CS 5135/6035 Learning Probabilistic Models

Exercise Questions for Lecture 17: Multiparameter Models

Gowtham Atluri 3/26/2020

Questions

1. A study investigating the utility of a drug *Elixir* in curing patients who contracted Covid-19 enrolled $n_1 + n_2$ patients who tested positive for Covid-19. As part of the study, n_1 patients in the treatment group were given the drug *Elixir*, while the n_2 patients in the control group were given a placebo treatment. It was observed that x_1 is the number of survived patients in the treatment group; while x_2 is the number of survived patients in the treatment group.

Assume the Binomial model: $x_1 \sim Binomial(n_1, \theta_1)$ and $x_2 \sim Binomial(n_2, \theta_2)$. This model has two parameters θ_1, θ_2 .

The following questions will lead you through the steps involved in Bayesian parameter estimation when multiple parameters are involved.

- a. Assuming a uniform prior $p(\theta_1, \theta_2) \propto 1$, write the expression for the posterior distribution $p(\theta_1, \theta_2 | x_1, x_2)$. [4 points]
- b. Assuming θ_2 is a nuisance parameter, derive the expression for the posterior of the variable $p(\theta_1/x_1, x_2)$ in the traditional way. [4 points]
- c. Assuming θ_1 is a nuisance parameter, derive the expression for the posterior of the variable $p(\theta_2/x_1, x_2)$ in the traditional way. [4 points]
- d. Show that the variables θ_1 , θ_2 are independent in the posterior. [4 points]
- 2. The temperatures, in fahrenheit, in Cincinnati during the first week of March 2020 are observed as $\{62, 58, 58, 62, 59, 48, 49\}$. Assuming that the data is generated from a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$, your goal is to estimate the parameter μ of the Gaussian distribution using a Bayesian approach. The following questions will lead you through the process of Bayesian parameter estimation in the presence of nuisance parameters.
 - a. Write the expression for the likelihood term.

1 points

- b. Individual priors on each parameter are given as $p(\mu) \propto 1$ and $p(\sigma^2) = 1/\sigma^2$. Assume that the variables μ, σ^2 are independent. Write the joint prior. [1 points]
- c. Write the expression of the joint posterior.

[2 points]

- d. Determine the posterior distribution for σ^2 assuming μ is a nuisance parameter.
- [2 points]
- e. Write the steps that you need to take to arrive at a point-estimate for the parameter μ (assuming σ^2 is a nuisance parameter) by starting with the joint posterior in part (c). Be as clear and elaborate as possible for each step. [3 points]

Bonus question

- 1. Consider the problem of performing Bayesian parameter estimation in the case of the logistic regression problem with only one independent variable.
 - a. Write the joint posterior distribution. Assume a uniform prior on the parameters.

b.	How will you determine point-estimates for the parameters?							