姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

封面日期: 2025 年 6 月 26 日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

前言页显示日期: 2025年6月26日

目录

第·	一章	一元函数积分学	1
	1.1	定积分的概念	1
	1.2	不定积分的计算	1
	1.3	定积分的计算	2
	1.4	反常积分的计算	2
	1.5	反常积分敛散性的判定	2
	1.6	变限积分函数	3
	1.7	定积分应用求面积	3
	1.8	定积分应用求体积	3
	1.9	定积分应用求弧长	4
	1.10	定积分应用求侧面积	4
	1.11	一定积分物理应用	4
	1.12	二证明含有积分的等式或不等式	4

第一章 一元函数积分学

1.1 定积分的概念

1. 例 1 (2007, 数一、数二、数三) 如图, 连续函数 y = f(x) 在区间 [-3,-2],[2,3] 上的图形分别是直径为 1 的上、下半圆周, 在区间 [-2,0],[0,2] 的图形分别是直径为 2 的下、上半圆周. 设 $F(x) = \int_0^x f(t)dt$, 则下列结论正确的是:

$$(A)F(3) = -\frac{3}{4}F(-2)$$

Solution.【详解】 □

2. 例 2 (2009, 数三) 使不等式 $\int_1^x \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是

(A)
$$(0,1)$$
 (B) $(1,\frac{\pi}{2})$ (C) $(\frac{\pi}{2},\pi)$ (D) $(\pi,+\infty)$

Solution. 【详解】 □

3. 例 3 (2003, 数二) 设 $I_1 = \int_0^{\frac{\pi}{4}} \frac{\tan x}{x} dx, I_2 = \int_0^{\frac{\pi}{4}} \frac{x}{\tan x} dx,$ 则

$$(A)I_1 > I_2 > 1 \quad (B)1 > I_1 > I_2$$

$$(C)I_2 > I_1 > 1$$
 $(D)1 > I_2 > I_1$

Solution.【详解】 □

1.2 不定积分的计算

4. 例 5 (2009, 数二、数三) 计算不定积分 $\int \frac{1}{1+\sqrt{\frac{1+x}{x}}} dx (x>0)$

5. 例 6 求 $\int \frac{1}{1+\sin x + \cos x} dx$

1.3 定积分的计算

6. 例 7 (2013, 数一) 计算 $\int_0^1 \frac{f(x)}{\sqrt{x}} dx$, 其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$

Solution.【详解】 □

7. 例 8 求下列积分:

$$(1) \int_0^{\frac{\pi}{2}} \frac{1}{1 + (\tan x)^{\sqrt{2}}} dx$$

Solution.【详解】 □

8. 例 9 求 $\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx$

Solution.【详解】 □

1.4 反常积分的计算

9. 例 10 (1998, 数二) 计算积分 (题目内容缺失)

Solution.【详解】 □

1.5 反常积分敛散性的判定

10. 例 11 (2016, 数一) 若反常积分 $\int_0^{+\infty} \frac{1}{x^a(1+x)^b} dx$ 收敛, 则

$$(A) \ a < 1 \ b > 1$$

(B)
$$a > 1$$
 $b > 1$

$$(C) \ a < 1 \ a + b > 1$$

(D)
$$a > 1$$
 $a + b > 1$

Solution.【详解】 □

11. 例 12 (2010, 数一、数二) 设 m,n 均为正整数, 则反常积分 $\int_0^1 \frac{\sqrt[n]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性

- (A) m
- (B) n
- (C) m, n
- (D) m, n

Solution.【详解】

1.6 变限积分函数

12. 例 13 (2013, 数二) 设函数
$$f(x) = \begin{cases} \sin x, & 0 \le x < \pi \\ & , F(x) = \int_0^x f(t) dt, 则 \end{cases}$$

$$(A) x = \pi \qquad F(x)$$

(B)
$$x = \pi$$
 $F(x)$

(C)
$$F(x)$$
 $x = \pi$

(D)
$$F(x)$$
 $x = \pi$

Solution.【详解】

- 13. 例 14 (2016, 数二) 已知函数 f(x) 在 $[0,3\pi]$ 上连续, 在 $(0,3\pi)$ 内是函数的一个原函数, 且 f(0) = 0.
 - (i) 求 f(x) 在区间 $[0, \frac{3\pi}{2}]$ 上的平均值;
 - (ii) 证明 f(x) 在区间 $[0,\frac{3\pi}{2}]$ 内存在唯一零点.

Solution.【详解】 □

1.7 定积分应用求面积

14. 例 15 (2019, 数一、数二、数三) 求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

Solution.【详解】 □

1.8 定积分应用求体积

- 15. 例 16 (2003, 数一) 过原点作曲线 $y = \ln x$ 的切线, 该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D.
 - (i) 求 D 的面积 A;

(ii) 求 D 绕直线 x = e 旋转一周所得旋转体的体积 V.

Solution. 【详解】 □

16. 例 17 (2014, 数二) 已知函数 f(x,y) 满足 $\frac{\partial f}{\partial y} = 2(y+1)$, 且 $f(y,y) = (y+1)^2 - (2-y) \ln y$, 求曲线 f(x,y) = 0 所围图形绕直线 y = -1 旋转所成旋转体的体积.

Solution. 【详解】 □

1.9 定积分应用求弧长

17. 例 18 求心形线 $r = a(1 + \cos \theta)(a > 0)$ 的全长.

Solution. 【详解】 □

1.10 定积分应用求侧面积

18. 例 19 (2016, 数二) 设 D 是由曲线 $y = \sqrt{1 - x^2} (0 \le x \le 1)$ 与 $x = \cos^3 t$ 围成的平面区域,求 D 绕 x 轴旋转一周所得旋转体的体积和表面积.

Solution.【详解】 □

1.11 一定积分物理应用

19. 例 20 (2020,数二) 设边长为 2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为 g,水密度为 ρ ,则该平板一侧所受的水压力为

Solution.【详解】 □

1.12 二证明含有积分的等式或不等式

- 20. 例 21 (2000, 数二) 设函数 $S(x) = \int_0^x |\cos t| dt$.
 - (i) 当 n 为正整数, 且 $n\pi \le x < (n+1)\pi$ 时, 证明 $2n \le S(x) < 2(n+1)$;
 - (ii) $\Re \lim_{x\to+\infty} \frac{S(x)}{x}$

Solution.【详解】

- 21. 例 22 (2014, 数二、数三) 设函数 f(x), g(x) 在区间 [a,b] 上连续, 且 f(x) 单调增加, $0 \le g(x) \le 1$. 证明:
 - (i) $0 \le \int_a^x g(t)dt \le x a, x \in [a, b];$
 - (ii) $\int_a^{a+\int_a^b g(t)dt} f(x)dx \le \int_a^b f(x)g(x)dx$.

Solution.【详解】 □