MATH 240 HW1

Hanzhang Yin

Aug/26/2024

Question 1

Proof. Define a function f as:

$$f: \mathbb{N} \to \{1, 4, 7, 10, 13, \dots\} : n \rightarrowtail 3n - 2$$

Now we need to show f is one to one and onto.

• Prove f is one to one

Proof. To prove f is one to one, we must show that if $f(n_1) = f(n_2)$, then $n_1 = n_2$.

Suppose $f(n_1) = f(n_2)$. Then:

$$3n_1 - 2 = 3n_2 - 2$$

$$\Rightarrow 3n_1 = 3n_2 \Rightarrow n_1 = n_2$$

Since $n_1 = n_2$, f is injective.

 \bullet Prove f is onto

Proof. To prove f is *onto*, we need to show for every $m \in \{1, 4, 7, 10, 13, \dots\}$, there exists an $n \in \mathbb{N}$ s.t. f(n) = m.

Take any $m \in \{1, 4, 7, 10, 13, \dots\}$. We want to find n such that 3n-2=m. Solving for n:

$$3n-2=m\Rightarrow 3n=m+2\Rightarrow n=\frac{m+2}{3}$$

Since m is of the form 3k-2 for some integer k, and n=k is an integer. Therefore, $n \in \mathbb{N}$, and f is onto.

Since f is one to one and onto, it is a bijection. Hence, f(n) = 3n - 2 is a explicit bijection from the set \mathbb{N} to $\{1, 4, 7, 10, 13, \dots\}$.

Question 2

Proof. Define a function f as:

$$f:(0,1)\to\mathbb{R}_{>0}:n\mapsto\frac{n}{1-n}$$

Now we need to show f is one to one and onto.

 \bullet Prove f is one to one

Proof. To prove f is one to one, we must show that if $f(n_1) = f(n_2)$, then $n_1 = n_2$.

Suppose $f(n_1) = f(n_2)$. Then:

$$\frac{n_1}{1 - n_1} = \frac{n_2}{1 - n_2}$$

$$\Rightarrow x_1(1 - x_2) = x_2(1 - x_1)$$

$$\Rightarrow x_1 - x_1x_2 = x_2 - x_2x_1$$

$$\Rightarrow x_1 = x_2$$

Thus, f is one to one.

• Prove f is onto

Proof. To prove f is onto, we need to show for every $m \in \mathbb{R}_{>0}$, there exists an $n \in (0,1)$ s.t. f(n) = m.

Take any m > 0. We want to find n such that $\frac{n}{1-n} = m$. Solving for n:

$$n = m(1-n) \Rightarrow n + nm = m \Rightarrow n(1+m) = m \Rightarrow n = \frac{m}{1+m}$$

Note that m>0, this implies $0<\frac{m}{1+m}<1$, hence $n\in(0,1)$. Thus, for every m>0, there is an $n\in(0,1)$ s.t. f(n)=m. (i.e. f is onto)

Since f is one to one and onto, it is a bijection. Hence, $f(n) = \frac{n}{1-n}$ is a explicit bijection from the set (0,1) to $\mathbb{R}_{>0}$.

Question 3

Proof. Modified the function f from Q2 to g as:

$$g:[0,1) \to \mathbb{R}_{>0}: g(x) = \begin{cases} \frac{x}{1-x}, & \text{if } x \in (0,1) \\ a, & \text{if } x = 0 \end{cases}$$

Where $a \in \mathbb{R}_+$ and is not in the range of f(x) for $x \in (0,1)$. Now we need to show g is one to one and onto.

• Prove g is one to one

Proof. To prove g is one to one, we must show that if $g(x_1) = g(x_2)$, then $x_1 = x_2$.

- If $x_1, x_2 \in (0, 1)$, then from Q2, $\frac{x_1}{1-x_1} = \frac{x_2}{1-x_2}$ implies $x_1 = x_2$ - If $x_1 = 0$ and $x_2 \in (0, 1)$, then $g(0) = a, g(x_2) = \frac{x_2}{1-x_2}$, but $a \neq \frac{x_2}{1-x_2}$, $\forall x_2 \in (0, 1)$. Thus, $g(x_1) \neq g(x_2)$ and it it is one to one.

• Prove q is onto

Proof. To prove g is onto, we need to show for every $y \in \mathbb{R}_{>0}$, there exists an $x \in (0,1)$ s.t. g(x) = y.

- For $y \neq a$, there exists an $x \in (0,1)$ s.t. $\frac{x}{1-x} = y$.
- For y = a, we have g(0) = a.

Hence, g(x) covers \mathbb{R}_+ , which is onto.

Since g is one to one and onto, it is a bijection.

Question 4

(a) Show that $g \circ f$ is injective if both of f and g are injective.

Given that $f:A\to B$ and $g:B\to C$ are injective. We can write $g\circ f$ as $g\circ f:A\to C$, defined as $(g\circ f)(x)=g(f(x))$.

Assume: $(g \circ f)(x) = (g \circ f)(y)$, for some $x, y \in A$,

Proof. 1. By the definition of composite function, we can get g(f(x)) = g(f(y))

- 2. Given, g is injective, f(x) = f(y)
- 3. Also given, f is injective, x = yHence, $g \circ f$ is injective. \blacksquare

(b) Show that $g \circ f$ is surjective if both of f and g are surjective.

Given that $f:A\to B$ and $g:B\to C$ are surjective. We can write $g\circ f$ as $g\circ f:A\to C$, defined as $(g\circ f)(x)=g(f(x))$.

Let an arbitary value $z \in C$. We need to find some $x \in A$ such that $(g \circ f)(x) = z$

- 1. Given g is surjective, hence there exists a $y \in B$ such that g(y) = z
- 2. Given f is surjective, hence there exists a $x \in B$ such that f(x) = y
- 3. Hence, $(g \circ f)(x) = g(f(x)) = g(y) = z$

Hence, $g \circ f$ is surjective. \blacksquare