

Introduction to genomic epidemiology

Dr Alicia ArnottDeputy Head of Epidemiology, VIDRL

Introduction

- Whole genome sequencing (WGS) involves isolating and amplifying the entire genome of a pathogen
- Genomes obtained from different samples containing the same pathogen can be compared to answer questions
 - Are any of these samples novel/unexpected?
 - Were these infections likely acquired from the same source?
- Applying genomics to investigate pathogens is referred to as pathogen genomics
- The use of pathogen genomic data to determine the distribution and spread of an infectious disease in a specified population and the application of this information to control health problems is genomic epidemiology

Use of genomics for investigation of viral outbreaks over time

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

Pathogen genomics increasingly incorporated into public health response

Introduction

- Genomics was being utilised for the public health management of infectious diseases prior to the pandemic
- Pandemic highlighted the public health utility of pathogen genomics, increasing global implementation efforts

Post-pandemic pathogen prioritization

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

- The number of pathogens of public health concern is very large,
 while the resources for disease research and development is limited
- In 2022, the WHO employed a global panel of experts to identify which pathogen families/diseases pose the greatest public health risk due to their epidemic potential and/or whether there is no or insufficient countermeasures

HEALTH EMERGENCIES programme

FOR EPIDEMIC AND PANDEMIC RESEARCH PREPAREDNESS

JUNE 2024

Viruses pose greatest global pandemic threat

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

	RNA Viruses	DNA Viruses	Bacteria	Fungi	Protozoa ^a (Parasites)
Pandemic Potential	High	Moderate	Moderate, historically high	Low	Low
Features	Continual threat due to RNA genomes prone to mutation; fast viral reproduction and transmission; propensity to cause respiratory infections with airborne potential	Less prone to mutations than RNA viruses and transmission less likely to be airborne	Slower reproduction than viruses, less mutation prone, but able to transfer fitness genes; Threat now reduced due to fast detection and well- developed treatments	Nontraditional pandemic threat due to slow speed of spread and effective antifungals, though multidrug resistant organisms are increasing	Pandemic threat is low due to spread through vector, however malaria is estimated to contribute to half of all human deaths throughout history
Speed of Transmission	Fast	Fast-Medium	Medium	Slow	Slow-Medium
Mode of Transmission	Airborne Respiratory, Droplet, contact with infected fluids	Droplet, contact with infected fluids or materials (fabric)	Droplet (respiratory); Contact with infected humans or animals	Airborne spores; Contact with infected humans or animals; Environmental	Generally through an intermediate host (vector)
Detection Methods	PCR-based (hours) Select Antigens (hours-days)	PCR- based (hours) Antibodies (hours-days)	Bacterial culture (days), PCR-based (hours)	Fungal culture (days) Select antigen tests	Microscopy (hours) PCR-based (hours)
Countermeasures	Masks for respiratory transmission, antivirals, vaccines if available	Vaccines, standard precautions ^b	Vaccines, antibiotics, improved sanitation	Antifungals, control of environmental fungal threats	Barriers between hosts and humans, elimination of reservoirs, anti-parasitic medications
Examples of Pandemic Pathogens	SARS-CoV1 (SARS) SARS-CoV2 (COVID-19) Ebola (Hemorrhagic Fever) HIV (AIDS) Influenza (Spanish, Swine, Avian flus)	Variola major (Smallpox)	Yersinia pestis (Bubonic Plague) Vibrio cholera (cholera) Mycobacterium tuberculosis (TB)	No human pandemics caused by fungi; widespread fungal disease affecting bats, frogs; fungi posited to contribute to dinosaur die-off	Plasmodium spp (malaria) Trypanasoma lewisi (widespread death of the Christmas Island Rat)

Viruses pose greatest pandemic threat

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

- In 2022, the priority diseases were:
 - COVID-19
 - Crimean-Congo haemorrhagic fever
 - Ebola virus disease and Marburg virus disease
 - Lassa fever
 - Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS)
 - Nipah and henipaviral diseases
 - Rift Valley fever
 - Zika
 - "Disease X"*

	2017	2018	2024				
Family	Priority Pathogens	Priority Pathogens	PHEIC risk	Priority Pathogens	Prototype Pathogens		
Hepeviridae			Low		Paslahepevirus balayani genotype 3		
Herpesviridae			Low		balayarıı geriorype v		
Nairoviridae	Crimean Congo Haemorrhagic Fever	Crimean Congo Haemorrhagic Fever	High	Orthonairovirus haemorrhagiae	Orthonairovirus haemorrhagiae		
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H1	Alphainfluenzavirus Influenzae H1		
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H2			
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H3			
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H5	Alphainfluenzavirus Influenzae H5		
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H6			
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H7			
Orthomyxoviridae			High	Alphainfluenzavirus Influenzae H10			
Papillomaviridae			Low				
Paramyxoviridae	Nipah and related henipaviral diseases	Nipah and henipaviral diseases	High	Henipavirus nipahense	Henipavirus nipahense		
Parvoviridae			Low		Protoparvovirus carnivoran		
Peribunyaviridae			Low		Orthobunyavirus oropoucheense		
Phenuiviridae	Severe Fever with Thrombocytopenia Syndrome		High	Bandavirus dabieense	Bandavirus dabieense		
Phenuiviridae	Rift Valley Fever	Rift Valley Fever	High		Phlebovirus riftense		
Picobirnaviridae			Low		Orthopicobirnavirus hominis		
Picornaviridae			Medium	Enterovirus coxsackiepol			
Picornaviridae			Medium		Enterovirus alphacoxsackie 71		
Picornaviridae			Medium		Enterovirus deconjucti 68		
Pneumoviridae			Low-Medium		Metapneumovirus hominis		
Polyomaviridae			Low				
Poxviridae			High	Orthopoxvirus variola			
Poxviridae			High		Orthopoxvirus vaccinia		
Poxviridae			High	Orthopoxvirus monkeypox	Orthopoxvirus monkeypox		
Retroviridae			Medium	Lentivirus humimdef1	Lentivirus humimdef		
Rhabdoviridae			Low		Genus Vesiculovirus		
Sedoreoviridae			Low		Genus Rotavirus		
Spinareoviridae			Low		Orthoreovirus mammalis		
Togaviridae			High	Alphavirus chikungunya	Alphavirus chikungunya		
Togaviridae			High	Alphavirus venezuelan	Alphavirus venezuelan		
Pathogen X	Pathogen X	Pathogen X		Pathogen X			

 WGS can overcome important limitations of conventional epidemiological and laboratory methods:

Epidemiological

- Poor case recall
- Case lost to follow-up
- Deliberately misleading information
- Missing cases
- Confirm/refute tenuous epidemiological links

Laboratory

- Multiple tests required to answer different questions about the pathogen
- Often cannot definitively determine whether pathogens are identical

Added resolution provided by WGS

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

mutations

Genomic data can enable accurate interpretation of epidemiological data

Better understand epidemiology at the local level

- Investigate clusters
- Provide evidence confirming or refuting suspected transmission
- Identify undetected clusters

Monitor trends at the population/national level

- Monitor emergence of new strains
- Monitor trends after interventions (i.e. vaccines)

Epidemiological context is crucial to

Examples of how genomic data can be used to address specific public health objectives

Genome analysis Lineage/clade designation

Phylogenomics/ Trends: local clustering

Trends: global

High

Low

- Contexualising metadata
- Local context
- Translation

- Population overview
- International context

genomic epidemiological analysis

		Epi	Genomic
• Are cas	es linked/exposed to the same source?		
• Is the v	iral lineage/sub-clade novel?		
• Will the work?	e vaccines/diagnostic tests/antivirals still		
 Is the li disease 	neage/sub-clade associated with severe		

How genomic data can be used to address specific public health objectives: Example 1

Objectives:

- Are the circulating variants changing?
- Are specific variants associated with severe disease?

How genomic data can be used to address specific public health objectives: Example 2

Objectives:

Are the public health interventions working?

How genomic data can be used to address specific public health objectives: Example 3

Objectives:

- Are all outbreak cases carrying the same variant?
- Have we had multiple or a single incursion?

So how do we combine genomic and epidemiological data?

Generating and obtaining data for reporting: epidemiological data

- Necessary for context
- Collected by local/state/national public health departments/stakeholders
- Held in external databases
- Typically demographic details and risk factors specific for the pathogen:
 - Travel history
 - Vaccination status
 - Exposure history: food/contact with known cases

Epidemiological data example: Victoria

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

- The availability of detailed epidemiological data depends on the pathogen
- High consequence pathogens:
 - Jurisdictional health departments/PHUs investigate and perform public health follow up
 - · Case interviews, sampling, collation of relevant clinical data
- Seasonal/high burden pathogens
 - Follow-up and investigation is not typically performed unless outbreak occurs in specific settings/unusual clinical presentation
- Targeted surveillance is performed for some high burden pathogens, i.e. influenza and FluCAN, resulting in collection of detailed epidemiological data
 - May not be representative of general population

- Anthrax
- Botulism
- Candida auris
- Cholera
- Diphtheria
- Food-borne and water-borne illness (two or more related cases)
- Haemophilus influenza, type B (meningitis, epiglottitis, other invasive infections)
- Hepatitis A
- Japanese encephalitis

- Legionellosis
- Listeriosis
- Measles
- Meningo coccal infection (invasive)
- Middle East Respiratory Syndrome coronavirus (MERS-CoV)
- Murray Valley encephalitis (MVE) virus infection
- Novel coronavirus 2019 (2019nCoV)
- Paratyphoid

- Plague
- Poliovirus infection
- Rabies
- Severe Acute Respiratory Syndrome (SARS)
- Smallpox
- Tularaemia
- Typhoid
- Viral haemorrhagic fevers
- Yellow fever

Generating and obtaining data for reporting: genomic data

- Generated from case sample by a public health laboratory
- Held in internal databases/servers
- Output is specific for pathogen of interest:
 - Lineage, clade, sub-clade
- Often analyzed in context of international data for genomic context, especially if emergent/non-endemic pathogen

Combining genomic and epidemiological

(deidentified/secure file share), or accessed directly (server)

A joint venture between The University of Melbourne and The Royal Melbourne Hospi

data at VIDRL

Positive sample detected at primary laboratory Weekly/as needed Sample transferred to meetings between PH stakeholders and VIDRL VIDRL for WGS Reporting can be verbal or via to discuss results email if urgent, otherwise typically a written report is generated and submitted Speed of this and subsequent Genomic/epi data typically Synthesis of genomic and Samples undergoes WGS, steps depends on urgency of matched on sample accession epidemiological data to data QC and analysis number (held by both sites). generate result and report results Data presented in format relevant for pathogen/resolution required Epidemiological data for case requested from DH Data are requested and shared

Combining genomic and epidemiological data at a jurisdictional PHL

A joint venture between The University of Melbourne and The Royal Melbourne Hospit

Combining genomic and epidemiological data: example SARS-CoV-2

Lab ID	DH ID	Accession #	Date of collection	Date of birth	Name	Lineage	Collapsed lineage
VIDRL-XXX	DH-XXX	12345	01/01/2024	30/06/1972	Mary Smith	JN.2.3	JN.1
VIDRL-XXX	DH-XXX	12346	07/01/2024	13/04/1999	John Green	JN.3.4.5	JN.1
VIDRL-XXX	DH-XXX	12347	14/01/2024	20/12/2001	Nancy Blue	KP.2.7	KP.2

- Additional epidemiological data often included:
 - Case address/postcode, relevant exposure/travel information
- Additional genomic data often included:
 - WGS QC results (i.e. pass/fail, coverage), date of sequencing, genomic cluster membership (if relevant)

Reporting formats

A joint venture between The University of Melbourne and The Royal Melbourne Hospita

Lab ID	DH ID	Accession #	Date of collection	Date of birth	Collapsed lineage
VIDRL-XXX	DH-XXX	12345	01/01/2024	30/06/1972	JN.1
VIDRL-XXX	DH-XXX	12346	07/01/2024	13/04/1999	JN.1
VIDRL-XXX	DH-XXX	12347	14/01/2024	20/12/2001	KP.2

- Urgent reports typically communicated by supervising pathologist
- Written reports must be approved by supervising pathologist

The type of analyses and who receives the report are context dependent

 Resolution of analyses included in report are determined by the public health objectives of the analysis

- Who receives the report is often determined by the situational context:
 - Local DH/LPHU
 - Central DH
 - Outbreak investigation requested by PH/clinical stakeholder
 - Another jurisdictional PHL
 - National surveillance network (i.e. OzFoodNet, FluCAN)
 - Commonwealth DH
 - International health agency (i.e. WHO)

Limitations/considerations

Limitations of WGS: local and global

- Directionality of transmission
- Sampling bias
 - Locally
 - Globally
- Global 'blindspots'
- Sample quality/availability
- Speed: timeliness essential
- Reduced utility in the absence of epidemiological data

A joint venture between The University of Melbourne and The Royal Melbourne Hospital

Inzaule et al., Lancet Infect Dis: vol 21, February 2021

Sampling bias and the importance of metadata

- Sampling bias occurs when the samples collected for sequencing are not representative of the population under investigation:
 - Globally/locally:
 - Geographic areas or populations not represented in sequencing databases
 - Unclear how samples were collected (i.e. outbreak investigation or routine surveillance)
 - Targeted sample collection occurred (not generalizable)
 - Representative sampling occurred (cannot answer specific questions about infection, such as disease severity)
- Sampling bias can affect phylogenetic analysis and interpretation

Sampling bias: impact on interpretation

of genomic data

Time

All cases in a population over time

Genomes only available from some cases

Sampling bias: impact on interpretation of genomic data

Similarity of genomes can be compared

Genomes are represented in a phylogenomic tree

Relatedness between cases inferred

Sampling bias: impact on interpretation

A joint venture between The University of Melbourne and The Royal Melbourne Hospi

of genomic data

Genomes only available from some cases

Representativeness of sequenced samples can impact phylogenetic tree structure, impacting interpretation.

Limitations of genomic epidemiology: not all viral pathogen are the same

A joint venture between The University of Melbourne and The Royal Melbourne Hospit

One case = one distinct consensus

Multiple cases = one identical consensus (i.e. beginning explosive transmission)

One case > one distinct consensus (i.e. Mpox)

Key considerations in interpretation of genomic epidemiological data: resp. virus

One case = one distinct consensus

- Directly linking cases must be interpreted in epidemiological context
- Comprehensive global genomic surveillance and high geographical representation permits geographical source attribution and understanding of currently circulating lineages
- Genomic relatedness between cases can be attributed to direct link(s) in the context of robust epidemiological evidence
- A genomic threshold for relatedness between cases has been determined, thus genomic clustering can be performed

PATHOGEN GENOMICS

Key considerations in interpretation of genomic epidemiological data: emergent virus

Multiple cases = one identical consensus (i.e. beginning explosive transmission)

- Directly linking cases cannot be conducted using genomics alone and genomic data must be interpreted in epidemiological context
- Lack of global genomic surveillance and bias in geographical representation limits geographical source attribution and understanding of currently circulating lineages
- Genomic relatedness between cases should only be attributed to a common exposure(s) rather than direct link(s) in the absence of robust epidemiological evidence
- Within-host diversity: longitudinal sampling required to better understand
- A genomic threshold for relatedness between cases has not been determined.
 Genomic clustering may not be able to be performed

Key considerations in interpretation of complex genomic epidemiological data: Mpox

A joint venture between The University of Melbourne and The Royal Melbourne Hospit

Within-host diversity: sequence diversity between different bodily sites within the same host has been detected, potentially related to complexity of transmission

One case > one distinct consensus (i.e. Mpox)

Conclusions

- Epidemiological (public health and clinical data) are crucial for the accurate interpretation of viral genomic data
- Caveats of genomic and epidemiological data must be well understood to enable accurate interpretation of data
- Reporting must often be tailored to address specific public health objectives
- Genomic epidemiology is not pathogen agnostic

THANK YOU

alicia.arnott@unimelb.edu.au

