1. 1 point

Which of these are terms used to refer to components of an artificial neural network? (hint: three of these are correct)

- neurons
- layers
- axon
- activation function

 $\textbf{2.} \quad \text{True/False? Neural networks take inspiration from, but do not very accurately mimic, how neurons in a biological brain learn.}$

1 point

- True
- O False

Coursera Honor Code <u>Learn more</u>

Windows'u Etkinleştir

Windows'u etkinleştirmek için Ayarlar'a gidin.

Saban Kara, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

A üstü parantez sayı hangi katmana ait olduğunu gösterir.

More complex neural network

More complex neural network

Handwritten digit recognition

Handwritten digit recognition

Handwritten digit recognition

1.

$$a_j^{[l]} = g(\overrightarrow{\mathbf{w}}_j^{[l]} \cdot \overrightarrow{\mathbf{a}}^{[l-1]} + \boldsymbol{b}_j^{[l]})$$

For a neural network, what is the expression for calculating the activation of the third neuron in layer 2? Note, this is different from the question that you saw in the lecture video.

$$\bigcirc \ a_3^{[2]} = g(\vec{w}_3^{[2]} \cdot \vec{a}^{[2]} + b_3^{[2]})$$

$$O \ a_3^{[2]} = q(\vec{w}_2^{[3]} \cdot \vec{a}^{[2]} + b_2^{[3]})$$

$$\bigcirc \ a_3^{[2]} = g(\vec{w}_2^{[3]} \cdot \vec{a}^{[1]} + b_2^{[3]})$$

Handwritten digit recognition

image is digit 1 image isn't digit 1

1 point

For the handwriting recognition task discussed in lecture, what is the output $a_1^{[3]}$?

- A vector of several numbers, each of which is either exactly 0 or 1
- A vector of several numbers that take values between 0 and 1
- A number that is either exactly 0 or 1, comprising the network's prediction
- The estimated probability that the input image is of a number 1, a number that ranges from 0 to 1.

Coursera Honor Code <u>Learn more</u>

I, Şaban Kara, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account

Inference in Code

Build the model using TensorFlow

Model for digit classification

Data in Tensorflow

Note about numpy arrays

Activation vector

Activation vector

Building a neural network

Building a neural network architecture

Building a neural network architecture

Digit classification model

