

Julien Schmaltz

Lecture 04:
Temporal Logics
Formal semantics

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Formal semantics LTL, CTL, CTL*

- » Last time we used different structures in our semantics
 - » sometimes LTS (Labelled Transition Systems)
 - » some other times Kripke Structures

» In the course, we also looked at Finite State Machines (FSMs)

- » FSMs are needed to represent hardware.
- » For semantics, Kripke structures are enough.
- » Today, we will give formal semantics using Kripke
 - » these are the only semantics you really need to know for this course

Kripke structure

- » Basic idea: information is in states
- » Quadruple (S,I,R,L)
 - » S: finite set of states
 - » I: finite set of initial states
 - » R: transition relation R is in S x S and is total
 - » that is, for all states s there exists a state s' such that (s,s') is in R
 - » L: labelling function. L(s) = propositions true in state s
- » A path is an infinite sequence of states.
- » Labels are "atomic propositions", or simply "bits" or "signals".

Kripke structure - Example

sequential circuit

Kripke structure

Some syntax first

LTL - Linear Time Logic

» The only state formulas permitted are atomic propositions.

CTL - Computation Tree Logic

- » Main restriction
 - » Temporal operators (e.g. X,U) must be immediately preceded by a path quantifier

LTL - Syntax

- » If p is an atomic proposition, then it is a path formula
- » If f and g are path formulas, then the following are also path formulas:

$$\neg f$$
 $f \land g$ $\mathbf{X} f$ $f \mathbf{U} g$

CTL - Syntax

» State formulas are either atomic propositions or if f and g are state formulas, the following are also state formulas:

$$\neg f$$
 $f \wedge g$ $\mathbf{E}f$ $\mathbf{A}f$

» If f and g are state formulas, then they are path formulas.

» Additional path formulas can be created using:

$$\mathbf{X} f$$
 $f \mathbf{U} g$

Syntax of CTL*

• CTL* state-formulae are formed according to:

$$\phi ::= \top \mid a \mid \phi_1 \wedge \phi_2 \mid \neg \phi \mid \mathbf{E} \psi$$

where $a \in AP$, ϕ, ϕ_1, ϕ_2 are state-formulae, and ψ is a path-formula

• CTL* path-formulae are formed according to:

$$\psi ::= \phi \mid \psi_1 \land \psi_2 \mid \neg \psi \mid \mathbf{X}\psi \mid \psi_1 \ \mathbf{U}\psi_2$$

where ϕ is a state-formula, and ψ, ψ_1, ψ_2 are path-formulae

- Path-quantifiers and temporal operators do not have to alternate anymore
- In CTL* we can define $\mathbf{A}\psi = \neg \mathbf{E} \neg \psi$ which is not possible in CTL!

Some notations

- » A path is noted π
- » Suffix of a path starting at index i is noted π°
- » State at index i in a path is noted $\pi(i)$

» Kripke structure M satisfies a property for a path is noted $M,\pi\models f$

LTL semantics (1)

$$\begin{array}{lll} M,\pi \models p & \text{iff} & p \in L(\pi(0)) \\ M,\pi \models \neg f & \text{iff} & M,\pi \not\models f \\ M,\pi \models f \land g & \text{iff} & M,\pi \models f \text{ and } M,\pi \models g \\ M,\pi \models \mathbf{X} \ f & \text{iff} & M,\pi^1 \models f \\ M,\pi \models f \ \mathbf{U} \ g & \text{iff} & \exists i.M,\pi^i \models g \text{ and} \forall j < i.M,\pi^j \models f \end{array}$$

All other formulas can be derived from the ones on this slide.

Derived operators

- $\varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi)$
- $\bullet \varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$
- $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$
- True (or \top) $\equiv \varphi \lor \neg \varphi$
- False (or \bot) $\equiv \neg \top$
- $\mathbf{F}\varphi$ (also noted $\Diamond\varphi)\equiv \top \mathbf{U} \varphi$ "eventually φ "
- **G** φ (also noted $\Box \varphi$) $\equiv \neg \mathbf{F} \neg \varphi$ "globally φ "

CTL Semantics - state formulas

$$M,s \models p$$

$$p \in L(s)$$

$$M,s \models \neg f$$

$$M,s \not\models f$$

$$M,s \models f \land g$$

$$M, s \models f \text{ and } M, s \models g$$

$$M,s \models \mathbf{E} f$$

$$\exists \pi. \pi(0) = s \land M, \pi \models f$$

$$M,s \models \mathbf{A} f$$

$$\forall \pi.\pi(0) = s \land M, \pi \models f$$

CTL Semantics - path formulas

$$M, \pi \models p$$
 iff $M, \pi(0) \models p$
 $M, \pi \models \neg f$ iff $M, \pi \not\models f$
 $M, \pi \models f \land g$ iff $M, \pi \models f \text{ and } M, \pi \models g$
 $M, \pi \models \mathbf{X} f$ iff $M, \pi^1 \models f$
 $M, \pi \models f \mathbf{U} g$ iff $\exists i.M, \pi^i \models g \text{ and } \forall j < i.M, \pi^j \models f$

CTL* Semantics - state formulas

» Same as for CTL

CTL* Semantics - path formulas

$$M, \pi \models f$$
 iff $M, \pi(0) \models f$
 $M, \pi \models \neg f$ iff $M, \pi \not\models f$
 $M, \pi \models f \land g$ iff $M, \pi \models f$ and $M, \pi \models g$
 $M, \pi \models p$ iff $M, \pi(0) \models p$
 $M, \pi \models \neg f$ iff $M, \pi \not\models f$
 $M, \pi \models f \land g$ iff $M, \pi \models f$ and $M, \pi \models g$
 $M, \pi \models f \land g$ iff $M, \pi \models f$ and $M, \pi \models g$
 $M, \pi \models f \land g$ iff $M, \pi \models f$ and $M, \pi \models g$
 $M, \pi \models f \lor g$ iff $M, \pi^1 \models f$
 $M, \pi \models f \lor g$ iff $M, \pi^1 \models f$

