

Structural Applications of Finite Elements

2018-09-01

Outline |

- **2D** constant strain triangles
- Axisymmetric solids subjected to axisymmetric loading

Introduction

Displacement vector

$$\mathbf{u} = [u, v]^{\mathrm{T}}$$

Stresses and strain

$$\mathbf{\sigma} = [\sigma_x, \sigma_y, \tau_{xy}]^T$$

$$\boldsymbol{\epsilon} = [\epsilon_x, \epsilon_y, \gamma_{xy}]^T$$

The strain-displacement

Body force, traction vector and element volume

$$\begin{cases} \mathbf{f} = [f_x, f_y]^T \\ \mathbf{T} = [T_x, T_y]^T \\ dV = t dA \end{cases}$$

$$\boldsymbol{\epsilon} = \left[\frac{\partial u}{\partial x}, \frac{\partial v}{\partial y}, \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right]^{\mathsf{T}}$$

Stresses and strains are related

$$\sigma = D\epsilon$$

$$\mathbf{D} = \frac{E}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}$$

FIGURE 5.1 Two-dimensional problem.

Finite element modeling

Global displacement vector

$$\mathbf{Q} = [Q_1, Q_2, \dots, Q_N]^{\mathrm{T}}$$

Element displacement vector

$$\mathbf{q} = [q_1, q_2, \dots, q_6]^{\mathrm{T}}$$

TABLE 5.1 Element Connectivity

Element number e	Three nodes		
	1	2	3
1	1	2	4
2 :	4	2	7
11	6	7	10
20	13	16	15

Constant strain triangle CST

Area coordinates

$$N_1 + N_2 + N_3 = 1$$

Natural coordinates

$$N_1 = \xi$$
 $N_2 = \eta$ $N_3 = 1 - \xi - \eta$

Isoparametric representation

 $N_1 = \xi$ $N_2 = \eta$ $N_3 = 1 - \xi - \eta$

$$u = N_1 q_1 + N_2 q_3 + N_3 q_5$$

$$v = N_1 q_2 + N_2 q_4 + N_3 q_6$$

$$u = (q_1 + q_5)\xi + (q_3 + q_5)\eta + q_5$$

$$v = (q_2 - q_6)\xi + (q_4 - q_6)\eta + q_6$$

$$\mathbf{N} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 \end{bmatrix} \quad \mathbf{u} = \mathbf{N}\mathbf{q}$$

$$x = N_1 x_1 + N_2 x_2 + N_3 x_3$$

$$y = N_1 y_1 + N_2 y_2 + N_3 y_3$$

Using the notation, $x_{ij} = x_i - x_j$ and $y_{ij} = y_i - y_j$,

$$x = x_{13}\xi + x_{23}\eta + x_3$$
$$y = y_{13}\xi + y_{23}\eta + y_3$$

Example

Using the isoparametric representation (Eqs. 5.15), we have Solution

$$3.85 = 1.5N_1 + 7N_2 + 4N_3 = -2.5\xi + 3\eta + 4$$

$$4.8 = 2N_1 + 3.5N_2 + 7N_3 = -5\xi - 3.5\eta + 7$$

These two equations are rearranged in the form

$$2.5\xi - 3\eta = 0.15$$

$$5\xi + 3.5\eta = 2.2$$

Solving the equations, we obtain $\xi = 0.3$ and $\eta = 0.2$, which implies that

$$N_1 = 0.3$$

$$N_2 = 0.2$$

$$N_1 = 0.3$$
 $N_2 = 0.2$ $N_3 = 0.5$

$$x = N_1 x_1 + N_2 x_2 + N_3 x_3$$

$$y = N_1 y_1 + N_2 y_2 + N_3 y_3$$

$$x = x_{13}\xi + x_{23}\eta + x_3$$

$$y = y_{13}\xi + y_{23}\eta + y_3$$

Jacobian matrix

$$u = u(x(\xi, \eta), y(\xi, \eta))$$
$$v = v(x(\xi, \eta), y(\xi, \eta))$$

$$\frac{\partial u}{\partial \xi} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \xi} \qquad \begin{cases} \partial u \\ \partial \xi \\ \frac{\partial u}{\partial \eta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \eta} \end{cases} \qquad \begin{cases} \partial u \\ \partial \xi \\ \frac{\partial u}{\partial \eta} \end{cases} = \begin{bmatrix} \partial x & \partial y \\ \partial \xi & \partial \xi \\ \frac{\partial u}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} \begin{cases} \partial u \\ \partial x \\ \frac{\partial u}{\partial y} \end{cases}$$

$$x = x_{13}\xi + x_{23}\eta + x_3$$
$$y = y_{13}\xi + y_{23}\eta + y_3$$

$$\mathbf{J} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} \qquad \mathbf{J} = \begin{bmatrix} x_{13} & y_{13} \\ x_{23} & y_{23} \end{bmatrix}$$

$$\mathbf{J} = \begin{bmatrix} x_{13} & y_{13} \\ x_{23} & y_{23} \end{bmatrix}$$

$$\left\{ \begin{array}{l}
 \frac{\partial u}{\partial x} \\
 \frac{\partial u}{\partial y}
 \end{array} \right\} = \mathbf{J}^{-1} \left\{ \begin{array}{l}
 \frac{\partial u}{\partial \xi} \\
 \frac{\partial u}{\partial \eta}
 \end{array} \right\} \qquad \mathbf{J}^{-1} = \frac{1}{\det \mathbf{J}} \begin{bmatrix} y_{23} & -y_{13} \\ -x_{23} & x_{13} \end{bmatrix} \\
 \det \mathbf{J} = x_{13}y_{23} - x_{23}y_{13}
 \end{array}$$

$$A = \frac{1}{2} |\det \mathbf{J}|$$

Example

Solution We have

$$\mathbf{J} = \begin{bmatrix} x_{13} & y_{13} \\ x_{23} & y_{23} \end{bmatrix} = \begin{bmatrix} -2.5 & -5.0 \\ 3.0 & -3.5 \end{bmatrix}$$

Thus, det J = 23.75 units. This is twice the area of the triangle. If 1, 2, 3 are in a clockwise order, then det J will be negative.

$$\mathbf{J}^{-1} = \frac{1}{\det \mathbf{J}} \begin{bmatrix} y_{23} & -y_{13} \\ -x_{23} & x_{13} \end{bmatrix} \qquad u = (q_1 + q_5)\xi + (q_3 + q_5)\eta + q_5 \\ v = (q_2 - q_6)\xi + (q_4 - q_6)\eta + q_6$$

$$\epsilon = \begin{cases}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}
\end{cases} = \frac{1}{\det \mathbf{J}} \begin{cases}
y_{23}(q_1 - q_5) - y_{13}(q_3 - q_5) \\
-x_{23}(q_2 - q_6) + x_{13}(q_4 - q_6) \\
-x_{23}(q_1 - q_5) + x_{13}(q_3 - q_5) + y_{23}(q_2 - q_6) - y_{13}(q_4 - q_6)
\end{cases}$$

$$y_{31} = y_{13}$$
 and $y_{12} = y_{13} - y_{23}$

$$\boldsymbol{\epsilon} = \frac{1}{\det \mathbf{J}} \begin{cases} y_{23}q_1 + y_{31}q_3 + y_{12}q_5 \\ x_{32}q_2 + x_{13}q_4 + x_{21}q_6 \\ x_{32}q_1 + y_{23}q_2 + x_{13}q_3 + y_{31}q_4 + x_{21}q_5 + y_{12}q_6 \end{cases}$$

$$\mathbf{B} = \frac{1}{\det \mathbf{J}} \begin{bmatrix} y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\ 0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\ x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12} \end{bmatrix} \quad \mathbf{\epsilon} = \mathbf{B}\mathbf{q}$$

$$\epsilon = Bq$$

Example

Solution We have

$$\mathbf{B}^{1} = \frac{1}{\det \mathbf{J}} \begin{bmatrix} y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\ 0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\ x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12} \end{bmatrix}$$
$$= \frac{1}{6} \begin{bmatrix} 2 & 0 & 0 & 0 & -2 & 0 \\ 0 & -3 & 0 & 3 & 0 & 0 \\ -3 & 2 & 3 & 0 & 0 & -2 \end{bmatrix}$$

where det **J** is obtained from $x_{13}y_{23} - x_{23}y_{13} = (3)(2) - (3)(0) = 6$. Using the local numbers at the corners, **B**² can be written using the relationship as

$$\mathbf{B}^2 = \frac{1}{6} \begin{bmatrix} -2 & 0 & 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & -3 & 0 & 0 \\ 3 & -2 & -3 & 0 & 0 & 2 \end{bmatrix}$$

Potential energy approach

The potential energy of the system, Π , is given by

$$\Pi = \frac{1}{2} \int_{A} \mathbf{e}^{\mathrm{T}} \mathbf{D} \mathbf{e} t \, dA - \int_{A} \mathbf{u}^{\mathrm{T}} \mathbf{f} t \, dA - \int_{L} \mathbf{u}^{\mathrm{T}} t \, d\ell - \sum_{i} \mathbf{u}_{i}^{\mathrm{T}} \mathbf{P}_{i}$$

$$\Pi = \sum_{e} \frac{1}{2} \int_{e} \mathbf{e}^{\mathsf{T}} \mathbf{D} \mathbf{e} t \, dA - \sum_{e} \int_{e} \mathbf{u}^{\mathsf{T}} \mathbf{f} t \, dA - \int_{L} \mathbf{u}^{\mathsf{T}} \mathbf{T} t \, d\ell - \sum_{i} \mathbf{u}_{i}^{\mathsf{T}} \mathbf{P}_{i}$$

$$\Pi = \sum_{e} U_{e} - \sum_{e} \int_{e} \mathbf{u}^{\mathrm{T}} \mathbf{f} t \, dA - \int_{L} \mathbf{u}^{\mathrm{T}} \mathbf{T} t \, d\ell - \sum_{i} \mathbf{u}_{i}^{\mathrm{T}} \mathbf{P}_{i}$$

where $U_{\varepsilon} = \frac{1}{2} \int_{\varepsilon} \mathbf{e}^{T} \mathbf{D} \mathbf{e} t \, dA$ is the element strain energy.

FIGURE 5.2 Finite element discretization.

Element stiffness

$$\epsilon = Bq$$

$$U_{e} = \frac{1}{2} \int_{e} \mathbf{e}^{\mathrm{T}} \mathbf{D} \mathbf{e} t \, dA$$

$$= \frac{1}{2} \int_{e} \mathbf{q}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} \mathbf{q} t \, dA$$

$$U_{e} = \frac{1}{2} \mathbf{q}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} t_{e} \left(\int_{e} dA \right) \mathbf{q}$$

$$\int_{e} dA = A_{e} \qquad U_{e} = \frac{1}{2} \mathbf{q}^{\mathsf{T}} t_{e} A_{e} \mathbf{B}^{\mathsf{T}} \mathbf{D} \mathbf{B} \mathbf{q}$$

$$U_e = \frac{1}{2} \mathbf{q}^{\mathsf{T}} \mathbf{k}^e \mathbf{q} \qquad \mathbf{k}^e = t_e A_e \mathbf{B}^{\mathsf{T}} \mathbf{D} \mathbf{B}$$

$$U = \sum_{e} \frac{1}{2} \mathbf{q}^{\Gamma} \mathbf{k}^{e} \mathbf{q}$$
$$= \frac{1}{2} \mathbf{Q}^{T} \mathbf{K} \mathbf{Q}$$

$$m_e = \max(|i_1 - i_2|, |i_2 - i_3|, |i_3 - i_1|)$$
 $NBW = 2\left(\max_{1 \le e \le NE}(m_e) + 1\right)$

Force terms

$$u = N_1 q_1 + N_2 q_3 + N_3 q_5$$

$$v = N_1 q_2 + N_2 q_4 + N_3 q_6$$

$$\int_{e} \mathbf{u}^{\mathrm{T}} \mathbf{f} t \, dA = t_{e} \int_{e} \left(u f_{x} + v f_{y} \right) dA$$

$$\int_{c} N_{1} dA = \frac{1}{3} \cdot A_{c} h = \frac{1}{3} \cdot A_{c}$$
or
$$\int_{c} N_{1} dA = \int_{0}^{1} \int_{0}^{1-\xi} N_{1} \det J d\eta d\xi = 2A_{c} \int_{0}^{1} \int_{0}^{1-\xi} \xi d\eta d\xi = \frac{1}{3} \cdot A_{c}$$

$$\int_{e} \mathbf{u}^{\mathsf{T}} \mathbf{f} t \, dA = q_{1} \left(t_{e} f_{x} \int_{e} N_{1} dA \right) + q_{2} \left(t_{e} f_{y} \int_{e} N_{1} \, dA \right)$$

$$+ q_{3} \left(t_{e} f_{x} \int_{e} N_{2} \, dA \right) + q_{4} \left(t_{e} f_{y} \int_{e} N_{2} \, dA \right)$$

$$+ q_{5} \left(t_{e} f_{x} \int_{e} N_{3} \, dA \right) + q_{6} \left(t_{e} f_{y} \int_{e} N_{3} \, dA \right)$$

$$\int_{e} N_{i} \, dA = \frac{1}{3} A_{e} \quad \int_{e} N_{2} \, dA = \int_{e} N_{3} \, dA = \frac{1}{3} A_{e}$$

$$\int_{e} \mathbf{u}^{\mathsf{T}} \mathbf{f} t \, dA = \mathbf{q}^{\mathsf{T}} \mathbf{f}^{e}$$

$$\mathbf{f}^{e} = \frac{t_{e} A_{e}}{3} [f_{x}, f_{y}, f_{x}, f_{y}, f_{x}, f_{y}]^{\mathsf{T}}$$

$$\mathbf{F} \longleftarrow \sum \mathbf{f}^{e}$$

$$\int_{L} \mathbf{u}^{\mathsf{T}} \mathbf{T} t d\ell = \int_{\ell_{1-2}} (u T_x + v T_y) t \, d\ell$$

Using the interpolation relations involving the shape functions

$$u = N_1 q_1 + N_2 q_3$$

$$v = N_1 q_2 + N_2 q_4$$

$$T_v = N_1 T_{x1} + N_2 T_{x2}$$

$$T_v = N_1 T_{v1} + N_2 T_{v2}$$

and noting that

$$\int_{\ell_{1-2}} N_1^2 d\ell = \frac{1}{3} \ell_{1-2}, \qquad \int_{\ell_{1-2}} N_2^2 d\ell = \frac{1}{3} \ell_{1-2}, \qquad \int_{\ell_{1-2}} N_1 N_2 d\ell = \frac{1}{6} \ell_{1-2}$$

$$\ell_{1-2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

we get

$$\int_{\ell_1} \mathbf{u}^{\mathrm{T}} \mathbf{T} t \, d\ell = [q_1, q_2, q_3, q_4] \mathbf{T}^e$$

where T^e is given by

$$\mathbf{T}^{e} = \frac{t_{e}\ell_{1-2}}{6} [2T_{x1} + T_{x2}, 2T_{y1} + T_{y2}, T_{x1} + 2T_{x2}, T_{y1} + 2T_{y2}]^{T}$$

$$T_{x1} = -cp_{1}, \qquad T_{x2} = -cp_{2}, \qquad T_{y1} = -sp_{3}, \qquad T_{y2} = -sp_{2}$$

where

$$s = \frac{(x_1 - x_2)}{\ell_{1-2}}$$
 and $c = \frac{(y_2 - y_1)}{\ell_{1+2}}$.

(a) Component distribution

Solution We consider the two edges 7-8 and 8-9 separately and then merge them.

$$p_{1} = 1 \text{ MPa}, \quad p_{2} = 2 \text{ MPa}, \quad x_{1} = 100 \text{ mm}, \quad y_{1} = 20 \text{ mm}, \quad x_{2} = 85 \text{ mm}, \quad y_{2} = 40 \text{ mm},$$

$$\ell_{1-2} = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}} = 25 \text{ mm}$$

$$c = \frac{y_{2} - y_{1}}{\ell_{1-2}} = 0.8, \quad s = \frac{x_{1} - x_{2}}{\ell_{1-2}} = 0.6$$

$$T_{x1} = -p_{1}c = -0.8, \quad T_{y1} = -p_{1}s = -0.6, \quad T_{z2} = -p_{2}c = -1.6,$$

$$T_{y1} = -p_2 s = -1.2$$

$$\mathbf{T}^{1} = \frac{10 \times 25}{6} [2T_{x1} + T_{x2}, 2T_{y1} + T_{y2}, T_{x1} + 2T_{x2}, T_{y1} + 2T_{y2}]$$

$$= [-133.3, -100, -166.7, -125]^{T} N$$

These loads add to F_{13} , F_{14} , F_{15} , and F_{16} , respectively.

$$p_{1} = 2 \text{ MPa}, \quad p_{2} = 3 \text{ MPa}, \quad x_{1} = 85 \text{ mm}, \quad y_{1} = 40 \text{ mm}, \quad x_{2} = 70 \text{ mm}, \quad y_{2} = 60 \text{ mm},$$

$$\ell_{1-2} = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}} = 25 \text{ mm}$$

$$c = \frac{y_{2} - y_{1}}{\ell_{1-2}} = 0.8, \quad s = \frac{x_{1} - x_{2}}{\ell_{1-2}} = 0.6$$

$$T_{x1} = -p_{1}c = -1.6, \quad T_{y1} = -p_{1}s = -1.2, \quad T_{x2} = -p_{2}c = -2.4,$$

$$T_{v2} = -p_{2}s = -1.8$$

$$\mathbf{T}^{2} = \frac{10 \times 25}{6} [2T_{x1} + T_{x2}, 2T_{y1} + T_{y2}, T_{x1} + 2T_{x2}, T_{v1} + 2T_{y2}]^{T}$$

These loads add to F_{15} , F_{16} , F_{17} , and F_{18} , respectively. Thus,

 $= [-233.3, -175, -266.7, -200]^{\mathsf{T}} \mathsf{N}$

$$[F_{13} ext{ } F_{14} ext{ } F_{15} ext{ } F_{16} ext{ } F_{17} ext{ } F_{18}] = [-133.3 ext{ } -100 ext{ } -400 ext{ } -300 ext{ } -266.7 ext{ } -200] ext{ N}$$

$$\mathbf{u}_{i}^{\mathbf{i}} \mathbf{P}_{i} = Q_{2i-1} P_{x} + Q_{2i} P_{y}$$

$$\Pi = \frac{1}{2} \mathbf{Q}^{\mathrm{T}} \mathbf{K} \mathbf{Q} - \mathbf{Q}^{\mathrm{T}} \mathbf{F}$$

$$\mathbf{K} \mathbf{Q} = \mathbf{F}$$

$$\mathbf{D} = \frac{E}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix} = \begin{bmatrix} 3.2 \times 10^7 & 0.8 \times 10^7 & 0 \\ 0.8 \times 10^7 & 3.2 \times 10^7 & 0 \\ 0 & 0 & 1.2 \times 10^7 \end{bmatrix}$$

Using the local numbering pattern used in Fig. E5.3, we establish the connectivity as follows:

	Nodes		
Element No.	1	2	3
1	1	2	4
2	3	4	2

On performing the matrix multiplication **DB**^e, we get

$$\mathbf{DB}^{1} = 10^{7} \begin{bmatrix} 1.067 & -0.4 & 0 & 0.4 & -1.067 & 0 \\ 0.267 & -1.6 & 0 & 1.6 & -0.267 & 0 \\ -0.6 & 0.4 & 0.6 & 0 & 0 & -0.4 \end{bmatrix}$$

and

$$\mathbf{DB}^2 = 10^7 \begin{bmatrix} -1.067 & 0.4 & 0 & -0.4 & 1.067 & 0 \\ -0.267 & 1.6 & 0 & -1.6 & 0.267 & 0 \\ 0.6 & -0.4 & -0.6 & 0 & 0 & 0.4 \end{bmatrix}$$

These two relationships will be used later in calculating stresses using $\sigma^e = \mathbf{D}\mathbf{B}^e\mathbf{q}$. The multiplication $t_e A_e \mathbf{B}^{e^T} \mathbf{D}\mathbf{B}^e$ gives the element stiffness matrices,

$$\mathbf{k}^1 = 10^7 \begin{bmatrix} 1 & 2 & 3 & 4 & 7 & 8 \leftarrow & Global \ 0.983 & -0.5 & -0.45 & 0.2 & -0.533 & 0.3 \ 1.4 & 0.3 & -1.2 & 0.2 & -0.2 \ 0.45 & 0 & 0 & -0.3 \ 1.2 & -0.2 & 0 \ 0.533 & 0 \ 0.2 \end{bmatrix}$$

$$\mathbf{k}^1 = 10^7 \begin{bmatrix} 5 & 6 & 7 & 8 & 3 & 4 \leftarrow & Global \ 0.983 & -0.5 & -0.45 & 0.2 & -0.533 & 0.3 \ 1.4 & 0.3 & -1.2 & 0.2 & -0.2 \ 0.45 & 0 & 0 & -0.3 \ 1.2 & -0.2 & 0 \ Symmetric & 0.533 & 0 \ 0.2 \end{bmatrix}$$
Symmetric Symmetric 0.533 0

In the previous element matrices, the global dof association is shown on top. In the problem under consideration, Q_2 , Q_5 , Q_6 , Q_7 , and Q_8 , are all zero. Using the elimination approach discussed in Chapter 3, it is now sufficient to consider the stiffnesses associated with

the degrees of freedom Q_1 , Q_3 , and Q_4 . Since the body forces are neglected, the first vector has the component $F_4 = -1000$ lb. The set of equations is given by the matrix representation

$$10^{7} \begin{bmatrix} 0.983 & -0.45 & 0.2 \\ -0.45 & 0.983 & 0 \\ 0.2 & 0 & 1.4 \end{bmatrix} \begin{Bmatrix} Q_1 \\ Q_3 \\ Q_4 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \\ -1000 \end{Bmatrix}$$

Solving for Q_1, Q_3 , and Q_4 , we get

$$Q_1 = 1.913 \times 10^{-5} \,\text{in}.$$
 $Q_3 = 0.875 \times 10^{-5} \,\text{in}.$ $Q_4 = -7.436 \times 10^{-5} \,\text{in}.$

For element 1, the element nodal displacement vector is given by

$$\mathbf{q}^1 = 10^{-5}[1.913, 0, 0.875, -7.436, 0, 0]^T$$

The element stresses σ^1 are calculated from DB^1q as

$$\sigma^{\dagger} = [-93.3, -1138.7, -62.3]^{\mathrm{T}} \mathrm{psi}$$

Similarly,

$$\mathbf{q}^2 = 10^{-5}[0, 0, 0, 0, 0.875, -7.436]^T$$

 $\mathbf{\sigma}^2 = [93.4, 23.4, -297.4]^T \text{ psi}$

The computer results may differ slightly since the penalty approach for handling boundary conditions is used in the computer program.

Axisymmetric solids subjected to axisymmetric loading

$$\Pi = \frac{1}{2} \int_0^{2\pi} \int_A \boldsymbol{\sigma}^{\mathrm{T}} \boldsymbol{\epsilon} r \, dA \, d\theta - \int_0^{2\pi} \int_A \mathbf{u}^{\mathrm{T}} \mathbf{f} r \, dA \, d\theta - \int_0^{2\pi} \int_L \mathbf{u}^{\mathrm{T}} \mathbf{T} r \, d\ell \, d\theta - \sum_i \mathbf{u}_i^{\mathrm{T}} \mathbf{P}_i$$

$$\Pi = 2\pi \left(\frac{1}{2} \int_{A} \boldsymbol{\sigma}^{\mathrm{T}} \boldsymbol{\epsilon} r \, dA - \int_{A} \mathbf{u}^{\mathrm{T}} \mathbf{f} r \, dA - \int_{L} \mathbf{u}^{\mathrm{T}} \mathbf{T} r \, d\ell\right) - \sum_{i} \mathbf{u}_{i}^{\mathrm{T}} \mathbf{P}_{i}$$

$$\mathbf{u} = [u, w]^{\mathrm{T}}$$

$$\mathbf{f} = [f_r, f_r]^{\mathrm{T}}$$

$$\mathbf{T} = [T_r, T_r]^{\mathrm{T}}$$

$$\boldsymbol{\sigma} = [\sigma_r, \sigma_z, \tau_{rz}, \sigma_\theta]^{\mathrm{T}}$$

$$\sigma = D\epsilon$$

$$\mathbf{D} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1 & \frac{\nu}{1-\nu} & 0 & \frac{\nu}{1-\nu} \\ \frac{\nu}{1-\nu} & 1 & 0 & \frac{\nu}{1-\nu} \\ 0 & 0 & \frac{1-2\nu}{2(1-\nu)} & 0 \\ \frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{\epsilon} = [\boldsymbol{\epsilon}_r, \boldsymbol{\epsilon}_z, \boldsymbol{\gamma}_{rz}, \boldsymbol{\epsilon}_{\theta}]^{\mathrm{T}}$$

$$= \left[\frac{\partial u}{\partial r}, \frac{\partial w}{\partial z}, \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r}, \frac{u}{r}\right]^{\mathrm{T}}$$

$$\mathbf{\Phi} = [\boldsymbol{\phi}_r, \boldsymbol{\phi}_z]^{\mathsf{T}}$$

$$\boldsymbol{\epsilon}(\mathbf{\Phi}) = \left[\frac{\partial \boldsymbol{\phi}_r}{\partial r}, \frac{\partial \boldsymbol{\phi}_z}{\partial z}, \frac{\partial \boldsymbol{\phi}_r}{\partial z} + \frac{\partial \boldsymbol{\phi}_z}{\partial r}, \frac{\boldsymbol{\phi}_r}{r}\right]^{\mathsf{T}}$$

$$2\pi \int_{A} \boldsymbol{\sigma}^{\mathrm{T}} \boldsymbol{\epsilon}(\boldsymbol{\phi}) r \, dA - \left(2\pi \int_{A} \boldsymbol{\phi}^{\mathrm{T}} \mathbf{f} r \, dA + 2\pi \int_{L} \boldsymbol{\phi}^{\mathrm{T}} \mathbf{T} r \, d\ell + \sum \boldsymbol{\phi}_{i}^{\mathrm{T}} \mathbf{P}_{i}\right) = 0$$

$$u = Nq$$

$$\mathbf{N} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 \end{bmatrix}$$

$$\mathbf{q} = [q_1, q_2, q_3, q_4, q_5, q_6]^T$$
 $z = \xi z_1 + \eta z_2 + (1 - \xi - \eta) z_3$

 $\leftarrow Q_{2j-1}$

$$\mathbf{u} = \mathbf{N}\mathbf{q}$$

$$\mathbf{n} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 \end{bmatrix} \quad \mathbf{u} = \xi q_1 + \eta q_3 + (1 - \xi - \eta)q_5$$

$$\mathbf{n} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 \end{bmatrix} \quad \mathbf{u} = \xi q_2 + \eta q_4 + (1 - \xi - \eta)q_6$$

$$\mathbf{r} = \xi r_1 + \eta r_2 + (1 - \xi - \eta)r_3$$

$$\mathbf{r} = \xi r_1 + \eta r_2 + (1 - \xi - \eta)r_3$$

$$\mathbf{r} = \xi r_1 + \eta r_2 + (1 - \xi - \eta)r_3$$

$$\mathbf{J} = \begin{bmatrix} r_{13} & z_{13} \\ r_{23} & z_{23} \end{bmatrix}$$

$$\left\{ \frac{\partial u}{\partial \xi} \right\} = \mathbf{J} \left\{ \frac{\partial u}{\partial r} \right\} \\
 \left\{ \frac{\partial u}{\partial \eta} \right\} = \mathbf{J} \left\{ \frac{\partial u}{\partial z} \right\}$$

$$\left\{ \begin{array}{l}
 \frac{\partial w}{\partial \xi} \\
 \frac{\partial w}{\partial \eta}
 \end{array} \right\} = \mathbf{J} \left\{ \begin{array}{l}
 \frac{\partial w}{\partial r} \\
 \frac{\partial w}{\partial z}
 \end{array} \right\}$$

$$\det \mathbf{J} = r_{13} z_{23} - r_{23} z_{13}$$

$$\epsilon = \begin{cases}
\frac{z_{23}(q_1 - q_5) - z_{13}(q_3 - q_5)}{\det \mathbf{J}} \\
\frac{-r_{23}(q_2 - q_6) + r_{13}(q_4 - q_6)}{\det \mathbf{J}} \\
\frac{-r_{23}(q_1 - q_5) + r_{13}(q_3 - q_5) + z_{23}(q_2 - q_6) - z_{13}(q_4 - q_6)}{\det \mathbf{J}} \\
\frac{N_1q_1 + N_2q_3 + N_3q_5}{r}
\end{cases}$$

$$\epsilon = Bq$$

$$\mathbf{B} = \begin{bmatrix} \frac{z_{23}}{\det \mathbf{J}} & 0 & \frac{z_{31}}{\det \mathbf{J}} & 0 & \frac{z_{12}}{\det \mathbf{J}} & 0 \\ 0 & \frac{r_{32}}{\det \mathbf{J}} & 0 & \frac{r_{13}}{\det \mathbf{J}} & 0 & \frac{r_{21}}{\det \mathbf{J}} \\ \frac{r_{32}}{\det \mathbf{J}} & \frac{z_{23}}{\det \mathbf{J}} & \frac{r_{13}}{\det \mathbf{J}} & \frac{z_{31}}{\det \mathbf{J}} & \frac{r_{21}}{\det \mathbf{J}} & \frac{z_{12}}{\det \mathbf{J}} \\ \frac{N_1}{r} & 0 & \frac{N_2}{r} & 0 & \frac{N_3}{r} & 0 \end{bmatrix}$$

$$\Pi = \sum_{e} \left[\frac{1}{2} \left(2\pi \int_{e} \mathbf{e}^{T} \mathbf{D} \mathbf{e} r \, dA \right) - 2\pi \int_{e} \mathbf{u}^{T} \mathbf{f} r \, dA - 2\pi \int_{e} \mathbf{u}^{T} \mathbf{T} r \, d\ell \right]$$
$$- \sum_{e} \mathbf{u}_{i}^{T} \mathbf{P}_{i}$$

$$U_e = \frac{1}{2} \mathbf{q}^{\mathrm{T}} \left(2\pi \int_e \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} r \, dA \right) \mathbf{q} \qquad \mathbf{k}^e = 2\pi \int_e \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} r \, dA$$

$$N_1 = N_2 = N_3 = \frac{1}{3}$$
 $\bar{r} = \frac{r_1 + r_2 + r_3}{3}$

$$\mathbf{k}^{e} = 2\pi \bar{r} \, \overline{\mathbf{B}}^{\mathrm{T}} \mathbf{D} \overline{\mathbf{B}} \, \int_{e} dA$$

$$\mathbf{k}^e = 2\pi \bar{r} A_e \mathbf{\bar{B}}^{\mathrm{T}} \mathbf{D} \mathbf{\bar{B}}$$

$$A_e = \frac{1}{2} |\det \mathbf{J}|$$

$$2\pi \int_{e} \mathbf{u}^{\mathrm{T}} \mathbf{f} r \, dA = 2\pi \int_{e} (u f_{r} + w f_{z}) r \, dA$$

$$= 2\pi \int_{e} \left[(N_{1}q_{1} + N_{2}q_{3} + N_{3}q_{5}) f_{r} + (N_{1}q_{2} + N_{2}q_{4} + N_{3}q_{6}) f_{z} \right] r \, dA$$

$$2\pi \int_{e} \mathbf{u}^{\mathrm{T}} \mathbf{f} r \, dA = \mathbf{q}^{\mathrm{T}} \mathbf{f}^{e}$$

 $\mathbf{f}^e = \frac{2\pi \bar{r} A_e}{3} [\bar{f}_r, \bar{f}_z, \bar{f}_r, \bar{f}_z, \bar{f}_r, \bar{f}_z]^{\mathrm{T}}$

Rotating flywheel

$$\mathbf{f} = [f_r, f_z]^{\mathrm{T}} = [\rho r \omega^2, -\rho g]^{\mathrm{T}}$$

$$\bar{f}_r = \rho \bar{r} \omega^2, \bar{f}_z = -\rho g$$

$$r = N_1 r_1 + N_2 r_2 + N_3 r_3$$

$$2\pi \int_{e} \mathbf{u}^{\mathrm{T}} \mathbf{T} r \, d\ell = \mathbf{q}^{\mathrm{T}} \mathbf{T}^{e}$$

$$\mathbf{q} = [q_1, q_2, q_3, q_4]^{\mathsf{T}}$$

$$\mathbf{T}^e = 2\pi \ell_{1-2} [aT_r, aT_\tau, bT_r, bT_z]^{\mathsf{T}}$$

$$a = \frac{2r_1 + r_2}{6} \quad b = \frac{r_1 + 2r_2}{6}$$

$$\ell_{1-2} = \sqrt{(r_2 - r_1)^2 + (z_2 - z_1)^2}$$

For edge 6-4

$$p = 0.35 \,\text{MPa}, \quad r_1 = 60 \,\text{mm}, \quad z_1 = 40 \,\text{mm}, \quad r_2 = 40 \,\text{mm}, \quad z_2 = 55 \,\text{mm}$$

$$\ell_{1-2} = \sqrt{(r_1 - r_2)^2 + (z_1 - z_2)^2} = 25 \,\text{mm}$$

$$c = \frac{z_2 - z_1}{\ell_{1-2}} = 0.6, \qquad s = \frac{r_1 - r_2}{\ell_{1-2}} = 0.8$$

$$T_r = -pc = -0.21, \qquad T_z = -ps = -0.28$$

$$a = \frac{2r_1 + r_2}{6} = 26.67, \qquad b = \frac{r_1 + 2r_2}{6} = 23.33$$

$$\mathbf{T}^1 = 2\pi\ell_{1-2}[aT_r \quad aT_z \quad bT_r \quad bT_z]^T$$

$$= [-879.65 \quad -1172.9 \quad -769.69 \quad -1026.25]^T \,\text{N}$$

These loads add to F_{11} , F_{12} , F_{7} , and F_{8} , respectively.

For edge 4-2

$$p = 0.25 \text{ MPa}, \quad r_1 = 40 \text{ mm}, \quad z_1 = 55 \text{ mm}, \quad r_2 = 20 \text{ mm}, \quad z_2 = 70 \text{ mm}$$

$$\ell_{1/2} = \sqrt{(r_1 - r_2)^2 + (z_1 - z_2)^2} = 25 \text{ mm}$$

$$c = \frac{z_2 - z_1}{\ell_{1-2}} = 0.6, \quad s = \frac{r_1 - r_2}{\ell_{1-2}} = 0.8$$

$$T_r = -pc = -0.15, \quad T_z = -ps = -0.2$$

$$a = \frac{2r_1 + r_2}{6} = 16.67, \quad b = \frac{r_1 + 2r_2}{6} = 13.33$$

$$\mathbf{T}^1 = 2\pi\ell_{1-2}[aT_r \quad aT_z \quad bT_r \quad bT_z]^T$$

$$= [-392.7 \quad -523.6 \quad -314.16 \quad -418.88]^T \quad \mathbf{N}$$

These loads add to F_7 , F_8 , F_3 , and F_4 , respectively. Thus,

$$[F_3 \quad F_4 \quad F_7 \quad F_8 \quad F_{11} \quad F_{12}] = [-314.2 \quad -418.9 \quad -1162.4 \quad -1696.5 \quad -879.7 \quad -1172.9] \quad \mathbf{N}$$

		Connectivity		
Element	1	2	3	
1	1	2	4	
2	2	3	4	

	Coord	Coordinates		
Node	r	z		
1	40	10		
2	40	0		
3	60	0		
4	60	10		

$$\mathbf{D} = \begin{bmatrix} 2.69 \times 10^5 & 1.15 \times 10^5 & 0 & 1.15 \times 10^5 \\ 1.15 \times 10^5 & 2.69 \times 10^5 & 0 & 1.15 \times 10^5 \\ 0 & 0 & 0.77 \times 10^5 & 0 \\ 1.15 \times 10^5 & 1.15 \times 10^5 & 0 & 2.69 \times 10^5 \end{bmatrix}$$

$$F_1 = F_3 = \frac{2\pi r_1 \ell_e p_i}{2} = \frac{2\pi (40)(10)(2)}{2} = 2514 \text{ N}$$

$$\overline{\mathbf{B}}^{1} = \begin{bmatrix} -0.05 & 0 & 0 & 0.05 & 0 \\ 0 & 0.1 & 0 & -0.1 & 0 & 0 \\ 0.1 & -0.05 & -0.1 & 0 & 0 & 0.05 \\ 0.0071 & 0 & 0.0071 & 0 & 0.0071 & 0 \end{bmatrix}$$

$$\overline{\mathbf{B}}^{2} = \begin{bmatrix} -0.05 & 0 & 0.05 & 0 & 0 & 0 \\ 0 & 0 & 0 & -0.1 & 0 & 0.1 \\ 0 & -0.05 & -0.1 & 0.05 & 0.1 & 0 \\ 0.00625 & 0 & 0.00625 & 0 & 0.00625 & 0 \end{bmatrix}$$

$$\mathbf{D}\overline{\mathbf{B}}^{1} = 10^{4} \begin{bmatrix} -1.26 & 1.15 & 0.082 & -1.15 & 1.43 & 0 \\ -0.49 & 2.69 & 0.082 & -2.69 & 0.657 & 0.1 \\ 0.77 & -0.385 & -0.77 & 0 & 0 & 0.385 \\ -0.384 & 1.15 & 0.191 & -1.15 & 0.766 & 0 \end{bmatrix}$$

$$\mathbf{D}\overline{\mathbf{B}}^{2} = 10^{4} \begin{bmatrix} -1.27 & 0 & 1.42 & -1.15 & 0.072 & 1.15 \\ -0.503 & 0 & 0.647 & -2.69 & 0.072 & 2.69 \\ 0 & -0.385 & -0.77 & 0.385 & 0.77 & 0 \\ -0.407 & 0 & 0.743 & -1.15 & 0.168 & 1.15 \end{bmatrix}.$$

Global dof
$$\rightarrow$$
 1 2 3 4 7 8
 $\mathbf{k}^1 = 10^7 \begin{bmatrix} 4.03 & -2.58 & -2.34 & 1.45 & -1.932 & 1.13 \\ 8.45 & 1.37 & -7.89 & 1.93 & -0.565 \\ 2.30 & -0.24 & 0.16 & -1.13 \\ 7.89 & -1.93 & 0 \\ Symmetric & 2.25 & 0 \\ 0.565 \end{bmatrix}$

Using the elimination approach, on assembling the matrices with reference to the degrees of freedom 1 and 3, we get

$$10^7 = \begin{bmatrix} 4.03 & -2.34 \\ -2.34 & 4.35 \end{bmatrix} \begin{Bmatrix} Q_1 \\ Q_3 \end{Bmatrix} = \begin{Bmatrix} 2514 \\ 2514 \end{Bmatrix}$$

so that

$$Q_1 = 0.014 \times 10^{-2} \,\mathrm{mm}$$

 $Q_3 = 0.0133 \times 10^{-2} \,\mathrm{mm}$

 $r_i + \delta$

Ring of length L

Rigid shaft

Boundaries of shaft and sleeve are shown separated for clarity

$$Q_j - Q_t = \delta$$

Isoparametric elements

$$N_1 = 1$$
 at node 1
= 0 at nodes 2, 3, and 4

$$N_1 = c(1-\xi)(1-\eta)$$
 $1 = c(2)(2)$ $N_1 = \frac{1}{4}(1-\xi)(1-\eta)$

$$N_{1} = \frac{1}{4}(1 - \xi)(1 - \eta)$$

$$N_{2} = \frac{1}{4}(1 + \xi)(1 - \eta)$$

$$N_{3} = \frac{1}{4}(1 + \xi)(1 + \eta)$$

$$N_{4} = \frac{1}{4}(1 - \xi)(1 + \eta)$$

$$N_{4} = \frac{1}{4}(1 - \xi)(1 + \eta)$$

$$u = N_1 q_1 + N_2 q_3 + N_3 q_5 + N_4 q_7$$

$$v = N_1 q_2 + N_2 q_4 + N_3 q_6 + N_4 q_8$$

$$x = N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4$$

$$y = N_1 y_1 + N_2 y_2 + N_3 y_3 + N_4 y_4$$

$$f = f[x(\xi, \eta), y(\xi, \eta)].$$

$$\frac{\partial f}{\partial \xi} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \xi}$$

$$\frac{\partial f}{\partial \eta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \eta}$$

$$\begin{cases} \frac{\partial f}{\partial \xi} \\ \frac{\partial f}{\partial \eta} \end{cases} = \mathbf{J} \begin{cases} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{cases}$$

$$\mathbf{J} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix}$$

$$\begin{cases} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{cases} = \mathbf{J}^{-1} \begin{cases} \frac{\partial f}{\partial \xi} \\ \frac{\partial f}{\partial \eta} \end{cases}$$

$$\left\{ \begin{array}{l}
 \frac{\partial f}{\partial \xi} \\
 \frac{\partial f}{\partial \eta}
 \end{array} \right\} = \mathbf{J} \begin{cases}
 \frac{\partial f}{\partial x} \\
 \frac{\partial f}{\partial y}
 \end{cases}$$

$$u = Nq$$

$$\mathbf{N} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 \end{bmatrix}$$

$$\mathbf{J} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix}$$

$$\mathbf{J} = \frac{1}{4} \begin{bmatrix} -(1-\eta)x_1 + (1-\eta)x_2 + (1+\eta)x_3 - (1+\eta)x_4 \\ -(1-\xi)x_1 - (1+\xi)x_2 + (1+\xi)x_3 + (1-\xi)x_4 \end{bmatrix} - (1-\eta)y_1 + (1-\eta)y_2 + (1+\eta)y_3 - (1+\eta)y_4 \\ -(1-\xi)y_1 - (1+\xi)y_2 + (1+\xi)y_3 + (1-\xi)y_4 \end{bmatrix}$$

🧱 dx dy = det J dξ dη 🚪

$$\mathbf{T}_{1} = \frac{\partial x}{\partial u_{1}} \mathbf{i} + \frac{\partial y}{\partial u_{1}} \mathbf{j} \qquad \mathbf{T}_{2} = \frac{\partial x}{\partial u_{2}} \mathbf{i} + \frac{\partial y}{\partial u_{2}} \mathbf{j} \qquad \mathbf{T}_{1} = \frac{\partial \mathbf{r}}{\partial u_{1}} \qquad \mathbf{T}_{2} = \frac{\partial \mathbf{r}}{\partial u_{2}} \qquad \mathbf{J}_{2} =$$

 $= \left(\frac{\partial x}{\partial u_1}\frac{\partial y}{\partial u_2} - \frac{\partial x}{\partial u_2}\frac{\partial y}{\partial u_1}\right)du_1du_2\mathbf{k}$

 $dA = \det \mathbf{J} du_1 du_2$

44

 $dV = \det \mathbf{J} d\xi d\eta d\zeta$

$$U = \int_{V} \frac{1}{2} \boldsymbol{\sigma}^{\mathrm{T}} \boldsymbol{\epsilon} \, dV \qquad U = \sum_{e} t_{e} \int_{\varepsilon} \frac{1}{2} \boldsymbol{\sigma}^{\mathrm{T}} \boldsymbol{\epsilon} \, dA$$

$$\boldsymbol{\epsilon} = \left\{ \begin{array}{l} \boldsymbol{\epsilon}_{x} \\ \boldsymbol{\epsilon}_{v} \\ \boldsymbol{\gamma}_{xy} \end{array} \right\} = \left\{ \begin{array}{l} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{array} \right\} = \frac{1}{\det \mathbf{J}} \begin{bmatrix} J_{22} & -J_{12} \\ -J_{21} & J_{11} \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial \xi} \\ \frac{\partial u}{\partial \eta} \\ \frac{\partial v}{\partial \xi} \\ \frac{\partial v}{\partial y} \end{bmatrix} = \frac{1}{\det \mathbf{J}} \begin{bmatrix} J_{22} & -J_{12} \\ -J_{21} & J_{11} \end{bmatrix} \begin{bmatrix} \frac{\partial v}{\partial \xi} \\ \frac{\partial v}{\partial \xi} \\ \frac{\partial v}{\partial \eta} \end{bmatrix}$$

$$\frac{\frac{\partial v}{\partial x}}{\frac{\partial v}{\partial y}} \right\} = \frac{1}{\det \mathbf{J}} \begin{bmatrix} J_{22} & -J_{12} \\ -J_{21} & J_{11} \end{bmatrix} \begin{cases} \frac{\partial v}{\partial \xi} \\ \frac{\partial v}{\partial \eta} \end{cases}$$

$$\boldsymbol{\epsilon} = \mathbf{A} \begin{cases} \frac{\partial u}{\partial \eta} \\ \frac{\partial v}{\partial \xi} \\ \frac{\partial v}{\partial \eta} \end{cases}$$

$$\left| \begin{array}{c} \frac{\partial u}{\partial \eta} \\ \frac{\partial v}{\partial v} \end{array} \right| = 0$$

$$\begin{cases}
\frac{\partial u}{\partial \xi} \\
\frac{\partial u}{\partial \eta} \\
\frac{\partial v}{\partial \xi} \\
\frac{\partial v}{\partial \eta}
\end{cases} = \mathbf{G}\mathbf{q}$$

$$\mathbf{G} = \frac{1}{4} \begin{bmatrix}
-(1-\eta) & 0 & (1-\eta) & 0 & (1+\eta) & 0 & -(1+\eta) & 0 \\
0 & -(1-\xi) & 0 & -(1+\xi) & 0 & (1+\eta) & 0 & -(1+\eta) & 0 \\
0 & -(1-\xi) & 0 & -(1+\xi) & 0 & (1+\eta) & 0 & -(1+\eta) & 0 \\
0 & -(1-\xi) & 0 & -(1+\xi) & 0 & (1+\eta) & 0 & -(1+\eta) & 0
\end{bmatrix}$$

$$\mathbf{5}$$

$$\boldsymbol{\epsilon} = \mathbf{A} \begin{cases} \frac{\partial u}{\partial \xi} \\ \frac{\partial u}{\partial \eta} \\ \frac{\partial v}{\partial \xi} \\ \frac{\partial v}{\partial \eta} \end{cases}$$

$$\epsilon = \mathbf{A} \begin{cases} \frac{\partial u}{\partial \xi} \\ \frac{\partial u}{\partial \eta} \\ \frac{\partial v}{\partial \xi} \\ \frac{\partial v}{\partial \eta} \end{cases} = \mathbf{G} \mathbf{q} \qquad \epsilon = \mathbf{B} \mathbf{q} \qquad \mathbf{B} = \mathbf{A} \mathbf{G}$$

$$\sigma = \mathbf{D} \mathbf{B} \mathbf{q}$$

$$U = \sum_{e} t_{e} \int_{e} \frac{1}{2} \boldsymbol{\sigma}^{\mathrm{T}} \boldsymbol{\epsilon} \, dA$$

$$U = \sum_{e} \frac{1}{2} \mathbf{q}^{T} \left[t_{e} \int_{-1}^{1} \int_{-1}^{1} \mathbf{B}^{T} \mathbf{D} \mathbf{B} \det \mathbf{J} \, d\xi \, d\eta \right] \mathbf{q}$$

$$= \sum_{e} \frac{1}{2} \mathbf{q}^{1} \mathbf{k}^{e} \mathbf{q}$$

$$\mathbf{k}^{e} = t_{e} \int_{-1}^{1} \int_{-1}^{1} \mathbf{B}^{T} \mathbf{D} \mathbf{B} \det \mathbf{J} \, d\xi \, d\eta$$

$$\int_{V} \mathbf{u}^{\mathsf{T}} \mathbf{f} \, dV \qquad \int_{V} \mathbf{u}^{\mathsf{T}} \mathbf{f} \, dV = \sum_{e} \mathbf{q}^{\mathsf{T}} \mathbf{f}^{e}$$

$$\mathbf{f}^e = t_e \left[\int_{-1}^{1} \int_{-1}^{1} \mathbf{N}^{\mathrm{T}} \det \mathbf{J} \, d\xi \, d\eta \right] \begin{Bmatrix} f_{\mathrm{x}} \\ f_{\mathrm{y}} \end{Bmatrix}$$

$$\mathbf{T}^{e} = \frac{t_{e}\ell_{2-3}}{2}[0 \quad 0 \quad T_{x} \quad T_{y} \quad T_{x} \quad T_{v} \quad 0 \quad 0]^{T}$$

$$\mathbf{k}^e = t_e \int_{-1}^1 \int_{-1}^1 \mathbf{B}^T \mathbf{D} \mathbf{B} \det \mathbf{J} \, d\xi \, d\eta$$

$$\mathbf{f}^e = t_e \left[\int_{-1}^{1} \int_{-1}^{1} \mathbf{N}^{\mathrm{T}} \det \mathbf{J} \, d\xi \, d\eta \right] \begin{Bmatrix} f_{\mathrm{x}} \\ f_{\mathrm{y}} \end{Bmatrix}$$

$$I = \int_{-1}^{1} f(\xi) d\xi$$

$$I = \int_{-1}^{1} f(\xi) d\xi \approx w_{1} f(\xi_{1}) + w_{2} f(\xi_{2}) + \dots + w_{n} f(\xi_{n})$$

$$J = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix}$$

$$\int_{-1}^{1} f(\xi) d\xi \approx w_1 f(\xi_1) \qquad f(\xi) = a_0 + a_1 \xi,$$

Error =
$$\int_{-1}^{1} (a_0 + a_1 \xi) d\xi - w_1 f(\xi_1) = 0$$

Error =
$$2a_0 - w_1(a_0 + a_1\xi_1) = 0$$

Error =
$$a_0(2 - w_1) - w_1a_1\xi_1 =$$

$$w_1=2 \qquad \xi_1=0$$

$$I = \int_{-1}^{1} f(\xi) d\xi \approx 2f(0)$$

Two-Point Formula. Consider the formula with n = 2 as

 $w_1 \xi_1^3 + w_2 \xi_2^3 = 0$

$$\int_{-1}^{1} f(\xi) d\xi \approx w_1 f(\xi_1) + w_2 f(\xi_2) \qquad f(\xi) = a_0 + a_1 \xi + a_2 \xi^2 + a_3 \xi^3$$

$$\text{Error} = \left[\int_{-1}^{1} (a_0 + a_1 \xi + a_2 \xi^2 + a_3 \xi^3) d\xi \right] - \left[w_1 f(\xi_1) + w_2 f(\xi_2) \right]$$

$$w_{1} + w_{2} = 2$$

$$w_{1} = w_{2} = 1$$

$$w_{1} = w_{2} = 1$$

$$w_{1} = w_{2} = 1$$

$$-\xi_{1} = \xi_{2} = 1/\sqrt{3} = 0.5773502691...$$

$$w_{1} = w_{2} = 1$$

$$\int_{-1}^{1} f(\xi) d\xi \approx \sum_{i=1}^{n} w_{i} f(\xi_{i})$$

Number of points, n	Location, ξ_r	Weights, w_i	
1	0.0	2.0	
2	$\pm 1/\sqrt{3} = \pm 0.5773502692$	1.0	
3	±0.7745966692	0.555555555	
	0.0	0.888888889	
4	±0.8611363116	0.3478548451	
	±0.3399810436	0.6521451549	
5	±0.9061798459	0.2369268851	
	±0.5384693101	0.4786286705	
	0.0	0.5688888888	
6	±0.9324695142	0.1713244924	
	±0.6612093865	0.3607615730	
	±0.2386191861	0.4679139346	

Evaluate

$$I = \int_{-1}^{1} \left[3e^{x} + x^{2} + \frac{1}{(x+2)} \right] dx$$

using one-point and two-point Gauss quadrature.

Solution For n = 1, we have $w_1 = 2$, $x_1 = 0$, and

$$I \approx 2f(0)$$
$$= 7.0$$

For n=2, we find $w_1=w_2=1$, $x_1=-0.57735\ldots$, $x_2=+0.57735\ldots$, and $I\approx 8.7857$. This may be compared with the exact solution

$$I_{\rm exact} = 8.8165$$

$$I = \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta) d\xi d\eta$$

$$I \approx \int_{-1}^{1} \left[\sum_{i=1}^{n} w_{i} f(\xi_{i}, \eta) \right] d\eta$$
$$\approx \sum_{j=1}^{n} w_{j} \left[\sum_{i=1}^{n} w_{i} f(\xi_{i}, \eta_{j}) \right]$$

$$I \approx \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j f(\xi_i, \eta_j)$$

$$m_{2} = \frac{1}{\sqrt{3}}$$

$$= -\frac{1}{\sqrt{3}}$$

$$\xi_{1} = -\frac{1}{\sqrt{3}}$$

$$\xi_{2} = \frac{1}{\sqrt{3}}$$

 $\int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta) \, d\xi d\eta \approx w_1^2 f(\xi_1, \eta_1) + w_2 w_1 f(\xi_2, \eta_1) + w_2^2 f(\xi_2, \eta_2) + w_1 w_2 f(\xi_1, \eta_2)$

$$\mathbf{k}^e = t_e \int_{-1}^1 \int_{-1}^1 \mathbf{B}^T \mathbf{D} \mathbf{B} \det \mathbf{J} \, d\xi \, d\eta$$

$$\phi(\xi,\eta) = t_e(\mathbf{B}^\mathsf{T}\mathbf{D}\mathbf{B}\det\mathbf{J})_{ij}$$

$$k_{ij} \approx w_1^2 \phi(\xi_1, \eta_1) + w_1 w_2 \phi(\xi_1, \eta_2) + w_2 w_1 \phi(\xi_2, \eta_1) + w_2^2 \phi(\eta_2, \eta_2)$$

Consider a rectangular element as shown in Fig. E7.1. Assume plane stress condition, $E = 30 \times 10^6 \,\mathrm{psi}$, $\nu = 0.3$, and $\mathbf{q} = [0, 0, 0.002, 0.003, 0.006, 0.0032, 0, 0]^T$ in. Evaluate **J. B.** and $\boldsymbol{\sigma}$ at $\boldsymbol{\xi} = 0$ and $\boldsymbol{\eta} = 0$.

Solution Referring to Eq. 7.13a, we have

$$\mathbf{J} = \frac{1}{4} \begin{bmatrix} 2(1-\eta) + 2(1+\eta) | (1+\eta) - (1+\eta) \\ -2(1+\xi) + 2(1+\xi) | (1+\xi) + (1-\xi) \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$

For this rectangular element, we find that J is a constant matrix. Now, from Eqs. 7.21,

$$\mathbf{A} = \frac{1}{1/2} \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & \frac{1}{2} & 0 \end{bmatrix}$$

Evaluating G in Eq. 7.23 at $\xi = \eta = 0$ and using $\mathbf{B} = \mathbf{QG}$, we get

$$\mathbf{B}^{0} = \begin{bmatrix} -\frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & -\frac{1}{4} & 0 \\ 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{4} & -\frac{1}{2} & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \end{bmatrix}$$

The stresses at $\xi = \eta = 0$ are now given by the product

$$\sigma^0 = \mathbf{D}\mathbf{B}^0\mathbf{q}$$

For the given data, we have

$$\mathbf{D} = \frac{30 \times 10^6}{(1 - 0.09)} \begin{bmatrix} 1 & 0.3 & 0 \\ 0.03 & 1 & 0 \\ 0 & 0 & 0.35 \end{bmatrix}$$

Thus,

$$\sigma^0 = [66920, 23080, 40960]^T \text{ psi}$$

Stress Calculations

Unlike the constant-strain triangular element (Chapters 5 and 6), the stresses $\sigma = \mathbf{DBq}$ in the quadrilateral element are not constant within the element; they are functions of ξ and η , and consequently vary within the element. In practice, the stresses are evaluated at the Gauss points, which are also the points used for numerical evaluation of \mathbf{k}^{ℓ} , where they are found to be accurate. For a quadrilateral with 2×2 integration, this gives four sets of stress values. For generating less data, one may evaluate stresses at one point per element, say, at $\xi = 0$ and $\eta = 0$. The latter approach is used in the program QUAD.

(-1,-1) (1,-1)

 $L_2(\xi)$

$$\mathbf{u} = \mathbf{N}\mathbf{q}$$

$$\epsilon = Bq$$

$$\mathbf{k}^e = t_e \int_{-1}^1 \int_{-1}^1 \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} \det \mathbf{J} \, d\xi \, d\eta$$

$$L_i(\xi) = 1$$
 at node i
= 0 at other two nodes

$$L_1(\xi) = -\frac{\xi(1-\xi)}{2}$$

$$L_2(\xi) = (1 + \xi)(1 - \xi)$$

$$L_3(\xi) = \frac{\xi(1+\xi)}{2}$$

$$L_1(\eta) = -\frac{\eta(1-\eta)}{2}$$

$$L_2(\eta) = (1+\eta)(1-\eta)$$

$$L_3(\eta) = \frac{\eta(1+\eta)}{2}$$

$$\xi = -1$$

 $L_1(\xi)$

$$N_1 = L_1(\xi)L_1(\eta)$$

$$N_8 = L_1(\xi)L_2(\eta)$$

$$N_9 = L_2(\xi)L_2(\eta)$$

$$N_1 = L_1(\xi)L_1(\eta) \qquad N_5 = L_2(\xi)L_1(\eta) \qquad N_2 = L_3(\xi)L_1(\eta)$$

$$N_8 = L_1(\xi)L_2(\eta) \qquad N_9 = L_2(\xi)L_2(\eta) \qquad N_6 = L_3(\xi)L_2(\eta)$$

 $L_3(\xi)$

$$N_4 = L_1(\xi)L_3(\eta)$$

$$N_4 = L_1(\xi)L_3(\eta)$$
 $N_7 = L_2(\xi)L_3(\eta)$ $N_3 = L_3(\xi)L_3(\eta)$

$$N_3 = L_3(\xi)L_3(\eta)$$

$$N_1 = c(1 - \xi)(1 - \eta)(1 + \xi + \eta)$$

$$N_1 = -\frac{(1-\xi)(1-\eta)(1+\xi+\eta)}{4}$$

$$N_2 = -\frac{(1+\xi)(1-\eta)(1-\xi+\eta)}{4}$$

$$N_3 = -\frac{(1+\xi)(1+\eta)(1-\xi-\eta)}{4}$$

$$N_4 = -\frac{(1-\xi)(1+\eta)(1+\xi-\eta)}{4}$$

$$N_5 = c(1 - \xi)(1 - \eta)(1 + \xi)$$

= $c(1 - \xi^2)(1 - \eta)$

$$N_5 = \frac{(1 - \xi^2)(1 - \eta)}{2}$$

$$N_6 = \frac{(1 + \xi)(1 - \eta^2)}{2}$$

$$N_7 = \frac{(1 - \xi^2)(1 + \eta)}{2}$$

 $N_8 = \frac{(1-\xi)(1-\eta^2)}{2}$

$$N_1 = \xi(2\xi - 1)$$
 $N_4 = 4\xi\eta$

$$N_2 = \eta(2\eta - 1) \qquad N_5 = 4\zeta\eta$$

$$N_3 = \zeta(2\zeta - 1) \qquad N_6 = 4\xi\zeta$$

$$u = Nq$$

$$x = \sum N_i x_i \qquad y = \sum N_i y_i$$

$$\mathbf{k}^e = t_e \int_A \int \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} \det \mathbf{J} \, d\xi \, d\eta$$

$\mathbf{k}^e \approx \frac{1}{2} t_e \overline{\mathbf{B}}^{\mathrm{T}} \overline{\mathbf{D}} \mathbf{B} \det \overline{\mathbf{J}}$

$$\int_0^1 \int_0^{1-\ell} f(\xi,\eta) \, d\eta \, d\xi \approx \sum_{i=1}^n w_i f(\xi_i,\eta_i)$$

No. of points,	Weight, w,	Multiplicity	€,	η,	ζ,
One	1 2	1	Į Š	<u>1</u>	1 1
Three	16	3	2	<u>l</u>	<u>1</u> 6
Three	$\frac{1}{6}$	3	1/2	1 2	0
Four $-\frac{9}{\sqrt{2}}$ $\frac{25}{96}$	1	l Š	1/3	1	
	3	3 <	l s	<u>1</u> 5	
Six	<u>1</u>	6	0.6590276223	0.2319333685	0.1090390090

