Hypotesprövning

Givet ett stickprov $\mathbf{x} = (x_1, x_2, ..., x_n)$ från någon fördelning.

- Vill pröva en nollhypotes H_0 , H_0 innebär att fördelningen specificeras något sätt. (ex. H_0 : p = 0.5, H_0 : $\mu = 100$)
- Sätt upp en mothypotes H_1 , ett alt till H_0 . $(H_1:p > 0.5, H_1: \mu \neq 100)$
- Vi ska pröva nollhypotesen H_0 mot mothypotesen H_1 med hjälp en testvariabel eller teststorhet, t(x) vilken är en obs på stickprovsvariabeln t(X).
- Ange kritiskt område C, en del av det område t(X) varierar över

Testet blir sedan

• Förkasta H_0 om $t(x) \in C$, förkasta inte H_0 om $t(x) \notin C$,

Hypotesprövning

Vid hypotesprövning finns följande fyra möjligheter

	H _o sann	H_0 falsk (H_1 sann)
Förkasta H ₀	α (typ I fel)	ОК
Förkasta inte <i>H</i> ₀	ОК	β (typ II-fel)

Med testets **signifikansnivå** (felrisk), betecknas α , menas $\alpha = P(\text{f\"orkasta } H_o|H_o \text{ sann})$, sannolikheten att g\"or Typ I-fel Ett bra test liten felrisk, (α =0.05, 0.01 eller 0.001)

Sannolikheten att göra Typ II-fel, betecknas β Sannolikheten att förkasta en falsk nollhypotes kallas **testets styrka**, 1- β

1-β = $P(\text{f\"orkasta } H_0 | H_1 \text{ sann})$

Ett bra test har låg signifikans nivå och hög sannolikhet att

upptäcka att H_1 sann dvs hög styrka

Observera att om H_0 inte förkastas så accepteras inte H_0

Test av μ , σ känd - normalfördelning

 $X_1, X_2, ..., X_n$ är ett stickprov, X_i är oberoende och $N(\mu, \sigma)$ $x_1, x_2, ..., x_n$ är en observation av stickprovet

Eftersom
$$X_i \in N(\mu, \sigma)$$
 vet vi att $\bar{X} \in N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

Vi vet också att
$$\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \in N(0,1)$$

Ensidig hypotesprövning på signifikansnivån lpha

$$H_0$$
: $\mu = \mu_0 \mod H_1$: $\mu > \mu_0 \text{ (eller } H_1$: $\mu < \mu_0$)

testvariabel: $t(X) = \frac{X - \mu_0}{\sigma / \sqrt{n}} \in N(0,1)$, förkasta H_0 på signifikansnivån α om

$$t(x) > \lambda_{\alpha} \Leftrightarrow \bar{x} > \mu_0 + \lambda_{\alpha} \frac{\sigma}{\sqrt{n}}$$

$$t(x) > \lambda_{\alpha} \Leftrightarrow \bar{x} > \mu_0 + \lambda_{\alpha} \frac{\sigma}{\sqrt{n}} \qquad \left(\text{eller } t(x) < -\lambda_{\alpha} \Leftrightarrow \bar{x} < \mu_0 - \lambda_{\alpha} \frac{\sigma}{\sqrt{n}} \right)$$

Test av μ , σ känd - normalfördelning

Tvåsidig hypotesprövning på signifikansnivån lpha

$$\begin{split} H_0: \mu &= \mu_0 \text{ mot } H_1: \mu \neq \mu_0 \\ \text{testvariabel: } t(\mathbf{X}) &= \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \in N(0,1), \text{ förkasta } H_0 \text{ på signifikansnivån } \alpha \text{ om } \\ |t(\mathbf{x})| &> \lambda_{\alpha/2} \Leftrightarrow \bar{x} > \mu_0 + \lambda_{\alpha/2} \frac{\sigma}{\sqrt{n}} \text{ eller } \bar{x} < \mu_0 - \lambda_{\alpha/2} \frac{\sigma}{\sqrt{n}} \end{split}$$

Test av μ , σ okänd - normalfördelning

 $X_1, X_2, ..., X_n$ är ett stickprov, X_i är oberoende och $N(\mu, \sigma)$ $X_1, X_2, ..., X_n$ är en observation av stickprovet

Eftersom
$$X_i \in N(\mu, \sigma)$$
 vet vi att $\bar{X} \in N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

Vi vet också att
$$\frac{\bar{X} - \mu}{\sigma^* / \sqrt{n}} \in t(n-1)$$

Ensidig hypotesprövning på signifikansnivån α

$$H_0: \mu = \mu_0 \mod H_1: \mu > \mu_0 \text{ (eller } H_1: \mu < \mu_0)$$

testvariabel:
$$t(X) = \frac{\bar{X} - \mu}{\sigma^* / \sqrt{n}} \in t(n-1)$$
,

förkasta H_0 på signifikansnivån α om

$$\mathsf{t}(\mathsf{x}) > t_\alpha^{(n-1)} \Leftrightarrow \bar{\mathsf{x}} > \mu_0 + t_\alpha^{(n-1)} \frac{\mathsf{s}}{\sqrt{n}} \quad \left(\mathsf{eller}\, \mathsf{t}(\mathsf{x}) < -t_\alpha^{(n-1)} \Leftrightarrow \bar{\mathsf{x}} < \mu_0 - t_\alpha^{(n-1)} \frac{\mathsf{s}}{\sqrt{n}} \right)$$

Test av μ , σ okänd - normalfördelning

Tvåsidig hypotesprövning på signifikansnivån lpha

$$H_0: \mu = \mu_0 \bmod H_1: \mu \neq \mu_0$$

testvariabel:
$$t(X) = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \in t(n-1)$$

förkasta H_0 på signifikansnivån α om

$$|\mathsf{t}(\mathsf{x})| > t_{\alpha/2}^{(n-1)} \Leftrightarrow \bar{x} > \mu_0 + t_{\alpha/2}^{(n-1)} \frac{s}{\sqrt{n}} \text{ eller } \bar{x} < \mu_0 - t_{\alpha/2}^{(n-1)} \frac{s}{\sqrt{n}}$$

Konfidensintervall vs hypotesprövning

Normalfördelning

Tvåsidig hypotesprövning på signifikansnivån α

$$H_0: \mu = \mu_0 \text{ mot } H_1: \mu \neq \mu_0$$

Konfidensintervall

 σ känd

Förkasta H_0 om μ_0 inte finns intervallet nedan

$$\left[\overline{x} - \lambda_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + \lambda_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

Hypotesprövning

σ känd

Förkasta H_0 om

$$\overline{x} < \mu_0 - \lambda_{\alpha/2} \, \frac{\sigma}{\sqrt{n}} \ eller \ \overline{x} > \mu_0 + \lambda_{\alpha/2} \, \frac{\sigma}{\sqrt{n}}$$

σ okänd

Förkasta H_0 om μ_0 inte finns intervallet nedan

$$\left[\overline{x}-t_{\alpha/2,(n-1)}\frac{s}{\sqrt{n}},\,\overline{x}+t_{\alpha/2,(n-1)}\frac{s}{\sqrt{n}}\right]$$

Förkasta H_0 om

$$\left[\overline{x} - t_{\alpha/2,(n-1)} \, \frac{s}{\sqrt{n}} \, , \, \overline{x} + t_{\alpha/2,(n-1)} \, \frac{s}{\sqrt{n}} \right] \qquad \overline{x} < \mu_0 - t_{\alpha/2,(n-1)} \, \frac{s}{\sqrt{n}} \ eller \ \overline{x} > \mu_0 + t_{\alpha/2,(n-1)} \, \frac{s}{\sqrt{n}}$$

Konfidensintervall vs hypotesprövning

Normalfördelning

Ensidig hypotesprövning på signifikansnivån α

$$H_0: \mu = \mu_0 \mod H_1: \mu > \mu_0 \text{ (Alt. } H_1: \mu < \mu_0)$$

Konfidensintervall

σ känd

Förkasta H_0 om μ_0 inte finns intervallet nedan

$$\left(\bar{x} - \lambda_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right) \text{ Alt. } \left(-\infty, \bar{x} + \lambda_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$$

σ okänd

Förkasta H_0 om μ_0 inte finns intervallet nedan

$$\left(\bar{x}-t_{\alpha}^{(n-1)}\frac{\sigma}{\sqrt{n}},\infty\right)$$
 Alt.

$$\left(-\infty, \bar{x} + t_{\alpha}^{(n-1)} \frac{\sigma}{\sqrt{n}}\right)$$

Hypotesprövning

σ känd

Förkasta H_0 om

$$\overline{x} > \mu_0 + \lambda_\alpha \, \frac{\sigma}{\sqrt{n}} \quad \text{Alt.} \quad \overline{x} < \mu_0 - \lambda_\alpha \, \frac{\sigma}{\sqrt{n}}$$

σ okänd

Förkasta H_0 om

$$\overline{x} > \mu_0 + t_{\alpha,(n-1)} \, \frac{s}{\sqrt{n}} \ \text{ Alt. } \ \overline{x} < \mu_0 - t_{\alpha,(n-1)} \, \frac{s}{\sqrt{n}}$$

Använda normalapproximation

 $X_1, X_2, ..., X_n$ är ett stickprov, X_i är oberoende och likafördelade dvs $E(X_i) = \mu$ och $D(X_i) = \sigma$

 $x_1, x_2, ..., x_n$ är en observation av stickprovet

Vi vet att
$$\bar{X} \approx N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$
, om n > 30 och att $\frac{\bar{X} - \mu}{\sigma^*/\sqrt{n}} \approx N(0,1)$

Ensidig hypotesprövning på approximativ signifikansnivån α

$$H_0: \mu = \mu_0 \mod H_1: \mu > \mu_0 \text{ (eller } H_1: \mu < \mu_0)$$

testvariabel:
$$t(X) = \frac{\bar{X} - \mu_0}{\sigma^* / \sqrt{n}} \approx N(0,1),$$

förkasta H_0 på approximativ signifikansnivån lpha om

$$t(\mathbf{x}) > \lambda_{\alpha} \Leftrightarrow \bar{\mathbf{x}} > \mu_0 + \lambda_{\alpha} \frac{s}{\sqrt{n}} \left(\text{eller } t(\mathbf{x}) < -\lambda_{\alpha} \Leftrightarrow \bar{\mathbf{x}} < \mu_0 - \lambda_{\alpha} \frac{s}{\sqrt{n}} \right)$$

Matematisk Statistik MA4025 HT23

Använda normalapproximation

Tvåsidig hypotesprövning på approximativ signifikansnivån α

$$H_0: \mu = \mu_0 \text{ mot } H_1: \mu \neq \mu_0$$

testvariabel:
$$t(X) = \frac{\bar{X} - \mu_0}{\sigma^* / \sqrt{n}} \approx N(0,1)$$
,

förkasta H_0 på approximativ signifikansnivån lpha om

$$|\mathsf{t}(\mathsf{x})| > \lambda_{\alpha/2} \Leftrightarrow \bar{x} > \mu_0 + \lambda_{\alpha/2} \frac{s}{\sqrt{n}} \text{ eller } \bar{x} < \mu_0 - \lambda_{\alpha/2} \frac{s}{\sqrt{n}}$$

P-värdesmetoden

- H_0 : nollhypotesen ($\mu = \mu_0$, $p = p_0$)
- Utgå från stickprovet
- Räkna ut sannolikheten, α_0 , att få ett lika extremt eller extremare värde på testvariabeln under förutsättning att H_0 är sann
- Jämför med signifikansnivån α
 - Om α_0 < α så förkastas H₀
 - Om $\alpha_0 > \alpha$ så förkastas inte H₀

Speciellt användbar för diskreta fördelningar

Teckentest

- Fördelningsoberoende
- Observationer i par , (X_i, Y_i) , i =1, ..., n där variation mellan paren söks Vill pröva
 - H₀: Ingen skillnad mellan X och Y
 - $-H_1$: Skillnad finns
 - Signifikansnivån = α

```
Låt Z = \text{antal gånger } X_i \text{ är större än } Y_i
Z \in Bin(n, 0.5) \text{ om } H_0 \text{ sann}
```

Om resultat från stickprovet blir k st uppmätta skillnader då X_i är större än Y_i Bestäm $P(Z \ge k) = P$ Förkasta H_0 om $P < \alpha$, Förkasta inte H_0 om $P \ge \alpha$

χ^2 - test (hypotesprövning)

Givet

- En hypotes H_0 , ger ett förväntat utfall E_i , i = 1, ..., k
- Mothypotes H_1 : H_0 gäller inte
- Ett observationsmaterial, observationer O_i , i = 1, ..., k

• Beräkna
$$Q = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$
 $Q \in \chi^2$ (k-1)

- Förkasta H_0 om $Q \ge \chi^2_{\alpha,(k-1)}$, $\chi^2_{\alpha,(k-1)}$ fås ur tabell
 - α är signifikansnivå
 - k-1 är antalet frihetsgrader
 - $-F(\chi^2_{\alpha,(k-1)}) = 1-\alpha$, där F(x) är fördelningsfunktionen för χ^2

χ^2 - test (exempel)

- En kundenkät med tre glassar: A, B och C
 - 240 kunder får välja glass
 - $-H_0$: glassarna är lika populära hos kunderna mot H_1 : minst en av glassarna skiljer sig från de övriga ifråga om popularitet hos kunderna
 - Signifikansnivå: α = 1 %
- Utfall (siffror inom parentes är förväntat utfall om H₀ sann)

	A	В	С
Antal	60 (80)	68 (80)	112 (80)

- Beräkna Q = $(60-80)^2/80 + (68-80)^2/80 + (112-80)^2/80 = 19.6$
- Antalet frihetsgrader: k-1 = 3-1 = 2
- $\chi^2_{1\%,(2)} = 9.210$, således förkasta H_0

χ^2 - test (fördelningen F_0 helt känd)

- Låt x₁, x₂, ..., x_n vara en observationer från en okänd fördelning, F
- F_0 är en helt känd fördelning, H_0 : $F = F_0$, H_1 : $F \neq F_0$
- Dela in observationsmaterialet i klasser
 - $-a_{i-1} < x \le a_i$, i = 1, ..., k (a_0 och a_k är obegränsade nedåt respektive uppåt)
 - O_i, antal observationer i klassen
 - E_i, förväntat antal observationer i klassen om H₀ sann
 - kan beräknas som np_i, där p_i är sannolikheten för en observation i klassen
- Beräkna Q $Q = \sum_{i=1}^{k} \frac{\left(O_i E_i\right)^2}{E_i} \ Q \in \chi^2 \ \text{(k-1)}$
- Förkasta H_0 om $Q \ge \chi^2_{\alpha,(k-1)}$, α är signifikansnivå
 - $-F(\chi^2_{\alpha,(k-1)}) = 1-\alpha$, där F(x) är fördelningsfunktionen med k-1 frihetsgrader

χ^2 - test (fördelningen F_0 inte helt känd)

- Låt x₁, x₂, ..., x_n vara en observationer från en okänd fördelning, F
- F_0 är en inte helt känd fördelning, H_0 : $F = F_0$, H_1 : $F \neq F_0$
- Skatta de okända parametrarna i den antagna fördelningen F₀
- Gör på samma sätt som för helt känd fördelning, men antalet frihetsgrader är

k-1-(antalet skattade parametrar)