Hoja de fórmulas MÁQUINAS TÉRMICAS

Nomenclatura

PCI [$kcal/kg_{comb}$] Poder calorífico inferior

PCS [kcal/kg_{comb}] Poder calorífico superior

H, S, C, O % del elemento en peso por kilogramo de combustible (cant. centesimal)

H₂O % de humedad en el combustible

G Peso

m Masa

C Calor latente

c_p Calor específico

Unidad 2 COMBUSTIBLES PARA GENERADORES DE CALOR

Poder calorífico

 $Combustible + Aire \rightarrow Gases \ de \ combustión + \underbrace{Q_{comb}}_{\text{PODER CALORÍFICO}} + Q_{vapor}$

Relación entre los poderes caloríficos

$$PCI = PCS - Q_{vapor} = PCS - 579G$$

$$PCI = PCS - 579(9H + H_2O)$$

 Q_{vapor} Calor de condensación del vapor de agua

G % en peso del agua formada por la combustión más la humedad del combustible.

597 Calor de condensación del agua a $0^{\circ}C$.

HIDRÓGENO

Reacción química de la combustión completa del hidrógeno

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O + \boxed{34400} \left[\frac{kcal}{kg_H}\right]$$

CARBONO

Reacción química de la combustión completa del carbono

$$C + O_2 \rightarrow CO_2 + \boxed{8140} \left[\frac{kcal}{kg_C} \right]$$

Reacción química de la combustión incompleta del carbono

$$C + \frac{1}{2}O_2 \, \rightarrow \, CO + \boxed{2440} \left[\frac{kcal}{kg_C}\right]$$

Azufre

Reacción química de la combustión para el azufre

$$S + O_2 \rightarrow SO_2 + \boxed{2220} \left[\frac{kcal}{kg_s} \right]$$

Método analítico

FÓRMULA DE DULONG

PC de un combustible seco

$$PCS = PCI = 8140C + 34400 \left(H - \frac{O}{8}\right) + 2220S$$

PCI de un combustible húmedo

$$PCI = 8140C + 34400 \left(H - \frac{O}{8} \right) + 2220S - 600H_2O$$

FÓRMULA DE HUTTE

PCS de un combustible húmedo

$$PCI = 8100C + 29000 \left(H - \frac{O}{8} \right) + 2500S - 600H_2O$$

FÓRMULA DE LA ASOCIACIÓN DE INGENIEROS ALEMANES

PCI de un combustible húmedo

$$PCI = 8080C + 29000 \left(H - \frac{O}{8} \right) + 2500S - 600H_2O$$

 $\frac{O}{8}$ % de H_2 en peso combinado con el O_2 del combustible dando agua de combinación

 $H - \frac{O}{8}$ % de *hidrógeno disponible* en peso que se oxida con el aire (O_2) para dar *agua de formación*

Método práctico

CALORÍMETRO DE MAHLER Y KROEKER

Supone que el calor Q generado dentro de la bomba calorimétrica es absorbido por los elementos que la

- Agua contenida
- Agitador
- Termómetro
- Bomba
- Recipiente

Y dicho calor es cedido por la combustión y el alambre:

$$Q = Q_{combustible} + Q_{alambre}$$
$$= (m_w c_{p_w} + E_{aparato}) \Delta t$$
$$PCS = \frac{Q_{comb}}{G_{comb}}$$

$$PCS = \frac{\left(m_{w}c_{p_{w}} + E_{aparato}\right)\Delta t - m_{alam}C_{alam}}{G_{comb}}$$

$$PCI = PCS - 600\frac{G_{w}}{G_{comb}}$$

$$PCI = PCS - 600 \frac{G_w}{G_{comb}}$$

 G_w Peso total de agua existente = papel húmedo - papel seco Peso de combustible quemado

Relación entre los poderes caloríficos:

Siendo:

597 Calor de condensación del agua a O ºC

G Porcentaje en peso del agua formada por la combustión del H2 más la humedad propia del combustible

 $PCI = PCS - 597 \times G = PCS - 597(9H + H_2O)$

Recordando: $|G = 9H + H_2O| \uparrow$

- 9 Son los kilos de agua que se forman al oxidar un kilo de hidrógeno.
- Η % de hidrógeno contenido en el combusti-

H2O % de humedad del combustible.

Método analítico

Formulas de Dulong

PCS comb. seco $PCS = 8,140 \times C + 34,400 \times (H - O/8) + 2,220 \times S$ PCI comb. seco: $PCI = 8,140 \times C + 29,000 \times (H - O/8) + 2,220 \times S$

 $PCI = 8,140 \times C + 29,000 \times (H - O/8) + 2,220 \times S - 600 \times H2O$ PCI comb. húmedo:

Formula de Hutte

PCI comb. húmedo $8,100 \times C + 29,000 \times (H - O/8) + 2,500 \times S - 600 \times H2O$

Formula de Asociación de Ing. Alemanes

PCI comb. húmedo $PCI = 8,080 \times C + 29,000 \times (H - O/8) + 2,500 \times S - 600 \times H2O$

- C Cantidad centesimal de carbono en peso por kilogramo combustible
- H Cantidad centesimal de hidrógeno total en peso por kilogramo de combustible
- O Cantidad centesimal de oxígeno en peso por kilogramo combustible
- S Cantidad centesimal de azufre en peso por kilogramo combustible
- Cantidad centesimal de hidrógeno en peso que se encuentra combinado con el oxígeno del O / 8 mismo combustible dando "agua de combinación"
- Cantidad centesimal de "hidrógeno disponible", en peso realmente disponible para que se (H - O/8)oxide con el oxígeno del aire, dando "agua de formación"

Hoja de fórmulas MÁQUINAS TÉRMICAS

Método práctico

CALORIMETRO DE MAHLER Y KROEKER

 $Q = Q_{agua} + Q_{termometro} + Q_{agitador} + Q_{recipiente} + Q_{vaso}$

 $Q = \Delta T(m_{agua} \ cp_{agua} \ + \ m_{termometro} \ cp_{termometro} \ + \ m_{agitador} \ + \ cp_{agitador} \ + \ m_{recipiente} \ cp_{recipiente} + m_{vaso} \ cp_{vaso})$

 $Q = (m_{agua} c p_{agua} + E_{aparato}) \Delta T$

Para determinar el poder calorifico:

 $Q = Q_{combustible} + Q_{alambre}$

 $Q_{comb} = Q - Q_{alambre}$

Reemplazo:

 $Q_{comb} = (m_{agua} c p_{agua} + E_{aparato}) \Delta T - m_{alambre} C_{alambre}$

Nos queda:

PCS= $\frac{Q_{combustible}}{G_{combustible}}$

PCI= $PCS - 600(9H + H2O) = PCS - 600 \frac{G_{agua}}{G_{combustible}}$

 G_{agua} representa el peso del total de agua existente = (peso papel humedo - peso papel seco)

G_{combustible} el peso de combustible quemado

Aire mínimo para una combustión perfecta

$$G_{t \ aire} = 11,6g_c + 34,78g_{hd} + 4,35g_s \left[Kg_{aire} / Kg_{comb.} \right]$$
 (1)

$$V_{t \ aire} = 8,89g_c + 26,27g_{hd} + 3,34g_s \left[m_{aire}^3 / Kg_{comb.} \right]$$
 (2)

Donde

$$g_{hd} = g_h - \frac{g_{o_2}}{2}$$

 g_c composición gravimétrica carbono

gh composición gravimétrica hidrógeno

 g_{o_2} composición gravimétrica oxígeno

g_s composición gravimétrica azufre

En la práctica es necesario trabajar con un exceso de aire para que asegurar la combustión perfecta:

$$V_{R\ aire} = (1+e)V_{t\ aire}[m_{aire}^3/Kg_{comb.}] \tag{3}$$

Gases de combustón

$$g_h = (3,67g_c + 9g_{hd} + 2g_s) + 3,35(2,67g_c + 8g_{hd} + g_s) + g_w [Kg_{humo}/Kg_{comb}]$$
(4)

$$V_h = 1,897g_c + 11,2g_{hd} + 0,7g_s + 3,76(1,867g_c + 5,6g_{hd} + 0,7g_s) + 1,24g_w \left[m_{humo}^2 / Kg_{comb} \right]$$
 (5)

Exceso de aire

Hoja de fórmulas MÁQUINAS TÉRMICAS

g_h	(kg de gases húmedos/ kg de combustible)	$g_S' =$	G_S''
e	(coeficiente de exceso de aire)	g_S –	$\overline{g'_C}$
g_S'	(kg gases secos / kg carbono)		$\mu_i^{\circ} r_i$
$g_S' \ g_S''$	(kg gases secos / kmol combustible)		n
μ	(masa molecular) (kg/kmol)	$g_{c}^{\prime\prime}=$	$\sum_{i=1}^{n} \mu_i r_i$
G_{AT}	(kg de aire teórico / kg de combustible)	03	i=1
g_S	(kg gases secos/ kg de combustible)	$\sigma'_{-} =$	$\sum_{i=1}^{n} \mu_i \ r_i$ $\sum_{i=1}^{n} \mu_C \ r_{iC}$
g_C	kg de carbono / kg de combustible)	•С	i=1
g_C'	(kg carbono / kmol combustible)	σ' –	$\frac{\sum_{i=1}^{n} \mu_i \ r_i}{\sum_{i=1}^{n} \mu_C \ r_{iC}}$
gw	(kg de aire teórico/ kg combustible)	g_S –	$\sum_{i=1}^n \mu_C \ r_{iC}$
r	composición volumentrica		$\sum_{i=1}^{n} \mu_i \ r_i$
	$g_h = 1 + e G_{AT}$	$g_h =$	$\frac{\sum_{i=1}^{n} \mu_{i} \ r_{i}}{\sum_{i=1}^{n} \mu_{C} \ r_{iC}} g_{C} + g_{w}$
	$e = \frac{g_h - 1}{G_{AT}}$	$g_w =$	$9 g_{he}$
	G_{AT}	$G_{AT} =$	11,6 g_C + 37,38 g_{hd} + 4,35 g_S
	$g_h = g_s + g_w$		para mi aca gs es del azufre, no gases secos/comb.
	$g_S = g_S' g_C$		-

Yo copié las formulas, pero los analisis dimensionales no dan en algunos...

Volumen humos combustión imperfecta