HW3

EE 4033 Algorithms, Fall 2018 107/11/28

Problem 1

Model a maze into a graph problem

- Clearly explain your graph
 - Vertices, edges (directed/undirected), weights (if exists)...

Problem 1

Model a maze into a graph problem

- Find the shortest path from A to B
 - Apply suitable graph algorithms
 - Solution may not exist

• Problem 2

- Must take turns driving (at least once) at rest areas
- **Nick** must be driving upon <u>leaving Zootopia</u> and <u>arriving at Bunnyburrow</u>

- Clearly explain your graph
 - Vertices, edges (directed/undirected), weights (if exists)...
- Find the shortest path
 - Apply suitable graph algorithms
 - Solution may not exist

• Problem 3

- All road segments are of equal length
- Clearly explain your graph
 - Vertices, edges (directed/undirected), weights (if exists)...
- Find the shortest path from the hotel to the house
 - Stop by the patisserie if it does not increase the length of the path by at most a factor of α

Problem 4

Design a feature that helps users find potential friends

Frd	A	В	С	D
Α		V		V
В	V		V	V
С		V		V
D	V	V	V	

Int	Α	В	С	D
A		8.0	0.6	0.5
В	0.7		0.4	0.2
С	0.5	0.3		0.7
D	0.4	0.2	0.9	

- Users: $V = \{A, B, C, D\}$
- Interest: I(A, B) = 0.7; I(B, A) = 0.8
- Connections: $P(A, D) = \{\langle A, D \rangle, \langle A, B, D \rangle, \langle A, B, C, D \rangle\}$
- Length: L(p) = |p| 2 = 4 2 = 2
- Strength: $S(p) = I(A,B) \times I(B,C) \times I(C,D) = 0.7 \times 0.3 \times 0.9 = 0.189$

Frd	A	В	С	D
Α		V		V
В	V		V	V
С		V		V
D	V	V	V	

Int	Α	В	С	D
Α		8.0	0.6	0.5
В	0.7		0.4	0.2
С	0.5	0.3		0.7
D	0.4	0.2	0.9	

- Given the information above, find the **strength** of the strongest **connection** between a given user u and **every other** user v with a **length** of **at most** k
- For example, given u = A, k = 1:

$$P(A,B) = \{\langle A,B \rangle, \langle A,D,B \rangle, \langle A,D,C,B \rangle\}$$

$$Output$$

$$P(A,C) = \{\langle A,D,C \rangle, \langle A,B,C \rangle, \langle A,B,D,C \rangle, \langle A,D,B,C \rangle\}$$

$$0.28 \quad 0.21 \quad 0.098 \quad 0.024$$

$$P(A,D) = \{\langle A,D \rangle, \langle A,B,D \rangle, \langle A,B,C,D \rangle\}$$

$$D: 0.4$$

Remarks

- Try not to describe your algorithms with codes
 - If you use any algorithm that is taught in class or described in the textbook, do not copy them down to your answer sheet. Writing its name is sufficient.
- We give partial credits
 - Try not to leave any problems blank
 - Answers with more efficient algorithms get higher scores

- Course Schedule Arranging
 - Some courses have prerequisites
 - Some courses may not be available in every school term
 - Goal is to graduate as soon as possible

Course ID Course Title		Prerequisites	Availability	
Course 1D	Course Title	1 rerequisites	Spring	Fall
0	Psychology	—		✓
1	Criminology	Psychology	✓	
2	Constitutional Law	Psychology	✓	
3	Criminal Law	Criminology, Constitutional Law	✓	✓

- Example (joined the academy in Spring, 2016)
 - Minimum courses required to graduate: 4
 - An optimal schedule (required terms to graduate = 4)

	Courses
Spring, 2016	
Fall, 2016	Psychology
Spring, 2017	Criminology, Constitutional Law
Fall, 2017	Criminal Law

Course ID	Course Title	Prerequisites	A vailability	
Course 1D	Course Title	1 rerequisites	Spring	Fall
0	Psychology	—		✓
1	Criminology	Psychology	✓	
2	Constitutional Law	Psychology	✓	
3	Criminal Law	Criminology, Constitutional Law	✓	✓

- Model the scenario into a graph problem
- Solve the problem using graph algorithms
- Explain your work in the report

Problem 2

Write a program that solves any rectangular maze

input.txt	output.txt
1 3 1 1 0	1 1 4 4
1 0 0 1 1	4
1 1 1 2 1	
1 0 0 0 1	
1 1 1 1 1	

0: wall 1: north
1: path 2: east
2: start 3: south
3: end 4: west

- For **both** Problem 1 and Problem 2, we will give a bonus for better performances (10 points each) if the running time of your program is faster than 90% of all students in the class.
- The running time will be evaluated by TA's testing data (not released to students).

Remarks

- Read the HW instructions very carefully
 - Failing to follow them may lead to loss of credits
- All the inputs are of arbitrary size
- Use the provided selfCheck.py to check the format of your .zip/.tar file before uploading
 - Do not include redundant files for it might cause troubles when judging

Remarks

- About referencing
 - Starting from HW3, all referencing specifications can be listed **either** on your <u>hand-written answer sheet</u>, **or** in the <u>pdf file of your programming report</u>.
 - If URLs are too long, you can print them out or simply write down the name/title of the webpage