

Kod "czysty" i "brudny"

- · Kod "brudny"
 - Podatny na zmiany technologii
 - Zależy od konkretnych szkieletów technologicznych (framework)
 - Klasy zazwyczaj specjalizują klasy technologiczne
- Kod "czysty"
 - Zależy jedynie od logiki aplikacji lub dziedziny problemu
 - Stosuje klasy niezależne od stosu technologicznego
 - Stosuje klasy POJO/POCO
 - Relacje specjalizacji nie dotyczą klas technologicznych

Politechnika

Inżynieria oprogramowania

2

Składniki warstwy frontend

- Wyświetlanie elementów ekranowych
 - Klasa technologiczna (tu: WindowFrame)
 - Klasy specjalizujące
- Obsługa zdarzeń
 - Interfejs technologiczny (tu: EventHandler)
 - Klasy realizujące interfejs
- Komunikacja warstw widoku i logiki aplikacji
 - Możliwe zastosowanie interfejsów (dobra separacja)
 - Sterowanie wyświetlaniem widoków (tu: IWidok)
 - Przekazywanie zdarzeń do realizacji (tu: ILogika)
- Logika aplikacji
 - Korzysta z interfejsów udostępnianych przez widok i logikę dziedzinową
- Dostęp do warstwy backend
 - Zastosowanie klasy "proxy" (zastępnik) dla zdalnych wywołań

Politechnika Warszawska

Inżynieria oprogramowania

5

5

/

Wzorzec MVP

- Model View Presenter
 - Realizuje architekturę warstwową (patrz poprzedni wykład)
 - Klasy "V" widok
 - Klasy "P" prezenter (logika aplikacji)
 - Klasy "M" model (logika dziedziny)
- Model MVP jest oparty na wzorcu MVC
 - Model View Controller

Politechnika Warszawska Inżynieria oprogramowania

_

Technologie warstwy frontend

- Technologie oparte na języku JavaScript
 - Wariant obiektowy język TypeScript
 - Obecnie najbardziej popularna grupa technologii
 - Najpopularniejsze: React, Vue, Angular (przetwarzanie po stronie klienta), Node (przetwarzanie po stronie serwera)
- Technologie oparte na języku Java
 - GWT, Vaadin kod wykonywany po stronie serwera
 - Tłumaczenie na język JavaScript
 - JavaFX, Swing kod wykonywany po stronie klienta
- · Inne technologie
 - Blazor środowisko .NET (język C#)
 - Dart środowisko oparta a języku o tej samej nazwie

Politechnika Warszawska

Inżynieria oprogramowania

0

9

Projektowanie baz danych

- Bazy danych relacyjne
 - Teoria relacyjna opracowana w latach 70.
 - Podstawowy język zapytań: SQL
 - Struktura bazy danych: tabele, kolumny, wiersze, powiązania
- Bazy danych nierelacyjne (NoSQL)
 - "Not only SQL" czasami używają podzbioru języka SQL
 - Dane często przechowywane w postaci dokumentów
 - Struktura bazy danych często identyczna jak model danych (UML)
- Problem: przejście z modelu kod na strukturę bazy danych
 - Głownie występuje dla baz relacyjnych

Politechnika Warszawska

Inżynieria oprogramowania

15

15

Realizacja relacji N-N


```
Author documents:

("id": 1, "name": "Thomas Andersen", "books": [1, 2, 3]}

("id": 2, "name": "William Wakefield", "books": [1, 4]}

Book documents:

("id": 1, "name": "DocumentDB 101", "authors": [1, 2]}

("id": 2, "name": "DocumentDB for RDBMS Users", "authors": [1]}

("id": 3, "name": "Learn about Azure DocumentDB", "authors": [1]}

("id": 4, "name": "Deep Dive in to DocumentDB", "authors": [2]}
```

- Prosta realizacja podobna do relacji 1-N
 - Umieszczenie referencji w obydwu dokumentach
 - Podobna do realizacji w kodzie obiektowym

Politechnika Warszawska

Inżynieria oprogramowania

23