```
In [1]:
```

```
#-*coding:utf-8 -*-
import pathlib
import random
from functools import reduce
from collections import defaultdict
import pandas as pd
import geopandas as gpd
import folium
import shapely
import numpy as np
from IPython.display import display
import matplotlib.pyplot as plt
from tqdm.notebook import tqdm
import xgboost
import sklearn.cluster
import tensorflow as tf
import matplotlib as mpl
import seaborn as sns
from pandas import DataFrame
from geoband import API
from folium import Map, CircleMarker, Vega, Popup
from vincent import Bar
import math
```

In [2]:

```
input_path = pathlib.Path('./input')
if not input_path.is_dir():
   input_path.mkdir()
from geoband.API import *
GetCompasData('SBJ_2102_001', '1', '1. _ .csv')
GetCompasData('SBJ_2102_001', '2', '2. _ .csv')
GetCompasData('SBJ_2102_001', '3', '3. _ ( )_
GetCompasData('SBJ_2102_001', '4', '4. _ ( )_
                                                                .csv')
                                                                 .csv')
GetCompasData('SBJ_2102_001', '5', '5.
                                                         ( )_ .csv')
GetCompasData('SBJ_2102_001', '6', '6. _
                                                        ( )_ .csv')
GetCompasData('SBJ_2102_001', '7', '7. _ ( )_ .csv')
GetCompasData('SBJ_2102_001', '8', '8. ( )_
GetCompasData('SBJ_2102_001', '9', '9. ( )_
                                                                  .csv')
                                                                  .csv')
GetCompasData('SBJ_2102_001', '10', '10. _ ( )_ .csv')
GetCompasData('SBJ_2102_001', '11', '11. _ ( )_ .csv')
GetCompasData('SBJ_2102_001', '12', '12. _ ( )_ .csv')
GetCompasData('SBJ_2102_001', '13', '13. _ _ .cs
GetCompasData('SBJ_2102_001', '14', '14. _ .csv')
                                                                .csv')
GetCompasData('SBJ_2102_001', '15', '15. _ _ .csv')
GetCompasData('SBJ_2102_001', '16', '16. _ _ .geojson')
GetCompasData('SBJ_2102_001', '17', '17. _ _
                                                               .csv')
GetCompasData('SBJ_2102_001', '18', '18. ___ (201 GetCompasData('SBJ_2102_001', '19', '19. ___ GetCompasData('SBJ_2102_001', '20', '20. __ .csv')
                                                              (2017~2020).csv')
                                                                     .geojson')
GetCompasData('SBJ_2102_001', '21', '21. _ .csv')
GetCompasData('SBJ_2102_001', '22', '22. _ _ .csv')
\label{lem:compasData} GetCompasData('SBJ\_2102\_001', '23', '23. \ \_ \ .geojson')
GetCompasData('SBJ_2102_001', '24', '24. _ _ _ .geojson')
GetCompasData('SBJ_2102_001', '25', '25. _ _ _ .csv')
GetCompasData('SBJ_2102_001', '26', '26. _ .csv')
GetCompasData('SBJ_2102_001', '27', '27. _ _ .csv')
GetCompasData('SBJ_2102_001', '28', '28. _
                                                                     .csv')
GetCompasData('SBJ_2102_001', '29', '29. ( ).csv')
GetCompasData('SBJ_2102_001', '30', '30. ( ).geojson')
GetCompasData('SBJ_2102_001', '31', '31. ( ).geojson')
GetCompasData('SBJ_2102_001', '31', '31. ( ).geojson')
GetCompasData('SBJ_2102_001', '32', '32. _ ( ).geojson')
GetCompasData('SBJ\_2102\_001', '33', '33. \quad \_ \quad .geojson')
GetCompasData('SBJ_2102_001', '34', '34. _
for path in list(input_path.glob('*.csv')) + list(input_path.glob('*.geojson')):
   print(path)
```

```
input/10. _ ( )_ .csv
input/11. _ ( )_
                     .csv
input/12. _ ( )_ .csv
input/14. _ .csv
input/13. _ _ .csv
input/15. _ _
input/18. _ (2017~2020).csv
input/17. _ _ .csv
input/2. _ .csv
input/20. _ .csv
input/21. _ .csv
input/22. _ _ .csv
input/25. _ _ _
                     .CSV
input/26. _ .csv
input/27. _ _ .csv
input/28. _ _ _ .
input/29. _ ( ).csv
                   .CSV
input/3. _ ( )_ .csv
input/4. _ ( )_ .csv
input/5. _ ( )_ .csv
input/6. _ ( )_ .csv
input/7. _ ( )_ .csv
input/8. _ ( )_ .csv
input/9. _ ( )_ .csv
input/16. _ _ .geojson
input/19. _ _ .geojson
input/23. _ _ .geojson
input/24.
                _ .geojson
input/30. _ ( ).geojson
input/31. _ ( ).geojson
input/32. _ ( ).geojson input/33. _ .geojson
In [ ]:
In []:
In [3]:
    = pd.read_csv(input_path.joinpath('3. _ ( )_ .csv'), encoding = 'utf-8')
for i in range(len( _ [' '])): _ [' '][i] = _ [' '][i][7:]
# col
  _ .columns
    [' ()'] = [' ()'].apply(lambda x: float(x.split()[0].replace(',',")))
data_ = _ .groupby(' ')[' ( )'].mean()
data_
import matplotlib
matplotlib.font_manager._rebuild()
plt.rc("font", family="Malgun Gothic")
ax = data_ .plot(kind ='bar', title ='
                                             ', figsize =(15, 5), legend=True, fontsize = 10, color='indigo')
ax.set_xlabel(' ', fontsize = 12)
ax.set_ylabel(' ', fontsize =
                  ', fontsize = 12)
ax.legend([' '], fontsize=12)
```

input/1. _ .csv

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

import sys

Out[3]:

<matplotlib.legend.Legend at 0x7f21b1e8ae80>

In [4]:

```
= pd.read_csv(input_path.joinpath('4. _ ( )_ .csv'), thousands = ',', encoding = 'utf-8')
for i in range(len( _ [' '])): _ [' '][i] = _ [' '][i][7:]
# col
      .columns
#
data_
                _ .groupby(' ')[' ( )'].mean()
data_
import matplotlib
matplotlib.font_manager._rebuild()
plt.rc("font", family="Malgun Gothic")
#
ax = data
               .plot(kind ='bar', title ='
                                                   ', figsize =(15, 5), legend=True, fontsize = 10, color='deepskyblue')
ax.set_xlabel(' ', fontsize = 12)
ax.set_ylabel(' ', fontsize
                    ', fontsize = 12)
ax.legend([' '], fontsize=12)
```

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy import sys

Out[4]:

<matplotlib.legend.Legend at 0x7f212068e128>

In [5]:

```
= pd.read_csv(input_path.joinpath('5. _ ( )_ .csv'), encoding = 'utf-8')
#
for i in range(len( _ [' '])):
_ [' '][i] = _ [' '][i][7:]
# col
   _ .columns
    _ [' ( )'] = _ [' ( )'].apply(lambda x: float(x.split()[0].replace(',',")))
            _ .groupby(' ')[' ( )'].mean()
data
data_
import matplotlib
matplotlib.font_manager._rebuild()
plt.rc("font", family="Malgun Gothic")
#
ax = data_
              .plot(kind='bar', title='
                                                 ', figsize=(80,15), legend=True, fontsize=32, color='midnightblue')
ax.set_xlabel(' ',fontsize=30)
ax.set_ylabel(' ', fontsize
                   ', fontsize=30)
ax.legend([' '],fontsize=30)
```

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy import sys

Out[5]:

<matplotlib.legend.Legend at 0x7f21203c0ac8>

In [6]:

```
# _ [' ( )'] = _ [' ( )'].apply(lambda x: float(x.split()[0].replace(',',")))
data_ = _ .groupby(' ')[' ( )'].mean()

# import matplotlib
matplotlib.font_manager._rebuild()
plt.rc("font", family="Malgun Gothic")

# ax = data_ .plot(kind ='bar', title =' ', figsize =(15, 5), legend=True, fontsize = 10, color='palevioletred')
ax.set_xlabel(' ', fontsize = 12)
ax.set_ylabel(' ', fontsize = 12)
ax.legend([' '], fontsize=12)
```

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy import sys

Out[6]:

<matplotlib.legend.Legend at 0x7f21203d3208>

In []:

In [7]:

,

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:10: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy # Remove the CWD from sys.path while we load stuff.

In [8]:

```
= pd.read_csv(input_path.joinpath('8. _ ( )_ .csv'),thousands = ',',encoding='utf-8')
#
        .columns
#
for i in range(len( _ [' '])): _ [' '][i] = _ [' '][i][7:]
               = _ .groupby([' ', ' '])[[' ( )', ' ( )']].mean()
data_
               = data_ _ .unstack().fillna(0)
data
data
          _ _ = data_ _ [' ( )',' ']
_ _ = data_ _ [' ( )',' ']
_ = data_ _ [' ( )',' ']
data
data
data
#data_ _ [' ( )',' '] = data_
del(data_ _ [' ( )',' '])
del(data_ _ [' ( )',' '])
round(data_ _ ,2)
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy # Remove the CWD from sys.path while we load stuff.

In [9]:

```
= pd.read_csv(input_path.joinpath('9. _ ( )_ .csv'),thousands = ',',encoding='utf-8')
#
        .columns
#
for i in range(len( _ [' '])): _ [' '][i] = _ [' '][i][7:]
               = _ .groupby([' ', ' '])[[' ( )', ' ( )']].mean()
data_
                = data_ _ .unstack().fillna(0)
data
data_
          _ _ = data_ _ [' ( )',' ']
_ _ = data_ _ [' ( )',' ']
_ = data_ _ [' ( )',' ']
data_
data_
data
#data_ _ [' ( )',' '] = data_

del(data_ _ [' ( )',' '])

del(data_ _ [' ( )',' '])
round(data_ _ ,2)
matplotlib.font_manager._rebuild()
plt.rc("font", family="Malgun Gothic")
ax = data_ _ .plot(kind ='bar', title =' ', plt.plot(data_ _ , linestyle='--', color = 'orangered') ax.set_xlabel(' ', fontsize = 30)
                                                                     ', figsize =(80, 15), legend=True, fontsize = 32, color=[ 'dodgerblue', 'crimson'])
```

```
ax.set_ylabel(' ( )', fontsize = 30)
ax.legend([' ',' ',' '], fontsize=20)

for i, v in enumerate(data_ _ [' ( )',' ']):
    ax.text(i-0.1, v+v*20, str(round(v, 1)))
```

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:10: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy # Remove the CWD from sys.path while we load stuff.

In [10]:

```
= pd.read_csv(input_path.joinpath('10. _ ( )_ .csv'),thousands = ',',encoding='utf-8')
       .columns
#
for i in range(len( _ [' '])): _ [' '][i] = _ [' '][i][7:]
                     _ .groupby([' ', ' '])[[' ( )', ' ( )']].mean()
data_ _ =
              = data_ _ .unstack().fillna(0)
data_
data_
data_ _ = data_ _ [' ( )',' ']
data_ _ = data_ _ [' ( )',' ']
data_ _ = data_ _ [' ( )',' ']
#data_ _ [' ( )',' '] = data_ _ _
del(data_ _ [' ( )',' '])
del(data_ _ [' ( )',' '])
round(data_ _ ,2)
matplotlib.font manager. rebuild()
plt.rc("font", family="Malgun Gothic")
ax = data_ _ .plot(kind ='bar', title =' ', figsize =(15, 5), legend=True, fontsize = 10, color=[ 'dodgerblue', 'crimson']) plt.plot(data_ _ , linestyle='--', color = 'orangered')
ax.set_xlabel(' ', fontsize = 12)
ax.set_ylabel(' ( )', fontsize = 12)
ax.legend([' ',' ',' '], fontsize=12)
for i, v in enumerate(data_ _ [' ( )',' ']):
   ax.text(i+0.05, v+v*20, str(round(v, 1)))
```

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:10: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy # Remove the CWD from sys.path while we load stuff.

In []:

geojson

```
In [11]:
```

```
_ = gpd.read_file(input_path.joinpath('19. _ _ _ .geojson'))
-
```

Out[11]:

	gid	201710_20	201810_20	201910_20	202010_20	201710_30	201810_30	201910_30	202010_30	201710_40	202010_80	201710_90	20
									_	_	_		_
0	667567	NaN	NaN .	NaN	NaN								
1	667568	NaN	NaN .	NaN	NaN								
2	668566	NaN	NaN .	NaN	NaN								
3	668567	NaN	NaN .	NaN	NaN								
4	668568	NaN	NaN .	NaN	NaN								
47391	919332	NaN	NaN .	NaN	NaN								
47392	919333	NaN	NaN .	NaN	NaN								
47393	919334	NaN	NaN .	NaN	NaN								
47394	920332	NaN	NaN .	NaN	NaN								
47395	920333	NaN	NaN .	NaN	NaN								

47206 rows .. 29 columns

47390 TOWS × 30 COIDITIES

In [12]:

= gpd.read_file(input_path.joinpath('23. _ _ _ .geojson'))

Out[12]:

	BDTYP_CD	BULD_NM	BULD_NM_DC	BULD_SE_CD	BUL_MAN_NO	EMD_CD	GRO_FLO_CO	LNBR_MNNM	LNBR_SLNO	UND_FLO_CO	
0	10299	None	None	0	55874	350	1	177	4	0	MUL
1	10299	None	None	0	55795	340	1	42	23	0	MUL
2	04401	None	None	0	55266	107	7	723	0	2	MUL
3	04001	None	None	0	60761	107	9	722	0	3	MUL
4	03999	None	None	0	55331	107	8	721	0	3	MUL
54952	01001	None	None	0	36537	340	1	135	0	0	MUL
54953	14001	None	None	0	40633	340	1	135	0	0	MUL
54954	01001	None	None	0	19892	340	1	135	0	0	MUL
54955	14001	None	None	0	19893	340	1	135	0	0	MUL
54956	01001	119-1	None	0	54174	340	1	119	1	0	MUL

54957 rows × 11 columns

In [13]:

= gpd.read_file(input_path.joinpath('24. _ _ _ .geojson'))

Out[13]:

	gid	val	geometry
0	667567	NaN	MULTIPOLYGON (((127.12716 36.70773, 127.12716
1	667568	NaN	MULTIPOLYGON (((127.12716 36.70863, 127.12716
2	668566	NaN	MULTIPOLYGON (((127.12829 36.70683, 127.12828
3	668567	NaN	MULTIPOLYGON (((127.12828 36.70773, 127.12828
4	668568	NaN	MULTIPOLYGON (((127.12828 36.70863, 127.12828
47391	919332	NaN	MULTIPOLYGON (((127.40956 36.49642, 127.40956

47392	gid 919333	val NaN	MULTIPOLYGON (((127.40956 36.49732, 1297.10955)
			·
47393	919334	NaN	MULTIPOLYGON (((127.40956 36.49823, 127.40955
47394	920332	NaN	MULTIPOLYGON (((127.41067 36.49642, 127.41067
47395	920333	NaN	MULTIPOLYGON (((127.41067 36.49732, 127.41067

47396 rows × 3 columns

In [14]:

```
_ = gpd.read_file(input_path.joinpath('30. _ ( ).geojson'))
_
```

Out[14]:

	SIG_CD	SIG_KOR_NM	geometry
0	36110		MULTIPOLYGON (((127.17841 36.59687, 127.17839
_	000		

In [15]:

```
_ = gpd.read_file(input_path.joinpath('31. _ ( ).geojson'))
_
```

Out[15]:

	EMD_CD	EMD_KOR_NM	geometry
0	36110101		MULTIPOLYGON (((127.30833 36.47977, 127.30818
1	36110102		MULTIPOLYGON (((127.30480 36.48845, 127.30480
2	36110103		MULTIPOLYGON (((127.29383 36.48508, 127.29381
3	36110104		MULTIPOLYGON (((127.27215 36.46388, 127.27197
4	36110105		MULTIPOLYGON (((127.24631 36.46300, 127.24626
5	36110106		MULTIPOLYGON (((127.25661 36.47033, 127.25653
6	36110107		MULTIPOLYGON (((127.26603 36.49182, 127.26744
7	36110108		MULTIPOLYGON (((127.23978 36.48556, 127.23966
8	36110109		MULTIPOLYGON (((127.24003 36.48809, 127.24004
9	36110110		MULTIPOLYGON (((127.25544 36.49534, 127.25543
10	36110111		MULTIPOLYGON (((127.25357 36.50688, 127.25357
11	36110112		MULTIPOLYGON (((127.23895 36.53520, 127.23960
12	36110113		MULTIPOLYGON (((127.25238 36.51029, 127.25218
13	36110114		MULTIPOLYGON (((127.25357 36.50688, 127.25348
14	36110115		MULTIPOLYGON (((127.26859 36.53949, 127.26858
15	36110116		MULTIPOLYGON (((127.27076 36.52337, 127.27005
16	36110117		MULTIPOLYGON (((127.34569 36.51897, 127.34628
17	36110118		MULTIPOLYGON (((127.31732 36.48175, 127.31730
18	36110250		MULTIPOLYGON (((127.30663 36.60062, 127.30662
10	36110310		MULTIPOLYGON (((127.28524 36.55518, 127.28605

19	EMD_CD	EMD_KOR_NM	geometry
20	36110320		MULTIPOLYGON (((127.32202 36.58302, 127.32209
21	36110330		MULTIPOLYGON (((127.36891 36.48959, 127.36891
22	36110340		MULTIPOLYGON (((127.36098 36.49088, 127.36059
23	36110350		MULTIPOLYGON (((127.23952 36.48582, 127.23966
24	36110360		MULTIPOLYGON (((127.19288 36.60110, 127.19298
25	36110370		MULTIPOLYGON (((127.19609 36.60448, 127.19604
26	36110380		MULTIPOLYGON (((127.27948 36.63350, 127.27948
27	36110390		MULTIPOLYGON (((127.20791 36.71901, 127.20781

In [16]:

_ = gpd.read_file(input_path.joinpath('32. _ ().geojson'))
-

Out[16]:

	ADM_DR_CD	ADM_DR_NM	geometry
0	2901011		MULTIPOLYGON (((127.29172 36.63614, 127.29203
1	2901031		MULTIPOLYGON (((127.24092 36.46741, 127.24087
2	2901032		MULTIPOLYGON (((127.35572 36.55450, 127.35568
3	2901033		MULTIPOLYGON (((127.37706 36.56788, 127.37711
4	2901034		MULTIPOLYGON (((127.36424 36.51353, 127.36375
5	2901035		MULTIPOLYGON (((127.21187 36.57860, 127.21233
6	2901036		MULTIPOLYGON (((127.21134 36.62035, 127.21169
7	2901037		MULTIPOLYGON (((127.20998 36.71848, 127.21068
8	2901038		MULTIPOLYGON (((127.25304 36.69594, 127.25410
9	2901039		MULTIPOLYGON (((127.14980 36.72605, 127.14981
10	2901053		MULTIPOLYGON (((127.26461 36.52069, 127.26459
11	2901060		MULTIPOLYGON (((127.23853 36.53540, 127.23895
12	2901056		MULTIPOLYGON (((127.24233 36.50869, 127.24234
13	2901065		MULTIPOLYGON (((127.31207 36.50321, 127.31209
14	2901062		MULTIPOLYGON (((127.26244 36.47868, 127.26244
15	2901059		MULTIPOLYGON (((127.25182 36.52672, 127.25193
16	2901061		MULTIPOLYGON (((127.26244 36.47868, 127.26181
17	2901064		MULTIPOLYGON (((127.27743 36.47628, 127.27743
18	2901066		MULTIPOLYGON (((127.29381 36.48496, 127.29381

In [17]:

Out[17]:

	PNU	JIBUN	geometry
0	3611037031101950001	195-1	MULTIPOLYGON (((127.17929 36.65234, 127.17930
1	3611034029102230001	223-1	MULTIPOLYGON (((127.30726 36.46622, 127.30716
2	3611034028101540000	154	MULTIPOLYGON (((127.30510 36.45196, 127.30502
3	3611034029200630000	63	MULTIPOLYGON (((127.31121 36.47124, 127.31127
4	3611037031104690001	469-1	MULTIPOLYGON (((127.16223 36.64483, 127.16220
198804	3611038024200170001	17-1	MULTIPOLYGON (((127.25132 36.65408, 127.25186
198805	3611038024200170008	17-8	MULTIPOLYGON (((127.25186 36.65394, 127.25191
198806	3611038024200170009	17-9	MULTIPOLYGON (((127.25189 36.65385, 127.25221
198807	3611038024200170002	17-2	MULTIPOLYGON (((127.24888 36.65086, 127.24884
198808	3611038024200170010	17-10	MULTIPOLYGON (((127.25175 36.65324, 127.25172

198809 rows × 3 columns

In [18]:

```
_ = gpd.read_file(input_path.joinpath('16. _ _ .geojson'))
```

Out[18]:

	gid	ws_cnt	found_age_1	found_age_2	found_age_3	found_age_4	found_age_5	found_age_6	runoutmon	smbiz_yn	 indcd_m_yn in
0	667567	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 None
1	667568	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 None
2	668566	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 None
3	668567	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 None
4	668568	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 None
47391	919332	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 None
47392	919333	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 None
47393	919334	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 None
47394	920332	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 None

47395 920 gigd ws Nant found a gland found fou

In []:

In [19]:

```
# = pd.read_csv(input_path.joinpath('14. _ .csv'))
```

Out[19]:

									lon	lat
0	D		D21	/ /	D21A06	/	G47511	3611025000	90-1, () 127.298552	36.599920
1	D		D21	/ /	D21A02	/	G47511	3611037000	40, () 127.204298	36.682526
2	F		F15		F15A03		F42201	3611036000	322, () 127.280990	36.560523
3	Q		Q04		Q04A01		156194	3611034000	61-3, () 127.270561	36.426637
4	D		D11		D11A03		G47599	3611025000	159, (, 2) 127.294177	36.602922
10768	D		D23	/	D23A04		G45211	3611025000	48-11, () 127.299415	36.593481
10769	L		L01		L01A01		L68221	3611034000	529, () 127.333858	36.480396
10770	Q		Q06		Q06A02		156114	3611055000	13, () 127.235897	36.500933
10771	Ν	//	N02	//	N02A01		R91223	3611056000	51, () 127.289353	36.477949
10772	R	/	R05	-	R05A02	/ /	P85620	3611054000	3 160, (, 4) 127.243716	36.506156

10773 rows \times 13 columns

In [20]:

```
# data_ = pd.crosstab( . , . , margins=True) data_
```

Out[20]:

11							/	All
7	25	74	61	0	3	136	47	353
13	98	102	184	2	1	284	15	699
2	2	32	25	0	1	38	11	111
13	51	83	217	0	3	388	48	803
5	19	69	61	0	5	230	31	420
11	14	69	135	8	0	189	10	436
21	157	159	313	0	4	349	115	1118
0	11	44	38	0	0	81	38	212
1	4	22	43	1	0	87	7	165
3	13	38	45	0	6	115	57	277
1	28	37	56	3	0	67	2	194
0	15	14	46	3	0	71	7	156
5	40	50	162	7	0	164	16	444
10	78	40	128	3	1	203	2	465
2	5	22	53	6	0	51	4	143

```
139 5 0
                              182
     97 105
             574 1133 36
         20
              48
                   87
                       0
                           3
                              131
                                   56
                                        346
                                   71
     1
         89
              49
                   77
                       0 0
                              174
                                        461
ΑII
   200 783 1587 3003 74 30 4342 754 10773
```

In [21]:

```
#
data___all = data__ ['All']
data___all
```

Out[21]:

In [22]:

Name: All, dtype: int64

ΑII

```
#
_ = gpd.read_file(input_path.joinpath('32. _ ( ).geojson'))
_
_ ['lon'] = ( _ ['geometry'].bounds['maxx'] + _ ['geometry'].bounds['minx'])/2
_ ['lat'] = ( _ ['geometry'].bounds['maxy'] + _ ['geometry'].bounds['miny'])/2
data_ _lon_lat = _ [['ADM_DR_NM', 'lon', 'lat']]
data_ _lon_lat=data_ _lon_lat.rename(columns={'ADM_DR_NM':' '})
data_ _lon_lat
```

Out[22]:

	lon	lat
0	127.282863	36.607199
1	127.279812	36.507771
2	127.330061	36.550175
3	127.381030	36.528753
4	127.290863	36.462920
5	127.207249	36.507231
6	127.247954	36.583444
7	127.199439	36.655099
8	127.253810	36.656332
9	127.167851	36.711410
10	127.265374	36.508349
11	127.236059	36.517374
12	127.247568	36.503792
13	127.307823	36.490650
14	127.252152	36.488832
15	107 051050	26 517544

```
16 127.249586 36.473352

17 127.274502 36.470178

18 127.288813 36.478255
```

In [23]:

```
# ,
data_ _info = pd.merge( data_ _all,data_ _lon_lat, on =" ")
data_ _info
```

Out[23]:

	All	lon	lat
0	353	127.236059	36.517374
1	699	127.290863	36.462920
2	111	127.274502	36.470178
3	803	127.265374	36.508349
4	420	127.288813	36.478255
5	436	127.381030	36.528753
6	1118	127.252152	36.488832
7	212	127.307823	36.490650
8	165	127.167851	36.711410
9	277	127.251252	36.517544
10	194	127.279812	36.507771
11	156	127.330061	36.550175
12	444	127.247954	36.583444
13	465	127.207249	36.507231
14	143	127.253810	36.656332
15	417	127.199439	36.655099
16	3553	127.282863	36.607199
17	346	127.247568	36.503792
18	461	127.249586	36.473352

In [24]:

```
# data_ = data_ .sort_values(by=' ') data_ = data_ [[' ',' ','lon','lat']] # data_ .rename(columns={' ':' '}, inplace = True) data_
```

Out[24]:

		Ion	lat
6091	/ /	16, () 127.236487	36.501126
153	/ /	565, () 127.220519	36.499410
9564	/ /	19, () 127.233984	36.505851
2597	/ /	233, () 127.296533	36.601936
3054	/ /	385-3, () 127.203729	36.496271
8580	/	157, () 127.262479	36.479318
1639	/	17, () 127.294190	36.595325
1642	/	2 64, () 127.289099	36.602117
8606	/	62-15, () 127.251201	36.487016
10770	,	3 160. (. 4	00 500450

10//2 / 12/.243/16 36.506156 lon lat

10773 rows × 4 columns

In [25]:

```
#
plt.figure(figsize= (15,6))
sns.countplot(data = , x=" ", order= [' '].value_counts().index)
```

Out[25]:

<AxesSubplot:xlabel=' ', ylabel='count'>

In []:

In []:

In []:

In [26]:

```
float
data\_ \_info['lon'] = data\_ \_info.lon.astype(float)
data___info['lat'] = data____info.lat.astype(float)
data___info['All'] = data____info.All.astype(float)
data_
        info
  _map = folium.Map(location = [data___info['lat'].mean(), data___info['lon'].mean()],zoom_start = 11)
for item in data___info.index:
  latitude = data_ _info.loc[item,'lat']
   longtitude = data___info.loc[item,'lon']
   popups = folium.Popup(data_ _info.loc[item, ' '], max_width=100)
   folium.CircleMarker([latitude, longtitude],
               radius = data__ _info.loc[item,'All']/100,
               popup = popups,
                color = 'red',
               fill = True).add_to( _map)
  _map
```

Out[26]:

2

In [27]:

```
#
_ = gpd.read_file(input_path.joinpath('32. _ ( ).geojson'))
_
data = data_ _ info[[' ', 'All']]
data

#
_map2 = folium.Map(location = [data_ _ info['lat'].mean(), data_ _ info['lon'].mean()],zoom_start = 11)
_map2.choropleth(
    geo_data = _ ,
    data = data,
    columns=[' ', 'All'],
    key_on = 'feature.properties.ADM_DR_NM',
    fill_color = 'BuPu',
    legend_name =' ',
    )
_map2
```


ureWarning: The choropleth method has been deprecated. Instead use the new C notebook 'GeoJSON_and_choropleth' for how to do this.

```
In []:
```

```
In []:
```

In [28]:

```
data_
         = data_ [[' ', ' ', 'lon', 'lat']]
data_
data_ .rename(columns={' ':' '}, inplace = True)
data_
data_ ['lon'] = data_ .lon.astype(float)
data_ ['lat'] = data_ .lat.astype(float)
#
   _map = folium.Map(location = [data_ ['lat'].mean(), data_ ['lon'].mean()],zoom_start = 11)
for item in data_ .index:
   latitude = data_ .loc[item,'lat']
   longtitude = data_ .loc[item,'lon']
    \textbf{if} \ \mathsf{data} \_ \ \ .\mathsf{loc}[\mathsf{item}, ' \ '] == ' \ / \ / \ ': 
      colors = 'dodgerblue'
   elif data_ .loc[item, ' '] == ' ':
      colors = 'burlywood'
    \begin{array}{ll} \textbf{elif} \ \mathsf{data}\_ & .\mathsf{loc}[\mathsf{item}, ' & '] == ' & ' \\ \mathsf{colors} = \mbox{'gold'} \\ \end{array} 
   elif data_ .loc[item, ' '] == ' ':
      colors = 'darkolivegreen'
   elif data_ .loc[item, ' '] == ' / ':
   colors = 'slategrey'
   elif data_ .loc[item, ' '] == ' ':
      colors = 'salmon'
   elif data_ .loc[item, ' '] == ' ':
     colors = 'blueviolet'
   elif data_ .loc[item, ' '] == ' ':
      colors = 'lihgtpink'
   popups = folium.Popup(data_ .loc[item, ' '], max_width=150)
   folium. Circle Marker ([latitude, \ long titude],
                popup = popups,
```

```
color = colors,
fill = True).add_to( _map)
_map
```

/opt/app-root/lib/python 3.6/s ite-packages/pand as/core/frame.py: 4308: Setting With Copy Warning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors,

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy # Remove the CWD from sys.path while we load stuff.

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:11: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy # This is added back by InteractiveShellApp.init_path()

Out[28]:

Make this Notebook Trusted to load map: File -> Trust Notebook

```
In [ ]:
```

In [29]:

```
#

data_ _ = _ [[' ',' ( )']]

for i in range(len(data_ _ [' '])):
    if len(data_ _ .loc[i,' ']) == 9:
        data_ _ [' '][i] = data_ _ [' '][i][:5]
    elif len(data_ _ .loc[i,' ']) == 8:

    if data_ _ .loc[i,' '][1] == '':
        data_ _ [' '][i] = data_ _ [' '][i][:5]
    else:
```

```
data_ _ [' '][i] = data_ _ [' '][i][:5]
data_ _
/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:14: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
/opt/app-root/lib/python3.6/site-packages/IPython/core/interactiveshell.py:3343: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
 exec(code_obj, self.user_global_ns, self.user_ns)
/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:12: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
if sys.path[0] == ":
/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
Out[29]:
                 ()
```

	20000.0
1	32000.0
2	32500.0
3	25100.0
4	32250.0
18404	66800.0
18405	40000.0
18406	134000.0
18407	72800.0
18408	74800.0

18409 rows × 2 columns

In [30]:

```
()
data_ _ = data_ _ .groupby(data_ _ .)[' ( )'].mean()
data_ _
data_ _ = data_ _ .reset_index()
data_
for i in range(len(data_ _ [' '])):
   data_ _ [' '][i] = data_ _ [' '][i][1:]
data_ _
```

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:9: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy if __name__ == '__main__':

Out[30]:

	()
0	54000.000000
1	34431.779738
2	13959.120370
3	10585.482759

4	62177.157095
5	73175.011976
6	44911.933291
7	57494.951456
8	65879.284211
9	7851.290323
10	66054.370662
11	56853.738302
12	6392.857143
13	35044.949764
14	39625.319905
15	6625.719101
16	11966.279070
17	2771.408451
18	5652.380952
19	7903.365385
20	16970.891432
21	39196.429032
22	40881.186555

In [31]:

```
#
_ = gpd.read_file(input_path.joinpath('31. _ ( ).geojson'))
_
```

Out[31]:

	EMD_CD	EMD_KOR_NM	geo	ometry
0	36110101		MULTIPOLYGON (((127.30833 36.47977, 127	
1	36110102		MULTIPOLYGON (((127.30480 36.48845, 127	.30480
2	36110103		MULTIPOLYGON (((127.29383 36.48508, 127	
3	36110104		MULTIPOLYGON (((127.27215 36.46388, 127	.27197
4	36110105		MULTIPOLYGON (((127.24631 36.46300, 127	.24626
5	36110106		MULTIPOLYGON (((127.25661 36.47033, 127	.25653
6	36110107		MULTIPOLYGON (((127.26603 36.49182, 127	.26744
7	36110108		MULTIPOLYGON (((127.23978 36.48556, 127	.23966
8	36110109		MULTIPOLYGON (((127.24003 36.48809, 127	.24004
9	36110110		MULTIPOLYGON (((127.25544 36.49534, 127	.25543
10	36110111		MULTIPOLYGON (((127.25357 36.50688, 127	.25357
11	36110112		MULTIPOLYGON (((127.23895 36.53520, 127	.23960
12	36110113		MULTIPOLYGON (((127.25238 36.51029, 127	.25218
13	36110114		MULTIPOLYGON (((127.25357 36.50688, 127	.25348
14	36110115		MULTIPOLYGON (((127.26859 36.53949, 127	
15	36110116		MULTIPOLYGON (((127.27076 36.52337, 127	.27005
16	36110117		MULTIPOLYGON (((127.34569 36.51897, 127	.34628
			MI II TIDOI VOON ///127 31732 36 48175 127	21720

1	7	₹₩ ₽ ₽₽	EMD_KOR_NM	geometry	
1	8	36110250		MULTIPOLYGON (((127.30663 36.60062, 127.30662	
1	9	36110310		MULTIPOLYGON (((127.28524 36.55518, 127.28605	
2	20	36110320		MULTIPOLYGON (((127.32202 36.58302, 127.32209	
2	21	36110330		MULTIPOLYGON (((127.36891 36.48959, 127.36891	
2	22	36110340		MULTIPOLYGON (((127.36098 36.49088, 127.36059	
2	23	36110350		MULTIPOLYGON (((127.23952 36.48582, 127.23966	
2	24	36110360		MULTIPOLYGON (((127.19288 36.60110, 127.19298	
2	25	36110370		MULTIPOLYGON (((127.19609 36.60448, 127.19604	
2	26	36110380		MULTIPOLYGON (((127.27948 36.63350, 127.27948	
2	27	36110390		MULTIPOLYGON (((127.20791 36.71901, 127.20781	

In [32]:

```
data_ _lon_lat = _ _ [['EMD_KOR_NM', 'lon', 'lat']]
data_ _lon_lat = data_ _lon_lat.rename(columns={'EMD_KOR_NM':' '})
data_ _lon_lat
```

Out[32]:

	lon	lat
0	127.310382	36.491414
1	127.301194	36.485012
2	127.288813	36.478255
3	127.274502	36.470178
4	127.246671	36.471256
5	127.254392	36.477017
6	127.264276	36.486736
7	127.249013	36.484422
8	127.243697	36.493832
9	127.265374	36.500819
10	127.247569	36.503792
11	127.236093	36.517375
12	127.251275	36.517544
13	127.262456	36.515875
14	127.253918	36.534591
15	127.271144	36.527016
16	127.333018	36.525097
17	127.329770	36.496421
18	127.282863	36.607327
19	127.279813	36.507784
20	127.330061	36.550718
21	127.381030	36.528753
22	127.290864	36.462920
23	127.207249	36.507231
24	127.247954	36.583444
25	127.199440	36.655088
26	127.253811	36.656332

In [33]:

```
data_ _ .loc[len(data_ _ )] = [' ', 0]
data_ _ .loc[len(data_ _ )] = [' ', 0]
data_ _ .loc[len(data_ _ )] = [' ', 0]
data_ _ .loc[len(data_ _ )] = [' ', 0]
data_ _ .loc[len(data_ _ )] = [' ', 0]
data_ _ .loc[len(data_ _ )] = [' ', 0]
data_ _ .loc[len(data_ _ )] = [' ', 0]
data_ _ .loc[len(data_ _ )] = [' ', 0]
```

Out[33]:

	()
0	54000.000000
1	34431.779738
2	13959.120370
3	10585.482759
4	62177.157095
5	73175.011976
6	44911.933291
7	57494.951456
8	65879.284211
9	7851.290323
10	66054.370662
11	56853.738302
12	6392.857143
13	35044.949764
14	39625.319905
15	6625.719101
16	11966.279070
17	2771.408451
18	5652.380952
19	7903.365385
20	16970.891432
21	39196.429032
22	40881.186555
23	0.000000
24	0.000000
25	0.000000
26	0.000000
27	0.000000
28	0.000000

In [34]:

```
data_ _ [' '][1] = ' '
data_ _ [' '][8] = ' '
data_ _ [' '][11] = ' '
data_ _ [' '][14] = ' '
data_ _ [' '][15] = ' '
data_ _ [' '][16] = ' '
data_ _ [' '][17] = ' '
data_ _ [' '][18] = ' '
```

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

"""Entry point for launching an IPython kernel.

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

 $/opt/app-root/lib/python 3.6/s ite-packages/ipykernel_launcher.py: 3: Setting With Copy Warning: \\$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
This is separate from the ipykernel package so we can avoid doing imports until

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy after removing the cwd from sys.path.

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:5: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

 $See the \ caveats \ in \ the \ documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html \# returning-a-view-versus-a-copy$

/opt/app-root/lib/python3.6/site-packages/ipykernel launcher.py:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy import sys

 $/opt/app-root/lib/python 3.6/site-packages/ipykernel_launcher.py: 8: Setting With Copy Warning: \\$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

In [35]:

```
data_ _ _info = pd.merge(data_ _lon_lat, data_ _ , on =' ', how="outer")
data_ _ _info
```

Out[35]:

	lon	lat	()
0	127.310382	36.491414	57494.951456
1	127.301194	36.485012	NaN
2	127.288813	36.478255	NaN
3	127.274502	36.470178	73175.011976
4	127.246671	36.471256	54000.000000
5	127.246671	36.471256	0.000000
6	127.254392	36.477017	40881.186555
7	127.264276	36.486736	10585.482759
8	127.249013	36.484422	66054.370662
9	127.243697	36.493832	62177.157095
10	127.265374	36.500819	NaN
11	127.247569	36.503792	39196.429032
12	127.236093	36.517375	NaN
13	127.251275	36.517544	35044.949764
14	127.262456	36.515875	44911.933291
15	127.253918	36.534591	0.000000
16	127.271144	36.527016	0.000000
17	127.333018	36.525097	0.000000
18	127.329770	36.496421	0.000000
19	127.282863	36.607327	16970.891432
20	127.279813	36.507784	0.000000
21	127.330061	36.550718	39625.319905
22	127.381030	36.528753	65879.284211

23	127.290 864	36.4629 20	34431.7797 88)
24	127.207249	36.507231	11966.279070
25	127.247954	36.583444	6625.719101
26	127.199440	36.655088	5652.380952
27	127.253811	36.656332	2771.408451
28	127.167851	36.711410	56853.738302
29	NaN	NaN	13959.120370
30	NaN	NaN	7851.290323
31	NaN	NaN	6392.857143
32	NaN	NaN	7903.365385

In [36]:

장군면

세종

```
# , float
data_ _ _info['lon'] = data_ _ _info.lon.astype(float)
data_ _ _info['lat'] = data_ _ _info.lat.astype(float)
```

```
In [37]:

# _ = gpd.read_file(input_path.joinpath('31. _ ( ).geojson'))

_ map = folium.Map(location = [data_ _ _ info['lat'].mean(), data_ _ _ info['lon'].mean()] ,zoom_start = 11)

data = data_ _ _ info[[' ',' ( )']]

folium.Choropleth(
    geo_data = _ ,
    data = data,
    columns=[' ',' ( )'],
    key_on = 'feature.properties.EMD_KOR_NM',
    fill_color = 'BuPu',

999
```

```
In []:
```

,

In [38]:

```
#
= pd.read_csv(input_path.joinpath('20. _ .csv') )
#
= pd.read_csv(input_path.joinpath('21. _ .csv') )
```

Out[38]:

```
      0
      201701
      3

      1
      201701
      9

      2
      201701
      13

      3
      201701
      3

      4
      201701
      1
      1

      ...
      ...
      ...
      ...

      80987
      202101
      22

      80988
      202101
      2
      1

      80989
      202101
      35

      80990
      202101
      13
      1

      80991
      202101
      84
```

80992 rows × 6 columns

In [39]:

```
# data_ = .groupby(' ')[' '].agg('sum')
data_ 
# data_ = .groupby(' ')[' '].agg('sum')
data_
```

Out[39]:

```
104194
    77692
    11042
    24195
    150364
    63403
    36692
    131275
    66903
    10559
    77777
    19753
    19127
    54553
    50845
    17857
    35215
    393101
    101396
    83269
Name: , dtype: int64
```

In [40]:

```
#
ax = data__ .plot(kind ='bar',title =' ', figsize =(15, 5), legend=True, fontsize = 10, color='white')
ax.plot(data__ , linestyle='--', color='red')
ax.set_xlabel(' ', fontsize = 12)
ax.set_ylabel(' ', fontsize = 12)
ax.legend([' '], fontsize=12)
```

Out[40]:

111 [-10]

<matplotlib.legend.Legend at 0x7f2112024198>

In []:

In [41]:

```
# = pd.read_csv(input_path.joinpath('12. _ ( )_ .csv') , encoding='utf-8')

# 
for i in range(len( [' '])):
    [' '][i] = [' '][i][8:12]
```

 $\label{lem:continuous} $$ / \operatorname{opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame $$ $$$

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Out[41]:

					()	()	
0		-	201801	1	331.0	1,050	NaN
1		-	201801	1	330.0	1,190	NaN
2		-	201801	1	331.0	1,290	NaN
3		-	201801	1	2645.0	10,320	NaN
4		-	201801	1	1652.0	11,450	NaN
35672		8m	201712	30	155.0	3,525	NaN
35673		8m	201712	30	199.0	4,500	NaN
35674		8m	201712	30	324.0	4,998	NaN
05035			004740	-00	00.0	450	NI-NI

```
35675 8m 201712 30 30.0 459 NaN () () () 35676 8m 201712 31 364.0 22,000 NaN
```

35677 rows × 10 columns

In [42]:

```
pd.set_option('display.max_rows', 700)

#
[' ( )'] = [' ( )'].apply(lambda x: float(x.split()[0].replace(',',")))
data_ = round( .groupby([' ',' '])[[' ( )',' ( )']].mean(),3)
data_ = data_ .reset_index()
data_
```

Out[42]:

Out[42].		
	()	()
0	4341.750	32.935
1	48542.837	461.911
2	7507.750	89.330
3	769.556	10.837
4	190000.000	1397.900
5	79145.417	1386.710
6	26593.061	936.914
7	10039.000	265.000
8	25759.342	1184.218
9	14822.839	268.825
10	1041.949	38.188
11	14193.846	407.885
12	27482.000	273.420
13	129.000	2.364
14	28333.333	371.333
15	9444.073	1350.164
16	20762.500	392.375
17	18142.635	805.417
18	30000.000	300.000
19	11386.667	2816.000
20	55305.214	1722.143
21	422455.500	5105.667
22	41564.294	356.882
23	283.000	50.667
24	9333.667	261.667
25	404578.429	4588.286
26	567.000	36.000
27	45116.086	296.407
28	57472.187	563.240
29	2532.000	522.000
30	539130.750	2959.750
31	40453.718	848.910
32	23802.500	2403.833
33	24792.738	1254.615
34	9467.938	297.147
35	2715.809	120.009
36	16939.500	684.999
37	800.000	635.000
38	5906.932	1026.870
39	52329.250	746.700

40	15680.207	746.891
41	8300.000	684.000
42	18665.667	405.667
43	4418.389	130.167
44	1044.000	5.000
45	526990.000	9060.000
46	671.375	220.125
47	1446476.000	4211.000
48	109310.618	3001.560
49	16124.432	1440.765
50	8192.565	306.819
51	1605.250	193.785
52	5879.000	778.500
53	3703.312	994.035
54	21670.500	1171.250
55	14575.807	1238.976
56	43028.000	1665.650
57	4387.250	708.250
58	43027.050	336.278
59	1376042.500	2707.002
60	3561999.000	650000.000
61	30995.500	915.796
62	46301.344	1292.953
63	64567.307	1217.847
64	1144.700	58.105
65	8823.889	125.999
66	8392.352	688.958
67	24657.154	1859.885
68	27061.901	668.118
69	363.000	15.000
70	17910.000	203.555
71	1025.000	28.230
72	5110.455	126.909
73	36190.000	883.667
74	36252.091	1935.273
75	3146.800	334.400
76	33143.525	1962.033
77	21730.041	321.750
78	3263.004	67.649
79	24000.000	1587.000
80	15064.933	1002.253
81	4007.500	157.000
82	23548.984	718.900
83	5039.000	247.000
84	17666.667	649.667
85	1342.500 13762.667	33.000
86		173.511
87	28956.350	1362.554
88	8113.400	321.800
89	28386.029	1383.892
90	12318.337	357.688
91	1386.360	62.246
92	16316.225	571.575
93	5940.000	460.200

94	3090.000	134.250
95	32773.333	1450.667
96	6365.149	1136.630
97	15627.400	446.467
98	20112.262	921.078
99	22833.333	364.000
100	4530.000	394.111
101	435.407	21.369
102	430506.714	18138.714
103	18288.267	741.633
104	1500.000	509.000
105	28873.798	1203.600
106	16979.480	361.648
107	1356.200	59.667
108	13435.952	548.214
109	21750.000	618.600
110	14052.820	1078.746
111	1855.227	49.544
112	23515.618	782.244
113	5841.333	165.667
114	14012.000	579.000
115	3655.789	157.513
116	4867.000	72.000
117	264583.000	14230.750
118	16829.610	1958.695
119	988.333	281.000
120	16636.008	1647.628
121	7848.952	460.468
122	769.955	115.153
123	4237.733	497.667
124	1578.000	740.500
125	2630.000	352.000
126	3170.344	1286.666
127	29630.400	1987.834
128	11710.181	1160.431
129	4615.167	336.833
130	5197.333	422.333
131	2959.125	754.000
132	254277.108	8508.359
133	1152.779	126.782
134	12151.500	2202.000
135	11631.424	909.082
136	9594.786	349.843
137	1285.705	82.039
138	2867.962	446.853
139	1920.000	443.000
140	3373.968	1057.189
141	8952.872	352.872
142	9105.671	617.128
143	1556.667	168.667
144	5687.000	200.000
145	25400.000	696.000
146	67493.333	1996.400
147	26120.400	568.800

148	4302.944)	482.056
149	43922.000	703.000
150	28969.820	702.055
151	29548.042	757.905
152	12050.295	151.459
153	989.070	25.215
154	990.000	198.000
155	6500.000	52.000
156	19583.500	897.500
157	7084.811	439.684
158	23097.429	455.143
159	34234.252	807.118
160	25015.667	266.667
161	5090.000	101.000
162	11500.000	150.500
163	344089.408	9120.551
164	35425.187	329.925
165	302024.463	2169.572

In [43]:

```
# - , - data_ [[' ',' ()']] data_ = data_ [[' ',' ()']]
```

In []:

In []:

In [44]:

```
# 31. _ ( ).geojson ,
_lon_lat = data_ _lon_lat
_lon_lat
```

Out[44]:

	lon	lat
0	127.310382	36.491414
1	127.301194	36.485012
2	127.288813	36.478255
3	127.274502	36.470178
4	127.246671	36.471256
5	127.254392	36.477017
6	127.264276	36.486736
7	127.249013	36.484422
8	127.243697	36.493832
9	127.265374	36.500819
10	127.247569	36.503792
11	127.236093	36.517375
12	127.251275	36.517544
13	127.262456	36.515875
1/	107 252019	26 52/501

14	lon	lat
-15	127.271144	36.527016
16	127.333018	36.525097
17	127.329770	36.496421
18	127.282863	36.607327
19	127.279813	36.507784
20	127.330061	36.550718
21	127.381030	36.528753
22	127.290864	36.462920
23	127.207249	36.507231
24	127.247954	36.583444
25	127.199440	36.655088
26	127.253811	36.656332
27	127.167851	36.711410

In [45]:

data_ = data_ .reset_index() data_

Out[45]:

i	index	()	()
0	0	4341.750	32.935
1	1	48542.837	461.911
2	2	7507.750	89.330
3	3	769.556	10.837
4	4	190000.000	1397.900
5	5	79145.417	1386.710
6	6	26593.061	936.914
7	7	10039.000	265.000
8	8	25759.342	1184.218
9	9	14822.839	268.825
10	10	1041.949	38.188
11	11	14193.846	407.885
12	12	27482.000	273.420
13	13	129.000	2.364
14	14	28333.333	371.333
15	15	9444.073	1350.164
16	16	20762.500	392.375
17	17	18142.635	805.417
18	18	30000.000	300.000
19	19	11386.667	2816.000
20	20	55305.214	1722.143
21	21	422455.500	5105.667
22	22	41564.294	356.882
23	23	283.000	50.667
24	24	9333.667	261.667
25	25	404578.429	4588.286
26	26	567.000	36.000
27	27	45116.086	296.407
28	28	57472.187	563.240
29	29	2532.000	522.000
30	30	539130.750	2959.750
31	31	40453.718	848.910
32	32	23802.500	2403.833

33	indeg	24792.7 \$ 8)	1254.6 1(5)
34	34	9467.938	297.147
35	35	2715.809	120.009
36	36	16939.500	684.999
37	37	800.000	635.000
38	38	5906.932	1026.870
39	39	52329.250	746.700
40	40	15680.207	746.891
41	41	8300.000	684.000
42	42	18665.667	405.667
43	43	4418.389	130.167
44	44	1044.000	5.000
45	45	526990.000	9060.000
46	46	671.375	220.125
47	47	1446476.000	4211.000
48	48	109310.618	3001.560
49	49	16124.432	1440.765
50	50	8192.565	306.819
51	51	1605.250	193.785
52	52	5879.000	778.500
53	53	3703.312	994.035
54	54	21670.500	1171.250
55	55	14575.807	1238.976
56	56	43028.000	1665.650
57	57	4387.250	708.250
58	58	43027.050	336.278
59	59	1376042.500	2707.002
60	60	3561999.000	650000.000
61	61	30995.500	915.796
62	62	46301.344	1292.953
63	63	64567.307	1217.847
64	64	1144.700	58.105
65	65	8823.889	125.999
66	66	8392.352	688.958
67	67	24657.154	1859.885
68	68	27061.901	668.118
69	69	363.000	15.000
70	70	17910.000	203.555
71	71	1025.000	28.230
72	72	5110.455	126.909
73	73	36190.000	883.667
74	74	36252.091	1935.273
75	75	3146.800	334.400
76	76	33143.525	1962.033
77	77	21730.041	321.750
78	78	3263.004	67.649
79	79	24000.000	1587.000
80	80	15064.933	1002.253
81	81	4007.500	157.000
82	82	23548.984	718.900
83	83	5039.000	247.000
84	84	17666.667	649.667
85	85	1342.500	33.000
86	86	13762.667	173.511

87	index	28956.3 \$ 0	1362.5 54
88	88	8113.400	321.800
89	89	28386.029	1383.892
90	90	12318.337	357.688
91	91	1386.360	62.246
92	92	16316.225	571.575
93	93	5940.000	460.200
94	94	3090.000	134.250
95	95	32773.333	1450.667
96	96	6365.149	1136.630
97	97	15627.400	446.467
98	98	20112.262	921.078
99	99	22833.333	364.000
100	100	4530.000	394.111
101	101	435.407	21.369
102	102	430506.714	18138.714
103	103	18288.267	741.633
104	104	1500.000	509.000
105	105	28873.798	1203.600
106	106	16979.480	361.648
107	107	1356.200	59.667
108	108	13435.952	548.214
109	109	21750.000	618.600
110	110	14052.820	1078.746
111	111	1855.227	49.544
112	112	23515.618	782.244
113	113	5841.333	165.667
114	114	14012.000	579.000
115	115	3655.789	157.513
116	116	4867.000	72.000
117	117	264583.000	14230.750
118	118	16829.610	1958.695
119	119	988.333	281.000
120	120	16636.008	1647.628
121	121	7848.952	460.468
122	122	769.955	115.153
123	123	4237.733	497.667
124	124	1578.000	740.500
125	125	2630.000	352.000
126	126	3170.344	1286.666
127	127	29630.400	1987.834
128	128	11710.181	1160.431
129	129	4615.167	336.833
130	130	5197.333	422.333
131	131	2959.125	754.000
132	132	254277.108	8508.359
133	133	1152.779	126.782
134	134	12151.500	2202.000
135	135	11631.424	909.082
136	136	9594.786	349.843
137	137	1285.705	82.039
138	138	2867.962	446.853
139	139	1920.000	443.000
140	140	3373.968	1057.189

141	inqlex	8952.81/2	352.872
142	142	9105.671	617.128
143	143	1556.667	168.667
144	144	5687.000	200.000
145	145	25400.000	696.000
146	146	67493.333	1996.400
147	147	26120.400	568.800
148	148	4302.944	482.056
149	149	43922.000	703.000
150	150	28969.820	702.055
151	151	29548.042	757.905
152	152	12050.295	151.459
153	153	989.070	25.215
154	154	990.000	198.000
155	155	6500.000	52.000
156	156	19583.500	897.500
157	157	7084.811	439.684
158	158	23097.429	455.143
159	159	34234.252	807.118
160	160	25015.667	266.667
161	161	5090.000	101.000
162	162	11500.000	150.500
163	163	344089.408	9120.551
164	164	35425.187	329.925
165	165	302024.463	2169.572

In [46]:

```
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data\_ = data\_ [data\_ [' \ '] == ' \ ']
data_ = data_ .set_index(' ')
```

```
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == '
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
      = data_ .set_index(' ')
data
       = data_ [data_ [' '] == ' ']
       = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
data_ = data_ .set_index(' ')
data_ = data_ [data_ [' '] == ' ']
      = data_ .set_index(' ')
```

In [47]:

```
= Bar(data_ [' ( )'], width = 400, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 400, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data\_ [' ()'], width = 650, height = 200).axis\_titles(x = ' ', y = ' ')\\ = Bar(data\_ [' ()'], width = 650, height = 200).axis\_titles(x = ' ', y = ' ')
= Bar(data_ [' ( )'], width = 10, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ( )'], width = 400, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 400, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ( )'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ( )'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ( )'], width = 400, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 400, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 750, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 750, height = 200).axis_titles(x = ' ', y = '
= Bar(data_ [' ( )'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data\_ [' ()'], width = 400, height = 200).axis\_titles(x = ' ', y = ' ')\\ = Bar(data\_ [' ()'], width = 400, height = 200).axis\_titles(x = ' ', y = ' ')\\
= Bar(data_ [' ( )'], width = 400, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 400, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ( )'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ( )'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ( )'], width = 500, height = 200).axis_titles(x = ' ', y = ' ')
                   ()1 width = 500 height = 200) axis titles(x =
```

```
= Bar(data_ [' ()'], width = 650, height = 200).axis_titles(x = '', y = '')
= Bar(data_ [' ()'], width = 650, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 650, height = 200).axis_titles(x = '', y = '')
= Bar(data_ [' ()'], width = 650, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 650, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 650, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ( )'], width = 650, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 650, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data\_ [' ()'], width = 700, height = 200).axis\_titles(x = ' ', y = ' ')\\ = Bar(data\_ [' ()'], width = 700, height = 200).axis\_titles(x = ' ', y = ' ')\\
 = Bar(data_ [' ()'], width = 550, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 550, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data\_ [' ()'], width = 100, height = 200).axis\_titles(x = ' ', y = ' ')\\ = Bar(data\_ [' ()'], width = 100, height = 200).axis\_titles(x = ' ', y = ' ')\\
= Bar(data_ [' ( )'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ( )'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
= Bar(data_ [' ()'], width = 100, height = 200).axis_titles(x = ' ', y = ' ')
```

In [48]:

```
#
      = gpd.read_file(input_path.joinpath('31. _ ( ).geojson'))
 _map = folium.Map(location = [ _lon_lat['lat'].mean(), _lon_lat['lon'].mean()], zoom_start = 11)
 _map.choropleth(
  geo_data =
  key_on = 'feature.properties.EMD_KOR_NM',
  fill_color = 'White',
  fill_opacity = 0.3,
  legend_name ='
for i in range(len( _lon_lat[' '])):
  latitude_ = _lon_lat['lat'][i]
  longtitude_ = _lon_lat['lon'][i]
  latitude_ = ( lon_lat['lat'][i]+0.002)
  longtitude\_ = ( \_lon\_lat['lon'][i]+0.002)
  popups_ = folium.Popup( _lon_lat[' '][i], max_width=100)
  popups_ = folium.Popup( _lon_lat[' '][i], max_width=100)
  if( _lon_lat[' '][i] == ' '):
     popups_ = folium.Popup(max_width=500).add_child(
       folium. Vega(, width = 450, height = 250))
     popups = folium.Popup(max_width=500).add_child(
       folium.Vega( _ , width = 450, height = 250))
  \textbf{elif}( \ \_lon\_lat[' \ '][i] == ' \ '):
    popups_ = folium.Popup(max_width=800).add_child(
       folium. Vega( _ , width = 750, height = 250))
    popups_ = folium.Popup(max_width=800).add_child(
       folium.Vega( \_, width = 750, height = 250))
  elif( _lon_lat[' '][i] == ' '):
    popups_ = folium.Popup(max_width=200).add_child(
       folium. Vega( _ , width = 150, height = 250))
     popups_ = folium.Popup(max_width=200).add_child(
       folium.Vega( _ , width = 150, height = 250))
  elif( _lon_lat[' '][i] == ' '):
    popups_ = folium.Popup(max_width=200).add_child(
       folium.Vega( _ , width = 150, height = 250))
     popups_ = folium.Popup(max_width=200).add_child(
       folium.Vega( \_ , width = 150, height = 250))
```

```
elif( _lon_lat[' '][i] == ' '):
  popups_ = folium.Popup(max_width=500).add_child(
    folium.Vega( _ , width = 450, height = 250))
  popups_ = folium.Popup(max_width=500).add_child(
    folium.Vega( _ , width = 450, height = 250))
elif( _lon_lat[' '][i] == ' '):
  popups_ = folium.Popup(max_width=200).add_child(
    folium.Vega( _ , width = 150, height = 250))
  popups_ = folium.Popup(max_width=200).add_child(
     folium.Vega( \_ , width = 150, height = 250))
\textbf{elif}( \ \_lon\_lat[' \ \ '][i] == ' \ \ '):
  popups_ = folium.Popup(max_width=200).add_child(
    folium.Vega( _ , width = 150, height = 250))
  popups_ = folium.Popup(max_width=200).add_child(
     folium. Vega( _ , width = 150, height = 250))
\textbf{elif}( \ \_lon\_lat[' \ \ '][i] == ' \ \ '):
  popups_ = folium.Popup(max_width=500).add_child(
     folium.Vega( \_ , width = 450, height = 250))
  popups_ = folium.Popup(max_width=500).add_child(
     folium.Vega( _ , width = 450, height = 250))
elif( _lon_lat[' '][i] == ' '):
  popups_ = folium.Popup(max_width=850).add_child(
    folium.Vega( _ , width = 800, height = 250))
  popups_ = folium.Popup(max_width=850).add_child(
     folium.Vega( _ , width = 800, height = 250))
\textbf{elif}( \ \_lon\_lat[' \ \ '][i] == ' \ \ '):
  popups_ = folium.Popup(max_width=200).add_child(
    folium.Vega( _ , width = 150, height = 250))
  popups = folium.Popup(max_width=200).add_child(
     folium.Vega( \_ , width = 150, height = 250))
elif( _lon_lat[' '][i] == ' '):
  popups_ = folium.Popup(max_width=500).add_child(
    folium. Vega( _ , width = 450, height = 250))
  popups_ = folium.Popup(max_width=500).add_child(
     folium.Vega( _ , width = 450, height = 250))
\textbf{elif}( \ \_lon\_lat[' \ '][i] == ' \ '):
  popups_ = folium.Popup(max_width=500).add_child(
     folium.Vega( _ , width = 450, height = 250))
  popups_ = folium.Popup(max_width=500).add_child(
     folium. Vega( _ , width = 450, height = 250))
elif( _lon_lat[' '][i] == ' '):
  popups\_ = folium.Popup(max\_width=200).add\_child(
    folium.Vega( _ , width = 150, height = 250))
  popups_ = folium.Popup(max_width=200).add_child(
     folium.Vega( \_ , width = 150, height = 250))
elif( _lon_lat[' '][i] == ' '):
  popups_ = folium.Popup(max_width=200).add_child(
    folium.Vega( \_ , width = 150, height = 250))
  popups_ = folium.Popup(max_width=200).add_child(
    folium.Vega( _ , width = 150, height = 250))
elif( _lon_lat[' '][i] == ' '):
  popups_ = folium.Popup(max_width=600).add_child(
    folium.Vega( _ , width = 550, height = 250))
  popups_ = folium.Popup(max_width=600).add_child(
     folium.Vega( _ , width = 550, height = 250))
elif( _lon_lat[' '][i] == ' '):
  popups_ = folium.Popup(max_width=750).add_child(
    folium.Vega( _ , width = 700, height = 250))
  popups_ = folium.Popup(max_width=750).add_child(
    folium.Vega( _ , width = 700, height = 250))
\textbf{elif}( \ \_lon\_lat[' \ \ '][i] == ' \ \ '):
  popups_ = folium.Popup(max_width=800).add_child(
     folium.Vega( _ , width = 750, height = 250))
  popups_ = folium.Popup(max_width=800).add_child(
    folium.Vega( \_, width = 750, height = 250))
elif( _lon_lat[' '][i] == ' '):
  popups_ = folium.Popup(max_width=800).add_child(
    folium.Vega( _ , width = 750, height = 250))
  popups_ = folium.Popup(max_width=800).add_child(
```

folium. Vega(width = 750, height = 250))

```
elif( _lon_lat[' '][i] == ' '):
    popups_ = folium.Popup(max_width=800).add_child(
      folium.Vega( _ , width = 750, height = 250))
    popups_ = folium.Popup(max_width=800).add_child(
      folium.Vega( _ , width = 750, height = 250))
  \begin{array}{ll} \textbf{elif}( \ \_lon\_lat[' \ '][i] == ' \ '): \\ popups\_ \ = folium.Popup(max\_width=800).add\_child( \end{array} 
      folium.Vega( _ , width = 780, height = 250))
    popups_ = folium.Popup(max_width=800).add_child(
      folium.Vega( _ , width = 780, height = 250))
  \begin{array}{ll} \textbf{elif(} \_lon\_lat[' \ '][i] == ' \ '): \\ popups\_ = folium.Popup(max\_width=650).add\_child( \end{array} 
      folium.Vega( _ , width = 600, height = 250))
    popups = folium.Popup(max_width=650).add_child(
      folium.Vega( _ , width = 600, height = 250))
 \textbf{elif}( \ \_lon\_lat[' \ \ '][i] == ' \ \ '):
    popups_ = folium.Popup(max_width=200).add_child(
      folium.Vega( _ , width = 150, height = 250))
    popups_ = folium.Popup(max_width=200).add_child(
      folium.Vega( _ , width = 150, height = 250))
 elif( _lon_lat[' '][i] == ' '):
    popups = folium.Popup(max_width=200).add_child(
      folium.Vega( \_ , width = 150, height = 250))
    popups_ = folium.Popup(max_width=200).add_child(
      folium.Vega( _ , width = 150, height = 250))
 elif( _lon_lat[' '][i] == ' '):
    popups_ = folium.Popup(max_width=200).add_child(
      folium.Vega( _ , width = 150, height = 250))
    popups_ = folium.Popup(max_width=200).add_child(
      folium.Vega( _ , width = 150, height = 250))
 folium.CircleMarker([latitude_ , longtitude_ ],
              popup = popups_ ,
              color = 'crimson',
              fill = True).add_to( _map)
 folium.CircleMarker([latitude_ , longtitude_ ],
              popup = popups_ ,
              color = 'midnightblue',
              fill = True).add to( map)
_map
FutureWarning
```

/opt/app-root/lib/python3.6/site-packages/folium/folium.py:415: FutureWarning: The choropleth method has been deprecated. Instead use the new C horopleth class, which has the same arguments. See the example notebook 'GeoJSON_and_choropleth' for how to do this.

Out[48]:

Make this Notebook Trusted to load map: File -> Trust Notebook

```
In []:
```

In []:

```
( - -/ -
```

In [49]:

```
= pd.read_csv(input_path.joinpath('13. _ _ .csv'))
for i in range(len( [' '])):
     [' '][i] = [' '][i][8:]
  [' \quad '] = ' \quad '
      ] = 0
for i in range(len( [' ()'])):
   if [' ()'][i]/3.3 < 10:
        [' '][i] = '10
   elif [' \ '][i] = 1
( )'][i]/3.3 < 20:
        [' '][i] = '10
   [' '][i] = 10
elif [' ()'][i]/3.3 < 30:
        [' '][i] = '20
            '][i] = 20
   elif [' ()'][i]/3.3 < 40:
        [' '][i] = '30
   [' '][i] = 30
elif [' ()'][i]/3.3 < 50:
        [' '][i] = '40 '
   [' '][i] = 40
elif [' ()'][i]/3
             ()'][i]/3.3 < 60:
           '][i] = '50
        [' '][i] = 50
   elif [' ()'][i]/3.3 < 70:
        [' '][i] = '60
           '][i] = 60
```

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy import sys

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:25: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:26: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:19: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:20: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation; https://nandas.nvdata.org/nandas.docs/stable/user_quide/indexing.html#returning-a-view-versus-a-con

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:22: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:23: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: $https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html\#returning-a-view-versus-a-copy/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:28: SettingWithCopyWarning:$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:29: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:16: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy app.launch_new_instance()

/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:17: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:31: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:32: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:34: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy/opt/app-root/lib/python3.6/site-packages/ipykernel_launcher.py:35: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Out[49]:

				()	()				/			
0	19	() 1	105.6138	37,725	5	201710	11		NaN	30	30
1	19	()	59.6506	22,169	2	201710	13		NaN	10	10
2	19	()	59.6506	22,569	17	201710	13		NaN	10	10
3	19	()	84.9544	33,572	16	201710	14		NaN	20	20
4	19	()	84.9544	32,072	12	201710	14		NaN	20	20
7413		M5		84.4700	41,220	12	202005	18		NaN	20	20
7414	6-4	L1		84.9500	43,954	4	202003	7		NaN	20	20
7415	6-4	L1		59.0000	49,000	12	202007	6		NaN	10	10
7416	6-4	M1	1	112.8900	84,000	3	202007	9		NaN	30	30
7417	6-4	M1		84.9500	56,672	21	202009	17		NaN	20	20

7418 rows × 11 columns

In [50]:

```
# - - / -
[' ( )'] = [' ( )'].apply(lambda x: float(x.split()[0].replace(',',")))
data_ = round( .groupby([' ',' ',' ',' '])[[' ( )']].mean(),3)
data_
```

Out[50]:

19	10	24573.667)
1	20	33793.462
	30	38117.167
19 ()	10	25477.764
	20	35283.886
	30	40881.593
1 (1)	30	42998.462
2	60	63900.000
2 (2)	30	49333.000
(2,1-1,M6)	30	37598.000
18	30	41137.222
18 ()	30	39489.599
	40	65683.333
1 ()	30	43532.500
1	20	48184.500
	30	54319.000
2	20	60034.000
	30	71972.000
	20	49344.000
HO1	20	47325.000
	30	57820.000
SR	10	11608.148
	10	26500.000
2	10	12768.100
	10	11000.000
2	10	13009.143
	10	12442.000
	10	11222.429
	10	19505.000
	10	13233.333
11 ()	20	36883.915
12 (2-1,)	10	33440.600
	20	43755.500
	30	48539.800
1 (2-1,)	10	30387.931
	20	38982.308
	30	45357.896
	40	45143.000
	50	40251.000
2 (2-1 ,)	20	38196.027
	30	43488.000
	40	50066.000
3 (2-1)	10	27757.952
	20	38429.018
	30	41987.200
	20	31730.000
4 (2-1, e)	10	25357.000
	20	47526.000
	20	33526.000
5 (2-1,)	10	29381.000
	-00	10001 107

	20	40391.467
1	30	52541.850
	40	53663.000
6 (2-1)	10	28243.191
	20	41588.951
	30	50459.628
	40	48800.000
8 (2-1,)	10	32879.114
10 (2-1,)	20	44399.931
	30	49265.133
11 ()	20	42412.000
1	20	42940.000
	30	40201.000
	30	50000.000
2	20	43407.125
3	10	27002.000
	20	40738.500
4	10	31387.000
5 ()	30	65413.000
6	10	21400.000
	20	46786.667
	30	56080.000
8 ()	10	39952.000
e (3-1M4)	30	46451.000
	40	67046.000
(3-1 M2)	10	14153.000
	10	27805.000
	20	35628.590
(3-1,L3)	10	26187.080
	20	36635.288
S (3-1 M6)	20	40372.177
	30	47278.500
	50	45000.000
	20	39625.271
	30	76266.667
1	20	49362.000
3	10	27649.333
	20	34439.667
4	20	53200.000
	30	52250.000
11 ()	20	34628.273
(1-4 H1)	20	34963.962
	10	13000.000
4-1 M2	20	41756.831
	30	50005.179
	40	86646.000
(L4)	20	29928.667
	10	27271.000
(4-1 M3)	10	35142.000
	20	42125.500
	30	50000.000
1	20	56661.500
2	10	30112.556
	20	37509.000

3	20	46494.060
1	30	59191.333
	10	14973.800
	10	13355.000
4-1 L2	10	30798.008
	20	41439.950
	30	37523.000
4-1 M1	20	46899.081
	30	65450.500
	40	80660.000
3-2 M3 1	10	29086.449
	20	38301.725
3-2 H1	20	40566.910
	30	48323.348
	20	37450.000
2 (3-2 C2-4)	10	8000.000
(3-2 L2)	20	38202.105
	30	42800.938
	20	35091.605
	30	42791.600
	30	42550.000
(3-2,L3)	20	39204.000
	30	45343.606
	20	38985.500
	30	44300.000
	10	8500.000
4 (3-2 M1)	10	33743.524
	20	42240.000
4	20	32880.556
	30	43790.660
7	20	52425.000
	30	59226.667
10 (S)	20	40500.000
	30	47800.000
1 ()	10	32786.600
	20	41483.500
	10	31450.000
5 ()	30	46890.000
6 ()	20	45390.000
	30	48230.000
8 ()	20	38358.333
	30	44150.000
12 (2-2,)	10	31533.800
	20	41120.143
	30	65613.000
1 ()	20	35475.058
	30	42587.000
	30	47890.000
2 ()	10	27940.450
	20	35364.909
4 ()	20	35572.143
	30	40188.611

5 ()	10	28148.260)
1	20	36582.043
	30	38615.625
6 ()	20	33098.333
	30	44920.286
9 (2-2)	20	44571.000
	30	51507.231
10 ()	10	34941.000
	20	48251.000
12 ()	10	31292.889
	20	35730.500
13 (,H1)	20	38155.772
14 ()	30	55500.000
1 ()	20	38917.000
	30	46006.154
2 ()	10	30343.125
	20	39110.000
3 (&)	20	36492.500
	30	49430.000
3 ()	20	35844.103
	30	41820.667
4 (&)	20	35781.375
	30	41601.429
5 ()	10	29747.500
	20	40000.000
	30	41590.000
6 ()	30	48650.000
9 ()	30	46944.500
(M3)	10	32918.781
	20	46403.385
	30	52969.000
(M4) 11	20	52044.857
	30	55909.667
(M5) 14	20	50262.667
	30	56209.833
1	20	47133.333
	30	57000.000
5 ()	10	26948.462
	20	34970.000
6 ()	10	29335.455
	20	36767.000
	20	40000.000
S	20	40286.161
	30	50711.400
	10	11500.000
C3-3 L2	10	11140.000
	10	25336.774
	20	34449.500
3-3 M6	10	26067.909
	20	32103.742
H3	20	31050.000
S- 1-5 H9	20	47224.000
	40	87055.000

2	20	46195.0 (0)
LH 1-3 M1 /	20	27200.000
9	30	49200.000
L1	20	41490.000
M1	20	37215.000
M5	20	41220.000
6-4 L1	10	35911.333
	20	43954.000
6-4 M1	20	46892.000
	30	64929.500

In []:

```
In [51]:
```

```
# [' ( )'] = [' ( )'].apply(lambda x: float(x.split()[0].replace(',',")))
data_ = round( .groupby([' ',' ',' ',' '])[[' ( )',' ']].mean(),3)
data_
```

Out[51]:

() 19 24573.667 10 10 33793.462 20 20 30 38117.167 30 19 () 10 25477.764 10 20 35283.886 20 40881.593 30 30 1 (1) 30 42998.462 30 2 63900.000 60 60 49333.000 30 2 (2) 30 (2,1-1,M6) 30 37598.000 30 18 30 41137.222 30 18 () 30 39489.599 30 65683.333 40 40 1() 30 43532.500 30 20 48184.500 20 54319.000 30 30

2

HO1

SR

2

2

20

30

20

20 30

10

10

10

10

10

10

60034.000 20

71972.000 30

49344.000 20

47325.000 20

57820.000 30

26500.000 10

1

11608.148

12768.100

11000.000

13009.143 1

12442.000 1

10 19505.000 10 10 19505.000 10 10 13233.333 1 11 () 20 36883.915 20 12 (2-1,) 10 33440.600 10 20 43755.500 20 30 48539.800 30 1 (2-1,) 10 30387.931 10 20 38982.308 20 30 45357.896 30 40 45143.000 40 50 40251.000 50 2 (2-1 ,) 20 38196.027 20 30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
10
10
11 () 20 36883.915 20 12 (2-1,) 10 33440.600 10 20 43755.500 20 30 48539.800 30 1 (2-1,) 10 30387.931 10 20 38982.308 20 30 45357.896 30 40 45143.000 40 50 40251.000 50 2 (2-1 ,) 20 38196.027 20 30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
12 (2-1,) 10 33440.600 10 20 43755.500 20 30 48539.800 30 1 (2-1,) 10 30387.931 10 20 38982.308 20 30 45357.896 30 40 45143.000 40 50 40251.000 50 2 (2-1 ,) 20 38196.027 20 30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
20 43755.500 20 30 48539.800 30 1 (2-1,) 10 30387.931 10 20 38982.308 20 30 45357.896 30 40 45143.000 40 50 40251.000 50 2 (2-1 ,) 20 38196.027 20 30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
30 48539.800 30 1 (2-1,) 10 30387.931 10 20 38982.308 20 30 45357.896 30 40 45143.000 40 50 40251.000 50 2 (2-1 ,) 20 38196.027 20 30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
1 (2-1,) 10 30387.931 10 20 38982.308 20 30 45357.896 30 40 45143.000 40 50 40251.000 50 2 (2-1 ,) 20 38196.027 20 30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
20 38982.308 20 30 45357.896 30 40 45143.000 40 50 40251.000 50 2 (2-1 ,) 20 38196.027 20 30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
30 45357.896 30 40 45143.000 40 50 40251.000 50 2 (2-1 ,) 20 38196.027 20 30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
40 45143.000 40 50 40251.000 50 2 (2-1 ,) 20 38196.027 20 30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
2 (2-1 ,) 20 38196.027 20 30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
2 (2-1 ,) 20 38196.027 20 30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
30 43488.000 30 40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
40 50066.000 40 3 (2-1) 10 27757.952 10 20 38429.018 20
3 (2-1) 10 27757.952 10 20 38429.018 20
20 38429.018 20
20 41007.000 00
30 41987.200 30
20 31730.000 20
4 (2-1, e) 10 25357.000 10
20 47526.000 20
20 33526.000 20
5 (2-1,) 10 29381.000 10
20 40391.467 20
30 52541.850 30
40 53663.000 40
6 (2-1) 10 28243.191 10
20 41588.951 20
30 50459.628 30
40 48800.000 40
8 (2-1,) 10 32879.114 10
10 (2-1,) 20 44399.931 20
30 49265.133 30
11 () 20 42412.000 20
1 20 42940.000 20
30 40201.000 30
30 50000.000 30
2 20 43407.125 20
3 10 27002.000 10
20 40738.500 20
4 10 31387.000 10
5 () 30 65413.000 30
6 10 21400.000 10
20 46786.667 20
30 56080.000 30
8 () 10 39952.000 10
e (3-1M4) 30 46451.000 30
40 67046.000 40
(3-1 M2) 10 _{14153.000} 1
10 27805.000 10
20 35628.590 20
(3-1,L3) 10 26187.080 10

	20	36635.288	20
S (3-1 M6)	20	40372.177	20
	30	47278.500	30
	50	45000.000	50
	20	39625.271	20
	30	76266.667	30
1	20	49362.000	20
3	10	27649.333	10
•	20	34439.667	20
4	20	53200.000	20
·	30	52250.000	30
11 ()	20	34628.273	20
(1-4 H1)	20	34963.962	20
(1-4 111)	10	13000.000	
4-1 M2			10
4-1 M2	20	41756.831	20
	30	50005.179	30
<i>"</i>	40	86646.000	40
(L4)	20	29928.667	20
	10	27271.000	10
(4-1 M3)	10	35142.000	10
	20	42125.500	20
	30	50000.000	30
1	20	56661.500	20
2	10	30112.556	10
	20	37509.000	20
3	20	46494.000	20
	30	59191.333	30
	10	14973.800	1
	10	13355.000	10
4-1 L2	10	30798.008	10
	20	41439.950	20
	30	37523.000	30
4-1 M1	20	46899.081	20
	30	65450.500	30
	40	80660.000	40
3-2 M3 1	10	29086.449	10
	20	38301.725	20
3-2 H1	20	40566.910	20
	30	48323.348	30
	20	37450.000	20
2 (3-2 C2-4)	10	8000.000	1
(3-2 L2)	20	38202.105	20
	30	42800.938	30
	20	35091.605	20
	30	42791.600	30
	30	42550.000	30
(3-2,L3)	20	39204.000	20
. , ,	30	45343.606	30
	20	38985.500	20
	30	44300.000	30
ı	10	8500.000	1
A / 2-2 M4\	10	33743.524	10
4 (3-2 M1)	10	JJ/4J.524	IU

	20	42240.0(00)	20
4 /	20	32880.556	20
	30	43790.660	30
7	20	52425.000	20
	30	59226.667	30
10 (S)	20	40500.000	20
	30	47800.000	30
1 ()	10	32786.600	10
	20	41483.500	20
	10	31450.000	10
5 ()	30	46890.000	30
6 ()	20	45390.000	20
	30	48230.000	30
8 ()	20	38358.333	20
	30	44150.000	30
12 (2-2,)	10	31533.800	10
	20	41120.143	20
	30	65613.000	30
1 ()	20	35475.058	20
	30	42587.000	30
2 ()	30	47890.000	30
2 ()	10	27940.450	10
4 ()	20	35364.909	20
4 ()	20 30	35572.143 40188.611	30
5 ()	10	28148.260	10
3 ()	20	36582.043	20
	30	38615.625	30
6 ()	20	33098.333	20
	30	44920.286	30
9 (2-2)	20	44571.000	20
	30	51507.231	30
10 ()	10	34941.000	10
	20	48251.000	20
12 ()	10	31292.889	10
	20	35730.500	20
13 (,H1)	20	38155.772	20
14 ()	30	55500.000	30
1 ()	20	38917.000	20
	30	46006.154	30
2 ()	10	30343.125	10
	20	39110.000	20
3 (&)	20	36492.500	20
	30	49430.000	30
3 ()	20	35844.103	20
		41820.667	30
4 (&)	20	35781.375	20
. , .	30	41601.429	30
5 ()	10	29747.500	10
	20	40000.000	20
6 ()	30	41590.000	30
6 ()	30	48650.000	30
9 ()		46944.500	30
(M3)	10	32918.781	10

	20	46403.3 8 5)	20
1	30	52969.000	30
(M4) 11	20	52044.857	20
	30	55909.667	30
(M5) 14	20	50262.667	20
	30	56209.833	30
1	20	47133.333	20
	30	57000.000	30
5 ()	10	26948.462	10
	20	34970.000	20
6 ()	10	29335.455	10
	20	36767.000	20
	20	40000.000	20
S	20	40286.161	20
	30	50711.400	30
	10	11500.000	1
C3-3 L2	10	11140.000	1
	10	25336.774	10
	20	34449.500	20
3-3 M6	10	26067.909	10
	20	32103.742	20
Н3	20	31050.000	20
S- 1-5 H9	20	47224.000	20
	40	87055.000	40
2	20	46195.000	20
LH 1-3 M1	20	27200.000	20
9	30	49200.000	30
L1	20	41490.000	20
M1	20	37215.000	20
M5	20	41220.000	20
6-4 L1	10	35911.333	10
	20	43954.000	20
6-4 M1	20	46892.000	20
	30	64929.500	30

In [53]:

```
#
data_ = data_ .reset_index()
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
data_ = data_ [data_ [' '] == ' ']
```

In [54]:

```
import matplotlib
matplotlib.font_manager._rebuild()
plt.rc("font", family="Malgun Gothic")
#'' ,'' ,
```

```
_scatter = plt.figure(figsize=(15,4))
_{\text{scatter}} = \text{plt.xticks}(\text{rotation} = 45)
_scatter = plt.scatter(data_ _ [' '],data_ _ [' ( )'], c = data_ _ [' / ']==' ', edgecolors='grey', linewidth=2, s=data_ _ [' ']*3, alpha = 0.5)
_scatter = plt.xlabel(' ')
_scatter = plt.ylabel(' ( )')
scatter = plt.title(' ')
_scatter = plt.figure(figsize=(15,4))
_scatter = plt.xticks(rotation = 45)
_scatter = plt.scatter(data_ _ [' '],data_ _ [' ( )'], c = data_ _ [' / ']==' ', edgecolors='grey', linewidth=2, s=data_ _ [' ']*3, alpha = 0.5)
_scatter = plt.xlabel(' ')
_scatter = plt.ylabel(' ( )')
_scatter = plt.title(' ')
_scatter = plt.figure(figsize=(15,4))
_scatter = plt.xticks(rotation = 90)
_scatter = plt.scatter(data_ _ [' '],data_ _ [' ( )'], c = data_ _ [' / ']=='', edgecolors='grey', linewidth=2, s=data_ _ [' ']*3, alpha = 0.5)
_scatter = plt.xlabel(' ')
_scatter = plt.ylabel(' ( )')
_scatter = plt.title(' ')
_scatter = plt.figure(figsize=(15,4))
 scatter = plt.xticks(rotation = 45)
_scatter = plt.scatter(data_ _ [' '],data_ _ [' ()'], c = data_ _ [' / ']==' ', edgecolors='grey', linewidth=2, s=data_ _ [' ']*3, alpha = 0.5)
_scatter = plt.xlabel(' ')
_scatter = plt.ylabel(' ( )')
scatter = plt.title(' ')
scatter = plt.figure(figsize=(15,4))
\_scatter = plt.scatter(data\_ \_ [' '], data\_ \_ [' '], c = data\_ \_ [' '] = "', edgecolors = "grey", linewidth = 2, s = data\_ \_ [' '] * 3, alpha = 0.5)
_scatter = plt.xlabel(' ')
scatter = plt.ylabel(' ()')
_scatter = plt.title('
_scatter = plt.figure(figsize=(15,4))
_scatter = plt.xticks(rotation = 90)
_scatter = plt.scatter(data_ _ [' '],data_ _ [' ()'], c = data_ _ [' / ']==' ', edgecolors='grey', linewidth=2, s=data_ _ [' ']*3, alpha = 0.5)
_scatter = plt.xlabel(' ')
_scatter = plt.ylabel(' (
scatter = plt.title(' ')
_scatter = plt.figure(figsize=(15,4))
_scatter = plt.xticks(rotation = 90)
_scatter = plt.scatter(data_ _ [' '],data_ _ [' ( )'], c = data_ _ [' / ']==' ', edgecolors='grey', linewidth=2, s=data_ _ [' ']*3, alpha = 0.5)
_scatter = plt.xlabel(' ')
_scatter = plt.ylabel(' ( )')
_scatter = plt.title(' ')
_scatter = plt.figure(figsize=(15,4))
_scatter = plt.xticks(rotation = 90)
_scatter = plt.scatter(data_ _ [' '],data_ _ [' ( )'], c = data_ _ [' / ']==' ', edgecolors='grey', linewidth=2, s=data_ _ [' ']*3, alpha = 0.5)
_scatter = plt.xlabel(' ')
_scatter = plt.ylabel(' ( )')
scatter = plt.title(' ')
_scatter = plt.figure(figsize=(15,4))
scatter = plt.xticks(rotation = 45)
_scatter = plt.scatter(data_ _ [' '],data_ _ [' ()'], c = data_ _ [' / ']==' ', edgecolors='grey', linewidth=2, s=data_ _ [' ']*3, alpha = 0.5)
_scatter = plt.xlabel(' ')
scatter = plt.ylabel('
                        ( )')
_scatter = plt.title(' ')
_scatter = plt.figure(figsize=(15,4))
\_scatter = plt.scatter(data\_ [' '],data\_ [' ()'], c = data\_ [' / ']==' ', edgecolors='grey', linewidth=2, s=data\_ [' ']*3, alpha = 0.5)
_scatter = plt.xlabel(' ')
_scatter = plt.ylabel(' (
_scatter = plt.title(' ')
_scatter = plt.figure(figsize=(15,4))
_scatter = plt.scatter(data_ _ [' '],data_ _ [' ( )'], c = data_ _ [' / ']==' ', edgecolors='grey', linewidth=2, s=data_ _ [' ']*3, alpha = 0.5)
_scatter = plt.xlabel(' ')
_scatter = plt.ylabel(' (
_scatter = plt.title(' ')
_scatter = plt.figure(figsize=(15,4))
_scatter = plt.scatter(data_ _ [' '],data_ _ [' ( )'], c = data_ _ [' / ']==' ', edgecolors='grey', linewidth=2, s=data_ _ [' ']*3, alpha = 0.5)
_scatter = plt.xlabel(' ')
_{\rm scatter} = {\rm plt.ylabel(')}
                         ( )')
_scatter = plt.title(' ')
_scatter = plt.figure(figsize=(15,4))
```

[' ()'] a data [' / '] !! addacalara laray! linowidth 2 a data

[' ']*2 alpha 0.5\

'l doto


```
#
_ = pd.read_csv(input_path.joinpath('22. _ _ .csv'))

#
for i in range( _ .shape[1]):
    if( _ .columns[i] != ' '):
        _ data = _ .columns[i][7:]
        _ = _ .rename({ _ .columns[i]: _data }, axis = 'columns')
    -
```

Out[55]:

	(()	(0~9)	(10~19)	(20~29)	(30~39)	(40~49)	(50~59)	(60~69)	 (10~19)	(20~29)	(30~39)	(40~49)	(50~59)	(60~69)	(70~79)	(80~89)	(9
0	121937	121937	17864	13917	13463	22372	23665	15288	8922	 21252	18385	31411	33519	21592	15113	7736	4672	
1	23529	23529	2525	2473	3461	3783	4126	3393	2131	 2050	2811	2436	3186	3110	2676	1725	930	
2	1463	1463	56	93	220	176	263	296	203	 54	156	104	109	210	221	138	102	
3	1828	1828	87	123	210	228	247	368	318	 63	112	116	123	245	307	224	212	
4	3554	3554	235	287	472	505	588	650	396	 170	255	274	314	457	511	353	251	
5	5033	5033	263	287	616	620	767	1013	814	 206	369	354	387	715	836	606	437	
6	3427	3427	132	199	540	510	574	648	451	 144	371	272	294	556	514	302	244	
7	4182	4182	222	328	532	526	616	770	637	 200	312	268	355	524	657	517	338	
8	3312	3312	194	285	403	392	520	642	431	 172	230	197	273	454	453	377	300	
9	2124	2124	67	97	245	225	289	488	385	 56	119	92	125	287	374	259	208	
10	1464	1464	89	126	190	170	273	264	184	 96	110	71	133	190	190	150	130	
11	17376	17376	3185	2466	1760	3364	3790	1833	662	 1662	838	1412	2327	1221	607	271	136	
12	0	0	0	0	0	0	0	0	0	 1997	2002	3141	3036	1582	839	281	139	
13	15108	15108	2633	1930	1569	3111	3218	1573	666	 2630	2438	3977	4249	2183	1190	550	322	
14	24906	24906	5273	3370	1963	5463	5369	2016	1042	 2075	874	1907	3091	1225	613	237	107	
15	14631	14631	2903	1853	1282	3299	3025	1334	602	 2119	1411	2886	3138	1597	1049	432	225	
16	0	0	0	0	0	0	0	0	0	 2337	1352	3562	3714	1796	1240	429	145	
17	0	0	0	0	0	0	0	0	0	 1755	1611	3967	3050	1845	901	308	143	
18	0	0	0	0	0	0	0	0	0	 1238	981	2001	1930	1128	672	220	109	

```
0
(20~29
                                                        0
(40~49
                                                                0
(50~59
19
                               (10~19
                                               (30~39
                                                                               0
                                                                                         527
                                                                                                  648
                                                                                                         1150
                                                                                                                   948
                                                                                                                            840
                                                                                                                                    418
                                                                                                                                         114
(70~79
                                                                                                       (30~39
                                                                         (60~69
                                                                                 ... (10~19
                                                                                              (20~29
                                                                                                                (40~49
                                                                                                                        (50~59
                                                                                                                                 (60~69
                                                                                                                                                  (80~89 (9
                                              )
                                                      )
                                                              )
                                                                       )
                                                                                )
                                                                                                                     )
                                                                                                                                               )
                                                                                                                                                       )
            0
                     0
                            0
                                     0
                                             0
                                                      0
                                                              0
                                                                       0
                                                                                        1701
                                                                                                 1385
                                                                                                                          1427
                                                                                                                                    845
                                                                                                                                            243
                                                                                                                                                     114
20
                                                                                                         3224
                                                                                                                  2737
```

21 rows × 1249 columns

In [56]:

```
data_ _ = _ .transpose().reset_index()[1:]
data_ _ = data_ _ .rename(columns={'index':' _ ',0:' ', 1:' ', 2:' ',3:' ', 4:' ',5:' ',6:' ',7:' ',8:' ',9:' ', 10:' ', 11:' ',12:' ', 13:' ',14:'
',15:' ',16:' ',17:' ',18:' ',19:' ',20:' '})
data_ _
```

Out[56]:

(_ _) 121937) 121937 (0~9) (10~19) (20~29)... (60~69) (70~79)(80~89)(90~99)... (100_) 1 ...

1248 rows × 22 columns

In [57]:

```
data_ _ [' '] = '0'
data_ _ [' '] = '2017'
data_ _ [' '] = '2017'

for i in range(1,len(data_ _ [' _ '])+1):
    data_ _ [' '][i] = data_ _ [' _ '][i][-7:-2]
    data_ _ [' '][i] = data_ _ [' _ '][i][4]
    data_ _ [' '][i] = data_ _ [' _ '][i][7:9]

data_ _ [' '][i] = data_ _ [' _ '][i][7:9]
```

Out[57]:

(_ _) 121937 () 121937 ((... (0~9) O O (0~9 (0 (10~19)10~19 (1 ... (20~29) (2 20~29 (60~69)60~69 (6 377 ... 70~79 (7 (70~79)(80~89) 80~89 (8 (90~99)60 ... 90~99 9 (9 (100_{-}) 00_ (1

1248 rows × 25 columns

In [58]:

```
data_ = data_ _ .drop(index_ 1)
data_ = data_ _ .drop(index_ 2)
data_ _ = data_ _ .drop(index_ 2)
```

Out[58]:

(0~9) 17864 2525 56 87 235 263 132 222 194 ... 5273 2903 0 0 (0~9) (0 93 123 287 287 199 328 285 ... 3370 1853 (10~19) 13917 2473 0 0 0 0 0 10~19 9 (1 (20~29) 13463 3461 220 210 472 616 540 532 403 ... 1963 1282 0 0 0 0 (2 0 20~29 9 (30~39) 22372 3783 176 228 505 620 510 526 392 ... 5463 3299 0 0 0 0 0 30~39 9 (3 (40~49) 23665 4126 263 247 588 767 574 616 520 ... 5369 3025 0 0 0 0 0 40~49 9 (4 (60~69) 15113 2676 221 307 511 836 514 657 453 ... 613 1049 1240 901 672 418 845 60~69 9 1244 (6 1245 (70~79) 1725 138 224 353 606 302 517 377 ... 237 432 429 308 220 114 243 70~79 9 (7 300 ... (80~89) 4672 930 102 212 251 107 225 (8 1246 437 244 338 145 143 109 80 114 80~89 9 1247 (90~99) 915 162 23 45 32 91 38 54 60 ... 27 30 37 42 28 24 28 90~99 9 (9 (100_) 22 7 1 0 1 2 1 2 1 ... 0 0 0 3 0 0 0 1248 00 _ _ (1

1056 rows × 25 columns

In [59]:

```
data_ _ = data_ _ .reset_index()

del(data_ _ ['index'])

i = data_ _ .loc[data_ _ [' '] == '(0~9'][' '].index

j = data_ _ .loc[data_ _ [' '] == '00 _ ][' '].index

data_ _ [' '][i] = '0~9'

data_ _ [' '][j] = '00 _ '

del(data_ _ [' _ '])

data_ _ [' _ '])
```

Out[59]:

•••

0	17864	2525	56	87	235	263	132	222	194	67	 5273	2903	0	0	0	0	0	0~9)	(0
1	13917	2473	93	123	287	287	199	328	285	97	 3370	1853	0	0	0	0	0	10~19	9	(1
2	13463	3461	220	210	472	616	540	532	403	245	 1963	1282	0	0	0	0	0	20~29	9	(2
3	22372	3783	176	228	505	620	510	526	392	225	 5463	3299	0	0	0	0	0	30~39	9	(3
4	23665	4126	263	247	588	767	574	616	520	289	 5369	3025	0	0	0	0	0	40~49	9	(4
1051	15113	2676	221	307	511	836	514	657	453	374	 613	1049	1240	901	672	418	845	60~69	9	(6
1052	7736	1725	138	224	353	606	302	517	377	259	 237	432	429	308	220	114	243	70~79	9	(7
1053	4672	930	102	212	251	437	244	338	300	208	 107	225	145	143	109	80	114	80~89	9	(8
1054	915	162	23	45	32	91	38	54	60	41	 27	30	37	42	28	24	28	90~99	9	(9
1055	22	7	1	0	1	2	1	2	1	2	 0	0	0	3	0	0	0	00_	_	(1

1056 rows × 24 columns

In [60]:

```
data_ _ .groupby(['',' ',' ']).sum()
```

Out[60]:

...

(0)	0~9	1068348	98161	2432	2895	9920	9413	5547	9776	6931	2526	 84654	140764	119449	107492	129029	140166	71050
(1	9	10~19	873399	111294	3500	4244	10979	11887	8454	13032	12078	3884	 87026	94979	104514	102776	95367	90385	36346
	-	00_	65	31	0	0	0	2	0	0	15	0	 1	0	0	0	0	0	•

(2	9	20~29	803633	170854	9651	9238	22897	25818	25763	24541	17666	10019	 45950	87742	80562	43552	59842	52828	35860
(3	9	30~39	1320393	154401	9868	8810	21926	26071	25103	23501	16257	9363	 76014	181140	143090	91676	141095	146844	91318
(4	9	40~49	1447894	185701	11605	10713	26492	32478	27450	29107	23090	12224	 120268	158174	162372	142768	149064	146257	69352
(5	9	50~59	941561	165861	14794	16179	30934	46129	31899	36738	29295	22082	 60284	82853	86751	58104	68877	59675	40088
(6	9	60~69	571311	113362	11271	16376	21500	42037	24203	32489	22971	20599	 23909	39480	38244	24116	35468	38027	20088
(7	9	70~79	268077	61655	5573	8352	13664	23460	12377	18811	13816	11400	 9842	11340	16650	8460	15748	13741	5944
(8	9	80~89	97687	22901	2214	4285	6220	9659	6166	9239	7596	5070	 2604	2214	5128	2370	3582	2793	842
(9	9	90~99	9272	2220	151	371	579	948	500	629	524	255	 410	367	733	378	371	306	164
(0)	0~9	1021119	92339	2198	3676	8999	9047	5742	10056	6682	2283	 81472	135568	113496	99664	125795	132264	6825!
(1	9	10~19	863678	106080	3091	3266	9896	10854	7941	10708	10117	3478	 86555	100561	103621	97259	97265	91377	38437
	-	00_	1287	305	27	37	33	168	75	99	44	125	 56	11	22	19	74	53	27
(2	9	20~29	783021	137593	6416	6377	13801	19884	17750	16165	13393	6614	 46402	105031	99105	44047	68819	59221	3940 ⁻
(3	9	30~39	1395810	135713	5318	6472	13392	18702	12660	15800	11304	5098	 93442	197704	166400	117728	166160	167244	96306
(4	9	40~49	1335969	160539	5389	7009	17194	20527	14452	18354	16043	7491	 120602	158077	162154	143942	142859	141143	67090
(5	9	50~59	876874	153402	10568	12349	23748	36730	25761	29030	23339	15566	 55132	86362	82211	51278	71620	67768	41089
(6	9	60~69	585313	116640	9207	14090	22451	37505	22001	29053	21048	17408	 26658	42358	43537	25924	42415	44795	20907
(7	9	70~79	333202	79031	6910	11176	17996	29263	14586	24448	19401	12028	 12577	13316	22148	10876	18311	14793	640
(8	9	80~89	200244	40276	5325	10181	10743	19997	10653	14873	13141	10518	 7077	7622	13353	5764	9414	5277	3242
(9	9	90~99	33938	6540	809	1781	1228	3482	1353	2496	2571	1560	 1089	1623	2189	1428	1464	1248	88
22 r	22 rows × 21 columns																		

22 rows × 21 columns

In []:		

In []:

In []: