Exercício #5 Solução

Questão 1

Considere a **Questão 6** do **Exercício #1**. Resolva o modelo de PL usando algum software apropriado e depois complete o quadro abaixo mostrando quantos voluntários iniciarão a cada hora do dia, quantos teremos em cada turno e as folgas (pessoas atendendo no horário menos a demanda daquele horário).

Solução pelo LINGO:

j:	1	2	3	4	5	6	7	8	9	10	11			
Horário:	08-09	09-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22
Demanda:	4	4	6	6	8	8	18	18	16	16	18	18	20	20
Entrada:	4	-	6	-	2	-	16	-	-	-	20			
Tot. Pessoas:	4	4	10	10	8	8	18	18	16	16	20	20	20	20
Folga	-	-	4	4	-	-	-	-	-	-	2	2	-	-

$$Min. f = \sum_{j=1}^{11} x_j$$
s.a.
1) $x1 \ge 4$
2) $x1 + x2 \ge 4$
3) $x1 + x2 + x3 \ge 6$

4)
$$x1 + x2 + x3 + x4 \ge 6$$

5) $x2 + x3 + x4 + x5 \ge 8$

6)
$$x3 + x4 + x5 + x6 \ge 8$$

7)
$$x4 + x5 + x6 + x7 \ge 18$$

8) $x5 + x6 + x7 + x8 \ge 18$

9)
$$x6 + x7 + x8 + x9 \ge 16$$

10)
$$x7 + x8 + x9 + x10 \ge 16$$

11)
$$x8 + x9 + x10 + x11 \ge 18$$

12)
$$x9 + x10 + x11 \ge 18$$

13)
$$x10 + x11 \ge 20$$

14) $x11 \ge 20$

Objective value: 48.00000

Variable	Value	Reduced Cost
X1	4.00000	0.000000
X2	0.00000	1.000000
Х3	6.000000	0.000000
X4	0.00000	0.000000
X5	2.00000	0.000000
X6	0.00000	0.000000
X7	16.00000	0.000000
X8	0.00000	0.000000
Х9	0.00000	0.000000
X10	0.00000	0.000000
X11	20.00000	0.000000
Row	Slack or Surplus	Dual Price
H_1	0.00000	-1.000000
H_2	0.00000	0.000000
H_3	4.00000	0.000000
H_4	4.00000	0.000000
H_5	0.00000	0.000000
Н_6	0.00000	-1.000000

н 7	0.000000	0.000000
н 8	0.00000	0.000000
— Н 9	0.00000	0.000000
$H \overline{1}0$	0.00000	-1.000000
H_11	2.00000	0.000000
H 12	2.000000	0.000000
H_13	0.00000	0.000000
H 14	0.00000	-1.000000

Total de voluntários usados: 48

Outra solução, obtida pelo zweigmedia.com/simplex/simplex.php:

j:	1	2	3	4	5	6	7	8	9	10	11			
Horário:	08-09	09-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22
Demanda:	4	4	6	6	8	8	18	18	16	16	18	18	20	20
Entrada:	4	-	2	4	2	-	16	-	-	-	20	-	_	-
Tot. Pessoas:	4	4	6	10	8	8	22	18	16	16	20	20	20	20
Folga	-	-	-	4	-	-	4	-	-	-	2	2	-	-

```
Optimal solution: f = 48; x1 = 4, x10 = 0, x11 = 20, x2 = 0, x3 = 2, x4 = 4, x5 = 2, x6 = 0, x7 = 16, x8 = 0, x9 = 0
```

Questão 2

Considere a **Questão 2** do **Exercício #4**. Dê o significado dos Preços Duais diferentes de zero da solução ótima.

Maximizar Lucro =
$$8x1 + 5x2$$
 sujeito a:
Mão_de_Obra) $2x1 + x2 \le 400$ (1)
Limite_x1) $x1 \le 150$ (2)
Limite_x2) $x2 \le 200$ (3)

Forma Padrão:

Max.
$$f = 8x1 + 5x2$$

s.a.

$$2x1 + x2 + s1 = 400$$

$$x1 + s2 = 150$$

$$x2 + s3 = 200$$

Tabela ótima do Simplex:

Base	x1	x2	s1	52	s3	RHS
f	0	0	4	0	1	1800
х2	0	1	0	0	1	200
x1	1	0	0.5	0	-0.5	100
s 2	0	0	-0.5	1	0.5	50

Preço Dual da Mão de Obra = 4

Isso significa que, para cada unidade a mais de mão de obra disponível (o que corresponde à capacidade de produção de um chapéu do tipo 2), o lucro aumentará em \$4. Ou, caso pudéssemos contratar mais mão de obra, só compensaria pagar até no máximo \$4 por "unidade".

Preço Dual do Limite de x2 = 1

Isso significa que, para cada unidade a mais que pudermos vender do chapéu do tipo 2, o lucro aumentará em \$1. O contrário também é verdadeiro: se o mercado para chapéu tipo 2 "encolher", a empresa terá seu lucro reduzido em \$1 para cada chapéu a menos vendido.

Questão 3

Considere a Questão 7 do Exercício #1.

- a) Resolva o modelo de PL usando algum software apropriado.
- b) Descreva a solução obtida (variáveis de decisão, F.O. e folgas) e o percentual de perda de papel cortado.
- c) Dê o significado dos Custos Reduzidos e Preços Duais diferentes de zero da solução ótima.
- d) Verifique se existe outra solução ótima diferente da fornecida pelo software. Se sim, determina-a.

 $X_{\rm j}$ - Quantidade da rolos de 20 pés cortados usando o Corte j.

```
Minimizar f = x1 + x2 + x3 + x4 + x5 + x6 s.a. 

Largura_9) 2x1 + x2 + x3 \geq 300 

Largura_7) x2 + 2x4 + x5 \geq 200 

Largura_5) 2x3 + x4 + 2x5 + 4x6 \geq 150
```

Objective value: 262.5000

Variable	Value	Reduced Cost
X1	150.0000	0.000000
X2	0.000000	0.1250000
х3	0.000000	0.000000
X4	100.0000	0.000000
X5	0.000000	0.1250000
Х6	12.50000	0.00000
Row	Slack or Surplus	Dual Price
LARGURA 9	0.00000	-0.500000

LARGURA_5 0.000000 -0.2500000 LARGURA_5 0.000000 -0.2500000

Serão necessários pelo menos 262.5 rolos de 20 pés. A demanda pode ser feita cortando 150 rolos segundo o corte 1 (2 \times 9 pés), 100 rolos segundo o corte 4 (2 \times 7 + 1 \times 5), e 12.5 rolos segundo o corte 6 (4 \times 5 pés).

Não haverá excesso de rolos de 9, 7 ou 5 pés.

A perda total será de 150 * 2 + 100 * 1 = 400 pés, o que corresponde a 400/(262.5*20) = 7.62%.

c)
Custos Reduzidos:

b)

O valor de 0.125 para as variáveis $\times 2$ e $\times 5$ significam que, para cada rolo de 20 pés que cortarmos segundo os cortes 2 ou 5, teremos um aumento na F.O. de 0,125 unidades.

Preços Duais:

Os valores negativos dos Preços Duais indicam que, para cada unidade que aumentarmos nas demandas dos rolos de 9,7 ou 5 pés, teremos uma PIORA na F.O. de 0.5, 0.375 ou 0.25 unidades,

respectivamente. Por exemplo, aumentando a demanda de rolos de 9 pés de 300 para 310, teríamos teoricamente que usar mais 5 rolos de 20 metros. Digo "teoricamente" porque teríamos que olhar se esse aumento de 10 unidades não faria a Base mudar. Esse detalhe será visto na Parte 2 da matéria.

d)
Podemos ver que o Custo Reduzido de x3 é igual a zero, embora ele não esteja na Base (por que podemos ter certeza de que ele não está na Base?). Isso significa que, se essa variável entrar na Base, a F.O. não será alterada.

Vamos ver o quadro final Simplex usando o app (https://www.zweigmedia.com/simplex/simplex.php?lang=en):

Tableau 4:

	x 1	x 2	x 3	x4	x 5	x 6	s1	s2	s3	-£	
x 1	1	0.5	0.5	0	0	0	-0.5	0	0	0	150
x4	0	0.5	0	1	0.5	0	0	-0.5	0	0	100
x 6	0	-0.125	0.5	0	0.375	1	0	0.125	-0.25	0	12.5
-f	0	0.125	0	0	0.125	0	0.5	0.375	0.25	1	-262.5

Pelo quadro acima, podemos ver que $\times 3$ entrará na Base no lugar de $\times 6$. Com isso, podemos calcular diretamente a nova solução considerando a Base ($\times 1$, $\times 3$, $\times 4$):

$$B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 0.5 & 0.125 & -0.25 \\ 0 & -0.25 & 0.5 \\ 0 & 0.5 & 0 \end{bmatrix} \begin{bmatrix} 300 \\ 200 \\ 150 \end{bmatrix} = \begin{bmatrix} 137.5 \\ 25 \\ 100 \end{bmatrix}$$

Obs.: como o número de rolos cortados neste caso deve ser inteiro, na prática, teríamos que gastar 263 rolos, cortando:

ou então:

obtendo uma perda total de cerca de 7.8%.