Statistical Learning and Prediction

Marjolein Fokkema

Methodology and Statistics Unit Leiden University

Room 3B20 m.fokkema@fsw.leidenuniv.nl

This Course

- New methodology for data analysis.
- Focus on *prediction*, instead of *explanation*.
- Latter is/was often the focus in the field of Statistics (accurately modeling distributions).
- Former is/was often the focus of machine learning / computer science (creating fast algorithms that predict well).
- Statistics and Machine Learning: Statistical Learning.

Course ingredients

- Book:
- Online lectures
- Preparations before each class:
 - Watch lectures
 - Read book chapter(s)
 - Make exercises (not graded)
 - Class-specific preparations: See Brightspace > "General information" > "Preparations lectures"

Two professors

Dr. Tom Wilderjans Dr. Marjolein Fokkema

Topics (two sessions per topic)

- 1. **Introduction** (M.F.)
- 2. Sampling; Logistic regression (T.W.)
- 3. Classification; Subset selection and regularization (T.W.)
- 4. Unsupervised learning (T.W.)
- 5. Splines; Support vector machines (M.F.)
- 6. Support vector machines; Decision trees (M.F.)
- 7. Decision tree ensembles (M.F.)

Timetable

Sess. 1	Sess. 2	Topic	Instructor
14-11	17-11	Introduction	M.F.
21-11	24-11	Resampling	T.W.
28-11	01-12	Lasso	T.W.
05-12	08-12	Unsupervised	T.W.
12-12	15-12	Non-linearity	M.F.
19-12	22-12	Trees	M.F.
05-01	09-01	Ensembles	M.F.
	16/01	Q&A	both
	26/01	Presentations	both

Evaluation: Assignments

Final grade based on (each weighted 1/3):

Assignment	Distributed	Due
1. Written	08-12	22-12 (17h)
2. Written	22-12	16-01 (17h)
3. Presentation	22-12	26-01 (13h)

Assignment 1: Individual, written, structured assignment. Covers topics 1-4.

Assignment 2: Individual, written, structured assignment. Covers (mostly) topics 5-7.

Assignment 3: Group assignment (group of 2 or 3 students). Less structured, analysis of data set(s) of students' own choice.

Week 1

For today, I assume you watched the following online lectures:

- Introduction
 - Supervised and Unsupervised Learning (12:12)
- Statistical Learning
 - Statistical Learning and Regression (11:41)
 - Curse of Dimensionality and Parametric Models (11:40)
 - Assessing Model Accuracy and Bias-Variance Trade-off (10:04)
 - Classification Problems and K-Nearest Neighbors (15:37)

This week's / topic's aims

Becoming acquainted with:

- Explanation versus prediction
- Method of *k*-nearest neighbours
- Bias-variance trade-off
- Benefits of shrinkage (bias)
- Curse of dimensionality

Statistical Learning

• Statistical learning refers to a vast set of tools for understanding data.

- − Supervised: $Y \leftarrow f(X_1, ..., X_p)$; predict Y on the basis of X
- Unsupervised: X_1, \dots, X_p ; finding structure (underlying dimensions/groups)

Statistical Learning

Supervised learning models: $\hat{Y} = f(X_1, ..., X_p) = \mathbb{E}(Y|X)$ Can be used for:

- Explanation: understanding how the X's are related to Y; possibly causally.
- <u>Prediction</u>: if we have new observations with known values of *X*'s, what is the expected (predicted) value of *Y* and how accurate are these predictions?

Explanatory Regression

• Suppose we have data and obtain estimates:

$$\hat{y}_i = 2 + 0.5x_{i1} + 1.5x_{i2}$$

- Estimated coefficients indicate magnitude of the effects
- Standard errors indicate variability of estimated effects
- Statistical tests used to see whether explanatory variables really affect the response
- Adequate parameter estimation is crucial: Accurate estimates = unbiased parameter estimates! That is:

$$\mathbb{E}[\hat{\beta} - \beta] = 0$$

Predictive Regression

• Suppose we have data and obtain estimates:

$$\hat{y}_i = 2 + 0.5x_{i1} + 1.5x_{i2}$$

- Suppose we have a new observation $x_i = [2 \ 3]$
- With these values we can predict Y: $\hat{y}_i = 2 + 0.5 \times 2 + 1.5 \times 3 = 7.5$
- Prediction focuses on accuracy of \hat{Y} . Do not care for recovering parameters that generated the data. Crucial to obtain a model that yields as accurate as possible $\hat{Y} = \hat{f}(X)$. That is, minimize:

$$\mathbb{E}\left[(\hat{Y}-Y)^2\right]$$

Population

Consider that we have a population P^* , within which the conditional means of the response variable $(Y \in \mathbb{R})$ are given by some function of the predictors $(X \in \mathbb{R}^p)$, that is:

$$Y = f(X) + \epsilon$$
.

Population

The population regression line gives the conditional means at each point x: $\mathbb{E}(Y = x)$.

If we repeatedly observe all possible values of X, we could construct a perfect $\hat{f}(X)$.

Sample

In practice, we only have sample data comprising n observations: $D = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$, and use it to <u>train</u> a model \hat{f} :

$$y_i = \hat{f}(x_i) + \epsilon_i$$

We cannot estimate a true conditional mean at all points (X = x).

What can we do to obtain a (not perfect but good) $\hat{f}(X)$?

Bias-Variance decomposition

If we train a model on a sample D to obtain an $\hat{f}(x)$, we want to minimize the *expected prediction error*: the error we would make on a new / future / yet unseen observation (\mathbf{x}_0, y_0) :

$$EPE(x_0) = \mathbb{E}\left[\left(y_0 - \hat{f}(x_0)\right)^2\right] =$$

$$\sigma^2 + \left[\operatorname{Bias}(\hat{f}(x_0)) \right]^2 + \operatorname{Var}\left(\hat{f}(x_0)\right)$$

Bias-variance decomposition: Closer look

• We draw training sample D of size n from a probability distribution P^* .

- Let f be the *true* conditional mean function $\mathbb{E}(Y|X)$ (unknown, depends only on P^*)
- We apply a fitting method to D to obtain $\hat{f}(X)$.
- Let $\bar{f}(X) = \mathbb{E}_D[\hat{f}(X)]$

• Aim is to minimize *expected prediction error* over observations in and excluded in *D*:

$$\begin{split} \mathrm{EPE}(\hat{f}) &= \mathbb{E}_X[Var(Y|X)] + \\ &\mathbb{E}_X[(f(X) - \bar{f}(X))^2] + \\ &\mathbb{E}_D\mathbb{E}_{X,Y}[(\hat{f}(X) - \bar{f}(X))^2] \end{split}$$

• First term is *irreducible*, second and third terms are *reducible* (squared bias and variance).

Bias-variance decomposition

Bias-variance decomposition

Predictive Regression: Bias-variance trade-off

$$EPE(x_0) = \sigma^2 + \left[\text{Bias}(\hat{f}(x_0)) \right]^2 + \text{Var}\left(\hat{f}(x_0)\right)$$

- Can we directly compute these quantities when we fit a model to a sample of data?
- Which prediction method would have lowest squared bias on any data problem?
- Which statistical method which would have lowest *variance* on *any* data problem?
- How is the variance quantified in OLS regression?

Predictive Regression: Bias-variance trade-off

• Traditional statistical textbooks focus on obtaining unbiased estimates (e.g., OLS, ML):

$$\mathbb{E}[\hat{\beta}] = \beta$$

- (Modern) statistical learning accepts biased parameter estimates as long as the variance decreases more than the squared bias increases.
- "From a Bayesian perspective, the principle of unbiasedness is reasonable in the limit of large samples, but otherwise it is potentially misleading" (Gelman et al., 1995)

Exercise 1: Shrinkage

- Generate $n_{train} = 50$ observations X from a uniform distribution (range -3 to 3): $x \leftarrow \text{runif}(50, -3, 3)$
- Generate response $Y = .1X + \epsilon$, with $\epsilon \sim N(0,1)$: eps <- rnorm (50)
- Generate $n_{test} = 1,000$ test observations from the same distribution.
- Compute $\hat{\beta}_{OLS}$ using the training observations. Use function 1m; specify y^0+x as the model formula to exclude the intercept.
 - a) What do we already know about the values of irreducible error, bias and variance of the OLS estimated linear model \hat{f} ?

Now generate predictions for the OLS and shrunken versions of the OLS coefficient:

• Generate a vector of shrinkage values $s \in \{0, 0.1, \dots, 0.9, 1.0\}$.

- Generate predictions for the test set $\hat{y}_i = x_i \cdot s \cdot \hat{\beta}$ (do not use function predict, but extract the $\hat{\beta}_{OLS}$ using function coef, then manually perform computation to generate predicted values for the test observations, for each value of s).
- For each value of *s*, compute the mean of the squared prediction errors on the test observations:

$$MSE_{\text{test}} = \frac{1}{n_{test}} \sum (y_i - \hat{y}_i)^2$$

- b) Plot the test MSE values (*y*-) against shrinkage values (*x*-axis).
- c) Describe the effect of shrinkage, and when it is most effective. What is the effect of shrinkage on the irreducible error, bias and variance?
- Repeat the above procedure (except plotting) 100 times (e.g., use a for loop)
 - d) Create a boxplot with the test MSE values on the *y* axis and shrinkage values on the *x*-axis.
 - e) Describe the effect of shrinkage, and when it is most effective.

- f) What do you think would happen to the shape of the curve if the training sample size were doubled?
- g) What do you think would happen to the shape of the curve if the effect of X were twice as strong (i.e., $Y = .2X + \epsilon$)?

Non-linear Regression

Often we fit a linear regression, assuming that the conditional means in the population lie on a straight line.

This assumption is most likely false!

Population: Non-linear Regression

The regression line in the <u>population</u> (i.e., the *true* association between X and Y) combines the conditional means at each point x

Sample data: Linear Regression

We obtain sample data:

We can make parametric assumptions (for example: linear) and obtain an $\hat{f}(X)$.

- What kind of bias does this introduce? How does it affect the variance? The irreducible error?
- What if we fit a *k*th order polynomial? What happens to the bias if *k* increases? To the variance? To the irreducible error?

Sample data: Non-linear Regression

Using sample data, we obtain $\hat{f}(X)$ using kNN:

- What happens to the size of the neighbourhood if we increase *k*?
- What happens to the bias?
- What happens to the variance?
- What happens to the irreducible error?

Multiple Predictor Variables

- With multiple predictors the observations are further spread out through the space.
- Nearest neighbours might not be near at every point.
- Then flexible models become very wild.
- This is known as the *curse* of *dimensionality*.
- More structure in *f* is needed.
- What increases if *p* increases? Bias, variance or irreducible error?
- How should we then keep EPE (reasonably) low?

Exercise 2: Curse of Dimensionality

- Generate a dataset with p=10,000 predictor variables and sample size n=100; $X\sim N(\mathbf{0},\mathbf{I})$. I is an $p\times p$ identity matrix; thus, all predictors follow a standard normal distribution and are uncorrelated, so you could generate the data as follows: matrix (rnorm (10000*100), nrow = 100).
- Compute Euclidian distances between all points in the dataset, once for each of $p \in \{1, 2, 10, 100, 1000, 10000\}$ dimensions. So, for p = 1 you compute distances only in the first dimension (i.e., 1st column of the data matrix), for p = 2 you compute distances in the first two dimensions (i.e., first 2 columns of the data matrix), etc. item Hint: use functions dist and hist.
- Create a histogram of the Euclidian distances between

observations for each $p \in \{1, 2, 10, 100, 1000, 10000\}$. It is helpful to keep the limits of the x-axis the same in each histogram (specify argument xlim), including 0 and the maximum distance.

• Based on the histograms, do you think the nearest neighbours are near in 1-dimensional space? In 2-dimensional space? In 10-, 100-, 1000-dimensional space?

Evaluating predictive accuracy

For continuous outcomes, we can use the following error measures:

$$MSE_{\text{test}} = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} (y_i - \hat{y}_i)^2$$

$$MAE_{\text{test}} = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} |y_i - \hat{y}_i|$$

Classification

Response variable Y may be a categorical variable with categories C = 1, ..., k, ..., K.

Again, we want to predict response *Y* based on predictors *X*:

- Can directly construct a classifier $\hat{f}(X) = C(X)$ that assigns a predicted category from C based on X.
- Can construct a function $\hat{f}(X)$ that provides conditional probabilities: $\hat{p}_k(X) = Pr(Y = k|X = x)$.

Then Bayes classifier assigns C(X) = k if $\hat{p}_k(x) = \max\{\hat{p}_1(x), \dots, \hat{p}_K(x)\}$

Evaluating predictive accuracy: Binary outcomes

• Misclassification rate:

$$\frac{1}{N_{test}} \sum_{i=1}^{N_{test}} I(y_i \neq \hat{y}_i)$$

• Squared error loss on predicted probabilities (a.k.a. Brier score):

$$\frac{1}{N_{test}} \sum_{i=1}^{N_{test}} (y_i - \hat{y}_i)^2$$

• Cross-entropy:

$$-\frac{1}{N_{test}} \sum_{i=1}^{N_{test}} [y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i)]$$

Evaluating predictive accuracy: Binary outcomes

- Brier score and cross-entropy quantify accuracy of predicted probabilities.
- MCR quantifies accuracy of predicted *class labels* only.
- Statistical modeling (modeling probabilities) and real-world decision making (deciding yes/no) should be separated.
- E.g., if my doctor tells me after running one or more tests that I have a disease, I would want to know how *certain* this diagnosis is, before I decide on further actions.

Exercise 3

The following training data were obtained:

Obs.	X_1	X_2	X_3	Y
1	0	3	0	Red
2	2	0	0	Red
3	0	1	3	Red
4	0	1	2	Green
5	-1	0	1	Green
6	1	1	1	Red

We also have two test observations: $x_{test1} = [0\ 0\ 0]$ and $x_{test2} = [2\ 2\ 0]$.

a) For both test observations, compute the Euclidian distances to each of the training observations.

- b) For kNN with k = 1, compute the predicted class and predicted probability of class red, for each test observation.
 - c) Do the same for kNN with k = 3.

The true labels of the two observations were y_{test1} = Green and y_{test2} = Red.

- d) Compute the misclassification rate, Brier score and cross-entropy for the test observations for k = 1 and k = 3.
- e) As a benchmark, compute the misclassification rate, Brier score and cross-entropy for assigning the test observations to the majority class in the training data (red). Does kNN improve over assigning to the majority class?

Exercise 4

Load the Boston Housing data. We are going to predict median house value in neighbourhoods of Boston:

```
library("MASS"); data(Boston)
```

First, visually inspect distributions and associations in the dataset using function plot.

Select a sample of 400 observations as the training set; use the remaining observations as a test set. E.g.:

```
train <- sample(1:nrow(Boston), size = 400)
```

Fit and evaluate models for predicting medv:

Exercise 4 (continued)

- a) As a benchmark, first compute the variance of the response variable among the test observations.
- b) Fit a linear regression model to the training observations using function lm.
- c) Fit kNN using function knn.reg from library **FNN**. Use a for loop to fit models for k = 1 through 10.
- d) For each fitted model, generate predictions for the test observations and compute test MSE.
- e) Compare the performance of kNN and OLS. What is the optimal value of *k*?

Homework

Make the following exercises from chapter 2:

- Exercise 2.1
- Exercise 2.3
- Exercise 2.5