Problem Set 5

D. Zack Garza

Monday 4th May, 2020

Contents

1	4.3																				1
2	4.6																				2
	2.1	Soluti	on						 												2
		2.1.1	Part 1						 												2
			Step 2																		
		2.1.3	Step 3	•					 											•	į
3	4.11																				3

1 4.3

Proposition 1.1.

Suppose $\lambda + \rho \in \Lambda^+$. Then $M(w \cdot \lambda) \subset M(\lambda)$ for all $w \in W$. Thus all $[M(\lambda) : L(w \cdot \lambda)] > 0$.

More precisely, if $w = s_n \cdots s_1$ is a reduced expression for w in terms of simple reflections corresponding to roots α_i , then there is a sequence of embeddings:

$$M(w \cdot \lambda) = M(\lambda_n) \subset M(\lambda_{n-1}) \subset \cdots \subset M(\lambda_0) = M(\lambda)$$

Here

$$\lambda_0 := \lambda, \lambda_k := s_k \cdot \lambda_{k-1} = (s_k \dots s_1) \cdot \lambda \implies \lambda_n = s_n \cdot \lambda_{n-1} = w \cdot \lambda$$
$$w \cdot \lambda = \lambda_n \le \lambda_{n-1} \le \dots \le \lambda_0 = \lambda \text{with} \quad \langle \lambda_k + \rho, \alpha_{k+1}^{\vee} \rangle \in \mathbb{Z}^+ \text{ for } k = 0, \dots, n-1.$$

Assume $\lambda + \rho \in \Lambda^+$.

- a. Prove that the unique simple submodule of $M(\lambda)$ is isomorphic to $M(w_{\diamond} \cdot \lambda)$, where w_{\diamond} is the longest element of W.
- b. In case $\lambda \in \Lambda^+$, show that the inclusions obtained in the above proposition are all proper.

2 4.6

Theorem 2.1(Verma).

Let $\lambda \in \mathfrak{h}^{\vee}$. Given $\alpha > 0$, suppose $\mu := s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

Work through the steps of Verma's Theorem in the special case discussed in the previous problem

2.1 Solution

Let $\mathfrak{g} = \mathfrak{sl}(3,\mathbb{C})$ and identify its root system A_2 with $\Delta = \{\alpha,\beta\}$ and $\Phi^+ = \{\alpha,\beta,\gamma \coloneqq \alpha+\beta\}$ We can also identify the Weyl group as $W = \{1,s_{\alpha},s_{\beta},s_{\alpha}s_{\beta},s_{\beta}s_{\alpha},s_{\gamma}\}$ where there is a reduced expression $s_{\gamma} = w_0 = s_{\alpha}s_{\beta}s_{\alpha}$.

We can begin by letting $\lambda \in \Lambda$ be an arbitrary integral weight and let $\mu \neq \lambda$ be an arbitrary weight linked to λ , where WLOG apply some Weyl group element to μ to place it in the dominant chamber and assume

$$\mu \coloneqq s_{\alpha} \cdot \lambda < \lambda$$

(where the inequality is strict).

2.1.1 Part 1

Since μ is assumed integral, we can find some $w \in W$ such that

$$\mu' := w^{-1} \cdot \mu \in \Lambda^+ - \rho.$$

Claim: $w = s_{\alpha}s_{\beta}$, so $w^{-1} = s_{\beta}s_{\alpha}$ and thus

$$\mu' = s_{\beta} s_{\alpha} \cdot \mu$$

As in Proposition 4.3, we then write

$$\mu_0 = \mu'$$

$$\mu_1 = s_\beta \cdot \mu'$$

$$\mu_2 = s_\alpha s_\beta \cdot \mu' = w \cdot \mu' = \mu$$

which satisfies

$$\mu = \mu_2 \le \mu_1 \le \mu_0 = \mu'$$

$$\mu = s_{\alpha}s_{\beta} \cdot \mu' \le s_{\beta}\mu' \le \mu'.$$

which (by the proposition) gives a sequence of embeddings

$$\begin{split} M(\mu) &= M(\mu_2) \hookrightarrow M(\mu_1) \hookrightarrow M(\mu_0) = M(\mu') \\ \text{i.e.} \\ M(\mu) &= M(s_\alpha s_\beta \cdot \mu') \hookrightarrow M(s_\beta \cdot \mu') \hookrightarrow M(\mu'). \end{split}$$

2 4.6

2.1.2 Step 2

We now define

$$\lambda' := w^{-1}\lambda = s_{\beta}s_{\alpha} \cdot \lambda$$

and the parallel list of weights

$$\lambda_0 = \lambda'$$

$$\lambda_1 = s_{\beta} \cdot \lambda'$$

$$\lambda_2 = s_{\alpha} s_{\beta} \cdot \lambda' \coloneqq \lambda.$$

We can similarly use the fact that $\lambda \neq \mu \implies \mu_k \neq \lambda_k$ for any k.

2.1.3 Step 3

To relate μ_k to λ_k , We now define $w_k = s_n \cdots s_{k+1}$:

$$w_0 = s_{\alpha} s_{\beta}$$

$$w_1 = s_{\alpha}$$

$$w_2 = 1$$

and $\beta_k = \left| w_k^{-1} \right| \in \Phi^+$:

$$\beta_0 = ?$$

$$\beta_1 = ?$$

$$\beta_2 = ?$$

and since $\mu_k = w_k^{-1} s_{\alpha} w_k \cdot \lambda_k = s_{\beta_k} \lambda_k$, we have

$$\mu_0 = ?$$
 $\mu_1 = ?$
 $\mu_2 = ?.$

3 4.11

In the case of $\mathfrak{sl}(3,\mathbb{C})$, what can be said at this point about Verma modules with a singular integral highest weight?

Aside from the trivial case $-\rho$, a typical linkage class has 3 elements. For example, if λ lies in the α hyperplane and is antidominant, the linked weights are λ , $s_{\beta} \cdot \lambda$, $s_{\alpha} s_{\beta} \cdot \lambda$.