

物理化学实验报告

题目: 双液体系沸点-成分图的绘制

姓	名:	王梓涵		
学	号:	2100011837		
组	别:	22 组		
实验日期:		2023.11.23		
室	温:	292.85 K		
大气压强:		102.38 kPa		

摘 要 本实验测量了一系列乙醇-环己烷标准溶液的折射率,作出了乙醇质量分数 x 乙醇与折射率 n 的标准工作曲线。通过回流冷凝法测定了不同浓度乙醇-环己烷体系的沸点和气相、液相折射率,计算了各平衡沸点下的两相组成,绘制了乙醇-环己烷体系沸点-成分图,确定了恒沸点 $t_b = 65.03 \sim 65.45$ °C,组成为 $\chi_{\text{EtOH}} = 0.307 \sim 0.310$ 。讨论了此实验可能引入误差的位置并讨论了改进方案。

关键词 乙醇-环己烷体系,沸点-成分图,回流冷凝法,折射率,工作曲线

1 引言

1.1 实验目的

本实验的实验目的主要有以下几点1:

- 1. 测定不同浓厚的环己烷-乙醇体系的沸点和气、液两项的平衡成分。
- 2. 绘制沸点-成分图, 并确定体系的最低恒沸点和组成。
- 3. 掌握阿贝折射仪的使用方法。

1.2 实验原理和实验方法

实验原理和实验方法在实验预习报告中如图1所示:

图 1 实验预习报告的实验原理部分

Fig. 1 The principle part of the experiment in the experiment preview report

2 实验部分

2.1 仪器和试剂

仪器: 恒沸点仪,阿贝折射仪,变压器, 4Ω 电阻丝,1/10 刻度温度计,试管,小滴瓶,1 mL 移液管,5 mL 移液管,20 mL 移液管,蒸馏烧瓶。

试剂: 环己烷 (AR), 乙醇 (AR);

2.2 实验内容1

本实验的实验操作如下所示,其中笔者的思考和具体实验中的不同操作会在括号中写出。

2.2.1 测量纯乙醇和环己烷的折射率

用丙酮清洗阿贝折射仪的,调节使得明暗交界面清晰。分别滴加 AR 乙醇和 AR 环己烷,测量其折射率。

2.2.2 测量纯乙醇和沸点和气、液折射率

按照**图 2** 装好仪器,温度计的水银球 1/2 浸入液体内,冷凝管内通入冷水。将电阻丝接在输出电压 12.6 V 的变压器上,使温度升高并沸腾。待温度稳定后数分钟,记下温度及大气压。切断电源,用两支干净的滴管,分别取出支管处的气相冷凝液和蒸馏瓶中的液体几滴,使用阿贝折射仪测定其折射率。

图 2 实验室自制恒沸点仪

Fig. 2 Laboratory self-made constant boiling point instrument

2.2.3 沸点和两相成分的测定

沿用 2.2.2 中的体系,向蒸馏瓶中加入 1 mL 环己烷,按 2.2.2 中方法测定平衡沸点 t_b 及气相折射率 n^g 、液相折射率 n^l (与 2.2.2 不同,混合体系测量折射率一定要快。因为在测量温度下环己烷的挥发要快于乙醇,这会导致测量过程中折射率会逐步减小,即向乙醇靠近。本人实测,以 1: 1 的乙醇/环己烷为例,每隔 30s 折射率数值下降约 0.05)。测量完成后再依次加入 1.00 mL、2.00 mL、3.00 mL、3.00 mL、4.00 mL、5.00 mL 环己烷,记录液体组成,进行同样的实验。

上述实验结束后,回收母液,再用少量环己烷洗 $3 \sim 4$ 次蒸馏瓶,注入 $20.00\,$ mL 环己烷,再装好仪器。先测定纯环己烷的沸点,然后依次加入 $0.20\,$ mL、 $0.20\,$ mL、 $0.50\,$ mL $0.50\,$

2.2.4 标准工作曲线绘制

洗净并烘干 6 个小滴瓶,冷却后准确称量其质量 m_0 。用带刻度的移液管分别加入 1.00 mL、 2.00 mL、 3.00 mL、 4.00 mL、 5.00 mL、 6.00 mL、 7.00 mL、 8.00 mL 乙醇,分别称量其质量 m_1 ,再依次分别加入 8.00 mL、 7.00 mL、 6.00 mL、 5.00 mL、 4.00 mL、 3.00 mL、 2.00 mL、 1.00 mL 环己烷,再分别称量其质量 m_2 ,旋紧盖子后摇匀。在恒温 t=30.0 °C 下分别测定这些样品的折射率 n。(在实际过程中,溶剂会由整个小组的同学共同配置,本人配置的溶液为乙醇/环己烷 =2: 7 的溶液。为保证测量平行性,每人会分别用自己台面上的折射仪测量折射率)

3 数据与结果

3.1 实验数据处理与分析

3.1.1 标准工作曲线的绘制

记录加入乙醇体积 V_{EtOH} 、加入环己烷体积 V_{Cy} ,称量小滴瓶空瓶质量 m_0 、加入乙醇后质量 m_1 、加入环己烷后质量 m_2 。宜春的质量分数可由下式计算得到:

$$\chi_{\text{EtOH}} = \frac{m_1 - m_0}{m_2 - m_0}$$

在恒温 t = 30.0 °C 下分别测定这些样品及纯乙醇、纯环己烷的折光率 n, 结果如**表 1** 所示:

表 1 不同浓度乙醇-环己烷溶液的配制及折射率测定实验数据

Table 1 Preparation of EtOH-Cy solution and experimental data of refractive index

编号	$V_{ m EtOH}/{ m mL}$	$V_{ m EtOH}/{ m mL}$	$m_0/{ m g}$	m_1/g	$m_2/{ m g}$	$\chi_{ m EtOH}$	n
纯 Cy						0.0000	1.4209
1	1.00	8.00	28.5609	29.3394	35.5132	0.1120	1.4127
2	2.00	7.00	28.8807	30.4609	35.8635	0.2263	1.4040
3	3.00	6.00	33.1372	35.4767	40.1103	0.3355	1.3960
4	4.00	5.00	35.5170	38.6509	42.4492	0.4521	1.3881
5	5.00	4.00	27.3235	31.2277	34.3287	0.5573	1.3805
6	6.00	3.00	32.6557	37.3339	39.6379	0.6700	1.3734
7	7.00	2.00	32.1465	37.6582	39.2040	0.7810	1.3676
8	8.00	1.00	32.3848	38.6301	39.3847	0.8922	1.3627
纯 EtOH						1.0000	1.3575

根据**表 1** 数据,作出 $n - \chi_{EtOH}$ 关系的散点图,并用 origin 进行二次拟合(**不使用线性**

拟合的合理性将在实验讨论部分分析),作出乙醇-环己烷体系的 $n-\chi_{EtOH}$ 工作曲线,如**图 3** 所示。

图 3 乙醇-环己烷体系 $n-\chi_{\rm EtOH}$ 标准工作曲线 Fig. 3 $n-\chi_{\rm EtOH}$ Standard working curve of ethanol-cyclohexane system

得到的拟合曲线的方程为:

$$n = (0.01945 \pm 0.002)\chi_{\text{EtOH}}^2 - (0.084 \pm 0.002)\chi_{\text{EtOH}} + (1.4215 \pm 0.0004), \ R^2 = 0.99936$$

根据**图 3** 可以看出,二次函数拟合得到 $n-X_{EtOH}$ 工作曲线收到了很好的效果,各个数据点基本落在拟合曲线上,因此可以作为可靠的工作曲线使用。

3.1.2 乙醇-环己烷溶液沸点及其两相折射率的测量

先测定乙醇中加入环己烷体系的平衡沸点 t_b 及气相折射率 n^g 、液相折射率 n^l ,记录液体的组成,记录于**表 2**。上述实验结束后,回收母液,再用少量环己烷洗 $3\sim 4$ 次蒸馏瓶,注入 $20.00\,$ mL 环己烷,再装好仪器。先测定纯环己烷的沸点,再分别测定加入不同量乙醇后的平衡沸点 t_b 及气相折射率 n^g 、液相折射率 n^l ,同样记录于**表 2** 中。

对于每种组成的体系,气相和液相分别平行测量三次,其平均值 \bar{n}_l 和 $\bar{n_g}$ 计算如下:

$$\bar{n_l} = \frac{1}{3} \sum_{i=1}^{3} n_i^l$$

$$\bar{n_g} = \frac{1}{3} \sum_{i=1}^{3} n_i^g$$

得到的结果如表2所示。

表 2 不同浓度乙醇-环己烷溶液的配制及折射率测定实验数据
Table 2 Preparation of EtOH-Cy solution and experimental data of refractive index

编号	$V_{ m EtOH}/{ m mL}$	$V_{ m EtOH}/{ m mL}$	$T_b/^{\circ}\mathrm{C}$	n_1^g	n_2^g	n_3^g	n_1^l	n_2^l	n_3^l	$ar{n_l}$	$ar{n_g}$
0	20	0	78.42	1.3569	1.3570	1.3569	1.3575	1.3575	1.3574	1.3575	1.3569
1	20	1	75.93	1.3699	1.3697	1.3691	1.3595	1.3595	1.3595	1.3595	1.3696
2	20	2	74.05	1.3766	1.3765	1.3764	1.3610	1.3611	1.3607	1.3609	1.3765
3	20	4	73.02	1.3784	1.3886	1.3812	1.3653	1.3650	1.3653	1.3652	1.3827
4	20	7	68.79	1.3920	1.3925	1.3925	1.3680	1.3690	1.3687	1.3686	1.3923
5	20	10	66.79	1.3945	1.3950	1.3940	1.3745	1.3745	1.3740	1.3743	1.3945
6	20	14	65.84	1.3950	1.3960	1.3965	1.3800	1.3805	1.3810	1.3805	1.3958
7	20	19	65.60	1.3973	1.3978	_	1.3865	1.3866	1.3870	1.3867	0.9317
0	0	20	80.85	1.4209	1.4209	1.4209	1.4210	1.4209	1.4209	1.4209	1.4209
1	0.2	20	78.37	1.4209	1.4205	1. 4 207	1.4208	1.4208	1.4208	1.4208	0.9388
2	0.4	20	75.52	1.4030	1.4029	_	1.4199	1.4199	1.4197	1.4198	0.9353
3	0.9	20	68.7	1.4000	1.3997	1.4001	1.4190	1.4187	1.4192	1.4190	1.3999
4	1.4	20	66.86	1.3994	1.3990	1.3997	1.4160	1.4165	1.4163	1.4163	1.3994
5	3.4	20	65.48	1.3984	1.3985	1.3980	1.4080	1.4085	1.4080	1.4082	1.3983
6	8.4	20	65.23	1.3975	1.3974	1.3980	1.3974	1.3974	1.3975	1.3974	1.3976
7	14.4	20	65.44	1.3968	1.3970	1.3975	1.3892	1.3895	1.3893	1.3893	1.3971

可以注意到,其中部分气相数据并未平行记录三次,其原因由以下两点:

- 1. **液相量不足**:在实际测量过程中,气相收集的液体较少,因此有时收集的液体不足以测量三次。
- 2. **最后一组数值不准**:为了尽快完成实验,实验者会在温度降至约 50°*C* 时就开始取气相进行测量,这会导致气相中的环己烷快速挥发,导致第三个点测量的值偏离较大。

3.2 数据处理结果与分析

3.2.1 气液平衡时液相、气相组成计算

根据**图 3** 二次函数插值得到的 $n - \chi_{EtOH}$ 标准工作曲线,将**表 2** 中的液相折射率 \bar{n}_l 、气相折射率 \bar{n}_g 换算成对应的液相中乙醇质量分数 χ_{EtOH}^l 、气相中乙醇质量分数 χ_{EtOH}^g ,结果如**表 3** 所示。

3.2.2 乙醇-环己烷体系沸点-气、液成分图

近似认为实验过程中大气压恒为 p=102.38 kPa,溶液沸点在恒定压强下测得。根据 **表 3** 数据,以气相、液相中乙醇质量分数 χ_{EtOH} 为横坐标,平衡沸点 t_b 为纵坐标,绘制乙醇-环己烷体系的沸点-成分图,如**图 4** 所示。

	表 3	乙醇-环己烷体系气液平衡时液相、	气相组成计算数据
--	-----	------------------	----------

Table 3 Calculation data of liquid and gas phase composition of EtOH-Cy at gas-liquid equilibrium

编号	$t_b/^{\circ}\mathrm{C}$	$ar{n_l}$	$\chi^l_{ ext{EtOH}}$	$ar{n_g}$	$\chi_{ ext{EtOH}}^g$
0	78.42	1.3575	1.000	1.3569	1.000
1	75.93	1.3595	0.9120	1.3696	0.7252
2	74.05	1.3609	0.8838	1.3765	0.6092
3	73.02	1.3652	0.8032	1.3827	0.5116
4	68.79	1.3686	0.7427	1.3923	0.3716
5	66.79	1.3743	0.6445	1.3945	0.3414
6	65.84	1.3805	0.5459	1.3958	0.3231
7	65.60	1.3867	0.4524	1.3976	0.2998
0	80.85	1.4209	0.000	1.4209	0.000
1	78.37	1.4208	0.0082	1.4083	0.1604
2	75.52	1.4198	0.0195	1.4030	0.2282
3	68.7	1.4190	0.0298	1.3999	0.2679
4	66.86	1.4163	0.0619	1.3994	0.2754
5	65.48	1.4082	0.1615	1.3983	0.2897
6	65.23	1.3974	0.3014	1.3976	0.2987
7	65.44	1.3893	0.4142	1.3971	0.3059

根据**图 4**,读出乙醇-环己烷体系的恒沸点为 $t_b = 65.03 \sim 65.45$ °C,组成为 $\chi_{EIOH} = 0.307 \sim 0.310$ 。查阅 *CRC Handbook of Chemistry and Physics*²,知乙醇-环己烷体系在近常压 $p_0 = 102.26$ kPa 下的恒沸点为 $T_b = 337.95$ K 即 $t_b = 64.80$ °C,质量分数为 $\chi_{EIOH} = 0.3128$ 。

图 4 乙醇-环己烷体系沸点-气、液成分图

Fig. 4 Boiling point-gas and liquid phase composition diagram of ethanol-cyclohexane system

可见实验测得乙醇-环己烷体系的恒沸点与组成均与文献参考值接近,说明实验测量结果较为可靠。

4 讨论与结论

4.1 实验讨论

4.1.1 标准工作曲线的拟合方式

在文中,实验者使用了使用二次函数插值作出乙醇-环己烷体系的 $n-\chi_{EtOH}$ 工作曲线,而非线性曲线。这里将结合理论推导作一简要分析为什么 $n-\chi_{EtOH}$ 标准工作曲线不具有线性的形式。

查阅文献可知³,在一定温度下,物质的折射率 n 与摩尔浓度 c 呈线性关系,即:

$$n = kc + A$$

其中,理论上 A = 1,k 为与入射光波长 λ 及物质本身性质有关的常数。假设实验中实际的 乙醇-环己烷体系仅由乙醇、环己烷两相组成,则理论上的折射率为:

$$n = k_1 c_{EtOH} + k_2 c_{Cy} + A$$

因 k_1 、 k_2 仅与物质自身的性质相关,而 c_{Cy} 与 c_{EtOH} 受到偏摩尔体积的影响,随两种组分的比例变化而变化,无法使用一个确切的函数描述。可由下式表示:

$$c_{Cy} = \frac{n_{Cy}}{n_{Cy}(\frac{\partial V}{\partial n})_{n,T,P} + n_{EtOH}(\frac{\partial V}{\partial n})_{n,T,P}}$$

若以摩尔分数 x_{Cy} 表示则有:

$$c_{Cy} = \frac{x_{Cy}}{x_{Cy}(\frac{\partial V}{\partial n})_{n,T,P} + (1 - x_{Cy})(\frac{\partial V}{\partial n})_{n,T,P}}$$

此曲线为一个凸函数,无法用线性函数拟合,因此实验者使用二次函数拟合。

4.1.2 体系难以平衡

在实验过程中,实验者发现乙醇-环己烷体系很难达到平衡,体系的温度呈现阶梯状上升,而且再接近平衡温度时会有一定幅度的波动。产生这一现象的原因可能是由于加热用的电阻丝位于蒸馏烧瓶底部,且整个系统保温较差,蒸馏烧瓶内存在自下而上的温度梯度,靠近电阻丝的部分温度较高,而远离电阻丝的冷凝管处温度显著较低,且冷凝管内也存在自下而上的温度梯度,产生了一定的分馏现象。

同时为了接取气相组分,液体在回流时会先在凹陷处汇聚。由此形成液滴的表面张力 会阻止液体顺畅的回流,使得体系长时间处于介稳态无法真正达到平衡。

4.2 误差讨论

笔者认为本次实验中误差可能来源于以下几个方面:

4.2.1 环己烷的快速挥发

在实验过程中,环己烷的挥发速率远大于乙醇,因此在测量过程中,环己烷的挥发会导致体系中环己烷的浓度逐渐降低,从而导致测量的折射率偏小。为了探究此挥发到底对结果影响有多大,实验者在等待蒸发体系平衡的间隙进行了实验,步骤如下:

- 1. 利用废液缸配置浓度约为1: 1的乙醇/环己烷溶液。
- 2. 将溶液滴于阿贝折射仪上,使其暴露在空气中,经过不同的时间间隔后,测量其折射率。

实验结果如表4所示。

表 4 乙醇-环己烷溶液在空气中的折射率变化
Table 4 Refractive index change of ethanol-cyclohexane solution in air

序号	时间 T/s	折射率 n
1	0-5(立即测量)	1.3855
2	10	1.3790
3	20	1.3733
4	30	1.3704
5	60	溶液干了

可以注意到,随着时间的增加,溶液的折射率逐渐降低,这说明环己烷的挥发确实会导致溶液的折射率降低,从而导致实验结果偏小。在实际操作中,若认为取溶液的时间平均为10s则其引入的误差为:

$$\Delta n = \frac{1.3855 - 1.3790}{1.3855} = 4.7\%$$

考虑到试剂取溶液时温度更高,引入的误差可能更大。

4.2.2 取溶剂时的温度降低

在实验过程中,实验者会在温度降至约 $50^{\circ}C$ 时就开始取气相进行测量,这回破坏原有的气液平衡,使得液相组分发生变化,从而引入误差。

但考虑到本实验装置中气相的体积较小,根据理想气体状态方程:

$$pV = nRT$$

当 T = 323K, P = 102.38kPa 时, 设实验装置中气相的体积约为 0.05 L, 此时 PV/RT = 0.002 mol, 因此气相中的物质可以忽略不计。考虑到在较高温时取液会显著增大 **4.2.1** 中所提及的误差,可认为降低温度再取液的方案是合理的。

4.2.3 实验的改进

笔者认为本实验可以改进的地方有:

- 1. **使用电热套加热**:这样可以使得整个系统的温度更加均匀,减少温度梯度,从而加快体系达到平衡的速度。
- 2. **使用更加数字化的测量方式**:本实验中使用的阿贝折射仪需要手动读数,这样会引入 较大的人为误差,可以使用更加数字化的测量方式,如数字折射仪等。

4.3 实验结论

本实验测量了一系列乙醇-环己烷标准溶液的折射率,作出了乙醇质量分数 x 乙醇与折射率 n 的标准工作曲线。通过回流冷凝法测定了不同浓度乙醇-环己烷体系的沸点和气相、液相折射率,计算了各平衡沸点下的两相组成,绘制了乙醇-环己烷体系沸点-成分图,确定了恒沸点 $t_b=65.03\sim65.45$ °C,组成为 $\chi_{\rm EtOH}=0.307\sim0.310$ 。讨论了此实验可能引入误差的位置并讨论了改进方案。

5 Supporting Information

本实验所有的原始数据、python代码、实验报告的LaTeX源代码均可在https://github.com/wzhstat/Physical_Chemistry_Experiments找到。

参考文献

- [1] 北京大学化学与分子工程学院物理化学实验教学组. 物理化学实验. 2023.
- [2] William M Haynes. CRC handbook of chemistry and physics. CRC press, 2014.
- [3] Thomas Günter Mayerhöfer, Alicja Dabrowska, Andreas Schwaighofer, Bernhard Lendl, and Jürgen Popp. Beyond beer's law—why the index of refraction depends (almost) linearly on concentration. *ChemPhysChem*, 2020.