Data Science Quest 1 (Approach & Findings)

Chia Yu Ying

01 02 03

Data Cleaning

Accessing the quality of the Iris dataset Data wrangling

TABLE OF CONTENTS

Data Visualization (Before Analysis)

Multi-Dimensional plot, 2D Plot with Principal Component Analysis (PCA)

Approach

Use of similarity measure (Euclidean distance)

Visualization of results

Multi-dimensional plot, 2D plots with Principal Component Analysis (PCA)

1 Improvements

Data Cleaning

Data Cleaning

- Check for empty data entries
- Exclude datapoints that have=1 missing entry
- Check for duplicated rows
- Exclude data points that are duplicated

- Check for the data type*
- Exclude data points that have=1 invalid entry

^{*} Data Type example: We should expect numeric entries for sepal length

Data Visualization (Before Analysis)

Data Visualization (Before Analysis)

Multi-Dimensional Plot

Visualizes all 4 feature variables (Grouped by Species Type) Sepal Length; Sepal Width Petal Length; Petal Width

Insight

It is generally easier identify a Setosa flower as compared to the other 2 species

Data Visualization (Before Analysis)

PCA Plot

Visualizes 2 Principal Components (Grouped by Species Type) Principal Component 1; Principal Component 2

Insight

It is generally easier identify a Setosa flower as compared to the other 2 species

Approach

Similarity Measure (Euclidean Distance)

Overview

Similarity measure function

Iris Data Set

(Cleaned)

Data measured from new Iris plant

Input

Calculates **Euclidean Distance**

Sort in **Ascending** order

Output

(First 10 flowers with shortest Euclidean Distance)

(Scenario) Imagine the garden owner discovered a **new iris plant** with the following attributes:

Multi-Dimensional Plot

Visualizes all 4 feature variables Sepal Length; Sepal Width Petal Length; Petal Width

Plot description:

Grey: Input data specified by garden owner

Blue: Top 10 flowers similar to input Orange: Not similar to input

Multi-Dimensional Plot

Visualizes all 4 feature variables Sepal Length; Sepal Width Petal Length; Petal Width

Plot description:

Grey: Input data specified by garden owner

Orange: Top 10 flowers similar to input

(Excludes the rest of the data points)

Multi-Dimensional Plot

Visualizes all 4 feature variables (Grouped by Species Type) Sepal Length; Sepal Width Petal Length; Petal Width

Plot description:

Grey: Input data by garden owner
Orange: Setosa Type
Blue: Versicolor Type
Green: Virginica Type
Black inner dot: Top 10 flowers similar
to input

PCA Plot

Visualizes 2 Principal Components (Grouped by Species Type)
Principal Component 1; Principal

Plot description:

Component 2

Grey: Input data by garden owner
Orange: Setosa Type
Blue: Versicolor Type
Green: Virginica Type
Black inner dot: Top 10 flowers similar
to input

Improvements

Improvements

Given more time . . .

Some areas for improvements:

- Explore other similarity measures such as Cosine similarity, Manhattan distance etc.
- Perform some sort of performance measures on different similarity measures and see which one is the most suitable for Iris Dataset
- Make the plots look more attractive