

Χ

Relation between hair and eye color

leap seconds

leap seconds

barplot(..., space= 1.5, axisnames = FALSE)

Death Rates in Virginia

Death Rates in Virginia

Faked upper 2*sigma error bars

Death Rates in Virginia

1:7

abs(stats::rnorm(7))

Comparing boxplot()s and non-robust mean +/- SD

boxplot(as.data.frame(mat), main = ...)

Guinea Pigs' Tooth Growth

boxplot.matrix(...., main = ...)

bxp(*, frame= FALSE, outl= FALSE)

boxplot(z, whisklty = 3)

boxplot(*, col.axis=..,main=..)

plot(*, col.axis=..,main=..)

Histogram of x

A Topographic Map of Maunga Whau

help("contour")

<u>at</u>

165 170 175 180 185

0

165 170 175 180 185

<u>a</u>

-35

8

Given: wool help("coplot") I ° Given: tension breaks Σ 0 0 0 00 ွ 0 0

Index

The Inverse Logit : qlogis()

t

t

Х

Х

Death Rates in Virginia - 1940

Death Rates in Virginia – 1940

help("filled.contour")

Sex: Male

Sex: Female

with(iris, plot(...., panel.first = grid(), ... panel.first = grid(3, lty=1,lwd=2),

Histogram of .leap.seconds

Histogram of .leap.seconds

Histogram of random.dates

WRONG histogram

Math can be beautiful ...

Maunga Whau Volcano

1 help("layout")

Petal and Sepal Dimensions in Iris Blossoms

legend(..., Ity = c(2, -1, 1), pch = c(-1,3,4), merge = TRUE)

Mean and Median of a Skewed Distribution

Χ

points with bg & legend(*, pt.bg)

text.iont = 1			
	Α		D
	В		Ε
	C		F

text.font = 3

text.font = 4

Stopping Distance versus Speed

matplot(...., pch = 21:23, bg = 2:5)

matplot(,type = "plobcsSh")

Χ

Petal and Sepal Dimensions in Iris Blossoms

S=setosa, C=versicolor, V=virginica

Survival on the Titanic

Class

Titanic

Sex

HairEyeColor

HairEyeColor

mtcars

mtcars

'fg': axes, ticks and box in gray

pie(*, clockwise=TRUE)

pie(*, labels="", col=rainbow(n), border=NA,...

plot(x, type = "s")

treatment

Log-Log plot

Log-Log plot with custom axes

Factors

Factors

Factors

Factors

Factors Factors

help("plot.factor")

Wind

plot(table(rpois(200, lambda = 5)))

plot(Titanic, main= *)

Class

Histogram of women\$weight

Histogram of 15 women's weights

plot(..., type="o", pch=21, bg=par("bg"))

plot symbols: points (... pch = *, cex = 3)

plot symbols: points (... pch = *, cex = 2.5)

Distance Between Brownian Motions

2 x 11 rectangles; 'rect(100+i,300+i, 150+i,380+i)'

density.default(x = eruptions, bw = 0.15)

Χ

help("smoothScatter")

Applications at UCB

Admissions at UCB

Motor Trend Cars : stars(*, full = F)

Motor Trend Cars : full stars()

Maserati Bora Volvo 142E

Motor Trend Cars

disp

Motor Trend Cars

Motor Trend Cars

Judge not ...

RTEN

ORALWRITPHYS

ZARRILLI,K.J.

Judge not ...

US Judges rated

US Judges rated

US Judges 1-10

A Joke -- do *not* use symbols on 2D data!

stripchart(OrchardSprays)

stripchart(OrchardSprays)

Sunflower Plot of Rounded N(0,1)

2nd Sunflower Plot of Rounded N(0,1)

Sunflower plot (marked point process)

Trees' Girth

Stopping Distance versus Speed

Stopping Distance versus Speed

Main Title

Motor Trend Cars

Open X-splines

Closed X-splines

