Machine Learning and Data Analytics ME 5013- Fall 2019

Lectures 18

Neural networks basics

The University of Texas at San Antonio™

Adel Alaeddini, PhD
Associate Professor of Mechanical Engineering
Advanced Data Engineering Lab
adel.alaeddini@utsa.edu

$$x_1 = \text{size}$$
 $x_2 = \text{\# bedrooms}$ $x_3 = \text{\# floors}$ $x_4 = \text{age}$ \dots x_{100}

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^3 x_2 + \theta_6 x_1 x_2^2 + \dots)$$

What is this?

You see this:

Testing:

What is this?

Learning Algorithm

50 x 50 pixel images \rightarrow 2500 pixels n=2500 (7500 if RGB)

$$x = \begin{bmatrix} \text{pixel 1 intensity} \\ \text{pixel 2 intensity} \\ \vdots \\ \text{pixel 2500 intensity} \end{bmatrix}$$

Quadratic features ($x_i \times x_j$): \approx 3 million features

pixel 1

Neural Networks

Origins: Algorithms that try to mimic the brain.

Was very widely used in 80s and early 90s; popularity diminished in late 90s.

Recent resurgence: State-of-the-art technique for many applications

[Roe et al., 1992]

Seeing with your tongue

Haptic belt: Direction sense

Human echolocation (sonar)

Implanting a 3rd eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]

$$\theta = [\theta_0, \theta_1, \dots, \theta_3]$$

Weights/ parameters

inputs

Sigmoid (logistic) activation function.

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$a_i^{(j)} =$$
 "activation" of unit i in layer j

 $\Theta^{(j)} = \text{matrix of weights controlling}$ function mapping from layer j to layer j+1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

If network has s_j units in layer j, s_{j+1} units in layer j+1, then $\Theta^{(j)}$ will be of dimension $s_{j+1} \times (s_j+1)$.

Forward propagation: Vectorized implementation

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$z^{(2)} = \Theta^{(1)}x$$
$$a^{(2)} = g(z^{(2)})$$

Add
$$a_0^{(2)} = 1$$
.
 $z^{(3)} = \Theta^{(2)}a^{(2)}$
 $h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$

Forward propagation: Vectorized implementation

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$z^{(2)} = \Theta^{(1)}x$$
$$a^{(2)} = g(z^{(2)})$$

Add
$$a_0^{(2)} = 1$$
.
 $z^{(3)} = \Theta^{(2)}a^{(2)}$
 $h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$

Other network architectures

$$y = x_1 \text{ XOR } x_2$$
$$x_1 \text{ XNOR } x_2$$
$$\text{NOT } (x_1 \text{ XOR } x_2)$$

$$h_{\theta}(x) = g(-30 + 20 x_1 + 20 x_2)$$
$$\theta_{10}^{(1)} \quad \theta_{11}^{(1)} \quad \theta_{12}^{(1)}$$

x_1	x_2	$h_{\Theta}(x)$
0	0	
0	1	
1	0	
1	1	

x_1	x_2	$h_{\Theta}(x)$
0	0	
0	1	
1	0	
1	1	

x_1	$h_{\Theta}(x)$
0	
1	

$$h_{\Theta}(x) = g(10 - 20x_1)$$

$$(NOT x_1) AND (NOT x_2)$$

Putting it together: $x_1 \text{ XNOR } x_2$

+1)
(x_1))
(x_2))

x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	$h_{\Theta}(x)$
0	0			
0	1			
1	0			
1	1			

[Courtesy of Yann LeCun]

[Courtesy of Yann LeCun]

Pedestrian

Car

Motorcycle

Truck

$$h_{\Theta}(x) \in \mathbb{R}^4$$

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc. when pedestrian when car when motorcycle

$$h_{\Theta}(x) pprox \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$
,

$$h_{\Theta}(x) pprox egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix}$$
, etc.

Multiple output units: One-vs-all.

$$h_{\Theta}(x) \in \mathbb{R}^4$$

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc.

when pedestrian when car when motorcycle

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

$$y^{(i)}$$
 one of $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$ $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$

pedestrian car motorcycle truck