WINTER - 2022

UNIT-1

Q.1 a) Solve
$$(D^2 + 3D + 2)y = 4\cos^2 x$$
 (6)

b) Solve
$$(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1)\frac{dy}{dx} - 12y = 6x$$
 (7)

Q.2 a) Solve
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = e^x \cosh 2x$$
 (6)

b) Solve by the method of variation of parameters

$$\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}$$
 (7)

UNIT-2

Q.3 a) Find Laplace transform of $\frac{\cos 6t - \cos 4t}{t}$ And

evaluate
$$\int_{0}^{\infty} \frac{\cos 6t - \cos 4t}{t} dt$$
 (4)

b) Find
$$L \frac{d}{dt} \left(\frac{\sin t}{t} \right)$$
 (5)

c) Express the following fuⁿ in terms of Heaviside unit step function and hence find its Laplace transform if (5)

$$f(t) = \begin{cases} \cos t & 0 < t < \pi \\ \sin t & t > \pi \end{cases}$$

Q.4 a) If
$$J_o(t) = \frac{1}{\sqrt{1+s^2}}$$
. Show that $L\{e^{-at}J_o(at)\}$

$$= \frac{1}{\sqrt{s^2 + 2as + 2a^2}}$$
 (4)

b) Use convolution theorem to obtain inverse Laplace transform of $\frac{1}{(s+1)(s^2+1)}$ (5)

c) Find the Laplace transform of wave function (5)

$$f(t) = \frac{kt}{T} 0 < t < T & f(t) = f(t + T)$$

UNIT-3

Q.5 a) Solve
$$(D^2 + 2D + 5)y = e^{-t} \sin t \ y(0), y'(0) = 1$$
 (7)

b) Find Fourier sine transform of
$$f(x) = \frac{e^{-ax}}{x}$$
 (6)

Q.6 a) Solve
$$\frac{d^2x}{dt^2} + x = 6\cos 2t$$
 with $x = 3$, $\frac{dx}{dt} = 1$ at $t = 0$ (7)

transform of Fourier **b**)

$$find \int_{0}^{\infty} \frac{\sin x}{x} dx$$
 (6)

Q.7 a) Solve

i)
$$p^2 + q^2 = z$$
 (4)

ii)
$$z - px - qy = \sqrt{1 + p^2 + q^2}$$
 (4)

b) Fit a straight line to the data given below. (5)

X	15	20	25	30	35	40
у	12	14	18	25	31	44

Q.8 a) Solve

i)
$$x \frac{\partial z}{\partial y} = y \frac{\partial y}{\partial x} + xe^{x^2 + y^2}$$
(4)

ii) $p^2 - q^2 = \frac{x - y}{z}$

ii)
$$p^2 - q^2 = \frac{x - y}{z}$$
 (4)

b) Find the line of regression of y on x.

X	1	2	3	4	5	6	7	8	9
у	9	8	10	12	11	13	14	16	15

(5)

UNIT-5

- **Q.9 a)** If f(z) = u + iv is analytic function find f(z) if $u v = (x y)(x^2 + 4xy + y^2)$ (7)
- **b)** Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle

$$x^2 + y^2 - 4x = 0$$
 into the straight line $4u + 3 = 0$ (6)

- **Q.10 a)** Show that $u = e^x \cos y + x^2 y^2$ is harmonic function. Find its harmonic conjugate and corresponding analytic function. (7)
- **b)** Find the Bilinear transformation which maps the points $0, -1, \infty$ from the z plane into -1, -2, -I, I resp. in to plane (6)

UNIT-6

Q.11 a) Find the rate of change of ϕ = xyz in the direction normal to the surface $x^2y + y^2x + yz^2 = 3$ at the point (1, 1, 1)

b) Prove that
$$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$$
 (6)

- **Q.12 a)** If $\bar{f} = (x + y + 1)i + j (x + y)k$ Prove that $\bar{f} \circ \text{curl } \bar{f} = 0$ (4)
- **b)** If \bar{f} is a solenoidal vector field prove that Curl curl curl curl $\bar{f} = -\nabla^4 \bar{f}$
- c) If $\bar{f} = (2xy + 3z^2)i + (x^2 + 4yz)j + (2y^2 + 6xz)k$ Evaluate $\int_c \bar{f} \circ dr$ where c is a straight line joining points (0, 0, 0) and (1, 1, 1).