

CASE STUDIES IN STATISTICAL THINKING

Introduction to statistical seismology

Justin Bois Lecturer, Caltech

California moves and shakes

Fault data: USGS Quaternary Fault and Fold Database of the United States

The Parkfield region

Parkfield box proposed by Michael, and Jones, Bull. Seism. Soc. Am. 88, 117-130, 1998

The Parkfield region

Data source: USGS ANSS Comprehensive Earthquake Catalog (ComCat)

The Parkfield region

Image: Linda Tanner, CC-BY-2.0

Seismic Japan

Data source: USGS ANSS Comprehensive Earthquake Catalog (ComCat)

ECDF of magnitudes, Japan, 1990-1999

Data source: USGS ANSS Comprehensive Earthquake Catalog (ComCat)

Location parameters

 $m' \equiv m - 5 \sim {
m Exponential}$

 $m' \equiv m - m_t \sim \text{Exponential}$

The Gutenberg-Richter Law

The magnitudes of earthquakes in a given region over a given time period are Exponentially distributed

One parameter, given by $\overline{m}-m_t$, describes earthquake magnitudes for a region

The *b*-value

$$b = (\overline{m} - m_t) \cdot \ln 10$$

```
In [1]: mt = 5
In [2]: b = (np.mean(magnitudes) - mt) * np.log(10)
In [3]: b
Out[3]: 0.97292147426325659
```


ECDF of all magnitudes

ECDF of all magnitudes

Data source: USGS ANSS Comprehensive Earthquake Catalog (ComCat)

Completeness threshold

The magnitude, m_t , above which all earthquakes in a region can be detected

CASE STUDIES IN STATISTICAL THINKING

Let's practice!

CASE STUDIES IN STATISTICAL THINKING

Timing of major earthquakes

Justin Bois Lecturer, Caltech

Models for earthquake timing

• Exponential: Earthquakes happen like a Poisson process

• Gaussian: Earthquakes happen with a well-defined period

Stable continental region earthquakes

Data source: USGS Earthquake Catalog for Stable Continental Regions

The Nankai Trough

Earthquakes in the Nankai Trough

Date	Magnitude
684-11-24	8.4
887-08-22	8.6
1099-02-16	8.0
1361-07-26	8.4
1498-09-11	8.6
1605-02-03	7.9
1707-10-18	8.6
1854-12-23	8.4
1946-12-24	8.1

ECDF of time between Nankai quakes

 $ECDF(x) = fraction of data points \le x$


```
# time_gap is an array of interearthquake times
_ = plt.plot(*dcst.ecdf(time_gap, formal=True))
_ = plt.xlabel('time between quakes (yr)')
_ = plt.ylabel('ECDF')
```


Generating theoretical distributions

```
# Compute the mean time gap
mean_time_gap = np.mean(time_gap)

# Standard deviation of the time gap
std_time_gap = np.std(time_gap)
```

```
# Generate theoretical Exponential distribution of timings
time_gap_exp = np.random.exponential(mean_time_gap, size=100000)

# Generate theoretical Normal distribution of timings
time_gap_norm = np.random.normal(mean_time_gap, std_time_gap, size=100000)
```

```
# Plot theoretical CDFs
_ = plt.plot(*dcst.ecdf(time_gap_exp))
_ = plt.plot(*dcst.ecdf(time_gap_norm))
```


Model for Nankai Trough

CASE STUDIES IN STATISTICAL THINKING

Let's practice!

CASE STUDIES IN STATISTICAL THINKING

How are the Parkfield interearthquake times distributed?

Justin Bois Lecturer, Caltech

The Parkfield Prediction

Adapted from Bakun and Lindh, Science, 229, 619-624, 1985

Hypthesis test on the Nankai megathrust earthquakes

 Hypothesis: The time between Nankai Trough earthquakes is Normally distributed with a mean and standard deviation as calculated from the data

• Test statistic: ??

• At least as extreme as: ??

Kolmogorov-Smirnov test

 Hypothesis: The time between Nankai Trough earthquakes is Normally distributed with a mean and standard deviation as calculated from the data

• **Test statistic**: Kolmogorov-Smirnov statistic

• At least as extreme as: ≥ observed K-S statistic

Simulating the null hypothesis

- Draw lots of samples out of the theoretical distribution and store them
 - Draw n samples out of the theoretical distribution
 - Compute the K-S statistic from the samples

CASE STUDIES IN STATISTICAL THINKING

Let's practice!