Análisis Real 2: Apuntes de Clase

Rafael Dubois Universidad del Valle de Guatemala dub19093@uvg.edu.gt

10 de noviembre de 2021

Requerimientos para la integral de Riemann según Darboux

Nota: La teoría de estas integrales se refiere a funciones acotadas (salvo se diga lo contrario).

Partición de un intervalo

Una partición del intervalo [a, b] es un conjunto finito $P = \{x_0, x_1, \dots, x_n\}$ tal que

$$a = x_0 < x_1 < \dots < x_n = b.$$

El conjunto de todas las posibles particiones de [a, b] se denota por P[a, b].

Refinamiento

Una partición $P' \in P[a, b]$ es un refinamiento de $P \in P[a, b]$ si $P \subseteq P'$. Esto se denota por $P' \leq P$. Nótese que:

- Para todo $P \in P[a, b]$ se tiene que $P \leq P$.
- $P' < P \lor P < P' \text{ si } \lor \text{ solo si } P = P'.$
- Si $P' \leq P$ y $P'' \leq P'$, entonces $P'' \leq P$.

Por lo tanto, \leq es una relación de orden parcial.

Longitud de un intervalo

Para $P \in P[a, b]$, se denota $\Delta x_k = x_k - x_{k-1}$ a la longitud del k-ésimo subintervalo en la partición. Nótese que

$$\sum_{k=1}^{n} \Delta x_k = b - a.$$

Norma de un intervalo

Sea $P \in P[a, b]$. Se define $||P|| = \max\{\Delta x_k : 1 \le k \le n, k \in \mathbb{N}\}$ como la norma (o malla) de P. Nótese que $P' \le P$ implica que $||P'|| \le ||P||$.

Suma superior e inferior de Darboux

Sea $P \in P[a, b]$ y sean, para $1 \le k \le n$ con $k \in \mathbb{N}$,

$$M_k(f) = \sup\{f(x) : x \in [x_{k-1}, x_k]\},$$
 $m_k(f) = \inf\{f(x) : x \in [x_{k-1}, x_k]\}.$

Entonces, los números

$$U(P,f) = \sum_{k=1}^{n} M_k(f) \Delta x_k, \qquad L(P,f) = \sum_{k=1}^{n} m_k(f) \Delta x_k$$

se llaman suma superior y suma inferior de Darboux de f para P, respectivamente.

Propiedades

Sean P y P' en P[a, b]. Entonces,

$$P' \le P \implies U(P', f) \le U(P, f) \quad \text{y} \quad L(P', f) \ge L(P, f).$$

Además, para P y P' en P[a,b] se tiene también que

$$L(P, f) \leq U(P', f).$$

Y finalmente, también se cumple

$$U(P, f) - L(P, f) \ge U(P', f) - L(P', f) \ge 0.$$

Integral de Riemann según Darboux

Definición

Si existen las integrales superior e inferior de Riemann según Darboux, y estas son iguales, se define a la integral de Riemann como este valor. Si estas integrales difieren para alguna f, entonces dicha función no es Riemann-integrable.

Integral superior de Riemann según Darboux

Se define la integral superior de Riemann de f en [a, b] como

$$\overline{\int_a^b} f = \inf \big\{ U(P, f) : P \in P[a, b] \big\}.$$

Integral inferior de Riemann según Darboux

Se define la integral inferior de Riemann de f en [a, b] como

$$\int_{a}^{b} f = \sup \left\{ L(P, f) : P \in P[a, b] \right\}.$$

Nota: Aquí terminó la clase del 5 de julio del 2021.

Desigualdad de las integrales inferior-superior

Para una función f definida en [a,b], siempre se tiene $\int_a^b f \le \overline{\int_a^b} f$.

Notación del conjunto de funciones Riemann-integrables

Al conjunto de funciones Riemann-integrables sobre [a, b] se le denota por R[a, b].

Criterio de Cauchy/Riemann para integrabilidad

Una función acotada $f:[a,b]\to\mathbb{R}$ es Riemann-integrable sobre [a,b] si y solo si para todo $\varepsilon>0$ existe $P_{\varepsilon}\in P[a,b]$ tal que para todo $P\leq P_{\varepsilon}$ se tiene que $0\leq U(P,f)-L(P,f)\leq \varepsilon$.

Conservación de Riemann-integrabilidad

Sea $f \in R[a, b]$ y $[c, d] \subseteq [a, b]$. Entonces, $f \in R[c, d]$.

Suma de Riemann

Dada una partición P de n intervalos, una función f, y una muestra t_1, t_2, \ldots, t_n para t_k en el k-avo intervalo, se define la suma de Riemann como

$$S(P, f, \{t_k\}) = \sum_{k=1}^{n} f(t_k) \Delta x_k.$$

Primer teorema de caracterización de funciones Riemann-integrables

Una función f es Riemann-integrable si y solo si existe un número A con la propiedad de que para todo $\varepsilon > 0$ existe $P_{\varepsilon} \in P[a,b]$ tal que $P_{\varepsilon} \leq P$ y para cualquier muestra $t_k \in [x_{k-1},x_k] \subset [a,b]$ con $1 \leq k \leq n$ entero, se cumple

$$|S(P, f, \{t_k\}) - A| < \varepsilon.$$

Como nota, este número A se obtiene (informalmente) con:

$$A = \lim_{\|P\| \to 0} \left(\sum_{k=1}^n f(t_k) \Delta x_k \right) = \lim_{n \to \infty} \left(\sum_{k=1}^n f(t_k) \Delta x_k \right).$$

Nota: Aquí terminó la clase del 8 de julio del 2021.

Oscilación de una función

La oscilación de una función acotada f sobre un conjunto A se define $\operatorname{osc}(f) = \sup(f) - \inf(f)$. De esta manera, dada $f : [a, b] \to \mathbb{R}$ acotada y $P \in P[a, b]$, entonces

$$U(P, f) - L(P, f) = \sum_{k=1}^{n} \operatorname{osc}_{I_{k}}(f) \Delta x_{k}.$$

Propiedad de la oscilación de dos funciones

Sean $f, g : [a, b] \to \mathbb{R}$ funciones acotadas y suponga que $g \in R[a, b]$. Si existe c > 0 tal que $\operatorname{osc}_I(f) \le c \operatorname{osc}_I(g)$ sobre cada $I \subseteq [a, b]$, entonces $f \in R[a, b]$.

Segundo teorema de caracterización de funciones Riemann-integrables

Una función f es Riemann-integrable si y solo si existe una sucesión de particiones (P_n) con $P_n \in P[a, b]$ para todo entero positivo n, tal que

$$\lim_{n \to \infty} \left[U(P_n, f) - L(P_n, f) \right] = 0.$$

En este caso,
$$\int_a^b f = \lim_{n \to \infty} U(P_n, f) = \lim_{n \to \infty} L(P_n, f).$$

Teorema de Riemann-integrabilidad de funciones continuas

Toda función continua $f:[a,b]\to\mathbb{R}$ es Riemann-integrable.

Teorema de Riemann-integrabilidad de funciones monótonas

Toda función monótona $f:[a,b]\to\mathbb{R}$ sobre un compacto (la función es entonces acotada, sus únicas discontinuidades son de salto y la cantidad de estas es, como máximo, infinita contable) es Riemann-integrable.

Nota: Aquí terminó la clase del 12 de julio del 2021.

Propiedades de la integral

Multiplicación por una constante

Para
$$f:[a,b]\to\mathbb{R}$$
 y $c\in\mathbb{R}$, se cumple $\int_a^b c\cdot f=c\int_a^b f$.

Nota sobre supremos e ínfimos, integrabilidad de la suma

Como recordatorio, se cumple para funciones f y g que:

$$\sup_{I}(f+g) \le \sup_{I}(f) + \sup_{I}(g),$$

$$\inf_{I}(f+g) \ge \inf_{I}(f) + \inf_{I}(g).$$

Por lo tanto,

$$\operatorname{osc}_I(f+g) \le \operatorname{osc}_I(f) + \operatorname{osc}_I(g).$$

Cerradura de R(I) bajo la suma

Si $f, g \in R(I)$, entonces $f + g \in R(I)$.

Linealidad de las integrales superiores e inferiores

En general, las integrales superiores e inferiores de funciones no Riemann-integrables no necesariamente cumplen con linealidad. Esto no es cierto para funciones Riemann-integrables.

Definición de índices de las integrales

Dado $f:[a,b]\to\mathbb{R}$, se define:

$$\overline{\int_a^b} f = -\overline{\int_b^a} f \qquad \qquad \int_a^b f = -\int_b^a f.$$

Si a = b, se tiene que ambas integrales son cero.

Desigualdad de las integrales superiores e inferiores

$$\overline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}}f + \overline{\int_{a}^{b}}g,$$

$$\underline{\int_{a}^{b}}(f+g) \geq \underline{\int_{a}^{b}}f + \underline{\int_{a}^{b}}g.$$

Linealidad de la integral

En general, si
$$f, g \in R[a, b]$$
, $\int_a^b (f + g) = \int_a^b f + \int_a^b g$.

Monoticidad de la integral

Si $f, g \in R[a, b]$ cumplen $f(x) \leq g(x)$ para todo $x \in [a, b]$, entonces $\int_a^b f \leq \int_a^b g$. No necesariamente se cumple el converso de esta implicación.

Lema de acotación de la integral

Sea
$$f \in R[a, b]$$
, con $M = \sup(f)$ y $m = \inf(f)$. Entonces, $m(b - a) \le \int_a^b f \le M(b - a)$.

Teorema del valor medio de la integral

Para toda $f:[a,b]\to\mathbb{R}$ función continua, existe $c\in[a,b]$ tal que $f(c)=\frac{1}{b-a}\int_a^b f$.

Nota: Aquí terminó la clase del 15 de julio del 2021.

Desigualdad triangular de la integral

Sea $f \in R[a, b]$. Entonces, $|f| \in R[a, b]$. Además,

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|.$$

Cerradura de R(I) bajo el producto

Si $f, g \in R(I)$, entonces $f \cdot g \in R(I)$.

Acotaciones de las integrales superiores e inferiores

Sea $f:[a,b]\to\mathbb{R}$ tal que $m\leq f(x)\leq M$ para todo $x\in[a,b]$. Luego,

$$m(b-a) \le \underline{\int_a^b} f,$$
 $\overline{\int_a^b} f \le M(b-a).$

Teorema cero del cálculo integral

Sea I un intervalo y $f:I\to\mathbb{R}$ una función acotada en I. Sea $a\in I$ y para todo $x\in I$ considere

$$\overline{F}(x) = \overline{\int_a^x} f,$$
 $\underline{F}(x) = \int_a^x f.$

Entonces \overline{F} y \underline{F} son continuas en I y además, si f es continua en c, son diferenciables en c de manera que $\overline{F}'(c) = \underline{F}'(c) = f(c)$.

Primer teorema fundamental del cálculo

Sea $f \in R[a,b]$ y $F \in R[a,b]$ tal que para todo $x \in [a,b]$,

$$F(x) := \int_{a}^{x} f$$
.

Si f es continua en $c \in [a, b]$, entonces F es diferenciable en c y F'(c) = f(c).

Segundo teorema fundamental del cálculo

Sea $f \in R[a, b]$ y sea G una función derivable en (a, b) tal que G' = f. Entonces,

$$\int_{a}^{b} f = G(b) - G(a).$$

Nota: Aquí terminó la clase del 19 de julio del 2021.

Teorema de integrabilidad dada la semi-igualdad

Sean $f, g : [a, b] \to \mathbb{R}$ funciones acotadas y tales que f(x) = g(x) en casi todo [a, b] excepto en una cantidad finita de puntos en dicho intervalo. Entonces, $f \in R[a, b]$ si y solo si $g \in R[a, b]$, y sus integrales son iguales.

Límite en las fronteras de integración

Suponga que $f:[a,b]\to\mathbb{R}$ es acotada e integrable en [a,r] para cada $r\in(a,b)$. Entonces, $f\in R[a,b]$ y

$$\int_{a}^{b} f = \lim_{r \to b^{-}} \int_{a}^{r} f.$$

Nota: Aquí terminó la clase del 22 de julio del 2021.

Lema para la integral del producto

Sean $f, g \in R[a, b]$. Para cada $P \in P[a, b]$, cada selección $\{t_k\}$ de P, y cualquier selección $\{f_k\}$ de $f_k \in \{M_k(f), m_k(f)\}$, considérese

$$\omega(P, f, g) = \sum_{k=1}^{n} f_k g(t_k) \Delta x_k.$$

Entonces, $\omega(P,f,g)$ converge en el sentido de Riemann al valor de $\int_a^b fg$.

Teorema de Bonnet

Sea $f \in R[a,b]$ y $g:[a,b] \to \mathbb{R}$ una función no negativa, acotada y monótona decreciente. Entonces, existe $\mu \in [a,b]$ tal que

$$\int_a^b fg = g(a) \int_a^\mu f.$$

Teorema de integración por partes

Sean $f, g \in C[a, b]$ diferenciables en (a, b), y tales que $f', g' \in R[a, b]$. Luego,

$$\int_{a}^{b} fg' = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'g.$$

Teorema de integración por sustitución

Suponga que $g: I \to \mathbb{R}$ es diferenciable y que $g' \in R(I)$, y sea J = g(I). Si $f: J \to \mathbb{R}$, entonces para todo $a, b \in I$ se cumple

$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.$$

Nota: Aquí terminó la clase del 26 de julio del 2021.

Propiedad de interés (requerirá prueba)

Suponga que $f_n \in R[a, b]$ para todo $n \in \mathbb{Z}^+$ y suponga que $f_n \to f$ de manera uniforme sobre [a, b]. Entonces, $f \in R[a, b]$ y

 $\lim_{n \to \infty} \int_a^b f_n = \int_a^b f.$

Integrales impropias

Definición 1

Suponga que $f:(a,b]\to\mathbb{R}$ es Riemann integrable en [c,b] para $c\in(a,b)$. Entonces, la integral impropia de f sobre [a,b] es

 $\int_{a}^{b} f = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f.$

La integral impropia converge si este límite existe. De lo contrario, la integral diverge.

Definición 2

Suponga que $f:[a,\infty)\to\mathbb{R}$ es integrable sobre [a,b] para $r\in(a,\infty)$. Entonces, la integral impropia de f es

$$\int_{a}^{\infty} f = \lim_{r \to \infty} \int_{a}^{r} f.$$

Integral de Frullani

Sea $f:[0,\infty)\to\mathbb{R}$ una función continua cuyo límite en el infinito existe. Luego,

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = \ln\left(\frac{a}{b}\right) \left[\lim_{t \to \infty} f(t) - f(0)\right].$$

Nota: Aquí terminó la clase del 29 de julio del 2021.

Sucesiones de funciones

Convergencia puntual

Una sucesión de funciones $f_n: E \to \mathbb{R}$ con $E \subseteq \mathbb{R}$ converge puntualmente a f(x) en $E_0 \subseteq E$ si para todo $\varepsilon > 0$ existe $N(\varepsilon, x) \in \mathbb{Z}^+$ tal que si $n \ge N$ entonces $|f_n(x) - f(x)| < \varepsilon$. Es decir

$$\lim_{n \to \infty} f_n(x) = f(x).$$

Nótese que si una sucesión de funciones continuas converge, no necesariamente converge a una función continua. Considerar, por ejemplo, $f_n:[0,1]\to\mathbb{R}$ tal que $f_n(x)=x^n$. Además, nótese también que si una sucesión de funciones diferenciables converge, tampoco es necesario que converja a una función diferenciable. En este caso, un contraejemplo está en $f_n:\mathbb{R}\to\mathbb{R}$ tal que $f(x)=\sqrt{x^2+1/n}$.

Convergencia uniforme

Una sucesión de funciones $f_n: E \to \mathbb{R}$ con $E \subseteq \mathbb{R}$ converge uniformemente a f(x) para todo x en $E_0 \subseteq E$ si para todo $\varepsilon > 0$ existe $N(\varepsilon) \in \mathbb{Z}^+$ tal que si $n \ge N$ entonces $|f_n(x) - f(x)| < \varepsilon$.

Criterio de Cauchy para convergencia uniforme

Sea $E \subseteq \mathbb{R}$ y sea (f_n) una sucesión de funciones $f: E \to \mathbb{R}$. Entonces, la sucesión (f_n) converge uniformemente a alguna función f(x) en $E_0 \subseteq E$ si y solo si para todo $\varepsilon > 0$ existe $N(\varepsilon) \in \mathbb{Z}^+$ tal que si $m, n \ge N$ entonces $|f_m(x) - f_n(x)| < \varepsilon$, para todo $x \in E_0$.

Nota: Aquí terminó la clase del 2 de agosto del 2021.

Series numéricas

Sucesión de sumas parciales

Se dice que la serie numérica $\sum_{k=1}^{\infty} a_k$ forma la sucesión de sumas parciales dada por

$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n.$$

Convergencia de series

Se dice que la serie numérica $\sum_{k=1}^{\infty} a_k$ converge si y solo si la sucesión de sumas parciales (S_n) converge.

Es decir, si y solo si

$$\lim_{n \to \infty} S_n = L \in \mathbb{R}.$$

Criterio de divergencia

Sea $\sum_{k=1}^{\infty} a_k$ convergente. Entonces, $\lim_{n\to\infty} a_n = 0$. Por contrapuesta, esto equivale a que si el límite de una sucesión no es 0, su sumatoria es divergente.

Convergencia absoluta

Se dice que la serie numérica $\sum_{k=1}^{\infty} a_k$ converge absolutamente si $\sum_{k=1}^{\infty} |a_k|$ converge.

Criterio de convergencia absoluta

Si la serie numérica $\sum_{k=1}^{\infty} a_k$ converge absolutamente, entonces la serie como tal converge.

Nota: Aquí terminó la clase del 5 de agosto del 2021.

Criterio de comparación

- Si la serie numérica $\sum_{k=1}^{\infty} b_k$ converge y $0 \le a_k \le b_k$, entonces $\sum_{k=1}^{\infty} a_k$ converge.
- Si la serie numérica $\sum_{k=1}^{\infty} a_k$ diverge y $0 \le a_k \le b_k$, entonces $\sum_{k=1}^{\infty} b_k$ diverge.

Criterio de p-series

La serie numérica $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converge para p > 1 y diverge para $p \le 1$.

Criterio de la razón

- Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ existe y es menor que 1, la serie $\sum_{k=1}^{\infty} a_k$ converge absolutamente.
- Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ existe y es mayor que 1, o bien es infinito, la serie $\sum_{k=1}^{\infty} a_k$ diverge.
- Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ existe y es igual a 1, el criterio no es concluyente.

Nota: Aquí terminó la clase del 9 de agosto del 2021.

Criterio de condensación

Sea $\sum_{k=1}^{\infty} a_k$ tal que $a_k > 0$ y (a_k) es decreciente. Esta converge si y solo si $\sum_{k=1}^{\infty} 2^k \cdot a_{2^k}$ converge.

Criterio de la integral

Suponga que f(x) es una función integrable, positiva y decreciente en el intervalo cerrado $[1, \infty)$ y que $f(k) = a_k$ para todo n entero positivo. Entonces,

$$\sum_{k=1}^{\infty} a_k \text{ converge } \iff \int_1^{\infty} f(x) \, \mathrm{d}x \text{ converge.}$$

Segundo criterio de la razón

Considere la serie $\sum_{k=1}^{\infty} a_k$, y sean los límites

$$L_1 = \lim_{n \to \infty} \left| \frac{a_{2n}}{a_n} \right|, \qquad \qquad L_2 = \lim_{n \to \infty} \left| \frac{a_{2n+1}}{a_n} \right|.$$

- Si $L_1 < 1/2$ y $L_2 < 1/2$, entonces $\sum_{k=1}^{\infty} a_k$ converge.
- Si $L_1 > 1/2$ y $L_2 > 1/2$, entonces $\sum_{k=1}^{\infty} a_k$ diverge.
- En cualquier otro caso, el criterio no es concluyente.

Criterio de Raabe

Sea
$$\sum_{k=1}^{\infty} a_k$$
 tal que $a_k > 0$ y sea $L = \lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right)$.

- Si L > 1, la serie $\sum_{k=1}^{\infty} a_k$ converge.
- Si L < 1, la serie $\sum_{k=1}^{\infty} a_k$ diverge.
- Si L=1, el criterio no es concluyente.

Nota: Aquí terminó la clase del 12 de agosto del 2021.

Criterio de Kummer

Sea $\sum_{k=1}^{\infty} a_k$ y sea $\sum_{k=1}^{\infty} b_k$ una serie divergente tales que a_k y b_k son siempre positivos. Además, considérese

$$\alpha = \lim_{n \to \infty} \left(\frac{1}{b_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{b_{n+1}} \right).$$

- Si $\alpha > 0$, la serie $\sum_{k=1}^{\infty} a_k$ converge.
- Si $\alpha < 0$, la serie $\sum_{k=1}^{\infty} a_k$ diverge.
- Si $\alpha = 0$, el criterio no es concluyente.

Con $b_n = 1$ para todo n, Kummer produce un criterio de la razón para series con términos positivos. Con $b_n = 1/n$ para todo n, Kummer produce el criterio de Raave.

Criterio de comparación en el límite

Sean $\sum_{k=1}^{\infty} a_k$ y $\sum_{k=1}^{\infty} b_k$ series de términos positivos. Si se tiene

$$\lim_{n \to \infty} \frac{a_n}{b_n} \in \mathbb{R}^+,$$

entonces la convergencia o divergencia de ambas series es la misma.

Criterio de Leibniz para series alternantes

Suponga que (a_k) es una sucesión decreciente de números positivos cuyo límite en el infinito es 0. Entonces, $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ converge.

Nota: Aquí terminó la clase del 16 de agosto del 2021.

Criterio de la raíz

Sea
$$\sum_{k=1}^{\infty} a_k$$
 y sea $L = \lim_{n \to \infty} (|a_n|)^{1/n}$. Entonces,

- Si L < 1, la serie $\sum_{k=1}^{\infty} a_k$ converge absolutamente.
- Si L > 1, la serie $\sum_{k=1}^{\infty} a_k$ diverge.
- Si L=1, el criterio no es concluyente.

Representación en series de funciones

Convergencia de sucesiones de funciones

Suponga que $\{f_n\}$ es una sucesión de funciones definida sobre el conjunto E, y suponga que la sucesión numérica $\{f_n(x)\}$ converge para cada $x \in E$. Entonces, se dice que $\{f_n\}$ converge a f sobre E.

Convergencia de series de funciones

Si
$$\sum_{n=1}^{\infty} f_n(x)$$
 converge para cada $x \in E$, se define a $f(x)$ como el límite de la suma.

M-test de Weierstrass

Suponga que $\{f_n\}$ es una sucesión de funciones $f_n: E \to \mathbb{R}^+$, y suponga que $|f_n(x)| \le M_n$ para $M_n \in \mathbb{R}$ y para todo $x \in E$. Si $\sum_{n=1}^{\infty} M_n$ converge, entonces $\sum_{n=1}^{\infty} f_n(x)$ converge uniformemente.

Preservación de continuidad

Si $\{f_n\}$ es una sucesión de funciones continuas $f_n: E \to \mathbb{R}$ que converge uniformemente a $f: E \to \mathbb{R}$, entonces la función f también es continua.

Nota: Aquí terminó la clase del 23 de agosto del 2021.

Integral de Riemann-Stieltjes

Sea $\alpha:[a,b]\to\mathbb{R}$ una función monótona creciente tal que $\alpha(a)$ y $\alpha(b)$ sean finitos. Entonces, $\alpha(x)$ es acotada. Considérese $P\in P[a,b]$ y hagamos $\Delta\alpha_i=\alpha(x_i)-\alpha(x_{i-1})$, para $a\leq x_{i-1}\leq x_i\leq b$. Para cualquier función acotada $f:[a,b]\to\mathbb{R}$, se define:

$$M_k(f) = \sup\{f(x) : x \in [x_{k-1}, x_k]\},$$
 $m_k(f) = \inf\{f(x) : x \in [x_{k-1}, x_k]\},$

con lo cual...

$$U(P, f, \alpha) = \sum_{k=1}^{n} M_k(f) \Delta \alpha_k, \qquad L(P, f, \alpha) = \sum_{k=1}^{n} m_k(f) \Delta \alpha_k.$$

Además, se define también:

$$\overline{\int_a^b f \, \mathrm{d}\alpha} = \inf \big\{ U(P,f,\alpha) : P \in P[a,b] \big\}, \qquad \int_a^b f \, \mathrm{d}\alpha = \sup \big\{ L(P,f,\alpha) : P \in P[a,b] \big\}.$$

Se dice que f es integrable con respecto a α en el sentido de Riemann-Stieltjes, lo cual se denota $f \in R(\alpha)$, si y solo si se cumple

$$\overline{\int_a^b} f \, \mathrm{d}\alpha = \int_a^b f \, \mathrm{d}\alpha := \int_a^b f(x) \, \mathrm{d}\alpha(x) \, .$$

Esta es la integral de Riemann-Stieltjes. Nótese que si $\alpha(x) = x$, esta equivale a la integral de Riemann.

Teorema de preservación de integrabilidad R-S

Sea $\alpha : [a, b] \to \mathbb{R}$ una función monótona creciente. Suponga que (f_n) es una sucesión de funciones tal que $f_n \in R(\alpha)$ para todo entero positivo n, y que la sucesión converge uniformemente a f sobre [a, b]. Entonces, $f \in R(\alpha)$ sobre [a, b] y:

$$\lim_{n \to \infty} \int_a^b f_n \, \mathrm{d}\alpha = \int_a^b f \, \mathrm{d}\alpha.$$

Corolario del teorema de preservación de integrabilidad R-S

Suponga que (f_n) es una sucesión de funciones tal que $f_n \in R(\alpha)$ para todo entero positivo n, y que

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$

uniformemente sobre [a, b], entonces

$$\sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

Nota: Aquí terminó la clase del 30 de agosto del 2021.

Norma del supremo y convergencia

Norma del supremo

Sea X un espacio métrico y sea C(X) el conjunto de todas las funciones continuas y acotadas sobre X. Para $f \in C(X)$, se define la norma del supremo de f sobre X como:

$$||f|| = \sup_{x \in X} |f(x)|.$$

Nótese que...

- Si f es acotada, entonces |f(x)| es finito para todo $x \in X$. Además, ||f|| = 0 si y solo si f es la función 0.
- Por designaldad triangular, $|f + g| \le |f| + |g|$. Entonces, $||f + g|| \le ||f|| + ||g||$.
- Si $f, g \in C(X)$, se define d(f, g) := ||f g||.
- En algunos casos, a los cerrados de C(X) se les llama uniformemente cerrados. A la cerradura de un subconjunto de C(X) se le llama cerradura uniforme.
- Teorema: (C(X), d) es un espacio métrico completo (toda sucesión de Cauchy en él es convergente).

Norma en espacios vectoriales

Sea $(X, +, \cdot, \mathbb{R})$ un espacio vectorial. Una función $\|\cdot\|: X \to [0, \infty)$ es una norma sobre X si...

- \bullet Para todo $x,y\in X,$ se cumple $\|x+y\|\leq \|x\|+\|y\|,;$
- Para todo $x \in X$ y $\lambda \in \mathbb{R}$ se cumple $||\lambda x|| = |\lambda|||x||$;
- Si $x \in X$, entonces ||x|| = 0 si y solo si x = 0;

Se llama espacio normado al par ordenado $(X, \|\cdot\|)$.

Convergencia de sucesiones

Una sucesión $(x_n) \subset X$ es convergente a $x \in X$ si $||x_n - x|| \to 0$.

Sucesiones de Cauchy

Una sucesión $(x_n) \subset X$ es de Cauchy si para todo $\varepsilon > 0$ existe $N \in \mathbb{Z}^+$ tal que si m y n son enteros mayores que N, entonces $|x_m - x_n| < \varepsilon$.

- Se dice que X es completo si toda sucesión de Cauchy es convergente.
- Un espacio vectorial normado y completo es un espacio de Banach.
- Un espacio vectorial de Banach cuya norma proviene de un producto interno (donde $||x|| = \sqrt{\langle x, x \rangle}$) es un espacio de Hilbert.

Reales completados

El conjunto de los reales completados es el conjunto $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$.

Norma del supremo en \mathbb{R}

Sea f una función definida en un subconjunto A de \mathbb{R} . La norma del supremo o norma uniforme de f es el número sobre $\overline{\mathbb{R}}$ definido por $||f||_{\infty} = \sup\{|f(x)| : x \in A\}$.

Convergencia de sucesiones en $\overline{\mathbb{R}}$

Una sucesión (x_n) de elementos en \mathbb{R} converge a $x \in \mathbb{R}$ si existe $N \in \mathbb{Z}^+$ tal que x_n es finito para todo $n \geq N$, y si la sucesión correspondiente de (x_n) de elementos en \mathbb{R} converge a x.

Caracterización de convergencia uniforme

Sea (f_n) una sucesión de funciones definidas en un subconjunto de los reales y sea f una función definida en el mismo subconjunto. Entonces, (f_n) converge uniformemente a f si y solo si la sucesión $(\|f_n - f\|_{\infty})$ sobre $\overline{\mathbb{R}}$ converge a 0.

Teorema: Critero de Cauchy uniforme

Sea (f_n) una sucesión de funciones definidas en un subconjunto A de los reales. Entonces, (f_n) converge uniformemente a una función f si y solo si, para todo $\epsilon > 0$ existe $N \in \mathbb{Z}^+$ tal que si m y n son enteros mayores que N, entonces $|f_m(x) - f_n(x)| < \varepsilon$ para todo $x \in A$, si y solo si, para todo $\epsilon > 0$ existe $N \in \mathbb{Z}^+$ tal que si m y n son enteros mayores que N, entonces $||f_m - f_n|| < \varepsilon$.

Teorema de preservación de continuidad puntual

Sea (f_n) una sucesión de funciones definidas en un subconjunto de los reales que converge a f, una función definida en el mismo subconjunto. Si cada f_n es continua en un punto $x \in A$, entonces f es continua en $x \in A$.

Nota: Aquí terminó la clase del 2 de septiembre del 2021.

Otro teorema de Weierstrass

Sea (f_n) una sucesión de funciones diferenciables $f_n:(a,b)\to\mathbb{R}$ que converge puntualmente a una función f y donde (f'_n) converge uniformemente a una función g. Entonces, f es diferenciable sobre (a,b) y f'=g.

Monotonía de sucesiones de funciones

- Se dice que (f_n) es creciente si $f_n(x) \leq f_{n+1}(x)$ para todo $n \in \mathbb{Z}^+$ y para todo x en el dominio de f.
- Se dice que (f_n) es decreciente si $f_n(x) \ge f_{n+1}(x)$ para todo $n \in \mathbb{Z}^+$ y para todo x en el dominio de f.
- Si (f_n) es creciente o decreciente, entonces la sucesión es monótona.

Teorema de Dini (cuasi-converso al teorema anterior)

Sea (f_n) una sucesión de funciones definidas en un intervalo cerrado y acotado I de los reales. Suponga que (f_n) converge puntualmente a una función continua f, y que (f_n) es una sucesión monótona. Entonces, (f_n) converge uniformemente a f.

Nota: Aquí terminó la clase del 6 de septiembre del 2021.

¿Topología?

Vecindad

Sea (X, τ) un espacio topológico y sea $p \in X$. Una vecindad de p es cualquier conjunto U tal que $p \in U$ y para el cual existe $V \in \tau$ tal que $V \subseteq U$ y $p \in V$.

Sucesión en espacios topológicos

Sea (X,τ) un espacio topológico. Una sucesión sobre X es cualquier función $f: \mathbb{Z}^+ \to X$.

Convergencia en espacios topológicos

Se dice que la sucesión (x_n) en el espacio topológico (X, τ) converge a $p \in X$ si cada vecindad de x contiene a la cola de la sucesión. Es decir, para toda vecindad U de $p \in X$ existe $N \in \mathbb{Z}^+$ tal que para todo $n \geq N$ se cumple $x_n \in U$.

Conjuntos dirigidos

Un conjunto D es dirigido si existe una relación binaria \leq sobre D tal que:

- Es una relación reflexiva;
- Es una relación transitiva;
- Si $m, n \in D$, entonces existe $r \in D$ tal que $m \le r$ y $n \le r$.

A la relación \leq se le llama dirección. La colección de todas las vecindades de un $x \in X$ para un espacio topológico (X, τ) es un conjunto dirigido con dirección \subseteq .

Redes

Una red en un conjunto X es una función $f: D \to X$, donde D es un conjunto dirigido.

Nota: Aquí terminó la clase del 9 de septiembre del 2021.

Diferenciación en \mathbb{R}^n

Diferenciación de \mathbb{R} a \mathbb{R}

Sea $X \subseteq \mathbb{R}$. Una función $F: X \to \mathbb{R}$ es diferenciable en $a \in X$ si la gráfica de F tiene una recta tangente en el punto (a, F(a)). La ecuación de esta recta tangente es H(x) = F'(a)[x-a] + F(a). Es decir, ser diferenciable puede ser visto como que H(x) existe, o que su pendiente F'(a) exista. Nótese que el comportamiento de H y de F en a es exactamente el mismo (sus valores y sus pendientes son iguales). Esto es, H aproxima a F en una vecindad de a.

Superficies

Sea $X\subseteq\mathbb{R}^2$ un abierto. La gráfica de una función $f:X\to\mathbb{R}$ es llamada una superficie. El plano tangente en un punto $(a,b)\in X$ de la superficie esta dado por

$$H(x,y) = \frac{\partial f}{\partial x}(a,b)[x-a] + \frac{\partial f}{\partial y}(a,b)[y-b] + f(a,b).$$

Esto es, $H(x,y) = \nabla f(a,b) \cdot \begin{bmatrix} x-a \\ y-b \end{bmatrix} + f(a,b).$ De nuevo, nótese que

$$H(a,b) = f(a,b)$$

$$\frac{\partial h}{\partial x}(a,b) = \frac{\partial f}{\partial x}(a,b)$$

$$\frac{\partial h}{\partial y}(a,b) = \frac{\partial f}{\partial y}(a,b).$$

Sin embargo, la existencia de las derivadas parciales en estas funciones no equivale a la existencia del plano tangente. Las derivadas parciales pueden existir aunque no haya un plano tangente. Un ejemplo es la función f(x,y) = ||x| - |y|| - |x| - |y|| en el punto (0,0).

Diferenciabilidad de \mathbb{R}^2 a \mathbb{R}

Sea $X \subseteq \mathbb{R}^2$ un abierto, y sea $f: X \to \mathbb{R}$. Se dice que f es diferenciable en $(a,b) \in X$ si existen las derivadas parciales en el punto $(f_x(a,b) \text{ y } f_y(a,b))$ y si la función H(x,y) descrita anteriormente es una buena aproximación lineal de f. Es decir,

$$\lim_{(x,y)\to(a,b)}\frac{f(x,y)-H(x,y)}{\|(x,y)-(a,b)\|}=0.$$

Nota: Aquí terminó la clase del 20 de septiembre del 2021.

Diferenciabilidad de \mathbb{R}^n a \mathbb{R}

Sea $X \subseteq \mathbb{R}^n$ un abierto, y sea $f: X \to \mathbb{R}$. Se dice que f es diferenciable en $\vec{a} = (a_1, a_2, \dots, a_n) \in X$ si existen todas las derivadas parciales en el punto $(f_k(\vec{a}))$ para $1 \le k \le n$ entero) y si la función

$$H(\vec{x}) = \nabla f(\vec{a}) \cdot \begin{bmatrix} x_1 - a_1 \\ x_2 - a_2 \\ \vdots \\ x_n - a_n \end{bmatrix} + f(\vec{a}) = \frac{\partial f}{\partial x_1} (\vec{a})[x_1 - a_1] + \frac{\partial f}{\partial x_2} (\vec{a})[x_2 - a_2] + \dots + \frac{\partial f}{\partial x_n} (\vec{a})[x_n - a_n] + f(\vec{a})$$

es una buena aproximación lineal de f. Es decir,

$$\lim_{\vec{x}\rightarrow\vec{a}}\frac{f(\vec{x})-H(\vec{x})}{\|\vec{x}-\vec{a}\|}=0.$$

Derivada de \mathbb{R}^n a \mathbb{R}

En funciones de \mathbb{R}^n a \mathbb{R} se entiende por derivada en un punto \vec{a} a la matriz fila $Df(\vec{a})$ cuyas entradas son las componentes del gradiente evaluado en el punto, $\nabla f(\vec{a})$. No hay que confundir al gradiente con esta matriz: una matriz fila no es el mismo objeto que un vector. La gráfica de estas funciones es una hipersuperficie en \mathbb{R}^{n+1} . Si f es diferenciable en \vec{a} , entonces la hipersuperficie determinada por la gráfica de f tiene un hiperplano tangente en $(\vec{a}, f(\vec{a}))$. Este hiperplano está dado por $H(\vec{x})$.

Diferenciabilidad de \mathbb{R}^n a \mathbb{R}^m

Sea $X \subseteq \mathbb{R}^n$ un abierto, y sea $f: X \to \mathbb{R}^m$ una función vectorial, cuya imagen se presenta como

$$f(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x}), \dots, f_m(\vec{x})).$$

De esto, se define la matriz (Jacobiano) de $m \times n$ de derivadas parciales a continuación:

$$Df(\vec{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\vec{a}) & \frac{\partial f_1}{\partial x_2}(\vec{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\vec{a}) \\ \frac{\partial f_2}{\partial x_1}(\vec{a}) & \frac{\partial f_2}{\partial x_2}(\vec{a}) & \cdots & \frac{\partial f_2}{\partial x_n}(\vec{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\vec{a}) & \frac{\partial f_m}{\partial x_2}(\vec{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\vec{a}) \end{pmatrix}.$$

Se dice que f es diferenciable en \vec{a} si $Df(\vec{a})$ existe y si la función $H: \mathbb{R}^n \to \mathbb{R}^m$ definida por $H(\vec{x}) = f(\vec{a}) + Df(\vec{a})[\vec{x} - \vec{a}]$ es una buena aproximación lineal de f cerca de \vec{a} . Es decir, se cumple

$$\lim_{\vec{x} \to \vec{a}} \frac{f(\vec{x}) - H(\vec{x})}{\|\vec{x} - \vec{a}\|} = 0.$$

T(A): Diferenciabilidad implica continuidad

Sea $X \subseteq \mathbb{R}^n$ un abierto, y sea $f: X \to \mathbb{R}^m$ una función vectorial diferenciable en $\vec{a} \in X$. Entonces, f es continua en \vec{a} .

T(B): Diferenciabilidad de las funciones componente en cada variable implica diferenciabilidad

Sea $X \subseteq \mathbb{R}^n$ un abierto, y sea $f: X \to \mathbb{R}^m$ una función vectorial tal que todas las derivadas parciales de las funciones componentes de las imágenes de f existen y son continuas en un punto $\vec{a} \in X$, entonces f es diferenciable en \vec{a} .

T(C): Caracterización de funciones diferenciables

Sea $X \subseteq \mathbb{R}^n$ un abierto. Una función $f: X \to \mathbb{R}^m$ es diferenciable en $\vec{a} \in X$ si y solo si cada función componente $f_k: X \to \mathbb{R}^m$ para $k \in \{1, 2, \dots, m\}$ es diferenciable en \vec{a} .

Nota: Aquí terminó la clase del 23 de septiembre del 2021.

Lema para T(A): Acotación de norma

Sean
$$\vec{x} \in \mathbb{R}^n$$
 y $B \in \mathbb{R}^{m \times n}$ con entradas $b_{i,j}$. Si $y = B\vec{x}$, entonces $||y|| \le K||x||$, con $K = \sqrt{\sum_{i \le m, j \le n} b_{i,j}^2}$.

Nota: Aquí terminó la clase del 27 de septiembre del 2021.

Cerradura de la suma en las funciones diferenciables

Sea $X \subseteq \mathbb{R}^n$ y sean $f, g: X \to \mathbb{R}^m$ funciones diferenciables en $\vec{a} \in X$, y sea $\alpha \in \mathbb{R}$. Entonces, la función f+g es diferenciable en \vec{a} , y se tiene que $D(f+g)(\vec{a}) = Df(\vec{a}) + Dg(\vec{a})$. Además, $J(\vec{x}) = \alpha f(\vec{x})$ es diferenciable en \vec{a} , y se tiene que $DJ(\vec{x}) = \alpha Df(\vec{x})$.

Reglas del producto y cociente en las funciones diferenciables de \mathbb{R}^n a \mathbb{R}

Sea $X \subseteq \mathbb{R}^n$ y sean $f, g: X \to \mathbb{R}$ funciones diferenciables en $\vec{a} \in X$. Entonces, la función fg es diferenciable en \vec{a} , y se tiene que $D(fg)(\vec{a}) = Df(\vec{a})g(\vec{a}) + f(\vec{a})Dg(\vec{a})$. Además, si $g(\vec{a}) \neq 0$, la función f/g es diferenciable en \vec{a} , y se tiene que

$$D\left(\frac{f}{g}\right)(\vec{a}) = \frac{g(\vec{a})Df(\vec{a}) - f(\vec{a})Dg(\vec{a})}{[g(\vec{a})]^2}.$$

Si $\overline{g}: X \to \mathbb{R}^m$ es también diferenciable en $\vec{a} \in X$, entonces $f\overline{g}$ es diferenciable en \vec{a} , y se cumple que

$$D(f\overline{g})(\vec{a}) = \overline{g}(\vec{a})Df(\vec{a}) + f(\vec{a})D\overline{g}(\vec{a}).$$

Nota: Aquí terminó la clase del 4 de octubre del 2021.

Derivada direccional

Sea X un abierto en \mathbb{R}^n , sea $f: X \to \mathbb{R}$ una función escalar, y sea $\vec{a} \in X$. Si $\hat{v} \in \mathbb{R}^n$ es un vector unitario, entonces la derivada direccional de f en \vec{a} , en la dirección de \hat{v} , está dada por

$$D_{\hat{v}}f(\vec{a}) = \lim_{h \to 0} \frac{f(\vec{a} + h\hat{v}) - f(\vec{a})}{h}.$$

Si f es diferenciable, entonces sus derivadas parciales determinan las derivadas direccionales en cualquier dirección \hat{v} . De esta manera, si $F(t) = f(\vec{a} + t\hat{v})$, entonces $D_{\hat{v}}f(\vec{a}) = F'(0)$. Esto es,

$$D_{\hat{v}}f(\vec{a}) = \left[\frac{\mathrm{d}}{\mathrm{d}t}f(\vec{a} + t\hat{v})\right]_{t=0}.$$

Regla de la cadena en \mathbb{R}^2

Sean $T \subseteq \mathbb{R}$ y $X \subseteq \mathbb{R}^2$ abiertos, sea $x: T \to \mathbb{R}^2$ diferenciable en $t_0 \in T$, y sea $f: X \to \mathbb{R}$ diferenciable en $\vec{x_0} = x(t_0) = (x_0, y_0) \in X$. También supóngase que la imagen de X bajo f es un subconjunto de X, y que además f tiene primera derivada continua. Entonces, $f \circ x: T \to \mathbb{R}$ es diferenciable en t_0 , y se cumple que

$$\frac{\mathrm{d}f}{\mathrm{d}t}(t_0) = \frac{\partial f}{\partial x}(\vec{x_0}) \cdot \frac{\mathrm{d}x}{\mathrm{d}t}(t_0) + \frac{\partial f}{\partial y}(\vec{x_0}) \cdot \frac{\mathrm{d}y}{\mathrm{d}t}(t_0).$$

Regla de la cadena en \mathbb{R}^n

En general, si $T \subseteq \mathbb{R}$ y $X \subseteq \mathbb{R}^n$ son abiertos, y se tienen $f: X \to \mathbb{R}$ y $x: T \to \mathbb{R}^n$, entonces

$$\frac{\mathrm{d}f}{\mathrm{d}t}(t_0) = \left[\frac{\partial f}{\partial x_1}(\vec{x_0}) \quad \frac{\partial f}{\partial x_2}(\vec{x_0}) \quad \cdots \quad \frac{\partial f}{\partial x_n}(\vec{x_0})\right] \cdot \begin{bmatrix} \frac{\mathrm{d}x_1}{\mathrm{d}t}(t_0) \\ \vdots \\ \frac{\mathrm{d}x_n}{\mathrm{d}t}(t_0) \end{bmatrix} = Df(\vec{x_0}) \cdot Dx(t_0) = \nabla f(\vec{x_0}) \cdot \vec{x}'(t_0).$$

Existencia y simplificación de la derivada direccional

Sea $X \subseteq \mathbb{R}^n$, y suponga que $f: X \to \mathbb{R}$ es diferenciable en $\vec{a} \in X$. Entonces, la derivada direccional de f existe para cada dirección $\hat{v} \in \mathbb{R}^n$, y se tiene que $D_{\hat{v}}f(\vec{a}) = \nabla f(\vec{a}) \cdot \hat{v}$. Sin embargo, la existencia de las derivadas direccionales no aseguran la diferenciabilidad de una función.

Nota: Aquí terminó la clase del 11 de octubre del 2021.

Optimización de la derivada direccional

Dado que $D_{\hat{v}}f(\vec{a}) = \nabla f(\vec{a}) \cdot \hat{v}$, entonces $D_{\hat{v}}f(\vec{a})$ se optimiza cuando \hat{v} está en la dirección de ∇f y se minimiza cuando \hat{v} está en la dirección opuesta a ∇f . En efecto, $||D_{\hat{v}}f(\vec{a})|| = ||\nabla f(\vec{a})||$.

Superficie (visión informal)

Una superficie se puede pensar como una función diferenciable $f: X \to \mathbb{R}$, donde $X \subseteq \mathbb{R}^2$ es un conjunto conexo y abierto. De esta manera, se grafican sobre el eje z las imágenes de X bajo f.

Superficie (visión formal)

Otra manera de pensar en las superficies como funciones diferenciables $f: X \to \mathbb{R}^3$, donde $X \subseteq \mathbb{R}^2$ es un conjunto conexo y abierto. Esta visión corresponde a la parametrización de una función, para la cual x y y son funciones dependientes de dos parámetros s y t. Es decir, cada punto de la superficie estaría dado por $f(x(s,t),y(s,t)) = (f_1(x,y),f_2(x,y),f_3(x,y))$.

Plano tangente

Considérese a una superficie F(x,y,z)=0 tal que $\nabla F\neq 0$. El plano que pasa por un punto $P=(x_0,y_0,z_0)$ y es normal a $\nabla F(x_0,y_0,z_0)$ se le llama plano tangente en el punto P. La ecuación del plano tangente es $\nabla F(x_0,y_0,z_0)\cdot (x-x_0,y-y_0,z-z_0)=0$.

Nota: Aquí terminó la clase del 14 de octubre del 2021.

Relación entre superficies tangentes y polinomios de Taylor

Planos tangentes en \mathbb{R}^2

Sea $X \subseteq \mathbb{R}^2$ un abierto y sea $f: X \to \mathbb{R}$ una función de dos variables cuya primera derivada es continua. Entonces, cerca de $(a,b) \in X$, la mejor aproximación lineal de f está dada por el planto tangente al punto (a,b,f(a,b)). Este plano está dado por:

$$P_1(x,y) = \frac{\partial f}{\partial x}(a,b)[x-a] + \frac{\partial f}{\partial y}(a,b)[y-b] + f(a,b).$$

Hiperplanos tangentes en \mathbb{R}^n

Sea $X \subseteq \mathbb{R}^n$ un abierto y sea $f: X \to \mathbb{R}$ una función de n variables cuya primera derivada es continua. Entonces, cerca de $\vec{a} \in X$, la mejor aproximación lineal de f está dada por el hiperplanto tangente al punto $(a_1, a_2, \ldots, a_n, f(\vec{a}))$. Este plano está dado por:

$$P_1(\vec{x}) = f(\vec{a}) + \sum_{k=1}^{n} \frac{\partial f}{\partial x_k}(\vec{a})[x_k - a_k] = f(\vec{a}) + \nabla f(\vec{a}) \cdot [\vec{x} - \vec{a}].$$

Teorema de Taylor lineal

Sea $X \subseteq \mathbb{R}^n$ un abierto y sea $f: X \to \mathbb{R}$ una función diferenciable en $\vec{a} \in X$. Si se define a la función $P_1(\vec{x}) = f(\vec{a}) + \nabla f(\vec{a}) \cdot [\vec{x} - \vec{a}]$, entonces $f(\vec{x}) = P_1(\vec{x}) + R_1(\vec{x}, \vec{a})$, donde $R_1(\vec{x}, \vec{a})$ cumple con

$$\lim_{\vec{x} \to \vec{a}} \frac{R_1(\vec{x}, \vec{a})}{\|\vec{x} - \vec{a}\|} = 0.$$

Cambio incremental

Sea $X \subseteq \mathbb{R}^n$ un abierto, sea $f: X \to \mathbb{R}$ una función, y sea $\vec{a} \in X$. Entonces, el cambio incremental de f, denotado Δf , está dado por $\Delta f = f(\vec{a} + \vec{h}) - f(\vec{a})$.

Diferencial total

El diferencial total del f, denotado df, está dado por d $f = \nabla f(\vec{a}) \cdot [\vec{x} - \vec{a}]$. Cuando $\vec{h} \to 0$, se cumple que $\Delta f \to \mathrm{d} f$.

Aproximaciones cuadráticas en \mathbb{R}^2

Sea $X \subseteq \mathbb{R}^2$ un abierto y sea $f: X \to \mathbb{R}$ una función de dos variables cuya primera y segunda derivada es continua. Entonces, cerca de $(a,b) \in X$, la mejor aproximación cuadrática de f está dada por el polinomio de Taylor con dos términos, que es:

$$P_2(x,y) = f(a,b) + f_x(a,b)[x-a] + f_y(a,b)[y-b] + \frac{1}{2}f_{xx}(a,b)[x-a]^2 + f_{xy}(a,b)[x-a][y-b] + \frac{1}{2}f_{yy}(a,b)[y-b]^2.$$

Teorema de Taylor cuadrático

Sea $X \subseteq \mathbb{R}^n$ un abierto y sea $f: X \to \mathbb{R}$ una función diferenciable dos veces en $\vec{a} \in X$. Si se define a la función

$$P_2(\vec{x}) = f(\vec{a}) + \sum_{k=1}^n f_{x_k}(\vec{a})[x_k - a_k] + \frac{1}{2} \sum_{1 \le i, j \le n} f_{x_i x_j}(\vec{a})[x_i - a_i][x_j - a_j],$$

entonces $f(\vec{x}) = P_2(\vec{x}) + R_2(\vec{x}, \vec{a})$, donde $R_2(\vec{x}, \vec{a})$ cumple con

$$\lim_{\vec{x} \to \vec{a}} \frac{R_2(\vec{x}, \vec{a})}{\|\vec{x} - \vec{a}\|^2} = 0.$$

Nota: Aquí terminó la clase del 18 de octubre del 2021.

La matriz Hessiana

La matriz Hessiana de una función $f: X \to \mathbb{R}$, donde $X \subseteq \mathbb{R}^n$ es un abierto, es la matriz cuya ij-ésima entrada está dada por $\frac{\partial^2 f}{\partial x_j \partial x_i} = f_{x_i x_j}$, con $1 \le i, j \le n$. Así,

$$Hf = \begin{pmatrix} f_{x_1x_1} & f_{x_1x_2} & \cdots & f_{x_1x_n} \\ f_{x_2x_1} & f_{x_2x_2} & \cdots & f_{x_2x_n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1} & f_{x_nx_2} & \cdots & f_{x_nx_n} \end{pmatrix}.$$

Polinomio cuadrático de Taylor con la matriz Hessiana

Nótese que $P_2(\vec{x}) = f(\vec{a}) + \sum_{i=1}^n f_{x_i}(\vec{a})h_i + \frac{1}{2} \sum_{1 \le i,j \le n} f_{x_i x_j}(\vec{a})h_i h_j$, donde $\vec{h} = \vec{x} - \vec{a}$. Esto es:

$$P_{2}(\vec{x}) = f(\vec{a}) + \begin{bmatrix} f_{x_{1}}(\vec{a}) & f_{x_{2}}(\vec{a}) & \cdots & f_{x_{n}}(\vec{a}) \end{bmatrix} \cdot \begin{bmatrix} h_{1} \\ h_{2} \\ \vdots \\ h_{n} \end{bmatrix}$$

$$+ \frac{1}{2} \begin{bmatrix} h_{1} & h_{2} & \cdots & h_{n} \end{bmatrix} \cdot \begin{bmatrix} f_{x_{1}x_{1}} & f_{x_{1}x_{2}} & \cdots & f_{x_{1}x_{n}} \\ f_{x_{2}x_{1}} & f_{x_{2}x_{2}} & \cdots & f_{x_{2}x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_{n}x_{1}} & f_{x_{n}x_{2}} & \cdots & f_{x_{n}x_{n}} \end{bmatrix} \cdot \begin{bmatrix} h_{1} \\ h_{2} \\ \vdots \\ h_{n} \end{bmatrix}.$$

De esta manera, simplificando la notación, $P_2(\vec{x}) = f(\vec{a}) + Df(\vec{a})\vec{h} + \frac{1}{2}\vec{h}^T \cdot Hf(\vec{a}) \cdot \vec{h}$.

Polinomio cúbico de Taylor

Sea $X \subseteq \mathbb{R}^n$ un abierto y sea $f: X \to \mathbb{R}$ una función diferenciable tres veces en $\vec{a} \in X$. Si se define a la función

$$P_3(\vec{x}) = f(\vec{a}) + \sum_{k=1}^n f_{x_k}(\vec{a})[x_k - a_k] + \frac{1}{2} \sum_{1 \le i, j \le n} f_{x_i x_j}(\vec{a})[x_i - a_i][x_j - a_j] + \frac{1}{6} \sum_{1 \le i, j, k \le n} f_{x_i x_j x_k}(\vec{a})[x_i - a_i][x_j - a_j][x_k - a_k],$$

entonces esta es la mejor aproximación cúbica de f en una vecindad de \vec{a} . Además se tiene que $f(\vec{x}) = P_3(\vec{x}) + R_2(\vec{x}, \vec{a})$, donde $R_3(\vec{x}, \vec{a})$ es el residuo que cumple con

$$\lim_{\vec{x} \to \vec{a}} \frac{R_3(\vec{x}, \vec{a})}{\|\vec{x} - \vec{a}\|^3} = 0.$$

Optimización en \mathbb{R}^n

Máximos y mínimos locales

Sea $X \subseteq \mathbb{R}^n$ un abierto y sea $f: X \to \mathbb{R}$ una función escalar. Se dice que f tiene un mínimo local en $\vec{a} \in X$ si existe una vecindad U de \vec{a} tal que $f(\vec{x}) \ge f(\vec{a})$ para todo $\vec{x} \in U$. Se dice que tiene un máximo local si $f(\vec{x}) \le f(\vec{a})$ para todo $\vec{x} \in U$.

Puntos críticos

Un punto \vec{a} del dominio de f, donde $Df(\vec{a})$ es cero o no existente, es un punto crítico de f.

Teorema de extremos locales y puntos críticos

Sea $X \subseteq \mathbb{R}^n$ un abierto y sea $f: X \to \mathbb{R}$ una función escalar diferenciable. Si f tiene un extremo local en $\vec{a} \in X$, entonces $Df(\vec{a}) = 0$. Esto es, los extremos locales ocurren en puntos críticos.

Nota: Aquí terminó la clase del 21 de octubre del 2021.

Formas bilineales

Sea V un espacio vectorial finito dimensional sobre \mathbb{R} . Una forma bilineal sobre V es un mapeo $f: V \times V \to \mathbb{R}$ tal que $f(\alpha \vec{x} + \beta \vec{y}, \vec{z}) = \alpha f(\vec{x}, \vec{z}) + \beta f(\vec{y}, \vec{z})$ y que $f(\vec{x}, \alpha \vec{y} + \beta \vec{z}) = \alpha f(\vec{x}, \vec{y}) + \beta f(\vec{x}, \vec{z})$, para toda $\alpha, \beta \in \mathbb{R}$ y $\vec{x}, \vec{y}, \vec{z} \in V$. Un ejemplo de una forma bilineal es el producto punto en $V = \mathbb{R}^n$.

Clasificación de formas bilineales

Sea $f: V \times V \to \mathbb{R}$ una forma bilineal. Esta es:

- Simétrica: Si para todo $\vec{x}, \vec{y} \in V$ se tiene $f(\vec{x}, \vec{y}) = f(\vec{y}, \vec{x})$.
- Antisimétrica: Si para todo $\vec{x}, \vec{y} \in V$ se tiene $f(\vec{x}, \vec{y}) = -f(\vec{y}, \vec{x})$.
- Alternante: Si para todo $\vec{x} \in V$ se tiene $f(\vec{x}, \vec{x}) = 0$.

Bases en formas bilineales

Si f es una forma bilineal sobre V y si $B = \{b_1, \ldots, b_n\}$ es una base para V, se pueden tomar $\vec{x}, \vec{y} \in V$ arbitrarios tales que para todo $u, v \in V$, si $A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} f(b_i, b_j) \end{bmatrix}$, entonces

$$f(u, v) = (\vec{x}_B)^T \cdot A \cdot (\vec{y}_B).$$

Formas cuadráticas

Sea V un espacio vectorial n-dimensional sobre \mathbb{R} . Sea f una forma bilineal simétrica sobre V, y sea A la matriz que representa a f con respecto a la base canónica para V. El mapeo $q:V\to\mathbb{R}$ tal que $q(\vec{x})=f(\vec{x},\vec{x})=(\vec{x})^T\cdot A\cdot \vec{x}$ es llamado una forma cuadrática sobre V.

Clasificación de formas cuadráticas

Sea $q:V\to\mathbb{R}$ una forma cuadrática. Esta es:

- Positivo definida: Si para todo $\vec{x} \neq 0$ en V se tiene $q(\vec{x}) > 0$.
- Positivo semidefinida: Si para todo $\vec{x} \neq 0$ en V se tiene $q(\vec{x}) \geq 0$.
- Negativo definida: Si para todo $\vec{x} \neq 0$ en V se tiene $q(\vec{x}) < 0$.
- Negativo semidefinida: Si para todo $\vec{x} \neq 0$ en V se tiene $q(\vec{x}) \leq 0$.

Nota: Aquí terminó la clase del 2 de noviembre del 2021.

Nota: Aquí terminó la clase del 4 de noviembre del 2021.