3 - Sequenzializzazione di una Topologia

Insiemi sequenzialmente chiusi e aperti

☐ Definizione: Insieme sequenzialmente chiuso

Sia X uno spazio topologico.

Un insieme $C \subseteq X$ si dice **sequenzialmente chiuso** quando, per ogni successione $\{x_n\}_n \subseteq C$ convergente a un certo $x \in X$, si ha $x \in C$.

Osservazione: Relazione tra chiusi e chiusi sequenziali

Sia X uno spazio topologico.

Sia $C \subseteq X$ chiuso.

Allora, C è anche sequenzialmente chiuso.

Dimostrazione

Sia $\{x_n\}_n \subseteq C$ una successione in C convergente a un certo $x \in X$.

Allora, per ogni U intorno di x, esiste $\nu \in \mathbb{N}$ tale che $x_n \in U$ per ogni $n \geq \nu$.

Poiché $x_n \in C$ per costruzione, segue che $U \cap C \neq \emptyset$ per ogni U intorno di x_n .

Allora, $x \in \overline{C}$ ossia, essendo C chiuso per ipotesi, $x \in C$.

Il viceversa non vale generalmente; esso vale sotto le seguenti condizioni:

Proposizione 3.1: Equivalenza tra chiusi e chiusi sequenziali in spazi primo-numerabili

Sia X uno spazio topologico 1°-numerabile.

Sia $C \subseteq X$ sequenzialmente chiuso.

Allora, C è chiuso.

Dimostrazione

Sia $x \in \overline{C}$.

Allora, per ogni U intorno di x, si ha $U \cap C \neq \emptyset$, ossia esiste $x_U \in U$ tale che $x_U \in C$

Sia $\{U_n\}_{n\in\mathbb{N}}$ un sistema fondamentale di intorni di x, che esiste per 1°-numerabilità di x.

Per ogni $n \in \mathbb{N}$ l'insieme $\bigcap_{i=1}^n U_i$ è un intorno di x; allora, esiste $x_n \in \bigcap_{i=1}^n U_i$ tale che $x_n \in C$ per quanto affermato prima.

Si consideri la successione $\{x_n\}_{n\in\mathbb{N}}$; si ha che $\{x_n\}_{n\in\mathbb{N}}\subseteq C$ per costruzione.

Inoltre, essa converge a x.

Infatti, si fissi U intorno di x; essendo $\{U_n\}_{n\in\mathbb{N}}$ un sistema fondamentale di intorni di x, esiste $n_0\in\mathbb{N}$ tale che $U_{n_0}\subseteq U$; pertanto, per ogni $n\geq n_0$ si ha $x_n\in\bigcap_{i=1}^n U_i\subseteq U_{n_0}\subseteq U$.

Essendo C sequenzialmente chiuso, risulta $x \in C$.

Allora, ne segue che $\overline{C} \subseteq C$ per arbitrarietà di x, ossia C chiuso.

Sia X uno spazio topologico.

Un insieme $A \subseteq X$ si dice **sequenzialmente aperto** quando $X \setminus A$ è sequenzialmente chiuso.

Q Osservazione: Caratterizzazione degli insiemi sequenzialmente aperti

Sia X uno spazio topologico.

Un insieme $A \subseteq X$ è sequenzialmente aperto se e solo se, per ogni successione $\{x_n\}_n \subseteq A$ convergente a un certo $x \in X$, esiste $\nu \in \mathbb{N}$ tale che $x_n \in A$ per ogni $n \ge \nu$.

Proposizione 3.2: Insiemi sequenzialmente aperti di X costituiscono una topologia

Sia X uno spazio topologico con topologia τ .

Sia au_s la famiglia degli insiemi sequenzialmente aperti di X.

 τ_s è una topologia su X.

Dimostrazione

Mi secco.

□ Definizione: Sequenzializzazione di una topologia

Sia X uno spazio topologico con topologia τ .

La famiglia τ_s degli insiemi sequenzialmente aperti di X secondo τ , che è una topologia per la [Proposizione 3.2], prende il nome di **sequenzializzazione** di τ .

Q Osservazione: Finezza tra una topologia e la sua sequenzializzazione

Sia X uno spazio topologico con topologia τ .

Sia τ_s la sequenzializzazione di τ .

Allora, $\tau_s \supseteq \tau$.

Proposizione 3.3: Equivalenza tra sequenziale semicontinuità inferiore e semicontinuità inferiore rispetto alla sequenzializzazione

Sia X uno spazio topologico con topologia τ .

Sia τ_s la sequenzializzazione di τ .

Sia $f:X \to \mathbb{R}$.

Sono equivalenti i seguenti fatti:

- 1. f è sequenzialmente semicontinua inferiormente secondo τ ;
- 2. f è semicontinua inferiormente secondo τ_s .

Si supponga f sequenzialmente semicontinua inferiormente secondo τ .

Si provi la semicontinuità inferiore secondo τ_s tramite la caratterizzazione nella [Proposizione 2.1], mostrando dunque che, per ogni $r \in \mathbb{R}$, l'insieme $f^{-1}(]-\infty;r])$ è chiuso secondo τ_s , ossia sequenzialmente chiuso.

Sia dunque $\{x_n\}_{n\in\mathbb{N}}\subseteq f^{-1}\big(]-\infty;r]\big)$, tale cioè che $f(x_n)\leq r$ per ogni $n\in\mathbb{N}$, convergente a un certo $x^*\in X$. Per sequenziale semicontinuità di f si ha $f(x^*)\leq \liminf_n f(x_n)$; d'altra parte, essendo $f(x_n)\leq r$ per ogni $n\in\mathbb{N}$, segue $\liminf_n f(x_n)\leq r$ per confronto.

Allora, $f(x^*) \leq r$, ossia $x^* \in f^{-1} ig(] - \infty; r] ig)$.

\Box Dimostrazione $(2. \Rightarrow 1.)$

Si supponga f semicontinua inferiormente secondo τ_s .

Sia $\tilde{x} \in X$.

Sia $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ una successione convergente a \tilde{x} .

Si provi che $f(\tilde{x}) \leq \liminf_n f(x_n)$.

Si proceda per assurdo, supponendo che $f(\tilde{x}) > \liminf_{n \to \infty} f(x_n)$.

Sia $\gamma \in \mathbb{R}$ tale che $f(ilde{x}) > \gamma > \liminf_n f(x_n).$

Per ipotesi di semicontinuità inferiore di f secondo τ_s , l'insieme $f^{-1}(]-\infty;\gamma])$ è chiuso secondo τ_s , per la [Proposizione 2.1]; cioè, $f^{-1}(]-\infty;\gamma]$) è sequenzialmente chiuso.

Inoltre, essendo $\gamma > \liminf_n f(x_n)$, esiste un'estratta $\{x_{n_k}\}_{k \in \mathbb{N}}$ tale che valga $x_{n_k} < \gamma$ definitivamente.

Poiché $\{x_{n_k}\}_{k\in\mathbb{N}}$ converge a \tilde{x} e $f^{-1}(]-\infty;\gamma]$) è sequenzialmente chiuso, si ha che $\tilde{x}\in f^{-1}(]-\infty;\gamma]$), ossia $f(\tilde{x})\leq \gamma$.

Tuttavia, ciò è contraddittorio con il fatto che γ è stato scelto dimodoché $f(\tilde{x}) > \gamma$.