Experiment 1:

• HOG pixels_per_cell = (2, 2)

KNN

- k = 5
- accuracy = 96.56 %

SVM

- c = 0.1
- accuracy = 98.009 %

Random forest

- N_estimators=500
- max_features = 21
- $max_depth = 21$
- accuracy = 97.18 %

Experiment 2:

• HOG pixels_per_cell = (4, 4)

KNN

- k = 5
- accuracy = 97.49 %

SVM

- c = 0.1
- accuracy = 98.27 %

Random forest

- N_estimators=500
- max_features = 21
- $max_depth = 21$
- accuracy = 97.61 %

Experiment 3:

• HOG pixels_per_cell = (8, 8)

KNN

- k = 5
- accuracy = 94.84 %

SVM

- c = 0.1
- accuracy = 94.1 %

Random forest

- N_estimators=500
- max_features = 21
- $max_depth = 21$
- accuracy = 95.19 %

KNN Experiments:

• HOG pixels_per_cell = (4, 4)

KNN

- k = 3
- accuracy = 97 .28%
- k = 7
- accuracy = 97 .45%
- k = 9
- accuracy = 97.26 %
- k = 11
- accuracy = 97.24 %

SVM Experiments:

- HOG pixels_per_cell = (4, 4)
 - c = 0.01
 - accuracy = 97.79 %
 - c = 2
 - accuracy = 98.2 %
 - c = 1
 - accuracy = 97.79 %
 - c = 5
 - accuracy = 98.16 %

Random forest Experiments:

- HOG pixels_per_cell = (4, 4)
 - N_estimators=100
 - max_features = 15
 - $max_depth = 15$
 - accuracy = 97.17 %
 - N_estimators=200
 - max_features = 18
 - $max_depth = 18$
 - accuracy = 97.61 %
 - N_estimators=500
 - max_features = 18
 - $max_depth = 18$
 - accuracy = 97.66 %

- N_estimators=500
- max_features = 5
- $max_depth = 5$
- accuracy = 93.12 %

best case for KNN:

- HOG pixels_per_cell = (4, 4)
- K=7
- accuracy = 97 .45%

best case for SVM:

- HOG pixels_per_cell = (4, 4)
- \bullet C=2
- accuracy = 98.2 %

best case for Random forest:

- HOG pixels_per_cell = (4, 4)
- accuracy = 98.2 % N_estimators=500
- max_features = 18
- max_depth = 18
- accuracy = 97.66 %

Best model is SVM.