On measures with L² bounded Riesz transform

To AD regularity and beyond

Damian Dąbrowski

University of Jyväskylä

Given
$$f \in L^2(\mathbb{R}^n)$$
 set

$$\mathcal{R}f(x) = \int_{\mathbb{R}^n} \frac{x - y}{|x - y|^{n+1}} f(y) \ d\mathcal{L}^n(y).$$

Given $f \in L^2(\mathbb{R}^n)$ and $\varepsilon > 0$ set

$$\mathcal{R}_{\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) \ d\mathcal{L}^n(y).$$

Given $f \in L^2(\mathbb{R}^n)$ and $\varepsilon > 0$ set

$$\mathcal{R}_{\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) \ d\mathcal{L}^n(y).$$

Fact: the Riesz transform is bounded on $L^2(\mathbb{R}^n)$, in the sense that $\|\mathcal{R}_{\varepsilon}\|_{L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)}$ are bounded uniformly in ε .

Given a Radon measure μ on \mathbb{R}^d , $f \in L^2(\mu)$, and $\varepsilon > 0$ set

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) \ d\mu(y).$$

We say that \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$ if $\|\mathcal{R}_{\mu,\varepsilon}\|_{L^{2}(\mu)\to L^{2}(\mu)}$ are bounded uniformly in ε .

Given a Radon measure μ on \mathbb{R}^d , $f \in L^2(\mu)$, and $\varepsilon > 0$ set

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) \ d\mu(y).$$

We say that \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$ if $\|\mathcal{R}_{\mu,\varepsilon}\|_{L^{2}(\mu)\to L^{2}(\mu)}$ are bounded uniformly in ε .

Question

What are the measures μ for which \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$?

Why do we care?

This question arises naturally in PDEs when studying

- the L^p solvability of the Dirichlet problem using the method of layer potentials,
- the removable sets for bounded analytic functions (in \mathbb{R}^2), or Lipschitz harmonic functions (in \mathbb{R}^n , $n \ge 2$).

Examples of measures μ on \mathbb{R}^d for which \mathcal{R}_{μ} is bounded on $L^2(\mu)$:

• $\mu(B(x,r)) \le Cr^s$ for some s > n,

Examples of measures μ on \mathbb{R}^d for which \mathcal{R}_{μ} is bounded on $L^2(\mu)$:

- $\mu(B(x,r)) \le Cr^s$ for some s > n,
- $\mu = \mathcal{H}^n|_L$ for some *n*-plane *L*,

Examples of measures μ on \mathbb{R}^d for which \mathcal{R}_{μ} is bounded on $L^2(\mu)$:

- $\mu(B(x,r)) \leq Cr^s$ for some s > n,
- $\mu = \mathcal{H}^n|_{L}$ for some *n*-plane *L*,
- $\mu = \mathcal{H}^n|_{\Sigma}$ for an *n*-dimensional $C^{1,\alpha}$ manifold Σ .

Examples of measures μ on \mathbb{R}^d for which \mathcal{R}_{μ} is bounded on $L^2(\mu)$:

- $\mu(B(x,r)) \le Cr^s$ for some s > n,
- $\mu = \mathcal{H}^n|_{L}$ for some *n*-plane *L*,
- $\mu = \mathcal{H}^n|_{\Sigma}$ for an *n*-dimensional $C^{1,\alpha}$ manifold Σ .

Lemma (David '91)

Suppose that \mathcal{R}_{μ} is bounded on $L^2(\mu)$, and μ does not contain atoms. Then,

$$\mu(B(x,r)) \leq Cr^n$$
.

Densities

For a Radon measure μ on \mathbb{R}^d , $x \in \mathbb{R}^d$ and r > 0 set

$$\theta_{\mu}(x,r) = \frac{\mu(B(x,r))}{r^n}.$$

Densities '

For a Radon measure μ on \mathbb{R}^d , $x \in \mathbb{R}^d$ and r > 0 set

$$\theta_{\mu}(x,r) = \frac{\mu(B(x,r))}{r^n}.$$

David's lemma: if \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$, then $\theta_{\mu}(x,r) \leq C$.

Densities

For a Radon measure μ on \mathbb{R}^d , $x \in \mathbb{R}^d$ and r > 0 set

$$\theta_{\mu}(x,r) = \frac{\mu(B(x,r))}{r^n}.$$

David's lemma: if \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$, then $\theta_{\mu}(x,r) \leq C$.

We will say that μ is n-AD-regular if for $x \in \operatorname{supp} \mu$, $0 < r < \operatorname{diam}(\operatorname{supp} \mu)$

$$C^{-1}r^n \le \mu(B(x,r)) \le Cr^n.$$

In other words,

$$\theta_{\mu}(x,r) \approx 1.$$

The four-corner Cantor set $K \subset \mathbb{R}^2$ is an example of a set such that $\mu = \mathcal{H}^1|_K$ is 1-ADR but \mathcal{R}_μ is not bounded on $L^2(\mu)$.

The four-corner Cantor set $K \subset \mathbb{R}^2$ is an example of a set such that $\mu = \mathcal{H}^1|_K$ is 1-ADR but \mathcal{R}_μ is not bounded on $L^2(\mu)$.

K₂

The four-corner Cantor set $K \subset \mathbb{R}^2$ is an example of a set such that $\mu = \mathcal{H}^1|_K$ is 1-ADR but \mathcal{R}_μ is not bounded on $L^2(\mu)$.

 K_3

The four-corner Cantor set $K \subset \mathbb{R}^2$ is an example of a set such that $\mu = \mathcal{H}^1|_K$ is 1-ADR but \mathcal{R}_μ is not bounded on $L^2(\mu)$.

$$K = \bigcap_n K_n$$

Flatness is our friend

Recall that

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) \ d\mu(y).$$

What about Lipschitz graphs?

Let $\mu = \mathcal{H}^n|_{\Gamma}$. Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ provided that

• Γ is a Lipschitz graph with sufficiently small Lipschitz constant (Calderón '77),

What about Lipschitz graphs?

Let $\mu = \mathcal{H}^n|_{\Gamma}$. Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ provided that

- Γ is a Lipschitz graph with sufficiently small Lipschitz constant (Calderón '77),
- Γ is a Lipschitz graph with an arbitrary Lipschitz constant (Coifman-McIntosh-Meyer '82),

What about Lipschitz graphs?

Let $\mu = \mathcal{H}^n|_{\Gamma}$. Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ provided that

- Γ is a Lipschitz graph with sufficiently small Lipschitz constant (Calderón '77),
- Γ is a Lipschitz graph with an arbitrary Lipschitz constant (Coifman-McIntosh-Meyer '82),
- n = 1 and Γ is a 1-ADR curve (David '84).

Rectifiability

A set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exists a countable number of *n*-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^n\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

Rectifiability

A set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exists a countable number of *n*-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^n\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

We say that $F \subset \mathbb{R}^d$ is **purely** n-unrectifiable if for every Γ - Lipschitz image of \mathbb{R}^n

$$\mathcal{H}^n(F\cap\Gamma)=0.$$

Rectifiability

A set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exists a countable number of *n*-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^n\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

We say that $F \subset \mathbb{R}^d$ is **purely** n-unrectifiable if for every Γ - Lipschitz image of \mathbb{R}^n

$$\mathcal{H}^n(F\cap\Gamma)=0.$$

Question

Suppose that E is an n-ADR, n-rectifiable set, and $\mu = \mathcal{H}^n|_{E}$. Does this imply that \mathcal{R}_{μ} is bounded on $L^2(\mu)$?

The answer is no. The notion of rectifiability is qualitative, while the boundedness of \mathcal{R}_{μ} is a quantitative property.

The answer is no. The notion of rectifiability is qualitative, while the boundedness of \mathcal{R}_{μ} is a quantitative property.

We say that a measure μ is uniformly n-rectifiable if

- · it is AD-regular
- there exists $L, \kappa > 0$ such that for all balls B = B(x, r) centered at $\operatorname{supp} \mu$, $0 < r < \operatorname{diam}(\operatorname{supp} \mu)$, there exists a Lipschitz map $g : \mathbb{R}^n \to \mathbb{R}^d$, $\operatorname{Lip}(g) \le L$, such that

$$\mu(B \cap g(B^n(0,r))) \ge \kappa \mu(B).$$

Uniform rectifiability and SIOs

Theorem (David-Semmes '91)

Suppose μ is n-AD-regular measure on \mathbb{R}^d . Then,

all "nice" SIOs are bounded on $L^2(\mu)$

 μ is uniformly rectifiable.

Uniform rectifiability and SIOs

Theorem (David-Semmes '91)

Suppose μ is n-AD-regular measure on \mathbb{R}^d . Then,

all "nice" SIOs μ is uniformly are bounded on $L^2(\mu)$ \Leftrightarrow rectifiable.

David-Semmes conjecture

Suppose μ is n-AD-regular measure on \mathbb{R}^d . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu) \Leftrightarrow \mu$ is uniformly rectifiable.

Uniform rectifiability and SIOs

Theorem (David-Semmes '91)

Suppose μ is n-AD-regular measure on \mathbb{R}^d . Then,

all "nice" SIOs μ is uniformly are bounded on $L^2(\mu)$ \Leftrightarrow rectifiable.

David-Semmes conjecture

Suppose μ is n-AD-regular measure on \mathbb{R}^d . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu) \Leftrightarrow \mu$ is uniformly rectifiable.

True for n=1 (Mattila-Melnikov-Verdera 1996) and n=d-1 (Nazarov-Tolsa-Volberg 2012).

Beyond AD-regular measures

β numbers (Jones '90)

Given $E \subset \mathbb{R}^d$ and a ball $B, E \cap B \neq \emptyset$, the β number of E at B is

$$\beta_E(B) = \inf_{L} \sup_{x \in E \cap B} \frac{\operatorname{dist}(x, L)}{r(B)}.$$

β_2 numbers (David-Semmes '91)

Given a measure μ and a ball B = B(x, r), the β_2 number of μ at B is

$$\beta_{\mu,2}(B) = \beta_{\mu,2}(x,r) = \inf_{\mathbf{L}} \left(r(B)^{-n} \int_{B} \left(\frac{\operatorname{dist}(x,\mathbf{L})}{r(B)} \right)^{2} d\mu(x) \right)^{1/2}.$$

β_2 numbers and uniform rectifiability

Theorem (David-Semmes '91)

Let μ be an n-ADR measure on \mathbb{R}^d . Then μ is uniformly n-rectifiable iff for all $z \in \operatorname{supp} \mu$, R > 0

$$\int_{B(z,R)} \int_0^R \beta_{\mu,2}(x,r)^2 \frac{dr}{r} d\mu(x) \le CR^n.$$

β_2 numbers and uniform rectifiability

Theorem (David-Semmes '91)

Let μ be an n-ADR measure on \mathbb{R}^d . Then μ is uniformly n-rectifiable iff for all $z \in \operatorname{supp} \mu$, R > 0

$$\int_{B(z,R)} \int_0^R \beta_{\mu,2}(x,r)^2 \frac{dr}{r} d\mu(x) \le CR^n.$$

Corollary

Suppose that n=1 or n=d-1, and μ is an n-ADR measure on \mathbb{R}^d . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ iff for all $z\in\operatorname{supp}\mu$, R>0

$$\int_{B(z,R)} \int_0^R \beta_{\mu,2}(x,r)^2 \frac{dr}{r} d\mu(x) \le CR^n.$$

β_2 numbers and the Riesz transform

Theorem (Azzam-Tolsa '15)

Suppose that n=1 and μ is an atomless Radon measure on \mathbb{R}^2 . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ iff $\theta_{\mu}(x,r) \leq C$ and for all balls $B \subset \mathbb{R}^2$

$$\int_{B} \int_{0}^{r(B)} \beta_{\mu,2}(x,r)^{2} \,\theta_{\mu}(x,r) \,\frac{dr}{r} d\mu(x) \leq C\mu(B).$$

β_2 numbers and the Riesz transform

Theorem (Azzam-Tolsa '15)

Suppose that n=1 and μ is an atomless Radon measure on \mathbb{R}^2 . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ iff $\theta_{\mu}(x,r) \leq C$ and for all balls $B \subset \mathbb{R}^2$

$$\int_{B} \int_{0}^{r(B)} \beta_{\mu,2}(x,r)^{2} \,\theta_{\mu}(x,r) \,\frac{dr}{r} d\mu(x) \leq C\mu(B).$$

Theorem (Girela-Sarrión '19)

Suppose that μ is a Radon measure on \mathbb{R}^d . Assume that $\theta_{\mu}(x,r) \leq C$ and for all balls $B \subset \mathbb{R}^d$

$$\int_{B} \int_{0}^{r(B)} \beta_{\mu,2}(x,r)^{2} \theta_{\mu}(x,r) \frac{dr}{r} d\mu(x) \leq C\mu(B).$$

Then, all "nice" SIOs are bounded on $L^2(\mu)$.

New results

Theorem (D.-Tolsa, Tolsa)

Suppose that μ is a Radon measure on \mathbb{R}^{n+1} with $\theta_{\mu}(x,r) \leq C$. Assume that \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$. Then, for all balls $B \subset \mathbb{R}^{n+1}$

$$\int_{B} \int_{0}^{r(B)} \beta_{\mu,2}(x,r)^{2} \theta_{\mu}(x,r) \frac{dr}{r} d\mu(x) \leq C\mu(B).$$

New results

Theorem (D.-Tolsa, Tolsa)

Suppose that μ is a Radon measure on \mathbb{R}^{n+1} with $\theta_{\mu}(x,r) \leq C$. Assume that \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$. Then, for all balls $B \subset \mathbb{R}^{n+1}$

$$\int_{B} \int_{0}^{r(B)} \beta_{\mu,2}(x,r)^{2} \,\theta_{\mu}(x,r) \,\frac{dr}{r} d\mu(x) \leq C\mu(B).$$

Corollary

Suppose that μ is an atomless Radon measure on \mathbb{R}^{n+1} . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ iff $\theta_{\mu}(x,r) \leq C$ and for all balls $B \subset \mathbb{R}^{n+1}$

$$\int_{B} \int_{0}^{r(B)} \beta_{\mu,2}(x,r)^{2} \theta_{\mu}(x,r) \frac{dr}{r} d\mu(x) \leq C\mu(B).$$

Reduction to compactly supported measures

The proof reduces to showing the following:

Theorem

Suppose that μ is a compactly supported Radon measure on \mathbb{R}^{n+1} with $\theta_{\mu}(x,r) \leq C$. Assume that " $\mathcal{R}\mu \in L^2(\mu)$." Then,

$$\iint_0^\infty \beta_{\mu,2}(x,r)^2 \,\theta_{\mu}(x,r) \,\frac{dr}{r} d\mu(x) \lesssim \|\mu\| + \|\mathcal{R}\mu\|_{L^2(\mu)}^2.$$

Two papers?

Theorem (D.-Tolsa)

Suppose that μ is as before. Then,

$$\iint_0^\infty \beta_{\mu,2}(x,r)^2 \, \theta_{\mu}(x,r) \, \frac{dr}{r} d\mu(x) \lesssim \|\mu\| + \|\mathcal{R}\mu\|_{L^2(\mu)}^2 + \sum_{Q \in \mathsf{HE}} \mathcal{E}(4Q).$$

Theorem (Tolsa)

Suppose that μ is as before. Then,

$$\sum_{Q \in \mathsf{HE}} \mathcal{E}(4Q) \lesssim \|\mu\| + \|\mathcal{R}\mu\|_{L^2(\mu)}^2.$$

The proofs build up on techniques from [Eiderman-Nazarov-Volberg '14], [Nazarov-Tolsa-Volberg '14], [Reguera-Tolsa '16], [Jaye-Nazarov-Reguera-Tolsa '20]...

Some corollaries

Our results, together with [Azzam-Tolsa '15] and [Girela-Sarrión '19] give

Corollary 1

Suppose that μ is atomless, and that $\varphi: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is bilipschitz. Set $\sigma = \varphi_{\#}\mu$. If \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$, then \mathcal{R}_{σ} is bounded on $L^{2}(\sigma)$.

Before this was not known even for invertible affine maps.

Some corollaries

Our results, together with [Azzam-Tolsa '15] and [Girela-Sarrión '19] give

Corollary 1

Suppose that μ is atomless, and that $\varphi : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is bilipschitz. Set $\sigma = \varphi_{\#}\mu$. If \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$, then \mathcal{R}_{σ} is bounded on $L^{2}(\sigma)$.

Before this was not known even for invertible affine maps.

Together with results from [Volberg '03] we get also

Corollary 2

Suppose that $E \subset \mathbb{R}^{n+1}$, and that $\varphi: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is bilipschitz. $\varphi(E)$ is removable for Lipschitz harmonic functions iff E is removable for Lipschitz harmonic functions.

Thank you!