Calculus I, Gradescope Assignment, Week 3

Q1. Write a formula for the functions $f \circ g$ and $g \circ f$ and find the domain and range of each, where $f(x) = \sqrt{x+2}$ and g(x) = 1/x.

6 marks

Solution:

$$(f\circ g)(x) = f(g(x)) = f(1/x) = \sqrt{\frac{1}{x}+2}$$
 1 mark
$$\operatorname{Dom} (f\circ g) = (-\infty, -\frac{1}{2}] \cup (0, \infty)$$
 1 mark
$$\operatorname{Ran} (f\circ g) = [0, \infty)\backslash \{\sqrt{2}\}$$
 1 mark
$$(g\circ f)(x) = g(f(x)) = g(\sqrt{x+2}) = 1/\sqrt{x+2}$$
 1 mark
$$\operatorname{Dom} (g\circ f) = (-2, \infty)$$
 1 mark

Q2. Given u(x) = 2x - 3, $v(x) = x^4$ and f(x) = 1/x, find $(u \circ (v \circ f))(x)$ and $(v \circ (u \circ f))(x)$

2 marks

1 mark

Solution:

 $\mathsf{Ran}\,(g\circ f)=(0,\infty)$

$$(u\circ (v\circ f))(x)=u(v(1/x))=u(1/x^4)=2/x^4-3 \\ (v\circ (u\circ f))(x)=v(u(1/x))=v(2/x-3)=(2/x-3)^4 \\ 1 \text{ mark}$$

Q3. Find the inverse of the function $f(x) = x^3 + 1$ and identify the domain and range of this inverse function.

3 marks

Solution:

Write
$$y=f^{-1}(x)$$
 and use $f(y)=x$.
$$f(y)=y^3+1=x \text{ hence } y=(x-1)^{\frac{1}{3}}=f^{-1}(x).$$
 1 mark
$$\operatorname{Dom} f^{-1}=\operatorname{Ran} f=\mathbb{R}.$$
 1 mark
$$\operatorname{Ran} f^{-1}=\operatorname{Dom} f=\mathbb{R}.$$
 1 mark

Q4. Find the inverse of the function $f(x) = 1/x^2$, $\forall x > 0$, and identify the domain and range of this inverse function.

3 marks

Solution:

Write
$$y=f^{-1}(x)$$
 and use $f(y)=x$.
$$f(y)=1/y^2=x \text{ hence } y=1/\sqrt{x}=f^{-1}(x).$$
 1 mark
$$\operatorname{Dom} f^{-1}=\operatorname{Ran} f=(0,\infty).$$
 1 mark
$$\operatorname{Ran} f^{-1}=\operatorname{Dom} f=(0,\infty).$$
 1 mark
$$\operatorname{Ran} f^{-1}=\operatorname{Dom} f=(0,\infty).$$

Q5. Show that the function $f(x) = (1+3x)^3$ in \mathbb{R} is injective and find its inverse. Specify the domain of the inverse. 3 marks

Solution:

Apply the horizontal line test (a statement is enough, the graph is not required) or

$$f(x_1) = f(x_2)$$
 iff $(1+3x_1)^3 = (1+3x_2)^3$ iff $(1+3x_1) = (1+3x_2)$ iff $x_1 = x_2$.

Write $y = f^{-1}(x)$ and use f(y) = x.

So
$$f(y) = (1+3y)^3 = x$$
 hence $y = \frac{1}{3}(x^{\frac{1}{3}} - 1) = f^{-1}(x)$.

$$\mathsf{Dom}\ f^{-1}=\mathsf{Ran}\ f=\mathbb{R}$$

1 mark 1 mark

1 mark

$$\operatorname{\mathsf{Dom}} f^{-1}=\operatorname{\mathsf{Ran}} f=\mathbb{R}.$$

Q6. Show that the function $f(x) = (1-x)^2$ in [-1,2] is not injective.

1 mark

Solution:

Apply the horizontal line test (a statement is enough, the graph is not required) or eg. f(2) = 1 = f(0).

1 mark

Q7. Complete the table

5 marks

g(x)	f(x)	$(f \circ g)(x)$
x-7	\sqrt{x}	
x+2	3x	
	$\sqrt{x-5}$	$\sqrt{x^2-5}$
$\frac{x}{x-1}$	$\frac{x}{x-1}$	
	$1 + \frac{1}{x}$	x

Solution: One mark per correct entry

g(x)	f(x)	$(f \circ g)(x)$
x-7	\sqrt{x}	$\sqrt{\mathrm{x}-7}$
x+2	3x	3x + 6
x^2	$\sqrt{x-5}$	$\sqrt{x^2-5}$
$\frac{x}{x-1}$	$\frac{x}{x-1}$	x
$\frac{1}{x-1}$	$1 + \frac{1}{x}$	x

5 marks