Artificial Intelligence: Search, CSPs and Logic Bayesian Networks, Probabilistic Inference

Nathan Morgenstern, Seo Bo Shim

December 2, 2017

Contents

Question 1	4
part a	4
part b	5
part c	5
part d	5
part e	6
Question 2	7
part a	7
part b	7
part c	7
part d	7
Question 3	8
part a	8

	par	t b.		•	 ٠		 					٠	•					•	•			•	 			•	•		8
	par	t c.					 							•									 	•					8
Que	stion	ı 4			 ٠		 						•										 			•		•	9
	par	t a.	•	•	 •							•	٠		•			•				•	 		 •	•	•	•	9
	par	t b.		•			 																 						9
	par	t c.					 																 						9
Que	stion	1 5					 																 						10
	par	t a.					 																 						10
	par	t b.					 																 						10
	par	t c.		•	 •		 					•	•						•			•	 			•	•		10
Que	stion	16	•	•	 ٠							•	•									•	 		 •	•	•	•	11
	par	t a.	•	•	 ٠							•	•									•	 		 •	•	•	•	11
	par	t b.					 																 						11
	par	t c.					 																 						11
Que	stion	ı 7					 																 						12
	par	t a.					 																 						12
	par	t b.		•	 •		 					•	•					•	•			•	 			•	•		12
		+ 0																											19

Que	stion 8	3.	•		 	 •	 •	•		•	 •	 •	 •		•	 •	 •		 •	 	13
	part	a	•			 •										 ٠				 	13
	part	b	•		 	 ٠						 •						 		 	13
	part	c		 	 	 •														 	14
	part	d																			15

Question 1

part a.

Figure 1: Question 1: Part a

part b.

Figure 2: Question 1: Part b

part c.

NOT DONE

part d.

part e.

Question 2
part a.
NOT DONE
part b.
NOT DONE
part c.
NOT DONE

part d.

Question 3
part a.
NOT DON3
part b.
NOT DONE
part c.

Question 4
part a.
NOT DON3
part b.
NOT DONE
part c.

Question 5
part a.
NOT DON3
part b.
NOT DONE
part c.

part a.
NOT DON3
part b.
NOT DONE
part c.

Question 6

Question 7
part a.
NOT DON3
part b.
NOT DONE
part c.

Question 8

part a.

Cost of good quality car:

$$C(q^+(c_1)) = \$4000 - (3000) = \$1000.$$
 (1)

Cost of bad quality car:

$$C(q^{-}(c_1)) = \$4000 - (3000 + 1400) = -\$400.$$
 (2)

Assuming that repairs can be made without taking it to the mechanic - perhaps the \$1400 is a separate cost than the \$100 needed to check the quality of the car.

Probability of good quality car:

$$P(q^+(c_1)) = 0.7 (3)$$

Probability of bad quality car:

$$P(q^{-}(c_1)) = 0.3 (4)$$

Expected net gain:

$$E(c_1) = C(q^+(c_1)) * P(q^+(c_1)) + C(q^-(c_1)) * P(q^-(c_1))$$

$$\mathbf{E}(\mathbf{c_1}) = \$580 \tag{5}$$

part b.

$$P(Pass|q^+) = 0.8 (6)$$

$$P(Pass|q^{-}) = 0.35 \tag{7}$$

Using 6 and 7:

$$P(\neg Pass|q^{+}) = 1 - P(Pass|q^{+}) = 0.2$$
(8)

$$P(\neg Pass|q^{-}) = 1 - P(Pass|q^{-}) = 0.65$$
(9)

Using 3, 4, 6, 7:

$$P(Pass) = P(Pass|q^{+}) * P(q^{+}) + P(Pass|q^{-}) * P(q^{-}) = 0.665$$

$$\mathbf{P}(\mathbf{Pass}) = \mathbf{0.665}$$
(10)

Using 10:

$$P(\neg Pass) = 1 - P(Pass) = 0.335$$

$$\mathbf{P}(\neg \mathbf{Pass}) = \mathbf{0.335}$$
(11)

Using 6, 3, and 10:

$$\mathbf{P}(\mathbf{q}^{+}|\mathbf{Pass}) = \frac{\mathbf{P}(\mathbf{Pass}|\mathbf{q}^{+}) * \mathbf{P}(\mathbf{q}^{+})}{\mathbf{P}(\mathbf{Pass})} = \mathbf{0.842}$$
(12)

Using 7, 4, and 10:

$$\mathbf{P}(\mathbf{q}^{-}|\mathbf{Pass}) = \frac{\mathbf{P}(\mathbf{Pass}|\mathbf{q}^{-}) * \mathbf{P}(\mathbf{q}^{-})}{\mathbf{P}(\mathbf{Pass})} = \mathbf{0.158}$$
(13)

Using 8, 3, and 11:

$$\mathbf{P}(\mathbf{q}^{+}|\neg \mathbf{Pass}) = \frac{\mathbf{P}(\neg \mathbf{Pass}|\mathbf{q}^{+}) * \mathbf{P}(\mathbf{q}^{+})}{\mathbf{P}(\neg \mathbf{Pass})} = \mathbf{0.418}$$
(14)

Using 9, 4, and 11:

$$\mathbf{P}(\mathbf{q}^{-}|\neg\mathbf{Pass}) = \frac{\mathbf{P}(\neg\mathbf{Pass}|\mathbf{q}^{-}) * \mathbf{P}(\mathbf{q}^{-})}{\mathbf{P}(\neg\mathbf{Pass})} = \mathbf{0.582}$$
(15)

part c.

Paying for the test with the mechanic, the new costs are:

$$C'(q^+(c_1)) = C(q^+(c_1)) - \$100 = \$900$$

$$C'(q^{-}(c_1)) = C(q^{-}(c_1)) - \$100 = -\$500$$

Given a pass:

$$E(c_1|Pass) = C'(q^+(c_1)) * P(q^+(c_1)|Pass) + C'(q^-(c_1)) * P(q^-(c_1)|Pass)$$

$$\mathbf{E}(\mathbf{c_1}|\mathbf{Pass}) = \$678.8$$

Given a failure:

$$E(c_1|\neg Pass) = C'(q^+(c_1)) * P(q^+(c_1)|\neg Pass) + C'(q^-(c_1)) * P(q^-(c_1)|\neg Pass)$$
$$\mathbf{E}(\mathbf{c_1}|\neg \mathbf{Pass}) = \$85.2$$

Regardless of a pass or a failure, the best decision is the sell the car as there will be a net gain.

part d.

Without the mechanic's test, the expected gain from selling the car will be $\mathbf{E}(\mathbf{c_1}) = \580

With the test, the expected gain is \$678.80. The value of the optimal information is the difference between the expected gain with the information and the expected gain without the information. The optimal information value is \$98.80. I should take C1 to the mechanic.