

Reshaping the Data

Reshaping the Data

- Reshaping involves transposing, stacking the column(s) within itself
- Reshaping is necessary for forming the analysis data which is required for statistical model building

Reshaping Functions

- t()
- reshape2 package: melt()

t()

- Interchanging the data from rows to columns or columns to rows is called transposing the data
- Function t() transposes the data in matrix or data frame
- Whether input type of t() is matrix or data frame, return type is always a matrix object

```
> items <- read.csv("items.csv")</pre>
> trnsp <- t(items)</pre>
> trnsp
                                                            [,2]
           [,1]
           "121 001"
                                                            "121 002"
Item.ID
Item. Name "Parker Quink Roller Ball Pen Refill, Blue" "Pilot V7 Liquid Ink
           "Pen"
                                                            "Pen"
Item. Type
                                                            "Pilot"
Brand
           "Parker"
Price
           " 69"
                                                            "135"
UOM
           "Piece"
                                                            "Pack"
```


melt()

- There is a need many times to stack a set of columns in order to make it "analysis friendly"
- This can be done using melt() function

Syntax: melt(data, id.vars, variable.name="variable",

value.name="value",...)

Where data : data frame object

id.vars : vector of id variables

variable.name : name of variable used to store measured variable

names

value.name : name of variable used to store values

Example of melt()

quality

	Id ‡	A \$\phi\$	B \$\phi\$	C ‡
1	1	97	93	99
2	2	73	14	94
3	3	93	93	87
4	4	100	55	66
5	5	23	77	59

melted1 <- melt(quality, id=c("Id"))</pre>

	Id ‡	variable ‡	value ‡
1	1	Α	97
2	2	Α	73
3	3	Α	93
4	4	Α	100
5	5	Α	23
6	1	В	93
7	2	В	14
8	3	В	93
9	4	В	55
10	5	В	77
11	1	С	99
12	2	С	94
13	3	С	87
14	4	С	66
15	5	С	59

Example of melt()

quality

	Id ‡	A \$\phi\$	₿ \$	C \$
1	1	97	93	99
2	2	73	14	94
3	3	93	93	87
4	4	100	55	66
5	5	23	77	59

	Id ‡	Policy \$	Score ‡
1	1	Α	97
2	2	Α	73
3	3	Α	93
4	4	Α	100
5	5	Α	23
6	1	В	93
7	2	В	14
8	3	В	93
9	4	В	55
10	5	В	77
11	1	С	99
12	2	С	94
13	3	С	87
14	4	С	66
15	5	С	59

melt() with more than one IDs

	Id ‡	Group [‡]	Policy.A ‡	Policy.B ‡	Policy.C [‡]
1	1	Α	97	93	99
2	2	Α	73	14	94
3	3	В	93	93	87
4	4	В	100	NA	66
5	5	В	23	77	59

	Id ‡	Group ‡	Policy [‡]	Score ‡
1	1	Α	Policy.A	97
2	2	Α	Policy.A	73
3	3	В	Policy.A	93
4	4	В	Policy.A	100
5	5	В	Policy.A	23
6	1	Α	Policy.B	93
7	2	Α	Policy.B	14
8	3	В	Policy.B	93
9	4	В	Policy.B	NA
10	5	В	Policy.B	77
11	1	Α	Policy.C	99
12	2	Α	Policy.C	94
13	3	В	Policy.C	87
14	4	В	Policy.C	66
15	5	В	Policy.C	59

Combining the Data

Combining the Data

- We can combine the data horizontally and vertically
- Horizontally we can combine with cbind() and merge()
- Vertically we can combine with rbind()

rbind() and cbind()

- Matrices can also be created by using functions cbind() and rbind().
- rbind() binds that rows and cbind() binds the columns

```
> rb <- rbind(a,b)

> rb

[,1] [,2] [,3] [,4] [,5]

a 1 2 3 4 5

b 46 47 48 49 50
```


merge()

 The combining with a matched key (set of columns) of the datasets can be done with the help of merge function

```
Syntax: merge(X, Y, by.x = c(),by.y = c(), all.x, all.y)

where X, Y: data frames to merge

by.x, by.y: specifies the key from two datasets by which

to merge. If the column names are same then

we can just specify them in by= option

all.x: logical. If all.x is TRUE then extra rows will be

added to the output from data X

all.y: logical. If all.y is TRUE then extra rows will be

added to the output from data Y
```


Example of merge()

ord <- merge(Orders, Ord_Details, by = "Order.ID")

Orders

	Order.ID ‡	Order.Date $^{\diamondsuit}$	Place.of.Shipment $^{\diamondsuit}$	Payment.Terms $^{\diamondsuit}$
1	32 90 001	31-Dec-10	Pune	Cheque
2	32 90 002	б-Jan-11	Nasik	Online
3	32 90 003	14-Jan-11	Ahmednagar	Cash
4	32 90 004	18-Feb-11	Nanded	Cheque
5	32 90 005	19-Feb-11	Kolhapur	Cash
6	32 90 006	1-Mar-11	Buldhana	Online
7	32 90 007	4-Mar-11	Nasik	Online
8	32 90 008	15-Mar-11	Pune	Online

Ord_Details

	Order.ID ‡	Item.ID ‡	Qty ‡
1	32 90 001	121 021	7
2	32 90 001	121 003	49
3	32 90 001	121 023	1
4	32 90 001	121 018	9
5	32 90 001	121 015	29

ord

	Order.ID ‡	Order.Date ‡	Place.of.Shipment $^{\diamondsuit}$	Payment.Terms ÷	Item.ID $^{\ \ \ }$	Qty ‡
1	32 90 001	31-Dec-10	Pune	Cheque	121 021	7
2	32 90 001	31-Dec-10	Pune	Cheque	121 003	49
3	32 90 001	31-Dec-10	Pune	Cheque	121 023	1
4	32 90 001	31-Dec-10	Pune	Cheque	121 018	9
5	32 90 001	31-Dec-10	Pune	Cheque	121 015	29
6	32 90 001	31-Dec-10	Pune	Cheque	121 014	44
7	32 90 001	31-Dec-10	Pune	Cheque	121 001	15

Merging with more than one field

Lab_Uric

	PatientID ‡	Lab_test_Date ‡	Uric_Acid ‡
1	A01	2014-06-02	3.5
2	A01	2014-07-14	3.9
3	A02	2014-05-03	4.5
4	A02	2014-08-12	5.6
5	A03	2015-02-18	6.4
6	A03	2015-02-27	6.5
7	A04	2015-01-23	5.6
8	A04	2015-02-19	6.5

Lab_Keto17

	PID ‡	$Lab_test_Date \ ^{\diamondsuit}$	KETO17 [‡]
1	A01	2014-06-02	8.7
2	A01	2014-07-14	9.5
3	A02	2014-05-03	10.4
4	A02	2014-08-12	20.9
5	A03	2015-02-18	10.3
6	A03	2015-02-27	10.8
7	A04	2015-01-23	17.8
8	A04	2015-02-19	15.2

adlb

	PatientID ‡	Lab_test_Date ‡	Uric_Acid ‡	KETO17 [‡]
1	A01	2014-06-02	3.5	8.7
2	A01	2014-07-14	3.9	9.5
3	A02	2014-05-03	4.5	10.4
4	A02	2014-08-12	5.6	20.9
5	A03	2015-02-18	6.4	10.3
6	A03	2015-02-27	6.5	10.8
7	A04	2015-01-23	5.6	17.8
8	A04	2015-02-19	6.5	15.2

