Experimental Physics II

Luca Cordes

SS 2023/2024

Contents

1	The	modynamik	1
	1.1	. Haubtsatz	. 1
	1.2	I. Haubtsatz	. 1
	1.3	II. Haubtsatz	. 1
	1.4	Wärmetransport	. 2
		.4.1 Diffusion	. 2
		.4.2 Konduktion	. 2
		1.4.3 Wärmestrahlung	. 2
	1 5		9

Contents

1 Thermodynamik

1.1 I. Haubtsatz

Die gesamt Energie ist in einem geschlossenen System zeitlich konstant.

$$\Delta U = \Delta Q + \Delta W$$

 $\Delta U = \text{die Änderung der (gesamten) ineren Enrgie eines geschlossenen Systemes}$

 $\Delta Q = \text{von außen zugeführte Wärmeenergie}$

 ΔW = vo außen zugeführte mechanische Energie

1.2 II. Haubtsatz

Wärme fließt von selbst immer nur vom wärmeren zum kälteren Körper, nicht umgekehrt. In einem abgeschlossenen System5 nimmt die Entropie nicht ab

1.3 III. Haubtsatz

Es ist prinzipiell nicht möglich, den absoluten Temperaturnullpunkt ($T=0~\mathrm{K}$) zu erreichen.

1.4 Wärmetransport

1.4.1 Diffusion

Netto-Teilchenstromdichte bei Diffusion:

$$\vec{j} = -D \cdot \vec{\nabla} n$$

1.4.2 Konduktion

Wärmestromdichte bei Konduktion:

$$\vec{j}_Q = -\lambda \cdot \vec{\nabla} T$$
$$\frac{|\mathrm{d}Q|}{S \cdot \mathrm{d}t} = \lambda \frac{|\Delta T|}{d}$$

1.4.3 Wärmestrahlung

Gesamtstrahlungsleitung (nach Stefan-Boltzmann-Gesetz):

$$P = \varepsilon \sigma A T^4$$

1.5 Formeln

Zustandsgleichung des idealen Gases:

$$p \cdot V = N \cdot k \cdot T$$

Gesamte kinetische Energie, abhängig von Freiheitsgraden:

$$E_{kin}^{tot} = \frac{f}{2}kT$$

Expansionsarbeit:

$$|\Delta W| = p\Delta V$$

$$\begin{split} \langle E_{kin}^{atom} \rangle &= \frac{3}{2} k \cdot T \\ \frac{\Delta L}{L} &= \alpha \Delta T \\ \frac{\Delta V}{V} &= 3 \alpha \Delta T = \gamma \Delta T \end{split}$$

Zeichen und ihre Bedeutung:

 $p \iff \operatorname{Druck/Pressure}$

 $V \iff \text{Volumen}$

 $T \Longleftrightarrow \text{Temperatur}$

 $f \Longleftrightarrow \text{Zahl der Freiheitsgrade}$

 $n \iff \text{Stoffmenge (in mol)}$

 $N \iff \text{Stoffmenge}$

 $U \iff$ innere Energie

 $Q \Longleftrightarrow$ Wärmeenergie

 $\vec{j} \Longleftrightarrow$ Netto-Teilchenstromdichte bei Diffusion = $-D \cdot \vec{\nabla} n$

 $dR \iff \text{Reduzierte W\"{a}rmemenge} = \frac{dQ}{T}$

 $\mathrm{d}S \Longleftrightarrow \mathrm{Entropie} \ = \frac{\mathrm{d}Q_{rev}}{T}$

 \iff

 \iff

 \iff

 \iff

 $N_A \iff \text{Avogadro-Konstante}$

 $R \iff$ allgemeine Gaskonstante

 $k \iff \text{Boltzmann-Konstante}$

 $c \Longleftrightarrow$ spezifische Wärmekapazität $= \frac{\Delta Q}{M \Delta T}$

 $D \iff \text{Diffusionskonstante}$

 $\sigma \Longleftrightarrow Stefan\text{-Boltzmann-Konstante } = 5.77 \cdot 10^{-8} \frac{W}{\text{m}^2 \text{K}^4}$

 $\varepsilon \Longleftrightarrow {\rm Absorptionsgrad} \ \leq 1$

 \iff