

NOVEMBER 2001

ADVANCED SUBSIDIARY LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 8709/2

MATHEMATICS

Page 1 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2001	8709	2

		2	. 2 2	T 10.0	
1		$2\sec^2x - \tan x = 5$ Us		M1	Use of tan – sec link
		\rightarrow 2tan ² x – tanx – 3 =	: 0	A1	Correct only
		Solution of this		DM1	Correct attempt to solve
		tanx = - 1 or 1.5			
		x = 135° or 315° or 56	.3° or 236.3°	A1A1√	A1 for one pair correct. A1sq for other pair.
				5	
2	(i)	$4^{x} = u^{2}$ and $2^{x+1} = 2u$		B1	For both values
		$u^2 = 2u + 12$			
	(ii)	Leads to u = 4.6055 (d	or $1 + \sqrt{13}$)	B1	For correct value of u – even if other given
		Solution of 2 ^x = "his va	ilue" by logs	M1	Realises need to use logs (or TI if accurate)
		x = log 4.6055 + log 2		M1	log ÷ log
			x = 2.20	A1	Co to 3 sig figs (but allow 2.2)
					(Loses this A mark if 2 answers given)
				5	
3	(i)		Graph of 2y = x + 1	B1	Approx correct – no values needed
			Graph of $2y = x - 4 $ At (2,0)	M1	Must be V-shape – no negatives – to x-axis
		y /\	All gradients approx OK	A1	Two approx parallel, other with negative m
			2y = x + 1		
			2y = x-4		
		0	Х		
	(ii)	Solution occurs when	2y = x + 1 and	M1	Recognition of where solution lies
	:		2y = 4 - x	M1	Must be using $(4 - x)$ not $(x - 4)$
			x = 1.5, y = 1.25	A1	Both needed
				6	

Page 2 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2001	8709	2

4	Attempt at Y = mX + c	M1	Attempt at any y = mx + c eqn
	Y = -0.6X + c	A1	m and c correct
	Puts Y = Iny and X = Inx	M1	Putting Y = Iny and X = Inx
	lny = -0.6lnx + 3	****	Trutang Truny and X anx
	$y = e^3 x^{-0.6}$	M1	Correct elimination of logs
	$n = -0.6$ and $A = e^3 = 20.1$	A1A1	Correct chimination of logs
	11 0.0 and A - 0 - 20.1	6	
5 (a)	2v 2v 2v		
J (a)	$y = {e^{2x} \over 2x + 3}$ $dy/dx = {(2x + 3)2e^{2x} - e^{2x}.2 \over (2x + 3)^2}$	M1	Correct u/v formula – or uv with $e^{2x}(2x + 3)^{-1}$
	(2)	A1	Correct unsimplified
	If $x = 0$, $dy/dx = 4/9$	A1	Со
(b	Implicit differentiation.	M1	Some evidence of implicit needed
	2x + 2ydy/dx = y + xdy/dx	A1A1	A1 LHS, A1 RHS
	At (3,2), $dy/dx = -4$		
	Eqn of tangent $y-2=-4(x-3)$ or $y+4x=14$	M1	Must have used calculus, not for normal
		A1	Any form ok.
		8	
6 (i)	$y = x^2 \cos x$ $dy/dx = 2x \cos x - x^2 \sin x$	M1	Correct uv formula
		A1	Unsimplified ok
	$= 0$ when $x = 0$ or $2\cos x = x\sin x$	M1	Putting his dy/dx = 0
	→ x tanx = 2.	A1	Со
(ii	$u_2 = 1.107$ $u_3 = 1.065$ $u_4 = 1.081$	M1	Correct manipulation of u _{n+1}
	$u_5 = 1.075$ $u_6 = 1.078$ $u_7 = 1.077$	A1	from u _n First two correct
	→ Limit of 1.08	A1	Correct limit
(ii) Since a limit is reached (=L)		
	$u_{n+1} = u_n = L$		
	L = tan ⁻¹ (2/L)	M1	Putting $u_{n+1} = u_n = L$
	1		
	L tanL = 2.	A1	Co

Page 3 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2001	8709	2

7	$\frac{\pi}{4}$		
(i)	$\int_{0}^{\frac{\pi}{4}} \sin 2x dx = \left[\frac{-\cos 2x}{2} \right] = 0 - (-\frac{1}{2}) = \frac{1}{2}$	M1	Needs "-" and cos 2x.
		A1	Co
	$\int_{0}^{\frac{\pi}{4}} \cos^2 x dx = \int \frac{\cos 2x}{2} + \frac{1}{2} dx$	M1	Using double angles + attempt at integration
	$= \left[\frac{\sin 2x}{4} + \frac{x}{2} \right]$	A1	Co
	[4 2]	DM1	Use of limits 0 to π/4
	$=\frac{1}{8}(2+\pi)$	A1	Co beware of fortuitous answers.
(ii)	$\int (2s + 3c)^2 dx = \int (4s^2 + 9c^2 + 12sc) dx$	B1	Correct squaring – needs all terms
	12sc = 6sin2x Integral = 6 x $\frac{1}{2}$ = 3	B1	There could be alternatives to these marks.
	$9c^2$ Integral = $9 \times \frac{1}{8} \times (\pi + 2)$	B1	They could also be implied.
	$4s^2 = 4 - 4c^2$		
	Integral = 4x between 0 and $\frac{1}{4}\pi$	- M1	Dealing correctly with ∫4s²
	4 x integral of c^2 from 0 to $\frac{1}{4}\pi$		
	= 9.36 or 13π/8 + 17/4	A1	Correct in either form.
		11	

