Courbes intégrales : transcendance et géométrie

Tiago Jardim da Fonseca

Université Paris-Sud, Laboratoire de Mathématiques d'Orsay

12 décembre 2017

Motivation

Le théorème de Nesterenko

Séries d'Eisenstein classiques normalisées ($k \ge 1$ entier)

$$E_{2k}(q) = 1 + (-1)^k \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n$$

vues comme des fonctions holomorphes sur $D=\{q\in\mathbb{C}\mid |q|<1\}$

- $B_2 = 1/6$, $B_4 = -1/30$, $B_6 = 1/42$, ... nombres de Bernoulli
- $\sigma_{2k-1}(n) = \sum_{d|n} d^{2k-1}$

Théorème (Nesterenko '96)

Pour tout $z \in D \setminus \{0\}$, on a

$$\mathrm{degtr}_{\mathbb{Q}}\mathbb{Q}(z,E_2(z),E_4(z),E_6(z))\geq 3.$$

 $z = e^{-2\pi} \Longrightarrow \text{indépendance algébrique de } \pi, \ e^{\pi} \ \text{et } \Gamma(1/4).$

Ingrédients clés de la preuve de Nesterenko

• Équations de Ramanujan :

$$q\frac{dE_2}{dq} = \frac{E_2^2 - E_4}{12}, \ q\frac{dE_4}{dq} = \frac{E_2E_4 - E_6}{3}, \ q\frac{dE_6}{dq} = \frac{E_2E_6 - E_4^2}{2}$$

ullet rayon de convergence =1 et coefficients de Taylor dans $\mathbb{Z}.$

Plus deux hypothèses :

• Lemme de zéros : il existe C > 0 tel que

$$\operatorname{ord}_{q=0} P(q, E_2(q), E_4(q), E_6(q)) \le C(\deg P)^4$$

pour tout $P \in \mathbb{C}[X_0, X_1, X_2, X_3]$ non-nul.

• Croissance polynomiale en n des $(E_{2k}^{(n)}(0)/n!)_{n\geq 0}$

Questions

- Existe-t-il d'autres fonctions holomorphes $f_1, \ldots, f_m : D \to \mathbb{C}$ satisfaisant des propriétés analogues?
- Nouveaux résultats de transcendance par la même "méthode" ?

Programme:

- (a) étude de la méthode en soi
- (b) nouveaux exemples d'application

Petit historique:

- (a) Philippon '98 (K-fonctions).
- (b) Zudilin '00 (symétrie miroir). Difficulté : condition de croissance. Bertrand-Zudilin '01 (Thetanullwerte en plusieurs variables)

Indépendance algébrique de valeurs de courbes intégrales

Dictionnaire

Point de vue classique	Point de vue géométrique
Fonctions holomorphes $f_1, \ldots, f_m: D \to \mathbb{C}$	Courbe holomorphe $\varphi:D o X(\mathbb{C}), \ avec\ X_{/\mathbb{Q}}$
Éq. diff. à coeffs. dans \mathbb{Q} $q \frac{df_i}{dq} = P_i(f_1, \dots, f_n), \ 1 \leq i \leq m$	Champ de vecteurs $v \in \Gamma(X, T_{X/\mathbb{Q}})$ $q \frac{d\varphi}{dq} = v \circ \varphi$
$a_{i,n} \coloneqq rac{f_i^{(n)}(0)}{n!} \in \mathbb{Z}$ pour tout $1 \le i \le m$ et $n \ge 0$	Modèle entier $\mathcal{X}_{/\mathbb{Z}}$ de X et $\hat{\varphi}: \operatorname{Spf} \mathbb{Z}\llbracket q \rrbracket \to \mathcal{X}$
Croissance polynomiale des $(a_{i,n})_{n\geq 0}$	Croissance modérée de $arphi$
Lemme de Zéros	

Croissance modérée (d'après Bost et Randriam)

(M,h) variété hermitienne, $\omega = -\Im h$, $\varphi : D_R = \{z \in \mathbb{C} \mid |z| < R\} \to M$ holomorphe

Fonction caractéristique à la Nevanlinna :

$$T_{\varphi}:]0, R[\longrightarrow \mathbb{R}_{\geq 0}$$

$$r \mapsto \int_{0}^{r} \left(\int_{D_{t}} \varphi^{*} \omega \right) \frac{dt}{t}$$

Définition

On dit que $\varphi: D_R \to M$ est à croissance modérée s'il existe a, b>0 tels que

$$T_{\varphi}(r) \leq a + b \log \frac{1}{1 - \frac{r}{R}}$$

pour tout $r \in]0, R[$.

M est compacte \Rightarrow ne dépend pas du choix de h

Coefficients de Taylor et croissance modérée

$$R=1,\ M=\mathbb{P}^m(\mathbb{C}),$$
 $arphi:D\longrightarrow \mathbb{A}^m(\mathbb{C})\subset \mathbb{P}^m(\mathbb{C})$ $z\mapsto (f_1(z),\ldots,f_m(z))$

coeffs. de Taylor des f_i croissent polynomialement $\Rightarrow \varphi$ à croissance modérée.

Remarque:

$$J: D \longrightarrow \mathbb{P}^1(\mathbb{C})$$
$$q \mapsto 1728 \frac{E_4^3(q)}{E_4^3(q) - E_6^2(q)} = \sum_{n \ge -1} c(n)q^n$$

est à croissance modérée, mais $c(n) \sim \frac{e^{4\pi\sqrt{n}}}{\sqrt{2}n^{3/4}}$ (Rademacher-Petersson).

ZL-densité

k corps, X k-variété algébrique, $\hat{\varphi}: \operatorname{Spf} k\llbracket q \rrbracket \to X$ courbe formelle Soit D un diviseur de Cartier *effectif* sur X d'équation locale $f \in \mathcal{O}_{X,\hat{\varphi}(0)}$, on pose

$$\operatorname{mult}_{\hat{\varphi}} D := \operatorname{ord}_{q=0} \hat{\varphi}^* f \in \mathbb{N} \cup \{+\infty\}$$

Supposons de plus : X projective munie de L ample.

Définition

On dit que $\hat{\varphi}$ est ZL-dense s'il existe C>0 telle que

$$\operatorname{mult}_{\widehat{\wp}} D \leq C(\deg_I D)^{\dim X}$$

pour tout diviseur de Cartier effectif D sur X.

Ne dépend pas du choix de L.

Lemme de zéros

- Sur \mathbb{P}_k^n , tout diviseur de Cartier D est donné par $P \in k[X_0, \dots, X_n]$ homogène et $\deg_{\mathcal{O}(1)} D = \deg P$.
- Exemple : le "lemme de zéros" de Nesterenko équivaut à dire que

$$\hat{\varphi}: \operatorname{Spf} \mathbb{C}\llbracket q \rrbracket \longrightarrow \mathbb{A}^4_{\mathbb{C}} \subset \mathbb{P}^4_{\mathbb{C}}$$

$$q \mapsto (q, E_2(q), E_4(q), E_6(q))$$

est ZL-dense.

Invariance birationnelle

Théorème

Soit $f: X \to Y$ un morphisme birationnel entre \mathbb{C} -variétés algébriques projectives lisses. Une application holomorphe $\varphi: D_R \to X(\mathbb{C})$ dont l'image est Zariski-dense est à croissance modérée si, et seulement si, $f \circ \varphi: D_R \to Y(\mathbb{C})$ est à croissance modérée.

Théorème

Soit $f: X \to Y$ un k-morphisme propre et $U \subset Y$ un ouvert tel que $f: f^{-1}(U) \to U$ est un isomorphisme. Alors une courbe formelle $\hat{\varphi}: \operatorname{Spf} k[\![q]\!] \to f^{-1}(U) \subset X$ telle que $\hat{\varphi}(0)$ est un point régulier de X est ZL-dense dans X si et seulement si $f \circ \hat{\varphi}$ est ZL-dense dans Y.

Croissance modérée et ZL-densité pour les variétés quasi-projectives!

Naturalité

Théorème (Brunella '05)

Soit $d \geq 2$. Il existe un ouvert de Zariski $U \subset \mathbb{P}H^0(\mathbb{P}^n_{\mathbb{C}}, \mathcal{O}(d-1) \otimes T_{\mathbb{P}^n_{\mathbb{C}}/\mathbb{C}})$ tel que toute courbe $\varphi : D_R \to \mathbb{P}^n(\mathbb{C})$ intégrale d'un feuilletage dans U est à croissance modérée.

Théorème (d'après Binyamini '14)

Soit k un corps algébriquement clos de caractéristique 0, X une k-variété quasi-projective lisse, $v \in \Gamma(X, T_{X/k}) \setminus \{0\}$ et $\hat{\varphi} : \operatorname{Spf} k\llbracket q \rrbracket \to X$ lisse satisfaisant l'équation différentielle

$$q\frac{d\hat{\varphi}}{dq} = v \circ \hat{\varphi}$$

Si $\hat{\varphi}$ satisfait la D-propriété de Nesterenko pour le feuilletage engendré par v (e.g. X admet au plus un nombre fini de sous-variétés v-invariantes), alors $\hat{\varphi}$ est ZL-dense.

Généralisation géométrique de la méthode de Nesterenko

- K corps de nombres, \mathcal{X} schéma arithmétique quasi-projectif sur \mathcal{O}_K de dim. rel. $n \geq 2$ et fibre générique \mathcal{X}_K lisse
- $\hat{\varphi}: \operatorname{Spf} \mathcal{O}_K[\![q]\!] \to \mathcal{X}$ tel que, pour tout $\sigma: K \hookrightarrow \mathbb{C}$, $\hat{\varphi}_{\sigma}: \operatorname{Spf} \mathbb{C}[\![q]\!] \to \mathcal{X}_{\sigma}$ se relève en $\varphi_{\sigma}: D_{R_{\sigma}} \to \mathcal{X}_{\sigma}(\mathbb{C})$ holomorphe

Théorème

Supposons que $\prod_{\sigma} R_{\sigma} = 1$ et qu'il existe $v \in \Gamma(\mathcal{X}_{K}, T_{\mathcal{X}_{K}/K}) \setminus \{0\}$ tel que $\hat{\varphi}_{K} : \operatorname{Spf} K[\![q]\!] \to \mathcal{X}_{K}$ satisfait $q \frac{d\hat{\varphi}_{K}}{dq} = v \circ \hat{\varphi}_{K}$. Si de plus :

- **1** Ia courbe formelle $\hat{\varphi}_K$ est ZL-dense dans \mathcal{X}_K , et
- ② $\varphi_{\sigma}: D_{R_{\sigma}} \to \mathcal{X}_{\sigma}(\mathbb{C})$ est à croissance modérée pour tout σ alors, pour tout $\sigma: K \hookrightarrow \mathbb{C}$, et tout $z \in D_{R_{\sigma}} \setminus \{0\}$, le corps de définition $K(\varphi_{\sigma}(z))$ du point complexe $\varphi_{\sigma}(z)$ dans \mathcal{X}_{K} satisfait

$$\operatorname{degtr}_{K}K(\varphi_{\sigma}(z)) \geq n-1.$$

Remarques

• Démonstration basée sur le critère d'indépendance algébrique de Philippon '86. Ayant fixé L sur $\overline{\mathcal{X}}$ ample sur $\overline{\mathcal{X}}_K$, il suffit de construire une suite $s_d \in \Gamma(\overline{\mathcal{X}}, L^{\otimes j_d})$ telle que j_d et $\log \|s_d\|$ ne "croissent pas très vite", alors que

$$-ad^n \leq \log ||s_{\sigma}(\varphi_{\sigma}(z))|| \leq -bd^n$$

pour certains a > b > 0.

- Techniques : estimées de jets et méthode de pentes en théorie d'Arakelov.
- Analogue "hyperbolique" des méthodes "paraboliques" de Siegel-Shidlovsky et Schneider-Lang.
- Existe-t-il des exemples non-modulaires? (preuve marche aussi pour $\frac{d}{dq}$ mais aucun exemple)

Équations de Ramanujan supérieures

Comprendre les équations de Ramanujan géométriquement e généraliser?

$$q\frac{dE_2}{dq} = \frac{E_2^2 - E_4}{12}, \ q\frac{dE_4}{dq} = \frac{E_2E_4 - E_6}{3}, \ q\frac{dE_6}{dq} = \frac{E_2E_6 - E_4^2}{2}$$

- Bertrand-Zudilin '01: Thetanullwerte.
- Deligne '70 : dérivée de Serre est "donnée" par la connexion de Gauss-Manin sur la cohomologie de de Rham de la courbe elliptique universelle.
- Point de vue de Movasati '10 : champ de vecteurs sur un certain espace de modules.

Bases Hodge-symplectiques

 (X,λ) schéma abélien principalement polarisé (s.a.p.p) sur une base S de dim. rel. g et morphisme structurel $p:X\to S$.

Fait : $H^1_{\mathrm{dR}}(X/S)$ est un \mathcal{O}_S -module libre de rang 2g muni d'une "forme symplectique" $\langle \ , \ \rangle_\lambda : H^1_{\mathrm{dR}}(X/S) \otimes H^1_{\mathrm{dR}}(X/S) \to \mathcal{O}_S$ et d'un sous-fibré $F^1(X/S) = p_*\Omega^1_{X/S}$ de rang g.

Définition

Une base Hodge-symplectique de $(X,\lambda)_{/S}$ est une trivialisation $b=(\omega_1,\ldots,\omega_g,\eta_1,\ldots,\eta_g)$ de $H^1_{\mathrm{dR}}(X/S)$ telle que :

- \bullet $(\omega_1,\ldots,\omega_g)$ trivialise $F^1(X/S)$;
- ② b est symplectique par rapport à $\langle \ , \ \rangle_{\lambda}$

Le champ de modules \mathcal{B}_g

Fixons $g \ge 1$ entier. Soit

 $\mathcal{B}_g = \frac{\text{champ de modules classifiant les s.a.p.p de dim. rel. } g \text{ munis d'une base Hodge-symplecticque } (X, \lambda, b)_{/S}$

Proposition

Le champ \mathcal{B}_g est un champ de Deligne-Mumford lisse sur $\operatorname{Spec} \mathbb{Z}$ de dimension relative $2g^2 + g$.

 \mathcal{B}_g est un fibré principal sur \mathcal{A}_g pour le sous-groupe parabolique de Siegel

$$P_{g} = \left\{ \left(\begin{array}{cc} * & * \\ & \\ 0 & * \end{array} \right) \right\} \leq \mathsf{Sp}_{2g}$$

de dimension $2g^2 + g - g(g+1)/2 = g(3g+1)/2$.

Champs de vecteurs de Ramanujan supérieurs $(v_{ij})_{1 \leq i \leq j \leq g}$

Soit $(\mathcal{X}_g, \lambda_g)$ le s.a.p.p universel sur \mathcal{B}_g et $(\omega_1, \dots, \omega_g, \eta_1, \dots, \eta_g)$ la base Hodge-symplectique universelle.

Théorème

Le morphisme de $\mathcal{O}_{\mathcal{B}_{\sigma,\acute{e}t}}$ -modules cohérents

$$c_g: T_{\mathcal{B}_g/\mathbb{Z}} \longrightarrow \Gamma^2(F^1(\mathcal{X}_g/\mathcal{B}_g)^{\vee}) \oplus H^1_{\mathrm{dR}}(\mathcal{X}_g/\mathcal{B}_g)^{\oplus g}$$
$$\theta \mapsto (\kappa(\theta), \nabla_{\theta}\eta_1, \dots, \nabla_{\theta}\eta_g)$$

induit un isomorphisme de $T_{\mathcal{B}_g/\mathbb{Z}}$ sur $\Gamma^2(F^1(\mathcal{X}_g/\mathcal{B}_g)^\vee) \oplus \mathcal{S}_g$, où \mathcal{S}_g est un sous-fibré de $H^1_{\mathrm{dR}}(\mathcal{X}_g/\mathcal{B}_g)^{\oplus g}$.

Pour $1 \leq i \leq j \leq g$, v_{ij} est l'unique section globale de $T_{\mathcal{B}_g/\mathbb{Z}}$ telle que

$$c_{g}(v_{ij}) = \begin{cases} (\omega_{i}^{\vee} \otimes \omega_{i}^{\vee}, 0) & i = j \\ (\omega_{i}^{\vee} \otimes \omega_{j}^{\vee} + \omega_{j}^{\vee} \otimes \omega_{i}^{\vee}, 0) & i < j \end{cases}$$

Représentabilité

Théorème

Pour tout entier $g \geq 1$, le champ $\mathcal{B}_g \otimes \mathbb{Z}[1/2]$ est représentable par un schéma quasi-projective lisse B_g sur $\operatorname{Spec} \mathbb{Z}[1/2]$.

ldée : k corps parfait de caractéristique p>2 \Rightarrow base de $H^1_{\mathrm{dR}}(X/k)$ "rigidifie" $(X,\lambda)_{/k}$:

- Oda '69 : module de Dieudonné associé à X[p] est canoniquement isomorphe à $H^1_{\mathrm{dR}}(X/k)$.
- Lemme de Serre : si $n \ge 3$, la n-torsion "rigidifie" $(X, \lambda)_{/k}$.

Proposition

 $B_1\otimes \mathbb{Z}[1/6]$ s'identifie à $\operatorname{Spec}\mathbb{Z}[1/6,e_2,e_4,e_6,(e_4^3-e_6^2)^{-1}]$ et

$$v_{11} = \frac{e_2^2 - e_4}{12} \frac{\partial}{\partial e_2} + \frac{e_2 e_4 - e_6}{3} \frac{\partial}{\partial e_4} + \frac{e_2 e_6 - e_4^2}{2} \frac{\partial}{\partial e_6}$$

Équations de Ramanujan supérieures

Notations:

- $\mathbb{H}_g = \{ \tau \in \mathrm{Sym}_g(\mathbb{C}) \mid \Im \tau > 0 \}$ demi-espace de Siegel
- $\theta_{kl} = \frac{1}{2\pi i} \frac{\partial}{\partial \tau_{kl}}$, $1 \le k \le l \le g$
- ullet (\mathbb{X}_{g}, E_{g}) le "s.a.p.p. universel" sur $\mathbb{H}_{g}: \mathbb{X}_{g, au} = \mathbb{C}^{g}/(\mathbb{Z}^{g} + au \mathbb{Z}^{g})$.

Considérons les sections holomorphes globales de $\mathcal{H}^1_{\mathrm{dR}}(\mathbb{X}_g/\mathbb{H}_g)$

$$\omega_k \coloneqq 2\pi i \, dz_k, \quad \eta_k \coloneqq \nabla_{\theta_{kk}} \omega_k$$

Si $\gamma_i \in H_1(\mathbb{X}_{g,\tau},\mathbb{Z})$ (resp. $\delta_i \in H_1(\mathbb{X}_{g,\tau},\mathbb{Z})$) correspond à e_i (resp. τe_i),

$$\begin{pmatrix} (\int_{\delta_i} \eta_j)_{1 \leq i,j \leq g} & (\frac{1}{2\pi i} \int_{\delta_i} \omega_j)_{1 \leq i,j \leq g} \\ (\int_{\gamma_i} \eta_j)_{1 \leq i,j \leq g} & (\frac{1}{2\pi i} \int_{\gamma_i} \omega_j)_{1 \leq i,j \leq g} \end{pmatrix} = \begin{pmatrix} 1_g & \tau \\ 0 & 1_g \end{pmatrix}$$

Théorème

La famille $(\omega_1,\ldots,\omega_g,\eta_1,\ldots,\eta_g)$ est une base Hodge-symplectique de $(\mathbb{X}_g,E_g)_{/\mathbb{H}_g}$ et l'application holomorphe induite

$$\varphi_{\mathsf{g}}:\mathbb{H}_{\mathsf{g}}\longrightarrow B_{\mathsf{g}}(\mathbb{C})$$

satisfait le système d'équations aux dérivées partielles

$$\theta_{kl}\varphi_g = v_{kl} \circ \varphi_g, \quad 1 \le k \le l \le g$$

Proposition

Sous l'identification $B_1\otimes \mathbb{Z}[1/6]\cong \mathbb{Z}[1/6,e_2,e_4,e_6,(e_4^3-e_6^2)^{-1}]$,

$$\varphi_1(\tau) = (E_2(e^{2\pi i \tau}), E_4(e^{2\pi i \tau}), E_6(e^{2\pi i \tau}))$$

Remarque : φ_g ne dépend que des $q_{kl} = e^{2\pi i \tau_{kl}}$

Valeurs de séries d'Eisenstein et périodes de courbes elliptiques

• On a

$$E_2(e^{2\pi i\tau}) = 12\left(\frac{\omega_1}{2\pi i}\right)\left(\frac{\eta_1}{2\pi i}\right), \quad E_4(e^{2\pi i\tau}) = 12g_2\left(\frac{\omega_1}{2\pi i}\right)^4$$

$$E_6(e^{2\pi i\tau}) = -216g_3\left(\frac{\omega_1}{2\pi i}\right)^6$$

où $y^2 = 4x^3 - g_2x - g_3$ est une éq. de Weierstrass pour $\mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ définie sur $\mathbb{Q}(j(\tau))$.

• "Nesterenko" ⇒ "Chudnovsky"

Valeurs de φ_g et périodes de variétés abéliennes

 $X_{/\mathbb{C}}$ variété abélienne, $k \subset \mathbb{C}$ le plus petit sous-corps algébriquement clos pour lequel il existe $X_{0/k}$ tel que $X = X_0 \otimes_k \mathbb{C}$.

$$\mathcal{P}(X)=$$
 corps de périodes de $X_{0/k}$ $=k\left(\int_{\gamma}lpha
ight)$, où $lpha\in H^1_{\mathrm{dR}}(X_0/k)$, $\gamma\in H_1(X_0(\mathbb{C}),\mathbb{Z})$

Théorème

Pour tout $au \in \mathbb{H}_g$, le corps $\mathcal{P}(\mathbb{X}_{g, au})$ est une extension algébrique de

$$\mathbb{Q}(2\pi i, \tau, \varphi_{\mathsf{g}}(\tau)),$$

corps de définition du point complexe $(2\pi i, \tau, \varphi_g(\tau))$ de la \mathbb{Q} -variété $\mathbb{G}_{m,\mathbb{Q}} \times \operatorname{Sym}_{g,\mathbb{Q}} \times \mathcal{B}_{g,\mathbb{Q}}$.

Transcendance

Généralisation en plusieurs variables de Nesterenko $\stackrel{?}{\Longrightarrow}$ CPG pour les variétés abéliennes

Conjecture (Grothendieck-André)

Pour toute variété abélienne complexe X, on a

$$\operatorname{degtr}_{\mathbb{Q}}\mathcal{P}(X) \geq \dim MT(X).$$

Théorème

Le graphe de φ_g

$$\{(\tau, \varphi_{g}(\tau)) \in \operatorname{Sym}_{g}(\mathbb{C}) \times B_{g}(\mathbb{C}) \mid \tau \in \mathbb{H}_{g}\}$$

est Zariski-dense dans $\operatorname{Sym}_{g,\mathbb{C}} \times B_{g,\mathbb{C}}$.

"Il n'y a pas de relation algébrique simultanément satisfaite par les périodes de toutes les v.a.p.p. outre celles induites par les données de polarisation."

Questions et directions

- Lien précis avec Bertrand-Zudilin? Dérivées de formes quasi-modulaires de Siegel
- Intégralité de φ_g en les q_{ij} ? Travaux de Mumford sur les dégénérescences des v.a., formes quasi-modulaires sur $\mathbb Z$
- Lier avec la partie 1 : bon énoncé? Prendre en compte sous-variétés spéciales
- Constructions analogues pour les variétés de Shimura PEL? e.g., en g=2 surfaces modulaires de Hilbert, courbes de Shimura

Merci