Lección 3: Variables aleatorias

Módulo 2: Probabilidades y decisiones bajo incertidumbre

Magdalena Cornejo

Variable aleatoria

Definición

Una variable aleatoria es una variable que toma valores numéricos determinados por el resultado de un experimento que tiene asociado una probabilidad.

Notación: en general describimos la variable aleatoria con mayúscula (X) y el resultado (realización) con minúscula (x).

Ejemplo

Se tira una moneda al aire tres veces (**experimento**), definimos X (**variable aleatoria**) como "el número de caras obtenidas". Entonces X es una variable aleatoria que puede tomar los siguientes valores (x): 0, 1, 2 y 3. Cada uno de esos valores va a tener una probabilidad asociada.

¿Se animan a calcularla?

Ejemplo (Resolución)

- Se lanza 3 veces una moneda
- X = número de caras obtenidas. Entonces, X = 0, 1, 2, 3
- ullet Llamemos H a sacar una cara y T a sacar una ceca.
- Los resultados posibles son 8: HHH, HHT, HTH, THH, HTT, THT, TTH, TTT.
- Entonces se puede construir la siguiente tabla:

X	P(X = x)
0	1/8=0,125
1	3/8 = 0,375
2	3/8 = 0,375
3	1/8 = 0,125

Tipos de variables aleatorias

Volviendo a las variables aleatorias

Entonces, una variable aleatoria es una variable para la cual

- no sabemos (con certeza)
- cuál va a ser (ex-ante) su valor.

Vamos a centrarnos principalmente en el estudio de variables aleatorias cuantitativas:

- Discretas
- Continuas

Variables Aleatorias Discretas

Si X es una **variable aleatoria discreta** y x es uno de sus posibles valores, la probabilidad de que X tome un valor específico x se escribe: p(x) o P(X=x). Esto se conoce como la **función de probabilidad**.

Ejemplo

Se tira un dado. X= variable aleatoria que indica el número resultante. Si el dado es equilibrado, P(X=1)=...=P(X=6)=1/6, entonces su función de probabilidad será:

$$P(X = x) = 1/6$$
 para $x = 1, 2, 3, ..., 6$

¿Cómo se vería gráficamente su distribución de probabilidades?

Esto nos permite calcular distintas probabilidades:

•
$$P(2 \le X \le 4) = P(X = 2) + P(X = 3) + P(X = 4) = 1/2$$

•
$$P(X \le 5) = 1 - P(X > 5) = 1 - P(X = 6) = 5/6$$

◆ロト ◆団ト ◆草ト ◆草ト 草 めるぐ

Histograma vs Distribución de Probabilidades

Valor esperado (Esperanza Matemática)

Definición

El valor esperado (o esperanza matemática) es una medida de lo que ocurre con más frecuencia o en promedio.

El **valor esperado** de una variable aleatoria discreta X es:

$$\mu = E(X) = p_1 x_1 + p_2 x_2 + ... + p_n x_n = \sum_i p_i x_i$$

Es decir, el valor esperado es el **promedio ponderado** de todos los posibles valores que la misma puede adoptar, donde los ponderadores son las probabilidades asociadas a cada x. Notar que el promedio simple es el caso particular en que p=1/n.

- X=cantidad de autos que compra una familia en el lapso de 5 años.
- Supongamos que conocemos la probabilidad asociada a cada x:

Х	P(X=x)	
0	0,30	
1	0,27	
2	0,20	
3	0,13	
4	0,06	
5	0,03	
6	0,01	

¿Cuál es el valor esperado?

- X=cantidad de autos que compra una familia en el lapso de 5 años.
- Supongamos que conocemos la probabilidad asociada a cada x:

X	P(x)	x.P(x)	
0	0,30	0.0,30=0	
1	0,27	1.0,27=0,27	
2	0,20	2.0,20=0,40	
3	0,13	3.0,13=0,39	
4	0,06	4.0,06=0,24	
5	0,03	5.0,03=0,15	
6	0,01	6.0,01=0,06	
Suma		1,51	

Propiedades de la esperanza

Si a es una constante (un número) y X una variable aleatoria, entonces:

- E(a) = a
- E(aX) = aE(X)

Si tenemos dos variables aleatorias $(X \in Y)$. Entonces,

- E(X + Y) = E(X) + E(Y)
- E(X Y) = E(X) E(Y)
- ¡Multiplicarlas y dividirlas es distinto!

¡Conocer las propiedades de la esperanza nos facilita realizar ciertos cómputos!

- X= ingreso mensual del jefe de hogar
- Y= ingreso mensual del cónyuge

Se sabe que E(X)=8000 y E(Y)=6000.

Ahora, supongamos que todos los jefes de hogar reciben un incremento del 20% en su salario, mientras que sus cónyuges una suma fija de \$2000. ¿Cuál es el valor esperado del nuevo ingreso mensual del hogar (jefe + cónyuge)?

- X= ingreso mensual del jefe de hogar
- Y= ingreso mensual del cónyuge

Se sabe que E(X)=8000 y E(Y)=6000.

Ahora, supongamos que todos los jefes de hogar reciben un incremento del 20% en su salario, mientras que sus cónyuges una suma fija de \$2000. ¿Cuál es el valor esperado del nuevo ingreso mensual del hogar (jefe + cónyuge)?

T=nuevo ingreso total familiar.

- X= ingreso mensual del jefe de hogar
- Y= ingreso mensual del cónyuge

Se sabe que E(X)=8000 y E(Y)=6000.

Ahora, supongamos que todos los jefes de hogar reciben un incremento del 20% en su salario, mientras que sus cónyuges una suma fija de \$2000. ¿Cuál es el valor esperado del nuevo ingreso mensual del hogar (jefe + cónyuge)?

- *T*=nuevo ingreso total familiar.
- Entonces, E(T) = E(1, 2X + Y + 2000).

- X= ingreso mensual del jefe de hogar
- Y= ingreso mensual del cónyuge

Se sabe que E(X)=8000 y E(Y)=6000.

Ahora, supongamos que todos los jefes de hogar reciben un incremento del 20% en su salario, mientras que sus cónyuges una suma fija de \$2000. ¿Cuál es el valor esperado del nuevo ingreso mensual del hogar (jefe + cónyuge)?

- *T*=nuevo ingreso total familiar.
- Entonces, E(T) = E(1, 2X + Y + 2000).
- Aplicando las propiedades: E(T) = 1, 2E(X) + E(Y) + 2000 = 1, 2.8000 + 6000 + 2000 = \$17600

Varianza

- Como vimos en estadística descriptiva, no podemos limitarnos solamente a fijarnos en medidas de tendencia central como la media.
- No tendríamos una idea acabada de cómo se distribuyen los datos.
- Podemos calcular también la varianza (o el desvío) de una variable aleatoria como medida de dispersión.

Varianza

- Como vimos en estadística descriptiva, no podemos limitarnos solamente a fijarnos en medidas de tendencia central como la media.
- No tendríamos una idea acabada de cómo se distribuyen los datos.
- Podemos calcular también la varianza (o el desvío) de una variable aleatoria como medida de dispersión.

Si X es una variable aleatoria discreta, la esperanza del desvío al cuadrado respecto de la media $(X - E(X))^2$ se denomina **varianza** $(V(X) \circ \sigma_X^2)$:

$$\sigma^2 = V(X) = E[(X - \mu)^2] = \sum_i (x - \mu)^2 p(x)$$

Notar que: (Fórmula alternativa)

$$\sigma^2 = V(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

4□ > 4□ > 4 = > 4 = > = 90

Intuición

$$\sigma^2 = V(X) = E[(X - \mu)^2] = \sum_i (x - \mu)^2 p(x)$$

- La varianza (generalmente denotada como σ^2) es un promedio ponderado (por su probabilidad) de la distancia cuadrática entre la media (μ) y cada x.
- Es mayor cuanto más lejos estén los x de la media, y cuanto mayor sea el peso (probabilidad de ocurrencia) de esos valores.
- Usualmente se lo asocia con variabilidad y riesgo.

En el ejemplo de la cantidad de autos que compra una familia en un lapso de 5 años, si queremos calcular la varianza:

Х	P(x)	х-µ	(x-μ) ²	(x-μ)²P(x)
0	0,30	0-1,51=-1,51	2,28	2,28.0,30=0,68
1	0,27	1-1,51=-0,51	0,26	0,26.0,27=0,07
2	0,20	2-1,51=0,49	0,24	0,24.0,20=0,05
3	0,13	3-1,51=1,49	2,22	2,22.0,13=0,29
4	0,06	4-1,51=2,49	6,20	6,20.0,06=0,37
5	0,03	5-1,51=3,49	12,18	12,18.0,03=0,37
6	0,01	6-1,51=4,49	20,16	20,16.0,01=0,20
			Suma	2,03

Entonces, $\sigma^2 = 2,02$ y $\sigma = 1,42$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 990

Propiedades de la varianza - Creer o reventar

Si a y b son dos números (constantes, no variables) y X una variable aleatoria, entonces:

- V(a) = 0
- $V(aX) = a^2V(X)$
- $V(a + bX) = b^2V(X)$

Si X e Y son dos variables aleatorias:

- $V(X \pm Y) = V(X) + V(Y) \pm 2COV(X, Y)$
- $V(X \pm Y) = V(X) + V(Y)$ si X e Y son variables aleatorias independientes (no tienen relación lineal, COV(X, Y) = 0)

- X= ingreso mensual del jefe de hogar
- Y= ingreso mensual del cónyuge

Se sabe que $\sigma(X) = 150$ y $\sigma(Y) = 100$.

Ahora, supongamos que todos los jefes de hogar reciben un incremento del 20% en su salario, mientras que sus cónyuges una suma fija de \$2000. ¿Cuál es el el desvío estándar del nuevo ingreso mensual del hogar (jefe + cónyuge)? Asuma que el ingreso del jefe de hogar es **independiente** del de su cónyuge

- X= ingreso mensual del jefe de hogar
- Y= ingreso mensual del cónyuge

Se sabe que $\sigma(X) = 150$ y $\sigma(Y) = 100$.

Ahora, supongamos que todos los jefes de hogar reciben un incremento del 20% en su salario, mientras que sus cónyuges una suma fija de \$2000. ¿Cuál es el el desvío estándar del nuevo ingreso mensual del hogar (jefe + cónyuge)? Asuma que el ingreso del jefe de hogar es **independiente** del de su cónyuge

• *T*=nuevo ingreso total familiar.

- X= ingreso mensual del jefe de hogar
- Y= ingreso mensual del cónyuge

Se sabe que $\sigma(X) = 150$ y $\sigma(Y) = 100$.

Ahora, supongamos que todos los jefes de hogar reciben un incremento del 20% en su salario, mientras que sus cónyuges una suma fija de \$2000. ¿Cuál es el el desvío estándar del nuevo ingreso mensual del hogar (jefe + cónyuge)? Asuma que el ingreso del jefe de hogar es **independiente** del de su cónyuge

- *T*=nuevo ingreso total familiar.
- Entonces, V(T) = V(1, 2X + Y + 2000).

- X= ingreso mensual del jefe de hogar
- Y= ingreso mensual del cónyuge

Se sabe que $\sigma(X) = 150$ y $\sigma(Y) = 100$.

Ahora, supongamos que todos los jefes de hogar reciben un incremento del 20% en su salario, mientras que sus cónyuges una suma fija de \$2000. ¿Cuál es el el desvío estándar del nuevo ingreso mensual del hogar (jefe + cónyuge)? Asuma que el ingreso del jefe de hogar es **independiente** del de su cónyuge

- T=nuevo ingreso total familiar.
- Entonces, V(T) = V(1, 2X + Y + 2000).
- Aplicando las propiedades: $V(T) = 1, 2^2 V(X) + V(Y) = 1, 2^2.150^2 + 100^2 = 42400$
- $\sigma(T) = 205.9

Covarianza

La **covarianza** entre dos variables aleatorias X e Y es una medida de la asociación que existe entre ambas. Está dada por:

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = \sum_i \sum_j (x - \mu_X)(y - \mu_Y) p(x,y)$$

- Para calcularla hay que conocer la **probabilidad conjunta** (p(x,y)).
- Una covarianza positiva (negativa) implica que existe una asociación lineal positiva (negativa) entre el par de variables aleatorias.

Intuición

- Cov(X, Y) > 0: si $\uparrow X$, Y tiende a subir (o si $\uparrow Y$, X tiende a subir)
- Cov(X, Y) < 0: si $\uparrow X$, Y tiende a bajar (o si $\uparrow Y$, X tiende a bajar)
- Cov(X, Y) = 0: **no** hay asociación **lineal** entre X e Y

Intuición

- Cov(X, Y) > 0: si $\uparrow X$, Y tiende a subir (o si $\uparrow Y$, X tiende a subir)
- Cov(X, Y) < 0: si $\uparrow X$, Y tiende a bajar (o si $\uparrow Y$, X tiende a bajar)
- Cov(X, Y) = 0: **no** hay asociación **lineal** entre X e Y

- En la lección anterior vimos que las variables aleatorias X e Y son **independientes** si p(x,y) = p(x).p(y) para todos los valores de X e Y.
- Bajo independencia, también se verifica que E(XY) = E(X).E(Y).
- Entonces, si X e Y son independientes, COV(X, Y) = 0.
- Sin embargo, la inversa no es necesariamente verdadera (puede haber otro tipo de relación distinta de la lineal).

Correlación

Como la covarianza depende de las unidades de medición de X e Y, muchas veces utilizamos el **coeficiente de correlación** (ρ_{XY}) que lo escribimos de la siguiente manera:

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

- ullet ho_{XY} mantiene el signo de la covarianza
- ρ_{XY} es 0 cuando la covarianza es 0.
- $-1 \le \rho_{X,Y} \le 1$

El coeficiente de correlación es una medida MUY utilizada en la práctica y que retomaremos cuando veamos regresión.

Correlación

