3er Control Estructura de Computadores II

curso 2005-2006 Q2 Nombre:

Pregunta 1 (1 punto)

La siguiente estructura:

podría ser la de un PC actual. **Calcula** el ancho de banda máximo de los buses A y B, y C. Expresad el ancho de banda en MB/s y en Mb/s (Mega Bytes y Mega bits).

curso 2005-2006 (Q2)

Pregunta 2 (2 puntos)

Explica, mediante un ejemplo si es necesario, el problema de coherencia que se produce entre el controlador de DMA y la jerarquía de memorias.

Pregunta 3 (1 punto)

Para cada uno de los siguientes periféricos de un PC actual de sobremesa (2006), indica el nombre del bus más usual al que suelen conectarse:

- Teclado:
- Tarjeta Gráfica:
- Tarjeta de red:
- Lector CD-DVD:
- Cámara digital:

Pregunta 4 (1 punto) E/S

Para cada una de las siguientes afirmaciones, **indica** si son ciertas (**C**) o falsas (**F**). Hay que contestarlas todas (1 fallo: 0.75 puntos, 2 fallos: 0.5 puntos, 3 fallos: 0.25, más fallos: 0 puntos).

 Utilizando registros de E/S Mapeados en memoria se desperdicia parte del espacio de memoria.
La transferencia vía DMA se utiliza en dispositivos que trabajan con bloques de información.
Los registros de estado de los controladores de dispositivos de E/S son modificados por la CPU para indicar cómo ha de funcionar el dispositivo.
En las rutinas de atención a la interrupción (RAI) sólo hay que salvar los registros %esi, %edi y %ebx, como en cualquier otra subrutina.
Para acceder a los registros de E/S mapeados en memoria es necesario utilizar instrucciones especiales de LM, como <i>in</i> y <i>out</i> .
La sincronización por encuesta se usa con el DMA porque con otros dispositivos la CPU estaría todo el tiempo ocupada.
 En un PC actual cada dispositivo tiene una prioridad fija en la petición de interrupciones

curso 2005-2006 (Q2) 2 / 4

Pregunta 5 (1.5 puntos)

Dibuja el esquema de arbitraje centralizado paralelo, indicando claramente el nombre de las señales que circulan por cada línea.

Pregunta 6 (1 punto) Buses

Para cada una de las siguientes afirmaciones, **indica** si son ciertas (**C**) o falsas (**F**). Hay que contestarlas todas (1 fallo: 0.75 puntos, 2 fallos: 0.5 puntos, 3 fallos: 0.25, más fallos: 0 puntos).

Los buses síncronos son los mejores que los asíncronos, porque pueden ser muy rápidos y largos a la vez
El bus PCI es un bus de expansión
El bus ISA es un bus dedicado
Los buses de Entrada / Salida pueden tener muchos dispositivos conectados, con anchos de banda muy diferentes entre sí
El protocolo handshaking sólo puede usarse en conexiones punto a punto porque es muy lento
El bus AGP está siendo sustituido por el bus PCIe
El bus FireWire suministra más potencia (de alimentación) a los dispositivos que lo requieran que el bus USB

curso 2005-2006 (Q2) 3/4

Pregunta 7 (1.5 puntos)

Describe las características de un sistema RAID 6 de 4 discos y haz un dibujo de cómo se distribuyen los datos en cada disco.

Pregunta 8 (1 punto) RAIDs y discos ópticos

Para cada una de las siguientes afirmaciones, **indica** si son ciertas (**C**) o falsas (**F**). Hay que contestarlas todas (1 fallo: 0.75 puntos, 2 fallos: 0.5 puntos, 3 fallos: 0.25, más fallos: 0 puntos).

Los RAID son sistemas no redundantes para maximizar la capacidad de almacenamiento
Cada disco del RAID es una unidad lógica distinta en el SO
 RAID 0 es el RAID de más lento acceso a los datos
 RAID 6 tiene doble paridad, y RAID 7 paridad triple
 En un CD ROM, los pits indican 0s y las zonas planas (lands) indican 1s
 Una unidad CD R 8x tiene un láser más potente que un CD R 4x
Los CD-ROM giran a velocidad angular variable para poder ser leídos correctamente

curso 2005-2006 (Q2) 4/4