Math Module 1A Lecture Notes

${\bf Hankertrix}$

August 26, 2023

Contents

1	Sets		3
	1.1	Describing sets	3
	1.2	Subsets and equal sets	3
	1.3	Standard sets	4
	1.4	Empty set	4
	1.5	Unions	4
	1.6	Intersections	4
	1.7	Subtracting sets	5
	1.8	The real number line \ldots	5
	1.9	Irrational numbers	5
	1.10	Intervals	6
2	Logi	ic	7
	2.1	Statements	7
	2.2	Examples of non-statements	7
	2.3	Negating a statement	7
	2.4	"For all" statements	8
	2.5	"There exists" statements	8
	2.6	Interactions between "for all" and "there exists" statements $% \left(1\right) =\left(1\right) \left(1\right) $.	8
3	Ope	n sets	8
	3.1	Not open sets	9
4	Clos	sed sets	9
5	Logi	ical AND	11
6	Logi	ical OB	11

7	Implications	12
	7.1 Notation	12
	7.2 Another way to think about implications	15
8	Equivalences	15
9	Contrapositive statement	16
10	Functions	16
	10.1 Definition	16
	10.2 Sequences	18
	10.3 Different ways of describing functions	19
	10.4 The graph of a function	19
	10.5 The domain of a function	20
	10.6 Image and range of a function	21
11	Properties of functions	23
	11.1 Increasing and decreasing functions	23
	11.2 Strictly increasing and decreasing functions	23
	11.3 Bounded functions	24
	11.4 Locally bounded functions	25
	11.5 Unbounded functions	26
	11.6 Odd and even functions	28
	11.7 Periodic functions	28
	11.8 Examples	28

1 Sets

A set is basically just a collection of objects, and the objects inside a set are called elements, or points. To say that x is an element of set A is represented by $x \in A$ or $A \ni x$. Similarly, to say that x is not an element of set A is represented by $x \notin A$. A set is usually described using curly braces $\{\}$.

Examples:

$$A = \{1, 2, 3\} \rightarrow 1 \in A, 2 \in A, 3 \in A, 4 \notin A, \pi \notin A$$

$$B = \{\text{Homer, Marge, Bart, Lisa, Maggie}\}$$

$$\text{Homer} \in B, 1 \notin B, \text{Ned Flanders} \notin B$$

1.1 Describing sets

Common ways to describe sets include:

$$A = \{x : \text{some condition}\}\$$

A is the set of objects x for which the condition is true.

$$B = \{x \notin B : \text{some condition}\}\$$

B is the set of objects x in Set B for which the condition is true

Examples:

$$\mathbb{Z} = \{x: \text{x is an integer}\} = \{0,1,-1,2,-2,\ldots\}$$

$$A = \{x \in \mathbb{Z}: x = 2k \text{ for some } k \in \mathbb{Z}\} = \{0,2,-2,4,-4,\ldots\}$$

1.2 Subsets and equal sets

Definition: If each element of the set A also belongs to the set B, then A is a subset of B, which is represented by $A \subset B$.

If A is a subset of B and B is also a subset of A, then the sets A and B are considered to be **equal**, which is represented by A = B.

1.3 Standard sets

 $\mathbb{N}=\{1,2,3,4,\ldots\} \text{ is the set of natural numbers}$ $\mathbb{Z}=\{...,-2,-1,0,-1,-2,\ldots\} \text{ is the set of integers}$ $\mathbb{Q}=\{\frac{m}{n}: m\in\mathbb{Z}, n\in\mathbb{N}\} \text{ is the set of rational numbers}$

 $\mathbb R$ is the set of real numbers

Examples:

$$-\frac{3}{4} \in \mathbb{Q}, \sqrt{2} \notin \mathbb{Q}, \pi \notin \mathbb{Q}, e \notin \mathbb{Q}$$

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

1.4 Empty set

A set that has no elements is called an empty set and is denoted by $\{\}$ or \emptyset . The empty set does not contain anything, not even the number 0, as a set containing the number 0 actually contains 1 element and is hence not empty.

1.5 Unions

The union $A \cup B$ of the sets A and B is the set:

$$A \cup B = \{x : x \in A \text{ or } x \in B \text{ or } x \text{ in both } A \text{ and } B\}$$

Example:

$$A = \{1, 2, 3\}, B = \{-1, 1\}$$
$$A \cup B = \{-1, 1, 2, 3\}$$

1.6 Intersections

The intersection $A \cap B$ of the sets A and B is the set:

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

Example:

$$A = \{1, 2, 3\}, B = \{-1, 1\}$$
$$A \cap B = \{1\}$$

1.7 Subtracting sets

The set "A minus B", written as $A \setminus B$, is the following set:

$$A \setminus B = \{x : x \in A \text{ and } x \notin B\}$$

Example:

$$A = \{1, 2, 3\}, B = \{-1, 1\}$$
$$A \setminus B = \{2, 3\}$$

1.8 The real number line

We can represent the set of real numbers geometrically using a number line:

1.9 Irrational numbers

There is no rational number x with the property that $x^2=2$. x cannot be properly described by any rational number. However, the real number $\sqrt{2}$ has this property. There are many real numbers that are not rational. Such numbers are called irrational numbers and some important examples are the constants π and e.

x is irrational means that $x \in \mathbb{R} \setminus \mathbb{Q}$

Intervals 1.10

Intervals are special subsets of real number.

For $a, b \in \mathbb{R}$, a < b, we use the notation:

1.
$$(a, b] = \{x \in \mathbb{R}, a < x \le b\}$$

$$2 [a, b] = \{x \in \mathbb{R} | a < x < b\}$$

3.
$$[a, b] = \{x \in \mathbb{R}, a \le x \le b\}$$

4.
$$(a, b) = \{x \in \mathbb{R}, a < x < b\}$$

5.
$$[a, \infty) = \{x \in \mathbb{R}, a \le x\}$$

$$(a, \infty) = \{ x \in \mathbb{R}, a < x \}$$

$$(-\infty, b] = \{x \in \mathbb{R}, x \le b\}$$

$$(-\infty, b) = \{x \in \mathbb{R}, x < b\}$$

$$(-\infty,\infty)=\mathbb{R}$$

2 Logic

2.1 Statements

In Maths, a statement is either true or false. A statement in maths cannot be both true and false, or be neither true nor false.

Examples:

$$4 < 7 \rightarrow \text{True}$$

$$4 = 7 \rightarrow \text{False}$$

There are infinitely many prime numbers. \rightarrow True

All prime numbers are odd. \rightarrow False

The real part of every non-trivial zero of the Riemann zeta function is $1/2. \rightarrow ?$

2.2 Examples of non-statements

4.

Hello!

This sentence is false.

2.3 Negating a statement

The negation $not\ P$ of a statement P, is a statement that is false when P is true and is true when P is false.

Truth table:

P	not P
Т	F

More examples:

P	not P
x = 7	$x \neq 7$
x < 7	$x \ge 7$
All NTU students are younger	There exists an NTU student that
than 30.	is at least 30.
There exists a professor in NTU	All professors in NTU are insane.
that is sane.	An professors in NTO are filsane.

2.4 "For all" statements

"For all" is represented by " \forall ".

2.5 "There exists" statements

"There exists" is represented by " \exists ".

2.6 Interactions between "for all" and "there exists" statements

In general, the negation of " $\forall x \in A, P(x)$ is true", is " $\exists x \in A, P(x)$ is false". Similarly, the negation of " $\exists x \in A, P(x)$ is true", is " $\forall x \in A, P(x)$ is false".

3 Open sets

A set $A \subset \mathbb{R}$ is open if for every $x \in A$, there exists a $\delta > 0$ such that $(x - \delta, x + \delta) \subset A$. The set A is not open when there exists $x \in A$ such that for every $\delta > 0$, $(x - \delta, x + \delta) \notin A$.

To make this definition easier to understand, let's assume δ to be a very small number. Let's look at the set of (3,5). If we pick a x value that is very close to the boundary, like 4.9999 ($x \neq 5$ as the set doesn't include 5), there's still a value of δ that is greater than 0 ($\delta > 0$) that can be added to 4.9999 that will not cause ($x + \delta$) to exceed the bounding value. In this case, δ would be 0.000001. Similarly, for the lower bound, we can pick a x value that is very close to the boundary, such as 3.0001 ($x \neq 3$ as the set doesn't include 3), and there will still be a non-zero δ that is greater than 0 ($\delta > 0$) that can be subtracted from x that will not cause ($x - \delta$) to be lower than the lower bound. In this case, δ would be 0.00001. Hence, (3,5) would be an open set.

Now, let's look at the set of [3,5]. If we pick a x value that is at the boundary (remember that the set includes the boundaries), like 5, there's no value of δ that is greater than 0 ($\delta > 0$) that can be added to 5 that will not cause $(x+\delta)$ to exceed the bounding value. Similarly, for the lower bound, if we pick a x value that is at the boundary (the set includes the boundaries), such as 3, and there's no value of δ that is greater than 0 ($\delta > 0$) that can be subtracted from x that will not cause $(x-\delta)$ to be lower than the lower bound. Hence, (3,5) would not be an open set.

Examples (suppose a < b):

1.
$$(a,b) \to \text{Open}$$

$$a \qquad b$$

2. $(a, b] \rightarrow \text{Not open}$

3. $[a, b] \rightarrow \text{Not open}$

4. $(a, \infty) \to \text{Open}$

5. $[a, \infty) \to \text{Not open}$

3.1 Not open sets

A set is **not open** means that **there exists** $x \in A$ **such that for every** $\delta > 0$, $(x - \delta, x + \delta) \not\subset A$.

4 Closed sets

A set $A \subset \mathbb{R}$ is closed if its "complement" $\mathbb{R} \setminus A$ is open.

Examples (suppose a < b):

1.
$$(a, b) \rightarrow \text{Not closed}$$

 $\mathbb{R} \setminus (a,b) = (-\infty,a] \cup [b,\infty)$ is not open. Hence (a,b) is not closed.

2.
$$(a, b] \rightarrow \text{Not closed}$$

 $\mathbb{R} \setminus (a,b] = (-\infty,a] \cup [b,\infty)$ is not open. Hence (a,b] is not closed.

3.
$$[a,b] \to \text{Closed}$$

 $\mathbb{R} \setminus [a, b] = (-\infty, a) \cup (b, \infty)$ is open. Hence [a, b] is closed.

4.
$$(a, \infty) \to \text{Not closed}$$

 $\mathbb{R} \setminus (a, \infty) = (-\infty, a]$ is not open. Hence (a, ∞) is not closed.

5.
$$[a, \infty) \to \text{Closed}$$

 $\mathbb{R}\setminus[a,\infty)=(-\infty,a)$ is open. Hence (a,∞) is closed.

6.
$$\mathbb{R} \to \text{Closed}$$

 $\mathbb{R} \setminus \mathbb{R} = \emptyset$ is open. Hence \mathbb{R} is closed.

7.
$$\emptyset \to \text{Closed}$$

 $\mathbb{R} \setminus \emptyset = \mathbb{R}$ is open. Hence \emptyset is closed.

From the examples, we can see that the set (a, b] is neither open nor closed and the sets \mathbb{R} and \emptyset are both closed and open at the same time. \mathbb{R} and \emptyset are known as clopen sets, which are sets that are both closed and open. This means that open and closed sets are **not mutually exclusive** and both can happen at the same time.

In general, an open set is usually a set that does not include its bounding values while a closed set is a set that includes its bounding values, but this is not always the case, as seen from the sets (a, b], \mathbb{R} and \emptyset .

5 Logical AND

Given two statements P and Q, the statement P **AND** Q is true when both P and Q are true, and false otherwise.

Truth table:

Р	Q	P AND Q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

6 Logical OR

The statement P \mathbf{OR} Q is false when \mathbf{both} P and Q are false, and true otherwise.

Truth table:

Р	Q	P OR Q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Examples:

Р	Q	not Q	(P AND not Q)	not (P AND not Q)
Τ	Т	F	F	T
Т	F	Т	Т	F
F	Т	F	F	Т
F	F	Т	F	Т

7 Implications

Many statements in maths have the form "if something, then something". For example:

- If x is an even integer, then x^2 is an even integer.
- If f(x) is differentiable at x = a, then f(x) is continuous at x = a.

We often use implications in our day-to-day life.

• If it rains, then I'll bring an umbrella.

7.1 Notation

The statement "if A, then B" can also be expressed as $A \Rightarrow B$, which means A implies B.

7.1.1 Example 1

x is an even integer. $\Rightarrow x^2$ is an even integer.

7.1.2 Example 2

If x>0 then $x^2>x^{\frac{1}{2}}$. The statement is false, as when $x=1,\,x>0$ but $x^2=x^{\frac{1}{2}}$. The implication mentioned above is false because it is possible for "x>0" to be true without " $x^2>x^{\frac{1}{2}}$ " to be true. The first statement does not guarantee the second and hence the implication is false. This is usually demonstrated using a counterexample.

The truth value of the above implication does not "depend on x". It is irrelevant that $x^2 > x^{\frac{1}{2}}$ for some x > 0. The above implication is simply false.

7.1.3 Example 3

If p_k is the kth prime number, i.e.

$$p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11$$

And if n is a positive integer, then

$$1 + \prod_{k=1}^{n} p_k = 1 + p_1 \cdot \dots \cdot p_n$$

Is also a prime number.

n	$1 + \prod_{k=1}^{n} p_k$
1	$1+2=3 \rightarrow \text{prime}$
2	$1 + 2 \cdot 3 = 7 \rightarrow \text{ prime}$
3	$1 + 2 \cdot 3 \cdot 5 = 31 \rightarrow \text{ prime}$
4	$1 + 2 \cdot 3 \cdot 5 \cdot 7 = 211 \rightarrow \text{ prime}$
5	$1 + 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 = 2311 \rightarrow \text{ prime}$
6	$1+2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13=59,509 \rightarrow $ not prime

Hence, the implication is **false**.

7.1.4 Example 4

If a and b are positive real numbers, then:

$$\frac{a+b}{2} \ge \sqrt{ab}$$

 $\frac{a+b}{2}$ is the arithmetic mean of a and b.

 \sqrt{ab} is the geometric mean of a and b.

The implication is **true**, as for a, b > 0, we have

$$\frac{a+b}{2} - \sqrt{ab} = \frac{a}{2} - \sqrt{ab} + \frac{b}{2}$$
$$= (\sqrt{\frac{a}{2}} - \sqrt{\frac{b}{2}})^2$$
$$> 0$$

7.1.5 Example 5

If x is a real number and $x^2 < 0$, then x is a pink elephant. This statement is **true**.

If we let:

$$A = \{x \in \mathbb{R} : x^2 < 0\} = \emptyset$$

The last statement can be phrased as "for all $x \in A$, x is a pink elephant". The negation of this statement would be "there exists $x \in A$, such that x is not a pink elephant". Since the negation of the original statement is **false**, the original statement must be **true**.

7.2 Another way to think about implications

The implication $P \Rightarrow Q$ is another way of saying not(P AND not Q).

Р	Q	not (P AND not Q)	
Т	Т	T	
Т	F	F	
F	Т	Т	
F	F	Т	

 \downarrow

Р	Q	$P \Rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

8 Equivalences

An implication has a "direction". For example, the implication $x=2 \Rightarrow x^2=4$ is **true** but if we turn it around, $x^2=4 \Rightarrow x=2$, we get something **false**.

If we instead consider the implication x=2 or $x=-2\Rightarrow x^2=4$, which is still true, we see that the "reverse" implication $x^2=4\Rightarrow x=2$ or x=-2 also holds. Hence, the two statements "x=2 or x=-2" and " $x^2=4$ " are equivalent.

The statement $(P \Rightarrow Q)$ and $(Q \Rightarrow P)$ can be written as $P \Leftrightarrow Q$. In this case, we say that P and Q are equivalent, or P if and only if Q.

9 Contrapositive statement

Suppose that you **know** that the implication "if it rains, then your lecturer carries an umbrella" is a **true** statement. One day, you see your lecturer not carrying an umbrella, so you conclude that "if your lecturer does not carry an umbrella, then it does not rain".

The statements $P \Rightarrow Q$ and not $Q \Rightarrow not P$ are equivalent.

P	Q	$P \Rightarrow Q$	not Q	not P	$not Q \Rightarrow not P$
Τ	Т	Т	F	F	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	T
F	F	Т	Т	Т	T

10 Functions

10.1 Definition

Consider two sets A and B. A function $f: A \to B$ is a rule that assigns to each element $x \in A$ exactly one element $f(x) \in B$ called the value of the function f at the point x.

Put simply, a function takes a set of inputs, A and returns a set of outputs B. One input can only have one output.

The set A is called the **domain** of f, and B is called the **codomain** of f. We also say that $f: A \to B$ is a function **from** A **to** B.

10.1.1 Example 1

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$

$$f(1) = 1, f(-2) = 4$$

10.1.2 Example 2

Let $A = \{\text{Homer, Marge, Bart, Lisa, Maggie}\}\$ and define $f: A \to \mathbb{N}\$ by f(x) = the age of x in years.

$$f(\text{Homer}) = 38$$

 $f(\text{Marge}) = 34$
 $f(\text{Bart}) = 10$
 $f(\text{Lisa}) = 8$
 $f(\text{Maggie}) = 1$

$$f(\text{Ned Flanders}) = \text{undefined}$$

$$\text{Ned Flanders} \notin A$$

10.1.3 Important note

For a function f with domain A, f(x) is only defined for $x \in A$.

So for a function:

$$f:[0,\infty)\to\mathbb{R}$$

$$f(x) = x^2$$

 $f(-2) \neq 4$, instead f(-2) = undefined as f(x) is only defined for $x \in A$.

10.2 Sequences

10.2.1 Definition

A function $f: A \to \mathbb{R}$ where A is a subset of N is called a **sequence**.

1. Example 1

The function $f: \mathbb{N} \to \mathbb{R}$ defined by $f(n) = 1 + \frac{(-1)^n}{n}$ is a sequence. We have:

$$f(1) = 1 + \frac{-1}{1} = 0, f(2) = 1 + \frac{1}{2} = \frac{3}{2}, f(3) = 1 + \frac{-1}{3} = \frac{2}{3}, \text{ etc.}$$

For sequences, we often use the notation a_n instead of f(n) and

$$(a_n), (a_n)_{n=1}^{\infty}, (a_1, a_2, a_3, ...),$$
 etc. instead of f

2. Example 2

The sequence in the example 1 would more commonly be described as

$$(a_n)_{n=1}^{\infty}$$
, where $a_1 = 1 + \frac{-1}{1} = 0$, $a_2 = 1 + \frac{1}{2} = \frac{3}{2}$, $a_3 = 1 + \frac{-1}{3} = \frac{2}{3}$, etc.

10.3 Different ways of describing functions

A function can be described in any way. In fact, just using words is perfectly fine as long as the meaning is clear and unambiguous. Some particularly common ways are:

Explicit formulae like:

$$f(x) = \sin(1+x^3),$$

$$g(y) = \frac{1+y}{1-y},$$

$$a_n = 2^n.$$

Implicit formulae like:

$$\sin g(t) = t, \qquad -\pi \le g(t) \le \frac{\pi}{2},$$

Recurrent formulae for a sequence, like:

$$a_1=2,a_{n+1}=2a_n,$$
 so $a_1=2,a_2=2a_1=4,a_3=2a_3=8,$ etc.
$$a_1=1,a_2=2,a_{n+1}=a_n+a_{n-1}$$
 so $a_1=1,a_2=2,a_3=a_2+a_1=3,a_4=a_3+a_2=5,$ etc.

10.4 The graph of a function

A function $f: A \to \mathbb{R}$ where $A \subset \mathbb{R}$ can be represented by its **graph**. The graph of $f: A \to \mathbb{R}$ is formally defined as a set of pairs (x, y).

$$G_f = \{(x, f(x)) : x \in A\}$$

10.5 The domain of a function

For a function $f: A \to B$, the set A is called the **domain** of f. Note that the domain is part of the definition of a function, so:

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = x^2$, and $g: [0, \infty] \to \mathbb{R}$ $g(x) = x^2$

Are **different** functions.

Below is the graph of f(x) versus g(x):

10.5.1 The natural domain of a function

Usually, we will simply state an expression for f without saying what the domain is. For example $f(x) = \sqrt{x-1}$, where the natural domain of f is $\{x: x-1 \ge 0\} = [1, \infty)$.

If we don't say anything about the domain, we will assume that it is the largest set A, for which f(x) 'makes sense' when $x \in A$. We also call this the **natural domain** of f.

10.6 Image and range of a function

10.6.1 Definition

Consider a function $f: A \to B$.

For $K \subset A$, the set $f(K) = \{f(x) : x \in K\} \subset B$, is called the **image** of the set K. The image of f(A) of the whole domain A is called the range of the function f.

10.6.2 Example 1

Let
$$A = \{\text{Homer, Marge, Bart, Lisa, Maggie}\}$$

and define $f: A \to \mathbb{N}$ by $f(x) = \text{the age of } x$
Also, let $K = \{\text{Bart, Lisa, Maggie}\}.$

Remember that:

$$f(\text{Homer}) = 39$$

 $f(\text{Marge}) = 34$
 $f(\text{Bart}) = 10$
 $f(\text{Lisa}) = 8$
 $f(\text{Maggie}) = 1$

Then the "range of
$$f$$
" = $f(A) = \{f(x) : x \in A\} = \{38, 34, 10, 8, 1\}$
$$f(K) = \{f(x) : x \in K\} = \{10, 8, 1\}$$

10.6.3 Example 2

$$f(x) = \sqrt{1 - x^2}$$

Domain =
$$\{x: 1-x^2 \ge 0\} = \{x: x^2 \le 1\} = [-1, 1]$$

Range =
$$\{\sqrt{1-x^2} : x \in [-1,1] = [0,1]\}$$

11 Properties of functions

11.1 Increasing and decreasing functions

11.1.1 Definition

A function $f: A \to \mathbb{R}$ where $A \subset \mathbb{R}$, is said to be:

Increasing if
$$x_1, x_2 \in A, x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$$

Decreasing if
$$x_1, x_2 \in A, x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$$

Monotonic if it is either increasing or decreasing.

Furthermore, if $B \subset A$, we say that f is increasing/decreasing/monotonic **on B** if either of the above conditions hold of $x_1, x_2 \in B$.

11.2 Strictly increasing and decreasing functions

11.2.1 Definition

A function $f: A \to \mathbb{R}(A \subset \mathbb{R})$ is said to be:

Strictly increasing if
$$x_1, x_2 \in A, x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

Strictly decreasing if
$$x_1, x_2 \in A, x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

Monotonic if it is either increasing or decreasing.

Furthermore, if $B \subset A$, we say that f is strictly increasing/decreasing/monotonic on \mathbf{B} if either of the above conditions hold of $x_1, x_2 \in B$.

11.2.2 Examples

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$
 is not increasing as:
 $-1 < 0$ but $f(-1) > f(0)$

$$f: [0, \infty] \to \mathbb{R}, f(x) = x^2$$
 is strictly increasing as:
 $x_1, x_2 \in (0, \infty)$ and $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$

$$f: \mathbb{R} \to \mathbb{R}, f(x) = 1$$
 is increasing $x_1, x_2 \in \mathbb{R}$ and $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$
But not strictly increasing as: $0, 1 \in \mathbb{R}$ and $0 < 1$ but $f(0) = f(1)$

11.3 Bounded functions

11.3.1 Definition

A function $f:A\to\mathbb{R}$ is **bounded** if there exists a M>0 such that $|f(x)|\leq M,$ for all $x\in A.$

In simpler terms, a function that is bounded is a function that doesn't approach $+\infty$ or $-\infty$.

Note that
$$|f(x)| \le M \Leftrightarrow -M \le f(x) \le M$$
.

A function that is not bounded is said to be **unbounded**. Furthermore, if $B \subset A$, we say that f is bounded **on B** if the above inequality holds for all $x \in B$.

11.3.2 Example 1

 $\sin x$, $\cos x$ are bounded.

The domain of $\sin x$ is \mathbb{R} . For all $x \in \mathbb{R}$, we have $|\sin x| \le 1$, so $\sin x$ is bounded. The same is true for $\cos x$.

11.3.3 Example 2

 x^2 is bounded on the interval [-2,1], as for $x \in [-2,1]$ we have $|x^2| \le 4$, so x^2 is bounded on [-2,1].

11.4 Locally bounded functions

11.4.1 Definition

A function $f: A \to \mathbb{R}$ is **locally bounded at point** $a \in A$ if there exists some $\delta > 0$ such that f is bounded on $A \cap (a - \delta, a + \delta)$.

A function that is **locally bounded** means that f is locally bounded at every $a \in A$.

11.4.2 Example 1

Given the definition of f below:

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ f(x) = \frac{1}{x}$$

Show that f is locally bounded.

Let A be the domain of f, i.e. $A = \mathbb{R} \setminus \{0\}$, and suppose $a \in A$.

Note that $a \neq 0$, so a is within the domain of f.

Let
$$\delta = \frac{|a|}{2}, \ M = \frac{2}{|a|}$$
, where $M, \delta > 0$ and

$$|x| > \frac{|a|}{2}$$
, for $x \in (a - \delta, a + \delta) \cap A$.

Therefore,

$$|f(x)| = \frac{1}{|x|} < \frac{1}{\frac{|a|}{2}}$$

$$< \frac{2}{|a|}$$

$$< M, \text{ for } x \in (a - \delta, a + \delta) \cap A$$

Hence, f is bounded on $(a - \delta, a + \delta) \cap A$. Thus, f is locally bounded.

11.4.3 Example 2

Given the definition of g below:

$$g: \mathbb{R} \to \mathbb{R}, \ g(x) = \begin{cases} \frac{1}{x} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$$

Show that g is not locally bounded.

The definition of a locally bound function f is that for each $a \in \mathbb{R}$, there exists $\delta > 0$ such that f is bounded on $a - \delta, a + \delta$.

So for a function f that is **not** locally bound, there exists some $a \in \mathbb{R}$, such that f is not bounded on $a - \delta, a + \delta$.

The domain A of g is \mathbb{R} . Since $0 \in A$, and for all $\delta > 0$, g is unbounded on $(0 - \delta, 0 + \delta) \cap A = (-\delta, \delta)$. That means g is not locally bounded at 0 and thus g is **not locally bounded**.

11.5 Unbounded functions

11.5.1 Definition

From the definition of a bounded function, which is "a function $f: A \to \mathbb{R}$ is **bounded** if there exists a M > 0 such that $|f(x)| \leq M$, for all $x \in A$ ".

A function that is not bounded is said to be **unbounded**, which is "f is bounded if for all M > 0, there exists $x \in A$ such that |f(x)| > M".

11.5.2 Example

Is the function $f(x) = \frac{1}{x}$ bounded or unbounded?

For the graph below, $y = f(x) = \frac{1}{x}$ is in blue, and y = -M and y = M are in red.

Domain of $f = \mathbb{R} \setminus \{0\}$

Let M>0, and take $x=\frac{1}{2M}, x\in\mathbb{R}\setminus\{0\}$

$$|f(x)| = \left| \frac{1}{\frac{1}{2M}} \right| = |2M| = 2M > 0$$

Hence, f is unbounded.

11.6 Odd and even functions

11.6.1 Definition

A function $f: A \to \mathbb{R}$ is said to be:

Odd if
$$x \in A \Rightarrow -x \in A$$
 and $f(-x) = -f(x)$.

The graph of y = f(x) is symmetric about (0, 0).

Even if
$$x \in A \Rightarrow -x \in A$$
 and $f(-x) = f(x)$.

The graph of y = f(x) is symmetric about the y-axis.

11.7 Periodic functions

11.7.1 Definition

A function $f: \mathbb{R} \to \mathbb{R}$ is said to be **periodic** if there exists some T > 0 such that f(x+T) = f(x), for all $x \in \mathbb{R}$.

The number T is called a **period** for f.

11.8 Examples

 $\sin x$ and $\cos x$ are both periodic with period 2π . $\sin x$ is odd, $\cos x$ is even. x^2 is even, x^3 is odd. e^x is neither odd nor even. Given any function f(x), the function g(x) = f(|x|) is even.