Physik des Universums

Kapitel 6: Strahlung und Materie

Monochromatische Strahlung

$$v\lambda = c$$

$$\omega = 2\pi \nu$$

$$k = \frac{2\pi}{\lambda}$$

Intensität:
$$I = \epsilon_0 c \langle |\vec{E} \times \vec{B}| \rangle = \frac{1}{2} \epsilon_0 c \langle |\vec{E}^2| \rangle$$

• Teilchenbild - Photon:

Photonen-Energie

$$E = h \nu = h \frac{c}{\lambda}$$
 Photonen-
Impuls

$$p = \frac{h\nu}{c} = h\,\frac{c}{\lambda}$$

Intensität:
$$I = \langle f_{\rm photon} \rangle \, h \nu$$
Photonenstrom

Polychromatische Strahlung

 Energiestrom in eine Richtung = (Raumwinkel-Intervall)

Spezifische Intensität

$$I_{\nu}(\vec{r}, \hat{s}, t) := \frac{\mathrm{d}E}{\mathrm{d}t \, \mathrm{d}A \, \mathrm{d}\Omega \, \mathrm{d}\nu}$$
$$I_{\lambda}(\vec{r}, \hat{s}, t) := \frac{\mathrm{d}E}{\mathrm{d}t \, \mathrm{d}A \, \mathrm{d}\Omega \, \mathrm{d}\lambda}$$

Einheit:
$$\left[\frac{W}{m^2 \text{ sr Hz}}\right]$$
 bzw. $\left[\frac{W}{m^2 \text{ sr nm}}\right]$

Umrechnung von Frequenzdichte zu Wellenlängendichte:

$$v = c/\lambda \rightarrow \frac{\mathrm{d}v}{\mathrm{d}\lambda} = \frac{-c}{\lambda^2}$$
 $I_v \,\mathrm{d}v = I_\lambda \,\mathrm{d}\lambda \rightarrow I_v = I_\lambda \,\frac{\lambda^2}{c}$

Energiestrom durch Fläche:

Strahlungsflussdichte

$$F_{\lambda}(\vec{r},t) := \int_{4\pi} I_{\lambda}(\vec{r},\hat{s},t) \, \hat{s} \cdot \hat{n} \, d\Omega := \frac{dE}{dt \, dA \, d\lambda}$$

Einheit:
$$\left[\frac{W}{m^2 nm}\right]$$

Für die Flussdichte gilt das quadratische Abstandsgesetz von der Quelle

$$F(r) \propto r^{-2}$$

Materie Teilchenenergien im thermodynamischen Gleichgewicht

Wahrscheinlichkeitsdichte für Teilchenengie E:

$$f(E) = \rho(E) \cdot e^{\frac{-E}{kT}}$$

Bewegung freier Gasteilchen

(3 Freiheitsgrade):
$$\vec{v} = (v_x, v_y, v_z)$$

$$p(\mathbf{v}) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} \mathbf{v}^2 e^{\frac{-m\mathbf{v}^2}{2kT}}$$

Maxwell - Boltzmann Verteilung

Erwartungswert der Teilchenenergie: $\langle E \rangle = \frac{1}{2}m \langle \mathbf{v}^2 \rangle = \frac{3}{2}kT$

$$T = 10 \text{ K}, 100 \text{ K}, 1000 \text{ K}, 6000 \text{ K}, 10^4 \text{ K}, 10^5 \text{ K},$$
 $E \approx kT 0.0013 \text{ eV}, 0.013 \text{ eV}, 0.13 \text{ eV}, 0.78 \text{ eV}, 1.3 \text{ eV}, 13 \text{ eV}$

Schwarzkörper-Strahlung

Temperatur T

Jede mögliche Schwingungsmode ist ein Freiheitsgrad

klassisch:

Wahrscheinlichkeit, dass ein Oszillator die Energie E hat:

$$P(E) \propto \frac{\exp(-E/kT)}{\int_0^\infty \exp(-E'/kT) dE'}$$
$$\langle E \rangle = \frac{1}{2} kT$$

spektrale Energiedichte:

$$W_{\nu} = \rho_{\nu} \langle E \rangle \propto \nu^2 kT$$

 $w_{E,\lambda}$ in Einheiten von [2(kT)⁵/(h⁴c³)]

Quantenmechanik:

nur ganzzahlige Vielfache der Mindestenergie $h\nu$ sind erlaubt

$$P(E) \propto \frac{\exp(-n \, h \, \nu/kT)}{\sum_{n'=0}^{\infty} \exp(-n' \, h \, \nu/kT)}$$
$$\langle E \rangle = \frac{h \, \nu}{\exp(h \, \nu/kT) - 1}$$

$$W_{\nu} = \rho_{\nu} \langle E \rangle \propto \frac{h \nu^3}{\exp(h \nu / kT) - 1}$$

 $E = n \cdot h \nu$

Schwarzkörperstrahlung

$$B_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{h\nu/kT} - 1}$$

$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$$

Schwarzkörperstrahlung: Grenzfälle

$$B_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{h\nu/kT} - 1}$$

$$\frac{h\nu}{kT} \gg 1 \rightarrow e^{h\nu/kT} \gg 1$$

$$\rightarrow B_{\nu}(T) = \frac{2\nu^{3}}{c^{2}} e^{\frac{-h\nu}{kT}}$$

$$\frac{h\nu}{kT} \ll 1 \rightarrow e^{h\nu/kT} \approx 1 + \frac{h\nu}{kT}$$

$$\rightarrow B_{\nu}(T) = \frac{2\nu^2}{c^2} kT$$

Rayleigh-Jeans Näherung

Wiensches Verschiebungsgesetz:

$$\lambda_{\text{max}} \cdot T = 2.90 \cdot 10^{-3} [\text{m K}]$$

Farbe der Schwarzkörperstrahlung in Abhängigkeit von der Temperatur:

Sternspektren ≈ Schwarzkörper-Spektrum

Abstrahlung pro Oberflächenelement:

$$\pi B(T) = \int_{0}^{\infty} B_{\nu}(T) d\nu = \frac{2\pi^{2} k^{4}}{15 c^{2} h^{3}} T^{4} = \sigma_{SB} T^{4}$$

Integration über die gesamte Oberfläche liefert die Leuchtkraft des Sterns:

Stefan-Boltzmann Gesetz

$$L_* = 4\pi R_*^2 \sigma_{\rm SB} T_*^4$$

weitere Beispiele für Schwarzkörper

Röntgendoppelstern

kosmischer Mikrowellenhintergrund

Anwendung 1:

Wie kalt ist es im Weltall?

Annahmen:

Sonne und bestrahltes Objekt verhalten sich wie perfekte Schwarzkörper

→ vollständige Absorption des Sonnenlichts durch Objekt im Abstand D

Vom Objekt empfangene Energie:
$$\left(\frac{dE}{dt}\right)_{+} = \pi R^2 \int_{0}^{\infty} F_{\nu} d\nu = \pi R^2 \frac{L_{\odot}}{4\pi D^2}$$

Vom Objekt abgestrahlte Energie: $\left(\frac{dE}{dt}\right)_{-} = 4\pi R^2 \int_{0}^{\infty} B_{\nu}(T) d\nu = 4\pi R^2 \sigma_{\rm SB} T^4$

Gleichgewicht:
$$\left(\frac{dE}{dt}\right)_{-} = \left(\frac{dE}{dt}\right)_{+} \longrightarrow T_{\rm GG} = \left(\frac{L_{\odot}}{16\pi\,D^2\,\sigma_{\rm SB}}\right)^{1/4}$$

Für
$$D = 1 \text{ AU}$$
: $T_{GG} = 279 \text{ K } (6^{\circ} \text{ C})$

Anwendung 2:

Änderung der Magnitude (=scheinbare Helligkeit) eines Stern mit der Entfernung

Definition der Magnitude:

$$m = -2.5 \log \left(\frac{F}{F_0} \right)$$

m: Magnitude des Sterns aus Entfernung r

M: Magnitude des Sterns aus Entfernung R

$$m-M = -2.5 \log \left(\frac{F(r)}{F(R)}\right) = -2.5 \log \left(\frac{R^2}{r^2}\right) = 5 \log(r) - 5 \log(R)$$

$$F(r) \propto r^{-2}$$

Für *Einheitsentfernung* $R \equiv 10$ pc:

$$D.M. := m - M$$

Entfernungsmodul

D.M. =
$$5 \text{ mag} \leftrightarrow R = 100 \text{ pc}$$

D.M. = $10 \text{ mag} \leftrightarrow R = 1000 \text{ pc}$
D.M. = $15 \text{ mag} \leftrightarrow R = 10 000 \text{ pc}$

$$m - M = 5 \log(r) - 5 = 5 \log\left(\frac{r}{10 \,\mathrm{pc}}\right)$$

absolute Magnitude M

= scheinbare Helligkeit,wenn der Stern 10 pc entfernt wäre

$$m - M = 5 \log(r) - 5$$

Beispiele für scheinbare (*m*) und absolute (*M*) Magnituden im visuellen (=V) Band:

	m_{V} [mag]	<i>r</i> [pc]	$M_{\rm V}$ [mag]
Sonne:	-26.75	$4.85 \cdot 10^{-6}$	4.82
Sirius :	-1.47	2.7	1.40
β Ori:	0.08	265	-6.70

Absolute Magnitude ist ein Maß für die *Leuchtkraft* eines Sterns.

Hertzsprung-Russell diagram

Farbtemperatur

Emission und Absorption von Licht durch Atome und Moleküle

Wasserstoff Atom – Energieniveaus

$$E_n = -\frac{e^2 Z^2}{2 a_0 n^2}$$

Anregung aus dem Grundzustand durch Stöße erfordert

$$E_{1-2} = 10.2 \text{ eV}$$

$$Da \langle E \rangle = \frac{3}{2}kT$$

$$\rightarrow T \sim 79000 \text{ K}$$

In kühlem Gas
(T < 10 000 K)
befinden sich fast alle
Atome im Grundzustand

Entstehung von Spektrallinien

• Absorptionsspektrum der Sonnenatmosphäre

• *Emissionsspektrum* von bestrahlten Gasnebeln

Die 21 cm Linie des atomaren Wasserstoffs

Hyperfein-Struktur

Energiedifferenz = $6 \cdot 10^{-6} \text{ eV}$ $\triangleq T = 0.07 \text{ K}$

Energiezustände von Molekülen

1.) Elektronische Übergänge

 $\Delta E \sim einige eV$

 $T > 10^4 \text{ K}$ optisch/UV

2.) Vibrations Übergänge

Quantenzahl: v

 $\Delta E \le 1 \text{ eV}$

 $T \ge 100-1000 \text{ K}$ infrarot

3.) Rotations Übergänge

Quantenzahl: J

 $\Delta E \le 0.1 \text{ eV}$

 $T \ge 5 K$ sub-mm

Beispiel: CO

 $n(CO) \sim 10^{-4} n(H_2)$

12 C

Rotations-Übergänge:

$$J=1\to 0$$

$$\lambda = 2.6007 \text{ mm}, T_{\text{excitation}} \sim 5.5 \text{ K}$$

$$J = 2 \rightarrow 1$$

$$\lambda = 1.3004 \text{ mm}, T_{\text{excitation}} \sim 16 \text{ K}$$

$$J = 3 \rightarrow 2$$

$$\lambda = 0.8669 \text{ mm}, T_{\text{excitation}} \sim 22 \text{ K}$$

. . .

"Molekülwolken"

Vibrations-Rotations Übergänge

CO:

Durchlässigkeit der Erdatmosphäre

Atmosphäre ist für Infrarotstrahlung weitgehend undurchlässig

→ Thermische Emission der Erdoberfläche kann nur zum Teil abgestrahlt werden

→ Treibhauseffekt

Atmosphäre und Treibhauseffekt

1. Unterschied zum Modell des perfekten Schwarzkörpers:

Ein Bruchteil A (= Bond-Albedo) der einfallenden Sonnenstrahlung

wird wieder zurück in den Weltraum reflektiert Erde: A = 0.30

Strahlungs-Gleichgewicht: $(1-A) \pi R_{\rm pl}^2 F_* = 4 \pi R_{\rm pl}^2 \sigma_{\rm SB} T_{\rm GG}^4$

$$T_{GG} = \left[\frac{1-A}{4} \frac{F_*}{\sigma_{SB}}\right]^{1/4}$$

Gleichgewichts-Temperatur der Erde:

$$T_{GG} = 255 \text{ K} = -18^{\circ} \text{C}$$

Tatsächliche mittlere Oberflächentemperatur: $T_s = 288 \text{ K} = +15^{\circ}\text{C}$, $\Delta T = +33 \text{ K}$

Differenz durch Treibhaus-Effekt

2. Unterschied zum Modell des perfekten Schwarzkörpers:

Absorption in der Erdatmosphäre behindert thermische Abstrahlung der Erdoberfläche

Die wichtigsten Treibhausgase: H₂O und CO₂

Derzeitige Erdatmosphäre (5.2 ·10¹⁸ kg):

- Wasserdampf $(1.3 \cdot 10^{16} \text{ kg}, 0.25\%_{\text{m}}, \sim 0.4\%_{\text{Vol}}$, Wassersäule $\sim 2.5 \text{ cm}$) verursacht $\sim 70\%$ des Treibhaus-Effekts ($\sim +23 \text{ K}$ von +33 K),
- **CO₂** (400 ppm) verursacht ~ **20**%

Absorptionskoeffizient von Wasser

Optische Eigenschaften von $\mathbf{CO_2}$:

lineares Molekül → kein perm. Dipolmoment

→ schwaches Rotationsspektrum

Asymmetrische Vibrations-Moden (v_2, v_3) erzeugen (temporäres) Dipolmoment

Erhöhung der CO₂ Konzentration führt zu verstärkter Absorption der thermischen IR Strahlung in der Atmosphäre

Effekt ist nicht-linear (~ logarithmisch)

IPCC: "Equlibrium Climate Sensitivity"

$$\Delta T_{2 \times CO_{2}} \simeq 3 \text{ K} [1.5 \dots 4.5] \text{ K}$$

Verdoppelung der CO_2 Konzentration führt zu ~ 3 K Temperaturanstieg

Gemessener CO_2 Anstieg zwischen 1750 und 2011: 278 \rightarrow 390 ppm

→
$$\Delta T_{CO2} \approx 1.4 \text{ K} [0.7 ... 2.1] \text{ K}$$

Gemessene Erhöhung der Globalen Temperatur 1880 – 2011:

$$\Delta T_{\text{global}} \approx 0.85 \text{ K} [0.65 \dots 1.06] \text{ K}$$

(IPCC, AR5, Technical Summary, S. 37)

1000

Jahr

1500

2000

500

Zu möglichen zukünftigen Konsequenzen der gegegwärtigen Erwärmung siehe IPCC Report: www.ipcc.ch

Temperaturentwicklung im gegenwärtigen (=Känozoischem) Eiszeitalter

Momentan: Wechsel zwischen

- langen (~ 100 000 Jahre) Kaltzeiten ("Eiszeit")
- kurzen (~ 10 000 Jahre) Warmzeiten.

Gegenwärtige Warmzeit (Holozän) dauert bereits ca. 12 000 Jahre.

"Kleine Eiszeit" (ca. 1600 – 1850):

Prä-Industrieller CO₂ Gehalt (~270 ppm) war vermutlich gerade hoch genug, um den Übergang in eine "richtige" Eiszeit zu verhindern.

In ~ 15 000 Jahren: deutliche Abkühlung

 \rightarrow

Glaziales Maximum ("Eiszeit") falls CO₂ Gehalt < 350 ppm wäre

inarable land

Tundra

In \sim 50 000 Jahren Glaziales Maximum (falls CO_2 < 600 ppm)

Figure 4 | The next glacial inception. The top panel shows the temporal evolution of the maximum summer insolation at 65° N. The middle panel shows the simulated CO₂ concentration during the next 100,000 years for different cumulative CO₂ emission scenarios: 0 Gt C anthropogenic

→ Ende der Zivilisation in Nord-Europa, Kanada / Nord-USA, ...