

Determining Optimal NYC Airbnb Listing Prices with Multi-Modal Al

Machine Learning Under a Modern Optimization Lens

Maya Nesen & Nidhish Nerur

Problem Statement & Significance

Help hosts optimize the price and features of a listing in the highly competitive AirBnb market of New York City, in hopes of achieving high review score ratings and, ultimately, greater customer satisfaction and higher revenue

AirBnb Data & Preprocessing

	log_price	property_type	accommodates	review_scores_rating	bedrooms	amenities
0	5.010635	Apartment	3	100.0	1.0	{"Wireless Internet","Air conditioning",Kitche
1	5.129899	Apartment	7	93.0	3.0	{"Wireless Internet","Air conditioning",Kitche
8	4.605170	Apartment	2	93.0	1.0	{Internet,"Wireless Internet","Air conditionin
13	3.688879	House	2	89.0	1.0	{Internet,"Air conditioning",Kitchen,"Smoking
16	5.003946	Apartment	6	100.0	3.0	{TV,"Cable TV",Internet,"Wireless Internet","A
						•••
53051	3.688879	Apartment	2	86.0	1.0	{TV,Internet,"Wireless Internet","Air conditio
53052	3.912023	Apartment	2	60.0	1.0	{TV,"Cable TV",Internet,"Wireless Internet","A
53053	4.700480	Apartment	2	92.0	1.0	{Internet,"Wireless Internet","Air conditionin
53060	4.605170	Apartment	ī	NaN	1.0	{}
53061	5.220356	Apartment	5	94.0	2.0	{TV,Internet,"Wireless Internet","Air conditio

24688 rows × 6 columns

Note: This is just a subset of our original columns

Feature Engineering

distance_ days_ price_per_ host_days_ price_ rating to_ room between capacity bucket capacity active times_ bucket reviews square

Number of days
between
first_review and
last_review dates of
a listing

relative to the
number of people
the listing
accommodates
We later dropped this
feature due to
multicollinearity with our
price buckets as
treatments for our
counterfactual estimations

To capture the price

Number of days that a host has been active on AirBnb Using latitude and longitude coordinates of listings to calculate Euclidean distance from Times Square (tourist attractions)

How many people can the bedrooms of a listing accommodate

3 equal buckets for the price column, labeled as: Low (O): \$1 to \$80 Medium (1): \$80 to \$150 High (2): \$150 to \$1999 3 equal buckets for the ratings column, labeled as:
Low (0): rating < 90
High (1): rating of 90 to 99
Perfect(2): rating = 100

Predictive Modeling: XGBoost

Counterfactual Estimates

Observed Treatments	P_0	P_1	P_2		
P_0	Observed P ₀ Rating Outcomes	Counterfactual P ₀ if priced in P ₁	Counterfactual P ₀ if priced in P ₂	}	6368 Observations
P_1	Counterfactual P ₁ if priced in P ₀	Observed P ₁ Rating Outcomes	Counterfactual P ₁ if priced in P ₂	}	6910 Observations
P_2	Counterfactual P ₂ if priced in P ₀	Counterfactual P ₂ if priced in P ₁	Observed P ₂ Rating Outcomes	}	5553 Observations
				_	40074 7

OPT with Direct Method

Treatment0: \$1 to \$80 Treatment1: \$80 to \$150 Treatment2: \$ 150 to \$1999

Averaged Rating for Observed Treatments (Baseline): 1.09636

Average Rating for Prescribed
Treatments:
1.32598

Percentage Increase in Average Rating with our Model:

71 20.94%

OPT with Doubly Robust

Low: rating < 90
High: rating of 90 to 99
Perfect: rating = 100

Low/High: rating of 0 to 99

Perfect: rating = 100

Averaged Rating for Observed Treatments (Baseline): 0.29344

Average Rating for Prescribed
Treatments:
0.36039

Percentage Increase in Average Rating with our Model:

71 22.81%

Future Direction & Conclusion

- Incorporate Image Data (Computational Limitation)
- 2. Adjust Price and Rating Buckets (Data Limitation)
- 3. Include Customer Reviews (Text Limitation)

Thank you!

Questions?