1 Basic Definitions and Examples
1.1 Genera
1.2 Riemann-Roch
1.3 Riemann-Hurwitz
2 Hyperelliptic Curves
Definition 2.0.1. A curve C is <i>hyperelliptic</i> if there exists a degree two map $f: C \to \mathbb{P}^1$.
Lemma 2.0.2. A curve C is hyperelliptic iff Ω_C^1 is not very ample.
Proof. (DO THIS)
Proposition 2.0.3. Plane curves with $g > 1$ cannot be hyperelliptic.
Proof. Let $\iota: C \hookrightarrow \mathbb{P}^2$ be a plane curve. Then $\Omega^1_C = \iota^* \mathcal{O}_{\mathbb{P}^2}(d-3)$ where d is the degree of C . Since $g > 1$ we must have $d > 3$ and thus $\mathcal{O}_{\mathbb{P}^2}(d-3)$ is very ample defining the Veronese embedding $v: \mathbb{P}^2 \to \mathbb{P}^N$ s.t. $\mathcal{O}_{\mathbb{P}^2}(d-3) = v^* \mathcal{O}_{\mathbb{P}^N}(1)$. Then $v \circ \iota: C \to \mathbb{P}^N$ is an embedding such that $(v \circ \iota)^* \mathcal{O}_{\mathbb{P}^N}(1) = \Omega^1_C$. Thus Ω^1_C is very ample so C cannot be hyperelliptic.
Lemma 2.0.4. Let C have a \mathfrak{g}_2^1 then C is either hyperelliptic or rational.
<i>Proof.</i> Let D be a \mathfrak{g}_2^1 then $ D $ defines a rational map $C \dashrightarrow \mathbb{P}^1$ of degree two. Suppose P were a basepoint of $ D $ then $\dim D - P = 1$ which implies that C is rational because there is a rational degree one map $C \dashrightarrow \mathbb{P}^1$.
Proposition 2.0.5. Any genus 2 curve is hyperelliptic.
<i>Proof.</i> Consider the canonical divisor K_X which has $\deg K_X = 2g - 2 = 2$ and $\dim K_X = g - 1 = 1$ and thus gives a \mathfrak{g}_2^1 .