컴퓨터공학특론1: Course Orientation

Instructor: Sangwon Hyun (현상원)

Assistant Professor in Department of Computer Engineering, Myongji University

- Education
 - ✓ Ph.D. in Computer Science, North Carolina State Univ.
- Experiences
 - Assistant Professor, Myongji University (Sep. 2019 ~)
 - Assistant Professor, Chosun University
 - Senior researcher, Samsung DMC Research
 - Senior researcher, Samsung Advanced Institute of Technology
- Research interests:
 - Network security, applied crypto
 - Mobile security
 - Software forensic analysis

Office: Room 5737

Office hours: 10~11:50am Tuesday

Email: shyun@mju.ac.kr

Please include [컴공특론1] in the subject of your e-mail

Course Information

- Course title: 컴퓨터공학특론1
 - Overview of information security
 - In-depth study of cryptography
 - Symmetric key crypto, public key crypto, cryptographic hash algorithm etc.
 - Time: Tuesday 13:00~15:50
- PPT slides written in English

Intended audience

- 4th year undergraduate students who
 - are interested in information security
 - want to gain in-depth knowledge in information security

Prerequisite

- Students should
 - have taken basic courses in computer engineering
 - e.g., Data Structures, Algorithm, Computer Network, etc.
 - be familiar with C programming
 - SW development experiences in Linux is also preferred.

Reference

- Mark Stamp, Information Security: Principles and Practice - 2nd edition, Wiley
- W. Stallings, Cryptography and Network Security, Pearson
- Charlie Kaufman, Radia Perlman, and Mike Speciner.
 Network Security: Private Communication in a Public World, 2nd edition. Prentice Hall

Textbook

Information Security: Principles and Practice

- Introduction
- Chapter 1
- Cryto

Chapter 2: Crypto Basics

Chapter 3: Symmetric Key
Crypto

Chapter 4: Public Key Crypto

Chapter 5: Hash Functions and

Other Topics

Chapter 6: Advanced

Cryptanalysis

Access Control

Chapter 7: Authentication

Chapter 8: Authorization

Protocol

Chapter 9: Simple Authentication

Protocols

Chapter 10: Real-World Security

Protocols

Software

Chapter 11: Software Flaws and

Malware

Chapter 12: Insecurity in Software

Chapter 13: Operating Systems and

Security

번역서: 정보보안 이론과 실제, 안태남,

손용락, 이광석 역, 한빛출판

Class schedule 1st

Week	Торіс
1	Course orientation & Introduction to information security
2	Cryptographic basics: classical cryptographic algorithms, key concepts for information hiding
3	Major categories of cryptography
4	Typical threat model assumed in cryptanalysis
5	Symmetric key crypto: stream ciphers, A5/1, RC4
6	Symmetric key crypto: block ciphers, DES, 3DES, AES
7	Symmetric key crypto: modes of operations, ECB, CBC, CTR
8	Mid term exam

Class schedule 2nd

Week	Торіс
9	Number theory basics
10	Public key crypto: Knapsack crypto
11	Public key crypto: RSA, Diffie-Hellman key exchange algorithm
12	Public key crypto: Elliptic curve crypto, ECDH
13	Cryptographic hash: major requirements, birthday problem
14	Cryptographic hash: MD5, SHA
15	Final term exam

Evaluation

- Attendance (10%)
 - > Three times of late = one absence
 - 》 "성적은 수업일수 5분의 4 이상을 출석한 자에 한하여 인정 한다" (수업 일수는 학기당 15주 이상)
- Mid term exam (40%)
- Final term exam (40%)
- Assignments (10%)

Evaluation - Assignments

 3~4 assignments for each major subject

• 1~2 programming assignments

No late submission!!

Questions?

