Table 1. Plummer's Model

	G 1 1	
Quantity	Symbol	Expression or value
Distribution function	f	$\frac{3.2^{7/2}}{7\pi^3} \frac{a^2}{G^5 M^4 m} (-E)^{7/2}$
Mass density	ρ	$\frac{3M}{4\pi a^3} \left(1 + \frac{r^2}{a^2} \right)^{-5/2}$
Projected mass density	Σ	$\frac{M}{\pi a^2} \left(1 + \frac{d^2}{a^2} \right)^{-2}$
Mass within radius r	M(r)	$M\left(1+\frac{a^2}{r^2}\right)^{-3/2}$
Mass within projected radius \boldsymbol{d}	M(d)	$M\left(1+\frac{a^2}{d^2}\right)^{-1}$
(Specific) Potential	ϕ	$-\frac{GM}{a}\left(1+\frac{r^2}{a^2}\right)^{-1/2}$
One-dimensional velocity dispersion	σ^2	$-\frac{1}{6}\phi(r)$
Projected velocity dispersion	σ_z^2	$\frac{3\pi}{64} \frac{GM}{a} \left(1 + \frac{d^2}{a^2} \right)^{-1/2}$
Potential energy	W	$-\frac{3\pi}{32}\frac{GM^2}{a}$
Kinetic energy	T	$-\frac{W}{2}$
Total energy	E	$\frac{W^2}{2}$
Core radius	r_c	$ \begin{array}{c c} -\overline{32} & a \\ -\overline{W} & \\ \hline 2 & \\ \overline{\sqrt{2}} & \\ 16 & \\ \end{array} $
Virial radius	R_v	$\frac{16}{3\pi}a$
Half-mass radius	R_h	$\frac{a}{\sqrt{2^{2/3}-1}}$, $\simeq 1.305a$
Half-mass relaxation time	t_{rh}	$\frac{0.206Na^{3/2}}{\sqrt{GM}\ln\Lambda}$

turning a distribution function into a surface density is a sequence of integrations, and these tend to iron out differences between quite disparate models. (From f we integrate to get $\rho(\phi)$, integrate again to obtain $\phi(r)$ and hence $\rho(r)$, and integrate yet again to construct Σ .) Another reason may be that the profile of a star cluster is a lot simpler than that of an elephant.

An alternative approach is to attempt to invert this series of integrations more-or-less directly, and in principle this can be done. In other words, from Σ it is possible to invert the appropriate integral equation