TEXT DATA AND TEXT MINING

ADVANCED CRIME ANALYSIS

BENNETT KLEINBERG

4 FEB 2019

Text data 2

TODAY

- Recap TF-IDF
- n-grams
- psycholinguistics
- sentiment analysis

RECAP: TFIDF

Why do we need the TF-IDF? And what is it?

TF-IDF EXAMPLE

Fakenews corpus: 1000 fake, 1000 real (data)

Step 1: Term-frequencies

```
## The following object is masked from 'package:utils':
                                                                                                                                                                              See https://quanteda.io for tutorials and examples.
                                                                                       Parallel computing: 2 of 4 threads used.
                                                                                                                                                                                                                                                                                                                 Attaching package: 'quanteda'
## Package version: 1.2.0
                                                                                                                                                                               ##
```

```
dfm_trimmed_tf = round(dfm_weight(dfm_trimmed, scheme='prop'), 4)
                                                                                                      dfm_trimmed = dfm_trim(corpus_dfm, sparsity = 0.95)
                                                                    , remove = stopwords())
corpus_dfm = dfm(corpus_tokenised
                                      stem = T
                                                                                                                                                                                  dfm_trimmed_tf
```

Document-feature matrix of: 2,000 documents, 916 features (87.8%

TF (PROPORTIONS)

document	secretari	ask	govern	document	includ	one	contain
text1	0.0238	0.0238	0.0238	0.0476	0.0238	0.0238	0.0238
text2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
text3	0.0065	0.0000	0.0000	0.0000	0.0000	0.0065	0.0000
text4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
text5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

STEP 2: DF

	×
secretari	174
ask	432
govern	582
document	124
includ	899
one	1204
contain	128
inform	296

STEP 2: DF

Inverse DF with log transform

	×
secretari	1.0604807
ask	0.6655462
govern	0.5361070
document	1.2076083
includ	0.4762535
one	0.2204035
contain	1.1938200
inform	0.8297383

STEP 3: TF-IDF

```
, scheme_tf = 'prop'
, scheme_df = 'inverse') ##!!! <-- correction to L4</pre>
dfm_tfidf(dfm_trimmed
```

document	secretari	ask	govern	document	includ	one	contain
text1	0.0252	0.0158	0.0128	0.0575	0.0113	0.0052	0.0284
text2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
text3	0.0068	0.0000	0.0000	0.0000	0.0000	0.0014	0.0000
text4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
text5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

TF-IDF FORMAL

- Term frequency
- INVERSE document frequency

TFIDF = TF/DF = TFIDF = TF * IDF, since

IDF = 1/DF

Note: types of DF

TF-IDF AIMS

- TF: rewards local importance
- IDF: punishes for global occurrence
- TFIDF value as metric for the importance of words per document

EXTENSION: N-GRAMS

PROBLEM?

[1] "It is a great time to be alive"

SO FAR...

- we used tokens as unit of analysis
- but: sometimes mutlple tokens might reveal more
- n-grams -> sequences of n tokens
- unigrams: n = 1
- bigrams: n = 2
- trigrams: n = 3

UNIGRAMS

[1] "It is a great time to be alive"

UNIGRAMS

```
## Document-feature matrix of: 1 document, 8 features (0% sparse).
                                                                                                       ## docs it is a great time to be alive ## text1 1 1 1 1 1 1 1 1 1
                                   1 x 8 sparse Matrix of class "dfm"
                                                                         features
```

BEYOND UNIGRAMS: BIGRAMS

Bigrams = all sequenceis of 2 tokens

[1] "It is a great time to be alive"

BIGRAMS

```
## Document-feature matrix of: 1 document, 7 features (0% sparse).
                                                                 1 \times 7 sparse Matrix of class "dfm"
                                             features
                                                                  ## docs
```

EVEN MORE ...

Trigrams

```
## Document-feature matrix of: 1 document, 6 features (0% sparse).
                1 x 6 sparse Matrix of class "dfm"
                                                                                        features
                                      features
                                                       ## docs
                                                                                                              ## docs
```

N-GRAMS IN GENERAL

What happens when we increase n in a corpus?

N-GRAMS WITH QUANTEDA

```
unigrams = dfm(x = fakenews_corpus
                         ngrams = 1
```

document as secreta	as	as secretary	of	routinely	asked	her	maid	to
text1		1	2	- -1	Н	5		6
text2	0	0	0	0	0	0	0	က
text3	Н	Н	13	0	0	—	0	2
text4	4	0	10	0	0	0	0	9
text5	4	0	17	0	0	0	0	22

DFM WITH ADDITIONAL CONTROLS

```
unigrams_cleaned = dfm(x = fakenews_corpus
                                                                                  remove = stopwords()
                             ngrams =
```

document s	secretari	routin	ask	maid	print	sensit
text1	1		⊶	 1	2	2
text2	0	0	0	0	0	0
text3	Н	0	0	0	0	0
text4	0	0	0	0	0	0
text5	0	0	0	0	0	0

BIGRAMS

```
bigrams_cleaned = dfm(x = fakenews_corpus
, ngrams = 2 ## <---!!!
, stem = T</pre>
```

document as_se	as_secretari	secretari_of of_routin	of_routin	routin_ask
text1	1			₩.
text2		0	0	0
text3		0	0	0
text4	0	0	0	0
text5	0	0	0	0

What happens when we increase n in a corpus?

```
dim(unigrams_cleaned)
                                                                                                                                                        2000 357458
                                                                                                     dim(bigrams_cleaned)
                                                  ## [1] 2000 15630
                                                                                                                                                       ## [1]
```

WEIGHTING N-GRAMS

```
, scheme_tf = 'prop'
, scheme_df = 'inverse')
dfm_tfidf(bigrams_cleaned
```

document	as_secretari	secretari_of	of_routin	routin_ask
text1		0.0093	0.0224	0.0246
text2	0.0000	0.0000	0.0000	0.0000
text3	0.0000	0.0000	0.0000	0.0000
text4	0.0000	0.0000	0.0000	0.0000
text5	0.0000	0.0000	0.0000	0.0000

N-GRAMS

- generalisation of "single" tokens
- often used in bag-of-word models
- common in predictive modelling

SENTIMENT ANALYSIS

SENTIMENT ANALYSIS: AIM

- measure positive/negative tone
- "emotionality" of a text
- builds on the "language -> behavior" and "cognition -> language" nexus

BASICS OF SENTIMENT ANALYSIS

- 1. tokenise text
- 2. construct a lexicon of sentiment words
- 3. judge the sentiment words
- 4. match tokens with sentiment lexicon

1. TOKENISE TEXT

From:

[1] "Your hyperbole makes you sound more like a Trump supporter the

: to

```
"supporter"
                                                  "continue"
                   "sound"
                                      "both"
                            "Trump"
                                                           "unity"
                                                "will"
                                      "but"
                  "you"
                                                 "losers"
                                      "Stein"
                  "hyperbole" "makes"
                                                           "whine"
                            "like"
tokens from 1 document.
                                                "of"
                                                  'groups"
                             "more"
                  "Your"
                                      "than"
          text1
```

- do all words have a potential sentiment?
- maybe focus on adjectives/adverbs, maybe verbs?

Luckily: many sentiment lexicons exists

The lexicon package

```
lexicon::hash_sentiment_nrc[, 1]
```

```
youth
                                                                                          zip
abandon
         abandoned
                   abandonment
                                                                        zealous
                                   abduction
                                                                                  zest
                                                               zeal
                                                                        5466:
                                                      5464:
                                                                                          5468:
                                                               5465:
                                                                                 5467:
```

lexicon::hash_sentiment_slangsd[, 1]

```
smegma stache
×
                                                         bad taste in my mouth
                                                                                                                   smegma popsicle
                                                                                                                                   smegma slap
                                                                                                                                                                smegma team
                                          a bad mother
                                                                      a bag o' beagles
                                                                                                      smegma
                          a bad amount of money
                                                           ಹ
                                                                                                                                  48275:
                                                                                                                                                 48276:
```

lexicon::hash_sentiment_socal_google[, 1]

```
able
a pillar
          ab liva
                                above average
                                                               you know what
                                          above mentioned
                                                                           young
                                                                                                         zero entry
                                                                                              youthful
                                                                                     Younger
                                                                         3287:
                                                                3286:
                                                                                     3288:
                                                                                               3289:
```

3. JUDGE THE SENTIMENT WORDS

Normal strategy

- crowdsourced annotation
- decide on judgment scale
- multiple judgments per word
- assess inter-rater reliability

3. JUDGE THE SENTIMENT WORDS

Again: mostly already done for you

```
lexicon::hash_sentiment_nrc
```

```
abduction -1
abandon –1
                      abandonment -1
                                                               youth
                                abba
                                                                                               zest
          abandoned
                                                                                    zealous
                                                                          zeal
                                                                                    5466:
                                                               5464:
                                                                         5465:
                                                                                              5467:
```

Binary judgment: -1 or 1

3. JUDGE THE SENTIMENT WORDS

lexicon::hash_sentiment_slangsd

```
a bad taste in my mouth -0.5
                                                                                                  smedma -0.5
                                                                                                                    smegma popsicle -0.5
                                                                                                                                        smegma slap -0.5
                                                                                                                                                          smegma stache -0.5
                                                                                                                                                                              smegma team -0.5
a bad amount of money -0.5
                     a bad mother
                                                          a bag o' beagles
                                                                                                                                                            48276:
                                                                                                 48273:
                                                                                                                                                                               48277:
```

Finer judgment: -1.00, -0.50, 0.50, 1.00

3. JUDGE THE SENTIMENT WORDS

```
lexicon::hash_sentiment_socal_google
```

```
-0.5298408
-0.9971062
                                       3.2150018
                                                                                                                      youthful -0.1287262
             ab liva -0.9578700
                                                     2.5815803
                                                                              you know what -0.3177500
                                                                                                                                   1.8376710
                                                                                                                                    zero entry
a pillar
                                                                                             young
                                       above average
                                                     above mentioned
                                                                                                           younger
                                                                                            3287:
                                       4:
                                                    5.
                                                                              3286:
                                                                                                                       3289:
                                                                                                         3288:
```

Continuous scale: -30 to +30

 Classic approach: one sentiment score (syuzhet package)

third phase of her cancer. It was especially that she had colon cancer. She entered the [...] was devastated when she found out terrifying because her husband passed away from lung cancer after receiving chemotherapy. [...]

Classic approach: one sentiment score

```
syuzhet::get_sentiment(example_text)
```

```
## [1] -1.55
```

Newer approach: sentiment for each sentence

The sentimentr (Rinker) package

```
sentimentr::sentiment(example_text)
```

```
-0.1625000
                                   -0.2651650
                                                     -0.5034878
                                                                          -0.1443376
                                                                                            -0.4650000
element_id sentence_id word_count
```

- Newer approach: sentiment for each sentence
- needs punctuated data
- and good sentence disambiguation
- without punctuation: whole string = 1 sentence
- What about valence shifters?

This is not ideal.

A DIFFERENT APPROACH

Dynamic sentiment analysis

Inspired by: Matthew Jockers' work

Assumption:

- sentiment is dynamic within texts
- static approaches mask sentiment dynamics
- worst case: sentiment completely off

imagine this is a super positive part of a fantastic text with big beautiful words the best words

but now we talk about the bad guys and the crime and terror going on this is really bad and we have to stop this invasion

imagine this is a super positive part of a antastic text with big beautiful words the best words but now we talk about the kad guys and the crime and terror going on this is really bad and we have to stop this invasion

From our EMNLP work

- 1. Parse text input into words
- 2. Match sentiment lexicon to each word
- Match valence shifters to each context
- Apply valence shifter weights
- Build a naïve context around the sentiment
- Return modified sentiment
- 3. Length-standardise sentiment vector

Parse input

source('./r_deps/naive_context_sentiment/ncs.R')

text	index
it	25
was	26
especially	27
terrifying	28
because	29
her	30
husband	31
passed	32
away	33
from	34

index	5
hext	

lung

35

Match sentiment

text	index	>
iţ	25	NA
was	26	NA
especially	27	NA V
terrifying	28	-
because	29	A V
her		NA
husband	31	NA V
passed	32	NA
	33	A V
from	34	A V
	32	NA

Match valence shifters

text	index	y.x	y.y
ij	25	ΝΑ	NA
was	26	ΑN	NA
especially	27	NA	2
terrifying	28	-	NA
because	29	ΥN	NA
her	30	NA	NA
husband	31	ΥN	NA
passed	32	NA	NA
away	33	NA	NA
from	34	NA	NA
lung	35	NA	NA

Valence shifters

- 1 = negator (not, never, ...):-1.00
- 2 = amplifier (very, totally, ...): 1.50
- 3 = deamplifier (hardly, barely, ...): 0.50
- 4 = adversative conjunction (but, however, ...): 0.25

ıts	weights	1.0	1.0	1.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
er weigh	valence	NA	NA	2	NA	NA	NA	NA	NA	NA	NA	NA
Apply valence shifter weights	sentiment	NA	NA	NA	-	NA	NA	NA	NA	NA	NA	NA
oly vale	index	25	26	27	28	29	30	31	32	33	34	35
App	text	ij	was	especially	terrifying	because	her	husband	passed	away	from	lung

Build 'naive' context around sentiment

2 words around sentiment word

	5 5 5 5			5
text	index	sentiment	valence	weights
was	26	NA	NA	1.0
especially	27	NA	2	1.5
terrifying	28		NA	1.0
because	29	NA	NA	1.0
her	30	ΥN	NA	1.0

Calculate modified sentiment

```
"sentiment change for \"devastated\": -0.5 --> -0.5"
                                                                                                    \"receiving\": 0.6 --> 0.6"
\"exposed\": -0.5 --> -0.125"
                               \"cancer\": -0.75 --> -0.75"
\"cancer\": -0.75 --> -0.75"
\"terrifying\": -1 --> -1.5"
\"cancer\": -0.75 --> -0.75"
                                                                                                                                        "cancer\": -0.75 --> -0.75"
               "found\": 0.6 --> 0.6"
                 for
                                                                                                                                         for
                                                    for
                                                                                                       for
                                                                                                                       for
                                   for
                                                                                      for
                                                                     for
                  change
                                    change
                                                                                      change
                                                                                                                        change
                                                    change
                                                                     change
                                                                                                       change
                                                                                                                                        "sentiment change
                  sentiment
                                    "sentiment
                                                    "sentiment
                                                                     "sentiment
                                                                                      "sentiment
                                                                                                       "sentiment
                                                                                                                        "sentiment
```

text	sentiment	valence	weights	sentiment_score_mod
was	NA	NA	1.0	0.0
especially	NA	2	1.5	0.0
terrifying	-	NA	1.0	-1.5
because	NA	NA	1.0	0.0
her		NA	1.0	0.0

Length-standardisation

- aim: transform all sentiments (modified + valence-shifter weighted) to a vector
- standard vector length for comparisons
- here: 100 values with Discrete Cosine Transformation

Length-standardisation

PSYCHOLINGUISTICS

PSYCHOLINGUISTICS

Die-hard assumption: cognition -> language

assuming that cognition -> language

we might be interested in knowing about:

complex thinking in text

tentative language vs certainty

focus on past/present/future

THE LIWC (READ AS "LUKE")

- developed at UT Austin
- Several papers
- Built with expert focus groups
- Popular in CL community
- dictionary-based approach
- 92 categories

THE LIWC PIPELINE

- read individual files into the LIWC software
- select categories
- retrieve % of words in category

LIWC DEMO

LIWC OUTPUT: META INDICATORS

MC	Analytic	Clout	Authentic	Tone	WPS	Sixltr	Dic	function
135	94.76	89.98	2.21	53.63	135	27.41	80.74	51.85
18	00.66	50.00	23.51	1.00	18	27.78	77.78	33.33
376	81.96	55.28	39.57	5.71	376	23.67	82.45	48.40
274	84.02	92.26	24.13	79.11	274	23.72	82.48	55.47

LIWC OUTPUT: LINGUISTIC PROCESSES

function pronoun	pronoun	ppron	•	We	you	shehe	they
51.85	9.63	6.67	0.00	0.00	0.00	6.67	0.00
33.33	00.0	00.0	0.00	0.00	0.00	00.0	0.00
48.40		1.86	0.27	0.27	0.27	0.53	0.53
55.47	13.50	8.39	0.00	6.57	1.46	00.0	0.36

LIWC OUTPUT

prep	auxverb	adverb	conj	negate	verb	adj	compare	interrog
16.87	8.58	4.70	6.22	0.97	13.83	5.12	2.63	0.41
17.12	9.19	3.17	5.07	3.01	17.91	4.75	1.58	1.58
14.67	9.33	8.00	5.33	1.33	18.67	5.33	2.67	1.33
15.15	0.00	60.6	60.6	3.03	3.03	90.9	90'9	0.00

LIWC OUTPUT: PSYCHOLOGICAL **PROCESSES**

affect	posemo	negemo	anx	anger	sad	social	family
4.29	2.49	1.38	0.00	69.0	0.14	5.81	0.14
4.60	1.11	3.49	0.48	1.27	0.32	14.90	0.48
4.00	4.00	0.00	0.00	0.00	0.00	6.67	1.33
60'6	0.00	60.6	0.00	60.6	0.00	12.12	00.0

LIWC OUTPUT: PSYCHOLOGICAL **PROCESSES**

male	male cogproc	insight	cause	discrep	tentat	certain
0.83		1.94	1.38	1.66	2.35	2.90
2.06		2.85	1,11	0.79	3.01	1.58
1.33	10.67	4.00	2.67	0.00	0.00	1.33
0.00	18.18	0.00	0.00	0.00	0.00	60.6

LIWC OUTPUT: PERSONAL CONCERNS

work	leisure	home	money	relig	death
4.98	0.14	00.0	0.55	0	0.14
2.22	0.48	0.79	0.16	0	0.32
5.33	1.33	2.67	4.00	0	00.0
90.9	00.00	00.0	0.00	0	3.03

LIWC OUTPUT: INFORMAL LANGUAGE

death	death informal	swear	netspeak	assent	nonflu	
0.14	<u> </u>	0.14	0	0.14	0.28	
0.32	<u> </u>	0.00	0	0.00	0.00	0
0.00		0.00	0	0.00	00.0	0
3.03	00.0	0.00	0	0.00	0.00	0

LIWC OUTPUT: PUNCTUATION

AllPunc	Period	AllPunc Period Comma Colo	Colon	SemiC	QMark	Exclam	Dash	Quote
0	0	0 0 0	0	0	0	0	0	0
0 0	0	0		0	0	0	0	0
0	0		0	0	0	0	0	0
0 0	0	0	0	0	0	0	0	0

RECAP

- ngrams as generalisation of single-token analyses
- sentiment analysis in generalsentiment trajectories
- psycholinguistics with the LIWC

OUTLOOK

Tutorial tomorrow

Next week: Reading week

Week 6: Machine learning 1

END