Exercise 1

We consider the ring $\mathbb{Z}_{34} = \{0, 1, 2, \dots, 33\}$ of integers modulo 34.

- 1. List all numbers in \mathbb{Z}_{34} that are coprime to 34.
- 2. Find the multiplicative inverse of 3, 13, and 29 in \mathbb{Z}_{34} . Given the encryption function $E(a, x) = x \cdot a \mod 34$

Letter	а	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q
Code	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Letter	r	s	t	u	v	w	х	у	z	=	()	2	٥	Е	D	space
Code	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33

- 3. Determine the number of possible keys.
- 4. Derive the decryption function corresponding to E(a, x).
- 5. Encrypt the following message using a = 13:
 - $E = mc^2$

Solution

1. Finding All Comprime Integers Of 34

Number Of Comprime

$$34 = 2^{1} \times 17^{1}$$

$$\phi(34) = 34 \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{17}\right) = \boxed{16}$$

There are 16 numbers coprime to 34. These numbers are not divisible by 2 or 17

 $Coprime\ Numbers = \{\ 1\ ,\ 3\ ,\ 5\ ,\ 7\ ,\ 9\ ,\ 11\ ,\ 13\ ,\ 15\ ,\ 19\ ,\ 21\ ,\ 23\ ,\ 25\ ,\ 27\ ,\ 29\ ,\ 31\ ,33\}$

2. Finding Multiplicative

$$a^{-1} \cdot a = 34 \cdot k + 1$$

$$a^{-1} = \frac{34 \cdot k + 1}{a}$$

$\underline{\mathbf{a}} = 3$

for k = 2 we have :

$$a^{-1} = \frac{34 \cdot 2 + 1}{3} = \boxed{23}$$

a = 13

for k = 8 we have :

$$a^{-1} = \frac{34 \cdot 8 + 1}{13} = \boxed{21}$$

Euclid Methods

a = 29

$$34 = 29 \times 1 + 5$$

 $29 = 5 \times 5 + 4$
 $5 = 4 \times 1 + 1$

Back-substituting to express 1 as a linear combination of 34 and 29:

$$1 = 5 - 4 \times 1$$

 $4 = 29 - 5 \times 5$, we substitute:

$$1 = 5 - (29 - 5 \times 5)$$

5 = 34 - 29, we substitute:

$$1 = (34 - 29) - (29 - (34 - 29) \times 5)$$
$$1 = 34 - 29 - 29 + 5(34 - 29)$$
$$1 = 34(6) + 29(-7)$$

Thus, the modular inverse of 29 modulo 34 is $(-7 \mod 34) = \boxed{27}$.

3. Number Of Possible Keys

Number of possible keys is the same as number of coprime numbers with 34 which we previously found was 16

4. Decryption Function

$$D(a^{-1}, y) = y \cdot a^{-1} \mod 34$$

5. Encryption

Plain Text	Е	=	m	С	2	
Code	31	26	12	2	29	
a • Code	403	338	156	26	377	
mod 34	29	32	20	26	3	
Ciphered Text	2	D	u	=	d	