Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение Высшего образования

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа 5 по вычислительной математике

Интерполяция функции Вариант №13

Группа: Р3116

Выполнил:

Сиразетдинов А.Н.

Проверил:

Малышева Т.А.

Оглавление

Цель работы	
Порядок выполнения работы	
- Рабочие формулы	
Вычислительная часть	
Таблица	6
Таблица конечных разностей	
Интерполяция Ньютона	<i>(</i>
Интерполяция Гаусса	7
Листинг программы	8
Результат выполнения программы	10
Вывод	11

Цель работы

Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек

Порядок выполнения работы

- 1) Вычислительная часть работы
- 2) Программная часть работы

Рабочие формулы

интерполяционные формулы ньютона для равноотстоящих узлов

Введем обозначение: $t=(x-x_0)/h$. Тогда получим формулу Ньютона, которая называется первой интерполяционной формулой Ньютона для интерполирования вперед:

$$N_n(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_0$$

Полученное выражение может аппроксимировать функцию на всем отрезке изменения аргумента $[x_0,x_n]$. Однако более целесообразно (с точки зрения повышения точности расчетов) использовать эту формулу для $x_0 \leq x \leq x_1$. При этом за x_0 может приниматься любой узел интерполяции x_k . Например, для $x_1 \leq x \leq x_2$, вместо x_0 надо взять значение x_1 . Тогда интерполяционный многочлен Ньютона:

$$N_n(x) = y_i + t\Delta y_i + \frac{t(t-1)}{2!}\Delta^2 y_i + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_i$$
 (*)

Интерполяционную формулу (*) обычно используют для вычислений значений функции в точках левой половины отрезка.

Интерполяционные многочлены Гаусса

Вторая интерполяционная формула Гаусса (x < a)

$$\begin{split} P_n(x) &= y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-2} \\ &\quad + \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^4 y_{-2} + \cdots \\ &\quad + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1} y_{-n} \\ &\quad + \frac{(t+n)(t+n-1)\dots(t-n+1)}{(2n)!}\Delta^{2n} y_{-n} \end{split}$$

Оценка погрешности:

$$R_n(x) \approx \frac{\Delta^{2n+1} y_0}{(n+1)!} t(t-1) \dots (t-n)$$

Вычислительная часть

Таблица

	X	у	№ варианта	\mathbf{X}_1	X_2
Таблица 1.3	1,10	0,2234	3	1,121	1,482
	1,25	1,2438	8	1,852	1,652
	1,40	2,2644	13	1,168	1,463
	1,55	3,2984	18	1,875	1,575
	1,70	4,3222	23	1,189	1,491
	1,85	5,3516	28	1,891	1,671
	2,00	6,3867	33	1,217	1,473

X	у
1,10	0,2234
1,25	1,2438
1,40	2,2644
1,55	3,2984
1,70	4,3222
1,85	5,3516
2,00	6,3867

X 1 = 1,168

X 2 = 1,463

Таблица конечных разностей

N	Х	у	dy	d2y	d3y	d4y	d5y	d6y
0	1,1	0,2234	1,0204	0,0002	0,0132	-0,0368	0,0762	-0,1313
1	1,25	1,2438	1,0206	0,0134	-0,0236	0,0394	-0,0551	
2	1,4	2,2644	1,034	-0,0102	0,0158	-0,0157		
3	1,55	3,2984	1,0238	0,0056	1E-04			
4	1,7	4,3222	1,0294	0,0057				
5	1,85	5,3516	1,0351					
6	2	6,3867						

Интерполяция Ньютона

Вычислить значения функции для аргумента X1 используя первую или вторую интерполяционную формулу Ньютона

Воспользуемся формулой интерполирования **вперед** потому что X1=1,168 лежит в первой половине отрезка

Для X=1,168
$$t = \frac{(x-x_0)}{h} = \frac{(1,168-1,1)}{0,15} = 0,453$$
 $N_6(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!}\Delta^3 y_0 + \frac{t(t-1)(t-2)(t-3)}{4!}\Delta^4 y_0 + \frac{t(t-1)(t-2)(t-3)(t-4)}{5!}\Delta^5 y_0 + \frac{t(t-1)(t-2)(t-3)(t-4)(t-5)}{6!}\Delta^6 y_0$ $N_6(x) = 0,2234 + 0,453 * 1,0204 + \frac{0,453(0,453-1)}{2!}0,0002 + \frac{0,453(0,453-1)(0,453-2)}{3!}0,0132 + \frac{0,453(0,453-1)(0,453-2)(0,453-3)}{4!}(-0,0368) + \frac{0,453(0,453-1)(0,453-2)(0,453-3)(0,453-4)}{5!}0,0762 + \frac{0,453(0,453-1)(0,453-2)(0,453-3)(0,453-4)}{6!}0,0762 + \frac{0,453(0,453-1)(0,453-2)(0,453-3)(0,453-4)(0,453-5)}{6!}(-0,1313) = \frac{0}{6!}$

y(1,168) = 0.6934

Интерполяция Гаусса

Вычислить значение функции для аргумента Х2, используя интерполяционную формулу Гаусса

Центральная точка a=1,55. X2=1,463<а, следовательно, используем **вторую** интерполяционную формулу

$$t = \frac{(x - x0)}{h} = -0.58$$

$$\begin{split} P_6(x) &= y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-2} + \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^4 y_{-2} \\ &\quad + \frac{(t+2)(t+1)t(t-1)(t-2)}{5!}\Delta^5 y_{-3} + \frac{(t+3)(t+2)(t+1)t(t-1)(t-2)}{6!}\Delta^6 y_{-3} \end{split}$$

$$P_{6}(x) = 3,2984 - 0,58*1,034 + \frac{-0,58(-0,58+1)}{2!}(-0,0102) + \frac{(-0,58+1)(-0,58)(-0,58-1)}{3!}(-0,0236) + \frac{(-0,58+2)(-0,58+1)(-0,58)(-0,58-1)}{4!}(0,0394) + \frac{(-0,58+2)(-0,58+1)(-0,58)(-0,58-1)(-0,58-2)}{5!}0,0762 + \frac{(-0,58+3)(-0,58+2)(-0,58+1)(-0,58)(-0,58-1)(-0,58-2)}{6!}(-0,1313)$$

y(1,463) = 2,699

Листинг программы

```
class Newton(AbstractInterpolation):

name = "mhrepnonsqua Habstoha"

@statiomethod

def check(table: List[Point]) -> bool:

n = len(table)

h = table[1].x - table[0].x

for i in range(2, n):

if table[i].x - table[i - 1].x != h:

return True

return False

def divided_diffs(self) -> list[list[float]]:

diff= [[0 for _ in range(self.n)] for _ in range(self.n)]

for i in range(self.n):

diff[i][0] = self.table[i].y

for j in range(self.n - j):

diff[i][j] = (diff[i + 1][j - 1] - diff[i][j - 1]) / (self.table[i + j].x - self.table[i].x)

return diff

def create_function(self) -> Callable[[float], float]:

diff = self.divided_diffs()

self.print_diffs(diff)

return lambda x: diff[0][0] + sum([

diff[0][k] * math.prod([

x - self.table[j].x

for j in range(k)

])

for k in range(1, self.n)

])
```

Результат выполнения программы

Вывод

В ходе выполнения данной лабораторной работы я рассмотрел и реализовал методы интерполяции Ньютона и Гаусса для заданной таблицы данных. С помощью разработанной программы были вычислены приближенные значения функции для заданных аргументов с использованием методов Ньютона и Гаусса. Было проведено сравнение результатов, полученных разными методами.