Lecture 3

Lebesgue 可测函数

Y. Ruan
Department of Mathematics

Real Analysis

3.1 可测函数

约定:
$$0 \cdot \infty = 0, 0 \cdot (-\infty) = 0.$$

定义 3.1.1 设 $E \subset \mathbb{R}^n$ 为可测集 $f \in E$ 上的广义实值函数, 即 $\forall x \in E, -\infty \leq f(x) \leq \infty$. 称 f 为可测函数, 如果 $\forall a \in \mathbb{R}$,

$$\{f > a\} \triangleq \{x \in E : f(x) > a\} = f^{-1}((a, \infty])$$

是可测集. 注意定义中预设可测函数的定义域 E 为可测集.

定理 3.1.1 设 f 定义在可测集 E 上, 那么以下等价:

- (1) f可测
- $(2) \forall a \in \mathbb{R}, \{f \geqslant a\}$ 可测
- $(3) \forall a \in \mathbb{R}, \{f < a\}$ 可测
- $(4) \forall a \in \mathbb{R}, \{f \leqslant a\}$ 可测

$$(1) \Rightarrow (2)$$

$${f \geqslant a} = \bigcap_{k=1}^{\infty} {\left\{ f > a - \frac{1}{k} \right\}}.$$

$$(2) \Rightarrow (3)$$

$$\{f < a\} = \{f \geqslant a\}^c.$$

$$(3) \Rightarrow (4)$$

$${f \leqslant a} = \bigcap_{k=1}^{\infty} {\left\{ f < a + \frac{1}{k} \right\}}.$$

$$(4) \Rightarrow (1)$$
$$\{f > a\} = \{f \leqslant a\}^c.$$

lh

定理 3.1.2 设 f 定义在可测集 E 上.

(1) 若f可测,那么

$$\{f > -\infty\}, \{f < \infty\}, \{f = -\infty\}, \{f = \infty\}$$

是可测集, 且 $\forall a, b \in \mathbb{R}$,

$$\{a \leqslant f \leqslant b\}, \{f = a\}$$

是可测集.

(2) 若 $\{f = -\infty\}$ 或 $\{f = \infty\}$ 可测, 且 $\forall a \in \mathbb{R}$, $\{a < f < \infty\}$ 可测, 那么 f 可测.

5

 \blacksquare (1)

$$\{f > -\infty\} = \bigcup_{k=1}^{\infty} \{f > -k\},$$

$$\{f = -\infty\} = \bigcap_{k=1}^{\infty} \{f < -k\},$$

$$\{f < \infty\} = \bigcup_{k=1}^{\infty} \{f < k\},$$

$$\{f = \infty\} = \bigcap_{k=1}^{\infty} \{f > k\},$$

$$\{f = a\} = \{a \le f\} \cap \{f \le a\},$$

$$\{a \le f \le b\} = \{a \le f\} \cap \{f \le b\}.$$

(2) 若 $\{f=\infty\}$ 可测,由

$${a < f} = {f = \infty} \cup {a < f < \infty}$$

可知f可测. 若 $\{f = -\infty\}$ 可测,注意到

$$\{-\infty < f < \infty\} = \bigcup_{k=1}^{\infty} \{-k < f < \infty\},\,$$

$$\{f = \infty\} = \{-\infty < f < \infty\}^c \cap \{f = -\infty\}^c.$$

因此 $\{f = \infty\}$ 可测, 从而 f 可测.

lh

定理 3.1.3 设 f 定义在可测集 E 上.

(1) 若 f 可测, 那么 \forall 开集 $G \subset \mathbb{R}$, $f^{-1}(G) \subset \mathbb{R}^n$ 是可测集.

(2) 若 $\{f = -\infty\}$ 或 $\{f = \infty\}$ 可测, 且 \forall 开集 $G \subset \mathbb{R}, f^{-1}(G) \subset \mathbb{R}^n$ 是可测集, 那么 f 可测.

■ (1) 由 \mathbb{R} 上开集的结构, 存在可数多个开区间 (a_k, b_k) , $k \ge 1$ 使得 $G = \bigcup_{k=1}^{\infty} (a_k, b_k)$. 又

$$f^{-1}(G) = \bigcup_{k=1}^{\infty} f^{-1}((a_k, b_k)) = \bigcup_{k=1}^{\infty} \{a_k < f < b_k\},$$

因此 $f^{-1}(G)$ 可测.

 $(2) \, \forall a, \, \diamondsuit \, G = (a, \infty), \,$ 那么 $f^{-1}(G) = \{a < f < \infty\} \,$ 可测, 因此 f 可测.

推论 3.1.1 可测集 E 上的实值函数 f 可测当且仅当 \forall 开集 $G \subset \mathbb{R}, f^{-1}(G) \subset \mathbb{R}^n$ 是可测集.

- **例 3.1.1** 设 $E \subset \mathbb{R}^n$, 指示函数 χ_E 可测当且仅当 E 可测.
- **例** 3.1.2 可测集 $E \subset \mathbb{R}^n$ 上的连续函数是可测函数.
- **例 3.1.3** 设 A 为 \mathbb{R} 的稠密子集. f 可测当且仅当 $\forall a \in A, \{f > a\}$ 可测.

定义 3.1.2 性质 P 称为在集合 E 上几乎处处成立, 如果存在零测集 Z 使得性质 P 在 $E \setminus Z$ 上成立, 用 a.e. 表示几乎处处成立.

定理 3.1.4 若f 可测, g = f, a.e., 那么 g 可测.

 $\forall a \in \mathbb{R},$

$$\{g > a\} = \{g > a, g = f\} \cup \{g > a, g \neq f\}$$
$$= \{f > a\} \cup \{g > a, g \neq f\},$$

其中 $\{f > a\}$ 可测, $\{g > a, g \neq f\}$ 为零测集因而也可测. 因此 $\forall a, \{g > a\}$, 即 g 可测.

定理 3.1.5 设 Φ 是 \mathbb{R} 上的连续函数, f 为实值可测函数, 那么 $\Phi \circ f$ 可测.

存在可测函数 f, 连续函数 Φ , 使得 $f \circ \Phi$ 不可测. (参见习题)

定理 3.1.6 可测函数的运算性质.

(1) 若 f, g 为实值可测函数, 那么以下函数可测

$$f + g$$
, fg , $|f|$, $\min \{f, g\}$, $\max \{f, g\}$,

若 $g \neq 0$, 那么 f/g 可测.

(2) 若 $\forall k, f_k$ 为实值可测函数, 那么以下函数可测

$$\inf_{k\geqslant 1} f_k, \sup_{k\geqslant 1} f_k, \lim_{k\to\infty} \inf f_k, \lim_{k\to\infty} \sup f_k.$$

 \blacksquare 1. $\forall a$,

$$(f+g)^{-1}(-\infty,a) = \bigcup_{\substack{r,s \in \mathbb{Q} \\ r+s < a}} \left(f^{-1}(-\infty,r) \cap g^{-1}(-\infty,s) \right),$$

因此
$$f+g$$
 可测.

$$\forall a > 0$$
,

$$(f^2)^{-1}(-\infty,a) = f^{-1}(-\infty,a^{1/2}) \setminus f^{-1}(-\infty,-a^{1/2}),$$

因此 f2 可测, 从而

$$fg = \frac{1}{2} \left((f+g)^2 - f^2 - g^2 \right),$$

可测.

若 $g \neq 0$,

$$\left(\frac{1}{g}\right)^{-1}(-\infty, a) = \begin{cases} g^{-1}(a^{-1}, 0), & a < 0, \\ g^{-1}(-\infty, 0), & a = 0, \\ g^{-1}(-\infty, 0) \cup g^{-1}(a^{-1}, \infty), & a > 0. \end{cases}$$

因此 f/g 可测,

2. 另外

$$f^{+} = f\chi_{\{f \geqslant 0\}} = \max\{f, 0\}, f^{-} = -f\chi_{\{f < 0\}} = \max\{-f, 0\},$$

可测, 因此

$$|f| = f^+ + f^-,$$

 $\max \{f, g\} = (f - g)^+ + g,$
 $\min \{f, g\} = -(f - g)^- + g,$

可测.

3. 最后 ∀*a*,

$$\left(\sup_{k\geqslant 1}f_k\right)^{-1}(-\infty,a]=\bigcap_{k=1}^{\infty}f_k^{-1}(-\infty,a].$$

因此 $\sup_{k\geq 1}f_k$ 可测, 从而

$$\inf_{k\geqslant 1}f_{k}=-\sup_{k\geqslant 1}\left(-f_{k}\right),$$

$$\liminf_{k\to\infty} f_k = \sup_{k\geqslant 1} \inf_{j\geqslant k} f_j,$$

$$\limsup_{k\to\infty} f_k = \inf_{k\geqslant 1} \sup_{j\geqslant k} f_j,$$

可测.

111

- 例 3.1.4 若 f(x,y) 为 \mathbb{R}^2 上的实值函数, $\forall x, y \mapsto f(x,y)$ 左连续 或 $\forall x, y \mapsto f(x,y)$ 右连续, $\forall y, x \mapsto f(x,y)$ 可测. 那么 f(x,y) 为 \mathbb{R}^2 上的可测函数.
- 考虑右连续情形. ∀k,

$$f_k(x, y) = f\left(x, \frac{i+1}{k}\right), \ \forall \frac{i}{k} < y \leqslant \frac{i+1}{k}, k = 0, \pm 1, \dots$$

那么 $\forall a$,

$$\{f_k < a\} = \bigcup_{k=-\infty}^{\infty} \left\{ x : f\left(x, \frac{i+1}{k}\right) < a \right\} \times \left\{ \frac{i}{k} < y \leqslant \frac{i+1}{k} \right\},$$

可测 (参见上一章习题, 可测集乘积可测), 因此 f_k 可测, 又 $\forall x$, $y \mapsto f(x,y)$ 右连续,

$$\lim_{k\to\infty} f_k(x,y) = f(x,y), \ \forall (x,y) \in \mathbb{R}^2,$$

从而f可测.

