Université A/Mira de Béjaia Faculté des Sciences Exactes Département de Mathématiques Master 2 PAS

TD - Estimation non paramétrique

Exercice 1

Soit $X_1, ..., X_n$ une suite de variables aléatoires indépendantes et identiquement distribuées de densité de probabilité inconnue f sur \mathbb{R} . On considère le noyau K d'Epanechnikov.

- 1. Montrer que le noyau K est une densité de probabilité sur \mathbb{R} .
- 2. Montrer que K est symétrique.
- 3. Utiliser le noyau K pour estimer f.
- 4. Calculer le Biais, la variance de l'estimateur. En déduire le MSE associé à f.
- 5. Calculer l'erreur quadratique moyenne intégrée asymptotique optimale de l'estimateur.

Exercice 2

Soit $X_1, ..., X_n$ une suite de variables aléatoires indépendantes et identiquement distribuées de densité de probabilité inconnue f sur \mathbb{R} . On se propose d'estimer la densité f par un noyau K symétrique .

– Montrer que si f est bornée et le noyau K est de carré intégrable (ie. $\int_{\infty}^{+\infty} K^2(\nu) d\nu < \infty$), alors

$$\mathbb{V}ar\left(\hat{f}_h(x)\right) \le \frac{\sup_x |f(x)|}{nh} \int_{-\infty}^{\infty} K^2(\nu) d\nu$$

et

$$\int_{\mathbb{R}} \mathbb{V}ar\left(\hat{f}_h(x)\right) dx \leq \frac{1}{nh} \int_{-\infty}^{\infty} K^2(\nu) d\nu.$$

– Supposons f de classe C^2 et telle que f'' soit bornée. Montrer que :

$$|\operatorname{\mathbb{B}iais}(\hat{f}_h)| \leq \frac{h^2}{2} \sup |f''(x)| \int_{-\infty}^{+\infty} \nu^2 |K(\nu)| d\nu.$$

- Donner une majoration du risque quadratique ponctuel MSE.

Exercice 3

Soient T un intervalle de \mathbb{R} , et deux réels $\beta, L > 0$. La classe de Hölder $\Sigma(\beta, L)$ sur T est définie comme l'ensemble des fonctions $g: T \to \mathbb{R}$ telles que g est $l = \lfloor \beta \rfloor$ fois dérivale et telle que $\mid g^l(x) - g^l(y) \mid \leq \mid x - y \mid^{\beta - l}, \forall x, y \in T$. Soit f une densité et K un noyau tels que : f est bornée et dans une classe de Hölder $\Sigma(\beta, L)$ sur \mathbb{R} , K est un noyau d'ordre $l = \lfloor \beta \rfloor$ de carré intégrable et tel que $\int_{-\infty}^{+\infty} \mid \mu \mid^{\beta} \mid K(\mu) \mid d\mu < \infty$. Montrer que

1.
$$\operatorname{Var}\left(\hat{f}_h(x)\right) \le \frac{c_1}{nh}, c_1 > 0.$$

2.
$$|Biais(f_h)(x)| \le \sqrt{c_2}h^{\beta}$$
 avec $\sqrt{c_2} = \frac{1}{l!} \int_{-\infty}^{+\infty} |\mu|^{\beta} |K(\mu)| d\mu$.

3.
$$MSE\left(\hat{f}_h(x)\right) \le \frac{c_1}{nh} + c_2 h^{2\beta}$$
.

4. Pour $h_{opt} = bn^{-\frac{1}{2\beta+1}}$, avec b > 0, il existe C > 0 tel que

$$MSE\left(\hat{f}_h(x)\right) \le Cn^{-\frac{2\beta}{2\beta+1}}.$$

Rappel : On dit que $K : \mathbb{R} \to \mathbb{R}$ est un noyau d'ordre l si les fonctions

$$\left\{ \begin{array}{c} \mathbb{R} \to \mathbb{R} \\ u \to u^j K(u) \end{array} \right.$$

sont intégrables pour j=0,1,...,l et vérfient $\int_{-\infty}^{+\infty}K(u)du=1,$ ainsi que

$$\int_{-\infty}^{+\infty} u^{j} K(u) du = 0, j = 1, ..., l.$$

Exercice 4

Soit $X_1, X_2, ..., X_n$ une suite de variables aléatoires indépendantes et identiquement distribuées de densité de probabilité f inconnue. On se propose d'estimer f par un noyau gaussien. Supposons que $K \sim \mathcal{N}(0, 1)$

- 1. Donner la forme de l'estimateur .
- 2. Calculer la variance et le biais de l'estimateur .
- 3. Calculer l'erreur quadratique moyenne de l'estimateur.
- 4. Calculer l'erreur quadratique moyenne intégrée MISE de l'estimateur.
- 5. Donner la forme de l'estimateur du paramètre de lissage par la méthode de rul of thumb et la méthode de plugi-itéré.

Exercice 5

Soit X_1, X_2, \ldots, X_n une suite de variables aléatoires indépendantes et identiquement distribuées de densité de probabilité f inconnue. Soit \hat{f}_n l'estimateur de f par la méthode des fonctions orthogonales.

La base est donnée par :

$$\left\{ e_0(x) = 1, e_k(x) = \sqrt{2}\cos(k\pi x) \right\}.$$

- 1. Montrer que la base est orthogonale dans [0, 1].
- 2. Donner la forme de l'estimateur f_n de f.
- 3. Montrer que \hat{f}_n est borné.
- 4. Donner les propriétés statistiques et asymptotiques des estimateurs des coefficients de Fourier de f.
- 5. Calculer le paramètre de lissage par la méthode de Kronmal-Tarter.