Szegedi Tudományegyetem Informatikai Tanszékcsoport

A diplomamunka címe

Diplomamunka

Készítette: **Ledán Szilárd** informatika szakos hallgató *Témavezető:* **Dr. Kiss Ákos**adjunktus

Szeged 2014

Tartalomjegyzék

	Felac	datkiírás	3									
	Tarta	ılmi összefoglaló	4									
	Beve	zetés	5									
1.	Egy találó cím											
	1.1.	Alcím	6									
		1.1.1. Al-al cím	6									
		1.1.2. Másik	6									
		1.1.3. Harmadik	6									
	1.2.	Mindjárt vége a fejezetnek	6									
2.	Hoss	szú	7									
	2.1.	Részletek	7									
3.	Egye	ebek	9									
	3.1.	Környezetek	9									
	3.2.	Listák	C									
	3.3.	Egy táblázat és egy ábra	1									
4.	Függelék 14											
	4.1.	A program forráskódja	4									
	Nvil:	atkozat	8									
	•	zönetnyilvánítás										
		alomiegyzék 2										

Feladatkiírás

A témavezető által megfogalmazott feladatkiírás. Önálló oldalon szerepel.

Tartalmi összefoglaló

A tartalmi összefoglalónak tartalmaznia kell (rövid, legfeljebb egy oldalas, összefüggő megfogalmazásban) a következőket: a téma megnevezése, a megadott feladat megfogalmazása - a feladatkiíráshoz viszonyítva-, a megoldási mód, az alkalmazott eszközök, módszerek, az elért eredmények, kulcsszavak (4-6 darab).

Az összefoglaló nyelvének meg kell egyeznie a dolgozat nyelvével. Ha a dolgozat idegen nyelven készül, magyar nyelvű tartalmi összefoglaló készítése is kötelező (külön lapon), melynek terjedelmét a TVSZ szabályozza.

Bevezetés

Itt kezdődik a bevezetés, mely nem kap sorszámot.

Egy találó cím

Ez pedig már az első fejezet, ...

1.1. Alcím

Ebben alfejezetek is lehetnek

1.1.1. Al-al cím

Sőt al-al fejezetek is.

1.1.2. Másik

Na lássunk egy másodikat is.

1.1.3. Harmadik

Meg egy harmadikat is.

1.2. Mindjárt vége a fejezetnek

Tényleg, itt valóban vége.

Hosszú

2.1. Részletek

Ebbe a fejezetbe pedig írunk sok sok szöveget. Szöveg, szöveg szöveg, szöveg

Egyebek

3.1. Környezetek

3.1. Tétel. *Ez itt egy tétel.*

Bizonyítás. Ez pedig a bizonyítása, melyben szerepel egy képlet:

$$E^{\text{globális}} = \text{tét}_1 \cdot E_1^{\text{elemi}} + \text{tét}_2 \cdot E_2^{\text{elemi}} + \ldots + \text{tét}_n \cdot E_n^{\text{elemi}}$$

$$= E^{\text{elemi}} \left(\text{tét}_1 + \text{tét}_2 + \ldots + \text{tét}_n \right)$$

$$= E^{\text{elemi}} \cdot \text{össztét}$$
(3.1)

A második egyenlőségnél azt használtunk ki, hogy ...

Ezzel a bizonyítást befejeztük.

- 3.2. Definíció. Ez egy definíció. Számozása a tételekkel együtt történik.
- **3.3.** Állítás. A követekező négy állítás egymással ekvivalens:
 - (i) M és N gyengén ekvivalensek.
 - (ii) Minden n nemnegatív egész számra $|L_M \cap \Sigma_1^n| = |L_N \cap \Sigma_2^n|$ teljesül.
- (iii) Minden n nemnegatív egész szám esetén létezik $\pi_n: L_M \cap \Sigma_1^n \to L_N \cap \Sigma_2^n$ kölcsönösen egyértelmű leképezés.
- (iv) Minden nemnegatív n-re $xA^ny^T = x'A'^ny'^T$.
- 3.4. Következmény. Ez pedig egy következmény.
- **3.5. Példa.** Ez lesz a példa, ezt nem szedjük dőlten.
- **3.6.** Megjegyzés. A fejezetet pedig egy megjegyzés zárja.

3.2. Listák

Ez egy felsorolás:

- első
- második

első

második

- harmadik
- saját jel is alkalmazható

Ez pedig egy számozott lista:

- 1. hétfő
- 2. kedd
- 3. szerda

3.3. Egy táblázat és egy ábra

A táblázat itt következik.

3.1. táblázat. Példa stratégiatáblára a Black Jack esetében

	ász	2	3	4	5	6	7	8	9	10
21	n	n	n	n	n	n	n	n	n	n
20	n	n	n	n	n	n	n	n	n	n
19	n	n	n	n	n	n	n	n	n	n
18	n	n	n	n	n	n	n	n	n	n
17	n	n	n	n	n	n	n	n	n	n
16	h	n	n	n	n	n	h	h	b	b
15	h	n	n	n	n	n	h	h	h	b
14	h	n	n	n	n	n	h	h	h	b
13	h	n	n	n	n	n	h	h	h	h
12	h	n	n	n	n	n	h	h	h	h
11	h	D	D	D	D	D	D	D	D	h

Lássunk egy ábrát is!

3.1. ábra. Labirintus bejárása

Külön fájlban elkészített grafika beillesztését a 3.3 ábra szemlélteti.

3.2. ábra. A $4 \times m$ -es tábla lefedéseinek mátrixreprezentációit felismerő automata

3.3. ábra. A $4\times m$ -es tábla lefedéseinek mátrixreprezentációit felismerő automata

Függelék

4.1. A program forráskódja

```
* Copyright (C) 2013 Szilard Ledan
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions
   * are met:
   * Copyright (C) 2013 University of Szeged
   * Copyright (C) 2013 Zoltan Herczeg
   * Copyright (C) 2013 Szilard Ledan
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions
   * are met:
   * 1. Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.
   * 2. Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in
        documentation and/or other materials provided with the
       distribution.
14
   * THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ''AS IS'' AND ANY
   * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR
   * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL
   * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
```

```
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
    * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22
    * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23
    * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
24
       USE
    * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25
    */
26
27
  #include "config.h"
  #include "TrapezoidBuilderGL2D.h"
29
30
  #include "FloatPoint.h"
  #include "FloatRect.h"
32
  #include "FloatSize.h"
  #include "PathGL2D.h"
  #include "TrapezoidListGL2D.h"
  #include "WindRule.h"
  #include "wtf/MathExtras.h"
  #include <wtf/OwnPtr.h>
  #include <wtf/PassOwnPtr.h>
39
40
  namespace WebCore {
41
  namespace GL2D {
42
43
  bool TrapezoidBuilder::ScanStripe::addOrCombineTrapezoid(Arena *arena,
44
      float *result, TrapezoidBuilder::ScanStripe* previousScanStripe)
  {
45
       TrapezoidBuilder::Trapezoid* trapezoid = TrapezoidBuilder::
46
          Trapezoid :: create ( arena ) ;
47
       trapezoid -> fill (result);
48
       trapezoid -> setNext(m trapezoids);
49
       m_trapezoids = trapezoid;
51
       if (!previousScanStripe)
52
           return true;
53
54
       TrapezoidBuilder:: Trapezoid* current = previousScanStripe->
55
           trapezoids();
       while (current) {
           if (trapezoid ->isCombined(current)) {
57
               if (current ->top())
58
                    current = current ->top();
               current -> trapezoid()[3] = trapezoid -> trapezoid()[3];
60
                current -> trapezoid()[4] = trapezoid -> trapezoid()[4];
61
```

```
current -> trapezoid()[5] = trapezoid -> trapezoid()[5];
62
                trapezoid -> setTop ( current );
63
                 return false;
64
65
            current = current -> next();
67
        return true;
68
69
70
   inline void TrapezoidBuilder::trapezoidIteratorInit()
        m_currentScanStripe = m_scanStripes;
        m_previousScanStripe = 0;
74
        m_currentLine = m_currentScanStripe ? m_currentScanStripe -> lines()
75
76
   bool TrapezoidBuilder::trapezoidIteratorNext(float* result)
   searchNext:
80
81
        if ((!m_currentScanStripe) || (!m_currentScanStripe->next()))
82
            return false;
83
84
        int fill = 0;
85
        result[0] = m_currentScanStripe->y() / static_cast <float >(
           antiAliasing);
        result[3] = m_currentScanStripe->next()->y() / static_cast <float >(
87
           antiAliasing);
88
        Line * firstLine;
89
        if (m_currentLine) {
90
            firstLine = m_currentLine;
            fill += m_currentLine -> direction();
92
            m_currentLine = m_currentLine -> next();
93
94
        }
        if (!m_currentLine) {
96
            m_previousScanStripe = m_currentScanStripe;
97
            m_currentScanStripe = m_currentScanStripe->next();
            m_currentLine = m_currentScanStripe->lines();
            fill = 0;
100
            goto searchNext;
101
102
103
```

```
Line* targetLine = m_currentLine;
104
        fill += m_currentLine -> direction();
105
106
       if (m fillRule == RULE NONZERO) {
107
            while (m_currentLine -> next()) {
                if (fill == 0) {
109
                    if (!(( m_currentLine -> x0Rounded() == m_currentLine ->
                        next() \rightarrow x0Rounded()) \&\&
                        (m_currentLine ->x1Rounded() == m_currentLine ->next
                            ()->x1Rounded())))
112
    * Copyright (C) 2013 Szilard Ledan
 1
 2
    * Redistribution and use in source and binary forms, with or without
    * modification, are permitted provided that the following conditions
      1. Redistributions of source code must retain the above copyright
         notice, this list of conditions and the following disclaimer.
    * 2. Redistributions in binary form must reproduce the above copyright
          notice, this list of conditions and the following disclaimer in
        the
```

A függelékbe kerülhetnek a hosszú táblázatok, vagy mondjuk egy programlista:

```
while (ujkmodosito[i]<0)
{
    if (ujkmodosito[i]+kegyenletes[i]<0)
    {
        j=i+1;
        while (j<14)
        if (kegyenletes[i]+ujkmodosito[j]>-1) break;
        else j++;
        temp=ujkmodosito[j];
        for (l=i;l<j;l++) ujkmodosito[l+1]=ujkmodosito[l];
        ujkmodosito[i]=temp;
    }
    i++;
}</pre>
```

Nyilatkozat

Alumott szakos nangato, kijelentem, nogy a dolgozatomat a Szege-							
di Tudományegyetem, Informatikai Tanszékcsoport							
készítettem, diploma megszerzése érdekében.							
Kijelentem, hogy a dolgozatot más szakon korábban nem védtem meg, saját munkám							
eredménye, és csak a hivatkozott forrásokat (szakirodalom, eszközök, stb.) használtam							
fel.							
Tudomásul veszem, hogy szakdolgozatomat / diplomamunkámat a Szegedi Tudomány-							
egyetem Informatikai Tanszékcsoport könyvtárában, a helyben olvasható könyvek között							
helyezik el.							
Szeged, 2015. január 11.							
aláírás							
Alulírott szakos hallgató, kijelentem, hogy a dolgozatomat a Szege-							
di Tudományegyetem, Informatikai Tanszékcsoport							
készítettem, diploma megszerzése érdekében.							
Kijelentem, hogy a dolgozatot más szakon korábban nem védtem meg, saját munkám							
eredménye, és csak a hivatkozott forrásokat (szakirodalom, eszközök, stb.) használtam							
fel.							

Tudomásul veszem, hogy szakdolgozatomat / diplomamunkámat a TVSZ 4. sz. mel-

A diplomamunka címe					
lékletében leírtak szerint kezelik.					
Szeged, 2015. január 11.					
	aláírás				

Köszönetnyilvánítás

Ezúton szeretnék köszönetet mondani X. Y-nak ezért és ezért ...

Irodalomjegyzék

- [1] J. L. Gischer, The equational theory of pomsets. *Theoret. Comput. Sci.*, **61**(1988), 199–224.
- [2] J.-E. Pin, Varieties of Formal Languages, Plenum Publishing Corp., New York, 1986.