Формула Тейлора

Как и в случае функций одной переменной, для функций многих переменных $f(x) = f(x^1, x^2, ..., x^n)$ формула Тейлора дает связь между приращением функции в точке и ее дифференциалами в этой же точке:

$$f(x_0 + \Delta x) - f(x_0) = df(x_0) + \frac{1}{2!}d^2f(x_0) + \dots + \frac{1}{m!}d^mf(x_0) + \alpha,$$

где
$$\lim_{\rho(x_0+\Delta x, x_0)\to 0} \frac{\alpha}{\rho^m(x_0+\Delta x, x_0)} = 0$$
.

В частности, для функции двух переменных имеем:

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f'_x(x_0, y_0) \cdot dx + f'_y(x_0, y_0) \cdot dy +$$

$$+ \frac{1}{2!} [f''_{xx}(x_0, y_0) \cdot (dx)^2 + 2 \cdot f''_{xy}(x_0, y_0) \cdot dx \cdot dy + f''_{yy}(x_0, y_0) \cdot (dy)^2] + \dots + \alpha.$$

Здесь
$$\lim_{\sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0} \frac{\alpha}{\left(\sqrt{(\Delta x)^2 + (\Delta y)^2}\right)^m} = 0.$$

Пример: Вычислить приближенно значение функции $f(x;y) = \sqrt{x^2 + y^2}$ в точке (11,8; 5,3) используя формулу Тейлора с n=2.

<u>Решение:</u> Возьмем $x_0 = 12$; $\Delta x = -0.2$; y = 5; $\Delta y = 0.3$ Вычислим частные производные

$$\frac{\partial f}{\partial x} = \frac{2x}{2\sqrt{x^2 + y^2}} = \frac{x}{\sqrt{x^2 + y^2}}, \qquad \frac{\partial f}{\partial y} = \frac{2y}{2\sqrt{x^2 + y^2}} = \frac{y}{\sqrt{x^2 + y^2}},$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{1 \cdot \sqrt{x^2 + y^2} - x \cdot \frac{1}{2 \cdot \sqrt{x^2 + y^2}} \cdot 2x}{x^2 + y^2} = \frac{y^2}{\sqrt{(x^2 + y^2)^3}}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{1 \cdot \sqrt{x^2 + y^2} - y \cdot \frac{1}{2 \cdot \sqrt{x^2 + y^2}} \cdot 2y}{x^2 + y^2} = \frac{x^2}{\sqrt{(x^2 + y^2)^3}}$$

$$\frac{\partial^2 f}{\partial x \partial y} = -\frac{2xy}{\sqrt{(x^2 + y^2)^3}}$$

Тогда полные дифференциалы первого и второго порядка в точке (11,8; 5,3) будут равны

$$df(12;5) = \frac{x \cdot \Delta x + y \cdot \Delta y}{\sqrt{x^2 + y^2}} \bigg|_{(12;5)} = \frac{-12 \cdot 0.2 + 5 \cdot 0.3}{13} \approx -0.0692,$$

$$d^{2}f(12;5) = \frac{y^{2} \cdot \Delta x^{2} - 2xy\Delta x\Delta y + x^{2} \cdot \Delta y^{2}}{\sqrt{x^{2} + y^{2}}} \bigg|_{(12;5)} \approx 0,0096,$$

значит,

$$\sqrt{11,8^2 + 5,3^2} \approx \sqrt{12^2 + 5^2} - 0,0692 + \frac{1}{2}0,0096 = 12,9356.$$

Локальный экстремум функции двух переменных

Пусть функция z = f(x; y) определена в некоторой области D, точка $N(x_0; y_0) \in D$.

Определение: Точка $(x_0; y_0)$ называется **точкой локального максимума** функции z = f(x; y), если \exists такая δ —окрестность точки $(x_0; y_0)$, что для каждой точки (x; y), отличной от $(x_0; y_0)$, из этой окрестности выполняется неравенство $f(x; y) < f(x_0; y_0)$.

Аналогично определяется точка локального минимума функции: для всех точек (x;y), отличных от $(x_0;y_0)$, из δ -окрестности точки $(x_0;y_0)$ выполняется неравенство: $f(x;y) > f(x_0;y_0)$.

На рисунке: N_1 — точка локального максимума, а N_2 — точка локального минимума функции z = f(x; y).

Значение функции в точке максимума (минимума) называется **максимумом** (**минимумом**) функции. Максимум и минимум функции называют ее **экстремумами**.

Теорема (необходимые условия экстремума). Если в точке $N(x_0; y_0)$ дифференцируемая функция z = f(x; y) имеет локальный экстремум, то ее частные производные в этой точке равны нулю:

$$f_x(x_0; y_0) = 0, \ f_y(x_0; y_0) = 0$$
 (или $df(x_0, y_0) = 0$)

Замечание. Функция может иметь локальный экстремум в точках, где хотя бы одна из частных производных не существует. Например, функция $z = 1 - \sqrt{x^2 + y^2}$ имеет максимум в точке O(0;0), но не имеет в этой точке производных.

Определение: Точка, в которой частные производные первого порядка функции z=f(x;y) равны нулю, т.е. $f_{x}^{'}=0$, $f_{y}^{'}=0$, называется стационарной точкой функции z.

Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками.

Выполнение необходимого условия экстремума не обязательно обеспечивает действительное наличие локального экстремума в точке, то есть, критическая точка функции может не быть точкой локального экстремума. В качестве примера рассмотрим функцию $z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$. Критической точкой для этой функции является точка (0,0). Однако эта точка является не экстремальной, она является седловой.

Для того чтобы выяснить, достигается ли в критической точке экстремум и какой, следует обратиться к дифференциалу второго порядка в этой точке. Пусть критическая точка имеет координаты (x_0, y_0) . Рассмотрим приращение функции в окрестности этой точки:

$$\begin{split} f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) &= \\ &= \frac{1}{2!} [f'''_{xx}(x_0, y_0) \cdot (dx)^2 + 2 \cdot f''_{xy}(x_0, y_0) \cdot dx \cdot dy + f''_{yy}(x_0, y_0) \cdot (dy)^2] + \alpha. \end{split}$$

Если при любом сочетании бесконечно малых приращений dx и dy выражение в квадратных скобках не меняет знак, то данная критическая точка

является точкой локального экстремума. Вынесем за квадратную скобку множитель $(dy)^2$. Знак приращения функции совпадает со знаком квадратного трехчлена

$$f_{xx}''(x_0, y_0) \cdot (\frac{dx}{dy})^2 + 2 \cdot f_{xy}''(x_0, y_0) \cdot \frac{dx}{dy} + f_{yy}''(x_0, y_0)$$

относительно $\frac{dx}{dy}$. Как известно, квадратный трехчлен не меняет знак в том случае, если не имеет корней, то есть если его дискриминант отрицателен

$$D = \left(f_{xy}^{"}(x_0, y_0)\right)^2 - f_{xx}^{"}(x_0, y_0) \cdot f_{yy}^{"}(x_0, y_0) < 0$$
или
$$f_{xx}^{"}(x_0, y_0) \cdot f_{yy}^{"}(x_0, y_0) - \left(f_{xy}^{"}(x_0, y_0)\right)^2 > 0$$

В случае отрицательного дискриминанта знак квадратного трехчлена определяется знаком коэффициента при наибольшей степени (или знаком свободного члена). Таким образом, получаем следующую теорему.

Теорема (достаточное условие экстремума). Пусть в стационарной точке $(x_0; y_0)$ и некоторой ее окрестности функция f(x; y) имеет непрерывные частные производные до второго порядка включительно. Вычислим в точке $(x_0; y_0)$ значения $A = f_{xx}^{"}(x_0, y_0), B = f_{xy}^{"}(x_0, y_0), C = f_{yy}^{"}(x_0, y_0)$. Обозначим

$$\Delta = \begin{vmatrix} A & B \\ B & C \end{vmatrix} = AC - B^2.$$

Тогда:

- 1. если $\Delta > 0$, то функция f(x; y) в точке $(x_0; y_0)$ имеет локальный экстремум: максимум, если A < 0; минимум, если A > 0;
- 2. если $\Delta < 0$, то функция f(x; y) в точке $(x_0; y_0)$ экстремума не имеет. В случае $\Delta = 0$ экстремум в точке $(x_0; y_0)$ может быть, может не быть. Необходимы дополнительные исследования.

Пример. Найти экстремум функции $z = 3x^3 + y^2 + 4xy - x + 2$ Решение.

Здесь

$$z'_x = 9x^2 + 4y - 1,$$
 $z'_y = 2y + 4x.$

Точки, в которых частные производные не существуют, отсутствуют.

Найдем стационарные точки, решая систему уравнений:

$$\begin{cases} 9x^2 + 4y - 1 = 0, \\ 2y + 4x = 0. \end{cases}$$

Отсюда получаем точки $M_1(1;-2)$ и $M_2\left(-\frac{1}{9};\frac{2}{9}\right)$.

Находим частные производные второго порядка данной функции:

$$z''_{xx} = 18x$$
, $z''_{yy} = 2$, $z''_{xy} = 4$.

В точке $M_1(1; -2)$ имеем:

$$A=18$$
, $B=4$, $C=2$,

отсюда

$$\Delta = 18 \cdot 2 - 4^2 = 20 > 0$$
.

Так как A > 0, то в точке $M_1(1; -2)$ функция имеет локальный минимум:

$$z_{\min} = z(1; -2) = 0$$
.

В точке $M_2\left(-\frac{1}{9}; \frac{2}{9}\right)$ имеем:

$$A = -2$$
, $B = 4$, $C = 2$

отсюда

$$\Delta = (-2) \cdot 2 - 4^2 = -20 < 0.$$

Так как A < 0, то в точке $M_2 \left(-\frac{1}{9}; \frac{2}{9} \right)$ функция не имеет экстремума.