FE Math Review

Tuesday, September 30, 2025 8:01 PM

Geometry 1 Trigonometry

Straight line

general form: Ax + By + C = 0

standard form: y = mx + bt slope -intecept form

point-slope form: $y - y_1 = m(x - x_1)$

slope for a straight line pawing 2 points:

Two lines are perpendicular if m. = - m.

Straight line example:

A line goes through the point (4, -6) and is perpendicular to the line y = 4x + 10. What is the equation of the line?

(A)
$$y = mx - 20$$

(C)
$$y = \frac{1}{5}x + 5$$

(D)
$$y = \frac{1}{4} + 5$$

$$\rightarrow m_2 = -\frac{1}{4}$$

$$(x_1,y_1) \Rightarrow (4,-6)$$

$$y-(-6) = -\frac{1}{4}(x-4)$$

Trigonometry

Right Triangle

Right Triangle

Sin
$$\theta = y/r$$

hypotenuse

g side

tan $\theta = y/x$

ref a side

The descent adjacent side

Identities manual by 38

e.g. tan $\theta = \sin \theta/\cos \theta$

Sin $\theta + \cos^2 \theta = 1$

General Triangle

 $\frac{\alpha}{\alpha} = \frac{\beta}{\alpha} = \frac{\alpha}{\alpha}$

Trigonometry example:

The vertical angle to the top of a flagpole from point A on the ground is observed to be 37°11′. The observer walks 17 m directly away from point A and the flagpole to point B and finds the new angle to be 25°43′. What is the approximate height of the flagpole?

(C) 82 m

(D) 300 m

then Triangle ALD:

Calculus

Derivatives

Lo slope at point x of a continus function f(x)

Lo written f'(x), df(x)

local maximum

$$f'(a) = 0 \rightarrow slope = 0$$
 at a

L $f''(a) > 0 \rightarrow concave$ up

 $f''(a) < 0 \rightarrow concave$ down

Manual pg 48 derivative table

if
$$f''(a) = 0 \rightarrow inflection point$$

Partial Derivative

tunction of 2 independent variables Z = f(x,y) $\frac{\partial Z}{\partial x} = \frac{\partial f(x,y)}{\partial x}$ Assume the other variable (y)

is constant.

Derivative example

1. What is the maximum value of the following function on the

1. What is the maximum value of the following function on the interval $x \le 0$?

$$y = 2x^3 + 12x^2 - 30x + 10$$

$$y' = 6x^2 + 24x - 30$$

(A) -210

let
$$y' = 0$$

solve $x_1 = 1, x_2 = -5$

$$y''(-5) = -51 < 0 + \sqrt{2}$$

 $y''(1) = 36 > 0 \times$

1. If
$$f(x,y) = x^2y^3 + xy^4 + sinx + cos^2 x + sin^3 y$$
, what is $\partial f/\partial x$?

(A)
$$(2x + y)y^3 + 3\sin^2 y \cos y$$

(B)
$$(4x - 3y^2)xy^2 + 3\sin^2 y \cos y$$

$$(C)(3x + 4y^2)xy + 3sin^2y \cos y$$

$$\frac{(3x + y)y^3 + (1 - 2\sin x)\cos x}{3x} = 2xy^3 + y^3 + \cos x + 2\cos x (-\sin x) + 0$$

$$= (2x + y)y^3 + (1 - 2\sin x)\cos x$$

Integration

- Inverse operation of differentiation, when f'(x) = h(x)definite integrals -> indespendent variable range is $\int_{a}^{b} h(x) dx = f(b) - f(a)$ specified

in definite integrals:

$$\int h(x) dx = f(x) + C$$

Integration table \$ 49

Integration table \$ 44

Integral Example

1. Determine the following indefinite integral.

$$\int \frac{x^3 + x + 4}{x^2} dx = \int x + x^{-1} + 4x^{-2} dx$$

$$= \int \frac{x}{4} + \ln|x| - \frac{4}{x} + C = \frac{1}{2}x^2 + (n/x) + (-1)(4)x^{-1} + C$$

(B)
$$-\frac{x}{2} + \log(x) - 8x + C$$

(C)
$$\frac{x^2}{2} + \ln|x| - \frac{2}{x^2} + C$$

$$(D)\frac{x^2}{2} + \ln|x| - \frac{4}{x} + C$$

1. What is the approximate total area bounded by $y = \sin x$ and y = 0 over the interval $0 \le x \le 2\pi$? (x = 0 is in radians)

(A) 0
(B)
$$\pi/2$$
(C) 2

(D) 4

$$= 2 \int_{0}^{\pi} \sin x \, dx + \int_{\pi}^{2\pi} - \sin x \, dx$$

$$= -2 \cos x \int_{0}^{\pi}$$

$$= -2 (-1 - 1) = 4$$

Vector Operations

La has magnitude I direction

$$\vec{A} = \vec{a} \times \vec{i} + \vec{a} \times \vec{j} + \vec{a} \times \vec{k} = \begin{pmatrix} \vec{a} \times \\ \vec{a} \times \\ \vec{a} \times \\ \vec{a} \times \vec{k} \end{pmatrix}$$

Addition I subtration:

'az J

Addition 1 subtration:

$$\vec{A} + \vec{B} = (G_x + b_x)\vec{i} + (G_y + b_y)\vec{j} + (G_z + b_z)\vec{k}$$

$$= \begin{pmatrix} G_x + b_x \\ G_y + b_y \\ G_z + b_z \end{pmatrix}$$

$$\vec{A} - \vec{B} = (G_x - b_x)\vec{i} + (G_y - b_y)\vec{j} + (G_z - b_z)\vec{k}$$

Dot product .

(ross product:
$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \vec{A} \times \vec{B} & \vec{A} \times \vec{B} = \begin{vmatrix} \vec{a} & \vec{a} & \vec{a} \\ \vec{b}_{x} & \vec{b}_{y} & \vec{b}_{z} \end{vmatrix} = |\vec{A}||\vec{B}||\vec{n}||\vec{s}||\vec{n}||\vec{b}||$$

The sector $\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \vec{b}_{x} & \vec{b}_{y} & \vec{b}_{z} \end{vmatrix}$ unit vector $\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \vec{b}_{x} & \vec{b}_{y} & \vec{b}_{z} \end{vmatrix}$ unit vector $\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \vec{b}_{x} & \vec{b}_{y} & \vec{b}_{z} \end{vmatrix}$ of $\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \vec{b}_{x} & \vec{b}_{y} & \vec{b}_{z} \end{vmatrix}$ unit vector $\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \vec{b}_{x} & \vec{b}_{y} & \vec{b}_{z} \end{vmatrix}$

Vector example

1. Given vectors A, B, and C, what is the value of $(A + B) \cdot (B + C)$ **C**)?

$$\frac{C)?}{A = 8i + 2j + 2k} \qquad A + B = \begin{pmatrix} 12 \\ 4 \\ 6 \end{pmatrix}$$

$$B = 4i + 2j + 4k$$

$$B + C = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\mathbf{C} = 6\mathbf{i} + 8\mathbf{j} + 10\mathbf{k}$$

- C) 132 BY 244
 - 1. What is the angle between the two vectors A and B?

1. What is the angle between the two vectors A

$$\mathbf{A} = 4\mathbf{i} + 12\mathbf{j} + 6\mathbf{k}$$

and
$$B$$
?
$$A = 4i + 12j + 6k$$

$$B = 24i - 8j + 6k$$

$$\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| \cdot |\vec{B}|} = \frac{36}{14 \times 26} = 0.0989$$

$$\mathbf{B} = 24\mathbf{i} - 8\mathbf{j} + 6\mathbf{k}$$

$$B = 24i - 8j + 6k$$

$$A \cdot B = 4 \times 24 - 12 \times 8 + 6 \times 6 = 36$$

$$B = \cos^{-1}(0.3184)$$

(B)
$$84.32^{\circ}$$

(C) 101.20°
(D) 122.36°
(E) 132.36°
(D) 122.36°
(E) $131 = \sqrt{24^{2} + 5^{2} + 5^{2}} = 26$

(C)
$$101.20^{\circ}$$

(D) 122.36° $|\vec{B}| = \sqrt{24^{\circ} + 6^{\circ} + 6^{\circ}} = 26$