#Assignment 4 FIELD EFFECT TRANSISTOR

- 1. Explain the construction and working principle of JFET.
- 2. Explain the construction and working principle of D-MOSFET and E-MOSFET.
- 3. Difference between the JFET and bipolar Transistor (BJT).
- 4. Difference between the JFET and MOSFET.
- 5. Describe in your own words why I_G is effectively 0A for a JFET transistor.
- 6. Sketch the transfer and drain characteristics of an n-channel depletion-type MOSFET with $I_{DSS} = 12$ mA and $V_p = -8$ v for a range of $V_{GS} = -V_P$ to $V_{GS} = 1$ V.
- 7. What is the significant difference between the construction of an enhancement-type MOSFET and a depletion-type MOSFET?
- 8. For the fixed-bias configuration of Fig.1
 - a. Sketch the transfer characteristics of the device.
 - b. Determine the I_D and V_{DS} .

- 9. Determine the V_D and V_{GS} for the fixed bias configuration of Fig.2.
- 10. Given the measurement $V_s = 1.7$ v for the network of Fig.3
 - a. I_D
 - b. V_{GS} and V_{DS} .
 - c. I_{DSS} and V_D

- 11. For the network of Fig.4, determine:
 - a. $I_{\text{D}}\,\text{and}\,\,V_{\text{DS}}$
 - b. V_D and V_S
- 12. Determine the value of R_S for the network of Fig.5 to establish $V_D = 10 \text{ V}$.

- 13. For the network of Fig.6, $V_D = 12 \text{ V}$. Determine:
 - a. I_D , V_S , V_{DS} , V_G , V_{GS} , and V_P .
- 14. For the network of Fig.7, Determine:
 - a. $I_{\text{D}}\,\text{and}\,\,V_{\text{GS}}$
 - b. V_{DS} and Vs.

15. For the voltage-divider configuration of Fig.8, Determine:

- a. $I_{\text{D}}\,\text{and}\,\,V_{\text{GS}}$
- b. V_{DS} and V_{S}
- 16. Determine the Z_i , Z_O , and A_V for the network of Fig.9 if I_{DSS} = 10mA, V_P = -6V, and r_d = 40 K Ω .

- 17. Determine the Z_i , Z_0 , and V_0 for the network of Fig. 10 if $V_i = 20 \text{mV}$.
- 18. Derive the expression of transconductance of the JFET.
- 19. Determine the transconductance g_m for the MOSFET if $V_{GS(Th)}$ =3V and it is biased at V_{GSQ} = 8 V. Assume $k = 0.3x \ 10^{-3}$.
- 20. Determine the value of g_m for JFET ($I_{DSS} = 8mA$, $V_P = -5V$) when biased at $V_{GSQ} = V_p/4$.