4. ЭЛЕМЕНТЫ ТЕОРИИ ИГР

4.1 Основные определения

Теория игр – математическая теория конфликтов.

Конфликм — такая ситуация (стечение обстоятельств), в которой сталкиваются интересы сторон, и происходит борьба интересов.

Для возникновения игровой ситуации ещё необходимо желание сторон участвовать в конфликте, не всякий конфликт – игра. К примеру, продавец на рынке стремится поднять цену на товар, а покупатель – сбить её. Однако, если цена заломлена высоко, покупатель разворачивается и идёт дальше, в то же время, продавец может попытаться удержать покупателя, предлагая сниженную цену.... То есть, столкновение интересов сторон – налицо, но, тем не менее ситуация не переросла в игровую.

Правила игры – возможности, предоставляемые каждому игроку совместно с результатами, к которым приводит использование каждой возможности.

Далеко не каждый конфликт на практике протекает по строго определённым заранее правилам, часто один игрок, за неимением информации о действиях противоположной стороны и невозможности оценить игровую ситуацию в целом, не может быть со стопроцентной гарантией уверен в результатах своих действий. Поэтому в теории игр используют термин *стратегия*.

Стратегия (образ действия) – порядок использования правил игры.

Тако же, в силу вероятностных причин говорят не о "результате" игры, а о "среднем результате".

Предполагается, что *средний результат игры*, будь то выигрыш или проигрыш, *выражается числом*.

Основная задача теории игр формулируется так: "Как должен себя вести (какую избрать стратегию) разумный игрок в конфликте с разумным противником, чтобы обеспечить себе в **среднем** наибольший выигрыш (или наименьший проигрыш)?".

Разумность игроков – категория философская, но ниже, на историческом примере, мы дадим её интерпретацию с позиции теории игр.

Пусть в каждой игре принимают участие два лица (или персоны) – Ян и ТатьЯна, и пусть каждая игра – конфликт между этими игроками. Такая игра называется *парной*.

Игра называется *игрой с нулевой суммой*, если одна из сторон выигрывает то, что проигрывает другая.

Пусть мы принимаем участие на стороне Яна (он же Красный или 1-й игрок). Ян заинтересован в том, чтобы сделать этот выигрыш наибольшим, а Татьяна (Синий или 2-й игрок) – сделать его наименьшим.

Если оба противника одинаково разумны, то, по-видимому, можно отыскать некоторое *равновесное положение*, при котором каждый из игроков получит своё. Этот равновесный средний выигрыш, на который Ян вправе рассчитывать при своём оптимальном поведении, называется *иеной игры*.

Таким образом, решит игру означает:

- найти пару стратегий для обоих игроков;
- цену игры Красного игрока.

А если один из игроков ведёт себя неразумно? Тем хуже для него, фактический выигрыш будет отклоняться от цены игры в невыгодную для неразумного игрока сторону.

4.2. Формальное описание игры двух персон с нулевой суммой

Как следует из определений предыдущего параграфа, для описания игры необходимо задать перечень возможностей, которыми обладают игроки, совместно с функцией, описывающей значения выигрыша при стечении обстоятельств, вызванными действиями игроков.

Рассмотрим те игры которые обладают конечным набором возможностей или стратегий, предоставляемым игрокам. В этом случае, функция выигрыша может быть задана таблично, в виде матрицы.

Пусть у Яна имеется m стратегий, а у Татьяны n. В этом случае игра носит название $m \times n$ игры. Игровую ситуацию при этом можно представить в виде таблицы. Строки соответствуют стратегиям Яна (красного), а столбцы — стратегиям Татьяны (синего). На пересечении столбцов и строк помещается значение выигрыша, получаемого красным игроком при выборе соответствующей пары стратегий обоими игроками.

	Стратегии 2-го игрока			
ии		C_1	C_2	 C_n
	K_1	h_{11}	h_{12}	 h_{1n}
атег	K_2	h_{21}	h_{22}	 h_{2n}
ή. oi-				
1.	K_m	h_{m1}	h_{m2}	 h_{mn}

Матрица H называется *платежной матрицей* или *матрицей игры*. О такой форме представления игры говорят, что игра приведена к *нормальной форме*.

Если игра не является игрой с нулевой суммой, то функции выигрыша у игроков различны и представимы разными матрицами, поэтому эта игра называется *биматричной*.

Если число стратегий, предоставляемых игрокам бесконечно, то при их нормировке возникают *игры на квадратах*.

4.3. Седловая точка и оптимальные стратегии

Рассмотрим игровую ситуацию, которая сложилась в ходе 2-й мировой войны в результате боевых действий на Тихом океане между США и Японией.

Рисунок 4.1 – Схема района перехода, февраль – март 1943 г., Тихий океан

Японская сторона в ходе эвакуации должна была выполнить переход между портами Рабаул и Лаэ в районе Новой Гвинеи. Остров Новая Британия можно было огибать как с северной стороны так и с южной. Не зависимо от маршрута время нахождения в пути занимало 3 дня. У командования США были аналогичные альтернативные варианты сосредоточения основных сил разведывательной авиации по направлениям: на севере были дождевые шквалы, на юге — относительно хорошая погода.

По замыслу американского командования, после обнаружения вышедшего из Рабаула каравана, и определения курсовых параметров, можно было ставить конкретные задачи на бомбометание. Своеобразие конфигурации мест базирования авиации состояла в том, что возможности нанесения ударов на пути следования конвоев с эвакуируемыми войсками

значительно зависели от выбора маршруга движения судов и пунктов сосредоточения самолётов.

Работа штабных аналитиков вылилась в такое описание ситуации в форме матричной игры.

		Japan		
_		Север	Юг	
S_{ℓ}	Север	2	2	
	Юг	1	3	

В качестве платежей выступает количество дней бомбардировки конвоя в пути. Очевидно, что ситуация складывается для японской стороны неудачно. Как мы видим, ни один из противников в этой игре не мог сделать выбор, который полностью отвечал бы его целям. Каждый из них, выбирая свою стратегию, должен был сознательно учитывать возможный выбор своего противника.

Аналитики США, анализируя таблицу, считают выгодным вариант (Юг, Юг): авиация сосредоточена на юге, и японскому командованию вздумалось огибать Новую Британию с юга. Однако, *исходя из разумности противника*, в штабе генерала Кеннея решили избрать Северную стратегию, которая независимо от действий противника, в любом случае гарантирует им два дня бомбардировки.

Японское руководство, разбираясь в ситуации, тоже выбрало Северную стратегию, которая, в *случае неразумности генералитета* США, обеспечило им всего один день перемещения под ударами авиации.

В результате – два дня под бомбами.

В данной жестокой игре целями игроков были:

- для США увеличение (максимизация) дней бомбардировки, а
- для Японии снижение (минимизация) их.

При этом в игре сложилось положение равновесия, так как в платёжной матрице присутствует седловая точка с координатами (Север, Север).

Определение. Пусть дана игра Γ . Ситуация (i_0, j_0) называется равновесной, если для любых i=1, m и j=1, n имеет место двойное неравенство

$$H(i, j_0) \le H(i_0, j_0) \le H(i_0, j),$$

где H – платёжная матрица (функция выигрыша) 1-го игрока (красного).

Для рассмотренной исторической ситуации это правило выполняется.

Выявление ситуаций равновесия имеет большое значение с точки зрения поиска благоприятных исходов.

Алгоритм нахождения равновесных ситуаций представлен ниже. Для удобства изложения и восприятия он представлен мнемонической схемой:

$$\begin{pmatrix} h_{11} & h_{12} & \dots & h_{1n} \\ h_{21} & h_{22} & \dots & h_{2n} \\ \dots & \dots & \dots & \dots \\ h_{m1} & h_{m2} & \dots & h_{mn} \end{pmatrix} \begin{array}{c} \min_{j} h_{1j} \\ \min_{j} h_{2j} \\ \min_{j} h_{mj} \end{pmatrix} v_{1} = \max_{i} \min_{j} h_{ij}$$

$$\max_{i} h_{i1} & \max_{i} h_{i2} & \max_{i} h_{in} \\ \hline v_{2} = \min_{j} \max_{i} h_{ij}$$

При этом неизменно $v_1 \le v_2$, то есть, нижний выигрыш первого игрока не превышает верхнего проигрыша второго игрока. Там, где $v_1 = v_2$ – есть седловая точка. Элемент h_{i0j0} одновременно минимален в строке i_0 и максимален в столбце j_0 .

Говорят, что первый игрок (красный) придерживается *максиминно*й стратегии (увеличивает свой минимальный выигрыш), а второй игрок (синий) — *минимаксной* (минимизирует свой максимальный проигрыш) стратегии.

Когда оба игрока ведут себя разумно, то выигрыш красного игрока v должен быть *не меньше*, чем максимин, но и *не больше*, чем минимакс, то есть

$$v_1 \leq v \leq v_2$$
.

Отклоняющийся от своей оптимальной стратегии будет нести потери, при которых значение выигрыша или проигрыш может выйти за пределы интервала.

В ходе решения игры может быть несколько точек равновесия. В этом случае, не играет роли, координаты какой из полученных равновесных точек использовать в качестве номеров стратегий в игре.

4.4. Понятие о смешанных стратегиях

Рассмотрим ситуацию, известную нам по программе капитал-шоу "Поле чудес", наступающую после угадывания трёх букв кряду: Л.А. Якубович предлагает на выбор две шкатулочки, в одной из которых лежат деньги, а другая пуста. Считая Якубовича игроком номер 1, представим игру в нормальной форме:

		Игрок		
;		Лево	Право	
I.A	Лево	- 1	0	
	Право	0	- 1	

Из приведённой таблицы следует, что Якубович в ходе игры ни не имеет шансов на выигрыш, но может остаться при своих деньгах.

Имеем $v_1 = \max_i \min_j h_{ij} = -1$, а $v_2 = \min_j \max_i h_{ij} = 0$. Таким образом, в данной игре *отсутствует седловая точка*.

Ситуации, в которых $v_1 < v_2$ нередки в реальных играх. Может показаться даже, что игра не антагонистическая и не с нулевой суммой. Однако, в каждой конкретной игре выигрыш неизменно равен проигрышу.

Выход в создавшейся ситуации заключается в том, чтобы *выбирать* свои стратегии *случайным образом*. Для этого необходимо

- задать вероятности использования каждой из стратегий и
- задействовать механизм случайного выбора.

Исходные стратегии, заданные в условии задачи (помещённые в таблицу) называют *чистыми стратегиями*, а полученные с использованием вероятностного механизма – *смешанными стратегиями*.

Определение. Смешанная стратегия игрока есть распределение вероятностей на множестве его чистых стратегий.

Смешанные стратегии указывают в виде набора вероятностей, с которыми игрок выбирает свои чистые стратегии, то есть

$$P = \{p_1, p_2, ..., p_m\},\$$

 $Q = \{q_1, q_2, ..., q_n\},\$

где p_i — вероятность выбора Яном i-й чистой стратегии, а q_j — вероятность выбора Татьяной своей j-й чистой стратегии.

Очевидно, что $\sum_{i=1}^{m} p_i = 1$ и $\sum_{j=1}^{n} q_i = 1$. Это имеет место и для игр с седловой точкой: оптимальные стратегии задаются с единичной вероятностью, а остальные – с нулевыми.

4.5. Теорема об активных стратегиях

Предположим, что Якубович, чтобы не оставаться внакладе, слегка модифицировал правила игры.

В одну из коробочек прячется фишка. Отныне, игрок, нашедший фишку в левой шкатулке, получает 2 млн. рублей, а если фишка была спрятана слева, а он искал справа, то платит Л.А. Якубовичу штраф в размере 2 млн. рублей. Аналогично, за найденную правую фишку, выигрыш игрока составит 1 млн. рублей, а за ненайденную последует такой же штраф. Эта ситуация отображается такой платёжной матрицей.

		Игрок		
,		Лево	Право	
I.A	Лево	- 2	2	
_	Право	1	- 1	

Имеем: $v_1=\max_i\min_j h_{ij}=-1$, а $v_2=\min_j\max_i h_{ij}=1$, седловая точка отсутствует. Попробуем рассчитать вероятности использования игроками своих чистых стратегий.

Игроки информацией не обмениваются, поэтому каждое игровое сочетания стратегий противников реализуется с вероятностью $p_i \cdot q_i$.

Поэтому, математическое ожидание выигрыша красного игрока (Якубовича) составит

$$H(P,Q) = \sum_{i=1}^{m} \sum_{j=1}^{n} h_{ij} p_{i} q_{j} , \qquad (4.1)$$

при ожидаемом нижнем выигрыше не менее $v_1 = \max_{P} \min_{Q} H(P,Q)$,

и при ожидаемом верхнем проигрыше второго игрока не более, чем $v_2 = \min_{P} \max_{Q} H(P,Q)$.

Для игр с использованием оптимальных смешанных стратегий всегда выполняется равенство

$$v = v_1 = v_2$$
 или
$$\max_{p} \min_{Q} H(P, Q) = \min_{Q} \max_{p} H(P, Q). \tag{4.2}$$

Выражение (4.2) составляет сущность *основной* теоремы теории игр, называемой тако же теоремой о *минимаксе* или теоремой о *максимине*.

Теорема. Всякая матричная игра имеет решение, а каждый игрок всегда имеет оптимальную стратегию.

Найдём оценку (4.1) для данной игры.

$$H(P, Q) = -2 \cdot p_1 \cdot q_1 + 2 \cdot p_1 \cdot q_2 + 1 \cdot p_2 \cdot q_1 - 1 \cdot p_2 \cdot q_2 = 2 \cdot p_1 \cdot (q_2 - q_1) - p_2 \cdot (q_2 - q_1) = -2 \cdot p_1 \cdot q_2 + 1 \cdot p_2 \cdot q_1 - 1 \cdot p_2 \cdot q_2 = 2 \cdot p_1 \cdot q_2 - q_1 \cdot q_2 - q_2 - q_1 \cdot q_2 - q_1 \cdot$$

$$=(q_2-q_1)\cdot(2p_1-p_2)$$

Воспользовавшись условиями

$$p_1 + p_2 = 1 \text{ M } q_1 + q_2 = 1,$$

придем к выражению

$$H(P, Q) = (3p_1 - 1)(1 - 2q_1).$$

Из полученной формулы видно, что при $q_1=0,5$ значение выигрыша H(P,Q)=0, не зависимо от величины $p_1.$ То же наблюдается когда $p_1=\frac{1}{3}.$

Получившийся результат не случаен, он отражает сущность теоремы об *активных стратегиях*.

Теорема. Если один из игроков придерживается своей оптимальной стратегии, ожидаемый выигрыш *останется неизменным* и равным цене игры, *независимо от характера действий второго игрока* в пределах его активных стратегий.

Подтверждающие теорему результаты имитационного моделирования приводятся на рисунке 4.2. []

Рисунок 4.2 – Гистограммы платежей в серии из 10000 игр

215

Если мы сравним гистограммы, то увидим, что число выигрышей и число проигрышей одинаково для обеих сумм, поставленных на кон.

В рассмотренной игре оптимальные стратегии игроков суть: красного

—
$$P^* = \left\{\frac{1}{3}; \frac{2}{3}\right\}$$
, синего — $Q^* = \left\{\frac{1}{2}; \frac{1}{2}\right\}$, цена игры — $H(P, Q) = 0$.

Таким образом, игра справедлива. Игрок, угадывающий шкатулочки, должен чередовать свои стратегии "фифти-фифти", например, подбрасывая монетку. Якубович же должен применять свои стратегии в пропорции "один к двум", воспользовавшись правильной игральной костью и положив выпадение тройки либо шестёрки за указание применять стратегию № 1 (то есть прятать фишку в левой шкатулочке), а в остальных случаях — пользоваться стратегией № 2 (правая шкатулка).

4.6. Поиск оптимальных стратегий в матричных играх

Совершенно очевидно, что непосредственное применение (4.1) для поиска оптимальных стратегий вельми неудобно, поэтому целесообразно было ожидать возникновения разнообразных методов решения, которые мы ниже и рассмотрим, это

- графо-аналитический метод;
- метод, основанный на построении эквивалентной ЗЛП;
- итерационный метод.

Будем подразумевать, что первым этапом поиска оптимальных стратегий, является нахождение решения в чистых стратегиях, и, если он закончился неудачей, придётся прибегнуть к вышепоименованным алгоритмам.

Перед началом изложения отметим (и напомним) особенности игровых задач, описываемых платёжными матрицами.

- 1. Матричная игра всегда имеет решение, согласно основной теореме.
- 2. *Прибавление или вычитани*е действительного *числа* ко всем элементам платёжной матрицы *не меняет* пространства оптимальных статегий.
- 3. Элементы платёжной матрицы могут быть преобразованы по формуле

$$a_{i,j} = k \cdot h_{i,j} + d$$
, (4.3)

где d — любое число, k — любое положительное число. При этом оптимальные стратегии обоих игроков не изменятся, а цена игры, соответствующая исходной платёжной матрице составит

$$v_h = \frac{v_a - d}{k} \,. \tag{4.4}$$

4. Число активных стратегий в $m \times n$ игре не бывает выше наименьшего из чисел n и m.

4.6.1. Графоаналитический метод решения игровых задач

Данный метод применяется в том случае, когда одна из размерностей платёжной матрицы равна двум. Первоначально, в качестве основания для дальнейших рассуждений, рассмотрим игру размерностью 2×2 .

Матрица выигрышей в этом случае имеет вид

	q_I	q_2
p_I	h_{II}	h_{12}
p_2	h_{21}	h_{22}

Очевидно, что любую смешанную стратегию первого игрока можно представить в виде $P = \{p_1, p_2\} = \{p_1, 1 - p_1\}$, и отобразить единичным отрезком прямой.

Предположим, что Ян применяет смешанную стратегию, а Татьяна – только первую. Ожидаемый выигрыш Яна при этом составит

$$H(P, 1) = h_{12} \times p_1 + h_{21} \times (1 - p_1) = h_{21} - (h_{21} - h_{12}) \times p_1,$$

что в графической интерпретации выглядит как это показано на рисунке 4.2.

При фиксированной стратегии Татьяны выигрыш Яна перемещается вдоль прямой по мере использования различных вероятностей чистых стратегий в смешанной стратегии.

Указанное справедливо и для случая, когда Татьяна использует свою вторую чистую стратегию, а Ян – смешанную. В этом случае

$$H(P, 2) = h_{12} \times p_1 + h_{22} \times (1 - p_1) = h_{22} - (h_{22} - h_{12}) \times p_1$$

что тако же представимо графически.

Рисунок 4.3 – Значение выигрыша при оптимальной стратегии 1-го игрока

Пересечение двух линий H(P, 1) и H(P, 2) на рисунке 4.4 даст точку, в которой находится оптимальное решение. Эта точка описывается системой уравнений:

$$v_{1} = H(P,1) = h_{21} - (h_{21} - h_{11}) p_{1}^{*}$$

$$v_{1} = H(P,2) = h_{22} - (h_{22} - h_{12}) p_{1}^{*}$$
(4.5)

Вероятность стратегии, соответствующей максимальному выигрышу первого игрока определится при решении системы уравнений (4.5), откуда оптимальное значение вероятности применения 1-й чистой стратегии красного игрока составит

$$p_1^* = \frac{h_{22} - h_{21}}{h_{22} + h_{11} - h_{12} - h_{21}}. (4.6)$$

Рисунок 4.4 – Графическое решение для красного игрока

Аналогичные рассуждения можно проделать и для второго, синего игрока (см. рисунок 4.5), получим систему

$$v_{2} = H(1,Q) = h_{11}q_{1}^{*} + h_{12}(1 - q_{1}^{*}) = h_{12} - (h_{12} - h_{11})q_{1}^{*}$$

$$v_{2} = H(2,Q) = h_{21}q_{1}^{*} + h_{22}(1 - q_{1}^{*}) = h_{22} - (h_{22} - h_{21})q_{1}^{*}$$
(4.7)

Рисунок 4.5 – Оптимальная стратегия синего игрока

Решение системы (4.7) даёт значение оптимальной вероятности использования синим игроком 1-й своей стратегии:

$$q_1^* = \frac{h_{22} - h_{12}}{h_{22} + h_{11} - h_{12} - h_{21}}. (4.8)$$

Цена игры, определяемое как математическое ожидание выигрыша первого игрока, можно найти, используя (4.1), либо одно из четырёх выражений, представленных системами (4.5) или (4.7), подставляя в них (4.6) или (4.8):

$$v^* = \frac{h_{11} \cdot h_{22} - h_{12} \cdot h_{21}}{h_{22} + h_{11} - h_{12} - h_{21}}.$$
 (4.9)

Для рассмотренной ранее задачи с Л.А. Якубовичем, платёжная матрица есть $H = \begin{pmatrix} -2 & 2 \\ 1 & -1 \end{pmatrix}$. Использование формул (4.6), (4.8) и (4.9) даёт

$$p_1^* = \frac{-1-1}{-2-2-1-1} = \frac{-2}{-6} = \frac{1}{3}; q_1^* = \frac{-1-2}{-6} = \frac{1}{2}; v = 0.$$

что совпадает с ответом, выведенным аналитически.