

27 ____ лютого ____ 2024 р

Вчитель: Родіна Алла. Олегівна

[дата]

Тема: Коло, вписане в трикутник

Мета:

- Навчальна: розглянути та довести теореми (про властивість бісектриси кута; про коло, вписане в трикутник та наслідки з неї)
- Розвиваюча: розвивати вміння аналізувати отримані знання, правильно користуватися креслярським приладдям;
- Виховна: виховувати інтерес до вивчення точних наук;

Компетенції:

- математичні
- комунікативні

Тип уроку: засвоєння нових знань;

Обладнання: конспект, презентація, мультимедійне обладнання;

Хід уроку

I. Організаційний етап

- Привітання
- Перевірка присутніх на уроці
- Перевірка виконання д/з
- Налаштування на роботу

II. Вивчення нового матеріалу

*Для доведення наступних теорем нам знадобиться важлива теорема про властивість бісектриси кута.

Теорема (властивість бісектриси кута)

Будь-яка точка бісектриси кута рівновіддалена від сторін цього кута

Ланоз

AC — бісектриса $\angle BAD$ $CB \perp AB$ $CD \perp AD$

Довести:

$$CB = CD$$

Доведення:

Розглянемо прямокутні трикутники *ABC* і *ADC*:

$$AC$$
 — спільна сторона $\angle BAC = \angle DAC \ (AC$ — бісектриса) $\begin{vmatrix} \Delta ABC = \Delta ADC \\ \exists a \ \emph{гіпотенузою} \\ \emph{i} \ \emph{гострим кутом} \end{vmatrix}$

$$\Delta ABC = \Delta ADC \rightarrow CB = CD \begin{pmatrix} (як відповідні елементи \\ рівних трикутників) \end{pmatrix}$$

// Коло, вписане в трикутник

Коло називається *вписаним у трикутник*, якщо воно дотикається до всіх сторін цього трикутника.

Трикутник при цьому називається *описаним навколо кола.*

Теорема (про коло, вписане в трикутник)

У будь-який трикутник можна вписати коло

Дано:

ABC – довільний трикутник;

Довести:

У *ДАВС* можна вписати коло;

Доведення:

Побудуємо бісектриси кутів A і C.

Доведемо, що т.0 – центр вписаного у коло трикутника.

ightharpoonup Пригадайте щойно доведену властивість бісектриси кута і поясніть, чому т.O рівновіддалена від сторін кутів A і C

(Учні висловлюють власну думку)

Так як т. 0 знаходиться на бісектрисах кутів A і C, то вона рівновіддалена від сторін цих кутів. Отже:

$$OM = OV$$

 $OM \perp AB$; $OV \perp AC$
 $ON = OV$
 $OV \perp AC$; $ON \perp BC$

$$OM = OV = ON$$
 $\rightarrow Omже, коло з радіусом OM$
 $domukaється до всіх сторін$
 $mpukymhuka ABC$

Доведено.

Наслідок 1

Бісектриси трикутника перетинаються в одній точці

Доведення:

т.O — точка перетину бісектрис кутів A і C Доведемо, що бісектриса $\angle B$ також проходить через т. O

Розглянемо прямокутні ΔBMO і ΔBNO :

$$\begin{array}{c|c}
OM = ON \\
BO - \begin{array}{c}
\text{спільна} \\
\text{гіпотенуза}
\end{array}$$
 $\rightarrow \begin{array}{c}
\Delta BMO = \Delta BNO \\
\text{(за катетом} \\
\text{і гіпотенузою)}
\end{array}$

$$\Delta BMO = \Delta BNO \rightarrow \angle MBO = \angle NBO \begin{tabular}{ll} (Як відповідні елементи \\ рівних трикутників) \end{tabular}$$

 $\angle MBO = \angle NBO \rightarrow BO - \text{бісектриса } \angle B$

Доведено

Наслідок 2

Центром кола, вписаного у трикутник, ϵ точка перетину бісектрис цього трикутника

▶ Пригадайте, як називається точка перетину бісектрис трикутника? (Інцентр)

III. Закріплення нових знань та вмінь учнів

№1

На яких з рисунків зображене коло, вписане у трикутник?

№2

Накресліть гострокутний трикутник. За допомогою транспортира, циркуля і лінійки побудуйте коло, вписане в цей трикутник

Розв'язання:

№3

На рисунку точка I — центр кола, вписаного у різносторонній трикутник MNV; A, B і C — точки дотику. Знайдіть усі пари рівних трикутників на цьому малюнку.

Розв'язання:

Розглянемо прямокутні трикутники *MAI* і *MCI*:

$$IA = IC$$
 $\begin{array}{c} (\mathfrak{R}\kappa \\ padiycu) \\ MI - \begin{array}{c} (cniльнa \\ cmopoha) \end{array} \end{array}$ $\rightarrow \begin{array}{c} \Delta MAI = \Delta MCI \\ (3a \ \kappa amemom \\ i \ \epsilon inomenysoh) \end{array}$

Аналогічно $\Delta NAI = \Delta NBI$, $\Delta VCI = \Delta VBI$

Відповідь: $\Delta MAI = \Delta MCI$, $\Delta NAI = \Delta NBI$, $\Delta VCI = \Delta VBI$

№4

Доведіть, що центр кола, яке дотикається до сторін кута, лежить на бісектрисі цього кута.

Доведення:

Нехай коло з центром O дотикається до сторін кута MAN в точках M і N, тоді:

 $OM \perp AM$ $ON \perp AN$

Розглянемо прямокутні трикутники *АМО* і *АNO*:

$$OM = ON \frac{(як)}{padiycu}$$
 $\rightarrow \Delta AMO = \Delta ANO$ $\rightarrow (за катетом)$ i гіпотенузою)

$$\Delta AMO = \Delta ANO \rightarrow \angle MAO = \angle NAO \begin{tabular}{ll} (Як відповідні елементи \\ рівних трикутників) \end{tabular}$$
 $\angle MAO = \angle NAO \rightarrow AO end{-}$ бісектриса $\angle MAN$

Доведено

№5

У трикутнику центр вписаного кола лежить на медіані. Доведіть, що це рівнобедрений трикутник.

Доведення:

Центр вписаного кола (за умовою) лежить на медіані Центром кола, вписаного у трикутник, ϵ точка перетину (Наслідок 2) бісектрис цього трикутника

В даному трикутнику медіана ϵ бісектрисою \rightarrow Даний трикутник рівнобедрений

Доведено

Коло, вписане в рівнобедрений трикутник, ділить його бічну сторону на відрізки 4 см і 5 см, починаючи від основи. Знайдіть периметр трикутника.

Дано:

 ΔABC — рівнобедрений; т.O — центр вписаного у ΔABC кола; L і K — точки дотику кола до сторін ΔABC ; VK = 4 см; KN = 5 см;

Знайти:

 $P_{\Delta MNV}$ –?

Розв'язання:

Так як у рівнобедреному трикутнику бісектриса, проведена до основи, є медіаною і висотою, то ML = LV.

Розглянемо прямокутні трикутники *OKV* і *OLV*:

$$OK = OL$$
 $\begin{pmatrix} (Як \ padiycu \ кола) \end{pmatrix}$ \rightarrow $\Delta OKV = \Delta OLV$ \rightarrow $OV - спільна сторона \rightarrow $(За \ катетом \ i \ гіпотенузою)$$

$$\Delta OKV = \Delta OLV
ightarrow KV = LV \begin{tabular}{l} (як відповідні елементи \\ рівних трикутників) \end{tabular}$$

$$\left. egin{aligned} ML &= LV \ KV &= LV \end{aligned} \right|
ightarrow ML = LV = KV = 4 \ \mathrm{cm} \end{aligned}$$

$$MV = 2ML = 2 \cdot 4 = 8 \text{ cm}$$

 $NV = 4 + 5 = 9 \text{ cm}$
 $P_{MNV} = 2NV + MV = 2 \cdot 9 + 8 = 26 \text{ cm}$

Відповідь: 26 см

IV. Підсумок уроку

- Сформулюйте теорему про властивість бісектриси кута
- Чи в будь-який трикутник можна вписати коло?
- Скільки можна побудувати кіл, що дотикаються до даної прямої в одній точці?
- Скільки можна побудувати кіл даного радіуса, що дотикаються до прямої в одній точці
- Який кут утворюють дотична до кола і радіус, що проведений у точку дотику?
- Скільки можна побудувати дотичних до кола, через точку, що знаходиться поза колом?

V. Домашнє завдання

Вивчити теорему (властивість бісектриси кута)