2020 Fall EECS205002 Linear Algebra

2020/12/30 Quiz 4

- 1. (30%) True or False. For each item, if your answer is False, indicate which part of the statement is incorrect.
 - (a) Two subspaces X and Y of \mathbb{R}^n are said to be orthogonal complement if for all $x \in X$ and for all $y \in Y$ that $x^Ty = 0$. Moreover, $\dim(X) + \dim(Y) = n$.
 - (b) For a matrix A, the orthogonal complement of A's null space is A's row space.
 - (c) The direction sum $W = U \oplus V$ means that every $w \in W$ can be expressed as w = u + v for $u \in U$ and $v \in V$.
 - (d) A vector norm $\|\cdot\|$ needs to satisfy the following conditions: For all x and y in a vector space

I $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0.

II $\|\alpha x\| = \alpha \|x\|$.

III $||x + y|| \le ||x|| + ||y||$

- (e) A set of vectors $\{v_1, v_2, \dots, v_k\}$ are linearly independent if $\langle v_i, v_j \rangle = 0$ for any $i \neq j$ and $\langle v_i, v_i \rangle = 1$ for all i.
- (f) An $n \times n$ matrix $Q = [q_1, q_2, \dots, q_n]$ is called an orthogonal matrix if $\{q_1, q_2, \dots, q_n\}$ is an orthogonal set.
- (g) If x is an eigenvector of an $n \times n$ matrix A, αx is also an eigenvector of A for all $\alpha \in \mathbb{R}$.
- (h) If an $n \times n$ matrix A has a zero eigenvalue, A is singular.
- (i) An $n \times n$ matrix A is diagonalizable if and only if A has n distinct eigenvalues.
- (j) The eigenvalues of a symmetric matrix are all real, and their corresponding eigenvectors must be orthogonal.
- 2. (10%) Find a basis for the orthogonal complement of the following subspace.

$$\operatorname{span}\left(\begin{bmatrix}1\\2\\3\\4\end{bmatrix},\begin{bmatrix}5\\6\\7\\8\end{bmatrix}\right)$$

1

- 3. (10%) For a matrix A, show that $N(A^TA) = N(A)$.
- 4. (10%) Given $A = \begin{bmatrix} 4 & -5 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$. Find all the eigenvalues of A and the eigenvector belonging to the largest eigenvalue. (No need to normalize it.)
- 5. (10%) Let $p(x) = \alpha \det(A xI) = 5x^3 6x^2 + 7x + 8$, and $\lambda_1, \lambda_2, \lambda_3$ be the eigenvalues of A. What are α , $\lambda_1 \lambda_2 \lambda_3$ and $\lambda_1 + \lambda_2 + \lambda_3$?
- 6. (10%) Let Q be an orthogonal matrix.
 - (a) Show that if λ is an eigenvalue of Q, then $|\lambda| = 1$.
 - (b) Show that $|\det(Q)| = 1$.
- 7. (10%) Find ALL possible values of the scalar α that can make A defective

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & \alpha \end{bmatrix}.$$

- 8. (10%) The unit circle is the set of points whose "distance" to (0,0) is 1. Different norms give different shapes of unit circles. For example, the unit circle of 2-norm, $||[x,y]||_2 = \sqrt{x^2 + y^2} = 1$, is shown in Figure 1.
 - (a) Draw the unit circle of 1-norm, $||[x, y]||_1 = |x| + |y| = 1$.
 - (b) Draw the unit circle of ∞ -norm $||[x,y]||_{\infty} = \max(|x|,|y|) = 1$.

Figure 1: The unit circle of 2-norm