Open Systems Pharmacology Suite - 11 Folder Comparison

 ${\rm gibpk}$

May 20, 2022

Contents

1 F	Fold	Folder Comparison Results			
	1.1	Comp	arison Results	2	
		1.1.1	Invalid Simulations (13/155)	2	
		1.1.2	Valid Simulations (142/155)	108	

Chapter 1

Folder Comparison Results

Overall Comparison Result: Invalid Number of Compared Files: 155

1.1 Comparison Results

Overall Comparison Result

Invalid

Old Folder

 $D:\Outputs_10.0$

New Folder

D:\Outputs_11.0

Using exclusions

**|drug|Fraction of oral drug mass absorbed into mucosa segment

1.1.1 Invalid Simulations (13/155)

 $Simulation: \ DDI_Multiple Combinations \textbf{-} 21_1st_Competitive_Competitive$

Result of the validation: Invalid Absolute Tolerance: 1.00E-8 Relative Tolerance: 1.00E-4

$Output\ Path:\ Organism | Small Intestine | Mucosa | Upper Jejunum | Intracellular | C1 | Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|UpperJejunum|Intracellular|C1|Concentration in container' is 6.24% and is greater than the allowed max. tolerance of 3.00%

^{**|}Receptor Occupancy-drug-BIND-Lab Complex

Organism | Small | Intracellular | C1 | Concentration in container 100 100 100 100 0.01 0.001

Figure 1.1

0.2

Time [h]

0.25

0.3

0.35

0.4

0.15

0.0001

 $5 \cdot 10^{-2}$

0.1

0

Organism | Small Intestine | Mucosa | Upper Jejunum | Intracellular | C1 | Concentration in container

Figure 1.2

$Simulation: \ Human_MultipleIV_PGPB a solateral-Human_MultipleIV_PGPB a solateral$

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

Output Path: Organism|Heart|Intracellular|drug|Concentration in container

Deviation for 'Organism|Heart|Intracellular|drug|Concentration in container' is 13.22% and is greater than the

allowed max. tolerance of 3.00%

Figure 1.3

Figure 1.4

Output Path: Organism|Heart|drug|Intracellular Unbound

Deviation for 'Organism|Heart|drug|Intracellular Unbound' is 13.22% and is greater than the allowed max. tolerance of 3.00%

Organism | Heart | drug | Intracellular Unbound Old | New | Old | New |

Figure 1.5

0.6

0.7

Time [h]

0.8

0.9

1.1

1.2

1.3

1.4

1.5

0

-0.1

0.1

0.2

0.3

0.4

0.5

Figure 1.6

Output Path: Organism|Heart|drug|Tissue

Deviation for 'Organism |Heart|drug|Tissue' is 13.13% and is greater than the allowed max. tolerance of 3.00% Deviation: 0.13

Figure 1.7

Figure 1.8

Output Path: Organism|Heart|drug|Interstitial Unbound

Deviation for 'Organism |Heart|drug|Interstitial Unbound' is 7.51% and is greater than the allowed max. tolerance of 3.00%

Organism|Heart|drug|Interstitial Unbound

Figure 1.9

Figure 1.10

$Output\ Path:\ Organism | Heart | Interstitial | drug | Concentration\ in\ container$

Deviation for 'Organism|Heart|Interstitial|drug|Concentration in container' is 7.51% and is greater than the allowed max. tolerance of 3.00%

$\label{eq:concentration} Organism | Heart | Interstitial | drug | Concentration \ in \ container$

Figure 1.11

Figure 1.12

Simulation: Human_MultipleIV_PGP-Human_MultipleIV_PGP

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

Output Path: Organism|Heart|drug|Intracellular Unbound

 $Deviation \ for \ 'Organism | Heart| drug | Intracellular \ Unbound' \ is \ 13.93\% \ and \ is \ greater \ than \ the \ allowed \ max. \ tollowed \ max.$

erance of 3.00%Deviation: 0.14

${\bf Organism|Heart|drug|Intracellular~Unbound}$

Figure 1.13

Figure 1.14

Output Path: Organism|Heart|Intracellular|drug|Concentration in container

Deviation for 'Organism|Heart|Intracellular|drug|Concentration in container' is 13.93% and is greater than the allowed max. tolerance of 3.00%

${\bf Organism|Heart|Intracellular|drug|Concentration\ in\ container}$ Old New 2 Concentration (molar) $[\mu]$ 1 0.5 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 -0.11.5

 ${\bf Figure~1.15}$

Time [h]

Organism|Heart|Intracellular|drug|Concentration in container 2.8 OldNew 2.6 2.4 2.2 2 Concentration (molar) $[\mu]$ 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -0.20.2 0.3 0.4 0.5 0.7 0.8 0.9 1.1 1.2 1.3 -0.10 0.1 0.6 1 1.4 1.5 Time [h]

Figure 1.16

Output Path: Organism|Heart|drug|Tissue

Deviation for 'Organism |Heart|drug|Tissue' is 13.83% and is greater than the allowed max. tolerance of 3.00% Deviation: 0.14

Figure 1.17

Figure 1.18

Output Path: Organism|Heart|drug|Interstitial Unbound

Deviation for 'Organism |Heart|drug|Interstitial Unbound' is 8.18% and is greater than the allowed max. tolerance of 3.00%

${\bf Organism|Heart|drug|Interstitial\ Unbound}$

Figure 1.19

Figure 1.20

Output Path: Organism|Heart|Interstitial|drug|Concentration in container

Deviation for 'Organism|Heart|Interstitial|drug|Concentration in container' is 8.18% and is greater than the allowed max. tolerance of 3.00%

${\bf Organism|Heart|Interstitial|drug|Concentration\ in\ container}$

Figure 1.21

Organism|Heart|Interstitial|drug|Concentration in container Old 0.22New 0.20.180.16Concentration (molar) $[\mu mol/1]$ 0.14 0.120.1 $8\cdot 10^{-2}$ $6\cdot 10^{-2}$ $4\cdot 10^{-2}$ $2\cdot 10^{-2}$ 0 $-2\cdot 10^{-2}$ 0.3 1.2 0.1 0.2 0.40.5 0.6 0.7 0.8 0.9 1.1 1.3 1.4 1.5 Time [h]

Figure 1.22

$Simulation: Human_Oral_BiDaily_Table Formulation-S2_NoSuspension$

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

Output Path: Organism|Lumen|Duodenum|C1|Concentration in lumen

Deviation for 'Organism|Lumen|Duodenum|C1|Concentration in lumen' is 22.20% and is greater than the al-

lowed max. tolerance of 3.00%

Figure 1.23

Organism|Lumen|Duodenum|C1|Concentration in lumen Old 80 New 70 60Concentration (molar) [µmol/1] 50 40 3020 10 0 0.1 0.2 0.3 0.7 0.8 1.1 1.2 -0.10 0.4 0.5 0.6 0.9 1.3 Time [h]

Figure 1.24

Output Path: Organism|Lumen|Stomach|C1|Concentration in lumen

Deviation for 'Organism |Lumen|Stomach |C1|Concentration in lumen' is 22.20% and is greater than the allowed max. tolerance of 3.00%

Figure 1.25

Figure 1.26

Output Path: Organism|Lumen|LowerIleum|C1|Concentration in lumen

Deviation for 'Organism|Lumen|LowerIleum|C1|Concentration in lumen' is 13.15% and is greater than the allowed max. tolerance of 3.00%

Figure 1.27

Figure 1.28

Output Path: Organism|Lumen|UpperJejunum|C1|Concentration in lumen

Deviation for 'Organism|Lumen|UpperJejunum|C1|Concentration in lumen' is 7.78% and is greater than the allowed max. tolerance of 3.00%

Figure 1.29

Figure 1.30

Output Path: Organism|Lumen|Rectum|C1|Concentration in lumen

Deviation for 'Organism|Lumen|Rectum|C1|Concentration in lumen' is 6.77% and is greater than the allowed max. tolerance of 3.00%

Figure 1.31

Figure 1.32

$Simulation: Human_SingleORAL_MonoParticles_AsSuspention-Human_SingleORAL_MonoParticles_AsSuspention\\$

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

$\label{eq:contraction} Output \ Path: \ Organism | Large Intestine | Mucosa | Caecum | Intracellular | drug | Concentration in container$

Deviation for 'Organism|LargeIntestine|Mucosa|Caecum|Intracellular|drug|Concentration in container' is 32.90% and is greater than the allowed max. tolerance of 3.00%

$Organism | Large Intestine | Mucosa | Caecum | Intracellular | drug | Concentration \ in \ container$

 ${\bf Figure~1.33}$

 $\cdot 10^{-3}\ \mathrm{Organism} | \mathrm{LargeIntestine} | \mathrm{Mucosa} | \mathrm{Caecum} | \mathrm{Intracellular} | \mathrm{drug} | \mathrm{Concentration\ in\ container}$

Figure 1.34

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration\ in\ container$

Deviation for 'Organism | Small Intestine | Mucosa | Lower I leum | Intracellular | drug | Concentration in container' is 32.82% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Intracellular | drug | Concentration \ in \ container$

Figure 1.35

$\cdot 10^{-0} \text{Organism} | \text{SmallIntestine} | \text{Mucosa} | \text{LowerIleum} | \text{Intracellular} | \text{drug} | \text{Concentration in container} | \text{Concentration} | \text{Concentra$

Figure 1.36

0.2

Time [h]

0.25

0.3

0.35

0.4

0.15

0.1

$Output\ Path:\ Organism | Small Intestine | Mucosa | Lower I leum | Interstitial | drug | Concentration\ in\ concentration | Concentration\ in\ concentration\ in\$

 $Deviation for \ 'Organism | Small Intestine | Mucosa | Lower I leum | Interstitial | drug | Concentration in container' is 32.71\% | drug | Concentration | Container' | Containe$ and is greater than the allowed max. tolerance of 3.00%

Deviation: 0.33

0

 $5\cdot 10^{-2}$

$Organism | Small Intestine | Mucosa | Lower Ileum | Interstitial | drug | Concentration \ in \ container$

Figure 1.37

$\cdot 10^{-4} Organism | Small Intestine | Mucosa | Lower Ileum | Interstitial | drug | Concentration in container | Concentration | Concentrati$

Figure 1.38

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerIleum|Plasma|drug|Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerIleum|Plasma|drug|Concentration in container' is 32.71% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Plasma | drug | Concentration \ in \ container$

Figure 1.39

 $\cdot 10^{-4}$ Organism|SmallIntestine|Mucosa|LowerIleum|Plasma|drug|Concentration in container

Figure 1.40

Output Path: Organism|Skin|drug|Intracellular Unbound

Deviation for 'Organism|Skin|drug|Intracellular Unbound' is 32.45% and is greater than the allowed max. tolerance of 3.00%

Figure 1.41

Figure 1.42

$Simulation: Human_SingleORAL_PolyParticlesLogNormal_AsSuspention-Human_SingleORAL_PolyParticlesLogNormal_AsSuspention$

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

$Output\ Path:\ Organism | Large Intestine | Mucosa | Caecum | Intracellular | drug | Concentration\ in\ container$

Deviation for 'Organism |LargeIntestine |Mucosa |Caecum |Intracellular |drug |Concentration in container' is 32.92% and is greater than the allowed max. tolerance of 3.00%

$Organism | Large Intestine | Mucosa | Caecum | Intracellular | drug | Concentration \ in \ container$

 $\mathbf{Figure}\ \mathbf{1.43}$

 $\cdot 10^{-3}\ \mathrm{Organism} | \mathrm{LargeIntestine} | \mathrm{Mucosa} | \mathrm{Caecum} | \mathrm{Intracellular} | \mathrm{drug} | \mathrm{Concentration\ in\ container}$

Figure 1.44

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration\ in\ container$

Deviation for 'Organism | Small Intestine | Mucosa | Lower I leum | Intracellular | drug | Concentration in container' is 32.84% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Intracellular | drug | Concentration \ in \ container$

Figure 1.45

$Output\ Path:\ Organism | Small Intestine | Mucosa | Lower I leum | Interstitial | drug | Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerIleum|Interstitial|drug|Concentration in container' is 32.74% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Interstitial | drug | Concentration \ in \ container$

Figure 1.47

$\cdot 10^{-4} Organism | Small Intestine | Mucosa | Lower I leum | Interstitial | drug | Concentration in container | Concentration | Concentrat$ 1.6 Old New 1.4 1.2 Concentration (molar) [µmol/l] 1 0.8 0.6 0.40.20 0.15 0.2 0.25 0.3 0.35 0 $5\cdot 10^{-2}$ 0.1 0.4

Figure 1.48

Time [h]

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerIleum|Plasma|drug|Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerIleum|Plasma|drug|Concentration in container' is 32.74% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Plasma | drug | Concentration \ in \ container$

Figure 1.49

 $\cdot 10^{-4}$ Organism|SmallIntestine|Mucosa|LowerIleum|Plasma|drug|Concentration in container

Figure 1.50

Output Path: Organism|Skin|Intracellular|drug|Concentration in container

Deviation for 'Organism|Skin|Intracellular|drug|Concentration in container' is 32.49% and is greater than the allowed max. tolerance of 3.00%

Figure 1.51

Figure 1.52

$Simulation: Human_SingleORAL_PolyParticlesNormal_AsSuspention-Human_SingleORAL_PolyParticlesNormal_AsSuspention$

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

$Output\ Path:\ Organism | Large Intestine | Mucosa | Caecum | Intracellular | drug | Concentration\ in\ container$

Deviation for 'Organism | Large Intestine | Mucosa | Caecum | Intracellular | drug | Concentration in container' is 32.96% and is greater than the allowed max. tolerance of 3.00%

$Organism | Large Intestine | Mucosa | Caecum | Intracellular | drug | Concentration \ in \ container$

 ${\bf Figure~1.53}$

 $\cdot 10^{-3}\ \mathrm{Organism} | \mathrm{LargeIntestine} | \mathrm{Mucosa} | \mathrm{Caecum} | \mathrm{Intracellular} | \mathrm{drug} | \mathrm{Concentration\ in\ container}$

Figure 1.54

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration\ in\ container$

Deviation for 'Organism | Small Intestine | Mucosa | Lower I leum | Intracellular | drug | Concentration in container' is 32.88% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Intracellular | drug | Concentration \ in \ container$

Figure 1.55

Figure 1.56

$Output\ Path:\ Organism | Small Intestine | Mucosa | Lower I leum | Interstitial | drug | Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerIleum|Interstitial|drug|Concentration in container' is 32.80% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower I leum | Interstitial | drug | Concentration \ in \ container$

Figure 1.57

$\cdot 10^{-4} Organism | Small Intestine | Mucosa | Lower I leum | Interstitial | drug | Concentration in container | Concentration | Concentrat$

Figure 1.58

$Output\ Path:\ Organism | Small Intestine | Mucosa | Lower Ileum | Plasma | drug | Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerIleum|Plasma|drug|Concentration in container' is 32.80% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Plasma | drug | Concentration \ in \ container$

Figure 1.59

 $\cdot 10^{-4}$ Organism|SmallIntestine|Mucosa|LowerIleum|Plasma|drug|Concentration in container

Figure 1.60

Output Path: Organism|Skin|Intracellular|drug|Concentration in container

Deviation for 'Organism|Skin|Intracellular|drug|Concentration in container' is 32.57% and is greater than the allowed max. tolerance of 3.00%

$Organism | Skin | Intracellular | drug | Concentration \ in \ container$ Old New 10^{-4} Concentration (molar) $[\mu]$ 10^{-5} 10^{-6} 10^{-7} $5 \cdot 10^{-2}$ 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 1.61

Time [h]

Figure 1.62

$Simulation: Human_SingleORAL_PolyParticlesNormal_AsSuspention-Human_SingleORAL_PolyParticlesNormal_AsSuspention_dissolved_radius$

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration\ in\ container$

 $Deviation for \ 'Organism | Small Intestine | Mucosa | Lower I leum | Intracellular | drug | Concentration in container' is 29.81\% and is greater than the allowed max. tolerance of 3.00\%$

$Organism | Small Intestine | Mucosa | Lower Ileum | Intracellular | drug | Concentration \ in \ container$

Figure 1.63

Figure 1.64

Output Path: Organism|Lumen|Feces|drug|Fraction excreted to feces

Deviation for 'Organism |Lumen|Feces|drug|Fraction excreted to feces' is 29.80% and is greater than the allowed max. tolerance of 3.00%

Figure 1.65

Figure 1.66

Output Path: Organism|Lumen|Feces|drug|

Deviation for 'Organism|Lumen|Feces|drug' is 29.80% and is greater than the allowed max. tolerance of 3.00% Deviation: 0.30

Figure 1.67

Figure 1.68

Output Path: Organism | Lumen | Feces | drug | Concentration in feces

Deviation for 'Organism |Lumen|Feces|drug|Concentration in feces' is 29.80% and is greater than the allowed max. tolerance of 3.00%

Figure 1.69

 $\label{thm:organism} Output \ Path: \ Organism | Small Intestine | Mucosa | Upper I leum | Intracellular | drug | Concentration in container$

Deviation for 'Organism|SmallIntestine|Mucosa|UpperIleum|Intracellular|drug|Concentration in container' is 28.21% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Upper I leum | Intracellular | drug | Concentration \ in \ container$

Figure 1.71

Figure 1.72

$Simulation: Human_SingleORAL_PolyParticlesNormal_AsSuspention-Human_SingleORAL_PolyParticlesNormal_AsSuspention_treat_precipated_drug_as_soluble$

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

$Output\ Path:\ Organism | Large Intestine | Mucosa | Caecum | Intracellular | drug | Concentration\ in\ container$

Deviation for 'Organism |LargeIntestine |Mucosa |Caecum |Intracellular |drug |Concentration in container' is 32.96% and is greater than the allowed max. tolerance of 3.00%

$Organism | Large Intestine | Mucosa | Caecum | Intracellular | drug | Concentration \ in \ container$

Figure 1.73

 $\cdot 10^{-3}\ \mathrm{Organism} | \mathrm{LargeIntestine} | \mathrm{Mucosa} | \mathrm{Caecum} | \mathrm{Intracellular} | \mathrm{drug} | \mathrm{Concentration\ in\ container}$

Figure 1.74

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration\ in\ container$

Deviation for 'Organism | Small Intestine | Mucosa | Lower I leum | Intracellular | drug | Concentration in container' is 32.88% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Intracellular | drug | Concentration \ in \ container$

Figure 1.75

Figure 1.76

$Output\ Path:\ Organism | Small Intestine | Mucosa | Lower I leum | Interstitial | drug | Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerIleum|Interstitial|drug|Concentration in container' is 32.80% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower I leum | Interstitial | drug | Concentration \ in \ container$

Figure 1.77

Figure 1.78

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerIleum|Plasma|drug|Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerIleum|Plasma|drug|Concentration in container' is 32.80% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Plasma | drug | Concentration \ in \ container$

Figure 1.79

 $\cdot 10^{-4}$ Organism|SmallIntestine|Mucosa|LowerIleum|Plasma|drug|Concentration in container

Figure 1.80

$Output\ Path:\ Organism|Skin|Intracellular|drug|Concentration\ in\ container$

Deviation for 'Organism|Skin|Intracellular|drug|Concentration in container' is 32.57% and is greater than the allowed max. tolerance of 3.00%

$Organism | Skin | Intracellular | drug | Concentration \ in \ container$ Old New 10^{-4} Concentration (molar) $[\mu]$ 10^{-5} 10^{-6} 10^{-7} $5 \cdot 10^{-2}$ 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 1.81

Time [h]

Figure 1.82

 $Simulation: \ Human_SingleORAL_Weibull-Human_SingleORAL_Weibull_MW_200_fu_0.2_LogP_5$

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerJejunum|Intracellular|drug|Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerJejunum|Intracellular|drug|Concentration in container' is 3.89% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Jejunum | Intracellular | drug | Concentration \ in \ container$

Figure 1.83

Old6 New 5.5 5 4.5Concentration (molar) [µmol/l] 4 3.5 3 2.5 2 1.5 1 0.5 0 -0.50 0.15 0.2 0.3 0.35 $5\cdot 10^{-2}$ 0.1 0.25 0.4 Time [h]

$Organism | Small Intestine | Mucosa | Lower Jejunum | Intracellular | drug | Concentration \ in \ container$

Figure 1.84

$Output\ Path:\ Organism | Small Intestine | Mucosa | Lower Jejunum | Interstitial | drug | Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerJejunum|Interstitial|drug|Concentration in container' is 3.40% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Jejunum | Interstitial | drug | Concentration \ in \ container$

Figure 1.85

3.5 - 3 - [[\frac{1}{\text{New}}]] (2.5 - 2.5 -

 $\cdot 10\, \Im \text{Grganism} | \text{SmallIntestine} | \text{Mucosa} | \text{LowerJejunum} | \text{Interstitial} | \text{drug} | \text{Concentration in container} | \text{Concentration} | \text{Concentrat$

Figure 1.86

0.2

Time [h]

0.25

0.3

0.35

0.4

0.15

0.1

$Output\ Path:\ Organism | Small Intestine | Mucosa | Lower Jejunum | Plasma | drug | Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerJejunum|Plasma|drug|Concentration in container' is 3.01% and is greater than the allowed max. tolerance of 3.00%

Deviation: 0.03

0

0

 $5\cdot 10^{-2}$

Figure 1.87

 $\cdot 10^{-3}$ Organism|SmallIntestine|Mucosa|LowerJejunum|Plasma|drug|Concentration in container

Figure 1.88

0.2

Time [h]

0.25

0.3

0.35

0.4

 $Simulation: Rat_MultiORAL_6_6_12_Dissolved-Rat_MultiORAL_6_6_12_Dissolved$

0.15

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

0

 $5\cdot 10^{-2}$

0.1

$Output\ Path:\ Organism | Small Intestine | Mucosa | Upper I leum | Intracellular | drug | Concentration\ in$ container

 $Deviation \ for \ 'Organism | Small Intestine | Mucosa | Upper I leum | Intracellular | drug | Concentration \ in \ container' \ is$ 4.86% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Upper I leum | Intracellular | drug | Concentration \ in \ container$

Figure 1.89

Figure 1.90

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration in container' is 4.77% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Intracellular | drug | Concentration \ in \ container$

Figure 1.91

Figure 1.92

$Output\ Path:\ Organism | Large Intestine | Mucosa | Colon Descendens | Intracellular | drug | Concentration in container$

Deviation for 'Organism | Large Intestine | Mucosa | Colon Descendens | Intracellular | drug | Concentration in container' is 3.84% and is greater than the allowed max. tolerance of 3.00%

Figure 1.93

0.4

Time [h]

0.5

0.6

0.7

0.3

0.000001

0

0.1

0.2

0.8

0.9

0.7

0.8

0.9

$\cdot 10$ rganism|LargeIntestine|Mucosa|ColonDescendens|Intracellular|drug|Concentration in container

Figure 1.94

0.4

Time [h]

0.5

0.6

0.3

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

0

0.1

0.2

$Output\ Path:\ Organism|SmallIntestine|Mucosa|UpperIleum|Intracellular|drug|Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|UpperIleum|Intracellular|drug|Concentration in container' is 4.86% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Upper I leum | Intracellular | drug | Concentration \ in \ container$

Figure 1.95

 $\cdot 10^{-\Theta}$ rganism|SmallIntestine|Mucosa|UpperIleum|Intracellular|drug|Concentration in container

Figure 1.96

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration in container' is 4.77% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Intracellular | drug | Concentration \ in \ container$

Figure 1.97

 $\cdot 10^{-} \Theta rganism | Small Intestine | Mucosa | Lower Ileum | Intracellular | drug | Concentration in container$

Figure 1.98

$Output\ Path:\ Organism | Large Intestine | Mucosa | Colon Descendens | Intracellular | drug | Concentration$ in container

 $Deviation \ for \ 'Organism | Large Intestine | Mucosa | Colon Descendens | Intracellular | drug | Concentration \ in \ container' | Concent$ is 3.84% and is greater than the allowed max. tolerance of 3.00%

 $Organism | Large Intestine | Mucosa | Colon Descendens | Intracellular | drug | Concentration \ in \ container$

Figure 1.99

 $\cdot 10 \text{F}_{2}^{2}$ anism|LargeIntestine|Mucosa|ColonDescendens|Intracellular|drug|Concentration in container

Figure 1.100

 $Simulation: \ Rat_MultiORAL_8_8_8_Dissolved-Rat_MultiORAL_8_8_8_Dissolved$

Result of the validation: Invalid Absolute Tolerance: 1.00E-10 Relative Tolerance: 1.00E-5

$Output\ Path:\ Organism|SmallIntestine|Mucosa|UpperIleum|Intracellular|drug|Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|UpperIleum|Intracellular|drug|Concentration in container' is 4.86% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Upper I leum | Intracellular | drug | Concentration \ in \ container$

Figure 1.101

Figure 1.102

$Output\ Path:\ Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration\ in\ container$

Deviation for 'Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration in container' is 4.77% and is greater than the allowed max. tolerance of 3.00%

$Organism | Small Intestine | Mucosa | Lower Ileum | Intracellular | drug | Concentration \ in \ container$

Figure 1.103

 $\cdot 10^{-}$ Organism|SmallIntestine|Mucosa|LowerIleum|Intracellular|drug|Concentration in container

Figure 1.104

$Output\ Path:\ Organism | Large Intestine | Mucosa | Colon Descendens | Intracellular | drug | Concentration in container$

Deviation for 'Organism | Large Intestine | Mucosa | Colon Descendens | Intracellular | drug | Concentration in container' is 3.84% and is greater than the allowed max. tolerance of 3.00%

0.001 [molar] [molar] 0.0001 [molar] 0.00001 [

 $Organism | Large Intestine | Mucosa | Colon Descendens | Intracellular | drug | Concentration \ in \ container$

 ${\bf Figure~1.105}$

0.4

Time [h]

0.5

0.6

0.7

0.8

0.9

0.3

0.000001

0

0.1

0.2

Figure 1.106

1.1.2 Valid Simulations (142/155)

Simulation: Beagle_SingleORAL_Dissolved-Beagle_SingleORAL_Dissolved

Result of the validation: Valid

 $Simulation: Beagle_SingleORAL_Dissolved_Beagle_SingleORAL_Dissolved_MW_200_fu_0.2_LogP_5$

Result of the validation: Valid

 $Simulation: Beagle_SingleORAL_Dissolved_Beagle_SingleORAL_Dissolved_MW_800_fu_0.6_LogP_-5$

 $Simulation: \ DDI_Multiple Combinations-01_MM_Competitive_Competitive$

Result of the validation: Valid

Simulation: DDI_MultipleCombinations-02_MM_Uncompetitive_Uncompetitive

Result of the validation: Valid

Simulation: DDI_MultipleCombinations-03_MM_Noncompetitive_Noncompetitive

Result of the validation: Valid

Simulation: DDI_MultipleCombinations-04_MM_Mixed_Mixed

Result of the validation: Valid

 $Simulation: \ DDI_MultipleCombinations-05_MM_Mechanism based_Mechanism based$

Result of the validation: Valid

 $Simulation: \ DDI_Multiple Combinations-06_MM_Induction_Induction$

Result of the validation: Valid

 $Simulation: \ DDI_Multiple Combinations - 07_MM_Competitive_Competitive_Mechanism based_Mechanism based_Mech$

Result of the validation: Valid

 $Simulation: \ DDI_Multiple Combinations - 08_MM_Uncompetitive_Uncompetitive_Mechanism based_Incompetitive_Mechanism based_Incompetitive_Mechanism based_Incompetitive_Mechanism based_Incompetitive_Incompetitive_Mechanism based_Incompetitive_Incompetitive_Mechanism based_Incompetitive_Incompetitive_Mechanism based_Incompetitive_Incompetitive_Mechanism based_Incompetitive_Incompetitive_Mechanism based_Incompetitive_Incompetitive_Mechanism based_Incompetitive_Incompetitive_Mechanism based_Incompetitive_$

 ${\bf Mechanism based}$

Result of the validation: Valid

 $Simulation: \ DDI_Multiple Combinations - 09_MM_Noncompetitive_Noncompetitive_Mechanism based_-like and the property of the$

Mechanismbased

Result of the validation: Valid

 $Simulation: DDI_MultipleCombinations-10_MM_Mixed_Mechanismbased_Mechanismbased$

Result of the validation: Valid

 $Simulation: DDI_Multiple Combinations - 11_MM_Mechanism based_Mechanism based_Induction_-linear and the combination of the co$

Induction

Result of the validation: Valid

 $Simulation: \ DDI_Multiple Combinations - 12_MM_All_DDI_Types$

Result of the validation: Valid

Simulation: DDI_MultipleCombinations-23_1st_Noncompetitive_Noncompetitive

Simulation: DDI_MultipleCombinations-24_1st_Mixed_Mixed

Result of the validation: Valid

 $Simulation: \ DDI_MultipleCombinations-25_1st_Mechanism based_Mechanism based$

Result of the validation: Valid

Simulation: DDI_MultipleCombinations-26_1st_Induction_Induction

Result of the validation: Valid

Simulation: DDI_MultipleCombinations-27_1st_Competitive_Competitive_Mechanismbased_Mechanismbased

Result of the validation: Valid

 $Simulation: \ DDI_Multiple Combinations - 28_1 st_Uncompetitive_Uncompetitive_Mechanism based_-line - 28_1 st_Uncompetitive_Uncompetitive_Mechanism based_-line - 28_1 st_Uncompetitive_Uncompetitiv$

Mechanismbased

Result of the validation: Valid

 $Simulation: \ DDI_Multiple Combinations - 29_1st_Noncompetitive_Noncompetitive_Mechanism based_-1st_Noncompetitive_Noncompetitive_Mechanism based_-1st_Noncompetitive_Non$

Mechanismbased

Result of the validation: Valid

Simulation: DDI_MultipleCombinations-30_1st_Mixed_Mixed_Mechanismbased_Mechanismbased

Result of the validation: Valid

Simulation: DDI_MultipleCombinations-31_1st_Mechanismbased_Mechanismbased_Induction_Induction

Result of the validation: Valid

 $Simulation: \ DDI_Multiple Combinations \textbf{-32_1st_All_DDI_Types}$

Result of the validation: Valid

 $Simulation: \ Dog_MultiORAL_12_12_Dissolved-Dog_MultiORAL_12_12_Dissolved-Dog_MultiORAL_12_12_Dissolved-Dog_MultiORAL_12_12_Dissolved-Dog_MultiORAL_12_12_Dissolved-Dog_MultiORAL_12_12_Dissolved-Dog_MultiORAL_12_12_Dissolved-Dog_MultiORAL_12_12_Dissolved-Dog_MultiORAL_12_12_Dissolved-Dog_MultiORAL_12_12_Dissolved-Dog_MultiORAL_12_Dissolved-Do$

Result of the validation: Valid

 $Simulation: \ Dog_MultiORAL_24_Dissolved-Dog_MultiORAL_24_Dissolved$

Result of the validation: Valid

 $Simulation: European_SingleORAL_Age_0_CYP3A4-European_SingleORAL$

Result of the validation: Valid

 $Simulation: \ European_SingleORAL_Age_0_GFR-European_SingleORAL_Age_0_GFR$

 $Simulation: European_SingleORAL_Age_1_CYP3A4-European_SingleORAL_AGe_1_CYP3A4-European_SingleORAL$

Result of the validation: Valid

 $Simulation: European_SingleORAL_Age_1_GFR-European_SingleORAL_Age_1_GFR$

Result of the validation: Valid

Simulation: Human_CompetitiveInhibition-Human_CompetitiveInhibition

Result of the validation: Valid

Simulation: Human_ICRP_AGP-01_ICRP_0y_Male

Result of the validation: Valid

Simulation: Human $ICRP_AGP-02_ICRP_0.05y_Female$

Result of the validation: Valid

Simulation: Human_ICRP_AGP-03_ICRP_0.18y_Male

Result of the validation: Valid

Simulation: Human_ICRP_AGP-04_ICRP_1y_Female

Result of the validation: Valid

 $Simulation: \ Human_ICRP_AGP-05_ICRP_12y_Male$

Result of the validation: Valid

Simulation: Human_ICRP_AGP-06_ICRP_30y_Female

Result of the validation: Valid

 $Simulation: \ Human_ICRP_AGP-07_ICRP_100y_Male$

Result of the validation: Valid

Simulation: Human_IrreversibleInhibition-Human_IrreversibleInhibition

Result of the validation: Valid

 ${\bf Simulation: \ Human_MixedInhibition-Human_MixedInhibition}$

Result of the validation: Valid

 $Simulation: \ Human_MultiIV_6_6_12-Human_MultiIV_6_6_12$

Result of the validation: Valid

 $Simulation: \ Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_Dissolved-Human_MultiORAL_6_12_Dissolved-Human_MultiORAL_6_Dissolved-Human_Dissolved-Human_MultiORAL_6_Dissolved-Human_$

 $Simulation: Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved_absorption_sink_conditions$

Result of the validation: Valid

 $Simulation: Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved_EHC_continuous_fraction_0.5$

Result of the validation: Valid

 $Simulation: \ Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved_EHC_-12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_Dissolved-Human_MultiORAL_6_Dissolved-Human_6_Dissolve$

 $continuous_fraction_1$

Result of the validation: Valid

 $Simulation: \ Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved_pKa-Dissolved_pK$

dependent penalty factor

Result of the validation: Valid

 $Simulation: \ Human_MultiORAL_6_12_12_Dissolved-Human_MultiORAL_6_12_12_Dissolved_solubility$

Result of the validation: Valid

Simulation: Human_MultipleIV_Binding-Human_MultipleIV_Binding

Result of the validation: Valid

 $Simulation: \ Human_Multiple IV_Efflux Basolateral-Human_Multiple IV_Efflux Basolateral$

Result of the validation: Valid

 $Simulation: \ Human_MultipleIV_Efflux-Human_MultipleIV_Efflux$

Result of the validation: Valid

 $Simulation: \ Human_Multiple IV_Influx Basolateral-Human_Multiple IV_Influx Basolat$

Result of the validation: Valid

 $Simulation: \ Human_MultipleIV_Influx-Human_MultipleIV_ActiveInflux$

Result of the validation: Valid

 $Simulation: \ Human_Multiple IV_Metabolizm Binding-Human_Multiple IV_Metabolizm Binding$

Result of the validation: Valid

Simulation: Human_MultipleIV_Metabolizm-Human_MultipleIV_Metabolizm

Result of the validation: Valid

Simulation: Human_NonCompetitiveInhibition-Human_NonCompetitiveInhibition

Simulation: Human_Oral_BiDaily_TableFormulation-S1_suspension

Result of the validation: Valid

Simulation: Human_pH_SolubilityTable-S1_Table

Result of the validation: Valid

Simulation: Human_pH_SolubilityTable-S2_Measurement

Result of the validation: Valid

Simulation: Human_pH_SolubilityTable-S3_Table_SolubilityChanged

Result of the validation: Valid

Simulation: Human_pH_SolubilityTable-S4_Table_SolubilityTableChanged

Result of the validation: Valid

Simulation: Human_SingleIV_Configuration-Human_SingleIV_Configuration

Result of the validation: Valid

Simulation: Human_SingleIV-Human_SingleIV

Result of the validation: Valid

 $Simulation: Human_SingleIV_Human_SingleIV_MW_200_fu_0.2_LogP_5$

Result of the validation: Valid

Simulation: Human_SingleIV-Human_SingleIV_MW_800_fu_0.6_LogP_-5

Result of the validation: Valid

 $Simulation: Human_SingleORAL_Dissolved_PlasmaClearance-Human_Singl$

Result of the validation: Valid

 $Simulation: Human_SingleORAL_Dissolved_PlasmaClearance-Human_Singl$

 $MW_200_fu_0.2_LogP_5$

Result of the validation: Valid

 $Simulation: \ Human_SingleORAL_Dissolved_PlasmaClearance-Human_Sin$

 $MW_-800_fu_-0.6_LogP_--5$

Result of the validation: Valid

Simulation: Human_SingleORAL_Dissolved-Human_SingleORAL_Dissolved

 $Simulation: Human_SingleORAL_Dissolved_Human_SingleORAL_Dissolved_MW_200_fu_0.2_LogP_-Lo$

 $\mathbf{5}$

Result of the validation: Valid

 $Simulation: Human_SingleORAL_Dissolved_Human_SingleORAL_Dissolved_MW_800_fu_0.6_LogP_-RAL_Dissolved_MW_800$

-5

Result of the validation: Valid

Simulation: Human_SingleORAL_Lint80_AsSuspention-Human_SingleORAL_Lint80_AsSuspention

Result of the validation: Valid

Simulation: Human_SingleORAL_Lint80-Human_SingleORAL_Lint80

Result of the validation: Valid

 $Simulation: Human_SingleORAL_Weibull_AsSuspention-Human_SingleORAL_Weibull_AsSuspention$

Result of the validation: Valid

 $Simulation: Human_SingleORAL_Weibull_AsSuspention-Human_SingleORAL_Weibull_AsSuspention_-Incomplete the property of the prop$

 $MW_200_fu_0.2_LogP_5$

Result of the validation: Valid

 $Simulation: Human_SingleORAL_Weibull_AsSuspention-Human_SingleORAL_Weibull_AsSuspention_-Incomplete the control of the contr$

 $MW_-800_fu_-0.6_LogP_--5$

Result of the validation: Valid

 $Simulation: \ Human_SingleORAL_Weibull-Human_SingleORAL_Weibull$

Result of the validation: Valid

 $Simulation: \ \ Human_SingleORAL_Weibull-Human_SingleORAL_Weibull_MW_800_fu_0.6_LogP_-lo$

5

Result of the validation: Valid

 $Simulation: \ Human_Uncompetitive Inhibition-Human_Uncompetitive Inhibition$

Result of the validation: Valid

 $Simulation: \ Minipig_SingleORAL_Dissolved-Minipig_SingleORAL_Dissolved$

Result of the validation: Valid

 $Simulation: \ Minipig_SingleORAL_Dissolved_Minipig_SingleORAL_Dissolved_MW_200_fu_0.2_LogP_-lo$

5

 $Simulation: Minipig_SingleORAL_Dissolved_Minipig_SingleORAL_Dissolved_MW_800_fu_0.6_LogP_-LogP$

Result of the validation: Valid

Simulation: Monkey_SingleORAL_Dissolved-Monkey_SingleORAL_Dissolved

Result of the validation: Valid

 $Simulation: Monkey_SingleORAL_Dissolved_MW_200_fu_0.2_LogP_-togP$

5

Result of the validation: Valid

 $Simulation: Monkey_SingleORAL_Dissolved_MORAL_Dissolved_MW_800_fu_0.6_LogP_-Installation: Monkey_SingleORAL_Dissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORALDissolved_MORA$

-5

Result of the validation: Valid

Simulation: Mouse_SingleORAL_Dissolved-Mouse_SingleORAL_Dissolved

Result of the validation: Valid

 $Simulation: Mouse_SingleORAL_Dissolved_Mouse_SingleORAL_Dissolved_MW_200_fu_0.2_LogP_-Included to the control of the control$

 $\mathbf{5}$

Result of the validation: Valid

 $Simulation: Mouse_SingleORAL_Dissolved_Mouse_SingleORAL_Dissolved_MW_800_fu_0.6_LogP_-Incomplete the control of the control$

-5

Result of the validation: Valid

Result of the validation: Valid

Result of the validation: Valid

 $Simulation: Preterm_SingleIV_Age_15_GA_32_CYP3A4-Preterm_SingleIV_Age_15_CYP3A4-Prete$

Result of the validation: Valid

 $Simulation: \ Preterm_SingleIV_Age_15_GA_32_GFR-Preterm_SingleIV_Age_15_GA_32_GFR$

Result of the validation: Valid

 $Simulation: \ Rabbit_SingleORAL_Dissolved-Rabbit_SingleORAL_Dissolved$

 $Simulation: Rabbit_SingleORAL_Dissolved_Rabbit_SingleORAL_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_fu_0.2_LogP_-Rabbit_Dissolved_MW_200_Fu_0.2_LogP_-Rabbit_Dissolved_MW_200_Fu_0.2_$

 $\mathbf{5}$

Result of the validation: Valid

 $Simulation: Rabbit_SingleORAL_Dissolved_Rabbit_SingleORAL_Dissolved_MW_800_fu_0.6_LogP_-Rabbit_SingleORAL_Dissolved_MW_800_Fu_0.6_LogP_-Rabbit_SingleORAL_Dissolved_MW_800_F$

-5

Result of the validation: Valid

Simulation: SingleIV_2Pores_Human-SingleIV_2Pores_Human

Result of the validation: Valid

 $Simulation: Single IV_2 Pores_Human_Single IV_2 Pores_Human_Simulation C$

Result of the validation: Valid

 $Simulation: Single IV_2 Pores_Human_Single IV_2 Pores_Human_Simulation D$

Result of the validation: Valid

Simulation: SingleIV_2Pores_Human_SingleIV_2Pores_Human_SimulationF

Result of the validation: Valid

Simulation: SingleIV_2Pores_Monkey-SingleIV_2Pores_Monkey

Result of the validation: Valid

Simulation: SingleIV_2Pores_Monkey_SingleIV_2Pores_Monkey_SimulationG

Result of the validation: Valid

 $Simulation: Single IV_2 Pores_Monkey_Single IV_2 Pores_Monkey_Simulation H$

Result of the validation: Valid

 $Simulation: Single IV_2 Pores_Mouse-Single IV_2 Pores_Mouse$

Result of the validation: Valid

 $Simulation: Single IV_2 Pores_Mouse_Single IV_2 Pores_Mouse_Simulation A$

Result of the validation: Valid

 $Simulation: Single IV_2 Pores_Mouse_Single IV_2 Pores_Mouse_Simulation B$

Result of the validation: Valid

 $Simulation: Single IV_2 Pores_Mouse_Single IV_2 Pores_Mouse_Simulation E$

 $Simulation: Single IV_C1_4 Comp_standard_stand$

Result of the validation: Valid

 $Simulation: Single IV_C2_4 Comp_PT_standard_st$

Result of the validation: Valid

 $Simulation: Single IV_C2_4 Comp_RR_standard_st$

Result of the validation: Valid

 $Simulation: Single IV_C2_4 Comp_standard_schmitt_standard_Single IV_C2_4 Comp_standard_schmitt_schmitt_standard_schmitt_sch$

standard

Result of the validation: Valid

 $Simulation: Single IV_C3_4 Comp_RR_schmitt_standard-Single IV_C3_standard-Single IV_C3_sta$

Result of the validation: Valid

 $Simulation: Single IV_C3_4 Comp_standard_schmittnorm lized_standard_Single IV_C3_4 Comp_standard_schmittnorm lized_standard_schmittnorm lized_schmittnorm lized_sch$

 $schmittnormlized_standard$

Result of the validation: Valid

 $Simulation: Single IV_C4_2 Pores_RR_standard_standard_Single IV_C4_2 Pores_RR_standard_stan$

Result of the validation: Valid

 $Simulation: Single IV_C4_4 Comp_Ber_standard_s$

Result of the validation: Valid

 $Simulation: Single IV_C5_2 Pores_Ber_standard_$

Result of the validation: Valid

 $Simulation: Single IV_C5_2 Pores_PT_standard_s$

Result of the validation: Valid

 $Simulation: Single IV_C5_2 Pores_RR_schmitt_standard-Single IV_C5_2 Pores_schmitt_standard-Single IV_C5_2 Pores_schmitt_schm$

Result of the validation: Valid

 $Simulation: Single IV_C6_2 Pores_standard_stan$

standard

Result of the validation: Valid

Simulation: SingleIV_C7_2Pores_standard_schmitt_standard-SingleIV_C7_2Pores_standard_schmitt_-

standard

 $Simulation: Single IV_C7_4 Comp_schmitt_standard_standa$

Result of the validation: Valid

 $Simulation: Single IV_C8_2 Pores_standard_schmittnormalized_standard_Single IV_C8_2 Pores_standard_schmittnormalized_schmittnormalized_s$

Result of the validation: Valid

 $Simulation: Single IV_C9_2 Pores_schmitt_standard_standard-Single IV_C9_2 Pores_schmitt_standard-Single IV_C9_2 Pores_schmitt_schmitt_schmitt_schmitt_schmitt_schmitt_schmitt_schmitt_schmitt_schmitt_schmitt_schmitt_schmitt_schmitt_schmitt$

Result of the validation: Valid

 $Simulation: Single ORAL_C10_4 Comp_PT_standard_standard-Single ORAL_C10_4 Comp_PT_standard-Single ORAL_C10_4 Comp_Single ORAL_C10_4 C00_4 C00_$

Result of the validation: Valid

 $Simulation: Single ORAL_C11_4 Comp_schmitt_standard_sta$

Result of the validation: Valid

 $Simulation: Single ORAL_C11_4 Comp_standard_st$

Result of the validation: Valid

 $Simulation: Single ORAL_C12_4 Comp_standard_schmitt_standard-Single ORAL_C12_4 Comp_standard_schmitt_standard\\$

Result of the validation: Valid

 $Simulation: Single ORAL_C13_2 Pores_schmitt_standard_standard_Single ORAL_C13_2 Pores_schmitt_standard_standa$

Result of the validation: Valid

 $Simulation: Single ORAL_C13_4 Comp_standard_schmittnormalized_schmittnormalized_sc$

Result of the validation: Valid

 $Simulation: Single ORAL_C14_2 Pores_PT_standard_standard_Single ORAL_C14_2 Pores_PT_standard_standar$

Result of the validation: Valid

 $Simulation: Single ORAL_C2_2 Pores_standard_st$

 $Simulation: Single ORAL_C3_2 Pores_standard_schmitt_standard-Single ORAL_C3_2 Pores_standard_schmitt_standard\\$

Result of the validation: Valid

 $Simulation: Single ORAL_C4_2 Pores_standard_schmittnormalized_standard_Single ORAL_C4_2 Pores_standard_schmittnormalized_standard$

Result of the validation: Valid

 $Simulation: Single ORAL_C6_4 Comp_Ber_standard_standard_Single ORAL_C6_4 Comp_Ber_standard_$

Result of the validation: Valid

 $Simulation: Single ORAL_C6_4 Comp_RR_standard_standard_Single ORAL_C6_4 Comp_RR_standard_st$

Result of the validation: Valid

 $Simulation: Single ORAL_C7_2 Pores_Ber_standard_standard_Single ORAL_C7_2 Pores_Ber_standard_standar$

Result of the validation: Valid

 $Simulation: Single ORAL_C7_4 Comp_RR_schmitt_standard-Single ORAL_C7_standard-Single ORAL_C7_standard-Sing$

Result of the validation: Valid

 $Simulation: Single ORAL_C8_2 Pores_RR_standard_standard_Single ORAL_C8_2 Pores_RR_standard_$

Result of the validation: Valid

 $Simulation: Single ORAL_C9_2 Pores_RR_schmitt_standard-Single ORAL_c9_2 Pores_schmitt_standard-Single ORAL_c9_2 Pores_schmitt_schmitt_standard-Single ORAL_c9_2 Pores_schmitt_schmitt_standard-Single ORAL_c9_2 Pores_schmitt_schmitt_s$

Result of the validation: Valid

Simulation: Test $18.1_I1_C1_A1_Config1$ -Test $18.1_I1_C1_A1_Config1$

Result of the validation: Valid

 $Simulation: \ Test\ 18.1_I2_C1_A1_Config2-Test\ 18.1_I2_C1_A1_Config2$

Result of the validation: Valid

 $Simulation: \ Test\ 18.1_I2_C3_A1_Config2-Test\ 18.1_I2_C3_A1_Config2$

Result of the validation: Valid

 $Simulation: \ Test\ 18.1_I3_C3_A3_Config2-Test\ 18.1_I3_C3_A3_Config2$