AVVS Summits 2014

Optimizing Total Cost of Ownership for AWS

Marc Johnson, Amazon Web Services Wayson Vannatta, VP of Technology, InfoSpace

New York, NY -- July 10th, 2014

Agenda

What would it cost to run in-house versus on AWS?

How can I reduce my AWS Spend?

Total Cost of Ownership

Cost Optimization

Lower Costs with AWS

1

Replacing CapEx +
OpEx with OpEx

"Average of 400 servers replaced per customer"

Source: IDC Whitepaper, sponsored by Amazon, "The Business Value of Amazon Web Services Accelerates Over Time." December 2013

2

Continuous AWS Price Reductions

42 Price Reductions since 2006 3

Pricing Model
Choice

On-Demand
Reserved
Spot

4

Increased Savings as You Grow on AWS

Tiered Pricing
Volume Discounts

AVVS Summits 2014

Analysts have shown AWS reduces costs

IT
PRODUCTIVITY
INCREASE:
52%

AVERAGE SAVINGS PER APPLICATION: \$518,990

In early 2012, AWS commissioned IDC to interview 11 organizations that deployed applications on AWS. Since this study was conducted in early 2012, AWS has introduced price reductions nearly 20 times across Amazon EC2 and Amazon S3. IDC estimated what the impact of AWS's fee restructuring would be on the organizations that participated in the 2012 study and determined that the overall fees would drop by 21% lowering the five year TCO from \$909,000 to \$846,000. Source: IDC Business Value of AWS Accelerates over time

Comparing TCO is not easy

What is Total Cost of Ownership exactly and why does it matter?

Definition: the total acquisition and operating costs for running an infrastructure environment end-to-end

- 1) Comparing the costs of running an **entire infrastructure environment or specific workload** on premises or in a co-location facility versus on AWS
- 2) Budgeting and building the business case for moving to AWS

TCO estimates for on-premises deployments often ignore overhead costs – not a true comparison

illustrative

Hardware – Server, Rack **Overhead Cost** Software - OS, Server Chassis PDUs, ToR Virtualization Licenses **Switches** Costs (+Maintenance) Power Space Cooling (+Maintenance) **Overhead Cost** Storage Hardware – Storage Storage Admin costs Disks, SAN/FC Switches Costs Space Power Cooling **Overhead Cost** Network Hardware - LAN Network Switches, Load Balancer **Network Admin costs** Costs Bandwidth costs Space Power Cooling IT Labor Server Admin Virtualization Admin Costs

Diagram doesn't include every cost item. E.g. software costs can include database, management, middle tier software costs. Facilities cost can include costs associated with upgrades, maintenance, building security, taxes etc. IT labor costs can include security admin and application admin costs.

AWS Summits 2014

AWS offers services that include overhead costs in the price

	Server Network Hardware	Software OS + VMs	DC/Co-lo Floor Space	Powering Cooling	Personnel Admins	HW Maint.	Storage Redundancy	Resource Mgmt. /SW Automation	
		Microsoft VMWare	um					Mo Earls Large Mo Earls Large	
amazon webservices	\	\	√	\	\	✓	\	√	√
Hardware Vendor Offering	1								

TCO Example: Three Tier Web App On-premise vs. AWS

Web App Scenario Overview:

- Application serves approximately 10,000 page views / day
- Underlying Physical Infrastructure:
 - 3 web servers
 - 3 application servers
 - 2 cache servers
 - 1 load balancer
 - 1 high availability DB server
 - 100GB of storage
 - 300 GB of data transfer every month

Summary:

- After April price drop, running this Web App on AWS would save 75%
- Net impact of April price drop: Additional savings of 30%

TCO Comparison Summary – 3 Years

TCO Example: Three Tier Web App On-premise vs. AWS

Servers & Rack Infrastructure					
10 Linux Servers (1U @ \$889/ server)	\$8,890				
Server Maintenance (@15%/yr.)	\$4,000				
Rack Chassis with PDU (@\$3500/rack)	\$3,500				
PDU, dual 280V per rack (2 for HA)	\$1,080				
TOR 24x10GbE 48 port (@\$4,800 w/ support)	\$9,600				
Spare Capacity Provision	\$1,933				
Total Rack Cost (3 Yrs.)	\$29,003				

Operating Cost (Data Center Space, Power, Cooling)					
3 Yr. Cost to operate a rack (@\$1,500/rack/mo)	\$54,000				
3 Yr. Power/Cooling Charges	\$11,858				
Total Operating Cost (3 Yrs.)	\$65,858				

Networking & Storage					
Load Balancer, Firewall, and Switches	\$12,851				
Shared Storage	\$2,005				
Total Networking Cost (3 Yrs.)	\$14,816				

Total 3 Year Cost	\$109,717

AWS Pricing for Equivalent Environment						
		April 2014				
Compute		\$471.41				
EBS Volumes	n l	\$5,000				
EBS Snapshots		\$9.50				
EBS IOPS		\$13.18				
Elastic Load Balancer		\$18.30				
Data Processed by ELB	77	\$0				
Amazon RDS		\$131.76				
DB Instances		\$4.00				
IOPS	Total savings of	\$0.20				
Cloud Front	75% over on-prei					
Data Transfer Out	environment	\$47.22				
Requests		\$7.50				
AWS Data Transfer Ou	t	\$36.00				
Total Cost for 3 Years	\$26,786					

In Your TCO Analysis

DON'T FORGET **Power/Cooling** (compute, storage, shared network)

Data Center Administration (procurement, design, build, operate, network, security personnel)

Rent/Real Estate (building deprecation, taxes)

Software (OS, Virtualization Licensing & Maintenance)

RAW vs. **USABLE** storage capacity

Storage Redundancy (RAID penalty, OS penalty)

Storage Backup costs (Tape, backup software)

Bandwidth, Network Gear & Redundancy (Routers, VPN, WAN)

Reduced Procurement Time

Right-sized Resource Provisioning

Less down time, increased productivity

DEMO – AWS Online TCO Calculator

www.awstcocalculator.com

Customer Case – InfoSpace

Wayson Vannatta, VP of Technology

InfoSpace

Our Network

Our position in the search marketplace centers around bringing **liquidity** and **quality traffic** to our search engine partners and **differentiated content** and **monetization solutions** to end-users and partners.

SEARCH BRANDS

Our owned and operated search engines offer consumers comprehensive and relevant search results and content from the industry's most prominent search and content partners for a superior web experience.

16+ YEARS EXPERIENCE

DISTRIBUTION NETWORK

Infospace operates a diversified network of partners that includes traditional publishers, internet service providers and software developers.

100+ PARTNERS WORLDWIDE

Where were we in 2012

Data Center Foot Print

- West and East Coast Data Centers (Washington state and Virginia)
- 65 Racks
- Contracts expiring in June and August 2013

Partner Traffic

Growing International Traffic

Operations Staff

28 personnel

Our Goals

Provide International Exposure

Improve Response Time & Availability

Reduce Capex & Opex Cost

Evaluating AWS

Technical Proof of Concept

Request and Forget User The Production Initiates a System Request Responds **Production System sends** duplicate request to a Server Secondary System Request **AWS**

International Response Times

Where are we achieving or expecting cost reductions?

CapEx Costs

Servers **2013** Storage (Performance)

Routers
2014 Load Balancers
Data Warehouse

2015 Storage Firewalls

Opex Costs

- Data Center
- Support
- Bandwidth
- Reduced Licenses
- Resources

TCO: Data Center vs. AWS

Data Center Assets			20	13	2014		2015		AWS
Server	Asset Counts Servers, Maintenance	Depreciation Value	Capex Server Refresh Cost	Opex Server Cost	Capex Server Refresh Cost	Opex Server Cost	Capex Server Refresh Cost	Opex Server Cost	AWS EC2 Cost
Storage	Asset Counts Disk Storage, Controllers, Tape Backup	Depreciation Value	Capex Storage Refresh Cost	Opex Storage Cost	Capex Storage Refresh Cost	Opex Storage Cost	Capex Storage Refresh Cost	Opex Storage Cost	AWS S3, Glacier Cost
Network	Asset Counts Routers, Load Balancers, Firewall, IDS, DNS	Depreciation Value	Capex Network Refresh Cost	Opex Network Cost	Capex Network Refresh Cost	Opex Network Cost	Capex Network Refresh Cost	Opex Network Cost	AWS ELB, VPC Cost
Software	Asset Counts Virtualization, OS, DB, Monitoring, certificates	Depreciation Value	Capex Software Refresh Cost	Opex Software Cost	Capex Software Refresh Cost	Opex Software Cost	Capex Software Refresh Cost	Opex Software Cost	AWS Cost
Bandwidth	MPLS, Internet, CDN		MPLS, Internet, CDN Opex Bandwidth Cost Opex Bandwidth Cost		width Cost	Opex Bandwidth Cost		AWS Cost	

Other Unexpected Benefits

Elimination of Redundant Systems Add Up...

- Global Load Balancers
- Local Load Balancers
- Edge Routers
- Switches

- Core Routers
- MPLS Network
- Firewalls

Resources

Closing the Service Operations Center (24x7)

Multi-Region Hybrid Cloud

Optimizing with AWS

Optimizing with AWS

Choosing the right instance types

Continuous evaluations to change instance size up or down

Utilizing Reserved Instances

Reduced monthly costs by 28%

Monitoring and turning off unused instances

"Junkyard Dog"

Optimizing with AWS (continued)

Offloading architecture

Moved to Cloudfront

CloudFront

Leveraging Application Services

Including ELB, SNS, SES

Amazon SES

Amazon SNS

Leveraging AWS Tools

Trusted Advisor

The Results

The Results

Cost Savings

OpEx:

• 2014: **31% reduction**

CapEx:

- 2013: **70% reduction** (servers)
- 2014: 87% reduction (load balancers, data warehouse, routers)

Efficiency & Performance

Reduced Response Times:

- International = 20% improvement
- Domestic = ~10% improvement

Operations Staff:

From 28 FTE to 16 FTE

Our Future

Amazon Redshift September 2014

Amazon Glacier January 2015

Eliminate Data Center
April 2015

Summary

TCO

- Develop the cost estimate to include all end-to-end costs
- Make reasonable assumptions and leverage benchmarks
- Know the on-premises "hidden costs"

Cost Optimization

- Re-evaluate your architecture often
- Leverage tools like Trusted Advisor and CloudWatch
- Stay up to date with Reserved Instance modifications
- Follow documented AWS Best Practices

