

Aula 04

Programação linear através da Álgebra Linear

Conceitos Fundamentais: Vetores, Matrizes e Sistemas Lineares

Vetores

Vetores são objetos que possuem magnitude e direção. Eles são representados geometricamente como setas.

Matrizes

Matrizes são tabelas de números organizadas em linhas e colunas. Elas são usadas para representar transformações lineares.

Sistemas Lineares

Sistemas lineares são conjuntos de equações lineares. Eles podem ser resolvidos usando técnicas de álgebra linear.

Aplicações Práticas da Álgebra Linear

Computação Gráfica

Transformações de objetos 3D e renderização de imagens.

Processamento de Sinais

Análise e compressão de sinais de áudio e vídeo.

Redes Neurais

Treinamento de modelos de aprendizado de máquina.

Também a versão matricial do modelo pode fornecer os pontos extremos do poliedro de soluções viáveis. O processo consiste na multiplicação de matrizes e operações com determinantes.

Forma Matricial

Forma Matricial

$$\begin{aligned} & \text{Exemplo:} \\ & \text{Max Z} = 4\mathbf{x}_1 + 6\mathbf{x}_2 + 9\mathbf{x}_3 \end{aligned} \qquad \begin{bmatrix} 469 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} \\ & \text{Sujeito a: } 3\mathbf{x}_1 + 4\mathbf{x}_2 + 2\mathbf{x}_3 \leq 23 \\ & 2\mathbf{x}_1 + 3\mathbf{x}_2 + \mathbf{x}_3 \leq 10 \\ & \mathbf{x}_1 + 2\mathbf{x}_2 + 4\mathbf{x}_3 \leq 16 \end{aligned} \qquad \begin{bmatrix} 3 & 4 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} \leq \begin{bmatrix} 23 \\ 10 \\ 16 \end{bmatrix} \\ & \mathbf{x}_1 \geq 0, \, \mathbf{x}_2 \geq 0, \, \mathbf{x}_3 \geq 0 \end{aligned} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{aligned}$$

Regra de Cramer

inicialmente, vamos considerar o sistema $\begin{cases} a_1 x + b_1 y = c_1 \\ a_2 x + b_2 y = c_2 \end{cases}$

C1 e C2 são os termos independente do sistema.

$$D = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$$
 é o determinante da matriz inconpleta do sistema.

$$x = \frac{D_x}{D}$$

$$y = \frac{D_y}{D}$$

Uma empresa química fabrica dois produtos utilizando as misturas, em 1000

litros:

Recursos	Recurso I	Recurso II
Produto A	5	6
Produto B	7	5
Disponibilidades	35	30

Sabe-se que a produção diária do produto A não pode ultrapassar 3000 unidades e sendo seu lucro de R\$ 3,00 e o lucro do produto B é de R\$2,00. Determinar as quantidades dos produtos A e B que deverão ser produzidas para maximizar o lucro.

a) Modelagem

Variáveis de decisão

- produção diária do Produto A: x₁
- produção diária do Produto B: x₂

Modelo

$$Max L = 3x_1 + 2x_2$$

Digitalizado com CamScanner

Sujeito a:
$$5x_1 + 7x_2 \le 35$$

 $6x_1 + 5x_2 \le 30$
 $x_1 \le 3$
 $x_1 \ge 0, x_2 \ge 0$

b) Versão matricial do modelo

Para a transformação do modelo à forma padrão, são inseridas três variáveis, denominadas de folga, uma para cada restrição (veja no Capítulo 4 como fazer a transformação da forma canônica para a forma padrão):

Max L =
$$3x_1 + 2x_2$$

Sujeito a: $5x_1 + 7x_2 + x_3 = 35 \Leftrightarrow x_3 = 35 - 5x_1 - 7x_2$
 $6x_1 + 5x_2 + x_4 = 30 \Leftrightarrow x_4 = 30 - 6x_1 + 5x_2$
 $x_1 + x_5 = 3 \Leftrightarrow x_5 = 3 - x_1$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$

Na forma matricial, tem-se uma matriz dos coeficientes com três linhas e cinco colunas, uma matriz da variável X e uma matriz dos termos independentes:

$$\begin{bmatrix} 5 & 7 & 1 & 0 & 0 \\ 6 & 5 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 35 \\ 30 \\ 3 \end{bmatrix}$$

c) Determinação do número de matrizes

A partir da matriz dos coeficientes das restrições, podem ser determinadas dez matrizes quadradas 3×3 . Será através dessas matrizes quadradas que os pontos extremos da região de soluções serão determinados. A determinação do número de pontos será dada pela combinação $C_{5,3} = 10.3$

As matrizes serão compostas levando-se em consideração as variáveis que forem tomadas como básicas, o que leva às seguintes combinações possíveis:

3
 $C_{5,3} = \frac{5!}{(5-3)! \cdot 3!} = 10$

a) x ₃ , x ₄ , x ₅	f) x ₁ , x ₃ , x ₅	
b) x ₁ , x ₂ , x ₃	g) x ₁ , x ₄ , x ₅	
c) x ₁ , x ₂ , x ₄	h) x ₂ , x ₃ , x ₄	
d) x ₁ , x ₂ , x ₅	i) x ₂ , x ₄ , x ₅	
e) x ₁ , x ₃ , x ₄	j)x ₂ , x ₃ , x ₅	

$$C_{n,p} = \frac{n!}{p! (n-p)!}$$
 $C_{5,3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = \frac{5.4.3!}{2!2!} = \frac{20}{2} = 10$

n: n= vorioveis (no exemplo: (x1, x2, x3, x4, x5) = 5

p: my equações das restrições (a equações) = 8

. SÃO 10 combinações

As variaveis de folga, no caso do exemplo (x3, x4, x5), determinam a ordem da matriz quadrada e o arranjo das combinagões.

Meste CASO do exemplo como são 3 folgos, serão formadas matrizes quadradas 3x3 e as combinações são de 3 variaveis

Pela arvore de possibilidades:

d) A resolução do modelo pela regra de Cramer

Na resolução dos sistemas formados com as variáveis básicas, é utilizada a regra de Cramer.

Lembro que para que os pontos possam ser determinados pela regra de Cramer, é necessário que a matriz formada pelos coeficientes das variáveis tomadas como básicas seja não singular ($|A| \neq 0$).

Solução básica inicial – variáveis básicas: x3, x4 e x5

A primeira solução a ser determinada é a solução básica inicial (SBI), em que serão tomadas como básicas as variáveis de folga $(x_3, x_4 e x_5)$. Neste primeiro sistema, são consideradas as seguintes matrizes:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 35 \\ 30 \\ 3 \end{bmatrix}$$

$$|A| = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = (1) - (0) = 1$$

$$|A_3| = \begin{vmatrix} 35 & 0 & 0 \\ 30 & 1 & 0 \\ 3 & 0 & 1 \end{vmatrix} = (35) - (0) = 35 \Rightarrow x_3 = \frac{35}{1} \therefore x_3 = 35$$

$$|A_4| = \begin{vmatrix} 1 & 35 & 0 \\ 0 & 30 & 0 \\ 0 & 0 & 1 \end{vmatrix} = (30) - (0) = 30 \Rightarrow x_4 = \frac{30}{1} \therefore x_4 = 30$$

$$|A_5| = \begin{vmatrix} 1 & 0 & 35 \\ 0 & 1 & 30 \\ 0 & 0 & 3 \end{vmatrix} = (3) - (0) = 3 \Rightarrow x_5 = \frac{3}{1} \therefore x_5 = 3$$

$$A(0, 0, 35, 30, 3) - \text{Solução Básica Inicial - (SBI)}$$

Esta é a solução básica inicial, onde x₁ e x₂, por não pertencerem à base, têm valores nulos. Neste ponto, a empresa ainda não começou a produzir, mas já informa as quantidades de recursos disponíveis. Veja que, agora, já serão utilizados pontos com cinco coordenadas: as duas primeiras informarão as quantidades produzidas de cada produto e as três últimas, as sobras de recursos.

Variáveis básicas: x₁, x₂ e x₃

$$\begin{bmatrix} 5 & 7 & 1 \\ 6 & 5 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} = \begin{bmatrix} 35 \\ 30 \\ 3 \end{bmatrix}$$

$$|B| = \begin{vmatrix} 5 & 7 & 1 \\ 6 & 5 & 0 \\ 1 & 0 & 0 \end{vmatrix} = (0 + 0 + 0) - (5 + 0 + 0) = -5$$

$$\begin{vmatrix} B_1 \end{vmatrix} = \begin{vmatrix} 35 & 7 & 1 \\ 30 & 5 & 0 \\ 3 & 0 & 0 \end{vmatrix} = (0) - (15) = -15 \Rightarrow \therefore x_1 = \frac{|B_1|}{|B|} = \frac{-15}{-5} \therefore x_1 = 3$$

$$\begin{vmatrix} B_2 \end{vmatrix} = \begin{vmatrix} 5 & 35 & 1 \\ 6 & 30 & 0 \\ 1 & 3 & 0 \end{vmatrix} = (18) - (30) = -12 \Rightarrow x_2 = \frac{\begin{vmatrix} B_2 \end{vmatrix}}{\begin{vmatrix} B \end{vmatrix}} = \frac{-12}{-5} \therefore x_2 = \frac{12}{5}$$

$$\begin{vmatrix} B_3 \end{vmatrix} = \begin{vmatrix} 5 & 7 & 35 \\ 6 & 5 & 30 \\ 1 & 0 & 3 \end{vmatrix} = (285) - (301) = -16 \Rightarrow x_3 = \frac{\begin{vmatrix} B_3 \end{vmatrix}}{\begin{vmatrix} B \end{vmatrix}} = \frac{-16}{-5} \therefore x_3 = \frac{16}{5}$$

$$B(3, \frac{12}{5}, \frac{16}{5}, 0, 0) - O$$
 PONTO PERTENCE AO POLIEDRO

Esse ponto é um extremo do poliedro, pois todos os seus valores são positivos. Veja que nesse ponto a empresa produzirá 3.000 litros do Produto A e 2.400 litros do Produto B, sendo que o material empregado na fabricação foi:

- a) recurso I: 5x₁ + 7x₂ = 5(3.000) + 7(12.000/5) = 15.000 + 16.800 = 31.800. Como a empresa tem disponíveis 35.000 litros desse recurso, ainda há uma sobra de 3.200 litros, que poderá ser utilizada ou não pela empresa, conseqüentemente, aumentando a sua produção (veja como isso pode ser feito no Capítulo 7, Análise de Sensibilidade: pós-otimização). Essa sobra de 3.200 litros do recurso I pode ser verificada tomando-se o valor de x₃ (16/5 de 1.000);
- b) recurso II: $6x_1 + 5x_2 = 6(3.000) + 5(12.000/5) = 18.000 + 12.000 = 30.000$, o que representa que toda a quantidade do recurso II está sendo utilizada e, por isso, não havendo sobras, a coordenada $x_4 = 0$;
- c) da mesma forma, faz-se o raciocínio para x₁ ≤ 3. Note que o seu valor em B é 3, indicando que a empresa está produzindo 3.000 litros do Produto A, que corresponde à demanda esperada. Com isso x₅ é igual a 0.

Para a determinação dos outros pontos do poliedro, são utilizados os mesmos procedimentos até aqui vistos e a análise dos valores encontrados é semelhante.

Para a determinação dos outros pontos do poliedro, são utilizados os mesmos procedimentos até aqui vistos e a análise dos valores encontrados é semelhante.

Variáveis básicas: x₁, x₂ e x₄

$$\begin{bmatrix} 5 & 7 & 0 \\ 6 & 5 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 35 \\ 30 \\ 3 \end{bmatrix}$$

$$|C| = \begin{vmatrix} 5 & 7 & 0 \\ 6 & 5 & 1 \\ 1 & 0 & 0 \end{vmatrix} = (7) - (0) = 7$$

$$|C_1| = \begin{vmatrix} 35 & 7 & 0 \\ 30 & 5 & 1 \\ 3 & 0 & 0 \end{vmatrix} = (21) - (0) = 21 \Rightarrow x_1 = \frac{21}{7} : x_1 = 3$$

$$|C_2| = \begin{vmatrix} 5 & 35 & 0 \\ 6 & 30 & 1 \\ 1 & 3 & 0 \end{vmatrix} = (35) - (15) = 20 \Rightarrow x_2 = \frac{20}{7}$$

$$\begin{vmatrix} C_4 \end{vmatrix} = \begin{vmatrix} 5 & 7 & 35 \\ 6 & 5 & 30 \\ 1 & 0 & 3 \end{vmatrix} = (285) - (301) = -16 \Rightarrow x_4 = \frac{-16}{7}$$

$$C(3, \frac{20}{7}, 0, \frac{-16}{7}, 0)$$
 – O PONTO NÃO PERTENCE AO POLIEDRO

Neste caso, o ponto não pertence ao conjunto de soluções viáveis, pois x_4 é negativo ($^{-16}/_{7}$). Isto quer dizer que este ponto está fora da região de soluções viáveis. Nesté ponto ficaram faltando 16.000/7 unidades do recurso II, ou seja: 6(3.000) + 5(20.000/7) = 32.285,71 litros, um excesso de 2.285,71.

Variáveis básicas: x1, x2 e x5

$$\begin{bmatrix} 5 & 7 & 0 \\ 6 & 5 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_5 \end{bmatrix} = \begin{bmatrix} 35 \\ 30 \\ 3 \end{bmatrix}$$

$$|D| = \begin{vmatrix} 5 & 7 & 0 \\ 6 & 5 & 0 \\ 1 & 0 & 1 \end{vmatrix} = (25) - (42) = -17$$

$$|D_1| = \begin{vmatrix} 35 & 7 & 0 \\ 30 & 5 & 0 \\ 3 & 0 & 1 \end{vmatrix} = (175) - (210) = -35 \Rightarrow x_1 = \frac{-35}{-17} = \frac{35}{17}$$

$$|D_2| = \begin{vmatrix} 5 & 35 & 0 \\ 6 & 30 & 0 \\ 1 & 3 & 1 \end{vmatrix} = (150) - (210) = -60 \Rightarrow x_2 = \frac{-60}{-17} = \frac{60}{17}$$

$$|D_5| = \begin{vmatrix} 5 & 7 & 35 \\ 6 & 5 & 30 \\ 1 & 0 & 3 \end{vmatrix} = (285) - (301) = -16 \Rightarrow x_4 = \frac{-16}{-17} = \frac{16}{17}$$

$$D(35/17,60/17,0,0,16/17) - O$$
 PONTO PERTENCE AO POLIEDRO

Podemos verificar que neste ponto a demanda pelo Produto I não é satisfeit pois o que lhe falta está em x_5 (3 – $\frac{35}{17}$ = $\frac{16}{17}$).

Variáveis básicas: x₁, x₃ e x₄

$$\begin{bmatrix} 5 & 1 & 0 \\ 6 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 35 \\ 30 \\ 3 \end{bmatrix}$$

$$|E| = \begin{vmatrix} 5 & 1 & 0 \\ 6 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} = (1) - (0) = 1$$

$$|E_1| = \begin{vmatrix} 35 & 1 & 0 \\ 30 & 5 & 1 \\ 3 & 0 & 0 \end{vmatrix} = (3) - (0) = 3 \Rightarrow x_1 = \frac{3}{1} = 3$$

$$\begin{vmatrix} E_3 \end{vmatrix} = \begin{vmatrix} 5 & 35 & 0 \\ 6 & 30 & 1 \\ 1 & 3 & 0 \end{vmatrix} = (35) - (15) = 20 \Rightarrow x_2 = \frac{20}{1} = 20$$

$$\begin{vmatrix} E_4 \end{vmatrix} = \begin{vmatrix} 5 & 1 & 35 \\ 6 & 0 & 30 \\ 1 & 0 & 3 \end{vmatrix} = (30) - (18) = 12 \Rightarrow x_4 = \frac{12}{1} = 12$$

E(3, 0, 20, 12, 0) - O PONTO PERTENCE AO POLIEDRO

Neste caso, o Produto B não será produzido, pois $x_2 = 0$.

Variáveis básicas: x₁, x₃ e x₅

$$\begin{bmatrix} 5 & 1 & 0 \\ 6 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} = \begin{bmatrix} 35 \\ 30 \\ 3 \end{bmatrix}$$

$$|F| = \begin{vmatrix} 5 & 1 & 0 \\ 6 & 0 & 0 \\ 1 & 0 & 1 \end{vmatrix} = (0) - (6) = -6$$

$$|F_1| = \begin{vmatrix} 35 & 1 & 0 \\ 30 & 0 & 0 \\ 3 & 0 & 1 \end{vmatrix} = (0) - (30) = -30 \Rightarrow x_1 = \frac{-30}{-6} = 5$$

$$|F_3| = \begin{vmatrix} 5 & 35 & 0 \\ 6 & 30 & 0 \\ 1 & 3 & 1 \end{vmatrix} = (150) - (210) = -60 \Rightarrow x_3 = \frac{-60}{-6} = 10$$

$$|\mathbf{F}_5| = \begin{vmatrix} 5 & 1 & 35 \\ 6 & 0 & 30 \\ 1 & 0 & 3 \end{vmatrix} = (30) - (18) = 12 \Rightarrow \mathbf{x}_5 = \frac{12}{-6} = -2$$

F(5, 0, 10, 0, -2) - O PONTO NÃO PERTENCE AO POLIEDRO

Este ponto está fora da região de soluções. Veja que x_1 excede a demanda, que é de 3 unidades $(x_1 + x_5 = 2)$.

Variáveis básicas: x1, x4 e x5

$$\begin{bmatrix} 5 & 0 & 0 \\ 6 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 35 \\ 30 \\ 3 \end{bmatrix}$$

$$|G| = \begin{vmatrix} 5 & 0 & 0 \\ 6 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix} = (5) - (0) = 5$$

$$|G_1| = \begin{vmatrix} 35 & 0 & 0 \\ 30 & 1 & 0 \\ 3 & 0 & 1 \end{vmatrix} = (35) - (0) = 35 \Rightarrow x_1 = \frac{35}{5} = 7$$

$$|G_4| = \begin{vmatrix} 5 & 35 & 0 \\ 6 & 30 & 0 \\ 1 & 3 & 1 \end{vmatrix} = (150) - (210) = -60 \Rightarrow x_4 = \frac{-60}{5} = -12$$

$$|G_5| = \begin{vmatrix} 5 & 0 & 35 \\ 6 & 1 & 30 \\ 1 & 0 & 3 \end{vmatrix} = (15) - (35) = -20 \Rightarrow x_5 = \frac{-20}{5} = -4$$

GCZ, O, O, -12, -4) - O PONTO NÃO PERTENCE AO POLIEDRO

Variaveis basicas: x_a, x_b e x_b

Nexte caxo, o xixtema é indeterminado, pois o determinante oriundo dessa matriz tem valor gero (a última linha da matriz só tem geros).

$$\begin{bmatrix} 7 & 1 & 0 \\ 5 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 38 \\ 30 \\ 3 \end{bmatrix} \rightarrow \text{SISTEMA INDETERMINADO}$$

Variaveis básicas: x_g, x_g e x_g

$$\begin{bmatrix} 7 & 1 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \\ x_5 \end{bmatrix} = \begin{bmatrix} 35 \\ 30 \\ 3 \end{bmatrix}$$

$$|H| = \begin{vmatrix} 7 & 1 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} = (0) - (5) = -5$$

$$|H_2| = \begin{vmatrix} 35 & 1 & 0 \\ 30 & 0 & 0 \\ 3 & 0 & 1 \end{vmatrix} = (0) - (30) = -30 \Rightarrow x_2 = \frac{-30}{-5} = 6$$

$$|H_3| = \begin{vmatrix} 7 & 35 & 0 \\ 5 & 30 & 0 \\ 0 & 3 & 1 \end{vmatrix} = (210) - (175) = 35 \Rightarrow x_3 = \frac{35}{-5} = -7$$

$$|H_5| = \begin{vmatrix} 7 & 0 & 35 \\ 5 & 1 & 30 \\ 0 & 0 & 3 \end{vmatrix} = (0) - (-15) = -15 \Rightarrow x_5 = \frac{-15}{-5} = 3$$

1(0, 6, -7, 0, 3) - O PONTO NÃO PERTENCE AO POLIEDRO

Variáveis básicas: x2, x4 e x8

$$\begin{bmatrix} 7 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 35 \\ 30 \\ 3 \end{bmatrix}$$

$$|\mathbf{l}| = \begin{vmatrix} 7 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = (7) - (0) = 7$$

$$|1_2| = \begin{vmatrix} 35 & 0 & 0 \\ 30 & 1 & 0 \\ 3 & 0 & 1 \end{vmatrix} = (35) - (0) = 35 \Rightarrow x_2 = \frac{35}{7} = 5$$

I(0, 5, 0, 5, 3) - O PONTO PERTENCE AO POLIEDRO

Neste caso, vemos que o Produto A não será produzido, pois $x_1=0$. Por esse motivo $x_5=3$, que é o correspondente à demanda pelo Produto A, que não será atendida.

Com o ponto I conclui-se o levantamento dos pontos pertencentes à região de soluções e, desse modo, pode-se escrever:

•
$$A(0, 0, 35, 30, 3)$$
 $\Rightarrow L_A = 3(0) + 2(0)$ \therefore $L_A = 0 \text{ (SBI)}$

•
$$B(3, \frac{12}{5}, \frac{16}{5}, 0, 0)$$
 $\Rightarrow L_B = 3(3) + 2(12/5)$... $L_B = 13,80 \text{ u.m.}$

•
$$D(35/17,60/17,0,0,16/17) \Rightarrow L_D = 3(35/17) + 2(60/17) : L_D = 13,24 \text{ u.m.}$$

•
$$E(3, 0, 20, 12, 0)$$
 $\Rightarrow L_E = 3(3) + 2(0)$ \therefore $L_E = 9,00 \text{ u.m.}$

•
$$H(0, 5, 0, 5, 3)$$
 $\Rightarrow L_H = 3(0) + 2(5)$ \therefore $L_H = 10,00 \text{ u.m.}$

O ponto que maximiza o lucro da empresa é B(3, \$\frac{12}{5}\$, \$\frac{16}{5}\$, 0,0), e como os dados estavam divididos por 1.000, tem-se como resultado final: L = 13.800,00 u.m., Produto A = 3.000 litros e Produto B = 2.400 litros. Como já visto anteriormente, essa produção gastará 31.800 litros do recurso I e do recurso II toda a disponibilidade será consumida. Graficamente esse modelo comporta-se da seguinte maneira:

Certa empresa fabrica dois produtos P1 e P2. O lucro unitário do produto P1 é de R\$ 1.000,00 e o lucro unitário de P2 é R\$ 1.800. A empresa precisa de 20 horas para fabricar uma unidade de P1 e de 30 horas para fabricar uma unidade de P2. O tempo anual de produção disponível para isso é de 1200 horas. A demanda esperada para cada produto é de 40 unidades para P1 e 30 unidades para P2. Construa o modelo de programação linear que objetiva Maximizar o lucro pelo método algébrico.

Um sapateiro faz 6 sapatos por hora, se fizer somente sapatos, e 5 cintos por hora, se fizer somente cintos. Ele gasta 2 unidades de couro para fabricar 1 unidade de sapato e 1 unidade de couro para fabricar uma unidade de cinto. Sabendo-se que o total disponível de couro é de 6 unidades e que o lucro unitário por sapato é de \$5,00 e o do cinto é de \$2,00, pede-se: o modelo do sistema de produção do sapateiro, se o objetivo é maximizar seu lucro por hora. Construa o modelo de programação linear que objetiva Maximizar o lucro pelo método algébrico.

Um carpinteiro dispõe de 90, 80 e 50 metros de compensado, pinho e cedro, respectivamente. O produto A requer 2, 1 e 1 metro de compensado, pinho e cedro, respectivamente. O produto B requer 1, 2 e 1 metros, respectivamente. Se A é vendido por \$120,00 e B por \$100,00, quantos de cada produto ele deve fazer para obter um rendimento bruto máximo? Elabore o modelo que maximiza o rendimento e resolva pelo método algébrico.

Um pequeno entregador pode transportar madeira ou frutas em seu carrinho de mão, mas cobra 40 reais para cada fardo de madeira e 25 reais para cada saco de frutas. Os fardos pesam 1kg e ocupam 2 dm³ de espaço. Os sacos de frutas pesam 3 kg e ocupam 2 dm³ de espaço. O carrinho tem capacidade de transportar 12 kg e 35 dm³, e o entregador pode levar quantos sacos e quantos fardos desejar. Elabore o modelo para maximizar o lucro do entregador e resolva pelo método algébrico.

Duas fábricas produzem 3 diferentes tipos de papel. A companhia que controla as fábricas tem um contrato para produzir 16 toneladas de papel fino, 6 toneladas de papel médio e 28 toneladas de papel grosso. Existe uma demanda para cada tipo de espessura. O custo de produção na primeira fábrica é de R\$1.000,00 e o da segunda fábrica é de R\$2.000,00, por dia. A primeira fábrica produz 8 toneladas de papel fino, 1 tonelada de papel médio e 2 toneladas de papel grosso por dia, enquanto a segunda fábrica produz 2 toneladas de papel fino, 1 tonelada de papel médio e 7 toneladas de papel grosso. Quantos dias cada fábrica deverá operar para suprir os pedidos mais economicamente?

Uma companhia de transporte tem dois tipos de caminhões: O tipo A tem 2 m³ de espaço refrigerado e 3 m³ de espaço não refrigerado; o tipo B tem 2 m³ de espaço refrigerado e 1 m³ de não refrigerado. O cliente quer transportar produtos que necessitarão de 16 m³ de espaço refrigerado e 12 m³ de área não refrigerada. A companhia calcula que são necessários em 1100 litros de combustível para uma viagem com o caminhão A e 750 litros para o caminhão B. Quantas viagens deverão ser feitas de cada tipo de caminhão para que se tenha o menor custo de combustível?

Uma companhia fabrica dois produtos P1 e P2 que utilizam os mesmos recursos produtivos: matéria-prima, forja e polimento. Cada unidade de P1 exige 5 horas de forjaria, 3 horas de polimento e utiliza 150 unidades de matéria-prima. Cada unidade de P2 requer 5 horas de forjaria, 6 horas de polimento e 210 unidades de matéria-prima. O preço de venda de P1 é de R\$ 2100,00 e de P2 é R\$ 3200,00. Toda produção tem mercado garantido. As disponibilidades são de : 40 horas de forja, 20 horas de polimento e 400 unidade de matéria-prima, por dia. Determine as quantidades a produzir de P1 e P2 e o lucro de forma que seja maximizado a receita diária dos produtos pelo método gráfico.

Uma empresa produz dois tipos de reboques – luxo, que é utilizado em carros de passeio, e comercial, para serem acoplados em camionetes. Na produção dos reboques são utilizados os departamentos de montagem e de pintura, os quais têm a seguinte matriz tecnológica (tempos por departamento):

Tipo Departamento	Luxo	Comercial
Montagem	4	3
Pintura	3	2

A empresa tem 15 funcionários no departamento de montagem e 10 no departamento de pintura, que trabalham 8 horas por dia. Sabendo-se que um reboque de luxo dá uma contribuição para o lucro de R\$ 360,00 e um tipo comercial R\$ 285,00, qual deve ser a produção da empresa que lhe proporcionará o maior lucro possível?

Uma companhia fabrica dois produtos P1 e P2 que utilizam os mesmos recursos produtivos: matéria-prima, forja e polimento. Cada unidade de P1 exige 10 horas de forjaria, 6 horas de polimento e utiliza 300 unidades de matéria-prima. Cada unidade de P2 requer 10 horas de forjaria, 12 horas de polimento e 420 unidades de matéria-prima. O preço de venda de P1 é de R\$ 1900,00 e de P2 é R\$ 2700,00. Toda produçao tem mercado garantido. As disponibilidades são de : 25 horas de forja, 18 horas de polimento e 320 unidade de matéria-prima, por dia. Determine as quantidades a produzir de P1 e P2 e o lucro de forma que seja maximizado a receita diária dos produtos pelo método algébrico.

Uma companhia fabrica dois produtos P1 e P2 que utilizam os mesmos recursos produtivos: matéria-prima, forja e polimento. Cada unidade de P1 exige 5 horas de forjaria, 3 horas de polimento e utiliza 150 unidades de matéria-prima. Cada unidade de P2 requer 5 horas de forjaria, 6 horas de polimento e 210 unidades de matéria-prima. O preço de venda de P1 é de R\$ 2100,00 e de P2 é R\$ 3200,00. Toda produçao tem mercado garantido. As disponibilidades são de : 40 horas de forja, 20 horas de polimento e 400 unidade de matéria-prima, por dia. Determine as quantidades a produzir de P1 e P2 e o lucro de forma que seja maximizado a receita diária dos produtos pelo método algébrico.