#### Public Key Primitives

Rohit Musti

CUNY - Hunter College

April 7, 2022

#### Table of Contents

- Overview
- Trapdoor Functions
- RSA
- Diffie-Hellman Key Exchange



## Public Key Exchange Motivation

- Consider our protagonists: Alice and Bob. They have never met in person and are speaking over the phone to coordinate a blind date!
- They want to make sure their date location is secret from any eavesdroppers listening to their phone line.
- They took introduction to cryptography and decide that they want to generate a shared secret c unknown to any adversary.
- This requires that if the eavesdropper takes the transcript of their phone call, they are not able to generate the secret k

NOTE: no requirements for integrity (no protection from man in the middle) and the protocol is fully anonymous (no way to verify that Alice and Bob are talking to one another)

## Anonymous Key Exchange Attack Game



if k' = k, then the adversary wins

# Weaknesses in this Security Notion?

- Assumes adversary will not tamper with protocol
- ② Assumes that adversary cannot simply guess parts of k (i.e. no uniform randomness distinguishability requirement)
- No identity verification

2 Trapdoor Functions

#### **Trapdoor Functions**

- Trapdoor functions are one way functions that have a "trapdoor" that allows someone armed with a secret to reverse the otherwise unreversible function
- ullet Three functions over  $(\mathcal{X},\mathcal{Y})$ : a generator, a function, and an inverter
  - G: probabilistic generator  $(pk, sk) \stackrel{R}{\leftarrow} G()$
  - F: determinstic function  $y \leftarrow F(pk, x)$
  - 1: determinstic function  $x \leftarrow I(sk, y)$  (should be hard w/o sk)
- correctness:  $\forall (pk, sk) : I(sk, F(pk, x)) = x$

# Trapdoor Key Exchange



# Trapdoor Key Exchange Attack Game



if x' = x, then the adversary wins



## RSA Background

- Named after Ron Rivest, Adi Shamir, and Leonard Adleman at the Massachusetts Institute of Technology
- Legend has it they got drunk on wine during passover at a student's house and came up with the system staying up all night
- allegedly, the british intelligence agencies came up with a similar system a few years earlier but didn't think it was feasible with the current computers

## RSA Key Generation

- Key Generation
  - **1** pick an integer  $\ell > 2$  and an odd integer e > 2
  - 2 generate a random  $\ell$ -bit prime p s.t. gcd(e, p-1) = 1
  - **3** generate a random  $\ell$ -bit prime q s.t. gcd(e, q-1)=1 and  $p\neq q$
  - $0 n \leftarrow pq$
  - **⑤**  $d \leftarrow e^{-1} mod(p-1)(q-1)$
  - **1** pk = (n, e) and sk = (n, d)
- $x \in \mathbb{Z}_n$
- $F(pk,x) := x^e \in \mathbb{Z}_n$
- $I(sk, y) := y^d \in \mathbb{Z}_n$

## **RSA Security**

• given n the RSA Modulus, e the encryption exponent, d the decryption exponent, and  $y=x^e$ , it is mathematically hard to calculate x

Diffie-Hellman Key Exchange

## Diffie-Hellman History

- Earned the authors a Turing award
- Two Stanford Cryptographers Whitfield Diffie and Martin Hellman
- Before this time, little cryptography work was done outside of the NSA and other intelligence agencies
- NSA tried to limit their research after they published this public paper
- NSA even sent letters to journal editors warning that authors of cryptography papers could be sentenced to prison time for violating laws around military weapon export

## Diffie-Hellman Key Exchange

- start by sample two large primes: p, q s.t. q divides p-1
- all math is done mod p (working in  $\mathbb{Z}_1$ )
- since q divides p, there exists a g s.t.  $g^q = 1$ , this will serve as the generator for a Group  $(\mathbb{G} := g^a : a = 0, ..., q 1)$

# Diffie-Hellman Key Exchange



$$w = v^{\alpha} = u^{\beta} = g^{\alpha\beta}$$

#### Diffie-Hellman Security

- Security rests on the difficulty of the discrete log problem
- over a cyclic group  $\mathbb G$  it is mathematically hard to compute  $\alpha$  given  $g^{\alpha}$ , where g is a generator of  $\mathcal G$
- this is further extended to: given  $(g^{\alpha}, g^{\beta})$  where g is a generator,  $\alpha, \beta \xleftarrow{R} \mathbb{Z}_{q}$ , it is hard to compute  $g^{\alpha\beta}$