"Large Scale Volume Visualization on GPU"

MINI PROJECT REPORT FOR THE DEGREE OF

BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOGY

BY

Juhi Kumari (IIT2013153) Sneha Jha (IIT2013174) Tanushree Anand (IIT2013192) Nikita Agarwal (ISM2013016) KM Ishu (ISM2013019)

UNDER THE SUPERVISION OF

Dr. Anupam Agrawal Professor IIIT-ALLAHABAD

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, ALLAHABAD

(A UNIVERSITY ESTABLISHED UNDER SEC.3 OF UGC ACT, 1956 VIDE NOTIFICATION NO. F.9-4/99-U.3 DATED 04.08.2000
OF THE GOVT. OF INDIA)
A CENTRE OF EXCELLENCE IN INFORMATION TECHNOLOGY ESTABLISHED BY GOVT. OF INDIA

6th May, 2016

CANDIDATES' DELARATION

We hereby declare that the work presented in this project report entitled "Large Scale Volume Visualization on GPU", submitted towards fulfillment of 6th Semester report of B.Tech. (IT) at Indian Institute of Information Technology, Allahabad, is an authenticated record of our original work carried out from Jan 2016 to May 2016 under the guidance of **Prof. Anupam Agrawal**. Due acknowledgements has been made in the text to all other material used. The project was done in full compliance with the requirements and constraints of the prescribed curriculum.

Place: Allahabad

Date:

Sneha Jha (IIT2013153)

Tanushree Anand (IIT2013174)

Nikita Agarwal (ISM2013016)

KM Ishu (ISM2013019)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Date: Dr.AnupamAgrawal

Place: Allahabad Professor

IIIT Allahabad

ACKNOWLEDGEMENT

We would like to acknowledge and extend our heartfelt gratitude to **Dr. Anupam Agarwal**, Indian Institute of Information Technology Allahabad, who guided us through this project. His keen vital encouragement, superb guidance, and constant support are the motive force behind this project work. We would like to show our war thanks to all our friends for their continuous motivation and encouragement during this project. We are very thankful to all the technical and non-technical staffs of the college for their assistance and co-operation.

Juhi Kumari IIT2013153 Sneha Jha IIT2013174

Tanushree Anand IIT2013192

Nikita Agarwal ISM2013016

KM Ishu ISM2013019

ABSTRACT

A novel approach for GPU-based high-quality volume rendering of large out-of-core volume data has been implemented. By focusing on the storage of large volume data in an hierarchical data structure (i.e. octree) which stores the data in form of bricks, in addition every brick is further divided into macro-cells for easier traversal of data during run-time.

The approach performs branch-intensive accelerating structure traversal out of GPU raycasting loop and introduce an efficient empty-space culling method by rasterizing the proxy geometry of a view-dependent cut of the octree nodes. Octree traversal is now performed on CPU while rasterization and visualization processes are performed on the GPU. Rasterization pass can capture all of the bricks that the ray penetrates in a per-pixel list. Since the per-pixel list is captured in a front-to-back order, our ray-casting pass needs only to cast rays inside the tighter ray segments. During the process of evaluation and testing, this technique achieved 2 to 4 times faster rendering speed than a current state-of-the-art algorithm (which performs traversal of data structure on GPU) across a variety of data sets. As branch-intensive operations are operated in CPU at a better rate than on a GPU while floating point computations are better performed on GPU.

Table of Contents

1.	Introduction	1
2.	Problem definition and Objectives.	1
3.	Literature Survey.	2-10
4.	Methodology	11-15
5.	Hardware and Software Requirements	16
6.	Activity Time Chart	17
7.	Experimental Setup and Results.	17-18
8.	Performance Comparison.	19
9.	Conclusion and Future Scope	20
10.	References	21

1. Introduction

Our project focuses on volume or 3D visualization of human data which is large-scale and has to be interactive, hence we are motivated to use GPU techniques.

1.1 Motivation

With the improving technology, medical diagnosis and increasing population the size of medical data (MRI, CT Scan etc.) is increasing day by day. Thus, the problem of visualization of large data arises which is very prominent in this era. However, in order to deal with the ever-increasing resolution and size of today's volume data, it is crucial to use highly scalable visualization algorithms, data structures, and architectures in order to circumvent the restrictions imposed by the limited amount of on-board GPU memory. Volume visualization deals with methods to explore, analyze and visualize volumetric data acquired in medicine, computational physics and various other scientific disciplines. In other words, it is a method of extracting meaningful information from volumetric data using interactive graphics and imaging and it is considered with data representation, modeling, manipulation and rendering. Interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen (output-sensitive algorithms and system designs).

GPU-based large-scale volume visualization techniques based on the notions of actual output-resolution visibility and the current working set of volume bricks the current subset of data that is minimally required to produce an output image of the desired display resolution.

2. Problem definition

To visualize large volume medical human data on GPU efficiently. It can be used to view human body in different resolutions and perspectives based on the requirements of the user, hence interactive. This requires effective handling of large data in a structured way, keeping in mind the memory constraints.

2.1 Objective

To build a robust system which could be used to visualize data independent of its size on any inexpensive hardware having minimum specifications.

	Modelling the data using multi resolution model like octree.
П	Selective rendering of data as required by the user, hence output-specific and Interactive

3. Literature Survey

Table 1. Literature Survey Table

S.	Title	Year	Journal/	Objective	Method	Dataset Used	Advantage	Disadvant	Challenge(Future
No.			Conferenc			&		age	s) Dealt	Scope
			e			Dataset Size				
1	A single-pass	2008	Journal	To present	Volume	Multi-gigavoxel	Octree is used	The	To handle	To exploit
	GPU ray			an adaptive	tric	CT	for	rendering	vast data	the
	casting		Visual	out-of-core	dataset	dataset	data	working set	efficiently	capability
	framework for		Comput	technique	is		representation	will		of our
	interactive out-		2008	for rendering	decomp		maintained out of			system to
	of-core			massive	osed		Core. At runtime	efficiently		perform a
	rendering of			scalar	into		an adaptive	Update as		full-
	massive			volumes	small		loader, executing	the		volume ray
	volumetric			employing	cubical		on the CPU,	integration		tracing to
	datasets			single-pass	bricks,		*	of level-of-		produce
	[3]			GPU ray	which		and transfer	detail		higher
				casting	are then		function-	and		quality
					organize		dependent	visibility		images that
					d into		working set of	culling		incorporate
					an		bricks	techniques		more
					octree		maintained on	are not		advanced
					structur		GPU memory	used which		shading
					e		by	is required.		effects
					maintai		asynchronously			
					ned out-		fetching data			
					of-core		from the out-of-			
					and		core octree			
					during run time		representation. Out-of-core data			
					loading		management is			
					the		used for filtering			
					working		out as efficiently			
					set on		as possible			
					GPU		the data that is			
					GI C		not contributing			
							to a particular			
							image.			
2	A Survey of	2014	Conference	To give an		Large	Octree is used as	For large-		
1 -	GPU-Based		2 3 11 21 211 20	overview of			data structure in	scale		
	Large-Scale		Eurographi				volume	rendering,		
	Volume		cs	state of the			rendering	all the		
	Visualization		Conference	art in GPU			Which enable	stages in		
	[2]		on	techniques			adaptive level	this		
1			Visualizatio	for			of detail, in	pipeline		
1			n (EuroVis)	interactive			addition to	have to be		
			(2014)	large-scale			enabling empty	scalable		
1				volume			space	(i.e., in our		
1				visualization			skipping.	context:		
1							Used Output	output-		
							Sesitive	sensitive),		
							Algorithm	or		
1							Was making	they will		
1								become the		
							time	bottleneck		

									-	
							dependent on the	for the		
							size of the <i>output</i>	entire		
							instead of the	application		
							size of	otherwise		
							the <i>input</i> .	the		
							Focus on Ray-	visualizatio		
							guided and	n will not		
							visualization-	be done		
							driven	perfectly		
							architectures.	and		
								accurately.		
3	Octree	2013	Journal	Our target is	Store	Large out-of-	It focus to make	The	Maintainin	This
	Rasterization:			to make	volume	core volume	high-quality	efficiency	g octree on	methodolo
	Accelerating		IEEE	high-quality	in an	data.	visualization	of the	GPU limits	gy can be
	High-Quality		TRANSAC	visualization	octree		more	hierarchical	the data	used in
	Out-of-Core		TIONS ON	more	(of		practical by the	bricking	size.	other
	GPU Volume		VISUALIZ	practical in	bricks)		use of a	scheme	Raycasting	visualizatio
	Rendering		ATION	the clinic by	each		consumer-level	often	by passing	n systems,
	[1]		AND	the use of a	having		GPU.	suffers	each brick,	such as in
			COMPUTE	consumer-	further		It introduce an	from per-	hence	multiple
			R	level GPU	split		new out-of-core	pixel	increasing	user
			GRAPHIC		into		GPU volume	traversal of	the	activities,
			S		regular		rendering	the	overhead	comparativ
					macroce		framework,	hierarchical		e settings
					lls.		which combines	acceleratio		and
					Using		object-order and	n structure,		multiple
					branch-		image-order	which is a		volume
					intensiv		advantages and	branch-		studies, or
					e		acts as a general	intensive		time-
					accelera		acceleration	operation		varying
					ting		technique, which	and		data
					structur		makes more	may not		visualizatio
					e		complex	perform		n in future
					traversal		visualizations	well on		work
					out of		possible, while	modern		
					the GPU		maintaining	GPU		
					raycasti		•	architecture		
					ng loop		the same time.	s, which		
					and by		The algorithm	have a		
					rasterizi		proposed can achieve 2-4 times	heavy		
					ng the			•		
1	1				proxy		faster rendering speed than a	e penalty for		
					geometr y of a		current state-of-	divergent		
					y or a		the-art algorithm	branching.		
1	1				depende		for large out-of-	oranciilig.		
					nt cut of		core data sets,			
					the		while also			
1	1				octree		producing high-			
					nodes.		quality rendering			
1	1				This		using tricubic			
1	1				rasteriza		interpolation.			
1	1				tion					
					pass					
1	1				captures					
					all of					
1	1				the					
_	•	•	•				•		•	

					bricks					
					that the					
					ray					
					penetrat					
					es in a					
					per-					
					pixel					
					list.					
4	GPU-based	2005	Conference	To facilitate	1150.	СТ	The work that it	It does not	the	moving
+	Volume	2003	Conference	the usage of		scan of the	involved is to	used any	algorithm	classificati
	Rendering for		Engineerin			Stanford terra-	store		employed a	
			_							
	Medical Image Visualization		g in Madiaina	developed hardware		cotta bunny	volume data in	pipeline to	pre-	operation into GPU
			Medicine			(512*512*360)	texture, resample	implement		
	[4]		and	resource, a		1 .1::1	and interpolate	ray-casting	on method	to get even
			Biology	graphics		real clinical	them using	operation	to classify	quicker
			27th	processing			hardware instead	completely	voxels	interactive
			Annual	unit (GPU)-		CT	of software	in GPU so	before	speed
			Conference	based		data,	This paper		interpolatio	
				volume ray-		(400*400*344)	presented a novel		n, since	
				casting				data cannot		
1				algorithm is		MRI head scans	_	be	be done in	
				proposed		(190*217*190)	algorithm for	visualize	CPU, it	
							medical image	C	costs much	
						MRI head scans	visualization	algorithm.	time	
						(256*256*109)	using NV40			
							GPU. Based on			
							the flexible			
							programming			
							model of FV40			
							pixel shader.			
5	A Framework	2004	Conference	To present a	The	Large	We present a	The	The	Studying
	for Rendering			new	design	scale time-	new framework	primary	formidable	different
	Large Time-		VG'05	framework	goal of	varying data	for managing and	goals of	_	approaches
	Varying Data		Proceeding	for	the		0 0	our work is	for	to combine
	Using		s of the	managing	WTSP		scale time-	to	interactive	the WTSP
	Wavelet-Based		Fourth	and	tree is to		varying data	decorrelate	volume	tree data
	Time-Space		Euro	rendering	support		using the	the time-	rendering	structure
	Partitioning		graphics /	large scale	interacti		wavelet-based		is the huge	with other
	(WTSP) Tree		IEEE	time-varying	ve		time-space parti-	data into a	amount of	data
1	[5]		VGTC	_	browsin		tioning (WTSP)	range of	data	compressio
			conference	the wavelet-	g of		tree. We utilize	spatial and		n schemes.
			on Volume	based time-	data at		the hierarchical	tem-		For
1			Graphics		arbitrary			poral levels		instance, to
				partitioning(structure to	of detail,		incorporate
1				WTSP) tree	tempora		capture both	and to		the
					1		spatial and	develop		Laplacian
					scales.U		temporal locality	efficient		pyramid
					sing		and coher-	data		structure
					Haar		ence of the	manageme		into the
1					wavelet		underlying time-	nt		WTSP tree
1					s, we		varying data and	Scheme to		and trade
					can		exploit the	enable		space for
					build a		wavelet	rapid run-		reconstruct
					binary		transform to	time data		ion and
1					time		convert the data	retrieval		rendering
1					tree		into a	and		time
					associat		multiresolution			
		i			Jimi	Ī				

_	1		<u> </u>	1		1	T	r		1
					ed with		spatio-temporal	on. So		
					each of		representation.	basically it		
					the		During	focused on		
					spatial		rendering, the	the space		
					nodes		wavelet-	and time		
					with a		compressed data	manageme		
					method		stream is	_		
								nt of		
					similar		decompressed	rendering		
					to the		on-the-fly and	and		
					error		rendered using	visualizatio		
					tree		3D hardware	n rather		
					algorith		texture	than the		
					m		mapping. WTSP	image		
							tree allows	quality and		
							random access of			
							data at arbitrary	accuracy.		
							-	accuracy.		
							spa-			
							tial and temporal			
							resolutions at run			
							time.			
6	Interactive Iso-	2006	Conference	To present a		UNC DATA	It present a	Adaptive	Interactive	Exploiting
	surface Ray			technique	entation		technique for ray	isosurface	rendering	the multi
	Tracing of		Interactive	for ray	is based	Blunt Fin	tracing	extraction	of large	resolution
	Large Octree		Ray	tracing iso	on the	(40x32x32)	isosurfaces of	techniques	volumes is	nature of
	Volumes		Tracing	surfaces of	followin	,	large compressed			the octree
	[6]		2006, IEEE	large	g	Protein	structured		problem in	to provide
	[~]		Symposium	compressed		(64x64x64)	volumes.		visualizatio	
			on	structured	cal	(OTAOTAOT)	By embedding	processing	n. With	view-
			Oli	volumes of	concept	Enzyme	the acceleration	and	direct	adaptive
				data	-	(97x97x116	tree and scalar		volume	level of
				uata	s: octree	(9/x9/x110		streaming		
					data)	data	of large	rendering,	detail
					format,	Dolphin	in a single	data to the	GPU	scheme.
					point	(320x320x40)	structure and	CPU.	memory	Such a
					location		employing	They	imposes an	system
					and	NMR Brain	optimized octree	render a	absolute	would
					neighbo	(256x256x109)	hash schemes,	piecewise	limit on the	reduce the
					r-		we achieve	linear mesh	volume	complexity
					finding,	CT Head	competitive	that may be	size, and	and
						(256x256x113)		topological		variance of
					octree	,	common	ly different	bus	the overall
					traversal		multicore	from the	restricts	scene
							architectures, and		real time	
							render large	isosurface	rendering	
							time-variant data	as defined	of time-	
							that could not	by the	variant data	
							otherwise be	source		
							accomodated.	data.		
							It involves			
							compressing			
							volumes into			
							an octree			
							structure, and			
							employing that			
							for ray traversal.			
7	Interactive	2009	Conference	This method	The	Skull CT scan	To facilitate the	Due to the	The	
′	GPU-based	2007		makes use of		data set	usage of well-	large	interactive	
	Volume		Conference	tri-linear	d	(256x256x256)	developed		visualizatio	
	v Olullic		Commercial	ur inicai	u	(23072307230)	acveropeu	number of	13441124110	

	Rendering for		on	interpolation	algorith		hardware	trilinear	n of such	
	Medical Image		on Biomedical	to	m	Human head	resource, a	interpolatio		
	[7]		Engineerin	Accelerate	implem	MRI data set	graphics	ns that	challenge,	
	[/]		g and	rendering	ent ray	(256x256x256)	processing unit	must be	since the	
			Informatics		casting	(230x230x230)	(GPU)-based		frame rate	
			imormatics	Besides for		Pet data set for	volume ray-	processed in order to	is heavily	
					1 -					
				volume ray-	n aammlat		casting algorithm		depending	
				casting	_	(512x512x256)	is proposed	image	on the	
				back-to-	ely in		which implement		amount of	
				frond order	GPU. It		ray casting	high	data to be	
				is used when	re-	data	operation	quality, the	visualized	
				the voxel's	samples	(256x256x84)	completely	availability		
				opacity is	volume		in GPU. The	of direct		
				Accumulate	data,		algorithm re-	volume		
				d to a	represen		samples volume	rendering		
				threshold the			data, represented	has yet		
1				after	stack of		as a stack of 3D	been		
				calculation	3D		texture, onto a	restricted		
				will be	texture,		sampling surface.			
1				discard.	onto a		It can perform an			
					samplin		interactive rate	s and		
					g surface.		even for direct	special		
							volume	purpose		
					The ray-		rendering while	graphics		
					casting		keeping the high	hardware.		
					algorith		image quality.			
					m					
					perform s in					
					fragmen t					
					shaders					
Q	Mapping High-	2009	Journal	To learn and		Three sets of	This paper	The	The	
0	Fidelity	2009	Journal	analyze new	thread-	human CT data	describe a	advantage	challenge	
	Volume		IEEE	volumetric	and	(16-bit)	thread- and data-	is the	is to	
	Rendering for		Transaction		data-	(10-011)	parallel	challenge	provide	
	Medical		s on	algorithms	parallel	Large medical	implementation	to provide	improved	
	Imaging to		Visualizatio	-	implem	human dataset	*	•	health care	
	CPU, GPU and		n and	suited to	-	(750x750x1000)	of ray-casting that makes it	improved health care		
	Many-Core		Computer	modern	of ray-	(130213021000)	amenable to key	efficiently,	which is	
1	Architectures		Graphics	parallel	casting		architectural		complicate	
1	. 11 C111 CC CU1 C3		Stupines	_	that			complicate		
	[8]			Droceccino			renne			
	[8]			processing architectures			trends			
	[8]			architectures	makes it		of three modern	d by the	magnitude	
	[8]				makes it amenabl		of three modern commodity	d by the magnitude	magnitude of the data.	
	[8]				makes it amenabl e to key		of three modern commodity parallel	d by the magnitude of the data.	magnitude of the data. Despite the	
	[8]				makes it amenabl e to key architect		of three modern commodity parallel architectures:	d by the magnitude of the data. Despite the	magnitude of the data. Despite the availability	
	[8]				makes it amenabl e to key architect ural		of three modern commodity parallel architectures: multi-core, GPU,	d by the magnitude of the data. Despite the availability	magnitude of the data. Despite the availability of several	
	[8]				makes it amenabl e to key architect ural trends		of three modern commodity parallel architectures: multi-core, GPU, and an upcoming	d by the magnitude of the data. Despite the availability of several	magnitude of the data. Despite the availability of several general	
	[8]				makes it amenabl e to key architect ural trends of three		of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel	d by the magnitude of the data. Despite the availability of several general	magnitude of the data. Despite the availability of several general purpose	
	[8]				makes it amenabl e to key architect ural trends of three modern		of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel R architecture	d by the magnitude of the data. Despite the availability of several general purpose	magnitude of the data. Despite the availability of several general purpose and	
	[8]				makes it amenabl e to key architect ural trends of three modern commo		of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel R architecture code-named	d by the magnitude of the data. Despite the availability of several general purpose and	magnitude of the data. Despite the availability of several general purpose and specialized	
	[8]				makes it amenabl e to key architect ural trends of three modern commo dity		of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel R architecture code-named Larrabee.	d by the magnitude of the data. Despite the availability of several general purpose and specialized	magnitude of the data. Despite the availability of several general purpose and specialized rendering	
	[8]				makes it amenabl e to key architect ural trends of three modern commo dity parallel		of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel R architecture code-named Larrabee. Overall parallel	d by the magnitude of the data. Despite the availability of several general purpose and specialized rendering	magnitude of the data. Despite the availability of several general purpose and specialized rendering engines,	
	[8]				makes it amenabl e to key architect ural trends of three modern commo dity parallel architect		of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel R architecture code-named Larrabee. Overall parallel implementation	d by the magnitude of the data. Despite the availability of several general purpose and specialized rendering engines,	magnitude of the data. Despite the availability of several general purpose and specialized rendering engines, volume	
	[8]				makes it amenabl e to key architect ural trends of three modern commo dity parallel architect ures:		of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel R architecture code-named Larrabee. Overall parallel implementation of ray-casting	d by the magnitude of the data. Despite the availability of several general purpose and specialized rendering engines, volume	magnitude of the data. Despite the availability of several general purpose and specialized rendering engines, volume visualizatio	
	[8]				makes it amenabl e to key architect ural trends of three modern commo dity parallel architect		of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel R architecture code-named Larrabee. Overall parallel implementation	d by the magnitude of the data. Despite the availability of several general purpose and specialized rendering engines, volume visualizatio	magnitude of the data. Despite the availability of several general purpose and specialized rendering engines, volume visualizatio	

,										
					GPU,		quad-core	been	widely	
					and an		Nehalem over an	widely	adopted by	
					upcomi		optimized scalar	adopted by	the medical	
					ng		baseline version			
					many-			community	except in	
					core		single	except in	certain	
					IntelR		core Harpertown.	certain	specific	
					architect		core marpertown.	specific	cases	
					ure			cases. In	cases	
					code-			ray-casting,		
					named					
								as the ray's		
					Larrabe			traverses		
					e			through the		
								volume,		
								they access		
								voxels with		
								a non-		
								constant		
								stride.		
9	Large Scale	2015	Journal	To reduce	Present	Stag beetle	This paper	The basic	The JIT	just-in-time
	Volume			the memory	a new	dataset	presents JiTTree,			compilatio
	visualization		IEEE	bandwidth	sparse	(brick size-	a novel sparse	the data	transforms	n of the
	on GPU A		Transaction	(bottleneck	volume	32*32*32)	hybrid volume	structure is	memory-	root level
	Just-in-Time		s on	in GPU) for	hybrid		data structure	to adapt to	bound	to improve
	Compiled		Visualizatio	sparse	data		that uses just-in-	the local	programs	performanc
	Sparse GPU		n and	volume data	represen	Kingsnake	time compilation	sparsity of	into	e ;to add
	Volume Data		Computer	structures	tation	dataset	to	a specific	instruction-	dynamic
	Structure		Graphics	that pose a	(JiTTree	(brick size-	overcome the	data set.	bound	write
	[9]			tradeoff) that	128*128*128)	representation	Other	programs.	capabilities
				between	makes it		problems. In this	volume	Although	in addition
				memory	possible		paper we present	representati	data	to the read-
				efficiency	to		JiTTree, a new	ons often	structure is	only
					combine		type of sparse	make the	not	access;
				performance			volume data	distinction	designed	improve
				1	element		representation	between	for dense	the JIT
					al data		that enables	dense and	data, it	compilatio
					structur		memory-efficient	empty (or	outperform	
					es		-	homogenou	_	for other
					resultin		highperformance		representati	
					g in		data access. The	and treat	ons, such	access
					lower		JiTTree is the	these	as a dense	patterns
					memory		just-in-time	regions	bricking,	like ray
					require		compilation	differently.		traversal
					ments		stage that	differentity.	cases.	uaversai
					while		transforms data		However,	
					enabling		into efficient		for a better	
							access functions.			
1					high				analysis of the data	
1					runtime		Thereby it			
					perform		enables the use		structure	
					ance.		of multiple kinds		we used	
					No		of data structures		data sets	
					memory		to represent one		with	
1					fetches		volume, without		varying	
					are		introducing a		scarcity.	
1					required		significant			
					for the		traversal			
1	1				kd-tree		overhead. By			

ĺ					traversal		combining			
					. The		multiple sparse			
					splitting		data structures			
					axis		and reducing			
					order is		traversal			
					directly					
					-		overhead we			
					encoded		leverage their			
					in the		individual			
					Conditi		advantages.			
					onals.		JiTTree reduces			
					Splitting		the traversal			
					plane		overhead of the			
					position		resulting optimal			
					s are		data			
					inserted		structure			
					as					
					literals.					
10	A Survey of	2006		survey and		Large	This paper	It only		Future
	Octree Volume			comparison		Volume Data	surveys and	examine		application
	Rendering			of existing		, oranic Data	compares	octree		s of octree
	Methods			works			existing works	structures		volume
	[10]			employing			employing	that are of		rendering
	[10]			octrees for			octrees for			
							volume	interest in		could
				volume				volume		attempt to
				rendering			rendering. It	Rendering		combine
							focuses	not for the		the pure
							specifically on	other		octree
							extraction, direct			volume
							volume	we cannot		with GPU
							rendering, and	compare its		rendering
							iso surface ray	usefulness		approaches
							tracing.	towards the		, using out-
							It survey several	particular		of-core
							varieties of	purpose.		methods
							octree and			
							efficient hashing			
							schemes for their			
							traversal.			
11	Cell Octrees:	2001	Conference	An		Large Volume	It propose a new	When the	An	property
11	A New Data	2001	Conterence	improvemen		Data	indexing method			
	Structure for		Proceeding	t of bono		Data		cells of any		
	Volume		s of the	approach			incomplete	dimension	noted as	the tree, so
	Modeling and		Vision	which uses						
							octree and which	the volume	cells	it is not
	Visualization		Modeling	an			1		,	necessary
	[11]		and	incomplete			memory to be	is not a	been done	to store the
				octree with a			stored.	power of		grid and
			n	smaller			It present an	two, or is		there may
				memory			improvement of	not equal		be further
							BONO (Branch	to the		reductions
							On Need Octree)	number of		in the
							approach which	cells of		storage
							uses an	another		requiremen
							incomplete	dimension		ts
							octree with a	of it,		
							smaller memory.	nodes will		
								not have all		
							indexes a set of	eight sons.		
\vdash										

			Driven by a user-		
			defined image	the 3D	
			quality, defined	volume	
			as a combination	visualizatio	
			of data	n so the	
			homogeneity and	other	
			importance, a set	attributes	
			of octree nodes	(i.e. image	
			(the cut) is	quality)are	
			selected	considered	
			to be rendered.	as a	
			The degree of	secondary	
			accuracy applied	choice	
			for the		
			representation of		
			each one of the		
			nodes		
			of the cut in the		
			texture memory		
			is set		
			independently		
			according to the		
			user-defined		
			parameters.		

4. Methodology

The visual Human male dataset is used for experimentation. It is of 3.15 GB RAW file. The data is made up of a stack of images of resolution 1760 X 1024. The stack consists of 1878 slices. Each slice represents the body cut horizontally. The paper [1] is our base research paper as it introduces a novel method to process the large volume data efficiently.

Figure 1: Flowcharts of our algorithm (left) and previous out-of-core GPU volume Rendering algorithms (right). Yellow boxes are executed on the CPU, all other boxes on the GPU. Black arrows indicate control flow; green arrows indicate output of intermediate data.

The flow of method in Figure 1 is explained as follows [1]:

4.1. Pre-processing

A large volume dataset is first pre-processed using blocking techniques (division of large dataset in blocks of data) and storing it in Octree (a 3-D data structure is represented in the form of recursively sub-dividing into eight octants). An **octree of bricks** is constructed where the actual resolution data is stored in leaf nodes. At each level or node a brick of same dimension $B_{res}^{\ 3}$ is made. The length of the tree is kept shallow which results in courser bricks. Inner bricks are built using down sampling of the lower level nodes like averaging filter.in this way the whole data is represented as multi-resolution hierarchy which is maintained on CPU (out of core). Each node of the octree points to the brick with a constant resolution that approximates the part of the volume corresponding to the octree's node.

Bricks store extra overlapping voxels, which helps in accessing the neighboring voxels at runtime using the tri-cubic interpolation and gradient computations. Since the octree don't use any transfer function for empty space culling it uses macro-cells to store the min-max scalar values for the corresponding brick, for efficient brick culling. The dimension for macro-cell is M_{res}^{3} .

4.1.1. Octree Creation and Visualization of View-Dependent Working Set:

1878 slices were first constructed into a single 3D-Volume. Dimensions of each image slice is 1760 * 1024. Brick size of evry node in octree is taken as 220*128*235. Single large Volume is splitted into 512 bricks of resolution 220*128*235. These bricks are then averaged by a factor of 8 to construct 64 bricks of same resolution which are further averaged by a factor of 8 to construct 8 bricks which are then combined to form a single root. These bricks are then saved as nodes of an octree where root acts as parent having 8 children which are individually divided into 8 more children. Struct of the octree node is as follows –

```
struct node{
    ifstream fp;
    struct node *child[NO_CHILDREN];
    struct node *parent;
    int level;
    int a[3];
    int no_children;
    int is_leaf;
    string name;
};
Table 2: Structure of octree
```

4.2. Generating a View-Dependent Working Set

For viewing different frames a cut is decided out of the octree according to the required frame. The cut includes different resolution nodes as per needed dependent on the viewing angle. This cut is used to update the GPU brick pool for rendering. If we zoom the image the children of the current node has to be loaded and if we zoom out then multiple nodes has to be fused together. For deciding the cut breadth first order octree traversal is used starting from the root node and is continued till the required node is found.

Work-set Generation Algorithm

```
Initialize queue with root tag = 2
while(stack_not_empty) {
  cur = queue.front()
  queue.pop()
  split cur in 8 octants
  if possible
  for (i = 0; i < 8; i++)
    if ROI lies in octant[i]
       if ROI lies completely in octant[i]
          tag = 1
          push in brick_pool
       else
          tag = 2
          push in queue
    else
       tag = 0
  }
copy brickpool to cudaMemory
```

Table 3: Workset Generation Algorithm

4.2.1. View-Dependent Sorting of the Bricks

The nodes in the cut are rasterized before. Hence we sort the nodes and store them in front to back fashion using a pointer list which is stored for further use. Pointers to the traversed cut-nodes are stored in a STL list. A traversed node is always replaced by in front its children to back order during depth-first search, this is done till a node labeled as node cut is found. It is implemented using an 8 X 8 lookup table. Each row of the look up table encodes a possible order of the 8 octants according to the viewpoint in the octree space.

4.2.2. Memory Management of the Working Set

The cut represents the brick data and macro-cell data of the nodes. Tis data is then transferred to GPU asynchronously. The working set is loaded into 2 memory pools:

☐ Brick Pool

It is organized ad a 3D texture of specific size and dimension. Each of the cell of this pool corresponds to a particular brick, and the cell stores the corresponding brick Id B_{ID}.

The 3D macro-cell pool is packed with the corresponding brick's macro-cell at particular brick id B_{ID}.

4.3. Proxy-Geometry Rasterization

The comparison between 2 pass and normal rasterization is shown in Fig 3. The explained process of two pass rasterization could be seen in Fig 4. Proxy geometries of the whole working set of bricks is rasterized in the first pass and capture all bricks that a ray penetrates into a per-pixel list. In second pass, we rasterize all non-empty macrocell (of all bricks) and refine per-pixel list in which each element will contain a ray-segment corresponding to the brick that the ray penetrates. This results in skipping of empty spaces of macrocell. Fig 4. Gives detailed process for the 2nd pass i.e. traversing the macrocells.

Figure 2: Algorithm philosophy. The octree-cut is composed of all of the active bricks (red—A, B, C, and D) at different LoDs depending on the current view. Each active brick is subdivided into macrocells (green). Empty bricks (purple) are never added to the octree-cut. We first rasterize active blocks so that the fragment shader can capture all of the active blocks that the ray penetrates (B and D) into a list in front-to-back order. Then we rasterize nonempty macrocells and refine the z-values in the list in order to get a tighter ray segment (shown as the solid black line) for each brick at the accuracy of the macrocell level.

4.4. Raycasting

A ray is generated for each desired image pixel. Using a simple camera model, the ray starts at the centre of projection of the camera (usually the eye point) and passes through the image pixel on the imaginary image plane floating in between the camera and the volume to be rendered. In the raycasting pass, depth interval is defined by the two end points of a ray-segment that performs the GPU raycasting for the corresponding brick.

Figure 3: Comparison between 2 pass rasterization Process and normal method

5. Hardware and Software requirements

5.1Software Requirements

- CUDA enabled system
- OpenGL
- ➤ Visualization Toolkit (VTK)
- ➤ Visual Studio (8+)
- National Library of Medicine Visible Human Body (Male) 3.15 GB Dataset

5.2 Hardware Requirements

SPECIFICA	ATIONS
GPU processor	Tesla C1060
CUDA Cores	240
Shader clock	1296 MHz
Memory interface	512-bit
Memory	5888 MB
Total available graphics memory	4096 MB
Bus	PCI Express x16

6. Activity Time Chart

Work done till Mid-Sem			End-Semester				
Phase 1: 10 th Jan - 25 th Jan	Phase 2: 25 th Jan – 5 th Feb	Phase 3: 5 th Feb – 12 th Feb	Phase 4: 12 th Feb – 25 th Feb	Phase V: 25 th Feb – 10 th Mar	Phase VI: 22 nd Mar – 10 th Apr	Phase VII: 10 th Apr – 20 th Apr	Phase VIII: 20 th Apr – 4 th May
Literature Survey	Data Collection and analyzing the format of the data	Environment Setup: OpenGL, CUDA	Learning OpenGL and CUDA	Visualization of small dataset	Implementation of octree data structure to manage the large volume data	Rendering small portion of octree	Visualization Pipelining and Multi – Resolution Model

7. Experimental Setup and Results

Experimental Setup requires following:

- 5. Visual Studio
- 6. Setting OpenGL
- 7. CUDA

Following are the screenshots of the code for visualization of small dataset that we have done so far:-

Figure 5: (a) and (b) are 2 different orientation of root node

Figure 6: (a) 0^{th} child and (b) 2^{nd} child of root node

Figure 7: (a) shows 011 (b) 012

8. Performance Comparison

Performance comparison on the basis of rendering quality, when we performed visualization using the source codes of different algorithms which are available as open source and on our technique, the results obtained have smoother image quality from the technique using GPU octree rasterization methods (i.e. the proposed methodology).

Performance comparison on the basis of Rendering Speed with a GPU Octree Traversing Algorithm Octree creation method takes 5-10 minutes on any type of datasets. After which octree traversal, rasterization , per-pixel list generation and rendering are done in matter of minutes as they are performed on GPU using maximum number of cores which can be utilized. As octree creation for a dataset is only performed once and stored in hard disk , the rendering speed is 2-4 times greater than what was performed by previous algorithms which performed octree traversal on GPU.

Table 4: Comparison between CPU and GPU time

S. No.	Processor	Time Require from 8 to 1 brick construction	Time Require from 64 to 1 Brick construction
1.	Quad Core	~20 mins	~2 hrs
2.	Intel i3	~12 mins	~45 mins
3.	Intel i5	~5 mins	~25 mins
4.	GPU	~micro secs	~secs

9. Future Scope and Conclusion

In our method which we have implemented is a fast, GPU based out-of-core volume ray-casting, which moves the branching intensive octree traversal out of the GPU ray-casting loop and after the traversing execute it on the GPU. By introducing the tighter depth range for GPU ray-casting it exercised the greater control over the rendering process by using the hardware rasterization unit performance. The method is also offers more sophisticated empty space skipping, and which makes possible the interactive use of advanced features like cubic interpolation for the large out-of-core data sets. Since the method that is presented provides a general accelerating scheme (by rasterizing an octree to generate tight ray segments), and the method can also be used to improve the performance of the other visualization systems, such as in multiple user activities, comparative settings and multiple volume studies, or as a future work apart from these we can also use it for time-varying data visualization. Improvements like a more generalized method to deal with the size of brick irrespective of the size of data and optimum number of levels will help to enhance the performance.

10. References

- [1] B. Liu, G. J. Clapworthy, F. Dong and E. C. Prakash "Octree Rasterization: Accelerating High-Quality Out-of-Core GPU Volume Rendering" IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 10, pp. 1731-1745, OCTOBER 2013
- [2] J. Beyer, M. Hadwiger and H. Pfister, "A Survey of GPU-Based Large-Scale Volume Visualization", Eurographics Conference on Visualization (EuroVis), 2014
- [3] E. Gobbetti, F. Marton and A. I. Guiti'an, "A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets", Springer-Verlag 2008 pp: 797–806, 2008
- [4] Y. Heng and L. Gu, "GPU-based Volume Rendering for Medical Image Visualization", Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp. 5145-5148, September 1-4, 2005
- [5] C. Wang and H. Shen, "A Framework for Rendering Large Time-Varying Data Using Wavelet-Based Time-Space Partitioning (WTSP) Tree", Department of Computer and Information Science, The Ohio State University, 2004
- [6] A. Knoll, I. Wald, S. Parker and C. Hansen, "Interactive Iso-surface Ray Tracing of Large Octree Volumes", Scientific Computing and Imaging Institute, University of Utah, Technical Report No UUSCI-2006-026, 2006
- [7] S. Chen and C. Hao, "Interactive GPU-based Volume Rendering for Medical Image", Biomedical Engineering and Informatics, BMEI '09. 2nd International Conference on 17-19 Oct, 2009
- [8] M. Smelyanskiy, D. Holmes, J. Chhugani, A. Larson, D. M. Carmean, D. Hanson, P. Dubey, K. Augustine, D. Kim, A. Kyker, V. W. Lee, A. D. Nguyen, L. Seiler and R. Robb, "Mapping High-Fidelity Volume Rendering for Medical Imaging to CPU, GPU and Many-Core Architectures", IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, Nov/Dec, 2009
- [9] M. Labschutz, S. Bruckner, M. E. Groller, M. Hadwiger and P. Rautek, "JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure", Visualization and Computer Graphics, IEEE Transactions, Vol. 22, Issue. 1, pp. 1025-1034, 2015
- [10] A. Knoll, "A Survey of Octree Volume Rendering Methods", Scientific Computing and Imaging Institute University of Utah, 2006
- [11] F. Velasco and J. C. Torres, "Cell Octrees: A New Data Structure for Volume Modeling and Visualization", VMV '01 Proceedings of the Vision Modeling and Visualization Conference, pp. 151-158, 2001
- [12] I. Boada, I. Navazo and R. Scopigno, "Multi- Resolution volume visualization with a texture-based octree", Springer-Verlag, pp. 185-197, 2001
- [13] A. Agrawal, J. Kohout, G. J. Clapworthy, N. J.B. McFarlane, F. D. M. Viceconti, F. Taddei and D. Testi, "Enabling the interactive display of large medical volume datasets by multiresolution bricking", Springer, pp. 3-19, 2009