INTELLIPAAT

Netflix Movie Recommendation System

Personalized Movie Recommendations: A Netflix-Inspired Approach Using Collaborative and Content-Based Filtering

Anuj Kumar 11/1/2024

This project focuses on the development of a personalized movie recommendation system, inspired by the recommendation mechanisms employed by platforms like Netflix. By leveraging **Content-Based Filtering (CBF)** and **Collaborative Filtering (CF)** techniques, the system aims to suggest movies based on both the attributes of the movies themselves and the historical preferences of similar users

Contents

1. Project Overview		Error! Bookmark not defined.	
2. Ob	jectives	3	
1.	Content-Based Filtering:	3	
2.	Collaborative Filtering:	3	
3. Dat	ta Description	3	
•	Movies Dataset (movies.csv)	3	
4. Dat	ta Preprocessing	4	
1.	Formatting Movie Titles	4	
2.	Handling Missing Values	4	
3.	Tag Creation	4	
4.	Merging Datasets	4	
5. Me	thodology	4	
5.1	Content-Based Filtering (CBF)	4	
5.2	Collaborative Filtering (CF)	5	
6. lm	plementation Details	5	
1.	Tools and Libraries	5	
2.	Code Snippets	5	
Content	-Based Filtering:	5	
Collabo	rative Filtering:	5	
7. Res	sults and Analysis	6	
1.	Content-Based Filtering	6	
2.	Collaborative Filtering	6	
8. Cha	allenges Faced and Solutions	6	
1.	Data Sparsity:	6	
2.	Cold Start Problem:	6	
9. Fut	ure Enhancements	7	
1.	Hybrid Models	7	
2.	Deep Learning:	7	
3.	Deployment	7	
10. Co	onclusion	7	

1. Project Overview

Recommendation systems play a critical role in personalizing user experiences on platforms like Netflix, Amazon, and YouTube. This project aims to create a personalized movie recommendation system using two popular approaches: Content-Based Filtering (CBF) and Collaborative Filtering (CF).

By leveraging user behavior and movie metadata, this system provides movie suggestions tailored to user preferences, enhancing engagement and satisfaction.

2. Objectives

The objectives of the project are:

- 1. **Content-Based Filtering:** Recommend movies based on features like genres and release year by analyzing the textual similarity of movie descriptions.
- Collaborative Filtering: Suggest movies based on user preferences and the behavior of similar users.

Address challenges like data sparsity and the cold start problem in recommendation systems.

3. Data Description

The project uses two datasets from the **MovieLens** database:

- Movies Dataset (movies.csv)
 - o Contains metadata about movies, including titles, genres, and release years.
 - o Key columns: movield, title, genres, year.
 - Example:

movield title genres year

1 Toy Story (1995) Animation, Children's 1995

Ratings Dataset (ratings.csv)

- Contains user ratings for movies.
- Key columns: userId, movieId, rating.

o Example:

userId movieId rating

1 1 4.0

4. Data Preprocessing

To prepare the data for analysis, several preprocessing steps were performed:

- 1. **Formatting Movie Titles**: Extracted the release year from titles and cleaned unnecessary text.
 - o Example: "Toy Story (1995)" → "Toy Story"
- 2. Handling Missing Values: Removed rows with missing genres or ratings.
- 3. **Tag Creation**: Combined genres and year into a composite tag column for better feature representation.
- 4. Merging Datasets: Merged the movies and ratings datasets on movield.

5. Methodology

5.1 Content-Based Filtering (CBF)

1. Feature Representation:

- Used TF-IDF Vectorization to convert the tag column into numerical vectors.
- Example Tags: "Animation,1995", "Comedy,2001".

2. Similarity Calculation:

 Calculated cosine similarity between movie vectors to measure their textual similarity.

3. Recommendation Logic:

o For a given movie, identified the top 10 most similar movies.

5.2 Collaborative Filtering (CF)

1) User-Item Matrix:

 Constructed a matrix with users as rows, movies as columns, and ratings as values.

2) User Similarity:

o Computed cosine similarity between users to find similar profiles.

3) Weighted Ratings:

o Aggregated ratings from similar users, weighted by their similarity scores.

4) Recommendation Logic:

 Recommended the top 10 movies with the highest weighted scores for each user.

6. Implementation Details

1. Tools and Libraries

- Python Libraries: Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn.
- **Algorithms**: TF-IDF Vectorization, Cosine Similarity, Matrix Operations.

2. Code Snippets

Content-Based Filtering:

```
python
Copy code
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer(stop_words='english')
movie_tfidf_matrix = tfidf.fit_transform(movie['tag'])
similarity scores = cosine similarity(movie tfidf matrix)
```

Collaborative Filtering:

```
python
Copy code
```

from sklearn.metrics.pairwise import cosine_similarity user_similarity = cosine_similarity(user_item_matrix) weighted_ratings = user_item_matrix.T.dot(similar_users) cf_scores = weighted_ratings / similarity_sum

7. Results and Analysis

1. Content-Based Filtering

Example Recommendations for "Toy Story":

- 1. A Bug's Life
- 2. Finding Nemo
- 3. Monsters, Inc.
- 4. The Incredibles
- 5. Up

2. Collaborative Filtering

Example Recommendations for User 1:

- 1. The Godfather
- 2. The Dark Knight
- 3. Pulp Fiction
- 4. Schindler's List
- 5. Forrest Gump

8. Challenges Faced and Solutions

1. Data Sparsity:

- o Issue: Many users rated only a few movies.
- Solution: Used cosine similarity and weighted aggregation to account for sparse data.

2. Cold Start Problem:

- o Issue: Difficulty in recommending for new users/movies.
- Solution: Suggested popular movies as a fallback.

9. Future Enhancements

- 1. **Hybrid Models**: Combine CBF and CF for better performance.
- 2. Deep Learning: Use neural networks for feature extraction and collaborative filtering.
- 3. **Deployment**: Build a web application for real-time recommendations.

10. Conclusion

This project demonstrates the potential of recommendation systems in enhancing user experience. The combination of Content-Based and Collaborative Filtering offers a robust solution for personalized recommendations. With further optimizations, the system can handle larger datasets and provide more accurate suggestions.