Define a "similarity/distance function": $K: X \times X \to R$
- Represent a set of n data points $S = \{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n}\}$ by the $n \times n$ matrix: $\mathbf{K}[ij] := K(x_i, x_j)$ where $K(x_i, x_j)$ is the distance/similarity as depicted in K(S)

Kernels

• A kernel is a function $k: X \times X \to R$ for which the following property holds

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle$$

where φ is a mapping from X to a Hilbert (inner product) space H

$$\varphi: \mathbf{X} \to \varphi(\mathbf{X}) \in \mathbf{H}$$

Kernel Example

• Quadratic Features in \mathbb{R}^2

$$\phi: \mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \to \phi(\mathbf{x}) = (\mathbf{x}_1^2, \mathbf{x}_2^2, \sqrt{2}\mathbf{x}_1\mathbf{x}_2)$$

Inner product in the feature space

$$\langle \phi(x), \phi(z) \rangle = \left\langle \left(x_1^2, x_2^2, \sqrt{2}x_1 x_2 \right), \left(z_1^2, z_2^2, \sqrt{2}z_1 z_2 \right) \right\rangle$$

= $x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2 = \langle x, z \rangle^2$

Kernel trick

- enable operation in a high-dimensional, implicit feature space
- without computing the coordinates of the data in that space $\varphi(x)$
- simply computing inner products between the images of all pairs of data in the feature space
- need a function: $k(x, x') = \langle \varphi(x), \varphi(x') \rangle$
 - computationally cheaper than the explicit computation of the coordinates.
 - introduced for sequence data, graphs, text, images, as well as vectors.

Properties of a Kernel Matrix

- Symmetric
 - K due to the symmetry of the dot product:

$$K_{ij} = K_{ji}$$
 as $\langle \phi(x), \phi(x') \rangle = \langle \phi(x'), \phi(x) \rangle$

- K is Positive Semidefinite
 - $a^T Ka \ge 0$ for all $a \in \mathbb{R}^n$ and all kernel matrices $K \in \mathbb{R}^{n \times n}$. Proof:

$$\sum_{i,j}^{n} a_{i} a_{j} K_{ij} = \sum_{i,j}^{n} a_{i} a_{j} \left\langle \phi\left(x_{i}\right), \phi\left(x_{j}\right) \right\rangle$$

$$= \left\langle \sum_{i}^{n} a_{i} \phi\left(x_{i}\right), \sum_{j}^{n} a_{j} \phi\left(x_{j}\right) \right\rangle = \left\| \sum_{i}^{n} a_{i} \phi\left(x_{i}\right) \right\|^{2} \geq 0$$

Constructing Kernels from Kernels

- Assuming valid kernels $k_1(x, z)$ and $k_2(x, z)$, the following are also valid kernels:
 - $k(x,z) = ck_1(x,z)$, where $c \in \mathbb{R}^+$
 - $k(x,z) = k_1(x,z) + k_2(x,z)$
 - $k(x,z) = k_1(x,z)k_2(x,z)$
 - $k(x,z) = \exp(k_1(x,z))$
 - $k(x, x') = k_a(x_a, x'_a) + k_b(x_b, x'_b)$, where $x = (x_a, x_b)$
 - $k(x, x') = k_a(x_a, x'_a) k_b(x_b, x'_b)$, where $x = (x_a, x_b)$

Typical Kernels

Linear

$$k(x, x') = \langle x, x' \rangle$$

Laplacian RBF

$$k(x, x') = \exp\left(-\lambda \frac{\|x - x'\|^2}{\sigma}\right)$$

Gaussian RBF

$$k(x, x') = \exp\left(-\lambda \frac{\|x - x'\|^2}{\sigma^2}\right)$$

Polynomial

$$k(x, x') = (\alpha \langle x, x' \rangle + c)^d, \alpha, c \ge 0, d \in \mathbb{N}$$

Sigmoid

$$k(x, x') = \tanh(\alpha \langle x, x' \rangle + b)$$

Laplacian Kernel

Gaussian Kernel

Polynomial Kernel

$$k(x, x') = (\langle x, x' \rangle + c)^d, c \geq 0, d \in N$$

Outline

Kernels

Suppot Vector Machines

Regularization

SVMs

- Issues that motivated SVMs:
 - bias variance tradeoff
 - Over-fitting
- For a given learning task, a finite amount of training data, the best generalization performance is achieved by jointly optimizing
 - accuracy attained on a training set,
 - "capacity": ability to learn from any training set without error

SVMs

- Goal: find a a hyperplane (i.e. decision boundary) linearly separating our classes.
- Boundary equation: $\mathbf{w}^T \mathbf{x} + b = 0$
 - if $x_i : \mathbf{w}^T \mathbf{x} + b > 0$ then $y_i = 1$
 - if $x_i : \mathbf{w}^T \mathbf{x} + b < 0$ then $y_i = -1$ equivalent: $y(\mathbf{w}^T \mathbf{x} + b) \ge 1$

SVMs - distance between the boundaries

- lines are parallel, with same parameters w, b
- Assume x_1 on $\mathbf{w}^T \mathbf{x} + b = 1$, the closest point of x_2 on line $\mathbf{w}^T \mathbf{x} + b = -1$. Thus $x_2 = \mathbf{w}^T \mathbf{x} + b = -1$ and $\lambda \mathbf{w}$ the distance (x_1, x_2) .
- Solving for $\lambda: \mathbf{w}^T \mathbf{x}_2 + b = 1$ where $\mathbf{x}_2 = \mathbf{x}_1 + \lambda \mathbf{w} => \lambda = \frac{2}{\mathbf{w}^T \mathbf{w}} = \frac{2}{\|\mathbf{w}\|^2}$

SVMs – optimization formulation

- maximize the distance between the two boundaries defining the classes
 to avoid mis-classifications: maximal margin
- Objective :

$$\mathsf{max}\,\frac{2}{\sqrt{\boldsymbol{w}^T\boldsymbol{w}}}\approx \mathsf{min}\,\frac{\sqrt{\boldsymbol{w}^T\boldsymbol{w}}}{2}\approx \mathsf{min}\,\frac{\boldsymbol{w}^T\boldsymbol{w}}{2}$$

• Quadratic formulation problem:

Soft Margin extension

- We allow some miss-classification: some data points on the other side of the boundary (slack variables: $\epsilon_i > 0$ for each point x_i).
- The problems becomes:

$$\min_{\mathbf{w},b,C} \frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_{l} \epsilon_{i}$$
Subject to: $y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) >= 1 - \epsilon_i, \epsilon_i >= 0 \, (\forall \mathbf{x}_i)$

SVMs - Non Linear Decision Boundary

• If data are not linearly separable we consider a mapping to a higher dimensional space via a function $\varphi(\mathcal{X})$. Then the optimization becomes:

$$\min_{\mathbf{w},b,C} \frac{\mathbf{w}^T \mathbf{w}}{2} + C \sum_{i} \epsilon_i$$

Subject to:
$$y_i \left(\mathbf{w}^T \phi \left(\mathbf{x}_i \right) + b \right) >= 1 - \epsilon_i, \epsilon_i >= 0 \left(\forall \mathbf{x}_i \right)$$

SVMs – reformulation as a Lagrancian

- Introduce Langrancian multipliers to represent the condition
- $y_i \left(\mathbf{w}^T \phi \left(\mathbf{x}_i \right) + b \right)$ should be as close to 1 as possible :
- This condition is captured by: $\max_{\alpha_i \geq 0} \alpha_i \left[1 y_i \left(\mathbf{w}^T \phi \left(\mathbf{x}_i \right) + b \right) \right]$
 - When $y_i \left(\mathbf{w}^T \phi \left(\mathbf{x}_i \right) + b \right) \geq 1$ the expressions is maximal when $\alpha_i = 0$
 - Otherwise $y_i\left(\mathbf{w}^T\phi\left(\mathbf{x}_i\right)+b\right)<1$, so $1-y_i\left(\mathbf{w}^T\phi\left(\mathbf{x}_i\right)+b\right)$ is a positive value and the expression is maximal when $\alpha_i\to\infty$
- This results in penalizing (large α_i) misclassified data points, while 0 penalty to properly classified ones
- Thus we have the following formulation:

$$\min_{\mathbf{w},b} \left[\frac{\mathbf{w}^{T}\mathbf{w}}{2} + \sum_{i} \max_{\alpha_{i} \geq 0} \alpha_{i} \left[1 - y_{i} \left(\mathbf{w}^{T} \phi \left(\mathbf{x}_{i} \right) + b \right) \right] \right]$$

SVMs - reformulation as a Lagrancian

$$\min_{\mathbf{w},b} \left[\frac{\mathbf{w}^T \mathbf{w}}{2} + \sum_{i} \max_{\alpha_i \geq 0} \alpha_i \left[1 - y_i \left(\mathbf{w}^T \phi \left(\mathbf{x}_i \right) + b \right) \right] \right]$$

- Preventing α variables to ∞ impose constraints $0 \le \alpha_i \le C$
- We define the dual problem interchanging the max, min:

$$\max_{\alpha \geq 0} \left[\min_{\mathbf{w}, b} J(\mathbf{w}, b; \alpha) \right]$$

where
$$J(\mathbf{w}, b; \alpha) = \frac{\mathbf{w}^T \mathbf{w}}{2} + \sum_{i} \alpha_i \left[1 - y_i \left(\mathbf{w}^T \phi \left(\mathbf{x_i} \right) + b \right) \right]$$

• To solve the optimization problem: $\frac{\partial J}{\partial \mathbf{w}} = 0$ hence $\mathbf{w} : \sum_{i} \alpha_{i} y_{i} \phi(x_{i})$, $\frac{\partial J}{\partial b} = 0$ hence $\sum_{i} \alpha_{i} y_{i} = 0$, Substitute and simplify:

$$\min_{\mathbf{w},b} J(\mathbf{w},b;\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\mathbf{x_{i}})^{T} \phi(\mathbf{x_{j}})$$

The the dual problem is:

$$\max_{\alpha \geq 0} \left[\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi \left(\mathbf{x_{i}} \right)^{T} \phi \left(\mathbf{x_{j}} \right) \right]$$

Subject to:
$$\sum_{i} \alpha_{i} y_{i} = 0 \text{ and } 0 \leq \alpha_{i} \leq C$$

SVM - Kernel trick

• As dimensionality may be infinite computation of $\phi(\mathbf{x}_i)^T$, $\phi(\mathbf{x}_j)$ may be intractable Kernel Trick:

$$K\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i}^{T},\mathbf{x}_{j}\right)^{2}=\phi\left(\mathbf{x}_{i}\right)^{T},\phi\left(\mathbf{x}_{j}\right)$$

 Thus our computation is simplified with rewriting the dual in terms of the kernel:

$$\max_{\alpha \geq 0} \left[\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \right]$$

SVM – Decision function

• To classify a novel instance x, having learned the optimal α_i parameters:

$$f(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w}^{T}\mathbf{x} + b\right) = \sum_{i} \alpha_{i} y_{i} K\left(\mathbf{x_{i}}, \mathbf{x}\right) + b$$

- Setting $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \phi(\mathbf{x_{i}})$ and using the kernel trick
- α_i are non zero for $\varphi(x_i)$ on or close to the boundary support vectors

Outline

Kernels

- Suppot Vector Machines
- Regularization

Training vs. Test error

 $\bullet \ \ \text{Model complexity causes overfitting}: (\ \frac{\text{MSE}_{\text{test}}}{\text{MSE}_{\text{train}}})_{\textit{degree}=3} \leq (\ \frac{\text{MSE}_{\text{test}}}{\text{MSE}_{\text{train}}})_{\textit{degree}=9}$

https://en.wikipedia.org/wiki/Test_set t

Polynomial Curve fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Model complexity vs. Overfitting

Polynomial coefficients

	M1	МЗ	М5	N	19
W ₀	-3.16	-1.54	0.57	-50.04	
W1		-12.13	-16.01	1618.2	22
W2		13.81	-16.05	-21585.6	35
W3			88.54	141927.3	36
W4			-61.42	-515139.4	14
W5				1083133.6	64
W6				-1313771.3	37
W7				852910.9	97
W ₈				-229423.3	36

Dataset size

Dataset size

Regularization

- Complex models tend to overfit
- Need to penalize the complexity of the model

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Regularization: Error vs. λ

M1	МЗ	M5		М9
-3.16	-1.54	0.57	-	50.04
	-12.13	-16.01	16	18.22
	13.81	-16.05	-215	85.65
		88.54	1419	27.36
		-61.42	-5151	39.44
			10831	33.64
			-13137	71.37
			8529	10.97
			-2294	23.36
		-3.16 -1.54 -12.13	-3.16 -1.54 0.57 -12.13 -16.01 13.81 -16.05 88.54	-3.16 -1.54 0.5712.13 -16.01 16 13.81 -16.05 -215 88.54 1419 -61.42 -5151 10831

 A learning algorithm is stable if a small change of the input does not change the output of the algorithm much

Different risk/error types

- Empirical risk: $L_{(S)} = \frac{1}{n} \sum_{i=1}^{N} \delta(f(\boldsymbol{x}), \boldsymbol{y})$
- Expected risk: $L_{(D,f)} = \int_{\mathbb{X},\mathbb{Y}} \delta(f(\mathbf{x}),\mathbf{y}) p(\mathbf{x},\mathbf{y}) d\mathbf{x} d\mathbf{y}$

Generalization

- Empirical risk: $L_{(S)} = \frac{1}{n} \sum_{i=1}^{N} \delta(f(\mathbf{x}), \mathbf{y})$
- Expected risk: $L_{(D,f)} = \int_{\mathbb{X}.\mathbb{Y}} \delta(f(\mathbf{x}), \mathbf{y}) p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$
- Generalization error: $G = L_{(D,f)} L_{(S,f)}$
 - Difference between the training set and the underlying joint probability distribution error
 - An algorithm generalizes well if

$$\lim_{n\to\infty}G=L_{(D,f)}-L_{(S,f)}=0$$

p(x, y) unknown probability distribution \Rightarrow impossible to compute

Regularization

- Regularized Loss Minimization (RLM)
- Minimize the sum of the empirical risk + regularization function
 - measures the complexity of hypotheses/models
 - an interpretation of the regularization function is the structural risk minimization paradigm
- Regularization: stabilizer of the learning algorithm
 - stability: a slight change of its input does not change its output much

Regularized Loss Minimization (RLM)

• Learning rule jointly minimizing the empirical risk $L_s(\boldsymbol{w})$ and penalizing the model complexity via the regularization function $R(\boldsymbol{w})$

$$\arg\min_{m{w}}(L_s(m{w})+R(m{w}))$$

- The simplest one is $R(\mathbf{w}) = \lambda ||\mathbf{w}||^2$, λ scalar value and $||\mathbf{w}|| = \sqrt{\sum w_i^2}$
- Therefore: $A(S) = \arg\min_{\mathbf{w}} (L_s(\mathbf{w}) + \lambda ||\mathbf{w}||^2)$

Squared Loss – Ridge regression

 RLM rule with Tikhonov regularization to linear regression with the squared loss, we obtain the following learning rule

$$\arg\min_{\boldsymbol{w}\in\mathbb{R}^d}(\lambda||\boldsymbol{w}||^2+\frac{1}{m}\sum_{i=1}^m\frac{1}{2}(<\boldsymbol{w},\boldsymbol{x_i}>-y_i)^2)$$

Solving for gradient = 0 we get:

$$\mathbf{w}^{Ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

- $\lambda \ge 0$ is a parameter that controls the amount of weights' shrinkage:
 - the larger the value of λ , the greater the amount of shrinkage. The coefficients are shrunk toward zero.

Squared Loss – Ridge regression

Equivalent formulation:

$$\arg\min_{{m w}\in\mathbb{R}^d}(\lambda||{m w}||^2+rac{1}{m}\sum_{i=1}^mrac{1}{2}(<{m w},{m x_i}>-y_i)^2)$$

- subject to $\sum_{i=1}^{m} w_i^2 \le t$
- We assume that mean value of *y* = intercept

Regularization of the intercept

- Regression $\mathbf{y} = \mathbf{w}\mathbf{X} \Rightarrow \mathbf{y} = w_0 + w_1\mathbf{x}_1 + \ldots + w_m\mathbf{x}_m$
- \Rightarrow for X = 0: $|y| = w_0$
- Regularization based on the idea that overfitting on y is caused by being "overly specific",
 - usually resulting in large values of **w** elements.
- w_0 offsets the relationship: less important to the problem.
 - in case a large offset needed, regularizing it will prevent finding the correct relationship.
- $y = w_{1...M}X + w_0$,
 - $\mathbf{w}_{1...M}$ is multiplied with the explaining variables, w_0 added to it.
- Regularizing w₀ may increase bias...

- $X_{N\times(M+1)}$: matrix of input features (N rows, M+1 columns, M weights and the intercept)
- y_N : the actual outcome variable
- $\hat{y_N}$: predicted values of y
- \mathbf{w}_{M+1} : weights or the coefficients
- For each data point the prediction is $\hat{y}_i = \sum_{j=0}^{M} w_j x_{ij}$
- Cost function to be minimized: RSS (Residual Sum of Squares)

Cost(
$$\mathbf{w}$$
) = RSS(\mathbf{w}) = $\sum_{i=1}^{N} \{y_i - \hat{y}_i\}^2 = \sum_{i=1}^{N} \{y_i - \sum_{j=0}^{M} w_j x_{ij}\}^2$

Regression algorithm – with gradient descent:

```
m{w} = 0; \ \eta : learning rate; while no convergence do for each feature j in \{0, 1, \ldots, M\} do determine the gradient; m{w}^{t+1} = m{w}^t - \eta * \text{gradient}; end
```

Gradient for the jth weight:

$$\frac{\partial}{\partial w_j} = -2\sum_{i=1}^N x_{ij} \left\{ y_i - \sum_{k=0}^M w_k x_{ik} \right\}$$

Therefore:

$$w_{j}^{t+1} = w_{j}^{t} + 2\eta \sum_{i=1}^{N} x_{ij} \left\{ y_{i} - \sum_{k=0}^{M} w_{k} x_{ik} \right\}$$

- L2 regularization loss function: $\sum_{i=1}^{N} \left\{ y_i \sum_{j=0}^{M} w_j x_{ij} \right\}^2 + \lambda \sum_{j=0}^{M} w_j^2$
- The gradient:

$$\frac{\partial}{\partial w_{j}} Cost(\mathbf{w}) = -2 \sum_{i=1}^{N} x_{ij} \left\{ y_{i} - \sum_{k=0}^{M} w_{k} x_{ik} \right\} + 2\lambda w_{j}$$

$$w_{j}^{t+1} = w_{j}^{t} - \eta \left[-2 \sum_{i=1}^{N} x_{ij} \left\{ y_{i} - \sum_{k=0}^{M} w_{k} x_{ik} \right\} + 2\lambda w_{j}^{t} \right]$$

$$w_{j}^{t+1} = (1 - 2\lambda \eta) w_{j}^{t} + 2\eta \sum_{i=1}^{N} x_{ij} \left\{ y_{i} - \sum_{k=0}^{M} w_{k} x_{ik} \right\}$$

Simple regression update rule:

$$w_j^{t+1} = w_j^t + 2\eta \sum_{i=1}^N x_{ij} \left\{ y_i - \sum_{k=0}^M w_k x_{ik} \right\}$$

• Ridge regression update rule:

$$w_j^{t+1} = (1 - 2\lambda \eta)w_j^t + 2\eta \sum_{i=1}^N x_{ij} \left\{ y_i - \sum_{k=0}^M w_k x_{ik} \right\}$$

- Ridge regression:
 - reduces the weights by a factor of $(1 2\lambda\eta)$
 - then applies the same update rule as simple linear regression
- Explains why the coefficients reduce to small numbers but never zero

Squared Loss – Ridge regression

$$A(S) = \arg\min_{oldsymbol{w}} (L_S(oldsymbol{w}) + \lambda ||oldsymbol{w}||^2)$$

Solution is affected by the parameter λ (shrinkage parameter)

- λ controls size of coefficients therefore the amount of regularization
- for each λ value different solution
- $-\lambda \rightarrow 0$: obtain the un-regularized solution
- λ → ∞: $\mathbf{w} = 0$
 - infinite weights lead coefficients to 0

$$\mathbf{w}^{Ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Lasso regularization

 The Lasso regression [Tibshirani, 1996] is penalizing the sum of absolute values of the weights

$$\mathbf{w}^{Lasso} = \arg\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - w_0 - \sum_{j=1}^{m} x_{ij} w_j)^2$$

- Subject to the constraint $\sum_{i=1}^{m} |w_i| \le t$.
- The solution for w_0 is mean value of y, thus we fit a model without the intercept w_0 .
- The constraint makes the solutions nonlinear in the y_i : no closed form expression as in ridge regression.
- Computing the lasso solution is a quadratic programming problem.

Lasso regression

- Assume $t_0 = \sum_{i=1}^{m} |w_i|$, w_i the weights produced by the least square solution (i. e. non regularized results)
- for values of $t \le t_0$ (t >= 0), solutions are shrunken versions of the least squares estimates
 - often, some coefficients w_j are zero
- "t" defines the number of predictors to use in a regression model
- t value to minimize expected prediction error – via cross validation

$$s = \frac{t}{\sum_{i=1}^{m} |w_i|}$$

Computation of the Lasso solutions

 A quadratic programming problem; can be tackled by numerical analysis algorithms.

Incremental Forward Stepwise (FS)¹ Regression:

- Start with residual $r = y \bar{y}$ and all $w_j = 0$; repeat
- Find predictor \mathbf{x}_i most correlated with \mathbf{r} ;
 - Update $w_j \leftarrow w_j + \delta_j$, where $\delta_j = \epsilon * \text{sign}[\text{corr}(\boldsymbol{r}, \boldsymbol{x}_j)];$
- Update $\mathbf{r} \leftarrow \mathbf{r} \delta_j \mathbf{x}_j$

until no predictor has any correlation with r;

¹Forward stagewise regression and the monotone lasso, Trevor Hastie, Jonathan Taylor, Robert Tibshirani, Guenther Walther, *Electronic Journal of Statistics*, Vol. 1 (2007) 1–29 ISSN: 1935-7524. https://arxiv.org/pdf/0705.0269.pdf

Computation of the Lasso solutions

- Least angle regression procedure is a better approach
 - exploits the special structure of the lasso problem,
 - efficient way to compute the solutions simultaneously for all the values of "w_i"
 - least angle is based on the forward stepwise regression

Least angle regression algorithm:

```
<sup>1</sup> Set all coefficients w_j = 0;
```

repeat

- Find the predictor \mathbf{x}_i most correlated with \mathbf{y} ;
 - Increase the coefficient w_j in the direction of the sign of its correlation with y;
 - Take residuals $\mathbf{r} = \mathbf{y} \bar{\mathbf{y}}$ along the way;
 - Stop when some other predictor x_k has as much correlation with r as x_j has;
 - Increase $(w_i w_k)$ in their joint least squares direction;
- until some other predictor \mathbf{x}_m has as much correlation with the residual \mathbf{r} ;

until all predictors are in the model;

• After p steps w_i reach their ridge (L2) solution.

Computation of the Lasso solutions

Least angle regression algorithm:

¹ Set all coefficients $w_j = 0$;

repeat

- Find the predictor \mathbf{x}_i most correlated with \mathbf{y} ;
 - Increase the coefficient w_i in the direction of the sign of its correlation with y;
- Take residuals $\mathbf{r} = \mathbf{y} \bar{\mathbf{y}}$ along the way;
- Stop when some other predictor \mathbf{x}_k has as much correlation with \mathbf{r} as \mathbf{x}_i has;
- Increase $(w_i w_k)$ in their joint least squares direction;
- until some other predictor \mathbf{x}_m has as much correlation with the residual \mathbf{r} ;

until all predictors are in the model;

LARS: Lasso modification:

If a non-zero coefficient hits zero, drop it from the active set and recompute the current joint least squares direction.

Comparing ridge and lasso

Contours of the error and constraint functions:

- solid blue areas constraint regions: $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 < t^2$.
- red ellipses: contours of the least squares error function.

Comparing ridge and lasso

- variable coefficient estimates: Ridge regression (*left*), LASSO (*right*) for the red wine data plotted versus *logλ*.
- Upper part of the plot shows the number of non-zero coefficients in the regression model for a given $log(\lambda)$.

²L.E. Melkumova et al. / Procedia Engineering 201 (2017) 746–755

• Regression: RSS vs. model complexity (polynomial degree)

Regression: coefficient values vs. model complexity (polynomial degree)

	rss	intercept	COE	ef_x_1	coef_x_2	coef_x_3	coef_x_4	coef_x_5	coef_x_6	coef_x_7	coef_x_8	coef_x_9	coef_x_10	coef_x_11
model_pow_1	3.3	2	-0.62		NaN	NaN								
model_pow_2	3.3	1.9	-0.5	58	-0.006	NaN	NaN							
model_pow_3	1.1	-1.1	3		-1.3	0.14	NaN	NaN						
model_pow_4	1.1	-0.27	1.7		-0.53	-0.036	0.014	NaN	NaN	NaN	NaN	NaN	NaN	NaN
model_pow_5	1	3	-5.1	1	4.7	-1.9	0.33	-0.021	NaN	NaN	NaN	NaN	NaN	NaN
model_pow_6	0.99	-2.8	9.5		-9.7	5.2	-1.6	0.23	-0.014	NaN	NaN	NaN	NaN	NaN
model_pow_7	0.93	19	-56	3	69	-45	17	-3.5	0.4	-0.019	NaN	NaN	NaN	NaN
model_pow_8	0.92	43	-1.4	4e+02	1.8e+02	-1.3e+02	58	-15	2.4	-0.21	0.0077	NaN	NaN	NaN
model_pow_9	0.87	1.7e+02	-6.1	1e+02	9.6e+02	-8.5e+02	4.6e+02	-1.6e+02	37	-5.2	0.42	-0.015	NaN	NaN
model_pow_10	0.87	1.4e+02	-4.9	9e+02	7.3e+02	-6e+02	2.9e+02	-87	15	-0.81	-0.14	0.026	-0.0013	NaN
model_pow_11	0.87	-75	5.1	e+02	-1.3e+03	1.9e+03	-1.6e+03	9.1e+02	-3.5e+02	91	-16	1.8	-0.12	0.0034
model_pow_12	0.87	-3.4e+02	1.9	e+03	-4.4e+03	6e+03	-5.2e+03	3.1e+03	-1.3e+03	3.8e+02	-80	12	-1.1	0.062
model_pow_13	0.86	3.2e+03	-1.8	8e+04	4.5e+04	-6.7e+04	6.6e+04	-4.6e+04	2.3e+04	-8.5e+03	2.3e+03	-4.5e+02	62	-5.7
model_pow_14	0.79	2.4e+04	-1.4	4e+05	3.8e+05	-6.1e+05	6.6e+05	-5e+05	2.8e+05	-1.2e+05	3.7e+04	-8.5e+03	1.5e+03	-1.8e+02
model_pow_15	0.7	-3.6e+04	2.4	e+05	-7.5e+05	1.4e+06	-1.7e+06	1.5e+06	-1e+06	5e+05	-1.9e+05	5.4e+04	-1.2e+04	1.9e+03

ullet Ridge Regression: RSS vs. λ parameter – shrinkage

• Ridge Regression: coefficient values (regression weights) vs. λ (α in table) parameter shrinkage

- The RSS increases with λ , while model complexity reduces
- 2 Even a **small** λ (e^{-15}) results in significant reduction coefficients magnitude. Compare the coefficients first row to the last row of simple linear regression table.
- **1** High λ values lead to significant under-fitting
 - Note rapid increase in RSS for $\lambda > 1$
 - The coefficients are very very small, they are NOT zero

Lasso regression effect on regression weights

Model complexity decreases with increase in the values of λ .

- Notice straight line at $\lambda = 1$

Regularization and sparsity

- For the same values of λ (α in table) , lasso coefficients \ll ridge coefficients.
- \bullet For the same $\lambda,$ lasso has higher RSS (poorer fit) as compared to ridge regression.
- Many of the coefficients are zero even for very small values of alpha.
- Inferences #1,2 might not generalize always but will hold for many cases. The real difference from ridge is coming out in the last inference.

	rss	intercept	coef_x_1	coef_x_2	coef_x_3	coef_x_4	coef_x_5	coef_x_6	coef_x_7	coef_x_8	coef_x_9	coef_x_10	coef_x_11	CO
alpha_1e-15	0.96	0.22	1.1	-0.37	0.00089	0.0016	-0.00012	-6.4e-05	-6.3e-06	1.4e-06	7.8e-07	2.1e-07	4e-08	5.4
alpha_1e-10	0.96	0.22	1.1	-0.37	0.00088	0.0016	-0.00012	-6.4e-05	-6.3e-06	1.4e-06	7.8e-07	2.1e-07	4e-08	5.4
alpha_1e-08	0.96	0.22	1.1	-0.37	0.00077	0.0016	-0.00011	-6.4e-05	-6.3e-06	1.4e-06	7.8e-07	2.1e-07	4e-08	5.3
alpha_1e-05	0.96	0.5	0.6	-0.13	-0.038	-0	0	0	0	7.7e-06	1e-06	7.7e-08	0	0
alpha_0.0001	1	0.9	0.17	-0	-0.048	-0	-0	0	0	9.5e-06	5.1e-07	0	0	0
alpha_0.001	1.7	1.3	-0	-0.13	-0	-0	-0	0	0	0	0	0	1.5e-08	7.5
alpha_0.01	3.6	1.8	-0.55	-0.00056	-0	-0	-BIGH S	PARSITY	-0	-0	-0	0	0	0
alpha_1	37	0.038	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
alpha_5	37	0.038	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0
alpha_10	37	0.038	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0

Other regularization approaches

Elastic Net

- -p>n (#variables greater than sample size), lasso can select only n variables
- select only one from any set of highly correlated variables
- even when n > p, if the variables are strongly correlated, ridge regression tends to perform better
- Combines L1 and L2 regularization to balance out the pros and cons of ridge and lasso regression

$$\arg\min_{\boldsymbol{w}\in\mathbb{R}^p}\{|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{w}|^2+\lambda_1|\boldsymbol{w}|+\lambda_2|\boldsymbol{w}|^2\}$$

• Subject to: $(1 - \alpha)|\mathbf{w}| + \alpha|\mathbf{w}|^2 \le t$ with $\alpha = \frac{\lambda_2}{\lambda_1 + \lambda_2}$

Other regularization approaches

Group Lasso

- Regularization based on groups of variables
- Lasso selects one of them we might need all variables of a group (i. e. topic modelling, biological applications)

Objective function:

$$\arg\min_{\boldsymbol{w}\in\mathbb{R}^p}\{|\boldsymbol{y}-\sum_{j=1}^J\mathbf{X}_j\boldsymbol{w}_j|^2+\lambda\sum_{j=1}^J|\boldsymbol{w}_j|_{\mathbf{K}_j}\}$$

where *J*: the variable groups and $|w_j|_{\mathbf{K}_i} = (w^T \mathbf{K}_j w)^{\frac{1}{2}}$.

Properties of Group Lasso:

- entire groups are eliminated
- all variables of a group are present with the same weight
- if groups contain 1 variable ⇒ lasso

To weight variables within groups: Sparse Group Lasso

Regularization - Conclusion

- Ridge: all of the features retained in the model. Major advantage: coefficient shrinkage thus reducing model complexity.
- Lasso: Along with shrinking coefficients, lasso performs feature selection as some of the coefficients become exactly zero.

Typical Use Cases

- Ridge: prevent overfitting includes all features, useful in case of very high number of features.
- Lasso: provides sparse solutions suitable for cases where # features is large: great computational advantage as features with zero coefficients can be ignored (feature selection).

Presence of Highly Correlated Features

- Ridge: works well for highly correlated features includes all of them in the model, coefficients will adjust.
- Lasso: selects feature among the highly correlated ones, reduces the coefficients of the rest to zero.
 For highly correlated variables even small λ values give significant sparsity.

References I

Christopher M. Bishop

Pattern Recognition and Machine Learning 2006

Trevor Hastie, Robert Tibshirani, Jerome Friedman

The Elements of Statistical Learning: Data Mining, Inference, and Prediction Second Edition. 2009

Shai Shalev-Shwartz, Shai Ben-David

Understanding Machine Learning: theory and algorithms

Cambridge University Press. 2014

Robert Tibshirani

Regression shrinkage and selection via the Lasso

Journal of the Royal Statistics Society. 58(1), 267-288. 1996 http://statweb.stanford.edu/~tibs/lasso/lasso.pdf

http://people.inf.elte.hu/kiss/13dwhdm/roc.pdf

References II

Hui Zou, Trevor Hastie

Regularization and Variable Selection via the Elastic Net

Journal of the Royal Statistical Society. Series B (Statistical Methodology). Wiley.67(2): 301–20, 2005

Jerome Friedman, Trevor Hastie, Robert Tibshirani

A note on the group lasso and a sparse group lasso

https://arxiv.org/pdf/1001.0736.pdf

Acknowledgments

Dr. Nikos Tziortziotis for his contributions in the Kernels section