The dual simplex method

Convert the given linear programming problem in the following form:

(P)
$$\min/\max z = C^t X + O^t s$$

subject to $AX + Is = b$, $X,s \ge 0$

Where $s = (s_1, s_2,...,s_m)^t$ is a vector of slack variables and $O = (0,0...,0)_{n\times 1}$ is a vector of zeros. Also Assume that at least one of the component b_i of the RHS vector $b = (b_1, b_2,...,b_m)$ is negative Initially define the following Input parameters:

- 1. Enter the Matrix A = [A I], where I is an identity matrix of order m.
- 2. Entet the R.H.S. vector *b* and the cost matrix $C = [c \ O]_{(n+m)\times 1}$.
- 3. Define [m,n]=size (A)
- 4. Input the variables $s_1, s_2, ..., s_m$ as initial basic variables.

Now construct the simplex table using $s_1, s_2, ..., s_m$ as initial basic variables. If the simplex table depicts **an optimal but Infeasible solution**, then dual simplex method is applicable. So apply the following procedure. 1. Select the leaving variable as $X_{Br} = \min\{X_{Bi} | X_{Bi} < 0\}$

2. Select the entering variable x_k using the formula $\frac{z_k-c_k}{y_{rk}}=\min_j\left\{\frac{|z_j-c_j|}{|y_{rj}|}:y_{rj}<0\right\}$

3. Now update the basis as by removing r^{th} basic variable with k^{th} nonbasic variable. Again construct the simplex table and repeat the above procedure until an optimal basic feasible solution is not obtained.

Least cost method of Transportation problem

Here a_i is the availability of the product at source S_i and b_j is the requirement of the same at destination D_j , c_{ij} represents the cost of trasporting a unit product from source S_i to destination D_j . The variable x_{ij} is the quantity to be transported from the source i to destination j.

Initially define Input paramenters:

- 1. Enter the number of sources as *m*, and destinations as *n*.
- 2. Enter the cost coefficients c_{ij} , the availability at i^{th} source as a_i and demand at j^{th} destination as b_j for each i = 1, 2, ...m, j = 1, 2, ...n.

Intially take k = 1

Step 1: Define $c_{pq} = \min(c_{ij})$, and assign $x_{pq} = \min(a_p, b_q)$, go to Step 2.

Step 2: If $min(a_p,b_q) = a_p$, then update $b_q = b_q - a_p$, $a_p = a_p - x_{pq}$ else $min(a_i,b_j) = b_q$, then update $a_p = a_p - b_q$, $b_q = b_q - x_{pq}$.

Step 3 Assigne $c_{pq} = 10^5$ (a very large no.), Setk = k + 1, if k = m + n - 1 go to Step 4 else go to Step 1.

Step 4: Stop and note the BFS and calculate the objective function value $z = {^{X}c_{ij}x_{ij}}$

Weighted Sum Method to multi-objective LPP

Step 1:Transform the multi-objective linear programming problem (P1) into its equivalent single objective linear programming problem (P2).

(P1)

Maximize/Minimize (C_iX), i=1,2,...,m

Subject to AX<=

or =or >= b X>=0.

(P1)

Maximize/Minimize $(C_1X + C_2X + ... + C_mX)/m$

Subject to AX<=

or =or >= b X>=0.

Step 2: Find an optimal solution of the problem i.e., an efficient solution of the problem (P1) by an appropriate method (Simplex method or Big-M method or Two-Phase method).

Algorithm of Fibonacci Search Technique

Step 1: Using the relation, Measure of effectiveness $=\frac{Interval \ of \ uncertainty}{L_0}$, find the value of Measure of effectiveness.

Step 2: Using the relation $\frac{1}{F_n} \le$ Obtained value of measure of effectiveness, find the smallest natural number n.

Step 3:Store the given interval [a,b]

Step 3: Find L0=b-a

Step 4: for i=n, find

$$x_1 = a + \frac{F_{i-2}}{F_i} L_0$$
, and $x_2 = a + \frac{F_{i-1}}{F_i} L_0$,

Step 5:If $f(x_1) > f(x_2)$ and the problem is of minimum. Then, repeat Step 3 with n=n-1a= x_1 and.

If $f(x_1) < f(x_2)$ and the problem is of minimum. Then, repeat Step 3 with n=n-1a=a and

If $f(x_1) > f(x_2)$ and the problem is of maximum. Then, repeat Step 3 with n=n-1a=a and b=x2.

If $f(x_1) < f(x_2)$ and the problem is of maximum. Then, Then, repeat Step 3 with n=n-1a= x_1 and.

Step 6:Repeat Step 3 to upto i=2.