

Algorithms of Scientific Computing

Overview and General Remarks

Michael Bader Technical University of Munich

Summer 2022

Classification of the Lecture – Who is Who?

Students of Informatics:

- Informatics Bachelor & Master
- Informatics: Games Engineering (Bachelor & Master)
- Information Systems (Wirtschaftsinformatik)
- Data Engineering and Analytics

Students of Mathematics:

- Mathematics in Data Science
- Bachelor, Master, as minor?

Students of (Computational) (Science and) Engineering:

- Computational Science and Engineering (CSE): elective (cat. E)
- Engineering Science
- Physics in various "flavours"
- ... anyone else? Warm Welcome!

Lectures

Lecturers:

- Michael Bader
- Felix Dietrich, Christian Mendl, Tobias Neckel (recorded lectures from summer 2020)

Time & Day:

by default, on Mondays (14 c.t.) and Wednesdays (12.00)

"Style": online-enhanced presence teaching

- recorded lectures from summer 2020
 - \rightarrow can be watched to prepare for (or rework) presence lectures
 - presence lectures
 - \rightarrow aim at focusing on use cases, examples, **questions**, discussions, etc.
 - → live streaming (and recording) via live.rbg.tum.de on Mondays
 - → presence-only on Wednesdays

Tutorials

Tutor:

Mario Wille

Time & Day:

- by default, tutorials will be on Fridays (10 c.t., MI HS 2)
- first tutorial on Apr 29: includes introduction to Jupyter Notebook

"Style":

- worksheets with applications & examples
- no compulsory part

Lecture Slides: Color Code for Headers

Black Headers:

for all slides with regular topics

Green Headers:

• summarized details: will be explained in the lecture, but usually not as an explicit slide; "green" slides will only appear in the handout versions

Red Headers:

advanced topics or outlook: will not be part of the exam topics

Blue Headers:

 background information or fundamental concepts that are probably already known, but are important throughout the lecture

Algorithms in Scientific Computing

Scientific Computing

similar: Computational Science and Engineering, Wissenschaftliches Rechnen, Simulation-based Science & Engineering, ...

Attempt of a definition:

Scientific Computing is ...

- (numerical) simulation of problems from science or engineering using High Performance Computing (Bungartz, TUM)
- the interdisciplinary conjunction of mathematical and computer science methods as well as different applications of the natural sciences and engineering disciplines, e.g. (TU Darmstadt)
- is concerned with constructing mathematical models and quantitative analysis techniques and using computers to analyze and solve scientific problems (Wikipedia, 2015)
- an interdisciplinary discipline
- the focus at our chair SCCS (Informatics V)

Algorithms in Scientific Computing?

Central Question: What do I "get" from this lecture?

- ...in particular in the field of Scientific Computing?
- ...in general in the field of Informatics?
- ⇒ What could/should/do I want to learn in
 - ... Informatics?
 - ... Computing?

Cross-topical aspects: What central ...

- problems
- · techniques, methods
- analytical questions
- ... of Informatics/Computing/...play a (major) role?

What are our tools?

Representation of Information

Claim:

Informatics is the science (or art) of storing information such that it can be used (processed) efficiently.

Examples for information and storage technique:

- tables (data bases of all kind)
- trees, graphs (path searching, ...)
- objects
- multi-dimensional arrays (raster data, etc.)

Our topic:

How do we store continuous data (mathematical functions)?

For Comparison: Representation of Scalars

A brief history of the representation of numbers:

- "tally marks": |, ||, |||, ||||
 (still successfully used to count drinks in bars & restaurants)
- number symbols such as I, V, X, MMIV: compact but tedious for computing
- positional notation (decimal numbers, binary system, etc.):
 ease of arithmetics up to machine computing

Crucial ideas:

- Hierarchy (different "value" of digits depending on their position)
- Structure (concept of 0 as a placeholder!)

Representation of Mathematical Functions

Possibilities of representation (historical):

- analytical functions: $f(x) = e^x \sin(x)$
- tabulated values
 (historic example: logarithm tables; modern: rastered data/sampling)
- interpolation (also piecewise): (polygonal chain/curve, polynomial interpolation, spline interpolation, trigonometrical interpolation, ...)

Goals: access and use information efficiently!

- more compact storage
- identification of certain properties (information)
- more efficient algorithms for processing/computations

Our Key Formula: ("coefficients and basis functions")

$$f(x) \approx \sum c_i \phi_i(x)$$

Multi-Dimensional Data

Examples for multi-dimensional data structures:

- Matrices, tensors
- Image data (images, tomography, movies, , . . .)
- Discretization based on grids (discretization of physical models / partial differential equations)
- Coordinates of any kind (often going along with graphs)
- Tables (relational databases)
- In financial mathematics: baskets of stocks/options/...

Multi-Dimensional Data

Core topic #1: linearization/sequentialization

- Storage of data structures in memory
- Data processing (traversal)

Demands on linearization ("efficiency"):

- Maintain neighborhood ⇒ locality of data, "clustering"
- Simple, fast computation of indices
- "Continuity", regularity
- Symmetry w.r.t. single dimensions

Space-Filling Curves and Octrees:

- functions on structured adaptive grids
- ordered by space-filling curves

0000	0001	0100	01 01
0010	-0011	0110	01 11
1000	1901	1100	11 01
1010	-10 11	1110	-11 11

Multi-Dimensional Data

Core topic #2: "curse of dimensionality"

- arrays in 1D, 2D, 3D require n, n^2 , n^3 unknowns (in general: n^d)
- how about problems, where d > 3 (or d > 10, or d > 100)

"Sparse Grids:"

Recursive Algorithms and Hierarchical Data Structures

"Traditional" style of algorithms in scientific computing:

- FORTRAN programs; procedural/iterative programming
- strongly based on loops and arrays

Nowadays:

- Recursive and hierarchical:
 w.r.t. algorithms (partitioning of problem) and data structures (trees, object orientation)
- Adaptive: invest effort, where most benefit can be achieved
- "Optimal Complexity": high approximation order, etc.
- Distributed: Computing on parallel and distributed systems
- Hardware-oriented: → High Performance Computing
- ⇒ generally applicable concepts and ideas

What are our problems?

Interpolation/Representation of Data

Given:

- a set of values: $f_i, f_{ij}, \dots (1D, 2D, \dots)$
- at grid/sampling points x_i, x_{ii}, \dots

Wanted:

- function $f(x) = \sum a_i \phi_i(x)$ such that $f(x_i) = f_i$ (similar in 2D)
- we need to compute the coefficients a_i

Important aspects:

- solution depends on clever choice of the basis functions ϕ_i (recall: Lagrange/Newton interpolation)
- can we skip coefficients/basis functions a-priori/a-posteriori?

 → adaptivity, compression, etc.

Recall: Interpolation Problem

For given values b_i and points x_i (i = 1, ..., n) find a function f(x), such that:

$$f(x_i) = b_i$$
 for all $i = 1, ..., n$ where $f(x_i) = \sum_{i=1}^n a_i g_i(x_i)$

The functions $g_i(x)$ (j = 1, ..., n) are suitably selected (polynomials, e.g.).

With $G_{ij} := g_i(x_i)$, we can write the problem as a system of linear equations:

$$\sum_{j=1}^{n} a_{j}g_{j}(x_{i}) = b_{i} \text{ for all } i = 1, \dots, n$$

$$\Leftrightarrow \sum_{i=1}^{n} G_{ij}a_{j} = b_{i} \text{ for all } i = 1, \dots, n$$

Corresponds to solving a linear system of equations: Ga = b.

Approximation of Data

Given:

- a set of values: $f_i, f_{ij}, ... (1D, 2D, ...)$
- at points x_i, x_{ii}, \dots

Wanted:

- function $f(x) = \sum a_i \phi_i(x)$ such that $\sum (f_i f(x_i))^2$ is minimal
- we need to compute the coefficients a_i

Important aspects:

- typically more data f_i than coefficients (overdetermined)
- solution depends on clever choice of the basis functions φ_i
 → how many functions, and how should they look like?
- related to classification and learning ("big data")

Recall: Approximation Problem

For given values b_i and points x_i (i = 1, ..., m) find a function f(x), such that:

$$f(x_i) \approx b_i$$
 for all $i = 1, ..., m$ where $f(x_i) = \sum_{i=1}^n a_i g_i(x_i)$ with $m > n$

We find the best approximation by minimising the quadratic error:

$$\sum_{i=1}^{m} (f(x_i) - b_i)^2 \stackrel{!}{=} \min \quad \Leftrightarrow \quad \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_j g_j(x_i) - b_i \right)^2 \stackrel{!}{=} \min$$

We set all derivatives w.r.t. our variables a_k to 0 (again with $G_{ij} := g_j(x_i)$) for all k = 1, ..., n:

$$\frac{\partial}{\partial a_k} \left(\sum_{i=1}^m \left(\sum_{j=1}^n a_j G_{ij} - b_i \right)^2 \right) = \sum_{i=1}^m \frac{\partial}{\partial a_k} \left(\sum_{j=1}^n a_j G_{ij} - b_i \right)^2 \stackrel{!}{=} 0$$

$$\Leftrightarrow \sum_{i=1}^m 2 \left(\sum_{j=1}^n a_j G_{ij} - b_i \right) G_{ik} = 0 \quad \Leftrightarrow \quad \sum_{i=1}^m G_{ik} \sum_{j=1}^n a_j G_{ij} = \sum_{j=1}^m G_{ik} b_i$$

Corresponds to solving a linear system of equations: $G^TGa = G^Tb$.

Approximation with Regularization

Given:

- a set of values: f_i, f_{ii}, \dots (1D, 2D, ...)
- at points x_i, x_{ii}, \ldots

Wanted:

- function $f(x) = \sum a_i \phi_i(x)$ such that $\sum (f_i f(x_i))^2 + \gamma ||Lf||$ is minimal with Lf = f', Lf = f'', or similar
- compute coefficients a_i (depend on parameter γ)

Important aspects:

- more or less data f_i available than required (over- or underdetermined)
- frequent approach to predict value f(x)
 → related to classification and learning ("big data")
- solution depends on clever choice of the basis functions φ_i
 → how many functions, and how should they look like?

Find/Approximate a Function

Problem:

- approximate a function that cannot be represented exactly: $f(x) \approx b(x)$
- using a representation $f(x) = \sum a_i \phi_i(x)$

Leads to Question of Approximation between Functions:

- define a norm on functions: $||f||^2 = \int (f(x))^2 dx$
- try to minimize $||b(x) \sum a_i \phi_i(x)||^2$

Orthogonality Argument:

- norm derived from dot product on functions: $\langle f, g \rangle = \int f(x)g(x) dx$
- then demand that $b(x) \sum a_i \phi_i(x)$ is orthogonal to all other functions:

$$\int v(x) \left(b(x) - \sum a_i \phi_i(x) \right) dx = 0 \quad \text{for all } v.$$

Find/Approximate a Function (2)

More Interesting Setup:

• solve a partial differential equation, e.g.: $\frac{\partial^2}{\partial x^2} f(x) = b(x)$ (with initial and boundary conditions, as required)

Wanted:

- function $f(x) = \sum a_i \phi_i(x)$ that "solves" the equation
- depending on the choice of $\phi_i(x)$, only an approximate solution might be possible

Leads to Finite Element methods:

· again, demand that

$$\int v(x) \left(b(x) - \frac{\partial^2}{\partial x^2} f(x) \right) dx = 0 \quad \text{for all } v$$

• solution depends on clever choice of the basis functions ϕ_i and "test functions" v; leads to system of equations for a_i

What are our algorithms?

Schedule

Fast Fourier Transform:

- discrete Fourier transform as 2D, 3D interpolation
- FFT as divide-and-conquer algorithm
- transform for data compression (images, audio and video data)

Hierarchical basis and sparse grids

- adaptive integration and Archimedes' quadrature
- hierarchical basis functions
- the curse of dimensionality → sparse grids
- wavelets

Space trees and space-filling curves

- sequential data structures and traversal of octrees
- definition and construction of space-filling curves
- adaptivity vs. parallelisation and partitioning