Contents

Ι	Linear Algebra	Ş
II	Field Theory	Ę
II	I Ring Theory	7
ΙV	Number Theory	Ę
1	The Ideal Class Group	11

2 CONTENTS

Part I Linear Algebra

Part II Field Theory

Part III Ring Theory

Part IV Number Theory

Chapter 1

The Ideal Class Group

Definition 1. Let K be an algebraic number field, \mathcal{O}_K its ring of integers. The constant H_K for which all $\alpha \in K$ there exists a $\beta \in \mathcal{O}_K$ and a nonzero integer $t \in \mathbb{Z} \setminus \{0\}$ with $|t| \leq H_K$ such that

$$|N(t\alpha - \beta)| < 1$$

is called the Hurwitz constant.

Example 1.1. Let $K = \mathbb{Q}(\sqrt{-5})$ be an algebraic number field.

Proof.

Definition 2 (Equivalence of Fractional Ideals). Let R be a integral domain. Two fractional ideals \mathcal{A} and \mathcal{B} of R are said to be equivalent if there exist α and β in R such that

$$(\alpha)\mathcal{A} = (\beta)\mathcal{B}.$$

In this case, we write $A \sim B$ or simply A = B. Indeed, this relation is a equivalence relation.

Proof. Let \mathcal{A} and \mathcal{B} be two fractional ideals of an integral domain R. We show that the relation $\mathcal{A} \sim \mathcal{B}$ as defined above is a equivalence relation.

- 1. **Reflexivity.** Trivially, $(\alpha)A = (\alpha)A$ for any $\alpha \in R$, and we have $A \sim A$.
- 2. **Symmetry.** If $A \sim B$, then $(\alpha)A = (\beta)B$, and again it is trivial that $(\beta)B = (\alpha)A$, hence $B \sim A$.
- 3. Transitivity. Let $\mathcal{A} \sim \mathcal{B}$ and $\mathcal{B} \sim \mathcal{C}$ hold. There are $\alpha, \beta, \gamma, \theta \in R$ such that

$$(\alpha)\mathcal{A} = (\beta)\mathcal{B}$$
 and $(\gamma)\mathcal{B} = (\theta)\mathcal{C}$.

Multiplying both sides of both equalities by (γ) and (β) respectively yields

$$(\gamma)(\alpha)\mathcal{A} = (\gamma)(\beta)\mathcal{B}$$
 and $(\beta)(\gamma)\mathcal{B} = (\beta)(\theta)\mathcal{C}$.

Therefore, we have that $(\alpha \gamma) \mathcal{A} = (\beta \theta) \mathcal{C}$ or in other words $\mathcal{A} \sim \mathcal{C}$.

Theorem 3. Each equivalence class of fractional ideals has an integral ideal representative.

Theorem 4. The number of equivalence classes of fractional ideals of a integral domain is finite.

Definition 5. The class number of an algebraic number field K, denoted by h(K) is the cardinality of the group of equivalence classes of fractional ideals.

Example 5.1. The class number of $K = \mathbb{Q}(\sqrt{-5})$ is 2.

Proof. The ring of integer of K is $\mathbb{Z}[\sqrt{-5}]$ that has the integral basis $\{1, \sqrt{-5}\}$. For the integral basis we have the conjugations

$$1^{(1)} = 1 \qquad \sqrt{-5}^{(1)} = \sqrt{-5}$$
$$1^{(2)} = 1 \qquad \sqrt{-5}^{(2)} = -\sqrt{-5}$$

and we can compute the Hurwitz constant

$$H_K = (|1| + |\sqrt{-5}|) (|1| + |-\sqrt{-5}|) = (1 + \sqrt{5})^2 = 10.47...$$

Diophantine Equations

Example 5.2. The equation $x^2 + 5 = y^3$ has no integral solution.

Proof. Assume there are integers x and y that solve the equation above.

- 1. y must be odd. If y is even, then $y^3 = x^2 + 5$ is even too, so x^2 is odd implying x is odd. Moreover, if y is even, then y^3 is divisible by 4, so $x^2 + 5 \equiv 0 \mod 4$, hence $x^2 \equiv 3 \mod 4$, but this is impossible because squares of integers are congruent to 0 or 1 modulo 4. Therefore, y cannot be even.
- 2. x and y are coprime. If there is a prime that divides both x and y, then p also divides $y^3 = x^2 + 5$, so p divides 5 because x^2 is divisible by p. p divides 5 implies p = 5. If we divide the given equation by 5, we get

$$\frac{x^2}{5} + 1 = \frac{y^3}{5}.$$

 $5^{-1}x^2$ and $5^{-1}y^3$ are still divisible by 5, so reducing this equation modulo 5 yields

$$1 \equiv 0 \mod 5$$

which cannot be. Thus, x and y are coprime.

Consider the factorization $(x + \sqrt{-5})(x - \sqrt{-5}) = y^3$ in the ring of integers $\mathbb{Z}[\sqrt{-5}]$. We will investigate the ideals generated by the factors, i.e. $(x + \sqrt{-5})$ and $(x - \sqrt{-5})$.

3. The ideals $(x + \sqrt{-5})$ and $(x - \sqrt{-5})$ of $\mathbb{Z}[\sqrt{-5}]$ are coprime ideals. Suppose there is a prime ideal \mathfrak{p} that divides the greatest common divisor of $(x + \sqrt{-5})$ and $(x - \sqrt{-5})$. By definition, we have

$$\mathfrak{p} \supseteq \gcd((x+\sqrt{-5}), (x-\sqrt{-5})) = (x+\sqrt{-5}) + (x-\sqrt{-5}) = (2x),$$

i.e. $\mathfrak p$ divides (2x). On the other hand, since $\mathfrak p$ divides both factors of (y^3) , we have that $\mathfrak p$ divides (y) too. y was odd, so $\mathfrak p$ does not divide (2), thus $\mathfrak p$ divides (x). But $\mathfrak p$ cannot divide both (x) and (y) since they were coprime. Hence $(x+\sqrt{-5})$ and $(x-\sqrt{-5})$ are coprime ideals.

13

There are ideals ${\mathfrak a}$ and ${\mathfrak b}$ in ${\mathbb Z}[\sqrt{-5}]$ such that

$$\mathfrak{a}^3 = (x + \sqrt{-5})$$
 and $\mathfrak{b}^3 = (x - \sqrt{-5})$.

4. $\mathfrak a$ and $\mathfrak b$ are principal.