

LAB2: Model bazowy - testowanie właściwości modelu i rozwiązań dla jedno- i dwu-wymiarowego, stacjonarnego przypadku transferu ciepła w materiałach jednorondych i niejednorodnych

dr inż. Konrad M. Gruszka,*
28 lutego 2025

Streszczenie

Bazując na niniejszym dokumencie należy rozszerzyć i przetestować pod różnymi kątami wcześniej napisane algorytmy MRS w oparciu o kryteria przedstawione w dalszej części tego dokumentu. Aby rozwiązać zadania z tego dokumentu, konieczne są skrypty utworzone na wcześnejszych zajęciach obejmujące przypadki stacjonarnego transferu ciepła dla jedno- i dwuwymiarowych dziedziń obliczeniowych.

1 Metoda różnic skończonych - MRS

Zadania do samodzielnego rozwiązania

1. Badanie wpływu gestości siatki na czas obliczeń w 1D

Zbadaj jak zwiększanie punktów siatki wpływa na czas obliczeń oraz rozkład temperatury. Narysuj wykres zbiorczy przedstawiający rozkład temperatury w węzłach dla pierwszego i ostatniego przypadku (4 i 500 punktów), oraz wykres przedstawiający czas obliczeń w funkcji ilości punktów. Za każdym razem zachowaj tą samą ilość iteracji/kroków (ustawioną na "sztywno" na 10 000). Jakiego rodzaju jest obserwowana zależność?

Tabela do wypełnienia:

Ilość węzłów siatki N	Całkowity czas obliczeń [s]
4	
5	
10	
50	
150	
500	

Wnioski:		

^{*}Katedra Informatyki, Wydział Inżynierii Mechanicznej i Informatyki (kgruszka@icis.pcz.pl)

2. Badanie porównawcze stanu ustalonego w przypadkach jednorodnym i niejednorodnym

Narysuj na jednym wykresie dwa rozkłady temperatury (krzywe różnego koloru) dla takich samych parametrów symulacji lecz różnych właściwości materiałowych. W tym celu ustal następujące parametry symulacji:

- N = 100,
- $T_{lewa} = 100$, $T_{prawa} = 0$,
- \bullet max ilosć kroków iteracji = 10000
- $k_1 = 0.2, k_2 = 0.12$ dla przypadku niejednorodnego
- tolerancja = 0.001
- \bullet Dla przypdaku niejednorodnego pręt ma być podzielony równo na dwie części (po lewej k_1 po prawej k_2

3. Analiza wpływu ilości kroków obliczeniowych na rozwiązanie 1D - przypadek jednorodny

Przy stałej ilości węzłów siatki N=150 zbadaj ile czasu zajmuje wykonanie obliczeń dla zadanej ilości kroków iteracyjnych. Jakiego rodzaju jest ta zależność? Narysuj wykres przedstawiający badaną zależność.

Tabela do wypełnienia:

Ilość kroków	Całkowity czas obliczeń [s]
10	
50	
100	
500	
1000	
5000	
10 000	

Wı	ni	O	sk	ci	:																																	
			٠.		٠.				 •			 		 								 		 				 							 			
• • •																																						
• • •																																						

4. Analiza wpływu różnych warunków brzegowych

Zbadaj jak zmienia się rozkład temperatury dla różnych wartości temperatury na brzegach domeny obliczeniowej. W tabeli wpisz po ilu iteracjach uzyskano ustabilizowanie temperatury. Narysuj wykres przedstawiający rozkład temperatury dla ustabilizowanej sytuacji.

Tabela do wypełnienia:

Lewa strona	Prawa strona	Ilość iteracji
0	100	
100	0	
200	300	
300	300	
300	200	
300	0	

Wnioski bilności w		_	- 0		-	zy do o	siągnięci	a sta-
	 			 		 		• • • • •
• • • • • • • • • • • • • • • • • • • •	 			 		 		• • • • •

5. Badanie stanów nieustalonych

Dla przypadku warunków brzegowych ($T_L = 250^{\circ}C$, $T_P = 20^{\circ}C$) narysuj rozkład temperatury w funkcji ilości iteracji. Dla założonych warunków początkowych, N=100 węzłów, sprawdź ile interacji jest konieczne do osiągnięcia zbieżności temperatury na poziomie $e = 10^{-2}$ °C i podziel otrzymaną liczbę iteracji na 5 równych części (np dla 1234 iteracji będzie to 246). Następnie wygeneruj 5 wykresów (co przykładowe 246 kroków) przedstawiających rozkład temperatury. Opisz jak wygląda proces ustalania się temperatury.

6. Badanie wpływu gęstości siatki na czas obliczeń w 2D

Powtórz zadanie nr 1 dla przypadku dwuwymiarowego. W tym celu załóż, że siatka ma tyle samo punktów w obydwu wymiarach tj. $N_x=N_y=N$.

- 7. Analiza wpływu ilości kroków obliczeniowych na rozwiązanie 2D Powtórz zadanie nr 2 dla przypadku dwuwymiarowego.
- 8. Analiza wpływu różnych warunków brzegowych w przypadku 2D Zbadaj jak zmienia się rozkład temperatury dla różnych wartości temperatury na brzegach domeny obliczeniowej. Narysuj wykres przedstawiający rozkład temperatury dla ustabilizowanej sytuacji. Tabela do wypełnienia:

Lewa strona	Prawa strona	Góra	Dół
0	100	200	50
100	0	0	0
200	300	400	500
300	300	300	300
300	200	200	100

Wnioski	: Jak warunki brzegow	ve wpływają na rozkład temp	peratury?
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •	

9. Badanie stanów nieustalonych w 2D

Dla wybranego przypadku warunków brzegowych ($T_L=250^{\circ}\mathrm{C},\ T_P=20^{\circ}\mathrm{C},\ T_G=0^{\circ}\mathrm{C},\ T_D=100^{\circ}\mathrm{C}$) narysuj rozkład temperatury w funkcji ilości iteracji. Dla założonych warunków początkowych, N=50 x 50 węzłów, sprawdź ile interacji jest konieczne do osiągnięcia zbieżności temperatury na poziomie tolerancji równej $e=10^{-2\circ}\mathrm{C}$ i podziel otrzymaną liczbę iteracji na 5 równych części (np dla 1234 iteracji będzie to 246). Następnie wygeneruj 5 wykresów (co przykładowe 246 kroków) przedstawiających rozkład temperatury. Opisz jak wygląda proces ustalania się temperatury.

10. Badanie stanów nieustalonych w 1D dla systemu złożonego z dwóch materiałów Niech domena obliczeniowa od połowy składa się z innego materiału (o innym wsp. k, np: $k_1=0.3$ i $k_2=0.1$). Przeprowadź analizę stanu nieustalonego jak w zadaniu 9 ale dla przypadku jednowymiarowego. Samodzielnie dobierz warunki początkowe, ilość węzłów i ilość iteracji i narysuj 5 wykresów przedstawiających stany nieustalone w tym przedziale. Wnioski i komentarze?

11. Badanie stanów nieustalonych w 2D dla materiału niejednorodnego

Przeprowadź odpowiednie symulacje i odpowiedz na pytania: czy w materiale niejednoronym, zmiana wartości współczynnika k ma wpływ na ilość iteracji potrzebną do ustalenia stanu stacjonarnego na poziomie toleracji 0.001? Czy zmiana współczynników k w takiej symulacji wpływa na całkowity czas konieczny do uzyskania zbieżności?