Supplementary document of the paper

State-based Opacity Verification of Networked Discrete Event Systems Using Labeled Petri Nets

(Paper ID: JAS-2023-0480)

1 Nomenclature

N	Petri net, $N = (P, T, Pre, Post)$
P	Set of places of a Petri net
T	Set of transitions of a Petri net
\mathbb{N}	Set of non-negative integers
Pre	Pre-incidence function of a Petri net
Post	Post-incidence function of a Petri net
C	Incidence matrix of a Petri net
$ar{C}$	Converse incidence matrix of a Petri net
M	Marking of a Petri net
$\langle N, M_0 \rangle$	Petri net system
σ	Sequence of transitions
$R(N, M_0)$	Reachability set of a Petri net system $\langle N, M_0 \rangle$
G	Labeled Petri net, $G = (N, M_0, \Sigma, l)$
Σ	Alphabet
l	Labeling function assigning to each transition with a symbol o
	the empty word ε
T_o	Set of observable transitions
T_u	Set of unobservable transitions
$\mathcal{L}(N,M)$	Language generated from M of a labeled Petri net
w	Observation
$\mathcal{C}(w)$	Set of markings consistent with w
\hat{T}	Subset of T
\mathcal{N}	Next-state function
\mathcal{N}^R	Conversely next-state function
\mathcal{M}	Set of markings
F	Multi-valued decision diagram, $F = (Q, D, q_0, q_t, q_f, \delta_t)$
H	Matrix diagram, $H = (Q, \mathcal{D}, q_0, q_t, q_f, \delta_t)$
$\mathcal{K}(F)$	Set of the label sequences of all top-bottom paths ending with
	the true terminal vertex in F
$\mathcal{K}(H)$	Set of the label sequences of all top-bottom paths ending with
	the true terminal vertex in H
$F_1 \cup F_2$	Union of two MDDs F_1 and F_2
$F_1 \cap F_2$	Intersection of two MDDs F_1 and F_2
$F\otimes H$	Relational product of an MDD F and a matrix diagram H
$pr(\sigma)$	Prefix of σ
$su(\sigma)$	Suffix of σ
pr(w)	Prefix of w
su(w)	Suffix of w

κ_L	Mapping representing communication losses
κ_D	Mapping representing communication delays
κ_{DL}	Mapping representing both communication losses and delays
X	Delay upper bound
$\mathcal{C}_L(w)$	Current-state estimation with respect to w and κ_L
$\mathcal{C}_D(w)$	Current-state estimation with respect to w and κ_D
$\mathcal{C}_{DL}(w)$	Current-state estimation with respect to w and κ_{DL}
$\mathcal{I}_L(w)$	Initial-state estimation with respect to w and κ_L
$\mathcal{I}_D(w)$	Initial-state estimation with respect to w and κ_D
$\mathcal{I}_{DL}(w)$	Initial-state estimation with respect to w and κ_{DL}
$\mathcal{D}_L(w_1 w_2)$	Delayed state estimation with respect to w and κ_L
$\mathcal{D}_D(w_1 w_2)$	Delayed state estimation with respect to w and κ_D
$\mathcal{D}_{DL}(w_1 w_2)$	Delayed state estimation with respect to w and κ_{DL}
$\mathcal{G} = (Q_o, \Sigma, \delta_o, q_{o0})$	Observer of G under the consideration of the mapping κ_{DL}
$\mathcal{U}(\mathcal{M}_r)$	Unobservable reach of a set of markings \mathcal{M}_r
$ar{\mathcal{N}}_{arepsilon}$	Matrix diagram decided by all unobservable transitions
$\mathcal{G}_L = (Q_o^L, \Sigma, \delta_o^L, q_{o0}^L)$	Observer \mathcal{G} under the consideration of the mapping κ_L
$\mathcal{R}(\mathcal{M}, \alpha)$	Reversed α -reach of \mathcal{M}
$\mathcal{R}(\mathcal{M})$	Reversed unobservable reach of \mathcal{M}
$\mathcal{J} = (Q_e, \Sigma, \delta_e, q_{e0})$	Estimator of G under the consideration of the mapping κ_{DL}
$\bar{\mathcal{N}}$	Matrix diagram that is decided by all transitions in T
$ar{\mathcal{N}}_t^R$	Matrix diagram decided by transition t under the reversed
·	transition relation
$\mathcal{T} = (Q_{tw}, D_{tw}, \delta_{tw}, q_{tw0})$	Modified two-way observer of G
$\lambda_1(\tau_i) \in \Sigma^*$	First components of τ_i
$\lambda_2(au_i) \in \Sigma^*$	Second components of τ_i
$d_{ij}[2]$	Second entry of the label d_{ij}
$\lambda_2^R(au_i)$	Reversed sequence of $\lambda_2(\tau_i)$
$\mathcal{IO} = (\mathcal{T}, V_{io})$	I-observer of G with respect to \mathcal{T} , κ_{DL} , and S
$\mathcal{G}_{\mathcal{M}} = (Q'_o, \Sigma, \delta'_o, \hat{\mathcal{M}})$	Observer initialized at a set of markings \mathcal{M}
$\mathcal{X}^X(\mathcal{D}_L(w_1 w_2), w_2)$	Set of $\mathcal{D}_L(w_1 w_2)$ -reachable markings with respect to X
$\mathcal{X}_{w_2}(\mathcal{D}_L(w_1 w_2),w_2)$	Set of markings that can be reached from $\mathcal{D}_L(w_1 w_2)$ after
	firing transition sequences σ with $w_2 \in \kappa_L(\sigma)$
$\mathcal{Y}(\mathcal{G}_{\mathcal{M}},L)$	Set of vertices that is generated from $\hat{\mathcal{M}}$ within L steps
$\mathcal{Y}_U(\mathcal{G}_{\mathcal{M}},L)$	Union of all vertices contained in $\mathcal{Y}(\mathcal{G}_{\mathcal{M}}, L)$
$v_{io}[i]$	i -th entry of the tuple v_{io}
h[j]	j-th entry of the tuple h

2 Main Algorithms

In this section, three critical algorithms as well as their explanations and computational complexity analysis are presented. Particularly, Algorithms 1, 2, and 3 are designed for the construction of an observer \mathcal{G} , an estimator \mathcal{J} , and an I-observer \mathcal{T} that are utilized for the verification of current-state opacity, initial-state opacity, and infinite-step (or K-step) opacity of an LPN system G, respectively.

Algorithm 1: At the beginning of Algorithm 1, we initialize the LPN G' with G. Then, for all potentially lost transitions $t \in T_l$, we add a new unobservable transition t', i.e., l(t') =

Algorithm 1: Construction of a symbolic observer \mathcal{G}

```
Input: An LPN G = (N, M_0, \Sigma, l) with N = (P, T, Pre, Post) and a mapping \kappa_{DL}
                    associated with a delay upper bound X \in \mathbb{N}.
     Output: Observer \mathcal{G} = (Q_o, \Sigma, \delta_o, q_{o0}) of G.
 1 Initialize G' = (P, T', Pre', Post') with T' \leftarrow T, Pre' \leftarrow Pre, Post' \leftarrow Post;
 2 for all t \in T_l do
           T' \leftarrow T' \cup \{t'\} with l(t') = \varepsilon defined;
            for all p \in P do
                  Pre'(p,t') \leftarrow Pre(p,t);
                 Post'(p,t') \leftarrow Post(p,t);
 7 \hat{\mathcal{M}}_r \leftarrow \{\hat{M}_0\};
 s repeat
            \hat{\mathcal{M}}_{temp} \leftarrow \hat{\mathcal{M}}_r;
            R \leftarrow \text{Relational-product}(\hat{\mathcal{M}}_{temp}, \bar{\mathcal{N}}_{\varepsilon});
           \hat{\mathcal{M}}_r \leftarrow \text{Union}(\hat{\mathcal{M}}_{temp}, R);
12 until \hat{\mathcal{M}}_{temp} = \hat{\mathcal{M}}_r;
13 q_{o0} \leftarrow \tilde{\mathcal{M}}_r; Q_o \leftarrow \{q_{o0}\};
14 Assign the vertex q_{o0} with a "new" tag;
     while vertices with a tag "new" exist do
            Select a vertex q_o tagged with "new";
            for all \alpha \in \Sigma do
17
                  \hat{\mathcal{M}}_{\alpha} \leftarrow \text{Relational-product}(q_o, \bar{\mathcal{N}}_{\alpha});
                  repeat
19
                        \hat{\mathcal{M}}_{temp} \leftarrow \hat{\mathcal{M}}_{\alpha};
20
                        R \leftarrow \text{Relational-product}(\hat{\mathcal{M}}_{temp}, \bar{\mathcal{N}}_{\varepsilon});
21
                        \hat{\mathcal{M}}_{\alpha} \leftarrow \text{Union}(\hat{\mathcal{M}}_{temp}, R);
22
                  until \hat{\mathcal{M}}_{temp} = \hat{\mathcal{M}}_{\alpha};
23
                  q_o' \leftarrow \hat{\mathcal{M}}_o:
24
                  if q'_o \notin Q_o and \mathcal{M}_\alpha \neq \emptyset then
25
                        Q_o \leftarrow Q_o \cup \{q_o'\};
26
                        \delta_o(q_o, \alpha) = q'_o is defined;
27
                        Assign "new" tag to q_0';
           Tag q_o "old";
30 for all q_o \in Q_o do
            for all paths \tau_o = \alpha_1 \alpha_2 \cdots \alpha_r \ (|\tau_o| = X) \ s.t. \ \delta_o(q_{oi}, \alpha_i) = q_{o(i+1)} \ (i = 1, 2, \dots, r \ and
              q_{o1} = q_o) \ \mathbf{do}
                q_o \leftarrow \bigcup_{i=1,2,\dots,r+1} q_{oi} \cup q_o;
```

 ε to T', with ${}^{\bullet}t' = {}^{\bullet}t$ and $t'^{\bullet} = t^{\bullet}$. Then, the LPN G' is obtained. We then compute the observer of G' by a symbolic approach. The initial marking M_0 is represented by an MDD and assigned to $\hat{\mathcal{M}}_r^1$. The codes in lines 8–12 compute the unobservable reach of \mathcal{M}_r , i.e., $\mathcal{U}(\mathcal{M}_r) = \bigcup_{M \in \mathcal{M}_r} \{M' \in \mathbb{N}^m \mid (\exists \sigma_u \in T_u^*) \ M[\sigma_u \rangle M'\}$ (the notation $\bar{\mathcal{N}}_{\varepsilon}$ in line 10 denotes the

¹The symbol "" over a notation denoting a set of markings implies that the set is represented by an MDD.

matrix diagram decided by all unobservable transitions). We assign $\hat{\mathcal{M}}_r$ to the initial vertex q_{o0} and $\{q_{o0}\}$ to Q_o . For any vertex that is not visited and for any label contained in Σ , we calculate the α -reach of q_o , i.e., $\mathcal{M}_{\alpha} = \mathcal{N}(\check{q}_o, \hat{T}_{\alpha})^2$, where \hat{T}_{α} represents the set of transitions labeled by α and then compute the unobservable reach of $\hat{\mathcal{M}}_{\alpha}$ that is assigned to q'_o with the codes in lines 19–24. If q'_o is not included in Q_o and the set of markings \mathcal{M}_{α} with $\hat{\mathcal{M}}_{\alpha} = q'_o$ is not empty, q'_o is added to Q_o and $\delta_o(q_o, \alpha) = q'_o$ is defined. The set of vertices Q_o is iteratively computed until all vertices are tagged with "old".

For all vertices $q_o \in Q_o$ and for all label sequences $\tau_o = \alpha_1 \alpha_2 \cdots \alpha_r$ with $|\tau_o| = r = X^3$ such that $\delta_o(q_{o1}, \alpha_1) = q_{o2}$, $\delta_o(q_{o2}, \alpha_2) = q_{o3}, \ldots, \delta_o(q_{or}, \alpha_r) = q_{o(r+1)}$ starting at q_o $(q_o = q_{o1})$, we add the union of the sets of markings $q_{o1} \cup q_{o2} \cup \cdots \cup q_{o(r+1)}$ to q_o .

Note that in lines 1–29 of Algorithm 1, we compute a part of the observer \mathcal{G} under the consideration of the mapping κ_L , i.e., only communication losses are considered, which is denoted as $\mathcal{G}_L = (Q_o^L, \Sigma, \delta_o^L, q_{o0}^L)$. The codes in lines 30–32 consider communication delays for the construction of \mathcal{G} .

The computational complexity of Algorithm 1 can be divided into two parts, i.e., the computation of \mathcal{G}_L and \mathcal{G} . For the former, its complexity is mainly derived from the alternative computation of the unobservable reach of a set of markings in lines 8–12 and 19–23, i.e., $\mathcal{O}(N_r \times (\sum_{i=1}^m |Q_i'|_{max} \times |Q_i''|_{max}))$, where N_r represents the number of loops until the arrival of a fixed point, i.e., the terminal condition, while $|Q_i'|_{max}$ and $|Q_i''|_{max}$ with $i=1,2,\ldots,m$ (m is the number of places) represent the maximum numbers of vertices at level i for all the operations associated with two symbolic structures (MDDs or matrix diagrams). The complexity for constructing \mathcal{G}_L is $\mathcal{O}(|Q_o| \times |\Sigma| \times N_{max} \times (\sum_{i=1}^m |Q_i'|_{max} \times |Q_i''|_{max}))$, where $|Q_o|$ is the number of vertices in \mathcal{G} , $|\Sigma|$ is the number of symbols in Σ , and N_{max} represents the maximum number of loops for all the computations of unobservable reach of a set of markings. After the construction of \mathcal{G}_L , the complexity for computing \mathcal{G} is $\mathcal{O}(|Q_o| \times |\Sigma|^X \times (\sum_{i=1}^m |Q_i'|_{max} \times |Q_i''|_{max}))$.

Algorithm 2: The construction of Algorithm 2 for computing an estimator of an LPN G is based on Theorem 2. We now show the details of Algorithm 2. In line 2 of Algorithm 2, we construct G' by adding unobservable transitions according to the potentially lost transitions. Then we assign the MDD that represents the initial marking M_0 to $\hat{\mathcal{M}}_r$ and symbolically compute the reachable markings of G' with $\mathcal{M}_r = R(N, M_0)$ in lines 4–8 (the notation $\bar{\mathcal{N}}$ represents the matrix diagram that is decided by all transitions in T). The MDD $\hat{\mathcal{M}}_r$ is assigned to the initial vertex q_{e0} with a "new" tag. For all transitions $t \in T$, we compute the markings generated from $R(N, M_0)$ after the firing of t, i.e., $\mathcal{M}_t = \mathcal{N}(R(N, M_0), \{t\})$ (note that $\bar{\mathcal{N}}_t$ in line 12 represents the matrix diagram decided by t).

Then we randomly select a vertex tagged with "new" and for all $\alpha \in \Sigma$, assign the empty set to \mathcal{M}_{α} . For all the transitions $t \in T$ labeled by α , we obtain the intersection of \mathcal{M}_t and \check{q}_e to indicate that under the firing of transition t at some markings, the markings contained in $\mathcal{M}'_t = \mathcal{M}_t \cap \check{q}_e$ are generated. If \mathcal{M}'_t is not empty, we compute a set of markings after the converse firing of transition t, i.e., $\mathcal{M}^r_t = \mathcal{N}^R(\mathcal{M}'_t, \{t\})$ and extend $\hat{\mathcal{M}}_{\alpha}$ with $\hat{\mathcal{M}}^r_t \cup \hat{\mathcal{M}}_{\alpha}$ (the notation $\bar{\mathcal{N}}^R_t$ in line 20 represents the matrix diagram decided by transition t under the reversed transition relation).

In lines 23–29, we iteratively compute the set of markings that can reach a marking in \mathcal{M}_{α} after firing unobservable transitions. In particular, in an *until* loop and for all unobservable transitions $t \in T_u$, we compute the possible markings that can generate a marking in $\mathcal{M}_{\varepsilon}$ after

²The symbol "" over a notation denoting an MDD is a set of markings represented by the MDD. Here, \check{q}_o is a set of markings represented by the MDD q_o .

³With a slight abuse of notation, write $|\cdot|$, where "·" denotes a sequence, to represent the length, i.e., the number of elements in a default sequence.

Algorithm 2: Construction of an estimator of an LPN

```
Input: An LPN G = (N, M_0, \Sigma, l) with N = (P, T, Pre, Post) and a mapping \kappa_{DL}
                     associated with a delay upper bound X \in \mathbb{N}.
      Output: Estimator \mathcal{J} = (Q_e, \Sigma, \delta_e, q_{e0}) of G.
 1 Initialize G' = (P, T', Pre', Post') with T' \leftarrow T, Pre' \leftarrow Pre, Post' \leftarrow Post;
 2 Add unobservable transitions for the potentially lost transitions using the codes in
        lines 2–6 of Algorithm 1;
 \mathbf{3} \ \hat{\mathcal{M}}_r \leftarrow \{M_0\};
 4 repeat
            \hat{\mathcal{M}}_{temp} \leftarrow \hat{\mathcal{M}}_r;
            R \leftarrow \text{Relational-product}(\hat{\mathcal{M}}_{temp}, \bar{\mathcal{N}});
           \hat{\mathcal{M}}_r \leftarrow \text{Union}(\hat{\mathcal{M}}_{temp}, R);
 8 until \hat{\mathcal{M}}_{temp} = \hat{\mathcal{M}}_r;
 9 q_{e0} \leftarrow \hat{\mathcal{M}}_r; Q_e \leftarrow \{q_{e0}\};
10 Assign the vertex q_{e0} with a "new" tag;
11 for all t \in T do
        \hat{\mathcal{M}}_t \leftarrow \text{Relational-product}(q_{e0}, \bar{\mathcal{N}}_t);
     while vertices with a tag "new" exist do
            Select a vertex q_e tagged with "new";
14
            for all \alpha \in \Sigma do
15
                   \mathcal{M}_{\alpha} \leftarrow \emptyset;
16
                   for all t \in T with l(t) = \alpha do
17
                          \hat{\mathcal{M}}'_t \leftarrow \operatorname{Intersection}(\hat{\mathcal{M}}_t, q_e);
18
                         if \mathcal{M}'_t \neq \emptyset then
19
                               \hat{\mathcal{M}}_t^r \leftarrow \text{Relational-product}(\hat{\mathcal{M}}_t', \bar{\mathcal{N}}_t^R);
20
                             \hat{\mathcal{M}}_{\alpha} \leftarrow \operatorname{Union}(\hat{\mathcal{M}}_{\alpha}, \hat{\mathcal{M}}_{t}^{r}); 
21
                   \hat{\mathcal{M}}_{\varepsilon} \leftarrow \hat{\mathcal{M}}_{\alpha};
22
                   repeat
23
                          \hat{\mathcal{M}}_{temp} \leftarrow \hat{\mathcal{M}}_{\varepsilon};
24
                          for all t \in T with l(t) = \varepsilon do
25
                                R_1 \leftarrow \operatorname{Intersection}(\hat{\mathcal{M}}_{temp}, \hat{\mathcal{M}}_t);
26
                                R_2 \leftarrow \text{Relational-product}(R_1, \mathcal{N}_t^R);
27
                                \hat{\mathcal{M}}_{\varepsilon} \leftarrow \text{Union}(\hat{\mathcal{M}}_{\varepsilon}, R_2);
28
                   until \hat{\mathcal{M}}_{\varepsilon} = \hat{\mathcal{M}}_{temn};
29
                   q_e' \leftarrow \hat{\mathcal{M}}_{\varepsilon};
30
                   if q'_e \notin Q_e and \mathcal{M}_{\varepsilon} \neq \emptyset then
31
                         Q_e \leftarrow Q_e \cup \{q'_e\};
32
                          \delta_e(q_e, \alpha) = q'_e is defined;
33
                         Assign "new" tag to q'_e;
34
35
            Tag q_e "old";
```

firing unobservable transitions. The *until* loop reaches to a fixed point when $\hat{\mathcal{M}}_{\varepsilon} = \hat{\mathcal{M}}_{temp}$, and we assign $\hat{\mathcal{M}}_{\varepsilon}$ to q'_e . If $\check{q}'_e \neq \emptyset$ and q'_e is not contained in Q_e , q'_e is assigned to Q_e and

 $\delta_e(q_e, \alpha) = q'_e$ is defined.

The most burdensome part of Algorithm 2 is the computation of the reversed unobservable reach of a set of markings in lines 23–29, which has the complexity of $\mathcal{O}(N_r \times |T_u| \times (\sum_{i=1}^m |Q_i'|_{max} \times |Q_i''|_{max}))$, where N_r represents the number of loops until the arrival of a fixed point, and $|T_u|$ is the number of unobservable transitions. The complexity for constructing \mathcal{J} is $\mathcal{O}(|Q_e| \times |\Sigma| \times N_{max} \times |T_u| \times (\sum_{i=1}^m |Q_i'|_{max} \times |Q_i''|_{max}))$.

Algorithm 3: As for the calculation of Algorithm 3, we initially assign the empty set to V_{io} to initialize \mathcal{IO} (note that the two-way observer $\mathcal{T} = (Q_{tw}, D_{tw}, \delta_{tw}, q_{tw0})$ can be obtained directly by Definition 7). For all the vertices (q_o^L, q_e) contained in Q_{tw} such that $\check{q}_o^L \cap \check{q}_e \neq \emptyset$ and $\check{q}_o^L \cap \check{q}_e \subseteq S$, i.e., the intersection of two MDDs q_o^L and q_e is an MDD that represents a non-empty set contained in the secret S, and for all paths $\tau_i = (\varepsilon, \alpha_1)(\varepsilon, \alpha_2) \cdots (\varepsilon, \alpha_m) \in D_{tw}^*$ starting at (q_o^L, q_{e1}) and ending at (q_o^L, q_e) such that $\delta_{tw}((q_o^L, q_{e1}), (\varepsilon, \alpha_1)) = (q_o^L, q_{e2}), \delta_{tw}((q_o^L, q_{e2}), (\varepsilon, \alpha_2)) = (q_o^L, q_{e3}), \ldots, \delta_{tw}((q_o^L, q_{em}), (\varepsilon, \alpha_m)) = (q_o^L, q_{e(m+1)})$ with $(q_o^L, q_{e(m+1)}) = (q_o^L, q_e)$, we have two cases:

- 1) If $|\tau_i| = X$, we reversely traverse τ_i from m to 1 by computing the set of markings reached from the markings in $\check{q}_o^L \cap \check{q}_e$ by firing the transitions labeled by α_j interleaved with all possible unobservable transitions. Then the tuple $h = (\tau_i, (q_o^L, q_{e1}), 1, \check{\mathcal{Z}})$ is assigned to H, where h[3] = 1 indicates that the length of τ_i equals X;
- 2) If $|\tau_i| < X$ and $q_{e1} = q_{e0}$, i.e., the path τ_i starts at the vertex (q_o^L, q_{e0}) , we reversely traverse τ_i and update \mathcal{Y} and \mathcal{Z} by $\mathcal{Y} \cap q_{ej}$ and $\mathcal{Z} \cup \mathcal{Y}$, respectively. Then, we compute the observer $\mathcal{G}_{\mathcal{Y}} = (Q'_o, \Sigma, \delta'_o, \mathcal{Y})$ by Algorithm 1. For all paths $\tau_o = \beta_1 \cdots \beta_n$ in $\mathcal{G}_{\mathcal{Y}}$ such that $\delta'_o(\mathcal{Y}, \tau_o) = q'_o$ and $n \leq X |\tau_i|$, we update \mathcal{Z} with $\mathcal{Z} \cup q'_o$. Then $h = (\tau_i, (q_o^L, q_{e0}), 0, \check{\mathcal{Z}})$ is assigned to H, where h[3] = 0 indicates that the length of τ_i is less than X.

At the end of Algorithm 3, after the calculation of H, we assign $((q_o^L, q_e), H)$ to the set V_{io} . For the complexity of Algorithm 3, the maximum number of paths τ_i is $|Q_{tw}| \times |\Sigma|^X$ by assuming that all vertices $q_{tw} = (q_o^L, q_e) \in Q_{tw}$ satisfy $\check{q}_o^L \cap \check{q}_e \neq \emptyset$ and $\check{q}_o^L \cap \check{q}_e \subseteq S$. If $|\tau_i| = X$, the complexity for computing h with $h[1] = \tau_i$ is $\mathcal{O}(X \times N_{max} \times (\sum_{i=1}^m |Q_i'|_{max} \times |Q_i''|_{max}))$. If $|\tau_i| < X$, the computational complexity for h is $\mathcal{O}_1(\mathcal{MDD} \times |\tau_i|) + \mathcal{O}_2(\mathcal{MDD} \times |Q_o'| \times |\Sigma|^X) + \mathcal{O}_3(|\Sigma|^n \times \mathcal{MDD})$, where $\mathcal{MDD} = N_{max} \times (\sum_{i=1}^m |Q_i'|_{max} \times |Q_i''|_{max})$ represents the operations associated with MDDs and matrix diagrams.

3 Supplementary Contents for Case Study

This section presents some additional contents for the case study, i.e., Section VII of the paper. Particularly, when considering the LPN $G=(N,M_0,\Sigma,l)$ with N=(P,T,Pre,Post) in Fig. 9, and its observer $\mathcal{G}_L=(Q_o^L,\Sigma,\delta_o^L,q_{o0}^L)$ and estimator $\mathcal{J}=(Q_e,\Sigma,\delta_e,q_{e0})$ shown in Figs. 10 and 11, respectively (Figs. 9, 10, and 11 are shown in the paper), the symbolic two-way observer of G obtained by Definition 7 is illustrated in Fig. 1 of the supplementary file. Note that due to the limited space, we write (i,j) in Fig. 1 to represent the vertex (q_{oi}^L,q_{ej}) , where $q_{oi}^L \in Q_o^L$ and $q_{ej} \in Q_e$ $(i=0,1,\ldots,6$ and $j=0,1,\ldots,9$). Table 1 details the reachable markings of the Petri net portrayed in Fig. 9.

Algorithm 3: Construction of an I-observer of an LPN

```
Input: A two-way observer \mathcal{T} = (Q_{tw}, D_{tw}, \delta_{tw}, q_{tw0}) of G, a mapping \kappa_{DL} associated
                    with a delay upper bound X \in \mathbb{N}, and a secret S.
     Output: I-observer \mathcal{IO} = (\mathcal{T}, V_{io}).
 1 Initialize \mathcal{IO} = (\mathcal{T}, V_{io}) with V_{io} \leftarrow \emptyset;
 2 for all (q_o^L, q_e) \in Q_{tw} s.t. \check{q}_o^L \cap \check{q}_e \neq \emptyset and \check{q}_o^L \cap \check{q}_e \subseteq S do
 3
 4
            for all paths \tau_i = (\varepsilon, \alpha_1)(\varepsilon, \alpha_2) \cdots (\varepsilon, \alpha_m) \in D_{tw}^* s.t.
             \delta_{tw}((q_o^L, q_{e1}), (\varepsilon, \alpha_1)) = (q_o^L, q_{e2}), \ \delta_{tw}((q_o^L, q_{e2}), (\varepsilon, \alpha_2)) = (q_o^L, q_{e3}), \dots, \\ \delta_{tw}((q_o^L, q_{em}), (\varepsilon, \alpha_m)) = (q_o^L, q_{e(m+1)}) \ ((q_o^L, q_{e(m+1)}) = (q_o^L, q_e)) \ \mathbf{do}
                  \mathcal{Y} \leftarrow q_o^L \cap q_e; \ \mathcal{Z} \leftarrow q_o^L \cap q_e;
  \mathbf{5}
                  if |\tau_i| = X then
  6
                        for j = m to 1 do
  7
                               Update \mathcal{Y} with its unobservable reach using the codes in lines 8–12 of
  8
                                 Algorithm 1;
                               Update \mathcal{Y} with its \alpha_j-reach and unobservable reach using the codes in
  9
                                lines 17–23 of Algorithm 1;
                               \mathcal{Y} \leftarrow \mathcal{Y} \cap q_{ej};
10
                             \mathcal{Z} \leftarrow \mathcal{Z} \cup \mathcal{Y};
11
                       H \leftarrow H \cup (\tau_i, (q_o^L, q_{e1}), 1, \check{\mathcal{Z}});
12
                  else if |\tau_i| < X and q_{e1} = q_{e0} then
13
                        for j = m to 1 do
14
                               Update \mathcal{Y} with its unobservable reach using the codes in lines 8–12 of
15
                                 Algorithm 1;
                               Update \mathcal{Y} with its \alpha_i-reach and unobservable reach using the codes in
16
                                lines 17–23 of Algorithm 1;
                               \mathcal{Y} \leftarrow \mathcal{Y} \cap q_{ej};
17
                             \mathcal{Z} \leftarrow \mathcal{Z} \cup \mathcal{Y};
18
                         Compute the observer \mathcal{G}_{\mathcal{Y}} = (Q'_o, \Sigma, \delta'_o, \mathcal{Y}) by Algorithm 1 by replacing
19
                          \{M_0\} with \mathcal{Y} in its line 7;
                        for all \tau_o = \beta_1 \cdots \beta_n \in \Sigma^* s.t. \delta'_o(\mathcal{Y}, \tau_o) = q'_o and n \leq X - |\tau_i| do
20
                         \mathcal{Z} \leftarrow \mathcal{Z} \cup q'_o;
21
                       \overset{-}{H} \leftarrow H \cup (\tau_i, (q_o^L, q_{e0}), 0, \check{\mathcal{Z}});
22
           V_{io} \leftarrow V_{io} \cup \{((q_o^L, q_e), H)\};
23
```


Figure 1: Symbolic two-way observer \mathcal{T} of G shown in Fig. 9 of the paper.

Table 1: Reachable markings of the Petri net illustrated in Fig. 9 with the initial marking $M_0=3p_1$

$M_0 = 3p_1$					
Markings	Token locations	Markings	Token locations	Markings	Token locations
M_0	$3p_1$	M_{42}	$p_6 + p_8 + p_{10}$	M_{83}	$p_1 + p_5 + p_6$
M_1	$p_2 + p_6 + p_9$	M_{43}	$p_1 + p_4 + p_9$	M_{84}	$p_6 + p_8 + p_{12}$
M_2	$p_3 + p_6 + p_9$	M_{44}	$p_4 + p_8 + p_{10}$	M_{85}	$p_1 + p_4 + p_{11}$
M_3	$p_2 + p_7 + p_9$	M_{45}	$p_4 + p_7 + p_{11}$	M_{86}	$p_4 + p_8 + p_{12}$
M_4	$p_2 + p_6 + p_{10}$	M_{46}	$p_4 + p_6 + p_{12}$	M_{87}	$p_1 + p_4 + p_7$
M_5	$p_4 + p_6 + p_9$	M_{47}	$p_1 + p_3 + p_{10}$	M_{88}	$p_1 + p_3 + p_{12}$
M_6	$p_3 + p_7 + p_9$	M_{48}	$p_3 + p_8 + p_{11}$	M_{89}	$p_1 + p_3 + p_8$
M_7	$p_3 + p_6 + p_{10}$	M_{49}	$p_3 + p_7 + p_{12}$	M_{90}	$2p_1 + p_2$
M_8	$p_2 + p_8 + p_9$	M_{50}	$p_1 + p_3 + p_6$	M_{91}	$2p_1 + p_{10}$
M_9	$p_2 + p_7 + p_{10}$	M_{51}	$p_1 + p_2 + p_{11}$	M_{92}	$p_1 + p_8 + p_{11}$
M_{10}	$p_2 + p_6 + p_{11}$	M_{52}	$p_2 + p_8 + p_{12}$	M_{93}	$p_1 + p_7 + p_{12}$
M_{11}	$p_5 + p_6 + p_9$	M_{53}	$p_1 + p_2 + p_7$	M_{94}	$2p_1 + p_6$
M_{12}	$p_4 + p_7 + p_9$	M_{54}	$p_1 + p_8 + p_9$	M_{95}	$p_1 + p_5 + p_{11}$
M_{13}	$p_4 + p_6 + p_{10}$	M_{55}	$p_1 + p_7 + p_{10}$	M_{96}	$p_5 + p_8 + p_{12}$
M_{14}	$p_3 + p_8 + p_9$	M_{56}	$p_1 + p_6 + p_{11}$	M_{97}	$2p_8 + p_{11}$
M_{15}	$p_3 + p_7 + p_{10}$	M_{57}	$p_1 + p_5 + p_9$	M_{98}	$p_{10} + 2p_{12}$
M_{16}	$p_3 + p_6 + p_{11}$	M_{58}	$p_5 + p_8 + p_{10}$	M_{99}	$p_1 + p_9 + p_{12}$
M_{17}	$p_1 + p_2 + p_9$	M_{59}	$2p_8 + p_9$	M_{100}	$p_1 + p_5 + p_7$
M_{18}	$p_2 + p_8 + p_{10}$	M_{60}	$p_5 + p_7 + p_{11}$	M_{101}	$p_7 + p_8 + p_{12}$
M_{19}	$p_2 + p_7 + p_{11}$	M_{61}	$p_7 + p_8 + p_{10}$	M_{102}	$p_1 + p_6 + p_8$
M_{20}	$p_2 + p_6 + p_{12}$	M_{62}	$p_5 + p_6 + p_{12}$	M_{103}	$p_1 + p_4 + p_{12}$
M_{21}	$p_1 + p_6 + p_9$	M_{63}	$p_6 + p_8 + p_{11}$	M_{104}	$p_1 + p_4 + p_8$
M_{22}	$p_1 + p_7 + p_9$	M_{64}	$p_1 + p_4 + p_{10}$	M_{105}	$2p_1 + p_3$
M_{23}	$p_5 + p_6 + p_{10}$	M_{65}	$p_4 + p_8 + p_{11}$	M_{106}	$2p_1 + p_{11}$
M_{24}	$p_6 + p_8 + p_9$	M_{66}	$p_4 + p_7 + p_{12}$	M_{107}	$p_1 + p_8 + p_{12}$
M_{25}	$p_4 + p_8 + p_9$	M_{67}	$p_1 + p_4 + p_6$	M_{108}	$2p_1 + p_7$
M_{26}	$p_4 + p_7 + p_{10}$	M_{68}	$p_1 + p_3 + p_{11}$	M_{109}	$p_1 + p_5 + p_{12}$
M_{27}	$p_4 + p_6 + p_{11}$	M_{69}	$p_3 + p_8 + p_{12}$	M_{110}	$p_1 + p_5 + p_8$
M_{28}	$p_1 + p_3 + p_9$	M_{70}	$p_1 + p_3 + p_7$	M_{111}	$2p_8 + p_{12}$
M_{29}	$p_3 + p_8 + p_{10}$	M_{71}	$p_1 + p_2 + p_{12}$	M_{112}	$p_{11} + 2p_{12}$
M_{30}	$p_3 + p_7 + p_{11}$	M_{72}	$p_1 + p_2 + p_8$	M_{113}	$p_1 + p_{10} + p_{12}$
M_{31}	$p_3 + p_6 + p_{12}$	M_{73}	$2p_1 + p_9$	M_{114}	$p_1 + p_7 + p_8$
M_{32}	$p_1 + p_2 + p_{10}$	M_{74}	$p_1 + p_8 + p_{10}$	M_{115}	$2p_1 + p_4$
M_{33}	$p_2 + p_8 + p_{11}$	M_{75}	$p_1 + p_7 + p_{11}$	M_{116}	$2p_1 + p_{12}$
M_{34}	$p_2 + p_7 + p_{12}$	M_{76}	$p_1 + p_6 + p_{12}$	M_{117}	$2p_1 + p_8$
M_{35}	$p_1 + p_2 + p_6$	M_{77}	$p_1 + p_5 + p_{10}$	M_{118}	$2p_1 + p_5$
M_{36}	$p_1 + p_7 + p_9$	M_{78}	$p_5 + p_8 + p_{11}$	M_{119}	$p_1 + 2p_8$
M_{37}	$p_1 + p_6 + p_{10}$	M_{79}	$2p_8 + p_{10}$	M_{120}	$3p_{12}$
M_{38}	$p_5 + p_8 + p_9$	M_{80}	$p_9 + 2p_{12}$	M_{121}	$p_1 + p_{11} + p_{12}$
M_{39}	$p_5 + p_7 + p_{10}$	M_{81}	$p_5 + p_7 + p_{12}$	M_{122}	$p_1 + 2p_{12}$
M_{40}	$p_7 + p_8 + p_9$	M_{82}	$p_7 + p_8 + p_{11}$	M_{123}	$3p_{13}$
M_{41}	$p_5 + p_6 + p_{11}$				