4G06 Project Goals & Description

Capstone Group: Next Step
09/24/2021

Members:

Justin Rosner (rosnej1)

Daniel Noorduyn (noorduyd)

Mengxi Lei (leim5)

Alexander Samaha (samahaa)

Tishko Araz (arazt)

Table of Contents

Project Description	3
Motivation	3
Proposed Project	3
Goals	4
Minimum Viable Product Goals	4
Stretch Goals	4
References	5

Project Description

Motivation

In the past few decades, technology has advanced exponentially. While this has drastically increased many aspects of most peoples' daily lives, many minorities, specifically the visually impaired, have been left with their archaic tools to navigate everyday situations. The walking stick is a prime example, as it relies on the reactivity of the individual after near contact with obstacles rather than preemptively helping them move around. A report by Vision Australia (Vision Australia, 2018), states that nearly a third of blind people have been hit, or nearly hit by electric vehicles in Australia, this is far from ideal. Combining the danger factor with the social stigma the visually impaired must face, there should exist an alternative way for them to interact with life and feel more included in today's fast paced society.

Proposed Project

Next Step is a wearable device, in the form of glasses, that would remove the need for visually impaired people to use a walking stick to navigate the world. The glasses would be able to detect objects in the user's path and relay to them through a speaker where to move to avoid running into said objects. The product will aim to target slow moving and stationary objects first, then move on to target faster moving objects once the basic functionality is complete.

Goals

Minimum Viable Product Goals

General Goal	Explanation	Reasoning
Data Collection and Processing	The device needs to collect	The device will try to process a
	information about the areas in	user's point of view and what
	front of the user and process	the natural course of action
	them to determine the	would be to avoid an object.
	obstacles in a reasonable	
	amount of time.	
Communication to User	The device needs to	The device is intended to help
	communicate to the user clearly	user to avoid obstacles, thus it
	and practically about the	must communicate the
	obstacles in front of the user.	obstacles it finds to the user.
Ease of Use	The device needs to be practical	People who are visually
	for use by those who are	impaired usually have a harder
	visually impaired. This includes	time to use more complicated
	simplicity of design at the fore	devices, and special designs are
	front.	needed for them.
Battery Life	The device must have a long	The user shouldn't be limited to
	enough battery life for a	certain time intervals to live
	reasonable amount of use in a	their daily life. The device
	single day.	operates on its internal battery;
		therefore, it requires a battery
		life that is sufficient for reliable
		use.

Stretch Goals

General Goal	Explanation	Reasoning
Detect complex terrain and	The device can detect a change	A user may encounter stairs,
complex objects	in elevation and fast-moving	escalators, or fast-moving
	objects and alert the user as to	objects like cars in their day-to-
	the appropriate action.	day life.
Full range of motion detection (360 degree)	The device can detect objects all around a user and can alert them of the appropriate action.	A user may be in a situation where objects or people are approaching from behind or to the side and would need to react.
Bluetooth integration with smart phone	The device can connect to a user's phone to direct them to a specified location using a GPS service.	A user may be in a situation where they need directions for a destination.

References

Vision Australia. (2018, October 15). *Electric and hybrid cars putting pedestrians at risk*. Electric and hybrid cars putting pedestrians at risk | Vision Australia. Blindness and low vision services. Retrieved September 22, 2021, from https://www.visionaustralia.org/community/news/2019-08-23/electric-and-hybrid-cars-putting-pedestrians-risk.