AYED II Lautaro Gastón Peralta

Práctico 3.3

 Modifique el código del algoritmo que resuelve el problema de la moneda utilizando backtracking, de manera que devuelva qué monedas se utilizan, en vez de sólo la cantidad.

- 2. En un extraño país las denominaciones de la moneda son 15, 23 y 29, un turista quiere comprar un recuerdo pero también quiere conservar el mayor número de monedas posibles. Los recuerdos cuestan 68, 74, 75, 83, 88 y 89. Asumiendo que tiene suficientes monedas para comprar cualquiera de ellos, ¿cuál de ellos elegirá? ¿qué monedas utilizará para pagarlo? Justificar claramente y mencionar el método utilizado.
- = 29-29 (58 no hay valor para comprar) 29 (87 no hay valor para comprar)

29-23 (52 puedo seguir pagando) -23 (75 puedo pagar el objeto) *

29-23 (52 puedo seguir pagando) -15 (67 no hay valor para comprar)

29-15-15 (59 puedo seguir pagando) - 15 (74 puedo pagar el objeto) -15 (89 puedo pagar el objeto)*

23-15-15 (68 puedo pagar el objeto) - 15 (83 puedo pagar el objeto)

le conviene comprar el recuerdo de 75 (usa las monedas: 29,23,23)

Para cada uno de los siguientes ejercicios:

- Identifique qué parámetros debe tomar la función recursiva que resuelve el problema.
- Describa con palabras qué calcula la misma, en función de sus argumentos.
- Defina la función recursiva en notación matemática y opcionalmente en código.
- Indique cuál es la llamada principal que obtiene el resultado pedido en el ejercicio.

3. Una panadería recibe n pedidos por importes m_1, \ldots, m_n , pero sólo queda en depósito una cantidad H de harina en buen estado. Sabiendo que los pedidos requieren una cantidad h_1, \ldots, h_n de harina (respectivamente), determinar el máximo importe que es posible obtener con la harina disponible.

*Datos:

- n pedidos
- m1...mn importes (1<=i<=n)
- H => harina en buen estado
- los pedidos usan una cantidad de h1...hn de harina
- determinar maximo importe que es posible obtener con la harina disponible

*Funcion:

 max_importe(H,m) = calcula la mayor cantidad de importes que es posible obtener con la harina disponible en deposito {h1,...hn}. Restando cuando sea posible, H-hi.

*Definición de función recursiva:

```
\label{eq:max_importe} \begin{split} \text{max\_importe}(H, \, i) &= \{ & 0 & i = 0 \\ & \infty & H = 0 \, ^i > 0 \\ & \text{max\_importe}(H, m-1) & \text{hi} > H > 0 \, ^i > 0 \\ & \text{max} \, (\text{max\_importe}(H-\text{hi}, m-1), \text{max\_importe} \, (H, m-1)) & H > \text{hi} > 0 \, ^i > 0 \\ & \} \end{split}
```

4. Usted se encuentra en un globo aerostático sobrevolando el océano cuando descubre que empieza a perder altura porque la lona está levemente dañada. Tiene consigo n objetos cuyos pesos p_1, \ldots, p_n y valores v_1, \ldots, v_n conoce. Si se desprende de al menos P kilogramos logrará recuperar altura y llegar a tierra firme, y afortunadamente la suma de los pesos de los objetos supera holgadamente P. ¿Cuál es el menor valor total de los objetos que necesita arrojar para llegar sano y salvo a la costa?

*Datos:

- Estamos en un globo y perdemos altura.
- n objetos (1<=i<=n).
- cada objeto tiene pesos p1...pn y valores v1..vn.
- Pkg para recuperar altura y llegar a tierra firme.
- la suma de p1..pn >= P.
- Buscar el menor valor total de los objetos que necesita arrojar.

*Funcion:

- min_obj(P, i) = "Es una funcion que calcula el menor valor total de objetos a tirar entre 1 a i, de manera tal que la suma sea mayor o igual a P."

*Definicion de funcion recursiva:

5. Sus amigos quedaron encantados con el teléfono satelital, para las próximas vacaciones ofrecen pagarle un alquiler por él. Además del día de partida y de regreso $(p_i \ y \ r_i)$ cada amigo ofrece un monto m_i por día. Determinar el máximo valor alcanzable alquilando el teléfono.

*Datos:

- Tenemos n amigos (1<=i<=n).
- Prestamos un celular, conocemos dia de partida y regreso de cada uno p_i y
 r i.
- Ahora nos quieren pagar un monto mi cada amigo.

*Funcion: max_monto(i,) = "Funcion que calcula el maximo monto obtenido de prestar el celular a mis amigos segun los dias de partida y regreso). d es un arreglo de amigos en donde se conoce sus p_i, r_i y m_i.

*Definicion de funcion recursiva:

```
\label{eq:max_monto} \begin{split} \text{max\_monto(d)} = \{ & & & & \\ 0 & & & -> p\_i < d \\ & & \text{max } (\texttt{m\_i} * (\texttt{r\_i} - \texttt{p\_i} + 1) + \texttt{max\_monto}(\texttt{r\_i} + 1), \, \texttt{max\_monto}(\texttt{d} + 1)) \\ & & & & -> p > 0 \; \textbf{v} \; \texttt{r\_i} > 0 \\ \} \end{split}
```

6. Un artesano utiliza materia prima de dos tipos: A y B. Dispone de una cantidad MA y MB de cada una de ellas. Tiene a su vez pedidos de fabricar n productos p₁,..., p_n (uno de cada uno). Cada uno de ellos tiene un valor de venta v₁,..., v_n y requiere para su elaboración cantidades a₁,..., a_n de materia prima de tipo A y b₁,..., b_n de materia prima de tipo B. ¿Cuál es el mayor valor alcanzable con las cantidades de materia prima disponible?

*DATOS:

- Materias primas : A y B.
- Cada materia prima tiene cantidades MA y MB.
- pedidos a fabricar => n productos (p1...pn) (UNO DE CADA UNO).
- cada producto tiene un valor de venta (v1...vn).
- requieren cada uno para su elaboración cantidades (a1...an) de materia prima
 A y (b1...bn) de materia prima B.
- Buscar el mayor valor alcanzable con la cantidad de materia prima disponible.

*Funcion: max_art(i,MA,MB) = "Es una funcion que calculara el maximo valor de venta alcanzable de p1...pn productos en base al uso de materia prima de estos."

*Definicion de funcion recursiva:

7. En el problema de la mochila se buscaba el máximo valor alcanzable al seleccionar entre n objetos de valores v₁,..., v_n y pesos w₁,..., w_n, respectivamente, una combinación de ellos que quepa en una mochila de capacidad W. Si se tienen dos mochilas con capacidades W₁ y W₂, ¿cuál es el valor máximo alcanzable al seleccionar objetos para cargar en ambas mochilas?

*Datos:

- n objetos.
- cada objeto tiene valores v1..vn y pesos w1..wn.
- la mochila tiene capacidad W.
- DOS MOCHILAS W1 Y W2.

*Función: mochila(i,W1,W2) : "Funcion que calcula el máximo alcanzable de dos mochilas, con objetos 1...n, tal que no sobrepasen sus pesos."

*Definición recursiva de la función:

```
\begin{array}{lll} mochila(i,W1,W2) = \{ & & & & & & \\ 0 & & & & & \\ -> & i=0 \ ^{}W1=0 \ ^{}W2=0 \\ & & & & \\ -> & i>0 \ ^{}wi>W1 \ ^{}wi>W2 \\ max(mochila(i-1,W1,W2),vi + mochila(i-1,W1-wi,W2)) & & & \\ & & & & \\ -> & i>0 \ ^{}wi<=W1 \ ^{}wi>W2 \\ max(mochila(i-1,W1,W2),vi + mochila(i-1,W1,W2-wi)) & & & \\ & & & & \\ -> & i>0 \ ^{}wi>W1 \ ^{}w<=W2 \\ max(mochila(i-1,W1,W2),vi + mochila(i-1,W1-wi,W2), vi + mochila(i-1,W1i,W2-wi)) & & \\ & & & & \\ -> & i>0 \ ^{}wi<=W1 \ ^{}w<=W2 \\ & & & \\ \} \end{array}
```