

Exercise 5A

Question 24:

Given : ABC is an isosceles triangle in which AB = AC and AD is the median through A.

To prove: $\angle BAD = \angle DAC$ Proof: In $\triangle ABD$ and $\triangle ADC$

AB =AC [Given]
BD =DC [Given]
AD = AD [Common]

Thus by Side-Side-Side criterion of congruence, we have

ΔABD ≅ ΔADC [By SSS]

The corresponding parts of the congruent triangles are equal.

 $\therefore \angle BAD = \angle DAC \quad (Proved)$

Question 25:

Given ABCD is a quadrilateral in which AB || DC

To Prove: (i) AB = CQ (ii) DQ= DC+AB Proof: In \triangle ABP and \triangle PCQ we have

 $\angle PAB = \angle PQC$ [alternate angles]

 $\angle APB = \angle CPQ$ [Vertically opposite angles]

BP = PC [Given]

Thus by Angle-Angle-Side criterion of congruence, we have $\Delta ABP \cong \Delta PCQ$

The corresponding parts of the congruent triangles are equal

$$\therefore \qquad \mathsf{AB} = \mathsf{CQ} \qquad \dots \dots (1)$$

Now,
$$DQ = DC + CQ$$

= $DC + AB$ [from (1)]

******* END ********