Table of Contents

Chapter	r 1.	Cooling Loads and Refrigeration Cycle Model	3
Chapter	r 2.	Getting Started with Cooling Loads and Model	4
2.1	Met	hodology	4
2.2	Sou	rces of Heat Losses and Cooling Loads	4
Chapter	r 3.	Further Categorization of Cooling Loads	6
Chapter	r 4.	Scenarios for Cooling Loads in Lab	7
Chapter	r 5.	Room and Environment Model	7
5.1	Mod	delling and Estimate Value of A (I)	7
5.1	.1	Heat Transfer Through a Solid Concrete Wall:	8
5.1	.2	Heat Transfer Through a Multilayer Plane Wall:	8
5.2	Mod	delling and Estimation of A (V)	9
5.2	.1	Scenario:	9
5.2	2.2	Sensible Heat Transfer from Human Body:	9
5.3	Mod	delling and Estimate Value of A (II)	10
5.3	3.1	Solar Heat Gain through Opaque Surface (Walls and Roof):	10
5.3	.2	Solar Heat Gain through Transparent Surface (Glass):	12
5.4	Mod	delling and Estimate Value of A (IV)	15
5.4	.1	Scenario:	15
5.5	Mod	delling and Estimate Value of A (VIII)	15
5.5	5.1	Scenario:	15
5.6	Mod	delling and Estimate Value of B (II):	15
5.6	5.1	Latent Heat Transfer from Human Body:	15
5.6	5.2	Latent Heat Transfer from the Skin	15
5.6	5.3	Sensible and Latent Heat Transfer from the Lungs:	16
Chapter	r 6.	Model Parameters	17
6.1	Par	ameters of Category A (I)	17
6.1	.1	Properties and Parameters of External Walls	17
6.1	.2	Properties and Parameters of Windows	17
6.1	.3	Properties and Parameters of Furniture	17
6.1	.4	Properties and Parameters of Roof	17
6.1	.5	Properties and Parameters of Environment	17
6.2	Par	ameters of Category A (II)	17
6.2	.1	Solar Data:	17
6.3	Par	ameters of Category A (II)	17
6.4	Par	ameters of Category A (V)	17
6.5	Par	ameters of Category A (VI)	17
6.6	Par	ameters of Category A (VIII)	17
6.7	Par	ameters of Category B (II)	17
6.7	'.1	Parameters Related to Refrigeration Unit	18

Chapter	7.	Model Blocks	18
Chapter	8.	Model Navigation	19
8.1	Тор	-Level Model	19
8.2	Sub	-Level Models	21
8.2.	.1	House	21
8.2.	.2	External Environment	24
8.2.	.3	Compressor Drive	24
Chapter	9.	Model Results	
•			
		List of Figures and Tables	
Eiguro 1	Tho	rmal Network of a Normal Concrete Wall	0
		rmal Network of a Normal Concrete Wall	
		rage Heat loads from Human Body	
		t Transfer Coefficient of a Clothed Body	
Figure 5	Vari	ation of Solar Radiation Intensity	13
		ding Coefficients	
		-Level Model	
		-Level Model of House	
		m Thermal Network	
		ut Parameters of Thermal Network	
		havior of Solar Irradiation	
		havior of Ceiling Fan	
		b-Level Model of External Environment	
rigure i	4 Su	b-Level Model of Compressor Drive	24
T-1-1- 4	0-1-		_
		gorization of Cooling Loads	
		rent Cooling Loads and Categories	
		ng Load Scenarios for Testing	
		ensions of Room	
		ng Fans	
		Level Model Components	
i abie 1	i ob-	Level Model Components	ں۔

Chapter 1. Cooling Loads and Refrigeration Cycle Model

Get Started

This section provides an overview of the modelling techniques and literature review used for different parts of the Simulink Model. Previous HVAC knowledge is beneficial in understanding the model.

Model Parameters

This section will go through the parameters that are available in the model and how they can be changed to fit any scenario in the model

Model Blocks

This section provides information about the different Simulink or Simscape blocks that are being used for the model.

Model Navigation

This section provides an overview on how the different parts of the model does and where to find the results from the model.

Model Control Panel

Results

This section contains the results that are obtained from the model and are subjected to change depending on the input parameters. Interpretation of the different results will depend on what input behavior is used for appliances, solar loads, occupants etc.

Chapter 2. Getting Started with Cooling Loads and Model

2.1 Methodology

All the cooling loads are divided into two categories which are the source of sensible and latent heat gains. These categories are used throughout the model for reference.

2.2 Sources of Heat Losses and Cooling Loads

A. Sensible Heat Gain

- 1. Heat conduction from exterior walls, floors, ceilings, doors, and windows.
- **2.** Solar Radiation (Heat Transmitted through glass of windows, ventilators, and doors. Heat absorbed by walls and roofs exposed to Solar Radiation.
- 3. Heat conduction from interior unconditioned partitions or rooms.
- **4.** Heat given off by lights, appliances, motors, machinery, and cooking operations.
- **5.** Heat given off by residents or occupants in the room.
- **6.** Heat carried by the infiltrated air due to leaks in through the cracks in doors, windows, and frequent openings of doors.
- **7.** Heat gains due to walls of ducts carrying conditioned air through unconditioned space in the building.
- 8. Heat gain from the ceiling fan or any other fans.

B. Latent Heat Gain

- 1. Heat gains due to moisture in the air infiltrating the room
- 2. Heat gains due to condensation of moisture from occupants
- **3.** Condensation of moisture from any process such as cooking taking place within the conditioned space
- 4. Heat gains due to moisture passing directly into the conditioned space through the walls or partitions inside permeable to air or from outside adjoining regions where the water vapor pressure is high.

Table 1 Categorization of Cooling Loads

	gory
	1
I	Direct Heat conduction from exterior walls, floors, ceilings, doors, windows and roof
II	Solar Radiation (Heat Transmitted through glass of windows, ventilators and doors. Heat absorbed by walls and roofs exposed to Solar Radiation
III	Heat conduction from interior unconditioned partitions or rooms.
IV	Heat given off by lights, appliances, motors, machinery, and cooking operations
V	Heat given off by residents or occupants in the room.
VI	Heat carried by the infiltrated air due to leaks in through the cracks in doors, windows, and frequent openings of doors.
VII	Heat gains due to walls of ducts carrying conditioned air through unconditioned space in the building
VIII	Heat gain from the ceiling fan or any other rotary equipment.
_	egory B
ı	Heat gains due to moisture in the air infiltrating the room
II	Heat gains due to condensation of moisture from occupants
III	Condensation of moisture from any process such as cooking taking place within the conditioned space
IV	Heat gains due to moisture passing directly into the conditioned space through the walls or partitions inside permeable to air or from outside adjoining regions where the water vapor pressure is high

Chapter 3. Further Categorization of Cooling Loads

The different loads from categories A and B will be measured either experimentally or it is to be referenced from the literature.

Table 2 Different Cooling Loads and Categories

Test Parameter	Category
Inside Design Conditions	-
Outside Design Conditions	-
Sensible heat gain from glass	A (I)
Sensible heat gain from walls	A (I)
Sensible heat gain from ceiling	A (I)
Solar heat gain from glass	A (I)
Solar heat gain from walls	A (II)
Solar heat gain from roof	A (II)
Sensible Heat from partitioned Rooms	A (III)
Equipment (Motor, Iron, etc) sensible heat gain	
Equipment (Motor, Iron, etc) latent heat gain	B (IV)
Sensible heat gain from lights	A (IV)
Sensible load per person	A (V)
Infiltration Load	A (VI)
Sensible Heat gains from the walls of ducts	A (VII)
Sensible heat gain from fans	A (VIII)
Heat gain from moisture of infiltrated air	B (I)
Latent load per person	B (II)
Latent heat from Organics (Food or Eatables)	B (III)
Equipment (Motor, Iron, etc) latent heat gain	B (IV)

Chapter 4. Scenarios for Cooling Loads in Lab

The cooling loads for different scenarios will be estimated from the MATLAB model and they will be used for testing in the Split AC Lab. Different scenarios have been listed in **Table 3**

Table 3 Cooling Load Scenarios for Testing

I	Heat Loads
1	A (I)
2	A (I) + A (V)
3	A(I) + A(V) + A(II)
4	A(I) + A(V) + A(II) + A(IV)
5	A (I) + A (V) + A (II) + A (IV) + A (VIII)
6	A (I) + A (V) + A (II) + A (IV) + A (VIII) + A (VI)
7	A (I) + A (V) + A (II) + A (IV) + A (VIII) + A (VI)
	+ B (I)
8	A (I) + A (V) + A (II) + A (IV) + A (VIII) + A (VI)
	+ B (II) + B (I)

Chapter 5. Room and Environment Model

Table 4 Basic Room Dimensions

Width/Floor/Ceiling (ft)	Length (ft)	Ceiling Height	Number of Occupants	Number of Florescent	Number of Computers/Laptops
		(ft)		Lights	

5.1 Modelling and Estimate Value of A (I)

Normally, a room consists of 4 walls which may or may not have a window. So, the model should predict the heat loss through a solid concrete wall and through a combination of glass, air gap and concrete walls. The approximate thicknesses of wall and glass will be taken as variables as they can vary a lot depending on the construction. The wind speed and convection transfer will also vary the heat transfer through the walls, but they can be taken as approximate or separate complex model can be used to predict the heat transfer coefficient.

Also, as the day passes by, the temperature of the air outside the room and the convection coefficient is dynamically changing so to add this effect, a dynamically changing convection coefficient and temperatures will be used.

After having modelled the parameters, the heat transfer or heating load will be calculated and will show variable loads depending on the time of that day.

Table 5 Dimensions of Room

Wall Orientation	Wall Area (ft²)	Window Area (ft²)	Door Area (ft²)
North			
South			
West			
East			
Roof/Ceiling/Top			
Floor/Bottom			

5.1.1 Heat Transfer Through a Solid Concrete Wall:

Heat transfer through a normal wall can be modelled as shown in Figure 1

Figure 1 Thermal Network of a Normal Concrete Wall

$$\begin{aligned} h_1 &= \textit{Convection Coefficient of Inner Surface} \\ h_2 &= \textit{Convection Coefficient of Outer Surface} \\ k_{wall} &= \textit{Thermal Conductivity of the Concrete Wall} \\ T_{\infty_1} &= \textit{Temperature of its inner Surface} \\ T_{\infty_2} &= \textit{Temperature of its Outer Surface} \\ A &= \textit{Heat Transfer Area} \\ L &= \textit{Thickness of the Wall} \\ R_{conv} &= \frac{1}{hA} \\ R_{wall} &= \frac{L}{kA} \\ R_{total} &= \sum R_i \end{aligned}$$

Here, h_2 and T_{∞_2} are varying due to changing environmental condition.

We will assume that h_1 remains constant for simplicity but T_{∞_1} will also be changing during the condition where the refrigeration unit is turned on.

5.1.2 Heat Transfer Through a Multilayer Plane Wall:

In **Figure 2**, the generalized network is shown and can be replaced by any number of layers provided that the property of the material is known. This model is great in predicting the heat transfer through walls which have windows or airgaps.

Figure 2 Thermal Network of a Multilayer Plane Wall

 $h_1 = Convection\ Coefficient\ of\ Inner\ Surface\ h_2 = Convection\ Coefficient\ of\ Outer\ Surface\ k_{wall} = Thermal\ Conductivity\ of\ the\ Concrete\ Wall\ k_{glass} = Thermal\ Conductivity\ of\ Glass\ T_{\infty_1} = Temperature\ of\ its\ inner\ Surface\ T_{\infty_2} = Temperature\ of\ its\ Outer\ Surface\ A = Heat\ Transfer\ Area\ L = Thickness\ of\ the\ Wall\ R_{conv} = \frac{1}{hA}\ R_{wall} = \frac{L}{kA}\ R_{total} =$

5.2 Modelling and Estimation of A (V)

Figure 3 Average Heat loads from Human Body

5.2.1 Scenario:

Basically, in a refrigerated space, there can be a lot of occupants or residents in a room. To model the heat generated from a person we need to cater the sensible and latent of the human skin and metabolism.

The sensible heat transfer depends on the temperature of the skin and the type of clothing while the latent heat will depend on how wet the skin is ad how much moisture is added in the lungs to the air.

5.2.2 Sensible Heat Transfer from Human Body:

The overall sensible heat transfer from an occupant is basically the following:

$$Q_{cond+conv} = \frac{A_{clothing}(T_{skin} - T_{operative})}{R_{clothing} + \frac{1}{h_{combined}}}$$

Where.

 $A_{clothing} = Average heat transfer area of clothing$

 $T_{skin} = Average\ temperature\ of\ the\ human\ skin$

 $T_{operative} = Average \ of \ the \ surrounding \ and \ ambient \ temperatures = \frac{T_{ambient} + T_{surr}}{2}$

 $R_{clothing} = Average \ Thermal \ Resistance \ of \ Clothing$ $h_{combined} = Combined \ Convective \ and \ Radiation \ heat \ trasnfer \ coefficient$

- The convective heat transfer coefficient of a clothed body can be estimated from Figure
 4.
- 2. The thermal resistance of trousers, long-sleeve shirt, long-sleeve sweater, and T-shirts is usually 0.155 m². °C/W. Summer clothing such as light slacks and short-sleeved shirt has a thermal resistance of 0.0775 m². °C/W. whereas winter clothing such as heavy slacks, long-sleeve shirt, and a sweater or jacket has a thermal resistance of 0.1395 m². °C/W
- 3. When the body is at thermal comfort, the skin temperature is usually 33°C ± 1.5 °C
- **4.** Surface area of an average man is 1.8 m²
- 5. Average indoor radiation heat transfer coefficient in typical conditions is 4.7 W/m² °C

TABLE 16-3											
Convection heat transfer coefficients for a clothed body at 1 atm <i>V</i> is in m/s) (compiled from various sources)											
Activity	h _{conv} * W/m² · °C										
Seated in air moving at											
0 < V < 0.2 m/s	3.1										
0.2 < V < 4 m/s	$8.3V^{0.6}$										
Walking in still air at											
0.5 < V < 2 m/s	$8.6V^{0.53}$										
Walking on treadmill in still air at $0.5 < V <$											
2 m/s	$6.5V^{0.39}$										
	0.57										
Standing in moving air at $0 < V < 0.15$ m/s	4.0										
0.15 < V < 1.5 m/s	$14.8V^{0.69}$										
0.13 < V < 1.3 11//3	14.07										
*At pressures other than 1 atm, multiply by $P^{0.55}$, where P is in atm.											

Figure 4 Heat Transfer Coefficient of a Clothed Body

5.3 Modelling and Estimate Value of A (II)

5.3.1 Solar Heat Gain through Opaque Surface (Walls and Roof):

To predict the effect of sun in the heat transfer from the walls or roofs, a concept of sol-air temperature is used which basically provides an equivalent outside temperature with the solar radiation.

The sol-air temperature is basically defined as:

$$T_{sol-air} = T_{ambient} + \frac{\alpha_s \, \dot{q}_{solar}}{h_o} - \frac{\epsilon \sigma (T_{ambient}^4 - T_{surr}^4)}{h_o}$$

Where

 α_s = Absorptivity of the Surface ϵ = Emissivity of the Surface

Absorptivity values of the surface can be seen from below.

TABLE 16-6

The reflectivity ρ_s and absorptivity α_s of common exterior surfaces for solar radiation (from Kreider and Rabl, 1994, Table 6.1)

Surface	$ ho_{s}$	α_{s}
Natural Surfaces		
Fresh snow	0.75	0.25
Soils (clay, loam, etc.)	0.14	0.86
Water	0.07	0.93
Artificial Surfaces		
Bituminous and		
gravel roof	0.13	0.87
Blacktop, old	0.10	0.90
Dark building surfaces		
(red brick, dark	0.27	0.73
paints, etc.)	0.27	0.73
Light building surfaces (light brick, light		
paints, etc.)	0.60	0.40
New concrete	0.35	
Old concrete	0.25	0.75
Crushed rock surface	0.20	
Earth roads	0.04	0.96
Varatation		
Vegetation Coniferous forest	0.07	0.93
(winter)	0.07	0.93
Dead leaves	0.30	0.70
Forests in autumn,		
ripe field crops,		
plants, green grass	0.26	0.74
Dry grass	0.20	0.80

TABLE 16-7

Sol-air temperatures for July 21 at 40° latitude (from ASHRAE Handbook of Fundamentals, Chap. 26, Table 1)

(a) S	SI units	;																			
	Air	Air Light-colored surface, $\alpha/h_0 = 0.026 \text{ m}^2 \cdot \text{°C/W}$									Air	ir Dark-colored surface,									
Solar	temp.,			α/	$h_o = 0$	0.026	m² · °(C/W			Solar	temp.,			α/	$h_o = 0$	0.052	m² · °(C/W		
time	°C	N	NE	E	SE	S	SW	W	NW	Horiz.	time	°C	N	NE	Е	SE	S	SW	W	NW	Horiz.
5	24.0	24.1	24.2	24.2	24.1	24.0	24.0	24.0	24.0	20.1	5	24.0	24.2	24.4	24.3	24.1	24.0	24.0	24.0	24.0	20.2
6	24.2	27.2	34.5	35.5	29.8	25.1	25.1	25.1	25.1	22.9	6	24.2	30.2	44.7	46.7	35.4	26.0	26.0	26.0	26.0	25.5
7	24.8	27.3	38.1	41.5	35.2	26.5	26.4	26.4	26.4	28.1	7	24.8	29.7	51.5	58.2	45.6	28.2	28.0	28.0	28.0	35.4
8	25.8	28.1	38.0	43.5	38.9	28.2	28.0	28.0	28.0	33.8	8	25.8	30.5	50.1	61.2	52.1	30.7	30.1	30.1	30.1	45.8
9	27.2	29.9	35.9	43.1	41.2	31.5	29.8	29.8	29.8	39.2	9	27.2	32.5	44.5	58.9	55.1	35.8	32.3	32.3	32.3	55.1
10	28.8	31.7	33.4	40.8	41.8	35.4	31.8	31.7	31.7	43.9	10	28.8	345	38.0	52.8	54.9	42.0	34.7	34.5	34.5	62.8
11	30.7	33.7	34.0	37.4	41.1	39.0	34.2	33.7	33.7	47.7	11	30.7	36.8	37.2	44.0	51.5	47.4	37.7	36.8	36.8	68.5
12	32.5	35.6	35.6	35.9	39.1	41.4	39.1	35.9	35.6	50.1	12	32.5	38.7	38.7	39.3	45.7	50.4	45.7	39.3	38.7	71.6
13	33.8	36.8	36.8	36.8	37.3	42.1	44.2	40.5	37.1	50.8	13	33.8	39.9	39.9	39.9	40.8	50.5	54.6	47.1	40.3	71.6
14	34.7	37.6	37.6	37.6	37.7	41.3	47.7	46.7	39.3	49.8	14	34.7	40.4	40.4	40.4	40.6	47.9	60.8	58.7	43.9	68.7
15	35.0	37.7	37.6	37.6	37.6	39.3	49.0	50.9	43.7	47.0	15	35.0	40.3	40.1	40.1	40.1	43.6	62.9	66.7	52.3	62.9
16	34.7	37.0	36.9	36.9	36.9	37.1	47.8	52.4	46.9	42.7	16	34.7	39.4	39.0	39.0	39.0	39.6	61.0	70.1	59.0	54.7
17	33.9	36.4	35.5	35.5	35.5	35.6	44.3	50.6	47.2	37.2	17	33.9	38.8	37.1	37.1	37.1	37.3	54.7	67.3	60.6	44.5
18	32.7	35.7	33.6	33.6	33.6	33.6	38.3	44.0	43.0	31.4	18	32.7	38.7	34.5	34.5	34.5	34.5	43.9	55.2	53.2	34.0
19	31.3	31.4	31.3	31.3	31.3	31.3	31.4	31.5	31.5	27.4	19	31.3	31.5	31.3	31.3	31.3	31.3	31.4	31.6	31.7	27.5
20	29.8	29.8	29.8	29.8	29.8	29.8	29.8	29.8	29.8	25.9	20	29.8	29.8	29.8	29.8	29.8	29.8	29.8	29.8	29.8	25.9
Avg.	29.0	30.0	32.0	33.0	32.0	31.0	32.0	33.0	32.0	32.0	Avg.	29.0	32.0	35.0	37.0	37.0	34.0	37.0	37.0	35.0	40.0

Then

$$\dot{Q}_{wall} = UA_s(T_{sol-air} - T_{inside})$$

 $\dot{Q}_{wall} = UA_s(T_{sol-air} - T_{inside})$ The solar component of the heat transfer is:

$$\dot{Q} = UA_s \delta T_{solar} = UA_s \frac{\alpha_s \dot{q}_{solar}}{h_o}$$

5.3.2 Solar Heat Gain through Transparent Surface (Glass):

The solar heat gain from the surface of the windows can be calculated as:

$$Q_{solar,gain} = SHGC * A_{glazing} * q_{solar,incident}$$

 $\dot{Q}_{solar,gain} = SHGC*A_{glazing}*q_{solar,incident}$ A new coefficient, shading coefficient is used to find the SHGC which is defined as:

$$SC = \frac{Solar \ heat \ gain \ of \ product}{Solar \ heat \ gain \ of \ reference \ glazing} = 1.15 * SHGC$$

TABLE 16-20

Hourly variation of solar radiation incident on various surfaces and the daily totals throughout the year at 40° latitude (from ASHRAE *Handbook of Fundamentals*, Chap. 27, Table 15)

		Solar radiation incident on the surface," W/m ²														
		_							Solar	time						
	Direction of	_							12							Daily
Date	surface	5	6	7	8	9	10	11	noon	13	14	15	16	17	18 19	total
Jan.	N	0	0	0	20	43	66	68	71	68	66	43	20	0	0 0	446
	NE	0	0	0	63	47	66	68	71	68	59	43	20	0	0 0	489
	E	0	0	0	402	557	448	222	76	68	59	43	20	0	0 0	1863
	SE	0	0	0	483	811	875	803	647	428	185	48	20	0	0 0	4266
	S SW	0	0	0	271	579 48	771 185	884 428	922 647	884 803	771 875	579 811	271 483	0	0 0	5897 4266
	W	0	0	0	20	43	59	68	76	222	448	557	402	0	0 0	1863
	NW	Ö	o	ő	20	43	59	68	71	68	66	47	63	o	0 0	489
	Horizontal	0	o	o	51	198	348	448	482	448	348	198	51	0	0 0	2568
	Direct	0	o	o	446	753	865	912	926	912	865	753	446	o	0 0	_
Apr.	N	0	41	57	79	97	110	120	122	120	110	97	79	57	41 0	1117
ripi.	NE	0	262		462	291	134	123	122	120	110	97	77	52	17 0	2347
	E	o	321		810	732	552	293	131	120	110	97	77	52	17 0	4006
	SE	0	189	518	682	736	699	582	392	187	116	97	77	52	17 0	4323
	S	0	18	59		333	437	528	559	528	437	333	149	59	18 0	3536
	SW	0	17	52	77	97	116	187	392	582	699	736	682	518	189 0	4323
	W	0	17	52	77	97	110	120	392	293	552	732	810	728	321 0	4006
	NW	0	17	52	77	97	110	120	122	123	134	291	462	508	262 0	2347
	Horizontal	0	39	222	447	640	786	880	911	880	786	640	447	222	39 0	6938
	Direct	0	282	651	794	864	901	919	925	919	901	864	794	651	282 0	_
July	N	3	133	109	103	117	126	134	138	134	126	117	103	109	133 3	1621
	NE	8	454	590		383	203	144	138	134	126	114	95	71	39 0	3068
	E	7	498		782	701	531	294	149	134	126	114	95	71	39 0	4313
	SE	2	248		580	617	576	460	291	155	131	114	95	71	39 0	3849
	S	0	39	76		190	292	369	395	369	292	190	108	76	39 0	2552
	SW	0	39	71	95	114	131	155	291	460	576	617	580	460	248 2	3849
	W	0	39	71	95	114	126	134	149	294	531	701	782	739	498 7	4313
	NW	0	39	71	95	114	126	134	138	144	203	383	540	590	454 8	3068
	Horizontal Direct	7	115 434	320 656		702 818	838 850	922 866	949 871	922 866	838 850	702 818	528 762	320 656	115 1 434 7	3902
Oct.	N	0	0	7	40	62	77	87	90	87	77	62	40	7	0 0	453
	NE	0	0		178	84	80	87	90	87	87	62	40	7	0 0	869
	E	0	0		626	652	505	256	97	87	87	62	40	7	0 0	2578
	SE	0	0		680	853	864	770	599	364	137	66	40	.7	0 0	4543
	S	0	0	44		547	711	813	847	813	711	547	321	44	0 0	5731
	SW	0	0	7	40 40	66	137	364	599	770	864	853	680	152	0 0	4543
	W NW	0	0	7	40	62 62	87 87	87 87	97 90	256 87	505 80	652 84	626 178	163 74	0 0	2578 869
		0	0	14		351	509	608	640	608	509	351	156	14	0 0	3917
	Horizontal Direct	0	0		643	811	884	917	927	917	884	811	643	152	0 0	291/
	Diffect	•	-	102	343	011	004	31/	321	31/	004	011	043	102	0 0	

Multiply by 0.3171 to convert to Btu/h · ft2.

Figure 5 Variation of Solar Radiation Intensity

16-55 CHAPTER 16

TABLE 16-21

Shading coefficient SC and solar transmissivity τ_{solar} for some common glass types for summer design conditions (from ASHRAE Handbook of Fundamentals, Chap. 27, Table 11)

Type of	Nominal thickness									
glazing	mm	in	$ au_{ m solar}$	SC*						
(a) Single Glazing										
Clear	3	$\frac{1}{8}$	0.86	1.0						
	6	$\frac{1}{4}$	0.78	0.95						
	10	1 3 8 1	0.72	0.92						
	13	$\frac{1}{2}$	0.67	0.88						
Heat absorbing	3 6 10 13	1801438812	0.64 0.46 0.33 0.24	0.85 0.73 0.64 0.58						
(b) Double Glazing										
Clear in,	3ª	18	0.71b	0.88						
clear out	6	$\frac{1}{4}$	0.61	0.82						
Clear in, heat absorbing out ^c	6	1/4	0.36	0.58						

^{*}Multiply by 0.87 to obtain SHGC.

^aThe thickness of each pane of glass.

^bCombined transmittance for assembled unit.

cRefers to gray-, bronze-, and green-tinted heat-absorbing float glass Figure 6 Shading Coefficients

5.4 Modelling and Estimate Value of A (IV)

5.4.1 Scenario:

During normal conditions, there is lighting turned on inside rooms which also produces heat, so they have to modelled.

The heat given off by a light is:

$$Q = 3.41 * W * F_{IIT} * F_{SA} * CLF$$

Where

W = Watts input

 $F_{UT} = Lightning use factor$

 $F_{SA} = Special \ Ballast \ Allowance \ Factor$

 $CLF = Cooling\ Load\ Factor$

- Generally, special blast allowance is used for fluorescent fixtures (tubes and lamps) and
 it accounts for ballast losses. It's value is generally taken as 1.25. It is a fraction of total
 heat that is expected to enter the conditioned space due to ballast and it subject to time
 lag effect.
- 2. U¹se factor is the ratio of actual wattage in use to installed wattage and it is **taken as 1 for domestic** purposes
- 3. The value of 0.7 has been used for the CLF

5.5 Modelling and Estimate Value of A (VIII)

5.5.1 Scenario:

The cooling load from motors has been explained in **Modelling and Estimate Value of A (IV)** and in this section, the approximate motor powers have been listed for them to be used in the modelling.

Table 6 Ceiling Fans

Brand Name	Fan Type	Rated Power
Royal Fans	Ceiling Fan 36", 48" and 56"	55, 65 and 75W
GFC	Ceiling Fan	80W
Pak Fans	Ceiling Fan 36", 48" and 56"	55, 62, and 70W

5.6 Modelling and Estimate Value of B (II):

5.6.1 Latent Heat Transfer from Human Body:

The latent heat transfer from humans has basically three components, one is the moisture on the skin, the second is the body loses both sensible heat by convection and latent heat by evaporation from the lungs.

5.6.2 Latent Heat Transfer from the Skin

Latent heat loss from the skin can be calculated as:

$$\dot{Q} = \dot{m}_{vapor} h_{fg}$$

Where

 $\dot{m}_{vapor} = Rate \ of \ evaporation \ from \ the \ body, \frac{kg}{s}$

¹ At maximum intensity, during a workout on a hot day the human body can lose as much as 0.3 g/s of water from the body which corresponds to heat loss rate of about 730 W.

$$h_{fg} = Latent\ heat\ of\ vaporization\ of\ Water = 2430 rac{kJ}{kg}\ @\ 30^{\circ}C$$

5.6.3 Sensible and Latent Heat Transfer from the Lungs:

The sensible heat transfer has only convection component and is related as:

$$\dot{Q}_{sensible,conv_{lunas}} = \dot{m}_{air,lungs} c_{p,air} (T_{exhale} - T_{ambient})$$

Where,

 $\dot{m}_{air,lungs}$ rate of air to the lungs

The latent heat transfer is related as:

$$\dot{Q}_{latent,lungs} = \dot{m}_{vapor,lungs} h_{fg} = m_{air,lungs} (\omega_{exhale} - \omega_{ambient}) h_{fg}$$

Where

$$T_{exhale} = temperature of the exhaled air$$

 $\omega = humidity ratio$

@ 25°C, the value of heat capacity of air $c_p = 1.006 \frac{kJ}{kg.K}$

The combination of latent and sensible heat loss from the lungs can be approximated as:

$$\dot{Q}_{sensible+Latent} = 0.0014 \, \dot{Q}_{met} \, (34 - T_{ambient}) + 0.0173 \, \dot{Q}_{met} \, (5.87 - P_{v,ambient})$$

Where.

 $P_{v,ambient}$ is the vapor pressure of ambient air in kPa

 $\dot{Q}_{met} = Human Metabolic Rate$

Chapter 6. Model Parameters

The parameters of the Simulink Model are referenced from the different MATLAB Scripts. Default values are already written but in case, a user wants to change the scenarios such as changing the room size or change the solar load according to the specific region, they would have to change the parameters values in the scripts.

The scripts are named according to the categories explained in **Chapter 2.1: Methodology.** Hence each script will contain parameters related to the category of cooling loads. Furthermore, the scripts itself contains comments to provide the information about their units and purpose. Each variable name is pneumonic for the user to quickly identify the relevant parameter.

6.1 Parameters of Category A (I)

6.1.1 Properties and Parameters of External Walls

%Exterior Convection Parameters I wall exterior=10:%m w_wall_exterior=10; %m h_room= 2; %m area wall exterior=l wall exterior*w wall exterior: %m^2 hc_wall_exterior= 34; %W/m^2.K %Interior Convection Parameters hc_wall_interior= 24; %W/m^2.K %Exterior Conduction Parameters thicnkess wall exterior=0.2;%m k_wall=0.038 ;%W/m.K %Interior Conduction Parameters % Same as Exterior %Thermal Properties of Exterior Walls rho_wall=1920; %kg/m^3 mass_wall_exterior=rho_wall*area_wall_exterior*thicnkess_wall_exterior; %kg cp_wall_exterior= 835; %j/K.kg T_init_wall= 25; % degC

6.1.2 Properties and Parameters of Windows

%Exterior Convection Parameters I window= 0.3:%m w window= 0.2.%m area window=l window*w window; %m^2 hc_window_exterior=32; %W/m^2.K %Interior Convection Parameters hc_window_interior=25; %W/m^2.K %Exterior Conduction Parameter thicnkess window= 0.01; %m k_window= 0.78; %W/m.K %Interior Conduction Parameters % Same as Exterior %Thermal Properties of Exterior Walls rho window= 2700; %kg/m^3 mass_window=rho_window*area_window*thicnkess_window; %kg cp_window= 840; %j/K.kg T_init_window= 25; % degC

6.1.3 Properties and Parameters of Furniture

%Interior Convection Parameters L_furniture=4.5; %m w_furniture=2.5; %m area_furniture=L_furniture*w_furniture; %m^2 hc_furniture_interior=18; %W/m^2.K %Thermal Properties of Exterior Walls mass_furniture=400; %kg cp_furniture=2000; %i/K.kg T_init_furniture=25; % degC

6.1.4 Properties and Parameters of Roof

%Exterior Convection Parameters L_roof= 5;%m w_roof= 3;%m pitch_roof= 40;%deg area_roof=_roof*w_roof; %m^2 hc_roof_exterior= 38; %W/m^2.K %Interior Convection Parameters hc_roof_interior= 12; %W/m^2.K %Exterior Conduction Parameters

thicnkess_roof= 0.2; %m k_roof= 0.038; %W/m.K %Interior Conduction Parameters % Same as Exterior %Thermal Properties of Exterior Walls rho_roof= 32; %kg/m^3 mass_roof=rho_roof*area_roof*thicnkess_roof; %kg cp_roof= 835; %i/K.kg T_init_roof=25; % degC

6.1.5 Properties and Parameters of Environment

T_env=35;%degC T_house_init=27; %degC

6.2 Parameters of Category A (II)

6.2.1 Solar Data:

[483,811,875,803,647,428,185,48,20,0]; % Solar Radiation of South-East Wall from 8am to 5pm [402,557,448,222,76,68,59,43,20,0]; % Solar Radiation of East Wall from 8am to 5pm [271,579,771,884,922,884,771,579,271,0]; % Solar Radiation of North Wall from 8am to 5pm absorptivity_surface=0.65;

6.3 Parameters of Category A (II)

%Properties and Parameters Related to Lights no_lights=4; %no of lights wattage_per_light= 12; %Watts F_UT=1; CLF=0.7; F_SA=1.25; Q_lights=3.41*no_lights*F_UT*F_SA*CLF*wattage_per_light; %W

6.4 Parameters of Category A (V)

%Properties and Parameters Related to Occupant no_occupants=2;
area_clothing= 1.8; %m^2
T_skin= 33; %degC
T_surr=25; %degC
%T_operative= (T_env+T_surr)/2 %degC
R_clothing=0.0775; %m^2.degC/W
velocity_air=0.7; %m/s
h_conv=8.3*velocity_air^0.6; %W/m^2.degC
h_radiation= 4.7; %W/m^2.degC
h_combined= h_conv+h_radiation;
Q_occupant= area_clothing*(T_skin-T_surr)/(R_clothing+1/h_combined); %W

6.5 Parameters of Category A (VI)

rho_outdoor= 1.2; %kg/m^3 cp_air = 1; %kj/kg/K %V_dot= %m^3/s T_indoor=out.T_room.signals.values; ACH= 0.55 %Air Changes per Hour V_room = I_wall_exterior*w_wall_exterior*h_room; %m^3 Q_infiltration_sensible= rho_outdoor*cp_air*ACH*V_room*(T_env-T_indoor); Q_infiltration_average=sum(Q_infiltration_sensible(::,:,1:20))/20;

6.6 Parameters of Category A (VIII)

%Properties and Parameters Related to Ceiling Fan
no_motors=1;
Average_Power_Rating_Motor= 75; %W
Efficiency_Motor= 0.6;
Load_Factor= 0.55;
Q_motor=no_motors*Average_Power_Rating_Motor/Efficiency_Motor*Load_Factor;

6.7 Parameters of Category B (II)

6.7.1 Parameters Related to Refrigeration Unit %Evaporator Parameters evp_diam_A1=6.35*10^3; %m; evp_diam_A2=6.35*10^3; %m; evp_diam_B1=7*10^3; %m; evp_diam_B1=7*10^3; %m; evp_diam_B2=7*10^3; %m; evp_diam_B2=7*10^3; %m; evp_diam_A2=4.76*10^3; %m; cond_diam_A1=4.76*10^3; %m; cond_diam_A2=4.76*10^3; %m; cond_diam_B2=6.35*10^3; %m; %Thermal Expansion Valve Parameters optimal_rating=5550; %Watts

Chapter 7. Model Blocks

All the blocks shown below are hyperlinked to provide explanation about what each block does and how it is used.

Chapter 8. Model Navigation

Figure 7 shows the very top level of the model. From this figure we can see that different blocks are used to achieve different results and mechanisms. More information about what each block does, can be referenced from **Chapter 7: Model Blocks.**

8.1 Top-Level Model

Table 7 Top-Level Model Components

Component Number	Component Purpose/Definition
1	The thermostat provides a set point for the refrigeration system and the model will try to maintain this temperature.
2	This block models the properties of the refrigerants being used. Custom properties can also be used if the use has data
3	Condenser is modelled using this block and basically it removes the heat of the refrigerant that it has acquired from the evaporator and compression
4	The compressor and compressor drive contains control, and the compressor will shut down once a set temperature is reached.
5	The evaporator is modelled using this block and the refrigerant in the evaporator absorbs the heat from the room making the room air cooler while the refrigerant gets hotter.
6	TEV is used to control the performance of the evaporator such as the cooling capacity which cannot be directly controlled through the evaporator block.
7	Accumulator is modelled using this block which models the phase change and vapor and liquid mixture during throttling.
8	The results of the model such as cooling load, temperature of room and the power of the evaporator is shown by this scope block
9	The operating points of refrigeration cycle can

	be seen using this block
10	This sub-system block models the external environment such as mass flow rate and
	moisture in the external air.
11	This sub-system block contains the cooling loads, thermal resistance network and moisture gain from the different occupants and machines.
12	This flow resistance basically models the throttling valve and pressure drop in the model.

The parameters that are mentioned in Chapter 6: Model Parameters are used by the different blocks in the Top and sub-level models.

8.2 Sub-Level Models

8.2.1 House

This sub-system contains the cooling loads that are coming from different sources such solar, occupants, lights, ceiling fans and appliances The environment temperature and room temperature is also being monitored here.

There are also blocks which models the moisture gain from occupants and appliances and this air goes to the evaporator in the top-level model.

Figure 9 shows the room thermal network, that contains the parameters of and models of roof, walls, furniture, and any windows. The parameters can be seen in Figure 10.

Figure 9 Room Thermal Network

Figure 10 Input Parameters of Thermal Network

The behavior of the loads can be updated from this section of the model as different behavior is recorded for different scenarios. For example, over the day the solar loads vary and becomes

maximum in the noon. To model such behavior, we can define custom signals such as shown in **Figure 11.**

Figure 11 Behavior of Solar Irradiation

Simple scenarios can also be used such as for the ceiling fan being turned on and off at different times for different periods of time as shown in **Figure 12.**

Figure 12 Behavior of Ceiling Fan

8.2.2 External Environment

Figure 13 Sub-Level Model of External Environment

The air from the external environment is modelled by using this subsystem as shown in **Figure 13**. The moisture and mass flow rate are controlled by the respective blocks.

8.2.3 Compressor Drive

Figure 14 Sub-Level Model of Compressor Drive

The compressor motor and drive are modelled by these blocks which uses output from thermostat and transfer function block to drive the compressor as shown in **Figure 14**.

Chapter 9. Model Results

The main result obtained from the model is the change of cooling load over time.

This can be achieved when all the cooling loads and their behavior are modelled and as well as the other input parameters are provided.

