MATH 611 (DUE 10/23)

HIDENORI SHINOHARA

1. SIMPLICIAL AND SINGULAR HOMOLOGY

Exercise. (Problem 2) Show that the Δ -complex obtained from Δ^3 by performing the edge identifications $[v_0, v_1] \sim [v_1, v_3]$ and $[v_0, v_2] \sim [v_2, v_3]$ deformation retracts onto a Klein bottle. Find other pairs of identifications of edges that produce Δ -complexes deformation retracting onto a torus, a 2-sphere, and $\mathbb{R}\mathbf{P}^2$.

Proof. The deformation retraction of Δ^3 onto a Klein bottle is described in 1. We will start by "pushing" Δ^3 from edge (v_1, v_2) . This will leave the surface that consists of the triangles $[v_0, v_1, v_3]$ and $[v_0, v_2, v_3]$. (In other words, a diamond shape consisting of the vertices $[v_0, v_1, v_3, v_2]$.) Step 2 in Figure 1 is what Δ^3 should look like after the deformation retract. Step 3 through 6 show why this is a Klein bottle.

Figure 2 shows the identification of edges for a torus, 2-sphere, and $\mathbb{R}\mathbf{P}^2$.

FIGURE 1. Problem 2(Klein Bottle)

FIGURE 2. Problem 2(Torus, 2-Sphere, $\mathbb{R}\mathbf{P}^2$)

Exercise. (Problem 4) Compute the simplicial homology groups of the triangular parachute obtained from Δ^2 by identifying its three vertices to a single point.

Proof. Let v_0 denote the only vertex, e_1, e_2, e_3 denote the three edges of the parachute, and σ denote the face of the parachute as in Figure 3. $C_k = 0$ for $k \geq 3$ because Δ^2 with the vertices identified does not contain any k-dimensional simplicies for $k \geq 3$. $C_2 = \langle \sigma \rangle$, $C_1 = \langle e_1, e_2, e_3 \rangle$, $C_0 = \langle v_0 \rangle$. For each n, ∂_n is defined such that $\partial_n(\sigma_\alpha) = \sum_i (-1)^i \sigma_\alpha | [v_0, \dots, \hat{v_i}, \dots, v_n]$.

- $\bullet \ \partial_2(\sigma) = e_3 e_2 + e_1.$
- $\partial_1(e_1) = v v = 0$. Similarly, $\partial_1(e_2) = \partial_1(e_3) = 0$.
- ∂_0 and ∂_3 are both the zero map.

FIGURE 3. Problem 4

FIGURE 4. Problem 5

Thus

$$H_{n} = \begin{cases} \{0\} & (n \geq 3) \\ \ker(\partial_{2})/\operatorname{Im}(\partial_{3}) = 0/0 \cong 0 & (n = 2) \\ \ker(\partial_{1})/\operatorname{Im}(\partial_{2}) = \langle e_{1}, e_{2}, e_{3} \rangle / \langle e_{3} - e_{2} + e_{1} \rangle \cong \langle e_{1}, e_{2}, -e_{2} + e_{1} \rangle \cong \mathbb{Z}^{2} & (n = 1) \\ \ker(\partial_{0})/\operatorname{Im}(\partial_{1}) = \langle v \rangle / 0 \cong \mathbb{Z} & (n = 0). \end{cases}$$

Exercise. (Problem 5) Compute the simplicial homology groups of the Klein bottle using the Δ -complex structure described at the beginning of this section.

Proof. We will use the notations in Figure 4.

$$C_n = \begin{cases} 0 & (n \ge 3) \\ \langle U, L \rangle & (n = 2) \\ \langle a, b, c \rangle & (n = 1) \\ \langle v \rangle & (n = 0). \end{cases}$$

 $\partial_n = 0$ for $n \ge 3$ and n = 0.

$$\partial_2(U) = \sum_{i=0}^2 (-1)^i \sigma | [0, 1, 2]$$

$$= \sigma | [1, 2] - \sigma | [0, 2] + \sigma | [0, 1]$$

$$= b - c + a.$$

$$\partial_2(L) = \sum_{i=0}^2 (-1)^i \sigma | [0, 1, 2]$$

$$= \sigma | [1, 2] - \sigma | [0, 2] + \sigma | [0, 1]$$

$$= a - b + c.$$

 $\partial_1(a) = 0$ since $\partial_1(a) = \sigma[1] - \sigma[0] = v - v = 0$. Similarly, $\partial_1(b) = \partial_1(c) = 0$. Thus $H_n = \{0\} \text{ if } (n \ge 3). \ H_2 = \ker(\partial_2)/\operatorname{Im}(\partial_3) = 0/0 \cong 0.$

$$H_{1} = \ker(\partial_{1})/\operatorname{Im}(\partial_{2})$$

$$= \langle a, b, c \rangle / \langle b - c + a, a - b + c \rangle$$

$$\cong \langle a, b, a + b \mid a - b + (a + b) \rangle$$

$$\cong \langle a, b \mid 2a \rangle$$

$$\cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}.$$

$$H_0 = \ker(\partial_0) / \operatorname{Im}(\partial_1) = \langle v \rangle / 0 \cong \mathbb{Z}.$$

Exercise. (Problem 7) Find a way of identifying pairs of faces of Δ^3 to produce a Δ -complex structure on S^3 having a single 3-simplex, and compute the simplicial homology groups of this Δ -complex.

Exercise. (Problem 8) Construct a 3 dimensional Δ -complex X from n tetrahedra T_1, \dots, T_n by the following two steps. First arrange the tetrahedra in a cyclic pattern as in the figure, so that each T_i shares a common vertical face with its two neighbors T_{i-1} and T_{i+1} , subscripts being taken mod n. Then identify the bottom face of T_i with the top face of T_{i+1} for each i. Show the simplicial homology groups of X in dimensions 0, 1, 2, 3 are $\mathbb{Z}, \mathbb{Z}_n, 0, \mathbb{Z}$, respectively.

Proof. Let T_0, \dots, T_{n-1} denote the n tetrahedra. Let $v_0, v_1, e_0, \dots, e_{n+1}, f_0, \dots, f_{2n-1}$ denote the vertices and edges as in Figure 5. (It has 4 tetrahedra, but they all represent $T_{i,i}$)

Then we have

- \bullet $C_3 = \{T_0, \cdots, T_{n-1}\}.$
- $C_2 = \{f_0, \dots, f_{2n-1}\}.$ $C_1 = \{e_0, \dots, e_{n+1}\}.$

FIGURE 5. Problem 8

•
$$C_0 = \{v_0, v_1\}.$$

Now we will examine ∂ .

$$\begin{split} \partial_3(T_i) &= [i+1,n,n+1] - [i,n,n+1] + [i,i+1,n+1] - [i,i+1,n] \\ &= f_{i+1} - f_i + f_{n+i-1} - f_{n+i}. \\ \partial_2(f_i) &= [n,n+1] - [i,n+1] + [i,n] \\ &= e_{n+1} - e_{i-1} + e_i. \\ \partial_2(f_{n+i}) &= [i+1,n] - [i,n] + [i,i+1] \\ &= e_{i+1} - e_{i-1} + e_n. \\ \partial_1(e_i) &= \begin{cases} v_0 - v_1 & (0 \le i \le n-1) \\ 0 & (i=n,n+1). \end{cases} \end{split}$$

Therefore,

$$H_{3} = \langle T_{0} + \dots + T_{n-1} \rangle / 0 = \mathbb{Z}.$$

$$H_{2} = ? / \langle f_{i+1} - f_{i} + f_{n+i-1} - f_{n+i} \rangle = 0$$

$$H_{1} = \langle e_{n}, e_{n+1}, e_{i} - e_{j} \rangle / \langle e_{n+1} + e_{i} - e_{i-1}, e_{n} + e_{i+1} - e_{i} \rangle ? \mathbb{Z}^{n}$$

$$H_{0} = \langle v_{0}, v_{1} \rangle / \langle v_{0} - v_{1} \rangle = \mathbb{Z}.$$

6