Results BDS lab 7

Andreas De Lille and Cedric De Pauw

Contents

- Q1: Write an algorithm for scouting promising players
 - Approach
 - Results
- Q2: Predict outcome of a game
 - Approach
 - Problems
 - Results

Q1, Promising Players: Approach

- Create a dataframe containing
 - Info: team, position
 - Stats: for each relevant feature
 - total number of events
 - number of successful events
- For each position: determine a score
 - Striker: #Succesful Pass + #shots on target
 - Defence: #Successful Take On + #Tackle + #Interception + #Successful Clearance #Corner
 - Midfield: #Succesful Pass #Offside Pass + #Succesful Take On + #Interception
 - Goalkeeper: #Succesful Claim + #Succesful Clearance + #Punch + #Recovery + #Pick Up
 + #Smother
- Rank players according to this score

Q1, Promising Players: Results

Strikers: 3 of the top 6 strikers played in the Bundesliga later in their carrier Novakovic Milivoje (2011), Patrick Helmes (currently), Francisco Copado(2007)

Midfielders: 3 of the top 4 played in first leagues

Ivica Banovic (2010), Patrick Paauwe (2010), Marko Lomic(2016)

Defenders: 2 of the top 4 defenders play currently in Bundesliga

Niko Bungert, Neven Subotic

Goalkeepers: 3 of the top 5 played in first leagues

Christofer Heimeroth (currently), Florian Fromolowitz (2011), Tomasz Bobel (2010)

Q2, Predict Outcome: Approach

- Similar to Q1, but now scores for each team
- Machine learning in two steps, (mllib only supports binary classification)
 - 2 classifiers:
 - Draw vs win/lose
 - Win vs lose
 - Get train and test set
 - For each classifier:
 - Adjust labels of trainset
 - Train classifier

Q2, Predict Outcome: Results

Classifier one (draw vs non-draw): train acc of 75% Classifier two (win vs lose): train acc of 74 % Test accuracy of 31%

- ⇒ test accuracy due to a number of reasons:
- 1. A total of only 90 samples
- 2. Hard to predict a draw
- 3. More features might be needed, e.g. players on the field etc
 ⇒ this would require even more training data and more analysis time