Siamese Networks for Chromosome Classification

BioImage Computing Workshop, ICCV 2017

Authors - Swati, Gaurav Gupta, Mohit Yadav, Monika Sharma, Lovekesh Vig

Outline

- Introduction
- Motivation
- Proposed Methodology
- Experiments
- Results
- Conclusion

Introduction

- During the metaphase stage of cell division, the condensed chromosome images are Giemsa stained under a light microscope.
- Karyotyping consists of the identification and classification of the 23 pairs of the chromosomes, obtained from a single cell.

Characteristics of Chromosomes

These distinct features help in chromosome classification.

- Length
- Centromere Position
- Banding Pattern

Basic Process

- Images were obtained from Tata Memorial Hospital (TMH)
- Segmentation is done either using automated process or through Crowdsourcing.
- For our experiments, we assumed that we have segmented chromosome images.

Motivation

- Many genetic disorders arise due to various translocations, deletions or inversions of chromosomes.
- Doctors analyze chromosome images for the diagnosis of these disorders.
- Considerable manual effort and time is required to produce a karyotyped image.
- This motivates to automate the task of karyotyping and assist expert doctors.

Prior work

- Previously, chromosome classification has been carried out based upon-
 - Geometrical features Pixel distribution, Length, Centromere position [1]
 - Band pattern based features Intensity of Band profiles [2]
 - Wavelet transform based features [3]
 - 2 stage Hierarchical ANN [4]
- To the best of our knowledge, Deep Learning was not used for chromosome classification earlier.
- Recently, the use of Deep CNN for chromosome classification was proposed in CVPR 2017 paper by TCS Delhi and Pune labs.
 - Demo available in Samuhaa platform (image.samuhaa.com/chromosome/)

^[1] Cho, J., S. Y. Ryu, and S. H. Woo. "A study for the hierarchical artificial neural network model for giemsa-stained human chromosome classification." Engineering in Medicine and Biology Society, 2004.

^[2] Madian, Nirmala, and K. B. Jayanthi. "Analysis of human chromosome classification using centromere position." (2014)

^[3] M. Javan-Roshtkhari and S. K. Setarehdan. "A new approach to automatic classification of the curved chromosomes," ISPA 2007.

^[4] Wang, Xingwei, et al. "Automated classification of metaphase chromosomes: optimization of an adaptive computerized scheme." Journal of biomedical informatics (2009).

Proposed Methodology

- In this work, we intend to improve the classification accuracy when labeled data is scarce.
- Pre-processing is done to straighten the bent chromosomes to improve the classification accuracy.
 - SPV (Straightening Via Projection Vectors)
 - SMA (Straightening Via Medial Axis)
- Straightened images are fed to Siamese networks for classification.

Straightening via Projection Vectors (SPV)

- Finding threshold and binarization --> B
- Find bending orientation --> C
- Find bending centre of curved chromosomes --> D
- Splitting and aligning individual arms --> E
- Stitching arms and reconstruction --> F and G

M. J. Roshtkhari and S. K. Setarehdan. A novel algorithm for straightening highly curved images of human chromosome. Pattern Recognition Letters

Locating Bending Axis

Horizontal projection distribution showing maxima and minima for different rotation angles

Straightening Via Medial Axis (SMA)

- Thresholding and Binarization
- Find MA by thinning procedure
- Find end points of MA
- Overlap MA on original chromosome
- Extend MA to cover whole chromosome
- Find perpendicular lines to MA
- Copy the pixel values to new image

S. Jahani and S. K. Setarehdan. An automatic algorithm for identification and straightening images of curved human chromosomes, Biomedical Engineering: Applications, Basis and Communications.

Siamese Networks

- Siamese networks have twin neural networks (CNN in our case) with shared weights.
- Learn to predict the similarity or dissimilarity between images.
- Twin networks are joined by a distance function computed between representations of the highest layer – Euclidean Distance.
- Nearest neighbour is used for final prediction of label.
- Loss function used is contrastive loss.

$$L(S, W) = \sum_{i=1}^{N} \sum_{j=i}^{N} E_{W}(y_{ij}, X_{i}, X_{j})$$

$$E_W(y_{ij}, X_i, X_j) = \frac{1}{2} \times (1 - y_{ij}) \times (D_W(X_i, X_j))^2 + \frac{1}{2} \times y_{ij} \times (\max\{m - D_W(X_i, X_j), 0\})^2$$

where,
$$X_i = \text{Image1}, X_j = \text{Image2},$$

 $y_{ij} = \text{Label (0/1)}$
 $m = \text{margin}$
 $D_{w} = \text{Euclidean Distance}$

Architecture of Base CNN

- Conv2D (64,3,3)
 - Activation = 'relu'
- MaxPool2D (2,2)
- Dropout (0.25)
- Conv2D (128,3,3)
 - Activation = 'relu'
- MaxPool2D (2,2)
- Dropout (0.25)
- Dense (512)
 - Activation = 'sigmoid'

 The last layer 'Dense(512)' is used as twin embedding layer.

<u>Challenges</u>

- Skewed data i.e., large ratio of dissimilar to similar pairs (R).
- Prediction requires all the embeddings for training and testing data to be in memory for finding nearest neighbour.

Data creation

- To solve the problem of skewness, we fixed the ratio of dissimilar to similar pairs
 (R) = 2
 - a) Train multiple siamese models(M) with random selection of dissimilar pairs and including all similar pairs.
 - e.g., if P is total number of similar image pairs, then 2P dissimilar image pairs are selected randomly (for every model).
 - b) Train multiple siamese models(M) with same number of dissimilar and similar pairs of images (balanced) from all the possible different class label pairs.
 - We have fixed the number of similar pairs to be chosen from every class.
 - For 24 classes, we have ²⁴C₂ class pairs.
 - From each class pair, choose equal number of samples such that total number of dissimilar pairs is twice the number of similar pairs.

Proposed Architectures

- To reduce the time for prediction, we trained two types of augmented Siamese Networks :
 - Training Multi-layer perceptrons (MLPs) on top of all siamese base network embeddings.

 Training an MLP by concatenating the embedding of all siamese base networks.

Experiments

- Baselines were created using :
 - 2 Layer MLP trained on Flattened images (for both straightened and unstraightened images)
 - Deep Convolutional Neural Network (for both straightened and unstraightened images)
 - Vanilla Siamese Network (CNN) + Nearest neighbour
- Proposed methods :
 - Siamese Networks + MLP
 - Concatenated Siamese Networks + MLP (Con-Saimese Networks)
- All experiments were performed using both SMA and SPV straightening methods except for Vanilla Siamese network.

Experimental Setup

- Number of images:
 - Training = 1296
 - Validation = 235
 - Test = 209
- Size of images = 60 * 60 grayscale
- Number of dissimilar to similar pairs :
 - Vanilla Siamese networks = 817K : 36.6K
 - Data creation (a) = 73.2K : 36.6K (for each siamese model)
 - Data creation (b) = 18K : 9K (for each siamese model)
- Number of siamese models trained = 10
- Number of output labels = 24
- GPU Used : Quadro M3000M/PCIe/SSE2 (4GB) , RAM = 64 GB

Results - Baselines

Network	Accuracy	Epochs × PET	Prediciton time
2 Layer MLP (unstraightened)	59.7%	1921×0.3 sec (0.16 hrs)	4.088 sec
2 Layer MLP + SMA	67.9%	1871×0.3 sec (0.16 hrs)	4.088 sec
2 Layer MLP + SPV	72.3%	1791×0.3 sec (0.15 hrs)	4.088 sec
Deep CNN (unstraightened)	68.5%	4700×4.1 sec (5.35 hrs)	12.085 sec
Deep CNN + SMA	78.4%	1832×4.1 sec (2.09 hrs)	12.085 sec
Deep CNN + SPV	83.7%	1957×4.1 sec (2.23 hrs)	12.085 sec
Vanilla Siamese network + Nearest + SPV	85.6%	155×2844 sec (124.17 hrs)	15.088 sec

SMA = Straightening Via Medial Axis

PET = Per Epoch Time

Epochs = Best validation accuracy

^{*} SPV = Straightening Via Projection Vectors

Our Results

Network	Accuracy	Epochs × PET	Prediciton time
Siamese network + MLP + SMA (Avg)	78.5%	18.2×365 sec (1.84 hrs)	4.760 sec
Siamese network + MLP + SMA (Max)	79.4%	19×365 sec (1.92 hrs)	4.760 sec
Siamese network + MLP + SPV (Avg)	81.3%	17.4×365 sec (1.76 hrs)	4.760 sec
Siamese network + MLP + SPV (Max)	83.8%	18×365 sec (1.83 hrs)	4.760 sec

Results for Data creation (a)

Our Results

Network	Accuracy	Epochs × PET	Prediciton time
Siamese network + MLP + SMA (Avg)	78.6%	62.8×90 sec (1.57 hrs)	4.760 sec
Siamese network + MLP + SMA (Max)	80.4%	63×90 sec (1.58 hrs)	4.760 sec
Siamese network + MLP + SPV (Avg)	83.3%	61.2×90 sec (1.53 hrs)	4.760 sec
Siamese network + MLP + SPV (Max)	85.2%	60×90 sec (1.50 hrs)	4.760 sec
Con-Siamese networks + MLP + SMA	79.8%	61×90 sec (1.52 hrs)	4.760 sec
Con-Siamese networks + MLP + SPV	84.6%	60×90 sec (1.50 hrs)	4.760 sec

Results for Data creation (b)

T-SNE plot

 Plotted t-SNE plot for Siamese network + MLP + SPV (Max) case for which we got best results.

Conclusions

- Vanilla siamese network surpasses the performance of Deep CNN but training time is too high.
- Proposed methods speed up both training and prediction by 83 and 3 folds, respectively.
- Augmented siamese networks maintains the superior performance of vanilla Siamese network.

THANK YOU!