

Europäisches Patentamt

European Patent Office

Office européen des brevets

11 Veröffentlichungsnummer: 0 507 337 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

- (21) Anmeldenummer: 92105822.8
- Anmeldetag: 03.04.92

(5) Int. CI.5: **C07F** 9/113, A61K 31/66, C07F 9/572, C07F 9/59, C07F 9/10, C07F 9/173, C07F 9/655, C07F 9/09

- 3 Priorität: 05.04.91 DE 4111105
- 43 Veröffentlichungstag der Anmeldung: 07.10.92 Patentblatt 92/41
- Benannte Vertragsstaaten:
 AT BE CH DE DK ES FR GB GR IT LI LU MC
 NL PT SE
- 7) Anmelder: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Bunsenstrasse 10 W-3400 Göttingen(DE)
- Erfinder: Eibl, Hansjörg, Prof. Dr.
 Heinrich-Deppe-Ring 22
 W-3406 Bovenden-Eddigehausen(DE)
- Vertreter: Huber, Bernhard, Dipl.-Chem. et al Patentanwälte H. Weickmann, Dr. K. Fincke F.A. Weickmann, B. Huber Dr. H. Liska, Dr. J. Prechtel Kopernikusstrasse 9 Postfach 86 08 20 W-8000 München 86(DE)
- Meue Erucyl-, Brassidyl- und Nervonylderivate.
- Die Erfindung betrifft Verbindungen der allgemeinen Formel I

$$R - X - A - P - O - (CH2)2 - N - R1, R2, R3 (I)$$

in der R einen Erucyl-, Brassidyl- oder Nervonyl-Rest,

 R_1 , R_2 und R_3 unabhängig voneinander je einen geradkettigen, verzweigten, cyclischen gesättigten oder ungesättigten Alkylrest mit 1 bis 4 C-Atomen, der auch eine OH-Gruppe enthalten kann und wobei zwei dieser Reste auch zu einem Ring verbunden sein können,

A eine Einfachbindung oder eine der Gruppen mit den Formeln

wobei die Gruppen (II) bis (VII) eine solche Orientierung besitzen, daß das Sauerstoffatom an das Phosphoratom der Verbindung (I) gebunden ist,

und X ein Sauerstoffatom ist, wenn A eine Einfachbindung ist oder ein Sauerstoff- oder Schwefelatom bedeutet, wenn A eine der Gruppen (II) bis (VII) ist, sowie deren Verwendung als Arzneimittel.

Die vorliegende Erfindung betrifft neue Phospholipide, die einen Erucyl-, Brassidyl- oder Nervonyl-Rest enthalten, und deren Verwendung als Arzneimittel, insbesondere zur Bekämpfung von Tumoren sowie Protozoen- und Pilzerkrankungen, sowie zur Therapie von Autoimmunerkrankungen und Knochenmarkschädigungen.

Die Verwendung von Phospholipiden als Arzneimittel ist bekannt. Die EP-A 0 108 565 offenbart Phospholipide, einschließlich ihrer pharmazeutisch verträglichen Salze der allgemeinen Formel

$$R^{1}(0) = \frac{0}{10^{-P-OCH} 2^{CH} 2^{N}} < \frac{R^{2}}{R^{4}}$$

worin R¹ ein aliphatischer C₈-C₃₀-Kohlenwasserstoffrest ist, R², R³ und R⁴ unabhängig Wasserstoff oder C₁-C₅-Alkyl sind oder worin

$$+ \begin{array}{c} R^2 \\ N - R^3 \\ R^4 \end{array}$$

cyclisches Ammonium darstellt und n 0 oder 1 ist. Vorzugsweise ist R¹ ein aliphatischer Kohlenwasserstoffrest mit 12 bis 22, besonders bevorzugt mit 14, 17 oder 18 Kohlenstoffatomen. Diese Verbindungen werden als geeignet zur Bekämpfung von Tumorzellen oder Pilzerkrankungen oder zur Verwendung als Pflanzenschutzmittel bezeichnet.

Die DE-OS 32 39 817 offenbart Glycerinderivate der allgemeinen Formel

worin R¹ und R² u.a. substituierte oder unsubstituierte Alkylreste mit 1 bis 24 Kohlenstoffatomen bedeuten können, X u.a. Sauerstoff bedeuten kann und R³ u.a. eine Aminoalkylgruppe und eine N-Alkylaminoalkylgruppe mit 2 bis 14 Kohlenstoffatomen in den Alkylresten bedeuten kann. Weiterhin sind dort auch allgemeine Verfahren zur Herstellung der obigen Verbindungen offenbart, so daß man Glycerinderivate mit verschiedenen Resten stellungsspezifisch und mit hoher Selektivität herstellen kann.

Die DE-OS 36 41 379 offenbart Verbindungen der allgemeinen Formel

worin R einen Kohlenwasserstoffrest mit 12 bis 24 C-Atomen sein kann, X u.a. O bedeutet und R¹ u.a. eine Alkylgruppe bedeuten kann, die mit unterschiedlichen Aminogruppen substituiert sein kann. Vorzugsweise ist R ein Alkyl- oder Alkylenrest mit 14 bis 20 C-Atomen, X = O und R¹ = Trialkylammoniumethyl mit 1 bis 3 C-Atomen je Alkylgruppe. Besonders bevorzugt sind die Verbindungen Hexadecylphosphocholin und Oleylphosphocholin. Ferner wird die Verwendung der oben genannten Verbindungen als Arzneimittel, insbesondere zur Behandlung von Tumoren offenbart. Derartige Arzneimittel können auch zur topischen

50

5

10

Behandlung von Hauttumoren als zusätzlichen Wirkstoff Alkylglycerin enthalten. Es werden auch allgemeine Herstellungsmethoden für die Verbindungen gemäß der oben genannten allgemeinen Formel gelehrt.

Die DE-OS 36 41 491 offenbart ein Antitumor-wirksames Arzneimittel, das Hexadecylphosphocholin als Wirkstoff sowie gegebenenfalls weitere übliche pharmazeutische Zusatz-, Träger- und/oder Verdünnungsstoffe enthält. Ein derartiges Arzneimittel kann als zusätzlichen Wirkstoff auch ein Alkylglycerin enthalten.

Weiterhin ist bekannt, daß ein in Position 2 methyliertes Glycerinderivat von Hexadecylphosphocholin das Etherphospholipid ET-18-OCH₃ ein sehr wirksames Antitumormittel ist (siehe z.B. Berdel et al. in Phospholipids and Cellular Regulation (1985), herausgegeben J.F. Kuo, Seiten 41-74, CRC-Press, Boca Raton, Florida). Ferner hat sich ET-18-OCH₃ auch als geeignetes Arzneimittel zur Bekämpfung von Autoimmunkrankheiten wie etwa Multipler Sklerose erwiesen.

Aus den oben genannten Veröffentlichungen ist ersichtlich, daß Phosphatidylamine und Etherlysolecitine als Arzneimittel für unterschiedliche Anwendungen, z.B. zur Bekämpfung von Tumoren und Autoimmunerkrankungen, geeignet sind. Als bisher wirksamste Arzneimittel aus dieser Verbindungsklasse haben sich Hexadecylphosphocholin und ET-18-OCH3 erwiesen. Jedoch auch diese Substanzen haben den Nachteil, daß sie bei hoher Dosierung eine toxische Wirkung zeigen. Ein weiterer Nachteil der bisher bekannten Phospholipide ist, daß sie eine Zytolyse von Zellen, insbesondere ein Hämolyse von Erythrozyten bewirken. Deshalb können diese Substanzen nicht intravenös appliziert werden, da dies zu hämolytischen und gewebenekrotischen Begleiterscheinungen führt, wie detailliert in der DE 40 26 136 beschrieben ist.

Aufgabe der vorliegenden Erfindung war es somit, neue Phospholipide zu finden, die als Arzneimittel wirksam sind, bei denen jedoch die Nachteile des Standes der Technik mindestens teilweise beseitigt sind.

Die erfindungsgemäße Aufgabe wird gelöst durch Verbindungen der allgemeinen Formel I

$$R - X - A - P - O - (CH2)2 - N - R1, R2, R3$$
 (I)

in der R einen Erucyl-, Brassidyl- oder Nervonyl-Rest,

R₁, R₂ und R₃ unabhängig voneinander je einen geradkettigen, verzweigten, cyclischen gesättigten oder ungesättigten Alkylrest mit 1 bis 4 C-Atomen, der auch eine OH-Gruppe enthalten kann und wobei zwei dieser Reste auch zu einem Ring verbunden sein können,

A eine Einfachbindung oder eine der Gruppen mit den Formeln

20

25

wobei die Gruppen (II) bis (VII) eine solche Orientierung besitzen, daß das Sauerstoffatom an das Phosphoratom der Verbindung (I) gebunden ist,

und X ein Sauerstoffatom ist, wenn A eine Einfachbindung ist oder ein Sauerstoff- oder Schwefelatom bedeutet, wenn A eine der Gruppen (II) bis (VII) ist.

In der obigen Formel (I) bedeutet X vorzugsweise ein Sauerstoffatom, und A bedeutet vorzugsweise eine Einfachbindung. Weiterhin bevorzugt ist, daß R_1 , R_2 und R_3 jeweils Methylgruppen sind, so daß es

sich bei den resultierenden Verbindungen um Phosphocholinderivate handelt. Besonders bevorzugt ist Erucylphosphocholin.

Erucyl-, Brassidyl- und Nervonyl-Reste sind langkettige Alkylreste. Sie können aus den entsprechenden Fettsäuren, die teilweise natürlich vorkommen, gewonnen werden. Die Erucasäure (cis-13-Docosensäure) kommt als Glycerinester in Senf-, Traubenkern-, Dorschleber- und Cruciferenölen, insbesondere in Rapsöl vor. Die dazu stereoisomere Brassidinsäure (trans-13-Docosensäure) kommt in der Natur nicht vor, ist jedoch bei Erwärmen mit salpetriger Säure aus der Erucasäure erhältlich. Die Nervonsäure (Selacholeinsäure, cis-15-Tetracosensäure) kommt in Haifischleberölen, Sphingomyelinen und Cerebrosiden, insbesondere Nervon vor.

Zur Herstellung der erfindungsgemäßen Substanzen können diese Fettsäuren der allgemeinen Formel (VIII):

R - OOH (VIII)

in der R ein Erucyl-, Brassidyl- oder Nervonylrest ist, durch Reduktion nach bekannten Methoden, vorzugsweise mit LiAIH4 in die entsprechenden Alkohole der allgemeinen Formel (IX):

R - OH (IX)

überführt werden. Diese Alkohole können dann nach ebenfalls bekannten Verfahren in die erfindungsgemäßen Substanzen überführt werden.

Die Herstellung von erfindungsgemäßen Verbindungen (I), bei denen X ein Sauerstoffatom und A eine Einfachbindung bedeutet, können z.B. nach den in DE 27 52 125, EP-A 0 108 565, DE 36 41 491, DE 36 41 379 , DE 36 41 377 und DE 40 13 632 offenbarten Verfahren oder gemäß der darin zitierten Literatur hergestellt werden.

Vorzugsweise wird dabei der Alkohol R-OH bei dem R einen Erucyl-, Brassidyl- oder Nervonyl-Rest darstellt, direkt durch Phosphorylierung in die entsprechenden Alkylphosphoaminderivate, insbesondere in die entsprechenden Alkylphosphocholine überführt. Hierzu kann man z.B. den Alkohol (IX) mit einer Verbindung der allgemeinen Formel (X):

$$Y = 0$$
 $P = 0 - (CH_2)_2 Y''$
 Y'

umsetzen, wobei Y, Y' und Y'' Halogenreste darstellen (z.B. kann es sich bei der Verbindung (X) um 2-Bromethyl-phosphordichlorid handeln). Aus dieser Reaktion und anschließender Aufarbeitung durch Hydrolyse resultiert eine Verbindung mit der allgemeinen Formel (XI):

$$R - P - O - (CH2)2Y"$$
 (XI)

bei der R und Y" die oben genannten Bedeutungen besitzen. Der letzte Schritt der Reaktion umfaßt die Umsetzung dieser Verbindung (XI) mit einem Amin der Formel N - R_1 , R_2 , R_3 bzw. einem quarternären Ammoniumsalz der Formel $HN^{\dagger}R_1$, R_2 , R_3Y^{-} , wobei R_1 , R_2 und R_3 die in Anspruch 1 angegebenen Bedeutungen besitzen. Beispiele für erfindungsgemäß geeignete tertiäre Amine sind etwa Trimethylamin, Dimethylethylamin, Diethylmethylamin, Triethylamin, N.N-Dimethyl-N-propylamin, N.N-Dimethyl-N-iso-propylamin,N-Cyclopropyl-N.N-dimethylamin, N-Allyl-N.N-dimethylamin, N-Ethyl-N-methyl-N-propylamin, N-Butyl-N.N-dimethylamin, N.N-Dimethyl-N-hydroxyethylamin, N.N-Dihydroxyethyl-N-methylamin, N-Cyclobutyl-N.N-dimethylamin, N-Methylpyrrolidin, N-Ethylpyrrolidin, N-Methylpyrrolidin und dgl..

Andererseits kann man zur Herstellung der erfindungsgemäßen Substanzen den Alkohol (IX) mit Phosphoroxytrichlorid (POCl₃) umsetzen. Bei nachfolgender Hydrolyse erhält man ein Produkt der allgemeinen Formel (XII)

30

35

10

40

45

5

15

20

35

Dieses Produkt wiederum kann mit einem tertiären Ammoniumsalz der Formel HOCH₂-CH₂-N⁺-R₁,R₂,R₃ zu einer erfindungsgemäßen Substanz der allgemeinen Formel I umgesetzt werden. Die detaillierten Reaktionsbedingungen sind dabei aus den oben genannten Literaturstellen zu entnehmen.

Das bevorzugte Verfahren zur Herstellung der erfindungsgemäßen Substanzen ist die Umsetzung des Alkohols (IX) mit POCl₃ unter Bildung des entsprechenden Phosphorsäuredichlorids (XIII)

Diese Verbindung wird mit einem Ethanolamin oder einem entsprechend substituierten Ethanolamin zu einem heterozyklischen 5-Ring umgesetzt (XIV)

Die Öffnung des Ringes unter sauren Bedingungen führt zu den entsprechenden Phosphoethanolaminen, die durch Alkylierung in die gewünschten peralkylierten Verbindungen der allgemeinen Formel I, u.a. in Phosphocholin umgewandelt werden können. Dieses Verfahren ist detailliert in H. Eibl (Proc.Natl.Acad. Sci. USA 75 (1978), 4074-4077) beschrieben.

Die Herstellung von erfindungsgemäßen Verbindungen der allgemeinen Formel (I), wo A eine Gruppe mit den Formeln (II), (IV), (VI) und (VII)

ist, erfolgt ebenfalls nach bekannten Verfahren. Ein Beispiel hierfür ist neben den bereits oben zitierten Methoden insbesondere die DE 32 39 817. Ferner können die Alkohole der Formel (IX) auch über ihre Mesylate in die entsprechenden Alkylglycerine oder anderen Derivate umgewandelt werden, deren Phosphorylierung dann zu erfindungsgemäßen Substanzen führt.

Die Herstellung von Verbindungen, bei denen X Schwefel ist, kann gemäß Bosies et al. (Lipids 22 (1987), 947-951) durch eine mehrstufige Reaktion aus Glycerin und einem Thiol der allgemeinen Formel (XV):

10

15

20

30

erfolgen, wobei R ein Erucyl-, Brassidyl- oder Nervonylrest ist. Andererseits kann die Phosphorylierung des Thiols auch durch die oben zitierten Phosphorylierungsmethoden erfolgen.

Die Herstellung von Verbindungen der Formel (I), bei denen A eine Gruppe mit der Formel (III)

darstellt, erfolgt gemäß Houlihan et al. (Lipids 22 (1987), 884-890) ausgehend von der kommerziell erhältlichen 2-Furancarbonsäure. Andererseits kann der Alkohol als Grundkörper jedoch auch nach den oben zitierten Methoden phosphoryliert und weiter umgesetzt werden.

Die erfindungsgemäßen Substanzen haben sich sehr gut als Arzneimittel geeignet erwiesen. Ein Gegenstand der vorliegenden Erfindung ist daher auch ein Arzneimittel, das als Wirkstoff eine oder mehrere der erfindungsgemäßen Substanzen, gegebenenfalls zusammen mit pharmazeutisch üblichen Träger-, Hilfs-, Füll- und Verdünnungsmitteln enthält. Vorzugsweise enthält das erfindungsgemäße Arzneimittel als Wirkstoff Erucyl-, Brassidyl- oder Nervonylphosphocholin, besonders bevorzugt Erucylphosphocholin.

Die erfindungsgemäßen Substanzen können auch in Kombination mit Alkylglycerinen der allgemeinen Formel (XVI)

$$H_2 C - O - R_3$$

 $HC - O - R_4$ (XVI),
 $H_2 C - OH$

verwendet werden, in der einer der Reste R³ und R⁴ eine Alkylgruppe mit 2 bis 12 C-Atomen und der andere Rest ein H-Atom bedeutet. Vorzugsweise enthält ein derartiges Arzneimittel ein Alkylglycerin-Gemisch aus Nonyl- bzw. Octylglycerin, Hexyl- bzw. Pentylglycerin und Propyl- bzw. Ethylglycerin sowie Wasser. Derartige Arzneimittelkombinationen von Alkylglycerinen und Phospholipiden und die bevorzugten Gehalte der einzelnen Wirkstoffe sind in der DE-OS 36 41 379 offenbart. Die Arzneimittel, die eine erfindungsgemäße Substanz in Kombination mit mindestens einem Alkylglycerin enthalten, sind insbesondere zur topischen Applikation geeignet.

Überraschenderweise besitzen die erfindungsgemäßen Substanzen, insbesondere die Erucyl- und Nervonylderivate keine hämolytischen Eigenschaften, wie sie bei anderen Lysolecitinen beobachtet wurden. Deshalb können diese Substanzen in physiologischen Lösungen (Kochsalz-, Ringer- etc.) aufgenommen und intravenös appliziert werden. Noch überraschender ist aber die Tatsache, daß diese Substanzen gegenüber Hexadecylphosphocholin eine deutlich bessere Wirkung besitzen.

Besonders geeignet haben sich die erfindungsgemäßen Arzneimittel zur Bekämpfung von Tumoren erwiesen. So wird mit Erucylphosphocholin eine gegenüber Hexadecylphosphocholin in gleichen Mengen erheblich verbesserte Kontrolle des Tumorwachstums bei Methylnitroharnstoff induzierten Mammakarzinomen erzielt. Die erfindungsgemäßen Arzneimittel sind weiterhin zur Bekämpfung von Protozoen- und Pilzerkrankungen, insbesondere der Leishmaniasis geeignet. Ferner eignen sich die erfindungsgemäßen Arzneimittel auch zur Therapie von Autoimmunerkrankungen, insbesondere von Multipler Sklerose. Überdies ist eine Therapie von Knochenmarkschädigungen möglich, die durch Behandlung mit Zytostatika und anderen knochenmarkschädigenden Wirkstoffen aufgetreten ist.

Weiterhin ein Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung eines erfindungsgemäßen Arzneimittels, das insbesondere als Antitumormittel, Mittel zur Bekämpfung von Protozoen- und Pilzerkrankungen, insbesondere von Leishmaniasis, als Mittel zur Therapie von Autoimmunerkrankungen, insbesondere von Multipler Sklerose sowie als Mittel zur Therapie von Knochenmarkschädi-

gungen formuliert ist.

Durch Verabreichung des erfindungsgemäßen Arzneimittels werden Verfahren zur Bekämpfung von Tumoren, Protozoen- und Pilzerkrankungen, Autoimmunerkrankungen oder Knochenmarkschädigungen bereitgestellt. Vorzugsweise wird dabei das Arzneimittel intravenös verabreicht. Es ist jedoch ebenfalls eine subkutane oder topische Verabreichung des erfindungsgemäßen Arzneimittels möglich.

Die vorliegende Erfindung soll durch die folgenden Beispiele weiter verdeutlicht werden.

Beispiele

Gruppe I: Erucylreste und Brassidylreste

Beispiel 1

15

20

25

30

35

40

45

50

Erucyl-Phosphocholin

$$\begin{array}{c} \text{CH}_{3} - (\text{CH}_{2})_{7} - \text{CH} = \text{CH} - (\text{CH}_{2})_{12} - \text{O} - \text{P} - \text{O} - \text{CH}_{2} - \text{CH}_{2} \text{ N} (\text{CH}_{3})_{3} \\ \text{(cis)} \end{array}$$

 C₂₇H₅₆NO₄P; 489.722

 ber.(%):
 C, 66.22
 H, 11.53
 N, 2.86
 P, 6.33

 gef.(%):
 65.98
 11.45
 2.69
 6.21

Die Herstellung der Verbindungen gemäß den Beispielen 1 bis 19 und 33 bis 35 erfolgt gemäß Methoden, wie sie z.B. in DE 27 52 125, DE 36 41 379, DE 36 41 491, DE 36 41 377 und DE 40 13 632 oder der darin zitierten Literatur beschrieben sind.

Beispiel 2

Brassidyl-Phosphocholin

C₂₇ H₅₆ NO₄ P; 489.722 gef. (%): C,66.04 H, 11.50 N, 2.54 P, 6.17

Beispiel 3

Erucyl-phospho-(N.N-dimethyl-N-ethyl)-ethanolamin

C ₂₈ H ₅₈ NC	O ₄ P, 503.749			
ber.(%);	C, 66.76	H, 11.61	N, 2.78	P, 6.15
gef.(%);	66.51	11.53	2.69	6.01

Beispiel 4

5

20

Brassidyl-phospho-(N.N-dimethyl-N-ethyl)-ethanolamin C₂₈ H₅₈ NO₄ P; 503.749

Beispiel 5

Erucyl-phospho-(N.N-diethyl-N-methyl)-ethanolamin

C29 H50 NO4 P; 517.776

25 Beispiel 6

Brassidyl-phospho-(N.N-diethyl-N-methyl)-ethanolamin $C_{29}H_{60}NO_4P;$ 517.776

30 Beispiel 7

Erucyl-phospho-(N.N.N-triethyl)-ethanolamin

C₃₀H₆₂NO₄P; 531.803

Beispiel 8

Erucyl-phospho-(N.N-dimethyl-N-propyl)-ethanolamin

C29 H50 NO4 P; 517.776

Beispiel 9

50

Erucyl-phospho-(N.N-dimethyl-N-isopropyl)-ethanolamin

Erucyl-O-P-O-CH₂ CH₂ -N
$$\xrightarrow{\text{CH}_3}$$
 CH₃ $\xrightarrow{\text{CH}_3}$ CH₃

C29 H60 NO4 P; 517.776

10 Beispiel 10

5

20

30

45

55

Erucyl-phospho-(N-cyclopropyl-N.N-dimethyl)-ethanolamin

Erucyl-O-P-O-CH₂ CH₂ $\xrightarrow{\text{CH}_3}$ CH₂ $\xrightarrow{\text{CH}_2}$ CH₃ $\xrightarrow{\text{CH}_2}$ CH₂

C₂₉ H₅₈ NO₄ P; 515.760

Beispiel 11

25 Erucyl-phospho-(N-allyl-N.N-dimethyl)-ethanolamin

C29 H58 NO4 P; 515.760

35 Beispiel 12

Erucyl-phospho-(N-ethyl-N-methyl-N-propyl)-ethanolamin

Erucyl-O-P-O-CH₂ CH₂ -N
$$\leftarrow$$
 CH₃ CH₂-CH₃ \leftarrow CH₂-CH₃ \leftarrow CH₂-CH₂-CH₃

C₃₀ H₆₂ NO₄ P; 531.803

Beispiel 13

50 Erucyl-phospho-(N-butyl-N.N-dimethyl)-ethanolamin

C₃₀ H₆₂ NO₄ P; 530.803

Beispiel 14

5

10

Erucyl-phospho-(N.N-dimethyl-N-hydroxyethyl)-ethanolamin

O CH₃
Erucyl-O-P-O-CH₂ CH₂ -N — CH₂ -CH₂ -OH
CH₃

C28 H58 NO5P; 519.748

Beispiel 15

5 Erucyl-phospho-(N.N-dihydroxyethyl-N-methyl)-ethanolamin

Erucyl-O-P-O-CH₂ CH₂ -N
$$\leftarrow$$
 CH₃ CH₂ -CH₂ -OH CH₂ -CH₂ -OH

C29 H60 NO6 P; 549.774

25 Beispiel 16

Erucyl-phospho-(N-cyclobutyl-N.N-dimethyl)-ethanolamin

C₃₀ H₅₀ NO₄ P: 529.787

Beispiel 17

35

40 Erucyl-phosphorsäure-(N-methyl)-pyrrolidinoethylester

Erucyl-O-P-O-CH₂ CH₂ -N
$$\stackrel{\bullet}{\bigcirc}$$
CH₃

C₂₉ H₅₈ NO₄ P; 515.760

50 Beispiel 18

Erucyl-phosphorsäure-(N-ethyl)-pyrrolidinoethylester

C30 H60 NO4 P; 529.787

Beispiel 19

5

10

15

20

30

35

45

Erucyl-phosphorsäure-(N-methyl)-morpholino-ethylester

Erucyl-O-P-O-CH₂ CH₂ $\stackrel{\bigoplus}{\sim}$ $\stackrel{\bigoplus}{\sim}$ $\stackrel{\bigoplus}{\sim}$ $\stackrel{\bigoplus}{\sim}$ $\stackrel{\bigoplus}{\sim}$ $\stackrel{\bigoplus}{\sim}$ $\stackrel{\bigoplus}{\sim}$ $\stackrel{\bigoplus}{\sim}$

C30 H60 NO4 P; 529.787

Beispiel 20

25 1-Erucyl-2-methyl-rac-glycero-3-phosphocholin

$$\begin{array}{c} \text{CH}_2 - \text{O} - (\text{CH}_2)_{12} - \text{CH} = \text{CH} - (\text{CH}_2)_7 - \text{CH}_3 \\ \text{CH}_3 - \text{O} - \text{CH} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

C_{3 1} H_{6 4} NO₆ P; 577.828

Die Herstellung der Verbindungen gemäß den Beispielen 20 bis 22 und 27 bis 32 erfolgt wie z.B. in der DE 32 39 817 und der dort zitierten Literatur oder wie in Beispiel 1 beschrieben.

40 Beispiel 21

1-Erucyl-2-methyl-sn-glycero-3-phosphocholin

Beispiel 22

3-Erucyl-2-methyl-sn-glycero-1-phosphocholin

Alle Modifikationen bezüglich der Aminogruppe sowie der Austausch des Erucylrests gegen einen Brassidylrest, die in den Beispielen 1 bis 19 beschrieben worden sind, können auch auf das Grundgerüst 1-Erucyl-2-methyl-glycerin übertragen werden, mit der gleichen Methodologie und vergleichbaren Ausbeuten.

Beispiel 23

1-Erucylmercapto-2-methoxymethylpropyl-2'-(N.N.N-trimethyl)-ammonio-ethylphosphat $C_{32}H_{66}NO_5PS$, 607.916

55

ber.(%):	C, 63.23	H, 10.94	N, 2.30	P, 5.10
gef.(%):	62.95	10.89	2.26	4.98

Die Schwefel enthaltenden Verbindungen können nach Bosies et al. (Lipids, 22 (1987) 947-951) hergestellt werden. Das entsprechende Thiol wurde jedoch nach den in Beispiel 1 zitierten Phosphorylierungsmethoden phosphoryliert und weiter umgesetzt.

Auch hier können die Modifikationen 1 bis 19 eingeführt werden, ausgehend von dem entsprechenden Alkohol.

Beispiel 24

5

10

15

30

35

40

1-Erucylmercapto-2-methoxymethylpropyl-2'-(N.N-dihydroxyethyl-N-methyl)-ammonio-ethylphosphat C₃₄ H₇₀ NO₇ PS, 667.968

Beispiel 25

Weiter können nach Houlihan et al. (Lipids, 22 (1987) 884-890) folgende Wirkstoffe, die Erucyl- oder Brassidyl-Reste enthalten, hergestellt werden, die auf folgendem Grundgerüst aufgebaut sind: (±) -2-{Hydroxy[tetrahydro-2-(alkyl)-methylfuran-2-yl]methoxyphosphinyloxy}-N.N.-trimethylethaniminiumhydroxid. Der Alkohol als Grundkörper wurde jedoch nach den in Beispiel 1 zitierten Methoden phosphoryliert und weiter umgesetzt.

Erucyl als Alkylrest C₃₂H₆₄NO₅P: 589.839

$$CH_2$$

 CH_2 O O \bigcirc
 $Alkyl-O-CH$ - CH - CH_2 - $O-P-O-(CH_2)_2$ - $N(CH_3)_3$

Beispiel 26

Brassidyl als Alkylrest C₃₂H₆₄NO₆P; 589.839

45 Beispiel 27

1-Erucyl-3-methyl-rac-glycero-3-phosphocholin

50
$$CH_{2} -O - (CH_{2})_{12} -CH = CH - (CH_{2})_{7} -CH_{3}$$

$$CH_{3} -O - CH$$

$$O \qquad \bigoplus$$

$$CH_{2} -O - P -O - CH_{2} - CH_{2} - N (CH_{3})_{3}$$

$$CH_{2} -O - P -O - CH_{2} - CH_{2} - N (CH_{3})_{3}$$

C _{3 1} H _{6 4} NC	0 ₆ P; 577.828			
ber.(%):	C, 64.44	H, 11.17	N, 2.42	P, 5.36
gef.(%):	64.29	11.11	2.39	5.31

5

Beispiel 28

1-Erucyl-3-methyl-sn-glycero-3-phosphocholin

Beispiel 29

3-Erucyl-1-methyl-sn-glycero-2-phosphocholin

Beispiel 30

1-Erucyl-propandiol-(1,3)-phosphocholin

20

30

25

C ₃₀ H _{6 2} NC)₅P; 547.802			
ber.(%):	C, 65.78	H, 11.41	N, 2.56	P, 5.65
gef.(%):	65.61	11.35	2.49	5.58

35

40

Beispiel 31

1-Erucyl-propandiol-(1,2)-phosphocholin $C_{30}H_{62}NO_5P$; 547.802

Beispiel 32

Erucyl-glykol-phosphocholin

45

55

ber.(%): C, 65.26 H, 11.33 gef.(%): 65.17 11.26	N, 2.62 2.57	P, 5.80 5.72

Gruppe II: Nervonylreste

Alle Verbindungen aus Gruppe I (Beispiel 1 bis 32) können durch analoge Verfahren auch mit Nervonylresten hergestellt werden.

Beispiel 33

5

10

15

20

30

40

Nervonyl-Phosphocholin (cis-15-Tetracosenyl-PC)

$$CH_3 - (CH_2)_7 - CH = CH - (CH_2)_{14} - O - P - O - CH_2 - CH_2 - N - (CH_3)_3$$

 C₂₉H₆₀NO₄P; 517.776

 ber.:
 C, 67.27 | H, 11.68 | N, 2.71 | P, 5.98 | 5.68

 67.13
 11.59
 2.64 | 5.68

Beispiel 34

Nervonyl-phospho-(N.N-dimethyl-N-ethyl)-ethanolamin

Nervonyl-O-P-O-CH₂-CH₂ -CH₂ -CH₃
$$CH_2$$
 -CH₃ CH_3

C₃₀ H_{6 2} NO₄ P; 531.803

35 Beispiel 35

Nervonyl-phospho-(N.N-diethyl-N-methyl)-ethanolamin

C₃₁ H₆₄ NO₄ P; 545.830

Nervonylderivate, die zu den Verbindungen gemäß den Beispielen 7 bis 26 analog sind, werden nach den jeweils dort beschriebenen Verfahren hergestellt.

Anwendungsbeispiel

Die Herstellung einer Hexadecylphosphocholin-Formulierung in Liposomen erfolgt gemäß DE 40 26 136.0. Hexadecylphosphocholin (12 mmol), Cholesterin (15 mmol) und DPPG (3 mmol) werden in 200 ml 2-Propanol unter Erwärmen gelöst. Dann wird das Lösungsmittel im Vakuum abgezogen und der feinverteilte Lipidfilm mit 300 ml Phosphatpufferlösung, pH 7,0 versetzt. Anschließend wird das Gemisch unter langsamer Rotation 60 Minuten bei 40°C gehalten.

Anschließend wird die erhaltene Lipidsuspension in die Druckzelle der French Press überführt und bei 740 MPa ausgepreßt und dieser Vorgang dreimal wiederholt. Die gebildete Liposomendispersion wird dann 30 Minuten bei 27.000 g und 5°C zentrifugiert und der Überstand gewonnen.

Gleichzeitig wurde eine Erucylphosphocholin-Formulierung in physiologischer NaCI-Lösung hergestellt. Methylnitroharnstoff-induzierte Mammakarzinome in der Ratte werden mit den wie oben hergestellten Formulierungen in einer Menge behandelt, die den angegebenen Konzentrationen von Hexadecylphosphocholin bzw. Erucylphosphocholin pro kg Ratte als Tagesdosis entspricht. Nach 4 Wochen werden die Tumorgewichte von unbehandelten Kontrolltieren auf 100 % gesetzt. Dieser Wert entspricht ungehindertem Tumorwachstum. Die Tumortiere in der behandelten Gruppe erreichen Werte zwischen 0 und 100 % im Vergleich zur Kontrollgruppe, wie in Tabelle 1 angegeben.

Tabelle 1

10

15

Wirkstoffe	Formulierung	Menge/Tag	Wirkung*
Hexadecylphosphocholin	Liposomen	30 μmol 10 μmol	< 10 % ~ 90 %
Erucylphosphocholin	in phys. NaCl-Lös.	10 μmol 6 μmol 3 μmol	< 10 % < 10 % < 10 %

^{*} Restgewicht des Tumors in % bezüglich der unbehandelten Kontrolle

20

25

30

35

55

Patentansprüche

1. Verbindungen der allgemeinen Formel I

in der R einen Erucyl-, Brassidyl- oder Nervonyl-Rest,

R₁, R₂ und R₃ unabhängig voneinander je einen geradkettigen, verzweigten, cyclischen gesättigten oder ungesättigten Alkylrest mit 1 bis 4 C-Atomen, der auch eine OH-Gruppe enthalten kann und wobei zwei dieser Reste auch zu einem Ring verbunden sein können,

A eine Einfachbindung oder eine der Gruppen mit den Formeln

wobei die Gruppen (II) bis (VII) eine solche Orientierung besitzen, daß das Sauerstoffatom an das Phosphoratom der Verbindung (I) gebunden ist,

und X ein Sauerstoffatom ist, wenn A eine Einfachbindung ist oder ein Sauerstoff- oder Schwefelatom bedeutet, wenn A eine der Gruppen (II) bis (VII) ist.

- Verbindungen nach Anspruch 1, dadurch gekennzelchnet, daß X ein Sauerstoffatom bedeutet.
- Verbindungen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß A eine Einfachbindung bedeutet.
- Verbindungen nach den Ansprüchen 1 bis 3,
 dadurch gekennzeichnet,
 daß R₁, R₂ und R₃ jeweils Methylgruppen sind.
 - 5. Erucylphosphocholin.
- 6. Verfahren zur Herstellung einer Verbindung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man eine Carbonsäure der allgemeinen Formel

R - OOH (VIII)

20

in der R die in Anspruch 1 angegebene Bedeutung hat, mit LiAlH₄ zum entsprechenden Alkohol mit der allgemeinen Formel

R - OH (IX)

25

30

35

40

reduziert und dann auf an sich bekannte Weise zu einer Verbindung mit der allgemeinen Formel (I) umsetzt.

7. Arzneimittel,

dadurch gekennzeichnet,

daß es als Wirkstoff eine oder mehrere Verbindungen nach einem der Ansprüche 1 bis 5, gegebenenfalls zusammen mit pharmazeutisch üblichen Träger-, Hilfs-, Füll- und Verdünnungsmitteln enthält.

- 8. Arzneimittel nach Anspruch 7,
 - dadurch gekennzeichnet,

daß es als Wirkstoff Erucyl-, Brassidyl- oder Nervonylphosphocholin enthält.

9. Arzneimittel nach Anspruch 8,

dadurch gekennzeichnet,

daß es als Wirkstoff Erucylphosphocholin enthält.

10. Arzneimittel nach einem der Ansprüche 7 bis 9,

dadurch gekennzeichnet,

daß es den Wirkstoff in einer physiologischen Lösung enthält.

45

11. Arzneimittel nach einem der Ansprüche 7 bis 10,

dadurch gekennzeichnet,

daß es zusätzlich mindestens ein Alkylglycerin der allgemeinen Formel (XVI)

50

$$H_2 C - O - R_3$$

 $HC - O - R_4$ (XVI),
 $H_2 C - OH$

55

in der einer der Reste R₃ und R₄ eine Alkylgruppe mit 2 bis 12 C-Atomen und der andere Rest ein H-Atom bedeutet, enthält.

12. Arzneimittel nach Anspruch 11,

5

10

20

25

35

40

45

50

55

dadurch gekennzeichnet,

daß es ein Alkylglycerin-Gemisch enthält aus Nonyl- bzw. Octylglycerin, Hexyl- bzw. Pentylglycerin und Propyl- bzw. Ethylglycerin und Wasser.

- 13. Verwendung eines Arzneimittels nach einem der Ansprüche 7 bis 12 zur Bekämpfung von Tumoren.
- 14. Verwendung eines Arzneimittels nach einem der Ansprüche 7 bis 12 zur Bekämpfung von Protozoenund Pilzerkrankungen, insbesondere der Leishmaniasis.
- 15. Verwendung eines Arzneimittels nach einem der Ansprüche 7 bis 12 zur Therapie von Autoimmunerkrankungen, insbesondere von multipler Sklerose.
- 16. Verwendung eines Arzneimittels nach einem der Ansprüche 7 bis 12 zur Therapie von Knochenmarkschädigungen durch Behandlung mit Zytostatika und anderen knochenmarkschädigenden Wirkstoffen.
 - 17. Verfahren zur Herstellung eines Antitumormittels,

dadurch gekennzeichnet,

daß man eine Formulierung herstellt, die als Wirkstoff eine oder mehrere Verbindungen nach einem der Ansprüche 1 bis 5 enthält, gegebenenfalls zusammen mit pharmazeutisch üblichen Träger-, Hilfs-, Füll- und Verdünnungsmitteln.

18. Verfahren zur Herstellung eines Mittels zur Bekämpfung von Protozoen- und Pilzerkrankungen, insbesondere von Leishmaniasis,

dadurch gekennzeichnet,

daß man eine Formulierung herstellt, die als Wirkstoff eine oder mehrere Verbindungen nach einem der Ansprüche 1 bis 5 enthält, gegebenenfalls zusammen mit pharmazeutisch üblichen Träger-, Hilfs-, Füll- und Verdünnungsmitteln.

30 19. Verfahren zur Herstellung eines Mittels zur Therapie von Autoimmunerkrankungen, insbesondere von Multipler Sklerose,

dadurch gekennzeichnet,

daß man eine Formulierung herstellt, die als Wirkstoff eine oder mehrere Verbindungen nach einem der Ansprüche 1 bis 5 enthält, gegebenenfalls zusammen mit pharmazeutisch üblichen Träger-, Hilfs-, Füll- und Verdünnungsmitteln.

20. Verfahren zur Herstellung eines Mittels zur Therapie von Knochenmarksschädigungen, dadurch gekennzeichnet.

daß man eine Formulierung herstellt, die als Wirkstoff eine oder mehrere Verbindungen nach einem der Ansprüche 1 bis 5 enthält, gegebenenfalls zusammen mit pharmazeutisch üblichen Träger-, Hilfs-, Füll- und Verdünnungsmitteln.

21. Verfahren zur Bekämpfung von Tumoren, Protozoen- und Pilzerkrankungen, Autoimmunerkrankungen oder Knochenmarksschädigungen,

dadurch gekennzeichnet,

daß man dem Patienten ein Arzneimittel nach einem der Ansprüche 7 bis 12 verabreicht.

22. Verfahren nach Anspruch 21,

dadurch gekennzeichnet,

daß man das Arzneimittel intravenös verabreicht.

23. Verfahren nach Anspruch 21,

dadurch gekennzeichnet.

daß man das Arzneimittel subkutan verabreicht.

24. Verfahren nach Anspruch 21,

dadurch gekennzeichnet,

daß man das Arzneimittel topisch verabreicht.

Europäisches Patentamt European Patent Office Office européen des brevets

(1) Veröffentlichungsnummer: 0 507 337 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92105822.8

2 Anmeldetag: 03.04.92

(51) Int. Cl.5: **C07F** 9/113, A61K 31/66, C07F 9/572, C07F 9/59, C07F 9/10, C07F 9/173, C07F 9/655, C07F 9/09

3 Priorität: 05.04.91 DE 4111105

43 Veröffentlichungstag der Anmeldung: 07.10.92 Patentblatt 92/41

Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB GR IT LI LU MC **NL PT SE**

- Weröffentlichungstag des später veröffentlichten Recherchenberichts: 27.01.93 Patentblatt 93/04
- (7) Anmelder: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Bunsenstrasse 10 W-3400 Göttingen(DE)

- 2 Erfinder: Eibl, Hansjörg, Prof. Dr. Heinrich-Deppe-Ring 22 W-3406 Bovenden-Eddigehausen(DE)
- Vertreter: Huber, Bernhard, Dipl.-Chem. et al Patentanwälte H. Weickmann, Dr. K. Fincke F.A. Weickmann, B. Huber Dr. H. Liska, Dr. J. Prechtel Kopernikusstrasse 9 Postfach 86 08 W-8000 München 86(DE)
- Meue Erucyl-, Brassidyl- und Nervonylderivate.
- Die Erfindung betrifft Verbindungen der allgemeinen Formel I

in der R einen Erucyl-, Brassidyl- oder Nervonyl-Rest,

R₁, R₂ und R₃ unabhängig voneinander je einen geradkettigen, verzweigten, cyclischen gesättigten oder ungesättigten Alkylrest mit 1 bis 4 C-Atomen, der auch eine OH-Gruppe enthalten kann und wobei zwei dieser Reste auch zu einem Ring verbunden sein können,

A eine Einfachbindung oder eine der Gruppen mit den Formeln

• • • • • •

wobei die Gruppen (II) bis (VII) eine solche Orientierung besitzen, daß das Sauerstoffatom an das Phosphoratom der Verbindung (I) gebunden ist,

und X ein Sauerstoffatom ist, wenn A eine Einfachbindung ist oder ein Sauerstoff- oder Schwefelatom bedeutet, wenn A eine der Gruppen (II) bis (VII) ist, sowie deren Verwendung als Arzneimittel.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

ΕP 92 10 5822

Lategorie	Kennzeichnung des Dokun der maßgeb	nents mit Angabe, soweit erforderlich, ichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
D,Y	EP-A-O 108 565 (TA INDUSTRIES,LTD.) * das ganze Dokume	KEDA CHEMICAL	1,7-24	C07F9/113 A61K31/66 C07F9/572 C07F9/59
Y	US-A-4 562 005 (SH * das ganze Dokume	OSHICHI NOJIMA) nt *	1,7~24	C07F9/10 C07F9/173
Y	EP-A-O 061 872 (TA INDUSTRIES,LTD.) * das ganze Dokume		1,7-24	C07F9/655 C07F9/09
Ρ,Χ	CANCER CHEMOTHERAP Bb. 30, Nr.2, 1992 J. KöTTING ' Alkyl * das ganze Dokume	phosphocholines'	1-24	
				RECHERCHIERTE
				SACHGEBIETE (Int. Cl.5)
				C07F A61K
Der vo	rliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt		
	Recharchement	Abschinfestun der Recherche		Pritier
	DEN HAAG	24 NOVEMBER 1992		BESLIER L.M.

RPO FORM 15th to.12 (PO4th)

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derseiben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- nach dem Anmeidedatum veröffentlicht word D: in der Anmeidung angeführtes Dokument L: aus andern Gründen angeführtes Dokument
- 4 : Mitglied fer gleichen Patentfamilie, übereinstimmendes Dokument

					· ·
	*			4	
		40			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
\square IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

