Esame 21/09/21

Quesito 1. Sia X_1, X_2, X_n un campione estratto da una popolazione normale di media
incognita μ e varianza nota σ^2 , con n il numero di campioni estratti dalla popolazione e
\bar{x} la media campionaria. L'intervallo di confidenza bilaterale per la media μ è costruito
aggiungendo e sottraendo alla media campionaria un margine d'errore $z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$. Il margine
d'errore può essere ridotto se:

🛮 si aumenta la dimensione del campione

- \square si aumenta il livello di confidenza $(1-\alpha)$
- □ si diminuisce l'ampiezza del campione

Quesito 2. Dato un modello di regressione lineare semplice, la retta $Y = \alpha + \beta x$ presenta un buon adattamento ai dati se:

- \square la devianza spiegata $(SS_E,$ explained sum of squares) è di poco inferiore alla devianza totale $(S_{YY},$ total sum of squares)
- \square la devianza residua (SS_R , residual sum of squares) è circa uguale alla devianza spiegata (SS_E , explained sum of squares)
- \square la devianza residua (SS_R , residual sum of squares) è di poco inferiore alla devianza totale (S_{YY} , total sum of squares)

•

Quesito 3. Dodici amici, dopo aver partecipato ad una cena, si salutano e ognuno stringe la mano a tutti gli altri. Quante sono le strette di mano?

- □ 66
- \square 65
- \square nessuna delle altre risposte

 $\binom{12}{2} = \frac{12!}{2! \cdot 10!} = -66$

Quesito 4. Dato un esperimento che consiste nell'estrarre 3 palline con ripetizione da un'urna che contiene 50 palline di cui 20 bianche, 18 nere e 12 rosse, si determini la probabilità che si verifichi l'evento "tre palline di diverso colore".

- $\Box 0.20736$
- $\Box 0.03456$
- \square nessuna delle altre risposte

 $\frac{20.18.42}{\binom{50}{3}} = 0.22$

Quesito 5. Sia X una variabile aleatoria discreta che può assumere i valori x_1, x_2 ; il valore atteso (expectation) di X è (se esiste) il numero			
$\Box Var(X) = E[(X - \mu)^2] $			
$\square E[X] = \sum_{i} x_i P(X \le x_i)$			
Quesito 6. Se $Z_1, Z_2,, Z_n$ sono variabili aleatorie normali standard e indipendenti, allora			
X la somma dei loro quadrati, $X = Z_1^2 + Z_2^2 + + Z_n^2$ è una variabile aleatoria che prende il nome di $chi - quadro$ a n gradi di libertà.			
\square la variabile aleatoria $T_n = \frac{Z}{\sqrt{C_n/n}}$ è una variabile aleatoria che prende il nome di $chi - 2$ quadro a n gradi di libertà.			
\square la somma dei loro quadrati, $X=Z_1^2+Z_2^2+\ldots+Z_n^2$ è una variabile aleatoria che prende il nome di t di $Student$ con n gradi di libertà.			
Quesito 7. Consideriamo una popolazione di elementi, a ciascuno dei quali è associata una			
grandezza numerica. Sia $X_1, X_2,, X_n$ un campione di dati estratto da questa popolazione. I valori associati a ciascuno degli elementi del campione sono variabili aleatorie indipendenti ed identicamente distribuite. Denotiamo con μ e σ^2 la loro media e la loro varianza. Quanto valgono il valore atteso e la varianza della media campionaria \bar{X} ?			
$\mathbb{E}[\bar{X}] = \mu \ \mathrm{e} \ Var(\bar{X}) = \frac{\sigma^2}{n}$			
$\Box E[\bar{X}] = n\mu e Var(\bar{X}) = n\sigma^2 $			
$\square \ E[\bar{X}] = \mu \ e \ Var(\bar{X}) = \sigma^2$			
Quesito 8. Se in un box-plot il rettangolo ha area nulla:			
🛮 la differenza interquartile è pari a zero			
□ il primo e il terzo quartile non esistono			
\square questa situazione non si può mai verificare —			
Quesito 9. Se X e Y sono due variabili aleatorie indipendenti, allora			
$\boxtimes E[XY] = E[X]E[Y] $			
$\Box Var(X) = Var(X+Y)$			
$\square \ Cov(X,Y) \neq 0$			
Quesito 10. Supponiamo di realizzare <i>n</i> ripetizioni indipendenti di un esperimento, ciascu-			
na delle quali può concludersi in un "successo" con probabilità p o in un "fallimento" con probabilità $1-p$. Se X denota il numero totale di successi, X si dice variabile aleatoria			

binomiale di parametri (n, p). La sua funzione di massa di probabilità è data da:

$$XP(X=i) = \binom{n}{i} p^i (1-p)^{n-i}, i = 0, 1, ..., n$$

$$\Box P(X=0) = 1 - p \text{ e } P(X=1) = p \text{ con } 0 \le p \le 1$$

$$\Box P(X=i) = \frac{\lambda^i}{i!}e^{-\lambda}$$

Su un tavolo ci sono due monete. Quando vengono lanciate, una moneta dà testa con probabilità 0.5 mentre l'altra dà testa con probabilità 0.6. Una moneta viene scelta a caso e lanciata. Indichiamo con M_1 l'evento "la moneta scelta è la moneta 1", con M_2 l'evento "la moneta scelta è la moneta 2", con T l'evento "uscita testa in un lancio" e con C l'evento "uscita croce in un lancio".

- 1. Qual è la probabilità che esca testa (usare due cifre decimali dopo la virgola).
- 2. Se esce croce, qual è la probabilità condizionata che fosse la moneta equilibrata, ossia quella che ha la stessa probabilità di dare testa o croce (usare due cifre decimali dopo la virgola).

$$P(T|M_1) = 0.5 P(T|M_2) = 0.6$$

$$P(T) = P(T|M_1) \cdot P(M_1) + P(T|M_2) \cdot P(M_2) = 0.5 \cdot 0.5 + 0.6 \cdot 0.5 = 0.55$$

$$P(M_1|T') = \frac{P(T'|M_1) \cdot P(M_1)}{P(T')} = \frac{0.5 \cdot 0.5}{0.45} = 0.55$$

Esercizio 2 [4 punti]

In uno studio scientifico un gruppo di topi di 5 settimane fu sottoposto a una dose di radiazione di 300 rad. I topi furono quindi divisi in due gruppi, il primo dei quali venne tenuto in ambiente sterile, mentre il secondo in normali condizioni di laboratorio. I seguenti diagrammi stem and leaf riportano i giorni di vita dei topi che in seguito morirono di linfoma del timo.

	Topi in ambiente sterile	Topi in ambiente normale
6	58, 92, 93, 94, 95 02, 12, 15, 29, 30, 37, 40, 44, 47, 01, 01, 21, 37 15, 34, 44, 85, 96 29, 37 24 07	1 59, 89, 91, 98 2 35, 45, 50, 56, 61, 65, 66, 80 3 43, 56, 83 4 03, 14, 28, 32
	00	

Determinare le rispettive medie campionarie e mediane per i due gruppi di topi.

$$M_1 = 344,069$$
 $M_2 = 292,315$
 $M_1 = 259$ $M = 265$