14 01.23 Lemma: Let Fi, Fi, where it is he two Now pour with di= Ai. Then Fi and F, can be mirged Define merge. if F, and F; have as common vertices other than s, t, i.e. V(F° v F; ") ~ V(F; & F; ") - Es, +7. Proof.
The idea is to append Now pair F; to Now pair F; ty redirecting edger.
Let up., up. he such that (s, up.) & E(F.), (s, up.) & E(F.) and vp., vp. he such that What if upo=t, VF. = 5? (ve, tle E(F,), (ve, tle E(F,). Ugdall Now retwork = (V, E, P, s, +, ?) We introduce fire new vertices \tilde{u}_{F^0} , \tilde{u}_{F^n} , \tilde{v}_{F^0} , \tilde{v}_{F^n} , w. live intuition. We introduce the following align: (s, ", ",), ("Es, upol, (s, "p,), (We replace edgen (s, up), (s, up), (vp, +), (vp, + with the bottoming edgen: - (s, ŭp), (s, ũp,), (vp, l), (vp, l) with capacity ∞ (e.g. ∑, d;) - (ũ = , u=), (ũ = u, u= u) with wouldy ((s, u=) - (were used with appuly ((& use) - (ve, ve) with againty ((ve, H - (VEN, VEN) with againty ((VEN, F) We update Il low pain to we the new edger instead of the old eges, that is: (F) = E(F,) - E(s, up) (s, up) (vp, 1, (vp, +) 50 {(E(F,) = E(F,) E(Fi)= E(Fi)- {(s, up), (s, up), (vp, +), (vp, +) } v 2(s, 2, 0, 1) ((s, u, 0) + E(F, 1) U {(s, we,), (we, ue,): (s, ue,) e E (F,)} v {(v,,+), ((v,,,v,,,), (v,,,+): {(v=,v=u),(v=u,L); E(F,") is defined invitative analogoruly. We set $V(\tilde{F}_i^o) = V(E(\tilde{F}_i^o))$ and $V(\tilde{F}_i^u) = V(E(\tilde{F}_i^u))$.

Moreover, we introduce another new vertex w and edges $(\tilde{V}_{E_i^o}, w), (w, \tilde{V}_{E_i^o}), (w, \tilde{V}_{E_i^o})$. We uplate throw the How pain F. F. in lottown. We replace How pain F. F. with a new How pair F Iverboaded E(Fi) - E(Fi) - E(VE., 1) = E(VE., WI) v E(Fi) - (s, WE) v E(W, WE) andrian F. E(F E(F?)

