IT3105 Project III: Recognizing Textual Entailment

Erwin Marsi IT-VEST 313 emarsi@idi.ntnu.no

Logic and Language Technology Group, Intelligent Systems, IDI, NTNU

Plan for today's lecture

- 1. Introduction
- 2. Syntactic analysis
- 3. Tree edit distance algorithm
- 4. Break (15 minutes)
- Tree edit distance algorithm (continued)
- 6. Normalization & Edit costs
- 7. Epilog: how to continue from here

Textual entailment

- ▶ **Textual entailment** is defined as a directional relation between two text fragments, termed T - the entailing text, and H - the entailed hypothesis
- ▶ T entails H if, typically, a human reading T would infer that H is most likely true

Recognizing Textual Entailment

Introduction

- Recognizing Textual Entailment (RTE) is the task of deciding, given T and H, whether T entails H.
- Carried out fully automatically by a computer program
- Without any human intervention

Epilogue

Beyond lexical matching

- Assumption underlying most RTE approaches: if H is similar to T, then entailment is likely
- Requires matching of aligning H to parts of T
- Word matching methods depend on overlap in words, possibly weighted words
- Improvement: add linguistic information such as lemma and/or part-of-speech
- Can we add even more linguistic information?
- ▶ Yes, syntactic information in the form of dependency trees!

- Numerical expression must be well-formed:
 - ▶ good: (x + 10) * y
 - ▶ bad: * y (x 10 +)
- Likewise English sentences must be well-formed:
 - ▶ good: Sookie loves vampire Bill
 - bad: loves Bill Sookie vampire
- Syntactic theory tries to explain which expressions of the language are valid
- ► This explanation relies syntactic analysis, that is, imposing some structure on top of sentences
- usually as a tree or a more general graph structure

- ▶ A syntactic parser is a program that assigns a syntactic structure to an input sentence
- ▶ Syntactic parsing: process of assigning syntactic structures to sentences

- Dependency analysis is a particular form of syntactic analysis
- A dependency parser assigns dependency structures to sentences
- A dependency structure consists of triples:
 - head
 - relation
 - dependent
- ► Example: Bill loves Sookie
 - ▶ head: loves
 - relation1: subj (subject)
 - ▶ dependent1: Bill
 - relation2: subj (object)
 - dependent2: Sookie

Dependency structures (2)

- Set of dependency triples < dependent, head, relation > defines a dependency tree or graph
- Preprocessed RTE data contains a syntactic structure for each sentence in T and H

Dependency structures (3)

- Preprocessed RTE data contains a syntactic structure for each sentence in T and H (see example)
- See project description for more information about the XML format
- Implementation details:
 - Problem: sometimes the dependency structure is not fully connected
 - Solution: ignore small trees or connect all trees into one big tree
 - ▶ Problem: Text contains multiple sentences
 - ► Solution: connect them into one big tree

Dependency structures (4)

Wilson was awarded the Pulitzer Prize.

Matching syntactic trees

- ▶ Intuition: Text entails Hypothesis if the distance between the distance between their dependency trees is relatively small
- Distance between two trees can be formalized as the number of edit operations required to transform one tree into another
- where edit operations on nodes include insertion, deletionand substitution
- each operation with an associated cost
- ▶ Tree edit distance is the overall cost of the transformation
- ► Therefore T entails H if the (normalized) tree edit distance between T and H is below a certain threshold

Tree edit distance: Preliminary remarks

- ► The following Section presents the tree edit distance algorithm by Zhang & Shasha
- ► This is not a course on approximation algorithms, so we skip proofs and complexity analyses, focus on procedure
- ► Algorithm needs a bit of study: don't worry if you fail to fully understand it here
- Reuses some slides from the excellent presentation by Nikolaus Augsten (see links on project website)

Edit operations: substitute

Introduction

Fig. 1

Epilogue

Edit operations: delete

Introduction

Fig. 2

Epilogue

Edit operations: insert

Edit distance (1)

- Every edit operation has an associated cost γ :
 - substitution cost $\gamma(n \to m)$
 - ▶ deletion cost $\gamma(n \to \Lambda)$
 - ▶ insertion cost $\gamma(\Lambda \rightarrow n)$
- Edit distance between two trees is the sequence of edit operations of which the overall cost in minimal
- By default, assume unit costs (all costs are 1)

Edit distance (2)

 T_1

Introduction

- ▶ Edit sequence to turn *T*₁ into *T*₂
 - delete node c
 - ▶ insert node *c*
- ▶ Thus $Editdist(T_1, T_2) = 2$

Fig. 4

Postorder traveral

► Let *T*[*i*] be the ith node in the tree according to the left-to-right postorder numbering

Leftmost leaf descendant

▶ /[i] is the number of the leftmost leaf descendant of the subtree rooted at T[i]

Key Roots

Introduction

Definition (Key Root)

The set of key roots of a tree T is defined as

$$kr(T) = \{k \in N(T) \mid \nexists k' \in N(T) : k' > k \text{ and } I(k) = I(k')\}$$

- Alternative definition: A key root is a node of T that either has a left sibling or is the root of T.
- Example: $kr(T) = \{3, 5, 6\}$

• Only subtrees rooted in a key root need a separate computation.

Forrest

Introduction

- ► T[i..j] is the ordered subforest of T induced by the nodes numbered i to j inclusive
- ▶ If i > j, then $T[i..j] = \emptyset$
- ▶ Note that T[I(i)...i] is always a tree
- ► The distance between T[i'..i] and T[j'..j] is denoted forestdist(T[i'..i], T[j'..j])

Epilogue

$Treedist(T_1, T_2)$ algorithm

Introduction

```
Input: Tree T_1 and T_2.

Output: Tree\_dist(i,j), where 1 \le i \le |T_1| and 1 \le j \le |T_2|.

Preprocessing

(To compute l(\cdot), LR\_keyroots1 and LR\_keyroots2)

Main loop

for i' := 1 to |LR\_keyroots(T_1)|

for j' := 1 to |LR\_keyroots(T_2)|

i = LR\_keyroots1[i'];

j = LR\_keyroots2[j'];

Compute treedist(i,j);
```

- treedist is computed using bottom-up dynamic programming
- forrest distance values are stored in a temporary forrestdist array, per treedist computation
- tree distance values are stored in a permanent treedist array

Epilogue

treedist(i, j) computation

Introduction

```
forestdist(\emptyset,\emptyset)=0;
for i_1 := l(i) to i
   forestdist(T_1[l(i)..i_1], \emptyset) = forestdist(T_1[l(i)..i_1-1], \emptyset) + \gamma(T_1[i_1] \rightarrow \Lambda)
for i_1 := l(i) to i
   forestdist(\emptyset, T_2[l(j)...j_1]) = forestdist(\emptyset, T_2[l(j)...j_1-1]) + \gamma(\Lambda \rightarrow T_2[j_1])
for i_1 := l(i) to i
   for j_1 := l(j) to j
       if l(i_1) = l(i) and l(j_1) = l(j) then
         forestdist(T_1[l(i)...i_1], T_2[l(i)...i_1] = \min \{
             forestdist(T_1[l(i)...i_1-1], T_2[l(i)...i_1]) + \gamma(T_1[i_1] \rightarrow \Lambda)
             forestdist(T_1[l(i)...i_1], T_2[l(i)...i_1-1]) + \gamma(\Lambda \rightarrow T_2[i_1]),
             forestdist(T_1[l(i)..i_1-1], T_2[l(j)..j_1-1]) + \gamma(T_1[i_1] \rightarrow T_2[j_1])
          treedist(i_1, j_1) = forestdist(T_1[l(i)..i_1], T_2[l(j)..j_1])/* put in permanent
             array */
       else
          forestdist(T_1[l(i)...i_1], T_2[l(i)...i_1]) = \min \{
             forestdist(T_1[l(i)...i_1-1], T_2[l(j)...j_1]) + \gamma(T_1[i_1] \rightarrow \Lambda),
             forestdist(T_1[l(i)...i_1], T_2[l(i)...i_1-1]) + \gamma(\Lambda \rightarrow T_2[i_1])
             forestdist(T_1[l(i)...l(i_1)-1], T_2[l(i)...l(i_1)-1]) + treedist(i_1,i_1)
```

24 / 27

Example Trees and Edit Costs

- Example: Edit distance between T_1 and T_2 .
 - ullet $\omega_{\it ins}=\omega_{\it del}=1$
 - \bullet $\omega_{ren}=0$ for identical rename, otherwise $\omega_{ren}=1$
- Each of the following slide is the result of a call of forest-dist().

Executing the Algorithm (1/9)

•
$$i = kr_1[x] = 3 \Rightarrow l_1[i] = 2$$

•
$$j = kr_2[y] = 2 \Rightarrow l_2[j] = 2$$

• temporary array fd:

$$\begin{array}{c|cccc} \mathsf{d}_j & \longrightarrow & 2 \\ \mathsf{d}_i \downarrow & \boxed{0} & \boxed{1} \\ 2 & \boxed{1} & \boxed{0} \\ 3 & \boxed{2} & \boxed{1} \end{array}$$

$$I_1[i] = I_1[d_i] \text{ and } I_2[j] = I_2[d_j]$$

	1	2	3	4	5	6
1						
2		0				
2 3 4 5 6		1				
4						
5						
6						

Executing the Algorithm (2/9)

•
$$i = kr_1[x] = 3 \Rightarrow l_1[i] = 2$$

•
$$j = kr_2[y] = 5 \Rightarrow l_2[j] = 5$$

• temporary array fd:

$$egin{array}{c|c} \mathsf{d}_j & \longrightarrow & 5 \ \mathsf{d}_i \downarrow & \boxed{0} & \boxed{1} \ 2 & \boxed{1} & \boxed{1} \ 3 & \boxed{2} & \boxed{2} \ \end{array}$$

$$I_1[i] = I_1[d_i]$$
 and $I_2[j] = I_2[d_i]$

	1	2	3	4	5	6
1						
2		0			1	
3		1			2	
4 5 6						
6						

Executing the Algorithm (3/9)

•
$$i = kr_1[x] = 3 \Rightarrow l_1[i] = 2$$

•
$$j = kr_2[y] = 6 \Rightarrow l_2[j] = 1$$

• temporary array fd:

($d_j o$	1	2	3	4	5	6
$d_i \downarrow$	0	1	2	3	4	5	6
2	1	1	1	2	3	4	5
3	2	2	2	2	2	3	4

$$I_1[i] = I_1[d_i]$$
 and $I_2[j] = I_2[d_i]$

 l_2 $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 1 & 1 & 5 & 1 \end{bmatrix}$ kr_2 $\begin{bmatrix} 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 6 \end{bmatrix}$

	1	2	3	4	5	6
1						
2 3	1	0	2	3	1	5
3	2	1	2	2	2	4
4						
5						
6						

Executing the Algorithm (4/9)

•
$$i = kr_1[x] = 5 \Rightarrow l_1[i] = 5$$

•
$$j = kr_2[y] = 2 \Rightarrow l_2[j] = 2$$

• temporary array fd:

$$\begin{array}{c|cccc}
d_j & \rightarrow & 2 \\
d_i \downarrow & 0 & 1 \\
5 & 1 & 1
\end{array}$$

$$I_1[i] = I_1[d_i]$$
 and $I_2[j] = I_2[d_i]$

	1	2	3	4	5	6
1						
2 3	1	0	2	3	1	5
3	2	1	2	2	2	4
4						
5 6		1				
6		·				

Executing the Algorithm (5/9)

•
$$i = kr_1[x] = 5 \Rightarrow l_1[i] = 5$$

•
$$j = kr_2[y] = 5 \Rightarrow l_2[j] = 5$$

• temporary array fd:

$$d_i \downarrow \begin{array}{c|c} d_j \rightarrow & 5 \\ \hline 0 & 1 \\ \hline 5 & 1 & 0 \\ \hline \end{array}$$

$$I_1[i] = I_1[d_i]$$
 and $I_2[j] = I_2[d_j]$

	1	2	3	4	5	6
1						
2 3	1	0	2	3	1	5
3	2	1	2	2	2	4
4						
5 6		1			0	
6						

Executing the Algorithm (6/9)

•
$$i = kr_1[x] = 5 \Rightarrow l_1[i] = 5$$

•
$$j = kr_2[y] = 6 \Rightarrow l_2[j] = 1$$

• temporary array fd:

	$d_j o$						
$d_i \downarrow$	0	1	2	3	4	5	6
d _i ↓ 5	1	1	2	3	4	4	5

$$I_1[i] = I_1[d_i]$$
 and $I_2[j] = I_2[d_i]$

 I_2

1	2	3	4	5	6
1	2	1	1	5	1

 kr_2

1	2	3
2	5	6
		y 🅇

	1	2	3	4	5	6
1						
2 3	1	0	2	3	1	5
3	2	1	2	2	2	4
4						
5	1	1	3	4	0	5
6						

Executing the Algorithm (7/9)

•
$$i = kr_1[x] = 6 \Rightarrow l_1[i] = 1$$

•
$$j = kr_2[y] = 2 \Rightarrow l_2[j] = 2$$

• temporary array fd:

$$d_{j} \rightarrow 2$$
 $d_{i} \downarrow 0 1$
 $1 1 1$
 $2 2 1$
 $3 3 2$
 $4 4 3$
 $5 5 4$
 $6 6 5$

$$I_1[i] = I_1[d_i] \text{ and } I_2[j] = I_2[d_j]$$

	1	2	3	4	5	6
1		1				
2	1	0	2	3	1	5
3	2	1	2	2	2	4
4		3				
5	1	1	3	4	0	5
6		5				

Executing the Algorithm (8/9)

•
$$i = kr_1[x] = 6 \Rightarrow l_1[i] = 1$$

•
$$j = kr_2[y] = 5 \Rightarrow l_2[j] = 5$$

• temporary array fd:

$$d_{j} \rightarrow 5$$
 $d_{i} \downarrow 0 1$
 $1 1 1$
 $2 2 2$
 $3 3 3$
 $4 4 4$
 $5 5 4$
 $6 6 5$

$$I_1[i] = I_1[d_i]$$
 and $I_2[j] = I_2[d_i]$

	1	2	3	4	5	6
1		1			1	
2 3	1	0	2	3	1	5
3	2	1	2	2	2	4
4		3			4	
5	1	1	3	4	0	5
6		5			5	

Executing the Algorithm (9/9)

$$kr_2 \mid 2 \mid 5$$

 I_2

•
$$i = kr_1[x] = 6 \Rightarrow l_1[i] = 1$$

•
$$j = kr_2[y] = 6 \Rightarrow l_2[j] = 1$$

• temporary array *fd*:

($d_j o$	1	2	3	4	5	6
$d_i \downarrow$	0	1	2	3	4	5	6
1	1	0	1	2	3	4	5
2	2	1	0	1	2	3	4
3	3	2	1	2	3	4	5
4	4	3	2	1	2	3	4
5	5	4	3	2	3	2	3
6	6	5	4	3	3	3	2

$$I_1[i] = I_1[d_i]$$
 and $I_2[j] = I_2[d_j]$

	1	2	3	4	5	6
1	0	1	2	3	1	5
2 3	1	0	2	3	1	5
3	2	1	2	2	2	4
4 5	3	3	1	2	4	4
5	1	1	3	4	0	5
6	5	5	3	3	5	2

Normalization (II-b)

- 1. Problem: absolute edit distance depends on sentence length
- Recall that Word Match score was normalized by dividing by total no of words in H
- 3. Similarly, Edit Distance can be normalized by dividing by the costs of inserting the whole tree H into T

Edit costs (II-c)

Introduction

- When calculating editdist(T,H) it makes sense to set the cost for deletion to 0, because T may contain additional irrelevant info
- 2. Insertion and substitution costs are set to 1
- Insertion cost can be improved by taking the IDF weight of the inserted word

Epilogue

How to go on from here

Introduction

- 1. Read the project description for Part II
- 2. Read the second part of the lecture notes
- Study relevant parts (only 6 out of 18 pages) of Zhang & Shasha paper: see the annotated version zs_annot.pdf available from website
- 4. Download and study partial implementation in Python: see tree_edit_dist_incomplete.py available from website
- 5. Fill in the missing parts with your own code (possibly recode to your language of choice)
- 6. Implement extracting trees from preprocessed RTE data and computing edit distance
- 7. Continue with the other subtasks of Part II of the project
- 8. Next lecture is in room F6 on Friday, 11th on november, 8.00-10.00 hrs

Epilogue