International Rectifier

PD - 91503D

IRFP150N

HEXFET® Power MOSFET

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

G S

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	42		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	30	A	
I _{DM}	Pulsed Drain Current ①⑤	140		
P _D @T _C = 25°C	Power Dissipation	160	W	
	Linear Derating Factor	1.1	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy@\$	420	mJ	
I _{AR}	Avalanche Current © S	22	А	
E _{AR}	Repetitive Avalanche Energy①	16	mJ	
dv/dt	Peak Diode Recovery dv/dt 35	5.0	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.95	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA ^⑤
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.036	Ω	V _{GS} = 10V, I _D = 23A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
g _{fs}	Forward Transconductance	14			S	V _{DS} = 25V, I _D = 22A ^⑤
ı	Drain to Course Lealings Correct			25		$V_{DS} = 100V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
	Gate-to-Source Forward Leakage			100	^	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
Q _g	Total Gate Charge			110		I _D = 22A
Q _{gs}	Gate-to-Source Charge			15	nC	$V_{DS} = 80V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			58		V _{GS} = 10V, See Fig. 6 and 13 ④⑤
t _{d(on)}	Turn-On Delay Time		11			$V_{DD} = 50V$
t _r	Rise Time		56			$I_D = 22A$
t _{d(off)}	Turn-Off Delay Time		45		ns	$R_G = 3.6\Omega$
t _f	Fall Time		40			$R_D = 2.9\Omega$ See Fig. 10 4 \$
	Internal Drain Inductance		5.0		- nH	Between lead,
L _D						6mm (0.25in.)
L _S	Internal Source Inductance		13			from package
						and center of die contact
C _{iss}	Input Capacitance		1900			V _{GS} = 0V
C _{oss}	Output Capacitance		450		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		230			f = 1.0MHz, See Fig. 5®

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			40		MOSFET symbol		
	(Body Diode)	42	42	A	showing the			
I _{SM}	Pulsed Source Current		4.4	4.40	4.40	4.40		integral reverse
	(Body Diode) ①⑤		—— 140		p-n junction diode.			
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S =23A, V _{GS} = 0V ④		
t _{rr}	Reverse Recovery Time		180	270	ns	$T_J = 25$ °C, $I_F = 22A$		
Q _{rr}	Reverse RecoveryCharge		1.2	1.8	μC	di/dt = 100A/µs 4 5		
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)						

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \hline @ Starting $T_J = 25^\circ C$, $L = 1.7mH$ \\ $R_G = 25\Omega$, $I_{AS} = 22A$. (See Figure 12) \\ \hline \end{tabular}$
- $\label{eq:loss} \begin{array}{l} \text{ } 3 \text{ } I_{SD} \leq 22A, \text{ } di/dt \leq 180A/\mu s, \text{ } V_{DD} \leq V_{(BR)DSS}, \\ T_{J} \leq 175^{\circ}C \end{array}$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ⑤ Uses IRF1310N data and test conditions.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

Package Outline TO-247AC Outline

Dimensions are shown in millimeters (inches)

Part Marking Information TO-247AC

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 3A1Q

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7103

Visit us at www.irf.com for sales contact information. 07/02

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/