5. gaia:Memoriak

Erregistro blokea

- Datu bat edo gehiago denboratan mantentzea da memoria funtzionamenduaren oinarria
- Erregistro baten gordetzen da datu bakoitza
- Erregistroaren aktibazioaren bidez, gordetzen den datua aldatu dezakegu
- Irakurtzeko aktibatuko dugu erregistroa, datuari irteerako busera bidea emanez

Erregistro blokea

- Helburu hautespena seinalearen bidez, Datua idazteko busan dagoen datua zein erregistroan idazten den definitzen dugu
- Karga gaitu 1an badago bakarrik burutzen da idazketa
- Zein erregistroko datua A edo B busan agertuko den, Hautespen A edo B seinaleak definitzen du
- Erlojua badago, baina ez dago irudikatuta

Memoriaren bloke-diagrama

- Memorian gorde daiteken datu bakoitza *hitza* deitzen da
- Hitz baten bit kopurua hitz-luzera deitzen da
- Hitz bakoitzari lotzen zaio zenbaki bat, helbidea deitzan dela

Memoria eragiketak:Idazketa/Irakurketa

Idazketa zikloa:

Helbidea eman eta gero, datu busean dagoen datua idatziko da

Irakurketa zikloa:

Helbidea eman eta gero, hori dagokion datua agertuko da datu busean

SRAM gelaxka bitarra

- Bit bakoitza SR flip-flop baten gordetzen da
- Bit hori bakarrik erabili daiteke *Hautatu* seinalea 1ean dagoenean
- Flip-flop hau memoriaren unitate minimoa da → Gelaxka bitarra

Bloke-diagrama

4x4 biteko SRAM memoriaren bloke-diagrama

DRAM gelaxka bitarra

- Kondentsadore baten erabilera informazioa gordetzeko, DRAM memoria dinamikoen oinarria da
- Kondentsadorearen tentsioa 0
 izan arte gutxituz doan legez,
 gelaxkan gordetako datua
 periodikoki berridatzia
 (erreberritzea) izan behar da
- Transistore bat baino ez du behar gelaxka honek, horrexegatk SRAM gelaxka baino txikiago eta simpleago da

Informazioaren atzipena

- RAM random-access memory
 - Ausazkoa
 - Idatzi zein irakurri daiteke
 - Atzipen denbora beti da berdina
- ROM read-only memory
 - Sekuentziala
 - Ez du idazketa onartzen
 - Atzipen denbora azken atzipenaren eta oraingoaren arteko posizioaren funtzio da

Informazioaren mantentzea (1)

- Hegazkorra → elikadura kentzean datuak galtzen ditu
 - Estatikoa (SRAM: Static RAM)
 - Dinamikoa (DRAM : Dinamic RAM)
- Ez-hegazkorra → informazioa mantentzen du elikadurarik ez dagoenean ere
 - NVRAM (Non-volatile RAM)

Informazioaren mantentzea (2)

SRAM

- Elikatuta dagoen bitartean datuak mantentzen ditu
- Oso abiadura handikoa
 Caractia
- Garestia

caché-a

DRAM

- Kapazitate handia prezio baxuan
- Motelagoa
- Dinamikoa → erreberritze beharra datuak mantentzeko

memoria nagusia

Idatzia izateko ahalmena

- Bakarrik irakurketa
 - ROM
 - PROM: *Programable ROM*

Idatzia izateko ahalmena

- Batez ere irakurketa
 - EPROM: Erasable PROM
 - EEPROM: *Electrically EPROM*
 - Flash
- Irakurketa zein idazketa
 - RAM

 V_{DD}

Teknologiak

- Memoria magnetikoak
- Erdieroaleko memoriak
 - Erdieroaletan oinarritutako zirkuitu integratuak (txip batek milioka transistore edo kondentsadore)
 - Hegazkorra / ez-hegazkorra izan daitezke
 - Gaur egungo memoria nagusia erdieroaleko memoria hegazkorra eta dinamikoan datza (DRAM)
- Disko optikoko memoriak

Kapazitatea

- Informazioa *hitzetan*, normalean byte-en multiploak (8, 16, 32, 64) diren bit multzotan, biltegiratzen da
- Memoria unitate baten kapazitatea = biltegira dezaken byte kopurua
- Unitateak biren berrekizunak dira: 2¹⁰=K(kilo), 2²⁰=M(mega), 2³⁰=G(giga)

Memoria Z.I.ak (1)

- Memoria chip baten adibidea:
 - 16 biteko hitzak
 - 10 biteko helbideak (0tik 1023ra)
 - → 2 K byte-eko memoria
 - Hitzak bere helbide hamartarraren bidez ezagutzen dira eta helbide bitarraren bidez hautesten dira
 - Helbide baten atzipena egitean hitzaren 16 bitak irakurri (ez dira aldatzen) edo idazten dira

Memoria Z.I.ak (2)

- Tamaina desberdineko RAM Z.I.ak daude eskuragarri. Kapazitate handiagoa lortzeko → Z.I.-ak konbinatu:
 - Hitz gehiago lortzeko → helbide bit gehiago (helbide bit bat gaineratzean memoriaren kapazitatea bikoizten da)
 - Hitzaren luzera handitzeko datuen S/Iako linea gehiago behar dira (baina helbidearen luzera ez da aldatzen)

Memoria Z.I.ak (3)

- Konbinaketa adibidea:
 - 64 K x 8-ko zirkuitu integratua dugu
 - 256 K x 8-ko memoria nahi da
 - 64 K x 16-ko memoria nahi da