Adaptive Filters Homework 1

Cory Nezin

September 27, 2017

1. Let $\{u_i\}_{i=1}^r$ be r linearly independent $M \times 1$ vectors, and $\{v_i\}_{i=1}^r$ be r linearly independent $N \times 1$ vectors. Show that the $M \times N$ matrix A given by:

$$A = \sum_{i=1}^{r} u_i v_i^H$$

Proof:

Let $y \in \mathcal{R}_A$, then for some $x \in M^{N \times 1}$ $y = Ax = \left(\sum_{i=1}^r u_i v_i^H\right) x$. Since matrix multiplication is distributive, $y = Ax = \sum_{i=1}^r u_i v_i^H x$. Since matrix multiplication is associative, $y = Ax = \sum_{i=1}^r u_i (v_i^H x)$. Since $v_i^H x$ is scalar, $y = Ax = \sum_{i=1}^r (v_i^H x) u_i$ Thus since $\{u_i\}$ is linearly independent, it is a basis for \mathcal{R}_A and $rank A = dim \mathcal{R} = r \blacksquare$