Existence de cycle dans une fonction discrète

Nicolas Blackburn

2017/03/03

Introduction

Matrice d'adjacence

Soit une fonction $f: \mathbb{N} \to \mathbb{N}$. La matrice d'adjacence partielle de f est une matrice carrée d'ordre n, définie comme étant

$$[\mathrm{Adj}_n \, f]_{i,j} = \begin{cases} 1 \text{ si } f(j) = i & \text{et } i \leq n \\ 0 \text{ sinon.} \end{cases}$$

Propriétés de la matrice d'adjacence

Les coefficients d'une matrice d'adjacence sont tous 0 ou 1.

Chaque colonne d'une matrice d'adjacence ne contient au plus qu'un seul coefficient égal à 1.

Posons $M_f = \operatorname{Adj}_n f$, $M_g = \operatorname{Adj}_n g$ et considérons $\vec{e_i}$ un vecteur dans \mathbb{C}^n , valant 1 à la *i*-ième composante et 0 pour toute autre composante. Alors

$$M_f \vec{e}_i = \vec{e}_{f(i)}$$

 et

$$M_f M_g = M_{f \circ g}.$$

Cycle

Soit une fonction $f: X \to X$. On dit que f a un cycle d'ordre k s'il existe un élément $x \in X$ tel que $f^k(x) = x$, pour k > 0 et k entier. L'ordre du cycle contenant x est k si et seulement si k est le plus petit entier tel que $f^k(x) = x$. On définit $\mathcal{C} = (x_1 \ x_2 \ \dots \ x_k)$ étant un cycle de f, $x_i \in X$ et $i \neq j$ implique $x_i \neq x_j$. Alors

$$f(x_i) = \begin{cases} x_{i+1} & \text{si } i < k \\ x_1 & \text{si } i = k. \end{cases}$$

On a le cas particulier d'un cycle d'ordre 1 qui est appelé un point fixe.

Polynôme caractéristique

Lemme 1

Soit une fonction $f: X \to X$ sur un ensemble X fini. Supposons qu'il existe un élément $x_1 \in X$ tel que $f(x_i) \neq x_1$, pour tout $x_i \in X$. Alors

$$\mathcal{P}_f[\lambda] = \lambda \mathcal{P}_g[\lambda]$$

où $g: B \to B$ est la restriction de f au sous-ensemble B.

Preuve:

- 1. Soit $N = \{n \in \mathbb{N} | n \le |X| \}$, il existe une bijection $h: X \to N$ telle que $h(x_i) = i$, pour tout élément $x_i \in X$. En particulier $h(x_1) = 1$.
- 2. On a que $\mathcal{P}_{h \circ f \circ h^{-1}}[\lambda] = \mathcal{P}_f[\lambda]$. Soit $M_f = \operatorname{Adj} f$ et $M_h = \operatorname{Adj} h$ alors $\operatorname{Det}(\lambda I M_h M_f M_h^{-1}) = \operatorname{Det}(\lambda I M_f)$.
- 3. Puisque pour tout élément $f(x_i) \neq x_1$ alors $h \circ f \circ h^{-1}(n) \neq 1$ pour tout $n \in \mathbb{N}$.
- 4. La M, matrice d'adjacence de $h \circ f \circ h^{-1}$ est une matrice dont la première ligne ne contient que des 0 alors $\lambda I M$ est une matrice bloc triangulaire inférieure

$$\begin{bmatrix} [\lambda] & 0 \\ A & B \end{bmatrix}.$$

5. Alors $\mathcal{P}_{h \circ f \circ h^{-1}}[\lambda] = \lambda \operatorname{Det} B = \lambda \mathcal{P}_q[\lambda].$

Lemme 2

Soit $C: X \to X$, un n-cycle de X, n = |X|, alors $\mathcal{P}_{\mathcal{C}}[\lambda] = (\lambda^n - 1)$.

Preuve:

 \dots Todo \dots

Théorème 1

Soit une fonction $f:X\to X$ sur un ensemble X fini et $\mathcal{P}_f[\lambda]$, son polynôme caractéristique, alors

$$\mathcal{P}_f[\lambda] = \lambda^{|Z|} \prod_{\mathcal{C}_i \in C} (\lambda^{|\mathcal{C}_i|} - 1)$$

où Z est l'ensemble des éléments de X qui ne sont pas élément d'un cycle de f et C est l'ensemble des cycles de f.

Preuve:

Par induction sur l'ensemble Z en utilisant le lemme 1 et ensuite sur C en utilisant le lemme 2.

Formule de comptage

Une petite formule qui ressemble au lemme de Burnside en théorie des groupes:

$$|X| = |Z| + \sum_{\mathcal{C}_i \in C} |\mathcal{C}_i|$$

Preuve:

...todo...

Existence de cycle

Théorème 2

Si la fonction $f: \mathbb{N} \to \mathbb{N}$ a un cycle d'ordre k, alors il existe M_n , une matrice d'adjacence partielle de f d'ordre n, telle que $(\lambda^k - 1)$ divise $\mathcal{P}_{M_n}[\lambda]$.

Si f n'a pas de cycle alors $\mathcal{P}_{M_n}[\lambda] = \lambda^n$ pour toute matrice M_n d'adjacence partielle de f d'ordre n.

Preuve:

Corrolaire du théorème 1

Conclusion