proof of Gram-Schmidt orthogonalization procedure*

 $rspuzio^{\dagger}$

2013-03-21 21:34:30

Note that, while we state the following as a theorem for the sake of logical completeness and to establish notation, our definition of Gram-Schmidt orthogonalization is wholly equivalent to that given in the defining entry.

Theorem. (Gram-Schmidt Orthogonalization) Let $\{\mathbf{u_k}\}_{k=1}^n$ be a basis for an inner product space V with inner product \langle,\rangle . Define $\mathbf{v_1} = \frac{\mathbf{u_1}}{||\mathbf{u_1}||}$ and $\{\mathbf{m_k}\}_{k=2}^n$ recursively by

$$\mathbf{m_k} = \mathbf{u_k} - \langle \mathbf{u_k}, \mathbf{v_1} \rangle \mathbf{v_1} - \langle \mathbf{u_k}, \mathbf{v_2} \rangle \mathbf{v_2} - \ldots - \langle \mathbf{u_k}, \mathbf{v_{k-1}} \rangle \mathbf{v_{k-1}}, \tag{1}$$

where $\mathbf{v_k} = \frac{\mathbf{m_k}}{||\mathbf{m_k}||}$ for $2 \le k \le n$. Then $\{\mathbf{v_k}\}_{k=1}^n$ is an orthonormal basis for V.

Proof. We proceed by induction on n. In the case n=1, we suppose $\{\mathbf{u_k}\}_{k=1}^n=\{\mathbf{u_k}\}_{k=1}^1=\mathbf{u_1}$ is a basis for the inner product space V. Letting $\mathbf{v_1}=\frac{\mathbf{u_1}}{\|\mathbf{u_1}\|}$, it is clear that $\mathbf{v_1} \in \operatorname{Span}\left(\mathbf{u_1}\right)$, whence it follows that $\operatorname{Span}\left(\mathbf{v_1}\right)=\operatorname{Span}\left(\mathbf{u_1}\right)=V$. Thus $\mathbf{v_1}$ is an orthonormal basis for V, and the result holds for n=1. Now let $n\geq 1\in \mathbb{N}$, and suppose the result holds for arbitrary n. Let $\{\mathbf{u_k}\}_{k=1}^{n+1}$ be a basis for an inner product space V. By the inductive hypothesis we may use $\{\mathbf{u_k}\}_{k=1}^n$ to construct an orthonormal set of vectors $\{\mathbf{v_k}\}_{k=1}^n$ such that $\operatorname{Span}\left(\{\mathbf{v_k}\}_{k=1}^n\right)=\operatorname{Span}\left(\{\mathbf{u_k}\}_{k=1}^n\right)$. In accordance with the procedure outlined in the statement of the theorem, let $\mathbf{m_{n+1}}$ be defined as

$$\mathbf{u_{n+1}} - \left\langle \mathbf{u_{n+1}}, \mathbf{v_1} \right\rangle \mathbf{v_1} - \left\langle \mathbf{u_{n+1}}, \mathbf{v_2} \right\rangle \mathbf{v_2} - \ldots - \left\langle \mathbf{u_{n+1}}, \mathbf{v_n} \right\rangle \mathbf{v_n} = \mathbf{u_{n+1}} - \sum_{i=1}^n \left\langle \mathbf{u_{n+1}}, \mathbf{v_i} \right\rangle \mathbf{v_i}.$$

First we show that the vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}, \mathbf{m_{n+1}}$ are mutually orthogonal. Consider the inner product of $\mathbf{m_{n+1}}$ with $\mathbf{v_j}$ for $1 \leq j \leq n$. By construction, we have

$$\langle \mathbf{m_{n+1}}, \mathbf{v_j} \rangle = \left\langle \mathbf{u_{n+1}} - \sum_{i=1}^n \left\langle \mathbf{u_{n+1}}, \mathbf{v_i} \right\rangle \mathbf{v_i}, \mathbf{v_j} \right\rangle = \left\langle \mathbf{u_{n+1}}, \mathbf{v_j} \right\rangle - \left\langle \sum_{i=1}^n \left\langle \mathbf{u_{n+1}}, \mathbf{v_i} \right\rangle \mathbf{v_i}, \mathbf{v_j} \right\rangle.$$

^{*} $\langle ProofOfGramSchmidtOrthogonalizationProcedure \rangle$ created: $\langle 2013-03-21 \rangle$ by: $\langle rspuzio \rangle$ version: $\langle 38611 \rangle$ Privacy setting: $\langle 1 \rangle$ $\langle Proof \rangle$ $\langle 65F25 \rangle$

 $^{^{\}dagger}$ This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license.

Now since $\{\mathbf{v_k}\}_{k=1}^n$ is an orthonormal set of vectors, whence $\langle \mathbf{v_i}, \mathbf{v_j} \rangle = \delta_{ij}$, each term in the summation on the right-hand side of the preceding equation will vanish except for the term where i = j. Thus by this and the preceding equation, we have

$$\langle \mathbf{m_{n+1}}, \mathbf{v_j} \rangle = \langle \mathbf{u_{n+1}}, \mathbf{v_j} \rangle - \langle \sum_{i=1}^n \langle \mathbf{u_{n+1}}, \mathbf{v_i} \rangle \mathbf{v_i}, \mathbf{v_j} \rangle = \langle \mathbf{u_{n+1}}, \mathbf{v_j} \rangle - \langle \langle \mathbf{u_{n+1}}, \mathbf{v_j} \rangle \mathbf{v_j}, \mathbf{v_j} \rangle$$
$$= \langle \mathbf{u_{n+1}}, \mathbf{v_j} \rangle - \langle \mathbf{u_{n+1}}, \mathbf{v_j} \rangle \langle \mathbf{v_j}, \mathbf{v_j} \rangle = \langle \mathbf{u_{n+1}}, \mathbf{v_j} \rangle - \langle \mathbf{u_{n+1}}, \mathbf{v_j} \rangle = 0.$$

Thus $\mathbf{m_{n+1}}$ is orthogonal to $\mathbf{v_j}$ for $1 \leq j \leq n$, so we may take $\mathbf{v_{n+1}} = \frac{\mathbf{m_{n+1}}}{||\mathbf{m_{n+1}}||}$ to have $\{\mathbf{v_k}\}_{k=1}^{n+1}$ an orthonormal set of vectors. Finally we show that $\{\mathbf{v_k}\}_{k=1}^{n+1}$ is a basis for V. By construction, each $\mathbf{v_k}$ is a linear combination of the vectors $\{\mathbf{u_k}\}_{k=1}^{n+1}$, so we have n+1 orthogonal, hence linearly independent vectors in the n+1 dimensional space V, from which it follows that $\{\mathbf{v_k}\}_{k=1}^{n+1}$ is a basis for V. Thus the result holds for n+1, and by the principle of induction, for all n. \square