

Электрические машины

Nº	Компонент
1	Разъем PCI для подключения к NI ELVIS III
2	Линейный усилитель и ШИМ-усилитель, датчик тока щеточного двигателя постоянного тока (под крышкой)
3	Двигатель постоянного тока
4	Бесконтактный двигатель постоянного тока
5	Шаговый двигатель
6	Серводвигатель
7	Фотоэлектрический микродатчик

Типы машин постоянного тока

- a DC machine with **independent** coil (separately excited DC machine)
- b DC machine with **shunt** field coil (shunt wound DC machine)
- c DC machine with **series** field coil (series wound DC machine)
- d DC machine with compound field coil (compound wound DC machine)
- e DC machine with **permanent magnets**

- Откройте проект Mechatronics Actuators Board.lvproj, а затем в ELVIS III
 Labs (ELVIS III > Лабораторные работы) откройте Brushed DC Motors.vi.
- 2. Запустите VI, убедившись, что напряжение постоянного тока установлено на 0 В.
- 3. Постепенно увеличивайте напряжение, создаваемое усилителем, пока щеточный двигатель постоянного тока не начнет непрерывно вращаться. Запишите значение напряжения.
- 4. Повторите процесс в обратной полярности, установив для управляющего напряжения значение 0 В и постепенно снижая его. Запишите значение напряжения.
- 5. Установите значение управляющего напряжения выше, чем на шаге 3, чтобы двигатель начал вращаться.
- 6. Медленно уменьшайте подаваемое напряжение, пока двигатель не остановится. Запишите значение напряжения, при котором это происходит.
- 7. Повторите шаги 5 и 6 в обратном направлении, используя отрицательное напряжение.
- 8. Начиная с 0 В повышайте управляющее напряжение с шагом 0,1 В до 1 В, а затем с шагом 0,5 В до 5 В. Записывайте полученную частота вращения двигателя при каждом значении напряжения.
- 9. Повторите шаг 8 в обратном направлении, используя отрицательное напряжение.

?При каком напряжении двигатель начал вращаться, когда выполнялись шаги 3 и 4?

?При каком напряжении двигатель останавливался, когда выполнялись шаги 6 и 7?

$$V_x = \frac{R_1}{R_1 + R_2} V_{\text{out}}$$

Voltage Gain =
$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{R_1 + R_2}{R_1} = 1 + \frac{R_2}{R_1}$$

- Откройте проект Mechatronics Actuators Board.lvproj, a затем в ELVIS III > Labs (ELVIS III > Лабораторные работы) откройте Power Amplifiers.vi.
- Переключите селектор **Amplifier** (Усилитель) на Linear (Линейный).
- Линейный усилитель использует цифроаналоговый преобразователь в ELVIS III для формирования опорного напряжения, равного значению уставки. Это напряжение делится на два, после чего усилитель мощности, выступающий в качестве буфера, приводит в действие двигатель. Запишите реакцию системы на изменение уставки усилителя с +1 вольт на -1 вольт.
- ШИМ-усилитель приводит в действие двигатель от источника питания напряжением 5 вольт. Отрегулируйте параметр Linear Amplifier Command Gain (Уставка коэффициента усиления линейного усилителя) таким образом, чтобы линейный усилитель приводил в действие двигатель от напряжения в диапазоне ±5 В.
- Запишите максимальную частота вращения, достигнутую в случае уставок как положительного, так и отрицательного напряжения 5 В.

🔽 Amplifiers.vi on Quanser Mechatronic Actuators Board.lvproj/ELVIS III

DC Motor Speed

File Edit View Project Operate Tools Window Help

QUANSER

STOP

Mechatronic Actuators Board

Amplifiers

Исследование переходных процессов с линейным усилителем

- 1. Подать питание на двигатель скачком 0 4B. Снять показания скорости и тока
- 2. Подать питание на двигатель 4B 8B. Снять показания скорости и тока
- 3. Выполнить аналогичные измерения при реверсе двигателя

Shunt DC motor

Compound DC motor

Список группы R33423

№ вар	Ф.И.О.
10	Виноградов Сергей Дмитриевич
11	Ворков Никита Романович
12	Давыдов Дмитрий Андреевич
13	Деречи Александра Вадимовна
14	Евстигнеев Дмитрий Максимович
15	Ефремов Артём Андреевич
16	Канищева Ума Александровна
17	Киниченко Владислав Сергеевич
18	Коликов Сергей Николаевич
19	Кулижников Евгений Борисович
20	Ломакин Артем Александрович
21	Матасова Любовь Евгеньевна
22	Родин Никита Алексеевич
23	Смехнов Александр Андреевич
24	Сорокин Дмитрий Андреевич
25	Троицкий Михаил Алексеевич
26	Шатов Александр Юрьевич
27	Яшник Артем Игоревич

Tpr=5;

Kpr=15;

Mc1=0.2;

Mc2=0.1;

wc2=w0;

J=J1+J2;

gamma = (J1+J2)/J1;

betta=Mp/wnom;
Tm=(J1+J2)/betta;

wc1=w0/(sqrt(gamma));

w0=sqrt((c12/(J1+J2))/(J1*J2));

9

10

11

12 13 14

15 16

17

18 19

20 21

GaN – low-voltage ultra-fast devices

Vds ≤ 600 V

Vds = 600 V

Ids = 12 A

Rds = 70 mOhm

Широтно-импульсная модуляция

$$\gamma = \frac{t_{on}}{T_{PWM}}$$

Широтно-импульсная модуляция

- 1. Откройте проект Mechatronics Actuators Board.lvproj, а затем в ELVIS III > Labs (ELVIS III > Лабораторные работы) откройте Power Amplifiers.vi.
- 2. Установите для параметра **Amplifier** (Усилитель) значение «PWM» (ШИМ).
- 3. Отметьте, как двигатель реагирует на различные уставки усилителя. Запишите достигнутое максимальное значение частоты вращения.
- 4. Уставка ШИМ соответствует проценту времени цикла, когда вывод ШИМ включен. ПЛИС выполняет отсчет от 0 до 2000, и если значение уставки, помноженное на 2000, больше, чем значение счетчика, то уровень выходного сигнала высокий, в противном случае низкий. Принимая во внимание тот факт, что частота тактового сигнала ПЛИС составляет 40 МГц, рассчитайте частоту ШИМ-сигнала.
- 5. Нажмите кнопку **PWM Reverse** (Инверсия ШИМ) и запишите результат. Принимая во внимание тот факт, что работа устройства управления ШИМ основывается на включении одной пары транзисторов в мосте Н-типа, объясните, что изменяет этот переключатель для изменения направления.

Исследование переходных процессов с ШИМ

- 1. Подать питание на двигатель скачком 0 4B. Снять показания скорости и тока
- 2. Подать питание на двигатель 4B 8B. Снять показания скорости и тока
- 3. Выполнить аналогичные измерения при реверсе двигателя

