

The Arrhenius Model 1

Essential Pre-Uni Chemistry M3.1

Subject & topics: Chemistry | Physical | Kinetics Stage & difficulty: A Level P2

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in $\mathrm{K}^{-1}.$

Part A y -intercept
On a plot of $\ln(k)$ against $rac{1}{T}$, what is the y -intercept?
The following symbols may be useful: A, E_A, R, T, k

Part B Units o	s of gradient	
Give the u	ne units of the gradient of an Arrhenius plot.	
	$ m Ndm^{-3}$	
	K	
	$ m K~m^{-2}$	
0 °	°C	

Part C Gradient
On a plot of $\ln(k)$ against $rac{1}{T}$, what is the gradient?
The following symbols may be useful: A, E_A, R, T, k

The Arrhenius Model 2

Essential Pre-Uni Chemistry M3.2

Subject & topics: Chemistry | Physical | Kinetics Stage & difficulty: A Level P2

$$k=A\mathrm{e}^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in ${
m K}^{-1}.$

Part A

Activation energy

If the gradient of an Arrhenius plot is $-1203\,\mathrm{K}$, find the activation energy. Use $R=8.3145\,\mathrm{J\,mol^{-1}\,K^{-1}}$.

Part B

Activation energy II

If the gradient of an Arrhenius plot is $-4250\,\mathrm{K}$, find the activation energy. Give your answer to 3 significant figures.

Part C

Gradient of Arrhenius plot

If a reaction has activation energy of $16.5\,\mathrm{kJ\,mol^{-1}}$, find the expected gradient of an Arrhenius plot.

Part D y-intercept The pre-exponential factor, A, is found to have a value of $0.6\,\mathrm{s^{-1}}$ for a first-order reaction. Calculate the expected y-intercept of an Arrhenius plot.

Question deck:

The Arrhenius Model 3

Essential Pre-Uni Chemistry M3.3

Subject & topics: Chemistry | Physical | Kinetics Stage & difficulty: A Level P2

$$k=Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Part A

A for a first-order reaction

The y-intercept of an Arrhenius plot for a first-order reaction is at -2.30. Find the pre-exponential factor, A, according to the Arrhenius model.

Part B

A for a second-order reaction

The y-intercept of an Arrhenius plot for a second-order reaction is at 3.20. Find the pre-exponential factor, A, according to the Arrhenius model.

Question deck:

The Arrhenius Model 4

Essential Pre-Uni Chemistry M3.4

Subject & topics: Chemistry | Physical | Kinetics Stage & difficulty: A Level P3

$$k=Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Part A

Activation energy

The rate constant, k, for a first-order reaction is found to be $0.0250\,\mathrm{s}^{-1}$ at $290\,\mathrm{K}$. If the pre-exponential factor is $26.0\,\mathrm{s}^{-1}$, find the activation energy.

Part B

Pre-exponential factor A

The rate constant, k, for a second-order reaction is found to be $0.050\,\mathrm{dm^3\,mol^{-1}\,s^{-1}}$ at $300\,\mathrm{K}$. If the activation energy is $2.50\,\mathrm{kJ\,mol^{-1}}$, find the value of the pre-exponential factor, A.

Question deck:

The Arrhenius Model 6

Essential Pre-Uni Chemistry M3.6

Subject & topics: Chemistry | Physical | Kinetics Stage & difficulty: A Level P3

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in $\mathrm{K}^{-1}.$

If a reaction has activation energy $14.0\,\mathrm{kJ\,mol^{-1}}$, and a pre-exponential factor of $120\,\mathrm{s^{-1}}$, find the temperature at which the rate constant is equal to $2.00\,\mathrm{s^{-1}}$.

Question deck:

The Arrhenius Model 7

Essential Pre-Uni Chemistry M3.7

Subject & topics: Chemistry | Physical | Kinetics Stage & difficulty: A Level P3

$$k=Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

A reaction is found to have a rate constant of $1.25\times10^{-3}~dm^6~mol^{-2}~s^{-1}$ at 400~K and $1.60\times10^{-3}~dm^6~mol^{-2}~s^{-1}$ at 500~K.

Part A E_A		
Find the activation energy.		
Part B A		
Find the pre-exponential factor, $oldsymbol{A}$.		

Part C Order of the reaction	
Give the overall order of reaction.	

Question deck:

The Arrhenius Model 8

Essential Pre-Uni Chemistry M3.8

Subject & topics: Chemistry | Physical | Kinetics Stage & difficulty: A Level P2

$$k=Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Figure 1: M3.8 Arrhenius Plot

Part A E_A
Using the graph above, find the activation energy. Give your answer to 2 significant figures
Part B A
Using the graph above, find the pre-exponential factor. Give your answer to 1 significant figure

Question deck:

Catalysis 1

Essential Pre-Ur	ni Chemistry M4.1
-------------------------	-------------------

Subject & topics: Chemistry | Physical | Kinetics Stage & difficulty: A Level P1

The iodination of propanone, $C_3H_6O+I_2\longrightarrow C_3H_5OI+HI$, when catalysed in aqueous conditions, obeys the rate law:

$$\mathrm{rate} = k[\mathrm{C_3\,H_6\,O}][\mathrm{HCl}]$$

Part A
Catalyst

Identify the catalyst in this reaction.

Part B
Type of catalyst

Is the catalyst homogeneous or heterogeneous?

heterogeneous
homogeneous

Concentration of catalyst
If the catalyst has an initial concentration of $0.020\mathrm{moldm^{-3}}$, give the concentration of the catalyst when the concentration of propanone has decreased to one quarter of its original value.

Question deck:

Part C

Catalysis 6

Essential Pre-Uni Chemistry M4.6

Subject & topics: Chemistry | Physical | Kinetics Stage & difficulty: A Level P1

Complete the following description of heterogeneous catalysis.

A heterogeneous catalyst works best when it has a large	so that many of its are
exposed to the reactants. In the first stage, reactants are	onto the catalytic surface, weakening
nternal bonds in the reactant particles. In the second stage, th	ne particles react to form products. The
of the slowest step in this reaction is lower than t	hat of the slowest step in the uncatalysed
reaction. The third stage is the, or release, of pro	duct particles from the surface. This
the surface ready for further reactions. If the products are not	released, or if some contaminant binds to the
surface, further catalytic activity is impeded and the catalyst h	nas been .
surface, further catalytic activity is impeded and the catalyst h	nas been
	nas been
surface, further catalytic activity is impeded and the catalyst h	nas been .
tems:	truction poisoned absorbed regenerates
tems:	truction poisoned absorbed regenerates
tems: [mass] [desorption] [enthalpy change] [rate] [density] [dest	truction poisoned absorbed regenerates
tems: [mass] [desorption] [enthalpy change] [rate] [density] [dest	truction poisoned absorbed regenerates

Question deck:

Arrhenius Equation

Subject & topics: Chemistry | Physical | Kinetics Stage & difficulty: A Level C2

The temperature of a sample of hydrogen iodide is raised from $300\,^\circ C$ to $500\,^\circ C$. The activation energy for the dissociation of hydrogen iodide (2 HI \longrightarrow H $_2$ + I $_2$) is $190\,\mathrm{kJ}\,\mathrm{mol}^{-1}$.

Part C

Activation energy

The enzyme glucose-6-phosphate dehydrogenase catalyses the reaction:

Given the data below and the Arrhenius equation $k=Ae^{-rac{E_a}{RL}}$, use a graphical method to calculate the activation energy of the reaction, E_a .

T/°C	k / $ m M^{-1}~s^{-1}$
30	1.95
35	2.40
40	2.82
45	3.31
50	3.89

Adapted with permission from UCLES, A Level Chemistry, November 1968, Paper 2, Question 2. Last part used with permission from the Cambridge Chemistry Challenge: C3L6