Apellidos	Ruir Hernander
Nombre	Pedro

Preguntas sobre grupos:

- 1. (4 puntos) Sea $\mathbb{F}_3 = \mathbb{Z}/(3)$ el cuerpo con 3 elementos y $GL(2, \mathbb{F}_3)$ el grupo de matrices invertibles 2×2 con entradas en \mathbb{F}_3 .
 - (a) (½ punto) En el conjunto de vectores no nulos $X = (\mathbb{F}_3 \times \mathbb{F}_3) \setminus \{(0,0)\}$ definimos una relación \sim de la siguiente manera: $\vec{v} \sim \vec{w}$ si y solo si $\vec{v} = \pm \vec{w}$. Prueba que \sim es una relación de equivalencia y da la lista de todos los elementos del conjunto cociente, que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = X/\sim$, comprobando que hay exactamente cuatro.
 - (b) (½ punto) Dada $A \in \mathrm{GL}(2,\mathbb{F}_3)$, demuestra que la aplicación

$$\varphi_A : \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

- (c) (½ punto) Enumera los elementos de $\mathbb{P}^2(\mathbb{F}_3)$ cuya lista has dado en el primer apartado, y que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$. Prueba que, para todo $A \in GL(2, \mathbb{F}_3)$, la aplicación φ_A es biyectiva y deduce que existe una única permutación $\sigma_A \in S_4$ tal que $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$ para todo i.
- (d) (½ punto) Demuestra que la aplicación

$$f: \mathrm{GL}(2,\mathbb{F}_3) \longrightarrow S_4$$

 $A \longmapsto \sigma_A$

es un homomorfismo de grupos.

- (e) (1 punto) Prueba que para cada trasposición $(ij) \in S_4$ existe $A \in GL(2, \mathbb{F}_3)$ tal que $\sigma_A = (ij)$ y deduce de aquí que f es sobreyectiva.
- (f) (1 punto) Establece un isomorfismo entre S_4 y un cociente de $GL(2, \mathbb{F}_3)$, describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de $GL(2, \mathbb{F}_3)$.

1) F3 (L (2, F3) 2×2 invertibles entradas en A) VNW () V=±W Relación de equivalencia Reflexiva VNW () V=±V pero V=V Siempre Simetrica VNW CV=±W WNV

Transitiva VNW V=±W

WNV

WNV

W=±V

V=±W

V=±W Si $\vec{v} = -\vec{w}$ con $\vec{w} \neq +\vec{v} \rightarrow \vec{v} = +\vec{v}$, $\vec{v} = -\vec{w}$ con $\vec{w} = -\vec{v} \rightarrow \vec{v} = +\vec{v}$, Clases de equivalencia - elementos del grupo cociente $[(1,0)] = \{(1,0),(2,0)\}$ -(1,0) = (-1,0) = (2,0)[(1,1)] = [(1,1),(2,2)]ジェキが ジャマ [(0,1)]= {(0,1),(0,2)} [(4,4)] = {(4,4)}

Pedro

-4-

(9) $(P_1: P^2(\overline{H}_3) \rightarrow P^2(\overline{H}_3))$ bien definida [\overline{V}] \longrightarrow [$A\overline{V}$] $A \in GL(2, \overline{H}_3)$ por ejemplo $A = \overline{I}$ ($\overset{10}{01}$) (\overline{V}_A) identicad

A.C

办

The second

500

3

7-3-1-2- -

100

42