E-commerce and Regional Inequality:

A Trade Framework and Evidence from Amazon's Expansion

Elmer Zongyang Li

Department of Economics
Cornell University

April, 2023

Brick-and-motor vs. E-commerce

- Secular ↑ online retail sales (e-commerce)
- "Opening to trade" challenges regional equality
 - Comparative advantages, worker specializations
 - Pre-existing trade & input-output linkages

Motivation

Empirical Pattern

A Spatial Trade Model

Quantification

This Paper

E-commerce as \Rightarrow Spatial **GE** and **reallocation** \Rightarrow (welfare, empl. dispersion)

Argument: **mobility** of online retailer \Rightarrow \uparrow agglomeration, specialization

- Empirics: New facts on Amazon sales, retailers, facilities
 - Online retailer concentration, sales & trade
- **Theory**: multi-region & -sector (retail) trade model
 - Location choice of online retailer
 - Search & transport, elastic labor supply
- Policy: place-based public finances & online market design

Contribution: new data & extend trade theory \Rightarrow e-commerce on regions

Motivation

Empirical Patte

A Spatial Trade Model

Quantification

Related Literature

- E-commerce's Impact on Retail Market Structure
 - o stores: ↓ demand ↑ product. mark-up. Stanchi(2019), Goldmanis et. al (2010)
 - o consumer: ↑ welfare. Dolfen et. al (2021); Fan et. al (2018); Forman et. al (2009)

 This paper: spatial GE related to employment & real GDP
- Inter-national/regional Trade, Urban
 - LM effects under Ricardian trade model: Caliendo et. al (2018); Caliendo, Dvorkin
 & Parro (2019); Lee (2020); Galle, Rodríguez-Clare & Yi (2022)
 - This paper: apply & extend + new data & ID strategy
- Local LM shocks
 - o trade & technology: Autor, Dorn & Hansen (2013), Firpo, Fortin & Lemieux (2013),

Pierce & Schott (2016); Autor & Dorn (2013), , Chava et. al (2022)

This paper: GE regional heterogeneity, welfare (beyond ATE)

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

Table of Contents

Motivation

npirical Patterns

Kodel Model

antification

sults

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

Motivation

Empirical Patterns

A Spatial Trade

Quantification

Results

Empirical Patterns

The Online Retail Business Model

 $\textbf{Agglomeration:} \ \mathsf{Trade} \ \mathsf{frictions} \ (\mathsf{HME}, \mathsf{CA}) \qquad \Leftrightarrow \qquad \textbf{Dispersion:} \ \mathsf{Factor} \ \mathsf{prices}$

Predictions:

- E-commerce sales should be spatially more concentrated than BM
- Online retailers using FBA should be more concentrated
- Attraction of online retailers → more trade of upstream
- Loss of online retailers → less trade of upstream

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

Data Sources

- Amazon Retailers and Products (Keepa.com)
 - A random sample of products on Amazon (36 categories, 2016-2020)
 - Information on prices, and sales ranking, converted to sales
 - Collect sellers' addresses, FBA status
- Amazon Facilities (MWPVL)
 - Addresses, square feet, date, type.[Houde, Newberry & Seim (HNS,2021)]
 - Focus on large fulfill. & distr. centers; drop specialized, small-package
- DOT Commodity Flow Survey (CFS)
 - Origin-destination data on trade value, volume, NAICS category
- Other Datasets
 - Surveys: CBP, BEA, ACS
 - Geography Datasets (topography, climate)

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

• 1a: Online retail sales is more concentrated than average retail sales...

Motivation

Empirical Patterns

A Spatial Trad Model

Quantification

- 1a: Online retail sales is more concentrated than average retail sales...
- 1b: ...and is more strongly correlated with manufacturing, and less correlated with population

Table 1. E-commerce vs. Retail Sector Sales, Population, and Manufacturing

Dependent Variable:	E-commer	ce Sales Sha	are (%)	Overall R	etail Sales S	Shares (%)
% Total population	0.92***		0.61	1.06***		1.08***
	[0.29]		[0.38]	[0.04]		[0.05]
Top manufacturing		4.27**	2.47		3.42***	-0.14
		[1.72]	[2.53]		[0.88]	[0.27]
Observations	255	306	255	255	306	255
R-squared	0.12	0.11	0.14	0.98	0.40	0.98

Motivation

Empirical Patterns

A Spatial Trade

Quantification

• 2: Online retail sales that are FBA more concentrated than non-FBA

Motivation

Empirical Patterns

A Spatial Trade

Quantificatio

- 3a: Destinations with ↑ online retailers import more WS goods
- 3b: Origins with ↑ online retailers export <u>less</u> WS goods

Dependent Variable:	$\Delta \ln(\mathrm{Shipment})$	ln(Shipment)
Share (%) of online sellers - destination	1.5*	
	[0.8]	
Share $(\%)$ of Online sellers - origin	-3.7***	
	[1.0]	
Bilateral distance via Amazon facility		-0.20**
		[0.08]
Origin FE	\checkmark	✓
Destination FE	\checkmark	✓
Year FE		✓
Industry FE	\checkmark	✓
Observations	19,739	43,715
R-squared	0.2	0.4

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

- 3a: Destinations with ↑ online retailers import more WS goods
- 3b: Origins with ↑ online retailers export <u>less</u> WS goods
- 4: Regions near to fulfillment centers import & export less WS goods

Dependent Variable:	$\Delta \ln(\mathrm{Shipment})$	$\ln(\mathrm{Shipment})$
Share (%) of online sellers - destination	1.5*	
	[0.8]	
Share $(\%)$ of Online sellers - origin	-3.7***	
	[1.0]	
Bilateral distance via Amazon facility		-0.20**
		[0.08]
Origin FE	\checkmark	\checkmark
Destination FE	\checkmark	\checkmark
Year FE		\checkmark
Industry FE	\checkmark	\checkmark
Observations	19,739	43,715
R-squared	0.2	0.4

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

Motivation

Empirical Pattern

A Spatial Trade Model

Quantinicatio

Results

A Spatial Trade Model

Summary

- Environment
 - N regions: n (destination), m (origin)
 - J sectors: j (durable, non-durable)
 - 3 subsectors: *M* (manufacturer), *R* (online retailer), *B* (brick-and-mortar)
- 1. **Demand**: Consumer search → CES with demand shifter
- 2. Intermediate: comparative advantages → manuf. trade flow
- 3. Online Seller: Location choice → agglomeration, retail trade flow
- 4. Worker: Roy labor supply

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

Consumer Search

- Set-up
 - A continuum of consumers (n), purchase retail & service (η^j)
 - For retail, pick 1 among O+1 sellers (i=0 BM; $i \ge 1$ online)
 - $v_{ni}^{j} = \ln \eta^{j} y_{n} \ln p_{ni}^{j} + \varepsilon_{ni}^{j}$ (ε_{ni}^{j} the match value)
 - \triangleright ε_{ni}^{j} unknown: i.i.d. $E(\varepsilon_{ni}^{j})=0$ for i=0 and $E(\varepsilon_{ni}^{j})=ln(\mu)$ for $i\geq 1$
 - o To find the seller, they search sequentially (SOM) Weitzman (1979)
 - ightharpoonup each step, whether to pay cost k to observe $p_i^j, \varepsilon_{ni}^j$, or continue
- 1. Any SOM has a discrete choice model (DCM) w/. same demand proof
- 2. CES demand is a special case of DCM with extreme type I error proof

Theorem

A rep. consumer in n with weights η^j has nest CD-CES demand as below under sequential ordered search and if $\min\{\varepsilon_{ni}, r(k)\}$ is distributed extreme type I

$$C_n = \Pi_{j=1}^J(C_n^j)^{\eta^j}, \quad C_n^j = [(c_{n0})^{\frac{\sigma-1}{\sigma}} + \mu \sum_{i=1}^N (c_{ni})^{\frac{\sigma-1}{\sigma}}]^{\frac{\sigma_j}{\sigma_j-1}} \text{ for } j \ge 2$$

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

Production

- Intermediate Varieties (M)
 - ∘ A rep. firm in (n, j, M) produces varieties $e^j \in [0, 1]$

$$q_n^{j,M}(e^j) = a_n(e^j)l_n(e^j)$$

- Retail Sector (R/B)
 - $\quad \text{Collect varieties } e^j \in [0,1] \text{: } q_n^{j,R/B} = [\int_0^1 q_n^{j,M}(e^j)^{\frac{\alpha^j-1}{\alpha^j}} d\phi^j (a^n(e^j))]^{\frac{\alpha^j}{\alpha^j-1}}$

$$Q_n^{j,R/B} = z_n^{j,R/B} \left[(h_n^{j,R/B})^{\beta_n} (l_n^{j,R/B})^{1-\beta_n} \right]^{\gamma_n^j} \left[q_n^{j,R/B} \right]^{1-\gamma_n^j}$$

- Fréchet $\phi^{j}(a_{n}(e^{j})) = exp(\sum_{n} -T_{n}^{j}z^{-\theta^{j}})$, exp. share: $x_{nm}^{j,M} = \frac{(\kappa_{nm}^{M}c_{m}^{j,M})^{-\theta^{j}}T_{m}^{j}}{\sum_{g=1}^{N}(\kappa_{ng}^{M}c_{g}^{j,M})^{-\theta^{j}}T_{g}^{j}}$
- $\quad \text{O Init cost: } c_n^{j,R/B} = (\omega_n^{j,R/B})^{\gamma_n^j} (p_n^{j,M})^{1-\gamma_n^j}/z_n^j. \text{ For online: } c_{nm}^{j,R} = c_m^{j,R} \kappa_{nm}^R$

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

Online Retailer Location

- Optimal Location (R)
 - Online retailer char. by $(z_1^{j,R},...,z_N^{j,R})$, entry cost f_m . Optimal location:

$$m^* = \operatorname{argmin}_m \left\{ \frac{\tilde{\sigma}}{z_m^{j,R}} c_m^{j,R} \sum_n \left(\frac{\kappa_{nm}^R}{P_n^{j,R}} \right)^{\sigma^j - 1} X_n \right\} \ (\equiv \frac{\tilde{\sigma} \xi_m^j}{z_m^{j,R}})$$

- Entry: $\sum_{n} \left(\frac{p_{nm}^{j,R}/\mu}{P_{n}^{j,R}}\right)^{1-\sigma^{j}} \eta^{j} X_{n} \geq \sigma^{j} w_{m}^{j,R} f_{m}$. Thold: $\bar{c}_{m}^{j} = \frac{\mu}{\tilde{\sigma^{j}}} \left[\frac{\sigma^{j}}{\eta^{j}} \frac{w_{m}^{j,R} f_{m}}{\sum_{n} \kappa_{nm}^{R} P_{n}^{j,R} X_{n}}\right]^{\frac{1}{1-\sigma^{j}}}$
- Aggregate Retail Trade
 - Multi-variate Pareto : $P(Z_1^j < z_1, ..., Z_N^j < z_N) = 1 (\sum_{m=1}^N [A_{jm} z_m^{-\phi}]^{\frac{1}{1-\rho}})^{1-\rho}$

$$\Psi_m^j = P(m = argmin_m \{ \tilde{\sigma} \xi_m^j / z_m^j \} \cap c_m^{j,R} < \bar{c}_m^j) = \psi_m^j (\bar{c}_m^j)^{\phi}$$

- \circ where $\psi_m^j = A_{jm}(\xi_m^j)^{rac{-\phi}{1-\rho}}/\sum_{m=1}^N [A_{jm}(\xi_m^j)^{-\phi}]^{rac{-\rho}{1-\rho}}$

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

Labor Supply

Employment Rate

- \circ L_n HHs choose sector of employment (includ. home production)
- o Draw $z_n = \{z_n^0, z_n^S, z_n^{2,M}, z_n^{2,R}, z_n^{2,R}, z_n^{3,M}, z_n^{3,R}, z_n^{3,R}\}$ from i.i.d. Fréchet $(v_n, A_n^{j,K})$
- Probability of working in $\{j,K\}$:

$$\pi_n^{j,K} = \frac{A_n^{j,K}(w_n^{j,K})^{\nu_n}}{\Phi_n}, \text{ where } \Phi_n = \sum_{j=0}^J \sum_{K=M,R,B,\emptyset} A_n^{j,K}(w_n^{j,K})^{\nu_n}.$$

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

E-commerce and General Equilibrium Outcomes

- General Equilibrium
 - market clearing details
 - o comparative statics w/. exact hat algebra details
- E-commerce
 - \circ \uparrow match efficiency μ (Dinerstein et. al 2018; Goldmanis et. al 2010)
 - \circ \downarrow transportation cost of retail κ_{ni}^R (Houde, Newberry & Seim 2021)
- Welfare
 - Definition: real income per capita $W_n = \frac{Y_n/L_n}{P_n}$, its change:

$$\hat{W}_n = \underbrace{\hat{w}_n^0(\hat{\pi}_n^0)^{\frac{-1}{v_n}}}_{\text{non-emp. worker special.}} \times \Pi_{j=1}^J \underbrace{(\hat{x}_{n0}^{j,R})^{\frac{-\eta_j}{\sigma^j-1}}}_{\text{industry input-output composition local pref.}} \underbrace{(\hat{c}_n^{j,B})}_{\text{local pref.}}$$

Motivation

Empirical Patterns

A Spatial Trade Model

Quantification

Motivation

Empirical Patterns

A Spatial Trade

Quantification

Results

Quantification

Estimation Outline

Section	Param.	Description	Estimation/Caliberation
	η_n^{j}	Sector share of consumption	CFS 2007
Consumer	σ^j	Elasticity of subs. across retailers	Keepa + IV
	$w_n^{j,K} L_n^{j,K}$	Sectoral income	BEA, ACS, CFS 2007
Labar Cumply	π_n^j	Share of empployment	CBP, ACS
Labor Supply	v^n	Fréchet shape of worker product.	Galle, Rodríguez-Clare & Yi (2022)
	β_n^j	Share of structures	BEA + Greenwood et. al (1997)
Production	$oldsymbol{ heta}^j$	Fréchet shape of sector product.	Caliendo and Parro (2015)
	γ_n^j	Value-added share of retail goods	BEA, CFS
Trade	$x_{ni}^{M,j}$	Interm. expenditure share	CFS 2007
	$\hat{\kappa}^R_{nm}$	Iceberg cost change	Amazon data + CFS 2007 + IV
Amazon	μ	Matching efficiency	E-stats + CES
Shock	Ψ_m^j	Online retailer location probability	Кеера
	0	Measure of online retailers	E-stats
	T_n^{j}	Fréchet scale of sectoral product.	Assume constant
	A_n^j	Fréchet scale of labor product.	Assume constant

Motivation

Empirical Patte

Spatial Trad lodel

Quantification

sults

Estimation: Amazon Shock

- Extrapolate Amazon Ice-berg cost shock
 - Intuition: Ice-berg is increasing in distance
 - Estimate coefficient of ice-berg cost on shipping distance details

$$ln(\kappa_{nm}^{j,R}) = \delta^{j} \mathsf{Distance}_{nm} + X_{nm}' \theta + \delta_{n}^{j} + \delta_{m}^{j} + \varepsilon_{nm}^{j}$$

- Estimate reduction in shipping distance due to Amazon
 - ▶ Build counterfactual facilities based on exog. factors as IV for actual ones
- Back-out online matching efficiency
 - Intuition: % online exp. should inform matching, conditional on shipping

$$\sum_{m=1}^{N} x_{nm}^{j,R} / x_{n0}^{j,R} = (\mu)^{\sigma^{j-1}} \sum_{m=1}^{N} M_m (p_m^{j,R} \kappa_{nm}^R / p_{n0}^{j,R})$$

• Use Keepa for M_m , above estimated κ_{nm}^R , CES for $p_m^{j,R}, p_{n0}^{j,R}$

δ^{dur}	δ^{nondur}	$\hat{\kappa}$	μ
1.5	2.1	0.97	1.27
[0.2]	[0.6]	[0.15]	[1.46]

Motivation

Empirical Patterns

Spatial Trade

Quantification

Motivation

Empirical Patterns

A Spatial Trade

Quantification

Results

Result: Welfare

Figure: Total Welfare Change

- ↓ welfare overall (avg: 2.3%)
 - driver: price effect +10%, income effect -12%
- ↑ inequality
 - o Gini: 0.11→0.13 (+18%)

Motivation

Empirical Pattern

A Spatial Trade Model

Quantification

Result: Employment

Sector	Mean	Std. Dev
Manufacturing	0.35	0.04
Online Retail	0.70	0.15
Brick-and-Mortar	0.70	0.15
Service	1.59	0.16
Unemployment	0.91	0.10

Table: Employment Changes by Sector

Motivation

Empirical Patterr

A Spatial Trade Model

Quantification

Conclusion

- E-commerce as trade shock
- Online retailer concentration plays an important role
- Spatial retail trade model
- Amazon ⇒ regional inequality (welfare, employment)
- Place-based public finances & online market design

Thank you!
Elmer Zongyang Li
zl685@cornell.edu

Motivation

Empirical Pattern

A Spatial Trade Model

zuantiπcation

Appendix

Search is ordered: Weitzman (1979) optimal stopping

- Assign thresholds/scores \bar{v}_i st. $E[\max\{\hat{x}_i + \tilde{\epsilon}_i \bar{v}_i, 0\}] = 0$, where $\hat{x}_i = \ln y \ln p_i$
- Therefore, $\bar{v}_i = \hat{x}_i + \gamma_{\varepsilon_i}^{-1}(\ln s_i)$, where $\gamma_{\varepsilon_i}(z) = E[\max\{\varepsilon_i z, 0\}]$, decreasing function
- Search in decreasing order of the scores
- Stop if find a \bar{v}_i exceeding all remaining

Proposition: For any OSM, there is a DCM with same demand & payoff.

• Under OSM, consumer's optimal choice is the one for which

$$v_i^* = \min\{v_i, \bar{v}_i\}$$
 is largest (Armstrong and Vickers (2015),

Armstrong(2017), Choi, Dai and Kim(2018)), where

$$\bar{v}_i = \hat{x}_i + \gamma_{\epsilon_i}^{-1}(\ln \mu_i) = \hat{x}_i + r(\ln \mu_i)$$
, and $\gamma_{\epsilon_i}(z) = E[\max\{\epsilon_i - z, 0\}]$, the upside gain function

• Consumer's demand for i, D_i is thus:

$$P[v_i^* > \max_{i \neq i} v_j^*] = \int_{-\infty}^{\infty} P[z > \max_{i \neq i} v_j^*] f_{v_i^*}(z; x_i, \hat{x}_i) dz = \int_{-\infty}^{\infty} \Pi_{j \neq i} F_{v_j^*}(z; x_j, \hat{x}_j) f_{v_i^*}(z; x_i, \hat{x}_i) dz.$$

• Under advertised price, $x_i = \hat{x}_i, \forall j. D_i$ then simplifies to

$$\int_{-\infty}^{\infty} \Pi_{j\neq i} F_{\omega_j}(\varepsilon_j) f_{\omega_i}(\varepsilon_i) d\varepsilon, \text{ where } \omega_i = \min\{\varepsilon_i, r(\ln \mu_i)\}.$$

Thus, D_i is equivalent to the demand of a DCM: $v_i = x_i + \varepsilon_i^{DC}$, iff

Proof of DCM to CES back

Proposition: The CES demand is a special case of DCM with extreme type I error.

The following proof follows Anderson, De Palma, and Thisse (1987, 1989) closely

- Consumer's utility $u_i = \ln c_i$, income y. Let price of i: $\tilde{p}_i = \mu_i p_i$
- Random utility/match value ε_i with i, st. net value: $v_i = \ln y \ln \tilde{p}_i + \varepsilon_i^{DC}$ Further, re-scale $\varepsilon_i^{DC} = \chi \tilde{\varepsilon}_i$ st. $\tilde{\varepsilon}_i$ mean 0 and unit variance
- The demand for i, D_i is then

$$P[v_i > \max_{j \neq i} v_j] = \int_{-\infty}^{\infty} \prod_{j \neq i} F_{\varepsilon_j^{DC}}(\varepsilon_j^{DC}) f_{\varepsilon_i^{DC}}(\varepsilon_i^{DC}) d\varepsilon.$$

• And if $\tilde{\varepsilon}_i$ is distributed extreme type I, D_i then simplifies to

$$D_i = \frac{\mu_i p_i^{-1/\chi}}{2\pi n_i - 1/\chi},$$

Market Clearing Conditions (back)

• Retail and intermediate goods:

$$\begin{split} X_n^{R,j} &= \sum_{i=1}^N x_{in}^{R,j}(I_i L_i), \text{where } I_i L_i = \sum_{k=0}^J [r_i^{g,k} g_i^{R,k} + \sum_{K=M,R} (r_i^{h,k} h_i^{K,k} + w_i^k l_i^{K,k})] - \Omega_i, \\ X_n^{M,j} &= \sum_{i=1}^N (1 - \gamma_i^j) x_{in}^{M,j} X_i^{R,j}. \end{split}$$

Trade balance:

$$\sum_{j=0}^{J}\sum_{i=1}^{N}(x_{ni}^{M,j}X_{n}^{M,j}+x_{ni}^{R,j}X_{n}^{R,j})+\Omega_{n}=\sum_{j=0}^{J}\sum_{i=1}^{N}(x_{in}^{M,j}X_{i}^{M,j}+x_{in}^{R,j}X_{i}^{R,j}).$$

- Labor market: $w_n^{M,j} l_n^{M,j} = \beta_n X_n^{M,j}, \ w_n^{R,j} l_n^{R,j} = \gamma_n^j m_n^{R,j} \beta_n X_n^{R,j}$
- Structure: $r_n^h h_n^{M,j} = (1 \beta_n) X_n^{M,j}, r_n^h h_n^{R,j} = \gamma_n^j \frac{1}{2^{R,j}} (1 \beta_n) X_n^{R,j}$
- Capital: $r_n^g g_n^{R,j} = (\frac{\rho_n^{j-1}}{1-\beta_n}) w_n^{R,j} \pi_n^{R,j} L_n$

Comparative Statics **back**

Employment shares:

$$\hat{\pi}_n^0 = \frac{\hat{A}_n^0(\hat{w}_n^0)^{\nu_n}}{\hat{\Phi}_n}, \ \hat{\pi}_n^{K,j} = \frac{\hat{A}_n^{K,j}(\hat{w}_n^{K,j})^{\nu_n}}{\hat{\Phi}_n}, \ \text{where} \ \hat{\Phi}_n = \sum_{h=0}^J \sum_{K=M,R} \pi_n^{K,h} \hat{A}_n^{K,h} (\hat{w}_n^{K,h})^{\nu_n}.$$

• Input costs: $\hat{c}_n^{M,j}=\hat{\omega}_n^{M,j},\quad \hat{c}_n^{R,j}=(\hat{\rho}_n^{R,j}\hat{\omega}_n^{R,j})^{\gamma_n^j}(\hat{P}_n^{M,j})^{1-\gamma_n^j}$, where

$$\hat{\omega}_{n}^{K,j} = \hat{w}_{n}^{K,j} (\hat{l}_{n}^{K,j})^{\beta_{n}} = (\hat{w}_{n}^{K,j})^{1+\beta_{n}} (\hat{\pi}_{n}^{K,j})^{\frac{(\nu_{n}-1)\beta_{n}}{\nu_{n}}}, \text{and } \hat{P}_{n}^{M,j} = (\sum_{i=1}^{N} x_{ni}^{M,j} (\hat{\kappa}_{ni}^{M} \hat{c}_{i}^{M,j})^{-\theta^{j}} \hat{T}_{i}^{j})^{\frac{-1}{\theta^{j}}}.$$

- Trade shares: $x_{ni}^{'M,j} = x_{ni}^{M,j} \left(\frac{\hat{k}_{ni}^{M} \hat{c}_{i}^{M,j}}{\hat{\sigma}^{R,j}} \right)^{-\theta_{j}} \hat{T}_{i}^{j}, \quad x_{ni}^{'R,j} = x_{ni}^{R,j} \left(\frac{\hat{k}_{ni}^{R} \hat{c}_{n}^{R,j}}{\hat{\sigma}^{R,j}} \right)^{1-\sigma^{j}}.$
- Market clearing:

$$X_{n}^{'R,j} = \sum_{i=1}^{N} x_{in}^{'R,j} \eta^{j} \left[\sum_{k=0}^{J} \left(\frac{1}{1-\beta_{i}} \right) \left(\hat{\rho}_{i}^{R,k} \hat{w}_{i}^{R,k} \hat{l}_{i}^{R,k} \rho_{i}^{R,k} w_{i}^{R,k} L_{i}^{R,k} + \hat{w}_{i}^{M,k} \hat{l}_{i}^{M,k} w_{i}^{M,k} L_{i}^{M,k} \right) - \Omega_{i} \right],$$

$$X_{n}^{'M,j} = \sum_{i=1}^{N} (1 - \gamma_{i}^{j}) x_{ni}^{'M,j} X_{n}^{'R,j},$$

- Data: Amazon's Facility Network
 - o address, square feet, date, type.[Houde, Newberry & Seim (HNS,2021)]
 - o focus on large fulfill. & distr. centers; drop specialized, small-package

Need to specify how:

origin
$$\rightarrow$$
 facility \rightarrow destination

- HNS (2021): 90% of orders from 3 closest centers to dest.
- Assume order is processed by among the 3 closest to destination, the closest to origin

Year	Mean	Std. Dev	P25	P75
2007	490.2	376.3	234.9	739
2017	287.9	225.6	124.7	409
Diff.	-202.2	295.6	-249.8	-12.5
Log Diff.	5	.6	9	0

Spatial Simulated IV

- concern: endogeneity of facilities
- simulate facilities' locations based only on geo. cost factors, to be uses as IV (Duflo et.al, 2007; Lipscomb et.al, 2013; Faber 2014)
- o need orthogonality of geo. factors

Dependent 1{AMZ C	enter}	
$Temperature \; (Lag)$	Mean	-0.011 [0.018]
	Minimum	-0.002 [0.009]
	Maximum	0.046***
Precipitation (Lag)	Mean	-0.032 [0.040]
	Minimum	0.043
	Maximum	-0.015 [0.013]
Elevation	Mean	-0.001*** [0.000]
	Minimum	0.000
	Maximum	0.001*** [0.000]
Tornado	Magnitude	-0.051 [0.086]
	Injuries	-0.110 [0.153]
County, Year FE		X
Observations	55	,259
Psudo R-squared	0.1	.663

Spatial Simulated IV

- concern: endogeneity of facilities
- simulate facilities' locations based only on geo. cost factors, to be uses as IV (Duflo et.al, 2007; Lipscomb et.al, 2013; Faber 2014)
- need orthogonality of geo. factors

Simulation Steps

- based on observed # of new centers, determine AMZ's budget
- rank counties by geo. factors
- highest ranks get new centers

Dependent 1{AMZ C	enter}	
Temperature (Lag)	Mean	-0.011
		[0.018]
	Minimum	-0.002
		[0.009]
	Maximum	0.046***
		[0.012]
Precipitation (Lag)	Mean	-0.032
		[0.040]
	Minimum	0.043
		[0.044]
	Maximum	-0.015
		[0.013]
Elevation	Mean	-0.001***
		[0.000]
	Minimum	0.000
		[0.000]
	Maximum	0.001***
		[0.000]
Tornado	Magnitude	-0.051
	_	[0.086]
	Injuries	-0.110
		[0.153]
County, Year FE		X
Observations	55,259	
Psudo R-squared	0.1663	

Year	Mean	Std. Dev	P25	P75	Corr
2007	623.4	400.3	349.6	897.4	0.10
2017	335.2	278.4	143.9	412.1	0.58
Diff.	-288.2	361.8	-355.9	0	-0.22
Log Diff.	7	.8	-1.1	0	-0.02

	Depende	ent Variables
	Actual log	Counterfactual
	distance	log distance
First Stage Results		
Counterfactual log distance	0.399***	
	[0.015]	
F-Stats	670	
Robustness		
Avg. lag GDP		0.000
		[0.000]
Avg. GDP growth		-0.004***
		[0.001]