Basics of MATRICES Dr. Aradhana Dutt Janhari The word matrix was introduced first by Cayley in 1860. It means rectangular arrangent of any numbers, arranged in m rows and ncolumn. Ag = [aij]mxn Senties or elements. Probability, methematical economics, Electrical retwork, Quantum mechanics, Teamportation problems, matrix are very amenable for computers. sum (orfference) -> c=A±B, nohere [cij] = [aij] + [bij] evenue A and B are of same Product of matrices order [6] [6] mar. equal if shey are of same order aig = boj Transpore of matrix Amen is denoted by Anxon.

obtained by interchanging how and column.

(AB) = BTAT - Square Matrix - 26 m=n (NO. 2) rows = NO. 2 column) Then it is said to be square matrix. The elements air are known as diagonal Null or Zero matrix is a matrix with all. Collis. Elements. Trace Sail = Sum of diagonal elements. Singular reatrix; if IAI=0 Nonsingular Matrix; if IAI = 0 toper triangular matrix, if aij = 0 i >j Louer tréangula realier; is aij =0 i<j Diagonal reatrix; aij=0 where i + j Scalar Matrix; A diagonal matrix with air = k for Identity Identity matrix; with all diagonal elements unity.

Towerse of A exists only if IA/ For where of matrix is unique. * Suverse of matrix is unique. * Surverse of a product is the product in reverse order.
Lower of matrix; An is a matrix. Power of matrix; An is a matrix. INVERSE OF MATRIX— 2 merse of n-square matrix A is decented such that AA = AA
Lower of matrix; An is a matrix. Power of matrix; An is a matrix. INVERSE OF MATRIX— During of MATRIX— During of MATRIX— During of MATRIX— Surveyed A exists only if IAI+0 * During of matrix is unique. * During of matrix is unique. * During of a product is the product in reverse order.
INVERSE OF MATRIX— 2 multiplying A by INVERSE OF MATRIX— 2 multiplying A by 3 multiplying A by 3 multiplying A by 4 multiplying A by 3 multiplying A by 4 multiplying A by 3 multiplying A by 4 multiplying A by 5 multiplying A by 6 multiplying A by 7 multiplying A by 7 multiplying A by 7 multiplying A by 8 multiplying A by 8 multiplying A by 8 multiplying A by 9 mult
INVERSE OF MATRIX— 2 multiplying A by INVERSE OF MATRIX— 2 multiplying A by 3 multiplying A by 3 multiplying A by 4 multiplying A by 3 multiplying A by 4 multiplying A by 3 multiplying A by 4 multiplying A by 5 multiplying A by 6 multiplying A by 7 multiplying A by 7 multiplying A by 7 multiplying A by 8 multiplying A by 8 multiplying A by 8 multiplying A by 9 mult
INVERSE OF MATRIX - 2 merse of n-square matrix A is des is defined such that AA = AA F * Inverse of A exists only if IAI to * Inverse of a product is the product in reverse order.
INVERSE OF MATRIX - 2 merse of n-square matrix A is des is defined such that AA = AA F * Inverse of A exists only if IAI to * Inverse of a product is the product in reverse order.
INVERSE OF MATRIX - 2 merse of n-square matrix A is des is defined such that AA = AA F * Inverse of A exists only if IAI to * Inverse of a product is the product in reverse order.
INVERSE OF MATRIX - 2 merse of n-square matrix A is des is defined such that AA = AA F * Inverse of A exists only if IAI to * Inverse of a product is the product in reverse order.
2 surverse of n-square matrix Has feet is defined such that $AA = AA = AA = AA = AA = AA = AA = AA$
* Inverse of A exists only if 1A1+0 * Inverse of a product is the product in reverse order. ABD = BTA
* Inverse of A exists only if 1A1+0 * Inverse of a product is the product in reverse order. ABD = BTA
* Inverse of a product is the product in reverse order.
* Inverse of a product is the product in reverse order.
in reverse order
(AB) = B A Dung of
(AB) = B A Dung of
Tours of the state
C The attention of the contraction of the contracti
* For Diagonal matrix D with die as D' is a diagonal matrix with heavy as diagonal elements.
Dis a die somal elements.
as concession of the contest of the
* Transposition and liverse are Comme
\star $(A^{-1})^{-1} = A$
ADJOINT OF MATRIX-
Adjoint 2 a matrix is denoted by adj A is
tronepose of n square matrix [Ai] 7 coliere
tronspose of n square matrix (Aij) rolliere & elements Aij are the cofactors of aij of A
adj A = An An 17
adj $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12} & A_{12} \end{bmatrix}$ $A_{11} = \begin{bmatrix} A_{11} & A_{12} \\ A_{11} & A_{12} \end{bmatrix}$ $A_{11} = \begin{bmatrix} A_{11} & A_{12} \\ A_{11} & A_{12} \end{bmatrix}$ $A_{11} = \begin{bmatrix} A_{11} & A_{12} \\ A_{11} & A_{12} \end{bmatrix}$
adj AB = (adj A) (adj B)

Dr. Avadhana Dut Jachar $A^2 = A$ er [10] elutory matrix - A= I E. 1001 hogonal matrix - A'A = AA'=I tary matrix + A square matrix is said to be curitary matrix if $AA^* = A^*A = I$ show that every square matrix can be uniquely expressed as sum of a symmetric and skin symmetric and symmetric and skin symmetric and symmetri matrices. Let A = [aij] A====(A+A')+==(A-A') $d+P=\pm(A+A')$, $Q=\pm(A-A')$ $Q' = \left[\frac{1}{2}(A-A')J' = \frac{1}{2}(A-A')\right]$ À = Sym. matrix + skaw gym. matrix