Abteilung Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller Email: klaus-robert.mueller@tu-berlin.de

Exercise Sheet 1

In the first two exercises, we refer to the 2001 paper An Introduction to Locally Linear Embedding by Lawrence K. Saul and Sam T. Roweis, 2001, which is linked via ISIS.

Exercise 1: Symmetries (40 P)

In the third paragraph of page 3, it is claimed that the optimal weights W_{ij} which minimize the cost function \mathcal{E} are independent with respect to scaling, translation and rotation of the original data \vec{X}_i . Prove that. That is, *prove* that the minimum (or minima) of \mathcal{E} is (or are) invariant under the following symmetries:

- (i) Replace all \vec{X}_i with $\alpha \vec{X}_i$, for an $\alpha \in \mathbb{R}^+ \setminus \{0\}$,
- (ii) Replace all \vec{X}_i with $\vec{X}_i + \vec{v}$, for a vector $\vec{v} \in \mathbb{R}^D$,
- (iii) Replace all \vec{X}_i with $U \cdot \vec{X}_i$, where U is an orthogonal $D \times D$ matrix (this additionally includes mirror symmetries).

Briefly explain why you obtain a statement for all possible rotations (e.g. rotating around arbitrary fixed points) by proving statements (i)-(iii), despite the fact that multiplying with U as in (iii) always leaves the origin (i.e., the zero vector) fixed (and only the origin in general).

Exercise 2: Lagrange Multipliers (30 P)

In the second paragraph on page 3, it is stated that finding the optimal W_{ij} is a least-squares problem, which is shown to have an explicit analytic solution in Appendix A. In the following, assume the notation of Appendix A. For abbreviation (and clarity of notation), additionally write $w = (w_1, \ldots, w_K)^{\top}$ for the weight vector which is optimized, $\eta = (\vec{\eta}_1, \ldots, \vec{\eta}_K)^{\top}$ for the $(K \times D)$ -matrix of nearest neighbors of \vec{x} , $\mathbb{1} = (1, \ldots, 1)^{\top}$ for the K-dimensional vector of ones, and $C = (\mathbb{1}\vec{x}^{\top} - \eta)(\mathbb{1}\vec{x}^{\top} - \eta)^{\top}$ for the local covariance matrix at \vec{x} . We would like to work out the following claims from Appendix A:

(i) Prove that the optimal weights for \vec{x} are found by solving the following optimization problem:

$$\min_{w} w^{\top} C w \quad \text{subject to} \quad w^{\top} \mathbb{1} = 1.$$

In particular, prove equation (3) on page 9.

(ii) Show by using the Lagrangian method for constrained optimization that the minimum of the optimization problem is explicitly given by

$$w = \frac{C^{-1}\mathbb{1}}{\mathbb{1}^{\top}C^{-1}\mathbb{1}}.$$

(iii) Show that the minimum w can be equivalently found by solving the equation

$$Cw = 1$$
,

and then rescaling w such that $w^{\top} \mathbb{1} = 1$.

Exercise 3: Kullback-Leibler Divergence (30 P)

The objective of t-SNE is is based on minimization of the Kullback-Leibler divergence between two probability distributions p and q.

$$C = D_{\mathrm{KL}}(P||Q) = \sum_{j} p_{j} \log \left(\frac{p_{j}}{q_{j}}\right)$$

where $\sum_j p_j = 1$ and $\sum_j q_j = 1$. Minimization of such quantity also intervenes in various probabilistic machine learning models. In this exercise, we derive the gradient of the Kullback-Leibler divergence, both with respect to the probability distribution itself, and a reparameterization of it.

• Show that

$$\frac{\partial C}{\partial q_i} = -\frac{p_i}{q_i}.$$

• The probability q_i that has to be optimized for all i is now reparameterized as $q_i = \frac{e^{x_i}}{\sum_k e^{x_k}}$. Here, x_i can be interpreted as the unnormalized log-probability associated to q_i . Show that

$$\frac{\partial C}{\partial x_i} = -p_i + q_i$$

• Explain which of these two gradients is the most appropriate for practical use in a learning algorithm. Motivate your choice (1) in terms of stability or boundedness of the gradient, and (2) in terms of ability to produce a valid probability distribution.