Fundamentos de Processamento de Linguagem Natural (PLN)

Prof. Dr. Emerson Cabrera Paraiso

Apresentação do Professor

Prof. Dr. Emerson Cabrera Paraiso

- Graduação
 - Curso: Engenharia de Computação
 - Instituição: PUCPR

Mestrado

- Titulo: Mestrado em Engenharia Elétrica e Informática Industrial
- Instituição: UTFPR (antigo CEFET-PR)
- Dissertação: Concepção e Implementação de um Sistema Multiagentes para Monitoração de Processos Industriais

Doutorado

- Titulo: Doutorado em Sistemas de Informação
- Instituição: Université de Technologie de Compiègne France
- Tese: Une Interface Conversationnalle pour une Aide Intelligente

Apresentação do Professor (cont.)

- Atividades na PUCPR
 - Graduação
 - Raciocínio Algorítmico BSI
 - Interação Humano-Computador BES
 - Pós-Graduação
 - Coordenador do Programa de Pós-Graduação em Informática PPGIa
 - www.ppgia.pucpr.br
 - Grupo de Pesquisa Descoberta de Conhecimento e Aprendizagem de Máquina.

Detalhes do Curso

- Identificação
 - Fundamentos de Processamento de Linguagem Natural (PLN)
- Objetivos
 - Apresentar os fundamentos do Processamento de Linguagem
 Natural, da Recuperação da Informação e Mineração de Textos.
- Módulo de Sequência
 - Aplicações de Processamento de Linguagem Natural (1º sem 2021)

Temas de Estudo

- Conceitos básicos:
 - Processamento de Linguagem Natural, Recuperação da Informação, Linguística Computacional
- Processamento básico de texto:
 - Expressões Regulares, Similaridade entre palavras e textos, etc.
- Recursos Léxicos:
 - Ontologia Léxica, Word Embeddings
- Extração e Recuperação da Informação
- Mineração de Textos:
 - Classificação
 - Análise de Sentimentos

Mapa Mental

#6

Calendário de Aulas

- Calendário (pequenas adaptações podem ocorrer):
 - 09/05 Apresentação/Introdução à disciplina
 - 23/05 Aula
 - 06/06 Aula
 - 20/06 Aula
 - 04/07 Aula
 - 18/07 Apresentação de trabalhos

Metodologia de Trabalho

- Aulas práticas para a realização de exercícios.
- Material didático de apoio sob a forma de PDFs.
- Desenvolvimento de trabalhos a serem especificados para avaliação do rendimento do estudante.

Algumas Referências

- Notas de aula.
- Natural Language Processing with Python

 – Analyzing Text with the Natural Language Toolkit. Steven Bird, Ewan Klein, and Edward Loper. (disponível em: http://www.nltk.org/book/)
- Text Mining: Predictive methods for Analyzing Unstructured Information. Sholon Weiss, Nitin Induskhya, Tong Zhang, and Fred J. Damerau.
- M.F. Porter, 1980, An algorithm for suffix stripping, Program, 14(3) pp 130–137.
- Notas de aula do prof. Dan Jurafski (Stanford)
- Site de recursos linguísticos para o Português: www.linguateca.pt
- ACL Anthology: http://aclweb.org/anthology/

Contato

 Todo contato deve ser feito preferencialmente via mensagens do Blackboard.

www.ppgia.pucpr.br Copyright©2020 – Prof. Dr. Emerson Cabrera Paraiso. Todos os direitos reservados.

Política de Direitos Autorais

- Todo e qualquer artefato produzido pelos alunos poderá ser disponibilizado para acesso aberto.
- A produção de cada estudante será corrigida e, na indicação de cópia de material de terceiros, sem a devida referência de autoria, levará a atribuição da nota zero.
- Atenção: cópia é crime e não será tolerada nesta disciplina.

Avaliações

Atividade	Datas	Peso
Trabalhos práticos pontuais	Durante as aulas	60%
Trabalho final da disciplina	18/07/2020	40%

Sumário - Primeira Aula

- Contextualização
- Primeiras Definições
- Exercício Inicial

Reflexão: o que é uma máquina inteligente para você?

A computer would deserve to be called intelligent if it could deceive a human into believing that it was human.

Alan Turing

Teste de Turing

Extraído de: https://pt.wikipedia.org/wiki/Teste_de_Turing#CITEREFSaygin2000

Contextualização

- Permitir que uma máquina interprete um texto em linguagem natural é sem dúvida um dos maiores desafios da computação:
 - Textos em linguagem natural podem ser ambíguos, subjetivos, conter erros.

```
"A menina disse à colega que sua mãe havia chegado."
```

"A vaca se diverte com a pata na lama."

"Pode deixar, darei um geito."

– Neologismos:

"Retweet"

- Trata-se de uma área de pesquisa interdisciplinar.
- Uma das áreas de maior atenção "comercial" dos últimos anos.

Um Pouco de História

- O PLN começou a se desenvolver no início dos anos 1950.
- A primeira tarefa que chamou atenção foi a tradução automática:
 - Russo Inglês
- Na década de 1960, Joseph Weizenbaum desenvolveu o ELIZA.
 ELIZA simula a conversação entre um humano e um computador, tentando "dar a impressão" ao humano de que entende o que este fala (no caso escreve).
- A partir dos anos 1980, sistemas baseados em regras começaram a proliferar.
- Surgem os parsers e as ontologias.
- Um grande passo para a evolução da área é dado com o desenvolvimento do Aprendizado de Máquina (Machine Learning).

Mais detalhes em: https://en.wikipedia.org/wiki/History of natural language processing

Por que o interesse recente?

 Há muita informação textual (dado não estruturado) acumulada na Web, nas empresas, nos computadores das pessoas.

Onde pode ter PLN aqui?

#19

Problemas Ocorrem!

Aplicações

Das mais simples:

- Busca por palavra-chave
- Identificação de sinônimos
- Verificação da escrita (ortografia)
- Extração da informação

As mais sofisticadas:

- Tradução automática
- Reconhecimento e geração da fala
- Sistemas de diálogo e Chatbots

Algumas Aplicações

- Recuperação de informação textual:
 - 6.586.013.574 buscas na web todo dia (estimativa de 2017)

Algumas Aplicações (cont.)

- Extração da informação a partir de dados textuais:
 - I_1 Bom dia.
 - I_2 Bom dia.
 - I₁ Gostaria de uma informação.
 - l₂ Pois não, pode perguntar.
 - I₁ De quanto tempo é o estágio probatório?
 - l₂ O estágio probatório é de 3 anos contados a partir da data de posse.
 - I₁ Obrigado
 - l₂ Sem problemas.

O diálogo tem um domínio específico!

Algumas Aplicações (cont.)

Subject: curriculum meeting

Date: January 15, 2012

Event: Curriculum mtg

Date: Jan-16-2012

Start: 10:00am

End: 11:30am

To: Dan Jura Where: Gates 159

Hi Dan, we've now scheduled the curriculum meeting.

It will be in Gates 159 tomorrow from 10:00-11:30.

-Chris

Create new Calendar entry

Notas de aula: Dan Jurafski

Mineração de Opiniões e Análise de Sentimentos

Avaliou em 2 semanas atrás

Conforto e localização

O hotel esta localizado no coração de Blumenau, facil acesso a pé para diversos pontos. O quarta é bem confortavel, limpo e aconchegante. Cofre e secador disponivel no quarto. Mas o destaque fica para o café da manha que é um show a parte. Além... Mais

Tyler Adams @TheSlackerMcFly

Replying to @EddieTrunk

LOVED #TrunkFest on @AXSTV @AXSTVConcerts! Welcome back to tv with your own show Eddie! Sure hope it got huge ratings so that @mcuban might wanna bring @ThatMetalShow back <a>! Can't wait for next weeks show! Have a good vacation this week Ed!

Linguagem "natural"

Sistemas de Recomendação

Customers Who Bought This Item Also Bought

<

A Curious History of Food and Drink

> Ian Crofton

★★★☆☆ 11

Hardcover

\$15.06 **Prime**

Consider the Fork: A History of How We Cook and Eat

> Bee Wilson

★★★☆☆ 217

Paperback

\$11.28 **Prime**

Fifty Foods That Changed the Course of History (Fifty Things That Changed the...

Bill Price

★★★★☆ 2

Hardcover

\$23.10 **/Prime**

Tradução

Parsing

Extraído de: http://web.stanford.edu/class/cs224n/

Estado da Arte

mostly solved

Spam detection Let's go to Agra! Buy V1AGRA ... Part-of-speech (POS) tagging ADJ ADJ NOUN VERB ADV Colorless green ideas sleep furiously. Named entity recognition (NER) PERSON ORG LOC Einstein met with UN officials in Princeton

still really hard

Notas de aula: Dan Jurafski

#29

Desafios para o Processamento do Português

- Recursos mais limitados
 - Parser, part-of-speech, ...
 - Ontologias, dicionários
 - Brasileiro (PT-BR)
 - Europeu (PT-EU)
 - Reconhecimento da Fala
 - Corpora

Identificando o Dado Textual

- Dado textual = não estruturado
- Características do dado textual:
 - Não tem tipo (como no dado estruturado tabela em um BD);
 - Disponível em texto-puro (ASCII ou UNICODE).

Extração do Dado Textual

Origem distintas:

- Web (html)
- Redes Sociais: posts
- Sistemas de Informação: nome de pessoas, endereço eletrônico, ...

Exemplo para arquivo .html:

- texto "espalhado" ao longo do arquivo .html e suas tags.
- conjunto de funções para extração (parser).
- Veja isto: https://pythonhelp.wordpress.com/2013/03/18/webscraping-empython/

Quiz

Vamos responder o Quiz sobre dado textual disponível no BB.

Respostas

- P1) O dado textual também é conhecido como:

 Dado não estruturado
- P2) O código-fonte escrito em Python é um dado textual? Verdadeiro
- P3) O nome completo de uma pessoa, gravado em um banco de dados relacional, não é um dado textual?

Falso

P4) O campo "endereço" de um formulário de cadastro de um candidato ao vestibular, é um campo textual?

Verdadeiro

Respostas (cont.)

P5) A foto a seguir, pode ser considerada um dado textual?

Falso

Compromisso Ético

- Somente dados públicos e disponibilizados com a autorização de seus proprietários podem ser utilizados.
- Compromisso com o respeito à Lei Geral de Proteção de Dados Pessoais (LGPD).
- Dê uma olhada em: https://www.serpro.gov.br/lgpd.

Conceitos Básicos

- Linguagem natural: linguagens que são utilizadas para comunicação do dia a dia por humanos (português brasileiro, português europeu, inglês, ...).
- Processamento de Linguagem Natural (PLN): qualquer manipulação computacional de linguagens naturais. De contagem de palavras à compreensão semântica.
- Linguística Computacional: associada à PLN, estuda os fenômenos linguísticos para apoiar o computador na interpretação e geração da linguagem natural.

Conceitos Básicos (cont.)

- Corpus: conjunto de textos, normalmente normalizados e rotulados.
- Corpora: conjunto de Corpus.
- Entidade Nomeada: são expressões que nomeiam pessoas, organizações, locais, tempos e quantidades.
 - Exemplo: "São Paulo", "Brasil", "Pedro Alvares Cabral", "ONU", etc.
 - Dificuldades: "SP", "S.P.", "S. Paulo", "São Paulo", ...

Conceitos Básicos (cont.)

- Léxico: conjunto de palavras de um dado idioma.
 - O léxico de uma língua não é "fechado" ou fixo.
 - Podem influenciar no léxico:
 - Nomes próprios;
 - Abreviações e siglas;
 - Gírias, etc.

Exercício Inicial

- Implemente um algoritmo em Python para resolver o seguinte problema:
- Dado o seguinte léxico:

[abacate, abacaxi, abobora, abobrinha, ananás, maça, mamão, manga, melancia, melão, mexerica, morango]

Indicar a palavra mais "próxima":

abacati

abacate abacaxi abobora abobrinha Desafios: o que é "similar" neste contexto?
Como medir o grau de "similaridade" entre palavras?

Similaridade Sintática

- A similaridade sintática entre strings pode ser medida por uma função de distância.
- São muito utilizadas as distâncias de Hamming e a de Levenshtein (Edit Distance).
- A distância de edição (Edit Distance) é definida pelo número de inserções, exclusões e substituições realizadas na comparação entre as strings envolvidas.
- Exemplos:

```
"color" -> "colour": ED = 1
"survey" -> "surgery": ED = 2
```

Cálculo do N-Gram

- Um N-gram pode ser entendido como um conjunto de "gramas" consecutivos, onde um "grama" pode ser uma letra ou palavra.
- O n-gram é muito últil em diversas tarefas do PLN.
- Exemplo:
 - calcular o grau de similaridade sintática entre as seguintes palavras: "parar" e "parado"
 - inicialmente devemos definir o valor de N: N = 2 (digrama)
 - "parar" = {pa, ar, ra, ar} (4 digramas e 2 únicos: pa, ra)
 - "parado" = {pa, ar, ra, ad, do} (5 digramas e 5 únicos: pa, ar, ra, ad, do)
 - Para o cálculo da similaridade, usar a fórmula:
 - S = 2C / A + B
 - Onde:
 - » A é o número de n-gramas únicos na primeira palavra
 - » B é o número de n-gramas únicos na segunda palavra
 - » C é o número de digramas únicos compartilhados
 - -S = 2 * 2 / 2 + 5 = 0.58

Outros Exemplos

- P1 = "parana" e P2 = "paranaense"
 - {pa, ar, ra, an, na}: únicos = {pa, ar, ra, an, na}
 - {pa, ar, ra, an, na, ae, en, ns, se}: únicos = {pa, ar, ra, an, na, ae, en, ns, se}
 - Compartilhados = {pa, ar, ra, an, na}
 - S = 2 * 5 / 5 + 9 = 0.71
- P1 = "carro" e P2 = "aviao"
 - {ca, ar, rr, ro}: únicos = {ca, ar, rr, ro}
 - {av, vi, ia, ao} : únicos = {av, vi, ia, ao}
 - Compartilhados = {0}
 - S = 2 * 0 / 4 + 4 = 0

Código em Python

- Ao final entregar o código implementado em atividade criada no BB: Aula 1 - Similaridade Sintática.
- Avaliar diferentes thresolds de distância.
- O exercício pode ser feito em dupla.