Level Structures and Morava E-theory

Zhen Huan¹ Nathaniel Stapleton²

¹Center for Mathematical Sciences Huazhong University of Science and Technology

> ²Department of Mathematics University of Kentucky

Beijing, December 3, 2019

- Morava E-theory: introduction and construction;
- Generalized Morava E-theory
- Ingredients:
 - Level structure,
 - transfer ideal.
 - Hopkins-Kuhn-Ravenel character theory;
- The main theorem and the proof;
- Level structure and subgroup.

- Morava E-theory: introduction and construction;
- Generalized Morava E-theory;
- Ingredients:
 - Level structure,
 - transfer ideal.
 - Hopkins-Kuhn-Ravenel character theory;
- The main theorem and the proof;
- Level structure and subgroup.

- Morava E-theory: introduction and construction;
- Generalized Morava E-theory;
- Ingredients:
 - Level structure,
 - transfer ideal,
 - Hopkins-Kuhn-Ravenel character theory;
- The main theorem and the proof;
- Level structure and subgroup.

- Morava E-theory: introduction and construction;
- Generalized Morava E-theory;
- Ingredients:
 - Level structure,
 - transfer ideal,
 - Hopkins-Kuhn-Ravenel character theory;
- The main theorem and the proof;
- Level structure and subgroup.

- Morava E-theory: introduction and construction;
- Generalized Morava E-theory;
- Ingredients:
 - Level structure,
 - transfer ideal,
 - Hopkins-Kuhn-Ravenel character theory;
- The main theorem and the proof;
- Level structure and subgroup.

- "designer" cohomology theories: manufactured using homotopy theory, not coming from "nature".
- some arise as completions of "natural" theories, K_p^{\wedge} , $Ell_{s.-s.point}^{\wedge}$.
- have rich theory of power operations(Ando, Hopkins, Strickland, Rezk, Stapleton, Zhu...)

Fix a formal group G_0 over a perfect field k of characteristic p of height n

Morava 1978; Goerss-Hopkins-Miller 1993-2004

- is complex orientable; formal group $\operatorname{Spf}(E^0_{G_0}\mathbb{C}P^\infty)=$ universal deformation of G_0 in sense of Lubin and Tate.
- is represented by a structured commutative ring spectrum

- "designer" cohomology theories: manufactured using homotopy theory, not coming from "nature".
- some arise as completions of "natural" theories, K_p^{\wedge} , $Ell_{s,-s,point}^{\wedge}$.
- have rich theory of power operations(Ando, Hopkins, Strickland, Rezk, Stapleton, Zhu...)

Fix a formal group G_0 over a perfect field k of characteristic p of height n

Morava 1978; Goerss-Hopkins-Miller 1993-2004

- is complex orientable; formal group $\operatorname{Spf}(E^0_{G_0}\mathbb{C}P^\infty)=$ universal deformation of G_0 in sense of Lubin and Tate.
- is represented by a structured commutative ring spectrum

- "designer" cohomology theories: manufactured using homotopy theory, not coming from "nature".
- some arise as completions of "natural" theories, K_p^{\wedge} , $Ell_{s.-s.point}^{\wedge}$.
- have rich theory of power operations(Ando, Hopkins, Strickland, Rezk, Stapleton, Zhu...)

Fix a formal group G_0 over a perfect field k of characteristic p of height n

Morava 1978; Goerss-Hopkins-Miller 1993-2004

- is complex orientable; formal group $\operatorname{Spf}(E^0_{G_0}\mathbb{C}P^\infty)=$ universal deformation of G_0 in sense of Lubin and Tate.
- is represented by a structured commutative ring spectrum

- "designer" cohomology theories: manufactured using homotopy theory, not coming from "nature".
- some arise as completions of "natural" theories, K_p^{\wedge} , $Ell_{s.-s.point}^{\wedge}$.
- have rich theory of power operations(Ando, Hopkins, Strickland, Rezk, Stapleton, Zhu...)

Fix a formal group G_0 over a perfect field k of characteristic p of height n

Morava 1978; Goerss-Hopkins-Miller 1993-2004

- is complex orientable; formal group $\operatorname{Spf}(E^0_{G_0}\mathbb{C}P^\infty)=$ universal deformation of G_0 in sense of Lubin and Tate.
- is represented by a structured commutative ring spectrum

- "designer" cohomology theories: manufactured using homotopy theory, not coming from "nature".
- some arise as completions of "natural" theories, K_p^{\wedge} , $Ell_{s.-s.point}^{\wedge}$.
- have rich theory of power operations(Ando, Hopkins, Strickland, Rezk, Stapleton, Zhu...)

Fix a formal group G_0 over a perfect field k of characteristic p of height n

Morava 1978; Goerss-Hopkins-Miller 1993-2004

- is complex orientable; formal group $\operatorname{Spf}(E^0_{G_0}\mathbb{C}P^\infty)=$ universal deformation of G_0 in sense of Lubin and Tate.
- is represented by a structured commutative ring spectrum

- "designer" cohomology theories: manufactured using homotopy theory, not coming from "nature".
- some arise as completions of "natural" theories, K_p^{\wedge} , $Ell_{s.-s.point}^{\wedge}$.
- have rich theory of power operations(Ando, Hopkins, Strickland, Rezk, Stapleton, Zhu...)

Fix a formal group G_0 over a perfect field k of characteristic p of height n.

Morava 1978; Goerss-Hopkins-Miller 1993-2004

- is complex orientable; formal group $\operatorname{Spf}(E^0_{G_0}\mathbb{C}P^\infty)=$ universal deformation of G_0 in sense of Lubin and Tate.
- is represented by a structured commutative ring spectrum

- "designer" cohomology theories: manufactured using homotopy theory, not coming from "nature".
- some arise as completions of "natural" theories, K_p^{\wedge} , $Ell_{s.-s.point}^{\wedge}$.
- have rich theory of power operations(Ando, Hopkins, Strickland, Rezk, Stapleton, Zhu...)

Fix a formal group G_0 over a perfect field k of characteristic p of height n.

Morava 1978; Goerss-Hopkins-Miller 1993-2004

- is complex orientable; formal group $\operatorname{Spf}(E_{G_0}^0\mathbb{C}P^\infty)=$ universal deformation of G_0 in sense of Lubin and Tate.
- is represented by a structured commutative ring spectrum

- "designer" cohomology theories: manufactured using homotopy theory, not coming from "nature".
- some arise as completions of "natural" theories, K_p^{\wedge} , $Ell_{s.-s.point}^{\wedge}$.
- have rich theory of power operations(Ando, Hopkins, Strickland, Rezk, Stapleton, Zhu...)

Fix a formal group G_0 over a perfect field k of characteristic p of height n.

Morava 1978; Goerss-Hopkins-Miller 1993-2004

- is complex orientable; formal group $\operatorname{Spf}(E_{G_0}^0\mathbb{C}P^\infty)=$ universal deformation of G_0 in sense of Lubin and Tate.
- is represented by a structured commutative ring spectrum

- "designer" cohomology theories: manufactured using homotopy theory, not coming from "nature".
- some arise as completions of "natural" theories, K_p^{\wedge} , $Ell_{s.-s.point}^{\wedge}$.
- have rich theory of power operations(Ando, Hopkins, Strickland, Rezk, Stapleton, Zhu...)

Fix a formal group G_0 over a perfect field k of characteristic p of height n.

Morava 1978; Goerss-Hopkins-Miller 1993-2004

- is complex orientable; formal group $\operatorname{Spf}(E_{G_0}^0\mathbb{C}P^\infty)=$ universal deformation of G_0 in sense of Lubin and Tate.
- is represented by a structured commutative ring spectrum

Formal group law (commutative, 1-dimensional)

 $S(x,y) \in R[x,y]$ satisfying axioms for abelian group:

$$S(x,0) = x = S(0,x),$$

 $S(x,y) = S(y,x),$
 $S(S(x,y),z) = S(x,S(y,z)).$

Complex oriented cohomology theory

Ring-valued cohomology theory E such that $E^*(\mathbb{C}P^{\infty}) = E^*[x]$, and x restricts to fundamental class of $\mathbb{C}P^1 = S^2$.

Examples: $H^*(-,\mathbb{Z})$, K—theory, EII, cobordism, Morava E-theories.

complex oriented cohomology theories

1st Chern class
formal groups

Formal group law (commutative, 1-dimensional)

 $S(x,y) \in R[x,y]$ satisfying axioms for abelian group:

$$S(x,0) = x = S(0,x),$$

 $S(x,y) = S(y,x),$
 $S(S(x,y),z) = S(x,S(y,z)).$

Complex oriented cohomology theory

Ring-valued cohomology theory E such that $E^*(\mathbb{C}P^{\infty}) = E^*[x]$, and x restricts to fundamental class of $\mathbb{C}P^1 = S^2$.

Examples: $H^*(-,\mathbb{Z})$, K-theory, EII, cobordism, Morava E-theories.

complex oriented cohomology theories

1st Chern class

Formal group law (commutative, 1-dimensional)

 $S(x,y) \in R[x,y]$ satisfying axioms for abelian group:

$$S(x,0) = x = S(0,x),$$

 $S(x,y) = S(y,x),$
 $S(S(x,y),z) = S(x,S(y,z)).$

Complex oriented cohomology theory

Ring-valued cohomology theory E such that $E^*(\mathbb{C}P^{\infty}) = E^*[x]$, and x restricts to fundamental class of $\mathbb{C}P^1 = S^2$.

Examples: $H^*(-,\mathbb{Z})$, K-theory, Ell, cobordism, Morava E-theories.

complex oriented cohomology theories formal groups

Formal group law (commutative, 1-dimensional)

 $S(x,y) \in R[x,y]$ satisfying axioms for abelian group:

$$S(x,0) = x = S(0,x),$$

 $S(x,y) = S(y,x),$
 $S(S(x,y),z) = S(x,S(y,z)).$

Complex oriented cohomology theory

Ring-valued cohomology theory E such that $E^*(\mathbb{C}P^{\infty}) = E^*[x]$, and x restricts to fundamental class of $\mathbb{C}P^1 = S^2$.

Examples: $H^*(-,\mathbb{Z})$, K-theory, EII, cobordism, Morava E-theories.

complex oriented cohomology theories ______ formal groups

There is a moduli problem associated to G_0/k .

Deformation of formal groups

Lubin-Tate, 1966]

LT: Complete Local Rings \longrightarrow Groupoids

Objects of LT(R, m): Deformation $(G/R, i : k \to R/m, \alpha)$:

- G is a formal group over R;
- $\alpha: i^*G_0 \xrightarrow{\cong} \pi^*G$ isomorphism of formal groups over R/m.

Isomorphisms $(G, i, \alpha) \longrightarrow (G', i, \alpha')$

• \star -isomorphism: iso $f: G \longrightarrow G'$ compatible with id of G_0 .

Universal Deformation

_ubin-Tate 1966]

There exists a universal deformation $(\mathbb{G}_u, i_u, \alpha_u)$ over $\mathcal{O}_{LT} \cong W(k)[a_1, \cdots a_{n-1}].$

There is a moduli problem associated to G_0/k .

Deformation of formal groups

[Lubin-Tate, 1966]

LT: Complete Local Rings \longrightarrow Groupoids

Objects of LT(R, m): Deformation $(G/R, i : k \to R/m, \alpha)$:

- G is a formal group over R;
- $\alpha: i^*G_0 \xrightarrow{\cong} \pi^*G$ isomorphism of formal groups over R/m.

Isomorphisms $(G, i, \alpha) \longrightarrow (G', i, \alpha')$

• \star —isomorphism: iso $f: G \longrightarrow G'$ compatible with id of G_0 .

Universal Deformation

ubin-Tate 1966.

There exists a universal deformation $(\mathbb{G}_u, i_u, \alpha_u)$ over $\mathcal{O}_{LT} \cong W(k)[a_1, \cdots a_{n-1}].$

There is a moduli problem associated to G_0/k .

Deformation of formal groups

[Lubin-Tate, 1966]

LT: Complete Local Rings \longrightarrow Groupoids

Objects of LT(R, m): Deformation $(G/R, i : k \to R/m, \alpha)$:

- G is a formal group over R;
- $\alpha: i^*G_0 \xrightarrow{\cong} \pi^*G$ isomorphism of formal groups over R/m.

Isomorphisms $(G, i, \alpha) \longrightarrow (G', i, \alpha')$

• \star -isomorphism: iso $f: G \longrightarrow G'$ compatible with id of G_0 .

Universal Deformation

ubin-Tate 1966

There exists a universal deformation $(\mathbb{G}_u, i_u, \alpha_u)$ over $\mathcal{O}_{LT} \cong W(k)[a_1, \cdots a_{n-1}].$

There is a moduli problem associated to G_0/k .

Deformation of formal groups

[Lubin-Tate, 1966]

LT: Complete Local Rings \longrightarrow Groupoids

Objects of LT(R, m): Deformation $(G/R, i : k \to R/m, \alpha)$:

- G is a formal group over R;
- $\alpha: i^*G_0 \xrightarrow{\cong} \pi^*G$ isomorphism of formal groups over R/m.

Isomorphisms $(G, i, \alpha) \longrightarrow (G', i, \alpha')$

• \star -isomorphism: iso $f: G \longrightarrow G'$ compatible with id of G_0 .

Universal Deformation

ubin-Tate 1966

There exists a universal deformation $(\mathbb{G}_u, i_u, \alpha_u)$ over $\mathcal{O}_{LT} \cong W(k)[a_1, \cdots a_{n-1}].$

There is a moduli problem associated to G_0/k .

Deformation of formal groups

[Lubin-Tate, 1966]

LT: Complete Local Rings \longrightarrow Groupoids

Objects of LT(R, m): Deformation $(G/R, i : k \to R/m, \alpha)$:

- \bullet **G** is a formal group over R;
- $\alpha: i^*G_0 \xrightarrow{\cong} \pi^*G$ isomorphism of formal groups over R/m.

Isomorphisms $(G, i, \alpha) \longrightarrow (G', i, \alpha')$

• \star -isomorphism: iso $f: G \longrightarrow G'$ compatible with id of G_0 .

Universal Deformation

ubin-Tate 1966

There exists a universal deformation $(\mathbb{G}_u, i_u, \alpha_u)$ over $\mathcal{O}_{LT} \cong W(k)[a_1, \cdots a_{n-1}].$

There is a moduli problem associated to G_0/k .

Deformation of formal groups

[Lubin-Tate, 1966]

LT: Complete Local Rings \longrightarrow Groupoids

Objects of LT(R, m): Deformation $(G/R, i : k \to R/m, \alpha)$:

- G is a formal group over R;
- $\alpha: i^*G_0 \xrightarrow{\cong} \pi^*G$ isomorphism of formal groups over R/m.

Isomorphisms $(G, i, \alpha) \longrightarrow (G', i, \alpha')$

• \star -isomorphism: iso $f: G \longrightarrow G'$ compatible with id of G_0 .

Universal Deformation

ubin-Tate 1966

There exists a universal deformation $(\mathbb{G}_u, i_u, \alpha_u)$ over $\mathcal{O}_{LT} \cong W(k)[a_1, \cdots a_{n-1}].$

There is a moduli problem associated to G_0/k .

Deformation of formal groups

[Lubin-Tate, 1966]

LT: Complete Local Rings \longrightarrow Groupoids

Objects of LT(R, m): Deformation $(G/R, i : k \to R/m, \alpha)$:

- G is a formal group over R;
- $\alpha: i^*G_0 \xrightarrow{\cong} \pi^*G$ isomorphism of formal groups over R/m.

Isomorphisms $(G, i, \alpha) \longrightarrow (G', i, \alpha')$

• \star -isomorphism: iso $f: G \longrightarrow G'$ compatible with id of G_0 .

Universal Deformation

[Lubin-Tate 1966]

There exists a universal deformation $(\mathbb{G}_u, i_u, \alpha_u)$ over $\mathcal{O}_{LT} \cong W(k)[a_1, \cdots a_{n-1}].$

There is a moduli problem associated to G_0/k .

Deformation of formal groups

[Lubin-Tate, 1966]

LT: Complete Local Rings \longrightarrow Groupoids

Objects of LT(R, m): Deformation $(G/R, i : k \to R/m, \alpha)$:

- G is a formal group over R;
- $\alpha: i^*G_0 \xrightarrow{\cong} \pi^*G$ isomorphism of formal groups over R/m.

Isomorphisms $(G, i, \alpha) \longrightarrow (G', i, \alpha')$

• \star -isomorphism: iso $f: G \longrightarrow G'$ compatible with id of G_0 .

Universal Deformation

[Lubin-Tate 1966]

There exists a universal deformation $(\mathbb{G}_u, i_u, \alpha_u)$ over $\mathcal{O}_{LT} \cong W(k)[a_1, \cdots a_{n-1}].$

Strickland's theorem

1998

$$\operatorname{Spec}(E_n^0(B\Sigma_{p^k})/I_{tr})\cong\operatorname{Sub}_{p^k}(\mathbb{G}_u)$$

Additive Power Operation

[Proposition 3.21, AHS 2004]

$$P_{p^k}/I_{tr}: E_n^0(BA) \longrightarrow E_n^0(BA) \otimes_{E_n^0} E_n^0(B\Sigma_{p^k})/I_{tr}.$$

$$\operatorname{\mathsf{Sub}}_{p^k}(\mathbb{G}_u) \times_{LT} \operatorname{\mathsf{Hom}}(A^*,\mathbb{G}_u) \longrightarrow \operatorname{\mathsf{Hom}}(A^*,\mathbb{G}_u)$$

Theorem

[Proposition 5.12, HKR 2000]

A: finite abelian group. There is a canonical isomorphism of E^0 —algebras

$$E_n^0(BA) \cong \mathcal{O}_{\mathsf{Hom}(A^*,\mathbb{G}_L)}$$

$$E_n^0(B\Sigma_{p^k})/I_{tr} \hookrightarrow \sum_{A\subset \Sigma_{-k} \text{transitive}} E_n^0(BA)/I_{tr},$$

Strickland's theorem

1998

$$\operatorname{\mathsf{Spec}}(E^0_n(B\Sigma_{p^k})/I_{tr})\cong\operatorname{\mathsf{Sub}}_{p^k}(\mathbb{G}_u)$$

Additive Power Operation

[Proposition 3.21, AHS 2004]

$$P_{p^k}/I_{tr}: E^0_n(BA) \longrightarrow E^0_n(BA) \otimes_{E^0_n} E^0_n(B\Sigma_{p^k})/I_{tr}.$$

$$\operatorname{\mathsf{Sub}}_{\rho^k}(\mathbb{G}_u) \times_{LT} \operatorname{\mathsf{Hom}}(A^*,\mathbb{G}_u) \longrightarrow \operatorname{\mathsf{Hom}}(A^*,\mathbb{G}_u)$$

I heorem

[Proposition 5.12, HKR 2000]

A: finite abelian group. There is a canonical isomorphism of E^0 —algebras

$$E_n^0(BA) \cong \mathcal{O}_{\mathsf{Hom}(A^*,\mathbb{G}_u)}$$

$$E_n^0(B\Sigma_{p^k})/I_{tr}\hookrightarrow \sum_{A\subset \Sigma_{p^k} {
m transitive}} E_n^0(BA)/I_{tr},$$

Strickland's theorem

1998

$$\operatorname{\mathsf{Spec}}(E^0_n(B\Sigma_{p^k})/I_{tr})\cong\operatorname{\mathsf{Sub}}_{p^k}(\mathbb{G}_u)$$

Additive Power Operation

[Proposition 3.21, AHS 2004]

$$P_{\rho^k}/I_{tr}: E^0_n(BA) \longrightarrow E^0_n(BA) \otimes_{E^0_n} E^0_n(B\Sigma_{\rho^k})/I_{tr}.$$

$$\mathsf{Sub}_{p^k}(\mathbb{G}_u) \times_{LT} \mathsf{Hom}(A^*, \mathbb{G}_u) \longrightarrow \mathsf{Hom}(A^*, \mathbb{G}_u)$$

Theorem

Proposition 5.12, HKR 2000]

A: finite abelian group. There is a canonical isomorphism of E^0 -algebras

$$\mathsf{E}^0_n(BA)\cong\mathcal{O}_{\mathsf{Hom}(A^*,\mathbb{G}_u)}$$

$$E_n^0(B\Sigma_{p^k})/I_{tr}\hookrightarrow \sum_{A\subset \Sigma_{p^k} {
m transitive}} E_n^0(BA)/I_{tr},$$

Strickland's theorem

1998

$$\operatorname{\mathsf{Spec}}(E^0_n(B\Sigma_{p^k})/I_{tr})\cong\operatorname{\mathsf{Sub}}_{p^k}(\mathbb{G}_u)$$

Additive Power Operation

[Proposition 3.21, AHS 2004]

$$P_{\rho^k}/I_{tr}: E_n^0(BA) \longrightarrow E_n^0(BA) \otimes_{E_n^0} E_n^0(B\Sigma_{\rho^k})/I_{tr}.$$

$$\mathsf{Sub}_{p^k}(\mathbb{G}_u) \times_{LT} \mathsf{Hom}(A^*, \mathbb{G}_u) \longrightarrow \mathsf{Hom}(A^*, \mathbb{G}_u)$$

Theorem

[Proposition 5.12, HKR 2000]

A: finite abelian group. There is a canonical isomorphism of E^0 -algebras

$$E_n^0(BA) \cong \mathcal{O}_{\mathsf{Hom}(A^*,\mathbb{G}_u)}$$

$$E_n^0(B\Sigma_{
ho^k})/I_{tr}\hookrightarrow \sum_{A\subset \Sigma_{
ho^k} ext{transitive}} E_n^0(BA)/I_{tr}$$

Strickland's theorem

1998

$$\operatorname{\mathsf{Spec}}(E^0_n(B\Sigma_{p^k})/I_{tr})\cong\operatorname{\mathsf{Sub}}_{p^k}(\mathbb{G}_u)$$

Additive Power Operation

[Proposition 3.21, AHS 2004]

$$P_{\rho^k}/I_{tr}: E_n^0(BA) \longrightarrow E_n^0(BA) \otimes_{E_n^0} E_n^0(B\Sigma_{\rho^k})/I_{tr}.$$

$$\mathsf{Sub}_{p^k}(\mathbb{G}_u) \times_{LT} \mathsf{Hom}(A^*, \mathbb{G}_u) \longrightarrow \mathsf{Hom}(A^*, \mathbb{G}_u)$$

Theorem

[Proposition 5.12, HKR 2000]

A: finite abelian group. There is a canonical isomorphism of E^0 -algebras

$$E_n^0(BA) \cong \mathcal{O}_{\mathsf{Hom}(A^*,\mathbb{G}_u)}$$

$$E_n^0(B\Sigma_{p^k})/I_{tr}\hookrightarrow \sum_{A\subset \Sigma_{n^k} ext{transitive}} E_n^0(BA)/I_{tr},$$

$$\mathcal{L}(X/\!\!/ G) := \mathsf{Hom}_{top.gpd}(*/\!\!/ \mathbb{Z}_p, X/\!\!/ G) \cong (\coprod_{\alpha \in \mathsf{Hom}(\mathbb{Z}_p, G)} X^{\mathsf{im}\, \alpha})/\!\!/ G.$$

- $\mathcal{L}BG := EG \times_G \mathcal{L}(*/\!\!/ G) \simeq \operatorname{Map}(B\mathbb{Z}_p, BG).$
- $E_G(-)$ is a cohomology theory on finite G-CW complexes \Rightarrow So is $E_G(\mathcal{L}(-))$.
- the algebro-geometric object associated to $E^0_{\mathbb{Z}/p^k}(\mathcal{L}^h(-))$ is the p-divisible group $\mathbb{G}_E \oplus (\mathbb{Q}_p/\mathbb{Z}_p)^h$.
- $\mathcal{L}(-)$ is a key functor in the target of Hopkins-Kuhn-Ravenel generalized character map and Stapleton's transchromatic generalized character maps.

2015, Tomer M.Schlank, Nathaniel Stapleton

$$\operatorname{Spec}(E_n^0(\mathcal{L}^h B\Sigma_{p^k})/I_{tr}) \cong \operatorname{Sub}_{p^k}(\mathbb{G}_u \oplus \mathbb{T}')$$

Via transchromatic character theory

$$\mathcal{L}(X/\!\!/ G) := \mathsf{Hom}_{top.gpd}(*/\!\!/ \mathbb{Z}_p, X/\!\!/ G) \cong (\coprod_{\alpha \in \mathsf{Hom}(\mathbb{Z}_p, G)} X^{\mathsf{im}\, \alpha})/\!\!/ G.$$

- $\mathcal{L}BG := EG \times_G \mathcal{L}(*/\!\!/ G) \simeq \mathsf{Map}(B\mathbb{Z}_p, BG).$
- $E_G(-)$ is a cohomology theory on finite G-CW complexes \Rightarrow So is $E_G(\mathcal{L}(-))$.
- the algebro-geometric object associated to $E^0_{\mathbb{Z}/p^k}(\mathcal{L}^h(-))$ is the p-divisible group $\mathbb{G}_E \oplus (\mathbb{Q}_p/\mathbb{Z}_p)^h$.
- $\mathcal{L}(-)$ is a key functor in the target of Hopkins-Kuhn-Ravenel generalized character map and Stapleton's transchromatic generalized character maps.

2015, Tomer M.Schlank, Nathaniel Stapleton

$$\operatorname{Spec}(E_n^0(\mathcal{L}^hB\Sigma_{n^k})/I_{tr})\cong \operatorname{Sub}_{n^k}(\mathbb{G}_u\oplus\mathbb{T}')$$

Via transchromatic character theory.

$$\mathcal{L}(X/\!\!/G) := \mathsf{Hom}_{top.gpd}(*/\!\!/\mathbb{Z}_p, X/\!\!/G) \cong (\coprod_{\alpha \in \mathsf{Hom}(\mathbb{Z}_p, G)} X^{\mathsf{im}\,\alpha})/\!\!/G.$$

- $\mathcal{L}BG := EG \times_G \mathcal{L}(*/\!\!/ G) \simeq \mathsf{Map}(B\mathbb{Z}_p, BG).$
- $E_G(-)$ is a cohomology theory on finite G-CW complexes \Rightarrow So is $E_G(\mathcal{L}(-))$.
- the algebro-geometric object associated to $E^0_{\mathbb{Z}/p^k}(\mathcal{L}^h(-))$ is the p-divisible group $\mathbb{G}_E \oplus (\mathbb{Q}_p/\mathbb{Z}_p)^h$.
- $\mathcal{L}(-)$ is a key functor in the target of Hopkins-Kuhn-Ravenel generalized character map and Stapleton's transchromatic generalized character maps.

2015, Tomer M.Schlank, Nathaniel Stapleton

$$\operatorname{\mathsf{Spec}}(E^0_n(\mathcal{L}^h B\Sigma_{n^k})/I_{tr}) \cong \operatorname{\mathsf{Sub}}_{n^k}(\mathbb{G}_u \oplus \mathbb{T}')$$

Via transchromatic character theory

$$\mathcal{L}(X/\!\!/ G) := \mathsf{Hom}_{top.gpd}(*/\!\!/ \mathbb{Z}_p, X/\!\!/ G) \cong (\coprod_{\alpha \in \mathsf{Hom}(\mathbb{Z}_p, G)} X^{\mathsf{im}\, \alpha})/\!\!/ G.$$

- $\mathcal{L}BG := EG \times_G \mathcal{L}(*/\!\!/ G) \simeq \mathsf{Map}(B\mathbb{Z}_p, BG).$
- $E_G(-)$ is a cohomology theory on finite G-CW complexes \Rightarrow So is $E_G(\mathcal{L}(-))$.
- the algebro-geometric object associated to $E^0_{\mathbb{Z}/p^k}(\mathcal{L}^h(-))$ is the p-divisible group $\mathbb{G}_E \oplus (\mathbb{Q}_p/\mathbb{Z}_p)^h$.
- $\mathcal{L}(-)$ is a key functor in the target of Hopkins-Kuhn-Ravenel generalized character map and Stapleton's transchromatic generalized character maps.

2015, Tomer M.Schlank, Nathaniel Stapleton

$$\operatorname{Spec}(E_n^0(\mathcal{L}^h B\Sigma_{p^k})/I_{tr}) \cong \operatorname{Sub}_{p^k}(\mathbb{G}_u \oplus \mathbb{T}')$$

Via transchromatic character theory

Generalized Morava E-theory $E_n^*(\mathcal{L}(X/\!\!/ G))$

$$\mathcal{L}(X/\!\!/ G) := \mathsf{Hom}_{top.gpd}(*/\!\!/ \mathbb{Z}_p, X/\!\!/ G) \cong (\coprod_{lpha \in \mathsf{Hom}(\mathbb{Z}_p, G)} X^{\mathsf{im}\,lpha})/\!\!/ G.$$

- $\mathcal{L}BG := EG \times_G \mathcal{L}(*/\!\!/ G) \simeq \mathsf{Map}(B\mathbb{Z}_p, BG).$
- $E_G(-)$ is a cohomology theory on finite G-CW complexes \Rightarrow So is $E_G(\mathcal{L}(-))$.
- the algebro-geometric object associated to $E^0_{\mathbb{Z}/p^k}(\mathcal{L}^h(-))$ is the p-divisible group $\mathbb{G}_E \oplus (\mathbb{Q}_p/\mathbb{Z}_p)^h$.
- $\mathcal{L}(-)$ is a key functor in the target of Hopkins-Kuhn-Ravenel generalized character map and Stapleton's transchromatic generalized character maps.

2015, Tomer M.Schlank, Nathaniel Stapletor

$$\operatorname{Spec}(E_n^0(\mathcal{L}^h B\Sigma_{p^k})/I_{tr}) \cong \operatorname{Sub}_{p^k}(\mathbb{G}_u \oplus \mathbb{T}')$$

Via transchromatic character theory.

Generalized Morava E-theory $E_n^*(\mathcal{L}(X/\!\!/ G))$

$$\mathcal{L}(X/\!\!/ G) := \mathsf{Hom}_{top.gpd}(*/\!\!/ \mathbb{Z}_p, X/\!\!/ G) \cong (\coprod_{\alpha \in \mathsf{Hom}(\mathbb{Z}_p, G)} X^{\mathsf{im}\, \alpha})/\!\!/ G.$$

- $\mathcal{L}BG := EG \times_G \mathcal{L}(*/\!\!/ G) \simeq \mathsf{Map}(B\mathbb{Z}_p, BG).$
- $E_G(-)$ is a cohomology theory on finite G-CW complexes \Rightarrow So is $E_G(\mathcal{L}(-))$.
- the algebro-geometric object associated to $E^0_{\mathbb{Z}/p^k}(\mathcal{L}^h(-))$ is the p-divisible group $\mathbb{G}_E \oplus (\mathbb{Q}_p/\mathbb{Z}_p)^h$.
- $\mathcal{L}(-)$ is a key functor in the target of Hopkins-Kuhn-Ravenel generalized character map and Stapleton's transchromatic generalized character maps.

2015, Tomer M.Schlank, Nathaniel Stapleton

$$\mathsf{Spec}(E_n^0(\mathcal{L}^h B\Sigma_{p^k})/I_{tr}) \cong \mathsf{Sub}_{p^k}(\mathbb{G}_u \oplus \mathbb{T}')$$

Via transchromatic character theory.

A: finite abelian p-group.

Classical Definition: Level structures on formal groups

[Drinfeld 74]

A level structure $f:A\longrightarrow \mathbb{G}$ is a homomorphism from A to \mathbb{G}

- $rank(A) \leq height(\mathbb{G});$
- ullet the associated divisor is a subgroup scheme of $\mathbb G.$

$$\operatorname{Spf}(E_n^0(BA)/I_{tr}) \longrightarrow \operatorname{Spf}(E_n^0(B\Sigma_{p^k})/I_{tr})$$

$$\downarrow \cong \qquad \qquad \downarrow$$

$$\operatorname{Level}(A^*, \mathbb{G}_u) \xrightarrow{f \mapsto \operatorname{im} f} \operatorname{Sub}_{p^k}(\mathbb{G}_u).$$

A—Level Structure: Definition in the generalized case [Huan, Stapleton]

 $I:A\hookrightarrow \mathbb{G}\oplus \mathbb{T}'$: a homomorphism of group schemes such that the induced map $\ker(\pi I)\to \mathbb{G}$ is a $\ker(\pi I)$ -level structure on \mathbb{G} .

$$A \stackrel{I}{\longrightarrow} (\mathbb{G} \oplus \mathbb{T}') \stackrel{\pi}{\longrightarrow} \mathbb{T}'$$

A: finite abelian p-group.

Classical Definition: Level structures on formal groups

[Drinfeld 74]

A level structure $f:A\longrightarrow \mathbb{G}$ is a homomorphism from A to \mathbb{G}

- $rank(A) \leq height(\mathbb{G});$
- ullet the associated divisor is a subgroup scheme of $\mathbb G.$

A—Level Structure: Definition in the generalized case [Huan, Stapleton]

 $I: A \hookrightarrow \mathbb{G} \oplus \mathbb{T}'$: a homomorphism of group schemes such that the induced map $\ker(\pi I) \to \mathbb{G}$ is a $\ker(\pi I)$ -level structure on \mathbb{G} .

$$A \stackrel{/}{\longrightarrow} (\mathbb{G} \oplus \mathbb{T}') \stackrel{\pi}{\longrightarrow} \mathbb{T}'$$

A: finite abelian p-group.

Classical Definition: Level structures on formal groups

[Drinfeld 74]

A level structure $f:A\longrightarrow \mathbb{G}$ is a homomorphism from A to \mathbb{G}

- $rank(A) \leq height(\mathbb{G});$
- ullet the associated divisor is a subgroup scheme of $\mathbb G.$

$$\operatorname{Spf}(E_n^0(BA)/I_{tr}) \longrightarrow \operatorname{Spf}(E_n^0(B\Sigma_{p^k})/I_{tr})$$

$$\downarrow \cong \qquad \qquad \downarrow$$

$$\operatorname{Level}(A^*, \mathbb{G}_u) \xrightarrow{f \mapsto \operatorname{im} f} \operatorname{Sub}_{p^k}(\mathbb{G}_u).$$

A—Level Structure: Definition in the generalized case [Huan, Stapleton]

 $I: A \hookrightarrow \mathbb{G} \oplus \mathbb{T}'$: a homomorphism of group schemes such that the induced map $\ker(\pi I) \to \mathbb{G}$ is a $\ker(\pi I)$ -level structure on \mathbb{G} .

$$A \stackrel{/}{\longrightarrow} (\mathbb{G} \oplus \mathbb{T}') \stackrel{\pi}{\longrightarrow} \mathbb{T}'$$

A: finite abelian p-group.

Classical Definition: Level structures on formal groups

[Drinfeld 74]

A level structure $f:A\longrightarrow \mathbb{G}$ is a homomorphism from A to \mathbb{G}

- $rank(A) \leq height(\mathbb{G});$
- the associated divisor is a subgroup scheme of \mathbb{G} .

$$\operatorname{Spf}(E_n^0(BA)/I_{tr}) \longrightarrow \operatorname{Spf}(E_n^0(B\Sigma_{p^k})/I_{tr})$$

$$\downarrow \cong \qquad \qquad \downarrow$$

$$\operatorname{Level}(A^*, \mathbb{G}_u) \xrightarrow{f \mapsto \operatorname{im} f} \operatorname{Sub}_{p^k}(\mathbb{G}_u).$$

A—Level Structure: Definition in the generalized case [Huan, Stapleton]

 $I: A \hookrightarrow \mathbb{G} \oplus \mathbb{T}'$: a homomorphism of group schemes such that the induced map $\ker(\pi I) \to \mathbb{G}$ is a $\ker(\pi I)$ -level structure on \mathbb{G} .

$$A \stackrel{/}{\longrightarrow} (\mathbb{G} \oplus \mathbb{T}') \stackrel{\pi}{\longrightarrow} \mathbb{T}'$$

Transfer map in E-cohomology

[Chapter 4, Adams 1978]

For $H \hookrightarrow G$, $BH \longrightarrow BG$ is a finite cover.

$$\operatorname{Tr}_E: E^0(BH) \longrightarrow E^0(BG)$$

$$\bigoplus_{0 < i < m} \operatorname{Tr}_E : \bigoplus_{0 < i < m} E^0(BG \wr (\Sigma_i \times \Sigma_{m-i})) \longrightarrow E^0(BG \wr \Sigma_m).$$

Transfer Ideal

$$I_{tr} = \operatorname{im}(\bigoplus_{0 < i < m} \operatorname{Tr}_{E}) \subset E^{0}(BG \wr \Sigma_{m})$$

 I_{tr} is the smallest ideal such that the quotient

$$\mathbb{P}_m/I_{tr}: E^0(BG) \longrightarrow E^0(BG \wr \Sigma_m)/I_{tr}$$

is a map of commutative rings

Recall
$$P_m(x \otimes y) = \text{res} |_{G \wr \Sigma_m}^{G \wr \Sigma_m} (P_m(x) \otimes P_m(y))).$$

Transfer map in E-cohomology

[Chapter 4, Adams 1978]

For $H \hookrightarrow G$, $BH \longrightarrow BG$ is a finite cover.

$$\operatorname{Tr}_E: E^0(BH) \longrightarrow E^0(BG)$$

$$\bigoplus_{0 < i < m} \operatorname{Tr}_E : \bigoplus_{0 < i < m} E^0(BG \wr (\Sigma_i \times \Sigma_{m-i})) \longrightarrow E^0(BG \wr \Sigma_m).$$

Transfer Ideal

$$I_{tr} = \operatorname{im}ig(igoplus_{0 < i < m} \operatorname{Tr}_Eig) \subset E^0(BG \wr \Sigma_m)$$

 I_{tr} is the smallest ideal such that the quotient

$$\mathbb{P}_m/I_{tr}: E^0(BG) \longrightarrow E^0(BG \wr \Sigma_m)/I_{tr}$$

is a map of commutative rings

Recall
$$P_m(x \otimes y) = \text{res} |_{G \wr \Sigma_m}^{G \wr \Sigma_m} (P_m(x) \otimes P_m(y))).$$

Transfer map in E-cohomology

[Chapter 4, Adams 1978]

For $H \hookrightarrow G$, $BH \longrightarrow BG$ is a finite cover.

$$\operatorname{Tr}_E: E^0(BH) \longrightarrow E^0(BG)$$

$$\bigoplus_{0 < i < m} \operatorname{Tr}_E : \bigoplus_{0 < i < m} E^0(BG \wr (\Sigma_i \times \Sigma_{m-i})) \longrightarrow E^0(BG \wr \Sigma_m).$$

Transfer Ideal

$$I_{tr} = \operatorname{im}(igoplus_{0 < i < m} \operatorname{Tr}_E) \subset E^0(BG \wr \Sigma_m)$$

 I_{tr} is the smallest ideal such that the quotient

$$\mathbb{P}_m/I_{tr}:E^0(BG)\longrightarrow E^0(BG\wr\Sigma_m)/I_{tr}$$

is a map of commutative rings

Recall
$$P_m(x \otimes y) = \text{res} |_{G \wr \Sigma_m}^{G \wr \Sigma_m} (P_m(x) \otimes P_m(y))).$$

Transfer map in E-cohomology

[Chapter 4, Adams 1978]

For $H \hookrightarrow G$, $BH \longrightarrow BG$ is a finite cover.

$$\operatorname{Tr}_E: E^0(BH) \longrightarrow E^0(BG)$$

$$\bigoplus_{0 < i < m} \operatorname{Tr}_E : \bigoplus_{0 < i < m} E^0(BG \wr (\Sigma_i \times \Sigma_{m-i})) \longrightarrow E^0(BG \wr \Sigma_m).$$

Transfer Ideal

$$I_{tr} = \operatorname{im}(\bigoplus_{0 < i < m} \operatorname{Tr}_{E}) \subset E^{0}(BG \wr \Sigma_{m})$$

Itr is the smallest ideal such that the quotient

$$\mathbb{P}_m/I_{tr}: E^0(BG) \longrightarrow E^0(BG \wr \Sigma_m)/I_{tr}$$

is a map of commutative rings.

Recall
$$P_m(x \otimes y) = \operatorname{res} | \frac{G(\Sigma_m \times G(\Sigma_m))}{G(\Sigma_m)} (P_m(x) \otimes P_m(y))$$
.

Transfer map in E-cohomology

[Chapter 4, Adams 1978]

For $H \hookrightarrow G$, $BH \longrightarrow BG$ is a finite cover.

$$\operatorname{Tr}_E: E^0(BH) \longrightarrow E^0(BG)$$

$$\bigoplus_{0 < i < m} \operatorname{Tr}_E : \bigoplus_{0 < i < m} E^0(BG \wr (\Sigma_i \times \Sigma_{m-i})) \longrightarrow E^0(BG \wr \Sigma_m).$$

Transfer Ideal

$$I_{tr} = \operatorname{im}(\bigoplus_{0 < i < m} \operatorname{Tr}_{E}) \subset E^{0}(BG \wr \Sigma_{m})$$

 I_{tr} is the smallest ideal such that the quotient

$$\mathbb{P}_m/I_{tr}: E^0(BG) \longrightarrow E^0(BG \wr \Sigma_m)/I_{tr}$$

is a map of commutative rings.

Recall
$$P_m(x \otimes y) = \operatorname{res} \left| \frac{G \wr \Sigma_m \times G \wr \Sigma_m}{G \wr \Sigma_m} (P_m(x) \otimes P_m(y)) \right|$$
.

Motivation

[Atiyah, Segal 1969][Adams 1978]

Classical representation theory:

$$\mathbb{C} \otimes \chi : \mathbb{C} \otimes RG \stackrel{\cong}{\longrightarrow} CI(G,\mathbb{C}).$$

•
$$p$$
-adic K -theory: $RG \xrightarrow{\alpha} K(BG)$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

$$\chi: E_n^0(BG) \longrightarrow Cl_n(G, C_0)$$

$$C_0 \otimes_{E_n^0} E_n^0(BG) \stackrel{\cong}{\longrightarrow} Cl_n(G, C_0)$$

Motivation

[Atiyah, Segal 1969][Adams 1978]

Classical representation theory:

$$\mathbb{C} \otimes \chi : \mathbb{C} \otimes RG \stackrel{\cong}{\longrightarrow} CI(G,\mathbb{C}).$$

• p−adic K−theory:

$$\begin{array}{ccc}
RG & \xrightarrow{\alpha} & K(BG) \\
\downarrow & & \downarrow \\
\mathbb{Z}_p \otimes RG & \xrightarrow{\hat{\alpha}} & K(BG; \mathbb{Z}_p).
\end{array}$$

Character theory of Morava E-theory

[Theorem C, HKR 2000]

$$\chi: E_n^0(BG) \longrightarrow Cl_n(G, C_0)$$

such that

$$C_0 \otimes_{E_n^0} E_n^0(BG) \stackrel{\cong}{\longrightarrow} Cl_n(G, C_0)$$

Motivation

[Atiyah, Segal 1969][Adams 1978]

Classical representation theory:

$$\mathbb{C} \otimes \chi : \mathbb{C} \otimes RG \stackrel{\cong}{\longrightarrow} CI(G,\mathbb{C}).$$

•
$$p$$
-adic K -theory: $RG \xrightarrow{\alpha} K(BG)$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}_p \otimes RG \xrightarrow{\hat{\alpha}} K(BG; \mathbb{Z}_p).$$

Character theory of Morava E-theory

[Theorem C, HKR 2000]

$$\chi: E_n^0(BG) \longrightarrow CI_n(G, C_0)$$

such that

$$C_0 \otimes_{E_n^0} E_n^0(BG) \stackrel{\cong}{\longrightarrow} CI_n(G, C_0)$$

More explanation on the character map $\chi \colon E^0(BG) \longrightarrow Cl_n(G, C_0)$

- $C_0 := S^{-1}E^0_{cont}(B L)$, where
 - $E_{cont}^0(B \mathbb{L}) = colim_k E_n^0(B \mathbb{L}/p^k \mathbb{L}),$
 - S := the set of Euler classes of nontrivial irreducible representations of the abelian group $\mathbb{L}/p^k \mathbb{L}$ as k varies.

Algebro-geometric interpretation:

 \mathcal{C}_0 is the rationalization of the Drinfeld ring $\mathcal{O}_{\mathsf{Level}(\mathbb{T},\mathbb{G}_u)}$

• $CI_n(G, C_0) = \{C_0 - \text{valued functions on the set } \text{Hom}(\mathbb{L}, G)/\sim\}.$

Construction of the character map $\prod \chi_{[lpha]}$

$$\chi_{[\alpha]}: E^0(BG) \xrightarrow{\alpha^*} E^0_{cont}(B \mathbb{L}) \longrightarrow C_0 = S^{-1}E^0_{cont}(B \mathbb{L}).$$

Algebro-geometric interpretation of $\chi_{[lpha]}$

$$\mathsf{Level}(\mathbb{T},\mathbb{G}_{u})\longrightarrow \mathsf{Hom}(G^*,\mathbb{G}_{u}).$$

More explanation on the character map $\chi \colon E^0(BG) \longrightarrow CI_n(G, C_0)$

- $C_0 := S^{-1}E^0_{cont}(B L)$, where
 - $E_{cont}^0(B \mathbb{L}) = colim_k E_n^0(B \mathbb{L}/p^k \mathbb{L}),$
 - S := the set of Euler classes of nontrivial irreducible representations of the abelian group $\mathbb{L}/p^k \mathbb{L}$ as k varies.

Algebro-geometric interpretation:

 \mathcal{C}_0 is the rationalization of the Drinfeld ring $\mathcal{O}_{\mathsf{Level}(\mathbb{T},\mathbb{G}_u)}$

• $CI_n(G, C_0) = \{C_0 - \text{valued functions on the set } \text{Hom}(\mathbb{L}, G)/\sim\}.$

Construction of the character map $\prod \chi_{[\alpha]}$

$$\chi_{[\alpha]}: E^0(BG) \xrightarrow{\alpha^*} E^0_{cont}(B\mathbb{L}) \longrightarrow C_0 = S^{-1}E^0_{cont}(B\mathbb{L}).$$

Algebro-geometric interpretation of $\chi_{[lpha]}$

$$\mathsf{Level}(\mathbb{T},\mathbb{G}_{u})\longrightarrow \mathsf{Hom}(\mathit{G}^{*},\mathbb{G}_{u}).$$

More explanation on the character map $\chi \colon E^0(BG) \longrightarrow CI_n(G, C_0)$

- $C_0 := S^{-1}E^0_{cont}(B L)$, where
 - $E_{cont}^0(B \mathbb{L}) = colim_k E_n^0(B \mathbb{L}/p^k \mathbb{L}),$
 - S := the set of Euler classes of nontrivial irreducible representations of the abelian group $\mathbb{L}/p^k \mathbb{L}$ as k varies.

Algebro-geometric interpretation:

 C_0 is the rationalization of the Drinfeld ring $\mathcal{O}_{\mathsf{Level}(\mathbb{T},\mathbb{G}_u)}$.

• $Cl_n(G, C_0) = \{C_0 - \text{valued functions on the set } \text{Hom}(\mathbb{L}, G)/\sim\}.$

Construction of the character map $\prod \chi_{[\alpha]}$

$$\chi_{[\alpha]}: E^0(BG) \xrightarrow{\alpha^*} E^0_{cont}(B \mathbb{L}) \longrightarrow C_0 = S^{-1}E^0_{cont}(B \mathbb{L}).$$

Algebro-geometric interpretation of $\chi_{[lpha]}$

$$\mathsf{Level}(\mathbb{T},\mathbb{G}_{\prime\prime})\longrightarrow \mathsf{Hom}(\mathit{G}^*,\mathbb{G}_{\prime\prime}).$$

More explanation on the character map $\chi \colon E^0(BG) \longrightarrow CI_n(G, C_0)$

- $C_0 := S^{-1}E^0_{cont}(B L)$, where
 - $E_{cont}^0(B \mathbb{L}) = colim_k E_n^0(B \mathbb{L}/p^k \mathbb{L}),$
 - S := the set of Euler classes of nontrivial irreducible representations of the abelian group $\mathbb{L}/p^k \mathbb{L}$ as k varies.

Algebro-geometric interpretation:

 C_0 is the rationalization of the Drinfeld ring $\mathcal{O}_{\mathsf{Level}(\mathbb{T},\mathbb{G}_u)}$.

• $CI_n(G, C_0) = \{C_0 - \text{valued functions on the set } \text{Hom}(\mathbb{L}, G)/\sim\}.$

Construction of the character map $\prod \chi_{[lpha]}$

$$\chi_{[\alpha]}: E^0(BG) \xrightarrow{\alpha^*} E^0_{cont}(B \mathbb{L}) \longrightarrow C_0 = S^{-1}E^0_{cont}(B \mathbb{L})$$

Algebro-geometric interpretation of $\chi_{[lpha]}$

$$\mathsf{Level}(\mathbb{T},\mathbb{G}_{\prime\prime})\longrightarrow \mathsf{Hom}(\mathit{G}^*,\mathbb{G}_{\prime\prime}).$$

More explanation on the character map $\chi \colon E^0(BG) \longrightarrow \mathit{Cl}_n(G, C_0)$

- $C_0 := S^{-1}E^0_{cont}(B L)$, where
 - $E_{cont}^0(B \mathbb{L}) = colim_k E_n^0(B \mathbb{L}/p^k \mathbb{L}),$
 - S := the set of Euler classes of nontrivial irreducible representations of the abelian group $\mathbb{L}/p^k \mathbb{L}$ as k varies.

Algebro-geometric interpretation:

 C_0 is the rationalization of the Drinfeld ring $\mathcal{O}_{\mathsf{Level}(\mathbb{T},\mathbb{G}_u)}$.

• $CI_n(G, C_0) = \{C_0 - \text{valued functions on the set } \text{Hom}(\mathbb{L}, G)/\sim\}.$

Construction of the character map $\prod \chi_{[\alpha]}$

$$\chi_{[\alpha]}: E^0(BG) \xrightarrow{\alpha^*} E^0_{cont}(B \mathbb{L}) \longrightarrow C_0 = S^{-1}E^0_{cont}(B \mathbb{L}).$$

Algebro-geometric interpretation of $\chi_{[lpha]}$

$$Level(\mathbb{T}, \mathbb{G}_{II}) \longrightarrow Hom(G^*, \mathbb{G}_{II}).$$

More explanation on the character map $\chi \colon E^0(BG) \longrightarrow Cl_n(G, C_0)$

- $C_0 := S^{-1}E^0_{cont}(B L)$, where
 - $E_{cont}^0(B \mathbb{L}) = colim_k E_n^0(B \mathbb{L}/p^k \mathbb{L}),$
 - S := the set of Euler classes of nontrivial irreducible representations of the abelian group $\mathbb{L}/p^k\mathbb{L}$ as k varies.

Algebro-geometric interpretation:

 C_0 is the rationalization of the Drinfeld ring $\mathcal{O}_{\mathsf{Level}(\mathbb{T},\mathbb{G}_u)}$.

• $CI_n(G, C_0) = \{C_0 - \text{valued functions on the set } \text{Hom}(\mathbb{L}, G)/\sim\}.$

Construction of the character map $\prod \chi_{[\alpha]}$

$$\chi_{[\alpha]}: E^0(BG) \xrightarrow{\alpha^*} E^0_{cont}(B \mathbb{L}) \longrightarrow C_0 = S^{-1}E^0_{cont}(B \mathbb{L}).$$

Algebro-geometric interpretation of $\chi_{[\alpha]}$

$$\mathsf{Level}(\mathbb{T},\mathbb{G}_{u}) \longrightarrow \mathsf{Hom}(G^*,\mathbb{G}_{u}).$$

Hopkins-Kuhn-Ravenel Character theory and transfer

Transfer map and Character theory

[Theorem D, HKR 2000]

G: finite group; $H \subset G$.

$$E_n^0(BH) \xrightarrow{\operatorname{Tr}_E} E_n^0(BG)$$

$$\chi \downarrow \qquad \qquad \downarrow \chi$$

$$CI_n(H, C_0) \xrightarrow{\operatorname{Tr}_{C_0}} CI_n(G, C_0).$$

"Strickland's theorem" in HKR Character theory

$$CI_n(\Sigma_{\rho^k}, C_0)/I_{tr} \cong \prod_{\operatorname{Sub}_{\rho^k}(\mathbb{T})} C_0$$

Lemma

$$C_0 \otimes_{E_n^0} E_n^0(\mathcal{L}^h BA)/I_A \cong \prod_{\mathsf{Level}(A^*, \mathbb{T} \oplus \mathbb{T}')} C_0.$$

Hopkins-Kuhn-Ravenel Character theory and transfer

Transfer map and Character theory

[Theorem D, HKR 2000]

G: finite group; $H \subset G$.

$$E_n^0(BH) \xrightarrow{\operatorname{Tr}_E} E_n^0(BG)$$

$$\chi \downarrow \qquad \qquad \downarrow \chi$$

$$CI_n(H, C_0) \xrightarrow{\operatorname{Tr}_{C_0}} CI_n(G, C_0).$$

"Strickland's theorem" in HKR Character theory

$$CI_n(\Sigma_{p^k}, C_0)/I_{tr} \cong \prod_{\operatorname{Sub}_{p^k}(\mathbb{T})} C_0$$

Lemma

$$C_0 \otimes_{E_n^0} E_n^0(\mathcal{L}^h BA)/I_A \cong \prod_{\mathsf{Level}(A^*, \mathbb{T} \oplus \mathbb{T}')} C_0.$$

Hopkins-Kuhn-Ravenel Character theory and transfer

Transfer map and Character theory

[Theorem D, HKR 2000]

G: finite group; $H \subset G$.

$$E_n^0(BH) \xrightarrow{\mathsf{Tr}_E} E_n^0(BG)$$

$$\chi \downarrow \qquad \qquad \downarrow \chi$$

$$CI_n(H, C_0) \xrightarrow{\mathsf{Tr}_{C_0}} CI_n(G, C_0).$$

"Strickland's theorem" in HKR Character theory

$$CI_n(\Sigma_{p^k}, C_0)/I_{tr} \cong \prod_{\operatorname{Sub}_{p^k}(\mathbb{T})} C_0$$

Lemma

$$C_0 \otimes_{E_n^0} E_n^0(\mathcal{L}^h BA)/I_A \cong \prod_{\mathsf{Level}(A^*, \mathbb{T} \oplus \mathbb{T}')} C_0$$

Classical result:
$$(E_n^0(BA)/I_{tr})^{\text{free}} \stackrel{\cong}{\to} \mathcal{O}_{\text{Level}(A^*,\mathbb{G}_u)}$$
.

$$R^{\mathsf{free}} := \mathsf{im}(R \longrightarrow \mathbb{Q} \otimes R).$$

$$I_A = \operatorname{im} \left(\bigoplus_{A' \subset A} \operatorname{Tr}_{A',A} : \bigoplus_{A' \subset A} E_n^0(\mathcal{L}^h(BA')) \longrightarrow E_n^0(\mathcal{L}^h(BA)) \right)$$

Theorem

[Huan, Stapleton

$$(E_n^0(\mathcal{L}^hBA)/I_A)^{\text{free}} \cong \mathcal{O}_{\text{Level}(A^*,\mathbb{G}_u\oplus \mathbb{T}')}$$

Classical result:
$$(E_n^0(BA)/I_{tr})^{\text{free}} \stackrel{\cong}{\to} \mathcal{O}_{\text{Level}(A^*,\mathbb{G}_u)}$$
.

$$R^{\mathsf{free}} := \mathsf{im}(R \longrightarrow \mathbb{Q} \otimes R).$$

$$I_A = \operatorname{im} \left(\bigoplus_{A' \subset A} \operatorname{Tr}_{A',A} : \bigoplus_{A' \subset A} E_n^0(\mathcal{L}^h(BA')) \longrightarrow E_n^0(\mathcal{L}^h(BA)) \right)$$

I heorem

[Huan, Stapleton

$$(E_n^0(\mathcal{L}^hBA)/I_A)^{\text{free}} \cong \mathcal{O}_{\text{Level}(A^*,\mathbb{G}_u\oplus \mathbb{T}')}$$

$$\mathsf{Level}(A^*,\mathbb{G}_u\oplus\mathbb{T}')\\ \mathsf{Hom}(A^*,\mathbb{T}')\\ \mathsf{Spf}(E^0_n(\mathcal{L}^hBA)/I_A)$$

Classical result:
$$(E_n^0(BA)/I_{tr})^{\text{free}} \stackrel{\cong}{\to} \mathcal{O}_{\text{Level}(A^*,\mathbb{G}_u)}$$
.

$$R^{\mathsf{free}} := \mathsf{im}(R \longrightarrow \mathbb{Q} \otimes R).$$

$$I_A = \operatorname{im} \big(\bigoplus_{A' \subset A} \operatorname{Tr}_{A',A} : \bigoplus_{A' \subset A} E_n^0(\mathcal{L}^h(BA')) \longrightarrow E_n^0(\mathcal{L}^h(BA)) \big).$$

I heorem

[Huan, Stapleton

$$(E_n^0(\mathcal{L}^hBA)/I_A)^{\text{free}} \cong \mathcal{O}_{\text{Level}(A^*,\mathbb{G}_u\oplus \mathbb{T}')}$$

Classical result:
$$(E_n^0(BA)/I_{tr})^{\text{free}} \stackrel{\cong}{\to} \mathcal{O}_{\text{Level}(A^*,\mathbb{G}_u)}$$
.

$$R^{\mathsf{free}} := \mathsf{im}(R \longrightarrow \mathbb{Q} \otimes R).$$

$$I_A = \operatorname{im} \big(\bigoplus_{A' \subset A} \operatorname{Tr}_{A',A} : \bigoplus_{A' \subset A} E_n^0(\mathcal{L}^h(BA')) \longrightarrow E_n^0(\mathcal{L}^h(BA)) \big).$$

Theorem [Huan, Stapleton]

$$(E_n^0(\mathcal{L}^hBA)/I_A)^{\mathsf{free}} \cong \mathcal{O}_{\mathsf{Level}(A^*,\mathbb{G}_u \oplus \mathbb{T}')}.$$

Classical result:
$$(E_n^0(BA)/I_{tr})^{\text{free}} \stackrel{\cong}{\to} \mathcal{O}_{\text{Level}(A^*,\mathbb{G}_u)}$$
.

$$R^{\mathsf{free}} := \mathsf{im}(R \longrightarrow \mathbb{Q} \otimes R).$$

$$I_A = \operatorname{im} \big(\bigoplus_{A' \subset A} \operatorname{Tr}_{A',A} : \bigoplus_{A' \subset A} E_n^0(\mathcal{L}^h(BA')) \longrightarrow E_n^0(\mathcal{L}^h(BA)) \big).$$

Theorem [Huan, Stapleton]

$$(E_n^0(\mathcal{L}^hBA)/I_A)^{\mathsf{free}} \cong \mathcal{O}_{\mathsf{Level}(A^*,\mathbb{G}_u \oplus \mathbb{T}')}.$$

Proof

Use Hopkins-Kuhn-Ravenel character theory.

$$E_n^0(\mathcal{L}^hBA)/I_{tr} = \prod_{f \colon \mathbb{L}' \to A} E_n^0(BA)/I_{\mathcal{F}_f};$$

 $\mathsf{Level}(A^*, \mathbb{G}_u \oplus \mathbb{T}') = \prod_{f \colon \mathbb{L}' \to A} \mathsf{Level}_f(A^*, \mathbb{G}_u \oplus \mathbb{T}').$

The pullback of schemes

$$\mathsf{Level}_f(A^*, \mathbb{G}_u \oplus \mathbb{T}') \longrightarrow \mathsf{Level}(\ker(f^*), \mathbb{G}_u \oplus \mathbb{T}')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathsf{Hom}(A^*, \mathbb{G}_u \oplus \mathbb{T}') \stackrel{f^*}{\longrightarrow} \mathsf{Hom}(\ker(f^*), \mathbb{G}_u \oplus \mathbb{T}').$$

 \mathcal{F}_f :=minimal family $\{H \subset A | H \text{ is proper and } f \text{ does factor through } H\}$

Theorem

$$(E_n^0(BA)/I_{\mathcal{F}_f})^{\text{free}} \cong \mathcal{O}_{\text{Level}_f(A^*,\mathbb{G}_n,\oplus\mathbb{T}')},$$

$$E_n^0(\mathcal{L}^hBA)/I_{tr} = \prod_{f \colon \mathbb{L}' \to A} E_n^0(BA)/I_{\mathcal{F}_f};$$

 $\mathsf{Level}(A^*, \mathbb{G}_u \oplus \mathbb{T}') = \prod_{f \colon \mathbb{L}' \to A} \mathsf{Level}_f(A^*, \mathbb{G}_u \oplus \mathbb{T}').$

The pullback of schemes

$$\mathsf{Level}_f(A^*, \mathbb{G}_u \oplus \mathbb{T}') \longrightarrow \mathsf{Level}(\mathsf{ker}(f^*), \mathbb{G}_u \oplus \mathbb{T}')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathsf{Hom}(A^*, \mathbb{G}_u \oplus \mathbb{T}') \stackrel{f^*}{\longrightarrow} \mathsf{Hom}(\mathsf{ker}(f^*), \mathbb{G}_u \oplus \mathbb{T}').$$

 \mathcal{F}_f :=minimal family $\{H \subset A | H \text{ is proper and } f \text{ does factor through } H\}$

Theorem

$$(E_n^0(BA)/I_{\mathcal{F}_f})^{\text{free}} \cong \mathcal{O}_{\text{Level}_f(A^*,\mathbb{G}_u\oplus \mathbb{T}')}$$

$$E_n^0(\mathcal{L}^hBA)/I_{tr} = \prod_{f \colon \mathbb{L}' \to A} E_n^0(BA)/I_{\mathcal{F}_f};$$

 $\mathsf{Level}(A^*, \mathbb{G}_u \oplus \mathbb{T}') = \prod_{f \colon \mathbb{L}' \to A} \mathsf{Level}_f(A^*, \mathbb{G}_u \oplus \mathbb{T}').$

The pullback of schemes

$$\mathsf{Level}_f(A^*, \mathbb{G}_u \oplus \mathbb{T}') \longrightarrow \mathsf{Level}(\mathsf{ker}(f^*), \mathbb{G}_u \oplus \mathbb{T}')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathsf{Hom}(A^*, \mathbb{G}_u \oplus \mathbb{T}') \stackrel{f^*}{\longrightarrow} \mathsf{Hom}(\mathsf{ker}(f^*), \mathbb{G}_u \oplus \mathbb{T}').$$

 \mathcal{F}_f :=minimal family $\{H \subset A | H \text{ is proper and } f \text{ does factor through } H\}$

Theorem

$$(E_n^0(BA)/I_{\mathcal{F}_f})^{\text{free}} \cong \mathcal{O}_{\text{Level}_f(A^*,\mathbb{G}_u \oplus \mathbb{T}')},$$

$$E_n^0(\mathcal{L}^hBA)/I_{tr} = \prod_{f \colon \mathbb{L}' \to A} E_n^0(BA)/I_{\mathcal{F}_f};$$

 $\mathsf{Level}(A^*, \mathbb{G}_u \oplus \mathbb{T}') = \prod_{f \colon \mathbb{L}' \to A} \mathsf{Level}_f(A^*, \mathbb{G}_u \oplus \mathbb{T}').$

The pullback of schemes

$$\mathsf{Level}_f(A^*, \mathbb{G}_u \oplus \mathbb{T}') \longrightarrow \mathsf{Level}(\mathsf{ker}(f^*), \mathbb{G}_u \oplus \mathbb{T}')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathsf{Hom}(A^*, \mathbb{G}_u \oplus \mathbb{T}') \stackrel{f^*}{\longrightarrow} \mathsf{Hom}(\mathsf{ker}(f^*), \mathbb{G}_u \oplus \mathbb{T}').$$

 \mathcal{F}_f :=minimal family $\{H \subset A | H \text{ is proper and } f \text{ does factor through } H\}$

Theorem

$$(E_n^0(BA)/I_{\mathcal{F}_f})^{\text{free}} \cong \mathcal{O}_{\mathsf{Level}_f(A^*,\mathbb{G}_u \oplus \mathbb{T}')},$$

Classical result [Lemma 6.12, HKR][Proposition 3.20, Greenlees, May]

 $S \subset E^0(BA) :=$ the set of Euler classes of nontrivial irreducible representations of A.

$$E_n^0(BA)/I_{tr} \to S^{-1}E_n^0(BA).$$

There are canonical isomorphisms of E^0 -algebras

$$\pi_0 \Phi(\underline{E_n}) \cong S^{-1} E_n^0(BA) \cong S^{-1} E_n^0(BA) / I_{tr},$$

For generalized Morava E-theory

Huan, Stapleton

 $S \subset E_n^0(\mathcal{L}^h BA) :=$ the set of the pulled back Euler classes of nontrivial irreducible representations of the quotients of A.

 $S_f :=$ the subset of S consisting of representations of A/H with $H \in \mathcal{F}_f$.

$$E_n^0(BA)/I_{\mathcal{F}_f} \rightarrow S_f^{-1}E_n^0(BA)$$

$$\pi_0 \Phi^{\mathcal{F}_f}(\underline{E}_n) \cong S_f^{-1} E_n^0(BA) \cong S_f^{-1} E_n^0(BA)/I_{\mathcal{F}_f},$$

Classical result [Lemma 6.12, HKR][Proposition 3.20, Greenlees, May]

 $S \subset E^0(BA) :=$ the set of Euler classes of nontrivial irreducible representations of A.

$$E_n^0(BA)/I_{tr} \to S^{-1}E_n^0(BA).$$

There are canonical isomorphisms of E^0 -algebras

$$\pi_0 \Phi(\underline{E_n}) \cong S^{-1} E_n^0(BA) \cong S^{-1} E_n^0(BA) / I_{tr},$$

For generalized Morava E-theory

Huan, Stapleton

 $S \subset E_n^0(\mathcal{L}^h BA) :=$ the set of the pulled back Euler classes of nontrivial irreducible representations of the quotients of A.

 $S_f :=$ the subset of S consisting of representations of A/H with $H \in \mathcal{F}_f$.

$$E_n^0(BA)/I_{\mathcal{F}_f} \rightarrow S_f^{-1}E_n^0(BA)$$

$$\pi_0 \Phi^{\mathcal{F}_f}(\underline{E}_n) \cong S_f^{-1} E_n^0(BA) \cong S_f^{-1} E_n^0(BA) / I_{\mathcal{F}_f},$$

Classical result [Lemma 6.12, HKR][Proposition 3.20, Greenlees, May]

 $S \subset E^0(BA) :=$ the set of Euler classes of nontrivial irreducible representations of A.

$$E_n^0(BA)/I_{tr} \to S^{-1}E_n^0(BA).$$

There are canonical isomorphisms of E^0 -algebras

$$\pi_0\Phi(\underline{E_n})\cong S^{-1}E_n^0(BA)\cong S^{-1}E_n^0(BA)/I_{tr},$$

For generalized Morava E-theory

Huan, Stapleton

 $S \subset E_n^0(\mathcal{L}^h BA) :=$ the set of the pulled back Euler classes of nontrivial irreducible representations of the quotients of A.

 S_f :=the subset of S consisting of representations of A/H with $H \in \mathcal{F}_f$.

$$E_n^0(BA)/I_{\mathcal{F}_f} \to S_f^{-1}E_n^0(BA)$$

$$\pi_0 \Phi^{\mathcal{F}_f}(\underline{E}_n) \cong S_f^{-1} E_n^0(BA) \cong S_f^{-1} E_n^0(BA) / I_{\mathcal{F}_f},$$

Classical result [Lemma 6.12, HKR][Proposition 3.20, Greenlees, May]

 $S \subset E^0(BA) :=$ the set of Euler classes of nontrivial irreducible representations of A.

$$E_n^0(BA)/I_{tr} \to S^{-1}E_n^0(BA).$$

There are canonical isomorphisms of E^0 -algebras

$$\pi_0 \Phi(\underline{E_n}) \cong S^{-1} E_n^0(BA) \cong S^{-1} E_n^0(BA) / I_{tr},$$

For generalized Morava E-theory

[Huan, Stapleton]

 $S \subset E_n^0(\mathcal{L}^h BA) :=$ the set of the pulled back Euler classes of nontrivial irreducible representations of the quotients of A.

 S_f :=the subset of S consisting of representations of A/H with $H \in \mathcal{F}_f$.

$$E_n^0(BA)/I_{\mathcal{F}_f} \to S_f^{-1}E_n^0(BA)$$

$$\pi_0 \Phi^{\mathcal{F}_f}(\underline{E}_n) \cong S_f^{-1} E_n^0(BA) \cong S_f^{-1} E_n^0(BA) / I_{\mathcal{F}_f},$$

Classical result [Lemma 6.12, HKR][Proposition 3.20, Greenlees, May]

 $S \subset E^0(BA) :=$ the set of Euler classes of nontrivial irreducible representations of A.

$$E_n^0(BA)/I_{tr} \to S^{-1}E_n^0(BA).$$

There are canonical isomorphisms of E^0 -algebras

$$\pi_0 \Phi(\underline{E_n}) \cong S^{-1} E_n^0(BA) \cong S^{-1} E_n^0(BA) / I_{tr},$$

For generalized Morava E-theory

[Huan, Stapleton]

 $S \subset E_n^0(\mathcal{L}^h BA) :=$ the set of the pulled back Euler classes of nontrivial irreducible representations of the quotients of A.

 S_f :=the subset of S consisting of representations of A/H with $H \in \mathcal{F}_f$.

$$E_n^0(BA)/I_{\mathcal{F}_f} \to S_f^{-1}E_n^0(BA)$$

$$\pi_0 \Phi^{\mathcal{F}_f}(\underline{E}_n) \cong S_f^{-1} E_n^0(BA) \cong S_f^{-1} E_n^0(BA) / I_{\mathcal{F}_f},$$

Classical result [Lemma 6.12, HKR][Proposition 3.20, Greenlees, May]

 $S \subset E^0(BA) :=$ the set of Euler classes of nontrivial irreducible representations of A.

$$E_n^0(BA)/I_{tr} \to S^{-1}E_n^0(BA).$$

There are canonical isomorphisms of E^0 -algebras

$$\pi_0 \Phi(\underline{E_n}) \cong S^{-1} E_n^0(BA) \cong S^{-1} E_n^0(BA) / I_{tr},$$

For generalized Morava E-theory

[Huan, Stapleton]

 $S \subset E_n^0(\mathcal{L}^h BA) :=$ the set of the pulled back Euler classes of nontrivial irreducible representations of the quotients of A.

 S_f :=the subset of S consisting of representations of A/H with $H \in \mathcal{F}_f$.

$$E_n^0(BA)/I_{\mathcal{F}_f} o S_f^{-1}E_n^0(BA).$$

$$\pi_0 \Phi^{\mathcal{F}_f}(\underline{E}_n) \cong S_f^{-1} E_n^0(BA) \cong S_f^{-1} E_n^0(BA)/I_{\mathcal{F}_f},$$

Classical result [Lemma 6.12, HKR][Proposition 3.20, Greenlees, May]

 $S \subset E^0(BA) :=$ the set of Euler classes of nontrivial irreducible representations of A.

$$E_n^0(BA)/I_{tr} \to S^{-1}E_n^0(BA).$$

There are canonical isomorphisms of E^0 -algebras

$$\pi_0 \Phi(\underline{E_n}) \cong S^{-1} E_n^0(BA) \cong S^{-1} E_n^0(BA) / I_{tr},$$

For generalized Morava E-theory

[Huan, Stapleton]

 $S \subset E_n^0(\mathcal{L}^h BA) :=$ the set of the pulled back Euler classes of nontrivial irreducible representations of the quotients of A.

 $S_f:=$ the subset of S consisting of representations of A/H with $H\in {\mathcal F}_f.$

$$E_n^0(BA)/I_{\mathcal{F}_f} \to S_f^{-1}E_n^0(BA).$$

$$\pi_0 \Phi^{\mathcal{F}_f}(\underline{E}_n) \cong S_f^{-1} E_n^0(BA) \cong S_f^{-1} E_n^0(BA) / I_{\mathcal{F}_f},$$

Classical result [Lemma 6.12, HKR][Proposition 3.20, Greenlees, May]

 $S \subset E^0(BA) :=$ the set of Euler classes of nontrivial irreducible representations of A.

$$E_n^0(BA)/I_{tr} \to S^{-1}E_n^0(BA).$$

There are canonical isomorphisms of E^0 -algebras

$$\pi_0\Phi(\underline{E_n})\cong S^{-1}E_n^0(BA)\cong S^{-1}E_n^0(BA)/I_{tr},$$

For generalized Morava E-theory

[Huan, Stapleton]

 $S \subset E_n^0(\mathcal{L}^h BA)$:= the set of the pulled back Euler classes of nontrivial irreducible representations of the quotients of A.

 $S_f :=$ the subset of S consisting of representations of A/H with $H \in \mathcal{F}_f$.

$$E_n^0(BA)/I_{\mathcal{F}_f} \to S_f^{-1}E_n^0(BA).$$

$$\pi_0 \Phi^{\mathcal{F}_f}(\underline{E}_n) \cong S_f^{-1} E_n^0(BA) \cong S_f^{-1} E_n^0(BA)/I_{\mathcal{F}_f},$$

The subgroup scheme $\mathsf{Sub}^{\mathcal{A}}_{p^k}(\mathbb{G}_u\oplus \mathbb{T}')$

$$A \subset \mathbb{T}'$$
. Define $\operatorname{Sub}_{p^k}^A(\mathbb{G}_u \oplus \mathbb{T}') : E_n^0 - algebras \longrightarrow Set$

$$R \mapsto \{H \subseteq R \otimes \mathbb{G}_u \oplus \mathbb{T}' | |H| = p^k, pr(H) = A\}.$$

Corollary

$$\alpha: \mathbb{L}' \longrightarrow \Sigma_{p^k}$$
 monotypical. $C_{\Sigma_{p^k}}(\operatorname{im} \alpha) \cong \operatorname{im} \alpha \wr \Sigma_{p^j}, \ p^j = p^k/|\operatorname{im} \alpha|.$

$$\operatorname{Spec}(E_n^0(B(\operatorname{im}\alpha)\wr\Sigma_{p^i})/I_{tr}^{[\alpha]})\cong\operatorname{Sub}_{p^k}^{(\operatorname{im}\alpha)^*}(\mathbb{G}_u\oplus\mathbb{T}').$$

$$A| = p^{k}. \quad \alpha : \mathbb{L}' \xrightarrow{f} A \xrightarrow{i} \sum_{\text{Caley embedding}} \sum_{p^{k}} \text{ is monotypical.}$$

$$\operatorname{Spf}(E_{n}^{0}(BA)/I_{\mathcal{F}_{f}}) \longrightarrow \operatorname{Spf}(E_{n}^{0}(B(\operatorname{im} if) \wr \Sigma_{p^{j}})/I_{tr}^{[if]})$$

$$\downarrow \qquad \qquad \downarrow$$

The subgroup scheme $\mathsf{Sub}^{A}_{p^k}(\mathbb{G}_u \oplus \mathbb{T}')$

$$A \subset \mathbb{T}'$$
. Define $\operatorname{Sub}_{p^k}^A(\mathbb{G}_u \oplus \mathbb{T}') : E_n^0 - algebras \longrightarrow Set$

$$R \mapsto \{H \subseteq R \otimes \mathbb{G}_u \oplus \mathbb{T}' | |H| = p^k, pr(H) = A\}.$$

Corollary

$$\alpha: \mathbb{L}' \longrightarrow \Sigma_{p^k}$$
 monotypical. $C_{\Sigma_{p^k}}(\operatorname{im} \alpha) \cong \operatorname{im} \alpha \wr \Sigma_{p^j}, \ p^j = p^k/|\operatorname{im} \alpha|.$

$$\operatorname{Spec}(E_n^0(B(\operatorname{im}\alpha)\wr\Sigma_{p^j})/I_{tr}^{[\alpha]})\cong\operatorname{Sub}_{p^k}^{(\operatorname{im}\alpha)^*}(\mathbb{G}_u\oplus\mathbb{T}').$$

$$|A| = p^{k}. \quad \alpha : \mathbb{L}' \xrightarrow{f} A^{\underbrace{i}}_{\mathsf{Caley\ embedding}} \Sigma_{p^{k}} \quad \text{is\ monotypical}.$$

$$\mathsf{Spf}(E^{0}_{n}(BA)/I_{\mathcal{F}_{f}}) \xrightarrow{} \mathsf{Spf}(E^{0}_{n}(B(\mathsf{im}\ if)) \wr \Sigma_{p^{j}})/I^{[if]}_{tr})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathsf{Level}_{f}(A^{*}, \mathbb{G}_{u} \oplus \mathbb{T}') \xrightarrow{I \mapsto \mathsf{im}\ I} \mathsf{Sub}^{(\mathsf{im}\ f)^{*}}_{\iota}(\mathbb{G}_{u} \oplus \mathbb{T}').$$

The subgroup scheme $\mathsf{Sub}^{\mathcal{A}}_{p^k}(\mathbb{G}_u\oplus \mathbb{T}')$

$$A \subset \mathbb{T}'$$
. Define $\operatorname{Sub}_{p^k}^A(\mathbb{G}_u \oplus \mathbb{T}') : E_n^0 - algebras \longrightarrow Set$

$$R \mapsto \{H \subseteq R \otimes \mathbb{G}_u \oplus \mathbb{T}' | |H| = p^k, pr(H) = A\}.$$

Corollary

$$\alpha: \mathbb{L}' \longrightarrow \Sigma_{p^k} \text{ monotypical. } C_{\Sigma_{p^k}}(\operatorname{im} \alpha) \cong \operatorname{im} \alpha \wr \Sigma_{p^j}, \ p^j = p^k/|\operatorname{im} \alpha|.$$

$$\operatorname{Spec}(E_n^0(B(\operatorname{im}\alpha)\wr \Sigma_{p^j})/I_{tr}^{[\alpha]})\cong \operatorname{Sub}_{p^k}^{(\operatorname{im}\alpha)^*}(\mathbb{G}_u\oplus \mathbb{T}')$$

$$|A| = p^{k}. \quad \alpha : \mathbb{L}' \xrightarrow{f} A^{\underbrace{i}}_{\mathsf{Caley\ embedding}} \Sigma_{p^{k}} \quad \text{is\ monotypical}.$$

$$\mathsf{Spf}(E^{0}_{n}(BA)/I_{\mathcal{F}_{f}}) \xrightarrow{} \mathsf{Spf}(E^{0}_{n}(B(\mathsf{im}\ if) \wr \Sigma_{p^{j}})/I^{[if]}_{tr})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathsf{Level}_{f}(A^{*}, \mathbb{G}_{u} \oplus \mathbb{T}') \xrightarrow{I \mapsto \mathsf{im}\ I} \mathsf{Sub}^{(\mathsf{im}\ f)^{*}}_{h}(\mathbb{G}_{u} \oplus \mathbb{T}').$$

The subgroup scheme $\operatorname{Sub}_{p^k}^A(\mathbb{G}_u\oplus \mathbb{T}')$

$$A \subset \mathbb{T}'$$
. Define $\operatorname{Sub}_{p^k}^A(\mathbb{G}_u \oplus \mathbb{T}') : E_n^0 - algebras \longrightarrow Set$

$$R \mapsto \{H \subseteq R \otimes \mathbb{G}_u \oplus \mathbb{T}' | |H| = p^k, pr(H) = A\}.$$

Corollary

$$\alpha: \mathbb{L}' \longrightarrow \Sigma_{p^k} \text{ monotypical. } C_{\Sigma_{p^k}}(\operatorname{im} \alpha) \cong \operatorname{im} \alpha \wr \Sigma_{p^j}, \ p^j = p^k/|\operatorname{im} \alpha|.$$

$$\operatorname{Spec}(E_n^0(B(\operatorname{im}\alpha)\wr\Sigma_{p^j})/I_{tr}^{[\alpha]})\cong\operatorname{Sub}_{p^k}^{(\operatorname{im}\alpha)^*}(\mathbb{G}_u\oplus\mathbb{T}').$$

$$|A| = p^{k}. \quad \alpha : \mathbb{L}' \xrightarrow{f} A^{\underbrace{i}}_{\mathsf{Caley\ embedding}} \Sigma_{p^{k}} \quad \text{is\ monotypical}.$$

$$\mathsf{Spf}(E^{0}_{n}(BA)/I_{\mathcal{F}_{f}}) \longrightarrow \mathsf{Spf}(E^{0}_{n}(B(\mathrm{im\ }if) \wr \Sigma_{p^{j}})/I^{[if]}_{tr})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathsf{Level}_{f}(A^{*}, \mathbb{G}_{H} \oplus \mathbb{T}') \xrightarrow{I \mapsto \mathrm{im\ }I} \mathsf{Sub}^{(\mathrm{im\ }f)^{*}}_{\downarrow k} (\mathbb{G}_{H} \oplus \mathbb{T}').$$

The subgroup scheme $\operatorname{Sub}_{p^k}^{\mathcal{A}}(\mathbb{G}_u \oplus \mathbb{T}')$

$$A \subset \mathbb{T}'$$
. Define $\operatorname{Sub}_{p^k}^A(\mathbb{G}_u \oplus \mathbb{T}') : E_n^0 - algebras \longrightarrow Set$

$$R \mapsto \{H \subseteq R \otimes \mathbb{G}_u \oplus \mathbb{T}' | |H| = p^k, pr(H) = A\}.$$

Corollary

$$\alpha: \mathbb{L}' \longrightarrow \Sigma_{p^k} \text{ monotypical. } C_{\Sigma_{p^k}} (\operatorname{im} \alpha) \cong \operatorname{im} \alpha \wr \Sigma_{p^j}, \ p^j = p^k / |\operatorname{im} \alpha|.$$

$$\operatorname{Spec}(E_n^0(B(\operatorname{im}\alpha)\wr\Sigma_{p^j})/I_{tr}^{[\alpha]})\cong\operatorname{Sub}_{p^k}^{(\operatorname{im}\alpha)^*}(\mathbb{G}_u\oplus\mathbb{T}').$$

$$|A| = p^{k}. \quad \alpha : \mathbb{L}' \xrightarrow{f} A^{\underbrace{i}_{\mathsf{Caley \ embedding}} \sum_{p^{k}} \text{ is monotypical.}}$$

$$\mathsf{Spf}(E_{n}^{0}(BA)/I_{\mathcal{F}_{f}}) \longrightarrow \mathsf{Spf}(E_{n}^{0}(B(\mathsf{im} \ if) \wr \Sigma_{p^{j}})/I_{tr}^{[if]})$$

The subgroup scheme $\mathsf{Sub}^{A}_{p^k}(\mathbb{G}_u \oplus \mathbb{T}')$

$$A \subset \mathbb{T}'$$
. Define $\operatorname{Sub}_{n^k}^A(\mathbb{G}_u \oplus \mathbb{T}') : E_n^0 - algebras \longrightarrow Set$

$$R \mapsto \{H \subseteq R \otimes \mathbb{G}_u \oplus \mathbb{T}' | |H| = p^k, pr(H) = A\}.$$

Corollary

$$\alpha: \mathbb{L}' \longrightarrow \Sigma_{p^k} \text{ monotypical. } C_{\Sigma_{p^k}} (\operatorname{im} \alpha) \cong \operatorname{im} \alpha \wr \Sigma_{p^j}, \ p^j = p^k / |\operatorname{im} \alpha|.$$

$$\operatorname{Spec}(E_n^0(B(\operatorname{im}\alpha)\wr \Sigma_{p^j})/I_{tr}^{[\alpha]})\cong \operatorname{Sub}_{p^k}^{(\operatorname{im}\alpha)^*}(\mathbb{G}_u\oplus \mathbb{T}').$$

$$|A| = p^k. \quad \alpha : \mathbb{L}' \xrightarrow{f} A^{\underbrace{i}_{\mathsf{Caley \ embedding}}} \Sigma_{p^k} \quad \text{is monotypical.}$$

$$\mathsf{Spf}(E^0_n(BA)/I_{\mathcal{F}_f}) \xrightarrow{} \mathsf{Spf}(E^0_n(B(\mathrm{im}\ if) \wr \Sigma_{p^j})/I_{\mathsf{tr}}^{[if]})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathsf{Level}_f(A^*, \mathbb{G}_u \oplus \mathbb{T}') \xrightarrow{I \mapsto \mathsf{im}\ I} \mathsf{Sub}_{p^k}^{(\mathsf{im}\ f)^*} (\mathbb{G}_u \oplus \mathbb{T}').$$

More geometric power operation

Tate K-theory: the generalized elliptic cohomology associated to the Tate curve.

Strickland's theorem for Tate K-theory

[Huan]

The Tate K-theory of symmetric groups modulo a certain transfer ideal classifies finite subgroups of the Tate curve.

$$K_{Tate}(\operatorname{pt}/\hspace{-0.1cm}/\Sigma_N)/I_{tr}^{Tate}\cong\prod_{N=de}\mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d-q_s'^e
angle_{s}$$

where l_{tr}^{Tate} is the transfer ideal and q_s' is the image of q under the stringy power operation, the product goes over all the ordered pairs of positive integers (d, e) such that N = de.

A^* —level structure on Tate curve

Huan

A: any finite abelian group.

 $K_{Tate}(pt//A)/I_{tr}^A$ classifies A^* -Level structure of the Tate curve.

More geometric power operation

Tate K-theory: the generalized elliptic cohomology associated to the Tate curve.

Strickland's theorem for Tate K-theory

[Huan]

The Tate K-theory of symmetric groups modulo a certain transfer ideal classifies finite subgroups of the Tate curve.

$$K_{Tate}(\operatorname{pt}/\!\!/ \Sigma_N)/I_{tr}^{Tate} \cong \prod_{N=de} \mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d - q_s'^e \rangle,$$

where I_{tr}^{Tate} is the transfer ideal and q_s' is the image of q under the stringy power operation, the product goes over all the ordered pairs of positive integers (d, e) such that N = de.

A^* —level structure on Tate curve

Huan[†]

A: any finite abelian group.

 $K_{Tate}(pt//A)/I_{tr}^A$ classifies A^* —Level structure of the Tate curve.

More geometric power operation

Tate K-theory: the generalized elliptic cohomology associated to the Tate curve.

Strickland's theorem for Tate K-theory

[Huan]

The Tate K-theory of symmetric groups modulo a certain transfer ideal classifies finite subgroups of the Tate curve.

$$K_{Tate}(\operatorname{pt}/\hspace{-0.15cm}/\Sigma_N)/I_{tr}^{Tate}\cong\prod_{N=de}\mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d-q_s'^e
angle,$$

where I_{tr}^{Tate} is the transfer ideal and q_s' is the image of q under the stringy power operation, the product goes over all the ordered pairs of positive integers (d, e) such that N = de.

A^* —level structure on Tate curve

[Huan]

A: any finite abelian group.

 $K_{Tate}(pt/\!\!/A)/I_{tr}^A$ classifies A^* -Level structure of the Tate curve.

Projects with Nathaniel Stapleton

- Construct power operation of generalized Morava E-theory;
- and other problems on Morava E-theories.

The Definition of n—vector bundles

- ullet (1-)vector bundles \Rightarrow topological K-theory whose chromatic level is 1;
- 2-vector bundles ⇒ a form of elliptic cohomology theory whose chromatic level is 2.

- Definition of n—vector bundle? Definition of equivariant n—vector bundle?
- n-vector bundle \Rightarrow chromatic level n cohomology theory?
- Definition of n—gerbes to give a right loop based definition of the level n cohomology theory?

Projects with Nathaniel Stapleton

- Construct power operation of generalized Morava E-theory;
- and other problems on Morava E-theories.

The Definition of n—vector bundles

- ullet (1-)vector bundles \Rightarrow topological K-theory whose chromatic level is 1;
- 2-vector bundles ⇒ a form of elliptic cohomology theory whose chromatic level is 2.

- Definition of n—vector bundle? Definition of equivariant n—vector bundle?
- n-vector bundle \Rightarrow chromatic level n cohomology theory?
- Definition of n—gerbes to give a right loop based definition of the level n cohomology theory?

Projects with Nathaniel Stapleton

- Construct power operation of generalized Morava E-theory;
- and other problems on Morava E-theories.

The Definition of n-vector bundles

- (1-)vector bundles \Rightarrow topological K-theory whose chromatic level is 1;
- 2-vector bundles ⇒ a form of elliptic cohomology theory whose chromatic level is 2.

- Definition of *n*—vector bundle? Definition of equivariant *n*—vector bundle?
- n-vector bundle \Rightarrow chromatic level n cohomology theory?
- Definition of n—gerbes to give a right loop based definition of the level n cohomology theory?

Projects with Nathaniel Stapleton

- Construct power operation of generalized Morava E-theory;
- and other problems on Morava E-theories.

The Definition of n-vector bundles

- (1-)vector bundles \Rightarrow topological K-theory whose chromatic level is 1;
- 2-vector bundles ⇒ a form of elliptic cohomology theory whose chromatic level is 2.

- Definition of n—vector bundle? Definition of equivariant n—vector bundle?
- n-vector bundle \Rightarrow chromatic level n cohomology theory?
- Definition of n—gerbes to give a right loop based definition of the level n cohomology theory?

Projects with Nathaniel Stapleton

- Construct power operation of generalized Morava E-theory;
- and other problems on Morava E-theories.

The Definition of n-vector bundles

- (1-)vector bundles \Rightarrow topological K-theory whose chromatic level is 1;
- 2-vector bundles ⇒ a form of elliptic cohomology theory whose chromatic level is 2.

- Definition of n—vector bundle? Definition of equivariant n—vector bundle?
- n-vector bundle \Rightarrow chromatic level n cohomology theory?
- Definition of n—gerbes to give a right loop based definition of the level n cohomology theory?

Projects with Nathaniel Stapleton

- Construct power operation of generalized Morava E-theory;
- and other problems on Morava E-theories.

The Definition of n-vector bundles

- (1-)vector bundles \Rightarrow topological K-theory whose chromatic level is 1;
- 2-vector bundles ⇒ a form of elliptic cohomology theory whose chromatic level is 2.

- Definition of n—vector bundle? Definition of equivariant n—vector bundle?
- n-vector bundle \Rightarrow chromatic level n cohomology theory?
- Definition of n—gerbes to give a right loop based definition of the level n cohomology theory?

Projects with Nathaniel Stapleton

- Construct power operation of generalized Morava E-theory;
- and other problems on Morava E-theories.

The Definition of n-vector bundles

- (1-)vector bundles \Rightarrow topological K-theory whose chromatic level is 1;
- 2-vector bundles ⇒ a form of elliptic cohomology theory whose chromatic level is 2.

- Definition of n—vector bundle? Definition of equivariant n—vector bundle?
- n−vector bundle ⇒ chromatic level n cohomology theory?
- Definition of n—gerbes to give a right loop based definition of the level n cohomology theory?

Projects with Matthew Spong and Matthew Young

- Construct a power operation for Devoto's equivariant elliptic cohomology compatible with the Chern character map and compare it with the power operation [Evans-Berwick, Stapleton].
- Construct the twisted version of the elliptic power operation of quasi-elliptic cohomology => a power operation of the twisted equivariant elliptic cohomology.
- 6 Hopkins-Kuhn-Ravenel character theory on quasi-elliptic cohomology? The relation to the character theory on twisted equivariant elliptic cohomology theory?
- Quasi-elliptic cohomology is a receptacle of Witten genus?
- Ohern character from Kitchloo's dominant K-theory? Its relation to the twisted Chern character from twisted equivariant K-theory [FHT]?

Projects with Matthew Spong and Matthew Young

- Construct a power operation for Devoto's equivariant elliptic cohomology compatible with the Chern character map and compare it with the power operation [Evans-Berwick, Stapleton].
- Construct the twisted version of the elliptic power operation of quasi-elliptic cohomology \Rightarrow a power operation of the twisted equivariant elliptic cohomology.
- 6 Hopkins-Kuhn-Ravenel character theory on quasi-elliptic cohomology? The relation to the character theory on twisted equivariant elliptic cohomology theory?
- Quasi-elliptic cohomology is a receptacle of Witten genus?
- **6** Chern character from Kitchloo's dominant K-theory? Its relation to the twisted Chern character from twisted equivariant K-theory [FHT]?

Projects with Matthew Spong and Matthew Young

- Construct a power operation for Devoto's equivariant elliptic cohomology compatible with the Chern character map and compare it with the power operation [Evans-Berwick, Stapleton].
- Construct the twisted version of the elliptic power operation of quasi-elliptic cohomology \Rightarrow a power operation of the twisted equivariant elliptic cohomology.
- 6 Hopkins-Kuhn-Ravenel character theory on quasi-elliptic cohomology? The relation to the character theory on twisted equivariant elliptic cohomology theory?
- Quasi-elliptic cohomology is a receptacle of Witten genus?
- **6** Chern character from Kitchloo's dominant K-theory? Its relation to the twisted Chern character from twisted equivariant K-theory [FHT]?

Projects with Matthew Spong and Matthew Young

- Construct a power operation for Devoto's equivariant elliptic cohomology compatible with the Chern character map and compare it with the power operation [Evans-Berwick, Stapleton].
- Construct the twisted version of the elliptic power operation of quasi-elliptic cohomology => a power operation of the twisted equivariant elliptic cohomology.
- 6 Hopkins-Kuhn-Ravenel character theory on quasi-elliptic cohomology? The relation to the character theory on twisted equivariant elliptic cohomology theory?
- Quasi-elliptic cohomology is a receptacle of Witten genus?
- **6** Chern character from Kitchloo's dominant K-theory? Its relation to the twisted Chern character from twisted equivariant K-theory [FHT]?

Projects with Matthew Spong and Matthew Young

- Construct a power operation for Devoto's equivariant elliptic cohomology compatible with the Chern character map and compare it with the power operation [Evans-Berwick, Stapleton].
- ② Construct the twisted version of the elliptic power operation of quasi-elliptic cohomology ⇒ a power operation of the twisted equivariant elliptic cohomology.
- 6 Hopkins-Kuhn-Ravenel character theory on quasi-elliptic cohomology? The relation to the character theory on twisted equivariant elliptic cohomology theory?
- Quasi-elliptic cohomology is a receptacle of Witten genus?
- Ohern character from Kitchloo's dominant K-theory? Its relation to the twisted Chern character from twisted equivariant K-theory [FHT]?

Projects with Matthew Spong and Matthew Young

- Construct a power operation for Devoto's equivariant elliptic cohomology compatible with the Chern character map and compare it with the power operation [Evans-Berwick, Stapleton].
- ② Construct the twisted version of the elliptic power operation of quasi-elliptic cohomology ⇒ a power operation of the twisted equivariant elliptic cohomology.
- Mopkins-Kuhn-Ravenel character theory on quasi-elliptic cohomology? The relation to the character theory on twisted equivariant elliptic cohomology theory?
- Quasi-elliptic cohomology is a receptacle of Witten genus?
- Ohern character from Kitchloo's dominant K-theory? Its relation to the twisted Chern character from twisted equivariant K-theory [FHT]?

Projects with Matthew Spong and Matthew Young

- Construct a power operation for Devoto's equivariant elliptic cohomology compatible with the Chern character map and compare it with the power operation [Evans-Berwick, Stapleton].
- ② Construct the twisted version of the elliptic power operation of quasi-elliptic cohomology ⇒ a power operation of the twisted equivariant elliptic cohomology.
- Hopkins-Kuhn-Ravenel character theory on quasi-elliptic cohomology? The relation to the character theory on twisted equivariant elliptic cohomology theory?
- Quasi-elliptic cohomology is a receptacle of Witten genus?
- Ohern character from Kitchloo's dominant K-theory? Its relation to the twisted Chern character from twisted equivariant K-theory [FHT]?

Projects with Matthew Spong and Matthew Young

- Construct a power operation for Devoto's equivariant elliptic cohomology compatible with the Chern character map and compare it with the power operation [Evans-Berwick, Stapleton].
- ② Construct the twisted version of the elliptic power operation of quasi-elliptic cohomology ⇒ a power operation of the twisted equivariant elliptic cohomology.
- Mopkins-Kuhn-Ravenel character theory on quasi-elliptic cohomology? The relation to the character theory on twisted equivariant elliptic cohomology theory?
- Quasi-elliptic cohomology is a receptacle of Witten genus?
- Ohern character from Kitchloo's dominant K-theory? Its relation to the twisted Chern character from twisted equivariant K-theory [FHT]?

Projects with Matthew Spong and Matthew Young

- Construct a power operation for Devoto's equivariant elliptic cohomology compatible with the Chern character map and compare it with the power operation [Evans-Berwick, Stapleton].
- ② Construct the twisted version of the elliptic power operation of quasi-elliptic cohomology ⇒ a power operation of the twisted equivariant elliptic cohomology.
- Mopkins-Kuhn-Ravenel character theory on quasi-elliptic cohomology? The relation to the character theory on twisted equivariant elliptic cohomology theory?
- Quasi-elliptic cohomology is a receptacle of Witten genus?
- **6** Chern character from Kitchloo's dominant K-theory? Its relation to the twisted Chern character from twisted equivariant K-theory [FHT]?

Projects with Matthew Spong and Matthew Young

- Onstruct a power operation for Devoto's equivariant elliptic cohomology compatible with the Chern character map and compare it with the power operation [Evans-Berwick, Stapleton].
- ② Construct the twisted version of the elliptic power operation of quasi-elliptic cohomology ⇒ a power operation of the twisted equivariant elliptic cohomology.
- Mopkins-Kuhn-Ravenel character theory on quasi-elliptic cohomology? The relation to the character theory on twisted equivariant elliptic cohomology theory?
- Quasi-elliptic cohomology is a receptacle of Witten genus?
- Chern character from Kitchloo's dominant K-theory? Its relation to the twisted Chern character from twisted equivariant K-theory [FHT]?

Thank you.

Some references

https://huanzhen84.github.io/zhenhuan/Huan-YMF-2019-Slides.pdf

- Ando, "Isogenies of formal group laws and power operations in the cohomology theories E_n ", Duke J., 1995
- Ando, Hopkins, Strickland: "Elliptic spectra, the Witten genus and the theorem of the cube". Invent. Math., 146(3):595–687, 2001.
- lacktriangle Ando, Hopkins, Strickland, "The sigma orientation is an H_{∞} map", Amer. J. 2004;
- Atiyah, "Power operations in K-theory", Quart. J. Math. Oxford Ser. (2) 17 1966.
- Przemyslaw Chojecki, "Drinfeld Level Structures and Lubin-Tate Spaces", November 23, 2011.
- V. G. Drinfeld, "Elliptic modules", Mat. Sb. (N.S.), 94(136):594-627, 656, 1974.
- Ganter, "Stringy power operations in Tate K-theory", Homology, Homotopy, Appl., 2013;
- John Greenlees, Peter May, "Equivariant stable homotopy theory", in Ioan James (ed.), Handbook of Algebraic Topology, pp. 279–325. 1995.
- Michael Harris, Richard Taylor, "On the Geometry and Cohomology of Some Simple Shimura Varieties", August 30, 1999.
- Hopkins, Kuhn, Ravenel, "Generalized group characters and complex oriented cohomology theories", J. Am. Math. Soc. 13 (2000).
- Zhen Huan, Quasi-Elliptic Cohomology and its Power Operations, Journal of Homotopy and Related Structures, 13(4), 715–767.
- J. Lubin and J. Tate, "Formal moduli for one-parameter formal lie groups", Bull. Soc. math. France 94 (1966), 49-60.
- Lurie, "A Survey of Elliptic Cohomology", in Algebraic Topology Abel Symposia Volume 4, 2009, pp 219–277.
- Tomer M. Schlank, Nathaniel Stapleton, "A transchromatic proof of Strickland's theorem", Adv. Math. 285 (2015), 1415–1447.
- Stapleton, "Transchromatic generalized character maps", Algebr. Geom. Topol. 13 (2013), no. 1, 171–203.
- Strickland, "Morava E-theory of symmetric groups", Topology 37 (1998), no. 4.