1 Семантика программы

1.1 Семантика программы

Предположим, что нам дана некоторая программа π (написанная на некотором языке программирования). Каково значение π ? Как выразить его математически? Для этого введем понятие **семантики** программы. Далее рассмотрим простой императивный язык программирования с целью иллюстрации понятий, связанных с семантикой программы.

1.2 Простой язык программирования

Простой язык программирования (SPL)

Определим некоторый очень простой язык программирования SPL.

- в SPL существует только один тип все переменные имеют целочисленные значения.
- мы можем выполнять основные арифметические операции: сложение, умножение, вычитание и деление над выражениями. Также у нас есть числовые константы.
- мы можем сравнивать арифметические выражения и комбинировать эти сравнения с логическими операторами: $(x < 2*y) \land (x \neq 1)$
- элементарной операцией в программе является присваивание: x := e, где x переменная, а e некоторое арифметическое выражение вида (y*2+1)*z
- в общем случае программа состоит из операций и операторов:
 - $-\pi$; ρ последовательная композиция π и ρ
 - $-if(cond)then\{\pi\}else\{\rho\}$ Условный оператор
 - $while(cond)do\{\pi\}$ цикл while

1.3 Семантика типов данных

Математическая семантика типов данных

В общем случае, для данной системы типов, её математическая семантика состоит из:

- для каждого типа τ множество всех значений D_{τ} область допустимых значений типа τ
- для каждого арифметического оператора \star , действующего на типы τ_1, \ldots, τ_n и возвращающего значение типа τ_0 , **интерпретация** этого оператора, а именно отображение $\star : D_{\tau_1} \times \ldots \times D_{\tau_n} \to D_{\tau_0}$

Семантика типов в SPL

В SPL существует только один тип: int, следовательно, его область определения - это просто множество целых чисел Z. Все арифметические операторы: $+,\cdot,-,/$ интерпретируются как стандартные операции над целыми числами, аналогично для равенства и отношений $<, \le, >, \ge$. Объединяя множество и все интерпретации, получим алгебраическую структуру $\mathbb{Z} = (Z, \{+,\cdot,-,/,<\})$ в качестве семантики для типов данных в SPL.

1.4 Состояние программы

Дана SPL программа π , обозначим все переменные, входящие в π как $V(\pi)$.

Состояние программы

Дана SPL программа π , её **состояние** - это отображение:

$$s: V(\pi) \to D_{int} = Z$$

Если существует больше одного типа, переменные становятся типизированными, и это отображение должно учитывать их типизацию. Множество всех состояний программы π обозначается как $SP(\pi)$.

Состояние программы π описывает значения всех её переменных. Если нам дано состояние s и некоторое выражение e, то **значение** e в состоянии s однозначно определено и обозначается как e[s]. Для любого состояния s, переменной x и значения a, определим состояние s_a^x следующим образом:

$$s_a^x(y) = \begin{cases} s(y) & , y \neq x \\ a & , y = x \end{cases}$$

1.5 Семантика операций

Семантика операций

Дана программа π , её **семантика** $<\pi>$ - это отображение (частичное!)

$$<\pi>:SP(\pi)\to SP(\pi)$$

Значение: начиная с состояния s_0 , программа π либо не завершится, и в этом случае $<\pi>(s_0)$ не определена, либо завершится с состоянием s_1 , и в этом случае $<\pi>(s_0)=s_1$.

Неформально, семантика программы исчерпывающе описывает ее поведение и, таким образом, выражает её значение.

1.6 Истинность формулы в состоянии

Как было отмечено выше, математическая семантика типов данных в SPL в частности и в любом другом языке программирования в целом - это просто фиксированная (многокомпонентная) структура, а любое состояние - это просто означивание переменных. Следовательно, может возникнуть вопрос, истинна ли некоторая формула в этой фиксированной структуры при данном означивании переменных.

Например в SPL, семантика типов данных - это фиксированная структура \mathbb{Z} , следовательно,

$$s \models \phi \Leftrightarrow \mathbb{Z} \models \phi[s]$$

Таким образом, поскольку любая логическая комбинация сравнений выражений в SPL может быть рассмотрена просто как формула, не содержащая кванторов, для любого такого выражения либо cond, либо $s \models cond$ или $s \not\models cond$.

1.7 Семантика операций в SPL

Семантика операций в SPL

Дана программа π , её семантика $<\pi>$ определяется индукцией по построению π :

1.
$$\langle x := e \rangle (s) = s_{e[s]}^x$$

2.
$$<\pi; \rho > (s) = <\pi > 0 < \rho > (s) = <\rho > (<\pi > (s))$$

3.
$$\langle if(cond)then\{\pi\}else\{\rho\} \rangle (s) = \begin{cases} \langle \pi \rangle(s) &, s \models cond \\ \langle \rho \rangle(s) &, s \not\models cond \end{cases}$$

$$4. < while (cond) do\{\pi\} > (s) = \underbrace{<\pi>\circ\ldots\circ<\pi>}_n(s) = s', \ \text{где } n \text{ - (минимальный) такой, что } s' \not\models cond \ \text{для всех } k < n \underbrace{<\pi>\circ\ldots\circ<\pi>}_k(s) \models cond$$

Теперь у нас есть строгое математическое описание языка SPL

1.8 Выполнимость тройки Хоара в SPL

Теперь мы можем строго определить понятие выполнимости или истинности тройки Хоара (частичной корректности) в SPL.

Определение

Дана тройка Хоара $\{\phi\}\pi\{\psi\}$, где π - SPL программа, будем говорить, что она **истинна** или **выполняется**, записывается как

$$\models \{\phi\}\pi\{\psi\}$$

тогда и только тогда, когда для любого состояния s, если $s \models \phi$ и $< \phi > (s)$ определено, то $< \phi > (s) \models \psi$

2 Корректность и полнота аксиоматической семантики.

2.1 Корректность аксиоматической семантики для SPL

Как и в классической логике, мы хотим убедиться, что все тройки Хоара, являющиеся выводимыми в аксиоматической семантике для SPL, истинны.

Теорема (корректность аксиоматической семантики SPL)

Для любой тройки Хоара $\{\phi\}\pi\{\psi\}$, если существует её дерево вывода, все листья которого, являющиеся формулами, тождественно истинны, то

$$\models \{\phi\}\pi\{\psi\}$$

Доказательство

Как всегда, докажем эту теорему индукцией по высоте дерева вывода. Сначала необходимо проверить, что аксиома присваивания всегда истинна, затем проверить все остальные правила вывода. Проверим, что $\models \{(\phi)_e^x\}x := e\{\phi\}$. Рассмотрим некоторое состояние s, такое, что $s \models (\phi)_e^x$. Тогда, если заменить каждое вхождение e в $(\phi)_e^x$ значением e[s], истинность формулы сохранится. Таким образом, $s_e^x \models \phi$, потому что в этой формуле все вхождения x заменены значениями e[s]. Предположим, что $\models \{\phi\}\pi\{\chi\}$ и $\models \{\chi\}\rho\{\psi\}$. Необходимо проверить, что $\models \{\phi\}\pi; \rho\{\psi\}$. Действительно, возьмём некоторое состояние $s_0 \models \phi$ такое, что $<\pi; \rho > (s)$ определено: если $s_1 = <\pi > s_0$, то $s_1 \models \chi$, следовательно, если $s_2 = <\rho > (s_1)$, то $s_2 \models \psi$. Но $s_2 = <\pi; \rho > (s_0) \models \psi$, ч.т.д. Остальные случаи доказываются аналогично. \square

${f 2.2}$ Полнота аксиоматической семантики для SPL

Теорема (полнота аксиоматической семантики *SPL*)

Для любой тройки Хоара $\{\phi\}\pi\{\psi\}$, если $\models \{\phi\}\pi\{\psi\}$, то существует её дерево вывода, все листья которого, являющиеся формулами, тождественно истинны.

Это доказательство намного сложнее, чем доказательство теоремы о корректности.