Estrutura de Dados I

Luciana Lee

Árvore

- Uma das estruturas mais importantes da área de computação, em uma variedade de aplicações
- modela uma hierarquia entre elementos
 - Árvore genealógica
 - Diagrama hierárquico de uma organização
 - Hierarquia de pastas
- O conceito de árvores está diretamente ligado à recursão

Árvores - Formas de Representação

• Diagrama de Inclusão

3/33

Luciana Lee Estrutura de Dados I

Árvores - Formas de Representação

• Diagrama de Barras

Árvores - Formas de Representação

Níveis

Aninhamento

• Conjunto finito T de zero ou mais nós (nodos ou vértices), tal que:

- Conjunto finito T de zero ou mais nós (nodos ou vértices), tal que:
 - Se o número de nós é igual a zero: a árvore é vazia

Luciana Lee

- Conjunto finito T de zero ou mais nós (nodos ou vértices), tal que:
 - Se o número de nós é igual a zero: a árvore é vazia
 - Se o número de nós é maior do que zero:

Luciana Lee

- Conjunto finito T de zero ou mais nós (nodos ou vértices), tal que:
 - Se o número de nós é igual a zero: a árvore é vazia
 - ▶ Se o número de nós é maior do que zero:
 - \star existe um nó denominado raiz da árvore, denotado por r(T)

- Conjunto finito T de zero ou mais nós (nodos ou vértices), tal que:
 - Se o número de nós é igual a zero: a árvore é vazia
 - Se o número de nós é maior do que zero:
 - * existe um nó denominado raiz da árvore, denotado por r(T)
 - ★ os demais nós formam $m \ge 0$ conjuntos disjuntos S_1, S_2, \ldots, S_m , onde cada um destes é uma árvore (S_i são denominadas **subárvores**)

• Utilizando o nó x como referencial:

Luciana Lee Estrutura de Dados I 7/33

- Utilizando o nó x como referencial:
 - ► *x* é filho de A;

Luciana Lee

- Utilizando o nó x como referencial:
 - ▶ *x* é filho de A;
 - ▶ x é pai de C;

Luciana Lee Estrutura de Dados I 7/33

- Utilizando o nó x como referencial:
 - ▶ *x* é filho de A;
 - ▶ x é pai de C;
 - ▶ x é irmão de B;

Luciana Lee Estrutura de Dados I 7/33

- Utilizando o nó x como referencial:
 - ▶ *x* é filho de A;
 - ▶ x é pai de C;
 - ▶ x é irmão de B;
 - x é descendente de A;

7/33

Luciana Lee Estrutura de Dados I

- Utilizando o nó x como referencial:
 - ▶ *x* é filho de A;
 - ▶ x é pai de C;
 - ▶ x é irmão de B;
 - x é descendente de A;
 - ▶ A é ancestral de x;

Luciana Lee Estrutura de Dados I 7/33

- Utilizando o nó x como referencial:
 - ▶ *x* é filho de A;
 - ▶ x é pai de C;
 - ▶ x é irmão de B;
 - x é descendente de A;
 - ► A é ancestral de x;
 - Se x é diferente de A, então x é descendente próprio de A, e A é ancestral próprio de x;

7/33

- Utilizando o nó x como referencial:
 - x é filho de A;
 - ▶ x é pai de C;
 - ▶ x é irmão de B;
 - x é descendente de A;
 - ► A é ancestral de x;
 - Se x é diferente de A, então x é descendente próprio de A, e A é ancestral próprio de x;
 - Uma folha não possui descendentes próprios

7/33

- Utilizando o nó x como referencial:
 - ▶ *x* é filho de A;
 - x é pai de C;
 - x é irmão de B;
 - x é descendente de A;
 - A é ancestral de x;
 - Se x é diferente de A, então x é descendente próprio de A, e A é ancestral próprio de x;
 - Uma folha não possui descendentes próprios
- Nó interno: nó que possui um ou mais filhos.

Luciana Lee Estrutura de Dados I 7/33

- Utilizando o nó x como referencial:
 - x é filho de A;
 - ▶ x é pai de C;
 - ▶ x é irmão de B;
 - x é descendente de A;
 - ► A é ancestral de x;
 - Se x é diferente de A, então x é descendente próprio de A, e A é ancestral próprio de x;
 - Uma folha não possui descendentes próprios
- **Nó interno:** nó que possui um ou mais filhos.
- Nó folha: nó que não possui filho

Caminho

 Um caminho é uma sequência de nós consecutivos distintos entre dois nós da árvore.

• Comprimento do caminho: número de ligações entre os nós do caminho.

Luciana Lee Estrutura de Dados I 8 / 33

Nível

 Nível: número de ligações entre a raiz e o nó, acrescido de uma unidade

Luciana Lee Estrutura de Dados I

• Altura de um nó: número de ligações entre o nó e seu descendente folha de maior nível, acrescido de uma unidade.

- Altura de um nó: número de ligações entre o nó e seu descendente folha de maior nível, acrescido de uma unidade.
- A altura de um nó folha é igual a 1.

- Altura de um nó: número de ligações entre o nó e seu descendente folha de maior nível, acrescido de uma unidade.
- A altura de um nó folha é igual a 1.
- A altura da árvore é a altura de seu nó raiz.

- Altura de um nó: número de ligações entre o nó e seu descendente folha de maior nível, acrescido de uma unidade.
- A altura de um nó folha é igual a 1.
- A altura da árvore é a altura de seu nó raiz.
- É equivalente afirmar que a altura de uma árvore é o maior nível dentre seus nós.

Luciana Lee Estrutura de Dados I 10 / 33

 As árvores binárias são uma das árvores mais utilizadas em computação.

Árvore Binária - Definição

Uma árvore binária é um conjunto T de zero ou mais nós, tal que:

- Se o número de nós é maior ou igual a um:
 - existe um nó denominado raiz da árvore
 - os demais nós formam 2 conjuntos disjuntos S_1 , S_2 (subárvore da esquerda e subárvore da direita), onde cada um destes é uma árvore binária.
- Se o número de nós é igual a zero, então a árvore é vazia.

Luciana Lee

• Árvore Estritamente Binária: cada nó da árvore possui 0 ou 2 filhos.

 Árvore Binária Completa: todos os nós folhas estão no último ou penúltimo nível.

Luciana Lee

 Árvore Binária Cheia: todos os nós folha estão no último nível.

15/33

Luciana Lee Estrutura de Dados I

 Árvore Zigue-zague: nós internos com uma subárvore vazia.

16/33

Luciana Lee Estrutura de Dados I

Implementação de uma Árvore Binária

• Temos, então, a declaração de uma estrutura para um nó :

```
typedef struct node{
   int chave;
   struct node *esq, *dir;
}No;
```


Criação de um nó

- Quando realizamos um percurso em uma árvore, cada nó da árvore deve ser "visitado" apenas uma vez.
- O percurso deve sempre começar do nó raiz.
- "Visitar um nó" = acessar um nó para realização de alguma ação.
- Exemplo: imprimir as informações contidas no nó.

- Percurso em Pré-Ordem:
 - ► Visita a raiz:
 - Percorre a subárvore esquerda da raiz;
 - Percorre a subárvore direira da raiz.
- Percurso em Ordem Simétrica:
 - Percorre a subárvore esquerda da raiz;
 - Visita a raiz.
 - Percorre a subárvore direira da raiz;
- Percurso em Pós-Ordem:
 - Percorre a subárvore esquerda da raiz;
 - Percorre a subárvore direira da raiz;
 - Visita a raiz.

- Percurso em Pré-Ordem:
 - Visita a raiz:
 - Percorre a subárvore esquerda da raiz;
 - Percorre a subárvore direira da raiz.
- Percurso em Ordem Simétrica:
 - Percorre a subárvore esquerda da raiz;
 - Visita a raiz.
 - Percorre a subárvore direira da raiz;
- Percurso em Pós-Ordem:
 - Percorre a subárvore esquerda da raiz;
 - Percorre a subárvore direira da raiz;
 - VISITA a raiz.

- Percurso em Pré-Ordem:
 - Visita a raiz:
 - Percorre a subárvore esquerda da raiz;
 - Percorre a subárvore direira da raiz.
- Percurso em Ordem Simétrica:
 - Percorre a subárvore esquerda da raiz;
 - Visita a raiz.
 - Percorre a subárvore direira da raiz;
- Percurso em Pós-Ordem:
 - Percorre a subárvore esquerda da raiz:
 - Percorre a subárvore direira da raiz;
 - Visita a raiz.

- Percurso em Pré-Ordem:
 - Visita a raiz:
 - Percorre a subárvore esquerda da raiz;
 - Percorre a subárvore direira da raiz.
- Percurso em Ordem Simétrica:
 - Percorre a subárvore esquerda da raiz;
 - Visita a raiz.
 - Percorre a subárvore direira da raiz;
- Percurso em Pós-Ordem:
 - Percorre a subárvore esquerda da raiz;
 - Percorre a subárvore direira da raiz;
 - Visita a raiz.

 Vamos ver um exemplo de implementação para os percursos em árvores binárias?

- O percurso em Pré-Ordem também é um percurso em Profundidade.
- Além dos percursos que vimos, ainda podemos realizar um percurso em que os nós da árvore são visitados por nível, da esquerda para a direita. Tal percurso se chama: Percurso em Largura.
- Para realizar o percurso em largura, precisamos de uma estrutura auxiliar: FILA.

- O percurso em largura executa os seguintes passos:
 - Adicionar a raiz na FILA;
 - Repetir até que a FILA fique vazia:
 - Retirar o primeiro elemento da FILA (visita)
 - Se o filho da esquerda do elemento for diferente de NULL, então adicioná-lo na FILA;
 - Se o filho da direita do elemento for diferente de NULL, então adicioná-lo na FILA;
- Vamos ver a implementação?

- Diversas aplicações precisam buscar um determinado valor em um conjunto de dados
- Essa busca deve ser feita da forma mais eficiente possível
- Árvores binárias possibilitam buscas com eficiência

Árvore Binária de Busca

Uma árvore binária T é uma árvore binária de busca se:

- Chaves da subárvore esquerda de T são menores do que chave da raiz de T; e
- Chaves da subárvore da direita de \mathcal{T} são maiores do que a chave da raiz de \mathcal{T} ; e
- ullet Subárvores da esquerda e da direita de ${\cal T}$ são árvores binárias de busca.

Luciana Lee Estrutura de Dados I 24/33

 Para um mesmo conjunto de chaves, existem várias árvores binárias de busca possíveis

 Dada uma árvore de busca T e um número k, encontrar um nó de T cuja chave seja k.

- Dada uma árvore de busca T e um número k, encontrar um nó de T cuja chave seja k.
- Operações:

- Dada uma árvore de busca T e um número k, encontrar um nó de T cuja chave seja k.
- Operações:
 - Buscar uma chave na árvore:

- Dada uma árvore de busca T e um número k, encontrar um nó de T cuja chave seja k.
- Operações:
 - Buscar uma chave na árvore;
 - Inserir uma nova chave na árvore;

- Dada uma árvore de busca T e um número k, encontrar um nó de T cuja chave seja k.
- Operações:
 - Buscar uma chave na árvore:
 - Inserir uma nova chave na árvore;
 - Excluir uma chave na árvore.

• Exemplo: buscar o número 37 na árvore.

Luciana Lee Estrutura de Dados I 28 / 33

• Vamos ver a implementação?

 Considere o problema de inserir um novo nó, com chave k, em uma árvore de busca.

- Considere o problema de inserir um novo nó, com chave k, em uma árvore de busca.
- A árvore resultante deve também ser de busca.

Luciana Lee Estrutura de Dados I 30 / 33

- Considere o problema de inserir um novo nó, com chave k, em uma árvore de busca.
- A árvore resultante deve também ser de busca.
- O novo nó será uma folha da árvore resultante.

30 / 33

Luciana Lee Estrutura de Dados I

• Exemplo: inserir o número 42 na árvore.

• Vamos ver a implementação?

Dúvidas?