Appunti Fisica I

Luca Seggiani

8 Aprile 2024

1 Quantità di moto

La quantità di moto è una grandezza vettoriale definita come:

$$\vec{P} = m\vec{v}$$

dove m è la massa di un corpo e v la sua velocità in un dato istante. Si misura in kg·m/s.

Quantità di moto e leggi di Newton

La quantità di moto ci permette di riformulare il primo principio della dinamica, riguardante l'inerzia, specificando che la quantità di un punto materiale isolato resta costante: la sua massa non varia, e per inerzia nemmeno la sua velocità.

$$\Delta \vec{p} = \vec{p}(f) - \vec{p}(i) = \int_{i}^{f} \vec{F} = 0 \Rightarrow \vec{p} = \text{const.}$$

Se invece una forza (e quindi un'accelerazione) agisce sul corpo cambiandone la velocità, la quantità di moto varierà come:

$$\frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt} = m\vec{a} = \vec{F}$$

2 Impulso di una forza

L'impulso di una forza è definito, fra due istanti t_0 e t, come:

$$\vec{I}_{t_0 \to t} = \int_{t_0}^t = \vec{F} dt'$$

L'impulso è una grandezza vettoriale espressa in kg·m/s, la stessa unità di misura della quantità di moto. Si può quindi dimostrare:

Teorema dell'impulso

La variazione della quantità di moto $\Delta \vec{p}$ di un punto materiale è pari all'impulso totale delle forze esterne:

$$\Delta \vec{p} = \Delta \vec{p}(t) - \Delta \vec{p}(t_0) = \int_{t_0}^t \vec{F} dt'$$

Questo si può dimostrare da:

$$\int_{t_0}^t \vec{F} dt' = \int_{t_0}^t m\vec{a} dt' = [m\vec{v}]_{t_0}^t = m\vec{v}(t) - m\vec{v}(t_0) = \vec{p}(t) - \vec{p}(t_0) = \Delta \vec{p}$$

3 Moto di un corpo composto

Un corpo composto non'è altro che un corpo formato da un insieme di punti materiali. Quando si considerano sistemi formati da più punti materiali connessi fra loro, occorre fare una distinzione fra:

- Forze interne: forze che sono interne al sistema, esercitate fra i corpi appartenenti al sistema fra di loro;
- Forze esterne forze che sono esterne al sistema. esercitate dall'ambiente sui punti materiali.

Dinamica di un sistema di punti materiali

Per ciauscino dei punti materiali di un sistema possiamo scrivere:

$$m\vec{a_i} = \vec{R_i}$$

Dove $\vec{R_i}$ è la risultante di tutte le forze sul punto materiale, interne ed esterne.

$$\sum m_i \vec{a_i} = \sum R_i^{est} + \sum_{j \neq i} \vec{F_{ij}} = \sum R_i^{est} + \sum \sum_{j \neq i} \vec{F_{ij}}$$

dove tutte le sommatorie da senza pedice sono da 1 a n numero di punti materiali nel sistema.

Centro di massa di un sistema

Definiamo come centro di massa di un sistema il "punto medio" della massa:

$$\vec{r_{CM}} = \frac{\sum m_i \vec{r_i}}{\sum m_i}$$

Definendo la massa del sistema M come: $\sum m_i$ possiamo riscrivere come:

$$\vec{r_{CM}} = \frac{\sum m_i \vec{r_i}}{M}$$

Le coordinate del punto di massa su $x, y \in z$ saranno a questo punto:

$$x_{\vec{C}M} = \frac{\sum m_i \vec{x_i}}{\sum m_i}, \quad y_{\vec{C}M} = \frac{\sum m_i \vec{y_i}}{\sum m_i}, \quad z_{\vec{C}M} = \frac{\sum m_i \vec{z_i}}{\sum m_i}$$

Si può definire l'impulso del centro di massa $\vec{P_{CM}}$ come l'impulso sulla massa M

$$\vec{P_{CM}} = M\vec{v_{CM}} = \sum m_i \vec{v_i}$$

Dove dovremo definire la velocità del centro di massa $\vec{V_{CM}}$:

$$\vec{V_{CM}} = \frac{d\vec{r_{CM}}}{dt} = \frac{d}{dt} \frac{\sum m_i \vec{r_i}}{M} = \frac{1}{m} \frac{d}{dt} \sum m_i \vec{r_i} = \frac{1}{M} \sum m\vec{v_i}$$

Questo ci permette di dire, riguardo all'impulso del centro di massa:

$$\vec{P_{CM}} = \sum \vec{p_i} = \sum m_i \vec{a_i} = M \vec{V_{CM}}$$

Primo teorema del centro di massa

La quantità di moto totale di un sistema (ergo la somma delle quantità di moto di ogni punto del sistema) è uguale alla quantità di un punto materiala avente massa uguale alla massa del sistema e velocità uguale alla velocità del centro di massa del sistema:

$$\vec{P_{CM}} = \vec{MV_{CM}} = \sum m_i \vec{a_i}$$

Forze interne di sistemi di punti materiali

Se prendiamo un sistema formato da più punti materiali soggetti sia a forze interne (fra di loro), sia a forze esterne (esercitate da altri corpi sul sistema), abbiamo dalle equazioni precedenti:

$$\vec{P_{CM}} = M\vec{V_{CM}} \Rightarrow \sum_{i \neq i} m_i \vec{a_i} = M\vec{a_{CM}}$$
$$\sum_{i \neq i} m_i \vec{a_i} = \sum_{i \neq i} \vec{F_{ij}}$$

Se prendiamo il termine $\sum R_i^{est} + \sum \sum_{j\neq i} \vec{F}_{ij}$, abbiamo che la sommatoria $\vec{F}_{12} + \vec{F}_{21} + \dots$ non è altro che la somma di tutte le forze interne del sistema, e quindi di ogni forza con la sua reazione, e non potrà che essere 0. Questo ci permette di enunciare la:

Prima equazione cardinale dei sistemi

La variazione della quantità di moto di un sistema di punti materiali è uguale alla risultante delle forze esterne agenti sul sistema:

$$\frac{d}{dt}\vec{P_{CM}} = \sum m_i \vec{a_i} = \sum \vec{R_i^{est}}$$

Secondo teorema del centro di massa

Il centro di massa di un sistema si muove come un punto materiale di massa uguale alla massa del sistema e sottoposto alla risultante delle forze esterne agenti sul sistema:

 $M\vec{a_{CM}} = \sum \vec{R_i^{est}}$

4 Applicazioni di quantità di moto e centro di massa

Vediamo alcuni esempi che possono essere modellizati attraverso centro di massa e quantità di moto.

Esplosione di un proiettile a mezz'aria

Poniamo di avere un proiettile, come quelli già studiati, il cui moto comincia dall'origine, con una certa velocità v_0 formante un certo angolo θ con l'asse x. Nel punto di altezza massima del proiettile, esso esplode dividendosi in due pezzi. Il primo pezzo cade direttamente verso il basso, accelerato dalla gravita, mentre l'alto prosegue di moto parabolico. Si vuole calcolare le posizioni dove atterrano i due frammenti del proiettile. Inizialmente possiamo dire che le forze coinvolte nell'esplosione sono tutte interne, ergo non influenzano la posizione del centro di massa. Questo significa che il centro di massa proseguirà di moto parabolico. Calcoliamo quindi la "gittata" del centro di massa, applicando le formule già note del moto dei proiettili:

$$x_{CM} = R = \frac{v_0^2 \sin 2\theta}{g}$$

Possiamo allora impostarne la posizione x:

$$x_{CM} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

Dove x_1 e x_1 saranno rispettivamente la posizione del frammento caduto verso il basso e del frammento che prosegue il moto. x_1 sarà quindi nota, essendo essa coincidente con il punto di altezza massima della parabola descritta dal proettile prima della caduta, ovvero la metà della gittata del C.M.:

$$x_1 = \frac{R}{2} = \frac{v_0^2 \sin 2\theta}{2a}$$

Questo ci porta a scrivere la gittata completa:

$$R = \frac{m\frac{R}{2} + mx_2}{m_1 + m_2} \Rightarrow x_2 = \frac{3}{2}R = \frac{3}{2}\frac{v_0^2 \sin 2\theta}{g}$$

 x_1 e x_2 sono i valori cercati (si noti che il frammento con posizione orizzontale x_1 resta sulla stessa ascissa finchè non tocca terra).

Disco rotante con massa sul perimetro

Si abbia un disco in rotazione, quindi in moto circolare uniforme, di raggio r e di massa M. Sull'estremità del disco, ovvero sul suo perimetro, è disposta una massetta m, che chiaramente ruoterà solidalmente al disco. Il centro di massa di questo sistema sarà in costante rotazione, in quanto verrà sfasato dalla presenza della massetta m. In particolare, possiamo impostare:

$$x_{CM} = \frac{mx_1 + Mx_2}{m + M}, \quad y_{CM} = \frac{my_1 + My_2}{m + M}$$

Scelto un sistema di coordinate cartesiane centrato sul disco in rotazione, si avrà che x_2 , ovvero il raggio che collega il centro del disco a se stesso, sarà 0, mentre x_1 , ovvero il raggio che collega il centro del disco alla massetta, è il raggio stesso del disco. Questo ci permette di ottenere un raggio r_{CM} , che collega il centro del disco al centro di massa:

$$r_{CM} = \frac{mr}{m+M}$$

Applicando le solite formule del moto circolare uniforme avremo velocità e accelerazione:

$$v = \omega \frac{mR}{m+M}, \quad a = \omega^2 \frac{mr}{m+M}$$

5 Corpo rigido

Vediamo alcune nozioni preliminari per il calcolo del centro di massa del corpo rigido. Si inizia con le definizioni di densità:

• Densità (di volume) di massa

La densità di massa ρ_m è definita come la derivata della massa rispetto al volume:

$$\rho_m = \frac{dM}{dV}$$

si misura in $\frac{kg}{m^3}$.

• Densità superficiale di massa

La densità superficiale di massa σ_m è definita come la derivata della massa rispetto alla superficie:

$$\sigma_m = \frac{dM}{dA}$$

si misura in $\frac{kg}{m^2}$. La densità superficiale di massa viene usata nei casi in cui lo spessore dell'oggeto considerato sia trascurabile.

• Densità lineare di massa

La densità lineare di massa λ_m è definita come la derivata della massa rispetto alla lunghezza:

 $\lambda_m = \frac{dM}{dl}$

si misura in $\frac{kg}{m}$. La densità lineare di massa viene utilizzata nei casi in cui l'unica grandezza rilevante del corpo è la lunghezza.

Notiamo che in generale, ρ_m , σ_m e λ_m sono funzioni delle dimensioni (grandezze estensive) dei corpi considerati.

Calcolo del centro di massa di un corpo rigido

Se per un sistema contenente un numero finito di punti materiali avevamo:

$$r_{\vec{CM}} = \frac{\sum m_i \vec{r_i}}{M} = \frac{1}{M} \sum m_i \vec{r_i}$$

Per un corpo rigido di forma qualsiasi, sarà necessario passare al corrispettivo continuo della sommatoria, cioè l'integrale:

$$\vec{r_{CM}} = \frac{1}{M} \int \vec{r_i} dm$$

che diventerà, sulla base delle definizioni precedenti potremo esprimere:

$$\vec{r_{CM}} = \frac{1}{M} \int \vec{r} \rho(\vec{r}) dV$$

in funzione del volume V (o di altre grandezze estensive nel caso si decida di utilizzarle). Vediamo quindi come si svolge il calcolo dei centri di massa di alcuni corpi:

• Sbarra con densità lineare di massa costante

Supponiamo di avere una sbarra di larghezza e profondità trascurabile, e di cui ci interessa quindi solamente la lunghezza L. Calcoleremo allora la densità lineare di massa $\lambda_m \frac{dM}{dL} = \frac{M}{L}$ (densità lineare costante). Applichiamo allora l'equazione precedente per la posizione del centro di massa $\vec{R_{CM}}$:

$$x_{CM} = \frac{1}{M} \int_0^L x \lambda_m dx = \frac{\lambda_m}{M} \cdot \frac{x^2}{L} \Big|_0^L = \frac{\lambda_m}{M} \frac{L^2}{2} = \frac{L}{2}$$

che corrisponde al punto medio della sbarra, come l'intuito potrebbe suggerire.

• Lamina a profilo semicircolare

Prendiamo una lamina di forma semicircolare, abbastanza sottile da trascurarne la profondità, e calcoliamone il baricentro. Prima di tutto sarà necessario trovare la densità superficiale di massa $\sigma_m = \frac{dM}{dA}$:

$$A = \frac{\pi r^2}{2} \Rightarrow \sigma_m = \frac{2M}{\pi r^2}$$

Il centro di massa avrà posizione x=0 per la simmetria della semicirconferenza. Resta da calcolare la posizione y. Possiamo impostare l'integrale prendendo "strisce" di altezza Δy dalla posizione y=0 alla posizione y=R sull'asse verticale della circonferenza. La larghezza di queste strisce sarà sempre uguale a 2x, con x la larghezza di uno dei due segmenti in cui l'asse centrale divide la striscia presa sulla circonferenza. L'area della striscia sarà quindi 2xy. Ciò si esprime come:

$$y_{CM} = \frac{1}{M} \int_0^r \sigma_m 2xy dy$$

per eliminare la x possiamo prendere dall'equazione della circonferenza:

$$x^2 + y^2 = r^2 \Rightarrow x = \sqrt{r^2 - y^2}$$

da cui:

$$y_{CM} = \frac{1}{M} \int_0^r \sigma_m 2y \sqrt{r^2 - y^2} dy$$

L'integrale di $y\sqrt{r^2-y^2}$ è:

$$\int y \sqrt{r^2 - y^2} dy = -\frac{1}{3} (r^2 - y^2)^{\frac{3}{2}}, \quad \int_0^r y \sqrt{r^2 - y^2} dy = -\frac{1}{3} (r^2 - y^2)^{\frac{3}{2}} \Big|_0^r = \frac{1}{3} r^3$$

da cui:

$$y_{CM} = \frac{1}{M} \sigma_m \frac{2}{3} r^3 = \frac{1}{M} \frac{2M}{\pi r^2} \frac{2}{3} r^3 = \frac{4r}{3\pi}$$

• Lamina a profilo triangolare

Facciamo un'esempio simile al precedente, ma con un profilo triangolare retto anziché semicircolare. Chiameremo a e b i lati del triangolo. Adottiamo la metodologia usuale: calcoliamo innanzitutto la densità di massa superficiale σ_m :

$$A = \frac{ab}{2} \Rightarrow \sigma_m = \frac{2M}{ab}$$

E adottiamo un approccio di calcolo integrale. Possiamo pensare di dividere il triangolo in strisce orizzontali e verticali per calcolare le

posizioni x e y del centro di massa. Avremo che per la x, la striscia ha area:

$$x \cdot by$$

su altezza y con larghezza x. Volendo eliminare la y, riscriviamola in funzione di x:

$$x \cdot \frac{b}{a}x$$

dove notiamo fra l'altro il termine $\frac{b}{a} = \tan \theta$ angolo al centro. Impostiamo quindi l'integrale.

$$x_{CM} = \frac{1}{M} \int_0^a \sigma_x \cdot \frac{b}{a} x dx = \frac{1}{M} \frac{2M}{ab} \frac{b}{a} \int_0^a x^2 dx = \frac{2}{a^2} \frac{a^3}{3} = \frac{2}{3} a$$

Per il calcolo di y, il procedimento è analogo, con l'unica differenza il fatto che che la larghezza in y più piccoli è più grande, e viceversa, ovvero l'area è:

$$y \cdot \frac{a}{b}(b-y)$$

da cui l'integrale:

$$y_{CM} = \frac{1}{M} \int_0^b \sigma_m y \cdot \frac{a}{b} (b - y) dy = \frac{2}{b^2} \int_0^b (yb - y^2) dy = \frac{2}{b^2} (b \frac{y^2}{2} \Big|_0^b - \frac{y^3}{3} \Big|_0^b) = \frac{1}{3} a^{-\frac{b}{2}} (b - y)^{-\frac{b}{2}} (b - y$$

abbiamo quindi che il baricentro del triangolo è in $(\frac{2}{3}a, \frac{1}{3}b)$. Questo risultato si può avere anche, più direttamente, dalle formule per il baricentro di un triangolo qualsiasi:

$$x_{CM} = \frac{x_A + x_B + x_c}{3}, \quad y_{CM} = \frac{y_A + y_B + y_c}{3}$$

sui punti $A = (0,0), \quad B = (a,0), \quad C = (a,b).$

• Semianello rigido

Prendiamo un'esempio apparentemente simile a quello della semicir-conferenza: quello di un semianello rigido di raggio r e massa M. Considereremo la densità lineare di massa, che sarà uguale a $\lambda_m = \frac{M}{\pi r}$. Per la simmetria, come nell'esempio semicircolare, la posizione orizzontale del centro di massa sarà x=0. Resta da calcolare la componente verticale: può rendersi utile in questo caso un passaggio alle coordinate polari, con:

$$x = r \cos \theta$$
, $yr \sin \theta$

da cui l'integrale:

$$y_{CM} = \frac{1}{M} \int_0^{\pi} \lambda_m R \cdot R \sin \theta d\theta = \frac{1}{M} \frac{M}{2\pi} r^2 (-\cos \theta \Big|_0^{\pi}) = \frac{2r}{\pi}$$