

Analyzing Bike Buyers

Jungju Lim

Agenda

- 1. Case Study Introduction
- 2. Data Preparation
 - ✓ Data Checking
 - ✓ Data Cleansing
 - ✓ Data Exploration
- 3. Segmentation (Cluster Analysis)
- 4. Buyer Propensity (Predictive Analytics/ML)
- 5. Conclusion

Bike Buyers Case Study - Introduction

Goals

- Segmentation: Identify and group customers with similar characteristics for targeting
- Buyer Propensity: Create predictive models to predict bike buying propensity

Case Data Set

This dataset has details of 1000 users from different backgrounds and whether they buy a bike or not

Features

ID, Marital Status, Gender, Income, Children, Education, Occupation, Homeowner, Cars, Commute Distance, Region, Age, Purchased Bike

	ID	Marital Status	Gender	Income	Children	Education	Occupation	Home Owner	Cars	Commute Distance	Region	Age	Purchased Bike
0	12496	Married	Female	40000.0	1.0	Bachelors	Skilled Manual	Yes	0.0	0-1 Miles	Europe	42.0	No
1	24107	Married	Male	30000.0	3.0	Partial College	Clerical	Yes	1.0	0-1 Miles	Europe	43.0	No
2	14177	Married	Male	80000.0	5.0	Partial College	Professional	No	2.0	2-5 Miles	Europe	60.0	No
3	24381	Single	NaN	70000.0	0.0	Bachelors	Professional	Yes	1.0	5-10 Miles	Pacific	41.0	Yes
4	25597	Single	Male	30000.0	0.0	Bachelors	Clerical	No	0.0	0-1 Miles	Europe	36.0	Yes

Segmentation and Buyer Propensity

Cluster Analysis and Predictive Analytics using Machine Learning

Cluster analysis in machine learning (Segmentation)

 Clustering is an unsupervised machine learning method of identifying and grouping similar data points in large datasets without concern for the specific outcome.

Predictive analytics in machine learning (Buyer Propensity)

In contrast with Clustering, Predictive analytics uses a supervised machine learning method.
 Machine learning uses advanced mathematics to find patterns in datasets and creates an optimal model that has minimal differences from output labels.

Why do we use machine learning?

 Machine learning is a powerful way for companies to get value from the massive amounts of data and to generate the results quickly and efficiently.

Segmentation and Buyer Propensity

Steps for Modeling Process

- I. Data Preparation
 - Data Checking
 - Data Cleansing
 - ✓ Data Exploration
- II. Segmentation (Cluster Analysis)
- III. Buyer Propensity (Predictive Analytics)

Data Checking

Data Count, Data Types, Missing Values

```
# brief information of the dataset
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 13 columns):
# Column
                     Non-Null Count Dtype
                     -----
    ID
                     1000 non-null
                                   int64
    Marital Status 993 non-null
    Gender
                     989 non-null
                                    object
    Income
                     994 non-null
                                    float64
    Children
                     992 non-null
                                    float64
    Education
                     1000 non-null
                                    object
   Occupation.
                     1000 non-null
                                    object
    Home Owner
                     996 non-null
                                    object
                     991 non-null
                                    float64
    Commute Distance 1000 non-null
                                    object
10 Region
                     1000 non-null
                                    object
                     992 non-null
12 Purchased Bike 1000 non-null
dtypes: float64(4), int64(1), object(8)
memory usage: 101.7+ KB
```

```
df.describe()
                 ID
                           Income
                                     Children
                                                    Cars
count 1000.000000
                        994.000000 992.000000 991.000000 992.000000
                      56267.605634
                                     1.910282
                                                 1.455096
                                                           44.181452
 mean 19965.992000
   std 5347.333948
                     31067.817462
                                     1.626910
                                                 1.121755
                                                           11.362007
       11000.000000
                      10000,000000
                                     0.000000
                                                 0.000000
                                                           25.000000
  25% 15290.750000
                      30000.000000
                                     0.000000
                                                 1.000000
                                                           35.000000
  50% 19744.000000
                      60000.000000
                                     2.000000
                                                 1.000000
                                                           43.000000
  75% 24470.750000
                      70000.000000
                                     3.000000
                                                 2.000000
                                                          52.000000
  max 29447.000000 170000.000000
                                     5.000000
                                                 4.000000
                                                          89.000000
```

brief statistic infomation

```
# check the number of null data
df.isna().sum()
ID
                     0
Marital Status
Gender
                    11
                     6
Income
Children
                     8
Education
                     0
Occupation.
Home Owner
                     4
Cars
                     0
Commute Distance
Region
                     8
Purchased Bike
                     0
dtype: int64
```

Data Cleansing

Deal with Missing Values

```
# percentage of null values for each column
(df.isna().sum()[df.isna().sum()>0]/1000)*100
Marital Status
                 0.7
Gender
                 1.1
Income
                 0.6
Children
                 0.8
Home Owner
                 0.4
Cars
                 0.9
                 0.8
dtype: float64
# fill the null values to "Married"
df["Marital Status"].fillna("Married",inplace=True)
# fill the null values to "Yes"
df["Home Owner"].fillna("Yes",inplace=True)
# fill the null values to "Male"
df["Gender"].fillna("Male",inplace=True)
# fill the null vales of Income, Children, Cars,
# Age columns to their mean or median value
df.fillna({'Income': df['Income'].mean(),\
        'Children': df['Children'].median(),\
        'Cars': df['Cars'].median(),\
        'Age': df['Age'].median()},inplace=True)
```

Identify Outliers for Removal

	ID	Income	Children	Cars	Age
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000
mean	19965.992000	56267.605634	1.911000	1.451000	44.172000
std	5347.333948	30974.380206	1.620403	1.117519	11.316912
min	11000.000000	10000.000000	0.000000	0.000000	25.000000
25%	15290.750000	30000.000000	0.000000	1.000000	35.000000
50%	19744.000000	60000.000000	2.000000	1.000000	43.000000
75%	24470.750000	70000.000000	3.000000	2.000000	52.000000
max	29447.000000	170000.000000	5.000000	4.000000	89.000000

Data Exploration

Check for correlation for feature modification

Correlation: to indicate any type of association, in statistics it normally refers to the degree to which a pair of variables are linearly related

lf.corr()					
	Income	Children	Cars	Age	Purchased Bike
Income	1.000000	0.267123	0.416835	0.174129	0.031425
Children	0.267123	1.000000	0.285058	0.536773	-0.124675
Cars	0.416835	0.285058	1.000000	0.194397	-0.211386
Age	0.174129	0.536773	0.194397	1.000000	-0.100630
Purchased Bike	0.031425	-0.124675	-0.211386	-0.100630	1.000000

Data Exploration

Targets with 0~1 Cars more likely to buy

Mid-level income earners more likely to buy

Single are more likely to buy

Shorter commuters more likely to buy

Cluster analysis

Prepare Features (Data) for Modeling
Transform non-numeric values to numeric values

```
# changing all categorical features to numerical features
categorical = []
df_en = df.copy()
for i in df.columns:
   if df[i].dtype == "object":
       categorical.append(i)
for i in categorical:
   df_en[i]= LabelEncoder().fit_transform(df[i])
df en.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 986 entries, 0 to 999
Data columns (total 12 columns):
# Column
                     Non-Null Count Dtype
 0 Marital Status 986 non-null int32
                     986 non-null
    Gender
                                    float64
    Income
                     986 non-null
    Children
                                    float64
                     986 non-null
    Education
                     986 non-null
                                    int32
                     986 non-null
                                    int32
    Occupation
    Home Owner
                     986 non-null
                                    int32
                     986 non-null float64
 8 Commute Distance 986 non-null int32
 9 Region
                     986 non-null
                                    int32
 10 Age
                     986 non-null
                                   float64
 11 Purchased Bike 986 non-null
dtypes: float64(4), int32(8)
memory usage: 69.3 KB
```

Ensure Features (Data) avoid Bias Scaling Features

Cluster analysis

Simplify Features (Data) to Improve Interpretation

Principal component analysis (PCA) is a technique for reducing the dimensionality of such datasets, increasing interpretability but at the same time minimizing information loss.

```
# reduce dimentions using PCA
pca = PCA(n_components=3)
pca.fit(df_scale)
PCA_df = pd.DataFrame(pca.transform(df_scale), columns=(["col1","col2", "col3"]))
PCA_df.describe()
```

col3	col2	col1	
9.860000e+02	9.860000e+02	9.860000e+02	count
-9.109234e-17	6.812220e-17	-9.492069e-17	mean
1.185710e+00	1.254731e+00	1.531138e+00	std
-2.896069e+00	-3.158967e+00	-3.429656e+00	min
-9.462069e-01	-8.836928e-01	-1.265473e+00	25%
-1.950332e-03	-1.761622e-02	1.125928e-01	50%
8.358404e-01	9.123375e-01	1.270065e+00	75%
3.197340e+00	3.375744e+00	3.697362e+00	max

Cluster analysis

Create the optimal number of segments

Elbow method is a way to determine the number of clusters in a data set.

```
# decide the number of clusters to make
k_elbow = KElbowVisualizer(KMeans(), k=10)
k_elbow.fit(PCA_df)
k_elbow.show()
```


Cluster analysis

Finalize Segments
Leveraging Agglomerative Clustering

	col1	col2	col3	Clusters
0	-1.244564	1.302104	-1.025430	3
1	-0.880557	2.220628	1.286171	1
2	1.882274	0.703037	1.937525	4
3	0.521432	-1.859110	-2.055844	0
4	-3.065150	0.280486	-0.598017	0
	-			
981	1.249371	0.076143	-0.576714	2
982	0.201168	-0.480199	-1.348231	0
983	-0.459614	0.380078	-2.538501	0
984	0.976842	-0.783853	0.613621	4
985	0.890901	-0.278125	-0.129581	2

```
# make a clustering model
AC = AgglomerativeClustering(n_clusters=5)
AC_pred = AC.fit_predict(PCA_df)

PCA_df["Clusters"] = AC_pred
PCA_df
```

Agglomerative clustering is a hierarchical clustering method. It involves merging examples until the desired number of clusters is achieved.

Identify highest Potential Segments (Clusters)

Segment 1 has the largest number of bike purchasers

Deep Dive into Segment 1

Deep Dive into Segment 1

Summary Characteristics of Segment 1

Mostly young professional men with no children, that own a home and have a short commute

- ✓ **Income**: 60k to 70k
- ✓ Children: 0 to 1
- ✓ Bachelor's degree
- ✔ Occupation: professional & skilled manual
- ✓ Home owner
- ✓ Cars: 0 to 1
- Commute distance: 0 to 1 mile
- North America
- ✓ Age: 35 to 40

Buyer Propensity Modeling

Regression analysis (Predictive Analytics/ML)

Split data into the train data set and the test data set

```
# split the train set and the test set
train, test = train_test_split(df_enc,test_size=0.2, random_state=0)

train.shape, test.shape

((788, 29), (198, 29))

# define input(X) and output(Y) for the train set and the test set
train_X = train.drop(columns="Purchased Bike")
train_Y = train["Purchased Bike"]
test_X = test.drop(columns="Purchased Bike")
test_Y = test["Purchased Bike"]
```

Buyer Propensity Modeling

Regression analysis (Predictive Analytics/ML)

Predictive Model Development

```
# fit model using XGBoost
model = XGBClassifier(n_estimators=90,max_depth=3)
model.fit(train_X, train_Y)
```

XGBoost, which stands for Extreme Gradient Boosting, is a scalable, distributed gradient-boosted decision tree (GBDT) machine learning library. It provides parallel tree boosting and is the leading machine learning library for regression, classification, and ranking problems

Buyer Propensity Modeling

Regression analysis (Predictive Analytics/ML)

Model Testing

```
# compare the real Y values to predictions
output = pd.DataFrame(list(test_Y),columns=["Y"])
output["Prediction"] = list(pred)
output.head(20)
```

	Y	Prediction
0	1	0
1	0	0
2	1	0
3	1	0
4	1	1
5	1	1
6	1	1
7	1	0
8	0	0
9	1	1
10	1	0
11	1	1
12	1	1
13	0	0
14	0	1
15	1	.1
16	1	0
17	0	0
18	1	0
19	1	0

```
# check the accuracy of predictions
accuracy = accuracy_score(test_Y,pred)
print("{}%".format(round(accuracy*100,2)))
```

67.17%

Conclusion

Modeling Results

Developed a predictive model that can be run against target audiences to predict potential targets with a higher propensity to buy a bike. (Prioritization of target lists)

Increase targeting efficiency to improve marketing performance and grow revenue

Verify Model – Based on Segment 1 Data

