Classifying COVID-19 Severity using ML

Mariam Grigoryan Yejin Cha Gordon Kong

Research Question and Motivation

Aim to classify COVID-19 severity into 3 categories:

- Mild
- Moderate
- Severe

114,986,566 cases total 2.54M deaths

Data Sources

<u>Country-specific</u>, frequently updated data

https://ourworldindata.org

As of 26 January 2021, the columns are: iso_code, continent, location, date, total_cases, new_cases, new_cases_smoothed, total_deaths, new_deaths, new_deaths_smoothed, total_cases_per_million, new_cases_per_million, new_cases_smoothed_per_million, total_deaths_per_million, new_deaths_per_million, new_deaths_smoothed_per_million, reproduction_rate, icu_patients, icu_patients_per_million, hosp_patients, hosp_patients_per_million, weekly_icu_admissions, weekly_icu_admissions_per_million, weekly_hosp_admissions, weekly_hosp_admissions_per_million, total_tests, new_tests, total_tests_per_thousand, new_tests_per_thousand, new_tests_smoothed, new_tests_smoothed_per_thousand, positive_rate, tests_per_case, tests_units, total_vaccinations, people_vaccinated, people_fully_vaccinated, new_vaccinations_smoothed, total_vaccinations_per_hundred, people_fully_vaccinated_per_hundred, new_vaccinations_smoothed_per_million, stringency_index, population, population_density, median_age, aged_65_older, aged_70_older, gdp_per_capita, extreme_poverty, cardiovasc_death_rate, diabetes_prevalence, female_smokers, male_smokers, handwashing_facilities, hospital_beds_per_thousand, life_expectancy, human_development_index

Features

- Demographics
- Blood/urine data
- Smoking
- Other vaccinations
 - o Ex: BCG

Tuberculosis vaccine may help protect against COVID-19

A retrospective, observational study has found that people who received the BCG vaccination — which prevents tuberculosis — were less likely to report symptoms of COVID-19 and less likely to have antibodies against the infection in their blood.

Previous Research

Front. Cell Dev. Biol., 31 July 2020 | https://doi.org/10.3389/fcell.2020.00683

Severity Detection for the Coronavirus Disease 2019 (COVID-19) Patients Using a Machine Learning Model Based on the Blood and Urine Tests

Binary Classifier:

Mild/moderate vs severe/death

Features: blood/urine data+ demographics

Data: 137 cases in China

Supervised

81% accuracy

Article Open Access | Published: 09 October 2020

A comprehensive study on classification of COVID-19 on computed tomography with pretrained convolutional neural networks

Scientific Reports 10, Article number: 16942 (2020) | Cite this article

5724 Accesses | 3 Citations | 12 Altmetric | Metrics

COVID diagnosis based on CT images Pre-trained CNN

Article Open Access | Published: 04 January 2021

Machine learning-based prediction of COVID-19 diagnosis based on symptoms

Yazeed Zoabi, Shira Deri-Rozov & Noam Shomron ≥

npj Digital Medicine 4, Article number: 3 (2021) | Cite this article

6628 Accesses 30 Altmetric Metrics

Planned ML Approach and Rationale

Data Pre-processing

- Fill the missing entries with median of that normal range or O
- Split samples at 80% training, 20% test datasets
- Normalize continuous values by the values in the training dataset
- Encode categorical features by one-hot strategy

Feature Selection

 Student t-test to evaluate the statistical association of each feature with the disease severity of the sample. Rank features based on their significance (p-values)

Use Lasso (Least Absolute Shrinkage and Selection Operator)
 for identifying the most relevant features

Models

SVM

Pros: effective in high dim spaces Con: cross-validations are expensive

Pros: Effective with large data

Robust to noise

Cons: high computation cost to find k

Decision Trees

with Gradient Boosting

Pros: little data prep, handles numerical+categorical Con: might create trees that do not generalize well

> Random Forest

Pros: reduction in over-fitting

Cons: slow prediction and complex

KNN

Model Evaluations

Compare the different models with the following metrics:

- Accuracy
- F-1 score
- Specificity (false positive, true negative rate)
- **Sensitivity** (recall, true positive, false negative rate)

Anticipated Challenges

- Keeping up with current research
- Large datasets
- Combining Multiple Datasets

Timeline

