Cheat Sheet Adicional

Por Marcelo Moreno - Universidad Rev Juan Carlos Como parte del Econometrics Cheat Sheet Project

Notación matricial MCO

El modelo econométrico general:

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + u_i$$

Puede ser escrito en notación matricial como:

$$y = X\beta + u$$

Llamemos \hat{u} al vector de residuos estimados ($\hat{u} \neq u$):

$$\hat{u} = y - X\hat{\beta}$$

El **objetivo** de MCO es **minimizar** la SRC:

$$\min SRC = \min \sum_{i=1}^{n} \hat{u}_i^2 = \min \hat{u}^\mathsf{T} \hat{u}$$

• Definiendo $\hat{u}^{\mathsf{T}}\hat{u}$:

$$\hat{u}^{\mathsf{T}}\hat{u} = (y - X\hat{\beta})^{\mathsf{T}}(y - X\hat{\beta}) = = y^{\mathsf{T}}y - 2\hat{\beta}^{\mathsf{T}}X^{\mathsf{T}}y + \hat{\beta}^{\mathsf{T}}X^{\mathsf{T}}X\hat{\beta}$$

• Minimizando $\hat{u}^{\mathsf{T}}\hat{u}$:

$$\beta \stackrel{u.}{=} \frac{\partial \hat{a}^{\mathsf{T}} \hat{a}}{\partial \hat{\beta}} = -2X^{\mathsf{T}} y + 2X^{\mathsf{T}} X \hat{\beta} = 0$$
$$\hat{\beta} = (X^{\mathsf{T}} X)^{-1} (X^{\mathsf{T}} y)$$

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} n & \sum x_1 & \dots & \sum x_k \\ \sum x_1 & \sum x_1^2 & \dots & \sum x_1 x_k \\ \vdots & \vdots & \ddots & \vdots \\ \sum x_k & \sum x_k x_1 & \dots & \sum x_k^2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \sum y \\ \sum y x_1 \\ \vdots \\ \sum y x_k \end{bmatrix}$$

La segunda derivada $\frac{\partial^2 \hat{u}^{\mathsf{T}} \hat{u}}{\partial \hat{\beta}^2} = X^{\mathsf{T}} X > 0$ (es un mín.)

Matriz de varianzas-covarianzas de β

Tiene la siguiente forma:

$$\begin{aligned} & \operatorname{Var}(\hat{\beta}) = \hat{\sigma}_{u}^{2} \cdot (X^{\mathsf{T}}X)^{-1} = \\ & = \begin{bmatrix} \operatorname{Var}(\hat{\beta}_{0}) & \operatorname{Cov}(\hat{\beta}_{0}, \hat{\beta}_{1}) & \dots & \operatorname{Cov}(\hat{\beta}_{0}, \hat{\beta}_{k}) \\ \operatorname{Cov}(\hat{\beta}_{1}, \hat{\beta}_{0}) & \operatorname{Var}(\hat{\beta}_{1}) & \dots & \operatorname{Cov}(\hat{\beta}_{1}, \hat{\beta}_{k}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(\hat{\beta}_{k}, \hat{\beta}_{0}) & \operatorname{Cov}(\hat{\beta}_{k}, \hat{\beta}_{1}) & \dots & \operatorname{Var}(\hat{\beta}_{k}) \end{bmatrix} \end{aligned}$$

donde: $\hat{\sigma}_u^2 = \frac{\hat{u}^T \hat{u}}{n-k-1}$

Los errores estándar están en la diagonal de:

$$ee(\hat{\beta}) = \sqrt{Var(\hat{\beta})}$$

Medidas de error

- SRC = $\hat{u}^\mathsf{T} \hat{u} = y^\mathsf{T} y \hat{\beta}^\mathsf{T} X^\mathsf{T} y = \sum (y_i \hat{y}_i)^2$
- SEC = $\hat{\beta}^{\mathsf{T}} X^{\mathsf{T}} y n \overline{y}^2 = \sum (\hat{y}_i \overline{y})^2$ STC = SRC + SEC = $y^{\mathsf{T}} y n \overline{y}^2 = \sum (y_i \overline{y})^2$

Matriz de varianzas-covarianzas de u

Tiene la siguiente forma:

$$\operatorname{Var}(u) = \begin{bmatrix} \operatorname{Var}(u_1) & \operatorname{Cov}(u_1, u_2) & \dots & \operatorname{Cov}(u_1, u_n) \\ \operatorname{Cov}(u_2, u_1) & \operatorname{Var}(u_2) & \dots & \operatorname{Cov}(u_2, u_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(u_n, u_1) & \operatorname{Cov}(u_n, u_2) & \dots & \operatorname{Var}(u_n) \end{bmatrix}$$

Cuando no hay heterocedasticidad ni autocorrelación, la matriz de varianzas-covarianzas de u tiene la forma:

$$\operatorname{Var}(u) = \sigma_u^2 \cdot I_n = \begin{bmatrix} \sigma_u^2 & 0 & \dots & 0 \\ 0 & \sigma_u^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_u^2 \end{bmatrix}$$

donde I_n es una matriz identidad con $n \times n$ elementos. Cuando hay heterocedasticidad y autocorrelación, la matriz de varianzas-covarianzas de u tiene la forma:

$$\operatorname{Var}(u) = \sigma_u^2 \cdot \Omega = \begin{bmatrix} \sigma_{u_1}^2 & \sigma_{u_{12}} & \dots & \sigma_{u_{1n}} \\ \sigma_{u_{21}} & \sigma_{u_{2}}^2 & \dots & \sigma_{u_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{u_{n1}} & \sigma_{u_{n2}} & \dots & \sigma_{u_{n}}^2 \end{bmatrix}$$

donde $\Omega \neq I_n$.

- Heterocedasticidad: $Var(u) = \sigma_{u_i}^2 \neq \sigma_u^2$ Autocorrelación: $Cov(u_i, u_j) = \sigma_{u_{ij}} \neq 0 \quad \forall i \neq j$

Omisión de variables

Casi siempre es difícil disponer de todas las variables relevantes. Por ejemplo, un modelo con todas las variables:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + v$$

donde $\beta_2 \neq 0$, v el término de error y $Cov(v|x_1, x_2) = 0$. El modelo con las variables disponibles:

$$y = \alpha_0 + \alpha_1 x_1 + u$$

donde $u = v + \beta_2 x_2$.

Omisión de variables relevantes causa que los estimadores MCO sean **sesgados** e **inconsistentes**, porque no hay exogeneidad estricta, $Cov(x_1, u) \neq 0$. Dependiendo de $Corr(x_1, x_2)$ y el signo de β_2 , el sesgo en $\hat{\alpha}_1$ puede ser:

	$Corr(x_1, x_2) > 0$	$Corr(x_1, x_2) < 0$
$\beta_2 > 0$	sesgo (+)	sesgo (-)
$\beta_2 < 0$	sesgo (-)	sesgo (+)

- Sesgo (+): α̂₁ será más alto de lo que debería (incluye el efecto de x_2) $\rightarrow \hat{\alpha}_1 > \beta_1$
- Sesgo (-): $\hat{\alpha}_1$ será más alto de lo que debería (incluye el efecto de x_2) $\rightarrow \hat{\alpha}_1 < \beta_1$

Si $Corr(x_1, x_2) = 0$, no hay sesgo en $\hat{\alpha}_1$, porque el efecto de x_2 será totalmente recogido por el término de error, u.

Corrección de omisión de variables Variables proxy

Es el camino cuando la variable relevante no está disponible porque no es observable, y no hay datos disponibles.

• Una variable proxy es algo relacionado con la variable no observable que tiene datos disponibles.

Por ejemplo, el PIB per capita es una variable proxy para la calidad de vida (no observable).

Instrumental variables

Cuando una variable de interés (x) es observable pero endógena, el camino de variables proxy ya no es válido.

• Una variable instrumental (VI) es una variable observable (z) que está relacionada con la variable de interés que es endógena (x), y cumple los **requisitos**:

> $Cov(z, u) = 0 \rightarrow exogeneidad del instrumento$ $Cov(z, x) \neq 0 \rightarrow relevancia del instrumento$

Variables instrumentales deja la variable omitida en el término de error, pero en vez de estimar el modelo por MCO, utiliza un método que reconoce la omisión de variable. Puede también corregir errores de medida.

• Mínimos Cuadrados en Dos Etapas (MC2E) es un método de estimar un modelo con múltiples variables instrumentales. El requisito Cov(z, u) = 0 puede ser relajado, pero debe haber un mínimo de variables que lo satisfacen.

El procedimiento de estimación de MC2E:

1. Estimar un modelo regresando x por z usando MCO, obteniendo \hat{x} :

$$\hat{x} = \hat{\pi}_0 + \hat{\pi}_1 z$$

2. Reemplazar x por \hat{x} en el modelo final y estimarlo por MCO:

$$y = \beta_0 + \beta_1 \hat{x} + u$$

Hay algunas cosas importantes sobre MC2E:

- MC2E son menos eficientes que MCO cuando las variables explicativas son exógenas. El test de Hausman puede usarse para comprobarlo:

 H_0 : los estimadores MCO son consistentes. Si H_0 es aceptada, los estimadores MCO son mejores que MC2E y viceversa.

- Pueden haber algunos instrumentos (o todos) que no sean válidos. Esto se conoce como sobre-identificación, el test de Sargan puede usarse para comprobarlo:

 H_0 : todos los instrumentos son válidos.

Criterio de información

Es usado para comparar modelos con diferente número de parámetros (k). La fórmula general:

$$\operatorname{Cr}(k) = \log(\frac{\operatorname{SRC}}{n}) + c_n \varphi(k)$$

donde:

- SRC es la Suma de Residuos Cuadráticos de un modelo de orden k.
- c_n es una secuencia indexada por el tamaño muestral.
- $\varphi(k)$ es una función que penaliza órdenes grandes de k. Interpretado como el tamaño relativo de información perdida por el modelo. Orden k que min. el criterio es elegido.

Hav differentes funciones $c_n \varphi(k)$:

- Akaike: AIC(k) = $\log(\frac{SRC}{n}) + \frac{2}{n}k$
- Hannan-Quinn: $HQ(k) = \log(\frac{SRC}{n}) + \frac{2\log(\log(n))}{n}k$
- Schwarz: $Sc(k) = \log(\frac{SRC}{n}) + \frac{\log(n)}{n}k$ $Sc(k) \le HQ(k) \le AIC(k)$

Forma funcional incorrecta

Para comprobar si la forma funcional de un modelo es correcta, podemos usar el Ramsey's RESET (Regression Specification Error Test). Prueba el modelo original vs. un modelo con variables en potencias.

 H_0 : el modelo está correctamente especificado.

Procedimiento del contraste:

1. Estimar el modelo original y obtener \hat{y} y R^2 :

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k$$

2. Estimar un nuevo modelo añadiendo potencias de \hat{y} v obtener el nuevo R_{new}^2 :

$$\tilde{y} = \hat{y} + \tilde{\gamma}_2 \hat{y}^2 + \dots + \tilde{\gamma}_l \hat{y}^l$$

3. Definir el estadístico de contraste, bajo $\gamma_2 = \dots = \gamma_I = 0$ como hipótesis nula:

$$F = \frac{R_{\text{new}}^2 - R^2}{1 - R_{\text{new}}^2} \cdot \frac{n - (k+l) - 1}{l} \sim F_{l-1, n-k-l}$$
 Si $F_{l-1, n-k-l} < F$, hay evidencia para rechazar H_0 .

VAR (Vector Autoregressive)

Un modelo VAR captura interacciones dinámicas entre series temporales. El VAR(p): $y_t = A_1 y_{t-1} + \ldots + A_p y_{t-p} + B_0 x_t + \ldots + B_q x_{t-q} + CD_t + u_t$

donde:

- $y_t = (y_{1t}, ..., y_{Kt})^T$ es un vector de K series temporales observables endógenas.
- A_i 's son $K \times K$ matrices de coeficientes.
- $x_t = (x_{1t}, ..., x_{Mt})^\mathsf{T}$ es un vector de M series temporales observables exógenas.
- B_i 's son $K \times M$ matrices de coeficientes.
- D_t es un vector que contiene todos los términos deterministas, que pueden ser: una constante, tendencia lineal, variables estacionales binarias, v/o cualquier otra variable ficticia especificada por el usuario.
- C es una matriz de coeficientes de dimensión apropiada.
- $u_t = (u_{1t}, ..., u_{Kt})^\mathsf{T}$ es un vector de K series de ruido blanco.

El proceso es **estable** si:

$$\det(I_K - A_1 z - \dots - A_p z^p) \neq 0 \quad \text{para} \quad |z| \leq 1$$

esto es, no hay raíces en y sobre el círculo unitario compleio.

Por ejemplo, un modelo VAR con dos variables endógenas (K=2), dos retardos (p=2), una variable exógena contemporánea (M=1), constante (const) y tendencia (Tend_t):

$$\begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} a_{11,1} & a_{12,1} \\ a_{21,1} & a_{22,1} \end{bmatrix} \cdot \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + \begin{bmatrix} a_{11,2} & a_{12,2} \\ a_{21,2} & a_{22,2} \end{bmatrix} \cdot \begin{bmatrix} y_{1,t-2} \\ y_{2,t-2} \end{bmatrix} + \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} \cdot \begin{bmatrix} x_t \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \cdot \begin{bmatrix} const \\ Trend_t \end{bmatrix} + \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$
 Visualizando las ecuaciones por separado:

$$y_{1t} = a_{11,1}y_{1,t-1} + a_{12,1}y_{2,t-1} + a_{11,2}y_{1,t-2} + a_{12,2}y_{2,t-2} + b_{11}x_t + c_{11} + c_{12}\operatorname{Trend}_t + u_{1t}$$

$$y_{2t} = a_{21,1}y_{2,t-1} + a_{22,1}y_{1,t-1} + a_{21,2}y_{2,t-2} + a_{22,2}y_{1,t-2} + b_{21}x_t + c_{21} + c_{22}\operatorname{Trend}_t + u_{2t}$$

Si hay una raíz unitaria, el determinante es cero para z=1, entonces una o todas las variables son integrados y el modelo VAR ya no es apropiado (es inestable).

VECM (Vector Error Correction Model)

Si existen relaciones cointegradoras en un sistema de variables, la forma VAR no es la más conveniente. Es mejor usar un VECM, esto es, el VAR en niveles sustrayendo y_{t-1} de ambos lados. El VECM(p-1):

 $\Delta y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_{n-1} \Delta y_{t-n+1} + B_0 x_t + \dots + B_a x_{t-a} + CD_t + u_t$ donde:

- y_t , x_t , D_t y u_t son como especificados en VAR.
- $\Pi = -(I_K A_1 \cdots A_n)$ para i = 1, ..., p-1; Πy_{t-1} es referido como la parte a largo plazo.
- $\Gamma_i = -(A_{i+1} + \cdots + A_p)$ para i = 1, ..., p-1 es referido como parámetros a **corto plazo**.
- A_i , B_i y C son matrices de coeficientes de dimensiones apropiadas.

Si el proceso VAR(p) es inestable (no hay raíces), Π puede ser escrito como el producto de $(K \times r)$ matrices α (matriz de carga) y β (matriz de cointegración) con $rg(\Pi) = rg(\alpha) = rg(\beta) = r$ (rango cointegrador) como $\Pi = \alpha \beta^{\mathsf{T}}$.

• $\beta^{\mathsf{T}} y_{t-1}$ contiene las relaciones cointegradoras.

Por ejemplo, si hay tres variables endógenas (K=3) con dos relaciones cointegradoras (r=2), la parte a largo plazo del VECM:

$$\Pi y_{t-1} = \alpha \beta^\mathsf{T} y_{t-1} = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \\ \alpha_{31} & \alpha_{32} \end{bmatrix} \begin{bmatrix} \beta_{11} & \beta_{21} & \beta_{31} \\ \beta_{12} & \beta_{22} & \beta_{32} \end{bmatrix} \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \\ y_{3,t-1} \end{bmatrix} = \begin{bmatrix} \alpha_{11}ec_{1,t-1} + \alpha_{12}ec_{2,t-1} \\ \alpha_{21}ec_{1,t-1} + \alpha_{22}ec_{2,t-1} \\ \alpha_{31}ec_{1,t-1} + \alpha_{32}ec_{2,t-1} \end{bmatrix}$$

donde:

$$ec_{1,t-1} = \beta_{11}y_{1,t-1} + \beta_{21}y_{2,t-1} + \beta_{31}y_{3,t-1}$$

$$ec_{2,t-1} = \beta_{12}y_{1,t-1} + \beta_{22}y_{2,t-1} + \beta_{32}y_{3,t-1}$$

Nota: esta es una introducción muy básica, hay mucha más literatura sobre el uso correcto específico de estos modelos y de más avanzados. Por ejemplo, el modelo VECM con términos deterministas en la relación cointegradora, el modelo Structural VAR, etc.