

SRM Institute of Science and Technology

Ramapuram campus

Department of Mathematics

18MAB101T - Calculus and linear algebra

Year/Sem: I/I Part-A Branch: Common to All

Unit – IV

Differential Calculus

	The locus of centre of cu	us of centre of curvature is called		1 Mark	
1.	(a) Involute (c) Radius of curvat	(b) Evolute ure (d) Envelope	Ans (b)	(CLO-4 Remember)	
2.	The envelope of the fam (α is parameter) is	ily of curves $A\alpha^2 + B\alpha + C = 0$	1 Mark		
		(b) $B^2 - 4AC = 0$ (d) $B^2 - AC = 0$	Ans (b)	(CLO-4 Remember)	
3.	The curvature of the stra	ight line is	1 Mark		
	(a) 1 (c) -1	(b) 2 (d) 0	Ans (d)	(CLO-4 Remember)	
4.	Evolute of a curve is	of the normals of that curve	1 Mark		
	(a) Involute (c) Envelope	(b) Length (d) End points	Ans (c)	(CLO-4 Remember)	
5	The radius of curvature at (3,4) on the curve $x^2 + y^2 = 25$ is		1 Mark		
	(a) 5 (c) 0	(b) 4 (d) 2	Ans (a)	(CLO-4 Remember)	

6.	What is the curvature of a circle of radius 3?	1 Mark	
	(a) 3 (b) -3 (c) $\frac{1}{3}$ (d) $\frac{-1}{3}$	Ans (c)	(CLO-4 Remember)
7.	In an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ the radius of curvature at the end of which axis is equal to the semi-latus rectum?	1 M	ark
	(a) minor (b) major (c) vertical (d) horizontal	Ans (b)	(CLO-4 Remember)
8.	Evolute of a curve is the envelope of of that curve.	1 Mark	
	(a) tangent (b) normal (c) parallel (d) locus	Ans (b)	(CLO-4 Remember)
9.	The evolute of the cycloid $x = a (\theta - \sin \theta)$, $y = a (1 - \cos \theta)$ is	1 Mark	
	(a) astroid (b) parabola (c) cycloid (d) circle	Ans (c)	(CLO-4 Remember)
10.	A curve which touches each member of a family of the curves is called ——— of that family	1 M	ark
	(a) Evolute (b) Envelope (c) Circle of curvature (d) Radius of curvature	Ans (b)	(CLO-4 Remember)
11.	Envelope of the curve $y = mx + \frac{a}{m}$ (where m is the parameter) is	1 Mark	
	(a) $x^2 + ay = 0$ (b) $x + 4ay = 0$ (c) $y^2 - 4ax = 0$ (d) $y^2 + 4ax = 0$	Ans (c)	(CLO-4 Remember)

12.	If the radius of curvature and curvature of a curve at any point are ρ and k respectively, then	1 Mark	
	(a) $\rho = \frac{-1}{k}$ (b) $\rho = k$ (c) $\rho = -k$ (d) $\rho = \frac{1}{k}$	Ans (d)	(CLO-4 Remember)
	The radius of curvature at the point $(0, c)$ of the curve $y = c \cosh\left(\frac{x}{c}\right)$ is	1 Mark	
13	(a) $\rho = c$ (b) $\rho = c^2$ (c) $\rho = kc$ (d) $\rho = kc^2$	Ans (a)	(CLO-4 Remember)
14	The radius of curvature of the curve $y = e^x$ at $x=0$ is	1 Mark	
	(a) $2\sqrt{2}$ (b) $\sqrt{2}$ (c) 2 (d) 4	Ans (a)	(CLO-4 Remember)
	The radius of curvature at the point (x, y) of the curve $y = c \log \sec \left(\frac{x}{c}\right)$ is	1 M	ark
15	(a) $\rho = c \sec\left(\frac{x}{c}\right)$ (b) $\rho = c \cos\left(\frac{x}{c}\right)$ (c) $\rho = c \sin\left(\frac{x}{c}\right)$ (d) $\rho = c \tan\left(\frac{x}{c}\right)$	Ans (a)	(CLO-4 Remember)
	The parametric form of the curve $y^2 = 4ax$ is	1 M	ark
16	(a) $x = at^2$; $y = 2at$ (b) $x = at$; $y = 2at$ (c) $x = at^2$; $y = 2at^2$ (d) $x = 2at^2$; $y = 2at$	Ans (a)	(CLO-4 Remember)

17	The envelope of the curve $y = mx$ parameter is	$+\frac{a}{m}$ where m is the	1 Mark	
		(b) $y^2 + 4ax = 0$ (d) $xy = c^2$	Ans (a)	(CLO-4 Remember)
18	The radius of curvature of the curv point on it is	$y = \log \sec x$ at any	1 M	ark
18	(a) sec <i>x</i> (c) cot <i>x</i>	(b) tan x (d) cosec x	Ans (a)	(CLO-4 Remember)
	The radius of curvature of the curv	$y = x = t^{2}$, $y = t$ at $t = 1$ is	1 M	ark
19	(a) $5 \frac{\sqrt{5}}{2}$ (c) $\frac{5}{2}$	(b) $\frac{\sqrt{5}}{2}$ (d) $\sqrt{5}$	Ans (a)	(CLO-4 Remember)
20	The radius of curvature of the parabola $y^2 = 12x$ at (3, 6) is		1 Mark	
	(a) $12\sqrt{2}$ (c) $10\sqrt{2}$	(b) $2\sqrt{2}$ (d) $\sqrt{2}$	Ans (a)	(CLO-4 Remember)
21	The radius of curvature of the curv	$y = 4 \sin x \text{ at } x = \frac{\pi}{2} \text{ is}$	1 M	ark
21	(a) $\frac{1}{2}$ (c) $\frac{1}{4}$	(b) $\frac{-1}{2}$ (d) $\frac{-1}{3}$	Ans (c)	(CLO-4 Remember)
	The envelope of family of lines <i>y</i> = the parameter) is	$= m x + a m^2$ (where m is	1 Mark	
22	(a) $x^2 + 2ay = 0$ (c) $y^2 + 2ax = 0$	(b) $x^2 + 4ay = 0$ (d) $x^2 + 4ax = 0$	Ans (b)	(CLO-4 Remember)

23	The envelope of the family of lines $\frac{x}{t} + yt = 2c$, t being the parameter is	1 Mark	
	(a) $x^2 + y^2 = c^2$ (b) $xy = c^2$ (c) $x^2 y^2 = c^2$ (d) $x^2 - y^2 = c^2$	Ans (b)	(CLO-4 Remember)
	The radius of curvature at any point on the curve $r = e^{\theta}$ is	1 M	ark
24	(a) $\frac{\sqrt{2}}{r}$ (b) $\frac{r}{\sqrt{2}}$ (c) r (d) $\sqrt{2}r$	Ans (d)	(CLO-4 Remember)
	The radius of curvature in Cartesian coordinates is	1 Mark	
25	(a) $\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_2}$ (b) $\rho = \frac{(1-y_1^2)^{\frac{3}{2}}}{y_2}$ (c) $\rho = \frac{(1+y_1^2)^{\frac{2}{3}}}{y_2}$ (d) $\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_1}$	Ans (a)	(CLO-4 Remember)
26	The envelope of $ty - x = at^2$, t is the parameter is	1 Mark	
	(a) $x^2 = 4ay$ (b) $y^2 = 4ax$ (c) $x^2 + y^2 = 1$ (d) $x^2 - y^2 = 1$	Ans (b)	(CLO-4 Remember)
	The radius of curvature in polar coordinates is	1 M	ark
27	(a) $\rho = \frac{\left(r^2 + r'^2\right)^{\frac{3}{2}}}{r^2 - rr' + 2r'^2}$ (b) $\rho = \frac{\left(r^2 - r'^2\right)^{\frac{3}{2}}}{r^2 - rr' + 2r'^2}$ (c) $\rho = \frac{\left(r^2 - r''^2\right)^{\frac{3}{2}}}{r^2 - rr' + 2r'^2}$ (d) $\rho = \frac{\left(r^2 + r'^2\right)^{\frac{3}{2}}}{r^2 - rr'' + 2r'^2}$	Ans (d)	(CLO-4 Remember)

	The radius of curvature in parametric coordinates is	1 Mark	
28	(a) $\rho = \frac{\left(x^{2} + y^{2}\right)^{\frac{3}{2}}}{x^{2}y^{2} - y^{2}x^{2}}$ (b) $\rho = \frac{\left(x^{2} + y^{2}\right)^{\frac{3}{2}}}{x^{2}y^{2} + y^{2}x^{2}}$ (c) $\rho = \frac{\left(x^{2} - y^{2}\right)^{\frac{3}{2}}}{x^{2}y^{2} - y^{2}x^{2}}$ (d) $\rho = \frac{\left(x^{2} - y^{2}\right)^{\frac{3}{2}}}{x^{2}y^{2} + y^{2}x^{2}}$	Ans (a)	(CLO-4 Remember)
29	The equation of circle of curvature at any point (x, y) with center of curvature (\bar{x}, \bar{y}) and radius of curvature ρ is	1 Mark	
	(a) $(x + \overline{x})^2 + (y + \overline{y})^2 = \rho^2$ (b) $(x - \overline{x})^2 + (y - \overline{y})^2 = \rho^2$ (c) $(x - \overline{x})^2 - (y + \overline{y})^2 = \rho^2$ (d) $(x + \overline{x})^2 + (y + \overline{y})^2 = \rho^2$	Ans (b)	(CLO-4 Remember)
30	The curvature at any point of the circle is equal to of its radius	1 Mark	
	(a) same (b) ellipse (c) reciprocal (d) constant	Ans (c)	(CLO-4 Remember)
31	The parametric equations of rectangular hyperbola $xy = c^2$ is	1 Mark	
	(a) $x = ct, y = \frac{c}{t}$ (b) $x = ct, y = t$ (c) $x = \frac{c}{t}, y = t$ (d) $x = ct, y = \frac{1}{t}$	Ans (a)	(CLO-4 Remember)
32	The value of $\Gamma\left(\frac{1}{2}\right)$ is	1 Mark	
	(a) π (b) $\frac{\pi}{2}$ (c) $\sqrt{\pi}$ (d) $\frac{\sqrt{\pi}}{2}$	Ans (c)	(CLO-4 Remember)

33	The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if	1 Mark	
	(a) $p = 0$ (b) $p = 1$ (c) $p > 1$ (d) $p < 1$	Ans (c)	(CLO-4 Remember)
34	As per D' Alembert's ratio test, if $\sum u_n$ is a series of positive terms and $\sum_{n\to\infty} \frac{u_{n+1}}{u_n} = l$, then the series is convergent, if	1 Mark	
	(a) $l = 0$ (b) $l = 1$ (c) $l > 1$ (d) $l < 1$	Ans (d)	(CLO-4 Remember)
35	If n is a positive integer, then $\Gamma(n+1)=$	1	Mark
	(a) $(n + 1)!$ (b) $n!$ (c) $2n!$ (d) $(n - 1)!$	Ans (b)	(CLO-4 Remember)
36	The series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is	1 Mark	
	(a) convergent (b) divergent (c) oscillating (d) monotonic	Ans (b)	(CLO-4 Remember

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

18MAB101T - Calculus And Linear Algebra

Year/Sem: I/I

Branch: Common to ALL B.Tech. except B.Tech. (Business Systems)

Unit - IV

DIFFERENTIAL CALCULUS

Part - B

1. Envelope of the curve $y = mx + \frac{a}{m}$ (where *m* is the parameter) is

(A)
$$x^2 + ay = 0$$
 (B) $x + 4ay = 0$

(B)
$$x + 4 a y = 0$$

(C)
$$y^2 - 4 a x = 0$$
 (D) $y^2 + 4ax = 0$

(D)
$$y^2 + 4ax = 0$$

Solution: Given: $y = mx + \frac{a}{m}$

$$y = \frac{m^2 x + a}{m}$$

$$m^2x - y m + a = 0$$

The above equation is a quadratic equation in m.

The discriminant is $b^2 - 4ac = 0$.

The envelope of the curve is $y^2 - 4 a x = 0$. (Option C)

2. The radius of curvature of the curve $y = e^x$ at x = 0 is

- (A) $2\sqrt{2}$ (B) $\sqrt{2}$
- (C) 2
- (D) 4

Solution:

$$y_1 = e^x$$
 at $x = 0$ is 1

$$y_2 = e^x$$
 at $x = 0$ is 1

$$\rho = \frac{\left(1 + y_1^2\right)^{\frac{3}{2}}}{y_2}$$

$$\rho = 2\sqrt{2}$$

(Option A)

- 3. The radius of curvature of the curve $y = 4 \sin x$ at $x = \frac{\pi}{2}$ is

 - (A) $\frac{1}{2}$ (B) $\frac{-1}{2}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$

Solution:

$$y_1 = 4\cos x \ at \ x = \frac{\pi}{2}is \ 0$$

$$y_2 = -4\sin x \, at \, x = \frac{\pi}{2}is - 4$$

$$\rho = \frac{\left(1 + y_1^2\right)^{\frac{3}{2}}}{y_2}$$

$$|\rho| = \frac{1}{4}$$

(Option C)

- **4.** The envelope of family of lines $y = mx + am^2$ (where m is the parameter) is
 - (A) $x^2 + 2ay = 0$
- (B) $x^2 + 4 a y = 0$
- (C) $y^2 + 2ax = 0$ (D) $x^2 + 4 a x = 0$

Solution:

The given equation is quadratic in m.

The discriminant is $b^2 - 4ac = 0$.

Envelope of the family of lines is $x^2 + 4ay = 0$. (Option B)

- 5. The envelope of the family of lines $\frac{x}{t} + y t = 2c$, t being the parameter is
 - (A) $x^2 + y^2 = c^2$ (B) $x y = c^2$

 - (C) $x^2 y^2 = c^2$ (D) $x^2 y^2 = c^2$

Solution:

Simplifying the equation $\frac{x}{t} + y t = 2c$, we get $yt^2 - 2ct + x = 0$

The discriminant is $b^2 - 4ac = 0$.

Envelope of the family of lines is $x y = c^2$.

(Option B)

- 6. The radius of curvature of the curve $r = e^{\theta}$ at any point on it is
 - (a) $2\sqrt{2}$ (b) $\sqrt{2} r$ (c) 2 (d) 4
 - (c) 2
- (d) 4

Solution:

$$r' = e^{\theta}$$

$$r'' = e^{\theta}$$

$$\rho = \frac{\left(r^2 + r'^2\right)^{\frac{3}{2}}}{r^2 - rr'' + 2r'^2}$$

$$\rho = \sqrt{2} r$$

7. The radius of curvature at the point (3, 4) on the curve $x^2 + y^2 = 25$ is

Solution:

We know that the radius of curvature of the circle is equal to its radius.

 ρ = 5 (Option A)

- 8. B (5/2, 1/2) =_____.
 - (A) 1

(B) 4

(C) $3\pi/8$

(D) π

Solution:

$$B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$

$$B(5/2,1/2) = \frac{\Gamma(5/2)\Gamma(1/2)}{\Gamma(3)} = \frac{3\pi}{8}$$
 (Option C)

- **9.** $\Gamma(-5/2) =$ ______.
 - (A) 1
- (B) 4

(C) 1/2

(D) $\frac{-8\sqrt{\pi}}{15}$

Solution:

$$\Gamma\left(-n+\frac{1}{2}\right) = \frac{\left(-2\right)^n}{1 \cdot 3 \cdot 5 \cdots (2n-1)} \sqrt{\pi}$$

$$\Gamma\left(-\frac{5}{2}\right) = \Gamma\left(\frac{-6+1}{2}\right)$$

$$= \Gamma\left(-3+\frac{1}{2}\right) = \frac{-8}{15} \sqrt{\pi}$$

(Option D)

- 10. Evaluate $\int_{0}^{\infty} e^{-x} x^4 dx$.
 - (A) 1

- (A) 1 (C) 1/2
- (B) 24
 (D) $\frac{-8\sqrt{\pi}}{3}$

Solution

$$\Gamma(n) = \int_{0}^{\infty} e^{-x} x^{n-1} dx$$

$$\int_{0}^{\infty} e^{-x} x^{4} dx = \int_{0}^{\infty} e^{-x} x^{5-1} dx = \Gamma(5) = 4! = 24$$

(Option B)

* * * * *

SRM Institute of Science and Technology Ramapuram Campus Department of Mathematics 18MAB101T - Calculus And Linear Algebra

Year/Sem: I/I

Branch: Common to ALL B.Tech. except B.Tech. (Business Systems)

Unit - IV

DIFFERENTIAL CALCULUS

Part - C

1. Find the radius of curvature of the curve $y^2 = 12x$ at the point (3, 6).

Solution:

$$\frac{dy}{dx} = \frac{6}{y}$$

At (3, 6),
$$\frac{dy}{dx} = 1$$

$$\frac{d^2y}{dx^2} = 6\left(\frac{-1}{y^2}\right)\frac{dy}{dx}$$

At (3, 6),
$$\frac{d^2y}{dx^2} = 6\left(\frac{-1}{36}\right)1 = \frac{-1}{6}$$

$$\rho = \frac{\left(1 + y_1^2\right)^{\frac{3}{2}}}{y_2}$$

$$\rho = \frac{(1+1)^{\frac{3}{2}}}{-1/6} = -12\sqrt{2}$$

2. Find the radius of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at the point (a/4, a/4).

Solution:

$$\frac{dy}{dx} = -\sqrt{\frac{y}{x}}$$

At (a/4, a/4),
$$\frac{dy}{dx} = -1$$

$$\frac{d^2 y}{dx^2} = - \left[\frac{\sqrt{x} \cdot \frac{1}{2} y^{-1/2} \frac{dy}{dx} - \sqrt{y} \cdot \frac{1}{2} x^{-1/2}}{x} \right]$$

At (a/4, a/4),
$$\frac{d^2y}{dx^2} = \frac{4}{a}$$

$$\rho = \frac{\left(1 + y_1^2\right)^{\frac{3}{2}}}{y_2}$$

$$\rho = \frac{a}{\sqrt{2}}$$

3. Find the radius of curvature of the curve $xy = c^2$ at the point (c, c). Solution:

$$x.\frac{dy}{dx} + y.1 = 0$$

$$\frac{dy}{dx} = \frac{-y}{x}$$

At (c, c),
$$\frac{dy}{dx} = -1$$

$$\frac{d^2y}{dx^2} = -\left[\frac{x\frac{dy}{dx} - y.1}{x^2}\right]$$

At (c, c),
$$\frac{d^2y}{dx^2} = -\left(\frac{-2c}{c^2}\right) = \frac{2}{c}$$

$$\rho = \frac{\left(1 + y_1^2\right)^{\frac{3}{2}}}{y_2}$$

$$\rho = \frac{(1+1)^{\frac{3}{2}}}{2/c} = \sqrt{2} c$$

4. If $x = a \cos \theta$, $y = b \sin \theta$, then find $\frac{dy}{dx}$.

Solution:

$$\frac{dx}{d\theta} = -a\sin\theta$$
, $\frac{dy}{d\theta} = -a\cos\theta$, $\frac{dy}{dx} = -\frac{b}{a}\cot\theta$

5. Find the envelope of $x \cos \theta + y \sin \theta = 1$, θ being the parameter.

Solution:

$$x\cos\theta + y\sin\theta = 1 \tag{1}$$

Differentiate partially w.r.t. θ .

$$x(-\sin\theta) + y(\cos\theta) = 0$$
 (2)

Squaring and adding (1) and (2)

$$x^2 + y^2 = 1$$

6. Find the envelope of $x \cos \alpha + y \sin \alpha = a \sec \alpha$, α being the parameter.

Solution:

$$x \cos \alpha + y \sin \alpha = a \sec \alpha$$

Divide by $\cos \alpha$.

$$x + y \tan \alpha = a \sec^2 \alpha$$

$$x + y \tan \alpha = a (1 + \tan^2 \alpha)$$

$$a \tan^2 \alpha - y \tan \alpha + (a - x) = 0$$

Here
$$A = a$$
, $B = -y$, $C = a - x$

Envelope is given by $B^2 - 4AC = 0$.

$$y^2 = 4a (a - x)$$

7. Find
$$\int_{0}^{1} x^{6} (1-x)^{9} dx$$
.

Solution:

$$m = 7, n = 10$$

$$B(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$

$$= \int_{0}^{1} x^{7-1} (1-x)^{10-1} dx$$

$$= \frac{\Gamma(7)\Gamma(10)}{\Gamma(17)} = \frac{6!9!}{16!}$$

8. Prove that $\frac{B(m+1,n)}{B(m,n+1)} = \frac{m}{n}$.

Solution:

$$\frac{B(m+1,n)}{B(m,n+1)} = \frac{\frac{\Gamma(m+1)\Gamma(n)}{\Gamma(m+n+1)}}{\frac{\Gamma(m)\Gamma(n+1)}{\Gamma(m+n+1)}} = \frac{m\Gamma(m)\Gamma(n)}{n\Gamma(m)\Gamma(n)} = \frac{m}{n}$$

9. Find
$$\int_{0}^{\pi/2} \sqrt{\tan \theta} \, d\theta.$$

Solution:

$$\int_{0}^{\pi/2} \sqrt{\tan \theta} \, d\theta = \int_{0}^{\pi/2} \sqrt{\frac{\sin \theta}{\cos \theta}} \, d\theta = \int_{0}^{\pi/2} \sin^{-1/2} \theta \cos^{-1/2} \theta \, d\theta$$
$$= \frac{1}{2} B \left(\frac{3/2}{2}, \frac{1/2}{2} \right)$$
$$= \frac{1}{2} B \left(\frac{3}{4}, \frac{1}{4} \right)$$

$$= \frac{1}{2} \frac{\Gamma\left(\frac{3}{4}\right) \Gamma\left(\frac{1}{4}\right)}{\Gamma(1)}$$
$$= \frac{\pi}{\sqrt{2}}$$

Formula
$$\Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi}$$

10. Find $\int_{0}^{\pi/2} \sin^6\theta \cos^6\theta d\theta$.

Solution: m = 6, n = 6

$$\int_{0}^{\pi/2} \sin^{6}\theta \cos^{6}\theta d\theta = \frac{1}{2} B \left(\frac{m+1}{2}, \frac{n+1}{2} \right)$$

$$= \frac{1}{2}B\left(\frac{7}{2}, \frac{7}{2}\right)$$

$$= \frac{1}{2}\frac{\Gamma\left(\frac{7}{2}\right)\Gamma\left(\frac{7}{2}\right)}{\Gamma(7)}$$

$$= \frac{1}{2}\frac{\left(\frac{15}{8}\sqrt{\pi}\right)\left(\frac{15}{8}\sqrt{\pi}\right)}{6!}$$

11. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

Solution:

$$B(m,n) = 2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$$

Put $m = \frac{1}{2}$, $n = \frac{1}{2}$.

$$B\left(\frac{1}{2}, \frac{1}{2}\right) = 2 \int_{0}^{\pi/2} d\theta$$

$$\frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(1)} = 2.\frac{\pi}{2}$$

$$\left(\Gamma\left(\frac{1}{2}\right)\right)^2 = \pi$$

$$\left(\Gamma\left(\frac{1}{2}\right)\right)^2 = \pi$$
Hence $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.