IIT Jodhpur

Biological Vision and Applications Module 05-02: Visual attention: Cognitive model

Hiranmay Ghosh

Cognitive Models

Based on Feature Integration Theory

- Motivated by the observations
 - Higher acuity at central vision, lower at peripheral
 - Early vision can distinguish local contrasts
 - Intensity contrast (Dark vs. Bright)
 - Color contrast (Red vs. Green and Blue vs. Yellow)
 - Edge Orientation
 - Features are subsequently integrated
 - Treismann's Feature Integration Theory

Itti's model (1998)

Overview

Multi-resolution image analysis

- Multi-resolution analysis of input image
 - Using Gaussian pyramids (9 scales)

Feature extraction

- For images at each resolution level, 3 features are extracted
 - ► Color (C): R-G and B-Y contrasts
 - ► Intensity (*I*): B-W contrast
 - Edge Orientations (O): 0, 45, 90, 135 degrees
- 2+1+4=7 features extracted for each resolution level

Center-surround operations: Multi-scale feature maps

- Done for each feature
- Center at hi-res, Surround at lo-res
- Scales used:
 - Center: $c = \{2, 3, 4\}$
 - Surround: $s = c + \delta [\delta = \{3, 4\}]$
- Multi-scale differences
 - $ightharpoonup \mathcal{F} = \mid F(c) \ominus F(s) \mid$
- 6 scales for each feature
- $7 \times 6 = 54$ "feature maps"
 - Each represents local contrast at a location based on a feature at a certain scale

Combining the features: Conspicuity and Saliency Maps

- Feature maps are combined
- Equal weights normalized N()
- Combined in two stages
 - ▶ Intra-feature-class, giving three *conspicuity maps*

$$\bar{I} = \bigoplus_{c,s} N(I(c,s))$$

$$\bar{C} = \sum_{RG,BY} \bigoplus_{c,s} N(C(c,s))$$

$$\bar{O} = \sum_{\theta} \bigoplus_{c,s} O(c,s)$$

Inter-feature-class, giving the final saliency map

BioVision 05-02

Normalization

- Two reasons to normalize
 - Features are at arbitrary scale
 - Normalize to a fixed range [0...M]
- Some feature may have many nearly equal peaks, indicating texture
 - Find the global maximum M
 - Compute the average of all other local maxima \bar{m}
 - Multiplying the map by $(M \bar{m})^2$

"Winner take it all" and "Return Inhibition" policies

- Winner-take-it-all policy
 - ► The image location with highest saliency attracts attention
 - All other locations are ignored
- Return Inhibition policy
 - Attention never returns to a location once attended
 - The neurons at the attended place tires out.
 - Attention moves to the location with next highest salience.

Results

Quiz

Quiz 05-02

End of Module 05-02