Using Wireshark to Analyze IPv4, IPv6, and ICMP

Chris Greer
NETWORK ANALYST

@packetpioneer www.packetpioneer.com

Module Overview

Let's talk IPv4

- TTL
- Fragmentation

Examining ICMP messages

Analyzing IPv6

Core Protocols - ICMP

The Internet Protocol

The IP Address

192.168.1.8 255.255.255.0

IP Header Structure

Four Bytes

Version	IHL	DSCP	ECN	Total Length				
	Identificat	tion Number	Flags Fragment Offset					
Time to Live		Protocol		Header Checksum				
Source IP Address								
Destination IP Address								

IP Fragmentation

IP Fragmentation

```
Internet Protocol Version 4, Src: 192.168.1.1, Dst: 10.0.0.1
  0100 \dots = Version: 4
  \dots 0101 = Header Length: 20 bytes (5)
▶ Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
  Total Length: 1500
  Identification: 0x5000 (20480)
▼ Flags: 0x4000, Don't fragment
    0... = Reserved bit: Not set
    .1.. .... = Don't fragment: Set
    ..0. .... = More fragments: Not set
    ...0 0000 0000 0000 = Fragment offset: 0
  Time to live: 128
  Protocol: TCP (6)
  Header checksum: 0xd971 [validation disabled]
  [Header checksum status: Unverified]
  Source: 192.168.1.1
  Destination: 10.0.0.1
```


IP Time to Live


```
ChrisBook:~ chris$ ping www.pluralsight.com

PING www.pluralsight.com.cdn.cloudflare.net (104.19.161.127): 56 data bytes

64 bytes from 104.19.161.127: icmp_seq=0 ttl=51 time=55.678 ms

64 bytes from 104.19.161.127: icmp_seq=1 ttl=51 time=48.153 ms

64 bytes from 104.19.161.127: icmp_seq=2 ttl=51 time=47.932 ms

64 bytes from 104.19.161.127: icmp_seq=3 ttl=51 time=49.524 ms

64 bytes from 104.19.161.127: icmp_seq=4 ttl=51 time=49.225 ms
```


IP Time to Live

255, 128, or 64

The Time to Live field is useful to determine how many router hops away a station is

Demo

Let's look at how TTL works

Answer the questions in Statistics | Capture File Properties

Demo

Let's look at how fragmentation works

The ICMP Protocol

The ICMP Protocol

Messaging suite for IP

Used by both endpoints and infrastructure

Communicates network problems, outages, routing issues, port unavailable, and more

ICMP - Destination Unreachable

ICMP - Fragmentation Needed

ICMP Types

```
▼ Internet Control Message Protocol
```

Type: 8 (Echo (ping) request)

Code: 0

Checksum: 0x2811 [correct] [Checksum Status: Good]

Identifier (BE): 30113 (0x75a1)
Identifier (LE): 41333 (0xa175)
Sequence number (BE): 0 (0x0000)
Sequence number (LE): 0 (0x0000)

O = Echo reply

3 = Destination unreachable

5 = Redirect

8 = Echo request

11 = Time to live exceeded

ICMP Codes - Destination Unreachable

▼ Internet Control Message Protocol

Type: 3 (Destination unreachable)

Code: 3 (Port unreachable)

Checksum: 0xa850 [correct]

[Checksum Status: Good]

Unused: 00000000

O = Network unreachable

1 = Host unreachable

3 = Port unreachable

4 = Fragmentation needed

Demo

Analyzing ICMP with Wireshark

Answer the questions in Statistics | Capture File Properties

The IPv6 Protocol

IPv6

IPv4 - 4.3 Billion Addresses 32 Bit Address NAT Has Extended Use

IPv6 - 340 Trillion Trillion Addresses

128 Bit Address

More Efficient

The IPv6 Address

2001:4860:4860:0000:0000:0000.0000:8888

The IPv6 Address

2001:4860:4860:0000:0000:0000.0000:0088

2001:4860:4860::88

The IPv6 Address

Link Local Address Range: fe80::/64

Global Address Range: 2000::/3

Unique Local Address Range: fc00::/7

IPv6 Today - IPv4 Across IPv6

IPv6 Header Structure

Four Bytes

Version	Priority/Traffic Class	Flow Label						
	Payload Length		Next Header	Hop Limit				
Source IP Address								
Destination IP Address								

Demo

Analyzing IPv6 with Wireshark

