1 Introduction

A graph G consists of a set of vertices V(G) and a set of edges E(G)

Each edge is associated with one or two vertices, its ends

An edge is a *loop* if the ends are the same, a *link* if the ends are different

Graphs are assumed to be finite - both V(G) and E(G) are finite sets

A path is a sequence $(a_0, A_1, a_1, A_2, a_2, \dots, A_n, a_n)$ of vertices a_i and edges A_j such that:

- 1. If $1 \le i \le n$ the ends of A_i are a_{i-1} and a_i
- 2. If $1 \le i \le n$ then $a_{i-1} = a_i$ iff A_i is a loop

If all terms in path are distinct, then the path is *simple*

If all terms are distinct except that $a_0 = a_n$, then the path is *circular*

 $x, y \in V(G)$ are connected if there is a path from x to y in G

Connectedness is an equivalence relation on V(G) so that if $V(G) \neq \emptyset$ then it can be partitioned into disjoint non-null subsets V_1, \ldots, V_k such that two vertices of G are connected iff they are in the same V_i

The $G[V_i]$ are the connected components of G, they are edge- and vertex-disjoint and cover G

The number of components of G is denoted $p_0(G)$

A graph is connected iff $p_0(G) = 0$ or 1, the first case arising if G is the empty graph

A connected graph with no circular path is a tree

$$\alpha_0(G) = |G|$$
 and $\alpha_1(G) = e(G)$

Let Q_n be a finite set of n > 0 elements

 $f:V(G)\to Q_n$ is an *n-colouring* of G if each edge xy of G has $f(x)\neq f(y)$

The number of *n*-colourings of G wrt Q_n is denoted by P(G, n)

If V(G) = 0 then we say P(G, n) = 1, also P(G, n) = 0 if G contains a loop

When G is loopless, P(G, n) is a polynomial in n of degree |G|

For planar graphs, P(G, n) is called the *chromatic polynomial* of G

$$P(G,n) = \sum_{S} (-1)^{e(S)} n^{p_0(S)}$$
 (summing over spanning subgraphs S of G)

An orientation of G distinguishes one end of each edge A as positive, p(A), and one as negative, q(A)

If A is a loop, then p(A) = q(A) otherwise $p(A) \neq q(A)$

If $a \in V(G)$ and $A \in E(G)$ then $\eta(A, a) = 0$ if A is a loop or a is not an end of A. Otherwise, $\eta(A, a) = 1$ or -1 depending as whether a is the positive or negative end of A

A mapping f of V(G) or E(G) into Q_n is a θ -chain or 1-chain respectively on G over Q_n

If $V(G) = \emptyset$ then there is just one 0-chain on G over Q_n

If $E(G) = \emptyset$ then there is just one 1-chain on G over Q_n

If h is a 0-chain on G over Q_n its coboundary, δh is the 1-chain on G over Q_n satisfying

$$(\delta h)(A) = \sum_{a} \eta(A, a)h(a) \tag{2}$$

for each $A \in E(G)$, equivalently

$$(\delta h)(A) = h(p(A)) - h(q(A)) \tag{2a}$$

If g is a 1-chain, its boundary δg is the 0-chain satisfying

$$(\delta g)(a) = \sum_{A} \eta(A, a)g(A) \tag{3}$$

for each $a \in V(G)$

We call g a 1-cycle on G over Q_n if $\delta g \equiv \mathbf{0}$

2 Colour-coboundaries and colour-cycles

A colour-coboundary or colour-cycle on G over Q_n is a 1-chain g on G over Q_n which is a coboundary or a 1-cycle respectively and which satisfies $g(A) \neq 0$ for each $A \in E(G)$

The number of colour-coboundaries of G over Q_n is denoted $\theta(G, n)$

The number of colour cycles on G over Q_n is denoted $\phi(G, n)$

 $\theta(G,n)$ and $\phi(G,n)$ are independent of orientation

If e(G) = 0 then we say $\theta(G, n) = \phi(G, n) = 1$

By (2a), the colour-coboundaries on G over Q_n are the coboundaries of the n-colourings of G

Also, $\delta h_1 = \delta h_2$ for 0-chains h_1, h_2 iff $h_1(a) - h_2(a)$ is constant in each component of G, for all $A \in E(G)$:

$$h_1(p(A)) - h_1(q(A)) = h_2(p(A)) - h_2(q(A)) \iff h_1(p(A)) - h_2(p(A)) = h_1(q(A)) - h_2(q(A))$$