Sistema de Controle de Acesso (fechadura eletrônica)

1. Descrição do Projeto

Este projeto consiste na implementação de um sistema de controle de acesso utilizando um Arduino, um teclado matricial, um display LCD com interface I2C e um servo motor. O sistema permite que um usuário digite uma senha no teclado para abrir uma porta controlada pelo servo motor. Além disso, possui um modo de administração que permite alterar a senha de acesso.

2. Componentes Utilizados

- Arduino Uno
- Display LCD I2C 16x2 (LiquidCrystal_I2C), baseado em PCF8574
- Teclado Matricial 4x4 (Keypad)
- Servo Motor (Servo)
- Fios Jumper

3. Conexões

- Display LCD I2C:
 - Conectado ao barramento I2C (SDA, SCL) do Arduino.
- Teclado Matricial:
 - Linhas conectadas aos pinos digitais 6, 7, 8 e 9 do Arduino.
 - Colunas conectadas aos pinos digitais 10, 11, 12 e 13 do Arduino.
- Servo Motor:
 - Sinal conectado ao pino analógico A0 do Arduino.
 - Alimentação conectada aos pinos 5V e GND do Arduino.

4. Diagrama

5. Código Fonte

5.1. Inclusão de bibliotecas:

```
include <LiquidCrystal_I2C.h>
include <Keypad.h>
include <Servo.h>
```

Aqui, estamos incluindo as bibliotecas necessárias para o funcionamento do código. LiquidCrystal_I2C.h é utilizada para controlar um display LCD via I2C, Keypad.h para a leitura de um teclado matricial, e Servo.h para controlar um servo motor.

5.2. Definição de variáveis e objetos:

Servo servoMotor;

Keypad teclado = Keypad(makeKeymap(teclasTeclado), pinosLinhasTeclado, pinosColunasTeclado, numLinhasTeclado, numColunasTeclado);

Agui, estamos definindo variáveis e objetos necessários para o funcionamento do sistema.

- lcd: objeto do tipo LiquidCrystal_I2C para controlar o display LCD.
- numLinhasTeclado e numColunasTeclado: dimensões do teclado matricial.
- senhaCorreta: senha de acesso ao sistema.
- entradaUsuario: vetor para armazenar a senha digitada pelo usuário.
- contador Entradas: contador para rastrear o número de teclas pressionadas.
- pinosLinhasTeclado e pinosColunasTeclado: mapeamento dos pinos do teclado matricial.
- senhaAdm: senha de administrador.
- teclas Teclado: mapeamento das teclas do teclado matricial.
- servoMotor: objeto do tipo Servo para controlar o servo motor.
- teclado: objeto do tipo Keypad para a leitura do teclado matricial.

5.3. Função setup():

```
void setup() {
    lcd.init();
    lcd.backlight();
    inicial();
    servoMotor.attach(A0, 544, 2400);
    servoMotor.write(0);
}
```

Esta função é executada uma vez quando o Arduino é inicializado. Aqui, estamos inicializando o display LCD, configurando a tela inicial, conectando o servo motor a um pino e definindo a posição inicial do servo motor.

5.4. Função loop():

```
void loop() {
   char teclaDigitada = teclado.getKey();
   if ((teclaDigitada != 0) && (contadorEntradas < 4)) {
      entradaUsuario[contadorEntradas] = teclaDigitada;
      limparSenha();
      inicial();
   }
}</pre>
```

Esta função é executada continuamente após a inicialização. Aqui, estamos lendo as teclas pressionadas no teclado, armazenando as teclas pressionadas, exibindo as teclas no LCD, verificando se a senha foi inserida corretamente e tomando ações apropriadas com base nisso.

5.5. Função inicial():

```
void inicial() {
    lcd.clear();
    lcd.setCursor(0, 0);
    lcd.print(" Sala CPD ");
    lcd.setCursor(0, 1);
    lcd.print("Senha: ");
}
```

Esta função é responsável por configurar a tela inicial do LCD. Ela faz o seguinte:

- Limpa o LCD para garantir que não haja informações anteriores na tela.
- Define o cursor na posição (0, 0), que é a primeira linha e a primeira coluna do display.
- Exibe a mensagem "Sala CPD" no display, centralizada horizontalmente.
- Define o cursor na posição (0, 1), que é a segunda linha e a primeira coluna do display.
- Exibe a mensagem "Senha: " no display, indicando ao usuário que ele deve digitar a senha.

5.6. Função limparSenha():

```
void limparSenha() {
  for (int i = 0; i < 5; i++) {
    entradaUsuario[i] = '\0';
  }
  contadorEntradas = 0;
}</pre>
```

Esta função é responsável por limpar a senha digitada pelo usuário, resetando o vetor de entrada e o contador de entradas. Ela faz o seguinte:

- Utiliza um loop for para percorrer cada posição do vetor entradaUsuario.
- Atribui o valor '\0' (caractere nulo) a cada posição do vetor, limpando assim a senha digitada anteriormente.
- Reseta o contador de entradas, garantindo que a próxima senha digitada comece a ser armazenada a partir da primeira posição do vetor.

5.7. Função alterarSenha():

```
void alterarSenha() {
  lcd.clear();
  lcd.setCursor(0, 0);
  lcd.print("Nova Senha: ");
  delay(1000);
  char novaSenhaUsuario[5];
  byte contadorNovaSenha = 0;
  while (contadorNovaSenha < 4) {
     char teclaNovaSenha = teclado.getKey();
    if (teclaNovaSenha) {
       novaSenhaUsuario[contadorNovaSenha] = teclaNovaSenha;
       lcd.setCursor((contadorNovaSenha + 6), 1);
       lcd.print(teclaNovaSenha);
       contadorNovaSenha++:
    }
  }
  novaSenhaUsuario[4] = '\0';
  strcpy(senhaCorreta, novaSenhaUsuario);
  lcd.clear();
  lcd.setCursor(0, 0);
  lcd.print("Senha Alterada!");
  delay(2000);
```

Esta função permite ao usuário alterar a senha. Ela faz o seguinte:

- Limpa o LCD para uma nova tela.
- Exibe a mensagem "Nova Senha: " no display, indicando ao usuário que ele deve digitar a nova senha.
 - Aguarda um segundo para dar tempo ao usuário de se preparar para digitar a nova senha.
 - Inicia um loop while para permitir que o usuário digite a nova senha.
- A cada tecla pressionada, a função atualiza a tela do LCD exibindo a tecla pressionada e armazenando a nova senha no vetor novaSenhaUsuario.
- Quando todas as quatro teclas da nova senha são digitadas, a função copia a nova senha para a variável senhaCorreta.
- Exibe uma mensagem de confirmação no display, indicando que a senha foi alterada com sucesso.

6. Funcionamento

- 1. Inicialização:
 - O LCD é inicializado e a tela de boas-vindas é exibida.
 - O servo motor é configurado para a posição inicial (0 graus).
- 2. Entrada da Senha:
 - O usuário digita a senha usando o teclado matricial.
 - A primeira tecla digitada é exibida no LCD, as demais são substituídas por asteriscos.
- 3. Verificação da Senha:
- Se a senha estiver correta, o servo motor se move para 90 graus, liberando a porta e uma mensagem de "Porta Liberada!" é exibida no LCD.
 - Se a senha estiver incorreta, uma mensagem de "Senha Incorreta!" é exibida no LCD.
- Se a senha for de administrador, entra no modo de administrador para poder alterar a senha de acesso.
- 4. Reinicialização:
- Após 3 segundos, o sistema é reinicializado, trancando a porta e voltando à tela de boasvindas.

7. Link do Projeto

Você pode acessar o projeto no Tinkercad através do seguinte link: Controle de Acesso

Você pode acessar o projeto no GitHub através do seguinte link: GitHub

Slide do projeto: PowerPoint