

Artificial & Computational IntelligenceDSE CLZG557

M6: Reasoning over time & Reinforcement Learning

Raja vadhana P Assistant Professor, BITS - CSIS

BITS Pilani

Pilani Campus

Course Plan

M1	Introduction to AI			
M2	Problem Solving Agent using Search			
M3	Game Playing, Constraint Satisfaction Problem			
M4	Knowledge Representation using Logics			
M5	Probabilistic Representation and Reasoning			
M6	Reasoning over time, Reinforcement Learning			

Reasoning Over Time

Next State: Likely to buy Media accessories on next visit

Next State: Likely to buy Media accessories on next visit

Inference in Temporal Models

Inference Type -1

What is the probability that the purchasing behavior of the customer is in the below order sequentially observed?

(Computer, Media, Media, Computer)

Inference Type -2

What is the probability that a customer who purchased Media accessories will return back and keep purchasing Media accessories for only 2 consecutive visits?

Inference Type -3

Given that a customer walked into a store and bought a computer electronics, find the expected purchase pattern in his next 3 visits.

HMM Veterbi

Markov Process

States | Observations | Assumptions

Modelling sequences of random events and transitions between states over time is known as Morkov chain

Transition Model / Probability Matrix:

Current state depends only finite number of previous states. :

Overview of HMM

Markov Process

States | Observations | Assumptions

Standard Mathematical Example: Urn & Ball Model

States | Observations | Assumptions

Time Slice (t)	0	1	2	3	4	5	6	P(Ot Ot-1)
Observed	-	Late	OnTime	Late	Late	Ontime	Ontime	
Evidence (O _t /E _t)								
Unobserved	Meeting	No	No	Meeting	Meeting	No	No Meeting	
State (Ut /Xt/ Qt)		Meeting	Meeting			Meeting		

Transition Model / Probability Matrix

P(U _{t-1} = No Meeting)	P(U _{t-1} = Meeting)	← Previous
0.5	0.67	P(Ut = No Meeting)
0.5	0.33	P(Ut = Meeting)

P(Ut = No Meeting)	P(Ut = Meeting)	←Unobserved Evidence v
0.9	0.3	P(Ot = OnTime)
0.1	0.7	P(Ot = Late)

Hidden Markov Process

States | Observations | Assumptions

Modelling sequences of random events and transitions between states over time is known as Morkov chain

Hidden Markov Process models events as the state sequences that are not directly observable but only be approximated from the sequence of observations produced by the system

Transition Model / Probability Matrix:

Current state depends only finite number of previous states. :

Evidence / Sensor Model/ Emission Probability Matrix:

Current Evidence or Observation depends Current State of the world. Given the Current State Knowledge of the world, observation doesn't depend on history:

States | Observations | Assumptions

Time Slice (t)	0	1	2	3	4	 P(Ot Ot-1, Ot-2)
Observed Evidence (Ot)	·*)	Rainy	Sunny	Rainy	Rainy	
Unobserved State(Ut)	Low Pressure	High Pressure	High Pressure	Low Pressure	Low Pressure	

Transition Model / Probability Matrix

P(U _{t-2} = LP, U _{t-1} =HP)	P(U _{t-2} = HP,U _{t-1} = HP)	$P(U_{t-2} = HP, U_{t-1} = LP)$	$P(U_{t-2} = LP, U_{t-1} = LP)$	← Previous
0.2	0.40	0.85	0.5	P(Ut = LP)
0.8	0.60	0.15	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

	1 a		
Fi		MI	
			u
			 -

P(L₃ | R-S-R-R) $P(X_t \mid E_{1...t})$

Prediction

 $P(L_3 | R-S)$ $P(X_{t+k} \mid E_{1...t})$

Smoothing

 $P(X_{k, o>k>t} | E_{1...t})$

Most Likely Explanation

P(H₂ | R-S-R-R) P(H-H-L-L | R-S-R-R) argmax $X_{1...t}$: $P(X_{1...t} | E_{1...t})$

Filtering: P(SecondUrnIsSelected 3 | Red-Blue-Blue-Yellow)

 $P(X_t \mid E_{1...t})$

Prediction: P(FirstUrnWillbeSelected ₃ | Red-Yellow)

 $P(X_{t+k} \mid E_{1...t})$

Smoothing: P(ThirdUrnWasSelected ₂ | Red-Yellow-Red-Red)

 $P(X_{k, o>k>t} \mid E_{1...t})$

Most Likely Explanation (or) Viterbi Algorithm

P(Urn1-Urn2-Urn1 | Red-Yellow-Yellow) argmax $X_{1...t}$: P($X_{1...t}$ | $E_{1...t}$)

Inference: Type -2

Most Likely Explanation: Veterbi Algorithm

Find the pattern in pressure that might have caused this observation: **S-S-R** argmax $X_{1...t}$: $P(X_{1...t} | E_{1...t})$

MM Inf

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	←Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Veterbi Algorithm: S-S-R

P(L)*P(L|L)*P(S|L) = 0.25*0.5*0.2 = 0.025P(H)*P(L|H)*P(S|L) = 0.75*0.2*0.2 =**0.03**

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

lead

Hidden Morkov Model

Veterbi Algorithm: S-S-R

P(L)*P(H|L)*P(S|H) = 0.25*0.5*0.6 = 0.075P(H)*P(H|H)*P(S|H) = 0.75*0.8*0.6 =**0.36**

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Veterbi Algorithm: S-S-R

P(L)*P(L|L)*P(R|L) = 0.03*0.5*0.8 = 0.012P(H)*P(L|H)*P(R|L) = 0.36*0.2*0.8 =**0.0576**

Transition Model / Probability Matrix

P(Ut-1 = HP)	(U _{t-1} = HP) P(U _{t-1} = LP)	
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Veterbi Algorithm: S-S-R

P(L)*P(H|L)*P(R|H) = 0.03*0.5*0.4 = 0.006P(H)*P(H|H)*P(R|H) = 0.36*0.8*0.4 =**0.1152**

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Veterbi Algorithm: S-S-R

Transition Model / Probability Matrix

P(Ut-1 = HP)	(U _{t-1} = HP) P(U _{t-1} = LP)	
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v		
0.8	0.4	P(Et = Rainy)		
0.2	0.6	P(Et = Sunny)		

	Initial	Prob											
	Noun							N		innovate	achieve	lead	
	a D verb							D					
	Verb		-					V					
	ad J ective							J					
	P reposition							Α					
	D eterminer							Р					
								Е					
1	Given the c 1. Create in 2. Transitio	nitial pr	obabili	ty matr	ing da	ta:	Food N Restau	is V rant se	rves	good J Food			
	3. Emissior	=	=				N	V		N			

Eating

good

In the HMM model , the PoS tags act as the hidden states and the word in the given test sentence as the Eating observed states.

4. Use HMM Veterbi algorithm to predict the

sentence.

sequence of PoS Tags for given test data /

The food is ready D N V J

Eating fast is unhealthy V A V J

food

Ν

is

health

Sample Sequence under Test: Start → Noun → Verb →
Assume Noun → Verb is the maximum Value

Sample Sequence under Test: Start → Noun → Noun →
Assume Noun → Noun is the maximum Value

Sample Sequence under Test: Start → Verb → Verb →
Assume Verb → Verb is the maximum Value

Sample Sequence under Test: Start → Verb → Noun →
Assume Verb → Noun is the maximum Value

Inference: Type -3

Filtering: Forward Propagation Algorithm

Find the Current Pressure if sequence of weather observations recorded are: S-S-R

Intuition:
$$P(E_{1...t}) = \sum_{i=1}^{N} P(E_{1...t} \mid X_{1...t}) * P(X_{1...t}) = \sum_{i=1}^{N} \prod_{j=1}^{t} P(Ej \mid Xj) * P(Xj \mid Xj_{-1})$$

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(U _{t-1} = HP) P(U _{t-1} = LP)	
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm

Pressure sequence observation: **S-S-R**<u>Initialization Phase:</u>

$$P(L)*P(S|L) = 0.5*0.2 = 0.1 \rightarrow 0.25$$

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

P(L)*P(L|L)*P(S|L) = 0.25*0.5*0.2 =**0.025** P(H)*P(L|H)*P(S|L) = 0.75*0.2*0.2 =**0.03**

Recursion Phase:

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

P(L)*P(H|L)*P(S|H) = 0.25*0.5*0.6 =**0.075** P(H)*P(H|H)*P(S|H) = 0.75*0.8*0.6 =**0.36**

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

P(L)*P(L|L)*P(R|L) = 0.1122*0.5*0.8 = 0.04488

P(H)*P(L|H)*P(R|L) = 0.8878*0.2*0.8 = 0.142048

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

P(L)*P(H|L)*P(R|H) = 0.1122*0.5*0.4 =**0.02244** P(H)*P(H|H)*P(R|H) = 0.8878*0.8*0.4 =**0.284096**

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

Termination Phase:

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	$P(U_t = HP)$

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

Termination Phase:

(0.37881, 0.62119)

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	←Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	$P(U_t = HP)$

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Inference: Type -3

Filtering: Forward Propagation Algorithm

Find the Current Pressure if sequence of weather observations recorded are: S-S-R

Intuition:
$$P(Xt_{+1}|E_{1...t+1}) = \alpha P(et_{+1}|Xt_{+1}) * \sum_{X_t} P(X_{t+1}|X_t) * P(X_t|E_{1..t})$$

$$P(Xt_{t+1}|E_{1...t+1}) = \alpha P(e_{t+1}|Xt_{t+1}) * \sum_{X_t} P(X_{t+1}|X_t) * P(X_t|E_{1..t})$$

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Filtering: Forward Propagation Algorithm

Find the Current Pressure if sequence of weather observations recorded are: S-S-R

Intuition:
$$P(Xt_{+1}|E_{1...t+1}) = \alpha P(et_{+1}|Xt_{+1}) * \sum_{X_t} P(X_{t+1}|X_t) * P(X_t|E_{1..t})$$

$$P(X_3|SSR) = P(X_3|S,S,R)$$

$$= \frac{P(R|X_3|S,S) * P(X_3|S,S)}{P(R)}$$

$$= \frac{P(R|X_3) * P(X_3|S,S)}{P(R)}$$

$$= \frac{P(R|X_3) * \{\sum_{X_2} P(X_3|X_2) * P(X_2|S,S)\}}{P(R)}$$

$$= \frac{P(R|X_3) * \{\sum_{X_2} P(X_3|X_2) * P(R|X_3) * \{\sum_{X_1} P(X_2|X_1) * P(X_1|S)\}\}}{P(R)}$$

$$= \frac{P(R|X_3) * \{\sum_{X_2} P(X_3|X_2) * P(R|X_3) * \{\sum_{X_1} P(X_2|X_1) * P(X_1|S)\}\}}{P(R) * P(S)}$$
Transition Model / Probability Matrix P(U_{t=1}HP) | CP(U_{t=1}HP) |

$$\mathsf{P}(\mathsf{X}\mathsf{t}_{+1}|\mathsf{E}_{1...\mathsf{t}+1}) = \alpha \; \mathsf{P}(\mathsf{e}_{\mathsf{t}+1}|\mathsf{X}\mathsf{t}_{+1}) \; * \sum_{X_t} P(\mathsf{X}_{\mathsf{t}+1}|\mathsf{X}_{\mathsf{t}}) \; * \\ P(\mathsf{X}_\mathsf{t}|\mathsf{E}_{\mathsf{1}..\mathsf{t}}) \; \underbrace{\mathsf{E}_{\mathsf{t}}\mathsf{vidence} / \mathsf{Sensor} \; \mathsf{Model} / \; \mathsf{Emission} \; \mathsf{Probability} \; \mathsf{Matrix}}_{\mathsf{E} \mathsf{vidence} \; \mathsf{v}} \; \underbrace{\mathsf{E}_{\mathsf{1}..\mathsf{t}}}_{\mathsf{P}(\mathsf{X}_\mathsf{t}=\mathsf{LP})} \; \underbrace{\mathsf{E}_{\mathsf{vidence}} / \; \mathsf{Sensor} \; \mathsf{Model} / \; \mathsf{Emission} \; \mathsf{Probability} \; \mathsf{Matrix}}_{\mathsf{E} \mathsf{vidence} \; \mathsf{v}} \; \underbrace{\mathsf{E}_{\mathsf{1}..\mathsf{t}}}_{\mathsf{P}(\mathsf{X}_\mathsf{t}=\mathsf{LP})} \; \underbrace{\mathsf{E}_{\mathsf{vidence}} / \; \mathsf{Sensor} \; \mathsf{Model} / \; \mathsf{Emission} \; \mathsf{Probability} \; \mathsf{Matrix}}_{\mathsf{E} \mathsf{vidence} \; \mathsf{v}} \; \underbrace{\mathsf{E}_{\mathsf{1}..\mathsf{t}}}_{\mathsf{P}(\mathsf{X}_\mathsf{t}=\mathsf{LP})} \; \underbrace{\mathsf{E}_{\mathsf{vidence}} / \; \mathsf{Sensor} \; \mathsf{Model} / \; \mathsf{Emission} \; \mathsf{Probability} \; \mathsf{Matrix}}_{\mathsf{E} \mathsf{vidence} \; \mathsf{v}} \; \underbrace{\mathsf{E}_{\mathsf{1}..\mathsf{t}}}_{\mathsf{P}(\mathsf{X}_\mathsf{t}=\mathsf{LP})} \; \underbrace{\mathsf{E}_{\mathsf{1}..\mathsf{t}}}_{\mathsf{P}(\mathsf{X}_\mathsf{t}=\mathsf{LP})} \; \underbrace{\mathsf{E}_{\mathsf{vidence}} / \; \mathsf{E}_{\mathsf{niny}}}_{\mathsf{E} \mathsf{vidence} \; \mathsf{v}} \; \underbrace{\mathsf{E}_{\mathsf{1}..\mathsf{t}}}_{\mathsf{P}(\mathsf{X}_\mathsf{t}=\mathsf{LP})} \; \underbrace{\mathsf{E}_{\mathsf{1}..\mathsf{t}}}_{\mathsf{P}(\mathsf{LP})} \; \underbrace{\mathsf{E}_{\mathsf{1}..\mathsf{t}}}_{\mathsf{P}(\mathsf{LP})} \; \underbrace{\mathsf{E}_{\mathsf{1}..\mathsf{t}}}_{\mathsf{P}(\mathsf{LP})} \; \underbrace{\mathsf{E}_{\mathsf{1}..\mathsf{t}}}_{\mathsf{P}(\mathsf{LP})} \; \underbrace{\mathsf{E}_{\mathsf{1}...\mathsf{t}}}_{\mathsf{P}(\mathsf{LP})} \; \underbrace{\mathsf{E}_{\mathsf{1}...\mathsf{t}}}_{\mathsf{P}(\mathsf{P$$

0.6

 $P(E_t = Sunny)$

Inference: Type -4

Smoothing: Backward Propagation Algorithm (Most Likely State Estimation)

Find the Pressure in past instance of time if sequence of following future weather observations recorded are: **S-S-R**

Intuition:
$$P(E_{1...t}) = \sum_{i=1}^{N} P(E_{1...t} \mid X_{1...t}) * P(X_{1...t}) = \sum_{i=1}^{N} \prod_{j=1}^{t} P(Ej \mid Xj) * P(Xj \mid Xj_{-1})$$

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Inference: Type -4

Smoothing: Backward Propagation Algorithm

Find the Pressure in past instance of time if sequence of following future weather observations recorded are: S-S-R

Intuition:
$$P(X_{t+1}|E_{1...t+1}) = \alpha P(et_{t+1}|Xt_{t+1}) * \sum_{X_t} P(X_{t+1}|X_t) * P(X_t|E_{1..t})$$

$$P(X_1|SSR) = P(X_1|S,S,R)$$

$$= \frac{P(SR|X_1S) * P(X_1|S)}{P(SR)}$$

$$= \frac{P(X_1|S) * \{\sum_{X_2} P(X_2|X_1) * P(SR|X_2|X_1)\}}{P(SR)}$$

$$= \frac{P(X_1|S) * \{\sum_{X_2} P(X_2|X_1) * P(SR|X_2)\}}{P(SR)}$$

$$= \frac{P(X_1|S) * \{\sum_{X_2} P(X_2|X_1) * P(S|X_2)\}}{P(SR)}$$

$$= \frac{P(X_1|S) * \{\sum_{X_2} P(X_2|X_1) * P(S|X_2)\}}{P(SR)}$$

$$= \frac{P(X_1|S) * \{\sum_{X_2} P(X_2|X_1) * P(S|X_2)\}}{P(SR)}$$

$$= \frac{P(X_1|S) * \{\sum_{X_2} P(X_2|X_1) * P(S|X_2)\}}{P(SR)}$$
Transition Model / Probability Matrix P(SR)

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$$P(Xt | E_{t+1, t+2, z}) = \alpha * \text{ fwd msg} * \sum_{X_{t+1}} P(X_{t+1} | X_t) * P(e_{t+1} | X_{t+1}) * P(E_{t+2, z} | X_{t+1})$$

Evidence / Sensor Model / Emission Proba

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Backward Propagation Algorithm

Pressure sequence observation: S-S-R

Initialization Phase: Set value 1 for the terminal state

P(L|L)*P(R|L)*P(.|L) = 0.5*0.8 * 1 = 0.40

P(H|L)*P(R|H)*P(.|H) = 0.5*0.4*1=0.2

P(L|H)*P(R|L)*P(.|L) = 0.2*0.8 * 1 = 0.16P(H|H)*P(R|H)*P(.|H) = 0.8*0.4 *1 = 0.32

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Backward Propagation Algorithm: S-S-R

P(L|L)*P(S|L)*MSG(L`) = 0.5*0.2 * 0.60 = 0.06P(H|L)*P(S|H)*MSG(H`) = 0.5*0.6*0.48 = 0.144

 $P(L|H)*P(S|L)*MSG(L^*) = 0.2*0.2 * 0.6= 0.024$ $P(H|H)*P(S|H)*MSG(H^*) = 0.8*0.6 *0.48= 0.2304$

Recursion Phase:

Transition Model / Probability Matrix

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Backward Propagation Algorithm: S-S-R

Recursion Phase: If it continues if needed !!!!

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Backward Propagation Algorithm: S-S-R

P(L)*P(S|L)*MSG(L`) = 0.5*0.2 * 0.204 = 0.0204

P(H)*P(S|H)*MSG(H') = 0.5*0.6 * 0.2544 = 0.07632

<u>Termination Phase:</u> (0.2109,0.7891)

Normalize :Initial value * Emission at start* backMsg

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Backward Propagation Algorithm: S-S-R

 $P(X2 \mid SSR) = \alpha * P(X2|SS) * P(R|X2)$

$$P(X2 \mid SSR) = \alpha * (0.1122, 0.8878) * (0.6, 0.48) = (0.06732, 0.426144) = (0.14,0.86)$$

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	←Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Figure 15.4 The forward–backward algorithm for smoothing: computing posterior probabilities of a sequence of states given a sequence of observations. The FORWARD and BACKWARD operators are defined by Equations (15.5) and (15.9), respectively.

Cyber Security

FIGURE 1. Typical stages of APT attack.

Cyber Security

Cyber Security

FIGURE 9. Experimental network topology.

Cyber Security

Attack states description.

State	Description
S_1	Initial State
S_2	$(H_1, root)$
S_3	$(H_2, root)$
S_4	$(H_3, user)$
S_5	$(H_3, root)$
S_6	$(H_4,user)$
S_7	(H ₅ ,root)

FIGURE 10. Attack graph of the experimental network.

Cyber Security

Attack states description.

TABLE 6. Possible attack paths.

Path Number	Attack Path
1	$S_1 \rightarrow S_2 \rightarrow S_6 \rightarrow S_7$
2	$S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow S_7$
3	$S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_6 \rightarrow S_7$
4	$S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow S_5 \rightarrow S_6 \rightarrow S_7$
5	$S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_5 \rightarrow S_6 \rightarrow S_7$
6	$S_1 \rightarrow S_2 \rightarrow S_4 \rightarrow S_6 \rightarrow S_7$
7	$S_1 \rightarrow S_2 \rightarrow S_4 \rightarrow S_3 \rightarrow S_6 \rightarrow S_7$
8	$S_1 \rightarrow S_2 \rightarrow S_4 \rightarrow S_5 \rightarrow S_3 \rightarrow S_6 \rightarrow S_7$
9	$S_1 \rightarrow S_2 \rightarrow S_4 \rightarrow S_5 \rightarrow S_6 \rightarrow S_7$

State	Description
S_1	Initial State
S_2	$(H_1, root)$
S_3	$(H_2, root)$
S_4	$(H_3, user)$
S_5	$(H_3, root)$
S_6	$(H_4, user)$
S_7	$(H_5, root)$

Required Reading: AIMA - Chapter #15.1, #15.2, #15.3 (#20.3.3)

Thank You for all your Attention

Note: Some of the slides are adopted from AIMA TB materials