Vertiefung Analysis Hausaufgabenblatt Nr. 6

Jun Wei Tan* and Lucas Wollmann

Julius-Maximilians-Universität Würzburg

(Dated: November 29, 2023)

Problem 1. Sei (X, \mathcal{A}, μ) ein Maßraum, $\alpha > 0$ und $f: X \to \overline{R}$ messbar. Zeigen Sie:

(a) Ist f nichtnegativ so gilt

$$\mu(\{f \ge \alpha\}) \le \frac{1}{\alpha} \int f \, \mathrm{d}\mu.$$

(b) Ist f integrierbar, so haben $\{f \geq \alpha\}$ und $\{f \leq -\alpha\}$ endliches Maß.

Proof. (a) Sei $A = \{f \ge \alpha\}$. Es gilt

$$\int f \, d\mu = \int (f\chi_A + f\chi_{A^c})$$

$$= \int_A f \, d\mu + \int_{A^c} f \, d\mu$$

$$\geq \int_A f \, d\mu \qquad \qquad \int_{A^c} f \, d\mu \geq 0, \text{ weil } f \text{ nichtnegativ ist.}$$

$$\geq \int_A \alpha \, d\mu \qquad \qquad f(x) \geq \alpha \, \forall x \in A$$

$$= \alpha \mu(A)$$

Also

$$\mu(\{f \ge \alpha\}) \le \frac{1}{\alpha} \int f \, \mathrm{d}\mu.$$

(b) Wir beweisen es per Kontraposition, also wir nehmen an, dass $\{f \geq \alpha\}$ oder $\{f \leq -\alpha\}$ unendliches Maß hat. (Der Fall, in dem die beide unendliches Maß haben ist nicht ausgeschlossen.)

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Wir nehmen an, dass $\{f \geq \alpha\}$ unendliches Maß hat. Sei $A = \{f \geq \alpha\}$. Es gilt

$$\int f^{+} d\mu = \int_{A} f^{+} d\mu + \int_{A^{c}} f^{+} d\mu$$

$$\geq \int_{A} f^{+} d\mu$$

$$\geq \int_{A} \alpha d\mu$$

$$= \alpha \mu(A)$$

$$= \infty$$

Dann ist $\int f^+ d\mu = \infty$, also f ist nicht integrierbar. Sei jetzt ähnlich $A = \{f \leq -\alpha\}$. Wenn A unendliches Maß hat, ist

$$\int f^{-} d\mu = \int_{A} f^{-} d\mu + \int_{A^{c}} f^{-} d\mu$$

$$\leq \int_{A} f^{-} d\mu$$

$$\leq \int_{A} (-\alpha) d\mu$$

$$= (-\alpha)\mu(A)$$

$$= -\infty$$

Also $\int f^- d\mu = -\infty$, und f ist noch einmal nicht integrierbar.

Problem 2. Sei (X, \mathcal{A}, μ) ein Maßraum, $N, A, B \in \mathcal{A}$ mit $\mu(N) = 0 = \mu(A \cap B)$ und $f: X \to \overline{R}$ integrierbar. Sei außerdem (f_j) eine Folge integrierbarer Funktionen von X nach \overline{R} mit $f_j \geq 0$ μ -fast überall und $\sum_{j=1}^{\infty} f_j$ integrierbar. Zeigen Sie folgende Eigenschaften des Integrals:

- (a) $\int_N f \, \mathrm{d}\mu = 0$
- (b) $\int_{A \cup B} f \, d\mu = \int_A f \, d\mu + \int_B f \, d\mu$.
- (c) $\int \left(\sum_{j=1}^{\infty} f_j\right) d\mu = \sum_{j=1}^{\infty} \int f_j d\mu$.

Proof. (a) Es gilt $\left| \int f \, \mathrm{d}\mu \right| \leq \int |f| \, \mathrm{d}\mu$. Sei dann $g: X \to \overline{R}$ die konstante Funktion mit $g(x) = \infty \ \forall x \in X$. Weil es konstant ist, ist g messbar. Es ist klar, dass $|f(x)| \leq g(x) \ \forall x \in X$, insbesondere für alle $x \in N$. Dann ist

$$\left| \int_{N} f \, \mathrm{d}\mu \right| \leq \int_{N} |f| \, \mathrm{d}\mu \leq \int_{N} g \, \mathrm{d}\mu.$$

Wir müssen nur zeigen, dass $\int_N g \, \mathrm{d}\mu = 0$. Sei g_j eine Folge einfache Funktionen, mit

$$g_j(x) = j \ \forall x \in X.$$

Dann konvergiert g_j gegen g, und für alle j gilt

$$\int_{N} g_{j} \, \mathrm{d}\mu = j\mu(N) = j(0) = 0.$$

Per Definition gilt dann

$$\int_{N} g \, \mathrm{d}\mu = 0,$$

und die Behauptung folgt.

(b) Es gilt

$$\int_{A \cup B} f \, d\mu = \int \chi_{A \cup B} d \, d\mu$$

$$= \int (\chi_A + \chi_B - \chi_{A \cap B}) f \, d\mu$$

$$= \int_A f \, d\mu + \int_B f \, d\mu - \int_{A \cap B} f \, d\mu$$

$$= \int_A f \, d\mu + \int_B f \, d\mu$$
(a)

(c) Für endliche Summe wissen wir schon

$$\int \sum_{j=1}^{n} f_j \, \mathrm{d}\mu = \sum_{j=1}^{n} \int f_j \, \mathrm{d}\mu.$$

Sei $p_n = \sum_{i=1}^n f_i$. p_n konvergiert gegen eine Funktion p, weil f_i nichtnegativ sind, also die Reihe $\sum_{i=1}^n f(x)$ ist für alle x monoton wachsend und in \overline{R} konvergent. Dann gilt

$$\int p_n \,\mathrm{d}\mu \nearrow \int p \,\mathrm{d}\mu\,,$$

also

$$\sum_{n=1}^{\infty} \int f_n \, \mathrm{d}\mu = \int \sum_{n=1}^{\infty} f_n \, \mathrm{d}\mu.$$

Problem 3. Sei (X, \mathcal{A}, μ) ein Maßraum und $f: X \to [0, \infty]$ integrierbar. Definiere die Abbildung

$$\nu: \mathcal{A} \to \overline{R}, \qquad \nu(A) := \int_A f \,\mathrm{d}\mu.$$

Zeigen Sie:

- (a) (X, \mathcal{A}, ν) ist ein endlicher Maßraum.
- (b) Jede μ -Nullmenge ist auch eine ν -Nullmenge.
- (c) Gilt f > 0 μ -fast überall, so ist jede ν -Nullmenge auch eine μ -Nullmenge.
- (d) Sei f>0 μ -fast überall. Dann ist eine messbare Funktion $g:X\to \overline{R}$ genau dann bezüglich ν integrierbar, wenn gf bezüglich μ integrierbar ist und in diesem Fall gilt $\int gf\,\mathrm{d}\mu = \int g\,\mathrm{d}\nu.$
- *Proof.* (a) (i) Alle μ -messbare Mengen sind auch ν -messbar.

Hier müssen wir nur beobachten, dass das Integral über alle μ -messbare Mengen definiert ist, also ν ist zumindest wohldefiniert.

 $\nu(A) \geq 0$ für alle $A \in \mathcal{A}$, weil $f \geq 0$ und daher ist

$$\int_A f \, \mathrm{d}\mu \ge 0.$$

(ii) σ -Additivität

Sei $(A_j), A_j \in \mathcal{A}$ eine Folge paarweise disjunkte Mengen. Dann gilt

$$\lim_{n \to \infty} \sum_{j=1}^{n} \nu(A_j) = \lim_{n \to \infty} \sum_{j=1}^{n} \int_{A_j} f \, \mathrm{d}\mu$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \int \chi_{A_i} f \, \mathrm{d}\mu$$

$$= \lim_{n \to \infty} \int \left[\sum_{i=1}^{n} \chi_{A_i} \right] f \, \mathrm{d}\mu$$

$$= \lim_{n \to \infty} \int \chi_{\bigcup_{i=1}^{n} A_i} f \, \mathrm{d}\mu$$

$$= \lim_{n \to \infty} \int_{\bigcup_{i \in \mathbb{N}} A_i} f \, \mathrm{d}\mu$$

$$= \int_{\bigcup_{i \in \mathbb{N}} A_i} f \, \mathrm{d}\mu$$

$$= \nu \left(\bigcup_{i \in \mathbb{N}} A_i \right).$$

Also ν ist σ -additiv.

(iii) Endlich

Es gilt

$$\int_X f \, \mathrm{d}\mu = \underbrace{\int_X f^+ \, \mathrm{d}\mu}_{<\infty} < \infty,$$

also $\nu(X)$ ist endlich, und ν ist ein endlicher Maßraum.

(b) Sei N eine μ -Nullmenge. Es gilt (mit Hilfe von 2(a))

$$\nu(N) = \int_N f \, \mathrm{d}\mu = 0.$$

(c) Sei N eine ν -Nullmenge, also

$$\int_{N} f \, \mathrm{d}\mu = 0.$$

Jetzt nehmen wir an, dass $\mu(N) > 0$. Wir betrachten $g = \chi_N f$. In der letzten Übungsblatt haben wir schon bewiesen, dass es $\epsilon > 0$ und eine Menge $B \in \mathcal{A}$ mit $\mu(B) > 0$ gibt, sodass $g(x) > 0 \ \forall x \in B$. Es ist klar, dass $B \subseteq N$, weil g außerhalb N null ist. Dann gilt

$$\int_{N} f \, d\mu \ge \int_{B} f \, d\mu$$

$$\ge \int_{B} \epsilon \, d\mu$$

$$= \epsilon \mu(B)$$

$$> 0$$

was ein Widerspruch zu die Anname ist. Also wenn $\nu(N) = 0$ ist auch $\mu(N) = 0$.

(d) Sei s eine einfache Funktion mit Darstellung $s = \sum x_i A_i, A_i \in \mathcal{A}$. Es gilt

$$\int s \, d\nu = \sum x_i \nu(A_i)$$

$$= \sum x_i \int_{A_i} f \, d\mu$$

$$= \int \sum x_i \chi_{A_i} f \, d\mu$$

$$= \int s f \, d\mu$$

Sei (g_j^+) eine Folge einfache Funktionen, die gegen g^+ konvergiert. Es gilt

$$\int g^{+} d\nu = \lim_{j \to \infty} \int g_{j}^{+} d\nu$$
$$= \lim_{j \to \infty} \int g_{j}^{+} f d\mu$$

Ähnlich gilt, für $g_j^- \searrow g^-$, dass

$$\int g^- \, \mathrm{d}\nu = \lim_{j \to \infty} \int g_j^- f \, \mathrm{d}\mu.$$

Also ist $\int g^+ d\nu$ bzw. $\int g^- d\nu$ endlich genau dann, wenn $\int g^+ f d\mu$ bzw. $\int g^- f d\nu$ endlich ist. Dann ist g bzgl. ν integrierbar genau dann, wenn gf bzgl. μ integrierbar ist und in diesem Fall ist das Integral

$$\int g \, \mathrm{d}\nu = \int g f \, \mathrm{d}\mu \,. \qquad \Box$$