Цель работы: реализовать и сравнить программный и табличный генераторы пседослучайных чисел. Для сравнения использовать свой или уже существующий критерий случайности последовательности.

Программный генератор

В качестве программного генератора был выбран линейный конгруэнтный генератор псевдослучайных чисел с заданными константами m = 32767, a = 1103515245, b = 12345:

$$X_{n+1} = (aX_n + b) \bmod m$$

Табличный генератор

В качестве табличного генератора использована таблица некоррелированных случайных чисел из книги "Million Random Digits with 100,000 Normal Deviates".

χ^2 -критерий

Критерий χ^2 используется для проверки нулевой гипотезы о подчинении наблюдаемой случайной величины определенному теоретическому закону распределения.

Для того, чтобы найти оценку, разделим последовательность на k непересекающихся интервалов. Пусть n_i - количество чисел в i-ом интервале, $p_i = \frac{1}{k}$ - теоретическая вероятность попадания чисел в k-ый интервал, N - количество всех сгенерированных чисел.

Вычислим экспериментальное значение χ^2 по следующей формуле:

$$\chi^2 = \frac{1}{N} \sum_{i=1}^k \left(\frac{n_i^2}{p_i} \right) - N,$$

Затем полученное значение сравнивается с теоретической величиной χ^2 , взятой из таблицы значений, откуда находится параметр p.

p - вероятность того, что экспериментальное значение χ^2 будет меньше или равно теоретического.

Результаты работы

Программный генератор:

				L	LL
	N N		Одноразрядные	Двухразрядные	Трехразрядные
	1	 	2	22	222
	2		1	15	152
	3	١	1	15	157
ĺ	4	ĺ	6	67	675
	5	١	8	83	837
ĺ	6	ĺ	2	28	288
	7	١	7	75	750
ĺ	8	ĺ	3	31	314
ĺ	9	ĺ	3	32	324
ĺ	10)	2	22	221

Программный генератор: 10 элементов

1. Хи-квадрат(2.000000): 0.849145 2. Хи-квадрат(1.200000): 0.990927 3. Хи-квадрат(0.000000): 1.000000

Рис. 1: Программный генератор для 10 чисел

Табличный генератор:

+		_+		L	·
İ	N	(Одноразрядные	Двухразрядные	Трехразрядные
	1	-+ 	0	 50	150
	2		2	12	212
	3	ı	6	16	116
ĺ	4	ĺ	5	85	685
	5	1	0	50	550
	6		9	29	129
	7	1	3	83	483
ĺ	8	ĺ	3	83	483
1	9	1	0	70	970
	10		3	13	813

Табличный генератор: 10 элементов

1. Хи-квадрат(3.200000): 0.669183

2. Хи-квадрат(1.200000): 0.990927

3. Хи-квадрат(0.800000): 0.999224

Рис. 2: Табличный генератор для 10 чисел

Программный генератор: 100 элементов 1. Хи-квадрат(89.360000): 0.000000 2. Хи-квадрат(29.560000): 0.887122 3. Хи-квадрат(3.680000): 1.000000

Табличный генератор: 100 элементов 1. Хи-квадрат(2.000000): 0.849145 2. Хи-квадрат(0.000000): 1.000000 3. Хи-квадрат(0.000000): 1.000000

Рис. 3: Критерий χ^2 для 100 чисел

Вывод

В ходе выполнения лабораторной работы были реализованы программный и табличный генераторы псевдослучайных чисел.