PSM ULTIMATE v3

Zápočet:

- Dva až tři domácí úkoly procvičíte si příklady ze cvičení.
- Seminární práce vypracování komplexního statistického úkolu, kde výstupem je souvislý text.

Zkouška:

- Ústní zkouška u počítače.
- Vylosujete si metodu, kterou předvedete na příkladu a vysvětlíte.
- Jedna otázka na mnohorozměrnou statistiku.
- Jedna otázka na regresní modely.
- V případě nerozhodné známky doplňující otázka.

Doplňující otázky:

- Fuzzy modely
- Bayesovské sítě
- Věcná významnost

Co máme umět:

Zkouška:

- Jedna otázka na mnohorozměrnou statistiku.
 - Testy nemusíme
- Jedna otázka na regresní modely.
 - Lineární regrese
 - Mnohonásobná regrese
 - Logistická regrese
 - o Loess regrese
 - o Decision tree regrese
 - o Random forest regrese
 - Support vector regrese
 - o Ridge regrese
 - (Nelineární NEMUSÍME)

Doplňující otázky:

- Fuzzy modely
 - o nemusí to být hluboký, hlavně že víme co to je k čemu to je a jak to funguje
 - o ve stručnosti během jedné minuty vysvětlit princip a k čemu to je
- Bayesovské sítě
 - o nemusí to být hluboký, hlavně že víme co to je k čemu to je a jak to funguje
 - o ve stručnosti během jedné minuty vysvětlit princip a k čemu to je
- Věcná významnost
 - o nemusí to být hluboký, hlavně že víme co to je k čemu to je a jak to funguje
 - o ve stručnosti během jedné minuty vysvětlit princip a k čemu to je

Mnohorozměrná statistika

Praktické využítí všech postupů mnohorozměrné statistiky na jednom místě i s kódy tady:

Legenda

- factanal(prom) -> kod
- #Bhahaha.. I -> Výstup kodu / dodatek ke kodu

Mnohorozměrná statistika obecně

- Nepracuje se s jednou proměnnou X, ale s vektorem proměnných X(X1, X2, ..., Xn)
- Například: několik fyzických parametrů jedince (výška, váha, BMI, tlak, ...)
- Nástroje:
 - Hotellingův test (mnohoroz. Dvouvýběrový test)
 - MANOVA (mnohoroz. ANOVA)
 - Kanonické korelace (mnohoroz. korelační koeficient)
 - Mnohorozměrná regrese
- Cíle:
 - redukovat data (hlavní komponenty)
 - seskupit pozorování (shluky)
 - o najít rozdíly mezi skupinami (diskriminace).

Porovnání výběrů

- Zkoumáme, zda se **skupiny (např. muži vs. ženy)** liší v několika **závislých proměnných současně** (např. výška, váha, tlak).
- Nástroje:
 - o Hotellingův test porovnání 2 skupin
 - MANOVA porovnání 3 a více skupin
 - Oboje snižuje šanci na chybu I. typu (false positive)

ANOVA

- OPAKOVÁNÍ pro kontext
- ANalysis Of Variance
- Zjišťuje, jestli se průměry mezi více než dvěma skupinami významně liší
 - Jestli je rozdíl mezi skupinam
 - Jeden dataset aut rozdělím na značky kontroluji jestli je rozdíl ve výsledcích 1 proměnné ve skupinách
 - Funguje pouze pro 1 závislou proměnnou (to podle čeho rozdíl hodnotím)
- Pokud testuju pouze dvě skupiny -> t-test

MANOVA

- Rozšíření (zobecnění) ANOVY na více závislých proměnných.
- Testuje globální hypotézu, že vektory středních hodnot jsou stejné mezi skupinami.
 - V řeči lidí: nulová hypotéza = všechny skupiny jsou stejné
 - o p > 0.05 = Skupiny jsou rozdílné
- Pokud testuju pro dvě skupiny -> Hotellingův test
- Interakce:
 - Zkoumá, zda kombinace dvou (nebo více) faktorů má společný vliv na více závislých proměnných jiný, než by měly tyto faktory samostatně.

Předpoklady:

- Multivariátová normalita
 - každá skupina má normální rozdělení ve všech závislých proměnných společně.
- Homogenita matic kovariancí
 - rovnost kovariančních matic
 - všechny skupiny mají podobnou strukturu rozptylů a kovariancí.
- Nezávislost pozorování
 - každé pozorování je nezávislé na ostatních.
- Lineární vztahy mezi proměnnými
 - mezi závislými proměnnými by měl být lineární vztah.
- Absence multikolinearity
 - závislé proměnné by neměly být silně korelované (jinak může být výsledek nestabilní).
- Vzorec z prezentace:

• W (within):

$$W = \sum_{i=1}^p \sum_{i=1}^{n_i} (Y_{ij} - ar{Y}_i)^T (Y_{ij} - ar{Y}_i)$$

B (between):

$$B = \sum_{i=1}^p n_i (ar{Y}_i - ar{Y})^T (ar{Y}_i - ar{Y})$$

Popis:

- Y_{ij} : j-té pozorování v i-té skupině
- ullet $ar{Y}_i$: průměr i-té skupiny
- $ar{Y}$: celkový průměr přes všechny skupiny
- W: variabilita uvnitř skupin jak moc se liší lidé ve stejné skupině
- B: variabilita **mezi skupinami** jak moc se liší průměry skupin

Pokud jsou rozdíly mezi skupinami (B) velké a rozdíly uvnitř skupin (W) malé
 skupiny se liší -> zamítáš H0 (takže skupiny jsou různé)

Využití v R

- Jak výška a kvalita masa závisí na rase prasete
 manova result <- manova(cbind(vyska, kvalita masa) ~ rasa, data = data)
- Interakce druhu krmiva a rasy
 manova(cbind(vyska, kvalita_masa) ~ rasa * krmivo, data = data)
 - Výběr testů
 - Ve výchozím nastavení R použije Wilksovo lambda
 - Testy se liší matematickým výpočtem a citlivostí na porušení předpokladů (např. normalitu, homogenitu kovariance).
 - Wilks
 - Musí splňovat:
 - Multivariátová normalita
 - Homogenita kovariančních matic
 - Nezávislost pozorování
 - Nemusí splňovat:
 - Rovnoměrný počet pozorování ve skupinách (ale při nerovnosti může být ovlivněn)
 - Rovnoměrné rozdělení závislých proměnných (není klíčové, ale doporučeno)
 - Pillai
 - Musí splňovat:
 - Nezávislost pozorování
 - Nemusí splňovat:
 - Přesná multivariátová normalita (je robustní vůči mírnému porušení)
 - Homogenita kovariančních matic (je tolerantní vůči porušení)
 - Rovnoměrnost skupin (funguje dobře i při různých velikostech)
 - Hotelling-Lawley
 - Musí splňovat:
 - Multivariátová normalita
 - Nezávislost pozorování
 - Nemusí splňovat:
 - Homogenita kovariančních matic (je méně citlivý než Wilks, ale stále záleží na míře porušení)
 - Rovnoměrný počet pozorování (částečně tolerantní)
 - Roy
 - Musí splňovat:
 - Multivariátová normalita
 - Nezávislost pozorování
 - Nemusí splňovat:
 - Homogenita kovariančních matic (velmi citlivý na porušení)

 Vícero významných dimenzí rozdílu mezi skupinami (stačí silný rozdíl v jedné)

summary(manova_result, test = "Wilks")

Testování předpokladů:

```
zavisla1 <- "Nonflavanoid.phenols"
zavisla2 <- "Proanthocyanin"
zavisla3 <- "Flavanoids"
# Multivariátová normalita
library(MVN)
mvn(data[, c(zavisla1 , zavisla2 , zavisla3 )], mvnTest = "royston", group = "Cultivar")
# Homogenita matic kovariancí
library(biotools)
boxM(data[, c(zavisla1 , zavisla2 , zavisla3 )], grouping = data$Cultivar)
# Cultivar = odrůda
# Lineární vztahy mezi proměnnými
pairs(data[,c(zavisla1 , zavisla2 , zavisla3 )])
# Hledám lineární vzory v grafech.
# Absence multikolinearity
# Hodnota blízká nule značí silnou multikolinearitu.
det(cov(data[, c(zavisla1 , zavisla2 , zavisla3 )]))
# Korelační matice (hodnota nad 0.3 už je nějak zajímavá)
cor(data[, c(zavisla1 , zavisla2 , zavisla3 )])
```

Summary

```
# Máme data o výšce, váze a krevním tlaku mužů a žen:
data <- data.frame(
    pohlavi = rep(c("muž", "žena"), each = 5),
    vyska = c(180, 175, 178, 185, 182, 165, 160, 158, 162, 166),
    vaha = c(80, 82, 85, 90, 78, 60, 55, 58, 62, 65),
    tlak = c(120, 125, 130, 135, 122, 110, 112, 108, 114, 116)
)

manova_result <- manova(cbind(vyska, vaha, tlak) ~ pohlavi, data = data)
    summary(manova_result)

## Df Pillai approx F num Df den Df Pr(>F)

## pohlavi 1 0.93326 27.968 3 6 0.0006337 ***

## Residuals 8

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Df Stupně volnosti: kolik "nezávislých informací" máme. Pro pohlaví je 1 (dvě skupiny
 1), pro Residuals (chyby) 8.
- Pillai: Pillaiho testové kritérium hodnotí rozdíl mezi skupinami. Hodnoty blízké 1 značí velký rozdíl.
- approx F Přibližná F-statistika říká, jak velké rozdíly jsou mezi skupinami vůči rozptylu uvnitř skupin.
- num Df Počet stupňů volnosti v čitateli (odpovídá počtu závislých proměnných).
- den Df Počet stupňů volnosti ve jmenovateli spojený s počtem pozorování.
- Pr(>F) p-hodnota pravděpodobnost, že takový výsledek vznikl náhodně. Hodnota <
 0.05 značí statisticky významný rozdíl.
 - Značka významnosti: * pro p < 0.05, ** pro p < 0.01, *** pro p < 0.001

Konkrétně:

- 1. pohlaví Df = 1 → Porovnáváš 2 skupiny: např. muži vs. ženy.
- 2. Pillai = 0.95 → Vysoká hodnota, znamená velký rozdíl mezi skupinami v kombinaci závislých proměnných.
- 3. approx F = 18.6 → Velká hodnota F → skupiny se výrazně liší.
- 4. num Df = 3 → Porovnáváš 3 závislé proměnné (např. výška, váha, tlak).
- 5. den Df = 6 → Odpovídá velikosti vzorku máš málo dat (asi 10 pozorování).
- 6. Pr(>F) = 0.0023 → Velmi nízká p-hodnota → rozdíl je statisticky významný, nejedná se o náhodu.
- 7. → Závěr: Kombinace proměnných (např. výška, váha, tlak) se významně liší mezi pohlavími.

Hotellingův test

- T-test pro více závislých proměnných (zobecnění t-testu)
- Jako MANOVA pro 2 skupiny
- Předpoklady:
 - Stejné jako pro MANOVU
- Vzorec z prezentace:

$$T^2 = rac{n_1 n_2}{n_1 + n_2} (ar{X} - ar{Y})^T \mathbf{S}^{-1} (ar{X} - ar{Y})$$
 $\mathbf{S} = rac{(n_1 - 1) \mathbf{S}_1 + (n_2 - 1) \mathbf{S}_2}{n_1 + n_2 - 2}$

0

Popis:

- $ar{X}, ar{Y}$: vektor průměrů obou skupin (např. průměrná délka, šířka, váha...)
- S_1, S_2 : kovarianční matice v každé skupině (popisuje rozptyl a vzájemné vztahy mezi proměnnými)
- S: tzv. spojená kovarianční matice vážený průměr obou
- $(ar X-ar Y)^T{f S}^{-1}(ar X-ar Y)$: kvadratická forma měří vzdálenost mezi průměry, s přihlédnutím k rozptylu

 $\overline{}$

- Chceš vědět, jak moc se skupiny liší průměrně ve vícero proměnných najednou.
- Porovnáváš průměry, ale zároveň zohledňuješ variabilitu uvnitř skupin (rozptvl).
- Větší T^2 = větší rozdíl mezi skupinami → pokud je "příliš velký", zamítáš H0 (takže nejsou stejné).

Využití v R

library(Hotelling)

Pokud má Cultivar 2 hodnoty

hotelling.test(data[, c(zavisla1, zavisla2, zavisla3)] ~ data\$Cultivar)

Test stat: 121.79 ## Numerator df: 2 ## Denominator df: 3 ## P-value: 0.005671

- 1. Test stat: Hotellingova testová statistika (čím větší, tím větší rozdíl)
- 2. Numerator df: Počet proměnných, které byly zahrnuty do testu (muži, ženy
- 3. Denominator df: Odhad stupňů volnosti ve zbytku rozptylu (zohledňuje velikosti vzorku obou skupin).
- 4. p-value Pravděpodobnost, že rozdíl vznikl náhodou (p < 0.05 = významné)

Redukce dimenzionality

Metoda hlavních komponent (PCA)

- Zredukovat rozměrnost vícerozměrných dat.
- Najít nové proměnné (hlavní komponenty), které vysvětlují co nejvíce variability v datech.
- Vstupní proměnné musí být nezávislé
- Hlavní využití při grafickém zobrazení výstupů
- Vytváří nové proměnné lineární kombinací původních (práce s maticemi)
- Výsledná matice hlavních komponent Y má tyto vlastnosti:
 - vektory jsou vzájemně nezávislé
 - součet koeficientů lineární transformace u každé komponenty je 1
 - o řadí se podle velikosti variability (od největší k nejmenší)
 - o obsahuje veškeré informace, které obsahovala původní data
- Postup PCA:
 - 1. mějme mnohorozměrná data v prostoru
 - 2. daty proložíme vektor ve smeru s největší variabilitou
 - 3. tak získáme první hlavní komponentu
 - 4. hledáme vektor, který by byl k prvnímu kolmý a opět byl ve směru s největší variabilitou
 - 5. získáme druhou hlavní komponentu
 - 6. hledáme vektor, který by byl kolmý k prvním dvěma a byl
 - 7. ve směru s největší variabilitou
 - 8. získáme třetí hlavní komponentu
 - 9. poslední dva kroky opakujeme, dokud máme body ve volném prostoru
- Optimální počet hlavních komponent
 - počet hlavních komponent k reprezentaci informace původních dat = počet vlastních čísel korelační matice větších než 1
 - Screeplot tady jde vidět že je počet komponent 2, 3 nebo 4
 - Čára = kaiserovo kritérium = hledám komponenty které mají eigen value větší než 1
 - Vybírám buď Kaiserovým kritériem nebo tam kde se láme loket (klesání není tak a výrazné a začíná být stále
 - Vzhledem k loktu bych rozhodl pro comp 2 nebo 3

- Nevýhoda:
 - Proměnné nemají přirozenou interpretaci.
 - Pokud chceme menší počet proměnných, které jsou interpretovatelné -> faktorová analýza

Využívá:

- Korelační (nebo kovarianční) matici původních proměnných.
- Vlastní čísla (eigenvalues) určují význam (variabilitu) jednotlivých komponent.
 - Vyjadřují variabilitu vysvětlenou každou hlavní komponentou (PC).
 Čím větší je vlastní číslo, tím více informace (rozptylu) daná komponenta vysvětluje.
 - Seřazeny sestupně první PC vysvětluje nejvíce variability.
- Vlastní vektory (eigenvectors) určují směr hlavních komponent (tzv. loadingy).
 - Obsahují koeficienty (loadingy) pro každou původní proměnnou.
 - Každý sloupec v matici vlastních vektorů odpovídá jedné hlavní komponentě.
 - Každý řádek odpovídá původní proměnné.

Využití v R

Příprava dat

```
 \begin{array}{l} v1 <- c(1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,5,6) \\ v2 <- c(1,2,1,1,1,1,2,1,2,1,3,4,3,3,3,4,6,5) \\ v3 <- c(3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,5,4,6) \\ v4 <- c(3,3,4,3,3,1,1,2,1,1,1,1,2,1,1,5,6,4) \\ v5 <- c(1,1,1,1,1,3,3,3,3,3,1,1,1,1,1,6,4,5) \\ v6 <- c(1,1,1,2,1,3,3,3,4,3,1,1,1,2,1,6,5,4) \\ vmat <- data.frame(v1,v2,v3,v4,v5,v6) \\ m1 <- cbind(v1,v2,v3,v4,v5,v6) \\ \end{array}
```

Korelace

cor(m1)

```
## v1 v2 v3 v4 v5 v6

## v1 1.0000000 0.9393083 0.5128866 0.4320310 0.4664948 0.4086076

## v2 0.9393083 1.0000000 0.4124441 0.4084281 0.4363925 0.4326113

## v3 0.5128866 0.4124441 1.0000000 0.8770750 0.5128866 0.4320310

## v4 0.4320310 0.4084281 0.8770750 1.0000000 0.4320310 0.4323259

## v5 0.4664948 0.4363925 0.5128866 0.4320310 1.0000000 0.9473451

## v6 0.4086076 0.4326113 0.4320310 0.4323259 0.9473451 1.0000000
```

#Tato matice nám ukáže, jak jsou jednotlivé proměnné vzájemně korelovány. Vysoké hodnoty (např. 0.9) naznačují, že proměnné se silně ovlivňují.

Vlastní vektory a čísla

eigen(cor(m1))

```
## eigen() decomposition
## $values
## [1] 3.69603077 1.07311448 1.00077409 0.16100348 0.04096116 0.02811601
## $vectors
##
       PC1
                 PC2
                             PC3
                                       PC4
                                               PC5
                                                           PC6
## [v1,] 0.4154985 0.53088297 -0.1760717 0.2791358 -0.5317514 0.39223298
## [v2,] 0.4007058 0.54223870 -0.2485226 -0.3048547 0.5042931 -0.36932463
## [v3,] 0.4133938 -0.07418871 0.5496063 0.5693303 0.4344463 0.09302655
## [v5,] 0.4206885 -0.44028459 -0.3342420 0.2798686 -0.2920358 -0.59484588
## [v6,] 0.4045287 -0.46655507 -0.3691854 -0.2850910 0.2516003 0.58121033
PC -> hlavní komponenta
                                        v1,2,3..-> původní proměnné
číslo -> vlastní číslo
                                         sloupec -> vlastní vektor
```

PC1 ## [v1,] 0.4154985 ## [v2,] 0.4007058 ## [v3,] 0.4133938	Všechny tyto hodnoty jsou pozitivní, což znamená, že první hlavní komponenta je pozitivně korelována s každou z těchto proměnných (v1, v2, v3, v4, v5, v6).
## [v4,] 0.3940548	Jinými slovy, pokud se hodnota v jedné z těchto proměnných zvyšuje,
## [v5,] 0.4206885	hodnota první hlavní komponenty se také zvyšuje.
## [v6,] 0.4045287	The second control of

Ukázka variability na grafu:

```
screeplot(princomp(m1, cor = T), type="l")
abline(h=1, col="green")
```

princomp(m1, cor = T)

dostatecne velke procento vyuzite variability (80%) # první hlavní komponenta má velké množství informace (Koukám se nad zelenou čáru, vidím, že využiji 2 - 3 hlavní komponenty

cumsum(eigen(cor(m1))\$values / sum(eigen(cor(m1))\$values))

[1] 0.6160051 0.7948575 0.9616532 0.9884871 0.9953140 1.0000000

první komponenta 61%..

první a druhá 79%

prvni 3 komponenty vysvetli pres 90% variability

-> obvykle se potřebuje min 80%.. takže volíme 3 komponenty:

Vytvoření hlavních komponent: (Dělá to "samé" jako to nad tím)

prcomp(m1)

```
## Standard deviations (1, .., p=6):
## [1] 3.0368683 1.6313757 1.5818857 0.6344131 0.3190765 0.2649086
##
## Rotation (n x k) = (6 x 6):
## PC1 PC2 PC3 PC4 PC5 PC6
## v1 0.4168038 -0.52292304 0.2354298 -0.2686501 -0.5157193 0.39907358
## v2 0.3885610 -0.50887673 0.2985906 0.3060519 0.5061522 -0.38865228
## v3 0.4182779 0.01521834 -0.5555132 -0.5686880 0.4308467 0.08474731
```

v4 0.3943646 0.02184360 -0.5986150 0.5922259 -0.3558110 -0.09124977 ## v5 0.4254013 0.47017231 0.2923345 -0.2789775 -0.3060409 -0.58397162 ## v6 0.4047824 0.49580764 0.3209708 0.2866938 0.2682391 0.57719858

PC <- prcomp(vmat, scale = T)

hlavni komponenty

vrati variabilitu hlavnich komponent spolu s koeficienty jednotlivych komponent plot(PC\$x[,1], PC\$x[,2], pch = 19, main = "Prvni 2 hlavni komponenty")

Prvni 2 hlavni komponenty

vykresleni prvnich dvou hlavnich komponent, ukazuji v datech skupiny

maji hlavni komponenty prirozenou interpretaci? mnohdy ne, pak je potreba pouzit **faktorovou analyzu**

Faktorová analýza

- Statistická metoda používaná ke zjednodušení dat místo mnoha proměnných (sloupců) hledá několik skrytých faktorů (tzv. latentních).
- Pomáhá zjistit, **co mají proměnné společného** najít "neviditelné" příčiny, které ovlivňují více proměnných najednou.
- Řeší problém PCA s interpretací.
- Snaží se vysvětlit pouze společnou variabilitu (common variance) mezi původními proměnnými.
- Hlavní myšlenka faktorové analýzy pochází z psychologie.
 - Spočívá v předpokladu, že na každého člověka působí "k" neměřitelných faktorů.
 - Na základě toho, jak tyto faktory na nás působí, reagujeme.
 - Cílem je pak podle našich reakcí na "p" podnětů (nebo proměnných) identifikovat původní, skryté faktory.

Předpoklady:

- 1. Spojitá, intervalová nebo poměrová data
- 2. Chyby jsou náhodné, nezávislé a mají konstantní rozptyl
- 3. Vhodnost dat: Proměnné spolu korelují.. řešilo se nahoře, jinak to nemá smysl
- 4. Počet faktorů je správně zvolen: Musíš zvolit takový počet faktorů, aby vysvětlili většinu variability (stejným způsobem jako u PCA)
- 5. Normalita (Pro metody factanal)

princomp(m1, cor = T)

Využití v R

factanal(m1, factors = 3)

Počet faktorů mi znázorňuje screeplot z eigen v PCA.. kolik jich je větších než 1

```
## Call:
## factanal(x = m1, factors = 3)
##
## Uniquenesses:
## v1
          v2
                   v3 v4v5
                                 v6
## 0.005 0.101 0.005 0.224 0.084 0.005
##
## Loadings:
## Factor1 Factor2 Factor3
## v1 0.944 0.182 0.267
## v2 0.905 0.235 0.159
## v3 0.236 0.210 0.946
## v4 0.180 0.242 0.828
## v5 0.242 0.881 0.286
```

v6 0.193 0.959 0.196

1. Uniquenesses: jaké proměnné jsou zajímavé, obsaženy v analýze.. nízká čísla good (0.1). Pokud velká, může se vynechat (Nekoreluje s ostatními)

```
sc <- factanal(~v1+v2+v3+v4+v5+v6, factors = 3, scores = "Bartlett")$scores faktorove skory pro jednotliva pozorovani plot(sc[,1], sc[,2], pch = 19, main = "Prvni 2 faktory")
```

Prvni 2 faktory

vykresleni prvnich dvou faktoru

Graf zobrazuje rozložení pozorování podle prvních dvou faktorů.

Blízká pozorování = pozorování, která jsou si podobná ve faktorech. Pokud jsou body u sebe, znamená to, že mají podobné hodnoty faktorových skóre → tedy jsou si podobná ve významných rysech, které faktory vystihují.

Vzdálená pozorování = Hodně rozptýlené body znamenají, že faktory dobře rozlišují pozorování. Např. některé body mají vysokou hodnotu na prvním faktoru (sc[,1] blízko 1.5), jiné zápornou (např. -1.0). To značí, že první faktor silně diferencuje pozorování.

Lze hledat shluky - seskupení bodů. To indikuje latentní skupiny (např. typy respondentů, podobné odpovědi na otázky, podobné vzorce chování atd.)

Příklad interpretace: Pozorování vpravo nahoře (např. [1.5, 1.5]) má vysoké skóre v obou faktorech → typický profil "silně ovlivněn oběma faktory". Pozorování vlevo dole ([-1, -1]) má nízké skóre v obou faktorech → opačný profil. Pozorování kolem [0,0] jsou průměrná, nemají extrémní hodnoty ani v jednom faktoru.

summary(PC)

```
## Importance of components:

## PC1 PC2 PC3 PC4 PC5 PC6

## Standard deviation 1.923 1.0359 1.0004 0.40125 0.20239 0.16768

## Proportion of Variance 0.616 0.1789 0.1668 0.02683 0.00683 0.00469

## Cumulative Proportion 0.616 0.7949 0.9617 0.98849 0.99531 1.00000
```

Interpretace:

- 1. Standard deviation: Odchylka každé hlavní komponenty (PC1 až PCn) čím větší, tím víc informací komponenta obsahuje.
- 2. Proportion of Variance Podíl vysvětlené variability kolik % informací o původních datech tato komponenta zachycuje.
- Cumulative Proportion Kumulovaný podíl součet všech předchozích Proportion of Variance → ukazuje, kolik % informace získáme, když si vezmeme např. první 2 komponenty.

biplot(PC)

- 1. Čísla v grafu označují pozorování
- 2. Šipky znázorňují původní proměnné Směr šipky -> směr růstu proměnné Délka šipky -> síla vlivu této proměnné

Silně přispívají do komponenty PC1. Pozorování, která leží vpravo, mají pravděpodobně větší hodnoty těchto atributů.

Diskriminační analýza

- Diskriminační analýza je metoda, která se používá k rozeznávání skupin (kategorií) na základě několika číselných proměnných.
- Představ si třeba, že máš vzorky vína ze tří různých odrůd.
 - Každý vzorek je popsán několika číselnými hodnotami (např. kyselost, obsah cukru, barva).
 - Ty ale nevíš, jaká odrůda to je a právě diskriminační analýza se snaží na základě těchto čísel poznat, do které skupiny (odrůdy) víno patří.

• Lineární diskriminační analýza:

- Vysvětlení budeme pokračovat s příkladem s víny (zadání úkolu PSM)
- Hledá rozhodovací pravidla, která co nejlépe rozliší odrůdy vína (kategorie) podle chemických vlastností (čísla).
- LDA hledá lineární kombinace původních proměnných, které co nejlépe oddělí skupiny.
- Kombinace se jmenují LD1, LD2 (Linear Discriminant)
- Jsou to osy rozhodování zjednodušeně: čím dál je vzorek na LD ose od jiných skupin, tím lépe ho odliší.
- o Např. LD1 může rozdělovat třídy 1 vs 2+3, LD2 třeba 2 vs 3.
- Jak funguje:
 - Změří průměry každé skupiny v každé proměnné.
 - Vypočítá rozptyl uvnitř skupin a mezi skupinami.
 - Hledá směry, které maximalizují rozdíl mezi skupinami a minimalizují rozdíl uvnitř skupin.
- Je to model, který z venku působí jako regresní model musí se natrénovat na části dat a pak předpovídá pro zbytek
- Předpoklady:
 - awa
- o Počet LD os (funkcí) = Max. počet skupin 1.
 - Např. máš 3 odrůdy → max. 2 LD funkce (LD1 a LD2).

0

Příklad v R

library(MASS)

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa ## 2 4.9 3.0 1.4 0.2 setosa ## 3 4.7 3.2 1.3 0.2 setosa 1.5 0.2 setosa ## 4 4.6 3.1 ## 5 5.0 3.6 1.4 0.2 setosa ## 6 5.4 3.9 1.7 0.4 setosa

Chceme zjistit, jestli lze předpovědět druh květiny (Species) na základě těchto měření.

Naučení modelu:

```
model <- MASS::lda(Species ~ ., data = iris)
summary(model)
##
      Length Class Mode
## prior 3 -none- numeric
## counts 3 -none- numeric
## means 12
                  -none- numeric
## scaling 8 -none- numeric
## lev 3 -none- character
## svd
         2 -none- numeric
## N
            -none- numeric
       1
## call 3
            -none- call
## terms 3 terms call
## xlevels 0 -none- list
```

Tím říkáme: použij všechny proměnné kromě Species k předpovědi Species.

model

```
## Call:
## Ida(Species ~ ., data = iris)
## Prior probabilities of groups:
## setosa versicolor virginica
## 0.3333333 0.3333333 0.3333333
##
## Group means:
         Sepal.Length Sepal.Width Petal.Length Petal.Width
## setosa
                  5.006
                                 3.428
                                             1.462
                                                             0.246
                                               4.260
## versicolor
                    5.936
                                 2.770
                                                             1.326
## virginica
                    6.588
                                 2.974
                                               5.552
                                                             2.026
##
## Coefficients of linear discriminants:
             LD1
                  ID2
## Sepal.Length 0.8293776 -0.02410215
## Sepal.Width 1.5344731 -2.16452123
## Petal.Length -2.2012117 0.93192121
## Petal.Width -2.8104603 -2.83918785
## Proportion of trace:
## LD1
             LD2
## 0.9912 0.0088
```

- 1. Prior probabilities: máme rovnoměrné zastoupení druhů (každý tvoří třetinu dat).
- 2. Group means: průměrné hodnoty jednotlivých měření pro každý druh. Např. setosa má nejmenší okvětní lístek (Petal.Length).
- 3. LD1, LD2 Diskriminační osy (směry) pro oddělení skupin

- 4. Coefficients of linear discriminants: Jak silně daná proměnná přispívá k oddělování skupin podél daného směru.
- 5. Proportion of trace: Kolik % rozptylu mezi skupinami každá osa vysvětluje

plot(model)

LD1 pěkně rozděluje 3 skupiny (hlavně odděluje Setosu od ostatních),

LD2 je víceméně jen do šířky a nepřináší tolik rozlišení.

Předpoveď:

```
pred <- predict(model)
head(pred$class)</pre>
```

[1] setosa setosa setosa setosa setosa setosa ## Levels: setosa versicolor virginica

table(Předpověď = pred\$class, Skutečnost = iris\$Species)

```
## Skutečnost
## Předpověď setosa versicolor virginica
## setosa 50 0 0
## versicolor 0 48 1
## virginica 0 2 49
```

Model perfektně pozná Setosu (50/50) U Versicolor a Virginica udělá pár chyb (2 kusy si spletl) Celková úspěšnost: (50 + 48 + 49) / 150 = 98 %

Shluková analýza (Clustering)

- Shluková analýza je metoda, která automaticky hledá skupiny (shluky) podobných objektů
- Narozdíl od diskriminační analýzy, tady nevíme, kolik skupin existuje.

Hierarchické shlukování

Zaměřuje se na to, jakým způsobem lze spojovat objekty do skupin. Existují dvě hlavní varianty:

Agregativní (bottom-up): Začínáme se všemi objekty jako samostatnými shluky a postupně je spojujeme do větších shluků.

Dezregativní (top-down): Začínáme s jedním velkým shlukem, který postupně dělíme na menší shluky.

Obvykle se používá <u>agregativní přístup</u>, protože je intuitivnější.

Příklad v R

Načteme data a odstraníme sloupec "Species" data(iris) iris_data <- iris[, -5]

Vypočteme vzdálenosti mezi objekty distance matrix <- dist(iris data)

- dist(iris_data) spočítá vzdálenosti mezi každými dvěma objekty (na základě rozdílů v hodnotách jejich proměnných).

Použijeme hierarchické shlukování (agregativní metoda: "complete")

hc <- hclust(distance_matrix, method = "complete")</pre>

#- hclust() provede samotné shlukování, v tomto případě s metodou "complete", což znamená, že dva shluky se spojí, když nejvíce vzdálené objekty mezi nimi mají co nejmenší vzdálenost.

Vykreslime dendrogram

plot(hc, main = "Hierarchické shlukování (dendrogram)")
seg <- cutree(hc, k = 3)
rozdeli data do 3 skupin
rect.hclust(hc, k=3, border="red")

Hierarchické shlukování (dendrogram)

distance_matrix hclust (*, "complete")

Dendrogram: - Graf, který ukazuje, jak se shluky spojovaly. Když se shluky spojují, je to zobrazeno jako spojení na určité úrovni na ose y (vzdálenost).

Standardizace

Standardizace zajistí, že všechny proměnné mají stejnou váhu. Výsledný dendrogram může mít odlišnou strukturu.

iris.sc <- scale(iris[,1:4])

hc.iris.sc <- hclust(dist(iris.sc), method = "average")</pre>

plot(hc.iris.sc, hang = -1, labels = FALSE, main = "Dendrogram se standardizací") rect.hclust(hc.iris.sc, k = 3, border = "red")

Dendrogram se standardizací

dist(iris.sc) hclust (*, "average")

plot(iris\$Petal.Length, iris\$Petal.Width, col = seg, pch = 19, xlab = "Petal Length", ylab = "Petal Width")

Interpretace: první shluk odpovídá přesně Setosa, druhý a třetí rozlišují zbytek

Srovnání různých metod

hc.complete <- hclust(dist(iris.sc), method = "complete")
hc.ward <- hclust(dist(iris.sc), method = "ward.D2")</pre>

plot(hc.complete, hang = -1, main = "Complete linkage", labels = FALSE)

Complete linkage

dist(iris.sc) hclust (*, "complete")

#Complete = maximální vzdálenost mezi členy shluků.

plot(hc.ward, hang = -1, main = "Wardova metoda", labels = FALSE)

Wardova metoda

dist(iris.sc) hclust (*, "ward.D2")

#Ward.D2 = minimalizace vnitroshlukové variability – často dává kompaktní, vyvážené shluky.

```
seg.comp <- cutree(hc.complete, k = 3)
seg.ward <- cutree(hc.ward, k = 3)</pre>
```

table(seg.comp, iris\$Species)

##

seg.comp setosa versicolor virginica

1 49 0 0 ## 2 1 21 2 ## 3 0 29 48

table(seg.ward, iris\$Species)

##

seg.ward setosa versicolor virginica

1 49 0 0 ## 2 1 27 2 ## 3 0 23 48

K-means shluková analýza

Nejčastější metoda je K-means clustering – zadáš počet skupin (např. 3) a algoritmus přiřadí každý řádek do nějakého shluku (1, 2 nebo 3):

iris.sc <- scale(iris[, 1:4]) # Standardizace čtyř číselných proměnných

```
# K-means shlukování na základě předchozí hierarchie (víme, že 3 skupiny dávají smysl) seg.km <- kmeans(iris.sc, 3) # rozdělení do 3 skupin

#Náhodně vybere 3 počáteční středy (centroidy).

#Každý bod přiřadí do nejbližšího středu (v eukleidovském smyslu).

#Přepočítá nové středy = průměry bodů ve shluku.

#Opakuje kroky 2–3, dokud se přiřazení nezmění (nebo po max. počtu iterací).

#(K-nejbližších sousedů - USU)

# Porovnání s původními druhy květin

table(iris$Species, seg.km$cluster)

##

##

1 2 3

## setosa 0 50 0

## versicolor 11 0 39

## virginica 36 0 14
```

Všechny setosa byly zařazeny do shluku 2 → perfektní rozpoznání.

Versicolor: Většina versicolor (39) byla chybně zařazena do shluku 1 (stejně jako špatné virginica), jen 11 se dostalo do shluku 3 → K-means si spletl versicolor a virginica.

virginica: 36 z nich šlo do shluku 3 (správně), ale 14 skončilo ve shluku 1 → některé špatně zařazené.

```
# Vizualizace výsledků shlukování ve 2 proměnných
plot(iris$Petal.Length, iris$Petal.Width, col = seg.km$cluster, pch = 19,
main = "K-means clustering: Petal.Length vs Petal.Width")
```

K-means clustering: Petal.Length vs Petal.Width

Kanonické korelace (CCA)

- Kanonická korelace (Canonical Correlation Analysis, CCA) je metoda, která zkoumá vztah mezi dvěma soubory proměnných.
- Například:
 - Soubor 1: měření IQ, paměť, pozornost
 - Soubor 2: známky z matematiky, češtiny a angličtiny

CCA hledá **lineární kombinace proměnných v každém souboru**, které spolu mají **# Načti** data

```
Příklad v R:
data("USArrests")
# Vyber dva soubory proměnných:
# X: První dvě proměnné (Murder, Assault)
X <- USArrests[, c("Murder", "Assault")]
# Y: Další dvě proměnné (UrbanPop, Rape)
Y <- USArrests[, c("UrbanPop", "Rape")]
# Proveď kanonickou korelaci
cca <- cancor(X, Y)
# Výsledky
print("Kanonické korelace:")
print(cca$cor)
print("Kanonické váhy pro X:")
print(cca$xcoef)
print("Kanonické váhy pro Y:")
print(cca$ycoef)
Interpretace výsledků
```

1. Kanonické korelace (cca\$cor)

- Vrátí vektor korelací mezi kanonickými vektory (lineárními kombinacemi z X a Y).
- Například: [1] 0.89 0.58 znamená, že první kanonická korelace je 0.89 (silná), druhá je 0.58 (střední).
- Vyšší korelace ukazuje na silnější vztah mezi kombinacemi proměnných.

2. Kanonické váhy pro X (cca\$xcoef)

- Udávají, jak silně se každá původní proměnná z X podílí na tvorbě kanonického vektoru.
- Například:

Murder: 0.8 Assault: 0.6

- Znamená, že Murder je v první kanonické kombinaci důležitější.
- 3. Kanonické váhy pro Y (cca\$ycoef)
 - Totéž platí pro druhý soubor Y.
 - Váhy říkají, jak přispívají UrbanPop a Rape k odpovídajícím kanonickým vektorům.

Co z toho plyne?

- První kanonická korelace blízká 1 znamená, že existuje silný vztah mezi určitými kombinacemi proměnných z X a Y.
- Podíváme-li se na váhy, zjistíme, které proměnné nejvíce přispívají k tomuto vztahu.
- Například pokud Murder a Assault mají vysoké váhy, a UrbanPop a Rape také, můžeme říct, že kombinace násilných trestných činů koreluje s kombinací urbanizace a znásilnění.

Asymptotické p-hodnoty

Každá hodnota je p-hodnota testu, že příslušná kanonická korelace je nulová.

Příklad interpretace:

- Pro první korelaci 0.0001 (velmi malá) → statisticky velmi významná.
- Pro druhou korelaci 0.023 → stále významná, ale méně.

library(CCP)

p_asym <- p.asym(cca\$cor, nrow(X), ncol(X), ncol(Y), tstat = "Wilks")
print("Asymptotické p-hodnoty (Wilks lambda):")</pre>

print(p_asym)

Permutační p-hodnoty

- Tyto hodnoty ukazují pravděpodobnost, že podobnou korelaci bys získal náhodou, pokud by mezi proměnnými žádný vztah nebyl.
- Permutační test je méně založený na předpokladech (např. normalita).
- Pokud jsou hodnoty < 0.05, korelace považujeme za statisticky významné.

Permutační test významnosti (výpočetně náročnější)

Doporučuji spustit jen na menším vzorku pro rychlost

set.seed(123)

p_perm <- p.perm(X, Y, nperms = 1000) # 1000 permutací

print("Permutační p-hodnoty:")

print(p_perm)

Regresní modely

Kódy: Babichev kódy

Regresní analýza

- Statistická metoda, která zkoumá vztah mezi závislou proměnnou a jednou nebo více nezávislými proměnnými.
- Závislá proměnná = její hodnota ZÁVISÍ na hodnotě nezávislé proměnné
- Cíle:
 - Zjištění vztahů mezi jednotlivými proměnnými
 - o Předpovídání hodnot závislé proměnné
 - Odhalení klíčových faktorů, které ovlivňují výsledky
 - Zlepšení rozhodovacích procesů
- Aplikace:
 - o Ekonomie: předpověď cen, analýza trhu
 - o Biostatistika: modelování vztahů mezi zdravotními faktory
 - Strojové učení: regresní modely pro predikci
 - o Fyzika a chemie: analýza dat z experimentů
- Funkční závislost
 - Hodnoty nezávislé proměnné určují přímo závislou
 - o Jako matematická funkce.
- Stochastická (volná) závislost
 - Systematický pohyb proměnné podle pohybu druhé proměnné
 - o (pohyb = klesání/růst)
- Korelační analýza vs Regresní analýza:
 - Korelační analýza:
 - Zjišťuje, zda mezi dvěma proměnnými existuje vztah a jak silný ten vztah ie.
 - Korelace je symetrická proměnné se navzájem popisují
 - Výstup = informace jaký je vztah (Pearsonův koeficient)
 - Regresní analýza:
 - Zjišťuje, jak konkrétně jedna nebo více proměnných ovlivňuje jinou proměnnou a vytváří matematický model (funkci) pro predikci.
 - Regrese je asymetrická nezávislé prom. vysvětlují závislou
 - Výstup = matematický model rovnice popisující vztah a predikující budoucí hodnoty
 - ChatGPT vysvětlení (za mě docela mňamózní):
 - Korelace je jako říct:
 - "Když lidé jedí více zmrzliny, častěji chodí k vodě." vidíš vztah, ale nevíš, co co ovlivňuje.
 - Regrese je jako říct:
 - "Každé zvýšení teploty o 1 °C zvyšuje spotřebu zmrzliny o 3%." – víš, co ovlivňuje co a o kolik.

Hodnocení modelů:

- o R²
- Udává, jak velkou část rozptylu v datech model vysvětluje v procentech
- Hodnoty:
 - R² = 1 → model dokonale vysvětluje data
 - R² = 0 → model nic nevysvětluje

\circ MAE

- Mean Absolute Error
- Průměrná velikost chyby v jednotkách výstupu
- vyčíslení rozdílu mezi skutečnými hodnotami a predikcemi modelem

$$ext{MAE} = rac{1}{n} \sum |y_i - \hat{y}_i|$$

- Vezme se absolutní hodnota rozdílu mezi skutečnou a predikovanou hodnotou (ignoruje znaménko).
- Sečtou se tyto rozdíly a zprůměrují.
- Míň citlivý na velký chyby

o MSE

- Mean Squared Error
- vyčíslení rozdílu mezi skutečnými hodnotami a predikcemi modelem

$$ext{MSE} = rac{1}{n} \sum (y_i - \hat{y}_i)^2$$

- Vyzdvihuje větší chyby čím větší chyba, tím víc se penalizuje.
- RMSE
 - Root Mean Squared Error
 - vyčíslení rozdílu mezi skutečnými hodnotami a predikcemi modelem

$$\mathbf{RMSE} = \sqrt{\mathbf{MSE}}$$

- MSE v původních jednotkách
- Akaikeho informační kritérium (AIC)
 - Penalizuje složité modely (míň než BIC ale)
 - Nižší hodnota = lepší model
 - GPT vysvětlení (dávám to sem protože z tohohle jsem to náhle pochopil i já xd)
 - Máš dvě pizzy jedna chutná skvěle, ale má 12 ingrediencí (zbytečně složitá), druhá skoro stejně chutná a má jen 5 surovin. AIC vybere tu druhou.

Bayesovské informační kritérium (BIC)

- Jako AIC
- Trestá složitost modelu víc než AIC
- Nižší hodnota = lepší model

Lineární regrese

- Modeluje lineární vztah mezi závislou proměnnou a jednou nebo více nezávislými proměnnými.
- Výstup je přímka (od slova lineární...)
- Obvykle pomocí metody nejmenších čtverců
- Předpoklady:
 - Náhodné chyby ei
 - jsou nezávislé
 - stejně rozdělené
 - náhodné
 - normální rozdělení
 - nulová střední hodnota
 - konstantní rozptyl
 - Pokud splňují tyto předpoklady značí se takto: ei ~ iid N(0, σ2)
 - Hodnoty nezávislé proměnné Xk
 - jsou vzájemně nezávislé
 - mají se závislou proměnnou Y lineární vztah
 - o v datech nejsou vlivná pozorování
 - vlivné pozorování = outlier který ovlivní zbytek pozorování (může na obou osách)
 - NEŘÍKAT ŽE JE TO OUTLIER (nazval jsem to outlier pro lehčí pochopení)
 - pozná se cookovou vzáleností nebo vlivem (leverage)
- Omezení:
 - Výsledný model má tvar lineární funkce, i když může mít víc proměnných
 - Nezachytí nelineární vztahy (např. křivky, exponenciální průběh)
 - Citlivá na odlehlé hodnoty (outliery)

Jednoduchá lineární regrese

- jedna závislá a jedna nezávislá proměnná
- Model má tvar:
 - y = β0 + β1Xi + ei

Mnohonásobná lineární regrese

- jedna závislá a více nezávislých proměnných
- Model má tvar:
 - o $y = \beta 0 + \beta 1X1i + \beta 2X2i + \cdots + \beta kXki + ei$
- Předpoklady:
 - o Lineární vztah mezi závislými a nezávislými prom.
 - o Nezávislost, homoskedasticita a normální rozdělení reziduí
 - Žádná nebo minimální multikolinearita mezi nezávislými prom.

Polynomiální regrese

- Rozšíření lineární regrese
- Modeluje křivky
- Umožňuje **modelovat nelineární vztahy** mezi závislou a nezávislou proměnnou pomocí **vyšších mocnin nezávislé proměnné**.
- Přestože výsledný tvar rovnice je zakřivený, model je stále lineární vůči parametrům.
- Funguje pro jednoduchou i mnohonásobnou regresi
- Jak to funguje:

Původní lineární rovnice: y=a+bxPolynomiální 2. stupně: $y=a+b_1x+b_2x^2$ Polynomiální 3. stupně: $y=a+b_1x+b_2x^2+b_3x^3$

- Přidáním vyšších mocnin nevzniká nelineární regrese, protože koeficienty b1, b2, b3 se stále počítají lineárními metodami (např. maticově nebo metodou nejmenších čtverců).
- o Každá mocnina reprezentuje další "ohnutí" = **stupeň volnosti** modelu.
- Kdy to použít:

0

o Model není přímka (lineární

Logistická regrese

- Odhaduje dvě hodnoty (ano/ne, muž/žena, ...) => BINÁRNÍ VÝSTUP
- Model vrací pravděpodobnost (0 1), ta se pak převede na kategorii (0 0.5 = NE, 0.51 - 1 = ANO)

•

•

• Předpoklady:

- Lineární vztah mezi nezávislými proměnými a log-odds (logaritmy poměru pravděpodobnosti, že nastane událost vůči tomu, že nenastane)
- o Lineární vztah mezi nezávislými a závislou proměnnou

$$P(Y=1)=rac{1}{1+e^{-(b_0+b_1x_1+b_2x_2+\cdots+b_nx_n)}}$$
• $P(Y=1)$ = pravděpodobnost výsledku 1
• e = Eulerovo číslo (~2.718)
• b_0,b_1,\ldots = koeficienty (model je naučí)
• x_1,x_2,\ldots = vstupy

- •
- b0,b1, ...
 - "Udávají, jak moc každý vstup (nezávislá proměnná) zvyšuje nebo snižuje výslednou pravděpodobnost." (DUH když to ty vstupy násobí :D)
 - o Pozitivní šance roste
 - Negativní šance klesá
- Odhad koeficientů (b0,b1, ...)
 - Získávají se pomocí MLE (Maximální věrohodnostní odhad)
 - MLE hledá takové hodnoty koeficientů, které dělají predikce modelu co nejblíže skutečným výsledkům.
 - MLE iterativně upravuje koeficienty
 - Jak funguje MLE:

$$\log L(b) = \sum_{i=1}^n \left[y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)
ight]$$

■ Spočítáme pravděpodobnost, že by celý dataset dopadl přesně tak, jak dopadl, pro dané koeficienty.

- Cílem je najít ty koeficienty, pro které je ta pravděpodobnost největší = maximum likelihood.
- Vypočítá se pravděpodobnost pro každý pozorování (řádek) a vynásobí se mezi sebou
- Funkce je sigmoida (fun fact)
- Hodnocení modelu:
 - Akaikeho informační kritérium (AIC)
 - Penalizuje složité modely
 - Nižší hodnota = lepší model
 - GPT vysvětlení (dávám to sem protože z tohohle jsem to náhle pochopil i já xd)
 - Máš dvě pizzy jedna chutná skvěle, ale má 12 ingrediencí (zbytečně složitá), druhá skoro stejně chutná a má jen 5 surovin. AIC vybere tu druhou.
 - **R**²
- Jak moc model vysvětluje variabilitu výstupu
- Matice záměny = CONFUSION MATRIX
 - Tabulka, která ukazuje, kolikrát model:
 - uhodl správně ANO (True Positive = TP)
 - uhodl správně NE (True Negative = TN)
 - řekl ANO, ale bylo to NE (False Positive = FP)
 - řekl NE, ale bylo to ANO (False Negative = FN)
 - Na základě tabulky se počítá:

Přesnost - podíl správně klasifikovaných případů.

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

Sensitivita (Recall) - schopnost modelu správně identifikovat pozitivní případy.

$$RC = \frac{TP}{TP + FN}$$

Specificita - schopnost modelu správně identifikovat negativní případy.

$$SP = \frac{TN}{TN + FP}$$

o ROC křivka

- Receiver Operating Characteristic
- Graf, který ukazuje, jak dobře model odděluje 1 a 0 při různých prahových hodnotách

- Osa Y: True Positive Rate (citlivost)
- Osa X: False Positive Rate
- Ideální model: křivka stoupá rychle k levému hornímu rohu.

o AUC hodnota

- Area Under Curve
- Schopnost modelu správně klasifikovat případy nezávisle na prahové hodnotě
- Hodnoty:
 - AUC = 1: perfektní model
 - AUC = 0.5: hádání náhodně
 - AUC > 0.7: už celkem dobrý
 - AUC > 0.9: výborný model
 - AUC < 0.5: horší jak náhoda

Loess regrese

- Jinak nazývaný LOWESS ("Locally Weighted Scatterplot Smoothing")
- Neparametrická nelineární technika
- Kombinuje několik regresních modelů do meta-modelu (založený na metodě k-means)
- Aplikuje několik regresí v lokálních podmnožinách
- Může modelovat složitější nelineární vztahy
- Výstup není jedna rovnice pro všechna data
- Výstup je hladká křivka
- LOESS se používá hlavně pro zobrazení trendu v grafech a vizualizacích.

• Charakteristiky:

- LOESS nevytváří jeden globální model, ale staví malé jednoduché modely v okolí každého bodu v datech.
- Každý malý model je vytvořen pomocí vážené regresní analýzy, kde mají nejbližší body větší vliv než ty vzdálenější. (nejmenší čtverce)
- Vyhlazovací parametr (šířka pásma)
 - Říká, kolik sousedních bodů se použije při tvorbě lokálního modelu. Větší šířka = víc bodů = hladší křivka.
- Dobře hodí tam, kde nemáš tušení, jak data vypadají. (nepředpokládá nějaký tvar jako parabolu)
- Náročný na výpočet = POMALÝ
- Není dobrý pro předpovídání hodnot mimo křivku
- S každou nezávislou proměnnou roste náročnost výpočtu

Jak funguje:

- Zaměříš se na jeden konkrétní bod (např. X = 5).
- Vybereš jeho okolí (např. 30 % nejbližších bodů podle X).
- Těmto bodům přiřadíš váhy nejbližší bod dostane nejvyšší váhu, vzdálenější menší.
- Fitneš jednoduchou regresi (např. přímku) jen na tyto body a váhy.
- Výsledek (predikce) pro tento bod je hodnota na této regresní křivce.
- To celé zopakuješ pro každý bod tím vznikne hladká zakřivená křivka přes celá data.

Decision tree regrese

- Kvalitní vysvětlení part 1
- Kvalitní vysvětlení part 2
- (^^^ Doporučuji pustit si ty dvě videa)
- Model, který rozděluje vstupní prostor do oblastí podle hodnot vstupních proměnných
- Každé rozdělení (uzel) klade otázku typu "je hodnota menší než...?" a na základě odpovědi tě pošle dolů buď doleva, nebo doprava.
- Cílem je předpovědět číselnou hodnotu, ne kategorii.

•

- Jak funguje decision tree:
 - Strom dělí data (hodnoty závislé proměnné) podle vstupních (nezávislých) proměnných, jako jsou věk, plocha, cena atd.
 - Decision node => x <= 5
 - Leaf node => hodnota 5.2654
 - Každá node se vybere tak, aby minimalizovala chybu ve 2 vzniklých nodes
 - Chyba se může reprezentovat různě, v případě regrese například pomocí hodnoty MSE

- Výsledné nodes obsahují průměrnou hodnotu závislé proměnné v té oblasti
- Strom se rozšiřuje dokud:
 - Nedosáhne limitu hloubky
 - V listu není už málo dat (když mi zůstane už jen jedna hodnota tak to nebudu dělit)
 - Dělení už nikam nevede všechny možnosti mi vrátí stejnou hodnotu entropy
- Jak využít decision tree:
 - Strom je prakticky série IF ELSE
 - Do stromu vložím moji vstupní (nezávislou) hodnotu
 - Strom mi vrátí hodnotu na základě podmínek (ve výsledné větvi je průměrná hodnota v dané oblasti)
- Sám o sobě není úplně dobrý, je lepší používat random forest
 - Je vhodný pro složité a nelineární vztahy, ale může se snadno přetrénovat.
 - Hodí se jako základ pro silnější modely (RANDOM FOREST)
 - Náchylný k přetrénování (overfittingu) strom může být příliš složitý
 - Výsledky jsou často nestabilní malá změna dat → jiný strom
 - Horší predikční výkon než složitější modely (jako RANDOM FOREST)

Random forest regrese

- Opět kvalitní vysvětlení
- Kolekce několika decision trees
- Řeší problém Decision tree náchylnost na malou změnu dat
- Jak to funguje:
 - Udělám bootstrap z původních dat
 - o Z každého bootstrap vzorku udělám decision tree
 - Dám můj vstup do všech vzniklých stromů
 - Pro klasifikaci platí nejčastěji se vyskytující hodnota mezi stromy (Agregace)
 - Pro regresi platí průměr hodnot všech stromů (taky agregace)
 - o Fun fact Agregace z bootstrapu se nazývá bagging
- Proč to funguje:
 - Snižuje se rozptyl modelu, aniž by se výrazně zvýšila bias.
 - Každý strom je "hloupý" trochu jinak, ale když je jich hodně, dohromady dají rozumný výsledek.
 - o Agregace (průměrování) snižuje šum a chyby jednotlivých stromů.

Support vector regrese

- Babichev neprobíral tady je pouze obecně ať máme přehled co to je
- Regresní verze klasifikátoru SVM
- Místo hledání hranice mezi třídami hledá funkci, která se "trefí do trubice" o šířce ε kolem reálných hodnot.
- SVR najde "tunel", kterým chce projet co nejvíc bodů bez trestu, a jen ty venku model penalizuje.
- Jak funguje:
 - Model netrestá chyby, které spadnou do ε trubice (epsilon-insensitive zone) malá odchylka nevadí.
 - Penalizuje se jen chyba mimo ε.
 - Minimalizuje se složitost modelu + penalizuje body mimo ε.
 - o Může být nelineární díky kernelům (např. RBF, polynomiální).
- Vzorec:

$$\min\left(\frac{1}{2}\|w\|^2+C\sum \mathrm{chyby\ mimo}\ \epsilon\right)$$
 • C = důraz na chybu mimo ϵ • w = vektor koeficientů modelu

- Předpoklady:
 - Nevyžaduje normalitu, lineární vztah nebo homoskedasticitu.
 - Je citlivý na výběr kernelu, ε a C (parametr ladění).
- Kdy použít:
 - Když chceš odolnost proti outlierům.
 - o Když chceš nelineární vztah, ale nevíš přesný tvar.
 - Když potřebuješ model s pevně danou tolerancí chyby.

Ridge regrese

- Babichev neprobíral tady je pouze obecně ať máme přehled co to je
- Klasická lineární regrese + penalizace velkých koeficientů
- Zabraňuje přeučení modelu (overfittingu)
- Minimalizuje MSE + penalizuje velikost koeficientů
- Vzorec:

$$\min\left(\sum (y_i - \hat{y}_i)^2 + \lambda \sum w_j^2
ight)$$

λ říká, jak moc penalizujeme složitost

Všechna w se "stahují ke 0", ale žádné nezmizí úplně

- Předpoklady:
 - Stejné jako klasická lineární regrese
 - Lineární vztah, nezávislost, homoskedasticita, normalita reziduí
 - o Plus:
 - Nezávislé proměnné nemusí být zcela nekorelované → Ridge pomáhá i při multikolinearitě
- Kdy použít:
 - Když máš hodně prediktorů
 - Když máš silně korelované vstupy
 - Když chceš zabránit přetrénování

Náhradní otázky

Pro tyto otázky platí, že **nemusíme jít moc do hloubky.** Stačí říct o co jde, k čemu to je a jak to funguje. Ve stručnosti okolo jedné minutky ukázat, že tomu rozumíme

Věcná významnost

- Statistická významnost
 - Je pravděpodobný, že nalezený efekt není způsobený náhodou
 - Hodnotí se pomocí p-hodnoty
 - Statisticky významný výsledek = co jsem zjistil není náhoda
 - Závisí na počtu pozorování (protože p-hodnota závisí na počtu pozorování)
 - málo pozorování dává "velkou" p-hodnotu
 - hodne pozorování dává "malou" p-hodnotu *
 - Statistické testy dobře fungují pro počet pozorování kolem 100 hodnot

Věcná významnost

- o Je nalezený efekt dost velký, aby měl smysl v reálném životě
- Hodnotí se pomocí velikosti efektu (effect size)
- Nezávisí na počtu pozorování
- Věcně významný výsledek = co jsem zjistil ovlivní populaci pstruhů v ČR
 - Rozdíl mezi skupinami je 10cm 10cm je hodně.
 - "Jde to použít, ta informace něco znamená."
- Výsledek může být statisticky významný ale věcně nevýznamný
 - Rozdíl výšky 0.5cm mezi dvěma skupinami
- Řeší to jen nějaký odvětví, např. psychologie

Odhad počtu pozorování

- "Existuje vztah mezi počtem pozorování, hladinou významnosti a sílou testu."
- Každý test má svůj vzorec pro výpočet ideálního počtu pozorování (sample size)
- Hlavní faktory vzorců jsou:
 - hladina významnosti
 - o síla testu
 - o Pro obě platí čím větší to chci, tím víc pozorování potřebuji

Tabulka analýzy rozptylu

- Pro porovnání variability vysvětlené a nevysvětlené
- Nejčastěji v ANOVĚ porovnání střední hodnoty v několika nezávis. výběrech
- Důležité pro věcnou významnost, protože ukáže data potřebná pro výpočet velikosti efektu - eta-squared a koeficient determinace (R^2, poměr vysvětlené variability k celkové)
- Variabilita vysvětlená
 - Část variability dat, kterou náš model dokáže vysvětlit
- Variabilita nevysvětlená
 - Část variability dat, kterou náš model nedokáže vysvětlit

Model to chápe jako náhodný šum

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{..})^2$$
$$SSA = \sum_{i=1}^{k} n_i (\overline{X}_{i.} - \overline{X}_{..})^2$$

$$SSe = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{i.})^2$$

	Součty	Stupně	Průměrné	Testová	<i>p</i> -hodnota
	čtverců	volnosti	čtverce	statistika	
Faktor A	SSA	dfA = k - 1		F = MSA/MSe	p
Chyba e	SSe	dfe = n - k	$MSe = \frac{SSe}{dfe}$		
Celkem	SST	dft = n - 1			

• Ukazatele věcné významnosti

- Převážně pro velká data získané metaanalýzou = kombinace několika výzkumů na stejné téma
- Hodnoty ukazatelů:

do 0,2–0,3
 Malý efekt (téměř nevýznamné)
 0,5
 Střední efekt (něco to znamená)
 Velký efekt (významný dopad)

- Ukazatele:
 - Cohenovo D
 - Používá se k měření velikosti efektu mezi dvěma skupinami (například experimentální vs. kontrolní).
 - Počítá se jako rozdíl mezi průměry dvou skupin, vydělený společným směrodatným odchylkou
 - Hedgesovo G
 - Podobné jako Cohenovo d, ale používá úpravu pro malé vzorky => menší než 20–30 jedinců
 - Glassovo OMEGA
 - Podobné jako Cohenovo d
 - Místo společné směrodatné odchylky používá směrodatnou odchylku kontrolní skupiny.
 - Kdy použít?
 - Když jsou směrodatné odchylky mezi skupinami výrazně rozdílné.
 - Eta squared (η²)
 - Podíl vysvětlené variability
 - Omega squared (ω²)
 - Lepší a méně zkreslený ukazatel podobný η²

Existuje vztah mezi korelací(r) a regresí(R)

Pokud máme jednoduchou lineární regresi, tak:

$$R^2=(r)^2$$

R² (koeficient determinace) ukazuje, kolik procent variability v závislé proměnné umí vysvětlit nezávislá proměnná.

C

Fuzzy modely

Fuzzy logika

- Klasická logika
 - Hodnoty 0 a 1
 - Ostré hranice něco platí, nebo neplatí
 - Příklad:
 - "Člověk vyšší než 180 cm je vysoký"
 - => 179 = není vysoký, 181 = vysoký.
- Fuzzy logika
 - Hodnoty mezi 0 a 1
 - Plynulý přechod mezi 2 stavy
 - Člověk může být 70% vysoký (0.7 hodnota vysokosti)
 - Založena na fuzzy množinách
- Fuzzy množina
 - Množina do které každý prvek patří na několik procent (má stupeň příslušnosti)
 - Funkce příslušnosti
 - Určuje jak moc daný prvek do množiny patří
 - Příklad:
 - Množina vysokých lidí
 - Osoba 170 cm → příslušnost 0.2
 - Osoba 180 cm → příslušnost 0.7
 - Osoba 190 cm → příslušnost 0.95
- Fuzzy Model
 - Model využívající fuzzy logiku k rozhodování
 - Složení:
 - Fuzzyfikace vstupů
 - Převod hodnot na fuzzy hodnoty
 - 175cm -> 0.2 vysoký
 - Fuzzy inference system (FIS)
 - Pravidla jak klasifikovat
 - IF výška je vysoký AND váha je nízká THEN sportovec.
 - Defuzzyfikace výstupu
 - převede fuzzy výstup zpět na konkrétní hodnotu
 - Příklad:
 - hodnota 0.8 → ANO, s důvěrou 80 %
- K čemu se to používá:
 - Řízení systémů s neurčitostí nedá se přesně definovat hranice
 - Výhoda:
 - Nevyžadují přesný matematický model, stačí expertní pravidla.
 - o Irl příklady:
 - Regulace klimatizací
 - Ovládání praček, mikrovln, aut
 - Hodnocení rizik

- Dříve to bylo populární, nyní se od toho upustilo
 - o Problém škálovat na vše musí být přesná IF THEN pravidla
 - o Neučí se automaticky vše musím psát ručně
 - Nefunguje dobře s velkými daty
 - Nahrazeno Bayesovskými sítěmi a Neuronovými sítěmi
 - Přesto v jednoduchých systémech jsou stále využitelné (např. zabudovaná elektronika).
- Příklad fuzzy modelu v akci:
 - Automatizovaná klimatizace
 - IF teplota je vysoká (0.8) AND vlhkost je vysoká (0.6)
 - THEN aktivuj chlazení silně (výsledek = max(0.8, 0.6) → 0.8)

Bayesovské sítě

Bayesova věta v kostce - mám pravděpodobnost něčeho, s každou novou informací týkající se dané věci aktualizuji pravděpodobnost,

Bayesova věta (formule, vzorec)

- Vzorec ukázaný v příkladu
- Pravděpodobnost
- Umožňuje aktualizovat naše přesvědčení (pravděpodobnost hypotézy) na základě nových důkazů nebo informací.
- Spojuje předchozí znalosti s novými daty
 - Kombinuje to, co jsme věděli dřív (prior), s tím, co jsme nově pozorovali (evidence).
- Základ pro uvažování v nejistotě
 - Umožňuje formálně pracovat s nejistotou v rozhodování, diagnostice, predikci nebo inferenci.
 - Když nevíš s jistotou, co je pravda (např. zda pacient má nemoc), ale musíš rozhodnout, co udělat.
 - Bayes ti poskytne pravděpodobnosti každé možnosti na základě dostupných dat → rozhoduješ racionálně, ne intuitivně.
- Bayesovská statistika:
 - o zachází s neznámými veličinami jako s náhodnými proměnnými
 - například parametry modelu, o kterých nic nevíme, modelujeme pomocí rozdělení pravděpodobnosti.
 - nazývá se PRIOR
 - Pracuje s Bayesovou větou jako jádrem výpočtu
 - Výsledkem není bodový odhad, ale rozdělení pravděpodobnosti.
 - nazývá se postprior
- Využití:
 - Detekce spam mailu
 - Pravděpodobnost se aktualizuje podle počtu specifických slov

Příklad

V naší skupině je 1 špion, je to muž?

- Ve skupině je 10 lidí, 4 jsou muži.
- Vím důvěryhodně, že šance na to, že člověk je špion je 20%

Bayes vzorec

P(HIE)
$$= \frac{P(H)P(E|H)}{P(H)P(E|H)+P(\neg H)P(E|\neg H)}$$

H = Hypotéza (špion je muž)

E = Evidence - důkaz (prozatím je to jen fakt, že ve skupině je špion)

P(H|E) = Pravděpodobnost, že platí hypotéza(je to muž), pokud platí důkazy(je špion)

P(E|H) = Pravděpodobnost, že platí důkazy(je špion), pokud platí hypotéza(je to muž)

P(E|¬H) = Pravděpodobnost, že platí důkazy(je špion), pokud neplatí hypotéza (není muž)

P(H) = Pravděpodobnost, že platí hypotéza (špion je muž)

P(¬H) = Pravděpodobnost, že neplatí hypotéza (špion není muž)

P(E|H) = Ve skupině mužů je stejná šance jako u žen že je někdo špion = 0.2 $P(E|\neg H) = Ve$ skupině mužů je stejná šance jako u žen že je někdo špion = 0.2 P(H) = 0.4 (4/10 lidí jsou muži) $P(\neg H) = 0.6$ (6/10 lidí jsou ženy)

Dosazení do Bayesova vzorce:

P(H|E) = (0.2*0.4) / (0.2*0.4 + 0.2*0.6) = 0.4 = 40%

Na tuhle pravděpodobnost zatím ani nebyl potřeba Bayes :-)

Později se dozvím, další důkazy (špion nosí černou, má brýle , má dlouhé vlasy)

2 muži a 3 ženy jsou v černé

1 muž a 2 ženy nosí brýle

1 muž a 4 ženy mají dlouhé vlasy

=> Nové důkazy (a všechny budoucí) upraví P(E|H) a P(E|¬H)

P(E|H) = šance že je špion * šance že muž nosí černou * šance že muž nosí brýle * šance že muž má dlouhé vlasy

P(E|H) = 0.2 * 0.5 * 0.25 * 0.25 = 0.0063

 $P(E|\neg H)$ = šance že je špion * šance že žena nosí černou * šance že žena nosí brýle * šance že žena má dlouhé vlasy

 $P(E|\neg H) = 0.2 * 0.5 * 0.333 * 0.667 = 0.0222$

P(H|E) = (0.0063*0.4) / (0.0063*0.4 + 0.0222*0.6) = 0.16 = 16%

Bayesovské sítě

- Kombinují Bayesovskou statistiku s teorií grafů
- Rozdíl mezi Bayesovou větou a sítěmi:
 - Bayesova věta pracuje typicky jen s dvěma hypotézami a evidencí (např. je špion muž?).
 - Bayesovské sítě umožňují pracovat s desítkami až stovkami závislých proměnných.
 - Reprezentují komplexní závislostní struktury.
 - o Efektivně umožňují výpočet libovolné podmíněné pravděpodobnosti.
- Nejčastěji jsem našel využití v medicíně

