Fall 2024 INFO 7374 Syllabus

Course Information

Course Title: Advanced Techniques with Large Language Models

Course Number: INFO 7374

Lecture Time: Monday 5:30PM-7:00PM PST

Office Hours: TBD

Attendance: Mandatory (2 absences allowed)

No class during finals week

TA: Hongji Shi shi.hongj@northeastern.edu

TA Office Hour: TBD

Grading

There will be no quizzes and no exams. Grades will be based on assignments. There are 6 assignments.

Late Days

• 6 late days (max 3 late days per assignment)

Academic Honesty Policy

ChatGPT as a learning tool is ok, but using it to do your homework is not

Course Objectives

- Deep learning fundamentals
- Understand how LLMs work theoretically and how they are built
- How to work with open source models and tooling
- Adapt LLMs to your custom use cases
- How to use LLM tools for information retrieval and fact grounded generation
- Advanced prompting techniques
- How to create agents to do useful tasks
- How to create high quality datasets

• Understand what problems LLMs are well suited for and where there limitations are

Schedule

Week	Торіс	Recommended Reading
Week 1	Course introduction, deep learning fundamentals, backprop, MLPs, gradient descent	Yes you should understand backprop Introduction to Deep Learning Neural Networks and Deep Learning
Week 2	Language modeling, tokenizers, and transformers (GPTs)	GPT-2 Attention is All You Need The Illustrated Transformer
Week 3	Pretraining, Data Cleaning, Data mixes	LLaMA: Open and Efficient Foundation Language Models DoReMi: Optimizing Data Mixtures Speeds Up Language Multi Query Attention Grouped Query Attention Open Pre-trained Transformer Language Models Chinchilla Scaling Laws RefinedWeb Dataset RedPajama-Data
Week 4	Instruction Tuning, Instruction Data Collection, Supervised Finetuning	Training language models to follow instructions with hur Alpaca: A Strong, Replicable Instruction-Following Mode
Week 5	Parameter Efficient Finetuning	Understanding Parameter-Efficient Finetuning of Large L Prefix Tuning to LLaMA-Adapters
Week 6	Prompting, Hallucinations, Prompt injections, and LlamaGuard	Principled Instructions Are All You Need for Questioning LlamaGuard
Week 7	RLHF, RLAIF, DPO	Illustrating Reinforcement Learning from Human Feedba RLHF: Reinforcement Learning from Human Feedback Spinning Up - PPO https://huyenchip.com/2024/02/28/predictive-human-pr
Week 8	Embeddings and Basic Retrieval Augmented Generation	Retrieval-Augmented Generation for Large Language Mo
Week 9	Advanced Retrieval Augmented Generation	ColBERT: Efficient and Effective Passage Search via Conte
Week 10	Verifiers + LLM Programs	
Week 11	Agents	LLM Powered Autonomous Agents CrewAl

Week 12	Multimodal Models	CLIP Flamingo Llava
Week 13	Time Series Forecasting, Tabular Data, Recommendation Systems	Are Transformers Effective for Time Series Forecasting?

Assignments and Lecture Notes

Assignments and lecture notes will use colab. Links for both will be posted here after the lecture for that week.

Week	Lecture Notes	HW
Week 1	https://colab.research.google.com/drive/1VYYxka flXnXQfzHrt31YX1QL6e07CRXy?usp=sharing	