

- @ Bilan : en A: XA, YA, MA serc: F=-Fg
- h = 3-3×1 = 0 => Isostatique encarrement 1 poulse
- $X_A = 0$ $Y_A F = 0$ $Y_A F = 0$ $Y_A = F$ $Y_A = FL$ $Y_A = FL$
- (2 corpes
- (5) 1 corpe: 0 & s & L

$$|X_A - T = 0|$$

$$|X_A - T = 0|$$

$$|X_A + N = 0$$

2 compe: LES & 2L

$$X_A + N = 0$$

 $Y_A + T = 0$
(à la conpe) $M_A + M + L \times_A - (s-L) \times_A = 0$

Donc
$$N=0$$

$$T=-F$$

$$M=-FL+(s-L)F=F(s-2L)$$

(8) PFS:
$$X_A - F = 0$$
 Donc $X_A = F$

$$Y_A = 0$$

$$(on A) : FI_A + FL = 0$$

$$TI_A = -FL$$

To let compe:
$$0 \le b \le L$$

$$|X_A - T = 0|$$

$$|Y_A + N = 0|$$

$$|(a \mid b \mid compe): |M_A + M + Y_A \cdot b = 0|$$

$$|T = F|$$

$$|N = 0|$$

$$|T = FL - Fb| = F(L-b)$$

- (11) Il suffit d'utiliser le principe de superposition.
- 1 $\frac{1}{X_A}$ T = 0 $\frac{1}{X_A}$ - $\frac{1$

Donc
$$T = X_A = \frac{E}{2}$$

 $N = -Y_A = -\frac{F}{2}$
 $M = -M_A - X_{A-A} = -\frac{E}{2}$

$$\frac{2^{eme}}{|X_A + N| = 0}$$

$$|X_A + N| = 0$$

$$|Y_A + T| = 0$$

$$|(a) la coupe): |Y_A + T| + |X_A - (b-1)Y_A = 0$$

Dence
$$N = -X_A = -\frac{F}{2}$$

 $T = -Y_A = -\frac{F}{2}$
 $M = -M_A - LX_A + (b - L)Y_A = b\frac{F}{2} - LF = \frac{F}{2}(b-2l)(3)$

