# Introducción a OpenGL

Ana Gil Luezas
Departamento de Sistemas Informáticos y Computación
Facultad de Informática
Universidad Complutense de Madrid

## **Open Graphics Library**

- OpenGL (Open Graphics Library) es una API portable que permite la comunicación entre el programador de aplicaciones y el hardware gráfico de la máquina (GPU: Graphics Processing Unit).
- No es exactamente una API (Application Programming Interface), es una especificación gestionada actualmente por Khronos Group, que implementan los fabricantes de GPUs.
- OpenGL es una máquina de estados. Tenemos una colección de variables de estado a las que vamos cambiando su valor (el estado se conoce como OpenGL context), y se renderiza sobre el estado actual.

### **OpenGL SDK**

- No dispone de comandos de alto nivel para cargar imágenes o describir escenas 3D. Tampoco dispone de comandos para gestionar ventanas ni para interactuar con el usuario.
- Para la gestión de ventanas utilizamos la librería GLUT (OpenGL Utility ToolKit): básica y portable.
- □ Para las operaciones matemáticas utilizamos la librería GLM (OpenGL Mathematics): especializada para la programación gráfica.
- Utilizamos el entorno de desarrollo VS 2019 C++14 con FreeGLUT y GLM (plantilla: proyectosIG\_x64\_VS2019\_FG.zip).
- ☐ Otras utilidades: GL Image, GL Load, ...

### Sintaxis de los comandos OpenGL

□ Todos los comandos OpenGL comienzan con gl, y cada una de las palabras que componen el comando comienzan por letra mayúscula (CamelCase).

```
glClearColor(....)
glEnable(...)
```

□ Las constantes se escriben en mayúsculas, y comienzan por GL. Cada una de las palabras que componen el identificador está separada de la anterior por \_ (SNAKE\_CASE).

```
GL_DEPTH_TEST

GL_COLOR_BUFFER_BIT
```

### Sintaxis de los comandos OpenGL

Existen comandos en OpenGL que admiten distinto número y tipos de argumentos. Estos comandos terminan con el sufijo que indica el tipo de los mismos.

```
glColor4ub(GLubyte red, ...) // 4 (RGBA) unsigned byte glColor3d(GLdouble red, ...) // 3 (RGB) double glColor4fv(GLfloat *) // 4 (RGBA) float*
```

4fv: indica que el parámetro es un puntero a un array de 4 float

```
glLoadMatrixf(const GLfloat * m)
glLoadMatrixd(const GLdouble * m)
```

Matrixf/d: indica que los parámetros son punteros a un array de 4x4 float/double

# Tipos básicos de OpenGL

 OpenGL trabaja internamente con tipos básicos específicos que son compatibles con los de C/C++.

| <br>Sufijo | Tipo OpenGL                                    |
|------------|------------------------------------------------|
| b          | GLbyte (entero de 8 bits)                      |
| ub         | GLubyte (entero sin signo de 8 bits)           |
| S          | GLshort (entero con signo de 16 bits)          |
| us         | GLushort (entero sin signo de 16 bits)         |
| i          | GLint, Glsizei (entero de 32 bits)             |
| ui         | GLuint, GLenum (entero sin signo de 32 bits)   |
| f          | GLfloat, GLclampf (punto flotante de 32 bits)  |
| d          | GLdouble, Glclampd (punto flotante de 64 bits) |
|            |                                                |

GLboolean (GL\_TRUE / GL\_FALSE )

### Tipos de GLM

□ GLM ofrece tipos, clases y funciones compatibles con OpenGL, GLSL y C++.

Define el espacio de nombres glm y tipos para vectores y matrices

```
glm::vec2, glm::vec3, glm::vec4
glm::dvec2, glm::ivec3, glm::uvec4, glm::bvec3
glm::mat4, glm::dmat4, glm::mat3, glm::dmat3
```

- □ Para las coordenadas de los vértices de las primitivas gráficas usaremos vectores de glm::dvec3 (componentes: v.x, v.y, v.z)
- □ Para las componentes de los colores RGBA usaremos glm::dvec4 (componentes c.r, c.g, c.b, c[0], c[1], c[2])
- □ Para las matrices glm::dmat4 m: m[i] columna i-ésima (dvec4)
- Operaciones: \*, +, ....

### **Ventana y frame buffer**

☐ El color de fondo de la ventana en la que vamos a dibujar podemos modificarlo utilizando el comando: glClearColor(GLfloat r, GLfloat g, GLfloat b, GLfloat alpha) Valores de los argumentos en [0,1]. Por ejemplo color de fondo negro: qlClearColor(0.0, 0.0, 0.0, 0.0); // valores por defecto ☐ Función display() de la ventana con doble buffer: Front y Back: glClear(GL\_COLOR\_BUFFER\_BIT | GL\_DEPTH\_BUFFER\_BIT); // El BackColorBuffer queda del color establecido con glClearColor() // El DepthBuffer queda a 1 (máxima distancia) scene.render(); // se dibujan los objetos en el BackColorBuffer glutSwapBuffers(); // se intercambian los buffers (Back/Front)

# Sistema cartesiano en OpenGL

Sistema cartesiano: origen (O) y tres ejes ortogonales: X, Y, Z



### Right-handed system:

Right = X positivo Up = Y positivo Backwards = Z positivo Forwards = Z negativo





### **Primitivas gráficas: Puntos**

□ Por ejemplo, para definir las coordenadas de 4 vértices: GLuint numVertices = 4; std::vector<glm::dvec3> vertices .reserve(numVertices); vertices.emplace\_back(10.0, 0.0, 0.0); vertices.emplace\_back(0.0, 10.0, 0); vertices.emplace\_back(0.0, 0.0, 10.0); vertices.emplace\_back(0.0, 0.0, 0.0); Para dibujar puntos (mesh::render) utilizamos la primitiva GL\_POINTS: glEnableClientState(GL\_VERTEX\_ARRAY); glVertexPointer(3, GL\_DOUBLE, 0, vertices.data()); // dvec3 // no y tipo de las componentes, paso entre valores, puntero al 1º elemento glDrawArrays(GL\_POINTS, 0, numVertices); glDisableClientState(GL\_VERTEX\_ARRAY);

### **Primitivas gráficas: Atributos**

- ☐ ¿Color y grosor?: Los que estén establecidos en el momento de glDrawArrays(...). OpenGL es una máquina de estados.
- Para dibujar todos los puntos con un grosor y color determinado: glPointSize(GLfloat), glColor\*(...)

```
glPointSize(3);
glColor3d(0.5, 1, 0.25); // -> alpha =1 = opaco
mesh->render();
glPointSize(1); // valores por defecto
glColor4d(1, 1, 1, 1); // valores por defecto
```

### Primitivas gráficas: Líneas

☐ Si utilizamos la constante GL\_LINES:

Para vertices = { 
$$\mathbf{v_0}$$
,  $\mathbf{v_1}$ ,  $\mathbf{v_2}$ ,  $\mathbf{v_3}$ , ...,  $\mathbf{v_{n-1}}$ ,  $\mathbf{v_n}$ }

glDrawArrays(GL\_LINES, 0, numVertices);

Dibuja las líneas  $\mathbf{v_0v_1}$ ,  $\mathbf{v_2v_3}$ , ...,  $\mathbf{v_{n-1}v_n}$ .

Si el número de vértices es impar, el último vértice se ignora.



□ Atributos de línea: glLineWidth(GLfloat), glColor\*(...)

### Primitivas gráficas: Líneas

Para vertices = {  $v_0$ ,  $v_1$ ,  $v_2$ ,  $v_3$ , ...,  $v_{n-1}$ ,  $v_n$ }

□ Si utilizamos la constante GL\_LINE\_STRIP, las líneas se conectan, i.e., se dibujan las líneas  $\mathbf{v_0v_1}$ ,  $\mathbf{v_1v_2}$ ,  $\mathbf{v_2v_3}$ ,...,  $\mathbf{v_{n-1}v_n}$ .

Si el número de vértices es 1, no hace nada.



☐ Con la constante GL\_LINE\_LOOP la poli-línea se cierra.

Es decir, se dibujan las líneas  $\mathbf{v_0v_1}$ ,  $\mathbf{v_1v_2}$ ,...,  $\mathbf{v_{n-1}v_n}$ ,  $\mathbf{v_nv_0}$ .



### **Primitivas gráficas: Atributos**

☐ Si queremos que cada vértice tenga su propio color, tenemos que asociarlo en la malla.

La dimensión del vector de colores tiene que ser la misma que la de los vértices, y hay que activarlo de forma análoga al vector de vértices.

```
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4, GL_DOUBLE, 0, colores.data()); // dvec4
// no y tipo de las componentes, paso entre valores, puntero al 1o elemento
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_DOUBLE, 0, vertices.data()); // dvec3
glDrawArrays(GL_POINTS, 0, numVertices);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
```

### Ejemplo: ejes rgb

```
■ La malla EjesRGB.
                                 numVertices = 6;
 generaEjesRGB(GLdouble I);
                                 vertices.reserve(numVertices);
  int numVertices;
                                   vertices.emplace_back(0, 0, 0);
  std::vector<qlm::dvec3>
                                   vertices.emplace back(I, 0, 0);
       vertices;
                                   vertices.emplace_back(0, 0, 0);
  std::vector<glm::dvec4>
                                   vertices.emplace_back(0, I, 0);
       colores;
                                   vertices.emplace_back(0, 0, 0);
                                   vertices.emplace_back(0, 0, I);
 Los vectores tienen que tener
                                 colors.reserve(numVertices);
 el mismo número de datos
                                   colores.emplace_back(1, 0, 0);
                                   colores.emplace_back(1, 0, 0);
                                   colores.emplace_back(0, 1, 0);
                                   colores.emplace_back(0, 1, 0);
                                   colores.emplace_back(0, 0, 1);
                                   colores.emplace_back(0, 0, 1);
```

## **Primitivas gráficas: Triángulos**

□ GL\_TRIANGLES: vertices= { v<sub>0</sub>, v<sub>1</sub>, v<sub>2</sub>, v<sub>3</sub>, v<sub>4</sub>, v<sub>5</sub> }
glDrawArrays(GL\_TRIANGLES, 0, numVertices); ←

Dibuja triángulos independientes:

$$V_0 V_1 V_2, V_3 V_4 V_5$$



Los vértices de un triángulo  $\mathbf{v_0}\mathbf{v_1}\mathbf{v_2}$  deben estar ordenados en sentido antihorario (Counter-Clock Wise). Determina la cara exterior.

glPolygonMode(GLenum face, GLenum mode);

Especifica el modo en el cuál se rasterizará el polígono.

face puede ser: GL\_FRONT\_AND\_BACK, GL\_FRONT o GL\_BACK

mode puede ser: GL\_FILL, GL\_LINE o GL\_POINT

### **Primitivas gráficas: Triángulos**

□ GL\_TRIANGLE\_STRIP: vertices = {  $\mathbf{v_0}$ ,  $\mathbf{v_1}$ ,  $\mathbf{v_2}$ ,  $\mathbf{v_3}$ ,  $\mathbf{v_4}$ ,  $\mathbf{v_5}$ ,  $\mathbf{v_6}$  } Dibuja los triángulos:  $\mathbf{v_0}\mathbf{v_1}\mathbf{v_2}$ ,  $\mathbf{v_1}\mathbf{v_2}\mathbf{v_3}$ ,  $\mathbf{v_2}\mathbf{v_3}\mathbf{v_4}$ ,  $\mathbf{v_3}\mathbf{v_4}\mathbf{v_5}$ ,  $\mathbf{v_4}\mathbf{v_5}\mathbf{v_6}$  uniformizando el sentido CCW con el del primer triángulo. Por tanto, dibuja los triángulos:  $\mathbf{v_0}\mathbf{v_1}\mathbf{v_2}$ ,  $\mathbf{v_2}\mathbf{v_1}\mathbf{v_3}$ ,  $\mathbf{v_2}\mathbf{v_3}\mathbf{v_4}$ ,  $\mathbf{v_4}\mathbf{v_3}\mathbf{v_5}$ ,  $\mathbf{v_4}\mathbf{v_5}\mathbf{v_6}$ 



El número de vértices tiene que ser al menos 3

## **Primitivas gráficas: Triángulos**

 $\square$  GL\_TRIANGLE\_FAN: vertices = {  $\mathbf{v_0}$ ,  $\mathbf{v_1}$ ,  $\mathbf{v_2}$ ,  $\mathbf{v_3}$ ,  $\mathbf{v_4}$  }

Dibuja los triángulos  $v_0v_1v_2$ ,  $v_0v_2v_3$ ,  $v_0v_3v_4$ 

Todos los triángulos comparten un vértice común: **v**<sub>0</sub>



### Cuadriláteros

Para cuadriláteros utilizamos GL\_TRIANGLE\_STRIP. Para los cuatro vértices del cuadrilátero  $\mathbf{v_0v_1v_2v_3}$ , dados en el orden  $\mathbf{v_0v_1v_2v_3}$ , dibuja el cuadrilátero con 2 triángulos:  $\mathbf{v_0v_1v_2}$  y  $\mathbf{v_2v_1v_3}$ 



# **Polígonos**

Para polígonos utilizamos GL\_TRIANGLE\_FAN con los vértices del polígono  $\mathbf{v_0}\mathbf{v_1}\mathbf{v_2}\mathbf{v_3}$  ... $\mathbf{v_n}$  en orden contrario a las agujas del reloj





## Sistema cartesiano en OpenGL

#### Matriz del marco cartesiano

$$\begin{pmatrix}
X & Y & Z & O \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Matriz identidad

Matrices 4x4 que se aplican a puntos y vectores en coordenadas homogéneas:



En openGL las matrices son 4x4 column-major

#### **Transformaciones afines**

□ Las rotaciones, traslaciones y escalas se expresan con matrices de la forma

$$F = \left(\frac{M}{0} \middle| \frac{T}{1}\right) = \begin{pmatrix} M_{11} & M_{12} & M_{13} & T_x \\ M_{21} & M_{22} & M_{23} & T_y \\ M_{31} & M_{32} & M_{33} & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 Composición. Las transformaciones se pueden componer multiplicando las matrices.
 El producto de matrices es asociativo pero no conmutativo

$$(M1 * M2) * V = M1 * (M2 * V)$$
  $M1 * M2 != M2 * M1$ 

□ Las escalas uniformes cambian el tamaño del objeto, las traslaciones cambian la posición del objeto y las rotaciones la orientación, sin deformar el objeto (transformaciones rígidas). La escala no uniforme deformar el objeto.

### **Traslaciones**

# ☐ Traslación con vector T=(tx, ty, tz):



Coordenadas del punto P una vez trasladado





### **Traslaciones con GLM**

glm::dmat4 m = glm::translate(dmat4, dvec3);

mT = translate (dmat4(1), dvec3(tx, ty, tz));

dmat4(1): matriz
identidad (mI)

$$\mathbf{mT} = \begin{pmatrix} 1 & 0 & 0 & tx \\ 0 & 1 & 0 & ty \\ 0 & 0 & 1 & tz \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

mT: matriz de traslación

### Composición:

 $m = translate(mat) dvec3(tx, ty, tz)); \rightarrow m = mat * mT$ m \* V = (mat \* mT) \* V = mat \* (mT \* V)

# $\square$ Escala con factor S=(sx, sy, sz):



Coordenadas del punto P una vez escalado

La escala es uniforme si sx=sy=sz



# $\square$ Escala con factor S=(s, s, s):



Objeto no centrado





#### **Escalas con GLM**

glm::dmat4 m = glm::scale(dmat4, dvec3);

mS = scale(dmat4(1), dvec3(sx, sy, sz));

$$mS = \begin{pmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

mS: matriz de escala

### Composición:

$$m = scale(mat) dvec3(sx, sy, sz)); \rightarrow m = mat * mS$$
  
 $m * V = (mat * mS) * V = mat * (mS * V)$ 

### Rotaciones

■ Rotaciones elementales sobre los ejes:

glm::dmat4 m = glm::rotate(dmat4, ß, dvec3); // ß en radianes



ángulo positivo -> giro CCW (antihorario)

# Rotación sobre el eje Z (Z-Roll)

□ Una rotación sobre el eje Z de  $\theta$  radianes:



Coordenadas del punto P una vez rotado

ángulo positivo -> giro CCW (antihorario)



### Rotaciones con GLM

□ glm::dmat4 m = glm::rotate(dmat4, ß, dvec3);

// ß en radianes

mR: matriz de rotación

**Z-Roll**:  $m = rotate(dmat4, \beta, dvec3(0, 0, 1));$   $mR = rotate(dmat4(1), \beta, dvec3(0, 0, 1)); \longrightarrow$ 

 $\begin{pmatrix}
\cos \beta & -\sin \beta & 0 & 0 \\
\sin \beta & \cos \beta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$ 

Y-Roll:  $m = rotate(dmat4, \beta, dvec3(0, 1, 0));$  $mY = rotate(dmat4(1), \beta, dvec3(0, 1, 0));$   $\longrightarrow$   $\begin{pmatrix}
\cos \beta & 0 & sen \beta & 0 \\
0 & 1 & 0 & 0 \\
-sen \beta & 0 & \cos \beta & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$ 

**X-Roll**:  $m = rotate(dmat4, \beta, dvec3(1, 0, 0));$   $mP = rotate(dmat4(1), \beta, dvec3(1, 0, 0)); \longrightarrow$ 

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \beta & -\sin \beta & 0 \\
0 & \sin \beta & \cos \beta & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

# Rotación sobre el eje Z (Z-Roll)

## ☐ Una rotación sobre el eje Z de 45 grados :







Objeto no centrado

■ En OpenGL (GLM) las transformaciones se componen postmultiplicando las matrices:

$$mC = transforma((m, )...); -> mC = m * mA$$

Al aplicar mC a un vértice: mC \*  $\overrightarrow{V}$  = (m \* mA) \*  $\overrightarrow{V}$  = m \* (mA \*  $\overrightarrow{V}$ )

### Ejemplo:

Tenemos un cuadrado centrado y alineado con los ejes, y queremos situarlo en el punto (7.5, 7.5, 0) girado 45 grados sobre su centro

m = rotate(mI, radians(45.0), dvec3(0,0,1));  
m = translate(m, dvec3(7.5,7.5,0));  

$$\rightarrow$$
 m = mI \* mR)\* mT



CUIDADO!!! MAL



■ En OpenGL (GLM) las transformaciones se componen postmultiplicando las matrices:

Al aplicar mC a un vértice: mC \* V = (m \* mA) \* V = m \* (mA \* V)

## Ejemplo:

Tenemos un cuadrado centrado y alineado con los ejes, y queremos situarlo en el punto (7.5, 7.5, 0) girado 45 grados sobre su centro

```
m = translate(mI, dvec3(7.5,7.5,0));

m = rotate(m) radians(45.0), dvec3(0,0,1));

\rightarrow m = mI * mT)* mR
```







```
mT = translate(mI, dvec3(7.5,7.5,0));

mR = rotate(mI, radians(45.0), dvec3(0,0,1));

m = mT * mR ;
```

■ Animación de objetos: es habitual trabajar con una ruta por la que se desplaza el objeto (mT) y la orientación del objeto (mR) mientras se desplaza. Se sitúa y orienta al objeto desde sus coordenadas originales.

Estando el objeto centrado en coordenadas locales

matriz de modelado del objeto = mT \* mR

Si es necesario escalar el objeto (mS):

matriz de modelado del objeto = mT \* mR \* mS

■ Y por último la matriz de vista:

matriz de modelado y vista = matriz de vista \*
matriz de modelado

La matriz de vista es la inversa de la matriz de modelado de la cámara:

en lugar de colocar la cámara en la escena (matriz de la cámara) coloca los objetos de la escena con respecto a la cámara.

☐ Ejemplo: Tenemos un cuadrado alineado con los ejes con centro en

(7.5, 7.5, 0.0)

Queremos rotarlo 45 grados sobre su centro (a):



m = rotate(mI, radians(45.0), dvec3(0,0,1));

 $\rightarrow$  m = mI \* mR

CUIDADO!!!

☐ Ejemplo: Tenemos un cuadrado, alineado con los ejes, con centro

en (7.5, 7.5, 0.0)

Queremos rotarlo 45 grados sobre su centro:

```
45°
(7.5, 7.5, 0.0)
```

```
m = translate(mI, dvec3(7.5,7.5,0));

m = rotate(m, radians(45.0), dvec3(0,0,1));

m = translate(m, dvec3(-7.5,-7.5,0));

m = mI * mT * mR * mT-1
```





CV

Ejemplo: Tenemos un cuadrado, alineado con los ejes, con centro en (cx, cy, 0.0).

Queremos escalarlo sobre su centro (sin modificar el centro)

```
m = scale(mI, dvec3(2,2,2));
\rightarrow m = mI * mS CUIDADO!!!
```

```
CX
```

```
m = translate(mI, dvec3(cx,cy,0));
m = scale(m, dvec3(2,2,2));
m = translate(m, dvec3(-cx,-cy,0));
\longrightarrow m = mI * mT * mS * mT-1
```

```
mT = translate(mI, dvec3(cx,cy,0));
mS = scale(mI, dvec3(2,2,2));
mTi = translate(mI, dvec3(-cx,-cy,0));
m = mT * mS * mTi;
```

# **Transformaciones**

#### ModelView MATRIX = VIEW MATRIX \* MODEL MATRIX

