ASTR 288P UNIX and Scientific Programming with Applications in Astrophysics

Course Outline Fall 2018

Constantinos Kalapotharakos UMCP, NASA GSFC

About Me

Constantinos Kalapotharakos

constantinos.kalapotharakos@nasa.gov

ckalapotharakos@gmail.com

ckalapotharakos@astro.umd.edu

Use these two (both)

Based at NASA GSFC (so regularly off campus)

You can meet me:

ATL 1243, Fri 1-2pm (before class)

- Always Confirm
- Additional times can be set up by email if needed

Course Website https://github.com/ckalapot/astr288p fall 2018

About Me

Syllabus

Students will be introduced to the UNIX environment and especially to scientific programming (mainly in Python). Students will learn how to operate within a UNIX environment (e.g. Linux, macOS), run commands, and write scripts in Bash shell.

of computer programming while emphasis will be given to numerical methods, visualization techniques, and astrophysical applications.

Students will also be made comfortable installing and using open source software, which includes collaborating and sharing their own code.

After successfully completing this course you will be able to:

- Work within UNIX environment
- > Write shell scripts
- Code in Python
- Analyze and visualize scientific data

What will be covered

> Unix

- Shells (e.g bash)
- File system (/, /etc, \$HOME)
- Basic commands and shell scripting
- Editors (e.g. emacs, atom, VSCode)
- Tools (e.g. git, c and fortran compilers -> open source software)
- Scientific Programming (python, ipython, jupyter)
 - Fundamentals of programming (e.g. variables, lists, arrays, structures, functions)
 - Numerical methods (e.g. root finding, fitting, numerical integration, integration of differential equations)
 - Data analysis
 - Data visualization (plotting, 2D, 3D, animations)
 - (Astro)physical applications
 - (Astro)physical project

Course Format - Grades

Grades

- Lectures in almost every class
- In-class experimentation and exercises
- Homework (due before each class through submission to ursa)
- Formal assessments (~15mins) open notes, known dates (no surprises)

 Project (among a list of available projects or one of your own) and presentation instead of a final written exam **10%**

20%

20%

50%

Course Format - Grades

Final Grade Cutoffs										
+	97.00%	+	87.00%	+	77.00%	+	67.00%			
A	94.00%	В	84.00%	C	74.00%	D	64.00%	F	<60.0%	
-	90.00%	-	80.00%	-	70.00%	-	60.00%			

- Lectures in almost every class
- In-class experimentation and exercises

10%

 Homework (due before each class through submission to ursa)

20%

• Formal assessments (~15mins) open notes, known dates (no surprises)

20%

• Project (among a list of available projects or one of your own) and presentation instead of a final written exam

50%

Resources

- Not a specific textbook
- Internet, Google (plethora of information) Just a few...

```
http://www.ee.surrey.ac.uk/Teaching/Unix/ (unix)
http://www.stackoverflow.com (any kind)
https://www.tutorialspoint.com (unix, python...)
https://docs.python.org/3/ (python)
https://www.scipy.org/index.html (python)
https://www.scipy-lectures.org/intro/index.html (python)
```

• The course website will be updated regularly.

Hardware

- Lab machines
 - Master: ursa.astro.umd.edu
 - Nodes: lab001, lab002,..., lab013
 - Printer: labs.astro.umd.edu
- Your own machine (laptop, desktop)
 - Linux (Ubuntu, Redhat,...)
 - MacOS (Be aware to have Xquartz installed so "ssh -X" works!)
 - Windows (win10 bash and/or ubuntu).
 Putty or CygwinX to make ssh connections
 For X11, you need to install an X-server (e.g. Xming)
- Virtual machines (e.g. virtualbox, vmware)

Course Schedule (tentative)

			TOPIC
Fri	8/31	Lecture 1	Course overview and Introduction to Unix
Fri	9/7	Lecture 2	Unix basic commands, remote access, Git
Fri	9/14	Lecture 3	Unix shell scripting, Introduction to Python
Fri	9/21	Lecture 4	Python lists, arrays, tuples
Fri	9/28	Lecture 5	Python scientific programming, numerical methods, visualization
Fri	10/5	Lecture 6	Python scientific programming, numerical methods, visualization
Fri	10/12	Lecture 7	Python scientific programming, numerical methods, visualization
Fri	10/19	Lecture 8	Python scientific programming, numerical methods, visualization
Fri	10/26	Lecture 9	Python scientific programming, numerical methods, visualization
Fri	11/2	Lecture 10	Python, other languages, and open source software
Fri	11/9	Lecture 11	Python scientific programming, numerical methods, visualization
Fri	11/16	Lecture 12	Python scientific programming, numerical methods, visualization
Fri	11/23	Lecture 13	No Class (Thanksgiving)
Fri	11/30	Lecture 14	Python scientific programming, numerical methods, visualization
Fri	12/7	Lecture 15	Project Presentations