Rozkład Normalny: Podstawy i Właściwości

Gabriel Tyszka

25 czerwca 2025

Spis treści

1	Wprowadzenie do Rozkładu Normalnego	1
	Podstawowe Właściwości Rozkładu Normalnego 2.1 Reguła 3 sigm	1 2
3	Wzór Rozkładu Normalnego	2
4	Zastosowania Rozkładu Normalnego	3

1 Wprowadzenie do Rozkładu Normalnego

Rozkład normalny jest najczęściej spotykaną formą rozkładu zmiennych losowych i stanowi fundament statystyki i teorii prawdopodobieństwa. Nazywany jest również rozkładem Gaussa lub krzywą dzwonową (ang. Bell Curve).

2 Podstawowe Właściwości Rozkładu Normalnego

Rozkład normalny charakteryzuje się kilkoma kluczowymi właściwościami:

- Symetria: Rozkład normalny jest symetryczny względem wartości oczekiwanej μ . Lewa i prawa część rozkładu są lustrzanymi odbiciami siebie, a dane rozkładają się równomiernie wokół średniej wartości.
- Średnia, Mediana i Moda: W rozkładzie normalnym średnia (mean), mediana (median) i dominanta (moda) są równe i równe wartości oczekiwanej μ. Wszystkie te miary tendencji centralnej pokrywają się, co oznacza, że największe zagęszczenie danych występuje wokół średniej.
- Modalność: Rozkład normalny jest jednomodalny, co oznacza, że posiada dokładnie jedno maksimum punkt, w którym funkcja gęstości osiąga wartość największą.

- Pole pod krzywą: Całkowite pole pod krzywą funkcji gęstości rozkładu normalnego wynosi 1, co oznacza, że całkowite prawdopodobieństwo rozkładu wynosi 100%.
- Reguła trzech sigm: Przybliżone rozmieszczenie danych wokół średniej wyznacza tzw. reguła 68-95-99,7, która mówi, że:
 - około **68%** obserwacji znajduje się w przedziale jednego odchylenia standardowego od średniej $(\mu \pm \sigma)$,
 - około 95% obserwacji mieści się w przedziale dwóch odchyleń standardowych ($\mu \pm 2\sigma$),
 - około 99,7% obserwacji mieści się w przedziale trzech odchyleń standardowych $(\mu \pm 3\sigma)$.
- Transformacje liniowe: Jeżeli zmienna losowa X ma rozkład normalny, to każda transformacja liniowa postaci Y = aX + b, gdzie $a, b \in \mathbb{R}$ i $a \neq 0$, również ma rozkład normalny.

2.1 Reguła 3 sigm

Odchylenie standardowe dzieli obszar krzywej normalnej na mniejsze części, a każda część określa procent danych, które mieszczą się w określonym regionie. Ta zasada jest również nazywana "regułą 3 sigm".

- Około 68% danych mieści się w granicach jednego odchylenia standardowego od średniej.
- Około 95% danych mieści się w granicach dwóch odchyleń standardowych od średniej [4, 10].
- Około 99.7% danych mieści się w granicach trzech odchyleń standardowych od średniej.

3 Wzór Rozkładu Normalnego

Funkcja gęstości prawdopodobieństwa standardowego rozkładu normalnego (gdzie średnia $\mu=0$ i odchylenie standardowe $\sigma=1)$ ma elegancką postać:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Ogólny rozkład normalny, z parametrami μ (średnia) i σ (odchylenie standardowe), ma postać:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Znaczenie parametrów:

- \bullet μ : kontroluje położenie (przesunięcie w lewo/prawo) wykresu, czyli średnią rozkładu.
- \bullet σ : kontroluje rozciągnięcie lub ści
śnięcie wykresu w poziomie, czyli odchylenie standardowe rozkładu.
- Czynnik $\frac{1}{\sigma\sqrt{2\pi}}$ jest czynnikiem normalizującym, który zapewnia, że całkowite pole pod krzywą wynosi 1, co jest konieczne dla funkcji gęstości prawdopodobieństwa.

4 Zastosowania Rozkładu Normalnego

Rozkład normalny jest szeroko stosowany w wielu dziedzinach do modelowania i analizowania szerokiego zakresu zjawisk. Przykłady danych, dla których można zastosować rozkład normalny, obejmują:

- Rozkład wzrostu ludzi.
- Rozkład błędów w dowolnym pomiarze.
- Rozkład ciśnienia krwi pacjentów.

Jest powszechnie stosowany w finansach, inżynierii, naukach przyrodniczych i społecznych.