Bachelor Thesis Artificial Intelligence

EFFICIENT GENERATION OF JUSTIFICATIONS

PROBLEM DESCRIPTION

- Group Decision
- **Voting Rules & Axioms**
- Justification
- **Efficient**

RESEARCH QUESTION

- A. Boixel, U. Endriss (2020)
 - Justification = Explanation + Normative Basis
- Efficiency

METHOD

- **Literature research**
- **Designing the algorithms**
- > Evaluating the efficiency

MODEL

$$N^* = \{ \mathbf{1}, \mathbf{1} \}$$

Alternatives

$$X = \{ \delta \delta, \dot{\kappa}, \dot{\kappa} \}$$

Preferences

$$\mathcal{L}(X) = \{\delta \tilde{o} > \tilde{\wedge} > \tilde$$

Instances of axioms $Inst_{N^*,X}$

INSTANCE

- **E.g. Pareto Principle**
- Axiom $y \notin F(>_N)$ if $\{i | x >_i y\} = N$
- Instance a > b > c

- **Limit number of instances**
- > 1 profile axioms
 - > e.g. Pareto Principle
- > 2 profile axioms
 - > e.g. Anonymity

- > Target Profile
- Instances

Profile 2

Example

> Breath-first approach

SUPERVISOR: A. BOIXEL (ILLC)

Nienke Reints AMSTERDAM, MAY 20TH

Example

NEXT MONTH

- > Implementation
- **Evaluation**