11 de setembro de 2013

F 429: Experimento II

Sumário

1	Intro	odução	2
2		odologia Instrumentos e Componentes	
Li	sta	de Figuras	
	1	Circuito representativo para medida da resistência interna do gerador	2
Li	sta	de Tabelas	

1 Introdução

Este experimento propõe-se a estudar as experimentalmente e analizar as formas de onda dos circuitos integrador e diferenciador. Neste caso, são do tipo RC e compostos por uma fonte, um resistor e um capacitor ligados em série

Analisamos também transientes em circuito ressonante série RLC. Os transientes podem ser estudados no laboratório excitando o circuito com uma onda quadrada de período muito maior que a constante de tempo do circuito.

2 Metodologia

2.1 Instrumentos e Componentes

Os instrumentos e componentes utilizados estão listados abaixo com seus respectivos valores nominais.

- Gerador de Funções Tektronix CFG 253.
- Osciloscópio digital Tektronix TDS1000.
- Resistências nominais de 47Ω e 150Ω .
- Resistência de décadas (10Ω a $10K\Omega$).
- Capacitor de 0.22μ F.
- Indutor de 50mH.

2.1.1 Medidas

(a) **Impedância interna do gerador**: Para determinar a impedância interna do gerador de funções, começamos com a aproximação de que esta é puramente resistiva e independe da frequência, modo de onda ou corrente que fornece. Feita essa hipótese, podemos encontrar a resistência interna R_G do gerador montando o circuito como na figura abaixo. Primeiro medimos a tensão de saída do gerador de funções conectando-o diretamente

Figura 1: Circuito representativo para medida da resistência interna do gerador

ao osciloscópio. Medida a tensão de pico V_0 , colocamos agora um resistor em paralelo ao circuito, e obtemos um valor para V. Com essas medidas podemos encontrar um valor para R_G , já que sabendo que V = RI