1 Úvod aneb Projektivní přímka a rovina

Poznámka (O čem to bude)

Nevlastní body, homogenní souřadnice. Projektivní geometrie = "geometrie polohy", tj. neměří se vzdálenosti ani úhly. Máme pojmy (v rovině) bod, přímka, incidence $(X \in p)$.

Inspirováno perspektivou v malířství (realismus, 17. století).

Klíčové pojmy: nevlastní body ("body v nekonečnu"), princip duality.

Poznámka (Možné přístupy ke geometrii)

Axiomatický (jen axiomy, bez obrázků) (dnes), syntetický (důraz kladen na obrázky, bez souřadnic) (tento semestr), analytický (souřadnice, bez obrázků) (příští semestr).

1.1 Axiomatika projektivní geometrie (v rovině)

Poznámka (Primitivní pojmy)

Bod, přímka, incidence.

Definice 1.1 (Axiom A1)

Ke každým dvěma (různým) bodům $\exists !$ přímka s oběma body incidentní. (Přímce říkáme spojnice daných bodů.)

Definice 1.2 (Axiom A2)

Ke každým dvěma (různým) přímkám $\exists !$ bod s oběma přímkami incidentní. (Bodu říkáme průsečíkdaných přímek.)

Poznámka

 ${\rm A2}$ vzniklo z ${\rm A1}$ záměnnou pojmů bod a přímka. V EG neplatí, ale v PG chceme mít Princip duality.

Definice 1.3 (Princip duality)

Veškerá tvrzení zůstávají v platnosti, pokud v nich zaměníme pojmy bod a přímka, incidence (prochází bodem a leží na přímce, průsečík a spojnice), a pojmy z nich odvozené.

Definice 1.4 (Nevlastní bod, vlastní bod)

Máme-li dvě rovnoběžky v EG, pak za jejich průsečík v PG označíme společný směr (bez orientace), neboli nevlastní bod (značíme X_{∞} , atd.).

Původní body v rovině budeme nazývat vlastní.

Definice 1.5 (Nevlastní přímka, vlastní přímka)

Nevlastní přímka $(n_{\infty})=$ množina všech nevlastních bodů.

Poznámka

S nevlastními body a přímkou splňuje rovina A1 i A2.

Definice 1.6 (Axiom A3)

Existují alespoň 4 body, z nichž každé 3 jsou nekolineární.

Poznámka ("A4")

Duální tvrzení k A3 už je dokazatelné z A1 až A3.

Definice 1.7 (Projektivní rovina)

Rovina s nevlastními body a nevlastní přímkou splňuje i A3. Takové rovině $(\mathbb{R}^2 \cup n_{\infty})$ budeme říkat projektivní rovina a značit ji $\mathbb{R}P^2$ nebo P^2 .

Poznámka (Idea: existující různé geometrie)

Euklidovská geometrie (EG) (body, přímky, incidence, vzdálenosti, úhly), Afinní geometrie (AG) (body, přímky, incidence, rozlišení rovnoběžek a různoběžek, případně vlastních a nevlastních bodů), Projektivní geometrie (PG) (body, přímky, incidence).

(Hyperbolická geometrie = Lobačevského geometrie (body, přímky, incidence, jiné vzdálenosti, jiné úhly))

1.2 Afinní geometrie

Poznámka

Body A, B, \ldots a vektory u, v, \ldots

→ přímky, vzájemné polohy přímek (ale ne kolmost).

Poznámka (Lze zavést střed úsečky:)

$$\vec{AS} = \frac{1}{2}\vec{AB} \Leftrightarrow \vec{SA} = -\vec{SB}.$$

Definice 1.8 (Dělící poměr)

Dělící poměr 3 bodů A,B,C na (jedné) přímce je číslo $\lambda=(ABC)$ splňující $C-A=\lambda(C-B).$

Poznámka

Odsud lze odvodit Euklidovskou definici dělícího poměru: $|\lambda| = \frac{\|C - A\|}{\|C - B\|}$

A, B, C různé, pak λ nenabývá hodnot 0 (A = C), 1 (A = B) a ∞ (B = C).

C je středem úsečky AB, právě když (ABC) = -1.

Dělící poměr jako graf funkce (A, B pevné, C proměnné) je hyperbola.

Pro každé dva body $A \neq B$ a $\forall \lambda \in \mathbb{R} \setminus \{0,1\}$, existuje právě jedno C, že $(ABC) = \lambda$.

Konstrukce: dány úsečky délek 1 a λ , a body A, B.

Pokud $\lambda=(ABC)$, tak $(BAC)=\frac{1}{\lambda},~(ACB)=1-\lambda,~(BCA)=\frac{\lambda-1}{\lambda},~(CAB)=\frac{1}{1-\lambda},~(CBA)=\frac{\lambda}{\lambda-1}.$ Tyto permutace se některé rovnají pro λ z trojice $(0,1,\infty)$ (každé tam bude dvakrát), z trojice (-1,2,1/2) (také každé dvakrát) a z dvojice $(1/2+i\sqrt{3}/2,1/2-i\sqrt{3}/2)$ (každé třikrát).

Poznámka (Role zobrazení v jednotlivých geometriích)

V EG: posunutí, otáčení a osová souměrnost (tj. shodnosti) zachovávají délky a úhly (tj. (pro zajímavost) jsou to invarianty euklidovské grupy).

V AG: isomorfismy (lineární zobrazení na) zachovávají dělící poměr.

1.3 Projektivní přímka

Definice 1.9 (Označení)

Je-li $v=(x_0,x_1)\in\mathbb{R}^2\setminus\{(0,0)\}$, označíme $\langle v\rangle=$ lineární obal v= přímka generovaná v (procházející počátkem). Tedy $\langle (x_0,x_1)\rangle=\langle v\rangle=\langle av\rangle=\langle ax_0,ax_1\rangle$ pro $\forall a\neq 0,a\in\mathbb{R}$.

Definice 1.10 (Projektivní přímka $\mathbb{R}P^1$, geometrický bod, aritmetický zástupce, homogenní souřadnice)

Projektivní přímka je množina $\mathbb{R}P^1 = \{\langle v \rangle | v \in \mathbb{R}^2 \setminus \{(0,0)\}\} = \text{množina všech přímek v } \mathbb{R}^2 \text{ (procházejících počátkem). Prvek } \langle v \rangle \in \mathbb{R}P^2 \text{ nazýváme geometrický bod, vektor } v \in \mathbb{R}^2 \setminus \{(0,0)\} \text{ nazýváme jeho aritmetickým zástupcem.}$

Poznámka

Tedy každý geometrický bod má nekonečně mnoho aritmetických zástupců (a ti se všichni liší jen nenulovým násobkem).

Je-li $v = (x_0, x_1)$, píšeme $\langle v \rangle = [x_0 : x_1]$. Tomuto se říká homogenní souřadnice geometrického bodu.

Poznámka

Jsou určeny až na nenulový násobek.

Definice 1.11 (Kanonické vnoření afinní přímky \mathbb{R} do projektivní přímky $\mathbb{R}P^1$)

Kanonické vnoření afinní přímky \mathbb{R} do projektivní přímky $\mathbb{R}P^1$ je zobrazení $\mathbb{R} \to \mathbb{R}P^1$, bod $x \mapsto [1:x]$ (body vlastní) a vektor $1 \mapsto [0:1]$ (bod nevlastní).

První souřadnice je tzv. rozlišovací souřadnice (1 znamená vlastní, 0 nevlastní).

TODO!!! (Konstrukce 4. harmonického bodu nebo 4. harmonické přímky).

Definice 1.12 (Projektivní škála)

Máme body 0, 1 a ∞ na jedné přímce. Následně provedeme několik kroků: 1. najdeme bod -1 tak, aby $(0 \infty 1 - 1) = -1$, najdeme bod -2 tak, aby $(-1 \infty 0 - 2) = -1$

TODO!!!

Poznámka

Této konstrukce se dá použít k nakreslení pražců na sbíhající se koleje (průsečík = ∞ , první pražec 0, druhý 1).

2 Projektivita a perspektivita lineárních soustav

Definice 2.1 (Soustava)

Bodová = označené body na přímce. Píšeme p(A, B, C, ...).

Přímková = označené přímky ve svazku. Píšeme P(a, b, c, ...).

Dvě soustavy jsou sourodé, pokud jsou stejného typu a nesourodé, pokud jsou různých typů. Pokud jsou sourodé, pak mohou být soumístné, tedy na stejné přímce / ve stejném svazku, nebo nesoumístné (různé přímky / různé svazky).

Definice 2.2 (Perspektiva)

Perspektiva nesoumístných sourodých soustav je zobrazení: pro bodové soustavy jde o středové promítání z bodu $O \notin p, p'$ (píšeme p(A, B < C) :: p'(A', B', C')), pro přímkové soustavy duálně (přímka o protne soustavu procházející P v bodech, které spojíme s bodem P' a dostaneme druhou soustavu).

BodOse nazývá bod perspektivity (střed promítání). Přímka o je přímkou perspektivity. \sqsubset

Poznámka

Bod O nemusí být vlastni.

Poznámka (Značení ::)

Perspektivita je určená dvěma páry bodů/přímek (potřebujeme najít bodOnebo přímku o), proto "dvakrát dvě tečky".

Důsledek

V každé perspektivitě existuje samodružný element: průsečík $p \cap p'$ respektive spojnice PP'.

Pozor

Složení perspektivit obecně není perspektivita! (Nemusí být zachován samodružný element.)

Definice 2.3 (Projektivita)

Projektivita je složení konečného počtu perspektivit.

Poznámka

Dá se dokázat, že každá projektivita je složením $\leqslant 2$ perspektivit.

Důsledek

Projektivita obecně nemá samodružný element, ale pokud už ho obsahuje, již je perspektivitou.

Pozor

Perspektivita nezachovává dělící poměr 3 bodů.

Tvrzení 2.1

Perspektivita zachovává dvojpoměry 4 bodů.

Důsledek

Projektivita zachovává dvojpoměry 4 bodů.

Tvrzení 2.2 (Lze dokázat i opak)

Pokud zobrazení zachovává kolinearitu a dvojpoměr, je to nutně projektivita.

Poznámka (Druhý způsob (analytický) zavedení projektivity a perspektivity)

Nejprve se zavede projektivní souřadný systém (PSS) na projektivní přímce. Je to trojice bodů $0, 1, \infty$. Souřadnice bodu X vůči tomuto PSS je homogenní dvojice [1:x], kde $x = (X10\infty)$. Pak projektivní zobrazení je $\mathbb{R}P^1 \to \mathbb{R}P^1$, $[x_0:x_1] \mapsto [x'_0:x'_1]$, kde $(x'_0, x'_1) = A \cdot (x_0, x_1)^T$, kde A je regulární matice 2×2 určená až na násobek $\neq 0$.

Důsledek

Projektivita zachovává dvojpoměr.

Pak perspektivita = projektivita mající samodružný bod.

Poznámka (Značení projektivity)

Projektivitu značíme p(A, B, C) ::: p'(A', B', C').

Poznámka

Projektivita je určena třemi páry bodů.

Definice 2.4 (Perspektivita nesourodých soustav)

Dvě nesourodé soustavy jsou v perspektivitě, je-li jedna soustava průmětem/průsekem té druhé.

Věta 2.3

 $Dv\check{e}$ sourodé nesoumístné soustavy jsou v perspektivitě \Leftrightarrow obě jsou v perspektivitě s touž nesourodou soustavou.

П

 $D\mathring{u}kaz$

Obrázkem. (Dává nám to přesně ty body a přímky, které potřebujeme.)

Poznámka (Doplňování soustav)

Doplňování perspektivit (p(A,B,C)::p'(A',B',C') dáno, k bodu X na p doplňte X') je jednoduché.

Doplňování projektivit (p(A, B, C) ::: p'(A', B', C') dáno, m bodu X na p doplňte X') je těžší, budeme potřebovat následující větu.

Věta 2.4 (O direkční přímce)

Nechť p(A, B, C) ::: p'(A', B', C') je projektivita nesoumístných bodových soustav. Pak průsečíky spojnic AB' a A'B, AC' a CA', BC' a CB' leží na jedné přímce d.

 $D\mathring{u}kaz$

Zvolme si význačné body A, A' a uvažujme přímky: a = AA', b = AB' a c = AC', stejně tak a' = A'A, b' = A'B, c' = A'C. Hned je jasné, že a = a'.

Pak máme A(a,b,c) ::: p'(A',B',C') ::: p(A,B,C) :: A'(a',b',c'). Tedy A(a,b,c) ::: A'(a',b',c'). Ale ta má samodružnou přímku a=a', tedy je to perspektivita 2 přímkových soustav, tedy podle předchozí věty jsou obě v perspektivitě s touž nesourodou soustavou (body na přímce). Označme ji d. A víme, že se s ní protínají odpovídající si páry přímek, tj. páry B=AB', b'=A'B, c=AC', c'=A'C.

Potřebujeme ukázat, že přímka d nezávisí na volbě páru AA'. A tím také to, že také přímky BC', B'C se protínají na d. Označme M=N' průsečík $p \cap p'$. Kde je M' a N? Platí $M'=p' \cap d$ a $N=p \cap d$. $N \in p$ zřejmé (leží v soustavě p(A,B,C)). $N \in d$? máme přímky n=AN=p, n'=A'N, víme, že průsečík $n \cap n'=N \in d$. Stejně tak $M'=p' \cap d$.

Důsledek: d = M'N, ale M, N' nezáleží na volbě páru AA', tedy máme hotovo.

Definice 2.5 (Direkční přímka projektivity)

Přímku z předchozí věty nazveme direkční přímka projektivity.

Poznámka

Projektivita je perspektivita $\Leftrightarrow p \cap p' \in d$.

Příklad

Doplňování projektivity (nesoumístných soustav) je teď jednoduché. Doplňování projektivity soumístných soustav uděláme přes další soustavu.

Příklad

Spojení bodu V s nepřístupným průsečíkem přímek p, p'.

Rešení

Na p a p' doplníme body A, A', B, B' tak, aby $V \in AB'$, BA'. AA' a BB' se protínají v bodě, ze kterého vedeme přímku, na která protne p a p' v bodech C a C'. Nyní najdeme direkční přímku.

Věta 2.5 (Papova o šestiúhelníku)

Stejné jako věta o direkční přímce. (Jinak formulovaná.)