Лабораторная работа №2

для потоков

А-4,6,7,8,9,10,12,17,20,Аэ-21—22 «Вычислительные методы»

Решение нелинейных уравнений

Цель работы. Изучить и применить на практике средства языка Python для поиска корней нелинейных уравнений. Познакомиться на практике с понятием сходимости со скоростью геометрической прогрессии. Научиться сравнивать скорость работы итерационных методов.

Задача 1. Локализуйте максимальный вещественный корень уравнения f(x) = 0 и найдите его с точностью \mathcal{E} , используя средства языка Python.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ (пример - в приложении)

- 1. Постройте график заданной функции, используя средства библиотеки *matplotlib*. По графику определить отрезок локализации и начальное приближение для искомого корня.
- 2. Найдите корень, используя библиотечную функцию scipy.optimize.newton().
- 3. Найдите тот же корень, используя библиотечную функцию *scipy.optimize.newton()* с передаваемой в нее производной. Проконтролируйте совпадение результатов.

Задача 2. Даны два уравнения f(x)=0 и g(x)=0. Найдите с точностью $\varepsilon=10^{-10}$ все их корни, содержащиеся на отрезке [a, b]. Для решения задачи реализуйте программно метод бисекции.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ

- 1. Найти аналитическое решение уравнения f(x)=0.
- 2. Составить программу для нахождения корня с заданной точностью методом бисекции, с ее помощью найти корни уравнения с заданной точностью.
- 4. Используя библиотечную функцию *scipy.optimize.root()*, найти корни уравнения f(x)=0 с заданной точностью. Сравнить полученные результаты.
- 5. Аналогично п. 1-4 попытаться найти корни уравнения g(x)=0. Объяснить причины расхождения результатов для двух функций.

Задача 3. Методом простой итерации найти <u>все вещественные корни</u> уравнения из задачи 1 точностью $\varepsilon = 10^{-13}$. Проследить за поведением погрешности.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ.

- 1. Локализовать все вещественные корни заданного уравнения.
- 2. По графику производной или путем ее табулирования найти диапазон изменения ее значений на очередном отрезке локализации.
- 3. Построить расчетные формулы метода простой итерации с оптимальным параметром:

$$x^{(n+1)} = x^{(n)} - \alpha \cdot f(x^{(n)})$$
, где $\alpha = \frac{2}{m+M}$, $m = \min_{[a,b]} f'(x)$, $M = \max_{[a,b]} f'(x)$, $[a,b]$ - очередной

отрезок локализации корня.

- 4. Составить программу для нахождения корня с заданной точностью методом простой итерации с оптимальным параметром (предусмотреть возможность вывода промежуточной информации о расчетах).
- 5. Заполнить таблицу (для каждого корня).

Номер итерации <i>п</i>	Приближение $x^{(n)}$	Апостериорная оценка погрешности

6. Проанализировать полученные результаты.

- 3.1. Указать, на какой итерации достигается точность $\varepsilon = 10^{-13}$ (для каждого корня).
- 3.2. Сравнить скорость работы методов (по количеству итераций) для разных корней.
- 3.3. Определить практически скорость убывания погрешности для каждого из корней (для чего вычислять отношение погрешностей у каждой пары последовательных шагов метода).
- 3.4. Предложить объяснение причины, по которой поиск различных корней происходит с различной скоростью сходимости (если таковое наблюдается).

ИНДИВИДУАЛЬНЫЕ ВАРИАНТЫ ЗАДАНИЙ

Таблица к задаче 1

				таолица к задач	U 1
N	f(x)	\mathcal{E}	N	f(x)	\mathcal{E}
1	$0.9x^3 + 3.5x^2 - 0.3x - 1$	10 ⁻⁸	16	$0.9x^3 + 3.5x^2 - 0.3x - 4$	10 ⁻⁶
2	$0.7x^3 + 3.4x^2 - 12x + 1$	10 ⁻⁵	17	$9.8x^3 + 10x^2 - 8.8x - 4.2$	10 ⁻⁵
3	$-1.7x^3 - 23x^2 + 6x + 1$	10 ⁻⁶	18	$-2.8x^3 + 2x^2 + 19x - 3.7$	10 ⁻⁸
4	$1.5x^3 + 4.5x^2 - 18x + 4$	10 ⁻⁴	19	$0.9x^3 + 3.5x^2 + 3x - 0.1$	10 ⁻⁹
5	$1.5x^3 - 8.4x^2 - 16x + 2$	10 ⁻⁹	20	$0.6x^3 - 8.5x^2 + 4x + 1.3$	10 ⁻⁷
6	$2.8x^3 - 13.6x^2 + 11x + 3$	10 ⁻⁷	21	$1.8x^3 - 5.3x^2 - 13x + 12$	10 ⁻⁷
7	$6.2x^3 + 1.3x^2 - 9.6x - 4$	10 ⁻⁸	22	$-2.8x^3 + 9.3x^2 + 13x - 5$	10 ⁻⁵
8	$-5.8x^3 - 3.2x^2 + 10.1x - 2$	10-7	23	$-4.9x^3 + 9.4x^2 + 7.8x - 5.1$	10 ⁻⁹
9	$-0.8x^3 + 2.3x^2 + 14.1x - 3.7$	10 ⁻⁸	24	$5.3x^3 + 13x^2 - 8x - 16$	10 ⁻⁶
10	$-0.9x^3 + 3.5x^2 - 0.3x - 1$	10 ⁻⁶	25	$-0.7x^3 - 2.3x^2 + 6.7x + 0.4$	10 ⁻⁶
11	$1.1x^3 - 1.9x^2 - 2.5x + 1$	10 ⁻⁴	26	$7.1x^3 + 5.3x^2 - 6.1x - 2.5$	10-7
12	$0.5x^3 - 1.1x^2 - 1.9x + 2.1$	10-9	27	$-7.1x^3 - 1.3x^2 + 6.1x + 0.5$	10 ⁻⁶
13	$-1.8x^3 - 3.5x^2 + 1.2x + 3$	10 ⁻⁶	28	$1.3x^3 + 1.3x^2 - 8x - 5$	10 ⁻⁹
14	$5.9x^3 + 22x^2 - 8x - 1$	10 ⁻⁹	29	$5.6x^3 + 1.3x^2 - 6x + 1.4$	10 ⁻⁵
15	$4.6x^3 - 35x^2 + 4.8x + 1$	10 ⁻⁵	30	$-4.7x^3 - 2.3x^2 + 6.5x - 0.4$	10-7

Таблица к залаче 2

		1 dOJIHL	ца к задаче 2
N	f(x)	g(x)	[<i>a</i> , <i>b</i>]
1	$\left(\sin x\right)^2 - \frac{5}{6}\sin x + \frac{1}{6}$	$\left(\sin x\right)^2 - \sin x + \frac{1}{4}$	[0,1]
2	$(\sin x)^2 + \frac{7}{12}\sin x + \frac{1}{12}$	$\left(\sin x\right)^2 + \frac{2}{3}\sin x + \frac{1}{9}$	$\begin{bmatrix} -1,0 \end{bmatrix}$
3	$(\sin x)^2 - \frac{1}{30}\sin x - \frac{1}{30}$	$\left(\sin x\right)^2 - \frac{2}{5}\sin x + \frac{1}{25}$	[-0.5, 0.5]

	2 1		[
4	$(\cos x)^2 + \frac{2}{35}\cos x - \frac{1}{35}$	$\left(\cos x\right)^2 - \frac{2}{7}\cos x + \frac{1}{49}$	[0,2]
5	$\left(\cos x\right)^2 - \left(\frac{1}{\sqrt{2}} + \frac{1}{4}\right)\cos x + \frac{1}{4\sqrt{2}}$	$\left(\cos x\right)^2 - \frac{2}{\sqrt{2}}\cos x + \frac{1}{2}$	[0,1.5]
6	$\left(\cos x\right)^2 + \frac{1}{2}\cos x + \frac{1}{18}$	$\left(\cos x\right)^2 + \frac{1}{3}\cos x + \frac{1}{36}$	[0,2]
7	$\left(\ln x\right)^2 - 5\ln x + 6$	$\left(\ln x\right)^2 - 4\ln x + 4$	[5,25]
8	$\left(\ln x\right)^2 - \ln x - 2$	$\left(\ln x\right)^2 + 2\ln x + 1$	[0.1,10]
9	$(\ln x)^2 - \frac{3}{4} \ln x + \frac{1}{8}$	$\left(\ln x\right)^2 - \ln x + \frac{1}{4}$	[0.1,2]
10	$\left(tgx\right)^2 + (\sqrt{3} - 1)tgx - \sqrt{3}$	$\left(tgx\right)^2 - 2tgx + 1$	[-1.2,1]
11	$\left(tgx\right)^2 - \frac{28}{9}tgx + \frac{1}{3}$	$\left(tgx\right)^2 - 6tgx + 9$	[0,1.5]
12	$\left(tgx\right)^2 - \frac{53}{6}tgx - \frac{3}{2}$	$\left(tgx\right)^2 - \frac{1}{3}tgx + \frac{1}{36}$	[-0.5,1.5]
13	$x^4 - 7x^2 + 10$	$x^4 - 4x^2 + 4$	[0,3]
14	$x^4 - \frac{10}{3}x^2 + 1$	$x^4 - 6x^2 + 9$	[0,2]
15	$x^4 - \frac{13}{2}x^2 + 3$	$x^4 - x^2 + \frac{1}{4}$	[0,3]
16	$\left(\sin x\right)^2 + \frac{5}{6}\sin x + \frac{1}{6}$	$\left(\sin x\right)^2 + \frac{2}{3}\sin x + \frac{1}{9}$	$\begin{bmatrix} -1, 0 \end{bmatrix}$
17	$(\sin x)^2 - \frac{7}{12}\sin x + \frac{1}{12}$	$\left(\sin x\right)^2 - \frac{1}{2}\sin x + \frac{1}{16}$	[0,1]
18	$\left(\sin x\right)^2 + \frac{1}{30}\sin x - \frac{1}{30}$	$\left(\sin x\right)^2 + \frac{1}{3}\sin x + \frac{1}{36}$	[-0.5, 0.5]
19	$(\cos x)^2 - \frac{2}{35}\cos x - \frac{1}{35}$	$\left(\cos x\right)^2 - \frac{2}{5}\cos x + \frac{1}{25}$	[0,3]
20	$\left(\cos x\right)^2 + \left(\frac{1}{\sqrt{2}} - \frac{1}{4}\right)\cos x - \frac{1}{4\sqrt{2}}$	$\left(\cos x\right)^2 - \frac{1}{2}\cos x + \frac{1}{16}$	[0,2]
21	$\left(\cos x\right)^2 - \frac{1}{2}\cos x + \frac{1}{18}$	$(\cos x)^2 - \frac{2}{3}\cos x + \frac{1}{9}$	[0,2]
22	$(\lg x)^2 + \frac{5}{3}\lg x - \frac{2}{3}$	$\left(\lg x\right)^2 - \frac{2}{3}\lg x + \frac{1}{9}$	[0.001,3]
23	$\left(\lg x\right)^2 - \lg x - \frac{3}{4}$	$\left(\lg x\right)^2 - 3\lg x + \frac{9}{4}$	[0.1,35]
24	$(\lg x)^2 + \frac{3}{4}\lg x - \frac{1}{4}$	$\left(\lg x\right)^2 + 2\lg x + 1$	[0.01,3]
25	$\left(tgx\right)^2 - \left(1 + \frac{1}{\sqrt{3}}\right)tgx + \frac{1}{\sqrt{3}}$	$\left(tgx\right)^2 - 2tgx + 1$	[0,1]
26	$\left(tgx\right)^2 - \frac{7}{4}tgx - \frac{1}{2}$	$\left(tgx\right)^2 + \frac{1}{2}tgx + \frac{1}{16}$	[-0.5,1.5]

27	$\left(tgx\right)^2 + \frac{37}{6}tgx + 1$	$\left(tgx\right)^2 + 12tgx + 36$	[-1.5,0]
28	$x^4 - 11x^2 + 24$	$x^4 - 6x^2 + 9$	[1,3]
29	$x^4 - \frac{26}{5}x^2 + 1$	$x^4 - 10x^2 + 25$	[0,3]
30	$x^4 - \frac{21}{2}x^2 + 5$	$x^4 - x^2 + \frac{1}{4}$	[0,5]


```
In [5]: from scipy.optimize import newton

x0 = 0.8
    res1 = newton(f, x0, tol=1e-10, full_output=True)
    res2 = newton(f, x0, tol=1e-10, full_output=True, fprime=df)

print ("метод секущих:\n", res1)
    print ("метод Ньютона:\n", res2)

метод секущих:
    (0.20163967572340463, converged: True
```

```
(0.20163967572340463, converged: True flag: 'converged'
function_calls: 8
  iterations: 7
  root: 0.20163967572340463)
метод Ньютона:
(0.2016396757234047, converged: True flag: 'converged'
function_calls: 10
  iterations: 5
  root: 0.2016396757234047)
```

Стр. 1 из 2

```
In [3]: from scipy.optimize import root

x0 = 0.8
Q = root(f,x0)
x_res = Q.x[0]

print("%0.9f" %x_res, ' :" ', "%0.9f" %f(x_res))
# unu mak:
print("%0.9e" %x_res, ' :" ', "%0.9e" %f(x_res))

0.201639676 :" 0.000000000
2.016396757e-01 :" 2.220446049e-16
In []:
```

Стр. 2 из 2