密封线

鲁东大学 2020—2021 学年第二学期

<u>2020</u> 级 光电本、新能本、机械类、土木本、电信本、电气本、光I 本、软工本、通信本、智能本、船舶本、物流本、计算本、计算升、生 工本、材料本、高分本、港航本、电气合、 机械合、船舶合、物理本

能源本、信息本 专业 本科卷 A 课程名称 高等数学 A (2)

课程号 (212018132,212018172,212018102,212018182) 考试形式 (闭卷笔试) 时间(120分钟

题目	_	11	11	总 分	统分人
得 分					

评卷人 得分

一、填空题:本题共6小题,每小题3分,满分18分。

- 1、过点(1,-2,4)且与平面2x-3y+z-4=0垂直的直线方程为___
- 2、函数 z = e^{xy} 在点(2,1) 处的全微分是_____
- 3、级数 $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ 的敛散性是______。
- 4、改换 $\int_0^1 dy \int_{-\sqrt{l-y^2}}^{\sqrt{l-y^2}} f(x,y) dx$ 的积分次序______。
- 5、函数 $z = xe^{2y}$ 在点 P(1,0) 处沿从点 P(1,0) 到点 Q(2,-1) 的方向的方向导数是
- 6、L 为连接(1,0)及(0,1)两点的直线段,则 $\int_L (x+y) ds =$ ______。

评卷人 得分

二、选择题: 本题共6小题,每小题3分,满分18分。

选择题答案填写处:

Į,	9月	1	2	3	4	5	6
?	李案						

- 1、已知Ω由平面z=1与曲面 $z=x^2+y^2$ 所围成的闭区域,则 $\iint_{\mathbb{R}} z dx dy dz$ 等于(
- A. $\int_{-1}^{1} dx \int_{-1}^{1} dy \int_{0}^{1} z dz$;
- $\mathbf{B.} \quad \int_0^{2\pi} d\theta \int_0^1 d\rho \int_{\rho^2}^1 \rho z dz \; \; ;$
- C. $\int_0^{2\pi} d\theta \int_0^1 d\rho \int_0^1 z dz , \qquad D. \int_0^{2\pi} d\theta \int_0^1 d\rho \int_1^{\rho^2} \rho z dz .$
- 2、下列级数绝对收敛的是(

- A. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+1}$; B. $\sum_{n=1}^{\infty} \frac{(-1)^n n^{10}}{2^n}$; C. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n+1)}$; D. $\sum_{n=1}^{\infty} (-1)^n 3^n \sin(\frac{\pi}{2^n})$.
- 3、函数 z = f(x,y) 在点 (x_0,y_0) 处具有偏导数是它在该点存在全微分的(
- A. 充分必要条件;

- B. 充分而非必要条件;
- C. 必要而非充分条件;
- D. 既非充分又非必要条件。
- 4、设 $z = f(x+y, x^2y)$,其中f具有一阶连续偏导数,则 $\frac{\partial z}{\partial y}$ 等于(

- A. $f_1' + x^2 f_2'$; B. $f_1' + f_2'$; C. $f_1' + y f_2'$; D. $f_1' + 2x f_2'$.
- 5、求过点(2,-3,0),且以(1,-2,3)为法线向量的平面方程为(
- **A.** x-2y+3z-8=0; **B.** x-2y+3z-4=0;
- C. 2x-3y-13=0;
- **D.** 2x-3y+4=0
- 6、设 L 是圆域 D: $x^2 + y^2 \le -2x$ 的正向圆周,则 $\oint_L (x^3 y) dx + (x y^2) dy$ ()。
- **A.** -2π ; **B.** 0;
- C. $\frac{3\pi}{2}$; D. 2π .

得分	评卷人

三、解答题:本题共8小题,每小题8分,满分64分。

1、(8分) 求函数 $f(x,y) = x^3 + 8y^3 - xy$ 的极值。

2、(8分) 计算: $\iint\limits_{D} \sqrt{x^2+y^2} \,\mathrm{d}\sigma$,其中区域D是圆环形闭区域 $\left\{(x,y) \mid a^2 \le x^2+y^2 \le b^2\right\}$

3、(8分) 设
$$\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$$
, 求导数 $\frac{dx}{dz}$, $\frac{dy}{dz}$

$$4$$
、(8分) 求幂级数 $\sum_{n=1}^{\infty} nx^{n-1}$ 的和函数。

5、(8分) 计算 $\iint_\Sigma (x^2+y^2)\mathrm{d}S$,其中 Σ 为锥面 $z^2=3(x^2+y^2)$ 被平面 z=0 和 z=3 所裁得的部分。

6、(8分) 将函数 $\frac{x+5}{2x^2-x-6}$ 展开成 x 的幂级数。

7、 $(8\,

ota)$ 证明: $\frac{x dx + y dy}{x^2 + y^2}$ 在整个 x O y 平面除去 y 的负半轴及原点的区域 G 内是某个二元函数的全徽分,并求出一个这样的二元函数。

8、(8分) 求球面 $x^2 + y^2 + z^2 = 14$ 在点 (1,2,3) 处的切平面及法线方程。