MIT 18.06 Practice Exam 1, Spring 2023 Strang and Horning

Your name:			
(printed)			
Student ID:			
Recitation:			

Problem 1 (10+4+4+10+6=34 points):

Record your answers in the alloted spaces. You may use the rest of this page and the following for your calculations.

(a) Compute a new factorization of the matrix

$$A = \left(\begin{array}{ccccc} 3 & 2 & 1 & 5 & 2 \\ 2 & 2 & 0 & 4 & 0 \\ 1 & 0 & 1 & 1 & 2 \end{array}\right),$$

by adding linearly independent rows of A (in order from top to bottom) to the factor R_{new} and choosing the columns of C_{new} so that $A = C_{new}R_{new}$:

$$C_{new} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$
 $R_{new} = \left(\begin{array}{c} \\ \\ \end{array} \right)$

- (b) Put an X next to the correct answer. The column space of A is
 - (i) a line _____
 - (ii) a plane _____
 - (iii) the whole 3D space _____
 - (iv) none of the above _____
- (c) Put an X next to the correct answer. The row space of A is
 - (i) a line _____
 - (ii) a plane _____
 - (iii) a 3D subspace _____
 - (iv) none of the above _____
- (d) Use $A = C_{new}R_{new}$ to compute Ax for the vector $x = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix}^T$ in two steps:

$$R_{new}x = \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$$

$$Ax = C_{new}(R_{new}x) = \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$$

(e) If we multiply the "dot-product" way, $y = R_{new}x$ requires _____ dot product(s) bewteen 5×1 vectors and $Ax = C_{new}y$ requires 3 dot product(s) between ____ $\times 1$ vectors.

(blank page for your work if you need it)

Problem 2 (16+4+4+12=36 points):

Record your answers in the alloted spaces. You may use the rest of this page and the following for your calculations.

(a) Compute the factorization A=LU of the matrix

$$A = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 4 & 2 & 1 & 0 \\ 8 & 4 & 2 & 1 \end{array}\right).$$

$$L = \left(\begin{array}{ccc} & & & \\ & & & \\ & & & \\ \end{array} \right)$$

- (b) Put an X next to the correct answer. The matrix A is
 - (i) invertible _____
 - (ii) not invertible _____
- (c) The rank of A is _____.
- (d) Use A = LU to solve Ax = b for the vector $b = \begin{pmatrix} 1 & 1 & 0 & 1 \end{pmatrix}^T$.

$$x = \left(\begin{array}{c} \\ \end{array}\right)$$

(blank page for your work if you need it)

Problem 3 (6+6+10+8=30 points):

Record your answers in the alloted spaces. You may use the rest of this page and the following for your calculations. Consider the matrix A=LPU given by:

$$A = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 0 & 1 \end{pmatrix}}_{L} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{P} \underbrace{\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{U}.$$

- (a) The matrices L (______), P (______), and U (______) are invertible. (Write True or False next to each).
- (b) Write A^{-1} in terms of L^{-1} , P^{-1} , and U^{-1} (without computing any numbers):

$$A^{-1} =$$

(c) Consider the linear system Ax = b. What right-hand-side vector b should one choose so that the system has solution $x = (\mathbf{first} \ \mathbf{column} \ \mathbf{of} \ A^{-1})$?

$$b = \left(\begin{array}{c} \\ \end{array}\right)$$

(d) Compute x, the first column of A^{-1} :

$$x = \left(\begin{array}{c} \\ \end{array}\right).$$

(blank page for your work if you need it)