# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Лекции по курсу «Математическое моделирование»

Выполнил: студент ИУ9-111 Выборнов А. И. Лекции читала: Домрачева А.Б.

## Содержание

### 1. 2015-09-29

Изучением математических моделей случайных явлений или экспериментов в первую очередь занимаются такие науки, как мат. статистика (МС) и теория вероятности (ТВ).

Задачи МС являются обратными к задачам ТВ. В ТВ после задания того или иного случайного явления требуется расчитать вероятностные характеристики в рамках данной модели. Моделирование производится на основе результата эксперимента называемых статистическими данными. В ряде случаев по результатам эксперимента требуется лишь уточнить или модифицировать имеющуюся модель. В задачах МС вероятность того или иного события известна и необходимо оценить параметры эксперимента (параметры функции связи между двумя показателями объекта, параметры закона распределения случайной величины, в более широком случае функцию распределения случайной величины или функцию плостности распределения случайной величины).

#### 1.1. Основные задачи мат. статистики

- Задача оценки неизвестных параметров по результатам эксперимента. Как правило нужно найти функцию от результатов эксперимента, является достаточно хорошей оценкой неизвестного истинного значения параметра (a параметр,  $\hat{a}$  оценка параметра).
- Задача интервального оценивания. Есть строгий интервал со случайными границами (нижняя  $a_{-}$ , верхняя  $a_{-}$ ), таким образом, чтобы он накрывал неизвестное истинное значение параметра с заранее заданной веростностью  $\gamma$ .

$$P\{a_- \le a \le a^-\} = \gamma$$

.

• Задачи проверки статистических гипотез. Требуется, на основе математических экспериментов, проверить то, или иное предположение относительно вида, и параметра функции распределения случайной величины, и функции плотности распределения случайной величины.

В мат.статистике используется выборочная терминология основанная на "ур-

новой" схеме. Пусть имеется урна содержащая N чисел

$$\{X_1, X_2, ..., X_N\}, (1)$$

называемая генеральной совокупностью объёмом N. Набор 1 может иметь бесконечную размерность. Из генеральной совокупности выбирается набор

$$\{x_1, x_2, ..., x_n\}, n \le N.$$
 (2)

Набор 2 называется выборкой объёма n из генеральной совокупности 1.

Выборка может производится с возвращением и без возвращения. Если выборка производится с возвращением, то случайные величины в ней независимы. С возвращением это независимая, повторная, случайная выборка объёмом n. Терминология сохраняется и в случае бесконесной генеральной совокупности.

Числа выборки 2 обычно располагают в порядке убывания или возврастания:

$$\{x^{(1)}, x^{(2)}, ..., x^{(n)}\}.$$
 (3)

Набор 3 называется вариационным рядом. Чаще всего в задачах это называется вариационный ряд.

Эмпирической функцией распределения построенной на основе выборки 3 называется функция  $\hat{F}(x) = \frac{r(x)}{n}$  (n — общее число выборки, r(x) — количество элементов выборки  $x_i < x$ ).

Пример: Выборка 0, 0, 9, 16, 21, 24, 29, 37, 42, 48.



Рисунок 1 — График  $\hat{F}(x)$ 

Для моделирования требуется теоретическая функция распределения случай-

ной величины x. Которая может быть оценена по эмпирической функции распределения.

По теореме гливенко-кантелли:  $\sup_{x,n\to\infty}|F(x)-\hat{F_h}(x)|\to 0$ 

По эмпирической функции распредления строят ... модели.

Выборочное среднее (эмперическое среднее) -  $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ . Выборочный аналог первого начального момента (мат.ожидания).

$$\hat{S}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})$$
 - выборочнаяя (эмпирическая) дисперсия  $\hat{S} = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})}$  выборочное СКО (средне квадратичное отклонение)  $\mu_{r,a} = (\frac{1}{n} \sum_{i=1}^n (x_i - a)^r)^{\frac{1}{r}}$  - выборочные моменты порядка  $r$ .

В ряде случаев требуется оценить размах выборки  $R_n = |x^{(n)} - x^{(1)}|$ .

#### 1.2. Точечные оценки параметров

Пусть имеется некоторая случайная величина  $\xi$  с функцией распределения  $F(x,\theta)$ , плотностью распределения  $f(x,\theta)$ .

Обычно говорят о параметрическом семействе распределений, в котором  $\theta$  принимает различные значения.

Вводят функцию от результатов наблюдений

$$\phi = \phi(x_1, x_2, ..., x_n)$$
 (4)

 $(x_i$  - элемент набора 2), называемую статистикой. Задача построения точечной оценки параметра  $\theta$ , сводится к нахождению значения статистики. Такой что

$$\hat{\theta} = \theta(x_1, x_2, ..., x_n) : \sup_{n \to \infty} |\hat{\theta} - \theta| \to 0$$

Необходимо установить эффективную оценку, рекомендуемую в качестве результата.

#### 1.2.1. Свойства оценок

$$\hat{\theta} = \theta(x_1, x_2, ..., x_n)$$
Пример:  $\hat{\lambda} = 1/\overline{x} = \frac{1}{\frac{1}{n} \sum_{i=1}^n x_i} = \frac{n}{\sum_{i=1}^n x_i} = \frac{n}{x_1 + x_2 + ... + x_n}$ 
 $\hat{\lambda} = \lambda(x_1, x_2, ..., x_n) = \frac{n}{x_1 + x_2 + ... + x_n}$ 
 $M\hat{\theta} = \theta$ 

Оценка  $\hat{\theta}$  является несмещённой оценкой параметра  $\theta$ , если её мат. ожидание совпадает с теоритической величиной.

$$\lim_{n\to\infty} M\hat{\theta_n} = \theta$$

Таким образом на свойство оценок влияет объём выборки.

Если  $\lim_{n\to\infty} P\{|\hat{\theta_n}-\theta|<\epsilon\}\to 1$  мы говорим о состоятельности оценок. Сходится по вероятности.

Пусть  $\hat{\theta_n}$  асимптотически несмещённая оценка параметра  $\theta$ . В случае когда  $\lim_{n\to\infty} S^2(\hat{\theta_n})\to 0$  оценка состоятельна.

Таким образом асимптотическая несмещённость оценки  $\theta$  и минимизация разброса значений параметра при  $n \to \infty$  обеспечивают состоятельность оценки (теорема приводится без доказательства).

Пусть имеются две оценки  $\hat{\theta_n}^1$ ,  $\hat{\theta_n}^2$ .  $S^2(\hat{\theta_n}^1) = M(\hat{\theta_n}^1 - \theta)^2 \leq M(\hat{\theta_n}^2 - \theta)^2 = S^2(\hat{\theta_n}^2)$  То оценка  $S^2(\hat{\theta_n}^1)$  является более эффективной по сравнению с  $S^2(\hat{\theta_n}^2)$ .