Sieć wielowarstwowa Sieci Neuronowe 2020

Jakub Ciszek 238035

Spis treści

1	Opis badań		3
	1.1	Plan eksperymentów	3
	1.2	Charakterystyka zbiorów danych	3
2	Eksperymenty		4
	2.1	Wpływ wielkości warstwy ukrytej na przebieg procesu uczenia	4
	2.2	Wpływ wielkości paczki na przebieg procesu uczenia	8
	2.3	Wpływ zakresu inicjalizacji wag na przebieg procesu uczenia	12
2.4 Wpływ wartości współczynnika alpha na przebieg procesu ucz		Wpływ wartości współczynnika alpha na przebieg procesu uczenia	16
	2.5	Wpływ użytej funkcji aktywacyjnej na przebieg procesu uczenia	20
3	Wni	ioski	23

Cały kod wykorzystany w zadaniu znajduje się pod adresem: https://github.com/Greenpp/sieci-neuronowe-pwr-2020

1 Opis badań

1.1 Plan eksperymentów

Wszystkie eksperymenty zostały przeprowadzone 10 razy. Losowość przy inicjalizacji wag oraz generacji danych nie została narzucona żadnym ziarnem. Podczas badań przyjęto górną granicę 5 epok, po przekroczeniu której, uczenie zostawało przerywane. Ze względu na charakter zadania (klasyfikacja) na ostatniej warstwie użyto funkcji Softmax, a za funkcję straty przyjęto Entropię krzyżową. Z powodów wydajnościowych testowanie modelu przeprowadzano co każde 1024 przykłady. Zgodnie z instrukcją zostały przeprowadzone następujące badania:

- Wpływ wielkości warstwy ukrytej na przebieg procesu uczenia
- Wpływ wielkości paczki na przebieg procesu uczenia
- Wpływ zakresu inicjalizacji wag na przebieg procesu uczenia
- Wpływ wartości współczynnika alpha na przebieg procesu uczenia
- Wpływ użytej funkcji aktywacyjnej na przebieg procesu uczenia

Podczas wizualizacji funkcji straty pominięto pierwsze 10 pomiarów dla lepszej czytelności.

1.2 Charakterystyka zbiorów danych

Danymi użytymi w zadaniu jest zbiór ręcznie pisanych cyfr 0-9 - MNIST. Na zbiór składa się 70,000 obrazów wielkości 28x28 pikseli, co po przekształceniu odpowiadało 784 elementowemu wektorowi wejściowemu. Użyta w zadaniu wersja została podzielona na 3 zbiory:

- Uczący 50,000 przykładów.
- Walidujący 10,000 przykładów.
- Testowy 10,000 przykładów.

W trakcie eksperymentów wykorzystano jedynie zbiory uczący i testowy.

2 Eksperymenty

2.1 Wpływ wielkości warstwy ukrytej na przebieg procesu uczenia

Założenia

Tabela 1: Stałe dla eksperymentu 1

	•
Parametr	Wartość
Wielkość paczki	32
Zakres wag	-0.5 - 0.5
Współczynnik uczenia	0.01
Funkcja aktywacji	ReLU

Zmienną w tym eksperymencie była wielkość warstwy ukrytej. Ilość neuronów przyjmowała wartości ze zbioru {16, 128, 512, 2048}

Przebieg

Podczas eksperymentu model został zainicjalizowany 10 razy dla każdej z badanych wartości oraz wyuczony, uzyskane wyniki zostały zapisane w postaci pliku .plk do dalszej analizy.

Wykres 1: Dokładność modelu w zależności od wielkości warstwy ukrytej

Wykres 2: Dokładność modelu w końcowym etapie uczenia w zależności od wielkości warstwy ukrytej

Wykres 3: Zachowanie funkcji błędu dla 16 neuronów

Wykres 4: Zachowanie funkcji błędu dla 128 neuronów

Wykres 5: Zachowanie funkcji błędu dla 512 neuronów

Wykres 6: Zachowanie funkcji błędu dla 2048 neuronów

Tabela 2: Średnia maksymalna dokładność w zależności od wielkości warstwy ukrytej

Neurony	Dokładność [%]
16	94.48
128	96.99
512	97.24
2048	97.54

Z otrzymanych wyników, widocznych na wykresie 6 oraz tabeli 2, wynika że

2.2 Wpływ wielkości paczki na przebieg procesu uczenia

Założenia

Tabela 3: Stałe dla eksperymentu 2

Parametr	Wartość
Wielkość warstwy ukrytej	128
Zakres wag	-0.5 - 0.5
Współczynnik uczenia	0.01
Funkcja aktywacji	ReLU

Zmienną w tym eksperymencie była wielkość paczki. Ilość przykładów przyjmowała wartości ze zbioru {1, 8, 32, 128, 1024}

Przebieg

Podczas eksperymentu model został zainicjalizowany 10 razy dla każdej z badanych wartości oraz wyuczony, uzyskane wyniki zostały zapisane w postaci pliku .plk do dalszej analizy.

Wykres 7: Dokładność modelu w zależności od wielkości paczki

Wykres 8: Dokładność modelu w końcowym etapie uczenia w zależności od wielkości paczki

Wykres 9: Zachowanie funkcji błędu dla paczki wielkości 1

Wykres 10: Zachowanie funkcji błędu dla paczki wielkości 8

Wykres 11: Zachowanie funkcji błędu dla paczki wielkości 32

Wykres 12: Zachowanie funkcji błędu dla paczki wielkości 128

Wykres 13: Zachowanie funkcji błędu dla paczki wielkości 1024

Tabela 4: Średnia maksymalna dokładność w zależności od wielkości paczki

Przykłady	Dokładność [%]
1	97.00
8	97.04
32	96.99
128	96.32
1024	25.98

Z otrzymanych wyników, widocznych na wykresie 7 oraz tabeli 4, wynika że

2.3 Wpływ zakresu inicjalizacji wag na przebieg procesu uczenia

Założenia

Tabela 5: Stałe dla eksperymentu 3

Parametr	Wartość
Wielkość warstwy ukrytej	128
Wielkość paczki	32
Współczynnik uczenia	0.01
Funkcja aktywacji	ReLU

Zmienną w tym eksperymencie był zakres inicjalizacji wag. Przedział inicjalizacji przyjmował wartości ze zbioru $\{0.0, -0.1 - 0.1, -0.5 - 0.5, -2.0 - 2.0\}$

Przebieg

Podczas eksperymentu model został zainicjalizowany 10 razy dla każdej z badanych wartości oraz wyuczony, uzyskane wyniki zostały zapisane w postaci pliku .plk do dalszej analizy.

Wykres 14: Dokładność modelu w zależności od zakresu inicjalizacji wag

Wykres 15: Dokładność modelu w końcowym etapie uczenia w zależności od zakresu inicjalizacji wag

Wykres 16: Zachowanie funkcji błędu dla wag inicjalizowanych z zakresu 0.0-0.0

Wykres 17: Zachowanie funkcji błędu dla wag inicjalizowanych z zakresu -0.1 - 0.1

Wykres 18: Zachowanie funkcji błędu dla wag inicjalizowanych z zakresu -0.5-0.5

Wykres 19: Zachowanie funkcji błędu dla wag inicjalizowanych z zakresu -2.0 – 2.0

Tabela 6: Średnia maksymalna dokładność w zależności od zakresu inicjalizacji wag

Zakres	Dokładność [%]
0.0	11.35
-0.1 - 0.1	97.84
-0.5 - 0.5	96.99
-2.0 - 2.0	92.14

Z otrzymanych wyników, widocznych na wykresie 14 oraz tabeli 6, wynika że

2.4 Wpływ wartości współczynnika alpha na przebieg procesu uczenia

Założenia

Tabela 7: Stałe dla eksperymentu 4

	•
Parametr	Wartość
Wielkość warstwy ukrytej	128
Wielkość paczki	32
Zakres wag	-0.5 - 0.5
Funkcja aktywacji	ReLU

Zmienną w tym eksperymencie był współczynnik uczenia. Przyjmował wartości ze zbioru $\{0.0001, 0.001, 0.01, 0.1, 1.0, \}$

Przebieg

Podczas eksperymentu model został zainicjalizowany 10 razy dla każdej z badanych wartości oraz wyuczony, uzyskane wyniki zostały zapisane w postaci pliku .plk do dalszej analizy.

Wykres 20: Dokładność modelu w zależności od współczynnika uczenia

Wykres 21: Dokładność modelu w końcowym etapie uczenia w zależności od współczynnika uczenia

Wykres 22: Zachowanie funkcji błędu dla parametru alpha o wartości 0.0001

Wykres 23: Zachowanie funkcji błędu dla parametru alpha o wartości 0.001

Wykres 24: Zachowanie funkcji błędu dla parametru alpha o wartości 0.01

Wykres 25: Zachowanie funkcji błędu dla parametru alpha o wartości 0.1

Wykres 26: Zachowanie funkcji błędu dla parametru alpha o wartości 1.0

Tabela 8: Średnia maksymalna dokładność w zależności od współczynnika uczenia

Alpha	Dokładność [%]
0.0001	88.37
0.0010	94.40
0.0100	97.06
0.1000	23.84
1.0000	11.45

Z otrzymanych wyników, widocznych na wykresie 20 oraz tabeli 8, wynika że

2.5 Wpływ użytej funkcji aktywacyjnej na przebieg procesu uczenia

Założenia

Tabela 9: Stałe dla eksperymentu 5

Parametr	Wartość
Wielkość warstwy ukrytej	128
Wielkość paczki	32
Zakres wag	-0.5 - 0.5
Współczynnik uczenia	0.01

Zmienną w tym eksperymencie była funkcja aktywacji. Przetestowane zostały funkcje Sigmoidalna oraz ReLU.

Przebieg

Podczas eksperymentu model został zainicjalizowany 10 razy dla każdej z badanych wartości oraz wyuczony, uzyskane wyniki zostały zapisane w postaci pliku .plk do dalszej analizy.

Wykres 27: Dokładność modelu w zależności od funkcji aktywacji

Wykres 28: Dokładność modelu w końcowym etapie uczenia w zależności od funkcji aktywacji

Wykres 29: Zachowanie funkcji błędu dla funkcji aktywacji Sigmoidalnej

Wykres 30: Zachowanie funkcji błędu dla funkcji aktywacji ReLU

Tabela 10: Średnia maksymalna dokładność w zależności od funkcji aktywacji

Funkcja	Dokładność [%]
Sigmoid	96.39
ReLU	96.94

Z otrzymanych wyników, widocznych na wykresie 27 oraz tabeli 10, wynika że

- 3 Wnioski
 - TODO