International Rectifier

MBR150 MBR160

SCHOTTKY RECTIFIER

1.0 Amp

Major Ratings and Characteristics

Characteristics	MBR150 MBR160	Units
I _{F(AV)} Rectangular waveform	1.0	А
V _{RRM}	50/60	V
I _{FSM} @ tp=5 µs sine	150	А
V _F @ 1 Apk, T _J = 125°C	0.65	V
T _J range	- 40 to 150	°C

Description/ Features

The MBR150, MBR160 axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- Low profile, axial leaded outline
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Bulletin PD-20589 rev. B 03/03

Voltage Ratings

Part number	MBR150	MBR160
V _R Max. DC Reverse Voltage (V)	50	60
V _{RWM} Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ T _C = 75°C, re	rectangular wave form	
, ,	* See Fig. 4					
I _{FSM}	Max. Peak One Cycle Non-Repetitive	150	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with	
	Surge Current * See Fig. 6	25		10ms Sine or 6ms Rect. pulse	rated V _{RRM} applied	
E _{AS}	Non-Repetitive Avalanche Energy	2.0	mJ	$T_J = 25 ^{\circ}\text{C}$, $I_{AS} = 1 \text{Amps}$, $L = 4 \text{mH}$		
I _{AR}	Repetitive Avalanche Current	1.0	Α	Current decaying linearly to zero in 1 µsec		
				Frequency limited by T _J max. V	₄ = 1.5 x V _R typical	

Electrical Specifications

	Parameters		Value	Units	Conditions	3
V _{FM}	Max. Forward Voltage Drop		0.75	V	@ 1A	
'	* See Fig. 1	(1)	0.9	V	@ 2A	T _J = 25 °C
			1.0	V	@ 3A	-
			0.65	V	@ 1A	
			0.75	V	@ 2A	T _J = 125 °C
			0.82	V	@ 3A	
I _{RM}	Max. Reverse Leakage Current		0.5	mA	T _J = 25 °C	
	* See Fig. 2	(1)	5	mA	T _J = 100°C	$V_R = \text{rated } V_R$
			10	mA	T _J = 125 °C	
C _T	Typical Junction Capacitance		55	pF	$V_R = 5V_{DC}$ (test signal range 100Khz to 1Mhz) 25°C	
L _S	Typical Series Inductance		8.0	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change		10000	V/µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T _J	Max. Junction Temperature Range(*)	- 40 to 150	°C	
T _{stg}	Max. Storage Temperature Range	- 40 to 150	°C	
R_{thJL}	Max. Thermal Resistance Junction to Lead (**)	80	°C/W	DC operation (*See Fig. 4)
wt	Approximate Weight	0.33(0.012)	g (oz.)	
	Case Style	DO-204AL	(DO-41)	

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \quad \text{thermal runaway condition for a diode on its own heatsink}$

 $^{(^{\}star\star})$ Mounted 1 inch square PCB, Thermal Probe connected to lead 2mm from package

Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 2 - Typical Values of Reverse Current Vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

Fig. 4 - Maximum Ambient Temperature Vs. Average Forward Current, Printed Circuit Board Mounted

Fig. 5 - Forward Power Loss Characteristics

Fig. 6 - Maximum Non-Repetitive Surge Current

 $\begin{aligned} \textbf{(2)} \;\; &\text{Formula used: } \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} \cdot (\textbf{Pd} + \textbf{Pd}_{\text{REV}}) \, \textbf{x} \, \textbf{R}_{\text{thJC}}; \\ &\text{Pd} = \textbf{Forward Power Loss} = \textbf{I}_{F(AV)} \, \textbf{x} \, \textbf{V}_{\text{FM}} \, \textcircled{0} \, \left(\textbf{I}_{F(AV)} / \, \textbf{D}\right) \, \, (\text{see Fig. 6}); \\ &\text{Pd}_{\text{REV}} = \textbf{Inverse Power Loss} = \textbf{V}_{\text{R1}} \, \textbf{x} \, \textbf{I}_{\text{R}} \, (\textbf{1} - \textbf{D}); \, \textbf{I}_{\text{R}} \, \textcircled{0} \, \, \textbf{V}_{\text{R1}} = 80\% \, \text{rated V}_{\text{R}} \end{aligned}$

Bulletin PD-20589 rev. B 03/03

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 03/03

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.