EE 330 Lecture 12

Back-End Processing
Semiconductor Processes
Devices in Semiconductor Processes

- Resistors
- Diodes
- Capacitors
- MOSFET
- BJT

Exam 1 Friday Sept 27

- Students may bring 1 page of notes
- HW assignment for week of Sept 23 due on Wed Sept 25 at beginning of class
- No 5:00 p.m extension so solutions can be posted
- Scientific calculators will be provided no use of any personal electronic devices of any kind
- Those with special accommodation needs, please send me an email message or contact me so arrangements can be made
- Review session to be determined

Capacitance in Interconnects

Equivalent Circuit

$$C_{12}=CD_{12}A_5$$
 $C_{1S}=CD_{1S}(A_1+A_2+A_5)$
 $C_{2S}=CD_{2S}(A_3+A_4)$

Resistance in Interconnects

H << W and H << L in most processes
Interconnect behaves as a "thin" film
Sheet resistance often used instead of conductivity to characterize film

$$R_{\Box} = \rho/H$$

$$R=R_{\square}[L/W]$$

Review from Last Lecture

SCMOS_SUBM (lambda=0.30) SCMOS (lambda=0.35) 0.10

0.00

FOX TRANSISTORS	GATE	N+ACTIVE	P+ACTIVE	UNITS
Vth	Polv	>15.0	<-15.0	volts

PROCESS PARAMETERS	N+	P+	POLY	PLY2 HR	POLY2	M1	M2	UNITS
Sheet Resistance	83.5	105.3	23.5	999	44.2	0.09	0.10	ohms/sq
Contact Resistance	64.9	149.7	17.3		29.2		0.97	ohms
Gate Oxide Thickness	142							angstrom

 PROCESS PARAMETERS
 M3
 N\PLY
 N_W
 UNITS

 Sheet Resistance
 0.05
 824
 816
 ohms/sq

 Contact Resistance
 0.79
 ohms

COMMENTS: N\POLY is N-well under polysilicon.

CAPACITANCE PARAMETERS	N+	P+	POLY	POLY2	M1	M2	мз	N W	UNITS
Area (substrate)	425	731	84		27	12	7	_37	aF/um^2
Area (N+active)			2434		35	16	11		aF/um^2
Area (P+active)			2335						aF/um^2
Area (poly)				938	56	15	9		aF/um^2
Area (poly2)					49				aF/um^2
Area (metal1)						31	13		aF/um^2
Area (metal2)							35		aF/um^2
Fringe (substrate)	344	238			49	33	23		aF/um
Fringe (poly)					59	38	28		aF/um
Fringe (metal1)						51	34		aF/um
Fringe (metal2)							52		aF/um
Overlap (N+active)			232						aF/um
Overlap (P+active)			312						aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	2.02	volts
Vinv	1.5	2.28	volts
Vol (100 uA)	2.0	0.13	volts

Back End Processing

Front End Process Integration for Fabrication of ICs

Recall:

Front-End Process Flow

- Front-end processing steps analogous to a "recipe" for manufacturing an integrated circuit
- Recipes vary from one process to the next but the same basic steps are used throughout the industry
- Details of the recipe are generally considered proprietary

Back-End Process Flow

Wafer Dicing

www.renishaw.com

Die Attach

- 1. Eutectic
- 2. Pre-form
- 3. Conductive Epoxy

Electrical Connections (Bonding)

- Wire Bonding
- Bump Bonding

Wire – gold or aluminum 25μ in diameter

Excellent Annimation showing process at:

http://www.kns.com/_Flash/CAP_BONDING_CYCLE.swf

Ball Bonding Steps

www.kns.com

Ball Bonding Tip

Ball Bond

Ball Bond Photograph

Termination Bond

Bump Bonding

Packaging

- 1. Many variants in packages now available
- 2. Considerable development ongoing on developing packaging technology
- 3. Cost can vary from few cents to tens of dollars
- 4. Must minimize product loss after packaged
- 5. Choice of package for a product is serious business
- 6. Designer invariably needs to know packaging plans and package models

Packaging

Packaging

Pin Pitch Varies with Package Technology

All measurements are nominal in [mm].

Name	Pin pitch	Size	Height	
DIP or DIL	2.54			
SOIC-16	1.27	3.9 x 10	1.72	
SSOP	0.635			
TSSOP54-II	0.8	12.7 x 22.22	~1	
PLCC44	1.27			
PQ208 ^[1]	0.50	28 x 28	3.4	
TQFP64	0.40	7 x 7	1.0	
TQFP144 ^[2]	0.50	20 x 20	1.0	
128PQFP	0.50	23.23 x 14.0	3.15	

http://www.electroiq.com/index/display/packaging-article-display/234467/articles/advanced-packaging/volume-14/issue-8/features/the-back-end-process/materials-and-methods-for-ic-package-assemblies.htm

From Wikipedia, Sept 20, 2010

Many standard packages available today:

http://www.interfacebus.com/Design_Pack_types.html

BCC: Bump Chip Carrier

BGA: Ball Grid Array; BGA graphic BOFP: Bumpered Quad Flat Pack

CABGA/SSBGA: Chip Array/Small Scale Ball Grid Array

CBGA: Ceramic Ball Grid Array

CFP: Ceramic Flat Pack

CPGA: Ceramic Pin Grid Array, CPGA Graphic CQFP: Ceramic Quad Flat Pack, CQFP Graphic

TBD: Ceramic Lead-Less Chip Carrier

DFN: Dual Flat Pack, No Lead

DLCC: Dual Lead-Less Chip Carrier (Ceramic)

ETQFP: Extra Thin Quad Flat Package FBGA: Fine-pitch Ball Grid Array fpBGA: Fine Pitch Ball Grid Array HSBGA: Heat Slug Ball Grid Array

JLCC: J-Leaded Chip Carrier (Ceramic) J-Lead Picture

LBGA: Low-Profile Ball Grid Array

LCC: Leaded Chip Carrier LCC Graphic

LCC: Leaded Chip Carrier Un-formed LCC Graphic

LCCC: Leaded Ceramic Chip Carrier,

LFBGA: Low-Profile, Fine-Pitch Ball Grid Array

LGA: Land Grid Array, LGA uP [Pins are on the Motherboard, not the socket]

LLCC: Leadless Leaded Chip Carrier LLCC Graphic

LQFP: Low Profile Quad Flat Package

MCMBGA: Multi Chip Module Ball Grid Array

MCMCABGA: Multi Chip Module-Chip Array Ball Grid Array

MLCC: Micro Lead-frame Chip Carrier

PBGA: Plastic Ball Grid Array
PLCC: Plastic Leaded Chip Carrier
PQFD: Plastic Quad Flat Pack

PQFP: Plastic Quad Flat Pack

PSOP: Plastic Small-Outline Package PSOP graphic

QFP: Quad Flatpack QFP Graphics

QSOP: Quarter Size Outline Package [Quarter Pitch Small Outline Package]

SBGA: Super BGA - above 500 Pin count

SOIC: Small Outline IC

SO Flat Pack: Small Outline Flat Pack IC

SOJ: Small-Outline Package [J-Lead]; J-Lead Picture

SOP: Small-Outline Package; SOP IC, Socket

SSOP: Shrink Small-Outline Package

TBGA: Thin Ball Grid Array

TQFP: Thin Quad Flat Pack TQFP Graphic

TSOP: Thin Small-Outline Package

TSSOP: Thin Shrink Small-Outline Package TVSOP: Thin Very Small-Outline Package

VQFB: Very-thin Quad Flat Pack

Considerable activity today and for years to come on improving packaging technology

- Multiple die in a package
- Three-dimensional chip stacking
- Multiple levels of interconnect in stacks
- Through silicon via technology
- Power and heat management
- Cost driven and cost constrained

The following few slides come from a John Lau presentation

(i) www.sematech.org/meetings/archives/symposia/10187/Session2/04_Lau.pdf

TSV Interposer: The Most Cost-Effective Integrator for 3D IC Integration

John H. Lau **Electronics & Optoelectronics Research Laboratories Industrial Technology Research Institute (ITRI)** Chutung, Hsinchu, Taiwan 310, R.O.C. 886-3591-3390, johnlau@itri.org.tw

TSV passive interposer supporting high-power chips (e.g., microprocessor and logic) on its top side and low-power chips (e.g., memory) on its bottom side

Special underfills are needed between the Cu -filled interposer and all the chips. Ordinary underfills are needed between the interposer and the organic substrate.

ASME InterPACK2011-52189 (Lau)

Back-End Process Flow

Testing of Integrated Circuits

Bench testing used to qualify parts for production

Most integrated circuits are tested twice during production

Wafer Probe Testing

- Quick test for functionality
- Usually does not include much parametric testing
- Relatively fast and low cost test
- Package costs often quite large
- Critical to avoid packaging defective parts

Packaged Part Testing

- Testing costs for packaged parts can be high
- Extensive parametric tests done at package level for many parts
- Data sheet parametrics with Max and Min values are usually tested on all Ics
- Data sheet parametrics with Typ values are seldom tested
- Occasionally require testing at two or more temperatures but this is costly
- Critical to avoid packaging defective parts

Bench Test Environment

Bench Test Environment

Probe Test

Probes on section of probe card

Probe Test

Pad showing probe marks

Pad showing bonding wire

Die showing wire bonds to package cavity

Probe Test

Production probe test facility

Goal to Identify defective die on wafer

Final Test

Typical ATE System (less handler)

Work Station

Main Frame

<u>Automated Test Equipment (ATE)</u>

Test Head

Device Interface Board - DIB (Load Board)

Octal Site DIB

Flex Octal (Teradyne)

Top

Final Test

Patent Number: US 6,218,852 B1, Additional Patents Pending Atlas (SSI Robotics)

Basic Semiconductor Processes

MOS (Metal Oxide Semiconductor)

1. NMOS n-ch

2. PMOS p-ch

3. CMOS n-ch & p-ch

Basic Device: MOSFET

Niche Device: MESFET

• Other Devices: Diode

BJT

Resistors

Capacitors

Schottky Diode

Basic Semiconductor Processes

Bipolar

- 1. T^2L
- 2. ECL
- 3. I^2L
- 4. Linear ICs

Basic Device: BJT (Bipolar Junction Transistor)

Niche Devices: HBJT (Heterojunction Bipolar Transistor)

HBT

Other Devices: Diode

Resistor

Capacitor

Schottky Diode

JFET (Junction Field Effect Transistor)

Basic Semiconductor Processes

Other Processes

- Thin and Thick Film Processes
 - Basic Device: Resistor
- BiMOS or BiCMOS
 - Combines both MOS & Bipolar Processes
 - Basic Devices: MOSFET & BJT
- SiGe
 - BJT with HBT implementation
- SiGe / MOS
 - Combines HBT & MOSFET technology
- SOI / SOS (Silicon on Insulator / Silicon on Sapphire)
- Twin-Well & Twin Tub CMOS
 - Very similar to basic CMOS but more optimal transistor char.

Devices in Semiconductor Processes

- Standard CMOS Process
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes
 - BJT (decent in some processes)
 - npn
 - pnp
 - JFET (in some processes)
 - n-channel
 - p-channel
- Standard Bipolar Process
 - BJT
 - npn
 - pnp
 - JFET
 - n-channel
 - p-channel
 - Diodes
 - Resistors
 - Capacitors
- Niche Devices
 - Photodetectors (photodiodes, phototransistors, photoresistors)
 - MESFET
 - HBT
 - Schottky Diode (not Shockley)
 - MEM Devices
 - TRIAC/SCR
 -

Basic Devices

- Standard CMOS Process
 - MOS Transistors
 - n-channel
 - p-channel
 - Capacitors
 - Resistors
 - Diodes
 - BJT (in some processes)
 - npn
 - pnp
 - JFET (in some processes)
 - n-channel
 - p-channel
- Niche Devices
 - Photodetectors
 - MESFET
 - Schottky Diode (not Shockley)
 - MEM Devices
 - Triac/SCR
 - - ...

Primary Consideration in This Course

Some Consideration in This Course

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
- MOSFET
- BJT

Basic Devices and Device Models

- Diode
- Capacitor
- MOSFET
- BJT

Resistors were discussed when considering interconnects so will only be briefly reviewed here

Resistors

- Generally thin-film devices
- Almost any thin-film layer can be used as a resistor
 - Diffused resistors
 - Poly Resistors
 - Metal Resistors
 - "Thin-film" adders (SiCr or NiCr)
- Subject to process variations, gradient effects and local random variations
- Often temperature and voltage dependent
 - Ambient temperature
 - Local Heating
- Nonlinearities often a cause of distortion when used in circuits
- Trimming possible resistors
 - Laser, links, switches

Have already modeled resistance as an interconnect Modeling is the same as for a resistor so will briefly review

Resistor Model

Model:

$$R = \frac{V}{I}$$

Resistivity

 Volumetric measure of conduction capability of a material

$$\rho = \frac{AR}{L}$$

for homogeneous material,

$$\rho \perp A, R, L$$

Sheet Resistance

$$R_{\square} = \frac{RW}{L}$$
 (for d << w, d << L) units : ohms /•

for homogeneous materials, R is independent of W, L, R

Relationship between ρ and $R_{\mathbb{R}}$

$$R_{\square} = \frac{RW}{L}$$

$$\rho = \frac{AR}{L}$$

$$\rho = \frac{A}{W}R_{\square}$$

$$A = W \times d$$

$$\rho = \frac{A}{W}R_{\square} = \frac{W d}{W}R_{\square} = d \times R_{\square}$$

Number of squares, N_s, often used instead of L / W in determining resistance of film resistors

$$R=R_{\square}N_{S}$$

R = ?

$$R = ?$$

$$N_{S} = 8.4$$

$$R = R$$
 (8.4)

Corners in Film Resistors

Rule of Thumb: .55 squares for each corner

Determine R if $R = 100 \Omega / \bullet$

$$N_S$$
=17.1
 $R = (17.1) R$
 $R = 1710 \Omega$

Resistivity of Materials used in Semiconductor Processing

• Cu: $1.7E-6 \Omega cm$

• Al: $2.7E-4 \Omega cm$

• Gold: 2.4E-6 Ω cm

• Platinum: $3.0E-6 \Omega cm$

• Polysilicon: 1E-2 to 1E4 Ω cm*

• n-Si: typically .25 to 5 Ω cm* (but larger range possible)

• intrinsic Si: $2.5E5 \Omega cm$

• SiO₂: $E14 \Omega cm$

^{*} But fixed in a given process

http://www.cleanroom.byu.edu/ResistivityCal.phtml

Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

Dopant:	Arsenic Boron Phosphorus
Impurity Concentration:	1e15 (cm ⁻³)
	Calculate Export to CSV
Mobility:	$1358.6941377290254 \hspace{35pt} [cm^2/V-s]$
Resistivity:	$4.593746148183427 \hspace{35pt} [\Omega\text{-cm}]$

Calculations are for a silicon substrate.

http://www.cleanroom.byu.edu/ResistivityCal.phtml

Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

Dopant:	Arsenic Boron Phosphorus	
Impurity Concentration:	1e15 (cm ⁻³)	
	Calculate Export to CSV	
Mobility:	461.9540345952693	[cm ² /V-s]
Resistivity:	13.511075765839905	[Ω-cm]

Calculations are for a silicon substrate.

http://www.cleanroom.byu.edu/ResistivityCal.phtml

Resistivity & Mobility Calculator/Graph for Various Doping Concentrations in Silicon

Arsenic Boron Phosphorus	
1e15 (cm ⁻³)	
Calculate Export to CSV	
1362.0563795030084 [c	cm ² /V-s
4.582406466925789	Ω-cm]
	● Boron ● Phosphorus 1e15 (cm ⁻³) Calculate Export to CSV 1362.0563795030084 [c

Calculations are for a silicon substrate.

Temperature Coefficients

Used for indicating temperature sensitivity of resistors & capacitors

For a resistor:

$$TCR = \left(\frac{1}{R} \frac{dR}{dT}\right)_{\text{op. temp}} \bullet 10^6 \text{ ppm/}^{\circ}\text{C}$$

This diff eqn can easily be solved if TCR is a constant

$$R(T_2) = R(T_1)e^{\frac{T_2-T_1}{10^6}TCR}$$

$$R(T_2) \approx R(T_1) \left[1 + (T_2 - T_1) \frac{TCR}{10^6} \right]$$

Identical Expressions for Capacitors

End of Lecture 12