Recommender Systems

Aline Bessa PhD Candidate, NYU

Modified from Jeff Ullman, Anand Rajaraman, and Jure Lescovek

http://www.mmds.org

I didn't know I liked that!

Michael

- Buys Metallica album
- Buys Megadeth album

John

- Bought a Metallica album
- Recommender system suggests Megadeth from data collected about Michael

pandora

Spotify®

amazon

allrecipes com[®]

Linked in

The New York Times

Instagram

Relationship with Big Data

High number of users

Source: https://www.statista.com/chart/7677/netflix-subscriber-growth/

Relationship with Big Data

High number of items

How many products does Amazon sell (2015)?

Amazon.com	USA	488 million	+235 million
Amazon.co.uk	UK	261 million	+108 million
Amazon.de	Germany	237 million	+96 million
Amazon.fr	France	209 million	+90 million
Amazon.co.jp	Japan	168 million	+60 milion
Amazon.it	Italy	165 million	+77 million
Amazon.es	Spain	160 million	+76 million
Amazon.ca	Canada	133 million	+77 million
Amazon.in	India	42 million	+18 million

Source: https://export-x.com/2015/12/11/how-many-products-does-amazon-sell-2015/

Relationship with Big Data

Exploration of a long tail of choices: finer tuned recommendations

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!

More data leads to better recommendations!

- Tastes are better characterized
- Level of personalization in recommendations increases
- More data beats better algorithms
 - http://anand.typepad.com/datawocky/2008/03/moredata-usual.html
- Adding more data is usually easy
 - e.g., add IMDB data on movie genres
- Cost of keeping additional data for items is cheap

Formal Model

- **X** = set of **users**
- **S** = set of **items**
- Utility function $u: X \times S \rightarrow R$
 - **R** is set of ratings
 - **R** is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Utility Matrix - Goal

	Avatar	LOTR	Matrix	Pirates
Alice	1 u(A	lice, LOTR) =	0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Calculating u(x, i): key problems

- Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix?
 - Explicit versus implicit rating
- Predicting ratings u(x, i) from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- Evaluating different u(x, i) functions
 - How to measure success/performance of recommendation methods

Approaches to recommender systems

Content-based

- Recommend items to user x similar to previous items rated highly by x
- Collaborative filtering
 - Find set N of users whose ratings are similar to x's
 - Predict new ratings for x based on ratings of users in N
 - Recommend items to x associated to highest predicted ratings
- Hybrid methods
 - Recommend items combining similarities with previous items rated by x and predicted ratings based on ratings of x's similar users

Approaches to recommender systems

- Content-based
 - Recommend items to user x similar to previous items rated highly by x
- Collaborative filtering TODAY!
 - Find set N of users whose ratings are similar to x's
 - Predict new ratings for x based on ratings of users in N
 - Recommend items to x associated to highest predicted ratings
- Hybrid methods
 - Recommend items combining similarities with previous items rated by x and predicted ratings based on ratings of x's similar users

Collaborative filtering - why?

- Works for any kind of item in an agnostic fashion
 - No need to select features for similarity computations with previously rated items
 - Useful for "harder" data types (e.g., audio)
- Exploits quality judgments of other users
 - An item similar to previously rated ones can still be bad
- Significant technical advancements in the last decade
 - Netflix prize https://en.wikipedia.org/wiki/Netflix Prize
 - Recsys conference https://recsys.acm.org/best-papers/
- An X x S rating matrix is the sole requirement
 - No additional data is used by CF algorithms

Collaborative Filtering

Consider user x

- Find set *N* of other users whose ratings are "similar" to x's ratings
- 2. Predict **x**'s ratings based on ratings of users in **N**

database

Underlying assumption I: People who agreed in the past will agree in the future

Underlying assumption II: The items people will like in the future are similar to the ones they liked in the past

Input: Set of users *X*, value *k* for *k* most similar users

Output: Sets N of k most similar users for all x in X

```
For user x in X:

N[x] = \{\}

For user x in X:

For user y in X \setminus \{x\}:

tmp = compute\_similarity(x, y)

if tmp is one of the k top similarities computed so far for x:

store \ y in N[x]

return N
```

Input: Set of users *X*, value *k* for *k* most similar users

Output: Sets N of k most similar users for all x in X

```
For user x in X:
    N[x] = {}
For user x in X:
    For user y in X \ {x}:
        tmp = compute_similarity(x, y)
        if tmp is one of the k top similarities computed so far for x:
        store y in N[x]
return N
```

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Which users are more similar to A?
 - Users A and C
 - Rated two movies in common
 - Opposite opinions about them
 - Users A and B
 - Rated one movie in common
 - Similar opinions about it

Intuitively we want sim(A, B) > sim(A, C)

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Jaccard similarity

- Problem: Ignores values of ratings
- A = {HP1, TW, SW1}, B = {HP1, HP2, HP3},C = {TW, SW1, SW2}
- Jaccard(A, B) = 1/5, Jaccard(A, C) = 1/2
- Jaccard(A, C) > Jaccard(A, B) Intuitively wrong!

Note:

 $Jaccard(X, Y) = |X \cap Y|/|X \cup Y|$

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Cosine similarity

- Problem: Treats missing rating as zero (low rating)
- A = [4, 0, 0, 5, 1, 0, 0], B = [5, 5, 4, 0, 0, 0, 0], C = [0, 0, 0, 2, 4, 5, 0]
- Cosine(A, B) = 0.380, Cosine(A, C) = 0.322
- Cosine(A, B) > Cosine(A, C)
- Intuitively correct but values are close

Note: Cosine(X, Y) = (X . Y)/(IIXII . IIYII)

- Jaccard works better when the matrix is binary
- Cosine works better when ratings are normalized
- Many other options
 - Pearson correlation
 - Kullback–Leibler divergence
 - Metric learning https://en.wikipedia.org/wiki/
 Similarity learning

2) Predicting Ratings

- Let r_w be the vector of user w's ratings
- Let N' be the subset of N where all n in N' rated item i
- The predicted rating r_{xi} (shorthand for u(x, i)) is

$$r_{xi} = \frac{1}{k} \sum_{y \in N'} r_{yi}$$
 Shorthand: $r_{xi} = \frac{\sum_{y \in N'} s_{xy} \cdot r_{yi}}{\sum_{y \in N'} s_{xy}}$

What if we focus on the items instead?

- So far: User-user collaborative filtering
 - Similarity computed between users
- Another view: Item-item collaborative filtering
 - For item i, find set N of similar items
 - Predict rating for item *i* based on ratings for items in *N*
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N'(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N'(i;x)} S_{ij}}$$

 s_{ij} - similarity of items i and j r_{xj} rating of user u on item j N'(i;x) - set of items rated by xsimilar to i (subset of N)

							users						
	12	11	10	9	8	7	6	5	4	3	2	1	
		4		5			5			3		1	1
	3	1	2			4			4	5			2
movies		5	3	4		3		2	1		4	2	3
m		2			4			5		4	2		4
	5	2					2	4	3	4			5
		4			2			3		3		1	6

- unknown rating

- rating between 1 to 5

							users	}					
	12	11	10	9	8	7	6	5	4	3	2	1	
		4		5			5	?		3		1	1
	3	1	2			4			4	5			2
movies		5	3	4		3		2	1		4	2	3
m		2			4			5		4	2		4
	5	2					2	4	3	4			5
		4			2			3		3		1	6

- predict rating of movie 1 by user 5

							users	•						
	12	11	10	9	8	7	6	5	4	3	2	1		sim(1,m)
		4		5			5	?		3		1	1	1.00
	3	1	2			4			4	5			2	-0.18
movies		5	3	4		3		2	1		4	2	<u>3</u>	0.41
Ĕ		2			4			5		4	2		4	-0.10
	5	2					2	4	3	4			5	-0.31
		4			2			3		3		1	<u>6</u>	0.59

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

							users	3						
	12	11	10	9	8	7	6	5	4	3	2	1		sim(1,m)
		4		5			5	?		3		1	1	1.00
	3	1	2			4			4	5			2	-0.18
movies		5	3	4		3		2	1		4	2	<u>3</u>	0.41
mc		2			4			5		4	2		4	-0.10
	5	2					2	4	3	4			5	-0.31
		4			2			3		3		1	<u>6</u>	0.59

Compute similarity weights:

$$s_{1,3}$$
=0.41, $s_{1,6}$ =0.59

users

12	11	10	9	8	7	6	5	4	3	2	1	
	4		5			5	2.6		3		1	1
3	1	2			4			4	5			2
	5	3	4		3		2	1		4	2	<u>3</u>
	2			4			5		4	2		4
5	2					2	4	3	4			5
	4			2			3		3		1	<u>6</u>

Predict by taking weighted average:

$$r_{1.5} = (0.41^{2} + 0.59^{3}) / (0.41 + 0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Common Practice

So far:

$$r_{xi} = \frac{\sum_{j \in N'(i;x)} S_{ij} r_{xj}}{\sum_{j \in N'(i;x)} S_{ij}}$$

Common practice:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N'(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N'(i;x)} s_{ij}}$$

baseline estimate for r_{xi}

$$b_{xi} = \mu + b_x + b_i$$

 μ = overall mean movie rating b_x = rating deviation of user x = $(avg. rating of user x) - \mu$ b_i = rating deviation of movie i = $(avg. rating for item i) - \mu$

Item-Item versus User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that <u>item-item</u> often works better than user-user
- Why? Items are simpler, users have multiple tastes

Limitations of Collaborative Filtering

Cold Start

- New items have no ratings and new users have no history
 - CR needs enough users in the system to build N

Sparsity

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

First rater

- Cannot recommend an item that has not been previously rated
 - Detrimental to new items or niche items

Popularity bias

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Evaluation

Evaluation

Evaluating Predictions

- Root mean square error (RMSE)
 - $\sqrt{\sum_{xi}(r_{xi}-r_{xi}^*)^2}$ where r_{xi} is the estimated rating and r_{xi}^* is the true one
- Precision at top k (**P@**k)
 - A = {relevant items in test set for user x}
 - e.g., items with ratings 4 and 5
 - B = {k top estimated items in test set for user x}
 - P@ $k = IA \cap BI/IBI$

Evaluating Predictions

- Root mean square error (RMSE)
 - $\sqrt{\sum_{xi}(r_{xi}-r_{xi}^*)^2}$ where r_{xi} is the estimated rating and r_{xi}^* is the true one
- Precision at top k (P@k)
 - A = {relevant items in test set for user x}
 - e.g., items with ratings 4 and 5
 - B = $\{k \text{ top estimated items in test set for user } x\}$
 - $P@k = |A \cap B|/|B|$

Focus on accuracy of recommendations!

Beyond Accuracy

- In the past ~10 years, there has been a growing concern about other aspects of good recommendations
 - Coverage Number of items/users for which the system can make predictions
 - Diversity It is more likely to find a suitable item if the recommended items are diverse, unless the user expressed narrow set of preferences
 - Novelty Recommendations for items that the user did not know about are relevant
 - Scalability Large collections of items in real-life scenarios require algorithmic tradeoffs (e.g., efficiency and accuracy)
 - Co-utility The probability that an item has of being useful is affected by other recommended items
 - Adaptivity Item collections and user interests change over time

Complexity of CF

- Finding the set N of most similar users/items is expensive
 - O(IXI) per user or O(ISI) per item

Too expensive to do at runtime!

- Pre-computation of N is common practice
 - Naïve pre-computation
 - Near-neighbor search in high dimensions (LSH)
 - Parallelization with MapReduce

Naïve pre-computation (item-item)

Input: Set of items *I*, value *k* for *k* most similar items

Output: Sets N of k most similar items for all i in I For item *i* in *l*: $M[i] = \{\}$ For item *i* in *l*: For item j in $I \setminus \{i\}$: $tmp = compute_similarity(i, j)$ if tmp is one of the k top similarities computed so far for i: store j in N[i]

return N

Near-neighbor search (LSH)

Input: Set of items *I*, value *k* for *k* most similar items

Output: Sets N of k most similar items for all i in I

Note I: we abstracted the parameters for the family of hash functions in the LSH here

```
H = Hashtable for items
For item i in I:
compute_LSH(H, i)
```

Note II: Items a and b are in the same bucket in H, with a probability >= p, if dist(a, b) <= r. dist, p and r are parameters

For item i in I:

candidates = {all items in i's bucket in H} \ {i} $N[i] = \{ top \ k most similar items in candidates \}$ return N

Parallelization with MapReduce

Mapper input: Item *i* and a set of items *J*

Note: Items are either rows or columns in a utility matrix

Map function: Compute sim(j, i) for all j in J; keep local set of top similarities $K = \{(j_1, sim(j_1, i)), ..., (j_k, sim(j_k, i))\}$; output tuple (i, K)

Reduce function: For each key i, merge the sets of its local top similarities and generate a global set K_{global} ; output (i, K_{global})

Ethics and recommender systems

- Acquisition of user data has to be transparent
- Privacy of users
 - https://www.wired.com/2009/12/netflix-privacylawsuit/
- Transparency in filtering choices
- Explainability of recommendations

More!

- Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (Eds).
 (2011). Recommender systems handbook. New York: Springer.
- Mahmood, T., Ricci, F. Learning and adaptivity in interactive recommender systems. In: Proceedings of the 9th International Conference on Electronic Commerce, ICEC'07, pp. 75–84. ACM Press, New York, NY, USA (2007)
- Collaborative filtering and hadoop: http://aimotion.blogspot.com/2012/08/introduction-to-recommendations-with.html
- Winning the Netflix Prize: http://blog.echen.me/2011/10/24/
 winning-the-netflix-prize-a-summary/