Universidade de Brasília

FGA0100 - Prática de física dos dispositivos eletrônicos -2024/2

${\bf Experimento} \,\, {\bf 3} - {\bf Termistores}$

Por:

Kece Line Oliveira 19/0110791 André Jacinto Rodrigues 22/1007822

> Brasília 23 de dezembro de 2024

Conteúdo

1	Introdução										
	1.1										
	1.2										
	1.3	Revisão da Literatura									
		1.3.1 Caracterização Elétrica de Termistores									
2	Materiais e Equipamentos 4										
	2.1	Equipamentos Eletrônicos	4								
	2.2	Componentes Eletrônicos	4								
3	Metodologia Experimental										
	3.1	Etapa I: Identificação do tipo de termistor	5								
	3.2	Etapa II: Medição com o Circuito									
4	1000 altados e Biscassao										
	4.1	Identificação de modelo de Termistor	7								
	4.2	Registro de medidas	7								
	4.3	Discussão									
		4.3.1 Pesquisa									
5	Con	nclusão	9								

1 Introdução

1.1 Objetivo do Experimento

Este relatório apresenta a análise experimental do funcionamento dos Termistores, dispositivos condutores/semicondutores cujas resistências elétricas variam em função da temperatura. A prática envolveu a montagem de um circuito simples para medir a resistência do Termistor sob diferentes valores de tensão (o que o faz esquentar). Dessa forma, este experimento tem como objetivos:

- Introdução ao conceito de coeficiente térmico de dispositivos e à variação da resistividade de materiais condutores e semicondutores em função da temperatura.
- Caracterização elétrica, de termistores *PTC* (Positive Temperature Coefficient) e *NTC* (Negative Temperature Coefficient).

1.2 Fundamentação Teórica

Os termistores são dispositivos semicondutores cuja resistência elétrica varia de maneira significativa com a temperatura. Essa característica faz com que sejam amplamente utilizados em aplicações como sensores de temperatura, circuitos de proteção e compensação térmica. Existem dois tipos principais de termistores: *PTC* (Positive Temperature Coefficient) e NTC (Negative Temperature Coefficient) [1].

A resistividade (ρ) de materiais condutores e semicondutores é uma propriedade fundamental que descreve sua oposição ao fluxo de corrente elétrica. Essa propriedade é intrinsecamente dependente da temperatura, e sua variação é descrita por um parâmetro denominado coeficiente térmico de resistividade (α) [1].

1.3 Revisão da Literatura

Para materiais condutores, como metais, o coeficiente térmico é geralmente positivo, indicando que a resistividade aumenta com a temperatura. Isso ocorre porque o aumento da temperatura intensifica a vibração das redes cristalinas, elevando a probabilidade de colisões entre os elétrons e dificultando o fluxo de corrente.

Por outro lado, em materiais semicondutores, como os usados em termistores, o comportamento depende do tipo de dispositivo:

NTC (Coeficiente Térmico Negativo): A resistência diminui com o aumento da temperatura. Isso acontece porque, em semicondutores, o aumento da temperatura fornece energia térmica suficiente para liberar portadores de carga adicionais (elétrons e lacunas), reduzindo a resistividade.

PTC (Coeficiente Térmico Positivo): A resistência aumenta com o aumento da temperatura acima de uma faixa específica. Esse comportamento é observado em termistores baseados em transições de fase ou em materiais que exibem mudanças bruscas de estrutura cristalina, limitando os portadores de carga disponíveis.

Figura 1: Comparação entre termistores NTC e PTC

1.3.1 Caracterização Elétrica de Termistores

A caracterização elétrica de termistores PTC e NTC envolve a medição da resistência em função da temperatura. Essa relação pode ser modelada por uma equação exponencial para os NTCs:

$$R(T) = R_0 e^{\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)}$$

Onde:

- R(T) é a resistência à temperatura T (em Kelvin);
- R_0 é a resistência à temperatura de referência T_0 ;
- β é uma constante característica do material.

No caso dos PTCs, a resistência apresenta um aumento abrupto em uma temperatura crítica (T_c) , que pode ser associada a mudanças estruturais ou a um comportamento específico do material.

2 Materiais e Equipamentos

2.1 Equipamentos Eletrônicos

• Multímetro

Utilizado para medir tensão, corrente e resistência no circuito. Para a Parte 1, será usado no modo ohmímetro para medir a resistência do termistor com o objetivo de se identificar sua natureza: **NTC** ou **PTC**

Para a Parte 2, será usado para medir as tensões V_2 e V_1 . Modelo: DT9205A

Figura 2: Imagem ilustrativa do multímetro DT9205A

• Fonte DC

Empregada para alimentar o circuito com uma tensão contínua e estável. Será usada na Parte 2 para variar a tensão V_{DC} indicada na tabela Modelo: MPL-3305M.

Figura 3: Imagem ilustrativa da fonte MPL-3305M

2.2 Componentes Eletrônicos

• Termistor NTC 5D-9

Responsável pela conversão de energia térmica em condutância.

Figura 4: Imagem ilustrativa do termistor utilizado

• Resistor 10Ω (1W) Será utilizado para regular a corrente no termistor. $R_1 = 993 \pm 0,05[\Omega]$

Figura 5: Imagem ilustrativa do resistor 10Ω

3 Metodologia Experimental

3.1 Etapa I: Identificação do tipo de termistor

Os passos realizados foram os seguintes:

1. Montar o circuito em série com o resistor e o termistor para poder medir a resistência no termistor:

Figura 6: Testando um dos termistores medindo a resitência neste

2. Variar a tensão da fonte (para que o termistor aqueça) e medir a resistência do Termistor e, dependendo do tipo de variação, decidir se é do tipo NTC ou PTC.

3.2 Etapa II: Medição com o Circuito

Para a etapa 2, foi necessário:

1. Montagem do Circuito:

Figura 7: Esquemático do circuito para medição de temperatura

Figura 8: Montagem do circuito

2. Preenchimento da tabela variando a tensão de acordo com a tabela.

4 Resultados e Discussão

4.1 Identificação de modelo de Termistor

Com a parte 1 foi possível identificar a presença de um termistor do tipo NTC devido ao fato de sua resistência diminuir com o aumento de tensão e temperatura.

4.2 Registro de medidas

Preenchimento da tabela:

$V_{DC}[V]$	0,0	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0
$V_A[V]$	0	0.554	1.051	1.519	2.020	2.500	3.000	3.470	3.970
$V_B[V]$	0	0.390	0.742	1.105	1.517	1.925	2.390	2.840	3.310
$R_1[\Omega]$	-	4.205	4.164	3.747	3.316	2.987	2.552	2.218	1.994
$T[^{\circ}C]$	$T_{ m Ambiente}$	21.581	23.084	25.159	27.937	31.063	34.254	37.265	40.860

À partir da tabela, foi possível obter o gráfico $R_{termistor}$ vs. $T_{termistor}$ excluindo o ponto onde $V_{DC}=0$.

Figura 9: Gráfico obtido ao coletar medidas

4.3 Discussão

4.3.1 Pesquisa

a) Termistores NTC para Medição de Temperatura Ambiente

Um possível circuito para a medição de temperatura com um termistor pode ser montado semelhante ao montado em laboratório. O termistor é usado em um divisor de tensão, com um resistor (em exemplo, um de $10 \text{ k}\Omega$). Com a variação de temperatura, a resistência do NTC pode ser medida à partir da variação de tensão entre o resistor e o positivo da fonte [2]:

Figura 10: Circuito ilustrado de um termômetro eletrônico

Assim, essa tensão é lida por um microcontrolador ou um conversor analógico-digital (ADC), que calcula a temperatura com base em uma equação de calibração previamente ajustada, como a equação de Steinhart-Hart.

- b) Fabricação de Termistores NTC e PTC Comerciais
- i) Tipo de Material Usado

- Termistores NTC (Negative Temperature Coefficient): São fabricados a partir de *óxidos de metais de transição*, como manganês, níquel e cobalto [3].
- Termistores PTC (Positive Temperature Coefficient): São feitos de *polímeros termocondutores*, como polipropileno e politetrafluoretileno (PTFE) [3].

ii) Mecanismo Físico de Sensibilidade à Temperatura

- Termistores NTC: A resistência diminui à medida que a temperatura aumenta. Isso ocorre devido à maior mobilidade dos portadores de carga (elétrons) em temperaturas mais altas, resultando em uma diminuição da resistência.
- Termistores PTC: A resistência aumenta à medida que a temperatura aumenta. Esse comportamento é causado pela estrutura molecular dos polímeros, que se torna menos condutiva à medida que a temperatura sobe, até atingir um ponto de transição.

iii) Faixa de Operação

- Termistores NTC: A faixa de operação típica é de -50°C a 150°C
 [4]. No entanto, alguns modelos podem operar em faixas mais amplas, como -200°C a +1000°C.
- **Termistores PTC**: A faixa de operação geralmente é de -20°C a 120°C [4], mas pode variar dependendo do material específico utilizado.

5 Conclusão

O experimento com termistores proporcionou uma compreensão aprofundada sobre a relação entre resistência elétrica e temperatura, evidenciando o comportamento característico desses dispositivos. Observou-se que, para o termistor analisado, a resistência diminui exponencialmente com o aumento da temperatura, comportamento típico de termistores do tipo NTC (Negative Temperature Coefficient). Essa variação foi devidamente registrada no gráfico resistência x temperatura, que demonstrou boa concordância com o modelo teórico esperado.

Referências

- [1] Sergio Machado Rezende. *Materiais e dispositivos eletrônicos*. Editora Livraria da Física, 2004.
- [2] Eletrogate. Termistor nte para controle de temperatura, 2023. Acessado: 11 de dezembro de 2024.
- [3] ADD-THERM. Sensores de temperatura ntc e ptc, 2023. Acessado: 11 de dezembro de 2024.
- [4] Mundo da Elétrica. Sensor de temperatura ntc e ptc, 2023. Acessado: 11 de dezembro de 2024.