44.186

Quantitative vs Qualitative

Portfolio Performance Analysis – FNCE 443

> Michael Holowatuk Rylan Laplante Ali Radwan Jonah Pandarinath Tanner William

Investment Objective

Successfully hedge the price of oil Goal For the 1-month period of November 2022 Timeline Without using margin or shorting securities Constraints By concentrating on negatively correlated securities Strategy

Strategy Overview

Portfolio Performance (Benchmark)

Portfolio Performance (Quant Model)

Portfolio Performance (Qualitative Securities)

Portfolio Performance (Portfolio)

Portfolio Performance (Rebalancing)

Portfolio Performance

Improvements

Factor Analysis

Rebalancing

Important News Events

Improvements

Portfolio Performance

Factor Analysis

Rebalancing

Important News Events

Market Anomalies

Historical data suggests that Biotech stocks are negatively correlated with the price of Oil

During the month of November, Biotech stocks were found to be positively correlated to the price of oil

This negatively impacted the performance of our portfolio relative to our benchmark because our expectations / assumptions were wrong for the month

Market Anomalies

Industry	Weight	
Biotechnology & Medical Research	29.62%	
Freight & Logistics Services	14.84%	
Residential & Commercial REIT	14.84%	
Passenger Transportation Services	14.84%	
Banking Services	6.99%	
Electronic Equipment & Parts	6.87%	
Specialty Retailers	5.36%	
Software & IT Services	5.34%	
Financial Technology (Fintech) & Infrastructure	0.60%	
Healthcare Equipment & Supplies	0.44%	Passenger Transportation
Electrical Utilities & IPPs	0.07%	Services
Investment Banking & Investment Services	0.07%	
Household Goods	0.07%	
Hotels & Entertainment Services	0.07%	

Market Anomalies

What could have been done better?

Longer historical data in Optimized weighting Beta instead of Overfit Data selection correlations maximization strategy Weighting over multiple Negative correlation is Weekly Frequency **Blind Test** time frequencies built into the beta Suspiciously high monthly 50 weeks cut off is too Increasing time frames for Optimizing by beta correlation in blind test all frequencies weights short Ideally 150 weeks Optimize for a Sharpe ratio of 0 assuming shorting the minimum of data in search benchmark to purchase the portfolio Portfolio Performance Measurability Rebalancing **Improvements Factor Analysis** 14

Multi-Factor Analysis

Key Takeaways

Portfolio was minorly affected by Oil movements

Statistical Significance

Portfolio Performance

Improvements

Factor Analysis

Rebalancing

Multi-Factor Equation

Multiple Linear Regression Equation

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

Equation Explanation

 $y_{intercept}$

- $+\beta_{Small\ Cap}x_{Small\ Cap}$
- $+\beta_{Oil}x_{Oil}$
- <u>+unexplained error</u>

 $Port_{Daily\ Return}$

Portfolio Performance

Improvements

Factor Analysis

Rebalancing

Multi-Factor Prediction

Multi Factor Analysis Linear Equation

1 year, daily data

Portfolio's Beta compared to MVR

1.03

Portfolio's Alpha

-0.373%

Portfolio Performance

Improvements

Factor Analysis

Rebalancing

Rebalancing

Companies Sold

Company	Market Value Sold	13 Day Daily Correlation	Realized Gain/Loss	
BLFY	\$ 73,665.09	0.505	\$ 3,764.7	3
FIGS	\$ 45,917.08	0.677	-\$ 6,222.0	4
MKFG	\$ 39,813.57	0.783	-\$ 18,889.6	5
VIR	\$ 36,365.40	0.699	\$ 5,965.5	6
DIBS	\$ 10,965.45	0.628	-\$ 927.1	6
MQ	\$ 3,226.95	0.540	-\$ 409.0	5
RBOT	\$ 2,676.96	0.596	-\$ 285.1	2
PWP	\$ 828.24	0.547	\$ 140.0	7
COUR	\$ 758.45	0.552	\$ 69.3	0
NUVL	\$ 704.00	0.632	\$ 18.9	2
MTTR	\$ 698.36	0.639	\$ 11.0	5

Companies Purchased

Company	Market Value Purchased	Shares Purchased
LMT	\$ 107,730.56	224
DAL	\$ 107,961.42	3154

Portfolio Performance

Improvements

Factor Analysis

Rebalancing

Rebalancing Performance

Key Takeaways

Rebalance was not material to performance

\$129.35 of transaction costs occurred during the rebalance

Both portfolios had a negative correlation with our benchmark for the month

Rebalancing Impact

Key Takeaways

Beta: 1.10

Alpha: 0.0045%

Negligible impact of rebalance

Expected Performance Performance Success Monthly correlation of Monthly Correlation near Expectation met Base Case 0.00 -0.197 Monthly Correlation Monthly correlation of **Better Case** Expectation not met between -0.50 and -1.00 -0.197Daily correlation near 0.00 Daily correlation of 0.567 **Best Case** Expectation not met or slightly negative

Factor Analysis

Measurability

22

Rebalancing

Portfolio Performance

Improvements

Expected Performance

Portfolio	Monthly Correlation	Weekly Correlation	Daily Correlation	
Portfolio	-0.196	0.732	0.568	
Quantitative Model	0.474	0.803	0.552	
Qualitative Selection	-0.940	0.107	0.520	
No Rebalance	-0.254	0.771	0.579	
Portfolio Performance Improvements Factor Analysis Rebalancing Measurability 23				

Proxy Monthly Correlation

Correlation Formula Issue

$$Correlation = \frac{covariance.s(Return\ Port, Return\ Benchmark)}{variance.s(Return\ Benchmark)}$$

variance.
$$s(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - E(X))^2$$

Proxy Correlation Formula

$$Proxy\ Correlation = \frac{min\{|Return\ Port|, |Return\ Benchmark|\}}{max\{|Return\ Port|, |Return\ Benchmark|\}} \times sign(Return\ Port\ \times Return\ Benchmark)$$

Questions?

