CÁLCULO III – Engenharia de Energia **Lista 4** – M. Gonçalves e D. Flemming, Cálculo B.

- 17. Sejam f(t) uma função real duas vezes derivável e \vec{a} e \vec{b} vetores constantes. Mostrar que se $\vec{g}(t) = \vec{a} + \vec{b} f(t)$, então $\vec{g}'(t) \times \vec{g}''(t) = \vec{0}$.
- 18. Se \vec{f} é uma função vetorial derivável e

$$h(t) = |\vec{f}(t)|,$$

mostrar que

$$\vec{f}(t) \cdot \vec{f'}(t) = h(t)h'(t).$$

- boçar as curvas seguintes, representando o sentido sitivo de percurso. Obter uma parametrização da curva dada, orientada no sentido contrário.
 - a) $\vec{r}(t) = (2 + 3\cos t, 1 + 4\sin t), t \in [0, 2\pi]$
 - b) $\vec{r}(t) = (t, t+2, 2t+1), t \in [0, 1]$
 - c) $\vec{r}(t) = (2t 1, 2t + 1, 4 2t), t \in [1, 2]$
 - d) $\vec{r}(t) = (t-1, t^2-2t+1), t \in [-1, 2]$
 - e) $\vec{r}(t) = (t \sin t, 1 \cos t), t \in [0, 2\pi]$
 - f) $\vec{r}(t) = (1 + \cos t, 1 + \sin t, 2t), t \in [0, 4\pi]$
 - g) $\vec{r}(t) = (2\cos^3 t, 2\sin^3 t), t \in \left[0, \frac{\pi}{2}\right].$

- **23.** Verificar que as equações vetoriais $r(w) = (w, w^2), \ 2 \le w \le 3 \ e^{-\overrightarrow{r}}(t) = (\sqrt{t}, t), \ 4 \le t \le 9$ representam a mesma curva.
- 24. Determinar o comprimento de arco das seguintes curvas:
 - a) $\vec{r}(t) = (e^t \cos t, e^t \sin t, e^t), 0 \le t \le 1$
 - b) $\vec{r}(t) = (2t^3, 2t, \sqrt{6}t^2), 0 \le t \le 3$
 - c) $\vec{r}(t) = t\vec{i} + \operatorname{sen} t\vec{j} + (1 + \cos t)\vec{k},$ $0 \le t \le 2\pi$
 - d) $y = x^{3/2}$, z = 0 de $P_0(0, 0, 0)$ a $P_1(4, 8, 0)$
 - e) $x = t^3$, $y = t^2$, $1 \le t \le 3$
 - f) hélice circular $\vec{r}(t) = (2\cos t, 4t, 2\sin t)$ de $P_0(2, 0, 0)$ a $P_1(0, 2\pi, 2)$
 - g) um arco da ciclóide

$$\vec{r}(t) = 2(t - \operatorname{sen} t) \vec{i} + 2(1 - \cos t) \vec{j}$$

- h) $\vec{r}(t) = (-\sin t, \cos t, 2) \text{ para } t \in [0, 2\pi]$
- i) $\vec{r}(t) = (t \operatorname{sen} t, t \operatorname{cos} t) \operatorname{para} t \in [0, \pi]$
- j) $\vec{r}(t) = (3t+1)\vec{i} + (t+2)\vec{j}$ para $t \in [0,2]$
- k) $\vec{r}(t) = (e^t, e^{-t}, t\sqrt{2}), t \in [0, 1].$
- Se $\vec{r}(t) = (t, t^2, t^3)$ para todos os reais t, determinar todos os pontos da curva descrita por $\vec{r}(t)$ nos quais o vetor tangente é paralelo ao vetor (4, 4, 3). Existem alguns pontos nos quais a tangente é perpendicular a (4, 4, 3)?
- 21 Ferificar que a curva

$$\vec{r}(t) = t\cos t \vec{i} + t \sin t \vec{j} + t \vec{k}, t \ge 0$$

está sobre um cone.

erificar quais das seguintes curvas são suaves:

$$\vec{r}(t) = t^3 \vec{i} + t^2 \vec{j}, t \in [-1, 1]$$

- b) $\vec{r}(t) = t^3 \vec{i} + t^2 \vec{j}, t \in \left[\frac{1}{2}, 1\right]$
- c) $\vec{r}(t) = 2(t \sin t)\vec{i} + 2(1 \cos t)\vec{j}$, $t \in [\pi, 3\pi]$
- d) $\vec{r}(t) = (3\cos^3 t, 3\sin^3 t), t \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$
- e) $\vec{r}(t) = (2\cos t, 3\sin t), t \in [0, 2\pi].$

25 Escrever a função comprimento de arco de:

a)
$$\vec{r}(t) = \left(\sin\frac{t}{2}, \cos\frac{t}{2}, 2t\right)$$

- b) $\vec{r}(t) = (\cos 2t, \sin 2t, 4)$
- c) $\vec{r}(t) = (t, t^2)$

d)
$$\vec{r}(t) = \left(\cos^3 t, \sin^3 t, \frac{3}{4}\cos 2t\right)$$

- e) $\vec{r}(t) = (\cos 2t, \sin 2t), t \in [0, \pi]$
- f) hipociclóide $\vec{r}(t) = (a \cos^3 t, a \sin^3 t),$ $t \in \left[0, \frac{\pi}{2}\right].$
- Reparametrizar pelo comprimento de arco as seguincurvas:

a)
$$\vec{r}(t) = (\sqrt{2}\cos t, \sqrt{2}\sin t), t \in [0, 2\pi]$$

- b) $\vec{r}(t) = (3t 1, t + 2)$
- c) $\vec{r}(t) = (\cos 2t, \sin 2t, 2t)$
- d) $\vec{r}(t) = \left(2t, \frac{2}{3}\sqrt{8t^3}, t^2\right), t \in [0, 3]$

e)
$$\vec{r}(t) = (e^t \cos t, e^t \sin t, e^t)$$

f)
$$\vec{r}(t) = (\cos 2t, \sin 2t), t \in \left[0, \frac{\pi}{2}\right]$$

g) hipociclóide
$$\vec{r}(t) = (a \cos^3 t, a \sin^3 t),$$

 $t \in \left[0, \frac{\pi}{2}\right]$

- h) hélice circular $x = 2 \cos t$, y = 4t, $z = 2 \sin t$, $t \in \left[0, \frac{\pi}{2}\right]$
- i) x = 1 t, y = 2 + 2t, z = 3t, $t \in [0, 1]$.