MOJ Round 1

MLEAutoMaton & ztlztl

跑得快三部曲

一. 题目概况

题目名称	跑得快	得快跑	快跑得
英文名称	runfast	fastrunning	fastfastrun
输入文件名	rf.in	fr.in	ffr.in
输出文件名	rf.out	fr.out	ffr.out
单点时限	1s	1s	1s
测试点数目	20	10	10
附加样例文件	有	有	有
题目类型	交互	提交答案	通信
运行内存上限	512M	512M	512M

二. 提交源程序名

对于 C++ 语言 rf.cpp fr.cpp ff	r.cpp
----------------------------	-------

三. 编译命令(不包含任何优化开关)

对于 C++ 语言	-o -lm -O2	-o -lm -O2	-o -lm -O2

四. 注意事项

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. 开启 Subtask, 不要想怎么骗分, 题目简单, 多想正解.
- 3. 娱乐时间为一天,请合理分配时间。
- 4. 做过原题的同学请不要大声告诉周围的同学,请默默 AC; 已经 AK 的同学可以去做自己的事,请 不要打扰到别人。
- 5. 请注意常数因子对程序运行效率的影响, 合理优化时间空间。
- 6. 如果觉得题目过水, 请不要 D 可怜的出题人 MLEAutoMaton 与 ztlztl

1 跑得快 2

1 跑得快

1.1 题目背景

九条可怜是一个喜欢打跑得快的... 对不起, 走错片场了.

当然没有这么毒瘤啊

_zzy 带着他的小女友来到了 UW 的世界, 他希望在这里打出一片天地! 成为下一个 Krito.

可惜事与愿违,zzy 并没有开挂, 所以他只能够安分地在主城里面呆着不能成为下一个桐姥爷, 带妹上分.

1.2 问题描述

 $_zzy$ 接了一个主线任务,那就是为整合骑士从 $_s$ 城运输物资到 $_t$ 城.

地图可以抽象化为 n 个点 m 条边的连通图,每一条边上都有关口,关口有一个上下值,表示通过关口的最小货物量与最大货物量 p,q.

在运输货物的同时, $_zzy$ 可以获得金币收益, 形象的说, 如果在某一个关口 i 运输了 x 的货物, 那么将获得 a_i*x^2 的收益.

 $_{zzy}$ 为了让自己不累, 决定尽量少的运输货物, 但是整合骑士要在每个关口查看记录, 用来监视 $_{zzy}$, 所以 $_{zzy}$ 必须经过所有的关口.

Alice 觉得 _zzy 太累了, 所以 _zzy 现在有了分身的能力!

现在 _*zzy* 想知道满足条件的最大的收益是多少, 但是他太累了, 还要准备明天的运输, 所以他把这个问题交给了你!

答案对 998244853 取模.

1.3 输入格式

第一行 n, m, s, t, 表示 n 个点 m 条边, zzy 在城市 s, 他要将货物送往城市 t. 第 2 m+1 行, 每行五个整数 u, v, p, q, a, 意义参见问题描述.

1.4 输出格式

一行一个整数,表示最大的收益.

1.5 样例

1.5.1 输入样例

1.5.2 输出样例

1 跑得快 3

1.6 数据范围与约定

对于全部的测试数据, $n \leq 500, m \leq 1000, 1 \leq u, v \leq n, 1 \leq p \leq q \leq 100000, q-p \leq 20, 1 \leq a \leq 100000$.

- 对于 5% 的分数, $n \le 10, m \le 10$ 。
- 对于另外 20% 的分数, m = n 1。
- 对于剩余 75% 的分数, 无特殊限制。

1.7 提示

请注意数据范围, 合理优化时间空间。