

Positive Number (unsigned) in 4 bits

- Real hardware has a fixed number of bits to store numbers (pi-cluster is 32 bits)
- There are only 2ⁿ distinct values in n bits
- This limits the range of positive number to be 0 (unsigned min) to 2^n 1 (unsigned max)

Hex digit	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0b0000	0b0001	<mark>0</mark> b0010	0b0011	0b0100	0b0101	0b0110	0b0111

umin

Hex digit	0x8	0x9	0xa	0xb	0хс	0xd	0xe	0xf
Decimal value	8	9	10	11	12	13	14	15
Binary value	0b1000	0b1001	0b1010	0b1011	<mark>0</mark> b1100	0b1101	0b1110	0b1111

umax

Unsigned Integers (positive numbers) with Fixed # of Bits

- 4 bits is 2⁴ = ONLY 16 distinct values
- Modular (C operator: %) or clock math
 - Numbers start at 0 and "wrap around" after 15 and go back to 0
- Keep adding 1

wraps (clockwise)

0000 -> 0001 ... -> 1111 -> 0000

Keep subtracting 1

wraps (counter-clockwise)

1111 -> 1110 ... -> 0000 -> 1111

 Addition and subtraction use normal "carry" and "borrow" rules, just operate in binary

Unsigned Binary Number: Addition in 4 bits

Be Aware in Binary

$$1 + 1 = 10$$

 $1 + 1 + 1 = 11$

base 10:
$$(1 + 1 = 2)$$

base 10: $(1 + 1 + 1 = 3)$

Unsigned Binary Number: Subtraction in 4 bits

Be Aware in Binary

$$1 - 1 = 0$$

 $10 - 1 = 1$

base 10: (1 - 1 = 0)base 10: (2 - 1 = 1)

Borrows

Unsigned Binary Number: Addition in 4 bits – Overflow!

Unsigned Binary Number: Subtraction in 4 bits – Overflow!

Be Aware in Binary

1 - 1 = 0

base 10: (1 - 1 = 0)

10 - 1 = 1

base10: (2 - 1 = 1)

Borrows

Overflow: Going Past the Boundary Between umax and umin

Overflow with unsigned numbers:

Occurs when an arithmetic result (from addition or subtraction for example) is is more than **min** or **max** limits

C (and Java) ignore overflow exceptions

 You end up with a bad value in your program and absolutely no warning or indication... happy debugging!....

Problem: How to Encode **Both** Positive and Negative Integers

- How do we represent the negative numbers within a fixed number of bits?
 - Allocate some bit patterns to negative and others to positive numbers (and zero)
- 2ⁿ distinct bit patterns to encode positive and negative values
- Unsigned values: $0 \dots 2^n 1 \leftarrow$ -1 comes from counting 0 as a "positive" number
- Signed values: $-2^{n-1} \dots 2^{n-1}-1$ (dividing the range in ~ half including 0)
- On a number line (below): 8-bit integers signed and unsigned (e.g., char in C)

Same "width" (same number of encodings), just shifted in value

Negative Integer Numbers: Sign + Magnitude Method

Sign bit Remaining bits

MSB

these numbers show bit position boundaries

O

LSB

- Use the Most Significant Bit as a sign bit
 - 0 as the MSB represents positive numbers
 - 1 as the MSB represents negative numbers
- Two (oops) representations for zero: 0000, 1000
- Tricky Math (must handle sign bit independently)
 - Positive and Negatives "increment" (+1) in the opposite directions!

Signed Magnitude Examples (Sign bit is always MSB)

Examples (4 bits): $1\ 000 = -0$ $0\ 0000 = 0$ $1\ 001 = -1$ $0\ 001 = 1$ $0\ 001 = 2$ $0\ 001 = 2$ $0\ 001 = 3$

Two's Complement: The MSB Has a Negative Weight

$$2's \ \textit{Comp} = -b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + ... + b_12^1 + b_02^0$$

- 4-bit (w = 4) weight = $-2^{4-1} = -2^3 = -8$
 - 1010_2 unsigned: $1x2^3 + 0x2^2 + 1x2^1 + 0x2^0 = 10$
 - 1010_2 two's complement: $-1x2^3 + 0x2^2 + 1x2^1 + 0x2^0 = -8 + 2 = -6$
 - -8 in two's complement: $1000_2 = -2^3 + 0 = -8$
 - -1 in two's complement: $1111_2 = -2^3 + (2^3 - 1) = -8 + 7 = -1$

2's Complement Signed Integer Method

- Positive numbers encoded same as unsigned numbers
- All negative values have a one in the leftmost bit
- All positive values have a zero in the leftmost bit
 - This implies that 0 is a positive value
- Only one zero
- For n bits, Number range is $-(2^{n-1})$ to $+(2^{n-1}-1)$
 - Negative values "go 1 further" than the positive values
- Example: the range for 8 bits:

• Example the range for 32 bits:

Arithmetic is the same as with unsigned binary!

13

Summary: Min, Max Values: Unsigned and Two's Complement

Two's Complement → Unsigned for n bits

Unsigned Value Range

UMin =
$$0b00...00$$

= 0

$$UMax = 0b11...11$$

 $= 2^n - 1$

Two's Complement Range

SMin =
$$0b10...00$$

$$= -2^{n-1}$$

$$SMax = 0b01...11$$

$$= 2^{n-1} - 1$$

Negation Of a Two's Complement Number (Method 1)

$$-x == \sim x + 1;$$

$$7 = 0111$$
 $-7 = + 1001$
(discard carry) 0000

Negation of a Two's Complement Number (Method 2)

- 1. copy unchanged right most bit containing a 1 and all the 0's to its right
- 2. Invert all the bits to the left of the right-most 1

Signed Decimal to Two's Complement Conversion

dividend -102	Quotient	Remainder	Bit Position
102/2	51	0	b0
51/2	25	1	b1
25/2	12	1	b2
12/2	6	0	b3
6/2	3	0	b4
3/2	1	1	b5
1/2	0	1	b6
0/2	0	0	b7

102(base 10) =
$$b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 = 0b0110 0110$$

Get the two complement of 01100110 is 10011010

Two's Complement to Signed Decimal Conversion - Positive

What is $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$ What is $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$ **1** $b_8 b_1 b_1 b_0$ **1** $b_8 b_1 b_2 b_1 b_1 b_0$

				_
Signed Bit Bias	Bit	Bit Position	Bias	
$-2^{W-1} = -2^{8-1} = -128$	x 0	b7	0 🛑	—
Product Shift Left	Addend	Bit Position	Product	
0	+ 1	b6	1	
2 x 1 = 2	+ 1	b5	3	
2 x 3 = 6	+ 0	b4	6	
2 x 6 = 12	+ 0	b3	12	
2 x 12 = 24	+ 1	b2	25	
2 x 25 = 50	+ 0	b1	50	
2 x 50 = 100	+ 1	b0	SUM = 101	
		Bias + SUM:	0 + 101 = 101	

Two's Complement to Signed Decimal Conversion - Negative

What is b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 What is b_6 b_6 b_7 b_8 b_8 b_9 b_1 b_9 b_9 b_1 b_9 b_1 b_9 b_1 b_9 b_1 b_9 b_1 b_9 b_1 b_1 b_2 b_1 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_2 b_2 b_1 b_2 b_2 b_2 b_2 b_2 b_3 b_4 b_2 b_1 b_2 b_3 b_2 b_1 b_2 b_3 b_2 b_3 b_2 b_3 b_3 b_3 b_3 b_3 b_3 b_3 b_3 b_3 b_4 b_3 b_3 b_3 b_3 b_4 b_3 b_3 b_4 b_3 b_3 b_4 b_5 b_4 b_5 b_4 b_5 b_5 b_5 b_7 b_8 b_9 b_9

Signed Bit Bias	Bit	Bit Position		Bias	
-2 ^{W-1} = -2 ⁸⁻¹ = -128	x 1	b7		-128	—
Product Shift Left	Addend	Bit Position	F	Prøduct	
0	+ 1	b6		1	
2 x 1 = 2	+ 1	b5		3	
$2 \times 3 = 6$	+ 0	b4		6	
2 x 6 = 12	+ 0	b3		12	
2 x 12 = 24	+ 1	b2	-	25	
2 x 25 = 50	+ 0	b1	-	50	
2 x 50 = 100	+ 1	b0	Sl	JM = 101	
		Bias + SUM:	-128	+ 101 = -27	

Two's Complement Addition and Subtraction

- Addition: just add the two number directly
- Subtraction: you can convert to addition: difference = minuend + 2's complement (subtrahend)

2's complement first and then add

$$\mathbf{x} = 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1$$

$$+ (-\mathbf{y}) = 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1$$

$$\mathbf{x} - \mathbf{y} = \mathbf{x} + (-\mathbf{y}) = 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$$

Two's Complement Positive Overflow

• 4-bit Two's complement numbers (positive overflow)

signed numbers: overflow occurs if operands have same sign and result's sign is different

Overflow: Occurs when an arithmetic result is beyond the min or max limits

Two's Complement Negative Overflow

signed numbers: overflow occurs if operands have same sign and result's sign is different

Overflow: Occurs when an arithmetic result is beyond the min or max limits

Summary: When Does Overflow Occur

Operand 1

+ Operand 2

Result

Operand 1 Sign	Operand 2 Sign	Is overflow Possible?
+	+	YES
-	_	YES
+	_	NO
_	+	NO

Sign Extension in C: Type casts

- Convert from smaller to larger integral data types
- C and Java automatically performs sign extension
- Example (on pi-cluster with 32-bit int and 16-bit short)

```
#include <stdlib.h>
#include <stdio.h>
int main(void)
    signed char c = -1;
    signed int i = c;
    unsigned char d = 1;
    unsigned int j = d;
    printf("c decimal = %hd\n", c);
    printf("c = 0x\%hhx\n", c);
    printf("i decimal = %d\n", i);
    printf("i = 0x%x \n", i);
    printf("\nd decimal = %hd\n", d);
    printf("d = 0x\%hhx\n", d);
    printf("j decimal = %d\n", j);
    printf("j = 0x%x n", j);
    return EXIT_SUCCESS;
```

```
%./a.out
c decimal = -1
c = 0xff
i decimal = -1
i = 0xffffffff

d decimal = 1
d = 0x1
j decimal = 1
j = 0x1
```

Sign Extension (how type promotion works)

Sometimes you need to work with integers encoded with different number of bits

8 bits (char) -> (16 bits) **short** -> (32 bits) **int**

• Sign extension increases the number of bits: n-bit wide signed integer X, EXPANDS to a wider

n-bit + k-bit signed integer X' where both have the same value \leftarrow n-bits

Unsigned

Just add leading zeroes to the left side

Two's Complement Signed:

- If positive, add leading zeroes on the left
 - Observe: Positive stay positive
- If negative, add leading ones on the left
 - Observe: Negative stays negative

25

Example: Two's Complement Sign or bit Extension - 1

Adding 0's in front of a positive numbers does not change its value

Example: Two's Complement Sign or bit Extension -2

• Adding 1's if front of a negative number does not change its value


```
1001 = -8 + 1 = -7
11111001 =
(-128 + 64 + 32 + 16 + 8) + 1
= -8 + 1 = -7
```

```
= 00000111
invert = 11111000
add 1
         11111001
```

1001

Sign Extension Under Different representations

28

Memory Size

- Since memory addresses are implemented in hardware using binary
 - The Size (number of byte sized cells) of Memory is specified in powers of 2
- Memory size/capacity in bytes is specified by the "Number of bits" in an address
 - 32 bits of address = 2^{32} = 4,294,967,296
 - Address Range is 0 to 2³² 1 (unsigned)
- Shorthand notation for address size (Memory Capacity)
 - KB = 2^{10} (K=1024) kilobyte
 - MB = 2^{20} megabyte
 - $GB = 2^{30}$ gigabyte
 - TB = 2^{40} terabyte
 - PB = 2^{50} petabyte

Different Type of Numbers each have a Fixed # of Bits Spanning one or more contiguous bytes of memory

C Data Type	AArch-32 contiguous Bytes	Byte 8-bit integer uses 1 byte 00000000
char (arm unsigned)	1	7 0
short int	2	Halfaviand of the later and a 2 hadra
unsigned short int	2	Half Word 16-bit integer uses 2 bytes
int	4	000000001 00000000
unsigned int	4	15 7 0
long int	4	
long long int	8	most significant bit (largest power of 2) least significant byte
float	4	Ward 22 bit into any uses 4 but a
double	8	Word 32-bit integer uses 4 bytes
long double	8	00000011 00000010 00000001 00000000
pointer *	4	31 0
		least significant bit (smallest power of 2)
	m	ost significant byte

Byte Ordering of Numbers In Memory: Endianness

- Two different ways to place multi-byte integers in a byte addressable memory
- Big-endian: Most Significant Byte ("big end") starts at the *lowest (starting)* address
- Little-endian: Least Significant Byte ("little end") starts at the *lowest (starting)* address
- Example: 32-bit integer with 4-byte data

Byte Ordering Example

```
Decimal: 12345
Binary: 0011 0000 0011 1001
Hex: 3 0 3 9
```

```
int x = 12345;
// or x = 0x00003039; // show all 32 bits
```


Byte Addressable Memory Shown as 32-bit words

Observation
32-bit aligned addresses
rightmost 2 bits of the address are always 0

Scientific Notation Binary

- Computer hardware that supports this is called floating point hardware due to the "floating" of the binary point
- Declare such variable in C as float (or double)

Floating Point Representation

- Analogous to scientific notation
- In Decimal:
 - Not 12000000, but 1.2 x 10⁷ In C: 1.2e7
 - Not 0.0000012, but 1.2 x 10⁻⁶ In C: 1.2e-6
- In Binary:
 - Not 11000.000, but 1.1 x 2⁴
 - Not 0.000101, but 1.01 x 2⁻⁴

Normalized Scientific Notation

- Convert from scientific notation to fixed binary point
- Perform the multiplication by shifting the decimal until the exponent disappears

Binary	Decimal
2-1	0.5
2-2	0.25
2-3	0.125
2-4	0.0625

- Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
- Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$

Encoding Fractions Observations

In Base 2:

10.1
$$\times 2^5 = 1.01 \times 2^6$$

1011.1 $\times 2^5 = 1.0111 \times 2^8$
0.110 $\times 2^5 = 1.10 \times 2^4$

Normalizing with base 2:

adjust so there *always* a 1 to the **left of the decimal point**! this 1 is **called the hidden bit** as we do not have use a bit to store it since it is there in every normalized mantissa

- Adjust x to always be in the format 1.XXXXXXXXX... (fraction is normalized)
- Fraction portion ONLY encodes what is to the right of the decimal point
- "Hidden bit" allows number to have One additional digit for increased precision

Fraction encoding is 1.[FRACTION BINARY DIGITS]

Floating Point Numbers: Implementation Approach

- Supports a wide range of numbers
- Flexible "floating" decimal point
- Represent scientific notation numbers like 1.202 x 10⁶

$$(-1)^{s} M 2^{E}$$

sign bit exponent fraction

- Sign bit (a single bit): 0 positive, 1 negative
- Exponent: encoding of E above (it is NOT E directly represented in binary)
- Fraction: encoding of M above (it is NOT M directly represented in binary)

Excess Bias Encoding (As used in floating point numbers)

- Given a number in E bits, to divide the range in about 1/2 the following is used:
 excess N bias = (2^{E-1} 1) (this is just one of many bias formulas)
- With this excess N Bias approach: actual numbers range from most negative to most positive is: -(bias) to bias+1
- So, for a number that is limited to 4 bits (0 to 15 unsigned)
 - Then excess N bias = 2^{4-1} 1 = 2^3 1 = a bias of +7

actual	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8
bias	+7	+7	+7	+7	+7	+7	+7	+7	+7	+7	+7	+7	+7	+7	+7	+7
bias encoded	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Floating Point Number in a Byte (Not A Real Format)

- Mantissa encoding: = 1.[xxxx] encoded as an unsigned value
- Exponent encoding: 3 bits encoded as an unsigned value using bias encoding
 - Bias encoding = (2^{E-1} − 1)
 - 3 bits for the bias we have $2^{3-1} 1 = 2^2 1 = a$ bias of 3
 - With a Bias of 3: positive and negative numbers range: small to large is: 2-3 to 24

Actual	-3	-2	-1	0	1	2	3	4
Bias	+ 3	+ 3	+ 3	+ 3	+ 3	+ 3	+ 3	+3
Biased	0	1	2	3	4	5	6	7

Scientific Notation Decimal

• Scientific Normalized form:

exactly one digit (non-zero) to left of decimal point

- Alternatives to representing 1/1,000,000,000
 - Normalized:

1.0×10⁻⁹

Not normalized:

 0.1×10^{-8} , 10.0×10^{-10}

Floating Point Number in a Byte (Not A Real Format)

- Mantissa encoding: = 1.[xxxx] encoded as an unsigned value
- Exponent encoding: 3 bits encoded as an unsigned value using bias encoding
 - Bias encoding = (2^{E-1} − 1)
 - 3 bits for the bias we have $2^{3-1} 1 = 2^2 1 = a$ bias of 3
 - With a Bias of 3: positive and negative numbers range: small to large is: 2-3 to 24

Actual	-3	-2	-1	0	1	2	3	4
Bias	+ 3	+ 3	+ 3	+ 3	+ 3	+ 3	+ 3	+3
Biased	0	1	2	3	4	5	6	7

Floating Point Number (8-bits) Number Range: 2-3 to 24

S = 1 bit	E = 3 bits	M = 4 bits					
sign bit	exponent	fraction					
S = 1 bit	E = 3 bits	M = 4 bits	_				
0	000	0000	0.0 Special case in this simple model				
			we <u>do not</u> put back the "hidden bit"				
S = 1 bit	E = 3 bits	M = 4 bits	- 0 II (N - D - W				
0	000	0001	Smallest Non-zero Positive 0.0010001 = 1/8 + 1/128 = 0.1328125 base 10				
S = 1 bit	E = 3 bits	M = 4 bits	— I				
0/1	111	1111	Largest Positive/Negative 1.1111 x 2 ⁴ = 11111 = 31 base 10				
			_				
S = 1 bit	E = 3 bits	M = 4 bits	— Smallast (alegaet to Tare) Number				
1	000	0000	Smallest (closest to zero) Number 1.0000 x 2 ⁻³ = 0.001000 = 1/8 = -0.125 base 10				

Note: Orange is hidden bit added back

Decimal to Float 7 6

Bias of 3

4 3

S

exponent (3 bits)

fraction (4 bits)

Step 1: convert from base 10 to binary (absolute value)

$$-0.375$$
 (decimal) = 0000.0110_2

Step 2: Find out how many places to shift to get the number into the normalized 1.xxxx mantissa format

$$0000.0110_2 = 1.1000 \times (2^{-2})_{\text{base } 10}$$

exponent: -2_{10} + bias of 3_{10} = 1_{10} = 0b001 for the exponent (after adding the bias)

Step 3: Use as many digits that fit to the right of the decimal point in the fractional .xxxx part

1.1000

Step 4: Sign bit

positive sign bit is 0 negative sign bit is 1

S	exponent	fraction
1	0b001	0b1000
	0x9	0x8

Float to Decimal

6 Bias of 3

4 3

s exponent (3 bits)

fraction (4 bits)

Step 1: Break into binary fields

$$0x45 =$$

Step 2: Extract the unbiased exponent

	0x4	0x5
S	exponent	fraction
0	0b100	0b0101

 $0\dot{b}100 = 4_{base} 10 - bias of 3_{10} = 1_{10}$ for the exponent (bias removed)

Step 3: Express the mantissa (restore the hidden bit)

1.0101

Step 4: Apply the unbiased exponent

$$1.0101_{\text{base 2}} \times (2^1)_{\text{base 10}} = 10.101$$

Step 5: Convert to decimal

$$10.101 = 2.625_{\text{base } 10}$$

Step 6: Apply the Sign

IEEE "754" Floating Point Double and Single Precision

31 30 23 22 Single Precision (C float) Exponent (8 bits) fraction (23 bits) sign

 $Bias\ is\ (2^{8-1}-)=127$ single precision floating point number = $(-1)^s \times 2^{E-127} \times 1$.fraction

63 62 52 51 Double Precision (C Double) fraction (52 bits)

Exponent (11 bits) sign Uses a Bias of 1023

Uses a Bias of 127

bias is $(2^{11-1} - 1) = 1023$ double precision floating point number = $(-1)^s \times 2^{E-1023} \times 1$.fraction

Extra slides

Another Way to Look at 2's Complement Encoding

- A 2's compliment value can be thought of as using a slightly different bias encoding for negative numbers only (more negative values): -2^{W-1}
- The leftmost bit is then interpreted as a decision to apply the bias (if 1) or not (if 0)
 - 1 apply the bias
 - 0 do not apply the bias
- For example, for a 4-bit number (w = 4), the negative number bias weight would be $= -2^{4-1} = -2^3 = -8$

2's	1000	1 001	1 010	1 011	1 100	1 101	1 110	1 111	0000	0001	0010	0011	0 100	0101	0110	0111
3 bit	000	001	010	011	100	101	110	111	000	001	010	011	100	101	110	111
decimal	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
+Bias	-8	-8	-8	-8	-8	-8	-8	-8	0	0	0	0	0	0	0	0
Actual	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7

Observe: adding +1 makes the number more positive for both negative and positive numbers

Decimal to IEEE Single Precision Float

31 30 23 22 0

sign Exponent (8 bits)
Bias is 127 fraction (23 bits)

Step 1: convert from base 10 to binary (absolute value)

$$-13.375$$
 (decimal) = 1101.0110

Step 2: Find out how many places to shift to get the number into the normalized 1.xxxx mantissa format

$$1101.0110 = 1.1010110 \times (2^3)_{\text{base } 10}$$

$$3 + bias of 127 = 130 for the exponent = 0b1000 0010$$

Step 3: Use as many digits that fit to the right of the decimal point in the fractional .xxxx part (0 pad)

1.1010110 0000 0000 0000 0000

Step 4: If the sign is positive sign bit is 0, otherwise it is 1

S	ех	ponent			fraction						
1	100	0001	0	101	0110	0000	0000	0000	0000		
	0xc	0x1		0x5	0x6	0x0	0x0	0x0	0x0	=	0xc1560000

IEEE Single Precision Float to Decimal

31 30 23 22 0

sign Exponent (8 bits)
Bias is 127₁₀ fraction (23 bits)

Step 1: Break into binary fields and expand as needed

0xc0b00000 =

0xc 0x0 0xb 0x0 0x0 0x0 0x0 0x0 0x0 1 011 0000 0000 0000 0000 0000

Step 2: Find the exponent

 $0b1000001 = 129_{base 10}$ - bias of $127_{10} = 2_{10}$ exponent with bias added

Step 3: Express the mantissa (restore the hidden bit)

1.0110

Step 4: Apply the exponent

$$1.0110 \times (2^2)_{\text{base } 10} = 101.10$$

Step 5: Convert to decimal

$$101.10 = 5.5$$

Step 6: Apply the Sign

-5.5