TEST REPORT

Reference No. : WTS17S0271698E

FCC ID : 2ALE2-INATECKP6

Applicant.....: SHENZHEN LIXIN TECHNOLOGY CO., LTD

Address..... De Zhong industrial park, No. 11, Shibei Road, Bantian Street,

Longgang Dist., Shenzhen, Guangdong, China.

Manufacturer : The same as above.

Address.....: The same as above.

Product Name.....: Barcode Scanner

Model No.: Inateck P6

Standards : FCC CFR47 Part 15 Section 15.249: 2016

Date of Receipt sample : Feb. 24, 2017

Date of Test : Feb. 25 – Mar. 26, 2017

Date of Issue.....: : Mar. 27, 2017

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Philo Zhong / Manager

No zhoux

Reference No.: WTS17S0271698E Page 2 of 36

2 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207	PASS
	15.249(a)	
Radiated Emission	15.209	PASS
	15.205(a)	
Periodic Operation	15.35(c)	PASS
	15.249	
Outside of Band Emission	15.205	PASS
	15.209	
20dB Bandwidth	15:215(c)	PASS
Antenna Requirement	15.203	PASS

3 Contents

1	COVE	ER PAGE	Page
2		SUMMARY	
3		TENTS	
4		ERAL INFORMATION	
	4.1 4.2 4.3 4.4	GENERAL DESCRIPTION OF E.U.T DETAILS OF E.U.T TEST FACILITY TEST MODE	
5	EQUI	IPMENT USED DURING TEST	
	5.1 5.2 5.3 5.4	EQUIPMENT LIST DESCRIPTION OF SUPPORT UNITS MEASUREMENT UNCERTAINTY TEST EQUIPMENT CALIBRATION	
6	CONE	DUCTED EMISSION	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	6.1 6.2 6.3 6.4	E.U.T. OPERATION EUT SETUP MEASUREMENT DESCRIPTION CONDUCTED EMISSION TEST RESULT	
7	RADI	IATION EMISSION TEST	
	7.1 7.2 7.3 7.4 7.5	EUT OPERATION TEST SETUP SPECTRUM ANALYZER SETUP TEST PROCEDURE TEST RESULT	
8	PERIO	ODIC OPERATION	20
9	OUTS	SIDE OF BAND EMISSION	
	9.1 9.2	TEST PROCEDURETEST RESULT	
10	20 DE	B BANDWIDTH MEASUREMENT	
	10.1 10.2	TEST PROCEDURE TEST RESULT	
11	ANTE	ENNA REQUIREMENT	
12	PHOT	TOGRAPHS- INATECK P6 TEST SETUP	
	12.1 12.2	CONDUCTED EMISSION	
13	PHOT	TOGRAPHS - CONSTRUCTIONAL DETAILS	
	13.1 13.2	MODEL INATECK P6- EXTERNAL PHOTOS	

Reference No.: WTS17S0271698E Page 4 of 36

4 General Information

4.1 General Description of E.U.T.

Product Name : Barcode Scanner

Model No. : Inateck P6

Model Differences : N/A

Type of Modulation : GFSK

Frequency Range : 2402-2476MHz

The Lowest Oscillator : 16MHz

Antenna installation : PCB Antenna

4.2 Details of E.U.T.

Technical Data : Input: DC 5V,500mA by USB port

DC 3.6V, 2600mAh by Battery

4.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC – Registration No.:7760A

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A, Oct 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

• FCC Test Site 2#- Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode Lower channel		Middle channel	Upper channel		
Transmitting	2402MHz	2449MHz	2476MHz		

5 Equipment Used during Test

5.1 Equipment List

5.1 Equipment List											
Conducted Emissions Test Site 1#											
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date					
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.12, 2016	Sep.11, 2017					
2.	LISN	R&S	ENV216	100115	Sep.12, 2016	Sep.11, 2017					
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.12, 2016	Sep.11, 2017					
Conducted Emissions Test Site 2#											
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date					
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.12, 2016	Sep.11, 2017					
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12, 2016	Sep.11, 2017					
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12, 2016	Sep.11, 2017					
4.	4. Cable LARGE RF300 - Sep.12, 2016 S										
3m Sei	mi-anechoic Chamber	for Radiation Emis	ssions Test site	1#							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date					
1	EMC Analyzer	Agilent	E7405A	MY45114943	Oct.17, 2016	Oct.16, 2017					
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Oct.17, 2016	Oct.16, 2017					
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.09, 2016	Apr.08, 2017					
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12, 2016	Sep.11, 2017					
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.09, 2016	Apr.08, 2017					
6	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.13, 2016	Apr.12, 2017					
7	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.13, 2016	Apr.12, 2017					
3m Sei	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#							
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date					
1	Test Receiver	R&S	ESCI	101296	Apr.13, 2016	Apr.12, 2017					
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.09, 2016	Apr.08, 2017					
3	Amplifier	ANRITSU	MH648A	M43381	Apr.13, 2016	Apr.12, 2017					
4	Cable	HUBER+SUHNER	CBL2	525178	Apr.13, 2016	Apr.12, 2017					

Reference No.: WTS17S0271698E Page 6 of 36

5.2 Description of Support Units

Equipment	Manufacturer	Model No.		
/	/	/		

5.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB
Radiated Spurious	(Bilog antenna 30M~1000MHz)
Emissions test	± 5.47 dB
	(Horn antenna 1000M~25000MHz)

5.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS17S0271698E Page 7 of 36

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

56 dB_μV between 0.5MHz & 5MHz 60 dB_μV between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Reference No.: WTS17S0271698E Page 8 of 36

6.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Reference No.: WTS17S0271698E Page 10 of 36

7 Radiation Emission Test

Test Requirement: FCC Part15 Paragraph 15.249&15.209&15.205

Test Method: ANSI 63.10: 2013

Measurement Distance: 3m

Test Result: PASS

15.249(a)Limit:

Fundamental frequency	Field strength	of fundamental	Field strength of harmonics		
	mV/m dBuV/m		uV/m	dBuV/m	
902-928 MHz	50	94	500	54	
2400-2483.5 MHz	50	94	500	54	
5725-5875 MHz	50	94	500	54	
24.0-24.25 GHz	250	108	2500	68	

15.209 Limit:

13.203 EIIIII.	Field Strer	nath	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m Distanc		uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Note: RF Voltage(dBuV)=20 log₁₀ RF Voltage(uV)

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30MHz to 1GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

PC

Spectrum

AMP

Combining

Analyzer

Network

The test setup for emission measurement above 1 GHz.

System

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GHz	z	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

Reference No.: WTS17S0271698E Page 13 of 36

7.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
- 8. New battery is used during test.

Reference No.: WTS17S0271698E Page 14 of 36

7.5 Test Result

Test Frequency :16MHz~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz
Test Mode: Low channel Transmitting

Frequen	Receiv er	Detect	Turn table		X enna	Correcte	Correct		Part 209/205
су	Readi ng	or	Angle	Hei ght	Pol ar	d Factor	Amplit ude	Limit	Margin
(MHz)	(dBµV)	(PK/QP /Ave)	Degre e	(m)	(H/ V)	(dB/m)	(dBµV/ m)	(dBµV/ m)	(dB)
302.18	42.66	QP	351	1.9	V	-11.40	31.26	40.00	-8.74
2402.00	91.66	PK	59	1.8	Н	-15.24	76.42	114.00	-37.58
2402.00	95.39	PK	88	1.2	V	-15.24	80.15	114.00	-33.85
2342.28	45.61	PK	25	1.5	Н	-13.19	32.42	74.00	-41.58
2342.28	44.37	PK	25	1.5	V	-13.19	31.18	74.00	-42.82
2366.11	43.68	PK	226	1.6	Н	-13.14	30.54	74.00	-43.46
2366.11	42.00	PK	226	1.6	V	-13.14	28.86	74.00	-45.14
2499.88	42.15	PK	120	1.4	Н	-13.08	29.07	74.00	-44.93
2499.88	42.88	PK	120	1.4	V	-13.08	29.80	74.00	-44.20
4804.00	49.90	PK	306	1.3	Н	-1.29	48.61	74.00	-25.39
4804.00	54.45	PK	266	1.6	V	-2.38	52.07	74.00	-21.93
7206.00	48.15	PK	106	1.1	Н	3.01	51.16	74.00	-22.84
7206.00	45.39	PK	265	1.3	V	3.01	48.40	74.00	-25.60

AV = Peak +20Log10(duty cycle) =Peak+(-32.54)[refer to section 7 for more detail]

	PK	Turn table	RX Antenna		Duty	AV	FCC Part 15.231/209/205	
Frequency	PK	Angle	Height	Polar	cycle Factor	AV	Limit	Margin
(MHz)	(dBµV/m)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
2402.00	76.42	352	1.3	Н	-32.54	43.88	94.00	-50.12
2402.00	80.15	35	1.7	V	-32.54	47.61	94.00	-46.39
2337.83	32.42	282	1.4	Н	-32.54	-0.12	54.00	-54.12
2337.83	31.18	282	1.4	V	-32.54	-1.36	54.00	-55.36
2371.89	30.54	254	1.7	Н	-32.54	-2.00	54.00	-56.00
2371.89	28.86	254	1.7	V	-32.54	-3.68	54.00	-57.68
2498.78	29.07	68	1.6	Н	-32.54	-3.47	54.00	-57.47
2498.78	29.80	68	1.6	V	-32.54	-2.74	54.00	-56.74
4804.00	48.61	293	1.4	Н	-32.54	16.07	54.00	-37.93
4804.00	52.07	62	1.3	V	-32.54	19.53	54.00	-34.47
7206.00	51.16	322	1.8	Н	-32.54	18.62	54.00	-35.38
7206.00	48.40	90	1.8	V	-32.54	15.86	54.00	-38.14

Test Mode: Middle channel Transmitting

Frequen	Receiv er	Detect	Turn table	RX Antenna		Correcte	Correct ed		Part 209/205
су	Readi ng	or	Angle	Hei ght	Pol ar	d Factor	Amplit ude	Limit	Margin
(MHz)	(dBµV)	(PK/QP /Ave)	Degre e	(m)	(H/ V)	(dB/m)	(dBµV/ m)	(dBµV/ m)	(dB)
302.18	42.66	QP	332	1.5	V	-11.40	31.26	40.00	-8.74
2449.00	91.38	PK	154	1.2	Н	-15.32	76.06	114.00	-37.94
2449.00	95.36	PK	26	1.9	V	-15.32	80.04	114.00	-33.96
2310.42	45.61	PK	161	1.3	Н	-13.19	32.42	74.00	-41.58
2310.42	44.37	PK	161	1.3	V	-13.19	31.18	74.00	-42.82
2376.98	43.68	PK	275	1.3	Н	-13.14	30.54	74.00	-43.46
2376.98	42.00	PK	275	1.3	V	-13.14	28.86	74.00	-45.14
2485.00	42.15	PK	113	1.6	Н	-13.08	29.07	74.00	-44.93
2485.00	42.88	PK	113	1.6	V	-13.08	29.80	74.00	-44.20
4898.00	49.9	PK	78	1.6	Н	-1.29	48.61	74.00	-25.39
4898.00	53.9	PK	350	1.4	V	-1.73	52.17	74.00	-21.83
7347.00	48.15	PK	118	1.8	Н	3.01	51.16	74.00	-22.84
7347.00	45.39	PK	94	1.7	V	3.01	48.40	74.00	-25.60

AV = Peak +20Log10(duty cycle) =Peak+(-33.39)[refer to section 8 for more detail]

Frequency	PK	Turn PK table	RX Antenna		Duty cycle	AV	FCC Part 15.231/209/205	
Frequency	PK	Angle	Height	Polar	Factor	AV	Limit	Margin
(MHz)	(dBµV/m)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
2449.00	76.06	228	1.8	Н	-33.39	42.67	94.00	-51.33
2449.00	80.04	264	1.1	V	-33.39	46.65	94.00	-47.35
2319.84	32.42	101	1.1	Н	-33.39	-0.97	54.00	-54.97
2319.84	31.18	101	1.1	V	-33.39	-2.21	54.00	-56.21
2351.68	30.54	47	2.0	Н	-33.39	-2.85	54.00	-56.85
2351.68	28.86	47	2.0	V	-33.39	-4.53	54.00	-58.53
2499.98	29.07	268	1.5	Н	-33.39	-4.32	54.00	-58.32
2499.98	29.80	268	1.5	V	-33.39	-3.59	54.00	-57.59
4898.00	48.61	138	1.6	Н	-33.39	15.22	54.00	-38.78
4898.00	52.17	280	1.1	V	-33.39	18.78	54.00	-35.22
7347.00	51.16	164	1.2	Н	-33.39	17.77	54.00	-36.23
7347.00	48.40	194	1.7	V	-33.39	15.01	54.00	-38.99

Test Mode: High channel Transmitting

Frequen	Receiv er	Detect	Turn table	RX Antenna		Correcte	Correct ed	FCC Part 15.231/209/205	
су	Readi ng	or	Angle	Hei ght	Pol ar	d Factor	Amplit ude	Limit	Margin
(MHz)	(dBµV)	(PK/QP /Ave)	Degre e	(m)	(H/ V)	(dB/m)	(dBµV/ m)	(dBµV/ m)	(dB)
302.18	42.66	QP	38	1.1	V	-11.40	31.26	40.00	-8.74
2476.00	91.19	PK	77	1.7	Н	-15.36	75.83	114.00	-38.17
2476.00	95.47	PK	294	1.5	V	-15.36	80.11	114.00	-33.89
2326.76	45.61	PK	261	1.4	Н	-13.19	32.42	74.00	-41.58
2326.76	44.37	PK	261	1.4	V	-13.19	31.18	74.00	-42.82
2387.07	43.68	PK	57	1.8	Н	-13.14	30.54	74.00	-43.46
2387.07	42.00	PK	57	1.8	V	-13.14	28.86	74.00	-45.14
2487.74	42.15	PK	132	1.4	Н	-13.08	29.07	74.00	-44.93
2487.74	42.88	PK	132	1.4	V	-13.08	29.80	74.00	-44.20
4952.00	49.9	PK	6	1.2	Н	-1.29	48.61	74.00	-25.39
4952.00	52.93	PK	159	1.9	V	-1.25	51.68	74.00	-22.32
7428.00	48.15	PK	303	1.4	Н	3.01	51.16	74.00	-22.84
7428.00	45.39	PK	46	1.7	V	3.01	48.40	74.00	-25.60

AV = Peak +20Log10(duty cycle)=Peak+(-33.39) [refer to section 8 for more detail]

	PK	Turn table	RX Antenna		Duty	AV	FCC Part 15.231/209/205	
Frequency	PK	Angle	Height	Polar	cycle Factor	AV	Limit	Margin
(MHz)	(dBµV/m)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
2476.00	75.83	77	1.7	Н	-33.39	42.44	94.00	-51.56
2476.00	80.11	294	1.5	V	-33.39	46.72	94.00	-47.28
2326.76	32.42	261	1.4	Н	-33.39	-0.97	54.00	-54.97
2326.76	31.18	261	1.4	V	-33.39	-2.21	54.00	-56.21
2387.07	30.54	57	1.8	Н	-33.39	-2.85	54.00	-56.85
2387.07	28.86	57	1.8	V	-33.39	-4.53	54.00	-58.53
2487.74	29.07	132	1.4	Н	-33.39	-4.32	54.00	-58.32
2487.74	29.80	132	1.4	V	-33.39	-3.59	54.00	-57.59
4952.00	48.61	6	1.2	Н	-33.39	15.22	54.00	-38.78
4952.00	51.68	159	1.9	V	-33.39	18.29	54.00	-35.71
7428.00	51.16	303	1.4	Н	-33.39	17.77	54.00	-36.23
7428.00	48.40	46	1.7	V	-33.39	15.01	54.00	-38.99

Test Frequency :From 18GHz to 25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS17S0271698E Page 20 of 36

8 Periodic Operation

The duty cycle was determined by the following equation:

To calculate the actual field intensity, the duty cycle correction factor in decibel is needed for later use and can be obtained from following conversion

Duty Cycle(%)=Total On interval in a complete pulse train/ Length of a complete pulse train * % Duty Cycle Correction Factor(dB)=20 * Log₁₀(Duty Cycle)

Test Channel	Low Channel	Middle Channel	High Channel
Total transmission time(ms)	2.00	1.80	1.80
Length of a complete transmission period(ms)	84.60	84.20	84.20
Duty Cycle(%)	2.36	2.14	2.14
Duty Cycle Correction Factor(dB)	-32.54	-33.39	-33.39

Refer to the duty cycle plot (as below)

Reference No.: WTS17S0271698E Page 22 of 36

9 Outside of Band Emission

Test Requirement: 15.249(d):Emissions radiated outside of the specified frequency

bands, except for harmonics, shall be attenuated by at least 50 dB

below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Test Method: ANSI C63.10:2013

Test Mode: Transmitting

9.1 Test Procedure

Refer to section 7.4 of this test report.

9.2 Test Result

Test plots

Reference No.: WTS17S0271698E Page 24 of 36

10 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.215(c)

Test Method: ANSI C63.10:2013

Test Mode: Transmitting

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

10.2 Test Result

Test Channel	20dB Bandwidth	99% Bandwidth		
low	0.2814MHz	1		
Middle	0.2695MHz	/		
high	0.2754MHz	/		

Test plots

11 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB Printed Antenna, fulfil the requirement of this section.

12 Photographs- Inateck P6 Test Setup

12.1 Conducted Emission

12.2 Radiation Emission

Test frequency from 30MHz to 1GHz at test site 2#

Test frequency above 1GHz at test site 1#

13 Photographs - Constructional Details

13.1 Model Inateck P6- External Photos

Reference No.: WTS17S0271698E Page 30 of 36

Reference No.: WTS17S0271698E Page 31 of 36

Reference No.: WTS17S0271698E Page 32 of 36

Reference No.: WTS17S0271698E Page 33 of 36

13.2 Model Inateck P6 - Internal Photos

Reference No.: WTS17S0271698E Page 34 of 36

Reference No.: WTS17S0271698E Page 35 of 36

Reference No.: WTS17S0271698E Page 36 of 36

====End of Report=====