03강. 삼차원 분할표

■ 주요용어

용어	해설				
주변분할표	모든 부분분할표를 결합해서 얻은 이차원 분할표를 말함. X, Y, Z				
	의 세 변수에 대한 결합분할표에서 X-Y 주변분할표는 변수 Z를				
	통제하지 않고 통합하여 작성함				
심프슨의 역설	조건부연관성과 주변연관성이 서로 다른 방향으로 나타나는 현상				
	을 말하며, 범주형 변수뿐만아니라 양적 변수에 대한 분석에서도				
	나타남				
조건부 독립성	X, Y, Z의 세 변수에 대한 결합분할표에서 Z가 주어졌을 때 X와				
	Y가 서로 독립인 경우에 X와 Y는 조건부 독립이라고 함				
동질적 연관성	K 개의 $2 imes2$ 부분분할표에서 오즈비 $ heta_{XY(k)}$ 에 대해				
	$ heta_{XY(1)} = heta_{XY(2)} = \cdots = heta_{XY(K)}$ 이 성립할 때 " $2 imes 2 imes K$ 분할표에서				
	X-Y 동질적 연관성이 있다"고 함				
코크란-멘틀-핸첼 검	2×2×K 분할표에서 Z가 주어졌을 때 X와 Y가 조건부 독립이라는				
정통계량	귀무가설을 검정하기 위한 검정통계량				
메타분석	여러 연구결과로부터 얻은 정보를 결합하여 분석하는 통계분석 기				
	법				
브레슬로-데이 검정	변수 Z의 모든 수준에서 X-Y 오즈비가 동일하다는 귀무가설을 검				
통계량	정하기 위한 검정통계량				

정리하기

1. 3차원 분할표

- 고정된 Z의 수준에 대하여 X와 Y의 연관성을 살펴보는 것을 목적으로 함
- 정해진 Z 수준에 대한 X와 Y의 분할표를 부분분할표라고 함
- 변수 Z에 대해 통합하여 작성한 X와 Y의 분할표를 X-Y 주변분할표라고 함

2. 부분연관성

- 조건부 오즈비: 정해진 Z 수준에서 X와 Y의 분할표에서 구한 오즈비
- 주변오즈비: X-Y 주변분할표에서 구한 오즈비
- 2×2×K 분할표에서 X와 Y의 조건부 독립
 - $\Leftrightarrow \ \theta_{XY(1)} = \theta_{XY(2)} = \dots = \theta_{XY(K)} = 1$

[과목명] 03강. 삼차원 분할표

- 3. 동질적 연관성
 - K개의 2×2 부분분할표에서 오즈비 $\theta_{XY(k)}$ 에 대해 $\theta_{XY(1)}=\theta_{XY(2)}=\dots=\theta_{XY(K)}$ 이 성립할 때 " $2\times 2\times K$ 분할표에서 X-Y 동질적 연관성이 있다"고 함
- 4. 코크란-매틀-해첼 검정
 - 2×2×K 분할표에서 Z가 주어졌을 때 X와 Y가 조건부 독립이라는 귀무가설을 검정하기 위한 검정방법

- 검정통계량:
$$\mathit{CMH} = \frac{[\sum\limits_{k} (n_{11k} - \widehat{\mu_{11k}})]^2}{\sum\limits_{k} \mathit{Var}(n_{11k})}$$

- ▶ 표본크기가 클 때 $CMH \sim \chi^2(1)$
- ▶ 각 부분분할표의 연관성이 유사할 때 CMH 방법은 각 부분분할표에 대한 개별적인 검정보다 우수함
- 5. 공통오즈비에 대한 추정과 검정
 - 공통오즈비 추정
 - ▶ 단순히 연관성에 대한 가설을 검정하는 것보다 연관성의 강도를 추정하면 더 많은 정보를 얻을 수 있음
 - ▶ 모든 부분분할표에서 연관성이 유사하게 나타나면 K개 오즈비의 공통값을 추정할 수 있는데, 이를 맨틀-핸첼 공통오즈비라고 함
 - 공통오즈비에 대한 브레슬로-데이 검정
 - ▶ 변수 Z의 모든 수준에서 X-Y 오즈비가 동일하다는 귀무가설을 검정하기 위한 검정법
 - ▶ 검정통계량: Breslow-Day 통계량 $=\sum_{i,j,k}\frac{(n_{ijk}-\hat{\mu}_{ijk})^2}{\widehat{\mu}_{ijk}}$
 - ▶ 검정통계량 값이 작을수록 귀무가설 H_0 에 대한 반증의 증거가 약함을 의미함

과제하기

구분	내용				
	1. 편두통에 대한 치료효과를 비교실험한 자료로서 새 치료약과 위약을 각각 투여한 두 집단에 대해 진료병원별로 조사한 결과이다. 각 병원의 환자들에게 실제 약과 위약 중 어느 한 가지를 랜덤하게 선택하도록 하였다.				
과제 주제	병원	집단	반 성공	응 실패	
	1	약	6	4	
		위약	2	8	
	2	약	4	3	
		위약	1	5	
	3	약	5	3	
		위약	3	6	
	(1) 부분분할표의 조건부 오즈비를 구하여라. 이 값이 병원들간에 유사한가? (2) 집단과 반응간의 조건부독립성 검정에 대한 P-값을 구하여라. ==> 코크란-맨틀-핸첼 검정 이용 (3) 집단과 반응간의 평균 조건부연관성을 추정하고 해석하라. (4) 세 병원의 오즈비가 모두 같은지를 검정하여라				
목적	3주차 강의 내용 복습				
제출 기간	3주차 강의 후 1주 후 토요일 밤 12시까지				
참고 자료					
기타 유의사항					