SIA - TP2 Algoritmos Genéticos

Grupo 1

Alberto Bendayan Tobias Ves Losada Cristian Tepedino Luca Bloise

Definimos

• Individuo: Matriz NxN de caracteres ASCII

 Genes: Habrá N² genes, cada uno determinando un carácter de la matriz, y buscando representar MxM píxeles de la matriz original

• **Generación 0**: Se obtienen individuos con caracteres aleatorios

Fitness

 A cada carácter ASCII, le asociamos un valor de densidad entre 0 y 1

 Comparamos la densidad asociada al ASCII con la densidad de la sección de la imagen a representar.

• Se obtiene la suma de errores de cada carácter de la matriz:

f(i) = 1/(1+suma errores)

Crossover

Cruce Uniforme

Es el único tipo de cruce visto que no mantiene correlación posicional entre alelos.

Criterio de corte

 Representación por ASCII limitada -> no conviene usar f(i) como único criterio de corte.

• Usamos cantidad de generaciones o el tiempo que tarda en encontrarse un nuevo f(i) máximo.

• Pensamos en combinar condiciones de corte para poder usar una cota sobre f(i).

Ejercicio 2

Definimos

• Individuo: Aproximación de Imagen de entrada.

• **Genes**: T triángulos que se utilizan para aproximar la imagen.

Alelos: Las posiciones de los vértices y el color de los triángulos.

 Generación 0: Se obtienen individuos con triángulos con alelos aleatorios.

Fitness

- Se compara la imagen generada por un individuo con la imagen objetivo.
- Usamos el índice de similitud estructural (SSIM) para comparar ambas imágenes.
 - Evalúa similitudes en luminancia, contraste y estructura.
 - o Devuelve un valor entre -1 (completamente diferente) y 1 (idénticas).
- La función de fitness devuelve el valor de SSIM normalizado como medida de calidad del individuo.

Métodos de selección

- Elite
- Ruleta
- Universal
- Boltzmann
- Torneo determinístico
- Torneo probabilístico
- Ranking

Métodos de cruza

Cruce de un punto

- Baja variación
- Mantiene la estructura

Cruce de dos puntos

- Más variación
- Sigue manteniendo algo de estructura

• Cruce uniforme

- La mayor variación
- No mantiene correlación posicional

Cruce anular

Mantiene la estructura de forma cíclica

Métodos de mutación

Gen

- Variación baja
- Más útil al final

MultiGen

- Varía más que la mutación simple
- No desestabiliza tanto
- Más medido que uniforme y más agresivo que el Gen

• Uniforme

- Alta variación
- Puede mutar todos los genes

Completa

- Agresivo
- Muta todos los genes

Métodos para crear nuevas generaciones

Tradicional

Sesgo Joven

Condiciones de corte

- Tiempo de ejecución
- Cantidad de generaciones
- Valor de fitness mínimo aceptable
- Similitud de generaciones consecutivas
- Fitness máximo deja de variar

Resultados

Métodos de selección sin parámetros

Parámetros por defecto

Iteraciones: 70

cantidad de triángulos: 200

Generation size: 100

Parents size: 50

Probabilidad de cruza 0,9

Probabilidad de mutación: 0,2

Cruza: Uniforme

Selección: Elite

Mutación: Multigen

Conformación genética: Tradicional

Evolución del Fitness según la cruza

Evolución del Fitness según la mutación

Evolución del Fitness según la conformación genética

Evolución del Fitness según la selección

Métodos de selección con parámetros

Evolución según la selección de Boltzmann

 $T(t) = T_c + (T_0 - T_c)e^{-t}$ La temperatura mínima para todos los casos es 0.1

Evolución del Fitness según la selección de torneo determinístico

Evolución del Fitness según la selección de torneo probabilístico

Otras variaciones

Evolución del Fitness según el generation size

Evolución del Fitness según la probabilidad de mutación

- El tener generaciones de muchos individuos es crucial para poder obtener una buena diversidad genética al inicio, y poder aumentar rápidamente el fitness
- Si no se tiene probabilidad de mutación, el máximo fitness se estancara por la eventual falta de diversidad, pero tener un valor muy elevado lleva a no aprovechar la información de los individuos seleccionados, bajando el fitness. Un valor de 0,1 es bueno para permitir variación sin introducir demasiado caos
- El mejor método de cruza resultó ser el uniforme, creemos que esto se debe a que no mantiene la correlación posicional entre alelos, lo cual en nuestra implementación dicta que triangulos se colocaran sobre otros
- El sesgo joven lleva a mejores resultados de fitness, esto podría ser debido a que elegir a los hijos cruzados y mutados aumenta la diversidad de la próxima generación

- Los mejores métodos de mutación son el de un gen y el multigen. Esto puede ser debido a
 que mantienen más del individuo original que los otros métodos, permitiendo un
 equilibrio entre introducir variación y mantener los mejores elementos
- Los métodos de selección de ruleta y universal no parecen aumentar mucho el fitness de su valor inicial, creemos que esto se debe a que no le ponen suficiente prioridad a seleccionar los mejores individuos.
- Los métodos de selección élite y ranking llevan a un aumento rápido del mayor fitness, pero en sucesivas generaciones se "estancan". Esto se debe a que eliminan demasiado rápido la diversidad genética, por lo que toda la variación en las últimas generaciones vendrá de las mutaciones

- La selección de Boltzmann es un buen compromiso para solucionar los problemas de los métodos anteriores, permitiendo iniciar con una temperatura alta que preserve la diversidad durante las primeras generaciones, y lentamente bajarla para priorizar los mejores individuos hacia el final
- Los torneos determinísticos parecen tener el mismo problema que la selección élite, en el sentido que eligen una solución "buena" de forma rápida, pero eliminan rápido la variedad genética y se estancan. Elegir un número alto de participantes hace menos probable que las soluciones buenas se pierdan de una generación a otra.
- Los torneos probabilísticos, dado un buen threshold, permiten un balance entre elegir los mejores y mantener la diversidad genética, pero, si el threshold es muy bajo, la selección será prácticamente aleatoria, y si es muy alto, la diversidad desaparece rápido y se estanca. Un buen valor del threshold parece ser 0,75.