

1/8 - 1/16 Duty VFD
Controller/ Driver

DataSheet

Version: 1.0 Apr/2002

http://www.topro.com.tw

HO

5 F, No.10, Prosperity Road 1, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C 300 新竹科學工業園區展業一路 10 號 5 樓

TPE:

5 F, No.27, Min Chuan W. Rd. Taipei 104, Taiwan, R.O.C 104 台北市民權西路 27 號 5 樓

SHENZHEN:

Room 802, Tower A, World Trade Plaza, Fahong Rd., Fatian, Shenzhen, China 深圳市福田區禧虹路 9 號世貿廣場 A 座 802 室(郵編:518033)

H.Q.: Tel:886-3-5632515 Fax:886-3-5641728 TPE.: Tel:886-2-25856858 Fax:886-2-25941104 SHENZHEN:TEL:755-3679985 Fax:755-3679518

1/8 - 1/16 Duty VFD
Controller/ Driver

General Specification

The TP6311QG is a FIP (Fluorescent indicator Panel or Vacuum Fluorescent Display) controller/driver that is driven on a 1/8 – to 1/16 duty factor. It consists of 12 segment output lines, 8 grid output lines, 8 segment/grid output drive lines, a display memory, a control circuit, and a key scan circuit. Serial data is input to the TP6311QG through a three-line serial interface. This FIP controller/driver is ideal as a peripheral device of a single-chip microcomputer.

FEATURE

- Many display modes (12-segment & 16-digit to 20-segment & 8-digit)
- Key scanning $(12 \times 4 \text{ matrices})$
- Dimming circuit (eight steps)
- High-voltage output (V_{DD} 35V max)
- LED ports (5 chs, 20 mA max)
- General-purpose input port (4 bits)
- No external resistor necessary for driver outputs (P-ch open-drain + pull-down resistor output)
- Serial interface (CLK, STB, D_{IN}, D_{OUT})

1/8 - 1/16 Duty VFD Controller/ Driver

Contents:

1.	General Specification	Р.	2	P.	2
2.	Pin Configurations and Package Type	Р.	4	P.	6
3.	Pin Descriptions	Р.	7	P.	8
4.	Functional Block Diagram	Р.	9	P.	9
5.	Function Descriptions	Р.	10	P.	17
6.	Absolute Maximum Ratings	Р.	18	P.	18
7.	DC Electrical Characteristic	Р.	19	P.	20
8.	AC Electrical Characteristic	Р.	21	P.	22
9.	Application Notes	Р.	23	P.	23

1/8 - 1/16 Duty VFD
Controller/ Driver

Pin Configurations and Package Type

Use all the power pins. Leave the IC pin open.

1/8 - 1/16 Duty VFD
Controller/ Driver

52 PIN PLASTIC QFP (14 \times 14)

1/8 - 1/16 Duty VFD Controller/ Driver

ITEM	MILLMETERS	INCHES		ITEM	MILLMETERS		INCHES			
Α	17.6± 0.4	0.693± 0.016		+ 0.4 0.693+ 0.016		K	K 1.8± 0.2		0.071	+0.008
П	17.02 0.4	0.075	2 0.010	IX	1.0-	- 0.2	0.071	-0.009		
В	14.0± 0.2	0.551	+0.009	L	0.8-	+ 0.2	0.031	+0.009		
ъ	14.0± 0.2	0.551	-0.008	L	0.6.	0.8± 0.2		-0.008		
С	14.0± 0.2	0.551	+0.009	M	0.15	+0.10	0.006	+0.004		
C	14.0± 0.2	0.551	-0.008	IVI	0.13	-0.05	0.000	-0.003		
D	17.6± 0.4	0.693	± 0.016	N	0.10		0.004			
F	1.0	0.0	039	P	2.6		0.102			
G	1.0	0.0	039	Q	0.1± 0.1		0.004± 0.004			
Н	0.40± 0.10	0.016	+0.004	R	5° =	+ 5°	5° :	+ 5°		
П	0.40± 0.10	0.010	-0.005	K	3 -	_ 3	3 .	<u>.</u> 3		
I	0.20	0.008		S	3.0 MAX.		0.119 MAX.			
J	1.0 (T.P.)	0.039	(T.P.).					·		

Page 6 of 23 TOPRO CONFIDNETIAL 02/06/13 Print

1/8 - 1/16 Duty VFD Controller/ Driver

Pin Descriptions

Pin Function

Pin No	Symbol	Pin Name	Description
6	DIN	Date input	Input serial data at rising edge of shift clock, starting from lower bit.
5	DOUT	Date output	Outputs serial data at falling edge of shift clock, starting from lower bit. This is N-ch open-drain output pin.
9	STB	Strobe	Initializes serial interface at rising or falling edge to make TP6311QG waiting for reception of command. Data input after STB has fallen is processed as command. While command data is processed, current processing is stopped, and serial interface is initialized. While STB is high, CLK is ignored.
8	CLK	Clock input	Reads serial data at rising edge, and outputs data at falling edge.
52	OSC	Oscillator pin	Connect resistor for determining oscillation frequency to this pin.
15 to 26	Seg1/KS1 to Seg12/KS 12	High-voltage output (segment)	Segment output pins (Dual function as key source)
44 to 37	Grid1 to Grid8	High-voltage output (grid)	Grid output pins
27 to 32 35 to 36	Seg13/Gri d16 to Seg20/Gri d9	High-voltage output (segment/grid)	These pins are selectable for segment or grid output.
50 to 46	LED1 to LED5	LED output	CMOS output. +20 mA max
10 to 13	Key1 to Key4	Key data input	Data input to these pins is latched at end of display cycle.
1 to 4	SW1 to SW4	Switch input	These pins constitute 4-bit general-purpose input port.

1/8 - 1/16 Duty VFD Controller/ Driver

14, 33,45	VDD	Logic power	5V ± 10%
51	VSS	Logic ground	Connect this pin to GND of system.
34	VEE	Pull-down level	VDD – 35 V max
7	IC	Internally connected	Be sure to leave this pin open (this pin is at VDD level).

Page 8 of 23 TOPRO CONFIDNETIAL 02/06/13 Print

1/8 - 1/16 Duty VFD
Controller/ Driver

Functional Block Diagram

1/8 - 1/16 Duty VFD Controller/ Driver

Function Descriptions

Display RAM Address and Display Mode

The display RAM stores the data transmitted from an external device to the TP6311QG through the serial interface, and is assigned addresses as follows, in units of 8 bits:

$Seg_1 Seg_4$	Seg_8	Seg_{12}	Seg_{16}	Seg_{20})
$00H_{L}$	$00H_{\mathrm{U}}$	$01H_{L}$	$01H_{\rm U}$	$02H_{L}$	DIG1
$03H_{L}$	$03H_{\rm U}$	$04 H_L$	$04 H_{\mathrm{U}}$	$05H_{L}$	DIG2
$06H_L$	$06H_{U}$	$07H_{L}$	$07H_{\rm U}$	$08H_{L}$	DIG3
$09H_L$	$09H_U$	$0AH_{L}$	$0AH_{U}$	$0\mathrm{BH}_\mathrm{L}$	DIG4
$0CH_{L}$	$0CH_U$	$0\mathrm{DH_L}$	$0DH_{U}$	$0\mathrm{EH_L}$	DIG5
0 FH $_{ m L}$	$0FH_U$	$10H_{L}$	$10 H_{\rm U}$	$11 H_{ m L}$	DIG
$12H_{L}$	$12H_{U}$	$13H_{L}$	$13H_{\rm U}$	$14 { m H}_{ m L}$	DIG7
$15H_{L}$	$15H_U$	$16H_L$	$16H_{\rm U}$	$17H_{L}$	DIG8
$18H_L$	$18H_{U}$	$19H_L$	$19H_U$	$1AH_{L}$	DIG9
$1BH_{L}$	1BH _U	$1CH_{L}$	$1CH_{U}$	$1\mathrm{DH_{L}}$	DIG10
$1EH_{L}$	1EH _U	$1\mathrm{FH_L}$	$1\mathrm{FH}_{\mathrm{U}}$	$20H_{L}$	DIG11
$21H_{L}$	$21H_{\rm U}$	$22H_L$	$22H_{\rm U}$	$23H_{L}$	DIG12
$24H_{L}$	$24H_{U}$	$25H_L$	$25H_{\rm U}$	$26H_{L}$	DIG13
$27H_{L}$	$27H_{U}$	$28H_L$	$28H_{\rm U}$	$29H_L$	DIG14
$2AH_{L}$	$2AH_{U}$	$2BH_{L}$	$2BH_{U}$	$2CH_{L}$	DIG15
$2DH_{L}$	$2DH_{U}$	$2EH_{L}$	$2EH_{U}$	$2FH_{L}$	DIG16

_	$\mathbf{b}_0 \qquad \qquad \mathbf{b}_3$	b_4 b_7
	$XX H_{L}$	$XX H_{U}$
	Lower 4 bits	Higher 4 bits.

Only the lower 4 bits of the addresses assigned to Seg17 through Seg20 are valid, and the higher 4 bits are ignored.

Page 10 of 23 TOPRO CONFIDNETIAL 02/06/13 Print

1/8 - 1/16 Duty VFD Controller/ Driver

Key Matrix and Key-Input Data Storage RAM

The key matrix is of 12×4 configuration, as shown below.

The data of each key is stored as illustrated below, and is read by a read command, starting from the least significant bit.

KEY ₁ KEY	Y_4 KEY ₁ KEY	4
$\operatorname{Seg}_{1}/\operatorname{KS}_{1}$	$\operatorname{Seg}_2/\operatorname{KS}_2$	
Seg_3 / KS_3	Seg ₄ / KS ₄	D 1:
$\operatorname{Seg}_5/\operatorname{KS}_5$	Seg ₆ / KS ₆	Reading
$\operatorname{Seg}_7/\operatorname{KS}_7$	$\operatorname{Seg}_8/\operatorname{KS}_8$	sequenc
Seg ₉ / KS ₉	$\operatorname{Seg}_{10} / \operatorname{KS}_{10}$	
$\operatorname{Seg}_{11}/\operatorname{KS}_{11}$	$\operatorname{Seg}_{2}/\operatorname{KS}_{12}$	
b0	b3 b4	b7

When the most significant bit if data (Seg12 b7) has been read, the least significant bit of the next data (Seg1 b0) is read.

1/8 - 1/16 Duty VFD Controller/ Driver

LED PORT

Data is written to the LED port by a write command, starting from the least significant bit of the port. When a bit of this port is 0, the corresponding LED lights; when the bit is 1, the LED goes off. The data of bits 6 through 8 is ignored.

On power application, all the LEDs remain dark.

SW Data

The SW data is read by a read command, starting from the least significant bit. Bits 5 through 8 of the SW data are 0.

1/8 - 1/16 Duty VFD Controller/ Driver

Command

A command sets the display mode and status of the FIP driver.

The first 1 byte input to the TP6311QG through the Din pin after the STB pin has fallen is regarded as a command.

If STB is made high while a command/data is transmitted, serial communication is initialized, and the command/data being transmitted is invalid (however, the command/data already transmitted remains valid).

(1) Display mode setting command

This command initializes the TP6311QG and selects the number of segments and number of grids (1/8 to 1/16 duty, 12 segments to 20 segments).

On power application, the 16-digit, 12-segment mode is selected.

0XXX: 8 digits, 20 segments 1000: 9 digits, 19 segments 1001: 10 digits, 18 segments 1010: 11 digits, 17 segments 1011: 12 digits, 16 segments 1100: 13 digits, 15 segments 1101: 14 digits, 14 segments 1110: 15 digits, 13 segments 1111: 16 digits, 12 segments

Page 13 of 23 TOPRO CONFIDNETIAL 02/06/13 Print

1/8 - 1/16 Duty VFD Controller/ Driver

(2) Data setting command

This command sets data write and read modes.

On power application, the normal operation mode and address increment mode set.

(3) Address setting command

This command sets an address of the display memory.

If address 30H or higher is set, the data is ignored, unit a correct address is set. On power application, the address is set to 00H.

1/8 - 1/16 Duty VFD Controller/ Driver

(4) Display control command

On power application, the 14/16-pulse width is set and the display is turned off.

* : On power application, key scanning is stopped..

1/8 - 1/16 Duty VFD Controller/ Driver

Key Scanning and Display Timing

One cycle of key scanning consists of two frames, and data of 12×4 matrices is stored in RAM.

1/8 - 1/16 Duty VFD Controller/ Driver

Serial Communication Format

STB If data is cintiguous DIN b0 b1 b2 b6 b7 CLK

Transmission (data read)

Because the DOUT pin is an N-ch, open-drain output pin, be sure to connect an external pull-up resistor to this pin $(1k\Omega \text{ to } 10 \text{ k}\Omega)$.

*:When data is read, a wait time t_{WAIT} of $1\mu s$ is necessary since the rising of the eighth clock that has set the command, until the falling of the first clock that has read the data.

1/8 - 1/16 Duty VFD Controller/ Driver

Absolute Maximum Ratings

ABSOLUTE MAXIMUM RATING (Ta=25℃, Vss=0 V)

PARAMETER	SYMBOL	RATINGS	UNIT
Logic Supply Voltage	$ m V_{DD}$	-0.5 to + 7.0	V
Driver Supply Voltage	$ m V_{EE}$	V_{DD} +0.5 to V_{DD} -40	V
Logic Input Voltage	V_{i1}	-0.5 to Vdd+0.5	V
FIP Driver Output Voltage	V_{o2}	$V_{\rm EE}$ -0.5 to $V_{\rm DD}$ $+0.5$	V
LED Driver Output Current	I_{o1}	25	mA
FIP Driver Output Current	I_{o2}	-40 (grid) -15 (segment)	mA
Power Dissipation	P_{D}	1200*	mW
Operating Ambient Temperature	T_{opt}	-40 to +85	$^{\circ}\!\mathbb{C}$
Storage Temperature	T_{stg}	-65 to +150	$^{\circ}\!\mathbb{C}$

^{*} Derate at -9.6 mW/°C at Ta=25°C or higher.

Page 18 of 23 TOPRO CONFIDNETIAL 02/06/13 Print

1/8 - 1/16 Duty VFD Controller/ Driver

DC Electrical Characteristic

REGOMOMEMSED OPERATING CONDITION (Ta=-20

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION
Logic Supply Voltage	VDD	4.5	5	5.5	V	
High-Level input Voltage	Vih	0.6VDD		VDD	V	
Low-Level input Voltage	Vil	0		0.3VDD	V	
Driver Supply Voltage	VEE	0		VDD-35	V	

Maximum power consumption Pmax.=FIP driver dissipation $+ R_L$ dissipation + LED driver dissipation + dynamic power consumption.

Where segment current = 3 mA, grid current = 15 ma, and LED current = 20 mA, FIP driver dissipation = number of segments x 6 + number of grids/(number of grids + 1) x <math>30 (mW)

 R_L dissipation = $(V_{DD}-V_{EE})^2/50 \text{ x (segment+1) (mW)}$

LED driver dissipation = number of LEDs x 20(mW)

Dynamic power consumption = $V_{DD} \times 5 (mW)$

1/8 - 1/16 Duty VFD Controller/ Driver

Example

Where $V_{EE} = -30 \text{ V}$, $V_{DD} = 5 \text{ V}$, and in 16-segment and 12-digit modes,

FIP driver dissipation = $16 \times 6 + 12/13 \times 35 =$ R_L dissipation = $35^2/50 \times 17 =$ LED driver dissipation = $5 \times 20 =$ Dynamic power consumption = $5 \times 5 =$

Total 670 mW

ELECTRICAL SPECIFICATIONS(Ta= -20 to + 70°C, VDD= 4.5 to 5.5V, VS = 0V, VEE = VDD - 35V)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
High-Level Output Voltage	V_{OH1}	$0.9 V_{\mathrm{DD}}$			V	$LED_1 - LED_5$, $I_{OH1} = -1 \text{ mA}$
Low-Level Output Voltage	V_{OL1}			1	V	$LED_1 - LED_5$, $I_{OL1} = 20 \text{ mA}$
Low-Level Output Voltage	V_{OL2}			0.4	V	D_{OUT} , $I_{OL2} = 4 \text{ mA}$
High-Level Output Current	I_{OH21}	-3			mA	$V_O = V_{DD} - 2V$, Seg ₁ to Seg ₁₂
High-Level Output Current	_	-15			mA	$V_O = V_{DD} - 2V$, Grid ₁ to Grid ₈ , Seg ₁₃ /Seg ₁₆ to Seg ₂₀ /Seg ₉
Ingh Level Output Current	I_{OH22}	-13			1117 1	Seg ₁₃ /Seg ₁₆ to Seg ₂₀ /Seg ₉
Driver Leakage Current	I_{OLEAK}			-10	μΑ	$V_0 = V_{DD}$ - 35V, Driver off
Output Pull-Down Resistor	R_{L}	50	100	150	kΩ	Driver output
Input Current	Ii			±1	μΑ	$V_{I} = V_{DD} - V_{SS}$
High-Level Output Voltage	V_{IH}	$0.6~\mathrm{V_{DD}}$			V	
Low-Level Output Voltage	V_{IL}			$0.3~\mathrm{V_{DD}}$	V	
Hysteresis Voltage	V_{H}		0.35		V	CLK, DIN, STB
Dynamic Current	ī			5	mA	Under no load, display off
Consumption	I _{DDdyn}			3	шА	Chuei no load, display on

1/8 - 1/16 Duty VFD Controller/ Driver

AC Electrical Characteristic

SWITCHING CHARACTERISTICS(Ta = -20 to +70°C, VDD = 4.5 to 5.5V, VEE = -30V)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CON	DITIONS
Oscillation Frequency	t _{OSC}	350	500	650	kHz	$R = 56k\Omega$	
Propagation Dalay Time	t_{PLZ}			300	ns	$CLK \Rightarrow 1$	DOUT
Propagation Delay Time	t_{PZL}			100	ns	CL = 15pF,F	$RL = 10k\Omega$
	t _{TZH1}			2	μs		g1 to Seg12
Rise Time	t _{TZH2}			0.5	μs	PF Seg	id1 to Grid8 313/Grid15 to eg20/Grid9
Fall Time	t_{THZ}			120	μs	CL = 300 pF,	Segn, Gridn
Maximum Clock Frequency	fmax	1			MHz	Duty =	50%
Input Capacitance	C1			15	pF		

TIMING CONDITIONS(Ta = -20 to +70°C, VDD = 4.5 to 5.5V)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Clock Pulse Width	PW_{CLK}	400			ns	
Strobe Pulse Width	PW_{STB}	1			μs	
Data Setup Time	t _{SETUP}	100			ns	
Data Hold Time	t _{HOLD}	100			ns	
Clock-Strobe Time	t _{CLK-STB}	1			μs	CLK $\uparrow \rightarrow \text{STB} \uparrow$
Wait Time	t_{WAIT}	1			μs	$CLK \uparrow \rightarrow CLK \downarrow$

1/8 - 1/16 Duty VFD
Controller/ Driver

Switching Characteristic Waveform

1/8 - 1/16 Duty VFD Controller/ Driver

Application Notes

Updating display memory by incrementing address.

Command1: sets display mode

Command2: sets data
Command3: sets address

Data 1 to n: transfers display data (48 bytes max.)

Command4: controls display

Updating specific address

Command1: sets data
Command2: sets address
Data: display data