# Combat 开发板 用户手册

2020-07-17

# 目 录

| 1、 | 关于   | 本手册                 | 1 |
|----|------|---------------------|---|
|    | 1.1  | 手册内容                | 1 |
|    | 1.2  | 适用产品                | 1 |
|    | 1.3  | 相关文档                | 1 |
|    | 1.4  | 技术支持                | 2 |
|    | 1.5  | 术语、缩略语              | 2 |
| 2、 | 开发   | 板介绍                 | 3 |
|    | 2.1  | 概述                  | 3 |
|    | 2.2  | 开发板套件               | 4 |
|    | 2.3  | PCB组件               | 5 |
|    | 2.4  | 系统框架                | 5 |
|    | 2.5  | 特性                  | 6 |
|    | 2.6  | 指标                  | 7 |
|    | 2.7  | 机械尺寸图               | 8 |
| 3、 | 开发   | 板详细介绍               | 9 |
|    | 3.1、 | FPGA模块              | 9 |
|    |      | 3.1.1概述             | 9 |
|    |      | 3.1.2 I/O BANK 说明10 | 0 |
|    | 3.2  | 下载                  | 2 |
|    |      | 3.2.1 概述            | 2 |
|    |      | 3.2.2 USB下载电路14     | 4 |

|     | 3.2.3 管脚分配    | 14 |
|-----|---------------|----|
| 3.3 | 电源            | 14 |
|     | 3.3.1 概述      | 14 |
|     | 3.3.2 电源系统分配  | 15 |
| 3.4 | 时钟、复位         | 15 |
|     | 3.4.1 概述      | 15 |
|     | 3.4.2 时钟、复位电路 | 16 |
|     | 3.4.3 管脚分配    | 16 |
| 3.5 | LED           | 16 |
|     | 3.5.1 概述      | 16 |
|     | 3.5.2 LED 电路  | 17 |
|     | 3.5.3 管脚分配    | 17 |
| 3.6 | 滑动开关          | 18 |
|     | 3.6.1 概述      | 18 |
|     | 3.6.2 滑动开关电路  | 18 |
|     | 3.6.3 管脚分配    | 18 |
| 3.7 | 按键            | 19 |
|     | 3.7.1 概述      | 19 |
|     | 3.7.2 按键电路    | 19 |
|     | 3.7.3 管脚分配    | 19 |
| 3.8 | 2Gbit DDR3模块  | 20 |
|     | 3.8.1 概述      | 20 |

|     | 3.8.2 DDR3连接示意图             | . 20 |
|-----|-----------------------------|------|
|     | 3.8.3 管脚分配                  | . 20 |
| 3.9 | 64Mbit SPI Flash            | . 22 |
|     | 3.9.1 概述                    | . 22 |
|     | 3.9.2 SPI Flash原理图          | . 22 |
|     | 3.9.3 管脚分配                  | . 23 |
| 3.1 | 0 HDMI接口                    | . 23 |
|     | 3.10.1 概述                   | . 23 |
|     | 3.10.2 HDMI接口连接示意图          | . 23 |
|     | 3.10.3 管脚分配                 | . 24 |
| 3.1 | 1 LCD-RGB/LVDS_TX接口         | . 25 |
|     | 3.11.1 概述                   | . 25 |
|     | 3.11.2 LCD-RGB/LVDS_TX接口原理图 | . 25 |
|     | 3.11.3 管脚分配                 | . 26 |
| 3.1 | 2 PMOS                      | . 27 |
|     | 3.12.1 概述                   | . 27 |
|     | 3.12.2 PMOS接口电路             | . 27 |
|     | 3.12.3 管脚分配                 | . 27 |
| 3.1 | 3以太网模块                      | . 28 |
|     | 3.13.1 概述                   | . 28 |
|     | 3.13.2 ETHNET@1000M模块电路图    | . 29 |
|     | 3.13.3 管脚分配                 | . 29 |

|    | 3.14 USB转  | <b>Ų</b> UART | 30 |
|----|------------|---------------|----|
|    | 3.14.1     | 概述            | 30 |
|    | 3.14.2     | 原理图           | 30 |
|    | 3.14.3     | 管脚分配          | 30 |
|    | 3.15 MICR  | O SD接口        | 31 |
|    | 3.15.1     | 概述            | 31 |
|    | 3.15.2     | 连接示意图         | 31 |
|    | 3.15.3     | 管脚分配          | 31 |
|    | 3.16 MIPI接 | 妾口            | 32 |
|    | 3.16.1     | 概述            | 32 |
|    | 3.16.2     | MIPI接口原理图     | 32 |
|    | 3.16.3     | 管脚分配          | 32 |
| 4、 | 开发板使用。     |               | 34 |
|    | 4.1工程      | 呈导入           | 34 |
|    | 4.2程序      | 序编译和下载        | 35 |
|    | 4.3例程      | 呈操作及现象说明      | 36 |
|    | 4.4开发      | 党板使用注意事项      | 37 |

# 1、关于本手册

#### 1.1 手册内容

竞技板(Combat) 开发套件用户手册分为四个部分:

- 1. 简述开发板的功能特点和硬件资源;
- 2. 介绍开发板上的各部分硬件电路的功能、电路及管脚分配;
- 3. 竞技板(Combat)配套使用案例;
- 4. 开发板使用注意事项。

#### 1.2 适用产品

本手册中所述信息可适用于以下GW2A 系列FPGA产品:

- GW2A18-PG484
- GW2A55-PG484

#### 1.3 相关文档

通过登录高云半导体网站 www.gowinsemi.com.cn 可以下载、查看以下相关文档:

- 1. GW2A 系列 FPGA 产品数据手册
- 2. GW2A 系列 FPGA 产品封装与管脚手册

- 3. GW2A18&55 器件 Pinout 手册
- 4. GW2A 系列 FPGA 产品编程配置手册
- 5. Gowin 云源软件用户手册

#### 1.4 技术支持

1、最新FPGA技术资讯请关注公众号MYMNIEYE;

2、教学视频链接更新地址: https://space.bilibili.com/507416742

3、淘宝店铺:小眼睛半导体

4、官网: <u>www.myminieye.com</u> 5、技术指导 QQ 群: 882634519

#### 1.5 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。 表 1-1 术语、缩略语\_\_

| 术语、缩略语 | 全称                            | 含义         |
|--------|-------------------------------|------------|
| FPGA   | Field Programmable Gate Array | 现场可编程门阵列   |
| LED    | Light Emitting Diode          | 发光二极管      |
| LDO    | Low Dropout Regulator         | 低压差线性稳压器   |
| GPIO   | General Purpose Input Output  | 通用输入/输出    |
| LUT4   | 4-input Look-up Table         | 4 输入查找表    |
| S-SRAM | Shadow SRAM                   | 分布式静态随机存储器 |
| B-SRAM | Block SRAM                    | 块状静态随机存储器  |
| PLL    | Phase-locked Loop             | 锁相环        |
| DLL    | Delay-locked Loop             | 延迟锁相环      |
| DSP    | Digital Signal Processing     | 数字信号处理     |
| PG484  | PG484                         | PG484 封装   |

# 2、开发板介绍

# 2.1 概述



图 2-1 Combat开发板

Combat开发套件是以高云半导体 GW2A 系列 FPGA 产品为核心,是高云半导体晨熙®家族第一代产品,内部资源丰富,具有高性能的 DSP 资源,高速 LVDS 接口以及丰富的 BSRAM 存储器资源,这些内嵌的资源 搭配精简的 FPGA 架构以及 55nm 工艺使 GW2A 系列 FPGA 产品适用于高速低成本的应用场合。Combat开发套件对外扩展多种接口,部分接口支持功能复用,方便用户自定义扩展并进行各类视频,工业应用等验证。

完全自主研发的Gowin云源软件能够完成Combat板卡的综合、布局、 布线、产生数据流文件及下载文件等FPGA开发全流程支持。

# 2.2 开发板套件

#### 开发板套件包括:

- 开发板
- 12V 电源适配器
- USB 数据线
- 快速应用手册



- ① 开发板
- ② 12V电源适配器

图2-2 Combat开发板套件

#### 2.3 PCB组件



图2-3 Combat开发板PCB组件说明

#### 2.4 系统框架



图2-4 Combat开发板系统框架

#### 2.5 特性

#### 开发板组成结构及特性如下:

- 1. FPGA
  - 采用 PGA484 封装
  - 内嵌 Flash, 掉电不易丢失
  - 20,736(54,720) LUT4 资源
  - 多种模式、容量丰富的 B-SRAM
- 2. FPGA 配置模式
  - JTAG、MSPI
- 3. 时钟资源
  - 50MHz 时钟晶振
  - 27MHz 时钟晶振
- 4. 10/100/1000Ethernet
  - 三速自适应以太网接口
- 5. HDMI接口
  - 支持 HDMI 的输入和输出
- 6. Micro-SD卡接口
  - 支持 Micro-SD 卡接口
- 7. UART接口
  - 串口输入输出
- 8. 按键和滑动开关
  - 1 个复位按键
  - 4 个按键开关
  - 4 个滑动开关
- 9. LED
  - 1 个电源指示灯(绿)
  - 1 个 DONE 指示灯 (绿)
  - 4 个 LED (绿) D1~D4
- 10. 存储
  - 64Mbit flash
  - 2Gbit DDR3
- 11.扩展IO口 (MIPI,LVDS,RGB)

#### ■ 28 对差分对, 21 个 GPIO

#### 12. 电源

- 具有电压反向保护;
- 提供 12V 宽电压输入。

### 2.6 指标

表 2-1 Combat开发板参数指标列表

| 序号 | 项目         | 参数                         | 功能描述                             |
|----|------------|----------------------------|----------------------------------|
| 1  | 12V供电和下载   | 12V DC-DC;<br>MICRO USB    | 12V供电。USB转JTAG接口                 |
| 2  | 拨码开关       | 4位拨码开关                     | 用于用户测试时控制输入(拨上为<br>高电平,拨下为低电平)   |
| 3  | 轻触按键       | 4路轻触按键                     | 可作为测试控制输入使用。(按下为低电平)             |
| 4  | 指示灯        | 4路LED指示灯                   | 当 FPGA 对应管脚输出信号为逻辑高电平时, LED 被点亮; |
| 5  | 时钟         | 50MHZ和27MHZ时钟              | 提供 50MHz和27MHZ时钟                 |
| 6  | 存储器        | 板载1Gbit存储器                 | 外部程序存储器                          |
| 7  | 显示接口       | 2路HDMI接口                   | 提供HDMI输入和HDMI输出                  |
| 8  | 以太网接口      | 10/100/1000Ethernet        | 三速以太网接口                          |
| 9  | MicroSD卡接口 | SD卡存储器接口                   | 提供SD卡存储                          |
| 10 | 扩展接口       | 2.54mm间距扩展                 | 用于摄像头、MIPI屏等各类扩展                 |
| 11 | 工作温度       | 0~+ 70℃商业级                 |                                  |
| 12 | 环境湿度       | 20%~90%, 非冷凝               |                                  |
| 13 | 机械尺寸       | 110mm x 85mm               |                                  |
| 14 | PCB 规格     | 2层,黑底白字                    |                                  |
| 15 | 电源供电       | 12V/1A , 5.5X2.1mm<br>接口供电 |                                  |
| 16 | 安装孔距离      | 79mm×104mm                 |                                  |
| 17 | 系统功耗       |                            |                                  |

# 2.7 机械尺寸图



图2-5 Combat开发板尺寸图

# 3、开发板详细介绍

### 3.1、FPGA模块

#### 3.1.1概述

GW2A 系列 FPGA 产品资源信息如表 3-1 所示。 表 3-1 GW2A 系列 FPGA 产品信息列表

| 器件                     | GW2A-18 | GW2A-55 |
|------------------------|---------|---------|
| 逻辑单元(LUT4)             | 20,736  | 54,720  |
| 寄存器(FF)                | 15,552  | 41,040  |
| 分布式静态存储器               | 41,472  | 109,440 |
| S-SRAM(bit)            | 41,472  | 109,440 |
| 块状静态随机存储器              | 828K    | 2520K   |
| Block SRAM(bit)        | OZOK    | 2320K   |
| 块状静态随机存储器              |         |         |
| Block SRAM(个)          | 46      | 140     |
|                        |         |         |
| 乘法器(18 x 18 ultiplier) | 48      | 40      |
| PLL+DLL                | 4       | 6       |
| I/O Bank 总数            | 8       | 8       |
| 核电压 (LV 版本)            | 1.0V    | 1.0V    |

#### 3.1.2 I/O BANK 说明

GW2A 系列 FPGA 产品分为八个 I/O BANK 区, 图 3-1 为 GW2A 系列 FPGA产品的I/O BANK整体示意图。图3-2为PG484封装管脚分布示意图。



图 3-1 GW2A18-PG484 FPGA 产品 I/O BANK 整体示意图



图 3-2 GW2A18-PG484 FPGA 封装管脚分布示意图 (顶视图)

表 3-2 FPGA I/O BANK 电压及功能分布

| BANK | 电压        | 功能            | I/O 占用        |  |
|------|-----------|---------------|---------------|--|
| 0    | 1.2V/2.5V | MIPI DSI_LP   | 10个GPIO       |  |
|      |           | MIPI CSI_LP   | 6个GPIO        |  |
|      |           | HDMI_RX       | 4对LVDS        |  |
|      |           | HDMI_TX       | 4对LVDS        |  |
| 1    | 2.5V      | MIPI DSI_HS   | 5对LVDS,3个GPIO |  |
|      |           | MIPI CSI_HS   | 4对LVDS,4个GPIO |  |
| 2    | 3.3V      | MICRO SD      | 7个GPIO        |  |
|      |           | JTAG          | 4专用IO         |  |
|      | CLK_50M   |               | 1个GPIO        |  |
|      |           | HDMI I2C&Ctrl | 8个GPIO        |  |
|      |           | LCD I2C&Ctrl  | 6个GPIO        |  |

| BANK | 电压        | 功能                  | I/O占用          |
|------|-----------|---------------------|----------------|
| 3    | 1.5V      | DDR3                | 4对差分           |
|      |           | 4个按键                | 4个GPIO         |
|      |           | 4个开关                | 4个GPIO         |
|      |           | READY/DONE/RECONFIG | 3个专用IO         |
|      |           | 配置 FLASH            | 4个专用IO         |
|      |           | FAST_N              | 1个专用IO         |
| 4    | 2.5V/3.3V | LCD-RGB/LVDS输出接口    | 24个GPIO(12对差分) |
|      |           | PMOS-D              | 8对差分           |
|      |           | CLK_27M             | 1个GPIO         |
| 5    | 3.3V      | ETHENET             | 16个GPIO        |
|      |           | PMOS-B              | 8对差分信号         |
| 6    | 1.5V      | DDR3                | 23个GPIO        |
| 7    | 1.5V      | DDR3                | 24个GPIO        |

#### 3.2 下载

#### 3.2.1 概述

开发板提供 USB 下载接口, 由 FT2232 USB 转换芯片的 A 通道来实现。

通过设置不同的 MODE 值,来决定将程序下载到片内 SRAM 或外部 Flash中。若下载到 SRAM,当器件掉电后数据流文件会丢失,而下载到 Flash,掉电后数据流文件不会丢失。

#### MODE 设置规则如下:

- 1. 任何模式下,都可将程序下载到片内 SRAM,并立即运行。
- 2. MODE0~2为输入类型管脚,内部弱上拉,不同模式的选择如下图。
- 3. JTAGSEL\_N管脚为JTAG模式选择信号,将JTAG管脚从GPIO恢复成配置管脚,低电平有效。



注: JTAGSEL\_N 管脚与 JTAG 配置的 4 个管脚 (TCK、TMS、TDI、TDO) 设置为 GPIO 时存在互斥关系:

- > JTAGSEL N 设置为 GPIO 时, JTAG 管脚只能作为配置管脚;
- > JTAG 管脚设置为 GPIO 时, JTAGSEL N 只能作为配置管脚。

| 配置模式 | MODE[2:0] | 相关说明                  |
|------|-----------|-----------------------|
| JTAG | XXX       | 外部Host通过JTAG接口对       |
|      |           | GW2A(R)系列FPGA产品进行配    |
|      |           | 置                     |
| MSPI | 000       | GW2A(R)作为Master,通过SPI |
|      |           | 接口从外部Flash (或其他器件)    |
|      |           | 读取配置数据进行配置            |

图 3-3 启动模式选择

#### Mode配置电路如下:



图 3-4 mode配置电路

下载、配置的连接示意图如下图所示。

### 3.2.2 USB下载电路



图 3-5 FPGA下载与配置连接电路原理图

#### 3.2.3 管脚分配

| 信号名称           | FPGA管脚序号 | BANK | 描述      | I/O电平 |
|----------------|----------|------|---------|-------|
| FPGA_ TMS      | N22      | 2    | TMS     | 3.3V  |
| FPGA_ TCK      | N20      | 2    | TCK     | 3.3V  |
| FPGA_ TDI      | M20      | 2    | TDI     | 3.3V  |
| FPGA_ TDO      | M22      | 2    | TDO     | 3.3V  |
| FLASH_SPI_MISO | P19      | 3    | 配置flash | 1.5V  |
| FLASH_SPI_MOSI | P20      | 3    | 配置flash | 1.5V  |
| FLASH_SPI_CS_N | N18      | 3    | 配置flash | 1.5V  |
| FLASH_SPI_CLK  | P18      | 3    | 配置flash | 1.5V  |

表 3-2 下载电路管脚分配

# 3.3 电源

#### 3.3.1 概述

开发板通过电源适配器供电,输入插座规格为DC5521。适配器的输入

参数为: 100-240V~50/60MHz , 输出: DC12V 1A。板端有反接保护输入的12V电源经过板上的电源IC转换输出 5V,3.3V,2.5V,1.8V,1.5V,1.2V,1.0V以及DDR3所需的0.75V

#### 3.3.2 电源系统分配

#### **POWERTREE**



图 3-6 电源电路

#### 3.4 时钟、复位

#### 3.4.1 概述

开发板为 FPGA 提供了一个 50MHz 有源晶振,连接到了全局时钟引脚。

开发板的复位电路采用按键加专用复位芯片设计,上电后复位芯片自动产生复位信号给 FPGA 和以太网 PHY 芯片进行复位。并实时监控 3.3V 电压,出现异常时立即产生复位信号。另外,也可通过复位按键手动产生复位信号。

#### 3.4.2 时钟、复位电路



图 3-7 时钟及复位连接示意图

#### 3.4.3 管脚分配

| 信号名称       | FPGA管脚序号 | BANK | 描述               | I/O电平 |
|------------|----------|------|------------------|-------|
| CLK_50MHZ  | M19      | 2    | 50MHz 有源<br>晶振输入 | 3.3V  |
| CLK_27MHZ  | AB12     | 4    | 27MHz 有源<br>晶振输入 | 3.3V  |
| FPGA_RST_N | АВ3      | 5    | 复位信号,低<br>有效     | 3.3V  |

表 3-5 FPGA 时钟与复位管脚分配

#### 3.5 LED

#### 3.5.1 概述

开发板中有 4 个绿色 LED 灯, 用户可通过 LED 灯显示所需状态。 可通过以下方式对 LED 灯进行测试:

■ 当 FPGA 对应管脚输出信号为逻辑高电平时, LED 被点亮;

#### ■ 当输出信号为低电平时, LED 熄灭

#### 3.5.2 LED 电路



图 3-8 LED电路原理图

#### 3.5.3 管脚分配

表 3-6 LED管脚分配

| 信号名称 | FPGA管脚序号 | BANK | 描述        | I/O电平 |
|------|----------|------|-----------|-------|
| LED1 | U17      | 3    | LED 指示灯 1 | 1.5V  |
| LED2 | U19      | 3    | LED 指示灯 2 | 1.5V  |
| LED3 | U18      | 3    | LED 指示灯 3 | 1.5V  |
| LED4 | T17      | 3    | LED 指示灯 4 | 1.5V  |

# 3.6 滑动开关

#### 3.6.1 概述

开发板中有 4 个滑动开关,可用于用户测试时控制输入 (拨上为高电平,拨下为低电平)

#### 3.6.2 滑动开关电路



图 3-9 拨码开关电路原理图

### 3.6.3 管脚分配

| 信号名称 | FPGA管脚序号 | BANK | 描述     | I/O电平 |
|------|----------|------|--------|-------|
| SW1  | W20      | 3    | 滑动开关 1 | 1.5V  |
| SW2  | V20      | 3    | 滑动开关 2 | 1.5V  |
| SW3  | V22      | 3    | 滑动开关 3 | 1.5V  |
| SW4  | R19      | 3    | 滑动开关 4 | 1.5V  |

表 3-7 拨码开关管脚分配

### 3.7 按键

#### 3.7.1 概述

开发板有 4 个按键开关,用户可通过手动控制向对应 FPGA 管脚输入低电平,可作为测试控制输入使用。(按下为低电平)

#### 3.7.2 按键电路



图 3-10 按键电路原理图

#### 3.7.3 管脚分配

表 3-8 按键管脚分配

| 信号名称 | FPGA管脚序号 | BANK | 描述   | I/O电平 |
|------|----------|------|------|-------|
| KEY1 | U20      | 3    | 按键 1 | 1.5V  |
| KEY2 | T19      | 3    | 按键 2 | 1.5V  |
| KEY3 | T20      | 3    | 按键 3 | 1.5V  |
| KEY4 | R18      | 3    | 按键 4 | 1.5V  |

#### 3.8 2Gbit DDR3模块

#### 3.8.1 概述

开发板搭载了一颗 DDR3 芯片,存储空间为 2Gbit, 16 位数据总线 宽度

最高数据速率为 1600MT/s。

#### 3.8.2 **DDR3连接示意图**



图 3-11 DDR3连接示意图

#### 3.8.3 管脚分配

| 信号名称    | FPGA管脚序号 | BANK | 描述 | I/O电平 |
|---------|----------|------|----|-------|
| DDR3_A0 | F1       | 7    | 地址 | 1.5V  |
| DDR3_A1 | V5       | 6    | 地址 | 1.5V  |
| DDR3_A2 | G6       | 7    | 地址 | 1.5V  |
| DDR3_A3 | E5       | 7    | 地址 | 1.5V  |
| DDR3_A4 | V3       | 6    | 地址 | 1.5V  |
| DDR3 A5 | F2       | 7    | 地址 | 1.5V  |

表 3-9 DDR3管脚分配

| DDR3 A6     | Y22  | 3 | 地址     | 1.5V |
|-------------|------|---|--------|------|
| DDR3_A7     | H5   | 7 | 地址     | 1.5V |
| DDR3 A8     | AB22 | 3 | 地址     | 1.5V |
| DDR3_A9     | H4   | 7 | 地址     | 1.5V |
| DDR3_A10    | P5   | 6 | 地址     | 1.5V |
| DDR3_A11    | Y21  | 3 | 地址     | 1.5V |
| DDR3_A12    | T5   | 6 | 地址     | 1.5V |
| DDR3_A13    | AA1  | 6 | 地址     | 1.5V |
| DDR3_BA0    | F4   | 7 | BANK地址 | 1.5V |
| DDR3_BA1    | T4   | 6 | BANK地址 | 1.5V |
| DDR3_BA2    | F3   | 7 | BANK地址 | 1.5V |
| DDR3_CAS    | D3   | 7 | 列地址选通  | 1.5V |
| DDR3_CKE    | E4   | 7 | 时钟使能   | 1.5V |
| DDR3_CLK_P  | P22  | 3 | 时钟差分   | 1.5V |
| DDR3_CLK_N  | R22  | 3 | 时钟差分   | 1.5V |
| DDR3_DQ0    | M5   | 6 | 数据     | 1.5V |
| DDR3_DQ1    | Т3   | 6 | 数据     | 1.5V |
| DDR3_DQ2    | M4   | 6 | 数据     | 1.5V |
| DDR3_DQ3    | T2   | 6 | 数据     | 1.5V |
| DDR3_DQ4    | Y1   | 6 | 数据     | 1.5V |
| DDR3_DQ5    | U1   | 6 | 数据     | 1.5V |
| DDR3_DQ6    | N4   | 6 | 数据     | 1.5V |
| DDR3_DQ7    | V1   | 6 | 数据     | 1.5V |
| DDR3_DQ8    | R1   | 7 | 数据     | 1.5V |
| DDR3_DQ9    | К3   | 7 | 数据     | 1.5V |
| DDR3_DQ10   | P1   | 7 | 数据     | 1.5V |
| DDR3_DQ11   | J1   | 7 | 数据     | 1.5V |
| DDR3_DQ12   | K5   | 7 | 数据     | 1.5V |
| DDR3_DQ13   | Н3   | 7 | 数据     | 1.5V |
| DDR3_DQ14   | M2   | 7 | 数据     | 1.5V |
| DDR3_DQ15   | H2   | 7 | 数据     | 1.5V |
| DDR3_DM0    | Р3   | 6 | 数据输入屏蔽 | 1.5V |
| DDR3_DQS0_P | P4   | 6 | 数据选通   | 1.5V |
| DDR3_DAS0_N | R4   | 6 | 数据选通   | 1.5V |
| DDR3_ODT    | В3   | 7 | 片上终端使能 | 1.5V |
| DDR3_RAS    | D1   | 7 | 行地址选通  | 1.5V |

| DDR3_RESET  | V4 | 6 | 复位     | 1.5V |
|-------------|----|---|--------|------|
| DDR3_DM1    | K4 | 7 | 数据输入屏蔽 | 1.5V |
| DDR3_DQS1_P | L2 | 7 | 数据选通   | 1.5V |
| DDR3_DQS1_N | L1 | 7 | 数据选通   | 1.5V |
| DDR3_WE     | C2 | 7 | 写使能    | 1.5V |

#### 3.9 64Mbit SPI Flash

#### 3.9.1 概述

本开发板搭配了64Mbit SPI Flash,型号W25Q64CVSS。可以通过JTAG接口将程序下载到flsah中保存。

#### 3.9.2 SPI Flash原理图



图 3-12 SPI Flash原理图

#### 3.9.3 管脚分配

| 信号名称       | FPGA管脚序号 | BANK | 描述         | I/O电平 |
|------------|----------|------|------------|-------|
| M_SPI_CLK  | P18      | 3    | SPI时钟      | 1.5V  |
| M_SPI_CS_N | N18      | 3    | SPI使能      | 1.5V  |
| M_SPI_MOSI | P20      | 3    | SPI数据,主发从收 | 1.5V  |
| M_SPI_MISO | P19      | 3    | SPI数据,从发主收 | 1.5V  |

#### 3.10 HDMI接口

#### 3.10.1 概述

开发板包含两路HDMI接口,HDMI\_RX和HDMI\_TX,通过 FPGA内部 IP 实现 HDMI 信号的接收以及发送。

#### 3.10.2 HDMI接口连接示意图



图 3-13 HDMI接口连接示意图

# 3.10.3 管脚分配

表 3-10 HDMI模块管脚分配

| 信号名称         | FPGA管脚序号   | BANK | 描述               | I/O电平 |
|--------------|------------|------|------------------|-------|
| HDMI_RX_CLKP | B11        | 0    | 时钟差分             | 2.5V  |
| HDMI_RX_CLKN | B12        | 0    | 时钟差分             | 2.5V  |
| HDMI_RX_D2P  | D4         | 0    | 数据差分             | 2.5V  |
| HDMI_RX_D2N  | C4         | 0    | 数据差分             | 2.5V  |
| HDMI_RX_D1P  | D5         | 0    | 数据差分             | 2.5V  |
| HDMI_RX_D1N  | D6         | 0    | 数据差分             | 2.5V  |
| HDMI_RX_D0P  | С7         | 0    | 数据差分             | 2.5V  |
| HDMI_RX_D0N  | <b>C</b> 8 | 0    | 数据差分             | 2.5V  |
| HDMI_RX_SCL  | E19        | 2    | I2C时钟            | 3.3V  |
| HDMI_RX_SDA  | F18        | 2    | I2C数据            | 3.3V  |
| HDMI_RX_HPD  | G17        | 2    | 热拔插检测            | 3.3V  |
| HDMI_RX_CEC  | G19        | 2    | 遥控信 <del>号</del> | 3.3V  |
| HDMI_TX_CLKP | A2         | 0    | 时钟差分             | 2.5V  |
| HDMI_TX_CLKN | А3         | 0    | 时钟差分             | 2.5V  |
| HDMI_TX_D2P  | A11        | 0    | 数据差分             | 2.5V  |
| HDMI_TX_D2N  | A12        | 0    | 数据差分             | 2.5V  |
| HDMI_TX_D1P  | А9         | 0    | 数据差分             | 2.5V  |
| HDMI_TX_D1N  | A10        | 0    | 数据差分             | 2.5V  |
| HDMI_TX_D0P  | В6         | 0    | 数据差分             | 2.5V  |
| HDMI_TX_D0N  | <b>A</b> 6 | 0    | 数据差分             | 2.5V  |
| HDMI_TX_SCL  | K18        | 2    | I2C时钟            | 3.3V  |
| HDMI_TX_SDA  | J18        | 2    | I2C数据            | 3.3V  |
| HDMI_TX_HPD  | G18        | 2    | 热拔插检测            | 3.3V  |
| HDMI_TX_CEC  | H20        | 2    | 遥控信 <del>号</del> | 3.3V  |

#### 3.11 LCD-RGB/LVDS\_TX接口

#### 3.11.1 概述

LCD-RGB接口与LVDS\_TX接口复用,默认电压2.5V,可兼容两种种接口的屏幕。该接口采用双排2.54间距排针封装,包含32个GPIO,5V以及3.3V电源供应。

用作LCD-RGB接口时: R、G、B三原色各8个I/O; I2C两个I/O; 行同步; 列同步; 时钟; 中断信号; 背光PWM信号各1个I/O。

用作LVDS\_TX接口时: pin11/12---pin33/34是12对差分对,可根据需求选用作为数据差分对和时钟差分对使用。

该接口也可复用于GPIO, 注意调整I/O电平

#### 3.11.2 LCD-RGB/LVDS TX接口原理图



图 3-14 LCD-RGB/LVDS TX接口原理图

# 3.11.3 管脚分配

表 3-11 LCD\_RGB管脚分配

| 信号名称      | FPGA管脚序号 | BANK | 描述    | I/O电平     |
|-----------|----------|------|-------|-----------|
| LCD_B7    | V14      | 4    | 蓝色数据位 | 2.5V/3.3V |
| LCD_B6    | V15      | 4    |       | 2.5V/3.3V |
| LCD_B5    | V16      | 4    |       | 2.5V/3.3V |
| LCD_B4    | U16      | 4    |       | 2.5V/3.3V |
| LCD_B3    | V17      | 4    |       | 2.5V/3.3V |
| LCD_B2    | V18      | 4    |       | 2.5V/3.3V |
| LCD_B1    | W19      | 4    |       | 2.5V/3.3V |
| LCD_B0    | V19      | 4    |       | 2.5V/3.3V |
| LCD_G7    | W17      | 4    | 绿色数据位 | 2.5V/3.3V |
| LCD_G6    | W18      | 4    |       | 2.5V/3.3V |
| LCD_G5    | AA20     | 4    |       | 2.5V/3.3V |
| LCD_G4    | Y20      | 4    |       | 2.5V/3.3V |
| LCD_G3    | Y19      | 4    |       | 2.5V/3.3V |
| LCD_G2    | Y18      | 4    |       | 2.5V/3.3V |
| LCD_G1    | AA17     | 4    |       | 2.5V/3.3V |
| LCD_G0    | Y17      | 4    |       | 2.5V/3.3V |
| LCD_R7    | Y16      | 4    | 红色数据位 | 2.5V/3.3V |
| LCD_R6    | W16      | 4    |       | 2.5V/3.3V |
| LCD_R5    | Y14      | 4    |       | 2.5V/3.3V |
| LCD_R4    | Y15      | 4    |       | 2.5V/3.3V |
| LCD_R3    | W14      | 4    |       | 2.5V/3.3V |
| LCD_R2    | W15      | 4    |       | 2.5V/3.3V |
| LCD_R1    | W12      | 4    |       | 2.5V/3.3V |
| LCD_R0    | W13      | 4    |       | 2.5V/3.3V |
| LCD_HSYNC | G21      | 2    | 行同步信号 | 2.5V/3.3V |
| LCD_VSYNC | G22      | 2    | 列同步信号 | 2.5V/3.3V |
| LCD_DE    | J22      | 2    | 屏使能   | 2.5V/3.3V |
| LCD_DCLK  | H22      | 2    | 时钟    | 2.5V/3.3V |
| LCD_SCL   | E22      | 2    | I2C时钟 | 2.5V/3.3V |
| LCD_SDA   | F22      | 2    | I2C数据 | 2.5V/3.3V |
| LCD_PWM   | C22      | 2    | 背光调节  | 2.5V/3.3V |

| INT <b>D22</b> 2 中断或GPIO | 2.5V/3.3V |
|--------------------------|-----------|
|--------------------------|-----------|

#### **3.12 PMOS**

#### 3.12.1 概述

板卡包含两路PMOS接口。每个接口8对差分信号,对外输出DC3.3V。 默认功能为PMOS摄像头输入。该接口也可复用为其他功能GPIO(注意 BANK4电压可选2.5V/3.3V, BANK5固定为3.3V电压)。

#### 3.12.2 PMOS接口电路



图 3-15 PMOS接口电路原理图

#### 3.12.3 管脚分配

| 表 | 3-1 | 2PM | 105 | 接口 | l管脚 | 分配 |
|---|-----|-----|-----|----|-----|----|
|   |     |     |     |    |     |    |

| 信号名称 | FPGA管脚序号 | BANK | 描述    | I/O电平     |
|------|----------|------|-------|-----------|
| D1P  | L22      | 2    | 差分信号对 | 3.3V      |
| D1N  | K22      | 2    |       | 3.3V      |
| D2P  | Y12      | 4    | 差分信号对 | 2.5V/3.3V |
| D2N  | Y13      | 4    |       | 2.5V/3.3V |

| D3P | V12  | 4 | 差分信号对 | 2.5V/3.3V |
|-----|------|---|-------|-----------|
| D3N | V13  | 4 |       | 2.5V/3.3V |
| D4P | AB19 | 4 | 差分信号对 | 2.5V/3.3V |
| D4N | AB20 | 4 |       | 2.5V/3.3V |
| D5P | AB17 | 4 | 差分信号对 | 2.5V/3.3V |
| D5N | AB18 | 4 |       | 2.5V/3.3V |
| D6P | AB16 | 4 | 差分信号对 | 2.5V/3.3V |
| D6N | AA16 | 4 |       | 2.5V/3.3V |
| D7P | AB15 | 4 | 差分信号对 | 2.5V/3.3V |
| D7N | AA15 | 4 |       | 2.5V/3.3V |
| D8P | AB13 | 4 | 差分信号对 | 2.5V/3.3V |
| D8N | AB14 | 4 |       | 2.5V/3.3V |
| B1P | Y6   | 5 | 差分信号对 | 3.3V      |
| B1N | AA6  | 5 |       | 3.3V      |
| B2P | Y3   | 5 | 差分信号对 | 3.3V      |
| B2N | AA3  | 5 |       | 3.3V      |
| ВЗР | Y4   | 5 | 差分信号对 | 3.3V      |
| B3N | Y5   | 5 |       | 3.3V      |
| B4P | V6   | 5 | 差分信号对 | 3.3V      |
| B4N | V7   | 5 |       | 3.3V      |
| B5P | AA8  | 5 | 差分信号对 | 3.3V      |
| B5N | AB8  | 5 |       | 3.3V      |
| В6Р | AA7  | 5 | 差分信号对 | 3.3V      |
| B6N | AB7  | 5 |       | 3.3V      |
| В7Р | AB5  | 5 | 差分信号对 | 3.3V      |
| B7N | AB6  | 5 |       | 3.3V      |
| B8P | AB1  | 5 | 差分信号对 | 3.3V      |
| B8N | AB2  | 5 |       | 3.3V      |

# 3.13以太网模块

### 3.13.1 概述

三速以太网接口模块是基于博通的BCM50610以太网IC设计实现。

# 3.13.2 ETHNET@1000M模块电路图

#### ETHENET@1000M



图 3-16 ETHNET@1000M模块以太网电路原理图

#### 3.13.3 管脚分配

表 3-14 VGA接口管脚分配

| 信号名称          | FPGA管脚序号 | BANK | 描述   | I/O电平 |
|---------------|----------|------|------|-------|
| RGMII_TX_CLK  | W7       | 5    | 发送时钟 | 3.3V  |
| RGMII_TX_CRTL | W8       | 5    | 发送控制 | 3.3V  |
| RGMII_TXD0    | Y7       | 5    | 发送数据 | 3.3V  |
| RGMII_TXD1    | Y8       | 5    | 发送数据 | 3.3V  |
| RGMII_TXD2    | Y9       | 5    | 发送数据 | 3.3V  |
| RGMII_TXD3    | Y10      | 5    | 发送数据 | 3.3V  |
| RGMII_RX_CLK  | AB9      | 5    | 接收时钟 | 3.3V  |
| RGMII_RX_CRTL | AA11     | 5    | 接收控制 | 3.3V  |
| RGMII_RXD0    | V10      | 5    | 接收数据 | 3.3V  |
| RGMII_RXD1    | V11      | 5    | 接收数据 | 3.3V  |
| RGMII_RXD2    | W11      | 5    | 接收数据 | 3.3V  |
| RGMII_RXD3    | Y11      | 5    | 接收数据 | 3.3V  |

| PHY_MDC   | V9 | 5 | I2C时钟 | 3.3V |
|-----------|----|---|-------|------|
| PHY_MDIO  | V8 | 5 | I2C数据 | 3.3V |
| PHY_RESET | U7 | 5 | 复位    | 3.3V |

### 3.14 USB转UART

#### 3.14.1 概述

开发板提供 UART 串口功能。由 CP2102 实现 USB 转串口。

#### 3.14.2 原理图



图 3-17 USB 转 UART 电路原理图

#### 3.14.3 管脚分配

| 信号名称       | FPGA管脚序号 | BANK | 描述   | I/O电平 |
|------------|----------|------|------|-------|
| M_UART0_RX | L20      | 2    | 串口接收 | 3.3V  |
| M_UART0_TX | K20      | 2    | 串口发送 | 3.3V  |

#### 3.15 MICRO SD接口

#### 3.15.1 概述

开发板提供 MICRO SD 接口功能。支持外挂 TF 卡。

#### 3.15.2 连接示意图



图 3-18 MICRO SD 连接示意图

#### 3.15.3 管脚分配

| 信号名称     | FPGA管脚序号 | BANK | 描述   | I/O电平 |
|----------|----------|------|------|-------|
| SD_DATA2 | M21      | 2    | 数据   | 3.3V  |
| SD_DATA3 | L21      | 2    | 数据   | 3.3V  |
| SD_CMD   | D19      | 2    | 控制   | 3.3V  |
| SD_CLK   | H19      | 2    | 时钟   | 3.3V  |
| SD_DATA0 | J19      | 2    | 数据   | 3.3V  |
| SD_DATA1 | J20      | 2    | 数据   | 3.3V  |
| SD_SDDEF | H18      | 2    | 插入检测 | 3.3V  |

# 3.16 MIPI接口

#### 3.16.1 概述

板卡包含一组 MIPI 输入:一对差分时钟,两对差分数据。一组 MIPI 输出:一对差分时钟,三对差分数据。MIPI-DSI 支持友达 LCD 屏 B101UAN01.7,MIPI-CSI 支持树莓派 OV5647 摄像头。

#### 3.16.2 MIPI接口原理图



图 3-19 MIPI 接口原理图

#### 3.16.3 管脚分配

| 信号名称     | FPGA管脚序号 | BANK | 描述   | I/O电平 |
|----------|----------|------|------|-------|
| DSI_CLKP | A15      | 1    | 差分时钟 | 2.5V  |
| DSI_CLKN | B15      | 1    |      | 2.5V  |
| DSI_D0P  | A17      | 1    | 差分数据 | 2.5V  |
| DSI_D0N  | B17      | 1    |      | 2.5V  |
| DSI_D1P  | C14      | 1    | 差分数据 | 2.5V  |
| DSI_D1N  | C15      | 1    |      | 2.5V  |

| DCL D2D  | 422 | T . | ナハ*ト+ロ     | 2.51/ |
|----------|-----|-----|------------|-------|
| DSI_D2P  | A22 | 1   | 差分数据       | 2.5V  |
| DSI_D2N  | B22 | 1   |            | 2.5V  |
| DSI_D3P  | C18 | 1   | 差分数据       | 2.5V  |
| DSI_D3N  | C19 | 1   |            | 2.5V  |
| DSI_SDA  | C20 | 2   | I2C数据      | 3.3V  |
| DSI_SCL  | B20 | 2   | I2C时钟      | 3.3V  |
| LED_PWM  | F19 | 2   | 屏背光PWM     | 3.3V  |
| DSI_ID   | F20 | 2   | 屏ID识别      | 3.3V  |
| AGING    | F21 | 2   | AGING MODE | 3.3V  |
| CSI_CLKP | D11 | 1   | 差分时钟       | 2.5V  |
| CSI_CLKN | D12 | 1   |            | 2.5V  |
| CSI_D0P  | E14 | 1   | 差分数据       | 2.5V  |
| CSI_D0N  | E15 | 1   |            | 2.5V  |
| CSI_D1P  | E12 | 1   | 差分数据       | 2.5V  |
| CSI_D1N  | E13 | 1   |            | 2.5V  |
| CSI_SDA  | B21 | 2   | I2C数据      | 3.3V  |
| CSI_SCL  | C21 | 2   | I2C时钟      | 3.3V  |
| GPIO0    | D20 | 2   | 控制IO       | 3.3V  |
| GPIO1    | E20 | 2   | 控制IO       | 3.3V  |

# 4、开发板使用

#### 4.1 工程导入

具体软件操作说明参见SUG100-1.7\_Gowin云源软件用户指南

- 1. 直接点击.gprj文件
- 2. 进入开发软件后点击 "文件" → "打开" 选择.gprj文件导入



#### 4.2 程序编译和下载

1.编写完程序之后保存点击Process 点击Place&Route编译,编译通过之后前面会出现绿勾





#### 2.编译通过后双击Program Device弹出下载窗口,点击开始下载

#### 4.3 例程操作及现象说明

开发板提供40余套配套视频,其中两套视频例程。视频教程一作为公 益教程已经免费发布在Bilibili (网址:

https://space.bilibili.com/507416742), 公益视频主要讲解FPGA开发的基础硬件知识(内容会要求有一定的硬件和数字电路基础), 该套视频主要基于高云Runber (蜂鸟), Pocket Lab开发套件的实验案列共20余期视频教程(Runber、Pocket Lab、Combat使用方法基本类似), 涉及高云软件的使用, Verilog语法等。后期教学视频将持续在Bilibili更新, 欢迎关注。

Combat同时也提供包括DDR3, MIPI, 以太网等针对视频处理, 工控等领域高质量工程源码, 配套视频也将陆续推出和更新, 欢迎关注。

# 4.4 开发板使用注意事项



- 1. 开发板使用时,注意轻拿轻放,并做好静电防护。
- 2. 对内部 Flash 或外部 Flash 下载 bitstream 文件时,需设置 MODE 脚状态在正确的配置值上。
- 3. 连接模块时,必须先断电。