Validation par analyse statique

Partie: Interprétation abstraite, cours 1/3

Pierre-Loïc Garoche (merci à Pierre Roux pour ses contributions à ce cours)

ENAC

ENSEEIHT 2A 2023-2024

L'interprétation abstraite d'un coup d'oeil

L'interprétation abstraite d'un coup d'oeil

L'interprétation abstraite d'un coup d'oeil

Plan des 3 cours sur l'interprétation abstraite

- 1. Introduction à l'interprétation abstraite (aujourd'hui)
 - Exemple graphique
 - Sémantique collectrice d'un langage C-like
- 2. Abstractions numériques simples
 - domaine des signes
 - domaine des constantes
 - intervalles et accélération de convergence
- 3. Abstractions numériques relationnelles et bref état de l'art
 - domaine des polyèdres
 - aperçu d'autres analyses
 - quelques outils et applications

Un exemple graphique

Un peu de dessin

Notion de point fixe Notion d'abstraction Meilleure abstraction Opérations abstraites

Une approche plus... langage

Syntaxe Sémantique Ordres partiels

Un exemple graphique

But : donner les intuitions sur les principes généraux.

- + simple et intuitif
- peu formel

[.] Exemple extrait du cours de L. Mauborgne à l'EJCP'06.

Objets

Définition

Un *objet* est défini par :

- 1. une origine (un point du plan)
- 2. un ensemble de points

Un objet : une fleur

Des outils pour ce langage

Pour définir des objets, et les manipuler, nous avons besoin :

- d'objets de base (primitives, constantes)
- de fonctions pour les modifier

Constante : objet pétale

Fonction: rotation

Définition

r[a](o) est la rotation d'angle a de l'objet o autour de son origine.

Exemples de rotations

Fonction: union d'objets

Définition

 $o_1 \sqcup o_2$ est l'union des objets o_1 et o_2 à l'origine.

```
corolle = pétale \sqcup r[45](pétale) \sqcup r[90](pétale) \sqcup r[135](pétale) \sqcup r[180](pétale) \sqcup r[225](pétale) \sqcup r[270](pétale) \sqcup r[315](pétale)
```


Fonction: tige

Définition

tige(o) ajoute une tige à o en partant de l'origine et déplace ensuite l'origine au bas de la tige.

corolle

fleur = tige(corolle)

Construction de l'objet bouquet

 $\mathsf{bouquet} = r[\mathsf{60}](\mathsf{fleur}) \sqcup \mathsf{fleur} \sqcup r[-\mathsf{60}](\mathsf{fleur})$

Un exemple graphique

Un peu de dessin

Notion de point fixe

Notion d'abstraction Meilleure abstraction Opérations abstraites

Une approche plus... langage

Syntaxe Sémantique Ordres partiels

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

1

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

3

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

3

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \sqcup pétale$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \cup \text{pétale}$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \cup \text{pétale}$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \cup \text{pétale}$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \cup \text{pétale}$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \cup \text{pétale}$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \cup \text{pétale}$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \cup \text{pétale}$)
- 4. retourner en 2

- 1. prendre un pétale (x := pétale)
- 2. effectuer une rotation de 45 degré (x := r[45](x))
- 3. faire l'union avec pétale ($x := x \cup \text{pétale}$)
- 4. retourner en 2

Définition (corolle)

C'est le plus petit objet X tel que :

- ightharpoonup pétale $\subseteq X$
- ▶ $r[45](X) \sqcup pétale \subseteq X$.

Noté : $\operatorname{corolle} = \operatorname{lfp}(X \mapsto \operatorname{p\'etale} \sqcup \operatorname{r}[45](X))$

Un exemple graphique

Un peu de dessin Notion de point fixe Notion d'abstraction Meilleure abstraction

Opérations abstraites

Une approche plus... langage

Syntaxe Sémantique Ordres partie

Concret — abstrait

Sur-approximation

Définition (ordre ⊑ entre les objets concrets)

Un objet o' sur-approxime un objet o si :

- ▶ ils ont la même origine;
- ightharpoonup tout point de o est un point de o'.

Les objets abstraits

Idée

Un objet abstrait est une représentation simplifiée d'un objet.

Exemple d'abstraction : contours

Autres exemples d'abstraction

Autres exemples d'abstraction

L'abstraction n'est pas injective

Attention

Plusieurs objets concrets peuvent être représentés par le même objet abstrait (sinon il n'y a pas vraiment d'abstraction).

L'abstraction n'est pas injective

Attention

Plusieurs objets concrets peuvent être représentés par le même objet abstrait (sinon il n'y a pas vraiment d'abstraction).

Concrétisation

Idée

La concrétisation est la « réciproque » de l'abstraction.

Exemple

► Pour contours et cercles : remplissage de l'intérieur

► Pour polygones : identité

Sur-approximation dans l'abstrait

Définition (ordre ⊑[‡] entre les objets abstraits)

Dépend de l'abstraction choisie.

Exemples : $o \sqsubseteq^{\sharp} o'$ si :

- polygones convexes :
 - ▶ o et o' ont la même origine
 - ▶ o est inclus dans o'
- contour :
 - ▶ o et o' ont la même origine
 - l'intérieur de o est inclus dans celui de o'
- cercles centrés à l'origine :
 - le rayon de o est inférieur à celui de o'

Correction de l'ordre abstrait par rapport à l'ordre concret

Définition (\sqsubseteq^{\sharp} abstrait correctement \sqsubseteq) $\forall o, o', o \sqsubseteq^{\sharp} o' \Rightarrow \text{concrétisation}(o) \sqsubseteq \text{concrétisation}(o')$

Exemple (cercles centrés à l'origine) concrétisation Till (rayon inférieur) concrétisation

Notations

Définition (domaine abstrait \mathcal{D}^{\sharp})

Un domaine abstrait spécifie :

- ightharpoonup un ensemble \mathcal{D}^{\sharp} d'éléments abstraits;
- des opérations abstraites représentant dans l'abstrait
 l'utilisation des opérations concrètes dans le concret D.

Définition (abstraction α)

Une fonction d'abstraction α associe à chaque objet concret o un objet abstrait o^{\sharp} , simplification de o.

Définition (concrétisation γ)

Une fonction de concrétisation γ associe à chaque objet abstrait o^{\sharp} le plus grand objet concret o qu'il approxime.

Concret — Abstrait : résumé

Un exemple graphique

Un peu de dessin Notion de point fixe Notion d'abstraction

Meilleure abstraction

Opérations abstraites

Une approche plus... langage

Syntaxe Sémantique

Ordres partiels

Comparaison d'abstractions

Abstractions différentes : pas toujours comparables

Meilleure abstraction : exemple

Si on n'autorise que les rectangles parallèles au bord, on a une *meilleure* (i.e. plus petite) abstraction

Meilleure abstraction : définition

Définition

Un objet o a une *meilleure abstraction* dans \mathcal{D}^{\sharp} si l'ensemble des objets abstraits $o^{\sharp} \in \mathcal{D}^{\sharp}$ qui l'approximent $\left\{ o^{\sharp} \in \mathcal{D}^{\sharp} \;\middle|\; o \sqsubseteq \gamma(o^{\sharp}) \right\}$ a un minimum.

Meilleure abstraction : définition

Définition

Un objet o a une *meilleure abstraction* dans \mathcal{D}^{\sharp} si l'ensemble des objets abstraits $o^{\sharp} \in \mathcal{D}^{\sharp}$ qui l'approximent $\left\{ o^{\sharp} \in \mathcal{D}^{\sharp} \;\middle|\; o \sqsubseteq \gamma(o^{\sharp}) \right\}$ a un minimum.

Exemple

- ► La fleur n'a pas de meilleure abstraction dans le monde des rectangles quelconques.
- ► La fleur a une meilleure abstraction dans le monde des rectangles parallèles au bord.
- C.f. deux slides précédentes.

Meilleure abstraction : exemples

Exemple

► Tout objet a une meilleure abstraction dans le monde des contours (et c'est le contour).

Meilleure abstraction : exemples

Exemple

- ► Tout objet a une meilleure abstraction dans le monde des contours (et c'est le contour).
- ➤ Tout objet a une meilleure abstraction dans le monde des cercles centrés à l'origine (et c'est le cercle circonscrit).

Meilleure abstraction : exemples

Exemple

- Tout objet a une meilleure abstraction dans le monde des contours (et c'est le contour).
- ➤ Tout objet a une meilleure abstraction dans le monde des cercles centrés à l'origine (et c'est le cercle circonscrit).
- ► Certains objets n'ont pas de meilleure abstraction dans le monde des polygones convexes (ex. un cercle).

Définition

 (α, γ) forme une *correspondance de Galois* entre $\mathcal D$ et $\mathcal D^\sharp$ si :

$$\forall x \in \mathcal{D}, \forall y \in \mathcal{D}^{\sharp}, \quad \alpha(x) \sqsubseteq^{\sharp} y \Leftrightarrow x \sqsubseteq \gamma(y).$$

Définition

 (α, γ) forme une *correspondance de Galois* entre $\mathcal D$ et $\mathcal D^\sharp$ si :

$$\forall x \in \mathcal{D}, \forall y \in \mathcal{D}^{\sharp}, \quad \alpha(x) \sqsubseteq^{\sharp} y \Leftrightarrow x \sqsubseteq \gamma(y).$$

Exemple

► (contour, remplissage) est une correspondance de Galois entre le monde concret et le monde des contours.

Définition

 (α, γ) forme une *correspondance de Galois* entre $\mathcal D$ et $\mathcal D^\sharp$ si :

$$\forall x \in \mathcal{D}, \forall y \in \mathcal{D}^{\sharp}, \quad \alpha(x) \sqsubseteq^{\sharp} y \Leftrightarrow x \sqsubseteq \gamma(y).$$

Exemple

- (contour, remplissage) est une correspondance de Galois entre le monde concret et le monde des contours.
- (cercle circonscrit, remplissage) est une correspondance de Galois entre le monde concret et le monde des cercles.

Définition

 (α, γ) forme une *correspondance de Galois* entre $\mathcal D$ et $\mathcal D^\sharp$ si :

$$\forall x \in \mathcal{D}, \forall y \in \mathcal{D}^{\sharp}, \quad \alpha(x) \sqsubseteq^{\sharp} y \Leftrightarrow x \sqsubseteq \gamma(y).$$

Exemple

- ► (contour, remplissage) est une correspondance de Galois entre le monde concret et le monde des contours.
- ► (cercle circonscrit, remplissage) est une correspondance de Galois entre le monde concret et le monde des cercles.
- ► Il n'existe pas de correspondance de Galois entre le monde concret et le monde des polygones convexes.

Correspondance de Galois et meilleure abstraction

Théorème

Il existe une correspondance de Galois (α, γ) entre \mathcal{D} et \mathcal{D}^{\sharp} si et seulement si tout objet de \mathcal{D} a une meilleure abstraction dans \mathcal{D}^{\sharp} (et la meilleure abstraction est alors donnée par α).

Un exemple graphique

Un peu de dessin Notion de point fixe Notion d'abstraction Meilleure abstraction Opérations abstraites

Operations abstractes

Une approche plus... langage Syntaxe Sémantique Ordres partiels

Pour manipuler les objets abstraits, on a besoin d'opérations $const^{\sharp}: \mathcal{D}^{\sharp}, \ unaire^{\sharp}: \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp} \ \text{ou} \ binaire^{\sharp}: (\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$ alter ego des opérations concrètes const (ex. pétale), unaire (ex. rotation) ou binaire (ex. union).

Pour manipuler les objets abstraits, on a besoin d'opérations $const^{\sharp}: \mathcal{D}^{\sharp}, \ unaire^{\sharp}: \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$ ou $binaire^{\sharp}: (\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$ alter ego des opérations concrètes const (ex. pétale), unaire (ex. rotation) ou binaire (ex. union).

Définition (correction des opérations abstraites)

ightharpoonup const $\sqsubseteq \gamma(\mathsf{const}^\sharp)$

Pour manipuler les objets abstraits, on a besoin d'opérations $const^{\sharp}: \mathcal{D}^{\sharp}, \ unaire^{\sharp}: \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp} \ \text{ou} \ binaire^{\sharp}: (\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$ alter ego des opérations concrètes const (ex. pétale), unaire (ex. rotation) ou binaire (ex. union).

Définition (correction des opérations abstraites)

- ightharpoonup const $\sqsubseteq \gamma(const^{\sharp})$
- $\forall x \in \mathcal{D}^{\sharp}$, unaire $(\gamma(x)) \sqsubseteq \gamma(unaire^{\sharp}(x))$

Pour manipuler les objets abstraits, on a besoin d'opérations $const^{\sharp}: \mathcal{D}^{\sharp}, \ unaire^{\sharp}: \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp} \ \text{ou} \ binaire^{\sharp}: (\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$ alter ego des opérations concrètes const (ex. pétale), unaire (ex. rotation) ou binaire (ex. union).

Définition (correction des opérations abstraites)

- ightharpoonup const $\sqsubseteq \gamma(\mathsf{const}^\sharp)$
- $ightharpoonup \forall x \in \mathcal{D}^{\sharp}, \quad unaire(\gamma(x)) \sqsubseteq \gamma(unaire^{\sharp}(x))$
- $\forall x, y \in \mathcal{D}^{\sharp}$, binaire $(\gamma(x), \gamma(y)) \sqsubseteq \gamma(binaire^{\sharp}(x, y))$

Pour manipuler les objets abstraits, on a besoin d'opérations $const^{\sharp}: \mathcal{D}^{\sharp}, \ unaire^{\sharp}: \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp} \ \text{ou} \ binaire^{\sharp}: (\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$ alter ego des opérations concrètes const (ex. pétale), unaire (ex. rotation) ou binaire (ex. union).

Définition (correction des opérations abstraites)

- ightharpoonup const $\sqsubseteq \gamma(\mathsf{const}^\sharp)$
- $ightharpoonup \forall x \in \mathcal{D}^{\sharp}, \quad unaire(\gamma(x)) \sqsubseteq \gamma(unaire^{\sharp}(x))$
- $\forall x, y \in \mathcal{D}^{\sharp}$, binaire $(\gamma(x), \gamma(y)) \sqsubseteq \gamma(binaire^{\sharp}(x, y))$

Très important (les opérations abstraites n'ont aucun sens sinon).

Dans le monde des rectangles parallèles au bord.

On a bien $rotation(\gamma(.)) \sqsubseteq \gamma(rotation^{\sharp}(.))$.

En présence d'une meilleure abstraction

Les meilleures opérations abstraites sont définies par :

- ightharpoonup const $^{\sharp} = \alpha$ (const)
- $unaire^{\sharp}(x) = \alpha(unaire(\gamma(x)))$
- binaire $(x, y) = \alpha(binaire(\gamma(x), \gamma(y)))$
- **>** . . .

Pétale abstrait

On reprend l'abstraction « contours ».

Rotation abstraite

Définition

unaire
$$^{\sharp}(.) = \alpha(\text{unaire}(\gamma(.)) :$$

$$r^{\sharp}[a](x) = \alpha(r[a](\gamma(x))) = r[a](x)$$

Exemple

Remarque : l'opération est exacte

$$r[a](\gamma(x)) = \gamma(r^{\sharp}[a](x))$$

Tige abstraite

Définition

unaire
$$^{\sharp}(.) = \alpha(unaire(\gamma(.)) :$$

$$\operatorname{tige}^{\sharp}[a](x) = \alpha(\operatorname{tige}[a](\gamma(x)))$$

Union abstraite

Définition

binaire
$$^{\sharp}(.,.) = \alpha(binaire(\gamma(.), \gamma(.)) :$$

$$x \sqcup^{\sharp} y = \alpha(\gamma(x) \cup \gamma(y))$$

Point fixe abstrait pour la corolle

- ▶ On avait défini : corolle = lfpFavec $F: X \mapsto pétale \sqcup r[45](X)$.
- ▶ On définit : corolle abstraite = $\operatorname{lfp} F^{\sharp}$ avec $F^{\sharp}: X \mapsto \operatorname{p\'etale}$ abstrait $\sqcup^{\sharp} \operatorname{r}^{\sharp}[45](X)$.
- ► Toutes les opérations élémentaires sont correctes donc par construction la corolle abstraite approxime bien la vraie corolle (corolle $\sqsubseteq \gamma$ (corolle abstraite)).

Cadre général de l'interprétation abstraite

Un exemple graphique

Un peu de dessin Notion de point fixe Notion d'abstraction Meilleure abstraction Opérations abstraites

Une approche plus... langage Syntaxe

Sémantique Ordres partiels

Un langage jouet

Syntaxe

```
stm ::= v = expr; | stm stm  | if (expr > 0) \{ stm \}  else \{ stm \} \} | while (expr > 0) \{ stm \} 
expr ::= v | n | rand(n, n)  | expr + expr | expr - expr | expr \times expr | expr/expr
v \in \mathbb{V}, un ensemble de variables
n \in \mathbb{Z} (on ne manipule que des entiers)
```

 $rand(n_1, n_2)$ représente le choix aléatoire d'un entier entre n_1 et n_2 (sert à simuler une entrée).

[.] Suite très inspirée du cours de A. Miné au MPRI.

Un langage jouet (suite et fin)

Exemple

Remarques

- un langage très simple, sans fonctions, sans...
- ▶ mais représentatif d'un langage impératif comme C
- ▶ dont c'est d'ailleurs un sous ensemble
- et on peut tout calculer (c'est Turing-complet)

Un exemple graphique

Un peu de dessin Notion de point fixe Notion d'abstraction Meilleure abstraction Opérations abstraites

Une approche plus... langage

Syntaxe

Sémantique

Ordres partiels

Graphe de flot de contrôle

On va utiliser les graphes de flot de contrôle des programmes

Définition

Un graphe de flot de contrôle (L,A) est composé d'un ensemble de points de programme L, d'un point d'entrée $0 \in L$ et d'arêtes

$$A \subseteq L \times com \times L$$
 avec :

$$com ::= v = expr \mid expr > 0$$

Graphe de flot de contrôle

On va utiliser les graphes de flot de contrôle des programmes

Définition

Un graphe de flot de contrôle (L,A) est composé d'un ensemble de points de programme L, d'un point d'entrée $0 \in L$ et d'arêtes $A \subseteq L \times com \times L$ avec :

$$com ::= v = expr \mid expr > 0$$

Sémantique concrète, expressions

Sémantique des expressions : $\llbracket e \rrbracket_{\mathrm{E}} : (\mathbb{V} \to \mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$

Sémantique concrète, expressions

Sémantique des expressions : $\llbracket e \rrbracket_{\mathrm{E}} : (\mathbb{V} \to \mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$

Remarque: environnement

On nomme généralement environnement les fonctions $\rho: \mathbb{V} \to \mathbb{Z}$ qui associent une valeur à chaque variable.

Sémantique concrète, expressions (suite et fin)

Remarque : cas d'erreur

On peut rencontrer deux types d'erreur à l'exécution :

► rand (n_1, n_2) avec n1 > n2: $[[rand(n_1, n_2)]]_E = \{x \in \mathbb{Z} \mid n_1 \leqslant x \leqslant n_2\} = \emptyset;$

Sémantique concrète, expressions (suite et fin)

Remarque : cas d'erreur

On peut rencontrer deux types d'erreur à l'exécution :

- ► rand (n_1, n_2) avec n1 > n2: $[[rand(n_1, n_2)]]_E = \{x \in \mathbb{Z} \mid n_1 \leqslant x \leqslant n_2\} = \emptyset;$
- ▶ division par zéro : $[e/0]_E = \emptyset$.

Sémantique concrète, expressions (suite et fin)

Remarque : cas d'erreur

On peut rencontrer deux types d'erreur à l'exécution :

- ▶ $rand(n_1, n_2)$ avec n1 > n2: $[rand(n_1, n_2)]_E = \{x \in \mathbb{Z} \mid n_1 \leqslant x \leqslant n_2\} = \emptyset;$
- ightharpoonup division par zéro : $[e/0]_{\rm E} = \emptyset$.

On suppose donc que le programme lève une exception et abandonne son exécution dans ces deux cas.

Sémantique concrète, commandes

Sémantique des commandes : $\llbracket c \rrbracket_{\mathrm{C}} : \mathcal{P}(\mathbb{V} \to \mathbb{Z}) \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$

$$[\![v = e]\!]_{\mathbf{C}}(R) = \{ \rho[v \mapsto n] \mid \rho \in R, n \in [\![e]\!]_{\mathbf{E}}(\rho) \}$$

$$[\![e > 0]\!]_{\mathbf{C}}(R) = \{ \rho \mid \rho \in R, \exists n \in [\![e]\!]_{\mathbf{E}}(\rho), n > 0 \}$$

Sémantique concrète, commandes

Sémantique des commandes : $\llbracket c \rrbracket_{\mathrm{C}} : \mathcal{P}(\mathbb{V} \to \mathbb{Z}) \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$

$$[\![v = e]\!]_{\mathbf{C}}(R) = \{ \rho[v \mapsto n] \mid \rho \in R, n \in [\![e]\!]_{\mathbf{E}}(\rho) \}$$

$$[\![e > 0]\!]_{\mathbf{C}}(R) = \{ \rho \mid \rho \in R, \exists n \in [\![e]\!]_{\mathbf{E}}(\rho), n > 0 \}$$

Remarque : $e \leqslant 0$

 $e\leqslant 0$ n'est qu'une jolie façon d'écrire 1-e>0 (sucre syntaxique).

Sémantique concrète, programme

Sémantique des programmes : $\llbracket (L,A) \rrbracket : L o \mathcal{P}(\mathbb{V} o \mathbb{Z})$

À chaque point de programme, on associe le meilleur invariant.

Sémantique concrète, programme

Sémantique des programmes : $\llbracket (L,A) \rrbracket : L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$

À chaque point de programme, on associe le meilleur invariant.

C'est la plus petite solution (au sens de l'inclusion \subseteq) du système

$$\begin{cases}
R_0 = \mathbb{V} \to \mathbb{Z} \\
R_{l'} = \bigcup_{(l,c,l') \in A} \llbracket c \rrbracket_{\mathbf{C}} (R_l)
\end{cases} l' \neq 0$$

Sémantique concrète, programme

Sémantique des programmes : $\llbracket (L,A) \rrbracket : L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$

À chaque point de programme, on associe le meilleur invariant.

C'est la plus petite solution (au sens de l'inclusion \subseteq) du système

$$\begin{cases}
R_0 = \mathbb{V} \to \mathbb{Z} \\
R_{l'} = \bigcup_{(l,c,l') \in A} \llbracket c \rrbracket_{\mathbf{C}}(R_l)
\end{cases} \qquad l' \neq 0$$

Une telle solution existe toujours d'après le théorème de Knaster-Tarski...

$$0x = rand(0, 12); 1y = 42; 4 \xrightarrow{x = x - 2} 3$$
while $2(x > 0)$ {
$$3x = x - 2; y = y + 4;$$
}5
$$0 \xrightarrow{x = rand(0, 12)} 1 \xrightarrow{y = 42} 2 \xrightarrow{x \le 0} 5$$

équations
$$R_0 = \{ x \in \mathbb{Z}, y \in \mathbb{Z} \}$$

$$0x = rand(0, 12); 1y = 42; 4 \leftarrow 2 3$$
while $2(x > 0)$ {
$$3x = x - 2; y = y + 4;$$
}
$$0 \rightarrow x = rand(0, 12) \rightarrow 1 \rightarrow y = 42 \rightarrow 2 \rightarrow x \leq 0 \rightarrow 5$$

équations $R_0 = \{ x \in \mathbb{Z}, y \in \mathbb{Z} \}$

$$R_1 = \{ x \in [0, 12], y \in \mathbb{Z} \}$$

$$0x = rand(0, 12); 1y = 42; 4 \xrightarrow{x = x} 2 \xrightarrow{3}$$
while $2(x > 0)$ {
$$3x = x - 2; y = y + 4;$$
}5
$$0 \xrightarrow{x = rand(0, 12)} 1 \xrightarrow{y = 42} 2 \xrightarrow{x \le 0} 5$$

$$\begin{array}{l} \text{\'equations} \\ R_0 = \{\, x \in \mathbb{Z}, y \in \mathbb{Z} \,\} \\ R_1 = \{\, x \in \llbracket 0, 12 \rrbracket, y \in \mathbb{Z} \,\} \end{array}$$

$$R_2 = R_1[y \mapsto 42] \cup R_4[y \mapsto y + 4]$$

$$0x = rand(0, 12); 1y = 42; 4 \xrightarrow{x} 2 = 3$$
while $2(x > 0)$ {
$$3x = x - 2; y = y + 4;$$

$$4y = y + 4;$$

$$4y = y + 4;$$

$$y = y + 4 \xrightarrow{x} 2 = 3$$

$$y = y + 4 \xrightarrow{x} 3$$

$$y =$$

$$R_0 = \{ x \in \mathbb{Z}, y \in \mathbb{Z} \}$$

 $R_1 = \{ x \in [0, 12], y \in \mathbb{Z} \}$

$$R_2 = R_1[y \mapsto 42] \cup R_4[y \mapsto y + 4]$$

$$R_3 = R_2 \cap \{ x > 0, y \in \mathbb{Z} \}$$

$$0x = rand(0, 12); 1y = 42; 4 \xrightarrow{x} 2 = 3$$
while $2(x > 0)$ {
$$3x = x - 2; y = y + 4;$$

$$4y = y + 4;$$

$$4y = y + 4;$$

$$y = y + 4 \xrightarrow{x} 2 = 3$$

$$y = y + 4 \xrightarrow{x} 3$$

$$y =$$

$$R_0 = \{ x \in \mathbb{Z}, y \in \mathbb{Z} \}$$

$$R_1 = \{ x \in [0, 12], y \in \mathbb{Z} \}$$

$$R_2 = R_1[y \mapsto 42] \cup R_4[y \mapsto y + 4]$$

$$R_3 = R_2 \cap \{ x > 0, y \in \mathbb{Z} \}$$

$$R_4 = R_3[x \mapsto x - 2]$$

$$0x = rand(0, 12); 1y = 42; 4 \leftarrow 2 3$$
while $2(x > 0)$ {
$$3x = x - 2; y = y + 4;$$
}
$$0 \leftarrow x = rand(0, 12) = 42; y = 42 \rightarrow 2 \rightarrow 2 \rightarrow 3$$

$$\begin{aligned} &\text{équations} \\ &R_0 = \{ \, x \in \mathbb{Z}, \, y \in \mathbb{Z} \, \} \\ &R_1 = \{ \, x \in [\![0,12]\!], \, y \in \mathbb{Z} \, \} \\ &R_2 = R_1[y \mapsto 42] \cup R_4[y \mapsto y+4] \\ &R_3 = R_2 \cap \{ \, x > 0, y \in \mathbb{Z} \, \} \\ &R_4 = R_3[x \mapsto x-2] \end{aligned}$$

$$R_5 = R_2 \cap \{ x \leqslant 0, y \in \mathbb{Z} \}$$

example
$$0x = \text{rand}(0, 12); 1y = 42;$$
 $4 \leftarrow x = x - 2$ 3 while $2(x > 0)$ { $3x = x - 2;$ $4y = y + 4;$ } 5 $0 \leftarrow x = \text{rand}(0, 12)$ $0 \leftarrow x = x \leftarrow x = x \rightarrow x = x$

$$\begin{array}{ll} \text{équations} & \text{plus petite solution} \\ R_0 = \{x \in \mathbb{Z}, y \in \mathbb{Z}\} & = \{x \in \mathbb{Z}, y \in \mathbb{Z}\} \\ R_1 = \{x \in [\![0,12]\!], y \in \mathbb{Z}\} & = \{x \in [\![0,12]\!], y \in \mathbb{Z}\} \\ R_2 = R_1[y \mapsto 42] \cup R_4[y \mapsto y + 4] = \{x \in [\![-1,12]\!], y \in [\![42,66]\!] \cap 4\mathbb{Z} + 2 \\ & | 2x + y \in [\![42,66]\!] \} \\ R_3 = R_2 \cap \{x > 0, y \in \mathbb{Z}\} & = \{x \in [\![1,12]\!], y \in [\![42,66]\!] \cap 4\mathbb{Z} + 2 \\ & | 2x + y \in [\![42,66]\!] \} \\ R_4 = R_3[x \mapsto x - 2] & = \{x \in [\![-1,10]\!], y \in [\![42,66]\!] \cap 4\mathbb{Z} + 2 \\ & | 2x + y \in [\![38,62]\!] \} \\ R_5 = R_2 \cap \{x \leqslant 0, y \in \mathbb{Z}\} & = \{x \in [\![-1,0]\!], y \in [\![42,66]\!] \cap 4\mathbb{Z} + 2 \\ & | 2x + y \in [\![42,66]\!] \} \end{array}$$

Un exemple graphique

Un peu de dessin Notion de point fixe Notion d'abstraction Meilleure abstraction Opérations abstraites

Une approche plus... langage

Sémantique

Ordres partiels

Rappels

Définition (ordre)

Un $ordre \sqsubseteq$ est une relation binaire

- ightharpoonup réflexive $(\forall x, x \sqsubseteq x)$;
- ▶ transitive $(\forall x, y, z, (x \sqsubseteq y \land y \sqsubseteq z) \Rightarrow x \sqsubseteq z)$;
- ▶ antisymétrique $(\forall x, y, (x \sqsubseteq y \land y \sqsubseteq x) \Rightarrow x = y)$.

Définition (borne supérieure)

Une borne supérieure $\bigsqcup: \mathcal{P}(S) \to S$ associe à tout sous ensemble S' de S son plus petit majorant

- $ightharpoonup \forall x \in S', x \sqsubseteq | S'$

Treillis complet

Définition (treillis complet)

Un ensemble S muni d'un ordre \sqsubseteq est un *treillis complet* s'il admet une borne supérieure $\bigsqcup S'$.

Un treillis complet est automatiquement muni

- ▶ d'un plus petit élément (bottom) : $\bot = | | \emptyset = \square S$;
- ▶ d'un plus grand élément (top) : $\top = | S = \bigcap \emptyset$.

Treillis complet, exemples

Exemple

 \mathbb{Z} n'est pas un treillis complet ($| \mathbb{Z}$ n'existe pas).

Treillis complet, exemples

Exemple

 \mathbb{Z} n'est pas un treillis complet ($| \mathbb{Z}$ n'existe pas).

Exemple

 $\bar{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty, +\infty\}$ est un treillis complet.

Treillis complet, exemples

Exemple

 \mathbb{Z} n'est pas un treillis complet ($| \mathbb{Z} |$ n'existe pas).

Exemple

 $\bar{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty, +\infty\}$ est un treillis complet.

Exercice

- ▶ Montrer que pour tout ensemble S, l'ensemble de ses parties $\mathcal{P}(S)$ muni de l'ordre inclusion \subseteq est un treillis complet.
- À quoi correspondent la borne supérieure □? la borne inférieure □? ⊥ et ⊤?

Treillis complet, autres exemples

Exercice

Soit A un ensemble quelconque et (B, \sqsubseteq_B) un treillis complet, montrer que $A \to B$, les fonctions de A dans B forment un treillis complet muni de l'ordre usuel sur les fonctions $f \sqsubseteq_{A \to B} g$ si pour tout $x \in A$, $f(x) \sqsubseteq_B g(x)$.

Treillis complet, autres exemples

Exercice

Soit A un ensemble quelconque et (B, \sqsubseteq_B) un treillis complet, montrer que $A \to B$, les fonctions de A dans B forment un treillis complet muni de l'ordre usuel sur les fonctions $f \sqsubseteq_{A \to B} g$ si pour tout $x \in A$, $f(x) \sqsubseteq_B g(x)$.

Treillis complet, autres exemples

Exercice

Soit A un ensemble quelconque et (B, \sqsubseteq_B) un treillis complet, montrer que $A \to B$, les fonctions de A dans B forment un treillis complet muni de l'ordre usuel sur les fonctions $f \sqsubseteq_{A \to B} g$ si pour tout $x \in A$, $f(x) \sqsubseteq_B g(x)$.

est un treillis complet (c.f. exercice du slide précédent).

Théorème de Knaster-Tarski

Définition

Une fonction f d'un treillis complet dans lui même est monotone si

$$\forall x, y \in S, \quad x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$$

Théorème

Si S est un treillis complet et f une fonction monotone sur ce treillis alors f admet un plus petit point fixe

$$\operatorname{lfp} f = \prod \{ x \in S \mid f(x) \sqsubseteq x \}.$$

Théorème de Knaster-Tarski, illustration

Théorème de Knaster-Tarski, illustration

Théorème de Knaster-Tarski, illustration

Théorème de Knaster-Tarski, démonstration

Notons
$$P = \{x \in S \mid f(x) \sqsubseteq x\}$$
 et $p = \bigcap P$.

- p est un point fixe :
 - Soit $x \in P$ quelconque (P est non vide car $T \in P$), $p \sqsubseteq x$ donc par croissance de f, $f(p) \sqsubseteq f(x)$ et $f(x) \sqsubseteq x$ car $x \in P$ donc $f(p) \sqsubseteq x$.
 - Ainsi f(p) est un minorant de P donc $f(p) \sqsubseteq p$ $(p = \bigcap P)$.
 - Par croissance de f, $f(f(p)) \sqsubseteq f(p)$ donc $f(p) \in P$. Or $p = \bigcap P$ donc $p \sqsubseteq f(p)$.
 - Ainsi p = f(p).
- et c'est le plus petit :
 - ▶ Tous les point fixes sont dans P (si f(x) = x alors $f(x) \sqsubseteq x$).
 - p est un minorant de P.

Notre système a une solution

- ▶ $L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})$ est un treillis complet (c.f. exercices).
- ▶ La fonction $F: (L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z})) \to (L \to \mathcal{P}(\mathbb{V} \to \mathbb{Z}))$

$$F(R) = \left\{ \begin{array}{ccc} 0 & \mapsto & (\mathbb{V} \to \mathbb{Z}) \\ I' & \mapsto & \bigcup_{(I,c,I') \in A} \llbracket c \rrbracket_{\mathbf{C}} (R(I)) \end{array} \right.$$

est monotone.

Donc notre sémantique est bien définie.

Problème

Malheureusement, la sémantique concrète n'est pas calculable.

Problème

Malheureusement, la sémantique concrète n'est pas calculable.

On va donc en calculer une surapproximation.

Problème

Malheureusement, la sémantique concrète n'est pas calculable.

On va donc en calculer une surapproximation. la prochaine fois