Algebra I (Doble Grado Matemáticas-Informática)

Relación 2

Curso 2018-2019

Anillos, Subanillos, Ideales

Ejercicio 1. Demostrar que en un anillo la conmutatividad de la suma es consecuencia de los restantes axiomas.

Ejercicio 2. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones:

$$A+B=(A\cap \overline{B})\cup (\overline{A}\cap B),$$

$$A \times B = A \cap B$$
,

demostrar que $(R, +, \times)$ es un anillo con elemento 1 igual a X.

Ejercicio 3. Sea A un grupo abeliano y consideremos el producto cartesiano $R = \mathbb{Z} \times A$. Si en R definimos las siguientes operaciones:

$$(n, a) + (m, b) = (n + m, a + b),$$

$$(n,a)(m,b) = (nm, ma + nb),$$

demostrar que (R, +, .) es un anillo conmutativo con elemento 1 igual a (1,0).

Ejercicio 4. En el conjunto \mathbb{Z} de los enteros se definen las siguientes operaciones:

$$a \oplus b = a + b - 1$$
 $\forall a \otimes b = a + b - ab$.

Demuestra que $(\mathbb{Z}, \oplus, \otimes)$ es un dominio de integridad.

Ejercicio 5. En el conjunto $\mathbb{Z} \times \mathbb{Z}$ de las parejas de enteros se definen las siguientes operaciones:

$$(a,b) + (c,d) = (a+c,b+d) \ y \ (a,b)(c,d) = (ac,bd).$$

Demuestra que $(\mathbb{Z} \times \mathbb{Z}, +, .)$ es un anillo conmutativo. Prueba que no es dominio de integridad y calcula sus unidades y sus divisores de cero.

Ejercicio 6. En un anillo R un elemento a es idempotente si $a^2 = a$. Demuestra que en un dominio de integridad los únicos idempotentes son 0 y 1.

Ejercicio 7. Calcular los divisores de cero en el anillo \mathbb{Z}_n .

Ejercicio 8. Demostrar que un cuerpo es un dominio de integridad.

Ejercicio 9. Estudia que tipo de anillos son \mathbb{Z}_7 y \mathbb{Z}_9 . Halla sus unidades y sus divisores de cero. Si n es impar, prueba que $\bar{2} \in \mathcal{U}(\mathbb{Z}_n)$.

Ejercicio 10. Sea X el conjunto de los elementos no nulos del anillo \mathbb{Z}_{10} . En X se define la siguiente relación de equivalencia:

$$x R y \Leftrightarrow x | y \wedge y | x$$
.

Describir el conjunto cociente X/R determinando cuantas clases de equivalencia hay y que elementos hay en cada clase.

Ejercicio 11. El conjunto $R = \{\bar{0}, \bar{2}, \bar{4}, \bar{6}, \bar{8}\} \subseteq \mathbb{Z}_{10}$ es cerrado para la suma y el producto.

- 1. Demostrar que R es un cuerpo.
- 2. Demostrar que R no es un subanillo de \mathbb{Z}_{10} .

Ejercicio 12. ¿Cuales de los siguientes conjuntos son subanillos del cuerpo $\mathbb Q$ de los números racionales? (Siempre que aparece $\frac{n}{m}$ suponemos que m.c.d.(n,m)=1).

$$X_1 = \left\{ \frac{n}{m} \mid m \text{ es impar} \right\}; \ X_2 = \left\{ \frac{n}{m} \mid m \text{ es par} \right\}; X_3 = \left\{ \frac{n}{m} \mid 4 \nmid m \right\}; \ X_4 = \left\{ \frac{n}{m} \mid m.c.d.(m,6) = 1 \right\}.$$

¿Es alguno de los subconjuntos anteriores un ideal de Q?

Ejercicio 13. Sea $f: R \to R$ un homomorfismo de anillos. Demostrar que $S = \{a \in R / f(a) = a\}$ es un subanillo de R.

Ejercicio 14. Sea R un anillo y sea $a \in R$ un elemento invertible. Demostrar que la aplicación $f_a : R \to R$ dada por $f_a(x) = axa^{-1}$ es un automorfismo de R.

Ejercicio 15. Dado un anillo R, demostrar que existe un único homomorfismo de anillos de \mathbb{Z} en R.

Ejercicio 16. Demostrar que si R es un anillo de característica n entonces existe un único homomorfismo de anillos de $\mathbb{Z}/n\mathbb{Z}$ en R y que además este homomorfismo es inyectivo.

Ejercicio 17. Dados dos números naturales n y m, dar condiciones para que exista un homomorfismo de anillos de $\mathbb{Z}/n\mathbb{Z}$ en $\mathbb{Z}/m\mathbb{Z}$.

Ejercicio 18. Determinar los ideales del anillo cociente $\mathbb{Z}/n\mathbb{Z}$. Describir el retículo de ideales de este anillo cuando n = pq siendo $p \neq q$ primos positivos distintos.

Ejercicio 19. Si R y S son dos anillos conmutativos demostrar que todos los ideales del anillo producto $R \times S$ son de la forma $\alpha \times \beta$ donde α es un ideal de R y β es un ideal de S.

Ejercicio 20. Razonar si las siguientes afirmaciones son verdaderas o falsas.

- i) El anillo $\frac{\mathbb{Z}}{(6\mathbb{Z}+4\mathbb{Z})\cap 5\mathbb{Z}}\times \mathbb{Q}$ tiene 4 unidades e infinitos divisores de cero.
- ii) Existe un único homomorfismo de anillos de $\mathbb Z$ en $\frac{\mathbb Z}{2\mathbb Z} imes \frac{\mathbb Z}{7\mathbb Z}$ que es sobreyectivo.
- iii) \mathbb{Z}_{1457} es un cuerpo.
- iv) De \mathbb{Z}_7 en \mathbb{Z}_{14} hay exactamente 7 homomorfismos de anillos.