

Dargier Antoine

Ponchon Martin

20/02/2023

Speech-to-text, or the Automatic Speech Recognition (ASR) problem

Introduction, Motivation & Related Work

Methodology

Dataset

kaggle

French Single Speaker Speech Dataset: 8,600 audios of Les Misérables and Arsène Lupin contre Herlock Sholmes and their transcripts in French

Metric

$$WER = \frac{S + D + I}{N}$$

where:

- S = number of substitutions (word replaced by another)
- D = number of deletions (word removed)
- I = number of insertions (word added)
- N = number of words in the reference

Traditional pipeline breaks down the ASR task into independent components

Words are decomposed into **phonemes**: Hello → HH AH L OW

Recently, Deep Learning has enabled significant improvements

Acoustic Model P(0|Q)Gaussian Mixture Models Deep Neural Networks Hidden Markov Models

Going further

- These components are trained with different objective functions
- Error in one component may not behave well with error in another

Can we train end-to-end models that include all these components?

The CNN model

Preprocessing

Building the train/test sets

Building the CNN model

Validation

Compute Melfrequency cepstral coefficients (MFCC) features on audios: short term power spectrum of a sound Build input and output of the model computing the MFCC and converting vectors into binary matrix

Conv2D –
MaxPooling2D –
Conv2D –
MaxPooling2D –
Flatten – Dense –
Dropout – Dense

8 hours of training on 2,000 audios of Kaggle dataset

Results

Results not usable because the learning time was too limited

WER > 20% in the literature

An ASR end-to-end system: Connectionist Temporal Classification (CTC)

Characteristics

- Usually implemented as a grapheme based model
- Solves the issue of different lengths between input and output transcription (using blank characters)

Idea

- 1. Use RNN, whose output neurons encode a **distribution over symbols** $c \in \{A, B, ..., space, blank\}$
- 2. Define a mapping **encoding** $c \mapsto y$ **word**: HHH_EE_LL_LO \mapsto HELLO
- 3. Network parameters are updated to **maximize** likelihood of choosing the correct label:

$$L(\boldsymbol{\theta}) = \log \mathbb{P}(y^{*(i)} | x^{(i)}) = CTC(c^{(i)}, y^{*(i)})$$

Results

Results not usable because of insufficient processing power

WER = 16% in the literature

Wav2Vec2.0

Developed by Meta in 2019

Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli

Advantages:

- **Self-supervised learning** so train without labelled data, low-resource: trained with 53k hours of unlabelled data, and just 10 minutes of labelled data. Trained on CommonVoice
- Easy-implementation with HuggingSound
- Used for **several languages** even without a lot of transcribed audios

Architecture:

CNN with 7 layers to learn the latent speech representations Z

Quantization: try to match the Z with codebooks, sort of $\frac{Context}{representations}$ $\mathcal C$ phonemes

Transformers to learn contextual representations

Feature encoder: temporal convolution followed by a GELU activation function

Training: add noise to the audios so that the model learns to distinguish the voice

Decoder: 2 language models: 4-gram and transformer

Results

Announced: **WER=1.8** on clear data, **WER=3.3** on others

Our test: on 582 audios of 10s, **WER=21.7%** (because of the punctuation)

Conclusion

- Construct and test our own models
- Familiarize ourselves with traditional ASR
- Understand state-of-the-art algorithm

- Not usable results because insufficient processing power
- Transcriptions are very slow (Real Time Factor = 1)