Towards a Facial Recognition Workstation

With Accompanying Examples

Matthew Shane Kingon Supervisor: Prof EP Wentworth

Submitted in partial fulfilment of the requirements for the degree of BACHELOR OF SCIENCE (HONOURS) of Rhodes University

Computer Science Department Rhodes University Grahamstown, South Africa

Abstract

This work looks into the feasibility of using facial recognition to track lecture/classroom attendance. It is clear that any such system would need to take into account many normalization concerns, to this end, this work employs a facial recognition workstation to easily test such techniques. A literature study points to an illumination correction algorithm, known as the Mean Illumination Estimation. Results correlate strongly with the literatures claims that such a method would best the current standard for illumination correction. However, for our specific classroom environment we conclude that such a method is not adequate. This work also looks into applying a minimum cost assignment optimisation upon the output provided by the Eigenface Algorithm.

ACM Classification

- 1. Computing methodologies—Artificial intelligence—Computer vision—Computer vision problems—Object recognition;500
- 2. Computing methodologies—Artificial intelligence—Computer vision—Computer vision tasks—Biometrics;500
- 3. Mathematics of computing—Mathematical analysis—Numerical analysis—Computations on matrices;500
- 4. Computing methodologies—Symbolic and algebraic manipulation—Symbolic and algebraic algorithms—Optimization algorithms;300
- 5. Applied computing—Physical sciences and engineering—Mathematics and statistics;100

Other Keywords:

- Facial recognition workstation;500
- Illumination normalization;500
- Multiple cost assignment minimization;300
- Hungarian Algorithm;300

Acknowledgements

I would like to acknowledge the financial and technical support of Telkom SA, Tellabs, Easttel, Bright Ideas 39, THRIP and NRF SA (UID 75107) through the Telkom Centre of Excellence in the Department of Computer Science at Rhodes University.

I would like to acknowledge The Rhodes University Computer Science Honours class (2015) for minor latex usage technical support over the past year.

Contents

1	Intr	roducti	ion	1
	1.1	Projec	et Background	1
		1.1.1	Background context	1
		1.1.2	Making a Toolbox	3
	1.2	The P	Project	3
		1.2.1	Description of this Work	3
		1.2.2	What my code should do	4
		1.2.3	Language choice	4
		1.2.4	Things to note	4
	1.3	Other	Key Aspects	5
		1.3.1	Computer Vision	5
		1.3.2	Illumination Normalization	5
		1.3.3	Global/Greedy Optimisation	6
2	Dec	oonah	of Background Literature	7
4	nes	earcii	of Dackground Literature	1
	2.1	Introd	luction to Literature Review	7
		2.1.1	Readings for Literature Survey	7

CONTENTS v

	2.2	Overv	iew of Used Systems	8
	2.3	Image	representation overview	9
	2.4	Eigenf	face Algorithm	10
		2.4.1	Intuitive description	10
		2.4.2	Training	11
		2.4.3	Prediction	13
		2.4.4	Summary of EigenFaces	14
	2.5	Norma	alization	15
		2.5.1	Cropping	15
		2.5.2	Lighting	16
		2.5.3	Alignment and scaling	16
	2.6	Summ	nary	16
3	Illuı	minati	on	18
	3.1	The Is	C TIL	10
			ssue of Illumination	-18
	3.2	Comp	aring Two Methods	
	3.2		aring Two Methods	19
	3.2	3.2.1	aring Two Methods	19 19
	3.2	3.2.1 3.2.2	aring Two Methods	19 19 20
	3.2	3.2.1 3.2.2 3.2.3	aring Two Methods	19 19 20 21
	3.2	3.2.1 3.2.2	aring Two Methods	19 19 20 21 24
	3.2	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	aring Two Methods	19 19 20 21

CONTENTS	Vi

Re	References			
\mathbf{A}	Cod	le Extracts	50	
	5.2	Looking ahead	49	
		5.1.2 Theory of future work	48	
		5.1.1 Working Example	47	
	5.1	Summing up	47	
5	Con	nclusion	47	
	4.4	Summary	45	
	4.3	Hungarian Algorithm	40	
	4.2	The Assignment problem	39	
	4.1	The Problem	38	
4	Assi	ignment Problem	38	
	3.7	Summary	36	
		3.6.2 Experiment 02: Discussion	35	
		3.6.1 Experiment 02: Results	32	
	3.6	Experiment 02: Setup	31	
		3.5.2 Experiment 01: Discussion	31	
		3.5.1 Experiment 01: Results	28	
	3.5	Experiment 01: Setup	28	

List of Figures

2.1	Example of a training set. Some faces are blacked out due to lack of permission	11
2.2	The Average Face	12
3.1	Optical Illusion example	19
3.2	Mean Illumination Estimation images before and after applying MIE taken from [30]	24
3.3	My MIE implementation [col 3] tested against provided example from [30] [col 2]	25
3.4	MIE implementation applied to CSC Honours 2015 Class list, Rhodes University. Some blacked out due to lack of permission from subjects	26
3.5	Histogram Equalization applied to article example faces [30]	27
3.6	Base line, no illumination normalization used; AT&T	29
3.7	Histogram Equalization experiment; AT&T	29
3.8	MIE experiment; AT&T	30
3.9	Histogram then MIE; AT&T	30
3.10	MIE then Histogram; AT&T	31
3.11	Base line, no illumination normalization used; Yale B	32
3.12	Histogram equalization experiment; Yale B	33

LIST OF FIGURES viii

3.1	13 MIE experiment; Yale B	33
3.	14 Histogram then MIE; Yale B	34
3.1	15 MIE then Histogram; Yale B	34
4.	The Assignment problem	39
4.5	2 The Assignment problem solution	40
4.5	3 Initial matrix	42
4.4	4 Subtraction of least value per row	42
4.	5 Subtraction of least value per column	43
4.6	Selection of rows and columns step 1	43
4.	7 Selection of rows and columns step 2	44
4.8	8 Selection of rows and columns step 3	44
4.9	Final State.	45

Chapter 1

Introduction

1.1 Project Background

1.1.1 Background context

Despite modern day technology many school environments still struggle with the problem of class/lecture attendance tracking. Some may ask, why do we need to track attendance? Tracking attendance has many useful benefits for schools and universities the obvious one is that many students try skip lectures to avoid work. Thus tracking their attendance would help in identifying such students. This would, hopefully, result in greater attendance of such classes/lectures.

The existing solution to this problem has varied slightly but for the most part has either been a simple piece of paper passed around the class letting the students sign/tick their names off (mostly used in universities), or a roll call at the start of the class by teachers in lower level class room environments (primary/high-school).

Thus it shouldn't come as a surprise that there have been many attempts to solve the problem of lecture attendance tracking and hence remove some issues. Some of the main ideas put forward are: barcode scanners [23], RFID systems [29] and the ever popular fingerprint scanners [3]. The problem with these systems is that they are still all rather intrusive workarounds, requiring students to take an active part in their attendance tracking, this results in either lines outside of lecture room venues as students wait to verify

that they are in attendance, or alternatively, a rather distracting procedure to do while they could be listening to the lecture.

Past papers on this topic have addressed the existence of these issues in some context or another [19, 18, 16]. Now as many have recognized that facial recognition has the potential to be a very simple, and non-intrusive means of tracking attendance, as in the ideal case it would simply need a camera at the front of the class and as the lecture goes on it identifies all students present. However, the technology available today is still not robust enough, hence the need for further research, development and refinement in this field.

Some points of interest to consider are lighting, as it is a very big problem that has had many attempts at a solution most are not satisfactory as they degrade the image too extensively. The required camera quality is also an area of interest. Ideally it would be good to get a solution that can work with an off-the-shelf web-cam.

It should be noted that facial recognition isn't a perfect science to start with. Many solutions don't even take into account that they are attempting to recognize a face. These algorithms could be more accurately described as object recognizers, some rather popular examples of this type of system include Egienfaces, Fisherfaces. This work takes into account many of these issues and also attempts to use environment specific knowledge to recognize students (the fact that we know both the training set and class set).

As stated there have already been numerous attempts at a solution for classroom attendance. Some have been more successful than others. However, this work differs from the others as we hope to design a system that can be easily extended or modified to test out new ideas to improve recognition. Not only do we wish to offer a system one can easily plug new normalization techniques into, but also able to make use of additional information that pertains to a specific problem a user may be facing.

Possible additional information that could be exploited include the knowledge that students tend to sit in the same area each day often varying their position by little more than a seat or two. This knowledge could be used to strengthen accuracy ratings should an individual known to sit at that location is identified. Another aspect could be useful to such a system is the knowledge that prior to lectures it is already known who should be

1.2. THE PROJECT 3

there. Thus an attempt can be made to optimize the solution between two sets, namely a set of present faces, and the class-list set.

Facial recognition is a complex field and has been well researched over the past decades even so, it is far from being a fully understood or solved problem. An aspect clearly portrayed by the fact that there are many variations in methods and techniques out there to solve this problem.

The work provides an illustrated application of this platform by implementing facial recognition for lecture attendance tracking. This work focuses on extending the preprocessing side of the tool-kit using the already provided OpenCV implementation of Eigenfaces to do the actual recognition. One notable addition would be adding the Mean Illumination Estimation algorithm. Some more concepts that are added include; image cropping, orientation correction and plane alteration. All of the above concepts describe various aspects of image normalization.

1.1.2 Making a Toolbox

A constantly developing key aspect of this research project is creating a facial recognition tool-kit. This platform will act as scaffolding for the addition of any features related to facial recognition, be it pre-processing or actual facial recognition algorithms. The idea is to selectively add relevant image manipulation techniques or other such features to the code base, thus allowing the client to mix and match them and after application get a report stating how successful the combinations that where chosen are. Some features would be cropping the faces out from the background noise, others would aim to control lighting.

1.2 The Project

1.2.1 Description of this Work

The overall goal of this research is to determine if it is possible to efficiently automate attendance tracking in lectures via facial recognition. In a related project (not directly

1.2. THE PROJECT 4

part of this work) a video stream of the class is analysed to extract and cluster faces of the same individual. In this work we take a direct approach that finds the best match for each normalized cluster in the class list of faces. A second approach is theorised that would simultaneously take into account all possible matchings and find a globally optimized assignment of each cluster to the class list. A comparison of matching accuracies for the two techniques could then be provided to determine the benefits or trade-offs.

1.2.2 What my code should do

My code should be able to: take input of the form of a folder of images. In each image would be a single face with around ten such images [8] per subject. I would then take those images, put them through some form of normalization, thereafter put them through the recognizer which will then compare the created feature vector against those created from the database which was used to train the system. Doing this comparison, the system would determine the most likely candidate for the subject in question.

1.2.3 Language choice

The language my code will be implemented in will be Python, on a windows based OS, making use of the OpenCV image processing library. The reason I've chosen Python is for its ease of use with regards to image processing and the intention of this work is that of a working proof of concept so efficiency is not a concern at this stage. I made the choice of using OpenCV as it is the most robust open source library package for image processing. Another factor in favour of OpenCV is that it is open source and thus free. Part of the aim of this work is to create a low cost system.

1.2.4 Things to note

As with most academic work, some formality of raw data is often required, for this work this data is facial images or more accurately, databases of facial images. I would need such databases to train my system to recognise faces in a controlled manner. Once I have refined my system to recognise these faces with a satisfactory degree of accuracy that conform with other literature, I will extend it to recognize faces in every day images. Ultimately this work will be testing using data obtained from a lecture venue environment.

Luckily there is a ready supply of such collections. A starting point to find such databases would be the site [21] which catalogues, with descriptions, many such databases. An initial overview of the site indicates that I should look into the Yale B face Database as it contains far more variety than others especially when it comes to illumination changes. However, the FERET database makes use of notably more consistent backgrounds.

Another database I will look at is the AT&T database [1]. It is smaller than the Yale B database, but has more realistic real world orientations of faces and the more likely accurate representation of images captured in a classroom environment.

1.3 Other Key Aspects

1.3.1 Computer Vision

For my project I need to know how to recognise faces, hence a useful starting point would be how to interpret images. Both these requirements fall under computer vision. Computer vision is the field focusing on using image processing to gain information from images for a computer to use. Ideally this would let the computer view the world in much the same manner as how we humans see it.

Computer vision makes use of edge detection, object recognition, feature detection and many other techniques to help make a computer see the world as we do. This concept is an infinitely harder task than someone outside the field of computer vision may believe. Mostly due to the effortlessness at which a human brain seems to interpret what it is seeing. [24]. More specifically this work will need to understand the interpretation of an image in the Numpy/OpenCV environment.

1.3.2 Illumination Normalization

Apart from my main aim to verify Faces in images there are certain other considerations to note. Before I can start to verify faces in images I would need to normalize those images. Normalizing with respect to image processing is the act of taking images of varying

lighting, orientation and alignment and converting them into a semi-consistent form [25].

Not only will I need to normalise a face but also combine clusters of faces, either finding the best face to use or normalize each face cluster into a single image in an attempt to create an *Average face* for an individual. Another method of using multiple images is to individually normalize and score them all and see whom the majority are classified as.

1.3.3 Global/Greedy Optimisation

This work made use of OpenCV's eigenface algorithm which makes use of a greedy best pick algorithm. Such a greedy technique takes a probe face, scores it against all training data and reports on the best match it got, less accurate than other methods but fast.

In this work it would be an interesting idea to compare greedy and global based optimising techniques. A global technique would try find the best fitting of faces such that we have the lowest possible scores linking each face [26]. This would imply we would achieve higher accuracy but possibly a more computationally expensive system.

Clearly a classroom environment where we have a set class-list and know that we should have those students present lends itself nicely to a global optimisation scoring system. Comparing them would highlight if performing such an optimisation provides clear benefits over the in-built greedy match in terms of accuracy at the cost of complexity to implement and computation time.

This work explores a global match optimisation idea in chapter four, but we were not able to implement such a system due to constraints that will be discussed later.

Chapter 2

Research of Background Literature

2.1 Introduction to Literature Review

2.1.1 Readings for Literature Survey

This section will highlight some sources I have found that will most likely be of aid to my project; To start off; I will need some form of text that can explain in detail the process of facial verification as well as image processing concepts in general. To this end, I have highlighted [24] as one potential, probably invaluable, source. Another useful resource would be [11] to provide a general overview to the usage of OpenCV.

In order to run facial verification on a collection of images it would be wise to know how best to align the faces on those images. This is a process that falls under the aspect of normalization. To help me figure out how this works I have highlighted [12] as possible useful information.

Another aspect of normalization would be illumination normalization as stated I will be looking in-depth into the MIE algorithm as proposed in [30].

Another area I would need to become proficient in would be mathematical optimization. Namely, global optimization techniques. To help me with this I have highlighted [4] as a possible method.

2.2 Overview of Used Systems

The toolbox is developed using Python and the OpenCV library in conjunction with the mathematical, Numpy library. However, too limit the scope of the project from getting too ambitious the system this work implements will, at least initially, be console based.

OpenCV is one of the most popular image processing libraries. It was released under a BSD license and thus is free for both academic and commercial use. The provided functionality is highly optimised, having been designed primarily for real-time computer vision. The code base used to implement the library functions is C/C++ to provide the most optimised solutions [6].

Python is an open source programming language designed for ease of use and learning. It is an open source project, hence free for use in any project you could need it for. It is designed to interface well with various aspects in computer science e.g. databases, web-servers, even other coding languages with a relatively easy to use wrapping system to add in functionality provided in non-python libraries for example the afore mentioned OpenCV image processing library [9].

Numpy is a mathematical library focusing around matrix manipulations employing a powerful N-dimensional array object. It provides functionality to integrate C/C++ or Fortran code. As with OpenCV it is licensed under the BSD license and hence free for public or commercial use. It is one of the prerequisites of OpenCV in Python primarily because of its powerful matrix data representation, hence a good solution for a machine representation of an image. It permits its matrices to contain arbitrary data-types allowing ease and speed of use in most database systems [5].

2.3 Image representation overview

The OpenCV library was chosen as it provides many useful image manipulation and computer vision techniques. However, this means a solid understanding of how OpenCV represents these images is required to best make use of the provided functionality.

OpenCV has already overloaded many mathematical operations to take their representation into account. Hence it is possible to simply take two images imported via "cv.imread(...)" or other such methods and add or subtract them with a ("+" or "-"). However, this is implemented only for basic mathematical operations. When one wishes to perform more complex arithmetic procedures one needs to take into account the representation of an image.

The matrix representation that describes the images this work makes use of is that of a simple 2D array or, mathematically, a 2D matrix. This comprises the core of an image class. However, there are many other headers that are provided by an image class, these include headers that describe the width and height of the image, the mathematical representation of the values inside the matrix (i.e. 8,16,32 bit numbers weather or not they are floats etc), name of the image, how many channels it has i.e. (Red, Blue, Green) and whether or not it has an alpha channel (transparency). These comprise the most important features of an image [11].

It is noted that OpenCV makes use of Numpy, a mathematical matrix library, for many of its built-in procedures. This is possible as OpenCV interprets the way Numpy represents matrices as images. Thus is useful to client programs as Numpy can thus be used to take care of the heavy lifting with regards to manipulating an image's pixel data. This provides the client with a simple view of an image as a 2d array that can be manipulated as such.

2.4 Eigenface Algorithm

2.4.1 Intuitive description

One of the most popular object recognition algorithms makes use of the mathematical eigenvector/principle analysis for component analysis PCA is already implemented in OpenCV specifically for faces and is called the Eigenface method.

The Eigenface method of facial recognition works by taking the high dimensional face images represented mathematically as an $m \times n$ matrix. Providing it with N such images it takes them and finds the average of the matrices(images) i.e. sum them together pixel by pixel and divide by N. With this "Average face" new images are created by subtracting the training images from the average image. This represents each face as a difference, or deviation from the average. Once this has been done a set of orthonormal basis matrices are calculated. Each difference face can then be projected onto the bases, resulting in a feature vector of co-efficients which best represent these "difference faces". Indeed, once a system is trained with a set of images, given any of these training images one should be able to get coefficients that reconstruct the original face exactly. The reconstruction is done by adding the average face plus a linear combination of the basis matrices. The feature vector obtained determines the weighting of each basis matrix to enable complete reconstruction of the training face.

With these we can construct a face that somewhat represents one of the individuals we used in our training set by taking the average face and adding varying components, determined by a set of coefficients, of our basis images. This set of coefficients is called the feature vector of the difference face providing us the means of recognition, as for similar faces (presumably of the same person) the feature vectors will be very close.

2.4.2 Training

The Eigenface method requires training, this means that it needs to be given images of the faces it should recognize. For example the set of faces shown in figure 2.1:

Figure 2.1: Example of a training set. Some faces are blacked out due to lack of permission.

It then takes each image and converts it into a high dimensional vector created as:

$$\Gamma_n = (Width) \times (Height) \mid n = 1, ..., N$$

Where N is the number of training images you have. the result is a set S of N such face image matrices:

$$S = \Gamma_1, \Gamma_2, \Gamma_3, ..., \Gamma_N$$

After this is done the method finds the average face given as:

$$\varphi = \frac{1}{N} \sum_{n=1}^{N} \Gamma_n$$

The average face constructed from this training set can be seen shown below in Figure 2.2:

Figure 2.2: The Average Face

Once the "average face" is determined the method calculates the difference ϕ between it and each image in the training set.

$$\phi_n = \Gamma_n - \varphi$$

We next obtain the covariance matrix C which we need for its Eigenvectors/values (v_n, λ_n) respectfully. We obtain C via:

$$C = \frac{1}{N} \sum_{n=1}^{N} \phi_n \phi_n^T$$
$$= AA^T$$

where:

$$A = \phi_1, \phi_2, \phi_3, ..., \phi_n$$

Note, the superscript T implies the corresponding matrix/vector is transposed.

The core concept of Eigenvector/value pairs is that given a matrix operation (in our case C) on a vector (v_n) then this is equivalent to some scalar (λ_n) multiplied by that same vector.

$$Cv_n = \lambda_n v_n$$
 $n = 1, 2..., N$

This relation allows us to find v_n and λ_n of C. We create a new matrix ω by combining these eigenvectors (v_n) ordered in descending eigenvalues (λ_n) . We then use this new construct to determine our feature vectors for each training face. via:

$$y_n = \omega^T(\phi_n) \quad n = 1, 2..., N$$

Where ϕ_n as seen above is the difference image between the training image n and the average image φ Note: although ϕ represents an image, mathematically we are viewing it as a single line vector. We multiply this vector by our created matrix ω to yield the feature vectors y_n for our training data. Thereafter we compare any future image against these vectors to determine who they best match against.

2.4.3 Prediction

Once the recognizer has been trained with the input training data, what it stores are the average face, orthonormal basis matrices and the feature vectors for each individual in the training data. Then it can be fed some unseen images of the people it has trained on and see how it fares. Herein we describe the procedure of taking a new image and testing it against our trained recognizer.

To transform a new face into its Eigenface components. First, subtract our input image Γ from our mean image φ then multiply by the eigenvector matrix ω . Doing so, we produce the feature vector x:

$$x = \omega^T (\Gamma - \varphi)$$

We now determine which of the training faces is the best fit by finding the feature vector of the training face y_n with the minimum euclidean distance to the feature vector of the probe face x we do so by calculating all these differences ε_n :

$$\varepsilon_n = ||x - y_n||$$

Then take:

$$min(\varepsilon_n)$$

To get the best match to our training data. This distance also offers a means of indicating the confidence of this match.

It should be added that Euclidean distance is not the only means of determining how different vectors are. Indeed, for our purposes it is possible that it could even be detrimental to the recognition rates. Another solution would be to use the absolute distance. This is still not 100% ideal but it may not have as much of an effect on our accuracy scores.

If ε_n is below a certain threshold defined within the algorithm the face is considered to be known and represented by Ω_n . If instead the ε_n is above the threshold the image is determined not to be face from the training data or indeed a face at all. If the threshold value is chosen too small only very close approximations to our training set will be accepted by the algorithm leading to a higher accuracy, at the other end, if the threshold is too large the algorithm will generate many false positives. If the image is a face you know belongs to one of your subjects but the system determines it is an unknown, then you could subsequently identify the individual by other means and then choose to add it into the set of known faces and repeat the training steps i.e. incorporate the latest image of the individual into the system (Doing so may be appropriate under certain circumstances eg. the subject gets a hair cut, shaves his beard etc).

2.4.4 Summary of EigenFaces

So in summary, the Eigenface algorithm is provided with a set of face images to train on, then once it is trained it is given an image, presumably a face of one of the people from the training set, it will then ideally match it to the correct person and report how close the two feature vectors are to each other are in the space provided.

It is important to note even though this method is called the Eigenface method, nothing about it forces the use of facial images, indeed it is simply a image recognizer that has been shown to work well on faces. An example of PCA systems being used on non-face objects can be seen in [20] where they use the idea to identify different plant types based on individual leaves from each plant. One known weakness is that lighting will have a very large impact on its performance, as opposed to other methods. Though in other methods lighting does play a part and is something you wish to remove, it is highly detrimental to the Eigenface method. Thus to build a robust system lighting will need to be normalized and compensated for.

The above mathematical understanding of the implementation of the Eigenface algorithm was achieved via the tutorial found at [28]. Matthew Turk and Alex Pentland developed the original algorithm [27].

2.5 Normalization

2.5.1 Cropping

As has been stated the Eigenface algorithm is an image recognizer, thus background image data will have a drastic impact on its performance and recognition rates. For this reason it is important to get rid of as much of an image background as possible. Cropping an image is easy by hand, but the point of this whole exercise is to automate the process of facial recognition as much as possible. Hence, to crop a face out of an image the face would first need to be found. To this end, we would need a face identifier.

This work already implements such a feature in a separate component of the project [15]. As this work attempts to create a facial recognition tool-kit, the client can specify the bounds of the cropping procedure once the face is found giving said user the ability to crop it aggressively or not at all.

Preliminary testing does indeed show that cropping an image has an effect on the recognition rate. However, these have been manual crops that do not resize the image nicely. Also, some faces are simply not well cropped with a lot of background left in the image. Another improvement that can be attempted is to white/black out the remaining background so that for all images the background makes the same contribution to the algorithm's scoring system.

2.6. SUMMARY 16

2.5.2 Lighting

Lighting plays a very integral role for the Eigenface algorithm. As such, we expand upon this concept more fully in chapter 3 by providing a strong background as to why lighting is an issue and experimenting with various ways to overcome said issues posed by illumination.

2.5.3 Alignment and scaling

The final big normalization issue would be face alignment and scaling, when a photo is taken/camera is run, the faces wont be all similarly scaled or aligned. This is something the system needs to take into account.

Hence this becomes a software problem. Most alignment algorithms find suitable features in a face with which to re-align the face correctly [12]. Such features can include the location of the eyes in a face and use these to re-align the head so that it is as straight on as possible. This could be achieved by taking the eyes, drawing a line between them and levelling this line out so that it is straight. It should be noted that the nose can also be used as an alignment feature but the eyes are favoured as they provide a longer axis to align with.

Scaling of a face can also be achieved through the distance between the eyes. The image as a whole can be scaled bigger or smaller so that this distance conforms to a fixed value.

2.6 Summary

This work aims to create a facial detection and recognition tool-kit. However, the true extent of this goal is beyond the scope of this paper. The main goal of this work, at least initially, is to get an end-to-end system up and running even if many features require manual input. For example; cropping and alignment can be done by hand by prompting the client to locate the centre of the eyes in an image. Taking these locations, it can realign the head and set the eyes to fixed locations.

2.6. SUMMARY 17

The bulk of the current work focusses on the Eigenface algorithm for facial recognition. More importantly, it attempts to fully understand and implement the normalization technique called the Mean Illumination Estimation [30] and ascertain the benefit on Eigenfaces accuracy rating by using this pre-processing technique.

As was explained earlier a key aspect of the system is that its framework and structure will be easy to extend and utilise. Providing future researchers with the ability to add the functionality they desire whether they wish to add extra pre-processing methodologies or a more robust recognition algorithm.

Chapter 3

Illumination

3.1 The Issue of Illumination

Lighting plays a very big role in all facial recognition, identification or just about any image processing problem. To the human eye, it can be an almost undetectable irregularity in the world we observe but to a computer that must inspect each and every pixel within an image to determine what it is observing, even the slightest change in lighting make each pixel value change dramatically. This problem can complicate any image processing techniques.

To better appreciate the problem it should be noted that there are an abundance of illusionary images that manage to fool the human brain. These examples are often very specifically designed for this very purpose. However, it does illustrate the point. The example shown in fig:[3.1] may be an old one, but will still often fool most people you show it to; the two blocks with the orange dot are in fact, the same shade of grey, the two orange dots are also the same colour. Some may see it right away but even so it takes effort to see it. This is due to the fact that your brain logically assumes that the lower dot is on top of the brighter block set and hence should be brighter than the darker block set around it which it is. However, it is not brighter than all dark blocks in the image, this occurs because your brain doesn't take into account the shadow cast upon the blocks.

Figure 3.1: Optical Illusion example

When it comes to faces there are two main ways illumination could degrade our images. One, a uniform change in ambient light. This occurs when the light source is straight on, visually the whole image gets darker or brighter. Two, localised lighting changes, e.g. the light source is to the right of the face, so the left side is darker than the right. This is a distinction we will come back to later. Illumination is clearly something any face recognition service will have to take into account if it wishes to accurately recognize a set of faces. Thus, illumination is a logical and readily available normalization target to test the ease of use of my system.

3.2 Comparing Two Methods

The plan will be to test a newly proposed method of illumination correction, The Mean Illumination Estimation (MIE) [30], against something with proven results, namely, OpenCV's built-in histogram equalization. We have the proposition put forward by [30] that their algorithm bests the current standard for illumination correction. This implies that it should fare better than a simple quick and easy Histogram Equalization technique from OpenCV.

3.2.1 Histogram Equalization

As stated we will be employing OpenCV's implementation of this algorithm. However, presented below is an overview on how the algorithm works and why it is theoretically useful to correct for different illumination conditions.

Before we get into the math of the method an intuitive description would be useful. Ideally what would happen using histogram equalization is given an image with 256 pixels and applying histogram equalization, one pixel will have a value of 1, another would have value 2, another would have value 255 etc. Or if we had an image of 512 pixels, two would get a value of 0, another two would get 1 etc. So a uniform distribution of pixel values is the goal. However, doing so we would lose structure to our image as pixel values originally of the same intensity get mapped to different values [2]. So, at a minimum we need to make sure that pixels of the same intensity value in the base image get transformed to the same "normalized" intensity. We also need to be careful that we don't affect the base structure of the image in another way i.e. pixel (x_0, y_0) which is brighter than pixel (x_1, y_1) put through this algorithm to get (x'_0, y'_0) will still be brighter than (x'_1, y'_1) though both values will likely have changed.

Mathematically we are mapping a clustered potentially non-uniform distribution to a wider (0-255) more uniform spread of intensity values. Let f be the given image represented by a $n \times m$ matrix of pixel intensities ranging from (0 to L-1) where L is the number of possible values (usually 256) Now p will denote the normalized histogram of our image f as a list of bins per intensity value:

$$p_n = \frac{x_n}{Total} \quad n = 0, 1, 2,, L - 2, L - 1$$
(3.1)

where x_n is the number of pixels with intensity 'n' and 'Total' is the total number of pixels in the image. We will define the Histogram equalized image as 'g';

$$g_{ij} = floor((L-1)\sum_{n=0}^{\infty} f_{ij}p_n)$$
(3.2)

Note floor rounds down the value. The explanation used here can be found from the University of California [10]

3.2.2 Summary of Histogram Equalization

Now we have a normalised image with which we can hopefully perform recognition on with greater success. We note that technically it doesn't really care that there are illumination issues present. Histogram equalization is a global image operation that will effect the entire image in the same way, regardless of the actual lighting conditions present in portions of the image. i.e. if we took a face image with one half bright and one half dark and put it through the algorithm, as already stated above, the brighter pixels on the one half will still be brighter after the equalization is performed which still equates to an illumination problem for the Eigenface algorithm. However, these are very much edge cases. For the most part illumination issues will be of the form of global lighting differences.

3.2.3 Mean Illumination Estimation

This method takes a localised smoothing approach to lighting normalization. This is done so as to remove the components of the image responsible for illumination changes. Firstly it notes that according to the Illumination-Reflection model described in detail in [13], a pixel f_{xy} in a facial image gets its value from two components. r_{xy} represents the reflection component of an image at the point (x, y) and i_{xy} represents the illumination component. Thus we get the equation:

$$f_{xy} = r_{xy} \times i_{xy} \tag{3.3}$$

Now, as r_{xy} is dependent purely on the surface material in question and not affected by illumination it would be an intrinsic representation of the facial image. Suppose i_{xy} changes little in value within a small area while in the presence of a weak light source. The key idea now is to estimate the regional value of the illumination and use this to cancel out the illumination. Thus we wish to find an estimate of our image f_{xy} that will allow us to do this separation. To attain such an estimate we apply a logarithmic transformation to each pixel in our image f_{xy} we call this new function g_{xy}

$$g_{xy} = ln(f_{xy})$$

$$= ln(r_{xy}) + ln(i_{xy})$$
(3.4)

Now \hat{g}_{xy} becomes a mean estimate for g_{xy} and is obtained via:

$$\hat{g}_{xy} = \frac{1}{n^2} \sum_{(s,t)\in\omega_{nn}} g_{st}$$

$$= \frac{1}{n^2} \sum_{(s,t)\in\omega_{nn}} ln(r_{st}) + \frac{1}{n^2} \sum_{(s,t)\in\omega_{nn}} ln(i_{st})$$
(3.5)

Note ω_{nn} is the area around a given pixel (x, y) with (s, t) being the enumeration of these pixels and n is the width/height of said kernel around (x, y). Next, the quotient image d_{xy} is constructed from equations, (2.4),(2.5) we do so to eliminate i_{xy} (or make its contribution to the image negligible):

$$d_{xy} = g_{xy} - \hat{g}_{xy} = \ln(r_{xy}) - \frac{1}{n^2} \sum_{(s,t)\in\omega_{nn}} \ln(r_{xy}) + \sigma$$
 (3.6)

Where: $\sigma = ln(i_{xy}) - (\frac{1}{n^2}) \sum_{(s,t)\in\omega_{nn}} ln(i_{st})$ we note that σ will be a very small value and can hence be omitted from (4) leaving us with the relation:

$$d_{xy} = g_{xy} - \hat{g}_{xy}$$

$$\approx ln(\frac{r_{xy}}{(\prod_{(s,t)\in\omega_{nn}} r_{st})^{\frac{1}{\pi^2}}})$$
(3.7)

Now, d_{xy} represents the ratio between the current point's reflectance and the average reflectance around it. When the materials in the localised kernel around (x,y) are the same d_{xy} tends towards zero, but when they are different e.g. facial skin and facial features d_{xy} becomes notably none-zero. Let us consider:

$$\alpha = \frac{1}{ab} \sum_{(x,y)\in f_{a\times b}} |d_{xy}| \tag{3.8}$$

With a = number of rows and b = number of columns in an image $f_{a \times b}$. α will represent

the average grey value ratio of the whole image and features. Each pixel is hence expressed as the ratio exponent relative to the average grey value:

$$h_{xy} = \exp\frac{d_{xy}}{\alpha \dot{\beta}} \tag{3.9}$$

With β being a controllable scaling factor. However, it is usually set in the range of two to three. Finally to improve contrast and correct the resulting brightness level, highlight facial features and reduce impact of background noise, post processing is done as:

$$\hat{o}_{xy} = \begin{cases} h_{xy} & h_{xy} < 1\\ 1 & h_{xy} \ge 1 \end{cases}$$
 (3.10)

$$o_{xy} = \left[\frac{255 \times (\hat{o}_{xy} - c)}{1 - c}\right] \tag{3.11}$$

With o_{xy} being the final result image to be used in training or recognition. c is the minimum value of \hat{o}_{xy} . The math may be complex but the idea is rather simple, given an image, we separate out the intensity factor from the structure of the face, setting it to zero and rebuilding the face. An example is provided below.

Notice here that the lighting angles have changed. In the first image, the ambient light is full-frontal whereas the remaining two images show shadows cast from various facial features is directional lighting is present from this we gather the middle image to be lit from about a 10'o'clock angle and the bottom image to be solely lit from above.

The MIE algorithm leaves us with an image that for the most part is devoid of all extra light. Ideally, multiple images of the same object under different lighting conditions that are put through this algorithm will end up looking the same. An example of it in use can be seen below. Note how, in the above fig:[3.2], despite the drastic differences in illumination on the before images, the right side varies little from face to face.

The above images were 168x192 in size and it was discovered that for this size an n of 11 was optimal along with $\beta = 2.2$ where β is affected by facial reflectance of the subjects tested on. However, it stays at a value of 2.2 as the facial reflectance of different people varies little.

Figure 3.2: Mean Illumination Estimation images before and after applying MIE taken from [30]

3.2.4 Summary of Mean Illumination Estimation

The complications arise from estimating the illumination component so as to subtract it from the image, highlighting the remaining reflectance of the image. We achieve this by a logarithmic transform which only slightly (computationally) affects the image, the fact remains that it still does change the image.

In conclusion, any attempt to normalize an image's illumination will undoubtedly degrade some aspects of the image we would rather retain. However, one would hope that the gained standardization of facial images out way this degradation and yield more accurate recognition rates. We also note that this method is a localised correctional algorithm. That is to say the afore mentioned issue with histogram equalization not being very effective for images with half bright, half dark faces doesn't apply here. The formula and reasoning were put forward by and learned from [30], an article that attempts to find a

better way of solving the lighting issue with positive results for their effort.

Using the workstation, the task now is to gain more insight into the algorithm by attempting to duplicate the literature results and to further validate the strengths and weaknesses of the algorithm. The completed implementation of this algorithm in Python can be seen in appendices:[A.1,A.2]. Note that little effort was made to optimise the program as the implementation of the algorithm was a trial run to determine if the method would be useful for the system and our needs. If the algorithm does prove to be valuable, there are a number of means to improve efficiency as discussed at the end of the chapter.

3.2.5 Validation of MIE implementation

Before the experiment can be run we first attempt to validate that aspects of the system work as intended. This is done to provide validation to the results obtained from the experimental procedure. Though we predominantly wish to do so for our implementation of the Mean Illumination Estimation, for completion, we also confirm OpenCV's built in Histogram Equalization method works as intended.

Figure 3.3: My MIE implementation [col 3] tested against provided example from [30] [col 2]

To start, we compare the output my MIE implementation provides against that of the

output attained according to [30]. We note above in fig:[3.3];

We observe that my implementation provides near identical results to that of the article for the base face. However, as the images become darker our results seem to deviate more from those in the published paper. We postulate that these artefacts are being generated from the conversion between image to PDF used in the published paper, and back to image again i.e. slight smudging and some significant frequency artefacts are introduced in the dark regions from the conversion algorithm, possibly from compression algorithms.

To confirm our hypothesis, here are several more images put through my algorithm that are not extracted from the PDF paper of [30]. We see none of the below show similar artefacts to those found in fig: [3.3].

Figure 3.4: MIE implementation applied to CSC Honours 2015 Class list, Rhodes University. Some blacked out due to lack of permission from subjects

To further investigate, we took the original PDF images from the paper [30] and ran them through the OpenCV implementation of histogram equalization Below fig: [3.5], we see

the same faces as the MIE comparison test fig: [3.3] above. However, instead of the MIE applied to them they have undergone histogram equalization, an OpenCV algorithm in which there is a high confidence.

Figure 3.5: Histogram Equalization applied to article example faces [30]

We see that the intensities have been stretched for all images, improving visibility, We also note in the middle image around the eyes and in the far right image, once again the same artefact pattern emerges. This points again to an issue with the image itself, not the algorithms performed upon them.

Now that we have built confidence in our implemented code that it does work as intended by the original creators we can construct an experiment to test the effects on accuracy they have.

3.3 Reading The Graphs

The algorithm "classifies" a face provided the matcher gets a "deviation" score less than the provided threshold. Therefore at each threshold point we get three regions; going up; the first region defines the number of successfully classified images, the second region shows the number of unsuccessful classifications and the remaining portion of the graph are those images that were not yet classified under the current threshold but may still be under the next threshold level.

3.4 A word on training

We train the eigenface method with multiple images per subject. This is done to increase accuracy of the system. Having multiple images of the same person under different conditions provides a higher likelihood for the system to correctly match a new face to one of the subjects training data. E.g. we train with 10 subjects, each subject has 5 training images one looking up, down, left, right and full-frontal we label each image as subject 1. Thus, given a new image of the subject looking left, there is a higher probability for a successful match to subject 1 as the system has a training image of that subject looking left.

3.5 Experiment 01: Setup

First up we will test our system against the AT&T database, this database contains 40 subjects with 10 images per subject totalling 400 images [1]. We have evenly split this data into training and test data i.e. 5 images per subject goes to training and the other five to test data. The results we will be comparing are the total number of correct connections made by the Eigenface algorithm. This database primarily focuses on orientation of the subjects faces and has limited illumination variance, as such, we expect the Eigenface algorithm to perform with some degree of accuracy and the application of our two normalisation techniques to have minimal if any effect on the accuracies obtained.

3.5.1 Experiment 01: Results

We start with a base line, no normalization techniques used, just the plain dataset run through the Eigenface algorithm. Doing so we get the graph;

Figure 3.6: Base line, no illumination normalization used; AT&T

From Figure: 3.6 we see that we correctly recognize $\frac{182}{200}$ subject images i.e. equating to a 91% accuracy. We run the experiment again but this time perform histogram equalization upon both test and training data. This provides us with the graph;

Figure 3.7: Histogram Equalization experiment; AT&T

We now see from Figure: 3.7 that the system can correctly recognize $\frac{175}{200}$ of the subject images, roughly 87% accuracy rating, a slight drop from the base line but still a viable accuracy. we also note that it is significant that at lower threshold values, almost no incorrect classifications are made. As we increase the threshold after about 80% correctly classified, the final 20% have about an equal number of correct and incorrect classifications

occur. We now run the experiment again. However, now we test our MIE algorithm. Doing so, we obtain the results;

Figure 3.8: MIE experiment; AT&T

Here we see greatly diminished results with, $\frac{137}{200}$ recognized faces, equating to roughly 68% accuracy. Once again, we try two more experiments, 1.) we run histogram equalization first, then MIE upon this normalised data. 2.) the other way round, test MIE first, then histogram equalization;

Figure 3.9: Histogram then MIE; AT&T

Figure 3.10: MIE then Histogram; AT&T

Aside from the over all inaccuracy of the combination we see a connection emerge; histogram equalization then MIE performs in accordance with MIE on its own if slightly less accurate but the other way round provides far worse results.

3.5.2 Experiment 01: Discussion

Initially we observed what we expected, the baseline performed with a high degree of accuracy due to the lack of illumination change in the images. However, to our disappointment when we run our correction algorithms we see diminished results with MIE being completely impractical for normal use.

3.6 Experiment 02: Setup

For this experiment the conditions were; Yale B face database [14] which contains 38 individuals with 65 images per subject (2470 total). However, to reduce computation time I will only used a subset of the data, the first 20 subjects. Note, the Eigenface algorithm cannot handle images of varying size, so many of the subjects have images that need to be discarded as they are larger than the others panned out larger and needing to be cropped. Also, some of the images were provided as corrupt, presumably as further testing data, they too have been removed. Furthermore we also take 10 images per subject

to use as the training set. What remains is 20 subjects and 1072 images as testing data. The results we will be comparing are the total number of correct connections made by the Eigenface algorithm. Based on the literature and as noted above, we expect MIE to surpass OpenCV's Histogram equalizations recognition accuracy.

3.6.1 Experiment 02: Results

As before we start with a base line, no normalization techniques used, just the plain dataset run through the Eigenface algorithm. Doing so we get the graph:

Figure 3.11: Base line, no illumination normalization used; Yale B

By contrast to the previous dataset, here we see incorrect classifications even at low threshold values and a flat-lining of the correct predictions graph i.e. increasing the threshold will give more inaccurate classifications then correct ones. From fig:[3.11] we see that we correctly recognize $\frac{480}{1072}$ subject images i.e. roughly 45% accuracy. We run the experiment again but this time perform histogram equalization upon both test and training data. This provides us with the graph;

Figure 3.12: Histogram equalization experiment; Yale B

We now see from fig: 3.12 that the system can correctly recognize $\frac{684}{1072}$ of the subject images, roughly 64% accuracy rating, a meaningful improvement on the base line.

We now run the experiment again. However, instead of Histogram Equalization, we test our MIE algorithm. Doing so, we obtain the results.

Figure 3.13: MIE experiment; Yale B

Here we see greatly improved results with, $\frac{1064}{1072}$ recognized faces, equating to roughly 99% accuracy.

In a final attempt to yield even better results, we performed two more experiments, 1.) we run histogram equalization first, then MIE upon this normalised data. 2.) the other way round, apply MIE first, then apply histogram equalization.

Figure 3.14: Histogram then MIE; Yale B

Figure 3.15: MIE then Histogram; Yale B

We see from these experiments that Performing Histogram Equalization first and then MIE on top of that performs nearly as well as MIE on its own, but the other way round yields shocking results, failing to even score all images under the maximum 14000 threshold. It is significant though, that this combination makes very few misclassification (None, in fact, in fig: 3.15)

3.6.2 Experiment 02: Discussion

The Baseline experiment, fig:[3.11] provides a very poor score with this facial database, this was to be expected due to the high impact of lighting conditions on the Eigenface algorithm, yielding a score of $\frac{480}{1072}$, roughly 45% accuracy. On top of that, it technically doesn't even score all the images, 3 were missed i.e. their threshold values were higher than the upper limit of our graph.

The first experiment we try is histogram equalization. Here we see an improvement in recognition at roughly 64%. We already know from the explanation of the workings of histogram equalization that it is not ideal for the Eigenface method when used on images with localised lighting conditions, something that the Yale B database has in abundance. This aside, all in all, it is a notable improvement on the none-normalised score but still far from the ideal.

Next we hope to achieve better results with the MIE version of the data. We get results which far surpass those provided by histogram equalization, at roughly 99%. This is because the MIE is a very localised oriented algorithm and as the Yale B database has nearly insignificant change in orientation and angle, purely lighting changes, the MIE performs well. As such, these results most certainly agree with the claim published in [30].

With regards to the compound tests I deduce the reason for such discrepancy between the order is that performing histogram equalization first outputs a very lightly affected image with just a simple contrast change that MIE can operate on in much the same way as before, while trying to do it the other way, MIE outputs a vastly different image from the original, more resembling a sketch than a photo, with large variation in colour intensities, as such the histogram equalization algorithm falters as we have reduced the colour space to an even more compact region of the spectrum. Thus when we pass these new images through the histogram equalization method it just does more damage by stretching it further.

What we take away from this is that although MIE performs phenomenally against strong illumination conditions it tends to degrade the image it is working on to an extent that other normalization techniques are ineffective at best and further degrading at worst.

3.7. *SUMMARY* 36

In reality we probably wouldn't want to perform multiple normalization techniques that target the same issue upon our dataset as we would expect such conflicts to arise. On the other hand we would hope that combining these techniques with others that target different aspects of normalization would not conflict with each other. Indeed, we would hope that doing so would provide a higher degree of accuracy in recognition.

3.7 Summary

This chapter confirms the claim made earlier that the Eigenface algorithm is very sensitive to lighting fig: [3.11] showed very low recognition rates, yet the same data improved spectacularly after MIE was applied fig: [3.13]

To conclude, yes, MIE looks good, but only for a narrow category of normalization problems namely, those with localized regions of lighting variation on that note, I find it hard to believe any algorithm could improve upon those accuracies. Sadly that's where the downsides must be mentioned. The algorithm doesn't play well with other techniques and even less so when there are no local illumination issues present, tending to be more of a hindrance than a help. Taking note of this, for our implementation in classroom attendance tracking, we have a semi-controlled environment where lighting conditions will be more along the lines of uniform differences across our subject faces. As such OpenCV's histogram equalization would be the algorithm of choice for our needs.

The very low rate of miscalculations using the combined algorithms might have uses elsewhere. In some scenarios a "false classification" might be very costly - i.e. In airport security, it would require pulling the individual from the queue for further interrogation.

The Python implementation of MIE was horribly time inefficient. As a benchmark, OpenCV's histogram equalisation was performed upon the 1272 images and did so in under a minute while my Python implementation of MIE took roughly 10hrs to do the same number of images. Again, this speed difference comes with the benefit of being a very localised method. Each pixel is compared to a 11x11 kernel around itself as well as the average intensity for the whole image. This means it can handle images which are dark on one side but light on the other without problems.

3.7. SUMMARY

It was beyond the scope of this work to attempt to optimise this method. However, we do note the following possible optimisations;

- 1.) Converting the MIE code logic into C++ or C that is then wrapped into Python, doing so could offer substantial speed-ups.
- 2.) The current implementation is fairly naive: the 11x11 region is recomputed for each pixel in the image. Many efficient image processing algorithms operate by sliding a difference window over the image and computing a running estimate of local intensity in our case we would reduce the 121 computations to 22 per pixel. This would most certainly improve the performance of the method. Finally, this per pixel kernel methodology indicates that this method could see a large speed-up if performed through a GPU. However, these are ideas for future work to look into.

Chapter 4

Assignment Problem

4.1 The Problem

Now that we have determined a sensible illumination normalization technique to use, we turn our attention to another means of improving recognition rates. When we consider the problem we are trying to solve, namely facial recognition for classroom attendance tracking, we realise that the current method of classification used by the Eigenface method doesn't make any use of the intrinsic properties of our problem.

We know exactly who and how many subjects should present in each lecture. Knowing this, we can in theory improve our recognition rates by doing away with Eigenfaces current greedy, first match algorithm and in its place use a global assignment algorithm like the Hungarian Algorithm which we shall look into in the following sections.

The following chapter discusses but does not implement the following features due to constraints that are discussed at the end of the chapter. In its current state the provided Eigenface algorithm makes use of a greedy first match algorithm. When you don't know the sets you are dealing with and whether or not the face you are testing is even in your data set, it is a adequate solution. It will take a test face and try find the best match it can in its training data as well as providing a matching confidence.

However, we do know the sets, and are sufficiently confident that every face we test is in our training data. Thus we can surely use this knowledge by making use of a multiple

assignment optimisation algorithm. Such an algorithm scores every test face against all training faces, thereafter, optimise the classification of who's who to minimize the total score of the entire classification.

4.2 The Assignment problem

The assignment problem details the complexity of assigning two sets to one another such that some cost is minimised. Doing so has many real world applications; Logistics of Assigning cargo to ships/trucks to minimise fuel costs based on their varying shipping/land routes [22], assigning jobs to various employees to yield the least possible wage expense etc.

Figure 4.1: The Assignment problem

Above in fig: [4.1] details a problem of assigning set A to B we see that each connection has an associated cost involved. We note each branch varies in cost thus mathematically, different selections would have different costs incurred, hence there must exist one selection that has a cost less than or equal to all other combinations.

Figure 4.2: The Assignment problem solution

We see from fig: [4.2] that the cheapest matching is the selection [A1,B2],[A2,B3], [A3,B1] now doing this by eye was trivial enough for these sets. Now what if we had 100 elements per set? Clearly what we need to do is find an algorithm that can solve this problem for us within a reasonable time. To this end, we look at the Hungarian Algorithm [4].

4.3 Hungarian Algorithm

The Hungarian Algorithm is a proposed solution to the assignment problem that is solved by minimizing the total costs of all assignments. Since Eigenface matching measures the difference between the feature vector of a probe face compared to the feature vectors of the training faces, a close match returns a low number. So for our problem, we wish to minimise the overall difference. As we work with a matching score that is better the smaller it is, we have a classic minimisation problem to which the Hungarian Algorithm is well suited.

In order for the algorithm to work it needs to be able to build up a square matrix i.e. the two sets you wish to match must be of the same length. With this in place we would

score the data, putting the confidences attained in an output matrix $m_{n\times n}$. The element $m_{i\times j}$ where i,j< n of the this matrix would then indicate the Eigenface score of probe feature vector i against the feature vector of the training face j. Now the problem involves choosing a combination of scores such that the total combination of these scores is as small as possible.

One point we need to take into account is the situation where we have less students present than there should be or the less likely situation where there are more. These are concerns because as previously stated, the Hungarian Algorithm needs a square matrix to operate on. We have two options: we can pad with high numbers or zeros. Standard procedure is to pad the rows or columns with values equal to the highest present value currently in the matrix. Thus those present get the best chance at matching the faces in the set i.e. the assignment of subject n to training subject three with a confidence of 300 isn't stolen by one of our made up padded students who we gave a stronger match by setting the padding to 0.

We could do this by hand for small sets, but the problem quickly escalates as the sets become bigger in fact the problem done this way is of O(n!) not ideal. However at the core of the Hungarian Algorithm is the theorem: If a number is added to or subtracted from all of the entries of any one row or column of a cost matrix, then an optimal assignment for the resulting cost matrix is also an optimal assignment for the original cost matrix [4]. This observation allows us to force the least cost in a row or column to be represented as a zero. In turn, this provides an efficient way of "eliminating" rows and columns from the matrix to reduce the size of the remaining problem.

The algorithm from [4];

- 1. Firstly, subtract the smallest entry in each row from all the other entries in that row. Now do the same for each column.
- 2. Select rows and columns so that all zero elements are selected with the minimum number of selections.
- 3. (I) If the number of selections is n, then we are done, we have found the optimal assignment.
 - (II) If we have less than n selections an optimal selection is not yet possible, so we proceed.

4. Determine smallest entry not yet covered by any line, subtract this value from each element in every unselected row and add it to each element in each selected column. Return to step 2.

Below is a working example of the Hungarian Algorithm, given fig: [4.3]

23	14	23	56
45	34	23	01
45	65	23	12
03	23	13	36

Figure 4.3: Initial matrix

Performing the first step (least value row subtraction) we get fig: [4.4]

09	00	09	42
44	33	22	00
33	53	11	00
00	20	10	33

Figure 4.4: Subtraction of least value per row

Performing the second step (least value column subtraction) we then get fig: [4.5]

09	00	00	42
44	33	13	00
33	53	02	00
00	20	01	33

Figure 4.5: Subtraction of least value per column

So, mathematically, we can manipulate along rows or down columns by the same operation without it affecting the integrity of the matrix. We know this thanks to the afore mentioned theorem the proof of which is beyond the scope of this work. However, we have another aspect to look at, how exactly do we find the minimum selection of rows/columns that contain all our zeroed elements? One way this can be done is as follows;

• First as seen in fig: [4.6], make as many minimum cost assignments as possible without double assigning. In the provided example we have designated this with an apostrophe. We select [4,1] as an option as it has no conflicts. However, for row 1 we need to make a choice, this choice can safely be made arbitrarily. Doing so we select [1,2] instead of [1,3] similarly we must choose between [2,4] and [3,4] we choose [2,4].

09	00'	00	42
44	33	13	00'
33	53	02	00
00'	20	01	33

Figure 4.6: Selection of rows and columns step 1

Step 2:

- Now, mark all rows having no assignments (zeros marked with apostrophes) (row 3) Shown as (X1) in the following diagram
- Next, mark all unmarked columns having zeros in newly marked rows (column 4) (X2)
- mark all rows having assignments in newly marked columns (row 2) (X3)

Doing the above we end up with fig: [4.7]

Figure 4.7: Selection of rows and columns step 2

• Finally make your selections on all marked columns and all UNMARKED rows.

Figure 4.8: Selection of rows and columns step 3

We now end up with the minimum row and column selections we would need to make to select all zeros in the graph. With this we can determine if we are done. We count our

4.4. SUMMARY 45

selection lines totalling three, as this is less than our set size we move on to step four of the Hungarian Algorithm. Doing this we get fig: [4.9]

09	00	00	44
42	31	11	00
31	51	00	00
.00	20	01	35

Figure 4.9: Final State.

Now, if necessary, one would rinse and repeat from step 3 to get the minimum cost assignment. However for this example we are now done and get the minimum cost assignment of (row, col)[4,1][1,2][2,4][3,3] which going back to fig:[4.3] gives a total cost of: 41.

The above is just one way of making the minimum number of selections. The method was learned from wikepedia.

4.4 Summary

This chapter looked into the possibility of using a global optimisation technique for assignment of two sets. We predict that doing so will improve accuracy of the recognition software used by the system. We focused on the Hungarian Algorithm as the solution we would implement. Detailing the steps needed to make it work, also noting that eigenfaces method of scoring lends itself nicely to such a minimising solution.

Sadly, we cannot in a simple manner implement such a system, as we cannot easily force the Eigenface method to provide all the scores of the test data against all training vectors. There are some hints around the Internet as to how to achieve what we wish to do. For example [7] shows us that we could extend the predict function to provide us with an array containing the distances scored for each training component. However, it would require diving into OpenCV and extending the existing functionality and also could become

4.4. SUMMARY

obsolete if a future superior implementation of the algorithm is designed.

Regardless, time did not permit such alterations to be made within the scope of this work. Hence this change is proposed as possible future work at least until OpenCV provides such functionality itself as was hinted at in [7].

Chapter 5

Conclusion

5.1 Summing up

In this work we looked into the viability of creating a facial recognition system with the purpose of tracking classroom attendance. Doing so, we discovered that there are many ways to improve recognition rates of such a system both from general normalization methods, as well as ways to use the nature of the problem at hand to help in accuracy.

The second aspect we noticed was that there was no readily available system that one could test new ideas against existing solutions. At this point, the purpose of this work changed to creating a workstation from which a user could add a new normalization technique (or theorised improvement of an already existing method) and compare results to past solutions to the targeted problem. This work would then use classroom attendance tracking as an accompanying example.

5.1.1 Working Example

As an illustration of the proposed usage of the system this work looked into the viability of the Mean Illumination Estimation in conjunction with the Eigenface method of facial recognition both in general and specifically for our needs in classroom tracking. The experiment probed from two directions, one; we compared it against OpenCV's inbuilt histogram equalization solution to illumination issues. Two; we ran the experiment twice,

5.1. SUMMING UP 48

one against the Yale B database and again against the AT&T database.

The results of this experiment have already been discussed as can be seen in chapter 3. However, a short run-down of the highlights will follow. MIE works really well when up against strong illumination conditions; directional lighting, strong global change in ambient light etc. However, it greatly degrades the quality of the image worked on meaning it wouldn't work well with a multiple normalisation technique based solution.

It was noted that OpenCV's histogram equalization would suit our classroom environment more adequately than MIE as we deal more with global ambient change as opposed to local lighting changes and histogram equalization does not have as much of an effect as MIE on the images processed.

Nothing done in this work indicates that a system that uses facial recognition to track attendance in a classroom environment is an infeasible goal. We see from the AT&T database (one that comprises of faces taken under similar conditions to what one would expect in a classroom environment) that even before normalization techniques are employed, recognition rates are almost within acceptable margins. Certainly no worse than the inaccuracies of the pen and paper approach commonly employed to solve this problem.

A more pressing concern would be the total cost of such a system, on that front, this work envisions that such a system could work with off-the-shelf webcams. Computationally, most any hardware system would be sufficient as computation time would be of little concern. Indeed (5 - 10) hours could be spent on computation per day and the system would still be viable.

5.1.2 Theory of future work

Another aspect to this work was to look into the benefits of using a global optimisation technique that would replace Eigenface's greedy first match classification system. This was looked into in depth in chapter 4.

Due to limitations with the C++ implementation of OpenCV's Eigenface algorithm, such manipulation of its inner workings is currently not available to us. This is not the only

project that has wanted a feature like this as indicated in the answer to a request for such functionality to be added by the maintainers of OpenCV [7] who replied that they have had many such requests and that it is possible they will be adding such functionality at a later stage.

Going with this, this work explored how such data could be exploited to yield better accuracies from systems where both the training set and test set are known (or should be known). Having looked specifically at the Hungarian algorithm as it offers a solution in polynomial time of $O(n^4)$ [17]. Whereas any naive solution to the problem (pick all combinations and choose the smallest) would be of O(n!)

5.2 Looking ahead

This work is such that it will never truly be finished, there are many more normalization techniques that can be added into the system for comparison, or one could add different recognition algorithms to classify test faces. Examples would include Fisherfaces and Local Binary Patterns Histograms.

Strong candidates for future work are solutions to the assignment problem brought up previously with the provided possible solution being the Hungarian algorithm. Also needed are some form of alignment normalization techniques probably something simple to start like using the eyes to align and scale the face. Both of these are pressing issues that will need to be taken into account if one wishes to create an extensive recognition system.

Also now that it is clear that such a system can indeed be useful it could be prudent to change over to a C/C++ implementation of the working code, this will improve performance in many areas and provide a more in-depth control of OpenCV.

If this system is indeed intended for use in classroom attendance tracking then another system will need to be devised to compile a set of images per subject and break them up into class sets at the start of each year, also allowing for manual addition or removal of students from such a list.

Appendix A

Code Extracts

These are snippets of code that would have been too large to insert within the main body of the thesis. What is seen below is the implementation of the MIE algorithm (A.1) and (A.2). When coding the method up I paid little attention to efficiency.

Looking at the code snippets we see function d() is our main time sink, (A.1) Lines (12 - 24), and probably the area we would want to target when attempting to increase efficiency. As is, the method is a multiplicative kernel of size 11×11 that needs to be passed over each and every pixel.

As we are dealing with a moving kernel, one optimisation that could be made is instead of complete recalculation of the kernel for each pixel, if the kernel moves from left to right, subtract (in our case divide) the elements from the left of the kernel and multiply the new right hand elements in (There is a similar case when the kernel moves down) doing so we change from $11 \times 11 = 121$ calculations per kernel to 11 + 11 = 22 calculations per kernel.

The code seen in (A.2) contains the main method for the MIE. As the algorithm is very mathematically inclined there is little here but other function calls. However, we note specifically the suppression method, (A.1) Lines (53 - 77), which encapsulates the core workings of the algorithm passes over each pixel in the image and asks if that pixel should be suppressed or highlighted.

```
def d(x, y, img, n):
          # Mathematically
          \# d(x, y) = \ln((r(x, y))/(prod\{(s,t) E w(nxn)\}[r(s,t)])^{(1/n^2)}
           prod = long(1);
           kernel_size = n/2;
           kernel_cnt = 0;
          # loop through each element in the kernel multiplying them together
9
          # component: \operatorname{prod}\{(s,t) \in w(nxn)\}[r(s,t)]
11
      # =
12
           for i in range(-kernel_size + 1, kernel_size, 1):
               for j in range(-kernel_size + 1, kernel_size, 1):
14
                 # make sure we arnt at centre or going out of bounds of img
                   if (((y + i) >= 0)
16
                            and ((y + i) < len(img))
17
                            and ((x + j) >= 0)
18
                            and ((x+j) < len(img[0])):
19
                        if (img[y + i][x + j] != 0):
                            prod *= long(img[y + i][x + j]);
21
                            kernel_cnt+=1;
22
23
25
           denominator = (prod **(1/float(kernel_cnt)));
26
           if img[y][x] = 0:
               pass;
28
           temp_in = (img[y][x]) / denominator;
29
           return math.log(temp_in);
30
31
      def h(x, y, img, alp, beta, n):
32
          # Mathematically
33
          \# h(x, y)
                        = e^{(d(x,y)/(alpha*beta))}
           return math.exp(d(x, y, img, n)/(float(alp) * beta));
35
36
      def Average_grey(img, n):
          # Mathematically
38
          # Average_grey = 1/(a*b) Sum\{(x,y) \in f(axb)\}[abs(d(x,y))]
39
           temp\_sum = 0;
40
41
          # go through each pixel in image and sum the results of
42
          # the d function.
```

```
a, b = len(img), len(img[0]);
                                                           for x in range (0, b, 1):
                                                                                                                                                                                                                                                    # x
45
                                                                             for y in range (0, a, 1):
                                                                                                                                                                                                                                                   # y
 46
                                                                                                          temp_d = d(x, y, img, n);
                                                                                                          if (temp_d < 0): temp_d = -temp_d;
48
                                                                                                         temp_sum += temp_d;
 49
                                                           return (1/(float(len(img)*len(img[0]))) * temp_sum);
51
                                   # =
53
                                    def Supression (img, n, beta):
                                                          \# o_hat(x, y) =
                                                                                                                                                        \{ h(x, y); h(x, y) < 1 \}
                                                          #
56
                                                                                                                                                                                                                           h(x, y) >= 1
                                                                                                                                                         { 1;
                                                          #
57
                                                                                                                               = np.zeros((len(img), len(img[0])));
                                                           sup_img
59
                                                          # determine average pixel value
60
                                                                                                                               = Average_grey(img, n);
                                                           gry_ave
                                                           c = 1;
62
                                                          # go through each pixel and determine if it should be suppressed
63
                                                          # or highlighted.
                                                           a, b = len(img), len(img[0]);
65
                                                           for x in range (0, b, 1):
                                                                                                                                                                                                                                                   # x
66
                                                                             for y in range (0, a, 1):
                                                                                                                                                                                                                                                   # y
                                                                                                          Highlight = h(x, y, img, gry_ave, beta, n) \# cacl value
                                                                                                          if (Highlight < 1):
69
                                                                                                                                 \sup_{x} \sup_{y} [y][x]
                                                                                                                                                                                                                                                              = Highlight;
70
                                                                                                                                 if (Highlight < c): c = Highlight;</pre>
                                                                                                          else:
                                                                                                                                 \sup_{x \in \mathbb{R}} \sup_{
73
74
75
                                                           return sup_img, c;
76
```

Listing A.1: MIE Implementation Listing 1

```
def Mean_Illumination_Estimation_single(img):
          # Implementation of the mean illumination estimation algorithm.
          # takes as input a grey-scaled image and returns the Mean
          # illumination estimation version
          img = convertTo(img, 1);
          # tweak-able values
          # Literature determined that the following value gave best
          # results for beta.
          beta = 2.2
11
                  = (len(img[0])/float(168));
          tmp_f
          n = int(tmp_f * 11);
13
                               # for testing purposes best set on a per-image
                               # bases via the expression:
                                        = [(width/width_o) * n_o]
                               # n
                                        = 11
                               # n_0
17
                               # width = curr image face width
18
                               # width_0= database standard width for yale
19
     =(168)
          # we first perform the suppression.
21
          # then build up the solution image by creating a blank slate
          # then determine width and height
          # then build up the new image pixel by pixel
          suppressed, c = Supression(img, n, beta);
25
                           = np.zeros((len(img), len(img[0])), dtype=np.uint8)
          eqImg
26
                           = len (img), len (img[0]);
27
          a, b
28
          for x in range (0, b, 1):
                                              # x
29
               for y in range (0, a, 1):
                                              # y
                  # Calc to spread out the highlight values over the spectrum
                   tmp = int(((255*(suppressed[y][x] - c))/(1-c)));
32
                   eqImg[y][x] = tmp;
34
          return eqImg;
35
```

Listing A.2: MIE Implementation listing 2

References

- [1] At&t database. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html, 17 Nov 2015.
- [2] Digital multi-media design. http://dmmd.net/main_wp/intuitive-mathematics/histogram-equalization/, 15 Oct 2015.
- [3] Fingerprint identification. http://biometrics.cse.msu.edu/pubs/fingerprints.html, 17 Nov 2015.
- [4] Harvard university. http://www.math.harvard.edu/archive/20_spring_05/handouts/assignment_overheads.pdf, 16 Oct 2015.
- [5] Numpy. http://www.numpy.org/, 23 Oct 2015.
- [6] Opency. http://opency.org/, 23 Oct 2015.
- [7] Opency. http://answers.opency.org/question/3494/adding-new-method-in-facerecognizer/, 19 Oct 2015.
- [8] Opency recognition tutorials. http://docs.opency.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html, 17 Nov 2015.
- [9] Python. https://www.python.org/about/, 23 Oct 2015.
- [10] University of california. http://www.math.uci.edu/icamp/courses/math77c/demos/hist_eq.pdf, 15 Oct 2015.
- [11] GARY BRADSKI, A. K. Learning OpenCV Computer Vision with the OpenCV Library. O'Reily Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472, 2008.

REFERENCES 55

[12] HASAN, M. K., AND PAL, C. J. Improving alignment of faces for recognition. In Robotic and Sensors Environments (ROSE), 2011 IEEE International Symposium on (2011), IEEE, pp. 249–254.

- [13] HO, J., Funt, B. V., and Drew, M. S. Separating a color signal into illumination and surface reflectance components: Theory and applications. *Pattern Analysis and Machine Intelligence*, *IEEE Transactions on 12*, 10 (1990), 966–977.
- [14] LEE, K., HO, J., AND KRIEGMAN", D. "acquiring linear subspaces for face recognition under variable lighting". "IEEE Trans. Pattern Anal. Mach. Intelligence" 27, 5 (2005), "684–698".
- [15] LORENCO., M. Part 01 for project: Facial recognition for classroom attendance tracking, 2015.
- [16] MR. C. S. Patil, MR. R. R. Karhe, M. M. D. J. Student attendance system and authentication using face recognition. *International Journal of Engineering Research* and Technology (IJERT) 3, 7 (2014), 373–375.
- [17] Munkres, J. Algorithms for the assignment and transportation problems. *Journal* of the Society for Industrial and Applied Mathematics 5, 1 (1957), 32–38.
- [18] NAVEED KHAN BALCOH, M. HAROON YOUSAF, W. A., AND BAIG, M. I. Algorithm for efficient attendance management: Face recognition based approach. *IJCSI International Journal of Computer Science Issues 9*, 4 (2012), 146–150.
- [19] Patel, U. A., and R. D. S. P. Development of a student attendance management system using rfid and face recognition: A review. *International Journal of Advance* Research in Computer Science and Management Studies 2, 8 (2014), 109–119.
- [20] "R. LAGERWALL, S. V. "plant classification using leaf recognition". "University of KwaZulu-Natal", "91–95".
- [21] RECOGITION, F. http://www.face-rec.org/databases/, 26 Feb 2015.
- [22] Shakeri, M., Low, M., and Li, Z. A generic model for crossdock truck scheduling and truck-to-door assignment problems. In *Industrial Informatics*, 2008. INDIN 2008. 6th IEEE International Conference on (July 2008), pp. 857–864.
- [23] Sriram, T., Vishwanatha Rao, K., Biswas, S., and Ahmed, B. Applications of barcode technology in automated storage and retrieval systems. In *Industrial Electronics, Control, and Instrumentation, 1996.*, Proceedings of the 1996 IEEE IECON 22nd International Conference on (Aug 1996), vol. 1, pp. 641–646 vol.1.

REFERENCES 56

[24] SZELISKI, R. Computer vision: algorithms and applications. Springer Science & Business Media, 2010.

- [25] Talele, K. T., and Kadam, S. Face detection and geometric face normalization. In *TENCON*, *IEEE Region 10 International Conference* (2009).
- [26] TORN, A., AND ZILINSKAS, A. Global Optimization. Springer-Verlag New York, Inc., New York, NY, USA, 1989.
- [27] Turk, M., and Pentland, A. Eigenfaces for recognition. *Journal of cognitive neuroscience* 3, 1 (1991), 71–86.
- [28] University, D. http://www.pages.drexel.edu/sis26/eigenface2015.
- [29] Weinstein, R. Rfid: a technical overview and its application to the enterprise. *IT Professional* 7, 3 (May 2005), 27–33.
- [30] Yong Luo, Y.-P. G., and Zhang, C.-Q. A robust illumination normalization method based on mean estimation for face recognition. *ISRN Machine Vision 2013*, 516052 (2013), 0–10.