日期: Solution 1: An=b only, IIAnlli-1, satisfy
$g_{i(x)} = -x_i \in 0$ $g_{i(x)} = x_i \in 0$
since det A \$0, eto, then we have l\$0
11分記 = 1, and 完 satisfy 完く0, it is slater point.
pheca holds —
© solution 2;
consider μ . $\nabla h_1(x) + \sum_{i \in [x]} \lambda_i \cdot \nabla g_i(x) = 0$, $\lambda_i > 0$
$I(n) = \begin{cases} i \mid g(n) = 0 \end{cases},$
⇒ μ.2 βτβα + ∑ λ; (-ei) =0, λίου
$\operatorname{set} e_{1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, e_{n} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
=) 2MBTB2 + \(\frac{7}{14} \lambda_i (-ei) =0, \lambda_i 70, \lambda_i 70, \lambda_i 9i(x) =0, +hat \(\frac{1}{2} \lambda_i \cdot xi =0. \)
=> 2/12/07 B7820 + 20T (\(\frac{5}{it1}\) \(\lambda:(1-ei)\) = 2/11/20TB7B20 + \(\frac{5}{it1}\) -\(\lambda:\) \(\frac{5}{it1}\) \(\lambda:(1-ei)\) = 2/11/20TB7B20 + \(\frac{5}{it1}\) -\(\lambda:\) \(\lambda:\)
=> 2/11 x1878 x =0, 1378 >0, x1878 x 70, x170 since 11Ax1112=].
=)
⇒ Z Li(-ei)=0 , Li z O
⇒ X;=0, V 161.
hence, MFCQ holdy. I

日期: Primort Min tr (CX) ٤. ct. tr(A1X)=5 tr (ALX) = A:= I, A:= (0000), b= (5) Dual: Max bTy st. C- 41.A1-42.A2 >0 $\begin{pmatrix}
2 & 1 & & & \\
1 & 2 & 0 & & & \\
& & 0 & 1
\end{pmatrix}$ 3) tr(cx*)=6 we consider dual problem: 1 2-y1 -1/2y, 0 0 - y2y, 2-y1-y, 0 0 0 0 1-y1 => 2-41-420, 1-4120. > y, = 1, y, + y, = 2. b Ty = 5y, +y, ≤ 4y, + (y, +y,) ≤ 6. but it and only it, yith=2, y=1, it alieve the upper bound b. c-y₁B₁-y₂A₂= (1 1 - 20) t's not semi positive definite. and we know up, un are attainable. hence, y=1, y= is not the optimal solution of dual problem.

we know that Vol < b, that means up < b. X* is not optimal solution.

日期:	/		