WALLA SCIENCE

Predicting Winter California Precipitation with Convolutional Neural Networks

Anthony Chiado, Kristian Olsson, Luke Rohlwing, Michael Vaden Sponsor and Faculty Mentor: Antonios Mamalakis

Table of Contents

- Introduction
- Data
- Methods
- Results
- Conclusion

Introduction

Motivation & Goal

Motivation:

- Difficult to predict California's hydroclimate
- Previous literature has used simpler models (linear regression, trees, etc.)
- Benefit of prediction for policymakers

Goal:

 Use deep learning to predict precipitation during winter months using data from summer of the same year

Coefficient of Variation For US Precipitation (Dettinger, et al. 2011)

Data

Data Features

- 2D maps of sea surface temperatures
 - Monthly averages from July-October in Kelvin
 - Detrended across time for every lat/lon
 - El Niño subset used for linear model

- Precipitation for each region (North, Central, South)
 - Monthly averages from November-March in mm/day
 - Detrended across time for each region

Data Sources

- Simulated data from the Community Earth System Model 2 (CESM2)
 - Assume CESM2 accurately portrays the real climate system
 - 7400 simulated data points from 1940 to 2013 (100 simulations of 74 years)
 - 80 simulations for training, 10 for validating, 10 for testing
- Real world data from
 - 72 data points from 1950 to 2021
 - 40 years for model fine-tuning, 32 years for testing

Methods

Methods

- El Niño Linear Model
 - Most common baseline model
- CNN (separate for each region)
 - Input: Matrix of summer averages of Sea Surface Temperatures
 - Output: Precipitation prediction
 - Pretrained on simulated data and fine-tuned final layer on real observations
- Saliency Maps

Methods (cont'd)

Results

Results - Model Training

- Model succeeded in learning trends on simulated data
- Employed early stopping to prevent model overfitting on training data
- Model training obtained similar results for North, Central, and South regions

Results - Simulated Data

- Used 80 simulations for training,
 10 for validating, 10 for testing
- CNN model outperforms baseline
 El Niño Model in each region
- Predictive performance is strongest in South, then Central, then North, as expected

R ² Values					
	CESM2 Data				
California Region	El Niño Linear Model	CNN Model			
Northern	0.000	0.037			
Central	0.084	0.132			
Southern	0.155	0.212			

Results - Real World Data

R ² Values					
	CESM2 Data		Real World Data (Test Years 1990-2021)		
California Region	El Niño Linear Model	CNN Model	El Niño Linear Model	CNN (Fine Tuned)	
Northern	0.000	0.037	0.005	0.089	
Central	0.084	0.132	0.029	0.311	
Southern	0.155	0.212	0.108	0.336	

Results - Saliency Maps

Conclusion

Conclusion

- CNNs outperformed linear regression across northern, central, and southern California, showing promise for applying Deep Learning to precipitation prediction
- Future steps:
 - Augment simulation data with other climate models (UKESM and CanESM5)
 - Further tune hyperparameters and model structure
 - Include more global weather predictors like air pressure or wind
 - Introduce different time lags to analyze different precipitation patterns
 - Enhance Explainable AI techniques for deeper insights into model predictions

Acknowledgements

Antonios Mamalakis Sponsor and Faculty Mentor

Assistant Professor of Data Science School of Data Science

Assistant Professor of Environmental Sciences
Department of Environmental Sciences

Capstone Team

Anthony Chiado

Kristian Olsson

Luke Rohlwing

Michael Vaden

