TEORIA DE GRAFOS E COMPUTABILIDADE

CAMINHAMENTOS

ALGORITMO DE FLOYD-WARSHALL

Prof. Alexei Machado

CIÊNCIA DA COMPUTAÇÃO

 Calcula o menor caminho entre todos os pares de vértices em um digrafo

Envolve publicações de Robert Floyd (em 1962),
 Bernard Roy (em 1959) e Stephen Warshall (em 1962)

- Peter Ingerman (em 1962) deu a forma atual ao algoritmo
- □ É um exemplo de programação dinâmica
 - Técnica que utiliza cálculos previamente realizados no cálculo da solução atual.

Premissa: um caminho entre dois vértices, v_i e v_i, passa por um vértice v_k. Logo, o caminho pode ser visto como c(v_i,v_k)+c(v_k,v_i)

Tenta minimizar as partes do caminho

- Para todo caminho (i, l), o algoritmo verifica se existe outro menor que passa por um vértice k, ou seja, se c(i, l) é menor que c(i, k) + c(k, l) para cada vértice k do grafo
- Insere um ou mais vértices nos caminhos quando for uma vantagem fazer isso

Estruturas de dados

- Matriz de entrada, inicializada com
 - \blacksquare Se i = I, matrizEntrada(i, I) = 0
 - □ Se $i \neq I$ e (i, l) \in E, matrizEntrada(i,l) = getPeso(i, l)
 - Senão, matrizEntrada(i, j) = ∞

Estruturas de dados

Matriz de saída D_{|V|x|V|}, na qual cada célula d_{il}
 contém a distância mínima entre os vértices i e l

```
void floydWarshall(Peso mat[][]){
 for (int k = 0; k < n; k++)
   for (int i = 0; i < n; i++)
     for (int 1 = 0; 1 < n; 1++)
        mat[i][1] = min(mat[i][1], mat[i][k] + mat[k][1])
        k: intermediário
        i: origem
        l: destino
```

```
void floydWarshall(Peso mat[][]){
  for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)
      for (int l = 0; l < n; l++)
      mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}</pre>
```

Exemplo


```
void floydWarshall(Peso mat[][]){
  for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)
     for (int l = 0; l < n; l++)
        mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}</pre>
```

Exemplo

Matriz de entrada

8	5
0	∞
2	0
	0

5

```
void floydWarshall(Peso mat[][]){
  for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)
      for (int l = 0; l < n; l++)
        mat[i][1] = min(mat[i][1], mat[i][k] + mat[k][1])
```

```
k: intermediário
```

i: origem

l: destino k:0

```
Exemplo
```


Matriz de entrada

8	5
0	8
2	0
	0

```
void floydWarshall(Peso mat[][]){
   for (int k = 0; k < n; k++)
      for (int i = 0; i < n; i++)
      for (int l = 0; l < n; l++)
        mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}

= min([0][0]=0 , [0][0]=0 + [0][0]=0)</pre>
```

Exemplo

k: intermediário

k:0	i:0	1:0
K:U	1:0	1:0

8	5
0	8
2	0
	0

```
void floydWarshall(Peso mat[][]){
   for (int k = 0; k < n; k++)
     for (int i = 0; i < n; i++)
        for (int l = 0; l < n; l++)
        mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}

= min([0][1]=8 , [0][0]=0 + [0][1]=8)</pre>
```

Exemplo

k: intermediário

k:0	i:0	l:1
K.U	1.0	1. 1

8	5
0	∞
2	0
	0

Exemplo

k: intermediário

k:0	i:0	l:2

0	8	5
3	0	8
8	2	0

```
void floydWarshall(Peso mat[][]){
                                              i: origem
  for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)
      for (int l = 0; l < n; l++)
        mat[i][1] = min(mat[i][1], mat[i][k] + mat[k][1])
                  = min([1][0]=3, [1][0]=3 + [0][0]=0)
```

Exemplo

k: intermediário

l: destino k:0 i:1 l:0

0	8	5
3	0	8
8	2	0

```
void floydWarshall(Peso mat[][]){
   for (int k = 0; k < n; k++)
     for (int i = 0; i < n; i++)
        for (int l = 0; l < n; l++)
        mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}

= min([1][1]=0 , [1][0]=3 + [0][1]=8)</pre>
```

Exemplo

k: intermediário

		1.4
k:0	i: 1	1:1

8	5
0	8
2	0
	0

```
void floydWarshall(Peso mat[][]){
   for (int k = 0; k < n; k++)
     for (int i = 0; i < n; i++)
        for (int l = 0; l < n; l++)
        mat[i][l] = min(mat[i][l], mat[i][k] + mat[k][l])
}

= min([1][2]=\infty, [1][0]=3 + [0][2]=5)</pre>
```

Exemplo

k: intermediário

L 0	• 1	10
k:0	i: 1	1:2

0	8	5
3	0	8
∞	2	0

Exemplo

k: intermediário

0	8	5
3	0	8
8	2	0

Exemplo

k: intermediário

		-
k:0 i:	2	:1

0	8	5
3	0	8
8	2	0
		-

Exemplo

k: intermediário

1110	k:0	i:2	1:2
------	-----	-----	-----

0	8	5
3	0	8
8	2	0

```
void floydWarshall(Peso mat[][]){
  for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)
      for (int l = 0; l < n; l++)
        mat[i][1] = min(mat[i][1], mat[i][k] + mat[k][1])
```

k: intermediário

i: origem

l: destino | k:1 | i:2 | l:2

Exemplo

0	8	5
3	0	8
5	2	0

```
void floydWarshall(Peso mat[][]){
  for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)
      for (int l = 0; l < n; l++)
        mat[i][1] = min(mat[i][1], mat[i][k] + mat[k][1])
```

k: intermediário

i: origem

l: destino k:2 i:2 l:2

Exemplo

7	5
0	8
2	0