Web**Assign**CH 4.4 (Homework)

Yinglai Wang

MA 265 Spring 2013, section 132, Spring 2013

Instructor: Alexandre Eremenko

Current Score : 18.57 / 20 **Due :** Thursday, February 28 2013 11:40 PM EST

1. 1.42/2.85 points | Previous Answers

KolmanLinAlg9 4.4.004.

In each part, determine whether the given vector A in M_{22} belongs to span $\{A_1, A_2, A_3\}$, where

$$A_1 = \begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, and $A_3 = \begin{bmatrix} 5 & 5 \\ -1 & 1 \end{bmatrix}$.

(a)
$$A = \begin{bmatrix} 8 & 4 \\ -1 & 9 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} -13 & -15 \\ 3 & 2 \end{bmatrix}$$

- Yes
- No

(c)
$$A = \begin{bmatrix} -14 & -14 \\ 3 & 2 \end{bmatrix}$$

- Yes
- O No

(d)
$$A = \begin{bmatrix} -9 & -9 \\ 2 & 1 \end{bmatrix}$$

- Yes
- No

CH 4.4 2/24/13 3:11 PM

2. 2.85/2.85 points | Previous Answers

KolmanLinAlg9 4.4.005.

Which of the following sets of vectors span R_2 ?

- \odot spans R_2
- \bigcirc does not span R_2

(b)
$$[0 \ 0], [1 \ 1], [-4 \ -4]$$
spans R_2

 \odot does not span R_2

- \odot spans R_2
- \bigcirc does not span R_2

(d)
$$[6 \ 12], [-3 \ 6]$$

- spans R₂
- \bigcirc does not span R_2

3. 2.85/2.85 points | Previous Answers

KolmanLinAlg9 4.4.006.

Which of the following sets of vectors span R^4 ?

(a)
$$\left\{ \begin{bmatrix} 1\\-1\\5\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} \right\}$$

- o spans R⁴
- o does not span R4

(b)
$$\left\{ \begin{bmatrix} 3\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

- o spans R⁴
- does not span R⁴

(c) $\left\{ \begin{bmatrix} 3 \\ 2 \\ -1 \\ 6 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 0 \\ 6 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ -1 \\ 6 \end{bmatrix}, \begin{bmatrix} 5 \\ 6 \\ -3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \\ -2 \\ -3 \end{bmatrix} \right\}$

- o spans R⁴
- \bullet does not span R^4

- spans R^4
- odoes not span R⁴

4. 2.85/2.85 points | Previous Answers

KolmanLinAlg9 4.4.007.

Which of the following sets of vectors span R_4 ?

- (a) [1 0 0 1], [0 1 0 0], [1 1 1 1], [1 1 1 0]
- \odot spans R_4
- \bigcirc does not span R_4
- (b) [2 4 2 0], [1 1 -1 0], [0 0 0 1]
- spans R₄
- does not span R₄
- (c) [3 2 -1 2], [2 0 0 1], [3 2 -1 2], [5 6 -3 2], [0 4 -2 -1]
- \bigcirc spans R_4
- \odot does not span R_4
- (d) [3 3 0 0], [1 2 -1 1], [0 0 3 3], [2 1 2 1]
- \odot spans R_4
- \bigcirc does not span R_4

5. 2.85/2.85 points | Previous Answers

KolmanLinAlg9 4.4.010.

Does the set

$$S = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\}$$

span M_{22} ?

- Yes
- No

Find a set of vectors spanning the null space of

$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 6 & -2 \\ -2 & 1 & 2 & 2 \\ 0 & -2 & -4 & 0 \end{bmatrix}.$$

7. 2.9/2.9 points | Previous Answers

KolmanLinAlg9 4.4.003.

In each part, determine whether the given vector p(t) in P_2 belongs to span $\{p_1(t), p_2(t), p_3(t)\}$, where

$$p_1(t) = t^2 + 2t + 1$$
, $p_2(t) = t^2 + 3$, and $p_3(t) = t - 1$.

- (a) $p(t) = t^2 + t + 2$
- Yes
- O No
- ✓
- (b) $p(t) = 2t^2 + 2t + 18$
- Yes
- No
- **V**
- (c) $p(t) = -t^2 + t 8$
- Yes
- No
- 4
- (d) $p(t) = -2t^2 + 3t + 2$
 - Yes
- No