Question 1. Recall that the quaternion group Q is the set

$$\{\pm 1, \pm i, \pm j, \pm k\}$$

with multiplication rules

$$i^2 = j^2 = k^2 = ijk = -1$$

- (a) Find all the subgroups of Q
- (b) For each subgroup H of Q find all the left cosets of H $\,$
- (c) Determine which subgroups of Q are conjugate to one another.

Question 2. Let H be a subgroup of G. Prove the following:

- (a) If $h \in H$ then hH = H
- (b) If $g \notin H$ then $gH \cap H = \emptyset$
- (c) If $f \in gH$ then fH = gH
- (d) If $f \notin gH$ then $fH \cap gH = \emptyset$
- (e) That the union of all left cosets of H equals G

Question 3. Recall that the group SO_3 is the group of 3×3 orthogonal real matrices with determinant +1. Show that SO_3 is exactly the group of rotations of \mathbb{R}^3 around axes that pass through the origin.

Hint: you can break this into the following steps:

- (a) Find a matrix $A \in SO_3$ that represents a rotation about the z-axis by angle θ .
- (b) Find a matrix $B \in SO_3$ that sends the z-axis to the axis containing the vector (a, b, c).
- (c) Find a way to combine A and B to get a rotation of angle θ about the axis containing the vector (a,b,c).

Question 4. Find some finite groups that are *not* cyclic but which only have cyclic proper subgroups.

The more groups you find the more special bonus points you get! *Special bonus points are worthless and are not exchangeable for anything.*