Užrašykite imties dažnį ir santykinių dažnių pasiskirstymo eilutes. Apskaičiuokite skaitines imties charakteristikas. Nubrėžkite empirinės pasiskirstymo funkcijos ir santykinių dažnių histogramos grafikus. Atsižvelgdami į santykinių dažnių histogramos formą ir skaitines imties charakteristikas, iškelkite atsitiktinio dydžio pasiskirstymo hipotezę. Raskite taškinius pasiskirstymo dėsnio parametrų įverčius (momentų arba maksimalaus tikėtinumo metodais). Pasinaudodami χ^2 arba Kolmogorovo suderinamumo kriterijais, patikrinkite neparametrinę empirinės pasiskirstymo funkcijos suderinamumo su teorine hipotezę. Paaiškinkite gautus rezultatus. Užrašykite generalinės aibės pasiskirstymo ir tankio funkcijų išraiškas.

Duomenys:

7.53	0.14	2.69	2.68	1.77	12.72	1.57	4.19	0.66	4.26
6.76	5.57	1.38	1.62	1.59	9.82	0.86	0.82	0.27	4.79
3.49	0.76	4.13	8.23	0.55	4.44	10.01	5.59	0.52	1.59
9.33	2.72	0.64	3.49	3.37	0.11	0.24	0.15	4.33	4.84
1.25	1.78	1.11	2.37	0.52	0.58	0.64	0.56	2.47	0.31
3.06	8.20	0.19	1.14	1.75	7.24	0.53	3.15	2.67	0.32
0.22	1.00	1.97	0.84	3.25	4.91	3.05	5.71	2.46	1.42
0.76	2.20	7.26	0.83	0.82	2.41	0.22	7.97	2.38	3.07
0.51	1.89	2.80	3.31	4.37	3.86	2.45	2.18	1.97	1.54
0.92	3.05	5.21	2.13	3.47	0.22	0.82	0.13	1.74	8.72

• Šis uždavinys buvo išspręstas su Microsoft Excel programa.

Duomenų skaičius n = 100

Variacinė eilutė:

0,11	0,13	0,14	0,15	0,19	0,22	0,22	0,22	0,24	0,27	0,31	0,32	0,51
0,52	0,52	0,53	0,55	0,56	0,58	0,64	0,64	0,66	0,76	0,76	0,82	0,82
0,82	0,83	0,84	0,86	0,92	1	1,11	1,14	1,25	1,38	1,42	1,54	1,57
1,59	1,59	1,62	1,74	1,75	1,77	1,78	1,89	1,97	1,97	2,13	2,18	2,2
2,37	2,38	2,41	2,45	2,46	2,47	2,67	2,68	2,69	2,72	2,8	3,05	3,05
3,06	3,07	3,15	3,25	3,31	3,37	3,47	3,49	3,49	3,86	4,13	4,19	4,26
4,33	4,37	4,44	4,79	4,84	4,91	5,21	5,57	5,59	5,71	6,76	7,24	7,26
7,53	7,97	8,2	8,23	8,72	9,33	9,82	2 10,0	01 12	,72			

Imties dažnių eilutė:

0,11	0,13	0,14	0,15	0,19	0,22	0,24	0,27	0,31	0,32	0,51	0,52	0,53
1	1	1	1	1	3	1	1	1	1	1	2	1
0,55	0,56	0,58	0,64	0,66	0,76	0,82	0,83	0,84	0,86	0,92	1	1,11
1	1	1	2	1	2	3	1	1	1	1	1	1
1,14	1,25	1,38	1,42	1,54	1,57	1,59	1,62	1,74	1,75	1,77	1,78	1,89
1	1	1	1	1	1	2	1	1	1	1	1	1
1,97	2,13	2,18	2,2	2,37	2,38	2,41	2,45	2,46	2,47	2,67	2,68	2,69
2	1	1	1	1	1	1	1	1	1	1	1	1
2,72	2,8	3,05	3,06	3,07	3,15	3,25	3,31	3,37	3,47	3,49	3,86	4,13

1	1		2	1		1	1		1	ĺ	1		1	1		2		1	1	
4,19	4,26	6	4,33	4,3	7	4,44	4,7	9	4,84	4	4,9	1	5,21	5,5	7	5,59	5	,71	6,76	
1	1		1	1		1	1		1		1		1	1		1		1	1	
7,24	7,26	7,	.53	7,97	8,2	2 8	3,23	8,	72	9,	33	9,8	82	10,01	1	2,72				
1	1		1	1	1		1	:	1	:	1	1	L	1		1				

IŠVADA: imties dažnių skirstinys parodo, kiek imtyje pasikartoja ta pati reikšmė, pvz.:0,82 pasikartoja imtyje 3 kartus (jos dažnis lygus 3), reikšmė 3,49 – 2 kartus (jos dažnis 2).

Imties santykių dažnių eilutė:

	cics saii	٠, ٧ ٥.	٠.ــ ٧ -											
0,11	0,13	0,14	0,15	0,19	0,22	0,24	0,27	7 0,3	31	0,3	2	0,51	0,52	0,53
0,01	0,01	0,01	0,01	0,01	0,03	0,01	0,02	1 0,0)1	0,0)1	0,01	0,02	0,01
0,55	0,56	0,58	0,64	0,66	0,76	0,82	0,83	3 0,8	34	0,8	6	0,92	1	1,11
0,01	0,01	0,01	0,02	0,01	0,02	0,03	0,02	1 0,0)1	0,0)1	0,01	0,01	0,01
1,14	1,25	1,38	1,42	1,54	1,57	1,59	1,62	2 1,7	' 4	1,7	'5	1,77	1,78	1,89
0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	1 0,0)1	0,0)1	0,01	0,01	0,01
1,97	2,13	2,18	2,2	2,37	2,38	2,41	2,45	5 2,4	16	2,4	7	2,67	2,68	2,69
0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,02	1 0,0)1	0,0)1	0,01	0,01	0,01
2,72	2,8	3,05	3,06	3,07	3,15	3,25	3,32	1 3,3	37	3,4	7	3,49	3,86	4,13
0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,02	1 0,0)1	0,0)1	0,02	0,01	0,01
4,19	4,26	4,33	4,37	4,44	4,79	4,84	4,92	1 5,2	21	5,5	57	5,59	5,71	6,76
0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	1 0,0)1	0,0)1	0,01	0,01	0,01
7,24	7,26	7,53	7,97	8,2	8,2	3 8,	72	9,33	9,	82	10,0	12,72		
0,01	0,01	0,01	0,01	0,0	1 0,0	1 0,	01	0,01	0,	01	0,01	0,01		

IŠVADA: imties santykių dažnių eilutė parodo, kokia tikimybė iš imties paimti vieną konkrečią reikšmę.

Imties charakteristikos:

Imties vidurkis	$\bar{X} =$	2,841
Imties apatinis kvartilis	X_0	0,82
Imties viršutinis kvartilis	X_0	$_{0,75} = 3,9275$
Imties mediana	X	$Z_{me} = 2,155$
Imties moda	Χ	$X_{mo} = 0.22$
Mažiausia reikšmė	X	$m_{in} = 0.11$
Didžiausia reikšmė	X_1	max = 12,72
Imties dispersija	$S^2 =$	6,961591
Imties standartinis nuokrypis	S =	2,638482708

$$k = 1 + 3,22 lg(n) = 7,644$$

Parenkame intervalų skaičių k = 7

$$X_{min} = 0.11$$
 $X_{max} = 12.72$

Parenkame intervalą kuris padengtų visas imties reikšmes:

$$a_0 = 0$$
 $a_k = 13$

Šį intervalą daliname į 7 intervalus, su pločiu $h=\frac{a_k-a_0}{k}=3.14$

Randame intervalinius dažnius v ir santykinius dažnius ω :

(a_i, a_{i+1})	(0,1,5)	(1,5,3)	(3,4,5)	(4,5,7)	(7, 8,5)	(8,5,10)	(10, 13)
v_i	37	26	18	8	6	3	2
ω_i	0,37	0,26	0,18	0,08	0,06	0,03	0,02

Grupuoty duomeny vidurkis:

$$\overline{X_{gr}} = \frac{1}{n} \sum_{i=1}^{k} \frac{a_i + a_{i+1}}{2} \nu_i = 2,97$$

Grupuotų duomenų dispersija:

$$S_{gr}^{2} = \frac{1}{n-1} \sum_{i=1}^{k} \left(\frac{a_{i} + a_{i+1}}{2} - \overline{x_{gr}} \right)^{2} v_{i} = 6,761$$

Pasiskirstymo funkcija:

$$F_n(x) = \begin{cases} 0 & kai \ x \le 0 \\ 0,37 & kai \ 0 < x \le 1,5 \\ 0.63 & kai \ 1,5 < x \le 3 \\ 0.81 & kai \ 3 < x \le 4,5 \\ 0.89 & kai \ 4,5 < x \le 7 \\ 0.95 & kai \ 7 < x \le 8,5 \\ 0.98 & kai \ 8,5 < x \le 10 \\ 1 & kai \ 10 < x \le 13 \end{cases}$$

Ir jos grafikas:

Brėžiame santikinių dažnių histogramą ir spėjame teorinį tankį

Pagal gautą histogramą darome prielaidą, kad duomenys yra pasiskirstę pagal eksponentinį dėsnį.

Keliame hipotezę:

 $H_0: X \sim E(\lambda)$

 H_a : X nepasiskirstęs pagal $E(\lambda)$.

Momentų metodu randame eksponentinio pasiskirstymo nežinomo parametro įvertį λ :

$$MX = \bar{x}$$

$$\frac{1}{\lambda} = \bar{x}$$
$$\lambda = \frac{1}{\bar{x}}$$

Pasirenkame reikšmingumo lygmenį $\alpha = 0,1$.

Hipotezės tikrinimui parenkame statistiką, kuri turi skirstnį x^2 su parametru v = k - r - r, čia r = 1 nežinomų parametrų skaičius, k = 7 – intervalų skaičius.

$$X^{2} = \sum_{j=1}^{k} \frac{(o_{j} - e_{j})^{2}}{e_{j}}$$

Čia o_i - intervaliniai dažniai, e_i – teoriniai dažniai.

Apskaičiuojame teorinius dažnius e_j , laikydami $\lambda=\frac{1}{\bar{x}_{gr}}$ = 100/297 = 0,3367.

$(a_i;a_{i+1})$	(0, 1,5)	(1,5, 3)	(3, 4,5)	(4,5, 7)	(7, 8,5)	(8,5, 10)	(10, +∞)
e_i	39,65245991	23,92928414	14,44073434	12,5061836	3,755618505	2,266423383	3,449296116

Apskaičiuojame statistikos x^2 įvertį

$$X^{2} = \sum_{j=1}^{k} \frac{(o_{j} - e_{j})^{2}}{e_{j}} = 5,04$$

Kai reikšmingumo lygmuo α = 0.1 iš lentelės randame X^2 skirstinio v = k - r - 1 = 5

$$x_{1-\alpha}^2(v) = x_{0.99}^2(5) = 9,24$$

Gavome:

$$X^2 = 5.04 < 9.24 = x_{1-\alpha}^2$$

Taigi, nėra pagrindo atmesti hipotezės H_0 apie eksponentinį X skirstinį.

Generalinės aibės tankio ir pasiskirstymo funckijos:

$$p(x) = \lambda e^{-\lambda x} = 0.3367e^{-0.3367x}$$
, kai $x \ge 0$,

$$F(x) = 1 - e^{-\lambda x} = 1 - e^{-0.3367x}$$
, $kai x \ge 0$.