Q3) a- Give one example where separation holds but not sufficiency

Separation equation: P(C|Y, gender=`Male/Female`) = P(C|Y)

Sufficiency equation: P(Y|C, gender=`Male/Female`) = P(Y|C)

C= BMI and Y=Hyperlipidemia and A=Gender

Separation Check

Separation once	Hyperlipidemia= YES	Hyperlipidemia= NO
BMI = ~18.5	P(C=`~18.5` Y= YES, gender=`Male`) = 0.1985297	P(C=`~18.5` Y=NO,gender=`Male`) = 0.49179708
	P(C=`~18.5` Y= YES)= 0.1985297	P(C=`~18.5` Y=NO)= 0.49179708
BMI = ~24.0	P(C=`~24.0` Y= YES, gender=`Male`) = 0.4696328	P(C=`~18.5` Y=NO,gender=`Male`) = 0.36267231
	P(C=`~24.0` Y= YES)= 0.4696328	D(G) 40 5)(V) V() 0 2(2(5221
		P(C=`~18.5` Y=NO)= 0.36267231
BMI = ~ 28.0	$P(C=^2-28.0)Y=YES, gender=^Male)=0.32815359$	P(C=`~18.5` Y=NO,gender=`Male`) = 0.119463616
	P(C=~28.0 Y= YES)= 0.32815359	D/C > 10.5NV NO> 0.1104/2/1/
		P(C=`~18.5` Y=NO)= 0.119463616
BMI = <18.5	P(C=`<18.5` Y= YES, gender=`Male`) = 0.003683854	P(C=`~18.5` Y=NO,gender=`Male`) = 0.0260669856
	P(C=`<18.5` Y= YES)= 0.0036838540	P(C=`~18.5` Y=NO)= 0.0260669856

The right-hand side and left-hand side of the separation equation are equal for all values; **hence separation holds**. To ensure the conditional independence of BMI and gender, the value of gender was set to 'Female' and the results were exactly like the table above.

Sufficiency check A=Gender='Male'

	BMI = ~18.5	$BMI = \sim 24.0$	BMI = ~28.0	BMI = <18.5
Hyperlipidemia=	P(Y='YES' C=~18.5,	P(Y='YES' C=~24.0,	P(Y='YES' C=~28.0,	P(Y='YES' C=<18.5,
YES	gender=`Male`)=	gender=`Male`)=	gender=`Male`)=	gender=`Male`)=
	0.24110864246533822	0.5047417852429753	0.6837341865229888	0.10009280710767367
	$P(Y='YES' C='\sim18.5')=$	$P(Y='YES' C='\sim24.0')=$		P(Y='YES' C='<18.5')=
	0.215605000000000002	0.468570000000000004	$P(Y='YES' C='\sim28.0')$	0.08777999999999998
			0.6516120000000001	
Hyperlipidemia=	P(Y=`NO` C=~18.5,	P(Y=`NO` C=~24.0,	P(Y=`NO` C=~28.0,	P(Y=`NO` C=<18.5,
NO	gender=`Male`)=	gender=`Male`)=	gender=`Male`)=	gender=`Male`)=
110	0.7588913575346617	0.49525821475702475	0.31626581347701127	0.8999071928923262
	0.7.000,100,700,700,17	0.17020021170702470	0.01020001047701127	0.00000
	P(Y=`NO` C=`~18.5`)=	P(Y=`NO` C=`~24.0`)=		P(Y=`NO` C=`<18.5`)
	0.784395	0.53143000000000001	P(Y=`NO` C=`~28.0`)	0.91222
			0.348388	

A=Gender='Female'

	BMI = ~18.5	$BMI = \sim 24.0$	BMI = ~28.0	BMI = <18.5
Hyperlipidemia=	P(Y='YES' C=~18.5,	P(Y='YES' C=~24.0,	P(Y='YES' C=~28.0,	P(Y='YES' C=<18.5,
YES	gender=`Female `)=	gender=` Female `)=	gender=`Female `)=	gender=`Female `)=
	0.18899641307583723	0.4277674560469438	0.6132638858790895	0.07542975141421693
	$P(Y='YES' C='\sim18.5')=$	$P(Y='YES' C='\sim24.0')=$	P(Y='YES' C='~28.0')	P(Y='YES' C='<18.5')=
	0.215605000000000002	0.468570000000000004	0.65161200000000001	0.08777999999999998
Hyperlipidemia=	P(Y=`NO` C=~18.5,	P(Y=`NO` C=~24.0,	P(Y=`NO` C=~28.0,	P(Y=`NO` C=<18.5,
NO	gender=`Female`)=	gender=`Female `)=	gender=` Female `)=	gender=` Female `)=
	0.8110035869241627	0.5722325439530562	0.3867361141209104	0.924570248585783
	P(Y=NO' C=~18.5')=	P(Y=NO)(C=~24.0)=	P(Y=`NO` C=`~28.0`)	P(Y=`NO` C=`<18.5`)
	0.784395	0.53143000000000001	0.348388	0.91222

Sufficiency does not hold since the left hand side and right hand side of the equation are not equal.

Q3) b- Give one example where sufficiency holds but not separation

Separation equation: P(C|Y, gender=`Male/Female`) = P(C|Y)

Sufficiency equation: P(Y|C, gender=`Male/Female`) = P(Y|C)

C= Hyperlipidemia and Y=Region and A=Gender

Sufficiency Check

	Hyperlipidemia=YES	Hyperlipidemia=NO
Region= Countryside	P(Y=`Countryside` C=`YES`, gender=`Male`)= 0.4967974089058388	P(Y=`Countryside` C=` NO`, gender=`Male`)= 0.467759242485746
	P(Y=`Countryside` C=`YES`)= 0.4967974089058388	P(Y=`Countryside` C=` NO `)= 0.467759242485746
Region= City	P(Y=` City ` C=`YES`, gender=`Male`)= 0.503202591094161	P(Y=` City ` C=` NO `, gender=`Male`)= 0.5322407575142535
	P(Y=` City ` C=`YES`)= 0.503202591094161	P(Y=` City ` C=` NO `)= 0.5322407575142535

The right side of the sufficiency equation and the left side are equal for all values **hence sufficiency holds**. To ensure conditional independency between Region and gender, gender was set to female and the results were exactly like the table above.

Separation Check with gender='Male'

	Region= Countryside	Region= City
Hyperlipidemia=YES	P(C=`YES` Y=`Countryside`, gender=`Male`)=	P(C=`YES` Y=` City`, gender=`Male`)=
	0.45530583084984777	0.4266366780681491
	P(C=`YES` Y=`Countryside`)= 0.41967472381515214	P(C=`YES` Y=` City `)= 0.391636012419724
Hyperlipidemia=NO	P(C=` NO ` Y=`Countryside`, gender=`Male`)= 0.5446941691501523	P(C=` NO ` Y=` City `, gender=`Male`)= 0.573363321931851 P(C=` NO ` Y=` City `)=
	P(C=` NO ` Y=`Countryside`)= 0.580325276184848	0.608363987580276

Separation Check with gender=`Female`

	Region= Countryside	Region= City
Hyperlipidemia=YES	P(C=`YES` Y=`Countryside`, gender=`Female`)= 0.38008473760328293 P(C=`YES` Y=`Countryside`)= 0.41967472381515214	P(C=`YES` Y=` City `, gender=` Female `)= 0.3530817658296224 P(C=`YES` Y=` City `)= 0.391636012419724
Hyperlipidemia=NO	P(C=` NO ` Y=`Countryside`, gender=` Female `)= 0.619915262396717 P(C=` NO ` Y=`Countryside`)= 0.580325276184848	P(C=` NO ` Y=` City `, gender=` Female `)= 0.6469182341703775 P(C=` NO ` Y=` City `)= 0.608363987580276

The right hand side and left hand side of the separation equation are not equal **hence Separation does not hold.**