Differential Topology Notes

Simon Xiang

April 15, 2021

Notes for the Spring 2021 graduate section of Differential Topology (Math 382D) at UT Austin, taught by Dr. Freed. Source files: https://git.simonxiang.xyz/math_notes/files.html

Contents

1	April 6, 2020	2
	April 6, 2020 1.1 Tensor algebras	2
	1.2 Existence of tensor algebras	
	1.3 The Exterior Algebra	
	April 8, 2020 2.1 Exterior algebra of a direct sum	
	April 15, 2021 3.1 Orientation	3

1 April 6, 2020 2

Lecture 1

April 6, 2020

(last time: universal properties, motivating differential forms: watch!)

A lot of definitions, here's the new ones:

Definition 1.1. A **subalgebra** of an algebra A is a linear subspace $A' \subseteq A$ containing 1 such that $a'_1 a'_2 \in A'$ for all $a'_1, a'_2 \in A'$. A **2-sided ideal** $I \subseteq A$ is a linear subspace such that AI = I and IA = I. A \mathbb{Z} -**grading** of an algebra A is a direct sum decomposition $A = \bigoplus_{k \in \mathbb{Z}} A^k$ such that $A^{k_1} A^{k_2} \subseteq A^{k_1 + k_2}$ for all $k_1, k_2 \in \mathbb{Z}$. If A is a \mathbb{Z} -graded algebra and $a \in A^k, k \in \mathbb{Z}^{>0}$, then a is **decomposable** if it is expressible as a product $a = a_1 \cdots a_k$ for $a_1, \cdots, a_k \in A^1$. If not, a is **indecomposable**.

1.1 Tensor algebras

Let V be a vector space. We want to make the "free-est" algebra possible without relations, the tensor algebra $\bigotimes V$, thought of as the "free algebra generated by V".

Definition 1.2. Let V be a vector space. A **tensor algebra** (A, i) over V is an algebra A and a linear map $i: V \to A$ such that for all (B, T) of an algebra B and a linear map $T: V \to B$ such that φ_T is a homomorphism of algebras.

(A, i) is unique up to unique isomorphisms by a universal property argument (last time?). i is injective? If $(\xi \neq 0) \in V$ and $i(\xi) = 0$, set $B = \mathbb{R} \oplus \mathbb{R} \xi$ and define $\xi^2 = 0$.

Note that $\pi|_{\mathbb{R}\xi} = \text{id}$. But $\xi = \pi(\xi) = \varphi_1(\xi) = 0$, a contradiction. Furthermore, A has a canonical \mathbb{Z} -grading. $\lambda \in \mathbb{R}^{\neq 0, \neq 1}$, $T_\lambda : V \to V$ is scalar multiplication, $\varphi_\lambda : A \to A$ is a homomorphism. (look at notes)

Now let's define a new product of vector spaces, the tensor product, which is universal for bilinear forms.

Definition 1.3. Let V' and V'' be vector spaces. A **tensor product** (X, b) of V', V'' is a vector space X and a bilinear map $b: V \times V'' \to X$ such that for all (W, B),

We denote $X = V' \otimes V''$, and $b(\xi', \xi'') = \xi' \otimes \xi'', \xi' \in V', \xi'' \in V''$.

3 April 15, 2021 3

If S' is a basis of V', S" a basis of V", then $S' \times S''$ is a basis of $V' \otimes V''$, where

$$S' \times S'' \cong \{ \xi' \otimes \xi'' \mid \xi' \in S', \xi'' \in S'' \}.$$

Note that \bigotimes is "commutative" and "associative" with unit \mathbb{R} , so

$$\mathbb{R} \otimes V \to V$$

$$V_1 \otimes V_2 \to V_2 \otimes V_1$$

$$(V_1 \otimes V_2) \otimes V_3 \to V_1 \otimes (V_2 \otimes V_3),$$

forming what we call a **symmetric monoidal category**. We write $\otimes^1 V = V$, $\otimes^2 V = V \otimes V$, $\otimes^3 V = V \otimes V \otimes V$ and so on. We also write $\otimes^0 V = \mathbb{R}$, and sometimes replace $\otimes^n V$ with $V^{\otimes n}$.

1.2 Existence of tensor algebras

Let V be a vector space, and $A = \bigoplus_{k=0}^{\infty} \otimes^k V$. Let $i: V \hookrightarrow A$ be the inclusion into $\otimes' V = V$.

Claim. (A, i) is a tensor algebra over V.

To see this, note that

$$\xi_1 \otimes \cdots \otimes \xi_k) \cdot_A \eta_1 \otimes \cdots \otimes \eta_\ell = \xi_1 \otimes \cdots \otimes \xi_k \otimes \eta_1 \otimes \cdots \otimes \eta_\ell \in \otimes^{k+\ell} V.$$

Note that $A = \otimes' V$ is not commutative.

1.3 The Exterior Algebra

We want to impose todo:come back

Lecture 2

April 8, 2020

todo:see notes on chapter 21, multivariate analysis

2.1 Exterior algebra of a direct sum

Definition 2.1. Let V be a vector space. An **exterior algebra** (E, j) over V is an algebra E and a linear map $j: V \to E$ satisfying $j(\xi)^2 = 0$ for all $\xi \in V$ such that for all pairs (B, T) consisting of an algebra E and a linear map E: E and E satisfying E and E such that E and E such that E and E such that E and E are E and E such that E and E are E are E and E are E and E are E are E are E and E are E are E are E are E are E are E and E are E and E are E are E are E are E are E and E are E and E are E are

Let L_1, L_2 be linear, and $\bigwedge^* (L_1 \oplus L_2 = V)$.

Lecture 3

April 15, 2021

todo:is this lecture 24??

Theorem 3.1. Let X be a smooth manifold. Then there exists a unique $d: \Omega^*(X) \to \Omega^{*+1}(X)$ satisfying

(i) Linearity,

3 April 15, 2021 4

- (ii) The Liebniz rule,
- (iii) $d^2 = 0$,
- (iv) $d|_{\Omega^0(X)}$ is the usual differential.

Proof. Let $\{(U_i, x_i)\}_{i \in I}$ be an open cover of X by charts. Let $\{\rho_i\}_{i \in I}$ be a partition of unity, where $\operatorname{Supp} \rho_i \subseteq U_i$. If $\alpha \in \Omega^*(X)$, then $\alpha = \sum_i \rho_i \alpha_i$, where $\operatorname{supp}(\rho_i \alpha) \subseteq U_i$. Define $d\alpha = \sum_i d(\rho_i \alpha)$, where we compute $x_i(U_i) \subseteq A_i$, $\operatorname{supp} d(\rho_i \alpha)$ (note that d increases support).

For this to be a good definition, we need to show that this is well-defined. say $\{(V_a, y_a)_{a \in A} \text{ is another atlas, } \{\sigma_a\}_{a \in A} \text{ a partition of unity. Then}$

$$\sum_{i} d(\rho_{i}\alpha) = \sum_{i} \sum_{a} d(\rho_{i}\sigma_{a}\alpha)$$
$$= \sum_{a} \sum_{i} d(\sigma_{a}\rho_{i}\alpha)$$
$$= \sum_{a} d(\sigma_{a}\alpha).$$

Note that supp $\rho_i \sigma_a \alpha \subseteq U_i \cap V_a$. Something about d commuting with pullback, the first is defined on $x_i(U_i \cap V_a)$, the second on $y_a(U_i \cap V_a)$, and the final on $y_a(V_a)$. todo:this, plus something about transition maps

3.1 Orientation

We have all seen Riemann integration on the line, and hopefully you have learned how to integrate in \mathbb{R}^n , and perhaps Lebesgue integration. We do not focus on the analytic aspects, but the geometric aspects, which allows us to integrate on manifolds. Unfortunately we do not have a fixed vector space, giving a fixed Lebesgue measure, so we have to start from the beginning. Let's talk about orientation.

Recall that if L is a real line (1-dimensional vector space), then an **orientation** of L is an element of $\pi_0(L \setminus \{0\})$.

Definition 3.1. If *V* is a finite dimensional real vector space, then an **orientation** of *V* is an orientation of det *V*. A **basis** of *V* is an isomorphism $b: \mathbb{R}^n \to V$ if $\dim V = n$.

Remark 3.1. Let $\mathcal{O}(V)$ be the set of bases of V. The group $\operatorname{GL}_n\mathbb{R}=\{g:\mathbb{R}^n\stackrel{\cong}{\to}\mathbb{R}^n\}$ acts simply transitively on $\mathcal{O}(V)$.\(^1\) This is a right action $\operatorname{GL}_n\mathbb{R}$, or a torsor. Then $\det\colon\operatorname{GL}_n\mathbb{R}\to\mathbb{R}^{\neq 0}$ is an isomorphism on π_0 . Introduce $\mathcal{O}(V)\to\det V\setminus\{0\},\ e_1,\cdots,e_n\mapsto e_1\wedge\cdots\wedge e_n$. An orientation partitions $\mathcal{O}(V)$ into $\mathscr{B}^\pm(V)$. If $T\colon V'\to V$, then $\dim V'=\dim V$ if T is an isomorphism. Then $\det T\colon\det V'\to\det V^2$ is an isomorphism, and T is orientation preserving (resp reversing) if T(O')=0 (resp $T(O')\neq O$). (Here O denotes the orientation of a space.)

Definition 3.2. Let V be a finite dimensional real vector space. A nonzero element of $\text{Det }V^*$ is a **volume form**. For $\xi_1, \dots, \xi_k \in V$, $(\xi_1, \dots, \xi_k) = \{t^i \xi_i \mid 0 \le \to i \le 1\} \subseteq \text{span}\{\xi_i\}$, the vectors are **nondegenerate** if the ξ_1, \dots, ξ_k are LI iff $\xi_1 \land \dots \land \xi_k \ne 0$ in $\bigwedge^k V$. If e_1, \dots, e_n is a basis of V, define

$$vol(//(e_1, \cdots, e_n)) = \|\langle \omega, e_1 \wedge \cdots \wedge e_n \rangle\|.$$

Proposition 3.1. If e'_1, \dots, e'_n is another basis, and $e'_i = T^i_i e_i$ for $T^i_i \in \mathbb{R}$, then

$$\text{vol} / / (e'_1, \dots, e'_n) = (\det T) \text{vol} / / (e_1, \dots, e_n).$$

Remark 3.2. *Ratios* of volume are defined without a volume form. A k-form $\alpha \in \bigwedge^k V_6 *$ induces a notion of volume on all k-dimensional subspaces $W \subseteq V$ such that $\alpha|_W \neq 0$. On \mathbb{R}^n we take $\omega = e^1 \wedge \cdots \wedge e^n \in \operatorname{Det} \mathbb{R}^{n^*}$.

todo:?? canonical double cover, orientation bundle, homology

Definition 3.3. An orientation of X is a section of $\pi_0^{\text{vert}}(\text{Det }TX\setminus 0)\to X$. A **volume form** on X is a nonvanishing $\omega\in\Omega^n(X)$ if $\dim X=n$.

¹Apparently in physics, left vs right actions form the idea of passive vs active actions or something like that. This is a right action.

²Confused on usage of det and Det

3 April 15, 2021

Example 3.1. If $X = S^1$, then we have two double covers up to isomorphism. If $X = \mathbb{R}P^2$, then $D^2 \subseteq \mathbb{A}^2$ todo:something happen, so the orientation double cover has total space S^2 , and $\mathbb{R}P^2$ is not orientable.

Definition 3.4. Suppose *X* is an oriented manifold. A standard chart $(U, x), x : U \to \mathbb{A}^n$ is **oriented** if $\frac{\partial}{\partial x^1}\Big|_p$, \cdots , $\frac{\partial}{\partial x^n}\Big|_p$ is an oriented basis of T_pX for all $p \in U$.

If (U, x), (V, y) are oriented charts, then $\det d(y \circ x^{-1}) > 0$. Look forward to integration.