Versuch 2: Interferometer

Team 4-11: Jascha Fricker, Benedict Brouwer

9. März 2023

Inhaltsverzeichnis

1	Einleitung	2
2	Theorie	2
	2.1 Ganghöhenbestimmung	2
	2.2 Brechungsindex Luft	2
	2.3 Brechungsindex Plexiglas	2
3	Ergebnisse	3
	3.1 Ganghöhe	3
	3.2 Brechungsindex Luft	3
4	Ergebnisse	3
5	Diskussion	3

1 Einleitung

Interferometer werden im der Messtechnik für viele verschiedene Aufgaben benutzt. Das Micherlson-Interferometer ist eines der bekanntesten Arten von Interferometer, welches unter anderem beim Michelson-Morley Experiment zum Bestimmung der Äther-Geschwindigkeit benutzt wurde. In diesem Versuch benutzen wir es um den Brechungsindex von Plexiglas und Luft zu bestimmen.

2 Theorie

2.1 Ganghöhenbestimmung

Mithilfe der Formeln

$$\Delta s = \frac{N \cdot \lambda}{2} \tag{1}$$

4 kann man die Verschiebung des Spiegels Δs durch die Anzahl der Maxima N und berechnen. Für die Ganghöhe wollen wir den Abstand pro Einheit

$$g = \frac{\Delta s}{\Delta x} = \frac{N\lambda}{2\Delta x} \tag{2}$$

haben, wobei x Anzahl der Umdrehungen ist.

2.2 Brechungsindex Luft

Mit folgenden Formeln sind Brechunginde
xn, Druck pund Anzahl gezählter Maxim
a ${\cal N}$ verknüpft

$$N \cdot \lambda = 2l \cdot \Delta n \tag{3}$$

$$n = 1 + \frac{\chi}{T}p\tag{4}$$

$$N \cdot \lambda = 2l \cdot \frac{\chi}{T} \Delta p \tag{5}$$

wobei l die Länge der evakuierbaren Kammer ist.

2.3 Brechungsindex Plexiglas

Durch Drehung der Plexiglsscheibe mit Dicke d um Winkel α kann der Brechungsindex n bestimmt werden.

$$N \cdot \lambda = 2 \cdot h \cdot \left(1 - n - \cos(\alpha) + \sqrt{n^2 - \sin^2(\alpha)}\right) \tag{6}$$

$$tan(\alpha) = \frac{x+c}{d} \tag{7}$$

wobei N die Anzahl an Maxima x die Länge der Schraube und d der Abstand der Schraube vom Drehpunkt ist.

Abbildung 1: Druckabhängigkeit Brechungindex

3 Ergebnisse

3.1 Ganghöhe

Aus den gemessenen Daten lässt sich eine Ganghöhe des Spiegels von

$$g = 19.03(9)$$
nm (8)

pro Einheit Schraubendrehung bestimmen. Als Fehler wurden wegen der analogen Messung eine Ungenauigkeit von 0.21 Einheiten angenommen.

3.2 Brechungsindex Luft

Durch einen Fit der Formel 4, wie im Graphen ?? gezeigt, kann die Proprtionalitätskonstante

$$\chi = 7,52(11) \cdot 10^{-10} \text{K Pa}^{-1} \tag{9}$$

bestimmt werden. Berücksichtigt wurden Unsicherheiten beim Luftdruck und bei der Temperatur.

4 Ergebnisse

5 Diskussion