DAY 10:

Cities Dataset

In [1]:

```
#to import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df=pd.read_csv(r"C:\Users\user\Downloads\21_cities.csv")[0:100]
df
```

Out[2]:

	id	name	state_id	state_code	state_name	country_id	country_code	country_nar
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afghanist
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afghanist
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afghanist
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afghanist
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afghanist
95	180	Bashkia Poliçan	629	BR	Berat District	3	AL	Albaı
96	186	Bashkia Skrapar	629	BR	Berat District	3	AL	Albaı
97	191	Berat	629	BR	Berat District	3	AL	Albaı
98	280	Çorovodë	629	BR	Berat District	3	AL	Albaı
99	219	Kuçovë	629	BR	Berat District	3	AL	Albaı
100 rows × 11 columns								

In [3]:

```
df.fillna(value=1)
```

Out[3]:

	id	name	state_id	state_code	state_name	country_id	country_code	country_nar
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afghanist
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afghanist
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afghanist
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afghanist
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afghanist
95	180	Bashkia Poliçan	629	BR	Berat District	3	AL	Albaı
96	186	Bashkia Skrapar	629	BR	Berat District	3	AL	Albaı
97	191	Berat	629	BR	Berat District	3	AL	Albaı
98	280	Çorovodë	629	BR	Berat District	3	AL	Albaı
99	219	Kuçovë	629	BR	Berat District	3	AL	Albaı

100 rows × 11 columns

memory usage: 8.7+ KB

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype			
0	id	100 non-null	int64			
1	name	100 non-null	object			
2	state_id	100 non-null	int64			
3	state_code	100 non-null	object			
4	state_name	100 non-null	object			
5	country_id	100 non-null	int64			
6	country_code	100 non-null	object			
7	country_name	100 non-null	object			
8	latitude	100 non-null	float64			
9	longitude	100 non-null	float64			
10	wikiDataId	100 non-null	object			
<pre>dtypes: float64(2), int64(3), object(6)</pre>						

```
In [5]:
df.columns
Out[5]:
Index(['id', 'name', 'state_id', 'state_code', 'state_name', 'country_id',
       'country_code', 'country_name', 'latitude', 'longitude', 'wikiDataI
d'],
      dtype='object')
Linear Regression
In [6]:
x=df[['id','state_id','country_id', 'latitude']]
y=df[ 'longitude']
In [7]:
# to split my dataset into test and train data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [8]:
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
Out[8]:
LinearRegression()
In [9]:
print(lr.score(x_test,y_test))
0.9516406711634929
In [10]:
lr.score(x_train,y_train)
Out[10]:
```

Ridge Regression

0.9606693693910433

```
In [11]:
from sklearn.linear_model import Ridge,Lasso
In [12]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
rr.score(x_test,y_test)
Out[12]:
0.9519373388694963
Lasso Regression
In [13]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[13]:
Lasso(alpha=10)
In [14]:
la.score(x_test,y_test)
Out[14]:
0.9495766756365002
Elastic regression
In [15]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[15]:
ElasticNet()
In [16]:
print(en.intercept_)
-13.42210774825324
```

In [17]:

predict=(en.predict(x_test))

```
In [18]:
print(en.score(x_test,y_test))
```

0.9533592794479002

Evalution matrics

```
In [19]:
from sklearn import metrics
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, predict))
Mean Absolute Error: 2.2167004542532402
In [20]:
print("Mean Square Error:",metrics.mean_squared_error(y_test,predict))
Mean Square Error: 6.906591121925426
In [21]:
print("Root Mean Square Error:",np.sqrt(metrics.mean_squared_error(y_test,predict)))
Root Mean Square Error: 2.6280394064635764
In [22]:
import pickle
In [23]:
filename="predict"
In [24]:
pickle.dump(lr,open(filename,'wb'))
In [ ]:
```