The Theory of the Casimir Force

LULU LIU
DECEMBER 19, 2012
GROUP MEETING

Classical E&M: Intermolecular Forces

• F = -dE/dr; F is observable.

- Charge-charge: E ~ r⁻¹
- Fixed permanent dipole charge: $E \sim r^{-2}$
- Two fixed permanent dipoles: E ~ r⁻³
- Free permanent dipole charge: $E \sim r^{-4}$
- Van der Waals Forces (neutral bodies) E ~ r⁻⁶:
 - Two free permanent dipoles (Keesom)
 - Permanent dipole induced dipole (Debye)
 - Two induced dipoles (London) NOT classical

London Dispersion Force (1936)

- Does not exist classically quantum fluctuations
- 2nd Order (time indep.) perturbation theory

$$\begin{aligned} H &= H_{o} + H' & ((H' << H_{o})) \\ H_{o} &= H_{A} + H_{B} \\ H_{o} &| n_{A} \times n_{B} > = (E_{A} + E_{B}) | n_{A} \times n_{B} > \\ H' &\propto u_{A} u_{B} / R^{3} \end{aligned} \qquad |n_{B} >$$

 $E^{(1)} = \langle 0, 0 | H' | 0, 0 \rangle = 0 - \text{no permanent dipole}$

$$E^{(2)} = \sum_{n_A, n_B \neq (0_A, 0_B)} \frac{\langle 0_A^{(0)} 0_B^{(0)} | \hat{H}^{(1)} | n_A^{(0)} n_B^{(0)} \rangle \langle n_A^{(0)} n_B^{(0)} | \hat{H}^{(1)} | 0_A^{(0)} 0_B^{(0)} \rangle}{E_{0_A 0_B}^{(0)} - E_{n_A n_B}^{(0)}}$$

 $E^{(2)} \propto 1/R^6$ result of quantum fluctuations between |0,0> and higher |n> states

A Different Force?

 Casimir Force is often described as a property of the vacuum with no reference to atoms or dipoles of real

materials.

$$F = -\pi^2 \hbar c A / 240R^4$$

No: fine structure constant, dipole moment, etc

- Mode-counting exercise
- "Evidence" of vacuum energy density?

Some Background: Quantum vs. Classical

$$[x,p_x]=i\hbar$$

Classical fields proliferate

Quantum fields may contract

=> Creation/annihilation of virtual particles

Example: Rutherford Scattering (QED *)

$$p_e^{\mu} = (E, 0, 0, p)$$

$$p_e^{\mu\prime} = (E, psin\theta, 0, pcos\theta)$$

Off-shell photon Energy Momentum Conservation:

$$k_{\gamma}^{\mu} = (0, -psin\theta, 0, p[1 - cos\theta])$$

$$\frac{d\sigma}{d\Omega} = \frac{4Z^2 e^4}{4\pi^2} \frac{m_\alpha^2}{k^4}$$

$$k^4 = 16p^4 \sin^4 \frac{\theta}{2}$$

Example: Rutherford Scattering (Classical)

Energy Momentum Conservation, etc

$$\frac{d\sigma}{d\Omega} = \frac{1}{2\pi} \cdot \frac{2\pi b db}{d\cos\theta} = \frac{Z^2 e^4}{64\pi^2 \varepsilon_0^2 m^2 v^4 \sin^4(\theta/2)}$$

- We see 2 equivalent descriptions:
 - Virtual photon exchange (focus on mediator, local)
 - o Classical electrostatic forces (focus on materials, non-local)

Casimir Force (PEC plates)

Canonical Quantization picture (in vacuum, 1-D):

$$H = \int \frac{dk}{2\pi} w_k (a_k^\dagger a_k + \frac{1}{2})$$
 E = <0|H|o> is divergent

• Add Boundary Condition: $|\psi\rangle$ = 0 at x=0, r (Dirichlet)

$$E(r) = \langle 0|H|0\rangle = \sum_{n} \frac{\omega_{n}}{2}, \quad \omega_{n} = \frac{\pi}{r}n$$

Still infinite.

Need to be more careful with our infinities.

Casimir Force (PEC plates)

- L >> a
- Will take L -> ∞

$$E_{\text{tot}}(a) = E(a) + E(L - a) = \left(\frac{1}{a} + \frac{1}{L - a}\right) \frac{\pi}{2} \sum_{n=1}^{\infty} n$$

Regulator Λ : assume $\infty = \infty(\Lambda) + E_c$ (a)

$$E(r) = \frac{1}{2} \sum_{n} w_n$$

$$E(r) = \frac{1}{2} \sum_{n} w_n$$

$$E(r) = \frac{1}{2} \sum_{n} \omega_n e^{-\omega_n/(\pi\Lambda)}$$

Casimir Force (PEC)

$$E(r) = \frac{1}{r} \frac{\pi}{2} \sum_{n=1}^{\infty} n e^{-n/(\Lambda r)}$$

$$E(r) = \frac{1}{r} \frac{\pi}{2} \left[\Lambda^2 r^2 - \frac{1}{12} + \frac{1}{240 \, r^2 \Lambda^2} \cdots \right] = \frac{\pi}{2} r \Lambda^2 - \frac{\pi}{24 \, r} + \cdots$$

• E = E(a) + E(L-a)

$$E = \frac{\pi}{2}L\Lambda^2 - \frac{\pi}{24a} - \frac{\pi}{24(L-a)} + \dots$$

$$ullet$$
 Taking L $o \infty$

$$E_c = -\frac{\pi \hbar c}{24a}$$

• Taking L
$$\rightarrow \infty$$
 $E_c = -\frac{\pi\hbar c}{24a}$ • In 3-D $E_c = -\frac{\pi^2\hbar cA}{720a^3}$

Interpreting the Casimir Force

$$E_c = -\frac{\pi^2 \hbar c A}{720a^3}$$

- No dependence on material properties
- A fundamental measure of vacuum energy density?
- # Modes outside > # Modes inside: attractive force?
- Not so fast: let's tweak the boundary conditions

Dirichlet

$$|\psi\rangle = 0$$
 at $x = 0, r$

Mixed Dirichlet Neumann

$$|\psi\rangle = 0$$
 at x = 0, d/dx $|\psi\rangle = 0$ at x=r

Casimir Force (mixed BC)

$$\omega_n = \frac{(2n+1)\pi}{2a} \, .$$

$$\omega_n = \frac{(2n+1)\pi}{2a}.$$

$$E(r) = \frac{\pi}{2r}e^{-\frac{1}{2r\Lambda}}\sum_n \left(ne^{-\frac{n}{r\Lambda}} + \frac{1}{2}e^{-\frac{n}{r\Lambda}}\right)$$

$$E(r) = \frac{\pi}{2r}\left(r^2\Lambda^2 + \frac{1}{24} - \frac{7}{1920r^2\Lambda^2}\right)$$

$$E_c = +\frac{\pi\hbar c}{48a}$$

Force is repulsive. What's going on

Casimir Force and Boundary Conditions

- Boundary conditions encode assumptions about material properties and response
- Field is zero at plates -> atoms in plate polarized in a certain way to cancel field.
- o PEC assumption is $\alpha \to \infty$ limit, w_p and skin-depth both depend on α
- Mode-counting argument flawed
- Can get whole range of behaviors By tweaking B.C. (right)
- Proof of vacuum energy density?

$$\phi|_{bound.} = \beta \frac{\partial \phi}{\partial n}|_{bound.}$$

Casimir Force as Intermolecular Force

• Casimir's original goal: find the large r limit of London dispersion force – accounting for finite speed of light.

- LDF power law dependence changes at 200 A
 - Normal -> retarded van der Waals
- $E \sim R^{-6} \to R^{-7}$
- Casimir found very simple form (for 2 atoms):

$$U = -(23\hbar c/4\pi) (\alpha_1 \alpha_2/r^7)$$

 Can be (was) described entirely in molecular terms

Lifshitz Theory

- Addressed an additional difficulty (+ c):
 - Dispersion forces are NOT additive (non-linear)
 - Building up from single atoms very non-trivial
- Starting point instead: continuous slabs of constant ϵ
 - o General expression for planar geometry

$$G(l, T) = \frac{kT}{8\pi l^2} \sum_{n=0}^{\infty} \int_{r}^{\infty} x \left\{ \ln \left[1 - \bar{\Delta}_{mL} \bar{\Delta}_{mR} e^{-x} \right] + \ln \left[1 - \Delta_{mL} \Delta_{mR} e^{-x} \right] \right\} dx$$

 \circ Term with $-(\varepsilon_1 - \varepsilon_3)$ ($\varepsilon_2 - \varepsilon_3$), this interaction can change sign as well

Two Derivations - Two Interpretations

- Quantum mechanical (London dispersion)
 - Quantum fluctuations of dipoles interpretation + finite speed of light
- Quantumelectrodynamical (Virtual particles)
 - o Vacuum fluctuations w/ B.C. interpretation
- But are they really different?
 - o QFT is a relativistic, local formulation of quantum mechanics
 - Agreement should be expected
 - Similar to fields vs. charges interpretation in E&M.
- Reality of vacuum energy?

Casimir Force: What we know

Extremely unintuitive

- Closed spherical shell in vacuum is repulsive (!) (Boyle's PhD, Casimir's electron theory busted)
- \circ E = +0.9 / 2a
- o Bring together 2 halves of sphere (attractive -> repulsive??)
- Non-linear, temperature dependent (though non-zero at T=0), material-dependent, torques, etc.
- Area of very active theoretical and experimental research.
- Me: Contact-free measurement of repulsive slab fluid – sphere geometry. (A Woolf, A Rodriguez)

HAVE A NICE BREAK!!!!

Intermolecular Forces (1)

Intermolecular Forces (2)

type of interaction		interaction energy w(r)
Charge-non-polar	$\begin{array}{cccc} Q & \alpha \\ r & \end{array}$	$-Q^2\alpha/2(4\pi\varepsilon_0)^2r^4$
Dipole-non-dipolar	$ \begin{array}{c cccc} u & & \alpha & & \alpha \\ \hline & & & & & & \alpha \\ \hline & & & & & & & & & & & & & & & & & & &$	$-u^2\alpha(1+3\cos^2\theta)/2(4\pi\varepsilon_0)^2r^6$
	$\frac{u}{\text{Rotating}} \xrightarrow{r} \frac{\alpha}{\alpha}$	$-u^2 \alpha/(4\pi \varepsilon_0)^2 r^6$ (Debye energy)
Two non-polar molecules	r	$-\frac{3}{4} \frac{hv\alpha^2}{(4\pi\epsilon_0)^2 r^6}$ (London dispersion energy)

R- dependence of intermolecular forces (1)

$$V(r) = \frac{Q}{r} + \frac{\vec{p} \cdot \hat{r}}{r^2} + \frac{\hat{r} \cdot M \cdot \hat{r}}{r^3} + \dots$$

Dipole-dipole (fixed): $U = -\vec{p} \cdot \vec{E}$

$$\vec{E} = -\vec{\nabla}V(r)_{dipole} \propto \frac{1}{r^3}$$

Free-dipole – charge:

$$U = - <\vec{p} > \cdot \vec{E} = -|\vec{p}||\frac{q^2}{r^2}| < \cos(\phi) >$$

$$<\cos\phi> = \int_{-1}^{1} p(\cos\phi)\cos\phi d(\cos\phi) \propto \int_{-1}^{1} e^{-\frac{|\vec{p}|q^{2}\cos\phi}{r^{2}kT}}\cos\phi d(\cos\phi) \approx \int_{-1}^{1} (1 - \frac{|\vec{p}|q^{2}\cos\phi}{r^{2}kT} + \dots)\cos\phi d(\cos\phi) \approx \frac{2}{3} \frac{|\vec{p}|q^{2}\cos\phi}{r^{2}kT}$$

 $U \propto \frac{1}{r^4}$

R-dependence of intermolecular forces (2)

Dipole – induced dipole:

$$U = -\vec{p} \cdot \vec{E}$$

$$ec{p} \propto ec{E}$$

$$U \propto \frac{1}{r^6}$$

No classical description for induced-dipole induced-dipole

Alpha -> inf limit

skin depth, δ . ω_{pl} characterizes the frequency above which the conductivity goes to δ measures the distance that electromagnetic fields penetrate the metal. Both ω_{pl} depend on the fine structure constant, α , and vanish as $\alpha \to 0$. In the Drude mode

$$\omega_{\rm pl}^2 = \frac{4\pi e^2 n}{m}$$

$$\delta^{-2} = \frac{2\pi\omega|\sigma|}{c^2} \text{ where } \sigma = \frac{ne^2}{m(\gamma_0 - i\omega)}$$

where *n* is the total number of conduction electrons per unit volume, *m* is their ef mass, and γ_0 is the damping parameter for the Drude oscillators. Typically the frecies of interest are much greater than γ_0 , so $\delta \approx c/\sqrt{2}\omega_{\rm pl}$.

The frequencies that dominate the Casimir force are of order c/d[12]. So the productor approximation is adequate if $c/d \ll \omega_{\rm pl}$, or

$$\alpha \gg \frac{mc}{4\pi \overline{h} n d^2}$$
.

Typical Casimir force measurements are made at separations of order 0.5 micror a good conductor like copper, eq. (5) requires α to be greater than about 10^{-5} , where $\alpha \approx 1/137$. Thus the standard Casimir results of the physical value $\alpha \approx 1/137$. Thus the standard Casimir results of the physical value $\alpha \approx 1/137$. Thus the standard Casimir results of the physical value $\alpha \approx 1/137$.