HW1.5. Counting

- 1: How many numbers can be represented by unsigned, base-4, n-digit numbers (n>1)?
- (a) 1
- \bigcirc (b) 2^n
- \bigcirc (c) 2^n-1
- \bigcirc (d) 2^{n-1}
- \bigcirc (e) 4^n
- \bigcirc (f) 4^n-1
- \bigcirc (g) 4^{n-1}
- 2: How many different **negative** integers are there among the n-digit, 2's complement numbers? (0 is neither positive nor negative.)
- \odot (a) 1
- \bigcirc (b) $2^{n-1}-1$
- \bigcirc (c) 2^{n-1}
- \bigcirc (d) 2^n
- \bigcirc (e) 2^n-1
- \bigcirc (f) n
- \bigcirc (g) n^2
- \odot (h) $(n-1)^2$
- \bigcirc (i) n^n
- 3: How many different **positive** integers are there among the n-digit, 2's complement numbers? (0 is neither positive nor negative.)
- \bigcirc (a) 1
- \bigcirc (b) $2^{n-1}-1$
- \bigcirc (c) 2^{n-1}
- \odot (d) 2^n
- \odot (e) 2^n-1
- \bigcirc (f) n
- \bigcirc (g) n^2
- \odot (h) $(n-1)^2$
- \bigcirc (i) n^n
- 4: How many zeros are there among the n-digit, 2's complement numbers?
- \bigcirc (a) 1
- \bigcirc (b) $2^{n-1}-1$
- \bigcirc (c) 2^{n-1}
- \bigcirc (d) 2^n
- \bigcirc (e) 2^n-1
- \bigcirc (f) n
- \odot (g) n^2
- \bigcirc (h) $(n-1)^2$
- \bigcirc (i) n^n
- 5: What is the numerical difference between the most positive and most negative number that can be represented by n-digit, 2's complement numbers?
- \bigcirc (a) 1
- \bigcirc (b) $2^{n-1}-1$

Next question

- \bigcirc (c) 2^{n-1}
- \bigcirc (d) 2^n
- \bigcirc (e) 2^n-1
- \bigcirc (f) n
- \odot (g) n^2
- \bigcirc (h) $(n-1)^2$
- \bigcirc (i) n^n

Save & Grade 20 attempts left

Save only

Additional attempts available with new variants 🔞