Who benefits from Housing Subsidy?

Evidence from

Danila Pankov

Magyar Nemzeti Bank

March 8, 2018

Motivation

Hungarian Expenditures on Housing Grants

- 1. 226 bln HUF in 2018
 - ▶ 1.2% of the budget
 - ▶ 0.7% of GDP
 - but... less than defense expenditures (427 bln HUF)
- 2. Second largest among 35 OECD countries (2015 numbers)
 - ▶ 16 have grant programs
 - ► Australia 1st (0.74%) and 3rd Chile (0.45%)

Introduction

Housing Grants as GPD Share, Selected OECD countries

Introduction

Median Property Prices in Hungary

Micro data from Hungarian Statistical Office (2017Q3)

Introduction

Average Property Prices in Hungary

Micro data from Hungarian Statistical Office (2017Q3)

Motivation

Who benefits from grants?

- 1. buyers or sellers?
- 2. more precisely
 - Buyers
 - First time buyers
 - Households with kids
 - Pensioners
 - **.**..
 - Supply side
 - ► Home Owners
 - Developers
 - **.**..

The answer depends on policy criteria

Housing Grant in Hungary

Family Housing Allowance (CSOK)

- ► from July 2015 to 2020
- supports households with children
 - ► age < 25 + enrolled in school/university
- applies to certain properties
- favors new construction
 - ightharpoonup + VAT reduction in Jan 2016 (27% ightharpoonup 5%)
- other issues
 - policy counts promised (not actual) kids
 - no criminal/tax arrears record
 - up to date with social insurance contributions
 - policy requirements changed several times

Subsidy Size

function of HH size and property characteristics

	New Pro	perties	Old Properties*		
Child	Area	Subsidy, M	Area	Subsidy, M	
		HUF		HUF	
1^{st}	No	0.6	40m ²	0.6	
2^{nd}	No	2.6	50m ²	1.43	
3 rd	Apart.: 60m²	10 -	60m ²	2.2	
$4^{th}+$	House: 90m ²	2 10 -	70m ²	2.75	

^{*}Applies only to used properties priced below 35 M HUF Does CSOK policy have any effect?

Bunching or Regression Discontinuity

CSOK policy kinks:

- 1. 35 M HUF for used houses
- 2. $40m^2$, $50m^2$, $60m^2$, $70m^2$ area for used houses/apartments
- 3. $60m^2$ area for new apartments
- 4. $90m^2$ area for new houses

allow for either regression discontinuity design (RDD) or bunching.

RDD

Consider $50m^2$ area restriction for used properties:

$$\max(\mathsf{CSOK}_h) = \begin{cases} 1.43 \ \mathsf{M} \ \mathsf{HUF}, & \text{if area} = 49m^2 \\ 2.2 \ \mathsf{M} \ \mathsf{HUF}, & \text{if area} = 50m^2 \end{cases} \tag{1}$$

Proposition 1

If sellers appropriate part of CSOK, they should increase prices for $50m^2$ apartments relatively more than for $49m^2$ after CSOK implementation.

Bunching

Consider 35 M HUF restriction for used properties:

$$\max(\mathsf{CSOK}_h) = \begin{cases} 2.75 \text{ M HUF}, & \text{if price} = 34.9 \text{M HUF} \\ 0 \text{ M HUF}, & \text{if area} = 35 \text{M HUF} \end{cases} \tag{2}$$

Proposition 2

If CSOK is effective, we should observe substantially more properties purchased below the kink.

Empirical Strategy 000

Accounts for 1st endogeneity concern:

► State tax policy responds to price levels

but creates another one:

- Incentives for bunching
 - Example: NYC exemption
 - ▶ Retail price: $$110 \rightarrow \text{consumer price: } 119
 - ightharpoonup Retail price: \$109.99 ightharpoonup consumer price: \$109.99
 - Solution instrument from taxable income elasticity literature

Empirical Strategy - Instrument

Instrument: would-be tax rate applied to predicted item price p_{im} :

$$p_{im} = \alpha + \gamma_{\text{category}} + \gamma_{\text{region}} + \mu_m + season_{im} + \epsilon_{im}$$

- Prediction sample: treatment states before 2000 and control states
- ► Category example: men's sweaters and vests

Back to return.

Robustness Checks

 R^2

No. of Items

This result is true for most subsamples: Dependent Variable: Logarithm of Pre-tax Price (1)(2)(3)(4) < 2008 > 2008 Tax↓ Tax↑ Tax Rate -0.070*0.060 -0.0030.074 (0.037)(0.167)(0.086)(0.057)F-statistic Sales Tax 0.634 0.366 0.467 0.571 Holiday (0.630)(3.18)(0.967)(0.293)Item and month fixed effects are in all columns No. of Obs. 367,192 122,487 188,051 88,936

0.057

24,350

*** p<0.01, ** p<0.05, * p<0.1

0.069

34,466

0.067

63,995

0.082

16,916

Robustness Checks 2

Except for some apparel groups for which demand is presumably more elastic:							
Dependent Variable: Logarithm of Pre-tax Price							
	(1)	(2)	(3)	(4)			
	Men	Women	Non-	Seasonal			
			Seasonal				
Tax Rate	- 0.04 (0.077)	0.01 (0.124)	- 0.21*** (0.050)	0.00 (0.077)			
F-statistic							
Sales Tax	-0.729	-0.36	-0.302	-0.254			
Holiday	(1.92)	(0.551)	(0.891)	(1.10)			
Item and month fixed effects are in all columns							
No. of Obs.	141,911	164,016	184,579	324,193			
R^2	0.036	0.121	0.010	0.075			
No. of Items	11,780	27,306	15,466	7,651			
*** p<0.01, ** p<0.05, * p<0.1							

Back to return.

- ► Tax incidence (Empirics)
 - Apparel market: Besley and Rosen, 1999; Poterba, 1996
 - Other markets: Kosonen, 2015; DeCicca et al., 2013; Kopczuk et al., 2013; Harding et al., 2012; Doyle and Samphantharak, 2008
- Tax incidence (Theory)
 - Fabinger and Weyl, 2014; Anderson et al., 2001
- Elasticity of apparel expenditures:
 - Einav et al., 2014; Hu and Tang, 2014; Agarwal et al., 2013
- Sales tax and employment:
 - Burnes et al., 2013; Rohlin and Thompson, 2012; Billings, 2009; O'Keefe, 2004