WOW Insites, LLC

TEST REPORT FOR

Ethernet Cable Tester Model: WOW-TVM01-101

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s) 15.207 & 15.247

Report No.: 95531-8

Date of issue: September 29, 2014

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 38 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications/Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	7
15.207 AC Conducted Emissions	7
15.247(a)(2) -6dB Occupied Bandwidth	14
15.247(b)(3) Peak Output Power	17
15.247(d) Field Strength of Radiated Spurious Emissions	22
15.247(e) Power Spectral Density	33
Supplemental Information	37
Measurement Uncertainty	37
Emissions Test Details	37

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

WOW Insites, LLC
Morgan Tramontin
12165 W Center Rd
CKC Laboratories, Inc.
Omaha, NE 68144
5046 Sierra Pines Drive
Mariposa, CA 95338

REPRESENTATIVE: Chris Gille-WOW Insites, LLC Project Number: 95531

Paul Carter - SEL Customer Reference Number: SELc373

DATE OF EQUIPMENT RECEIPT:September 10, 2014 **DATE(S) OF TESTING:**September 10-12, 2014

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services

CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive, Mariposa, CA 95338 1120 Fulton Place, Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14
Immunity	5.00.07

Site Registration & Accreditation Information

Location	CB#	TAIWAN	AIWAN CANADA		JAPAN	
Fremont	US0082	SL2-IN-E-1148R	3082B-1	958979	A-0149	
Mariposa A	US0103	SL2-IN-E-1147R	3082A-2	90477	A-0136	

Page 4 of 38 Report No.: 95531-8

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Test Procedure/Method	Description	Modifications*	Results
15.207 / ANSI C63.4	Conducted Emissions	NA	Pass
15.247(a)(2) / DA 00-705	-6dB Occupied Bandwidth	NA	Pass
15.247(b)(3) / DA 00-705	Peak Output Power	NA	Pass
15.247(d) / DA 00-705	Radiated Spurious Emissions and Bandedge	NA	Pass
15.247(e) / DA 00-705	Power Spectral Density	NA	Pass

Modifications*/Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

This product is battery operated equipment with capability of charging, so testing on the AC adaptor was also performed. The EUT is able to operate while charging, so testing was done while charging.

Note: At the time of testing, the date stamp on the plots for section: -6dB Occupied Bandwidth was set on a default setting and should instead read 09/10/2014.

No modifications were made during testing.

Page 5 of 38 Report No.: 95531-8

^{*}Modifications listed above must be incorporated into all production units.

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Ethernet Cable Tester

Manuf: WOW Insites LLC Model: WOW-TVM01-101

Serial: 016

Remote

Manuf: WOW Insites LLC Model: WOW-TVR01-101

Serial: 1020

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

AC/DC Adaptor

Manuf: CUI INC Model: EPSA050100U

Serial: 1410

Page 6 of 38 Report No.: 95531-8

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) CFR 47 Section 15 Subpart C requirements for Intentional Radiators.

15.207 AC Conducted Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: WOW Insites LLC

Specification: 15.207 AC Mains - Average

Work Order #: 95531 Date: 9/12/2014
Test Type: Conducted Emissions
Equipment: Ethernet Cable Tester Sequence#: 9

Manufacturer: WOW Insites LLC Tested By: Eddie Mariscal Model: WOW-TVM01-101 120V 60Hz

S/N: 016

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP02229	Attenuator	PE7010-10	2/13/2013	2/13/2015
T2	ANP06228	Cable	CXTA04A-100	9/5/2014	9/5/2016
	AN00374	50uH LISN-White (dB)	8028-TS-50-BNC	3/15/2014	3/15/2015
Т3	AN00374	50uH LISN-Black (dB)	8028-TS-50-BNC	3/15/2014	3/15/2015
T4	AN02609	High Pass Filter	HE9615-150K- 50-720B	3/25/2014	3/25/2016
	AN03470	Spectrum Analyzer	E4440A	12/2/2013	12/2/2015

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Ethernet Cable Tester*	WOW Insites LLC	WOW-TVM01-101	016	
Remote	WOW Insites LLC	WOW-TVR01-101	1020	

Support Devices:

Function	Manufacturer	Model #	S/N
AC/DC Adaptor	CUI INC	EPSA050100U	1410

Page 7 of 38 Report No.: 95531-8

Test Conditions / Notes:

The EUT is placed atop a Styrofoam support atop a wooden, nonconductive turntable of height 80cm. The EUT employs an integral antenna and is placed in normal operating mode, transmitting continuously with modulation enabled.

Frequency Range of Interest: 0.15-30MHz

RBW = 9kHz; VBW > RBW

Environmental Conditions: Temperature: 21.4°C Humidity: 42%

Atmospheric Pressure: 97.8 kPa

Ext Attn: 0 dB

	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V$	dΒ̂μV	dB	Ant
1	304.363k	36.2	+9.7	+0.1	+0.1	+0.1	+0.0	46.2	50.1	-3.9	Black
2	14.909M	34.3	+9.9	+0.8	+0.2	+0.1	+0.0	45.3	50.0	-4.7	Black
3	15.548M	33.2	+9.9	+0.8	+0.2	+0.1	+0.0	44.2	50.0	-5.8	Black
4	657.785k	29.9	+9.7	+0.1	+0.1	+0.2	+0.0	40.0	46.0	-6.0	Black
5	686.874k	29.9	+9.7	+0.1	+0.1	+0.2	+0.0	40.0	46.0	-6.0	Black
6	14.188M	32.4	+9.9	+0.8	+0.2	+0.1	+0.0	43.4	50.0	-6.6	Black
7	12.440M	32.2	+9.9	+0.7	+0.2	+0.1	+0.0	43.1	50.0	-6.9	Black
8	14.215M	32.0	+9.9	+0.8	+0.2	+0.1	+0.0	43.0	50.0	-7.0	Black
9	15.188M	31.5	+9.9	+0.8	+0.2	+0.1	+0.0	42.5	50.0	-7.5	Black
10	14.494M	31.1	+9.9	+0.8	+0.2	+0.1	+0.0	42.1	50.0	-7.9	Black
11	13.845M	29.8	+9.9	+0.7	+0.2	+0.1	+0.0	40.7	50.0	-9.3	Black
12	13.179M	29.5	+9.9	+0.7	+0.2	+0.1	+0.0	40.4	50.0	-9.6	Black
13	16.278M	29.2	+9.9	+0.8	+0.2	+0.1	+0.0	40.2	50.0	-9.8	Black
14	16.593M	29.2	+9.9	+0.8	+0.2	+0.1	+0.0	40.2	50.0	-9.8	Black
15	318.907k Ave	22.3	+9.7	+0.1	+0.1	+0.1	+0.0	32.3	49.7	-17.4	Black
٨	318.907k	41.3	+9.7	+0.1	+0.1	+0.1	+0.0	51.3	49.7	+1.6	Black

CKC Laboratories, Inc. Date: 9/12/2014 Time: 15:44:07 WOW Insites LLC WO#: 95531 Test Lead: Black 120V 60Hz Sequence#: 9

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: WOW Insites LLC

Specification: 15.207 AC Mains - Average

Work Order #: 95531 Date: 9/12/2014
Test Type: Conducted Emissions
Equipment: Ethernet Cable Tester Sequence#: 12

Manufacturer: WOW Insites LLC Tested By: Eddie Mariscal Model: WOW-TVM01-101 120V 60Hz

S/N: 016

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP02229	Attenuator	PE7010-10	2/13/2013	2/13/2015
T2	ANP06228	Cable	CXTA04A-100	9/5/2014	9/5/2016
Т3	AN00374	50uH LISN-White	8028-TS-50-BNC	3/15/2014	3/15/2015
	A NIOO 274	(dB)	0020 TC 50 DNC	2/15/2014	2/15/2015
	AN00374	50uH LISN-Black (dB)	8028-TS-50-BNC	3/15/2014	3/15/2015
T4	AN02609	High Pass Filter	HE9615-150K-	3/25/2014	3/25/2016
			50-720B		
	AN03470	Spectrum Analyzer	E4440A	12/2/2013	12/2/2015

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Ethernet Cable Tester*	WOW Insites LLC	WOW-TVM01-101	016	
Remote	WOW Insites LLC	WOW-TVR01-101	1020	

Support Devices:

Function	Manufacturer	Model #	S/N
AC/DC Adaptor	CUI INC	EPSA050100U	1410

Test Conditions / Notes:

The EUT is placed atop a Styrofoam support atop a wooden, nonconductive turntable of height 80cm. The EUT employs an integral antenna and is placed in normal operating mode, transmitting continuously with modulation enabled.

Frequency Range of Interest: 0.15-30MHz

RBW = 9kHz; VBW > RBW

Environmental Conditions: Temperature: 21.4°C Humidity: 42%

Atmospheric Pressure: 97.8 kPa

Ext Attn: 0 dB

Measur	ement Data:	Re	eading list	ted by ma	ırgin.			Test Lead	d: White		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	13.539M	36.0	+9.9	+0.7	+0.1	+0.1	+0.0	46.8	50.0	-3.2	White
2	13.629M	35.1	+9.9	+0.7	+0.2	+0.1	+0.0	46.0	50.0	-4.0	White

Page 10 of 38 Report No.: 95531-8

3	14.278M	35.0	+9.9	+0.8	+0.2	+0.1	+0.0	46.0	50.0	-4.0	White
4	15.764M	34.7	+9.9	+0.8	+0.2	+0.1	+0.0	45.7	50.0	-4.3	White
5	12.899M	34.7	+9.9	+0.7	+0.1	+0.1	+0.0	45.5	50.0	-4.5	White
6	14.224M	34.5	+9.9	+0.8	+0.2	+0.1	+0.0	45.5	50.0	-4.5	White
7	15.665M	34.3	+9.9	+0.8	+0.2	+0.1	+0.0	45.3	50.0	-4.7	White
8	16.314M	34.0	+9.9	+0.8	+0.2	+0.1	+0.0	45.0	50.0	-5.0	White
9	13.918M	33.9	+9.9	+0.7	+0.2	+0.1	+0.0	44.8	50.0	-5.2	White
10	15.593M	33.8	+9.9	+0.8	+0.2	+0.1	+0.0	44.8	50.0	-5.2	White
11	14.395M	32.4	+9.9	+0.8	+0.2	+0.1	+0.0	43.4	50.0	-6.6	White
12	14.017M	32.0	+9.9	+0.7	+0.2	+0.1	+0.0	42.9	50.0	-7.1	White
13	17.053M	31.9	+9.9	+0.8	+0.2	+0.1	+0.0	42.9	50.0	-7.1	White
14	14.954M Ave	21.7	+9.9	+0.8	+0.2	+0.1	+0.0	32.7	50.0	-17.3	White
^	14.954M	36.4	+9.9	+0.8	+0.2	+0.1	+0.0	47.4	50.0	-2.6	White
16	14.936M Ave	21.6	+9.9	+0.8	+0.2	+0.1	+0.0	32.6	50.0	-17.4	White
^	14.936M	37.7	+9.9	+0.8	+0.2	+0.1	+0.0	48.7	50.0	-1.3	White

CKC Laboratories, Inc. Date: 9/12/2014 Time: 15:45:40 WOW Insites LLC WO#: 95531 Test Lead: White 120V 60Hz Sequence#: 12

Test Setup Photo(s)

15.247(a)(2) -6dB Occupied Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: WOW Insites LLC

Specification: 15.247(a)(2) -6dB Bandwidth

Work Order #: 95531 Date: 9/10/2014
Test Type: Maximized Emissions
Equipment: Ethernet Cable Tester Sequence#: 8

Manufacturer: WOW Insites LLC Tested By: Eddie Mariscal

Model: WOW-TVM01-101

S/N: 016

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03155	Preamp	83017A	6/26/2013	6/26/2015
T2	AN00327	Horn Antenna	3115	3/18/2014	3/18/2016
Т3	AN03355	Cable	32026-2-29094K-	2/7/2013	2/7/2015
			48TC		
T4	AN03359	Cable		2/4/2013	2/4/2015
T5	AN03360	Cable	32022-2-29094-	2/4/2013	2/4/2015
			36TC		
T6	ANP05904	Cable	32022-2-29094K-	2/15/2013	2/15/2015
			144TC		
T7	AN02668	Spectrum Analyzer	E4446A	8/4/2014	8/4/2015

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Ethernet Cable Tester*	WOW Insites LLC	WOW-TVM01-101	016	
Remote	WOW Insites LLC	WOW-TVR01-101	1020	

Support Devices:

Function	Manufacturer	Model #	S/N
AC/DC Adaptor	CUI INC	EPSA050100U	1410

Test Conditions / Notes:

The EUT is placed atop a Styrofoam support atop a wooden, nonconductive turntable of height 80cm. The EUT employs an integral antenna and is placed in constant transmit mode with modulation enabled. The EUT was investigated about three orthogonal axes. The reported data represents the worst-case orientation.

Tested in accordance with 15.31(e). The EUT is battery operated, so testing was performed with a freshly charged battery.

Frequency Range of Interest: Fundamental (2.402GHz, 2.442GHz, 2.480GHz)

Highest Generated Frequency: 2.480GHz

Environmental Conditions: Temperature: 21.4°C, Humidity: 42%, Atmospheric Pressure: 97.8 kPa

Page 14 of 38 Report No.: 95531-8

Test Data

Low

Middle

High

Test Setup Photo

15.247(b)(3) Peak Output Power

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: WOW Insites LLC

Specification: 15.247(b) Peak Output Power

 Work Order #:
 95531
 Date: 9/10/2014

 Test Type:
 Maximized Emissions
 Time: 11:14:43

Equipment: Master Sequence#: 8

Manufacturer: WOW Insites LLC Tested By: Eddie Mariscal

Model: WOW-TVM01-101

S/N: 016

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03155	Preamp	83017A	6/26/2013	6/26/2015
T2	AN00327	Horn Antenna	3115	3/18/2014	3/18/2016
Т3	AN03355	Cable	32026-2-29094K-	2/7/2013	2/7/2015
			48TC		
T4	AN03359	Cable		2/4/2013	2/4/2015
T5	AN03360	Cable	32022-2-29094-	2/4/2013	2/4/2015
			36TC		
T6	ANP05904	Cable	32022-2-29094K-	2/15/2013	2/15/2015
			144TC		
T7	AN02668	Spectrum Analyzer	E4446A	8/4/2014	8/4/2015

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Ethernet Cable Tester*	WOW Insites LLC	WOW-TVM01-101	016	
Remote	WOW Insites LLC	WOW-TVR01-101	1020	

Support Devices:

Function	Manufacturer	Model #	S/N
AC/DC Adaptor	CUI INC	EPSA050100U	1410

Test Conditions / Notes:

The EUT is placed atop a Styrofoam support atop a wooden, nonconductive turntable of height 80cm. The EUT employs an integral antenna and is placed in constant transmit mode with modulation enabled. The EUT was investigated about three orthogonal axes. The reported data represents the worst-case orientation.

Tested in accordance with 15.31(e). The EUT is battery operated, so testing was performed with a freshly charged battery.

The following formula will be used to calculate the Peak Output Power:

$P = (Ed)^2 / (30 * G)$

E = Field strength of the measurement converted to V/M

d = Measurement distance in meters

G = Numerical gain of the EUT's antenna relative to an isotropic radiator.

P =The power in watts for which we are solving

Page 17 of 38 Report No.: 95531-8

Highest Generated Frequency: 2.4GHz

Frequency Range of Interest: Fundamental (2.402GHz, 2.442GHz, 2.480GHz)

Span = 3MHz RBW = 10kHz VBW = 3 * RBW;

Environmental Conditions: Temperature: 21.4°C Humidity: 42%

Atmospheric Pressure: 97.8 kPa

Frequency (MHz)	Spectrum Analyzer Measurement (dBuV)	Corrections due to cables, Amplifiers and antennas (dB)	Corrected Reading (dBuV)	Antenna Gain (dBi)	Peak Output Power (dBm)
2402	93.8	-4.0	89.8	+5.14	-10.5
2440	91.4	-4.0	87.4	+5.14	-13.0
2480	91.1	-3.9	87.2	+5.14	-13.2

Test Data

Test Setup Photo(s)

High Frequency

X-Axis

Y-Axis

Z-Axis

15.247(d) Field Strength of Radiated Spurious Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: WOW Insites LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 95531 Date: 9/12/2014
Test Type: Maximized Emissions Time: 14:21:45

Equipment: Ethernet Cable Tester Sequence#: 8

Manufacturer: WOW Insites LLC Tested By: Eddie Mariscal

Model: WOW-TVM01-101

S/N: 016

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01991	Biconilog Antenna	CBL6111C	3/7/2014	3/7/2016
T2	AN00449	Preamp-Bottom Amp	8447F	4/7/2014	4/7/2016
		(dB)			
Т3	ANP05922	Cable	RG/214	9/5/2014	9/5/2016
T4	AN02668	Spectrum Analyzer	E4446A	8/4/2014	8/4/2015
T5	ANP06228	Cable	CXTA04A-100	9/5/2014	9/5/2016
	AN00226	Loop Antenna	6502	3/28/2014	3/28/2016

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Ethernet Cable Tester*	WOW Insites LLC	WOW-TVM01-101	016
Remote	WOW Insites LLC	WOW-TVR01-101	1020

Support Devices:

Function	Manufacturer	Model #	S/N
AC/DC Adaptor	CUI INC	EPSA050100U	1410

Test Conditions / Notes:

The EUT is placed atop a Styrofoam support atop a wooden, nonconductive turntable of height 80cm. The EUT employs an integral antenna and is placed in normal operating mode, transmitting continuously with modulation enabled. The EUT was investigated about three orthogonal axes. The reported data represents the worst-case orientation.

Tested in accordance with 15.31(e). The EUT is battery operated, so testing was performed with a freshly charged battery.

Frequency Range of Interest: .009-1000MHz

Highest Generated Frequency: 2.480GHz

0.009-0.15MHz: RBW = 200Hz; VBW > RBW 0.15-30MHz: RBW = 9kHz; VBW > RBW 30-1000MHz: RBW = 120kHz; VBW > RBW

Environmental Conditions: Temperature: 21.4°C, Humidity: 42%, Atmospheric Pressure: 97.8 kPa

Page 22 of 38 Report No.: 95531-8

Ext Attn: 0 dB

	attn: 0 aB e rement Data:	R.	eading lis	ted by ma	rain		Te	et Dietance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
#	rieq	Kung	T5	1 2	13	14	Dist	Con	Spec	Margin	roiai
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBuV/m	dB	Ant
1	324.927M	38.0	+14.1	-22.8	+0.1	+0.0	+0.0	33.4	46.0	-12.6	Horiz
1	324.72/1 V 1	30.0	+4.0	-22.0	10.1	10.0	10.0	33.4	70.0	-12.0	110112
2	250.000M	37.4	+12.6	-22.5	+0.1	+0.0	+0.0	31.0	46.0	-15.0	Vert
2	230.000IVI	37.4	+3.4	-22.3	10.1	10.0	10.0	31.0	70.0	-13.0	VCIT
3	275.020M	35.9	+13.0	-22.6	+0.1	+0.0	+0.0	30.0	46.0	-16.0	Vert
3	273.020W	33.7	+3.6	-22.0	10.1	10.0	10.0	30.0	40.0	-10.0	VCIT
4	624.992M	43.9	+20.1	-23.6	+0.2	+0.0	+0.0	46.3	79.3	-33.0	Horiz
-	OP	13.7	+5.7	23.0	. 0.2	. 0.0	. 0.0	10.5	17.5	33.0	HOHZ
^	624.992M	45.1	+20.1	-23.6	+0.2	+0.0	+0.0	47.5	79.3	-31.8	Horiz
	02 1.552111	13.1	+5.7	23.0	. 0.2	. 0.0	. 0.0	17.5	17.5	31.0	HOHZ
6	625.000M	41.7	+20.1	-23.6	+0.2	+0.0	+0.0	44.1	79.3	-35.2	Vert
_	QP	,	+5.7		٠.ــ	0.0	0.0		,,.5	<u>-</u>	, 610
^	625.000M	48.6	+0.0	+0.0	+0.0	+0.0	+0.0	54.3	79.3	-25.0	Vert
			+5.7						,,,,,,		,
^	624.995M	44.5	+20.1	-23.6	+0.2	+0.0	+0.0	46.9	79.3	-32.4	Vert
			+5.7								
9	725.000M	39.3	+20.9	-23.4	+0.2	+0.0	+0.0	43.3	79.3	-36.0	Horiz
	QP		+6.3								
^	725.000M	40.5	+20.9	-23.4	+0.2	+0.0	+0.0	44.5	79.3	-34.8	Horiz
			+6.3								
11	374.897M	44.1	+15.5	-22.9	+0.1	+0.0	+0.0	41.1	79.3	-38.2	Horiz
	QP		+4.3								
^	374.897M	46.1	+15.5	-22.9	+0.1	+0.0	+0.0	43.1	79.3	-36.2	Horiz
			+4.3								
13	674.975M	37.1	+20.4	-23.5	+0.2	+0.0	+0.0	40.2	79.3	-39.1	Horiz
			+6.0								
14	499.990M	39.2	+18.0	-23.3	+0.2	+0.0	+0.0	39.2	79.3	-40.1	Vert
			+5.1								
15	825.530M	32.6	+22.2	-22.7	+0.2	+0.0	+0.0	39.1	79.3	-40.2	Vert
			+6.8								
16	825.000M	32.1	+22.2	-22.7	+0.2	+0.0	+0.0	38.6	79.3	-40.7	Horiz
	QP		+6.8								
^	825.000M	37.2	+22.2	-22.7	+0.2	+0.0	+0.0	43.7	79.3	-35.6	Horiz
			+6.8								
18	725.005M	33.9	+20.9	-23.4	+0.2	+0.0	+0.0	37.9	79.3	-41.4	Vert
			+6.3								
19	600.011M	35.1	+20.0	-23.6	+0.2	+0.0	+0.0	37.3	79.3	-42.0	Horiz
			+5.6								
20	524.920M	36.6	+18.5	-23.4	+0.2	+0.0	+0.0	37.1	79.3	-42.2	Vert
			+5.2								
21	599.990M	34.7	+20.0	-23.6	+0.2	+0.0	+0.0	36.9	79.3	-42.4	Vert
			+5.6								
22	574.955M	34.8	+19.5	-23.5	+0.2	+0.0	+0.0	36.5	79.3	-42.8	Horiz
			+5.5								
23	349.915M	39.9	+14.9	-22.8	+0.1	+0.0	+0.0	36.3	79.3	-43.0	Horiz
			+4.2								

24	700.005M	32.4	+20.5 +6.1	-23.5	+0.2	+0.0	+0.0	35.7	79.3	-43.6	Horiz
25	424.970M	35.5	+16.7 +4.6	-23.1	+0.2	+0.0	+0.0	33.9	79.3	-45.4	Vert
26	474.990M	34.4	+17.6 +4.9	-23.3	+0.2	+0.0	+0.0	33.8	79.3	-45.5	Vert
27	349.915M	36.4	+14.9 +4.2	-22.8	+0.1	+0.0	+0.0	32.8	79.3	-46.5	Horiz
28	500.010M	32.4	+18.0 +5.1	-23.3	+0.2	+0.0	+0.0	32.4	79.3	-46.9	Horiz

CKC Laboratories, Inc. Date: 9/12/2014 Time: 14:21:45 WOW Insites LLC WO#: 95531 Test Distance: 3 Meters. Sequence#: 8

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: WOW Insites LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 95531 Date: 9/11/2014
Test Type: Maximized Emissions Time: 15:24:44

Equipment: Ethernet Cable Tester Sequence#: 8

Manufacturer: WOW Insites LLC Tested By: Eddie Mariscal

Model: WOW-TVM01-101

S/N: 016

Test Equipment:

1 cst Equi	pintenti				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03155	Preamp	83017A	6/26/2013	6/26/2015
T2	AN00327	Horn Antenna	3115	3/18/2014	3/18/2016
T3	AN03355	Cable	32026-2-29094K-	2/7/2013	2/7/2015
			48TC		
T4	AN03359	Cable		2/4/2013	2/4/2015
T5	AN03360	Cable	32022-2-29094-	2/4/2013	2/4/2015
			36TC		
T6	ANP05904	Cable	32022-2-29094K-	2/15/2013	2/15/2015
			144TC		
T7	AN02668	Spectrum Analyzer	E4446A	8/4/2014	8/4/2015
	AN02046	Horn Antenna	MWH-1826/B	2/4/2013	2/4/2015

Equipment Under Test (* = EUT):

,,	-):			
Function	Manufacturer	Model #	S/N	
Ethernet Cable Tester*	WOW Insites LLC	WOW-TVM01-101	016	
Remote	WOW Insites LLC	WOW-TVR01-101	1020	

Support Devices:

Function	Manufacturer	Model #	S/N
AC/DC Adaptor	CUI INC	EPSA050100U	1410

Test Conditions / Notes:

The EUT is placed atop a Styrofoam support atop a wooden, nonconductive turntable of height 80cm. The EUT employs an integral antenna and is placed in constant transmit mode. The EUT was investigated about three orthogonal axes. The reported data represents the worst-case orientation.

Tested in accordance with 15.31(e). The EUT is battery operated, so testing was performed with a freshly charged battery.

Frequency Range of Interest: 1-24.80GHz

Highest Generated Frequency: 2.480GHz

RBW = 1MHz; VBW > RBW;

Environmental Conditions: Temperature: 21.4°C Humidity: 42%

Atmospheric Pressure: 97.8 kPa

Page 25 of 38 Report No.: 95531-8

Ext Attn: 0 dB

	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	1	2	T5	T6	T7				1	J	
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4883.867M	47.0	-32.9	+30.2	+0.8	+0.8	+0.0	50.1	54.0	-3.9	Vert
	Ave		+1.0	+3.2	+0.0				Transmit M	1id	
									Channel		
^	4883.870M	55.2	-32.9	+30.2	+0.8	+0.8	+0.0	58.3	54.0	+4.3	Vert
			+1.0	+3.2	+0.0				Transmit M	1id	
									Channel		
3	4804.300M	46.0	-33.0	+30.0	+0.8	+0.9	+0.0	48.8	54.0	-5.2	Vert
	Ave		+0.9	+3.2	+0.0				Transmit L	ow	
									Channel		
^	4804.300M	54.6	-33.0	+30.0	+0.8	+0.9	+0.0	57.4	54.0	+3.4	Vert
			+0.9	+3.2	+0.0				Transmit L	ow	
									Channel		
5	4960.223M	41.0	-33.0	+30.3	+0.8	+0.8	+0.0	44.2	54.0	-9.8	Vert
	Ave		+1.0	+3.3	+0.0				Transmit H	ligh	
									Channel		
^	4960.230M	51.5	-33.0	+30.3	+0.8	+0.8	+0.0	54.7	54.0	+0.7	Vert
			+1.0	+3.3	+0.0				Transmit H	ligh	
									Channel		
7	4804.550M	40.9	-33.0	+30.0	+0.8	+0.9	+0.0	43.7	54.0	-10.3	Horiz
	Ave		+0.9	+3.2	+0.0				Transmit L	ow	
									Channel		
^	4804.550M	50.5	-33.0	+30.0	+0.8	+0.9	+0.0	53.3	54.0	-0.7	Horiz
			+0.9	+3.2	+0.0				Transmit L	ow	
									Channel		
9	1375.017M	51.5	-34.0	+22.4	+0.5	+0.4	+0.0	43.1	54.0	-10.9	Vert
			+0.5	+1.8	+0.0				Transmit M	1id	
									Channel		
10	7326.500M	33.3	-32.7	+33.8	+1.3	+0.9	+0.0	41.9	54.0	-12.1	Vert
	Ave		+1.1	+4.2	+0.0				Transmit M	1id	
									Channel		
^	7326.500M	43.9	-32.7	+33.8	+1.3	+0.9	+0.0	52.5	54.0	-1.5	Vert
			+1.1	+4.2	+0.0				Transmit M	1id	
									Channel		
12	4960.200M	38.6	-33.0	+30.3	+0.8	+0.8	+0.0	41.8	54.0	-12.2	Horiz
			+1.0	+3.3	+0.0				Transmit H	ligh	
									Channel		
13	1374.967M	50.1	-34.0	+22.4	+0.5	+0.4	+0.0	41.7	54.0	-12.3	Vert
			+0.5	+1.8	+0.0				Transmit L	ow	
									Channel		
14	1424.817M	49.8	-33.9	+22.5	+0.5	+0.4	+0.0	41.7	54.0	-12.3	Vert
			+0.5	+1.9	+0.0				Transmit M	11d	
		,							Channel		
15	1625.017M	48.1	-33.7	+23.3	+0.5	+0.5	+0.0	41.3	54.0	-12.7	Vert
			+0.6	+2.0	+0.0				Transmit M	11d	
									Channel		

16 1349.817M	49.6	-34.0	+22.4	+0.5	+0.4	+0.0	41.2	54.0 -12.8	Horiz
10 1349.81/101	49.0	+0.5	+1.8	+0.3	±0.4	+0.0	41.2	Transmit Low	попи
		10.5	11.0	10.0				Channel	
17 7440.381M	31.4	-32.6	+33.9	+1.4	+1.1	+0.0	40.5	54.0 -13.5	Vert
Ave	51.1	+1.1	+4.2	+0.0	1.1	. 0.0	10.5	Transmit High	, 611
								Channel	
^ 7440.381M	43.2	-32.6	+33.9	+1.4	+1.1	+0.0	52.3	54.0 -1.7	Vert
		+1.1	+4.2	+0.0				Transmit High	
								Channel	
19 1425.000M	48.6	-33.9	+22.5	+0.5	+0.4	+0.0	40.5	54.0 -13.5	Vert
		+0.5	+1.9	+0.0				Transmit High	
								Channel	
20 1349.633M	48.3	-34.0	+22.4	+0.5	+0.4	+0.0	39.9	54.0 -14.1	Vert
		+0.5	+1.8	+0.0				Transmit Mid	
								Channel	
21 1449.950M	47.7	-33.9	+22.6	+0.5	+0.5	+0.0	39.8	54.0 -14.2	Vert
		+0.5	+1.9	+0.0				Transmit Mid	
22 1250 00014	47.0	24.0	+22.4	10.5	+0.4	10.0	20.5	Channel	X7. 4
22 1350.000M	47.9	-34.0	+22.4	+0.5	+0.4	+0.0	39.5	54.0 -14.5	Vert
		+0.5	+1.8	+0.0				Transmit High Channel	
23 1624.583M	45.9	-33.7	+23.3	+0.5	+0.5	+0.0	39.1	54.0 -14.9	Horiz
23 1024.383WI	43.9	+0.6	+23.3	+0.3	+0.3	+0.0	39.1	Transmit Low	попи
		10.0	12.0	10.0				Channel	
24 1375.000M	47.5	-34.0	+22.4	+0.5	+0.4	+0.0	39.1	54.0 -14.9	Vert
24 13/3.00011	47.3	+0.5	+1.8	+0.0	10.4	10.0	37.1	Transmit High	VOIT
		0.0	1.0	0.0				Channel	
25 1474.967M	46.8	-33.9	+22.7	+0.5	+0.5	+0.0	39.0	54.0 -15.0	Vert
		+0.5	+1.9	+0.0				Transmit Mid	
								Channel	
26 1400.000M	47.0	-33.9	+22.5	+0.5	+0.4	+0.0	38.9	54.0 -15.1	Vert
		+0.5	+1.9	+0.0				Transmit High	
								Channel	
27 1325.000M	47.4	-34.1	+22.3	+0.5	+0.4	+0.0	38.8	54.0 -15.2	Vert
		+0.5	+1.8	+0.0				Transmit High	
20 1400 1003 5	46.5	22.0	. 22. 5	.0.5		. 0. 0	20.6	Channel	
28 1400.100M	46.7	-33.9	+22.5	+0.5	+0.4	+0.0	38.6	54.0 -15.4	Horiz
		+0.5	+1.9	+0.0				Transmit Low	
20 1600 00014	45 O	22.0	+23.2	±0.5	±0.5	±0.0	29.0	Channel 16.0	Vont
29 1600.000M	45.0	-33.8 +0.6	+23.2 +2.0	+0.5 +0.0	+0.5	+0.0	38.0	54.0 -16.0 Transmit High	Vert
		±0.0	⊤ ∠.0	±0.0				Channel	
30 1300.000M	45.6	-34.2	+22.3	+0.4	+0.4	+0.0	36.8	54.0 -17.2	Vert
JU 1300.0001VI	- T J.U	+0.5	+1.8	+0.4	· U. T	0.0	50.0	Transmit High	V 011
		. 0.5	1.0	. 0.0				Channel	
31 1375.000M	44.3	-34.0	+22.4	+0.5	+0.4	+0.0	35.9	54.0 -18.1	Horiz
2 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2		+0.5	+1.8	+0.0	· · ·			Transmit Low	
								Channel	
32 4802.650M	30.4	-33.0	+30.0	+0.8	+0.9	+0.0	33.2	54.0 -20.8	Vert
Ave		+0.9	+3.2	+0.0				Transmit Low	
								Channel	

^ 4802.650M	56.3	-33.0	+30.0	+0.8	+0.9	+0.0	59.1	54.0	+5.1	Vert
		+0.9	+3.2	+0.0				Transmit L	OW	
								Channel		
34 4957.900M	26.4	-33.0	+30.3	+0.8	+0.8	+0.0	29.6	54.0	-24.4	Vert
Ave		+1.0	+3.3	+0.0				Transmit H		
								Channel	8	
^ 4957.900M	56.4	-33.0	+30.3	+0.8	+0.8	+0.0	59.6	54.0	+5.6	Vert
		+1.0	+3.3	+0.0				Transmit H	ligh	
								Channel		
36 7206.767M	32.7	-32.7	+33.7	+1.3	+0.8	+0.0	40.9	79.3	-38.4	Vert
Ave		+1.0	+4.1	+0.0				Transmit L	ow	
								Channel		
^ 7206.770M	44.0	-32.7	+33.7	+1.3	+0.8	+0.0	52.2	79.3	-27.1	Vert
		+1.0	+4.1	+0.0				Transmit L	ow	
								Channel		
38 1725.000M	44.8	-33.4	+23.8	+0.5	+0.5	+0.0	38.9	79.3	-40.4	Vert
		+0.6	+2.1	+0.0				Transmit H	Iigh	
								Channel	-	

CKC Laboratories, Inc. Date: 9/11/2014 Time: 15:24:44 WOW Insites LLC WO#: 95531 Test Distance: 3 Meters. Sequence#: 8

Bandedge

Test Data

Test Setup Photo(s)

Low Frequency

Middle Frequency

High Frequency

15.247(e) Power Spectral Density

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: WOW Insites LLC

Specification: 15.247(e) Power Spectral Density

Work Order #: 95531 Date: 9/10/2014
Test Type: Maximized Emissions
Equipment: Ethernet Cable Tester Sequence#: 8

Manufacturer: WOW Insites LLC Tested By: Eddie Mariscal

Model: WOW-TVM01-101

S/N: 016

Test Equipment:

1	<u> </u>				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03155	Preamp	83017A	6/26/2013	6/26/2015
T2	AN00327	Horn Antenna	3115	3/18/2014	3/18/2016
Т3	AN03355	Cable	32026-2-29094K-	2/7/2013	2/7/2015
			48TC		
T4	AN03359	Cable		2/4/2013	2/4/2015
T5	AN03360	Cable	32022-2-29094-	2/4/2013	2/4/2015
			36TC		
Т6	ANP05904	Cable	32022-2-29094K-	2/15/2013	2/15/2015
			144TC		
T7	AN02668	Spectrum Analyzer	E4446A	8/4/2014	8/4/2015

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Ethernet Cable Tester*	WOW Insites LLC	WOW-TVM01-101	016	
Remote	WOW Insites LLC	WOW-TVR01-101	1020	

Support Devices:

Function	Manufacturer	Model #	S/N
AC/DC Adaptor	CUI INC	EPSA050100U	1410

Test Conditions / Notes:

The EUT is placed atop a Styrofoam support atop a wooden, nonconductive turntable of height 80cm. The EUT employs an integral antenna and is placed in constant transmit mode with modulation enabled. The EUT was investigated about three orthogonal axes. The reported data represents the worst-case orientation.

Tested in accordance with 15.31(e). The EUT is battery operated, so testing was performed with a freshly charged battery.

The following formula will be used to calculate the power spectral density:

$P = (Ed)^2 / (30 * G)$

E = Field strength of the measurement converted to V/M

d = Measurement distance in meters

G = Numerical gain of the EUT's antenna relative to an isotropic radiator.

P =The power in watts for which we are solving

Page 33 of 38 Report No.: 95531-8

Highest Generated Frequency: 2.480GHz

Frequency Range of Interest: Fundamental (2.402GHz, 2.442GHz, 2.480GHz)

Environmental Conditions: Temperature: 21.4°C Humidity: 42%

Atmospheric Pressure: 97.8 kPa

Frequency (MHz)	Spectrum Analyzer Measurement (dBuV)	Corrections due to cables, Amplifiers and antennas (dB)	Corrected Reading (dBuV)	Antenna Gain (dBi)	Spectral Density (dBm)
2402	92.6	-4.0	88.6	+5.14	-11.8
2440	89.4	-4.0	85.4	+5.14	-15.0
2480	88.1	-3.9	84.9	+5.14	-15.5

Test Data

Test Setup Photo

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 37 of 38 Report No.: 95531-8

SAMPLE CALCULATIONS			
	Meter reading	(dBμV)	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
=	Corrected Reading	(dBμV/m)	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 38 of 38 Report No.: 95531-8