Academic year 2022/23

Session 202205

Answers

Q1. a) (i) 40

Fully parenthesized form:
$$5 \times ((8 - (2 \times (9 \div 3))) + (3 \times (8 \div 4)))$$

(ii) Binary tree

Polish form: \times 5 + -8 \times 2 ÷ 9 3 \times 3 ÷ 8 4

Q1. b)

Vertex	List of adjacencies
1	2 3 4
2	1 5 6
3	1
4	1
5	2
6	2 7 8
7	6 8 9
8	6 7 9
9	7 8

Question 1b) (Continued)

Depth-first search

Breadth-first search

c) (i)

- (ii) Preorder: G E D A F L H J I N P R
- (iii) Expected number of comparisons = 3.25

Q2. a) (i)
$$::= ab < v_1> | c < v_2>$$

 $< v_1> ::= c < v_1> | d < v_2>$
 $< v_2> ::= d < v_1> | a < v_2> | b < v_2> | c$

abccddddc is not a syntactically correct sentence.

(iv) Regular expression = $((abc^*d) \lor c)(a \lor b)^*(dc^*d(a \lor b)^*)^*c$

Question 2 (Continued)

(b) (i)

	0	1
S_0	S_0	S_0, S_1
S_1	Ø	S_2
S_2	S_3	Ø
S_3	S_3	S_3

(ii) Regular expression that can be accepted is $(0\lor1)*110(0\lor1)*$.

(iii)

	0	1
$\{S_0\}$	$\{S_0\}$	$\{S_0 S_1\}$
$\{S_0 S_1\}$	$\{S_0\}$	$\{S_0 S_1 S_2\}$
$\{S_0 S_1 S_2\}$	$\{S_0 S_3\}$	$\{S_0 S_1 S_2\}$
$\{S_0 S_3\}$	$\{S_0 S_3\}$	$\{S_0 S_1 S_3\}$
$\{S_0 S_1 S_3\}$	$\{S_0 S_3\}$	$\{S_0 S_1 S_2 S_3\}$
$\{S_0 S_1 S_2 S_3\}$	$\{S_0 S_3\}$	$\{S_0 S_1 S_2 S_3\}$

Q3. a) Associative.

Identity element, $e = -6 \in \mathbb{Z}$.

Inverse, $I = -12 - p \in \mathbb{Z}$.

The binary operation, * on \mathbb{Z} defined by p * q = p + q + 6 gives a group structure on the set.

Q3. b) (i) r * s = 2s * r = -5

Since $r * s \neq s * r$ the binary operation, * on the set A defined by $r * s = rs + s - 2r^2$ is not commutative.

(ii) Since $1 * 1 = 0 \notin A$ Hence the binary operation, * on the set A defined by $r * s = rs + s - 2r^2$ is not closed.

Q4 a) (i)
$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

W	e(w)
00	0000
01	0100
10	1011
11	1111

(ii) The minimum distance of this (2, 4) encoding function $e_H = 1$

(1	1	1)	

\oplus	0000	0100	1011	1111
0001	0001	0101	1010	1110
0010	0010	0110	1001	1101
1000	1000	1100	0011	0111

(iv)
$$(1)$$
 $d(1100) = 01$

(2)
$$d(1010) = 10$$

Q4. b) (i) Process of merging two lowest probabilities.

$$0.28 \ \ 0.23 \ \ 0.19 \ \ 0.12 \ \ 0.10 \ \ 0.08$$

$$0.42 \quad 0.30 \quad 0.28$$

Question 4 b) (i) (Continued)

Letter, (x_i)	L	Е	T	О	I	P
Probability, $P(x_i)$	0.08	0.28	0.10	0.23	0.19	0.12
Codeword, C_i	0001	01	0000	10	11	001

Q4. b) (ii) Average code length,
$$L(C) = 2.48$$
 bits

Entropy, H(x) = 2.4479

Efficiency = 0.9871

The efficiency of this code is 98.71%.