ECU1

Component diagram

State machine diagram

Sequence diagram

Calculate CPU load for ECU1

We will assume that we have one task that reads three sensors state. Its periodicity is 5ms.

We will assume that the execution time for each task is 1ms

Read task: P: 5, D: 5, E: 1

Send speed state task: P: 5, D: 5, E: 1

Send door state task: P: 10, D: 10, E: 1

Send Lsw state task: P: 20, D: 20, E: 1

CPU load: 1/5 + 1/5 + 1/10 + 1/20 = 0.55 → 55%

ECU2
Component diagram

State machine diagram

Sequence diagram

Calculate CPU load for ECU2

Assume we have action task which is responsible for the decision and its periodicity is 20ms

We will assume that the execution time for each task is 1ms

read speed state task: P: 5, D: 5, E: 1

read door state task: P: 10, D: 10, E: 1

read Lsw state task: P: 20, D: 20, E: 1

action task: P: 20, D: 20, E: 1

CPU load: $1/5 + 1/10 + 1/20 + 1/20 = 0.40 \Rightarrow 40\%$

Bus Load per 1sec:

Total time for data in $1 \sec = 1000/5 + 1000/10 + 1000/20 = 350 \text{ms}$

Bus load = 35%