Exercises 2.3.3 — Problem 1

Problem. Write out a proof that $\lim_{k\to\infty}(x_k+y_k)=x+y$ if $\lim_{k\to\infty}x_k=x$ and $\lim_{k\to\infty}y_k=y$ for sequences of real numbers.

Proof. We want to show (for sequences of real numbers) that the limit of a sum is the same as the sum of the limits. Given that $\lim_{k\to\infty}x_k=x$ and $\lim_{k\to\infty}y_k=y$, we want to show that $\{x_k+y_k\}$ satisfies the Cauchy criterion and converges to x+y.

Saying that $\{x_k\}$ and $\{y_k\}$ have limits is equivalent to saying $\{x_k\}$ and $\{y_k\}$ are Cauchy. We also know the sum of two Cauchy sequences to be Cauchy, so certainly $\{x_k + y_k\}$ is Cauchy.

But what is the limit of $\{x_k+y_k\}$? Let's begin by noting that $\lim_{k\to\infty}x_k=x\implies \forall n, \exists m_a$ such that $|x_a-x|\le 1/2n$ for all $a\ge m_a$. Similarly $\lim_{k\to\infty}y_k=y\implies \forall n, \exists m_b$ such that $|y_b-y|\le 1/2n$ for all $b\ge m_b$. Choose $k=\max\{a,b\}$. Then $|(x_k+y_k)-(x+y)|=|(x_k-x)+(y_k-y)|\le 1/2n+1/2n=1/n$. So x+y satisfies the definition of a limit for the sequence $\{x_k+y_k\}$. Thus the limit of a sum is equal the sum of the limits.