Simulation 8

(a)
$$X_{1}, Y_{1}, X_{2}, Y_{2} \sim N(\mathcal{N}, \sigma^{2})$$

 $X \sim N(\mathcal{N}, \sigma^{2}) \Rightarrow f(x) = \frac{1}{\sigma \sqrt{21}} e^{-\frac{1}{2}(x-x^{2})^{2}}$

Then, X_2-X_1 and Y_2-Y_1 are also normally distributed albeit with different means and variances.

periances.
$$E\left[X_2 - X_1\right] = E\left[X_2\right] - E\left[X_1\right] = M - M = 0$$

$$E L X_2 - X_1$$
 = $Var(X_2) + Var(X_1) = \sigma^2 + \sigma^2$
 $Var(X_2 - X_1) = Var(X_2) + Var(X_1) = \sigma^2 + \sigma^2$

So,
$$X_2-X_1 \sim N(0, 2\sigma^2)$$
 and $Y_2-Y_1 \sim N(0, 2\sigma^2)$

$$0 = \sqrt{(\chi_2 - \chi_1)^2 + (\gamma_2 - \gamma_1)^2}$$

Let
$$Z = (X_2 - X_1)^2 + (Y_2 - Y_1)^2$$

- Y-Y. and both pormal voriables

Since X2-X1 are 12-11 with mean = 0 and variance = $2\sigma^2$, $\frac{\chi_2 - \chi_1}{\sqrt{2}\sigma^2}$ and $\frac{\gamma_2 - \gamma_1}{\sqrt{2}\sigma^2}$ would become standard normal variables. All this from online sources confirmed that the sum of the square of two standard hormal variables follows a chi-squared distribution with two degrees of freedom. Then, it seems JZ would follow a grayleigh distribution with parameter $\sigma' = \sqrt{2\sigma^2}$ = $\sigma\sqrt{2}$ The cost is given by/12 $F_0(d) = 1 - e^{-\frac{d}{2(\sigma\sqrt{z})^2}}$ $= |-e^{-\frac{J^{2}}{4\sigma^{2}}}$ $= |-e^{-\frac{(R_{1}+R_{2})^{2}}{-\frac{(R_{1}+R_{2})^{2}}{4\sigma^{2}}}}$ $= |-e^{-\frac{(R_{1}+R_{2})^{2}}{-\frac{(R_{1}+R_{2})^{2}}{4\sigma^{2}}}}$

$$P(D > R_1 + R_2) = |-P(D \le R_1 + R_2)$$

$$= |-(|-e^{-\frac{(R_1 + R_2)^2}{4\sigma^2}})$$

$$= |-(|-e^{-\frac{(R_1 + R_2)^2}{4\sigma^2}})$$

$$= |-(|-e^{-\frac{(R_1 + R_2)^2}{4\sigma^2}})$$

$$= |-(|-e^{-\frac{(R_1 + R_2)^2}{4\sigma^2}})$$

9 implemented the simulation for vorious M, σ_{1} , and R_{2} and obtained the following grewalth) M = 4; $\sigma = 9$, $R_{1} = 3$, $R_{2} = 4$ (D = 7): $P(R_{1}+R_{2}>D) = 0.865$ M = 2, $\sigma = 4$, $R_{1} = 5$, $R_{2} = 10$ (D = 15): $P(R_{1}+R_{2}>D) = 0.026$ M = 2, $\sigma = 4$, $R_{1} = 2$, $R_{2} = 6$ (D = 8): $P(R_{1}+R_{2}>D) = 0.357$ M = 5, $\sigma = 4$, $R_{1} = 2$, $R_{2} = 6$ (D = 8): $P(R_{1}+R_{2}>D) = 0.357$

The simulation goes above and below the theoretical result obtained and shows that they are wreed.