Questions

[15 points; 5 points for each for result] Does the timing of the 555 clock output match
the predictions of the equations for frequency, t_high, and t_low that are given below
the schematic? Show a calculation of the expected value for each of the three
parameters.

```
\begin{array}{l} f = 1/(\ ln(2)^*C2^*(R1+2^*R2)\ )\\ f = 1/(ln(2)^*\ 0.001F\ ^*\ (470\Omega+2^*\ 470\Omega)) = \textbf{1.023}\\ t\_high = ln(2)^*(R1+R2)^*C2\\ t\_high = ln(2)^*\ (470\Omega^*\ 470\Omega)^*\ 0.001F = \textbf{0.6516}\\ t\_low = ln(2)^*R2^*C2\\ t\_low = ln(2)^*\ 470\Omega^*\ 0.001\ F = \textbf{0.3258} \end{array}
```

2. [10 points] The 74HC163 is a 4-bit counter, but this lab needs only a 3-bit counter. How can you obtain a 3-bit counter from the output of a 4-bit counter? Which three of the output signals would you select and why?

To get a 3-bit counter from a 4-bit counter, you take the 3 least significant bits as this set repeats itself for every 4-bit sequence, always giving a 3-bit counter, excluding the most significant bit of the 4-bit counter.

- 3. Derive the Boolean expressions for each color of the stoplight, and simplify in terms of 2-input NAND and NOR gates. Show your work to earn credit. Your Boolean expression must be in terms of QA, QB, QC, and QD, for the counter outputs, and/or D0 D7 for the eight decoder/demux outputs. Draw the final schematic diagram using NAND and NOR gates for each color.
 - a. [10 points] Green light Boolean expression and schematic.

Qc	Qb	Qa	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Qa\QcQb	00	01	11	10
0	1	1	0	0
1	1	0	0	0

K-Map Expression: Qc'Qb' + Qc'Qa'

NAND Realization: ((Qc'Qb')' * (Qc'Qa')')'

b. [10 points] Yellow light Boolean expression and schematic.

Qc	Qb	Qa	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Qa\QcQb	00	01	11	10
0	0	0	0	0
1	0	1	0	0

K-Map Expression: Qc'QbQa Demux Realization: D3

This circuit shows the logic as NANDs, but the LED is lit using the D3 output pin of the Demux.

c. [10 points] Red light Boolean expression and schematic drawing of gates.

[. 0	ountof rearinging			
Qc	þ	Qa	Output	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	
	0	Qc Qb 0 0 0 0 0 1 0 1	Qc Qb Qa 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	

Qa\QcQb	00	01	11	10
0	0	0	1	1
1	0	0	1	1

K-Map Expression: Qc Counter Realization: Qc

The circuit is the literal output of the Qc output pin of the counter.

- 4. Demonstrate your circuit to your TA. Full credit when the order and timing of lights is correct.
 - a. [15 points] Green light turns on for 3 seconds, then
 - b. [15 points] Yellow light turns on for 1 second, then
 - c. [15 points] Red light turns on for 4 seconds.