Analyzing Association Between Categorical Variables.

A. Skripnikov¹

¹New College of Florida

IDC 5205

Contingency Table: Example.

Table 11.1 Happiness and Family Income, from 2012 General Social Survey

	Happiness			
Income	Not Too Happy	Pretty Happy	Very Happy	Total
Above average	29	178	135	342
Average	83	494	277	854
Below average	104	314	119	537

Qs:

- Which variable makes more sense as a response? Why?
- Is there an association? Why?

• If there is an association, what is its nature?

Conditional Percentages

Example (cont'd). Having selected **happiness** as the response,

Q: How could we best compare happiness across income levels?

A: Conditional percentages.

Income	Not Too Happy	Pretty Happy	Very Happy	Total
Above average	8%	52%	39%	342 (100%)
Average	10%	58%	32%	854 (100%)
Below average	19%	58%	22%	537 (100%)

Q: Which variable do we condition on? Why?

Task. Comment on observed percentages.

Conditional Bar Charts.

Conditional Distribution of Happiness by Income

These

sample conditional distributions

will be used to make **inferences** about the corresponding **population** conditional distributions.

Independence Versus Dependence (Association).

Q: In conditional proportion tables, what would indicate

- independence of two categorical variables?
- their dependence?

Example.

Gender	Not Too Happy	Pretty Happy	Very Happy	Total
Female	14%	56%	30%	100%
Male	14%	56%	30%	100%
Overall	14%	56%	30%	100%

Source: Data from CSM, UC Berkeley.

Qs:

Is this table indicative of independence or dependence? Why?

Independence Versus Dependence (Association).

Questions (cont'd):

• Was the table on income & happiness indicative of independence or dependence? Why?

Independence and Dependence (Association)

Two categorical variables are **independent** if the population conditional distributions for one of them are identical at each category of the other. The variables are **dependent** (or **associated**) if the conditional distributions are not identical.

Independence Versus Dependence (Association).

Example (cont'd).

• **Q**: If income and happiness variables **were actually independent**, would we expect the **exact** same distribution across categories? Why?

• **Q**: If not, what kinds of <u>count distributions</u> across those categories would we anticipate if **variables were actually independent**?

The latter question is to be answered via significance testing for

 H_0 : {X and Y are independent} vs H_a : {X and Y are dependent},

where it becomes the classic

"If H_0 were true, then the test statistic is distributed as ..."

Significance Test for Independence.

In testing

 H_0 : {X and Y are independent} vs H_a : {X and Y are dependent},

the main idea is to compare the

- observed cell counts in the contingency table, with
- \bullet **expected** cell counts if H_0 were actually true

Expected Cell Counts under H_0 .

Q: How do we calculate **expected** cell counts under H_0 ?

Main idea: Under H_0 : {X and Y are independent}, we expect to have

$$P(A \text{ and } B) = P(A) \times P(B)$$

where A - any event related to variable X; B - any event related to Y.

Example. Let $X = \{\text{Income}\}, Y = \{\text{Happiness}\}, \text{ while the respective }\}$ events are: $A = \{Above-Average Income\}, B = \{Not Too Happy\}.$

To calculate the **expected count** for the (A, B) cell:

- Calculate P(A), P(B).
- 2 Under H_0 , P(A and B) =- the **expected** *probability*.
- **3** Then, the **expected count** for the $A \times B$ cell is

$$n \times$$
 ,

where n - the total sample size.

Expected Cell Counts under H_0 .

Task. Proceed to calculate the expected counts for

Table 11.1 Happiness and Family Income, from 2012 General Social Survey

	Happiness			
Income	Not Too Happy	Pretty Happy	Very Happy	Total
Above average	29	178	135	342
Average	83	494	277	854
Below average	104	314	119	537

Make sure to augment table with column totals & total sample size.

Expected Cell Counts under H_0 .

Using the following notation:

- E_{ij} \iff the expected count for cell (i,j),
- $X = i \iff X$ taking on a value in i^{th} row,
- $Y = j \iff Y$ taking on a value in j^{th} column,

we have:

$$E_{ij} = n \times P(X = i) \times P(Y = j) =$$

where

- $n_{i.}$ is the i^{th} row total,
- $n_{.j}$ is the j^{th} row total.

Expected Cell Count

For a particular cell, the **expected cell count** equals

$$\text{Expected cell count} = \frac{(\text{Row total}) \times (\text{Column total})}{\text{Total sample size}}$$

Chi-Squared Test Statistic.

Chi-Squared Statistic

The chi-squared statistic is an overall measure of how far the observed cell counts in a contingency table fall from the expected cell counts for a null hypothesis. Its formula is

$$X^2 = \sum \frac{(\text{observed count} - \text{expected count})^2}{\text{expected count}}.$$

Qs:

• What is the range of possible values that X^2 can take on? Why?

• What values of X^2 indicate independence ($\Leftrightarrow H_0$ being true) - large or small? Why?

See R code to find X^2 statistic for Happiness/Family Income.

Sampling Distribution of X^2 : Chi-Squared (χ^2) .

Larger X^2 - the greater the evidence against H_0 : {independence}.

Q: How large is "large *enough*" to reject H_0 ?

A: We need to find the probability (p-value) of observing such value of X^2 test statistic (or more extreme) given H_0 were actually true.

For that, we need sampling distribution of X^2 under H_0 .

χ^2 - sampling distribution of X^2 -statistic.

If the following assumptions are satisfied:

- your data constitutes a random sample,
- ② your sample size is **large enough** (all **expected** cell counts are ≥ 5), then X^2 -statistic has **chi-squared** (χ^2) **probability distribution**:

$$X^2 \mid H_0 \sim \chi_{df}^2$$

Properties of χ^2 -distribution.

https://istats.shinyapps. io/ChisqDist/ for demo.

- Always positive. (Why?)
- t-distribution, precise shape of χ^2 depends on degrees of freedom (df) parameter:

$$df = (r-1) \times (c-1),$$

for a $r \times c$ table.

- **3** $E[\chi^2] = df$, $V[\chi^2] = \sqrt{2df}$ "As # of rows & columns increases, X^2 tends to get larger and more varied."
- As df ↑, distribution goes to bell shaped.

Properties of χ^2 -distribution.

Large X^2 provides evidence against independence,

$$p\text{-value} = P(\chi_{df}^2 \ge X^2)$$

▲ Figure 11.4 The P-value for the Chi-Squared Test of Independence. This is the right-tail probability, above the observed value of the X^2 test statistic. Question Why do we not also use the left tail in finding the P-value?

Properties of χ^2 -distribution.

Example. Proceed to conduct χ^2 -test for independence between family income and happiness (see R code for results).

Qs: What are H_0 and H_a ? What's the test statistic? Its distribution (are assumptions satisfied)? How is p-value calculated? What's the conclusion?

Steps of χ^2 -test.

SUMMARY: The Five Steps of the Chi-Squared Test of Independence

Assumptions: Two categorical variables
 Randomization, such as random sampling or a randomized experiment
 Expected count ≥ 5 in all cells (otherwise, use small-sample test in Section 11.5)

2. Hypotheses:

H₀: The two variables are independent.

H_a: The two variables are dependent (associated).

3. Test statistic:

$$X^2 = \sum \frac{(observed\ count\ -\ expected\ count)^2}{expected\ count},$$

where expected count = $(row total \times column total)/total sample size$

- **4. P-value:** Right-tail probability above observed X^2 value, for the chi-squared distribution with $df = (r 1) \times (c 1)$
- 5. Conclusion: Report P-value and interpret in context. If a decision is needed, reject H₀ when P-value ≤ significance level (such as 0.05).

"Fail to Reject H_0 (Independence)" \neq "Accept H_0 ".

Caution

As with any hypotheses test, failing to reject the null hypothesis doesn't mean the variables are definitely independent. All that can be said is that independence is still plausible and can't be ruled out.

Example. Presume for income & happiness example our X^2 were 1.3.

Task. Proceed to

• Calculate the *p*-value.

• Formulate the conclusion about H_0 .

Limitations of the χ^2 -test.

- Presume you get a low p-value, then
 - while you have statistically significant evidence of association,
 - we know nothing about the nature or practical strength of that association.
- 2 χ^2 test is not appropriate whenever
 - Some expected cell counts are **too small** (e.g. < **5**).

OR

- Rows (or columns) represent **dependent** samples (McNemar's test is appropriate here, but we won't cover it in this class).

X^2 Does **NOT** Measure **Strength** of Association.

While X^2 statistic quantifies the **statistical evidence** for association, it **does NOT** quantify the **practical strength** of association.

Example. Below are three hypothetical tables relating gender (expl.) and whether one attends religious services weekly (resp).

	Case A			Case B		Case C		
	Yes	No	n	Yes	No	n	Yes	ľ
Female	51%	49%	100	51%	49%	200	51%	49%
Male	49%	51%	100	49%	51%	200	49%	51%
Chi-squa	red = 0	0.08		Chi-so	quared =	= 0.16	Chi-sq	luared
P-value :	= 0.78			P-valu	1e = 0.6	9	P-valu	ie = 0

X^2 Does **NOT** Measure **Strength** of Association.

Example (cont'd). As sample size n increases $(A \rightarrow B \rightarrow C)$,

What happens to the practical difference between males & females?Why?

• What happens to the X² value? Why?

 \mathbf{Q} : If not X^2 , then how to measure the **strength** of association?

For a 2×2 contingency table, like the ones below:

Group	Yes	No
Placebo	p_1	$1 - p_1$
Regular dose	p_2	$1 - p_2$

	Yes	No	n
Female	51%	49%	100
Male	49%	51%	100

the classical options are:

Opening of proportions:

$$p_1 - p_2$$

Ratio of proportions (AKA Relative Risk):

$$\frac{p_1}{p_2}$$

Example. Below are the results of UCLA's large-scale survey on stress and depression among college freshmen:

Stress		Stress			Depr		
Gender	Yes	No	Total	Gender	Yes	No	Total
Female	44%	56%	100%	Female	11%	89%	100%
Male	20%	80%	100%	Male	6%	94%	100%

Task: Proceed to

- Find and interpret all two measures of association strength between gender & stress, gender & depression.
- Which association is stronger: between gender and stress, or between gender and depression?

Task (cont'd).

Qs:

- What is the range of all possible values for
 - difference of proportions $(p_1 p_2)$,
 - relative risk $\left(\frac{p_1}{p_2}\right)$
- What type of values for difference of proportions represents
 - no association?
 - strong association?
- What type of values for relative risk represents
 - no association?
 - strong association?

Strength of Association in $r \times c$ Tables.

While well-defined in 2×2 tables, how can we measure the association in larger tables?

One option: Pick out a particular response category and compare it across two rows.

Example. We found a large X^2 for the following table:

	Happiness							
Income	Not Too	Pretty	Very					
Above	29 (8%)	178 (52%)	135 (39%)					
Average	83 (10%)	494 (58%)	277 (32%)					
Below	104 (19%)	314 (58%)	119 (22%)					

Task: Interpret the strength of relationship.

Strength of Association in $r \times c$ Tables.

Task (cont'd): Interpret the strength of relationship.

Issue: χ^2 -test relies on the distributional assumption

$$X^2 \mid H_0 \sim \chi_{df}^2$$
,

which only applies in large enough samples.

Q: What to do in case of small samples?

A: Permutation testing.

Example. "Edward Snowden - hero or criminal?" This question was posed to a set of US and International students at Williams college:

	Ор			
Student Status	Hero	Criminal	Neither	Total
U.S.	1	9	2	12
International	5	2	1	8
Total	6	11	3	20

Qs:

- What are the H_0 and H_a hypotheses here?
- 2 Can we use χ^2 test? Why?
- **3** How can we construct the permutation distribution of X^2 statistic under the H_0 hypothesis being true?
- How can we judge whether the observed value of 6.9 is extreme and find the **permutation** *p*-value?

Slide for your notes. Please see R code and refer to in-class discussion.

Slide for your notes. Please see R code and refer to in-class discussion.

