[This question paper contains 4 printed pages.]

Your Roll No.....

I

Sr. No. of Question Paper: 1102

Unique Paper Code : 2352013502

Name of the Paper : Ring Theory

Name of the Course : B.Sc. (H) Mathematics

Semester : V – DSC-14

Duration: 3 Hours Maximum Marks: 90

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. All questions are compulsory and are of 15 marks each.
- 3. Attempt any six parts from Question 1. Each part is of 2.5 marks.
- 4. Attempt any two parts from each of the Questions 2 to 6. Each part is of 7.5 marks.
- Use of calculator is not allowed.

- 1. (i) Find all the units of $\mathbb{Z}_7[x]$.
 - (ii) Check whether Q ⊕ Q is an integral domain or not.
 - (iii) Give an example of a subring S of a ring R which is not an ideal of R.
 - (iv) Prove that a ring homomorphism carries an idempotent to an idempotent.
 - (v) Let ϕ be a ring homomorphism from a ring R to a ring S. If R has unity 1, S \neq {0} and ϕ is onto then prove that $\phi(1)$ is the unity of S.
 - (vi) Let $f(x) = 2x^5 + 14x^2 21x + 7$. Is f(x) an irreducible polynomial over \mathbb{Q} ? Justify your answer.
 - (vii) Let D be an intergral domain. Suppose that $p, q \in D$ and $q \ne 0$. Show that if p is not a unit, then $\langle pq \rangle$ is a proper subset of $\langle q \rangle$.
 - (viii) Explain why $3x^2 + 6$ is reducible over \mathbb{Z} .
- 2. (a) Prove that intersection of two subrings in a ring R is a subring of R. Is the union of two subrings necessarily a subring of R? Justify your answer.
 - (b) Find all the units, zero divisors and idempotent elements in $\mathbb{Z}_3 \oplus \mathbb{Z}_6$.

- (c) Prove that \mathbb{Z}_n , the ring of integers modulo n, is a field if and only if n is a prime.
- (a) Let R be a commutative ring with unity and let U(R) denote the set of units of R. Prove that U(R) is a group under multiplication. Also, find U(Z[i]).
 - (b) Define the characteristic of a ring. Prove that the characteristic of an integral domain is either 0 or prime.
 - (c) Prove that in a commutative ring R with unity, an ideal A is a maximal ideal if and only if $\frac{R}{A}$ is a field.
- 4. (a) Prove that the ideal $\langle x \rangle$ is a prime ideal in $\mathbb{Z}[x]$ but not a maximal ideal in $\mathbb{Z}[x]$.
 - (b) Let ϕ be a ring homomorphism from a ring R onto a ring S. Prove that $\frac{R}{\text{Ker }\phi} \approx S$.
 - (c) Determine all ring homomorphisms from $\mathbb{Z}_4 \to \mathbb{Z}_{10}$.
- 5. (a) Let F be a field and let $I = \{a_0 + a_1x + ... + a_nx^n : a_0, a_1, ..., a_n \in F \text{ and } a_0 + a_1 + ... + a_n = 0\}$. Show that I is an ideal of F[x] and find a generator for I.

- (b) Let $f(x) = 5x^4 + 3x^3 + 1$ and $g(x) = 3x^2 + 2x + 1 \in \mathbb{Z}_7|x|$. Determine the quotient and remainder obtained when f(x) is divided by g(x).
- (c) Prove that the product of two primitive polynomials is a primitive polynomial.
- 6. (a) Show that $p(x) = x^3 + x + 1$ is an irreducible polynomial over \mathbb{Z}_2 .

Let $M = \langle x^3 + x + 1 \rangle$ be an ideal of $\mathbb{Z}_2[x]$.

Show that $F = \frac{\mathbb{Z}_2[x]}{M}$ is a field of order 8. Exhibit all the 8 elements of F. Find the product of $x^2 + x + 1 + M$ and $x^2 + 1 + M$ and express it as a member of F.

- (b) In a principal ideal domain, prove that the element is irreducible if and only if it is prime.
- (c) Show that integral domain $\mathbb{Z}[t]$ is Euclidean Domain. Is $\mathbb{Z}[i]$ a Unique Factorization Domain? Justify.