Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

3-(1-Methyl-3-imidazolio)propanesulfonate: a precursor to a Brønsted acid ionic liquid

W. Matthew Reichert, a Paul C. Trulove a* and Hugh C. De Long b

^aDepartment of Chemistry, US Naval Academy, 572 M. Holloway Road, Annapolis, Maryland 21402, USA, and ^bAir Force Office of Scientific Research, 4015 Wilson Boulevard, Arlington, Virginia 22203, USA Correspondence e-mail: trulove@usna.edu

Received 24 November 2009; accepted 3 February 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.001$ Å; R factor = 0.041; wR factor = 0.120; data-to-parameter ratio = 50.0.

The title compound, $C_7H_{12}N_2O_3S$, is a zwitterion precursor to a Brønsted acid ionic liquid with potential as an acid catalyst. The C-N-C-C torsion angle of $100.05~(8)^\circ$ allows the positively charged imidazolium head group and the negatively charged sulfonate group to interact with neighboring zwitterions, forming a $C-H\cdots O$ hydrogen-bonding network; the shortest among these interactions is 2.9512~(9) Å. The $C-H\cdots O$ interactions can be described by graph-set notation as two $R_2^2(16)$ and one $R_2^2(5)$ hydrogen-bonded rings.

Related literature

For the use of functionalized ionic liquids (ILs) as Brønsted acid catalysts for organic reactions, see: Cole *et al.* (2002); Yoshizawa *et al.* (2001). The local structure of ILs is often conserved on transition from the solid state to the liquid state, see: Henderson *et al.* (2007); Reichert *et al.* (2007); Triolo *et al.* (2006). For a related structure, see: Pringle *et al.* (2003). For polymorphs of ionic liquids, see: Holbrey *et al.* (2003) and for the applications of ionic liquids, see: Plechkova & Seddon (2008).

Experimental

Crystal data

 $\mu = 0.33 \text{ mm}^{-1}$ T = 296 K

 $0.29 \times 0.28 \times 0.13 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer

Absorption correction: for a sphere (SADABS; Bruker, 2007) $T_{\min} = 0.910, T_{\max} = 0.958$ 21327 measured reflections 8299 independent reflections 5726 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.033$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.120$

S = 1.038299 reflections 166 parameters

All H-atom parameters refined

 $\Delta \rho_{\text{max}} = 0.5\hat{5} \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.47 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$C2-H2A\cdots O2^{i}$	0.923 (14)	2.197 (14)	2.9512 (9)	138.4 (12)
$C5-H5A\cdots O1^{ii}$	0.899 (14)	2.381 (15)	3.1573 (10)	144.6 (12)
$C4-H4A\cdots O1^{iii}$	0.961 (14)	2.528 (14)	3.3268 (11)	140.5 (11)
$C4-H4A\cdots O3^{iii}$	0.961 (14)	2.541 (14)	3.4364 (11)	155.0 (11)
$C7-H7B\cdots O3^{iv}$	0.961 (12)	2.613 (12)	3.1693 (10)	117.2 (9)
$C8-H8B\cdots O3^{iv}$	0.990 (14)	2.621 (13)	3.2086 (9)	118.1 (9)
Symmetry codes:	(i) $-x + 1$,	-y+1, -z+1;	(ii) x, −y +	$\frac{3}{2}$, $z - \frac{1}{2}$; (iii)
-x, $-y + 1$, $-z + 1$;	(iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$	$-\frac{1}{2}$.		2: 2:

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Portions of this work were funded by the Office of Naval Research and the US Naval Academy Research Foundation. Any opinions, findings, and conclusion or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the US Navy.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2241).

References

doi:10.1107/\$1600536810004344

Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cole, A. C., Jensen, J. L., Ntai, I., Tran, K. L. T., Weaver, K. J., Forbes, D. C. & Davis, J. H. J. (2002). J. Am. Chem. Soc. 124, 5962–5963.

Henderson, W. A., Trulove, P. C., De Long, H. C. & Young, V. G. Jr (2007). ECS Trans. 3, 83–88.

Holbrey, J. D., Reichert, W. M., Niuewenhuyzen, M., Johnston, S., Seddon, K. R. & Rogers, R. D. (2003). Chem. Commun. pp. 1636–1637.

Plechkova, N. V. & Seddon, K. R. (2008). *Chem. Soc. Rev.* **37**, 123–150.

Pringle, J. M., Forsyth, C. M., Forsyth, M. & MacFarlane, D. R. (2003). Acta Cryst. E59, 01759–01761.

Reichert, W. M., Holbrey, J. D., Swatloski, R. P., Gutowski, K. E., Visser, A. E., Nieuwenhuyzen, M., Seddon, K. R. & Rogers, R. D. (2007). Cryst. Growth Des. 7, 1106–1114.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Triolo, A., Mandanici, A., Russina, O., Rodriguez-Mora, V., Cutroni, M., Hardacre, C., Nieuwenhuyzen, M., Bleif, H.-J., Keller, L. & Ramos, M. A. (2006). *J. Phys. Chem. B*, **110**, 21357–21364.

Yoshizawa, M., Hirao, M., Ito-Akita, K. & Ohno, H. (2001). J. Mater. Chem. 11, 1057–1062.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comment arters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the property of the contract of the con	his collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 2010		2. REPORT TYPE		3. DATES COVE 00-00-2010	ered O to 00-00-2010	
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
` •	azolio) Propane-sul	fonate: A Precurso	r To A Bronsted	5b. GRANT NUMBER		
Acid Ionic Liquid				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NU	JMBER	
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AD 7,Department of Che D,21402	` '	lloway	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	IONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO Acta Crystallograp	otes Ohica Section E, 2010	0, E66, o591				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	12		

Report Documentation Page

Form Approved OMB No. 0704-0188

supplementary m	aterials	

Acta Cryst. (2010). E66, o591 [doi:10.1107/S1600536810004344]

3-(1-Methyl-3-imidazolio)propanesulfonate: a precursor to a Brønsted acid ionic liquid

W. M. Reichert, P. C. Trulove and H. C. De Long

Comment

Ionic liquids (ILs) have proven to be highly versatile materials with an ever expanding suite of chemical applications. An application that has recently shown great promise is the use of functionalized ILs as Brønsted acid catalysts for organic reactions (Cole *et al.*, 2002). These IL catalysts are most commonly prepared by the reaction of 1-methylimidazolium-3-alkyl sulfonate zwitterion with an acid that has a pKa low enough to protonate the sulfonate group (Yoshizawa *et al.*, 2001; Cole *et al.*, 2002). The activity of the IL (e.g. the effectiveness of proton transfer) is significantly impacted by the structure and interactions of the zwitterion. It has been shown that the local structure of ILs is often conserved on transition from the solid state to the liquid state (Triolo *et al.*, 2006; Henderson *et al.*, 2007; Reichert *et al.*, 2007). Thus, a structural analysis of the zwitterion, 1-methylimidaolium-3-propanesulfonate (I) might provide valuable insight into the activity of the Brønsted acid IL catalyst.

The asymmetric unit of the title compound is presented in Figure 1. The dominant intermolecular interactions are Coulombic in nature and are through the charged centers of the zwitterion: the imidazolium ring and the sulfonate group (Fig. 2). The negative charged sulfonate group is surrounded by four imidazolium head groups forming six close contacts (Table 1). The interactions of the imidazolium ring hydrogen atoms with the sulfonate group establish two three-dimensional R22(16) rings. The packing along the b axis (Fig. 3) shows the zwitterions arranged in columns along the c axis. The head-to-tail orientation maximizes the polar interaction and minimizes cation-cation and anion-anion repulsions.

Experimental

Compound I was synthesized following the procedure for similar zwitterionic compounds published by (Yoshizawa *et al.*, 2001). 1,3-Propane sultone (25 g, 0.122 mol) was added dropwise to a solution of 1-methylimidazole (10 g, 0.122 mol) in acetone (40 ml) and stirred, then cooled on an ice bath overnight. A white precipitate was recovered from the reaction solution through filtration and washing with acetone. The product was then dried under vacuum giving a white solid (m.p. 482 K). A colourless crystal suitable for single crystal X-ray diffraction was retrieved from the dried product.

Refinement

(type here to add refinement details)

Figures

Fig. 1. The thermal ellipsiod plot of the asymmetric unit of (I). The displacement ellipsiods are shown at the 50% probability level.

supplementary materials

Fig. 2. Close contacts in compound I.

Fig. 3. Packing diagram along the b axis.

Fig. 4. Reaction scheme.

3-(1-Methyl-3-imidazolio)propanesulfonate

Crystal data

 $C_7H_{12}N_2O_3S$ F(000) = 432

 $M_r = 204.25$ $D_{\rm x} = 1.481 \; {\rm Mg \; m}^{-3}$ Monoclinic, $P2_1/c$ Melting point: 482 K

Hall symbol: -P 2ybc Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

a = 9.8164 (4) Å Cell parameters from 4851 reflections

b = 11.7421 (5) Å $\theta = 3.1 - 41.1^{\circ}$ c = 7.9769 (3) Å $\mu = 0.33 \text{ mm}^{-1}$ $\beta = 94.878 (2)^{\circ}$ T = 296 K

 $V = 916.13 (6) \text{ Å}^3$ Plate, colourless Z = 4 $0.29\times0.28\times0.13~mm$

Data collection

Bruker SMART CCD area-detector 8299 independent reflections diffractometer

Radiation source: fine-focus sealed tube 5726 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.033$

graphite

 $\theta_{\text{max}} = 47.1^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ phi and ω scans Absorption correction: for a sphere

 $h = -20 \rightarrow 13$ (SADABS; Bruker, 2007) $T_{\min} = 0.910, T_{\max} = 0.958$ $k = -19 \rightarrow 24$

21327 measured reflections $l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.120$	All H-atom parameters refined
S = 1.03	$w = 1/[\sigma^2(F_0^2) + (0.0574P)^2 + 0.0483P]$ where $P = (F_0^2 + 2F_c^2)/3$
8299 reflections	$(\Delta/\sigma)_{\text{max}} = 0.002$
166 parameters	$\Delta \rho_{max} = 0.55 \text{ e Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.47 \text{ e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.288447 (16)	0.459431 (14)	0.711035 (19)	0.01929 (4)
O1	0.18103 (7)	0.54452 (5)	0.71911 (8)	0.02993 (12)
O2	0.42331 (6)	0.50523 (8)	0.76230 (9)	0.03616 (15)
O3	0.25705 (8)	0.35528 (5)	0.79823 (8)	0.03407 (14)
N3	0.17238 (6)	0.51000 (5)	0.16133 (7)	0.01989 (9)
N1	0.28516 (6)	0.65793 (5)	0.08981 (8)	0.02208 (9)
C2	0.29151 (7)	0.54584 (6)	0.11322 (8)	0.02096 (10)
H2A	0.3704 (14)	0.5037 (13)	0.1080 (19)	0.037 (3)*
C4	0.08588 (8)	0.60254 (6)	0.16753 (10)	0.02580 (12)
H4A	-0.0036 (14)	0.5991 (11)	0.2077 (16)	0.034(3)*
C5	0.15675 (8)	0.69513 (7)	0.12222 (11)	0.02724 (13)
H5A	0.1323 (14)	0.7688 (12)	0.1137 (17)	0.037 (3)*
C6	0.39573 (9)	0.72763 (8)	0.03336 (12)	0.03149 (15)
H6A	0.3932 (15)	0.8024 (14)	0.0813 (19)	0.044 (4)*
Н6В	0.4809 (19)	0.6923 (15)	0.063 (2)	0.061 (5)*
H6C	0.3820 (17)	0.7417 (17)	-0.081 (2)	0.067 (5)*
C7	0.14604 (8)	0.39419 (6)	0.21968 (8)	0.02303 (11)
H7A	0.0552 (13)	0.3717 (11)	0.1696 (15)	0.027 (3)*

supplementary materials

Н7В	0.2156 (12)	0.3490 (11)	0.1741	(15) 0.0	026 (3)*	
C8	0.15267 (7)	0.38976 (6)	0.4110	5 (8) 0.0	02112 (10)	
H8A	0.0853 (14)	0.4389 (12)	0.4510	(18) 0.0)33 (3)*	
H8B	0.1301 (13)	0.3105 (12)	0.4405	(17) 0.0)36 (3)*	
C9	0.29159 (7)	0.42456 (8)	0.4941	8 (9) 0.0	02574 (12)	
Н9А	0.3243 (16)	0.4859 (13))43 (4)*	
Н9В	0.3600 (16)	0.3658 (13))43 (4)*	
		o 2				
Atomic displac	ement parameters	(A^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01791 (6)	0.02075 (7)	0.01894 (6)	-0.00086 (5)	0.00002 (4)	0.00099 (4)
O1	0.0309 (3)	0.0258 (2)	0.0325 (3)	0.0079 (2)	-0.0007 (2)	-0.00600 (19)
O2	0.0218 (2)	0.0569 (4)	0.0287 (3)	-0.0109 (3)	-0.0044 (2)	-0.0016 (3)
03	0.0510 (4)	0.0231 (2)	0.0281 (2)	-0.0029 (2)	0.0032 (2)	0.00664 (19)
N3	0.0201 (2)	0.01929 (19)	0.02006 (19)	0.00022 (16)	0.00055 (16)	-0.00017 (15)
N1	0.0208 (2)	0.01929 (19)	0.0233 (2)	-0.00089 (18)	0.00185 (17)	0.00077 (17)
C2	0.0201 (2)	0.0225 (2)	0.0204 (2)	0.00164 (19)	0.00209 (18)	0.00077 (17)
C4	0.0201 (2)	0.0223 (2)	0.0339 (3)	0.0023 (2)	0.00209 (10)	0.0011 (2)
C5	0.0245 (3)	0.0214 (3)	0.0361 (3)	0.0023 (2)	0.0042 (2)	0.0014 (2)
C6	0.0245 (3)	0.0214 (3)	0.0347 (4)	-0.0069 (3)	0.0068 (3)	0.0048 (3)
C7	0.0289 (3)	0.0190 (2)	0.0207 (2)	-0.0029 (2)	-0.0008 (2)	-0.00147 (18)
C8	0.0208 (2)	0.0130 (2)	0.0207 (2)	-0.00162 (19)	0.0008 (2)	-0.00033 (18)
C9	0.0180 (2)	0.0392 (4)	0.0204 (2)	0.00102 (19)	0.00032 (18)	-0.0015 (2)
C9	0.0180 (2)	0.0392 (4)	0.0200 (2)	0.0002 (2)	0.00188 (18)	0.0013 (2)
Geometric para	ameters (Å, °)					
S1—O3		1.4529 (6)	C5—H	5A	0.89	9 (14)
S1—O2		1.4550 (6)	С6—Н	6A	0.95	9 (16)
S1—O1		1.4580 (6)	C6—H	6B	0.94	5 (19)
S1—C9		1.7805 (7)	C6—H	6C	0.92	4 (19)
N3—C2		1.3298 (9)	C7—C	8	1.52	33 (9)
N3—C4		1.3825 (9)	С7—Н	7A	0.98	2 (13)
N3—C7		1.4673 (9)	С7—Н	7B	0.96	1 (12)
N1—C2		1.3301 (9)	C8—C	9	1.52	07 (10)
N1—C5		1.3791 (10)	C8—H	8A	0.95	2 (14)
N1—C6		1.4607 (10)	C8—H	8B	0.99	0 (14)
C2—H2A		0.923 (14)	С9—Н	9A	0.89	8 (16)
C4—C5		1.3562 (11)	С9—Н	9B	0.96	7 (16)
C4—H4A		0.961 (14)				
O3—S1—O2		113.68 (5)	Н6А—	-С6—Н6В	110	8 (14)
O3—S1—O1		111.84 (4)		6—H6C		7 (11)
O2—S1—O1		112.24 (5)		-C6—H6C		9 (15)
O3—S1—C9		107.06 (4)		C6—H6C		0 (15)
O2—S1—C9		105.52 (4)	N3—C			85 (5)
O1—S1—C9		105.84 (4)		7—H7A	107.	
C2—N3—C4		108.62 (6)		7—H7A	111.	
C2 113 -C4		100.02 (0)	C0C	, 11/11	111.	· (1)

124.60 (6) N3—C7—H7B

104.0 (7)

C2—N3—C7

supplementary materials

C2—N1—C5 108.65 (6) H7A—C7—H7B 110.4 (10) C2—N1—C6 124.78 (7) C9—C8—C7 112.84 (6) C5—N1—C6 126.54 (7) C9—C8—H8A 108.3 (8) N3—C2—N1 108.77 (6) C7—C8—H8A 110.0 (8) N3—C2—H2A 127.3 (9) C9—C8—H8B 111.1 (8) N1—C2—H2A 123.6 (9) C7—C8—H8B 106.2 (8) C5—C4—N3 106.86 (7) H8A—C8—H8B 108.4 (11) C5—C4—H4A 128.8 (8) C8—C9—S1 113.36 (5) N3—C4—H4A 124.1 (8) C8—C9—H9A 111.2 (10) C4—C5—N1 107.09 (7) S1—C9—H9A 106.8 (10) C4—C5—H5A 130.7 (9) C8—C9—H9B 112.9 (9) N1—C5—H5A 122.2 (9) S1—C9—H9B 106.2 (9) N1—C6—H6B 110.1 (11) C2—N3—C7—C8 -70.97 (8) N3—C7—C8 -60.48 (8) N3—C7—C8—C9 -60.48 (8) C7—C8—C9—S1 163.00 (5) C4—N3—C7—C8—C9 -60.48 (8)	C4—N3—C7	126.28 (6)	C8—C7—H7B	112.9 (7)
C5—N1—C6 126.54 (7) C9—C8—H8A 108.3 (8) N3—C2—N1 108.77 (6) C7—C8—H8A 110.0 (8) N3—C2—H2A 127.3 (9) C9—C8—H8B 111.1 (8) N1—C2—H2A 123.6 (9) C7—C8—H8B 106.2 (8) C5—C4—N3 106.86 (7) H8A—C8—H8B 108.4 (11) C5—C4—H4A 128.8 (8) C8—C9—S1 113.36 (5) N3—C4—H4A 124.1 (8) C8—C9—H9A 111.2 (10) C4—C5—N1 107.09 (7) S1—C9—H9A 106.8 (10) C4—C5—H5A 130.7 (9) C8—C9—H9B 112.9 (9) N1—C5—H5A 122.2 (9) S1—C9—H9B 106.2 (9) N1—C6—H6B 110.1 (11) C2—N3—C7—C8 100.05 (8) C4—N3—C7—C8 -70.97 (8) N3—C7—C8—C9 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	C2—N1—C5	108.65 (6)	H7A—C7—H7B	110.4 (10)
N3—C2—N1 108.77 (6) C7—C8—H8A 110.0 (8) N3—C2—H2A 127.3 (9) C9—C8—H8B 111.1 (8) N1—C2—H2A 123.6 (9) C7—C8—H8B 106.2 (8) C5—C4—N3 106.86 (7) H8A—C8—H8B 108.4 (11) C5—C4—H4A 128.8 (8) C8—C9—S1 113.36 (5) N3—C4—H4A 124.1 (8) C8—C9—H9A 111.2 (10) C4—C5—N1 107.09 (7) S1—C9—H9A 106.8 (10) C4—C5—H5A 130.7 (9) C8—C9—H9B 112.9 (9) N1—C5—H5A 122.2 (9) S1—C9—H9B 106.2 (9) N1—C6—H6A 110.2 (9) H9A—C9—H9B 105.9 (13) N1—C6—H6B 110.1 (11) -70.97 (8) N3—C7—C8 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	C2—N1—C6	124.78 (7)	C9—C8—C7	112.84 (6)
N3—C2—H2A 127.3 (9) C9—C8—H8B 111.1 (8) N1—C2—H2A 123.6 (9) C7—C8—H8B 106.2 (8) C5—C4—N3 106.86 (7) H8A—C8—H8B 108.4 (11) C5—C4—H4A 128.8 (8) C8—C9—S1 113.36 (5) N3—C4—H4A 124.1 (8) C8—C9—H9A 111.2 (10) C4—C5—N1 107.09 (7) S1—C9—H9A 106.8 (10) C4—C5—H5A 130.7 (9) C8—C9—H9B 112.9 (9) N1—C5—H5A 122.2 (9) S1—C9—H9B 106.2 (9) N1—C6—H6A 110.2 (9) H9A—C9—H9B 105.9 (13) N1—C6—H6B 110.1 (11) C2—N3—C7—C8 100.05 (8) C4—N3—C7—C8 -70.97 (8) N3—C7—C8—C9 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	C5—N1—C6	126.54 (7)	C9—C8—H8A	108.3 (8)
N1—C2—H2A 123.6 (9) C7—C8—H8B 106.2 (8) C5—C4—N3 106.86 (7) H8A—C8—H8B 108.4 (11) C5—C4—H4A 128.8 (8) C8—C9—S1 113.36 (5) N3—C4—H4A 124.1 (8) C8—C9—H9A 111.2 (10) C4—C5—N1 107.09 (7) S1—C9—H9A 106.8 (10) C4—C5—H5A 130.7 (9) C8—C9—H9B 112.9 (9) N1—C5—H5A 122.2 (9) S1—C9—H9B 106.2 (9) N1—C6—H6A 110.2 (9) H9A—C9—H9B 105.9 (13) N1—C6—H6B 110.1 (11) C2—N3—C7—C8 100.05 (8) C4—N3—C7—C8 -70.97 (8) N3—C7—C8—C9 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	N3—C2—N1	108.77 (6)	C7—C8—H8A	110.0 (8)
C5—C4—N3 106.86 (7) H8A—C8—H8B 108.4 (11) C5—C4—H4A 128.8 (8) C8—C9—S1 113.36 (5) N3—C4—H4A 124.1 (8) C8—C9—H9A 111.2 (10) C4—C5—N1 107.09 (7) S1—C9—H9A 106.8 (10) C4—C5—H5A 130.7 (9) C8—C9—H9B 112.9 (9) N1—C5—H5A 122.2 (9) S1—C9—H9B 106.2 (9) N1—C6—H6A 110.2 (9) H9A—C9—H9B 105.9 (13) N1—C6—H6B 110.1 (11) C2—N3—C7—C8 -70.97 (8) N3—C7—C8 0-60.48 (8) N3—C7—C8—C9 -60.48 (8)	N3—C2—H2A	127.3 (9)	C9—C8—H8B	111.1 (8)
C5—C4—H4A 128.8 (8) C8—C9—S1 113.36 (5) N3—C4—H4A 124.1 (8) C8—C9—H9A 111.2 (10) C4—C5—N1 107.09 (7) S1—C9—H9A 106.8 (10) C4—C5—H5A 130.7 (9) C8—C9—H9B 112.9 (9) N1—C5—H5A 122.2 (9) S1—C9—H9B 106.2 (9) N1—C6—H6A 110.2 (9) H9A—C9—H9B 105.9 (13) N1—C6—H6B 110.1 (11) C2—N3—C7—C8 -70.97 (8) N3—C7—C8 100.05 (8) C4—N3—C7—C8 -70.97 (8) N3—C7—C8—C9 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	N1—C2—H2A	123.6 (9)	C7—C8—H8B	106.2 (8)
N3—C4—H4A 124.1 (8) C8—C9—H9A 111.2 (10) C4—C5—N1 107.09 (7) S1—C9—H9A 106.8 (10) C4—C5—H5A 130.7 (9) C8—C9—H9B 112.9 (9) N1—C5—H5A 122.2 (9) S1—C9—H9B 106.2 (9) N1—C6—H6A 110.2 (9) H9A—C9—H9B 105.9 (13) N1—C6—H6B 110.1 (11) C2—N3—C7—C8 100.05 (8) C4—N3—C7—C8 -70.97 (8) N3—C7—C8—C9 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	C5—C4—N3	106.86 (7)	H8A—C8—H8B	108.4 (11)
C4—C5—N1 107.09 (7) S1—C9—H9A 106.8 (10) C4—C5—H5A 130.7 (9) C8—C9—H9B 112.9 (9) N1—C5—H5A 122.2 (9) S1—C9—H9B 106.2 (9) N1—C6—H6A 110.2 (9) H9A—C9—H9B 105.9 (13) N1—C6—H6B 110.1 (11) -70.97 (8) N3—C7—C8 100.05 (8) C4—N3—C7—C8 -70.97 (8) N3—C7—C8—C9 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	C5—C4—H4A	128.8 (8)	C8—C9—S1	113.36 (5)
C4—C5—H5A 130.7 (9) C8—C9—H9B 112.9 (9) N1—C5—H5A 122.2 (9) S1—C9—H9B 106.2 (9) N1—C6—H6A 110.2 (9) H9A—C9—H9B 105.9 (13) N1—C6—H6B 110.1 (11) -70.97 (8) C2—N3—C7—C8 100.05 (8) C4—N3—C7—C8 -70.97 (8) N3—C7—C8—C9 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	N3—C4—H4A	124.1 (8)	C8—C9—H9A	111.2 (10)
N1—C5—H5A 122.2 (9) S1—C9—H9B 106.2 (9) N1—C6—H6A 110.2 (9) H9A—C9—H9B 105.9 (13) N1—C6—H6B 110.1 (11) -70.97 (8) C2—N3—C7—C8 100.05 (8) C4—N3—C7—C8 -70.97 (8) N3—C7—C8—C9 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	C4—C5—N1	107.09 (7)	S1—C9—H9A	106.8 (10)
N1—C6—H6A 110.2 (9) H9A—C9—H9B 105.9 (13) N1—C6—H6B 110.1 (11) C2—N3—C7—C8 100.05 (8) C4—N3—C7—C8 -70.97 (8) N3—C7—C8—C9 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	C4—C5—H5A	130.7 (9)	C8—C9—H9B	112.9 (9)
N1—C6—H6B 110.1 (11) C2—N3—C7—C8 100.05 (8) C4—N3—C7—C8 -70.97 (8) N3—C7—C8—C9 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	N1—C5—H5A	122.2 (9)	S1—C9—H9B	106.2 (9)
C2—N3—C7—C8 100.05 (8) C4—N3—C7—C8 -70.97 (8) N3—C7—C8—C9 -60.48 (8) N3—C7—C8—C9 -60.48 (8)	N1—C6—H6A	110.2 (9)	H9A—C9—H9B	105.9 (13)
N3—C7—C8—C9 —60.48 (8) N3—C7—C8—C9 —60.48 (8)	N1—C6—H6B	110.1 (11)		
	C2—N3—C7—C8	100.05 (8)	C4—N3—C7—C8	-70.97 (8)
C7—C8—C9—S1 163.00 (5)	N3—C7—C8—C9	-60.48 (8)	N3—C7—C8—C9	-60.48 (8)
	C7—C8—C9—S1	163.00 (5)		

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
C2—H2A···O2 ⁱ	0.923 (14)	2.197 (14)	2.9512 (9)	138.4 (12)
C5—H5A···O1 ⁱⁱ	0.899 (14)	2.381 (15)	3.1573 (10)	144.6 (12)
C4—H4A···O1 ⁱⁱⁱ	0.961 (14)	2.528 (14)	3.3268 (11)	140.5 (11)
C4—H4A···O3 ⁱⁱⁱ	0.961 (14)	2.541 (14)	3.4364 (11)	155.0 (11)
C7—H7B···O3 ^{iv}	0.961 (12)	2.613 (12)	3.1693 (10)	117.2 (9)
C8—H8B···O3 ^{iv}	0.990 (14)	2.621 (13)	3.2086 (9)	118.1 (9)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y+3/2, z-1/2; (iii) -x, -y+1, -z+1; (iv) x, -y+1/2, z-1/2.

Fig. 1

Fig. 2

Fig. 3

