Задача А. Цикл for

Имя входного файла: стандартный ввод или for.in Имя выходного файла: стандартный вывод или for.out

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Михаил Афанасьев (которого почему-то все называют Прохором) закончил параллель C.python с оценками 5++/5++. На следующий год он был взят без вступительной работы в параллель A, и в первый же день получил TL 1 по задаче «aplusbfromsk» только из-за того, что решение было написано на Python. Прохор не готов променять свой любимый Python на C++, поэтому он решил написать программу, переводящую код на Python в код на C++, чтобы можно было писать на Python, переводить своей программой на C++ и отправлять в систему результат.

Для начала нужно перевести цикл вида for i in range(n): в for (int i = 0; i < n; ++i) { где вместо n стоит некоторое число, а вместо переменной і может стоять произвольное имя.

Формат входных данных

Единственная строка содержит описание цикла на Python в формате, описанном выше. $0 \le n \le 10^9$, название переменной состоит из строчных латинских букв и имеет длину от 1 до 10.

Формат выходных данных

Выведите соответствующий цикл на С++ в формате, описанном выше.

стандартный ввод или for.in	стандартный вывод или for.out
for i in range(10):	for (int i = 0; i < 10; ++i) {

Задача В. Короткопалый бюльбюль

Имя входного файла: bulbul.in Имя выходного файла: bulbul.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Короткопалый бюльбюль Леонид из Якутии попал в довольно затруднительное положение. В его уютном жилище поселился нежданный гость — детерминированный конечный автомат (ДКА). Как известно, ДКА допускает не каждое слово, и теперь Леониду нужно тщательно следить за своей речью. В связи с этим у него возникла следующая задача: определить, допускает ли данный ДКА заданное слово.

Формат входных данных

В первой строке входного файла находится слово, состоящее из не более чем 100000 строчных латинских букв. Во второй строке содержатся целые числа n, m и k —количества состояний, переходов и терминальных состояний в автомате соответственно. ($1 \le n, m \le 100000, 1 \le k \le n$). В следующей строке содержатся k целых чисел — номера терминальных состояний (состояния пронумерованы от 1 до n). В следующих m строках описываются переходы в формате «а b с», где a — номер исходного состояния перехода, b — номер состояния, в которое осуществляется переход, и c — символ (строчная латинская буква), по которому осуществляется переход. Стартовое состояние автомата всегда имеет номер 1. Гарантируется, что из любого со- стояния существует не более одного перехода по каждому символу.

Формат выходных данных

Требуется выдать строку «Accepts», если автомат принимает заданное слово, и «Rejects» в противном случае.

bulbul.in	bulbul.out
abacaba	Accepts
2 3 1	
2	
1 2 a	
2 1 b	
2 1 c	

Задача С. Малый черноголовый дубонос

Имя входного файла: hawfinch.in Имя выходного файла: hawfinch.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Малому черноголовому дубоносу Евлампии из Караганды остаётся только завидовать бюльбюлю Леониду. На протяжении трёх лет её голубой мечтой было вступление в Социалистическое сопротивление Казахстана, однако, специально для этого взяв отгул на работе и приехав в Алма-Ату, она узнала, что для вступления в эту организацию нужно пройти особое собеседование. И всё было бы хорошо, если бы её интервьюером не оказался недетерминированный конечный автомат (НКА). Таким образом, у Евлампии возникла задача, похожая на ту, с которой столкнулся Леонид: определить, допускает ли данный НКА заданное слово.

Формат входных данных

В первой строке входного файла находится слово, состоящее из не более чем $10\,000$ строчных латинских букв. Во второй строке содержатся целые числа n, m и k — количества состояний, переходов и терминальных состояний в автомате соответственно $(1 \le n \le 100, 1 \le m \le 1000, 1 \le k \le n)$. В следующей строке содержатся k чисел — номера терминальных состояний (состояния пронумерованы от 1 до n). В следующих m строках описываются переходы в формате «а b c», где a — номер исходного состояния перехода, b — номер состояния, в которое осуществляется переход, и c — символ (строчная латинская буква), по которому осуществляется переход. Стартовое состояние автомата всегда имеет номер 1.

Формат выходных данных

Требуется выдать строку «Accepts», если автомат принимает заданное слово, и «Rejects» в противном случае.

hawfinch.in	hawfinch.out
abacaba	Accepts
4 6 1	
2	
1 2 a	
2 1 c	
2 3 b	
3 2 a	
2 4 b	
1 4 a	

Задача D. Степная тиркуша

Имя входного файла: pratincole.in Имя выходного файла: pratincole.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Степная тиркушка Иннокентий из Лондона не привык жаловаться на жизнь, но сейчас ему действительно не позавидуешь. Дело в том, что в результате невероятного стечения обстоятельств он оказался в Красноярском крае, на берегу реки Сэккэль-Мачиль-Кыкаля. Иннокентий не раз попадал в тяжёлые жизненные ситуации, поэтому давно взял за прави- ло всегда брать с собой в дорогу устройство спутниковой связи собственного изобретения. Пожалуй, единственный недостаток этого устройства — сложная система авторизации. В её основе лежит детерминированный конечный автомат, и для того, чтобы можно было послать сигнал о помощи, нужно назвать все слова, которые допускает этот ДКА, причём только их.

Таким образом, Иннокентию требуется по данному ДКА определить количество допускаемых им слов. Следует заметить, что наш герой не привык к суровому климату Красноярского края, поэтому сейчас его мало волнуют большие числа. Его вполне удовлетворит, если ответ будет найден по модулю числа 10^9+7 .

Формат входных данных

В первой строке содержатся числа n, m и k — количества состояний, переходов и тер- минальных состояний в автомате соответственно ($1 \le n, m \le 100\,000, 1 \le k \le n$). В следующей строке содержатся k чисел — номера терминальных состояний (состояния пронумерованы от 1 до n).

В следующих m строках описываются переходы в формате «а b с», где a — номер исходного состояния перехода, b — номер состояния, в которое осуществляется переход и c — символ (строчная латинская буква), по которому осуществляется переход. Стартовое состояние автомата всегда имеет номер 1. Гарантируется, что из любого состояния существует не более одного перехода по каждому символу.

Формат выходных данных

Выведите количество слов, допускаемых автоматом, по модулю $10^9 + 7$. Если таких слов существует бесконечно много, требуется вывести «-1».

Примеры

pratincole.in	pratincole.out
1 1 1	-1
1	
1 1 a	
3 5 1	6
3	
1 2 a	
1 2 b	
2 3 a	
2 3 b	
2 3 c	

Замечание

Пустая строка является корректным словом.

Задача Е. Минимизация ДКА

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 8 секунд
Ограничение по памяти: 256 мегабайт

Дан детерминированный конечный автомат A. Постройте детерминированный конечный автомат, принимающий тот же язык, что и A, и имеющий наименьшее возможное число состояний.

Формат входных данных

Первая строка входного файла содержит алфавит Σ , который является непустым подмножеством латинского алфавита (все буквы строчные).

Следующая строка содержит число |Q| — количество состояний автомата ($1 \le |Q| \le 1\,000$).

Состояния нумеруются числами от 1 до |Q|.

Следующая строка содержит число q_0 ($1 \le q_0 \le |Q|$) — номер начального состояния, затем число |T| — количество терминальных состояний, затем |T| чисел от 1 до |Q| — номера терминальных состояний.

Следующие |Q| строк содержат по $|\delta|$ чисел — описание функции переходов δ . (Для каждого состояния в отдельной строке приводятся номера состояний, в которые из него ведут переходы по всем символам алфавита).

Формат выходных данных

Выведите описание искомого детерминированного конечного автомата в формате, описанном выше, но без первой строки (строки с алфавитом).

stdin	stdout
ab	2
5	1 1 2
1 2 2 3	2 2
2 3	1 1
1 4	
4 1	
3 2	
5 5	

Задача F. Без комментариев (уже нет)

Имя входного файла: comments.in Имя выходного файла: comments.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Издревле почти в каждом монастыре ведутся летописи событий происходящих внутри и за пределами самого монастыря. Не исключением является и Монастырь Светлой Луны. Все свои наблюдения монахи тщательно записывали в особые дневники (Даарны). Как часто случается, в этих летописях встречается не только описание реальных событий, но и комментарии самого летописца. К счастью, в Монастыре Светлой Луны был заведен порядок, что комментарии должны отделяться от описания событий одним из следующих способов:

- Комментарий начинается с «//» и продолжается до конца данной строки (символ перевода строки не является частью комментария).
- Комментарий начинается с «{» и продолжается до ближайшего вхождения «}».
- Комментарий начинается с «/*» и продолжается до ближайшего вхождения «*/».

Внутри комментария могут встречаться любые символы. Известно, что монахи никогда не опибаются и не оставляют комментарии незакрытыми. Также известно, что после удаления комментариев в тексте не возникнут новые комментарии.

По совету Наставника монахи хотят переписать все летописи, убрав из него все комментарии. Ваша цель – помочь им в этом нелегком деле.

Формат входных данных

Во входном файле содержится летопись длиной не более 10^6 символов. Каждая строка летописи не длиннее 250 символов.

Формат выходных данных

Выведите летопись, очищенную от комментариев.

```
Comments.in

When I find myself in times of trouble

Mother Mary comes to me

Speaking words of wisdom, "Let it be".

// Original: http://en.lyrsense.com/beatles/let_it_be

{ Copyright: http://lyrsense.com }

comments.out

When I find myself in times of trouble

Mother Mary comes to me

Speaking words of wisdom, "Let it be".
```

Задача G. Непересекающиеся регулярные выражения

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Павел разрабатывает новую социальную сеть ВКосмосе для обитателей спутников Марса Фобоса и Деймоса. Недавно он решил добавить на страницы информацию о том, на каком спутнике живет владелец страницы. Конечно, можно было бы спросить соответствующую информацию о пользователях у них самих, но он решил автоматизировать процесс. Для этого он изучил, как устроены имена обитателей спутников.

Имя каждого пользователя ВКосмосе представляет собой непустую строку, состоящую из строчных букв латинского алфавита. У пользователей с Фобоса имена подходят под регулярное выражение P, а у пользователей с Деймоса имена подходят под регулярное выражение D.

Однако Павел задумался над таким вопросом: а вдруг у какого-нибудь пользователя имя подходит под оба регулярных выражения. Два таких выражения будем называть непересе кающимися, если никакая непустая строка s не подходит одновременно под оба выражения.

Помогите Павлу определить, являются ли заданные регулярные выражения непересекающимися. Если они не являются непересекающимися, требуется найти кратчайшую непустую строку s, которая подходит под оба выражения.

Замечание

- \bullet Одна буква с представляет собой корректное регулярное выражение. Под него подходит единственная строка, состоящая из одной буквы c.
- Операция выбора: если P и Q представляют собой регулярные выражения, то (P|Q) регулярное выражение, под которое подходят все строки α , которые подходят под P или под Q.
- Конкатенация: если P и Q представляют собой регулярные выражения, то (PQ) представляет собой регулярное выражение, под которое подходят строки α , которые можно представить в виде $\alpha = \beta \gamma$, где β подходит под P, а γ подходит под Q.
- Звездочка Клини: если P представляет собой регулярное выражение, то (P*) представляет собой регулярное выражение, под которое подходят строки α , которые можно представить в виде конкатенации нуля или более строк $\alpha_1\alpha_2...\alpha_k$, где каждая из α_i подходит под P. В частности, пустая строка всегда подходит под звездочку Клини любого выражения.

Можно опускать скобки, в этом случае звездочка Клини имеет максимальный приоритет, затем конктенация и затем выбор. Например, "abc*|de" означает "(ab(c*))|(de)".

Формат входных данных

Вход содержит две строки. Первая строка содержит регулярное выражение P. Вторая строка содержит регулярное выражение D. Длина каждого регулярного выражения от 1 до 100 символов.

Формат выходных данных

Если выражения являются непересекающимися, выведите "Correct". В противном случае выведите "Wrong" на первой строка, а на второй строке выведите кратчайшую строку, которая подходит под оба выражения. Если таких строк несколько, выведите любую.

стандартный ввод	стандартный вывод
a(ab)*b	Correct
a(a b)*ab	
a(ab)*a	Wrong
a(a b)*ba	aaba