OTTIMIZZAZIONE COMBINATORIA

Prof. Marco Trubian 6 CFU

Luca Cappelletti

Lecture Notes Year 2017/2018

Magistrale Informatica Università di Milano Italy 7 settembre 2018

Indice

1	Introduzione	2
2	Matching Covers	3
	2.1 Matching	 3
	2.2 Insieme stabile	
	2.3 Copertura	 3
	2.4 Disuguaglianze duali deboli	 4
	2.5 Teorema di Gallai	5

1

Introduzione

L' Ottimizzazione combinatoria propone modelli di soluzioni ad innumerevole problemi, tra i quali vi sono:

Matching covers Consideriamo due insiemi A e B, di cardinalità n: ad ogni coppia di valori del prodotto cartesiano dei due insiemi è associato un valore positivo che descrive la compatibilità tra i due valori. Si vanno a scegliere n coppie, senza che gli elementi vengano ripetuti, in modo da massimizzare la compatibilità totale.

Set Covering Data una *matrice binaria* ed un vettore di costi associati alle colonne si va a realizzare il sottoinsieme di costo minimo che copra tutte le righe.

Set Packing Data una *matrice binaria* ed un vettore di valori associati alle colonne, si cerca il sottoinsieme di colonne di valore massimo tali che non coprino entrambe una stessa riga.

Set Partitioning Data una *matrice binaria* ed un vettore di cosi associati alle colonne, si cerca il sottoinsieme di colonne di costo minimo che copra tutte le righe senza conflitti.

Vertex Cover Dato un grafo non orientato G = (V, E) si cerca il sottoinsieme di vertici di cardinalità minima tale che ogni lato del grafo vi incida.

Maximum Clique Problem Dato un grafo non orientato e una funzione peso definita sui vertici, si cerca il sottoinsieme di vertici fra loro adiacenti di peso massimo.

Maximum Independent Set Problem Dato un grafo non orientato e una funzione di peso definita sui vertici, si cerca il sottoinsieme di vertici fra loro non adiacenti di peso massimo.

Minimum Steiner Tree Dato un grafo non orientato e una funzione costo definita sui lati, si cerca un albero ricoprente di costo minimo.

Boolean satisfiability problem or SAT Data una forma normale congiunta (CNF), si cerca un assegnamento di verità alle variabili logiche che la soddisfi.

Versione pesata (MAX-SAT) Viene considerata anche una funzione peso associata alle formule che compongono la CNF. L'obbiettivo è massimizzare il peso totale delle formule soddisfatte.

2.1 Matching

Definizione 2.1.1 (Matching o Accoppiamento). Dato un grafo G = (V, E), un **matching** è un sottoinsieme $M \subseteq E$ di archi a due a due non adiacenti.

Definizione 2.1.2 (Matching massimo). Matching M^* di cardinalità massima.

Definizione 2.1.3 (Matching ripartito). Se il grafo G è **bipartito**, allora anche M si dice **bipartito**.

Definizione 2.1.4 (Matching perfetto). Se la cardinalità del matching è pari a metà del numero di vertici, allora si dice **perfetto**:

$$|M| = \frac{|V|}{2}$$

Definizione 2.1.5 (Matching massimale). Un matching M si dice **massimale** se ogni elemento di $E \setminus M$ è adiacente ad almeno un elemento di M.

Un matching massimale **non** necessariamente è massimo, mentre un matching massimo è sempre massimale.

2.2 Insieme stabile

Definizione 2.2.1 (Insieme stabile o indipendente). Dato un grafo simmetrico G = (V, E), un qualunque sottoinsieme S di vertici si dice **indipendente** o **stabile** se esso è costituito da elementi a due a due non adiacenti.

Definizione 2.2.2 (Insieme stabile massimo). Un insieme stabile S^* si dice **massimo** se $|S^*| \ge |S|$, per ogni insieme stabile S di G.

Definizione 2.2.3 (Insieme stabile massimale). Un insieme stabile S si dice **massimale** se ogni elemento di $V \setminus S$ è adiacente ad almeno un elemento di S.

2.3 Copertura

Definizione 2.3.1 (Copertura). Dato un grafo simmetrico G = (V, E), un qualunque sottoinsieme T di vertici (F di archi) tale che ogni arco di E (vertice di V) incide su almeno un elemento di T (di F) si dice **copertura**. In particolare, l'insieme T è detto **trasversale** o **vertex cover** mentre l'insieme F è detto **edge cover**.

Definizione 2.3.2 (Copertura minima). Una copertura X^* si dice **minima** se $|X^*| \le |X|$, per ogni insieme copertura X di G.

Definizione 2.3.3 (Copertura minimale). Una copertura X si dice **minimale** se $X \setminus \{x\}$ non è una copertura per ogni $x \in X$.

2.4 Disuguaglianze duali deboli

Teorema 2.4.1 (Disuguaglianze duali deboli). Indichiamo con $\alpha(G)$ l'insieme stabile massimo di G, con $\mu(G)$ il matching massimo di G, con $\rho(G)$ l'edge cover minimo di G e $\tau(G)$ trasversale minimo di G. Per un grafo G valgono le seguenti due disuguaglianze:

$$\alpha(G) \leq \rho(G)$$

$$\mu(G) \leq \tau(G)$$

Disuguaglianze duali deboli. Siano X l'insieme stabile di G e Y l'edge cover di G.

Poiché Y copre V, ogni elemento di X incide su almeno un elemento di Y.

D'altra parte, nessun elemento di Y copre contemporaneamente due elementi di X altrimenti i due elementi sarebbero adiacenti e quindi non potrebbero appartenere all'insieme stabile X.

Pertanto, per ogni $x \in X$ esiste un distinto $y \in Y$ che lo copre, e quindi $|X| \le |Y|$.

Riscrivendo la precedente relazione per gli insiemi massimi X^* e Y^* si ottiene:

$$\alpha(G) \leq \rho(G)$$

Scambiando il ruolo di V ed E, si ottiene $\mu(G) \le \tau(G)$.

2.5 Teorema di Gallai

Teorema 2.5.1 (**Teorema di Gallai**). Per ogni grafo *G* con *n* nodi si ha:

$$\alpha(G) + \tau(G) = n$$

Se inoltre G non ha nodi isolati

$$\mu(G) + \rho(G) = n$$

Teorema di Gallai. **Iniziamo ottenendo la prima equazione:** Sia S un insieme stabile di G. Allora $V \setminus S$ è un insieme trasversale. In particolare, $|V \setminus S| \ge \tau(G)$. Se consideriamo l'insieme stabile massimo S^* , otteniamo:

$$\tau(G) \geqslant |V \setminus S^*| = n - \alpha(G)$$

da cui ricaviamo:

$$\alpha(G) + \tau(G) \le n$$

Viceversa, sia T un insieme trasversale di G. Allora $V \setminus T$ è un insieme stabile.

In particolare, $|V - T| \le \alpha(G)$.

Se consideriamo l'insieme trasversale minimo T^* , otteniamo:

$$\alpha(G) \ge |V \setminus T^*| = n - \tau(G)$$

da cui ricaviamo

$$\alpha(G) + \tau(G) \ge n$$

Considerando la condizione ottenuta precedentemente possiamo concludere che:

$$\alpha(G) + \tau(G) = n$$

Procediamo a dimostrare la seconda equazione Sia G un grafo privo di nodi isolati e sia M^* il matching massimo di G. Indichiamo con V_{M^*} i nodi che sono estremi degli archi in M^* .

Sia H un insieme minimale di archi tale che ogni nodo in $V \setminus V_{M^*}$ è estremo di qualche arco in H.

Segue che:

$$|H| = |V \setminus V_{M^*}| = n - 2|M^*|$$

Osserviamo che l'insieme $C = H \cup M^*$ è un edge-cover di G.

Sicuramente, $|C| \ge \rho(G)$, quindi:

$$\rho(G) \le |C| = |M^*| + |H| = |M^*| + n - 2|M^*| = n - |M^*| = n - \mu(G)$$

da cui ricaviamo:

$$\rho(G) + \mu(G) \le n$$

Sia C il minimo edge-cover su G, cioè tale che $|C| = \rho(G)$ e sia H = (V, C) il sottografo indotto da C. Valgono quindi le seguenti proprietà:

- 1. H è un grafo aciclico.
- 2. Ogni cammino di H è composto al più da due archi.

Dalle proprietà precedenti concludiamo che il grafo H = (V, C) ha |V| = n vertici e $|C| = \rho(G)$ archi. Può infine essere decomposto in N componenti connesse aventi la forma di stella.

Consideriamo l'i-esima componente connessa di H. Indichiamo con s_i il numero di nodi della componente connessa e con $s_i - 1$ il numero di archi della componente connessa. Pertanto:

$$n = \sum_{i=1}^{N} s_i$$
 e $\rho(G) = \sum_{i=1}^{N} (s_i - 1) = n - N \Rightarrow N = n - \rho(G)$

Sia M un matching con un arco per ogni componente di H. Si ottiene:

$$\mu(G) \ge |M| = n - \rho(G) \Rightarrow \rho(G) + \mu(G) \ge n$$

Considerando la condizione ottenuta precedentemente, possiamo concludere che:

$$\rho(G) + \mu(G) = n$$