Основы наивной теории множеств.

Станислав Олегович Сперанский

Материалы лекций: ссылка Литература:

- K. Hrbacek and T. Jech. Introduction to Set Theory. 3rd ed., revised and expanded. Marcel Dekker, Inc., 1999.
- T. Jech. Set Theory. 3rd ed., revised and expanded. Springer, 2002.

Будем рассматривать как базовые выражения "x равен (совпадает с) y" ("x = y") "x лежит в y" (" $x \in y$ ").

Определение 1 (Наиваная схема аксиом выделения). Пусть $\Phi(x)$ — произвольное условие на объекты. Тогда существует X, что $\forall u(\Phi(u) \leftrightarrow u \in X)$. В этом случае X обозначается как $\{u \mid \Phi(u)\}$.

Утверждение 1 (парадокс Рассела). Пусть $R = \{u \mid u \notin u\}$. Тогда R не может лежать в себе u не может не лежать в себе одновременно.

Из-за данного парадокса будем рассматривать только условия, образованные переменными $u \in = \neg, \land, \lor, \leftarrow, \leftrightarrow, \forall, \exists$.

Определение 2 (аксиомы ZFC (= ZF (аксиомы Цермело-Френкеля) + C (аксиома выбора))).

Ext) "Аксиома экстенциональности":

$$\forall X \forall Y (\forall u (u \in X \leftrightarrow u \in Y) \leftrightarrow X = Y)$$

Empty) "Аксиома пустого множества":

$$\exists \varnothing \ \forall u \ (u \notin \varnothing)$$

Pair) "Аксиома пары":

$$\forall X \, \forall Y \, \exists Z (\forall u \, (u \in Z \leftrightarrow (u = X \lor u = Y)))$$

Обозначение: $Z = \{X, Y\}$.

Sep) "Схема аксиом выделения":

$$\forall \Phi(x) \quad \forall X \exists Y \ \forall u \ (u \in Y \leftrightarrow (u \in X \land \Phi(u)))$$

Обозначение: $Y = \{u \in X \mid \Phi(u)\}.$

Следствие. Операторы

$$X \cap Y := \{ u \mid u \in X \land u \in Y \}$$
$$X \setminus Y := \{ u \in X \mid u \notin Y \}$$
$$\bigcap X := \{ u \mid \forall v \in X \mid u \in v \}$$

определены корректно.

Union) "Аксиома объединения":

$$\forall X \,\exists Y \,\forall u \,(u \in Y \leftrightarrow \exists v \,(v \in X \land u \in v))$$

Обозначение: $Y = \bigcup X$.

Следствие. Оператор

$$X \cup Y := \bigcup \{X, Y\} = \{u \mid u \in X \land u \in Y\}$$

определён корректно.

Power) Пусть $x \subseteq y := \forall v \{v \in x \to v \in y\}$. "Аксиома степени":

$$\forall X \,\exists Y \,\forall u \,(u \in Y \leftrightarrow u \subseteq X)$$

Обозначение: $Y = \mathcal{P}(X) := \{u \mid u \subseteq X\}$. $\mathcal{P}(X)$ — "множество-степень X" или "булеан X".

Определение 3. Упорядоченная пара — это объект от некоторых X_1 и Y_1 , который равен другому такому объекту от X_2 и Y_2 тогда и только тогда, когда $X_1 = X_2 \wedge Y_1 = Y_2$.

Определение 4. Декартово произведение X и Y $(X \times Y) - \{(x;y) \mid x \in X \land y \in Y\}$.

Замечание 1. Можно нелсожно показать, что декартово произведение определено корректно.

Inf) Пусть $\operatorname{Ind}(X) := \varnothing \in X \land \forall u (u \in X \land u \cup \{u\} \in X)$. Если $\operatorname{Ind}(X)$, то X называется индуктивным. "Аксиома бесконечности": существует индуктивное множество.

Repl) "Схема аксиом подстановки":

$$\forall \Phi(x,y)$$

$$\forall x \, \forall y_1 \, \forall y_2 \, ((\Phi(x,y_1) \land \Phi(x,y_2)) \to y_1 = y_2) \to$$

$$\forall X \, \exists Y \, \forall y \, (y \in Y \leftrightarrow \exists x (x \in X \land \Phi(x,y)))$$

Reg) "Аксиома регулярности":

$$\forall X (X \neq \emptyset \rightarrow \exists u (u \in X \land X \cap u = \emptyset))$$

1 Отношения.

Определение 5. Бинарное (или двухместное) отношение R между X и Y — подмножество $X \times Y$. Если Y = X, R называется бинарным (или двухместным) отношением на X. Обозначение: $(x,y) \in R \Leftrightarrow xRy$.

Определение 6.

$$\mathrm{dom}(R) := \{u \in X \mid \exists v \quad uRv\}$$
 "область определения R " $\mathrm{range}(R) := \{v \in Y \mid \exists u \quad uRv\}$ "область значений R " $R[U] := range(R \cap (U \times Y))$ $R^{-1} := \{(y,x) \mid (x,y) \in R\}$

Замечание 2.

range
$$(R) = dom(R^{-1}) = R[X]$$

range $(R^{-1}) = dom(R) = R^{-1}[Y]$

Определение 7. Бинарные отношнения можно естественным образом комбинировать: для любых отношений R и Q между X и Y, Y и Z соответственно отношение

$$S = R \circ Q := \{(x, z) \in X \times Z \mid \exists y : xRy \land yQz\}$$

называется композицией R и Q.

Определение 8. Тождественное отображение на $X - id_X := \{(x, x) \mid x \in X\}.$

Замечание 3. Тождественное отображение при композиции (не важно, правой или левой) с другим отношением не меняет его.

Определение 9. Отношение R между X и Y называется функциональным, если

$$\forall x \ \forall y_1 \ \forall y_2 \ ((xRy_1 \land xRy_2) \rightarrow y_1 = y_2).$$

Определение 10. Функция из X в Y — функциональное отношение R между X и Y, в котором dom(R) = X. Обозначение: $R: X \to Y$.

Определение 11. Ограничение или сужение функции $f: X \to Y$ на $U \subseteq X$ — функция $f_{|U} := f \cap (U \times Y)$.

Если $f:X\to Y$ и $g:U\to Y$, где $U\subseteq X$, таковы, что $f_{\restriction U}=g$, то f называется расширением g, а g- органичением f.

Определение 12. $Y^X := \{f : X \to Y\}.$

Определение 13. Функция $f: X \to Y$ называется

- сюръекцией, если range(f) = Y;
- *инъекцией*, если f^{-1} функционально;
- $\mathit{биекцией}$, если f сюръективно и инъективно.
- С) "Аксиома выбора":

$$\forall X(\varnothing \notin X \to \exists f(f:X \to \bigcup X \land \forall u \in X(f(u) \in u)))$$

2 Натуральные числа и индукция

Важным следствием Inf является

$$\exists X (\operatorname{Ind}(X) \land \forall Y (\operatorname{Ind}(Y) \to X \subseteq Y)) \tag{Nat}$$

Nat описывает минимальное по включению индуктивное множество — \mathbb{N} , \aleph_0 или ω .

Доказательство. Пусть есть какое-то индуктивное X_0 . Тогда рассмотрим

$$\mathbb{N} := \{ x \in X_0 \mid \forall X (\operatorname{Ind}(X) \to x \in X) \}$$

По построению $\operatorname{Ind}(X) \to \mathbb{N} \subseteq X$. Также $\operatorname{Ind}(\mathbb{N})$.

Определение 14. Определим функцию последователя $s: \mathbb{N} \to NN$ как

$$s := \{(n, m) \in \mathbb{N} \times \mathbb{N} \mid m = n \cup \{n\}\}\$$

Вместо s(n) часто пишут n+1.

Определение 15. (Естественный) порядок на $\mathbb{N} - <:= \{(n,m) \in \mathbb{N}^2 \mid n \in m\}$.

Замечание 4. Для всех $n, m \in \mathbb{N}$ верно:

- 1. $\neg (n < 0)$;
- 2. $n < m + 1 \leftrightarrow (n < m \lor n = m)$.

Теорема 1 (принцип индукции). Пусть X удовлетворяет условию

$$0 \in X \land \forall n \in \mathbb{N} (n \in X \to n+1 \in X).$$

 $Tor \partial a \mathbb{N} \subseteq X$.

Доказательство. Из условия на X следует, что $\mathbb{N} \cap X$ индуктивно. Тогда из определения \mathbb{N} следует, что $\mathbb{N} \subseteq \mathbb{N} \cap X \subseteq X$, значит $\mathbb{N} \subseteq X$.

Замечание 5. В качестве X могут быть $\{n \in \mathbb{N} \mid \Phi(n)\}$.

Следствие 1.1. $\forall n \in \mathbb{N}$ верно $n \subseteq \mathbb{N}$.

Теорема 2 (возвратная индукция). Пусть дан X, что $\forall n \in \mathbb{N} (\forall m < n \ m \in X \to n \in X)$. Тогда $\mathbb{N} \subseteq X$.

Доказательство. Докажем, что $\forall n \in \mathbb{N} n \subseteq X$, по индукции. База для 0 очевидна. Шаг очевиден, так как $n \subseteq X$, значит $n \in X$, значит $n + 1 \subseteq X$.

Определение 16. $Min(X) := \{x \in X \mid \neg \exists u \in X u \in x\}.$

Теорема 3 (принцип минимального элемента). $Ecnu\ X\subset \mathbb{N}\ u\ X\neq\varnothing,\ mo\ \mathrm{Min}(X)\neq\varnothing.$

Доказательство. Пусть $Min(X) = \emptyset$. Возьмём $Y := \mathbb{N} \setminus X$. Заметим, что

$$\forall n \in \mathbb{N} (\forall m < n \ m \in Y \to n \in Y)$$

Тогда по принципу возвратной индукции $Y=\mathbb{N}$, а тогда $X=\varnothing$ — противоречие. \square

Теорема 4 (о рекурсии). Пусть есть $y_0 \in Y$ и $h : \mathbb{N} \times Y \to Y$. Тогда существует и единственная $f : \mathbb{N} \to Y$ такая, что для любого $n \in \mathbb{N}$

$$f(n) = \begin{cases} y_0 & ecnu \ n = 0 \\ h(m, f(m)) & ecnu \ n = m + 1 \end{cases}$$

Доказательство. Пусть $k \in \mathbb{N}$. Тогда будем называть функцию $f: k+1 \to Y$ правильной, если условие в определении рекурсии верно для всех $n \in k+1$. Также рассмотрим

$$S:=\{k\in\mathbb{N}\mid$$
 сущесвтует единственная правильная $f:k+1\to Y\}$

Будем обозначать для каждого $k \in S$ через f_k соответствующую правильную функцию из k+1 в Y.

Докажем по индукции, что $S = \mathbb{N}$.

База. Очевидно, $\{(0, y_0)\}$ — единственная правильная функция из 0+1 в Y. Поэтому $0 \in S$.

Шаг. Легко заметить, что сужение любой правильной функции на k+2 на множество k+1 правильно. Поэтому все правильные функции на k+2 определены на k+1 как f_k . Тогда значение в k+1 определяется однозначно, значит правильная функция на k+2 существует и единственна.

Теорема 5 (о рекурсии, парамметризованная). Пусть $g_0 \in Y^X$ и $h: X \times \mathbb{N} \times Y \to Y$. Тогда существует и единственна $f: X \times \mathbb{N} \to Y$, что $\forall x \in X, n \in \mathbb{N}$

$$f(x,n) = \begin{cases} g_0(x) & ecnu \ n = 0 \\ h(x,m,f(x,m)) & ecnu \ n = m+1 \end{cases}$$