Expressiveness of neural networks

Dmitry Yarotsky

D. Yarotsky 1 / 72

Feedforward neural networks

Implements a map $y = \widetilde{f}(x, W)$ (or $y = \widetilde{f}(x)$ if W is fixed)

- $\mathbf{x} = (x_1, \dots, x_{\nu}) \in \mathbb{R}^{\nu}$: input vector
- W: the collection of all network weights (all tunable parameters)
- y: the (scalar) output
- A neuron in a hidden layer: $z_1, \ldots, z_d \mapsto \sigma \left(\sum_{m=1}^d w_m z_m + h \right)$
- Weights in a neuron: $\{w_m\}_{m=1}^d$, h (depend on the neuron)
- σ : a (nonlinear) activation function
- The output neuron: $z_1, \ldots, z_d \mapsto \sum_{m=1}^d w_m z_m + h$ (no activation)

D. Yarotsky

The ReLU activation function

Exercise: Why does σ need to be nonlinear?

ReLU (Rectified Linear Unit):

$$\sigma(x) \equiv (x)_+ = \max(0, x)$$

Exercise (equivalence of piecewise linear activation functions)

- Suppose that $f: \mathbb{R}^{\nu} \to \mathbb{R}$ is implemented by a NN with some piecewise-linear activation function. Then f can also be implemented by a ReLU NN (possibly of a different architecture).
- Suppose that $f:[0,1]^{\nu}\to\mathbb{R}$ is implemented by a ReLU NN. Then, for any given piecewise-linear activation function σ_1 , f can be implemented by a σ_1 -NN.

3 / 72

The concept of expressiveness

General idea: When the weights and possibly the architecture are varied, how significantly varies \widetilde{f} ? How rich is the set of \widetilde{f} 's?

Refinements:

- (Regression) How efficiently can we approximate the given map $f:[0,1]^{\nu}\to\mathbb{R}$ by NN's?
- (Classification) How big is the set of Boolean maps $\widetilde{f}:X \to \{-1,+1\}$ implementable by NN's?
- (for ReLU networks) How many linear pieces can the function $\widetilde{f}(\mathbf{x})$ have?
- (Topology) How many connected components can $\widetilde{f}^{-1}(y)$ have?
- ...

Expressiveness = F(Network complexity)

D. Yarotsky 4 / 72

Approximation with one-hidden-layer networks

A good survey: A. Pinkus, Approximation theory of the MLP model in neural networks, 1999

A one-hidden-layer network:

$$\widetilde{f}(\mathbf{x}) = \sum_{n=1}^{N} c_n \sigma \Big(\sum_{k=1}^{\nu} w_{nk} x_k + h_n \Big) + h$$

Network complexity: $\sim N$

D. Yarotsky 5 / 72

Approximation in L^p norms

In a nutshell: Given f, find \widetilde{f} with small $||f - \widetilde{f}||$

L^p norms:

$$||f||_{p} = \begin{cases} \left(\int_{\Omega} |f(\mathbf{x})|^{p} d\mathbf{x} \right)^{1/p}, & 1 \leq p < \infty \\ \max_{\mathbf{x} \in \Omega} |f(\mathbf{x})|, & p = \infty \end{cases}$$

Exercise: Show that $\|f\|_{\infty} = \lim_{p \to +\infty} \|f\|_p$

$$L^p(\Omega) = \{ f : ||f||_p < \infty \}$$

Exercise: $L^p(\Omega)$ is a Banach space (normed + metrically complete)

D. Yarotsky 6 / 72

Uniform approximation on compact sets

Let $f: \mathbb{R}^{\nu} \to \mathbb{R}$

A *compact* set in \mathbb{R}^{ν} : bounded + closed

Approximation on compact sets: for any compact $K\subset\mathbb{R}^{\nu}$ and $\epsilon>0$ find \widetilde{f} such that $\|f-\widetilde{f}\|_{\infty}<\epsilon$

D. Yarotsky 7 / 72

The universal approximation theorem

Many versions; a nice one:

Theorem (Leshno et al.'93)

Suppose that the activation function σ is continuous. Then, the following are equivalent:

- **1** Any continuous $f: \mathbb{R}^{\nu} \to \mathbb{R}$ can be uniformly approximated on compact sets by one-hidden-layer σ -NN's
- \circ σ is not a polynomial.

Exercise: $1) \Longrightarrow 2$

The nontrivial part: 2) \Longrightarrow 1)

D. Yarotsky 8 / 72

Proof of UAT: reduction to 1D case

A ridge function $f \colon f(\mathsf{x}) = g(\mathsf{x} \cdot \mathsf{q})$ for some $\mathsf{q} \in \mathbb{R}^{\nu}$ and $g : \mathbb{R} \to \mathbb{R}$

Lemma

Any continuous $f: \mathbb{R}^{\nu} \to \mathbb{R}$ can be approximated by finite linear combinations of continuous ridge functions.

By the Lemma, proving UAT is reduced to the case $\nu=1$ (it remains to approximate $g(\cdot)$ by expressions $\sum_{n=1}^{N} c_n \sigma(w_n \cdot + h_n)$)

D. Yarotsky 9 / 72

Proof of the Lemma

Approximation by trigonometric polynomials:

- Given a compact $K \subset \mathbb{R}^{\nu}$, approximate $f|_{K}$ by a smooth function f_1 supported on some $[-a,a]^{\nu}$
- Expand f_1 in a (multi-dimensional) Fourier series, $f_1(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^p} c_{\mathbf{k}} e^{\pi i \mathbf{k} \cdot \mathbf{x}/a}$
- By smoothness of f_1 , $|c_{\bf k}| = O(|{\bf k}|^{-\alpha})$ for any α
- Hence, f_1 can be approximated on K in $\|\cdot\|_{\infty}$ by finite trigonometric polynomials
- Each trigonometric monomial is a ridge function

Exercise: Give an alternative proof using Stone-Weierstrass theorem or polynomial approximation

D. Yarotsky 10 / 72

Weierstrass and Stone-Weierstrass theorems

Theorem (Weierstrass)

For any continuous $f:[a,b]\to\mathbb{R}$ and any $\epsilon>0$ there exists a polynomial f_1 such that $\max_{x\in[a,b]}|f(x)-f_1(x)|<\epsilon$.

- A subalgebra $A \subset C(X, \mathbb{R})$: a subspace closed under multiplication
- Subset A separates points of X: for any $x_1, x_2 \in X$ there exists $f \in A$ such that $f(x_1) \neq f(x_2)$

Theorem (Stone-Weierstrass)

Let X be a compact Hausdorff space (e.g., a compact metric space). Let A be a subalgebra in $C(X,\mathbb{R})$ separating points of X and containing $f\equiv 1$. Then A is dense in $C(X,\mathbb{R})$.

Application: denseness of trigonometric polynomials in $C([-a,a]^{\nu},\mathbb{R})$

D. Yarotsky 11 / 72

UAT: proof in the 1D case

Special case of ReLU σ : approximate f by a linear spline \widetilde{f} and write

$$\widetilde{f}(x) = \sum_{n=1}^{N} c_n (x - h_n)_+$$

D. Yarotsky 12 / 72

Special case: $\sigma \in C^{\infty}(\mathbb{R})$

Proposition

Suppose $\sigma \in C^{\infty}(a,b)$ and σ is not a polynomial on (a,b). Then there exists $x_0 \in (a,b)$ such that all derivatives $\frac{d^n \sigma}{dx^n}(x_0) \neq 0, n=0,1,\ldots$ (Exercise*: prove it.)

Then, any monomial $(x - x_0)^n$ can be approximated by expressions $\sum_{k=0}^n c_k \sigma(w_k x + h_k)$:

$$\sigma(x_0 + w(x - x_0)) = \sigma(x_0) + o(1)$$

$$\frac{1}{w}(\sigma(x_0 + w(x - x_0)) - \sigma(x_0)) = \frac{d\sigma}{dx}(x_0)(x - x_0) + o(1)$$

$$\frac{1}{w^2}(\sigma(x_0 + 2w(x - x_0)) - 2\sigma(x_0 + w(x - x_0)) + \sigma(x_0)) = \frac{d^2\sigma}{dx^2}(x_0)(x - x_0)^2 + o(1)$$

. .

where $w \rightarrow 0$

Remark: this approximation uses small weights w_k and large c_k

General nonpolynomial $\sigma \in \mathcal{C}(\mathbb{R})$

Suppose that some x^m cannot be approximated by $\sum_n c_n \sigma(w_n \cdot + h_n)$

Smoothen σ by convolving with a smooth kernel:

$$\sigma_{\phi} = \sigma * \phi, \quad \phi \in C_0^{\infty}(\mathbb{R})$$

 σ_{ϕ} can be approximated by finite linear combinations $\sum_{n} c_{n} \sigma(w_{n} \cdot + h_{n})$

From the argument for smooth σ_{ϕ} :

$$\frac{d^m \sigma_{\phi}}{dx^m}(0)x^m = 0,$$

i.e. $\frac{d^m \sigma_{\phi}}{dx^m}(0) = 0$. By shifting ϕ , $\frac{d^m \sigma_{\phi}}{dx^m}(x) = 0$ for all x, i.e. σ_{ϕ} is a polynomial of degree < m. Hence σ is a polynomial of degree < m.

D. Yarotsky 14 / 72

Absence of UAT: deep narrow networks

Fully-connected networks of "width" H and arbitrary depth. Example ($\nu=2$ inputs, width H=5):

Theorem (Hanin & Sellke, arXiv:1710.11278)

For given ν , width-H ReLU networks approximate any $f \in C(\mathbb{R}^{\nu})$ if and only if $H > \nu$.

D. Yarotsky 15 / 72

Proof that $H > \nu$ is necessary

Claim: $f(\mathbf{x}) = \sum_{s=1}^{\nu} x_s^2$ cannot be approximated by width- ν ReLU networks.

A *level set*: a connected component of $\widetilde{f}^{-1}(\mathsf{a})$ for some $\mathsf{a} \in \mathbb{R}^{
u}$

Lemma

Let $S \subset \mathbb{R}^{\nu}$ be the set of input points on which all ReLU evaluations throughout the evaluation of \widetilde{f} are (strictly) positive. Then S is open and convex, \widetilde{f} is affine on S, and every level set of \widetilde{f} that is bounded is contained in S.

Exercise: Prove the convexity, openness and affinity statements (easy)

Exercise: Derive the Theorem from the Lemma (easy)

D. Yarotsky 16 / 72

Proof of Lemma: bounded level sets are contained in S

Suppose $\mathbf{x} \in \widetilde{f}^{-1}(\mathbf{a})$ is not in S, then, when computing $\widetilde{f}(\mathbf{x})$, at some layer k one of the ReLU's is applied to a non-positive value. Assume k is the earliest such layer.

Let $\widetilde{f_j}$ be the action of first j hidden layers:

$$\widetilde{f_j}(x) = \mathsf{ReLU} \circ A_j \circ \cdots \mathsf{ReLU} \circ A_1(x) : \mathbb{R}^
u o \mathbb{R}^
u$$
 $\mathsf{ReLU}(z_1, \dots, z_
u) = ((z_1)_+, \dots, (z_
u)_+)$

Then ReLU⁻¹($\widetilde{f}_k(\mathbf{x})$) contains an infinite ray R.

Then $\widetilde{f}^{-1}(\mathbf{a}) \supset (A_k A_{k-1} \cdots A_1)^{-1} R \ni \mathbf{x}$, and $(A_k A_{k-1} \cdots A_1)^{-1} R$ is unbounded since $A_k A_{k-1} \cdots A_1 : \mathbb{R}^{\nu} \to \mathbb{R}^{\nu}$. (Remark: this wouldn't be true for $H > \nu$.)

D. Yarotsky 17 / 72

Open (?) problems

- Give a necessary and sufficient condition for a function $f \in C(\mathbb{R}^{\nu})$ to be approximable by width- ν ReLU networks.
- What are the minimal networks widths for other activation functions?

Exercise: Consider the family of ReLU networks that have width $H>\nu$ in every layer except for, say, layer 10, in which they have only $\nu-1$ neurons. Show that this family does not have the universal approximation property.

D. Yarotsky 18 / 72

Sobolev spaces: general idea

Banach spaces
$$\mathcal{W}^{d,p}(\Omega) = \{f : \Omega \to \mathbb{R} | \|f\|_{d,p} < \infty\}$$

- ullet $\Omega \subset \mathbb{R}^{
 u}$
- d: number of derivatives
- $p \in [1, \infty]$ (as in L^p)

$$||f||_{d,p} = \sum_{\mathbf{k}:|\mathbf{k}| \le d} ||D^{\mathbf{k}}f||_{p} \qquad |\mathbf{k}| = \sum_{s=1}^{r} k_{s}$$

A rigorous definition ensuring completeness?

D. Yarotsky 19 / 72

Sobolev spaces: rigorous definitions

Approach 1: first take functions $f \in C_0^{\infty}(\Omega)$, then define $\mathcal{W}^{d,p}(\Omega)$ as their $\|\cdot\|_{d,p}$ -completion

Approach 2: define $\mathcal{W}^{d,p}(\Omega)$ as the space of all f's having weak derivatives up to degree d in L^p

(A weak derivative
$$(\frac{\partial f}{\partial x_s})_w$$
: $\int_{\Omega} (\frac{\partial f}{\partial x_s})_w(\mathbf{x}) \phi(\mathbf{x}) d\mathbf{x} = -\int_{\Omega} f(\mathbf{x}) \frac{\partial \phi}{\partial x_s}(\mathbf{x}) d\mathbf{x}$ for any $\phi \in C_0^{\infty}(\Omega)$)

The two approaches are equivalent for $p < \infty$ (Meyers-Serrin theorem), but not for $p = \infty$ (Def.2 gives a larger space)

Exercise: Let $f(x) \equiv 1$. Then $f \in \mathcal{W}^{0,\infty}([0,1])$ in the sense of Def.2, but not Def.1.

D. Yarotsky 20 / 72

Sobolev spaces: further properties

Exercise: Describe the values d, p, ν for which $f \in \mathcal{W}^{d,p}(\mathbb{R}^{\nu})$ may have a singularity $\sim |\mathbf{x}|^{\alpha}$ with $\alpha < 0$.

Exercise: (With Def.2) For $d \geq 1$, $\mathcal{W}^{d,\infty}$ consists of functions that are globally Lipschitz along with their derivatives up to degree d-1.

D. Yarotsky 21 / 72

Parametric approximations

Suppose we want to approximate functions from a set $K \subset \mathcal{F}$, where \mathcal{F} is a normed space (e.g., $\mathcal{F} = C([0,1])$).

A parametric approximation with W parameters: $M_W: \mathbb{R}^W \to \mathcal{F}$. (Example: a neural network with W weights. The weights are varied, the architecture is fixed.)

But this is too general:

Exercise: Let K be compact. Then, for W=1, there is a smooth maps M_W such that $K \subset \overline{M_W(\mathbb{R})}$.

Linear M_W : a good class of approximations, but the linearity constraint is too restrictive

A reasonable framework admitting nonlinear M_W , but avoiding unnatural examples?

D. Yarotsky 22 / 72

Continuous parametric approximations

A parameter assignment map $P_W: K \to \mathbb{R}^W$. (Example: network weight assignment.)

Full approximation pipeline: given $f \in K$,

$$f \mapsto M_W(P_W(f))$$

Key requirement: parameter assignment P_W is continuous (Remark: no assumption on M_W)

Exercise: Why does this requirement exclude "Peano curve" constructions?

D. Yarotsky 23 / 72

Optimal approximation

Optimal approximation (a.k.a. continuous nonlinear W-width):

$$h_W = \inf_{P_W, M_W} \sup_{f \in K} \|f - M_W(P_W(f))\|$$

Key result: Let K be a ball in $\mathcal{W}^{d,p}([0,1]^{\nu})$. Then $h_W \simeq W^{-d/\nu}$.

D. Yarotsky 24 / 72

The lower bound

Theorem (DeVore, Howard, Micchelli 1989)

Let $K = B_{d,p,\nu}$ be the unit ball in $\mathcal{W}^{d,p}([0,1]^{\nu})$, and $\mathcal{F} = L^p([0,1]^{\nu})$. Then $h_W \geq CW^{-d/\nu}$ for some constant $C(d,p,\nu)$.

Sketch of proof for $p = \infty$.

Fix some $\phi \in C^{\infty}(\mathbb{R}^{\nu})$ such that $\phi(\mathbf{x}) = 0$ if $|\mathbf{x}| > \frac{1}{2}$.

For a given $N \in \mathbb{N}$, consider the grid $G_N = \{\frac{1}{N}, \frac{2}{N}, \dots, \frac{N}{N}\}^{\nu} \subset [0, 1]^{\nu}$. Note that $|G_N| = N^{\nu}$.

Consider the map $\Phi_N: [-1,1]^{G_N} \to \mathcal{W}^{d,p}([0,1]^{\nu})$ that places rescaled, shifted and weighted functions ϕ ("spikes") at the grid points:

$$\Phi_{N}(\{c_{\mathbf{n}}\}_{\mathbf{n}\in\mathcal{G}_{N}})=CN^{-d}\sum_{\mathbf{n}\in\mathcal{G}_{N}}c_{\mathbf{n}}\phi(N(\cdot-\mathbf{n}))$$

If C is small enough, then $\Phi_N([-1,1]^{G_N}) \subset B_{d,\infty,\nu}$ for any N

D. Yarotsky 25 / 72

Sketch of proof – continued

Lemma (Borsuk-Ulam antipodality theorem)

Suppose that g maps continuously the n-dimensional sphere S^n to \mathbb{R}^n . Then there exist $x \in S^n$ such that g(x) = g(-x).

Exercise: prove for n = 1.

Let
$$U = \partial([-1,1]^{G_N})$$
, then $\mathcal{D} \cong S^{N^{\nu}-1}$.

Consider the map $g = P_W \circ \Phi_N$ on \mathcal{D} . By Borsuk-Ulam, if $W \leq N^{\nu} - 1$. then there exists $\mathbf{x} \in \mathcal{D}$ such that $P_W(\Phi_N(\mathbf{x})) = P_W(\Phi_N(-\mathbf{x}))$.

Then,
$$\sup_{f \in K} \|f - M_W(P_W(f))\|_{\infty} \ge \frac{1}{2} \|\Phi_N(\mathbf{x}) - \Phi_N(-\mathbf{x})\|_{\infty} = CN^{-d} \|\phi\|_{\infty}.$$

Taking
$$N \sim W^{-1/\nu}$$
, we get $\sup_{f \in K} \|f - M_W(P_W(f))\| \ge CW^{-d/\nu}$.

D. Yarotsky 26 / 72

The upper bound

Proposition

- Let $K = B_{d,\infty,\nu}$ be the unit ball in $\mathcal{W}^{d,\infty}([0,1]^{\nu})$. Then $h_{\mathcal{W}} \leq CW^{-d/\nu}$.
- 2 The bound can be attained with linear maps P_W , M_W .

Proof. Take $\phi \in C_0(\mathbb{R}^{\nu}), 0 \le \phi \le 1$, such that the spikes $\{\phi(N(\cdot - \mathbf{n}))\}_{\mathbf{n} \in G_N}$ form a partition of unity:

$$\sum_{\mathbf{n}\in G_{\mathbf{n}}}\phi(N(\mathbf{x}-\mathbf{n}))\equiv 1,\quad \mathbf{x}\in[0,1]^{\nu}.$$

Let:

$$P_W(f) = \{D^{\mathbf{k}}f(\mathbf{n})\}_{\mathbf{n} \in G_N, |\mathbf{k}| < d-1} \in \mathbb{R}^{cN^{\nu}}$$

$$M_{\mathcal{W}}(\{w_{\mathbf{k}}(\mathbf{n})\}_{\mathbf{n}\in G_{\mathcal{N}}, |\mathbf{k}|\leq d-1}) = \sum_{\mathbf{n}\in G_{\mathcal{N}}} \phi(\mathcal{N}(\mathbf{x}-\mathbf{n})) \sum_{|\mathbf{k}|\leq d-1} \frac{w_{\mathbf{k}}(\mathbf{n})}{\mathbf{k}!} (\mathbf{x}-\mathbf{n})^{\mathbf{k}}$$

D. Yarotsky 27 / 72

The upper bound – continued

Exercise: P_W is continuous on K

Claim:
$$||f - M_W(P_W(f))||_{\infty} \leq CN^{-d}$$

$$|f(\mathbf{x}) - M_{W}(P_{W}(f))| = \left| \sum_{\mathbf{n} \in G_{N}} \phi(N(\mathbf{x} - \mathbf{n})) \left[f(\mathbf{x}) - \sum_{|\mathbf{k}| \le d - 1} \frac{D^{\mathbf{k}} f(\mathbf{n})}{\mathbf{k}!} (\mathbf{x} - \mathbf{n})^{\mathbf{k}} \right] \right|$$

$$\leq \sum_{\substack{\text{finitely many } \mathbf{n} \in G_{N}: \\ |\mathbf{n} - \mathbf{x}|_{\infty} < c/N}} \left| f(\mathbf{x}) - \sum_{|\mathbf{k}| \le d - 1} \frac{D^{\mathbf{k}} f(\mathbf{n})}{\mathbf{k}!} (\mathbf{x} - \mathbf{n})^{\mathbf{k}} \right|$$

$$\leq CN^{-d}$$

(by a Taylor remainder bound)

Since
$$W=cN^{\nu}$$
, we get $\|f-M_W(P_W(f))\|_{\infty}\leq CW^{-d/\nu}$

28 / 72

Do neural networks achieve optimal approximation rates?

For ReLU networks, we'll show:

- Yes for deep networks
- No for shallow networks

D. Yarotsky 29 / 72

The sawtooth functions (Telgarsky, arXiv:1602.04485)

The "tooth" function

$$g(x) = \begin{cases} 2x, & x < \frac{1}{2} \\ 2(1-x), & x \ge \frac{1}{2} \end{cases}$$
$$= 2(x)_{+} - 4(x-0.5)_{+} + 2(x-1)_{+}$$

Iterated "sawtooth" functions with 2^{m-1} "teeth":

$$g_m(x) = \underbrace{g \circ g \circ \cdots \circ g}_{m}(x)$$

D. Yarotsky 30 / 72

Efficient implementation of $f(x) = x^2$ (arxiv:1610.01145)

Let

$$\widetilde{f}_m(x) = x - \sum_{k=1}^m \frac{g_k(x)}{2^{2k}}$$

Then

$$\|\widetilde{f}_m(x) - x^2\|_{C[0,1]} = \frac{1}{2^{2m+2}}$$

D. Yarotsky 31 / 72

Extension to polynomials

Multiplication reduces to squaring thanks to polarization identity:

$$xy = \frac{1}{4}((x+y)^2 - (x-y)^2)$$

Exercise: A fixed polynomial on a bounded domain can be implemented with accuracy ϵ using a ReLU network with $O(\log(1/\epsilon))$ layers, neurons and connections.

D. Yarotsky 32 / 72

Extension to Sobolev balls

Let $K = B_{d,p=\infty,\nu}$ (the Sobolev unit ball).

We look for P_W , M_W such that

$$\sup_{f \in K} \|f - M_W(P_W(f))\|_{\infty} < \epsilon \tag{1}$$

Theorem

Eq.(1) can be fulfilled with linear maps P_W , M_W , where M_W is implemented by a ReLU network with $W = O(\epsilon^{-\nu/d} \log(1/\epsilon))$ weights and $O(\log(1/\epsilon))$ layers.

Sketch of proof: follow the proof of the upper bound $h_W = O(W^{-d/\nu})$; approximate Taylor polynomials by ReLU subnetworks.

D. Yarotsky 33 / 72

Extension to analytic functions

Let f be (real) analytic in a neighborhood of $[a, b] \subset \mathbb{R}$.

Exercise (cf. Liang & Srikant, arxiv:1610.04161) $||f - \widetilde{f}||_{C[a,b]} < \epsilon$ can be achieved with \widetilde{f} implemented by a ReLU network with $O(\log^2(1/\epsilon))$ layers and connections.

D. Yarotsky 34 / 72

Counting linear pieces in \widetilde{f}

Let $\widetilde{f}:[0,1]\to\mathbb{R}$ be implemented by a ReLU network with L hidden layers and U neurons. Then \widetilde{f} is piecewise linear on [a,b]. Let M denote the number of pieces.

Lemma (Telgarsky, arXiv:1602.04485)

$$M \leq (2U)^L$$

Proof. By induction. For $n \leq L$, suppose that [0,1] can be divided into N_n intervals $[a_{n,k},b_{n,k}]_{k=1}^{N_n}$ such that the outputs of all neurons of all layers < n are affine functions (without kinks). In particular, $N_1 = 1$ and $[a_{1,1},b_{1,1}] = [0,1]$.

Consider the action of the n'th layer on one $[a_{n,k}, b_{n,k}]$. Each neuron in this layer can create at most one kink in this interval. Therefore,

 $N_{n+1} \leq (U_n+1)N_n$, where U_n is the number of neurons in the n'th layer.

So,
$$N_{L+1} \leq (U_1 + 1)(U_2 + 1) \cdots (U_L + 1) \leq (2U)^L$$
.

D. Yarotsky 35 / 72

Slow approximation of $f(x) = x^2$ by fixed-depth ReLU networks

Proposition

To approximate $f(x) = x^2$ on [0,1] with uniform accuracy ϵ , a ReLU network with L hidden layers requires at least $\frac{1}{2}(8\epsilon)^{-1/(2L)}$ computation units and weights.

Proof. If \widetilde{f} is linear on [a, b], then $\max_{x \in [a, b]} |\widetilde{f}(x) - x^2| \ge \frac{(b-a)^2}{8}$.

By counting lemma, if the network has U neurons, then we can find such an interval of linearity with $b-a \geq (2U)^{-L}$. Therefore $\epsilon \geq \frac{(2U)^{-2L}}{8}$, and then $U \geq \frac{1}{2}(8\epsilon)^{-1/(2L)}$.

Conclusion: To approximate $f(x) = x^2$, fixed-depth ReLU networks require a faster complexity growth $(\gtrsim \epsilon^{-1/(2L)})$ than arbitrary-depth ones $(O(\log(1/\epsilon)))$

D. Yarotsky 36 / 72

Vapnik-Chevonenkis (VC) dimension: overview

VC-dimension: characterizes expressiveness of classifiers

Our goal: examine VC-dimension of networks and related models

Sources:

- (main) M. Anthony, P. Bartlett, Neural Network Learning: Theoretical Foundations, 1999. Chapters 3, 6 8
- M. Raginsky, Vapnik-Chervonenkis classes

D. Yarotsky 37 / 72

The growth function

H: some family of maps $X \to \{0,1\}$ (e.g., all neural networks of given architecture with thresholded output)

 $H|_{S}$: restrictions of maps $f \in H$ to a subset $S \subset X$

The growth function:

$$\Pi_H(m) = \sup_{S \subset X, |S| = m} |H|_S|$$

Exercise: Compute the growth function $(X = \mathbb{R})$:

- 2 $H = \{f_{a,b}\}_{a < b}; f_{a,b}(x) = \mathbf{1}_{[a,b]}(x)$
- $H = \{f_a\}_{a \in \mathbb{R}}; f_a(x) = \operatorname{sgn}(\sin(ax))$

D. Yarotsky 38 / 72

VC-dimension

$$S \subset X$$
 is shattered by $H: H|_S$ implements all possible $2^{|S|}$ maps $S \to \{0,1\}$

VC-dimension:

VCdim(H) = sup{m :
$$|S| = m$$
 and S is shattered by H}
= sup{m : $\Pi_H(m) = 2^m$ }

Exercise: $\Pi_H(m) = 2^m$ for all $m \le VCdim(H)$ Exercise: Compute VCdim for families H from the previous exercise. Show that $VCdim(\{sgn(sin(ax))\}) = \infty$.

D. Yarotsky 39 / 72

The Sauer-Shelah lemma (good exposion: Wikipedia)

By definition, the growth function Π_H determines VCdim(H)

Conversely, VCdim(H) restricts Π_H :

Theorem (Sauer-Shelah)

$$\Pi_H(m) \leq \sum_{k=0}^{\mathsf{VCdim}(H)} \binom{m}{k}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} := \begin{cases} \frac{a!}{b!(a-b)!}, & a \ge b \\ 0, & a < b \end{cases}$$

Theorem (Pajor)

H shatters at least $|H|_S|$ subsets of S (including \emptyset).

Exercise: Pajor \Longrightarrow Sauer-Shelah (use that S has $\sum_{k=0}^{d} {|S| \choose k}$ subsets of size $\leq d$ and then there must be at least one large shattered subset)

D. Yarotsky 40 / 72

Proof of Pajor theorem

Let $\mathcal{F} = H|_{\mathcal{S}}$. Proof by induction in $|\mathcal{F}|$. The base of induction: $|\mathcal{F}| = 1$, then H shatters \emptyset .

Let us prove theorem for given $\mathcal F$ assuming it holds for smaller sizes. Take some $\mathbf x\in S$ such that both $\mathcal F_0=\{f\in\mathcal F:f(\mathbf x)=0\}$ and $\mathcal F_1=\{f\in\mathcal F:f(\mathbf x)=1\}$ are nonempty.

By induction assumption, theorem holds for \mathcal{F}_0 and \mathcal{F}_1 . Let

$$A_k = \{Q \subset S : Q \text{ is shattered by } \mathcal{F}_k\}, \quad k = 0, 1,$$

then $|A_0|+|A_k|\geq |\mathcal{F}_0|+|\mathcal{F}_1|=|\mathcal{F}|$. Note that if $Q\in A_0$ or $Q\in A_1$, then $\mathbf{x}\notin Q$.

Let

$$A = (A_0 \cup A_1) \cup \{Q \cup \{x\} : Q \in A_0 \cap A_1\}$$

Then $|A| = |A_0| + |A_1|$, and any $Q \in A$ is shattered by \mathcal{F} .

Ш

A more convenient bound on the growth function

Lemma

For $m \ge d \ge 1$,

$$\sum_{k=0}^{d} \binom{m}{k} \le \left(\frac{em}{d}\right)^{d}$$

Proof:

$$\sum_{k=0}^{d} \binom{m}{k} \le \left(\frac{m}{d}\right)^{d} \sum_{k=0}^{d} \binom{m}{k} \left(\frac{d}{m}\right)^{k} \le \left(\frac{m}{d}\right)^{d} \left(1 + \frac{d}{m}\right)^{m} \le \left(\frac{em}{d}\right)^{d}$$

Corollary: If VCdim(H) = d, then

$$\Pi_{H}(m) \begin{cases} = 2^{m}, & m \leq d \\ < (\frac{em}{d})^{d}, & m > d \end{cases}$$

In particular, $\Pi_H(m)$ grows exponentially for $m \leq d$, but polynomially for m > d.

D. Yarotsky 42 / 72

The simple perceptron model

Simple perceptron:
$$X = \mathbb{R}^{\nu}$$
, $H = \{ \operatorname{sgn}(f_{\mathbf{w},h}) \}_{\mathbf{w} \in \mathbb{R}^{\nu}, h \in \mathbb{R}}$, where $f_{\mathbf{w},h}(\mathbf{x}) = \mathbf{w}^t \mathbf{x} - h$, i.e.

$$\operatorname{sgn}(f_{\mathbf{w},h}(\mathbf{x})) = \begin{cases} 1, & \mathbf{w}^t \mathbf{x} - h > 0 \\ 0, & \operatorname{otherwise} \end{cases}$$

Theorem

- **2** $VCdim(H) = \nu + 1$

Exercise: $1) \Longrightarrow 2$

D. Yarotsky 43 / 72

Proof: step 1 – Topological reduction

CC(A): number of connected components in the set A

Lemma

Let $S = \{ \mathbf{x}_1, \dots, \mathbf{x}_m \} \subset \mathbb{R}^{\nu+1}$. Define

$$P_i = \{ (\mathbf{w}, h) \in \mathbb{R}^{\nu} : f_{\mathbf{w}, h}(\mathbf{x}_i) = 0 \}$$

= \{ (\mathbf{w}, h) \in \mathbf{R}^{\nu+1} : \mathbf{w}^t \mathbf{x}_i - h = 0 \}

Then

$$|H|_{S}| = \mathsf{CC}(\mathbb{R}^{\nu+1} \setminus \cup_{i=1}^{m} P_{i})$$

Sketch of proof. Each connected component corresponds to an element of $H|_S$, so $|H|_S| \leq CC(\mathbb{R}^{\nu+1} \setminus \bigcup_{i=1}^m P_i)$.

Moreover, an element of $H|_S$ corresponds to only one connected component since the sets $\{(\mathbf{w},h)\in\mathbb{R}^{\nu+1}:\pm f_{\mathbf{w},h}(\mathbf{x}_i)>0\}$ are convex and have a convex intersection.

Proof: step 2 – Combinatorics

Let $\widetilde{\mathbf{x}} = (\mathbf{x}, -1)$ and $\widetilde{\mathbf{w}} = (\mathbf{w}, h)$, then we can write

$$P_i = \{\widetilde{\mathbf{w}} \in \mathbb{R}^{\nu+1} : \widetilde{\mathbf{w}}^t \widetilde{\mathbf{x}}_i = 0\}$$

Assume $\{\widetilde{\mathbf{x}_i}\}_{i=1}^m$ are in general position, i.e. any subset of up to $\nu+1$ points are linearly independent.

Define
$$C(m, \nu) := \mathsf{CC}(\mathbb{R}^{\nu+1} \setminus \cup_{i=1}^m P_i)$$

Lemma

$$C(m+1,\nu) = C(m,\nu) + C(m,\nu-1)$$

Proof: When we add a new hyperplane P_{m+1} , the number of CC in $\mathbb{R}^{\nu+1}\setminus \bigcup_{i=1}^m P_i$ is increased by the number of CC in $P_{m+1}\setminus \bigcup_{i=1}^m P_i$.

D. Yarotsky 45 / 72

_

Proof: step 2 - Combinatorics (cont-d)

Exercise: $C(m,0) \equiv C(1,\nu) \equiv 2$

$$C(m,\nu) = C(m-1,\nu) + C(m-1,\nu-1)$$

$$= C(m-2,\nu) + 2C(m-2,\nu-1) + C(m-2,\nu-2)$$

$$= \dots$$

$$= C(1,\nu) + {m-1 \choose 1}C(1,\nu-1) + {m-1 \choose 2}C(1,\nu-2) + \dots + {m-1 \choose \nu}C(1,0)$$

$$= 2\sum_{k=0}^{\nu} {m-1 \choose k}$$

D. Yarotsky 46 / 72

Computation of VCdim(Perceptron): Summary

- (topology) Reduce computation of the growth function Π_H to computation of $CC(\mathbb{R}^{\nu+1}\setminus \bigcup_{i=1}^m P_i)$
- \bigcirc (combinatorics) Compute $CC(\mathbb{R}^{\nu+1} \setminus \bigcup_{i=1}^{m} P_i)$
- **3** Compute VCdim via Π_H

D. Yarotsky 47 / 72

An alternative computation

Exercise: Give an alternative proof that $VCdim(Perceptron) = \nu + 1$:

- Show that the perceptron shatters the set $\{{\bf 0},{\bf e}_1,\ldots,{\bf e}_\nu\}$ and hence VCdim $>\nu+1$
- Show that VCdim $\leq \nu+1$ as follows. Suppose that $|S|>\nu+1$, then the vectors $\widetilde{\mathbf{x}}_i$ are linearly dependent and some $\widetilde{\mathbf{x}}_k$ can be linearly expressed through the others, e.g. $\widetilde{\mathbf{x}}_{|S|} = \sum_{i=1}^{|S|-1} a_i \widetilde{\mathbf{x}}_i$. Then, if

$$\operatorname{sgn}(f_{\widetilde{\mathbf{w}}}(\mathbf{x}_i)) = \begin{cases} 1, & a_i > 0 \\ 0, & a_i \leq 0 \end{cases}$$

for $i=1,\ldots,|S|-1$, then $\operatorname{sgn}(f_{\widetilde{\mathbf{w}}}(\mathbf{x}_{|S|}))=1$, i.e. S is not shattered.

D. Yarotsky 48 / 72

Deep networks

Existing results for deep ReLU and piecewise linear networks¹:

$$cWL\log(W/L) \le VC\dim(W, L) \le CWL\log W$$
,

where

- W: total weights; L: depth; c, C: global constants
- VCdim(W, L): largest VC-dimension of a piecewise linear network with W parameters and L layers

Proofs:

- Upper bound: bounding the growth function Π_H
- Lower bound: an explicit construction ("bit-extraction technique")

The methods extend to more general models (piecewise polynomial activations, general arithmetic networks, etc.) 2

D. Yarotsky 49 / 72

¹P. Bartlett et al., Nearly-tight VC-dimension bounds for piecewise linear neural networks, arXiv:1703.02930

²Anthony-Bartlett, Ch.8

Proof of the upper bound: main ideas

- (topology) Π_H can be upper bounded by counting connected components in various intersections of level sets of f, where $H = \{ sgn(f) \}$
- (combinatorics) For ReLU and piecewise polynomial networks, the weight space \mathbb{R}^W can be split into subsets corresponding to polynomial computational branches
- (algebraic geometry) In a polynomial branch, apply bounds on the number of CC in algebraic sets.

D. Yarotsky 50 / 72

Topology

How to count these CC?

D. Yarotsky

Let
$$H = \{ \operatorname{sgn}(f) | f : \mathbb{R}^W \times X \to \mathbb{R} \}$$
. Then
$$\Pi_H(m) = \sup_{S: |S| = m} \left| H|_S \right| \le \sup_{S = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}} \operatorname{CC}(\mathbb{R}^W \setminus \cup_{i=1}^m P_i),$$
 where $P_i = \{ \mathbf{w} \in \mathbb{R}^W : f(\mathbf{x}_i, \mathbf{w}) = h_i \}.$

51 / 72

Solution set component bounds

A set G of functions $f: \mathbb{R}^W \to \mathbb{R}$ has solution set component bound (SSCB) B if for any $1 \le k \le W$ and any $f_1, \ldots, f_k \subset G$ that have regular zero-set intersections³ we have

$$\mathsf{CC}\left(\cap_{i=1}^{k} \left\{\mathbf{w} \in \mathbb{R}^{W} : f_{i}(\mathbf{w}) = 0\right\}\right) \leq B.$$

Theorem

Let F be a family of smooth functions $f: \mathbb{R}^W \times X \to \mathbb{R}$ and $H = \{ \operatorname{sgn}(f) : f \in F \}$. Suppose F is closed under addition of constants and $G = \{ \mathbf{w} \mapsto f(\mathbf{w}, \mathbf{x}) | \mathbf{x} \in X \}$ has a SSCB B. Then

$$\Pi_H(m) \le B \sum_{k=1}^W \binom{m}{k} \le B \left(\frac{em}{W}\right)^W$$

for m > W.

D. Yarotsky 52 / 72

³Some nondegeneracy assumption

Polynomial dependence on the weights

Exercise: Consider a neural network $y = f(\mathbf{x}, \mathbf{w})$ of depth L, where the activation function is piecewise polynomial with degree at most d. Then, in each smooth computational branch, $f(\mathbf{x}, \cdot)$ for fixed \mathbf{x} is a polynomial in \mathbf{w} of degree not greater than:

$$egin{cases} L, & d=1 ext{ (e.g., ReLU)} \ (d+1)^L, & d\geq 1 \end{cases}$$

Algebraic sets: $\bigcap_{k=1}^{N} \{ \mathbf{w} : f_k(\mathbf{w}) = 0 \}$ with polynomial f_k

Semi-algebraic sets: $\bigcap_{k=1}^{N} \{ \mathbf{w} : f_k(\mathbf{w}) (= \text{ or } >) 0 \}$ with polynomial f_k

D. Yarotsky 53 / 72

Algebraic geometry

Theorem (Oleinik-Petrovsky, Milnor, Thom,...)

Let $f: \mathbb{R}^W \to \mathbb{R}$ be a polynomial of degree 1. Then the number of connected components of $\{\mathbf{w} \in \mathbb{R}^W : f(\mathbf{w}) = 0\}$ is no more than $I^{W-1}(I+2)$.

Exercise: Let
$$f(\mathbf{w}) = \sum_{k=1}^{W} (w_k - 1)^2 (w_k - 2)^2 \cdots (w_k - I/2)^2$$
. How many CC's does the set $\{\mathbf{w} : f(\mathbf{w}) = 0\}$ have?

Related, but simpler results:

Proposition (from main theorem of algebra)

Let $f: \mathbb{R} \to \mathbb{R}$ be a polynomial of degree 1. Then the number of roots $\{w \in \mathbb{R} : f(w) = 0\}$ is no more than 1.

Theorem (Bézout)

Consider two algebraic curves in \mathbb{R}^2 defined as the zero sets of polynomials $f,g:\mathbb{R}^2\to\mathbb{R}$. Then they intersect at no more than $\deg(f)\cdot\deg(g)$ points. D. Yarotsky

Application to solution set components bound

Proposition

For any I, the set of degree I polynomials defined on \mathbb{R}^W has solution set components bound $B = 2(2I)^W$.

Proof: Given k degree-l polynomials f_1, \ldots, f_k , set $f = \sum_{n=1}^k f_n^2$. Then

$$\cap_{i=1}^{k} \{ \mathbf{w} \in \mathbb{R}^{W} : f_{i}(\mathbf{w}) = 0 \} = \{ \mathbf{w} \in \mathbb{R}^{W} : f(\mathbf{w}) = 0 \}.$$

Therefore, B can be upper bounded by using above theorem with degree 2I.

Exercise: Let $H_{L,W,d}$ be the family of neural networks of a fixed architecture that has L layers, W weights, purely polynomial activation functions of degree d, and the threshold sgn at the output. Show that $VCdim(H_{L,W,d}) \leq CWL \ln(d+1)$ with some universal constant C.

D. Yarotsky 55 / 72

The "bit extraction technique" (Bartlett, Maiorov, Meir (1998))

A ReLU network with W weights and L layers that has VCdim $\geq cWL$ (i.e., asymptotically almost maximally expressive):

- Use bit expansion of real numbers: $a = 0.a_1a_2...a_N$ with $a_n \in \{0,1\}$
- Construct a finite network that maps $0.a_1a_2... \mapsto (a_1, 0.a_2a_3...)$ (i.e., $a \mapsto (|2a|, 2a |2a|)$)
- By stacking, construct a depth-O(N) network extracting all bits: $a \mapsto (a_1, a_2, \dots, a_N)$
- Extend this to a network \mathcal{N}_1 with M inputs that computes $a = \sum_{m=1}^{M} w_m x_m$ in the first layer, and then extracts the digits of a

D. Yarotsky 56 / 72

The "bit extraction technique" (cont-d)

- Construct a finite network multiplying numbers from the set $\{0,1\}$
- Construct the final network $\mathcal N$ by adding to $\mathcal N_1$ a subnetwork with N binary inputs z_1,\ldots,z_N that computes $y=\sum_{n=1}^N a_nz_n$. We can ensure the size of $\mathcal N_1$ is increased only by O(N) if we compress $z=\sum_{n=1}^N 2^{-n}z_n$ and then reconstruct z_1,z_2,\ldots from z as before
- Observe: when $\mathbf{x} = \mathbf{e}_m$ and $\mathbf{z} = \mathbf{e}_n$, \mathcal{N} computes the n'th bit of w_m
- \mathcal{N} shatters the set $\{(\mathbf{x}, \mathbf{z}) = (\mathbf{e}_m, \mathbf{e}_n)\}_{m,n=1}^{M,N}$ of size MN (by choosing arbitrary bit expansions of the weights w_1, \ldots, w_M)
- $\mathcal N$ has size O(N+M) and depth O(N); choose $M\sim N$ to get $\operatorname{VCdim}\geq cWL$

D. Yarotsky 57 / 72

Non-polynomial activations: Pfaffian functions

How to estimate expressiveness of networks with non-(piecewise)-polynomial activations (e.g., logistic $x \mapsto e^x/(1+e^x)$)?

Bounds on CC's are available for Pfaffian functions⁴

A **Pfaffian chain** of analytic functions $f_1, \ldots, f_l : U \subset \mathbb{R}^n \to \mathbb{R}$:

$$\frac{\partial f_i}{\partial x_i}(\mathbf{x}) = P_{ij}(\mathbf{x}, f_1(\mathbf{x}), \dots, f_i(\mathbf{x})), \quad 1 \leq i \leq I,$$

where P_{ii} are polynomials of degree $\leq \alpha$.

A Pfaffian function:

$$f(\mathbf{x}) = P(\mathbf{x}, f_1(\mathbf{x}), \dots, f_l(\mathbf{x})),$$

where P is a polynomial of degree β . Pfaffian complexity: (α, β, I) .

D. Yarotsky 58 / 72

⁴A. Khovansky, Fewnomials (Малочлены), 1991

Properties of Pfaffian functions

Exercise: The logistic function is Pfaffian

General properties:

- The set of Pfaffian functions is closed under arithmetic operations and compositions
- Elementary functions are Pfaffian on suitable domains (e.g. $\cos x$ is Pfaffian on $(-\pi,\pi)$ via the chain $\tan\frac{x}{2} \longrightarrow \cos^2\frac{x}{2} \longrightarrow \cos x$)

Pfaffian set: $\cap_k \{ \mathbf{x} \in U : f_k(\mathbf{x}) = 0 \}$ with Pfaffian f_k

Semi-Pfaffian set: $\cap_k \{ \mathbf{x} \in U : f_k(\mathbf{x}) (= \text{ or } >) 0 \}$ with Pfaffian f_k

D. Yarotsky 59 / 72

Pfaffian functions and Betti numbers

Betti numbers $b_k(S)$, $k=0,1,\ldots$ of a topological space S: numbers of "topological defects/holes" in S

 $b_0(S)$: number of connected components in S

$$b_0(S) \leq B(S) := \sum_k b_k(S)$$
 ("total number of defects")

Theorem (Zell '99)

Let S be a compact semi-Pfaffian set in $U \subset \mathbb{R}^n$, given on a compact Pfaffian set of dimension n', defined by s sign conditions on Pfaffian functions. If all the functions defining S have complexity at most (α, β, I) , then

$$B(S) \le s^{n'} 2^{l(l-1)/2} O\left((n\beta + \min(n, l)\alpha)^{n+l}\right)$$

D. Yarotsky 60 / 72

Topological expressiveness of neural networks⁵

$$S_{\mathcal{N}}: \{\mathbf{x} \in \mathbb{R}^n : f_{\mathcal{N}}(\mathbf{x}) > 0\}$$

Upper and Lower Bounds on the Growth of $B(S_{\mathcal{N}})$ for Networks With h Hidden Units, n Inputs, and l Hidden Layers. The Bound in the First Row Is a Well-Known Result Available in [26]

Inputs	Layers	Activation function	Bound
Upper bounds			
n	3	threshold	$O(h^n)$
n	3	arctan	$O((n+h)^{n+2})$
n	3	polynomial, degree r	$\frac{1}{2}(2+r)(1+r)^{n-1}$
1	3	arctan	h
n	any	arctan	$2^{h(2h-1)}O((nl+n)^{n+2h})$
n	any	tanh	$2^{(h(h-1))/2}O((nl+n)^{n+h})$
n	any	polynomial, degree r	$\frac{1}{2}(2+r^l)(1+r^l)^{n-1}$
Lower bounds			
n	3	any sigmoid	$(\frac{h-1}{n})^n$
n	any	any sigmoid	2^{l-1}
n	any	polynomial, deg. $r \geq 2$	2^{l-1}

⁵M. Bianchini, F. Scarselli, On the Complexity of Neural Network Classifiers: A Comparison Between Shallow and Deep Architectures, 2014

D. Yarotsky 61 / 72

Fastest approximations with ReLU nets⁶

Assume $f \in C([0,1]^{\nu})$, characterized by modulus of continuity:

$$\omega_f(r) = \max\{|f(\mathbf{x}) - f(\mathbf{y})| : |\mathbf{x} - \mathbf{y}| \le r\}$$

Let f_W be a ReLU neural network approximation with W weights For which p can we achieve the convergence rate

$$\boxed{\|f-\widetilde{f}_W\|_{\infty}=O(\omega_f(O(W^{-p})))}?$$

62 / 72

⁶D. Yarotsky, Optimal approximation of continuous functions by very deep ReLU networks. arXiv:1802.03620

The answer: a phase diagram

Deep discontinuous phase network depth $\sim W^{p\nu-1}$ weight assignment: discontinuous in f

D. Yarotsky 63 / 72

The shallow linear phase $(p = \frac{1}{\nu})$

Approximation can be formed by a linear combination of "spikes" and implemented by a fixed-depth network consisting of O(W) parallel blocks

The weight assignment is linear and continuous in f

D. Yarotsky 64 / 72

Beyond the linear phase

From general results on VC dims and continuous parametric approximation⁷:

- Rates with $p>\frac{2}{\nu}$ are infeasible Let S be the $N\times\cdots\times N$ grid, then $|S|=N^{\nu}$ and S can be shattered if $\frac{1}{N}\gtrsim W^{-p}$. But we know that $VCdim\lesssim LW\lesssim W^2$, so $W^{p\nu}\lesssim VCdim\lesssim W^2$
- Rates with $p>\frac{1}{\nu}$ are infeasible if weight assignment is continuous in f Special case of the optimal rate $W^{-d/\nu}$ with d=1
- Rates with $p>\frac{1}{\nu}$ are infeasible by networks of depth $\lesssim W^{p\nu-1}$ Follows by trying to shatter the grid and using VCdim $\lesssim LW$

D. Yarotsky 65 / 72

Goldberg & Jerrum '95, DeVore et al. '89, Bartlett et al. '17

Existence of the deep discontinuous phase

Theorem

For any $p \in (\frac{1}{\nu}, \frac{2}{\nu}]$, the approximation rate can be achieved using architectures of depth $L = O(W^{p\nu-1})$

- For $p = \frac{2}{\nu}$: use fully-connected architectures of constant width $2\nu + 10$
- For $p \in (\frac{1}{\nu}, \frac{2}{\nu})$: use parallel shallow architectures stacked with fully-connected architectures of width $3^{\nu}(2\nu+10)$ and depth $W^{p\nu-1}$

D. Yarotsky 66 / 72

Proof ideas: two-scales approximation

The full approximation is the sum of two parts:

True f

D. Yarotsky 67 / 72

Proof ideas: two-scales approximation

The full approximation is the sum of two parts:

ullet $\widetilde{f_1}$: piecewise-linear interpolation of f on the length scale $rac{1}{N}\sim W^{-1/
u}$

D. Yarotsky 68 / 72

Proof ideas: two-scales approximation

The full approximation is the sum of two parts:

- ullet $\widetilde{f_1}$: piecewise-linear interpolation of f on the length scale $rac{1}{N}\sim W^{-1/
 u}$
- ullet \widetilde{f}_2 : discrete approximation on the smaller length scale $rac{1}{M} \sim W^{-p}$
 - Use a *finite set* of candidate shapes
 - In each patch of size $\frac{1}{N}$, fit one of the shapes to $f \widetilde{f}_1$

D. Yarotsky 69 / 72

Proof ideas: network implementation

 \bullet Encode and store the $\widetilde{f_2}$ shape in each patch using a single network weight

$$\longrightarrow$$
 $b = 0.102$

• When computing $\tilde{f_2}(\mathbf{x})$, use the bit extraction technique to recover the shape from the special weight

D. Yarotsky 70 / 72

Expressiveness: future directions?

Practical neural networks work with complex multi-dimensional data

Existing abstract approaches (VC dimension, approximation theory, etc.) do not quite fit these applications

The challenges:

- Describe relevant and mathematically natural spaces of dependencies?
- Explore the limits (infinitely deep/wide networks, infinite domain resolution, etc.)
- Explore particular structures (convnets, hierarchical models, etc.)

D. Yarotsky 71 / 72

Example: a universal approximation theorem for maps on infinite-dimensional spaces⁸

Theorem

A map $f: L^2(\mathbb{R}^{\nu}) \to \mathbb{R}$ is a limit point of convnets with donsampling if and only if f is continuous in the norm topology.

D. Yarotsky 72 / 72

⁸D. Yarotsky, Universal approximations of invariant maps by neural networks, arXiv:1804.10306