Outline

- Introduction
 - What is a distributed DBMS
 Distributed DBMS Architecture
- Background
- Distributed Database Design
- Database Integration
- Semantic Data Control
- Distributed Query Processing
- Multidatabase query processing
- Distributed Transaction Management
- Data Replication
- Parallel Database Systems
- Distributed Object DBMS
- Peer-to-Peer Data Management
- Web Data Management
- Current Issues

File Systems

Database Management

Motivation

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.1/4

integration ≠ centralization

Distributed Computing

- A number of autonomous processing elements (not necessarily homogeneous) that are interconnected by a computer network and that cooperate in performing their assigned tasks.
- What is being distributed?

Processing logic

Function

Data

Control

What is a Distributed Database System?

A distributed database (DDB) is a collection of multiple, *logically interrelated* databases distributed over a *computer network*.

A distributed database management system (D-DBMS) is the software that manages the DDB and provides an access mechanism that makes this distribution transparent to the users.

Distributed database system (DDBS) = DDB + D-DBMS

What is not a DDBS?

- A timesharing computer system
- A loosely or tightly coupled multiprocessor system
- A database system which resides at one of the nodes of a network of computers - this is a centralized database on a network node

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.1/7

Centralized DBMS on a Network

Distributed DBMS Environment

Implicit Assumptions

- - Parallel database systems
- - Relational data model
- D-DBMS is a full-fledged DBMS
 - Not remote file system, not a TP system

Data Delivery Alternatives

Delivery modes

Pull-only

Push-only

Hybrid

Frequency

Periodic

Conditional

Ad-hoc or irregular

Communication Methods

Unicast

One-to-many

Note: not all combinations make sense

Distributed DBMS Promises

- Transparent management of distributed, fragmented, and replicated data
- Improved reliability/availability through distributed transactions
- Improved performance
- Easier and more economical system expansion

Transparency

- Transparency is the separation of the higher level semantics of a system from the lower level implementation issues.
- Fundamental issue is to provide

data independence

in the distributed environment

Network (distribution) transparency

Replication transparency

Fragmentation transparency

- horizontal fragmentation: selection
- vertical fragmentation: projection
- hybrid

Example

⊢M⊦	F	M	F
-----	---	---	---

ENO	ENAME	TITLE
E1 E2	J. Doe M. Smith	Elect. Eng Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

ASG

ENO	PNO	RESP	DUR
E1 E2 E2	P1 P1 P2	Manager Analyst Analyst	12 24 6
E3	P3	Consultant	10
E3	P4	Engineer	48
E4	P2	Programmer	18
E5	P2	Manager	24
E6	P4	Manager	48
E7	P3	Engineer	36
E8	P3	Manager	40

PROJ

PNO	PNAME	BUDGET
P1 P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000

PAY

TITLE	SAL
Elect. Eng.	40000
Syst. Anal.	34000
Mech. Eng.	27000
Programmer	24000

Transparent Access

SELECT ENAME, SAL

FROM EMP, ASG, PAY

WHERE DUR > 12

AND EMP.ENO = ASG.ENO

AND PAY.TITLE = EMP.TITLE

Distributed Database - User View

Distributed DBMS - Reality

Types of Transparency

- Data independence
- Network transparency (or distribution transparency)
 - Location transparency
 - Naming transparency
- Replication transparency
 - Refers only to the existence of replicas, not to their actual location
- Fragmentation transparency
 - This is commonly done for reasons of performance, availability and reliability

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.1/18

Reliability Through Transactions

- Replicated components and data should make distributed DBMS more reliable.
- Distributed transactions provide
 Concurrency transparency
 Failure atomicity
- Distributed transaction support requires implementation of Distributed concurrency control protocols
 Commit protocols
- Data replication
 Great for read-intensive workloads, problematic for updates
 Replication protocols

Improved Performance

 Distributed DBMS fragments stored in close proximity to its points of use

Each site handles only a portion of the database (contention is not as severe as centralized databases)

Localization reduces remote access delays that are usually involved in WANs

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.1/20

System Expansion

- Issue is database scaling
- Emergence of microprocessor and workstation technologies

Demise of Grosh's law

Client-server model of computing

Data communication cost vs telecommunication cost

Distributed DBMS Issues

Distributed Database Design

How to distribute the database

Replicated & non-replicated database distribution

A related problem in directory management (descriptions and locations about data items in the database)

• Query Processing

Convert user transactions to data manipulation instructions Optimization problem

min{cost = data transmission + local processing}

Distributed DBMS Issues

Concurrency Control

Synchronization of concurrent accesses

Consistency and isolation of transactions' effects

Deadlock management

Reliability

How to make the system resilient to failures Atomicity and durability

Relationship Between Issues

Related Issues

Operating System Support

Operating system with proper support for database operations

Dichotomy between general purpose processing requirements and database processing requirements

Open Systems and Interoperability

Distributed Multidatabase Systems

More probable scenario

Parallel issues