第八章放大电路中的负反馈

基本放大电路

基本 放大倍数不能灵活设置 放大倍数不能灵活设置 输入电阻 r_i 不够大 输出电阻 r_o 不够小 通频带 $f_{\rm BW}$ 不够宽

集成运算放大电路 ___ 加减乘除运算、积分微分运算、 +负反馈电路 以及各种数字电路。

- 8.1 反馈的基本概念与分类
 - 8.1.1 反馈的基本概念
 - 8.1.2 反馈的判断
- 8.2 负反馈对放大电路性能的影响

8.1.1 反馈的基本概念

一、什么是反馈

1000倍

问题:希望实际放大器放大倍数为10倍,怎么办?

反馈——将输出量(电压或电流)的一部分或全部,通过一定的反馈网络反送到输入端,从而影响净输入量的变化,这种作用称为反馈。

反馈的四个环节:

基本放大网络A—— 放大电路放大倍数

反馈网络F—— 反馈网络放大倍数 采样网络—— 将输出信号取出 求和网络—— 输入端信号的叠加

8.1 反馈的基本概念与分类

- 8.1.1 反馈的基本概念
- 8.1.2 反馈的判断
- 8.2 负反馈对放大电路性能的影响

8.1.2 反馈的判断

一、反馈类型的判断 一 步骤1:找到反馈元件

反馈: 采集输出信号的一部分返送到输入端去影响输入信号

反馈元件必须既和输出回路有关,又和输入回路有关。

反馈元件的接法: ①一端接输入回路,一端接输出回路

② 输入回路和输出回路所共有的元件

步骤2: 判断反馈元件与输出信号的关系

反馈: 采集输出信号的一部分 返送 到输入端去 影响输入信号首先要判断反馈元件采集的是输出端的 电压信号 还是 电流信号? 方法: 看 R_f u_o 和 R_f 接在同一极 采集电压 (电位) 电压反馈和 u_o 的联接 u_o 和 R_f 接在不同 $\to i_c \approx i_E$ 采集电流 \to 电流反馈极

例:试判断下列电路中引入的反馈是电压反馈还是电流反馈。

步骤3:判断反馈元件与输入信号的关系——

决定了反馈会 造成输入信号 的 分压或分流

方法: 看 $R_f \rightarrow u_i$ 和 R_f 接在同一极 信号分流 \rightarrow 并联反馈和 u_i 的联接 $\rightarrow u_i$ 和 R_f 接在不同 \rightarrow 信号分压 \rightarrow 串联反馈

步骤4: 判断是正反馈还是负反馈(净输入是增大还是减

步骤4:判断是正反馈还是负反馈(净输入是增大还是减

步骤5:判断反馈对直流成分还是交流成分起作用

直流反馈:只对直流成分起作用; 利用电容隔直通交

交流反馈:只对交流成分起作用; 的效果来进行区分

交直流负反馈: 既对直流也对交流起作用; ──可简称负反馈

缺一不可

例1: 请判断该电路反馈类型 思考1: 反馈元件是什么?

思考2: 若 R_{E1} 不存在?

$$u_{be} = u_i$$
,不受 u_o 影响 $u_{be} = u_i - u_f$

∴反馈元件: R_f+R_{E1}

$$u_f \neq u_{Rf}$$
 $u_f = u_{RE1}$

- 1、根据输出量的采集方式,判断是电压反馈或电流反馈
- $: u_o$ 和 R_f 接在同一极 :可采集电压(电位),属于电压反馈
- 2、根据输入量是被分压或被分流,判断是串联反馈或并联反馈
 - $: u_i$ 和 R_{E1} 接在不同极 : 输入量是被分压,属于串联反馈
- 3、根据净输入量是变大还是变小,判断是正反馈或负反馈

反馈: 采集输出信号的一部分返送到输入回路去影响输入信号

瞬时极性法

首先假设u;的极性为 🕀

注意: $u_f \oplus u_o$ 影响更大,极性应与 u_o 一致

$$u_{be} = u_i - u_f$$
 : $u_f > 0$: u_{be} 減小

- : 返送的仅有交流电压 o
- : 电压串联交流负反馈

- 2、根据输入量是被分压或被分流,判断是串联反馈或并联反馈
 - $: u_i$ 和 R_{E1} 接在不同极 : 输入量是被分压,属于串联反馈
- 3、根据净输入量是变大还是变小,判断是正反馈或负反馈
- 4、根据反馈对何种信号起作用,判断是直流反馈或交流反馈

- 1、根据输出量的采集方式,判断是电压反馈或电流反馈
- $: u_o$ 和 R_f 接在不同极 : 只能利用 $i_C \approx i_E$ 采集电流,属于电流反馈
- 2、根据输入量是被分压或被分流,判断是串联反馈或并联反馈
 - $:u_i$ 和 R_{E1} 接在不同极 :输入量是被分压,属于串联反馈
- 3、根据净输入量是变大还是变小,判断是正反馈或负反馈
- 4、根据反馈对何种信号起作用,判断是直流反馈或交流反馈

- 1、根据输出量的采集方式,判断是电压反馈或电流反馈
- $: u_o$ 和 R_f 接在不同极 : 只能利用 $i_C \approx i_E$ 采集电流,属于电流反馈
- 2、根据输入量是被分压或被分流,判断是串联反馈或并联反馈 ∵*u_i和R_i*接在同一极 ∴输入量是被分流,属于并联反馈
- 3、根据净输入量是变大还是变小,判断是正反馈或负反馈
- 4、根据<mark>反馈</mark>对何种信号起作用,判断是<u>直流</u>反馈或<mark>交流</mark>反馈

- 1、根据输出量的采集方式,判断是电压反馈或电流反馈 ∵u_o和R_i接在同一极 ∴可采集电压,属于电压反馈
- 2、根据输入量是被分压或被分流,判断是串联反馈或并联反馈∵u_i和R_i接在同一极 ∴输入量是被分流,属于并联反馈
- 3、根据净输入量是变大还是变小,判断是正反馈或负反馈
- 4、根据反馈对何种信号起作用,判断是直流反馈或交流反馈

二、反馈类型的判断

电压串联; 电流串联 电压并联; ▲电流并联

结论1:对于同一张电路图,反馈的四种组态,只有两种会实现负反馈,另外两种实现的必然是正反馈。

结论2: 当反馈的一端固定时,另一端的两种接法中,必然一种 实现的是负反馈,一种实现的是正反馈。

结论3:不同电路图,实现负反馈的组态是不同的。

步骤1:找到反馈元件,明确反馈路径

步骤2:判断反馈元件采集到输出端的什么信号?→电压or电流

步骤3:判断反馈造成输入信号的分压还是分流?→串联or并联

步骤4: 判断反馈造成了净输入的增大还是减小?→正or负反馈

步骤5:判断反馈对直流成分或交流成分起作用?→直流or交流

8-1 (b) (c) 判断反馈类型

- 8-1 (b): ① 找反馈元件 → 找总输出和总输入之间的关系 反馈: 采集输出信号的一部分返送到输入回路去影响输入信号 ② 做四项判断; 先判断输出再判断输入。
- : 反馈元件 R_f 和 u_o 接在同一级 : 采集输出电压,属于电压反馈
- : 反馈元件 R_{a1} 和 u_{i} 接在不同级 : 造成信号的分压,是串联反馈

 $u_{be} = u_i - u_f$ $u_f < 0 \longrightarrow u_{be}$ 增大 : 是正反馈

- : 只有交流信号能通过
- : 电压串联交流正反馈

- 8-1 (c): ① 找反馈元件 → 找总输出和总输入之间的关系
- ② 做四项判断; 先判断输出再判断输入。
- : 反馈元件 R_f 和 u_o 接在同一级 : 采集输出电压,属于电压反馈
- : 反馈元件 R_f 和 u_i 接在同一级 : 造成信号的分流,是并联反馈

- 8.1 反馈的基本概念与分类
 - 8.1.1 反馈的基本概念
 - 8.1.2 反馈的判断
- 8.2 负反馈对放大电路性能的影响

三反馈的关系表达式

负反馈电路的 基本方程:

$$A_{F} = \frac{\dot{X}_{o}}{\dot{X}_{i}} = \frac{\dot{X}_{o}}{\dot{X}_{i}} = \frac{\dot{X}_{o}}{\dot{X}_{o}} + \frac{\dot{X}_{o}}{\dot{X}_{o}} = \frac{\dot{X}_{o}}{\dot{X}_{o}} + \frac{\dot{X}_{o}}{\dot{X}_{o}$$

$$(1) A_F = \frac{A}{1 + AF}$$

∵ Af、A可正可负 P227

它决定了 $|A_f|$ 与|A|的大小关系

$$1$$
、 $|1+AF|>1$ $\longrightarrow |A_f|<|A|$ \longrightarrow 负反馈

可利用反馈支路快速估算Af

$$2, |1+AF| >> 1 \longrightarrow |AF| >> 1 \longrightarrow A_f \approx \frac{1}{F}$$
 一 深度负反馈 —

$$3$$
、 $|1+AF|<1$ — $|A_f|>|A|$ — 正反馈

$$4 \cdot |1 + AF| = 0$$
 $\longrightarrow |A_f| = \infty$ 一)自激振荡 一)放大电路不可控

反馈放大器无输入信号 x_i 时,仍有输出信号 x_o

说明:第3和第4种情况不做要求,仅讨论第1和第2种情况。

A_{Γ} A、F均是广义增益

∵ A_f A可正可负 P227

$$|A_f| = \frac{|A|}{|1 + AF|}$$

|1+AF| 称为反馈深度

它决定了 $|A_f|$ 与|A|的大小关系

$$1$$
、 $|1+AF|>1$ $\longrightarrow |A_f|<|A|$ \longrightarrow 负反馈

2,
$$|1 + AF| >> 1 \longrightarrow |AF| >> 1 \longrightarrow A_f \approx \frac{1}{F}$$

$$x_d \approx 0 \quad \longleftarrow \quad x_i \approx x_f \quad \longleftarrow$$

可利用反馈支 路快速估算 A_f

→深度负反馈-

A_f只与反馈支路有关 而与基本放大器无关

闭环放大 $A_f = \frac{x_o}{x_i}$ 反馈 $F = \frac{x_f}{x_f}$

只需要在反馈路径中 找 x_t 和 x_o 的关系即可 例题:要求在深度负反馈下估算闭环电压放大倍数Auf

例题:要求在深度负反馈下估算闭环电压放大倍数Auf

电流负反馈→电流关系

写出的<u>公式</u>非常接近 A_{uf} 与 β 无关,很稳定

四、深度负反馈下的估算 $x_d \approx 0$ $x_i \approx x_f$ 电压并联负反馈

串联深度负反馈 $\longrightarrow u_{be} \approx 0$, $u_i \approx u_f$ 并联深度负反馈(难) $\longrightarrow i_b \approx 0$, $i \approx i_f$

当 i_b ≈0时,可近似认为 u_i ≈0 虚地

估算电源电压放大倍数

$$A_{usf} = \frac{u_o}{u_s} \longrightarrow$$
 写出 u_o 与 i_f 的表达式 u_s

$$\frac{u_s - 0}{R_s} = \frac{0 - u_o}{R_f} \longrightarrow A_{usf} = \frac{u_o}{u_s} = -\frac{R_f}{R_s}$$

$$: i_b \approx 0 \quad : u_i \approx 0 \longrightarrow \text{计算} A_{usf} = \frac{u_o}{u}$$

$$u_s = iR_s$$
 $u_o = -i_{c2}R_{c2} \approx -i_{e2}R_{c2}$

分流
$$i_f = -\frac{R_{e2}}{R_f + R_{e2}} \times i_{e2}$$
 写出 u_o 与 i_f 的表达式

并联深度负反馈的估算不做要求

第三章 负反馈放大电路

四、深度负反馈下的估算

净输入信号=0 → 输入信号≈反馈信号

问题:输入形式是电压还是电流?——看输入和 R_f 的关系

1、串联深度负反馈 → u_{be} =0 $u_i \approx u_f$

重点掌握串联深度负反馈的估算

$$u_{be} = u_i - u_f$$
 电压负反馈 $A_{uf} = \frac{u_o}{u_i} \approx \frac{u_o}{u_f}$ 电流负反馈

「写出 u_o 与 i_e 有关的表达式写出 u_f 与 i_e 有关的表达式 最后利用 i_c ≈ i_e 得到答案

~分压公式

2、并联深度负反馈 $\longrightarrow i_b=0$ $i \approx i_f \longrightarrow : i_b \approx 0 : u_i=0$

$$A_{usf} = \frac{u_o}{u_s}$$
 与 当 u_o 与 i_f 的表达式 u_s 与 i 的表达式

并联深度负反馈的估算不做要求

作业: 8-3 (a) (b) 在深度负反馈条件下估算电压放大倍数 A_{uf}

电压串联交流负反馈

串联深度负反馈 $\longrightarrow u_{be} \approx 0$,

 $\frac{u_o}{u_i} \approx \frac{u_o}{u_f}$ 只需要在反馈路径中 u_i 找 和 的 \pm 玄 m 可 找 u_t 和 u_o 的关系即可

估算 A_{uf} 要找总输出 u_o 和 ui之间的全局交流反馈

> R_{f1} 只是局部反馈 R_{12} 才是全局反馈

- 8.1 反馈的基本概念与分类
 - 8.1.1 反馈的基本概念
 - 8.1.2 反馈的判断
- 8.2 负反馈对放大电路性能的影响