Übungsblatt 1 Aufgabe A – Bool'sche Algebra

1. In der Schaltalgebra gelten die folgenden alternativen Absorptionsgesetze:

$$(x \lor \neg y) \land y = x \land y$$
$$(x \land \neg y) \lor y = x \lor y$$

a) Beweisen sie die Behauptung, indem sie die nachstehenden Wahrheitstabellen ergänzen:

x	y	$\neg x$	$\neg y$	$x \vee \neg y$	$x \land \neg y$	$(x \lor \neg y) \land y$	$x \wedge y$	$(x \land \neg y) \lor y$	$x \lor y$
0	0								
0	1								
1	0								
1	1								

- b) Führen sie den Beweis erneut, diesmal aber auf algebraische Weise (d.h. durch Umformungen).
- c) Übertragen sie die Gesetze in die Sprache der Mengenalgebra. Sind sie dort auch gültig?
- 2. Zeigen Sie, dass die booleschen Ausdrücke

$$\Phi = x \wedge y \vee \neg ((x \vee \neg y) \wedge y)$$

$$\Psi = \neg (x \wedge y) \vee x \vee y$$

Tautologien sind, indem sie

- a) für beide Funktionen eine Wahrheitstafel aufstellen,
- b) den Beweis durch algebraische Umformung führen.
- 3. Bildet das Tripel $(\mathcal{V}, \cdot, +)$ mit

$$\mathcal{V} := \{1, 2, 3, 6\}$$

 $\cdot := kqV$ (kleinstes gemeinsames Vielfaches)

 $+ := ggT(gr\"{o}\beta ter gemeinsamer Teiler)$

eine boolesche Algebra?

- 4. Vereinfachen sie die folgenden bool'schen Ausdrücke so weit wie möglich durch die Anwendung der algebraischen Umformungsregeln.
 - a) $x_1\overline{x_2x_3x_4} \lor x_1x_2\overline{x_3x_4} \lor x_1x_2\overline{x_3}x_4 \lor x_1\overline{x_2x_3}x_4 \lor \overline{x_1}x_2\overline{x_3}x_4 \lor x_1x_2x_3\overline{x_4} \lor \overline{x_1}x_2x_3\overline{x_4}$
- 5. Zeigen oder widerlegen sie die folgende Beziehung zwischen den Operatoren \in und #:

- a) $x \Leftrightarrow y \Leftrightarrow z = x \not\Leftrightarrow y \not\Leftrightarrow z$
- 6. Zeigen sie, dass die folgenden Varianten des Distributivgesetzes für \Leftrightarrow und $\neg \Leftrightarrow$ falsch sind:
 - b) $(x \lor z) \neg \Leftrightarrow (y \lor z) = (x \neg \Leftrightarrow y) \lor z$
 - c) $(x \land z) \Leftrightarrow (y \land z) = (x \Leftrightarrow y) \land z$
- 7. Nachstehend sind die erweiterten De Morgan'schen Regeln aufgeführt.
 - a) $\overline{x_1 \wedge x_2 \wedge \ldots \wedge x_n} = \overline{x_1} \vee \overline{x_2} \vee \ldots \vee \overline{x_n}$
 - b) $\overline{x_1 \vee x_2 \vee \ldots \vee x_n} = \overline{x_1} \wedge \overline{x_2} \wedge \ldots \wedge \overline{x_n}$
- 8. Gegeben seien die folgenden drei bool'schen Funktionen:
 - a) $\varphi_1 := (x \Rightarrow y) \Rightarrow z$
 - b) $\varphi_2 := x \Rightarrow (y \Rightarrow z)$
 - c) $\varphi_3 := \overline{x \wedge y} \vee \overline{x \wedge \overline{z}}$

Stellen sie φ_1 unter ausschließlicher Verwendung der NOR-Funktion, φ_2 unter ausschließlicher Verwendung der NAND-Funktion und φ_3 unter ausschließlicher Verwendung der Implikation dar.

- 9. Zeigen sie unter Anwendung der Regeln der bool'schen Algebra, dass mit einer Kombination von \uparrow (= NAND) die folgende **einstelligen** Funktionen dargestellt werden können:
 - a) ¬
 - b) id()
 - c) ⊤ (Tautologie)
 - d) \perp (Kontradiktion)
- 10. Zeigen sie, dass durch Kombination von ↑ die folgenden **zweistelligen** Wahrheitsfunktionen dargestellt werden können.
 - a) & (AND)
 - b) ∨
 - c) \(\psi \)
 - d) ⊕
- 11. Zeigen sie, dass
 - a) & (AND)
 - b) ∨
 - c) \oplus

nicht universell ist. D.h. es gibt wenigstens eine bool'sche Funktion, die durch keine Kombination allein der jeweiligen Operationen dargestellt werden kann.