Содержание

1	Глаг	ва 1	4
	1.1	Интерполяционный многочлен в общем виде (постановка задачи,	
		вывод, замечания)	,
		1.1.1 Постановка задачи	
		1.1.2 Вывод	
	1.2	Интерполяционный многочлен в форме Лагранжа (вывод, ком-	
		ментарии)	,

1 Глава 1

1.1 Интерполяционный многочлен в общем виде (постановка задачи, вывод, замечания)

1.1.1 Постановка задачи

Пусть задана некоторая функция f дискретным набором своих значений:

Требуется построить (указать) некоторую определённую и непрерывную функцию g(x), такую, чтобы выполнялись следующие равенства:

$$g(x_k) = f_k, \quad \forall k = \overline{0, n}$$
 (1)

Замечание:

Очевидно, что задача интерполяции в указанной выше формулировке имеет бесконечно много решений.

Определение 1:

Точки x_0, x_1, \dots, x_n будем называть узлами интерполяции (приближения).

Определение 2:

 Φ ункцию f будем называть интерполируемой (приближаемой) функцией.

Определение 3:

Функцию g(x) будем называть интерполирующей (интерполяционной, приближающей) функцией или интерполянтой.

Определение 4:

Выполнение равенств 1 будем называть главным условием интерполяции (ГУИ).

1.1.2 Вывод

В данном параграфе покажем, что алгебраический многочлен степени n в случае попарной различности узлов интерполяции может быть взят в качестве искомой интерполянты в задаче интерполяции, такой многочлен будет задан единственным образом.

Другими словами, потребуем, чтобы алгебраический многочлен

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 (2)

удовлетворял ГУИ, а именно, чтобы имели место следующие равенства:

$$\begin{cases}
P_{n}(x_{0}) = f_{0} \\
P_{n}(x_{1}) = f_{1}
\end{cases}$$

$$\begin{cases}
a_{n}x_{0}^{n} + a_{n-1}x_{0}^{n-1} + ... + a_{1}x_{0} + a_{0} = f_{0} \\
a_{n}x_{1}^{n} + a_{n-1}x_{1}^{n-1} + ... + a_{1}x_{1} + a_{0} = f_{1}
\end{cases}$$

$$\begin{cases}
P_{n}(x_{0}) = f_{0} \\
A_{n}x_{1}^{n} + a_{n-1}x_{1}^{n-1} + ... + a_{1}x_{1} + a_{0} = f_{0}
\end{cases}$$

$$\begin{cases}
a_{n}x_{1}^{n} + a_{n-1}x_{1}^{n-1} + ... + a_{1}x_{1} + a_{0} = f_{0}
\end{cases}$$

$$\begin{cases}
a_{n}x_{1}^{n} + a_{n-1}x_{1}^{n-1} + ... + a_{1}x_{1} + a_{0} = f_{0}
\end{cases}$$

$$\begin{cases}
a_{n}x_{1}^{n} + a_{n-1}x_{1}^{n-1} + ... + a_{1}x_{1} + a_{0} = f_{0}
\end{cases}$$

$$\begin{cases}
a_{n}x_{1}^{n} + a_{n-1}x_{1}^{n-1} + ... + a_{1}x_{1} + a_{0} = f_{0}
\end{cases}$$

$$\begin{cases}
a_{n}x_{1}^{n} + a_{n-1}x_{1}^{n} + ... + a_{1}x_{1} + a_{0} = f_{0}
\end{cases}$$

По своей алгебраической природе равенства 3 предсавляют собой систему алгебраических линейных уравнений (n+1)x(n+1) относительно неизвестных $a_n, a_{n-1}, \ldots, a_0$.

В этой связи, чтобы СЛАУ 3 имело единственное решение, необходимо, чтобы его главный определитель был отличен от 0.

$$\Delta_{(3)} = \begin{bmatrix} x_0^{H} & x_0^{H-1} & x_0 & 1 \\ x_1^{H} & x_1^{H-1} & x_1 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ x_N^{H} & x_N^{H-1} & x_1^{H-1} & x_1 & 1 \end{bmatrix} \neq 0$$

Причём должно выполняться условие попарного различия узлов интерполяции.

$$x_i \neq x_i \quad \forall i \neq j \tag{4}$$

Из вышеописанного следует, что, если выполняется условие 4, то $\Delta_{(3)} \neq 0$ и СЛАУ 3 будет иметь единственное решение.

Таким образом, решив СЛАУ 3 любым подходящим численным методом, мы узнаем $a_0,\dots,a_n.$

Подставив найденные коэффициенты в 2 мы получим явную формулу искомой интерполянты.

1.2 Интерполяционный многочлен в форме Лагранжа (вывод, комментарии)

В этом параграфе рассмотрим ещё один альтернативный способ построения указанного интерполяционного многочлена, не сводящее решение задачи интерполяции к решению вспомогательной СЛАУ.

Рассмотрим следующие фундаментальные многочлены Лагранжа (базисы)

$$l_k(x) : l_k(x_j) = \begin{cases} 0, j \neq k \\ 1, j = k \end{cases} \quad k = \overline{0, n}, \quad j = \overline{0, n}$$
 (1)

Так же рассмотрим следующую линейную комбинацию введённых фундаменальных многочленов Лагранжа (ФМЛ):

разумно рассматривать

$$\sum_{k=0}^{n} f_k l_k(x) = L_n(x), \quad \text{где } f_k \text{ какие-то коэффициенты}$$
 (2)

Убедимся в том, что линейная комбинация ФМЛ 2 действиетльно будет удовлетворять условию интерполяции. С этой целью осуществим в 2 подстановку

$$x = x_{\overline{j}} \cdot L_{H}(x_{j}) = \underbrace{\underbrace{\underbrace{F}_{k=0}^{H}}_{k=0} f_{k} L_{k}(x_{j})}_{f_{k}=0,H} = \underbrace{\underbrace{f}_{0} L_{0}(x_{j})}_{f_{0}} + \underbrace{\underbrace{f}_{1}L_{1}(x_{j})}_{f_{0}} + \dots + \underbrace{\underbrace{f}_{J}L_{J}(x_{J})}_{f_{0}} + \dots + \underbrace{f}_{J}L_{J}(x_{J})}_{f_{0}} + \dots + \underbrace{\underbrace{f}_{J}L_{J}(x_{J})}_{f_{0}} + \dots + \underbrace{\underbrace{f}_{J}L_{J}(x_{J}$$

Таким образом, линейная комбинация Φ МЛ 2 действительно удовлетворяет ГУИ.

Тем не менее представление 2 не позволяет пока узнавать значение искомой интерполянты в неузловых точках ввиду того, что определение 1 имеет узловой характер.

Воспользуемся "основной теоремой алгебры", позволяющей по известным нулям многочлена восстанавливать его общий вид. Применим данную теорему к ФМЛ, имеющего, согласно определению 1, нулями все узлы интерполяции за исключением одного с номером, равным номеру выбранного многочлена.

$$C_k(x) = C_k(x-x_0)(x-x_1)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)$$

(3)

Замечание:

Любой многочлен $a_n x^n + \cdots + a_0$ можно разложить в поле комплексных чисел в $(x_1 - x_1) \dots (x - x_n)$. (основная теорема алгебры)

Определим коэффициенты C_k у каждого ФМЛ определённого по формуле 3, используя условия нормировки каждого такого члена в узле, а именно:

Осуществив последоваельно подстановку 4 в 3 и 3 в 2 получим аналогичную формулу искомого интерполяционного многочлена

$$L_{H}(X) = \underbrace{\sum_{k=0}^{H} f_{k}}_{K} \frac{(X-X_{0})(X-X_{1})...(X_{k}-X_{k-1})(X_{k}-X_{k+1})...(X-X_{N})}{(X_{k}-X_{0})(X_{k}-X_{k-1})(X_{k}-X_{k+1})...(X_{k}-X_{N})}$$

$$P_{H}(X)$$

$$(5)$$

Определение:

Интерполяционный многочлен, задаваемый 5, будем называть интерполяционным многочленом в форме Лагранжа.