

Lecture 03:

Linear Time Sorting,

Order Statistics

and Quicksort (Reprise)

Review of Heapsort and Quicksort

Heapsort

- –What is Max-Heap property?
- –Max-Heapify() and Build-Max-Heapify()
- Heapsort algorithm and its complexity
- Quicksort
 - -What're important properties of Quicksort?
 - –What're the key ideas of Quicksort?
 - –What're two key factors to decide its performance?
 - –Best-case? Worst-case? Average-case?

Gnome Sort (Stupid Sort)

- Gnome (stupid) sort is the simplest sort algorithm
 - proposed by Dr. Hamid Sarbazi-Azad in 2000
 - not recursive and only one loop

```
StupidSort(array A, integer n)

1   i \leftarrow 0;

2   while ( i < n ) do

3   if ( i=0 \mid \mid A[i] >= A[i-1])

4   i \leftarrow i+1;

5   else

6   swap( A[i], A[i-1]);

7   i \leftarrow i-1;
```

Current array	pos	Condition in effect	Action to take
[5 , 3, 2, 4]	0	pos == 0	increment pos
[5, 3, 2, 4]	1	a[pos] < a[pos-1]	swap, decrement pos
[3, 5, 2, 4]	0	pos == 0	increment pos
[3, 5, 2, 4]	1	a[pos] ≥ a[pos-1]	increment pos
[3, 5, 2, 4]	2	a[pos] < a[pos-1]	swap, decrement pos
[3, 2 , 5, 4]	1	a[pos] < a[pos-1]	swap, decrement pos
[2 , 3, 5, 4]	0	pos == 0	increment pos
[2, 3, 5, 4]	1	a[pos] ≥ a[pos-1]	increment pos
[2, 3, 5, 4]	2	a[pos] ≥ a[pos-1]	increment pos:
[2, 3, 5, 4]	3	a[pos] < a[pos-1]	swap, decrement pos
[2, 3, 4, 5]	2	a[pos] ≥ a[pos-1]	increment pos
[2, 3, 4, 5]	3	a[pos] ≥ a[pos-1]	increment pos
[2, 3, 4, 5]	4	pos == length(a)	finished

- implement your own stupidsort
- runtime complexity? worst-case? average-case?

ECM5605(S20) L03-3

Comparison-based Sorting

- Many sorting algorithms are comparison-based.
 - –sort by making comparisons between pairs of objects
 - -Examples: selection sort, bubble sort, shell sort, insertion sort, heap sort, merge sort, quick sort, ...
- We can derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, $x_1, x_2, ..., x_n$.

ECM5605(S20) L03-4

Counting Comparisons

- Let us just count comparisons then.
- Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree
 - □ ⇒ left branch

Question: number of leaf nodes? Answer: n.

Lower Bound of Comparison Tree

- Worst-case # of comparisons = # of edges longest path (height) in the tree T of size n
 - -at most 2^h leaves if T is binary
 - -Because $2^h \ge n! \Rightarrow h \ge \lg(n!)$
- Any comparison-based algorithm takes time at least Why? Stirling's approximation: $h \ge \lg(n!) = \Theta(n \lg n)$ Stirling's approximation: $n! > (\frac{n}{n})^n$
- Therefore, any comparison-based sorting algorithm must run in $\Omega(n \lg n)$ time.
 - Mergesort and heapsort are asymptotically optimal comparison-based sorts

Linear Time Sorts

- Can we sort faster than $\Omega(n \lg n)$?
 - -Yes, if we do not *compare* items
 - But that also means we need more information about the structure of items

- Examples of sorting algorithms that do not use comparisons
 - –Counting-Sort
 - -Radix-Sort
 - -Bucket-Sort

Counting-Sort

- Assume that input integers are known in [1..k]
- Basic idea:
 - –Count (accumulate) # of elements ≤ element i
 - –Use that # to place i in position k of the new sorted array
- Features: no comparisons!
 - -Stable: 2 elements having the same value appear in the same order in the sorted sequence as in the input sequence
 - -Not *in-place*: O(n) array to hold sorted output + O(k) array for scratch storage

Example of Counting-Sort

```
Counting-Sort(A,B,k)
1 for i ←1 to k do C[i] ← 0
2 for j ←1 to n do C[A[j]] ← C[A[j]] + 1
3 for i ←2 to k do C[i] ←C[i] + C[i-1]
4 for j ←n downto 1 do
5 B[C[A[j]]] ← A[j]
6 C[A[j]] ← C[A[j]] - 1
```

Runtime complexity? O(n+k)

Radix-Sort

- Assumption: a list of n items; each item has d digits where $d_i \in [1..k]$, $1 \le i \le d$
- Basic idea:
 - Using a stable sort on each digit
 - Start from least-significant bit to most-significant bit (right ⇒ left)
- Pseudocode of Radix-Sort

```
Radix-Sort(A,d,k)

1 for i \leftarrow 1 to d do

2 stable-sort(A,d,i);

3 /* apply a stable sort to A on d_i*/
```

- Can use Counting-Sort as the stable sort in line 2
- Worst-case complexity: O(d(n+k))

Proof of Radix Sort

- Sketch of an inductive argument (induction on the number of passes):
 - -Assume lower-order digits $\{j: j < i\}$ are sorted
 - –Show that sorting next digit i leaves array correctly sorted:
 - (case1) If two digits at position *i* are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
 - (case2) If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

Example of Radix-Sort

```
Radix-Sort(A,d,k)

1 for i \leftarrow 1 to d do

2 Counting-Sort(A,d,i);

3 /* apply Couting-Sort to \mathbf{A} on \mathbf{d_i}*/
```

```
7 2 0
3 5 5
                                3 2 9
                     3 2 9
                                3 5 5
          4 3
                     4 3 6
                                4 3 6
          4 5
                     8 3 9
8 3
    9
                                4 5 7
                     3 5 5
          6 5 7
                                6 5 7
          3
            2
                     4 5 7
                                7 2 0
                     6 5 7
                                839
```

Can sort from the most significant bit? No! But why? Not stable! Can you imagine what will happen?

Example of Radix-Sort (cont'd)

- A variation of application for Radix-Sort
 - Sort 2 digits for each card: d₁d₂
 - $-d_1 = \wedge \vee \wedge \diamond$: base 4 and its order: $\diamond \leq \wedge \leq \vee \leq \wedge$
 - $-d_2 = A, 2, 3, ...J, Q, K$: base 13 and its order: $A \le 2$ $\le 3 \le ... \le J \le Q \le K$
 - Therefore, ♦2 ≤ ♣2 ≤ ♥5 ≤ ♠K

Any other applications??

Summary on Sort (1/2)

comparison-based sort						
Algorithm		in-place?				
	best-case	avg-case	worst-case	m-place !		
insertion	$\mathrm{O}(n)$	$O(n^2)$	$O(n^2)$	Yes		
merge	$O(n \lg n)$	$O(n \lg n)$	$O(n \lg n)$	No		
heap	$O(n \lg n)$	$O(n \lg n)$	$O(n \lg n)$	Yes		
quick	$O(n \lg n)$	$O(n \lg n)$	$O(n^2)$	Yes		
non-comparison-based sort						
counting	O(n+k)	O(n+k)	O(n+k)	No		
radix	O(d(n+k))	O(d(n+k))	O(d(n+k))	No		
bucket		$O(n^2)$		No		

- Q: Which are stable sorts?
 - ⇒ insertion sort, merge sort, counting sort and radix sort

Summary on Sort (2/2)

- Cool! Why not always using counting sort?
 - Because it depends on range k of elements
- Ex: we cannot afford counting sort to sort 32
 bit integers because k grows too fast
 - $-2^{32} = 4,294,967,296.$
- Another problem: how do we sort 1 million 64bit numbers efficiently? Hint: radix sort
 - -Treat as 4-digit radix 2¹⁶ numbers
 - –Can sort in just four passes with radix sort!
 - -Quicksort requires approximately $\lg n = 20$ operations per number

Order Statistics (Selection Problem)

- Definition: The i-th order statistic in a set of n elements is the i-th smallest element
 - *Minimum*: 1-st order statistic
 - *Maximum*: *n*-th order statistic
 - **Median**: $(\lfloor (n+1)/2 \rfloor \text{ and } \lceil (n+1)/2 \rceil)$ order statistic
- Finding i-th order statistics ⇒ a.k.a. The Selection Problem
 - input: a set \boldsymbol{A} of \boldsymbol{n} (distinct) elements and a number $\boldsymbol{i}, \ 1 \le \boldsymbol{i} \le \boldsymbol{n}$
 - output: element $x \in A$ that is larger than exactly (i-1) elements of A
- Naïve idea: sort A into A' and return A'[i]
 - Time complexity: O(nlgn) but can we do better?

Finding Minimum/Maximum

```
Minimum(A)

1 min ← A[1]

2 for i ←2 to n do

3 if min > A[i]

4 then min ← A[i]

5 return min
```

```
Maximum(A)

1 max ← A[n]

2 for j ← (n-1) downto 1 do

3 if max < A[j]

4 then max ← A[j]

5 return max
```

- This algorithm executes exactly (n-1) comparisons
 - -Can we do better?
 - Expected # of times executed for line 4: O(lgn)⇒ Why and how?
- Naïve simultaneous minimum and maximum requires
 (2n-2) comparisons
 - Can we do better? Yes! The optimal is (3n/2-2).

Simultaneous Minimum/Maximum

T(n): # of comparisons used for n elements

$$T(n) = \begin{cases} 1, & \text{if } n = 2\\ 2T(n/2) + 2, & \text{if } n > 2 \end{cases}$$
Assume $n = 2^k$

$$T(n) = 2T(n/2) + 2$$

$$= 2(T(n/4) + 2) + 2$$

$$= 2^{k-1} + 2^k - 2$$

$$= 3n/2 - 2 \square$$

Finding *i*-th order statistic

If we apply Minimum algorithm to find the i-th order statistics, then we need

$$-\mathsf{T}(n) = \mathbf{O}(in)$$

- Therefore, finding the median will require
 - $-\mathsf{T}(n)=\mathbf{O}(n^2)$
 - -How come?? even worse than the best sorting algorithm $O(n \lg n)$
- Do we have an alternative to find i-th order statistic, like in O(n)
 - -Hint: Quicksort idea

Selection in Linear Expected Time

```
RAND-SELECT(A, p, r, i) /* find i-th order */

1 if p = r then return A[p]

2 q ← RAND-PARTITION(A, p, r)

3 k ← q-p+1 /* k = rank(A[q]) */

4 if i = k then return A[q]

5 if i < k then return RAND-SELECT(A, p, q, i)

6 else return RAND-SELECT(A, q+1, r, i-k)
```


- Unlucky: $T(n)=T(n-1)+\Theta(n)=\Theta(n^2) \leftarrow bad partition$
- Lucky: $T(n)=T(9n/10)+\Theta(n)=\Theta(n) \Leftarrow good partition$

Example of RAND-SELECT

Partition \Rightarrow find k=4 and k<i : select 7-4=3-th order stat.

Partition \Rightarrow find k=3 and k=i return A[q]

Stop!! ⇒ 7-th order statistics is 11. Done!!

Average-case Runtime

- Average-case runtime ≡ expected runtime E[T(n)]
 where
 - Let **T**(*n*) = the random variable for the running time of RAND-SELECT on an input of size *n* assuming random numbers are independent.
 - For k=0,1,...,(n-1), define *indicator random variable*

$$x_k = \begin{cases} 1, & \text{if RAND-PARTITION can generate a } k : (n - k - 1) \text{ split} \\ 0, & \text{otherwise} \end{cases}$$

• $E[x_k] = Pr\{x_k = 1\} = 1/n$, since all splits are equally likely, assuming elements are distinct.

Analysis of Expected Time

 To obtain the upper bound, assume the *i*—th order statistic always fall into the larger side of the partition

$$T(n) = \begin{cases} T(\max\{0, n-1\} + \Theta(n)) & \text{if } 0: (n-1) \text{ split,} \\ T(\max\{1, n-2\} + \Theta(n)) & \text{if } 1: (n-2) \text{ split,} \\ \dots \\ T(\max\{n-1, 0\} + \Theta(n)) & \text{if } (n-1): 0 \text{ split.} \end{cases}$$

$$= \sum_{k=0}^{n-1} x_k (T(\max\{k, n-k-1\}) + \Theta(n)) \text{ indicator random variable}$$

Take expectations on both sides

$$E[T(n)] = E[\sum_{k=0}^{n-1} x_k T(\max\{k, n-k-1\}) + \Theta(n)]$$

Calculating Expectation

$$\begin{split} E[T(n)] &= E\left[\sum_{k=0}^{n-1} x_k (T(\max\{k, n-k-1\}) + \Theta(n))\right] \\ &= \sum_{k=0}^{n-1} E[x_k (T(\max\{k, n-k-1\}) + \Theta(n))] \\ &= \sum_{k=0}^{n-1} E[x_k] \cdot E[T(\max\{k, n-k-1\}) + \Theta(n)] \\ &= \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \\ &\leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \Theta(n) \end{split}$$

Analysis of Expected Time

• Solve
$$T(n) \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} T(k) + \Theta(n)$$

– by substitution method, then assume T(n)=cn

$$T(n) \leq \frac{2}{n} \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n-1} ck + \Theta(n) \leq \frac{2c}{n} \sum_{k=\lfloor \frac{n}{2} \rfloor}^{n-1} k + \Theta(n)$$

$$= \frac{2c}{n} \left[\sum_{k=1}^{n-1} k - \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor - 1} k \right] + \Theta(n)$$

$$= \frac{2c}{n} \left[\frac{n(n-1)}{2} - \frac{1}{2} \left(\lfloor \frac{n}{2} \rfloor - 1 \right) \lfloor \frac{n}{2} \rfloor \right] + \Theta(n)$$

$$\leq c(n-1) - \frac{c}{n} \binom{n}{2} - 1 \binom{n}{2} + \Theta(n)$$

$$= c \left(\frac{3n}{4} - \frac{1}{2} \right) + \Theta(n) = cn - \left(\frac{cn}{4} - \Theta(n) \right) = \Theta(n) \quad \Box$$

Summary (Part 1)

- Implement your own i-th order statistics
- Comparison-based vs. Non-comparison-based sorting algorithms
 - Which one is optimal comparison-based sort?
 - What's lower bound for comparison-based sort?
 - Why cannot we always use linear-time sorting?
- Order Statistics
 - How to achieve (3n/2-2) comparisons for simultaneous minimum/maximum operations
 - What is the selection problem?
 - How to derive a O(n) algorithm to find the *i*-th order statistic

Randomized Quicksort (Revisited)

- Expect to get average-case behavior of Quicksort on all inputs
 - Randomization!!
- Two approaches
 - 1. Randomly permute input
 - 2. Choose the pivot randomly at each iteration

RANDOMIZED-PARTITION(A, p, r)

- $1 i \leftarrow \mathsf{RANDOM}(p, r)$
- 2 exchange $A[r] \leftrightarrow A[i]$
- 3 return PARTITION(A, p, r)

RANDOMIZED-QUICKSORT(A, p, r)

- 1 if p < r then
- 2 $q \leftarrow RANDOMIZED-PARTITION(A, p, r)$
- 3 RANDOMIZED-QUICKSORT(A, p, q)
- 4 RANDOMIZED-QUICKSORT(A, q+1, r)

Analyze Randomized Quicksort

- Randomization will result in average-case behavior ≡ expected runtime E[*T(n)*] where
 - Let *T(n)* = the random variable for the running time of RANDOMIZED-QUICKSORT on an input of size *n* assuming random numbers are independent.
 - For k=0,1,...,(n-1), define *indicator random variable*

$$x_k = \begin{cases} 1, & \text{if RAND-PARTITION can generate a } k : (n - k - 1) \text{ split} \\ 0, & \text{otherwise} \end{cases}$$

• $E[x_k] = Pr\{x_k = 1\} = 1/n$, since all splits are equally likely, assuming elements are distinct.

Analysis of Expected Time

 To obtain the upper bound, assume the *i*-th order statistic always fall into the larger side of the partition

$$T(n) = \begin{cases} T(0) + T(n-1) + \Theta(n) & \text{if } 0: (n-1) \text{ split,} \\ T(1) + T(n-2) + \Theta(n) & \text{if } 1: (n-2) \text{ split,} \\ \dots \\ T(n-1) + T(0) + \Theta(n) & \text{if } (n-1): 0 \text{ split.} \end{cases}$$

$$= \sum_{k=0}^{n-1} x_k (T(k) + T(n-k-1) + \Theta(n))$$

Take expectations on both sides

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} x_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

Calculating Expectation

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} x_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

$$= \sum_{k=0}^{n-1} E\left[x_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

$$= \sum_{k=0}^{n-1} E\left[x_k\right] \cdot E\left[T(k) + T(n-k-1) + \Theta(n)\right]$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} E\left[T(k) + T(n-k-1)\right] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=0}^{n-1} E\left[T(k)\right] + \Theta(n)$$

Why??

Analysis of Expected Time (cont'd)

• Solve
$$T(n) \le \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n)$$

by substitution method, then assume $T(n) = an \lg n + b$

$$T(n) \leq \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \Theta(n)$$

$$= \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + \frac{2b}{n} (n-1) + \Theta(n)$$

$$\sum_{k=1}^{n-1} k \lg k = \left(\sum_{k=1}^{\lceil \frac{n}{2} \rceil - 1} k \lg k + \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1} k \lg k\right)$$

$$\leq (\lg n - 1) \sum_{k=1}^{\lceil \frac{n}{2} \rceil - 1} k + \lg n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1} k$$

$$\leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$$
Why??

Analysis of Expected Time (cont'd)

$$T(n) \le \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + \frac{2b}{n} (n-1) + \Theta(n)$$

$$= \frac{2a}{n} (\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2) + \frac{2b}{n} (n-1) + \Theta(n)$$

$$= an \lg n - (\frac{an}{4} - \Theta(n))$$

$$= \Theta(n \lg n)$$

 Practically, Quicksort runs 2X-3X faster than Mergesort or Heapsort even if it's not a optimal sorting in worst-case.

O(n) Algorithm for i-th Order Statistic

- Works fast: linear expected time.
 - Excellent algorithm in practice.
 - -But, the worst case is *very* bad: $\Theta(n^2)$.
- Q. Is there an algorithm that runs in linear time in the worst case?
 - –Yes, due to Blum, Floyd, Pratt, Rivest and Tarjan in 1973 (BFPRT-Select)
 - Key idea: Guarantee a good split recursively to have a balance partition sizes
 - –Pure theoretical interests: Non-obvious & unintuitive

BFPRT-SELECT Pseudocode

BFPRT-SELECT(i, n)

- 1 Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2 Recursively SELECT the median *x* of the *n*/5 group medians to be the pivot.
- 3 Partition around the pivot x. Let k= rank(x)
- 4 if i = k then return x
- 5 elseif *i*< *k*
- 6 then recursively SELECT the (i)-th smallest element in the lesser part
- 7 else recursively SELECT the (*i*–*k*)-th smallest element in the *greater* part

Find a good split

Same as RAND-SELECT

Choosing the Pivot (1/3)

- Lesser Elements
- Median
- Greater
 Elements

One group of 5 elements.

Choosing the Pivot (2/3)

All groups of 5 elements.

(And at most one smaller group.)

Choosing the Pivot (3/3)

Definitely Lesser Elements

Definitely Greater Elements

Must recur on all elements <u>outside</u> one of these boxes. How many?

Count elements outside smaller box

At most
$$5 \left| \left\lceil \frac{n}{5} \right\rceil / 2 \right| + 2 \left\lceil \left\lceil \frac{n}{5} \right\rceil / 2 \right\rceil \le \frac{7n}{10} + 7$$

Equivalently, must recur on all elements <u>not</u> <u>inside</u> one of these smaller boxes. How many?

At most
$$n - \left(3\left(\left\lceil \left\lceil \frac{n}{5} \right\rceil / 2 \right\rceil - 1\right) + 1\right) \le \frac{7n}{10} + 2$$

Count elements in smaller box & pivot

$$\lceil \lceil n/5 \rceil / 2 \rceil$$
 - 1 groups of 3

Runtime Analysis of SELECT

$$T(n) = T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\frac{7n}{10} + 2\right) + O(n)$$

■ By substitution method, then assume T(k)=ck

$$T(n) = T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7n}{10} + 2\right) + O(n)$$

$$= c(\frac{n}{5}) + c(\frac{7n}{10} + 2) + O(n)$$

$$= \frac{9cn}{10} + 2c + O(n)$$

$$= cn - (\frac{cn}{10} - 2c - O(n))$$

$$= O(n)$$

Simplified Point of View

more than $\frac{1}{4}$ elements $\geq x$

Simplified Point of View (cont'd)

- Partition original group into n/5 subgroups
- Select median-of-median from only n/5 median elements
 - -More than n/4 elements $\leq x$
 - -More than n/4 elements $\geq x$
- If $i \neq k \Rightarrow$ recursively select median-of-median from at most 3n/4 elements
- If $i = k \Rightarrow done!$

$$T(n) = T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\frac{3n}{4}\right) + O(n) \qquad \text{Prove it.}$$

Summary (Part 2)

- Order Statistics
 - –How to define? How to analyze the average-case of RAND-SELECT?
 - –What's the key idea to have a O(n) Algorithm?
 - –Quiz: Why groups of 5? Can we use 3?
- Quicksort Review
 - –How to analyze the average-case?
 - -How to avoid the worst-case?
 - -Can we guarantee a $O(n \lg n)$ quicksort??
- Next Lecture ⇒ Dynamic Programming