Si risponda alle seguenti domande.

1. Si consideri il modello lineare semplice con intercetta e una covariata x_i . I dati sono

$$\{(y_i, x_i)_{i=1}^4\} = \{(1.4, 0), (1.4, -2), (0.8, 0), (0.4, 2)\}$$

Riportare il valore di λ che corrisponde alla stima ridge $\hat{\beta}_{\lambda} = (1, -1/24)^t$ senza penalizzare l'intercetta.

2. Calcolare la stima ridge $\hat{\beta}(\lambda) = (\hat{\beta}_1(\lambda), \hat{\beta}_2(\lambda))^t$ con $\lambda = 0$ per i seguenti dati con n = 1 e p = 2:

$$X = [0.3, 0.7], y = [0.2], X^t X = \begin{bmatrix} 0.09 & -0.21 \\ -0.21 & 0.49 \end{bmatrix}, X^t y = \begin{bmatrix} 0.06 \\ -0.14 \end{bmatrix}$$

Riportare il valore $\hat{\beta}_2(\lambda)$.

1

$$X = \begin{bmatrix} -1 & 2\\ 0 & 1\\ 2 & -1\\ 1 & 0 \end{bmatrix}$$

Calcolare $Var(\hat{\beta}_2(\lambda))$ con λ pari al valore trovato al primo punto dell'esercizio, ipotizzando $\sigma^2 = 40$.

Ridge regression

Exercises

1 Lecture notes (van Wieringen, 2015)

1.12 Exercises

Question 1.1

Consider the simple linear regression model $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$. The data on the covariate and response are: $\mathbf{X}^\top = (X_1, X_2, \dots, X_8)^\top = (-2, -1, -1, -1, 0, 1, 2, 2)^\top$ and $\mathbf{Y}^\top = (Y_1, Y_2, \dots, Y_8)^\top = (35, 40, 36, 38, 40, 43, 45, 43)^\top$, with corresponding elements in the same order.

- a) Find the ridge regression estimator for the data above for a general value of λ .
- b) Evaluate the fit, i.e. $\hat{Y}_i(\lambda)$ for $\lambda = 10$. Would you judge the fit as good? If not, what is the most striking feature that you find unsatisfactory?
- c) Now zero center the covariate and response data, denote it by \tilde{X}_i and \tilde{Y}_i , and evaluate the ridge estimator of $\tilde{Y}_i = \beta_1 \tilde{X}_i + \varepsilon_i$ at $\lambda = 4$. Verify that in terms of original data the resulting predictor now is: $\hat{Y}_i(\lambda) = 40 + 1.75X$.

Note that the employed estimate in the predictor found in part c) is effectively a combination of a maximum likelihood and ridge regression one for intercept and slope, respectively. Put differently, only the slope has been regularized/penalized.

Ouestion 1.2

Consider the simple linear regression model $Y_i = \beta_0 + X_i \beta + \varepsilon_i$ for $i = 1, \ldots, n$ and with $\varepsilon_i \sim_{i.i.d.} \mathcal{N}(0, \sigma^2)$. The model comprises a single covariate and an intercept. Response and covariate data are: $\{(y_i, x_i)\}_{i=1}^4 = \{(1.4, 0.0), (1.4, -2.0), (0.8, 0.0), (0.4, 2.0)\}$. Find the value of λ that yields the ridge regression estimate (with an unregularized/unpenalized intercept as is done in part c) of Question [1.1] equal to $(1, -\frac{1}{8})^{\top}$.

Question 1.3

Plot the regularization path of the ridge regression estimator over the range $\lambda \in (0, 20.000]$ using the data of Example [1.2]

Question 1.4 ‡

Show that the ridge regression estimator can be obtained by ordinary least squares regression on an augmented data set. Hereto augment the matrix \mathbf{X} with p additional rows $\sqrt{\lambda}\mathbf{I}_{pp}$, and augment the response vector \mathbf{Y} with p

Question 1.0

The coefficients β of a linear regression model, $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, are estimated by $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$. The associated fitted values then given by $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y} = \mathbf{H}\mathbf{Y}$, where $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ referred to as the hat matrix. The hat matrix \mathbf{H} is a projection matrix as it satisfies $\mathbf{H} = \mathbf{H}^2$. Hence, linear regression projects the response \mathbf{Y} onto the vector space spanned by the columns of \mathbf{Y} . Consequently, the residuals $\hat{\boldsymbol{\varepsilon}}$ and $\hat{\mathbf{Y}}$ are orthogonal. Now consider the ridge estimator of the regression coefficients: $\hat{\boldsymbol{\beta}}(\lambda) = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{pp})^{-1}\mathbf{X}^{\top}\mathbf{Y}$. Let $\hat{\mathbf{Y}}(\lambda) = \mathbf{X}\hat{\boldsymbol{\beta}}(\lambda)$ be the vector of associated fitted values.

- a) Show that the ridge hat matrix $\mathbf{H}(\lambda) = \mathbf{X}[\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{pp}]^{-1}\mathbf{X}^{\top}$, associated with ridge regression, is not a projection matrix (for any $\lambda > 0$), i.e. $\mathbf{H}(\lambda) \neq [\mathbf{H}(\lambda)]^2$.
- b) Show that for any $\lambda>0$ the 'ridge fit' $\widehat{\mathbf{Y}}(\lambda)$ is not orthogonal to the associated 'ridge residuals' $\hat{\varepsilon}(\lambda)$, defined as $\varepsilon(\lambda)=\mathbf{Y}-\mathbf{X}\hat{\boldsymbol{\beta}}(\lambda)$.

[†]This exercise is inspired by one from Draper and Smith (1998)

Consider the standard linear regression model $Y_i = \mathbf{X}_{i,*}\beta + \varepsilon_i$ for $i = 1, \dots, n$ and with the ε_i i.i.d. normally distributed with zero mean and a common but unknown variance. Information on the response, design matrix and relevant summary statistics are:

$$\mathbf{X}^\top = \left(\begin{array}{ccc} 2 & 1 & -2 \end{array}\right),\, \mathbf{Y}^\top = \left(\begin{array}{ccc} -1 & -1 & 1 \end{array}\right),\, \mathbf{X}^\top \mathbf{X} = \left(\begin{array}{ccc} 9 \end{array}\right),\, \text{and}\,\, \mathbf{X}^\top \mathbf{Y} = \left(\begin{array}{ccc} -5 \end{array}\right),$$

from which the sample size and dimension of the covariate space are immediate. a) Evaluate the ridge regression estimator $\hat{\beta}(\lambda)$ with $\lambda=1$.

- b) Evaluate the variance of the ridge regression estimator, i.e. $\widehat{\text{Var}}[\hat{\beta}(\lambda)]$, for $\lambda = 1$. In this the error variance σ^2 is estimated by $n^{-1} \| \mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}}(\lambda) \|_2^2$.
- c) Recall that the ridge regression estimator $\hat{\beta}(\lambda)$ is normally distributed. Consider the interval

$$\mathcal{C} = (\hat{\beta}(\lambda) - 2\{\widehat{\operatorname{Var}}[\hat{\beta}(\lambda)]\}^{1/2}, \, \hat{\beta}(\lambda) + 2\{\widehat{\operatorname{Var}}[\hat{\beta}(\lambda)]\}^{1/2}).$$

Is this a genuine (approximate) 95% confidence interval for β ? If so, motivate. If not, what is the interpretation of this interval?