Today

- Finish off model checking
- Data manipulation with dplyr
- Generalized linear models (GLM)
 - McElreath Ch 9

Independent project

- Complete analysis (EDA through inference & conclusions)
- ggplot, dplyr
- Preferably hierarchical model:
 - rstanarm: stan_glmer or stan_lmer
- Submit .md from .R or .Rmd
- Due end of semester

Model checking

- When is normality of errors important?
 - Not critical for inference about means
 - Frequentist: sampling distribution will still be approximately normal
 - Bayesian: posterior distribution will still be approximately normal or insensitive
 - Can be important for inference about prediction
 - Because: data generating process
- Good information for improving model

Model checking

- How can I know what to look for in a diagnostic plot?
 - simulate it!
- Continue coding demo

How to proceed?

dplyr - working with data

```
filter() - pick observations by their values
select() - pick columns by name
arrange() - reorder rows
mutate() - create new variables from existing variables
summarize() - collapse values to a summary statistic
group_by() - all the above split by group
```

> pipe to combine (or %>%)

Base R: subset(), order(), sort(), table(), aggregate(), |>

tibbles (tables with NZ accent)

Data frame; optimized printing for large datasets. You probably spent a lot of time collecting data. Wouldn't you want to spend a few minutes to inspect each row and column? That's how you catch errors.

Convert to dataframe

```
my_tibble |> data.frame()
Keep tibble, but print all the data by default
options(tibble.width=Inf)
options(tibble.print_max=Inf)
options(max.print=1500)
?print.tbl - see options
Other ways to inspect tibbles
View(my_tibble) - only works in Rstudio
glimpse(my_tibble) - summary
```

dplyr vs base

How many trees with known mortality status are missing a diameter in 2013?

```
tree_dat |>
    filter(year == 2013) |>
    filter(!is.na(mortality)) |>
    mutate(diam_missing=is.na(diam)) |>
    summarize(sum(diam_missing))

sum(is.na(subset(tree_dat, year == 2013 & !is.na(mortality))$diam))
```

dlpyr, complex queries

How many species observed in each habitat fragment in each year?trees with known mortality status are missing a diameter in 2013?

```
tree_dat |>
    filter(year == 2013) |>
    filter(!is.na(mortality)) |>
    mutate(diam_missing=is.na(diam)) |>
    summarize(sum(diam_missing))

sum(is.na(subset(tree_dat, year == 2013 & !is.na(mortality))$diam))
```

Main points McElreath Ch 9

Generalized linear models

Main points McElreath Ch 9

Generalized linear models

Main points McElreath Ch 9

- Exponential family (some)
 - Exponential, Gamma, Normal, Poisson, Binomial
- Other distributions
 - with write-your-own or Bayesian, this doesn't have to be from the exponential family
 - even more generalized!
- Link functions (some)
 - identity, log, logit

Most common models

Normal

+

Identity link

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

$$\mu_i = \beta_0 + \beta_1 x_i$$

Poisson

+

Log link

$$y_i \sim \text{Poisson}(\mu_i)$$

$$\log(\mu_i) = \beta_0 + \beta_1 x_i$$

Binomial

+

Logit link

$$y_i \sim \text{Binomial}(\mu_i, n)$$

$$\log\left(\frac{\mu_i}{1-\mu_i}\right) = \beta_0 + \beta_1 x_i$$

Key properties:

y: -∞ to ∞, continuous

 μ : -\infty to \infty, continuous

y: 0 to ∞, discrete, integer

 μ : 0 to ∞ , continuous

y: 0, 1, discrete, binary

 μ : 0 to 1, probability

Most common models

Normal

Identity link

Poisson

Log link

Binomial

Logit link

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

$$y_i \sim \text{Poisson}(\mu_i)$$

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$
 $y_i \sim \text{Poisson}(\mu_i)$ $y_i \sim \text{Binomial}(\mu_i, n)$

$$\mu_i = \beta_0 + \beta_1 x_i$$

$$\log(\mu_i) = \beta_0 + \beta_1 x_i$$

$$\log\left(\frac{\mu_i}{1-\mu_i}\right) = \beta_0 + \beta_1 x_i$$

Linear predictor (always the same):

$$\eta_i = \beta_0 + \beta_1 x_i \qquad \eta_i = \beta_0 + \beta_1 x_i$$

$$\eta_i = \beta_0 + \beta_1 x_i$$

$$\eta_i = \beta_0 + \beta_1 x_i$$

Inverse link function:

$$\mu_i = \eta_i$$

$$\mu_i = e^{\eta_i}$$

$$\mu_i = \frac{e^{\eta_i}}{1 + e^{\eta_i}}$$

Which makes the most sense?

Most common models

Normal	Poisson	Binomial
+	+	+
Identity link	Log link	Logit link
$y_i \sim \text{Normal}(\mu_i, \sigma)$	$y_i \sim \text{Poisson}(\mu_i)$	$y_i \sim \text{Binomial}(\mu_i, n)$
$\mu_i = \beta_0 + \beta_1 x_i$	$\log(\mu_i) = \beta_0 + \beta_1 x_i$	$\log\left(\frac{\mu_i}{1-\mu_i}\right) = \beta_0 + \beta_1 x_i$

Inverse link functions:

$$\mu_i = \eta_i \qquad \qquad \mu_i = \frac{e^{\eta_i}}{1 + e^{\eta_i}}$$

Which makes the most sense?

Poisson
+
Log link

$$y_i \sim \text{Poisson}(\mu_i)$$
 $\log(\mu_i) = \beta_0 + \beta_1 x_i + ...$
 $\eta_i = \beta_0 + \beta_1 x_i + ...$
 $\mu_i = e^{\eta_i}$

Write the full linear predictor

Poisson
+
Log link
$$y_i \sim \text{Poisson}(\mu_i)$$

$$\log(\mu_i) = \beta_0 + \beta_1 x_i + ...$$

$$\eta_i = \beta_0 + \beta_1 x_i + ...$$

$$\mu_i = e^{\eta_i}$$

$$\eta_i = \beta_0 + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i$$

Model formula

$$\eta_i = \beta_0 intercept_i + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i$$

Model formula

Equivalent:

```
richness ~ habitat * latitude  
richness ~ 1 + habitat + latitude + habitat:latitude  
\eta_i = \beta_0 intercept_i + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i
```

Model matrix (design matrix)

Data

habitat	latitude	richness
forest	42	16
forest	42.56	10
forest	43.33	7
forest	44.76	6
bog	42.17	8
bog	42.57	4
bog	44.06	3
bog	44.95	5

$$\eta_i = \beta_0 intercept_i + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i$$

Model matrix (design matrix)

Data				Model	matrix		
habitat	latitude	richness	i	ntercept	forest	latitude	forest:latitude
forest	42	16		1	1	42	42
forest	42.56	10		1	1	42.56	42.56
forest	43.33	7		1	1	43.33	43.33
forest	44.76	6		1	1	44.76	44.76
bog	42.17	8	model.matrix(fit) 1	0	42.17	0
bog	42.57	4		1	0	42.57	0
bog	44.06	3		1	0	44.06	0
bog	44.95	5		▼ 1	7 0	44.95	0
	$\eta_i = f$	B_0 inter	$cept_i + \beta_1 fore$	$est_i + \beta_i$	latitude,	$+\beta_3$ for	$est_i \times latitud$

eta ~ 1 + forest + latitude + forest:latitude

Bayesian GLM: Priors?

Poisson
+
Log link
$$y_i \sim \text{Poisson}(\mu_i)$$

$$\log(\mu_i) = \eta_i$$

$$\eta_i = \beta_0 + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i$$

Bayesian GLM: Code

Poisson
$$+ \\ \text{Log link}$$

$$y_i \sim \text{Poisson}(\mu_i)$$

$$\log(\mu_i) = \eta_i$$

$$\eta_i = \beta_0 + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i$$

Write the code for ulam()