CS5120 Homework Assignment 02

Student ID: 107062612 Name: 熊祖玲

1. Design Concept

如下圖一的 finite state machine 所示。

I. 當RST N訊號由 1變 0時,將所有訊號做初始化,並且進入 IDLE 狀態

II. IDLE 狀態

- i. START為O:停留在IDLE階段,並將所有訊號設為初始值。
- ii. START 為 1: 將輸入訊號 (A、B 的前 8 個 bits) 放到暫存器 (A_hi、B_hi) 中, 並且進入 IDLE2 狀態。

111. IDLE2 狀態

- START為 0: 若 A_all、B_all 其中一個為 0 時,將 next_error 設為 1,並且進入下一個狀態 (CALC)。
- ii. START 為 1: 將輸入訊號 (A、B 的後 8 個 bits) 與暫存器 (A_hi、B_hi) 串接成 A all、B all, 並停留在 IDLE2 狀態。

IV. CALC 狀態

- i. ERROR 為 1 (當 clock 由 0 變 1 時, 會將 next_error 的值送到 ERROR): 將 next_diff 設為 0, 進入 FINISH 階段。
- ii. A_all、B_all 相等:將 next_diff 設為 A_all,進入 FINISH 階段。
- iii. $A_{all} > B_{all}$:進行 GCD 運算 $(next_A_{all} = A_{all} B_{all}, next_B_{all} = B_{all}, next_diff = A_{all} B_{all})$ 。
- iv. A_all < B_all : 進行 GCD 運算 (next_A_all = A_all, next_B_all = B_all A_all, next_diff = B_all A_all)。

V. FINISH 狀態

將 next_DONE 設為 1, 並將 output 訊號 (next_Y) 設為 diff (當 clock 由 0 變 1 時, 會 將 next diff 的值送到 diff) 的前 8 個 bits, 進入 FINISH2 階段。

VI. FINISH2 狀態

將 output 訊號 (next_Y) 設為 diff 的後 8 個 bits, 進入 IDLE 階段。

NTHU CS 1 / 7

圖一、Finite State Machine 圖

以下介紹 GCD 的計算方式 (如圖二所示): 首先,當 START 訊號變成 1 時,將輸入訊號 A、B 放到暫存器 a、b 中,接著比較 a、b 的大小,較大者於下一個 clock cycle 設為 a,較小者則設為 b,之後計算出兩數的差值 diff (a-b),並於下一個 clock cycle 將 a 設為 diff,再重複執行比大小、計算差值,當 a、b 相等時,表示計算已完成,則 gcd(A,B)=a=b。

圖二、block diagram

NTHU CS 2 / 7

2. Simulation and Discussion

當 RST_N 訊號為 0 時,將訊號初始化。在 RTL 和 gate-level 的模擬中波形是一致的。

圖三、初始化之波形圖(上圖為 RTL, 下圖為 gate-level)

[Testcase1] A=0, B=0 (波形圖如圖四所示)

目的: 驗證當其中一個訊號為 0 時是否正確

當 START 為 1 時, A_hi、B_hi 有正確儲存 A、B 訊號, 並且進入 IDLE2 狀態, A_all、B_all 也有得到將新的 A、B 訊號做串接, 於下一個 cycle 得到 ERROR(因為 A、B 其中一個為 0, ERROR 也有正確的變為 1) 再進入 CALC 狀態, 偵測到 ERROR 為 1 後, 亦正確進入 FINISH 狀態, 先輸出答案的前 8 個 bits, 同時把 DONE 訊號設為 1, 進入 FINISH2 狀態後再輸出答案的後 8 個 bits, 同時ERROR、DONE 維持 1, 最後回到 IDLE 狀態等待下次被啟動。在 RTL 和 gate-level 的模擬中波形是一致的。

圖四、testcase 1 之波形圖(上圖為 RTL, 下圖為 gate-level)

NTHU CS 3 / 7

[Testcase2] A=258, B=258 (波形圖如圖五所示)

目的: 驗證當兩個訊號相同時是否正確

當 START 為 1 時, A_hi、B_hi 有正確儲存 A、B 訊號, 並且進入 IDLE2 狀態, A_all、B_all 也有得到將新的 A、B 訊號做串接, 於下一個 cycle 得到 ERROR=0 (因為 A、B 皆不為 0) 再進入 CALC 狀態, 偵測到 A==B 後, 亦正確進入 FINISH 狀態, 先輸出答案的前 8 個 bits, 同時把 DONE 訊號設為 1, 進入 FINISH2 狀態後再輸出答案的後 8 個 bits, 同時 DONE 維持 1, 最後回到 IDLE 狀態等待下次被啟動。在 RTL 和 gate-level 的模擬中波形是一致的。

圖五、testcase 2之波形圖(上圖為 RTL, 下圖為 gate-level)

[Testcase3] A=256, B=13 (波形圖如圖六所示)

目的: 驗證當兩數互質相同時是否正確

當 START 為 1 時, A_hi、B_hi 有正確儲存 A、B 訊號, 並且進入 IDLE2 狀態, A_all、B_all 也有得到將新的 A、B 訊號做串接, 於下一個 cycle 得到 ERROR=0 (因為 A、B 皆不為 0) 再進入 CALC 狀態, 偵測到 A>B 後, 進行 GCD 運算直到 A==B 後, 正確進入 FINISH 狀態, 先輸出答案的前 8 個 bits, 同時把 DONE 訊號設為 1, 進入 FINISH2 狀態後再輸出答案的後 8 個 bits, 同時 DONE 維持 1, 最後回到 IDLE 狀態等待下次被啟動。在 RTL 和 gate-level 的模擬中波形是一致的。

NTHU CS 4 / 7

圖六、testcase 3之波形圖(上圖為RTL,下圖為gate-level)

[Testcase4] A=233, B=144 (波形圖如圖七所示)

目的: 驗證當輸入為兩個 fibonacci 數是否正確

當 START 為 1 時, A_hi、B_hi 有正確儲存 A、B 訊號, 並且進入 IDLE2 狀態, A_all、B_all 也有得到將新的 A、B 訊號做串接, 於下一個 cycle 得到 ERROR=0 (因為 A、B 皆不為 0) 再進入 CALC 狀態, 偵測到 A>B 後, 進行 GCD 運算直到 A==B 後, 正確進入 FINISH 狀態, 先輸出答案的前 8 個 bits, 同時把 DONE 訊號設為 1, 進入 FINISH2 狀態後再輸出答案的後 8 個 bits, 同時 DONE 維持 1, 最後回到 IDLE 狀態等待下次被啟動。在 RTL 和 gate-level 的模擬中波形是一致的。

圖七、testcase 4之波形圖(上圖為 RTL, 下圖為 gate-level)

因為兩個數相差為 1 時必定互質,所以在這個 design 中,可以透過判斷兩數的差值是否為 1,來提前終止 GCD 的運算.縮減運算的時間。

NTHU CS 5 / 7

[Timing report]

如圖八所示, gate-level design 的 slack 大於零, 代表我的 design 沒有太慢, 在 clock 轉換前可以計算完畢, 並且 slack 不是一個很大的值, 代表我的 design 也沒有跑得太快的問題, 不會在訊號被送出去前就換成下一個訊號。

45	r318/U2 15/Y (XOR3X1)	0.26	6.32 r
46	r318/DIFF[15] (GCD_DW01_sub_0)	0.00	6.32 r
47	U290/Y (CLKINVX1)	0.06	6.38 f
48	U288/Y (OAI221XL)	0.18	6.56 r
49	diff_reg[15]/D (DFFRX1)	0.00	6 . 56 r
50	data arrival time		6.56
51			
52	clock CLK (rise edge)	10.00	10.00
53	clock network delay (ideal)	0.00	10.00
54	diff_reg[15]/CK (DFFRX1)	0.00	10.00 r
55	library setup time	-0.27	9.73
56	data required time		9.73
57			
58	data required time		9.73
59	data arrival time		-6.56
60			
61	slack (MET)		3.18

圖八、Timing report 部分內容之截圖

[Power report]

整體看來, 我的 design 的 power consumption 滿低的, 不過沒有可以比較的對象, 不確定跟其他同學比較會不會算是低的。

```
Power-specific unit information :
    Voltage Units = 1V
    Capacitance Units = 1.000000pf
    Time Units = 1ns
    Dynamic Power Units = 1mW
                                 (derived from V,C,T units)
   Leakage Power Units = 1pW
 Cell Internal Power = 208.1597 uW
 Net Switching Power = 8.3212 uW
                                        (4%)
Total Dynamic Power
                      = 216.4809 uW (100%)
Cell Leakage Power
                      = 4.9974 uW
                 Internal
                                  Switching
                                                                         Total
                                                      Leakage
io pad
                   0.0000
                                     0.0000
                                                       0.0000
                                                                         0.0000 (
                                                                                     0.00%)
                   0.0000
                                     0.0000
                                                       0.0000
                                                                         0.0000
                                                                                     0.00%)
                                                       0.0000
                   0.0000
                                     0.0000
                                                                         0.0000
                                                                                     0.00%)
black_box
                                                                         0.0000
                                                                                     0.00%)
clock network
                   0.0000
                                     0.0000
                                                       0.0000
                   0.1976
                                 2.8336e-03
                                                   2.7902e+06
                                                                         0.2032
                                                                                    91.76%)
sequential
                   0.0000
                                     0.0000
                                                                         0.0000
                                                                                     0.00%)
combinational 1.0564e-02
                                 5.4876e-03
                                                   2.2071e+06
                                                                     1.8259e-02
                                                                                     8.24%)
                   0.2082 mW
                                 8.3212e-03 mW
                                                   4.9974e+06 pW
                                                                         0.2215 mW
```

圖九、Power report 部分內容之截圖

NTHU CS 6 / 7

[Area report]

我的 design 的 area= $\frac{72\times3079.083627}{254.609996}\approx870$ units, 我認為可能有點多, 可以再做改善化簡整底的面積, 不過沒有可以比較的對象, 不確定跟其他同學比較會不會算是多的。

```
Number of ports:
                                           168
Number of nets:
                                           618
Number of cells:
                                           407
Number of combinational cells:
                                           307
                                            97
Number of sequential cells:
Number of macros/black boxes:
                                             0
Number of buf/inv:
                                            72
Number of references:
                                            25
Combinational area:
                                   3079.083627
Buf/Inv area:
                                    254.609996
Noncombinational area:
                                   3031.556297
Macro/Black Box area:
                                      0.000000
Net Interconnect area:
                             undefined (No wire load specified)
Total cell area:
                                   6110.639924
                             undefined
Total area:
```

圖十、Area report 部分內容之截圖

3. Summary

這次作業遇到兩個問題,第一個是 coding style 引起的,因為不小心在程式當中寫出 latch,在一般模擬的時候沒有出現問題,但是在合成之後,就會執行到一半突然出現震盪,讀到一些不如預期的值; 第二個問題則是在 test bench 中發生的,在 reset 時沒有將 START 訊號做初始化,讓一開始的 state 出現 high z 或 unknown 的狀況,在 debug 時還以為是 design 的問題,所以一直無法解決,幸好最後有老師的幫忙,讓我可以如期地完成作業。

NTHU CS 7 / 7