Soluções de Problemas "Avulsos"

Pedro Henrique Antunes de Oliveira

Sumário

1	Livros e Legenda	5
2	Elinho10ed2p - C10 - Teorema 7	6
	2.1 Comentários	6
3	Elinho10ed2p - C10S2E3	10
	3.1 Resolução	11
	3.2 Resolução Alternativa	12
4	Elinho10ed2p - C11S1E8	15
	4.1 Resolução	15
5	Elão - C9E8	17
	5.1 Resolução	18
6	Elão - C9E14a	19
	6.1 Resolução	19
7	Elão - C9E20	27
	7.1 Resolução	27
8	Elão - C9E21, C9E22	29
	8.1 Resolução	30
9	Elão - C9E38	32
	9.1 Resolução	32
10	Elão - C9E40	33
	10.1 Resolução	33
11	Elão - C9E43	34
	11.1 Resolução	34

12	Elão - C9E44	34
	12.1 Resolução	35
13	Rudin1 - C7E12	35
	13.1 Resolução	35
14	Rudin1 - C7E13	37
	14.1 Resolução	37
15	Rudin1 - C7E15	40
	15.1 Resolução	41
16	Rudin - C7E25	41
	16.1 Resolução	42
17	Elinho2_4ed - C2S4E1	45
	17.1 Resolução	45
18	Elão - C10E13	47
	18.1 Resolução	47
19	Elão - C10E24	48
	19.1 Resolução	48
20	Elão - C10E42	50
	20.1 Resolução	50
21	Elão - C10E45	51
22	Resolução	51
23	Elão - C10E48	52
24	Resolução	52

25	Elão - C10E50	53
	25.1 Resolução	54
26	Elão - C10E51	54
	26.1 Resolução	55
27	Elão - C10E52	55
28	Resolução	56
29	Elão - C10E53	56
	29.1 Resolução	56

1 Livros e Legenda

Quando ver **<LIVRO> - C<X>S<Y>E<Z>**, estamos falando do exercício Z do livro LIVRO no capítulo X e na seção Y. Por exemplo, "Elinho10ed2p - C10S2E3" é o exercício 3, da seção 2, do capítulo 10 do livro cujo código é Elinho10ed2p.

- Elinho10ed2p Análise Real, Volume 1, Funções de uma variável, Elon Lages Lima, décima edição, segunda impressão.
- 2. Elão Um Curso de Análise, Volume 1, décima quarta edição.
- 3. **Rudin1** Principles of Mathematical Analysis (3rd edition), Walter Rudin.
- 4. **Elinho2_4ed** Análise Real, Volume 2, Funções de n Variáveis, Elon Lages Lima, quarta edição.

2 Elinho10ed2p - C10 - Teorema 7

Teorema 7. Se o conjunto D dos pontos de descontinuidade de uma função limitada $f : [a, b] \to \mathbb{R}$ tem medida nula, então f é integrável.

2.1 Comentários

Observação 2.1.1. O que faremos aqui é dar certas observações sobre a prova dada no livro.

Primeiro é observado que [a,b] é coberto por $I_1 \cup I_2 \cup ... \cup I_m \cup J_{x_1} \cup J_{x_2} \cup ... J_{x_n}$ (sendo que estes intervalos possuem certas propriedades deixadas claras no texto). Vale mencionar que a existência dos J_x 's é verdadeira por causa da continuidade de f fora dos I_i 's.

Segundo, é construída uma partição $P = \{t_0 = \alpha < t_1 < t_2 < ... < t_k = b\}$ sendo formada por α , b e pelos extremos que estão em $[\alpha, b]$ dos intervaos I_i 's e J_{x_i} 's, ou seja $P = (\{w_1, w_2, ..., w_m, z_1, z_2, ..., z_m, s_1, s_2, ..., s_n, r_1, r_2, ..., r_n\} \cap [\alpha, b]) \cup \{\alpha, b\}$, sendo que cada $I_i = (z_i, w_i), z_i < w_i$, e cada $J_{x_j} = (r_j, s_j), r_j < s_j$.

A primeira observação central é a seguinte. Se $i \in \{1, 2, ..., k\}$ é tal que $[t_{i-1}, t_i]$ tem pelo menos um ponto em comum com algum dos I_l 's, então segue-se que $[t_{i-1}, t_i] \subset \text{fecho}(I_l)$. De fato, se $i \in \{1, 2, ..., k\}$ e $l \in \{1, 2, ..., m\}$ são tais que existe $x \in [t_{i-1}, t_i] \cap I_l$ (ou seja, $[t_{i-1}, t_i] \cap I_l \neq \emptyset$), então:

- 1. $t_{i-1} < \chi < t_i$.
- 2. $z_{l} < x < w_{l}$.
- 3. Se $z_l \geq \alpha$, então $\alpha \leq z_l < x \leq b$ e logo $z_l \in P$. Assim é necessariamente verdade que $z_l \leq t_{i-1}$ pois não há elementos de P em (t_{i-1}, x) . Caso $z_l < \alpha$, com maior razão $z_l \leq t_{i-1}$. De todo modo $z_l \leq t_{i-1}$.
- 4. Se $w_l \le b$, então $b \ge w_l > x \ge a$ e logo $w_l \in P$. Assim é necessariamente verdade que $w_l \ge t_i$ pois não há elementos de P em (x, t_i) . Caso $w_l > b$, com maior razão $w_l \ge t_i$. De todo modo $w_l \ge t_i$.

Então, concluímos que $z_l \le t_{i-1} \le x \le t_i \le w_l$, ou seja, $[t_{i-1}, t_i] \subset fecho(I_l)$. Com isso, podemos construir um certo conjunto

$$\Lambda = \{i \in \{1, 2, ..., k\} : \exists l \in \{1, 2, ..., m\}, [t_{i-1}, t_i] \cap I_l \neq \emptyset\}.$$

O que acabamos de provar é que para todo $i \in \Lambda$, tem-se $[t_{i-1}, t_i] \subset fecho(I_l)$ para algum $l \in \{1, 2, ..., m\}$.

A segunda principal observação da prova é que se $i \in \{1,2,...,k\} \setminus \Lambda$, ou seja, $i \in \{1,2,...,k\}$ tal que não há $l \in \{1,2,...,m\}$ com $[t_{i-1},t_i] \cap I_l \neq \emptyset$, então existe $j \in \{1,2,...,n\}$ tal que $[t_{i-1},t_i] \subset J_{x_j}$. Isso é feito para se concluir que a oscilação de f em $[t_{i-1},t_i]$ é menor que $\frac{\epsilon}{2(b-a)}$. O que faremos aqui é algo diferente. Argumentaremos de um outro modo (parecido com o que foi feito acima, na verdade, mas não exatamente a mesma coisa) que a oscilação de f em $[t_{i-1},t_i]$ é menor que $\frac{\epsilon}{b-a}$, o que permite concluir a demonstração do teorema do mesmo modo. No final, mostro o motivo de fazer diferente do livro.

Seja então $i \in \{1,2,...,k\} \setminus \Lambda$. temos então t_i fora de qualquer um dos $I_1, I_2,...,I_m$. Logo existe $j \in \{1,2,...,n\}$ com $t_i \in J_{x_j} = (r_j,s_j)$ (t_i está em algum dos m+n intervalos que cobrem [a,b], não estando nos $I_1,I_2,...,I_m$, deve então estar em algum dos $J_{x_1},J_{x_2},...,J_{x_n}$). Como antes, é necessariamente verdade que $r_j \leq t_{i-1}$ pois não há elementos de P em (t_{i-1},t_i) e, sendo $t_i > r_j$, $P \cap (t_{i-1},t_i) = \emptyset$ seria contradizido caso $r_j > t_{i-1}$ (lembrando que r_j é elemento de P caso $r_j \in [a,b]$). Assim $r_j \leq t_{i-1} < t_i < s_j$, o que significa $(t_{i-1},t_i) \subset J_{x_j}$. Por um argumento completamente análogo, existe $j' \in \{1,2,...,n\}$ tal que $[t_{i-1},t_i) \subset J_{x_j}$. Assim, a oscilação $\omega(f;[t_{i-1},t_i])$ de f em $[t_{i-1},t_i]$ tem a seguinte propriedade:

$$\begin{split} \omega(f;[t_{i-1},t_i]) &\leq \omega(f;(t_{i-1},t_i]) + \omega(f;[t_{i-1},t_i)) \\ &\leq \omega(f;J_{x_j}) + \omega(f;J_{x_{j'}}) \\ &< \frac{\epsilon}{2(b-\alpha)} + \frac{\epsilon}{2(b-\alpha)} \\ &= \frac{\epsilon}{b-\alpha} \end{split}$$

Ponha agora $\Gamma = \{1, 2, ..., k\} \setminus \Lambda$. Provamos então o seguinte:

- 1. $\{1, 2, ..., k\} = \Gamma \cup \Lambda$, sendo Λ e Γ conjuntos disjuntos.
- 2. Dado $i \in \Lambda$, existe $l \in \{1, 2, ..., m\}$ tal que $[t_{i-1}, t_i] \subset fecho(I_l)$.
- 3. Dado $i \in \Gamma$, $\omega(f; [t_{i-1}, t_i]) < \frac{\varepsilon}{h-a}$.

Assim:

$$\begin{split} S(f;P) - s(f;P) &= \sum_{i=1}^k \omega(f;[t_{i-1},t_i])(t_i - t_{i-1}) \\ &= \sum_{i \in \Lambda} \omega(f;[t_{i-1},t_i])(t_i - t_{i-1}) + \sum_{i \in \Gamma} \omega(f;[t_{i-1},t_i])(t_i - t_{i-1}) \\ &\leq \sum_{i \in \Lambda} \omega(f;[a,b])(t_i - t_{i-1}) + \sum_{i \in \Gamma} \frac{\epsilon}{b-a}(t_i - t_{i-1}) \\ &\leq \omega(f;[a,b]) \sum_{i \in \Lambda} (t_i - t_{i-1}) + \frac{\epsilon}{b-a}(b-a) \\ &\leq \omega(f;[a,b]) \sum_{i \in \Lambda} (t_i - t_{i-1}) + \epsilon \end{split}$$

Uma última observação antes de fazer a conclusão é que mostramos que para cada $i \in \Lambda$, existe $l \in \{1,2,...,m\}$ tal que $[t_{i-1},t_i] \subset \text{fecho}(I_l)$. Isso implica em $\sum_{i \in \Lambda} (t_i - t_{i-1}) = \sum_{i \in \Lambda} |(t_{i-1},t_i)| \leq \sum_{l=1}^m |I_l| \leq \frac{\epsilon}{2\omega(f;[a,b])} \text{ sendo que a desigualdade}$

$$\sum_{i\in\Lambda}|(t_{i-1},t_i)|\leq\sum_{l=1}^m|I_l|$$

vale pois os intervalos (t_{i-1},t_i) , $i\in\Lambda$, são dois-a-dois disjuntos (perceba que se estivéssemos com os intervalos (t_{i-1},t_i) , $i\in\Lambda$, não necessariamente dois-a-dois disjuntos, a soma $\sum\limits_{i\in\Lambda}|(t_{i-1},t_i)|$ poderia certamente ultrapassar $\sum\limits_{l=1}^m|I_l|$ mesmo sendo verdade que para todo $i\in\Lambda$, existe $l\in\{1,2,...,m\}$ com $[t_{i-1},t_i]\subset$ fecho (I_l)). A outra desigualdade, a saber $\sum\limits_{l=1}^m|I_l|\leq\frac{\epsilon}{2\omega(f;[\alpha,b])}$, vem do modo como os I's foram escolhidos (veja o início da demonstração no livro). Assim, continu-

ando as desigualdades acima:

$$\begin{split} S(f;P) - s(f;P) &\leq \omega(f;[\mathfrak{a},\mathfrak{b}]) \sum_{i \in \Lambda} (t_i - t_{i-1}) + \epsilon \\ &\leq \omega(f;[\mathfrak{a},\mathfrak{b}]) \sum_{i=1}^m |I_i| + \epsilon \\ &\leq \omega(f;[\mathfrak{a},\mathfrak{b}]) \frac{\epsilon}{2\omega(f;[\mathfrak{a},\mathfrak{b}])} + \epsilon \\ &= \frac{3\epsilon}{2} \end{split}$$

Sendo $\varepsilon > 0$ arbitrário, segue-se que f é integrável.

Observação 2.1.2. Foi dito acima que há duas observações principais nesta prova. A primeira foi com relação aos elementos de Λ . A outra foi que se $i \in \{1, 2, ..., k\}$ Λ, ou seja, $i ∈ \{1, 2, ..., k\}$ tal que não há $l ∈ \{1, 2, ..., m\}$ com $[t_{i-1}, t_i] ∩ I_l ≠ \emptyset$, então existe $j \in \{1, 2, ..., n\}$ tal que $[t_{i-1}, t_i] \subset J_{x_i}$. O que provamos de fato foi algo diferente, mas que permitiu a conclusão do teorema do mesmo modo. O que eu quero argumentar aqui é que não acho que seja possível garantir a existência de um tal j como acima. Na argumentação que eu fiz, consegui mostrar coisas como $(t_{i-1},t_i]\subset J_{x_i}$, mas não que $[t_{i-1},t_i]\subset J_{x_i}$. Para mostrar que não é possível fazer isso, considere o seguinte (contra-)exemplo. $f:[0,1] \to \mathbb{R}$ com f(x)=x. O que o Elon faz primeiro é tomar intervalos abertos $\{I_n\}_{n=1}^{\infty}$ que cobrem os pontos de descontinuidade de f e que tem $\sum |I_i| \le \frac{\varepsilon}{2K}$, sendo $K = \omega(f; [0, 1])$. Primeiro que isso é possivelmente problemático pois K pode ser zero, mas este é um erro simples dado que K = 0 se, e somente se, f for uma função constante (você pode assumir que K não foi tomado igual a $\omega(f; [0, 1])$, mas maior que este valor e, daí, a argumentação continua valendo, com maior razão ainda por cima). Perceba que f não tem pontos de descontinuidade, então não importa como escolhemos os I's desde que valha $\sum |I_i| < \frac{\epsilon}{2K}$. Em particular, podemos escolher todos os $I_i = \emptyset$ (é possível também escolher os I_i não vazios – já já falaremos disso). Para cada $x \in [0, 1]$, ponha $J_x = (x - \varepsilon/5, x + \varepsilon/5)$ e, logo, $\omega(f; J_x \cap [0, 1]) \le 2\varepsilon/5 < \varepsilon/2$ (como feito no livro). Assim, a cobertura finita tomada poderia muito bem ser (para um certo ε pequeno – ε pequeno se faz necessário somente para que precisemos de vários dos J_{x_j} 's para cobrir [0,1], mais precisamente, precisamos falar de pelo menos 3 desses) algo como $J_{x_1}=[0,\varepsilon/5)$, $J_{x_2}=(\varepsilon/10,\frac{3}{2}\varepsilon/5)$, o que já cobre $[0,\frac{3}{2}\varepsilon/5)$, e os outros J_{x_j} estando completamente acima de $\varepsilon/5$, ou seja, $J_{x_j}=(z_j,w_j)$ com $z_j>\frac{\varepsilon}{5}$. Neste caso, a partição P teria $t_0=0$, $t_1=\varepsilon/10$, $t_2=\varepsilon/5$ (além dos outros pontos). Um de seus subintervalos é $[t_1,t_2]$, que não possui pontos nos I's já que todo $I_i=\emptyset$. Porém $[t_1,t_2]$ não é subconjunto de nenhum dos J'_{x_j} s pois:

- 1. $[t_1, t_2] = [\varepsilon/10, \varepsilon/5];$
- 2. $J_{x_1} = [0, \varepsilon/5)$ (falta t_2);
- 3. $J_{x_2} = (\varepsilon/10, \frac{3}{2}\varepsilon/5)$ (falta t_1); e
- 4. $J_{x_j} = (z_j, w_j) \text{ com } z_j > \frac{\varepsilon}{5} \text{ para todo } j \ge 3 \text{ (faltam ambos)}$

Note que J_{x_1} tem $[t_1, t_2]$ como subconjunto e J_{x_2} tem $(t_1, t_2]$ como subconjunto. Este é o motivo de ter concluído a prova de modo ligeiramente diferente do que o Elon faz (é claro que talvez tenha cometido algum erro aqui no meio deste contra-exemplo). De todo modo, isso não interfere em quase nada na argumentação. Caso você não queira os I_i 's vazios, não tem problema, basta tomar I_i intervalos abertos cujos pontos estão todos estritamente a frente de $\frac{\varepsilon}{5}$ com uma certa margem de segurança. Desta forma, mesmo se escolher algum dos I_i 's na subcobertura finita para [0, 1], a argumentação acima sobre $[t_1, t_2]$ segue inalterada.

3 Elinho10ed2p - C10S2E3

Q. Seja $f: [a,b] \to \mathbb{R}$ definida pondo f(x) = 0 se x é irracional e f(x) = 1/q se x = p/q é uma fração irredutível e q > 0. (Ponha f(0) = 1 caso $0 \in [a,b]$.) Prove que f é contínua apenas nos pontos irracionais de [a,b], que é integrável e que $\int_a^b f(x) dx = 0$.

3.1 Resolução

Observação 3.1.1. Vamos assumir aqui um intervalo [a, b] não degenerado, ou seja, a < b.

Parte 3.1.1. Seja w irracional em $[\mathfrak{a},\mathfrak{b}]$. Seja $\mathfrak{j}\in\mathbb{N}$. Ponha $I_{\mathfrak{j}}$ a parte inteira de $\mathfrak{j}w$, ou seja, $I_{\mathfrak{j}}\leq\mathfrak{j}w< I_{\mathfrak{j}}+1$, com $I_{\mathfrak{j}}$ inteiro. Como $\mathfrak{j}w$ é irracional, temos $I_{\mathfrak{j}}<\mathfrak{j}w< I_{\mathfrak{j}}+1$ e logo $\frac{I_{\mathfrak{j}}}{\mathfrak{j}}< w<\frac{I_{\mathfrak{j}+1}}{\mathfrak{j}}$. Ponha $d_{\mathfrak{j}}=\min\left\{w-\frac{I_{\mathfrak{j}}}{\mathfrak{j}},\frac{I_{\mathfrak{j}+1}}{\mathfrak{j}}-w\right\}$ Temos $d_{\mathfrak{j}}>0$ e para todo $\mathfrak{p}\in\mathbb{Z}$, tem-se $|w-\mathfrak{p}/\mathfrak{j}|\geq d_{\mathfrak{j}}$. Além disso, para cada N natural, ponha $D_{N}=\min\{d_{1},d_{2},...,d_{N}\}$, que também é positivo. Isso implica que, para todo N natural, \mathfrak{p} inteiro e q natural com $\mathfrak{q}\in\{1,2,...,N\}$, tem-se $\left|w-\frac{\mathfrak{p}}{\mathfrak{q}}\right|\geq D_{N}$.

Seja agora $\varepsilon > 0$. Seja $q_0 \in \mathbb{N}$ tal que $q_0 > \frac{1}{\varepsilon}$. Considere $\delta > 0$ tal que $\delta < D_{q_0}$. Seja $x \in [a,b]$ com $|x-w| < \delta$. Se x for irracional, então f(x) = 0 e $|f(x)-f(w)| = 0 < \varepsilon$. Caso $x = \frac{p}{q}$ (q natural, p inteiro, p e q coprimos) for racional, temos $q > q_0$, ou se não $q \le q_0$ e $|w-p/q| \ge D_q \ge D_{q_0} > \delta$, uma contradição. Sendo $q > q_0$, $|f(x)-f(w)| = 1/q \le 1/q_0 < \varepsilon$. De todo modo, $|f(x)-f(w)| < \varepsilon$. Como $\varepsilon > 0$ é qualquer, segue-se que f é contínua em w.

Sendo w irracional em [a,b] arbitrário, segue-se que f é contínua em todo irracional de [a,b].

Parte 3.1.2. Os pontos de descontinuidade de f é, então, um subconjunto dos racionais em [a, b], e logo é um conjunto de medida nula. Segue-se daí que f é integrável.

Parte 3.1.3. Toda soma inferior de f em [a, b] é 0. Assim a integral inferior de f em [a, b] é 0. Sendo f integravel, a integral de f em [a, b] é 0.

Parte 3.1.4. Como é pedido para mostrar que f é descontínua nos racionais, vamos fazer essa prova e terminar a resolução. Seja $r \in [a,b]$ racional. $f(r) \neq 0$ (mesmo se r=0, veja o enunciado) e logo, se tomarmos uma sequência $(i_n)_n$ de irracionais em [a,b] convergindo para r (existe tal sequência pois estamos assumindo [a,b] não degenerado), teremos que $f(i_n)=0$ para todo $n \in \mathbb{N}$ e, logo,

 $\lim f(i_n) = 0 \neq f(r).$

3.2 Resolução Alternativa

Parte 3.2.1. Vamos mostrar que f é integrável com integral 0 de modo mais elementar (sem usar teoremas avançados, o que deixa a argumentação mais difícil, claro). Seja A>0 arbitrário e ponha $D_A=\{x\in [\alpha,b]:f(x)\geq A\}$. Se A>1, $D_A=\emptyset$. Suponha que $A\leq 1$. Neste caso, D_A é finito. De fato, seja $q_0\in \mathbb{N}$ tal que $1/q_0< A$ (existe tal q_0 pois A>0). Perceba que se $x\in [\alpha,b]$ é irracional ou x=p/q (p inteiro, q>0 natural, p e q coprimos) com $q\geq q_0$, então f(x)< A. Assim $D_A\subset \{x\in [\alpha,b]: x=p/q,q\in \mathbb{N},p\in \mathbb{Z},p$ e q coprimos, $q< q_0\}$ e, logo, D_A é finito. Enumere $D_A=\{x_1,x_2,...,x_n\}$, sendo n=#D, e seja $\delta_0>0$ tal que para todo $i,j\in \{1,2,...,n\}$ e para todo $\delta\in (0,\delta_0)$, tem-se $(x_i-\delta,x_i+\delta)\cap (x_j-\delta,x_j+\delta)=\emptyset$ caso $i\neq j$. Seja agora $P=P(A,\delta)$, para $\delta\in (0,\delta_0)$, a partição dada por $P=\{x_1-\delta,x_1+\delta,x_2-\delta,x_2+\delta,...,x_n-\delta,x_n+\delta,\alpha,b\}\cap [\alpha,b]=\{\alpha=t_0< t_1<...< t_m=b\}$. Seja I o conjunto dos $i\in \{1,2,...,m\}$ tais que existe $j\in \{1,2,...,n\}$ com $x_j\in [t_{i-1},t_i]$.

Do modo como P foi construída, se $j \in \{1,2,...,n\}$ e $i \in \{1,2,...,m\}$ são tais que $x_j \in [t_{i-1},t_i]$, então ou $x_j \in (t_{i-1},t_i)$, ou então $x_j \in \{a,b\}$. De fato, $x_j \in P$ dá que x_j é igual a a ou a b ou então a algum $x_k + \delta$ ou então a algum $x_k - \delta$ para $k \in \{1,2,...,n\}$. Para k = j, claro que $x_j \neq x_k + \delta$ e $x_j \neq x_k - \delta$. Para $k \in \{1,2,...,n\} \setminus \{j\}$, $\delta < \delta_0$ dá $(x_k - \delta, x_k + \delta) \cap (x_j - \delta, x_j + \delta) = \emptyset$ e, logo, $x_j \neq x_k + \delta$ e $x_j \neq x_k - \delta$ também é verdade. Assim só pode ser que $x_j = a$ ou $x_j = b$. O que acabamos de provar se exprime dizendo que $D_A \cap P \subset \{a,b\}$. Ponha $J = \{1,2,...,m\} \setminus I$. Assim, a soma superior de f em f é, denotando por f o supremo de f em f em f en f

$$S(f,P) = \sum_{i \in I} M_i(t_i - t_{i-1}) + \sum_{j \in I} M_j(t_j - t_{j-1}).$$

Perceba que para todo $j \in J$ e $x \in [t_{j-1}, t_j]$, temos $f(x) \le A$ pois $x \notin D_A$.

É intuitivamente claro que I possui mais ou menos n elementos. A argumen-

tação "enjoada" que segue é para mostrar que #I $\leq n+2$. Considere a função $g:I\to\mathbb{R}$ que faz, dado $i\in I$:

- $g(i) = a \operatorname{caso} a \in [t_{i-1}, t_i];$
- $\cdot \ g(i) = b \ caso \ b \in [t_{i-1}, t_i] \ e \ \alpha \not\in [t_{i-1}, t_i];$
- $g(i) = x_j \text{ caso } a, b \notin [t_{i-1}, t_i] \text{ e } x_j \in [t_{i-1}, t_i] \text{ sendo } j \in \{1, 2, ..., n\} \text{ o único}$ elemento em $\{1, 2, ..., n\}$ tal que $x_j \in [t_{i-1}, t_i]$.

Vale que g está bem definida pois dado $i \in I$, caso $\alpha, b \notin [t_{i-1}, t_i]$, existe $j \in \{1, 2, ..., n\}$ tal que $x_j \in (t_{i-1}, t_i)$. Como $t_i \geq x_j + \delta$ e $t_{i-1} \leq x_j - \delta$, não há outro elemento $j' \in \{1, 2, ..., n\}$ tal que $x_{j'} \in [t_{i-1}, t_i]$ (estamos usando, de novo, que $\delta < \delta_0$). Temos g injetora. De fato, $g(i) \in [t_{i-1}, t_i]$ para todo $i \in I$ e, assim, se há $k, l \in I$ tais que g(k) = g(l) com $k \neq l$, então g(k) = g(l) deve ser elemento da interseção de dois sub-intervalos (necessariamente adjacentes) de P e, assim, e g(k) é um elemento da partição P, o que implica em $g(k) \in \{\alpha, b\}$ já que também tem-se $g(k) \in D_A \cup \{\alpha, b\}$ e $D_A \cap P \subset \{\alpha, b\}$. Agora, se $g(k) = \alpha$, então k = 1 e $l \neq k = 1$ dá $g(l) \neq \alpha$, uma contradição (estamos usando aqui que $i \neq 1$ implica em $\alpha \notin [t_{i-1}, t_i]$ e que $g(i) \in [t_{i-1}, t_i]$). Similarmente, se g(k) = b, então k = m e $l \neq k = m$ dá que $g(l) \neq b$, uma contradição mais uma vez. Logo não é possível ter g(k) = g(l) sem se ter k = l. Assim # $l \leq n + 2$ pos $g(l) \subset D_A \cup \{\alpha, b\}$ e # $D_A = n$. Além disso, como ficou claro logo acima (quando argumentamos que g estava bem definida), para todo $i \in I$, tem-se $t_i - t_{i-1} \leq 2\delta$ (veja a parte 3 abaixo caso isso não esteja claro).

Combinando o que temos e usando também que $0 \le M_k \le 1$ para todo

 $k \in \{1, 2, ..., m\}$, segue-se que:

$$\begin{split} S(f,P) &= \sum_{i \in I} M_i(t_i - t_{i-1}) + \sum_{j \in J} M_j(t_j - t_{j-1}) \\ &\leq 2(n+2)\delta + \sum_{j \in J} M_j(t_j - t_{j-1}) \\ &\leq 2(n+2)\delta + \sum_{j \in J} A(t_j - t_{j-1}) \\ &\leq 2(n+2)\delta + A(b-\alpha). \end{split}$$

Sendo $\delta \in (0, \delta_0)$ qualquer e A > 0 qualquer, segue-se que $\overline{\int}_a^b f(x) dx \leq 0$. Como $f(x) \geq 0$ para todo $x \in [a, b]$, tem-se $0 \leq \underline{\int}_a^b f(x) dx$. Assim, f é integrável e $\int_a^b f(x) dx = 0$.

Parte 3.2.2. O resto da resolução, que f é contínua exatamente em $(\mathbb{R} \setminus \mathbb{Q}) \cap [a, b]$ é essencialmente o que foi feito na resolução de cima (antes desta resolução alternativa).

Parte 3.2.3. Talvez não tenha ficado claro, na parte 1 desta resolução alternativa, o motivo (lógico) de $i \in I$ implicar em $t_i - t_{i-1} \le 2\delta$ por mais que, intuitivamente, isso seja claro. Dado $i \in I$, existe $j \in \{1,2,...,n\}$ tal que $x_j \in [t_{i-1},t_i]$ e, $t_i, t_{i-1} \in (D_A + \delta) \cup (D_A - \delta) \cup \{a,b\}$ com t_{i-1} o maior elemento de P com $t_{i-1} \le x_j$ e t_i o menor elemento de P com $x_j \le t_i$ já que $t_0 < t_1 < ... < t_{i-1} \le x_j \le t_i < t_{i+1} < ... < t_m$. Assim, por $\delta < \delta_0$, segue-se que $t_{i-1} = x_j - \delta$ ou $t_{i-1} = a$, e sendo que $t_{i-1} = a$ apenas caso $x_j - \delta \le a$. Para se convencer disso, suponha $t_{i-1} \ne a$. Note que t_{i-1} não pode ser b pois $i-1 \ne m$. Sendo assim, $t_{i-1} = x_k \pm \delta$ para algum $k \in \{1,2,...,n\}$, argumente agora que k > j ou k < j não poder acontecer é consequência de $\delta < \delta_0$ já que, por exemplo, se k < j, então $x_j - \delta > x_k \pm \delta$ por $\delta < \delta_0$, o que contradiz a maximalidade de t_{i-1} observada acima (de modo similar, trate o caso k > j). Sendo k = j, é claro que $t_{i-1} \le x_j$ implica em $a < t_{i-1} = x_j - \delta$. Caso $t_{i-1} = a$, então $x_j - \delta \le a$ ou se não estaríamos contradizendo a maximalidade de t_{i-1} observada acima. Similarmente, $t_i = \min\{b, x_j + \delta\}$, sendo $x_j = b$ apenas caso $x_j + \delta \ge b$.

De todo modo, $t_i - t_{i-1} \le 2\delta$.

Observação 3.2.1. Uma observação é que é certamente questionável se há necessidade desse tanto de argumentação. No Elon, esse tipo de prova é dada com bem menos detalhes. A resolução "comum" para este problema é a primeira dada, e não esta alternativa. Esta está aqui apenas pelo fato deste problema ser dado numa seção anterior à seção do teorema sobre critério de integrabilidade baseado no conjunto dos pontos de descontinuidade de uma função limitada ter ou não medida nula.

4 Elinho10ed2p - C11S1E8

Q. Sejam $f, p : [a, b] \to \mathbb{R}$ tais que f é contínua, p é integrável e p(x) > O para todo $x \in [a, b]$. Prove que se $\int_a^b f(x)p(x)dx = f(a) \int_a^b p(x)dx$, então existe $c \in (a, b)$ tal que f(a) = f(c). Vale um resultado análogo com f(b) em lugar de f(a). Conclua que no Teorema 4 pode-se tomar $c \in (a, b)$ e que no Corolário do Teorema 5 pode-se exigir que $\theta \in (0, 1)$. [Veja Exercício 9, Seção 4, Capítulo 10.]

4.1 Resolução

Parte 4.1.1. Suponha $\int_a^b f(x)p(x)dx = f(z)\int_a^b p(x)dx$, para algum $z \in [a,b]$. Vamos ver que existe $d \in (a,b)$ tal que f(d) = f(z). Não vamos supor que p(x) > 0 para todo $x \in [a,b]$, mas sim que $p(x) \geq 0$ para todo $x \in [a,b]$ e que $\int_a^b p(x)dx > 0$. Essas hipóteses são mais gerais do que as do problema, então resolvendo para estes casos, estaremos resolvendo o problema também.

A resolução se dá adaptando a prova do Teorema 4 (TVM para integrais). Seja $m = \inf f([a,b])$ e $M = \sup f([a,b])$ (existem tais M e m pois f é contínua e [a,b] é compacto). Ponha $A = \int_a^b p(x) dx$. Temos $mp(x) \le f(x)p(x) \le Mp(x)$ para todo $x \in [a,b]$ e, logo (integrando), $mA \le \int_a^b f(x)p(x) dx \le MA$. Além disso f([a,b]) = [m,M] dá que (Af)([a,b]) = [mA,MA] (isso também por A > 0). Sendo contínua a função que leva $x \in [a,b]$ em Af(x), en-

tão o TVI garante que existe c entre a' e b' tal que $f(c)A = \int_a^b f(x)p(x)dx = f(z)\int_a^b p(x)dx = f(z)A$, sendo que a', $b' \in [a,b]$ são tais que f(a') = m e f(b') = M (existem a', b' pela compacidade de [a,b] e pela continunidade da f). Note que $c \in \{a',b'\}$ pode ser verdade. Sabemos que $a \leq a'$, $b' \leq b$. De imediato já temos f(c) = f(z) pois A > 0.

Perceba que, no caso de $f(c) \notin \{m, M\}$, então, certamente $c \neq a'$ e $c \neq b'$, o que implica em c entre a' e b', porém diferente dos mesmos, o que daí implica em $c \in (a, b)$. Assim, temos 3 casos a tratarmos. Primeiro é o caso fácil, onde $f(c) \notin \{m, M\}$. Neste caso, como já vimos $c \in (a, b)$ pois, de novo, c está entre a' e b', mas não é nem um e nem outro, e também $a \leq a'$, $b' \leq b$. Assim, o primeiro caso está tratado, existe $d \in (a, b)$ com f(d) = f(z) (a saber d = c vindo da aplicação do TVI acima). Segundo é o caso em que f(c) = m e terceiro é o caso em que f(c) = M.

Para tratar os casos segundo e terceiro, precisaremos de uma observação, que é que se existe $D \subset [a,b]$ denso tal que p(x)=0 para todo $x \in D$, teríamos $\int_a^b p(x) dx = 0$ pois qualquer soma inferior de p seria 0 e, sendo p integrável, teríamos $\int_a^b p(x) dx = \int_a^b p(x) dx = 0$, contradizendo nossas hipóteses. Assim, qualquer que seja $D \subset [a,b]$, denso, existe $\gamma \in D$ tal que $p(\gamma) \neq 0$.

No caso segundo, f(c) = m. Aqui, temos $\int_a^b mp(x)dx = mA = f(c)A = \int_a^b f(x)p(x)dx$ e, logo, $0 = \int_a^b (f(x) - m)p(x)dx$. Assim, a função que leva $x \in [a,b]$ em (f(x)-m)p(x), sendo integrável e não negativa em todo seu domínio, cumpre ser nula em um conjunto denso de seu domínio (veja exercício 9, seção 4, caítulo 10). Seja então $D \subset [a,b]$ denso tal que (f(x)-m)p(x)=0 para todo $x \in D$. Seja $d \in D \cap (a,b)$ tal que $p(d) \neq 0$ (como visto no parágrafo acima, existe tal d pois D denso em [a,b] implica em $D \cap (a,b)$ denso em [a,b]). Por $p(d) \neq 0$, segue-se f(d) = m = f(c). Ou seja, f(d) = f(c) = f(z) com $d \in (a,b)$.

No caso terceiro, f(c) = M. Aqui, temos $\int_a^b Mp(x)dx = MA = f(c)A = \int_a^b f(x)p(x)dx$ e, logo, $0 = \int_a^b (M - f(x))p(x)dx$. Assim, a função que leva $x \in [a,b]$ em (M - f(x))p(x), sendo integrável e não negativa em todo seu domínio, cumpre ser nula em um conjunto denso de seu domínio (veja, de novo,

exercício 9, seção 4, caítulo 10). Assim, existe $d \in (a,b)$ tal que $p(d) \neq 0$ e (M-f(d))p(d)=0 (completamente análogo ao feito no caso segundo). Por $p(d) \neq 0$, segue-se f(d)=M=f(c). Ou seja, f(d)=f(c)=f(z) com $d \in (a,b)$.

De todo modo, existe $d \in (a, b)$ com f(d) = f(z). Assim, fica resolvida a questão já que o problema nos pede para tratar apenas o caso em que $z \in \{a, b\} \subset [a, b]$ e também em que se tem p(x) > 0 para todo $x \in [a, b]$. O exercício 9, seção 4, caítulo 10 dá que, para p(x) > 0 para todo $x \in [a, b]$, tem-se certamente que $\int_a^b p(x) dx > 0$ (inclusive, deve ter um jeito mais simples de se concluir isso, só que não me vem na cabeça agora).

Parte 4.1.2. A conclusão de que, no Teorema 4, pode-se tomar $c \in (a,b)$ é consequência direta do foi feito acima. Seja c como dado pelo Teorema 4. Divida a análise em dois casos. O primeiro é o caso em que $\int_a^b p(x) dx = 0$. Neste caso, tem-se $\int_a^b f(x)p(x) dx = f(c) \int_a^b p(x) = 0$ e logo pode-se tomar $d \in (a,b)$ qualquer que seja e teremos $\int_a^b f(x)p(x) = 0 = f(d) \int_a^b p(x)$. No caso em que $\int_a^b p(x) dx > 0$, então pelo que fizemos acima na parte anterior (lembre-se que provamos algo mais geral do que o que foi pedido), existe $d \in (a,b)$ tal que f(d) = f(c). Assim, poderíamos de fato já ter escolhido $c \in (a,b)$ inicialmente.

No caso do Corolário do Teorema 5, basta observar que a função $p:[0,1]\to\mathbb{R}$ dada por $p(x)=\frac{(1-t)^{n-1}}{(n-1)!}$ é contínua e, além disso, é positiva em todo [0,1] exceto em 1. Assim, $\int_a^b p(x) dx>0$. Logo, aplicando o que foi provado na parte anterior para p e para a função que leva $t\in[0,1]$ em $f^{(n)}(\alpha+th)$, podemos tomar $\theta\in(0,1)$ de fato.

5 Elão - C9E8

Q. Seja $f : \mathbb{R} \to \mathbb{R}$ derivável tal que f(0) = 0 e, para todo $x \in \mathbb{R}$, vale $f'(x) = f(x)^2$. Mostre que f(x) = 0 para todo $x \in \mathbb{R}$.

5.1 Resolução

Parte 5.1.1. Sendo f^2 uma função não negativa, segue-se que f é monótona não decrescente. Assim, caso haja $t_0 \in \mathbb{R}$ tal que $f(t_0) > 0$, então, para todo $t \geq t_0$, tem-se f(t) > 0. Similarmente, caso haja $t_0 \in \mathbb{R}$ tal que $f(t_0) < 0$, então, para todo $t \leq t_0$, tem-se f(t) < 0. Esse tipo de observação é que motiva a resolução que segue.

Parte 5.1.2. Vamos ver que f é identicamente nula em $[0, +\infty)$. O caso para $(-\infty, 0]$ é análogo. Seja $A = \{t \in \mathbb{R} : t \geq 0, f([0, t]) = \{0\}\}$. Queremos mostrar que A é ilimitado superiormente. Temos $0 \in A$. Caso A seja limitado superiormente, seja $\alpha = \sup A$. Temos $\alpha \geq 0$. A continuidade de f dá que $f(\alpha) = 0$ pois para todo $\varepsilon > 0$, existe $t \in (\alpha - \varepsilon, \alpha]$ com $t \in A$ e, logo, f(t) = 0.

Para todo $t > \alpha$, há $t' \in (\alpha,t)$ tal que $f(t') \neq 0$, ou se não teríamos uma contradição com relação ao fato de $\alpha = \sup A$. Sendo f monótona não decrescente (já que $f' = f^2$ é não negativa), segue-se que $t > \alpha$ implica em f(t) > 0. Com isso, temos:

$$\forall t > \alpha : \frac{f'(t)}{f(t)^2} = 1$$

e, assim, fazendo a integral de $\alpha + 1$ até t, para cada t $> \alpha$, obtemos:

$$\forall t > \alpha : \int_{\alpha+1}^{t} \frac{f'(u)}{f(u)^2} du = t - \alpha - 1$$

então, aplicando o Teorema da Mudança de Variáveis (de novo, a aplicação é feita para cada para cada t $> \alpha$ em cima da integral logo acima):

$$\forall t>\alpha:\int\limits_{f(\alpha+1)}^{f(t)}\frac{1}{\nu^2}d\nu=t-\alpha-1.$$

Pelo Teorema Fundamental do Cálculo, concluímos que, para todo t $> \alpha$, tem-se

$$f(t) = \frac{1}{\frac{1}{f(\alpha+1)} + \alpha + 1 - t}.$$

Sendo f contínua, deveríamos ter $\lim_{t \to \alpha^+} f(t) = f(\alpha) = 0$, mas

$$\lim_{t\to\alpha^+}\frac{1}{\frac{1}{f(\alpha+1)}+\alpha+1-t}\neq 0.$$

Com esta contradição, concluímos que A não pode ser limitado. Assim, f é identicamente nula em $[0, +\infty)$. De modo análogo, argumenta-se que f é identicamente nula em $(-\infty, 0]$.

Parte 5.1.3. A argumentação de que f é identicamente nula em $(-\infty,0]$ é feita da seguinte forma. Defina $B=\{t\in\mathbb{R}:t\leq 0,f([t,0])=\{0\}\}$. $0\in B$. Caso B seja limitado inferiormente, ponha $\beta=\inf B$. Mostre que $f(\beta)=0$ e que para todo $t<\beta$, tem-se f(t)<0. Faça a integração como na parte 2 e conclua que $\lim_{t\to\beta^-}f(t)\neq f(\beta)$, o que é uma contradição.

Observação 5.1.1. Duas observações. Primeiro é que talvez exista um jeito de fazer esse exercício usando o resultado do problema Elão - C9E7, que é o que está logo antes deste no Elão. Segundo é que o resultado deste problema (agora me refiro de volta ao Elão - C9E8) é uma consequência imediata do teorema de existência e unicidade de EDO.

6 Elão - C9E14a

Q. Considerando funções escadas convenientes, mostre que o Critério de Dirichlet (Teorema 21, Capítulo IV) é consequência do Exercício 14.

6.1 Resolução

Parte 6.1.1. Vamos usar o conhecido fato de que existe uma função $h : \mathbb{R} \to \mathbb{R}$ C^{∞} tal que h(t) = 0 para $t \le 0$, h(t) = 1 para $t \ge 1$ e h é estritamente crescente em [0, 1].

Parte 6.1.2. O Critério de Dirichlet é o seguinte, se $\{\alpha_n\}_{n=1}^{\infty}$ é uma sequência de

números reais tal que existe $K \in \mathbb{R}$ que cumpre $|\sum_{i=1}^n \alpha_i| < K$ para todo $n \in \mathbb{N}$, então para qualquer sequência $\{b_n\}_{n=1}^\infty$ monótona não crescente com $\lim_{n \to \infty} b_n = 0$, tem-se $\sum_{n=1}^\infty \alpha_n b_n$ convergente.

Primeiro, vamos provar o resultado para quando nos é dado uma $\{b_n\}_{n=1}^{\infty}$ estritamente decrescente. Depois reduziremos o caso geral a este. A dificuldade aqui é definir a q que se encaixe nos moldes do Exercício 14.

Parte 6.1.3. Defina $f : [0, 1] \to \mathbb{R}$ dada por:

1.
$$f(t) = \frac{t-i}{1/2}(2\alpha_i)$$
 caso $t \in [i, i+1/2];$

2.
$$f(t) = \frac{t-i-1/2}{1/2}(-2\alpha_i) + 2\alpha_i \text{ caso } t \in [i+1/2, i+1].$$

Fazendo as contas, obtemos $\int_{i}^{i+1} f(t)dt = \alpha_{i}$. A *ideia* aqui é que f seja uma função cujo gráfico é uma serra com pontas em i+1/2 de altura $|f(i+1/2)| = |2\alpha_{i}|$ e, assim, obtendo que o gráfico de f em [i, i+1] é um "triângulo" de medida de base 1, altura $|2\alpha_{i}|$ e, logo, área $|\alpha_{i}|$.

É claro que f está bem definida (nos pontos i, i + 1/2, para $i \in \mathbb{N}$, há possíveis duplas definições para f, mas pode-se verificar que estes valores dados coincidem). Que f é contínua também é claro pois em cada um dos intervalos abertos em $[1,\infty)\setminus \frac{1}{2}\mathbb{Z}$, f coincide com uma função afim e também pois pode-se verificar que f(i) = 0 para $i \in \mathbb{N}$, $f(i + 1/2) = 2a_i$ para $i \in \mathbb{N}$, $lim_{x \to i^-} \, f(x) = lim_{x \to i^+} \, f(x) = 0 \, e \, lim_{x \to (i+1/2)^-} \, f(x) = lim_{x \to (i+1/2)^+} \, f(x) = 2 \alpha_i.$ Finalmente, temos $\int_1^x f(t)dt = \int_1^{i+1} f(t)dt - \int_x^{i+1} f(t)dt$, sendo $i = \lfloor x \rfloor$. Percebe que dado $i \in \mathbb{N}$, f é toda negativa, toda positiva ou toda nula em (i, i +1), sendo toda negativa se $a_i < 0$, toda nula se $a_i = 0$, toda positiva se $a_i > 0$ 0. Esta correleção entre o sinal da f em (i, i + 1) e a_i implica em $\int_1^x f(t) dt$ necessariamente é um número entre $\int_1^{\lfloor x \rfloor} f(t) dt = \sum_{i=1}^{\lfloor x \rfloor - 1} a_i$ (caso $\lfloor x \rfloor = 1$, esta soma deve ser entendida como uma "soma de nada", que é 0) e $\int_1^{\lfloor x \rfloor + 1} f(t) dt =$ $\sum_{i=1}^{\lfloor x\rfloor}\alpha_i.$ Isso é simplemente consequência de $h\in[0,1]\mapsto\int_i^{i+h}f(t)dt$ crescer de 0 até α_i caso $\alpha_i>0,\ h\in[0,1]\mapsto\int_i^{i+h}f(t)dt$ decrescer de 0 até α_i caso $\alpha_i<0$ e $h\in[0,1]\mapsto \int_i^{i+h}f(t)dt$ ser sempre nulo caso $\alpha_i=0.$ Concluímos que $\textstyle \int_1^x f(t)dt \text{ \'e um n\'umero entre } \sum_{i=1}^{\lfloor x\rfloor-1} \alpha_i \text{ e } \sum_{i=1}^{\lfloor x\rfloor} \alpha_i, \text{ donde } \left| \int_1^x f(t)dt \right| < K.$

Parte 6.1.4. Agora para a construção de g. Este parte é mais enjoada pois g precisa ser C^1 . A *ideia* aqui é, para cada $\varepsilon > 0$, construir uma $g = g[\varepsilon]$ de modo que cumpra, para cada $i \in \mathbb{N}$, $\int_{i}^{i+1} f(x)g(x)dx$ esteja algo como $\frac{\varepsilon}{2^i}$ próximo de a_ib_i .

Parte 6.1.5. Daqui pra frente, $h : \mathbb{R} \to \mathbb{R}$ C^{∞} é uma função tal que h(t) = 0 para $t \le 0$, h(t) = 1 para $t \ge 1$ e h é estritamente crescente em [0, 1].

Seja $\alpha, p \in (0,1)$. Considere a função $\psi = \psi[\alpha,p]: \mathbb{R} \to \mathbb{R}$ dada por

$$\psi[\alpha, p](t) = -h(t/p)(1-\alpha) - h\left(\frac{t+1/p}{1-1/p}\right)\alpha.$$

Assim, $\psi[\alpha, p]$ é C^{∞} e satisfaz $\psi(t) = -1$ para todo $t \geq 1$, $\psi(t) = 0$ para todo $t \leq 0$, $\psi(t) \in [-1, -1 + \alpha]$ em todo $t \in [p, 1]$ e ψ é estritamente decrescente em [0, 1].

Lembrando que estamos tratando apenas o caso $\{b_n\}_{n=1}^\infty$ decrescente estritamente. Ponha $b_0=b_1+1$. Dado $\epsilon>0$ e $i\in\mathbb{N}$, defina $\alpha[\epsilon,i]=\min\left\{\frac{1}{2},\frac{\epsilon}{2^i}\frac{1}{b_{i-1}-b_i},\right\}$, $p[\epsilon,i]=\min\left\{\frac{1}{2},\frac{\epsilon}{2^i}\right\}$ (estes mínimos estão sendo tomandos apenas para garantir que estes números estejam em (0,1)) e ponha $g[\epsilon,i]:\mathbb{R}\to\mathbb{R}$ dada por

$$g[\epsilon,i](t) = (b_{i-1} - b_i)\psi \left[\alpha[\epsilon,i], p[\epsilon,i]\right](t-i).$$

Assim, $g[\epsilon,i]$ é C^{∞} e cumpre $g[\epsilon,i](t)=0$ para $t\leq i,\ g[\epsilon,i](t)=b_i-b_{i-1}$ para $t\geq i+1$ (lembrando que $\psi(s)=-1$ para $s\geq 1$ e é por isso que temos b_i-b_{i-1} aqui e não $b_{i-1}-b_i$), $g[\epsilon,i]$ é estritamente decrescente em [i,i+1] e, sendo $\frac{\epsilon}{2^i}\geq p[\epsilon,i]$, temos, para $t\geq i+\frac{\epsilon}{2^i}$:

$$\begin{split} b_i - b_{i-1} &\leq g[\epsilon,i](t) \leq (b_{i-1} - b_i)(-1 + \alpha[\epsilon,i]) \\ &\leq (b_{i-1} - b_i) \left(-1 + \frac{\epsilon}{2^i} \frac{1}{b_{i-1} - b_i}\right) \\ &= (b_i - b_{i-1}) + \frac{\epsilon}{2^i}. \end{split}$$

Defina então $g = g[\varepsilon]$ do seguinte modo. $g = g[\varepsilon] : \mathbb{R} \to \mathbb{R}$ é definida

como $g(t)=g[\epsilon](t)=b_0+\sum_{i=1}^ng[\epsilon,i](t)$ para $t\in(-\infty,n)$, sendo $n\in\mathbb{N}$. É claro que é necessário verificar que para todo par $n,m\in\mathbb{N}$ que cumpre $t\in(-\infty,n)\cap(-\infty,m)$, tem-se

$$b_0 + \sum_{i=1}^n g[\epsilon, i](t) = b_0 + \sum_{i=1}^m g[\epsilon, i](t).$$

Isso de fato é verdade e é consequência das seguintes duas observações. Primeiro, para $t \leq 1$, $g[\epsilon,i](t)=0$ para todo $i \in \mathbb{N}$. Segundo, para t>1 e n>t, $n \in \mathbb{N}$, tem-se $b_0 + \sum_{i=1}^n g[\epsilon,i](t) = b_0 + \sum_{i=1}^{\lfloor t \rfloor} g[\epsilon,i](t)$ pois $g[\epsilon,i](t)=0$ sempre que $i \geq |t|+1$.

Vale que g é C^{∞} pois em cada $(-\infty, n)$, $n \in \mathbb{N}$, g coincide com a soma n funções C^{∞} mais uma constante. É uma questão de verificação agora pereceber que são verdades as seguintes afirmações sobre q:

- 1. g(t), para $t \in [i, i+1]$, vale $b_{i-1} + g[\epsilon, i](t)$;
- 2. g(t), para $t \in [i, i+1]$, está em $[b_i, b_{i-1}]$, $i \in \mathbb{N}$;
- 3. $g(i) = b_{i-1}$ para qualquer $i \in \mathbb{N}$;
- 4. g decresce estritamente em $[1, \infty)$;
- 5. $\lim_{x\to\infty} g(x) = 0$; e
- $\text{6. para } i \in \mathbb{N} \text{ temos } g(t) \in [b_i, b_i + \tfrac{\epsilon}{2^i}] \text{ para todo } t \in [i + p[\epsilon, i], i + 1].$

Parte 6.1.6. Seja agora $i \in \mathbb{N}$ e $\varepsilon > 0$. Suponha $a_i > 0$ primeiramente. Temos:

$$\begin{split} \int_{i}^{i+1} f(x)g(x)dx &= \int_{i}^{i+p[\epsilon,i]} f(x)g(x)dx + \int_{i+p[\epsilon,i]}^{i+1} f(x)g(x)dx \\ &\leq \int_{i}^{i+p[\epsilon,i]} f(x)b_{i-1}dx + \int_{i+p[\epsilon,i]}^{i+1} f(x) \left(b_{i} + \frac{\epsilon}{2^{i}}\right) dx \\ &\leq 2a_{i}b_{i-1}p[\epsilon,i] + \int_{i+p[\epsilon,i]}^{i+1} f(x)b_{i}dx + \int_{i+p[\epsilon,i]}^{i+1} f(x)\frac{\epsilon}{2^{i}}dx \\ &\leq 2a_{i}b_{i-1}\frac{\epsilon}{2^{i}} + \int_{i}^{i+1} f(x)b_{i}dx + \int_{i}^{i+1} f(x)\frac{\epsilon}{2^{i}}dx \\ &= 2a_{i}b_{i-1}\frac{\epsilon}{2^{i}} + a_{i}b_{i} + a_{i}\frac{\epsilon}{2^{i}} \\ &= (a_{i} + 2a_{i}b_{i-1})\frac{\epsilon}{2^{i}} + a_{i}b_{i} \end{split}$$

Note que, para todo $n\in\mathbb{N}$, $|a_{n+1}|=\left|\sum_{j=1}^{n+1}a_j-\sum_{j=1}^na_j\right|\leq 2K$ e $|a_1|\leq K$, o que dá $\{a_n\}_{n=1}^\infty$ limitada. Sendo $\{b_n\}_{n=1}^\infty$ convergente, tem-se então que existe M>0 tal que $M>a_n+2a_nb_{n-1}$ para todo $n\in\mathbb{N}$. Logo:

$$\int_{i}^{i+1} f(x)g(x)dx \leq M\frac{\epsilon}{2^i} + a_i b_i$$

Além disso:

$$\int_{i}^{i+1} f(x)g(x)dx \ge \int_{i}^{i+1} f(x)b_i dx = a_i b_i.$$

Assim, tem-se $\left|\int_{i}^{i+1}f(x)g(x)dx-\alpha_{i}b_{i}\right|\leq\frac{M\epsilon}{2^{i}}$. O caso em que $\alpha_{i}=0$ é trivialmente tratado e também vale a desigualdade. O caso em que $\alpha_{i}<0$, se trata de modo completamente análogo. Assim, o que concluímos é que existe uma certa constante A>0 tal que para todo $i\in\mathbb{N}$, vale:

$$\left| \int_{i}^{i+1} f(x)g(x)dx - a_{i}b_{i} \right| \leq \frac{A\varepsilon}{2^{i}}$$

O que foi feito acima implica em, para todo $i \in \mathbb{N}$:

$$\left| \int_{1}^{i+1} f(x)g(x)dx - \sum_{j=1}^{i} a_{j}b_{j} \right| \leq \sum_{j=1}^{i} \left| \int_{j}^{j+1} f(x)g(x)dx - a_{j}b_{j} \right|$$

$$\leq A\varepsilon \sum_{j=1}^{\infty} \frac{1}{2^{j}}$$

$$= A\varepsilon.$$

Lebrando que g depende de ε .

Parte 6.1.7. Pelo problema anterior (C9E14), cada integral $\int_1^\infty f(x)g[\epsilon](x)dx$ converge. Ponha $\gamma(\epsilon) = \int_1^\infty f(x)g[\epsilon](x)dx$. Além disso, para $\epsilon_1, \epsilon_2 \in (0, \infty)$, temos, para todo $i \in \mathbb{N}$:

1.
$$\left| \int_1^{i+1} f(x) g[\epsilon_1](x) dx - \sum_{j=1}^i \alpha_j b_j \right| \le A \epsilon_1$$
.

2.
$$\left|\int_1^{i+1} f(x)g[\epsilon_2](x)dx - \sum_{j=1}^i a_jb_j\right| \le A\epsilon_2$$
.

e, logo,

$$\begin{split} \left| \int_{1}^{i+1} f(x)g[\epsilon_{1}](x)dx - \int_{1}^{i+1} f(x)g[\epsilon_{2}](x)dx \right| \leq \\ \leq \left| \int_{1}^{i+1} f(x)g[\epsilon_{1}](x)dx - \sum_{j=1}^{i} a_{j}b_{j} \right| + \left| \int_{1}^{i+1} f(x)g[\epsilon_{2}](x)dx - \sum_{j=1}^{i} a_{j}b_{j} \right| \leq \\ \leq A\epsilon_{1} + A\epsilon_{2} \leq A \max\{\epsilon_{1}, \epsilon_{2}\} \end{split}$$

Fazendo o limite para $i \to \infty$, temos $|\gamma(\epsilon_1) - \gamma(\epsilon_2)| \le A \max\{\epsilon_1, \epsilon_2\}$ (*), o que implica, pelo critério de Cauchy, que existe o limite $\lim_{\epsilon \to 0^+} \gamma(\epsilon) = I$ (tome uma sequência $\{x_n\}_{n=1}^\infty$ com $x_n > 0$ e $\lim_{n \to \infty} x_n = 0$, (*) implica que $\{\gamma(x_n)\}_{n=1}^\infty$ é Cauchy e logo converge; a arbitrariedade de $\{x_n\}_{n=1}^\infty$ implica então na existência de $\lim_{\epsilon \to 0^+} \gamma(\epsilon)$).

Parte 6.1.8. Finalizando o caso $\{b_n\}_{n=1}^{\infty}$ estritamente decrescente, seja $\delta>0$. Seja $\epsilon_0>0$ tal que para todo $\epsilon\in(0,\epsilon_0)$, temos $|\gamma(\epsilon)-I|\leq\delta$. Seja $\epsilon^*>0$ tal que $A\epsilon^*\leq\delta$. Seja $\mathfrak{i}_0\in\mathbb{N}$ tal que para todo $\mathfrak{i}\in\mathbb{N}$ com $\mathfrak{i}\geq\mathfrak{i}_0$, tem-se

$$\left| \gamma(\varepsilon^*) - \int_1^{i+1} f(x) g[\varepsilon^*](x) dx \right| \le \delta$$
. Temos

$$\left| \int_1^{i+1} f(x)g[\varepsilon^*](x)dx - \sum_{j=1}^i a_j b_j \right| \le A\varepsilon^* < \delta.$$

Assim, pela desigualdade triangular, temos

$$\left| I - \sum_{j=1}^{i} a_i b_i \right| \le |I - \gamma(\varepsilon^*)| + \left| \gamma(\varepsilon^*) - \int_1^{i+1} f(x) g[\varepsilon^*](x) dx \right|$$

$$+ \left| \int_1^{i+1} f(x) g[\varepsilon^*](x) dx - \sum_{j=1}^{i} a_j b_j \right| \le 3\delta$$

Logo $\sum_{i=1}^{\infty} a_i b_i$ é convergente.

Parte 6.1.9. O caso $\{b_n\}_{n=1}^{\infty}$ monótona não crescente é tratado de modo a reduzir ao caso estritamente decrescente. Primeiro observe que se há $n_0 \in \mathbb{N}$ tal que $b_{n_0} = 0$, então é trivialmente verdade que $\sum_{n=1}^{\infty} a_n b_n$ converge. Suponha que, para todo $n \in \mathbb{N}$, $b_n > 0$ então. Considere a seguinte construção indutiva de índices. Ponha $i_1 = 1$. Construídos $i_1 < i_2 < ... < i_k$, para $k \in \mathbb{N}$ tal que $j \in \{1,2,...,k\} \mapsto b_{i_j}$ é injetora e $\{b_{i_1},b_{i_2},...,b_{i_k}\} = \{b_j:j\in\{1,2,...,i_k\}\}$, seja $A_k = \{j \in \mathbb{N}:b_j=b_{i_k}\}$. Temos $A_k \neq \emptyset$ e A_k é um conjunto de naturais limitado superiormente (caso não fosse, teríamos $b_j = b_{i_k} > 0$ para todo $j \geq i_k$, o que contradizeria $\lim_{n\to\infty} b_n = 0$). Ponha $i_{k+1} = 1 + \max A_k > i_k$. Para todo $j \in \mathbb{N}$ com $i_k \leq j < i_{k+1}$, tem-se $b_j = b_{i_k}$ pois

- 1. $\{b_n\}_{n=1}^{\infty}$ ser monótona não crescente dá que $b_{i_k} \geq b_j.$
- 2. $i_{k+1}-1=\max A_k$ dá que, se $b_{i_k}>b_j$, teríamos $b_l\leq b_j< b_{i_k}$ para todo $l\in\mathbb{N}$ com $l\geq j$, o que contradiz $b_{i_{k+1}-1}=b_{i_k}$, já que $i_{k+1}-1\geq j$.

Logo, concluímos duas coisas:

 $\begin{array}{l} 1. \ b_{i_{k+1}} \notin \{b_{i_1},b_{i_2},...,b_{i_k}\} \ \text{pois} \ b_{i_{k+1}} \leq b_{i_k} \ \text{com} \ b_{i_{k+1}} \neq b_{i_k} \ \text{e} \ \{b_n\}_{n=1}^\infty \ \text{mon\'otona} \ \text{n\~ao} \ \text{crescente}. \ \text{Isso implica em } j \in \{1,2,...,k+1\} \mapsto b_{i_j} \ \text{ser injetora}. \end{array}$

2.
$$\{b_{i_1}, b_{i_2}, ..., b_{i_{k+1}}\} = \{b_i : j \in \{1, 2, ..., i_{k+1}\}\}.$$

Isso termina a construção indutiva da sequência estritamente crescente índices $\{i_n\}_{n=1}^\infty$ que satisfaz $j\in\mathbb{N}\mapsto b_{i_j}$ injetora, $\{b_{i_j}:j\in\mathbb{N}\}=\{b_j:j\in\mathbb{N}\}$ e, pela injetividade acima e por $\{i_n\}_{n=1}^\infty$ ser crescente, $\{b_{i_j}\}_{j=1}^\infty$ é estritamente decrescente. Sendo $\{b_{i_j}\}_{j=1}^\infty$ subsequência de $\{b_n\}_{n=1}^\infty$, $\{b_{i_j}\}_{j=1}^\infty$ converge para 0.

Crie agora duas novas sequências. Ponha $B_n = b_{i_n}$ e ponha $A_n = \sum_{j=i_n}^{i_{n+1}-1} a_j$.

Temos, para todo $n \in \mathbb{N}$, $\left|\sum_{j=1}^n A_j\right| = \left|\sum_{j=1}^{i_{n+1}-1} a_j\right| \le K$. Além disso, $\{B_n\}_{n=1}^\infty$ é estritamente decrescente com $\lim_{n \to \infty} B_n = 0$. Daí é convergente a série $\sum_{n=1}^\infty A_n B_n$.

Vamos agora ver que $\sum_{i=1}^{\infty} a_i b_i$ converge. Dado $n \in \mathbb{N}$, $A_n B_n = \sum_{j=i_n}^{i_{n+1}-1} a_j b_{i_n} = \sum_{j=i_n}^{i_{n+1}-1} a_j b_j$. Seja $I = \sum_{n=1}^{\infty} A_n B_n$. Seja $\epsilon > 0$.

- 1. Seja $n_1 \in \mathbb{N}$ tal que para todo $n \ge n_1, \, b_n \le \min\{1, \epsilon\}.$
- 2. Seja $n_2 \in \mathbb{N}$ tal que para todo $n \ge n_1$, tem-se $\left|I \sum_{j=1}^n A_j B_j\right| \le \epsilon$ e $\left|\sum_{j=n}^{\infty} A_j B_j\right| \le \epsilon$.
- 3. Ponha $n_0 = \max\{i_{n_1}, n_2\}$.

Seja $n \in \mathbb{N}$ com $n > n_0$. Temos $\sum_{j=1}^n a_j b_j = \sum_{j=1}^{i_{n_3}-1} a_j b_j + \sum_{j=i_{n_3}}^n a_j b_j$, sendo $n_3 \in \mathbb{N}$ máximo tal que $n \geq i_{n_3} - 1$. Note que $n_3 = n_1$ é uma possibilidade, mas é necessariamente verdade que $n_3 \geq n_1$.

$$\left| \sum_{j=1}^{n} a_j b_j - I \right| \le \left| \sum_{j=1}^{i_{n_3} - 1} a_j b_j - I \right| + \left| \sum_{j=i_{n_3}}^{n} a_j b_j \right|$$

$$\le \left| \sum_{n=1}^{n_3} A_n B_n - I \right| + \left| \sum_{j=i_{n_3}}^{n} a_j b_j \right|$$

$$\le \varepsilon + \left| \sum_{j=i_{n_3}}^{n} a_j b_j \right|$$

Agora, perceba que $i_{n_3+1}-1>n$ pela maximalidade de n_3 como foi tomado. Logo para todo $j\in\{i_{n_3},...i_{n_3+1}-1\}$, temos $b_j=b_{i_{n_3}}$ e assim:

$$\left|\sum_{j=i_{n_3}}^n a_j b_j\right| = \left|b_{i_{n_3}} \sum_{j=i_{n_3}}^n a_j\right| \le b_{i_{n_3}} 2K \le \varepsilon 2K$$

Assim:

$$\left|\sum_{j=1}^{n} a_{j}b_{j} - I\right| \leq \epsilon + \left|\sum_{j=i_{n_{1}}}^{n} a_{j}b_{j}\right| \leq \epsilon + \epsilon 2k$$

A arbitrariedade de $\epsilon>0$ dá que a série $\sum_{i=1}^\infty \alpha_i b_i$ converge e sua soma é I.

Observação 6.1.1. Deve ter um jeito mais fácil de fazer isso. Vai saber se isso tudo que eu escrevi aqui está certo. Depois eu tenho que voltar e revisar isso daqui.

7 Elão - C9E20

Q. Seja $f : [a, b] \to \mathbb{R}$ uma função limitada. Indiquemos por $\omega(x)$ a oscilação de f em $x \in [a, b]$. Prove que

$$\overline{\int}_a^b f(x) dx - \int_a^b f(x) dx = \overline{\int}_a^b \omega(x) dx$$

7.1 Resolução

Seja $\epsilon > 0$ e seja Q uma partição de [a,b] tal que $\overline{\int}_a^b f(x) dx - \underline{\int}_a^b f(x) dx + \epsilon > S(f,Q) - s(f,Q)$ e que $\overline{\int}_a^b \omega(x) dx + \epsilon > S(\omega,Q)$.

Para cada $x \in [a, b]$, existe $\delta_x > 0$ real tal que $|f(y) - f(z)| \in (\omega(x) - \varepsilon, \omega(x) + \varepsilon)$ qualquer que sejam $y, z \in (x - \delta_x, x + \delta_x)$ (isso é consequência direta da definição de ω). Temos $[a, b] \subset \bigcup_{x \in [a, b]} (x - \delta_x/2, x + \delta_x/2)$ e logo existem $x_1, x_2, \dots, x_n \in [a, b]$ tais que $[a, b] \subset \bigcup_{x \in [a, b]} (x - \delta_x/2, x + \delta_x/2)$ Ponha

existem
$$x_1, x_2, ..., x_n \in [a, b]$$
 tais que $[a, b] \subset \bigcup_{j=1}^n (x_j - \delta_{x_j}/2, x_j + \delta_{x_j}/2)$. Ponha $P = Q \cup ([a, b] \cap \{x_1 - \delta^*/2, x_2 - \delta^*/2, ..., x_n - \delta^*/2, x_1 + \delta^*/2, x_2 + \delta^*/2, ..., x_n + \delta^*/2, x_1 + \delta^*/2, x_2 + \delta^*/2, ..., x_n + \delta^*/2, x_2 + \delta^*/2$

$$\begin{split} \delta^*/2, \}), & \text{ sendo } \delta^* = \text{min}\{\delta_{x_1}, \delta_{x_2}, ..., \delta_{x_n}\}. \text{ Ponha } P = \{t_0 < t_1 < ... < t_m\}. \text{ P} \\ & \text{ refina } Q \text{ e, além disso, \'e fácil ver que para todo } i \in \{1, 2, ..., m\}, \text{ existe } j = j_i \in \{1, 2, ..., n\} \text{ tal que } [t_{i-1} - \delta^*/2, t_i + \delta^*/2] \subset (x_j - \delta_{x_j}, x_j + \delta_{x_j}). \text{ Isso implica em } \\ & |f(x) - f(y)| \in (\omega(x_j) - \epsilon, \omega(x_j) + \epsilon) \text{ para todo } x, y \in [t_{i-1} - \delta^*/2, t_i + \delta^*/2] \text{ o que } \\ & \text{d\'a } \omega(x) \leq \omega(x_j) + \epsilon \text{ para todo } x \in [t_{i-1}, t_i] \text{ e, logo, } \sup_{x \in [t_{i-1}, t_i]} (\omega(x)) \leq \omega(x_j) + \epsilon. \end{split}$$

Temos:

$$\begin{split} S(f,P) - s(f,P) &= \sum_{i=1}^m (M_i^f - m_i^f) \Delta_i \\ &= \sum_{i=1}^m \omega_f([t_{i-1},t_i]) \Delta_i \\ &= \sum_{i=1}^m \sup_{x,y \in [t_{i-1},t_i]} |f(x) - f(y)| \Delta_i \\ &\geq \sum_{i=1}^m (\omega(x_{j_i}) - \varepsilon) \Delta_i \\ &= \sum_{i=1}^m \omega(x_{j_i}) \Delta_i - \varepsilon(b-\alpha) \\ &\geq \sum_{i=1}^m \sup_{x \in [t_{i-1},t_i]} \omega(x) \Delta_i - 2\varepsilon(b-\alpha) \\ &= S(\omega,P) - 2\varepsilon(b-\alpha) \\ &\geq \int_0^b \omega(x) dx - 2\varepsilon(b-\alpha) \end{split}$$

Sendo $S(f,Q) - s(f,Q) \ge S(f,P) - s(f,P)$, temos:

$$\overline{\int}_a^b f(x) dx - \underline{\int}_a^b f(x) dx + \varepsilon \ge \underline{\int}_a^b \omega(x) dx - 2\varepsilon(b-a).$$

Por outro lado:

$$\begin{split} S(f,P) - s(f,P) &= \sum_{i=1}^m (M_i^f - m_i^f) \Delta_i \\ &= \sum_{i=1}^m \omega_f([t_{i-1},t_i]) \Delta_i \\ &= \sum_{i=1}^m \sup_{x,y \in [t_{i-1},t_i]} |f(x) - f(y)| \Delta_i \\ &\leq \sum_{i=1}^m (\omega(x_{j_i}) + \varepsilon) \Delta_i \\ &\leq \varepsilon(b-\alpha) + S(\omega,P) \end{split}$$

Sendo $S(\omega, P) \leq S(\omega, Q)$, temos

$$\overline{\int}_a^b f(x) dx - \underline{\int}_a^b f(x) dx \le \underline{\int}_a^b \omega(x) dx + \varepsilon + \varepsilon(b - a).$$

Como $\varepsilon > 0$ é arbitrário, vale a igualdade.

8 Elão - C9E21, C9E22

Observação 8.0.1. A ideia aqui é apresentar certos resultados, de prova simples, que ajudam a resolver problemas como estes dois. os problemas em si não são tão relevantes assim. Eles servem mais como pretexto para falar das coisass que eu vou falar aqui.

C9E21. Se um intervalo I tem medida nula, então I reduz-se a um ponto.

C9E22. Todo conjunto de medida nula tem interior vazio.

Observação 8.0.2. Em C9E21, pode-se ter $I = \emptyset$ também.

8.1 Resolução

Parte 8.1.1. Primeiro, prove por indução em $n \in \mathbb{N}$ que se I_1 , I_2 , ... I_n são intervalos abertos não degenerados limitados, então existe $m \in \mathbb{N}$ com $m \le n$ e existem $J_1, J_2, ..., J_m$ intervalos abertos não degenerados dois-a-dois disjuntos tais que $\bigcup_{i=1}^n I_i = \bigcup_{j=1}^m J_j$ e $\sum_{j=1}^m |J_j| \le \sum_{i=1}^n |I_i|$, sendo que vale a igualdade se, e somente se, os I_i 's forem dois-a-dois disjuntos.

A ideia de como provar isso é a seguinte. O caso base para n=1 é trivial. Para fazer o passo indutivo, divida em dois casos. Primeiro, se há $i_0 \in \{1,2,...,n\}$ tal que para todo $i \in \{1,2,...,n\} \setminus \{i_0\}$, tem-se $I_{i_0} \cap I_i = \emptyset$, então aplique a hipótese de indução sobre $I_i, i \neq i_0$, e pronto. Caso não haja tal i_0 , ponha $I^* = I_n \cup I_{n-1}$, que é um intervalo aberto não degenerado limitado com medida menor, estritamente, do que $|I_n| + |I_{n-1}|$. Aplique a hipótese de indução em $I_1, I_2, ..., I_{n-2}, I^*$.

Parte 8.1.2. Sobre C9E21, caso I não seja degenerado, há α , $b \in I$ tal que $\alpha < b$. Assim $[\alpha,b] \subset I$ e teríamos $[\alpha,b]$ de medida nula. Seja então $\varepsilon = \frac{(b-\alpha)}{1000}$ (ou qualquer coisa menor que $b-\alpha$). Por medida nula e compacidade, há $I_1,I_2,...,I_n$ intervalos abertos não degenrados e limitados tais que $[\alpha,b] \subset \bigcup_i I_i$ e $\sum_i |I_i| < \varepsilon$. Seja $J_1,...,J_m$ como acima, ou seja, J_j 's dois-a-dois disjuntos, intervalos abertos não degenerados limitados tais que $\bigcup_i I_i = \bigcup_j J_j$ e $\sum_j |J_j| \le \sum_i |I_i|$. Pelo teorema da da estrutura dos abertos da reta (veja observação no final), é necessariamente verdade que existe $k \in \{1,2,...,m\}$ tal que $\alpha,b \in J_k$ e logo $[\alpha,b] \subset J_k$, o que daria $|[\alpha,b]| \le |J_k|$ e, assim, $b-\alpha \le \sum_j |J_j| < b-\alpha$, uma contradição.

Parte 8.1.3. Sobre C9E22, se existe algum conjunto $X \subset \mathbb{R}$ de medida nula com int $X \neq \emptyset$, então há $a, b \in X$ com a < b e $(a, b) \subset X$, o que implica em (a, b) ser de medida nula, um absurdo.

Observação 8.1.1. O teorema da estrutura dos abertos da reta pode ser provado de uma forma diferente (do que o que o Elon faz) de modo a deixar sua utilização acima mais clara. O roteiro é o que segue. Seja $A \subset \mathbb{R}$ um aberto não vazio. Defina a relação \sim sobre os elementos de A de modo a fazer $x \sim y$ se, e somente

se, por definição todos os pontos entre x e y de \mathbb{R} estão em A, ou seja, $[x,y] \cup [y,x] \subset A$ (tomando como vazio o conjunto $[\mathfrak{a},\mathfrak{b}]$ para $\mathfrak{a} > \mathfrak{b}$). Mostre que essa relação é de equivalência. Temos $A = \biguplus_{\alpha \in A/\sim} \alpha$, sendo que A/\sim denota o conjunto das classes de equivalência de A por A/\sim . Em particular, a união anterior é disjunta. Mostre que para todo A/\sim , tem-se A/\sim aberto e também A/\sim intervalo (i.e. A/\sim , A/\sim).

A unicidade é a seguinte, se $A = \biguplus_{\alpha \in I} \alpha$, sendo I um conjunto cujos elementos são intervalos abertos não degenerados de \mathbb{R} , então $I = ^A/_{\sim}$. É claro que I forma uma partição de A. Seja \sim' a relação de equivalência sobre A associada à partição I. O que devemos mostrar é que \sim e \sim' são iguais. Sejam $x,y \in A$ com $x \sim' y$. Daí existe $\alpha \in I$ tal que $x,y \in \alpha$ e logo $x \sim y$. Sejam, agora, $x,y \in A$ com $x \sim y$. Sem perda de generalidade, assuma x < y (o caso x = y é trivial, e o caso x > y se trata de modo inteiramente análogo). Se $x \sim' y$ for falso, pondo $\alpha_x \in I$ tal que $x \in \alpha_x$, tem-se α_x limitado superiormente com sup $\alpha_x \in A$ (pois sup $\alpha_x \in (x,y] \subset A$) e, assim, sendo $\alpha_x' \in I$ o intervalo aberto que contem sup α_x como elemento, temos $\alpha_x \neq \alpha_x'$ e $\alpha_x \cap \alpha_x' \neq \emptyset$, uma contradição. Logo $x \sim' y$.

Demonstrando deste modo, fica claro que $[\alpha,b]\subset J_1\cup J_2\cup J_3\cup...\cup J_m$, com os J_j 's intervalos abertos não degenerados limitados dois-a-dois disjuntos (como ocorre na resolução de C9E21), implica em existir $k\in\{1,2,...,m\}$ tal que $\alpha,b\in J_k$ pois $\alpha\sim b$ de acordo com a relação de equivalência definida na prova. Sendo os intervalos abertos $J_1,\ J_2,\ ...,\ J_m$ as classes de equivalência neste caso, tem-se a existência então de tal k.

Parte 8.1.4. Uma consequência do que foi feito aqui é que se um intervalo I for subconjunto de uma união enumerável de intervalos $\cup J_n$, então $|I| \leq \sum |J_n|$. Vamos provar isso. Primeiro vamos provar para o caso em que I é um intervalo compacto e $\{J_n\}_{n=1}^{\infty}$ é uma sequência de intervalos abertos limitados não degenerados. Todos os outros casos recaem neste (argumentaremos isso no final).

Pela compacidade de I, podemos já assumir de cara que a temos $I \subset J_1 \cup J_2 \cup ... \cup J_n$ e queremos mostrar que $|I| \leq \sum_{i=1}^n |J_i|$. Sejam $L_1, L_2, ..., L_m$, com $m \in \mathbb{N}$ e $m \leq n$ intervalos abertos não degenerados e limitados tais que $\cup_{i=1}^n J_i = \cup_{i=1}^m L_i$.

Como já vimos, $\sum |L_i| \leq \sum |J_i|$. Sendo $I \subset \cup L_i$, há $i_0 \in \{1, 2, ..., m\}$ tal que $I \subset L_{i_0}$ (de novo, lembre-se da relação de equivalência do teorema da estrutura dos abertos da reta) e, logo $|I| \leq |L_{i_0}| \leq \sum |J_i|$.

Para ver que os outros casos se reduzem a este, considere primeiro a situação em que I ilimitado. Precisamos então ver que $\sum |J_i| = \infty$. Suponha I ilimitado superiormente (o caso I ilimitado inferiormente é inteiramente análogo e não será tratado explicitamente). Vamos ver que este caso se reduz ao caso em que I é limitado. De fato, seja $\alpha \in I$. Para todo $n \in \mathbb{N}$, $I_n := (\alpha, \alpha + n) \subset I \subset \cup J_i$. Assim, o caso I ilimitado se reduz ao caso I limitado.

Finalmente, suponha I limitado. Seja $\epsilon>0$ arbitrário. Caso algum dos J_i 's seja ilimitado, segue a tese trivialmente. Vamos supor que os J_i 's são todos não vazios pois podemos sempre descartar os vazios. Suponha cada um dos J_i 's limitado com J_i de extremos $\alpha_i \leq b_i$. Ponha $L_i = (\alpha_i - \epsilon/2^{i+1}, b_i + \epsilon/2^{i+1})$. Ponha $\alpha = \inf I$ e $b = \sup I$. Temos fecho $(I) \subset (\alpha - \epsilon/4, \alpha + \epsilon/4) \cup (b - \epsilon/4, b + \epsilon/4) \cup L_i$ e $\sum |L_i| = \epsilon + \sum |J_i|$. Pelo caso em que I é um intervalo compacto e os J_i 's são intervalos abertos limitados não degenerados, temos $|I| = |\text{fecho}(I)| \leq 2\epsilon + \sum |J_i|$. Sendo $\epsilon > 0$ qualquer, segue a tese.

9 Elão - C9E38

Q. Mostre que

$$\lim_{n\to\infty}\left(\frac{n^{n+1}+(n+1)^n}{n^{n+1}}\right)^n=e^{\varepsilon}.$$

9.1 Resolução

Para cada $n \in \mathbb{N}$, defina $f_n : (0, \infty) \to \mathbb{R}$ dada por $f_n(x) = (1 + x/n)^n$. Analisando a derivada de f_n , é fácil ver que f_n é monótona não decrescente para todo $n \in \mathbb{N}$ em todo seu domínio. Ponha $a_n = f_n(f_n(1))$ para cada $n \in \mathbb{N}$. Queremos mostrar que $\lim_{n \to \infty} a_n = e^e$, o que se justifica pela seguinte observação,

dado $n \in \mathbb{N}$ qualquer:

$$\left(\frac{n^{n+1} + (n+1)^n}{n^{n+1}}\right)^n = \left(\frac{n + \left(1 + \frac{1}{n}\right)^n}{n}\right)^n = \left(1 + \frac{\left(1 + \frac{1}{n}\right)^n}{n}\right)^n.$$

Seja $\epsilon \in (0,e)$ arbitrário. Seja $n_0 \in \mathbb{N}$ tal que para todo $n \in \mathbb{N}$ com $n \geq n_0$, tem-se $\left(1+\frac{1}{n}\right)^n \in (e-\epsilon,e+\epsilon)$. Assim, para $n \in \mathbb{N} \cap [n_0,\infty)$, temos $\alpha_n = f_n(f_n(1))$, sendo que $e-\epsilon < f_n(1) < e+\epsilon$, donde $f_n(e-\epsilon) \leq \alpha_n \leq f_n(e+\epsilon)$, ou seja,

$$\left(1 - \frac{e - \varepsilon}{n}\right)^n \le \alpha_n \le \left(1 - \frac{e + \varepsilon}{n}\right)^n.$$

Por isso logo acima valer para todo $n \in \mathbb{N}$ com $n \ge n_0$, tem-se o seguinte:

$$\lim_{n\to\infty}\left(1-\frac{e-\epsilon}{n}\right)^n\leq \liminf_{n\to\infty}\alpha_n\leq \limsup_{n\to\infty}\alpha_n\leq \lim_{n\to\infty}\left(1-\frac{e+\epsilon}{n}\right)^n,$$

ou seja,

$$e^{e-\epsilon} \leq \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n \leq e^{e+\epsilon}.$$

Sendo $\epsilon \in (0,e)$ qualquer, segue-se que $e^{\epsilon} \leq \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n \leq e^{\epsilon}$ e, logo, $\lim_{n \to \infty} \alpha_n = e^{\epsilon}$.

10 Elão - C9E40

Se $f: [a,b] \to [c,d]$ é de classe C^1 , com $f'(x) \neq 0$ para todo $x \in [a,b]$, e $g: [c,d] \to \mathbb{R}$ é integrável, então $g \circ f$ é integrável.

10.1 Resolução

A ideia geral aqui é que f' atinge seu mínimo e máximo em [a, b], que são ambos de mesmo sinal e diferentes de 0 (estamos usando aqui que f é C^1 e o Teorema de Darboux). Isso implica em f ser inversível e de inversa φ lipschitziana (estamos usando aqui o teorema da função inversa para funções diferenciáveis). Denote por $D \subset [c, d]$ o conjunto dos pontos de descontinuidade de g. Se $x \in [a, b] \setminus f^{-1}(D)$,

então $g\circ f$ é contínua em x. Além disso, temos $f^{-1}(D)=\varphi(D\cap f([\mathfrak{a},\mathfrak{b}])$ é de medida nula por D ser de medida nula e φ ser lipschitziana.

11 Elão - C9E43

Q. Mostre que o conjunto A do Exercício 42 não é a reunião enumerável de conjuntos de conteúdo nulo.

11.1 Resolução

Usaremos aqui os resultados dos exercícios 42, 41 e do exercício 54 do capítulo 5 (i.e. o Teorema de Baire). Suponha $A = \bigcup_{i \in \mathbb{N}} C_i$, sendo C_i de conteúdo nulo para cada $i \in \mathbb{N}$. Temos

$$\mathbb{R} = A \cup (\mathbb{R} \setminus A) = (\cup_{i \in \mathbb{N}} C_i) \cup (\mathbb{R} \setminus A) \subset \left(\cup_{i \in \mathbb{N}} \overline{C_i} \right) \cup (\mathbb{R} \setminus A) \subset \mathbb{R}$$

Assim,

$$\mathbb{R} = \left(\cup_{i \in \mathbb{N}} \overline{C_i} \right) \cup (\mathbb{R} \setminus A).$$

Teríamos então $\mathbb R$ igual a uma união de fechados de interior vazio (veja o exercício 41 deste capítulo para saber o motivo de $\overline{C_i}$ ter interior vazio para cada $i \in \mathbb N$ e veja o exercício 42 para saber o motivo de $\mathbb R \setminus A$ ser união enumerável de fechados de interior vazio). O Teorema de Baire então implica em $\mathbb R$ ser de interior vazio, um absurdo.

12 Elão - C9E44

Q. Dada uma sequência de intervalos abertos $I_n\subset [0,1]$, se $\sum |I_n|<1$, então o conjunto fechado $F=[0,1]\setminus \cup I_n$ não tem medida nula.

12.1 Resolução

Suponha que F seja de medida nula. Ponha $c=\sum |I_n|<1$. Existe então uma sequência J_n de intervalos abertos tais que $F\subset \cup J_n$ e $\sum |J_n|<\frac{1-c}{2}$. Assim $[0,1]\subset (\cup I_n)\cup (\cup J_n)$. Pela compacidade de [0,1], tem-se $[0,1]\subset I_{n_1}\cup I_{n_2}\cup ...\cup I_{n_k}\cup J_{m_1}\cup J_{m_2}\cup...\cup J_{m_l}$, que dá $1=|[0,1]|\leq \sum |I_{n_i}|+\sum |J_{m_i}|=c+\frac{1-c}{2}<1$, um absurdo (veja a seção 8).

13 Rudin1 - C7E12

Q. Suponha que g e f_n (n=1,2,...) estejam definidas em $(0,\infty)$ e que sejam Riemann integráveis em todo intervalo compacto subconjunto de $(0,\infty)$. Seja $f:(0,\infty)\to\mathbb{R}$. Suponha também que $|f_n(x)|\le g(x)$ para todo $x\in(0,+\infty)$ e $f_n\to f$ uniformemente em todo subconjunto compacto de $(0,\infty)$. Finalmente, suponha $\int_0^\infty g(x)dx<\infty$. Prove que

$$\lim_{n\to\infty}\int_0^\infty f_n(x)dx = \int_0^\infty f(x)dx.$$

Assuma primeiro $f_n, f, g: (0, \infty) \to \mathbb{R}$ para todo $n \in \mathbb{N}$. Extenda depois para o caso em que $g: (0, \infty) \to \mathbb{R}$ e $f_n, f: (0, \infty) \to \mathbb{R}^d$, $d \in \mathbb{N}$.

Observação 13.0.1. É claro que provar a existência dos limites é parte do que está sendo pedido.

13.1 Resolução

Primeiro vamos mostrar que o caso vetorial se reduz ao caso real. Depois mostraremos o caso real.

Seja $j \in \{1,2,...,d\}$ e φ_n a j-ésima função coordenada de f_n . Seja ψ a j-ésima função coordenada de f. Como as hipóteses do problema valem pra g, f_n, f , então valem também para g, φ_n, ψ . Isso implica em, caso já feito o caso real, $\lim_{n\to\infty} \int_0^\infty \varphi_n(x) dx = \int_0^\infty \psi(x) dx$. Sendo $j \in \{1,2,...,d\}$ arbitrário, tem-se

 $\lim_{n\to\infty}\int_0^\infty f_n(x)dx=\int_0^\infty f(x)dx. \text{ Resta então provar o caso real, que \'e o que vamos assumir daqui pra frente.}$

Temos $|f_n(x)| \leq g(x)$ para todo $x \in (0,\infty)$ e para todo $n \in \mathbb{N}$. Isso implica em f_n ser absolutamente integrável de 0 a ∞ , para todo $n \in \mathbb{N}$ já que $\int_0^\infty g(x) dx < \infty$ e g é não negativa. Além disso, isso implica em $|f(x)| \leq g(x)$ para todo $x \in (0,\infty)$, o que dá, também, f, absolutamente integrável de 0 até ∞ . Assim, existem todas as integrais em questão.

 $\begin{array}{l} \text{Seja } w = \int_0^\infty f(x) dx \text{ e seja agora } T > 1 \text{ tal que } \left| \int_0^\infty g(x) dx - \int_t^T g(x) dx \right| \leq \\ \frac{\epsilon}{100}, \text{ sendo } t = \frac{1}{T}, \text{ e também tome } T \text{ tal que } \left| \int_t^T f(x) dx - w \right| \leq \frac{\epsilon}{100}. \text{ Seja } n_0 \in \mathbb{N} \\ \text{tal que para todo } n \in \mathbb{N} \text{ com } n \geq n_0, \text{ tem-se } \left\| (f - f_n)|_{[t,T]} \right\|_\infty \leq \frac{\epsilon}{100(T-t)}. \text{ Com isso, temos } \left| \int_t^T f_n(x) dx - \int_t^T f(x) dx \right| \leq \frac{\epsilon}{100} \text{ e} \end{array}$

$$w - \frac{2\varepsilon}{100} \le \int_{t}^{T} f_n(x) dx \le w + \frac{2\varepsilon}{100}.$$

Daí

$$\begin{split} w - \frac{2\varepsilon}{100} + \int_0^t f_n(x) dx + \int_T^\infty f_n(x) dx &\leq \int_0^\infty f_n(x) dx \\ &\leq w + \frac{2\varepsilon}{100} + \int_0^t f_n(x) dx + \int_T^\infty f_n(x) dx, \end{split}$$

donde,

$$\begin{aligned} w - \frac{2\varepsilon}{100} - \int_0^t g(x) dx - \int_T^\infty g(x) dx &\leq \int_0^\infty f_n(x) dx \\ &\leq w + \frac{2\varepsilon}{100} + \int_0^t g(x) dx + \int_T^\infty g(x) dx \end{aligned}$$

e

$$w - \frac{3\varepsilon}{100} \le \int_0^\infty f_n(x) dx \le w + \frac{3\varepsilon}{100}.$$

14 Rudin1 - C7E13

Q. Seja $\{f_n\}_{n=1}^{\infty}$ uma sequência de funções reais monótonas não decrescentes de uma variável real definidas em todo \mathbb{R} . Suponha $f_n(x) \in [0,1]$ para todo $x \in \mathbb{R}$ e para todo $n \in \mathbb{N}$. Mostre que existe uma subsequência $\{f_{n_k}\}_{k=1}^{\infty}$ de $\{f_n\}_{n=1}^{\infty}$ tal que existe o limite $\lim_{k\to\infty} f_{n_k}(x)$ para todo $x \in \mathbb{R}$. Ponha $f = \lim_k f_{n_k}$. Mostre também que, se supormos f contínua, temos em subconjuntos compactos de \mathbb{R} , $f_{n_k} \to f$ uniformemente.

Observação 14.0.1. Provado a veracidade para o caso das funções f_n monótonas não decrescentes, concluí-se trivialmente que o resultado vale para os outros tipos de monotonicidade (olhe para $\{-f_n\}_{n=1}^{\infty}$).

14.1 Resolução

A resolução é enjoada e se dá em vários passos. Primeiro vamos deixar claro qual é o roteiro. A prova de fato começa no parágrafo seguinte.

- Repetiremos o argumento da diagonal dado no livro para mostrar que existe uma certa subsequência {f_{m_n}}_{n=1}[∞] de {f_n}_{n=1}[∞] e um certo subconjunto Q denso de ℝ, que no caso aqui será ℚ, tal que para todo x ∈ Q, tem-se lim_n f_{m_n}(x) existe.
- 2. Vamos mostrar que isso nos permitirá definir uma f, que provaremos ser monótona não decrescente e limitada entre 0 e 1. A monotonicidade da f nos permitirá concluir que f é contínua em todo ponto de ℝ exceto por uma quantidade enumerável de pontos.
- 3. Mostraremos que $f(x) = \lim_n f_{m_n}(x)$ para todo $x \in \mathbb{R}$ tal que f é contínua em x. Para isso, precisaremos antes mostrar que $f(x) = \lim_n f_{m_n}(x)$ para todo $x \in Q$ (do item 1).
- 4. Como f é descontínua numa quantidade apenas enumerável de pontos, poderemos repetir um argumento de diagonal (como o do item 1) de modo a

tratar esses pontos e arrumar uma subsequência de $\{f_{\mathfrak{m}_n}\}_{n=1}^\infty$ que converge em todo $\mathbb{R}.$

5. Assumindo f contínua, provaremos então a convergência uniforme da subsequência de $\{f_n\}_{n=1}^{\infty}$ em cada conjunto compacto subconjunto de \mathbb{R} .

Repetiremos o "argumento da diagonal"(para prática minha). Seja $r:\mathbb{N}\to\mathbb{Q}$ bijetora, usando $r_i=r(i)$. Temos $\{f_n(r_1)\}_{n=1}^\infty$ uma sequência limitada de números reais e logo admite uma subsequência convergente. Denotaremos os índices desta subsequência converge por N_1 . Assim, $\{f_n(r_1)\}_{n\in N_1}$ converge. Considere, para um certo $k\in\mathbb{N}$ arbitrário, $N_1,N_2,...,N_k\subset\mathbb{N}$ com $N_k\subset N_{k-1}\subset...\subset N_2\subset N_1$ infinitos com $\{f_n(r_i)\}_{n\in N_i}$ convergente. Como $\{f_n(r_{k+1})\}_{n\in N_k}$ é uma sequência de números reais limitada, admite então uma subsequência convergente, cujos índices denotaremos por N_{k_1} . Sendo assim N_{k+1} é um subconjunto infinito de \mathbb{N} e, por vir de uma subsequência de $\{f_n(r_{k_1})\}_{n\in N_k},\ N_{k+1}\subset N_k$. Fica então feita a construção indutiva de conjuntos $\{N_n\}_{n=1}^\infty$ subconjuntos infinitos de \mathbb{N} com $N_{i+1}\subset N_i$ para todo $i\in\mathbb{N}$ e com $\{f_n(r_i)\}_{n\in N_i}$ convergente para todo $i\in\mathbb{N}$.

Considere uma segunda construção indutiva (poderíamos ter feito apenas uma construção indutiva, mas acho mais fácil de aplicar o processo do argumento da diagonal separando a construção nessas duas partes). Tome $m_1\in N_1$ qualquer (e.g. $m_1=\min N_1$). Construídos, para um certo $k\in\mathbb{N}$ artibitrário, $m_1,m_2,...,m_k$ naturais com $m_1< m_2<...< m_k$ e com $m_i\in N_i$ para todo $i\in\{1,2,...,k\}$, tome $m_{k+1}>m_k$ com $m_{k+1}\in N_{k+1}$ arbitrariamente (e.g. m_{k+1} pode ser tomado como igual a min $N_{k+1}\cap [m_k+1,\infty)$), que existe por N_{k+1} ser um subconjunto infinito de \mathbb{N} (e logo ilimitado superiormente). Fica então construída uma sequência crescente de naturais $\{m_n\}_{n=1}^\infty$ estritamente crescente tal que, para todo $k\in\mathbb{N}$ e para todo $n\in\mathbb{N}$ com $k\geq n$, tem-se $m_k\in N_k\subset N_n$. Isso implica em, para todo $k\in\mathbb{N}$, $\lim_{n\to\infty} f_{m_n}(r_k)$ convergente. Isso termina o "argumento da diagonal"que disse que iria repetir.

Ponha $y_k=\lim_{n\to\infty}f_{\mathfrak{m}_n}(r_k),\,k\in\mathbb{N}$ qualquer. Defina $f(x)=\sup\{y_k:\exists k\in\mathbb{N},r_k\leq x\}.$ Agora é questão de mostrar que f satisfaz o que se pede.

Dado $k \in \mathbb{N}$, y_k é ponto de aderência da união das imagens dos f_n , ou seja,

 y_k é ponto de aderência de $\cup_{n\in\mathbb{N}} f_n(\mathbb{R})$. Isso implica em $y_k\in[0,1]$. Daí, tem-se $f(\mathbb{R})\subset[0,1]$.

Sejam $x_1, x_2 \in \mathbb{R}$ com $x_1 < x_2$ e seja $j \in \mathbb{N}$ tal que $x_1 < r_j < x_2$. Seja $i \in \mathbb{N}$ qualquer natural tal que $r_i \le x_1$. Pela definição de f, temos $f(x_2) \ge y_j$. Temos $y_j = \lim_k f_{\mathfrak{m}_k}(r_j) \ge \lim_k f_{\mathfrak{m}_k}(r_i) = y_i$ pois $f_{\mathfrak{m}_k}$ é monótona não decrescente. Pela arbitrariedade de $i \in \mathbb{N}$ tal que $r_i \le x_1$, temos $f(x_1) \le y_j \le f(x_2)$ (estamos usando a definição de f como o supremo daquele conjunto). Assim, f é monótona não decrecente. Isso nos permite concluir que o conjunto D dos pontos de descontinuidade de f é enumerável.

Vamos ver agora que para todo $k \in \mathbb{N}$, $f(r_k) = \lim_i f_{m_i}(r_k)$. De fato, $f(r_k) = \sup\{y_i : \exists i \in \mathbb{N}, r_i \leq r_k\}$. Temos, por definição, $y_k = \lim_i f_{m_i}(r_k)$. Dado $i \in \mathbb{N}$ com $r_i \leq r_k$, temos $f_{m_n}(r_i) \leq f_{m_n}(r_k)$ para todo $n \in \mathbb{N}$ e, logo, (passando o limite) $y_i \leq y_k$. Isso implica em y_k cota superior para o conjunto cujo supremo é $f(r_k)$. Além disso, y_k é elemento deste conjunto. Daí $f(r_k) = y_k$.

Ponha $C = \mathbb{R} \setminus D$. Seja $x \in C$. Temos f contínua em x. Seja $\varepsilon > 0$ arbitrário. Ponha $\delta > 0$ tal que $f((x - \delta, x + \delta)) \subset (f(x) - \varepsilon, f(x) + \varepsilon)$. Sejam $i, j \in \mathbb{N}$ tais que $x - \delta < r_i < x < r_j < x + \delta$. Temos, para todo $k \in \mathbb{N}$,

$$f_{m_k}(r_i) \le f_{m_k}(x) \le f_{m_k}(r_j),$$

o que dá

$$f(x) - \epsilon \leq f(r_i) \leq \liminf_k f_{\mathfrak{m}_k}(x) \leq \limsup_k f_{\mathfrak{m}_k}(x) \leq f(r_j) \leq f(x) + \epsilon.$$

Sendo $\varepsilon > 0$ qualquer, $f(x) = \lim_k f_{m_k}(x)$.

No caso $D=\emptyset$, não há nada a fazer e já está provado que $f(x)=\lim_n f_{\mathfrak{m}_n}(x)$ para todo $x\in\mathbb{R}$. Suponha até o final deste parágrafo que $D\neq\emptyset$. Seja $M_0=\{m_n:n\in\mathbb{N}\}$. Ponha $D=\{d_n\}_{n=1}^\infty$ com $n\in\mathbb{N}\mapsto d_n$ uma sobrejeção de \mathbb{N} em D. Temos $\{f_\mathfrak{m}(d_1)\}_{\mathfrak{m}\in M_0}$ limitada e logo há $M_1\subset M_0$ infinito com $\{f_\mathfrak{m}(d_1)\}_{\mathfrak{m}\in M_1}$ convergente. Prossiga como no argumento pela diagonal. Assuma, por hipótese de indução, que temos definidos $M_1,M_2,M_3,...,M_k$, para um certo $k\in\mathbb{N}$, subconjuntos infinitos de \mathbb{N} com $M_k\subset ...\subset M_2\subset M_1\subset M_0$ e tais que $\{f_\mathfrak{m}(d_i)\}_{\mathfrak{m}\in M_i}$

converge para todo $i \in \{1,2,...,k\}$. Temos $\{f_m(d_{k+1})\}_{m \in M_k}$ limitada e logo há $M_{k+1} \subset M_k$ infinito com $\{f_m(d_{k+1})\}_{m \in M_{k+1}}$ convergente. Isso termina a definição indutiva de $\{M_n\}_{n=1}^{\infty}$, uma sequência de subconjuntos infinitos de $\mathbb N$ tais que $M_1 \subset M_0$ e, para todo $i \in \mathbb N$, $M_{i+1} \subset M_i$ e $\{f_m(d_i)\}_{m \in M_i}$ converge. Defina agora (como no segundo passo do argumento da diagonal) uma sequência crescente de índices $\{n_i\}_{i=1}^{\infty}$ tais que $n_i \in M_i$ (tome $n_1 \in M_1$ arbitrário; tome $n_{i+1} \in M_{i+1}$ com $n_{i+1} > n_i$, que é possível pois M_{i+1} é subconjunto infinito de $\mathbb N$). Assim $\{f_{n_i}(x)\}_{i=1}^{\infty}$ converge para todo $x \in D$ pois dado $k \in \mathbb N$, $n_i \in M_k$ para todo $i \geq k$. Como $\{n_i : i \in \mathbb N\} \subset M_0$, temos $\{f_{n_i}(x)\}_{i=1}^{\infty}$ convergente também para todo $x \in C$. Segue-se que $\{f_{n_i}(x)\}_{i=1}^{\infty}$ converge para todo $x \in \mathbb R$.

Suponha agora f contínua, ou seja, que $D = \emptyset$. Queremos concluir que, em subconjuntos compactos de \mathbb{R} a convergência de f_{m_n} em f é uniforme. Para facilitar na manipulação dos índices, ponha $g_n = f_{m_n}$. Temos então uma sequência $\{g_n\}_{n=1}^{\infty}$ de funções reais definidas em todo \mathbb{R} monótonas não decrescentes, limitadas entre 0 e 1 convergindo pontualmente para f, que é contínua. Queremos mostrar que, dado $K \subset \mathbb{R}$ compacto não vazio, temos $g_n \to f$ uniformemente em K. Seja $\varepsilon > 0$ arbitrário. Seja $x \in K$. existe $\delta = \delta(x)$ tal que $f(B(x, \delta)) \subset$ $f(B(f(x), \varepsilon))$, da continuidade de f em x. Temos $f(x-\delta/2)$, $f(x+\delta/2) \in B(f(x), \varepsilon)$. Seja $n_0=n_0(x)\in\mathbb{N}$ tal que $g_n(x-\delta/\!2)>f(x)-\epsilon$ e $g_n(x+\delta/\!2)< f(x)+\epsilon$ para todo $n \geq m_0$. Como $K = \bigcup_{x \in S} B(x, \delta(x)/2)$, existem $x_1, x_2, ..., x_k \in K$ tais que, pondo $\delta_i = \delta(x_i)$ para $i \in \{1, 2, ..., k\}, K = B(x_1, \delta_1/2) \cup ... \cup B(x_k, \delta_k/2).$ Ponha $n_0 = \max\{m_0(x_1), m_0(x_2), ..., m_0(x_k)\}$. Seja $n \in \mathbb{N}$ com $n \ge n_0$. Seja $x \ \in \ K. \ \ Seja \ i \ \in \ \{1,2,...,k\} \ tal \ que \ x \ \in \ B(x_i,{}^{\delta_i}\!/\!2). \ \ Temos \ f(x_i) \ - \ \epsilon \ \leq$ $g_n(x_i - \delta_i/2) \le g_n(x) \le g_n(x_i + \delta_i/2) \le f(x_i) + \varepsilon$ e, além disso, $f(x) \in B(f(x), \varepsilon)$ pois $x \in B(x_i, \delta_i)$. Logo $|g_n(x) - f(x)| \le 2\varepsilon$. A arbitrariedade de $\varepsilon > 0$ implica na tese.

15 Rudin1 - C7E15

Sejam $f: \mathbb{R} \to \mathbb{R}$ e $f_n: \mathbb{R} \to \mathbb{R}$ (n=1,2,...) com, para todo $n \in \mathbb{N}$ e $x \in \mathbb{R}$, $f_n(x) = f(nx)$. Suponha f contínua e $\{f_n\}_{n=1}^{\infty}$ equicontínua em [0,1]. O que pode

ser concluído sobre f?

15.1 Resolução

Pode-se provar o seguinte. Dado $f: \mathbb{R} \to \mathbb{R}$ contínua. Defina $f_n: \mathbb{R} \to \mathbb{R}$ para cada $n \in \mathbb{N}$ dada por $f_n(x) = f(nx)$. Então são equivalentes:

- 1. f(x) = f(0) para todo $x \in [0, \infty)$.
- 2. Existe $a \in (0, \infty)$ tal que $\{f_n\}_{n=1}^{\infty}$ é equicontínua em [0, a].

É claro que, no caso afirmativo, então tem-se que para todo a > 0, $\{f_n\}_{n=1}^{\infty}$ é equicontínua em [0, a].

Observação 15.1.1. A continuidade de f é imaterial aqui. Esquisito.

Que (1) implica em (2) é óbvio. Que (2) implica em (1) segue do seguinte fato. Seja $x \in \mathbb{R}$ com x > 0. Seja $\varepsilon > 0$ arbitrário e $\delta > 0$ da equicontinuidade de $\{f_n\}_{n=1}^{\infty}$. Seja $n \in \mathbb{N}$ tal que $x/n \in (0, \delta) \cap (0, 1/2)$. Assim $|f_n(x/n) - f_n(0)| < \varepsilon$, ou seja, $|f(x) - f(0)| < \varepsilon$. Sendo $\varepsilon > 0$ qualquer, tem-se f(x) = f(0).

Concluí-se que tudo que pode ser dito sobre f é que é constante na parte não negativa de \mathbb{R} . Fora isso, f pode ser qualquer coisa (desde que seja contínua). Pegue, por exemplo, a função $g:\mathbb{R}\to\mathbb{R}$ mais esquisita que você conhece. Ponha f(x)=g(x) para $x\leq 0$ e ponha f(x)=g(0) para todo $x\geq 0$. Segue-se que $\{f_n\}_{n=1}^\infty$ é equicontínua em [0,1].

16 Rudin - C7E25

Q. Seja $\phi:[0,1]\times\mathbb{R}\to\mathbb{R}$ limitada e contínua. Dado $c\in\mathbb{R}$, mostre que existe $y:[0,1]\to\mathbb{R}$ tal que $y'(x)=\phi(x,y(x))$ para todo $x\in[0,1]$ e y(0)=c.

Observação 16.0.1. Seguiremos a dica do livro.

16.1 Resolução

Dado $n \in \mathbb{N}$ e $i \in \{0,1,2,...,n\}$, defina $x_i^n = \frac{i}{n}$. Defina também indutivamente c_i^n da seguinte forma: $c_0^n = c$ e $c_{i+1}^n = \varphi(x_i^n,c_i^n)(x_{i+1}^n - x_i^n) + c_i^n$ para todo $i \in \{0,1,2,...,n-1\}$. Ponha $\alpha_i^n = \varphi(x_i^n,c_i^n)$. Defina $f_n:[0,1] \to \mathbb{R}$ dada por $f_n(t) = \alpha_i^n(t-x_i^n) + c_i^n$ para $t \in [x_i^n,x_{i+1}^n)$ sendo $f_n(1) = c_n^n$. Temos $f_n(x_i^n) = c_i^n$. É claro que f_n é contínua em cada (x_i^n,x_{i+1}^n) pois coincide com uma função afim nestes intervalos abertos. É de fácil verificação que $f_n(x_i^n+) = c_i^n$ (para i < n) e que $f_n(x_i^n-) = c_i^n$ também (para i > 0). Isso implica que f_n é contínua. Além disso, temos $f_n'(t) = \alpha_i = \varphi(x_i^n,c_i^n) = \varphi(x_i^n,f_n(x_i^n))$ para todo $t \in (x_i^n,x_{i+1}^n)$.

Defina agora $\Delta_n:[0,1]\to\mathbb{R}$ dada por $\Delta_n(t)=f_n'(t)-\varphi(t,f_n(t))$ para todo $t\in(x_i^n,x_{i+1}^n),\,i\in\{0,1,2,...,n-1\},$ e ponha $\Delta_n(x_i^n)=0.$

É claro que ϕ , f_n , Δ_n são todas Riemann integráveis (ϕ é contínua e f_n , Δ_n são contínuas por partes). O teorema fundamental do cálculo dá que para todo $x \in [0, 1]$, temos

$$f(x) = c + \int_0^x [\phi(t, f_n(t)) + \Delta_n(t)] dt.$$

Agora vamos às verificações do item (a). Temos φ limitada. Seja $M \in \mathbb{R}$ uma cota superior para φ . Em todo ponto $t \in [0,1]$ em que f_n , para qualquer $n \in \mathbb{N}$ que seja, é derivável, $f'_n(t) = \alpha^n_i$ para algum $i \in \{0,1,2,...,n-1\}$ e, logo, $|f'_n(t)| \leq M$. A desigualdade triangular dá que $\Delta_n(t) \leq 2M$ para todo $t \in [0,1]$ (caso $t = x^n_i$ para algum $i \in \{0,1,2,...,n\}$, temos $\Delta_n(t) = 0$ por definição). É relativamente fácil ver que $|f(t)| \leq |c| + M$ para todo $t \in [0,1]$, mas isso é um pouco chato de se justificar por escrito. Além disso, mais óbvio que isso é que $|f(t)| \leq |c| + 3M(x - 0) \leq |c| + 3M$ e este fato, para os propósitos da resolução do problema, é tão bom quanto o outro. Só para deixar claro, suponha

que $x \in (x_i^n, x_{i+1}^n)$, para $n \in \mathbb{N}$ e $i \in \{0, 1, 2, ..., n-1\}$, daí:

$$\begin{split} |f(x)| & \leq |c| + \sum_{j=0}^{i-1} \left(\int_{x_j^n}^{x_{j+1}^n} |\alpha_j^n| dt \right) + \int_{x_i^n}^{x} |\alpha_i^n| dt \\ & \leq |c| + \left(\sum_{j=0}^{i-1} M |x_{j+1}^n - x_j^n| \right) + |x - x_i^n| M \\ & = |c| + M(x - 0) \leq |c| + M \end{split}$$

A continuidade de f_n resolve os casos em que $x = x_i^n$ (para algum par i, n que faça sentido). Perceba que em cada $[x_j^n, x_{j+1}^n]$, para $n \in \mathbb{N}$ e $j \in \{0, 1, 2, ..., n-1\}$, exceto nos extremos do intervalo, f_n coincide com uma função afim de coeficiente linear α_i^n , o que justifica as contas feitas acima. O que importa é que existe $M_1 > 0$ tal que $|f(t)| \leq M_1$ para todo $t \in [0, 1]$. Isso termina as verificações do item (a).

O item (b) nos pede para mostrar que $\{f_n\}_{n=1}^{\infty}$ é equicontínua. De fato, para todo $n\in\mathbb{N}$ e para todo $i\in\{0,1,2,...,n-1\}$, temos f_n lipschitziana em $[x_i^n,x_{i+1}^n]$ com constante de lipschitz M. Isso implica na equicontinuidade de $\{f_n\}_{n=0}^{\infty}$. Vamos fazer o argumento aqui. Seja $\epsilon>0$ arbitrário e seja $\delta=\min\{\delta_0,\frac{\epsilon}{2M+2}\}$, sendo $\delta_0=\min\{x_{i+1}^n-x_i^n:i\in\{0,1,2,...,n-1\}\}$. Sejam agora $t_1,t_2\in[0,1]$ com $|t_2-t_1|<\delta$ e $n\in\mathbb{N}$. Sem perda de generalidade, assuma $t_1\leq t_2$. Caso haja $i\in\{0,1,2,...,n-1\}$ tal que $t_1,t_2\in[x_i^n,x_{i+1}^n]$, então $|f_n(t_2)-f_n(t_1)|\leq M|t_2-t_1|<\epsilon$. Caso não haja tal i, sejam $i_1,i_2\in\{0,1,2,...,n-1\}$ tal que $t_1\in[x_{i_1}^n,x_{i_1+1}^n]$ e $t_2\in[x_{i_2}^n,x_{i_2+1}^n]$. Por $|t_1-t_2|\leq\delta_0$ e por $t_2\geq t_1$, temos $i_2=i_1+1$ e, daí, usando a desigualdade triangular e comparando $f(t_1)$ com $f(x_{i_1+1}^n)$ e comparando $f(t_2)$ com $f(x_{i_2}^n)$, segue-se que $|f_n(t_2)-f_n(t_1)|\leq |f_n(t_2)-f_n(x_{i_2}^n)|+|f_n(t_1)-f_n(x_{i_1+1}^n)|\leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.

O item (c) é a utilização do teorema 7.25 do livro. $\{f_n\}_{n=1}^{\infty}$ é limitada pontualmente pois é limitada uniformemente, como foi visto em (a). Denote por $\mathbb{N} \subset \mathbb{N}$ o subconjunto infinito de \mathbb{N} tal que $\{f_n\}_{n\in\mathbb{N}}$ converge. Denote f o limite de convergência uniforme de $\{f_n\}_{n\in\mathbb{N}}$. Ponha $n:\mathbb{N}\to\mathbb{N}$ bijeção crescente.

Com relação ao item (**d**), ponha, para cada $n \in \mathbb{N}$, $g_n : [0, 1] \times [-M_1, M_1] \rightarrow$

 $\begin{tabular}{l} \begin{tabular}{l} \begi$

Sobre o (e), usamos a equicontinuidade de $\{f_n\}_{n=1}^\infty$ e a continuidade uniforme de φ em K. Seja $\epsilon>0$. Seja δ_1 da continuidade uniformente de φ em K de acordo com a norma do máximo para ϵ . Seja δ_2 da equicontinuidade de $\{f_n\}_{n=1}^\infty$ para δ_1 . Seja $n_0\in\mathbb{N}$ tal que $\frac{1}{n_0}<\min\{\delta_1,\delta_2\}$. Seja agora $t\in[0,1]$ e $n\geq n_0$. Seja $i\in\{0,1,2,...,n-1\}$ tal que $t\in(x_i^n,x_{i+1}^n)$ (lembrando que $\Delta_n(x_j^n)=0$ qualquer que seja $j\in\{0,1,2,...,n\}$). Temos $|\Delta_n(t)|=|\varphi(x_i^n,f_n(x_i^n))-\varphi(t,f_n(t))|<\epsilon$. Logo $\Delta_n\to 0$ uniformemente $(n\in\mathbb{N};$ note que é \mathbb{N} e não somente N).

Finalizando, temos o item (f). Temos $f_n(x)=c+\int_0^x [g_n(t)+\Delta_n(t)]dt$ para todo $n\in N$. Temos $g_n+\Delta_n\to g$ uniformemente em [0,1] $(n\in N)$. logo, para qualquer que seja $x\in [0,1]$, temos $\int_0^x [g_n(t)+\Delta_n(t)]dt\to \int_0^x g(t)dt$ $(n\in N)$. Logo, para todo $x\in [0,1]$, temos (fazendo o limite $n\to\infty, n\in N$):

$$f(x) \leftarrow f_n(x) = c + \int_0^x [g_n(t) + \Delta_n(t)] dt \rightarrow c + \int_0^x g(t) dt = c + \int_0^x \varphi(t, f(t)) dt.$$

Isso implica em f(0) = c e f diferenciável pelo Teorema Fundamental do Cálculo com $f'(t) = \varphi(t, f(t))$ para todo $t \in [0, 1]$.

Observação 16.1.1. Sobre C7E26, use um dos exercícios deste capítulo que pede para extender os teoremas para situações mais gerais. Vários deles podem ser

usados para a situação de várias variáveis. A argumentação é essencialmente uma adaptação direta do que foi feito aqui.

17 Elinho2_4ed - C2S4E1

Q. Seja $f: [a,b] \to \mathbb{R}^n$ um caminho de classe C^1 com f(a) = A e f(b) = B. Se o comprimento l(f) = |B - A|, prove que f é uma reparametrizção do caminho retilíneo [A,B].

17.1 Resolução

Primeiro, suponha por absurdo que há $P \in f([\alpha,b])$ tal que $P \notin [A,B]$. Seja $t_1 \in [\alpha,b]$ tal que f(t)=P. considere a partição $\mathcal{P}=\{t_0,t_1,t_2\}$ dada por $t_0=\alpha$ e $t_2=b$. Temos $|B-A| \leq l(f,\mathcal{P}) \leq l(f) \leq |B-A|$. Porém, $l(f,\mathcal{P})=|A-P|+|P-B|$ com P fora do segmento ligando A, B e, assim, não podemos ter $l(f,\mathcal{P}) \leq |B-A|$.

Assim, $f(t) \in [A,B]$ para todo $t \in [\alpha,b]$. Assuma $B \neq A$ (o caso B=A será tratado no final). Dado então $t \in [\alpha,b]$, existe um número $k_t \in [0,1]$ tal que $f(t) = A + k_t V$, sendo $V = B - A \neq 0$. Defina $\varphi : [\alpha,b] \to [0,1]$ dada por $\varphi(t) = k_t$. Temos

$$\phi(t) = \frac{\langle f(t) - A, V \rangle}{|V|^2}.$$

Assim, como f é C^1 , temos φ C^1 também. Ponha $h:[0,1]\to R^n$ dada por h(t)=A+tV. Temos $f=h\circ\varphi$. Sendo φ C^1 , resta ver que $\varphi'(t)\geq 0$ para todo $t\in [\alpha,b], \varphi(\alpha)=0$ e $\varphi(b)=1$ para mostrar que f é uma reparametrização do caminho retilíneo [A,B] (veja a definição de reparametrização de um caminho no livro).

Note que $f(a) = A = A + \varphi(a)V$, ou seja, $\varphi(a) = 0$. Além disso $f(b) = B = A + \varphi(b)V$. Assim $B = \varphi(b)B + A - \varphi(b)A$ e, logo, $0 = -B + \varphi(b)B + A - \varphi(b)A = (\varphi(b) - 1)(B - A) = (\varphi(b) - 1)V$, ou seja, $\varphi(b) = 1$. Suponha por absurdo que existe $t_1 \in [a, b]$ tal que $\varphi'(t_1) < 0$. Assim, pela continuidade de φ' , existe $\delta > 0$ tal que φ' é toda negativa em $J = (t_1 - \delta, t_1 + \delta) \cap [a, b]$.

Isso implica φ ser estritamente decrescente em J, o que implica em ser impossível $t_1=\alpha$ ou $t_1=b$ (pois $\varphi(\alpha)=0$ e $\varphi(b)=1$ e a imagem de φ é subconjunto de [0,1]). Existem então $r_1,r_2\in J$ com $r_1< r_2$ e $\varphi(r_1)>\varphi(r_2).$ Ponha $r_0=\alpha$ e $r_3=b.$ Ponha também $R_i=f(r_i)=A+\varphi(r_i)V,$ para $i\in\{1,2\}.$ Considere a partição $\mathcal{Q}=\{r_0,r_1,r_2,r_3\}.$ Temos $|B-A|\leq l(f,\mathcal{Q})\leq l(f)=|B-A|,$ só que temos $l(f,\mathcal{Q})=|A-R_1|+|R_1-R_2|+|R_2-B|.$ Fazendo esta conta, temos:

$$\begin{split} |A-R_1| &= |A-A-\varphi(r_1)V| = \varphi(r_1)|V| \\ |R_1-R_2| &= |A+\varphi(r_1)V-A-\varphi(r_2)V| \\ &= |\varphi(r_1)-\varphi(r_2)||V| \\ &= (\varphi(r_1)-\varphi(r_2))V \\ |B-R_2| &= |B-A-\varphi(r_2)V| \\ &= |A+V-A-\varphi(r_2)V| \\ &= |\varphi(b)V-\varphi(r_2)V| \\ &= |\varphi(b)-\varphi(r_2)||V| \\ l(f,\mathcal{Q}) &= \varphi(r_1)|V| + (\varphi(r_1)-\varphi(r_2))V + (\varphi(b)-\varphi(r_2))|V| \\ &= 2\varphi(r_1)|V| - 2\varphi(r_2)|V| + \varphi(b)|V| \\ &= 2(\varphi(r_1)-\varphi(r_2))|V| + |V| \\ &> |V| &= |B-A|. \end{split}$$

Sendo que a última desigualdade vem de $\phi(r_1) > \phi(r_2)$.

Assim, é um absurdo haver $t_1 \in [a,b]$ tal que $\varphi'(t_1) < 0$. Segue-se que $\varphi'(t) \geq 0$ para todo $t \in [a,b]$. Isso resolve a questão.

O caso B=A é um caso degenerado e trivial já que $f(t)\in [A,B]$ para todo $t\in [\alpha,b]$. No caso B=A, f é a função constante f(t)=A, que é uma parametrização do segmento [A,B], e óbvio, também é uma reparametrização do segmento [A,B] onde $\varphi:[\alpha,b]\to\{0\}$ pode ser tomado como uma função constante. $\varphi(t)=0$. Daí $f=h\circ\varphi$ sendo $h:\{0\}\to[A,B]$ dada por h(t)=A+tV, com V=B-A=0. No caso em que $b>\alpha$, temos φ C^1 de derivada não nega-

tiva. No caso em que $\alpha = b$, não faz sentido em falar de f ser reparametrização de alguma coisa de acordo com a definição do Elon dada no capítulo (isso pois a função φ de reparametrização estaria definida num intervalo degenerado de um único ponto, e logo, não faria sentido falar de φ ser C^1).

18 Elão - C10E13

Q. Mostre que não existe uma sequência de funções contínuas $f_n:[0,1]\to\mathbb{R}$ convergindo simplesmente para a função $f:[0,1]\to\mathbb{R}$ dada por $f(x)=\chi_{\mathbb{R}\setminus\mathbb{Q}}(x)$.

18.1 Resolução

Observação 18.1.1. Baseado na resolução oferecida aqui: https://mathoverflow.net/questions/325352/ can-the-characteristic-function-of-a- borel-set-be-approached-by-a-sequence-of-co/325355

Dado $n \in \mathbb{N}$, defina $C_n = \left\{x \in [0,1] : \forall m \geq n, |f_n(x) - f_m(x)| \leq \frac{1}{3}\right\}$. A continuidade das f_n para todo $n \in \mathbb{N}$ dá que C_n é fechado para todo $n \in \mathbb{N}$. Suponha que haja $n \in \mathbb{N}$ tal que int $C_n \neq \emptyset$. Existem então $a, b \in (0,1)$ com a < b tais que $(a,b) \subset C_n$. Seja $q \in \mathbb{Q} \cap C_n$. Temos duas possibilidades. Se $|f_n(q)| > \frac{1}{3}$, então para todo $m \geq n$, temos

$$\begin{split} |f_m(q)| &= |-f_n(q) - f_m(q) + f_n(q)| \\ &= |(-f_n(q)) - (f_m(q) - f_n(q))| \\ &\geq |-f_n(q)| - |f_m(q) - f_n(q)| \\ &\geq |f_n(q)| - \frac{1}{3} \end{split}$$

Isso contradiz $\lim_{m\to\infty} f_m(q) = 0$. Se $|f_n(q)| < \frac{1}{3}$, existe $y \in (a,b)$ com $|f_n(y)| < \frac{1}{2}$ e y irracional pela continuidade de f_n e pela densidade dos irracionais em \mathbb{R} . Assim, para todo $m \ge n$, temos

$$|f_{\mathfrak{m}}(y)| \leq |f_{\mathfrak{m}}(y) - f_{\mathfrak{n}}(y)| + |f_{\mathfrak{n}}(y)|.$$

Sendo $y \in (a,b) \subset C_n$, temos $|f_m(y) - f_n(y)| \leq \frac{1}{3}$. Daí $|f_m(y) \leq \frac{1}{3} + \frac{1}{2}$. Isso contradiz $\lim_{m \to +\infty} |f_m(y)| = 1$. Assim, não podemos ter int $C_n \neq \emptyset$.

Finalmente, $[0,1]=\bigcup_{n=1}^\infty C_n$. De fato, dado $x\in [0,1],$ $\{f_n(x)\}_{n=1}^\infty$ é uma sequência de Cauchy.

Isso tudo contradiz o Teorema de Baire, que diz que é o conjunto vazio o interior de uma união enumerável de conjuntos fechados de interior vazio.

19 Elão - C10E24

Q. Sejam $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$ dados. Seja $\{f_n\}_{n=1}^{\infty}$, $f_n: X \to \mathbb{R}$, uma sequência dada de funções reais contínuas satisfazendo $\lim_{n \in \mathbb{N}} f_n(x_n) = f(\alpha)$ para toda sequência $\{x_n\}_{n=1}^{\infty}$ de números em X que converge para um número $\alpha \in X$. Mostre que se $K \subset X$ é um compacto, então $f_n \to f$ uniformemente em K.

19.1 Resolução

Observe que é claro que $f_n \to f$ simplesmente em X pois para cada $\alpha \in X$, podemos tomar a sequência de entradas todas iguais a α .

Primeiramente, vamos mostrar que f é contínua. Seja $\alpha \in X$. Suponha que f não seja contínua em α . Existe então $\{x_n\}_{n=1}^\infty$ uma sequência de números em X com $\lim_{n\in\mathbb{N}}x_n=\alpha$ e $\epsilon>0$ tal que para todo $n\in\mathbb{N}$, tem-se $\epsilon\leq |f(x_n)-f(\alpha)|$. Para todo $p,n,k\in\mathbb{N}$, temos o seguinte (pela desigualdade triangular).

$$\begin{split} |f(x_n) - f(a)| \leq & |f(x_n) - f_k(x_n)| + |f_k(x_n) - f_k(x_p)| + |f_k(x_p) - f_n(x_p)| + \\ & |f_n(x_p) - f_n(x_n)| + |f_n(x_n) - f(a)| \end{split}$$

Faça o seguinte agora.

1. Tome $n_0 \in \mathbb{N}$ tal que $|f(\alpha) - f_{n_0}(x_{n_0})| \leq \frac{\varepsilon}{10}$ e tal que $|f_n(\alpha) - f_m(\alpha)| \leq \frac{\varepsilon}{11}$ para todo $m, n \in \mathbb{N}$ com $m, n \geq n_0$ (note que $(f_i(\alpha))_{i \in \mathbb{N}}$ é uma sequência que converge para $f(\alpha)$ e, logo, é de Cauchy).

- 2. Tome $k_0 \in \mathbb{N}$ com $k_0 \ge n_0$ tal que $|f(x_{n_0}) f_{k_0}(x_{n_0})| \le \frac{\epsilon}{10}$. Existe tal k_0 pois a sequência $(f_i(x_{n_0}))_{i \in \mathbb{N}}$ é convergente e converge para $f(x_{n_0})$.
- 3. Tanto f_{k_0} quanto f_{n_0} são contínuas em x_{n_0} . Tome então $\delta>0$ tal que para todo $y\in X\cap (x_{n_0}-\delta,x_{n_0}+\delta)$, tem-se $|f_{k_0}(x_{n_0})-f_{k_0}(y)|\leq \frac{\epsilon}{10}$ e $|f_{n_0}(x_{n_0})-f_{n_0}(y)|\leq \frac{\epsilon}{10}$.
- $\begin{array}{l} \text{4. Temos } \lim_{p \in \mathbb{N}} |f_{k_0}(x_p) f_{n_0}(x_p)| \, = \, |f_{k_0}(\alpha) f_{n_0}(\alpha)| \, \leq \, \frac{\epsilon}{11} \, \, (\text{ver (1)}). \ \, \text{Tome} \\ \text{então } p_0 \in \mathbb{N} \text{ tal que } p_0 \geq n_0, \, |x_{p_0} x_{n_0}| \leq \delta \, e \, |f_{k_0}(x_{p_0}) f_{n_0}(x_{p_0})| \leq \frac{\epsilon}{10}. \end{array}$

Com isso, podemos concluir o seguinte.

$$\circ |f(x_{n_0}) - f_{k_0}(x_{n_0})| \le \frac{\varepsilon}{10} \text{ por } (2).$$

$$\circ \ |f_{k_0}(x_{n_0}) - f_{k_0}(x_{p_0})| \leq \tfrac{\epsilon}{10} \ por \ (4) \ e \ por \ (3).$$

$$\circ |f_{k_0}(x_{p_0}) - f_{n_0}(x_{p_0})| \le \frac{\epsilon}{10} \text{ por } (4).$$

$$\circ |f_{n_0}(x_{p_0}) - f_{n_0}(x_{n_0})| \le \frac{\varepsilon}{10} \text{ por } (4) \text{ e } (3).$$

$$\circ \ |f_{\mathfrak{n}_0}(x_{\mathfrak{n}_0}) - f(\mathfrak{a})| \leq \tfrac{\epsilon}{10} \text{ por } (1).$$

Logo $\epsilon \leq |f(x_{n_0}) - f(\alpha)| \leq \frac{\epsilon}{2}$, uma contradição. Logo f só pode ser contínua em α . Sendo $\alpha \in X$ arbitrário, temos f contínua em X.

Seja agora K \subset X compacto. Suponha que $f_n \to f$ uniformemente não seja verdade. Existe então $\epsilon > 0$ e uma sequência $(n_i)_{i \in \mathbb{N}}$ crescente de índices e números $x_i \in K$ tais que $|f_{n_i}(x_i) - f(x_i)| \geq \epsilon$. Sendo K compacto, podemos extrair uma subsequência $(x_{i_j})_{j \in \mathbb{N}}$ de $(x_i)_{i \in \mathbb{N}}$ tal que $x_{i_j} \to a \in K$. Logo, temos: $\epsilon \leq |f_{n_{i_j}}(x_{i_j}) - f(x_{i_j})|$ para todo $j \in \mathbb{N}$. Defina $y_m = x_{i_j}$ para todo $n_{i_{j-1}} < m \leq n_{i_j}$ para j > 1 e $y_m = x_{i_1}$ para todo $1 \leq m \leq n_{i_1}$. É claro que $y_m \to a$ (para $m \to +\infty$) pois $x_{i_j} \to a$ (para $j \to +\infty$). Assim $f_m(y_m) \to f(a)$ (para $m \to +\infty$). Isso implica em $f_{n_{i_j}}(y_{n_{i_j}}) \to f(a)$ (para $j \to +\infty$), só que $f_{n_{i_j}}(y_{n_{i_j}}) = f_{n_{i_j}}(x_{i_j})$ para todo $j \in \mathbb{N}$. Assim $f_{n_{i_j}}(x_{i_j}) \to f(a)$ (para $j \to +\infty$). Isso tudo implica em $|f_{n_{i_j}}(x_{i_j}) - f(x_{i_j})| \to 0$ (para $j \to +\infty$), o que contradiz $\epsilon \leq |f_{n_{i_j}}(x_{i_j}) - f(x_{i_j})|$ para todo $j \in \mathbb{N}$. Logo $f_n \to f$ uniformemente em K.

Observação 19.1.1. Deve ter um jeito melhor de fazer isso.

20 Elão - C10E42

Q. Suponha que $a_n \ge 0$ para todo $n \in \mathbb{N}_0$. Seja r > 0. Suponha que para todo $x \in (-r,r)$, $\sum_{n=0}^{\infty} a_n x^n$ convirja. Seja $f: (-r,r) \to \mathbb{R}$ dada por $f(x) = \sum_{n=0}^{\infty} a_n x^n$. Suponha que exista $L \in \mathbb{R}$ tal que $\lim_{x \to r^-} f(x) = L$. Mostre que $\sum_{n=0}^{\infty} a_n r^n = L$.

20.1 Resolução

É uma consequência da discussão em volta do Teorema de Abel (neste mesmo capítulo) que basta mostrar que $\sum_{n=0}^{\infty} \alpha_n r^n$ converge. Isso é devido ao fato de que, caso $\sum_{n=0}^{\infty} \alpha_n r^n$ convirja, então o Teorema da Abel dá que a série de potências $\sum \alpha_n x^n$ converge uniformemente em [0,r], o que nos permite trocar a ordem do limite e concluir que $\sum_{n=0}^{\infty} \alpha_n r^n = L$.

Note que a não negatividade dos α_n nos dá que f é monótona não decrescente em [0,r). Daí

$$L=\lim_{x\to r^-}f(x)=\sup_{x\in(0,r)}f(x)=\sup_{x\in(0,r)}\sup_{K\in\mathbb{N}_0}\sum_{n=0}^K\alpha_nx^n.$$

Este fato (i.e. a cadeia de igualdades acima) não é usado diretamente na prova, mas veio dele a ideia para a resolução que segue.

Suponha então que $\sum_{n=0}^{K} \alpha_n r^n$ diverge. A não-negatividade dos termos dessa série implica na sequência $\left(\sum_{n=0}^{k} \alpha_n r^n\right)_{k \in \mathbb{N}_0}$ ser ilimitada. Existe então $k_0 \in \mathbb{N}$ tal que $\sum_{n=0}^{k_0} \alpha_n r^n > L+1$. Como $\lim_{x \to r^-} \sum_{n=0}^{k_0} \alpha_n x^n = \sum_{n=0}^{k_0} \alpha_n r^n$, há $x_0 \in (0,1)$ tal que $\sum_{n=0}^{k_0} \alpha_n x_0^n > L+\frac{1}{2}$. Logo para todo $k > k_0$, temos $\sum_{n=0}^{k} \alpha_n x_0^n > L+\frac{1}{2}$ e, assim, $f(x) \geq f(x_0) \geq L+\frac{1}{2}$ para todo $x \in (x_0,1)$. Estamos usando a monotonicidade de f para dizer que $f(x) \geq f(x_0)$ e a arbitrariedade de $k > k_0$ para dizer que $f(x_0) \geq L+\frac{1}{2}$. Isso contradiz $\lim_{x \to r^-} f(x) = L$.

21 Elão - C10E45

Q. Um conjunto de polinômios de grau $\leq k$ ($k \in \mathbb{N}$), uniformemente limitado num conjunto compacto infinito ou finito com mais do que k+1 elementos, é equicontínuo nesse conjunto.

22 Resolução

Esta resolução usa certos fatos de álgebra linear que não serão provados aqui.

Seja $X \subset \mathbb{R}$ o conjunto compacto em questão. Seja $M \in (0,\infty)$ que uniformemente limita o conjunto de polinômios em questão. Sejam $x_0, x_1, ..., x_k$ k+1 elementos dois-a-dois distintos de X. Seja $p(x) = \sum_{i=0}^k \alpha_i x^i$ uma função polinomial arbitraria de grau $\leq k$ com $\alpha_i \in \mathbb{R}$ para todo $i \in \{0, 1, 2, ..., k\}$ e com $|p(x)| \leq M$ para todo $x \in X$.

Seja $X_i=(1,x_i,x_i^2,...,x_i^k)$. É um fato conhecido da álgebra linear que, por $x_0,x_1,x_2,...,x_k$ serem dois-a-dois distintos, os vetores $X_0,X_1,...,X_k$ formam um uma base para o \mathbb{R}^{k+1} . Assim, para cada $i\in\{1,2,...,k+1\}$. Existem $b_0^i,b_1^i,...,b_k^i\in\mathbb{R}$ tal que $e_i=\sum_{j=0}^kb_j^iX_j$. Ponha $B=\max_{i\in\{1,2,...,k+1\},j\in\{0,1,2,...,k\}}|b_j^i|$. Dado então $i\in\{1,2,...,k+1\}$, temos $|a_{i-1}|=|\langle(a_0,a_1,...,a_k),e_i\rangle|=\left|\sum_{j=1}^kb_j^ip(x_j)\right|\leq BM$. Perceba que esta limitação serve para qualquer coeficiente de qualquer função polinomial de grau $\leq k$ limitada por M em $\{x_0,x_1,...,x_k\}$.

A conclusão do problema agora vem do seguinte fato. Dados $x, y \in X$ e qualquer função polinomial p limitada por M em X, temos

$$|p(x) - p(y)| \le BM \sum_{i=0}^{k} |x^{i} - y^{i}|.$$

Fixado então $y \in X$ e dado $\varepsilon > 0$, escolha $\delta > 0$ de modo que $BM \sum_{j=0}^k |x^j - y^j| < \varepsilon$ para todo $x \in (y - \delta, y + \delta)$, que existe pois $x \in \mathbb{R} \mapsto BM \sum_{j=0}^k |x^j - y^j|$ é uma função contínua que mapeia y em 0.

23 Elão - C10E48

Q. Uma sequência simplesmente limitada de funções monótonas $\{f_n\}_{n=1}^{\infty}$ com domínio e contra-domínio \mathbb{R} possui necessariamente uma subsequência que converge fracamente para uma função monótona.

24 Resolução

Aplique o Teorema de Cantor-Tychonov para $\{f_n\}_{n=1}^\infty$ e $\mathbb Q$. Obtenha $N\subset \mathbb N$ infinito tal que $(f_n)_{n\in N}$ converge. Denote por $\varphi:\mathbb Q\to\mathbb R$ a função limite de $(f_n)_{n\in N}$. Note que para $n\in N$, f_n é monótona não decrescente ou então f_n é monótona não crescente. Existem infinitos índices em N tal que f é de um mesmo tipo de monotonicidade. Sem perda de generalidade, então, assuma que para todo $n\in N$, f_n é monótona não decrescente. Isso nos dá trivialmente que φ é monótona não decrescente também. Defina $f(x)=\inf_{y\geq x;y\in\mathbb Q}\varphi(y)$. Por φ ser monótona não decrecente, temos f também monótona não decrescente. f, em $\mathbb Q$, coincide com φ e, assim, $(f_n)_{n\in N}$ converge para f em $\mathbb Q$. Pelo problema 46, temos que $(f_n)_{n\in N}$ convergindo fracamente para f.

Seja agora $D \subset \mathbb{R}$ o conjunto de todos os pontos $x \in \mathbb{R}$ tais que f não é contínua pela direita em x. Defina $g : \mathbb{R} \to \mathbb{R}$ do seguinte modo. g(x) = f(x) para $x \in \mathbb{R} \setminus D$ e $g(x) = \inf_{y > x} f(y)$ para $x \in D$. Note que D é enumerável (por f ser monótona) e, assim, $\mathbb{R} \setminus D$ é denso em \mathbb{R} . Queremos ver agora que g é contínua pela direita, monótona não decrescente e também que g é descontínua em todo ponto de \mathbb{R} que f é decontinua. Isso terminará a resolução.

Primeiro, dados $x,y \in \mathbb{R}$ com x < y. Se $x,y \in D^c$, então $g(x) = f(x) \le f(y) = g(y)$. Se $x \in D$ e $y \notin D$, então $g(x) = \inf_{b > x} f(b) \le f(y) = g(y)$. Se $x \notin D$ e $y \in D$, então $g(x) = f(x) \le f(b)$ para todo b > y pela monotonicidade de f e por y > x. Assim $f(x) \le \inf_{b > y} f(b) = g(y)$ pela definição de ínfimo. No caso de $x,y \in D$, tome $d \in (x,y)$ com $d \notin D$ (D^c é denso em \mathbb{R}). Temos $g(x) \le g(d) \le g(y)$. Isso mostra que g é monótona.

Segundo, seja $d \in D$. f não é contínua pela direita em d. A monotonicidade

de f implica em f(d) < g(d). Como D^c é denso, para todo $\delta > 0$, há $x \in D^c$ tal que $x \in (d-\delta,d)$, o que implica em $g(x) = f(x) \le f(d) < g(d)$. Isso impossibilita g de ser contínua em d. Sendo $d \in D$ qualquer, g é descontínua em todos os pontos de D. Seja agora $d \in \mathbb{R}$ tal que f não é contínua em d pela esquerda. Se $d \in D$, temos g descontínua em d. Assuma então $d \notin D$. Assim, f é contínua em d pela direita e g(d) = f(d). Sendo f descontínua em d pela esquerda, existe $g \in \mathbb{R}$ tal que para todo $g \in \mathbb{R}$ 0. Isso impossibilita g de ser contínua em $g \in \mathbb{R}$ 1 pois dado $g \in \mathbb{R}$ 2 arbitrário, existe $g \in \mathbb{R}$ 3 e descontínua em $g \in \mathbb{R}$ 4. Isso termina a prova de que $g \in \mathbb{R}$ 5 descontínua em todos os pontos em que $g \in \mathbb{R}$ 6 descontínua. Assim, pela contra-positiva, temos que se $g \in \mathbb{R}$ 6 contínua em um certo ponto $g \in \mathbb{R}$ 9, então deve ser verdade que $g \in \mathbb{R}$ 4 também é contínua em $g \in \mathbb{R}$ 5. Logo $g \in \mathbb{R}$ 6 converge fracamente para $g \in \mathbb{R}$ 6.

Para finalizar, vamos ver que g é contínua pela direita. Sejam $\varepsilon>0$ e $x\in\mathbb{R}$. Se $x\in D$, existe $y_0>x$ tal que $g(x)\leq f(y_0)< g(x)+\varepsilon$ (definição de ínfimo). Existe $y_1\in D^c\cap (x,y_0)$ pela densidade de D^c em \mathbb{R} . Logo $g(x)\leq g(y_1)=f(y_1)\leq f(y_0)< g(x)+\varepsilon$. A monotonicidade de g, agora, dá que para todo $y\in (x,y_1)$, temos $|g(x)-g(y)|<\varepsilon$. Se $x\notin D$, temos f contínua pela direita em x. Existe $\delta>0$ tal que para todo $y\in (x,x+\delta)$, vale $|f(x)-f(y)|<\varepsilon$. Seja $y_0\in D^c\cap (x,x+\delta)$. Dado agora $y\in (x,y_0)$, temos $|g(x)-g(y)|=g(y)-g(x)=g(y)-f(x)\leq g(y_0)-f(x)=f(y_0)-f(x)<\varepsilon$. De todo modo, g é contínua pela direita em x.

25 Elão - C10E50

Q. Dê exemplo de uma sequência equicontínua de funções $f_n : (0,1) \to (0,1)$ que não possua subsequeência uniformemente convergente em (0,1).

25.1 Resolução

Considere $f_n:(0,1)\to (0,1),$ para cada $n\in \mathbb{N},$ dada por $f_n(x)=x^n(1-x^n).$ Sendo

$$\lim_{n\to+\infty} f_n\left(\frac{n}{n+1}\right) = \frac{1}{e}\left(\frac{e-1}{e}\right),\,$$

e sendo $f_n \to 0$ simplesmente em (0,1), temos que nenhuma subsequência de $\{f_n\}_{n=1}^{\infty}$ converge uniformemente em (0,1).

Seja $x_0 \in (0, 1)$. Temos:

$$\begin{split} |f_n(x)-f_n(x_0)| &= |x^n(1-x^n)-x_0^n(1-x_0^n)| \\ &\leq |x^n-x_0^n|+|x^{2n}-x_0^{2n}| \\ &\leq |x^n-x_0^n|+|x^n-x_0^n||x^n+x_0^n| \\ &\leq 3|x^n-x_0^n| \\ &= 3|x-x_0||x^{n-1}+x_0x^{n-2}+...+x_0^{n-1}| \\ &= 3|x-x_0|(x^{n-1}+x_0x^{n-2}+...+x_0^{n-1}) \\ &\leq 3|x-x_0|(x^{n-1}+x^{n-2}+...+1) \\ &\leq 3|x-x_0|\frac{1}{1-x}. \end{split}$$

Seja $a,b \in (0,1)$ com $0 < \alpha < x_0 < b < 1$. Seja $m,M \in (0,\infty)$ tais que $m \le \frac{1}{1-x} \le M$ para todo $x \in [\alpha,b]$ (estamos usando aqui o Teorema de Weierstrass para funções contínuas definidas num conjunto compacto). Seja $\delta > 0$ tal que $(x_0 - \delta, x_0 + \delta) \subset (\alpha,b)$ e tal que $3\delta M < \epsilon$. Assim, para todo $x \in (x_0 - \delta, x_0 + \delta)$, temos $|f_n(x) - f_n(x_0)| \le 3|x - x_0|\frac{1}{1-x} \le 3\delta M < \epsilon$, não importando $n \in \mathbb{N}$ escolhido. Isso dá que $\{f_n\}_{n=1}^\infty$ é equicontínua em (0,1) pois $x_0 \in (0,1)$ tomado inicialmente é arbitrário.

26 Elão - C10E51

51.Q. Dada uma sequência de funções duas vezes deriváveis $f_n : I \to \mathbb{R}$, suponha que $f_n \to f$ simplesmente em I, que $(f'_n(\alpha))_{n \in \mathbb{N}}$ é limitada para algum $\alpha \in I$ e

que $(f''_n)_{n\in\mathbb{N}}$ é uniformemente limitada em I. Prove que f é C^1 .

Observação 26.0.1. Assumimos/Interpretamos aqui que I é um intervalo não trivial.

26.1 Resolução

Seja M>0 tal que para todo $n\in\mathbb{N}$ e para todo $x\in I$, tem-se $M\geq |f_n''(x)|$. Seja também A>0 tal que para todo $n\in\mathbb{N}$, tem-se $|f_n'(\alpha)|\leq A$.

Assuma primeiro que I é um intervalo compacto. Dados $t,u\in J$ e $n\in \mathbb{N}$, temos $|f_n'(t)-f_n'(u)|\leq |t-u|M$ pelo Teorema do Valor Médio. Além disso $|I|M\geq |f_n'(t)-f_n'(\alpha)|\geq |f_n'(t)|-A$. Sendo $n\in \mathbb{N}$ qualquer, concluímos que $(f_n')_{n\in \mathbb{N}}$ é equicontínua e equilimitada em I. Seja então $N\subset \mathbb{N}$ infinito tal que $(f_n')_{n\in \mathbb{N}}$ converge uniformemente para uma certa função $g:I\to \mathbb{R}$. Aplicando o teorema da convergência uniforme para sequência de derivadas, temos que $(f_n)_{n\in \mathbb{N}}$ converge uniformemente em I, e o faz para f (já sabemos que $(f_n)_{n\in \mathbb{N}}$ converge para f simplesmsnete em todo I), e também que a derivada deste limite uniforme é g. Assim, f é derivável em I e f'=g. Como f_n' é derivável para todo $n\in \mathbb{N}$, então é também contínua, o que dá g contínua (sendo limite uniforme de funções contínuas). Isso implica em f ser C^1 é I.

No caso geral de I não ser compacto, considere uma exaustão de I por intervalos compactos J_n , $n \in \mathbb{N}$, crescentes todos contendo α (i.e. considere uma sequeência de conjuntos J_n , $n \in \mathbb{N}$, com $J_n \subset J_{n+1}$ para todo $n \in \mathbb{N}$, sendo cada J_n um intervalo compacto subconjunto de I com $\alpha \in J_n$). Conclua que o $f|_{J_n}$ é C^1 para todo n. Isso implica em f ser C^1 em I.

27 Elão - C10E52

Q. Dada uma sequência de funções k+1 vezes deriváveis $f_n: I \to \mathbb{R}$, suponha que existam $a_0, a_1, ..., a_k \in I$ e c>0 tais que $|f_n^{(j)}(a_j)| \leq c$ para todo $n \in \mathbb{N}$, para todo $j \in \{0, 1, 2, ..., k\}$. Suponha também que a sequência $(f_n^{(k+1)})_{n \in \mathbb{N}}$ seja uniformemente limitada em I. Prove que existe uma subsequência de $\{f_n\}_{n=1}^{\infty}$

que converge, juntamente das duas k primeiras derivadas uniformemente em cada parte compacta de I.

28 Resolução

Não faremos a solução em detalhe aqui, mas a ideia é a que segue. Primeiro suponha I compacto. Faça uma prova por indução em k. Para o caso k=1, essencialmente repita a resolução do problema 51 acima. O passo indutivo também segue a mesma linha de pensamento.

Para o caso geral em que I não necessariamente é compacto, use um argumento de diagonal parecido com o que foi feito na demonstração do Corolário do Teorema 22 do capítulo 10. Aqui, será necessário tomar compactos $J_1, J_2, ...$ subconjuntos de I com $J_n \subset J_{n+1}$ para todo $n \in \mathbb{N}$ possuindo a seguinte propriedade: se $K \subset I$ é compacto, então há $n_0 \in \mathbb{N}$ tal que $K \subset J_{n_0}$. No caso I aberto, a demonstração do Corolário do Teorema 22 do capítulo 10 te dá como que se faz isso. No caso de I não aberto e não compacto, então I possui um dos seguintes formatos: $[\mathfrak{a},\mathfrak{b}), [\mathfrak{a},\infty), (\mathfrak{a},\mathfrak{b}]$ ou então $(-\infty,\mathfrak{b}]$. Mostre como se pode conseguir uma tal coleção $\{J_n\}_{n=1}^\infty$ como desejada em cada um desses casos. Após obter $\{J_n\}_{n=1}^\infty$ como acima, aplique o argumento da diagonal, de novo na demonstração do Corolário do Teorema 22 do capítulo 10.

29 Elão - C10E53

Q. Demonstre o Corolário do Teorema 22 para intervalos arbitrários (abertos ou não) I $\subset \mathbb{R}$.

29.1 Resolução

Considere a ideia de resolução do problema C10E52 dada acima.

Alternativamente, perceba que no caso I não aberto e I não compacto, então I sempre pode ser posto como a união de dois intervalos com um deles aberto e

o outro compacto (por exemplo, $[0,1) = [0,1/2] \cup (1/10,1)$). Veja a lista dos 4 tipos de intervalos não abertos e não compactos acima (na resolução do problema 52) para ver como que isso pode ser feito em cada um dos casos. Aplique então o Corolário tradicional para o intervalo que é aberto. Use então Arzela-Áscoli agora sobre a subsequência encontrada e o compacto. Obtenha outra subsequência (que agora vale para qualquer parte compacta da união destes dois intervalos).