Synthetic Segmented Virtual Head Model Generation Using Generative Adversarial Network (GAN)

NAHIAN IBN HASAN

Elmore School of Electrical and Computer Engineering Purdue University, West Lafayette (WL), IN, USA

Project Motivation

The Purpose of Generating Synthetic Data

- Data Augmentation for MRI images for Machine Learning Projects
- Population based studies and uncertainty quantification
- •Image Super-resolution (1.5T MRI → 3T/5T/7T MRI)

Project Workflow

Database Information

Database: Wu-Minn Human Connectome Project [1]

- Data Type : Structural MRI scans
- Coil Type: 3T/7T
- MRI type: T1w and T2w
- Number of Subjects: 812
- Subject Age : 22-35
- Ratio M/F : (47/53) %

[1] https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release

Step 1 - Real Virtual Head Model Generation

SimNIBS Uses Freesurfer* for **Surface Based Cortical Tissue Segmentation**

S1. Co-registration

S2. B-field in-homogeneity correction

S3. Skull-stripping

S4. Segment based on GM/WM

S5. Divide Brain into LH and RH

For each Hemisphere:

S6. Fill holes of the WM

S7. Deform triangle mesh to fit

GM/WM interfaces

Step 2 – Voxelization of FEM Mesh

Step 3 - Extract Mid-Cortical Slice (Coronal Plane)

Effect of Voxelization Grid

- For lower grid dimensions-
 - 1. Uncertainty in tissue boundary
 - 2. Greater staircase effect
- For higher grid dimensions-
 - 1. Computational Effect (Higher Memory)

Generative Adversarial Network (GAN)

GAN Basics

- Unsupervised learning task
- •Discovers and learns the regularities/ patterns in the input data
- •By incorporating a secondary model, the task becomes supervised learning
- •Generator: generates new data
- Discriminator: discriminates between real and generated/fake image

Generative Adversarial Network (GAN)-Examples

School of Electrical and

Computer Engineering

Types of GAN

- •DCGAN----- deep convolutional GAN
- Conditional GAN----conditional data generation
- BigGAN
- •StyleGAN
- •Pix-to-Pix----- Image Translation
- CycleGAN-----Image Translation

School of Electrical and

Computer Engineering

StyleGAN[*] Basics

- Baseline Progressive GAN.
- Addition of tuning and bilinear upsampling.
- Addition of mapping network and AdaIN (styles).
- Removal of latent vector input to generator.
- Addition of noise to each block.
- Addition Mixing regularization.

AdaIN
$$(x_i, y) = y_{s,i} \frac{x_i - \mu(x_i)}{\sigma(x_i)} + y_{b,i}$$

Attempt 1 (3D GAN – All Tissues)

- •DCGAN 3D convolution on 3D data
- •Generator Network Unet, AlexNet, Resnet 50, ResNet 152, Xception

Resultant Images: random 3D data

Attempt 2 (2D GAN – Single Tissue)

•StyleGAN – 2D convolution for single slice and single tissue (WM)

Resultant Images

Attempt 3 (2D GAN – All Tissues)

•StyleGAN – 2D convolution for all tissues (WM, GM, CSF, Skull, Scalp) **WM Resultant Images GM** Scalp **Original MRI Slice Synthetic MRI Slice**

Extracted From Synthetic Slice

Step 5 – Post-Process Synthetic Slices

Step 5.1 – Image Quantization

Purpose of Image Quantization

- GAN generates images are floating point samples from inherent latent space
- Quantization labels each pixel of certain tissue type [1-6]
- We implemented quantization by thresholding on histogram on generated image

Step 5 – Post-Process Synthetic Slices

Step 5.2 – Image Erosion and Dilation

Purpose of Image Erosion and Dilation

- Image Erosion removes small noises
- Image Dilation fills the missing data points in a continuous contour.
- Erosion + Dilation = Image Opening
- Dilation + Erosion = Image Closing

Step 5 – Post-Process

Step 5.3 – Contour Selection

Outer Boundary - GM

Outer Boundary - CSF

Purpose of Image Contour Selection

To find the tissue boundary

Step 5 – Summary of Post-Processing

Step 6.1 : Tissue Area

•Tissue Area = Number of Pixels × Pixel Area

Summary: Tissue Area doesn't provide any insight about the quality of generated image

Step 6.2: Tissue Area Comparison

•Tissue Area = Number of Pixels × Pixel Area

Summary: Tissue area of synthetic images resembles the tissue area of ground truth data

Step 6.2: Tissue Area Comparison

•Tissue Area = Number of Pixels × Pixel Area

Summary: Tissue area of synthetic images resembles the tissue area of ground truth data

Step 6.3: Frechet Inception Distance (FID Score)

$$d^{2} = ||mu_{1} - mu_{2}||^{2} + Tr(C_{1} + C_{2} - 2 \times \sqrt{C_{1} \times C_{2}})$$

- mu1,mu2 = mean of the probability vectors at the output of Inception V3 network
- C1, C2 = covariance matrices
- Tr = Trace of the matrix
- We want the FID score to be as low as possible

Step 6.3: Frechet Inception Distance (FID Score)

•Each iteration – 5000 generated samples

PURDUE PURDUE

Summary of Project Outcome

- 1. The voxelization grid size affects the image quality, especially tissue boundary.
- 2. StyleGAN generated synthetic images require a substantial number of iterations before generating any meaningful image that resembles a ground truth MRI image.
- 3. The area of any tissue does not predict the quality of synthetic image at any training iteration.
- 4. The inception score does not provide a good estimation of the synthetic image.
- 5. The FID score improves with respect to training iterations. But it is meaningful for higher voxelization grid size.
- 6. The FID score can be used as a parameter for statistical inference.
- 7. Decision: Based on the current analysis the following configuration should be used for synthetic 2D MRI data generation—
 - 1. Network = StyleGAN
 - 2. Voxelization Grid Size = $256 \times 256 \times 256$
 - 3. Evaluation Metric = FID score and manual inspection

Drawback

1. The sliced images across subjects does not provide the same cortical plane across subject

Future Direction

Future Direction

- 1. Use MNI coordinate system to extract the same cortical plane across subjects
- 2. Extend the concept to generate 3D virtual synthetic head model
- 3. Implement the 3D StyleGAN
- 4. Explore Multi-GPU processing technique to accommodate 3D volumetric data

References

- Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
- Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. Advances in neural information processing systems, 29, 2234-2242.
- Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
- Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. arXiv preprint
 arXiv:1710.10196.
- Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
- Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4401-4410).
- Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision (pp. 2223-2232).
- Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1125-1134).
- Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., & Metaxas, D. N. (2017). Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In Proceedings of the IEEE international conference on computer vision (pp. 5907-5915).

Thank You

Nahian Ibn Hasan

Graduate Assistant, Sublime Laboratory
Elmore School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN, USA
Email: hasan34@purdue.edu

