Linear Programming: Simplex Method

Simplex Method for LP: https://www.youtube.com/watch?v=VsyFFhzQVZM
Branch & Bound Method for MILP: https://www.youtube.com/watch?v=g1Xtmd94zns
Additional resources: tinyurl.com/sksoptivid

Prakash Kotecha, Associate Professor

Debasis Maharana, Teaching Assistant & Remya Kommadath, Teaching Assistant Indian Institute of Technology Guwahati

Linear programming (LP)

Minimize / Maximize
$$z = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

subject to $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \ge b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$

Minimize / Maximize $z = c^T X$ subject to $AX \le b$ $A_{eq}X = b_{eq}$

Linear objective function

Linear equality constraints

Linear inequality constraints

Number of decision variables: *n*Number of constraints: *m*

- Applications in resource allocation, production scheduling, workforce planning, transportation, etc.
- At least one optimal solution lies on one of the vertices of the feasible region.
- Algorithms: Simplex method and interior point method

Simplex method

- Developed by George Dantzig in 1947 for solving optimal resource allocation problem.
- Can handle large number of decision variables and constraints.
- Solves for optimum by visiting the vertices (or corner points) of the feasible region.
- To apply the Simplex method
 - Objective function should be maximized
 - All constraints should be expressed as less-than-or-equal-to constraints i.e., $Ax \le b$.
 - All the decision variables should be non-negative, i.e., $x_i \ge 0$.
 - Right hand side of the constraints should be non-negative, i.e., $b_i \ge 0$.

Maximize
$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

subject to $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$
 $x_i \ge 0$ $i = 1, 2, \dots$

- ➤ Objective function should be maximization
- All inequality constraints should be converted into equations Guwahati
- >RHS of all the equations must be non-negative
- ➤ All variables should be non-negative

Conversion of minimization problem to maximization

Minimize Z

Maximize (-Z)

Let *Minimize* $Z = 5x_1 + 4x_2$ be the objective function

Minimize

Maximize

$$Z = 5x_1 + 4x_2$$
 $Z = -(5x_1 + 4x_2)$

$$Z = -(5x_1 + 4x_2)$$

"≤" inequality constraint can be converted to an equality constraint by introducing a slack variable.

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n + s_i = b_i$$

 s_i : slack variable $s_i \geq 0$

$$x_1 + 2x_2 \le 10$$

$$x_1 + 2x_2 \le 10 \qquad \qquad x_1 + 2x_2 + s_1 = 10$$

"≥" inequality constraint can be converted to an equality constraint by introducing a surplus variable.

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i$$

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i$$
 $a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - s_i = b_i$ $s_i \ge 0$

 S_i : surplus variable

$$3x_1 + 2x_2 \ge 11$$

$$3x_1 + 2x_2 \ge 11$$
 $3x_1 + 2x_2 - s_1 = 11$

Converting negative RHS value to non-negative

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = -b_i$$

$$-(a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n) = b_i$$

$$-(3x_1 + x_2) = 11$$

Converting negative/unrestricted variable to non-negative

Let x_i be an unrestricted variable

$$x_i = x_i' - x_i''$$

 $3x_1 + x_2 \le 9$, where x_1 is an unrestricted variable and $x_2 \ge 0$

$$3(x_1 - x_1) + x_2 + S_1 = 9$$

$$x_1' \ge 0, x_1'' \ge 0, x_2 \ge 0, S_1 \ge 0$$

Objective function	Minimize Z Minimize $Z = 5x_1 + 4x_2$	Maximize (-Z) $Maximize Z = -(5x_1 + 4x_2)$
"≤" inequality constraint can be converted to an equality constraint by introducing a <i>slack</i> variable	$\begin{vmatrix} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i \\ x_1 + 2x_2 \le 10 \end{vmatrix}$	$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n + s_i = b_i$ s_i is slack variable, $s_i \ge 0$ $x_1 + 2x_2 + s_1 = 10$
"≥" inequality constraint can be converted to an equality constraint by introducing a <i>surplus</i> variable	$\begin{vmatrix} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i \\ 3x_1 + 2x_2 \ge 11 \end{vmatrix}$	$\begin{vmatrix} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - s_i \\ s_i \text{ is surplus variable, } s_i \ge 0 \\ 3x_1 + 2x_2 - s_1 = 11 \end{vmatrix}$
Converting negative RHS value to non-negative	$\begin{vmatrix} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i \\ 3x_1 + x_2 = -11 \end{vmatrix}$	$(-)a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n) = (b_i)$ $-(3x_1 + x_2) = 11$
Converting negative/unrestricted variable to non-negative	Let x_i be an unrestricted variable $3x_1 + x_2 \le 9$, where x_1 is an unrestricted variable and $x_2 \ge 0$	$x_{i} = x_{i}^{'} - x_{i}^{"}$ $3(x_{1}^{'} - x_{1}^{"}) + x_{2} + s_{1} = 9$ $x_{1}^{'} \ge 0, x_{1}^{"} \ge 0, x_{2} \ge 0, s_{1} \ge 0$

Linear Programming

- Reddy Mikks company produces interior and exterior paints from raw materials, M1 and M2.
- Daily demand for interior paint cannot exceed that for exterior paint by more than 1 unit.
- Maximum daily demand for the interior paint is 2 units.
- Determine optimum quantity of interior and exterior paints that maximizes total daily profit.

	Exterior paint	Interior paint	Availability
M1	6	4	24
M 2	1	2	6
Profit	5	4	

Linear Programming

Let x_1 = Units of exterior paint produced daily

 x_2 = Units of interior paints produced daily

Maximize Profit, $Z = 5x_1 + 4x_2$

Decision variables

Objective function

	Ext. paint	Int. paint	Availability		
M 1	6	4	24		
M 2	1	2	6		
Profit	5	4			

Subject to

$$6x_1 + 4x_2 \le 24$$
$$x_1 + 2x_2 \le 6$$
$$x_2 \le x_1 + 1$$

 $x_1, x_2 \ge 0$

 $x_2 \leq 2$

Daily demand for interior paint cannot exceed that for exterior paint by more than 1 Unit.

Algebraic form

Maximize
$$z = 5x_1 + 4x_2$$

subject to $6x_1 + 4x_2 \le 24$
 $x_1 + 2x_2 \le 6$
 $x_2 \le x_1 + 1$
 $x_1 \ge 0, x_2 \le 2$

Algebraic form

$$z - 5x_1 - 4x_2 = 0$$

$$6x_1 + 4x_2 + s_1 = 24$$

$$x_1 + 2x_2 + s_2 = 6$$

$$-x_1 + x_2 + s_3 = 1$$

$$x_2 + s_4 = 2$$

$$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$$

Number of non-basic variables = Number of variables – Number of constraints = 6-4=2

Algebraic form

Maximize
$$z = 5x_1 + 4x_2$$

subject to $6x_1 + 4x_2 \le 24$
 $x_1 + 2x_2 \le 6$
 $x_2 \le x_1 + 1$
 $x_1 \ge 0, x_2 \le 2$

Algebraic form

$$z - 5x_1 - 4x_2 = 0$$

$$6x_1 + 4x_2 + s_1 = 24$$

$$x_1 + 2x_2 + s_2 = 6$$

$$-x_1 + x_2 + s_3 = 1$$

$$x_2 + s_4 = 2$$

$$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$$

For a system of equations $\{Ax = b, x \ge 0\}$ with A being a M × N matrix of rank M and b an M × 1 vector

- A point $x = [x_B x_N]$ is called a basic solution of the system, $x_B = B^{-1}b$ and $x_N = 0$.
- Elements of x_B and x_N are called basic and non-basic variables respectively.

Number of non-basic variables = Number of variables - Number of constraints = 6-4=2

Basic	z	x ₁	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	s_4	Solution
Z	1	-5	-4	0	0	0	0	0

$z - 5x_1 - 4x_2 = 0$
$6x_1 + 4x_2 + s_1 = 24$
$x_1 + 2x_2 + s_2 = 6$
$-x_1 + x_2 + s_3 = 1$
$x_2 + s_4 = 2$
$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$

Basic	${f z}$	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	s_4	Solution
z	1	-5	-4	0	0	0	0	0
$\mathbf{s_1}$	0	6	4	1	0	0	0	24

$$z - 5x_1 - 4x_2 = 0$$

$$6x_1 + 4x_2 + s_1 = 24$$

$$x_1 + 2x_2 + s_2 = 6$$

$$-x_1 + x_2 + s_3 = 1$$

$$x_2 + s_4 = 2$$

$$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$$

Basic	${f z}$	\mathbf{x}_1	\mathbf{x}_2	s_1	\mathbf{s}_2	s_3	s_4	Solution
Z	1	-5	-4	0	0	0	0	0
\mathbf{s}_1	0	6	4	1	0	0	0	24
$\mathbf{s_2}$	0	1	2	0	1	0	0	6

$$z - 5x_1 - 4x_2 = 0$$

$$6x_1 + 4x_2 + s_1 = 24$$

$$x_1 + 2x_2 + s_2 = 6$$

$$-x_1 + x_2 + s_3 = 1$$

$$x_2 + s_4 = 2$$

$$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$$

Basic	Z	\mathbf{x}_1	\mathbf{x}_2	s_1	\mathbf{s}_2	s_3	s_4	Solution
${f z}$	1	-5	-4	0	0	0	0	0
\mathbf{s}_1	0	6	4	1	0	0	0	24
$\mathbf{s_2}$	0	1	2	0	1	0	0	6
\mathbf{s}_3	0	-1	1	0	0	1	0	1

	$z - 5x_1 - 4x_2 = 0$
	$6x_1 + 4x_2 + s_1 = 24$
-	$x_1 + 2x_2 + s_2 = 6$
	$-x_1 + x_2 + s_3 = 1$
	$x_2 + s_4 = 2$
	$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$

Basic	Z	x ₁	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	s ₄	Solution
Z	1	-5	-4	0	0	0	0	0
\mathbf{s}_1	0	6	4	1	0	0	0	24
$\mathbf{s_2}$	0	1	2	0	1	0	0	6
$\mathbf{s_3}$	0	-1	1	0	0	1	0	1
$\mathbf{s_4}$	0	0	1	0	0	0	1	2

$z - 5x_1 - 4x_2 = 0$
$6x_1 + 4x_2 + s_1 = 24$
$x_1 + 2x_2 + s_2 = 6$
$-x_1 + x_2 + s_3 = 1$
$x_2 + s_4 = 2$
$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$

> Optimality criteria: coefficient of the non-basic variables in first row should be non-negative

Basic	${f z}$	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	s_2	S_3	s_4	Solution
Z	1	-5	-4	0	0	0	0	0
\mathbf{s}_1	0	6	4	1	0	0	0	24
\mathbf{s}_2	0	1	2	0	1	0	0	6
\mathbf{s}_3	0	-1	1	0	0	1	0	1
\mathbf{s}_4	0	0	1	0	0	0	1	2

- > Optimality criteria: coefficient of the non-basic variables in first row should be non-negative
- Entering basic variable: variable with the 'most negative' coefficient in the first row

Entering variabl	e
Elitering variable	C

Basic	z	\mathbf{x}_1	\mathbf{x}_2	s_1	\mathbf{s}_2	s_3	s_4	Solution
Z	1	-5	-4	0	0	0	0	0
\mathbf{s}_1	0	6	4	1	0	0	0	24
\mathbf{s}_2	0	1	2	0	1	0	0	6
\mathbf{s}_3	0	-1	1	0	0	1	0	1
s_4	0	0	1	0	0	0	1	2

- > Optimality criteria: coefficient of the non-basic variables in first row should be non-negative
- Entering basic variable: variable with the 'most negative' coefficient in the first row
- Pivot column: column of the entering basic variable

	Ent	tering va	riable					
Basic	\mathbf{z}	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	S_3	s_4	Solution
Z	1	-5	-4	0	0	0	0	0
\mathbf{s}_1	0	6	4	1	0	0	0	24
\mathbf{s}_2	0	1	2	0	1	0	0	6
\mathbf{s}_3	0	-1	1	0	0	1	0	1
s_4	0	0	1	0	0	0	1	2

- > Optimality criteria: coefficient of the non-basic variables in first row should be non-negative
- Entering basic variable: variable with the 'most negative' coefficient in the first row
- Pivot column: column of the entering basic variable
- > Ratio: divide right side by the corresponding element of the pivot column

	En	tering vari	able						
Basic	\mathbf{z}	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	\mathbf{S}_3	s_4	Solution	Ratio
Z	1	-5	J -4	0	0	0	0	0	
s_1	-0	6	4	1	0	0	0	24	24/6 = 4
\mathbf{s}_2	0	1	2	0	1	0	0	6	6/1 = 6
\mathbf{s}_3	0	-1	1	0	0	1	0	1	1/-1 = -1
s_4	0	0	1	0	0	0	1	2	2/0=∞

- > Optimality criteria: coefficient of the non-basic variables in first row should be non-negative
- Entering basic variable: variable with the 'most negative' coefficient in the first row
- Pivot column: column of the entering basic variable
- > Ratio: divide right side by the corresponding element of the pivot column
- ➤ Pivot row: row with the minimum positive value for the ratio

	Ent	tering var	iable	R					
Basic	\mathbf{z}	\mathbf{x}_1							
Z	1	-5	-4	0	0	0	0	0	
\mathbf{s}_1	0	6	4	1	0	0	0	24	24/6 = 4 Minimum
\mathbf{s}_2	0	1	2	0	1	0	0	6	6/1 = 6
s_3	0	-1	1	0	0	1	0	1	1/-1 = -1 Ignore
\mathbf{s}_4	0	0	1	0	0	0	1	2	$2/0=\infty$ Ignore

- > Optimality criteria: coefficient of the non-basic variables in first row should be non-negative
- Entering basic variable: variable with the 'most negative' coefficient in the first row
- Pivot column: column of the entering basic variable
- > Ratio: divide right side by the corresponding element of the pivot column
- > Pivot row: row with the minimum positive value for the ratio
- Leaving basic variable: basic variable of the pivot row
- > Pivot element: element at the intersection of the pivot column and pivot row

Entering variable

	Basic	Z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	\mathbf{s}_4	Solution	Ratio	
	Z	1	-5	-4	0	0	0	0	0		
eaving variable	s_1	0	6	4	1	0	0	0	24	4	Minimu
	\mathbf{s}_2	0	1	2	0	1	0	0	6	6	
	s_3	0	-1	1	0	0	1	0	1	-1	
	\mathbf{s}_4	0	0	1	0	0	0	1	2	∞	

num

Entering v	rariable
------------	----------

	Dasic	L	^ 1	~ 2	31	32	3	34	Jointion	Itai
	Z	1	-5	-4	0	0	0	0	0	41
eaving variable	s_1	0	6	4	1	0	0	0	24	4
	s_2	0	1	2	0	1	0	0	6	6
	s_3	0	-1	1	0	0	1	0	1	-1

Basic	\mathbf{z}	\mathbf{x}_1	\mathbf{x}_2	s_1	s_2	s_3	s_4	Solution
Z	1	-5	-4	0	0	0	0	0
\mathbf{x}_1	0	6	4	1	0	0	0	24
\mathbf{s}_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
$\mathbf{s_4}$	0	0	1	0	0	0	1	2

Determine the next basic feasible solution by dividing pivot row by pivot element

New pivot row = Current pivot /pivot element

Basic	Z	x ₁	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	s_4	Solution	377
Z	1	-5	-4	0	0	0	0		
\mathbf{x}_1	0	6	4	1	0	0	0	24	
\mathbf{s}_2	0	1	2	0	1	0	0	6	
\mathbf{s}_3	0	-1	1	0	0	1	0	1	
s_4	0	0	1	0	0	0	1	2	
				< T					
Basic	${f z}$	x ₁	\mathbf{x}_2	s_1	s_2	s_3	s_4	Solution	
Basic	z 1	-5	-4	$\frac{\mathbf{s_1}}{0}$	$\begin{bmatrix} \mathbf{s_2} \\ 0 \end{bmatrix}$	s ₃ 0	s ₄ 0	Solution 0	
				√	_	, and the second	4		$Row(x_1) = Row(x_1) / 6$
Z	1	-5	-4	0	0	0	0	0	$Row(x_1) = Row(x_1) / 6$
z x ₁	1 0	-5 1	4/6	0 1/6	0	0 0	0	0 $24/6 = 4$	$Row(x_1) = Row(x_1) / 6$

- Determine the next basic feasible solution by dividing pivot row by pivot element
- Perform row operations to make all element in pivot column except pivot element to zero

New row = Current row – current row pivot column coefficient x New pivot row

	\mathbf{Z}	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	s_4	Solution
${f z}$	1	-5	-4	0	0	0	0	0
\mathbf{x}_1	0	1	4/6	1/6	0	0	0	4
$\mathbf{s_2}$	0	1	2	0	1	0	0	6
$\mathbf{s_3}$	0	-1	1	0	0	1	0	1
$\mathbf{s_4}$	0	0	1	0	0	0	1	2

Basic	Z	x ₁	\mathbf{x}_2	\mathbf{s}_1	s_2	s_3	\mathbf{s}_4	Solution
${f z}$	1	0	-2/3	5/6	0	0	O	20
\mathbf{x}_1	0	1	2/3	1/6	0	0	0	4
\mathbf{s}_2	0	0	4/3	-1/6	1	0	0	2
s_3	0	0	5/3	1/6	0	1	0	5
s_4	0	0	1	0	0	0	1	2

Row z=Row z
$$-(-5)$$
 x Row x_1

Row
$$\mathbf{s}_2 = [0 \ 1 \ 2 \ 0 \ 1 \ 0 \ 0 \ 6] - 1 \times [0 \ 1 \ 4/6 \ 1/6 \ 0 \ 0 \ 0 \ 4]$$

Row
$$\mathbf{s_3} = [0 -1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1] - (-1) \times [0 \ 1 \ 4/6 \ 1/6 \ 0 \ 0 \ 4]$$

Row
$$\mathbf{s_4} = [0\ 0\ 1\ 0\ 0\ 0\ 1\ 2] - 0 \times [0\ 1\ 4/6\ 1/6\ 0\ 0\ 0\ 4]$$

Basic	${f z}$	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	s_2	s_3	s_4	Solutio
Z	1	0	-2/3	5/6	0	0	0	20
\mathbf{x}_1	0	1	2/3	1/6	0	0	0	4
s_2	0	0	4/3	-1/6	1	0	0	2
s_3	0	0	5/3	1/6	0	1	0	5
s_4	0	0	1	0	0	0	1	2

- ➤ Optimality check:
 - Every coefficient of the non-basic variables in first row should be non-negative.
 - Solution not optimal

Coefficient of x_2 is negative

Perform next iteration

- > Optimality criteria: coefficient of the non-basic variables in first row should be non-negative
- Entering basic variable: variable with the 'most negative' coefficient in the first row
- Pivot column: column of the entering basic variable

Entering variable

Basic	${f z}$	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	s_4	Solution
\mathbf{z}	1	0	-2/3	5/6	0	0	0	20
\mathbf{x}_1	0	1	2/3	1/6	0	0	0	4
\mathbf{s}_2	0	0	4/3	-1/6	1	0	0	2
\mathbf{s}_3	0	0	5/3	1/6	0	1	0	5
s_4	0	0	1	0	0	0	1	2

- > Optimality criteria: coefficient of the non-basic variables in first row should be non-negative
- Entering basic variable: variable with the 'most negative' coefficient in the first row
- > Pivot column: column of the entering basic variable
- > Ratio: divide right side by the corresponding element of the pivot column

Entering variable

Basic	Z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	s_2	s_3	s_4	Solution	Ratio
Z	1	0	-2/3	5/6	0	0	0	20	
\mathbf{x}_1	0	1	2/3	1/6	0	0	0	4	6
\mathbf{s}_2	0	0	4/3	-1/6	1	0	0	2	3/2
$\mathbf{s_3}$	0	0	5/3	1/6	0	1	0	5	3
$\mathbf{s_4}$	0	0	1	0	0	0	1	2	2

- > Optimality criteria: coefficient of the non-basic variables in first row should be non-negative
- Entering basic variable: variable with the 'most negative' coefficient in the first row
- > Pivot column: column of the entering basic variable
- > Ratio: divide right side by the corresponding element of the pivot column
- ➤ Pivot row: row with the minimum positive value for the ratio

Entering variable			iable		2 \>					
Basic	z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	s ₄	Solution	Ratio	
Z	1	0	-2/3	5/6	0	0	0	20		
\mathbf{x}_1	0	1	2/3	1/6	0	0	0	4	6	
\mathbf{s}_2	0	0	4/3	-1/6	1	0	0	2	3/2	Minimum
\mathbf{s}_3	0	0	5/3	1/6	0	1	0	5	3	
s_4	0	0	1	0	0	0	1	2	2	

- > Optimality criteria: coefficient of the non-basic variables in first row should be non-negative
- Entering basic variable: variable with the 'most negative' coefficient in the first row
- > Pivot column: column of the entering basic variable
- > Ratio: divide right side by the corresponding element of the pivot column
- **Pivot row:** row with the minimum positive value for the ratio
- Leaving basic variable: basic variable pivot row
- > Pivot element: element at the intersection of the pivot column and pivot row

Entering variable

				O							
	Basic	Z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	\mathbf{s}_4	Solution	Ratio	
	Z	1	0	-2/3	5/6	0	0	0	20		
	\mathbf{x}_1	0	1	2/3	1/6	0	0	0	4	6	
ing variable	s_2	0	0	4/3	-1/6	1	0	0	2	3/2	Minimum
	s_3	0	0	5/3	1/6	0	1	0	5	3	
	s_4	0	0	1	0	0	0	1	2	2	

Leaving variable

0	Entering	variabl	le
---	----------	---------	----

Basic	z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	s_4	Solution	Ratio
\mathbf{z}	1	0	-2/3	5/6	0	0	0	20	1
\mathbf{x}_1	0	1	2/3	1/6	0	0	0	4	6
\mathbf{s}_2	0	0	4/3	-1/6	1	0	0	2	3/2
s_3	0	0	5/3	1/6	0	1	0	5	3
s_4	0	0	1	0	0	0	1	2	2

Basic	${f z}$	\mathbf{x}_1	\mathbf{x}_2	$\mathbf{s_1}$	\mathbf{s}_2	\mathbf{s}_3	\mathbf{s}_4	Solution
\mathbf{z}	1	0	-2/3	5/6	0	0	0	20
\mathbf{x}_1	0	1	2/3	1/6	0	0	0	4
\mathbf{x}_2	0	0	4/3	-1/6	1	0	0	2
$\mathbf{s_3}$	0	0	5/3	1/6	0	1	0	5
$\mathbf{s_4}$	0	0	1	0	0	0	1	2

Determine the next basic feasible solution by dividing pivot row by pivot element

New pivot row = Current pivot /pivot element

Basic	Z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	s_4	Solution
Z	1	0	-2/3	5/6	0	0	0	20
\mathbf{x}_1	0	1	2/3	1/6	0	0	0	4
\mathbf{x}_2	0	0	4/3	-1/6	1	0	0	2
s_3	0	0	5/3	1/6	0	1	0	5
s_4	0	0	1	0	0	0	1	2

Basic	Z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	\mathbf{s}_4	Solution
Z	1	0	-2/3	5/6	0	0	0	20
\mathbf{x}_1	0	1	2/3	1/6	0	0	0	4
\mathbf{x}_2	0	0	1	-1/8	3/4	0	0	3/2
s_3	0	0	5/3	1/6	0	1	0	5
s_4	0	0	1	0	0	0	1	2

 $Row(x_2) = Row(x_2) / (4/3)$

- Determine the next basic feasible solution by dividing pivot row by pivot element
- > Perform row operations to make all element in pivot column except pivot element to zero

New row = Current row – current row pivot column coefficient x New pivot row

	1 10 00	10 W	Cultelli	10 W C		w prvot	Column	COCILICICITY	t X 11CW pivot 10W
Basic	Z	\mathbf{x}_1	\mathbf{x}_2	s_1	\mathbf{s}_2	s_3	s_4	Solution	10/110
z	1	0	-2/3	5/6	0	0	0	20	Row z : Row z - (-
\mathbf{x}_1	0	1	2/3	1/6	0	0	0	4	Row \mathbf{x}_1 : Row $\mathbf{x}_1 - \mathbf{x}_2$
\mathbf{x}_2	0	0	1	-1/8	3/4	0	0	3/2	
\mathbf{s}_3	0	0	5/3	1/6	0	1	0	5	Row s ₃ : Row s ₃ – (5)
s_4	0	0	1	0	0	0	1	2	Row s_4 : Row $s_4 - 1 \times 1$
Basic	Z	\mathbf{x}_1	\mathbf{x}_2	s_1	\mathbf{s}_2	s_3	s_4	Solution	
Z	1	0	0	3/4	1/2	0	0	21	
\mathbf{x}_1	0	1	0	1/4	-1/2	0	0	3	
\mathbf{x}_2	0	0	1	-1/8	3/4	0	0	3/2	
S_2	0	0	0	3/8	-5/4	1	0	5/2	

Basic	Z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	s_4	Solution
Z	1	0	0	3/4	1/2	0	0	21
\mathbf{x}_1	0	1	0	1/4	-1/2	0	0	3
\mathbf{x}_2	0	0	1	-1/8	3/4	0	0	3/2
$\mathbf{s_3}$	0	0	0	3/8	-5/4	1	0	5/2
s_4	0	0	0	1/8	-3/4	0	1	1/2

➤ Optimality check:

- Every coefficient of the non-basic variables in first row should be non-negative.
- Solution is optimal

Optimal solution: $x_1 = 3$, $x_2 = 1.5$, and objective function value, z = 21

Post optimality analysis

Basic	Z	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	s_3	s_4	Solution
Z	1	0	0	3/4	1/2	0	0	21
\mathbf{x}_1	0	1	0	1/4	-1/2	0	0	3
\mathbf{x}_2	0	0	1	-1/8	3/4	0	0	3/2
\mathbf{s}_3	0	0	0	3/8	-5/4	1	0	5/2
s_4	0	0	0	1/8	-3/4	0	1	1/2

Max Profit

$$z = 5x_1 + 4x_2$$

s.t.
$$6x_1 + 4x_2 \le 24$$

 $x_1 + 2x_2 \le 6$
 $x_2 \le x_1 + 1$

$$x_2 \leq 2$$

$$x_1, x_2 \ge 0$$

Max Profit

$$z = 5x_1 + 4x_2$$

$$z = 5x_1 + 4x_2$$

$$z = 5x_1 + 4x_2$$

$$s.t. \quad 6x_1 + 4x_2 \le 24$$

$$x_1 + 2x_2 \le 6$$

$$x_2 \le x_1 + 1$$

$$x_2 \le 2$$

$$x_1, x_2 \ge 0$$

$$z = 5x_1 + 4x_2$$

$$s.t. \quad 6x_1 + 4x_2 \le 24$$

$$x_1 + 2x_2 \le 6$$

$$-x_1 + x_2 \le 1$$

$$x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Resource	Slack value	Remarks
Raw material M ₁	$s_1 = 0$	Complete utilization
Raw material M ₂	$\mathbf{s}_2 = 0$	Complete utilization
Market limit	$s_3 = 2.5$	Abundant
Demand limit	$s_4 = 0.5$	Abundant

A decrease of 2.5 units in market limit will not change the optima

A decrease of 0.5 units in demand will not change the optima

$$z - 5x_1 - 4x_2 = 0$$

$$6x_1 + 4x_2 + s_1 = 24$$

$$x_1 + 2x_2 + s_2 = 6$$

$$-x_1 + x_2 + s_3 = 1$$

$$x_2 + s_4 = 2$$

$$x_1, x_2, s_1, s_2, s_3, s_4 \ge 0$$

Other considerations

- > Special cases in simplex method
 - Degeneracy: A tie in the minimum ratio test which might lead to cycling.
 - Alternative optima: Objective function is parallel to a non-redundant binding constraint.
 - Unbounded solution: Solution space is unbounded for at least one variable.
 - No feasible solution: Inconsistent constraints.
- \triangleright Ill conditioned simplex: LPs with (=) and (\ge)
 - Use artificial variables.
 - Big M method: Use of Penalty.
 - Two phase method: Solve using two phases.
- Sensitivity analysis: Primal to dual conversion.
- Dual Simplex: Starts with better than optimal but infeasible solution and moves to feasibility.

Further Reading

>H. A. Taha, Operations Research: An Introduction (8th Edition): Prentice-Hall, Inc., 2006.

S. S. Rao, *ENGINEERING OPTIMIZATION Theory and Practice*, Third Enlarged Edition ed.: New Age International Publishers, 2010.

Thank You!!!