Tables

Table 1: Terms used throughout this paper and to classify components of lifespan validated in age determination studies. An example of each term is given for New Zealand porbeagle sharks (Francis *et al.* 2007).

Term	Description				
Maximum validated age	The oldest individual for which growth zones have been validated. Or, where age underestimation is reported, the age to which growth zone counts are seemingly valid	20 years			
Apparent longevity	The oldest individual based on unvalidated growth zone counts	38 years			
True longevity	The minimum longevity of the species where age has been shown to be underestimated, and where it exceeds maximum apparent age	65 years			
Validated ages	The ages over which growth zones have been confirmed to be a reliable indicator of age	0 - 20 years			
Uncertain ages	Any ages for which growth zones have yet to be validated. Also, where age underestimation occurs, the ages between the maximum validated age and the apparent longevity, which are effectively uncertain unless age underestimation is corrected for	20 - 38 years			
Underestimated ages	The difference between true longevity and apparent longevity	38 - 65 years			

Table 2: Evidence for age underestimation in bomb carbon dating and chemical marking age validation studies of sharks and rays. n is sample size, A_{Max} is longevity, Δ_{Mean} and Δ_{Max} are the mean and maximum differences between true and apparent age in individuals where age underestimation was detected. Regions: AUS/NZ - Australia and New Zealand; NEA - northeast Atlantic; NEP - northeast Pacific; NWA - northwest Atlantic; SA - South Africa.

Species	Region	n	Validated ages (yrs)	Validated Apparent ages A_{Max} (yrs)	True A_{Max} (yrs)	Δ_{Mean} (yrs)	Δ_{Max} (yrs)	Evidence	Rationale
Method: Bomb carbon dating								,	
$Alopias \ vulpinus \ ^{16}$	NWA	က	0-14	20	38	10	18	Likely	Phase-shifted ¹⁴ C signature
Carcharadon carcharias ⁹	NWA	∞	0-44	52	73	14	21	Likely	Phase-shifted ¹⁴ C signature
$Carcharadon\ carcharias\ ^1$	NEP	∞	2-0	18	37	12	20	Likely	Phase-shifted $^{14}\mathrm{C}$ signature. Re-analysis of Kerr et al.
			,		!	Į,	,		(2006)
$Carcharhinus\ obscurus\ \hat{}$	NWA	∞	0-11	23	42	17	19	$_{ m Likely}$	Phase-shifted 14 C signature
$Carcharhinus\ plumbeus\ ^2$	NWA	ಬ	0-10	27	33	∞	11	Likely	Phase-shifted ¹⁴ C signature
$Carcharias\ taurus\ ^{17}$	NWA	∞	0-12	22	34	12	12	Likely	Phase-shifted ¹⁴ C signature
$Carcharias\ taurus\ ^{17}$	$_{ m SA}$	2	0-14	23	40	19	20	Likely	Phase-shifted ¹⁴ C signature
$Galeocerdo\ cuvier\ ^{12}$	NWA	4	0-20	22				Possible	Phase-shift noted in one specimen, attributed to ontoge-
									netic diet and depth changes
Galeorhinus galeus ¹¹	AUS/NZ		0-14	20	42	6	18	Likely	Phase-shifted ¹⁴ C signature
$Isurus\ oxyrinchus\ ^3$	NWA	∞	0-31	31				Possible	Phase-shift noted in one specimen, attributed to method-
									ological error
Lamna nasus ⁷	AUS/NZ		0-20	38	65	22	34	Likely	Phase-shifted ¹⁴ C signature
$Leucoraja\ ocellata\ ^{13}$	NWA	13	0-23	23	28	5	5	Likely	Phase-shifted ¹⁴ C signature
$Squalus\ suckleyii\ ^4$	NEP	13	0-52	80				Possible	Phase-shift noted in at least one specimen, attributed to
									methodological error
Method: Chemical marking									
$\it Carcharhinus\ melanopterus\ ^5$	AUS/NZ	11	8-0	15		က	အ	Likely	Recapture did not form expected number of growth zones
$Carcharhinus\ sorrah\ ^{10}$	AUS/NZ	∞		13		2	2	Likely	Recapture did not form expected number of growth zones.
									Calcein did not mark pregnant females.
$Carcharhinus\ tilstoni\ ^{10}$	AUS/NZ			15		က	3	Likely	Recapture did not form expected number of growth zones
$Carcharhinus\ tilstoni$	AUS/NZ	10	0-3	12	18			Possible	Long-term recapture suggested greater longevity than
									growth zone counts
$Galeorhinus\ galeus\ ^{19}$	AUS/NZ	18	0-11	20	42			Likely	Frequency of growth zones in sharks >1400mm (mean
									age 11) was significantly < 1
$Neotrygon\ kuhlii\ ^{18}$	m AUS/NZ		1-5	13		2	2	Likely	Recapture did not form expected number of growth zones
$Raja\ erinacea\ ^{14}$	NWA	13	5-11	11				Possible	Annual growth zones may cease when females reproduc-
,									tively active
$Sphyrna\ tiburo\ ^8$	NWA	24	0 - 10.5	18		2	2	Likely	Recapture did not form expected number of growth zones.
									Long-term recapture suggested greater longevity than
									growth zones counts.

¹²Kneebone et al. (2008); ¹³McPhie and Campana (2009); ¹⁴Natanson (1993); ¹⁵Natanson et al. (2014); ¹⁶Natanson et al. (2016); ¹⁷Passerotti et al. (2014); ¹⁸Pierce and Bennett (2009); ¹⁹Walker et al. (2001) ¹Andrews and Kerr (2015); ²Andrews *et al.* (2011); ³Ardizzone *et al.* (2006); ⁴Campana *et al.* (2006); ⁵Chin *et al.* (2013); ⁶Davenport and Stevens (1988) ⁷Francis *et al.* (2007); ⁸Frazier *et al.* (2014); ⁹Hamaday *et al.* (2014); ¹⁰Harry *et al.* (2013); ¹⁰Harry *et al.* (2013); ¹¹Kalish and Johnston (2001)

Table 3: Best fit parameters (β_1 and β_2), standard errors (S.E.), and negative log likelihood, (LL) for logistic regression models of incidence of age underestimation as function of relative length and age.

	β_1	S.E.	β_2	S.E.	LL
Length	-36.07	13.06	41.02	14.52	-8.90
Age	-6.14	1.80	15.06	4.56	-10.87