Probabilistic and Statistical Modeling

Vasilis Gkolemis

ATHENA RC — HUA

June 2025

© Vasilis Gkolemis, 2025. Licensed under CC BY 4.0.

Contents

Recap

Helping Material

Primer on Probabilistic Modeling

https://www.inf.ed.ac.uk/teaching/courses/pmr/22-23/assets/notes/probabilistic-modelling-primer.pdf

Session 1 - Recap

• What we covered:

- Probabilistic Modeling: Model real-world phenomena using probabilities.
- Probabilistic Reasoning (Inference): Use known probabilities to infer unknowns.
- ▶ Bayesian Analysis: Modeling and Reasoning with Bayes' rule.
- ▶ Core Rules of Probability: The sum, product and Bayes' rule.
- Example: Alzheimer's diagnostic test.

• What's still to explore:

- ▶ Our example was simple; two 1*D* random variables were enough:
 - ★ X: the test result
 - ★ Y: the disease status
- Real-world problems are much more complex
 - ★ Involve more random variables and of higher dimensions.

Session 2 - Recap

What we covered:

- Multivariate Random Variables and Distributions:
 - ★ PDFs, PMFs and CDFs
 - ★ Key properties: expectation and variance.
 - ★ How to sample from these distributions.
 - Key-distributions: Bernoulli, Normal, Poisson.
- We now have powerful tools to model complexity!

• What's still to explore:

- How to use RVs and their properties to draw conclusions about real-world phenomena in a principled and unified way?
- The Bayesian framework is a good way to do that.

Session 3 – Overview

• What we'll explore:

- ► The Bayesian Framework
- Key Ingredients:
 - * Prior Distribution: Our belief before seeing the data.
 - Likelihood: How compatible is the observed data is with different parameter values.
 - ★ Posterior Distribution: Our updated beliefs after observing the data.
 - * Predictive Distribution: Make predictions about new, unseen data.

• What you should already know:

- ► The intuition behind probabilistic modeling Alzheimer's test case (Session 1)
- ► Core probability rules: sum, product, and Bayes' rule (Session 1)
- ► Handle multivariate distributions and apply their properties (Session 2)