Geometria Analítica e Vetores

Produto escalarde Vetores no Plano e no Espaço

Docente: $\operatorname{Prof}^{\operatorname{a}}$. $\operatorname{Dr}^{\operatorname{a}}$. Thuy Nguyen IBILCE/ UNESP São Paulo - Brasil

Referência: BOULOS, P. e CAMARGO, I. Geometria Analítica: Um Tratamento Vetorial, 3ª edição, São Paulo: Editora Pearson.

Recordação

Recordação - Ângulo entre dois vetores (no plano e no espaço)

O ângulo de dois vetores não nulos \vec{u} e \vec{v} , representados por \overrightarrow{OA} e \overrightarrow{OB} , é o ângulo θ formado pelas semirretas OA e OB tal que $0 \le \theta \le \pi$ (radiano), ou seja $0^\circ \le \theta \le 180^\circ$.

Notação: $ang(\vec{u}, \vec{v})$.

Produto escalar

Neste aula, consideramos vetores tanto no plano quanto no espaço.

Definição

O produto de dois vetores \vec{u} e \vec{v} , denotado por $\vec{u}.\vec{v}$, é definido por

$$\vec{u}.\vec{v} = \|\vec{u}\| \|\vec{v}\| \cos\theta,$$

onde $\theta = \operatorname{ang}(\vec{u}, \vec{v})$.

Exemplo: Calcule $\vec{u}.\vec{v}$ sabendo que

- ① \vec{u} e \vec{v} são vetores unitários e a medida do ângulo entre eles é $\frac{\pi}{3}$ rad;
- ② $\|\vec{u}\| = 3$, $\|\vec{v}\| = 7$ e a medida do ângulo entre eles é $\frac{\pi}{2}$ rad.

Observação

Se \vec{u} e \vec{v} são ortogonais, então $\vec{u}.\vec{v}=0$. Reciprocamente, se $\vec{u}.\vec{v}=0$ então \vec{u} e \vec{v} são ortogonais.

Propriedades

$$\vec{u}.\vec{v} = \|\vec{u}\| \|\vec{v}\| \cos\theta,$$

onde $\theta = \hat{a}ng(\vec{u}, \vec{v})$.

Propriedades de produto escalar

Quaisquer que sejam vetores \vec{u}, \vec{v} e \vec{w} e qualquer que seja λ real, tem-se:

- $\vec{u}.\vec{u} \geqslant 0, \qquad \vec{u}.\vec{u} = 0 \Leftrightarrow \vec{u} = \vec{0}.$

Exemplo: Sabendo que $\|\vec{u}\| = \|\vec{v}\| = 1$, $\|\vec{w}\| = 2$, $\vec{u}.\vec{v} = 1/2$, $\vec{u}.\vec{w} = -1$ e $\vec{v}.\vec{w} = -2$. calcule:

- $(\vec{u} + \vec{v} + \vec{w}).\vec{u};$
- ② $(\vec{u} + 2\vec{v} \vec{w}).(\vec{u} + \vec{v}).$

Base ortonormal

Definição - base ortonormal

Uma base $\{\vec{e_1}, \vec{e_2}\}$ no plano é dita ortonormal se $\vec{e_1}$ e $\vec{e_2}$ são unitários e são ortogonais entre si.

Exemplo: No sistema cartesiano 0xy, a base $C = \{\vec{i}, \vec{j}\}$ é uma base ortonormal. Chamamos esta base de *base canônica*.

Os vetores \vec{i} e \vec{j} tem coordenadas, respectivamente, em relação à base $\mathcal{C}=\{\vec{i},\vec{j}\}$:

$$\vec{i} = (1,0), \quad \vec{j} = (0,1).$$

Observação

$$\vec{i} \cdot \vec{i} = 1$$
, $\vec{i} \cdot \vec{j} = 0$, $\vec{j} \cdot \vec{j} = 1$.

No espaço, considere a base ortonormal $\mathcal{C}=\{\vec{i},\vec{j}\}$. Se \vec{u} e \vec{v} têm coordenadas, respectivamente, em relação à esta base:

$$\vec{u}=(x_u,y_u), \quad \vec{v}=(x_v,y_v),$$

então

$$\vec{u}.\vec{v} = x_u x_v + y_u y_v.$$

Justificativa: Temos

$$\vec{u} = x_u \vec{i} + y_u \vec{j}, \quad \vec{v} = x_v \vec{i} + y_v \vec{j}.$$

Então:

$$\begin{split} \vec{u}.\vec{v} &= (x_{u}\vec{i} + y_{u}\vec{j})(x_{v}\vec{i} + y_{v}\vec{j}) \\ &= x_{u}x_{v}(\vec{i}.\vec{i}) + x_{u}y_{v}(\vec{i}.\vec{j}) + y_{u}x_{v}(\vec{j}.\vec{i}) + y_{u}y_{v}(\vec{j}.\vec{j}) \\ &= x_{u}x_{v}.1 + x_{u}y_{v}.0 + y_{u}x_{v}.0 + y_{u}y_{v}.1 \\ &= x_{u}x_{v} + y_{u}y_{v}. \end{split}$$

Definição - base ortonormal

Uma base $\{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ no espaço é dita ortonormal se $\vec{e_1}$, $\vec{e_2}$ e $\vec{e_3}$ são unitários e são ortogonais dois a dois.

Exemplo: No sistema cartesiano 0xyz, a base $C = \{\vec{i}, \vec{j}, \vec{k}\}$ é uma base ortonormal. Chamamos esta base de *base canônica*.

No espaço, considere a base ortonormal $C = \{\vec{i}, \vec{j}, \vec{k}\}$. Se \vec{u} e \vec{v} têm coordenadas, respectivamente, em relação à esta base:

$$\vec{u} = (x_1, y_1, z_1), \quad \vec{v} = (x_2, y_2, z_2)$$

então

$$\vec{u}.\vec{v} = x_1x_2 + y_1y_2 + z_1z_2.$$

Exemplo: Sendo $\vec{u} = (1, 4, 1)_E$ e $\vec{v} = (0, 1, -8)_E$, onde \vec{E} é a base ortonormal, calcule $\vec{u}.\vec{v}$ e $(2\vec{u} + \vec{v})\vec{u}$.

Exemplo: Considere E a base ortonormal. Verifique se os vetores \vec{u} e \vec{v} são ortogonais, sabendo

1
$$\vec{u} = (-4, 2, 1)_E \text{ e } \vec{v} = (1, 2, 0)_E;$$

②
$$\vec{u} = (1, 1, -1)_E \ e \ \vec{v} = (-1, 1, 1)_E$$
.

• Se $\vec{u} \neq \vec{0}$ e $\vec{v} \neq \vec{0}$ e θ é o ângulo entre \vec{u} e \vec{v} , então:

$$\cos\theta = \frac{\vec{u}.\vec{v}}{\|\vec{u}\|\|\vec{v}\|}.$$

② A norma ou o módulo (a medida/o comprimento) do vetor \vec{u} é:

$$\|\vec{u}\| = \sqrt{\|\vec{u}\|^2} = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{\vec{u}^2}.$$

3 Considere E a base ortonormal e $\vec{u} = (x, y, z)_E$, então:

$$\|\vec{u}\| = \sqrt{x^2 + y^2 + z^2}.$$

Exemplo: Considere E a base ortonormal. Calcule a medida do ângulo entre \vec{u} e \vec{v} sabendo

$$\vec{u} = (1,3,-1)_E \text{ e } \vec{v} = (0,-1,-3)_E;$$

$$\vec{u} = (\sqrt{2}/2, -\sqrt{2}/2, 1)_E \text{ e } \vec{v} = (1, -1, 0)_E.$$

Exercícios

Nos exercícios a seguir $E=\{\vec{e_1},\vec{e_2},\vec{e_3}\}$ é uma base ortonormal.

Exercício 1

Sendo $\vec{u} = (1, 4, 1)_E$ e $\vec{v} = (0, 1, -8)_E$ calcule:

- $\vec{u} \cdot \vec{0}$
- $\vec{0} \cdot \vec{v}$
- $\vec{0}.\vec{0}$
- $\vec{v} \cdot \vec{u}$

- $(\vec{u} \vec{v}).(\vec{u} + \vec{v})$

Exercícios

Nos exercícios a seguir $E = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ é uma base ortonormal.

Exercício 2

Sendo $\vec{u}=(\sqrt{m},1,1/2)_E$ e $\vec{v}=(\sqrt{m},1/2,1)_E$, determine m sabendo que o co-seno da medida do ângulo entre \vec{u} e \vec{v} vale:

(a)
$$\frac{1}{3}$$
;

(b)
$$0,8$$

Exercício 3

Determine m para que a medida do ângulo entre $\vec{u}=(\sqrt{3},m,0)_E$ e $\vec{v}=(1,\sqrt{3},0)_E$ seja 30° .

Exercício 4

Verifique se os vetores \vec{u} e \vec{v} são ortogonais nos seguintes casos:

$$\vec{u} = (a, b, 1)_E \ e \ \vec{v} = (b, a, -1)_E$$
,

②
$$\vec{u} = (a, 1, 1 + a^2)_E$$
 e $\vec{v} = (a, 1 + a^2, 1)_E$,

onde a e b são números reais.

Exercício 5

Sendo \vec{u} e \vec{v} vetores não-paralelos, e $\|\vec{v}\|=2\|\vec{u}\|$ mostre que $2\vec{u}+\vec{v}$ e $2\vec{u}-\vec{v}$ são ortogonais.

Bom estudo!!