Appendix D. SAR measurement Equpment Linearity Anaysis

1 Signal Setup Configuration:

- a. A set of signal was established from a Signal Generator with following setting
 - i. Duty cycle: 20%/50%/75%/100%.
 - ii. Duty factor is adjusted by insertion of different time-interval idle time.
- b. The SG idle time settings and the resulting spectrum plots of each required duty cycle were recorded.

Signal Generator Setting

802.11b, 1Mbps		
Idle Time	Duty Cycle	
1us	100%	
2800us	75.00%	
8500us	50.00%	
33000us	20.00%	

802.11a/802.11g, OFDM, 6Mbps		
Idle Time	Idle Time Duty Cycle	
1us	100%	
500us	75.00%	
1400us	50.00%	
5500us	20.00%	

Report No. : FA102041
Report Version : Rev. 01
Page Number : F1 of F8

The spectrum plots of different duty cycle signals

802.11b CCK BPSK 1Mbps 20% Duty Cycle

802.11b CCK BPSK 1Mbps 50% Duty Cycle

802.11b CCK BPSK 1Mbps 75% Duty Cycle

802.11b CCK BPSK 1Mbps 100% Duty Cycle

Report No. : FA102041
Report Version : Rev. 01
Page Number : F2 of F8

802.11g OFDM 6Mbps 20% Duty Cycle

802.11g OFDM 6Mbps 50% Duty Cycle

802.11g OFDM 6Mbps 75% Duty Cycle

802.11g OFDM 6Mbps 100% Duty Cycle

Report No. : FA102041
Report Version : Rev. 01
Page Number : F3 of F8

802.11a OFDM 6Mbps 20% Duty Cycle

802.11a OFDM 6Mbps 50% Duty Cycle

802.11a OFDM 6Mbps 100% Duty Cycle

Report No. : FA102041
Report Version : Rev. 01
Page Number : F4 of F8

2. System Setup Configuration:

- a. The Signal Generator was connected to the Reference Dipole via a Directional Coupler referred to the drawing of Setup Configuration.
 - i. The signal generator RF output was also coupled to the spectrum analyzer to monitor the test signal status
- b. The Reference Dipole was positioned below a flat phatom filled with tissue-equivalent medium and the dipole touched the flat phantom.
- c. Feed the 802.11a/802.11g/802.11b signal to the reference SAR dipole and measure SAR.
- d. Move the probe to the highest SAR position, and use multi-meter function to monitor single-point SAR.
- e. Apply different idle time setting in SG to generate different duty factor, record the single-point SAR value.

Fig: System Setup Configuration

Report No. : FA102041
Report Version : Rev. 01
Page Number : F5 of F8

3. Linearity Response Check:

Report No. : FA102041
Report Version : Rev. 01
Page Number : F6 of F8

Conclusion:

The worst case of linearity at 100% duty factor is -2.32%, and the worst difference between the deviation o 75% duty factor to 100% duty factor is -1.32%

Therefore, SAR measurement facility linearity versus different duty factor of WLAN signal, is justified. Testing at 75% duty factor WLAN signal and scaling-up SAR to 100% duty factor (multiplication of 100/75=1.33) does not lead to concern of SAR reporting underestimation.

Report No. : FA102041
Report Version : Rev. 01
Page Number : F7 of F8

4. Equipment List:

Manufacturer Name of Equipment	Name of Equipment	Type/Model	Serial Number	Calibration	
	Type/Model	Seriai Number	Last Cal.	Due Date	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3792	Jun. 21, 2012	Jun. 20, 2013
SPEAG	Data Acquisition Electronics	DAE3	495	Apr. 23, 2012	Apr. 22, 2013
R&S	Signal Generator	SMJ100A	101375	Feb. 20, 2012	Feb. 19, 2013
Agilent	Spectrum Analyzer	E4446A	MY50180136	Apr. 17, 2012	Apr. 16, 2013

Masurement Date	Aug. 20, 2012 ~ Aug. 21, 2012
-----------------	-------------------------------

Report No. : FA102041
Report Version : Rev. 01
Page Number : F8 of F8