Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}\alpha$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}{}_{\alpha} t_{1}^{\#1}{}_{\alpha} t_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0	
$\tau_{1}^{\#1}_{+\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0	
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0	
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} \dagger^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$	

Quadratic (free) action	#S	$\iiint (\frac{1}{6} (6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 3 r_3 \partial_{\beta} \omega_{\beta}^{\ \theta} \partial^{\beta} \omega^{\alpha \beta}_{\alpha} - 3 r_3 \partial_{\beta} \omega_{\beta}^{\ \theta} \partial^{\beta} \omega^{\alpha \beta}_{\alpha} - 3 r_3 \partial_{\beta} \omega_{\beta}^{\ \theta} \partial^{\beta} \omega^{\alpha \beta}_{\alpha} - 3 r_3 \partial_{\beta} \omega_{\beta}^{\ \theta} \partial^{\beta} \omega^{\alpha \beta}_{\alpha} - 3 r_3 \partial_{\beta} \omega^{\alpha \beta}_{\alpha} - 3 r_3 $	$r_3\partial_{lpha}\omega^{lphaeta_{\prime}}\partial_{eta}\omega^{eta}_{eta_{\prime}}+6r_3\partial^{\prime}\omega^{lphaeta}_{lpha}\partial_{eta}\omega^{eta}_{eta_{\prime}}-3r_3\partial_{lpha}\omega^{lphaeta_{\prime}}\partial_{eta}\omega^{eta}_{\prime}eta_{eta}$	$6 r_3 \partial' \omega^{\alpha \beta}_{ \alpha} \partial_{\theta} \omega^{\theta}_{ \mu} + 4 t_2 \omega_{\beta \alpha} \partial^{\theta} f^{\alpha \prime} + 2 t_2 \partial_{\alpha} f_{\beta} \partial^{\theta} f^{\alpha \prime} - t_2 \partial_{\alpha} f_{\theta \prime} \partial^{\theta} f^{\alpha \prime} -$	$t_2\partial_i f_{\alpha\theta}\partial^\theta f^{\alpha\prime} + t_2\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} - t_2\partial_\theta f_{ \alpha}\partial^\theta f^{\alpha\prime} - 4t_2\omega_{\alpha\theta\prime}(\omega^{\alpha\prime\theta}+\partial^\theta f^{\alpha\prime})+$	$2t_2\ \omega_{\alpha\prime\theta}\ (\omega^{\alpha\prime\theta}+2\partial^\theta f^{\alpha\prime})-24r_3\partial_\beta\omega_{\prime\theta\alpha}\partial^\theta\omega^{\alpha\beta\prime}+6r_5\partial_\gamma\omega_{\theta\ \kappa}^{\ \kappa}\partial^\theta\omega^{\alpha\prime}-$	$6 r_5 \partial_\theta \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$6 r_5 \partial_{lpha} \omega^{lpha artheta} \partial_{\kappa} \omega_{eta^{\ \ \ \ \ }} - 12 r_5 \partial^{ heta} \omega^{lpha artheta}_{\ \ \ \ \ \ \ \ \ }))[t, x, y, z] dz dy dx dt$
-------------------------	----	--	---	---	--	---	--	---

$\omega_{+ \sim s}^{#1} f_{s+\sim s}^{#1} \omega_{s-\sim s}^{#1}$	Xdn z dn z dn	$\frac{3k^2r_3}{2}$ 0 0	0 0	c		0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ο 0 + t + 0 0 0 + α/1 + 1 0 0 0		0 $+\frac{7}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$	$ au_2^{\#}$		$\sigma_{1}^{+0}f_{0}^{+1}+\sigma_{0}^{+1}$		$f_{0}^{\#1} + 0$ 0
$_{ ilde{\iota}}^{\sharp} \omega$	` [$\omega_2^{#1} + \alpha^{\beta} - \frac{3}{2}$	$f_{2+}^{*1} + \alpha \beta$	$\frac{1}{1+\alpha\beta\chi}$	ω_{2}^{-1} T	$ au_2^{\#}$	† † ^α / † ^{αβ} /	3	0	(0	C)	
	Source constraints/gauge generators	SO(3) irreps Multiplicities	$\sigma_{0}^{\#1} = 0$ 1	$\tau_{0+}^{\#1} == 0$ 1	$\tau_{0+}^{\#2} == 0$ 1	$t_{1}^{\#2}\alpha == 0$ 3	$\tau_{\pi^{\pm}1}^{\alpha} = 0$, ($\sigma_1^{r_2} = 0$ 3	$\tau_1^{\#1}{}^{\alpha\beta} + ik \sigma_1^{\#2}{}^{\alpha\beta} == 0 \mid 3$	$\sigma_{2}^{*1}\alpha\beta\chi==0$ 5	$\tau^{\#_1 \alpha \beta}_{\tau} = 0 $		Total collstraints: 25

 $\omega_{0}^{\#1}$

0

0

0

0

0

0

0

0

0

0

0

Massive and massless spectra

Quadratic pole

Pole residue:
$$\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$$
Polarisations: 2

(No massive particles)

 $\omega_{1}^{#2}{}_{\alpha} f_{1}^{#1}{}_{\alpha} f_{1}^{#2}$

 $\omega_{1^{-}}^{\#1}{}_{lpha}$

 $f_{1}^{\#1}_{\alpha\beta}$

 $\omega_{1}^{\#1}{}_{\alpha\beta}$

 $i\sqrt{2}kt_2$

 $\sqrt{2}t_2$

0

0

0

 $\frac{1}{2}k^{2}(r_{3}+2r_{5})$

0

0

 $\frac{k^2t_2}{3}$

i 12 kt2

 $f_1^{\#1} +^{\alpha\beta}$

*ikt*2 3 0

0

0

0

0

0

 $f_{1}^{\#1} +^{\alpha}$

 $\omega_1^{\#^2} \uparrow^{lpha}$

0

0

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$