Heterogeneous computing with performance modelling

GPU programming basics

Mirko Myllykoski mirkom@cs.umu.se

Department of Computing Science and HPC2N Umeå University

4-5. November 2020

Why should I use GPUs?

Why should I use GPUs?

Why should I use GPUs?

- When compared to CPUs, GPUs provides much higher
 - instruction throughput and
 - memory bandwidth.
- In particular, this computing power is delivered in a relatively small price and power envelope.

Why should I use GPUs? (flop rate, DP)

Quad-core Intel Skylake CPU:

$$\sim$$
 200 GFlops

▶ 14-core Intel Xeon Gold 6132 CPU:

$$\sim$$
 1200 GFlops

Nvidia Tesla V100 GPU:

 \sim **7000** GFlops

Why should I use GPUs? (memory bandwidth)

Quad-core Intel Skylake CPU:

$$\sim$$
 35 GB/s

▶ 14-core Intel Xeon Gold 6132 CPU:

$$\sim$$
 100 GB/s

Nvidia Tesla V100 GPU:

 $\sim 900~\text{GB/s}$

Why should I use GPUs? (power usage)

Quad-core Intel Skylake CPU:

▶ 14-core Intel Xeon Gold 6132 CPU:

$$\sim$$
 140 W

Nvidia Tesla V100 GPU:

 \sim 250 W

Why should I use GPUs? (price)

Quad-core Intel Skylake CPU:

▶ 14-core Intel Xeon Gold 6132 CPU:

$$\sim$$
 \$2000

Nvidia Tesla V100 GPU:

 \sim \$10 000

Why should I use GPUs? (per Watt)

Quad-core Intel Skylake CPU:

 \sim 2 GFlops per Watt, \sim 0.4 GB/s per Watt

▶ 14-core Intel Xeon Gold 6132 CPU:

 \sim 9 GFlops per Watt, \sim 0.7 GB/s per Watt

Nvidia Tesla V100 GPU:

 \sim **28** GFlops per Watt, \sim **3.6** GB/s per Watt

Why should I use GPUs? (per dollar)

Quad-core Intel Skylake CPU:

$$\sim$$
 0.5 GFlops per \$, \sim 0.09 GB/s per \$

▶ 14-core Intel Xeon Gold 6132 CPU:

$$\sim$$
 0.6 GFlops per \$, \sim 0.05 GB/s per \$

Nvidia Tesla V100 GPU:

 \sim **0.7** GFlops per \$, \sim **0.09** GB/s per \$

Why should I use GPUs? (reduced precision)

Quad-core Intel Skylake CPU:

$$\sim$$
 400 GFlops (single precision)

▶ 14-core Intel Xeon Gold 6132 CPU:

$$\sim$$
 2400 GFlops (single precision)

Nvidia Tesla V100 GPU:

 \sim 14 000 GFlops (single precision) \sim **112 000** GFlops (half precision, tensor cores)

What is the catch?

What is the catch?

What is the catch?

- GPUs are highly parallel. Peak performance requires hundreds or thousands of threads.
- The algorithms and codes must be highly parallel.

What is the catch?

- GPU programming is difficult.
 - As mentioned, requires a lot of parallelism.
 - ▶ The GPU code is written in a subset of C++.
- ► The CUDA cores are not "true" cores.
 - ▶ The cores share resources such as schedulers and caches.
 - ▶ The tensor cores are even more limited.
 - ▶ This means that all algorithms are not suitable for GPUs.
- Limited amount of memory.
 - Data must be moved between memories (RAM, VRAM, ...).
 - Certain memories are significantly faster than others.
- Some algorithms are just slightly faster on GPUs.
 - Does it make sense to pay the money?
- All GPUs are not equally powerful.
 - Some GPUs have a very low double precision flop rate.
 - Some GPUs do not have tensor cores.

CUDA basics

Lets go through some CUDA basics...

What is CUDA?

- Compute Unified Device Architecture (CUDA) is a parallel computing platform and an API created by Nvidia.
 - Only for Nvidia GPUs
- Can be used
 - directly through CUDA C/C++ and CUDA Fortran,
 - directly through wrappers (Python, Perl, Fortran, Java, Ruby, Lua, etc),
 - indirectly through compiler directives (OpenACC), and
 - indirectly through other computational interfaces (OpenCL, DirectCompute, OpenGL, etc).
- During this training course, we will use CUDA C/C++.

What is CUDA?

- CUDA comes with it's own compiler, nvcc.
 - ► GPU-specific code is compiled to **PTX** (Parallel Thread Execution).
 - ► The PTX "assembly" code is translated to binary code by the graphics driver.
 - ▶ The rest is offloaded to the host compiler (e.g., g++).
- CUDA also comes with a large set of libraries:
 - ► CUDA Runtime library (CUDART), basic functionality
 - CUDA Basic Linear Algebra Subroutines(cuBLAS)
 - CUDA Fast Fourier Transform library (cuFFT)
 - CUDA Sparse Matrix library(cuSPARSE)
 - CUDA Deep Neural Network library (cuDNN)
- In most cases, you want to use these libraries instead of implementing your own.

Hello world

A "Hello world" program (hello.cu) is a good place to start:

```
printf("Host says, Hello world!\n");
say_hello <<<1,1>>>();
cudaDeviceSynchronize();
```


Hello world (compile and run)

- Load the correct toolchain:
 - \$ ml purge
 - \$ ml fosscuda/2019b buildenv
- Compile the source code with nvcc:
 - \$ nvcc -o hello hello.cu
- Queue a job:

```
srun --account=SNIC2020-9-161 \
--reservation=snic2020-9-161-day1 \
--ntasks=1 --gres=gpu:v100:1,gpuexcl \
--time=00:02:00 ./hello
Host says, Hello world!
GPU says, Hello world!
```


Hello world (what is happening)

We have three objects:

Host CPU cores + RAM memory

Device CUDA cores + VRAM

PCI-E Fast interconnect between the host and the device

Hello world (kernels)

- The GPU code is written inside special functions called kernels.
- A kernel is declared with __global__ keyword:

```
global_ void say_hello()
{
    printf("GPU says, Hello world!\n");
}
```

- The return type is always void.
- All threads enter the kernel from the beginning of the body of the function.
 - Single Instruction, Multiple Thread (SIMT)
 - Threads are not spawned fork-join style (except when a kernel launches an other kernel).

Hello world (kernel launch)

▶ The host **launches** the say_hello kernel as follows:

```
|| say_hello <<<1,1>>>();
```

- This places the kernel call into a queue known as stream.
 - Note that the kernel is not guaranteed to be executed!
- ▶ We will return to the <<< . , . >>> brackets later...
 - For now, you need to know that the kernel is executed once.
- The cudaDeviceSynchronize call causes the host to wait until stream is empty, i.e., the kernel has finished:

```
|| cudaDeviceSynchronize();
```


Hello world (summary)

```
#include <stdlib.h>
#include <stdio.h>
           void say_hello()
    printf("GPU says, Hello world!\n");
int main()
    // the host (CPU) executes these lines
    printf("Host says, Hello world!\n");
    // launch the say_hello kernel
    say_hello <<<1,1>>>();
    // wait until the kernel has finished
    cudaDeviceSynchronize();
    return EXIT SUCCESS:
```


AX example (scalar-vector multiplication)

Lets try something more complicated:

$$\alpha \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^n$$

$$\mathbf{x} \leftarrow \alpha \mathbf{x}$$

▶ A host function would look something like this:

```
void ax(int n, double alpha, double *x)
{
   for (int i = 0; i < n; i++)
        x[i] = alpha * x[i];
}</pre>
```


AX example (kernel)

A matching kernel is still relatively simple:

```
int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
if (thread_id < n)
    x[thread_id] = alpha * x[thread_id];</pre>
```

- What are blockIdx.x, blockDim.x and threadIdx.x?
- ▶ Where is the for loop?
- Why is there a if block?

AX example (CUDA cores and SMPs)

AX example (CUDA cores and SMPs)

- Each Streaming MultiProcessor (SMP) consist from several CUDA cores.
- Each CUDA core can execute several threads simultaneously.
 - The scheduler select the next instruction among a pool of active threads.
- Thus, the total number of threads can be in the millions.
- How do we decide which thread does what?
- ▶ How do we manage all these threads?
 - Different problems sizes might require different number of threads.
 - Different GPUs might have different number of SMPs and CUDA cores.

► The threads are divided into thread blocks:

Each thread block gets an index number in a grid:

- ▶ The overall idea is to **partition** the work into self-contained tasks.
- Each task is assign to one thread block.
 - The thread block indices are used to identify the task.

- ▶ The CUDA runtime is responsible from scheduling the thread blocks.
- The execution order of the thread blocks is relaxed.
 - ► The code can therefore adapt to different GPUs:

Each thread gets a **local** index number:

AX example (global indexing)

► A **unique** global index number can be calculated for each thread:

```
[ __global__ void ax_kernel(int n, double alpha, double *x)
{
    // query the global thread index
    int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
    if (thread_id < n)
        x[thread_id] = alpha * x[thread_id];
}</pre>
```


AX example (global indexing)

▶ The if block is used to filter out excess threads:

```
_global__ void ax_kernel(int n, double alpha, double *x)
    // query the global thread index
int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
  // each thread updates one row
if (thread_id < n)
    x[thread_id] = alpha * x[thread_id];</pre>
```


AX example (remarks)

- The thread blocks should be reasonably large.
 - Usually 32 threads is too small for practical use.
 - At the moment, the upper limit is 1024 thread.
 - My personal recommendation is to start from 256 threads, and tune the number if necessary.
 - Multiples of 32 are preferred (warps).
- The number of thread block should be reasonably large.
 - Each thread block runs on a single SMP.
 - For optimal performance, each SMP should get a thread block.
 - Nvidia Tesla V100 GPU has 80 SMPs.
- ▶ Given a thread block of the size (Dx, Dy, Dz), the hardware indexes a thread of index (x, y, z) as (x + y*Dx + z*Dx*Dy).

AX example (memory spaces)

► The host manages the memory:

```
double *x = (double *) malloc(n*sizeof(double));
for (int i = 0; i < n; i++)
x[i] = i;
cudaMalloc(&d_x, n*sizeof(double));
```


AX example (memory spaces)

Host memory is accessible by the host (and sometimes by all threads in all thread blocks).

Global memory is accessible by all threads in all thread blocks. Shared memory is accessible by threads that **belong to a same** thread block

AX example (memory transfer to device)

▶ The host initializes a data transfer from the host to the device:

```
cudaMemcpy(d_x, x, n*sizeof(double), cudaMemcpyHostToDevice);
```

- The cudaMemcpy call is blocking.
 - ► The host waits until the transfer is ready.

AX example (kernel launch)

The host launches the ax_kernel kernel:

```
dim3 threads = 256;
dim3 blocks = (n+threads.x-1)/threads.x; // gridDim.x

ax_kernel <<< blocks, threads >>>(n, alpha, d_x);
```

▶ If the kernel used multi-dimensional threads blocks, then

```
dim3 threads(Dx, Dy, Dz);
dim3 blocks(Gx, Gy, Gz)
ax_kernel<<<br/>blocks, threads<br/>
x_kernel
```

would create a $Gx \times Gy \times Gz$ grid of thread blocks, with Dx \times Dy \times Dz threads in each block.

AX example (kernel launch)

Alternatively, we could have written

```
<u>kernel</u><<<(n+255)/256, 256>>>(n, alpha, d_x);
```

▶ (n+blockDim.x-1)/blockDim.x is simply a convenient way of making sure that

```
n < gridDim.x * blockDim.x.
```

I personally prefer the following approach:

```
// a function that returns the ceil of a/b. That is,
// DIVCEIL(5, 2) = ceil(5/2) = ceil(2.5) = 3.
static int DIVCEIL(int a, int b)
{
    return (a+b-1)/b;
}
```


AX example (kernel launch)

▶ The kernel can now access the data from the global memory:

AX example (memory transfers from device)

▶ The host initializes a data transfer from the global memory to the host memory:

```
cudaMemcpy(x, d_x, n*sizeof(double), cudaMemcpyDeviceToHost)
```


AX example (compile and run)

- Load the correct toolchain:
 - \$ ml purge
 - \$ ml fosscuda/2019b buildenv
- Compile the source code with nvcc:
 - \$ nvcc -o ax ax.cu
- Queue a job:

```
$ srun --account=SNIC2020-9-161 \
--reservation=snic2020-9-161-day1 \
--ntasks=1 --gres=gpu:v100:1,gpuexcl \
--time=00:02:00 ./ax 10000
Residual = 0.000000e+00
```


More about memory (page-locked memory)

- Host and device share the same memory address space.
 - However, a device cannot always access the host memory and vice versa.
- ► A device can access page-locked host memory:

```
|| __host__ cudaError_t cudaMallocHost ( void** ptr, size_t size )
```

- Page-locked memory can be accessed with much higher bandwidth than pageable memory obtained with functions such as malloc().
- ▶ However, page-locked memory is still much slower that the device-side memory.

More about memory (managed memory)

▶ Modern GPUs can manage the memory automatically:

- ► The array x is allocated when it is accessed.
- Access from either side causes a page fault and triggers a data transfer.
- ▶ Make things simpler but has some limitations...

Error handling (queries)

- Most CUDA functions return an error code of the type cudaError t.
- A successful function call returns cudaSuccess.
- The error code can be turned into a string:

```
| __host__ __device__ const char* cudaGetErrorName(cudaError_t error)
```

The error code can be turned into a longer description:

```
|| __host__ __device__ const char* cudaGetErrorString(cudaError_t error)
```

▶ The previous error code can be checked and resetted with:

```
| __host__ __device__ cudaError_t cudaGetLastError()
```

The previous error code can be checked without resetting:

```
| __host__ __device__ cudaError_t cudaPeekAtLastError()
```


Error handling (some notes)

- Kernel launches and many other CUDA functions (*Async) are non-blocking / asynchronous.
 - The kernel or function call is simply placed into a queue (stream).

device host

Error handling (some notes)

It is possible that the returned error code is related to one of the earlier kernels or function calls!

device host

```
cudaMemcpy(d_x, x, n*sizeof(double), cudaMemcpyHostToDevice);
  ==cudaSuccess
ax kernel << blocks, threads>>> (n, alpha, d x);
cudaMemcpy(x, d_x, n*sizeof(double), cudaMemcpyDeviceToHost)
```


Error handling (some notes)

This can happen even when the outcome of the kernel launch is checked:

device host

Only errors that occurred during the kernel launch are reported.

