SMART INDIA HACKATHON 2024

Smart Drone System for Apple Orchards

- Problem Statement ID SIH1611
- Problem Statement Title- Drone-Based Intelligent
 Apple Orchard Management in Himachal Pradesh
- Theme- Agriculture, FoodTech & Rural Development
- PS Category- Hardware
- Team ID- 41
- Team Name (Registered on portal) Aikyam
 Innovators

Smart Drone System for Apple Orchards

Design a Smart Drone System to achieve the solution to the proposed problem

statement in the following ways -

- The proposed drone aims to use thermal imaging, multispectral imaging, multiple sensors and efficient flight control to achieve the given objectives.
- It aims to address the solution to the problem statement by-
 - Monitoring Plant Health
 - Using Deep Learning Models to Predict Yields
 - Using Variable Rate Technology [VRT] to spray fertilizers
- The proposed smart drone system aims to fill the implementation gap by using specific technology to achieve objectives, while proposing a significantly LOW-COST Indigenous Solution.

Full CAD Design

TECHNICAL APPROACH

Electronic Components

Component	Model	
Flight Controller	Pixhawk PX4	
GPS Module	Ublox NEO-M8N	
PDB	Matek PDB-XT90	
Multispectral Camera	Filters [NIR, Red, Red Edge, Green]	
Thermal Camera	Waveshare MLX90640	
RGB Camera	Raspberry Pi Camera Module 3 NoIR [5]	
Communication Module	RFM95 LoRa Module	
Microcontroller	Raspberry Pi 4/5	
Minor Sensors	DHT22, BMP280, MH-Z19, HC-SR04	
ESC	T Motor F60A	
Controller	Ground Station Interface	

Mechanical Components

Component	Model	
Spraying System	Tank Material - High Density Polyethylene [HDPE] Capacity - 10L Sprinkler TeeJet AIXR 11004-VP	
Frame	Material - Carbon Fiber or Aluminum Alloy Dimensions - 1000mm to 1200mm (Diagonal Motor-to-Motor)	
BLDC Motor	3508 700KV	
Propellers	Gemfan 15×6 [15 inch]	
Battery	Tattu 6S 22000mAh 22.2V 25C LiPo Battery Pack	

All Component Documentation

Flight Duration & Weight Documentation

Datasheet Documentation

Working Principle

Estimated Budget

We have prepared extensive documentation for each section of our project proposal, we request you to kindly click on the respective links and assess them.

FEASIBILITY AND VIABILITY

- Limitations:
- 1. Expensive Multispectral Cameras [3L+ INR]
- 2. Limited Range of inbuilt communication modules
- Solutions:
- Low-Cost DIY Spectral Band Cameras by using filters with RGB cameras
- i. NIR band [700-1000nm]
- ii. Red band [620-750nm]
- iii. Red Edge band [700-750nm]
- iv. Green band [500-600nm]
- 2. Using LoRa Modules for long range communication
- The proposed solution to the multispectral cameras reduces costs by 70-80% for multispectral imaging, while providing the same functionality.

Plant Health Parameters

Vegetation Index	Formula	Expresses	Required Spectral Bands
NDVI [Normalized Difference Vegetation Index]	(NIR - RED) / (NIR + RED)	Health and vigor of vegetation	NIR (700-1000 nm), RED (620-750 nm)
GNDVI [Green NDVI]	(NIR - GREEN) / (NIR + GREEN)	Green pigment content in vegetation	NIR (700-1000 nm), GREEN (500-600 nm)
CI [Chlorophyll Index]	(NIR - RED) / (NIR + RED - GREEN)	Chlorophyll content in vegetation	NIR (700-1000 nm), RED (620-750 nm), GREEN (500-600 nm)
LAI [Leaf Area Index]	In(NIR / RED)	Leaf area per unit of ground surface	NIR (700-1000 nm), RED (620-750 nm)
NDWI [ND Water Index]	(GREEN - NIR) / (GREEN + NIR)	Water content in vegetation	GREEN (500-600 nm), NIR (700-1000 nm)
RE NDVI [Red Edge NDVI]	(NIR - RE) / (NIR + RE)	Chlorophyll content and plant stress	NIR (700-1000 nm), RE (700-750 nm)

Plant Health Parameters Documentation

Cost Analysis of Multispectral Cameras

IMPACT AND BENEFITS

BRIEF ELECTRONIC CIRCUIT DIAGRAM

- Early detection of plant disease. Crop management & Yield prediction leads to better produce, ultimately leading to higher income.
- Future Scope Autonomous Navigation
- Novelty Low-cost solution for expensive multispectral cameras, reducing overall drone cost by 70% compared to commercial drones in India.

Deep Learning Model Documentation

Detailed Electronic Circuit Diagram

Cost-Feature-Benefit Analysis

RESEARCH AND REFERENCES

- Himachal Pradesh Apple Orchard Details
- Working Principle
- Estimated Budget
- Electronic Circuit Diagram
- Plant Health Parameters
- Flight Duration & Weight Calculation Documentation
- Cost-Feature-Benefit Detailed Analysis
- Literature
 - AgrOne Drone Design
 - Application of Drone in Agriculture
 - Design and Development of a Drone for Spraying Pesticides, Fertilizers and Disinfectants
 - Custom and Design of Agri Drone
- All Component Documentation
- Datasheet Documentation
- Deep Learning Model Documentation
- Electronic Component Documentation
- Mechanical Component Documentation
- Expected Progress Timeline
- Multispectral Camera Solution Cost Analysis