Verificar que la siguiente función es diferenciable en todo punto del dominio indicado y encontrar la expresión del diferencial en un punto arbitrario:

$$f(x,y) = \frac{x}{y} + \frac{y}{x}$$
 en $W = \{(x,y) \in \mathbb{R}^2 / x \neq 0, y \neq 0\}$

Lo primero que debemos hacer en este tipo de ejercicios es verificar que la función es diferenciable en todo punto del dominio que en este caso son todos los puntos de \mathbb{R}^2 donde ni x ni y se anulen.

Para eso vamos a hacer uso del teorema que dice:

Sea
$$f: A \subset \mathbb{R}^n \to \mathbb{R}$$
, sea $p \in A$

Si todas las derivadas parciales de una función está definidas y son continuas en un entorno de p incluido en A, entonces f es diferenciable en p.

Cálculo de las derivadas parciales de f

$$f_x(x,y) = \frac{y}{y^2} - \frac{y}{x^2} = \frac{1}{y} - \frac{y}{x^2}$$

$$f_y(x,y) = \frac{-x}{y^2} + \frac{x}{x^2} = \frac{1}{x} - \frac{x}{y^2}$$

Nótese que podemos decir que $\frac{y}{y^2} = \frac{1}{y}$ porque sabemos que y no vale cero. Lo mismo pasa en la segunda derivada, pero con la variable x que tampoco vale cero.

Ambas derivadas parciales tienen discontinuidades solamente en los puntos donde $x \circ y$ valen cero, pero esos puntos no forman parte del dominio de la función, por lo tanto ambas derivadas parciales son continuas en todo el dominio de f.

Luego, f es diferenciable en todo el dominio de la función.

Cálculo de la expresión del diferencial en un punto arbitrario

Para una función de dos variables, la expresión del diferencial es la siguiente:

$$df = f_x(x, y) \triangle x + f_y(x, y) \triangle y$$

Entonces en el caso de la función f de este ejercicio tenemos que la expresión del diferencial en un punto arbitrario (x_0,y_0) es:

$$df = \left(\frac{1}{y_0} - \frac{y_0}{{x_0}^2}\right) \triangle x + \left(\frac{1}{x_0} - \frac{x_0}{{y_0}^2}\right) \triangle y$$