La continuité sur un intervalle

Continuité d'une fonction DÉFINITION

Soit fune fonction définie sur un intervalle let a un réel de l. f est dite continue en a lorsque :

$$\lim_{x o a}f\left(x
ight) =f\left(a
ight)$$

De plus, f est dite continue sur / lorsque f est continue en tout point de l.

EXEMPLE

Considérons la fonction définie pour tout réel x par :

$$f\left(x\right) =2x+5$$

On a:

•
$$f(6) = 2 \times 6 + 5 = 17$$

 $ullet \lim_{x
ightarrow 6} f\left(x
ight) = 17$

Donc la fonction f est continue en 6.

Une fonction f est continue sur un intervalle I si et seulement s'il est possible de tracer sa courbe représentative sur $\,I\,$ sans lever le crayon.

Soient a et b deux réels (a < b). On peut relier les points $A\left(a;f\left(a\right)\right)$ et

 $B\left(b;f\left(b\right)\right)$ sans lever le crayon, donc f est continue sur $\left[a;b\right]$.

EXEMPLE

• Les fonctions usuelles (affines, polynomiales, inverse, exponentielle, logarithme, puissance,...) sont

PROPRIÉTÉ

- continues sur tout intervalle inclus dans leur ensemble de définition. • Toute fonction construite comme somme, produit, quotient (dont le dénominateur ne s'annule pas) ou
- composée de fonctions continues sur un intervalle $\,I\,$, est continue sur $\,I\,$.

PROPRIÉTÉ

Toute fonction dérivable sur $\it I$ est continue sur $\it I$. En revanche, la réciproque est fausse.

Le théorème des valeurs intermédiaires THÉORÊME Théorème des valeurs intermédiaires

Soit f une fonction continue sur un intervalle l, et a et b deux réels de cet intervalle. Pour tout réel k

compris entre $f\left(a\right)$ et $f\left(b\right)$, il existe au moins un réel c compris entre a et b tel que $f\left(c\right)=k$. Graphiquement, cela signifie que la courbe représentative de f coupe au moins une fois la droite

d'équation y=k sur l'intervalle [a;b]EXEMPLE

Soit f une fonction continue sur $\left[0;5\right]$ telle que :

• f(0) = 0

• f(5) = 3.5 $3 \in [0;3,\!5]$, donc d'après le théorème des valeurs intermédiaires, l'équation $\,f\left(x
ight) = 3\,$ admet au

moins une solution sur $\left[0;5\right]$. Graphiquement, cela signifie que la courbe représentative de f coupe nécessairement au moins une fois la droite d'équation $\,y=3\,$ sur l'intervalle $\,[0;5]\,$.

fois entre a et b. **COROLLAIRE** Corollaire du théorème des valeurs intermédiaires

Si f est continue et **strictement monotone** sur $\left[a;b\right]$, alors pour tout réel k compris entre $f\left(a\right)$ et $f\left(b
ight)$, il existe un **unique** réel c compris entre a et b tel que : $f\left(c
ight)=k$.

La fonction partie entière

Soit un réel x. La partie entière de x est l'unique entier relatif $E\left(x\right)$ tel que : $E\left(x\right) \leq x < E\left(x\right) +1$

EXEMPLE

DÉFINITION Partie entière

La partie entière de 2,156 est 2. La partie entière de -2,156 est -3.

La fonction partie entière est la fonction f définie pour tout réel x par :

DÉFINITION Fonction partie entière

 $f\left(x\right) =E\left(x\right)$

PROPRIÉTÉ

Soit n un entier relatif et f la fonction partie entière : • f(n) = n

Ce qui prouve que la fonction partie entière est discontinue en tout entier relatif, comme on le visualise

 $ullet \lim_{x
ightarrow n^{-}}f\left(x
ight) =n-1
eq f\left(n
ight)$

Sommaire

La continuité sur un intervalle

Le théorème des valeurs intermédiaires

III La fonction partie entière