Seminar 1

- **1.** Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ?
 - **2.** Let $A = \{a_1, a_2, a_3\}$. Determine the number of:
 - (i) operations on A;
 - (ii) commutative operations on A;
 - (iii) operations on A with identity element.

Generalization for a set A with n elements $(n \in \mathbb{N}^*)$.

- **3.** Decide which ones of the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are groups together with the usual addition or multiplication.
 - **4.** Let "*" be the operation defined on \mathbb{R} by x * y = x + y + xy. Prove that:
 - (i) $(\mathbb{R}, *)$ is a commutative monoid.
 - (ii) The interval $[-1, \infty)$ is a stable subset of $(\mathbb{R}, *)$.
 - **5.** Let "*" be the operation defined on \mathbb{N} by x * y = g.c.d.(x, y).
 - (i) Prove that $(\mathbb{N}, *)$ is a commutative monoid.
- (ii) Show that $D_n = \{x \in \mathbb{N} \mid x/n\}$ $(n \in \mathbb{N}^*)$ is a stable subset of $(\mathbb{N}, *)$ and $(D_n, *)$ is a commutative monoid.
 - (iii) Fill in the table of the operation "*" on D_6 .
 - **6.** Determine the finite stable subsets of (\mathbb{Z}, \cdot) .
 - **7.** Let (G, \cdot) be a group. Show that:
 - (i) G is abelian $\iff \forall x, y \in G, (xy)^2 = x^2y^2.$
 - (ii) If $x^2 = 1$ for every $x \in G$, then G is abelian.
- **8.** Let "." be an operation on a set A and let $X,Y\subseteq A$. Define an operation "*" on the power set $\mathcal{P}(A)$ by

$$X * Y = \{x \cdot y \mid x \in X, y \in Y\}.$$

Prove that:

- (i) If (A, \cdot) is a monoid, then $(\mathcal{P}(A), *)$ is a monoid.
- (ii) If (A, \cdot) is a group, then in general $(\mathcal{P}(A), *)$ is not a group.