Objectifs

A quelle vitesse sont consommés les réactifs d'une réaction chimique? Si on attend deux fois plus longtemps, obtient-on deux fois plus de produit? Comment savoir si une réaction est effectivement terminée?

Relation entre l'absorbance et la concentration

- Mode opératoire : On dispose d'une burette d'eau et d'une burette contenant une solution de diiode à $C=3.0 \times 10^{-3} \,\mathrm{mol}\,\mathrm{L}^{-1}$. Dans des tubes à essai, on prépare des solutions diluées de diiode.
- Calculer les concentrations en diiode de chaque tube.
- Bien écouter les instructions sur l'utilisation du spectrophotomètre (cher et fragile).
- La longueur d'onde de travail vaut $\lambda = 480 \, nm$.

$V_{I_2}: V$ solution mère à prélever en mL	2	4	6	8	10
V_{eau} : Volume d'eau en mL	8	6	4	2	0
$I_2] \times 10^{-3} \ en \ mol/L$					
Absorbance A (sans unité)					

Table 1 – Mesure de l'absorbance pour différentes concentrations de I_2

- 1. Compléter vos résultats à l'aide du tableau.
- 2. Représenter graphiquement A en fonction de $[I_2]$. Code l'activité sur Capytale : **b5c9-969174**
- 3. Parmi les relations suivantes, laquelle vous semble juste? Justifier votre réponse et donner une valeur à k en précisant son unité.

$$A = \frac{[I_2]}{k}$$
 ; $A = k \times [I_2]$; $A = k \times \frac{1}{[I_2]}$

_

Suivi temporel d'une transformation chimique

Les ions iodures : I^- vont réagir avec des ions peroxodisulfate $S_2O_8^{2-}$ pour donner du diode $I_2(aq)$ et des ions sulfate SO_4^{2-} . Les couples sont : $S_2O_8^{2-}(aq)$ $/SO_4^{2-}(aq)$ et $I_2(aq)/I^-(aq)$.

- 1. Ecrire les demi-équations électroniques pour chaque couple. En déduire l'équation de la transformation étudiée. Cette réaction est lente et totale.
- 2. Préparation du mélange initial. Préparer soigneusement 10,0 mL de solution d'iodure de potassium de concentration en ions iodure $0,50 \text{ mol L}^{-1}$ (bécher 1) puis 10,0 mL de solution de

- peroxodisulfate de sodium de concentration en ions peroxodisulfate $5,0.10^{-3}$ mol. L^{-l} . (bécher 2).
- 3. Déclencher le chronomètre lorsque vous mélangerez les deux solutions, homogénéiser rapidement.
- 4. Introduire un peu de mélange dans la cuve du spectrophotomètre. (Aucun liquide ne doit tomber dans le spectrophotomètre) Mesurer l'absorbance A, compléter le tableau ci-dessous. La ligne $[I_2]$ sera obtenue par calcul lors des questions.

t en min	0	1	2	3	4	5	8	11	15	20	25	30	40
A													
I_2 en mol/L													

Table 2 – Mesure de A au cours du temps

Questions:

- 1. Utiliser la relation entre A et I_2 afin de compléter la troisième ligne du tableau 2.
- 2. Représenter graphiquement $[I_2]$ en fonction du temps.
- 3. La vitesse de production de diiode est-elle plus importante en début ou en fin de réaction? Justifier en utilisant le graphique.
- 4. Montrer qu'au bout d'un temps long la réaction est terminée.
- 5. Etablir le tableau descriptif de l'évolution du système ou tableau d'avancement. Compléter l'état initial et l'état final correspondant à $x = x_{max}$.
- 6. Quelle est la quantité maximale de diiode produit par la réaction?
- 7. Quelle est la concentration maximale en diiode? A quelle absorbance cela correspond-il?
- 8. La valeur expérimentale d'absorbance à t=40 min, correspond-elle à la valeur calculée à la question précédente? Commenter.
- 9. Estimer le temps de demi réaction $t_{1/2}.$ Rédiger votre démarche.
- 10. Représenter graphiquement ln(A) en fonction de t. Vérifier que les points expérimentaux sont situés autour d'une droite moyenne.
- 11. La cinétique de la réaction étudiée suit-elle une loi d'ordre 1? Justifier à l'aide du graphique précédent.