1. Review the following concepts on Computer System Operation, and explain how they are related to Operating Systems.

- a) Computer Organization
- b) Interrupts
- c) I/O Structure: Interrupt-Driven Data Transfer, Direct Memory Access (DMA) Data Transfer

# **Computer Organization**



- Computer Organization
  - What is a device controller?

Each device controller is in charge of the operations for a particular device type.

— What is the channel through which devices and the CPU communicate?

A system bus.

- How do devices notify CPU that I/O operations are done?

Interrupt.

1. Review the following concepts on Computer System Operation, and explain how they are related to Operating Systems.

- a) Computer Organization
- b) Interrupts
- c) I/O Structure: Interrupt-Driven Data Transfer, Direct Memory Access (DMA) Data Transfer

## Interrupt

- Why do we say "Operating systems are interrupt driven"?
  - If there are no interrupts, OS will not execute (idle).
- What are the major steps of interrupt handling?

#### Three steps:

- First, OS saves the state of the current execution.
- Second, it determines the interrupt service routine according to the interrupt type.
- Third, the interrupt service routine is executed.

1. Review the following concepts on Computer System Operation, and explain how they are related to Operating Systems.

- a) Computer Organization
- b) Interrupts
- c) I/O Structure: Interrupt-Driven Data Transfer, Direct Memory Access (DMA) Data Transfer

# What are Major Differences between Interrupt Driven I/O and DMA?



- Small size I/O
- More Interrupts
- · Low-speed devices



- Block based I/O
- Less interrupts
- High-speed devices

- 2. Indicate whether the following statements are true or false. Justify your answers.
  - a) All I/O instructions are privileged instructions.
  - b) Given a base register value of 0x1000 and a limit register value of 0x1000, access to memory location 0x1FFF will generate a trap.
  - c) Popular operating systems for personal computer use (such as Windows and Linux) are real-time systems.
  - d) A system call always generates a trap.

2a) All I/O instructions are privileged instructions.

#### $\rightarrow$ True.

Justification: I/O operations must go through OS to ensure their correctness and legality.

2b) Given a base register value of 0x1000 and a limit register value of 0x1000, access to memory location 0x1FFF will generate a trap.

#### → False.

Justification: For memory protection, each access to memory by a process must be in the range [base, base+limit-1]. In this case, it translates to the range [0x1000, 0x1FFF]. Hence the access to memory location 0x1FFF will succeed and not generate a trap.

2c) Popular operating systems for personal computer use (such as Windows and Linux) are real-time systems.

#### $\rightarrow$ False.

Justification: Those systems are usually time sharing system.

More: Real-time scheduling in e-learning video.

2d) A system call always generates a trap.

#### $\rightarrow$ True.

Justification: When a system call is encountered, hardware switches from user to kernel mode and generates a trap. The appropriate system call function in the kernel is then identified and executed.

3. Distinguish between multiprogramming and multiprocessing. What were the key motivations for the development of each?

### Multiprogramming vs. Multiprocessing

- Multiprogramming refers to the running of more than one program concurrently in a computer system (even if it has only a single-core CPU).
  - Goal: improve CPU utilization.
- Multiprocessing is the execution of programs on a computer system comprised of more than one processing cores (multi-core CPU).
  - Goal: increase computing power with parallel architectures.

# Multiprogramming vs. Multiprocessing (cont')

Process: Order→Wait till food is ready →Get food

User A: buy chicken wings

User B: buy noodles



VS.





#### Multiprogramming shop

User B gets food

#### Multiprocessing shop

| Time |  |
|------|--|
|------|--|

| User A orders    | User A orders    | User B orders    |
|------------------|------------------|------------------|
| User B orders    |                  |                  |
|                  | User A gets food | User B gets food |
| User A gets food |                  |                  |