ECS150 SQ15 May 10, 2015

Lecture Notes 7

Main Memory

- Hardware
 - Main Memory Array of bytes where program and data is stored (DRAM)
 - Cache Copy of Main Memory close to the CPU
 - Base and Limit Registers Bottom and length of a programs accessible memory
- Address Binding
 - Absolute Code (Compile Time) Location where program components are bound during compilation
 - Relocatable Code (Load Time) Program components that have relative or relocatable addresses
 - Shared Libraries
 - Dynamic Linking (Dynamic Loading) Loading of routines/libraries at run time
 - Static Linking Libraries are linked during program linking stage
- Logical vs. Physical Addresses
 - Logical (Virtual Addresses) The address as it appears to the program executing
 - Physical Address (Actual Location) The physical hardware address that the program is referencing
 - Memory-Management Unit (MMU) Translates between Virtual and Physical addresses
- Swapping
 - Backing Storage Storage location (usually disk) that backs up Main Memory when insufficient space
 - Swap In Moving process from storage to memory
 - Swap Out Moving process from memory to storage
- Contiguous Memory Allocation
 - Allocation Data Structures
 - Bitmaps Use a single bit per fixed partition size for allocation
 - Linked Lists Use a linked list of allocated and free spaces
 - Memory Allocation Algorithms
 - First Fit Allocate with first hole that is large enough
 - Best Fit Allocate with the smallest hole that is large enough
 - Worst Fit Allocate in the largest hole that is large enough
 - Next Fit Start at the last location allocated
 - Quick Fit Keeps track of common sizes (finding neighbors/merging is difficult)
 - Fragmentation
 - Internal Fragmentation Difference between requested and actual allocation
 - External Fragmentation Small holes are created from allocation scheme
 - Compaction Shift memory locations to get rid of External Fragmentation (not always possible)

ECS150 SQ15 May 10, 2015

• Segmentation – Separates memory into "programmers" view of memory

- Segment Table Holds the base and limit of each segment
- Segment Base The bottom of segment memory
- Segment Limit The limit of the segment memory
- Paging
 - Frames Fixed size block of physical memory
 - Page Logical block of memory equal in size to Frame
 - Page Number The logical number of the page
 - Page Offset Offset within the page
 - Page Table Converts the Page Number into a Frame Number
 - Translation-Look-Aside Buffer Cache of the Page Table
 - Page-Table Base Register Points to the beginning of the Page Table
 - Protection
 - Read-Only Memory in page can only be read
 - Read-Write Memory in page can be read or written
 - Execute-Only Memory in page can only be executed
 - Valid-Invalid Memory in page is valid or invalid (marks that page is present or not)
 - Shared Pages Pages that are shared between multiple processes
 - Reentrant Code (Pure Code) Holds functions that do not access any global state
- Page Table Structure
 - Hierarchical Paging Multilevel page tables
 - Forward Mapped Table Mapping works from outer page table inward
 - Hashed Page Table Use a hash to find the page table entry (linked list is used for collisions)
 - Clustered Page Tables (Sparse Address Space) Maps multiple physical page frames in single entry
 - Inverted Page Table Each physical page has an entry (requires expensive search)