Basic Probability: Problem Set I

Youngduck Choi CILVR Lab New York University yc1104@nyu.edu

Abstract

This work contains a collection of solutions for selected problems of the Basic Probability course of Fall 2015.

Question 1.dd.

Solution. (i) Let $X=\{(a,b)|a\in\mathbb{Q},b\in\mathbb{Q}\}$. In particular, $X=\mathbb{Q}\times\mathbb{Q}$. Notice that by the Cantor diagonalization argument, there exists a bijective map $\phi:\mathbb{Q}\times\mathbb{Q}\to\mathbb{N}\times\mathbb{N}$. Now, consider a map $\psi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ such that $\psi(m,n)=(m+n)^2+n$. With some algebra, we can show that if $\psi(m,n)=\psi(m',n')$, then m=m' and n=n'. Hence, ψ is injective, and $\mathbb{N}\times\mathbb{N}$ is equipotent to $\psi(\mathbb{N}\times\mathbb{N})$, which is a subset of the countable set \mathbb{N} . Therefore, we have shown that $\mathbb{N}\times\mathbb{N}$ is countable, and consequently X is countable, due to the existence of the bijective map ϕ .

(ii) Let $X = \{B((x,y),r)|x=y\}$. Consider the set Y such that $Y = \{B((x,y),1)|x=y\}$. Y is in fact equipotent with \mathbb{R} , as you can arbitrarily pick the center from \mathbb{R} and that determines the circle in Y. Hence, Y is uncountable. Furthermore, notice that $Y \subset X$. Hence, X is uncountable.

(iii)

Question 2-(i). σ -field.

Solution. Let $\{\mathcal{G}_{\lambda}\}_{{\lambda}\in\Lambda}$ be a collection of σ -fields of the space Ω . We wish to show that $\cap_{{\lambda}\in\Lambda}\mathbb{G}_{\lambda}$ is a σ -field of Ω . As \emptyset , $\Omega\in\mathcal{G}$ for all $\lambda\in\Lambda$, we have that

$$\emptyset$$
, $\Omega \in \cap_{\lambda \in \Lambda} \mathcal{G}_{\lambda}$,

thereby satisfying one basic property of σ -field. It remains to show that a union of countable collection of subsets in

Question 4.

Solution.