

Leveraging Search History for Improving Person-Job Fit

Yupeng Hou¹, Xingyu Pan², Wayne Xin Zhao¹, Shuqing Bian², Yang Song³, Tao Zhang³, Ji-Rong Wen¹,²

- 1. Gaoling School of Artificial Intelligence, Renmin University of China
 - 2. School of Information, Renmin University of China
 - 3. BOSS Zhipin

Background: online recruitment

600M Candidates 20M Jobs

Task: Person-Job Fit

Match qualified candidates with suitable job positions

-Job Requirement

- 1. Be familiar with Python language.
- 2. Have expertise in Machine Learning, Data Mining and Natural Language Processing.
- 3. Have experience with Large-scale data processing.
- 4. Have good communication skills and teamwork spirit.

Work Experience

I have participated in the students innovation team of university, as the team lead. I used the GBRT to predict the stock changes with the team members, and mainly focused on the model development.

Programming: Python

I have used Weibo textual data, combined with the characteristics of Weibo platform and the dissemination mechanism of false information. I have used the data mining technology and natural language processing technology to propose a Weibo credibility assessment algorithm.

Candidate B Programming: Python

Red color: Programming Blue color: Machine Learning, Data Mining and Natural language Processing Brown color: Large-scale data processing Green color: Communication and Team work

Related works

Text matching (NN as text encoders)

Matching records from recommendation scenario as supervision signals

Zhu et al. "Person-Job Fit: Adapting the Right Talent for the Right Job with Joint Representation Learning." TMIS 2018.

Qin et al. "Enhancing person-job fit for talent recruitment: An ability-aware neural network approach." SIGIR 2018.

Yan et al. "Interview Choice Reveals Your Preference on the Market: To Improve Job-Resume Matching through Profiling Memories." KDD 2019.

Problem

• Two main scenarios, both exists interactions, text,

Recommendation (~81%)

Search (~19%)

Problem

• Two main scenarios, both exists interactions, text,

- Search
 - has seldom been considered 😔
 - reflects important evidence for job intention of users 🤥

Problem

• Two main scenarios, both exists interactions, text,

- Search
 - has seldom been considered 😔
 - reflects important evidence for job intention of users 😕
- Can we leverage these two sources simultaneously?

Hard to capture job needs from search history

Search History

Hard to capture job needs from search history

• Data format: list of short queries together with clicked jobs;

Hard to capture job needs from search history

- Data format: list of short queries together with clicked jobs;
- Redundant & Diverse: how to find out underlying major intentions;

Idea

- 1. Cluster job intentions;
- 2. Assign attention weight on intentions based on:
 - Job similarity;
 - Query text similarity;

Problem Definition

•
$$u, j, \mathcal{H}_u \to y$$

- Candidate: *u*
- Job: *j*
- Search history: $\mathcal{H}_u = \{\langle q_1, j_1 \rangle, \ldots, \langle q_L, j_L \rangle \}$
- Matching or not: *y*

Solution - SHPJF

Search History enhanced Person-Job Fit

- Text Matching Component
- Intention Modeling Component

$$o_T = BERT([CLS]; r_u; [SEP]; t_j]),$$

single-tower encoder

Solution – Intention Modeling

Intention clustering
$$egin{aligned} oldsymbol{C}_Q = & oldsymbol{P}_Q oldsymbol{H}_Q, \ oldsymbol{C}_J' = & oldsymbol{P}_Q oldsymbol{H}_J, \ oldsymbol{P}_Q = & \operatorname{softmax}(oldsymbol{W}_2[oldsymbol{H}_Q; oldsymbol{H}_J]^\top + oldsymbol{b}_2), \end{aligned}$$

Attention on intentions (according to text similarity)

$$oldsymbol{e}_Q = \mathrm{MHAttn}(oldsymbol{h}_{t_j}, oldsymbol{C}_Q, oldsymbol{C}_J),$$

Solution – Fusion

$$\tilde{\boldsymbol{e}} = \lambda \boldsymbol{e}_J + (1 - \lambda)\boldsymbol{e}_Q,$$

$$o_I = \mathrm{MLP}ig([\tilde{m{e}}; m{h}_j; \tilde{m{e}} - m{h}_j; \tilde{m{e}} \circ m{h}_j] ig),$$

$$\hat{y}_{u,j} = \sigma(\text{MLP}([\boldsymbol{o}_T; \boldsymbol{o}_I; s_{match}])),$$

Experiments

Dataset

• Collect from BOSS Zhipin's real online log

#candidates	#jobs	#positive	#negative	\overline{L}	$\overline{ q }$
53,566	307, 738	257,922	2,109,876	16.55	1.50

Experiments

Main results

Method	GAUC	R@1	R@5	MRR
PJFNN	0.5313	0.1412	0.5192	0.4025
BPJFNN	0.5343	0.1391	0.5217	0.4008
APJFNN	0.5323	0.1403	0.5185	0.4000
BERT	0.5449	0.1515	0.5297	0.4129
MV-CoN	0.5463	0.1554	0.5307	0.4165
SHPJF (ours)	0.5785	0.1630	0.5516	0.4297

- Evaluation in different skill groups
 - Short resumes
 - Multiple intentions

Groups	Low-skilled Candidates		High-skilled Candidates		
Method	GAUC	RelaImpr	GAUC	RelaImpr	
PJFNN	0.5295	-4.53%	0.5318	-2.75%	
BPJFNN	0.5399	+29.13%	0.5326	-0.31%	
APJFNN	0.5309	0.00%	0.5327	0.00%	
BERT	0.5381	+23.30%	0.5470	+43.73%	
MV-CoN	0.5396	+28.16%	0.5484	+48.01%	
SHPJF	0.5689	+122.98%	0.5814	+148.93%	

(a) Average resume length.

(b) Average #interested categories.

Experiments

BENNIVERS/71/OF CHINAL

Ablation Study

Variants	GAUC	R@1	R@5	MRR
BERT	0.5449	0.1515	0.5297	0.4129
$\mathrm{BERT}_{\mathrm{GRU}}$	0.5557	0.1546	0.5334	0.4196
$\operatorname{BERT}_{\operatorname{query}}$	0.5572	0.1558	0.5342	0.4201
SHPJF w/o Q	0.5697	0.1599	0.5456	0.4270
SHPJF w/o J	0.5715	0.1634	0.5456	0.4286
SHPJF w/o C	0.5738	0.1581	0.5443	0.4237
SHPJF	0.5785	0.1630	0.5516	0.4297

Case Study

Conclusion

- SHPJF: Search History enhanced Person-Job Fit
 - Incorporating text/interactions from two channels: recommendation & search
 - Assign attention weight on intention representations
 - Text similarity
 - Job similarity
- Future Work
 - Side information from both channels
- https://github.com/RUCAIBox/SHPJF
- Welcome stars! 💢