Zwitterionic Polymer

Amino Acid-based Polymers

Application of Stimuli Responsive Polymers

pH Responsive Polymers

- Respond to the changes in the pH of surrounding medium
- Expand or collapse depending on the pH of the environment
- Due to presence of certain functional groups in the polymer chain
 - Acidic group (-COOH, -SO₃H)
 - Basic group (-NH₂)
- After ionization of these groups: hydrodynamic volume increase due to electrostatic repulsion
- Application in Drug delivery systems and biomimetics

poly(acrylic acid) (PAA)

$$CH_3$$
 CH_2
 CH_2
 CH_3
 CH_2
 CH_3

poly(methacrylic acid)

Temperature Responsive Polymers

- Respond to temperature changes
- A critical solution temperature:
 - Phase of the polymer and solution is changed
- Phase of the polymers and solution is changed
- Types:
 - TRP which shows UCST
 - One phase above certain temp
 - Phase separation below it
 - TRP which shows LCST
 - Monophasic below a specific temp
 - Biphasic above this temp
- Find applications again as biomaterials mostly

Temperature Responsive Polymers

- The first established LCST is 32°C for poly(N-isopropylacrylamide)
 (PNIPAAm) in water solution
- At this temp:
 - Undergoes a sharp coil-globule transition
 - Changes from hydrophilic state to hydrophobic state as temperature is increases
 - In aqueous solutions, it is soluble below LCST and less soluble above it

X. Zhang, R. Zhuo, Y. Yang, "Using mixed solvent to synthesize temperature sensitive poly(N-isopropylacrylamide) gel with rapid dynamic properties", Biomaterials, Vol.26, 2002; 1313

Drug Release Systems

- Controlled release of insulin
- Hydrogel works as insulin containing reservoir within (P(MAA-g-EG)) copolymer in which glucose oxidase was immobilized.

 The surface of polymer contains a series of molecular entraces for delivery of insulin

Drug Release Systems

- The reversible collapse and expansion behavior
- PNIPAAm incoroprated into cross-linked polymer gel above the LCST of the hompolymer
- At low temperatures, swollen PNIPAAm hydrogels kept in drug solutions and at elevated temperatures, rapid initial drug release is observed as a result of fast matrix contraction

C. H. Alarcon, S. Pennadam and C. Alexander, "Stimuli responsive polymers for biomedical applications", Chem. Soc. Rev. Vol.34, 2005; 276

Cell Adhesion Control

- Platelets on PEG-grafted tissue culture of polystyrene (TCPS) retain a rounded shape at 37°C
- The platelets exhibit rounded and unspread morphology at 12°C on PNIPAAm-grafted TCPS
- By contrast, platelets on PNIPAAmgrafted TCPS dramatically change their behavior depending on temperature as platelets adhere, spread and develop characteristic pseudopodia on PNIPAAm-grafted TCPS at 37°C
- Hydrophilic/hydrophobic switching of PNIPAAm-grafted surfaces on TCPS

Scanning electron microscopic views of blood-platelets contact with polymer grafted surfaces, 20 min after platelet initial contact with their surfaces: ungrafted TCPS surfaces at 373C (a, b), PEG-grafted TCPS surfaces at 373C (c, d), PIPAAm-grafted TCPS surfaces at 123C (e, f), and PIPAAm-grafted TCPS surfaces at 373C (g, h). Bars in left and right column represent 20 and 1 lm, respectively.