Datenübertragung über Stromleitungen Untersuchung und Analyse der Auswirkungen verschiedener Faktoren auf die Signalverzerrung

Sude Nazlı Öztürk 200504024 Alperen Öncül 200504049

Inhalt

- Grundlagen der PLC Systeme
 - Locale Netzwerk und Homeplug
 - Wie funktioniert diese Systeme?
- Arbeitsprinzipien von Powerline Adapter
 - Modulationsverfahren
- Herausforderungen der PLC Systeme
 - mit dem Ubertragungsmedium
 - durch externe Faktoren
- Versuch 1-Latenzmessung
- Versuch 2- Oszilloskopstudie des Ethernet-Signals bei unterschiedlichen Bedingungen
 - Powerguard Experiment
 - Raum EMI
 - Adapter Temperatur
 - Trafo
- Ergebnis

Grundlagen der PLC Systeme

- Smart home, Smart meters, Locale Netzwerk
- Datenübertragung über dieselben Leiter, die bereits Wechselstrom führen.

Locale Netzwerk und HomePlug AV/AV2

Standard	Signal rate	Application	
HomePlug AV	Up to 600 Mbps	HDTV, home theatre	
HomePlug Gigabit physical speed		4K Ultra HD video, multi-room IPTV, online gaming	

Wie funktioniert?

Arbeitsprinzipien von Powerline-Adapter

Modulationsverfahren

Herausforderungen im Zusammenhang mit dem Übertragungsmedium in PLC-Systemen

Rauschen im Übertragungsmedium

- > Stromleitungen rauschende Umgebungen
- ➤ Impulsrauschen unvorhersehbar
- elektrische Geräte
- Leistungsschwankungen
- Elektromagnetische Störungen

- ➤ Signalstärke mit der Entfernung abnimmt
- ➤ Schwankungen in den elektrischen Lasten

Dämpfung und Kanalmodellierung

- > Verluste Skin Effekt und dielektische Verluste
- > Unterbrechungen _____ Signal Prallen zwischen Diskontinuitäten und Schwachung

Kanalcharakteristik des Einzweignetzes[2]

Kanalcharakteristik des Netzes mit sechs Zweigen[2]

Herausforderungen durch externe Faktoren

Variabler Netzwerkverkehr

- Viele Endgeräte ⇒ plötzliche Datenstaus & schwankende Durchsatzraten
- MU-MIMO / QoS-Scheduler

Störungen mit bestehenden Kommunikationssystemen

- Überlappende Frequenzbänder stören sich wechselseitig –
 Datenpakete kollidieren
- Adaptive Filter + DFS

Rauschen von externen Quellen

- EMI / RF-Einflüsse (z. B. Funkdienste) senken OFDM-SNR spürbar.
- Freq-Hopping & FEC

Versuch 1 –Latenzmessung für Raum EMI

- unter normalen Nutzungsbedingungen (Steckdosen in Universitätsräumen, tagsüber)
- Ohne mit PLC-Adaptern und rausch Elementen

→ tracert tau.edu.tr

```
Tracing route to tau.edu.tr [172.16.3.19]
over a maximum of 30 hops:

1 <1 ms <1 ms <1 ms 10.20.40.2
2 1 ms <1 ms TAUDC002.tau.edu.tr [172.16.3.19]
```

→ ping tau.edu.tr –f –l 1472

```
Pinging tau.edu.tr [172.16.3.3] with 1472 bytes of data:
Reply from 172.16.3.3: bytes=1472 time<1ms TTL=127
Reply from 172.16.3.3: bytes=1472 time=1ms TTL=127
Reply from 172.16.3.3: bytes=1472 time=1ms TTL=127
Reply from 172.16.3.3: bytes=1472 time<1ms TTL=127

Ping statistics for 172.16.3.3:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms
```


	Sender	C	Emp- fanger	C
I	Raum 1		Raum 1	
II	Raum 1		Raum 1	
III	Raum 1		Raum 2	
IV	Raum 1		Raum 2	
V	Raum 1		Raum 2	

Ergebnis

Der Einfluss externer Störfaktoren auf die Signalqualität wurde **klar** sichtbar.

 \longrightarrow

Detallierte ausführung ist benötigt.

	Sender	C	Emp- fanger	C
I	Raum 1		Raum 1	
II	Raum 1		Raum 1	
III	Raum 1		Raum 2	
IV	Raum 1		Raum 2	
V	Raum 1		Raum 2	

Versuch 2: Oszilloskopstudie des Ethernet-Signals bei unterschiedlichen Bedingungen

Gebrauchte Hardware

PLC Kit:

TP-Link PA4010-Paar (HomePlug AV, 500 Mbit/s)

Oscilloscope:

Fluke 190-504, tragbar

- 500 MHz Analog-bandbreite
- 625 MSa/s je Kanal
- 40 ns/Div Zeitbasis
- 300 Samples Speicher $\rightarrow \approx$ 480 ns Fenster

Spannungstaster:

1 M Ω , 150 MHz, clamped on Ethernet Tx⁺ / Tx⁻.

Testkabel:

20 m, 3×1.5 mm² PVC-Mantelleitung (L, N, PE)

Funkenquelle:

6 kV Inclined-Plane-Prüftrafo (IEC 60587), Primärspannung per Variac 0–80 %

MATLAB DATA

Main script

Data extrahieren

Differenzfunktion

Plotieren

```
clear; clc; files={'...};
labels={ '...'};
N=numel(files); Fs=625e6;
Vpp=NaN(1,N); for k=1:N
trv
[t,B,C]=readFlukeCsv v81(f
iles{k});
[Vpp(k)), vdiff] = compute Vd
iff basic(t,B,C);
plot waveform combo(t,B,C,
vdiff,labels(k));
plot psd(vdiff,Fs,labels{k
}); catch ME
warning("Skipping %s :
%s",files{k},ME.message);
end end T=table(,...
'VariableNames', {...'});
disp(T);
```

```
function [t, chB_V, chC_V]
= readFlukeCsv_v81(fname)
fid = fopen(fname,'r');
assert(fid~=-1,"File not
found: %s",fname); txt =
textscan(fid,'%s','Delimit
er','\n','Whitespace','');
txt = txt{1}; fclose(fid);
pat = "[+-]?[0-9]*\.?[0-
9]+(?:[eE][+-]?[0-9]+)?";
YResB=1; YResC=1; YOffB=0;
YOffC=0;
...
```

```
function [Vpp, vdiff] =
compute_Vdiff_basic(t,chB,
chC) vdiff = chB - chC;
Vpp = max(vdiff) -
min(vdiff); end
```

```
function
plot waveform combo(t,
chB, chC, vdiff, lbl) t ns
= t*1e9;
figure('Name',['Wellenform
en - ' lbl], 'Color', 'w');
plot(t ns,chB ,'-
b', 'LineWidth', 1.2); hold
on; plot(t ns,chC ,'--
r', 'LineWidth', 1.2);
plot(t ns, vdiff, '-
k', 'LineWidth', 1.3); hold
off; xlabel('Zeit (ns)');
ylabel('Spannung (V)');
title(['Tx^+, Tx^- & Diff
- ' lbll);
legend({'Tx^+','Tx^-
','Tx^+-Tx^-'}); grid on;
end
```

Beobachtung des Ungestörten Ethernet-Signals

- Die Spannungswete am Oszilloskop gemessen und speichert
- Das übertragene Signal —— die Differenz der auf zwei Kanälen beobachteten Signale
- Das Ergebnis wurde für das Vergleich verwendet.

Versuchsaufbau von ungestörten Ethernet-Signal

Die Grafik des ungestörten Ethernet-Signals

Das ungestörte Ethernet-Signal auf dem Oszilloskop

1. Power-Guard-Experiment

Merkmal	Ethernet (ungestört)	Power Guard	
Signalqualität	Glatt, stabil, kaum Verzerrung	Verrauscht, unruhig, deutlich verzerrt	
Amplitude	Leicht schwankend	Starke Schwankungen um den Nullpunkt	
Störungen	Keine sichtbaren	Rauschähnliche Muster durch Filterung	
Differenzsignal	B- und C-Kanal zeigen klare Phasendifferenz	Phasengleich, kaum Differenz	
Gesamteindruck	Sauberes Übertragungssignal	Deutlich gefiltert, eventuell fälschlich als Störung erkannt	

2. Raum EMI

3. Adapter-Temperatur (≈ 42 °C vs ≈ 58 °C)

- Fön → Sender-Adapter direkt beheizt
- Thermometer (5 cm
 Abstand) →
 kontinuierliche
 Umgebungstemperatur Kontrolle
- Ethernet-Link während der gesamten Messung aktiv

Die thermische Abschaltschwelle liegt somit zwischen 50 °C und 60 °C Umgebung.

4. Trafo-Experiment

Versuchsaufbau

Modem & Powerline-Verbindung:

Modem per Ethernet mit Powerline-Adapter verbunden (Steckdose 1).

Zweiter Adapter & Laptop:

Zweiter Powerline-Adapter \rightarrow andere Steckdose \rightarrow Laptop via Ethernet.

Messung am Ethernet-Kabel:

Adernpaar abisoliert, Tastköpfe an Kanäle B und C (Oszilloskop).

Schrägflächen-Versuch:

Aufbau mit Transformator und Variac zur Spannungsregelung.

Signalbeobachtung:

Ethernet-Signale bei verschiedenen Ausgangsspannungen analysiert.

·Häufigkeit von Spannungsspitzen:

In bestimmten Zeitintervallen treten **scharfe**, **plötzliche Spannungsspitzen** deutlich häufiger auf.

•Amplitude:

Die **Spitzen erreichen fast 250 V** – deutlich erhöht gegenüber dem Normalwert.

•Vermutung – Lichtbogen:

Diese Spitzen deuten **möglicherweise auf Lichtbogenprozesse** hin.

Auswirkungen auf das Signal:

Die Lichtbogenstörungen übertragen sich auf das Powerline-Signal \rightarrow und somit auch auf das Ethernet-Signal.

LSD Trafo

Ergebnisse der Experimente

Störquellen:

Elektrische Geräte und Lichtbögen verursachen Rauschen, das die Signalform beeinflusst.

Power Guard Verhalten:

Kann Ethernet-Signale fälschlich als Störung erkennen und entsprechend filtern.

Leitungsverluste:

Signalstärke nimmt mit Leitungslänge ab → Datenübertragungsqualität sinkt.

Gesamtfazit:

PLC-Systeme sind zwar **praktisch**, aber:

Umgebungseinflüsse

und die **physikalische Beschaffenheit der Stromleitungen** stellen **zentrale Herausforderungen** dar.

Empfehlung:

Diese Faktoren sollten bei der Netzplanung und Gerätewahl berücksichtigt werden.