

Prof. Gilberto Irajá Müller

2017/1 Trabalho GA (3,0) Laboratório II

A grande febre, o Pokémon GO, é um jogo de realidade aumentada desenvolvido pela parceria Nintendo/Niantic. Qual a relação com a disciplina? Bem, você foi convidado a desenvolver um projeto que visa mostrar os caminhos mais curtos entre a sua localização e a do Pokémon. Suponha o grafo da Figura 1, onde estamos localizados no vértice A e o Pokémon no vértice P; o objetivo é encontrar o(s) caminho(s) mais curto(s) para que o jogador escolha o caminho mais rápido possível para capturar o Pokémon.

Figura 1: Grafo Caminhos Pokémon GO

Fonte: elaborado pelo autor.

O grafo pode ser representado através de uma matriz de adjacência, conforme apresentado na Figura 2.

Figura 2: Matriz de Adjacência

	Α	В	С	D	Е	F	G	н	-1	J	K	L	М	N	0	Р
Α	8	2	1	3	0	0	0	0	0	0	0	0	0	0	0	0
В	2	þ	0	0	7	2	5	3	0	0	0	0	0	0	0	0
С	1	0	þ	0	5	4	2	8	0	0	0	0	0	0	0	0
D	3	0	0	þ	3	8	3	5	0	0	0	0	0	0	0	0
Ε	0	7	5	3	þ	0	0	0	10	15	8	5	0	0	0	0
F	0	2	4	8	0	B	0	0	6	8	4	9	0	0	0	0
G	0	5	2	3	0	0	þ	0	8	2	17	13	0	0	0	0
Н	0	3	8	5	0	0	0	B	3	5	5	11	0	0	0	0
1	0	0	0	0	10	6	8	3	þ	0	0	0	2	3	6	0
J	0	0	0	0	15	8	2	5	0	ø	0	0	1	6	8	0
K	0	0	0	0	8	4	17	5	0	0	B	0	5	5	5	0
L	0	0	0	0	5	9	13	11	0	0	0	þ	8	4	4	0
M	0	0	0	0	0	0	0	0	2	1	5	8	þ	0	0	3
N	0	0	0	0	0	0	0	0	3	6	5	4	0	ø	0	5
0	0	0	0	0	0	0	0	0	6	8	5	4	0	0	B	4
Р	0	0	0	0	0	0	0	0	0	0	0	0	3	5	4	B

Fonte: elaborado pelo autor.

Prof. Gilberto Irajá Müller

2017/1 Trabalho GA (3,0) Laboratório II

Ao observar a Figura 2, pode-se fazer as seguintes conclusões:

- Do vértice A é possível ir apenas para os vértices B, C e D;
- Em relação à distância: A até B é 2; A até C é 1 e A até D é 3; considera-se a distância uma unidade qualquer (metros, quilômetros, etc.);
- Ressalta-se ainda que uma matriz de adjacência é espelhada, ou seja, os valores podem ser obtidos tanto a partir da linha como a partir da coluna; como se fôssemos dobrar uma folha; não entraremos em detalhes do grafo ser dirigido;
- As linhas e colunas da matriz (0, 1, ..., n 1, n) correspondem as letras dos vértices: (A, B, ..., 0, P).

Estruturas de Dados

PASSO 1) Você deverá criar a seguinte interface, pois é o contrato obrigatório para a execução da classe de teste.

```
public interface IPokemonGo {
    public void loadMatrix(File file) throws IOException;
    public Chromosome generateChromosome();
    public void insertOrderedChromosome(Chromosome chromosome);
    public int distance(int[] genes);
    public void evolve();
    public void print();
}
```

PASSO 2) Deverá ser criado uma classe denominada PokemonGo que implementa a interface IPokemonGo conforme Quadro 1.

Quadro 1: Descrição dos Contratos

Método/operação	Descrição
loadMatrix	Responsável pelo carregamento da matriz
	de adjacência constante em arquivo csv
	(ver ANEXO A).
generateChromosome	Responsável por gerar um novo
	cromossomo de forma aleatória (ver
	ANEXO B).
<pre>insertOrderedChromosome</pre>	Responsável pela inserção ordenada em
	um array de "melhores" cromossomos.
	Guardaremos os 10 melhores cromossomos
	em ordem de distância (crescente) neste
	array. Se o cromossomo a ser inserido é
	ruim aos que já estão no array e o
	array está todo preenchido, então, este
	deverá ser desconsiderado. Se o

Prof. Gilberto Irajá Müller

2017/1 Trabalho GA (3,0) Laboratório II

	cromossomo já consta no array, então, deverá ser desconsiderado. Caso seja um cromossomo bom e o array esteja completo, então, o pior cromossomo deverá ser retirado da lista, sendo que o novo cromossomo deverá ser inserido. Caso o array não esteja cheio, então, deverá ser inserido conforme sua distância (ou seja, qualidade). Poderão existir cromossomos com o mesmo fitness (critério de aptidão/qualidade).
distance	Responsável por calcular a distância total do cromossomo, ou seja, o fitness. Observa-se que o parâmetro se refere aos genes do cromossomo. Utiliza-se a matriz de adjacência no cálculo da distância.
evolve	Responsável pela evolução/seleção dos melhores cromossomos. Faremos 100 iterações, onde cada iteração irá gerar um cromossomo e este inserido no array de melhores cromossomos.
print	Responsável pela impressão dos 10 melhores cromossomos, do menor caminho para o maior caminho.

Fonte: elaborado pelo autor.

PASSO 3) Abaixo, segue estrutura da classe de teste:

O resultado da execução do PokemonGoTest deve ser algo similar ao que está abaixo. A Figura 3 ilustra o primeiro caminho.

```
Short path -> 9 A C G J M P
Short path -> 12 A D G J M P
Short path -> 13 A B G J M P
Short path -> 13 A B H I M P
Short path -> 14 A B H J M P
```


Prof. Gilberto Irajá Müller

2017/1 Trabalho GA (3,0) Laboratório II

```
Short path -> 16 A C G J N P
Short path -> 16 A C G I M P
Short path -> 16 A C F I M P
Short path -> 17 A C H I M P
Short path -> 18 A B F K N P
```


Fonte: elaborado pelo autor.

ANEXOS

ANEXO A: Você deverá criar na classe PokemonGo uma matriz (linha vs. coluna) de inteiros que armazenará a matriz de adjacência obtida a partir da leitura de um arquivo. Abaixo, exemplo de conteúdo do arquivo separado por ponto-vírgula.

```
0;2;1;3;0;0;0;0;0;0;0;0;0;0;0;0;0
2;0;0;0;7;2;5;3;0;0;0;0;0;0;0;0
1;0;0;0;5;4;2;8;0;0;0;0;0;0;0;0
3;0;0;0;3;8;3;5;0;0;0;0;0;0;0;0
0;7;5;3;0;0;0;0;10;15;8;5;0;0;0;0
0;2;4;8;0;0;0;0;6;8;4;9;0;0;0;0
0;5;2;3;0;0;0;0;8;2;17;13;0;0;0;0
0;3;8;5;0;0;0;0;3;5;5;11;0;0;0;0
0;0;0;0;10;6;8;3;0;0;0;0;2;3;6;0
0;0;0;0;15;8;2;5;0;0;0;0;1;6;8;0
0;0;0;0;8;4;17;5;0;0;0;0;5;5;5;0
0;0;0;0;5;9;13;11;0;0;0;0;8;4;4;0
0;0;0;0;0;0;0;0;2;1;5;8;0;0;0;3
0;0;0;0;0;0;0;0;3;6;5;4;0;0;0;5
0;0;0;0;0;0;0;0;6;8;5;4;0;0;0;4
0;0;0;0;0;0;0;0;0;0;0;0;3;5;4;0
```


Prof. Gilberto Irajá Müller

2017/1 Trabalho GA (3,0) Laboratório II

ANEXO B) Para gerar um novo caminho, iremos utilizar um conceito básico da genética que é o de cromossomo¹ e gene. Um cromossomo é composto por vários genes, contudo, teremos apenas "6" genes em função do comprimento entre o vértice A (nossa localização) e o vértice P (localização do Pokémon). Devemos utilizar um array unidimensional de inteiros que são os genes e representam o cromossomo. Exemplo de um cromossomo:

Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6
0	2	6	9	12	15

A distância total é: 9 e o caminho: A -> C -> G -> J -> M -> P.

Como gerar um novo cromossomo? Imagine que a coluna à esquerda do quadro abaixo seja o índice do array do nosso cromossomo, então, para os índices 1 a 4, iremos gerar números aleatórios que representam as opções possíveis daquele vértice no grafo.

Index

0	Sempre será 0 (vértice A).
1	Sortear valores entre 1 (B), 2 (C) ou 3 (D).
2	Sortear valores entre 4 (E), 5 (F), 6 (G) ou 7 (H).
3	Sortear valores entre 8 (I), 9 (J), 10 (K) ou 11 (L).
4	Sortear valores entre 12 (M), 13 (N) ou 14 (O).
5	Sempre será 15 (vértice P).

Após a geração do cromossomo, deverá ser calculada a distância e armazená-la no atributo fitness do cromossomo. A Figura 4 apresenta a classe de sugestão para o cromossomo.

Figura 4: Estrutura Cromossomo

Fonte: elaborado pelo autor.

_

 $^{^{1}}$ Leia-se cromossomo bom para aquele que tem um caminho curto. Leia-se cromossomo ruim para aquele com um caminho longo.

Prof. Gilberto Irajá Müller

2017/1 Trabalho GA (3,0) Laboratório II

Avaliação

- Comentários em todas as classes/métodos;
- O código deverá ser claro (coloque nomes que mostre a intenção da ação);
- Não será aceito a apresentação do trabalho após a data limite; observa-se que a nota será considerada apenas mediante apresentação;
- Não será aceito trabalho igual ao de outros colegas ou cuja solução tenha sido copiada da internet ou de livros. Esta prática é chamada de plágio;
- O trabalho deve ser apresentado para o professor em aula.