The effect of habitat degradation on earthworm communities in Madagascar

Maria Pestana Correia

Swidden agriculture

Intact forest

Regrowth period

Fire

Infertile soils

Farming

Fertile soil

Swidden agriculture

Hypothesis

 Habitat degradation has a negative effect on earthworm abundance

can paying 4 global ecosystem

- Field study in the Ankeniheny-Zahamena Corridor (CAZ)
 - 47 transects
 - 100 m long

Methods

- In each transect
 - 5 randomly selected sampling points (10 x 10cm)
- In total, 5 main habitat types and 721 earthworms were collected

Methods

• GLM with negative binomial error distribution and log link function

Response variable

Earthworm abundance

Main explanatory variable of interest

Habitat type

Covariates

- Soil porosity
- Bulk density
- Saturated hydraulic conductivity

Results

- Earthworm abundance
 - Higher in reforested and degraded habitats
- GLM: Only significant in degraded agricultural land (p=0.02)

Why?

- Degraded agricultural land
 - Less competition in degraded areas
 - In Madagascar, 41% of earthworm species are invasive
 - Abundance may not be the most appropriate measure
 - Higher abundance but potentially lower species richness
- Reforested areas
 - Increased vegetation structure, nutrients and organic matter

Future studies

- Larger sample size
- Earthworm species richness or functional diversity
- Other environmental variables
 - Humidity
 - Soil nutrient availability

References

- Andriamananjara, A., Hewson, J., Razakamanarivo, H., Andrisoa, R., Ranaivoson, N., Ramboatiana, N., Razafindrakoto, M., Ramifehiarivo, N., Razafimanantsoa, M., Rabeharisoa, L., Ramananantoandro, T., Rasolohery, A., Rabetokotany, N., Razafimbelo, T., 2016. Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest. Agriculture, Ecosystems and Environment, 233(7):1-15.
- Finch, E, Rajoelison, E., Hamer, M., Caruso, T., Farnsworth, K., Fisher, B. & Cameron, A., 2022. The effect of swidden agriculture on ant communities in Madagascar. *Biological Conservation*, 265: 1-8.
- Razafindrakoto, M., Csuzdi, C., Blanchart, E., 2011. New and Little Known Giant Earthworms from Madagascar (Oligochaeta: Kynotidae). *African Invertebrates*, 52(2): 285-294.
- Zwartendijk, B., Meerveld, H., Ghimire, C., Bruijnzeel, L., Ravelona, M., Jones, J., 2017. Rebuilding soil hydrological functioning after swidden agriculture in eastern Madagascar. *Agriculture, Ecosystems and Environment*, 239: 101-111.