Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 3

1. Пусть
$$z = \frac{3}{2} - \frac{3\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{1 + \sqrt{3}i}$ имеет аргумент $-\frac{7\pi}{12}$.

2. Решить систему уравнений:

$$\begin{cases} x(2+14i) + y(-5+8i) = 335 - 33i \\ x(-15+i) + y(-15+10i) = 250 + 368i \end{cases}$$

- 3. Найти корни многочлена $-2x^6+20x^5-66x^4+96x^3-254x^2+716x-510$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-1+2i,\,x_2=4-i,\,x_3=1.$
- 4. Даны 3 комплексных числа: 26-14i, -24-22i, 2+19i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -1 + \sqrt{3}i$, $z_2 = -\sqrt{3} + i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+2+i| < 2\\ |arg(z-3-4i)| < \frac{\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (5, 4, -3), b = (-4, -9, 0), c = (4, 2, -3). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-8,-10,14) и плоскость P:-2x-12y+46z+352=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(6,10,-7), $M_1(-1,9,-1)$, $M_2(-17,1,-1)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -11x - 23y - 9z + 82 = 0 \\ -19x - 10y + 4z + 173 = 0 \end{cases} \qquad L_2: \begin{cases} 8x - 13y - 13z - 2503 = 0 \\ -17x - 15y - 10z - 928 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.