Inside Class 3

1. A company wants to derive a model, on how many of the employees N_j it hires at a given year j are expected to stay for less than a year (call this number K_j), for 1-5 years (call this number L_j), or for more than 5 years (call this number M_j), where clearly $K_j + L_j + M_j = N_j$. The model it considers is a fractional model, where if the fractions are λ_1 , λ_2 , and λ_3 , the corresponding predicted numbers would be $\lambda_1 N_j$, $\lambda_2 N_j$, and $\lambda_3 N_j$, respectively. Assume the company has collected the values of K_j , L_j , M_j , and N_j over the past n years. Write a linear program that enables to derive such a model using the available data. Hint. You can choose an objective function that you find appropriate.

$$H_1 = \{ x \mid a^T x = b_1 \}$$
, $H_2 = \{ x \mid a^T x = b_2 \}$

with the same normal vector a

Show that their distance equals

distance = 11 x1 -x211

$$\mathcal{H}_{9} \quad \alpha^{7} x = b_{9}$$

$$H_1 = a^T x = b_1$$