

N-CHANNEL 500V - 0.75Ω - 8A TO-220 PowerMesh™II MOSFET

TYPE	V _{DSS} R _{DS(on)}		ID
IRF840	500 V	< 0.85 Ω	8 A

- TYPICAL $R_{DS}(on) = 0.75 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- NEW HIGH VOLTAGE BENCHMARK
- GATE CHARGE MINIMIZED

DESCRIPTION

The PowerMESHTMII is the evolution of the first generation of MESH OVERLAYTM. The layout refinements introduced greatly improve the Ron*area figure of merit while keeping the device at the leading edge for what concerns switching speed, gate charge and ruggedness.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITH MODE POWER SUPPLIES (SMPS)
- DC-AC CONVERTERS FOR WELDING EQUIPMENT AND UNINTERRUPTIBLE POWER SUPPLIES AND MOTOR DRIVES

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	500	V
V _{GS}	Gate- source Voltage	± 20	V
I _D	Drain Current (continuos) at T _C = 25°C	8	А
I _D	Drain Current (continuos) at T _C = 100°C	5.1	А
I _{DM} (•)	Drain Current (pulsed)	32	А
P _{TOT}	Total Dissipation at T _C = 25°C	125	W
	Derating Factor	1.0	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	3.5	V/ns
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

(•)Pulse width limited by safe operating area

 $(1)I_{SD} \leq 8A$, di/dt $\leq 50A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_i \leq T_{JMAX}$.

May 2002 1/8

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	1	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W
Ti	Maximum Lead Temperature For Soldering Purpose	300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	8	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	520	mJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	500			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μΑ
	Drain Current (V _{GS} = 0)	V _{DS} = Max Rating, T _C = 125 °C			50	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10V, I_D = 3.5 A$		0.75	0.85	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 3.5A$		6.4		S
C _{iss}	Input Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		832		pF
Coss	Output Capacitance			131		pF
C _{rss}	Reverse Transfer Capacitance			17		pF

2/8

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	V_{DD} = 250 V, I_{D} = 3.5 A R_{G} = 4.7 Ω V _{GS} = 10 V (see test circuit, Figure 3)		10 21		ns ns
Qg	Total Gate Charge	$V_{DD} = 400V, I_D = 7 A,$		29.6	39	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = 10V$		4.9		nC
Q_{gd}	Gate-Drain Charge			13.9		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$t_{r(Voff)}$	Off-voltage Rise Time	$V_{DD} = 400 V, I_{D} = 7 A,$		9		ns
t _f	Fall Time	$R_G = 4.7\Omega$, $V_{GS} = 10V$ (see test circuit, Figure 5)		9		ns
t _c	Cross-over Time	(ded tost official, Figure 5)		19		ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				8	Α
I _{SDM} (2)	Source-drain Current (pulsed)				32	Α
V _{SD} (1)	Forward On Voltage	I _{SD} = 8 A, V _{GS} = 0			1.6	V
t _{rr}	Reverse Recovery Time	I _{SD} = 7 A, di/dt = 100A/μs		384		ns
Q _{rr}	Reverse Recovery Charge	$V_{DD} = 100V$, $T_j = 150$ °C (see test circuit, Figure 5)		2.2		μC
I _{RRM}	Reverse Recovery Current	(000 toot on out, 1 iguilo o)		11.8		Α

Note: 1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

2. Pulse width limited by safe operating area.

Safe Operating Area

Thermal Impedence

Output Characteristics

Transfer Characteristics

Transconductance

Static Drain-source On Resistance

Gate Charge vs Gate-source Voltage

Capacitance Variations

Normalized Gate Threshold Voltage vs Temp.

Normalized On Resistance vs Temperature HV06845

Source-drain Diode Forward Characteristics

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

77,

TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

