Uma Abordagem de Monitoramento dos Sinais Motores da Doença de Parkinson Baseada em Jogos Eletrônicos Defesa de Tese

Aluno: Leonardo Melo de Medeiros

Orientador: Leandro Dias da Silva Orientador: Hyggo Oliveira de Almeida Universidade Federal de Campina Grande - UFCG

30 de Maio de 2016

Roteiro

Introdução

Estudo de Caso

Abordagem JOGUE-ME

Experimentos

Finalização

•00000

Introdução

Sistemas de Monitoramento de Saúde

A concepção de um sistema não invasivo de monitoramento é um grande desafio [Alemdar et al., 2015]

Aplicações dos Sistemas de Monitoramento da Saúde (SMS)

Atualmente, os Sistemas de Monitoramento da Saúde (SMS) permitem ao médico:

- ► Tratar preventivamente e pró-ativamente o estado de saúde [Mobyen Uddin Ahmed & Loutfi, 2013]
- ► Reabilitar o paciente [Graziadio et al., 2014]
- ▶ Melhorar a qualidade de vida [Chen et al., 2014]

00●000 ○○○○ Motivação

Introdução

Estratégias de Monitoramento da Saúde

SMS da Saúde Motora

Atualmente, os SMS da saúde motora permitem:

- Quantificar as habilidades motoras dos usuários [Friedman et al., 2014, Patel et al., 2009]
- Analisar a marcha dos usuários [Liao et al., 2014]
- ▶ Identificar sinais de bradicinesia (lentidão dos movimentos) presente no Parkinson [Zwartjes *et al.*, 2010]

000000 Motivação

Introdução

Abordagem Proposta

Nesta Tese, propomos monitorar a saúde de uma forma não invasiva usando jogos eletrônicos.

Cenário de Uso

Como possível cenário de uso para a pesquisa, supondo que:

- Um paciente faz uso do cliente JOGUE-ME no conforto de seus lar e, consequentemente, fornece os sinais motores em diferentes momentos do dia
- Logo, esses sinais motores s\u00e3o quantificados e enviados para o servidor JOGUE-ME
- O servidor JOGUE-ME analisa os sinais e identifica e quantificar a ocorrência dos sintomas motores
- ► Então, o médico recebe a informação sobre a saúde motora e consegue melhor gerenciar a saúde de seus pacientes

Jogos Aplicados à Saúde

Nos últimos anos, houve o surgimento de jogos para apoiar a prática de atividade física. Como por exemplo:

- Melhoria da saúde do idoso com: visado a reabilitação motora dos idosos [Graziadio et al., 2014]
- Jogos com sensores hápticos para quantificar a habilidade motora do paciente com Parkinson [Atkinson & Narasimhan, 2010]
- Jogos para o monitoramento dos sinais vitais(Batimento cardíaco) [Sinclair et al., 2009]

Motivação para uso de jogos para monitoramento dos dados motores

- Percentual expressivo de adultos e idosos que usam jogos em sua rotina diária (27% acima dos 50 anos [ESA, 2015])
- As tecnologias de sensores de movimento presentes nos jogos eletrônicos
- Reprodução de movimentos específicos em um ambiente lúdico

Jogos Para Saúde

Introdução ○○○○○ ○○●○

Objetivo Principal

Conceber um SMS embutido num jogo eletrônico para motivar e abstrair o monitoramento dos sinais motores de uma maneira não invasiva

Etapas do Trabalho

A da metodologia deste trabalho consistiu de três etapas sequenciais:

- ETAPA 1 Quais os benefícios de acompanhar os sinais motores do paciente diariamente, do ponto de vista do profissional da saúde?
- ETAPA 2 Como melhor adquirir e quantificar sinais motores utilizando sensores de movimento para monitorar os sinais do Parkinson?
- ETAPA 3 Na perspectiva dos usuários, a abordagem de quantificar os sinais motores é considerada não-invasiva e aplicável à rotina diária?

Estudo de Caso

Como estudo de caso, escolhemos a Doença de Parkinson (Parkinson) por ser uma doença neurodegenerativa crônica, progressiva

- Comum em idosos
- Existem casos precoces em indivíduos antes dos 40 anos
- flutuabilidade dos sintomas devido o tratamento medicamentoso

Parkinson

O Parkinson é uma afecção do sistema nervoso central, a qual é expressa de forma crônica e progressiva.

- Causada pela morte dos neurônios produtores de dopamina da substância negra [Picon et al., 2010]
- Caracterizada pelos sinais cardinais de rigidez, bradicinesia, tremor e instabilidade postural [Jankovic, 2008]

Doença de Parkinson

Bradicinesia

- Enquanto que o sintoma de tremor é o mais visível do Parkinson, a bradicinesia é o sintoma motor mais incapacitante
- A bradicinesia é acompanhada de: rigidez dos músculos, assimetria dos movimentos entre os membros e dificuldade nos movimentos

Estágios da Doença

Escala Unificada de Avaliação da Doença de Parkinson (UPDRS)

A escala contém itens referentes a:

- ▶ Mental, comportamento e humor
- Atividades da vida diária
- Exame motor
- Complicações no tratamento

Escala (UPDRS)

- Avaliação dos sintomas de maneira subjetiva e esporádica
- ► Flutuação dos sintomas (fenômeno *on/off*)

Entrevista

ETAPA 1

Quais os benefícios de acompanhar os sinais motores do paciente diariamente, do ponto de vista do profissional da saúde?

Entrevista Semi-Estruturada com Profissionais de Saúde

Objetivo da Pesquisa

O objetivo da entrevista semiestruturada foi entender como é feito o acompanhamento do paciente com sintomatologia do Parkinson, juntamente aos profissionais de saúde

Participantes

LEGENDA	PROFISSÃO	EXPERIÊNCIA (ANOS)
FIS_01	Fisioterapeuta	10
FIS_02	Fisioterapeuta	10
NEU_01	Neurologista	15
NEU_02	Neurologista	30

Resultado da Entrevista

- ► Identificamos a importância de monitorar a bradicinesia para acompanhar a evolução do Parkinson
- Os profissionais de saúde informaram da importância de calcular:
 - 1. amplitude dos movimentos de abdução e adução dos braços
 - 2. a velocidade angular desse movimento

Apresentação

ETAPA 2

Como melhor adquirir e quantificar sinais motores utilizando sensores de movimento para monitorar os sinais do Parkinson?

Abordagem JOGUE-ME

A abordagem **JOGUE-ME** faz uso de jogos eletrônicos como interface de aquisição de sinais, tornando os usuários mais motivados a fornecer seus dados motores, em comparação ao uso dos dispositivos vestíveis

Abordagem JOGUE-ME

Este trabalho pretende usar um ambiente de jogo para a execução de movimentos específicos com o propósito de quantificar os sinais motores dos usuários e consequentemente realizar o monitoramento Apresentaçã

Visão Geral da Abordagem JOGUE-ME

Apresentação

JOGUE-ME - Jogo com Monitoramento de Saúde **Embutido**

- ▶ **REQ-JOGUE-ME-01** Pontuação e Taxa de Acerto
- **REQ-JOGUE-ME-02** Progresso e Evolução do Jogador e dos Desafios
- ▶ REQ-JOGUE-ME-03 Estado de Fluxo
- **REQ-JOGUE-ME-04** Preocupação com Integridade Física do Jogador
- **REQ-JOGUE-ME-05** Aquisição e Armazenamento de Sinais Motores
- **REQ-JOGUE-ME-06** Mecanismo de Identificação de Sintomas Motores
- **REQ-JOGUE-ME-07** Mecanismo de Visualização

Estudo Biomecânico da Cinemática Angular

A cinemática angular permite examinar o movimento angular a partir de segmentos de um movimento, divididos em partes identificáveis que aumentam a compreensão do movimento humano

Abordagem JOGUE-ME 000000

- Estudo das forças e momentos que resultam no movimento do corpo e seus segmentos
- Processamento das grandezas cinemáticas considerando:
 - 1. tempo
 - 2. ângulos
 - 3. amplitude
 - 4. velocidade angular

Sensor de Captura de Movimentos

Movimento Angular

Movimento de Abdução e Adução do Braço [McGinnis, 2013]

Mecanismo de Identificação de Sintomas Motores

Velocidade Angular do Movimento de Abdução e Adução

Filtragem de Dados: Remoção de Ciclos Incompletos

Visualização das Características do Movimento

Velocidades	°/S	Amplitudes			
	A bdução	A dução	Adução	Esquerda	Direita
Esquerda	Direita	Esquerda	Direita		
78,95	77,82	83,06	106,42	130,00	124,72
79,94	34,68	104,69	39,98	131,50	132,44
81,05	47,05	107.38	56,52	132,22	123,66
74,73	47,09	109,05	47,75	132,33	122,20
72,01	56,02	102,36	76,00	131,40	119.75

Tabela 3.1: Extração das Características de Indivíduo Com Diagnóstico da DP

Velocidades	6°/S			Amplitudes	
Abdução Esquerda	A bdução Direita	A dução Esquerda	Adução Direita	Esquerda	Amplitude
129,35	61,59	78,74	176,30	159,39	143,50
115,67	118,15	71,72	79.46	156,37	153,97
120.96	135,27	66,70	78,17	154,30	149,91
125.96	137,43	64,75	81,57	153,18	154,58
139.99	117,60	69,96	84,08	151,68	148,90
120,51	111,92	75,85	75,18	152,58	148,35

Tabela 3.2: Extração das Características de Indivíduo Sem Diagnóstico da DP

Classificador de Dados

Classificador de Dados

Nesta tese, o classificador de dados foi utilizado para identificar o sintoma da bradicinesia em pacientes com Parkinson

Máquina de Vetor de Suporte (SVM)

- Uma SVM busca encontrar
 Vetores de Suporte que consigam separa duas classes
- ► Formalmente, essa classificador separa os dados por meio de um hiperplano através de uma função discriminante

Classificador de Dados

Processamento dos Sinais Biomecânicos

Caso-Controle

Estudo Analítico de Caso-Controle: Identificação da Bradicinesia

Objetivo da Pesquisa

Como melhor adquirir e quantificar sinais motores utilizando sensores de movimento para monitorar os sinais do Parkinson?

Coleta de Dados

- Protocolo de pesquisa submetido aprovado junto ao CEP da UFCG (**CAAE**: **14408213.9.1001.5182**)
- Coleta realizada nas instituições:
 - 1. Hospital Universitário da UFAL
 - Fundação Pestalozzi
 - 3. Clínica Fisioterapia do CESMAC

Caso-Controle

Amostra

- A técnica de amostragem utilizada para seleção, foi por conveniência, composta por:
 - 1. 15 indivíduos portadores do Parkinson entre 51 e 65 anos (média de idade : 58 anos)
 - 2. 15 sem o diagnostico, como grupo controle entre 50 e 65 anos (média : 57 anos)
- No grupo de portadores do Parkinson, foram inclusos indivíduos até o Estágio 3 (Doença bilateral leve a moderada com alguma instabilidade postural e capacidade para viver independente), segundo a UPDRS

Caso-Controle

Coleta dos Dados Utilizando o Jogo: Catch the Spheres

Caso-Controle

Coleta de Dados

Optimização dos Parâmetros da SVM

Aplicação do Método de *Grid-Search*

Para identificar os melhores parâmetros da SVM, foi aplicado o método Grid-Search [Li et al., 2010] usando validação cruzada Leave-One-Out [Kantardzic, 2011].

Parâmetros da SVM

Custo (C)

O C é o parâmetro que controla a influência de individual de cada vetor de suporte no resultado da classificação.

Gamma (γ)

O parâmetro γ controla a flexibilidade da função de kernel, valores pequenos de γ permitem ao classificador ajustar todos os rótulos havendo risco de sobre ajustamento.

Optimização dos Parâmetros

O objetivo da optimização dos parâmetros é encontrar no espaço formado por (γ, C) pontos nos quais a acurácia do classificador seja a maior possível.

Os valores dos parâmetros de pesquisa do grid-search foram:

$$C = [2^{-5}, ..., 2^2]$$

$$\gamma = [2^{-15}, \dots, 2^3]$$

Valores da Busca Detalhada:

$$C = [0.25, 0.5, ..., 2.5]$$

$$\gamma = [1, 2, ..., 10]$$

Parâmetros Encontrados

Logo, usando o método grid-search, encontramos os seguintes valores para os parâmetros: C=2 e $\gamma=3$

Classificação dos Dados

Grid-Search - Acurácia da Classificação

Classificação dos Dados

Matriz de Confusão do Estudo Analítico Caso-Controle Usando SVM

	Classe Preditiva		
	Parkinson	Controle	
Parkinson	12	3	
Controle	1	14	

Métricas da Classificação

TpRate: taxa de amostras positivas corretamente

classificadas

FpRate: taxa de falso alarme obtido

Accuracy: taxa de amostras classificadas corretamente

Precision : taxa de acerto de uma instância em determinada

classe

F-Measure : considera a média harmônica da taxa de precision e

do tp rate

TpRate	80,00%
FpRate	6,67%
Accuracy	86,67%
Precision	92,31%
F-Measure	85,71%

Classificação dos Dados

Outros Experimentos

Uso de Jogo em *Smartphone* Para Detecção de Tremor

Insucesso na Quantificação do Tremor

- ► Tremor do Parkinson é de repouso
- Indivíduos quando utilizavam o jogo reduziam drasticamente o sintoma
- Como os dados não seriam satisfatórios, logo a coleta tornou-se inviável

GQI

ETAPA 3

Na perspectiva dos usuários, a abordagem de quantificar os sinais motores é considerada não-invasiva e aplicável à rotina diária?

Questões da Pesquisa

- 1. O usuário poderia integrar a abordagem JOGUE-ME à sua rotina diária ?
- 2. A segurança com a integridade física está de acordo com a faixa etária do usuário ?

GQN

Integrar a Abordagem à Rotina Diária

Numa escala de 1 a 5 qual o grau de diversão do jogo ?

GQN

Integrar a Abordagem à Rotina Diária

Se você tivesse adquirido esse jogo, com que frequencia você o utilizaria durante a semana?

Integrar a Abordagem à Rotina Diária

Métrica	Sim	Não
1.2: O jogo traz motivação ao usuário?	91,67%	8,33%
1.4: O usuário considera o jogo simples, sem muitas regras		8,33%
e de fácil entendimento? Ele pode ser aplicado em diferen-		
tes idades?		
1.5: O usuário tem o costume de jogar esses jogos casuais	41,67%	58,33%
em casa?		
1.6: O usuário agregaria um jogo desse estilo em sua rotina	75%	25%
diária?		

Segurança à Integridade Física

Qual a sua opinião sobre a faixa etária do jogo?

Segurança à Integridade Física

Métrica	Sim	Não
2.1: Uma criança estaria segura jogando esse jogo, ao efe-		0%
tuar os movimentos dos braços?		
2.2: Um adulto estaria seguro ao jogar esse jogo, ao efetuar	100%	0%
os movimentos dos braços?		
2.3: Um idoso estaria seguro ao jogar esse jogo, ao efetuar		25%
os movimentos dos braços?		

Conclusão

Nos experimentos realizados, conseguimos demonstrar:

- ► A importância do acompanhamento dos sinais motores integrados à rotina diária do paciente
- A viabilidade do desenvolvimento de jogos para o monitoramento, pois, obtivemos uma taxa de acurácia de 86,67% e falsos positivos de 6,67%
- ▶ Um percentual de 83% dos usuários integrariam a solução de monitoramento proposta em sua rotina diária

Trabalhos Futuros

A partir dos resultados apresentados nesta tese e extensão da mesma, alguns trabalhos futuros são propostos para contribuição científica:

- ► Coletar uma amostra maior de pacientes com Parkinson, e agrupá-los de acordo com o estágio da doença [Goulart & Pereira, 2005]
- Usar técnicas de multi-classificação de dados [Chamasemani & Singh, 2011] para identificar o progresso do Parkinson de acordo com as escalas de avaliação
- Avaliar o sinal da bradicinesia em diferentes momentos do dia, para verificar a eficácia do tratamento medicamentoso [Picon et al., 2010]

Publicações

Publicações

Foram publicados três artigos, em conferências internacionais, relacionados à tese:

- Abstract: Monitoring Parkinson related Gait Disorders with Eigengaits, no, XX World Congress on Parkinson's Disease and Related Disorders (2013) [Medeiros et al., 2013]
- ► Full Paper: A Game-Based Approach to Monitor Parkinson's Disease: The bradykinesia symptom classification, no, International Symposium on Computer-Based Medical Systems (CBMS 2016) [Medeiros et al., 2016b]
- ► Full Paper: A Gait Analysis Approach to Track Parkinson's Disease Evolution Using Principal Component Analysis, no, International Symposium on Computer-Based Medical Systems (CBMS 2016) [Medeiros et al., 2016a]

Duvida

DÚVIDAS ?

Alemdar, Hande, Tunca, Can, & Ersoy, Cem. 2015.

Daily life behaviour monitoring for health assessment using machine learning: Bridging the gap between domains. Personal ubiquitous computing.

Atkinson, S.D., & Narasimhan, V.L. 2010.

Design of an introductory medical gaming environment for diagnosis and management of parkinson's disease.

In: Trendz in information sciences computing.

Chamasemani, F. F., & Singh, Y. P. 2011.

Multi-class support vector machine (svm) classifiers - an application in hypothyroid detection and classification.

In: Sixth international conference on bio-inspired computing: Theories and applications. IFFF.

Chen, Huan, Liao, Guo-Tan, Fan, Yao-Chung, Cheng, Bo-Chao, Chen, Cheng-Min, & Kuo, Ting-Chun. 2014.

Design and implementation of a personal health monitoring system with an effective sym-based pvc detection algorithm in cardiology.

In: Symposium on applied computing. ACM.

ESA. 2015.

Essential facts about the u.s. computer and video game industry: Sales, demophahy and usage data.

Friedman, N., Rowe, J.B., Reinkensmeyer, D.J., & Bachman, M. 2014.

The manumeter: A wearable device for monitoring daily use of the wrist and fingers.

leee journal of biomedical and health informatics.

Goulart, Fátima, & Pereira, Luciana Xavier, 2005.

Uso de escalas para avaliação da doença de parkinson em fisioterapia.

Fisioterapia e pesquisa.

Graziadio, S., Davison, R., Shalabi, K., Sahota, K. M. A., Ushaw, G., Morgan, G., & Eyre, J. A. 2014.

Bespoke video games to provide early response markers to identify the optimal strategies for maximizing rehabilitation.

In: Proceedings of the 29th annual acm symposium on applied computing.

ACM.

Jankovic, J. 2008.

Parkinson's disease: clinical features and diagnosis.

Journal of neurology, neurosurgery & psychiatry.

Kantardzic, M. 2011.

Data mining: Concepts, models, methods, and algorithms. 2nd edn.

Piscataway, NJ, USA: John Wiley & Sons.

Li, Cheng-Hsuan, Lin, Chin-Teng, Kuo, Bor-Chen, & Ho, H.-H. 2010.

An automatic method for selecting the parameter of the normalized kernel function to support vector machines.

In: International conference on technologies and applications of artificial intelligence.

IFFF.

Liao, Chien-Ke, Lim, Chung Dial, Cheng, Ching-Ying, Huang, Cheng-Ming, & Fu, Li-Chen. 2014.

Vision based gait analysis on robotic walking stabilization system for patients with parkinson's disease.

In: International conference on automation science and engineering (case).

EEE.

McGinnis, Peter. 2013.

Biomechanics of sport and exercise.

Human Kinetics.

Medeiros, Leonardo, Fischer, Robert, Almeida, Hyggo, Silva, Leandro, & Perkusich, Angelo. 2013.

Monitoring parkinson related gait disorders with eigengaits.

In: Xx world congress on parkinson's disease and related disorders.

Keynes International.

Medeiros, Leonardo, Almeida, Hyggo, Silva, Leandro, Perkusich, Mirko, & Fischer, Robert. 2016a.

A gait analysis approach to track parkinson's disease evolution using principal component analysis.

In: The 29th international symposium on computer-based medical systems (cbms 2016).

IFFE.

Medeiros, Leonardo, Almeida, Hyggo, Silva, Leandro, Perkusich, Mirko, & Fischer, Robert. 2016b.

A game-based approach to monitor parkinson's disease: The bradykinesia.

In: The 29th international symposium on computer-based medical systems (cbms 2016).

Mobyen Uddin Ahmed, Hadi Banaee, & Loutfi, Amy. 2013. Health monitoring for elderly: An application using case-based reasoning and cluster analysis.

Isrn artificial intelligence.

Monitoring motor fluctuations in patients with parkinson's disease using wearable sensors.

IEEE transactions on information technology in biomedicine.

Picon, Paulo, Gadelha, Maria, & Beltrame, Alberto. 2010. Protocolo clínico e diretrizes terapêutica - doença de parkinson.

Ministério da Saúde.

Sinclair, Jeff, Hingston, Philip, Masek, Martin, & Nosaka, Kazunori (Ken). 2009.

Using a virtual body to aid in exergaming system development.

leee computer graphics applications.

Zwartjes, D.G.M., Heida, T., van Vugt, J.P.P., Geelen, J.A.G., & Veltink, P.H. 2010.

Ambulatory monitoring of activities and motor symptoms in parkinson's disease.

leee transactions on biomedical engineering.