Работу выполнил Самохин Валентин, 676 гр. под руководством Артанова А. А.

Маршрут IX № 6 21 апреля 2017 г.,

## Лабораторная работа № 2.1.3:

# Определение $C_p/C_v$ по скорости звука в газе

#### Цель работы:

- 1. измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу;
- 2. определение показателя адиабаты с помощью уравнения состояния идеального газа.

**В работе используются:** звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; раздвижная труба; тепло изолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

**Теоретическая справка.** Скорость распространения звуковой волны в газах зависит от показателя адиабаты  $\gamma$ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}}. (1)$$

Преобразуя формулу 1, найдем

$$\gamma = \frac{\mu}{RT}c^2. \tag{2}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Если длина трубы L равна целому числу полуволн  $L=n\lambda/2$ , то волна, отраженная от торца трубы, вернувшаяся к ее началу и вновь отраженная, совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс.

При звуковых колебаниях слои газа, прилегающие к торцам трубы, не испытывают смещения (узел смещения). Узлы смещения повторяются по всей длине трубы через  $\lambda/2$ . Между узлами находятся максимумы смещения (ny-u-mu).

Скорость звука с связана с его частотой f и длиной волны  $\lambda$  соотношением

$$c = \lambda f. \tag{3}$$

**Методы измерений.** Подбор условий, при которых возникает резонанс, можно производить двояко:

1. При неизменной частоте f и, как следствие, длины звуковой волны  $\lambda$  можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Возникновение резонанса легко наблюдать на осциллографе по резкому увеличению амплитуды колебаний. Для последовательных резонансов имеем

$$L_n = n\frac{\lambda}{2}, \quad L_{n+1} = (n+1)\frac{\lambda}{2}, \quad L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2},$$
 (4)

т. е.  $\lambda/2$  равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k. Скорость звука находится по формуле 3.

2. При постоянной длине трубы можно **изменять частоту звуковых колебаний**. В этом случае следует плавно *изменять частоту* f звукового генератора, а следовательно, и длину звуковой волны  $\lambda$ . Для последовательных резонансов получим

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k).$$
 (5)

Из уравнений 3 и 5 имеем

$$f_1 = \frac{c}{\lambda_1} = \frac{c}{2L}n, \quad f_2 = \frac{c}{2L}(n+1) = f_1 + \frac{c}{2L}$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k. \tag{6}$$

Таким образом, скорость звука, деленная на 2L, определяется по угловому коэффициенту графика зависимости частоты от номера резонанса.

#### Экспериментальная установка

Соответственно двум методам измерения скорости звука в работе имеются две установки. В обеих установках звуковые колебания в трубе возбуждаются **телефоном**  $\mathbf{T}$  и улавливаются **микрофоном**  $\mathbf{M}$ . Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется **звуковой генератор**  $\mathbf{3}\Gamma$  (генератор электрических колебаний звуковой и ультразвуковой частоты). Возникающий в микрофоне сигнал наблюдается на **осциллографе**  $\mathbf{90}$ .

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчётах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь. Первая установка (рис. 1) содержит раздвижную трубу с миллиметровой шкалой. Через патрубок (на рисунке не показан) труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производятся измерения  $\gamma$  для воздуха и для  $CO_2$ . Вторая установка (рис. 2) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре воды, омывающей трубу. На этой установке измеряется зависимость скорости звука от температуры.



Рис. 1: Установка для измерения скорости звука при помощи раздвижной трубы



Рис. 2: Установка для изучения зависимости скорости звука от температуры

#### Выполнение работы

Работа состояла из двух частей. На первой установке мы находили частоту резонанса при неизменной длине трубке сначала для воздуха, а затем для углекислого газа. На второй установке мы находили частоту резонанса при неизменной длине трубке для разных температур воздуха, нагревая его с помощью термостата.

#### Измерения на первой установке

Открыв отверстие трубы, продули трубу воздухом. Закрыли отверстие. Предварительно рассчитав приблизительную частоту резонансов, начали их искать, постепенно увеличивая частоту генератора. Увеличение амплитуды устанавливали с помощью осциллографа. Затем уменьшая частоту генератора, убедились в неизменности результатов.

| $L = 795 \ mm$ |                          |                                              |                  |  |
|----------------|--------------------------|----------------------------------------------|------------------|--|
| Возрастание f  |                          | Убывание <i>f</i>                            |                  |  |
| Nº             | Частота $f$ , $\Gamma u$ | $N_{\underline{0}}$ Частота $f$ , $\Gamma u$ |                  |  |
| 1              | 225                      | 1                                            |                  |  |
| 2              | 480                      | 2                                            |                  |  |
| 3              | 655                      | 3                                            | Значения совпали |  |
| 4              | 865                      | 4                                            |                  |  |
| 5              | 1075                     | 5                                            |                  |  |

Таблица 1: Измерение частоты резонанса при постоянной длине трубки (воздух)



$$y = 208, 5x + 34.5$$
  
 $\sigma_f = 2 \ \Gamma u_f$   
 $\frac{c}{2L} = (208, 5 \pm 0, 5) \ c^{-1}$   
 $c = (331, 5 \pm 0, 8) \ \text{M/c}$ 

Рис. 3: График зависимости частоты от номера резонанса (опыт с воздухом)

Повторили действия, заменив воздух углекислым газом.

|               | $L = 795 \ mm$           |                   |                          |  |  |
|---------------|--------------------------|-------------------|--------------------------|--|--|
| Возрастание f |                          | Убывание <i>f</i> |                          |  |  |
| Nº            | Частота $f$ , $\Gamma u$ | Nº                | Частота $f$ , $\Gamma u$ |  |  |
| 1             | 176                      | 1                 |                          |  |  |
| 2             | 315                      | 2                 |                          |  |  |
| 3             | 510                      | 3                 | Значения совпали         |  |  |
| 4             | 677                      | 4                 |                          |  |  |
| 5             | 840                      | 5                 |                          |  |  |

Таблица 2: Измерение частоты резонанса при постоянной длине трубки  $(CO_2)$ 



$$y = 169x - 3, 4$$
  
 $\sigma_f = 2 \ \Gamma u$   
 $\frac{c}{2L} = (169, 0 \pm 0, 3) \ c^{-1}$   
 $c = (268, 7 \pm 0, 5) \ \text{m/c}$ 

Рис. 4: График зависимости частоты от номера резонанса (опыт с  $CO_2$ )

Построив по полученным данным прямую, смогли установить значение c/2L по коэффициенту наклона данной прямой, откуда несложно получить значение скорости воздуха.

### Измерения на второй установке

Измерим скорость воздуха при разных температурах. Для этого произведем измерения сначала при комнатной температуре, а затем с помощью термостата будем увеличивать температуру воздуха до 30, 40 и 50 градусов Цельсия. Действия такие же, как и при работе с первой установкой: увеличивая частоту генератора, будем искать резонансы.

|    | $T = 22,9^{\circ}C$      | $T = 30^{\circ}C$ |                            |  |
|----|--------------------------|-------------------|----------------------------|--|
| Nº | Частота $f$ , $\Gamma u$ | Nº                | Частота $f$ , $\Gamma u$ , |  |
| 1  | 202                      | 1                 | 202                        |  |
| 2  | 450                      | 2                 | 455                        |  |
| 3  | 660                      | 3                 | 667                        |  |
| 4  | 875                      | 4                 | 884                        |  |
| 5  | 1088                     | 5                 | 1100                       |  |
| 6  | 1302                     | 6                 | 1319                       |  |



$$y = 217,97x - 0,667$$
 
$$L = 800 \text{ mm}$$
 
$$\sigma_f = 2 \text{ Fy}$$
 
$$\frac{c}{2L} = (218,0 \pm 0,7) \text{ } c^{-1}$$
 
$$c = (348,8 \pm 1,0) \text{ } \text{ } \text{m/c}$$

Рис. 5: График зависимости частоты от номера резонанса ( $T=22,9^{\circ}C$ )



$$\begin{split} y &= 221,06x-2,533 \\ L &= 800 \text{ MM} \\ \sigma_f &= 2 \text{ Fy} \\ \frac{c}{2L} &= (221,0\pm0,2) \text{ } c^{-1} \\ c &= (353,6\pm0,2) \text{ M/c} \end{split}$$

Рис. 6: График зависимости частоты от номера резонанса ( $T=30^{\circ}C$ )

|    | $T = 40^{\circ}C$        | $T = 50^{\circ}C$ |                          |  |
|----|--------------------------|-------------------|--------------------------|--|
| No | Частота $f$ , $\Gamma u$ | Nº                | Частота $f$ , $\Gamma u$ |  |
| 1  | 207                      | 1                 | 210                      |  |
| 2  | 462                      | 2                 | 470                      |  |
| 3  | 678                      | 3                 | 687                      |  |
| 4  | 896                      | 4                 | 910                      |  |
| 5  | 1118                     | 5                 | 1139                     |  |
| 6  | 1334                     | 6                 | 1361                     |  |

Таблица 3: Измерение частоты резонанса в воздухе при разных температурах



$$y = 223, 46x + 0, 4$$

$$L = 800 \text{ mm}$$

$$\sigma_f = 2 \text{ Fu}$$

$$\frac{c}{2L} = (223, 5 \pm 0, 2) \text{ } c^{-1}$$

$$c = (357, 5 \pm 0, 3) \text{ } \text{m/c}$$

Рис. 7: График зависимости частоты от номера резонанса ( $T=40^{\circ}C$ )



$$y = 228.14x - 2,33$$

$$L = 800 \text{ MM}$$

$$\sigma_f = 2 \text{ Fy}$$

$$\frac{c}{2L} = (228, 1 \pm 0, 1) \text{ } c^{-1}$$

$$c = (365, 0 \pm 0, 1) \text{ } \text{M/c}$$

Рис. 8: График зависимости частоты от номера резонанса ( $T=50^{\circ}C$ )

Построив по полученным данным прямую, смогли установить значение c/2L по коэффициенту наклона данной прямой, откуда несложно получить значение скорости воздуха.

Для удобства, я совместил полученные значения скоростей звука в одной таблице, и там же привел полученные с помощью формулы 1 значения показателя адиабаты.

|          | On              | ыт 1              | Опыт 2            |                   |                   |                   |  |
|----------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|          | Воздух          | $CO_2$            | $T=22,9^{\circ}C$ | $T = 30^{\circ}C$ | $T = 40^{\circ}C$ | $T = 50^{\circ}C$ |  |
| С        | $331,5 \pm 0,8$ | $268, 7 \pm 0, 5$ | $348, 8 \pm 1, 0$ | $353, 6 \pm 0, 2$ | $357, 5 \pm 0, 3$ | $365, 0 \pm 0, 1$ |  |
| $\gamma$ | $1,32 \pm 0,01$ | $1,318 \pm 0,005$ | $1,43 \pm 0,01$   | $1,439 \pm 0,002$ | $1,424 \pm 0,003$ | $1,439 \pm 0,001$ |  |

Таблица 4: Скорость звука с (M/c) и показатель адиабаты  $\gamma$  в разных опытах

### Вывод

Мы измерили частоты колебаний при резонансе в газе и посчитали значения скорости звука и показателя адиабаты. Сравнивая результаты можно заметить, что:

- 1. значения показателя адиабаты для воздуха (состоит преимущественно из двухатомных газов) колеблются около значения показателя адиабаты идеального двухатомного газа ( $\gamma = 1, 4$ ), но тем не менее, они не равны, что свидетельствует о том, что воздух не является идеальным газом, а также содержит недвухатомные газы.
- 2. значения показателя адиабаты для углекислого газа также колеблются около значения показателя адиабаты идеального трехатомного газа ( $\gamma=\frac{4}{3}$ ). Тем не менее, они

- отличаются, что также говорит о том, что углекислый газ не является идеальным газом.
- 3. значения, полученные для воздуха в первом и втором опытах, отличаются. Предполагаю, что причина кроется в работе с первой установкой (негерметично закрывали отверстие или плохо продули воздухом и в трубе остался углекислый газ).
- \* На лекции было сказано, что причина отличий кроется в том, что колебательные степени свободы молекул начинают вносить некоторый вклад в теплоемкость молекулы уже при температуре эксперимента.