Computational Physics (PHYS514) Final Project

Mehmet Eren Erken Koç University

Newton

This part gives calculations of the structures of various types of stars in Newtonian gravity, general relativity (GR), and alternative theories of gravity which try to surpass GR.

1 From the stellar structure equations to the Lane–Emden equation

1.1 Stellar structure in Newtonian gravity

We start with the standard Newtonian equations for hydrostatic equilibrium in a spherically symmetric star:

1. **Mass continuity:**

$$\frac{dm}{dr} = 4\pi r^2 \rho(r),$$

2. **Hydrostatic equilibrium:**

$$\frac{dp}{dr} = -\frac{Gm(r)\rho(r)}{r^2}.$$

Here: - m(r) is the mass enclosed within radius r, - $\rho(r)$ is the mass density, - p(r) is the pressure, - G is the gravitational constant.

1.2 Polytropic equation of state

We then close the system using a polytropic equation of state:

$$p = K\rho^{\gamma} = K\rho^{1 + \frac{1}{n}},$$

where - K is a constant (related to the microphysics of the stellar material), - n is called the polytropic index, - $\gamma = 1 + \frac{1}{n}$.

1.3 Dimensionless variables

To transform these ODEs into the Lane–Emden equation, one introduces dimensionless variables that factor out the central values. Let

$$\rho(r) = \rho_c \theta^n(\xi),$$

where $\rho_c = \rho(0)$ is the central density, and define

$$r = a\xi$$
,

for some length scale a that will be determined shortly. The quantity $\theta(\xi)$ is a dimensionless function satisfying $\theta(0) = 1$.

From the polytropic EOS, the central pressure is

$$p_c = K \rho_c^{\gamma}$$
.

A convenient choice for a is

$$a^2 = \frac{(n+1)K\rho_c^{\frac{1}{n}}}{4\pi G}.$$

Substituting $\rho(r) = \rho_c \theta^n(\xi)$ into the equations and using the chosen a, one arrives at a single, dimensionless ODE for $\theta(\xi)$.

1.4 The Lane–Emden equation

The final result of this procedure is the Lane–Emden equation of index n:

$$\boxed{\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) + \theta^n = 0.}$$

The corresponding boundary conditions at the center $(\xi = 0)$ are: 1. $\theta(0) = 1$, since $\rho(0) = \rho_c$, 2. $\theta'(0) = 0$, for regularity at the origin.

Hence, we have everything that defines the Lane-Emden problem:

$$\begin{cases} \frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) + \theta^n = 0, \\ \theta(0) = 1, \quad \theta'(0) = 0. \end{cases}$$