AEEM 3042 – Aircraft Performance & Design

Aircraft Design Wing Design

Aircraft Design Process

Cincinnati

Finite Wing

Wing Planform Characteristics

Wing Area (S)

Wing Span (b)

Average Chord (c)

Root Chord (c_r)

Tip Chord (c_t)

Leading Edge Sweep (Δ_{LE})

Trailing Edge Sweep (Δ_{TE})

Aspect Ratio (AR)

Taper Ratio (λ)

Quarter-Chord Angle ($\Delta_{c/4}$)

$$S = b c$$

$$AR = \frac{b^2}{S} = \frac{b}{C}$$

$$\lambda = \frac{c_t}{c_r}$$

Aircraft Aerodynamics

Wing Sweep (Δ)

Indicator of an aircraft's subsonic cruise speed Affects Divergence Mach Number

<u>Low wing sweep</u> (0 to 20 degrees) – sailplanes, gliders High aspect ratio (AR = 20 - 25) Slower cruise speed (0.2 - 0.6 Mach)

Medium wing sweep (20 to 40 degrees) – airliners, cargo, bombers Medium aspect Ratio (AR = 8 - 10)

Moderate cruise speed (0.6 - 0.85 Mach)

High wing sweep (40 to 70 degrees) – fighters, supersonic aircraft Low aspect ratio (AR = 2 - 4)

Faster cruise speeds (0.8 - 0.9 Mach)

Area of Trapezoid = $h * \frac{a+b}{2}$

Wing Area
$$(S_{trap}) = \frac{b}{2} * \frac{c_t + c_r}{2} x 2 = b * \frac{c_t + c_r}{2}$$

$$AR_{trap} = \frac{b^2}{S_{trap}} = \frac{b}{c}$$

Centroid of Trapezoid:
$$c_y = h * \frac{2a + b}{3(a+b)}$$

Centroid of Wing:
$$y_{MAC} = \frac{b}{2} * \frac{2C_t + C_r}{3(C_t + C_r)}$$

$$y_{MAC} = \frac{b}{2} * \frac{2 c_t + c_r}{3 (c_t + c_r)}$$

$$y_{MAC} = \frac{b}{6} * \frac{2 c_t + c_r}{c_t + c_r}$$

$$y_{MAC} = \frac{b}{6} * \frac{c_r (2\frac{c_t}{c_r} + 1)}{c_r (\frac{c_t}{c_r} + 1)}$$

$$\mathbf{y}_{\mathbf{MAC}} = \frac{\mathbf{b}}{6} \, \frac{\mathbf{1} + 2\lambda}{\mathbf{1} + \lambda}$$

 $\lambda = \frac{c_t}{c}$

The local chord length at any point y away from the longer side

$$\mathbf{c} = \mathbf{b} \left[\mathbf{1} - \left(\mathbf{1} - \frac{\mathbf{a}}{\mathbf{b}} \right) \frac{\mathbf{y}}{\mathbf{h}} \right]$$

$$c = c_r \left[1 - (1 - \lambda) \frac{y}{(b/2)} \right]$$

The local chord at any point y away the Root Chord

$$c = c_r \left[1 - (1 - \lambda) \frac{y}{(b/2)} \right]$$

We can substitute y with the equation for y_{MAC}

$$y = y_{MAC} = \frac{b}{6} \frac{1+2\lambda}{1+\lambda}$$

... lots of algebra will eventually yield ...

$$MAC = \frac{2}{3} c_r \frac{1+\lambda+\lambda^2}{1+\lambda}$$

MAC Graphical Determination

MAC Significance

Wing Loading (W/S)

	C _{fe} - subsonic
Bomber and Civil Transport	0.0030
Military Cargo	0.0035
Air Force Fighter	0.0035
Navy Fighter	0.0040
Clean Supersonic Cruise	0.0025
Light Aircraft – Single Engine	0.0055
Light Aircraft – Twin Engine	0.0045

$$C_{D_0} = \frac{S_{wet}}{S_{ref}} \ C_{f_e}$$

Wetted Area Equation for Wing's max t/c < 0.05

$$S_{wet} = S_{ref} * 2.003$$

Wetted Area Equation for Wing's max t/c > 0.05

$$S_{\text{wet}} = S_{\text{ref}} * [1.977 + 0.52 (t/c)]$$

$$\approx 2.03$$

				1		<u> </u>					
Design Pa	arameters		Airfoil Da	ta		Α	ir Prope	erties			
M	0.8000		Name	NACA 64A	A204		ise Alt.	24,714	ft		
S _{ref}	1994	ft²	Cl _{max}	1.03		V		815.98	f/s		
S _{trap}	1797	ft ²	Cl_{lpha}	0.11	1/deg	ρ		0.037561	lbm/f^3		
AR _{ref}	7.8110		a.c.	0.253	С	q		388.3342	lbf/f^2		
AR _{trap}	8.6672		α_{0L}	-1.33	deg	μ		1.07E-05	lbm/(f-s)		
Λ_{LE}	28.0	deg	Cd0	0.004		ν (0	cruise)	0.000285	f^2/s	■ WING	XIS
λ	0.2298		r _{le}	0.0024	С						
W c-start	257,658	lb	Cl _{minD}	0.1 - 0.3						"Docian	of Aircraft"
W c-end	222,376		(t/c)max	0.40	С						of Aircraft"
q c-start	388.33	lbf/ft ²	t/c	0.04						- Thoma	as C. Corke
q c-end	335.15										
Cl c-start	0.3327										
Cl c-end	0.3327										
Calculation	nns		Sweep A	nales							
b	124.8	ft		x/c	Λ _{x/c} (deg)		Wing Plan Vie			V	
M _{eff}	0.71		LE	0.00			7	0			
C _r	23.4	ft	1/4C	0.25							
Ct	5.4		a.c	0.25			6	0	 		
MAC	16.3		(t/c)max	0.40			5	0 ——	+/-		
Уmac	24.7		TE	1.00							
β	0.71						4	0	/ /		
$C_{L\alpha}$	0.098	1/deg	Viscous D	rag			> 3	0			
C _{Lo}	0.13		V_eff	720.4657	f/s						
α_{trim}	2.1	deg	q_eff	302.744	lbf/f^2		2	0			
C _{Ltrim}	0.3327		Re_mac	4.12E+07			1	0			
k	0.05094		sqrt(Re)	6417.001							
C _D	0.0118		Cf	2.31E-03				0			
L/D	28.16		S_wet	3993.982				0	20 x 4	0 60	7.7~
			F	1.334637							10
	1	1	Q	1						UNIVER	SITY OF
Total Drag	9149.534	lbf	C_{D0}	0.006177							incinnati

Design Parameters			Airfoil Da	ıta			Air Properties		
М	0.8000		Name	NACA 64A	204	\longrightarrow	Cruise Alt.	24,714	ft
S _{ref}	1994	ft²	Cl _{max}	1.03			V	815.98	f/s
S _{trap}	1797	ft²	Cl_{lpha}	0.11	1/deg		ρ	0.037561	lbm/f^3
AR _{ref}	7.8110		a.c.	0.253	С		q	388.3342	lbf/f^2
AR _{trap}	8.6672		α_{0L}	-1.33	deg		μ	1.07E-05	lbm/(f-s
Λ_{LE}	28.0	deg	Cd0	0.004			ν (cruise)	0.000285	f^2/s
λ	0.2298		r _{le}	0.0024	С				
W c-start	257,658	lb	Cl _{minD}	0.1 - 0.3					
W c-end	222,376	lb	(t/c)max	0.40	С				
q c-start	388.33	lbf/ft ²	t/c	0.04					
q c-end	335.15	lbf/ft ²							
Cl c-start	0.3327								
Cl c-end	0.3327								

Input data from fact sheet and three-view drawing measurements
Input data from WINGLOAD cruise climb data

Check data against your own calculations and information

Calculatio	ns		Sweep Ar	ngles	
b	124.8	ft		x/c	$\Lambda_{\text{x/c}}$ (deg)
M _{eff}	0.71		LE	0.00	28.0
Cr	23.4	ft	1/4C	0.25	24.7
Ct	5.4	ft	a.c	0.25	24.6
MAC	16.3	ft	(t/c)max	0.40	22.6
У _{mac}	24.7	ft	TE	1.00	13.6
β	0.71				
C_{Llpha}	0.098	1/deg	Viscous D	rag	
C _{Lo}	0.13		V_eff	720.4657	f/s
$lpha_{trim}$	2.1	deg	q_eff	302.744	lbf/f^2
C _{Ltrim}	0.3327	/	Re_mac	4.12E+07	
k (0.05094		sqrt(Re)	6417.001	
C_D	0.0118		Cf	2.31E-03	
L/D	28.16		S_wet	3993.982	ft
			F	1.334637	
			Q	1	
Total Drag	9149.534	lb	C_{D0}	0.006177)

Use these values later!!

Questions?