Търсене и извличане на информация. Приложение на дълбоко машинно обучение

Стоян Михов

Лекция 6: Принципен компонентен анализ (РСА). Влагане на думи и документи в гъсто нискомерно векторно пространство.

1. Формалности за курса (5 мин)

- 2. Интуиция за принципния компонентен анализ (10 мин)
- 3. Свойства на ковариационната матрица (15 мин)
- 4. Задача за намиране на принципните компоненти (25 мин)
- 5. Влагане на думи и контексти в нискомерно гъсто векторно пространство и латентен семантичен анализ (20 мин)
- 6. Семантично пространствени релации (15 мин)

Формалности

- Засега ще провеждаме занятията онлайн всяка сряда от 8:15 до 12:00 часа.
- Моля следете редовно обявите в Moodle за евентуални промени.
- Засега ще използваме платформата Google meet: meet.google.com/hue-frfx-axb
- Днес ще използваме едновременно слайдове и бяла дъска.
 Моля следете съответния екран.
- Шестата лекция се базира на глава 18 от първия учебник и секция 10.4 от втория учебник.

1. Формалности за курса (5 мин)

- 2. Интуиция за принципния компонентен анализ (10 мин)
- 3. Свойства на ковариационната матрица (15 мин)
- 4. Задача за намиране на принципните компоненти (25 мин)
- 5. Влагане на думи и контексти в нискомерно гъсто векторно пространство и латентен семантичен анализ (20 мин)
- 6. Семантично пространствени релации (15 мин)

Влагането на думи във векторното пространство на контекстите

- Контекстът на дадена дума са думите, които са около нея в рамките на параграф, изречение или фиксиран по размер прозорец.
- На всяка дума съпоставяме вектора от свързванията на думата с всеки от контекстите.
- Размерността на пространството е огромна, което води до изчислителни трудности.
- **Цел**: Да намерим влагане на векторите в нискомерно гъсто векторно пространство, което възможно най-добре да отразява разстоянията в многомерното контекстно пространство.

Интуитивна представа за принципен компонентен анализ

Интуитивна представа за принципен компонентен анализ

Интуитивна представа за принципен компонентен анализ

Основна идея

- Ще използваме техниката на принципния компонентен анализ за да намерим нискомерен базис от ортогонални вектори размерността обикновено е между 25 и 1000.
- В този базис разстоянията между векторите ще искаме да са максимално близки до съответните разстояния в многомерното пространство.
- Направленията в новия базис ще съответсват на линейни комбинации от оригиналните базисни вектори определени от контекстите.
- Новите вектори ще бъдат "гъсти" почти няма да има нулеви компоненти.
- Намалянето на размерността може да доведе до намаляне на шума и до постигане на по-висока прецизност.

- 1. Формалности за курса (5 мин)
- 2. Интуиция за принципния компонентен анализ (10 мин)
- 3. Свойства на ковариационната матрица (15 мин)
- 4. Задача за намиране на принципните компоненти (25 мин)
- 5. Влагане на думи и контексти в нискомерно гъсто векторно пространство и латентен семантичен анализ (20 мин)
- 6. Семантично пространствени релации (15 мин)

Ковариационна матрица

Ковариационна матрица на вектор от случайни величини $\mathbf{X} = \begin{bmatrix} \mathbf{X}_2 \\ \mathbf{X}_2 \\ \vdots \end{bmatrix}$ е

матрица $\mathbb{R}^{N\times N}$, която означаваме с $\mathbf{C}[\mathbf{X}]$ и дефинираме като: $\mathbf{C}[\mathbf{X}] = \mathrm{E}[(\mathbf{X} - \mathrm{E}[\mathbf{X}])(\mathbf{X} - \mathrm{E}[\mathbf{X}])^{\mathsf{T}}]$, т.е. $\mathbf{C}[\mathbf{X}]_{i,j} = \mathrm{Cov}(X_i, X_j)$

Свойство:

· $\mathbf{C}[\mathbf{X}] = \mathbf{E}[\mathbf{X}\mathbf{X}^{\mathsf{T}}] - \mathbf{E}[\mathbf{X}]\mathbf{E}[\mathbf{X}]^{\mathsf{T}}$

Забележка: $\mathbf{X}\mathbf{X}^{\mathsf{T}} = \mathbf{X} \otimes \mathbf{X}$

- · Свойство: Нека $A \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times k}$. Тогава: $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$
- Свойство: Нека $u, v \in \mathbb{R}^n$. Тогава: $(u \cdot v)^2 = v^{\mathsf{T}}(u \otimes u)v = v^{\mathsf{T}}(uu^{\mathsf{T}})v$ доказателство:

$$(u \cdot v)^{2} = (u^{\mathsf{T}}v)(u^{\mathsf{T}}v) = (\sum_{i=1}^{n} u_{i}v_{i})(\sum_{j=1}^{n} u_{j}v_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} u_{i}v_{i}u_{j}v_{j}$$

$$v^{\mathsf{T}}(uu^{\mathsf{T}})v = v^{\mathsf{T}}((uu^{\mathsf{T}})v) = \sum_{i=1}^{n} v_{i}((uu^{\mathsf{T}})v)_{i} = \sum_{i=1}^{n} v_{i} \sum_{j=1}^{n} (u_{i}u_{j})v_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} u_{i}v_{i}u_{j}v_{j}$$

- Дефиниция: Матрицата $A \in \mathbb{R}^{n \times n}$ наричаме положително дефинитна, ако за всеки вектор $v \in \mathbb{R}^n$ е изпълнено: $v^T A v \ge 0$.
- Твърдение: Всяка ковариационна матрица получена чрез емпирична ковариация е положително дефинитна.
- Доказателство:

$$\mathbf{C}(\mathbf{X}) = \mathbf{E}[(\mathbf{X} - \mathbf{E}[\mathbf{X}])^2] = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{E}[\mathbf{X}])(\mathbf{x}_i - \mathbf{E}[\mathbf{X}])^{\mathsf{T}}$$

$$v^{\mathsf{T}}\mathbf{C}(\mathbf{X})v = \frac{1}{n} \sum_{i=1}^{n} v^{\mathsf{T}}(\mathbf{x}_i - \mathbf{E}[\mathbf{X}])(\mathbf{x}_i - \mathbf{E}[\mathbf{X}])^{\mathsf{T}}v =$$

$$= \frac{1}{n} \sum_{i=1}^{n} ((\mathbf{x}_i - \mathbf{E}[\mathbf{X}])v)^2 \ge 0$$

- **Теорема**: Нека $A \in \mathbb{R}^{n \times n}$ е симетрична матрица ($A^\top = A$). Тогава
 - 1. Всички собствени стойности на A- корените на характеристичното уравнение $|A-\lambda \mathbf{I}|=0-$ са реални числа.
 - 2. Съществува ортонормиран базис $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n \in \mathbb{R}^n$ от собствени вектори на A, така че:
 - $\cdot A\mathbf{e}_i = \lambda_i \mathbf{e}_i$

$$A=T \Lambda T^{-1}$$
, където $T=[\mathbf{e}_1 \quad \mathbf{e}_2 \quad \dots \quad \mathbf{e}_n]$ и $\Lambda=egin{bmatrix} \lambda_1 & 0 & \dots & 0 \ 0 & \lambda_2 & \dots & 0 \ & \ddots & & \ddots \ 0 & 0 & \dots & \lambda_n \end{bmatrix}$

- \cdot <u>Забележка</u>: Матрицата T е ортогонална: $T^{-1} = T^{\mathsf{T}}$
- **Твърдение**: Ако $A \in \mathbb{R}^{n \times n}$ е симетрична и положително дефинитна матрица то всички собствени стойности на A са реални неотрицателни числа.
- Доказателство: $\lambda = \mathbf{e}^{\top} \lambda \mathbf{e} = \mathbf{e}^{\top} (A \mathbf{e}) \geq 0$

- 1. Формалности за курса (5 мин)
- 2. Интуиция за принципния компонентен анализ (10 мин)
- 3. Свойства на ковариационната матрица (15 мин)
- 4. Задача за намиране на принципните компоненти (25 мин)
- 5. Влагане на думи и контексти в нискомерно гъсто векторно пространство и латентен семантичен анализ (20 мин)
- 6. Семантично пространствени релации (15 мин)

Постановка на задачата

- Дадени са S вектора $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(S)} \in \mathbb{R}^N$ в N мерно пространство и число $M \in \mathbb{N}^+, M < N$. Можем да разглеждаме векторите $\mathbf{x}^{(i)}$ като S наблюдения на вектор \mathbf{X} от N случайни величини.
- Търсим ортонормиран базис $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_N$ в \mathbb{R}^N , и числа $b_{M+1}, b_{M+2}, ..., b_N$, така че ако
 - . векторите $\mathbf{x}^{(i)}$ се представят в новата координатна система като $\mathbf{x}^{(i)} = \sum_{j=1}^N y_j^{(i)} \mathbf{e}_j$, където $y_i^{(i)} = \mathbf{x}^{(i)} \cdot \mathbf{e}_j$, и
 - . $\hat{\mathbf{x}}^{(i)} = \sum_{j=1}^M y_j^{(i)} \mathbf{e}_j + \sum_{j=M+1}^N b_j \mathbf{e}_j$ са проекции на $\mathbf{x}^{(i)}$ върху M мерна хиперравнина
- . То $\varepsilon^2 = \frac{1}{S} \sum_{i=1}^{S} \|\mathbf{x}^{(i)} \hat{\mathbf{x}}^{(i)}\|^2$ е минимално.

$$\varepsilon^{2} = \frac{1}{S} \sum_{i=1}^{S} \|\mathbf{x}^{(i)} - \hat{\mathbf{x}}^{(i)}\|^{2} = \frac{1}{S} \sum_{i=1}^{S} \sum_{j=M+1}^{N} (\mathbf{x}^{(i)} \cdot \mathbf{e}_{j} - b_{j})^{2}$$

- За да намерим b_{i} търсим къде се нулират производните:

$$\frac{\partial}{\partial b_j} \varepsilon^2 = \frac{1}{S} \sum_{i=1}^{S} -2(\mathbf{x}^{(i)} \cdot \mathbf{e}_j - b_j) = 0$$

$$b_j = \frac{1}{S} \sum_{i=1}^{S} \mathbf{x}^{(i)} \cdot \mathbf{e}_j$$

- Можем да разглеждаме компонентите на векторите $\mathbf{x}^{(i)}$ като наблюдения на случайни величини. В такъв случай: $b_j = \mathrm{E}[\mathbf{x}^{(i)} \cdot \mathbf{e}_j] = \mathrm{E}[Y_j], \ \text{където разглеждаме случайна величина } Y_j \ \text{с}$ наблюдения $y_i^{(i)} = \mathbf{x}^{(i)} \cdot \mathbf{e}_j$.
- **Интуитивно**: Заменяме измеренията, които премахваме, със средните стойности по тези измерения.

• В такъв случай, като заместим в ε^2 получаваме:

$$\varepsilon^{2} = \frac{1}{S} \sum_{i=1}^{S} \sum_{j=M+1}^{N} (\mathbf{x}^{(i)} \cdot \mathbf{e}_{j} - b_{j})^{2} = \sum_{j=M+1}^{N} \frac{1}{S} \sum_{i=1}^{S} (y_{j}^{(i)} - \mathbb{E}[Y_{j}])^{2} =$$

$$= \sum_{j=M+1}^{N} \mathbb{E}[(Y_{j} - \mathbb{E}[Y_{j}])^{2}]$$

- Разглеждаме вектор от N случайни величини \mathbf{X} с наблюдения $\mathbf{x}^{(i)}$. В такъв случай: $Y_j = \mathbf{X} \cdot \mathbf{e}_j$.
- Заместваме и получаваме:

$$\varepsilon^{2} = \sum_{j=M+1}^{N} \operatorname{E}[(Y_{j} - \operatorname{E}[Y_{j}])^{2}] = \sum_{j=M+1}^{N} \operatorname{E}[(\mathbf{X} \cdot \mathbf{e}_{j} - \operatorname{E}[\mathbf{X} \cdot \mathbf{e}_{j}])^{2}] =$$

$$= \sum_{j=M+1}^{N} \operatorname{E}[((\mathbf{X} - \operatorname{E}[\mathbf{X}]) \cdot \mathbf{e}_{j})^{2}] = \sum_{j=M+1}^{N} \operatorname{E}[\mathbf{e}_{j}^{\mathsf{T}}((\mathbf{X} - \operatorname{E}[\mathbf{X}])(\mathbf{X} - \operatorname{E}[\mathbf{X}])^{\mathsf{T}})\mathbf{e}_{j}] =$$

$$\sum_{j=M+1}^{N} \operatorname{E}[(\mathbf{X} - \operatorname{E}[\mathbf{X}]) \cdot \mathbf{e}_{j}]^{2} = \sum_{j=M+1}^{N} \operatorname{E}[\mathbf{e}_{j}^{\mathsf{T}}((\mathbf{X} - \operatorname{E}[\mathbf{X}])(\mathbf{X} - \operatorname{E}[\mathbf{X}])^{\mathsf{T}})\mathbf{e}_{j}] =$$

$$= \sum_{j=M+1}^{N} \mathbf{e}_{j}^{\mathsf{T}} \mathbf{E}[((\mathbf{X} - \mathbf{E}[\mathbf{X}])(\mathbf{X} - \mathbf{E}[\mathbf{X}])^{\mathsf{T}})] \mathbf{e}_{j} = \sum_{j=M+1}^{N} \mathbf{e}_{j}^{\mathsf{T}} \mathbf{C}(\mathbf{X}) \mathbf{e}_{j}$$

• Търсим ортонормиран базис \mathbf{e}_j , който минимизира ε^2 . Ще използваме множители на Лагранж за да си осигурим $\mathbf{e}_j \cdot \mathbf{e}_j = 1$. Дефинираме N-M функции: $g_j(\mathbf{e}_j) = 1 - \mathbf{e}_j \cdot \mathbf{e}_j$.

$$\frac{\partial}{\partial \mathbf{e}_{j}} \left(\varepsilon^{2} + \sum_{k=M+1}^{N} \lambda_{k} g_{k}(\mathbf{e}_{k}) \right) = \frac{\partial}{\partial \mathbf{e}_{j}} \left(\sum_{k=M+1}^{N} \mathbf{e}_{k}^{\top} \mathbf{C}(\mathbf{X}) \mathbf{e}_{k} + \sum_{k=M+1}^{N} \lambda_{k} (1 - \mathbf{e}_{k} \cdot \mathbf{e}_{k}) \right) =$$

$$= (\mathbf{C}(\mathbf{X}) + \mathbf{C}(\mathbf{X})^{\top}) \mathbf{e}_{j} - 2\lambda_{j} \mathbf{e}_{j} = 2\mathbf{C}(\mathbf{X}) \mathbf{e}_{j} - 2\lambda_{j} \mathbf{e}_{j} = 0$$

. Така получаваме: $\mathbf{C}(\mathbf{X})\mathbf{e}_j = \lambda_j \mathbf{e}_j$

$$\frac{\partial}{\partial \lambda_j} \left(\varepsilon^2 + \sum_{k=M+1}^N \lambda_k g_k(\mathbf{e}_k) \right) = 1 - \mathbf{e_j} \cdot \mathbf{e_j} = 0$$

· T.e. $\mathbf{e}_j \cdot \mathbf{e}_j = 1$

Решение

- Ковариационната матрица $\mathbf{C}(\mathbf{X})$ е симетрична и положително дефинитна. Следователно на нея съответстват N ортогонални собствени вектори със съответни положителни собствени стойности.
- От нулирането на производните следва, че търсеният базис се състои от собствени вектори. В такъв случай:

$$\varepsilon^2 = \sum_{j=M+1}^{N} \mathbf{e}_j^{\mathsf{T}} \mathbf{C}(\mathbf{X}) \mathbf{e}_j = \sum_{j=M+1}^{N} \mathbf{e}_j^{\mathsf{T}} \lambda_j \mathbf{e}_j = \sum_{j=M+1}^{N} \lambda_j.$$

- Тъй като всички собствени стойности са положителни минималната стойност за ε^2 се получава, като за $\lambda_{M+1},\ldots,\lambda_N$ се изберат най-малките N-M собствени стойности.
- Избиреме безисните вектори $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_M$, така че на тях да им съответстват най-големите M собствени стойности.

- 1. Формалности за курса (5 мин)
- 2. Интуиция за принципния компонентен анализ (10 мин)
- 3. Свойства на ковариационната матрица (15 мин)
- 4. Задача за намиране на принципните компоненти (25 мин)
- 5. Влагане на думи и контексти в нискомерно гъсто векторно пространство и латентен семантичен анализ (20 мин)
- 6. Семантично пространствени релации (15 мин)

Влагане — проекция на контекстите

- Нека $\mathbf{X} \in \mathbb{R}^{|V| \times S}$ е терм / контекст матрица. На всеки терм съответства ред от матрицата със свързванията на терма към съответните S контекста. На всеки контекст съответства стълб от матрицата със свързванията на контекста към съответните |V| терма.
- Нека предварително сме центрирали наблюденията за термовете около 0. Т.е. $\mathrm{E}[\mathbf{X}_{i,\bullet}]=0$ за $j=1,2,\ldots, |V|$.
- Нека първите M принципни компоненти на $\mathbf{X}\mathbf{X}^{\mathsf{T}} = \mathbf{C}(\mathbf{X}) \in \mathbb{R}^{|V| \times |V|}$ са ортонормираните вектори $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_M \in \mathbb{R}^{|V|}$.
- · Дефинираме матрицата $U_M = [\mathbf{e}_1 \quad \mathbf{e}_2 \quad \dots \quad \mathbf{e}_M] \in \mathbb{R}^{|V| \times M}$.
- Проекцията на контекстите в M-мерно пространство получаваме: $\tilde{\mathbf{X}}_M = U_M^\mathsf{T} \mathbf{X} \in \mathbb{R}^{M \times S}$. На всеки стълб (контекст) в $\tilde{\mathbf{X}}_M$ съпоставяме M-мерен вектор.

Влагане — проекция на термовете

- Нека $\mathbf{X} \in \mathbb{R}^{|V| \times S}$ е терм / контекст матрица. На всеки терм съответства ред от матрицата със свързванията на терма към съответните S контекста. На всеки контекст съответства стълб от матрицата със свързванията на контекста към съответните |V| терма.
- Нека предварително сме центрирали наблюденията за контекстите около 0. Т.е. $E[\mathbf{X}_{\bullet,j}]=0$ за $j=1,2,\ldots,S$.
- Нека първите M принципни компоненти на $\mathbf{X}^\mathsf{T}\mathbf{X} = \mathbf{C}(\mathbf{X}^\mathsf{T}) \in \mathbb{R}^{S \times S}$ са ортонормираните вектори $\mathbf{e}_1', \mathbf{e}_2', ..., \mathbf{e}_M' \in \mathbb{R}^S$.
- · Дефинираме матрицата $V_M = \begin{bmatrix} \mathbf{e}_1' & \mathbf{e}_2' & \dots & \mathbf{e}_M' \end{bmatrix} \in \mathbb{R}^{S \times M}$.
- Проекцията на термовете в M-мерно пространство получаваме: $\bar{\mathbf{X}}_M = V_M^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \in \mathbb{R}^{M \times |V|}$. На всеки стълб (терм) в $\bar{\mathbf{X}}_M$ съпоставяме M-мерен вектор.

Singular Value Decomposition (SVD)

- \cdot Съществува по-директен алгебричен метод за декомпозиция на всяка правоъгълна матрица ${f X}$.
- Може да се покаже, че ненулевите собствени стойности на $\mathbf{X}^\mathsf{T}\mathbf{X}$ и $\mathbf{X}\mathbf{X}^\mathsf{T}$ съвпадат.
- Ако се ограничим до най-големите M собствени стойности получаваме: $\mathbf{X}_M = U_M \sqrt{\Lambda_M} V_M^\mathsf{T}$.

Матрицата
$$\mathbf{X}_M$$
 е най-близката до \mathbf{X} спрямо нормата $\|A\| = \sqrt{\sum_{i=1}^N \sum_{j=1}^S A_{i,j}^2}$ с ранк $< M$.

- · Доказателствата за SVD може да се намерят в по-задълбочените учебници по линейна алгебра.
- От изчислителна гледна точка SVD е много по-ефективен.

Латентен семантичен анализ (LSA) и латентно семантично индексиране (LSI)

- Използва се когато имаме матрица терм / документ
- Нека за терм / документ матрицата $\mathbf{X} \in \mathbb{R}^{|V| \times S}$ сме намерили декомпозиция $\mathbf{X} = U \sqrt{\Lambda} V^{\mathsf{T}}$ и сме я приближили в M-мерно пространство $\mathbf{X}_M = U_M \sqrt{\Lambda_M} V_M^{\mathsf{T}}$, където $\mathbf{X}_M \in \mathbb{R}^{|V| \times S}, U_M \in \mathbb{R}^{|V| \times M}, \Lambda_M \in \mathbb{R}^{M \times M}, V_M \in \mathbb{R}^{S \times M}$
- · Нека ни е дадена заявка $q \in \mathbb{R}^{|V|}$. Дефинираме $q_M \in \mathbb{R}^M$ като $q_M = U_M^\intercal q$
- Намираме скаларното произведение (косинусова близост) на q_M с документите от колекцията като умножим $\tilde{\mathbf{X}}_M^\mathsf{T} q_m$, където $\tilde{\mathbf{X}}_M = U_M^\mathsf{T} \mathbf{X} \in \mathbb{R}^{M \times S}$
- По аналогичен начин можем да постъпваме с термовете.

- 1. Формалности за курса (5 мин)
- 2. Интуиция за принципния компонентен анализ (10 мин)
- 3. Свойства на ковариационната матрица (15 мин)
- 4. Задача за намиране на принципните компоненти (25 мин)
- 5. Влагане на думи и контексти в нискомерно гъсто векторно пространство и латентен семантичен анализ (20 мин)
- 6. Семантично пространствени релации (15 мин)

Пример

две хубави очи душата на дете в две хубави очи музика лъчи не искат и не обещават те душата ми се моли дете душата ми се моли страсти и неволи ще хвърлят утре върху тях булото на срам и грях

булото на срам и грях не ще го хвърлят върху тях страсти и неволи душата ми се моли дете душата ми се моли не искат и не обещават те две хубави очи музика лъчи в две хубави очи душата на дете

	дете	две	хубави	очи	душата	на	В	музика	лъчи	не
дете	0	0	0	0	2	2	1	0	0	0
две	0	0	4	0	0	0	2	0	0	0
хубави	0	4	0	4	0	0	0	0	0	0
очи	0	0	4	0	2	0	0	2	0	0
душата	2	0	0	2	0	2	0	0	0	0
на	2	0	0	0	2	0	0	0	0	0
В	1	2	0	0	0	0	0	0	1	0
музика	0	0	0	2	0	0	0	0	2	0
лъчи	0	0	0	0	0	0	1	2	0	1
не	0	0	0	0	0	0	0	0	1	0

Пример — проектираме в двумерно пространство

	p1	p2
дете	0.92	-0.50
две	2.76	-2.84
хубави	3.83	3.92
ОЧИ	3.30	-3.30
душата	1.58	1.29
на	0.79	-0.25
В	1.11	1.08
музика	1.22	1.24
лъчи	0.57	-0.58
не	0.09	0.09

Пример — нормализираме до единични вектори

	р1	p2	р3
дете	0.39	-0.21	0.90
две	0.67	-0.69	-0.26
хубави	0.69	0.70	-0.19
ОЧИ	0.71	-0.71	0.00
душата	0.53	0.44	0.72
на	0.34	-0.11	0.93
В	0.72	0.70	0.00
музика	0.70	0.71	0.00
лъчи	0.70	-0.71	0.00
не	0.70	0.71	0.00

Семантично пространствени релации

- Косинусовата близост следва да отговаря на семантична близост следствие на сходната дистрибуцията на термовете в контекстите.
- Пример:
 - Най-близките до футбол: баскетбол, 0.9803 хандбал, 0.9626 топка, 0.9536 волейбол, 0.9527 телевизията, 0.9504
 - Най-близките до **гърция:** румъния, 0.9921 българия, 0.9914 албания, 0.9897 хърватия, 0.9887 македония, 0.9860

Семантично пространствени релации

Заключение

- Чрез влагането на термовете в нискомерно гъсто семантично пространство се постига:
 - изчислителна ефективност,
 - подобряване на обхвата,
 - евентуално и подобряване на прецизността.
- Проблеми с методът на принципните компоненти:
 - сложно и изчислително скъпо намиране на принципните компоненти,
 - налага се актуализиране за да се отразят нови езикови феномени.