全角運動量が保存するために.

$$[\hat{H}, \hat{L} + \hat{S}] = 0 \tag{0.0.1}$$

を満たすSが Dirac 方程式に含まれていると考える. スピン演算子を次のように導入する.

$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} \sigma_x & 0\\ 0 & \sigma_x \end{pmatrix} \tag{0.0.2}$$

$$\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} \sigma_y & 0\\ 0 & \sigma_y \end{pmatrix} \tag{0.0.3}$$

$$\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} \sigma_z & 0\\ 0 & \sigma_z \end{pmatrix} \tag{0.0.4}$$

 σ_i (i=x,y,z) は Pauli 行列である. このようにスピン演算子を導入すると、これらは交換関係

$$[\alpha_i, \hat{S}_j] = i\hbar \varepsilon_{ijk} \alpha_k \tag{0.0.5}$$

$$[\beta, \hat{S}_i] = 0 \tag{0.0.6}$$

を満たすため

$$[\hat{H}, \hat{S}_x] = i\hbar c(\alpha_y \hat{p}_z - \alpha_z \hat{p}_y) \tag{0.0.7}$$

$$[\hat{H}, \hat{S}_u] = i\hbar c(\alpha_z \hat{p}_x - \alpha_x \hat{p}_z) \tag{0.0.8}$$

$$[\hat{H}, \hat{S}_x] = i\hbar c(\alpha_x \hat{p}_y - \alpha_y \hat{p}_x) \tag{0.0.9}$$

でが得られる. これらは

$$[\hat{H}, \hat{S}_i] = -[\hat{H}, \hat{L}_i] \tag{0.0.10}$$

であるため,

$$[\hat{H}, \hat{L}_x + \hat{S}_x] = [\hat{H}, \hat{L}_y + \hat{S}_y] = [\hat{H}, \hat{L}_z + \hat{S}_z] = 0 \tag{0.0.11}$$

が成り立つ. よって、Dirac 方程式において

$$[\hat{H}, \hat{L} + \hat{S}] = 0 \tag{0.0.12}$$

であり、全角運動量 J=L+S が保存されることがわかる.ここで、 $S=\frac{\hbar}{2}\sigma$ はスピン角運動量である.まとめると,非相対論的量子論では軌道角運動量 L が保存量であった.しかし,相対論を取り入れた Dirac 方程式ではスピン角運動量 S も含めた全角運動量 J が保存量なのである 1 .

以上の議論では、スピンの存在が自然に導入された。この議論に用いた要請は

スピンの存在のために用いた要請 -

- 1. Lorentz 共変性
- 2. 状態の時間発展が時間の1階微分で表されること

である.1 は Schrödinger 方程式と相対論の矛盾を解決するために用いた.2 は波動関数の確率解釈を可能にするため に用いた.以上の要請から Dirac 方程式が導かれ,その式にはスピンの存在が内包されていた.

ここで、Dirac 方程式の平面波解

$$\psi_{\uparrow}^{+} = e^{i(kz - \omega t)} \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \psi_{\downarrow}^{+} = e^{i(kz - \omega t)} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \psi_{\uparrow}^{-} = e^{i(kz - \omega t)} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \psi_{\downarrow}^{-} = e^{i(kz - \omega t)} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$$
(0.0.13)

 $^{^1}$ これを実験的に確かめたのが **Einstein-de Haas 効果**や **Barnett 効果**である. 前者は、強磁性体の磁化の向きがそろった<mark>時</mark>、つまりスピン角運動量が変化したとき、強磁性体全体が力学的回転をするというものであり、Einstein が生涯で行った唯一の実験と言われている。後者は、逆に、力学的回転により磁化の向きがそろうというものである。これらは**磁気回転効果**(gyromagnetic effect)と言われている。<mark>磁気回転効果</mark>は常磁性体、核スピン、液体金属流体、常磁性金属薄膜、強磁性金属薄膜、クォーク・グルオンプラズマでも観測されている。

に \hat{S}_z を作用させてみると、

$$\begin{cases}
\hat{S}_z \psi_{\uparrow}^+ &= \frac{\hbar}{2} \psi_{\uparrow}^+ \\
\hat{S}_z \psi_{\downarrow}^+ &= -\frac{\hbar}{2} \psi_{\downarrow}^+ \\
\hat{S}_z \psi_{\uparrow}^- &= \frac{\hbar}{2} \psi_{\uparrow}^- \\
\hat{S}_z \psi_{\downarrow}^- &= -\frac{\hbar}{2} \psi_{\downarrow}^-
\end{cases}$$

$$(0.0.14)$$

$$\begin{cases} \hat{S}_z \psi_{\uparrow}^- &= \frac{\hbar}{2} \psi_{\uparrow}^- \\ \hat{S}_z \psi_{\downarrow}^- &= -\frac{\hbar}{2} \psi_{\downarrow}^- \end{cases}$$

$$(0.0.15)$$

が成り立つ. よって、平面波解は \hat{S}_z の固有状態であることがわかる. 全角運動量以外の保存量としてヘリシティがある2.

$$S = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix} \tag{0.0.16}$$

として, ヘリシティは

$$h = \frac{S \cdot p}{|p|} \tag{0.0.17}$$

と定義される. これが保存量であることは以下のように確かめられる.

$$(\boldsymbol{\alpha} \cdot \hat{\boldsymbol{p}})\hat{h} = \frac{1}{p} \begin{pmatrix} 0 & \boldsymbol{\sigma} \cdot \hat{\boldsymbol{p}} \\ \boldsymbol{\sigma} \cdot \hat{\boldsymbol{p}} & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\sigma} \cdot \hat{\boldsymbol{p}} & 0 \\ 0 & \boldsymbol{\sigma} \cdot \hat{\boldsymbol{p}} \end{pmatrix}$$
(0.0.18)

$$= \frac{1}{p} \begin{pmatrix} 0 & (\boldsymbol{\sigma} \cdot \hat{\boldsymbol{p}})(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{p}}) \\ (\boldsymbol{\sigma} \cdot \hat{\boldsymbol{p}})(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{p}}) & 0 \end{pmatrix}$$
(0.0.19)

$$=\frac{1}{p} \begin{pmatrix} 0 & \hat{\boldsymbol{p}}^2 \\ \hat{\boldsymbol{p}}^2 & 0 \end{pmatrix} \tag{0.0.20}$$

$$=\hat{h}(\boldsymbol{\alpha}\cdot\hat{\boldsymbol{p}})\tag{0.0.21}$$

よって

$$[\boldsymbol{\alpha} \cdot \hat{\boldsymbol{p}}, \hat{h}] = 0 \tag{0.0.22}$$

$$[\beta, \hat{h}] = 0 \tag{0.0.23}$$

したがって,

$$[\hat{H}, \hat{h}] = 0 \tag{0.0.24}$$

ヘリシティは保存量である.

²授業では触れていない.