Homework 5 2/13/17, 2:58 PM

http://www.na.edu

E-mail: moodle@na.edu

Dashboard > My courses > COMP > COMP 3320.Programming Languages.2017SPR.s1 > 13 February - 19 February > Homework 5

Started on	Monday, 13 February 2017, 2:54 PM
State	Finished
Completed on	Monday, 13 February 2017, 2:58 PM
Time taken	4 mins 38 secs
Marks	5.00/5.00
Grade	100.00 out of 100.00

Question 1 Correct Mark 1.00 out of 1.00

Dynamic semantics deals with the meaning of expressions, statements, and program units.

Select one:

False

The correct answer is 'True'.

Homework 5 2/13/17, 2:58 PM

Question 2	Correct	Mark 1.00 out of 1.00	
Operational semantics deals with the effects of running a program on a machine.			
Select one:			
● True			
O False			
The correct answer	r is 'True'.		
Question 3	Correct	Mark 1.00 out of 1.00	
For which one of the following we do not need attribute grammars?			
Select one:			
a. To find inherited attributes			
 b. To find intrinsic attributes 			
c. To find synthesized attributes			
• d. To check	ambiguity	✓	
Your answer is cor	rect.		
The correct answer is: To check ambiguity			

Homework 5 2/13/17, 2:58 PM

Question 4	Correct	Mark 1.00 out of 1.00
The static semant	ics of a lan	nguage deals with the syntax rather than semantics.
Select one:		
True 		
False		
True		
The correct answer	r is 'True'.	

Homework 5 2/13/17, 2:58 PM

Question 5 Correct Mark 1.00 out of 1.00

What does the following attribute grammar mean:

Syntax rule: <fun_def> → **function** <fun_name>[1]

<fun_body> end <fun_name>[2];

Predicate: <fun_name>[1].string == <fun_name>[2].string

Select one:

- $_{\odot}$ a. The name on the end of a function must match the functions name \checkmark
- b. Functions should have two variables
- c. Syntax rule should come before predicate rule when writing in that programming language
- d. Functions cannot be defined without variables

Your answer is correct.

The correct answer is: The name on the end of a function must match the functions name