Week 12: Protein structure

- Amino-acid coevolution
 - Mutual information
- Maximum entropy modeling
- Molecular dynamics

Proteins have 3D structures that are closely tied to their function

Various experimental techniques to determine protein 3D strcuture

Protein Data Bank (PDB)

www.rcsb.org: 3D shapes of proteins, nucleic acids, and complex assemblies.

Experimental methods for 3D structure determination

Growth in sequence databases from massively parallel sequencing.

- Availability of sufficient sequences of sufficient diversity.
- Known protein families are growing in size from a few sequences to many thousands of sequences (advances in DNA sequencing tech).

Experimental structure-determination (Done one-by-one)

Need computational methods to predict structure from sequence

- 1. Physics-based methods (in silico energy functions)
 - a. Only works for small proteins de novo.
 - b. Needs massive infrastructure
- 2. Knowledge-based (sequence similarity to proteins with known structures; homology modeling)
 - a. Only works for small proteins *de novo*.
 - b. This is true even with fragments.
- 3. Finding potential interactions between residues to then map to structure
 - a. Takes advantage of a billion-year dataset

Contacts in structure leave a record in sequence

Evolutionary pressure to maintain favorable interactions b/w physically interacting AA residues in 3D.

Visible record of residue covariation in related protein sequences.

Inverse problem — inferring directly causative residue couplings (evolutionary couplings) from the covariation record — challenging due to transitive correlations & other confounding effects.

ECs can be used to predict the unknown 3D structure of a protein from a set of sequences alone.

Predicting protein 3D structure from sequence

Marks (2011) PLoS One; Marks (2012) Nat. Biotech. Stein (2015) PLoS Comp. Biol.

Capturing interactions based on mutual information

Entropy (H): the average amount of information produced by a stochastic source of data.

Mutual information: MI two random variables **I(X, Y)** quantifies the amount of information obtained about one random variable, through the other random variable.

$$\mathrm{H}(X) = -\sum_{i=1}^n \mathrm{P}(x_i) \log_b \mathrm{P}(x_i)$$

$$I(X;Y) = \sum_{x,y} p(x,y) \log rac{p(x,y)}{p(x)p(y)} \ = \mathrm{H}(Y) - \mathrm{H}(Y|X)$$

Capturing interactions based on mutual information

Capturing interactions using a global probability model

Build a global probability model that account for the fact that interactions along an entire protein chain are mutually interdependent in a way that is inherently cooperative.

Pair interactions are modified by interactions with other parts of the system and cannot be factored (probabilities are not a simple product of independent terms).

Compared with molecular dynamics simulations, statistical approaches are many orders of magnitude more efficient in reducing a huge conformational search space to manageable proportions.

$$a=(a_1,a_2\ldots,a_N)$$
 A sequence made of monomers $\mathbf{a}_{_{_{\! i}}}$ taking values from a given alphabet

$$P\left(a|J,h
ight)=rac{1}{Z}\exp\left(\sum_{i=1}^{N-1}\sum_{j=i+1}^{N}J_{ij}(a_i,a_j)+\sum_{i=1}^{N}h_i(a_i)
ight)$$
 Probability of a sequence within the model.

h(a,): parameters that represent the propensity of symbol to be found at a certain position.

 $J(a_i, a_i)$: represent an interaction, quantifying how compatible the symbols at both positions are with each other.

- Each J_{ii} is a 20-by-20 matrix

$$egin{align} a &= ig(a_1, a_2 \ldots a_Nig) \ P\left(a|J,h
ight) &= rac{1}{Z} \exp\left(\sum_{i=1}^{N-1} \sum_{j=i+1}^N J_{ij}(a_i, a_j) + \sum_{i=1}^N h_i(a_i)
ight)
onumber \end{aligned}$$

The idea of <u>maximum-entropy</u>: For a given set of sample covariances and frequencies, the model represents the **distribution with the maximal entropy** of all distributions reproducing those covariances and frequencies.

$$egin{aligned} F[P] &= -\sum_a P(a) \log P(a) \ &+ \sum_{i < j} \sum_{x,y} \lambda_{ij}(x,y) \Big(P_{ij}(x,y) - f_{ij}(x,y) \Big) \ &+ \sum_i \sum_x \lambda_i(x) \Big(P_i(x) - f_i(x) \Big) \ &+ \Omega \left(1 - \sum_a P(a)
ight). \end{aligned}$$

The unique distribution **P** that maximizes the functional to the *left*.

 $f_i(a)$: frequency of finding symbol \boldsymbol{a} at position \boldsymbol{i} . $f_{ij}(a, b)$: frequency of finding symbols \boldsymbol{a} & \boldsymbol{b} at positions \boldsymbol{i} and \boldsymbol{j} in the same sequence.

$$egin{align} a &= \left(a_1, a_2 \ldots, a_N
ight) \ P\left(a|J,h
ight) &= rac{1}{Z} \exp\left(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} J_{ij}(a_i,a_j) + \sum_{i=1}^{N} h_i(a_i)
ight) \ F[P] &= -\sum_a P(a) \log P(a) \ &+ \sum_{i < j} \sum_{x,y} \lambda_{ij}(x,y) \Big(P_{ij}(x,y) - f_{ij}(x,y)\Big) \ &+ \sum_i \sum_x \lambda_i(x) \Big(P_i(x) - f_i(x)\Big) \ &+ \Omega\left(1 - \sum_a P(a)
ight). \end{split}$$

$$F_i = rac{1}{N} \sum_{j
eq i}^N F_{ij} \ F_{ij} = F_{ij} - rac{F_i F_j}{F} \ F = rac{1}{N^2 - N} \sum_{i,j,i
eq j}^N F_{ij}$$

The idea of <u>maximum-entropy</u>: For a given set of sample covariances and frequencies, the model represents the **distribution with the maximal entropy** of all distributions reproducing those covariances and frequencies.

The unique distribution **P** that maximizes the functional to the *left*.

Final step:

average product correction (APC).

$$\mathbf{x} = (x_1, \dots, x_L) \in \Omega^L$$

$$\bigvee$$

$$P(x_1, \dots, x_L) = \frac{1}{Z} \exp\left(\sum_i h_i(x_i) + \sum_{i < j} e_{ij}(x_i, x_j)\right)$$

Pairwise maximum-entropy distribution

Parameter inference

pseudolikelihood maximization (PLM)

$$\left\{m{h}^{ ext{PLM}}(m{\sigma}), m{e}^{ ext{PLM}}(m{\sigma}, m{\omega})
ight\} = lpha \min_{m{h}(m{\sigma}), m{e}(m{\sigma}, m{\omega})} \left\{-\ln l_{ ext{PL}} + \lambda_{m{h}} \|m{h}\|_2^2 + \lambda_{m{e}} \|m{e}\|_2^2
ight\}$$

Pair scoring functions

direct information

$$DI_{ij} = \sum_{\sigma,\omega} P_{ij}^{dir}(\sigma,\omega) \ln \left(\frac{P_{ij}^{dir}(\sigma,\omega)}{f_i(\sigma)f_j(\omega)} \right)$$

• Frobenius norm

$$\|e_{ij}\|_{\mathrm{F}} = \left(\sum e_{ij}(\sigma,\omega)^2\right)^{1/2}$$

• average product-corrected Frobenius norm

$$APC-FN_{ij} = ||e_{ij}||_F - \frac{||e_{i.}||_F ||e_{.j}||_F}{||e_{...}||_F}$$

From contacts to structure

Analyze the highest scoring pairs to produce ranked list of residue pairs which we predict to be close in 3D space. Use these pairs as predicted close "evolutionary inferred contacts", EICs, in folding calculations

assign (resid 143 and name CA) (resid 123 and name CA) 4 4 3 assign (resid 16 and name CA) (resid 10 and name CA) 4 4 3 assign (resid 141 and name CA) (resid 82 and name CA) 4 4 3 assign (resid 129 and name CA) (resid 87 and name CA) 4 4 3 assign (resid 92 and name CA) (resid 11 and name CA) 4 4 3 assign (resid 116 and name CA) 4 4 3

Predicting protein 3D structure from sequence

Three-dimensional structure of target protein

Predicted contacts using global model

Predicted contacts using local model

Experimental structure contacts

RAS oncoprotein

Detecting functional hotspots

Residues subject to a high number of evolutionary pair constraints represent likely functional hotspots.

- Such highly constrained residues include residues in functional sites (for e.g., interaction with external ligands).
- Not detectable by analysis of single-residue conservation.

Predicting protein-protein & protein-ligand interactions

Predicting conformational changes

Hybrid approaches for determining protein 3D structure

