Aufgabe 3

Gegeben sei folgendes relationales Schema R in erster Normalform:

$$R : \{ [A, B, C, D, E, F] \}$$

Für R gelte folgende Menge FD funktionaler Abhängigkeiten:

```
FA = \{ \{ A, D, F \} \rightarrow \{ E \}, \\ \{ B, C \} \rightarrow \{ A, E \}, \\ \{ D \} \rightarrow \{ B \}, \\ \{ D, E \} \rightarrow \{ C, B \}, \\ \{ A \} \rightarrow \{ F \}, \} \}
```

(a) Bestimmen Sie alle Kandidatenschlüssel/Schlüsselkandidaten von R mit FD. Hinweis: Die Angabe von Attributmengen, die keine Kandidatenschlüssel sind, führt zu Abzügen.

```
- DA
- DC
- DE
```

- (b) Prüfen Sie, ob R mit FD in 2NF bzw. 3NF ist.
- (c) Bestimmen Sie mit folgenden Schritten eine kanonische Überdeckung FD_C von FD:
 - (i) Führen Sie eine Linksreduktion von FD durch. Geben Sie die Menge funktionaler Abhängigkeiten nach der Linksreduktion an (FD_L) .

```
Linksreduktion
— Führe für jede funktionale Anhängigkeit \alpha \to \beta \in F die Linksreduktion durch, überprüfe also für alle A \in \alpha, ob A überflüssig ist, d. h. ob \beta \subseteq AttrHülle(F, \alpha - A).

FA = \{ \{ A, D, F \} \to \{ E \}, \{ B, C \} \to \{ A, E \}, \{ D \} \to \{ B \}, \{ D, E \} \to \{ C, B \}, \{ A \} \to \{ F \}, \}
```

(ii) Führen Sie eine Rechtsreduktion des Ergebnisses der Linksreduktion (FD_L) durch. Geben Sie die Menge funktionaler Abhängigkeiten nach der Rechtsreduktion an (FD_R).

Rechtsreduktion

— Führe für jede (verbliebene) funktionale Abhängigkeit $\alpha \to \beta$ die Rechtsreduktion durch, überprüfe also für alle $B \in \beta$, ob $B \in AttrH\"ulle(F - (\alpha \to \beta) \cup (\alpha \to (\beta - B)), \alpha)$ gilt. In diesem Fall ist B auf der rechten Seite überflüssig und kann eleminiert werden, d. h. $\alpha \to \beta$ wird durch $\alpha \to (\beta - B)$ ersetzt.

- (iii) Bestimmen Sie eine kanonische Überdeckung FD. von FD auf Basis des Ergebnisses der Rechtsreduktion (FD_R) .
 - Löschen leerer Klauseln

— Entferne die funktionalen Abhängigkeiten der Form $\alpha \to \emptyset$, die im 2. Schritt möglicherweise entstanden sind.

Vereinigung

— Fasse mittels der Vereinigungsregel funktionale Abhängigkeiten der Form $\alpha \to \beta_1, \ldots, \alpha \to \beta_n$, so dass $\alpha \to \beta_1 \cup \cdots \cup \beta_n$ verbleibt.

- (d) Zerlegen Sie R mit FD_C mithilfe des Synthesealgorithmus in 3NF. Geben Sie zudem alle funktionalen Abhängigkeiten der erzeugten Relationenschemata an.
 - Neues Relationenschema

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_\alpha := \alpha \cup \beta$.

- Hinzufügen einer Relation

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$ —

- Entfernung überflüssiger Teilschemata

— Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha} \subseteq R_{\alpha'}$.

(e) Prüfen Sie für alle Relationen der Zerlegung aus d), ob sie jeweils in BCNF sind.