Upgrading an $(n + \varepsilon)$ -TQFT to an extended (n + 1)-TQFT

Ying Hong Tham

December 23, 2022

In this note, we show that one can promote an $(n+\varepsilon)$ -TQFT to an extended (n+1)-TQFT by only specifying the value associated to the (n+1)-disk $Z(D^{n+1}) \in Z(S^n)$.

Suppose we are given an $(n+\varepsilon)$ -TQFT Z, that is, it assigns a category Z(N) to a closed (n-1)-manifold N, and a functor $Z(M): Z(N) \to Z(N')$ to an n-dimensional cobordisms $M: N \to N'$ between (n-1)-manifolds.

TODO perhaps comment on requirements on Z, e.g. a natural isom for $M \simeq M'$, especially for $Z(M' \circ M) \simeq Z(M') \circ Z(M)$ that is consistent. Or say, at this point, no assumption on existence of adjointness of functors $Z(M) \to Z(\overline{M})$.

The empty k-manifold is denoted by \emptyset^k . Composition of cobordisms is written from right to left, so composition of $M: N \to N'$ and $M': N' \to N''$ is denoted by $M' \circ M: N \to N''$.

Proposition 0.1. Consider functors $Z(D^n): Z(\emptyset^{n-1}) \Rightarrow Z(S^{n-1}): Z(\overline{D^n})$.

Let $\eta_0: Z(\varnothing^n) \Rightarrow Z(S^n = \overline{D^n} \circ D^n): Z(\varnothing^{n-1}) \to Z(\varnothing^{n-1})$ be a natural transformation, and suppose it is the unit to an adjunction $Z(D^n) \dashv Z(\overline{D^n})$.

Then if Z', Z'' are extended (n+1)-TQFTs such that Z', Z'' agree with Z on (n-1)- and n-manifolds, and $Z'(D^{n+1}) = Z''(D^{n+1}) = \eta_0$, then $Z' \cong Z''$.

The proof of this proposition occupies the rest of this article.

0.1 Adjunctions from topology

In the 2-category with closed (n-1)-manifolds as objects, n-dimensional cobordisms as 1-morphisms, and (n+1)-dimensional relative cobordisms as 2-morphisms, the n-dimensional cobordisms $M: N \rightleftharpoons N': \overline{M}$ form an adjunction.

-Consider simplest case, empty and sphere -then do adding k-handle -then in general (In [TODO Y-product paper], we considered this construction without realizing their connection to these adjunctions.)