Лабораторная работа 4

Линейные модели, SVM и деревья решений.

Цель лабораторной работы: изучение линейных моделей, SVM и деревьев решений. Выберите набор данных (датасет) для решения задачи классификации или регрессии. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков. С использованием метода train_test_split разделите выборку на обучающую и тестовую. Обучите следующие модели: одну из линейных моделей (линейную или полиномиальную регрессию при решении задачи регрессии, логистическую регрессию при решении задачи классификации); SVM; дерево решений. Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей. Постройте график, показывающий важность признаков в дереве решений. Визуализируйте дерево решений или выведите правила дерева решений в текстовом виде.

Ввод [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import fl_score, precision_score
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt

target_col='Spectral Class'

%matplotlib inline
sns.set(style="ticks")
```

Ввод [2]:

```
data = pd.read_csv('./stars.csv')
data.head()
```

Out[2]:

	Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
0	3068	0.002400	0.1700	16.12	0	Red	М
1	3042	0.000500	0.1542	16.60	0	Red	М
2	2600	0.000300	0.1020	18.70	0	Red	М
3	2800	0.000200	0.1600	16.65	0	Red	М
4	1939	0.000138	0.1030	20.06	0	Red	М

Ввод [3]:

```
data.shape
```

```
Out[3]:
```

(240, 7)

Удаляем пустые значения и кодируем категориальные признаки

```
Ввод [4]:
```

```
data = data.dropna(axis=1, how='any')
data.head()
```

Out[4]:

	Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
0	3068	0.002400	0.1700	16.12	0	Red	М
1	3042	0.000500	0.1542	16.60	0	Red	М
2	2600	0.000300	0.1020	18.70	0	Red	М
3	2800	0.000200	0.1600	16.65	0	Red	М
4	1939	0.000138	0.1030	20.06	0	Red	М

Ввод [5]:

```
for col in data.columns:
    null_count = data[data[col].isnull()].shape[0]
    if null_count == 0:
        column_type = data[col].dtype
        print('{} - {} - {}'.format(col, column_type, null_count))
```

```
Temperature (K) - int64 - 0
Luminosity(L/Lo) - float64 - 0
Radius(R/Ro) - float64 - 0
Absolute magnitude(Mv) - float64 - 0
Star type - int64 - 0
Star color - object - 0
Spectral Class - object - 0
```

Категориальные признаки

Ввод [6]:

```
for col in data.columns:
    column_type = data[col].dtype
    if column_type == 'object':
        print(col)
```

```
Star color
Spectral Class
```

```
Ввод [7]:
```

```
le1 = LabelEncoder()
data['Star color'] = le1.fit_transform(data['Star color']);
```

Ввод [8]:

```
le2 = LabelEncoder()
data['Spectral Class'] = le2.fit_transform(data['Spectral Class']);
```

Ввод [9]:

```
for col in data.columns:
    column_type = data[col].dtype
    if column_type == 'object':
        print(col)
```

Разделение выборки на обучающую и тестовую

Ввод [10]:

```
X = data.drop(target_col, axis=1)
Y = data[target_col]
```

Ввод [11]:

Х

Out[11]:

	Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color
0	3068	0.002400	0.1700	16.12	0	10
1	3042	0.000500	0.1542	16.60	0	10
2	2600	0.000300	0.1020	18.70	0	10
3	2800	0.000200	0.1600	16.65	0	10
4	1939	0.000138	0.1030	20.06	0	10
235	38940	374830.000000	1356.0000	-9.93	5	0
236	30839	834042.000000	1194.0000	-10.63	5	0
237	8829	537493.000000	1423.0000	-10.73	5	11
238	9235	404940.000000	1112.0000	-11.23	5	11
239	37882	294903.000000	1783.0000	-7.80	5	0

240 rows × 6 columns

Ввод [12]:

```
Y
Out[12]:
0
        5
1
         5
2
         5
3
         5
235
        6
236
         6
237
         0
```

Name: Spectral Class, Length: 240, dtype: int64

Ввод [13]:

0 6

238

239

```
pd.DataFrame(X, columns=X.columns).describe()
```

Out[13]:

	Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color
count	240.000000	240.000000	240.000000	240.000000	240.000000	240.000000
mean	10497.462500	107188.361635	237.157781	4.382396	2.500000	7.250000
std	9552.425037	179432.244940	517.155763	10.532512	1.711394	4.926659
min	1939.000000	0.000080	0.008400	-11.920000	0.000000	0.000000
25%	3344.250000	0.000865	0.102750	-6.232500	1.000000	2.000000
50%	5776.000000	0.070500	0.762500	8.313000	2.500000	10.000000
75%	15055.500000	198050.000000	42.750000	13.697500	4.000000	10.000000
max	40000.000000	849420.000000	1948.500000	20.060000	5.000000	18.000000

Разделим выборку на обучающую и тестовую:

Ввод [14]:

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_staprint('{}, {}'.format(X_train.shape, X_test.shape))
print('{}, {}'.format(Y_train.shape, Y_test.shape))

(180, 6), (60, 6)
(180,), (60,)
```

Обучение моделей

Линейная модель

```
Ввод [15]:
SGD = SGDClassifier(max iter=10000)
SGD.fit(X_train, Y_train)
Out[15]:
SGDClassifier(max iter=10000)
Ввод [16]:
f1_score(Y_test, SGD.predict(X_test), average='micro')
precision score(Y test, SGD.predict(X test), average='micro')
Out[16]:
0.08333333333333333
SVM
Ввод [17]:
SVC = SVC(kernel='rbf')
SVC.fit(X_train, Y_train)
Out[17]:
SVC()
Ввод [19]:
f1 score(Y test, SVC.predict(X test), average='micro')
precision_score(Y_test, SVC.predict(X_test), average='micro')
Out[19]:
0.5166666666666667
Дерево решений
Ввод [20]:
DT = DecisionTreeClassifier(random state=1)
DT.fit(X_train, Y_train)
Out[20]:
DecisionTreeClassifier(random state=1)
Ввод [21]:
f1_score(Y_test, DT.predict(X_test), average='micro')
precision_score(Y_test, DT.predict(X_test), average='micro')
Out[21]:
0.8333333333333334
Можно сделать вывод, что дерево решений дает лучший результат
```

Ввод [22]:

Ввод []: