

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 • FAX (904) 375-3479

FY95 LIMITED ENERGY STUDY FOR THE AREA "A" PACKAGE BOILER

HOLSTON ARMY AMMUNITION PLANT KINGSPORT, TENNESSEE

U.S. ARMY CORPS OF ENGINEERS MOBILE DISTRICT

CONTRACT NO.: DACA01-94-D-0007

DELIVERY ORDER NO.: 003

FINAL REPORT

Appeared for points actories

Distribution Toleration

AESE PROJECT NO.: 95046-00

3 NOVEMBER 1995

DUPLICATE PAGE NUMBERS ARE CORRECT THE WAY THEY ARE. ONE SET OF PAGES ARE FOR THE EAST AND ONE SET FOR THE WEST

PER: PAUL LITTLE

(352) 376-5500

AFFILIATED ENGINEERS SE, INC.

GAINSVILLE, FL.

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS
P.O. BOX 9005
CHAMPAIGN, ILLINOIS 61826-9005

REPLY TO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakef eld,

Librarian Engineering

II. Detailed Narrative

History

Holston Army Ammunition Plant (HSAAP) in Holston, Tennessee, manufactures explosives from raw materials. The facility comprises two separate areas designated Area "A" and Area "B". Each area is served by a steam plant which produces steam for production processes, equipment operation, space heating, domestic water heating, steam tracing, and product storage heating requirements.

Construction of the steam plant serving Area "A" (Building 8-A) was completed in 1943. The majority of the equipment in the plant is the original design with relatively minor changes since the original installation. Seven boilers, each having a full-load capacity of at least 100,000 pounds per hour (lb/hr), are located in the building. Six of the boilers are coal-fired spreader stoker dump grate type. The seventh boiler is a pulverized coal-fired type. The pulverized coal fired boiler and one of the stoker type boilers are currently layed away (not operational). Only two of the five remaining stoker type boilers are currently operated, with one active and the other on stand-by. Operation is rotated on a weekly schedule.

Problem Statement

Demand for explosives has declined in the last few years and is expected to continue to decline in the near future. As production levels drop and production lines are taken out of service, the demand for steam in Area "A" has fallen.

Present steam demand averages 35 to 40,000 lb/hr. The one active boiler cannot be reduced in capacity below 35 to 40,000 lb/hr without experiencing problems with excessive smoke production. Electrostatic precipitators installed to meet federal emission standards operate effectively when the boilers are operating at more than 40,000 lb/hr, but are unable to handle the excessive smoke generated when operating below 40,000 lb/hr. The resultant smoke stack discharges exceed levels allowed by the present air pollution operating permit. When steam demand falls below the minimum operating point of one boiler, excess steam is vented to the atmosphere. This practice results in increased operating and maintenance costs to replace the mass of water (steam) lost from the system.

Purpose of the Study

The purpose of this study is to identify and evaluate the technical and economic feasibility of alternative methods of meeting the steam requirements of the Area "A" industrial complex.

The following items were specifically requested to be evaluated.

- Evaluate the use of two new gas-fired packaged boilers sized to meet the requirements
 of the industrial complex. The new boilers would be installed adjacent to the existing
 steam plant and would utilize the existing smokestacks and steam distribution system.
- Evaluate using the existing steam distribution system rather than locating multiple boilers at various sites.
- Existing steam driven chillers will be replaced with electric driven equipment. Evaluate this impact on the steam system requirements.
- Field survey and test two existing gas-fired packaged boilers located at the Volunteer Army Ammunition Plant in Chattanooga, Tennessee. The two boilers were last used about 1980 and are presently laid away. The boilers are approximately the same capacity and operating characteristics as the ones at HSAAP. Relocation of the existing boilers and ancillary equipment (feedwater pumps, deaerators, fans, etc.) would be required as well as repairs or modifications necessary to meet current operating conditions and standards. The packaged boilers would be installed adjacent to the existing steam plant and would utilize the existing smokestacks and steam distribution system.
- Include maintenance and operating costs as well as savings in evaluations. This should include lay away costs of existing equipment.
- Present natural gas service to Area "A" is billed at an uninterruptible rate and is not likely to change. Evaluate dual fuel (No. 2 fuel oil) capability of packaged boiler installations including present storage and costs of additional storage.

- Evaluate impact of any proposed installations on the current air pollution operating permit.
- Evaluate turbine drives on equipment such as riverwater pumps which are currently using
 electric drives. (It was noted during investigations for this project that turbines are being
 used in an attempt to maintain boiler demand above 4,000 lbs/hr).

Alternate methods of meeting Area "A" steam requirements which were identified and which were not evaluated as part of this study are as follows:

- Replace the existing spreader stoker dump grate equipment on one or more boilers to a
 more efficient continuous ash discharge stoker. This would retain the capability of
 burning coal but utilize a more efficient stoker. Operating and maintenance costs should
 be reduced.
- Replace the existing spreader stoker dump grate equipment on one or more boilers with gas fired burners. This should reduce operating and maintenance costs at the expense of losing the capability of burning coal.

The two alternatives identified above are presented as possible future studies. Retrofiting boilers of this vintage requires a detailed study of the boilers which is beyond the scope of the present study.

Study Approach

Technical and economic evaluation of alternative methods for efficiently providing steam to the anhydride production processes at Area A are based on comparisons to baseline information developed from documents representing various historical production and consumption data. Data to represent uniform annual production rates down to the projected 2 million lbs of explosive in 1996 (0.167 million lbs per month) and for the mobilization rate of 27 million lbs per month are extrapolated from the historical data.

The following assumptions have been made:

- 1) System piping losses (heat loss and steam leakage) are constant.
- 2) Oxygen content of coal fired boiler flue gas varies uniformly from 6 percent by weight at 100,000 lbs/hr steam output to 12 percent by weight at 40,000 lbs/hr steam output.
- 3) Natural gas burners operate at 7.5 percent excess air throughout a turndown ratio of 4:1; burners cycle off/on at boiler output below 25 percent of full load.
- 4) Electrical consumption of steam plant equipment for baseline conditions is 2.8 kWh/K# steam.
- 5) Fixed maintenance cost is \$37,500 per month for coal fired operation and \$18,750 per month for relocated natural gas fired boiler operation; variable maintenance cost for coal fired operation (including coal handling, ash disposal and miscellaneous consumables) is \$.50 per thousand pounds steam and \$.15 per thousand pounds of steam for natural gas fired boilers. Fixed maintenance cost for system operation with the new 30,000 #/hr boiler will be significantly reduced and is assumed to be between one third and one fifth of costs used for relocated boilers.
- 6) Fixed plant overhead cost is \$70,000 per month; with Building 8A functionally viable; variable overhead cost is \$0.25 per thousand pounds of steam. With Building 8A "layed away" and steam supplied by the new 30,000 #/hr boiler, fixed plant overhead is assumed to be between \$35,000 and \$50,000 per year.
- 7) Unburned fuel losses are zero under all operating conditions.
- 8) Coal fired boiler minimum load of 40000 #/hr is maintained artificially by venting steam from the 100 psig steam header.
- 9) Mollier diagram back pressure turbine steam state lines with saturated throttle steam are parallel to design process lines in the superheat region as indicated in Figure 1 and Figure 2 on the following pages.

Figure 1 - Boiler Feed Pumps

Figure 2 - River Water Pumps

10) Reduced production rates of equivalent RDX explosives will be accommodated by continuous process operation, rather than limited duration batch operations at a higher rate and with systems idle for appropriate durations.

Energy Consumption Calculations

Historical data provided by Holston Defense Corporation (HDC), including Area A Monthly Report Steam Production Data for calendar years 1989 through 1994 and partial 1995 information, and reports for fiscal years 1991, 1992, partial 1993, 1994 and partial 1995 for equivalent RDX explosives production, were used as input for computerized spreadsheet preparation. The data was then reduced to unit rating parameters pursuant to development of production curves of steam rate (lbs stm per lb equivalent RDX) versus uniform monthly production rate of explosives.

Curves for boiler efficiency versus boiler steam output were developed from abbreviated ASME combustion and boiler heat balance calculations, utilizing representative parameters from coal analysis reports for fuel delivered in February, March, May and October 1994, and January 1995, and for natural gas having heating value of 1,000 Btu/cf as indicated on United Cities Gas Company utility bill.

Conversion value used for all electrical energy calculations was 3,413 Btu/kWh.

Process steam flow rates at 400 psig, 575°F conditions were converted to equivalent flow rates for 350 psig saturated steam using steam enthalpy ratio as the conversion factor.

Completed calculation sheets and data provided by HDC are presented in Appendix 1.

Graphical representation of historical data and results of calculations are presented in Figure 3 through Figure 7 on the following pages.

Production rates below 167 thousand pounds per month have not been evaluated. This rate represents the projected production level of 2 million pounds in 1996, which is the production level included in meeting notes of the entry interview of June 2, 1995.

Figure 3 - Facility Production Rates Historical Data

Figure 4 - Equivalent RDX Production Historical Data

Figure 5 - Steam Production Historical Data

Figure 6 - Steam versus Eq. RDX Production

Figure 7 - Steam versus Eq. RDX Production with MOB Production Projection

Alternative Energy and Cost Savings

Baseline system energy and operating cost results (Case 1) were compared to seven alternative operating scenarios (Case 2 through Case 8). Delineated system operating mode for each case, and results of each analysis, are as follows:

Case 1 baseline scenario represents operation using coal fired, stoker operated steam boilers with boiler feedwater pumps, river water pumps and ID/FD fans driven by the existing non-condensing back pressure steam turbines.

For eight discrete equivalent RDX production rates between 0.15 million pounds per month, steam requirements and associated costs were calculated using the Microsoft Excel spreadsheet program. Keyboard input included unit cost of fuel, steam enthalpy, steam rate per unit of production (from Figures 6 and 7), and boiler efficiency (from modified ASME combustion and heat balance calculations). Formulae for calculated values in other spreadsheet columns are presented in Appendix 1.

Table 1 and Figure 8 on the following pages show baseline conditions of Case 1. Corresponding tabular and graphical representation for comparative cases (ECO's), as well as applicable Life Cycle Cost Analysis Summary sheets, are presented following each case description.

Case 2 scenario represents operation of baseline coal fired steam production, with boiler feedwater pumps and river water pumps electric driven, and ID/FD fans turbine driven.

Appropriate input parameters were changed in the Excel spreadsheet, resulting in new annual cost values. These results are shown in Table 2 and Figure 9 herein. LCCID analysis summary for Case 2 follows on page 23.

Case 3 is similar to Case 2, with one of the existing boilers retrofitted with a natural gas burner installed in the existing abandoned tar burner opening to enable steam production rates below 40,000 #/hr without exceeding regulated emission rates. Results of changing the appropriate input parameters are shown in Table 3 and Figure 10 herein. LCCID analysis summary for Case 3 follows on page 28.

0405	NO. 4:	EVOTO OV	OT DIV WITE	DID ED DMDG	O ID/ED EANS	TUDE DOVA	
CASE	NO. 1:	EXSIG. SYS	ST - RIV. WTR. 8	BLR. FD. PIVIPS	. & IDIFD FAINS	TORB. DRVIN.	
MILL. #	‡/MO.	\$/MILL.	STEAM	# STEAM	STEAM TURB-	STEAM	BOILER
EQUIV	. RDX	BTU	BTU/#	PER #RDX	INE #/HR	AVG.#/HR	EFFIC.
	0.15	1.86	1290.20	110.00	38759.32	40000.00	75.00
	0.25	1.86	1290.20	85.00	39697.60	40000.00	75.00
	0.75	1.86	1290.20	65.00	45129.79	66780.82	80.70
	1.25		1290.20	42.00	45870.55		79.50
	2.50	1.86		33.00	68093.15	113013.70	77.20
	5.00	1.86	1290.20	20.50	75994.52	140410.96	79.20
	15.00		1290.20	13.00	151057.53	267123.29	82.10
	27.00	1.86	1290.20	11.50	280837.53	425342.47	82.90
MILL. #	#/MO.	FUEL MILL.	ANNUAL	ANNUAL	ANNUAL;	ANNUAL	TOTAL
EQUIV	. RDX	BTU/MO	FUEL COST	ELECT. COST	MNTNC. COST	OVRHD. COST	ANNUAL COST
	0.15	46,338	\$1,034,274.28	\$34,339.20	\$625,200.00	\$927,600.00	\$2,621,413.48
	0.25	46,338	\$1,034,274.28	\$34,339.20	\$625,200.00	\$927,600.00	\$2,621,413.48
	0.75	71,899	\$1,604,778.96	\$57,330.00	\$742,500.00	\$986,250.00	\$3,390,858.96
	1.25	78,598	\$1,754,309.89	\$61,740.00	\$765,000.00	\$997,500.00	\$3,578,549.89
	2.50	127,191	\$2,838,904.51	\$97,020.00	\$945,000.00	\$1,087,500.00	\$4,968,424.51
	5.00	154,035	\$3,438,055.00	\$120,540.00	\$1,065,000.00	\$1,147,500.00	\$5,771,095.00
	15.00	282,691	\$6,309,654.67	\$229,320.00	\$1,620,000.00	\$1,425,000.00	\$9,583,974.67
	27.00	445,787	\$9,949,957.14	\$365,148.00	\$2,313,000.00	\$1,771,500.00	\$14,399,605.14

Life Cycle Analysis Summary

```
STUDY: 95046
             LIFE CYCLE COST ANALYSIS SUMMARY
        ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080
   INSTALLATION & LOCATION: HOLSTON AAP REGION NOS. 4 CENSUS: 3
   PROJECT NO. & TITLE: 95046-00 LIMITED ENERGY STUDY
   FISCAL YEAR 1996 DISCRETE PORTION NAME: CASE 2: ELECT. VS. TURB. PMPS.
   ANALYSIS DATE: 10-26-95 ECONOMIC LIFE 15 YEARS PREPARED BY: P. D. LITTLE
   1. INVESTMENT
                                     0.
   A. CONSTRUCTION COST
                                     0.
   B. SIOH
   C. DESIGN COST
                                     0.
   D. TOTAL COST (1A+1B+1C) $
   E. SALVAGE VALUE OF EXISTING EQUIPMENT $
   F. PUBLIC UTILITY COMPANY REBATE
   G. TOTAL INVESTMENT (1D - 1E - 1F)
***** No investment costs: Other items should be checked. *****
   2. ENERGY SAVINGS (+) / COST (-)
   DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993
                                       ANNUAL $
                                                    DISCOUNT
                                                               DISCOUNTED
               UNIT COST SAVINGS
                                       SAVINGS(3)
                                                    FACTOR(4)
                                                              SAVINGS(5)
                $/MBTU(1) MBTU/YR(2)
       FUEL
                                                               $ -3248254.
       A. ELECT $ 10.25
                          -25495.
                                        $ -261324.
                                                       12.43
                                            0.
                                                       13.56
                                                                       0.
       B. DIST $ .00
                            0.
                                                       15.09
       C. RESID $ .00
                                0.
                                               0.
       D. NAT G $ 3.95
                                               0.
                                                       15.86
                                                                        0.
                               0.
                               0.
                                                       13.61
                                                                       0.
                                               0.
       E. COAL $ 1.86
                                0.
                                                       12.64 $
                                               0.
       F. LPG
                $ .00
                                                       11.85
       M. DEMAND SAVINGS
                                               0.
                           -25495. $ -261324.
                                                               $ -3248254.
       N. TOTAL

 NON ENERGY SAVINGS(+) / COST(-)

                                                                        0.
      A. ANNUAL RECURRING (+/-)
          (1) DISCOUNT FACTOR (TABLE A)
                                                       11.85
                                                                        0.
          (2) DISCOUNTED SAVING/COST (3A X 3A1)
      B. NON RECURRING SAVINGS(+) / COSTS(-)
                                                          DISCOUNTED
                              SAVINGS(+) YR
                                               DISCNT
                                               FACTR
                                                          SAVINGS(+)/
                  ITEM
                                COST(-)
                                          OC
                                   (1)
                                          (2)
                                                (3)
                                                          COST(-)(4)
                                                                0.
       d. TOTAL
                                     0.
      C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)$
   4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))$ -261324.
                                                                   .00 YEARS
   5. SIMPLE PAYBACK PERIOD (1G/4)
   6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)
                                                               $ -3248254.
   7. SAVINGS TO INVESTMENT RATIO
                                         (SIR)=(6 / 1G)=
                                                               *****
       (IF < 1 PROJECT DOES NOT QUALIFY)
                                                                931.00 %
   8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):
```

CASE NO. 2: EXSTG. SYST PUMPS ELECTRIC DRIVEN; ID/FD FANS TURB. DRVN.						
CASE NO. 2:	EXSTG. SY	ST PUMPS ELE	ECTRIC DRIVEN	; ID/FD FANS I	URB. DRVN.	
MILL. #/MO.	\$/MILL.	STEAM	#STEAM	STEAM TURB-	STEAM	BOILER
EQUIV. RDX	BTU	BTU/#	PER #RDX	INE #/HR	AVG.#/HR	EFFIC.
0.15	1.86	1290.20	110.00	1629.66	40000.00	75.00
0.25		1290.20	85.00	2098.80	40000.00	75.00
0.75			65.00	4814.90	66780.82	77.50
1.25			42.00	5185.27	71917.81	78.10
2.50			33.00	16296.58	113013.70	
5.00		1290.20	20.50	20247.26	140410.96	78.20
15.00		1290.20	13.00	57778.77	267123.29	
27.00	1.86	1290.20	11.50	122668.77	425342.47	83.20
MILL. #/MO.	FUEL MILL.	ANNUAL	ANNUAL	ANNUAL;	ANNUAL	TOTAL
EQUIV. RDX	BTU/MO	FUEL COST	ELECT. COST	MNTNC. COST	OVRHD. COST	ANNUAL COST
0.15	46,338	\$1,034,274.28	\$295,783.15	\$625,200.00	\$927,600.00	\$2,882,857.43
0.25	46,338	\$1,034,274.28	\$295,783.15	\$625,200.00	\$927,600.00	\$2,882,857.43
0.75			\$340,270.35	\$742,500.00	\$986,250.00	\$3,740,061.15
1.25	80,007	\$1,785,757.18	\$348,803.70	\$765,000.00	\$997,500.00	\$3,897,060.88
2.50		\$2,634,175.82	\$507,784.20	\$945,000.00	\$1,087,500.00	\$5,174,460.02
5.00		\$3,482,019.90	\$804,623.40	\$1,065,000.00	\$1,147,500.00	\$6,499,143.30
15.00	286,530	\$6,395,341.33	\$1,560,573.00	\$1,620,000.00	\$1,425,000.00	\$11,000,914.33
27.00	444,179	\$9,914,079.89	\$2,418,811.92	\$2,313,000.00	\$1,771,500.00	\$16,417,391.81

CASE NO.3: ONE CASE NO.2 BOILER RETROFIT W/ N.G.BURNER						
CASE NO.3: 0	ONE CASE N	O.2 BOILER RE	IROFII WIN.G	DURNER		
	0.0411.1	OTEAN	# STEAM	STEAM TURB-	STEAM	BOILER
MILL. #/MO.	\$/MILL.	STEAM		INE #/HR	AVG.#/HR	EFFIC.
EQUIV. RDX	BTU	BTU/#	PER #RDX		22602.74	77.00
0.15	3.95	1290.20	110.00	1629.66		
0.25	3.95	1290.20	85.00	2098.80	29109.59	77.90
0.75	1.86	1290.20	65.00	4814.90	66780.82	76.80
1.25	1.86	1290.20	42.00	5185.27	71917.81	78.00
2.50	1.86	1290.20	33.00	16296.58	113013.70	83.10
5.00	1.86	1290.20	20.50	20247.26	140410.96	78.00
15.00	1.86	1290.20	13.00	57778.77	267123.29	79.00
27.00	1.86	1290.20	11.50	122668.77	425342.47	82.00
MILL. #/MO.	FUEL MILL.	ANNUAL	ANNUAL	ANNUAL;	ANNUAL	TOTAL
EQUIV. RDX		FUEL COST	ELECT. COST	MNTNC. COST	OVRHD. COST	
0.15	25,504	\$1,208,903.14	\$266,883.54	\$549,000.00	\$889,500.00	\$2,914,286.68
0.25	32,467	\$1,538,933.18	\$277,692.45	\$577,500.00	\$903,750.00	\$3,297,875.63
0.75	75,550	\$1,686,271.64	\$340,270.35	\$742,500.00	\$986,250.00	\$3,755,291.99
1.25	80,110	\$1,788,046.62	\$348,803.70	\$765,000.00	\$997,500.00	\$3,899,350.32
2.50	118,161	\$2,637,345.70	\$507,784.20	\$945,000.00	\$1,087,500.00	\$5,177,629.90
5.00	156,404	\$3,490,948.15	\$804,623.40	\$1,065,000.00	\$1,147,500.00	\$6,508,071.55
15.00	293,784	\$6,557,248.71	\$1,560,573.00	\$1,620,000.00	\$1,425,000.00	\$11,162,821.71
27.00	450,679	\$10,059,163.99	\$2,418,811.92	\$2,313,000.00	\$1,771,500.00	\$16,562,475.91

Life Cycle Analysis Summary STUDY: 95046 LIFE CYCLE COST ANALYSIS SUMMARY LCCID 1.080 ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) INSTALLATION & LOCATION: HOLSTON AAP REGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 95046-00 LIMITED ENERGY STUDY DISCRETE PORTION NAME: CASE 3:N.G. BRNR. IN COAL BLR. FISCAL YEAR 1996 ANALYSIS DATE: 10-26-95 ECONOMIC LIFE 15 YEARS PREPARED BY: P. D. LITTLE 1. INVESTMENT Ŝ 65000. A. CONSTRUCTION COST 3575. B. SIOH 3900. C. DESIGN COST D. TOTAL COST (1A+1B+1C) \$ 72475. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. F. PUBLIC UTILITY COMPANY REBATE 72475. G. TOTAL INVESTMENT (1D - 1E - 1F) 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993 DISCOUNTED DISCOUNT ANNUAL \$ UNIT COST SAVINGS FACTOR(4) SAVINGS(5) FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) \$ -2889093. 12.43 A. ELECT \$ 10.25 -22676. \$ -232429. .00 0. 0. 13.56 B. DIST \$ 0. 15.09 0. 0. C. RESID \$.00 15.86 \$-18863010. \$-1189345. D. NAT G \$ 3.95 ***** \$ 14076340. 13.61 \$ 1034264. 556056. E. COAL \$ 1.86 0. 12.64 F. LPG \$.00 0. 0. 0. 0. 11.85 M. DEMAND SAVINGS \$ -7675769. N. TOTAL 232280. \$ -387510. NON ENERGY SAVINGS(+) / COST(-) 114300. A. ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) 11.85 1354455. (2) DISCOUNTED SAVING/COST (3A X 3A1) B. NON RECURRING SAVINGS(+) / COSTS(-) DISCOUNTED DISCNT SAVINGS(+) YR FACTR SAVINGS(+)/ ITEM COST(-) OC COST(-)(4)(2) (3) (1)0. d. TOTAL Ŝ 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 1354455. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ -273210. -.27 YEARS 5. SIMPLE PAYBACK PERIOD (1G/4) \$ -6321314. 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)

(SIR)=(6 / 1G)=7. SAVINGS TO INVESTMENT RATIO

-87.22

(IF < 1 PROJECT DOES NOT QUALIFY)

**** Project does not qualify for ECIP funding; 4,5,6 for information only.

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

Case 4 scenario represents operation with natural gas fired steam boilers, relocated from the Volunteer Army Ammunition Plant (VAAP), and with feedwater pumps and river water pumps turbine driven. VAAP boiler FD fans are electric driven. Results of changing the appropriate input parameters are shown in Table 4 and Figure 11 herein. LCCID Analysis Summary for Case 4 follows on page 32.

Case 5 scenario is similar to Case 4, with all pumps electric driven rather than turbine driven. Results of changing the appropriate input parameters are shown in Table 5 and Figure 12 herein. LCCID analysis summary for Case 5 follows on page 35.

Case 6 scenario represents system operation utilizing a new boiler producing 100 psig saturated steam, with the existing 400 psig steam production and distribution system "layed away" for future return to service as required. The new system includes new deaerating heater-feed pump set and packaged firetube 850 bhp boiler with dual fuel (natural gas and No. 2 oil) capability. An above ground 200,000 gallon oil storage tank is also included.

Case 7 represents systems identical to Case 6, but with fixed maintenance at the upper limit of assumed value (one third of costs for relocated VAAP units) and with fixed overhead at the upper limit of assumed value (\$50,000).

Case 8 is a further extension of the above, with fixed costs incrementally increased until the resultant SIR was below the ECIP qualifying value of 1.25.

Table 6 shows results of Both Case 6 and Case 7.

LCCID analysis summaries for Cases 6, 7 and 8 follow on pages 37, 38, and 39.

Total annual operating cost data shows that Case No. 4: VAAP natural gas boilers, with river water and boiler feedwater pumps turbine driven, and Case Nos 6 and 7: New 100 psig boiler offer annual cost savings over the baseline, and only then at explosive production rates below approximately 2.4 million pounds per year (±200,000 lbs/mo equivalent RDX).

54.05 NO. 4	\/A A B \ O	BUDG WUBIN W	ATD A DID ED	DMDC TUDDIN	E DDIVEN	j
CASE NO. 4:	VAAP N. G.	BLRS. W/ RIV. V	VIR. & BLR. FD.	PMPS TURBIN	EDRIVEN	
MILL. #/MO.	\$/MILL.		# STEAM	STEAM TURB-		BOILER
EQUIV. RDX	BTU	BTU/#	PER #RDX	INE #/HR	AVG.#/HR	EFFIC.
0.15	3.95	1204.00	118.57	37256.62	37256.62	
0.25	3.95	1204.00	91.63	37762.39	37762.39	78.50
0.75	3.95	1204.00	70.07	40690.37	71988.45	
1.25	3.95	1204.00	45.28	41089.63	77526.03	
2.50	3.95	1204.00	35.57	53067.40	121826.61	82.50
5.00	3.95	1204.00	22.10	57326.16	151360.34	83.20
15.00	3.95	1204.00	14.01	133284.41	287953.81	82.00
27.00	1.86	1290.20	11.50	122668.77	425342.47	82.00
MILL. #/MO.	FUEL MILL.	ANNUAL	ANNUAL	ANNUAL;	ANNUAL	TOTAL
EQUIV. RDX	BTU/MO	FUEL COST	ELECT. COST	MNTNC. COST	OVRHD. COST	ANNUAL COST
0.15	25,173	\$1,193,210.90	\$56,719.09	\$273,955.19	\$921,591.99	\$2,445,477.18
0.25	32,215	\$1,526,978.38	\$56,866.41	\$274,619.78	\$922,699.63	\$2,781,164.21
0.75	71,626	\$3,395,065.05	\$66,835.44	\$319,592.83	\$997,654.71	\$4,734,174.98
1.25	76,381	\$3,620,466.21	\$68,448.37	\$326,869.20	\$1,009,782.00	\$5,025,565.77
2.50	119,009	\$5,641,031.16	\$81,351.80	\$385,080.17	\$1,106,800.28	\$7,214,263.41
5.00	146,616	\$6,949,587.66	\$89,954.09	\$423,887.48	\$1,171,479.14	\$8,634,908.37
15.00	283,009	\$13,414,647.26	\$129,739.67	\$603,371.31	\$1,470,618.85	\$15,618,377.09
27.00	450,679	\$10,059,163.99	\$2,418,811.92	\$2,313,000.00	\$1,771,500.00	\$16,562,475.91

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95046
ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080

INSTALLATION & LOCATION: HOLSTON AAP REGION NOS. 4 CENSUS: 3

PROJECT NO. & TITLE: 95046-00 LIMITED ENERGY STUDY

FISCAL YEAR 1996 DISCRETE PORTION NAME: CASE 4: VAAP N.G.BLRS. / TURB. PMPS ANALYSIS DATE: 10-27-95 ECONOMIC LIFE 15 YEARS PREPARED BY: P. D. LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST \$ 350000.
- B. SIOH \$ 27500.
- C. DESIGN COST \$ 30000.
- D. TOTAL COST (1A+1B+1C) \$ 407500.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0
- F. PUBLIC UTILITY COMPANY REBATE \$ 0.
- G. TOTAL INVESTMENT (1D 1E 1F) \$ 407500.
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

	UNIT COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)
A. ELECT	\$ 10.25	-2182.	\$ -22366.	12.43	\$ -278003.
B. DIST	\$.00	0.	\$ 0.	13.56	\$ 0.
C. RESID	\$.00	0.	\$ 0.	15.09	\$ 0.
D. NAT G	\$ 3.95	*****	\$-1193200.	15.86	\$-18924160.
E. COAL	\$ 1.86	556056.	\$ 1034264.	13.61	\$ 14076340.
F. LPG	\$.00	0.	\$ 0.	12.64	\$ 0.
M. DEMAN	D SAVINGS		\$ 0.	11.85	\$ 0.
N. TOTAL		251798.	\$ -181302.		\$ -5125825.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-)
 - (1) DISCOUNT FACTOR (TABLE A)
 - (2) DISCOUNTED SAVING/COST (3A X 3A1)
- \$ 357255.
- 11.85 \$ 4233472.
- B NON RECURRING SAVINGS(+) / COSTS(-)

υ.	HOM KECOKKING	PRATHOD(1) \ CODID(- /		
		SAVINGS(+)	YR	DISCNT	DISCOUNTED
	ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
		(1)	(2)	(3)	COST(-)(4)
1	. BLR. LAYUP	\$-225000.	0	1.00	-225000.
d	. TOTAL	\$-225000.			-225000.

- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 160953.

C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 4008472.

5. SIMPLE PAYBACK PERIOD (1G/4)

2.53 YEARS

6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)

\$ -1117353.

7. SAVINGS TO INVESTMENT RATIO (SIR)=

(SIR)=(6 / 1G)= -2.74

(IF < 1 PROJECT DOES NOT QUALIFY)

**** Project does not qualify for ECIP funding; 4,5,6 for information only.

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

CASE NO. 5: VAAP N.G. BLRS. W/ PUMPS ELECTRIC DRIVEN						
CASE NO. 5:	VAAP N.G.	BLRS. W/ PUMP	S ELECTRIC DR	IVEN		
MILL. #/MO.	\$/MILL.	STEAM	# STEAM	STEAM TURB-	STEAM	BOILER
EQUIV. RDX	BTU	BTU/#	PER #RDX	INE #/HR	AVG.#/HR	EFFIC.
0.15	3.95	1204.00	118.57	0.00	24363.60	78.00
0.25	3.95	1204.00	91.63	0.00	31378.51	78.50
0.75	3.95	1204.00	70.07	0.00	71988.45	81.00
1.25	3.95	1204.00	45.28	0.00	77526.03	
2.50	3.95	1204.00	35.57	0.00		82.50
5.00	3.95	1204.00	22.10	0.00	151360.34	
15.00	3.95	1204.00	14.01	0.00		82.00
27.00	1.86	1290.20	11.50	122668.77	425342.47	82.00
MILL. #/MO.	FUEL MILL.	ANNUAL	ANNUAL	ANNUAL;	ANNUAL	TOTAL
EQUIV. RDX	BTU/MO	FUEL COST	ELECT. COST	MNTNC. COST	OVRHD. COST	ANNUAL COST
0.15	25,173	\$1,193,210.90	\$362,568.43	\$257,013.78	\$893,356.29	\$2,706,149.40
0.25	32,215	\$1,526,978.38	\$364,611.66	\$266,231.36	\$908,718.93	\$3,066,540.33
0.75	71,626	\$3,395,065.05	\$376,440.12	\$319,592.83	\$997,654.71	\$5,035,391.23
1.25	76,381	\$3,620,466.21	\$378,053.05	\$326,869.20	\$1,009,782.00	\$5,335,170.45
2.50	119,009	\$5,641,031.16	\$390,956.48	\$385,080.17	\$1,106,800.28	\$7,523,868.09
5.00			\$399,558.77	\$423,887.48	\$1,171,479.14	\$8,944,513.05
15.00	283,009	\$13,414,647.26	\$439,344.35	\$603,371.31	\$1,470,618.85	\$15,927,981.77
27.00	450,679	\$10,059,163.99	\$2,418,811.92	\$2,313,000.00	\$1,771,500.00	\$16,562,475.91

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95046
ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080

INSTALLATION & LOCATION: HOLSTON AAP REGION NOS. 4 CENSUS: 3

PROJECT NO. & TITLE: 95046-00 LIMITED ENERGY STUDY

FISCAL YEAR 1996 DISCRETE PORTION NAME: CASE 5: VAAP N. G. BLRS/ ELECT PMPS.

ANALYSIS DATE: 10-27-95 ECONOMIC LIFE 15 YEARS PREPARED BY: P. D. LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST \$ 350000.
- B. SIOH \$ 27500.
- C. DESIGN COST \$ 30000.
- D. TOTAL COST (1A+1B+1C) \$ 407500.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0
- F. PUBLIC UTILITY COMPANY REBATE \$
- G. TOTAL INVESTMENT (1D 1E 1F) \$ 407500.
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

UNIT COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED
FUEL \$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)
A. ELECT \$ 10.25	-32007.	\$ -328072.	12.43	\$ -4077932.
·	0.	\$ -320072.	13.56	\$ 0.
B. DIST \$.00				!
C. RESID \$.00	0.	\$ 0.	15.09	\$ 0.
D. NAT G \$ 3.95	*****	\$-1193200.	15.86	\$-18924160.
E. COAL \$ 1.86	556056.	\$ 1034264.	13.61	\$ 14076340.
F. LPG \$.00	0.	\$ 0.	12.64	\$ 0.
M. DEMAND SAVINGS		\$ 0.	11.85	\$ 0.
N. TOTAL	221973.	\$ -487008.		\$ -8925753.

- NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-)

\$ 402431. 11.85

- (1) DISCOUNT FACTOR (TABLE A)
- (2) DISCOUNTED SAVING/COST (3A X 3A1)

\$ 4768808.

B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	ÝR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)
1. BLR. LAYUP	\$-225000.	0	1.00	-225000.
d TOTAL	\$-225000			-225000.

- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 4543808.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ -99577.
- 5. SIMPLE PAYBACK PERIOD (1G/4)

-4.09 YEARS

6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)

\$ -4381946.

7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 (IF < 1 PROJECT DOES NOT QUALIFY)

(SIR)=(6 / 1G)= -10.75

**** Project does not qualify for ECIP funding; 4,5,6 for information only.

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

CASE NO. 6: NEW 30,000#/HR, 100PSIG, N.G.FIRED BOILER @ MIN. FIXED MNTNC & OVRHD						
MILL. #/MO.	\$/MILL.	STEAM	# STEAM	STEAM TURB-	STEAM	BOILER
EQUIV. RDX	BTU	BTU/#	PER #RDX	INE #/HR	AVG.#/HR	EFFIC.
0.15	3.95	1187.20	120.41	0.00	24741.86	84.50
0.25	3.95	1187.20	93.04	0.00	31864.52	84.50
MILL. #/MO.	FUEL MIL	ANNUAL	ANNUAL	ANNUAL;	ANNUAL	TOTAL .
EQUIV. RDX	BTU/MO	FUEL COST	ELECT. COST	MNTNC. COST	OVRHD. CST	ANNUAL COST
0.15	23,238	\$1,101,504.66	\$334,011.50	\$77,510.81	\$474,184.68	\$1,987,211.65
0.25	29,928	\$1,418,604.49	\$336,086.12	\$86,869.98	\$489,783.30	\$2,331,343.89
CASE NO.7:	NEW 30,00	0#/HR, 100PSIG,	N.G.FIRED BO	ILER @ MAX. FI	XED MNTNC &	OVRHD
MILL. #/MO.	\$/MILL.	STEAM	# STEAM	STEAM TURB-	STEAM	BOILER
EQUIV. RDX		BTU/#	PER #RDX	INE #/HR	AVG.#/HR	EFFIC.
0.15		1187.20	120.41	0.00	24741.86	84.50
0.25	3.95	1187.20		0.00	31864.52	84.50
MILL. #/MO.	FUEL MIL	ANNUAL	ANNUAL	ANNUAL;	ANNUAL	TOTAL
EQUIV. RDX	BTU/MO	FUEL COST	ELECT. COST	MNTNC. COST	OVRHD. CST	ANNUAL COST
0.15	23,238	\$1,101,504.66	\$334,011.50	\$107,510.81	\$654,184.68	\$2,197,211.65
0.25	29,928	\$1,418,604.49	\$336,086.12	\$116,869.98	\$669,783.30	\$2,541,343.89

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95046
ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080

INSTALLATION & LOCATION: HOLSTON AAP REGION NOS. 4 CENSUS: 3

PROJECT NO. & TITLE: 95046-00 LIMITED ENERGY STUDY

FISCAL YEAR 1996 DISCRETE PORTION NAME: CASE 6: NEW 30K #/HR 100PSI BLR ANALYSIS DATE: 10-27-95 ECONOMIC LIFE 15 YEARS PREPARED BY: P. D. LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST \$ 362500.
- B. SIOH \$ 27500.
- C. DESIGN COST \$ 30000.
- D. TOTAL COST (1A+1B+1C) \$ 420000.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0.
- F. PUBLIC UTILITY COMPANY REBATE \$ 0.
- G. TOTAL INVESTMENT (1D 1E 1F) \$ 420000.
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

	UNIT COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)
A. ELECT	\$ 10.25	-29236.	\$ -299669.	12.43	\$ -3724886.
B. DIST	\$.00	0.	\$ 0.	13.56	\$ 0.
C. RESID	\$.00	0.	\$ 0.	15.09	\$ 0.
D. NAT G	\$ 3.95	*****	\$-1101481.	15.86	\$-17469490.
E. COAL	\$ 1.86	556056.	\$ 1034264.	13.61	\$ 14076340.
F. LPG	\$.00	0.	\$ 0.	12.64	\$ 0.
M. DEMAND	SAVINGS		\$ 0.	11.85	\$ 0.
N. TOTAL		247964.	\$ -366886.		\$ -7118043.

- NON ENERGY SAVINGS (+) / COST (-)
 - A. ANNUAL RECURRING (+/-)

\$ 1001105. 11.85

- (1) DISCOUNT FACTOR (TABLE A)
- (2) DISCOUNTED SAVING/COST (3A X 3A1)
- \$ 11863100.

B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	YR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)
1. PLNT LAYUP	\$-250000.	0	1.00	-250000.

- d. TOTAL \$-250000. -250000.
- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 11613100.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 617552.
- 5. SIMPLE PAYBACK PERIOD (1G/4)

.68 YEARS

6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)

\$ 4495052.

7. SAVINGS TO INVESTMENT RATIO

(SIR)=(6 / 1G)= 10.70

(IF < 1 PROJECT DOES NOT QUALIFY)

**** Project does not qualify for ECIP funding; 4,5,6 for information only.

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95046 LCCID 1.080 ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

REGION NOS. 4 CENSUS: 3 INSTALLATION & LOCATION: HOLSTON AAP

PROJECT NO. & TITLE: 95046-00 LIMITED ENERGY STUDY

FISCAL YEAR 1996 DISCRETE PORTION NAME: CASE NO. 7: NEW 30K #/HR 100PSI BLR ANALYSIS DATE: 10-27-95 ECONOMIC LIFE 15 YEARS PREPARED BY: P. D. LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST 362500.
- B. SIOH \$ 27500.
- C. DESIGN COST 30000.
- D. TOTAL COST (1A+1B+1C) \$ 420000.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$
- F. PUBLIC UTILITY COMPANY REBATE 0.
- 420000. G. TOTAL INVESTMENT (1D - 1E - 1F)
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

UNIT	COST SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED
FUEL \$/MBT	U(1) MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)
A. ELECT \$ 10.	25 -29236.	\$ -299669.	12.43	\$ -3724886.
	00 0.	\$ 0.	13.56	\$ 0.
C. RESID \$.	00 0.	\$ 0.	15.09	\$ 0.
D. NAT G \$ 3.	95 *****	\$-1101481.	15.86	\$-17469490.
E. COAL \$ 1.	86 556056.	\$ 1034264.	13.61	\$ 14076340.
F. LPG \$.	00 0.	\$ 0.	12.64	\$ 0.
M. DEMAND SAVI	NGS	\$ 0.	11.85	\$ 0.
N. TOTAL	247964.	\$ -366886.		\$ -7118043.

- NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-)
 - (1) DISCOUNT FACTOR (TABLE A) 11.85

 - (2) DISCOUNTED SAVING/COST (3A X 3A1) 9374606.
 - B. NON RECURRING SAVINGS(+) / COSTS(-)

		SAVINGS(+)	YR	DISCNT	DISCOUNTED
	ITEM	COST(-)		FACTR	SAVINGS(+)/
		(1)	(2)	(3)	COST(-)(4)
1. PL	NT. LAYUP	\$-250000.	0	1.00	-250000.
					050000

- d. TOTAL \$-250000. -250000.
- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 9124606.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 407553.
- 5. SIMPLE PAYBACK PERIOD (1G/4)
- 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ 2006563.
- (SIR)=(6 / 1G)=4.78 7. SAVINGS TO INVESTMENT RATIO (IF < 1 PROJECT DOES NOT QUALIFY)
- **** Project does not qualify for ECIP funding; 4,5,6 for information only.
 - 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

1.03 YEARS

791106.

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: 95046
ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.080

INSTALLATION & LOCATION: HOLSTON AAP REGION NOS. 4 CENSUS: 3

PROJECT NO. & TITLE: 95046-00 LIMITED ENERGY STUDY

FISCAL YEAR 1996 DISCRETE PORTION NAME: CASE 8:NEW 30K #/HR 100PSI BLR ANALYSIS DATE: 10-27-95 ECONOMIC LIFE 15 YEARS PREPARED BY: P. D. LITTLE

- 1. INVESTMENT
- A. CONSTRUCTION COST \$ 362500.
- B. SIOH \$ 27500.
- C. DESIGN COST \$ 30000.
- D. TOTAL COST (1A+1B+1C) \$ 420000.
- E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0
- F. PUBLIC UTILITY COMPANY REBATE \$
- G. TOTAL INVESTMENT (1D 1E 1F) \$ 420000.
- 2. ENERGY SAVINGS (+) / COST (-)

DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993

	UNIT COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)
A. ELECT	\$ 10.25	-29236.	\$ -299669.	12.43	\$ -3724886.
B. DIST	\$.00	0.	\$ 0.	13.56	\$ 0.
C. RESID	\$.00	0.	\$ 0.	15.09	\$ 0.
D. NAT G	\$ 3.95	*****	\$-1101481.	15.86	\$-17469490.
E. COAL	\$ 1.86	556056.	\$ 1034264.	13.61	\$ 14076340.
F. LPG	\$.00	0.	\$ 0.	12.64	\$ 0.
M. DEMANI	DSAVINGS		\$ 0.	11.85	\$ 0.
N TOTAL		247964	\$ -366886		\$ -7118043

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-)
 - (1) DISCOUNT FACTOR (TABLE A) 11.85
 - (2) DISCOUNTED SAVING/COST (3A X 3A1)
- \$ 7880251.

665000.

B. NON RECURRING SAVINGS(+) / COSTS(-)

ມ.	NON KEGOIGKING	DITATION (1) \ CODID(,		
		SAVINGS(+)	YR	DISCNT	DISCOUNTED
	ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
		(1)	(2)	(3)	COST(-)(4)
1	. PLNT. LAYUP	\$-250000.	0	1.00	-250000.

- d. TOTAL \$-250000. -250000.
- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 7630251.
- 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 281447.
- 5. SIMPLE PAYBACK PERIOD (1G/4)

1.49 YEARS

6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)

\$ 512208.

7. SAVINGS TO INVESTMENT RATIO

(SIR)=(6 / 1G)= 1.22

(IF < 1 PROJECT DOES NOT QUALIFY)

**** Project does not qualify for ECIP funding; 4,5,6 for information only.

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

At equivalent RDX production of 1.8 million pounds per year, total annual cost savings are as follows:

Case 4 - \$176,000

Case 6 - \$634,200

Case 7 - \$424,200

Corresponding energy savings are:

Case 4 - 254 x 109 Btu/yr

Case 6 - 277 x 109 Btu/yr

Case 7 - 277 x 109 Btu/yr

In each of these cases, cost of natural gas burned is greater than the corresponding coal costs, but these increased costs are offset by reduced maintenance and overhead, producing the positive total cost savings.

For the new 30,000 lbs/hr steam boiler, submittal of an Operating Permit Application to the Tennessee Division of Air Pollution Control will be required. In addition, initial compliance tests for particulate emissions and nitrogen oxide emissions will be required. The nitrogen oxide initial compliance test requires monitoring stack gases for 30 successive steam generating unit operating days.

Energy Rate Data

Coal costs were developed from HDC cost center 2230 breakdown dated 11 May 1995 representing April 1995 data, and from steam unit cost calculations for 1994 out-of-pocket expenses prepared by J. Bouchillon and dated 03/29/95. Value used in the LCCID program is \$1.86 per million Btu.

Electrical unit costs were calculated from Kingsport Power Company bill for March 1995. No attempt was made to differentiate between energy cost and demand cost for the scenario analyses. Value used in the LCCID program is \$10.25 per million Btu (electrical).

Natural gas unit costs were calculated in a similar manner to electrical costs from United Cities Gas Company bill for April 1995. Value used in the LCCID program is \$3.95 per million Btu.

Copies of the cost breakdowns, utility bills, and J. Bouchillon calculations are included in Appendix 1.

Conclusion

Energy (Btu) savings and maintenance cost savings resulting from using natural gas to

replace coal in Building 8-A at Holston Army Ammunition Plant are not great enough to offset

increased energy costs and justify construction costs. Installation of a new 100 psig firetube

boiler at a location closer to the major process steam usage point, permitting complete

shutdown of Building 8A, is recommended.

Conversion of existing refrigeration equipment from steam driven to electric driven will have no

impact on steam system operation. The turbines being removed function as "pressure

reducers", each of which are in parallel with river water pump turbines and with a PRV station

and desuper-heating station. The parallel equipment to remain has the capability to meet all

expected future conditions.

Existing boiler feedwater/condensate return systems at Holston are suitable for operation in

conjunction with relocated boilers from VAAP. In reality, there will be insignificant variations

from pressures and flows experienced at present when system load is roughly 40,000 #/hr

steam demand. Therefore, transporting the ancillary equipment from VAAP and refurbishing

that equipment is not justified.

To carry this theme one more step, the cost of adding fuel oil storage as standby for relocated

VAAP boilers has not been included since case studies indicate no economical advantage can

be realized even without added storage costs. Also, the coal storage at Area "B" can be

considered a standby fuel, although its use in "layed away" boilers would dictate an extended

time period for transfer to that fuel.

Definitions/Abbreviations

AESE: Affiliated Engineers SE, Inc.

ASME: American Society of Mechanical Engineers

bhp: Boiler Horsepower

ECO: Energy Conservation Opportunity

<u>Energy Conservation Investment Program (ECIP)</u>: This is a federal government program which allocates funds for projects which increase energy efficiency.

HDC: Holston Defense Corporation

HSAAP: Holston Army Ammunition Plant

ID/FD Fan: Induced Draft and/or Forced Draft fans used for steam boilers.

Excess Air: A term used to describe the amount of air that is supplied to fossil fired boilers over and above the amount theoretically required for complete combustion.

lb/hr: pounds per hour

lb/mo: pounds per month

<u>Life Cycle Cost in Design (LCCID)</u>: Government software package used to evaluate projects for ECIP funding.

MMBtu: million British thermal units

psig: pounds per square inch gauge

RDX: Research Development Explosive

SIR: Savings to Investment Ratio

VAAP: Volunteer Army Ammunition Plant, Chattanooga, Tennessee

A BOILER CONDITION AND USEFUL LIFE STUDY

FOR

AFFILIATED ENGINEERS SE, INC

AT

VOLUNTEER ARMY AMMUNITION PLANT
CHATTANOOGA, TENNESSEE

Submitted By:

Hartford Steam Boiler
Inspection & Insurance Company
200 Ashford Center North
Suite 300
Atlanta, GA 30338
August 2, 1995
404 928 0788

TABLE OF CONTENTS

																	<u>P</u> a	age
Introduct	io	n																1
Summary										٠.					•			2
Conclusio	ns	:/R	ec	om	me	nd	lat	ic	ns	3								3
Boiler De	sc	ri	.pt	io	n			•							•			5
Inspectio	n	De	ta	ail	s													7
					i	App	er	nd:	ic	es								
Appendix	В	-	Ма	nu	fa	act	ur	er	s	Dε	ita ly	R	ep	or	its			17 19
			Γi	el	d	Da	ta				ut							20 21
	E	-	Tυ	ıbe	ľ	hi	ck	ne	SS	3								22
	G	-	De	ae	ra	ati	ng	T	'ar	ık	In Pi	sp	ec	ti	on	l		28 31

INTRODUCTION

During the time period of July 24 through 28, 1994, The Hartford Steam Boiler Inspection and Insurance Company (HSB) performed a Boiler Condition Study on two Babcock & Wilcox water tube boilers located in building 451 at the facilities of the Volunteer Army Ammunition Plant, Chattanooga Tennessee. The objective of this study was to determine the current condition of the two boilers for possible relocation.

The physical condition, description and evaluation is based upon information obtained through visual inspection, nondestructive examination and hydrostatic testing. Subsequent portions of this report contain a description of the boilers, an evaluation of their existing condition, and the inspection techniques utilized.

Also included is a description of the two deaerating tanks and the current condition of the vessels.

Preceding the survey text is a summary of our inspection findings and corresponding suggestions for correction of observed discrepancies.

This study was directed by J.A. Dognazzi, Regional Supervisor Engineering Services assigned to the Atlanta Regional Office of HSB. Should any portion of this report require clarification or elaboration, please feel free to contact Mr. Dognazzi at 404 928 0788.

SUMMARY

As the following text elaborates, the overall physical integrity of these Babcock & Wilcox boilers appears satisfactory (with the exception of several generating tubes) for continued service at a pressure not to exceed the maximum allowable working pressure as stamped on the Manufacturer's Name Plate. A boiler's physical integrity is for the most part dependent on the material's strength and/or remaining material thickness of the drums and tubes. This detailed physical condition evaluation failed to disclose any significant abnormalities in the strength of material, depletion of material thicknesses, or discontinuities in major weldments that could significantly have an adverse effect on the pressure containing properties of any of the boiler's pressure containing components.

Although the integrity of the pressure containing components is acceptable at this time, several observations were made that should receive corrective action or modification prior to putting these boilers into service. Those observations pertain to the boilers pressure containing components. Summary comments pertaining to those observations are contained in the section immediately following, titled Conclusions/Recommendations, with detailed explanations contained throughout remaining portions of this report.

CONCLUSIONS/RECOMMENDATIONS

Those conditions observed requiring attention prior to placing these boilers in service are as follows:

 The condition of the four safety valves (2 from each boiler) is questionable due to external condition, broken locking seals, leakage through the seat and disk during hydrostatic test, unable to lift valve seat with lifting lever.

Recommendation: The valves should be sent to a reliable safety valve repair facility in possession of a valid VR Certificate of Authorization for repair, adjustment and sealing.

2. The tubes in the L & M rows of the west boiler, at the rear of the furnace (approximately the last 18 tubes in each row - total 36) have small blisters. The blisters are very small and almost discernable. The exact cause of the blistering is not known at this time.

Recommendation: Prior to putting the west boiler into operation, these tubes should be replaced.

Additionally, the remaining tubes in these rows are behind the waterwall tubes, it is virtually impossible to determine if any of these tube are also blistered.

Recommendation:

Perform a metallurgical analysis on a blistered tube to identify the cause of the blistering. Procedures can be provided for the removal of the tube, shipping and laboratory services upon request.

3. The casing should be removed from both boilers and both economizers to ensure no corrosion has effected the inner components and to properly inspect the insulation.

Recommendation: The casing on both boilers and economizers should be cleaned of all corrosion/rust and preserved with an approved weather resistant paint designed for high temperature surfaces.

4. The east boiler's economizer has indications of previous leakage as noted in the base of the chimney.

Recommendation: The economizer should be hydrostatically tested to a pressure not to exceed the maximum allowable working pressure as stamped on the vessel.

5. Waterwall tubes of the west boiler - Flame impingement of both walls in the furnace.

Recommendation:

The burner flame pattern should be investigated to determine the cause of the impingement. Consideration should be given to performing a burner alignment and a flame pattern analysis to determine cause.

Failure to correct this problem could cause tube failure due to mild prolonged overheating.

6. Scale deposits within the tubes and drums.

Recommendation:

The boilers should be cleaned of the scale deposits using any method that will not remove any thickness from the tubes or drums. A recommended method would be high pressure water washing of the tubes and drums.

BOILER DESCRIPTION

These Babcock and Wilcox boilers (2) are bent tube, watertube boilers, manufactured originally for Atlas Chemical Industries, Inc at the Volunteer Army Ammunition Plant (VAAP), Chattanooga, Tennessee. Construction was in accordance with the ASME Code, Section 1, Power Boilers, 1968 Edition with addenda to 12/70. This fact is documented on the Manufacturer's Data Report, a copy of which is contained in Appendix B.

These boilers consist of one steam drum, one mud drum and one bank of generating tubes. Appendix D contains a representative layout of all the tubes in the boilers from the steam drum.

The west boiler is considered a left hand boiler (as the furnace is on the left) and the east boiler is a right hand.

The ASME Code stamping is located on the steam drum's head and normally would be included in this report, as the possibility that asbestos insulation may be installed, the insulation was not disturbed to view the stamping on the drums, therefore, the Manufacturer's Name Plate data is presented as being representative of the ASME construction of the boilers:

West Boiler

Manf: Babcock & Wilcox Co. Contract No: FM-2126 Capacity, lb/hr: 150,000 Design Pressure: 375 psi Steam Temp, F: 442 F Blr H.S. Sq.Ft: 8167 Sq.Ft. Year Built: 1972 Nat'l Bd: 23635

East Boiler

Manf: Babcock & Wilcox Co. Contract No: FM-2126 Capacity,lb/hr: 150,000 Design Pressure: 375 psi Steam Temp, F: 442 F Blr H.S. Sq.Ft.: 8167 Sq.Ft. Year Built: 1972 Nat'l Bd: 23636

The ASME "S" stamp is also indicated on both name plate.

The following pertinent information reflects the construction details, documented on the Manufacturer's Data Report, for the major components of these boilers upon which their overall physical integrity is predominately dependent; namely the steam drum, mud drum and tubes.

Steam Drum

48" Nominal diameter: 32' 1.5625" Overall length: Design thickness: 1.53125" (1 17/32") tubesheet: .90625" (29/32") shell plate: SA-515-70 Material: 2-fusion welded/90% efficiency Longitudinal joint: 2-fusion welded/90% efficiency Circumferential Joints: Tube hole efficiencies: 35.68% Longitudinal: Circumferential: 31.63% 39.24% Diagonal: Dished, 1.1875" (1 3/16"), SA-515-70 Heads:

Mud Drum

24" Nominal Diameter: 30' 6.1250" Overall Length: .8750" (29/32") Design thickness: SA-515-70 Material: Longitudinal Joint: 90% 4-fusion welded/90% efficiency Circumferential Joint: Tube hole efficiencies: 42.73% Longitudinal: 19.98% Circumferential: Dished, .75" (.750"), SA-515-70 Heads:

Tubes

Generating:

Waterwall:

2" x .095", SA-178-A
2" x .134", SA-178-A
2" x .095", SA-178-A
2.75" x .165" SA-178-A
2" x .165", SA-178-A

We understand all pressure containing components are original and that no weld repairs have been made to any pressure retaining component in either boiler, or any tube/s had been replaced or plugged. As reported, operating pressures and temperatures were limited to a operation of 290 psi with no high pressure or high temperature; excessive high water or low water excursions being reported. Additionally, as reported, there had not been any periods of over firing of the boilers.

We further understand these boilers were operated primarily on natural gas constituting 90 % usage with an occasional period on #2 oil.

INSPECTION DETAILS

The inspection of these B & W boilers consisted of a thorough internal and external visual inspection supplemented by ultrasonic thickness measurements of various waterwall tubes. Additional inspection techniques included dry powder magnetic particle examination of the weld joints in all drums and Remote Field Eddy Current (RFEC) examination of twenty five percent of the generating tubes of each boiler.

All the tubes examined are identified within the boxes on the Boiler Tube Layout sheets. These areas were selected due to being the most likely for tube problems to develop either from over heating or external general corrosion from low temperatures. The center section was examined to get a general indication of the tubes. There were no tube thickness loss which would be cause for concern at this time.

While basic comments relative to all inspection techniques will be contained within this section of the report, specific details pertaining to the ultrasonic thickness testing and the RFEC examination of the generating tubes are presented in Appendix C.

During the process of conducting our survey, the following observations were noted reflecting the existing condition of these boilers. Each boilers components will be addressed separately.

The installed internals for both steam drums consist of a row of baffle plates which extend the full length of the drum and cover the last couple of row of tubes. The baffles plates are properly installed, not bowed or otherwise damaged. The piping within the drum consists of a surface blow line, feed line and dry pipe. The piping is properly installed. There is no separators installed in these steam drums. Additionally, there are no internal components installed in the mud drums.

Numerous ultrasonic thickness measurements were taken on the shell, tubesheet and heads of the steam and mud drums from each boiler to identify any possibility of thinning due to corrosion. All the thickness measurements taken were above the nominal thicknesses indicated on the Manufacturer's Data Report.

There were three containers of a desiccant material located on each end of all 4 drums. The containers were removed and were noted to have been last changed anywhere from 1987 to 1990. The desiccant material appeared to be slightly saturated with moisture in that the pellets were a pink to white color as opposed to being blue.

The safety valves on both boilers were painted, including the spring. The safety valves were very difficult to open with the lifting levers. Rust buildup was noted on the spindle where it passes through the tension adjusting nut.

The safety valve name plates revealed the following:

North valve - Manufactured by: Consolidated

Type: 1811 NA-20

Size: 4" x 4"

Set pressure: 355 psi

Capacity: 74,525 lbs/hr

South valve - Manufactured By: Consolidated

Type: 1811 PA-20

Size: 4" x 4" Set pressure: 360 psi

Capacity: 111,039 lbs/hr

All 4 safety valves have broken locking seals, this condition renders the safety valves unreliable for future operation.

West Boiler Steam Drum

The visual inspection of the internal components of the steam drum failed to identify any conditions that would be considered serious. Some small scale deposits were noted throughout the top portion of the tubes and around the tube ends. The deposits were flaking off the tube metal and accumulating in the mud drum. As the RFEC probe was inserted into the tubes, additional deposits were scrapped of and settling in the steam drum. The amount of deposits indicate the tubes are in need of a good cleaning, most preferable is the high pressure water jet method.

The surface of the shell and all components within the drum was noted to have a light coating of surface rust. There was no significant corrosion noted any where within the drum.

The tube ends were not eroded or corroded nor were any split tube ends noted. Minor pitting was noted through out the drum and on some of the tube ends. The pitting is not considered serious.

To perform the RFEC examination of the tubes, they were identified from the front of the boiler (burner end) by numbering from 1 through 97 and lettered circumferentially from top to bottom, A to M. Therefore, the A-1 tube is located in the top right corner of the steam drum when facing the flue gas outlet of the boiler with the burner on the right.

The tubes within the dotted lines on the Boiler Tube Layout sheets were noted to have small blisters on many of the tubes. The blisters were first noted during the RFEC examination of those tubes with an indication of a change in permeability of the tube metal. Further investigation within the furnace revealed the blistering.

West Boiler Mud Drum

The internal visual inspection noted a significant quantity of loose deposits laying in the drum. The deposits appear to be from the tubes which has flaked off over the years. The quantity of deposits also appear to contain a sand like material, there was no indication how the sand like material got into the boiler.

The waterside surfaces have a slight scale like deposit adhered to the shell and heads, this is not considered significant and a water blast cleaning would most likely remove the deposits. Where the deposits had flaked off, a slight amount of surface corrosion was noted. This is not considered serious.

West Boiler Fireside

The inspection of the firesides was limited to the furnace area. The refractory within the furnace appears to be in satisfactory condition. There were no "soft spots", loose walls, severely broken brick, extremely spalled castable, or significant holes in the refractory noted.

The waterwall and generating tubes were noted to have a coating of fireside deposits which could be removed by brushing. The tube surfaces have a limited amount of general surface corrosion. The waterwall tubes on both sides were noted to have a "carbon pattern" impingement from the burner flame. The pattern was more predominate on the left wall. See photograph next page.

The tubes appeared to be straight with no sagging, warping or other physical distortions noted except the tubes in the beginning of the second pass (as indicated in the dotted red border on the Boiler Tube Layout sheet - identified as L & M rows). Many of these tubes have small blisters which are almost invisible to the naked eye. The cause of the blisters could not readily be determined but a primary source of this type of condition is related to overheating, either mild prolonged overheating or, the boiler experienced a momentary water circulation problem during high firing conditions.

See photograph next page.

The tubes in the L & M row, and possibly other rows, located behind the water wall tubes could also have been effected by the same cause. As these tubes can not be closely examined, it is not know if these tubes have been effected.

Ultrasonic thickness measurements were taken on the waterwall tubes within the furnace area. The measurements taken were at or above the thicknesses identified on the Manufacturer's Data Report. The actual thickness measurements are illustrated in Appendix E.

Additional pictures are located in Appendix F.

West Boiler External Surface

The external condition of the west boiler is satisfactory with some general corrosion noted on the casing, primarily on the top but also on the sides at the top and bottom of both sides. The one concern is that moisture has gotten under the casing and some corrosion may have developed on the inner surfaces.

See photograph next page.

The casing of the economizer of this boiler has several areas where corrosion has come through the metal. The corrosion may have been the result of moisture getting behind the casing. There was no inspection activity of the economizer's pressure retaining components.

The base of the chimney, beneath the economizer tubes was entered with no indication of any leakage being noted.

West Boiler General Notes

 The surface corrosion within the steam and mud drums is believed to be the result of the desiccant material not being rejuvenated periodically.

West Boiler Hydrostatic Test

The boiler was hydrostatically tested in accordance with the requirements of the National Board Inspection Code (NBIC) and ASME Code, Section 1, Power Boilers, applicable paragraphs. The purpose of the hydrostatic test was to determine the tightness of the rolled and welded joints. The test pressure of 480 psi was attained with no leakage of any tube or welded joint.

During the hydrostatic test, there were numerous valves and one safety valve leaking through that could not be isolated. The leaking safety valve was gagged to prevent the valve from lifting under pressure.

East Boiler Steam Drum

The visual inspection of the internal components of the steam drum failed to identify any conditions that would be considered serious. The conditions noted are basically the same as the west drum in that some minor scale deposits were noted throughout the top portion of the tubes and around the tube ends. The deposits are flaking off the tube metal and accumulating in the mud drum. During the RFEC examination, additional deposits was scrapped off and settled in the mud drum. The amount of deposits indicate the tubes are in need of a good cleaning, most preferable is the high pressure water jet method.

The surface of the shell and all components displayed a light coating of surface rust. There was no significant corrosion noted within the drum.

The condition of the tube ends are essentially the same as the tubes in the west boiler.

The tubes were numbered and lettered in the same manner as the west boiler with the exception the A-1 tube is in the upper left corner when facing the flue gas outlet and the burner is on the left.

East Boiler Mud Drum

The internal visual inspection noted a significant quantity of loose deposits laying in the drum. The deposits appear to be from the tubes which has flaked off over the years. The quantity of deposits also appear to contain a sand like material, there was no indication how the sand like material got into the boiler.

The waterside surfaces have a slight scale like deposit adhered to the shell and heads, this is not considered serious and most likely could be removed with high pressure water cleaning.

East Boiler Firesides

The inspection of the firesides was limited to the furnace area. The refractory within the furnace appears to be in satisfactory condition. There were no "soft spots", loose walls, severely broken fire brick, extremly spalled castable, or holes in the refractory.

The waterwall and generating tubes were noted to have a coating of fireside deposits which could be removed by wiping. The tube surfaces have a slight amount of surface rust which is not a concern at this time. There were no warping, sagging or other physical distortions of the tubes.

East Boiler External Surfaces

The external condition of the east boiler is satisfactory with some general corrosion noted on the sides and top of the boiler. The concern is moisture may have gotten under the casing and corrosion may have developed on the inner surfaces.

The casing of the economizer has several areas where corrosion has come through the metal. The corrosion may most likely is moisture getting under the casing. There was no inspection activity of the economizer pressure retaining components.

The base of the chimney was entered to investigate the cause of the water stains noted on the rear wall. There was no noted failed tube or welded joint. The possibility of a leaking tube in the tube bank should be considered and corrective action taken.

Photograph view of the lower row of economizer tubes and inner casing. Note white water mark and pattern of corrosion (heavy on the rear wall, light on the side walls). Possibly these indications are the result of leakage within the economizer tube bank.

East Boiler Hydrostatic Test

A hydrostatic test was applied to this boiler in accordance with the requirements of the National Board Inspection Code and ASME Code, Section 1, Power Boilers, applicable paragraphs. The test pressure could only be raised to 280 psi due to numerous valves leaking through that could not be blanked off. Under this pressure, there were no tubes or welded joints leaking.

APPENDIX A

CALCULATIONS

The tubes in the boilers examined with RFEC were 2" \times .095" wall thickness, SA-178-A material with a tensile value of 11,500 psi at 700 degree F. The original MAWP of the tubes was 530 psi.

The following indicates the actual wall thickness for each 10 % of wall loss.

The following equation is given in paragraph P-22 (a) and is used to determine the maximum allowable working pressure (MAWP) of tubes.

$$P = S \times \frac{2t - .01D - 2e}{D - (t - .005D - e)}$$

Where:

P = Maximum Allowable Working Pressure, psi

D = Outside diameter. inches

S = Stress value, psi

t = Minimum required thickness, inches

e = Thickness factor for expanded tubes

For the 2" x .095 tubes, a 10 % wall loss equates to a calculated thickness of .0855". To determine the MAWP of a tube with a 10 % wall loss, the following calculation is performed:

$$P = 11500 \times \frac{2 \times .0855 - .01 \times 2 - 2 \times 0.4}{2 - (.0855 - .005 \times 2 - 0.4)} = 415 \text{ psi}$$

Tubes with a 20 % wall loss = 302 psi

The calculated MAWP of tubes with a maximum of 10 % wall loss does not take into consideration any pitting, overheating or other physical conditions which could further reduce the MAWP.

The tubes from 10 to 20 % wall loss are indicated in RED on the Boiler Tube Layout sheets. The tubes with a 10 % or less wall loss are indicated in white.

APPENDIX B

MANUFACTURER'S DATA REPORTS

FORM P-3 MANUFACTURERS' DATA REPORT FOR WATER-TUBE BOILERS, SUPERHEATERS, WATERWALLS, AND ECONOMIZERS

-201-2126	As Required	by the Provis	ions of the AS	ME Code Rules		
hufactured by		& Wilcox Co	mpany	Barbe	rton, Ohio	
-		(Name an	d address of manufact		looga, Tennesse	ee
Manufactured for Atlas	Chemical Indu	stries, Inc.	, Volunteer A	Army Ammo Pla	int,	
Integral Furn		(Name	end address of purcha	ser)		
Identification Bent Tube	Boiler Boiler	.No. BW-23635	·	ate No.) (Nati. Box	35 Year Built	1972
(Type of boiler waterwall, e	r, superheater,	(Mfrs. Serial	No.) (State and St	ate No.) (Natl. Bo	ard No.)	
The chemical and physical p	roperties of all parts			T	BOILER AND PRESSI Addenda 12-3	ure vessel 31-70 1968
Remarks: Manufacturers' Paitems of this report:		*		ssioned Inspectors h		the following
	•		manufacturer's name		mp)	
	Boil	er Assemble	i & Tested In	Snop		
We certify the statement in January 28,	in this data report to b		Ock & Wilcox (Manufacturer) Certificate of Author	т.	(Representative) December 31,	19 <u>73</u>
BOILER MADE BY The I			F SHOP INSPE	CTION mington, Nort	ch Carolina	
I, the undersigned, holding	a valid commission	issued by the Nat	ional Board of Boile	er and Pressure Ves	sel Inspectors and/or	the State or
				•		
and employed by The Har	rtford S. B. 1	[. & I. Co.	artford	, Connecticut		
e inspected parts of this		5a.	5b. 6b. 9a. 1	O and ll	and have examined m	
the ASME BOILER AND PRIBY signing this certificate in manufacturer's data report. Fage or a loss of any kind ari	either the Inspector n urthermore, neither the	or his employer make Inspector nor his diwith this inspection	employer whall be liab	ressed or implied, copie in any manner for	ncerning the boiler desc any personal injury or	cribed in this property dam-
Inspector	minor	Commissi	ns Nat'	I Board or State and	No.	
We certify that the field	ESSEL CODE.					ASME
ate	19	Signed	(Assembler)	ву	(Representative)	
ur Certificate of Authoriza		(A) or (S)	Symbol expires		19	
	CERTIFIC	CATE OF FIE	LD ASSEMBLY	INSPECTION		_
I, the undersigned, holding	a valid commission	issued by the Na	tional Board of Boile	er and Pressure Ves	sel Inspectors and/or	the State or
Province of						
and employed byhave compared the statemer		mer's data renort	with the described	holler and state the	at the parts referred to	es data items
have compared the statemer	ate in this manuact		luded in the newliteral	te of shop inspection	have been inspected by	r me and that
to the best of my knowled applicable sections of the A			e exsembler has cons	tructed and assemble	ed this boiler in accords	ince with the
	nai-					•
By signing this certificate r		or his employer mak	es any warranty, expr	ressed or implied, co	ncerning the boiler desc	cribed in this
By signing this certificate r manufacturer's data report.	Furthermore, neither th	e Inspector nor his	employer shall be list	ble in any manner for	any personal injury or	property dam-
age or a loss of any kind ar	ising from or connecte	d with this inspecti	on.			
Date		Сов	missions	I Board or State and		
Inspector		-	Nat'	1 Rosid of Prefs sud	no.	

		201	2126														
5(a)	Drums Nomina		-2126	T			Shell plat	es					Tube	sheets	Tube	hole efficie	ligament ency
ю.	diamete in.		Length t In	. В	rand	Mater	ial spec. no.	Thick	ness	Insid	e radius	Th	ickness	Inside radi	UIII	al _	Circum- ferential
	24		306 1/8	3 7	PVQ.	SA	-515-70	7/	/8		12	7	7/8	12	.427	73	.1998
1	24		500 1/0	- - 			7-7 1								Dia		.3924
2	1.0		20 7 7 7	-	77.0	- CA	51E 70	29/	/22		24	7	7/32	23 11/			.3163
3	48		321 5/8	1	PVQ.	SA	<u>-515-70</u>	<u> </u>)		- '		-1/)-			-	
4												-				-+	
5		2 .	est de centre de la centre de l						·	<u> </u>				1 in			
					T					•	Heads						Hydro-
	Longitudi				ļ									Radius	Manho	les	static
Vo.	No. &	Effi-		Effi- ciency	Bran	d N	daterial spec.	no.		Thick	iness		Type**	of dish	No.	Size	test, lb
, 	1 #2	90	· · · · · · · · · · · · · · · · · · ·	•90	PVG		SA-515-7	0	.3/1	+	3/1	+ .	#3		212	2x16	
1	1 #C	- 90	+ πε	• 90-	1 1 1 0		<u> </u>										
2	0 1/0	- 00	0 //0:	00	TUTC	. -	SA-515-7	<u></u>	7 2	/16	1 3/1	6	#3		212	v16	1
3	2 #2	•90	2 #2	.90	PVG	-	SA-717-1	<u> </u>	1 0	. 10	1 3/4		$\frac{\pi}{2}$		216	. 7.10	
4											 						+
5					<u> </u>						<u></u>			3 m 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1. (4) ***		
				sion wel	ded; (3) F	orge w	elded; (4) Rivete	ed.			if (1) Fla	t; (2)	Dished; (3) Ellipsoide	1; (4) Hemi	z pheri	cal.
5(t) Boiler	Tubes	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•			5(c) Heade	ers No.							·.		
lian	neter Thi	cknese	Material sp	ecificar	ion no.		AC) Heade			(E	3ox or sin	uous	; Mat. spe	c. no.; Thic	kness)		
_			SA-178											Hydro. T	est. I h		
2		134					Heads	or En	(Sh	ape: M	lat. spec.		hic kness				
2		095	SA-178	Α													
						٠.	5(d) Stayb	olts		<u> </u>		Diam'	ter Size	telitale; Ne	t area)		
					-		Pitch				Ne	t Ar	ea	rted by one	_Max. A	.W.P.	
				-									(Suppor	rted by one	DOIL)		
	Waterv	vall He		-:-1				T	ds or		Materia	1	Hydro.	6(b) Water	1	1 14	aterial
No:	Size a	ınd sha	pe Mate		Thick	iness	Shape	Thic	cknes:	s	spec. n		test, lb		Thickness	s	ec.no.
														2	.134	SA-	-178 A
_					 									2	.095	SA-	178 A
	 				-		 	+				,		2.75	.165	SA-	-178 A
					+		 	+		\neg	- :		1	2	.165	SA-	-178 A
							J				<u>-</u>		100	7(b) Econo	mizer Tu	bes	
7(a) Econo	mizer	Headers				1			1			T		1		
								+					 			1	
		•											+	-	 	+	
						. ~~					-, -		٠	8(b) Supe	charrer T	ubes	
8(a) Super	heater	Headers											J Supe	meater 1	uves	
																-	
								L								-	
					1						т.				· ·		
<u> </u>	+						1										
_			(1) F.W.	Cont.	(2) E	reed	Pipe	(3)						9(b) Tube	s for Oth	er Par	ts
9(a) Other	Parts	(1)		_ (2)			(3)							,		
1	1.0	50" C	D SA-1	06 B	.135	o"Min										-	
2		" O.I				o"Min		Ends									
3		0.1	· DA-1	JU 19	1/			1	No	Conn	ection	ıs I	o Iter	n 10 Ex	cept As	Lis	sted
				יא ייכן	lange	Pad				12	Safary	Valu	2	Flan	ge Pads	3	
10	Opening	s (1) St	eam	. size .p.	nd type o	f nozzi	es or outlets)										
			·							,,,	\ F 1	1	4" F1:	ange Co	nnectio	on St	team
		(3) B	lowoff	<u> </u>	L TRI	TRE C	connection es or outlets)			(4)	reed _	(No.	, size, typ	ange Co	ion of con	nection	*) Head
			(No												12		
			Maximum Al		de Par. a mula on	nd/or	Shop hydro, test	H	leating						1		dro. test
			able Worki		mula on WP is Ba		andp nyaro, resi	s	Surface			_			-1	. ny	
a	Boiler		375	P	G27.2	.2	563	1	7095		Heating to be		ace edion		<u> </u>		
Ь	Waterw		- 31/-				Assembled		1072	7	drum l				L_		
<u> </u>	Econor		 	- 		- 1	Boiler)	1	7883		This be	ating	surface				
c							/	-		(not to	be u	sed for				
l d	Superh	eater	i							(g minimum		<u> </u>		
4	1											1 -	e capacit	w			

Other parts

FORM P-3 MANUFACTURERS' DATA REPORT FOR WATER-TUBE BOILERS, SUPERHEATERS, WATERWALLS, AND ECONOMIZERS

201-2126	As Required b	u the Provis	ions of the	ASME Code Ru	les	. .
	The Babcock				rberton, C	hio
nufactured by	THE DADCOCK		d address of manu		tanooga, T	
	Atlas Chemical	Industries	z Tnc.		_ ,	
anufactured for			and address of pur		110 141410 11	<u> </u>
Integral	•				2626	1.072
entification	Tube Boiler Boiler N	No. BW-23636	<u> </u>		3636 Ye	ar Built 1912
	boiler, superheater, all, economizer)	(Mfrs. Serial	No.) (State and	State No.) (Nati	Hoard No.)	
he chemical and physi	cal properties of all parts me	eet the requiremen	ts of material spe	cifications of the	sme Boiler A Addend	ND PRESSURE YESSE
			ut.a Santan	T		_Dated1968
	struction, and workmanship co s' Partial Data Reports prop			(I or I'		
ems of this report:	•			me, and identifying		
An amount of the second of	·				· · · · · · · · · · · · · · · · · ·	
	Boiler	Assembled	& Tested I	n snop		
We certify the states January 28	nent in this data report to be		ock & Wilco (Manufacturer) Certificate of A	X CO. By	December	rentative) 31, 19 73
	CER	TIFICATE O	F SHOP INSF	PECTION		
OUER MADERY T	ne Babcock & Wilco	ox Company	atWi	lmington, No	rth Ca r oli	na
the undersigned hol	ding a valid commission is	ssued by the Nat	ional Board of B	oiler and Pressure	Vessel Inspecto	rs and/or the State
				•		
The	Hartford S. B. I.	& I. Co.	Hartfo	rd, Connecti	cut	
d employed by			61 Oc	70 and 77		•
e inspected parts of	this boiler referred to as dat	a items Da,	ob, ob, 9a,	10 and 11	and have	examined manufacturer
anufacturer's data rep	ate neither the Inspector nor ort.Furthermore, neither the I d arising from or connected w	inspector nor his e	mployer shall be	expressed or implied liable in any manner	, concerning the	boiler described in th
7	-		A	13-17-	7/	
	Mouse	Commissio	ons	1511	/	
Inspe				lat'l Board or State		
We certify that the	field assembly of all parts	s of this boiler	conforms with th	e requirements of	SECTION I or	IV of the ASME
ILER AND PRESSU	RE VESSEL CODE.					
_	19	Signed		By		
Certificate of Auth	orization to use the	(A) or (S)	Symbol expire	es	19	_
				Y INSPECTION		
the undersigned, hol	ding a valid commission i	ssued by the Nat	ional Board of B	oiler and Pressure	Vessel Inspecto	rs and/or the State
Province of						
nd employed by	tements in this manufacture	erie data sennet	with the describ	ed hoiler and state	that the parts :	eferred to as data item
ave compared the sta	tements in this manuacture	c. a data report		lands of the language	tion have been b	nspected by me and the
o the best of my know	utadas and belief the manuf	facturer and/or the	e assembler has c	onstructed and asse	mbled this boiler	in accordance with the
pplicable sections of	the ASME BOILER AND PRE	SSURE VESSEL	CODE, The descri	Ded Doller was inspe	cted and subject	to a nyatostatic ter
	psi.					
		his employer mak	es any warranty, e	xpressed or implied	, concerning the	boiler described in the
ogning this certific	ort. Furthermore, neither the	Inspector nor his	employer shall be	liable in any manne	for any persona	i injury or property dan
ge or a loss of any kir	nd arising from or connected	with this inspection	on.			•
	19					-
Date		Com	nissions			
Inspec		Com	N	at'l Board or State	and No.	

5(a) 1	Drums	201	-21	26							<u> </u>				
1	Nomina							Shell plat	es			Tube	sheets		le ligament ciency
lo.	diamete in.	r,]	Ft	ength.	١.	Brand	Mate	rial spec. no.	Thickness	Insid	e radius	Thickness	Inside radiu	Longitu-	Circum- ferentia
	24		30-	-6 1/	8	PVQ.	SA	-515-70	7/8		12	7/8	12	.4273	.1998
2		-	<u> </u>	<u> </u>	-									Diag.	.3924
3	48		32.	-1 5/	8	PVQ.	SA	1-515-70	29/32		24	1 17/32	23 11/16	.3568	.3163
4		_	- عر)/		114	~	- /-/							
5															
	ongitudir	al joir	ts	Circum.							Heads			Manholes	Hydro static
	No. &	Effi		No. &	Effi-	Bran	d 1	Material spec.	no.	Thick	cness	Type**	Radius of dish	lo. Si	
1	type *	90	-	type 4 #2	•90	PV	5	SA-515-7	0 3	/4	3/4	#3		212x1	6
2	Ι πΔ		+	4 // 2	•)0	1	•	~~~ /~/						, , , , , , , , , , , , , , , , , , , ,	
3	2 #2	.90	7	2 #2	.90	PV)	SA-515-7	0 1	3/16	1 3/1	6 #3		212x1	6
4	- 11-	• •		_ ,, _	/-										
5															
	Indicate	if (1) Se	amie	ss; (2) F	sion we	1ded; (3) 1	orge w	velded; (4) Rivet	ed. **	Indicate	if (1) Fla	t; (2) Dished; (3) Ellipsoidal;	(4) Hemisph	erical.
) Boiler								ers No						
iam	erer This	kness	Mai	terial sp	ecifica	tion no.	Ī)(c) Head	ers 140	(E	Box or sin	uous; Met. sp	ec. no.; Thick	ness)	
2		34		A-178			1	Head	s or Ends				Hydro. Tes	st, Lb	
2		95		A-178				11040	(hape; N	lat. spec.	no.; Thickness	•)		
								5(d) Stayb	olts						
							1	3(0,012)0		(Mat. sp	ec. no.; l	Diameter; Size	telitale; Net	ires)	
			1				İ	Pitch			Ne	t Area	rted by one bo	Max. A.W.	P
												(Suppo	rted by one bo	117	
Vo.	Size a	nd sh	ape		erial . no.	Thick	eness	Shape	Thickne	ss	Materia spec. n		P Diameter 1		Material spec. no.
															A-178 A
		·													A-178 A
													1/		A-178 A
													7(b) Econom	165 S	<u>A-178 A</u>
7(a	a) Econo	mizer	Head	ders				т				- 10	AD) Econom		
													+		
				ļ				 					1.		
	1			<u> </u>									8(b) Superh	eater Tube	s
8(2	3) Superl	eater	неа	ders				T					T		
									+	-			+		
	-			 -				+	+	-					
	+							+	-	$\neg \vdash$					
				R W	Cont		reed.	Pire	(2)				9(b) Tubes	for Other	Parts
9(8) Other	Parts	(1)_	T. • W •	COH	(2)	. c.cu	1100	(3))(b) Tubes	.or other	
1	17.0	50 ¹¹ (תר	SA_7	.06 В	1,13	5"Mir	n							
2		0.1			.06 B			n Flg'd.	Ends						
3	+ ••	~ • •	-						No	Conn	ection	as To Ite	m 10 Exce	ept As I	isted
	Opening:	(1) 6		1	12"	Flange	Pad			(2) Safety	Valve 2	4" Flange	Pads	
10 (opening:			(No	., size,	and type o	f nozz	ies or outlets)							
		(3) F	low	off_1	1 1/2	2" Fla	nge (Connection	l	(4	Feed_	14" Fl	ange Conr	ection	Steam
		(J) L		(No	., size,	and type	of nozz	les or outlets)				(No., Bize, ty	pe, enu localio		Hea
				ximum A		ode Par. a	nd/or	Shop hydro, tes	Heatir	g				12 Field	hydro, test
	7		a	ble Worki Pressur	e	omula on AWP is B	ased	•	541.40	— .				- ieig	yu.o. test
a	Boiler			375		PG27.2	.2	563	709			surface stamped on		-	
Ь	Vaterw	all						(Assembled				heads.			
С	Econon	nizer						Boiler)	788	<u> </u>		ating surface be used for			
-	C 1	15165							l	}		be used for nining minimus	n		
d	Superh											valve capaci		1	

Other parts

APPENDIX C

REMOTE FIELD EDDY

CURRENT FIELD DATA

THE HARTFORD STEAM BOILER INSPECTION AND INSURANCE CO.

Engineering Services

200 Ashford Center North Suite 300 Atlanta, Georgia 30338 (404) 396-4820

FIELD DATA REPORT

Customer							_				AAP,		- TN	7/25/05
Unit No. West Boiler Tube Size 2" Gauge .095 Material SA-178-A														
Row # Tube # Plugged	Fred	uency 1	.05 MHz	Cur	rent30	0 ma	_ No.	of Cha	nnels _	3 (Sens	4.8		Ref. Std. Ser. #
Now # Note # Plugged Costructed 1-10% 11-20% 21-30% 31-50% 51-50% 61-70% 70% +	Unit	No. Wes	t Boil	er	_ Tube S	Size	2"			Gauge	.09	5	١	Material SA-178-A
Now # Note # Plugged Costructed 1-10% 11-20% 21-30% 31-50% 51-50% 61-70% 70% +	_	г	T		- Standard				Mall i	000 %				T T
2 2 X 3 3 X 4 4 X 5 5 X 6 6 6 7 7 X 8 8 X 9 9 X 10 10 X 11 11 X 12 12 X 13 13 X 14 14 X 15 15 X 16 16 X 17 17 X 18 18 X 19 60 X 20 61 X 21 62 X 22 63 X 23 64 X 24 65 X 25 B 1 X 26 2 X 27 3 X 28 4 X 29 5 X	l	Row #	Tube #	Plugged	Obstructed	1-10%	11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +	Location/Remarks
3 3 X X 4 4 4 X 5 5 X X 6 6 6 X 7 7 X X 8 8 X X 9 9 X X 10 10 X X 11 11 X X 12 12 X X 13 13 X X 14 14 X X 15 15 X X 16 16 X X 17 17 X X 19 60 X X 20 61 X X 21 62 X X 22 63 X X 23 64 X X 24 65 X X 25 B 1 X X 26 2 X X </td <td>1</td> <td>A</td> <td>1</td> <td></td> <td></td> <td></td> <td>х</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Membrane-thicker tube</td>	1	A	1				х							Membrane-thicker tube
4 4 X X 5 5 X X 6 6 X X 7 7 X X 8 8 X Y 9 9 X X 10 10 X X 11 11 X X 12 12 X X 13 13 X X 14 14 X X 15 15 X X 16 16 X X 17 17 X X 18 18 X X 19 60 X X 20 61 X X 21 62 X X 22 63 X X 23 64 X X 24 65 X X 25 B 1 X X 26 2 X X	2		2			Х								
5 5 X Image: contract of the contr	3		3			Х								
6 6 X	4		4			Х				<u> </u>				
7 7 X X 8 8 X X 9 9 X X 10 10 X X 11 11 X X 12 12 X X 13 13 X X 14 14 X X 15 15 X X 16 16 X X 17 17 X X 18 18 X X 20 61 X X 21 62 X X 22 63 X X 23 64 X X 24 65 X X 25 B 1 X X 26 2 X X 27 3 X X 28 4 X X 29 5 X X	5		5			X					<u> </u>			
8 8 X X 9 9 X X 10 10 X X 11 11 11 X 12 12 X X 13 13 X X 14 14 X X 15 15 X X 16 16 X X 17 17 X X 18 18 X X 19 60 X X 20 61 X X 21 62 X X 22 63 X X 23 64 X X 24 65 X X 25 B 1 X Membrane 26 2 X X 27 3 X X 28 4 X X 29 5 X X	6		6			Х	<u> </u>							
9 9 X 10 10 X 11 11 X 12 12 X 13 13 X 14 14 X 15 15 X 16 16 X 17 17 X 18 18 X 19 60 X 20 61 X 21 62 X 22 63 X 23 64 X 24 65 X 25 B 1 X 26 2 X 27 3 X 28 4 X 29 5 X	7		7			_X_								
10 10 X Image: contract of the con	8		8			X								
11 11 X X 12 12 X X 13 13 X X 14 14 X X 15 15 X X 16 16 16 X 17 17 X X 18 18 X X 19 60 X X 20 61 X X 21 62 X X 22 63 X X 23 64 X X 24 65 X X 25 B 1 X Membrane 26 2 X X 27 3 X X 28 4 X X 29 5 X X	9		9			Х								
12 12 X Image: square sq	10		10			Х								
13 13 X Image: square sq	11		11			Х								
14 14 X Image: square sq	12		12			X								
15 15 X	13		13			X								
16 16 X </td <td>14</td> <td></td> <td>14</td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	14		14			Х								
16 16 X </td <td>15</td> <td></td> <td>15</td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	15		15			Х								
18 18 X </td <td></td> <td></td> <td>16</td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			16			Х								
19 60 X 20 61 X 21 62 X 22 63 X 23 64 X 24 65 X 25 B 1 X 26 2 X 27 3 X 28 4 X 29 5 X	17		17			Х								
20 61 X 21 62 X 22 63 X 23 64 X 24 65 X 25 B 1 X 26 2 X 27 3 X 28 4 X 29 5 X	18		18			Х								
20 61 X 21 62 X 22 63 X 23 64 X 24 65 X 25 B 1 X 26 2 X 27 3 X 28 4 X 29 5 X	19		60			Х								
21 62 X 22 63 X 23 64 X 24 65 X 25 B 1 X 26 2 X 27 3 X 28 4 X 29 5 X														
22 63 X Image: square sq		-				Х								
23 64 X X 24 65 X Membrane 25 B 1 X Membrane 26 2 X X 27 3 X X 28 4 X X 29 5 X X														
24 65 X 25 B 1 X 26 2 X 27 3 X 28 4 X 29 5 X														
25 B 1 X Membrane 26 2 X Membrane 27 3 X S 28 4 X S 29 5 X S														
26 2 X 27 3 X 28 4 X 29 5 X		В					Х							Membrane
27 3 X 28 4 X 29 5 X						Х								
28 4 X X 29 5 X														
29 5 X														

TOTALS

Probe S/N 0015

Technician Brian Galvan

Page 1 of 11

Engineering Services

FIELD DATA REPORT

Cus	tomer A	ffilia	ted En	gineer	s, S.	Ε.			vz Clant Cl		nooga	a, TN	T ,	Date 7	/25/9	95	
			Cur														
			iler													a. 001. <i></i>	-
Onit	NO			_ lube s									vialeriai _				
	Row #	Tube #	Plugged	Blocked Obstructed	1-10%	11-20%	21-30%	Wall L	oss %	51-60%	61-70%	70% +	1	Loca	tion/Re	marks	
1		7			Х												
2		8			Х												
3		9			Х												
4		10			Х												
5		-11			Х												
6		12			Х												
7		13			X												
8		14			X									<u>.</u> .			
9		15			Х												
10		16			Х												
11		17			X		ļ						ļ				
12		18			X											-	
13		60			X		_										
14		61			X												
15		62			X												
16		63			X				ļ								
17		64			Х												
18		65			X												
19	С	1				X							Membr	ane			
20		2			X												
21		3			X												
22		4			X										-		<u> </u>
23		5			X												
24		6			X												
25		7			_X												
26		8			X												
27		9			X												
28		10			_X			-									-
29		11			Х												
30		12			Х	l											

TOTALS

Probe S/N 0015 Tec

Technician Brian Galvan

Page 2 of 11

Engineering Services

						FI	ELD	DAT	TA R	EPO	RT				
Cus	tomer A	ffilia	ted En	gineer	s, S	Ε.		F			nooga	a, TN	1	Date 7/25/95	
Fred	quency <u>1</u>	05 MHz	Cur	rent <u>30</u>	0 ma	_ No.	of Chai	nnels _	3 5	Sens	4.8			Ref. Std. Ser.	#
														SA-178-A	
	Row #	Tibo #	Diversed	Blocked				Wall L	oss %					Location/Remarks	
-	HOW #		Plugged	Obstructed	1	11-20%	21-30%	31-40%	41 - 50%	51-60%	61-70%	70% +		Location, nemarko	
1		13			X	-						-			
2	ļ	14			X		ļ	ļ	-	ļ		-			
3	ļ	15			X		ļ	<u> </u>	-	ļ					
4		16			X				 		ļ	ļ			
5		-17			X		ļ		ļ						
6		18			X			<u> </u>	<u> </u>		ļ				
7		60			Х			ļ			ļ				
8		61	·		X										
9		62			Х			ļ							
10		63			X										
11		64			Х										
12		65			Х										
13	D	1				Х							Memb	rane	
14		2			Х										
15		3			Х										
16		4			Х										
17		5			X										
18		6			Х										
19		7			Х										
		8			X										
20 21 22 23		9			X										
22		10			Х										
23		11			X										
24		12			X				_						
25		13			X							-			
26		14			X										
27		15			X										
28		16			X										
20		10			_^										

TOTALS

Probe S/N ___0015

Technician Brian Galvan

Page _3__ of _11_

FIELD DATA REPORT

Customer Affiliated Engineers S.E. Plant Chattanoga, TN Date 7/25/95											VAAP,				
Chit No. West Boiler Tube Size 2" Gauge .095 Material SA-178-A	Cus	tomer <u>A</u>	ffilia	ted En	gineer	s, S	.E.		F	Plant _	Chatt	anoo	ga, '	N Date 7/25/95	
Row # Tube # Plugged Blocked 1.10% 11.20% 21.30% 31.40% 41.50% 51.40% 61.70% 70% +	Freq	juency <u>1</u>	05 MH2	Cur	rent _30	0 ma	_ No.	of Cha	nnels _	3	Sens	4.8		Ref. Std. Ser.	#
No. # No. # Plugged No. No	Unit	NoW	est Bo	iler	_ Tube S	Size	2"			Gauge		95		Material <u>SA-178-A</u>	
1 60 X 2 61 X 3 62 X 4 63 X 5 64 X 6 65 X 7 E 1 X 8 2 X 9 3 X 10 4 X 11 5 X 12 6 X 13 7 X 14 8 X 15 9 X 16 10 X 17 11 X 18 12 X 19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X		Dav. #	Tubo #	Diversed	Blocked				Wall L	oss %				Location / Remarks	
2 61 X X	-	HOW #		Plugged	Obstructed		11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +	Location/ Hemarks	
3 62 X 4 63 X 5 64 X 6 65 X 7 E 1 8 2 X 9 3 X 10 4 X 11 5 X 12 6 X 13 7 X 14 8 X 15 9 X 16 10 X 17 11 X 18 12 X 19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X							_			-	-				
4 63 X X 5 64 X X 6 65 X X 7 E 1 X 8 2 X X 9 3 X X 10 4 X X 11 5 X X 12 6 X X 13 7 X X 14 8 X X 15 9 X X 16 10 X X 17 11 X X 19 13 X X 20 14 X X 21 15 X X 22 16 X X 23 17 X X 24 18 X X 25 60 X X 26 61 X X 28 63 X X		<u></u>						<u> </u>			 	-			
5 64 X X X X X X X X Membrane Membrane X X Y Membrane X Y <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>-</td> <td> </td> <td></td> <td>-</td> <td></td> <td></td>							<u> </u>			-	 		-		
6 65 X X Membrane 7 E 1 X Membrane 9 3 X X Membrane 10 4 X X Membrane 11 5 X X Membrane 12 6 X Membrane Membrane 11 1 X Membrane Membrane 12 1 1 X Membrane 12 1 1 X Membrane Membrane 12 1 1 X Membrane Membrane Membrane <						-	-	-	<u> </u>	 	-				
7 E 1 X Membrane 9 3 X X Membrane 10 4 X X X 11 5 X X X 12 6 X X X 13 7 X X X 14 8 X X X 15 9 X X X 16 10 X X X 17 11 X X X 19 13 X X X 20 14 X X X 21 15 X X X 22 16 X X X 23 17 X X X 24 18 X X X 25 60 X X X 26 61 X X X 29 64 X X X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td> </td> <td>-</td> <td></td> <td></td> <td></td> <td></td>									-	 	-				
8 2 X 9 3 X 10 4 X 11 5 X 12 6 X 13 7 X 14 8 X 15 9 X 16 10 X 17 11 X 18 12 X 19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X						X					-		-		
9 3 X 10 4 X 11 5 X 12 6 X 13 7 X 14 8 X 15 9 X 16 10 X 17 11 X 18 12 X 19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X		E					<u> </u>		 	ļ	 		-	Membrane	
10 4 X 11 5 X 12 6 X 13 7 X 14 8 X 15 9 X 16 10 X 17 11 X 18 12 X 19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X											 				
11 5 X 12 6 X 13 7 X 14 8 X 15 9 X 16 10 X 17 11 X 18 12 X 19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X							-			-			<u> </u>		
12 6 X X 13 7 X X 14 8 X X 15 9 X X 16 10 X X 17 11 X X 18 12 X X 19 13 X X 20 14 X X 21 15 X X 22 16 X X 23 17 X X 24 18 X X 25 60 X X 26 61 X X 28 63 X X 29 64 X X										-	 		 		
13 7 X 14 8 X 15 9 X 16 10 X 17 11 X 18 12 X 19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X					-				-	-	-	-			
14 8 X 15 9 X 16 10 X 17 11 X 18 12 X 19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X								ļ	-						
15 9 X										 					
16 10 X 17 11 X 18 12 X 19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X										-					N
17 11 X 18 12 X 19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X															
18 12 X 19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X													 		
19 13 X 20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X						-					<u> </u>	-			
20 14 X 21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X															
21 15 X 22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X				*											
22 16 X 23 17 X 24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X								-		 					
23 17 X </td <td></td>															
24 18 X 25 60 X 26 61 X 27 62 X 28 63 X 29 64 X															
25 60 X 26 61 X 27 62 X 28 63 X 29 64 X															
26 61 X 27 62 X 28 63 X 29 64 X															
27 62 X 28 63 X 29 64 X															
28 63 X 29 64 X														****	
29 64 X										-					
	-														

TOTALS

Probe S/N 0015

Technician Brian Galvan

Page _4_ of _11_

Engineering Services

FIELD DATA REPORT

		cc	. 1 5						1	VAAP,		т	7/25/05
													N Date7/25/95
Fred	quency <u>1</u>	05 MHz	Cur	rent <u>30</u>	0 ma	_ No. 6	of Char	nnels _	3_ 5	Sens	4.8		Ref. Std. Ser. #
Unit	No. <u>W</u>	est Bo	iler	_ Tube S	Size	2"			Gauge	0	95	!	Material <u>SA-178-A</u>
	Row #	Tube #	Plugged	Blocked				Wall L	oss %		la. 200	Izes	Location/Remarks
-			Plugged	Obstructed	1-10%		21-30%	31-40%	41-50%	51-60%	61-70%	70% +	Membrane
1	F	1			77	X							Membrane
2		2		 	X	-	 						
3		3			X	 	-						
4		4			Х						-		
5		- 5		-	X								
6		6			X								
7		7			X								
8		8		-	X	-	 			-			
9		9			X								
10		10			X	<u> </u>							
11 12		11			X								
		12			X								
13		13			X								
14		14			X				_				
15		15			X								
16		16			X								
17		17			X								
18		18			X								
19		60			X								
20		61			X								
21		62			X								
22		63			X								
23		64			X								
24		65			X								
25		80			X				•				
26		81			X								
27		82			X								

TOTALS

Probe S/N 0015

83 84

85

X

Technician Brian Galvan

Page __5_ of __11_

Page _ 6 _ of _ 11

Probe S/N_

200 Ashford Center North Suite 300 Atlanta, Georgia 30338 (404) 396-4820

FIELD DATA REPORT

									•	VAAP,					
Cus	tomer A	ffilia	ted En	gineer	s, S.	E.		F	Plant	Chatt	anoog	ga, T	N	Date <u>7/25/</u>	/95
Fred	quency 1	05 MHz	Cur	rent <u>30</u>	0 ma	No.	of Char	nnels _	3	Sens	4.8			Ref. S	Std. Ser. #
Unit	NoW	est Bo	iler	_ Tube S	Size	2"			Gauge	.09	5	/	Material _	SA-178-A	1
	Row #	Tubo #	Plugged	Blocked				Wall L	oss %				1	Location/R	lemarks
-	NOW #	 	riugged	Obstructed		11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +			- Condition
1		86			X		-	-				-			
2		87			X			<u> </u>	-				 		
3		88			X		<u> </u>		-	-					
4		89		 	X	 		-	-	-					
5		90			X			 	-						
7		91	 		X		-			 					
8		92			X	<u> </u>									
9		93			X				 						
10		94 95			X		-		-						
11		96			X				 				!		
12		97			X									8.83	
13	G	1			Λ	Х							Membr	ane	
14		2			Х				†						
15		3			X										
16		4			X				1						
17		5			X										
18		6			Х										
19		7			X										
20		8			Х										
21		9			X										
22		10			Х										
23		11			Х										
24		12			Х										
25		13			Х										
26		14			Х										
27		15			Х										
28		16			Х										
29		17			Х										
30		18			Х										
TO	TALS		-												

Brian Galvan

Technician _

74

FIELD DATA REPORT

Cus	tomer A	ffilia	ted En	gineer	s, S.	Ε.		1	Plant	Chatt		ga, T	N Date 7/25/95
													Ref. Std. Ser. #
													Material SA-178-A
_			r	Blocked				Wall I	oss %				
	Row #	Tube #	Plugged	Obstructed	1-10%	11-20%	21-30%	31-40%	41-50	% 51-60%	61 - 70%	70% +	Location/Remarks
1		60			X			ļ					
2		61			Х			<u> </u>					·
3		62			Х		<u> </u>	ļ					
4		63			X								
5		64			Х								
6		65			Х								
7		80				X							General wall loss-midway
8		81			Х								
9		82				Х							Possible material change
10		83			Х								
11		84			Х								
12		85			Х								
13		86				Х							Possible material change
14		87			X				Ť				
15		88			Х								
16		89			X								
17		90				Х							Possible material change
18		91			Х								
19		92			Х								
20		93			Х				1				
21		94				X							Possible material change
22		95			Х								
23		96			Х								
24		97				X							Membrane
25	Н	60		-	Х	21							
26	11	61			X				<u> </u>				
27		62				Х							Possible material change
28		63			v	Λ				+			3
29					X				 				
		64 65			X X				1				
30							L		<u> </u>			1	
TOTALS *Tubes 82, 86, 90, 94 may be of a greater thickness to allow for attachments (soot blower).													
Dro	he S/N	001	5				Techn	ician	Br	ian Ga	lvan		Page7_ of11_

75

VAAP,													
Cus	tomer A	ffilia	ted En	gineer	s, S	.E.		ا	Plant	Chat	tanoog	ga, 1	<u>TN</u> Date <u>7/25/95</u>
Fred	uency 1	05 MHz	Cur	rrent_30	0 ma	_ No.	of Cha	nnels _	3	Sens	4.8		Ref. Std. Ser. #
Unit No. West Boiler Tube Size 2" Gauge .095 Material SA-178-A													
	Row #	Tube #	Plugged	Blocked Obstructed	1-10%	11-20%	21-30%	31 · 40%	OSS %	51-609	61 70%	70% +	Location/Remarks
1		80				X							Possible material change
2		81			Х								
3		82			X								
4		83			Х								
5		84				X							Possible material change
6		85			Х								
7		86			Х		<u> </u>			<u> </u>			
8		87			Х				<u> </u>	<u> </u>			
9		88				X							Possible material change
10		89			X			<u> </u>					
11		90			X								
12		91			Х								
13		92				X							Possible material change
14		93			X								
15		94			X								
16		95			X								
17		96				X							Possible material change
18		97				Х			ļ				
19	I	60			X								
20		61			X				ļ				
21	·	62			X								
22		63			X								
23		64			X								
24		65			X								
25		80			X								
26		81			X								
27		82			X								
28		83			X								
29		84			Х								
30		85			X								
TOTALS *Tubes 62, 80, 84, 88, 92, 96 may be of a greater thickness to allow for attachments (soot blower).													
Probe S/N 0015 Technician Brian Galvan Page 8 of 11													

76

Page 9 of 11

Probe S/N ___0015

200 Ashford Center North Suite 300 Atlanta, Georgia 30338 (404) 396-4820

FIELD DATA REPORT

									'	VAAP							
Cus	tomer A	ffilia	ted En	gineer	s, S.	E.		F	Plant	Chatt	anoog	ga, T	N	Date _	7/25/9	95	
			Cur														ŧ
Unit	NoW	est Bo	iler	Tube S	Size	2"			Gauge	0	95	-	Material	SA-	178-A		
	Τ		T	Blocked				Wall L	oss %								
	Row #	Tube #	Plugged	Obstructed	1-10%	11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +		Loc	ation/Re	marks	
1		86			X		ļ				ļ	<u> </u>					
2		87			X		ļ					ļ	ļ				
3		88			Х							ļ					
4		89			X							ļ	ļ				
5		90			Х							ļ	ļ				
6		91			Х								ļ				
7		92			Х						ļ						
8		93			Х		ļ						ļ				
9		94			X					ļ							
10		95			X			<u> </u>									
11		96			X												
12		97				Х					<u></u>		Memb	rane			
13	J	60			X												
14		61			Х												
15		62			X												
16		63			X		ļ										
17		64			Х									4			
18		65			Х												
19		80			Х												
20		81			X												
21	•	82			X												
22		83			X												
23		84			Х												
24		85			Х											,	
25		86			Х												
26		87			Х												
27		88		i	Х												
28		89			Х												
29		90			Х												
30		91			х												
	TALS		•	•												-	

Technician Brian Galvan

Suite 300 Atlanta, Georgia 30338 Engineering Services

(404) 396-4820

200 Ashford Center North

FIELD DATA REPORT

VAAP	,
------	---

Cus	tomer A	ffilia	ted En	gineer	s, S	.E.				VAAP, Chatt		ga, T	N	Date	7/25/95	
															Ref. Std. Ser. #	
Unit	NoW	est Bo	ller	_ Tube S	Size				Gauge		5	^	Material	_SA-I	78-A	_
	Row #	Tube #	Plugged	Blocked Obstructed		L	Ja	Wall L	oss %	Isa sas	Tot. 700	1700		Loc	cation/Remarks	
1		92	- 55	Obstructed	X	111-20%	21-30%	31-40%	41.50%	51-60%	61-70-6	70% +				_
2		93	 		X	 	1									_
3		94			X	 	1				 					_
4		95			X						 					
5		96			X	†	 		†	1						
6		97				x		1	-				Memb	rane		
7	К	60			Х	Α.	†	1					Tremo	Lanc		_
8		61			Х											_
9		62			Х											
110		63			Х											_
11		64			X											_
12		65			Х											_
13		80				Х							Gen.	wall	loss-low-mid	
14		81				Х									loss-mid-upper	
15		82	·		Х											
16		83			Х											
17		84			Х											
18		85			Х											
19		86			X											
20		87			Х											
21		88			Х											
22		89			X											
23		90			X											
24		91			Х											
25		92				Х							Gen.	wall	loss-upper	
26		93			X											
27		94			Х											
28		95			Х											
29		96			Х											
30		97				х							Memb	rane		

TOTALS

Probe S/N_

Technician Brian Galvan

Page 10 of 11

THE HARTFORD STEAM BOILER INSPECTION AND INSURANCE CO.

Engineering Services

200 Ashford Center North Suite 300 Atlanta, Georgia 30338 (404) 396-4820

FIELD DATA REPORT

										/AAP,		_			7/05	/o=		
	nit No. <u>West Boiler</u> Tube Size <u>2"</u> Gauge <u>.095</u> Material <u>SA-178-A</u>																	
Freq	requency 105 MHz Current 300 ma No. of Channels 3 Sens. 4.8 Ref. Std. Ser. #																	
Unit	How # Tube # Plugged Obstructed 1-10% 11-20% 21-30% 31-40% 41-50% 51-60% 61-70% 70% + Localion/Remarks 1 L 60 X																	
		,	T		1								T					
	Row #	Tube #	Plugged	Obstructed	1-10%	11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +		Lo	cation/I	Remarks	3	
1	L	60			Х													
2		61			Х													
3		62			Х													
4		63			X													
5		64			X													
6		65			Х													
7		80			X				<u> </u>									
8		81			Х													
9		82				х							Gen.	wall	los	s-low	-mid	
10		83			Х													
11		84			X													
12		85			Х													
13		86			Х				<u></u>									
14		87			Х													
15		88			Х													
16		89			X													
17		90			X													
18		91				X							Gen.	wall	los	s-low	-mid	,
19		92			Х													
20		93			X													
21	-	94			X													
22		95			Х													
23		96			Х													
24		97				Х							Membi	ane				
25																		
26																		
27																		
28																		
29																		
30		-																
	ALS	*Bli	sters v	were no	oted	on L	-82 ı	ıpon	subse	guen	t vis	ual :	insped	tion				
. • .						J 1	(1	- -		F 3.					
	6 44 :	001	-			_			n .	- 0	1				_	1.1		1.1
Prob	oe S/N	001:	<u> </u>			7	iechn	ician .	<u>Bria</u> 79	in Ga.	ıvan				Pag	je <u>11</u>	_ 01 _	11

THE HARTFORD STEAM BOILER INSPECTION AND INSURANCE CO.

Engineering Services

200 Ashford Center North Suite 300 Atlanta, Georgia 30338 (404) 396-4820

FIELD DATA REPORT

		Ρ	

Cus	tomer A	ffilia	ated En	gineer	s, S	.Е.		F	Plant C	hatta	nooga	a, TN	Date 7/24/95	
Fred	juency <u>1</u>	05 MHz	Cur	rent A	.C	_ No. (of Chai	nnels _	3 :	Sens	4.8		Ref. Std. Ser. #	
													Material <u>SA-178-A</u>	
		,							oss %					
	Row #	Tube #	Plugged	Blocked Obstructed	1-10%	11-20%	21-30%	31 - 40%	41-50%	51-60%	61 - 70%	70% +	Location/Remarks	
1	A	1				Х							Membrane	
2		2			Х									
3		3			Х				<u> </u>					
4		4			Х									
5		5			Х									
6		6	<u> </u>		Х					ļ				
7		7			X									_
8		8			Х									
9		9			Х			<u> </u>	ļ					
10		10			X				<u> </u>	<u> </u>				_
11		11			X	ļ			<u> </u>					
12		12			X					<u> </u>				
13		13			X				ļ					
14		14			X									
15		15			X				ļ	ļ				
16		16			X									
17		17			X					<u> </u>				
18		18			X									
19		60			X				_					
20		61			X									
21		62			X				ļ					
22		63			X				ļ					
23		64			X									
24		65			X				ļ					
25	В	1				X			ļ. <u>.</u>				Membrane	
26		2			Х									
27		3			X									
28		4			X									
29		5			х									
30		6			X									

TOTALS

Probe S/N <u>1537128</u>

Technician Brian Galvan

Page 1 of 11

THE HARTFORD STEAM BOILER INSPECTION AND INSURANCE CO.

Engineering Services

200 Ashford Center North Suite 300 Atlanta, Georgia 30338 (404) 396-4820

FIELD DATA REPORT

									V.	AAP,							
Cus	tomerA	Affilia	ted Er	ngineer	s, S	.E.		P	lant C	hatta	noog	a, TN	<u> </u>	Date	7/24/9	5	
Fred	quency <u>1</u>	05 MHz	Cur	rentA	C	_ No. 0	of Char	nnels _	3 5	Sens	4.8		_		Ref. Std	. Ser. # .	
Unit	No	East		_ Tube S	Size	2"		(Gauge	.09	5	١	/laterial _	SA	-178-A		
	T	T	[St	Blocked	T			Wall L]	- 10	cation/Ren		
_	Row #	Tube #	Plugged	Obstructed	1-10%	11-20%	21-30%	31-40%	41 - 50%	51-60%	61-70%	70% +		LO	cation/ Ren	narks	
1		7			X			<u> </u>									
2	ļ	8			X												
3	ļ	9			X					<u> </u>							
4		10			Х												
5		- 11			X												
6		12			X		<u> </u>										
7		13			Х												
8		14	· .		Х												
9	<u> </u>	15			X												
10		16			Х												
11		17			Х								L				
12		18			Х												
13		60			Х												
14		61			Х												
15		62			X											,	
16		63			Х												
17		64			Х								***********			······································	
18		65			Х								·				
19	С	1				Х							Memb	rane			
20		2			Х												
21		3		-	Х												
22		4			X												
23		5			X												
24		6			X												
25		7			X												
26		8			X										11.		
27		9															
28					X	-,							Poss	1h1c	pittir	o m43	
120	ı	10 l	- 1	I	- 1	X	- 1	- 1		- 1	- 1	i	ross	TOTE	PILLLI	rk mrd	way

TOTALS

29

30

Probe S/N ___1537128

11

12

X

Х

Technician Brian Galvan

Page 2 of 11

STEAM BOILER INSPECTION AND INSURANCE CO.

Engineering Services

200 Ashford Center North Suite 300 Atlanta, Georgia 30338 (404) 396-4820

FIELD DATA REPORT

VAAP,

Cus	stomer A	ffilia	ted En	gineer	s, S	.E.		F	Plant Cl	natta	noog	a, TN	D	ate _ 7 /	24/95	<u>;</u>	
Free	rquency 105 MHz Current AC No. of Channels 3 Sens. 4.8 Ref. Std. Ser. #																
													<u> </u>				
	Row #	Tube #	Plugged	Blocked Obstructed	1-10%	11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +		Location	on/Rema	arks	
1		13			X		<u> </u>										-
2		14			X												
3	<u> </u>	15			X												
4		16			Х												
5		-17			Х												
6		18			X			<u> </u>					ļ				
7		60			Х		ļ										
8		61			Х												
9		62			X								ļ				
10		63			X												
11		64			X												
12		65			X												
13	D	1				X		ļ					Membra	ne			
14		2			X												
15		3			X												
16		4			X			L									
17		5			X												
18		6			Х			ļ									
19		7			X												
20		8			X												
21		9			Х												
22		10	-		Х												
23		11			X												
24		12			Х								•				
25		13			X												
26		14			_X												
27		15			Х												
28		16			Х												
29		17			Х												
30		18			Х								***				

TOTALS

Probe S/N __1537128

Technician Brian Galvan

Page <u>3</u> of <u>11</u>

Engineering Services

FIELD DATA REPORT

						LII	ELD	DAI	A DI	AP,	n i		
Cus	tomer_	Affilia	ted En	gineer	s, S	Ε		P	lant Cl	natta	nooga	a, TN	Date 7/24/95
Frec	quency_	105 MHz	Cur	rent <u>A</u>	С	_ No. 0	of Char	nnels _	<u>3</u>	Sens	4.8		Ref. Std. Ser. #
Unit	No	East		_ Tube S	Size	2"			Gauge	.09	5	^	Material SA-178-A
Г	Row #	Tube #	Plugged	Blocked				Wall L	oss %				Location/Remarks
-	now #		lagged	Obstructed		11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +	
1		60			X						-		
2		61			X		-	-			-		
3		62	1	-	X			 		-	-	-	
4		63			X			├				<u> </u>	
5		-64		ļ	X		-	 					
6		65			X		_	-					N-1
7	E	1		-		X							Membrane
8		2			X								
9		3	ļ		X	ļ					-		
10 11 12		4		<u> </u>	X			ļ					
11		5			X								
12		6	ļ		X			ļ					
13	ļ <u>.</u>	7			X					<u> </u>			
14		8			X								
15		9		ļ	X								
16		10			X								
17		11			X								
18		12			Х				ļ				
19		13			Х								
20		14			X								
21		15			Х			,					
22		16			Х		Ĺ						
23		17			X								
24		18			Х								
25		60			Х								
26		61			X								
27		62			X								
28		63			Х								
29		64			Х								

TOTALS

Probe S/N <u>1537128</u>

65

Technician Brian Galvan

Page _4_ of _11_

X

Engineering Services

FIELD DATA REPORT

									V.	AAP,			
Cus	tomer	Affilia	ted En	ngineer	s, S	.E.	_	P	lant C	hatta	noog	a, TN	Date 7/24/95
													Ref. Std. Ser. #
Unit	No	East		_ Tube S	Size	2"		(Gauge	.09	5	^	Material <u>SA-178-A</u>
	Row #	Tubo #	Diversed	Blocked				Wall L	oss %			,	Location/Remarks
-	-		Pluggea	Obstructed	1-10%		21-30%	31-40%	41-50%	51-60%	61-70%	70% +	1
1	F	1			ļ	X			<u> </u>				Membrane
2	ļ	2	-	ļ	X								
3		3			X	ļ							
4		4			X								
5		. 5			X								
6		6			X							ļ	
7		7			X								
8		8			X								
9		9			х								
10		10	ŀ		Х								
		11			Х								
12		12			Х								
13		13			Х								
11 12 13 14		14				Х							Lower
15		15			Х								·
16		16			Х								
17		17			X								
18		18			X								
19		60			X								
	_												
20		61			X						-		
21		62					-						
22		63			X								
23		64			X								
24		65			X								
25		80			X								
26		81			X								
27		82			X								
28		83			X								
29		84			X								

TOTALS

Probe S/N __1537128

85

Technician

Brian Galvan

Page <u>5</u> of <u>11</u>

FIELD DATA REPORT

Cun	tomor A	ffilia	ted En	gineer	s. S	.Е.		_		AAP, hatta	nooga	a, TN		Date	7/24	/95	
																	. #
Unit	NoE	ast		_ Tube S	Size						193	P	viateriai	_ 5A- 1	. 70-A		
	Row #	Tube #	Plugged	Blocked Obstructed	1-10%	11.20%	21-30%	Wall L	oss %	51-60%	61-70%	70% +		Loc	cation/F	Remarks	
1		86		Coondeled	X	11 20 0	2, 55 4										
2		87			Х												
3		88			Х												
4		89			Х												
5		90			Х												
6		91			Х												
7		92			Х												
8		93			Х		<u> </u>										
9		94			Х			ļ									
10		95			Х												
11		96			Х												
12		97				X	<u></u>						Memb	rane			
13	G	1				X			ļ				Memb	rane			
14		2			X				ļ	<u> </u>					-		
15		3			X												
16		4			Х												
17		5			X				<u> </u>								
18		6			X												
19		7			X												
20		8			X												
21		9			X												
22		10			X				<u> </u>								
23		11			X												
24		12			X				-								
25		13			Х			 	-								
26		14			X				-								
27		15			X	·											
28		16			X				-								
29		17			X				-								
30		18			X												

TOTALS

Probe S/N __1537128

Technician Brian Galvan

Page <u>6</u> of <u>11</u>

THE HARTFORD STEAM BOILER INSPECTION AND INSURANCE CO.

Engineering Services

200 Ashford Center North Suite 300 Atlanta, Georgia 30338 (404) 396-4820

								DAT	V	AAP,					
Cus	tomer _A	ffilia	ted En	gineer	s, S	Е.		P	lant Cl	natta	nooga	a, TN	Date	7/24/95	
Fred	quency <u>1</u>	05 MHz	Cur	rent A	.C	No. o	of Char	nnels _	3 8	Sens	4.8			_ Ref. Std. S	Ser. #
													Material SA		
Г	Row #	Tubo #	Blugged	Blocked				Wall L	oss %				Lo	ecation / Pame	neko
-	HOW #		Flugged	Obstructed		11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +		Cation/ nema	111/2
1		60			X	ļ					ļ				
2		61			X			 							
3		62	-		X			-							
4		63		ļ	X		<u> </u>	<u> </u>							
5	ļ	.64			X										
6	<u> </u>	65			X										
7		80			X										
8		81			X										
9		82				X							Possible	materia	l change
10		83			X										
11 12 13		84			X								•		
12		85			X										
13		86				X							Possible	materia	l change
14		87			Х										
15		88			Х								-,		
16		89			Х										
17		90				X							Possible	materia	l change
18		91			X										
19		92			X										
20		93			Х										
21	·	94				Х							Possible	materia	al change
22		95			X										
23		96			X										
24		97				X							Membrane	!	
25	Н	60			X										
26		61			Х										
27		62			Х										
28		63			Х										
29		64			Х		•								
30		65		İ	Х										
TO	TALS	*****	haa 92	96 0	0 0	/		of o	~~~	+04 -	ator	ial +	hicknood	to	

Tubes 82, 86, 90, 94 may be of a greater material thickness to allow for attachments (soot blower).

1537128 Probe S/N_

Technician Brian Galvan

Page 7 of 11

Page <u>8</u> of <u>11</u>

200 Ashford Center North Suite 300 Atlanta, Georgia 30338 (404) 396-4820

Engineering Services

Probe S/N <u>1537128</u>

						FI	ELD	DA	TA R	EPO AAP,	RI		
Cus	tomerA	ffilia	ted En	gineer	s, S	.E.					anooga	, TN	Date 7/24/95
													Ref. Std. Ser. #
							' Gauge <u>.095</u>						
Г	I	1		Blocked				Wall I	oss %				Lacobias (Domester
	How #	lube #	Plugged	Obstructed	1-10%	11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +	
1		80				X	ļ	<u> </u>	ļ	ļ	1		Possible material change-
2									ļ				attachment
3		81			X			<u> </u>					
4		82			X								
5		83			X								
6		84				X							Possible material change-
7									<u> </u>				attachment
8		85			Х								
9		86			X								
10		87		-	Х								
11		88				Х							Possible material change-
12													attachment
13		89			X								
14		90			Х								
15		91			Х								
16		92				Х							Possible material change
17		93			Х								
18		94			Х								
19		95			Х								
20		96			Х		-						
21		97				Х							Membrane or change in
22													thickness
23	I	60			Х								
24		61			Х								
25		62			Х								
26		63			X								
27		64			X								
28		65			X								
29		80			X								
30		81			X					-			
			00	0/ 2								-1 -	history to all
10	TALS		es 80, attac			_			grea	rer 11	uateri	aı [hickness to allow

Technician Brian Galvan

FIELD DATA REPORT

12 93 X Image: square sq		VAAP,																
No. East Tube Size 2" Gauge .095 Material SA-178-A																		
Row # Tube # Plugged		Frequency 105 MHz Current AC No. of Channels															d. Ser. #	:
No.	Unit	NoE	ast		_ Tube S	Size	2"			Gauge	09	5	!	Material .	SA-1	78-A		
No.		D #	T.b. #	[DI	Blocked	Γ			Wall L	oss %				Τ		15		
2 83 X	_	How #	Tube #	Pluggea	Obstructed	1-10%	11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +	ļ	Loc	ation/He	emarks	
3 84 X X 4 85 X X 5 86 X X 6 87 X X 7 88 X X 8 89 X X 9 90 X X 10 91 X X 11 92 X X 12 93 X X 13 94 X X 14 95 X X 15 96 X X 16 97 X Membrane 17 J 60 X 18 61 X X 20 63 X X 21 64 X X 22 65 X X 23 80 X X 24 81 X X 25 82 X X 26 83 X X <td>_</td> <td>ļ</td> <td>82</td> <td></td> <td></td> <td>X</td> <td></td> <td>ļ</td> <td>ļ</td> <td><u> </u></td> <td>ļ</td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_	ļ	82			X		ļ	ļ	<u> </u>	ļ	ļ						
4 85 X 5 86 X 6 87 X 7 88 X 8 89 X 9 90 X 10 91 X 11 92 X 12 93 X 13 94 X 14 95 X 15 96 X 16 97 X 17 J 60 X 18 61 X 19 62 X 20 63 X 21 64 X 22 65 X 23 80 X 24 81 X 25 82 X 26 83 X 27 84 X 29 86 X	2		83			X		 	<u> </u>	ļ	ļ							
5 86 X X 6 87 X X 7 38 X X 8 89 X X 9 90 X X 10 91 X X 11 92 X X 12 93 X X 13 94 X X 14 95 X X 15 96 X X 16 97 X Membrane 17 J 60 X 18 61 X X 19 62 X X 20 63 X X 21 64 X X 22 65 X X 23 80 X X 24 81 X X 25 82 X X 26 83 X X 27 84 X X<	3		84			Х												
6 87 X	4		85			X		ļ	ļ									
7 88 X X 8 89 X X 9 90 X X 10 91 X X 11 92 X X 12 93 X X 13 94 X X 14 95 X X 15 96 X X 16 97 X Membrane 17 J 60 X 18 61 X X 19 62 X X 20 63 X X 21 64 X X 22 65 X X 23 80 X X 24 81 X X 25 82 X X 26 83 X X 29 86 X X	5		86			X				ļ								
8 89 X Image: square squ	6		87			X			<u> </u>									
19 90 X Image: square sq	7		88			X												
10 91 X	8		89			X			<u> </u>									
11 92 X			90			X												
11 92 X	10		91			X			ļ									
13 94 X X X X X X X X X Membrane X Membrane X X X X Membrane X </td <td>11</td> <td></td> <td>92</td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	11		92			X			<u> </u>									
14 95 X	12		93			Х												
15 96 X Membrane 16 97 X Membrane 17 J 60 X Membrane 18 61 X S S 19 62 X S S 20 63 X S S 21 64 X S S 23 80 X S S 24 81 X S S 25 82 X S S 26 83 X S S 27 84 X S S 29 86 X S S	13		94	:		Х												
16 97 X Membrane 17 J 60 X S 18 61 X S S 19 62 X S S 20 63 X S S 21 64 X S S 22 65 X S S 23 80 X S S 24 81 X S S 26 83 X S S 27 84 X S S 29 86 X S S	14		95			X												
17 J 60 X I	15		96			Х												
18 61 X	16		97				X							Memb:	rane			
19 62 X	17	J	60			Х												
20 63 X Image: square sq	18		61			Х												
21 64 X 22 65 X 23 80 X 24 81 X 25 82 X 26 83 X 27 84 X 28 85 X 29 86 X	19		62			Х												
21 64 X 22 65 X 23 80 X 24 81 X 25 82 X 26 83 X 27 84 X 28 85 X 29 86 X	20		63			Х								-				
22 65 X 23 80 X 24 81 X 25 82 X 26 83 X 27 84 X 28 85 X 29 86 X	21		64			Х												
23 80 X Image: square sq	22																	
24 81 X 25 82 X 26 83 X 27 84 X 28 85 X 29 86 X																		
25 82 X 26 83 X 27 84 X 28 85 X 29 86 X																		
26 83 X 27 84 X 28 85 X 29 86 X		ĺ																
27 84 X 28 85 X 29 86 X																		
28 85 X 29 86 X																		
29 86 X																		
	b		87	1		X												

TOTALS

Probe S/N __1537128

Technician Brian Galvan

Page 9 of 11

Engineering Services

FIELD DATA REPORT

													Date _7/24/95
													Ref. Std. Ser. #
nit	No. <u>E</u>	ast		_ Tube S	Size	2"		(Gauge .	.0	95	١	Material <u>SA-178-A</u>
		I	[B)	Blocked				Wall L	oss %_				Location/Remarks
	Row #		Plugged	Obstructed		11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +	Eccation/ Hemans
1		94	ļ		X		<u> </u>	-			-	<u> </u>	
2		95			X		<u> </u>	-					
3		96			X		ļ	ļ			-		
4		97				X	ļ				-		Membrane
5	L	60	<u> </u>		X			ļ					
6		61		ļ	X						<u> </u>		
7		62			X		<u> </u>				-		
8		63			X						ļ		
9		64			X		ļ						
10		65			X			ļ					
11		80			X								
12		81			X	<u> </u>							
13		82			X							<u> </u>	
14		83			X								
15		84			X			,					
16		85			X								
17		86			X						<u> </u>		
18		87			X								
19		88			X								
20		89			Х								
21		90			Х								
22		91			Х								
23		92			Х								
24		93				Х							General wall loss
25		94			Х								
26		95			Х								
27		96			X					,			
28		97			 	Х							Membrane
<u>20</u> 29		1			<u> </u>								
30				ļ									
	TALS						L	1	1		ــــــــــــــــــــــــــــــــــــــ		

Probe S/N 1537128

Technician Brian Galvan

Page 11 of 11

Engineering Services

FIELD DATA REPORT

AAP,

Cust	ustomer Affiliated Engineers, S.E. Plant Chattanooga, IN Date //24/95												
													Ref. Std. Ser. #
Unit	NoE	ast		_ Tube S	Size	2"		(3auge.	.09	5		Material <u>SA-178-A</u>
	D #	T.5- #	Plugged	Blocked				Wall Lo	oss %				Location/Remarks
	Row #	Tube #	Pluggea	Obstructed	1-10%	11-20%	21-30%	31-40%	41-50%	51-60%	61-70%	70% +	Location, Hemaiks
1		88			X								
2		89	<u> </u>		X								
3		90			X								
4		91			X								
5		92			Х								·
6		93			X								
7		94			Х								
8		95			Х								
9		96			X								
10		97				Х							Membrane
11	K	60			Х								
12		61		İ	Х								
13		62			Х								
14		63			Х								
15		64			X			٠,					
16		65			X								
17		80			Х								
18		81			Х								
19		82			X								
20		83			X								
21		84	1		X								
22		85			X								
23		86			X								
24		87			X								
25		88			X								
26		89			X								
27					X								
		90				<u> </u>	 					-	
28		91			X								
29		92			X	 	-						
30		93	<u>≥`</u>		X	<u> </u>	L	L			<u> </u>	Ь	

TOTALS

Probe S/N 1537128

Technician Brian Galvan

Page 10 of 11

APPENDIX D BOILER TUBE LAYOUT

APPENDIX E TUBE THICKNESS

West Boiler Tube Thickness

The following ultrasonic thickness measurements were obtained from the water wall tubes within the furnace area. The tubes were numbered from the front to the rear:

Right (short) Water Wall

Tube #	Loc. 1	Loc. 2	Loc. 3	Loc. 4
5	.139	.140	.139	.141
10	.138	.139	.140	.140
15	.140	.141	.141	.140 Original
20	.139	.142	.139	.139 thickness
25	.138	.140	.139	.139 .134" these
30	.140	.139	.140	.141 tubes.
35	.139	.140	.139	.140
40	.140	.142	.140	.141
45	.138	.139	.140	.141
50	.138	.138	.139	.140
55	.139	.140	.140	.141
60	.140	.142	.140	.140
65	.141	.143	.142	.142
70	.140	.142	.141	.141
75	.138	.139	.139	.140
80	. 106	.108	.105	.109 Original
85	.102	.104	.106	.105 thickness
90	. 104	.103	.106	.105 .095 these

Rear Wall

Tube #	Loc. 1	Loc. 2	Loc. 3	Loc. 4
2	.138	.137	.139	.140
4	.139	.139	.138	.139
6	.137	.139	.137	.138
8	.136	.138	.138	.139 Original
10	.138	.139	.140	.142 thickness
12	.139	.140	.137	.140 .134" these
14	.136	.138	.139	.138 tubes.
16	.137	.138	.137	.138
18	.136	.137	.136	.137
20	.138	.139	.138	.139

Left (long) Water Wall

Tube #	Loc. 1	Loc. 2	Loc. 3	Loc. 4
5	.172	.174	.173	.174
10	.170	.171	.171	. 171
15	.172	.173	.170	.172
20	.168	.169	.169	.169
25	.169	.170	.172	.172 Original
30	.169	.171	.171	.172 thickness
35	.170	.171	.172	.172 .165" these
40	.172	.170	.171	.173 tubes.
45	.168	.168	.169	.170
50	.170	.170	.172	.171
55	.168	.169	.168	.170
60	.169	.170	.171	.170
65	.168	.169	.170	.170
70	.169	.171	.172	.170
75	.169	.170	.171	.171
80	.169	.171	.171	.170
85	.170	.172	.172	.171
90	.169	.169	.170	.170

East Boiler Tube Thickness

Left (short) Water Wall

Tube #	Loc. 1	Loc. 2	Loc. 3	Loc. 4
1	.136	.134	.139	.135
6	.139	.140	.139	.140
11	.135	.136	.133	.134
16	.138	.137	.139	.140
21	.136	.134	.137	.137 Original
26	.134	.134	.137	.134 thickness
31	.141	.141	.140	.141 .134 these
36	.138	.140	.141	.142 tubes.
41	.139	.140	.141	.141
46	.138	.138	.141	.141
51	.140	.139	.139	.139
56	.139	.139	.140	.141
61	.142	.143	.142	.142
66	.137	.140	.138	.139
71	.137	.137	.136	.136
76	. 105	.103	.104	.103 Original
81	.100	.102	.101	.101 thickness
86	.105	.106	.106	.107 .095" these
91	.107	.106	.107	.107 tubes.

Right (long) Water Wall

Tube #	Loc. 1	Loc. 2	Loc. 3	Loc. 4
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 Rear Water	.172 .174 .171 .170 .168 .169 .169 .171 .170 .171 .172 .173 .172 .168 .169 .167 .169 .170	.176 .171 .170 .169 .167 .170 .168 .172 .168 .171 .173 .174 .172 .170 .168 .169 .171 .171	.177 .170 .171 .170 .167 .170 .171 .169 .168 .168 .174 .170 .168 .168 .172 .172	.176 .170 .172 .171 .167 .170 .169 .173 .166 Original .172 thickness .171 .165" these .172 tubes. .170 .169 .170 .168 .171
Tube #	Loc. 1	Loc. 2	Loc. 3	Loc. 4
2 4 6 8 10 12 14 16 18 20	.143 .136 .136 .140 .135 .138 .141 .143 .144	.139 .137 .136 .140 .136 .141 .142 .145 .142	.142 .135 .137 .141 .135 .141 .142 .144 .140	.142 .135 .138 .141 Original .136 thickness .140 .134" these .142 tubes .145 .142

APPENDIX F

BOILER PICTURES

Boiler Photograph Log

Photograph #	Description
1	Casing of east economizer. Notice corrosion is in a straight line pattern at 2 levels.
2	West boiler burner. Staining appears to be from water. Condition of refractory is good.
3	Blister on west boiler tube. Notice length of blister.
4	Another tube in west boiler, this tube is in the 2nd row in.
5	Another tube blister, same boiler.
6	West boiler water wall (left side). Notice degree of carbon buildup. Most likely from improper burner alignment.
7	West boiler water wall (right side). Notice fireside deposits and minimum amount of carbon buildup.
8	West boiler economizer. Notice straight line corrosion at 2 levels.

APPENDIX G DEAERATING TANK INSPECTION

Deaerating Feed Tanks

The two deaerating feed tanks were visually inspected both internally and externally. The name plate data is as follows:

	East DA Tank		West DA Tank
Mfg by: MAWP:	Dun-Rite Tank C 30 psi @ 500	_	Dun-Rite Tank Corp 30 psi @ 500F
Mfg Ser #:	5560-2	S	5560-1
Nat'l Bd #:	1721	Div 1	1720
Year built:	1972	W	1972
Shell t:	1/4" (.250")		1/4" (.250")
Head t:	1/4" (.250")		1/4" (.250")
Head Radius:	66"		66"

Safety valves (both deaerators)

a. Name plate data:

Manufacturer - Lonergan

Size - 3" x 3"

Capacity - 3,785 lbs/hr

b. Condition - Top seal broken

- Valve stuck closed

East Deaerating Feed Tank

Storage Section, internal:

- 1) Internal pitting, most predominately adjacent to weld seams but scattered throughout vessel.
- Significant coating of deposits at water line, lower portion of vessel the deposits are moderate.
- 3) Gasket surface of manway ring slightly corroded, most notable at inner edge.
- 4) One desiccant container installed.
- 5) Moderate surface corrosion from water line down

Deaerating Section, internal:

- 1) Spray valves (5), appear satisfactory, loose rust flakes noted inside spray valves when opened.
- 2) No corrosion of tray storage area or trays

External.

- The following components were noted to be cracked, most likely from freezing conditions:
 - a. Lower float chamber of water level control
 - b. Lower piping of level control
 - c. Secondary lower pipe level control
 - d. Sight glass lower pipe connection

West Deaerating Feed Tank

Storage Section, internal:

- Internal pitting, most predominantly adjacent to weld seams but scattered throughout vessel.
- 2) Gasket surface of manway ring inner edge corroded.
- 3) Thick coating of deposits adhered to shell from water line down.
- 4) Large amount of loose sediment and rust flakes laying in vessel.
- 5) 1 desiccant container in vessel.
- 6) Moderate to heavy amount of surface rust, mostly from water line down.

Deaerating Section, internal:

- 1) 1 of 5 spray valve is stuck closed.
- 2) Rust flakes inside other 4 spray valves when opened.
- 3) no corrosion of tray storage area or trays.

External:

- The following components were noted to be cracked, most likely from freezing conditions: a. Overflow float chamber
- Recommendations for East and West Deaerators:
- 1) Remove all internal deposits, recommended method high pressure water.
- 2) Perform wet fluorescent magnetic particle examination of all internal weld joints to identify any cracking that may have developed during the years of operation.
- 3) The depth of pitting in the storage section is a concern the pitting should be measure and compared to the original thickness to identify the current MAWP.
- 4) The storage section shell and heads should be measured for thickness to determine the extent of thinning from corrosion to determine the current MAWP.
- 5) Repair of replace both safety valves
- NOTE: These vessels should not be placed into operation until the current conditions as indicated in the Recommendations Section are performed.

APPENDIX H DEAERATING TANK PICTURES

Deaerating Feed Tank Photograph Log

Photograph #	Description
1	West DA tank. Crack in overflow float chamber
2	East DA tank. Crack in float chamber of liquid level control.
3	East DA tank. Crack and rust on piping
4	Typical of both DA tanks. Notice the pitting adjacent to the weld joint. The depth of the pitting is of concern due to the thickness of the shell $(1/4")$.
5	Typical of both DA tanks. Notice the extent of corrosion on the bottom half of the vessel. Additionally, notice the heavier concentration of corrosion and sediment at the water line.

Not To Scale

EAST BOILE

National Bo

Gas

EAST BOILER TUBE LAYOUT

National Board # 23636

Hartford Steam Boiler Inspection and Insurance Company Atlanta, Georgia

Gas Flow

Burner

000000000000000000000000000000000000000	
	M
00 00 00 00 00 00 00 00 00 00 00 00 00	L
00 00 00 00 00 00 00 00 00 00 00 00 00	K
00 00 00 00 00 00 00 00 00 00 00 00 00	J
00 00 00 00 00 00 00 00 00 00 00 00 00	I
00 00 00 00 00 00 00 00 00 00 00 00 00	Н
00 00 00 00 00 00 00 00 00 00 00 00 00	G
00 00 00 00 00 00 00 00 00 00 00 00 00	F
00 00 00 00 00 00 00 00 00 00 00 00 00	Ε
00 00 00 00 00 00 00 00 00 00 00 00 00	D
00 00 00 00 00 00 00 00 00 00 00 00 00	С
00 00 00 00 00 00 00 00 00 00 00 00 00	В
00 00 00 00 00 00 00 00 00 00 00 00 00	A
The Gas Outlet	

- Tubes with Blisters

Not To Scale

WEST BO

Nat .

15 62

Ges

WEST BOILER TUBE LAYOUT
Netuonal Board # 23635

Plue Gos Outlet

Ges Flow

Burner

(3)

1. COMPONENT ARMY	FY 19_	96 MILITARY CO	NSTRU	JCTIC	N PR	OJECT DAT	7A / A	TE 10 V. 1995
HOLSTON KINGSPO	ARMY RT. 7	Ammunition	S RN7.				800 bl	op Boilett
5. PROGRAM ELEMEN	T 6.	CATEGORY CODE	7. PROJE	ECT NU	MBER			0001
		9, COS	T ESTIM	ATES	,			
		ITEM			U/M	QUANTITY	UNIT COST	COST (\$000)
DEAERATI	NG HE	ATER/FEEDP				1		362.5
Stoh								27.5
DESIG	TALLATION AND LOCATION OLS TON ARMY AMMUNITION RNT. ECIP NEW 800 bhp Bold ING SPORT. TN. OGRAM ELEMENT S. CATEGORY CODE 7. PROJECT NUMBER 8. PROJECT COST (SOM) 9. COST ESTIMATES ITEM U/M QUANTITY UNIT COST (SOM) PACKAGED UNIT STOH DESIGN 362.	30.0						
TOTAL								420.0

10. DESCRIPTION OF PROPOSED CONSTRUCTION

INSTALL ONE 800 bhp (27,000 LB/HR) NATURAL GAS
FIRED 100 PSIG OPERATING PRESSURE STEAM
BOILER AND PACKAGED DEAFRATING HEATER/FEEDPUMP
SET IN BUILDING 7 - ACETIC ANHYDRIDE MANUFACT
TURING. PROPOSED INSTALLATION TO BE AT
GROUND FLOOR LEVEL IN GENERAL PROXIMITY
TO EXISTING HEAT RECOVERY BOILER.

DD FORM 1391

PREVIOUS EDITIONS MAY BE USED INTERNALLY UNTIL EXHAUSTED.

PAGE NO.

FOR OFFICIAL USE ONLY

installation: HOLSTON ARMY AN	
project: INSTALL NATURAL GAS	FIRED BOILER
project number temporary:	
permanent:	category code
point of contact:	
name SCOTT SHELTON	date
title STOHS-EN	phone 423-247-9111 x 347/
	autovon
dfae	date
title	
	autovon
engineer district TONY BATTAGLIA	date
titleCFSAM - EN	
title	autovon
other (A-E)	
title	phone
	autovon
reviewed by: installation facility engineer	
	date
title	phone
	autovon
approved by: macom engineer	
name	date
title	phone
	autovon

project development brochure, PDB-1

DA FORM 5020-R, Feb 82

facility

HOLSTON ARMY AMMUNITION PLANT

project coordinator for using service

SCOTT SHELTON SIOHS-EN

MAAP - ARMY

functional requirements summary, PDB-1

OBJECTIVE

THE OBJECTIVE OF THIS PROJECT IS

TO IMPROVE THE OPERATING CAPABILITY

OF THE EXISTING STEAM PRODUCTION

SYSTEM AT LOW PRODUCTION RATES WHILE

STILL MAINTAINING FACILITIES CAPABLE

OF BEING RETURNED TO SERVICE WITHIN A

SHORT TIME FRAME PURSUANT TO SUPPLYING

ANY INCREASED PRODUCTION DEMANDS.

BUILDINGS SERVED

BLDG / ADMINISTRATION

BLDG. IA GAURD HOUSE

BLDG. 2 ACID CONCONTRATION BLDG.

BLDG.4 ELECTRICAL INSTR. SHOP

BLDG. 5 REFRIGERATION PLANT

B CDG. 6 ACOTIC ANHYDRIDO ROFINING

BLDG. 7 ACETIC ANHYDRIDE MANUFACTURING

BLDG. 9 WATER PLANT

BLOG. 11 PUMP House

BLDG.14 CHANGE HOUSE

BLOG. 15 STOREHOUSE

BIDG. 16 FIREHOUSE

BLDG. 18 RED CROSS

functional requirements summary, PDB-1

BUILDINGS SERVED (CONT.)

BLDG. 20 ACETIC ANHYDRIDE FURNACES

BLDG. 27A OFFICE

BLDG. 27B OFFICE

BLDG. 31 CHANGEHOUSE

TANK HEATING AND PIPELINE TRACING

SOLUTION

PROVIDE 800 bhp NATURAL GAS FIRED

FIRETUBE STEAM BOILER TO DELIVER

SATURATED STEAM AT 100 PSIG TO THE

EXISTING STEAM DISTRIBUTION PIPING

SYSTEM. NEW BOILER TO BE INSTALLED

IN SPACE AVAILABLE IN EXISTING

BUILDING 7. EXISTING COAL FIRED STEAM

BOILERS AND BOILER AUXILIARIES WILL

BE "LAYED AWAY" FOR FUTURE REACTIVATION.

functional requirements summary, PDB-1

DA FORM 5020-2-R, Feb 82

facilities requirements sketch, PDB- 1/2

DA FORM 5022-R, Feb 82

TM 5-800-3

A. SPECIAL CONSIDERATIONS

		nired	re rmin
	ITEM	Required Not Requ	Tò Be Determin
A-1	Cost estimates for each primary and supporting facility	R	D
A-2	Telecommunications system coordination with USACC and authorization for exceptions	NR	
A-3	Coordination with state and local governmental requirements (blind vendors, medical facilities, construction and operating permits, clearinghouse ecoordination, etc.)	NR	
A-4	Assignment of airspace	NR	
A-5	Economic analysis of alternatives	R	D
A-6	Approval for new starts	NR	
A-7	International balance of payments (IBOP) coordination with U.S. European command and NATO—overseas cost estimates and comparables (include rate of exchange used in estimates)	NR	
A-8	Impact on historic places—on site survey by authorized archeologist and coordination with state historic preservation officer and advisory council on historic preservation	NR	
A-9	Exceptions to established criteria	NR	
A-10	Coordination with various staff agencies (Provost Marshall-physical security, etc.)	NR	
A-11	Identification of related or support projects (so projects can be coordinated)	NR	
A-12	Required completion date	R	A
	Other Special Considerations (List and number items)		

*BY WHOM (Check and insert appropriate lett	t appropriate let	insert	and	(Check	WHOM	BY	*
---	-------------------	--------	-----	--------	------	----	---

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

 ${\tt COMMENT\ ATTACHED\ - Significant\ information\ summarized\ or\ explained and\ attached. }$

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

documentation checklist

DA FORM 5023-A-R, Feb 82

B. SITE DEVELOPMENT

		Required Not Requ	To Be Determin	Comment Attached	Documen Attached
	ITEM	Red	To 6 Det	Con	Doc
B-1	Consultation with the District Office to determine and evaluate flood plain hazards	NR			
8-2 (A)	Preparation, submission, and/or approval of new General Site Plan	NR			
-(B)	Annotated General Site Plan	NR			
(c)	Sketch Site Plan	NR			- -
(D)	Facilities Requirements Sketch	NR		 	
B-3	Preparation of				
(A)	Site Survey	NR			
(B)	Subsoil information	NR			_
8-4	Approval by Department of Defense Explosive Safety Board (DDESB) for Safety Site Plan	NR			

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFA
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

documentation checklist

DA FORM 5023-B-R, Feb 82

C. ARCHITECTURAL & STRUCTURAL

C-2 Evaluation of existing facil C-3 Approval for removal and r C-4 Evaluation of off-post com C-5 Storage and maintenance f C-6 Coordination hospitals, me C-7 Coordination of aviation fe C-8 Coordination air traffic cor C-9 Tabulation of types and nu C-10 Evaluation of laboratory, r C-11 Coordination chapels with C-12 Review food service facility C-13 Automated data processing communication centers no C-14 Coordination postal facility C-15 Laundry and dry cleaning C-16 Tenant facilities coordinate C-17 Facilities for or exposed to also Item B-4) C-18 Analysis of deficiencies C-19 Consideration of alternative C-20 Determination whether occ C-21 As-build drawings for alternative	ities (including degree of utilization) relocation of existing useable facilities amunity facilities acilities (including nuclear weapons) rdical and dental facilities with Surgeon General	N Require	To Be Determi	Commer	Docume
C-2 Evaluation of existing facil C-3 Approval for removal and of C-4 Evaluation of off-post com C-5 Storage and maintenance fi C-6 Coordination hospitals, me C-7 Coordination of aviation fa C-8 Coordination air traffic col C-9 Tabulation of types and nu C-10 Evaluation of laboratory, nu C-11 Coordination chapels with C-12 Review food service facilities C-13 Automated data processing communication centers no C-14 Coordination postal facilities C-15 Laundry and dry cleaning C-16 Tenant facilities coordinate C-17 Facilities for or exposed to also Item B-4) C-18 Analysis of deficiencies C-19 Consideration of alternative C-20 Determination whether occ C-21 As-build drawings for alternative C-22 Availability of Standard December 2015	ities (including degree of utilization) relocation of existing useable facilities amunity facilities acilities (including nuclear weapons) rdical and dental facilities with Surgeon General	R			<u> </u>
C-3 Approval for removal and of C-4 Evaluation of off-post communication of Storage and maintenance for C-6 Coordination hospitals, med C-7 Coordination of aviation for C-8 Coordination of aviation for C-8 Coordination of types and note of C-9 Tabulation of types and note of C-10 Evaluation of laboratory, modern coordination chapels with C-11 Coordination chapels with C-12 Review food service facilities communication centers note of C-14 Coordination postal facilities coordinated C-15 Coordination postal facilities coordinated C-16 Tenant facilities coordinated C-17 Facilities for or exposed the coordinated C-18 Analysis of deficiencies C-19 Consideration of alternative C-20 Determination whether occurrence C-21 As-build drawings for alternative C-22 Availability of Standard December 19 Coordinated C-22 Availability of Standard December 19 Coordinated C-22 Availability of Standard December 19 Coordinated C-22 Availability of Standard December 19 Coordinated C-22 Availability of Standard December 19 Coordinated C-22 Availability of Standard December 20 C-24 Availability of Standard December 20 C-25 Availab	relocation of existing useable facilities imunity facilities acilities (including nuclear weapons) idical and dental facilities with Surgeon General	R		i	
C-4 Evaluation of off-post com C-5 Storage and maintenance from C-6 Coordination hospitals, me C-7 Coordination of aviation from C-8 Coordination air traffic color coordination of types and nu C-10 Evaluation of laboratory, roc-11 Coordination chapels with C-12 Review food service facilities C-13 Automated data processing communication centers no C-14 Coordination postal facilities C-15 Laundry and dry cleaning C-16 Tenant facilities coordinated C-17 Facilities for or exposed traisolatem B-4) C-18 Analysis of deficiencies C-19 Consideration of alternative C-20 Determination whether occ C-21 As-build drawings for alternative C-22 Availability of Standard December 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	munity facilities acilities (including nuclear weapons) dical and dental facilities with Surgeon General	110	D		
C-5 Storage and maintenance for C-6 Coordination hospitals, me C-7 Coordination of aviation for C-8 Coordination air traffic coordination air traffic coordination air traffic coordination of types and nu C-10 Evaluation of laboratory, me C-11 Coordination chapels with C-12 Review food service facilities C-13 Automated data processing communication centers no C-14 Coordination postal facilities C-15 Laundry and dry cleaning C-16 Tenant facilities coordinated C-17 Facilities for or exposed to also Item B-4) C-18 Analysis of deficiencies C-19 Consideration of alternative C-20 Determination whether occurrence C-21 As-build drawings for alternative C-22 Availability of Standard December 1 C-22 Availability of Standard December 1 C-23 Coordination of Standard December 2 C-25 Coordination of Standard December 2 C-25 C-26 C-27 C-28 C-28 C-29 C-29 C-29 C-29 C-29 C-29 C-29 C-29	acilities (including nuclear weapons) dical and dental facilities with Surgeon General	NK			
C-6 Coordination hospitals, me C-7 Coordination of aviation fe C-8 Coordination air traffic col C-9 Tabulation of types and nu C-10 Evaluation of laboratory, r C-11 Coordination chapels with C-12 Review food service faciliti C-13 Automated data processin communication centers no C-14 Coordination postal faciliti C-15 Laundry and dry cleaning C-16 Tenant facilities coordinati C-17 Facilities for or exposed traiso Item B-4) C-18 Analysis of deficiencies C-19 Consideration of alternative C-20 Determination whether occurred C-21 As-build drawings for alternative C-22 Availability of Standard Design and residences C-22 Availability of Standard Design and residences C-22 Availability of Standard Design and residences C-22 Availability of Standard Design and residences C-21 Availability of Standard Design and residences C-22 Availability of Standard Design and residences C-21 Availability of Standard Design and residences C-22 Availability of Standard Design and residences C-23 Availability of Standard Design and residences C-24 Availability of Standard Design and residences C-25 Availability of Standard Design and residences C-26 Coordination of alternative C-27 Availability of Standard Design and residences C-27 Availability of Standard Design and residences C-28 Coordination of alternative C-29 Availability of Standard Design and residences C-29 Coordination of alternative C-29 Availability of Standard Design and residences C-29 Coordination of alternative C-29 Availability of Standard Design and residences C-29 Coordination of alternative C-29 Availability of Standard Design and residence C-29 Availability of Standard Design and residence C-29 Availability of Standard Design and residence C-29 Availability of Standard Design and residence C-29 Availability of Standard Design and residence C-29 Availability of Standard Design and residence C-29 Availability of Standard Design and residence C-29 Availability of Standard Design and residence C-29 Availability of Standard Design and residence C-29 Availability of Stan	dical and dental facilities with Surgeon General	NR			
C-7 Coordination of aviation for C-8 Coordination air traffic colors. C-9 Tabulation of types and not C-10 Evaluation of laboratory, roc-11 Coordination chapels with C-12 Review food service facilities. Automated data processing communication centers not C-14 Coordination postal facilities. C-15 Laundry and dry cleaning. C-16 Tenant facilities coordinated. Facilities for or exposed to also Item B-4) C-18 Analysis of deficiencies. C-19 Consideration of alternative. C-20 Determination whether occurred. Availability of Standard Determination of Standard Determi		NR			
C-8 Coordination air traffic coordination of types and nuclear C-10 Evaluation of laboratory, rec-11 Coordination chapels with C-12 Review food service facilities communication centers no communication centers no C-14 Coordination postal facilities C-15 Laundry and dry cleaning C-16 Tenant facilities coordinate C-17 Facilities for or exposed traisor Item B-4) C-18 Analysis of deficiencies C-19 Consideration of alternative C-20 Determination whether occurred C-21 As-build drawings for alternative C-22 Availability of Standard Determination of Standard Determi	acilities with FAA	NR			
C-9 Tabulation of types and nu C-10 Evaluation of laboratory, r C-11 Coordination chapels with C-12 Review food service facility C-13 Automated data processing communication centers no C-14 Coordination postal facility C-15 Laundry and dry cleaning C-16 Tenant facilities coordinate C-17 Facilities for or exposed to also Item B-4) C-18 Analysis of deficiencies C-19 Consideration of alternative C-20 Determination whether occurred C-21 As-build drawings for alternative C-22 Availability of Standard Deficiency		NR			
C-10 Evaluation of laboratory, r C-11 Coordination chapels with C-12 Review food service faciliti C-13 Automated data processir communication centers no C-14 Coordination postal faciliti C-15 Laundry and dry cleaning C-16 Tenant facilities coordinat C-17 Facilities for or exposed t also Item B-4) C-18 Analysis of deficiencies C-19 Consideration of alternativ C-20 Determination whether occ C-21 As-build drawings for alter. C-22 Availability of Standard De	ntrol and navigational aids with USACC	NR			
C-11 Coordination chapels with C-12 Review food service faciliti C-13 Automated data processing communication centers no C-14 Coordination postal faciliti C-15 Laundry and dry cleaning C-16 Tenant facilities coordinate C-17 Facilities for or exposed to also Item B-4) C-18 Analysis of deficiencies C-19 Consideration of alternative C-20 Determination whether occurred C-21 As-build drawings for alternative C-22 Availability of Standard Deficiency	imbers of aircraft	NR			
C-12 Review food service facilities C-13 Automated data processing communication centers not communication centers not communication postal facilities C-14 Coordination postal facilities C-15 Laundry and dry cleaning C-16 Tenant facilities coordinated facilities for or exposed to also Item B-4) C-18 Analysis of deficiencies C-19 Consideration of alternative C-20 Determination whether occurred facilities for alternative C-21 As-build drawings for alternative C-22 Availability of Standard Determination of Sta	esearch and development, and technical maintenance facilities	NR			
C-13 Automated data processing communication centers not communication centers not communication postal facilities. Laundry and dry cleaning. C-16 Tenant facilities coordinate. C-17 Facilities for or exposed to also Item B-4. C-18 Analysis of deficiencies. C-19 Consideration of alternative. C-20 Determination whether occurred C-21 As-build drawings for alternative. C-22 Availability of Standard Determination of Standard Determinat	Chief of Chaptains	NR			
communication centers no C-14 Coordination postal faciliti C-15 Laundry and dry cleaning C-16 Tenant facilities coordinati C-17 Facilities for or exposed traisor ltem 8-4) C-18 Analysis of deficiencies C-19 Consideration of alternativ C-20 Determination whether occurred C-21 As-build drawings for alternativ C-22 Availability of Standard Determination of	es by USATSA	NR			
C-15 Laundry and dry cleaning C-16 Tenant facilities coordinate C-17 Facilities for or exposed traisor Item B-4) C-18 Analysis of deficiencies C-19 Consideration of alternative C-20 Determination whether occurred C-21 As-build drawings for alternative C-22 Availability of Standard De	ng system or equipment approvals—cost analysis when ADP and/or too-located with related facilities	NR			
C-16 Tenant facilities coordinate C-17 Facilities for or exposed transport to the second transport to the second transport to the second transport	ies with U.S. Postal Service Regional Director	NR			
C-17 Facilities for or exposed talso Item B-4) C-18 Analysis of deficiencies C-19 Consideration of alternativ C-20 Determination whether oc C-21 As-build drawings for alternativ C-22 Availability of Standard Deficiencies	facilities coordination with ASD(I&L)	NR			
also Item 8-4) C-18 Analysis of deficiencies C-19 Consideration of alternativ C-20 Determination whether oc C-21 As-build drawings for alter C-22 Availability of Standard De	ion with installation where sited		B		
C-19 Consideration of alternativ C-20 Determination whether oc C-21 As-build drawings for alter C-22 Availability of Standard De	o explosions, toxic chemicals, or ammunition—review by DDESB (See		NB		
C-20 Determination whether occ C-21 As-build drawings for alter C-22 Availability of Standard Do		NR			
C-21 As-build drawings for alteraction C-22 Availability of Standard Do	es	R	A/B		
C-22 Availability of Standard De	cupants will include physically handicapped or disabled persons	RNR			
	ations or additions	R	AIB		
Other Architectural & Stru	esign or site adaptable designs	NR			
	ctural (List and number items)				

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

* nined ent ed

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

documentation checklist

DA FORM 5023-C-R, Feb 82

D. MECHANICAL, ELECTRICAL, & UTILITY SYSTEMS

$\overline{}$		Red	3 6	ner Shek	thec
	ITEM	Required Not Req	To Be Determir	Commen	Documer
D-1	Fuel considerations and cost comparison analysis	R R R	D		
D-2	Energy requirements appraisal (ERA)	R			
D-3	Conformance with DOD Energy Reduction requirements	R	D D		
D-4	Evaluation of existing and/or proposed utility systems	R	D		
	Other Mechanical and Utility Systems (List and number items)				
	·				
		1			
1					
		1			
1	·	1	l		
			1		
		l			}
		İ			
	·				
		1			
		l			
		l			
					ľ
		ļ			
		ł			
		1			

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

 $\mbox{COMMENT ATTACHED } - \mbox{Significant information summarized or explained} \\ \mbox{and attached}.$

DOCUMENT ATTACHED - Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

A - DFAE

B - Using Service

 ${\sf C\,-Construction\,Service}$

D - Designer

E — Other (Check Comments Attached and explain)

documentation checklist

DA FORM 5023-D-R, Feb 82

E. ENVIRONMENTAL CONSIDERATIONS

	ITEM	Requir Not Re	To Be Determ	Comme	Docum
E-1	Environmental impact assessment	NR			
E-2	EIA conclusions require Environmental Impact Statement	NR			
E-3	Determination of health, environmental or related hazards. Assistance to determine existence of any health, environmental or related hazard may be requested from Aberdeen Proving Ground, MD 21010, the Office of the Surgeon General, Attn: DASG-HCH (Army Environmental Hygiene Agency)	NR			
E-4	Air/water pollution permit, coordination with agencies and compliance with standards at Federal, state and local level	R	В		
E-5	Corrective measures associated with Environmental Impact Statements or assessment—list separately and evaluate.	NR			
	Other environmental considerations (list and number items)				

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

A - DEA

B - Using Service

C - Construction Service

D - Designer

E — Other (Check Comments Attached and explain)

documentation checklist

DA FORM 5023-E-R, Feb 82

A. SPECIAL CONSIDERATIONS

		ired	a is	nen	men
	ITEM	Required Not Requ	To Be Determin	Comment	Documen Attached
A-1	Factors of risk, restriction or unusual circumstance expected to increase costs beyond applicable area averages	NR			
A-2	Construction phasing requirements	NR			
A-3	Functional support equipment (mechanical, electrical, structural, and security) to be built in	NR			
A-4	Equipment in place and justification	NR			
A-5	Other equipment and furniture (O&MA, OPA) and costs	NR			
A-6	Special studies and tests (hazards analyses, compatibility testing, new technology testing, etc.)	NR			
A-7	Type of construction (permanent, temporary, semi-permanent)	R	A		
A-8	Government furnished equipment (quantities, procurement time, availability and special handling and storage requirements). Funds used for procurement.	NR			

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED - Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

technical data checklist

DA FORM 5024-A-R, Feb 82

D-5

B. SITE DEVELOPMENT

		uired	To Be Determin	ched	ched
	ITEM	Required Not Requ	To E Dete		Documen Attached
B-1 (A)	Construction restrictions or guidelines pertaining to site access and preferred construction routes	NR	١		
(B)	Airfield clearance, explosive storage, working hours, safety, etc.	NR			L
(c)	Facilities and/or functions or adjoining areas (structures, materials, impact)	NR			
B-2	Real estate actions (acquisition, disposal, lease, right-of-way)	NR			
8-3	Demolition/relocation required (data)				
(A)	Special considerations due to explosives/radioactivity/ chemical contamination/asbestos emissions/toxic gases	R	B		
(8)	Restrictions on disposal of demolished/relocated material including hazardous waste	R	В		
B-4	Pavement types and requirements (including traffic surveys and MTMC coordination)	NR			
B-5	Landscape considerations	1.10			
(A)	Protection of existing vegetation	NR	ļ	l	
(B)	Stockpile topsoil	NR			
	Other Site Development (List and number items)				

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

 ${\tt COMMENT\ ATTACHED\ - Significant\ information\ summarized\ or\ explained\ and\ attached.}$

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

technical data checklist

DA FORM 5024-B-R, Feb 82

C. ARCHITECTURAL & STRUCTURAL

	ITEM	Required Not Req	To Be Determir	Commen	Docume
C-1	Vibration-producing equipment requiring isolation	NR			
C-2	Seismic zone and other design load criteria (typhoon, hurricane, earthquake loads, high or low loss potential)	NR			
C-3	Protective shelter evaluation and resistant design criteria (conventional/nuclear blast and radiation, chemical/biological)	NR			
C-4	Unusual foundation requirements (pier, pile, caisson, deep foundations, mat, special treatment, permafrost areas, soil bearing)	NR			
C-5	Designation and strength of units to be accommodated	NR			
C-6	Requirements and data for special design projects	NR			
C-7	Unusual floor and roof loads (safes, equipment)	NR			
C-8	Security features (arms rooms, vaults, interior secure areas)	NR			
	Other Architectural & Structural (List and number items)				

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D Designe
- E Other (Check Comments Attached and explain)

technical data checklist

DA FORM 5024-C-R, Feb 82

D. MECHANICAL, ELECTRICAL, & UTILITY SYSTEMS

		stics (pro-	E 8 8 E 6				
	ITEM	Requ Not f	To B Dete	Comme	Docum		
D-1	Special mechanical requirements or considerations (elevator, crane, hoist, etc.)	NR					
D-2	Special peak usage periods and peak leveling techniques	NR					
D-3	Maintenance considerations (accessibility of equipment, compatibility with existing equipment)	R	P				
D-4	Plumbing—availability, general system type and characteristics (proposed and/or existing, incl. compressed air and gas)						
0.5	Heating—availability, general system type and characteristics (proposed and/or existing)	NR					
0-6	Ventilating, air condition/refrigeration—availability, general system type and characteristics (proposed and/or existing)	R	D				
)-7	Electrical—availability, general system type and characteristics incl. airfield lighting, communication, etc. (proposed and/or existing)	R					
8-0	Water supply/waste treatment—availability, general system type and characteristics (proposed and/or existing)		A				
D-9	Energy requirements/fuel conversion (sources, availability, loads, types of fuel, etc.)	R	A				
D-10	Solar energy evaluation	NR					
	•						

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED - Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

A - DFAE

B - Using Service

C - Construction Service

D - Designer

E - Other (Check Comments Attached and explain)

technical data checklist

DA FORM 5024-D-R, Feb 82

E. ENVIRONMENTAL CONSIDERATIONS

E-1 Waste water treatment, air quality, and solid waste disposal criteria Other Environmental Considerations (List and number items)	Required Not Req	-0	A Co	Do
	R			
		(C) To Be Determine	Commen	Documei Attached

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

technical data checklist

DA FORM 5024-E-R, Feb 82

Required or Not Required F. FIRE PROTECTION To Be * Determined Comment Attached ITEM Special fire protection systems or features (detection and suppression equipment, hazards, etc.) Other Fire Protection Considerations (List and number items)

- REQUIRED OR NOT REQUIRED Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.
- TO BE DETERMINED Information needed but not currently available. Enter code for information source.
- COMMENT ATTACHED Significant information summarized or explained and attached.
- DOCUMENT ATTACHED Significant information is in an existing document which is attached.
- *BY WHOM (Check and insert appropriate letter)
 - A DFAE
 - B Using Service
 - C Construction Service
 - D Designer
 - E Other (Check Comments Attached and explain)

technical data checklist

DA FORM 5024-F-R, Feb 82

installation: HOLSTON ARMY A	PMMUNITION PLANT
project: INSTALL NATURAL GAS F	TRED BOILER
project number temporary:	
permanent:	_ category code
point of contact: user name Scott SHELTON	date
title SIOHS-EN	
	autovon
dfae name	_ date
title	phone
	autovon
engineer district TONY BATTAGLIA	·
title CFSAM - EN	phone 205-690-2618
	autovon
other (A-E) name	date
title	·
	autovon
reviewed by:	
installation facility engineer name	date
title	phone
	autovon
approved by: macom engineer name	date
title	
	autovon

project development brochure, PDB-2

DA FORM 5021-R, Feb 82

facility

HOLSTON
ARMY AMMUNITION
PLANT

project coordinator for using service

SCOTT SHELTON SIOHS-EN

MAAP- ARMY

detailed functional requirements, PDB-2

DA FORM 5021-1-R, Feb 82

OBJECTIVE

THE OBJECTIVE OF THIS PROJECT IS

TO IMPROVE THE OPERATING CAPABILITY

OF THE EXISTING STEAM PRODUCTION

SYSTEM AT LOW PRODUCTION RATES WHILE

STILL MAINTAINING FACILITIES CAPABLE

OF BEING RETURNED TO SERVICE WITHIN

A SHORT TIME FRAME PURSUANT TO

SUPPLYING ANY INCREASED PRODUCTION DEMAND.

SOLUTION

PROVIDE 800 by NATURAL GAS
FIRED STEAM BOILER TO DELIVER
SATURATED STEAM AT 100 PSIG TO THE
EXISTING STEAM DISTRIBUTION PIPING
SYSTEM, NEW BOILER TO BE INSTALLED
IN SPACE AVAILABLE IN EXISTING
BUILDING 7. EXISTING COAL FIRED STEAM
BOILERS AND BOILER AUXILIARIES WILL
BE "LAYED AWAY" FOR FUTURE REACTIVATION.

detailed functional requirements, PDB-2

DA FORM 5021-2-R, Feb 82

background information

PRODUCTION OF RESEARCH DEVELOPMENT EXPLOSIVE (RDX), FOLLOWING THE MINIMAL CURRENT PRODUCT DEMAND, IS AT A LOVEL LOW FNOUGH TO DICTATE WASTEFUL OPERATING PRACTICES TO AVOID VIOLATIONS OF AIR POLLUTION REGULATIONS AT THE EXISTING COAL FIRED STEAM BOILERS. IT HAS BEEN NECESSARY TO RELEASE STEAM TO ATMOS-PERE WHILE OPERATING ONE OF THE EXISTING SEVEN BOILERS AT ITS LOWEST SAFE OPERATING COMBUSTION RATE. THIS PROJECT WILL ELIMINATE THE NEED FOR EMPLOYING THIS WASTEFUL PRACTICE, AND WILL PROVIDE A PROPERLY SIZED BOILER, THUS PERMITTING OPERATION AT LOADS CONDUCING TO MAXIMIZING EFFICIENCIES.

detailed functional requirements, PDB-2

DA FORM 5021-3-R, Feb 82

THREE OTHER METHODS FOR RESOLVING
THE STEAM PLANT OPERATING DILEMMA WERE
CONSIDERED, BUT BACH OF THEM WAS FOUND
TO BE EITHER ECONOMICALLY OR OPERATIONALLY UNSOUND.

THE PROBABLE \$362500 CONSTRUCTION

COST AND THE ONE-TIME \$250,000 COST TO

LAYUP EXISTING BLDG. 8 STEAM PLANT

WILL SAVE 277,200 MILLION BTU'S ADDULLY

AT CURRENT RDX PRODULTION RATE, AND

WILL REDUCE MAINTENANCE AND OVERHEAD

COSTS SIGNIFICANTLY. AN OPTIMISTIC

EVALUATION OF MAINTENANCE AND OVERHEAD

SAVINGS WILL RESULT IN SAVINGS TO

INVESTMENT RATIO OF 10.70. A MORE

CONSERVATIVE VALUE STILL PRODUCES

AN SIR OF 4.78, WHILE A PESSIMISTIC

APPROACH STILL WILL PRODUCE ECIP

QUALIFYING RESULTS.

detailed functional requirements, PDB-2

facilities requirements sketch, PDB- ½

DA FORM 5022-R, Feb 82

TM 5-800-3

A. SPECIAL CONSIDERATIONS

	ITEM	Require Not Re	To Be Determ	Comme	Docum
A-1	Cost estimates for each primary and supporting facility	R	D		
A-2	Telecommunications system coordination with USACC and authorization for exceptions	NR			
A-3	Coordination with state and local governmental requirements (blind vendors, medical facilities, construction and operating permits, clearinghouse ecoordination, etc.)	NR			
A-4	Assignment of airspace	NR R			
A-5	Economic analysis of alternatives	R	D		
A-6	Approval for new starts	NR			
A-7	International balance of payments (IBOP) coordination with U.S. European command and NATO—overseas cost estimates and comparables (include rate of exchange used in estimates)	NR	,		
8-A	Impact on historic places—on site survey by authorized archeologist and coordination with state historic preservation officer and advisory council on historic preservation	NR			
A-9	Exceptions to established criteria	NR			
A-10	Coordination with various staff agencies (Provost Marshall-physical security, etc.)	NR			
A-11	Identification of related or support projects (so projects can be coordinated)	NR			.
A-12		R	A		

- REQUIRED OR NOT REQUIRED Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.
- TO BE DETERMINED Information needed but not currently available. Enter code for information source.
- COMMENT ATTACHED Significant information summarized or explained and attached.
- DOCUMENT ATTACHED Significant information is in an existing document which is attached.
- *BY WHOM (Check and insert appropriate letter)
 - A OFAE
 - B Using Service
 - C Construction Service
 - D Designer
 - E Other (Check Comments Attached and explain)

documentation checklist

DA FORM 5023-A-R, Feb 82

C-

B. SITE DEVELOPMENT

\subseteq		red c	nine	neut ned	nent
	ITEM	Required o	To Be Determined	Comment Attached	Document Attached
8-1	Consultation with the District Office to determine and evaluate flood plain hazards	NR			
8-2	Preparation, submission, and/or approval of new	NR			
_(A)	General Site Plan	-			
(B)	Annotated General Site Plan	NR			
(c)	Sketch Site Plan	NR		L _	
(0)	Facilities Requirements Sketch	NR			
B-3	Preparation of				
(A)	Site Survey	NR			
(8)	Subsoil information	NR		-	
8-4	Approval by Department of Defense Explosive Safety Board (DDESB) for Safety Site Plan	NR			
	Other Site Development Considerations (List and number items)				

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO 8E DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

- *BY WHOM (Check and insert appropriate letter)
 - A DFAE
 - B Using Service
 - C Construction Service
 - D Designer
 - E Other (Check Comments Attached and explain)

documentation checklist

DA FORM 5023-B-R, Feb 82

C. ARCHITECTURAL & STRUCTURAL

	ITEM	Required Not Requ	To Be Determin	Commen	Documen Attached
C-1	Reconciliation with troop housing programs and requirements	NR			
C-2	Evaluation of existing facilities (including degree of utilization)	R	D		
C-3	Approval for removal and relocation of existing useable facilities	NR			
C-4	Evaluation of off-post community facilities	NR			
C-5	Storage and maintenance facilities (including nuclear weapons)	NR			
C-6	Coordination hospitals, medical and dental facilities with Surgeon General	NR			
C-7	Coordination of aviation facilities with FAA	NR			
C-8	Coordination air traffic control and navigational aids with USACC	NR			
C-9	Tabulation of types and numbers of aircraft	NR			
C-10	Evaluation of laboratory, research and development, and technical maintenance facilities	NR			
C-11	Coordination chapels with Chief of Chaplains	NR			
C-12	Review food service facilities by USATSA	NR			
C-13	Automated data processing system or equipment approvals—cost analysis when ADP and/or communication centers not co-located with related facilities	NR			
C-14	Coordination postal facilities with U.S. Postal Service Regional Director	NR			
C-15	Laundry and dry cleaning facilities coordination with ASD(I&L)	NR			
C-16	Tenant facilities coordination with installation where sited		B		
C-17	Facilities for or exposed to explosions, toxic chemicals, or ammunition—review by DDESB (See also Item B-4)		NB		
C-18	Analysis of deficiencies	NR			
C-19	Consideration of alternatives	R NR R	A/B		
C-20	Determination whether occupants will Include physically handicapped or disabled persons	NR			
C-21	As-build drawings for alterations or additions	R	AIB		
C-22	Availability of Standard Design or site adaptable designs	NR			
	Other Architectural & Structural (List and number items)				

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

 $\mbox{COMMENT ATTACHED} = \mbox{Significant information summarized or explained} \\ \mbox{and attached.}$

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

A - OFAE

8 - Using Service

C - Construction Service

D - Designer

E — Other (Check Comments Attached and explain)

documentation checklist

DA FORM 5023-C-R, Feb 82

D. MECHANICAL, ELECTRICAL, & UTILITY SYSTEMS

ITEM	Required Not Req	To Be Determi	Commer Attacher	Docume
D-1 Fuel considerations and cost comparison analysis		D		
D-2 Energy requirements appraisal (ERA)	R			
D-3 Conformance with DOD Energy Reduction requirements	R	0		
	R	D		
	RRR	D		

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A OFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

documentation checklist

DA FORM 5023-D-R, Feb 82

E. ENVIRONMENTAL CONSIDERATIONS

	E. ENVIRONMENTAL CONSIDERATIONS	ed or quired	* ined	ant ad	ent
	ITEM	Required or Not Required	To Be * Determined	Comment Attached	Document Attached
E-1	Environmental impact assessment	NR			
E-2	EIA conclusions require Environmental Impact Statement	NR		İ	
E.3	Determination of health, environmental or related hazards. Assistance to determine existence of any health, environmental or related hazard may be requested from Aberdeen Proving Ground, MD 21010, the Office of the Surgeon General, Attn: DASG-HCH (Army Environmental Hygiene Agency)	NR			
E-4	Air/water pollution permit, coordination with agencies and compliance with standards at Federal, state and local level	R	В		
E -5	Corrective measures associated with Environmental Impact Statements or assessment—list separately and evaluate.	NR			

REQUIRED OR NOT REQUIRED - Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED - Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED - Significant information summarized or explained and attached.

DOCUMENT ATTACHED - Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and

documentation checklist

DA FORM 5023-E-R, Feb 82

ch. Datai necklist		B. SITE DEVELOPMENT	Required or Not Required	To Be • Determined	nent hed	ment hed
Item		ITEM	Requ	To B Deter	Comment Attached	Document Attached
B-1	8-1	Required site plans (incl. design and construction factors)				
	(A)	Site access and preferred construction routes	R	B/C		
	(B)	Site restrictions (airfield clearance, explosive storage, etc.)	NR			
1	(C)	Existing facilities/functions on adjoining areas (structures, materials, impact)	NRR	B/c		
	(D)	Disposal areas (trash, excavated material, constraints)	R	B/C		
	(E)	Borrow and spoil areas	NR			
i	(F)	Grades or contours existing	NR			
l	(G)	Existing trees, turf, ground cover, landscape development, erosion control	MR			
	(H)	Bridges and fences (applicable design criteria)	NR			
	(1)	Railroads (routing, sidings, docks, yards, grounding)	NR			
	(1)	Fire station and security police location	NR			
:	(K)	Site utilities—capacity and quantity available to project (sanitary and storm sewers, drainage ditches, water and gas service, communication lines, hydrants and sprinklers, etc.)	NR		•	
	(L)	New facilities clearly identified	NR			
	(M)	Necessary support facilities required for complete functional project (warehouse, igloo, fuel storage, waste treatment, etc.)	R	BIC		
4	B-2	Subsoil conditions (actual or expected—groundwater, permafrost, etc.)	NR			
2	B-3	Real estate actions (acquisition, disposal, lease, right-of-way)	NR			
3	8-4	Demolition/relocation required to clear site (date)	NR			
4	8-5	Pavement types and requirements				
	(A)	Design loading and use frequency by type of paving	NR			
	(B)	Street size and layout (traffic control)	NR			
	(C)	Parking lots (signage, etc.)	NR			
	(D)	Sidewalks and curbs (handicapped, etc.)	NR			
1	(E)	Gutters, culverts and other drainage factors	NR			
	(F)	Runways, aprons and taxiways	NR			
	(G)	Tie-down anchors or grounds	NR			
	(H)	Special surface conditions required	NR			
9, 10	B-6	Energy conservation siting and features (wind solar, etc.). See also DDC Item D-13 (D) & (E)	NR			

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-B-1-R, Feb 82

See Tech. Data Checklist Item		B. SITE DEVELOPMENT (Continued)	Required or Not Required	To Be • Determined	Comment Attached	Document Attached
i tem		ITEM	άž	T _o	Co	Do
B-5	B-7	Landscape treatment Preservation of existing features	NR			
	(B)	Proposed planting (low maintenance species, locations away from power lines, etc.)	NR			
B-5	B-8 (A) (B)	Storm drainage (See also Item E-4) Total run-off area affecting project Design intensity for floods Design of storm drainage system to include pick-up system and outfall lines	SR NR NR			
	B-9	Consideration of Coastal Zone Management Act (PL 92-583, 1972; Amendment PL 94-370, 1976) Other Site Development Considerations (List and number items)	NR			

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant Information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-B-2-R, Feb 82

E-9

See 1. Data ecklist	,	C. ARCHITECTURAL & STRUCTURAL	Required or Not Required	To Be • Determined	Comment Attached	Document
tem		ITEM	Req	To E Dete	Com	Docu
	C-1	Material availability limitations (include fill and paving)	NR			
	C-2	Architectural style (existing, planned or desired, use of pre-engineered buildings considered)	NR			
2-7	C-3	Floors (type, finish, special loading, subgrade moisture control, low maintenance types particularly in spill areas)	NR			
C-3	C-4	Walls	NR			
	(A)	Exterior (materials, sealing of joints, general maintenance)	NR			-
	(B)	Interior walls and partitions (material, finish, fire resistance, subgrade moisture control)	NR			
	C-5	Ceilings (height, finish, acoustics)	NR			
	C-6	Windows (type, size, special treatment)	NR			
	C-7	Doors (type, size, power operation, panic hardware, durability)	NR			
	C-8	Hardware (finish, location, special metal restrictions, durability)	NR			
	C-9	Special finishes (protective coatings, non-sparking, conductive, acid-resistant)	NR			l
8-8	C-10	Security features (windows, doors, hardware, construction of walls, floors & ceilings, arms rooms, vaults, etc.)	NR			
	C-11	Sound attenuation requirements (expected and required levels, location)	NR			_
	C-12	Stairs, elevators and chutes (location, size, type of usage)	NR	l		_
	C-13	Loading docks and canopies	NR		l	<u> _</u>
2-1	C-14	Vibration-producing equipment requiring isolation	NR		<u> </u>	_
:-4	C-15	Unusual foundation requirements (pier, pile, caisson, deep foundations, mat, special treatment, creep control)	NR			
	C-16	Span or unusual clearance requirements (span or height)	NR			_
	C-17	Special bay sizes (reflect access dimensions)	NR	l		<u> </u> _
	C-18	Overhead support requirements (hoists, cranes)	NR			
2-7	C-19	Roof loads and requirements (live/dead loads, materials, access, low maintenance features like exterior drains, etc.)	NR			_
	C-20	Structural specialities (slabs, sumps, trenches, pits)	NR			
:-2	C-21	Seismic zone design criteria	NR	ļ		-
-2	C-22	Area wind loads (summer/winter prevailing wind, hurricane, typhoon)	NR	 		-
.3	<u>C-23</u>	Protective shelter evaluation and resistant design criteria	NR			-
	(A)	Explosive/nuclear blast (protective, resistive, suppressive, venting and containment structures)	NR			_
- 1	(B)	Radiation protection (type of radiation, intensity, source)	NR		-	-
	(C)	Chemical/biological protection	N/C		,	

REQUIRED OR NOT REQUIRED - Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED - Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED - Significant information summarized or explained

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-C-1-R, Feb 82

E-11

See Tech. Data Checklist		C. ARCHITECTURAL & STRUCTURAL (Continued)	Required or	Required	To Be • Determined	Comment Attached	Document Attached
Item		ITEM	Req	Non	To F Dete	Com	Docu
C-5	C-24	Designation and strength of units to be accommodated	N	2			
C-6	C-25	Requirements for special design projects	NA	₹			
	C-26	Safety features (occupant load, maximum travel distance to exits, hazard to be controlled or eliminated)	NA	- i			
	C-27	Special design features for handicapped. Other Architectural and Structural (list and number items)	NA	٤			

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

 $\label{eq:document} \mbox{DOCUMENT ATTACHED -- Significant information is in an existing document which is attached.}$

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D Designer
- E Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-C-2-R, Feb 82

See Tech. Data Checklist	D. MECHANICAL, ELECTRICAL, & UTILITY SYSTEMS	Required or Not Required	To Be • Determined	ent ed	ed)
Item	ITEM	Required Not Requ	To Be Deterr	Comment Attached	Document Attached
D-1 D-1	Special mechanical requirements or considerations	R	D		
D-2 D-2	Special peak usage periods and peak leveling techniques	NR			
D-3	Maintenance considerations (equipment room size, layout, location, general accessibility of equipment, compatibility with existing equipment.)	R	D		
D-9 D-4	Energy monitoring control system (EMCS) and permanent utilities metering	NR			
D-4 D-5	Plumbing system (proposed and/or existing)	NR			
(A) (1) (2) (3) (4) (5) (6) (7) (8) (B) (C) (D) (E) (F) (G) (H) (I) (J)	General piping and storage system Materials (galvanized, copper, etc.) Insulation Natural or LP gas Venting Distilled water Compressed air Hospital & surgical gases Other (chemical, fuel) Facility water supply Garbage disposal Sanitary drainage system Grease interception Chemical waste drainage & disposal (incl. explosive process waste) Radioactive waste Drinking fountains Water treatment				
D-5	Emergency fixtures (showers, eyewash fountains) Heating system Existing generation plant Location and distance from new facility Equipment (type, age, fuel, etc.) Current loads (average, peak, reserves for this and other projects, load leveling system) Type of plant Manning & support requirements Pollution controls Type of product		B B B B B B B B		

REQUIRED OR NOT REQUIRED — Not relevant or no information to communicate. Enter "R" if item is relevant and is required for this project. Enter "NR" if item is irrelevant and is not required for this project.

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

 $\label{eq:decomposition} \mbox{DOCUMENT ATTACHED} - \mbox{Significant information is in an existing document which is attached.}$

*BY WHOM (Check and insert appropriate letter)

A - DFAE

B - Using Service

C - Construction Service

D - Designer

E — Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-D-1-R, Feb 82

See Tech. Data Checklist	D. MECHANICAL, ELECT	RICAL, & UTILITY SYSTEMS (Continued	Required or Not Required	To Be • Determined	Comment Attached	Document Attached
Item		ITEM		To E Dete	Com	Docu
D-5	D-6 Heating system (continued)	NR			
-	(B) Requirements for propo	osed facility				
	(1) Type of system			 		l
	(2) Heat load requirement	nts (special temperature demands)		l	.	
	(3) Controls, metering &	EMCS requirements				<i>.</i>
	(4) Distribution system (valves, steam pressure, fluid temperature)				
1	(5) Corrosion control					
ļ .	(6) Insulation					
	(7) Additional equipmen		_ <u>V</u>			
D-6	D-7 Ventilating/air conditionin	g/refrigeration system	-	.	.l	
	(A) Existing facilities		NR			
	(1) Location				. <i>.</i>	
		eration, chilled water, etc.)				
	(3) Current loads (avera ing system)	ge, peak, reserves for this and other projects, load leve	-			
	(4) Type of product (CF	M, temperature, GPM, etc.)			1	
	(5) Distribution system	• • • • • • • • • • • • • • • • • • • •	· · ·	1		
	(6) Special filtration req	uirements		1		1
	(7) Special humidity, ve	ntilation, or temperature requirements				
	(8) Security restrictions	for open ducting]	
	(9) Freezers or coolers		Y		I	
1	(B) Requirements for prop	osed facility	R	D		
	(1) Type of system			D	.]	
	(2) Temperature, humic	lity and vent conditions special to this design	NR	1	1	
		tering and EMCS requirements	NR	1		
	(4) Distribution (length	of extension, location, fluid temperature)				
	(5) Corrosion control		NR	·		
	(6) Insulation			D		
		rity considerations for this project	NR			
	(8) Occupancy hours an		NR		_[
D-5,	D-8 Heat and chilled water dis	tribution system	NR	-	-l — —	
D-6	(A) Heat system		- -	·	-	
	(1) Type of service			.		.
	(2) Existing system com			.		
		alizing requirements n of service for main connections		• • • • • •		
				.		.
	(5) Sizing for future fac				-	.
				⊣		

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

- A DFAE
- B Using Service
- C Construction Service
- D -- Designer
- E Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-D-2-R, Feb 82

D. N	MECHANICAL, ELECTRICAL, & UTILITY SYSTEMS (Continued)	Required or Not Required	To Be • Determined	Comment Attached	
	ITEM	άž	To	Co	d
D-8	Heat and chilled water distribution system (continued)	NR			
(B)	Chilled water system				_
(1)	Type at service	1	1	ļ	١.
(2)	Existing system components	1.1		 	١.
(3)	Valving and sectionalizing requirements	1.1			١.
(4)	Allowable shut-down of service for main connections			l <i>.</i> .	١.
(5)	Sizing for future facilities	4			. _
D-9	Electrical system		B		1_
(A)	Power service characteristics & location		B	<u> </u>	_
(B)	Stand-by power (available & required)	NR		<u> </u>	_
(C)	Special interior functional lighting requirements (brightness, night, emergency, justification)	NR			
(D)	Uninterruptible power required	NR	1		
(E)	Commercial tie-in requirements & restrictions	NE	1		
(F)	Potential for increased power service needed	NR	1		
(G)	Service outage duration limitations	NR			
(H)	Security alarm systems (type & location)	NR			
(1)	Street, parking or security lighting (brightness, hours, switching, etc.)	NR			
(1)	Types of fixtures required (including mounting, NEC classification, etc.)	NR			_
(K)	Telephone extension circuits or conduit (functional support & outlet location)	NR	.		_
(L)	Television circuits or conduit (functional support & outlet location)	NR	.	l-	_
(M)	Intercom requirements (locations, type)		B.	.l-	-
(N)	Equipment list w/power requirements		D		_
(0)	Special communications requirements (filtering, maximum fluctuation limitations, convertors, etc.)	NR	1		
(P)	Electronic shielding & interference measures (frequency involved)	NR			. _
(0)	Special switches & control outlets, receptacle requirements, etc.			.	. _
(R)		NR		. [- _
(S)	Hazardous environment requirements (location, activity involved, NEC classification, type of hazard)	NR			
(T)	Corrosion control (cathodic protection)	NR			

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

A - DFAE

B - Using Service

C - Construction Service

D - Designer

E — Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-D-3-R, Feb 82

See Tech. Data Checklist	D. M	IECHANICAL, ELECTRICAL, & UTILITY SYSTEMS (Continued)	Required or Not Required	To Be Determined	Comment Attached	Document
item		ITEM	Red	To I Dete	Com	Doce
D-7	D-9	Electrical system (continued)				
	(U)	Other special power requirements (traffic control, antenna, etc.)	NR			
	(V)	Applicability of task lighting considerations	NR			
]	(W)	Power management and metering requirements	NR			
1	D-10	Electrical Distribution	NR			
1	(A)	Actual & estimated loads (peak & average (KW demand))				
	(B)	Utility compnay distribution system (substations, transmission lines, rate schedule, etc.)				
	(C)	Government owned distribution system (switching station, transmission lines, feeders, etc.)				
	(0)	Estimated impact of proposed equipment installation on power factor, load balance and costs for corrective action proposed				
	(E)	Overhead/underground (voltage, conductor size, grounding, etc.)				
1	(F)	Estimated power demand factor and diversity factor				
İ	(G)	Power quality requirements (voltage and frequency regulation)				
	(H)	Power to intrusion, detection alarm systems around perimeter	V			
1	D-11	Airfield lighting requirements	NR			
	(A)	Area & location to be served				
	(B)	Source of power (normal & emergency)	111_	<u> </u>		
	(C)	Vault requirements		.l		l
	(D)	Primary feeders	_ _	.		
	(E)	Control cabling	- -	.		
	(F)	Runway lighting (centerline, edge, distance markers, intensity control)	1.1.4.	.		l
	(G)	Threshold, approach, & strobe beacon lighting	. . -	.		
	(H)	Visual approach slope indicators (VASI)	. . -	.		
	(1)	Obstructions lighting/barrier markers	 			
İ	(J)	Taxiway edge lighting	4 -	-		
1	(K)	Helipad/heliport lighting (perimeter, landing direction, hoverlane, etc.)	1-75	.		
D-8	D-12	Water supply system	NR			
	(A)	Source (commercial, well, storage, etc.)	1 - 4 -	-		
	(B)	Average rate of supply (FPD at PSI) Current & Future	┤├ ┤	-		
	(C)	Treatment requirements	- - - -			
	(D)	Existing system components (type, size, capacity, age, material, location, valving, pressure, etc.)	4			

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

 $\label{eq:DOCUMENT} \mbox{DOCUMENT ATTACHED - Significant information is in an existing document which is attached.}$

*8Y WHOM (Check and insert appropriate letter)

A - DFAE

B - Using Service

C - Construction Service

D - Designer

E - Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-D-4-R, Feb 82

E-21

See Tech. Data Checklist	D. N	MECHANICAL, ELECTRICAL, & UTILITY SYSTEMS (Continued)	Required or Not Required	To Be * Determined	Comment Attached	Document Attached
Item		ITEM	Requ	To	Con	Doc
D-8	D-12	Water supply system (continued)	NR			
	(E)	Chemical analysis of water		"		
	(F)	Emergency storage requirements	1-7-			
	(G)	Peak hours of supply (hours & estimated quantity)	17-			
	(H)	Known minimal requirements of supported function or Government equipment (quantity & quality)				
	(1)	Chemical feeder & piping systems	- -			
	(1)	Corrosion control (existing & planned)				
	(K)	Metering or usage restrictions				
	(L)	Location of tie points (available capacity, interruption schedule)	1-1-			
D-8	D-13	Waste water treatment system	NR			
	(A)	Existing system & components (size, capacity, characteristics)	1			
	(1)	Treatment plant				
]	(2)	Collector sewers				
	(3)	Sewer mains (materials, depth)				
	(4)	Complete treatment — industrial process				
	(5)	Chemical, fuel or oil spill collection facilities	1			
	(6)	Existing flows (min., avg., peak)				
	(7)	Hydraulic capacity				
]	(B)	Known/estimated industrial or functional discharges (quantity & quality)				
	(C)	Contributory population & per capita contribution	$ \Gamma $			
	(D)	Proposed system & components	1.1_			
	(1)	Treatment plant	1.1	1	l <i>.</i> .	
	(2)	Collection sewers	l	1		
	(3)	Lift station	1	1		
	(4)	Complete treatment (additions or modifications)		1		
	(5)	Chemical, fuel or oil spill collection facilities				
	(6)	Waste water from portable water treatment plant	 			
	(7)	Projected flows—average or peak				
	(8)	By-pass restrictions				
	(9)	Location of tie points (available capacity, interruption schedule)	-	.		
	(E)	Compliance requirements (federal, state, local)		-		
	(F)	National Pollution Discharge Elimination System (NPDES) permit		.		
	(G)	Corrosion control (existing or planned)	Y			
						<u> </u>

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

 $\label{eq:decomposition} \mbox{DOCUMENT ATTACHED } - \mbox{Significant information is in an existing document which is attached.}$

*BY WHOM (Check and insert appropriate letter)

A - DFAE

B - Using Service

C - Construction Service

D - Designer

E - Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-D-5-R, Feb 82

	ITEM	Required or Not Required	To Be Determined	Comment Attached
D-14	Energy Sources			
(A)	Gas systems (LP, natural, special)	R	D	
(1)	Loads and areas served	R NR		
(2)	Source of gas & type of service	NR	· · · · ·	
(3)	Supply pressure average	NR		
(4)	Heating valve & type of gas (BTU per cubic foot)	NR		
(5)	Valving & sectionalizing criteria	R	D	• • • • •
(6)	Pressure regulation — reduction stations	NR		
(7)	Existing lines, pumping stations, pressurization, base system	NR		
(8)	Control & metering	NR	1	
(B)	POL systems	-		
(1)	Fuel (primary or standby source, grade and analysis)	R	D	
(2)	Storage (tank size, location, type, number of storage days)	e	D	† · · · · · ·
(3)	Areas served	R NR	•	1
(4)	Fuel requirements (known, estimated, quantity & type)	NR		1
(5)	Distribution system characteristics (piping, types of fuel, pumps, capacities)	NR		† · · · · ·
(6)	Ventilation system (Vapor Emission Control)	NP		†
(7)	Safety specifications	NR		† · · · · ·
(8)	Filter separators	NR		† · · · · ·
(C)	Coal systems	NR		- -
(1)	Storage (location & capacity)			† - -
(2)	Source of supply (primary & emergency)	1		†
(3)	Type, energy value, analysis (i.e. sulfur, ash, etc.)	1		1
(a)	Solar energy systems	NR		
(1)	Building heating, air conditioning, domestic hot water	1		
(2)	Heating process water	1.1	1	1
(3)	Collector type & location	1.1		1
(4)	Liquid, chemical or rock storage	1.1		
(5)	Freeze protection	#	1	1
(E)	Energy conservation data (U values, orientation, passive solar considerations,			
	etc.)	NR		
-11	Other Mechanical & Utility Systems (list and number items)			

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

 $\label{eq:comment} \mbox{COMMENT ATTACHED -- Significant information summarized or explained} \\ \mbox{and attached.}$

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

A - DFAE

B - Using Service

C - Construction Service

D - Designer

E — Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-D-6-R, Feb 82

See Tech. Data Checklist	E	E. ENVIRONMENTAL CONSIDERATIONS	Required or Not Required	To Be • Determined	Comment Attached	Document Attached
ltem		ITEM	Req	To E Dete	Com	Doct Attac
E-1	E-1	Water quality	NR			
	(A)	Waste water treatment management program (PL 92-500 & PL 95-217)				
	(8)	Water quality criteria & standards (federal, state and local)	ΓT^{-}			
	(c)	Treatment requirements coordinated with EPA				
	(a)	Facilities to be installed to meet regulatory agency criteria	4			
E-1	E-2	Air quality				
	(A)	Applicable air quality criteria (federal, state and local; PL 95-95 and Clean Air Act Amendment of 1977)	R	D		
	(B)	Action taken to comply with requirements	R	B		
	(C)	Type & amount of pollutants generated	R	8		
	(D)	Results of proposed abatement measures	R NR			
	(E)	Existing control equipment & monitoring procedures	R	B	. – –	
E-1	E-3	Solid waste disposal	R			
	(A)	Applicable solid waste criteria (federal, state and local)	1			
- 1	(B)	Waste volume generated (type & characteristics)				
	(C)	Method of disposal (land fill and availability of land, leachate, etc.)				
	(D)	Disposition of recyclable materials for reuse or as combustion fuel				
	(E)	Impact on installation recycling programs	4			
	E-4	Effects of terrain changes (such as excavations, roadways, drainage structures,	. 10			
		etc.)	NR			
	(A)	Measures to control erosion	NR			ļ
E-1	E-5 (A)	Treatment of hazardous material Handling and disposal of plychlorinated biphenyls (PCB) in electrical transformers	NK.			
	(B)	Handling and disposal of asbestos materials	<i> </i>			
1	(C)	Handling and disposal of fiberglass products	-			
1	(a)	Storage of fuels and solvents				
	(E)	Coordination with installation spill control plans	6			
		Other Environmental Considerations (list and number items)				

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

 $\label{eq:decomposition} \mbox{DOCUMENT ATTACHED } - \mbox{Significant information is in an existing document which is attached.}$

*BY WHOM (Check and insert appropriate letter)

A - DFAE

B - Using Service

C - Construction Service

D - Designer

E — Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-E-R, Feb 82

See Tech. Data Checklist	F. FIRE PROTECTION	Required or Not Required	To Be • Determined	Comment Attached	Document Attached
	ITEM		řă	A C	D A
F-1 F-1 (A	Occupancy type (see NFPA 101, Chap 4) Water supply characteristics (existing or planned extensions) (capacity, pump activation, storage tanks and pumps, etc.)	NR			
100	_	1-+-			
(E	Automatic suppression systems (water sprinkler, CO ₂ , foam etc.—existing or planned	11-			
(F	Hazard of contents (low, ordinary, high-see NFPA 101; type—explosives, flam-mable/toxic chemicals, radioactive materials)	1			
F-1 F-2 (A (B (C (C (C (C (C (C (C (C (C (C (C (C (C	Means of egress Fire area limitations Fire walls, partitions, draft curtains Detection system (type, detectors, supervision, transmitters, annunciators, backup provisions)	NR +			

TO BE DETERMINED — Information needed but not currently available. Enter code for information source.

COMMENT ATTACHED — Significant information summarized or explained and attached.

DOCUMENT ATTACHED — Significant information is in an existing document which is attached.

*BY WHOM (Check and insert appropriate letter)

A - DFAE

B - Using Service

C - Construction Service

D - Designer

E — Other (Check Comments Attached and explain)

design data checklist

DA FORM 5025-F-R, Feb 82

Appendix 1 - Calculations/Formulas

MICROSOFT EXCEL PREPARATION

- Cells of the spreadsheet used for development of baseline and ECO Energy and Annual Cost Data versus equivalent RDX production rate contain either text, constant values, or formulae. Contents of each cell prior to calculation are presented on the following pages.
- Cells A1 through A156, not reproduced here, contain input text and numerical data, all
 of which is self explanatory.
- Where cells shown here contain text and discrete numerical values, the text or numbers are input data.
- 4. Explanations for formulae shown in the remaining cells are as follows:

Steam Turbine #/hr: Calculate value from monthly RDX production rate,

pounds steam per pound RDX, turbine design steam

rate per horsepower, and conversion factors.

Steam Average #/hr: Conditional tests to select the greater of product

driven steam demand, turbine steam demand, or 40,000 lbs/hr, using appropriate conversion factors.

Fuel Million Btu/Mo: Conditional test to limit coal fired boilers to minimum

40,000 lbs/hr, otherwise calculate value from steam enthalpy difference, monthly RDX production, pounds steam required per pound RDX, and boiler efficiency.

Annual Fuel Cost: Calculate value from unit fuel cost and calculated

fuel million Btu/mo.

Annual Electrical Cost: Calculate value from assumed electric kWh per

thousand pounds of steam, unit cost per kWh and calculated average steam flow rate, plus electric motor energy for pumps and fans when applicable.

Annual Maintenance Cost: Calculated value from assumed fixed value, assumed

variable rate, and calculated steam production rate.

Annual Overhead Cost: Calculated value from assumed fixed value, assumed

variable rate, and calculated steam production rate.

Total Annual Cost: Summation of individually calculated annual costs.

	В
1	
2	
	\$/MILL.
	BTU
	1.86
6	1.86
	1.86
	1.86
	1.86
	1.86
	1.86
	1.86
13	
14	
	FUEL MILL.
	BTU/MO
	=IF(F5=40000,(C5-100)*40000*730*100/(G5*1000000),(C5-100)*A5*D5*100/G5)
17	=IF(F5=40000,(C5-100) 40000 730 100/(G3 1000000),(C5-100) A3 D3 100/(G3) =IF(F6=40000,(C6-100)*40000*730*100/(G6*1000000),(C6-100)*A6*D6*100/G6)
10	=IF(F7=40000,(C6-100)*40000*730*100/(G7*1000000),(C7-100)*A7*D7*100/G7)
20	=(C8-100)*A8*D8*100/G8
21	=(C9-100) A8 26 100/G5 =(C9-100)*A9*D9*100/G9
22	=(C10-100)*A10*D10*100/G10
23	=(C11-100)*A11*D11*100/G11
24	=(C12-100)*A12*D12*100/G12
25	
26	
27	
	\$/MILL.
	BTU
	1.86
	1.86
	1.86
	1.86
34	1.86 1.86
34 35	1.86 1.86 1.86
34 35 36	1.86 1.86
34 35 36 37	1.86 1.86 1.86 1.86
34 35 36	1.86 1.86 1.86 1.86
34 35 36 37 38 39	1.86 1.86 1.86 1.86 1.86
34 35 36 37 38 39 40	1.86 1.86 1.86 1.86 1.86
34 35 36 37 38 39 40	1.86 1.86 1.86 1.86 1.86 1.86 TUEL MILL. BTU/MO
34 35 36 37 38 39 40 41 42	1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86
34 35 36 37 38 39 40 41 42 43	1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86
34 35 36 37 38 39 40 41 42 43	1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86
34 35 36 37 38 39 40 41 42 43 44	1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86
34 35 36 37 38 39 40 41 42 43 44 45 46	1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86
34 35 36 37 38 39 40 41 42 43 44 45 46 47	1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 I.86 I.86 I.86 I.86 I.86 IIIIIIIIII

50 51 52 53 54 \$/MILL. 55 BTU 56 3.95 57 3.95 58 1.86 60 1.86 60 1.86 61 1.86 62 1.86 63 1.86 64 65	
52 53 54 \$/MILL. 55 BTU 56 3.95 57 3.95 58 1.86 60 1.86 61 1.86 62 1.86 63 1.86 64 65 66 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A5*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
53 54 \$/MILL. 55 BTU 56 3.95 57 3.95 58 1.86 60 1.86 60 1.86 61 1.86 62 1.86 63 1.86 64 65 66 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A60*D60*100/G61 74 =(C62-100)*A63*D63*100/G63 75 76 77 78 79 \$/MILL. 80 BTU	
54 \$/MILL. 55 BTU 56 3.95 57 3.95 58 1.86 59 1.86 60 1.86 61 1.86 62 1.86 63 1.86 64 65 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
54 \$/MILL. 55 BTU 56 3.95 57 3.95 58 1.86 59 1.86 60 1.86 61 1.86 62 1.86 63 1.86 64 65 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
55 BTU 56 3.95 57 3.95 58 1.86 59 1.86 60 1.86 61 1.86 62 1.86 63 1.86 64 65 66 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A58*D58*100/G59 72 =(C60-100)*A58*D58*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
56 3.95 57 3.95 58 1.86 59 1.86 60 1.86 61 1.86 62 1.86 63 1.86 64 65 66 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A59*D59*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
57 3.95 58 1.86 59 1.86 60 1.86 61 1.86 62 1.86 63 1.86 64 65 66 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
58 1.86 59 1.86 60 1.86 61 1.86 62 1.86 63 1.86 64 65 66 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A59*D59*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
59 1.86 60 1.86 61 1.86 62 1.86 63 1.86 64 65 66 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A58*D58*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A63*D62*100/G63 76 77 78 78 79 \$/MILL. 80 BTU	
60 1.86 61 1.86 62 1.86 63 1.86 64 65 66 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A63*D63*100/G63 76 77 78 78 79 \$/MILL. 80 BTU	
61 1.86 62 1.86 63 1.86 64 65 66 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
62 1.86 63 1.86 64 65 66 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
63 1.86 64 65 66 FUEL MILL. 67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
65 GEL MILL. G	
65 GEL MILL. G	
67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
67 BTU/MO 68 =(C56-100)*A56*D56*100/G56 69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
69 =(C57-100)*A57*D57*100/G57 70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
70 =(C58-100)*A58*D58*100/G58 71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
71 =(C59-100)*A59*D59*100/G59 72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
72 =(C60-100)*A60*D60*100/G60 73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
73 =(C61-100)*A61*D61*100/G61 74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
74 =(C62-100)*A62*D62*100/G62 75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
75 =(C63-100)*A63*D63*100/G63 76 77 78 79 \$/MILL. 80 BTU	
77 78 79 \$/MILL. 80 BTU	
78	
79 \$/MILL. 80 BTU	
80 BTU	
80 BTU	
81 3.95	
82 3.95	
83 3.95	
84 3.95	
85 3.95	
86 3.95	
87 3.95	
88 1.86	
89	
90	I
91 FUEL MILL.	
92 BTU/MO	
93 =(C81-100)*A81*D81*100/G81	
94 =(C82-100)*A82*D82*100/G82	
95 =(C83-100)*A83*D83*100/G83	
96 =(C84-100)*A84*D84*100/G84	
97 =(C85-100)*A85*D85*100/G85	
98 =(C86-100)*A86*D86*100/G86	

	В
99	=(C87-100)*A87*D87*100/G87
100	=(C88-100)*A88*D88*100/G88
101	
102	
103	
	\$/MILL.
	BTU
	3.95
	3.95
	3.95
	3.95
	3.95
	3.95
	3.95
	1.86
114	
115	
116	FUEL MILL.
	BTU/MO
118	=(C106-100)*A106*D106*100/G106
	=(C107-100)*A107*D107*100/G107
	=(C108-100)*A108*D108*100/G108
121	=(C109-100)*A109*D109*100/G109
	=(C110-100)*A110*D110*100/G110
	=(C111-100)*A111*D111*100/G111
124	=(C112-100)*A112*D112*100/G112
	=(C113-100)*A113*D113*100/G113
126	
127	
128	
129	
130	
	\$/MILL.
	BTU
	3.95
	3.95
135	
136	
	FUEL MIL.
1	BTU/MO
	=(C133-100)*A133*D133*100/G133
140	=(C134-100)*A134*D134*100/G134
141	
142	
143	
144	
145	
146	

	В	
	\$/MILL.	
148	BTU	
	3.95	
150	3.95	
151		
152		
	FUEL MIL.	
154	BTU/MO	
155	=(C149-100)*A149*D149*100/G149	
156	=(C150-100)*A150*D150*100/G150	

1 2 3 STEAM 4 BTU/# 5 1290.2 6 1290.2 7 1290.2 8 1290.2 9 1290.2 10 1290.2	
3 STEAM 4 BTU/# 5 1290.2 6 1290.2 7 1290.2 8 1290.2 9 1290.2	
3 STEAM 4 BTU/# 5 1290.2 6 1290.2 7 1290.2 8 1290.2 9 1290.2	
4 BTU/# 5 1290.2 6 1290.2 7 1290.2 8 1290.2 9 1290.2	
5 1290.2 6 1290.2 7 1290.2 8 1290.2 9 1290.2	
6 1290.2 7 1290.2 8 1290.2 9 1290.2	
7 1290.2 8 1290.2 9 1290.2	
8 1290.2 9 1290.2	_
9 1290.2	_
	_
11 1290.2	
12 1290.2	
13	_
14	
15 ANNUAL	-
16 FUEL COST	_
17 =B5*B17*12	
18 =B6*B18*12	
19 =87*B19*12	
20 =B8*B20*12	
21 =B9*B21*12	
22 =B10*B22*12	
23 =B11*B23*12	
24 =B12*B24*12	
25	
26	
27	
28 STEAM	
29 BTU/#	
30 1290.2	
31 1290.2	
32 1290.2	
33 1290.2	
1 33 1 1290.2	
34 1290.2 35 1290.2	
34 1290.2	
34 1290.2 35 1290.2	
34 1290.2 35 1290.2 36 1290.2	
34 1290.2 35 1290.2 36 1290.2 37 1290.2	
34 1290.2 35 1290.2 36 1290.2 37 1290.2	
34 1290.2 35 1290.2 36 1290.2 37 1290.2 38	
34 1290.2 35 1290.2 36 1290.2 37 1290.2 38 39 40 ANNUAL	
34 1290.2 35 1290.2 36 1290.2 37 1290.2 38 39 40 ANNUAL 41 FUEL COST	
34 1290.2 35 1290.2 36 1290.2 37 1290.2 38 39 40 ANNUAL 41 FUEL COST 42 =B30*B42*12	
34 1290.2 35 1290.2 36 1290.2 37 1290.2 38 39 40 ANNUAL 41 FUEL COST 42 =B30*B42*12 43 =B31*B43*12	
34 1290.2 35 1290.2 36 1290.2 37 1290.2 38 39 40 ANNUAL 41 FUEL COST 42 =B30*B42*12 43 =B31*B43*12 44 =B32*B44*12	
34 1290.2 35 1290.2 36 1290.2 37 1290.2 38 39 40 ANNUAL 41 FUEL COST 42 =B30*B42*12 43 =B31*B43*12 44 =B32*B44*12 45 =B33*B45*12	
34 1290.2 35 1290.2 36 1290.2 37 1290.2 38 39 40 ANNUAL 41 FUEL COST 42 =B30*B42*12 43 =B31*B43*12 44 =B32*B44*12 45 =B33*B45*12 46 =B34*B46*12	

	С
50	
51	
52	
53	
54	STEAM
55	BTU/#
56	1290.2 1290.2
57 58	1290.2
59	1290.2
60	1290.2
61	1290.2
62	1290.2
63	1290.2
64	
65	
66	ANNUAL
	FUEL COST
	=B56*B68*12
69	=B57*B69*12
70	=B58*B70*12
71	=B59*B71*12
72	=B60*B72*12
73	=B61*B73*12
74	=B62*B74*12
75	=B63*B75*12
76	
77	
78	
79	STEAM
80	BTU/#
81	1204
82	1204
83	1204
84	1204
85	1204
86	1204
87	1204
88	1290.2
89	
90	
91	ANNUAL
92	FUEL COST
93	=B81*B93*12
94	=B82*B94*12
95	=B83*B95*12
96	=B84*B96*12
97	=B85*B97*12
98	=B86*B98*12

	С
99	=B87*B99*12
	=B88*B100*12
101	
102	
103	
	STEAM
	BTU/#
	1204
	1204
	1204
	1204
	1204
	1204
	1204
113	1290.2
114	
115	
	ANNUAL
	FUEL COST
	=B106*B118*12
	=B107*B119*12
	=B108*B120*12
	=B109*B121*12
	=B110*B122*12
	=B111*B123*12
124	=B112*B124*12
125	=B113*B125*12
126	
127	
128	
129	
130	
	STEAM
	BTU/#
	1187.2
	1187.2
135	
136	
	ANNUAL
	FUEL COST
	=B133*B139*12
	=B134*B140*12
141	
142	
143	
144	
145	
146	
. 70	

	С
147	STEAM
148	BTU/#
149	1187.2
150	1187.2
151	
152	
153	ANNUAL
154	FUEL COST
	=B149*B155*12
156	=B150*B156*12

	D
1	
2	
3	# STEAM
4	PER #RDX
5	110
6	85
7	65
8	42
9	33
	20.5
11	13
12	11.5
13	
14	
	ANNUAL
	ELECT. COST
	=2.8*0.035*F5*8760/1000
_	=2.8*0.035*F6*8760/1000
	=2.8*0.035*F7*8760/1000
	=2.8*0.035*F8*8760/1000 =2.8*0.035*F9*8760/1000
	=2.8*0.035*F10*8760/1000
23	=2.8*0.035*F11*8760/1000
24	=2.8*0.035*F12*8760/1000
2	
26-	
27	
	# STEAM
	PER #RDX
30	110
	85
32	65
33	42
34	33
	20.5
36	
37	11.5
38	
39	
	ANNUAL
	ELECT. COST
	=2.8*0.035*F30*8760/1000+(F30/100000)*350*0.035*0.748*8760+0.035*1000*0.748*8760
	=2.8*0.035*F31*8760/1000+(F31/100000)*350*0.035*0.748*8760+0.035*1000*0.748*8760
	=2.8*0.035*F32*8760/1000+(F32/100000)*350*0.035*0.748*8760+0.035*1000*0.748*8760 =2.8*0.035*F33*8760/1000+(F33/100000)*350*0.035*0.748*8760+0.035*1000*0.748*8760
	=2.8*0.035*F33*8760/1000+(F33/100000)*350*0.035*0.748*8760+0.035*1000*0.748*8760 =2.8*0.035*F34*8760/1000+(F34/100000)*700*0.035*0.748*8760+0.035*1000*0.748*8760
	=2.8*0.035*F35*8760/1000+(F35/100000)*700*0.035*0.748*8760+0.035*2000*0.748*8760 =2.8*0.035*F35*8760/1000+(F35/100000)*700*0.035*0.748*8760+0.035*2000*0.748*8760
	=2.8*0.035*F36*8760/1000+(F35/100000)*1050*0.035*0.748*8760+0.035*3000*0.748*8760
4	.8*0.035*F37*8760/1000+(F37/100000)*1400*0.035*0.748*8760+0.035*3000*0.748*8760
	5.555 T. 6. 6766/1666 (1 6// 16666) T. 166 6/666 6// 16 6/666 6// 16

	D
54	
5	
52	
53	
54	# STEAM
	PER #RDX
56	110
57	85
58	65
59	
60	
	20.5
62	
	11.5
64	
65	MANAGA MARANA
	ANNUAL ELECT. COST
	=2.8*0.035*F56*8760/1000+(F56/100000)*350*0.035*0.748*8760+0.035*1000*0.748*8760
60	=2.8*0.035*F57*8760/1000+(F57/100000)*350*0.035*0.748*8760+0.035*1000*0.748*8760
70	=2.8*0.035*F58*8760/1000+(F58/100000)*350*0.035*0.748*8760+0.035*1000*0.748*8760
71	=2.8*0.035*F59*8760/1000+(F59/100000)*350*0.035*0.748*8760+0.035*1000*0.748*8760
72	=2.8*0.035*F60*8760/1000+(F60/100000)*700*0.035*0.748*8760+0.035*1000*0.748*8760
73	=2.8*0.035*F61*8760/1000+(F61/100000)*700*0.035*0.748*8760+0.035*2000*0.748*8760
7	2.8*0.035*F62*8760/1000+(F62/100000)*1050*0.035*0.748*8760+0.035*3000*0.748*8760
70.	-2.8*0.035*F63*8760/1000+(F63/100000)*1400*0.035*0.748*8760+0.035*3000*0.748*8760
76	
77	
78	
79	# STEAM
1	PER #RDX
81	=(1290.2-100)/(1204-100)*D5-(F5*20.6*350/100000)/(A81*1000000)
	=(1290.2-100)/(1204-100)*D6-(F6*20.6*350/100000)/(A82*1000000)
	=(1290.2-100)/(1204-100)*D7-(F7*20.6*350/100000)/(A83*1000000)
84	=(1290.2-100)/(1204-100)*D8-(F8*20.6*350/100000)/(A84*1000000) =(1290.2-100)/(1204-100)*D9-(F9*20.6*350/100000)/(A85*1000000)
96	=(1290.2-100)/(1204-100) D9-(F9 20.6 350/100000)/(A83 1000000) =(1290.2-100)/(1204-100)*D10-(F10*20.6*350/100000)/(A86*1000000)
	=(1290.2-100)/(1204-100) B10-(110 20.0 330/100000)/(A87*100000)
	11.5
89	
90	
	ANNUAL
	ELECT. COST
	=0.95*0.035*F81*8760/1000+0.035*200*0.748*8760
	=0.95*0.035*F82*8760/1000+0.035*200*0.748*8760
95	=0.95*0.035*F83*8760/1000+0.035*200*0.748*8760
	=0.95*0.035*F84*8760/1000+0.035*200*0.748*8760
97	=0.95*0.035*F85*8760/1000+0.035*200*0.748*8760
9	0.95*0.035*F86*8760/1000+0.035*200*0.748*8760

	D
9	.95*0.035*F87*8760/1000+0.035*200*0.748*8760
100	-2.8*0.035*F88*8760/1000+(F88/100000)*1400*0.035*0.748*8760+0.035*3000*0.748*8760
101	
102	
103	
104	# STEAM
	PER #RDX
	=(1290.2-100)/(1204-100)*D30-(F30*20.6*350/100000)/(A106*1000000)
	=(1290.2-100)/(1204-100)*D31-(F31*20.6*350/100000)/(A107*1000000)
	=(1290.2-100)/(1204-100)*D32-(F32*20.6*350/100000)/(A108*1000000)
109	=(1290.2-100)/(1204-100)*D33-(F33*20.6*350/100000)/(A109*1000000)
110	=(1290.2-100)/(1204-100)*D34-(F34*20.6*350/100000)/(A110*1000000)
111	=(1290.2-100)/(1204-100)*D35-(F35*20.6*350/100000)/(A111*1000000)
112	=(1290.2-100)/(1204-100)*D36-(F36*20.6*350/100000)/(A112*1000000)
113	11.5
114	
115	
116	ANNUAL
	ELECT. COST
	=0.95*0.035*F106*8760/1000+0.035*200*0.748*8760+0.035*1350*0.748*8760
	=0.95*0.035*F107*8760/1000+0.035*200*0.748*8760+0.035*1350*0.748*8760
	=0.95*0.035*F108*8760/1000+0.035*200*0.748*8760+0.035*1350*0.748*8760
	=0.95*0.035*F109*8760/1000+0.035*200*0.748*8760+0.035*1350*0.748*8760
	-0.95*0.035*F110*8760/1000+0.035*200*0.748*8760+0.035*1350*0.748*8760
1	.95*0.035*F111*8760/1000+0.035*200*0.748*8760+0.035*1350*0.748*8760
	=0.95*0.035*F112*8760/1000+0.035*200*0.748*8760+0.035*1350*0.748*8760 =2.8*0.035*F113*8760/1000+(F113/100000)*1400*0.035*0.748*8760+0.035*3000*0.748*8760
	-2.8 0.035 F113 8760/1000+(F113/100000) 1400 0.033 0.748 8700+0.033 3000 0.748 8700
126 127	
128	
129	
130	
	# STEAM
	PER #RDX
	=(1290.2-100)/(1187.2-100)*D56-(F56*20.6*350/100000)/(A133*1000000) =(1290.2-100)/(1187.2-100)*D57-(F57*20.6*350/100000)/(A134*1000000)
135 136	
	ANNUAL ELECT. COST
	=0.95*0.035*F133*8760/1000+0.035*75*0.748*8760+0.035*1350*0.748*8760 =0.95*0.035*F134*8760/1000+0.035*75*0.748*8760+0.035*1350*0.748*8760
141	
142 143	
144	
145	
140	
14	

	D
147	# STEAM
148	PER #RDX
149	=(1290.2-100)/(1187.2-100)*D56-(F56*20.6*350/100000)/(A149*1000000)
150	=(1290.2-100)/(1187.2-100)*D57-(F57*20.6*350/100000)/(A150*1000000)
15 15	
152	
153	ANNUAL
154	ELECT. COST
155	=0.95*0.035*F149*8760/1000+0.035*75*0.748*8760+0.035*1350*0.748*8760
156	=0.95*0.035*F150*8760/1000+0.035*75*0.748*8760+0.035*1350*0.748*8760

	E
1	
2	
	STEAM TURB-
	INE #/HR
	=(A5*D5*1000000/100000)*20.6*700/730+35.5*1000
6	=(A6*D6*100000/100000)*20.6*700/730+35.5*1000
7	=(A7*D7*1000000/100000)*20.6*700/730+35.5*1000
	=(A8*D8*1000000/100000)*20.6*700/730+35.5*1000
	=(A9*D9*1000000/100000)*20.6*1400/730+35.5*1000
10	=(A10*D10*1000000/100000)*20.6*1400/730+35.5*1000
11	=(A11*D11*1000000/100000)*20.6*2100/730+35.5*1000
12	=(A12*D12*1000000/100000)*20.6*2800/730+35.5*1000
13	
14	
	ANNUAL;
	MNTNC. COST
	=37500*12+(0.5*F5*8760/1000)
	=37500*12*(0.5*F6*8760/1000)
	=37500*12+(0.5*F7*8760/1000)
	=37500*12+(0.5*F8*8760/1000)
	=37500*12+(0.5*F9*8760/1000)
	=37500*12+(0.5*F10*8760/1000)
	=37500*12+(0.5*F11*8760/1000)
	₹37500*12+(0.5*F12*8760/1000)
7	
26	
27	
28	STEAM TURB-
	INE #/HR
	=(A30*D30*1000000/100000)*20.6*350/730
	=(A31*D31*1000000/100000)*20.6*350/730
	=(A32*D32*1000000/100000)*20.6*350/730
	=(A33*D33*1000000/100000)*20.6*350/730
_	=(A34*D34*1000000/100000)*20.6*700/730
	=(A35*D35*1000000/100000)*20.6*700/730
	=(A36*D36*1000000/100000)*20.6*1050/730
	=(A37*D37*1000000/100000)*20.6*1400/730
38	
39	
	ANNUAL;
	MNTNC. COST
	=12*37500+(0.5*F30*8760/1000)
	=12*37500*(0.5*F31*8760/1000)
	=12*37500+(0.5*F32*8760/1000)
	=12*37500+(0.5*F33*8760/1000)
_	=12*37500+(0.5*F34*8760/1000)
	=12*37500+(0.5*F35*8760/1000)
42	12 37300 (0.5 1 55 5756/1555) 12*37500+(0.5*F36*8760/1000)
4	(2*37500+(0.5*F37*8760/1000)
	75.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.

	E
504	
50 51	
52	
53	
	STEAM TURB-
	INE #/HR
	=(A56*D56*1000000/100000)*20.6*350/730
	=(A57*D57*1000000/100000)*20.6*350/730
	=(A57 D57 1000000/100000/ 20.0 330/730 =(A58*D58*1000000/100000)*20.6*350/730
	=(A59*D59*1000000/100000)*20.6*350/730
	=(A60*D60*1000000/100000)*20.6*700/730
	=(A61*D61*1000000/100000)*20.6*700/730
	=(A62*D62*1000000/100000)*20.6*1050/730
	=(A63*D63*1000000/100000)*20.6*1400/730
64	-(A00 B00 1000000/100000) 20.0 1400//00
65	
	ANNUAL;
	MNTNC. COST
	=12*37500+(0.5*F56*8760/1000)
	=12 37500+(0.5 F56 6760/1000) =12*37500+(0.5*F57*8760/1000)
	=12 37300+(0.5 F 57 8760/1000) =12*37500+(0.5*F58*8760/1000)
	=12*37500*(0.5 1 58 6760/1000)
	=12*37500+(0.5*F60*8760/1000)
	=12*37500+(0.5*F61*8760/1000)
74	2*37500+(0.5*F62*8760/1000)
75.	2*37500+(0.5*F63*8760/1000)
76	
77	
78	
	STEAM TURB-
	INE #/HR
	=(A81*D81*1000000/100000)*20.6*350/730+35.5*1000
	=(A82*D82*1000000/100000)*20.6*350/730+35.5*1000
	=(A83*D83*1000000/100000)*20.6*350/730+35.5*1000
	=(A84*D84*1000000/100000)*20.6*350/730+35.5*1000
	=(A85*D85*1000000/100000)*20.6*700/730+35.5*1000
	=(A86*D86*1000000/100000)*20.6*700/730+35.5*1000
	=(A87*D87*1000000/100000)*20.6*1050/730+35.5*2000
	=(A88*D88*1000000/100000)*20.6*1400/730
89	
90	
	ANNUAL;
	MNTNC. COST
_	=18750*12+(0.15*F81*8760/1000)
	=18750*12+(0.15*F82*8760/1000)
	=18750*12+(0.15*F83*8760/1000)
	=18750*12+(0.15*F84*8760/1000)
	=18750*12+(0.15*F85*8760/1000)
91	8750*12+(0.15*F86*8760/1000)
-	0.00 .= (00 . 00 0.00. 000)

E
99 8750*12+(0.15*F87*8760/1000)
10-2*37500+(0.5*F88*8760/1000)
101
102
103
104 STEAM TURB-
105 INE #/HR
106 0
107 0
108 0
109 0
110 0
111 0
112 0 113 =(A113*D113*1000000/100000)*20.6*1400/730
114
115
116 ANNUAL;
117 MNTNC. COST
118 =18750*12+(0.15*F106*8760/1000)
119 =18750*12+(0.15*F107*8760/1000)
120 =18750*12+(0.15*F108*8760/1000)
121 =18750*12+(0.15*F109*8760/1000)
122=18750*12+(0.15*F110*8760/1000)
8750*12+(0.15*F111*8760/1000)
124=18750*12+(0.15*F112*8760/1000)
125 =12*37500+(0.5*F113*8760/1000)
126
127
128
129
130
131 STEAM TURB-
132 INE #/HR
133 0 134 0
135 136
137 ANNUAL;
138 MNTNC. COST
139 =3750*12+(0.15*F133*8760/1000)
140 = 3750*12+(0.15*F134*8760/1000)
141
142
143
144
145
14

	E
	STEAM TURB-
	INE #/HR
149 150	0
150	0
15	
1	
	ANNUAL;
154	MNTNC. COST
	=6250*12+(0.15*F149*8760/1000)
156	=6250*12+(0.15*F150*8760/1000)

	F
1	
2	
3	STEAM
	AVG.#/HR
	=IF(E5<40000,IF(A5*D5*1000000/730<40000,40000,A5*D5*1000000/730),IF(E5>A5*D5*1000000/730,E5,A5*D5*1000000/
6	=IF(E6<40000,IF(A6*D6*1000000/730<40000,40000,A6*D6*1000000/730),IF(E6>A6*D6*1000000/730,E6,A6*D6*1000000/
7	=IF(E7<40000,IF(A7*D7*1000000/730<40000,40000,A7*D7*1000000/730),IF(E7>A7*D7*1000000/730,E7,A7*D7*1000000/
8	=IF(E8<40000,IF(A8*D8*1000000/730<40000,40000,A8*D8*1000000/730),IF(E8>A8*D8*1000000/730,E8,A8*D8*1000000/
9	=IF(E9<40000,IF(A9*D9*1000000/730<40000,40000,A9*D9*1000000/730),IF(E9>A9*D9*1000000/730,E9,A9*D9*1000000/
10	=IF(E10<40000,IF(A10*D10*1000000/730<40000,40000,A10*D10*1000000/730),IF(E10>A10*D10*1000000/730,E10,A10*
11	=IF(E11<40000,IF(A11*D11*1000000/730<40000,40000,A11*D11*1000000/730),IF(E11>A11*D11*1000000/730,E11,A11*
12	=IF(E12<40000,IF(A12*D12*1000000/730<40000,40000,A12*D12*1000000/730),IF(E12>A12*D12*1000000/730,E12,A12*
13	
14	
15	ANNUAL
	OVRHD. COST
17	=70000*12+(0.25*F5*8760/1000)
_	=70000*12+(0.25*F6*8760/1000)
	=70000*12+(0.25*F7*8760/1000)
	=70000*12+(0.25*F8*8760/1000)
21	=70000*12+(0.25*F9*8760/1000)
22	=70000*12+(0.25*F10*8760/1000)
23	=70000*12+(0.25*F11*8760/1000)
24	=70000*12+(0.25*F12*8760/1000)
2	
26	
27	
28	STEAM
	AVG.#/HR
30	=IF(E30<40000,IF(A30*D30*1000000/730<40000,40000,A30*D30*1000000/730),IF(E30>A30*D30*1000000/730,E30,A30*
	=IF(E31<40000,IF(A31*D31*1000000/730<40000,40000,A31*D31*1000000/730),IF(E31>A31*D31*1000000/730,E31,A31*
	=IF(E32<40000,IF(A32*D32*1000000/730<40000,40000,A32*D32*1000000/730),IF(E32>A32*D32*1000000/730,E32,A32*
	=IF(E33<40000,IF(A33*D33*1000000/730<40000,40000,A33*D33*1000000/730),IF(E33>A33*D33*1000000/730,E33,A33*
	=IF(E34<40000,IF(A34*D34*1000000/730<40000,40000,A34*D34*1000000/730),IF(E34>A34*D34*1000000/730,E34,A34*
	=IF(E35<40000,IF(A35*D35*1000000/730<40000,40000,A35*D35*1000000/730),IF(E35>A35*D35*1000000/730,E35,A35*
	=IF(E36<40000,IF(A36*D36*1000000/730<40000,40000,A36*D36*1000000/730),IF(E36>A36*D36*1000000/730,E36,A36*
_	=IF(E37<40000,IF(A37*D37*1000000/730<40000,40000,A37*D37*1000000/730),IF(E37>A37*D37*1000000/730,E37,A37*
38	
39	
	ANNUAL
	OVRHD. COST
	=70000*12+(0.25*F30*8760/1000)
	=70000*12+(0.25*F31*8760/1000)
	=70000*12+(0.25*F32*8760/1000)
	=70000*12+(0.25*F33*8760/1000) =70000*12+(0.25*F33*8760/1000)
	=70000*12+(0.25*F34*8760/1000) =70000*12+(0.25*E35*8760/1000)
	=70000*12+(0.25*F35*8760/1000) =70000*12+(0.25*F36*8760/1000)
45	0000*12+(0.25*F37*8760/1000)
43	0000 12+(0.25 1 51 0100/1000)

	F
5	
5	
52	
53	
	STEAM
	AVG.#/HR
	=D56*A56*1000000/730
	=D57*A57*1000000/730
	=D58*A58*1000000/730 =D59*A59*1000000/730
	=D59 A59 1000000730 =D60*A60*1000000730
	=D60 A60 1000000730 =D61*A61*1000000/730
	=D61 A61 1000000730 =D62*A62*1000000730
	=D63*A63*1000000730
	-D63 A63 1000000730
64	
65	
	ANNUAL
	OVRHD. COST
	=70000*12+(0.25*F56*8760/1000)
	=70000*12+(0.25*F57*8760/1000)
	=70000*12+(0.25*F58*8760/1000)
	=70000*12+(0.25*F59*8760/1000)
	=70000*12+(0.25*F60*8760/1000) =70000*12+(0.25*F61*8760/1000)
7/	(0000*12+(0.25*F62*8760/1000)
75	-/0000*12+(0.25*F63*8760/1000)
76	770000 12-\0.201 00 0700710007
77	
78	
	CTEAN
	STEAM AVG.#/HR
81	=IF((A81*D81*1000000/100000)*20.6*350/730+35.5*1000>A81*D81*1000000/730,(A81*D81*1000000/100000)*20.6*350/73 =IF((A82*D82*1000000/100000)*20.6*350/730+35.5*1000>A82*D82*1000000/730,(A82*D82*1000000/100000)*20.6*350/73
82	=IF((A82*D82*1000000/100000)*20.6*350/730+35.5*1000>A82*D82*1000000/730,(A62*D62*1000000/100000)*20.6*350/730 =IF((A83*D83*1000000/100000)*20.6*350/730+35.5*1000>A83*D83*1000000/730,(A83*D83*1000000/100000)*20.6*350/73
83	=IF((A84*D84*1000000/100000)*20.6*350/730+35.5*1000>A84*D84*1000000/730,(A84*D84*1000000/100000)*20.6*350/73
04	=IF((A85*D85*1000000/100000)*20.6*350/730+35.5*1000>A85*D85*1000000/730,(A85*D85*1000000/100000)*20.6*350/73
00	=IF((A86*D86*1000000/100000)*20.6*350/730+35.5*1000>A86*D86*1000000/730,(A86*D86*1000000/100000)*20.6*350/73
97	=IF((A87*D87*1000000/100000)*20.6*350/730+35.5*1000>A87*D87*1000000/730,(A87*D87*1000000/100000)*20.6*350/73
	=D88*A88*1000000/730
_	-Dec Acc 1000000760
89 90	
	ANNUAL
	OVRHD. COST
	=70000*12+(0.25*F81*8760/1000)
	=70000*12+(0.25*F81*8760/1000) =70000*12+(0.25*F82*8760/1000)
	=70000 12+(0.25 F82 8760/1000)
	=70000 12+(0.25 F 84*8760/1000)
	=70000*12+(0.25*F85*8760/1000)
9	0000*12+(0.25*F86*8760/1000)
3	0000 12.\0.201 00 0100/1000/

г т	<u> </u>
	F
9 10	70000*12+(0.25*F87*8760/1000)
	70000*12+(0.25*F88*8760/1000)
101	
102	
103	
104	STEAM
	AVG.#/HR
	=A106*D106*1000000/730
	=A107*D107*1000000/730
	=A108*D108*1000000/730
	=A109*D109*1000000/730
	=A110*D110*1000000/730
	=A111*D111*1000000/730
	=A112*D112*1000000/730
	=D113*A113*1000000/730
114	
115	
	ANNUAL
	OVRHD. COST
	=70000*12+(0.25*F106*8760/1000)
	=70000*12+(0.25*F107*8760/1000)
	=70000*12*(0.25*F108*8760/1000)
	=70000*12*(0.25*F109*8760/1000)
	=70000*12+(0.25*F110*8760/1000)
1	70000*12+(0.25*F111*8760/1000)
	=70000*12+(0.25*F112*8760/1000)
	=70000*12+(0.25*F113*8760/1000)
126	
127	
128	
129	
130	
	STEAM AND THE PROPERTY OF THE
	AVG.#/HR
	=A133*D133*1000000/730
	=A134*D134*1000000/730
135	
136	
	ANNUAL
	OVRHD. CST
	=35000*12+(0.25*F133*8760/1000)
	=35000*12+(0.25*F134*8760/1000)
141	
142	
143	
144	
145	
14	

	F
147 STEAM	
148 AVG.#/HR	
149 =A149*D149*1000000/730	
150 =A150*D150*1000000/730	
1	
1	
153 ANNUAL	
154 OVRHD. CST	
155 = 50000*12+(0.25*F149*8760/1000)	
156 =50000*12+(0.25*F150*8760/1000)	

	G
1	
2	
3	BOILER
4	EFFIC.
5	75
6	75
7	80.7
8	79.5
9	77.2
10	79.2
11	82.1
12	82.9
13	02.0
14	
15	TOTAL
16	ANNUAL COST
	=C17+D17+E17+F17
	=C17+D17+E17+F17 =C18+D18+E18+F18
19	=C19+D19+E19+F19
20	=C20+D20+E20+F20
21	=C21+D21+E21+F21
22	=C22+D22+E22+F22
23	=C23+D23+E23+F23
24	=C24+D24+E24+F24
25	-024.024.024.7
26	
27	
28	BOILER
29	EFFIC.
30	
31	75 75
32	77.5
33	78.1
34	83.2
35	78.2
36	81
37	83.2
38	
39	
40	TOTAL
41	ANNUAL COST
42	=C42+D42+E42+F42
43	=C43+D43+E43+F43
44	
45	=C45+D45+E45+F45
46	=C46+D46+E46+F46
47	
48	=C48+D48+E48+F48
49	=C49+D49+E49+F49

	G				
50					
51					
52					
53					
54	BOILER				
55	EFFIC.				
56					
57	77 77.9				
58	76.8				
59 60	78 83.1				
61	78				
62	79				
63	82				
64					
65					
66	TOTAL				
67	ANNUAL COST				
68	=C68+D68+E68+F68				
69	=C69+D69+E69+F69				
70	=C70+D70+E70+F70				
71	=C71+D71+E71+F71				
72	=C72+D72+E72+F72				
73	=C73+D73+E73+F73				
74	=C74+D74+E74+F74				
75	=C75+D75+E75+F75				
76					
77					
78					
79	BOILER				
80	EFFIC.				
81	78				
82	78.5				
	81				
84	81.8				
85	82.5				
86	83.2				
87	82				
88	82				
_	02				
89					
90	TOTAL				
91	TOTAL				
92	ANNUAL COST				
93	=C93+D93+E93+F93				
94	=C94+D94+E94+F94				
95	=C95+D95+E94+F95				
96	=C96+D96+E96+F96				
97	=C97+D97+E97+F97				
98	=C98+D98+E98+F98				

00	G
99	=C99+D99+E99+F99 =C100+D100+E100+F100
	=C100+D100+E100+F100
101	
102	
103	
104	BOILER
105	EFFIC.
106	78
107	78.5
108	81
	81.8
110	82.5
	83.2
112	The state of the s
113	
114	
115	
	TOTAL
	ANNUAL COST
	=C118+D118+E118+F118
	=C119+D119+E119+F119
	=C120+D120+E119+F120
	=C121+D121+E121+F121
	=C122+D122+E122+F122
	=C123+D123+E123+F123
	=C124+D124+E124+F124
125	=C125+D125+E125+F125
126	
127	
128	
129	
130	
	BOILER
	EFFIC.
	84.5 84.5
	04.5
135	
136	TOTAL
	TOTAL
	ANNUAL COST
	=C139+D139+E139+F139
	=C140+D140+E140+F140
141	
142	
143	
144	
145	
146	

	G
147	BOILER
148	EFFIC.
149	84.5
150	84.5
151	
152	
153	TOTAL
154	ANNUAL COST
155	=C155+D155+E155+F155
156	=C156+D156+E156+F156

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Calculations For:

BASELINE CONDITIONS-CASE / \$2 BLR. EFF.

L	COMBUSTIO	N CALCULATIONS	100,000	•	٤.	L I
и	BASED ON QUANTITIE	ES PER 10,000 BTU FUEL INPUT	LOAD			И
Ε			BASE	CASI	5142	E
1	FUEL— COAL CONDITIONS DATE					
2	ANALYSIS AS FIRED BY TEST OR SPECIFICATION 8-16-9				6-95	
3	ULTIMATE, % BY WT PROXIMATE, % BY WT TOTAL AIR % 170					Ь
4	c 74.7 MOISTURE 2.9	AIR TEMPERATURE TO HEATER		F	80	c
5	H2 5. 3 VOLATILE 34.7	AIR TEMPERATURE FROM HEATE		F	_	d
6	S 0.7 FIXED CARBON 56.	FLUE GAS TEMPERATURE LEAVE	NG UNIT	F	375	e
7	0: 8.5 ASH 6, 3	H2O PER LB DRY AIR		LB	0.0132	f
8	N: 1,6					g
9	H ₂ O 2.9	UNBURNED FUEL LOSS		%	0	h
10	ASH 6.3			%	2.5	;
11		RADIATION LOSS (ABA1), FIG. 20	, CHAPTER 7	%	0.75	j
12	BTU PER LB, AS FIRED, 14006 B/#					k
13	QUANTITIES PER	10,000 BTU FUEL INPUT				13
14	FUEL BURNED, 10,000 ÷ UNE 12.			LB	0.714	1.4
15	TOTAL AIR REQUIRED, LINE $b \div 100 \times VALUE FROM FIG.$. A OR TABLE 5 OR 6 =1.7X	7.575	L8	12.88	1.5
16	H2O IN AIR, LINE 15 X LINE 1 - 12.88 X 0.013	32		LB	17_	16
17	WET GAS, TOTAL, LINES (14 \pm 15 \pm 16)	•		LB	13.76	11/
18	$_{12}$ O IN FUEL, (LINE 5 \div 100) $ imes$ LINE 14 $ imes$ 8.94 $+$ (LINE	$9\div 100) imes LINE 14;$ OR FROM	A TABLE 5	L8	0.36	1.8
19	HO IN FLUE GAS, TOTAL, LINE 16 + LINE 18			LB	2.52	11.9
20	${ m H_2O}$ in flue gas, total, in per cent, (line 19 \div lin	E 17) × 100		%	3.8	20
21	DRY GAS, TOTAL, LINE 17—LINE 19			LB	13.23	21
22	LOSSES PER 10,0	OO BTU FUEL INPUT				22
23	UNBURNED FUEL, 10,000 X LINE h ÷ 100			87U	0	23
24		••••••		BTU	250	24
25		••••••		BTU	. 75	25
26	LATENT HEAT, H2O IN FUEL, 1040 X LINE 18	•••••		BTU	374	20
27	SENSIBLE HEAT, FLUE GAS, LINE 17 X BTU FROM FIG. 2	@ LINE & AND LINE 20 = 13.7	6×67		_922_	27
28	TOTAL LOSSES, LINES (23 + 24 + 25 + 26 + 27)			вти	1621	28
29	TOTAL LOSSES IN PER CENT, LINE (28 ÷ 10,000) × 100 % 16.21				29	
30	EFFICIENCY, BY DIFFERENCE, 100-LINE 29			%	83.79	3
31		R 10,000 BTU FUEL INPUT TEMPERATURE, ADIABATIC				3
32	HEAT INPUT FROM FUEL				10000	3
33	HEAT INPUT FROM AIR, LINES (15 \pm 16) $ imes$ BTU FROM F	FIG. 3 @ LINE d TEMP		BTU		_ 3
34	HEAT INPUT, TOTAL, LINES (32 + 33)	***************************************			10000	3
35	LESS LATENT HEAT LOSS, H2O IN FUEL, LINE 26			BTU	374_	3
36	HEAT AVAILABLE, MAXIMUM				9625	. 3
37				BTU	_ 163_	3
38	HEAT AVAILABLE, LINE 36-LINE 37			BTU	9463	3
39		17	BTU 6	88		3
40	ADIABATIC TEMPERATURE, FROM FIG. 2 FOR LINES 20 8	ኒ 39	F 2	500		4

^{*} NOTE IT IS CUSTOMARY TO REDUCE THE MAXIMUM HEAT AVAILABLE, LINE 36, BY FROM 1/2 TO 1/2 OF THE UNACCOUNTED PLUS RADIATION LOSSES, ON THE ASSUMPTION THAT A PORTION OF THESE LOSSES OCCURS IN THE COMBUSTION ZONE.

L	COMBUSTIO	N CALCULATIONS	75000 #/H	R	L	
			LOAD		N	
N F	BASED ON QUANTITIES PER 10,000 BTU FUEL INPUT LOAD IN					
+		COMPUTIONS	<i>D</i> .,, <i>D</i>	DATE		
- 1	FUEL - COAL	CONDITIONS BY TEST OR SPECIFICA	TION 8-3	3-25	"	
2	ANALYSIS AS FIRED				 	
3	ULTIMATE, % BY WT PROXIMATE, % BY WT	TOTAL AIR AIR TEMPERATURE TO HEATER	f	80	-	
4	c 74.7 MOISTURE 2.9	AIR TEMPERATURE FROM HEATER			† . .	
5	H: 5.3 VOLATILE 34.7	FLUE GAS TEMPERATURE LEAVING U		80	-	
6	S 0.7 FIXED CARBON 56.	H ₂ O PER LB DRY AIR			f	
7	0: 8.5 ASH 6.3	HO FER LE DRI AIR			a	
8	N ₂ /.6	UNBURNED FUEL LOSS	%	0	h	
9	H ₂ O 2, 9	UNACCOUNTED LOSS	~	2.5	i	
10	ASH <u>6.3</u>	RADIATION LOSS (ABA1), FIG. 20, CHA	PTER 7 %	1.00	i	
	ATH DED IN AC EIDED 14000	manifer too (marry rior to) dist	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	k	
12	BTU PER LB, AS FIRED, 14000				+	
13	QUANTITIES PER 10,000 BTU FUEL INPUT					
14	FUEL BURNED, 10,000 ÷ LINE 12.		LB	0.74	. 1.4	
15	TOTAL AIR REQUIRED, LINE b ÷ 100 × VALUE FROM FIG	3. 4 OR TABLE 5 OR 6 - 2.38 X	7,575 LE	18.03	13	
اهد	H ₂ O IN AIR. LINE 15 X LINE f =		LE	0.24	10	
17	WET GAS, TOTAL LINES (14 + 15 + 16)			10.00		
18	$H_{2}O$ IN FUEL, (LINE 5 \div 100) \times LINE 14 \times 8.94 $+$ (LINE 9 \div 100) \times LINE 14; OR FROM TABLE 5			0.36	115	
19	H ₂ O IN FLUE GAS, TOTAL, LINE 16 + LINE 18			0.00	.1.1.	
20	H ₂ O IN FLUE GAS, TOTAL, IN PER CENT, (LINE 19 ÷ LINE 17) × 100			ع، الج	20	
	DRY GAS, TOTAL, LINE 17—LINE 19				12	
22	The state of the s					
23	UNBURNED FUEL, 10,000 × LINE h ÷ 100		вти	0	2:	
24		•••••		250	24	
25				100	2:	
26	LATER THE THE RESERVE TO AN AUTHOR TO		BTU	374	2	
27	SENSIBLE HEAT, FLUE GAS, LINE 17 X BTU FROM FIG. 2	@ LINE & AND LINE 20 = 18.98X		1272	2	
28	TOTAL LOSSES, LINES (23 + 24 + 25 + 26 + 27)			1996	2	
29	TOTAL LOSSES IN PER CENT, LINE (28 ÷ 10,000) × 100		%	19.96	2	
30	EFFICIENCY, BY DIFFERENCE, 100-LINE 29		%	80.00	43	
31		TEMPERATURE, ADIABATIC			3	
32			вти	10000	. 3	
33	HEAT INPUT FROM AIR, LINES (15 + 16) X BTU FROM		вти		_]3	
34	HEAT INPUT, TOTAL, LINES (32 + 33)		BTU	10000	. 3	
35	LESS LATENT HEAT LOSS, H2O IN FUEL, LINE 26		ATIL	_ 374.	_ 3	
36			0.711	9626	. 3	
37			0.711	_ 175		
38	***************************************		27111	9451	3	
39		E 17	BTU 500		3	
40			F 1900		4	

^{*} NOTE IT IS CUSTOMARY TO REDUCE THE MAXIMUM HEAT AVAILABLE, LINE 36, BY FROM 1/2 TO 1/2 OF THE UNACCOUNTED PLUS RADIATION LOSSES, ON THE ASSUMPTION THAT A PORTION OF THESE LOSSES OCCURS IN THE COMBUSTION ZONE.

Z - r		N CALCULATIONS 50 000 ES PER 10,000 BTU FUEL INPUT LOA.	D,	7 - Z H
E		BASE CA	50/40K	-
1	FUEL-	CONDITIONS	DATE	٥
2	ANALYSIS AS FIRED	BY TEST OR SPECIFICATION	1-23-95	<u> </u>
3	ULTIMATE, % BY WT PROXIMATE, % BY WT		285	ь
4	C MOISTURE	AIR TEMPERATURE TO HEATER F	80	c
5	H ₂ VOLATILE	AIR TEMPERATURE FROM HEATER F		ď
6	S FIXED CARBON	FLUE GAS TEMPERATURE LEAVING UNIT		. e
7	O ₂ ASH	H ₂ O PER LB DRY AIR	B 0,0132	f
8	N ₂			g
9	H₂O	UNBURNED FUEL LOSS	8 O	h
10	ASH	UNACCOUNTED LOSS	3.0	ļ.i.
11		RADIATION LOSS (ABA1), FIG. 20, CHAPTER 7	6 1,5	j
12	BTU PER LB, AS FIRED,			k
13	QUANTITIES PER	10,000 BTU FUEL INPUT		13
14	FUEL BURNED, 10,000 ÷ LINE 12.		B 0,714	14
15		G. A OR TABLE 5 OR 6 = 2.85X 7.575	B 21.59	15
16			B 0.28	16
17	***************************************	** *** *** ** ** ** ** ** ** ** ** ** *	8 22.58	
18		E 9 ÷ 100) × LINE 14; OR FROM TABLE 5	B 0.36	18
	H ₂ O IN FLUE GAS, TOTAL, LINE 16 + LINE 18		18 0.64	19
20	H2O IN FLUE GAS, TOTAL, IN PER CENT, (LINE 19 ÷ LIN			
21			18 21.94	21
22	LOSSES PER 10,0	DOO BTU FUEL INPUT		22
23	UNBURNED FUEL, 10,000 × LINE h ÷ 100	STU	0	23
24		0717	300	24
25		BTU		25
26	LATENT HEAT HIO IN FILE TOAD VINE 18	BTU	374	26
27		2 @ LINE & AND LINE 20 = 22,58 % 67 BTU	1513	27
	TOTAL LOSSES, LINES (23 + 24 + 25 + 26 + 27)		2337	28
29	TOTAL LOSSES IN PER CENT, LINE (28 ÷ 10,000) × 100		23.37	29
30	EFFICIENCY, BY DIFFERENCE, 100-LINE 29	%	76.63	30
31		R 10,000 BTU FUEL INPUT TEMPERATURE, ADIABATIC		31
32			10000	32
33	· · · · · · · · · · · · · · · · · · ·			33
34			desi.	34
35			374	3.5
36			9625	36
37		BTU	225	37
38		вти	9400	38
39				39
1 ~ /				3 40

^{*} NOTE IT IS CUSTOMARY TO REDUCE THE MAXIMUM HEAT AVAILABLE, LINE 36, BY FROM 1/2 TO 1/2 OF THE UNACCOUNTED PLUS RADIATION LOSSES, ON THE ASSUMPTION THAT A PORTION OF THESE LOSSES OCCURS IN THE COMBUSTION ZONE.

AFFILIATED ENGINEERS SE, INC.

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479 Made By: PDL

Checked By:

Date: 9-1-95

Job No: 95046

Date:

Sheet No:

Calculations For:

RETROFIT EXISTG. BOILER W/ N.G. BURNOR-CASE 3

CASE 3

		<u></u>	- 4 JE		
L	COMBUSTIO		000 #/	HR	L
N	BASED ON QUANTITIE	ES PER 10,000 BTU FUEL INPUT	DAD		z
E	SAGE SIX COMMISSION	RETRO	ofit e	XSTG.	E
1	FUEL- NATURAL GAS	CONDITIONS		DATE	0
2	ANALYSIS AS FIRED	BY TEST OR SPECIFICATION	, 9-	1-95	
3	ULTIMATE, % BY WT PROXIMATE, % BY WT	TOTAL AIR	%	107.5	ь
4	c 69, 3 MOISTURE	AIR TEMPERATURE TO HEATER	F	80	c
5	H ₂ 22.7 VOLATILE	AIR TEMPERATURE FROM HEATER	F	-	d
6	S FIXED CARBON	FLUE GAS TEMPERATURE LEAVING UNIT	F	375	•
7	O ₂ — ASH	H2O PER LB DRY AIR	LB	0,0132	f
8	N ₂ 8./				g
9	H ₂ O —	UNBURNED FUEL LOSS	%	0	h
10	ASH —	UNACCOUNTED LOSS	%	3.0	ï
11		RADIATION LOSS (ABA1), FIG. 20, CHAPTER			j
12	BTU PER LB, AS FIRED, 21825) ~• ~	k
14					,,
13		10,000 BTU FUEL INPUT			13
14	FUEL BURNED, 10,000 ÷ LINE 12 TOTAL AIR REQUIRED, LINE b ÷ 100 × VALUE FROM FIG. H-O IN AIR LINE 15 × LINE f = 2633 × 0.000		LB	0.458	14
15	TOTAL AIR REQUIRED, LINE 6 + 100 X VALUE FROM FIG	3. 4 OR TABLE 5 OR 6 - 1.075 X 7	, / LB	7.633	15
16					
	WET GAS, TOTAL, LINES (14 + 15 + 16)	COLUMN VINE 14 OR EROM TARIE 5	LB	8.192	17
18	$_{12}$ O IN FUEL, (LINE 5 \div 100) $ imes$ LINE 14 $ imes$ 8.94 $+$ (LINE	9 ÷ 100) × LINE 14; OR FROM TABLE 5	LB	0.929	18
19	H ₂ O IN FLUE GAS, TOTAL, LINE 16 + LINE 18		LB	1.030	19
20	H2O IN FLUE GAS, TOTAL, IN PER CENT, (LINE 19 ÷ LIN	E 17) × 100	%	12.58	20
21			LB	7.162	21
22	LOSSES PER 10,0	OO BTU FUEL INPUT			22
23	UNBURNED FILE 10,000 × UNE b = 100		87U	0	23
24				300	24
25				200	25
	LATENT MEAT IN OUR BUILD 1040 VINE 10	•••••	BTU	966	26
	SENSIBLE HEAT, FLUE GAS, LINE 17 X BTU FROM FIG. 2	@ LINE . AND LINE 20 = 8.1928 78	вти	440	27
	TOTAL LOSSES, LINES $(23 + 24 + 25 + 26 + 27)$	O and O mile and an an opposition of		2106	28
1			%	21.06	29
29			%	78,94	30
30		The same party files (MBHT	~	1011	+-
31	COMBUSTION	R 10,000 BTU FUEL INPUT TEMPERATURE, ADIABATIC			31
32	HEAT INPUT FROM FUEL	EIC 2 A INE 4 TEMP	вти	10000	32
33	HEAT INPUT FROM AIR, LINES (15 \pm 16) $ imes$ BTU FROM F	FIG. 3 @ LINE d TEMP		-,	33
34	HEAT INPUT, TOTAL, LINES (32 + 33)		BTU	10000	34
35			0.711	966	3.5
36	HEAT AVAILABLE, MAXIMUM		вти	9034	36
37	1		8711	250	37
38	HEAT AVAILABLE, LINE 36—LINE 37		BTU	8784	38
39		17 BTU	1072		39
40		\$ 39 F	3400		40

^{*} NOTE IT IS CUSTOMARY TO REDUCE THE MAXIMUM HEAT AVAILABLE, LINE 36, BY FROM 1/2 TO 1/2 OF THE UNACCOUNTED PLUS RADIATION LOSSES, ON THE ASSUMPTION THAT A PORTION OF THESE LOSSES OCCURS IN THE COMBUSTION ZONE.

CA	58	3

			LA30		
T.	COMPLISTIO	N CALCULATIONS	30,000 #/H	1R	ı
1		N CALCULATIONS	LOAP		- 7
E	BASED ON QUANTITIE	es per 10,000 btu fuel input \mathcal{R}_{ℓ}	ETROFIT &	XISTZ.	E
1	FUEL- NATURAL GAS	CONDITION	S	DATE	a
2	ANALYSIS AS FIRED	BY TEST OR SPECIF	ICATION	9-1-95	
3	ULTIMATE, % BY WT PROXIMATE, % BY WT	TOTAL AIR	%	107.5	ь
4	C 69.3 MOISTURE	AIR TEMPERATURE TO HEATER	F	80	c
5	H ₂ 22.7 VOLATILE			1	8
6	S _ FIXED CARBON	FLUE GAS TEMPERATURE LEAVING	UNIT F	80	•
7	O ₂ — ASH	H2O PER LB DRY AIR	LB	0.032	f
8	N2 8.1				g
9	H ₂ O —	UNBURNED FUEL LOSS	97	0	h
10	ASH —	UNACCOUNTED LOSS	9,	3.0	i
111		RADIATION LOSS (ABA1), FIG. 20, (CHAPTER 7 %	2.5	j
4 1	BTU PER LB, AS FIRED, 21825				k
13	QUANTITIES PER	10,000 BTU FUEL INPUT			13
14	FUEL BURNED, 10,000 ÷ UNE 12		L	a458	14
	TOTAL AIR REQUIRED, LINE b ÷ 100 × VALUE FROM FIG	G. A OR TABLE 5 OR 6 =.	L	8 7 633	15
14	H ₂ O IN AIR, LINE 15 × LINE f =		Ľ	80.101	16
17	WET GAS, TOTAL, LINES (14 + 15 + 16)		l	8 8.192	17
1,	H ₂ O IN FUEL, (LINE 5 ÷ 100) × LINE 14 × 8.94 + (LINI	F 9 ÷ 100) × UNE 14: OR FROM	TABLE 5 L	0.929	18
1,0	H ₂ O IN FLUE GAS, TOTAL, LINE 16 + LINE 18		L	8 1.030	19
20		IE 17) × 100	9	7 12.58	20
21			L	7.162	21
22	LOSSES PER 10,0	DOO BTU FUEL INPUT			22
122	LINERIONIED EUEL 10 000 × LINE b = 100		вти	0	23
•	UNBURNED FUEL, 10,000 X LINE h ÷ 100 UNACCOUNTED, 10,000 X LINE i ÷ 100	••••••••••••	вти	300	24
	RADIATION, $10,000 \times \text{LINE } j \div 100$		BTU	250	25
	LATENT HEAT, H ₂ O IN FUEL, 1040 × LINE 18	•••••	BTU	966	26
1		O INF & AND LINE 20 =	***********		27
27	TOTAL LOSSES, LINES $(23 + 24 + 25 + 26 + 27)$			2156	28
29		······································	%	21.56	
30		,	%	78.44	30
-		R 10,000 BTU FUEL INPUT		, , , , ,	31
31		TEMPERATURE, ADIABATIC			-
32	***************************************			1000	32
33				1000	33
34				1000	34
35	LESS LATENT HEAT LOSS, H2O IN FUEL, LINE 26			966	35
36	HEAT AVAILABLE, MAXIMUM			7034	36
37	LESS LINES (24 + 25) × 0.5*		BTU	275	37
38	***************************************		BTU	×759	38
39			BTU 1069		39
40	ADIABATIC TEMPERATURE, FROM FIG. 2 FOR LINES 20	& 39	F 3400		40

^{*} NOTE IT IS CUSTOMARY TO REDUCE THE MAXIMUM HEAT AVAILABLE, LINE 36, BY FROM ½ TO ½ OF THE UNACCOUNTED PLUS RADIATION LOSSES, ON THE ASSUMPTION THAT A PORTION OF THESE LOSSES OCCURS IN THE COMBUSTION ZONE.

				1750		
L	COMPLICTION	CALCUL ATIONS	200	00 #	HR	ı
1		CALCULATIONS		AD	',	1.
И	BASED ON QUANTITIES P	ER 10,000 BTU FUEL INPUT			BXISTG.	7
Ε			Konta	77 11	31/3/6.	E
1	FUEL- NATURAL GAS	CONDITIO	ONS		DATE	0
2	ANALYSIS AS FIRED	BY TEST OR SPE	CIFICATION			
3	· · · · · · · · · · · · · · · · · · ·			9	6 110	Ь
4		OTAL AIR R TEMPERATURE TO HEATER	•••••	F	80	6
	H ₂ 22.7 VOLATILE	R TEMPERATURE FROM HEAT		F		d
5	FIVE CARROLL	UE GAS TEMPERATURE LEAV	NG UNIT		275	
6						
7		O PER LB DRY AIR				1 1
8	N: 8. /				6 0	9
9		NBURNED FUEL LOSS			×	
10		NACCOUNTED LOSS			6 3.0	444
111		ADIATION LOSS (ABA1), FIG. 2), CHAPTER 7		8 3.8	j
12	BTU PER LB, AS FIRED, 21825					k
\vdash						1,2
13	QUANTITIES PER 10,0	DOO BTU FUEL INPUT				13
14	FUEL BURNED, 10,000 ÷ LINE 12.			1	8 0.458	14
	TOTAL AIR REQUIRED, LINE b ÷ 100 X VALUE FROM FIG. A	OR TABLE 5 OR 6 =			8 7.811	15
	MET CAS TOTAL LINES (14 15 14)				8 8 372	17
'	WET GAS, TOTAL, LINES (14 + 15 + 16)	- 1001 V UNE 14. OR FROM	A TARIF 5		8 0 929	18
118	${ m H_{2}O}$ IN FUEL, (LINE 5 \div 100) $ imes$ LINE 14 $ imes$ 8.94 $+$ (LINE 9	# 1001 X LINE 14; OK FROM	M INDEE 5		1 / 237	10
19	H ₂ O IN FLUE GAS, TOTAL, LINE 16 + LINE 18				7 10 33	20
20	$H_{2}O$ IN FLUE GAS, TOTAL, IN PER CENT, (LINE 19 \div LINE 17	′) X 100			تد . اه/	7
21	DRY GAS, TOTAL, LINE 17—LINE 19				7.340	21
22	LOSSES PER 10,000	BTU FUEL INPUT				22
23	UNBURNED FUEL, 10,000 × LINE h ÷ 100			BTU	0	23
24						24
1						25
25	,	••••••••••••		BTU	500	26
	LATENT HEAT, H ₂ O IN FUEL, 1040 × LINE 18	INF AND THE 20 - d 2	72470			27
	SENSIBLE HEAT, FLUE GAS, LINE 17 X BTU FROM FIG. 2 @ I	THE E AND LINE TO -8 . 2	· 5.7.1.0	BTU	_	
1					2299	
29	*****			%	1	29
30					77.01	30
31		D,000 BTU FUEL INPUT				31
-				RTI I	10000	32
32	***************************************	2 A INE 4 TEND				33
33					10000	34
34						
35	***************************************					3.5
36	HEAT AVAILABLE, MAXIMUM			BTU	4	36
37	LESS LINES (24 + 25) × 0.5*			BTU	— —	37
	HEAT AVAILABLE, LINE 36—LINE 37			BTU	8694	38
39	HEAT AVAILABLE PER LB OF FLUE GAS, LINE 38 + LINE 17	*************	вти	1038		39
	ADIABATIC TEMPERATURE, FROM FIG. 2 FOR LINES 20 & 39		F .	3 <i>590</i>		40

^{*} NOTE IT IS CUSTOMARY TO REDUCE THE MAXIMUM HEAT AVAILABLE, LINE 36, BY FROM 1/2 OF THE UNACCOUNTED PLUS RADIATION LOSSES, ON THE ASSUMPTION THAT A PORTION OF THESE LOSSES OCCURS IN THE COMBUSTION ZONE.

AEI

AFFILIATED ENGINEERS SE, INC.

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479 Made By:
PDL
Checked By:

Date: 9-5-95

Job No: 95046-00

Date:

Sheet No: of 4

Calculations For:

BOILERS FROM VAAP - CASE 4\$5

95046-00 Case 4\$5

			CHOO	7+0	
L	COMBUSTION	N CALCULATIONS /	50,000 #/	HR	L
		2	-CAD: 340	PS/65	1 6
Z E	BASED ON GOANITIE	S FER 10,000 BIO FOLE INTO	4380F 5A	TURNION	Ε
-			VAAP 80		
1	FUEL-NATURAL GAS	CONDITIONS		DATE	٥
2	ANALYSIS AS FIRED	BY TEST OR SPECIFICA		9-5-95	
3	ULTIMATE, % BY WT PROXIMATE, % BY WT	TOTAL AIR		107.5	ь
4	c 69, 3 MOISTURE	AIR TEMPERATURE TO HEATER	F	80	c
5	H ₂ 22,7 VOLATILE		F		d
6	S - FIXED CARBON	FLUE GAS TEMPERATURE LEAVING U	NIT F	300	•
7	O ₂ — ASH	H2O PER LB DRY AIR	LI	0,0132	.f
8	N: 8, 1				g
9	H ₂ O	UNBURNED FUEL LOSS	9	6 0	h
10	ASH -	UNACCOUNTED LOSS	9	6 1.5	
111		RADIATION LOSS (ABA1), FIG. 20, CHA	PTER 7 9	0.65	j
12	BTU PER LB, AS FIRED, 21825				k
13	QUANTITIES PER	10,000 BTU FUEL INPUT			13
			1	80.458	14
14	FUEL BURNED, 10,000 \div LINE 12. TOTAL AIR REQUIRED, LINE $b \div 100 \times VALUE$ FROM FIG	1 00 Tible 5 00 4 - 1075			
1				B 0.101	14
16	H ₂ O IN AIR, LINE 15 X LINE f =	•••••			17
17	WET GAS, TOTAL, LINES (14 + 15 + 16)			0 0 0 0 0	
18	$_{12}$ O IN FUEL, (LINE 5 \div 100) $ imes$ LINE 14 $ imes$ 8.94 $+$ (LINE	9 ÷ 100) × LINE 14; OR FROM TAB	LE 3	0.101	
19	H₂O IN FLUE GAS, TOTAL, LINE 16 + LINE 18		٠	7.000	117
20	$ m H_{2}O$ in flue gas, total, in per cent, (line 19 \div line	E 17) × 100		612.58	20
21	DRY GAS, TOTAL, LINE 17—LINE 19		· ·	·B 7.162	21
22	LOSSES PER 10,0	00 BTU FUEL INPUT			22
22	UNBURNED FUEL, 10,000 × LINE h ÷ 100		8 TU	0	23
	UNACCOUNTED, 10,000 × LINE ; ÷ 100	• • • • • • • • • • • • • • • • • • • •	вти	150	1
25	RADIATION, 10,000 × LINE j ÷ 100		BTU	65	25
	LATENT HEAT, HEO IN FUEL, 1040 X LINE 18		BTU	766	26
	SENSIBLE HEAT, FLUE GAS, LINE 17 X BTU FROM FIG. 2	@ LINE . AND LINE 20 = \$ 192 X	(OD BTU		27
- 1	TOTAL LOSSES, LINES $(23 + 24 + 25 + 26 + 27)$		BTU		
1			07_		29
29			% %		30
30				83.27	+
31		R 10,000 BTU FUEL INPUT TEMPERATURE, ADIABATIC			31
32	HEAT INPUT FROM FUEL		BTU	10000	32
33					33
34				10000	34
35			BTU	966	35
36				9034	36
37			0.711	108	37
38			RTU	8926	38
	TEAL ATAILABLE, LITE SO-LITE ST			Allina di	39
Į.	HEAT AVAILABLE DED IN OF SINE GAS TIME 38 - TIME	17	BTUI / A		<i>(</i>
39		17	F 3470		40

^{*} NOTE IT IS CUSTOMARY TO REDUCE THE MAXIMUM HEAT AVAILABLE, LINE 36, BY FROM ½ TO ½ OF THE UNACCOUNTED PLUS RADIATION LOSSES, ON THE ASSUMPTION THAT A PORTION OF THESE LOSSES OCCURS IN THE COMBUSTION ZONE.

			CASO	748	5
	COMPLICTIO	N CALCULATIONS	75000	#/HR	L
		N CALCULATIONS	LOAD; 34	D PSIG;	
И	BASED ON QUANTITIE	S PER 10,000 BTU FUEL INPUT	433°F5	ALUKNIOT	N
E			VAAP B	OILERS	-
1	FUEL- NATURAL GAS	CONDITIONS		DATE	0
2	ANALYSIS AS FIRED	BY TEST OR SPECIFICATION	N 9	-5.95	
3	ULTIMATE, % BY WT PROXIMATE, % BY WT	TOTAL AIR AIR TEMPERATURE TO HEATER	%	107.5	Ь
4	C 69,3 MOISTURE	AIR TEMPERATURE TO HEATER	F	80	c
5	H: 22.7 VOLATILE	AIR TEMPERATURE FROM HEATER	F	1	d
6	S FIXED CARBON	FLUE GAS TEMPERATURE LEAVING UNIT	F	300	•
7	O ₂ — ASH	H2O PER LB DRY AIR	LB	0.0132	1
8	N ₂ 8. /				0
9	H ₂ O ^	UNBURNED FUEL LOSS	%	0	h
10	ASH _	UNACCOUNTED LOSS	%	1.5	1
11	7311	RADIATION LOSS (ABA1), FIG. 20, CHAPTER	7 %	1.2	j
12	BTU PER LB, AS FIRED, 21825		**************	.1., 70	k
13		10,000 BTU FUEL INPUT			13
\vdash			11	0.458	114
14		00 71015 5 00 4 - 1075 87 1		37 433	15
15					16
116	H ₂ O IN AIR, LINE 15 X LINE f =			0.101_	17
17	WET GAS, TOTAL, LINES (14 + 15 + 16)	TABLE		0929	
18	${ m H_{2}O}$ IN FUEL, (LINE 5 \div 100) $ imes$ LINE 14 $ imes$ 8.94 $+$ (LINE	9 ÷ 100) × LINE 14; OR FROM TABLE			10
19	H ₂ O IN FLUE GAS, TOTAL, LINE 16 + LINE 18		م	711200	20
	${ m H_2O}$ in flue gas, total, in per cent, (line 19 \div lin	E 17) × 100		8 2 1/ 2 8 2 1/ 2	21
21	DRY GAS, TOTAL, LINE 17—LINE 19			7.162	+
22		OO BTU FUEL INPUT			22
23	UNBURNED FUEL, 10,000 × LINE h ÷ 100	•••••	втυ	0	23
24	UNACCOUNTED, 10,000 \times LINE $i \div 100$			150	
25	RADIATION, 10,000 × LINE j ÷ 100			120	25
26	LATENT HEAT, H2O IN FUEL, 1040 X LINE 18		BTU	766	26
27	SENSIBLE HEAT, FLUE GAS, LINE 17 X BTU FROM FIG. 2	@ LINE e AND LINE 20 =	віо	-192	27
28	TOTAL LOSSES, LINES (23 + 24 + 25 + 26 + 27)		BTU	/ / 5.0	
29	TOTAL LOSSES IN PER CENT, LINE (28 ÷ 10,000) × 100		%	17.28	29
30	EFFICIENCY, BY DIFFERENCE, 100—LINE 29		%	82,72	30
31		R 10,000 BTU FUEL INPUT TEMPERATURE, ADIABATIC			31
32	HEAT INPUT FROM FUEL		BTU	10000	32
33	the second secon	FIG. 3 @ LINE d TEMP	BTU	_	33
34			DTIL	10000	34
35			BTU	966	3.5
36	1		9711		36
37			0.711	135	37
	l control of the cont		BTU	399	38
	HEAT AVAILABLE PER LB OF FLUE GAS, LINE 38 + LINE	17 BTL	1086		39
40			3470		40

^{*} NOTE: IT IS CUSTOMARY TO REDUCE THE MAXIMUM HEAT AVAILABLE, LINE 36, BY FROM 1/2 TO 1/2 OF THE UNACCOUNTED PLUS RADIATION LOSSES, ON THE ASSUMPTION THAT A PORTION OF THESE LOSSES OCCURS IN THE COMBUSTION ZONE.

95046-00 CASE 4\$5

			CASO		_
ı	COMPLISTIO	N CALCULATIONS	37500#1	HR	-
1		S PER 10,000 BTU FUEL INPUT	0AD: 340	PS16;	' I
И	BASED ON QUANTITIE	S PER 10,000 BIO POEL HAPOT	VAAP BO	CAMP S	E
E	· · · · · · · · · · · · · · · · · · ·		VAN'EE		\dashv
1	FUEL- NATURAL GAS	CONDITIONS		DATE	٥
2	ANALYSIS AS FIRED	BY TEST OR SPECIFICATION	•	-5-95	
3	ULTIMATE, % BY WT PROXIMATE, % BY WT	TOTAL AIR	%	110.0	Ь
4	c 67.3 MOISTURE	AIR TEMPERATURE TO HEATER	F	80	c
5	H2 22,7 VOLATILE	AIR TEMPERATURE FROM HEATER	F		d
6	S - FIXED CARBON	FLUE GAS TEMPERATURE LEAVING UNI	T F	.300	•
7	O ₂ — ASH	H2O PER LB DRY AIR	LB	0.0132	f
8	N: 8.1				g
9	H ₂ O	UNBURNED FUEL LOSS	%	0	h
10	ASH —	UNACCOUNTED LOSS	%	1.5	i
11		RADIATION LOSS (ABA1), FIG. 20, CHAPT	B7 %	3.3	j
	BTU PER LB, AS FIRED, 21825			1	k
	nio ieu en' un iluen' o i 0 %	J			
13	QUANTITIES PER	10,000 BTU FUEL INPUT			13
14	FUEL BURNED, 10,000 ÷ LINE 12		LB	0.458	14
14	FUEL BURNED, 10,000 \div LINE 12. TOTAL AIR REQUIRED, LINE b \div 100 \times VALUE FROM FIG.	A OR TABLE 5 OR 6 = 1.1X 7.1	LB	7.810	15
	TOTAL AIR REQUIRED, LINE B - 100 X VALUE TROM THE	ZZ ON THOSE O' O' THE ZZ.I.	LB	0.103	16
- 1	H ₂ O IN AIR, LINE 15 X LINE f =		LB	2371	17
17	WET GAS, TOTAL, LINES (14 + 15 + 16) H ₂ O IN FUEL, (LINE 5 \div 100) \times LINE 14 \times 8.94 + (LINE	O + 1001 V LINE 14. OR FROM TARIE	LB	0.929	18
, ,	H ₂ O IN FUEL, (LINE 5 ÷ 100) X LINE 14 X 8.94 + (LINE	y + 1001 ∧ LINE 14; OK TROM 1/1011	LB	1,032	19
19	H ₂ O IN FLUE GAS, TOTAL, LINE 16 + LINE 18	E 171 V 100	97,	12.33	20
20	$_{10}$ In flue GaS, total, in PER CENT, (LINE 19 \div LIN	E 17) X 100		7.339	21
21	DRY GAS, TOTAL, LINE 17—LINE 19			1.337	-
22	LOSSES PER 10,0	OO BTU FUEL INPUT			22
23	UNBURNED FUEL, 10,000 × LINE h ÷ 100		вти	0	23
24		•••••		150	24
25			вти	230	25
			вти	960	26
26	SENSIBLE HEAT, FLUE GAS, LINE 17 X BTU FROM FIG. 2	@ LINE . AND LINE 20 = 2.37/X	' ⊱ BTU		27
27			RTII	2599	28
	TOTAL LOSSES, LINES (23 \pm 24 \pm 25 \pm 20 \pm 27))	%	20.99	29
29	EFFICIENCY, BY DIFFERENCE, 100—LINE 29	······	%	7.01	30
30		THE SAME PARTY IN PARTY		. ///	+
31		R 10,000 BTU FUEL INPUT TEMPERATURE, ADIABATIC			31
32			вти	10.00	32
33	HEAT INPUT FROM AIR, LINES (15 + 16) X BTU FROM	FIG. 3 @ LINE d TEMP	вти		33
34				15000	34
35	LESS LATENT HEAT LOSS, H2O IN FUEL, LINE 26		2511	966	3.5
36	HEAT AVAILABLE, MAXIMUM		8711	9034	36
37			0.711	226	37
38	1		BTUI	1814	38
39		: 17 B	ru 1652		39
		<u>k</u> 39	F 3350		40
40	ADIABATIC TEMPERATURE, FROM FIG. 2 FOR LINES 20	0, 07	3330		113

^{*} NOTE IT IS CUSTOMARY TO REDUCE THE MAXIMUM HEAT AVAILABLE, LINE 36, BY FROM 1/2 TO 1/2 OF THE UNACCOUNTED PLUS RADIATION LOSSES, ON THE ASSUMPTION THAT A PORTION OF THESE LOSSES OCCURS IN THE COMBUSTION ZONE.

COMBUSTION

FORMULAS

CALCULATIONS

Heat Losses in Steam Generating Units

(Based on ASME Test Form for Abbreviated Efficiency Test)

Dry refuse per Ib of as-fired fuel, Ib/Ib

 $\frac{\%_{\rm c}}{100}$ ash in as-fired fuel 100 - $\%_{\rm c}$ combustible in refuse sample

Carbon burned per 1b of as-fired fuel, 1b/1b

= " carbon by weight in fuel sample (dry refuse per 1b fuel X Btu per 1b of refuse)

Note: If flue dust and ash pit refuse differ materially in combustible content they should be estimated separately.

Dry gas per 16 of as-fired fuel burned, 16/16

= $\frac{11 \text{ CO}_2 + 8 \text{ O}_2 + 7 \text{ (N}_2 + \text{ CO)}}{3 \text{ (CO}_2 + \text{ CO)}} \times \text{ (1b carbon burned per 1b as-fired fuel} + 3/8 \text{ S)}$

where: CO₂, O₂ and CO are the per cents by volume of carbon dioxide, oxygen and carbon monoxide, respectively in the flue gas, N₂ is the per cent of volume of nitrogen, by difference, in the flue gas. S is the pound of sulfur per Ib of asfired fuel from the fuel analysis, or ⁹/₈ sulfur in fuel

70

1. Heat loss due to dry gas

Ib dry gas per Ib as-fired fuel burned X .24 (tg -- ta)
 where: .24 = specific heat of gas
 tg = temperature of gas leaving unit, F
 ta = temperature of air entering unit, F

2. Heat loss due to moisture in fuel

= $\frac{\text{H}_2\text{O}}{100}$ × (enthalpy of vapor at 1 PSIA and 1g - enthalpy of liquid at 1a) where: H₂O = % moisture in fuel

3. Heat loss due to hydrogen in fuel

= $\frac{9 \text{ Hz}}{100}$ X (enthalpy of vapor at 1 PSIA and tg — enthalpy of liquid at ta) where: Hz = % hydrogen in fuel tg = temperature of gas leaving unit, F ta = temperature of air entering unit, F

4. Heat loss due to CO in five gas

 $\frac{CO}{CO_2 \times CO} \times 10,160 \times 1b$ carbon burned per 1b as-fired fuel where: CO and CO₂ are per cent by volume of carbon monoxide and carbon dioxin flue gas 10,160 = Btu generated burning 1 1b of CO to CO₂

71

COMBUSTION CALCULATIONS FORMULAT

Heat loss due to unburned combustible

ABMA STANDARD RADIATION LOSS CHART

dry refuse (ash pit + fly-ash) per lb as-fired fuel imes Btu per lb in refuse (weighted average)

Calculations for each of the above five losses will give the Btu per lb for each loss. To determine the per cent loss in efficiency, which is the per cent of heating value of as-fired fuel:

Btu in loss
$$\frac{1}{100} \times 100 = \frac{1}{100} \times 100$$

Heat loss due to radiation

The per cent loss in efficiency due to radiation may be obtained from the ABMA Standard Radiation Loss Chart on page 73.

Unaccounted for losses

These losses include relativelyminor losses such as sensible heat in ash or slag, radiation to ash pit, moisture in air, heat pickup in cooling water, etc., generally not measured because the effort is not justifiable. A previously agreed upon amount can be assigned for these losses, if they are not measured.

Unit efficiency as determined by heat loss measurement then becomes the total of the above percentage efficiency losses subtracted from $100\,\%$.

Chapter 4. Principles of Combustion REFERENCE

Fig. 1. Mean molal specific heat of gases between final temperature (t₂) and 80 F at std atmospheric pressure

Table 5

Theoretical Air, Fuel, and Resulting Moisture Per 10.000 Btu As Fired

		/ 13 I II C C	
	Theoretical Air,*	Fuel,	Moisture,
Fuel	lb/10kB	lb/10kB	lb/10kB
Fuel oil	7.46	0.544	0.51
Natural gas	7.10	0.496	0.93
Coal (prox a	nal.) See Fig. 4	_	_
Coal (ult and	1) See Table 6		

*Dry air. To obtain wt of wet air required, moisture in air at standard conditions (0.0132 lb per lb dry air @ 60% relative humidity and 80 F dry bulb) must be added.

TABLE 6

Formula for Calculating Theoretical Air*
In lb per 10,000 Btu of Fuel as Fired

Ultimate Analysis of Fuel on As-Fired Basis,

Per Cent by Weight

C = Carbon

H₂ = Hydrogen

O₂ = Oxygen

S = Sulfur

Btu/lb = Heat value of fuel

Theoretical Air,† lb =
$$144 \times \frac{8C + 24\left\{H_2 - \frac{O_2}{8}\right\} + 3S}{Btu/lb}$$

*This formula should be used only when the exact ultimate analysis and the correct heating value are given for the fuel.

†Dry air. To obtain wt of wet air required, moisture in air at standard conditions (0.0132 lb per lb dry air @ 60% relative humidity and 80 F dry bulb) must be added.

Fig. 2. Enthalpy of flue gas above 80 F at 30 in. Hg, Btu per lb

Fig. 2. (Cont'd) Enthalpy of flue gas above 80 F at 30 in. Hg, Btu per lb 4-A3

APPENDIX

95046-00 COMBUSTIONS CALCULATIONS REFERENCE

Fig. 3. Enthalpy (above 80 F) of air (0.987 lb dry air plus 0.013 lb water vapor per lb mixture) at 30 in. Hg, Btu per lb

Fig. 4. Theoretical air in lb per 10,000 Btu heat value of coal with a range of volatile

AEI

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road

Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479 Made By: PD L

Checked By:

Date:

Date:

Job No:

95046-00

Sheet No: of ____

Calculations For:

EXCESS AIR / TOTAL AIR - STOKER OPER, COAL BUR

AFFILIATED ENGINEERS SE, INC.

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By: PDL Checked By:

8-30-95 95046-00

BURNOR ROTROFIT @ HT. ROCOU. BOILDRS BLDG. 2-A AUX

CRACKING FURNACE BURNOR DATA: 1750 MBH RATED CAP. 360 SCFM COMBUSTION N.G. #/HR = 1750000 B/H - 80.2 HH 81825 B/# AIR #/H = 360 FT/m (60 H) 0.075 = 1620 #/H THEOR. AIR = 1750000 (7,10 108 + 0.093 #13/198) = 1260 #/HR Excess AIR = 16200= 128.6 % FLUE GAS FLOW = 1620 + 80 = 1700 TH @ 625F FIND N.G. AND PPI. AIR ROD. TO GIVE FLUE GAS TOMP. OF 1250 F @ 110% GX, AIRS DBTU FOR FURNACE GAE= 1700 / (325 4-180 1/4) (FORA) = 3944,000 BTUH

AEI

AFFILIATED ENGINEERS SE. INC.

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479 Made By:
PD L
Checked By:

8.30-95

Job No: 95046-00

Sheet No:

Calculations For:

BLOG 7-A AUX BRNR RETROFIT @ HT. ROC. BOILERS

BOILER GAS SIDE FLOW = (1700 #/HR)(16)=27200#/H APPROX. FLUE GAS SP. VOL.@ 625°F = 30 FT/# GAS CFM = 27200 (30) - 13600 = 13600 FT/MIN (700 TUBLS)(0.0171 FT/TUB) - 1/36 F/MIN FIRE TUBE MAX. VEL. = 13600 FT/MIN AIR AVAILABLE IN FURNACE BXIT GAS FOR AUX. BURNOR AIR = (1620-1260)(16) = 5760 #/HR. BURNER RATING @ 110% EXCES AIR: RATING = (5760) 104 (7.10 + 0,093)(103) = 7280 MBH TRY 7000 MBH BURNOR: 7000000B/H = 321 #/H Q = WC> DT 7000000 = 27500 (0.32)(7-605) T= 1420°F GAS ENTERING BOILER

BLDG 7-A AUX BRAR RETROFIT

TEMPERATURE, F

<u></u>		Density
Example	Air at std atmospheric pressure (sea level) and 140 F	.0662 16/cu ft
В	Flue gas from coal combustion — <u>@</u> 4000 It elevation and 250 F	.0543 lb/cu ft

198

. 95046-00

RECEIVED

Affiliated Engineers SE, Inc.

AUG 1 8 1995

AFFILIATED ENGINEERS SE, INC.

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By:

Checked By:

8-31-95 95046-00

Sheet No:

Calculations For:

BLDG. NO. 7-AWASTE HEAT BOILER RETROFT

AFFILIATED ENGINEERS SE, INC.

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479

Made By:	Date:
PDL	

Checked By:

Job No:

95046-00

Date:

Sheet No: _ of _

Calculations For:

BLDG 7-A WASTE HT. BLR, RETROFIT

APPROX	(FLUE GAS	5P. Val @ 14.	25°F= - =	47.6 FT
FIRE	TUBE MAX	V&L = (27200 60)(70	+312)(47.6) _ 00)(0.0171) =	1823 FPM
	AUAICAB			
			(4)=8,033,5	
STEA FD.	M PRODUCEZ WATER @ 2	@ 100 PSIG 25°F	SATURATOD	ωιΤΗ
<u>8</u>	8,033,504 189.7-193.18)	= 8060 #/	ÍR.	
	· 			

SELECTION AND SIZING OF HEAT RECOVERY BOILERS

SELECTION OF HEAT RECOVERY BOILERS

BOILER HORSEPOWER AT VARIOUS WORKING PRESSURES FOR VARIOUS INLET GAS TEMPERATURES

The following table will provide the boiler horsepower for various working pressures and various inlet gas temperatures; however, should you want more exact data or if your operating conditions are not included in the table, use the procedure on the following pages.

In the following table, the horsepower is given for one thousand (1000) pounds of waste gas.

Determine pounds of waste gas (see steps 2, 3, & 4 on following page); then multiply the number of thousand pounds by the horsepower for the working pressure and inlet gas temperature.

Example: 15,000 Lbs./Hr.

Working Pressure 150 PSI Inlet Gas Temp. 1600°F.

 $15 \times 8.4 = 126$ Boiler HP

Boiler Horsepower for 1000 Lbs. Per Hr.

OF. Inlet Gas Temperature

W.P. RANGE							
P.S.I.	2000	<u>1900</u>	1800	1700	1600	<u>1500</u>	1400
0- 15	12.4	11.6	10.9	10.1	9.3	8.5	7.8
16- 50	12.0	11.3	10.5	9.7	8.9	8.2	7.4
51-100	11.8	10.9	10.2	9.4	8.6	7.9	7.1
101-125	11.6	10.8	10.1	9.3	8.5	7.8	7.0
126-150	11.5	10.7	10.0	9.2	8.4	7.6	6.9
151-200	11.3	10.6	9.8	9.0	8.2	7.5	6.7
201-250	11.2	10.4	9.7	8.9	8.1	7.3	6.6

Boiler Horsepower for 1000 Lbs. Per Hr.

OF. Inlet Gas Temperature

W.P. RANGE						
P.S.I.	1300	1200	1100	1000	900	800
0- 15 16- 50 51-100 101-125 126-150	7.0 6.6 6.3 6.2 6.1	6.2 5.8 5.5 5.4 5.3	5.4 5.1 4.8 4.7 4.5	4.7 4.3 4.0 3.9 3.8	3.9 3.5 3.2 3.1 3.0	3.1 2.7 2.4 2.3 2.2
151-200 201-250	5.9 5.8	5.1 5.0	4.4 4.2	3.6 3.4	2.8 2.7	2.0 1.9

The following procedure can be used to determine the amount of heat (BTU per Hr.) that can be recovered with a heat recovery boiler.

Step 1 - Determine the waste gas temperature.

Step 2 - Determine the amount of waste gas in Pounds per Hour.

Step 3 - If the amount of waste gas is measured in CFM - convert CFM to pounds using Table below:

Temp. °F.	Density in Pounds/Cu.Ft.
60°F. (Std) 900°F. 1000°F. 1200°F. 1400°F. 1600°F. 1800°F. 2500°F. 3000°F.	0.0763 0.0292 0.0272 0.0239 0.0214 0.0193 0.0176 0.0161 0.0134 0.0115

Step 4 - The following can be used to estimate the waste gas available from various processes:

Nat. gas produces 1.0 Lb. waste gas per Cu.Ft. Oil produces 135 Lbs. waste gas per Gal. Wood (dry) produces 10 Lbs. waste gas per Lb. Wood (50% moist) produces 6 Lbs. waste gas per Lb.

Step 5 - The following equation can be used to determine the available heat from the waste gas:

Use 350°F. for Low Press. Boiler Stack Temp. 500°F. for High Press. (150#) Boiler Stack Temp. 550°F. for High Press. (Over 150#) Boiler Stack Temp.

Example: 15,000 Lbs. Gas/Hr. at 1600°F. 150 PSI Steam Required

BTUH = 15,000 X .26 (1600 - 500) BTUH = 4,290,000 (128 HP)

SELECTION OF BOILER SIZE

The following table will provide the boiler heating surface per boiler horsepower for various pressures and various inlet gas temperatures.

Using the horsepower from the chart on Page 1 or as calculated in accordance with the equation on Page 2, multiply the horsepower by the square feet of heating surface from the chart for the working pressure and inlet gas temperature.

Select a heat recovery boiler from the brochure with the proper heating surface. If the calculated heating surface falls between two sizes, use the larger size.

Example:

126 HP from table Page 1 Working Pressure 150 PSI Inlet Gas Temp. 1600°F.

126 HP \times 7.0 Sq.Ft./HP = 882 Sq.Ft. Heating Surface Use Model HRH-1000

HEATING SURFACE PER BOILER HORSEPOWER, SQ. FT.

			<u>Ga</u>	s Temper	ature ^O F	<u>.</u>	
Press. Range P.S.I.	2000	1900	1800	1700	1600	1500	1400
0- 15 16- 50 51-100 101-125 126-150 151-200 201-250	4.7 4.8 4.9 5.0 5.1 5.2 5.3	5.0 5.2 5.3 5.4 5.4 5.5	5.3 5.6 5.7 5.8 5.9 6.0	6.0 6.1 6.2 6.3 6.4 6.5	6.3 6.5 6.8 6.9 7.0 7.1 7.2	6.9 7.1 7.3 7.4 7.6 7.8 7.9	7.1 7.3 7.5 7.6 7.9 8.1 8.3

HEATING SURFACE PER BOILER HORSEPOWER, SQ. FT.

			<u>Ga</u>	s Temper	ature ^O F	<u>.</u>
Press. Range P.S.I.	1300	1200	1100	1000	<u>900</u>	800
0- 15 16- 50 51-100 101-125 126-150 151-200 201-250	7.2 7.5 7.8 8.0 8.1 8.3 8.5	7.4 7.7 8.0 8.3 8.4 8.6 8.8	8.3 8.7 9.2 9.4 9.5 9.8 10.0	9.5 9.9 10.2 10.4 10.6 10.9	10.5 10.9 11.3 11.8 12.2 12.4 12.9	11.5 11.9 12.4 12.9 13.5 13.8 14.3

CALCULATING PRESSURE DROP THROUGH BOILER

- Step 1. Determine the standard CFM of waste gas.
- Step 2. Correct the standard CFM by using the temp. correction factor from table below:

Temp.	Temp. Corr. Factor	Temp. of.	Temp. Corr. Factor
800°F	.88	1500°F	.98
900	.89	1600	1.00
1000	.90	1700	1.02
1100	.91	1800	1.04
1200	.92	1900	1.06
1300	.94	2000	1.08
1400	.96		

Step 3. Determine the Pressure Drop Correction Factor by dividing the corrected CFM by the base CFM from below and square the result.

Press. Drop Corr. Factor =
$$\frac{\text{Corrected CFM}}{\text{Base CFM}}$$

Step 4. Determine the actual pressure by multiplying the base pressure drop from following table by the correction factor calculated in Step 3.

Model	Base CFM	Base Press. Drop	Model	Base CFM	Base Press. Drop
HR-125 HR-150 HR-200 HR-250 HR-300 HR-350 HR-400 HR-500 HR-625 HR-750 HR-875	220 265 350 440 525 615 700 880 1100 1320 1540	.10" W.C. .20" .40" .65" .85" 1.20" 1.50" .85" 1.40" 2.00"	HR-1000 HR-1125 HR-1250 HR-1500 HR-1750 HR-2000 HR-2500 HR-3500 HR-4250	1760 1980 2200 2640 3080 3520 4400 5280 6160 8800	2.50" W.C. 3.00" 1.50" 2.20" 3.00" 3.00" 4.50" 4.20" 4.00"

Example:

15,000 Lbs./Hr. at 1600°F. Using HR-1000 Boiler

$$\frac{15,000 \text{ Lbs.}}{60 \text{ X} \cdot 0193 \text{ Lbs/Cu.Ft.}} = 12,953 \text{ ACFM}$$

Press. Drop Corr. Factor =
$$\left[\frac{12.953}{7,200}\right]^2$$

P.D.C.F. = 3.2

Actual Press. Drop = Base press. Drop X P.D.C.F.

Actual Press. Drop = 2.50" X 3.2

Actual Press. Drop = 8.0" W.C.

HEAT RECOVERY BOILERS

Standard Equipment:

A.S.M.E. Three Pass Boiler

3 Pc. Rear Cover (3 Pass Design)

2 Pc. Front Cover

Two Inches Insulation

Metal Jacket

Rear Head Refractory with Davit

Trim Consisting of:

Safety Valves

Press. Gauge

Limit Control

Water Column with L.W.C.O. and Pump Control, Gauge Glass

and Try Cocks

Lifting Lugs

Front Furnace Protective Refractory

Control Wiring to Terminals in Junction Box

Optional Equipment:

Particulate Drops - Front and/or Rear

Soot Blowers

Inducer Brackets

Blowdown Valves

Steam Stop Valve

Steam Non-Return Valve

F.W. Stop/Check Valves

Abrasion resistant Refractory Rear Cover

Aux. L.W.C.O.

Vertical Vent (125 thru 750)

Front Cover Hinges (125 thru 750)

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 FAX (904) 375-3479 Made By:

Checked By:

Date: 10 - 26 - 95
Date:

Job No: 95046-00

Sheet No:

of

Calculations For:

CASE 6 \$ 7 No. 2 FUEL OIL STORAGE

 Pók Ré		:	:	:			/	PR	4	20	>-4	9,	వే	80	1	DA	У	క	u I	PF	رے		15	
Nz	,, 2)	<i> </i> = <i>L</i>	16		O	7/4		-															
						H7	<u>_</u>	V	420	ن د	<u>ت</u> ع	= /	9	50	0	B 7	u/	<u>'</u> _	3;	14	000	00	374	16
						7	, ż	1/0	-A	_														
B	914	- o	R	_		30	00 29	o" 5	H/H	R SAL	S /H	70	<i>آ ۾</i> 5, ڪ	m . 0	11									
Si	701	A 5	68	^ =	3	01	٥(24.	%) (a٩	15	CA	1/4) =	: 2	12	40	00	ے	A	ے۔	,Ω	s
																							······	
						ļ																		
																		•••••						
 ļļ				********																			i.	
		:		; :																:	· · · · · · · · · · · · · · · · · · ·			
		:	:	· ······																:				
		:	:											:										
 						: 																		
	- 1																							

Appendix 2 - Cost Estimates/ Energy Cost Development

								1000		T. C. L. C.	04000	DATE DDG	O DO	
COST ESTIMATE ANALYSIS	TE /	MAI			_	AINNI	NO. / CONTRACT NO.	ACI NO.		DATE	DNICHOL	7		
	1		2							1		10-26-		25
PROJECT HOL < 7,34) 3,0000 #18	SA	Ty Y	Boulok	2		CODE A	E CODE)E B	CODE (C DRAWING NO.	NO.	SHT	OF.	
1			,			□ OTHER				- ESTIMATOR	DD6	снескер	:D BY	
TASK DESCRIPTION	QUANTITY				LABOR		EQ	EQUIPMENT		MATERIAL	101	TOTAL	SHIP	SHIPPING
	No. of Units	Unit	MH Grit	Total Hrs	Unit Price	Cost	Unit Price	Cost	Unit Price	t Cost			Unit WT	Total
FIRETURE BUR- SLOGHP		70				40000				150,000		190000		
DONOK, HTR/PUMP PKC,	,	SA				2000				a5000		30000		
		73										7500		
P. PING, INSUC. ETC		45									'	15000		
200K GAL TANK	/	6A									10	100000		
Mich. SUBTOTAL											34	34250		
ELGCI. FOR'S BRHS 67C	U	7									8	20000		
TOTAL CONST. COST											362	362500		
							`							
NON-CONSTRUCTORY		9	2											
BOILOR LAYUP	M	SA									200	225000		
TURB'S PUMPS DISTR.														
SYS. LAYUR		45									7	2000		
TOTAL LAYUR	4										250	250000		
									-					
TOTAL THIS SHEET											Ţ			
											0			

	4		SHIPPING	Total WT																			
DATE PRE	OF	ED BY	SHIF	Unit WT					•														
DATE F	SHT /	CHECKED BY	TOTAL		22/375	45400	50000	25000		11275		225 000											
RICING		PDL	01		23	45	52	R	7	1341		372		,									
EFFECTIVE PRICING DATE	DRAWING NO.	ESTIMATOR	MATERIAL	Cost																,			
	CODE C		×	Unit Price																_			
SACT NO.	В		EQUIPMENT	Cost																			
NO./CONTRACT NO.	II CODE		EQ	Unit Price								- <u>-</u>											
INVITAT	CODE A	OTHER		Cost																			
			LABOR	- Unit Price	_																		
(0)	ทุ			Total it Hrs	1																		
LYSI	Rollon			MH																			
ANA	12 C)	QUANTITY	f Unit Meas								RO							-				
\TE	AF		OUA	No. of Units							2:	M											
COST ESTIMATE ANALYSIS	PROJECT #01 STON VAAP	LOCATION	TASK DESCRIPTION	Summer	MECH.	FIRCT.	TRANSP.	SYSTEM STAKTUP		TOTAL CONSTR.	2	COAL BLR. LAYUF	1									TOTAL THIS SHEET	

					-	1								
COST ESTIMATE		ANALYSIS	SIS		<u>Z</u>	INVITA	NO./CONTRACT NO.	ACT NO.		EFFECTIVE PRICING DATE	RICING	So ste	5	S
PROJECT HOLSICAL UNAF		0/10	Boliens			CODE A	D CODE	В	CODE C	DRAWING NO.	7 4	SHT 2	PO	7
LOCATION						OTHER				ESTIMATOR		CHECKED	р вү	
TASK DESCRIPTION	QUANTITY	7		×	LABOR		EQ	EQUIPMENT	2	MATERIAL	TOTAL	7	SHIP	SHIPPING
	No. of Units N	Unit N Meas	MH Unit	Total Hrs	Unit Price	Cost	Unit Price	Cost	Unit Price	Cost			Unit	Total
VALUE A. HABIERANDA														
France G	K	EA	vic.	15.	50.	Sec	1	1	25.	50	850	0		
N. 50	B	æ	Ci.	.9	=	800				50	850	0		
4 Sim, SFIX 1405	7	হ	5	49	=	3200			7	100	3300	0		
4" N.G. 5,7, 12.15	7	6.0	7		=	208			-	100	90	0		
71.17	2		7	∞	=	400			31	50	7 3	450		
N. 6. 11		(C)	-	7.3	-	200			١٠	25	4	225		
NA Ke	_	Q O	-	*	-	308			:	35	B	325		
En. M. 1. Co. Cr. 11. Kim		W1									75000	00		
10 1 B, 10, 5, 41 11; 26	7 08	1, 1			11/00	3760	375	300	(1) (E)	2600	13660	00		
1. W. Well Sales		-			956	765	1		(3 45	1076	1841	1,1		
W. Fab. / 1 20					18 30	2753	3.39	344	2402	3600	6696	96		
					201	1031	ı		502	761	17	1792		
1 24 3 5	8	LL			30 /	850	1,5	978			8/	1828		
(1 N. (11.	5398	27	2355	17 -5	14663	234	23415		
									•					
BALLET STATE	200				- 8-7	1496	15	77	1001	2000	W	149		
11) 25. 1. 1. 1. 1. 1. 1. 1.														
VALUE OF THEE.	7	`A*							- \	,	45000	00		
1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300	73 23 7			6/2	Birc)		308	0009	21000	00		
Duct Asa.	1500	12.		,	172	7185	(160	14400	21585	10		
TOTAL THIS SHEET											23/366	9		

To the second se			010		=	INVITAT	NO./CONTRACT NO.	RACT NO.		EFFECTIVE PRICING	RICING	DATE PRE	A P	
COST ESTIMATE ANALTSIS	A B	AL	010							7				
PROJECT HOLSTON VAAI	ł	Bouch	5 X S			□ CODE A	II CODE	В	CODE C	DRAWING NO.		SHT 3	OF.	4
	1					O OTHER				ESTIMATOR	Jac J	СНЕСКЕО	.D BY	
TASK DESCRIPTION	QUANTITY				LABOR		EQ	EQUIPMENT	2	MATERIAL	TOTAL	H H	SHIP	SHIPPING
	No. of U	Unit Neas	MH	Total Hrs	Unit Price	Cost	Unit Price	Cost	Unit Price	Cost			Unit	Total
TKANET CLING	7										50000	00		
50100 STT.		1 8									25000	00		
Les Chilled.														!
		-												
									-					
										•				
TOTAL THIS SHEET														
											1			

COST ESTIMATE ANALYSIS	LE AI	AALY	SIS		N N	INVITATIO	/CONTR	CONTRACT NO.		EFFECTIVE PRICING DATE MR	RICING DATE	PREPA 30/9	b
PROJECT HOLSYCADY VAAF	ARF	W	BOILEWS	M		CODE A	O CODE	В	CODE C	DRAWING NO.	SHT	# OF	7
LOCATION						O OTHER				ESTIMATOR	СНЕСКЕ	кер ву	
TASK DESCRIPTION.	QUANTITY			LABOR	≃		E0	EQUIPMENT	Σ :	MATERIAL -	TOTAL	SHIF	SHIPPING
	No. of Units	Unit Meas	MH-Unit	Total U Hrs P	Unit Pric e	Cost	Unit Price	Cost	Unit Price	Cost		WI	Total
2300 V CB					3,5th	2,500	<i>الا</i>	000	Sta	2005	8,200		
30017	W	ट्य		u,	<u>w</u>	93	}		Tart	312	405		
		यू		"	'an	αø/	200	220	990	10,000	05//		
4	W	Ra		113	31	93	J	ſ	104	312	405		
1,		2		7	8:50	8552	1		1005	30(13	(156	L	
480V 5005K/800A		B		18	2000	2000	738	250°	200	570°	8450	91	
C> W/3-350A 085											-		
TER	W	ಶ		4	33 32	85.50	١	1	1005	30 15	11569		
COMBO STAKTER		Res		0	1 050)	300	25	00/	2,500	00011	3400		1
C 400A / WEMA S					7				•		,		
RIMARY	8	لم		<i>'</i> /	to'	pt0)	0,03	18 %	1013	672	1314		
2	200	4		0,0	8	26	100	200	0,46	93%	1130		
H"PVC	Jac 1	المها		11	505	0101)	-	4.85	970%	0861		
											,		ļ
C#350 FCM	757	4		9	1225	5266	Bro	1.50	3,85	23	309		
7#76	25.	Ly		0	12	326	0.01	0.75	10.01	1967	282	n1	
SVC	35 1	لنه		A	15/	54.50	1]	3,5	2500	1881	1	
					-								
										N	36 84.	30	
							3	シガン	J	10%	3,4584	5	
							Š	J 87			46,525	.43	
							,	5	(%)	20	4,863	0.7	
										#	45,588.	87	
TOTAL THIS SHEET							A	544	₩.C	0,00	\$100 *	-1	
	THE PROPERTY OF THE PROPERTY O								1		PAGE		

5 ₹ .

HOLSTUM ARMY AMM PLANT
POWCEONTH CAAAJ9~70~C~OBEC
PORX 749
KINGSPORT IN B7658

10119313U0014 0140028750140028757

(1) 10 mm (1)

MARCH Please Return This F With Your Payment	Portion	Gross Amount	Last Pay Date For Not Amount APR 32 140.	028.75
Meter Types K - Kilowalt Hour D - KW Demand A - KVA Demand R - RKVAH V - KVAR Demand	Codes E: Estimated C Meter Change O - Off Peak	Account Number: (Please Use L. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	When You Call or Write)	37660
Month MARCH	1995 Tant		Office KINGSPU	
Service From Dunum From Dunum Manus Bara Baranan Manus Bar	Motor Number Readings X 047740 A 47740 A 47740 A 47740 A 47740 A 47740 A 47740	A 200 600	Meterod G. 4000 4000 700 700 100 100 100 100	Voltage C Constant 2

Contract Cagacity	10,500	RATE STLLING FUEL AOJ PROMPT PAYMENT DISCOUNT	154.11.31.34CR 11.950.49CR 140.023.75
Billing KVAR		TOTAL AMOUNT BUE	140,023.75
RKVAH	1,380,000	1 3	
Metered Demand Power Factor	8,364.0	<i>(**</i>	
Billing Demarc	8,064.0	·	
Metered Addition Power Fact Constant Adjusted KWH Voltage Act KWH	4,055,000 4,056,000		
Billing KWH	4,05E,89L		

KINGSPORT POWER

TARIFF I. P. (Industrial Power)

AVAILABILITY OF SERVICE

Available to industrial and large commercial customers. Customers shall contract for a definite amount of electrical capacity in KW which shall be sufficient to meet normal maximum requirements but in no case shall the capacity contracted for be less than 3,000 KW. Contract capacities will be specified in multiples of 100 KW.

MONTHLY RATE

Tariff _Code	Service Voltage	Charge per KW	Charge per KVH	Service Charge	
322	Primary	\$ 8.70	2.302 cents	\$ 240.00	
323	Subtransmission	\$ 7.79	2.269 cents	\$ 730.00	
324	Transmission	\$ 7.60 Hac	2.241 cents	\$1,930.00	- HOC

Reactive Demand Charge for each Kilovar of Lagging Reactive Demand in excess of 50 percent of the KW of monthly metered demand \$ 0.75 per KVAR

MINIMUM CHARGE

This tariff is subject to a minimum monthly charge equal to the sum of the service charge, the product of the demand charge and the monthly billing demand and the fuel clause adjustment.

FUEL CLAUSE

then the unit cost of fuel in the charges for power purchased from Appalachian Power Company under Federal By Regulatory Commission rate schedule No. 23 is above or below a base unit price of 15.8563 mills per KWH, Justed for losses, the bill for service shall be increased or decreased respectively at a rate per KWH equal to the amount that such cost of fuel is above or below the unit base cost of 15.8563 mills per KWH, adjusted for losses, applied to the KWH measured in the period for which the bill is rendered. The adjustment shall be based on the most recent calendar month for which fuel cost data is available.

PROMPT PAYMENT DISCOUNT

A discount of 1.5 percent will be allowed if account is paid in full within 15 days of date of bill.

DETERMINATION OF DEMAND

The billing demand in KW shall be taken each month as the single highest 30-minute integrated peak in KW as registered during the month by a demand meter or indicator, or, at the Company's option, as the highest registration of a thermal type demand meter or indicator, but the monthly billing demand so established shall in no event be less than 60% of the greater of (a) the customer's contract capacity or (b) the customer's highest previously established monthly billing demand during the past 11 months nor less than 3,000 kW.

The reactive demand in KVARS shall be taken each month as the single highest 30-minute integrated peak in KVARS as registered during the month by a demand meter or indicator, or, at the Company's option, as the highest registration of a thermal type demand meter or indicator.

METERED VOLTAGE

The rates set forth in this tariff are based upon the delivery and measurement of energy at the same voltage, thus measurement will be made at or compensated to the delivery voltage. At the sole discretion of the Company, such compensation may be achieved through the use of loss compensating equipment, the use of formulas to calculate losses or the application of multipliers to the metered quantities. In such cases, the metered KWH and KW values will be adjusted for billing purposes. If the Company elects to adjust KWH and KW based on multipliers, the adjustments shall be in accordance with the following:

Measurements taken at the low-side of a customer-owned transformer will be multiplied by 1.01.
 Measurements taken at the high-side of a Company-owned transformer will be multiplied by 0.98.

Issued: October 30, 1992

By: Michael J. Holzaepfel, President

Kingsport, Tennessee

Effective: November 3, 1992 Pursuant to an Order in Docket Number 92-04425 CUSTOMER NO.

"For 11 15

60444-1

METER NO. | \$9225055

SERVICE ADDRESS:

501 S WILCOX DR

5/04/95

32 N EASTMAN RD E 2A SSPORT, TN 37664

245-4189

HOLSTON DEFENSE C/O HOLSTON DEFENSE 4509 W. STONE DR KINGSPORT, TN 37660

DATE BILLED

DESCRIPTION

RATE CODE 240 - 7

AMOUNT

					RATE SC	HEDULE AVAILABL	E UPON REQUEST	IN LOCAL OFFICE.	
BILLING PERIOD		METER READING "		PRESSURE	144 II TIDI IED	CCF	BTU	THERMS	
FROM W	FROM "- "- "TO		PREVIOUS PRESENT		FACTOR MULTIPLIER		FACTOR	USED	
							!		
3/31/95	4/30/95	115916	121258	1,0000		53420	1.0000	53420	

MESSAGES DON'T HAVE YOUR GAS TURNED OFF INSTALL A GAS WATER HEATER AND HAVE ALL THE HOT WATER YOU NEED AT LESS COST. NO SERVICE CALL IN THE FALL TO RESTORE SERVICE. YOUR GAS HEAT WILL BE READY WHEN YOU NEED IT. CALL TODAY ABOUT OUR WATER HTR PGM.

CURRENT MONTH CHARGES	
GAS CHARGES	12,300.04
DEMAND CHARGE	9,409.24
DEMAND PGA	633.63CI
:	
PAYMENT RECEIVED - THANK YOU 4/17/95 30862.79	
A /	
11/2/4/3	
5/9/13	
·	

STOMER DEPOSIT INFORMATION R DEPOSIT DATE OF DEPOSIT DATE OF REFUND

COMPARATIVE USAGE INFORMATION										
BILLING	DAYS	USAGE	DAILY AVG. USAGE	DEGREE DAYS						
CURRENT	30	53420	1780.67	. 273						
LAST YEAR	30	127190	4239.67							

THIS AMOUNT DUE NOW

\$21,075.65

PAST DUE AFTER THIS DATE | 5/19/95 PAY THIS **AMOUNT**

\$22,129.43

QUE DATE DOES NOT EXTEND PAYMENT OF ANY PHEVIOUS BALANCE DUE FAILURE TO RECEIVE STATEMENT DOSANT PROVIDED BALATTE DUE.

HE FAILURE TO RECEIVE STATEMENT DOES NOT RELEVE CUSTOMER OF RESPONSES STATEMENT DOES NOT RELEVE CUSTOMER OF RESPONSES STATEMENT DOES NOT RELEVE CUSTOMER OF RESPONSES STATEMENT.

DETACH AND RETURN THIS SECTION WITH SOME PARTIES.
PLEASE GO NOT STAPLE FOLD OR MUTILATE

CUSTOMER NO.

66444-1

JOHNSON CITY, TN 37605

P O BOX 2970

CYCLE NO.

MAKE CHECKS PAYABLE TO UNITED CITIES GAS CO.

HOLSTON DEFENSE C/O HOLSTON DEFENSE 4509 W. STONE DR KINGSPORT, TN 37660

THIS AMOUNT DUE NOW

\$21,075.65

PAST DUE AFTER THIS DATE

5/19/95

PAY THIS AMOUNT

\$22,129.43

59100664441000221294300021075650002107565

The same of the same of the same PETTOLEUM TESTING FACILITY - EAST N. J CUMBERLAND, PA 17070-500

Coal Analysis Report

02/28/94

allation:

CDR HOLSTON DEFENSE CORP

4509 WEST STONE DRIVE

KINGSPORT TN 37660-9982

Delivery Date: 10-FEB-94

Date Received: 24-FEB-94

Mine Name: County, State:

RED RIVER

Can Number:

1737

Contractor:

VA

Sample Number: Activity Code:

93114B

Contract Number: DLA600-93-D-0674

ONYX INTER

Lab Number:

AR11 4055

Item Number:

Tons Reprst'd: Size & Kind:

918.80 1 3/4" X 3/8"

Coal Sampler's Number: 92-6

Car, Truck or Barge Number:

NW12210, 168252, 133447, 11601, 75904, 168265, 145446, 94956, 12230, 167330,

NS312326

TESTS

RESULTS

[As Recd]

[Moisture Free]

MATE HERE

Air Dry Loss: Total Moisture:

Volatile Matter:

2.03

2.9 34.7

56.1

35.7 57.8

Fixed Carbon: Ar' :

6.3

6.5

Htg Val-Btu/lb:

0.73 13900

14320

0.75

Ash Fusion Temp (Deg F)

Initial:

Softening:

Hemi:

Fluid:

Free Swelling Index:

Hardgrove Grind Ind:

Remarks:

Approved By:

USAPC FL 707-E

r 92

Chief, Product Assurance Division

S ARMY PETROLEUM CENTER PETROLEUM TESTING FACILITY - EAST NEW CUMBERLAND, PA 17070-5005

Coal Analysis Report

. . 04/14/94

Installation:

CDR HOLSTON DEFENSE CORP 4509 WEST STONE DRIVE

Delivery Date: 21-MAR-94

KINGSPORT TN 37660-9982

Date Received: 05-APR-94

1ine Name:

RED RIVER

Can Number:

0016

County, State:

VA

Sample Number:

93132B

Contractor:

ONYX INTER

Activity Code:

AR11

Contract Number: DLA600-93-D-0674

Lab Number:

4074

Tons Repret'd:

Coal Sampler's Number: 92-3

Item Number:

Size & Kind:

1 3/4" X 3/8"

Car. Truck or Barge Number:

IW5981, 143864, 131074, 3737, 92219, 6168, 7780, 118683, 12742, 145302, NS336022 S0U76864

CESTS

RESULTS

		11220	7610
		[As Recd]	[Moisture Free]
lir Dry Loss:	1.39		
Total Moisture:		2.3	
/olatile Matter:		33.7	34.5
i Carbon:		58.7	60.1
fet		5.3	5.4
Sulfur:		0.70	0.72
Ito Val-Btu/lb:		14270	14610

sh Fusion Temp (Deg F)

Initial: Softening: Hemi:

Fluid:

ree Swelling Index:

lardgrove Grind Ind:

'emarks:

Approved By:

FL 707-E 1 Apr 92

Product Assurance Division

PETROLEUM TESTING FACILITY - EAST NEW CUMBERLAND, PA 17070-5005

Coal Analysis Report

05/17/94

nstallation: CDR HOLSTON DEFENSE CORP

4509 WEST STONE DRIVE

KINGSPORT TN 37660-9982

Delivery Date: 25-MAY-94

Date Received: 10-JUN-94

ine Name: RED RIVER Can Number: 0470 ounty, State: VA Sample Number: 9416

VA Sample Number: 9416B
ONYX INTER Activity Code: AR11

ontract Number: DLA600-94-D-0670 Lab Number: 4095 tem Number: Coal Sampler's Number: 92-2

ons Reprst'd: 922.85

ontractor:

ize & Kind: 1 3/4" X 3/8"

ar, Truck or Barge Number:

W3142, 10408, 3004, 11945, 93533, 5219, 94167, 117629, SOU352051, 77068, 78855

ESTS RESULTS
[As Recd] [Moisture Free]

\ir Dry Loss: 2.16
Fotal Moisture: 3.8
Fotal Matter: 33.9
Fix ' Carbon: 57.7
Asi

Sulfur: 0.78 0.81

Itg Val-Btu/lb: 14040 14600

\sh Fusion Temp (Deg F)

Initial: Softening:

Hemi: Fluid:

Tree Swelling Index:

Hardgrove Grind Ind:

Remarks:

Approved By:

Date: 6/20/94

GARY/L. SMITH

Chief. Product Assurance Division

JS FL. 707-E D1 Apr 92

3 ARMY PETROLEUM CENTER PETROLEUM TESTING FACILITY - EAST NEW CUMBERLAND, PA 17070-5005

Coal Analysis Report

istarlation: CDR HOLSTON DEFENSE CORP

> 4509 WEST STONE DRIVE KINGSPORT TN 37660-9982

10/25/94

Delivery Date: 03-0CT-94

Date Received: 13-0CT-94

ne Name: unty, State:

V۸

RED RIVER

ONYX INTER

Sample Number: Activity Code:

0852 94047A

ntractor:

ontract Number: DLA600-94-D-0670

Lab Number:

Coal Sampler's Number: 92-2

Can Number:

AR11 5004

em Number:

na Reprat'd:

984.9

ze & Kind:

1 3/4" X 3/8"

r. Truck or Barge Number:

768562, 119358, 68502, 146192, 94349, 168269, 10252, 144945, 75163, NS327477,

RESULTS

86307, S0U351223

STS

[As Recd]

[Moisture Free]

r Dry Lose: tal Moisture: latile Matter: 2.13

3.4 35.2

35.4

_Carbon:

55.7

57.7

5.7

5.9

lfur:

X _

th

0.88

0.91

g Val-Btu/1b:

14010

14500

h Fusion Temp (Deg F)

Initial:

Softening:

Hemi:

Fluid:

ee Swelling Index:

rdgrove Grind Ind:

marks:

Approved By:

(730)

ef. Product Assurance Division

707-E

3 ARMY PETROLEUM CENTER PETROLEUM TESTING FACILITY - EA NEW CUMBERLAND, PA 17070-5005

Coal Analysis Report

01/24/9

stallation: CDR HOLSTON DEFENSE CORP

4509 WEST STONE DRIVE KINGSPORT TN 37660-9982 Delivery Date:

DB=JAN-95

Date Received: 18-JAN-95

Mine Name: RED RIVER

Can Number: Sample Number:

0028 94067A

County, State: VA Contractor 400 to CONYX INTER

Activity Code:

AR11

Contract Number: DLA600-94-D-0659

Lab Number: Coal Sampler's Number: 92-14

5024

Item Number: Tons Reprst'd:

935.55

Size & Kind:

1 3/4" X 3/8"

Car, Truck or Barge Number:

NW143778, 117599, 11517, 142405, 146022, 145718, 92688, 9647, 7019, 143234,

S0U351343

TESTS

RESULTS

Company Server

[As Recd] [Moisture Free]

Air Dry Loss: 0.82 Total Moisture:

Volatile Matter:

Fixed Carbon:

36.8 54.6

1.8

37.5 55.6

3h:

fur:

6.8

6.9

Htg Val-Btu/lb:

0.85 13990

0.87

Ash Fusion Temp (Deg F) Initial:

Softening:

Hemi: Fluid: 14240

Free Swelling Index:

Hardgrove Grind Ind:

Remarks:

Approved By:

ef, Product Assurance Division

USAPC FL 707-E Apr 92

AFFILIATED ENGINEERS SE, INC. 3300 SW Archer Road/P.O. Box 1086 Gainesville, FL 32608 (904) 376-5500 (904) 378-3081 - Fax

Made By:	Date: 11-1-95	Job No: 95046-00
Checked By:	Date:	Sheet No: of

Calculations For:

VALUES FOR USE IN SPREADSHEETS

REFERENCE	:WEDST	CONTO	~ 223	O PRI	VTOUT -	-11 MAY 9:
	12 1094	PUT	OF Pock	- /	-TB	ouchiclo N
			3-29-			
OVERHEAD		592 -	. 4125-	\$,67	Pip -	7/2//AND 185
				1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
MONTHLY OUE	RHOAD =	5816	07 (1.6)	7)/12 = A	80,940	O TOTAL COS
				1 1 1	1 1 1	
Assuming :	85% 15 F	=1X50 ;	: .U s	5 70,	.000	
						LBS S7M.
			the state of the s	1 1 1		
MAINTENA	1505 COST	D = 41	9000+	3098	00 = 47	28800 IN 19
MONTHLY I	MAINTENA	Neder	72880	0 #	60.733	
			12			
1			_ (2),	44.00		1
756 Ku	1126 1117VT	NC AS	FIXED.	9/70		1 34917 PERM
CHECK AUG	MATH.	IPP E	57.: 2	83224	3454 =	#31,776/ma
CHOCK A	UG MNTH.	CRPS	ST. MTR	1199	2+6502	+5827=42432
7.	776					
	776_, 6+24321	= 0.	566			
31/26						
455	60/40	5P1	-IT FO	R FIX	GD/VAR	MNTNC.
VAR/AF	BLE MNTA	1c = 0	0.4(728	800)	: 0.50	THOUSAND ATEN

DATE 11 MAY 95 15:17:35 RID 1200 11 MAY 9	S 117971			
* CPP Vs ACT - APR 1995	\$110 M-11	ADD MTH	DOT	ANIALLO
		APR MTH.		
* CNTR.TYP.SFX.DESCRIPTION .	CPP 201.	ACT CST.	UP E51.	CPP 231.
*==== .== .== .== =====================			^^	
2230 STEAM - AREA A 2230 046 000 DISODIUM PHOSPHATE (573)	7.	2.4	4.55	912
2230 046 000 DISODIUM PHOSPHATE (573)	/ 3	34	40%	
2230 118 000 ROCK SALT (5029)	105	110	100	
2230 137 000 BITUMINOUS COAL	124471	61154		
2230 141 000 SODIUM SULFITE (5613)	7	4	20%	
2020 142 000 CH SHRIC ACID (560)	1195		0%	14331
2000 306 051 LBR-DEPARTMENTAL CPERATIONS-GPER	66235	43731	రచ్చి	794813
2230 400 000 DEPT SUPPLIES & MISC EXPENSES	521	221		6250
2230 402 000 CLITHING	Ü		0%	
2230 414 998 PRODUCTION FUNDED EQUIPMENT HIL		261		
2230 714 721 SUB-CON CINDER/FLYACH RECOVERY	317	1110	350%	3800
2230 764 994 ROUTINE MAINT - SUBCONTRACT	0	164		
2230 764 997 ROUTINE MAINT - HDC LER @ CPP EST	26322	22074	78%	33986/
2230 764 998 ROUTINE MAINT - MATERIALS	3454	7004	203%	41453
1930 TAA 994 MAIOR MAINT - SUBCONTRACT	11992		೦%	
2230 766 997 MAJOR MAINT - HDC LBR @ CPP EST	6502	431	7%	78028
2230 766 998 MAJOR MAINT - MATERIALS	5827		0%	69929
2230 767 997 LBR-S&M CINDER/FLYASH RECOVERY	õ	-436	0%	•
2230 781 997 LBR-S&M MATERIAL HANDLING	63			758
2230 791 997 LBR-S&M FLYASH HANDLING	95		0%	1137
TOTAL STEAM - AREA A	249,271	156,016	63%	2,991,254
			=====	

.... END REPORT

Area A Months Usage Report Sum of individual boilers output (Steam Produced') = 695, 702,000 lbs Bldg net stoam output = Sum - Internal consumption (DA, trustum, etc.)
= 695.7 m lbs x . 836 = 581, 607, 000 160 35,693 × 2000 × 14,100 16 = 1,007 mm Btu Bhi contact of roal= Cost of FW for makeup water = (Steam rete Cond. return + blowdown) FW with 60% + 7% = 695,702,000 ×1.53 × . 148 /1000 gal = Costy electricity (motors, precipitators, lte.) 68.880/4 × , 035 ± ×12m = KwH cist fr"A" costor flyash disposal (5, 163 cy.) × 37,00 = cool of Water treatment Chemicals; Rot Ruch Salt 101, 040 x . 02 1/16 = 2,020 Caustic 515, 718 16 x . 0438 16 = 22.588 Sulfure Aad 132,584 x .035 16 = 4640 Out-of-Picket Steam Cost = (545 × 35693) + 68.880 + 29.250 + 3700 + 5000 + 23,950 = 1.74 million 581,607 Klbs 581,607,000 per many Pailer £ 419,000 (Youtin 1000 lbs | Not counting Maintenance losts of actual cost for plant BUTUF Pocket = 3.00 Steam cust 4 399, 795 (Mayor 2.47 million 1.74 Million 129,010 . 728,795 JBouch Hom

225

OUT-OF-PULKET

COST

FOR

STEAM

Month	Steam Produced (K Lbs.)	Evaporation Rate (%)	A-8 Coal (Tons)	A-8 Cinders Shipped (Cu.Yds.)		Flyash Shipped Off-Site)(Cu.Yds.)	•	Sodium Sulfite (Lbs.)	Rock Salt (Lbs.)	Sulfuric Acid (Lbs.)	Gas Producers (K Cu. Ft.)	A-10 Ga Produce Coal (Tons)
Jan. 92	89,572.0	10.1	4,369.3	776.0	. 726.0		108.0	83.0	1,040.0	9,118.0	96,890.0	1,147
Feb. 92	79,422.0	9.9	3,919.2	737.0	660.0			60.0	11,440.0	6,913.0	103,263.0	1,079
Mar. 92	92,748.0	9.8	4,644.0	904.0	759.0			63.0	9,360.0	11,682.0	136,934.0	1,313
Apr. 92	81,590.0	9.4	4,229.0	790.0	793.0			96.0	3,120.0	9,365.0	110,228.0	1,189
May 92	84,530.0	9.0	4,591.1	986.5	726.0			72.0	3,000.0	11,663.0	104,003.0	1,038
Jun. 92	62,588.0	10.1	3,050.4	584.5	660.0	66.0		65.0	27,760.0	9,227.0	65,752.0	759
Jul. 92	83,096.0	9.6	4,257.0	951.0	693.0			67.0	2,080.0	9,075.0	120,189.0	1,166
Aug. 92	81,898.0	9.6	4,191.1	612.0	693.0			64.0	1,440.0	9,953.0	96,179.0	1,035
Sep. 92		9.7	4,431.1	738.0	942.0			51.0	11,960.0	9,600.0	83,983.0	907
Oct. 92	79,438.0	9.6	4,051.2	707.0	726.0			84.0	8,320.0	8,153.0	93,234.0	1,001
Nov. 92	76,005.0	9.1	4,131.4	847.0	647.0			51.0	1,040.0	7,716.0	55,267.0	695
Dec. 92	90,986.0	9.4	4,762.6	896.0	726.0			50.0	11,440.0	11,526.0	88,910.0	996
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , ,	.,	*****	. 2000	•		••••	,	,020.0	00,710.0	,,,
TOTALS	988,917.0	9.8	50,627.4	9,529.0	8,751.0	2,112.0	1,575.0	806.0	92,000.0	113,991.0	1,154,832.0	12,331
AVERAGE	82,409.8	9.6	4,218.9	794.1	729.3			67.2	7,666.7	9,499.3	96,236.0	1,027
												ŕ
Jan. 93	100,650.0	9.2	5,376.2	950.0	198.0	743.0	169.0	48.0	7,280.0	5,231.0	103,278.0	1,041
Feb. 93	83,448.0	9.5	4,328.2	810.0	363.0	624.0	159.0	41.0	7,280.0	4,629.0	62,995.0	685
Mar. 93	87,670.0	9.2	4,720.6	806.0	363.0	684.0	117.0	35.0	7,280.0	9,323.0	75,983.0	901
Apr. 93	82,862.0	9.3	4,392.6	701.0	462.0	495.0	120.0	39.0	4,160.0	7,022.0	62,280.0	659
May 93	79,146.0	9.4	4,180.9	671.0	462.0	462.0	105.0	33.0	9,360.0	11,692.0	57,611.0	657
Jun. 93	68,480.0	9.6	3,508.5	548.0	594.0	363.0	117.0	33.0	18,300.0	6,971.0	58,734.0	667
Jul. 93	91,788.0	10.1	4,492.3	1,053.0	495.0	561.0	122.0	30.0	8,320.0	18,223.0	87,087.0	878
Aug. 93	78,528.0	9.4	4,121.9	927.0	726.0	198.0	119.0	50.0	2,080.0	8,802.0	74,643.0	861
Sep. 93	76,122.0	9.3	4,029.5	987.0	462.0	363.0	118.0	27.0	2,080.0	10,587.0	62,690.0	710
Oct. 93	85,538.0	9.5	4,430.7	968.0	462.0			40.0	6,240.0	9,996.0	58,347.0	736
Nov. 93	79,876.0	9.5	4,158.0	800.5	396.0			36.0	16,640.0	16,347.0	61,650.0	766
Dec. 93	86,196.0	10.9	3,914.5	929.0	330.0	528.0	171.0	44.0	7,500.0	9,364.0	37,161.0	517
707110	4 444 644 4		54 (50 0	40 450 5	5 010 0	C 747 A	4 574 4	157.0	0/ 500 0	110 107 0	000 450 0	0.000
	1,000,304.0	9.7	51,653.9	10,150.5		•		456.0		118,187.0	802,459.0	9,083
AVERAGE	83,358.7	9.6	4,304.5	845.9	442.8	478.9	131.2	38.0	8,043.3	9,848.9	66,871.6	756
Jan. 94	87,958.0	9.0	4,860.2	785.0	231.0	775.0	140.0	48.0	2,520.0	23,110.0	6,525.0	292
Feb. 94		9.4	3,027.1	698.0				29.0		23,110.0	10,588.0	108
Mar. 94		9.8	3,836.5	733.0				30.0		8,342.0	10,500.0	100
Apr. 94		9.8	3,179.0	618.0				32.0		3,301.0		
May 94		9.8	3,102.3	522.0				80.0	4,960.0	10,960.0		
Jun. 94		10.0	2,578.8	457.0	340.0	512.0		38.0	4,220.0	11,314.0		
Jul. 94		10.4	2,397.1	481.0		482.0		30.0	7,220.0	20,889.0		
Aug. 94		9.9	2,615.9	427.0		479.0		30.0	10,400.0	20,007.0		
Sep. 94		9.3	2,534.2	474.0		462.0		38.0	21,080.0	21,028.0		
			2,512.2			561.0		44.0	2,040.0	1,159.0		
Oct. 94	-	9.8	•	591.0 534.0		528.0		59.0	5,200.0	8,068.0		
Nov. 94		10.1	2,649.9					60.0	7,320.0			
Dec. 94	49,050.0	10.2	2,400.3	410.0	00.0	402.0	12.0	00.0	1,320.0	24,413.0		
TOTALS	695,702.0	9.7	35,693.5	6,730.0	1,969.0	5,163.0	1,191.0	488 0	101 040 0	132,584.0	17,113.0	401.
AVERAGE				560.8			-	44.4	8,420.0		8,556.5	200.
חזרוואמנ	31,113.2	7.0	2,7/4.3	500.0	320.2	, 730.3	//.5	77.7	V,7EV.V	10,200.7	0,000.0	200.

PAGE 2

Month	Filtered Water Produced (K Gals.	River Water Produced	Chlorine (Lbs.)	Aluminum Sulfate (Lbs.)	Hydrated Lime (Lbs.)	Caustic Soda (Lbs.)	Waste Water Pumped (K Gals.)	Fuel Oil (Gals.)	Propane (Gals.)		City Sewage Treated (K Gals.)	El∈ cit (K
Jan. 92	*		118.0	5,600.0		56,566.0	14,450.0 *			930.5	020 5	
Feb. 92			95.0	6,100.0		59,347.0	•		150.0		930.5	
Mar. 92			126.0	7,050.0		51,082.0	•		100.0	409.1	409.1	
Apr. 92		595,695.0	101.0	6,400.0		41,462.0			100.0	334.1	334.1	1
May 92		551,340.0	106.0	6,600.0		57,289.0	•		124.2	662.9	602.9	
Jun. 92		538,380.0	92.0	5,700.0		35,651.0			134.3 155.0	187.0	187.0	
Jul. 92		550,866.0	141.0	6,550.0	1,400.0				50.0	230.8	230.8	1
Aug. 92		600,906.0	111.0	6,450.0	400.0				50.0	239.7	239.7	1
Sep. 92		581,703.0	87.0	5,650.0		51,749.0	•		75.0	177.2	177.2	1
Oct. 92		621,540.0	105.0	6,550.0		53,017.0	•		95.0	196.9	196.9	4
Nov. 92	-		86.0	6,150.0	50.0		•	197.0	73.0	331.7	331.7	1
Dec. 92	50,379.0	573,690.0	106.0	6,400.0	450.0	•		182.0	68.0	394.7	394.7	1
						, , , , , , , , , , , , , , , , , , , ,	,	102.0	00.0	325.9	325.9	
TOTALS	578,199.0		1,274.0	75,200.0	2,300.0	556,021.0	201,414.0 *	379.0	877.3	4,360.5	4 260 E	4.4
AVERAGE	48,183.3	576,689.0	106.2	6,266.7	575.0			189.5	97.5	363.4	4,360.5 363.4	11
							•			303.4	303.4	
an. 93	49,308.0	594,855.0	102.0	6,950.0	1,000.0	111,462.0	17,337.0 *	138.0	65.0	321.8	321.8	
Feb. 93	43,342.0	• • • • • •	93.0	5,900.0	300.0	97,796.0	19,145.0 *	224.0	30.0	345.4	345.4	
Mar. 93	51,108.0	570,264.0	109.0	7,600.0	350.0	60,260.0	25,763.0	104.0	155.0	375.4	375.4	1.
Apr. 93	48,552.0	585,066.0	105.0	6,600.0	350.0	39,796.0	23,073.0	26.0		450.0	450.0	1.
May 93	47,880.0	620,970.0	115.0	6,450.0	350.0	53,782.0	23,234.0	18.0		361.2	361.2	1.
Jun. 93	45,653.0	598,032.0	111.0	5,250.0	250.0	83,718.0	23,604.0		175.2	265.4	265.4	4.
Jul. 93	47,284.0	693,060.0	117.0	5,600.0	650.0	98,570.0	24,452.0			267.5	265.4	1,
Aug. 93	47,633.0	624,960.0	123.0	5,850.0	500.0	35,549.0	22,843.0			345.9	345.9	1,
Sep. 93	43,568.0	604,800.0	139.0	5,550.0	500.0	37,112.0	19,102.0		25.0	345.6	345.6	1,
Oct. 93	48,610.0	639,867.0		5,250.0	500.0	47,598.0	21,264.0			370.6	370.6	1,
Nov. 93	46,145.0	627,030.0		5,750.0	450.0	26,742.0	19,323.0		10.0	397.7	397.7	1,
Dec. 93	48,924.0	644,697.0		7,050.0		38,848.0	21,849.0		59.9	499.7	499.7	
TOTALS	510 AA7 A	7 22/ 222 4		** *** *								
AVERAGE	568,007.0 47,333.9	7,326,993.0		73,800.0	5,200.0	•		510.0	520.1	4,346.2	4,344.1	11,
HYCHROL	47,333.7	610,582.8	112.7	6,150.0	472.7	60,936.1	21,749.1	102.0	74.3	362.2	362.0	
Jan. 94	50,300.0	639,306.0	۸	10 550 0								
Feb. 94	39,696.0	564,480.0	.0	10,550.0	150.0	73,960.0	22,488.0	.0	25.0	644.9	644.9	
Mar. 94	43,723.0	624,960.0	.0 .0	6,050.0	150.0	55,270.0	19,804.0	.0	125.0	823.6	823.6	
Apr. 94	40,687.0	599,130.0	.0	7,400.0		81,616.0	21,674.0	.0		548.6	548.6	1,(
May 94	41,304.0	613,248.0	.0	7,300.0 4,300.0		35,080.0	19,283.0	.0		581.9	581.9	C
Jun. 94	37,263.0	603,624.0	.0	5,350.0		35,297.0	20,726.0	.0	5.0	567.2	567.2	3
Jul. 94	39,624.0	624,960.0	.0	7,300.0		46,352.0	17,886.0	.0		627.7	627.7	ċ
Aug. 94	42,257.0	527,520.0	.0	5,200.0	450.0	33,083.0	16,685.0	.0		496.4	496.4	C
Sep. 94	34,361.0	604,758.0	.0	6,300.0	430.0	56,917.0	15,087.0	.0		483.5	483.5	Ċ
94	36,547.0	625,800.0	.0	5,600.0		33,083.0	13,130.0	.0		533.7	533.7	1,0
Nov. 94	35,920.0	584,640.0	.0	5,250.0		33,565.0	12,525.0	.0		551.6	551.6	8
Dec. 94	37,857.0	624,960.0	.0			20,661.0	9,833.0			674.5	674.5	C
	144/ 14	VET, 70V, V	.0	5,600.0		10,834.0	10,679.0			674.7	674.7	ċ
TOTALS	479,539.0	7,237,386.0	.0	76,200.0	600.0	515,718.0	100 000 0		455 -			
AVERAGE	39,961.6	603,115.5	.0	6,350.0	300.0	42,976.5	199,800.0	.0			7,208.3	11,4
				*,****		227	16,650.0	.0	51.7	600.7	600.7	٩

	A	Rea	A	MO	NTH	~ R	EPORT					
		Steam	Evapo- ration	A-8	Produce	defrig-		fuel		El-atricit.		
	Month	Produced (K Lbs.)		Ccal (Tons)	Coal (Tons)	eration (Tons)				Electricity (K KW Hrs.)		
	******			•••••••							•	. W
		/ 82265.# : 79568.#							75.: 6#.:		7	9= Hill -7.457 K/MO
	Mar. 89	74798.8	18.4	3523.9	1289.4	18719.8	18719.8	9.5	35.	955.4		
		7546 8.9	18.6						1 9. 1			t i
1989	_ Jun. 89 Jul. 89		1\$.3 8.3						5#.4 25.4			
	Aug. 89	74852.2	19.3	3537.2	1936.9	11587.	11587.5	5.5	5. 1	1268.6		
		7865 8.8 75686.8	18.9			1			5 7 .1			for the second second
~ =	Nov. 89 Dec. 89		19.2			11556.8			6.2 19.8			
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					•			**				
	Jan. 95	9294B1.#:	15.1	4139.9	1152.2	3314.9		1.1	60.0	917.1		
	Feb. 98 Mar. 98	6678 9.9 78148. 9	19.3	3176.2	857.9 1297.2	2866.8 3921.8	9282.8° 18328.8°	1.1 1. 5	65. 6	1819.8 967.8		
1/7/4 -	Apr. 98	75362. \$ 73356. \$	15.4	3562.1 3341.9	1886.8 11 82. 3	3875.6 4288.9	9847.8° 12912.8°	1.1 1.1	29.8 25.8	11 99.8 894.3		
	Jun. 98	81552.#	19.3	3855.9	1199.5	4698.5	19859.9	1.1	45.5	691.8 978.8		
	Jul. 98 Aug. 98	591 97. 83342.	19.7 19.7	2751.3 3826.7	993.k 1876.9	4442.4 4953.4	11795.8	5. F	164. 8	62 6. 8		
	Sep. 93 Oct. 93	77218.8 77972.8	9.7 18.8	3883.9 3537.9	1154.6	4#36.# 3697.6	11228.8	9.8 18489.0	9. 8 8. 3	83 3. 3 952. 8		
# + 1 *	Nov. 93 Dec. 93	77898. \$ 97596. \$	18.2 11.5	3745.9	989.6	2597.8 2929.4	11315.6	8. 9 8. 6	59.2	6.457 5.144		- الله الله الله الله الله الله الله الل
. 3				4185.3	1138.8		11855.9				•	
	Jan. 91	933799.8 98882.8	19.78	43653.6 4466.8	13157.8	45535.1 2544.2	132537.8 11987.8	8.8	439.3	19359.3	-	
	Feb. 91 Mar. 91	73648.3 79624.8	19.21 19.48	3698.2 3797.6	942.7 1286.9	228 0. 1 2779.2	19723.3 11154:5°	1.1 2012	146.6	648. 8 651. 3		
		79948.9 84754.8	19.17	3885.5	1989.8	3\$29.6 2985.3	18721.8	9.9	8.3 9.9	9 49.8 76 2.9		,
•	Jun. 91	79156.9	19.23	4440.8 3429.3	1976.3 593.8	2298.9	11833.9	1.1	128.8	1946.8		
	Jul. 91 Aug. 91	77782. 8 85282. 8	18.84	3871.9 4 0 34.5	844.3	2261.2 3159. 8	11487.# 13727.#	1.1 1.1	9.5 139.5	131 9.8 12 82.8		· ·
	Sep. 91 Oct. 91	79228.3 82338.3	18.18	3842.5 3893.5	1091.2	2923.6 2686.9	11575.8	9.8 9.8	9.2 15.5	1839.8 1849.8		
	Nov. 91 Dec. 91	0100010		3073.3	, 710. 1	22001						
						2/707 +			110.7			J.
_ Serie Tan	. 92 " 8	9.572.0	10.1	4,369.3	1,147.0	2,806.6	116429.8		418.7	9273. 2 841.0		and the second
	. 92 9	9,422.0 2.748.0		3,919.2 4.644.0	1,079.7	2,636.3 3,591.0	9,890.0 11,094.0		.150.0 100.0	894.0 1,075.0		
Apr > Apr		1,590.0		4,229.0	1,189.1	2,755.4	11,212.0		134.3	889.0 999.0		\$ ⁷
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	. 92 6	2,588.0	10.1	3,050.4	1,038.8 759.8	2,978.6	9,820.0		155.0	1,061.0		
Jul. Aug.	. 92 8	3,096.0 1,898.0		4,257.0 4,191.1	1,166.9	3,506.5 3,140.0	11,031.0 11,450.0		50.0	1,062.0 1,017.0		
Sep. کا کا کا کا کا کا کا کا کا کا کا کا کا		7,044.0 9,438.0		4,431.1 4.051.2	907.4 1,001.5	3,004.3 2,657.5	10,253.0 9,826.0		75.0 95.0	800.0 1,163.0		
7534 - 100.		0.986.0	9.1	4.131.4 4.762.6	695.7	2,020.0	10,619.0	197.0 182.0	68.0	1,164.0 854.0		a · 5
TOTA		3.917.0			996.5		128.851.0.	.0	877.3	_11,819.0		
∋' Jan.	. 93 100	,650.0	9.2	0.627.4 5,376.2	1,041.3	2,819.1	10,331.0	138.0	65.0	946.0		
Feb.	. 93 87	3,448.0 7,670.0	9.2	4.328.2 4.720.6	685.9 901.8	1,895.7 2,046.2	9.980.0 11,517.0	224.0 104.0	30.0 155.0	956.0 1,087.0		
APT.		2,862.0 2,146.0		1,392.6	659.5 657.1	1,670.1	10,458.0	26.0 18.0		957.0 1,010.0		
993 Hay Jun. Jul.		,480.0 ,788.0	9.6	3,508.5 1,492.3	667.0	2,538.8	11,473.0		175.2	984.0		
- Aug.	93 78	,528.0	9.4	1,121.9	878.5 861.7	2,795.8	11,636.0			1.098.0 985.0		
Oct.	93 85	,122.0° ,538.0	9.5	1,029.5 1,430.7	710.5 736.1	2,693.9 2,248.9	12,215.0 13,108.0		25.0	1,075.0		•
Nov.		,876.0 ,196.0	9.5 10.9		766.8 517.3	1,750.6 2,255.0	12.583.0 12.895.0		10.0 59.9	809.0 928.0		
TOTAL	LS 1,000		9.7 51				139,039.0	510.0		11,837.0		The second of th
Jan. Feb.	94 87	,958.0 ,326.0	9.0	,860.2	292.7	1,801.2	12,863.0	.0	25.0	965.0		17 10 10 10 mage 1/40
Har.	94 75	.534.0	9.8	.836.5	108.3	431.3 1,960.2	11,306.0 12,588.0		125.0	934.0 1.084.0		
Apr.		.478.0 .546.0		3,179.0 3,102.3		1,958.2	10,637.0	.0		950.0		
Jen. Jul.	94 51	.624.0	10.0	2,578.8		1.609.8	9,959.0	.0	5.0	847.0 906.0		
Aug.	94 51	.806.0	9.9	2.615.9		2,264.7	9,759.0 9,834.0	.0 .0		950.0 960.0	اس راف	. x'
Sep	94 46		9.3 3 9.7 2	2,554.2 2,150.4	460.9	1.641.5	96.944		155.0	960.0 1,012.0 — 8,608.0		
		•		1								228

Appendix 3 - Scope of Work

DEPARTMENT OF THE ARMY

MOBILE DISTRICT, CORPS OF ENGINEERS P.O. BOX 2288-0001 Mobile, Alabama 36628-0001

22 June 1995

REPLY TO ATTENTION OF: **Architect-Engineer Contracts Section**

Affiliated Engineers SE. Inc.

JUN 2 6 1995

Affiliated Engineers SE, Inc. 3300 SW Archer Road Gainesville, Florida 32608

Dear Mr. Miller:

Reference is made to Contract Number DACA01-94-D-0007, Delivery Order Number 003, for a Limited Energy Study for the Area A Package Boiler at Holston Army Ammunition Plant, TN.

We propose to modify referenced delivery order to provide for additional inspection effort in accordance with the enclosed Scope of Work..

Your are requested to prepare your fee proposal for accomplishing the additional work resulting from this change in sufficient detail to permit analysis thereof and submit it by 28 June 1995. Your proposal should be addressed as follows:

> District Engineer U.S. Army Engineer District, Mobile Attention: CESAM-EN-M/Mr. Dan Mizelle Post Office Box 2288 Mobile, Alabama 36628-0001

You are cautioned that no work or services for which an additional cost or fee will be charged should be furnished without the prior written authorization of the Contracting Officer.

If you have any questions concerning the work requirements, please contact Mr. Bill McClelland at telephone 334/441-6444.

Sincerely

Authorized Representative of the Contracting Officer

Enclosure

CESAM-EN-DM 20 Jun 95

FY95 LIMITED ENERGY STUDY, AREA A PACKAGE BOILER HOLSTON ARMY AMMUNITION PLANT, TENNESSEE

MINIMUM REQUIREMENTS FOR INSPECTION OF EXISTING BOILERS AT VOLUNTEER ARMY AMMUNITION PLANT, TENNESSEE

- 1. Open all manway covers of both boilers and all handhole plates. Remove all internals to expose tube ends in steam drum. Open access to furnace area including base of chimney.
- 2. Perform in-depth visual internal and external inspection of the boilers to identify any condition that may affect the integrity of the pressure retaining components.
- 3. Remote Field Eddy Current (RFEC) testing of 25 percent of the boiler tubes to determine the amount of thinning that may have occurred during the life of the boiler. Each boiler has approximately one thousand 2-inch tubes. The inspector will determine which tubes to test.
- 4. Ultrasonic thickness measurements of shell and heads to identify any loss of thickness due to corrosion.
- 5. Ultrasonic thickness testing of the 2.75-inch membrane-attached tubes to identify any thinning that may have occurred.
- 6. Perform calculations to determine allowable operating pressure based on the obtained thicknesses, and compare with original design pressure of 375 psi at 442 F.
- 7. Provide labor and materials to replace gaskets for all manholes, handholes, and items removed for inspection prior to hydrostatic testing. Provide necessary blind flanges and gaskets on steam outlet to perform hydrostatic test.
- 8. Perform a hydrostatic test of each boiler to identify any abnormal condition not previously identified by other testing. Conduct the hydrostatic test at a pressure to be determined, based on the calculations for the shell, heads, and tubes, but not to exceed 150 percent of the original design pressure.
- 9. After hydrostatic testing is complete, drain boiler and dry internal parts in preparation for returning boiler to a lay-up condition.
- 10. Provide labor and material to replace desiccant in preparation for returning boilers to a lay-up condition. Closing of boilers will be the responsibility of the inspecting agency.

CESAM-EN-DM 20 Jun 95

11. Provide three spiral-bound copies of a detailed report on the conditions noted, results of all testing and inspections, including a color-coded tube layout diagram indicating the current thickness of all tubes examined with RFEC, calculations to verify the current maximum allowable working pressure of the tubes, shells and heads, recommendations to restore the boilers to a safe and reliable condition, a projected remaining useful life, and photographs, if required. Report to be delivered to AE not later than two weeks after testing is completed.

TASKS TO BE PERFORMED BY VOLUNTEER AAP PERSONNEL

- Provide electrical power and water to building. Provide piping to boilers for hydrostatic test and means to drain boiler water after test.
- 2. Provide one copy of all prints and manufacturer's documents for the boilers to the inspecting group five working days prior to the scheduled inspection/testing, to be returned with the delivery of the final testing and inspection report to the AE.
- Inspect boilers after all testing and inspections are complete to verify internals are dry prior to closure.

SCOPE OF WORK

FOR A

LIMITED ENERGY STUDY

AREA A PACKAGE BOILER

HOLSTON ARMY AMMUNITION PLANT, TN

Performed as part of the ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

SCOPE OF WORK FOR A LIMITED ENERGY STUDY

AREA A PACKAGE BOILER HOLSTON ARMY AMMUNITION PLANT, TN

TABLE OF CONTENTS

- 1. BRIEF DESCRIPTION OF WORK
- 2. GENERAL
- 3. PROJECT MANAGEMENT
- 4. SERVICES AND MATERIALS
- 5. PROJECT DOCUMENTATION
 - 5.1 ECIP Projects
 - 5.2 Non-ECIP Projects 5.3 Nonfeasible ECOs
- 6. DETAILED SCOPE OF WORK
- 7. WORK TO BE ACCOMPLISHED
 - 7.1 Review Previous Studies
 - 7.2 Perform a Limited Site Survey
 - 7.3 Evaluate Selected ECOs
 - 7.4 Combine ECOs into Recommended Projects7.5 Submittals, Presentations and Reviews

ANNEXES

- A DETAILED SCOPE OF WORK
- B EXECUTIVE SUMMARY GUIDELINE
- C REQUIRED DD FORM 1391 DATA

- 1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:
- 1.1 Review the previously completed Energy Engineering Analysis Program (EEAP) study which applies to the specific building, system, or energy conservation opportunity (ECO) covered by this study.
- 1.2 Perform a limited site survey of specific buildings or areas to collect all data required to evaluate the specific ECOs included in this study.
- 1.3 Evaluate specific ECOs to determine their energy savings potential and economic feasibility.
- 1.4 Provide project documentation for recommended ECOs as detailed herein.
- 1.5 Prepare a comprehensive report to document all work performed, the results and all recommendations.

2. GENERAL

- 2.1 This study is limited to the evaluation of the specific buildings, systems, or ECOs listed in Annex A, DETAILED SCOPE OF WORK.
- 2.2 The information and analysis outlined herein are considered to be minimum requirements for adequate performance of this study.
- 2.3 For the buildings, systems or ECOs listed in Annex A, all methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All energy conservation opportunities which produce energy or dollar savings shall be documented in this report. Any energy conservation opportunity considered infeasible shall also be documented in the report with reasons for elimination.
- 2.4 The study shall consider the use of all energy sources applicable to each building, system, or ECO.
- 2.5 The "Energy Conservation Investment Program (ECIP) Guidance", described in letter from DAIM-FDF-U, dated 10 Jan 1994 establishes criteria for ECIP projects and shall be used for performing the economic analyses of all ECOs and projects. The program, Life Cycle Cost In Design (LCCID), has been developed for performing life cycle cost calculations in accordance with ECIP guidelines and is referenced in the ECIP Guidance. If any program other than LCCID is proposed for life cycle cost analysis, it must use the mode of calculation specified in the ECIP Guidance. The output must be in the format of the ECIP LCCA summary sheet, and it must be submitted for approval to the Contracting Officer.

- 2.6 The following definitions apply to terms used in this scope of work:
- 2.6.1 "Contracting Officer", "Contracting Officer's Representative", or Government's Representative" refer to the contracting office of the Mobile District, U. S. Army Corps of Engineers.
- 2.6.2 "Installation Commander", or "Installation Representative" refer to the military commander of Holston Army Ammunition Plant.
- 2.6.3 "Plant Manager", Operating Contractor", or "Operating Contractor's Representative" refer to the Holston Defense Corporation, which operates Holston Army Ammunition Plant under contract to the U. S. Army.
- 2.7 Energy conservation opportunities determined to be technically and economically feasible shall be developed into projects acceptable to installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP or O&M funding, and determining in coordination with installation personnel the appropriate packaging and implementation approach for all feasible ECOs.
- 2.7.1 Projects which qualify for ECIP funding shall be identified, separately listed, and prioritized by the Savings to Investment Ratio (SIR).
- 2.7.2 All feasible non-ECIP projects shall be ranked in order of highest to lowest SIR.
- 2.8 Metric Reporting Requirements: In this study, the analyses of the ECOs may be performed using English or Metric units as long as they are consistent throughout the report. The final results of energy savings for individual recommended projects and for the overall study will be reported in units of MegaBTU per year and in MegaWattHours per year. Paragraph 7.5.2 details requirements for the contents of the final submittal.

3. PROJECT MANAGEMENT

and a project Managers. The AE shall designate a project manager to serve as a point of contact and liaison for work required under this contract. Upon award of this contract, the individual shall be immediately designated in writing. The AE's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this contract. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this contract. This individual will be the Government's representative.

3.2 Installation Assistance.

- a. The Installation Commander will designate an individual to coordinate between the AE and the Holston Defense Corporation. This individual will be the Installation Representative, and all correspondence with Holston Army Ammunition Plant will be addressed to his attention.
- b. The Plant Manager will designate an individual to assist the AE in obtaining information and establishing contacts necessary to accomplish the work required under this contract. This individual will be the Operating Contractor's Representative.
- 3.3 <u>Public Disclosures</u>. The AE shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.
- 3.4 Meetings. Meetings will be scheduled whenever requested by the AE or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The AE's project manager and the Government's representative shall be required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer. These meetings, if necessary, are in addition to the presentation and review conferences.
- 3.5 <u>Site Visits, Inspections, and Investigations</u>. The AE shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

3.6 Records

- 3.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, delivery order number, participating personnel, subject discussed and conclusions reached. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the records.
- 3.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the contract number and modification number, if applicable. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the record of request or receipt of material.

- 3.7 <u>Interviews</u>. The AE and the Government's representative shall conduct entry and exit interviews with the Plant Manager before starting work at the installation and after completion of the field work. The Government's representative shall schedule the interviews at least one week in advance.
- 3.7.1 Entry. The entry interview shall describe the intended procedures for the survey and shall be conducted prior to commencing work at the facility. As a minimum, the interview shall cover the following points:
 - a. Schedules.
 - b. Names of energy analysts who will be conducting the site survey.
 - c. Proposed working hours.
 - d. Support requirements from Holston Defense Corporation (HDC).
- 3.7.2 Exit. The exit interview shall briefly describe the items surveyed and probable areas of energy conservation. The interview shall also solicit input and advice from the Plant Manager.
- 4. <u>SERVICES AND MATERIALS</u>. All services, materials (except those specifically enumerated to be furnished by the Government), labor, supervision and travel necessary to perform the work and render the data required under this contract are included in the lump sum price of the contract.
- 5. PROJECT DOCUMENTATION. All energy conservation opportunities which the AE has considered shall be included in one of the following categories and presented in the report as such:
- 5.1 ECIP Projects. To qualify as an ECIP project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$300,000, a Savings to Investment Ratio (SIR) greater than 1.25 and a simple payback period of less than ten years. The overall project and each discrete part of the project shall have an SIR greater than 1.25. All projects meeting the above criteria shall be arranged as specified in paragraph 2.7.1 and shall be provided with programming documentation. Programming documentation shall consist of a DD Form 1391 and life cycle cost analysis (LCCA) summary sheet(s) (with necessary backup data to verify the numbers presented). A life cycle cost analysis summary sheet shall be developed for each ECO and for the overall project when more than one ECO are combined. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs.

- 5.2 <u>Non-ECIP Projects</u>. Projects which do not meet ECIP criteria with regard to cost estimate or payback period, but which have an SIR greater than 1.25 shall be documented. Projects or ECOs in this category shall be arranged as specified in paragraph 2.7.2 and shall be provided with the following documentation: the life cycle cost analysis (LCCA) summary sheet completely filled out, a description of the work to be accomplished, backup data for the LCCA, ie, energy savings calculations and cost estimate(s), and the simple payback period. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs. In addition these projects shall have the necessary documentation prepared, as required by the Government's representative, for one of the following categories:
- a. Federal Energy Management Program (FEMP) Projects. A FEMP (or O&M Energy) project is one that results in needed maintenance or repair to an existing facility, or replaces a failed or failing existing facility, and also results in energy savings. The criteria are similar to the criteria for ECIP projects, ie, SIR ≥ 1.25 , and simple payback period of less than ten years. Projects with a construction cost estimate up to \$1,000,000 shall be documented as outlined in par 5.2 above; projects over \$1,000,000 shall be documented on 1391s. In the FEMP program, a system may be defined as "failed or failing" if it is inefficient or technically obsolete. However, if this strategy is used to justify a proposed project, the equipment to be replaced must have been in use for at least three years.
- b. Low Cost/No Cost Projects. These are projects which the Plant Manager can perform using his resources. Documentation shall be as required by the Plant Manager.
- 5.3 <u>Nonfeasible ECOs</u>. All ECOs which the AE has considered but which are not feasible, shall be documented in the report with reasons and justifications showing why they were rejected.
- 6. <u>DETAILED SCOPE OF WORK</u>. See Annex A.
- 7. WORK TO BE ACCOMPLISHED.
- 7.1 Review Previous Studies. Review the previous EEAP study which applies to the specific building, system, or ECO covered by this study. This review should acquaint the AE with the work that has been performed previously. Much of the information the AE may need to develop the ECOs in this study may be contained in the previous study.
- 7.2 <u>Perform a Limited Site Survey</u>. The AE shall obtain all necessary data to evaluate the ECOs or projects by conducting a site survey. However, the AE is encouraged to use any data that may have been documented in a previous study. The AE shall document his site survey on forms developed for the survey, or standard forms, and submit these completed forms as part of the report. All test and/or measurement equipment shall be properly calibrated prior to its use.

- 1.3 Evaluate Selected ECOs. The AE shall analyze the ECOs listed in Annex A. These ECOs shall be analyzed in detail to determine their feasibility. Savings to Investment Ratios (SIRs) shall be determined using current ECIP guidance. The AE shall provide all data and calculations needed to support the recommended ECO. All assumptions and engineering equations shall be clearly stated. Calculations shall be prepared showing how all numbers in the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of the products, manufacturers catalog cuts, pertinent drawings and sketches shall also be included. A life cycle cost analysis summary sheet shall be prepared for each ECO and included as part of the supporting data.
- 7.4 Combine ECOs Into Recommended Projects. During the Interim Review Conference, as outlined in paragraph 7.5.1, the AE will be advised of the Plant Manager's preferred packaging of recommended ECOs into projects for implementation. Some projects may be a combination of several ECOs, and others may contain only one. These projects will be evaluated and arranged as outlined in paragraphs 5.1, 5.2, and 5.3. Energy savings calculations shall take into account the synergistic effects of multiple ECOs within a project and the effects of one project upon another. The results of this effort will be reported in the Final Submittal per par 7.5.2.
- Submittals, Presentations and Reviews. The work accomplished shall be fully documented by a comprehensive report. report shall have a table of contents and shall be indexed. and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. Names of the persons primarily responsible for the project shall be included. The AE shall give a formal presentation of the interim submittal to installation, command, and other Government personnel. Slides or view graphs showing the results of the study to date shall be used during the presentation. During the presentation, the personnel in attendance shall be given ample opportunity to ask guestions and discuss any changes deemed necessary to the study. A review conference will be conducted the same day, following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. It is anticipated that the presentation and review conference will require approximately one working day. The presentation and review conference will be at the installation on the date agreeable to the Plant Manager, the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.
- 7.5.1 Interim Submittal. An interim report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain

- a plan of the work remaining to complete the study. Calculations showing energy and dollar savings, SIR, and simple payback period of all the ECOs shall be included. The results of the ECO analyses shall be summarized by lists as follows:
- a. All ECOs eliminated from consideration shall be grouped into one listing with reasons for their elimination as discussed in par 5.3.
- b. All ECOs which were analyzed shall be grouped into two listings, recommended and non-recommended, each arranged in order of descending SIR. These lists may be subdivided by building or area as appropriate for the study. The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. At the Interim Submittal and Review Conference, the Government's and AE's representatives shall coordinate with the Plant Manager to provide the AE with direction for packaging or combining ECOs for programming purposes and also indicate the fiscal year for which the programming or implementation documentation shall be prepared. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.
- 7.5.2 Final Submittal. The AE shall prepare and submit the final report when all sections of the report are 100% complete and all comments from the interim submittal have been resolved. AE shall submit the Scope of Work for the study and any modifications to the Scope of Work as an appendix to the submittal. report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The recommended projects, as determined in accordance with paragraph 5, shall be presented in order of priority by SIR. The lists of ECOs specified in paragraph 7.5.1 shall also be included for continuity. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The final report shall be arranged to include:
- a. An Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex B for minimum requirements).
- b. The narrative report describing the problem to be studied, the approach to be used, and the results of this study.

- c. Documentation for the recommended projects (includes LCCA Summary Sheets).
 - d. Appendices to include as a minimum:
 - Energy cost development and backup data Detailed calculations
 - 2)
 - Cost estimates 3)
 - Computer printouts (where applicable) Scope of Work 4)
 - 5)

ANNEX A

DETAILED SCOPE OF WORK

- 1. The facility to be studied in this contract is the central steam plant for Area A at Holston Army Ammunition Plant (HSAAP) in Kingsport, Tennessee. Holston Army Ammunition Plant is a government-owned, contractor-operated (GOCO) facility. The operating contractor is the Holston Defense Corporation (HDC). For reasons of safety and security, access to the plant is controlled. Temporary passes will be required for both personnel and vehicle access. Some field work will also be required at Volunteer Army Ammunition Plant near Chattanooga, Tennessee.
 - a. A one-week notice should be given by the AE prior to any visit. This time will be needed to make the necessary arrangements for the visit.
 - b. The AE should submit a list of the equipment and instruments they plan to use prior to their arrival. Because of the nature of HSAAP operations, safety regulations prohibit and restrict the use of some equipment on the installation. Having a list of the equipment to be used beforehand, HSAAP will be better prepared at the entrance interview to address the regulations pertaining to the equipment to be used. This will also facilitate coordination of the inspection and permitting of the equipment.
- 2. The following persons have been designated as points of contact and liaison for all work required under this contract. Mr. Scott Shelton shall be the Installation Representative, and Mr. J. L. Bouchillon shall be the Operating Contractor's Representative.
- 3. Completion and Payment Schedule: The following schedule shall be used as a guide in approving payments on this contract. The final report for this study shall be due not later than 180 days after Notice to Proceed.

MILESTONE	PERCENT OF CONTRACT AMOUNT AUTHORIZED FOR PAYMENT
Completion of Field Work Receipt of Interim Submittal Completion of Interim Presentation & Receipt of Final Report	25 75 Review 85 100

4. Purpose and Background: The purpose of this study is to identify and evaluate the technical and economic feasibility of alternate methods of meeting the steam requirements of the Area A industrial complex. The Area A steam plant was constructed during World War II to serve an industrial complex that produces raw materials used in the manufacture of explosives. There are seven coal-fired boilers which generate steam at 400 psig and $575^{\circ}F$. Each boiler has a full-load capacity of at least

- 100,000 pph. At current production levels, steam requirements can be met by using two boilers; sometimes only one is needed. Future production levels are projected to be even lower, requiring only one boiler to operate at part load. This method of operation would be very inefficient; therefore, HDC would like to evaluate other possibilities for meeting the steam needs of Area A. Following are some points which should be considered:
 - a. Evaluate using a pair of gas-fired package boilers of sufficient capacity at the existing plant. Location will be as directed by HDC; package boiler stacks will be tied into existing plant stack.
 - b. The process and heating needs of Area A are such that it would be preferable to use the existing distribution system rather than using multiple boilers at various sites.
 - c. Existing steam-driven chillers are being replaced with electric. This project should be complete by March 1996. For purposes of this study, assume the project to be complete.
- d. There are two Babcock-Wilcox, natural-gas, packaged water-tube boilers laid away at Volunteer Army Ammunition Plant. They each have a capacity of 150,000 pph at 375 psig. They were installed in 1972, and were last used about 1980. A visual, external inspection was conducted in 1994; a copy of the report is furnished. Can these boilers be used at Area Would any repairs or modifications be needed? What would be the cost of relocating these boilers?
- e. To what extent can the existing ancillary equipment (deaerator, feedwater heater, feedwater pumps, etc) in the plant be used with the package boilers? The boilers at Volunteer AAP include ancillary equipment. If these boilers are used, can their ancillary equipment be used also?
- f. Maintenance and operations costs and savings must be included in the evaluation. One of the costs that must be considered is the cost to lay away existing Building 8-A if a gas-fired package boiler is recommended to replace the existing coal-fired boilers. HDC has written plans and procedures that must be followed for lay-away.
- g. HDC currently pays an uninterruptible rate for natural gas due to process requirements; this is not likely to change. However, the package boilers should have dual-fuel (no.2 fuel oil) capability in the event of an emergency. Evaluate adequacy of current DF2 storage capacity, and include cost of additional storage if needed.
- h. Determine changes that would have to be made to the existing air pollution operating permit for the addition of the package boilers, and include costs in evaluation.

- i. Evaluate the possibility of using existing steam turbine drives to operate river water pumps which are presently electrically driven.
- 5. The boilers which are laid away at Volunteer Army Ammunition Plant must be inspected by a member of the National Board of Boiler and Pressure Vessel Inspectors to determine if they are suitable for the intended purpose and if any repairs or modifications will be needed.
- 6. Point of contact for entry to Volunteer Army Ammunition Plant is Mr. Jim Fry. Phone number (615) 855-7109.
- 7. An EEAP Limited Energy Study for Area A and Area B steam plants at HSAAP was completed by EMC Engineers, Inc. in August of 1992. The final report of this study includes a very good physical and operational description and a mathematical model of each plant. The AE is encouraged to read and use the information provided in this report.
- 8. Government-furnished information. The following documents will be furnished to the AE:
 - a. Final Report; LIMITED ENERGY STUDIES, HOLSTON ARMY AMMUNITION PLANT, KINGSPORT, TENNESSEE; August 1992; EMC Engineers, Inc.
 - b. MEMORANDUM, dated 5 October 1994, Subject: Trip Report T.A. 7881 Volunteer Army Ammo Plant.
 - c. Energy Conservation Investment Program (ECIP) Guidance, dated 10 Jan 1994 and the latest revision with current energy prices and discount factors for life cycle cost analysis.
 - d. AR 420-49, Heating, Energy Selection and Fuel Storage, Distribution, and Dispensing Systems.
 - e. AR 415-15, 1 Jan 84, Military Construction, Army (MCA) Program Development
 - f. TM5-800-2, Cost Estimates, Military Construction.
 - g. Tri-Service Military Construction Program (MCP) Index, dated 13 February 1995.
 - h. Boiler plant logs for the Area A steam plant will be made available to the AE as needed.
- 9. A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois for a nominal fee. This computer program can be used for performing the economic calculations for ECIP and non-ECIP ECOs. The AE is encouraged to obtain and use this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana,

Illinois 61801. The telephone number is (217) 333-3977 or (800) 842-5278.

10. Direct Distribution of Submittals. The AE shall make direct distribution of correspondence, minutes, report submittals, and responses to comments as indicated by the following schedule:

AGENCY

EXECUTIVE SUMMARIES REPORTS

FIELD NOTES
CORRESPONDENCE

Commander Holston Army Ammunition Plant ATTN: SMCHO-EN (Mr Shelton) Kingsport, TN 37660-9982	3	3	1**	1
Commander U S AMC Installation and Service Activity ATTN: AMXEN-C (Mr Nache) Rock Island, IL, 61299-7190	1	1	-	-
Commander U. S. Army Corps of Engineers ATTN: CEMP-ET (Mr Gentil) 20 Massachusetts Avenue NW Washington, DC, 20314-1000	1*	-	-	_
Commander USAED, South Atlantic ATTN: CESAD-EN-TE (Mr Baggette) 77 Forsyth Street, SW Atlanta, GA 30335-6801	1	1	-	_
Commander USAED, Mobile ATTN: CESAM-EN-DM (Battaglia) PO Box 2288 Mobile, AL 36628-0001	2	2	1**	1
Commander U. S. Army Logistics Evaluation Agency ATTN: LOEA-PL (Mr Keath) New Cumberland Army Depot New Cumberland, PA, 17070 - 5007	1*		-	_

- * Receives Executive Summary of final report only.
- ** Field Notes submitted in final form at interim submittal.

ANNEX B

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- Building Data (types, number of similar buildings, sizes, etc.)
- 3. Present Energy Consumption of Buildings or Systems Studied.
 - o Total Annual Energy Used.
 - o Source Energy Consumption.

Electricity - KWH, Dollars, MBTU

Coal - TONS, Dollars, MBTU, MWH

Natural Gas - THERMS, Dollars, MBTU, MWH

Other - QTY, Dollars, MBTU, MWH

- 4. Energy Conservation Analysis.
 - o ECOs Investigated.
 - o ECOs Recommended.
 - o ECOs Rejected. (Provide economics or reasons)
 - o ECIP Projects Developed. (Provide list)*
 - o Non-ECIP Projects Developed. (Provide list)*
 - o Operational or Policy Change Recommendations.
- * Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date.
- 6. Energy and Cost Savings.
 - o Total Potential Energy Savings in MegaBTU per year (and MegaWattHr per year) and first year dollar savings.
 - o Percentage of Energy Conserved.
 - o Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.

ANNEX C

REOUIRED DD FORM 1391 DATA

To facilitate ECIP project approval, the following supplemental data shall be provided:

- a. In title block clearly identify projects as "ECIP."
- b. Complete description of each item of work to be accomplished including quantity, square footage, etc.
- c. A comprehensive list of buildings, zones, or areas including building numbers, square foot floor area, designated temporary or permanent, and usage (administration, patient treatment, etc.).
- d. List references, and assumptions, and provide calculations to support dollar and energy savings, and indicate any added costs.
- (1) If a specific building, zone, or area is used for sample calculations, identify building, zone or area, category, orientation, square footage, floor area, window and wall area for each exposure.
 - (2) Identify weather data source.
- (3) Identify infiltration assumptions before and after improvements.
- (4) Include source of expertise and demonstrate savings claimed. Identify any special or critical environmental conditions such as pressure relationships, exhaust or outside air quantities, temperatures, humidity, etc.
- e. Claims for boiler efficiency improvements must identify data to support present properly adjusted boiler operation and future expected efficiency. If full replacement of boilers is indicated, explain rejection of alternatives such as replace burners, nonfunctioning controls, etc. Assessment of the complete existing installation is required to make accurate determinations of required retrofit actions.
- f. Lighting retrofit projects must identify number and type of fixtures, and wattage of each fixture being deleted and installed. New lighting shall be only of the level to meet current criteria. Lamp changes in existing fixtures is not considered an ECIP type project.

- g. An ECIP life cycle cost analysis summary sheet as shown in the ECIP Guidance shall be provided for the complete project and for each discrete part included in the project. The SIR is applicable to all segments of the project. Supporting documentation consisting of basic engineering and economic calculations showing how savings were determined shall be included.
- h. The DD Form 1391 face sheet shall include, for the complete project, the annual dollar and MBTU (MWH) savings, SIR, simple amortization period and a statement attesting that all buildings and retrofit actions will be in active use throughout the amortization period.
- i. The calendar year in which the cost was calculated shall be clearly shown on the DD Form 1391.
- j. For each temporary building included in a project, separate documentation is required showing (1) a minimum 10-year continuing need, based on the installation's annual real property utilization survey, for active building retention after retrofit, (2) the specific retrofit action applicable and (3) an economic analysis supporting the specific retrofit.
- k. Nonappropriated funded facilities will not be included in an ECIP project without an accompanying statement certifying that utility costs are not reimbursable.
- 1. Any requirements required by ECIP guidance dated 10 Jan 1994 and any revisions thereto. Note that unescalated costs/savings are to be used in the economic analyses.
- m. The five digit category number for all ECIP projects except for Family Housing is 80000. The category code number for Family Housing projects is 71100.

Appendix 4 - Drawings

1

DES. HTG STM. LD 100PSIG	BLDG. NO.	BLDG. NANE	MOBILIZATION PROCESS STM. LOAD 100PSIG HPS	MOBILIZATION PROCESS STM. LCAD 400PSIG HPS	ESTIMATED FUTURE HTG. STEAM LOADS 100 PSIG HPS	ESTIMATED FUTURE PROCESS STEAM LOADS 100PSIG HPS	PROCESS STEAM LDADS 400PSIG HPS
700	1	ADMINISTRATION	0	0	700	0	0
25	1A	GUARD HOUSE	0	0	25	0	0
2400	2	ACID CONCENTRATION BLDG.	325,000	0	2400	325000	0
245	4	ELECTRICAL INSTRUMENT SHOP	0	0	245	0	0
345	5	REFRIGERATION PLANT	(87000)	87000	345	0	0
1325	6	ACETIC ANHYDRIDE REFINING	30 0	0	1325	300	D
4200	7	ACETIC ANHYDRIDE MANUF. BLDG.	12000	0	4200	12000	0
NEGLIG.	8	STEAM PLANT	(77300)	78500	NEGLIG.	(77300)	78500
800	9	WATER PLANT	О	0	800	0	0
VLVS. CL.	10	GAS PRODUCERS	0	24000	ō	0	0
315	11	PUMP HOUSE	(220000)	220,000	315	(220,000)	220000
975	14	CHANGE HOUSE	0	0	975	0	0
1685	15	STOREHOUSE	0	0	1685	0	0
50	17	FIREHOUSE	0	0	50	0	0
810	18	RED CROSS BLDG.	0	0	810	0	0
2500	20	ACETIC ANHYDRIDE FURNACES	0	0	2500	0	. 0
0	21	CHANGE HOUSE	0	0	0	0	0
25	27A	OFFICE	0	0	25	0	0
25	276	OFFICE	0	0	25	О	0
475	31	CHANGE HOUSE/SHOPS	0	D	475	0	0
O	-	BLDG. 2 TANK SLAB #1		0	0		0
O	-	BLDG. 2 TANK SLAB #2		0	0		-
0	-	BLDG. 6 TANK SLAB	39,100	0	0	39,100	-
0	- 1	TANK FARM		0	C		-
0	-	HEAT TRACING		D	0		-
16900	-	TOTAL HEATING	-		16900	-	-
		NET TOTAL PRODUCTION	(790C)	409500	-	791GC	298500
		NET TOTAL STM RQD.		418500		_	394500

HTC. ONLY BLDGS. ESTIMATED AT 125BTU/FT2: PROCESS BLDGS ESTIMATED AT 35BTU/FT2.
 ORIGINAL DESIGN INCLUDED BACK PRESSURE STEAM TURBINE DRIVEN REFRIGERATION COMPRESSORS WHICH HAVE BEEN (OR WILL BE) REPLACED BY ELECTRIC DRIVEN EQUIPMENT.
 GAS PRODUCERS LAST USED IN FEB. 1994.

LEGEND

ار ھ)

HPS(400) HIGH PRESSURE STEAM - 400 PSIG, 575F

HIGH PRESSURE STEAM - 150 PSIG, 540FF

HIGH PRESSURE STEAM - 100 PSIG, 400FF

HIGH PRESSURE CONDENSATE

LOW PRESSURE STEAM - 20 PSIG

DIRECTION OF FLOW

CONDENSATE RECEIVER AND PUMP

DRAWING NOTES

100 PSIC STEAM SUPPLY PIPE REDUCED FROM 1-1/2" TO 3/4" TO FEED BUILDING HEATING.

HIGH PRESSURE CONDENSATE PIPE REDUCED FROM 8" TO 2".

NOTE:
THIS DWG. IS DIAGRAMMATIC IN NATURE AND DOES NOT SHOW EXPANSION LOOPS,
STEAM TRAPS, ISOLATION VALVES, ACTUAL BUILDING SIZES, OR ACTUAL PIPE ROUTING.

AREA 'A' STEAM & CONDENSATE DISTRIBUTION PIPING DIAGRAM

(1)

(

5'-0' & 4'-0" UTO EXISTING AT BASE OF PRECIPITATOR SEE DWG. HI EXPANSION SET DWG. M 21-0" SEE PRECIPITATOR 5.0 4. 46.0 O'W + 7' - 6"K-4'-0" 7'-6" TO A ION JOINT NEW DECL HIBUTION CONNI TO E PRECIS O-COMPARTMENTS (TYP.) 0 RAPPERS (TYP.) O (A) E- Door ON JOINT TYP. SJPPORT SEE

SH. REF. Nº 5.G

JCT SLIDE (LOCATE

JDS OF CHANNELS

(2) SUPPORTS)

VIEW 1-41-0"W. x 10"-:5046-00

ALMEN CO.

AN @ NEW BLRS.

LIMITED ENERGY STUDY HOLSTON ARMY AMMUNITION PLANT

3

TO SERVICE WATER STORAGE TANK 10 120,000 CAL IREATED WATER STORAGE TAN

4)<u>F</u>

BLDG. 8 CONDENSATE & FEEDWATER RISER DIAGRAM SOLLE: NONE

LEGEND

(3)

5 BLDG. 8 STEAM RISER DIAGRAM

AM RISER DIAGRAM

WAYNO CERNY	Doubles
TNDSCK	95046-00
HOCS TON	Project Number 10-24-95
lect Name	Date
ation	Time
WILL HAVE PRICIPG TO	US NO LATER
THAN FRIDAY -	
THOY HAVE A CLE. B	R. INDUSTRIAL D-42
ON HAND (RETURN FROM O	THER RENTAL) WHICH
HO WILL QUOTE	
WILL ALSO QUOTE	AN A FIRETURE
LIKE YORK-SHIPLEY.	
LIKE THICK SHIPLE /.	

~	
THE RAMESTY	
Conversation With ABCO INDUSTRIES	Project Number 10-24-95 Date
Representing	Project Number
HOLSTON BOILER	10-24-95
Project Name	Date
Location	Time
WILL REVIEW WHAT THOY HAVE	AVAILABLE AND
WILL REVIEW WHAT THOY HAVE CALL BACK.	
	· · · · · · · · · · · · · · · · · · ·
By:	

ROLAND	
Conversation With CENTICAL IEXAS AIR Representing	95046-00
Representing HOLSTON BOILER STUDY	Project Number 10-24-95
Project Name	Date
Location	Time
CAN HAUF QUETATION BY	FRI. PM
FOR SYSTEM INCL. 750T FIRE	
CLEAVER-BROOKS) FOR SEMI-PERM	UANON
INSTAC. INSIDE A GOUT RUDG.	
PRICE FOR D.A. SKIDS	
•	
· · · · · · · · · · · · · · · · · · ·	

(810)362-0317 or call (810)837-7370/ext.3 for more info. Fax Randy Green your Classified at

Equipment For Rent

TEMPERATURE RENTAL SPECIALISTS

- Air Conditioners up to 60 tons Water Chillers up to 1000 tons down to -35° F.
- · Electric Heaters up to 150kW

Nationwide Availability 24 Hours A Day

713-485-4471

CIRCLE NO. 123

- - Sizes from 2 to 1000+ tons Awilable 24 hours a day
- Denots: California, Lauissana, Georgia, Maryland, New York ERVIDYNE

Cal SERVIDYNE A 1-800-241-8996

GROLE NO. 136

HILLER & COOLING TOWER

bile Trailer or Sidd Mounted • 2 to 1.500 Ton Units oning . Air Handlers . Commercial & Process a: 800-486-9377; Fax: 713-930-1834 ers: 800-331-6500; Fax: 410-242-3699

> RENTAL TOOLS & EQUIPMENT CO., INC. THE HOME OF RENTALIZEDS EQUIPMENT . 15 DEPOTS

> > **GRCLE NO. 135**

EMERGENCY•TEMPORARY

SHORT & LONG TERM RENTALS. 24 HOUR SERVICE

INDECK 1-800-446-3325 1111 S. WILLIS AVE. WHEELING. IL 60090

GROLE NO. 130

Equipment For Rent

CHILLERS/BOILERS/GENERATORS

Long Term * Emergency Rentals Portable chill water plants including Tower: Pumps & chiller up to 450 tons • Air cooled chillers 20 to 110 tons. Cold air units 10 to 75 tons. • Portable boiler rooms or skid mounted boilers 100 HP to 35,000 Lb/Hr.

Central TX Commercial A/C 1-800-338-5429 • 512-288-0822

ORCIE NO. 126

Source Fume Extraction

Source Capture Equipment

Call for a free brochure.

Nedermani

6100 Hix Road, Westland, MI 48185 Ph: (313) 729-3344 Fx: (313) 729-3358

CRCIE NO. 131

Control Valves

For water, steam and thermal oil. 1/2"-6" in bronze, cast iron and ductile iron. Electric & pneum. actuators. PAXTON CORPORATION

Phone (203) 929-1800 Fax (203) 925-8722

CIRCLE NO. 133

Equipment For Sale

BELOW WHOLESALE PLOTTERS!!! Hewlett-Packard 7550A, 7440A, Houston instruments DMP-52, calcomp 5902. Omnitech Gencorp (305) 599**Equipment For Sale/Rent**

CHILLERS For Rent and Sale

WHEN KEEPING COOL IS CRITICAL

- ◆ 40-1,500 Tons
- HVAC, Industrial Process
- Engineered Solutions
- ◆ Glycols/Brines to -70°F
- ◆ R-134A, R-22, R717, R123
- ◆ Rental/Purchase Options

GROLE NO. 132

Refrigerant Analysis

REFRIGERANT ANALYSIS: Full service refrigeration chemistry laboratory offers ARI 700 and IRG-2 refrigerant analysis with guaranteed next day results. Preventive maintenance LUBRICANT ANALYSIS for determination of systems contaminants such as acidity, moisture, viscosity, and compressor wear metals. We provide refrigerant sample cylinders, oil test kits, sample cylinder cleaning, detailed sampling instructions and complete shipping information. For technical services or free consultation call INTEGRAL SCIENCES (800)745-8091.

Indoor Air Quality

HEAT PIPES Decision Makers

IAQ & ENERGY SAVINGS

Dehumidification * Heat Recovery * Ventilation

AMERICAN HEAT PIPES INC.

515 Recker Hwy. * Aubumdale, FL 33823 (800)727-6511

CIRCLE NO. 125

Equipment For Sale

Equipment For Sale

Equipment For Sale

PRESSORS & PARTS

TOLL FREE NATIONWIDE

NEW YORK

BOSTON:

YORK

BALT/WASH, D.C. MIAMI

Copeland

GIZ' General Refrigermetics Corporation

EXEC. OFFICE: 19-35 Hazen St., East Elmhurst, N.Y. 11370

1 718 721-3600

(fax)1 718 204-7979

86

Kennedy Tank & Mfg Co Inc nde Boilers inc **Filey Stoker Corp**

BOLLER SERVICE, RENTAL ABCO Industries Inc *** Clayton industries Indeck Power Equipment Co Nationwide Boilers Inc.

BCO industries inc and a control of the control of Babcock & Wilcox
The Bigelow Co
General Electric Company, Business Info Center Goltens The special contraction Indeck Power Equipment Co. Kennedy Tank & Mfg Co Inc Nationwide Boilers Inc Riley Stoker Corp Turnbutl & Sons Ltd

BOILER SERVICE, OTHER ABCO industries inc Cooperheat inc, Heat Tracing Dept General Electric Company, Business Info Center Helmick Corp
Nationwide Boilers Inc
Pitturico Company

BOILER WATER TREATMENT, BOILER WATER THEATMEN IN CHEMICAL SYSTEM
Alken-Marray Cop
Applican
Aqua-Tech inc
Betz Industrial, Water Mgt Div Of Betz Labs Beuman Technical Serv Inc. Sector Americal Div Colon Corp. Commercial Div Colon Corp. Commercial Div Colon Corp. Commercial Div Colon Corp. Commercial Div Colon Corp. Commercial Div Colon Cambridge Scientific Ind Capital Controls Co Inc Certified Laboratories, Eastern Div Charger Corp, Eigene Div Chemical Corporation, Dubois Chemicals Chemical Testing Corp Clark-Cooper Corp Clayton Industries Dearborn Div. W. R. Grace & Co. exter Corp, Mogul Div es inc EW/ASHLAND, Drew industrial Div

(See Catalog Pages J-25—J-28)
The Duriron Co Inc, Filtration Systems Div THE FOXBORO COMPANY (See Ad Pages K-8, K-9) Garratt-Callahan Co GELBER PUMPS INC (See Ad Page 150) Herman Bogot & Co Hydrofic Corp Illinois Water Treatment Co Indeck Power Equipment Co Jamestown Chemical Co Inc Lancy International Inc Monarch Water Systems, A Div Systech Corp Nalco Chemical Co Nationwide Boilers Inc Necture Chemical Pumo Co Olin Corp. Olin Water Svcs PSE International Inc Resources Conservation Co.

BOILER WATER TREATMENT, CHEMICALS

Signet Scientific Co Div TVC Inc., TVC Systemms

Watcon inc

Alken-Murray Corp Agua-Tech Inc Atomergic Chemetais Corp. Betz Industrial, Water Mgt Div Of Betz Labs Bowman Distribution, Barnes Group Inc Burman Technical Serv Inc. Water Management Div Calgon Corp, Commercial Div Certified Laboratories, Eastern Div Chargar Corp, Elgene Div Cherned Corporation, Dubois Chernicals Chemical Testing Corp Clayton industries.: earborn Div, W. R. Grace & Co. cter Corp, Mogul Div Dath groupey EW/ASHLAND, Drew Industrial Div (See Catalog Pages J-25—J-28) Dustbane Products Company Gerratt-Callahan Co..... Jamestown Chemical Co Inc.

32 Plant Engineering Directory

J C Whittam Mtg Co Nalco Chemical Co Nationwide Boilers Inc. Oakite Products inc Olin Corp, Olin Water Svcs Western Chamical Co. Wright Chemical Com

BOILER WATER TREATMENT. NON-CHEMICAL SYSTEM

Aqua Dynemics Corp Agua-Tech Inc Cambridge Scientific Ind Clayton Industries
Cleaver-Brooks Culligan Intl CX/Oxytech The Duniron Co Inc., Filtration Systems Div Environmental Elements Corp Graver Co, Graver Water Div Great I skes Filter Hydro Max Corp, Member Raytec Water Group

Kerntune Inc., Superior Water Conditioners Mittoo Inc Monarch Water Systems, A Div Systech Corp Osmo Membrane Sys Div, Osmonics Inc Pall Process Filtration Corp, Div Pall Corp Permutit Co Inc Permutit Co Inc
Progressive Equipment Corp Resources Conservation Co Saltech Corp -Samech Corp
Scale Control Sys
Water Refining Co Inc., Industrial Div
Country Sys Application,
COGENERATION
ABCO Industries Inc.

ABACO Incussines inc Babcock & Wilcox The Bigelow Co Cain Industries C-E Power Systems. Combustion Engineering Inc

Clayton Industries Energy Systems, Div Midwesco Inc Federal Boiler Company Clayton industries. ~ Henry Vogt Machine Co Herman Bogot & Co Indeck Power Equipment Co The Intt Boiler Works Co John Zink Co, Allegheny International Mitsubishi Heavy Indus Americ Montgomery Brothers Inc. Ofin Corp, Ofin Water Svcs Riley Stoker Corp

Solar Turbines Inc., Subs Caterpillar Tractor Co. Struthers Wells Corp Systech Corporation TVC Inc. TVC Systemms United States Filter, Fluid Systems Corp. Vapor Corp, Div of Brunswick

BOILER, BY APPLICATION, HOT WATER

ABCO Industries Inc The Bigelow Co Brasch Mfg Co Inc Bryan Steam Corp. Burnham Corp, Hydronics Div CAM Industries Inc Carrier Air Conditioning, Carrier Corp. C-E Power Systems, Combustion Engineering Inc CHROMALOX-E L WIEGAND DIV, Emerson Electric Co (See Catalog C/CHR) Clayton Industries Cleaver-Brooks Columbia Boiler Co Pottstown Edwards Engineering Corp Federal Boiler Company Fluidyne Engr Corp Fulton Boiler Works Inc Herman Bogot & Co ... Hydrotherm Indeck Power Equipment Co Industrial Boiler Co Inc The Intl Boiler Works Co Mitsubishi Heavy Indus Americ Montgomery Brothers Inc Nationwide Boilers Inc Olin Corp, Olin Water Svcs Ray Burner Company Raypak Inc ... Reimers Electra Steam Inc Scale Control Sys Slant Fin Corporation Systech Corporation Vapor Corp, Div of Brunswick Weil-McLain, A Marley Co

BOILER, BY APPLICATION, STEAM 😏 Bebook & Wilcox
The Bigelow Co
Brasch Mfg Co Inc
Bryan Steem Corp ABCO Industries Inc Bryan Steam Corp
Burnham Corp, Hydronics Dly
CAM Industries inc
Carrier Air Conditioning, Carrier Corp
CE Power Systems,
Combustion Engineering Inc
CHROMALOX-E L WIEGAND DIV,
Emeraon Electric Co
(See Catalog C/CHR)
Clayton Industries
Cleaver-Brooks
Columbia Boiler Co Pottstown
Bectric Steam Generator Corn
Bectric Steam Generator Corn
Bectric Steam Generator Corn
Bectric Steam Generator Corn
Bectric Steam Generator Corn
Bectric Steam Generator Corn
Bectric Steam Generator Corn
Bectric Steam Generator Corn
Better Brooks Cournosa souer to Potistown

Bectric Steam Generator Corp

Electro-Steam Generator Corp

Energy Systems, Div Midwesco Inc
Federal Boiler Company ., Fluidyne Engr Corp Fulton Boiler Works Inc Fulton Boiler works Henry Vogt Machine Co tararea. Hydrotherm Indeck Power Equipment Co Industrial Boiler Co Inc. The Intl Boiler Works Co Keeler/Dorr-Oliver Mitsubishi Heavy Indus Americ Mitsubishi Heavy Indus Americ
Montgomery Brothers Inc
Nationwide Boilers Inc
Olin Corp, Ofin Water Svcs
Pay Burner Company
Peimers Electra Steam Inc
Piley Stoker Corp
Scale Control Sys
Start Fin Corporation
Systech Corporation
Systech Corporation
Weil-McLain, A Marley Co

BOILER, BY APPLICATION, OTHER ABCO Industries Inc Cain Industries Federal Boiler Company Federal Boiler Company
Futton Boiler Works Inc
Hydrotherm
The Intl Boiler Works Co
Systech Corporation

BOILER, BY TYPE, ELECTRIC OR ELECTRODE Automatic Steam Prods Corp 1909 1919 Brasch Mig Co Inc

Bryan Steam Corp CAM Industries Inc CHROMALOX-E L WIEGAND DIV. Emerson Electric Co (See Catalog C/CHR) Edwards Engineering Corp Electric Steam Generator Corp Fulton Boiler Works Inc.
Herman Booot & Co. Herman Bogot & Co Hynes Electric Heating Co Indeck Power Equipment Co INDEECO

(See Ad Page C-45)
The Intl Boiler Works Co Montgomery Brothers Inc ... Ofin Corp, Ofin Water Svcs Patterson-Kelley Co, Div Harsco Corp Reimers Electra Steam Inc Scale Control Sys Slant Fin Corporation

BOILER, BY TYPE, FIRETUBE

ABCO Industries Inc Babcock & Wilcox Basic Environmental Engline The Bigelow Co Burnham Corp, Hydronics Div Cleaver-Brooks Columbia Boiler Co Pottstown Energy Controls Inc Federal Boiler Company Herman Bogot & Co Indeck Power Equipment Co Industrial Boiler Co Inc Industrial Combustion, Div of Aqua-Chem John Zink Co, Allegheny International Nationwide Boilers Inc Olin Corp, Olin Water Svcs Ray Burner Company Scale Control Sys Struthers Wells Corp 1. 2 mil #1 draf Systech Corporation Thermal Transfer Corp Wabash Power Equipment Co 2006 100001

्या विकास समायामा वर्षे व्यक्ति BOILER, BY TYPE, FLUIDIZED BED ABCO Industries Inc

Babcock & Wilcox
The Bigelow Co The Experiment C-E Power Systems, C-E Power Systems, Combustion Engineering Inc. Combustion Engineering Inc. The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works Co
The Intl Boiler Works South tel stal

- ..ut LibeWilets Ciassined

BOILER, BY TYPE, WASTE HEAT ABCO industries inc Babcock & Wilcox Basic Environmental Eng Inc : The Bigelow Co Combinations
Combinations Combustion Engineering Inc Cleaver-Brooks Electro-Steam Generator Corp Epoon Industrial Systems In-Electro-Steam Generator Corp Epcon Industrial Systems Inc Federal Boiler Company Henry Vogt Machine Co Herman Bogot & Co Indeck Power Equipment Co Industrial Boiler Co Inc The Intl Boiler Works Co. John Zink Co, Allegheny International Mitsubishi Heavy Indus Americ
Ofin Corp, Olin Water Svcs
Parker Boiler Co
RILEY-BEAIRD INC (See Ad Page J-11)
Riley Stoker Corp Riley Stoker Corp Simonds Manufacturing Corp Solar Turbines Inc., Subs Caterpillar Tractor Co Vapor Corp, Div of Brunswick PA BAR COMPAN

BOILER, BY TYPE, WATERTUBE ABCO industries inc Babcock & Wilcox Basic Environmental Eng Inc The Bigelow Co Bryan Steam Corp
C-E Power Systems,
Combustion Engineering Inc Clayton Industries
Cleaver-Brooks Cleaver-Brooks
Columbia Boiler Co Pottstown
Henry Vogt Machine Co Indeck Power Equipment Co.
The Int! Boiler Works Co. The Intl Boiler Works Co John Zink Co, Allegheny International Keeler/Dorr-Oliver Mitsubishi Heavy Indus Americ Nationwide Boilers Inc. Olin Corp, Olin Water Svcs Raypak Inc Riley Stoker Corp

BOILER, BY TYPE, OTHER ABCO Industries inc Cleaver-Brooks Fulton Boiler Works Inc The Intl Boiler Works Co Slant Fin Corporation Systech Corporation Weil-McLain, A Marley Co

Vapor Corp, Div of Brunswick

Wabash Power Equipment Co

Thermal Transfer Corp

BOLT (SEE "FASTENER")

BOOK (SEE "PUBLICATION, TECHNICAL REFERENCE

BOOTH, PAINT SPRAYING Alemite Div, Stewart-Warner Corp. Binks Manufacturing Co. Cambridge Engineering Inc Chemco Mfg Co Inc Columbus Industries inc G&C Automation Projects Inc. GEORGE KOCH SONS INC (See Ad Page 140) Nycoil Company Paasche Airbrush Co Protectaire Systems Co Tri-Dim Filter Corp

Westfield Sheet Metal Works BOOTH, SECURITY April 1 to Sun All A Liss & Co inc Control Con Global Equipment Co The Ten and The State .

Telephone Conversation

3300 SW Archer Road Gainesville, FL 32608 (904)376-5500 [FAX 375-3479]

Holston AAP Boiler Study	95046-00	95046-00	
Project	Project #	Project #	
Martin Drinkard	September 18,	1995	
Conversation With	Date	Date	
Norfolk Southern Railroad	1 of ?		
Representing	Page	Typist	
August 23, 1995	PDL		
Date & Time of Conversation	Copies	File	

RE: Movement of Boiler from Volumteer AAP to Holston AAP

Per Mr. Drinkard, Norfolk Southern is capable of moving the boilers from the Volunteer AAP outside of Chattanooga, TN, to Holston AAP outside of Kingsport, TN. However, there are a couple of areas of difficulty which will have to be worked out if it is decided to move the boilers, as follows:

- Norfolk Southern will only transport the boilers and provide recommendations for proper rigging at time of loading. All handling of the boilers at each end will have to be by others.
 - There is some concern about the use of the sidings at each end of the trip. While Norfolk Southern has the rights to the tracks in Chattanooga, CSX has the rights to the local sidings in the Kingsport area. NOTE: it might be possible to set up a shipment through intermodal (multiple carriers). This might affect the rate slightly.
 - 3. The base rate for transportation is \$3.72 per hundredweight. This results in a transportation cost of \$5208 per boiler or \$10,416 for both. There is no discount for multiple units.
 - 4. If it is decided to ship the boilers, enough notice will have to be provided to arrange for detailed routing and scheduling. NOTE: "Enough notice" was not defined during our conversation.

Raymond F. Parham, P.E.
Plumbing/Fire Protection Project Engineer

11.1

JIM FRY (615-855-7109)	CO, PDL
Conversation With	Routing
VOLUNTETE AAP, CHATTANOOGA, TN	95046-00
HOLLTON AMP BOILER STUDY	Project Number 7/11/45
Project Name 186500, TN	Date _10:15 Aug
Location	Time
I REGULTIED MR FRY'S FAX NUMBER S	o we could supp
THE BOILDS INSPECTION AGENSA, ETONIPHENS	T LIST AND REGULGET
FOR GOILER DOCUMENTATION TO HIM.	FAX. NO. 615-855-7205
I INFORMED MR FRY OF OUR INTENDED	> 105 PECTION SURFY
FROM JULY ZH MROUGH JULY 28,1945 BY	THE BOILER
INSPECTOR AND ABSE'S INSPECTION FROM	JULY 25 TAROUGH
JULY 27,1995-	
I ALSO INFORMED MR. FRY THAT THE BOIL	BR IPSPECTOR WOULD
LIKE TO PERFORM A PRELIMINARY SURVEY	au JOLY 19, 1995
AND WOULD RESOURCE A CAMERA PASS.	
I ASKED FOR DIRECTIONS TO THE VOLUNTEE	TR PLANT (ATTACHED).
THE PLANT IS LOCATED ON THE MORTHEAST	SIDE OF CHATTHUDOGA.
LODGING IS ANHILABLE AT THE I-75/SHAL	
AND THE I-75/BONNIE DAKS DR. EXIT.	
CONTACT MR. PAUL HOLLIS (855-7111) AS ALTER	POATE BUT OF 10 TAT
IF MR. FRY UNAVAILABLE.	THE PURI OF COSTAC
BY: ROBERT A. BARNES, P.E.	
HVAL PROJECT ENGINEER	

DIRECTIONS TO VOLUNTEER MAP

COMING FROM ATLANTA ON I-75 GOING TOWARDS

ICHOXVILLE, PASS SHALLOWFORD RD. EXIT (LARDE MALL IN

(HUY 215(?) OR 315(?))

VICINITY), GET OFF AT BONNIE OAKS DR/, GO UNDERNETH

OVERPASS. CONTINUE TO 4-WAY STOP, GO TAROUGH 4-WAY

STOP TO NEXT RED LIGHT/, WHICH SHOULD BE ENTRACE

TO PLANT.

SCOTT SHELTON	
Conversation With HDC	95046-00
Representing HOUSTON BLR/ACID STUDY	Project Number 8 - 3/ - 95
Project Name	Date 4:00
Location	Time
Scott JUST GOT DUT	OF A MARTING
AND FOUND THE INFO THAT	
HAD COLLECTED ON HIS DE	
ARRIVED). HE SAYS THEIR FI	
15 ALLREADY CLOSED TODAY,	
MONDAY IS A HOLIDAY, THE A	
COULD GOT IT TO US WO	
MORNING. THERE ARE ONLY	
OR TWELVE PAGES, SO HE	
	-
By:	

SCOTT SHELTON	CO
Conversation With HDLSTON	95046
Representing BOILER STUDY/ACID PLAT	
Project Name HOCSTOR	Date
Location	Time
·	
SOME COMING TO SCO	TT TODAY (SENT
TO HIM FRIDAY)	
JORRY BOUCHICON A	AVING TROUBLE
LOCATING PUMP CURVES	5.
I TOLD SCOTT THE	AT PUMP CURVES
PROBABLY ARE NOT AS	
PUMP DRIVE TURBIN	
SCOTT WILL SOND	
IT GOTS TO HIM.	
	<u> </u>
	•
By:	

SONEE HALL	
Conversation With HDC	Routing 95 0 96 - 10
HOLSTON BOILER STUDY	Project Number 8-22-95
Project Name	Date
HOCSTON, TOWN.	Time
I INFORMED SONNER THAT	T I COULD
NOT RECONCILE THE AIR/FUE	L RATIO
SHOWN ON PROCESS SCREEN, F	IND WHICH
I RECORDED FOR MY CALCUL	ATIONS. I
STATED THAT MY CALCULAT	CONS FOR
50 CFM NATIGAS WOOLD IN:	DICATE AT
LEAST 800 CFM THEORETICAL	AIR FOR
COMBUSTION WHILE WHAT W	E READ WAS
235 CFM. SONET SAID TH	
BRICK FURNACES HAD A U	SHOCE LOT OF
LEAKAGE THROUGH WALLS & T	HIS HAS GIVER
THEM ALL KINDS OF PRO	BLOMS. SONBE
WILL LOCATE BURNER DE	SIGN DATA
AND CALL OR SEND TO M	8
By:	

SCOTT SHELTON	
Conversation With Hob 570 N	Routing 95046 - 00
Representing HOLSTON BER STUDY	Project Number 8 - 7 - 95
Project Name	Date
Location	Time
LOFT MSG. ON VOICE MAI	L THAT I
WAS FOCCOWING UP TO SEE	WHAT
PROGRESS WAS BETNG MADE	ON
ACCUMUCATING MATERIAL WE R	EQUESTED
BY FAX.	
ASKED HIM TO RETURN	Any CALL.
<u> </u>	

615-247-9111 × 379/

SCOTT SHELTON SMCHO-EN	Ca
SCOTT SHELTON SMCHO-EN Conversation With HOLSTON	Routing 95046-00
Representing HOLSTON BUR STUDY	Project Number 7-3/-95
Project Name	Date
Location	Time
4	
ASKED SCOTT IF HE N.	EW WHAT
PROGRESS HAD BEEN MADE	ON OUR
REQUEST FOR PUMP & TUR	BING DATA.
SCOTT SAID HO FIGURED	THE REQUEST
MUST HAVE BEEN MADE	TO A PERATTONS
PEOPLE DURING AESE VISI	TS. I TOLD
HIM THE REQUEST WAS VI	
HM ON 26 JUNE, 1995.	
HE WOULD HAVE TO	
AND SOO WHAT HAPPENO	
HIM ANYTHING HE COUCD	
HERP US OUT WOULD	
APPRECIATOD BOCAUSO	
DATA FOR ANALYSIS	<u>WB </u>
DATA FUIL ANALYSIS.	
(-100 for	

MR. DOGNAZZI (MSG. MACH) Conversation With HARTFORI	CLO Routing 95046-00
Project Name Representing BOILER STUDY Project Name	Project Number 2-21-95 Date
Location	Time
LEFT MESSAGE THAT VA	AAP FACILITY = FRIDAY'S
ASKED FOR RETURN CALL	
E VARP ON TUES. MORN.	BE ON BOAR

A. DA. 11071	CO. POL
AL DOGNAZZI	Routing
Conversation With HAYETFORD STEAM BOILER INSPIRETION & INSURANCE CO.	95046-00
	Project Number
tepresenting	7/14/95
HOLSTON HAP BOILER STUDY	Date
Project Name	1:55 PM
HOLSTON, TN	Time
ocation	Tatte
·	
MR. DOUNAZZI INDUIRED AS TO THE ST	ATUS OF THE PURCHASE
ORDER OR OTHER ACKNOWLESSEMENT OF HIS	CONTRACT FOR THIS
BOILER INSPECTION. HE WOULD ACCEPT,	A VOYEBAL ACKNOWLEDGEVE
	A Description
TODAY OR MONDAY TO KOUP THE PROJECT	ON THE HILBERT
Timber - 115 - 150 m	I LITTLE OR CARL
THE TABLE. I ALSO CONFIRMED ISTMER PACE	L LITTE OF CHAL
ASSOCIATION CONTRACTOR	
OSBERG AS FUTURE CONTACT PERSONS.	
	•

By: 150B BARNES
HUAC PROJECT ENGINEER

AL DOGNAZZI (404-928-0788)	CO, PDL
Conversation With	Routing
HARTFORD STEAM BOLDR 1125 PETTOW HOD INSURANCE CO. Representing	95046-00 Project Number
HOLSTON AAP BOILER STUDY	7/11/95
Project Name	Date
HOLSTON, TN	1:20 AM
Location	Time
I CALLED MR DOGWAZZI TO CLARIFY HI	SITINURARY (REFER
TO FAX DATED JULY 10,1995 FROM HARTFORD).	SPECIFICALLY,
I INQUIRED IF OUR PRESENCE WAS REPUBLIE	125 MONDAY, JULY 24
1995. MR DOGNAZZI ROSPONDES THAT THE	F BULK OF THE
TESTING AND INSPECTION WOULD BE PERFORME	TO TUESDAY IN AT
WETWESDAY AND THURSDAY. I INFORMED M.	P. DOGNAZZI THAT
NE WOULD PLAN TO CONSUCT OUR PORTION OF	= THE FIELD INVESTIGATION
DURING THE TUESDAY THROUGH THURSDAY TIME	FRAME.
MR DOGNATZI INFORMED HE HE WOULD LIKE	TO CONSCION A
	,1995, AND ASKED
	WHEL AT VOLVUTEER
MAP AND ARRANGE A CAMBRA PHS. I I	NFORMED HIM I
WOULD DO SO AND CONFIRM THE FACT WIT	A HIM LATER TODAY,
· · · · · · · · · · · · · · · · · · ·	

BY: PROBLET ENGINEER

AL DOGNAZZI (A04-928-078	3a) CO
Conversation With	Routing
HARTFORD STEAM BOILER INSPE	CTION \$ 1252 SAMPE CO. 95046-00
Representing	Project Number
166 STON AAP BOILER STUDY	<u>□ 0 95</u> Date
Holston, TN	9:55 Av
Location	Time
I LEFT A VOICEMAIL N	ISSAUF THAT WE WOOLD LIKE
TO HAVE TESTING BUTGIN ON	JULY 24, 1995. I WILL START
REQUEST FOR BILLER DAT	A FROM JIM FRY AT VAAP
TODAY.	
	IMPORTANT MESSAGE
	FORRB
V	7-10 910 AM
	DATEP.W.
	M Al Dognazzi
	OF Hartford Steam Boile
	404 628 2799
	PHONE 107 900 0180 AREA CODE NUMBER EXTENSION
	D FAX
	AREA CODE NUMBER TIME TO CALL
	TELEPHONED PLEASE CALL
	CAME TO SEE YOU WILL CALL AGAIN
	WANTS TO SEE YOU RUSH
	RETURNED YOUR CALL WILL FAX TO YOU
	MESSAGE Hart ford can
	start on 24 or 31
	of July - IV. msa.
	on voice mail as
	to when mon want
	SIGNER
	TOPS FORM 4005 LITHO IN U.S.A.
	į

CARCL 6SB5766-	Routing
AEE	95046-00
COE HOLSTON AND BOILER STUDY	Project Number
Project Name Holston TN	Date 10:25
Location	Time
CEET ITINBRARY FROM AL DOUNAZZI	SO WE CAN SCHEDULE
OUR 125PECTION,	
GET WFO FROM JIM FRY ON BOILE	res.
INFORM PAUL LITTLE RE: SITE INVESTIGA	TON TRIP TO VOLUNTEERS
AND ALSO TRIP TO MOLSTON TO FAMILIA	RIZE HIM WITH
PROJECTS.	
·	

NED WEIGHT (615-756-4517)	Routing
Conversation With WEIGET LINGUISTING	95046-00
Representing	Project Number
COE HUSTON AND BOILER STUDY	10/20/95
Project Name	Date
CHATTANODISA F	Z:30 PM
Location	Time
	•
CAN CONVERT COAL TO GAS	
THE CHIESE SHE IS SHE	
DIXHARUSE	
CONTINUOUS AST ADDRESS STOKER	The state of the s
PULVOTUZES COLL NOT PRACTICAL	
GAS PRACTICAL	
PACKAGED BOILDRS PRACTICAL GOICE	
MICHGED BILBRS FILTUIAL HOICE	
·	
•	
•	

By: BOB BARNES

-	
TOM ROBERTS (404-939-6292)	
Comparation With	Routing
BABCOCK & WILCOX	95046-00
Representing	Project Number
COE HOLSTON MAP BOILER STUDY	6/28/95
Project Name	Date
1tol5702, TD	
	Time
Location	Time
·	
MR. ROBUERS WAS NOT AVAILABLE ON 6/20/45.	I 1.114 /411
	- Dist Orce
AGAIN 6/29/95	
בוןיטף שואטא	· · · · · · · · · · · · · · · · · · ·
•	
	· · · · · · · · · · · · · · · · · · ·
	•
· · · · · · · · · · · · · · · · · · ·	

·	
JOHN MANNIUG (617-255-4740) Conversation With	Routing
FACTORY MUTUAL ENGINEERING ASSOC.	95046-00
Representing	Project Number
HOLSTON AMP BOILER STUDY	6/15/95
Project Name	Date
UT, GOT210t1	Z:20 PM
Location	Time
T 18= 1 20 = 102111 11 11 11 11 11	74.2/54 A.281.2178
I LOFT A PHONE MUSSIAGE ON MIZ. MANN	nous pasaucione
MACHINE TO CALL ME BACK.	
	The second secon
	A A A A A A A A A A A A A A A A A A A
•	

By: BOB BARNES, P.E.
HVAC PROJECT ENGINEERS

COST OF TOWN	
JETRRY (1817 = 2 mind)	
GAZY ANDREWS (817 - 543 - 8032) Conversation With	Routing
OLD REPUBLIC INSURMCE CO.	95046-00
Representing	Project Number
HOLITON HAP BOILER STUDY	6/5/45
Project Name	Date
מרי הפונופן	7:28
Location	Time
MILLY BALLED IN STORY TO THE	
PLICKY BRYAN IS PORSON TO TALK	10. He WILL
Rower CALL.	
•	
·	

HUNC PROJECT ENCINEER

WOODELL ,	
EDOME WHITZE (617-725-7309)	
Conversation With	Routing
COMMERCIAL UDION INSURANCE CO.	95046-00
Representing	Project Number
	6/5/95
HOWTON AND BOLLOTE STUDY	
Project Name	Date
1612101 TD	11=15 PM
Location	Time
DUT FOR THO REST OF THE DAY,	In will call Tomorson
	·
6/6.	
· · · · · · · · · · · · · · · · · · ·	
•	

ENGAR WHITTLE 617-725-7309	
Conversation With	Routing
COMMERCIAL UNION INSURANCE CO.	95046-00
HOLYTOD HAP BOILER STUDY	Project Number
Project Name	Date
HOLSTON, TN	4:30 PM
Location	Time
MR. WHITTLE OUT TILL NOOT WEEK	OFFICE CLOSED
T WILL CALL BACK NOXT WOOK.	
	·

277

JOHN MANNING (617-255-4740)	
Conversation With	Routing
FACTORY MUTUAL	95046-00
Representing	Project Number
HOLSTON AAP BOILDR STUDY	6/2/95
Project Name	Date
HULSTON, TO	4:25 PM
Location	Time
CAUGO & LOFT MESSAGE ON ANSWERING	MACIAINE)

278

STENS RUDNICIAN (617-255-4270)	
Conversation With	Routing
FACTORY MUTIM ENGINEER	95046-00 Project Number
Representing	6/2/95
HOUSTON AAP BALEY STUDY Project Name	Date
HOLSTON, TH	4:15 PM
Location	Time
MR. PUDNICICAS RIZOMMOND CONTACTINU	~
FM RESEARCH LAB NDE	
JOHN MANNING, METALORGICA LAB	
1151 BOSTON PROVIDENCE TURN	PIKU
NATWOOD MA 02062	
•	
	WARREN - 120 - Law - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
·	
	•
·	

AL DOCHUZZI	
Conversation With	Routing
HARTERD STEAM BOILDR	95046-00 .
Representing	Project Number
COF HOLSTON AAP POILOR STUDY	5/26/45
Project Name	Date
KINGSPORT TN	8=30 mg
Location	Time
I MOUNTS MR. DOLINAZZI THAT THE	TESTING AND
INSPECTION OF THE TWO BILLIES AT VILL	NTEET AAP HAS
	THE COST OF THE
TESTING. WE WILL ASVISE HIM HEXT	WOEK HOW THINGS
ARE OR AREN'T PROGRESSING AND TRU TO	
A NEW SCHEDUC FOR TESTING	
<u> </u>	

By: BOB BARNOS, P.E.

			((01) -	255 - 1	(575)		
Conversation With			(5).		10,0)	Routing	
FACTORY	MUTULL	ENGNE	ZING ASS	DCIATI	a N	95046	-00
Representing						Project Numbe	r
	MAP BE	oilure 5	アンイ			5/19/	95
Project Name	3					2=30	P. 4
HOLSTON	, 10		·		· · · · · · · · · · · · · · · · · · ·	_	120
Location	•					Time	
	ROD-N	CK-US					
cons	B 1251 21	CLAC			1-1-	255-4270	
SIEVE	RUDNI	CEAS	MANAGER		011-	255-4270	
CALL	NEXT	WEEK	TO S	SEE	ABOUT	PROPOSAL R	EQUEST
	-						
		<u> </u>					
· · · · · ·			······································		·		
						· · · · · · · · ·	
					•		

By: BOB BARNES

HVAC PROJECT ENGINEER

GENE HENNESSY (704-362-4499)	
Conversation With	Routing
ROYAL IDSURABLE	95046-00
Representing	Project Number
HOLDTON AND BOILDR STUDY	5/19/95
Project Name	Date
ItOLSTON TN	4:00 PM
Location	Time
	•
THEY DON'T DO CONTRACT WORK	ANYHURES,
	·
<u> </u>	

By: BB BHRDES
HVAC PROJECT ENCINEER

HANK PAULSON	(569-522-2932)	
Conversation With ROYAL INSURANCE		9504 b −000
Representing HOLSTON AAP		Project Number 5/19/95
Project Name		Date
Location		3:55 PM
CALL		
GENE HONNESSY	CHARLOTTE NC 7	104-362-4499
	,	362-4453

TOM ROPERTS 404-939-6292	Co
Conversation With	Routing 95046-00
BABCOCIC & IUNCOX CO., ATCHITA, CA	Project Number
HOUSTOD AND AREA "A" BOILER STUDY	5/9/45
Project Name	Date
Houston, Th	11-30 Aug
Location .	Time
I ASKED MR. ROBERTS IF CHWGING T	HE TESTING DATES
FORWARD OR BACK I WEEK WOULD	enable him to
PROVIDE A PROPOSAL FOR THIS PROJECT.	MR. ROBOCTS INFORMED
ME THAT THE REMOTE FIELD EDDY CURRE	
THEY OWNED WAS OUT FOR REPAIRS IN	
AVAILABLE BY THE TIME FRAME PROBESTED	•
FOR PROPOSAL. ADDITIONALLY, MR. ROBBETS	
Par Terror Parallel Terror	
SUBCOLTRACTING OUT THE REFEL TESTING	- WOULD NOT
MAKE HIM COMPETITIVE IN HIS PROPOSI	al so he Declines
TO MAKE A PROPOSAL.	
I IN FORMED MR. RUBERTS THAT I WOULD	POSSIBLY BE CONTACTING
HIM IN THE FUTURE IF I HAD ANY OU	65TIONS MEDUT THE
TWO BOILERS AND ANGILLARY ETOUIPHENT	
IN CHATTANOGA, TN.	

BY: ROBORT A. BARNES P.E.
HUAC PROJECT ENGINEER

AL DOGNAZZI (404-928-0788) CO
Conversation With Routing
HARTFORD STEAM BOILDTES INSPECTION ELINERANCE U, 95046-00 Berrosentling
HOLSTON AND BOILDS STUDY 4/11/95
Project Name Date
KINGSPORT, TN 9:15 AM
Location
TONY BATAGLIA, MOBILE CORPS OF ENCHOPERS
ULTRASONIC THICCOOSS TISTING
VISUAL IUSPECTOU
MAG-PARTICLE TOSTING
12 No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FDDH CURRENT TKSTIM- OF TUBPS
RETOURNED ROLLING TOSTS of COSTS FOR BOILER INSPECTION.
AL WILL CALL TONY PS: POSSIBLE PTG-INSPORTAN TO EVALUATE
PROPOSAL. WILL CALL & ADVISE.
AL DOGNAZZI CALLOD BACK AT 11:00 mm 4/11 TO ADVISE INT HAD
CONTACTED TONY BATHCULK AND JIM FIRM AT VOLUNTOUS AND
MID HAS TENTATIVE USPACION SCHOOL LOTS FOR MIN. 4/17/95.

BY: ROBERT A BARNES

HVAC PROJECT CHOWLERE

Appendix 6 - Entry/Exit Interviews

3300 SW Archer Road
Gainesville, Florida 32608
(904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

HOLSTON AAP	CONTRACT NO.: DACA01-94-D-0007	95046-00	
Project		Project #	
Holston, TN		August 22, 199	5
City, State		Date	
Exit Interview		1 of 1	DA
Type of Meeting		Page	Typist
08/18/95			
Meeting Date		Copies	
Present	Representing		
Orville Depew	HDC		
Sonee Hall	HDC		
Carl Osberg	AESE		
Paul Little	AESE		

The purpose of this meeting was to review the items surveyed and discuss probable areas of energy conservation. The following items were discussed.

Observations were made at the Acetic Anhydride manufacturing equipment in building 7. Natural gas and combustion air quantities at one cracking furnace, which was in operation, were obtained: 50 CFM main burner N.G., 5 CFM Pilot N.G., and 235 CFM Air. It was noted that flue gas temperature exiting the furnace is 329°C. The waste heat boilers anufactured by Union Iron Works, were originally selected for conditions existing with producer gas used as fuel. The units are single pass firetube type. It was noted that discussions have previously taken place to address feasibility of incorporating auxiliary burners on these units, but detailed investigation was never completed. A boiler cross sectional drawing was obtained indicating the quantity and size of boiler tubes. Nominal tube length was measured as 15 feet.

At steam plant building 8, Mr. Hall stated that all tar handling equipment and concrete dike/basin will be removed prior to work related to installation of boilers from VAAP, if in fact, those boilers are to be used. Mr. Davenport pointed out the burner port for burning tar, which might make installation of a natural gas burner possible. It was also pointed out that only three sides of the boiler fire box section contain water wall tubes; The wall opposite the tar burner does not contain riser tubes.

Mr. Davenport stated that the river water piping "loop" has now been completed, so that the electric driven pump previously called the "backside" pump is available for any high head system pumping requirements. Mr. Hall indicated that current operations are being met without utilizing turbine driven river water pumps, and this configuration is maintained under conditions requiring less than about 100,000 #/hr boiler plant load.

Mr. Davenport was asked how often the coal bunkers are filled. He stated each bunker capacity is 200 ton, and at present they burn about 70 tons each day.

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

By,

Paul Little, P.E.

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

HOLSTON AAP	CONTRACT NO.: DACA01-94-D-0007	95046-00	
Project		Project #	
Holston, TN		June 2, 1995	
City, State		Date	
Exit Interview		1 of 2	MAH
Type of Meeting		Page	Typist
05/25/95		CO, MR	
Meeting Date		Copies	
Present	Representing		

Fiesent	110,000
Jerry Bouchillon	HDC
J.L. "Butch" Jones	HDC
Sonee Hall	HDC
George Davenport	HDC
Max G. Noe	HDC
D.L. Cretsinger	HDC
Richard Gillenwater	HDC
Van Jones	HDC
Mike Richarme	AESE
Bob Barnes	AESE

The purpose of this meeting was to review the items surveyed and discuss probable areas of energy conservation. The following items were discussed.

- 1. Bob Barnes briefly reviewed the scope of work for this project and described some of the options available for saving energy for this project. Among the options were the relocation and reuse of one or two existing gas fired boilers at Volunteer Army Ammunition Plant (VAAP) in Chattanooga, TN. Other options included new boilers either at the existing boiler plant or located near the points of use. Reuse of existing feedwater equipment appeared feasible but would be analyzed in detail in the study of this project. Ancillary equipment at VAAP may also be reused but inspection of the equipment would determine the economic feasibility.
- 2. The question was raised about how the new boilers would affect the current air permit and environmental concerns. A brief discussion of possible scenarios of equipment, fuels, and siting followed. More definite information would be developed by AESE during the course of the study which would be forwarded to HDC to be evaluated for impact on this project.
- 3. An additional question was raised regarding the interruptability of natural gas supplies and back-up fuels or storage to protect process equipment and product. Jerry Bouchillon will check on the interruptability of natural gas, as the current contract with United Cities Gas Company is for uninterruptable natural gas supply. Fuel oil is not desired by HDC due to storage and environmental concerns. Other possible alternatives might be electrical back-up for critical needs (such as pumps, heating tracing, bayonet heaters, etc.) but duration of interruption needs to be determined as well as identifying systems and components requiring backup.
- 4. As part of the study, Jerry Bouchillon recommended overhead costs be included in operation and maintenance costs. Jerry had previously furnished data on "out-of-pocket costs" for steam to be used as part of the economic analysis for this project.

Project Name:

HOLSTON AAP

Date:

June 2, 1995

Project No.:

95046-00

Page No.:

2 of 2

5. Mike Richarme suggested there could possibly be some cost savings on electricity costs due to power factor billing by the utility company. However, this proved not to be the case as HDC owns and maintains the electrical distribution equipment downstream of the primary metering location and has done a good job correcting power factor conditions and line losses.

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

By:

AFFILIATED ENGINEERS SE, INC.

Robert A. Barnes, P.E. HVAC Project Engineer

3300 SW Archer Road Gainesville, Florida 32608 (904) 376-5500 • FAX (904) 375-3479

MEETING NOTES

HOLSTON AAP	CONTRACT NO.: DACA01-94-D-0007	95046-00	
Project Holston, TN		Project # June 2, 1995	
City, State Entry Interview		Date 1 of 2	MAH
Type of Meeting 05/22/95		Page RB, MR	Typist
Meeting Date		Copies	
Present	Representing		

Scott Shelton Sonee Hall	SMCHO-EN HDC
	HDC
George Davenport	
Max G. Noe	HDC
Carl Osberg	AESE
Mike Richarme	AESE
Bob Barnes	AESE

The purpose of this meeting was to have an entry interview and the following items were discussed.

- 1. Production levels of explosives was 14 million pounds (lbs) in 1994, 7 million lbs projected in 1995, and about 2 million lbs projected for 1996. Production levels beyond 1996 are not available at this time.
- 2. Current plans are to replace steam turbine drives at refrigeration machines in Building 5 to electrical motors.
- 3. Holston Defense Corporation (HDC) is presently investigating the possibility of buying or selling steam from Tennessee Eastman.
- 4. There are no steam lines between Area "A" and Area "B".
- 5. Electric power is supplied to HDC from Kingsport Power at a single substation with a back-up from Appalachian Power (TVA).
- 6. Shelby Jones is presently investigating alternative electric power sources.
- 7. In Building 8, Boiler 7 is currently laid away, and plans are to lay away Boilers 3, 5, and 6. Boilers 1 and 2 are used alternately with Boiler 4 inactive but capable of being fired. HDC has an estimate of the cost of boiler lay-up which will be furnished later.
- 8. Process steam requirement is 90 psig and most is used in Building 2.

Project Name: HOLSTON AAP Date: June 2, 1995

Project No.: 95046-00 **Page No.:** 2 of 2

9. Cogeneration is under investigation by HDC as a possible solution to supplying steam for Area "A" but this has been excluded from the AESE Limited Energy Study.

10. PCB containing transformers are routinely removed from Holston AAP which has a holding area for temporary storage of transformers prior to their disposal.

The above constitutes the writer's understanding of the discussions of this meeting and conclusions reached. Corrections/errors should be noted to the writer within 5 working days.

By:

AFFILIATED ENGINEERS SE, INC.

Carl L. Osberg, P.E.

Vice President

Appendix 7 - Response to Comments

MOBILE DISTRICT PROJECT REVIEW COMMENTS DATE: 28 Sept. 1995 Page 291 of 5

TO: U.S. Army Corps of Engineers Mobile District Mobile, AL FROM: Robert S. Woodruff, CESAM-EN-DM PHONE: (334) 694-6074 FAX: (334) 690-2424

PROJECT/FY: FY95 Limited Energy Study for Area "A" Package Boilers

LOCATION: Holston Army Ammunition Plant, Kingsport, TN

TYPE REVIEW: Interim Submittal Review

NO.	PAGE/PAR	COMMENT	RESPONSES TO COMMENT
1.	Exec. Sum. P.2	What is Synergism Analysis?	Interaction of discrete elements of system changes, the combination of which may produce more or less desirable effects than the sum of the individual changes alone. A/E will so state in the report.
2.	Part II P. 6	The fact that the chillers are being converted to electric drive as well as the fact that the existing distribution system is to be reused are "givens" and do not require evaluation.	None.
3.	Part II P. 6	The items outlined on this page are not the same as those stated in the detailed scope of work. These should be identical.	A/E will clarify which of these items were addressed at Entry/Exit Interviews.
4.	Part II P. 8	Item 4) gives the electrical consumption of the steam plant equipment. Does this value come from the actual operating logs?	Assumption based on 1994 Tony Battaglia steam cost calcs.
5.	Part II P. 25	The first paragraph on this page states that no differentiation was made between energy and demand charge for electric service. Because demand charges are really paid for the entire 12 months wouldn't this have an effect on the economics?	Effect is insignificant. Report will be modified explain.
6.	General	Would it be prudent to consider a 30,000 #/HR gas fired boiler not using the existing stacks? That way enough steam would be produced to meet the small demands without having to vent any steam.	Yes.

MOBILE DISTRICT PROJECT REVIEW COMMENTS DATE: 28 Sept. 1995 Page 2 of 5

TO: Affiliated Engineers SE, Inc.

Gainesville, FL

FROM: Anthony W. Battaglia, CESAM-EN-DM
PHONE: (334) 694-2618 FAX: (334) 690-2424

PROJECT/FY: FY95 Limited Energy Study for Area "A" Package Boilers

LOCATION: Holston Army Ammunition Plant, Tennessee

TYPE REVIEW: Interim Submittal Review

NO.	PAGE/PAR	COMMENT	RESPONSES TO COMMEN
1.	General	The conclusions reached by this report appear to be reasonable, and some aspects of the report are quite good; however, in some respects it is incomplete, and there are several areas which need clarification.	None.
adequately addressed. The following comm	Not all of the topics listed in the Detailed Scope of Work have been adequately addressed. The following comments are keyed to the topics listed in the Detailed Scope of Work, paragraph 4., pages A-2 & A-3:		
		Sub-par 4.a., Evaluation of Gas-fired Package Boilers: For the case of the boilers relocated from Volunteer AAP, this has been adequately addressed; but it has not addressed boilers sized to meet the current requirements. This should be added to the evaluation.	A/E will incorporate.
		Sub-par 4.b., Use of Existing Distribution System: Adequately addressed.	None.
		Sub-par 4. c., Existing steam-driven chillers replaced with electric: The steam requirement for the chillers must be subtracted from the overall steam requirement; cannot determine how this was accommodated in the calculations. Please clarify.	A/E will clarify.
		Sub-par 4.d., Inspection of existing boilers at Volunteer AAP: Adequately addressed.	None.
		Sub-par 4.e., Evaluation of existing ancillary equipment at Volunteer AAP: No clear statement was made regarding this equipment, nor how it would affect the cost/savings. Please include.	A/E will clarify.
		Sub-par 4.f., Maintenance and Operation Costs: Either this was not adequately addressed or there is some discussion missing. Please include or elaborate.	A/E will elaborate.
		Sub-par 4.g., Fuel oil storage capacity: No analysis has been provided, please include.	A/E will include.
		Sub-par 4.h., Air pollution permits: No discussion was included regarding impacts of the proposed changes. Please indicate.	A/E will add statement that no impact is involved.
		Sub-par 4.i., River water Pumps: There appears to have been a misunderstanding regarding this topic. The scope of work says that the pumps are currently (at the time of the pre-negotiation conference) electrically driven, although each has a steam turbine connected to the same shaft. The study is supposed to evaluate the economics of using the turbines instead of the motors. If there was a change in the method of operation prior to starting the field work, this should have been stated in the report. Please revise as needed.	A/E will clarify.
3.	General	The AE is commended for proposing additional ECOs as possible solutions to the problem.	None.
4.	Detailed Narrative General	In the detailed narrative there is some discussion of each case (1 thru 5) investigated; however, it is not detailed enough to really give the reader an understanding of the costs/savings involved. Please expand.	A/E will comply.

5.	Energy Calcs, General	In the detailed narrative, there is a discussion of the spreadsheet calculations used for determining energy consumption; however, there are no sample calculations to show how the spreadsheet numbers were generated. Please include.	A/E will comply.
6.	LCCAs, General	The LCCA summary Sheets should not be under "Miscellaneous Data". Each sheet should be included with the discussion of the pertinent ECO.	A/E will comply.
7.	Pg 2 & 3	Case 1 & Case 2: These cases appear to be reversed with respect to the river water pumps. See Comment 2, sub-par 4.i., above.	A/E will comply.
8.	Pg 4	The penultimate sentence states that the savings are negative, but makes no attempt to explain the situation. Please clarify.	A/E will amplify.
9.	Pg 6	3rd bullet: Notes replacement of steam driven chillers with electric. Be sure this is included in the base case; see Comment 2, sub-par 4.c., above.	A/E will comply.
10.	Pg 8	Par 5): Reference records (in Appendix, I presume) that were used in determining these costs.	A/E will comply.
11.	Pg 8	Par 9): Have you checked with turbine manufacturers to see if turbines can be operated with saturated steam?	Mollier Charts.
12.	Pg 11	States, "Production levels below 167,000 lb/month have not been evaluated." The graphs provided do not even go as low as 167,000 lb/month. Perhaps they should. Please check and correct as necessary.	Expanded graphs available.
13.	Pg 17	Case 1: See Comment 2, sub-par 4.i.	None.
14.	Pg. 18-22	Figures 8 - 12: The axis for "ANNUAL COST" does not identify "cost of what". The axis for "Lbs/Month" appears should be "Millions of Lb/Month". Please correct.	A/E will correct.
15.	Pg 23 & 24	Table 1 & Table 2 would be easier to follow if they were combined into a foldout or if each case were on a separate table printed horizontally. Please consider.	Reformatted tables available.
16.	Pg 25	First paragraph: States that no attempt was made to differentiate between energy cost and demand cost, but gives no justification for this approach. Usually it is worth while to consider the effects of both. Please discuss.	A/E will include additional evaluation.
17.	Pg 96	LCCA for Case 2: This may change based on Comment 2, but why would there be no coal cost or savings if a change was made from electricity to steam (or vice-versa) for driving the pumps? Please correct as necessary.	Minimum boiler oper. point - steam blown to atmosphere.
18.	Pg 97, 98, & 99	LCCA for Case 3, Case 4, & Case 5: I don't understand the asterisks under "Savings" for natural gas. I would expect there to be a negative number in this location. Please explain.	LCCID format not adjustable calculated value is out of range for this summary sheet.
19.	General	The combustion calculations look very good.	None.
20.	Pg 133	Cost Estimate: Please provide some backup for the lump sum costs for Bailey Motor Co. Control Rehab and for Misc piping, tubing, valves & fittings.	Backup will be provided.
21.	Pg. 134	Please provide some backup for Transporting and for Boiler Startup.	Unintentional omission.
22.	Pg. 136	This is hard to follow. Please include more explanation of details, and improve format.	A/E will comply.
23.	General	In the appendices there are several invoices and other documents which have been highlighted. The highlighted figures become opaque when reproduced; so the copies become essentially useless. Please find a better way to present this information.	A/E will annotate documents.
		I	

24.	Pg 139	Demand charge for natural gas. Will this change with increased use? Please discuss.	Discussion will be provided.
25.	Pg 168	Table: Please indicate units in the column headings (lb/hr)?	A/E will comply.
26.	Pg 170	Label fan & motor.	A/E will comply.
27.	Pg 172	Indicate proposed size of steam lines leaving new boilers.	A/E will comply.
28.	Noted	The following are nit-picky editorial comments:	
	Pg 1	Holston AAP is in Kingsport, TN.	A/E will correct.
	Pg 2	No. 11: "Benefit/Cost" ratios.	A/E will comply.
	Pg 2	Correct spelling of "alternative".	A/E will comply.
	Pg 11	3413 Btu/kWh	A/E will comply.
	Pg 11	"calculations are presented"	A/E will comply.
	Pg 25	Correct spelling of "differentiate".	A/E will comply.

MOBILE DISTRICT PROJECT REVIEW COMMENTS

DATE:

28 Sept. 1995 | Page 295 of 5

TO: U.S. Army Corps of Engineers Mobile District

Mobile, AL

FROM: Jerry Bouchillon (HDC Engineering) Sonee Hall (HDC Utilities)

PROJECT/FY: FY95 Limited Energy Study for Area "A" Package Boilers

LOCATION: Holston Army Ammunition Plant, Kingsport, TN

TYPE REVIEW: Interim Submittal Review

NO.	PAGE/PAR	COMMENT	RESPONSES TO COMMENT
1.	General	This study appears to be a respectable analysis of the subject manner.	
2.	Pg 4	The FINDINGS, ANALYSIS AND RESULTS are not very definitive. What is the meaning of a negative SIR? Why can't the short, candid CONCLUSION of page 25 be put on page 4?	A/E will consider revisions as requested.
3.	General	I would like to see a step-wise sample calculation showing how each of the 12 parts for a given condition (example: Case 3, 0.075 mill #/mo) on Tables 1 and 2 are obtained.	A/E will provide.
4.	General	Please be consistent with units on all tables, text and figures. For example, say, "750,000 #/MO Eq RDX" instead of "0.75 MILL #/MO", etc.	A/E will edit as required.
5.	General	Any analysis involving LCCID of Cases 4 and 5 (using VAAP Boilers) shall include consideration for the cost to layaway Building 8A since this will be a natural consequence of making this change.	Feedwater system, boiler water treatment and deaerator continue in service coal boilers can be laid away.
6.	General	All "units costs" in units of \$/MBtu for the LCCID's (pages 96-99) shall be changed to reflect the unit costs of STEAM generated with these fuels similar to the analysis on page 145 for coal instead of the unit cost of the heating value of the fuels. For example, coal = 3.00 \$/MBtu instead of 1.86 \$/MBtu.	LCCID instructions call for fuel costs and non-energy savings account for remainder.
7.	Pg 96-99	In the LCCID's changes the SIOH and Design Costs to reflect more realistic values. These can be obtained from Tony Battaglia unless you have already done so.	A/E will revise if directed to do so; values shown are program default values.

Appendix 8
Indeck Power Equipment Company
Lease Proposal

INDECK POWER EQUIPMENT COMPANY - 1111 SOUTH WILLS AVENUE - WHEELING, ILLINOIS 80090-5841
709-541-6300 - TELEX 28-3544 - FAX 709-541-6894

October 25, 1995

Affiliated Engineers S. E., Inc.

Attn: Mr. Paul Little

FAX #:1-904-375-3479

REFERENCE:

YOUR TELEPHONE INQUIRY OF OCTOBER 24, 1995

INDECK PROPOSAL #6421

SUBJECT:

800 HP BOILER AND DEAERATOR RENTAL PROPOSAL

Dear Mr. Little:

Per the above referenced telephone conversation in which we discussed the possible rental of an 800 HP firetube boiler and a duplex packaged deaerating system for a U.S. Government operation in Tennessee, I am pleased to provide the following information for your review, evaluation and further rental consideration.

INDECK POWER EQUIPMENT COMPANY PROPOSES TO FURNISH:

One (1) New 800 HP Donlee Technologies (York-Shipley) 3-pass packaged automatic firetube boiler, Model #596-SPH-800-N/2. This unit will be designed, built and stamped in accordance with the latest edition of the ASME Power Boiler Code, Section I for a design pressure of 150 psig and an operating pressure range of 50-125 psig. The unit will be equipped with a York-Shipley designed and built natural gas and #2 oil fired forced draft, fully modulating burner. The unit will be complete with the manufacturer's standard boiler trim, burner and controls as per the following specification sheets as well as the following recommended optional equipment:

- a. Stack thermometer installed
- b. 2" blowdown valves two quick and one slow opening (shipped loose)
- c. Warrick probe type auxiliary low water cut off, Model #3E1B
- d. 2" Jordan electric modulating feedwater valve with 3-valve bypass
- e. 460 V, 3-phase, 60 Hz main power with a 120 V, single phase control voltage transformer
- f. Single electric location connection with circuit breakers
- g. Three (3) indicating lights (customer to specify function)
- h. Manual reset steam limit control
- i. Manual potentiometer for manual firing rate adjustment

Page 2.

One (1) packaged duplex feedwater deaerating system consisting of a 30,000 PPH horizontal storage tank designed, built and stamped to the ASME Code for 50 psig design pressure and will have 10 minute storage to overflow. The vessel will be complete with make-up water regulating valve with float cage and operating linkage, overflow trap, steam pressure reducing valve, high and low water level switches, sentinel type relief valve, vent valve, water level gauge glass set, steam pressure gauges and two (2) thermometers. The vessel will be mounted on a 4-post structural steel support stand with pads to match the deaerator tank saddles, foundation pads with holes, base plate for pump sets with structural steel horizontal and diagonal support braces. Mounted beneath the vessel will be two (2) centrifugal boiler feedwater pumps, each with a minimum flow rate of 60 gpm at 150 psig pump discharge pressure coupled to drip-proof drive motors requiring 460 V, 3-phase, 60 Hz power. A control panel in a NEMA 1 enclosure will be furnished and include two (2) pump motor starters, pump circuit breakers, pump running lights, high and low water lights with alarm bell and silencing switch, pump selector switch and terminal switch. Duplex suction piping assembly which includes gate valves, flexible connectors, compound gauges and pipe supports. Discharge piping will be supplied with a separate gate and check valve and pressure gauge. The unit will be shop assembled with the horizontal storage tank and some trim removed to facilitate shipping clearances.

Based on a minimum guaranteed rental term of 36 months, a budgetary monthly rental rate for the boiler and deaerator as described above is \$3,800.00.

Delivery of this equipment is approximately 12-14 weeks after receipt of approved contract.

The following two pages are the boiler and burner specifications and should you require additional information on either the boiler or deaerator please feel free to contact me at your convenience.

Thank you for your inquiry and I look forward to working with you further when you have final specifications available for firm pricing.

Very truly yours,

INDECK POWER EQUIPMENT COMPANY

Wayne J. Cerny Vice President

Wayne Kerny

Sales and Rentals

SAMPLE SPECIFICATIONS

HIGH PRESSURE STEAM BOILERS
(150 PSI OR HIGHER)

A. GENERAL

FURNISH (ADDITIONAL) ONE PACKAGED SCOTCH TYPE STEEL BOILER(S) DESIGNED AND CONSTRUCTED FOR (T50) (150) PSIG STEAM PRESSURE IN ACCORDANCE WITH SECTION I ASME CODE. THE UNIT SHALL BE MOUNTED ON A STEEL FRAME, COMPLETE WITH BURNER AND ALL NECESSARY CONTROLS, AND SHALL BE FACTORY ASSEMBLED AND FIRE TESTED, READY FOR ATTACHMENT OF STEAM SUPPLY AND FEEDWATER LINES, BLOW-OFF PIPING, FUEL LINES, ELECTRICAL CONNECTIONS, AND VENT/BREECHING CONNECTION. THE ENTIRE UNIT SHALL BEAR THE UNDERWRITER'S LABORATORY B LABEL.

THE BOILER SHALL HAVE A CONTINUOUS NOZZLE RATING OF 800 BOILER HORSEPOWER, 27,600 LBS. OF STEAM/HR., AND 26800 MBH GROSS OUTPUT, AND SHALL BE A YORK-SHIPLEY MODEL 596-SPH-800-M2.

B. BOILER DESIGN

THE BOILER SHALL BE OF THE FIRE TUBE TYPE, THREE PASS, DRY-BACK DESIGN. THE BOILER SHALL HAVE (A MINIMUM OF FIVE SQUARE FEET PER BOILER HORSEPOWER OR A TOTAL OF) 4000 SQUARE FEET OF EFFECTIVE FIRESIDE HEATING SURFACE. IT SHALL BE PROVIDED WITH HANDHOLES AND A MANHOLE AS REQUIRED BY ASME CODE.:

THE BOILER SHALL BE COVERED ON SIDES AND TOP WITH A MINIMUM OF 2" OF GLASS WOOL INSULATION AND PROTECTED BY A 22 GAUGE SHEET STEEL JACKET. A HEAVY GAUGE STEEL CATWALK SHALL BE INCLUDED AS PART OF THE JACKET ALONG THE TOP LONGITUDINAL CENTERLINE OF THE BOILER SHELL.

THE FURNACE TUBE SHALL BE CENTRALLY LOCATED IN THE BOILER SHELL, AND SHALL BE EQUIPPED WITH A REFRACTORY TARGET RING FOR RESHAPING THE FLAME AT A POINT WHERE IT BEGINS TO SPREAD. ALL REFRACTORY BRICKWORK SHALL BE HIGH TEMPERATURE FIREBRICK AND/OR PRE-CAST REFRACTORY SHAPES LAID IN HIGH TEMPERATURE REFRACTORY CEMENT. THE REAR TURNING CHAMBER SHALL BE LINED WITH HIGH TEMPERATURE PRE-CAST REFRACTORY AND BACKED WITH SEAL WELDED STEEL LINING TO PREVENT FLUE GAS SHORT-CIRCUITING.

THE REAR DOOR SHALL BE DESIGNED IN THREE SECTIONS FOR EASE OF REMOVAL AND TO ALLOW ACCESS TO ANY SECTION OF THE FIRESIDE SURFACE WITHOUT REMOVING THE ENTIRE DOOR. THE LOWER REAR SECTION SHALL BE INSULATED OR REFRACTORY LINED AS REQUIRED. THE REFRACTORY LINED SECTION SHALL BE SUPPORTED BY A HINGED DAVIT ARRANGEMENT. THE FRONT DOOR SHALL BE ONE PIECE OR TWO PIECE, AS REQUIRED BY WEIGHT AND SIZE, AND INSULATED WHERE NECESSARY. THE FRONT DOOR SHALL INCLUDE AN ACCESS OPENING FOR CLEANOUT WITHOUT REQUIRING OPENING OF THE DOOR.

C. TRIM AND CONTROLS

THE BOILER SHALL BE EQUIPPED WITH A COMBINATION WATER COLUMN, PUMP CONTROLLER, AND LOW WATER CUT-OFF WITH ALARM SWITCH; AND WITH WATER GAUGE SET AND GLASS, TRY COCKS, AND WATER COLUMN BLOWDOWN VALVE. IN ADDITION, THE BOILER SHALL BE EQUIPPED WITH A SAFETY LIMIT CONTROL AND A SEPARATE OPERATING LIMIT CONTROL. SAFETY VALVES AND A STEAM PRESSURE GAUGE SHALL BE FURNISHED. ALL THE ABOVE EQUIPMENT SHALL BE FACTORY PIPED AND WIRED IN ACCORDANCE WITH ASME CODE AND U/L REQUIREMENTS.

SAMPLE SPECIFICATIONS

GAS/#2 OIL BURNERS

FA BURNERS - 400 THRU 1000 HP

FOR STEAM-PAK BOILERS

THE BURNER SHALL BE A YORK-SHIPLEY MODEL FA AND SHALL BE DESIGNED FOR FIRING NATURAL GAS OR #2 FUEL OIL, WITH GAS CHARACTERISTICS OF 1000 BTU/CU. FT., SPECIFIC GRAVITY OF ______, AN AVAILABLE GAS SUPPLY PRESSURE OF ______, AND A FIRING RATE OF 33,500 CU. FT./HR. GAS AND _______, GPH OIL. THE OVERALL EFFICIENCY OF THE UNIT, BASED ON FUEL INPUT AND BOILER OUTPUT, SHALL BE NOT LESS THAN 80%.

THE BURNER SHALL BE EXTERNAL MIX GAS AND LOW PRESSURE AIR ATOMIZED OIL TYPE, USING A GAS PORT AND OIL NOZZLE ARRANGEMENT WITH AN AIR SWIRL FOR MAXIMUM COMBUSTION EFFICIENCY. IGNITION SHALL BE ACCOMPLISHED BY A SPARK IGNITED NATURAL GAS PILOT USING A 10,000 VOLT IGNITION TRANSFORMER.

THE PILOT SHALL INCLUDE, IN ADDITION TO THE NOZZLE AND ELECTRODE ASSEMBLY, A SOLENOID GAS VAVLE, GAS PRESSURE REGULATOR WITH 5 PSI MAXIMUM INLET PRESSURE RATING, AND A SHUT-OFF COCK.

THE BURNER SHALL BE ARRANGED FOR FULLY MODULATED FIRING, USING A SINGLE MODULATING MOTOR WITH BUILT IN END SWITCH FOR GUARANTEED LOW FIRE START, A LINKAGE ARRANGEMENT TO GOVERN BOTH AIR SUPPLY AND FUEL SUPPLY.

THE BURNER SHALL INCLUDE A HINGED DOUBLE DOOR FULLY ENCLOSED CONTROL PANEL WITH LATCH, MOUNTED SEPARATELY ON THE BOILER, WITH TERMINAL STRIPS FOR MAIN ELECTRICAL POWER CONNECTION AND FOR ALL WIRING RUNNING OUT OF THE PANEL, A CONTROL CIRCUIT FUSE, AN ON-OFF TOGGLE SWITCH, FUEL CHANGEOVER SWITCH, A YS-7000L MICROCOMPUTER TYPE FLAME CONTROL WITH LEAD SULFIDE SCANNER, ALL MOTOR STARTERS (WHERE SPACE PERMITS), RELAYS, TRANSFORMERS, ETC.

THE BURNER SHALL BE FORCED DRAFT TYPE WITH A BLOWER WHICH FURNISHES ALL NECESSARY AIR FOR COMBUSTION, AND INCLUDES AN AIR INLET SILENCER. THE BLOWER AIR SUPPLY SHALL BE GOVERNED BY THE MODULATING MOTOR LINKAGE CONNECTED TO A DAMPER ON THE BLOWER DISCHARGE. THE BURNER SHALL INCLUDE AN AIR SAFETY INTERLOCK FOR LOW BLOWER AIR. THE BLOWER SHALL BE AN AIR FOIL TYPE AND SHALL BE DIRECTLY DRIVEN BY A 40 HP 3500 RPM MOTOR.

THE BURNER WINDBOX SHALL BE FURNISHED WITH A BOLTED-ON ACCESS PLATE FOR EASY REMOVAL OF THE NOZZLE AND ELECTRODE ASSEMBLY. IN ADDITION, THE ENTIRE BACK PLATE OF THE WINDBOX SHALL BE REMOVABLE FOR EASY ACCESS TO THE OTHER INTERNAL BURNER COMPONENTS.

THE BURNER SHALL INCLUDE A SINGLE OIL NOZZLE WHICH PROVIDES FOR MIXING OF FUEL WITH COMPRESSOR AIR INSIDE THE NOZZLE. OIL FLOW SHALL BE CONTROLLED BY A SINGLE SOLENOID VALVE ON THE NOZZLE SUPPLY LINE, PLUS AN ADJUSTABLE TEARDROP TYPE COMBINATION HIGH FIRE AND METERING VALVE, ACTUATED BY THE MODULATING MOTOR LINKAGE. THE OIL SUPPLY LINE TO THE BURNER SHALL INCLUDE A FILTER UPSTREAM OF THE CONTROL VALVES AND SOLENOID VALVE.

SAMPLE SPECIFICATIONS CONT'D

BURNERS - 400 THRU 1000 HP CONT'D

GAS/#2 OIL BURNERS

FOR STEAM-PAK BOILERS

COMPRESSED AIR FOR THE AIR ATOMIZATION SHALL BE PROVIDED BY A ROTARY VANE TYPE AIR COMPRESSOR, COMPLETE WITH AIR FILTER, RELIEF VALVE, PRESSURE GAUGE, AUTOMATIC GRAVITY FEED LUBRICATOR, OIL ACCUMULATOR, AND BELT DRIVEN WITH AN ADJUSTABLE SHEAVE ARRANGEMENT AND A / HP 1750 RPM MOTOR.

GAS CONTROLS INCLUDE A BUTTERFLY TYPE GAS VOLUME VALVE CONNECTED BY LINKAGE TO THE MODULATING MOTOR, A DOWNSTREAM BLOCK/TEST LUBRICATED PLUG COCK, A MOTORIZED TYPE SAFETY GAS VALVE WITH INTEGRAL PROOF-OF-CLOSURE SWITCH, A PRIMARY MOTORIZED GAS VALVE, AN UPSTREAM SHUT-OFF LUBRICATED PLUG COCK, HIGH AND LOW GAS PRESSURE INTERLOCKS, AND TEST CONNECTIONS DOWNSTREAM OF EACH MOTORIZED VALVE. A NORMALLY OPEN FULL PORTED SOLENOID VENT VALVE SHALL BE INCLUDED BETWEEN THE MOTORIZED GAS VALVES. A MAIN GAS PRESSURE REGULATOR SHALL BE (INCLUDED AND SHIPPED LOOSE) (INSTALLED DOWN-STREAM OF THE MAIN SHUT OFF-COCK) (FURNISHED BY OTHERS).

ALL MOTORS SHALL BE ARRANGED FOR CONNECTION TO 200 VOLTS, 3 PHASE, 60 HERTZ ELECTRICAL POWER AND THE CONTROL SYSTEM SHALL BE ARRANGED FOR 115 VOLTS, 1 PHASE, 60 HERTZ POWER (USING A CONTROL VOLTAGE TRANSFORMER).

CENTRAL TX COMMERCIAL A/C & HEATING, INC.

7909 Rosson Dr. Austin, Texas 78736-8018 License #: TACLA 002692C 512/288-0822 1-800-338-5429 Fax #288-0941

October 30, 1995

Affiliated Engineers
Attn: Mr. Paul Little
3300 Southwest Archer Road
Gannsville, FL 32608
Fax (904) 375-3479

Central Texas Commercial Air Conditioning and Heating, Inc. is pleased to propose:

- Lease for 800 horse power boiler at 100 PSI, including dearator and feed water pumps. Quote includes the following:
 - * One 800 Hp or two (2) 400 Hp boilers set up to burn natural gas or #2 fuel oil.
 - * Motor for 230/460 volts.
 - * 110 volt control transformer.
 - * Freight to and from job site.
 - Dearator with dual pumps and controls.
 - * Start up after complete installation.
- 2) Installation is not included.
- 3) Licensing and insurance are not included.
- 4) Taxes are not included.
- 5) Terms and Conditions attached.

First 12 month lease \$7,800.00/month 2nd year lease cost \$5,800.00/month 3rd year lease cost \$4,900.00/month

If you have any questions please don't hesitate to call.

Best Regards,

Roland R. Hampton, Jr.

Roland R. Hamph Jr.

President

RRH:jm