

Europäisches Patentamt European Patent Office Office européen des brevets

(1) Veröffentlichungsnummer: 0 669 340 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 94112299.6

2 Anmeldetag: 05.08.94

(1) Int. Cl.6: C07F 17/00, C07F 7/22, //C08F10/00

Priorität: 25.02.94 DE 4406109

Veröffentlichungstag der Anmeldung: 30.08.95 Patentblatt 95/35

 Benannte Vertragsstaaten: AT BE CH DE ES FR GB GR IT LI NL PT SE 71 Anmelder: Witco GmbH **Ernst-Schering-Strasse 14** D-59192 Bergkamen (DE)

2 Erfinder: Lisowsky, Richard, Dr. **Breslauer Strasse 9 D-59174 Kamen (DE)**

Verfahren zur Herstellung von verbrückten stereorigiden Metallocenen.

Die Erfindung betrifft ein neues verbessertes Verfahren zur Herstellung von verbrückten stereorigiden Metallocenen über magnesium- und zinnorganische Verbindungen.

Gegenstand der Erfindung ist ein neues verbessertes Verfahren zur Herstellung von verbrückten stereorigiden Metallocenen über magnesiumund zinnorganische Verbindungen.

Metallocene auf Basis von Cyclopentadien, Inden und Fluoren sind in Kombination mit speziellen Co-Katalysatoren, wie beispielsweise Aluminoxanen oder Tetraphenylborat-Komplexen, hochaktive und bei geeignetem Ligandensystem auch stereospezifische Katalysatorsysteme zur Polymerisation von Olefinen.

Diese Katalysatoren, Verfahren zu ihrer Herstellung sowie ihre Verwendung sind in den EP-A-0 480 390, EP-A-0 413 326, EP-A-0 530 908, EP-A-0 344 887, EP-A-0 420 436, EP-A-0 416 815, EP-A-0 520 732 eingehend beschrieben.

Die dort genannten Verbindungen werden weitgehend hergestellt nach dem z. B. in der EP-A-0 480 390 Seite 5 angegebenen Reaktionsschema. Hierbei werden die Cyclopentadienylderivate mit Lithiumalkylen metalliert, anschließend mit Alkyldihalogeniden oder Alkylditosylaten zu den verbrückten Ligandensystemen umgesetzt und dann in einer folgenden Stufe abermals mit Lithiumalkylen zu den entsprechenden dimetallierten Verbindungen umgesetzt, welche dann mit Übergangsmetallhalogeniden zu den verbrückten Metallocenen reagieren (J. Organomet. Chem., 1985, 288, 63; J. Organomet. Chem., 1988, 324, 21).

Diese Verfahren weisen eine Reihe von Nachteilen auf:

- mehrstufige Synthesen, bei denen zum Teil die Zwischenstufen isoliert und gereinigt werden müssen,
- Durchführung einzelner Reaktionsstufen notwendigerweise bei Temperaturen ≤-56 °C,
- Einsatz sicherheits- und/oder umweltrelevant nicht unproblematischer Lösungsmittel wie Ether, Hexamethylphosphorsäuretriamid (HMPA), Methylenchlorid oder Chloroform,
- Trennverfahren (z. B. Extraktionen), insbesondere in der letzten Stufe, die in Verbindung mit den Stoffeigenschaften der Produkte (Schwerlöslichkeit, extrem empfindlich gegenüber Luft- und Feuchtigkeitsspuren) und der abzutrennenden Salze (z. B. LiCl) technisch nur unter hohem Aufwand durchzuführen sind und zu hohen Ausbeuteverlusten beitragen,
- gezielte Beeinflussung des rac: meso-Verhältnisses während der Synthese bei Verbindungen, die aufgrund der Ligandensubstitution prinzipiell in einer Racemat(rac)-(zwei Enantiomere) und einer Meso-Form anfallen können, ist nicht generell möglich (bisher konnte nur durch Arbeiten bei -56 °C in einigen Einzelfällen die Bildung der Meso-Verbindung verringert oder verhindert wer-

den).

 nur geringe Ausbeuten an gewünschtem Metallocen, insbesondere über alle Stufen gerechnet.

Daher besteht ein steigendes Interesse an der Bereitstellung geeigneter, insbesondere auch für technische Mengen problemlos anwendbarer, genereller Syntheseverfahren, die in hohen Ausbeuten möglichst kostengünstig solche Übergangsmetallkomplexe zu liefern in der Lage sind.

Eine Aufgabe der Erfindung war es, Syntheseverfahren zu entwickeln, welche es gestatten, unter Vermeidung der geschilderten Nachteile in hohen Ausbeuten, wahlweise mit oder vorzugsweise ohne Isolierung der Zwischenstufen, sowie technisch problemlos durchführbar, verbrückte stereorigide Metallocene herzustellen.

Es wurde nun gefunden, daß unter Einsatz von Dialkylmagnesiumverbindungen sowohl der Aufbau von verbrückten Ligandensystemen in hohen Ausbeuten unter technisch vorteilhaften Reaktionsbedingungen gelingt, als auch die für die optimalen, weiteren Umsetzungen besonders geeigneten Magnesium- und Zinnderivate dieser Ligandensysteme in hohen Ausbeuten in einem Eintopfverfahren erhältlich und direkt zu den gewünschten Metallocenen umsetzbar sind.

Weiterhin wurde überraschend gefunden, daß bei Umsetzungen von Liganden, die aufgrund ihrer Substitution zur Bildung von stereoisomeren Produkten (racemat (rac): meso-Verbindungen) geeignet sind, zu Metallocenen die Beeinflussung des rac: meso-Produktverhältnisses in weiten Grenzen durch die Reaktionsführung möglich ist.

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von verbrückten, stereorigiden Metallocenen der allgemeinen Formel (1)

 $Q(CpRa)(Cp'R'a')M(X)_n$ (1)

worin

35

40

45

50

55

Cp = ein Cyclopentadienyl-, ein Indenyl-, ein Fluorenylrest

R, R' = gleich oder verschieden Alkyl-,
Phosphin-, Amin-, Alkylether- oder
Aryl-ethergruppen mit 0 ≤a ≤4, 0
≤a' ≤4

Cp' = eine der Gruppen Cp oder

Cp' = -NH- mit R' = Alkyl- oder Arylrest mit a = 1 und

Q = eine ein- oder mehrgliedrige Brücke

$$(R^1-Z-R^2)_b$$

15

20

25

30

35

40

45

50

55

zwischen Cp und Cp' ist, worin R^1 und R^2 gleich oder verschieden ein Wasserstoffatom, eine C_1 - C_{10} -Alkylgruppe, eine C_6 - C_{10} -Arylgruppe und Z Kohlenstoff, Silizium oder Germanium bedeutet mit b=1,2 oder 3

M = ein Übergangsmetall der Gruppen 3 bis 6 (IUPAC Notation), insbesondere Zr, Hf ist

X = Halogen, insbesondere CI, Br ist und

n = der Oxidationszahl von M, vermindert um 2, entspricht,

welches dadurch gekennzeichnet ist, daß in erster Stufe

1) Cyclopentadienylverbindungen CpRa mit Magnesiumverbindungen (R^3R^4)_cMg, worin R^3R^4 gleich oder verschieden, H, C_1 - C_{12} -Alkylreste und c=0 oder 1 ist, nach der allgemeinen Gleichung umgesetzt werden

und das Reaktionsprodukt in zweiter Stufe
2) mit Verbindungen X¹QX², worin X¹, X² gleich
oder verschieden Cl, Br, J, -OSO₂R⁵, worin R⁵
ein Alkylrest mit 1 - 10 C-Atomen oder ein
Arylrest mit 6 - 10 C-Atomen sein kann, nach
der allgemeinen Gleichung umgesetzt wird

$$(CpRa)_2Mg + X^1QX^2 \longrightarrow (CpRa)_2Q + MgX^1X^2$$

und das Reaktionsprodukt in dritter Stufe
3) mit Magnesiumverbindungen (R³R⁴)_cMg nach der allgemeinen Gleichung umgesetzt wird

$$(CpRa)_2Q + (R^3R^4)_cMg -> Q(CpRa)_2Mg + cR^3H + cR^4H$$

und das Reaktionsprodukt in vierter Stufe 4) mit Zinnverbindungen R^6_{4-k} Sn X^3_k , worin R^6 ein C_2 - C_{20} -Alkylrest, insbesondere C_4 - C_8 -Alkylrest oder ein C_6 - C_{10} -Arylrest ist, X^3 ein Halogenatom, insbesondere Cl, Br und k=1-4 ist, nach der allgemeinen Gleichung

$$Q(CpRa)_2Mg + 2 R^6_{4-k}SnX^3_k \longrightarrow Q(CpRa)_2-(SnX^3_{k-1}R^6_{4-k})_2 + MgX^3_2$$

umgesetzt wird und das Reaktionsprodukt in fünfter Stufe

5) mit Übergangsmetallhalogeniden der Formel $M(X)_m$, worin m gleich der Qxidationszahl von M ist, nach der Gleichung

$$Q(CpRa)_2(SnX_{k-1}^3R_{4-k}^6)_2 + M(X)_m -> Q$$

$$(CpRa)_2M(X)_2 + 2 SnX_{k-1}^3XR_{4-k}^6$$

umgesetzt wird.

Ein weiterer Gegenstand der Erfindung ist dadurch gekennzeichnet, daß die Reaktionsprodukte der Zwischenstufen ohne Isolierung direkt für die weitere Umsetzung der jeweiligen Folgestufen eingesetzt werden.

Ein weiterer Gegenstand der Erfindung sind Verbindungen der allgemeinen Formel

$$Q(CpRa)(Cp'R'a')(SnX_{k-1}^3R^6_{4-k})_2$$

worin bedeuten

Q = eine ein- oder mehrgliedrige Brücke

$$(R^1-Z-R^2)_b$$

zwischen Cp und Cp' ist, worin R¹ und R² Alkyl-, Phosphin-, Amin-, Alkylether- oder Arylether-gruppen mit 0 ≤a ≤4, 0 ≤a' ≤4

Cp, Cp' = Cyclopentadienyl-, ein Indenyl-, ein Fluorenylrest

R, R' = Alkyl-, Phosphin-, Amin- Alkylether-, oder Arylethergruppen mit 0 ≤a. a' ≤4

 $R^6 =$ ein C_2 - C_{20} -Alkylrest, ein C_6 - C_{10} Arylrest

 X^3 = ein Halogenatom.

Die weiteren Gegenstände der Erfindung sind durch die Ansprüche gekennzeichnet.

Die erfindungsgemäß für die Stufe 1. einsetzbaren Cyclopentadienylverbindungen CpRa gehören zum bekannten Stand der Technik und sind Verbindungen, in welchen Cp ein Cyclopentadienylrest oder ein Indenylrest und R Alkyl-, Phosphin-, Amin-, Alkylether- oder Arylethergruppen mit 0 ≤a ≤4 sein können. Der Substituent R am Cp-Rest kann gleich oder verschieden sein. Erfindungsgemäß bevorzugt sind Verbindungen, in welchen R Alkylreste mit 1 - 6 C-Atomen sind und a = 0 bis 4 ist.

Als Verbindungen (R³R⁴)_cMg werden solche eingesetzt, in denen R³ und R⁴ gleich oder verschieden H, C₁₋₁₂-Alkylreste sind und c = 1 ist. Erfindungsgemäß werden bevorzugt Butylethylmagnesium, Di-n-butylmagnesium, Di-n-hexylmagnesium, n-Butyl-sec-butylmagnesium in ihren handelsüblichen Formulierungen, wie insbesondere BO-MAG®-A der Firma Witco GmbH (Butyl-octyl-magnesium 20 %ig in Heptan).

Die Umsetzungen erfolgen in Inertgasatmosphäre. Hierbei werden erfindungsgemäß bevor-

15

20

25

30

35

40

50

zugt die Komponenten bei Raumtemperatur in einem inerten Lösungsmittel vorgelegt und die Temperatur unter intensivem Rühren erhöht.

Als inerte Lösungsmittel sind die auf diesem Gebiet üblichen wie beispielsweise aliphatischen oder cyclischen Ether oder aromatischen Kohlenwasserstoffe mitverwendbar.

Erfindungsgemäß bevorzugt werden aliphatische Kohlenwasserstoffe mit Siedepunkten ≥60 °C, vorzugsweise ≥80 °C, insbesondere im Bereich von 90 - 120 °C. Die Umsetzung wird zur Erzielung praxisgerechter Reaktionszeiten vorzugsweise beim Siedepunkt der Lösungsmittel, insbesondere zwischen 80 - 120 °C, durchgeführt. Die Konzentration des Reaktionsgemisches ist weitgehend unkritisch. Zur Erzielung hoher Raum-Zeit-Ausbeuten wird jedoch im oberen technisch möglichen Bereich gearbeitet.

Die so erhaltenen (CpRa)₂ Mg-Verbindungen werden erfindungsgemäß bevorzugt direkt in zweiter Stufe mit den Verbindungen X¹-Q-X² nach der allgemeinen Reaktionsgleichung

$$(CpRa)_2Mg + X^1QX^2 \longrightarrow (CpRa)_2Q + MgX^1X^2$$

zu den verbrückten Biscyclopentadienyl-Verbindungen umgesetzt.

Die zur Verbrückung einsetzbaren Komponenten X¹QX² sind die aus dem Stand der Technik bekannten Verbindungen (EP-A-0 480 390, EP-A-0 413 326, EP-A-0 530 908, EP-A-0 344 887). Erfindungsgemäß bevorzugt sind Verbindungen, in denen X¹, X² Cl, Br oder -O-Tosyl sind.

Die Reaktionsmischung der ersten Stufe wird gegebenenfalls vor Zugabe der Komponente X¹QX² bis unter deren Siedetemperatur abgekühlt und nach erfolgter Zugabe erneut bis auf Siedetemperatur erwärmt.

Gegebenenfalls können zur Erhöhung der Reaktionsgeschwindigkeit noch in maximal stöchiometrischer Menge, bezogen auf Magnesium, Ether wie vorzugsweise Alkylether mit insbesondere 6 bis 10 C-Atomen wie insbesondere Di-n-butylether mitverwendet werden.

Die Reaktionszeiten liegen üblicherweise zwischen 1 bis 3 Stunden.

Bei dem erfindungsgemäßen Verfahren werden in beiden Stufen die Edukte vorzugsweise in stöchiometrischen Mengen eingesetzt. Dadurch und durch die nahezu quantitative Umsetzung unter praxisgrechten Bedingungen fallen die verbrückten Biscyclopentadienyl-Verbindungen in solchen Reinheiten an, daß sie direkt ohne Aufarbeitung für weitere Umsetzungen verwendbar sind.

Beispiele für die nach dem erfindungsgemäßen Verfahren herstellbaren verbrückten Biscyclopentadienyl-Verbindungen sind Dimethylsilyl-bis(1-inden), Dimethylsilyl-bis(1-cyclopentadien), 2,2-Pro-

pyl-bis(1-inden), 2,2-Propyl-bis(trimethylcyclopentadien), 2,2-Propyl-bis(5-dimethylamino-1-inden), 2,2-Propyl-bis(6-dipropylamino-1-inden), 2,2-Propyl-bis(4,7-bis(dimethyl-amino-1-inden), 2,2-Propyl-bis(5-diphenylphosphino-1-inden), 2,2-Propylbis(4,5,6,7-tetrahydro-1-inden), 2,2-Propyl-bis(4-methyl-1-inden), 2,2-Propyl-bis(5-methyl-1-inden), 2,2-Propyl-bis(6-methyl-1-inden), 2,2-Propyl-bis(7-methyl-1-inden), 2,2-Propyl-bis(5-methoxy-1-inden), 2,2-Propyl-bis(4,7-dimethoxy-1-inden), 2,2-Propylbis(2,3-dimethyl-1-inden), 2,2-Propyl-bis(4,7-dimethyl-1-inden), 2,2-Propyl-bis(1-cyclopentadien), 2,2-PropvI-bis(1-inden). Diphenvlmethyl-bis(1-inden). Diphenylmethyl-bis(1-cyclopentadien), Diphenylmethyl-bis(1-inden), Diphenylsilyl-bis(1-iden), Diphenylsilyl-bis(1-cyclopentadien), Diphenylsilyl-bis(1-inden), Ethylen-bis(1-inden), Ethylen-bis-(trimethylcyclopentadien), Ethylen-bis(5-dimethylamino-1-inden), Ethylen-bis(6-dipropylamino-1-inden), Ethylen-bis(4,7-bis(dimethylamino)-1-inden), Ethylen-bis(5-diphenylphosphino-1-inden), Ethylenbis(4,5,6,7-tetrahydro-1-inden), Ethylen-bis(4-methyl-1-inden), Ethylen-bis(5-methyl-1-inden)-,Ethylen-bis(6-methyl-1-inden), Ethylen-bis(7-methyl-1-inden), Ethylen-bis(5-methoxy-1-inden), Ethylen-bis(4,7-dimethoxy-1-inden), Ethylen-bis(2,3-dimethyl-1-inden), Ethylen-bis(4,7-dimethyl-1-inden), Ethylen-bis(9-fluoren), Ethylen-bis(1-cyclopentadien), Ethylen-bis(1-inden).

Die Reaktionsmischung wird erfindungsgemäß bevorzugt ohne Isolierung des Reaktionsproduktes direkt in dritter Stufe erneut mit den Magnesiumverbindungen (R³R⁴)_cMg der Stufe 1 in vorzugsweise stöchiometrischen Mengen unter den gleichen Reaktionsbedingungen wie in Stufe 1 zu den verbrückten Magnesiumverbindungen Q(CpRa)₂Mg umgesetzt.

Zu dieser Reaktionsmischung wird bei Temperaturen zwischen ca. 20 bis 120 °C, vorzugsweise bei der Reaktionstemperatur der Stufe 3, eine Zinnverbindung der allgemeinen Formel R⁶_{4-k}SnX³_k zudosiert.

In den Zinnverbindungen ist R⁶ ein Alkylrest mit 2 - 20 C-Atomen, insbesondere 4 - 8 C-Atomen, X³ ist ein Halogenrest, insbesondere Cl oder Br und k kann ein Wert von 1 bis 4 sein. Erfindungsgemäß bevorzugt sind Di-n-butyl-zinndichlorid, Tri-n-butyl-zinnchlorid, Tri-n-octyl-zinnchlorid, Di-n-octyl-zinndichlorid. Die Zinnverbindung wird vorzugsweise doppelt molar zur Magnesiumverbindung eingesetzt.

Nach Beendigung der Reaktion, je nach Reaktionstemperatur nach 1 bis 4 Stunden, werden nach Abkühlung auf Raumtemperatur sämtliche ausgefallenen Magnesiumsalze nach den üblichen Verfahren wie Dekantieren, Filtrieren, Zentrifugieren, abgetrennt.

20

25

30

35

45

Die feststofffreie organische Phase, welche als Reaktionsprodukt die Verbindung Q(CpRa)2-(SnX3_{k-1}R6_{4-k})₂ enthält, wird ohne weitere Aufarbeitung bei Raumtemperatur mit dem Übergangsmetallhalogenid M(X)_m, worin M ein Metall der Gruppe 3 bis 6 des Periodischen Systems der Elemente darstellt (IUPAC Notation), insbesondere Zr, Hf ist, X ein Halogenatom, insbesondere Cl, Br und m gleich der Oxidationszahl von M ist, versetzt und die Reaktion bei Raumtemperatur bis zur Siedetemperatur des verwendeten Lösungsmittels, vorzugsweise 20 - 120 °C, insbesondere 20 - 80 °C, durchgeführt. Die Reaktion ist im allgemeinen nach 1 bis 4 Stunden beendet.

Die Umsetzung der Stufe 5. kann zu stereoisomeren Verbindungen führen, welche in racemischer und mesomerer Form anfallen. Für die Herstellung von Katalysatoren für die Olefinpolymerisation sind die racemischen Verbindungen aufgrund ihrer höheren Aktivität und Stereoelektivität bevorzugt.

Anstelle der bei den gemäß Stand der Technik üblichen aufwendigen Verfahren zur Isolierung der Racemate kann bei dem erfindungsgemäßen Verfahren das Verhältnis auf einfache Weise allein durch die gewählten Konzentrationsverhältnisse gesteuert werden:

Je höher die Konzentration an Zinnverbindung, um so höher ist der Anteil an Racemat.

Zur Erreichung des gewünschten Verhältnisses an Racemat (rac): meso-Verbindung wird das Lösungsmittel vor der Umsetzung mit dem Übergangsmetallhalogenid ganz oder teilweise, das heißt in der benötigten Menge, abdestilliert.

Erfindungsgemäß bevorzugt wird das Verfahren ohne Isolierung der Reaktionsprodukte der Stufen 1. bis 4. durchgeführt. Es ist jedoch ebenfalls möglich, die jeweiligen Zwischenprodukte vor der Umsetzung in der Folgestufe zu isolieren oder gegebenenfalls auf anderem Wege herzustellen und für die Folgestufe einzusetzen.

Im Falle der unsymmetrischen Verbindungen Q(CpRa)Cp'R'a'), in welchen CpRa ungleich Cp'R'a' ist, werden diese über literaturbekannte Verfahren hergestellt und beginnend in Stufe 3. weiter nach dem erfindungsgemäßen Verfahren zu den Metallocenen umgesetzt.

Erfindungsgemäß mitverwendbare unsymmetrische Verbindungen sind 2,2-Propyl-bis(1-inden)(1-cyclopentadien), 2,2-Propyl-bis(1-inden)(9-fluoren), Diphenylmethyl-bis(1-inden)(1-cyclopentadien), Diphenylmethyl-bis(1-inden)(9-fluoren), Diphenylsilyl-bis(1-inden)(1-cyclopentadien), Diphenylsilyl-bis(1-inden)(9-fluoren), Ethylen-bis(1-inden)(1-cyclopentadien), Ethylen-bis(1-inden)(9-fluoren).

Beispiele

Alle Versuche wurden unter Ausschluß von Sauerstoff und Feuchtigkeit unter Inertgas durchgeführt.

Beispiel 1

Darstellung von Ethylen-bis(inden-1-yl)-zirkondichlorid :

a) Racemat (rac): meso 1:1

Es wurde bei Raumtemperatur (RT) eine Mischung von 556 ml BOMAG®-A (0,486 mol; Butyloctylmagnesium der Firma Witco GmbH; 20 % ig in Heptan) und 126 ml Inden (90 %ig; 0,97 mol) hergestellt.

Anschließend wurde 4 h unter Rückfluß gerührt, bis das Aufhören der Gasentwicklung das Reaktionsende anzeigte.

Nach Abkühlen auf 70 °C wurden 41,9 ml (0,486 mol) 1,2-Dibromethan und 69 ml Di-n-buty-lether zudosiert. Erneut wurde 4 h refluxiert.

Vor der Zugabe von weiteren 556 ml BO-MAG®-A wurde die Reaktionsmischung auf RT abgekühlt.

Anschließend folgten weitere 3 h Rückfluß.

Danach erfolgte die Zugabe von 264 ml (0,97 mol) Tri-n-butylzinnchlorid in die abgekühlte Mischung.

Unter Rückfluß innerhalb von 2 h wurde das Tri-butylzinn substituiert und Magnesiumchlorid eliminiert.

Nach Abtrennen der anorganischen Salze wurde die erhaltene klare Lösung mit 102 g ZrCl₄ - (0,44 mol) versetzt, 1 h bei RT und 3 h bei 60 °C gerührt.

Mittels Filtration konnte man dann das Rohprodukt isolieren.

Ausbeute: 156 g Rohprodukt (85 % d. Th., bezogen auf ZrCl₄; rac : meso-Verhältnis 1 : 1).

Nach Auskochen mittels frischem Heptan und Ausrühren mit THF bei RT erhielt man 55 g (30 %) reine rac-Verbindung (I):

Ethylen(Indenyl)₂ ZrCl₂:

¹H-NMR: (CDCl₃; 7,23 ppm) 7,68 - 7,13 (m, 8H, C₆ H₄); 6,58 (d, 2H, a-C₅ H₂); 6,2 (d, 2H, b-C₅ H₂); 3,75 (s, 4H, -CH₂CH₂-) Zr: ber.: 21,8 % gef.: 22,0 %;

Cl: ber.: 16,9 % gef.: 16,7 %

b) rac : meso 10 : 1

Die Reaktion wurde analog zu 1 a) durchgeführt, vor der Zugabe des ZrCl4 wurde jedoch die

55

15

20

25

30

35

40

50

55

Reaktionslösung destillativ vom Lösungsmittel befreit (bis 80 °C/1 Torr).

Man erhielt 147 g (80 %) Rohprodukt mit einem rac : meso-Verhältnis von 10 : 1.

Nach Aufreinigung konnten 110 g (60 %) reine rac-Verbindung isoliert werden.

(1H-NMR identisch mit dem in 1 a); Zr: 21,9 %; Cl: 16,6 %).

Beispiel 2

Darstellung von Ethylen-bis(inden-1-yl)hafniumdichlorid

a) rac : meso 2 : 1

Es wurden 85,2 ml Inden (94 %ig; 0,73 mol) vorgelegt, dem unter Rückfluß 416 ml BOMAG®-A (20 %ig in Heptan; 0,364 mol) zudosiert wurden. Es wurde 6 h refluxiert.

Bei 60 - 70 °C wurden 31,4 ml 1,2-Dibromethan (0,364 mol) und 50 ml Di-n-butylether zugegeben und man ließ 4 h unter Rückfluß nachreagieren.

Anschließend wurden erneut 416 ml BOMAG®-A (20 %ig in Heptan; 0,364 mol) eingetragen und 4 h unter Rückfluß gerührt.

Bei 80 °C erfolgte dann die Dosierung von 196 ml Tri-n-butylzinnchlorid (0,723 mol) mit nachfolgendem vierstündigen Refluxieren.

Anschließend wurden alle anorganischen Salze abgetrennt und das klare Filtrat weiter eingesetzt.

Bei 0 °C wurde in die Lösung HfCl₄ eingetragen (92,2 g; 0,288 mol). Es wurde langsam auf 60 °C erhitzt. Nach 30 min ging man dann auf Rückfluß und beließ die Reaktionsmischung 2 h dabei.

Nach Abkühlen auf RT wurde der ausgefallene Feststoff isoliert und getrocknet.

Es konnten 110 g (92 %) Rohprodukt (II) mit einem rac : meso-Verhältnis von ca. 2 : 1 isoliert werden.

Ausrührung mit Tetrahydrofuran (THF) lieferten schließlich 50,2 g (42 %) reines Racemat an (II).

rac-Ethylen(Indenyl)₂ HfCl₂ (II):

¹H-NMR: (CDCl₃, 7,23 ppm) 7,65 - 7,1 (m, 8H, C_6H_4); 6,48 (d, 2H, a- C_5H_2); 6,09 (d, 2h, b- C_5H_2); 3,8 (s, 4H, -CH₂CH₂-) Hf: ber.: 35,3 gef.: 35,8 Cl: ber.: 14,02 gef.: 13,9

b) rac: rein.

Es wurde analog zu 2 a) gearbeitet, lediglich nach der Umsetzung mit Tri-n-butylzinnchlorid und dem Entfernen der ausgefallenen anorganischen Salze wurde die Lösung destillativ unter Anlegen von Vakuum vom Lösungsmittel befreit.

Das nach Umsetzung mit HfCl₄ gewonnene Rohprodukt enthielt keine meso-Verbindung.

Nach Aufreinigung konnten mittels Filtration und Trocknung abschließend 73,5 g (61 % d. Th.; bezogen auf HfCl₄) an reinem (II) erhalten werden. ¹H-NMR identisch mit dem in 3 a);

Hf: gef.: 35,5 Cl: gef.: 14,0

Beispiel 3

Darstellung von Me₂ Si-bis(inden-1-yl)zirkondichlorid

a) rac : meso 1,1 : 1

55,7 ml Inden (95 %ig; 0,454 mol) und 50 ml Heptan wurden vorgelegt und innerhalb von 15 min unter Rückfluß mit 260 ml BOMAG®-A (20 %ig in Heptan; 0,227 mol) versetzt. Nach 3 h Rückfluß wurde auf RT abgekühlt.

Man dosierte weiterhin 29,3 g Dimethydichlorsilan (0,227 mol), 39 ml Di-n-butylether und 25 ml Hexan zur Reaktionslösung und refluxierte 3 h.

Nach erneuter Zugabe von BOMAG®-A (260 ml; 0,227 mol), 4 h Kochen unter Rückfluß und Abkühlen auf RT wurden unter Rühren 123 ml Trin-butylzinnchlorid zudosiert (Temperaturanstieg auf 45 °C) und die Reaktion 4 h bei 50 °C weitergeführt.

Die ausgefallenen Salze wurden abgetrennt und das klare Filtrat wurde mit 47,6 g ZrCl₄ (0,204 mol) versetzt.

Es wurde 2 h bei RT und 1 h unter Rückfluß gerührt.

Nach Filtration und Trocknung erhielt man 79,7 g Rohprodukt (87 % d. Th.; bezogen auf ZrCl₄) mit einem rac : meso-Verhältnis von 1,1 : 1.

Aufreinigung ergab eine Ausbeute an reinem rac-Produkt (III) von 28,4 g (31 %).

rac-Me₂Si(Indenyl)₂ZrCl₂ (III):

 1 H-NMR: (CDCl₃, 7,23 ppm) 7,62 - 7,03 (m, 8H, C₆H₄); 6,94 (d, 2H, a-C₅H₂); 6,1 (d, 2H, b-C₅H₂) 1,13 (s, 6 H, Si(CH₃)₂)

Zr: ber.: 20,3 % gef.: 20,3 %; Cl: ber.: 15,8 % gef.: 15,7 %

b) reines Racemat:

522 ml BOMAG®-A (20 %ig; 456,6 mmol) wurden vorgelegt und auf Rückfluß erhitzt. Dann erfolgte innerhalb von 30 min die Zudosierung von 121 ml Inden (90 %ig; 931,2 mmol) mit anschließendem vierstündigem Refluxieren.

Bei RT wurden weiterhin 55,3 ml Me_2SiCl_2 - (456 mmol), 80 ml Di-n-butylether und 40 ml Hexan hinzugefügt.

20

25

35

2 h Refluxieren schlossen sich an.

Nach Zugabe von 522 ml BOMAG®-A und 4 h Nachreaktion unter Rückfluß wurde bei RT Tri-nbutylzinnchlorid zudosiert (253 ml, 931 mmol) und 4 h bei 50 °C belassen.

Die Reaktionslösung wurde von den ausgefallenen Salzen befreit, und destillativ wurden flüchtige Bestandteile abgetrennt (bis 100 °C; 1 Torr).

In die viskose, klare Lösung wurden 98 g ZrCl4 (420 mmol) bei 20 °C eingetragen.

Es wurde 2 h bei 90 °C gerührt.

Man erhielt 149 g Rohprodukt (79 % d. Th.; bezogen auf ZrCl₄), das noch geringe Verunreinigungen, aber keine meso-Verbindung enthielt.

Nach Aufreinigung erhielt man 122 g reines rac- (III) (65 % d. Th.)

¹H-NMR identisch mit dem in 3 a)

Zr: gef.: 20,4 % Cl: gef.: 15,6 %

Beispiel 4

Technische Darstellung von Me₂Si(indenyl)₂ZrCl₂:

In einem 150 I Reaktor wurden 7,95 kg Inden (90 %ig) vorgelegt und mit 27,05 kg BOMAG®-A (1,2 mol/kg) versetzt.

Nach Aufheizen bis auf Rückfluß (98 °C) wurde 3 h bei dieser Temperatur belassen, bis die Butangasentwicklung abgeschlossen war.

Eine Lösung von 4,24 kg Dichlordimethylsilan und 4,23 kg Di-n-butylether in 4 I Hexan wurde nun bei ca. 70 °C zu der erhaltenen Suspension dosiert. Es schlossen sich 2 h Nachreaktion unter Rückfluß an.

Sofort anschließend erfolgte die Zugabe von weiteren 27,05 kg BOMAG®-A mit anschließendem dreistündigem Refluxieren.

Danach wurden 21,14 kg Tri-n-butylzinnchlorid zudosiert und 3 h bei 50 °C gerührt.

Das ausgefallene Magnesiumsalz wurde mittels Filtration abgetrennt und das Filtrat vom Lösungsmittel befreit.

Die verbleibende viskose Lösung wurde bei RT startend mit 6,96 kg Zirkontetrachlorid versetzt und noch 3 h refluxiert.

Das Rohprodukt wurde anschließend mittels Filtration isoliert (reine rac-Verbindung; keine meso-Verbindung nachweisbar; Rohausbeute 90

Zur weiteren Aufreinigung wurde das Produkt noch mittels THF ausgerührt, so daß man letztendlich 75 % (9,8)kg) sauberes Me₂Silndenyl₂ZrCl₂ erhielt.

Beispiel 5

Darstellung Me₂ Si-bis(inden-1-yl)von hafniumdichlorid:

a) rac : meso 2 : 1

Es wurden 148,6 ml BOMAG®-A (20 %ig in Heptan; 130 mmol) und 33,8 ml Inden (90 %ig; 260 mmol) zusammengemischt und 4 h refluxiert.

Anschließend wurden 15,8 ml Me₂SiCl₂ (130 mmol), 20 ml Hexan und 20 ml Di-n-butylether bei 20 °C zugesetzt. Danach wurde 3 h refluxiert.

Die so erhaltene Reaktionsmischung wurde erneut mit 148,6 ml BOMAG® A versetzt und 3 h refluxiert, bevor 70,5 ml Tri-n-butylzinnchlorid (260 mmol) bei RT zudosiert und die Reaktion weitere 3 h bei 50 °C unter Rühren weitergeführt wurde.

Nach Entfernen der ausgefallenen Feststoffe versetzte man die erhaltene klare Lösung mit 37,5 g HfCl4 (117 mmol) und refluxierte 2 h.

Mittels Filtration erhielt man 44,5 g Rohprodukt (IV) (71 % d. Th., bezogen auf HfCl₄) mit einem rac : meso-Verhältnis von 2 : 1.

Me₂Si(Indenyl)₂HfCl₂

¹H-NMR: (CDCl₃, 7,23 ppm)

7,58 - 7,03 (m, 8H, C₆H₄); 6,8 (d, 2H, C₅H₂); 6,05

 $(d, 2H, C_5H_2); 1,1 (s, 6H, Si(CH_3)_2)$

Hf: ber.: 33,3 % gef.: 33,6 %; Cl: ber.: 13,2 % gef.: 13,0 %

b) reines Racemat:

Es wurde analog zu Versuch 5 a) gearbeitet, wobei als Variation die Reaktionslösung vor Zusatz des HfCl4 von dem Lösungsmittel befreit wurde (bis zu 120 °C/1 Torr).

Man erhielt ein meso-freies Rohprodukt, das nach Aufreinigung 43,9 g (70 % d. Th.) reines rac-Metallocen (IV.) lieferte.

¹H-NMR identisch mit dem in 6 a)

Hf: gef.: 33,4 %; Cl: gef.: 13,3 %

Beispiel 6

Einsatz weiterer Dialkymagnesiumverbindungen:

a) Ansatz 3 a) wurde wiederholt, anstelle von BOMAG®-A wurde jedoch Dibutylmagnesium (1 molar in Heptan) eingesetzt. Dabei wurden die Refluxionszeiten bei der Umsetzung des Dialkylmagnesiums jeweils um 30 min verlängert.

Man erhielt 68 g Rohprodukt Me₂Si-(Indenyl)₂ ZrCl₂ (mit einem rac : meso-Verhältnis von 1:1).

7

50

45

55

10

30

35

40

45

50

55

b) Ansatz 3 a) wurde mit Dihexylmagnesium (1 molar in Heptan) durchgeführt.

Man erhielt 70 g Rohprodukt Me₂Si-(IndenyI)₂ZrCl₂ (mit einem rac : meso-Verhältnis von 1 : 1).

Beispiel 7

Isolieren und Charakterisieren der Zwischenstufe EthylenIndenyl₂ (tri-n-butylzinn)₂:

10 g Inden (95 %ig; 82 mmol) wurden mit 34,2 g BOMAG®-A (20 %ig in Heptan; 41 mmol) versetzt und 4 h lang unter Rückfluß erhitzt.

Dann wurden bei Raumtemperatur 7,7 g (41 mmol) 1,2 Dibromethan und 5,3 g (41 mmol) n-Butyl₂O zugegeben und erneut 3 h unter Rückfluß gerührt.

Anschließend wurde das ausgefallene $MgBr_2$ mittels Filtration abgetrennt.

Das Filtrat wurde mit 34,2 g BOMAG®-A (20 %ig in Heptan; 41 mmol) versetzt und 4 h refluxiert.

Anschließend wurden bei 50 °C 26,8 g (82 mmol) Tri-n-butylzinnchlorid zugegeben und weitere 2 h refluxiert.

Das ausgefallene MgCl₂ wurde durch Filtration abgetrennt und das Filtrat zur Trockene eingeengt (bis 100 °C/0,1 mbar).

Man erhielt EtIndenyl₂TBT₂ in Form eines viskosen Öls in quantitativer Ausbeute.

¹H-NMR: (CDCl₃) 7,55 (m, 2H); 7,45 (m, 2H); 7,3 - 7,1 (m, 4H); 6,5 (d, 2H); 4,02 (m, 2H); 3,02 (s, 4H); 1,7 - 1,1 (m, 36 H); 0,9 - 0,7 (m, 8 H).

Beispiel 8

Isolieren und Charakterisieren der Zwischenverbindung Me₂Silndenyl₂TBT₂ (TBT = Tri-n-butylzinn)

12,2 g Inden (95 %ig; 0,1 mol) wurden mit 42 g BOMAG®-A (20 %ig in Heptan; 50 mmol) versetzt und 4 h refluxiert.

Anschließend wurden bei Raumtemperatur 6,45 g Me $_2$ SiCl $_2$ (50 mmol) und 6,5 g n-Butyl $_2$ O (50 mmol) zugesetzt und 2 h erneut refluxiert.

Weiterhin wurden 100 mmol (32,8 g) Tri-n-butylzinnchlorid zugefügt, 2 h unter Rückfluß gerührt, abgekühlt, filtriert und das Filtrat zur Trockene eingeengt (100 °C/0,1 mbar).

Man erhielt Me₂Silndenyl₂TBT₂ als ein viskoses Öl in quantitativer Ausbeute.

¹H-NMR: (CDCl₃) 7,6 - 7,3 (m); 7,2 - 6,9 (m,); 4,25 (s, 2H); 1,8 - 1,1 (m, 36 H); 0,9 - 0,7 (m, 18 H); 0,5 (s, 6 H).

Beispiel 9

a) Isolieren und Charakterisieren der Verbindung Me₂Si[(Me₄Cp)(¹BuN)](tri-n-butylzinn)₂:

13,25 g (= 53 mmol) Me₂Si[(Me₄CpH)(¹BuNH)] (Literatur: (Organometallics, 1990, 9, 867) wurden in 63,6 ml BOMAG®-A (53 mmol) gegeben und 3 h refluxiert.

Anschließend wurde die Lösung auf -40 °C gekühlt und der ausgefallene Feststoff isoliert (13,9 a).

Me₂Si[(Me₄Cp)(^tBuN)]Mg:

¹H-NMR: (DMSO) 1,99 (s, 6 H, b-Me₂Cp); 1,79 (s, 6 H, a-Me₂Cp); 1,09 (s, 9 H, Me₃C); 0,12 (s, 6 H, SiMe₂)

10 g Me₂Si[(Me₄Cp)(¹BuN)]Mg (36,5 mmol) wurden in 50 ml Xylol gelöst und mit Tri-n-butylzinnchlorid versetzt (73 mmol; 23,8 g) und 5 h refluxiert.

Von der nach Filtration erhaltenen Lösung wurde das Xylol abgezogen und das verbleibende viskose Öl mittels NMR-Spektroskopie analysiert:

1H-NMR: (CDCl₃) 1,98 (s, 6 H, a-Me₂Cp); 1,82 (s, 6 H, Me₂Cp); 1,7 - 1,6 (m, 12 H, Sn-CH₂-); 1,43 - 1,1 (m, 24 H, -CH₂CH₂-);

1,06 (s, 9 H, Me₃C); 0,95 (t, 18 H, H₃C-); 0,09 (s, 6

1,06 (s, 9 H, Me_3C); 0,95 (t, 18 H, H_3C -); 0,09 (s, ℓ H, Me_2Si).

Patentansprüche

 Verfahren zur Herstellung von verbrückten, stereorigiden Metallocenen der allgemeinen Formel (1)

 $Q(CpRa)(Cp'R'a')M(X)_n$ (1)

worin

Cp = ein Cyclopentadienyl-, ein Indenyl-, ein Fluorenylrest

R, R' = Alkyl-, Phosphin-, Amin-, Alkylether- oder Arylethergruppen mit 0 ≤a ≤4, 0 ≤a' ≤4

Cp' = eine der Gruppen Cp oder

Cp' = NR" mit R" = Alkyl- oder Arylrest mit a = 1 und

Q = eine ein- oder mehrgliedrige Brücke

$$(R^1-Z-R^2)_b$$

zwischen Cp und Cp' ist, worin R¹ und R² gleich oder verschie-

10

15

20

25

30

35

40

45

den ein Wasserstoffatom, eine C_1 - C_{10} -Alkylgruppe, eine C_6 - C_{10} -Arylgruppe und Z Kohlenstoff, Silizium oder Germanium bedeutet mit b = 1, 2 oder 3

M = ein Übergangsmetall der Gruppen 3 bis 6, ins besondere Zr, Hf ist

X = Halogen, insbesondere Cl, Br ist und

n = der Oxidationszahl von M, vermindert um 2, entspricht,

dadurch gekennzeichnet, daß in erster Stufe

1) Cyclopentadienylverbindungen CpRa mit Magnesiumverbindungen (R³R⁴)_cMg, worin gleich oder verschieden, H, C₁-C₁₂-Alkylreste und C = 0 oder 1 ist, nach der allgemeinen Gleichung umgesetzt werden

$$2CpRa + (R^3R^4)_cMg \rightarrow (CpRa)_2Mg + cR^3H + cR^4H$$

und das Reaktionsprodukt in zweiter Stufe 2) mit Verbindungen X^1QX^2 , worin X^1 , X^2 gleich oder verschieden Cl, Br, J, $-OSO_2R^5$ mit R^5 ein Alkylrst mit 1 - 10 C-Atomen oder ein Arylrest mit 6 - 10 C-Atomen sein kann, nach der allgemeinen Gleichung umgesetzt wird

$$(CpRa)_2Mg + X^1QX^2 \longrightarrow (CpRa)_2Q + MgX^1X^2$$

und das Reaktionsprodukt in dritter Stufe 3) mit Magnesiumverbindungen (R³R⁴)cMg nach der allgemeinen Gleichung umgesetzt wird

$$(CpRa)_2Q + (R^3R^4)_cMg -> Q(CpRa)_2Mg - cR^3H - cR^4H$$

und das Reaktionsprodukt in vierter Stufe 4) mit Zinnverbindungen R^6_{4-k} SnX 3_k , worin R^6 ein C_2 - C_{20} -Alkylrest, insbesondere C_4 - C_8 -Alkylrest oder ein C_6 - C_{10} -Arylrest ist, X 3 ein Halogenatom, insbesondere Cl, Br und K=1-4 ist, nach der allgemeinen Gleichung

$$Q(CpRa)_2Mg + 2 R^6_{4-k}SnX^3_k -> Q(CpRa)-50_2(SnX^3_{k-1}R^6_{4-k})_2 + MgX^3_2$$

umgesetzt wird und das Reaktionsprodukt in fünfter Stufe

5) mit Übergangsmetallhalogeniden der Formel M(X)_m, worin m gleich der Qxidationszahl von M ist, nach der Gleichung

$$Q(CpRa)_2(SnX^3_{k-1}R^6_{4-k})_2 + M(X)_m \longrightarrow Q-(CpRa)_2M(X)_2 + 2 SnX^3_{k-1}XR^6_{4-k}$$

umgesetzt wird.

- 2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß in der Stufe 4. enthaltene Lösungsmittel vor Umsetzung mit dem Übergangsmetallhelogenid in der Stufe 5. ganz oder teilweise entfernt wird.
- Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Reaktionsprodukte der Zwischenstufen ohne Isolierung direkt für die weitere Umsetzung der jeweiligen Folgestufen eingesetzt werden.
- 4. Verbindungen der allgemeinen Formel

$$Q(CpRa)(Cp'r'a')(SnX_{k-1}^3R^6_{4-k})_2$$

worin bedeuten

Q =

eine ein- oder mehrgliedrige strukturelle Brücke

zwischen Cp und Cp' ist, worin R¹ und R² Alkyl-, Phosphin-, Amin-, Alkylether- oder Arylethergruppen mit $0 \le a \le 4$, $0 \le a' \le 4$ Cp. Cp' =

Cyclopentadienyl-, ein Indenyl-, ein Fluorenylrest

R, R' =

Alkyl-, Phosphin-, Amin- Alkylether-, oder Arylethergruppen mit $0 \le a$, a' ≤ 4

R6 =

ein C_2 - C_{20} -Alkylrest, ein C_6 - C_{10} -Arylrest X^3 =

ein Halogenatom.

55

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 94 11 2299

EINSCHLÄGIGE DOKUMENTE				
Kategorie	Kennzeichnung des Dokuments der maßgeblichen	mit Angabe, soweit erforderlich, Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CL6)
A	EP-A-0 537 686 (HOECH * Seite 6 - Seite 7;		1	C07F17/00 C07F7/22 //C08F10/00
D,A	EP-A-O 344 887 (EXXON INC.) * das ganze Dokument		1	77008110700
A	US-A-3 306 917 (SHAPI * das ganze Dokument _	 RO, H. ET AL.) * 	1	
				-
				RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
				C07F
Der vo	rliegende Recherchenbericht wurde fü	ir alle Patentansprüche erstellt		
	Recherchemort	Abschlußdatum der Recherche		Prüfer
	DEN HAAG	17. Mai 1995	Rin	ikel, L

EPO FORM LSCO CLAZ (POCCES)

- X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Gr E: älteres Patentiokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument