Presented to:

AADL Standards Committee

AADL and FACE

Distribution Statement A: Approved for public release; distribution unlimited. AMRDEC Aviation Applied Technology Directorate Contract Number W911W6-17-D-0003 Delivery Order 3

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Presented by:

Dr. Robert Edman, Adventium Labs

for the

U.S. Army Aviation and Missile Research, Development, and Engineering Center

30 Jan 2018

- Adventium is producing a FACE™ annex for the AADL AS 5506 Standard
- FACE and AADL are complementary standards.
 - FACE technical standard provides data-driven interoperability and conformance to a data model.
 - AADL provides portable semantically precise architectural modeling for integrated, software reliant real time systems.
 - However, translation between FACE and AADL models requires careful semantics
- Software implemented using the FACE technical standard presents an opportunity to leverage AADL style model based analysis, code generation, and formal methods.

What is FACE

- Overview
- Architecture, and Data Model
- FACE and AADL
 - Comparison
 - Overlap and Mapping
- BALSA
 - Overview
 - AADL translation
 - Gaps and opportunities

- FACE technical standard focuses on the data model of a system and does not describe physical properties of a system
 - Focuses on verifiable interoperability
 - Provides semantic consistency independent of operating environment (e.g., processor type)
- FACE technical standard is independent of timing properties and internal states.
 - Reusable software components are called Units of Portability (UoP)
 - The LifeCycle Management Services (3.13) provide some capability for describing the state of a UoP, but internal state of UoPs is left as a black box

What is the FACE Architecture?

- A software computing environment to enable product lines for military aviation
- The FACE architecture is comprised of a set of "places" where variance occurs
 - Points of variance are called "Segments"
 - The structure created by connecting these segments together is the beginning of the FACE architecture
- Horizontal and vertical interfaces defined as part of FACE architecture
- Integration model in FACE 3.0 allows for code generation Horizontal Interfaces

From James 'Bubba' Davis, Ph.D. CRL Technologies, Inc.

Notional FACE Workflow

FACE Architectural Segments

- FACE Portable Components Segment
 - Portable Applications
 - Portable Common Services
- Transport Services Segment
- Platform Specific Services Segment
 - Platform Device Services
 - Platform Common Services
 - Graphics Services
- I/O Services Segment
- Drivers
- Operating System Segment

FACE AND AADL

Comparison of FACE and AADL

FACE: Data model of a system without physical properties of a system

- Focuses on APIs and data for communication
- Focuses on data modeling for reusable interoperable software components
 - API
 - Data types, direct connections

AADL: Formal methods and model based analysis of cyber-physical systems

- AADL models an architecture that is an integration of components.
- Focuses on binding, interaction, behavior, data flows, and performance.

FACE and AADL together allow you to do model-based analysis of interoperable data driven software in cyber-physical systems

FACE and AADL Overlap

Notional Translation

- Key components of FACE can be translated to AADL with a custom property set, similar to ARINC653 approach
- The UUID need not be FACE specific

Basic ADS-B Lightweight Source Archetype (BALSA) Exemplar

BALSA Overview

- Written in C++
 - BALSA runs on a desktop computer (e.g., Ubuntu)
 - Contains 5 UoPs split between PCSS and PSSS and a complete data model
- BALSA provides a sharable, easy-to-execute example of a working FACE implementation
 - BALSA is simple enough to understand but has enough complexity that an AADL model of BALSA could be used to demonstrate AADL analyses

Name	Description
egi	Embedded Global Positioning System (GPS) / Inertial Navigation System (INS))
aircfg	Aircraft config data, identifier and tail number
Ads B	Identifier (aircfg and egi of a specific aircraft for airtraffic system)
UDP	ADS B data wrapped in a UDP data packet
ATC Manager	Air Traffic Data manager

BALSA Elements within the FACE Layered Model

- Import FACE data types and views as data and
- UoPs are imported as thread groups
- Data connections
- Have added platform specifics
 - Create processor, memory architecture
 - Memory partitions, UoPs (thread groups)

There are architectural decisions made in translating BALSA into AADL.

BALSA Representation in AADL

Transport Services Segment (TSS)

- TSS is key to FACE
- Connections routed through the TSS, but the particular TSS implementation is opaque to component developers
- Connections are generated at runtime, but assumed to be known in advance
- Model as an abstract to make use of extension/refinement

```
FACE::TS::Create Connection (
  TSS ADSB conn name, // connection name
  FACE::SERVER,
                      // messaging pattern
  TSS ADSB conn id,
                      // connection ID
  conn direction,
                      // connection direction
  ADSB_msg_size,
                      // message size
                      // timeout
  0,
                      // return code
  status
FACE::TS::Receive Message (
    TSS EGI conn id,
                           // connection ID
     FACE::INF TIME VALUE, // timeout
     transaction id,
                           // transaction ID
    position time,
                           // message
    EGI msg size,
                           // message size
    status
                           // return code
   );
```


CONCLUSION

- FACE technical standard allows independent but aligned data modeling for multiple vendors to develop related tools and have assurances that the tools will work together
 - Institutions for verifying conformance
 - Exactly one way to generate code for a given entity
 - Portability
- Interoperable guarantees to allow vendors to work together
- Ready and sympathetic user base in FACE members
- Translation can be largely automated

Questions to the AADL community

- What are the imported constructs required to support formal methods
 - What about code generation?
- What are model constructs we should use for parsimonious modeling?
 TSS model?
- UUID => Can we promote to a AADL primitive data type

BACKUP

Where do you go from here

- https://www.youtube.com/watch?v=KmLJcewvHis
- FACE consortium
 - Standard

FACE Consortium Members

Sponsor Level Member Organizations

- Air Force Research Laboratory
- Boeing
- Lockheed Martin

- Rockwell Collins
- US Army PEO Aviation
- US Navy NAVAIR

The FACE
Consortium
was formed in
2010 by The
Open Group

Principal Level Member Organizations

- AeroVironment, Inc.
- BAE Systems
- BELCAN
- Booz Allen Hamilton
- DRS Training & Control Systems
- · Elbit Systems of America
- GE Aviation Systems
- General Dynamics
- Green Hills Software
- Harris Corporation

- Honeywell AerospaceIBM
- · Northrop Grumman
- Raytheon
- Sierra Nevada Corp.

- Sikorsky Aircraft
- Textron Systems
- US Army AMRDEC
- Wind River

Associate Level Member Organizations

- Abaco Systems
- AdaCore
- Arizona State University
- ARTEMIS, Inc.
- Astronautics Corporation of America
- · Avalex Technologies
- Avionics Interface Technologies
- Brockwell Technologies
- Carnegie Mellon Univ. Software Engineering Institute
- CERTON Software, Inc. •
- CMC Electronics
- Cobham Aerospace
 Communications
- Core Avionics & Industrial Inc.
- Creative Electronic Systems North America

- Crossfield Technology LLC
- CS Communication & System, Inc.
- CTSi
 Curtiss-Wright Defense
- Curtiss-Wright Defense Solutions
- Delta Information Systems, Inc.
- DDC-I
- DornerWorks
- Draper Laboratory
- Elma Electronic Inc.
 Enca Software 8
- Enea Software & Services
- ENSCO Avionics
- Esterel Technologies
- Esterline AVISTA
 EuroAvionics USA LLC
- Garmin International, Inc.

- GECO Inc.
- General Atomics Aeronautical Systems, Inc.
- IEE
- Infinite Dimensions
- Inter-Coastal Electronics, Inc.
- Johns Hopkins Univ. -APL
- Joint Tactical Networking Center
- Kaman Precision Products
- KEYW Corp.
- KIHOMAC
- L-3 Communications
- LDRA Technology
- Leidos Inc.
- Lynx Software Technologies

- Mercury Systems
- OAR Corporation
- North American Industries, Inc.
- Performance Software
- Physical Optics Corp.
- Presagis USA, Inc.
- PrismTech Corp.
- Pyrrhus Software
- Rapid Imaging Software
- Real-Time Innovations
- Riverside Research
- Rogerson Kratos
- Rogerson Kratos
 SAIC
- Selex Galileo Inc.
- Skayl LLC.
- SimVentions
- SwRI
- StackFrame, LLC.

- Technology Service Corp.
- TES-SAVI
- Terma North America
- Thales USA, Inc.
- Thomas Production Company
- Trideum
- TTTech North America, Inc.
- University of Dayton Research Institute
- Vector Software, Inc.
- Verocel
- VTS, Inc.
- Zodiac Data Systems

http://www.opengroup.org/face/member-list

Comparison of FACE and AADL

- FACE focuses on the data model of a system and does not describe physical properties of a system
 - FACE focuses on verifiable interoperability
 - FACE provides semantic consistency independent of operating environment (e.g., processor type)
- FACE conformance is independent of timing properties and UoC internal states.
 - The LifeCycle Management Services (3.13) provide some capability for describing the state of a UoC, but internal state of UoCs is left as a black box

FACE Architecture

- Divides the system into segments
- Shared Data Model
- Data Architecture
- New in FACE 3.0 (released 2017-11)
 - Integration Model

From the FACE 3.0 Draft Standard

- Based on BALSA, imagine you are acme GPS vendor and want to integrate your GPS into BALSA
 - You write some UoCs, check them with a VA
 - Provide them to an integrator
 - Lower costs for the integrator
 - And more platforms for you to target
 - And MAGIC

- TSS modeling
 - System
 - Virtual Bus
- External Elements (other systems)
 - Included Them
 - Ignore them
- FACE Segments
 - Flat model (with FACE properties)
 - Segments => Systems

- GME, Enterprise Architect
- Minimum: pointer to standard
 - YouTube videos
 - Specific tools
- In development eclipse based tool, jives nicely with OSATE.
- Links or something else?