

MedCLIP: Contrastive Learning from Unpaired Medical Images and Text

Zifeng Wang, Zhenbang Wu, Dinesh Agarwal, Jimeng Sun

Medical Imaging & Intelligent Reality Lab. Convergence Medicine/Radiology, University of Ulsan College of Medicine Asan Medical Center

Jihoon Jung

UNIVERSITY OF ULSAN COLLEGE MEDICINE

www.mi2rl.co

Abtract

- Existing vision-text contrastive learning like CLIP (Radford et al., 2021) aims to match the paired image and caption embeddings while pushing others apart.
- Previous method limitation in medical domain
 - 1. medical image-text datasets are orders of magnitude below the general images and captions from the internet.
 - 2. previous methods encounter many false negatives, i.e., images and reports from separate patients probably carry the same semantics but are wrongly treated as negatives.
- Novelty
 - 1. we decouple images and texts for multimodal contrastive learning.
 - 2. We also propose to replace the InfoNCE loss with semantic matching loss based on medical knowledge to eliminate false negatives in contrastive learning.

- The issues with adopting the CLIP model for the medical domain.
 - 1. CLIP's (Radford et al., 2021) **data-hungry nature** :

 CLIP is trained on a dataset of 400M image-text pairs collected from the internet
 - 2. Specificity of medical images and reports: compared to general domains: the differences within medical domains are more subtle and fine-grained

Challenges

- Limited usable data:
 - ✓ Most medical image datasets only provide the diagnostic labels instead of the raw reports.
 - ✓ However, Previous methods need paired image and reports, leaving a vast number of medical image-only and text-only datasets unused.

Challenges

- False negatives in contrastive learning :
 - ✓ Previous methods try to push images and texts embeddings from different patients apart.
 - ✓ However, even though some reports do not belong to the target patient's study, they can still describe the same symptoms and findings.
 - ✓ Simply treating the other reports as negative samples brings noise to the supervision and confuses the model.

Contribution

- Decoupling images and texts for contrastive learning :
 - ✓ We extend the pre-training to cover **the massive unpaired images and texts datasets**, which scales the number of training data in a combinatorial manner.
 - ✓ It opens a new direction to expand multi-modal learning based on medical knowledge.
- Eliminating false negatives via medical knowledge.
 - ✓ We observe that images and reports from separate patients' studies may carry the same semantics but are falsely treated as negatives by previous methods.
 - ✓ Hence, we design a **soft semantic matching loss** that uses **the medical semantic similarity** between each image and report as the supervision signal.
 - ✓ This approach equips the model with the ability to capture the subtle yet crucial medical meanings.

Contribution

- Decoupling images and texts for contrastive learning :
 - ✓ We extend the pre-training to cover **the massive unpaired images and texts datasets**, which scales the number of training data in a combinatorial manner.
 - ✓ It opens a new direction to expand multi-modal learning based on medical knowledge.
- Eliminating false negatives via medical knowledge.
 - ✓ We observe that images and reports from separate patients' studies may carry the same semantics but are falsely treated as negatives by previous methods.
 - ✓ Hence, we design a **soft semantic matching loss** that uses **the medical semantic similarity** between each image and report as the supervision signal.
 - ✓ This approach equips the model with the ability to capture the subtle yet crucial medical meanings.

- In this section, we present the technical details of MedCLIP following the flow in Fig. 3.
- MedCLIP consists of 3 components
 - 1. vision and text encoders that extracts embeddings
 - 2. knowledge extraction that builds the semantic similarity matrix
 - 3. semantic matching loss that trains the whole model.

Vision and Text Encoder

- MedCLIP consists of one visual encoder and one text encoder.
- Vision Encoder.
 - a) We encode images into embeddings $\mathbf{v} \in \mathbb{R}^{\mathbf{p}}$ using a vision encoder \mathbf{E}_{imq} .
 - b) A projection head then maps raw embeddings to $\mathbf{v}_p \in \mathbb{R}^{\mathbf{p}}$.

$$\mathbf{v} = E_{img}(\mathbf{x}_{img})$$
 $\mathbf{v}_p = f_v(\mathbf{v})$

• where $\mathbf{f}_{\mathbf{v}}$ is the projection head of the vision encoder.

Vision and Text Encoder

- MedCLIP consists of one visual encoder and one text encoder.
- Text Encoder.
 - a) We create clinically meaningful text embeddings $\mathbf{t} \in \mathbb{R}^{\mathbf{M}}$ by a text encoder.
 - b) We project them to $\mathbf{t}_p \in R^{\mathbf{p}}$ as

$$\mathbf{t} = E_{txt}(\mathbf{x}_{txt})$$

$$\mathbf{t}_p = f_t(\mathbf{t})$$

• where $\mathbf{f_t}$ is the projection head and $\mathbf{E_{txt}}$ denotes the text encoder.

Decouple Image-Text Pairs with Medical Knowledge Extractor

- Paired medical image text datasets are orders of magnitude less than the general paired image text (e.g., from the internet)
- To enhance medical multi-modal learning, we want to make the full use of all existing medical image-text, image-only, and text-only datasets.
- Suppose we have **n** paired image-text samples, **m** labeled images, and **h** medical sentences.

Image sets: n+m

text sets: n+h

Knowledge extractor for image-text & text-only data: Use MetaMap with UMLS(Unified Medical Language System)

 $\underline{https://gweissman.github.io/post/using-metamap-with-python-to-access-the-umls-metathesaurus-a-quick-start-guide/start-guid$

- Knowledge extractor for only-image data (w / labels): Match 14 keywords to label
- We build **multi-hot vectors** from the extracted entities for images and texts, as \mathbf{I}_{imq} and \mathbf{I}_{txt} , respectively.

Table 5: 14 main finding types used in this paper.

Finding types

No Finding

Enlarged Cardiomediastinum

Cardiomegaly

Lung Opacity

Lung Lesion

Edema

Consolidation

Pneumonia

Atelectasis

Pneumothorax

Pleural Effusion

Pleural Other

Fracture

Support Devices

Semantic Matching Loss

$$\mathcal{L}^{v o l} = -rac{1}{N_{batch}} \sum_{i=1}^{N_{batch}} \sum_{j=1}^{N_{batch}} y_{ij} \log \hat{y}_{ij}. \hspace{1cm} \mathcal{L} = rac{\mathcal{L}^{v o l} + \mathcal{L}^{l o v}}{2}$$

$$\mathcal{L} = rac{\mathcal{L}^{v o l} + \mathcal{L}^{l o v}}{2}$$

Dataset

Pretrain	# Images	# Reports	# Classes
MIMIC-CXR	377,111	201,063	-
CheXpert	223,415	-	14
Evaluation	# Train (Pos.%)	# Test (Pos.%)	# Classes
CheXpert-5x200	1,000 (-)	1,000 (-)	5
MIMIC-5x200	1,000 (-)	1,000 (-)	5
COVID	2,162 (19%)	3,000 (49%)	2
RSNA	8,486 (50%)	3,538 (50%)	2

Table 5: 14 main finding types used in this paper.

	Finding types
	No Finding
Enla	arged Cardiomediastinum
	Cardiomegaly
	Lung Opacity
	Lung Lesion
	Edema
	Consolidation
	Pneumonia
	Atelectasis
	Pneumothorax
	Pleural Effusion
	Pleural Other
	Fracture
	Support Devices

• Implementation details

- 1. MedCLIP text encoder: BioClinicalBERT
- 2. MedCLIP image encoder : Swin-transformer
- 3. MedCLIP encoder output dimension: 512
- 4. MIMIC CXR: combine the "Findings" and "Impression" sections of reports then split them into sentences.

Zero-shot classification

ACC(STD)	CheXpert-5x200	MIMIC-5x200	COVID	RSNA
CLIP	0.2016(0.01) 0.2036(0.01)	0.1918(0.01)	0.5069(0.03)	0.4989(0.01)
CLIP _{ENS}		0.2254(0.01)	0.5090(<0.01)	0.5055(0.01)
ConVIRT ConVIRT _{ENS} GLoRIA GLoRIA _{ENS}	0.4188(0.01)	0.4018(0.01)	0.5184(0.01)	0.4731(0.05)
	0.4224(0.02)	0.4010(0.02)	0.6647(0.05)	0.4647(0.08)
	0.4328(0.01)	0.3306(0.01)	0.7090(0.04)	0.5808(0.08)
	0.4210(0.03)	0.3382(0.01)	0.5702(0.06)	0.4752(0.06)
MedCLIP-ResNet MedCLIP-ResNet _{ENS} MedCLIP-ViT MedCLIP-ViT _{ENS}	0.5476(0.01)	0.5022(0.02)	0.8472 (<0.01)	0.7418(<0.01)
	0.5712(<0.01)	0.5430(<0.01)	0.8369(< 0.01)	0.7584(<0.01)
	0.5942(<0.01)	0.5006(<0.01)	0.8013(< 0.01)	0.7447(0.01)
	0.5942(<0.01)	0.5024(<0.01)	0.7943(< 0.01)	0.7682(<0.01)

- 1. Baseline models use traditional contrastive learning. So, they generate false negatives, which aggravate ensemble model
- 2. Interestingly, MedCLIP yields over 0.8 ACC on COVID data while there is no COVID-19 positive image available during the course of pre-training.
- This result demonstrates that contrastive pre-training of MedCLIP provides it with the transferability to out-of-domain classes.

Pre-training Data Efficiency

Fine-tune for Classification

ACC	CheXpert -5x200	MIMIC -5x200	COVID	RSNA
Random ImageNet	0.2500 0.3200	0.2220 0.2830	0.5056 0.6020	0.6421 0.7560
CLIP	0.3020	0.2780	0.5866	0.7303
ConVIRT	0.4770	0.4040	0.6983	0.7846
GLoRIA	0.5370	0.3590	0.7623	0.7981
MedCLIP	0.5960	0.5650	0.7890	0.8075

< Supervised manner >

ACC(STD)	CheXpert-5x200	MIMIC-5x200	COVID	RSNA
CLIP	0.2016(0.01)	0.1918(0.01)	0.5069(0.03)	0.4989(0.01)
CLIP _{ENS}	0.2036(0.01)	0.2254(0.01)	0.5090(<0.01)	0.5055(0.01)
ConVIRT ConVIRT _{ENS} GLoRIA GLoRIA _{ENS}	0.4188(0.01)	0.4018(0.01)	0.5184(0.01)	0.4731(0.05)
	0.4224(0.02)	0.4010(0.02)	0.6647(0.05)	0.4647(0.08)
	0.4328(0.01)	0.3306(0.01)	0.7090(0.04)	0.5808(0.08)
	0.4210(0.03)	0.3382(0.01)	0.5702(0.06)	0.4752(0.06)
$\begin{array}{l} \text{MedCLIP-ResNet} \\ \text{MedCLIP-ResNet}_{ENS} \\ \text{MedCLIP-ViT} \\ \text{MedCLIP-ViT}_{ENS} \end{array}$	0.5476(0.01) 0.5712(<0.01) 0.5942(<0.01) 0.5942(<0.01)	0.5022(0.02) 0.5430(<0.01) 0.5006(<0.01) 0.5024(<0.01)	0.8472(<0.01) 0.8369(<0.01) 0.8013(<0.01) 0.7943(<0.01)	0.7418(<0.01) 0.7584(<0.01) 0.7447(0.01) 0.7682(<0.01)

< Unsupervised manner >

1. we surprisingly find that MedCLIP makes **zero-shot prediction comparable** with **supervised learning** models when contrasting Table 2 to Table 1.

Image-Text Retrieval :

We choose **CheXpert-5x200** to evaluate the semantic richness of the learned representations.

CheXpert-5x200 do not have **report data** publicly available, we used **MIMIC-CXR dataset** to come up with reports/sentences.

We sampled **200 sentences** for **each of the 5 classes** as present in CheXpert5x200 dataset.

Model	P@1	P@2	P@5	P@10
CLIP	0.21	0.20	0.20	0.19
ConVIRT	0.20	0.20	0.20	0.21
GLoRIA	0.47	0.47	0.46	0.46
MedCLIP	0.45	0.49	0.48	0.50

• Embedding Visualization

Collaborators

Medical Imaging Intelligent Reality Lab

Cardiac

June-goo Lee Gyu-jun Jeong Tae-won Kim Ji-hoon Jung

Anesthesiology

Sung-Hoon Kim, Eun Ho Lee

Gastroenterology

Jeongsik Byeon, Kang Mo Kim, Do-hoon Kim

Pathology

Hyunjeong Go, Gyuheon Choi Gyungyub Gong, Dong Eun Song

Neurology

의료영상지능실현연구실 WORKSHOP

Jaehong Lee, Sangbeom Jun Misun Kwon, Beomjun Kim, Sun Kwon, Eun-Jae Lee

Emergency Medicine

Dong-Woo Seo

Cardiology

Jaekwan Song, Jongmin Song Young-Hak Kim

Surgery

Beom Seok Ko, JongHun Jeong Songchuk Kim, Tae-Yon Sung

Pulmonology and Critical Care Medicine

Yoen-mok Oh, Sei Won Lee, Jin-won Huh

