

SalKG: Learning From Knowledge Graph Explanations for Commonsense Reasoning

Aaron Chan¹, Boyuan Long^{*1}, Jiashu Xu^{*1}, Soumya Sanyal¹, Tanishq Gupta², Xiang Ren¹

¹University of Southern California, ²IIT Delhi (*equal contribution)

SalKG-Coarse

model (F_c)

KG

model

(F_{KG})

No-KG

model

(F_{No-KG})

Oracle-Coarse

model (F*c)

1. What is a KG-augmented model? task input (e.g., BERT) task predictor graph encoder (e.g., GNN) Advantages of KG-augmented models: Perform better on knowledge-intensive tasks.

2. Background

> Can "explain" their predictions via attention over KG.

Limitations of KG-Augmented Models

- ➤ KG may not be useful for given task instance.
- > Even if KG is useful, not all parts of the KG may be.
- ➤ Existing KG-augmented models are not explicitly taught when KG or specific parts of KG should be used.

KG Saliency Explanations

- ➤ For each instance, indicate which KG inputs are most useful (i.e., push model to make the correct prediction).
- ➤ Created via saliency methods (Bastings, 2019).

KG nodes market, produce, and merchant most strongly influence the model to predict the correct answer *market*.

3. SalKG

text (x)

predicted

explanation

 (\hat{y}_c)

saliency predictor (S_c)

 $\hat{y}_{c} F_{KG}(x, G) + (1-\hat{y}_{c}) F_{No-KG}(x)$

Step 1: Train vanilla KG-augmented (KG) and non-KG-augmented (No-KG) models on the given task.

KG (G')

target

 (y_c)

task

target

explanation -

Step 2: Create coarse (Is the KG useful?) and fine (Which nodes/paths in the KG are useful?) saliency explanations from KG and No-KG models, using saliency methods.

Step 3: Jointly train KG model to predict coarse and/or fine explanations, then solve task by attending to KG features highlighted by predicted explanations.

4. Results

task

prediction

Performance on CommonsenseQA (RoBERTa+RN) 75 74 73 70 69 68 Nucrea Rand Coarse Rand Fine Rand Chine Rand Coarse Salt Crime Sa

- > **Hybrid** = uses both coarse and fine explanations
- > No-KG + KG = simple mean ensemble of No-KG and KG
- > Rand = SalKG variant that uses random explanations

5. Conclusion

Takeaways

- Saliency explanations can provide strong signal for teaching KG-augmented models to focus on useful KG features.
- Coarse and fine explanations are complementary.

Future Work

- ➤ Incorporate active learning into SalKG, so models can also get human feedback about KG saliency.
- > Design new ways to train model via KG explanations.

6. Resources

Paper: arxiv.org/abs/2104.08793

Contact: Aaron Chan (chanaaro@usc.edu)

