ETH zürich

Multiple Lineare Regression (Teil 2)

Peter von Rohr

Outline

- Tests und Konfidenzintervalle
- Analyse der Residuen
- Modellwahl

Annahmen für ein lineares Modell

- Ausser, dass die Matrix **X** vollen Rang hat (p < n) wurden bis jetzt keine Annahmen gemacht
- Lineares Modell ist korrekt $\rightarrow E(\epsilon) = \mathbf{0}$
- Die Werte in X sind exakt
- Die Varianz der Fehler ist konstant ("Homoskedazidität") für alle Beobachtungen $\rightarrow Var(\epsilon) = \mathbf{I} * \sigma^2$
- Die Fehler sind unkorreliert
- Weitere Eigenschaften folgen, falls die Fehler normal verteilt sind Was passiert, wenn Annahmen nicht erfüllt sind?

Massnahmen und Alternativen

- Falls Annahme 3 (konstante Varianzen) verletzt ist, verwenden wir weighted least squares
- Falls Annahme 5 der Normalität nicht gilt, verwenden wir robuste Methoden
- Falls Annahme 2 falsch ist, brauchen wir eine Methode namens "errors in variables"
- Falls Annahme 1 nicht zutrifft, brauchen wir ein nicht-lineares Modell

Annahmen 1 und 4 nicht erfüllt

Mehrere Regressionen mit einer Variablen

- Wichtig: Multiple lineare Regression nicht durch mehrere Regressionen mit einer Variablen ersetzen
- Beispiel: y = 2 * x1 x2

		-	_			-	_	_
ΧI	0	Τ	2	3	U	T	2	3
x2	-1	0	1	2	1	2	3	4
y	1	2	3	4	-1	0	1	2

Einfache Regression mit x2

```
x1 \leftarrow c(0, 1, 2, 3, 0, 1, 2, 3)
x2 \leftarrow c(-1,0,1,2,1,2,3,4)
v < -2*x1-x2
dfData <- data.frame(x1=x1, x2=x2, y=y)
lm simple x2 <- lm(y ~ x2, data = dfData)
```

Resultat

Table 2: Fitting linear model: $y \sim x2$

	Estimate			Pr(> t)
		Std. Error	t value	
x2	0.1111	0.4057	0.2739	0.7934
(Intercept)	1.333	0.8607	1.549	0.1723

• Original: y = 2 * x1 - x2

Eigenschaften der Least Squares Schätzer

- Modell: $\mathbf{v} = \mathbf{X}\beta + \epsilon$, mit $E[\epsilon] = \mathbf{0}$, $Cov(\epsilon) = \mathbf{I} * \sigma^2$
- **1** $E[\hat{\beta}] = \beta \rightarrow \text{unverzerrter Schätzer (unbiasedness)}$
- $E[\hat{\mathbf{Y}}] = E[\mathbf{Y}] = \mathbf{X}\beta \rightarrow E[\mathbf{r}] = \mathbf{0}$
- 3 $Cov(\hat{\beta}) = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$
- 4 $Cov(\hat{\mathbf{Y}}) = \sigma^2 P$, $Cov(\mathbf{r}) = \sigma^2 (\mathbf{I} \mathbf{P})$

wobei
$$\mathbf{P} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$

Verteilung der Schätzer

Annahme, dass ϵ normal-verteilt sind, daraus folgt

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}_p(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

$$\mathbf{\hat{Y}} \sim \mathcal{N}_n(\mathbf{X}\beta, \sigma^2 P)$$

$$\hat{\sigma}^2 \sim \frac{\sigma^2}{n-p} \chi^2$$

Tests und Vertrauensintervalle

 Angenommen, wir möchten wissen, ob eine bestimmte erklärende Variable β_i relevant ist in unserem Modell, dann testen wir die Nullhypothese

$$H_0: \beta_i = 0$$

gegenüber der Alternativhypothese

$$H_A: \beta_i \neq 0$$

■ Bei unbekanntem σ^2 ergibt sich folgende Teststatistik

$$T_j = rac{\hat{eta}_j}{\sqrt{\hat{\sigma}^2(\mathbf{X}^T\mathbf{X})_{jj}^{-1}}} \sim t_{n-p}$$

wobei t_{n-p} für die Student-t Verteilung mit n-p Freiheitsgraden steht.

Probleme bei t-Tests

- Multiples Testen bei vielen β_i , d.h. falls wir 100 Tests mit Irrtumswahrscheinlichkeit 5% machen, sind automatisch 5 Tests signifikant
- **E**s kann passieren, dass für kein β_i die Nullhypothese verworfen werden kann, aber die erklärende Variable trotzdem einen Einfluss hat. Der Grund dafür sind Korrelationen zwischen erklärenden Variablen
- Individuelle t-tests für H_0 : $\beta_i = 0$ sind so zu interpretieren, dass diese den Effekt von β_i quantifizieren nach Abzug des Einflusses aller anderen Variablen auf die Zielgrösse Y
 - \rightarrow falls z. Bsp. β_i und β_i stark korreliert sind und wir testen die beiden Nullhypothesen $H_{0i}: \beta_i = 0$ und $H_{0i}: \beta_i = 0$, kann durch die Korrektur der anderen Variablen der Effekt von β_i und β_i auf Y durch den t-Test nicht gefunden werden.