

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
	То ополническо д муж опъстине и могит запачи с том могители.
КАФЕДРА	«Теоретическая информатика и компьютерные технологии»

Лабораторная работа № 1 по курсу «Теория формальных языков»

Студент группы ИУ9-51Б Винокурова Е. С.

Преподаватель Непейвода А. Н.

1 Задание

По имеющейся SRS определить:

- завершимость
- конечность классов эквивалентности по $H\Phi$ (для построения эквивалентностей считаем, что правила могут применяться в обе стороны). Если их конечное число, то построить минимальную систему переписывания, им соответствующую.
 - локальную конфлюэнтность и пополняемость по Кнуту-Бендиксу

По SRS \mathcal{T} строится другая SRS \mathcal{T}' , которая должна сохранять те же классы эквивалентности. Если исходная SRS завершима, то правила в \mathcal{T}' должны удовлетворять условию убывания левой части относительно правой по выбранному вами фундированному порядку >.

Провести автоматическое тестирование предполагаемой эквивалентности двух указанных SRS.

Фазз-тестирование эквивалентности: строится случайное слово ω и случайная цепочка переписываний его в ω' по \mathcal{T}' . Проверить, можно ли получить ω' из ω (или наоборот) в рамках правил \mathcal{T}' .

Метаморфное тестирование: выбрать инварианты, которые должны сохраняться (либо монотонно изменяться) при переписывании в рамках \mathcal{T}' . Порождать случайную цепочку переписываний над случайным словом в \mathcal{T}' и проверить выполнимость инвариантов. Как минимум два разных инварианта.

Вариант 4

 $fgh \rightarrow fff$

 $fgh \to ggg$

 $fgh \to hhh$

 $hh \rightarrow hfhgh$

 $gggg \rightarrow \varepsilon$

2 Проверка завершимости

Рассмотрим два инварианта. Первый инвариант — это количество пар 'hh' в строке с учётом перекрытий. Например, для строки 'hhh' количество пар будет

2. Второй инвариант — это сумма весов букв 'g' в строке в зависимости от контекста. Будем считать, что если 'g' находится в подстроке 'fhgh', то вес такого 'g' равен 0; если 'g' стоит рядом с другим 'g' (то есть хотя бы с одной стороны от него находится другой 'g'), то вес каждого такого 'g' равен 2; во всех остальных случаях вес 'g' равен 8.

Теперь рассмотрим сумму этих двух инвариантов для каждого правила и покажем, что она всегда строго убывает. Обозначим эту сумму через М.

Рассмотрим правило 'fgh \rightarrow fff'. Для левой части 'fgh' значение M=8, а для правой части 'fff' M=0. Вне зависимости от контекста, в котором они находятся, M всегда уменьшается минимум на 8.

Рассмотрим правило 'fgh \rightarrow ggg'. Для 'fgh' значение M=8, а для 'ggg' M=6. Контекст также не уменьшает разницу между левой и правой частями правила, поэтому для этого правила M уменьшается как минимум на 2.

Рассмотрим правило 'fgh \rightarrow hhh'. Для 'fgh' значение M = 8, а для 'hhh' M = 2. Однако контекст может уменьшить разницу между левой и правой частями. Например, если взять строку 'hfgh', которая переходит в 'hhhh', получим изменение M: 8 \rightarrow 3, то есть M уменьшается хотя бы на 5.

Рассмотрим правило 'hh \rightarrow hfhgh'. Поскольку граничные буквы подстрок не меняются, контекст не влияет на разницу значений M. Таким образом, для 'hh' значение M=1, а для 'hfhgh' M=0, то есть M убывает на 1.

Рассмотрим правило 'gggg $\rightarrow \varepsilon$ '. Для 'gggg' значение M=8, а для ' ε ' M=0. Однако при применении этого правила может возникнуть новая подстрока 'fgh', где вес 'g' будет 8. Проверим, что это не увеличит M. Пусть есть строка 'fgggggh', для неё M=10. Применив правило, получим 'fgh', для которой M=8. Таким образом, даже в этом случае 'M' строго уменьшается.

Итак, для всех правил системы М строго убывает, и при этом М всегда неотрицательно. Следовательно, невозможно бесконечно применять правила, и система переписываний является завершимой.

3 Локальная конфлюэнтность и пополняемость по Кнуту-Бендиксу

SRS \mathcal{T} локально не конфлюэнтна, так как из слова 'fgh' можно получить 3 разных нормальных формы: 'fff', 'ggg' и 'hfhghfhgh'.

Построим по алгоритму Кнута-Бендикса систему \mathcal{T}' , которая сохраняет те же классы эквивалентности. Рассмотрим систему

```
\begin{aligned} & \text{fgh} \rightarrow \text{fff} \\ & \text{ggg} \rightarrow \text{fgh} \\ & \text{fgh} \rightarrow \text{hhh} \\ & \text{hfhgh} \rightarrow \text{hh} \\ & \text{gggg} \rightarrow \varepsilon \end{aligned}
```

Здесь слова сначала сравниваются по длинне, если длина одинаковая, то они упорядочиваются лексикографически, где 'h' = 1, 'f' = 2, 'g' = 3. Рассмотрим критические пары.

- 1. Из 'fgh' можно получить 'fff' и 'hhh, поэтому добавим правило 'fff' \rightarrow 'hhh'. Можно убрать правило 'fgh' \rightarrow 'hhh', так как это можно получить так 'fgh' \rightarrow 'fff' \rightarrow 'hhh'.
 - 2. Из 'ffff' можно получить 'fhhh' и 'hhhf', добавим правило 'fhhh' \rightarrow 'hhhf'.
- 3. Из 'gggg' можно получить ε , 'ghhh' и 'hhhg', добавим правила 'ghhh' \to 'hhhg' и 'hhhg' $\to \varepsilon$. Можно убрать правило 'gggg' $\to \varepsilon$, так как это можно получить так 'gggg' \to 'gfgh' \to 'gfff' \to 'ghhh' \to 'hhhg' $\to \varepsilon$.
 - 4. Из 'ffffg' можно получить 'f' и 'hhhfg', добавим правило 'hhhfg' \rightarrow 'f'.
 - 5. Из 'fffgh' можно получить 'h' и 'hhhff', добавим правило 'hhhff' \rightarrow 'h'.
 - 6. Из 'fgggg' можно получить 'f' и 'hhhhh', добавим правило 'hhhhh' \rightarrow 'f'.
- 7. Из 'ffffff' можно получить 'fh' и 'hf', добавим правило 'fh' \rightarrow 'hf'. Можно убрать правило 'fhhh' \rightarrow 'hhhf', так как это можно получить так 'fhhh' \rightarrow 'hhfh' \rightarrow 'hhfh'.
- 8. Из 'hfhgh' можно получить 'f' и 'hh', добавим правило 'hh' \rightarrow 'f'. Можно убрать правило 'fhhh' \rightarrow 'hhhf', так как это можно получить так 'fhhh' \rightarrow 'hhfh' \rightarrow 'hhfh'.
 - 9. Из 'fghh' можно получить 'ff' и 'fgf', добавим правило 'fgf' \rightarrow 'ff'.

- 10. Из 'gggg' можно получить ε , 'ghf' и 'hfg', добавим правило 'ghf' \to 'hfg' и 'hfg' $\to \varepsilon$. Можно убрать правило 'hhhfg' \to 'f', так как это можно получить 'hhhfg' \to 'hh' \to 'f'. Также можно убрать правило 'hfhgh' \to 'hh', так как это можно получить так 'hfhgh' \to 'hhfgh' \to 'hh'. Также можно убрать правило 'hhhg' $\to \varepsilon$, так как это можно получить так 'hhhg' \to 'hfg' $\to \varepsilon$.
- 11. Из 'fgfh' можно получить 'f', 'hff' и 'hffg', добавим правило 'hffg' \rightarrow 'hff' и 'hff' \rightarrow 'f'.
 - 12. Из 'fgfh' можно получить 'f' и 'fg', добавим правило 'fg' \rightarrow 'f'.
- 13. Из 'hfg' можно получить ε и 'hf', добавим правило 'hf' $\to \varepsilon$. Можно убрать правило 'hhhff' \to 'h', так как это можно получить 'hhhff' \to 'hhf' \to 'h'. Также можно убрать правило 'hff' \to 'f', так как это можно получить так 'hff' \to 'f', применив добавленное правило. Можно убрать правило 'hhhhh' \to 'f', так как это можно получить 'hhhhh' \to 'hhhf' \to 'fhf' \to 'f'.
 - 14. Из 'fhh' можно получить 'ff' и 'h', добавим правило 'ff' \rightarrow 'h'.
- 15. Из 'ghf' можно получить ε и 'g', добавим правило 'g' $\to \varepsilon$. Можно убрать правила 'fgf' \to 'ff', 'hfg' $\to \varepsilon$, 'hffg' \to 'hff' и 'fg' \to 'f', так как их можно получить применив добавленное правило.

Критических пар больше нет, то есть система конфлюэнтна, также все действия сохраняли классы эквивалентности, то есть полученная система \mathcal{T}' эквивалентна исходной и имеет вид после привидения к минимамльной:

 $\begin{aligned} \mathbf{f}\mathbf{h} &\to \varepsilon \\ \mathbf{h}\mathbf{h} &\to \mathbf{f} \\ \mathbf{h}\mathbf{f} &\to \varepsilon \\ \mathbf{f}\mathbf{f} &\to \mathbf{h} \\ \mathbf{g} &\to \varepsilon \end{aligned}$

4 Классы эквивалентности

Рассмотрим классы эквивалентности полученной системы \mathcal{T}' , так как они совпадают с калссами эквивалентности исходной SRS, то \mathcal{T} имеет такие же классы эквивалентности. Построим автомат по этой системе.

Таким образом в SRS $\mathcal T$ ровно 3 класса эквивалентности ε , 'f' и 'h'.

5 Фазз-тестирование эквивалентности

Код программы представлен в Листинге 1.

```
def apply random rules(word):
    for _ in range(8):
        applicable = []
        for lhs, rhs in T:
            positions = []
            for i in range (len (word) - len (lhs) + 1):
                 substring = word[i:i+len(lhs)]
                if substring == lhs:
                     positions.append(i)
            if positions:
                applicable.append((lhs, rhs, positions))
        if not applicable:
            continue
        lhs, rhs, positions = random.choice(applicable)
        pos = random.choice(positions)
        word = word [: pos] + rhs + word [pos+len(lhs):]
    return word
def apply_rules(word, rules):
    results = set()
    for lhs, rhs in rules:
        for i in range (len (word) - len (lhs) + 1):
            if word[i:i+len(lhs)] == lhs:
                new_word = word [: i] + rhs + word [i+len(lhs):]
                results.add(new word)
    return results
def words(start, rules):
    seen = set([start])
    s = [start]
    while s:
        new s = []
        for w in s:
            new_words = apply_rules(w, rules)
            for nw in new words:
                if nw not in seen:
                    seen.add(nw)
                    new_s.append(nw)
        s = new s
    return seen
def words2(start, rules, check set):
    seen = set([start])
    s = [start]
    while s:
```

```
new_s = []
        for w in s:
            new_words = apply_rules(w, rules)
            for nw in new words:
                 if nw in check_set:
                     return True
                 if nw not in seen:
                     seen.add(nw)
                     new_s.append(nw)
        s = new s
    return False
w0 = random_word()
print("w = ", w0)
w1 = apply_random_rules(w0)
print("w' =", w1)
if len(w0) \ll len(w1):
    words1 = words(w0, T1)
    found = words2(w1, T1, words1)
else:
    words1 = words(w0, T1)
    found = words2(w1, T1, words1)
if found:
    print("True")
:
    print("False")
```

6 Метаморфоное тестирование

Были рассмотрены два инварианта.

1. $(|\omega|_f - |\omega|_h) \text{mod}_3$ этот инвариант не меняется при применении любых правил из систем переписывания \mathcal{T}' и \mathcal{T} .

2.

$$M(\omega) = \frac{1}{12} (|\omega|_f + |\omega|_g + |\omega|_h) - \frac{1}{12} (|\omega|_{ff} + |\omega|_{fg} + |\omega|_{fh} + |\omega|_{hf} + |\omega|_{hh} + |\omega|_{hg} + |\omega|_{gf} + |\omega|_{gg} + |\omega|_{gh})$$

Однако если $\omega = \varepsilon$ то $M(\omega) = \frac{1}{12}$. Этот инвариант не убывает при применении любых правил из систем переписывания \mathcal{T}' и \mathcal{T} . Коэффициенты этого инварианта было подобраны программно и проверены на контекстах разной длины.

Для проверки была написана программ представленная в Листинге 2.

```
import random
from fractions import Fraction
alphabet = ["f", "g", "h"]
rules = {
    "fh": "",
    "hh": "f".
    "hf": "",
    "ff": "h",
    "g": ""
def generate_word(min_len, max_len):
    length = random.randint(min len, max len)
    return "".join(random.choice(alphabet) for _ in range(length))
def apply rules fixed steps (word, rules, steps):
    for _ in range(steps):
        applicable = [(lhs, rhs) for lhs, rhs in rules.items() if lhs in word
        if not applicable:
            break
        lhs, rhs = random.choice(applicable)
        start idx = random.choice([i for i in range(len(word)) if word.
            startswith (lhs, i)])
        word = word[: start idx] + rhs + word[start idx + len(lhs):]
    return word
def diff mod3(word):
    return (word.count("f") - word.count("h")) % 3
def invariant M(w):
    S = ['f', 'g', 'h', 'ff', 'fg', 'fh', 'gf', 'gg', 'gh', 'hf', 'hg',
         'hh '
    alpha = [
        Fraction (1,12), Fraction (1,12), Fraction (1,12),
        Fraction (-1,12), Fraction (-1,12), Fraction (-1,12), Fraction (-1,12),
            Fraction (-1,12), Fraction (-1,12), Fraction (-1,12), Fraction (-1,12),
            Fraction (-1,12)
    def count_substring(s, w):
        count = 0
        L = len(s)
        for i in range (len(w) - L + 1):
            if w[i:i+L] == s:
```

```
count += 1
        return count
    M = Fraction(0,1)
    for s,a in zip(S, alpha):
        M \mathrel{+}= a \ * \ count\_substring(s\,,\ w)
    if w == "":
         M = Fraction(1, 12)
    return M
start = generate\_word(15, 20)
start_val1 = diff_mod3(start)
start\_val2 = invariant\_M(start)
end = apply_rules_fixed_steps(start, rules, steps=15)
end val1 = diff mod3(end)
end_val2 = invariant_M(end)
a1 = start val1 == end val1
a2 = start\_val2 == end\_val2
if not (a1 and a2):
    print(start_val1 == end_val1)
    print(start_val2 <= end_val2, start_val2, end_val2)</pre>
    print(start, end)
else:
    print ("Инварианты верны")
```