

Advanced Institute for Artificial Intelligence – Al2

https://advancedinstitute.ai

Agenda

- Séries Temporais
- ☐ Conceitos
- ☐ Ferramentas para Manipular Datas
- Exploracao Estatística
- Conceitos

Séries Temporais:

- Conjunto de observações realizadas sequencialmente ao longo do tempo.
- Muitos problemas são modelados usando séries temporais
 - Finanças, marketing, ciências sociais, entre outras
- □ Informações históricas, em muitos casos, auxiliam o entendimento e permite previsões

Alguns conceitos relacionados com Séries Temporais:

- Séries Univariadas:
 - Um único valor ao longo do tempo
- Séries Multivariadas:
 - Dois ou mais valores variam ao longo do tempo

	cterística 2	ca 1 Carac	Característic	Tempo
- Passo temporal	10		10	1
	20		20	2
- Passo temporal	34		5	1
	55		6	2
Passo temporal	60		3	1
	90		7	2
	Caracterí	Caracterí	Caracterí	Caracterí

Caracterí stica 1	Caracterí stica 2	Caracterí stica 1	Caracterí stica 2
10	10	20	20
5	34	6	55
3	60	7	90

Tempo	Característica 1	Característica 2	
1	10	10	
2	20	20	
3	5	34	
4	6	55	
5	3	60	
6	7	90	
1	5	5	
2	8	9	

Característica 1	Característica 2	Característica 1 (t+1)	Característica 2 (t+2)
10	10	20	20
20	20	5	34
5	34	6	55
6	55	3	60
3	60	7	90
5	5	8	9

Quebra da série para outra amostra

Alguns conceitos relacionados com Séries Temporais:

- Séries Estacionárias
 - As características apresentam padrões que não variam com o tempo
- □ Séries não-Estacionárias
 - Padrões mudam de modo sistemático com dependência em relação ao tempo

Exemplo de série estacionária

Exemplo de série não-estacionária

Avaliando se uma série temporal é estacionária. Métodos possíveis:

- ☐ Analisar gráficos: você pode revisar um gráfico de série temporal de seus dados e verificar visualmente se há tendências ou sazonalidades óbvias
- Estatísticas resumidas: você pode revisar as estatísticas resumidas dos seus dados para temporadas ou partições aleatórias e verificar se há diferenças óbvias ou significativas
- □ Testes estatísticos: você pode usar testes estatísticos para verificar se as expectativas de estacionariedade foram atendidas ou foram violadas.
 - Teste Dickey-Fuller
 - Permite identificar se uma série é estacionária, mesmo em diferentes escalas

Series temporais não-estacionarias pode conter as seguintes características:

- □ Tendência: um componente linear sistemático geral ou (na maioria das vezes) componente não linear que muda com o tempo e não se repete
- ☐ Sazonalidade: ciclos que se repetem ao longo do tempo
- □ Ruídos : um componente não sistemático que não é Tendência / Sazonalidade nos dados

Teste de Tendência

Teste de Sazonalidade

Modelos preditivos:

- ☐ Histórico da série sendo usada para aprender o comportamento da série, permitindo prever valores para os períodos futuros
 - Para isso é importante que um conjunto específico de elementos em sequência, possua uma padrão qe permita explicar os próximos elementos
 - Essa característica pode ser medida com testes de autocorrelação
- Muitos métodos estatísticos exigem que as séries sejam estacionárias para realizar tais predições
- □ Alguns métodos podem ser usados para eliminar, tendências, sazonalidades e ruídos

Autocorrelação Ajuda a identificar qual defasagem mínima caracteriza os próximos elementos da série

- Segmentação dos dados para treino, validação e testes
- □ Normalmente os dados são divididos escolhendo uma posição específica do dataset, ou aleatoriamente
- no caso de séries temporais são escolhidos períodos
 - Periodo de treino
 - Periodo de validação
 - Periodo de teste

Métodos de predição para séries temporais: ARIMA Auto Regressive Integrated Moving Average

- Classe de modelos que caracteriza uma série temporal com base em seus próprios valores passados (atrasos e os erros de previsão defasados)para prever valores futuros.
- □ Restrições:
 - Série temporal "não sazonal", sem ruídos que exibe padrões

Modelo Arima é caracterizado de acordo com 3 termos:

- □ AR (Auto Regressive'): número de lags de y para ser usado como preditor
- ☐ MA (Moving Average): número de erros de previsão defasados
- □ d é o número de diferenciação necessário para tornar a série temporal estacionária

estimar os próximos valores da série temporal

А	serie deve ser estacionaria (ou proximo disso) para ser usada com model Arima.
	O parâmetro d define o nível de diferenciação para torar a série estacionária
	\square Se a série já for estacionária, basta usar d $=0$
	□ Normalmente, o valor de diferenciação é definido com base no efeito na autocorrelação

☐ Combinando os parâmetros d, AR e MA é possível definir um modelo de regressão para

A série deux seu estecionérie (en médicas dises) mars seu usado seus madel Arima

- Objeto datetime é disponibilizado pelo python para manipular datas
- □ Numpy e Pandas oferecem recursos para manipular datas
 - Slicing
 - Mudança de frequência
 - Segmentação
 - Agrupamento

□ Aprendizagem de máquina sáo aplicados normalmente para modelar problema utilizando recursos além dos métodos estatísticos tradicionais
□ É difícil prever se um algoritmo oferecerá melhor desempenho para um problema considerando que a série é estacionária ou não
□ Nesse sentido, a fonte de informação ainda que náo seja uma série estacinoária, pode ser usada na engenharia e seleção de features

Representação de série para Deep Learning:

- ☐ A sequência é dividida em etapas fixas
 - Uma quantidade de dias, horas, semanas, elementos, etc
 - Para cada elemento da sequência um valor é associado, que é o valor da sequência
 - Esse é o conjunto de features
- O próximo item da sequência é a coluna alvo

RNN são redes neurais estruturadas de forma a representar sequências

- Para isso tais redes são montadas com base em um tipo de camada chamada camada recorrentes
- Tais camadas possuem uma unidade interna chamada memória
 - A idéia dessa unidade é processar sequências de quaisquer tamanhos

Camada recorrente:

- ☐ Camadas recorrentes recebem como entrada uma matrix multidimensional
- ☐ Cada item da sequência gera um valor de saída y e armazena uma matriz com um valor intermediário na unidade de memória
 - O próximo valor é calculado usando o valor x da sequência e o valor intermediário gerado no valor anterior
- □ Esse laço é repetido ao longo de todos os valores da sequência

Dimensionalidade de uma camada recorrente:

- □ Tamanho do batch
- Passos temporais
- Dimensionalidades
 - Para séries univariadas esse valor é 1
 - Para séries com mais valores esse valor é maior

Uma rede MLP pode ser usada para predizer o próximo valor em uma sequência:

- □ Todos os elementos da sequência são considerados como uma característica unificada do processo
- ☐ Para que a MLP possa identificar tendências, sazonalidades

X representa diferentes características (features) de uma mesma amostra

Camada Densa aprende a relação entre características e saídas y (Regressão)

As características X podem ser definidas como os itens da sequência, e y o próximo valor da sequência

X representa os valores da sequência na ordem que devem ser considerados

Camada Recorrente avalia cada valor da sequência em ordem, para determinar o próximo valor da sequência

As características X podem ser definidas como os itens da sequência, e y o próximo valor da sequência

- \square As entradas são tridimensionais. Por exemplo, se tivermos um tamanho de janela de 30 registros de data e hora e os agruparmos em tamanhos de quatro, a forma será 4 x 30 x 1
- \square A cada registro de data e hora, a entrada da célula de memória será uma matriz $4 \! imes \! 1$
- ☐ A célula também receberá a entrada da matriz de estados da etapa anterior.
 - No primeiro passo será zero.
 - Para os seguintes, será a saída da célula de memória.
- □ Além do vetor de estado, é claro que a célula produzirá um valor Y

- □ Se a célula de memória é composta por três neurônios, a matriz de saída será 4x2 (tamanho de batch=4 neuronios=3)
- \square Portanto, a saída total da camada é tridimensional, neste caso, $4 \times 30 \times 3$.
- Com quatro sendo o tamanho do lote, três sendo o número de unidades e 30 sendo o número de etapas gerais.

- □ Em uma RNN simples, a saída de estado H é apenas uma cópia da matriz de saída Y.
- \square Por exemplo, H₋0 é uma cópia de Y₋0, H₋1 é uma cópia de Y₋1 e assim por diante.
- □ Portanto, a cada registro de data e hora, a célula de memória obtém a entrada atual e também a saída anterior.

□ Agora, em alguns casos, você pode inserir uma sequência, mas não deseja produzir e
deseja apenas um único vetor para cada instância do lote. Isso geralmente é chamado de
sequence to vector.
□ Para isso basta ignorar todas as saídas, exceto a última.
$\hfill \Box$ Esse comportamento é padrão do Keras é definido pela variável return_sequences=false
□ Se deseja retornar a sequência inteira basta definir return_sequences=true
☐ Isso será necessário quando utilizar diversas camadas recorrentes empilhadas

Algoritmos de predição utilizam amostras conhecidas do problema para treino (Período de treino)

- Quando temos apenas uma única sequência de eventos é difícil identificar os dados que generalizam o problema
 - Nesse caso, é mais interessante separar segmentos da série como amostras
- Objeto dataset do keras permite montar amostras de séries a partir de uma sequência unica

LSTM

- Caso especial de RNN
- Trata o problema de longas depências na sequência
 - Um recurso chamado Gate permite filtrar informação enviada na sequência
 - Dessa forma, a rede consegue aprender sequências com dependências mais complexas
- □ LSTMs Bidirecionais permitem interpretar a sequência em duas direções