Mục lục

•	Cơ sở của Toàn rởi rạc				
1	Nguyên lý đếm cơ bản				
	1.1	Quy tắc cộng, nhân	2		
	1.2	Biểu đồ cây	9		
	1.3	Hoán vị, chỉnh hợp	10		
	1.4	Tổ hợp	15		
	1.5	Hoán vị lặp	22		
	1.6	Tổ hợp lặp	27		
	1.7	Sinh các hoán vị và tổ hợp	31		
	1.8	Số Catalan	34		
	1.9	Tóm tắt	34		
2	Ngu	ıyên lý cơ bản của logic	47		
	2.1	Phép toán cơ bản và bảng chân lý	47		
	2.2	Tương đương logic: luật logic	52		
	2.3	Kéo theo logic: quy tắc suy luận	58		
	2.4	Lượng từ: tình huống sử dụng	64		
	2.5	Các lượng từ, định nghĩa, và chứng minh định lý	71		
	2.6	Tóm tắt	74		
3	Lý t	huyết tập hợp	76		
	3.1	Tập và tập con	76		
	3.2	Phép toán tập hợp và quy luật	85		
	3.3	Phép đếm và biểu đồ Venn	94		
	3.4	Tóm tắt	97		
4	Tính chất của số nguyên: quy nạp toán học 100				
	4.1	Nguyên lý sắp tốt: quy nạp toán học	100		
	4.2	Định nghĩa đệ quy	112		
	4.3	Thuật toán chia: số nguyên tố			

ii Mục lục

	4.4	Ước chung lớn nhất: thuật toán Euclid	123
	4.5	Định lý cơ bản của số học	129
	4.6	Biểu diễn số nguyên và thuật toán	133
	4.7	Tóm tắt	139
5	Qua	ın hệ: hàm	142
	5.1	Tích Descartes và quan hệ	142
	5.2	Biểu diễn quan hệ	148
	5.3	Hàm: đơn ánh	149
	5.4	Toàn ánh: số Stirling loại II	159
	5.5	Hàm đặc biệt	164
	5.6	Nguyên lý chuồng bồ câu	168
	5.7	Hàm hợp và hàm ngược	171
	5.8	Độ phức tạp tính toán	179
	5.9	Phân tích thuật toán	183
6	Qua	ın hệ: hướng tiếp cận thứ hai	187
	6.1	Quan hệ: thuộc tính và phép toán	187
	6.2	Kiểm tra thuộc tính của quan hệ	195
	6.3	Thứ tự bộ phận: biểu đồ Hasse	199
	6.4	Quan hệ tương đương và phân hoạch	
	6.5	Bao đóng của quan hệ	207
II	Các	c phép đếm nâng cao 2	211
7	Ngu	yên lý bù trừ	212
	7.1	Nguyên lý bù trừ	212
	7.2	Nguyên lý bù trừ tổng quát	220
	7.3	Sắp xếp: không vật nào đúng vị trí	221
	7.4	Đa thức rook	221
	7.5	Sắp xếp có vị trí bị cấm	221
	7.6	Tóm tắt	221
	7.7	Bài tập bổ sung	221
8	Hàm	n sinh 2	213
	8.1	Ví dụ mở đầu	214
	8.2	Định nghĩa và ví dụ: kỹ thuật tính	218
	8.3	Phân hoạch số nguyên	231

Mục lục iii

	8.5 Toán tử tổng	. 241
9	Hệ thức đệ quy	246
	9.1 Hệ thức đệ quy tuyến tính cấp một	. 247
	9.2 Hệ thức đệ quy tuyến tính thuần nhất cấp cao hệ số hằng	. 256
	9.3 Hệ thức đệ quy không thuần nhất	. 265
	9.4 Phương pháp hàm sinh	. 266
	9.5 Hệ thức đệ quy phi tuyến đặc biệt	. 270
	9.6 Thuật toán chia để trị	. 271
III	Lý thuyết đồ thị và ứng dụng	278
10	Mở đầu về lý thuyết đồ thị	279
	10.1 Định nghĩa và ví dụ	. 279
	10.2 Đồ thị con, phần bù và đẳng cấu đồ thị	. 280
	10.3 Bậc của đỉnh: đường và chu trình Euler	. 281
	10.4 Đồ thị phẳng	. 284
	10.5 Đường và chu trình Hamilton	. 285
	10.6 Tô màu đồ thị và đa thức sắc độ	. 286
11	Cây	287
	11.1 Định nghĩa, tính chất, và ví dụ	. 287
	11.2 Cây có gốc	
	11.3 Cây và sắp xếp	. 293
	11.4 Cây có trọng số và mã tiền tố	. 293
	11.5 Các thành phần liên thông và điểm nối	. 298
12	Tối ưu và tìm kiếm	299
	12.1 Thuật toán đường đi ngắn nhất Dijkstra	. 299
	12.2 Cây bao trùm nhỏ nhất: thuật toán Kruskal, Prim	. 299
	12.3 Mạng vận tải: định lý Max-Flow Min-Cut	. 299
	12.4 Lý thuyết tìm kiếm	. 299
IV	Đại số hiện đại ứng dụng	300
13	Vành và số học đồng dư	301
	13.1 Cấu trúc vành: định nghĩa và ví dụ	. 301
	13.2 Tính chất vành và vành con	. 307
	13.3 Vành các số nguyên modulo n	. 309
	13.4 Đồng cấu và đẳng cấu nhóm, vành	. 315

iν Mục lục

	13.5 Định lý phần dư Trung Quốc	316
	13.6 Mã hóa khóa công khai: Giới thiệu	319
	13.7 Mã hóa khóa công khai: Phương pháp Rabin	321
	13.8 Mã hóa khóa công khai: RSA	326
13	Nhóm, lý thuyết mã, và phương pháp liệt kê Polya	300
	13.1 Định nghĩa, ví dụ, và tính chất cơ bản	300
	13.2 Đồng cấu, đẳng cấu, và nhóm cyclic	301
	13.3 Lớp kề và định lý Lagrange	302
	13.4 Sơ lược về lý thuyết mã	302
	13.5 Khoảng cách Hamming	302
	13.6 Ma trận sinh và kiểm tra chẵn lẻ	302
	13.7 Nhóm các mã: giải mã với coset leaders	303
	13.8 Ma trận Hamming	303
	13.9 Phép đểm và sự tương đương: định lý Burnside	303
	13.10Chỉ số chu trình	306
	13.11Định lý liệt kê Polya	306
14	Trường hữu hạn và thiết kế tổ hợp	308

Phần II Các phép đếm nâng cao

Chương 7

Nguyên lý bù trừ

7.1	Nguyên lý bù trừ
7.2	Nguyên lý bù trừ tổng quát
7.3	Sắp xếp: không vật nào đúng vị trí 221
7.4	Đa thức rook
7.5	Sắp xếp có vị trí bị cấm
7.6	Tóm tắt
7.7	Bài tập bổ sung

7.1 Nguyên lý bù trừ

Trong Chương 3, ta đã nêu hai công thức

$$|A \cup B| = |A| + |B| - |A \cap B|,$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

và gọi là nguyên lý bù trừ cho hai và ba tập.

$$\begin{aligned} & \textbf{Định lý 7.1 (Nguyên lý bù trừ).} \quad \textit{Với các tập hữu hạn } A_1, A_2, \dots, A_n, \\ & |A_1 \cup A_2 \cup \dots \cup A_n| \\ & = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \dots + \\ & + (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_r}| + \dots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_n| \end{aligned}$$

Chứng minh. content...

Một dạng khác của nguyên lý bù trừ, được phát biểu dưới dạng bài toán đếm. Trong tập N phần tử đang xét, giả sử A_i là tập con các phần tử có tính chất p_i , $1 \le i \le n$. Ký hiệu số phần tử thỏa mãn các điều kiện c_{i_1} , c_{i_2} , ..., c_{i_r}

$$N(c_{i_1}c_{i_2}\cdots c_{i_r})=|A_{i_1}\cap A_{i_2}\cap\cdots\cap A_{i_r}|.$$

Khi đó, số phần tử thỏa mãn ít nhất một tính chất c_i nào đó là

$$|A_{1} \cup A_{2} \cup \cdots \cup A_{n}| = \sum_{1 \leq i \leq n} N(c_{i}) - \sum_{1 \leq i < j \leq n} N(c_{i}c_{j}) + \sum_{1 \leq i < j < k \leq n} N(c_{i}c_{j}c_{k}) - \cdots + (-1)^{r-1} \sum_{1 \leq i_{1} < i_{2} < \cdots < i_{r} \leq n} N(c_{i_{1}}c_{i_{2}} \cdots c_{i_{r}}) + \cdots + (-1)^{n-1} N(c_{1}c_{2} \cdots c_{n})$$

và do đó, số phần tử không thỏa mãn tính chất nào là

$$N(\overline{c_1} \ \overline{c_2} \cdots \overline{c_n}) = |\overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_n}| = N - |A_1 \cup A_2 \cup \cdots \cup A_n| =$$

$$N - \sum_{1 \le i \le n} N(c_i) + \sum_{1 \le i < j \le n} N(c_i c_j) - \sum_{1 \le i < j < k \le n} N(c_i c_j c_k) + \cdots +$$

$$+ (-1)^r \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} N(c_{i_1} c_{i_2} \cdots c_{i_r}) + \cdots + (-1)^n N(c_1 c_2 \cdots c_n)$$

Ký hiệu

$$\begin{array}{ll} N_0 = N & N_3 = \sum_{1 \leq i < j < k \leq n} N(c_i c_j c_k), \dots \\ N_1 = \sum_{1 \leq i < j \leq n} N(c_i) & N_r = \sum_{1 \leq i < j \leq n} N(c_{i_1} c_{i_2} \cdots c_{i_r}), \dots \\ N_2 = \sum_{1 \leq i < j \leq n} N(c_i c_j) & N_n = N(c_1 c_2 \cdots c_n) \end{array}$$

với N_r là tổng của $\binom{n}{r}$ số hạng. Ta có

$$N(\overline{c_1}\ \overline{c_2}\cdots\overline{c_n})=N_0-N_1+N_2-N_3+\cdots+(-1)^nN_n.$$

Trong phần tổ hợp lặp, trang 28, ta đã đếm các nghiệm của phương trình $x_1 + x_2 + \cdots + x_n = r$ với điều kiện chặn dưới của các biến. Nếu có một biến bị chặn trên, chẳng hạn $x_1 \le a_1$, thì theo Phần 3.3 ở trang 94, ta đếm gián tiếp các nghiệm này thông qua tập bù của nó, tức là tập nghiệm thỏa mãn $x_1 > a_1$. Trường hợp nhiều biến bị chặn trên, ta dùng nguyên lý bù trừ để đếm các nghiệm này.

Ví dụ 7.1. Phương trình $x_1 + x_2 + x_3 + x_4 = 25$ có bao nhiêu nghiệm nguyên không âm thỏa mãn

a)
$$x_i \le 7, 1 \le i \le 4$$
.
b) $x_1 < 4, x_2 < 6, x_3 \le 10, x_4 > 2$.

Giải. a) Ngoài tính không âm của các nghiệm, xét điều kiện c_i là $x_i > 7$, $1 \le i \le 4$, hay $x_i \ge 8$. Ta cần tính

$$N(\overline{c_1} \ \overline{c_2} \ \overline{c_3} \ \overline{c_4}) = N_0 - N_1 + N_2 - N_3 + N_4$$

trong đó

i) $N_0 = N$ là số nghiệm nguyên không âm của $x_1 + x_2 + x_3 + x_4 = 25$, bằng

$$\binom{4+25-1}{25} = 3276.$$

ii) $N(c_i)$ là số nghiệm nguyên không âm của $x_1+x_2+x_3+x_4=25$ sao cho $x_i\geq 8$, bằng $\binom{4+(25-8)-1}{25-8}=1140$, với $1\leq i\leq 4$. Vì $N_1=\sum_{1\leq i\leq 4}N(c_i)$ gồm $\binom{4}{1}$ số hạng bằng nhau nên

$$N_1 = \binom{4}{1} \times 1140 = .4560.$$

iii) $N(c_ic_j)$ là số nghiệm nguyên không âm của $x_1+x_2+x_3+x_4=25$ thỏa mãn $x_i\geq 8$ và $x_j\geq 8$, với $1\leq i< j\leq 4$, bằng $\binom{4+(25-8-8)-1}{25-8-8}=220$. Suy ra

$$N_2 = \sum_{1 \le i < j \le 4} N(c_i c_j) = {4 \choose 2} \times 220 = 1320.$$

và tiếp theo tương tự

iv)
$$N(c_i c_j c_k) = \begin{pmatrix} 4 + (25 - 8 - 8 - 8) - 1 \\ 25 - 8 - 8 - 8 \end{pmatrix} = 4$$
, suy ra
$$N_3 = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \times 4 = 16.$$

v) $N_4 = 0$.

Do đó
$$N(\overline{c_1} \ \overline{c_2} \ \overline{c_3} \ \overline{c_4}) = 3276 - 4560 + 1320 - 16 + 0 = 20.$$

b) Trong các nghiệm nguyên không âm của $x_1+x_2+x_3+x_4=25$ với $x_4>2$, hay $x_4\geq 3$, xét các điều kiện $c_1,\,c_2,\,c_3$ lần lượt là $x_1\geq 4,\,x_2\geq 6,\,x_3\geq 11$. Cần tính

$$N(\overline{c_1} \ \overline{c_2} \ \overline{c_3}) = N_0 - N_1 + N_2 - N_3$$

trong đó

i) $N_0 = N$ là số nghiệm nguyên không âm của $x_1 + x_2 + x_3 + x_4 = 25$ với $x_4 \ge 3$, bằng $\binom{4 + (25 - 3) - 1}{25 - 3} = 2300$.

ii)
$$N(c_1)$$
 là số nghiệm nguyên không âm của $x_1+x_2+x_3+x_4=25, x_4\geq 3$ sao cho $x_1\geq 4$, bằng $\binom{4+(25-3-4)-1}{25-3-4}=1330$. Tương tự $N(c_2)=\binom{4+(25-3-6)-1}{25-3-6}=969, N(c_3)=\binom{14}{11}=364$. Ta có

$$N_1 = N(c_1) + N(c_2) + N(c_3) = 2663.$$

iii)
$$N_2 = N(c_1c_2) + N(c_1c_3) + N(c_2c_3) = \begin{pmatrix} 15 \\ 12 \end{pmatrix} + \begin{pmatrix} 10 \\ 7 \end{pmatrix} + \begin{pmatrix} 8 \\ 5 \end{pmatrix} = 631.$$

iv)
$$N_3 = N(c_1c_2c_3) = \begin{pmatrix} 4 \\ 1 \end{pmatrix} = 4.$$

Như vậy, $N(\overline{c_1} \ \overline{c_2} \ \overline{c_3}) = 2300 - 2663 + 631 - 4 = 264$.

Định nghĩa 7.1. Cho số nguyên dương n. Hàm Euler phi, ký hiệu Φ (n), là số các số nguyên từ 1 tới n và nguyên tố cùng nhau với n.

Chẳng hạn, $\Phi(2) = 1$, $\Phi(3) = 2$, $\Phi(4) = 2$, $\Phi(5) = 4$, $\Phi(6) = 2$.

```
from sympy import * 2 totient(6) # \rightarrow 2
```

Nếu p nguyên tố, thì $\Phi(p) = p - 1$. Tổng quát

Cho số nguyên dương $n \geq 2$. Theo định lý cơ bản của số học, n có phân tích $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ trong đó p_i là số nguyên tố, $e_i \in \mathbb{Z}^+$, $1 \leq i \leq k$. Khi đó

$$\Phi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right).$$

Chứng minh. Với phân tích nguyên tố này của n, một số nguyên dương m nguyên tố cùng nhau với n nếu p_i không là ước m, $1 \le i \le k$.

Trong các số m từ 1 tới n xét điều kiện

 c_i : p_i là ước của m.

và cần tính

$$N(\overline{c_1} \ \overline{c_2} \cdots \overline{c_k}) = N_0 - N_1 + N_2 - N_3 + \cdots + (-1)^k N_k$$

trong

i) $N_0 = n$

thinhnd@huce.edu.vn [DRAFTING \Rightarrow DO NOT PRINT]

Nguyễn Đức Thinh

ii)
$$N_1 = \sum_{1 \le i \le k} N(c_i) = \sum_{1 \le i \le k} \lfloor \frac{n}{\rho_i} \rfloor = \sum_{1 \le i \le k} \frac{n}{\rho_i}$$

iii) $N(c_ic_j)$, $1 \le i < j \le k$, là số các số từ 1 tới n là bội của p_i và p_j , tức là bội của $lcm(p_i, p_j)$. Mặt khác, p_i, p_j là các số nguyên tố khác nhau, nên $lcm(p_i, p_j) = p_ip_j$. Suy ra $N(c_ic_j) = \lfloor \frac{n}{p_ip_i} \rfloor = \frac{n}{p_ip_i}$. Ta có

$$N_2 = \sum_{1 \le i < j \le k} N(c_i c_j) = \sum_{1 \le i < j < k} \frac{n}{p_i p_j}$$

iv) Tương tự

$$N_{3} = \sum_{1 \leq i < j < l \leq k} N(c_{i}c_{j}c_{l}) = \sum_{1 \leq i < j < l < k} \frac{n}{p_{i}p_{j}p_{l}}, \dots$$

$$N_{r} = \sum_{1 \leq i_{1} < i_{2} < \dots < i_{r} \leq k} N(c_{i_{1}}c_{i_{2}} \cdots c_{i_{r}}) = \sum_{1 \leq i_{1} < i_{2} < \dots < i_{r} \leq k} \frac{n}{p_{i_{1}}p_{i_{2}} \cdots p_{i_{r}}}, \dots$$

$$N_{k} = N(c_{1}c_{2} \cdots c_{k}) = 1 = \frac{n}{p_{1}p_{2} \cdots p_{k}}$$

Các số hạng này có thừa số chung là n, nên

$$N(\overline{c_1} \ \overline{c_2} \cdots \overline{c_k}) = n \Big(1 - \sum_{1 \le i \le k} \frac{1}{p_i} + \sum_{1 \le i < j \le k} \frac{1}{p_i p_j} - \sum_{1 \le i < j < l \le k} \frac{1}{p_i p_j p_l} + \cdots + \\ + (-1)^{r-1} \sum_{1 \le i_1 < i_2 < \dots < i_r \le k} \frac{1}{p_{i_1} p_{i_2} \cdots p_{i_r}} + \cdots + (-1)^k \frac{1}{p_1 p_2 \cdots p_k} \Big)$$

$$= n \sum_{i=1}^k \Big(1 - \frac{1}{p_i} \Big)$$

Trong Phần 5.4, ta thừa nhận trước công thức đếm số toàn ánh. Bây giờ ta sẽ chứng minh công thức đó.

Số toàn ánh từ tập A cỡ m vào B cỡ n là

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{n-k} (n-k)^{m} = \sum_{k=0}^{n-1} (-1)^{k} \binom{n}{n-k} (n-k)^{m}$$

$$= \binom{n}{n} n^{m} - \binom{n}{n-1} (n-1)^{m} + \binom{n}{n-2} (n-2)^{m} - \dots + (-1)^{n-2} \binom{n}{2} 2^{m} + \dots + (-1)^{n-1} \binom{n}{1} 1^{m}.$$

Nguyễn Đức Thinh

[Drafting \Rightarrow Do not Print]

thinhnd@huce.edu.vn

Chứng minh. Nhắc lại định nghĩa, một toàn ánh từ A vào B là một hàm sao cho mỗi phần tử của B đều có tạo ảnh. Giả sử $B = \{b_1, b_2, \dots, b_n\}$, xét điều kiện

 c_i : b_i không có tạo ảnh

thì ta cần tính

$$N(\overline{c_1} \ \overline{c_2} \cdots \overline{c_n}) = N_0 - N_1 + N_2 - N_3 + \cdots + (-1)^n N_n$$

trong đó

- i) N_0 là số hàm từ tập A cỡ m vào tập B cỡ n, bằng n^m .
- ii) $N(c_i)$, $1 \le i \le n$, là số hàm từ A vào B, sao cho b_i không có tạo ảnh. Mỗi hàm như vậy tương ứng với hàm từ A cỡ m vào $B \{b_i\}$ cỡ n 1, nên $N(c_i) = (n 1)^m$. Suy ra $N_1 = \binom{n}{1}(n-1)^m$.

Tương tự
$$N_2 = \binom{n}{2}(n-2)^m, \dots, N_k = \binom{n}{k}(n-k)^m.$$

Thay các kết quả vào công thức của $N(\overline{c_1}\ \overline{c_2}\cdots \overline{c_n})$, ta được biểu thức cần chứng minh.

Ví du về bài toán ghép cặp:

Ví dụ 7.2. Cho *n* hộp đánh số từ 1 đến *n*, và *n* vật cũng đánh số từ 1 đến *n*. Có bao nhiều cách xếp *n* vật vào *n* hộp sao cho mỗi hộp một vật, và không có vật nào vào đúng hộp cùng số với nó.

Giải. Xét điều kiện c_i : vật i xếp vào hộp i, $1 \le i \le n$. Ta cần tính

$$N(\overline{c_1} \ \overline{c_2} \cdots \overline{c_n}) = N_0 - N_1 + N_2 - N_3 + \cdots + (-1)^n N_n$$

trong đó

- i) N_0 là số cách xếp n vật vào n hộp mà mỗi hộp một vật. Theo quy tắc nhân, $N_0 = n!$
- ii) $N(c_i)$ là số cách xếp n vào n hộp sao cho mỗi hộp một vật, và hộp i chứa vật i, bằng $1 \times (n-1)! = (n-1)!$. Suy ra

$$N_1 = {n \choose 1}(n-1)! = \frac{n!}{1!(n-1)!}(n-1)! = \frac{n!}{1!}$$

iii) Tương tư

$$N_2 = \binom{n}{2}(n-2)! = \frac{n!}{2!}$$
 $N_r = \binom{n}{r}(n-r)! = \frac{n!}{r!},...$
 $N_3 = \binom{n}{3}(n-3)! = \frac{n!}{3!},...$ $N_n = 1$

Các số hạng có thừa số chung là n! nên

$$N(\overline{c_1} \ \overline{c_2} \cdots \overline{c_n}) = n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^n}{n!} \right]$$

Theo ví dụ trên, xác suất để không có vật nào xếp vào đúng hộp là

$$p_n = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}$$

chính là khai triển Maclaurin tới cấp n của e^x tại x = -1, xem [James-Stewart]. Do đó

$$\lim_{n\to\infty} p_n = e^{-1}.$$

Tương tự phương pháp tìm số Euler phi, xét ví dụ sau

Ví dụ 7.3. Từ 1 đến 100 có bao nhiêu số không chia hết cho số nào trong ba số 4, 6, và 10.

Giải. Trong các số nguyên m từ 1 đến 100, xét điều kiện

- 1) c₁: m là bội của 4
- 2) c_2 : m là bội của 6
- 3) *c*₃: *m* là bội của 10

thì ta cần tính

$$N(\overline{c_1} \ \overline{c_2} \ \overline{c_3}) = N_0 - N_1 + N_2 - N_3$$

trong đó

i)
$$N_0 = 100$$

ii)
$$N_1 = N(c_1) + N(c_2) + N(c_3) = \lfloor \frac{100}{4} \rfloor + \lfloor \frac{100}{6} \rfloor + \lfloor \frac{100}{10} \rfloor = 51$$

iii) $N(c_1c_2)$ là số các số từ 1 đến 100 chia hết cho cả 4 và 6, tức là chia hết cho lcm(4, 6) = 12. Vì thế

$$N_2 = \left\lfloor \frac{100}{12} \right\rfloor + \left\lfloor \frac{100}{20} \right\rfloor + \left\lfloor \frac{100}{30} \right\rfloor = 16$$

iv)
$$N_3 = N(c_1c_2c_3) = \lfloor \frac{100}{\text{lcm}(4,6,10)} \rfloor = \lfloor \frac{100}{60} \rfloor = 1.$$

Do đó
$$N(\overline{c_1} \ \overline{c_2} \ \overline{c_3}) = 100 - 51 + 16 - 1 = 64$$
.

Nguyễn Đức Thịnh

Ví dụ 7.4. Có bao nhiều hoán vị của 26 chữ cái, sao cho trong đó không xuất hiện từ HUCE, IT, AM, và PS.

Giải. Ký hiệu c_1 , c_2 , c_3 , c_4 lần lượt là điều kiện cho biết hoán vị chứa từ HUCE, IT, AM, và PS. Ta cần tính

$$N(\overline{c_1} \ \overline{c_2} \ \overline{c_3} \ \overline{c_4}) = N_0 - N_1 + N_2 - N_3 + N_4$$

trong đó

- i) N_0 là số hoán vị của 26 chữ cái, bằng 26!
- ii) $N(c_1)$ là số hoán vị của các 23 vật HUCE, A, B, D, F,..., Z, bằng 23!. Tương tự, $N(c_2) = N(c_3) = N(c_4) = 25!$. Suy ra $N_1 = 23! + 3 \cdot 25!$
- iii) $N(c_1c_2)$ là số hoán vị của các vật HUCE, IT, A, B, D,..., bằng 22!. Tương tự, $N(c_1c_3) = N(c_1c_4) = 22!$, $N(c_2c_3) = N(c_2c_4) = N(c_3c_4) = 24!$. Suy ra $N_2 = 3 \cdot 22! + 3 \cdot 24!$
- iv) $N(c_1c_2c_3) = N(c_1c_2c_4) = N(c_1c_3c_4) = 21!, N(c_2c_3c_4) = 23!.$ Ta được $N_3 = 3 \cdot 21! + 23!$
- v) $N_4 = N(c_1c_2c_3c_4) = 20!$

Do đó

$$N(\overline{c_1} \ \overline{c_2} \ \overline{c_3} \ \overline{c_4}) = 26! - (23! + 3 \cdot 25!) + (3 \cdot 22! + 3 \cdot 24!) - (3 \cdot 21! + 23!) + 20!$$

= 147 383 944 \cdot 20!

Bài tấp 7.1

7.1. Có bao nhiêu số nguyên từ 1 đến 2022

- a) không chia hết cho mọi số 2, 3, 5.
- b) không chia hết cho mọi số 2, 3, 5, 7.
- c) không chia hết cho mọi số 2, 3, 5, nhưng chia hết cho 7.

7.2. Có bao nhiều nghiệm nguyên của phương trình $x_1 + x_2 + x_3 + x_4 = 19$ thỏa mãn

a) $x_i \ge 0, 1 \le i \le 4$

- b) $0 < x_i < 8, 1 < i < 4$
- c) $0 \le x_1 \le 5, 0 \le x_2 \le 6, 0 \le x_3 \le 7, 0 \le x_4 \le 8$
- d) $-5 \le x_i \le 10, 1 \le i \le 4$
- **7.3.** Đếm các số nguyên dương $x \le 9$ 999 999 sao cho tổng các chữ số của x bằng 31.

[Drafting \Rightarrow Do not Print]

Nguyễn Đức Thinh

7.4. Đếm các hoán vị của các chữ cái a, b, c, \ldots, z không chứa mọi từ spin, game, path, net.

- **7.5.** Tính $\Phi(n)$ với n bằng
 - a) 51
- b) 420
- c) 12300
- d) 5186
- e) 5187
- f) 5188

- **7.6.** Cho $n \in \mathbb{Z}^+$. Xác định
 - a) $\Phi(2^n)$

- b) $\Phi(2^n p, \text{ với } p \text{ là số nguyên tố lẻ})$
- **7.7.** Với số nguyên dương n nào thì $\Phi(n)$ lẻ?
- **7.8.** Với $m, n \in \mathbb{Z}^+$, chứng minh $\Phi(n^m) = n^{m-1}\Phi(n)$.
- **7.9.** Tìm ba số nguyên dương n để $\Phi(n) = 16$.
- **7.10.** Với số nguyên dương nào của n thì $\Phi(n)$ là lũy thừa của 2?
- **7.11.** Với số nguyên dương nào của n thì 4 là ước của $\Phi(n)$?

7.2 Nguyên lý bù trừ tổng quát

Định lý 7.2 (Nguyên lý bù trừ tổng quát). Với $0 \le m \le n$, số phần tử thỏa mãn đúng m điều kiện trong $c_1, c_2, ..., c_n$ là

$$E_{m} = N_{m} - \binom{m+1}{1} N_{m+1} + \binom{m+2}{2} N_{m+2} - \dots + (-1)^{r} \binom{m+r}{r} N_{m+r} + \dots + (-1)^{n-m} \binom{n}{n-m} N_{n}.$$

Trường hợp m = 0, ta có Định lý 7.1.

Chứng minh.

Hệ quả 7.1. Số phần tử thỏa mãn ít nhất m điều kiện trong n điều kiện

$$L_{m} = N_{m} - {m \choose m-1} N_{m+1} + {m+1 \choose m-1} N_{m+2} + \dots + (-1)^{r} {m+r-1 \choose m-1} N_{m+r} + \dots + (-1)^{r} {m+r-1 \choose m-1$$

Nguyễn Đức Thịnh

[Drafting \Rightarrow Do not Print]

thinhnd@huce.edu.vn

$$+ (-1)^{n-m} \binom{n-1}{m-1} N_n.$$

Chứng minh. content...

7.3 Sắp xếp: không vật nào đúng vị trí

7.4 Đa thức rook

7.5 Sắp xếp có vị trí bị cấm

7.6 Tóm tắt

7.7 Bài tập bổ sung

7.12. Có bao nhiều số nguyên từ 1 đến 500 không chia hết cho mọi số 2, 3, 5, 6, 8, 10?

7.13. Có bao nhiêu số tự nhiên nhỏ hơn 1 000 000 có tổng các chữ số không quá 37?

7.14. Với $n \in \mathbb{Z}^+$, chứng minh nếu $\Phi(n) = n - 1$ thì n nguyên tố.

7.15. Với $n \in \mathbb{Z}^+$, chứng minh

a) $\Phi(2n) = 2\Phi(n)$ nếu n chẵn

b) $\Phi(2n) = \Phi(n)$ nếu n lẻ

7.16. Cho $m,n\in\mathbb{Z}^+, d=\gcd(m,n).$ Chứng minh $\varPhi(mn)=\varPhi(m)\varPhi(n)\frac{d}{\varPhi(d)}.$

Tài liệu tham khảo

- [1] NumPy community. *NumPy User Guide*. phiên bản 1.22.4. 535 trang. URL: https://numpy.org/doc/stable.
- [2] Judi J. McDonald David C. Lay Steven R. Lay. *Linear Algebra and Its Applications*. phiên bản 6. Pearson, 2022. 755 trang.
- [3] Ralph P. Grimaldi. *Discrete and Combinatorial Mathematics: An Applied Introduction*. phiên bản 5. Pearson Addison-Wesley, 2004. 992 trang.
- [4] Ralph P. Grimaldi. *Discrete and Combinatorial Mathematics: Instructor's Solutions Manual.* phiên bản 5. Pearson Addison-Wesley, 2004. 465 trang.
- [5] Kenneth H. Rosen. Discrete Mathematics and Its Applications. phiên bản 8. McGraw-Hill Education, 2019. 1118 trang.
- [6] Edward R. Scheinerman. Mathematics: A Discrete Introduction. phiên bản 3. Brooks/-Cole, Cengage Learning, 2013. 506 trang.
- [7] Watson S. Stewart J. Clegg D. *Calculus: Early Transcendentals*. phiên bản 9. Cengage Learning, 2011. 1421 trang.
- [8] SymPy Development Team. *SymPy Documentation*. phiên bản 1.8. 2750 trang. URL: https://github.com/sympy/sympy/releases.

Tài liệu tham khảo