Feature_Selection(4)

데이터분석전처리적용반

Boruta algorithm

- 1. 모든 변수를 복사 → shadow features or permuted copies.
 - 원본 데이터의 독립 변수가 5개 미만인 경우 기존 변수를 복사본으로 만들어 5개 이상 만듦.
- 2. 복사한 변수를 타겟 변수에 uncorrelated 하게 만들기 위해 랜덤하게 섞고 원 자료와 결합.
- 3. 결합된 데이터와 원 데이터에 대해 랜덤포레스트 모형을 생성하고, Z-score를 계산.
 - [(각 트리에 대한 정확도 손실값 전체 트리의 정확도 손실의 평균) / 정확도 손실 표준편차]
- 4. shadow 변수들 중 가장 높은 Z-score를 찾는다. (MSZA, Max Z-score among shadow attributes)
- 5. 원 자료에 대한 Z-score > MSZA인 경우 Hit +1 (이는 MZSA보다 클 때 중요한 변수를 표시하는 수단)
 - 통계적으로 유의수준에서 Z-score < MSZA인 경우, 해당 피쳐를 중요하지 않은 피쳐로 드랍한다.
 - 통계적으로 유의수준에서 Z-score > MSZA인 경우, 해당 피쳐를 중요한 변수로 둔다.
- 6. 위의 과정을 랜덤포레스트가 수행되는 횟수만큼 또는 모든 변수들이 중요한 변수와 중요하지 않은 변수로 tagged 될 때까지 반복.

V1	V2	V3	V4
10	100	52.3	1
20	99	36.3	0
10	96	28.9	1
15	99	44.4	0

V'1	V'2	V'3	V'4
20	99	36.3	1
15	100	28.9	1
10	96	52.3	0
10	99	44.4	0

원래 데이터

쉐도우 변수 데이터

랜덤 포레스트

원래 변수

	V1	V2	V3	V4
중요도	0.2	0.5	0.01	0.01

쉐도우 변수

	V'1	V'2	V'3	V'4
중요도	0.02	0.03	0.04	0.01

他介于强计时间时行时 叶分型医院的分别强烈时告 是时时到了强烈时令 내 보다 낮은 것들은 뭐야? 그건지도 16수라는 라이틀을 걸고 있는가야=?

랜덤 포레스트

나무 1

나무 2

나무 100

			_ :
변수	선택	중요도	
V1	0	1.3	
V2	Х	-	
V'1	0	0.6	
V'2	0	0.2	

변수	선택	중요도
V1	0	1.1
V2	0	2.0
V'1	Х	-
V'2	Х	-

변수	선택	중요도		
V1	0	0.9		
V2	0	1.6		
V'1	Х	-		
V'2	0	0.1		

변수	중요도 평균	중요도 표준편차	Z-score
V1	1.6	0.6	2.67
V2	1.5	0.9	1.67
V'1	0.3	0.9	0.33
V'2	0.25	0.1	2.5

변수	중요도 평균	중요도 표준편차	Z-score
V1	1.6	0.6	2.67
V2	1.5	0.9	1.67
V'1	0.3	0.9	0.33
V'2	0.25	0.1	2.5

V1은 V'2보다 Z-score가 크므로 중 요하다는 뜻으로 Hit 표시

이 과정을 반복한다

스텝	V1	V2
1	Hit	Х
2	Hit	Hit
3	X	X
50	Hit	Х
Hit 합계	40	12
		·

SHAP (SHapley Additive exPlanations)

하나의 특성에 대한 **중요도**를 알기 위해 → 여러 특성들의 **조합**을 구성하고 → 해당 특성의 **유무**에 따른 **평균적인 변화**를 통해 값을 계산합니다.

SHAP

SHAP(Shapley Additive exPlanations)는 모델 예측을 해석하는 데 사용되는 방법론입니다. SHAP는 게임 이론의 샤플리 값(Shapley values)을 기반으로 하여, 각 피처(feature)가 모델 예측에 얼마나 기여하는지를 정량적으로 평가합니다. 이는 모델의 "블랙 박스" 특성을 줄이고, 예측 결과를 이해하는 데 도움을 줍니다.

1. 모든 가능한 피처 조합 생성:

- 피처의 모든 가능한 순열을 고려합니다.
- 2. 기여도 계산:
 - 각 피처가 추가될 때마다 기여도를 계산합니다.
 - 기여도는 피처가 추가된 후와 추가되기 전의 모델 예측 차이로 정의됩니다.
- 3. 평균 기여도 계산:
 - 각 피처의 기여도를 모든 가능한 순열에 대해 평균화하여 샤플리 값을 계산합니다.

샤플리 값 수식

샤플리 값 ϕ_i 는 다음과 같이 계산됩니다:

$$\phi_i = \sum_{S \subseteq N \setminus \{i\}} rac{|S| ! \cdot (|N| - |S| - 1)!}{|N|!} \cdot (v(S \cup \{i\}) - v(S))$$

여기서:

- N은 모든 피처의 집합입니다.
- S는 피처 i를 제외한 피처들의 부분집합입니다.
- ullet v(S)는 부분집합 S에 대한 모델 예측 값입니다.
- $v(S \cup \{i\})$ 는 부분집합 S에 피처 i를 추가한 후의 모델 예측 값입니다.
- ullet |S|는 부분집합 S의 크기입니다.

Additive Feature Attribution Method

Additive Feature Attribution Methods have an explanation model that is a linear function of binary variables:

$$g(z') = \phi_0 + \sum_{i=1}^{M} \phi_i z_i',$$

where $z' \in \{0,1\}^M$, M is the number of simplified input features, and $\phi_i \in \mathbb{R}$.

- ullet g : explanation model , $g(z')pprox f(h_x(z'))$
- f : original prediction model
- ullet z' : simplified input , z'pprox x'
- h_x : mapping function , $x=h_x(x')$
- ϕ_i : attribution value

Property 1 (Local accuracy)

$$f(x) = g(x') = \phi_0 + \sum_{i=1}^{M} \phi_i x_i'$$
 (5)

The explanation model g(x') matches the original model f(x) when $x = h_x(x')$, where $\phi_0 = f(h_x(\mathbf{0}))$ represents the model output with all simplified inputs toggled off (i.e. missing).

Property 2 (Missingness)

$$x_i' = 0 \implies \phi_i = 0$$
 (6)

Missingness constrains features where $x'_i = 0$ to have no attributed impact.

Property 3 (Consistency) Let $f_x(z') = f(h_x(z'))$ and $z' \setminus i$ denote setting $z'_i = 0$. For any two models f and f', if

$$f'_x(z') - f'_x(z' \setminus i) \ge f_x(z') - f_x(z' \setminus i) \tag{7}$$

for all inputs $z' \in \{0,1\}^M$, then $\phi_i(f',x) \ge \phi_i(f,x)$.

Theorem 1 Only one possible explanation model g follows Definition 1 and satisfies Properties 1, 2, and 3:

$$\phi_i(f, x) = \sum_{z' \subseteq x'} \frac{|z'|!(M - |z'| - 1)!}{M!} \left[f_x(z') - f_x(z' \setminus i) \right] \tag{8}$$

where |z'| is the number of non-zero entries in z', and $z' \subseteq x'$ represents all z' vectors where the non-zero entries are a subset of the non-zero entries in x'.

LIME (Local Interpretable Model-agnostic Explanation)

