集合列 $\{A_n\}_{n=1}^{\infty}$ に対して 次のように極限集合を定義する。 定義

上極限集合
$$\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$
 下極限集合 $\underline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$ (1)

 \mathbb{R}^2 の部分集合の列 $\{A_n\}_{n=1}^{\infty}$ で、

$$\underline{\lim}_{n \to \infty} A_n = [0, 1/2] \times [0, 1/2] \quad \text{かつ} \quad \overline{\lim}_{n \to \infty} A_n = [0, 1] \times [0, 1] \tag{2}$$

という条件を満たす例を証明付きで一つ挙げよ。

 \mathbb{R}^2 の部分集合 A_k を次のように定める。

$$A_k = \left[0, \frac{3 + (-1)^k}{4}\right] \times \left[0, \frac{3 + (-1)^k}{4}\right] \tag{3}$$

これは k が奇数の時、 $A_k=[0,1/2]\times[0,1/2]$ であり、k が偶数の時、 $A_k=[0,1]\times[0,1]$ である集合である。

ので、 $\alpha \in \underline{\lim}_{n \to \infty} A_n$ となる。つまり、 $\underline{\lim}_{n \to \infty} A_n \supset [0,1/2] \times [0,1/2]$ である。

逆に、 $\alpha \in \varliminf_{n \to \infty} A_n$ とする。 $\varliminf_{n \to \infty} A_n = \bigcup_{n=1}^\infty \bigcap_{k=n}^\infty A_k$ であるので、ある自然数 $n \in \mathbb{N}$ が

存在し、 $\alpha \in \bigcap_{k=n}^{\infty} A_k$ である。 $\bigcap_{k=n}^{\infty} A_k$ は次のような集合である。

$$\bigcap_{k=n}^{\infty} A_k = \dots \cap [0, 1/2] \times [0, 1/2] \cap [0, 1] \times [0, 1] \cap [0, 1/2] \times [0, 1/2] \cap \dots \tag{4}$$

つまり、 $\bigcap_{k=n}^\infty A_k = [0,1/2] imes [0,1/2]$ であるので、 $\varliminf_{n o \infty} A_n \subset [0,1/2] imes [0,1/2]$ である。

$$\underbrace{\overline{\lim}}_{n \to \infty} A_n = [0, 1] \times [0, 1] \dots \dots$$

 $lpha\in[0,1] imes[0,1]$ とする。n が偶数の時、[0,1] imes[0,1] $\subset A_n$ である。つまり、すべて の自然数 $n \in \mathbb{N}$ に対して $\alpha \in A_{2n}$ であるので、 $\alpha \in \bigcap A_{2n}$ である。 $A_{2n} \subset \bigcup A_k$ で あるため、

$$\alpha \in \bigcap_{n=1}^{\infty} A_{2n} \subset \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \overline{\lim}_{n \to \infty} A_n \tag{5}$$

となる。

逆に、 $\alpha \in \overline{\lim_{n \to \infty}} A_n$ とする。 A_k は $[0,1/2] \times [0,1/2]$ または $[0,1] \times [0,1]$ であり、交互に現れるので、 $\bigcup_{k=n}^{\infty} A_k \subset [0,1] \times [0,1]$ である。

$$\overline{\lim}_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \subset \bigcap_{n=1}^{\infty} [0,1] \times [0,1] = [0,1] \times [0,1]$$

$$(6)$$

よって、 $\alpha \in [0,1] \times [0,1]$ である。

X を集合とし、 $\{A_n\}_{n=1}^{\infty}$ を X の部分集合の列とする。

- 1. $\overline{\lim}_{n \to \infty} A_n = \{x \in X \mid 無限個の n に対して <math>x \in A_n\}$
- 2. $\lim_{n\to\infty} A_n = \{x\in X\mid 有限個を除く n に対して <math>x\in A_n\}$
- 3. $\underline{\lim}_{n\to\infty} A_n \subset \overline{\lim}_{n\to\infty} A_n$

1. $\overline{\lim}_{n\to\infty}A_n=\{x\in X\mid$ 無限個の n に対して $x\in A_n\}$

Proof

集合 B_n を $B_n = \bigcup_{k=n} A_k$ とする。

$$\overline{\lim}_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcap_{n=1}^{\infty} B_n \tag{7}$$

であるので、任意の元 $\alpha \in \overline{\lim}_{n \to \infty} A_n$ について調べる。

$$\alpha \in \overline{\lim}_{n \to \infty} A_n \Leftrightarrow \alpha \in \bigcap_{n=1}^{\infty} B_n \qquad \Leftrightarrow \forall n \in \mathbb{N}, \ \alpha \in B_n$$
 (8)

$$\Leftrightarrow \ \forall n \in \mathbb{N}, \ \alpha \in \bigcup_{k=n}^{\infty} A_k \ \Leftrightarrow \ \forall n \in \mathbb{N}, \ \exists k_n \ge n \ s.t. \ \alpha \in A_{k_n}$$
 (9)

ここから自然数の部分集合 $\{k_n\}\subset \mathbb{N}$ が存在する。集合 $\{k_n\}$ の濃度は自然数と一致するので、無限個の A_{k_n} に対して $\alpha\in A_{k_n}$ となる。

.....

2. $\underline{\lim} A_n = \{x \in X \mid 有限個を除く n に対して <math>x \in A_n\}$

Proof

集合 B_n を $B_n = \bigcap_{k=n} A_k$ とする。

$$\underline{\lim}_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} B_n$$
 (10)

であるので、任意の元 $\alpha \in \underline{\lim} A_n$ について調べる。

$$\alpha \in \underline{\lim}_{n \to \infty} A_n \Leftrightarrow \alpha \in \bigcup_{n=1}^{\infty} B_n \qquad \Leftrightarrow \exists n \in \mathbb{N}, \ s.t. \ \alpha \in B_n \qquad (11)$$

$$\Leftrightarrow \exists n \in \mathbb{N}, \ s.t. \ \alpha \in \bigcap_{k=n}^{\infty} A_k \quad \Leftrightarrow \exists n \in \mathbb{N}, \ s.t. \ k \ge n, \ \alpha \in A_k$$

$$\Leftrightarrow \exists n \in \mathbb{N}, \ s.t. \ \alpha \in \bigcap_{k=n}^{\infty} A_k \quad \Leftrightarrow \exists n \in \mathbb{N}, \ s.t. \ k \ge n, \ \alpha \in A_k$$

$$\tag{12}$$

これより、ある自然数 $n \in \mathbb{N}$ が存在し、n 以上の自然数 k に対し、 $\alpha \in A_k$ である。 つまり、最初のいくつかの有限個を除いて残り全て含まれることになる。

3. $\underline{\lim}_{n\to\infty} A_n \subset \overline{\lim}_{n\to\infty} A_n$

......Proof

上の 2 つの内容より $\varliminf_{n\to\infty} A_n$ は $\varlimsup_{n\to\infty} A_n$ より条件が厳しい。

 \varliminf A_n はある数以上の全ての A_n に含まれないといけないが、 $\varlimsup_{n \to \infty} A_n$ は n は 連続である必要はなく、飛び飛びの数字で構わない。

例えば、偶数番目の A_n にのみ含まれる元 β は $\beta \in \overline{\lim_{n \to \infty}} A_n$ であるが、 $\beta \not\in \underline{\lim_{n \to \infty}} A_n$ である。