Package 'apaTables'

October 12, 2022

2.0.	C
	2.0.

Title Create American Psychological Association (APA) Style Tables

Description A common task faced by researchers is the creation of APA style (i.e., American Psychological Association style) tables from statistical output. In R a large number of function calls are often needed to obtain all of the desired information for a single APA style table. As well, the process of manually creating APA style tables in a word processor is prone to transcription errors. This package creates Word files (.doc files) containing APA style tables for several types of analyses. Using this package minimizes transcription errors and reduces the number commands needed by the user.

URL https://github.com/dstanley4/apalables
BugReports https://github.com/dstanley4/apaTables/issues
Depends R (>= 3.1.2)
Imports stats, utils, methods, car, broom, dplyr, boot, tibble, MBESS
Suggests testthat, knitr
RoxygenNote 7.1.1
License MIT License + file LICENSE
LazyData true
Date 2020-12-18
NeedsCompilation no
Author David Stanley [aut, cre]
Maintainer David Stanley <dstanley@uoguelph.ca></dstanley@uoguelph.ca>
Repository CRAN
Date/Publication 2021-01-04 19:00:02 UTC

bum	2
oa.1way.table	3
pa.2way.table	2

2 album

	apa.aov.table	5
	apa.cor.table	
	apa.d.table	7
	apa.ezANOVA.table	8
	apa.reg.boot.table	12
	apa.reg.table	13
	apaTables	15
	dating_wide	16
	drink_attitude_wide	17
	Eysenck	18
	fidler_thompson	18
	get.ci.partial.eta.squared	19
	goggles	20
	viagra	20
Index		22

album

album data from textbook

Description

A data set from Field et al (2012)

Usage

data(album)

Format

A data frame with 200 rows and 4 variables:

attract Attractiveness rating of band members

adverts Amount spent of adverts, thousands of poundssales Album sales in thousandsairplay Number of times songs from album played on radio week prior to release

Source

https://studysites.sagepub.com/dsur/study/

References

Field, A., Miles, J., & Field, Z. (2012) Discovering Statistics Using R. Sage: Chicago.

apa.1way.table

apa.1way.table Creates a table of means and standard deviations for a 1-way ANO design in APA style	OVA
---	-----

Description

Creates a table of means and standard deviations for a 1-way ANOVA design in APA style

Usage

```
apa.1way.table(
  iv,
  dv,
  data,
  filename = NA,
  table.number = NA,
  show.conf.interval = FALSE,
  landscape = FALSE
)
```

Arguments

iv	Name of independent variable column in data frame
dv	Name of dependent variable column in data frame
data	Project data frame name
filename	(optional) Output filename document filename (must end in .rtf or .doc only)
table.number	Integer to use in table number output line
show.conf.inter	rval
	(TRUE/FALSE) Display confidence intervals in table.
landscape	(TRUE/FALSE) Make RTF file landscape

Value

APA table object

Examples

```
## Not run:
# Example 1: 1-way from Field et al. (2012) Discovery Statistics Using R
apa.1way.table(iv=dose,dv=libido,data=viagra,filename="ex1_desc_table.doc")
## End(Not run)
```

4 apa.2way.table

apa. 2way. table Creates a table of mean design in APA style	ns and standard deviations for a 2-way ANOVA
--	--

Description

Creates a table of means and standard deviations for a 2-way ANOVA design in APA style

Usage

```
apa.2way.table(
   iv1,
   iv2,
   dv,
   data,
   filename = NA,
   table.number = NA,
   show.conf.interval = FALSE,
   show.marginal.means = FALSE,
   landscape = TRUE
)
```

Arguments

iv1	Name of independent variable 1 column in data frame
iv2	Name of independent variable 2 column in data frame
dv	Name of dependent variable column in data frame
data	Project data frame name
filename	(optional) Output filename document filename (must end in .rtf or .doc only)
table.number	Integer to use in table number output line
show.conf.inter	rval (TRUE/FALSE) Display confidence intervals in table. Negates show.marginal.means = TRUE.
show.marginal.m	neans
	(TRUE/FALSE) Show marginal means in output. Only used if show.conf.interval = FALSE.
landscape	(TRUE/FALSE) Make RTF file landscape

Value

APA table object

apa.aov.table 5

Examples

```
## Not run:
# Example 2: 2-way from Fidler & Thompson (2001)
apa.2way.table(iv1=a,iv2=b,dv=dv,data=fidler_thompson,landscape=TRUE, filename="ex2_desc_table.doc")
# Example 3: 2-way from Field et al. (2012) Discovery Statistics Using R
apa.2way.table(iv1=gender,iv2=alcohol,dv=attractiveness,data=goggles,filename="ex3_desc_table.doc")
## End(Not run)
```

apa.aov.table

Creates a fixed-effects ANOVA table in APA style

Description

Creates a fixed-effects ANOVA table in APA style

Usage

```
apa.aov.table(
  lm_output,
  filename,
  table.number = NA,
  conf.level = 0.9,
  type = 3
)
```

Arguments

1m_output Regression (i.e., lm) result objects. Typically, one for each block in the regres-

sion.

filename (optional) Output filename document filename (must end in .rtf or .doc only)

table.number Integer to use in table number output line

conf.level Level of confidence for interval around partial eta-squared (.90 or .95). A value

of .90 is the default, this helps to create consistency between the CI overlapping

with zero and conclusions based on the p-value.

type Sum of Squares Type. Type II or Type III; specify, 2 or 3, respectively. Default

value is 3.

Value

APA table object

6 apa.cor.table

References

Smithson, M. (2001). Correct confidence intervals for various regression effect sizes and parameters: The importance of noncentral distributions in computing intervals. Educational and Psychological Measurement, 61(4), 605-632.

Fidler, F., & Thompson, B. (2001). Computing correct confidence intervals for ANOVA fixed-and random-effects effect sizes. Educational and Psychological Measurement, 61(4), 575-604.

Examples

```
## Not run:
#Example 1: 1-way from Field et al. (2012) Discovery Statistics Using R
options(contrasts = c("contr.helmert", "contr.poly"))
lm_output <- lm(libido ~ dose, data = viagra)</pre>
apa.aov.table(lm_output, filename = "ex1_anova_table.doc")
# Example 2: 2-way from Fidler & Thompson (2001)
# You must set these contrasts to ensure values match SPSS
options(contrasts = c("contr.helmert", "contr.poly"))
lm_output <- lm(dv ~ a*b, data = fidler_thompson)</pre>
apa.aov.table(lm_output,filename = "ex2_anova_table.doc")
#Example 3: 2-way from Field et al. (2012) Discovery Statistics Using R
# You must set these contrasts to ensure values match SPSS
options(contrasts = c("contr.helmert", "contr.poly"))
lm_output <- lm(attractiveness ~ gender*alcohol, data = goggles)</pre>
apa.aov.table(lm_output, filename = "ex3_anova_table.doc")
## End(Not run)
```

apa.cor.table

Creates a correlation table in APA style with means and standard deviations

Description

Creates a correlation table in APA style with means and standard deviations

Usage

```
apa.cor.table(
  data,
  filename = NA,
  table.number = NA,
  show.conf.interval = TRUE,
  show.sig.stars = TRUE,
  landscape = TRUE
)
```

apa.d.table 7

Arguments

```
data Project data frame

filename (optional) Output filename document filename (must end in .rtf or .doc only)

table.number Integer to use in table number output line
show.conf.interval

(TRUE/FALSE) Display confidence intervals in table. This argument is deprecated and will be removed from later versions.

show.sig.stars (TRUE/FALSE) Display stars for significance in table.

landscape (TRUE/FALSE) Make RTF file landscape
```

Value

APA table object

Examples

```
## Not run:
# View top few rows of attitude data set
head(attitude)

# Use apa.cor.table function
apa.cor.table(attitude)
apa.cor.table(attitude, filename="ex.CorTable1.doc")
## End(Not run)
```

apa.d.table

Creates a d-values for all paired comparisons in APA style

Description

Creates a d-values for all paired comparisons in APA style

Usage

```
apa.d.table(
  iv,
  dv,
  data,
  filename = NA,
  table.number = NA,
  show.conf.interval = TRUE,
  landscape = TRUE
)
```

8 apa.ezANOVA.table

Arguments

Name of independent variable column in data frame for all paired comparisons iν dν Name of dependent variable column in data frame for all paired comparisons data Project data frame name filename (optional) Output filename document filename (must end in .rtf or .doc only) table.number Integer to use in table number output line show.conf.interval (TRUE/FALSE) Display confidence intervals in table. This argument is deprecated and will be removed from later versions.

landscape

(TRUE/FALSE) Make RTF file landscape

Value

APA table object

Examples

```
## Not run:
# View top few rows of viagra data set from Discovering Statistics Using R
head(viagra)
# Use apa.d.table function
apa.d.table(iv = dose, dv = libido, data = viagra, filename = "ex1_d_table.doc")
## End(Not run)
```

apa.ezANOVA.table

Creates an ANOVA table in APA style based output of ezANOVA command from ez package

Description

Creates an ANOVA table in APA style based output of ezANOVA command from ez package

Usage

```
apa.ezANOVA.table(
  ez.output,
  correction = "GG",
  table.title = "",
  filename,
  table.number = NA
)
```

apa.ezANOVA.table 9

Arguments

ez.output Output object from ezANOVA command from ez package

correction Type of sphercity correction: "none", "GG", or "HF" corresponding to none,
 Greenhouse-Geisser and Huynh-Feldt, respectively.

table.title String containing text for table title

filename (optional) Output filename document filename (must end in .rtf or .doc only)

table.number Integer to use in table number output line

Value

APA table object

Examples

```
## Not run:
# ** Example 1: Between Participant Predictors
library(apaTables)
library(ez)
# See format where one row represents one PERSON
# Note that participant, gender, and alcohol are factors
print(goggles)
# Use ezANOVA
# Be sure use the options command, as below, to ensure sufficient digits
options(digits = 10)
goggles_results <- ezANOVA(data = goggles,</pre>
                           dv = attractiveness,
                           between = .(gender, alcohol),
                           participant,
                           detailed = TRUE)
# Make APA table
goggles_table <- apa.ezANOVA.table(goggles_results,</pre>
                                   filename="ex1_ez_independent.doc")
print(goggles_table)
# ** Example 2: Within Participant Predictors
```

10 apa.ezANOVA.table

```
library(apaTables)
library(tidyr)
library(forcats)
library(ez)
# See initial wide format where one row represents one PERSON
print(drink_attitude_wide)
# Convert data from wide format to long format where one row represents one OBSERVATION.
# Wide format column names MUST represent levels of each variable separated by an underscore.
# See vignette for further details.
drink_attitude_long <- gather(data = drink_attitude_wide,</pre>
                               key = cell, value = attitude,
                               beer_positive:water_neutral,
                               factor_key=TRUE)
drink_attitude_long <- separate(data = drink_attitude_long,</pre>
                                 col = cell, into = c("drink", "imagery"),
                                 sep = "_", remove = TRUE)
drink_attitude_long$drink <- as_factor(drink_attitude_long$drink)</pre>
drink_attitude_long$imagery <- as_factor(drink_attitude_long$imagery)</pre>
# See new long format of data, where one row is one OBSERVATION.
# As well, notice that we have two columns (drink, imagery)
# drink, imagery, and participant are factors
print(drink_attitude_long)
# Set contrasts to match Field et al. (2012) textbook output
alcohol_vs_water <- c(1, 1, -2)
beer_vs_wine <- c(-1, 1, 0)
negative_vs_other <- c(1, -2, 1)
positive_vs_neutral <- c(-1, 0, 1)
contrasts(drink_attitude_long$drink) <- cbind(alcohol_vs_water, beer_vs_wine)</pre>
contrasts(drink_attitude_long$imagery) <- cbind(negative_vs_other, positive_vs_neutral)</pre>
# Use ezANOVA
# Be sure use the options command, as below, to ensure sufficient digits
options(digits = 10)
drink_attitude_results <- ezANOVA(data = drink_attitude_long,</pre>
                   dv = .(attitude), wid = .(participant),
                   within = .(drink, imagery),
                   type = 3, detailed = TRUE)
```

Make APA table

11

```
drink_table <- apa.ezANOVA.table(drink_attitude_results,</pre>
                                  filename="ex2_repeated_table.doc")
print(drink_table)
# ** Example 3: Between and Within Participant Predictors
library(apaTables)
library(tidyr)
library(forcats)
library(ez)
# See initial wide format where one row represents one PERSON
print(dating_wide)
# Convert data from wide format to long format where one row represents one OBSERVATION.
# Wide format column names MUST represent levels of each variable separated by an underscore.
# See vignette for further details.
dating_long <- gather(data = dating_wide,</pre>
                      key = cell, value = date_rating,
                      attractive_high:ugly_none,
                      factor_key = TRUE)
dating_long <- separate(data = dating_long,</pre>
                        col = cell, into = c("looks", "personality"),
                        sep = "_", remove = TRUE)
dating_long$looks <- as_factor(dating_long$looks)</pre>
dating_long$personality <- as_factor(dating_long$personality)</pre>
# See new long format of data, where one row is one OBSERVATION.
# As well, notice that we have two columns (looks, personality)
# looks, personality, and participant are factors
print(dating_long)
# Set contrasts to match Field et al. (2012) textbook output
some_vs_none <- c(1, 1, -2)
hi_vs_av <- c(1, -1, 0)
attractive_vs_ugly <- c(1, 1, -2)</pre>
attractive_vs_average <- c(1, -1, 0)
contrasts(dating_long$personality) <- cbind(some_vs_none, hi_vs_av)</pre>
contrasts(dating_long$looks) <- cbind(attractive_vs_ugly, attractive_vs_average)</pre>
```

Use ezANOVA

12 apa.reg.boot.table

Description

Creates a regresion table in APA style with bootstrap confidence intervals

Usage

```
apa.reg.boot.table(
    ...,
    filename = NA,
    table.number = NA,
    number.samples = 1000
)
```

Arguments

Regression (i.e., lm) result objects. Typically, one for each block in the regression.

filename (optional) Output filename document filename (must end in .rtf or .doc only)

table.number Integer to use in table number output line

number.samples Number of samples to create for bootstrap CIs

Value

APA table object

References

Algina, J. Keselman, H.J. & Penfield, R.J. (2008). Note on a confidence interval for the squared semipartial correlation coefficient. Educational and Psychological Measurement, 68, 734-741.

13 apa.reg.table

Examples

```
## Not run:
#Note: number.samples = 50 below.
       However, please use a value of 1000 or higher
# View top few rows of goggles data set
# from Discovering Statistics Using R
set.seed(1)
head(album)
# Single block example
blk1 <- lm(sales ~ adverts + airplay, data=album)</pre>
apa.reg.boot.table(blk1)
apa.reg.boot.table(blk1,filename="exRegTable.doc")
# Two block example, more than two blocks can be used
blk1 <- lm(sales ~ adverts, data=album)</pre>
blk2 <- lm(sales ~ adverts + airplay + attract, data=album)</pre>
apa.reg.boot.table(blk1,blk2,filename="exRegBlocksTable.doc")
# Interaction product-term test with blocks
blk1 <- lm(sales ~ adverts + airplay, data=album)</pre>
blk2 <- lm(sales ~ adverts + airplay + I(adverts * airplay), data=album)
apa.reg.boot.table(blk1,blk2,filename="exInteraction1.doc")
## End(Not run)
```

apa.reg.table

Creates a regresion table in APA style

Description

Creates a regresion table in APA style

Usage

```
apa.reg.table(
  . . . ,
 filename = NA,
 table.number = NA,
  prop.var.conf.level = 0.95
)
```

Arguments

Regression (i.e., lm) result objects. Typically, one for each block in the regres-. . . sion.

filename (optional) Output filename document filename (must end in .rtf or .doc only) 14 apa.reg.table

```
table.number Integer to use in table number output line prop.var.conf.level
```

Level of confidence (.90 or .95, default .95) for interval around sr2, R2, and Delta R2. Use of .90 confidence level helps to create consistency between the CI overlapping with zero and conclusions based on the p-value for that block (or block difference).

Value

APA table object

References

sr2 and delta R2 confidence intervals calculated via:

Alf Jr, E. F., & Graf, R. G. (1999). Asymptotic confidence limits for the difference between two squared multiple correlations: A simplified approach. Psychological Methods, 4(1), 70.

Note that Algina, Keselman, & Penfield (2008) found this approach can under some circumstances lead to inaccurate CIs on proportion of variance values. You might consider using the Algina, Keselman, & Penfield (2008) approach via the apa.reg.boot.table function

Examples

```
## Not run:
# View top few rows of goggles data set
# from Discovering Statistics Using R
head(album)
# Single block example
blk1 <- lm(sales ~ adverts + airplay, data=album)</pre>
apa.reg.table(blk1)
apa.reg.table(blk1,filename="exRegTable.doc")
# Two block example, more than two blocks can be used
blk1 <- lm(sales ~ adverts, data=album)</pre>
blk2 <- lm(sales ~ adverts + airplay + attract, data=album)</pre>
apa.reg.table(blk1,blk2,filename="exRegBlocksTable.doc")
# Interaction product-term test with blocks
blk1 <- lm(sales ~ adverts + airplay, data=album)</pre>
blk2 <- lm(sales ~ adverts + airplay + I(adverts * airplay), data=album)</pre>
apa.reg.table(blk1,blk2,filename="exInteraction1.doc")
# Interaction product-term test with blocks and additional product terms
blk1<-lm(sales ~ adverts + airplay, data=album)</pre>
blk2<-lm(sales ~ adverts + airplay + I(adverts*adverts) + I(airplay*airplay), data=album)
blk3<-lm(sales~adverts+airplay+I(adverts*adverts)+I(airplay*airplay)+I(adverts*airplay),data=album)
apa.reg.table(blk1,blk2,blk3,filename="exInteraction2.doc")
#Interaction product-term test with single regression (i.e., semi-partial correlation focus)
blk1 <- lm(sales ~ adverts + airplay + I(adverts * airplay), data=album)
apa.reg.table(blk1,filename="exInteraction3.doc")
```

apaTables 15

End(Not run)

apaTables

Create American Psychological Association (APA) Style Tables

Description

A common task faced by researchers is the creation of APA style (i.e., American Psychological Association style) tables from statistical output. In R a large number of function calls are often needed to obtain all of the desired information for a single APA style table. As well, the process of manually creating APA style tables in a word processor is prone to transcription errors. This package creates Word files (.doc files) containing APA style tables for several types of analyses. Using this package minimizes transcription errors and reduces the number commands needed by the user. Examples are provided in this documentation and at http://www.StatsCanBeFun.com.

Details

Bugs and feature requests can be reported at: https://github.com/dstanley4/apaTables/issues
Tutorial at: https://dstanley4.github.io/apaTables/articles/apaTables.html
Currently, the following tables can be created:

- Correlation tables Correlation tables (with confidence intervals and descriptive statistics) are created from data frames using apa.cor.table.
- Single "block" regression tables Single "block" regression tables are created from a regression object using apa.reg.table.
- Multiple "block" regression tables Multiple "block" regression tables are created from regression objects using apa.reg.table.
- ANOVA tables An ANOVA F-table can be created via apa.aov.table from a regression object (i.e. Im output or aov output). Cell mean/standard deviation tables for 1- and 2-way designs are created from data frames using apa.1way.table and apa.2way.table.
- ezANOVA tables from ez package An ANOVA F-table from ezANOVA output can be created via apa.ezANOVA.table.
- Standardized mean difference (i.e., *d*-value) tables (with confidence intervals and descriptive statistics) illustrating all possible paired comparisons using a single independent variable are created from data frames using apa.d.table.

Package: apaTables
Type: Package
Version: 2.0.8
Date: 2020-12-18
License: MIT

16 dating_wide

Author(s)

Author: David J. Stanley <dstanley@uoguelph.ca>
Maintainer: David J. Stanley <dstanley@uoguelph.ca>

dating_wide

dating data from textbook

Description

A data set from Field et al (2012)

Usage

data(dating_wide)

Format

A data frame with 20 rows and 11 columns. Gender is a between subjects variable. Looks and Personality are within subject variables. Both gender and participant are factors.

participant Factor: Participant ID number
gender Factor: Gender: Male/Female
attractive_high Date rating where looks=attractive and personality=high
average_high Date rating where looks=average and personality=high
ugly_high Date rating where looks=ugly and personality=high
attractive_some Date rating where looks=attractive and personality=some
average_some Date rating where looks=average and personality=some
ugly_some Date rating where looks=average and personality=none
average_none Date rating where looks=attractive and personality=none
ugly_none Date rating where looks=average and personality=none

Source

https://studysites.sagepub.com/dsur/study/

References

Field, A., Miles, J., & Field, Z. (2012) Discovering Statistics Using R. Sage: Chicago.

drink_attitude_wide 17

drink_attitude_wide drink attitude data from textbook

Description

A data set from Field et al (2012)

Usage

data(drink_attitude_wide)

Format

A data frame with 20 rows and 10 columns. Drink and Imagery are within subject variables. Participant is a factor.

participant Factor: Participant ID number

beer_positive Attitude where drink=beer and imagery=positive

beer_negative Attitude where drink=beer and imagery=negative

beer_neutral Attitude where drink=beer and imagery=neutral

wine_positive Attitude where drink=wine and imagery=positive

wine_negative Attitude where drink=wine and imagery=negative

wine_neutral Attitude where drink=wine and imagery=neutral

water_positive Attitude where drink=water and imagery=positive

water_negative Attitude where drink=water and imagery=negative

water_neutral Attitude where drink=water and imagery=neutral

Source

https://studysites.sagepub.com/dsur/study/

References

Field, A., Miles, J., & Field, Z. (2012) Discovering Statistics Using R. Sage: Chicago.

18 fidler_thompson

Eysenck

Eysenck data

Description

A data set from Howell (2012)

Usage

data(Eysenck)

Format

A data frame with 100 rows and 3 variables:

Age Young or Old

Condition Experimental learning condition

Recall Level of word recall

Source

https://www.uvm.edu/~statdhtx/methods8/DataFiles/Tab13-2.dat

References

Howell, D. (2012). Statistical methods for psychology. Cengage Learning.

fidler_thompson

Fidler & Thompson (2001) Fixed-Effects ANOVA data

Description

A data set from Fidler & Thompson (2001)

Usage

data(fidler_thompson)

Format

A data frame with 24 rows and 3 variables:

a Independent variable: ab Independent variable: bdv Dependent variable: dv

References

Fidler, F. & Thompson, B. (2001). Computing correct confidence intervals for ANOVA fixed- and random-effects effect sizes. Educational and Psychological Measurement, 61, 575-604.

```
get.ci.partial.eta.squared
```

Calculates confidence interval for partial eta-squared in a fixed-effects ANOVA

Description

Calculates confidence interval for partial eta-squared in a fixed-effects ANOVA

Usage

```
get.ci.partial.eta.squared(F.value, df1, df2, conf.level = 0.9)
```

Arguments

F.value	The F-value for the fixed-effect

df1 Degrees of freedom for the fixed-effect

df2 Degrees of freedom error

conf.level Confidence level (0 to 1). For partial eta-squared a confidence level of .90 is

traditionally used rather than .95.

Value

List with confidence interval values (LL and UL)

Examples

```
# Smithson (2001) p. 619
get.ci.partial.eta.squared(F.value=6.00, df1=1, df2=42, conf.level=.90)
get.ci.partial.eta.squared(F.value=2.65, df1=6, df2=42, conf.level=.90)
get.ci.partial.eta.squared(F.value=2.60, df1=6, df2=42, conf.level=.90)

# Fidler & Thompson (2001) Fixed Effects 2x4 p. 594 (Table 6) / p. 596 (Table 8)
get.ci.partial.eta.squared(F.value=1.50, df1=1, df2=16, conf.level=.90)
get.ci.partial.eta.squared(F.value=4.00, df1=3, df2=16, conf.level=.90)
get.ci.partial.eta.squared(F.value=1.50, df1=3, df2=16, conf.level=.90)
```

20 viagra

goggles

 $goggles\ data\ from\ textbook$

Description

A data set from Field et al (2012)

Usage

```
data(goggles)
```

Format

A data frame with 48 rows and 3 variables:

participant Participant identification number

gender Gender of participant

alcohol Amount alcohol consumed
attractiveness Perceived attractiveness

Source

https://studysites.sagepub.com/dsur/study/

References

Field, A., Miles, J., & Field, Z. (2012) Discovering Statistics Using R. Sage: Chicago.

viagra

viagra data from textbook

Description

A data set from Field et al (2012)

Usage

```
data(viagra)
```

Format

A data frame with 15 rows and 2 variables:

dose Level of viagra dose

libido Libido after taking viagra

viagra 21

Source

https://studysites.sagepub.com/dsur/study/

References

Field, A., Miles, J., & Field, Z. (2012) Discovering Statistics Using R. Sage: Chicago.

Index

```
* datasets
    album, 2
    dating_wide, 16
    drink_attitude_wide, 17
    Eysenck, 18
    fidler_thompson, 18
    goggles, 20
    viagra, 20
album, 2
apa.1way.table, 3, 15
apa.2way.table, 4, 15
apa.aov.table, 5, 15
apa.cor.table, 6, 15
apa.d.table, 7, 15
apa.ezANOVA.table, 8, 15
apa.reg.boot.table, 12
apa.reg.table, 13, 15
apaTables, 15
dating_wide, 16
drink_attitude_wide, 17
Eysenck, 18
fidler_thompson, 18
get.ci.partial.eta.squared, 19
goggles, 20
viagra, 20
```