Prsteni i polja - vežbe

1. Ispitati da li je $(\{a,b,c\},+,\cdot)$ pr
sten, ako su operacije + i · date tablicama

+	a	b	c			$\mid a \mid$	b	c
a		c	l	i	a	l .	c	
b	c	a	b		b	c	c	c
c	a	b	c		c	c	c	\overline{c}

2. Neka je $A = \{a, b, c, d\}$. Dopuniti tablice operacija + i ·

+	a	b	c	d		•	a	b	c	d
a						a				
b		a	d	c	i	\overline{b}		b	a	
c			a			\overline{c}		a	c	
d				a		d				

tako da struktura $(A, +, \cdot)$ bude pr
sten.

3. Dokazati da je $(\mathbb{Q},\oplus,\odot)$ polje, ako su operacije \oplus i \odot definisane sa

$$\forall a, b \in \mathbb{Q}, \ a \oplus b = a + b + 1,$$

$$\forall\, a,b\in\mathbb{Q},\; a\odot b=a+b+ab.$$

4. Neka su na $A = \{(a,1) \mid a \in \mathbb{R}\}$ definisane sledeće binarne operacije:

$$\forall (a,1), (b,1) \in A, (a,1) \oplus (b,1) = (a+b,1),$$

$$\forall \ \left(a,1\right),\left(b,1\right) \in A, \ \left(a,1\right) \odot \left(b,1\right) = \left(ab+a+b,1\right).$$

Ispitati da li je (A, \oplus, \odot) prsten.

ZA VEŽBU:

- IZ SKRIPTE Zadatak 7.1, 7.2, 7.6, 7.7;
- 1. Na skupu $A = \{(x,y) \mid x,y \in \mathbb{R}\}$ definisane su operacije

$$\forall (a,b), (c,d) \in A, (a,b) \oplus (c,d) = (a+c,b+d), \forall (a,b), (c,d) \in A, (a,b) \odot (c,d) = (ac,bd).$$

Dokazati da je (A, \oplus, \odot) komutativan prsten sa jedinicom.