Facultatea de Automatica si Calculatoare, Universitatea Politehnica din Bucuresti

Examen Partial MN

Student:			Grupa:
- ·	3.53.7 A T C	1 77	

Descriere curs:	MN, An I, Semestrul II	Rezultate Examen		
Titlu curs:	Metode Numerice	Subject Punctaj		Punctaj
Profesor:	Conf.dr.ing. Florin POP	1		
				/2
Durata examenului:	90 minute	2		/3
Tip Examen: Materiale Aditionale:	Closed Book Nu! Fara telefoane mobile!!!	3		/2
	Tura voicionio mosilo	4		/3
Numar pagini:		\sum		/10

Subjecte (Seria CC)

Fie matricea
$$A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$
.

2 puncte

1. Folosind metoda Crout determinați factorizarea A = LU [0.50p]. Adaptați metoda Crout pentru o matrice simetrică tridiagonală și descrieți noua metodă [0.75p]. Scrieți o funcție MATLAB care implementează această metodă [0.75p].

Bonus: Prezentați un algoritm eficient pentru rezolvarea sistemului $A^k x = b, A \in \mathbb{R}^{n \times n}$ nesingulară, $b \in \mathbb{R}^n$ și $k \in \mathbb{N}, k > 0$. [0.50p].

3 puncte

2. Determinați factorizarea ortogonală A = QR, folosind matrici de rotație Givens. [3.00p]. Bonus: Ce proprietăți are matricea R obținută în factorizarea QR a unei matrice ortogonale oarecare. [0.50p].

2 puncte

3. Verificați dacă metodele Jacobi și Gauss-Siedel folosite pentru rezolvarea sistemului Ax = b, unde $b = [1 \ 0 \ -1]$, sunt convergente. Care dintre ele este mai rapidă? [1.00p]. Folosind 3 iterații din metoda Gauss-Siedel, calculați aproximația soluției sistemului menționat. Alegeți aproximația inițială $x0 = [1 \ 1 \ 0]$, [1.00p].

Bonus: Care sunt tehnicile de accelerare a convergenței pentru rezolvarea iterativă a unui sistem de ecuații [0.50p].

3 puncte

4. Calculați $\lambda(A)$ și $\rho(A)$ folosind polinomul caracteristic [0.50p]. Aplicați numeric primii trei pași din MPD cu y0 = [1 1 1]', evaluând valoarea lui λ_1 cu 4 zecimale exacte. Care este eroarea absolută dacă oprim MPD după trei pași ($\sqrt{3} \approx 1.7321$)? [1.50p]. Scrieți o funcție MATLAB care implementează MPD [1.00p].

Bonus: Dacă matricea $A \in \mathbb{R}^{n \times n}$ are valorile proprii λ_i , vectorii proprii la dreapta x_i și la stanga y_i , arătați că $A = \sum_{i=1}^n \lambda_i x_i y_i^T$. [0.50p].