Esercizi

8 - Prodotto scalare e Teorema spettrale

Legenda:

😀 : Un gioco da ragazzo, dopo aver riletto gli appunti del corso

🤔 : Ci devo pensare un po', ma posso arrivarci

🤯 : Non ci dormirò stanotte

igoplusEsercizio 1. Dimostrare che il prodotto scalare standard in \mathbb{R}^n

$$\langle (x_1,\ldots,x_n),(y_1,\ldots,y_n)\rangle := \sum_{i=1}^n x_i y_i$$

è un prodotto scalare, ovvero è bilineare, simmetrico e definito positivo.

 \mathbb{C} Esercizio 2. Siano $v, w \in \mathbb{R}^2$ e sia \langle , \rangle il prodotto scalare standard in \mathbb{R}^2 . Dimostrare l'*identità di Lagrange*:

$$\langle v, w \rangle^2 + (\det(v, w))^2 = ||v||^2 ||w||^2,$$

dove $\det(v, w)$ è il determinante della matrice 2×2 le cui colonne sono le coordinate dei vettori v e w.

a)
$$v_1 = (-2, k, k)$$
 e $w_1 = (1, k, 1)$ in \mathbb{R}^3 .

b)
$$v_2 = (k, 1)$$
 e $w_2 = (k^2, -1)$ in \mathbb{R}^2 .

Esercizio 4. Si consideri \mathbb{R}^3 con il prodotto scalare standard. Siano $v=(1,1,2), w=(0,-2,1)\in\mathbb{R}^3$.

- (a) Verificare che $v \in w$ sono ortogonali.
- (b) Si determini un vettore u ortogonale a v e a w.
- (c) Verificare che $\{u,v,w\}$ è una base ortogonale di \mathbb{R}^3 e dedurne una base ortonormale.

- a) $\langle v, w \rangle = \frac{1}{4} (\|v + w\|^2 \|v w\|^2)$;
- b) $||v||^2 + ||w||^2 = \frac{1}{2}(||v + w||^2 + ||v w||^2);$
- c) se ||v|| = ||w||, allora v + w e v w sono ortogonali. Interpretare questo risultato geometricamente quando $V = \mathbb{R}^2$ o $V = \mathbb{R}^3$.
- Esercizio 6. Si consideri uno spazio euclideo V con prodotto scalare \langle , \rangle . Siano $v, w \in V$. Definiamo

$$p_v(w) := \frac{\langle v, w \rangle}{\langle v, v \rangle} v$$

la proiezione di w su v.

- (a) Sia $w_1 := w p_v(w)$. Si dimostri che w_1 è ortogonale a v e che $Span\{v, w\} = Span\{v, w_1\}$ (si ricorda che $Span\{v, w\}$ denota il sottospazio generato da v e w).
- (b) Sia ora $V = \mathbb{R}^4$ e \langle , \rangle il prodotto scalare standard. Siano v = (1, 1, 1, 1) e $w = (1, 2, 3, 4) \in \mathbb{R}^4$ e sia $W = Span\{v, w\}$.
 - (b1) Si determini una base di W^{\perp} .
 - (b2) Si usi il punto (a) per determinare una base ortogonale di W e di W^{\perp} .
 - (b3) Si deduca dal punto (b2) una base ortornomale di \mathbb{R}^4 .
- \mathbb{C} Esercizio 7. Si consideri \mathbb{R}^2 con il prodotto scalare standard. Siano v = (1,3) e w = (2,1) in \mathbb{R}^2 .
 - (a) Si calcoli l'angolo $\theta \in [0, \pi]$ compreso tra $v \in w$.
 - (b) Si calcoli la proiezione $p_w(v)$ di v su w.
 - (c) Si verifichi che il vettore $p_w(v)$ trovato nel punto (b) è collineare a w e che $v p_w(v)$ è ortogonale a w. (Interpretare tale fatto geometricamente, rappresentando nel piano cartesiano i vettori v, $w \in p_w(v)$.)
- Esercizio 8. Si consideri \mathbb{R}^3 con il prodotto scalare standard. Determinare, se esistono, il/i valore/i di $k \in \mathbb{R}$ tali che l'angolo tra i vettori v = (1,0,1) e (1,1,k) sia $\frac{\pi}{6}$. Per tal* valor* di k si calcoli la proiezione di k su k.

$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}.$$

Si determini una base ortonormale diagonalizzante per f (si noti che l'esistenza di tale base è garantita dal teorema spettrale poiché A è simmetrica).

Esercizio 10. Si consideri \mathbb{R}^3 con il prodotto scalare standard. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'operatore lineare la cui matrice associata rispetto alla base canonica è

$$A = \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}.$$

Si determini una base ortonormale diagonalizzante per f. (Può risultare utile quanto dimostrato nell'esercizio 6a.)

Esercizio 11. Dimostrare che i quattro segmenti che congiungono i punti medi di due lati consecutivi di un rombo formano un rettangolo.

