Borel reducibility and finitely $H\ddot{o}lder(\alpha)$ embeddability

Longyun Ding

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, PR
China

Abstract

Let (X_n, d_n) , $n \in \mathbb{N}$ be a sequence of pseudo-metric spaces, $p \geq 1$. For $x, y \in \prod_{n \in \mathbb{N}} X_n$, let $(x, y) \in E((X_n)_{n \in \mathbb{N}}; p) \Leftrightarrow \sum_{n \in \mathbb{N}} d_n(x(n), y(n))^p < +\infty$. For Borel reducibility between equivalence relations $E((X_n)_{n \in \mathbb{N}}; p)$, we show it is closely related to finitely $H\"{o}lder(\alpha)$ embeddability between pseudo-metric spaces.

Keywords: Borel reducibility, Hölder (α) embeddability, finitely Hölder (α) embeddability

1. Introduction

A topological space is called a *Polish space* if it is homeomorphic to a separable complete metric space. Let X, Y be Polish spaces and E, F equivalence relations on X, Y respectively. A *Borel reduction* from E to F is a Borel function $\theta: X \to Y$ such that

$$(x,y) \in E \iff (\theta(x),\theta(y)) \in F$$

for all $x, y \in X$. We say that E is Borel reducible to F, denoted $E \leq_B F$, if there is a Borel reduction from E to F. If $E \leq_B F$ and $F \leq_B E$, we say that E and F are Borel bireducible and denote $E \sim_B F$. We refer to [1] and [5] for background on Borel reducibility.

It was proved by R. Dougherty and G. Hjorth [4] that, for $p, q \ge 1$,

$$\mathbb{R}^{\mathbb{N}}/\ell_p \leq_B \mathbb{R}^{\mathbb{N}}/\ell_q \iff p \leq q.$$

Email address: dinglongyun@gmail.com (Longyun Ding)

Research partially supported by the National Natural Science Foundation of China (Grant No. 10701044). We thank Rui Liu for the inspiring discussions.

The equivalence relation \mathbb{R}/ℓ_p was extended to so called ℓ_p -like equivalence relations in [3]. Let (X_n, d_n) , $n \in \mathbb{N}$ be a sequence of pseudo-metric spaces, $p \geq 1$. For $x, y \in \prod_{n \in \mathbb{N}} X_n$, $(x, y) \in E((X_n)_{n \in \mathbb{N}}; p) \Leftrightarrow \sum_{n \in \mathbb{N}} d_n(x(n), y(n))^p < +\infty$.

A special case concerning separable Banach spaces was investigated in [2]. It was showed in [2] that Borel reducibility between this kind of equivalence relations is related to the existence of $H\ddot{o}lder(\alpha)$ embeddings. In this paper, we introduce the notion of C-finitely $H\ddot{o}lder(\alpha)$ embeddability, and generalize the connection between Borel reducibility and finitely $H\ddot{o}lder(\alpha)$ embeddability to a rather general type of metric spaces.

2. ℓ_p -like equivalence relations on pseudo-metric spaces

Definition 2.1. Let (X_n, d_n) , $n \in \mathbb{N}$ be a sequence of pseudo-metric spaces, $p \geq 1$. We define an equivalence relation $E((X_n, d_n)_{n \in \mathbb{N}}; p)$ on $\prod_{n \in \mathbb{N}} X_n$ by

$$(x,y) \in E((X_n, d_n)_{n \in \mathbb{N}}; p) \iff \sum_{n \in \mathbb{N}} d_n(x(n), y(n))^p < +\infty$$

for $x, y \in \prod_{n \in \mathbb{N}} X_n$. We call it an ℓ_p -like equivalence relation.

If $(X_n, d_n) = (X, d)$ for every $n \in \mathbb{N}$, we write $E((X, d); p) = E((X_n, d_n)_{n \in \mathbb{N}}; p)$ for the sake of brevity. If there is no danger of confusion, we simply write $E((X_n)_{n \in \mathbb{N}}; p)$ and E(X; p) instead of $E((X_n, d_n)_{n \in \mathbb{N}}; p)$ and E((X, d); p).

Definition 2.2. If X is a Polish space, d is a Borel pseudo-metric on X, we say (X, d) is a Borel pseudo-metric space.

Let (Y_n, δ_n) , $n \in \mathbb{N}$ be a sequence of pseudo-metric spaces, $y^* \in \prod_{n \in \mathbb{N}} Y_n$. For $q \geq 1$, we denote by $\ell_q((Y_n)_{n \in \mathbb{N}}, y^*)$ the pseudo-metric space whose underlying space is

$$\left\{ y \in \prod_{n \in \mathbb{N}} Y_n : \sum_{n \in \mathbb{N}} \delta_n(y(n), y^*(n))^q < +\infty \right\},\,$$

with the pseudo-metric

$$\delta_q(x,y) = \left(\sum_{n \in \mathbb{N}} \delta_n(x(n), y(n))^q\right)^{\frac{1}{q}}.$$

Theorem 2.3. Let (Y, δ) be a Borel pseudo-metric space, $Y_0 \subseteq Y_1 \subseteq Y_2 \subseteq \cdots$ a sequence of Borel subsets of Y, and let $(X_n, d_n), n \in \mathbb{N}$ be a sequence of Borel pseudo-metric spaces, $p, q \in [1, +\infty)$. If there are A, C, D > 0, a sequence of Borel maps $T_n : X_n \to \ell_q((Y_n)_{n \in \mathbb{N}}, y^*)$ for some $y^* \in \prod_{n \in \mathbb{N}} Y_n$ and two sequences of non-negative real numbers $\varepsilon_n, \eta_n, n \in \mathbb{N}$ such that

- (1) $\sum_{n\in\mathbb{N}} \varepsilon_n^p < +\infty, \sum_{n\in\mathbb{N}} \eta_n^q < +\infty;$
- (2) $d_n(u,v) < \varepsilon_n \Rightarrow \delta_q(T_n(u),T_n(v)) < \eta_n;$
- (3) $d_n(u, v) \ge C \Rightarrow \delta_q(T_n(u), T_n(v)) \ge D$;
- (4) $\varepsilon_n \le d_n(u, v) < C \Rightarrow A^{-1}d_n(u, v)^{\frac{p}{q}} \le \delta_q(T_n(u), T_n(v)) \le Ad_n(u, v)^{\frac{p}{q}}$.

Then we have

$$E((X_n)_{n\in\mathbb{N}};p)\leq_B E((Y_n)_{n\in\mathbb{N}};q).$$

Proof. Fix a bijection $\langle \cdot, \cdot \rangle : \mathbb{N}^2 \to \mathbb{N}$ such that $m \leq \langle n, m \rangle$ for each $n, m \in \mathbb{N}$. Note that $T_n(u)(m) \in Y_m \subseteq Y_{\langle n, m \rangle}$ for every $u \in X_n$. We define $\theta : \prod_{n \in \mathbb{N}} X_n \to \prod_{k \in \mathbb{N}} Y_k$ by

$$\theta(x)(\langle n, m \rangle) = T_n(x(n))(m)$$

for $x \in \prod_{n \in \mathbb{N}} X_n$ and $n, m \in \mathbb{N}$. It is easy to see that θ is Borel. By the definition we have

$$= \sum_{n,m\in\mathbb{N}} \delta(\theta(x)(\langle n,m\rangle),\theta(y)(\langle n,m\rangle))^{q}$$

$$= \sum_{n\in\mathbb{N}} \sum_{m\in\mathbb{N}} \delta(T_{n}(x(n))(m),T_{n}(y(n))(m))^{q}$$

$$= \sum_{n\in\mathbb{N}} \delta_{q}(T_{n}(x(n)),T_{n}(y(n)))^{q}.$$

For $x, y \in \prod_{n \in \mathbb{N}} X_n$, we split \mathbb{N} into three sets

$$I_{1} = \{ n \in \mathbb{N} : d_{n}(x(n), y(n)) < \varepsilon_{n} \},$$

$$I_{2} = \{ n \in \mathbb{N} : d_{n}(x(n), y(n)) \ge C \},$$

$$I_{3} = \{ n \in \mathbb{N} : \varepsilon_{n} < d_{n}(x(n), y(n)) < C \}.$$

From (2) we have

$$\sum_{n \in I_1} d_n(x(n), y(n))^p < \sum_{n \in I_1} \varepsilon_n^p \le \sum_{n \in \mathbb{N}} \varepsilon_n^p < +\infty,$$

$$\sum_{n\in I_1} \delta_q(T_n(x(n)), T_n(y(n)))^q < \sum_{n\in I_1} \eta_n^q \le \sum_{n\in \mathbb{N}} \eta_n^q < +\infty;$$

denote $|I_2|$ the cardinal of I_2 , from (3) we have

$$\sum_{n \in I_2} d_n(x(n), y(n))^p \ge C^p |I_2|,$$

$$\sum_{n \in I_2} \delta_q(T_n(x(n)), T_n(y(n)))^q \ge D^q |I_2|;$$

and from (4) we have

$$A^{-q} \sum_{n \in I_3} d_n(x(n), y(n))^p \le \sum_{n \in I_3} \delta_q(T_n(x(n)), T_n(y(n)))^q \le A^q \sum_{n \in I_3} d_n(x(n), y(n))^p.$$

Therefore,

$$(x,y) \in E((X_n)_{n \in \mathbb{N}}; p)$$

$$\iff \sum_{n \in \mathbb{N}} d_n(x(n), y(n))^p < +\infty$$

$$\iff |I_2| < \infty, \sum_{n \in I_3} d_n(x(n), y(n))^p < +\infty$$

$$\iff |I_2| < \infty, \sum_{n \in I_3} \delta_q(T_n(x(n)), T_n(y(n)))^q < +\infty$$

$$\iff \sum_{n \in \mathbb{N}} \delta_q(T_n(x(n)), T_n(y(n)))^q < +\infty$$

$$\iff \sum_{n,m \in \mathbb{N}} \delta(\theta(x)(\langle n, m \rangle), \theta(y)(\langle n, m \rangle))^q < +\infty$$

$$\iff (\theta(x), \theta(y)) \in E((Y_k)_{k \in \mathbb{N}}; q).$$

It follows that $E((X_n)_{n\in\mathbb{N}}; p) \leq_B E((Y_n)_{n\in\mathbb{N}}; q)$.

Corollary 2.4. If all (X_n, d_n) 's are separable, then the sequence $\eta_n, n \in \mathbb{N}$ and clause (2) in Theorem 2.3 can be omitted.

Proof. By Zorn's lemma, we can find a set $S_n \subseteq X_n$ for each n such that

- (i) $\forall r, s \in S_n (r \neq s \to d_n(r, s) \ge \varepsilon_n);$
- (ii) $\forall u \in X_n \exists s \in S_n(d_n(u, s) < \varepsilon_n).$

Since X_n is separable, S_n is countable. So we can enumerate S_n by $(s_m^n)_{m\in\mathbb{N}}$. Define $T'_n: X_n \to \ell_q((Y_n)_{n\in\mathbb{N}}, y^*)$ by $T'_n(u) = T_n(s_{m(u)}^n)$ where m(u) is the least m such that $d_n(u, s_m^n) < \varepsilon_n$. It is easy to see that each T'_n is Borel.

Without loss of generality, we may assume that $5\varepsilon_n < C$. Now denote $\varepsilon'_n = 3\varepsilon_n, \eta'_n = A(5\varepsilon_n)^{\frac{p}{q}}$ and $A' = 3^{\frac{p}{q}}A, C' = C - 2\varepsilon_n, D' = \min\left\{D, A^{-1}\left(\frac{C}{5}\right)^{\frac{p}{q}}\right\}$. We check that $\varepsilon'_n, \eta'_n, A', C'$ and D' meet clauses (1)–(4) in Theorem 2.3 as follows:

$$(1) \sum_{n \in \mathbb{N}} (\varepsilon_n')^p = 3^p \sum_{n \in \mathbb{N}} \varepsilon_n^p < +\infty, \ \sum_{n \in \mathbb{N}} (\eta_n')^q = 5^p A^q \sum_{n \in \mathbb{N}} \varepsilon_n^p < +\infty.$$

(2) If $d_n(u,v) < \varepsilon'_n$, then $d_n(s^n_{m(u)}, s^n_{m(v)}) < 5\varepsilon_n < C$. Note that $s^n_{m(u)} = s^n_{m(v)}$ or $d_n(s^n_{m(u)}, s^n_{m(v)}) \ge \varepsilon_n$. So by clause (4) in Theorem 2.3, we have

$$\delta_q(T'_n(u), T'_n(v)) = \delta_q(T_n(s^n_{m(u)}), T_n(s^n_{m(v)})) \le Ad_n(s^n_{m(u)}, s^n_{m(v)})^{\frac{p}{q}} < \eta'_n.$$

(3) If $d_n(u,v) \geq C'$, then $d_n(s_{m(u)}^n, s_{m(v)}^n) \geq C - 4\varepsilon_n \geq \varepsilon_n$. For $\varepsilon_n \leq d_n(s_{m(u)}^n, s_{m(v)}^n) < C$, we have

$$\delta_{q}(T'_{n}(u), T'_{n}(v)) = \delta_{q}(T_{n}(s^{n}_{m(u)}), T_{n}(s^{n}_{m(v)}))
\geq A^{-1}d_{n}(s^{n}_{m(u)}, s^{n}_{m(v)})^{\frac{p}{q}} \geq A^{-1}(C - 4\varepsilon_{n})^{\frac{p}{q}}
\geq A^{-1}\left(\frac{C}{5}\right)^{\frac{p}{q}} \geq D'.$$

And for $d_n(s_{m(u)}^n, s_{m(v)}^n) \geq C$, we have

$$\delta_q(T'_n(u), T'_n(v)) = \delta_q(T_n(s^n_{m(u)}), T_n(s^n_{m(v)})) \ge D \ge D'.$$

(4) If
$$\varepsilon'_n \leq d_n(u,v) < C'$$
, then $\varepsilon_n \leq d_n(s^n_{m(u)}, s^n_{m(v)}) < C$ and

$$\frac{1}{3}d_n(u,v) \le d_n(u,v) - 2\varepsilon_n < d_n(s_{m(u)}^n, s_{m(v)}^n) < d_n(u,v) + 2\varepsilon_n \le 3d_n(u,v).$$

Since

$$A^{-1}d_n(s_{m(u)}^n, s_{m(v)}^n)^{\frac{p}{q}} \le \delta_q(T_n(s_{m(u)}^n), T_n(s_{m(v)}^n)) \le Ad_n(s_{m(u)}^n, s_{m(v)}^n)^{\frac{p}{q}},$$

it follows that

$$(A')^{-1}d_n(u,v)^{\frac{p}{q}} \leq \delta_q(T'_n(u),T'_n(v)) \leq A'd_n(u,v)^{\frac{p}{q}}.$$

3. On separable pseudo-metric spaces

For the rest of this paper, we focus on such $E((X_n, d_n)_{n \in \mathbb{N}}; p)$ that all (X_n, d_n) 's are separable Borel pseudo-metric spaces.

Let $S_n = \{s_m^n : m \in \mathbb{N}\}$ be a countable dense subset of X_n . We may assume that $d_n(s_m^n, s_k^n) > 0$ for $m \neq k$, i.e. (S_n, d_n) is a countable metric space. For $u \in X_n$, let $m_n(u) = \min\{m : d_n(u, s_m^n) < 2^{-n}\}$ and $\vartheta : \prod_{n \in \mathbb{N}} X_n \to \prod_{n \in \mathbb{N}} D_n$ as $\vartheta(x)(n) = s_{m_n(u)}^n$. Since $\sum_{n \in \mathbb{N}} d_n(x(n), \vartheta(x)(n))^p < 0$

 $\sum_{n\in\mathbb{N}} 2^{-np} < +\infty$, we have $(x, \vartheta(x)) \in E((X_n)_{n\in\mathbb{N}}; p)$. Thus ϑ is a Borel reduction of $E((X_n)_{n\in\mathbb{N}}; p)$ to $E((S_n)_{n\in\mathbb{N}}; p)$. So $E((X_n)_{n\in\mathbb{N}}; p) \sim_B E((S_n)_{n\in\mathbb{N}}; p)$. Now let $(\overline{S_n}, \overline{d_n})$ be the completion of (S_n, d_n) . Since $(\overline{S_n}, \overline{d_n})$ is a Polish space, by the same arguments, we have

$$E((\overline{S_n})_{n\in\mathbb{N}};p)\sim_B E((S_n)_{n\in\mathbb{N}};p)\sim_B E((X_n)_{n\in\mathbb{N}};p).$$

Therefore, from now on, we may assume that all (X_n, d_n) 's are separable complete metric space.

Definition 3.1. Let (X,d) be a separable complete metric space, $(F_n)_{n\in\mathbb{N}}$ a sequence of finite subsets of X. If $F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n \subseteq \cdots$ and $\bigcup_{n\in\mathbb{N}} F_n$ is dense in X, then we denote

$$F(X;p) = E((F_n)_{n \in \mathbb{N}}; p).$$

The following lemma shows that, under Borel bireducibility, F(X; p) is independent to the choice of $(F_n)_{n\in\mathbb{N}}$.

Lemma 3.2. Let (X, d) be a separable complete metric space, and let $(F_n)_{n \in \mathbb{N}}$ and $(F'_n)_{n \in \mathbb{N}}$ be two sequences of finite subsets of X satisfying that

$$F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n \subseteq \cdots, \quad F'_0 \subseteq F'_1 \subseteq \cdots \subseteq F'_n \subseteq \cdots,$$

and both $\bigcup_{n\in\mathbb{N}} F_n$ and $\bigcup_{n\in\mathbb{N}} F'_n$ are dense in X. Then for each $p\geq 1$ we have

$$E((F_n)_{n\in\mathbb{N}};p)\sim_B E((F'_n)_{n\in\mathbb{N}};p).$$

Proof. It will suffice to show that $E((F_n)_{n\in\mathbb{N}}; p) \leq_B E((F'_n)_{n\in\mathbb{N}}; p)$. For $k \in \mathbb{N}$, let $\gamma_k = \min\{d(u,v) : u,v \in F_k, u \neq v\}$. Note that $\bigcup_{n\in\mathbb{N}} F'_n$ is dense in X. For $u \in F_k$, we can find a $T_k(u) \in \bigcup_{n\in\mathbb{N}} F'_n$ such that $d(u,T_k(u)) < \gamma_k/4$. Then for distinct $u,v \in F_k$ we have

$$\frac{1}{2}d(u,v) \le d(u,v) - \gamma_k/2 < d(T_k(u),T_k(v)) < d(u,v) + \gamma_k/2 \le 2d(u,v).$$

Since F_k is finite, there is n_k such that $T_k(u) \in F'_{n_k}$ for each $u \in F_k$. We may assume that $(n_k)_{k \in \mathbb{N}}$ is strictly increasing. Fix a point $u_0 \in F'_0 \subseteq F'_n$. We define $\theta : \prod_{n \in \mathbb{N}} F_n \to \prod_{n \in \mathbb{N}} F'_n$ by

$$\theta(x)(n) = \begin{cases} T_k(x(k)), & n = n_k \\ u_0, & \text{otherwise.} \end{cases}$$

Then for $x, y \in \prod_{n \in \mathbb{N}} F_n$ we have

$$\frac{1}{2^p} \sum_{k \in \mathbb{N}} d(x(k), y(k))^p \le \sum_{n \in \mathbb{N}} d(\theta(x)(n), \theta(y)(n))^p \le 2^p \sum_{k \in \mathbb{N}} d(x(k), y(k))^p,$$

It follows that θ is a Borel reduction of $E((F_n)_{n\in\mathbb{N}};p)$ to $E((F'_n)_{n\in\mathbb{N}};p)$.

Remark 3.3. We can see that $E(X;p) \sim_B F(X;p)$ when X is compact. But whether it is always true for every separable complete metric space? We do not know the answer.

Definition 3.4. For two metric spaces (X, d), (X', d') and $\alpha > 0$. We say that X Hölder (α) embeds into X' if there exist A > 0 and $T: X \to X'$ such that, for $u, v \in F$,

$$A^{-1}d(u,v)^{\alpha} \le d'(T(u),T(v)) \le Ad(u,v)^{\alpha}.$$

Theorem 2.3 gives the following result.

Remark 3.5. Let X, Y be two separable complete metric spaces, $p, q \in [1, +\infty)$. If X Hölder $(\frac{p}{q})$ embeds into $\ell_q(Y, y^*)$ for some $y^* \in Y^{\mathbb{N}}$, then we have $E(X; p) \leq_B E(Y; q)$.

In next section, we present a necessary condition of $E(X; p) \leq_B E(Y; q)$ which will be named finitely $\text{H\"older}(\frac{p}{q})$ embeddability.

4. Finitely $H\ddot{o}lder(\alpha)$ embeddability

A weak version of the following lemma is due to R. Dougherty and G. Hjorth [4]. For self-contain reason, we present a proof for it.

Lemma 4.1. Let $(Y_n, \delta_n), n \in \mathbb{N}$ be a sequence of separable complete metric space, $p, q \in [1, +\infty)$, and let $(Z_n, d_n), n \in \mathbb{N}$ be a sequence of finite metric spaces. Assume that $E((Z_n)_{n \in \mathbb{N}}; p) \leq_B E((Y_n)_{n \in \mathbb{N}}; q)$. Then there exist strictly increasing sequences of natural numbers $(b_j)_{j \in \mathbb{N}}, (l_j)_{j \in \mathbb{N}}$ and $T_j: Z_{b_j} \to \prod_{n=l_j}^{l_{j+1}-1} Y_n$ such that, for $x, y \in \prod_{j \in \mathbb{N}} Z_{b_j}$, we have

$$(x,y) \in E((Z_{b_j}, d_{b_j})_{j \in \mathbb{N}}; p) \iff \sum_{j \in \mathbb{N}} \delta_q(T_j(x(j)), T_j(y(j)))^q < +\infty,$$

where
$$\delta_q(r,s) = (\sum_{n=l_j}^{l_{j+1}-1} \delta_n(r(n),s(n))^q)^{\frac{1}{q}}$$
 for $r,s \in \prod_{n=l_j}^{l_{j+1}-1} Y_n$.

Proof. The proof is modified from the proof of [4] Theorem 2.2, Claim (i)–(iii).

Denote $Z = \prod_{n \in \mathbb{N}} Z_n$. Assume that θ is a Borel reduction of $E((Z_n)_{n \in \mathbb{N}}; p)$ to $E((Y_n)_{n \in \mathbb{N}}; q)$. For each finite sequence t we denote l(t) the length of t; if $t \in \prod_{i < l(t)} Z_i$, let $N_t = \{z \in Z : z(i) = t(i) (i < l(t))\}$.

Claim (i). For $j, k \in \mathbb{N}$, there exist $l \in \mathbb{N}$ and $s^* \in \prod_{i=k}^{k+l(s^*)-1} Z_i$ and a comeager set $D \subseteq Z$ such that, for all $x, \hat{x} \in D$, if we have $x = rs^*y$ and $\hat{x} = \hat{r}s^*y$ for some $r, \hat{r} \in \prod_{i < k} Z_i$ and $y \in \prod_{i > k+l(s^*)} Z_i$, then

$$\sum_{n\geq l} \delta_n(\theta(x)(n), \theta(\hat{x})(n))^q < 2^{-j}.$$

Proof. For $l \in \mathbb{N}$, we define a function $F_l: Z \to \mathbb{R}$ by

$$F_l(x) = \max \left\{ \sum_{n \ge l} \delta_n(\theta(z)(n), \theta(\hat{z})(n))^q : z(i) = \hat{z}(i) = x(i) \ (i \ge k) \right\}.$$

For each x, there are only finitely many pairs z, \hat{z} satisfying $z(i) = \hat{z}(i) = x(i)$ $(i \ge k)$. For each such pair we have $(z, \hat{z}) \in E((Z_n)_{n \in \mathbb{N}}; p)$, so $(\theta(z), \theta(\hat{z})) \in E((Y_n)_{n \in \mathbb{N}}; q)$. Thus $\lim_{l \to \infty} \sum_{n \ge l} \delta_n(\theta(z)(n), \theta(\hat{z})(n))^q = 0$. Hence $F_l(x) < +\infty$ for all l and $\lim_{l \to \infty} F_l(x) = 0$. Therefore, by the Baire category theorem, there exists an l such that $\{x : F_l(x) < 2^{-j}\}$ is not meager. By F is Borel, this set has the property of Baire, so there is an open set $O \ne \emptyset$ on which it is relatively comeager.

Find an $N_t \subseteq O$ for some finite sequence t with $l(t) \geq k$. Let $t = r^*s^*$ where $l(r^*) = k$. Since $F_l(x)$ does not depend on the first k coordinates of x, we have $\{x : F_l(x) < 2^{-j}\}$ is also relatively comeager in N_{rs^*} for all $r \in \prod_{i < k} Z_i$. Let D be a comeager set such that $F_l(x) < 2^{-j}$ whenever $x \in D \cap N_{rs^*}$ for any r of length k. Now the conclusion of the claim follows from the definition of F_l .

By [6] Theorem (5.38), there is a dense G_{δ} set $C \subseteq Z$ such that $\theta \upharpoonright C$ is continuous.

Claim (ii). For $j, k, l \in \mathbb{N}$, there exists a finite sequence $s^{**} \in \prod_{i=k}^{k+l(s^{**})-1} Z_i$ such that, for all $x, \hat{x} \in C$, if we have $x = rs^{**}y$ and $\hat{x} = rs^{**}\hat{y}$ for some $r \in \prod_{i < k} Z_i$ and $y, \hat{y} \in \prod_{i > k+l(s^{**})} Z_i$, then

$$\sum_{n < l} \delta_n(\theta(x)(n), \theta(\hat{x})(n))^q < 2^{-j}.$$

Furthermore, if G is a given dense open subset of Z, then s^{**} can be chosen such that $N_{rs^{**}} \subseteq G$ for all $r \in \prod_{i < k} Z_i$.

Proof. Since $\prod_{i < k} Z_i$ is a finite set, we may enumerate its elements as r_0, r_1, \dots, r_{M-1} . We construct finite sequences t_0, t_1, \dots, t_M as follows.

Let $t_0 = \emptyset$. Suppose that m < M and we have constructed a finite sequence $t_m \in \prod_{i=k}^{k+l(t_m)-1} Z_i$. The basic open set $N_{r_m t_m}$ must meet the comeager set C, so we can pick a $w \in C \cap N_{r_m t_m}$. Since θ is continuous on C and δ_n is continuous on Y_n^2 , we can find a neighborhood C of C such that, for all C and C is equal to C is open dense, we can further extend C is equal to C then C is open dense, we can further extend C is equal to C such that C is open dense, we can further extend C is equal to C and C is equal to C is equal to C. Once the sequences C is equal to C is equal to C is equal to C. Claim (ii) C

We now repeatedly apply Claims (i) and (ii) to define natural numbers $b_0 < b_1 < b_2 < \cdots$ and $l_0 < l_1 < l_2 < \cdots$, finite sequences $(s_j)_{j \in \mathbb{N}}$ and dense open sets $D_i^j \subseteq Z$ $(i, j \in \mathbb{N})$ as follows.

Let $b_0 = l_0 = 0$. Suppose we have constructed $b_j, l_j, D_i^{j'}(j' < j)$. Applying Claim (i) for this j with $k = b_j + 1$, we get l_{j+1} , a finite sequence s_j^* and a comeager set D^j satisfying the conclusion of Claim (i). Let $D_0^j \supseteq D_1^j \supseteq D_2^j \supseteq \cdots$ be dense open sets of Z such that $\bigcap_{i \in \mathbb{N}} D_i^j \subseteq D^j \cap C$. Now apply Claim (ii) for j with $k = b_j + 1 + l(s_j^*), l = l_{j+1}$ and $G = \bigcap_{j' < j} D_j^{j'}$ to get s_j^{**} . We set $s_j = s_j^* s_j^{**}$ and $b_{j+1} = b_j + l(s_j) + 1$.

Denote $Z' = \prod_{i \in \mathbb{N}} Z_{b_i}$ and define $h: Z' \to Z$ by

$$h(x) = \langle x(0) \rangle s_0 \langle x(1) \rangle s_1 \langle x(2) \rangle s_2 \cdots$$

Since $s_j = s_j^* s_j^{**}$, h(x) has the form $r s_j^* y$ where $l(r) = b_j + 1$, and also has the form $r s_j^{**} y$ where $l(r) = b_j + l(s^*) + 1$. Therefore, Claim (ii) for s_j^{**} gives $h(x) \in G = \bigcap_{j' < j} D_j^{j'}$. Hence, for any j, we have $h(x) \in D_i^j$ for i > j, so $h(x) \in D^j \cap C$. Therefore, Claims (i) and (ii) imply that, for any $x, \hat{x} \in Z'$:

- (1) if $x(b_i) = \hat{x}(b_i)$ (i > j), then $\sum_{n > l_{j+1}} \delta_n(\theta(h(x))(n), \theta(h(\hat{x}))(n))^q < 2^{-j}$;
- (2) if $x(b_i) = \hat{x}(b_i)$ $(i \le j)$, then $\sum_{n < l_{j+1}}^{-3+1} \delta_n(\theta(h(x))(n), \theta(h(\hat{x}))(n))^q < 2^{-j}$.

Fix a point $u_0 \in Z_0 \subseteq Z_{b_i}$. For $j \in \mathbb{N}$ we define $T_j : Z_{b_j} \to \prod_{n=l_i}^{l_{j+1}-1} Y_n$ by

$$T_j(w) = \theta(h(\langle u_0, \cdots, u_0, w, u_0, u_0, \cdots \rangle)) \upharpoonright [l_j, l_{j+1})$$

with j u_0 's before v. Let $\theta': Z \to \prod_{n \in \mathbb{N}} Y_n$,

$$\theta'(x) = T_0(x(0))T_1(x(1))T_2(x(2))\cdots$$

Next claim shows that θ' is a Borel reduction of $E((Z_{b_j}, d_{b_j})_{j \in \mathbb{N}}; p)$ to $E((Y_n)_{n \in \mathbb{N}}; q)$. Claim (iii). For all $x, \hat{x} \in \prod_{j \in \mathbb{N}} Z_{b_j}$, we have

$$(x,\hat{x}) \in E((Z_{b_i},d_{b_i})_{i \in \mathbb{N}};p) \iff (\theta'(x),\theta'(\hat{x})) \in E((Y_n)_{n \in \mathbb{N}};q).$$

Proof. Note that

$$(x,\hat{x}) \in E((Z_{b_j},d_{b_j})_{j \in \mathbb{N}};p) \iff (h(x),h(\hat{x})) \in E((Z_n,d_n)_{n \in \mathbb{N}};p)$$
$$\iff (\theta(h(x)),\theta(h(\hat{x}))) \in E((Y_n)_{n \in \mathbb{N}};q).$$

It will suffice to show that $(\theta(h(x)), \theta'(x)) \in E((Y_n)_{n \in \mathbb{N}}; q)$ for any $x \in Z'$. For any $x \in Z'$ and $j \in \mathbb{N}$, define $e_j(x), e'_j(x) \in Z'$ by

$$e_j(x)(i) = \begin{cases} x(i), & i = j \\ u_0, & i \neq j; \end{cases}$$
 $e'_j(x)(i) = \begin{cases} x(i), & i \leq j \\ u_0, & i > j. \end{cases}$

By (1) for j-1 and (2), we have

$$\sum_{n \ge l_j} \delta_n(\theta(h(e_j(x)))(n), \theta(h(e'_j(x)))(n))^q < 2^{-(j-1)},$$

$$\sum_{n < l_{j+1}} \delta_n(\theta(h(x))(n), \theta(h(e'_j(x)))(n))^q < 2^{-j}.$$

Thus we have

$$\begin{split} & \sum_{n=l_{j}}^{l_{j+1}-1} \delta_{n}(\theta(h(x))(n), \theta(h(e_{j}(x)))(n))^{q} \\ \leq & \sum_{n=l_{j}}^{l_{j+1}-1} [\delta_{n}(\theta(h(x))(n), \theta(h(e'_{j}(x)))(n)) + \delta_{n}(\theta(h(e_{j}(x)))(n), \theta(h(e'_{j}(x)))(n))]^{q} \\ \leq & 2^{q-1} \left[\sum_{n=l_{j}}^{l_{j+1}-1} \delta_{n}(\theta(h(x))(n), \theta(h(e'_{j}(x)))(n))^{q} \\ & + \sum_{n=l_{j}}^{l_{j+1}-1} \delta_{n}(\theta(h(e_{j}(x)))(n), \theta(h(e'_{j}(x)))(n))^{q} \right] \\ \leq & 2^{q-1} \left[\sum_{n < l_{j+1}} \delta_{n}(\theta(h(x))(n), \theta(h(e'_{j}(x)))(n))^{q} \\ & + \sum_{n \geq l_{j}} \delta_{n}(\theta(h(e_{j}(x)))(n), \theta(h(e'_{j}(x)))(n))^{q} \right] \\ < & 2^{q-1} \cdot 3 \cdot 2^{-j}. \end{split}$$

We can see that $\theta'(x) \upharpoonright [l_j, l_{j+1}) = T_j(x(j)) = \theta(h(e_j(x))) \upharpoonright [l_j, l_{j+1})$ for each $j \in \mathbb{N}$. Therefore,

$$\sum_{n \in \mathbb{N}} \delta_n(\theta(h(x))(n), \theta'(x)(n))^q$$

$$= \sum_{j \in \mathbb{N}} \sum_{n=l_j}^{l_{j+1}-1} \delta_n(\theta(h(x))(n), \theta'(x)(n))^q$$

$$= \sum_{j \in \mathbb{N}} \sum_{n=l_j}^{l_{j+1}-1} \delta_n(\theta(h(x))(n), \theta(h(e_j(x)))(n))^q$$

$$< \sum_{j \in \mathbb{N}} 2^{q-1} \cdot 3 \cdot 2^{-j} < +\infty,$$

as desired.

Claim (iii) □

Note that

$$(\theta'(x), \theta'(\hat{x})) \in E((Y_n)_{n \in \mathbb{N}}; q) \iff \sum_{j \in \mathbb{N}} \sum_{n=l_j}^{l_{j+1}-1} \delta_n(\theta'(x)(n), \theta'(x)(n))^q < +\infty$$
$$\iff \sum_{j \in \mathbb{N}} \delta_q(T_j(x(j)), T_j(y(j)))^q < +\infty.$$

This completes the proof.

Let (X, d) be a metric space and C > 0. We consider the following condition:

(link(C)) For $\varepsilon > 0$, there exists $N \ge 1$ such that, for any $u, v \in X$ with d(u, v) < C, we can find $r_i \in X$, $i = 0, 1, \dots, N$ with $r_0 = u, r_N = v$ and $d(r_{i-1}, r_i) < \varepsilon$ for each $i \ge 1$.

Let (X, d) and (Y_n, δ_n) , $n \in \mathbb{N}$ be separable complete metric spaces, $p, q \in [1, +\infty)$. Assume that

- (A1) X satisfies (link(C)) for some C > 0; and
- (A2) $F(X; p) \leq_B E((Y_n)_{n \in \mathbb{N}}; q)$.

Fix a sequence of finite subsets $F_n \subseteq X$, $n \in \mathbb{N}$ such that

$$F_0 \subset F_1 \subset \cdots \subset F_n \subset \cdots$$

and $\bigcup_{n\in\mathbb{N}} F_n$ is dense in X.

Since (link(C)) holds, for $l \in \mathbb{N}$, there exists $N(l) \geq 1$ such that, for any $u, v \in X$ with d(u, v) < C, we can find $r_i^l(u, v) \in X$, $i = 0, 1, \dots, N(l)$ with $r_0^l(u, v) = u, r_{N(l)}^l(u, v) = v$ and $d(r_{i-1}^l(u, v), r_i^l(u, v)) < 2^{-l}$ for $i = 1, \dots, N(l)$. We denote

$$Z_n = \{r_i^l(u, v) : u, v \in F_n, d(u, v) < C, l \le n, i = 0, 1, \dots, N(l)\}.$$

Note that $E((Z_n); p) \sim_B F(X; p) \leq_B E((Y_n)_{n \in \mathbb{N}}; q)$. Since $Z_n \subseteq X$ is a sequence of finite metric spaces, we can find $(b_j)_{j \in \mathbb{N}}$, $(l_j)_{j \in \mathbb{N}}$ and $T_j : Z_{b_j} \to \prod_{n=l_j}^{l_{j+1}-1} Y_n$ as in Lemma 4.1. Then we have the following lemmas.

Lemma 4.2. For any C' > 0, there exists a D > 0 such that, for sufficiently large j and $u, v \in F_{b_i}$, if $d(u, v) \geq C'$, then $\delta_q(T_j(u), T_j(v)) \geq D$.

Proof. Assume for contradiction that, there exists a strictly increasing sequence of natural numbers $(j_k)_{k\in\mathbb{N}}$ such that there are $u_k, v_k \in F_{b_{j_k}}$ with $d(u_k, v_k) \geq C'$ and $\delta_q(T_{j_k}(u_k), T_{j_k}(v_k)) < 2^{-k}$.

Now we select $x, y \in \prod_{j \in \mathbb{N}} Z_{b_j}$ such that

$$\begin{cases} x(j) = u_k, y(j) = v_k, & j = j_k, \\ x(j) = y(j), & \text{otherwise.} \end{cases}$$

Then we have

$$\sum_{j\in\mathbb{N}} d(x(j), y(j))^p = \sum_{k\in\mathbb{N}} d(u_k, v_k)^p \ge \sum_{k\in\mathbb{N}} (C')^p = +\infty,$$

so $(x,y) \notin E((Z_{b_j})_{j \in \mathbb{N}}; p)$. On the other hand, we have

$$\sum_{j\in\mathbb{N}} \delta_q(T_j(x(j)), T_j(y(j)))^q = \sum_{k\in\mathbb{N}} \delta_q(T_{j_k}(u_k), T_{j_k}(v_k))^q < \sum_{k\in\mathbb{N}} 2^{-kq} < +\infty,$$

contradicting Lemma 4.1!

Lemma 4.3. There exists an $m \in \mathbb{N}$ such that $\forall k \exists N \forall j > N$, for $u, v \in F_{b_j}$, if $k^{-1} \leq d(u, v) < C$, then we have

$$2^{-m}d(u,v)^{\frac{p}{q}} \le \delta_q(T_j(u),T_j(v)) \le 2^m d(u,v)^{\frac{p}{q}}.$$

Proof. Assume for contradiction that, for every m, $\exists k_m \exists^{\infty} j \exists u_j, v_j \in F_{b_j}$ such that $k_m^{-1} \leq d(u_j, v_j) < C$ but either

$$2^{-m}d(u_j, v_j)^{\frac{p}{q}} > \delta_q(T_j(u_j), T_j(v_j))$$

or

$$\delta_q(T_j(u_j), T_j(v_j)) > 2^m d(u_j, v_j)^{\frac{p}{q}}.$$

We define two subsets $I_1, I_2 \subseteq \mathbb{N}$. For $m \in \mathbb{N}$, we put $m \in I_1$ iff $\exists k_m \exists^{\infty} j \exists u_j, v_j \in F_{b_j}$ satisfying that $k_m^{-1} \leq d(u_j, v_j) < C$ and

$$2^{-m}d(u_j, v_j)^{\frac{p}{q}} > \delta_q(T_j(u_j), T_j(v_j));$$

and $m \in I_2$ iff $\exists k_m \exists^{\infty} j \exists u_j, v_j \in F_{b_j}$ satisfying that $k_m^{-1} \leq d(u_j, v_j) < C$ and

$$\delta_q(T_i(u_i), T_i(v_i)) > 2^m d(u_i, v_i)^{\frac{p}{q}}.$$

From the assumption, we can see that $I_1 \cup I_2 = \mathbb{N}$. Now we consider the following two cases.

Case 1. $|I_1| = \infty$. Select a finite set $J^m \subseteq \mathbb{N}$ for every $m \in I_1$ and $u_j, v_j \in F_{b_j}$ for $j \in J^m$ satisfying that

- (i) for $j \in J^m$, we have $2^{-m}d(u_j, v_j)^{\frac{p}{q}} > \delta_q(T_i(u_i), T_i(v_i));$
- (ii) $C^p \leq \sum_{j \in J^m} d(u_j, v_j)^p < 2C^p$;
- (iii) if $m_1 < m_2$, then $\max J^{m_1} < \min J^{m_2}$.

Now we select $x, y \in \prod_{i \in \mathbb{N}} Z_{b_i}$ such that

$$\begin{cases} x(j) = u_j, y(j) = v_j, & j \in J^m, m \in I_1, \\ x(j) = y(j), & \text{otherwise.} \end{cases}$$

Then we have

$$\sum_{j \in \mathbb{N}} d(x(j), y(j))^p = \sum_{m \in I_1} \sum_{j \in J^m} d(u_j, v_j)^p \ge \sum_{m \in I_1} C^p = +\infty,$$

so $(x,y) \notin E((Z_{b_j})_{j \in \mathbb{N}}; p)$. On the other hand, we have

$$\begin{array}{ll} \sum_{j \in \mathbb{N}} \delta_q(T_j(x(j)), T_j(y(j)))^q &= \sum_{m \in I_1} \sum_{j \in J^m} \delta_q(T_j(u_j), T_j(v_j))^q \\ &< \sum_{m \in I_1} \sum_{j \in J^m} 2^{-mq} d(u_j, v_j)^p \\ &< 2C^p \sum_{m \in I_1} \left(2^{-q}\right)^m \\ &< +\infty, \end{array}$$

contradicting Lemma 4.1!

Case 2. $|I_2| = \infty$. We can find a strictly increasing sequence of natural

numbers $m_l \in I_2$, $l \in \mathbb{N}$ such that $m_l \geq \frac{pl}{2q}$ and $2^{m_l} \geq N(l)$ for each l. We define two subsets $L_1, L_2 \subseteq \mathbb{N}$. For $l \in \mathbb{N}$, we put $l \in L_1$ iff $\exists^{\infty} j \exists u_j, v_j \in F_{b_j}$ satisfying that $k_{m_l}^{-1} \leq d(u_j, v_j) < (\sqrt{2})^{-l}$ and

$$\delta_q(T_j(u_j), T_j(v_j)) > 2^{m_l} d(u_j, v_j)^{\frac{p}{q}};$$

and $l \in L_2$ iff $\exists^{\infty} j \exists u_j, v_j \in F_{b_j}$ satisfying that $(\sqrt{2})^{-l} \leq d(u_j, v_j) < C$ and

$$\delta_q(T_i(u_i), T_i(v_i)) > 2^{m_l} d(u_i, v_i)^{\frac{p}{q}}.$$

Since each $m_l \in I_2$, we have $L_1 \cup L_2 = \mathbb{N}$. We consider two subcases. Subcase 2.1. $|L_1| = \infty$. Select a finite set $K_1^l \subseteq \mathbb{N}$ for every $l \in L_1$ and $u_j, v_j \in F_{b_i}$ for $j \in K_1^l$ satisfying that

- (i) for $j \in K_1^l$, we have $\delta_q(T_i(u_i), T_i(v_i)) > 2^{m_l} d(u_i, v_i)^{\frac{p}{q}}$;
- (ii) $(\sqrt{2})^{-pl} \le \sum_{j \in K_1^l} d(u_j, v_j)^p < 2(\sqrt{2})^{-pl};$
- (iii) if $l_1 < l_2$, then $\max K_1^{l_1} < \min K_1^{l_2}$.

Now we select $x, y \in \prod_{j \in \mathbb{N}} Z_{b_j}$ such that

$$\begin{cases} x(j) = u_j, y(j) = v_j, & j \in K_1^l, l \in L_1, \\ x(j) = y(j), & \text{otherwise.} \end{cases}$$

Then we have

$$\sum_{j \in \mathbb{N}} d(x(j), y(j))^p = \sum_{l \in L_1} \sum_{j \in K_1^l} d(u_j, v_j)^p \le 2 \sum_{l \in L_1} (\sqrt{2})^{-pl} < +\infty,$$

so $(x,y) \in E((Z_{b_j})_{j\in\mathbb{N}};p)$. On the other hand, since $m_l \geq \frac{pl}{2q}$, we have

$$\sum_{j \in \mathbb{N}} \delta_{q}(T_{j}(x(j)), T_{j}(y(j)))^{q} = \sum_{l \in L_{1}} \sum_{j \in K_{1}^{l}} \delta_{q}(T_{j}(u_{j}), T_{j}(v_{j}))^{q}$$

$$> \sum_{l \in L_{1}} \sum_{j \in K_{1}^{l}} 2^{qm_{l}} d(u_{j}, v_{j})^{p}$$

$$\geq \sum_{l \in L_{1}} (\sqrt{2})^{2qm_{l} - pl}$$

$$= +\infty.$$

contradicting Lemma 4.1!

Subcase 2.2 $|L_2| = \infty$. Select a finite set $K_2^l \subseteq \mathbb{N}$ for each $l \in L_2$ and $u_j, v_j \in F_{b_j}$ for $j \in K_2^l$ satisfying that

- (i) for $j \in K_2^l$, we have $(\sqrt{2})^{-l} \leq d(u_j, v_j) < C$ and $\delta_q(T_j(u_j), T_j(v_j)) > 2^{m_l} d(u_j, v_j)^{\frac{p}{q}}$;
- (ii) $C^p \leq \sum_{j \in K_2^l} d(u_j, v_j)^p < 2C^p$;
- (iii) if $l_1 < l_2$, then $\max K_2^{l_1} < \min K_2^{l_2}$;
- (iv) for $j \in K_2^l$, we have $l \leq b_j$.

For $l \in L_1$ and $j \in K_2^l$, since $d(u_j, v_j) < C$ and $l \leq b_j$, by the definition of Z_{b_j} we have

$$r_i^l(u_j, v_j) \in Z_{b_j} \quad (i = 0, 1, \dots, N(l)).$$

Since $r_0^l(u_j, v_j) = u_j, r_{N(l)}^l(u_j, v_j) = v_j$, the triangle inequality gives

$$\sum_{1 \leq i \leq N(l)} \delta_q(T_j(r_{i-1}^l(u_j, v_j)), T_j(r_i^l(u_j, v_j))) \geq \delta_q(T_j(u_j), T_j(v_j)),$$

thus there is an i(j) such that

$$\delta_q(T_j(r_{i(j)-1}^l(u_j,v_j)),T_j(r_{i(j)}^l(u_j,v_j))) \ge N(l)^{-1}\delta_q(T_j(u_j),T_j(v_j)).$$

Now denote $r_j = r_{i(j)-1}^l(u_j, v_j), s_j = r_{i(j)}^l(u_j, v_j)$. We select $x, y \in \prod_{j \in \mathbb{N}} Z_{b_j}$ such that

$$\begin{cases} x(j) = r_j, y(j) = s_j, & j \in K_2^l, l \ge 1, \\ x(j) = y(j), & \text{otherwise.} \end{cases}$$

Note that $d(r_i, s_i) < 2^{-l} \le (\sqrt{2})^{-l} d(u_i, v_i)$, we have

$$\sum_{j \in \mathbb{N}} d(x(j), y(j))^{p} = \sum_{l \in L_{2}} \sum_{j \in K_{2}^{l}} d(r_{j}, s_{j})^{p}$$

$$< \sum_{l \in L_{2}} \sum_{j \in K_{2}^{l}} (\sqrt{2})^{-pl} d(u_{j}, v_{j})^{p}$$

$$< 2C^{p} \sum_{l \in L_{2}} (\sqrt{2})^{-pl}$$

$$< +\infty,$$

so $(x,y) \in E((Z_{b_i})_{i \in \mathbb{N}}, p)$. On the other hand, since $2^{m_l} \geq N(l)$ we have

$$\sum_{j \in \mathbb{N}} \delta_{q}(T_{j}(x(j)), T_{j}(y(j)))^{q} = \sum_{l \in L_{2}} \sum_{j \in K_{2}^{l}} \delta_{q}(T_{j}(r_{j}), T_{j}(s_{j}))^{q}
\geq \sum_{l \in L_{2}} \sum_{j \in K_{2}^{l}} N(l)^{-q} \delta_{q}(T_{j}(u_{j}), T_{j}(v_{j}))^{q}
> \sum_{l \in L_{2}} \sum_{j \in K_{2}^{l}} N(l)^{-q} 2^{qm_{l}} d(u_{j}, v_{j})^{p}
\geq \sum_{l \in L_{2}} C^{p} \left(\frac{2^{m_{l}}}{N(l)}\right)^{q}
= +\infty,$$

contradicting Lemma 4.1 again!

Definition 4.4. For two metric spaces (X,d), (X',d') and $C, \alpha > 0$. We say that X can C-finitely $H\ddot{o}lder(\alpha)$ embed into X' if there exists A, D > 0 such that for every finite subset $F \subseteq X$, there is $T_F : F \to X'$ satisfying, for $u, v \in F$,

- (1) $d(u,v) \ge C \Rightarrow d'(T_F(u),T_F(v)) \ge D;$
- (2) $d(u,v) < C \Rightarrow A^{-1}d(u,v)^{\alpha} \le d'(T_F(u), T_F(v)) \le Ad(u,v)^{\alpha}$.

While $\alpha = 1$, we also say that X can C-finitely Lipschitz embed into X'.

Theorem 4.5. Let (X,d) and (Y_n, δ_n) , $n \in \mathbb{N}$ be separable complete metric spaces, $p, q \in [1, +\infty)$. If X satisfies $(\operatorname{link}(C))$ for some C > 0, and $F(X; p) \leq_B E((Y_n)_{n \in \mathbb{N}}; q)$, then X can C-finitely $H\"{o}lder(\frac{p}{q})$ embed into $\ell_q((Y_n)_{n \in \mathbb{N}}, y^*)$ for any $y^* \in \prod_{n \in \mathbb{N}} Y_n$.

Proof. Fix a sequence of finite subsets $F_n \subseteq X$, $n \in \mathbb{N}$ such that

$$F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n \subseteq \cdots$$

and $\bigcup_{n\in\mathbb{N}} F_n$ is dense in X. Let $(b_j)_{j\in\mathbb{N}}, (l_j)_{j\in\mathbb{N}}$ and $T_j: F_{b_j} \to \prod_{n=l_j}^{l_{j+1}-1} Y_n$ be from the remarks before Lemma 4.2. For convenience, we identify $(\prod_{n=l_j}^{l_{j+1}-1} Y_n, \delta_q)$ with a subspace of $\ell_q((Y_n)_{n\in\mathbb{N}}, y^*)$. Then T_j becomes a map $F_{b_j} \to \ell_q((Y_n)_{n\in\mathbb{N}}, y^*)$.

Let us consider an arbitrary finite subset $F \subseteq X$. We can find $k \in \mathbb{N}$ such that

- (a) $k^{-1} \le d(u, v)$ for any distinct $u, v \in F$;
- (b) $d(u, v) \leq C k^{-1}$ for any $u, v \in F$ with d(u, v) < C.

For every $u \in F$, since $\bigcup_{j \in \mathbb{N}} F_{b_j}$ is dense in X, there exists an $R(u) \in \bigcup_{j \in \mathbb{N}} F_{b_j}$ such that $d(u, R(u)) < (4k)^{-1}$. Then for any distinct $u, v \in F$, we have

$$d(R(u), R(v)) < d(u, v) + (2k)^{-1} \le 2d(u, v),$$

and

$$d(R(u), R(v)) > d(u, v) - (2k)^{-1} \ge \frac{1}{2}d(u, v).$$

From Lemmas 4.2 and 4.3, there exist $D > 0, m \in \mathbb{N}$ and a sufficiently large i such that $R(u) \in F_{b_i}$ for every $u \in F$, and for $r, s \in F_{b_i}$,

(i)
$$d(r,s) \ge C - (2k)^{-1} \Rightarrow \delta_q(T_i(r), T_i(s)) \ge D;$$

(ii)
$$(2k)^{-1} \le d(r,s) < C \Rightarrow 2^{-m}d(r,s)^{\frac{p}{q}} \le \delta_q(T_i(r), T_i(s)) \le 2^m d(r,s)^{\frac{p}{q}}$$

We define $T_F: F \to \ell_q((Y_n)_{n \in \mathbb{N}}, y^*)$ by $T_F(u) = T_i(R(u))$ for $u \in F$.

For any $u, v \in F$ with $d(u, v) \ge C$, we have $d(R(u), R(v)) \ge C - (2k)^{-1}$. Then

$$\delta_q(T_F(u), T_F(v)) = \delta_q(T_i(R(u)), T_i(R(v))) \ge D.$$

For any distinct $u, v \in F$ with d(u, v) < C, we have $k^{-1} \le d(u, v) \le C - k^{-1}$. So $(2k)^{-1} \le d(R(u), R(v)) \le C - (2k)^{-1} < C$. Then

$$\delta_{q}(T_{F}(u), T_{F}(u)) = \delta_{q}(T_{i}(R(u)), T_{i}(R(v)))
\leq 2^{m} d(R(u), R(v))^{\frac{p}{q}}
< 2^{m + \frac{p}{q}} d(u, v)^{\frac{p}{q}},$$

and

$$\delta_{q}(T_{F}(u), T_{F}(u)) = \delta_{q}(T_{i}(R(u)), T_{i}(R(v)))
\geq 2^{-m} d(R(u), R(v))^{\frac{p}{q}}
> 2^{-(m + \frac{p}{q})} d(u, v)^{\frac{p}{q}}.$$

Thus $A = 2^{m + \frac{p}{q}}$ and D witness that X can C-finitely $\text{H\"older}(\frac{p}{q})$ embed into $\ell_q((Y_n)_{n \in \mathbb{N}}, y^*)$.

Theorem 4.6. Let $(X,d), (Y,\delta)$ be two separable complete metric spaces, $p, q \in [1, +\infty)$, and let $Y_0 \subseteq Y_1 \subseteq Y_2 \subseteq \cdots$ be a sequence of Borel subsets of Y with $\bigcup_{n \in \mathbb{N}} Y_n$ dense in Y. If X satisfies $(\operatorname{link}(C))$ for some C > 0, then the following conditions are equivalent:

- (a) X can C-finitely $H\"{o}lder(\frac{p}{q})$ embed into $\ell_q((Y_n)_{n\in\mathbb{N}}, y^*)$ for some $y^* \in \prod_{n\in\mathbb{N}} Y_n$.
- (b) $F(X;p) \leq_B E((Y_n)_{n \in \mathbb{N}};q)$.
- (c) $F(X;p) \leq_B F(Y;q)$.

Proof. Let $F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots$ be a sequence of finite subsets of X with $\bigcup_{n \in \mathbb{N}} F_n$ dense in X.

- (a) \Rightarrow (b). Since X can C-finitely $\text{H\"older}(\frac{p}{q})$ embed into $\ell_q((Y_n)_{n\in\mathbb{N}}, y^*)$, we can find A, D > 0, $T_n : F_n \to \ell_q((Y_n)_{n\in\mathbb{N}}, y^*)$ such that, for $u, v \in F_n$,
 - (1) $d(u,v) \ge C \Rightarrow \delta_q(T_n(u),T_n(v)) \ge D;$
 - (2) $d(u,v) < C \Rightarrow A^{-1}d(u,v)^{\frac{p}{q}} \le \delta_q(T_n(u), T_n(v)) \le Ad(u,v)^{\frac{p}{q}}$.

Then $F(X; p) \sim_B E((F_n)_{n \in \mathbb{N}}; p) \leq_B E((Y_n)_{n \in \mathbb{N}}; q)$ follows from Theorem 2.3. (b) \Rightarrow (a) follows from Theorem 4.5.

(b) \Rightarrow (c). Let $(b_j)_{j\in\mathbb{N}}$, $(l_j)_{j\in\mathbb{N}}$ and $T_j: F_{b_j} \to \prod_{n=l_j}^{l_{j+1}-1} Y_n$ be from the remarks before Lemma 4.2. Since every F_{b_j} is finite, we can find finite subsets $U_n \subseteq Y_n$ for $l_j \leq n < l_{j+1}$ such that $T_j(u) \in \prod_{n=l_j}^{l_{j+1}-1} U_n$ for each $u \in F_{b_j}$. We can extend every U_n to a finite subset $W_n \subseteq Y$ such that $U_n \subseteq W_n$, $W_0 \subseteq W_1 \subseteq W_2 \subseteq \cdots$ and $\bigcup_{n\in\mathbb{N}} W_n$ is dense in Y.

From Lemma 4.2 with C' = C and Lemma 4.3 with $k = 2^l$, we can find D > 0, $m \in \mathbb{N}$ and a strictly increasing sequence of natural numbers $(j_l)_{l \in \mathbb{N}}$ such that, for $r, s \in F'_l \stackrel{\text{Def}}{=} F_{b_i}$, we have

- (i) $d(r,s) \ge C \Rightarrow \delta_q(T_{j_l}(r), T_{j_l}(s)) \ge D;$
- (ii) $2^{-l} \le d(r,s) < C \Rightarrow 2^{-m}d(r,s)^{\frac{p}{q}} \le \delta_q(T_{i_l}(r),T_{i_l}(s)) \le 2^m d(r,s)^{\frac{p}{q}}$.

Then Corollary 2.4 gives

$$F(X;p) \sim_B E((F'_l)_{l \in \mathbb{N}};p) \leq_B E((W_n)_{n \in \mathbb{N}};q) \sim_B F(Y;q).$$

(c) \Rightarrow (b). Find a sequence of finite subsets $V_n \subseteq Y_n, n \in \mathbb{N}$ such that $V_0 \subseteq V_1 \subseteq V_2 \subseteq \cdots$ and $\bigcup_{n \in \mathbb{N}} V_n$ is dense in Y. Then we have $F(X;p) \leq_B F(Y;q) \sim_B E((V_n)_{n \in \mathbb{N}};q) \leq_B E((Y_n)_{n \in \mathbb{N}};q)$.

Corollary 4.7. Let X, Y be two separable complete metric spaces, $p, q \in [1, +\infty)$. If X satisfies $(\operatorname{link}(C))$ for some C > 0, then the following conditions are equivalent:

- (a) X can C-finitely $H\ddot{o}lder(\frac{p}{q})$ embed into $\ell_q(Y, y^*)$ for some $y^* \in Y^{\mathbb{N}}$.
- (b) $F(X;p) \leq_B E(Y;q)$.
- (c) $F(X;p) \leq_B F(Y;q)$.

References

- [1] H. Becker, A. S. Kechric, The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lecture Notes Series, vol. 232, Cambridge University Press, 1996.
- [2] L. Ding, Borel reducibility and $H\ddot{o}lder(\alpha)$ embeddability between Banach spaces, preprint, available at http://arxiv.org/abs/0912.1912.
- [3] L. Ding, A trichotomy for a class of equivalence relations, preprint, available at http://arxiv.org/abs/1001.0834.
- [4] R. Dougherty, G. Hjorth, Reducibility and nonreducibility between ℓ^p equivalence relations, Trans. Amer. Math. Soc. 351 (1999) 1835-1844.
- [5] S. Gao, Invariant Descriptive Set Theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 293, CRC Press, 2008.
- [6] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, 1995.