Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа <u>М3114</u>	К работе допущен
Студент Круглов Георгий Николаевич	Работа выполнена
Преподаватель Герт Антон Впадимирович	Отчёт принят

Рабочий протокол и отчет по лабораторной работе №1.03v

Законы сохранения импульса и энергии в процессах столкновения

- 1. Цель работы.
 - 1. Исследование упругого и неупругого центрального соударения тел на примере соударения тележек, движущихся с малым трением.
- 2. Задачи, решаемые при выполнении работы.
 - 1. Измерение скоростей тележек до и после соударения
 - 2. Измерение скорости тележки при её разгоне под действием постоянной силы
- 3. Объект исследования.
 - 1. Упругое и неупругое соударение тележек
- 4. Метод экспериментального исследования.
 - 1. Виртуальное моделирование
- 5. Рабочие формулы и исходные данные.
 - 1. Для упругого удара:

$$\begin{cases} m_1 \vec{v}_{10} &= m_1 \vec{v}_1 + m_2 \vec{v}_2; \\ \frac{m_1 v_{10}^2}{2} &= \frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2}, \end{cases} \begin{cases} v_{1x} = \frac{(m_1 - m_2) v_{10}}{m_1 + m_2}; \\ v_{2x} = \frac{2m_1 v_{10}}{m_1 + m_2}. \end{cases}$$

2. Для неупругого удара:

$$\begin{cases} m_1v_{10} = (m_1 + m_2)v \\ \frac{m_1v_{10}^2}{2} = \frac{(m_1+m_2)v^2}{2} + W_{\text{пот}} \end{cases} W_{\text{пот}} = \frac{m_1m_2v_{10}^2}{2(m_1+m_2)}. \quad v = \frac{m_1v_{10}}{m_1+m_2}.$$

3. Относительная потеря энергии

$$\delta W_i^{(\mathfrak{s})} = \tfrac{\Delta W}{W_0} = 1 - \frac{(m_1 + m_2)}{m_1} \frac{v^2}{v_{10}^2} = 1 - \frac{m_1 + m_2}{m_1} \left(\frac{t_1}{t_2}\right)^2. \qquad \delta W_i^{(\mathtt{T})} = \frac{m_2}{m_1 + m_2}.$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Цифровой счетчик	Электрический	-	1 мс	

7. Схема установки (перечень схем, которые составляют Приложение 1).

- 1. Рельс, на котором создается воздушная подушка (длина 180 см).
- 2. Генератор воздушного потока.
- 3. Рамки с фотоэлементами (оптические ворота).
- 4. Дополнительные грузы.
- 5. Сталкивающиеся тележки с собственной массой 200 г, каждая из которых снабжена флажком шириной 25 мм.
- 6. Цифровой счетчик (1 единица = 10 мс).
- 7. Пусковой механизм.
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

						` `		<u>, , , , , , , , , , , , , , , , , , , </u>	
Venue			m1, г						
Упругий	гудар	200	220	240	260	280	300		
	200	1,9	2,4	2,2	2,7	2,7	3,1	t1, c	
	200	1,9	2,3	2,0	2,4	2,3	2,6	t2, c	
	220	1,8	2,2	2,5	2,6	2,9	2,7		
	220	1,9	2,2	2,4	2,4	2,6	2,4		
	240	2,0	2,3	2,6	2,6	2,9	3,1		
m2 =	240	2,2	2,4	2,6	2,5	2,7	2,8		
m2, г	260	2,1	2,3	2,2	2,3	3,1	3,1		
	200	2,4	2,6	2,3	2,3	3,0	2,9		
	280	1,8	2,2	2,5	2,6	2,9	3,1		
	200	2,2	2,5	2,8	2,7	2,9	3,0		
	300	2,1	2,4	2,5	2,6	2,7	3,2		
	300	2,7	2,8	2,8	2,8	2,8	3,2		

Неупру	угий		m1, г							
удар		200	220	240	260	280	300			
	200	1,9	2,1	2,4	2,1	2,7	3,1	t1, c		
		3,7	3,9	4,3	4,1	4,6	5,1	t2, c		
m2, г	220	2,2	2,2	2,6	2,3	2,9	3,1			
		4,6	4,5	5	4,3	5,2	5,4			
	240	2,1	2,2	2,5	2,7	2,8	3,2			

	4,6	4,7	5,4	5,2	5,4	5,7
260	2,1	2	2,3	2,7	2,6	2,8
200	4,8	4,4	4,7	5,3	5,1	5,1
280	2,1	2,3	2,5	2,3	2,8	2,7
280	5	5,3	5,4	4,9	5,6	5,2
300	2	2,4	2,4	2,6	2,8	2,9
300	5	5,6	5,3	5,6	5,9	5,8

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

s. Laciot podyniziates neesemisin vieniepenini (maesiagsi, npamepsi pae								
Vпругий	VESD	m1, г						
Упругии	/пругий удар		220	240	260	280	300	
	200	1,000	1,048	1,091	1,130	1,167	1,200	Χ
	200	1,000	1,043	1,100	1,125	1,174	1,192	Υ
	220	0,952	1,000	1,043	1,083	1,120	1,154	
	220	0,947	1,000	1,042	1,083	1,115	1,125	
	240	0,909	0,957	1,000	1,040	1,077	1,111	
m) -		0,909	0,958	1,000	1,040	1,074	1,107	
m2, г	260	0,870	0,917	0,960	1,000	1,037	1,071	
	200	0,875	0,885	0,957	1,000	1,033	1,069	
	280	0,833	0,880	0,923	0,963	1,000	1,034	
	280	0,818	0,880	0,893	0,963	1,000	1,033	
	200	0,800	0,846	0,889	0,929	0,966	1,000	
	300	0,778	0,857	0,893	0,929	0,964	1,000	

Цолавлен	Неупругий удар		m1, г						
пеупруги			220	240	260	280	300		
	200	0,500	0,524	0,545	0,565	0,583	0,600	Χ	
	200	0,514	0,538	0,558	0,512	0,587	0,608	Υ	
	220	0,476	0,500	0,522	0,542	0,560	0,577		
	220	0,478	0,489	0,520	0,535	0,558	0,574		
	240	0,455	0,478	0,500	0,520	0,538	0,556		
m2 -		0,457	0,468	0,463	0,519	0,519	0,561		
m2, г	260	0,435	0,458	0,480	0,500	0,519	0,536		
	260	0,438	0,455	0,489	0,509	0,510	0,549		
	200	0,417	0,440	0,462	0,481	0,500	0,517		
	280	0,420	0,434	0,463	0,469	0,500	0,519		
	300	0,400	0,423	0,444	0,464	0,483	0,500		
	300	0,400	0,429	0,453	0,464	0,475	0,500		

Неупругий удар		m1, г						
		200	220	240	260	280	300	
m2, г	200	0,473	0,446	0,429	0,536	0,409	0,384	dWэ

		0,500	0,476	0,455	0,435	0,417	0,400	dWt
	220	0,520	0,522	0,482	0,472	0,445	0,429	
	220	0,524	0,500	0,478	0,458	0,440	0,423	
	240	0,541	0,542	0,571	0,482	0,501	0,433	
	240	0,545	0,522	0,500	0,480	0,462	0,444	
	260	0,560	0,549	0,501	0,481	0,499	0,437	
		0,565	0,542	0,520	0,500	0,481	0,464	
	200	0,577	0,572	0,536	0,542	0,500	0,479	
	280	0,583	0,560	0,538	0,519	0,500	0,483	
	200	0,600	0,566	0,539	0,536	0,533	0,500	
	300	0,600	0,577	0,556	0,536	0,517	0,500	

10. Графики и погрешность

К = 0.996 (абсолютная погрешность 0.004, относительная 0.4%)

К = 0.996 (абсолютная погрешность 0.004, относительная 0.4%)

К = 0.991 (абсолютная погрешность 0.009, относительная 0.9%)

11. Выводы и анализ результатов работы.

1. Для упругого соударения была получена линейная зависимость величин, выведенных с помощью законов сохранения энергии и импульса. Это доказывает работоспособность данных законов при упругом соударении. Коэффициент наклона данного графика приблизительно равен 1, из чего следует, что закон сохранения импульса при абсолютно упругом ударе выполняется. Для случая с абсолютно неупругим соударением все аналогично, за исключением того, что часть механической энергии теряется при столкновении. Экспериментальные относительные потери механической энергии при неупругом соударении зависят линейно от теоретических относительных потерь, что говорит о справедливости представленных выше формул.

12. Контрольные вопросы

13. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).