TFE4188 - Introduction to Lecture 8 Clocks and PLLs

Goal

Why do we need to generate clocks

Introduction to PLLs

Carsten Wulff 2023

2

- 1. 32 MHz crystal
- 2. 32 KiHz crystal
- 3. In PCB antenna
- 4. DC/DC inductor

Clk out

$$V_{\overline{1}} - V_{0} = V_{X} \quad V_{0} = V_{X} \quad H(s)$$

$$V_{\overline{1}} = V_{0} + \frac{V_{0}}{H(s)} = 0$$

$$V_{0} = V_{X} \quad V_{0} = V_{X} \quad V_{0} = V_{X}$$

$16 \text{ MHz} \times 32 = 512 \text{ MHz} \text{ PLL}$ **AVDD** VDD_ROSC CP_UP_N xaa5 Kcp = Ibp/2pi CK_REF**≫** ->> CK CP_DOWN ≥ CP_DOWN CK_FB CP_DOWN AVSS SUN_PLL_CP SUN_PLL_PFD SUN_PLL_BUF SUN_PLL_ROSC KICK SUN_PLL_LPF CK_FB IBPSR_1U**>**→ CK_FB SUN_PLL_DIVN PWRUP_1V8 KICK_N = PWRUP_1V8_N SUN PLL KICK SUN_PLL_BIAS PWRUP_1V8 Carsten Wulff Designer AVSS>-2023-01-22 22:00:43 **Carsten Wulff 2023** Carsten Wulff Software Library/Cell SUN_PLL

PLLs need calculation! #noCowboyDesign

$$\phi(t)=2\pi\int_0^tf(t)dt$$

PLLs are assumed to be linear in phase

$$rac{\phi_d}{\phi_{in}} = rac{1}{1 + L(s)}$$

$$L(s) = rac{K_{osc}K_{pd}K_{lp}H_{lp}(s)}{Ns}$$

Voltage controlled oscillator

$$K_{osc} = 2\pi rac{df}{dV_{cntl}}$$

SUN_PLL_SKY130NM/ sim/ROSC/

Phase detector and charge pump

$$K_{pd}=rac{I_{cp}}{2\pi}$$

Loop filter

$$K_{lp}H_{lp}(s)=K_{lp}\left(rac{1}{s}+rac{1}{\omega_z}
ight)$$

$$K_{lp}H_{lp}(s) = rac{1}{s(C_1+C_2)} rac{1+sRC_1}{1+sRrac{C_1C_2}{C_1+C_2}}$$

Divider

$$K_{div} = rac{1}{N}$$

Loop function

$$L(s) = rac{K_{osc}K_{pd}K_{lp}H_{lp}(s)}{Ns}$$

Python model

sun_pll_sky130nm/py/pll.py

Carsten Wulff 2023

SUN_PLL_SKY130NM

Ring oscillator with level shifter.

Designer	Carsten Wulff	Γ
Updated	wulff	1
Modified	2023-01-22 22:00:43	1
Copyright	Carsten Wulff Software	1

Library/Cell SUN_PLL_ROSC

Current bias

Designer	Carsten Wulff	
Updated	wulff	
Modified	2023-01-22 22:00:43	
Copyright		

Library/Cell SUN PLL BIAS

Designer	Carsten Wulff	
Updated	wulff	
Modified	2023-01-22 22:00:43	
Copyright	Carsten Wulff Software	

Library/Cell SUN_PLL_BUF

Charge pump

Designer	Carsten Wulff	Γ
Updated	wulff	1
Modified	2023-01-22 22:00:43	1
Copyright	Carsten Wulff Software	1

Library/Cell SUN PLL CP

Phase-Frequency Detector (PFD)

Designer	Carsten wuiti
Updated	wulff
Modified	2023-01-22 22:00:43
Copyright	Carsten Wulff Software

Library/Cell SUN_PLL_PFD

Thanks!