

Graph

Bob lives in a city of mountain G(P). In this city, there are M mountains with **distinct** heights, where the height of mountain i is P[i] ($0 \le i < M$). Bob can only travel through the city using bridges that connect the mountains.

For mountain i and mountain j, if the heights of all mountains with indices between i and j (inclusive) are within the range of the heights of mountain i and mountain j, i.e., for every integer $k \in [i,j]$, it holds that $\min(P[i],P[j]) \leq P[k] \leq \max(P[i],P[j])$, there exists a bridge between them. Otherwise, there does not exist a bridge between them.

Bob lives on mountain 0 and works on mountain M-1. He wants to know the minimum number of bridges he needs to cross to get to work, denoted by F(P).

You are given $A[0],A[1],\cdots,A[N-1]$, a permutation of $0,1,\cdots,N-1$. There will be Q queries. The i-th $(1\leq i\leq Q)$ query gives you two integers l[i],r[i] $(0\leq l[i]\leq r[i]< N)$, and you should find the value of $F(\lceil A[l[i]],A[l[i]+1],\cdots,A[r[i]]\rceil)$ for Bob.

Implementation details

You need to implement the following functions:

```
void init_permutation(int N, std::vector<int> A);
```

- *N*: the length of the given permutation.
- A: an array of length N, denoting the permutation A in the statements.
- This function will be called exactly once at the beginning.

```
int calc_f(int 1, int r);
```

- After calling init_permutation, there will be Q calls of calc_f.
- This function should return $F(\left[A[l],A[l+1],\cdots,A[r]\right])$, denoting the shortest path from vertex 0 to vertex M-1 in $G(\left[A[l],A[l+1],\cdots,A[r]\right])$.

Example

Consider the following call:

```
init_permutation(5, {0, 3, 1, 2, 4});
```

Followed by the following calls:

1. calc_f(0, 4);. You should return 1, because this query asks the value of F([0,3,1,2,4]):

 $G(\left[0,3,1,2,4\right])$ consists of 5 vertices 0,1,2,3,4, and we are asked to find the shortest path between 0 and 4.

From the definition of G, 0 and 4 are directly connected, because for every integer $0 \le k \le 4$, $0 = \min(A[0], A[4]) \le A[k] \le \max(A[0], A[4]) = 4$. Thus, the length of the shortest path from 0 to 4 is 1, so you should return 1.

- 2. calc_f(0, 3);. You should return $F(\left[0,3,1,2\right])$, which is equal to 3.
- 3. calc_f(1, 4);. You should return F([3,1,2,4]), which is equal to 2.
- 4. $\operatorname{calc_f}(\mathbf{1},\ \mathbf{1})$; . You should return $F(\left[3\right])$, which is equal to 0.

Constraints

- $1 \le N, Q \le 3 \times 10^5$
- $0 \le A[i] < N \ (0 \le i < N)$
- $0 \le l[i] \le r[i] < N \ (1 \le i \le Q)$

Subtasks

- 1. (1 point): $N \le 10, Q \le 10$.
- 2. (19 points): $N \le 5000, Q \le 5000$.
- 3. (10 points): $N \le 10^4$,
- 4. (10 points): $N \leq 10^5, Q \leq 10^5$, the permutation A is sampled uniformly from all permutations.
- 5. (60 points): No additional constraints.

Sample Grader

The sample grader reads the input in the following format:

- Line 1: NQ
- Line 2: $A[0] A[1] \cdots A[N-1]$
- Line 2 + i $(1 \le i \le Q)$: l[i] r[i]

The sample grader prints your answer in the following format:

• Line i ($1 \le i \le Q$): your answer of the i-th query