Statistical Inference in Linear Regression

Model 1: Let's consider the following SAS output for a regression model which we will refer to as Model 1.

Analysis of Variance								
Source Squares Square F Value Pr								
Model	4	2126.00904	531.50226		<.0001			
Error	67	630.35953	9.40835					
Corrected Total	71	2756.36857						

Root MSE	3.06730	R-Square	
Dependent Mean	37.26901	Adj R-Sq	
Coeff Var	8.23017		

Parameter Estimates									
Variable	DF	Parameter Estimate		t Value	Pr > t				
Intercept	1	11.33027	1.99409	5.68	<.0001				
X1	1	2.18604	0.41043		<.0001				
X2	1	8.27430	2.33906	3.54	0.0007				
Х3	1	0.49182	0.26473	1.86	0.0676				
X4	1	-0.49356	2.29431	-0.22	0.8303				

Number in Model	C(p)	R-Square	AIC	BIC	Variables in Model
4	5.0000	0.7713	166.2129	168.9481	X1 X2 X3 X4

(1) How many observations are in the sample data?Observations Total = (71 corrected total + 1 Degree's of Freedom) = 72

(2) Write out the null and alternate hypotheses for the t-test for Beta1. The hypothesis for Beta1 is meant to be an implication of whether there is a linear relationship between the dependent and independent variable.

$$H_0: B_1 = 0$$
 vs. $H_1: B_1 \neq 0$

(3) Compute the t- statistic for Beta1.

$$T\text{-}Statistic = \frac{2.18604}{0.41043} = 5.3262$$

(4) Compute the R-Squared value for Model 1.

$$R_squared = \frac{2126.00904}{2756.36857} = .7713$$

(5) Compute the Adjusted R-Squared value for Model 1.

Adjusted R-Squared =
$$1 - \frac{\frac{630.35953}{67}}{\frac{2756.36857}{71}} = .7576$$

(6) Write out the null and alternate hypotheses for the Overall F-test.

$$H_0: B_1 = B_2 = B_3 = B_4 = 0$$
 vs. $H_a: B_i \neq 0$, for at least one value of i

(7) Compute the F-statistic for the Overall F-test.

X6

$$F\text{-}Statistic = \frac{531.5023}{9.40835} = 56.4926$$

<u>Model 2:</u> Now let's consider the following SAS output for an alternate regression model which we will refer to as Model 2.

Analysis of Variance								
Source Squares Square F Value								
Model	6	2183.75946	363.95991	41.32	<.0001			
Error	65	572.60911	8.80937					
Corrected Total	71	2756.36857						

Root MSE 2.96806 **R-Square** 0.7923

Dependent Mean			37.26901		Adj R-Sq		0.7731			
Coeff Var	Coeff Var 7.963			888						
		Par	ameter	Es	stimates	3				
		Para	ameter	St	andard					
Variable	DF	Es	timate		Error	t V	alue	Pr	> t	
Intercept	1	14	.39017	2	2.89157		4.98	<.(0001	
X1	1	1	.97132	C	.43653		4.52	<.(0001	
X2	1	9	.13895	2	2.30071		3.97	0.0	0002	
Х3	1	0	.56485	C	.26266		2.15	0.0	0352	
X4	1	0	.33371	2	2.42131		0.14	0.8	3908	
X5	1	1	.90698	C	.76459		2.49	0.0	0152	

Number in Model	C(p)	R-Square	AIC	BIC	Variables in Model
6	7.0000	0.7923	163.2947	166.7792	X1 X2 X3 X4 X5 X6

0.64759

-1.61 0.1120

-1.04330

(8) Now let's consider Model 1 and Model 2 as a pair of models. Does Model 1 nest Model 2 or does Model 2 nest Model 1? Explain.

Model 1 =
$$y = B_0 + B_1(X_1) + B_2(X_2) + B_3(X_3) + B_4(X_4)$$

Model 2 = $y = B_0 + B_1(X_1) + B_2(X_2) + B_3(X_3) + B_4(X_4) + B_5(X_5) + B_6(X_6)$

Two models are nested if both of the models contain the same terms and one has at least one additional term, therefore Model 1 is nested in Model 2.

Model 1 would be the reduced model, and Model 2 is the full model

(9) Write out the null and alternate hypotheses for a nested F-test using Model 1 and Model 2.

$$H_0: B_5 = B_6 = 0$$

 $H_a: B_i \neq 0$, for at least one value of i

(10) Compute the F-statistic for a nested F-test using Model 1 and Model 2.

$$F-Statistic = \frac{\frac{(630.35953-572.60911)}{2}}{\frac{572.609911}{65}} = 3.2777$$

Here are some additional questions to help you understand other parts of the SAS output.

(11) Compute the AIC values for both Model 1 and Model 2.

Model 1 AIC = 72*
$$ln(\frac{630.35953}{72}) + 2 * 5 = 166.2129$$

Model 2 AIC = 72* $ln(\frac{572.60911}{72}) + 2 * 7 = 163.2946$

(12) Compute the BIC values for both Model 1 and Model 2.

Model 1 BIC = 72*
$$ln(\frac{630.35953}{72}) + 5* ln(72) = 177.5962$$

Model 2 BIC = 72* $ln(\frac{572.60911}{72}) + 7* ln(72) = 179.2313$

(13) Compute the Mallow's Cp values for both Model 1 and Model 2.

*Model 1 C*_p=
$$(\frac{630.35953}{9.40835}) - 72 + 2 * 5 = 5$$

Model 2
$$C_p = (\frac{572.60911}{8.80937}) - 72 + 2 * 7 = 7$$

(14) Verify the t-statistics for the remaining coefficients in Model 1.

$$T\text{-}Statistic\ I = \frac{11.33027}{1.99409} = 5.6819$$

T-Statistic
$$X_1 = \frac{2.18604}{0.41043} = 5.3262$$

T-Statistic
$$X_2 = \frac{8.27430}{2.33906} = 3.5374$$

T-Statistic
$$X_3 = \frac{0.49182}{0.26473} = 1.8578$$

T-Statistic
$$X_4 = \frac{-0.49356}{2.29431} = -0.2151$$

(15) Verify the Mean Square values for Model 1 and Model 2.

Model 1 MST =
$$(\frac{2126.00904}{4}) = 531.5022$$

Model 1 MSE=
$$(\frac{630.35953}{67}) = 9.4083$$

Model 2 MST =
$$(\frac{2183.75946}{6}) = 363.9599$$

Model 2 MSE=
$$(\frac{572.60911}{65})$$
 = 8.8093

(16) Verify the Root MSE values for Model 1 and Model 2.

Model 1 RMSE=
$$\sqrt{9.408351194} = 3.067303$$

Model 2 RMSE=
$$\sqrt{8.809370923} = 2.968058$$