# TPC n°07 : Suivi cinétique et loi de vitesse.

« Comment déterminer si l'évolution de la concentration d'un réactif suit une loi de vitesse d'ordre 1? »

### S'APPROPRIER

1°- Les réactifs appartiennent aux couples oxydant/réducteur suivants ;  $S_2O_8^{2^-}$  (aq)  $SO_4^{2^-}$  (aq) et  $I_{2(aq)}/I_{(aq)}$  Les demi-équations sont donc :  $S_2O_8^{2^-} + 2e^- = 2SO_4^{2^-}$ 

$$2I^{-} = I_2 + 2e^{-}$$

Soit  $S_2O_{8\,(aq)}^{2-} + \frac{2}{2}I_{(aq)}^{-} \rightarrow \frac{2}{2}SO_{4\,(aq)}^{2-} + I_{2\,(aq)}$ 

|                    |                                        | $S_2O_{8(aq)}^{2-}$  | + <b>2</b> $I_{(aq)}^-$ - | $ ightarrow$ 2 $SO_{4(aq)}^{2-}$ | + $I_{2(aq)}$    |
|--------------------|----------------------------------------|----------------------|---------------------------|----------------------------------|------------------|
| EI                 | x = 0                                  | $C_2V_2$             | $C_1V_1$                  | 0                                | 0                |
| État intermédiaire | x(t)                                   | $C_2V_2-x(t)$        | $C_1V_1 - 2x(t)$          | 2x(t)                            | x(t)             |
| EF                 | $\mathbf{x} = \mathbf{x}_{\text{max}}$ | $C_2V_2$ - $x_{max}$ | $C_1V_1$ - $2x_{max}$     | 2x <sub>max</sub>                | X <sub>max</sub> |

$$3^{\circ}$$
-  $n_{I^{-}}^{i} = C_{1}V_{1} = 1.0 \times 10.010^{-3} = 1.0.10^{-2} \ mol$  et  $n_{S_{2}O_{8}^{2^{-}}}^{i} = C_{2}V_{2} = 1.0.10^{-2} \times 10.010^{-3} = 1.0.10^{-4} \ mol$  Si les réactifs étaient tous les 2 limitants,  $\frac{n_{I^{-}}^{i}}{2} = \frac{n_{S_{2}O_{8}^{2^{-}}}^{i}}{1}$  or  $\frac{n_{I^{-}}^{i}}{2} = 5.0.10^{-3} \gg 1.0.10^{-4}$  donc les ions iodure sont bien introduits en large excès et on en déduit  $x_{max} = 1.0.10^{-4} \ mol$ .

$$[I_2]_{max} = \frac{n_{I_2}^f}{V_1 + V_2} = \frac{x_{max}}{V_1 + V_2} = \frac{1,0.10^{-4}}{20.10^{-3}} = 5, 0.10^{-3} \ mol. L^{-1}$$

- 4°- On peut utiliser la spectrophotométrie pour le suivi de cette transformation car elle met en jeu **une seule espèce chimique colorée, le diiode I<sub>2</sub>.**
- 5°- Il faut régler le spectrophotomètre à la longueur d'onde correspondant au maximum d'absorption du diiode. D'après le document 2,  $\lambda_{max} \approx 460 \ nm$
- 6°- Avant d'utiliser un spectrophotomètre, il faut **faire le blanc pour régler l'absorbance à 0** à l'aide du solvant afin que l'absorbance mesurée ne tienne compte que de l'espèce chimique colorée.
- 7°- En cinétique, il faut déclencher le chronomètre **pendant** qu'on ajoute le dernier réactif. (ni au début, ni à la fin de l'ajout)

#### **ANALYSER**

8°- 
$$A_t = k \times [I_2]_t$$
 donc  $[I_2]_t = \frac{A_t}{k}$  et  $[I_2]_{max} = \frac{A_{max}}{k}$  ce qui permet d'exprimer  $k = \frac{A_{max}}{[I_2]_{max}}$ .

En remplaçant k par son expression, on obtient  $[I_2]_t = \frac{[I_2]_{max}}{A_{max}} \times A_t$ 

9°- À t = 0 
$$[S_2 O_8^{2-}]_0 = \frac{n_{S_2 O_8^{2-}}^i}{V_1 + V_2} = \frac{1,0.10^{-4}}{20.10^{-3}} = 5, 0.10^{-3} \text{ mol}$$

10°- D'après le tableau d'avancement, 
$$[S_2O_8^{2-}]_t = \frac{C_2V_2 - x(t)}{V_1 + V_2} = \frac{C_2V_2}{V_1 + V_2} - \frac{x(t)}{V_1 + V_2} = [S_2O_8^{2-}]_0 - [I_2]_t$$

11°- A l'aide du réticule, on mesure  $A_{max}$  sur le graphique. On en déduit  $A_{max}$  /2 et on mesure à l'aide du réticule, l'instant correspondant à  $A_{max}$  /2. On obtient alors  $t_{1/2} = 1$  min 55 s.



## 12°-<u>Démarche</u>

L'acquisition réalisée nous donne l'évolution de l'absorbance du milieu réactionnel en fonction du temps, or nous savons que cette absorbance est proportionnelle à  $[I_2]_t$  la concentration en diiode au cours du temps car c'est la seule espèce chimique colorée. De plus nous avons montré que  $[S_2O_8^{2-}]_t = [S_2O_8^{2-}]_0 - [I_2]_t$ . On peut donc calculer  $[S_2O_8^{2-}]_t$  à l'aide de la feuille de calcul de Latis-Pro et obtenir l'évolution de la concentration en ions  $S_2O_8^{2-}$  au cours du temps.

Pour montrer que l'évolution de cette concentration suit une loi d'ordre 1, on peut alors :

<u>Méthode 1</u>: Vérifier que la courbe  $[S_2O_8^{2-}]_t = f(t)$  est modélisable par une fonction exponentielle du type  $[S_2O_8^{2-}]_t = [S_2O_8^{2-}]_0$ .  $e^{-kt}$  avec un coefficient de corrélation au moins égal à 0,99.

 $\underline{\text{M\'ethode 2}}: \text{Calculer, \`a l'aide du logiciel}, V_{disp}(S_2O_8^{2-})_t = \frac{d[S_2O_8^{2-}]_t}{dt} \text{ et puis tracer } V_{disp}(S_2O_8^{2-})_t = f([S_2O_8^{2-}]_t) \text{ et v\'erifier que cette courbe est mod\'elisable par une fonction linéaire avec un coefficient de corrélation au moins \'egal \`a 0,99.}$ 

<u>Méthode 3</u>: Calculer, à l'aide de la feuille de calcul,  $Ln(\frac{[s_2o_8^{2-}]_t}{[s_2o_8^{2-}]_0})$  puis tracer  $Ln(\frac{[s_2o_8^{2-}]_t}{[s_2o_8^{2-}]_0}) = f(t)$  et vérifier que cette courbe est modélisable par une fonction linéaire avec un coefficient de corrélation au moins égal à 0,99.

## **VALIDER**

CI2 = 5e-3\*Absorbance/2,036 Cpéroxo = 5e-3 - CI2 Vpéroxo = - deriv(Modèle de Cpéroxo ; Temps) L = Ln(Modèle de Cpéroxo/5e-3)

## Méthode 1



La courbe  $[S_2O_8^{2-}]_t = f(t)$  est bien modélisable par une fonction exponentielle avec un coefficient de corrélation de 0,99 donc la vitesse de réaction suit bien une loi d'ordre par rapport aux ions péroxodisulfate.

#### Méthode 2



### La courbe

 $V_{disp}(S_2O_8^{2-})_t = f([S_2O_8^{2-}]_t)$  est bien modélisable par une fonction linéaire avec un coefficient de corrélation de 1, donc la vitesse de réaction suit bien une loi d'ordre par rapport aux ions péroxodisulfate.

#### Méthode 3



La courbe  $Ln([S_2O_8^{2-}]_t) = f(t)$  est bien modélisable par une fonction affine avec un coefficient de corrélation de 1, donc la vitesse de réaction suit bien une loi d'ordre par rapport aux ions péroxodisulfate.

**Question bonus**: On sait que pour une loi de vitesse d'ordre 1,  $V_{disp}(S_2O_8^{2-})_t = k \times [S_2O_8^{2-}]_t$  ou  $Ln([S_2O_8^{2-}]_t) = -k \times t + Ln([S_2O_8^{2-}]_0)$ .

Pour déterminer k, il suffit de noter le coefficient directeur de la droite obtenue par la méthode 2 ou de celle obtenue par la méthode 3. Dans les 2 cas on obtient  $\mathbf{k} = 5,15 \text{ mol.L}^{-1}.\text{min}^{-1}.$