Kernel Methods

CS534

Key concepts:

Feature mapping to address non-linear separability
The kernel trick to avoid explicit feature mapping
Definition of Kernel functions

Kernelized perceptron

Kernelized linear regression with L2 regularization

Nonlinearly Separable Data

Mapping the data to a higher dimensional space can introduce linear separability for data that is not linearly separable in the original input space

Non-linear Classifier via Feature Mapping

• General idea: For <u>any</u> data set, the *original input space* can always be mapped to some higher-dimensional **feature spaces** such that the data is linearly separable:

Example: Quadratic Feature Space

- Assume *d* input dimensions $x = (x_1, \dots, x_d)$
- Number of quadratic terms:

$$1 + d + d + d(d-1)/2 \approx O(d^2)$$

- What if we want to consider even higher order features?
 - For cubic feature space: $O(d^3)$
 - The number of dimensions after mapping increase rapidly with increasing **order** \boldsymbol{m}

Revisiting Perceptron

Given current weight \mathbf{w}_t , predict for \mathbf{x} by: $\hat{y}(\mathbf{x}) = sign(\mathbf{w}_t^T \mathbf{x})$

 \mathbf{w}_t was created when \mathbf{w}_{t-1} makes a mistake on a training example (\mathbf{x}, y) via:

$$\mathbf{w}_t = \mathbf{w}_{t-1} + y\mathbf{x}$$

Let S_t stores (the indices of) all the previous mistakes leading up to \mathbf{w}_t , we have:

$$\mathbf{w}_t = \sum_{i \in S_t} y_i \mathbf{x}_i$$

Note S_t may contain repetitions: if an example was misclassified multiple times, it will appear multiple times.

We can then rewrite the prediction rule as:

$$\hat{y}(\mathbf{x}) = sign(\sum_{i \in S_t} y_i \mathbf{x}_i^T \mathbf{x})$$

Now if data is mapped to a higher dimension by Φ , we simply replace \mathbf{x} with $\Phi(\mathbf{x})$:

$$\hat{y}(\mathbf{x}) = sign\left(\sum_{i \in S_t} y_i \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x})\right)$$

Restructuring the Perceptron algorithm

```
Let \mathbf{w} \leftarrow (0,0,...,0)

Repeat if iter \leq iters

for every training example i=1,...,n

u_i = \mathbf{w}^T \mathbf{x}_i

if y_i u_i \leq 0 \mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i

iter = iter + 1 Original Perceptron
```

New version by Remembering all mistakes in *S*


```
S = [] //list of mistaken examples

Repeat if iter \leq iters

for every training example i = 1, ..., n

u_i = \sum_{j \in S} y_j \mathbf{x}_j^T \mathbf{x}_i

if y_i u_i \leq 0 add i to S

iter = iter + 1
```


Dot product in the Quadratic Feature Space

Explicit mapping takes $O(d^2)$ time. Consider two d-dimensional vectors **a** and **b**:

$$\Phi(\mathbf{a})^{T}\Phi(\mathbf{b}) = \begin{bmatrix}
1 \\ \sqrt{2}a_{1} \\ \sqrt{2}a_{2} \\ \vdots \\ \sqrt{2}a_{d} \\ a_{1}^{2} \\ a_{2}^{2} \\ \vdots \\ a_{d}^{2} \\ \sqrt{2}a_{1}a_{2} \\ \sqrt{2}a_{1}a_{3} \\ \vdots \\ \sqrt{2}a_{1}a_{d} \\ \vdots \\ \sqrt{2}a_{1}a_{d} \\ \vdots \\ \sqrt{2}a_{1}a_{d} \\ \vdots \\ \sqrt{2}a_{1}a_{d} \\ \vdots \\ \sqrt{2}a_{d-1}a_{d}
\end{bmatrix}$$

$$\begin{bmatrix}
1 \\ \sqrt{2}b_{1} \\ \sqrt{2}b_{2} \\ \vdots \\ b_{d}^{2} \\ \sqrt{2}b_{1}b_{2} \\ \vdots \\ \sqrt{2}b_{1}b_{d} \\ \vdots \\ \sqrt{2}b_{d-1}b_{d}
\end{bmatrix}$$

$$\begin{bmatrix}
\Phi(\mathbf{a})^{T}\Phi(\mathbf{b}) = \\ 1 + 2 \sum_{i=1}^{d} a_{i}b_{i} + \sum_{i=1}^{d} a_{i}^{2}b_{i}^{2} + \sum_{i=1}^{d} \sum_{j=i+1}^{d} 2a_{i}a_{j}b_{i}b_{j}$$

$$(\mathbf{a}^{T}\mathbf{b} + 1)^{2} = (\mathbf{a}^{T}\mathbf{b})^{2} + 2(\mathbf{a}^{T}\mathbf{b}) + 1$$

$$= \left(\sum_{i=1}^{d} a_{i}b_{i}\right)^{2} + 2 \sum_{i=1}^{d} a_{i}b_{i} + 1$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} a_{i}a_{j}b_{i}b_{j} + 2 \sum_{i=1}^{d} a_{i}b_{i} + 1$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} a_{i}a_{j}b_{i}b_{j} + 2 \sum_{i=1}^{d} a_{i}a_{j}b_{i}b_{j} + 2 \sum_{i=1}^{d} a_{i}a_{j}b_{i}b_{j} + 2 \sum_{i=1}^{d} a_{i}b_{i} + 1$$

 $\kappa(\mathbf{a}, \mathbf{b}) = (\mathbf{a}^T \mathbf{b} + 1)^2$ computes the dot product in quadratic space in O(d) time

The kernel trick

- **Definition:** A function $\kappa(\mathbf{x}, \mathbf{x}')$ is called a <u>kernel function</u> if $\kappa(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$ for some mapping function ϕ
- Implication: we can simply replace any occurrences of dot product $\langle \mathbf{x} \cdot \mathbf{x}' \rangle$ with a kernel function κ that computes $\kappa(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$
- **Implication**: we do not need to explicitly compute the mapping of the features --- significant computational savings
- For example, to compute the dot product in the quadratic space:
 - With the quadratic kernel function: O(d)
 - With explicit mapping: $O(d^2)$

Kernelizing Perceptron

```
S = [\ ] // \text{list of mistaken examples} Repeat if iter \leq iters for every training example i = 1, ..., n u_i = \sum_{j \in S} y_j \mathbf{x}_j^T \mathbf{x}_i (restructured) if y_i u_i \leq 0 add i to S iter = iter + 1
```

```
Replacing \mathbf{x}_{j}^{T}\mathbf{x}_{i} with \kappa(\mathbf{x}_{j},\mathbf{x}_{i})
```

```
S = [] // \text{list of mistaken examples} Repeat if iter \leq iters for every training example i = 1, ..., n u_i = \sum_{j \in S} y_j \kappa(\mathbf{x}_j, \mathbf{x}_i) if y_i u_i \leq 0 add i to S iter = iter + 1
```

Making it better

```
S = [] //list of mistaken examples Repeat if iter \leq iters for every training example i = 1, ..., n u_i = \sum_{j \in S} y_j \kappa(\mathbf{x}_j, \mathbf{x}_i) if y_i u_i \leq 0 add i to S iter = iter + 1
```


Keep a counter for each example

Let
$$\alpha_i = 0 \ \forall i = 1, ..., n$$

Repeat if $iter \leq iters$
for every training example $i = 1, ..., n$

$$u_i = \sum_{j=1 \ to \ n} \alpha_j y_j \kappa(\mathbf{x}_j, \mathbf{x}_i)$$

$$\text{if } y_i u_i \leq 0 \qquad \alpha_i \leftarrow \alpha_i + 1$$

$$iter = iter + 1$$

Kernel functions

- A kernel function can be intuitively viewed as computing some similarity measure between examples
- In practice, we directly use the kernel functions without explicitly stating the transformation $\boldsymbol{\Phi}$
- Given a kernel function, finding its corresponding transformation can be very cumbersome or impossible
 - RBF kernel's mapped space has infinite dimensions
- Not all functions are kernels
 - For some functions there does not exist a corresponding mapping $\Phi(\mathbf{x})$
- If you have a good similarity measure, can we use it as a kernel?

Kernel Function or Not

Consider a finite set of m points, we define the kernel (Gram)
marix as

$$K = \begin{bmatrix} \kappa(\mathbf{x}_1, \mathbf{x}_1) & \kappa(\mathbf{x}_1, \mathbf{x}_2) & \dots & \kappa(\mathbf{x}_1, \mathbf{x}_n) \\ \kappa(\mathbf{x}_2, \mathbf{x}_1) & \kappa(\mathbf{x}_2, \mathbf{x}_2) & \dots & \kappa(\mathbf{x}_2, \mathbf{x}_n) \\ \dots & \dots & \dots & \dots \\ \kappa(\mathbf{x}_n, \mathbf{x}_1) & \kappa(\mathbf{x}_n, \mathbf{x}_2) & \dots & \kappa(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}_{n \times n}$$

Kernel matrices by definition are square and symmetric

Mercer theorem:

A function κ is a kernel function if and only if for any finite sample $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, its corresponding kernel matrix is positive semi-definite (i.e., only has non-negative eigenvalues)

Some common kernel functions

- Linear kernel: $\kappa(a,b)=(a\cdot b)$ (ϕ is identity mapping)
- Polynomial of degree d (without lower order terms): $\kappa(a,b)=(a\cdot b)^d$
- Polynomial of degree up to d(with lower order terms): $\kappa(a,b) = (a \cdot b + 1)^d$
- Radial-Basis-Function (RBF) or Gaussian kernel:

$$\kappa(a,b) = \exp\left(-\frac{(a-b)^2}{2\sigma^2}\right)$$

Closure Property of Kernels

If κ_1 and κ_2 are kernel functions, then the following are all kernel functions:

- $\kappa(x,y) = \kappa_1(x,y) + \kappa_2(x,y)$
 - Φ = concatenation of Φ_1 and Φ_2
- $\kappa(x,y) = a\kappa_1(x,y)$, where a > 0
 - $\Phi = \sqrt{a}\Phi_1$
- $\kappa(x,y) = \kappa_1(x,y)\kappa_2(x,y)$
 - If Φ_1 has N_1 features and Φ_2 has N_2 features
 - Φ will have $N_1 \times N_2$ features: $\Phi_{ij} = \Phi_{1i} \cdot \Phi_{2j}$

One can repeatedly apply the closure property to compose kernel functions, e.g., $a\kappa_1 + b\kappa_2 + \kappa_1\kappa_2$ is a kernel function for a, b > 0

Key Choices in Applying Kernel

- Selecting the kernel function
 - (cross-) validation to rescue
 - Popular choices: Linear kernel, polynomial kernels (with low degrees)
 - Start simple, go more complex only if needed.
 - Can learn to combine different kernels (kernel learning)
 - $K = \alpha_1 K_1 + \alpha_2 K_2 + \cdots + \alpha_k K_k$, s.t. $\alpha_i \ge 0$ for $i = 1, \dots, k$
 - Kernel functions are defined for many non-traditional non-Euclidean data, e.g., graph kernel, set kernel, string kernel etc.
- Selecting the kernel parameter
 - can have strong impact on performance
 - the optimal range can be reasonably large
 - grid search with (cross-)validation is commonly used

Revisiting Linear Regression

Consider the L2 regularized linear regression

$$\max_{\mathbf{w}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

where \mathbf{X} is the data matrix, each row contains the features of one training example

y is the vector of ground truth predictions for all training examples

Closed form solution:

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

where I is the identity matrix

- ${f w}$ lies in the space spanned by the training examples, i.e., ${f w}=\sum_i \alpha_i {f x}_i$
- Instead of solving the optimization problem in the space of ${\bf w}$, instead, we can directly solve for $\alpha_i's$

Kernelizing Linear Regression

- Learned Function:
 - Original: $\hat{f}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
 - Kernelized: $\hat{f}(\mathbf{x}) = \sum_i \alpha_i \kappa(\mathbf{x}_i, \mathbf{x})$ (plug in $\mathbf{w} = \sum_i \alpha_i \Phi(\mathbf{x}_i)$ and replace dot product with κ)
- Objective:
 - Original: $\frac{1}{2} \|\mathbf{y} \mathbf{X}\mathbf{w}\|^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$ \leftarrow solving for \mathbf{w} , primal problem
 - Kernelized: $\frac{1}{2} ||\mathbf{y} K\boldsymbol{\alpha}||^2 + \frac{\lambda}{2} \boldsymbol{\alpha}^T K\boldsymbol{\alpha}$ \leftarrow solving for $\boldsymbol{\alpha}$, dual problem

K is the kernel (gram) matrix of the training data: $K_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$

Closed form solution:

$$\alpha = (K + \lambda I)^{-1} \mathbf{y}$$

General Applications of Kernel Methods

- Many learning algorithms formulate optimization problems and the solutions are some weighted sum of the input training examples
- Explicitly formulating the optimization in the space of the weights, we arrive at the so called "dual formulation" of the optimization problems
- The dual problem can be expressed using dot products between examples
- Apply the kernel trick by replacing dot product with kernel functions.
- This allows the use of high dimensional feature spaces without having to pay the price of computing and working with high dimensional mapped features
- Many types of kernels, wide applicability including some for data that are not naturally in vector form, like graphs, strings, sets etc.