

PAT-NO: JP363223379A

DOCUMENT-IDENTIFIER: JP 63223379 A

TITLE: SCROLL DISPLACEMENT TYPE MACHINE

PUBN-DATE: September 16, 1988

INVENTOR-INFORMATION:

NAME

HAYANO, MAKOTO

NAGATOMO, SHIGEMI

SAKATA, KANJI

HATORI, MITSUO

MOROZUMI, NAOYA

YONEYAMA, KOICHI

SONE, JUNJI

SUZUKI, ISAO

ASSIGNEE-INFORMATION:

NAME	COUNTRY
TOSHIBA CORP	N/A

APPL-NO: JP62053935

APPL-DATE: March 11, 1987

INT-CL (IPC): F04C002/02, F04C018/02

US-CL-CURRENT: 418/55.2, 418/55.5

ABSTRACT:

PURPOSE: To reduce a sliding loss due to a lap and an end plate in a moment of starting rotation, by interconnecting the space formed by a groove and the lap to be installed in the end plate constituting each of fixed and turning scrolls to a high pressure space or the like in a hermetically sealed vessel.

CONSTITUTION: A turning scroll 10 of a scroll displacement type compressor consists of a turning end plate 102 and a turning lap 104, and a fixed scroll 110 also consists of a fixed end plate 112 and a fixed lap 114. Each of these laps 104 and 112 is fitted in the turning groove and the fixed groove 116 installed in these end plates 102 and 112. In this case, spaces 18 and 24 to be partitioned off by these grooves 106 and 116 and laps 104 and 114 installed in these end plates 102 and 112 are interconnected to a vessel space to be formed at the side of a crankshaft 102a of the end plate 102 and a high pressure space 20 to be formed at the opposite fixed lap side of the end plate

112, respectively, by pipes 22 and 26 formed in these end plates 102 and 112.

COPYRIGHT: (C)1988,JPO&Japio

⑪ 公開特許公報 (A) 昭63-223379

⑫ Int.Cl.¹
F 04 C 2/02
18/02識別記号 311
厅内整理番号 7367-3H
Q-7367-3H⑬ 公開 昭和63年(1988)9月16日
審査請求 未請求 発明の数 1 (全6頁)

⑭ 発明の名称 スクロール容積形機械

⑮ 特願 昭62-53935

⑯ 出願 昭62(1987)3月11日

⑰ 発明者 早野 誠 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝家電
機器技術研究所内

⑰ 発明者 長友 繁美 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝家電
機器技術研究所内

⑰ 発明者 坂田 寛二 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝家電
機器技術研究所内

⑰ 発明者 羽鳥 三男 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝家電
機器技術研究所内

⑰ 出願人 株式会社東芝 神奈川県川崎市幸区堀川町72番地

⑯ 代理人 弁理士則近憲佑 外1名

最終頁に続く

明細書

1. 発明の名称

スクロール容積形機械

2. 特許請求の範囲

鏡板に設けられた溝に渦巻状のラップを挿入した固定スクロールと、鏡板に設けられた溝に渦巻状のラップを挿入した旋回スクロールとが互いにラップを向かい合わせにしてかみ合い、固定スクロールに対して見かけ上自転しないように旋回スクロールが旋回運動をし、流体の移送、ガスの圧縮または膨張を行なうものにおいて、鏡板に設けられた溝とラップとにより形成された空間と、両スクロールにより形成された密閉空間又は高圧空間とを連通したことを特徴とするスクロール容積形機械。

3. 発明の詳細な説明

(発明の目的)

(産業上の利用分野)

この発明は、スクロール容積形機械に関する。

(従来の技術)

従来のスクロール容積形機械として、特開昭51-128705号公報に示されているようなものがあり、これを第4図、第5図及び第6図を用いて説明する。

第4図に示すように、旋回鏡板102には、渦巻状の旋回ラップ104の形状に合わせて旋回溝106が形成されている。そして、旋回溝106に旋回ラップ104が挿入されている。旋回溝106と旋回ラップ104の間には、例えば板バネで形成された弾性体108(第5図に示す)が挿入されている。

固定スクロール110も、旋回スクロール100と同様に構成されており、第5図に示すように固定鏡板112に形成された固定溝116に固定ラップ114が挿入されており、固定溝116と固定ラップ114の間に、弾性体108が挿入されている。

固定スクロール110の固定鏡板112は、図示していないフレームに固定されている。そして旋回スクロール100と固定スクロール110は、旋回ラップ104及び固定ラップ114を内側にしてかみ合っている。旋回ラップ104は、弾性体108の弾性

力によりつねに固定鏡板 112 に密着している。固定ラップ 114 も、弹性体 108 の弹性力によりつねに旋回鏡板 102 に密着している。そこでスクロール容積形機械を圧縮機として使う場合を考えるに、旋回スクロール 100 が旋回運動を開始すると、旋回スクロール 100 と固定スクロール 110 により形成された第 6 図に示された密閉空間 118 は、その体積を小さくしながら中心部に移動する。そして固定スクロール 110 の固定鏡板 112 に形成された吐出孔 112a と連通する。この作用を用いて密閉空間 118 内の冷媒を圧縮して、吐出孔 112a より図示されない高圧空間に吐出する。

旋回スクロール 100 は、冷媒ガスの圧縮にともなう力を受ける。そのため、旋回鏡板 102 と固定鏡板 112 間の距離は変動する。このとき旋回ラップ 104 は、旋回鏡板 102 に対して上下に移動しながら、つねに固定鏡板 112 に密着している。同様に固定ラップ 114 は、固定鏡板 112 に対して上下に移動しながら、つねに旋回鏡板 102 に密着している。そのため密閉空間 118 内の冷媒ガスは、密

(3)

スクロールにより形成される密閉空間又は高圧空間とを連通したものである。

(作用)

旋回スクロールが旋回運動を開始すると、例えばガスの圧縮を行なう場合、冷媒ガスは両スクロールにより形成される密閉空間に吸込まれ、吸込時より高圧となって、高圧空間内に吐出される。旋回スクロールは冷媒ガスの圧縮により（旋回運動をさせるための主軸などにより）様々な力を受ける。したがって両スクロールの鏡板間の距離は力の受け方により微少に変化する。このとき鏡板に設けられた溝とラップにより形成された空間は、密閉空間又は高圧空間と連通しているため、この圧が高くなるにつれてラップは鏡板と離れる方向に押し上げられ、旋回がある一定圧以上であればつねにスクロールのラップは固定スクロールの鏡板に密着し、又固定スクロールのラップは旋回スクロールの鏡板に密着する。

(実施例)

この発明の第 1 実施例を第 1 図ないし第 2 図

閉空間 118 外に流出しにくく、運転効率の良い圧縮機が得られる。

(発明が解決しようとする問題点)

このスクロール容積形機械によれば、旋回スクロール 100 の回転開始時より、旋回ラップ 104 は固定鏡板 112 に密着し、固定ラップ 114 は旋回鏡板 102 に密着しているため、回転を開始する瞬間摺動ロスがあるため大きなトルクを必要とする。

よって、本発明は、回転を開始する瞬間、ラップと鏡板による摺動ロスを減らすこと目的とする。

(発明の構成)

(問題点を解決するための手段)

この目的を達成させるために、この発明は次のような構成をしている。すなわち、この発明に係るスクロール容積型機械は、鏡板に設けられた溝に渦巻状のラップを挿入した固定スクロールと、鏡板に設けられた溝に渦巻状のラップを挿入した旋回スクロールを有し、両スクロールの鏡板に設けられた溝とラップにより形成された空間と、両

(4)

を用いて説明する。なお従来例と同一部分には同一符号を付ける。

第 1 実施例は、本願発明を圧縮機に用いた実施例である。第 1 図は、圧縮機の垂直断面図を示す。

旋回スクロール 100 は、筒状のクランク軸受 102a を有する旋回鏡板 102 及び旋回ラップ 104 より構成され、旋回ラップ 104 は、旋回鏡板 102 に設けられた旋回溝 106（第 2 図に示す）に挿入されている。同様に固定スクロール 110 も、吐出孔 112a を有する固定鏡板 112 及び固定ラップ 114 より構成され、固定ラップ 114 は、固定鏡板 112 に設けられた固定溝 116（第 2 図に示す）に挿入されている。そして両スクロール 100 及び 110 は、ラップ 104 及び 114 を内側にしてかみ合っている。

フレーム 2 は、その中央に主軸を支える主軸受 2a 及び、主軸受 2a の外周に環状凸起 2b を有している。そして密閉容器 4 の内側に圧入固定されている。フレーム 2 の上面には、固定スクロール 110 が固定されている。旋回スクロール 100 はフレーム 2 の環状凸起 2b に支持され固定スクロール 110

(5)

—486—

(6)

とかみ合っている。旋回スクロール 100 とフレーム 2 との間には、オルダムリング 6 が設けられている。オルダムリング 6 は、旋回スクロール 100 がフレーム 2 に対して自転しないようにする働きがある。

主軸 8 は、端部にクランク軸部 8a を有している。そして、フレーム 2 の主軸受 2a に挿入され回転できるように支持されている。主軸 8 の下方部にはロータ 10 が圧入固定されている。そしてロータ 10 の外周に相対してステータ 12 が密閉容器 4 の内側に圧入固定されている。

冷媒を密閉容器 4 内に取り入れるための吸入口 14 は、密閉容器 4 及びフレーム 2 に固定されており、冷媒を密閉容器 4 から取り出すための吐出パイプ 16 は、密閉容器 4 に固定されている。

そして第 1 実施例の構成の特徴(第 2 図に示す)は、旋回鏡板 102 に設けられた旋回溝 106 と旋回ラップ 104 とにより形成される旋回溝空間 18 と、旋回鏡板 102 のクランク軸受 102a の側に形成される容器空間 20 を旋回鏡板 102 に形成した管 22 で連

(7)

め、容器空間 20 内の圧も上昇し始める。容器空間 20 と、旋回溝空間 18 及び固定溝空間 24 の圧は同じである。その結果、旋回ラップ 104 の上面の圧(密閉空間 118 の圧)より下面の圧(容器空間 20 の圧)が高くなり、必要な圧力差がつくと旋回ラップ 104 は上方に持上げられ、固定鏡板 112 に押し付けられる。又旋回ラップ 104 も、自重だけで旋回鏡板に押し付けられるだけでなく圧力差により押し付けられる。

よって、本実施例によれば回転を開始する瞬間、ラップと鏡板による摺動ロスを減らすことができる。

次に第 2 実施例の構成を第 3 図を用いて説明する。第 2 実施例は、固定溝空間 24 及び旋回溝空間 18 内に、弾性体(例えばゴム)でできたチューブ 28 を挿入し、その端部を高圧空間 20 と連通したものである。

このような構成にすることにより、同様の作用効果を有すると共に、さらに容器空間 20 内の冷媒ガスがラップと溝とのすき間より密閉空間 118 内

通し、固定鏡板 112 に設けられた固定溝 116 と固定ラップ 114 とにより形成される固定溝空間 24 と、固定鏡板 112 の反固定ラップ 114 側に形成される高圧空間 20 を固定鏡板 112 に形成した管 26 で連通したことにある。

そこで、第 1 実施例の作用を説明する。ステータ 12 に通電すると、ロータ 10 が回転を開始し、旋回スクロール 100 が旋回運動を開始する。それにより吸込パイプ 14 より冷媒が吸込まれ、両スクロール 100 及び 110 により圧縮され、吸込み時に較べ、より高圧な冷媒となり、吐出孔 112a より、密閉容器 4 内の高圧空間 20 に吐出される。そして冷媒は貫通孔 30 を通り、フレーム 2 の下面側に行き、吐出パイプ 16 より密閉容器 4 外に出る。

運転開始前、容器空間 20 及び密閉空間 118 の圧力はほぼ均一である。よって旋回ラップ 104 は、旋回溝 106 の低部に接している。又固定ラップ 114 は、自重により旋回鏡板 102 に接している。しかし圧縮作用が始まると、密閉空間 118 内の圧が上昇し始め最も高圧となつた時に吐出されるた

(8)

にもれなくするという効果もある。

又、第 3 実施例として、圧縮室 28 と旋回溝空間 18 及び固定溝空間 24 を連通する構成もある。

このような構成にすることにより、旋回溝空間 18 及び固定溝空間 24 の圧力を自由に設定することができ、旋回ラップ 104 及び固定ラップ 114 の押し付け力を自由に設定できる。

〔発明の効果〕

以上のように本発明によれば、回転開始する瞬間、ラップと鏡板による摺動ロスを減らすという効果を有するスクロール容積型機械を提供することができる。

4. 図面の簡単な説明

第 1 図ないし第 3 図は、本願発明の実施例を示すもので、第 1 図は圧縮機の垂直断面図、第 2 図は第 1 実施例の要部断面図、第 3 図は第 2 実施例の要部断面図である。第 4 図は旋回スクロールの斜視図、第 5 図は従来の実施例の要部断面図、第 6 図はラップの水平断面図である。

100 … 旋回スクロール 102 … 旋回鏡板

(9)

104 … 旋回ラップ	106 … 旋回溝
110 … 固定スクロール	112 … 固定鏡板
114 … 固定ラップ	116 … 固定溝

代理人 弁理士 則 近 康 佑
同 湯 山 幸 夫

第 1 図

圧縮機の垂直断面図

(1)

第 2 図
第1実施例の断面図

第 3 図
第2実施例の断面図

第 4 図

旋回スクロールの斜視図

第 5 図

従来のスクロールの垂直断面図

第 6 図

ラップの水平断面図

第1頁の続き

⑦発明者 両角 尚哉 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝家電
機器技術研究所内
⑦発明者 米山 耕一 神奈川県横浜市磯子区新杉田町8 株式会社東芝生産技術
研究所内
⑦発明者 曽根 順治 神奈川県横浜市磯子区新杉田町8 株式会社東芝生産技術
研究所内
⑦発明者 鈴木 烈 神奈川県横浜市磯子区新杉田町8 株式会社東芝生産技術
研究所内