Final Project Supervised Machine Learning on **Adult Dataset**

Contents

- 1 Project Topic
- 2 Data
- 3 Data Cleaning
- 4 Exploratory DataAnalysis
- 5 Models
- 6 Results and Analysis
- 7 Discussion and

Conclusion

1 Project Topic

Task

Project task is to develop and create binary classification models.

Goals

- Primary
- Secondary

Census Income Data Set

Download: Data Folder, Data Set Description

Abstract: Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Data Set Characteristics:	Multivariate	Number of Instances:	48842	Area:	Social
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	14	Date Donated	1996-05-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	750875

2 Data

Data Source

https://archive.ics.uci.edu/m l/datasets/Census+Income

Data Attributes

Information of attributes.

Data Description

Characteristics of dataset.

Data Summary

Checking the summary of data.

3 Data Cleaning

Missing Values

na_values='?' is the argument \underset used while reading in dataset.

Check of Imbalanced Data

We will first clean target variable.

Multicollinearity?

We check for dependency between marital status and relationship.

Encoding Categorical Variables

We represent annual income of >50K as 1 and <=50K as 0.

Standardizing Feature Set
We standardize the age,
hours-per-week and

Multicollinearity Test
It's best if you keep your text
within 3-5 lines. Less is more!

Synthetic Minority
Oversampling Technique
We use SMOTE to balance
our dataset by oversampling the minority
class.

Train-Test Split
We will divide the dataset into a 70:30 ratio.

SMOTE: Synthetic Minority Oversampling Technique

- 0.8

- 0.6

- 0.4

- 0.2

Evaluation Metric

Logistic Regression

Logistic Regression (with SMOTE)

Random Forest Classifier

Random Forest Classifier (SMOTE)

Gaussian Naive Bayes

Gaussian Naive Bayes (SMOTE)

Random Forest Classifier

Without SMOTE

Random Forest Train accuracy 0.79 Random Forest Test accuracy 0.79

	precision	recall	f1-score	support
0	0.79	1.00	0.88	10194
1	0.99	0.17	0.30	3304

With SMOTE

Random Forest Train accuracy 0.78 Random Forest Test accuracy 0.74

support	f1-score	recall	precision	F
10194	0.81	0.70	0.95	0
3304	0.63	0.88	0.49	1

AUC

The AUC score for Random Forest Classifier is 0.87 for without SMOTE and is 0.86 for with SMOTE.

Logistic Regression

Without SMOTE

Logistic Regression Train accuracy 0.72 Logistic Regression Test accuracy 0.72

	precision	recall	f1-score	support
0	0.94	0.68	0.79	10194
1	0.47	0.87	0.61	3304

With SMOTE

Logistic Regression Train accuracy 0.77 Logistic Regression Test accuracy 0.72

	precision	recall	f1-score	support
0	0.94	0.68	0.79	10194
1	0.47	0.87	0.61	3304

AUC

The AUC score for Logistic Regression is 0.84 in both cases - with or without SMOTE.

Gaussian Naive Bayes

Without SMOTE

Gaussian Naive Bayes Train accuracy 0.79 Gaussian Naive Bayes Test accuracy 0.79

	precision	recall	f1-score	support
0	0.81	0.94	0.87	10194
1	0.66	0.34	0.44	3304

With SMOTE

Gaussian Naive Bayes Train accuracy 0.67 Gaussian Naive Bayes Test accuracy 0.79

	precision	recall	f1-score	support
0	0.84	0.91	0.87	10194
1	0.61	0.45	0.52	3304

AUC

The AUC score for Gaussian Naive Bayes is 0.85 in both cases - with or without SMOTE.

Discussion and Conclusion

- Data cleaning is crucial for machine learning pipeline.
- Exploratory Data Analysis is critical to identify the most significant factors.
- Statistical tests can easily identify the patterns and develop a solid feature set.
- Handling of imbalanced dataset is challenging.
- Accuracy may not be the best metric all the time.
- AUC score provides a better understanding for model performance when the dataset is imbalanced.

Reference: Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

