

DAGVATTENHANTERING

Dimensioneringsförutsättningar Sarvträsk, Orminge Centrum, Nacka kommun 2018-01-30

CM

Uppdrag: Dimensioneringsförutsättningar – Sarvträsk, Orminge C

Uppdragsnummer: 1626

Status: Slutgiltig handling

Datum: 2018-01-30

Senast reviderad:

Uppdragsgivare: Topia Landskapsarkitekter

Konsult: Structor Uppsala AB

Uppdragsansvarig: Niclas Lekeby Handläggare: Elin Renstål

Eric Lindskog, 2018-01-29 Granskare:

SAMMANFATTNING

Nya bostäder planeras inom Orminge Centrum där Sarvträsk utgör ett av kvarteren. Structor Uppsala AB har fått i uppdrag att beskriva dimensioneringsförutsättningarna för dagvattenhanteringen inom kvarteret utifrån gällande krav och riktlinjer.

Dagvatten från kvartersmark måste renas och fördröjas lokalt innan anslutning till kommunalt nät får ske. Dagvattenflödena får inte öka efter exploatering och fördröjning ska ske för regn med återkomsttid 10 år och klimatfaktor 1,25. Vidare ska de första 10 mm regn renas i grönytor. I detta fall behöver 33 m³ dagvatten fördröjas och renas lokalt inom kvarteret för att uppfylla aktuella krav.

Inom kvarteret planeras dagvatten att fördröjas i en ytlig fördröjningszon i planteringsytor (biofilter) på innergården. Dagvattnet tillåts sedan infiltrera planteringsytorna från ytan så att rening kan ske via filtrering och växtupptag.

Totalt skapas en fördröjningsvolym på 47 m³ inom kvarteret vilket är en betydligt större volym än vad fördröjningskravet anger (33 m³). En annan positiv konsekvens av detta är att en större andel dagvatten även genomgår rening än vad reningskravet anger. Planerade åtgärder för dagvattenhanteringen inom kvarter Sarvträsk är således mer än tillräckliga för att uppnå tillräcklig fördröjning och rening av dagvattnet inom kvarteret utifrån gällande krav.

ocx //

STRUCTOR UPPSALA AB

Innehåll

\perp	Intec	Ining	J
2		tsättningar	
	2.1	Områdesbeskrivning	
	2.2	Recipient	
	2.3	Planerad exploatering	
3		njer och krav för dagvattenhantering	
4		vattenberäkningar	
	4.1	Markanvändning	
	4.2	Flöden	
	4.3	Erforderlig fördröjningsvolym	4
	4.4	Föroreningar	5
5	Försl	ag till dagvattenhantering	6
	5.1	Biofilter (gräs- och planteringsytor)	6
	5.2	Systemlösning	7
6	Över	svämningsrisker	8
	6.1	Ytvatten	8
	6.2	Extrema regn	8
7	Inför	kommande skeden	10
8	Refer	enser	10
9	Unde	rlag	10

Bilaga 1: Föroreningsberäkningar och modelluppbyggnad StormTac

1 INLEDNING

Structor Uppsala AB har fått i uppdrag av Topia Landskapsarkitekter att ta fram dimensioneringsförutsättningar för dagvattenhantering inom kvartersmark för ett nytt bostadskvarter; Sarvträsk i Nacka kommun. Fastigheten utgör en del av ett större detaljplaneprogram för Orminge Centrum som antogs av kommunstyrelsen i september 2015 (Nacka kommun, 2015).

2 Förutsättningar

2.1 Områdesbeskrivning

Aktuellt utredningsområde är strax över 0,4 ha och avgränsas av ett mindre naturmarksområde i norr, Kanholmsvägen i väster, Mensättravägen i öster och Edövägen i söder, se figur 1. I dagsläget utgörs ungefär hälften av området av en asfalterad parkeringsyta och andra hälften av grönytor med varierande vegetation.

Figur 1. Flygfoto över befintlig situation vars yttre gräns är markerad med en röd polygon. Flygfoto hämtat från Google Maps karttjänst Satellit 2018-01-12.

a

2.2 RECIPIENT

Kocktorpssjön finns inte upptagen i VISS som en klassad vattenförekomst, däremot finns den med som övervakningsstation i systemet. Nedströms sjön finns Skurusundet som finns upptagen i VISS och utgör utredningsområdets sekundära recipient. I planprogrammet för Orminge Centrum framgår att både flödes- och föroreningsbelastningen från dagvatten till Kocktorpssjön inte får öka efter exploatering. Kocktorpsjöns avrinningsområde är i dagsläget hårt belastat av dagvatten från hårdgjorda ytor såsom tak- och parkeringsytor. Planerad exploatering förväntas ge upphov till en ökad hårdgörandegrad inom utredningsområdet jämfört med befintlig situation vilket kommer att påverka områdets avrinning; både avseende flöden och föroreningsbelastning.

2.3 PLANERAD EXPLOATERING

Dagvattenberäkningarna är utförda utifrån underlag från Topia Landskapsarkitekter, se figur 2. För mer ingående information om utformning se Topia landskapsarkitekters handlingar för projektet.

Figur 2. Planerad exploatering. Illustrationsplan erhållen av Topia Landskapsarkitekter, 2018-01-25.

M

Riktlinjer och krav för dagvattenhantering

I planprogrammet för Orminge Centrum framgår att dagvattenhanteringen ska integreras i miljön och utgöra en del av gestaltningen (Nacka kommun, 2015). För mer ingående beskrivning av kravspecifikation hänvisas till dagvattenutredning för Orminge planprogram, utförd av Sweco, 2014-02-

Nacka kommun har tagit fram ett handledande underlag för dagvattenutredningar kvartersmark för detaljplaner inom Orminge Centrum. I detta underlag finns krav för dimensionering av fördröjning och reningsanläggningar inom kvarter beskriven, se punktlista nedan.

- Dagvattenflöden från kvartersmark får inte öka efter exploatering. Fördröjningsanläggningar ska ha kapacitet att omhänderta regn med återkomsttid 10 år och klimatfaktor 1,25.
- Rening (och fördröjning) av dagvatten ska ske för de första 10 mm regn från hårdgjorda ytor. Dagvattnets uppehållstid i reningsanläggning ska vara 6-12 h.

Dagvattenberäkningar

4.1 MARKANVÄNDNING

Flödes- och föroreningsberäkningar har utförts för kvartersmark med dagens markanvändning (befintlig situation) samt efter exploatering för att beskriva vilka förändringar som planerad exploatering förväntas ge upphov till. I tabell 1 presenteras de ytor och avrinningskoefficienter som ligger till grund för beräkningarna. Information om markanvändning har erhållits från grundkartan, flygfoton samt situationsplan enligt kapitel 9 Underlag.

Tabell 1. Markanvändning och avrinningskoefficienter, Ф, för utredningsområdet innan och efter exploatering.

Markanvändning	Avr. koeff. Φ	Befintlig situation [m²]	Efter exploatering [m²]
Tak	0,9	-	2371
Gårdsyta på bjälklag	0,7	-	1702
Parkeringsyta	0,8	1949	-
Grönyta	0,1	2124	-
Total area [m²]		4073	4073
Sammanvägd avrinningskoefficie	ent ⁽¹⁾	0,44	0,82
Total reducerad area (hårdgjord	yta) [m²]	1772	3326

⁽¹⁾ Sammanvägd Φ=Total reducerad area/Total area.

4.2 FLÖDEN

Beräkning av dagvattenflöden har genomförts utifrån aktuell kravspecifikation med rationella metoden baserat på systemets koncentrationstid, dimensionerande regnvaraktighet för regn med återkomsttid 10 år med klimatfaktor 1,25. Dimensionerande regnvaraktighet bestäms av systemets längsta koncentrationstid, vilket motsvarar den tid det tar för hela utredningsområdet att bidra till avrinningen i en tilltänkt utloppspunkt. I befintlig situation uppskattas koncentrationstiden vara 10 minuter baserat på att ingen fördröjning av dagvattnet sker inom delområdena. För situation efter exploatering antas koncentrationstiden fortsatt vara 10 minuter då ingen hänsyn till fördröjningsåtgärder tas. Dimensionerande regnvaraktighet blir således 10 min för både befintlig situation och situation efter exploatering.

STRUCTOR UPPSALA AB Org.nr 556769-0176 Hemsida: www.structor.se

Resultat från beräkningar för befintlig situation och situation efter exploatering redovisas i tabell 2. Efter exploatering förväntas exploateringsområdets avrinning att öka med 55 l/s (från 40 l/s till 95 l/s) utan hänsyn till fördröjning.

Tabell 2. Beräknade dagvattenflöden från utredningsområdet före och efter exploatering. I situation efter exploatering har regnintensiteten räknats upp med klimatfaktor 1,25. Regnintensitet för dimensionerande regn baseras på regndata enligt Dahlström (2010).

Dagvattenflöden 10-årsregn	Befintlig situation ⁽¹⁾ [I/s]	Efter exploatering ⁽²⁾ [I/s]
Utredningsområdet	40	95

Baserat på dimensionerande regnvaraktighet (1) 10 min, (2) 10 min inkl. klimatfaktor

4.3 ERFORDERLIG FÖRDRÖJNINGSVOLYM

I erhållet underlag förekommer två olika fördröjningskrav som innebär olika åtgärdsnivåer för fördröjningsåtgärder av dagvatten inom kvartersmark, se punktlista nedan för beskrivning av respektive krav (1-2).

- Krav 1
 Dagvattenflödet från utredningsområdet får inte öka efter exploatering, vilket innebär ett utflöde motsvarande befintlig situation på 40 l/s.
- Krav 2
 Fördröjning och rening av de första 10 mm regn från hårdgjorda ytor. Dagvattnets uppehållstid i reningsanläggning ska vara 6-12 h.

Vid beräkning av erforderlig fördröjningsvolym enligt krav 1 användes rationella metoden enligt enligt Svenskt Vattens beräkningsmetodik¹. Maximalt utflöde antas vara 40 l/s, motsvarande befintlig situations flöde i samband med dimensionerande 10-årsregn utan klimatfaktor. Utredningsområdets fördröjningsbehov kan även uttryckas som regndjup och kan beräknas enligt Ekvation 1 nedan. Genom att utgå ifrån områdets reducerade area tas hänsyn till utredningsområdets hårdgörandegrad.

$$F\ddot{o}rdr\ddot{o}jningsbehov \ [m] = \frac{Erforderlig \ f\ddot{o}rdr\ddot{o}jningsvolym \ [m^3]}{Reducerad \ area \ område \ [m^2]}$$
 Ekvation 1

Erforderlig fördröjningsvolym enligt krav 2 beräknas utifrån att de första 10 mm regn från utredningsområdets hårdgjorda ytor ska renas och fördröjas, vilket kan beräknas enligt Ekvation 2.

I tabell 3 visas fördröjningsbehovet för respektive fördröjningskrav uttryckt som volym och regndjup. Totalt behöver 33 m³ eller 10 mm fördröjas inom utredningsområdet för att klara krav 2 som innebär högst åtgärdsnivå.

M

5. 140, 10.0 Magasinsvolymer beraknade med rationella metoden, r 110

Org.nr 556769-0176

¹ s. 140, 10.6 Magasinsvolymer beräknade med rationella metoden, P110.

Tabell 3. Erforderlig fördröjningsvolym för utredningsområdet beroende på fördröjningskrav. Samtliga beråkningar baseras på fördröjning av dimensionerande regn med återkomsttid 10 år, varaktighet 10 minuter och klimatfaktor 1.25.

Kvartersmark	Erforderlig fördröjningsvolym	Fördröjningsbehov	
	[m³]	[mm]	
Krav 1 Utflöde får inte öka jämfört med befintlig situation (40 l/s)	20	6,0	
<i>Krav 2</i> Fördröjning 10 mm	33	10,0	

4.4 FÖRORENINGAR

Föroreningsberäkningar har utförts med StormTacs föroreningsmodell (webbversion v18.1.1) som baseras på schablonvärden framtagna av empiriska föroreningar i dagvatten och dataserier för årsnederbörd. Modellens uppbyggnad består av att ingen rening sker för befintlig situation då inga kända reningsanläggningar finns beskrivna i erhållet underlag. Efter exploatering antas dagvatten från kvartersmark omhändertas och renas i gräs- och planteringsytor (biofilter) på 470 m² av innergårdens yta.

I tabell 4 presenteras resultat från genomförda föroreningsberäkningar för utredningsområdet. Förväntade halter och mängder som lämnar området på årsbasis visas för befintlig situations markanvändning samt efter exploatering; innan och efter rening.

Tabell 4. Förväntad föroreningsbelastning från utredningsområdet för befintlig situation och situation efter exploatering, innan och efter rening.

Ämne	Enhet	Befintlig	Efter exp	Efter exploatering		
Amne		situation	Innan rening	Efter rening	rening föroreningar ⁽¹	
Fosfor, P	g/år	140	200	92	-34 %	
Kväve, N	kg/år	1,5	4,0	1,7	13 %	
Bly, Pb	g/år	31	7	1	-96 %	
Koppar, Cu	g/år	44	23	7	-84 %	
Zink, Zn	g/år	150	62	12	-92 %	
Kadmium, Cd	g/år	0,5	1,3	0,1	-86 %	
Krom, Cr	g/år	16	8	3	-79 %	
Nickel, Ni	g/år	15	8	2,3	-85 %	
Kvicksilver, Hg	g/år	0,054	0,035	0,010	-81 %	
SS ⁽²⁾	kg/år	150	65	15	-90 %	
Olja	g/år	850	280	230	-73 %	
PAH 16	g/år	3,5	1,1	0,1	-98 %	

⁽¹⁾ Reduktion föroreningar efter exploatering (efter rening) jämfört med befintlig situation. Minus (-) avser minskning och plus (+) avser ökning av föroreningsbelastning.

Resultat visar att föroreningsbelastningen förväntas minska för samtliga modellerade ämnen förutom kväve jämfört med befintlig situation. Även innan rening förväntas flertalet föroreningar minska efter exploatering jämfört med befintlig situation. Förklaringen till detta är att den befintliga parkeringsytan ersätts av ytor som inte trafikeras och därmed minskar föroreningar som kommer från trafikerade ytor. Tungmetaller, partiklar, olja och PAH:er är föroreningar som starkt kan kopplas till trafikerade ytor vilket

 STRUCTOR UPPSALA AB
 Org.nr 556769-0176

 Dragarbrunnsgatan 45
 Hemsida: www.structor.se

⁽²⁾ SS: suspenderat material.

också kan ses i resultaten för föroreningsberäkningarna. Anledningen till att kväve ökar efter exploatering och rening kan vara att stora andelar grönytor planeras på innergården och att dessa förutsätts läcka näringsämnen via gödsling. Resultat i StormTac skall ses som en indikation på förändring då modellens innehåller stora osäkerheter. I bilaga 1 redovisas en detaljerad beskrivning av StormTacmodellens uppbyggnad och beräkningsresultat. I samma bilaga redovisas även klassificering av osäkerheter för föroreningshalter per markanvändning och reningseffekter i vald reningsanläggning. För kväve är resultat klassat som *Låg säkerhet*, både avseende markanvändning och reningseffekt i biofilter.

5 FÖRSLAG TILL DAGVATTENHANTERING

Samtliga åtgärdsförslag förutsätter att detaljprojektering av planområdets dagvattenhantering sker i kommande skeden av exploateringsprocessen. Eventuella förändringar i lokalisering, area eller utformning av byggnader eller förändrad markanvändning kan påverka genomförbarheten av föreslagna åtgärder.

5.1 BIOFILTER (GRÄS- OCH PLANTERINGSYTOR)

Biofilter är en typ av planteringsytor som kan användas till att fördröja och rena dagvatten. Val och utformning av biofilter görs ofta utifrån fördröjnings- och reningsbehov men anläggningarna kan även fylla andra funktioner; till exempel utgöra estetiska och pedagogiska inslag i miljön. Utformning, såsom genomsläpplighet, djup och sammansättning i underliggande jordlager samt växtval bör göras utifrån recipientens känslighet, prioriterade föroreningar, lokala förutsättningar och utrymmesbehov.

Fördröjning och rening av dagvatten från takytor och hårdgjorda ytor på innerågrd föreslås ske i biofilter som anläggs nedsänkta centrerat på innergården. Takytor föreslås avvattnas via stuprör med utkastare mot ränndal och vidare mot avsedd grönyta. Det är viktigt att skydda grönytorna vid inloppen med erosionsskydd då flödena tidvis kan bli stora,

Innergården är utformad med en öppen gräsyta med centrerat läge, denna yta föreslås anläggas skålad och utgöra innergårdens lågpunkt. Runt gräsytan planeras ett så kallat fuktängsdike med ett sammankopplat stråk med dräneringsgrus för en effektiv infiltration i grönytan. Dagvatten kan fördröjas i en ytlig fördröjningszon samt i grusets eller växtjordens porvolym. Dräneringsledningar föreslås anläggas i låglinjer på bjälklaget för att minska risken för stående vatten på bjälklaget under lång tid.

Figur 3. Principutformning dagvattenhantering på innergård för fördröjning och rening av dagvatten. Bild från Topia Landskapsarkitekter 2018-01-25, erhållen av Topia Landskapsarkitekter, korrigerad av Structor Uppsala AB 2018-01-29.

M

STRUCTOR UPPSALA AB Dragarbrunnsgatan 45

5.2 Systemlösning

I tabell 5 redovisas ytor som föreslås och fördröjningsvolym som föreslagen/planerad dagvattenanläggning ger upphov till. Utifrån erhållet underlag kommer en större fördröjningsvolym (47 m³) att kunna skapas inom utredningsområdet än vad aktuellt krav anger (33 m³).

Vid dimensionering av dagvattensystemet har ett antal antaganden gjorts som redovisas i punktlistan nedan.

- Dagvatten från takytor och övriga hårdgjorda ytor antas kunna avvattnas med självfall mot gräsoch planteringsytor för fördröjning och rening.
- Gräs- och planteringsytor antas anläggas med en ytlig fördröjningszon med djup 0,1 m. Ingen hänsyn har tagits till eventuell fördröjnings i grus- och jordlagrens porvolym vid beräkning av fördröjningsvolym.

Tabell 5. Åtgärdsförslag för dagvattenhantering inom utredningsområdet (kvartersmark).

Yta	Dagvattenanläggning				
Dagvatten från Takytor Gårdsytor	Nedsänkta gräs- eller planteringsytor	Area Volym ⁽¹⁾	470 m ² 47 m ³		
Total effektiv fördr	öjningsvolym		47 m ³		

(1) Gräs- och planteringsytor antas anläggas med en ytlig fördröjningszon med djup 0,1 m.

Figur 4. Avvattningsplan och åtgärdsförslag för dagvattenhantering inom utredningsområdet (kvartersmark). Underlag erhållet av Topia Landskapsarkitekter 2018-01-25, korrigerad av Structor Uppsala AB 2018-01-29.

M

Parkeringsgarage

Parkeringsgarage kommer att anläggas under hela kvarteret (hus och gårdsyta). Garaget kan utformas som ett torrgarage, utan anslutning till varken spill- eller dagvattennätet. På detta vis behöver inte oljeavskiljare anläggas. För att istället omhänderta de små mängder regn- och smältvatten i garaget höjdsätts golvet så att avledning sker mot rännor, lågpunkt eller annan speciellt avsedd yta utan avlopp. Vattenvolymen som ansamlas i garaget får avdunsta. Oljerester och andra föroreningar kan därefter samlas upp som en torr fraktion och hanteras på lämpligt vis.

6 ÖVERSVÄMNINGSRISKER

6.1 YTVATTEN

Området har ingen förhöjd risk att översvämmas av ytvatten. Enligt Länsstyrelsen i Stockholms läns WebbGIS² ligger aktuellt planområde väl utanför Östersjöns översvämningsområde i samband prognos för 100-årsvattenstånd år 2100.

6.2 EXTREMA REGN

I dagsläget finns ett stort instängt område nordväst om utredningsområdet som riskerar att översvämmas i samband med extrema regn. Figur 5 visar utredningsområdets riskområden för översvämning med vattendjup mellan 0,1 m och över 1 m enligt Länsstyrelsen i Stockholms läns WebbGIS³. Vid exploatering kommer nya hus delvis att lokaliseras i befintlig lågpunkt. Det planeras även ett nytt bostadskvarter och en passage med cykelparkeringar norr om aktuellt utredningsområde. Ny höjdsättning av kvarter och gator måste ske så att vattenmassorna i befintliga lågpunkter förskjuts norrut mot planerad dagvattenpark intill Sarvträsk sjö-/våtmarksområde.

Inom aktuellt kvarter måste höjdsättningen av innergården göras så att dagvatten kan rinna ytledes mot omgivande gator utan att skada byggnader eller infrastruktur. I det här fallet föreslås att grönytor på innergården nyttjas som tillfällig översvämningsyta för att reducera flödestoppar i samband med extrema regn, se principskiss i figur 6. Vidare måste översvämningsytan förses med bräddmöjligheter för vidare avledning mot släpp/portik som ansluter till Praktikantgatan i norr. Det är viktigt att bräddnivån från översvämningsytan ligger lägre än färdig golvnivå för entréer på innergården för att minska risken för översvämning i husen.

Översvämningskarteringar – LstAB Översvämningskarteringar Östersjön – 100-årsvattenstånd (2100-modellerat)),

tillgänglig via: http://ext-webbgis.lansstvrelsen.se/Stockholm/Planeringsunderlag/

Översvämningskarteringar – LstAB Översvämningsrisk vid skyfall, lågpunktskartering,

tillgänglig via: http://ext-webbgis.lansstyreisen.se/Stockholm/Planeringsunderlag/

STRUCTOR UPPSALA AB Org.nr 556769-0176 Hemsida: www.structo Dragarbrunnsgatan 45 U:\1626_Sarvträsk\R\Dokument\Dagvattenhantering Sarvträsk.docx

753 20 UPPSALA Tel: 018-888 08 50

² Länsstyrelsen i Stockholms läns WebbGIS (Planeringsunderlag 2 - Hälsa och säkerhet --

³ Länsstyrelsen i Stockholms läns WebbGIS (Planeringsunderlag 2 - Hälsa och säkerhet –

Structor

Figur 5. Områden i och omkring utredningsområdet som riskerar att översvämmas vid skyfall. Svart polygon visar utredningsområdets ungefärliga utbredning. Lågpunktskartering hämtad från Länsstyrelsen i Stockholms läns WebbGIS 2018-01-29.

Figur 6. Förslag skyfallshantering innergård inom aktuellt utredningsområde. Underlag erhållet av Topia Landskapsarkitekter 2018-01-25, korrigerad av Structor Uppsala AB 2018-01-29.

a

Inför kommande skeden

Inför det fortsatta arbetet är det viktigt att projektörer, entreprenörer och andra intressenter informeras om dagvattenanläggningarnas funktion för att säkerställa att de utformas och anläggs på avsett sätt. En genomtänkt höjdsättning av området är viktigt för att kunna avleda dagvattnet med självfall mot avsedda fördröjnings- och reningsanläggningar.

Höjdsättningen är också avgörande för att kunna minimera risken för översvämningar och de skador som kan uppstå på byggnader och infrastruktur i samband med extrema regn. Vid markprojekteringen är det således viktigt att säkerställa att översvämningsvattnets genomströmning bibehålls eller omleds så kapacitet och funktion av flödesvägen inte förändras.

Under byggskedet kan behov finnas för länshållning av dagvatten. En plan för detta bör tas fram som innehåller volymer och kvalitet på det vatten som behöver länshållas, samt förslag på utsläppspunkt efter eventuell rening. Länshållningsvattnets kvalitet bör ställas i relation till eventuell påverkan på recipient. Samråd bör ske med kommunens miljökontor för att säkerställa att länshållningen sker på lämpligt sätt.

8 REFERENSER

Nacka kommun, 2015. Planprogram Orminge Centrum. [pdf] Tillgånglig via:

http://infobank.nacka.se/ext/Bo-Bygga/stadsbyggnadsprojekt/Nybackakvarteret/Startskede/Planprog ram.pdf> [Hämtad den 9 november 2017].

Svenskt Vatten, 2016. Publikation P110 – Avledning av dag-, drän- och spillvatten. Stockholm: Svenskt Vatten.

9 Underlag

Grundkarta: Grundkarta.dwg. Erhållen av Topia Landskapsarkitekter, 2017-11-28.

Takplan: 171106_White_Rikshem_Orminge_Takplan.dwg. Erhållen av Topia Landskapsarkitekter, 2017-11-28.

Markplanering: 171106_White_Rikshem_Orminge_Markplan.dwg. Erhållen av Topia Landskapsarkitekter, 2017-11-28.

Garageplan: 171106_White_Rikshem_Orminge_Garageplan.dwg. Erhållen av Topia Landskapsarkitekter, 2017-11-28.

Illustrationsplan: Illustrationsplan.pdf. Erhållen av Topia Landskapsarkitekter, 2018-01-25.

Sektion markplanering: Sektion_20180125.pdf. Erhållen av Topia Landskapsarkitekter, 2018-01-25.

Dagvattenutredning Orminge planprogram,: 2014-02-11-Dagvattenutredning-Sweco.pdf. Dagvattenutredning för detaljplaneprogram Orminge Centrum – Uppdragsnummer 1143616000. Sweco, 114-02-11.

Vi ser möjligheter i nya projekt, medarbetare, bolag och samarbeten.

Vi drivs av att utveckla våra kunders projekt och visioner. Vår organisation är under ständig utveckling med nytt kunnande, nya bolag och nya kunder.

Vi ser en styrka i att alltid erbjuda kunden det bästa teamet om det är så är med egna eller externa samarbetspartners.

Film

Storm Ta: Web v18.1.1 Unachs: - A2 Etter exploatering Dater: 2018-01/15

Resultatrapport StormTac Web

I denna resultatrapport redovisas in- och utdata (resultat) från simulering med StormTac Web.

1. Avrinning

1.1 Indata

Nederbörd		640	mm/år
Avrinningsområde	Α	0.41	ha
Rinnsträcka	s	500	m
Återkomsttid	N	10	år
Klimatfaktor	f _c	1.25	

Delavrinningsområde

	Vol.avr.koeff.	Avr.koeff.	Dagvatten	Grundvatten	Utredn. omr. (dim. flöde)
			ha	ha	ha
Takyta	0.90	0.90	0.24	0.24	0.24
Gårdsyta inom kvarter	0.70	0.70	0.17	0.17	0.17
Totalt	0.82	0.82	0.41	0.41	0.41
Reducerat avrinningsområde			0.33		0.33

1.2 Utdata

Basflöde, årsmedel	Q _b	0.0059	I/s
Dagvattenflöde, årsmedel	Qr	0.067	I/s
Tot. avrinning, årsmedel	Q _{tot}	0.073	l/s
Basflöde, årsmedel	Qb	190	m³/år
Dagvattenflöde, årsmedel	Qr	2100	m³/år
Tot. avrinning, årsmedel	Q _{tot}	2300	m³/år
Medelavrinning	Q _m	1.0	I/s
Dim. flöde	Q _{dim}	95	I/s
Dim. varaktighet vid Q _{dim}	tr	10	min
Rinnhastighet	V	1,0	m/s

2. Transport och flödesutjämning

2.1 Indata

Dagvattenledning

Lutning	0.0050
Material	Betong, gjutjärn, stål

Flödesutjämning

Maximalt utflöde	Q _{out2}	200	l/s
Magasinfyllning, andel av porer		1	
Reducerad flödesfaktor	f _{Qred}	0.67	
Klimatfaktor		1.00	
Reducerad infiltrationsområde		1	
Exfiltrationshastighet		0	mm/h
Anläggningens längd		48	m
Anläggningens bredd		24	m
Anläggningens djup		1.5	m

2.2 Utdata

Dagvattenledning

Ledningsdimension	Ø	1200	mm
Ledningskapacitet	Q _{cap}	2800	1/s

Flödesutjämning

Erfoderlig anläggningsvolym	V _d	0	m ³
Utformad anläggningsvolym		1700	m ³
Exfiltrationsutflöde		0	I/s
Dim. varaktighet vid dim. V₀	l t _r	3.0	min

3. Föroreningstransport

3.1 Indata

- Årligt basflöde och dagvattenflöde enligt 1. Avrinning.
 - Schablonhalter för basflöde resp. dagvattenflöde enligt uppdaterade tabeller på www.stormtac.com.

Markanvändning Faktor* Takyta 5.0		
	Aarkanvändning	Faktor*
	akyta	5.0
	Caluayta IIIOIII Availei	0.6

^{*} Vägar: faktor = trafikintensitet = 0-200. Enhet: x 1000 fordon/dygn. Annan markanvändning: faktor = 5 (1-10. Enhet: ¬,

arkanvändning	<u>a</u>	z	Pb	η	Zn	20	ئ	Ä	H	00
akyta	21	880	0.50	5.0	9	0.025	0.50	-	0000	2 5
Såndsyta inom kvarter	26	930	0.57	4.7	45	0.006	0.50	5 6	0.0020	0021
Aarkanvändning	iō	PAH16	Bap			0300	0000	2	04000	4900
akyta	50	0	0							
Gårdsyta inom kvarter	45	c								

StormTac Web v10, 1,1 Filmann: - A2 Effer exploatering Datum: 2018-01-15

	z	Pb	Cu	Zn	Cq	,	ž	Ha	88
Takyta 90	1800	2.6	7.5	28	0.80	4.0	4.4	0.0030	25000
230	2900	440	1000	5900	160	200	bud.	00000	20000
Gårdsyta inom kvarter	1900	3.7	16	29	0.23	3.7	22	1000	73000
pu	nď	nd	pu	pu	pu		2.7	0.040	4 1000
Markanvändning	PAH16	Bap					2	011	na
Takyta	0.44	0,010							
pu	pu	75							
Gårdsyta inom kvarter	0.61	0.0067							
pu	pu	pu							

3.2 Utdata

Basflödeshalt (ug/l) utan rening

۵	z	Pb	Cu	Zn	Cd	č	Z	Нg	SS	lio	PAH16	ВаР
	1000				-							
23	900	0.54	6.4	9.7	0.025	0.50	1,0	0.0030	3000	47	C	_

Dagvattenhalt (ug/I) utan rening

16 B													
1800 3.0 11 28 0.59 3.9 3.7 0.016 31000 130 0.50 0	۵	z	Pb	Cu	Zu	Cd	ڻ	ïZ	F	SS	iö	PAH16	Bap
1800 3.0 11 28 0.59 3.7 0.016 31000 130 0.50 0.	100	10000000											
	94	1800	3.0	11	28	0.59	3.9	3.7	0.016	31000	130	0.50	0.0088

Basflödesmängd (kg/år) utan rening

P N Pb Cu Zn Cd Cr Ni Hg SS Oil PAH16 BaP 0.00043 0.17 0.000100 0.00018 0.000100 0.0000047 0.0000033 0.000019 0.000099 0.55 0.00089 0 0	Dasilone	esmanga (kg	lar) utan reni	ning									
0.17 0.000100 0.00091 0.0018 0.0000047 0.000093 0.00019 0.00000055 0.55 0.0099 0	۵	z	Pb	Cu	Zn	Cd	స		Ha	SS	iö	PAH16	Rab
0.17 0.000100 0.00091 0.0018 0.0000047 0.000093 0.00019 0.0000055 0.55 0.0089	0,000	11							,			211111	2
	0.0043	0.1/	5	0.00091	0.0018	0.0000047	0.000093	0.00019	0.00000055	0.55	σ	_	_
											2000	>	>

								8		200000	200	80000	-
Dagvatt	ttenmängd	(kg/år) ut	utan rening										
۵	z	Pb	Cu	Zn	PO	Ċ	ï	Hg	SS	lio	PAH16	BaP	
0.20	3.9	0,0064	0.022	0.060	0.0013	0 0082	0.0078	0.000034	4 65	0.27	0.0011	0.000019	

Storm Tac

Föroreningshalter (dagvatten+basflöde) utan rening Föroreningshalter (ug/l). Jämförelse mot riktvärde där gråmarkerade celler visar överskridelse av riktvärde

	-	-	-			To incide	יים	av IIVIValu	U					
		۵	z	Pb	Cu	Zn	PO	ပ်	ï	Hg	SS	iö	PAH16	Bap
													١	
		l ng/l	ng/I	l/gn	/bn	/gn	l/gu	/bn	na/l	na/l	na/	1/0/1	1/011	1/011
1	(,			- 1	- 20
Derakning	<u>ی</u>	80	1700	2.8	10	27	0.55	3.6	3.5	0.015	28000	120	37.0	1000
	-									2	2000	071	5	0000
Kiktvarde	Cer,sw	160	2000	8.0	18	75	0.40	10	15	0.030	40000	400		0 030
											200	2		

Föroren	ingsmäng	រder (dagvរ	atten+basfl	öde) utan ı	ening							
۵	z	Pb	Cu	Zn	Cd	ċ	ž	Нg	SS	lio	PAH16	BaP
10/10/		٠	4.									
Kg/ar	Kg/ar	kg/ar	kg/ar	kg/är	kg/år	kg/år	kg/år	kg/år	ka/år	ko/år	ka/år	kn/år
												300
0.20	0.41	0.0065	0.023	0.062	0.0013	0.0083	08000	0.000035	65	0.28	0.0011	0.000019
										0		

Föroreni	ngsmängc	der kg/ha/å	/år (dagvatte	en+basflöc	de) utan reni	ning						
<u>а</u>	z	Pb	Cu	Zn	Cq	స్	ž	F	SS	iö	PAH16	Вар
1 11		0,						,				3
kg/na/ar	kg/ha/ar	kg/ha/ár	kg/ha/år	kg/ha/år	kg/ha/år	kg/ha/år	kg/ha/år	kg/ha/år	ka/ha/år	ka/ha/år	kn/ha/år	ka/ba/år
2								,	1		200	Indiana.
0.50	9.9	0.016	0.057	0.15	0.0031	0.020	0.020	0.000085	160	0 69	9000	980000

StoymTak Web v18.1.1 Filesme: - A2 Etter explostoring Datuer 2018-91-15

1
1
() =
(10
(0.3
1 22
0
person 107
mm a
-
02
4
S

Markanvändning P N Pb Cu Zn Takyta 85 1739 2.5 7.3 27 Gårdsyta inom kvarter 93 1768 3.4 15 27 Markanvändning Oil PAH16 BaP 27 Takyta 3.3 0.41 0.0093 Antickyta					
sa inom kvarter 85 1739 2.5 7.3 vändning Oil PAH16 BaP 3.3 0.41 0.0093	PO	,	ï	Ä	00
93 1768 3.4 15 Oil PAH16 BaP 3.3 0.41 0.0093	0.75	8 %		5000	3
93 1768 3.4 15 Oil PAH16 BaP 3.3 0.41 0.0093		0.0). t	0.0029	7347
vändning Oil PAH16	7 0.21	3.3	2.1	0.038	27050
Vandning Oil PAH16		2.5	4	0000	000/0
3.3 0.41					
3.3 0.41					
Gärdsyta inom kvarter 323 lo 54 lo noen					

Markanvandning P									
	z	Pb	Cn	Zn	PS	ŏ	ž	£	88
	2.5	0.0036	0.011	0.039	0.0011	0.0055	0.0062	6700000	3 2
						2000	7000	2000000	<u>+</u>
Gardsyta inom Kvarter 0 079	1.5	0.0029	0.013	0.023	0.00017	0.0028	0.0018	0.00000	2
			Ī			2000		000000	2
Markanvandning	PAH16	BaP							
Takyta 0.0048	0.00060	0.000014	Г						
Gardsyta inom kvarter 0.27	0.00046	0.0000051							

StormTac/Web 948.7.1
Filmmin: A2 Efter exploatering
Datum: 2018-01-15

Markanvändning	۵	z	Pb	Cu	Zn	Cd	ŏ	Z	F	88
Takyta	0,0020	0.084	0.000048	0.00048	96000'0	0.0000024	0.000048	9600000	0 00000019 0.12	2 12
Sardsyta inom kvarter	0.0023	0.084	0.000052	0.00042	0.00085	Τ	_	1	9100000000	2 0
Markanvändning	lio	PAH16	BaP				-1			5
akyta	0.0048	0	0							
Gårdsyta inom kvarter	0.0040	0	0	1						

IdKyta	0,0020	0.084	0.000048	0.00048	96000'0	0.0000024	0.000048	960000 0	0.0000019	0.12
Gårdsyta inom kvarter	0.0023	0.084	0.000052	0.00042	0 00085	0 0000003	0.000045	0000000		21.0
Markanvändning	iō	PAH16	BaP					700000	- 1	10.44
Takyta	0.0048	0	0	r						
Gårdsyta inom kvarter	0.0040	0	0	1						
Markanvändning	- A	z	Pb	3	Zn	3	2	12	27	00
- T - T - T - T - T - T - T - T - T - T						50	5	TATE OF THE PERSON NAMED IN COLUMN 1	ful ful	n
lakyta	0.12	2.4	0.0035	0.010	0.038	0.0011	0.0054	0.0061	0.0000041	34
Gårdsyta inom kvarter	9.00	1.4	0.0028	0.012	0.022	0.00017	0,0028	0.0017	0 000030	34
Markanvändning	IIO	PAH16	ВаР						200	5
Takyta	0	0.00000	0.000014	<u> </u>						
Gårdsyta inom kvarter	0.27	0.00046	0.0000051	1						

Bilaga 1.2 – Situation efter exploatering Modelluppbyggnad, resultat föroreningsberäkningar

Resultatrapport StormTac Web

I denna resultatrapport redovisas in- och utdata (resultat) från simulering med StormTac Web.

1. Avrinning

1.1 Indata

Nederbörd		640	mm/år
Avrinningsområde	A	0.41	ha
Rinnsträcka	s	500	m
Återkomsttid	N	10	år
Klimatfaktor	f _c	1.25	

Delavrinningsområde

	Vol.avr.koeff.	Avr.koeff.	Dagvatten	Grundvatten	Utredn. omr. (dim. flöde)
			ha	ha	ha
Takyta	0.90	0.90	0.24	0.24	0.24
Gårdsyta inom kvarter	0.70	0.70	0.17	0.17	0.17
Totalt	0.82	0.82	0.41	0.41	0.41
Reducerat avrinningsområde			0.33		0.33

1.2 Utdata

Basflöde, årsmedel	Qb	0.0059	I/s
Dagvattenflöde, årsmedel	Qr	0.067	I/s
Tot. avrinning, årsmedel	Q _{tot}	0.073	I/s
Basflöde, årsmedel	Q _b	190	m³/år
Dagvattenflöde, årsmedel	Qr	2100	m³/år
Tot_avrinning, årsmedel	Q _{tot}	2300	m³/år
Medelavrinning	Q _m	1.0	l/s
Dim, flöde	Q_{dim}	95	I/s
Dim. varaktighet vid Q _{dim}	tr	10	min
Rinnhastighet	V	1.0	m/s

2. Transport och flödesutjämning

2.1 Indata

Dagvattenledning

Lutning	0,0050
Material	Betong, gjutjärn, stål

Flödesutjämning

Maximalt utflöde	Q _{out2}	200	l/s
Magasinfyllning, andel av porer		1	
Reducerad flödesfaktor	f _{Qred}	0.67	
Klimatfaktor		1.00	
Reducerad infiltrationsområde		1	
Exfiltrationshastighet		0	mm/h
Anläggningens längd		48	m
Anläggningens bredd		24	m
Anläggningens djup		1.5	m

2.2 Utdata

Dagvattenledning

Ledningsdimension	Ø	1200	mm
Ledningskapacitet	Q _{cap}	2800	l/s

Flödesutjämning

Erfoderlig anläggningsvolym	V _d	20	m ³
Utformad anläggningsvolym		1700	m ³
Exfiltrationsutflöde		0	l/s
Dim. varaktighet vid dim. V _d	[t _r	15	min

3. Föroreningstransport

3.1 Indata

Årligt basflöde och dagvattenflöde enligt 1. Avrinning.
 Schablonhalter för basflöde resp. dagvattenflöde enligt uppdaterade tabeller på www.stormtac.com.

ırkanvändning	Faktor*
kyta	5.0
irdsyta inom kvarter	ν. C

^{*} Vågar: faktor = trafikintensitet = 0-200, Enhet: x 1000 fordon/dygn. Annan markanvändning: faktor = 5 (1-10, Enhet: -.

Markanvändning	<u>a</u>	z	Pb	Ü	70	2	č	14	100	200
						5	5		5u	20
akyta	21	880	0.50	5.0	10	0.025	0.50	10	00000	1200
Gardsyta inom kyartar	00							2	0.0020	1200
The second walled	97	930	0.57	4.7	9.5	0.026	0.50	0	0 0040	4900
Markanvändning	lic	DAH16	aca						2100:0	20021
		01110	חשם							
akyta	20	0	0							
Gårdsvta inom kvarter	40		,	Τ						

StormTac Web x48.1.1 Filnamii: Sarxträsk Datum: 2018-01-29

0	۵	z	Pb	Cu	Zn	Cd	ئ	ï	- FI	00
Takvta	OO	1000	000	1			5		B	20
· · · ·	000	nool	4.6	6.7	128	08.0	4.0	4.5	0.0030	25000
SD	230	2900	440	1000	2900	160	pu	nd	nd	29000
Gårdsyta inom kvarter	100	1900	3.7	16	29	0.23	3.7	23	0.040	41000
SD	pu	pu	pu	pu	nd	pa	pu	Da Da	2000	2001
Markanvändning	Oil	PAH16	BaP				3	2	2	ou.
Takyta	0	0.44	0.010							
SD	pu	pu	75							
Gårdsyta inom kvarter	360	0.61	0.0067							
SD	pu	pu	pu							

M

3.2 Utdata

Basflödeshalt (ug/l) utan rening

			6									
۵	z	Pb	Cu	Zn	Cd	ŏ	ï	Hg	SS	lio	PAH16	BaP
23	006	0.54	4.9	2.6	0.025	0.50	1.0	0.0000	3000	47	0	l

Dagvattenhalt (ug/l) utan rening

۵	z	Pb	Cn	Zn	po	ပံ	ž	Hg	SS	ē	PAH16	BaP
1305												
94	1800	3.0	7	28	0.59	3.9	3.7	0.016	31000	130	0.50	0.0088

Basflödes	smängd (kg/	år) utan rening	ing									
۵	z	РЬ	Cu	lZn	Cd	ŏ	ï	Hg	SS	iō	PAH16	RaP
0.000	11. 4							,				
0.0043	0.17	0.000100	0 00091	0.0018	0.0000047	0,000093	0.00019	0.00000055	0.55	6800.0	0	ے
												,

Dagvatt	tenmängd	(kg/år) ut	an rening									
Ъ	z	Pb	Cu	Zn	PS	ప	ï	Hg	SS	iio	PAH16	BaP
0.20	3.9	0.0064	0.022	090'0	0.0013	0.0082	0.0078	0.000034	65	0.27	0.0011	0.000019

Föroreningshalter (dagvatten+basflöde) utan rening Föroreningshalter (ug/l). Jämförelse mot riktvärde där gråmarkerade celler visar överskridelse av riktvärde

		۵	z	Pb	Cu	Zn	po	င်	ž	Hg	SS	iō	PAH16	BaP
		ng/l	l/gu	l/gu	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/gn	l/bn	l/bn	l/bn
Seräkning	ပ	88	1700	2.8	10	27	0.55	3.6	3.5	0.015	28000	120	0.46	0.0081
Riktvärde	Ccr,sw	160	2000	8.0	18	75	0.40	10	15	0.030	40000	400		0.030

					6							
۵.	z	Pb	Cu	Zn	Cd	ప	ž	Hg	SS	iö	PAH16	ВаР
			-									
Kg/ar	kg/ar	kg/år	kg/är	kg/år	kg/år	kg/år	kg/år	kg/år	kg/år	kg/år	kg/år	ka/år
400	•				_						,	
0.50	0,4	0.0065	0.023	0.062	0.0013	0.0083	0.0080	0.000035	65	0.28	0 0011	0.000019

Föroreni	ngsmängd	der kg/ha/å	år (dagvatte	en+basflöc	de) utan re	ning						
۵	z	Pb	Cu	Zn	PO	ů	Z	Hg	SS	lio	PAH16	BaP
	,											
kg/ha/ār	kg/ha/är	kg/ha/år	kg/ha/år	kg/ha/år	kg/ha/år	kg/ha/år	kg/ha/år	kg/ha/år	kg/ha/år	kg/ha/år	ka/ha/år	ka/ha/år
	_		_					ĺ	,))	2
0.50	6.6	0.016	0.057	0.15	0.0031	0.020	0.020	0.000085	160	69.0	0.0026	0.000046

	۲	
	PS	
	Zn	
	Ö	
rening	Pb	
asflöde utan	Z	_
agvatte	а	
	Markanvändning	

Markanvändning	<u>α</u>	z	Pb	Cu	Zu	PS	<u>5</u>	ï	£	88
Takyta	82	1739	2.5	7.3	27	0.75	88	6.4	8000	23424
Gårdsyta inom kvarter	63	1768	3.4	15	27	0.21	e e e	5 2	980.0	27050
Markanvändning	liO	PAH16	ВаР				25	<u>.</u>	200	00076
Takyta	3.3	0.41	0.0093	T						
Gårdsyta inom kvarter	323	0.54	0.0060	I						

Markanvändning	<u>a</u>	2	rd Yd		7.	2		-		
			2	200	7117	po l	5	Z	Hg	SS
Takyta	0.12	2.5	0.0036	0.011	0.039	0.0011	0.0055	0.0062	0.0000043	34
Gardsyta inom kvarter	0.079	rci	0.000	0.013	0.003	7,000,0	0000	0.00		5 3
				0.0.0	0.020	10000	0.000	0.00.0	0.000030	31
Markanvandning	ijo	PAH16	BaP							
Takyta	0.0048	090000	0.000014							
				1						
Gardsyta inom kvarter	0.27	0.00046	0.0000051							

farkanvändning	<u>a</u>	z	Pb	no.	Zn	PO	ů	ž	H	80
akyta	0.0020	0.084	0.000048	0.00048	0.00096	0.0000024	0.0000024 0.000048	0.000096	0 00000019 0 12	2 2
Sårdsyta inom kvarter	0.0023	0.084	0.000052	1		0 0000033	0.0000023 0.000045	0 000000	-1-	2 2
Markanvändning	oii	PAH16	BaP	1	1			70000		5
akyta	0.0048	0	0							
Gårdsyta inom kvarter	0.0040	0	0	ı						

	0.0020	100.0	Zennon'n	10.00042	0.00085	0.0000023	0.000045	0.000092	0.0000038	0.44
Markanvändning	ōi	PAH16	BaP							
Takyta	0.0048	0	0							
Gårdsyta Inom kvarter	0.0040	0	0	1						
Dagvattenbelastning (kg/år) per markanvändning utan rening	ıtan rening									
Markanvändning	<u>a</u>	z	Pb	-B	Zn	Cd	ŏ	Z	H	88
Takyta	0.12	2.4	0.0035	0.010	0.038	0 0011	0.0054	0.0064	2,00000	2 2
and the second s						0.00	1000	0000	1 200000 0	24
Gardsyta mom kvaner	920.0	4	0.0028	0.012	0.022	0.00017	0.0028	0.0017	0.000030	3.1
Markanvändning	lio	PAH16	BaP							5
Takyta	0	0.00060	0.000014							
Gårdsyta inom kvarter	0.27	0.00046	0.0000051	1						

Storm Fac Web VHJ.1.4 Filmaren: Sarvirásk Ostory: 2018/01/29

4. Föroreningsreduktion

4.1 Indata

Vald reningsanläggning: Biofilter (regnbädd/växtbädd)

Andel av reducerad avrinningsyta	n _o	14	%
Utflöde, max	Q _{out}	40	l/s
Tjocklek, tom yta	h ₁	100	mm
Tjocklek, växtbädd	h ₂	250	mm
Tjocklek, grov sand	h ₃	50	mm
Tjocklek, makadam	h ₄	100	mm
Tjocklek, skelettjord	h ₅	0	mm
Tjocklek, underbyggnad/undergrund/terrass	h ₆	1000	mm
Avstånd vattengång dräneringsrör till undergunden	h ₇	50	mm
Avstånd vattengång bräddbrunn till den övre bäddens yta	h ₈	100	mm
Porandel, växtbädd	n ₂	0.12	
Porandel, makadam	n ₄	0.40	
Hydraulisk konduktivitet, växtbädd	K ₂	200	mm/h
Hydraulisk konduktivitet, makadam	K ₄	36000	mm/h
Hydraulisk konduktivitet, underbyggnad/undergrund/terrass	K ₆	8.0	mm/h
Släntlutning, 1:X	Z	0	
Anläggningens längd	L	0	m
Är marken förorenad?		Nej	
Tillsats av biokol (utan gödningsmedel)?		Nej	

4.2 Utdata

Anläggningens yta	A _{stf2}	470	m ²
Totalt anläggningsdjup exkl. underbyggnad	H _{tot2}	0.50	m
Dimensionerande erforderlig utjämningsvolym	V _{d3} +V _{d4}	88	m ³
Dim. varaktighet vid dim. V _d	t _{r2}	20	min
Tillgänglig total utjämningsvolym	V _{stftot}	85	m ³
Dimensionerande regndjup. 20 (10-25) mm rekommenderas generellt,	rd	26	mm
Dimensionerande uppehållstid vid max flöde	td, max	0.59	h
Dimensionerande uppehållstid vid medelavrinning, >= 12 h rekommenderas generellt.	td, mean	23	h
Är anläggningen tillräckligt stor avseende flödesutjämning?		Nej	
Behövs tätning runt anläggningen?		Nej	

Reningseffekter (%). SD = Standard Deviation (standardavvikelse). nd = no data (ingen data)

	Р	N	Pb	Cu	Zn	Cd	Cr	Ni
Uträknat	55	59	81	70	81	95	59	71
SD	84	64	18	52	18	8.4	196	53
	Hg	SS	Oil	PAH16	BaP			
Uträknat	70	78	18	95	38			
SD	nd	50	14	nd	nd			

Klassificering av osäkerhet

Hög säkerhet

Medel säkerhet

Låg säkerhet

Föroreningshalter (dagvatten+basflöde) efter rening

Föroreningshalter (ug/l). Jämförelse mot riktvärde där gråmarkerade celler visar överskridelse av riktvärde

		P	N	Pb	Cu	Zn	Cd	Cr	Ni
		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Beräkning	Cre	40	720	0.54	3.0	5.0	0.030	1.5	1.0
Riktvärde	C _{cr,sw}	160	2000	8.0	18	75	0.40	10	15
							_		
		Hg	ss	Oil	PAH16	BaP]		
		ug/l	ug/l	ug/l	ug/l	ug/l]		
Beräkning	C _{re}	0.0045	6400	100	0.023	0.0050			
Riktvärde	C _{cr,sw}	0.030	40000	400		0.030	1		

Föroreningsmängder (dagvatten+basflöde) efter rening

	Р	N	Pb	Cu	Zn	Cd	Cr	Ni
	kg/år	kg/år	kg/år	kg/år	kg/år	kg/år	kg/år	kg/år
Föroreningsbelastning	0.092	1.7	0.0012	0.0069	0.012	0.000069	0.0034	0.0023
Avskiljd mängd	0.11	2.4	0.0052	0.016	0.051	0.0012	0.0049	0.0057
	Hg	SS	Oil	PAH16	ВаР			
	kg/år	kg/år	kg/år	kg/år	kg/år			
Föroreningsbelastning	0.000010	15	0.23	0.000053	0.000012			
Avskiljd mängd	0.000024	51	0.049	0.0010	0.0000071			

Biofilter (regnbädd/växtbädd)

Norra Orminge Centrum kv. 2 illustrationsplan

+38.11

nedsänkta fuktängsplanteringar som överbryggas dagvattenflöden breddar diket till grasylan som gronska för de boende. Grasytan omgrys av erbjuder en flexibel aktivitetsyta o'mgiven av under normala dagvattenflöden. Vid större Gårdsmiljön samlas kring en grönskande organsıkt böljande nedsankt grasyta som då fungerar som en buffert för dagvattnet. mittpunkl., Centralt på gården finner vi en av träspanger. Här fördröfs dagvatten

rumsbildande träd omgivna av solitärbuskar och vi karaktärsbildande vegetation som större, tuklängen i toirangsvegetation. Här finner Ur fuklöngsstråket vaxer aven ett antal mindre kullar fram. På dessa övergår mindre tradplanteringar.

och bidrar tillsammans med detta till att skapa en gården. I gårdens ostra horn finner vi en pergola och som via träspänger leder vidare till en lekfull piłkoja i det anslutande buskbrynet. Vid ett antal lägen tas höjden mellan fuktängsstråket och den och grillplats i bästa kvallssolsläge Intill denna platsbildningar. Dessa erbjuder umgangesytor omkringliggande gårdsmiljon upp av ett antal Gårdens omgärdas av en bredare hårdgjord Dessa omgardar gårdens grönskande hjarta, markmaterial i avvikande karaktör an övriga en sandlåda som erbjuder lek för de mindre karakiarsskaponde kalkstensmurar i srithojd varierande sollägen. Dessa markeras av hemtrevlig och grönskande levnadsmiljö, yta som bryis av i ett antal tydliggjorda

Detaljer på gården ansluter till Orminge Centrums fäigprogram.

Skala 1:300 ((

0

Norra Orminge Centrum Re. 2

dagvattenhantering - principsektioner

fördröfs. Vid större regn tillåts vattennivån stiga och breda ut sig i den centrala skållormade grasyton innan det breddas ut i kommunalt Dagvatten från hustak och gårdsytor leds ner i fördräfningsdiken, så kallade fuktängsdiken. Det kommer på så vis växtema till godo och dagvaitensystem

via stupror ner i dagvattenkassetter jännt Törldelat utplacerade längs Dagvatten från hustak som lutar ut mot förgårdsmark, österut, leds berörda fasader mom kvartersmark

Sadeliak veltandes utåt i nordost 125 m² Sadeltak vettandes utát i sydost. 115 m² Total areo utátlutande sadeltak. 240 m². Kvarteret ska projekteras för att kunna fördröja ett 10-årsregn vilket motsvarar de första 10mm som faller på hårdjorda ytor. Volym som ska fördröjas i förgårdsmark utanför byggnader: $240 \text{ m}^2 \times 0.01 \text{m} = 2.4 \text{ m}^3$

på totalt 2,4 m² (2400 liter) varav 1,25 m² förläggs under traticar i Detta motsvarar dagvattenkassetter med med en fördröjningsvolym nordost och 1,15 m³ i sydost,

fördröjer volymer motsvarande ett 10 årsregn innan det breddas i kommunalt dagvattensystem.

29 m³ 33m³ 62 m³

Principuektion fördröjning på gård. Innergårdens lågjovnkt utgörs av en skålformad grasyta. Runt denna planenas fuklängsdiken med dräneringsgrus Ve en eftetniv infiliration av dagvatnet i grönytan. Dagvatnet fördröjs i en ytlig fördröjningszon samt i gruset eller växtjardens parvolym.

Norma Orminge centrum kv. 2 landskap 180301 Topia landskapsarkitekter