

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07K 14/415, C12N 5/00, 15/29, A01H 5/00, 7/00		A1	(11) International Publication Number: WO 95/35318 (43) International Publication Date: 28 December 1995 (28.12.95)
(21) International Application Number: PCT/US95/07744		(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 15 June 1995 (15.06.95)		Published <i>With international search report.</i>	
(30) Priority Data: 08/261,822 17 June 1994 (17.06.94) US			
(71) Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA [US/US]; Suite 300, 3700 Market Street, Philadelphia, PA 19104-3147 (US).			
(72) Inventors: ECKER, Joseph; 3 Ash Court, Erial, NJ 08081 (US). ROTHEBERG, Madge; 600 Haydock Lane, Haverford, PA 19041 (US). LEHMAN, Anne; 2131 St. Alban's Street, Philadelphia, PA 19146 (US). ROMAN, Gregg; 657 North Wales Road, North Wales, PA 19454 (US).			
(74) Agents: ELDERKIN, Dianne, B. et al.; Woodcock Washburn Kurtz MacKiewicz & Norris, 46th floor, One Liberty Place, Philadelphia, PA 19103 (US).			

(54) Title: PLANT GENES FOR SENSITIVITY TO ETHYLENE AND PATHOGENS

(57) Abstract

The present invention is directed to nucleic acid sequences for ethylene insensitive, EIN loci and corresponding amino acid sequences. The present invention is also directed to nucleic acid sequences for hookless 1, HLS1, alleles and amino acid sequences.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

PLANT GENES FOR SENSITIVITY TO ETHYLENE AND PATHOGENS**REFERENCE TO RELATED APPLICATIONS**

This application is a continuation-in-part of U.S. application Serial No. 08/003,311, filed January 12, 5 1993, a continuation-in-part of U.S. application Serial No. 928,464, filed August 10, 1992; this application is also a continuation-in-part of U.S. application Serial No. 08/171,207, filed December 21, 1993, which is a continuation of U.S. application Serial No. 899,262, filed 10 June 16, 1992, now abandoned; the disclosures of which are hereby incorporated in their entirety.

REFERENCE TO GOVERNMENT GRANTS

This work was supported in part by research grants from the National Institutes of Health GM-26379 15 and National Science Foundation grant IBN-92-05342. The United States Government may have certain rights in this invention.

BACKGROUND OF THE INVENTION

Ethylene, a gaseous plant hormone, is involved in 20 the regulation of a number of plant processes ranging from growth and development to fruit ripening. As in animal systems, response of plants to disease not only involves static processes, but also involves inducible defense mechanisms. One of the earliest detectable event to occur 25 during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. Ethylene biosynthesis, in response to pathogen invasion, correlates with increased defense

- 2 -

mechanisms, chlorosis, senescence and abscission. The molecular mechanisms underlying operation of ethylene action, however, are unknown. Nonetheless, ethylene produced in response to biological stress is known to regulate the rate of transcription of specific plant genes. A variety of biological stresses can induce ethylene production in plants including wounding, bacterial, viral or fungal infection as can treatment with elicitors, such as glycopeptide elicitor preparations (prepared by chemical extraction from fungal pathogen cells). Researchers have found, for example, that treatment of plants with ethylene generally increases the level of many pathogen-inducible "defense proteins", including β -1,3-glucanase, chitinase, L-phenylalanine ammonia lyase, and hydroxyproline-rich glycoproteins. The genes for these proteins can be transcriptionally activated by ethylene and their expression can be blocked by inhibitors of ethylene biosynthesis. Researchers have also characterized a normal plant response to the production or administration of ethylene, as a so-called "triple response". The triple response involves inhibition of root and stem elongation, radial swelling of the stem and absence of normal geotropic response (diageotropism).

Ethylene is one of five well-established plant hormones. It mediates a diverse array of plant responses including fruit ripening, leaf abscission and flower senescence.

The pathway for ethylene biosynthesis has been established (Figure 6). Methionine is converted to ethylene with S-adenylmethionine (SAM) and 1-aminocyclopropane-1-carboxylic acid (ACC) as intermediates. The production of ACC from SAM is catalyzed by the enzyme ACC synthase. Physiological analysis has suggested that this is the key regulatory step in the pathway, see Kende, *Plant Physiol.* 1989, 91, 1-4. This enzyme has been cloned from several sources, see Sato et al., *PNAS, (USA)* 1989, 86, 6621; Van Der Straeten et al.,

- 3 -

PNAS, (USA) 1990, 87, 4859-4863; Nakajima et al., Plant Cell Physiol. 1990, 29, 989. The conversion of ACC to ethylene is catalyzed by ethylene forming enzyme (EFE), which has been recently cloned (Spanu et al., EMBO J 1991, 5 10, 2007. Aminoethoxy-vinylglycine (AVG) and α-aminoisobutyric acid (AIB) have been shown to inhibit ACC synthase and EFE respectively. Ethylene binding is inhibited non-competitively by silver, and competitively by several compounds, the most effective of which is 10 trans-cyclooctane. ACC synthase is encoded by a highly divergent gene family in tomato and *Arabidopsis* (Theologis, A., Cell 70:181 (1992)). ACC oxidase, which converts ACC to ethylene, is expressed constitutively in most tissues (Yang et al., Ann. Rev. Plant Physiol. 1984, 35, 155), but 15 is induced during fruit ripening (Gray et al. Cell 1993 72, 427). It has been shown to be a dioxygenase belonging to the Fe²⁺/ascorbate oxidase superfamily (McGarvey et al., Plant Physiol. 1992, 98, 554).

Etiolated dicotyledonous seedlings are normally 20 highly elongated and display an apical arch-shaped structure at the terminal part of the shoot axis; the apical hook. The effect of ethylene on dark grown seedlings, the triple response, was first described in peas by Neljubow in 1901, Neljubow, D., Pflanzen Beih. Bot. 25 Zentralb., 1901, 10, 128. In *Arabidopsis*, a typical triple response consists of a shortening and radial swelling of the hypocotyl, an inhibition of root elongation and an exaggeration of the curvature of the apical hook (Figures 7 and 16). Etiolated morphology is dramatically altered by 30 stress conditions which induce ethylene production the ethylene-induced "triple response" may provide the seedling with additional strength required for penetration of compact soils, see Harpham et al., Annals of Bot., 1991, 68, 55. Ethylene may also be important for other stress 35 responses. ACC synthase gene expression and ethylene production is induced by many types of biological and physical stress, such as wounding and pathogen infection,

- 4 -

see Boller, T., in *The Plant Hormone Ethylene*, A.K. Mattoo and J.C. Suttle eds., 293-314, 1991, CRC Press, Inc. Boca Raton and Yu, Y. et al., *Plant Phys.*, 1979, 63, 589, Abeles et al. 1992 Second Edition San Diego, CA Academic Press; 5 and Gray et al. *Plant Mol Biol.* 1992 19, 69.

A number of researchers have identified the interaction between *Arabidopsis thaliana* and *Pseudomonas syringae* bacteria; Whalen et al., "Identification of *Pseudomonas syringae* Pathogens of *Arabidopsis* and a 10 Bacterial Locus Determining Avirulence on Both *Arabidopsis* and Soybean", *The Plant Cell* 1991, 3, 49, Dong et al., "Induction of *Arabidopsis* Defense Genes by Virulent and Avirulent *Pseudomonas syringae* Strains and by a Cloned Avirulence Gene", *The Plant Cell* 1991, 3, 61, and Debener 15 et al., "Identification and Molecular Mapping of a Single *Arabidopsis thaliana* Locus Determining Resistance to a Phytopathogenic *Pseudomonas syringae* Isolate", *The Plant Journal* 1991, 1, 289. *P. syringae* pv. *tomato* (Pst) strains are pathogenic on *Arabidopsis*. A single bacterial gene, 20 *avrRpt2*, was isolated that controls pathogen avirulence on specific *Arabidopsis* host genotype Col-0.

Bent, A.F., et al., "Disease Development in Ethylene-Insensitive *Arabidopsis thaliana* Infected with Virulent and Avirulent *Pseudomonas* and *Xanthomonas* 25 Pathogens", *Molecular Plant-Microbe Interactions* 1992, 5, 372; Agrios, G.N., *Plant Pathology* 1988, 126, Academic Press, San Diego; and Mussel, H., "Tolerance to Disease", page 40, in *Plant Disease: An Advanced Treatise*, Volume 5, Horsfall, J.G. and Cowling, E.B., eds., 1980, Academic 30 Press, New York, establish the art recognized definitions of tolerance, susceptibility, and resistance. Tolerance is defined for purposes of the present invention as growth of a pathogen in a plant where the plant does not sustain damage. Resistance is defined as the inability of a 35 pathogen to grow in a plant and no damage to the plant results. Susceptibility is indicated by pathogen growth with plant damage.

- 5 -

Regardless of the molecular mechanisms involved, the normal ethylene response of a plant to pathogen invasion has been thought to have a cause and effect relationship in the ability of a plant to fight off plant 5 pathogens. Plants insensitive in any fashion to ethylene were believed to be incapable of eliciting a proper defense response to pathogen invasion, and thus unable to initiate proper defense mechanisms. As such, ethylene insensitive plants were thought to be less disease tolerant.

10 The induction of disease responses in plants requires recognition of pathogens or pathogen-induced symptoms. In a large number of plant-pathogen interactions, successful resistance is observed when the plant has a resistance gene with functional specificity for 15 pathogens that carry a particular avirulence gene. If the plant and pathogen carry resistance and avirulence genes with matched specificity, disease spread is curtailed and a hypersensitive response involving localized cell death and physical isolation of the pathogen typically occurs. In 20 the absence of matched resistance and avirulence genes, colonization and tissue damage proceed past the site of initial infection and disease is observed.

25 A better understanding of plant pathogen tolerance is needed. Also needed is the development of methods for improving the tolerance of plants to pathogens, as well as the development of easy and efficient methods 30 for identifying pathogen tolerant plants.

35 Genetic and molecular characterization of several gene loci and protein products is set forth in the present invention. The results will reveal interactions among modulatory components of the ethylene action pathway and provide insight into how plant hormones function. Thus, the quantity, quality and longevity of food, such as fruits and vegetables, and other plant products such as flowers, will be improved thereby providing more products for market 40 in both developed and underdeveloped countries.

- 6 -

SUMMARY OF THE INVENTION

The present invention is directed to nucleic acid sequences for ethylene insensitive, EIN loci and corresponding amino acid sequences. Several ein wild type sequences, mutations, amino acid sequences, and protein products are included within the scope of the present invention. The nucleic acid sequences set forth in SEQUENCE ID NUMBERS 1 and 2 for ein2; 4, 5, 7, 9, and 11 for ein3 and eill, eil2, eil3; as well as amino acid sequences set forth in SEQUENCE ID NUMBERS 3 for ein2; 6, 8, 10, 12, and 13 for ein3 and eill, eil2, eil3; are particular embodiments of the present invention.

The present invention is also directed to nucleic acid sequences for hookless1, HLS1, alleles and amino acid sequences. Wild type and mutated nucleic acid sequences, amino acid sequences and proteins are included within the scope of the present invention. The nucleic acid sequences of hls1 are set forth in SEQUENCE ID NUMBERS: 14 and 15; the amino acid sequences are set forth in SEQUENCE ID NUMBER: 16.

These and other aspects of the invention will become more apparent from the following detailed description when taken in conjunction with the following figures.

25 BRIEF DESCRIPTION OF THE FIGURES

Figure 1 displays the EIN2 region on chromosome 5 of *Arabidopsis thaliana*. O represents the left end probe, □ represents the right end probe, a length of 100 kb is represented in the legend.

30 Figure 2 is a genomic Southern blot. A polymorphism was detected in ein2-12 by hybridization with g3715. The g3715 cosmid was hybridized to a genomic Southern blot containing several alleles of ein2. In ein2-12 EcoR I digested genomic DNA, two bands were missing, 1.2 kb and 4.3 kb; and a new 5.5 kb fragment was detected. The DNA from the ein2 alleles was purified according to Chang et al. Proc. Natl. Acad. Sci USA 1988 85, 6857. 5 µg of

- 7 -

EcoR I digested DNA was separated on a 0.8% agarose gel and blotted to hybond N⁺ (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., 1989, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Amersham, 5 Arlington Heights, IL). All hybridizations were done using random hexamer labeled DNAs (Feinberg and Volgelstein, Anal. Biochem 1984 137, 266). Filters were prehybridized for at least 2 hours in 0.5 M sodium phosphate pH 7.2, 7% sodium dodecyl sulfate, and 1% BSA at 60° C. Hybridization 10 of a minimum of 15 hours was in a solution of 0.5 M sodium phosphate pH 7.2, 7% sodium dodecyl sulfate, and 1% BSA at 60° C. Hybridization filters were washed and autoradiographed (Sambrook et al. 1989).

Figure 3 is a diagram of the polymorphism in 15 ein2-12 due to the loss of an EcoR I site. The pgEE1.2 subclone from g3715 is shown.

Figure 4 is a description of the EIN2 locus, the cDNA (bottom) is shown relative to the genomic map (top). A putative TATA sequence is shown approximately 60 base 20 pairs 5' to the start of the cDNA. The position of the translation start and stop sites are also shown.

Figure 5 exhibits the sequence of the EIN2 locus. Genomic DNA sequence (SEQUENCE ID NO: 1) is shown in lower case letters, cDNA sequence (SEQUENCE ID NO: 2) is shown in 25 capital letters. The predicted peptide sequence (SEQUENCE ID NO: 3) is displayed under the corresponding nucleic acid codons.

Figure 6 is a schematic illustration of the ethylene biosynthesis pathway.

30 Figure 7 depicts a seedling body and developing plant. Specifically, Figure 7A is a cross section of the seedling body of a seed plant. Figure 7B is a perspective view of a developing seed plant.

Figure 8 identifies the protein sequences of 35 eill, ein3, eil2, eil3, and a common consensus protein sequence representing all four of the individual protein sequences.

- 8 -

Figure 9 displays the *EIN3* gene structure and mutants. Also set forth in Figure 9 is the predicted polypeptide acidity and basicity, as well as Asn repeats.

Figure 10 exhibits a map of chromosome 3 and the 5 position of *EIN3* relative to other gene loci.

Figure 11 sets forth a map of chromosome 2 and the position of *EIL1* relative to other gene loci.

Figure 12 displays a map of chromosome 5 and the position of *EIL2* relative to other gene loci.

10 Figure 13 exhibits a map of chromosome 4 and the position of *HLS1* relative to other gene loci.

Figure 14 is a representation of the arrangement of *hls* mutants on chromosome 4.

15 Figure 15 identifies the protein sequences of *Arabidopsis HLS1* and acetyl transferases in *E. coli*, *Pseudomonas*, *Streptomyces*, Mouse, Human, *Azospirillum*, Yeast, and *Citrobacter*. A consensus sequence representing common amino acids of the sequences is also provided.

20 Figure 16 displays ethylene responses in wild type and mutant: *ctrl*, *etol*, *hls1*, *etr1*, *ein2*, *ein3*, *Arabidopsis* seedlings. Seeds of the indicated genotype were germinated and grown for three days in the dark in either air or air containing 10 ppm ethylene.

25 Figure 17 is a genetic model of interactions among components of the ethylene signal transduction pathway. This model shows the predicted order in which the various gene products act which is based on the epistatic relationships among the mutants. The seedling ethylene responses are indicated on the right.

30 Figure 18 is a representation of pNLEIN3Bgl2 indicating the relationship between the promoter, GUS, and *EIN3* sequences.

35 Figure 19 displays *EIN3* sequences. Figure 19A sets forth *EIN3* cDNA (SEQUENCE ID NO: 4), Figure 19B sets forth *EIN3* genomic DNA (SEQUENCE ID NO: 5), and Figure 19C sets forth *EIN3* protein sequence (SEQUENCE ID NO: 6).

- 9 -

Figure 20 displays EILL sequences. Figure 20A sets forth EILL cDNA (SEQUENCE ID NO: 7), Figure 20B sets forth EILL peptide sequence (SEQUENCE ID NO: 8).

Figure 21 displays EIL2 sequences. Figure 21A 5 sets forth EIL2 cDNA (SEQUENCE ID NO: 9), Figure 21B sets forth EIL2 peptide sequence (SEQUENCE ID NO: 10).

Figure 22 displays EIL3 sequences. Figure 22A sets forth EIL3 cDNA (SEQUENCE ID NO: 11). EIL3 peptide sequence is set forth in SEQUENCE ID NO: 12.

10 Figure 23 displays HLS1 sequences. Figure 23A sets forth HLS1 cDNA (SEQUENCE ID NO: 14), Figure 23B sets forth HLS1 genomic DNA sequence (SEQUENCE ID NO: 15), and Figure 23C sets forth HLS1 peptide sequence.

DETAILED DESCRIPTION OF THE INVENTION

15 The present invention is directed to nucleic acid and amino acid sequences which lend valuable characteristics to plants.

The present invention is directed to nucleic acid sequences of the EIN2 locus. Wild type and mutant 20 sequences of EIN2 are within the scope of the present invention. Amino acid and protein sequences corresponding to the nucleic acid sequences are included in the present invention. EIN2 mutations provide for ethylene insensitivity and pathogen tolerance in plants.

25 SEQUENCE ID NO: 2, the isolated cDNA representing the nucleic acid sequence coding for EIN2 and the isolated genomic EIN2 sequence of SEQUENCE ID NO: 1 are embodiments of the present invention. The purified amino acid sequence of SEQUENCE ID NO: 3 represents the EIN2 protein product 30 encoded by the cDNA identified above. The EIN2 mutations identified herein by nucleotide position are measured in accordance with the beginning of the cDNA.

An ein2-3 mutation was created by X-ray mutagenesis which resulted in a thymidine insertion at 35 nucleotide position 3642 of the cDNA sequence in SEQUENCE

- 10 -

ID NO: 2. A frameshift results in the corresponding amino acid sequence.

An *ein2-4* mutation was also generated by X-ray mutagenesis. The *ein2-4* mutation has an "AG" to "TTT" 5 mutation at position 2103 of the *EIN2* cDNA sequence resulting in a frameshift in the corresponding amino acid sequence.

An *ein2-5* mutation was generated by X-ray mutagenesis, such that a deletion beginning at nucleic acid 10 position 1570 of the cDNA occurred. Nucleic acids CATGACT were deleted. A frameshift results in the corresponding protein product.

An *ein2-6* mutation has a deletion of nucleic acids GAGTTGCGCATG, SEQ ID NO: 17, beginning at nucleic 15 acid position 965 of the cDNA sequence. The *ein2-6* mutation was generated by Agrobacterium mutagenesis. This mutation results in a deletion at the amino acid level of Gly-Val-Ala-His, SEQ ID NO: 18, formerly beginning at amino acid position 115.

20 Another mutation, *ein2-9* was generated by DEB mutagenesis and has an "A" to "C" transition at position 4048 that results in a "His" to "Pro" change at amino acid position 1143 in the corresponding protein.

ein2-11 was generated by DEB mutagenesis and has 25 a "TG" to "AT" transition at nucleic acid position 3492. This results in an Ochre stop signal at amino acid position 957 in the protein.

An *ein2-12* mutation was obtained by X-ray mutagenesis resulting in a deletion at nucleic acid 30 position 1611 of nucleic acids TGCTACAATCAGAATTCTTGCAGT, SEQ ID NO: 19. The corresponding amino acid sequence reveals a deletion of amino acids Ala-Thr-Ile-Arg-Ile-Leu-Ala-Val, SEQ ID NO: 20, beginning at amino acid position 331.

35 An *ein2-16* mutation results in an "AGT" to "G" transition at nucleic acid position 2851 as a result of X-

- 11 -

ray mutagenesis. A frameshift results in the corresponding protein.

Table 4 sets forth the *EIN2* alleles and the results of the mutagenesis.

5 *Ein3* sequences for genes and proteins are the subject of the present invention. The present invention is directed to wild type nucleic acid and amino acid sequences as well as mutations of these sequences. *EIN3* mutations result in ethylene insensitive plants. *Ein*-like genes and
10 protein sequences, including *eill*, *eil2*, and *eil3* sequences, are similar to *ein3* sequences, and are also disclosed in the present invention. The *EIN3* mutations are identified below by nucleotide position number in accordance with the beginning of the genomic DNA sequence.

15 The DNA sequences coding for *ein3* are set forth in SEQ ID NOS: 5 (genomic) and 4 (cDNA). The amino acid sequence may be found in SEQ ID NO: 6.

In *ein3-1*, a "G" to "A" conversion in the genomic DNA at nucleotide 1598 occurs as a result of EMS
20 mutagenesis. In the corresponding protein, "W" is changed to a stop codon at amino acid position 215. The *ein3-2* mutation was generated by T-DNA insertion mutagenesis. The T-DNA inserted after nucleotide 2001 of the genomic, interrupting the protein after amino acid 349. The *ein3-3*
25 mutation results in a "G" to "T" switch at nucleotide position 1688 of genomic DNA as a result of DEB mutagenesis. The amino acid sequence results in a conversion of "K" to "N" at amino acid position 245.

The cDNAs of *eill*, *eil2*, and *eil3*, are set forth
30 in SEQ ID NOS: 7, 9, and 11, respectively. The corresponding amino acid sequences for the *ein*-like genes are set forth in SEQ ID NOS: 8, 10, and 12, (*eill*, *eil2*, and *eil3*, respectively). A consensus sequence representing the common codons of the three *ein*-like genes is SEQ ID NO:
35 13.

Table 6 sets forth the *EIN3* alleles and the results of the mutagenesis. The translation start site of

- 12 -

EIN3 is at nucleotide position 954 of the genomic sequence. the translation start sites for EIL1, EIL2, and EIL3 are at nucleotide positions 251, 8, and 102 of the respective cDNA sequences.

- 5 The present invention is directed to wild type and mutant sequences for the *Hls1* locus. The *hls* gene is regulated by ethylene directly. Amino acid and protein sequences corresponding to the wild type and mutant gene for *Hls1* are within the scope of the present invention.
- 10 The present invention is directed to nucleic acid sequences of the *HLS1* locus. Wild type and mutant sequences of *HLS1* are within the scope of the present invention. Amino acid and protein sequences corresponding to the nucleic acid sequences are included in the present
- 15 invention. The *HLS1* mutations are identified below by nucleotide position number in accordance with the beginning of the genomic DNA sequence.

SEQUENCE ID NO: 14, the isolated cDNA representing the nucleic acid sequence coding for *HLS1*, and

20 the isolated genomic *HLS1* sequence of SEQUENCE ID NO: 15 are embodiments of the present invention. The purified amino acid sequence of SEQUENCE ID NO: 16 represents the *HLS1* protein product encoded by the cDNA identified above.

An *hls1-1* mutation was created by EMS mutagenesis

25 which resulted in a "G" to "A" transition at nucleotide position 3487 of the genomic DNA sequence. This frameshift results in the corresponding amino acid sequence having a "Glu" to "Lys" substitution at amino acid position 345.

An *hls1-5* mutation was generated by DEB

30 mutagenesis. The *hls1-5* mutation has an "T" to "A" mutation at position 2194 of the *HLS1* genomic DNA sequence, resulting in a mutation in the splice donor site. An *hls1-7* mutation was also created by DEB and resulted in a "T" to "A" transition at nucleic acid position 2194. The result

35 in the amino acid sequence is also a mutation in the splice donor site. Mutations at splice donor sites often result in aberrant splicing causing a frameshift or insertion to

- 13 -

occur. The exact nature of the change in *hls1-5* and *hls1-7* may be determined by analyzing the protein from those mutants using an antibody.

hls1-6 is a mutation created by EMS resulting in 5 a "T" to "G" transition at nucleic acid position 3431. The corresponding amino acid sequence has a "Lys" to "Trp" substitution at amino acid position 326.

The mutation *hls1-4* was created by DEB mutagenesis resulting in a "G" to "A" transition at nucleic 10 acid position 3487. The corresponding amino acid sequence has a "Glu" to "Lys" change at amino acid position 345.

hls1-9 is created by EMS mutagenesis. The sequence results in "C" to "T" at nucleic acid position 2060, which corresponds to an "Arg" to "TGA" creating a 15 "stop signal" at amino acid position 11.

hls1-8 is a mutation resulting from EMS mutagenesis. The nucleic acid sequence has a "C" to "T" change at position 2992. The mutation results in an amino acid sequence having an "Arg" to "Stop" transition at amino 20 acid position 180.

An EMS mutation resulting in a "G" to "A" change at nucleic acid position 2033 is represented by *hls1-10*. The amino acid sequence corresponding to the mutation reveals a "Met" (Start signal) to "Ile" transition at amino 25 acid position 1.

Table 7 sets forth the *HLS1* alleles and the results of the mutagenesis.

In accordance with the present invention, nucleic acid sequences include and are not limited to DNA, 30 including and not limited to cDNA and genomic DNA; RNA, including and not limited to mRNA and tRNA; and suitable nucleic acid sequences such as those set forth in SEQUENCE ID NUMBERS set forth herein, and alterations in the nucleic acid sequences including alterations, deletions, mutations 35 and homologs. In addition, mismatches within the sequences identified above, which achieve the methods of the invention, are also considered within the scope of the

- 14 -

disclosure. The sequences may also be unmodified or modified.

Also amino acid, peptide and protein sequences within the scope of the present invention include, and are 5 not limited to, the sequences set forth herein and alterations in the amino acid sequences including alterations, deletions, mutations and homologs.

In accordance with the invention, the nucleic acid sequences employed in the invention may be 10 exogenous/heterologous sequences. Exogenous and heterologous, as used herein, denotes a nucleic acid sequence which is not obtained from and would not normally form a part of the genetic make-up of the plant or the cell to be transformed, in its untransformed state. Plants 15 comprising exogenous nucleic acid sequences of ein2, ein3, eill, eil2, eil3, or hls1 mutations, such as and not limited to the nucleic acid sequences of SEQUENCE ID NUMBERS set forth herein are within the scope of the invention.

20 Transfected and/or transformed plant cells comprising nucleic acid sequences of ein2, ein3, eill, eil2, eil3, or hls1 mutations, such as and not limited to the nucleic acid sequences of SEQUENCE ID NUMBERS set forth herein, are within the scope of the invention. Transfected 25 cells of the invention may be prepared by employing standard transfection techniques and procedures as set forth in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2nd ed., 1989, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, hereby incorporated by reference in 30 its entirety.

In accordance with the present invention, mutant plants which may be created with the sequences of the claimed invention include higher and lower plants in the Plant Kingdom. Mature plants and seedlings are included in 35 the scope of the invention. A mature plant includes a plant at any stage in development beyond the seedling. A

- 15 -

seedling is a very young, immature plant in the early stages of development.

- Particularly preferred plants are those from: the Family Umbelliferae, particularly of the genera *Daucus* 5 (particularly the species *carota*, carrot) and *Apium* (particularly the species *graveolens dulce*, celery) and the like; the Family Solanaceae, particularly of the genus *Lycopersicon*, particularly the species *esculentum* (tomato) and the genus *Solanum*, particularly the species *tuberosum* 10 (potato) and *melongena* (eggplant), and the like, and the genus *Capsicum*, particularly the species *annum* (pepper) and the like; and the Family Leguminosae, particularly the genus *Glycine*, particularly the species *max* (soybean) and the like; and the Family Cruciferae, particularly of the 15 genus *Brassica*, particularly the species *campestris* (turnip), *oleracea* cv Tastie (cabbage), *oleracea* cv Snowball Y (cauliflower) and *oleracea* cv Emperor (broccoli) and the like; the Family Compositae, particularly the genus *Lactuca*, and the species *sativa* (lettuce), and the genus 20 *Arabidopsis*, particularly the species *thaliana* (Thale cress) and the like. Of these Families, the most preferred are the leafy vegetables, for example, the Family Cruciferae, especially the genus *Arabidopsis*, most especially the species *thaliana*.
- 25 *Ein2* mutant sequences render plants disease and pathogen tolerant, and ethylene insensitive. For purposes of the current invention, disease tolerance is the ability of a plant to survive infection with minimal injury or reduction in the harvested yield of saleable material.
- 30 Plants with disease tolerance may have extensive levels of infection but have little necrosis and few to no lesions. These plants may also have reduced necrotic and water soaking responses and chlorophyll loss may be virtually absent. In contrast, resistant plants generally limit the 35 growth of pathogens and contain the infection to a localized area with multiple apparent injurious lesions.

- 16 -

- The current invention is directed to, for example, identifying plant tolerance to bacterial infections including, but not limited to *Clavibacter michiganense* (formerly *Coynebacterium michiganense*),
- 5 *Pseudomonas solanacearum* and *Erwinia stewartii*, and more particularly, *Xanthomonas campestris* (specifically pathovars *campestris* and *vesicatoria*), *Pseudomonas syringae* (specifically pathovars *tomato*, *maculicola*).

In addition to bacterial infections, disease

10 tolerance to infection by other plant pathogens is within the scope of the invention. Examples of viral and fungal pathogens include, but are not limited to tobacco mosaic virus, cauliflower mosaic virus, turnip crinkle virus, turnip yellow mosaic virus; fungi including *Phytophthora infestans*, *Peronospora parasitica*, *Rhizoctonia solani*,

15 *Botrytis cinerea*, *Phoma lingam* (*Leptosphaeria maculans*), and *Albugo candida*.

Like *ein2*, *ein3* mutants also exhibit ethylene insensitivity. However, *ein3* mutants do not exhibit disease or pathogen tolerance. Ethylene, $\text{CH}_2=\text{CH}_2$, is a naturally occurring plant hormone. The ethylene regulatory pathway includes the ethylene biosynthesis pathway and the ethylene autoregulatory or feedback pathway, see Figure 6. In the ethylene biosynthesis pathway, methionine is converted to ethylene with S-adenosylmethionine (SAM) and 1-aminocyclopropane-1-carboxylic acid (ACC) as intermediates. These two reactions are catalyzed by ACC synthase and ethylene-forming enzyme (EFE), respectively. Little is known about the enzymes catalyzing these

25 reactions and their regulation at the molecular level.

The receptor and receptor complex of Figure 6 are believed to function with the autoregulatory pathway in the control of ethylene production. Ethylene regulatory pathway inhibitors are positioned along the left side of

35 Figure 6. The inhibitors include AVG (aminoethoxyvinyl-glycine) and AIB (α -aminoisobutyric acid). The steps at which the mutants, ethylene overproducer (*etol*), ethylene

- 17 -

insensitive (ein1, ein2) and hookless (hls1), are defective appear on the right of Figure 6.

In accordance with the claimed invention, ethylene insensitive plants are those which are unable to 5 display a typical ethylene response when treated with high concentrations of ethylene. For purposes of the present invention, ethylene insensitivity includes total or partial inability to display a typical ethylene response. A typical ethylene response in wild type plants includes, for 10 example, the so-called "triple response" which involves inhibition of root and stem elongation, radial swelling of the stem, and absence of normal geotropic response (diageotropism). Thus, for example, ethylene insensitive plants may be created in accordance with the present 15 invention by the presence of an altered "triple response" wherein the root and stem are elongated despite the presence of high concentrations of ethylene. Further, a typical ethylene response also includes a shut down or diminution of endogenous ethylene production, upon 20 application of high concentrations of ethylene. Ethylene insensitive plants may thus also be screened for, in accordance with the present invention, by the ability to continue production of ethylene, despite administration of high concentrations of ethylene. Such ethylene insensitive 25 plants are believed to have impaired receptor function such that ethylene is constitutively produced despite the presence of an abundance of exogenous ethylene.

Screening includes screening for root or stem elongation and screening for increased ethylene production. 30 Ethylene sensitive wild type plants experience an inhibition of root and stem elongation when an inhibitory amount of ethylene is administered. By inhibition of root and stem elongation, it is meant that the roots and stems grow less than the normal state (that is, growth without 35 application of an inhibitory amount of ethylene). Typically, normal *Arabidopsis* (Col) grown without ethylene or ethylene precursor aminocyclopropane, ACC, root

- 18 -

- elongation is about 6.5 ± 0.2 mm/3 days; normal stem elongation is 8.7 ± 0.3 mm/3 days. Ein 2-1 plants grown without ethylene or ACC have root elongation of about 7.5 ± 0.2 mm/3 days and stem elongation of 11.35 ± 0.3 mm/3 days.
- 5 In the presence of 100 μ m ACC, Col root growth is 1.5 ± 0.04 mm/3 days; ein 2-1 is 4.11 ± 0.1 mm/3 days and stem growth of 3.2 ± 0.1 mm/3 days for Col and 8.0 ± 0.2 mm/3 days for ein 2-1. Alternatively, plants may be sprayed with ethaphon or ethrel. By roots, as used here, it is
10 meant mature roots (that is, roots of any plant beyond the rudimentary root of the seedling), as well as roots and root radicles of seedlings. Stems include hypocotyls of immature plants of seedlings and stems, and plant axes of mature plants (that is, any stem beyond the hypocotyl of
15 seedlings). See Figure 7A and Figure 7B.

Ethylene sensitive wild type plants experience a shut down or diminution of endogenous ethylene production, upon application of high concentrations of ethylene. In the ethylene insensitive plants of the present invention, 20 the plants continue endogenous production of ethylene, despite administration of inhibitory amounts of ethylene. Ethylene production for wild type and ethylene insensitive mutants are shown in Table 1. An ethylene insensitive plant will produce an amount or have a rate of ethylene
25 production greater than that of a wild type plant upon administration of an inhibitory amount of ethylene. As one skilled in the art will recognize, absolute levels of ethylene produced will change with growth conditions.

Ein1 and ein2 mutants are described for example
30 in, Guzman et al., "Exploiting the Triple Response of Arabidopsis to Identify Ethylene-Related Mutants", The Plant Cell 1990, 2, 513, the disclosures of which are hereby incorporated herein by reference, in their entirety.

The present invention is further described in the
35 following examples. These examples are not to be construed as limiting the scope of the appended claims.

- 19 -

EXAMPLE 1

PRODUCTION OF *Arabidopsis* MUTANTS

The production of plants which exhibit enhanced disease tolerance and ethylene insensitivity were investigated with the use of *Arabidopsis* mutants ein, which are insensitive to ethylene and are derived from *Arabidopsis* Col-0. The ein mutants were prepared according to the method of Guzman et al., *The Plant Cell*, 1990, 2, 513, the disclosures of which are hereby incorporated herein by reference, in their entirety. Specifically, twenty five independent ethylene-insensitive mutants were isolated; six mutants which showed at least three-fold difference in the length of the hypocotyl compared with ethylene-treated wild-type hypocotyl, were further characterized. In these mutants, the apical hook was either present, absent or showed some curvature in the apical region. The appearance of the apical curvature was dependent on the duration of the incubation. After more than 3 days of incubation in the dark with 10 µL/L ethylene, the apical curvature was absent. This phenotype was named "ein" for ethylene insensitive.

Mendelian analysis indicated that insensitivity to ethylene was inherited as either a dominant or recessive trait depending on the mutation studied. Complementation analysis was performed with five recessive mutants to determine whether more than one locus was involved in this phenotype. The results of these studies indicated that all five recessive mutations were allelic. The ein phenotype was tested for linkage to nine visible markers to determine whether the recessive and dominant ein mutations were allelic. The dominant ein mutation was mapped close to the mutation ap-1 locus on chromosome 1 and was named ein1-1. None of the nine markers showed linkage to the recessive ein mutation. Restriction fragment length polymorphism (RFLP) analysis was performed to map this mutation. Randomly selected RFLP probes were initially used to assess linkage. After testing probes from three different

- 20 -

chromosomes, linkage was detected to one RFLP from chromosome 4 and named ein2-1. This observation was confirmed using additional RFLP probes from the same chromosome. Further experimentation confirmed ein2-2, 5 ein2-3, ein2-4 and ein2-5 to be alleles of ein2-1.

Growth features of ethylene insensitive mutants were also observed. After seedlings were planted in soil and cold treated at 4°C for 4 days, the seedlings were incubated in the dark at 23°C for 66-72 hours. Plants were 10 grown to maturity in a growth chamber at 22°C to 25°C under continuous illumination with fluorescent and incandescent light. The rosette of ein1-1 and ein2-1 plants was larger compared with the wild type, Col-0, rosette and a delay in bolting (1 cm to 2 cm growth in the length of the stem) was 15 observed. These observations indicated that the ethylene insensitive mutations identified at the seedling stage exerted remarkable effects during adult stages of growth.

eto mutants, which constitutively produce ethylene, were initially screened by observing a 20 constitutive triple response; seedlings with inhibition of hypocotyl and root elongation, swelling of the hypocotyl and exaggerated tightening of the apical hook. Mendelian segregation analysis determined the genetic basis of these mutations to be a single recessive mutation and identified 25 as an ethylene overproducer or eto.

etol, ein1 and ein2 mutants were analyzed to determine ethylene accumulation. The mutants were backcrossed to the wild type before physiological examination. Surface-sterilized seeds (about 500) were 30 germinated and grown for 66 to 72 hours in the dark at 23°C in 20 ml gas chromatograph vials containing 15 ml of growth medium.

To measure the conversion of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC, an intermediate 35 in ethylene production) to ethylene, seedlings were grown in 1% low-melting-point agarose buffered with 3 mM Mes at pH 5.8. In this solid support no chemical formation of

- 21 -

ethylene from ACC was detected at any of the concentrations of ACC employed.

Ethylene accumulation from tissues of mature plants (100 mg) was measured after overnight incubation in 5 20 ml gas chromatograph vials. Leaves and inflorescence were taken from 24-28 day old plants, siliques from 32-36 day old plants. Accumulation of ethylene was determined by gas chromatography using a photo-ionization detector (HNU) and a Hewlett Packard HP5890A gas chromatograph equipped 10 with an automated headspace sampler. A certified standard of 10 μ L ethylene (Airco) was used to calculate ethylene concentrations. The concentration of the inhibitors of ethylene biosynthesis and ethylene action was determined empirically. For eto mutants, AVG, α -aminoisobutyric acid, 15 and AgNO₃, supplemented the media at 5 μ M, 2mM and 0.1 mM, respectively and trans-cyclooctene (17 μ L/L) was injected into the vial after the cold treatment. Ethylene production was increased significantly in the dominant ein1-1 mutant and the recessive ein2-1 mutant, see Table 1. 20 Ethylene production was inhibited in eto1-1 seedlings that were grown in media supplemented with ethylene inhibitors aminoethoxyvinylglycine, AGV and α -aminoisobutyric acid, AIB, see Table 1.

The EIL sequences represent cDNA sequences 25 similar to the EIN3 sequence. They were obtained by screening an *Arabidopsis* seedling cDNA library (Kieber et al., Cell, 1993, 72, 427-441, at low stringency in the following manner. The cDNA library was hybridized with the radiolabeled EIN3 cDNA insert at 42° C for 48 hours in a 30 hybridization solution consisting of 30% formamide, 5X Denhardt's solution, 0.5% SDS, 5X SSPE, 0.1 mg/ml sheared salmon sperm DNA, according to the methods of Feinberg and Vogelstein, Anal. Biochem. 1984, 177, 266-267, incorporated herein by reference in its entirety. The 35 filters were washed at 42° C with 30% formamide, 0.5% SDS, 5X SSPE; followed by 2X SSPE.

- 22 -

Mutagenized *HLS1* plants were obtained as set forth above for *EIN2*, *EIN3*, and *EIL*.

Table 1
Ethylene Production in Triple Response Mutants

	Strain	Ethylene Accumulation
5	Wild Type	
	Etiolated Seedlings	6.7 ± 0.68 nL
	Light-grown Seedlings	84.25 ± 13.95 nL
10	Leaves	73.01 ± 17.64 nL/g
	Siliques	144.96 ± 28.99 nL/g
	Inflorescence	234.53 ± 18.04 nL/g
15	<i>etol-1</i>	
	Etiolated Seedlings	276.72 ± 53.70 nL
	Light-Grown Seedlings	182.01 ± 24.84 nL
	Leaves	174.39 ± 29.18 nL/g
	Siliques	322.16 ± 38.66 nL/g
	Inflorescence	1061.84 ± 72.16 nL/g
20	<i>hls1-1</i>	
	Etiolated seedlings	5.81 ± 0.32 nL
	Leaves	31.56 ± 0.32 nL
25	<i>ein1-1</i>	
	Etiolated Seedlings	12.73 ± 2.79 nL
	Leaves	222.95 ± 2.79 nL
	<i>ein2-1</i>	
	Etiolated Seedlings	20.69 ± 2.09 nL
	Leaves	135.59 ± 26.89 nL/g

- 23 -

Another ethylene insensitive mutant of *Arabidopsis thaliana* was designated *etr* by Bleeker et al. in "Insensitivity to Ethylene Conferred by a Dominant Mutation in *Arabidopsis thaliana*", *Science* 1990, 241, 1086, 5 the disclosures of which are hereby incorporated herein by reference, in their entirety. *Etr* was identified by the ethylene-mediated inhibition of hypocotyl elongation in dark-grown seedlings. Populations of M₁ generation from mutagenized seed of *Arabidopsis thaliana* were plated on a 10 minimal medium solidified with 1% agar and placed in a chamber through which 5 µl/L ethylene in air was circulated. Seedlings that had grown more than 1 cm after 4 days were selected as potential ethylene insensitive mutants. A screen of 75,000 seedlings yielded three mutant 15 lines that showed heritable insensitivity to ethylene. Hypocotyl elongation of *etr* mutant line was unaffected by ethylene at concentrations of up to 100µl/L, while elongation of the wild type was inhibited by 70% with ethylene at 1 µl/L.

20 EXAMPLE 2

CLONING AND SEQUENCING OF *EIN2*

The *EIN2* locus was identified by a mapped based cloning strategy described as follows. The *ein2-1* mutant was crossed onto the DP28 marker line (*dis1*, *clv2*, *er*, *tt5*) 25 according to the methods of Koornneef and Stamm, *Methods in Arabidopsis Research*, eds. C. Koncz, N-H Chua, and J. Schell, 1992, World Scientific Publishing Co., Singapore, incorporated herein by reference in its entirety. The F₂ progeny were mapped with Restriction Fragment Length 30 polymorphisms (RFLPs) according to the methods of Chang et al., *Proc. Natl Acad. Sci. USA* 1988, 85, 6856 and Nam et al., *Plant Cell* 1990, 1, 699, the disclosures of which are hereby incorporated by reference in their entirety.

The *ein2-1* mutation was found to segregate with 35 RFLPs on the top of chromosome five (Table 2). Two recombinant progeny found with λ217 (E15 and E54) were also

- 24 -

recombinant with the more proximal g3837 and λ291 clones, indicating that ein2-1 is distal to λ217. Recombinant plants were identified by examining F₁ families from the ein2-1 x DP28 cross for the genotype at the λ217 locus.

5 Protocols are the same mapping with RFLPs. Recombinants were defined by having at least one recombinant chromosome in an ein2-1 homozygote. The Ubq6121 marker, however, identified a different F₂ progeny (E46) as being recombinant. This positions ein2 within the interval of

10 λ217 and Ubq6121. To further limit the position of ein2 on the top of chromosome 5, recombinants were sought with the PCR based marker ATHCTR1, Bell et al., *Methods in Plant Molecular Biology: A Laboratory Manual*, 1993, eds. Maliga, Klessig, and Cashmore, Cold Spring Harbor Laboratory Press,

15 the disclosure of which is hereby incorporated by reference in its entirety.

A single recombinant progeny was identified in 102 F₂ progeny scored. This F₂ progeny was also recombinant at the proximal λ217 and ASA1 markers,

20 demonstrating the position of ein2 as distal to ATHCTR1. Additional genetic information was generated by examining recombinant progeny from a cross between ein2-1 and hy5. Two additional recombination events between ein2-1 and ATHCTR1 were identified by this approach. There were no

25 recombinant plants identified at the g3715 locus, a cosmid clone identified in Nam et al., *supra*.

- 25 -

Table 2
Characterization of Plants Having ein2 Mutation

ALLEL	HYPOCOTYL	SE	ROOT	SE	TL	SE
Columbia	3.6	0.2	1.6	0.1	5.2	0.2
5 Landsberg	3.2	0.1	1.7	0.1	4.9	0.2
Wassilewskija	2.7	0.1	0.9	0.1	3.6	0.1
ein2-1 *	6.0	0.3	7.1	0.1	13.1	0.4
ein2-3 *	8.2	0.2	5.9	0.3	14.1	0.4
ein2-4 *	7.5	0.2	6.3	0.4	13.8	0.5
10 ein2-5 *	8.4	0.2	7.2	0.5	15.6	0.5
ein2-6	8.8	0.4	5.4	0.2	14.2	0.5
ein2-7	5.9	0.1	3.8	0.1	9.7	0.2
ein2-9	7.3	0.2	5.5	0.2	12.8	0.3
ein2-10	6.4	0.1	4.7	0.4	11.1	0.5
15 ein2-11	8.1	0.1	7.7	0.3	15.8	0.4
ein2-12	6.5	0.3	4.4	0.3	10.9	0.4
ein2-13	5.4	0.2	3.7	0.2	9.1	0.4
ein2-15	6.9	0.5	5.3	0.4	12.2	0.9
20 ein2-16	8.1	0.3	7.7	0.6	15.8	0.7
ein2-18 +	6.2	0.2	6.5	0.4	12.7	0.4
ein2-19 +	7.1	0.2	6.2	0.5	13.3	0.6
ein2-20 +	5.8	0.2	5.2	0.2	11.0	0.3

All units are in mm, TL = Total Length, SE = Standard Error

* Guzman and Ecker, *Plant Cell* 1990, 2, 513.

25 + Gift of Caren Chang and Elliot Meyerowitz, Pasadena, CA.

- 26 -

The flanking genetic markers were used to build a Yeast Artificial Chromosome (YAC) physical contig spanning the *ein2* locus (Figure 1). The YAC positions were identified by colony hybridization pursuant to the 5 technique of Matallana, et al., *Methods in Arabidopsis Research*, eds C. Koncz, N-H Chua, and J Schell, 1992, World Scientific Publishing Co., Singapore, the disclosures of which are hereby incorporated by reference in their entirety.

10 YAC clones are replicated in the yeast cells as authentic chromosomes and so they are present as only one copy per cell. This is an important difference with bacterial colony hybridization and makes colony filter treatment a critical step for successful sequence 15 detection. After growing colonies overnight on the filters, the cell walls were digested and the spheroplasts were lysed in order to prepare yeast DNA for hybridization.

Yeast cell wall digestion is stimulated by reducing agents, such as 2-mercaptoethanol or DTT, that 20 modify the wall structure and make it more sensitive to enzymatic action. Colony filters were placed on filter paper soaked in 0.8% DTT in SOE buffer (1 M sorbitol, 20 mM EDTA, 10 mM Tris-acetate pH 8.0) for 2-3 min. before transferring them to filter paper soaked in SOE containing 25 1% 2-mercaptoethanol and 1 mg/ml Zymolyase 10-T in individual 150 X 15 mm petri dishes. Petri dishes were parafilmmed and stacked in a sealed plastic bag and incubated at 37° C overnight.

After spheroplasting, lysis was carried out by 30 placing the filters on whole sheets of Whatman 3MM paper soaked in the appropriate solution. The 3MM sheets were placed on Saran wrap and soaked immediately before use. The filters were treated as follows:

1. 10% SDS for 10 min.;
2. 0.5 M NaOH for 10 min (1.5 NaCl should be included for Hybond N+); Repeat;
3. Air dry for 5 min.;

- 27 -

4. 1 M Tris-HCl (pH 7.6), 1.5 M NaCl for at least 5 min;

5. 0.1 M Tris-HCl (pH 7.6), 0.15 M NaCl for at least 5 min. Cell debris on the filters was eliminated by 5 gently wiping the filters with Kimwipes soaked in the same solution.

6. 2xSSPE for at least 5 min. This step precedes hybridization. Following lysis, the filters are air dried for 30 min. and baked for 2 hours at 80 C.

10 The left ends of the identified YAC clones were isolated by plasmid rescue according to Bell et al., 1994. Right ends were isolated by either vectorette PCR according to the methods of Matallana, et al., 1992, *supra*. or inverse PCR as described by Bell, et al., 1994, *supra*, the 15 disclosures of which are hereby incorporated by reference in their entirety. The yUP library appeared to be missing clones corresponding to ATHCTR1; three clones hybridizing to this locus were found within the EG library (Grill and Somerville, *Mol. Gen. Genet.* 1991, 226, 484, incorporated 20 herein by reference in its entirety.) The pEG23G5L left end plasmid rescue hybridizes to useful EcoR I and Xba I polymorphisms and hybridizes to the same lambda clone as ATHCTR1 (λ ctg24; Kieber et al., *Cell* 1993, 72, 427, incorporated herein by reference in its entirety). The 25 left end rescue pyUP2G11L hybridizes to EG23G5, linking the Ubg6121/g3715 and ATHCTR1 clones into a contiguous array. pyUP2G11L also contains a *Bgl* II polymorphism that is informative in the *ein2-1* X DP28 cross. The three plants that are recombinant at ATHCTR1 are also recombinant at 30 pyUP2G11L; this indicates the position of *ein2* is distal to this YAC end (Figure 1).

To facilitate the identification of the *ein2* locus, 24 alleles were identified (Table 1; Guzman and Ecker, *Plant Cell* 1990, 2, 513, incorporated herein by 35 reference in its entirety.) Many of these alleles were generated by X-ray or diepoxybutane mutagenesis; these mutagens are known to create polymorphisms that are

- 28 -

detectable by hybridization to a genomic Southern blot (Clark, et al., *Genetics* 1986, 112, 755; Reardon et al., *Genetics* 1987, 115, 323, incorporated herein by reference in their entirety). *EcoR I*, *HinD III*, *BamH I*, *Bgl II*, and 5 *Sal I* genomic Southern blots were made to find such a polymorphism in the mutant alleles of *ein2*. The following probes that mapped between *Ubq6121* and *yUP2G11L* were hybridized to the genomic allele blots: *Ubq6121*, *EG19A10L*, *yUP2G11R*, *g3715*, *yUP19E11L*, *EG23G5R*, and *yUP2G11L*. The 10 cosmid clone *g3715* hybridized to a restriction fragment length polymorphism in *ein2-12* that corresponds to a lost *EcoR I* site (Figure 2). Based on this missing *EcoR I* site, this region was examined further.

The 1.2 kb *EcoR I* fragment that corresponds to 15 one of the missing bands in *ein2-12* was subcloned from *g3715* into pKS (Stratagene, LaJolla, CA) this clone is named *pgEE1.2* (Figure 3). The *pgEE1.2* insert was used to isolate 22 cDNA clones made from ethylene treated three-day old etiolated *Arabidopsis thaliana* seedlings (Kieber, et 20 al. 1993, *supra*.) *pgEE1.2* was also used to identify a single genomic lambda clone, *λgE2*, from a λDASH II library made from adult Columbia plants. The *λgE2* clone spanned the 5' end of the locus and terminated within the 3' end of the cDNA. Initially the *pcE2.5* clone was sequenced but 25 since this clone was not full length, the 5' ends of *pcE2.17*, *pcE2.20*, and *pcE2.22* (Kieber, et al. 1993) were sequenced to determine the structure of the full length frame and ending within 60 bp from a putative "TATA" box (Figure 4). Using 5 µg of poly(A+) RNA from 3-day old 30 dark-grown, ethylene-treated *Arabidopsis* seedlings (hypocotyls and cotyledons) as template and oligo(dT) as primer, first-strand cDNA synthesis was catalyzed by Moloney murine leukemia virus reverse transcriptase (Pharmacia) for construction of the *Arabidopsis* cDNA 35 expression library. Second-strand cDNA was made as described by Gubler and Hoffman, *Gene* 1983, 25, 263, which is hereby incorporated by reference in its entirety, except

- 29 -

that *E. coli* DNA ligas was omitted. After the second-strand reaction, the ends of the cDNA were made blunt with Klenow fragment, and EcoR I-Not I adaptors (Pharmacia) were ligated to each end. The cDNA was purified from unligated adaptors by spun-column chromatography using Sephadryl S-300 and size fractionated on a 1% low melting point minigel. Size-selected cDNAs (0.5-1, 1-2, 2-3, and 3-6 kb) were removed from the gel using agarose (New England BioLabs), phenol-chloroform extracted, and precipitated using 0.3M NaOAc (pH 7)-ethanol. A portion of each cDNA size fraction (0.1 µg) was coprecipitated with 1 µg of λZAPII EcoR I-digested, dephosphorylated arms and then ligated overnight in a volume of 4 µl. Each ligation mix was packaged *in vitro* using Gigapack II Gold packaging extract (Stratagene). The structure of this locus was determined by Southern hybridization and restriction mapping of the λgE2 and g3715.

The sequence of the EIN2 genomic DNA was determined from PCR products and the λgE2 genomic lambda clone. Primers were selected from the sequence of the pcE2.5, pcE2.17, and genomic subclones of λgE2. The primers were then commercially synthesized (Research Genetics, Huntsville, AL).

- 30 -

Table 3
PRIMERS FOR THE KIN2 LOCUS

SEQUENCE ID NO.	Primer Name	Sequence	position
5	21	GGATCCTCTAGTCAAATTACCGC	
	22	AGATCTGGTATATTCCGTCTGCAC	
	23	CCGGATTGGTTGTAGC	PCR/ 3' end
	24	GACGTGCATGTTCTTGGG	
	25	GAAAGCCACATCACCTGC	
10	26	GGGGTGGAGTTATCCAC	
	27	GACACCGGGAAGTATCG	
	28	CTGCTTCATAGAAGAGGC	PCR/ middle
	29	GTCAGAACAAACCTGCTCC	PCR/ 5' end
	30	CACCCAGGTCTTGGTGG	
15	31	GGCCGCCATGGATGCG	
	32	TCTCAATCAAGAGGAGGC	
	33	CTTGAAGGATCCGAGTG	
	34	CAGGTTGGCGAGTCCCTCG	
	35	CTTGCTGTTATTCTCCATGC	
20	36	CCCTGGACCAGCTCCTGG	
	37	TGGCGCAAGCATCGTCCC	PCR/ middle
	38	AAATGTTCAAGGAATCTCTCG	
	39	CTGGCTGGCAGCCACGCC	PCR/ 3' end

- 31 -

	40	PE17	GCGTTCTCAAAGCTGCGG	
	41	PE18	ACTGATGGGTCTTCTGGG	
	42	PE19	GGATCAGGATGGACCCGG	
	43	PE20	TGGTTGCTGAAGCCAGGG	
5	44	PE21	TCCATTCATAGAGAGTGGG	
	45	PE22	ATGCCCAAGAACATGCACG	
	46	PE23	CAACTGATCCTTACCCCTGC	
	47	PE24	GTTGTTAGGTCAACTTGCG	PCR/ 5' end
	48	PE25	CTCTGTTAGGGCTTCCTCC	
10	49	PE26A	GAATCAGATTCGCGAGG	
	50	PE27	GTCCAAATGGAGGAAGCC	
	51	PE28	CCACGACTGTACAATTGACCTTG	engine- ered MunI site
	52	PE29	CATGATCGCAAGTTGACC	
	53	PE30	AGAAAACCTTTATCAAGCTACG	
15	54	PE31	AAGCTTATGGGTGCTCGTGC	
	55	PE32	GGAAAGAGAGAAAGACTCAG	
	56	PE33	GCCACCAAGTCATAACCCG	

Primer sequences are set forth 5' to 3'.

- 32 -

Four overlapping regions of the *ein2* locus between 1.2 and 3.2 kb in length were rapidly amplified by polymerase chain reactions (Idaho Technologies, Idaho falls, Idaho). Conditions for the PCR reactions are as follows: 92°C, 2 seconds; 56°C, 2 seconds; 72°C, 1 minute; 50 cycles. Between 200 and 500 ng of these PCR products were directly sequenced on the ABI373A automated sequencer using Taq Dye-Terminator chemistry (Applied Biosystems Division, PEC). The genomic sequence of the wild type Columbia *EIN2* locus is shown in Figure 5. Eight mutant alleles of *ein2* were also sequenced and the corresponding mutations identified (Table 4). The presence of these mutations in the mutant alleles of *ein2* confirms the identity of this gene as *EIN2*.

15

Table 4
IDENTIFIED MUTATIONS OF EIN-2

ALLELE	MUTAGEN	MUTATION	POSITION*	RESULT
<i>ein2-3</i>	X-ray	Insert T	+3642	Frameshift
<i>ein2-4</i>	X-ray	AG to TT	+2103	Frameshift
<i>ein2-5</i>	X-ray	ACATGACT	+1570	Frameshift
<i>ein2-6</i>	Agro-bacterium	ΔGAGTTGC ATG (SEQ ID NO: 17)	+965	ΔGVAH (115) (SEQ ID NO: 18)
<i>ein2-9</i>	DEB	A to C	+4048	H to P
<i>ein2-11</i>	DEB	TG to AT	+3492	Ochre
<i>ein2-12</i>	X-ray	ATGCTACAAT CAGAATTCTT GCAGT (SEQ ID NO: 19)	+1611	ΔATIRILAV (SEQ ID NO: 20)
<i>ein2-16</i>	X-ray	AGT to G	+2851	Frameshift

- 33 -

* Position relative to the start of pcE2.17; see Figure 5, nucleic acid; position 1 corresponds to the beginning of the cDNA.

EXAMPLE 3

5 CLONING AND SEQUENCING OF EIN3

In order to clone the EIN3 gene a collection of 5000 T-DNA insertion lines (Feldmann and Marks, *Mol. Gen. Genet.* 1987, 208, 1-9, incorporated herein by reference in its entirety) was screened for ethylene-insensitive mutants. A mutant with a phenotype similar to that of ein3-1 (an EMS generated allele) was identified and genetic complementation tests revealed that ein3-1 and the T-DNA insertion mutant (designated ein3-2) were allelic. Complete cosegregation of the mutant phenotype and the dominant kanamycin resistance marker on the T-DNA indicated that the T-DNA insertion was located within, or at least very close, to the EIN3 gene. Genomic DNA flanking the T-DNA insert was cloned using the left border rescue technique. Genomic Southern blots of wild-type and ein3-2 DNA hybridized with the rescued fragment indicated that the cloned segment of *Arabidopsis* DNA corresponded to sequences disrupted by the T-DNA insert and did not result from cloning an unlinked fragment of genomic DNA. In all restriction digests the mobility of the hybridizing fragments is shifted in the insertion mutant relative to wild-type.

cDNA and genomic libraries constructed from wild-type DNA were screened with the rescued DNA fragment. The cDNAs obtained indicated the the EIN3 gene encodes a 628 amino acid open reading frame. Structural features of the predicted poly peptide include: 1) a region rich in acidic amino acids at the amino terminus, 2) several basic domains in the central portion of the protein, and 3) several poly-asparagine repeats near the carboxy terminus. Although database searches revealed no overall similarities to any characterized proteins, the three structural motifs described are found in transcriptional regulatory proteins.

- 34 -

Stretches of acidic amino acids function in transcriptional activation presumably through binding to other proteins. Basic domains serve as nuclear localization signals and can bind DNA. Poly asparagine repeats are present in the SWI1
5 protein of yeast. This protein has been termed a transcriptional accessory protein because it is required for transcriptional activation of target genes but does not bind directly to DNA. It has been suggested that the poly asparagine repeats are involved in protein-protein
10 interactions.

Sequencing genomic clones indicated that the EIN3 gene has a very simple structure. There are no introns within its open reading frame. However there is a single intron located in the 5' transcribed region. In addition
15 to sequencing the wild-type EIN3 gene, genes from three independently isolated ein3 mutants were sequenced. In each case an alteration was identified confirming the identification of the bona fide EIN3 gene. In the ein3-1 allele, a point mutation introduces a premature in frame
20 stop codon. The ein3-2 allele contains a T-DNA insertion which interrupts the coding region. A point mutation in the ein3-3 allele substitutes an acidic amino acid for a basic amino acid within one of the basic regions described above.

The expression pattern of the EIN3 gene in
25 seedlings was examined by placing the GUS reporter gene under control of the EIN3 promoter. The construct employed was a translational fusion including 5' non-transcribed sequences, the 5' intron and 93 amino acids of the EIN3 coding region cloned upstream of the GUS gene in the pBI101
30 vector (Jefferson et al., EMBO J, 1987, 6, 3901-3907, incorporated herein by reference in its entirety) and named pHSEIN3GUS. Arabidopsis root explants were transformed and transgenic plants regenerated (Velvkins et al., PNAS 1988,
35 85, 5536-5540, incorporated herein by reference in its entirety). The GUS activity patterns observed suggest that the EIN3 promoter is most active in expanding or elongating cells. In three day old etiolated seedlings GUS activity

- 35 -

staining is located predominantly in the apical hook and root tips. In younger seedlings in which the hypocotyl is not fully extended staining is also prevalent throughout this tissue. In 14 day old light grown seedlings abundant 5 GUS activity is observed in the roots, upper portions of the hypocotyl, cotyledons and leaves. The EIN3 promoter is not induced by ethylene as the levels of GUS activity in air and ethylene treated seedlings appear equivalent. This observation is supported by the fact that steady state 10 levels of the endogenous EIN3 transcript are similar in ethylene and air treated seedlings and adult plants as determined by Northern analysis.

The EIN3 coding region was cloned downstream of the bacterial reporter gene B glucuronidase (GUS) in the 15 plasmid pRTL2-GUS according to the methods of Restrepo et al., *Plant Cell* 1990, 2, 987-998, incorporated herein by reference in its entirety, to create pNLEIN3Bgl2 (see Figure ____). The plasmid was transformed into *Arabidopsis* protoplasts and transiently expressed according to the 20 methods of Abel and Theologis, *Plant J.* 1994, 5, 421-427, incorporated herein by reference in its entirety. All detectable GUS activity was targeted to the nuclei of the protoplasts indicating that the EIN3 protein functions in the nucleus. These results suggest that the EIN3 protein 25 may function as a transcription factor which regulates ethylene-regulated gene expression.

The EIN3 gene is a member of a small gene family. Low stringency hybridization of genomic Southern blots indicates that there are at least two members in addition 30 to EIN3. Three EIN3 homologue, designated as EIL1, EIL2, and EIL3, have been cloned and sequenced. The EIL and EIN3 predicted polypeptides structurally similar in that the amino termini of both proteins are rich in acidic amino acids and their central regions contain several basic 35 domains. Their carboxyl termini are not as well conserved as EIL1 contains a polyglutamine repeat instead of poly asparagine repeats. The EIL2 and EIL3 polypeptides do not

- 36 -

contain polyglutamine repeats or poly asparagine repeats. It is interesting to note that the amino acid substitution in the ein3-3 allele occurs in one of the regions rich in basic amino acids that is completely conserved between the 5 EIN3 and EIL polypeptides. Currently, it is not known whether the EIL gene product functions in the ethylene signal transduction pathway of Arabidopsis. However at this time, the EIL1 and EIL2 cDNAs do not map to the same location as any of the characterized ethylene response 10 mutations. The location of the EIL3 cDNA has not yet been mapped. The EIL1 polypeptide is the most similar to EIN3. 15 The ein3 mutant alleles were sequenced on an Applied Biosystems 373A DNA Sequencing System (Foster City, CA) using Tag dideoxy terminator chemistry (Applied Biosystems). The PCR primers are set forth in Table 5.

TABLE 5
PRIMERS FOR EIN3 PCR

SEQUENCE ID NO.	PRIMER NAME	SEQUENCE	POSITION in genomic
20	57 PR24	CCTTCTATATTGGTTCC	680-698
	58 PR15	CCATTCTCCGGAATAATCC	1306-1324
	59 PR5	CACGGAGCAGGATAAGGGTA	1148-1166
	60 PR19	CGGATTGGATTGTGTGTGC	3312-3331

The primer sequences are set forth 5' to 3'.

25 Primer pairs PR24 - PR15 and PR5 - PR19 were used to amplify genomic DNA from the ein3 mutants. PCR amplification was performed with a Biosycler Oven (New Haven, CT). Conditions for amplification were as follows: 92° C for 1 min; 55° C for 1 min.; 72° C for 3 min. The 30 mutations discovered are listed in Table 6.

- 37 -

Table 6
IDENTIFIED MUTATIONS OF EIN3

Allele	Mutagen	Sequence change	Consequences of sequence change
ein3-1	EMS	G to A, position 1598	amino acid 215, W to umber
5 ein3-2	T-DNA	position 2001	T-DNA insertion
ein3-3	DEB	G to T, position 1688	amino acid 245, K to N

The EIL genes were obtained by screening an *Arabidopsis* seedling cDNA library (Kieber et al., *Cell*, 1993, 72, 427-441, at low stringency in the following 10 manner. The cDNA library was hybridized with the radiolabeled EIN3 cDNA insert at 42° C for 48 hours in a hybridization solution consisting of 30% formamide, 5X Denhardt's solution, 0.5% SDS, 5X SSPE, 0.1 mg/ml sheared salmon sperm DNA, according to the methods of Feinberg and 15 Vogelstein, *Anal. Biochem.* 1984, 177, 266-267, incorporated herein by reference in its entirety. The filters were washed at 42° C with 30% formamide, 0.55 SDS (should this be 0.5% SDS?), 5X SSPE; followed by 2X SSPE.

EXAMPLE 4

20 HOOKLESS MUTATION OF THE APICAL HOOK

The "triple response" in *Arabidopsis thaliana* occurs in response to the plant hormone ethylene and is characterized by three distinct changes in the morphology of etiolated seedlings. These include, exaggeration of the 25 apical hook, radial swelling of the hypocotyl, and inhibition of root and hypocotyl elongation. Observation

- 38 -

of the apical hook was recorded by Charles Darwin as early as 1896.

The hook causes the apical portion of the seedling to become nearly parallel with the basal portion.

- 5 Production of the bend in the hypocotyl requires either a larger number of cells, or increased elongation of cells on the adaxial side (outside) of the hook. A study of the characteristics of hook formation in bean seedlings demonstrated that the curvature is produced by differential
10 growth rates on each half of the hypocotyl resulting in longer cells on the convex side of the hook, see Rubenstein, 1972 *Plant Physiology* 49:640-643.

Previous studies suggest that hormones may be involved in hook formation. The hormones involved are
15 believed to be auxin and ethylene. Auxin is known to be a controlling factor in cell elongation in the hypocotyl, see Klee and Estelle, 1991 *Annual Review of Plant Physiology* 42:529-551, incorporated herein by reference in its entirety, and ethylene has been shown to exaggerate the
20 bending of the hook in wild type etiolated seedlings (Guzman and Ecker, *supra*). One hypothesis to explain hook formation is that auxin promotes elongation of cells on the outside of the apical hook allowing differential growth rates and bending. Work performed by McClure and Guifoyle
25 (1989) demonstrated that the initial uniform expression of small auxin up-RNA (SAUR) mRNA on both sides of the hypocotyl was altered when the tissue was transferred from an erect to horizontal position. An increase in SAUR mRNA accumulation was observed on the "outside" region and a
30 concurrent rapid decrease in SAUR mRNA occurred on the "inside" region of an upward bending hypocotyl. Ethylene has been shown to alter transport of auxin in hypocotyl tissue (Mattoo and Suttle, *supra*), suggesting a possible role for ethylene in exaggeration of the hook. To
35 exaggerate the hook, ethylene might affect auxin localization causing even more bending on the outside of the hook.

- 39 -

The triple response of *Arabidopsis* has been used to isolate mutants affected in the ethylene response. The *hookless 1(hls1)* mutant exhibits a tissue specific defect in the triple response. Null mutants (*hls1-1*) completely lack the apical hook in the presence and absence of ethylene while weak alleles of *hls1* (*hls1-2*) show some bending in the hook in the presence of ethylene. The complementation cross between *hls1-1* and *hls1-2* gave rise to F1 progeny which resembled *hls1-2*. In addition to *hls1-1* and *hls1-2*, six EMS alleles, three DEB alleles, one X-ray allele, and two non-tagged T-DNA alleles have been isolated in accordance with the methods set forth in Guzman et al. *The Plant Cell* 1990 2:513-523, hereby incorporated by reference in its entirety (Table 7). Seven of these are strong alleles which are completely hookless in the presence of ethylene. Five of these are weak alleles showing a partial bend in the presence of ethylene. The *hls1* phenotype is epistatic in the hook with other ethylene mutants.

- 40 -

Table 7
IDENTIFIED PHENOTYPIC AND PROTEIN MUTATIONS OF HLS1

	ALLELE	MUTAGEN	HOOK ANGLE	CHANGE
5	<i>hls1-1</i>	EMS	2.2 ± 0.9	aa345 E to K
	<i>hls1-2</i>	T-DNA	26.2 ± 3.2	T-DNA insertion
	<i>hls1-3</i>	X-RAY	8.1 ± 1.8	4.8kb deletion of promoter
	<i>hls1-4</i>	DEB	ND (strong)	aa345 E to K
10	<i>hls1-5</i>	DEB	1.3 ± 0.5	splice donor site mutated
	<i>hls1-6</i>	EMS	2.1 ± 1.0	aa326 K to W
	<i>hls1-7</i>	DEB	3.0 ± 1.3	splice donor site mutated
	<i>hls1-8</i>	EMS	2.1 ± 1.2	aa180 R to stop
15	<i>hls1-9</i>	EMS	6.3 ± 1.5	aa11 R to stop
	<i>hls1-10</i>	EMS	23.2 ± 3.0	aa1 M to I
	<i>hls1-11</i>	T-DNA	3.0 ± 1.2	ND
	<i>hls1-12</i>	EMS	ND (weak)	NC
	<i>hls1-13</i>	EMS	ND (weak)	NC
	<i>hls1-14</i>	T-DNA	ND (strong)	ND

ND = not determined;

NC = no change in coding region or introns

- 41 -

Gene Structure and Analysis

The *HLS1* gene was cloned by left border rescue of a T-DNA inserted in the promoter of *hls1-2*. The rescued fragment was used to isolate a 12kb genomic clone which was 5 then used to isolate three cDNA clones. The T-DNA was found to have inserted 710bp upstream from the 5' end of a 1.7kb cDNA clone. Deletions of the 1.7kb cDNA clone were generated in both directions using Exonuclease III. These clones were sequenced using Sequenase 2.0. Deletions of 10 the genomic clone were also generated using Exonuclease III. These clones were also sequenced. The sequence of the genomic clone covered the entire 1.7kb cDNA as well as 1712bp upstream of the start of the cDNA and 313 bp at the 3' end of the cDNA. This gene has two introns of 342 bp 15 and 81bp in size. The cDNA encoded a 403 amino acid protein of about 43kDa.

Sequence Analysis of the Alleles

The *hls1* gene from ten of the fourteen alleles was sequenced. The transcribed region as well as both 20 introns were sequenced. The *hls1* gene from each allele was isolated by PCR amplification. The sequences of the primers is set forth in Table 8.

- 42 -

Table 8
PRIMERS FOR HLS1 PCR

SEQUENCE ID NO.	PRIMER NAME	SEQUENCE	POSITION in genomic
5	64	cgccactgcatgttaagaac	1303-1321
	62	tccacacgcttaatacggc	3229-3211
	63	ggtacggagaagaaggag	2546-2563
	64	cgcggatattgattcggt	3071-3090
	65	gtgttgaacacgcccacaa	ND
	64	acgacaccacaaccacct	3479-3462
10	67	gacaagaagacacaaacc	3880-3863
	68	gaatcgaggagaaggtc	3386-3403

Primer sequences are set forth 5' to 3'.

- PCR was performed on a Biosyycler (New Haven, CT).
- 15 Conditions were 92° C, 1 min.; 55° C, 1 min.; 72° C, 3 min. for 35 cycles. Some of the PCR products were subcloned and sequenced using Sequenase. Additional PCR products were sequenced directly using sequence specific primers and Tag sequencing on an ABI automated sequencer (Foster City, CA).
- 20 Alleles found to contain a sequence change from wild type were confirmed by direct sequencing of the PCR product along with a wild type control. The changes found in these alleles are listed below in Table 9.

- 43 -

Table 9
IDENTIFIED GENOTYPIC AND PROTEIN MUTATIONS OF HLS1

	ALLELE	MUTAGEN	SEQUENCE CHANGE	CONSEQUENCES OF SEQUENCE CHANGE
	<i>hls1-1</i>	EMS	G to A position 3487	aa345 E to K
5	<i>hls1-5</i>	DEB	T to A position 2194	splice donor site mutated
	<i>hls1-7</i>	DEB	T to A position 2194	splice donor site mutated
	<i>hls1-6</i>	EMS	T to G position 3431	aa326 K to W
	<i>hls1-4</i>	DEB	G to A position 3487	aa345 E to K
	<i>hls1-9</i>	EMS	C to T position 2060	aa11 R to stop (CGA - TGA)
10	<i>hls1-8</i>	EMS	C to T position 2992	aa180 R to stop (CGA - TGA)
	<i>hls1-10</i>	EMS	G to A position 2033	aa1 M(start) to I

Two alleles which showed no changes in the transcribed region or in the introns, *hls1-12* and *hls1-13*, were both weak alleles. *hls1-12* was found to have reduced levels of transcript compared with wild type. It is possible that there are sequence changes in the promoter region of *hls1-12* and *hls1-13*.

- 44 -

Spatial and Temporal Detection and Expression

Northern analysis of the alleles revealed weak alleles *hls1-2*, *hls1-3*, *hls1-12* all show a reduction in the amount of transcript. The *HLS1* transcript was found to be 5 up regulated by ethylene.

***HLS1* Homology**

Sequence comparison was done at the DNA as well as the amino acid level using Blast and TFASTA (GCG). Some homology to one class of acetyl transferases was found.

10 There are several classes of acetyl transferases with little homology between classes. The homology in one class of acetyl transferases is comprised of only a loose consensus. *HLS1* is similar to a class of acetyl transferases found in bacteria and yeast and not similar to 15 the class found in mammalian systems. Tercero, J.C., *JBC* 1992, 267, 20270, published a minimum consensus for one class of acetyl transferases. Other members of this class include yeast *MAK3* gene, which acetylates a viral coat protein and perhaps some mitochondrial proteins. The *rimL* 20 and *rimJ* proteins are also in this class of acetyl transferases. These are *E. coli* proteins which acetylate ribosomal proteins L12 and L5. Also included in this class is the *ARD1* protein of yeast. Mutants in this gene show a specific mating defect, an inability to sporulate, and loss 25 of viability in stationary phase. There are several other bacterial members of this class. The other 150 amino acids of the *HLS1* gene show no significant homology to any proteins in the database.

Various modifications of the invention in 30 addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Trustees of The University of Pennsylvania
- (ii) TITLE OF INVENTION: Plant Genes for Sensitivity to Ethylene and Pathogens
- (iii) NUMBER OF SEQUENCES: 82
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Woodcock, Washburn, Kurtz, Mackiewicz & Norris
 - (B) STREET: One Liberty Place, 46th floor
 - (C) CITY: Philadelphia
 - (D) STATE: PA
 - (E) COUNTRY: USA
 - (F) ZIP: 19103
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US95/07744
 - (B) FILING DATE: 15-JUNE-1995
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/261,822
 - (B) FILING DATE: June 17, 1994
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Beardell, Lori Y.
 - (B) REGISTRATION NUMBER: 34,293
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (215) 568-3100
 - (B) TELEFAX: (215) 568-3439

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6042 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
- | | | | | | | |
|------------|------------|------------|------------|------------|------------|-----|
| TTCTCTCTCT | CTCTTGAAG | GTGGCACGAG | CACCCATAAC | CTTCAGACCT | ATAGATACAA | 60 |
| ATATGTATGT | ATACGTTTTT | TATATATAAA | TATTTTATAT | AATTGATTTC | TCGATCTTCT | 120 |
| TTTATCTCTC | TCTTTCGATG | GAACTGAGCT | CTTCTCTCT | TTCCCTCTCT | TTTCTCTCTC | 180 |

TATCTCTATC TCTCGTAGCT TGATAAGAGT TTCTCTCTTT TGAAGATCCG TTTCTCTCTC	240
TCTCACTGAG ACTATTGTG TTAGGTCAAC TTGCGATCAT GGCGATTCG AAGGTGACTT	300
CTTCAAAAAA CCCTAACCT CTGTTTTTTT TTTTATTTTG CTGGGGGCT TTGTACGGAC	360
TTTCATGGGT TTTTGTAGCT TTTCCCTCGG CTTTGCGCA AATGAGACTT TCTGGGTTTT	420
TTTCCAGCT TTTTATAATT TCATCAGGTG GATCGAATTC GTAGTTTCAG CTTAGATCTC	480
TCTCCCTCTT CATTATCTGG ACTTTCCAGA CTTGGAGTTC TTCGGGATTG TTTTCGGTTT	540
CTGGGTTTTG TTTTAATTGC GAGATTTAAG CTTTTTTCTT TTTTACTACT GTACTTGGTT	600
TGTGGTTGAC CTTTTTTTTC CTTGAAGATC TGAATGCGTA GATCATACGG GATCTTGCA	660
TTTTTGTGCA CGTTACGATT CTTTTAGCTT CAGTTAGTT GAAATTTGTA	720
TTTTTTTGA GCTTATCTTC TTTTGTTGC TGCTTCATAC TAAGATCAAT TATTGATTG	780
TAATACTACT GTATCTGAAG ATTTTCACCA TAAAAAAAAA ATTCAAGGTCT GAAGCTGATT	840
TCGAATGGTT TGGAGATAATC CGTAGTGGTT AAGCATAATGG AAGTCTATGT TCTGCTCTG	900
GTTGCTCTGT TAGGGCTTCC TCCATTGGA CCAACTTAGC TGAATGTTGT ATGATCTCTC	960
TCCTTGAAGC AGCAAATAAG AAGAAGGTCT GGTCTTAAC TTAACATCTG GTTACTAGAG	1020
GAAACTTCAG CTATTATTAG GTAAAGAAAAG ACTGTACAGA GTTGTATAAC AAGTAAGCGT	1080
TAGAGTGGCT TTGTTTGCC CGGTGATAGA AGAACCGACT GATTGTTGT TGTGTGTTAG	1140
CTTTGGAGGG AATCAGATT CGCGAGGGAA GGTGTTTTAG ATCAAATCTG TGAATTTTAC	1200
TCAACTGAGG CTTTTAGTGA ACCACGACTG TAGAGTTGAC CTTGAATCCT ACTCTGAGTA	1260
ATTATATTAT CAGATAGATT TAGGATGGAA GCTGAAATTG TGAATGTGAG ACCTCAGCTA	1320
GGGTTATCC AGAGAATGGT TCCTGCTCTA CTTCCTGTCC TTTGGTTTC TGTCGGATAT	1380
ATTGATCCCG GGAAATGGGT TGCAAATATC GAAGGAGGTG CTCGTTTCGG GTATGACTTG	1440
GTGGCAATTA CTCTGCTTTT CAATTTGCC GCCATCTTAT GCCAATATGT TGCAGCTCGC	1500
ATAAGCGTTG TGACTGGTAA ACACCTGGCT CAGGTAAACA TTTTCTGAT CTCTAAAGAG	1560
CAAACTTTTT AAAATAACAA ACTGGGCTCT GTGGTTGTCT TGTCACCTTC TCAAAGTGG	1620
ATTCTACTAA CCACCTTCTC TATTTTCTA ACATTTTAAT GTTCTTTACT GGGACAGATC	1680
TGCAATGAAG AATATGACAA GTGGACGTGC ATGTTCTTGG GCATTCAAGC GGAGTTCTCA	1740
GCAATTCTGC TCGACCTTAC CATGGTAGTT ACTTACAATT CTTTGCTGTT CTTAATTTTT	1800
TTATTATGTA GTAAAATTTT GATTCTCTG ACTTGAGCTT CTCTATTATA AACAGGTTGT	1860
GGGAGTTGCG CATGCACTTA ACCTTTGTT TGGGGTGGAG TTATCCACTG GAGTGTGTTT	1920
GGCCGCCATG GATGCGTTTT TATTCCTGT TTTCGCCTCT TTCCCTGTAG TTACTTACAA	1980
TTCTTTGCTG TTCTTAATT TTTTATTATG TAGTAAAATT TTGATTCTC TGACTTGAGC	2040
TTCTCTATTA TAAACAGGAA AATGGTATGG CAAATACAGT ATCCATTAC TCTGCAGGCC	2100
TGGTATTACT TCTCTATGTA TCTGGCGTCT TGCTGAGTCA GTCTGAGATC CCACTCTCTA	2160
TGAATGGAGT GTTAACTCGG TTAAATGGAG AGAGCGCATT CGCACTGATG GGTCTTCTTG	2220

GCGCAAGCAT CGTCCTCAC AATTTTATA TCCATTCTTA TTTGCTGGG GTACCTTTT	2280
TCTCTTATA TGTATCTCTC TTCTCTGTTA AGAACAAATA ATTATACTAA GCAGTGAACG	2340
CTCTATTACA GGAAAGTACA TCTTCGTCTG ATGTCGACAA GAGCAGCTG TGTCAAGACC	2400
ATTTGTTCGC CATCTTGTT GTCTTCAGCG GACTGTCACT TGTAATTAT GTATTGATGA	2460
ATGCAGCAGC TAATGTGTT CACAGTACTG GCCTTGTGGT ACTGACTTTT CACGATGCCT	2520
TGTCACTAAT GGAGCAGGTT TGTTCTGAGG GTTTTATGTT CGTATTAGTC AATAATTCA	2580
TTTTAGGGAA AATGTTAGA AATCTCTCGT GATTATTAAAT TATCTTGTTC TTGATTGTTG	2640
ATCACAGGTA TTTATGAGTC CGCTCATTCC AGTGGTCTTT TTGATGCTCT TGTTCTTCTC	2700
TAGTCAAATT ACCGCACTAG CTTGGGCTTT CGGTGGAGAG GTCGTCCTGC ATGACTTCCT	2760
GAAGATAGAA ATACCCGCTT GGCTTCATCG TGCTACAATC AGAATTCTTG CAGTTGCTCC	2820
TGCGCTTAT TGTGTATGGA CATCTGGTGC AGACGGAATA TACCAAGTTAC TTATATTCA	2880
CCAGGTCTTG GTGGCAATGA TGCTTCCTTG CTCGGTAATA CCGCTTTTC GCATTGCTTC	2940
GTCGAGACAA ATCATGGGTG TCCATAAAAT CCCTCAGGTT GGCGAGTTCC TCGCACTTAC	3000
AACGTTTTG GGATTTCTGG GGTTGAATGT TGTTTTGTT GTTGAGATGG TATTTGGGAG	3060
CAGTGACTGG GCTGGTGGTT TGAGATGGAA TACCGGTATG GGCACCTCGA TTCAGTACAC	3120
CACTCTGCTT GTATCGTCAT GTGCATCCTT ATGCCTGATA CTCTGGCTGG CAGCCACGCC	3180
GCTGAAATCT GCGAGTAACA GAGCGGAAGC TCAAATATGG AACATGGATG CTAAAATGC	3240
TTTATCTTAT CCATCTGTT AAGAAGAGGA AATTGAAAGA ACAGAAACAA GGAGGAACGA	3300
AGACGAATCA ATAGTGCCTG TGGAAAGCAG GGTAAAGGAT CAGTTGGATA CTACGTCTGT	3360
TACTAGCTCG GTCTATGATT TGCCAGAGAA CATTCTAAATG ACGGATCAAG AAATCCGTTTC	3420
GAGCCCTCCA GAGGAAAGAG AGTTGGATGT AAAGTACTCT ACCTCTCAAG TTAGTAGTCT	3480
TAAGGAAGAC TCTGATGTAA AGGAACAGTC TGTATTGCAG TCAACAGTGG TTAATGAGGT	3540
CAGTGATAAG GATCTGATTG TTGAAACAAA GATGGCGAAA ATTGAACCAA TGAGTCCTGT	3600
GGAGAAGATT GTTAGCATGG AGAATAACAG CAAGTTTATT GAAAGGATG TTGAAGGGGT	3660
TTCATGGAA ACAGAAGAAG CTACCAAAGC TGCTCCTACA AGCAACTTTA CTGTCGGATC	3720
TGATGGTCT CCTTCATTCC GCAGCTTAAG TGGGAAAGGG GGAAGTGGGA CTGGAAGCCT	3780
TTCACGGTTG CAAGGTTTGG GACGTGCTGC CCGGAGACAC TTATCTGCGA TCCTTGATGA	3840
ATTTTGGGA CATTATATG ATTTTATGG GCAATTGGTT GCTGAAGCCA GGGCAAAGAA	3900
ACTAGATCAG CTGTTGGCA CTGATCAAAA GTCAGCCTCT TCTATGAAAG CAGATTGTT	3960
TGGAAAAGAC ATTAGCAGTG GATATTGCAT GTCACCAACT GCGAAGGGAA TGGATTCA	4020
GATGACTTCA AGTTTATATG ATTCACTGAA GCAGCAGAGG ACACCGGGAA GTATCGATT	4080
GTTGTATGGA TTACAAAGAG GTTCGTCACC GTCACCGTTG GTCAACCGTA TGCAGATGTT	4140
GGGTGCATAT GGTAACACCA CTAATAATAA TAATGCTTAC GAATTGAGTG AGAGAAGATA	4200
CTCTAGCCTG CGTGCTCCAT CATCTTCAGA GGGTTGGAA CACCAACAAAC CAGCTACAGT	4260

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CTTTCTCTC TCTATCTCTA TCTCTCGTAG CTTGATAAGA GTTTCTCTCT TTTGAAGATC	60
CGTTTCTCTC TCTCTCACTG AGACTATTGT TGTTAGGTCA ACTTGCGATC ATGGCGATT	120
CGAAGGTCTG AAGCTGATTT CGAATGGTTT GGAGATATCC GTAGTGGTTA AGCATATGGA	180
AGTCTATGTT CTGCTCTTGG TTGCTCTGTT AGGGCTTCCT CCATTTGGAC CAACTTAGCT	240
GAATGTTGTA TGATCTCTCT CCTTGAAGCA GCAAATAAGA AGAAGGTCTG GTCCTTAACT	300
TAACATCTGG TTACTAGAGG AAACCTCAGC TATTATTAGG TAAAGAAAGA CTGTACAGAG	360
TTGTATAACA AGTAAGCGTT AGAGTGGCTT TGTGTTGCCTC GGTGATAGAA GAACCGACTG	420
ATTCGTTGTT GTGTGTTAGC TTTGGAGGGA ATCAGATTTC GCGAGGGAAAG GTGTTTTAGA	480
TCAAATCTGT GAATTTTACT CAACTGAGGC TTTTAGTGAA CCACGACTGT AGAGTTGACC	540
TTGAATCCTA CTCTGAGTAA TTATATTATC AGATAGATTG AGGATGGAAG CTGAAATTGT	600
GAATGTGAGA CCTCAGCTAG GGTTTATCCA GAGAATGGTT CCTGCTCTAC TTCCCTGTCC	660
TTTGGTTCT GTCGGATATA TTGATCCCGG GAAATGGTT GCAAATATCG AAGGAGGTGC	720
TCGTTTCGGG TATGACTTGG TGGCAATTAC TCTGCTTTTC AATTTTGCCG CCATCTTATG	780
CCAATATGTT GCAGCTCGCA TAAGCGTTGT GACTGGTAAA CACTGGCTC AGATCTGCAA	840
TGAAGAATAT GACAAGTGGG CGTGCATGTT CTTGGGCATT CAGGCGGAGT TCTCAGCAAT	900
TCTGCTCGAC CTTACCATGG TTGTGGGAGT TGGCGATGCA CTTAACCTTT TGTTTGGGT	960
GGAGTTATCC ACTGGAGTGT TTTTGGCCGC CATGGATGCG TTTTATTC CTGTTTCGC	1020
CTCTTCCCTT GAAAATGGTA TGGCAAATAC AGTATCCATT TACTCTGCAG GCCTGGTATT	1080
ACTTCTCTAT GTATCTGGCG TCTTGCTGAG TCAGTCTGAG ATCCCACCTCT CTATGAATGG	1140
AGTGTAACT CGGTTAAATG GAGAGAGCGC ATTGCACTG ATGGGTCTTC TTGGCGCAAG	1200
CATCGTCCCT CACAATTTT ATATCCATTCT TTATTTGCT GGGAAAGTA CATCTTCGTC	1260
TGATGTCGAC AAGAGCAGCT TGTGTCAAGA CCATTTGTTG GCCATCTTGC GTGTCTTCAG	1320
CGGACTGTCA CTTGTAAATT ATGTATTGAT GAATGCAGCA GCTAATGTGT TTCACAGTAC	1380
TGGCCTTGTG GTACTGACTT TTCACGATGC CTTGTCACTA ATGGAGCAGG TATTTATGAG	1440
TCCGCTCATT CCAGTGGTCT TTTTGATGCT CTTGTTCTTC TCTAGTCAAA TTACCGCACT	1500
AGCTTGGGCT TTGGTGGAG AGGTGCGCTT GCATGACTTC CTGAAGATAG AATACCCGC	1560
TTGGCTTCAT CGTGCTACAA TCAGAATTCT TGCAAGTGTGCT CCTGCGCTTT ATTGTGTATG	1620
GACATCTGGT GCAGACGGAA TATACCAGTT ACTTATATTC ACCCAGGTCT TGGTGGCAAT	1680
GATGCTTCCT TGCTCGGTAA TACCGCTTTT CCGCATTGCT TCGTCGAGAC AAATCATGGG	1740

50

TGTCCATAAA ATCCCTCAGG TTGGCGAGTT CCTCGCACTT ACAACGTTT TGGGATTCT	1800
GGGGTTGAAT GTTGTGTTTG TTGTTGAGAT GGTATTGGG AGCAGTGA CTTGGTGG	1860
TTTGAGATGG AATACCGGTA TGGGCACCTC GATTCACTAC ACCACTCTGC TTGTATCGTC	1920
ATGTGCATCC TTATGCCTGA TACTCTGGCT GGCAAGCCACG CCGCTGAAAT CTGCGAGTAA	1980
CAGAGCGGAA GCTCAAATAT GGAACATGGA TGCTAAAAT GCTTTATCTT ATCCATCTGT	2040
TCAAGAAGAG GAAATTGAAA GAACAGAAC AAGGAGGAAC GAAGACGAAT CAATAGTGC	2100
GTTGAAAGC AGGGTAAAGG ATCAGITGGA TACTACGTCT GTTACTAGCT CGGTCTATGA	2160
TTTGCAGAG AACATTCTAA TGACGGATCA AGAAATCCGT TCGAGCCCTC CAGAGGAAAG	2220
AGAGTTGGAT GTAAAGTACT CTACCTCTCA AGTTAGTAGT CTTAAGGAAG ACTCTGATGT	2280
AAAGGAACAG TCTGTATTGC AGTCAACAGT GGTTAATGAG GTCAAGTGATA AGGATCTGAT	2340
TGTTGAAACA AAGATGGCGA AAATTGAACC AATGAGTCCT GTGGAGAAGA TTGTTAGCAT	2400
GGAGAATAAC AGCAAGTTTA TTGAAAAGGA TGTTGAAGGG GTTTCATGGG AAACAGAAGA	2460
AGCTACCAAA GCTGCTCCTA CAAGCAACTT TACTGTGGT TCTGATGGTC CTCCTTCATT	2520
CCGCAGCTTA AGTGGGGAAAG GGGGAAGTGG GACTGGAAAGC CTTTCACGGT TGCAAGGTTT	2580
GGGACGTGCT GCCCGGAGAC ACCTTATCTGC GATCCTTGAT GAATTTGGG GACATTTATA	2640
TGATTTCAT GGGCAATTGG TTGCTGAAGC CAGGGCAAAG AAACATAGATC AGCTGTTGG	2700
CACTGATCAA AAGTCAGCCT CTTCTATGAA AGCAGATTG TTTGGAAAAG ACATTAGCAG	2760
TGGATATTGC ATGTCACCAA CTGCGAAGGG AATGGATTCA CAGATGACTT CAAGTTTATA	2820
TGATTCACTG AAGCAGCAGA GGACACCGGG AAGTATCGAT TCGTTGTATG GATTACAAAG	2880
AGGTTCGTCA CCGTCACCGT TGGTCAACCG TATGCAGATG TTGGGTGCAT ATGGTAACAC	2940
CACTAATAAT AATAATGCTT ACGAATTGAG TGAGAGAAGA TACTCTAGCC TGCCTGCTCC	3000
ATCATCTTC GAGGGTTGGG AACACCAACA ACCAGCTACA GTTCACGGAT ACCAGATGAA	3060
GTCATATGTA GACAATTGG CAAAAGAAAG GCTTGAAGCC TTACAATCCC GTGGAGAGAT	3120
CCCGACATCG AGATCTATGG CGCTTGGTAC ATTGAGCTAT ACACAGCAAC TTGCTTTAGC	3180
CTTGAAACAG AAGTCCCAGA ATGGTCTAAC CCCTGGACCA GCTCCTGGGT TTGAGAATT	3240
TGCTGGTCT AGAAGCATAT CGCGACAATC TGAAAGATCT TATTACGGTG TTCCATCTTC	3300
TGGCAATACT GATACTGTT GCGCAGCACT AGCCAATGAG AAAAATATA GTAGCATGCC	3360
AGATATCTCA GGATTGTCTA TGTCCGCAAG GAACATGCAT TTACCAAACA ACAAGAGTGG	3420
ATACTGGGAT CCGTCAAGTG GAGGAGGAG GTATGGTGC TCTTATGGTC GGTTAAGCAA	3480
TGAATCATCG TTATATTCTA ATTTGGGTC ACGGGTGGGA GTACCCCTCGA CTTATGATGA	3540
CATTCTCAA TCAAGAGGAG GCTACAGAGA TGCCCTACAGT TTGCCACAGA GTGCAACAAC	3600
AGGGACCGGA TCGCTTGGGT CCAGACAGCC CTTTGAGCAG TTTGGTGTAG CGGAGAGGAA	3660
TGGTGCTGTT GGTGAGGAGC TCAGGAATAG ATCGAATCCG ATCAATATAG ACAACAAACGC	3720
TTCTTCTAAT GTTGATGCAG AGGCTAAGCT TCTTCAGTCG TTCAGGCAC GTATTCTAAA	3780

51

GCTTATTAAA	CTTGAAGGAT	CCGAGTGGTT	GTTGGACAA	AGCGATGGAG	TTGATGAAGA	3840
ACTGATTGAC	CGGGTAGCTG	CACGAGAGAA	GTTTATCTAT	GAAGCTGAAG	CTCGAGAAAT	3900
AAACCAGGTG	GGTCACATGG	GGGAGCCACT	AATTCATCG	GTTCTTAAC	GTGGAGATGG	3960
TTGCGTTTGG	AGAGCTGATT	TGATTGTGAG	CTTGGAGTT	TGGTGCATT	ACCGTGTCC	4020
TGACTTGTCT	CTCATGGAGA	GTCGGCCTGA	GCTTGGGGA	AAAGTACACTT	ACGTTCTCAA	4080
CCGCCTACAG	GGAGTGATTG	ATCCGGCGTT	CTCAAAGCTG	CGGACACCAA	TGACACCGTG	4140
CTTTGCTT	CAGATTCCAG	CGAGGCCACCA	GAGAGCGAGT	CCGACTTCAG	CTAACCGGAAT	4200
GTTACCTCCG	GCTGAAAC	CGGCTAAAGG	CAAATGCACA	ACCGCAGTCA	CACTTCTTGA	4260
TCTAATCAA	GACGTTGAAA	TGGCAATCTC	TTGTAGAAAA	GGCGAACCG	GTACAGCTGC	4320
AGGTGATGTG	GCTTCCC	AGGGAAAGA	GAATTGGCT	TCGGTTT	AGCGGTATAA	4380
ACGTCGGTTA	TCGAATAAAC	CAGTAAGGT	TGAATCAGGA	TGGACCCGGT	TCAAGAAAAA	4440
ACGTGACTGC	GTACGGATCA	TTGGGTTGAA	GAAGAAGAAC	ATTGTGAGAA	ATCTCATGAT	4500
CAAAGTGACG	TCGAGAGGG	AGCCGAAGAA	TCAAAACTCT	CGCTTTGAT	TGCTCCTCTG	4560
CTTCGTTAAT	TGTGTATTAA	GAAAAGAAGA	AAAAAAATGG	ATTTTTGTG	CTTCAGAATT	4620
TTTCGCTCTT	TTTTCTTAA	TTGGGTTGTA	ATGTTATGTT	TATATACATA	TATCATCATC	4680
ATAGGACCAT	AGCTACAAAC	CGAATCCGGT	TTGTGTAATT	CTATGCGGAA	TCATAAAGAA	4740
ATCGTCG						4747

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1321 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met	Glu	Ala	Glu	Ile	Val	Asn	Val	Arg	Pro	Gln	Leu	Gly	Phe	Ile	Gln
1														15	
Arg	Met	Val	Pro	Ala	Leu	Leu	Pro	Val	Leu	Leu	Val	Ser	Val	Gly	Tyr
														25	30
Ile	Asp	Pro	Gly	Lys	Trp	Val	Ala	Asn	Ile	Glu	Gly	Gly	Ala	Arg	Phe
														35	40
Gly	Tyr	Asp	Leu	Val	Ala	Ile	Thr	Leu	Leu	Phe	Asn	Phe	Ala	Ala	Ile
														50	55
Leu	Cys	Gln	Tyr	Val	Ala	Ala	Arg	Ile	Ser	Val	Val	Thr	Gly	Lys	His
														65	70
														75	80

Leu Ala Gln Ile Cys Asn Glu Glu Tyr Asp Lys Trp Thr Cys Met Phe
 85 90 95
 Leu Gly Ile Gln Ala Glu Phe Ser Ala Ile Leu Leu Asp Leu Thr Met
 100 105 110
 Val Val Gly Val Ala His Ala Leu Asn Leu Leu Phe Gly Val Glu Leu
 115 120 125
 Ser Thr Gly Val Phe Leu Ala Ala Met Asp Ala Phe Leu Phe Pro Val
 130 135 140
 Phe Ala Ser Phe Leu Glu Asn Gly Met Ala Asn Thr Val Ser Ile Tyr
 145 150 155 160
 Ser Ala Gly Leu Val Leu Leu Leu Tyr Val Ser Gly Val Leu Leu Ser
 165 170 175
 Gln Ser Glu Ile Pro Leu Ser Met Asn Gly Val Leu Thr Arg Leu Asn
 180 185 190
 Gly Glu Ser Ala Phe Ala Leu Met Gly Leu Leu Gly Ala Ser Ile Val
 195 200 205
 Pro His Asn Phe Tyr Ile His Ser Tyr Phe Ala Gly Glu Ser Thr Ser
 210 215 220
 Ser Ser Asp Val Asp Lys Ser Ser Leu Cys Gln Asp His Leu Phe Ala
 225 230 235 240
 Ile Phe Gly Val Phe Ser Gly Leu Ser Leu Val Asn Tyr Val Leu Met
 245 250 255
 Asn Ala Ala Ala Asn Val Phe His Ser Thr Gly Leu Val Val Leu Thr
 260 265 270
 Phe His Asp Ala Leu Ser Leu Met Glu Gln Val Phe Met Ser Pro Leu
 275 280 285
 Ile Pro Val Val Phe Leu Met Leu Leu Phe Phe Ser Ser Gln Ile Thr
 290 295 300
 Ala Leu Ala Trp Ala Phe Gly Gly Glu Val Val Leu His Asp Phe Leu
 305 310 315 320
 Lys Ile Glu Ile Pro Ala Trp Leu His Arg Ala Thr Ile Arg Ile Leu
 325 330 335
 Ala Val Ala Pro Ala Leu Tyr Cys Val Trp Thr Ser Gly Ala Asp Gly
 340 345 350
 Ile Tyr Gln Leu Leu Ile Phe Thr Gln Val Leu Val Ala Met Met Leu
 355 360 365
 Pro Cys Ser Val Ile Pro Leu Phe Arg Ile Ala Ser Ser Arg Gln Ile
 370 375 380
 Met Gly Val His Lys Ile Pro Gln Val Gly Glu Phe Leu Ala Leu Thr
 385 390 395 400
 Thr Phe Leu Gly Phe Leu Gly Leu Asn Val Val Phe Val Val Glu Met
 405 410 415
 Val Phe Gly Ser Ser Asp Trp Ala Gly Gly Leu Arg Trp Asn Thr Gly
 420 425 430
 Met Gly Thr Ser Ile Gln Tyr Thr Leu Leu Val Ser Ser Cys Ala

53

435

440

445

Ser Leu Cys Leu Ile Leu Trp Leu Ala Ala Thr Pro Leu Lys Ser Ala
 450 455 460
 Ser Asn Arg Ala Glu Ala Gln Ile Trp Asn Met Asp Ala Gln Asn Ala
 465 470 475 480
 Leu Ser Tyr Pro Ser Val Gln Glu Glu Glu Ile Glu Arg Thr Glu Thr
 485 490 495
 Arg Arg Asn Glu Asp Glu Ser Ile Val Arg Leu Glu Ser Arg Val Lys
 500 505 510
 Asp Gln Leu Asp Thr Thr Ser Val Thr Ser Ser Val Tyr Asp Leu Pro
 515 520 525
 Glu Asn Ile Leu Met Thr Asp Gln Glu Ile Arg Ser Ser Pro Pro Glu
 530 535 540
 Glu Arg Glu Leu Asp Val Lys Tyr Ser Thr Ser Gln Val Ser Ser Leu
 545 550 555 560
 Lys Glu Asp Ser Asp Val Lys Glu Gln Ser Val Leu Gln Ser Thr Val
 565 570 575
 Val Asn Glu Val Ser Asp Lys Asp Leu Ile Val Glu Thr Lys Met Ala
 580 585 590
 Lys Ile Glu Pro Met Ser Pro Val Glu Lys Ile Val Ser Met Glu Asn
 595 600 605
 Asn Ser Lys Phe Ile Glu Lys Asp Val Glu Gly Val Ser Trp Glu Thr
 610 615 620
 Glu Glu Ala Thr Lys Ala Ala Pro Thr Ser Asn Phe Thr Val Gly Ser
 625 630 635 640
 Asp Gly Pro Pro Ser Phe Arg Ser Leu Ser Gly Glu Gly Gly Ser Gly
 645 650 655
 Thr Gly Ser Leu Ser Arg Leu Gln Gly Leu Gly Arg Ala Ala Arg Arg
 660 665 670
 His Leu Ser Ala Ile Leu Asp Glu Phe Trp Gly His Leu Tyr Asp Phe
 675 680 685
 His Gly Gln Leu Val Ala Glu Ala Arg Ala Lys Lys Leu Asp Gln Leu
 690 695 700
 Phe Gly Thr Asp Gln Lys Ser Ala Ser Ser Met Lys Ala Asp Ser Phe
 705 710 715 720
 Gly Lys Asp Ile Ser Ser Gly Tyr Cys Met Ser Pro Thr Ala Lys Gly
 725 730 735
 Met Asp Ser Gln Met Thr Ser Ser Leu Tyr Asp Ser Leu Lys Gln Gln
 740 745 750
 Arg Thr Pro Gly Ser Ile Asp Ser Leu Tyr Gly Leu Gln Arg Gly Ser
 755 760 765
 Ser Pro Ser Pro Leu Val Asn Arg Met Gln Met Leu Gly Ala Tyr Gly
 770 775 780
 Asn Thr Thr Asn Asn Asn Ala Tyr Glu Leu Ser Glu Arg Arg Tyr
 785 790 795 800

54

Ser Ser Leu Arg Ala Pro Ser Ser Glu Gly Trp Glu His Gln Gln
 805 810 815
 Pro Ala Thr Val His Gly Tyr Gln Met Lys Ser Tyr Val Asp Asn Leu
 820 825 830
 Ala Lys Glu Arg Leu Glu Ala Leu Gln Ser Arg Gly Glu Ile Pro Thr
 835 840 845
 Ser Arg Ser Met Ala Leu Gly Thr Leu Ser Tyr Thr Gln Gln Leu Ala
 850 855 860
 Leu Ala Leu Lys Gln Lys Ser Gln Asn Gly Leu Thr Pro Gly Pro Ala
 865 870 875 880
 Pro Gly Phe Glu Asn Phe Ala Gly Ser Arg Ser Ile Ser Arg Gln Ser
 885 890 895
 Glu Arg Ser Tyr Tyr Gly Val Pro Ser Ser Gly Asn Thr Asp Thr Val
 900 905 910
 Gly Ala Ala Val Ala Asn Glu Lys Lys Tyr Ser Ser Met Pro Asp Ile
 915 920 925
 Ser Gly Leu Ser Met Ser Ala Arg Asn Met His Leu Pro Asn Asn Lys
 930 935 940
 Ser Gly Tyr Trp Asp Pro Ser Ser Gly Gly Gly Tyr Gly Ala Ser
 945 950 955 960
 Tyr Gly Arg Leu Ser Asn Glu Ser Ser Leu Tyr Ser Asn Leu Gly Ser
 965 970 975
 Arg Val Gly Val Pro Ser Thr Tyr Asp Asp Ile Ser Gln Ser Arg Gly
 980 985 990
 Gly Tyr Arg Asp Ala Tyr Ser Leu Pro Gln Ser Ala Thr Thr Gly Thr
 995 1000 1005
 Gly Ser Leu Trp Ser Arg Gln Pro Phe Glu Gln Phe Gly Val Ala Glu
 1010 1015 1020
 Arg Asn Gly Ala Val Gly Glu Leu Arg Asn Arg Ser Asn Pro Ile
 1025 1030 1035 1040
 Asn Ile Asp Asn Asn Ala Ser Ser Asn Val Asp Ala Glu Ala Lys Leu
 1045 1050 1055
 Leu Gln Ser Phe Arg His Cys Ile Leu Lys Leu Ile Lys Leu Glu Gly
 1060 1065 1070
 Ser Glu Trp Leu Phe Gly Gln Ser Asp Gly Val Asp Glu Glu Leu Ile
 1075 1080 1085
 Asp Arg Val Ala Ala Arg Glu Lys Phe Ile Tyr Glu Ala Glu Ala Arg
 1090 1095 1100
 Glu Ile Asn Gln Val Gly His Met Gly Glu Pro Leu Ile Ser Ser Val
 1105 1110 1115 1120
 Pro Asn Cys Gly Asp Gly Cys Val Trp Arg Ala Asp Leu Ile Val Ser
 1125 1130 1135
 Phe Gly Val Trp Cys Ile His Arg Val Leu Asp Leu Ser Leu Met Glu
 1140 1145 1150
 Ser Arg Pro Glu Leu Trp Gly Lys Tyr Thr Tyr Val Leu Asn Arg Leu

55

1155

1160

1165

Gln Gly Val Ile Asp Pro Ala Phe Ser Lys Leu Arg Thr Pro Met Thr
 1170 1175 1180

Pro Cys Phe Cys Leu Gln Ile Pro Ala Ser His Gln Arg Ala Ser Pro
1185 1190 1195 1200

Thr Ser Ala Asn Gly Met Leu Pro Pro Ala Ala Lys Pro Ala Lys Gly
1205 1210 1215

Lys Cys Thr Thr Ala Val Thr Leu Leu Asp Leu Ile Lys Asp Val Glu
 1220 1225 1230

Met Ala Ile Ser Cys Arg Lys Gly Arg Thr Gly Thr Ala Ala Gly Asp
1235 1240 1245

Val Ala Phe Pro Lys Gly Lys Glu Asn Leu Ala Ser Val Ser Lys Arg
1250 1255 1260

Tyr Lys Arg Arg Leu Ser Asn Lys Pro Val Arg Tyr Glu Ser Gly Trp
 1265 1270 1275 1280

Thr Arg Phe Lys Lys Lys Arg Asp Cys Val Arg Ile Ile Gly Leu Lys
1285 1290 1295

Lys Lys Asn Ile Val Arg Asn Leu Met Ile Lys Val Thr Ser Arg Gly
 1300 1305 1310

Lys Pro Lys Asn Gln Asn Ser Arg Phe
1315 1320

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 2310 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TCTTCTTC	CTTCCTCTC	CTCATCTCGT	ATCTCTAACT	TTTGTGAAAG	TTCTTTTGAT	60
GAAACTAGGG	TTTATTATCT	TCTCCTTC	TTTCCCATCA	CCATAGAAAA	GGCAGAGACC	120
TTTTCTTCA	TCATTTTAT	TCTCCTTC	TTCTGTGT	TCATTTCTCC	AGGTTACAAT	180
GATGTTAAT	GAGATGGAA	TGTGTGGAA	CATGGATTTC	TTCTCTCTG	GATCACTTG	240
TGAAGTTGAT	TTCTGTCCTG	TTCCACAAGC	TGAGCCTGAT	TCCATTGTTG	AAGATGACTA	300
TACTGATGAT	GAGATTGATG	TTGATGAATT	GGAGAGGAGG	ATGTGGAGAG	ACAAAATGCG	360
GCTTAAACGT	CTCAAGGAGC	AGGATAAGGG	TAAAGAAGGT	GTGATGCTG	CTAAACAGAG	420
GCAGTCTCAA	GAGCAAGCTA	GGAGGAAGAA	AATGTCTAGA	GCTCAAGATG	GGATCTTGAA	480

GTATATGTTG AAGATGATGG AAGTTTGAA AGCTCAAGGC TTTGTTTATG GGATTATTCC	540
GGAGAATGGG AAGCCTGTGA CTGGTGCCTTC TGATAATTAA AGGGAGTGGT GGAAAGATAA	600
GGTTAGGTTT GATCGTAATG GTCTCGCGC TATTACCAAG TATCAAGCGG AGAATAATAT	660
CCCAGGGATT CATGAAGGTA ATAACCCGAT TGGACCGACT CCTCATACCT TGCAAGAGCT	720
TCAAGACACG ACTCTTGGAT CGCTTTGTC TGCGTTGATG CAACACTGTG ATCCTCCTCA	780
GAGACGTTT CCTTGGAGA AAGGAGTTCC TCCTCCGCGG TGGCCTAATG GGAAAGAGGA	840
TTGGTGGCCT CAACTTGGTT TGCTAAAGA TCAAGGTCT GCACCTTACA AGAACGCTCA	900
TGATTGAAAG AAGGCGTGGA AAGTCGGCGT TTTGACTGCG GTTATCAAGC ATATGTTCC	960
TGATATTGCT AAGATCCGTA AGCTCGTAG GCAATCTAAA TGTTTGAGG ATAAGATGAC	1020
TGCTAAAGAG AGTGCTACCT GGCTTGCTAT TATTAACCAA GAAGAGTCCT TGGCTAGAGA	1080
GCTTATCCC GAGTCATGTC CACCTCTTC TCTGTCTGGT GGAAGTTGCT CGCTTCTGAT	1140
GAATGATTGC AGTCAATACG ATGTTGAAGG TTTCGAGAAG GAGTCTCACT ATGAAGTGGA	1200
AGAGCTCAAG CCAGAAAAAG TTATGAATTC TTCAAACCTT GGGATGGITG CTAAAATGCA	1260
TGACTTCCCT GTCAAAGAAG AAGTCCCAGC AGGAAACTCG GAATTCTATGA GAAAGAGAAA	1320
GCCAAACAGA GATCTGAACA CTATTATGGA CAGAACCGTT TTCACCTGCG AGAATCTGG	1380
GTGTGCGCAC AGCGAAATCA GCCGGGGATT TCTGGATAGG AATTCGAGAG ACAACCATCA	1440
ACTGGCATGT CCACATCGAG ACAGTCGCTT ACCGTATGGA GCAGCACCAC CCAGGTTCA	1500
TGTCAATGAA GTTAAGCCTG TAGTTGGATT TCCTCAGCCA AGGCCAGTGA ACTCAGTAGC	1560
CCAACCAATT GACTTAACGG GTATAGTTCC TGAAGATGGA CAGAAGATGA TCTCAGAGCT	1620
CATGTCATG TACGACAGAA ATGTCCAGAG CAACCAAACC TCTATGGTCA TGGAAAATCA	1680
AAGCGTGTCA CTGCTTCAAC CCACAGTCCA TAACCATCAA GAACATCTCC AGTTCCCAGG	1740
AAACATGGTG GAAGGAAGTT TCTTTGAAGA CTTGAACATC CCAAACAGAG CAAACAAACAA	1800
CAACAGCAGC AACAAATCAAA CGTTTTTCA AGGAAACAAC ACAACAAACA ATGTGTTAA	1860
GTTCGACACT GCAGATCACA ACAACTTGA AGCTGCACAT AACAAACAACA ATAACAGTAG	1920
CGGCAACAGG TTCCAGCTTG TGTTTGATTC CACACCGTTG GACATGGCGT CATTGATTA	1980
CAGAGATGAT ATGTCGATGC CAGGAGTAGT AGGAACGATG GATGGAATGC AGCAGAAGCA	2040
GCAAGATGTA TCCATATGGT TCTAAAGTCT TGGTAGTAGA TTTCATCTTC TCTTATTTTT	2100
ATCTTTGTG TTCTTACATT CACTCAACCA TGTAATATTT TTTCCTGGGT CTCTCTGTCT	2160
CTATCGCTTG TTATGATGTG TCTGTAAGAG TCTCTAAAAA CTCTCTGTTA CTGTGTGTCT	2220
TTGTCTCGGC TTGGTGAATC TCTCTGTAT CATCAGCTTT TAGTTACACA CCCGACTTGG	2280
GGATGAACGA ACACAAATG TAAGTTTCA	2310

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3387 base pairs
 - (B) TYPE: nucleic acid

57

(C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AGAGCAGTGA GTATTNCCAC NAGCCGCTTT GTTAATTACA TATTAATTGT GTAATAATAA	60
TAATAAAATGA TGTCTTAAAT TTTATGTGTA AGAAATGAAA TTAAAATGAT ATATATGTAT	120
ATTATATATC TANACATATA TATATATATA TAAATAGAGT ATATATACTA TGATCTATCT	180
TCCTGATCTA CAGAGAGACT CCACAAAGAA ACGCAAATAA ACAAAAGTCG CTTCTAGCC	240
ACGTGATCTT TCGTCGACTT TTCTTCTTCT TCTTCTTCTT CCTCTTCCTC ATCTCGTATC	300
TCTAACCTTT GTCGAAGTTC TTTTGATGAA ACTAGGGTTT ATTATCTCT CTTCTTTTT	360
CCCATCACCA TAGAAAAGGC AGAGACCTTT TTCTTCATCA TTTTTATTCT CTTCTTCTT	420
CTGCTGTTCA TTTCTCCAGG TACTATACGC TTCTTCTTCT ATTGATTTTT TAGGGTTATT	480
ATTGATACTG AAGATGATGA TAGGTTTATT CATAGGGTTT TACTAGATCG ATGGTTTTAC	540
TTTAGTTTAC TAGTGTAAAC ACGATCTAAT TTCAAGGTTT TATNCTACTT TTAGTTTTT	600
NTTTGGGTGA AGTTTTGTTT ATTGTTTATA AATCGTTGAT CTATTTGAAA ATGTTTCTC	660
TTTCTTATTCT ATATATGATC CTTCTATAT TTGGTTCCCTA TGTTGAAGAT CTCATCCTT	720
TTTTGGAAAT TGAATCTGTT GATAATTTTT ATTATCCGAT TGATTATTAA GTTGTAGGAGT	780
GATTAAAAATA CGATCTGATT ATGTGTAAAC TACTTAAAC TTTGATTGAA TTCGAAAAGC	840
CCCTTTTTTA TAATTTAGGG TTTGATGATT TTTTTAGTA AGTTGTTGA TTCAGAAAGAA	900
ATATAATTGT ACTGATTAGT TTTGTTGTG TATTTGATTG GTTACAGGTT ACAATGATGT	960
TTAATGAGAT GGGAAATGTGT GGAAACATGG ATTCTTCTC TTCTGGATCA CTTGGTGAAG	1020
TTGATTTCTG TCCTGTTCCA CAAGCTGAGC CTGATTCCAT TGTTGAAGAT GACTATACTG	1080
ATGATGAGAT TGATGTTGAT GAATTGGAGA GGAGGATGTG GAGAGACAAA ATGCGGCTTA	1140
AACGTCTCAA GGAGCAGGAT AAGGGTAAAG AAGGTGTTGA TGCTGCTAAA CAGAGGCAGT	1200
CTCAAGAGCA AGCTAGGAGG AAGAAAATGT CTAGAGCTCA AGATGGGATC TTGAAGTATA	1260
TGTTGAAGAT GATGAAAGTT TGTAAAGCTC AAGGCTTTGT TTATGGGATT ATTCCGGAGA	1320
ATGGGAAGCC TGTGACTGGT GCTTCTGATA ATTTAAGGGG GTGGTGGAAA GATAAGGTTA	1380
GGTTTGATCG TAATGGTCCT GCGGCTATTA CCAAGTATCA AGCGGAGAAT AATATCCCGG	1440
GGATTCAATGA AGGTAATAAC CCGATTGGAC CGACTCCTCA TACCTTGCAA GAGCTTCAAG	1500
ACACGACTCT TGGATCGCTT TTGTCGCGT TGATGCAACA CTGTGATCCT CCTCAGAGAC	1560
GTTTCTCTT GGAGAAAGGA GTTCTCCTC CGTGGTGGCC TAATGGGAAA GAGGATTGGT	1620

58

GGCCTCAACT TGGTTTGCCT AAAGATCAAG GTCCTGCACC TTACAAGAAG CCTCATGATT	1680
TGAAGAAGGC GTGGAAAGTC GGCGTTTGA CTGCGTTAT CAAGCATATG TTTCCGTATA	1740
TTGCTAAGAT CCGTAAGCTC GTGAGGCAAT CTAAATGTT GCAGGATAAG ATGAC TGCTA	1800
AAGAGAGTGC TACCTGGCTT GCTATTATTA ACCAAGAAGA GTCCTTGCT AGAGAGCTT	1860
ATCCCGAGTC ATGTCCACCT CTTTCTCTGT CTGGTGGAAAG TTGCTCGCTT CTGATGAATG	1920
ATTGCAGTCA ATACGATGTT GAAGGTTCG AGAAGGAGTC TCACTATGAA GTGGAAGAGC	1980
TCAAGCCAGA AAAAGTTATG AATTCTCAA ACTTTGGAT GGTTGCTAAA ATGCATGACT	2040
TTCCGTCAA AGAAGAAGTC CCAGCAGGAA ACTCGGAATT CATGAGAAAG AGAAAGCCAA	2100
ACAGAGATCT GAACACTATT ATGGACAGAA CGTTTTCAC CTGCGAGAAT CTTGGGTGTG	2160
CGCACAGCGA AATCAGCCGG GGATTTCTGG ATAGGAATT GAGAGACAAC CATCAACTGG	2220
CATGTCCACA TCGAGACAGT CGCTTACCGT ATGGAGCAGC ACCATCCAGG TTTCATGTCA	2280
ATGAAGTTAA GCCTGTAGTT GGATTTCTTC AGCCAAGGCC AGTGAACCTCA GTAGCCAAC	2340
CAATTGACTT AACGGGTATA GTTCCTGAAG ATGGACAGAA GATGATCTCA GAGCTCATGT	2400
CCATGTACGA CAGAAATGTC CAGAGCAACC AAACCTCTAT GGTCATGGAA AATCAAAGCG	2460
TGTCACTGCT TCAACCCACA GTCCATAACC ATCAAGAACCA TCTCCAGTTC CCAGGAAACA	2520
TGGTGGAGG AAGTTCTTT GAAGACTTGA ACATCCAAA CAGAGCAAAC AACACAACA	2580
GCAGCAACAA TCAAACGTTT TTTCAAGGGAA ACAACAACAA CAACAATGTG TTAAAGTTCG	2640
ACACTGCAGA TCACAACAAAC TTTGAAGCTG CACATAACAA CAACAATAAC AGTAGCGGCA	2700
ACAGGTTCCA GCTTGTGTTT GATTCCACAC CGTCGACAT GGCGTCATTG GATTACAGAG	2760
ATGATATGTC GATGCCAGGA GTAGTAGGAA CGATGGATGG AATGCAGCAG AAGCAGCAAG	2820
ATGTATCCAT ATGGTTCTAA AGTCTGGTA GTAGATTCA TCTTCTCTTA TTTTTATCTT	2880
TTGTGTTCTT ACATTCACTC AACCATGTAA TATTTTTCTC TGGGTCTCTC TGTCTCTATC	2940
GCTTGTATG ATGTGTCTGT AAGAGTCTCT AAAAAGCTCTC TGTTACTGTG TGTCTTTGTC	3000
TCGGCTTGGT GAATCTCTCT GTCATCATCA GCTTTAGIT ACACACCCGA CTTGGGGATG	3060
AACGAACACT AAATGTAAGT TTTCATAATA TAAATATATT TGNAAGCTCT CTTCTCTGT	3120
GTGTTTGGT TGAGTTTGAC TTTTACAATT GAAAAGTTG GTGTAATTCA CGCTAACTAC	3180
CTCAAAGTTA GGGAAATGGTG GGATAATTAT TTATTACAAT TGTATTTGAT GGATAACGTG	3240
CTTATCGCTA GTGGCTCGCG GGTAGCATT AAGCATGGGT CAATGCTTGT GTCTACGAGC	3300
TCGAGTGTAC GAGCACACAC AATCCAATCC GAACACAAAA CAAGAAGAAA AACAAAATAA	3360
GATCTTAGAT GTAAGGNATT CTTAAAT	3387

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 628 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Met Phe Asn Glu Met Gly Met Cys Gly Asn Met Asp Phe Phe Ser
1 5 10 15

Ser Gly Ser Leu Gly Glu Val Asp Phe Cys Pro Val Pro Gln Ala Glu
20 25 30

Pro Asp Ser Ile Val Glu Asp Asp Tyr Thr Asp Asp Glu Ile Asp Val
35 40 45

Asp Glu Leu Glu Arg Arg Met Trp Arg Asp Lys Met Arg Leu Lys Arg
50 55 60

Leu Lys Glu Gln Asp Lys Gly Lys Glu Gly Val Asp Ala Ala Lys Gln
65 70 75 80

Arg Gln Ser Gln Glu Gln Ala Arg Arg Lys Lys Met Ser Arg Ala Gln
85 90 95

Asp Gly Ile Leu Lys Tyr Met Leu Lys Met Met Glu Val Cys Lys Ala
100 105 110

Gln Gly Phe Val Tyr Gly Ile Ile Pro Glu Asn Gly Lys Pro Val Thr
115 120 125

Gly Ala Ser Asp Asn Leu Arg Glu Trp Trp Lys Asp Lys Val Arg Phe
130 135 140

Asp Arg Asn Gly Pro Ala Ala Ile Thr Lys Tyr Gln Ala Glu Asn Asn
145 150 155 160

Ile Pro Gly Ile His Glu Gly Asn Asn Pro Ile Gly Pro Thr Pro His
165 170 175

Thr Leu Gln Glu Leu Gln Asp Thr Thr Leu Gly Ser Leu Leu Ser Ala
180 185 190

Leu Met Gln His Cys Asp Pro Pro Gln Arg Arg Phe Pro Leu Glu Lys
195 200 205

Gly Val Pro Pro Pro Trp Trp Pro Asn Gly Lys Glu Asp Trp Trp Pro
210 215 220

Gln Leu Gly Leu Pro Lys Asp Gln Gly Pro Ala Pro Tyr Lys Lys Pro
225 230 235 240

His Asp Leu Lys Lys Ala Trp Lys Val Gly Val Leu Thr Ala Val Ile
245 250 255

Lys His Met Phe Pro Asp Ile Ala Lys Ile Arg Lys Leu Val Arg Gln
260 265 270

Ser Lys Cys Leu Gln Asp Lys Met Thr Ala Lys Glu Ser Ala Thr Trp
275 280 285

Leu Ala Ile Ile Asn Gln Glu Glu Ser Leu Ala Arg Glu Leu Tyr Pro
290 295 300

60

Glu Ser Cys Pro Pro Leu Ser Leu Ser Gly Gly Ser Cys Ser Leu Leu
 305 310 315 320

Met Asn Asp Cys Ser Gln Tyr Asp Val Glu Gly Phe Glu Lys Glu Ser
 325 330 335

His Tyr Glu Val Glu Glu Leu Lys Pro Glu Lys Val Met Asn Ser Ser
 340 345 350

Asn Phe Gly Met Val Ala Lys Met His Asp Phe Pro Val Lys Glu Glu
 355 360 365

Val Pro Ala Gly Asn Ser Glu Phe Met Arg Lys Arg Lys Pro Asn Arg
 370 375 380

Asp Leu Asn Thr Ile Met Asp Arg Thr Val Phe Thr Cys Glu Asn Leu
 385 390 395 400

Gly Cys Ala His Ser Glu Ile Ser Arg Gly Phe Leu Asp Arg Asn Ser
 405 410 415

Arg Asp Asn His Gln Leu Ala Cys Pro His Arg Asp Ser Arg Leu Pro
 420 425 430

Tyr Gly Ala Ala Pro Ser Arg Phe His Val Asn Glu Val Lys Pro Val
 435 440 445

Val Gly Phe Pro Gln Pro Arg Pro Val Asn Ser Val Ala Gln Pro Ile
 450 455 460

Asp Leu Thr Gly Ile Val Pro Glu Asp Gly Gln Lys Met Ile Ser Glu
 465 470 475 480

Leu Met Ser Met Tyr Asp Arg Asn Val Gln Ser Asn Gln Thr Ser Met
 485 490 495

Val Met Glu Asn Gln Ser Val Ser Leu Leu Gln Pro Thr Val His Asn
 500 505 510

His Gln Glu His Leu Gln Phe Pro Gly Asn Met Val Glu Gly Ser Phe
 515 520

Phe Glu Asp Leu Asn Ile Pro Asn Arg Ala Asn Asn Asn Ser Ser
 530 535 540

Asn Asn Gln Thr Phe Phe Gln Gly Asn Asn Asn Asn Asn Asn Val Phe
 545 550 555 560

Lys Phe Asp Thr Ala Asp His Asn Asn Phe Glu Ala Ala His Asn Asn
 565 570 575

Asn Asn Asn Ser Ser Gly Asn Arg Phe Gln Leu Val Phe Asp Ser Thr
 580 585 590

Pro Phe Asp Met Ala Ser Phe Asp Tyr Arg Asp Asp Met Ser Met Pro
 595 600 605

Gly Val Val Gly Thr Met Asp Gly Met Gln Gln Lys Gln Gln Asp Val
 610 615 620

Ser Ile Trp Phe
 625

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2234 base pairs

(B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GGCCGCTTCA	AACTCTACAA	ACCCAGAAC	CACCACACAG	TAATTAATGT	CTCTTTCTTT	60
CTTCCCATGT	GATCTTAAAC	AGACTTTCT	TCTTATTCTC	CATCTCTGAA	GTTGTGGGGA	120
TTCATCAAGA	CTTCCTTATC	TGTTTCTTT	ATAAAACAAG	AGAGAGATAC	CACTTTGGT	180
GTTCTTATT	TGCAACTCTT	TCAGGTTAAA	GAAATCGATA	GGCTCTGTT	TTGATTGTGG	240
TGGAAGAGAC	ATGATGATGT	TTAACGAGAT	GGGAATGTAT	GGAAACATGG	ATTTCTTCTC	300
TTCCTCCACA	TCTCTCGATG	TGTGTCCATT	ACCACAAGCT	GAACAAGAAC	CTGTAGTTGA	360
AGATGTCGAC	TACACCGATG	ATGAGATGGA	TGAGCTTGAG	CAGAGGATGT	GGAGAGACAA	420
AATGCGTTTG	AAACGTCTCA	AGGAGCAACA	GAGTAAGTGT	AAAGGGAGCG	TCGATGGTTC	480
GAAACAGAGG	CAGTCGCAAG	AGCAAGCTAG	GAGGAAGAAA	ATGTCTAGAG	CCCAAGATGG	540
GATCTTGAAG	TATATGTTGA	AGATGATGGA	AGTTTGTAAA	GCTCAAGGCT	TTGTTTATGG	600
TATTATTCT	GAGAAGGGTA	AGCCTGTGAC	TGGTGCTTCG	GATAATTGAA	GGGAATGGTG	660
GAAAGATAAG	GTTAGGTTTG	ATCGTAATGG	TCCAGCTGCT	ATTGCTAAGT	ATCAGTCAGA	720
GAATAATATT	TCTGGAGGGAA	GTAATGATTG	TAACAGCTTG	GTTGGTCCAA	CACCGCATAAC	780
GCTTCAGGAG	CTTCAGGACA	CGACTCTTGG	TTCGCTTTTA	TCGGCTTGA	TGCAACATTG	840
TGATCCACCG	CAGAGACGGT	TTCCCTTGG	GAAAGGAGTT	TCTCCACCTT	GGTGGCCTAA	900
TGGGAATGAA	GAGTGGTGGC	CTCAGCTTGG	TTTACCAAAT	GAGCAAGGTC	CTCCTCCTTA	960
TAAGAAGCCT	CATGATTGAA	AGAAAGCTTG	GAAAGTCGGT	GTTCCTAATG	CGGTGATCAA	1020
GCATATGTCG	CGGGATATTG	CGAAGATCCG	TAAGCTTGTG	AGGCAATCAA	AATGCTTGC	1080
GGATAAGATG	ACGGCGAAAG	AGAGTGCTAC	TTGGCTTGCC	ATTATTAACC	AAGAAGAGGT	1140
TGTGGCTCGG	GAGCTTTATC	CCGAGTCATG	CCCTCCTCTT	TCTTCTTCTT	CATCATTAGG	1200
AAGCGGGTCG	CTTCTCATTA	ATGATTGTAG	CGAGTATGAC	GTTGAAGGTT	TCGAGAAGGA	1260
ACAACATGGT	TTCGATGTGG	AAGAGCGGAA	ACCAAGAGATA	GTGATGATGC	ATCCTCTAGC	1320
AAGCTTTGGG	GTTGCTAAAA	TGCAACATTT	TCCCATAAAAG	GAGGAGGTCG	CCACCAACGGT	1380
AAACCTAGAG	TTCACGAGAA	AGAGGAAGCA	GAACAATGAT	ATGAATGTAA	TGGTAATGGA	1440
CAGATCAGCA	GGTTACACTT	GTGAGAATGG	TCAGTGTCT	CACAGCAAA	TGAATCTTGG	1500
ATTICAAGAC	AGGAGTTCAA	GGGACAACCA	CCAGATGGTT	TGTCCATATA	GAGACAATCG	1560
TTTAGCGTAT	GGAGCATCCA	AGTTTCATAT	GGGTGGAATG	AAACTAGTAG	TTCCCTCAGCA	1620

ACCAGTCAA CCGATCGACC TATCGGGCGT TGGAGTTCCG GAAAACGGGC AGAAGATGAT	1680
CACCGAGCTT ATGCCATGT ACGACAGAAA TGTCAGAAC CACCAAACGC CTCTACTTT	1740
GATGGAAAAC CAAAGCATGG TCATTGATGC AAAAGCAGCT CAGAATCAGC AGCTGAATTT	1800
CAACAGTGGC AATCAAATGT TTATGCAACA AGGGACGAAC AACGGGGTTA ACAATCGGTT	1860
CCAGATGGTG TTTGATTGCA CACCATTGCA TATGGCAGCA TTCGATTACA GAGATGATTG	1920
GCAAACCGGA GCAATGGAAG GAATGGGAA GCAGCAGCAG CAGCAGCAGC AGCAGCAAAG	1980
ATGTATCAAT ATGGTTCTGA ATATTACACA ATCTCTGAA TATTCAATTCT TTCATAATAA	2040
CTCTGTTACC TACTTACCTG ACTTGGGTAT GTATTCTATT GCACCAAACA CTCATCTATA	2100
TTGTTGATGA TGATGAAAGCC ATCTATTTT TTTTGTGTC TGAAAGTCAT TTAACTCGCT	2160
TCATTGTTTT AATAATGTCA CTATCCATTG AACATCATTG TCATGCTACA AGTTTGATTG	2220
TTTGAGGCGG CGCG	2234

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 584 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Met Met Phe Asn Glu Met Gly Met Tyr Gly Asn Met Asp Phe Phe	
1 5 10	15
Ser Ser Ser Thr Ser Leu Asp Val Cys Pro Leu Pro Gln Ala Glu Gln	
20 25 30	
Glu Pro Val Val Glu Asp Val Asp Tyr Thr Asp Asp Glu Met Asp Val	
35 40 45	
Asp Glu Leu Glu Lys Arg Met Trp Arg Asp Lys Met Arg Leu Lys Arg	
50 55 60	
Leu Lys Glu Gln Gln Ser Lys Cys Lys Glu Gly Val Asp Gly Ser Lys	
65 70 75 80	
Gln Arg Gln Ser Gln Glu Gln Ala Arg Arg Lys Lys Met Ser Arg Ala	
85 90 95	
Gln Asp Gly Ile Leu Lys Tyr Met Leu Lys Met Met Glu Val Cys Lys	
100 105 110	
Ala Gln Gly Phe Val Tyr Gly Ile Ile Pro Glu Lys Gly Lys Pro Val	
115 120 125	
Thr Gly Ala Ser Asp Asn Leu Arg Glu Trp Trp Lys Asp Lys Val Arg	
130 135 140	

Phe Asp Arg Asn Gly Pro Ala Ala Ile Ala Lys Tyr Gln Ser Glu Asn
 145 150 155 160
 Asn Ile Ser Gly Gly Ser Asn Asp Cys Asn Ser Leu Val Gly Pro Thr
 165 170 175
 Pro His Thr Leu Gln Glu Leu Gln Asp Thr Thr Leu Gly Ser Leu Leu
 180 185 190
 Ser Ala Leu Met Gln His Cys Asp Pro Pro Gln Arg Arg Phe Pro Leu
 195 200 205
 Glu Lys Gly Val Ser Pro Pro Trp Trp Pro Asn Gly Asn Glu Glu Trp
 210 215 220
 Trp Pro Gln Leu Gly Leu Pro Asn Glu Gln Gly Pro Pro Pro Tyr Lys
 225 230 235 240
 Lys Pro His Asp Leu Lys Lys Ala Trp Lys Val Gly Val Leu Thr Ala
 245 250 255
 Val Ile Lys His Met Ser Pro Asp Ile Ala Lys Ile Arg Lys Leu Val
 260 265 270
 Arg Gln Ser Lys Cys Leu Gln Asp Lys Met Thr Ala Lys Glu Ser Ala
 275 280 285
 Thr Trp Leu Ala Ile Ile Asn Gln Glu Glu Val Val Ala Arg Glu Leu
 290 295 300
 Tyr Pro Glu Ser Cys Pro Pro Leu Ser Ser Ser Ser Leu Gly Ser
 305 310 315 320
 Gly Ser Leu Leu Ile Asn Asp Cys Ser Glu Tyr Asp Val Glu Gly Phe
 325 330 335
 Glu Lys Glu Gln His Gly Phe Asp Val Glu Glu Arg Lys Pro Glu Ile
 340 345 350
 Val Met Met His Pro Leu Ala Ser Phe Gly Val Ala Lys Met Gln His
 355 360 365
 Phe Pro Ile Lys Glu Glu Val Ala Thr Thr Val Asn Leu Glu Phe Thr
 370 375 380
 Arg Lys Arg Lys Gln Asn Asn Asp Met Asn Val Met Val Met Asp Arg
 385 390 395 400
 Ser Ala Gly Tyr Thr Cys Glu Asn Gly Gln Cys Pro His Ser Lys Met
 405 410 415
 Asn Leu Gly Phe Gln Asp Arg Ser Ser Arg Asp Asn His Gln Met Val
 420 425 430
 Cys Pro Tyr Arg Asp Asn Arg Leu Ala Tyr Gly Ala Ser Lys Phe His
 435 440 445
 Met Gly Gly Met Lys Leu Val Val Pro Gln Gln Pro Val Gln Pro Ile
 450 455 460
 Asp Leu Ser Gly Val Gly Val Pro Glu Asn Gly Gln Lys Met Ile Thr
 465 470 475 480
 Glu Leu Met Ala Met Tyr Asp Arg Asn Val Gln Ser Asn Gln Thr Pro
 485 490 495
 Pro Thr Leu Met Glu Asn Gln Ser Met Val Ile Asp Ala Lys Ala Ala

64

500 505 510

Gln Asn Gln Gln Leu Asn Phe Asn Ser Gly Asn Gln Met Phe Met Gln
 515 520 525

Gln Gly Thr Asn Asn Gly Val Asn Asn Arg Phe Gln Met Val Phe Asp
 530 535 540

Ser Thr Pro Phe Asp Met Ala Ala Phe Asp Tyr Arg Asp Asp Trp Gln
 545 550 555 560

Thr Gly Ala Met Glu Gly Met Gly Lys Gln Gln Gln Gln Gln Gln
 565 570 575

Gln Gln Asp Val Ser Ile Trp Phe
 580

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1722 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CAGATTCTAT GGATATGTAT AACACAATA TAGGGATGTT CCGGAGTTA GTTTAGCT	60
CGGCCCTCC ATTTACAGAG GGACATATGT GTTCTGATT GCATACGGCT TTGTGCGATG	120
ATCTGAGTAG TGATGAGGAA ATGGAAATAG AGGAGCTTGA GAAGAAGATC TGGAGAGACA	180
AGCAGCGTTT AAAGCGGCTC AAGGAAATGG CGAAGAACGG TCTAGGAACA AGATTGTTGT	240
TGAAGCAGCA ACATGATGAT TTTCCAGAGC ACTCTAGTAA GAGAACCATG TACAAGGCAC	300
AAGATGGGAT CTTGAAGTAC ATGTCGAAGA CAATGGAGCG ATATAAAGCT CAAGGTTTG	360
TTTATGGGAT TGTGTTAGAG AATGGGAAAA CGGTAGCGGG ATCTTCTGAT AATCTCCGTG	420
AATGGTGGAA AGACAAAAGTG AGGTTTGATA GGAAACGGCCC AGCTGCTATA ATCAAGCACC	480
AAAGGGATAT CAATCTTCT GATGGAAGTG ATTCAAGGGTC TGAGGTTGGG GATTCTACCG	540
CACAGAAGTT GCTTGAGCTT CAAGATACTA CTCTTGGAGC TCTGTTATCG GCTCTGTTTC	600
CTCACTGCAA CCCTCCTCAAG AGGCGGTTTC CGTTGGAGAA AGGCGTGACA CCGCCATGGT	660
GGCCAACGGG GAAAGAAGAT TGGTGGGATC AACTGTCTTT ACCCGTTGAT TTTCGAGGTG	720
TTCCGCCACC TTACAAGAAG CCTCATGATC TCAAGAAGCT GTGGAAAATT GGTGTTTGAA	780
TTGGTGTAAAT CAGACATATG GCTTCTGACA TTAGCAACAT ACCCAATCTC GTGAGACGGT	840
CTAGAAGTTT GCAGGAGAAA ATGACGTCAA GAGAAGGCGC TTTATGGCTC GCTGCTCTTT	900
ACCGAGAAAA GGCTATTGTT GATCAAATAG CCATGTCTAG AGAAAACAAC AACACTTCTA	960

65

ACTTTCTTGT	TCCTGCAACC	GGTGGAGACC	CAGATGTTTT	GTTTCCTGAA	TCTACAGACT	1020
ATGATGTTGA	ACTGATTGGT	GGCACTCATC	GGACCAATCA	GCAGTATCCT	GAATTGAAA	1080
ACAACATCAA	CTGTGTTAC	AAAGAGAAAGT	TTGAAGAAGA	TTTTGGGATG	CCAATGCATC	1140
CAACACTCCT	AACATGTGAG	AACAGTCTCT	GTCCTTATAG	CCAACCACAT	ATGGGATTTC	1200
TTGACAGGAA	CTTAAGAGAG	AATCACCAAA	TGACTTGTCC	TTATAAAGTC	ACTTCCTTCT	1260
ACCAACCAAC	TAAACCCAT	GGTATGACGG	GTGTTAATGGT	TCCTTGTCGG	GATTATAACG	1320
GGATGCAGCA	GCAGGTTCAAG	ACCAAGTTAA	TCATCCCCAAC	GATCTCTACA		1380
GACCAAAAGC	TCCACAAAGA	GGCAACGATG	ACTTGGTTGA	GGATTTGAAT	CCTTCTCCCT	1440
CGACGCTGAA	TCAGAATCTT	GGTTTAGTCT	TACCTACTGA	CTTCATGGAA	GGTGAGGAAA	1500
CAGTAGGAAC	AGAGAACAAAT	CTGCATAATC	AAGGGCAAGA	GTTGCCACAA	TCTTGGATTC	1560
AGTAAAGAAA	GCTTCAGAGT	TTTCTTTTA	TGTTTTCTAG	TCTTTATAGC	TTTGTCTCTT	1620
GCTTATTCTC	TCATTAAACA	CAGTTTTGA	TCTCTCCATT	TCATAGCCC	TGTAGCAATG	1680
GAGAAGATTA	GGTTTCATAAA	TAAGTTAATA	ACCAAATTCA	AA		1722

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 520 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Asp	Ser	Met	Asp	Met	Tyr	Asn	Asn	Asn	Ile	Gly	Met	Phe	Arg	Ser	Leu	
1					5				10					15		
Val	Cys	Ser	Ser	Ala	Pro	Pro	Phe	Thr	Glu	Gly	His	Met	Cys	Ser	Asp	
					20			25				30				
Ser	His	Thr	Ala	Leu	Cys	Asp	Asp	Leu	Ser	Ser	Asp	Glu	Glu	Met	Glu	
					35			40				45				
Ile	Glu	Glu	Leu	Glu	Lys	Lys	Ile	Trp	Arg	Asp	Lys	Gln	Arg	Leu	Lys	
					50		55				60					
Arg	Leu	Lys	Glu	Met	Ala	Lys	Asn	Gly	Leu	Gly	Thr	Arg	Leu	Leu	Leu	
					65		70		75				80			
Lys	Gln	Gln	His	Asp	Asp	Phe	Pro	Glu	His	Ser	Ser	Lys	Arg	Thr	Met	
					85			90				95				
Tyr	Lys	Ala	Gln	Asp	Gly	Ile	Leu	Lys	Tyr	Met	Ser	Lys	Thr	Met	Glu	
					100			105				110				
Arg	Tyr	Lys	Ala	Gln	Gly	Phe	Val	Tyr	Gly	Ile	Val	Leu	Glu	Asn	Gly	
					115		120				125					

Lys Thr Val Ala Gly Ser Ser Asp Asn Leu Arg Glu Trp Trp Lys Asp
 130 135 140
 Lys Val Arg Phe Asp Arg Asn Gly Pro Ala Ala Ile Ile Lys His Gln
 145 150 155 160
 Arg Asp Ile Asn Leu Ser Asp Gly Ser Asp Ser Gly Ser Glu Val Gly
 165 170 175
 Asp Ser Thr Ala Gln Lys Leu Leu Glu Leu Gln Asp Thr Thr Leu Gly
 180 185 190
 Ala Leu Leu Ser Ala Leu Phe Pro His Cys Asn Pro Pro Gln Arg Arg
 195 200 205
 Phe Pro Leu Glu Lys Gly Val Thr Pro Pro Trp Trp Pro Thr Gly Lys
 210 215 220
 Glu Asp Trp Trp Asp Gln Leu Ser Leu Pro Val Asp Phe Arg Gly Val
 225 230 235 240
 Pro Pro Pro Tyr Lys Lys Pro His Asp Leu Lys Lys Leu Trp Lys Ile
 245 250 255
 Gly Val Leu Ile Gly Val Ile Arg His Met Ala Ser Asp Ile Ser Asn
 260 265 270
 Ile Pro Asn Leu Val Arg Arg Ser Arg Ser Leu Gln Glu Lys Met Thr
 275 280 285
 Ser Arg Glu Gly Ala Leu Trp Leu Ala Ala Leu Tyr Arg Glu Lys Ala
 290 295 300
 Ile Val Asp Gln Ile Ala Met Ser Arg Glu Asn Asn Asn Thr Ser Asn
 305 310 315 320
 Phe Leu Val Pro Ala Thr Gly Gly Asp Pro Asp Val Leu Phe Pro Glu
 325 330 335
 Ser Thr Asp Tyr Asp Val Glu Leu Ile Gly Gly Thr His Arg Thr Asn
 340 345 350
 Gln Gln Tyr Pro Glu Phe Glu Asn Asn Tyr Asn Cys Val Tyr Lys Arg
 355 360 365
 Lys Phe Glu Glu Asp Phe Gly Met Pro Met His Pro Thr Leu Leu Thr
 370 375 380
 Cys Glu Asn Ser Leu Cys Pro Tyr Ser Gln Pro His Met Gly Phe Leu
 385 390 395 400
 Asp Arg Asn Leu Arg Glu Asn His Gln Met Thr Cys Pro Tyr Lys Val
 405 410 415
 Thr Ser Phe Tyr Gln Pro Thr Lys Pro Tyr Gly Met Thr Gly Leu Met
 420 425 430
 Val Pro Cys Pro Asp Tyr Asn Gly Met Gln Gln Val Gln Ser Phe
 435 440 445
 Gln Asp Gln Phe Asn His Pro Asn Asp Leu Tyr Arg Pro Lys Ala Pro
 450 455 460
 Gln Arg Gly Asn Asp Asp Leu Val Glu Asp Leu Asn Pro Ser Pro Ser
 465 470 475 480
 Thr Leu Asn Gln Asn Leu Gly Leu Val Leu Pro Thr Asp Phe Asn Gly

67

485

490

495

Gly Glu Glu Thr Val Gly Thr Glu Asn Asn Leu His Asn Gln Gly Gln
 500 505 510

Glu Leu Pro Thr Ser Trp Ile Gln
 515 520

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2065 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TTCCCTGAG AACGACAGGA GAAAGAATAA AAACCTAAA TTTCTTTAAT TTGGCGCTT	60
CAGATTATCG TTGTTAAAGG TTTTGATTG ATTTTGTAA AATGGGCGAT CTTGCTATGT	120
CCGTAGCAGA CATCAGGATG GAGAATGAGC CTGATGATT AGCTAGTGAT AATGTTGCTG	180
AGATTGATGT GAGTGATGAA GAGATTGATG CTGACGACCT TGAGAGACGG ATGTGGAAAG	240
ATCGTGTCAAG CTTAAAAGA ATCAAAGAGC GACAAAAAGC TGGCTCTCAA GGAGCTCAA	300
ACGAAGGGAG ACACCTAAGA AAATCTCTGA TCAAGCTCAG AGGAAGAAAA TGTCTTAGAG	360
CTCAAGATGG TATCCTTAAG TACATTGTTG AAGCTTATGG AAGTCTGCAA AGTCGCAGG	420
TTTGTCTATG GTATAATACC GGAAAAGGGC AAGCCTGTGA GTGGCTCCT CTGACAATAT	480
AAGAGCTTGG TGGAAAGAGA AAGTGAAGTT TGATAAGAAC GGTCCTGCTG CTATTGCTAA	540
ATACGAAGAG GAGTGTGTTAG CGTTGGGAA ATCTGATGGG AATAGGAATT CACAGTTGT	600
TCTCCAGGAT TTGCAAGATG CTACTTTAGG GTCTTTGTTA TCTTCTTGTGA TGCAACATTG	660
TGATCCTCCT CAAAGGAAGT ATCCGTTGGA GAAAGGGACG CCTCCGCCCTT GGTGGCCAAC	720
GGGGAATGAA GAATGGTGGG TGAAACTCGG TCTGCCTAAA AGCCAGAGTC CTCCTTACCG	780
AAAACCTCAT GATCTCAAGA AGATGTGGAA GGTGGAGTT TTAACGGCAG TGATCAATCA	840
TATGTTACCT GATATTGCAA AGATTAAGAG GCATGTTCGT CAGTCGAAAT GTTTACAGGA	900
CAAGATGACA GCTAAAGAGA GTGCGATTG GTTGGCGGTT TTGAACCAAG AGGAATCTTT	960
GATTCAAGCAG CCTAGCAGTG ACAATGGAAA CTCCAATGTG ACTGAGACAC ATCGTAGGGG	1020
TAATAACGCT GACAGGAGGA AACCTGTGGT CAACAGTGAC AGTGAATATG ATGTTGATGG	1080
GACAGAGGAA GCTTCAGGTT CAGTTTCATC TAAAGACAGT AGAAGAAATC AGATTCAAAA	1140
AGAACAAACCA ACAGCCAITCT CACATTCACT AAGAGATCAA GATAAAGCAG AGAAACATCG	1200

CAGAAGGAAA AGACCTCGAA TTAGATCCGG AACTGTCAAT CGACAAGAGG AAGAACACC	1260
TGAAGCTCAA CAAAGAAACA TCTTACCTGA TATGAATCAT GTTGATGCC CTCTGCTAGA	1320
ATATAACATC AACGGTACTC ATCAAGAGGA CGATGTTGTC GACCCAAATA TTGCCTTAGG	1380
ACCAGAGGAT AATGGTCTGG AACTAGTGGT TCCTGAGTTC AATAACCAA CATACTTATC	1440
TTCCACTTGT TAATGAACAA ACTATGATGC CTGTAGACGA AAGGCCAATG CTTTATGGAC	1500
CCAAACCTA ACCAAGAGCT TCAATTGGG TCAGGGTACA ACTTCTACAA TCCCTCTGCA	1560
GTGTTTGTAC ATAACCAGGA AGACGACATT CTCCATACAC AGATAGAAAT GAATACACAA	1620
GCACCACCTC ACAACAGTGG GTTCGAGGAG GCCCCAGGAG GAGTACTTCA ACCCCTTGGT	1680
TTACTCGGAA ATGAAGACGG TGTAACAGGG AGTGANNTGC CTCAGTATCA GAGTGGCATT	1740
CTGCTCCAT TGACTGACTT GGACTTTGAC TATGGTGGTT TTGGTGTGA TTTCTCATGG	1800
TTTGGAGCTT AGTGTCTTGC CATTTCGGGG GGGAGATTAC ATAGTTCAA AGGACATGGC	1860
AATAGTCTGG CTAGTACAGT TACTTTCTCT TCTTCATTTC TTCTGATCTT ATATTCTTCC	1920
TCTTTTC TTATAATATT TTCTTAGATT TGTTAAGAGA AACAAATTTC CTTTGAAATA	1980
AGTTGCCAGA AGAACTGCTT TGCCCGTTGT AATGGTCTCT AGGGAAAGCA GTTAGCGTAT	2040
CATCATTGT AAATTTACCT GTGAG	2065

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 567 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met	Gly	Asp	Leu	Ala	Met	Ser	Val	Ala	Asp	Ile	Arg	Met	Glu	Asn	Glu
1					5					10			15		
Pro	Asp	Asp	Leu	Ala	Ser	Asp	Asn	Val	Ala	Glu	Ile	Asp	Val	Ser	Asp
					20					25			30		
Glu	Glu	Ile	Asp	Ala	Asp	Asp	Leu	Glu	Arg	Arg	Met	Trp	Lys	Asp	Arg
		35					40			45					
Val	Arg	Leu	Lys	Arg	Ile	Lys	Glu	Arg	Gln	Lys	Ala	Gly	Ser	Gln	Gly
	50					55				60					
Ala	Gln	Thr	Lys	Glu	Thr	Pro	Lys	Lys	Ile	Ser	Asp	Gln	Ala	Gln	Arg
	65				70				75				80		
Lys	Lys	Met	Ser	Arg	Ala	Gln	Asp	Gly	Ile	Leu	Lys	Tyr	Met	Leu	Lys
		85						90					95		
Leu	Met	Glu	Val	Cys	Lys	Val	Arg	Gly	Phe	Val	Tyr	Gly	Ile	Ile	Pro

69

100

105

110

Glu Lys Gly Lys Pro Val Ser Gly Ser Ser Asp Asn Ile Arg Ala Trp
 115 120 125
 Trp Lys Glu Lys Val Lys Phe Asp Lys Asn Gly Pro Ala Ala Ile Ala
 130 135 140
 Lys Tyr Glu Glu Glu Cys Leu Ala Phe Gly Lys Ser Asp Gly Asn Arg
 145 150 155 160
 Asn Ser Gln Phe Val Leu Gln Asp Leu Gln Asp Ala Thr Leu Gly Ser
 165 170 175
 Leu Leu Ser Ser Leu Met Gln His Cys Asp Pro Pro Gln Arg Lys Tyr
 180 185 190
 Pro Leu Glu Lys Gly Thr Pro Pro Pro Trp Trp Pro Thr Gly Asn Glu
 195 200 205
 Glu Trp Trp Val Lys Leu Gly Leu Pro Lys Ser Gln Ser Pro Pro Tyr
 210 215 220
 Arg Lys Pro His Asp Leu Lys Lys Met Trp Lys Val Gly Val Leu Thr
 225 230 235 240
 Ala Val Ile Asn His Met Leu Pro Asp Ile Ala Lys Ile Lys Arg His
 245 250 255
 Val Arg Gln Ser Lys Cys Leu Gln Asp Lys Met Thr Ala Lys Glu Ser
 260 265 270
 Ala Ile Trp Leu Ala Val Leu Asn Gln Glu Glu Ser Leu Ile Gln Gln
 275 280 285
 Pro Ser Ser Asp Asn Gly Asn Ser Asn Val Thr Glu Thr His Arg Arg
 290 295 300
 Gly Asn Asn Ala Asp Arg Arg Lys Pro Val Val Asn Ser Asp Ser Asp
 305 310 315 320
 Tyr Asp Val Asp Gly Thr Glu Glu Ala Ser Gly Ser Val Ser Ser Lys
 325 330 335
 Asp Ser Arg Arg Asn Gln Ile Gln Lys Glu Gln Pro Thr Ala Ile Ser
 340 345 350
 His Ser Val Arg Asp Gln Asp Lys Ala Glu Lys His Arg Arg Arg Lys
 355 360 365
 Arg Pro Arg Ile Arg Ser Gly Thr Val Asn Arg Gln Glu Glu Gln
 370 375 380
 Pro Glu Ala Gln Gln Arg Asn Ile Leu Pro Asp Met Asn His Val Asp
 385 390 395 400
 Ala Pro Leu Leu Glu Tyr Asn Ile Asn Gly Thr His Gln Glu Asp Asp
 405 410 415
 Val Val Asp Pro Asn Ile Ala Leu Gly Pro Glu Asp Asn Gly Leu Glu
 420 425 430
 Leu Val Val Pro Glu Phe Asn Asn Asn Tyr Thr Tyr Leu Pro Leu Val
 435 440 445
 Asn Glu Gln Thr Met Met Pro Val Asp Glu Arg Pro Met Leu Tyr Gly
 450 455 460

70

Pro Asn Pro Asn Gln Glu Leu Gln Phe Gly Ser Gly Tyr Asn Phe Tyr
 465 470 475 480

Asn Pro Ser Ala Val Phe Val His Asn Gln Glu Asp Asp Ile Leu His
 485 490 495

Thr Gln Ile Glu Met Asn Thr Gln Ala Pro Pro His Asn Ser Gly Phe
 500 505 510

Glu Glu Ala Pro Gly Gly Val Leu Gln Pro Leu Gly Leu Leu Gly Asn
 515 520 525

Glu Asp Gly Val Thr Gly Ser Glu Leu Pro Gln Tyr Gln Ser Gly Ile
 530 535 540

Leu Ser Pro Leu Thr Asp Leu Asp Phe Asp Tyr Gly Gly Phe Gly Asp
 545 550 555 560

Asp Phe Ser Trp Phe Gly Ala
 565

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Thr Val Val Arg Glu Tyr Asp Pro Thr Arg Asp Leu Val Gly Val
 1 5 10 15

Glu Asp Val Glu Arg Arg Cys Glu Val Gly Pro Ser Gly Lys Leu Ser
 20 25 30

Leu Phe Thr Asp Leu Leu Gly Asp Pro Ile Cys Arg Ile Arg His Ser
 35 40 45

Pro Ser Tyr Leu Met Leu Val Ala Glu Met Gly Thr Glu Xaa Xaa Xaa
 50 55 60

Lys Lys Glu Ile Val Gly Met Ile Arg Gly Cys Ile Lys Thr Val Thr
 65 70 75 80

Cys Gly Gln Lys Leu Asp Leu Asn His Lys Xaa Xaa Xaa Ser Gln Asn
 85 90 95

Asp Val Val Xaa Xaa Lys Pro Leu Tyr Thr Lys Leu Xaa Xaa Xaa
 100 105 110

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala Tyr Val Leu Gly Leu Arg Val
 115 120 125

Ser Pro Phe His Arg Arg Gln Gly Ile Gly Phe Lys Leu Val Lys Met
 130 135 140

Met Glu Glu Trp Phe Arg Gln Xaa Asn Gly Ala Glu Tyr Ser Tyr Ile
 145 150 155 160
 Ala Thr Glu Asn Asp Xaa Xaa Xaa Asn Gln Ala Ser Val Asn Leu
 165 170 175
 Phe Thr Gly Lys Cys Gly Tyr Ser Glu Phe Arg Thr Pro Ser Ile Leu
 180 185 190
 Val Asn Pro Val Tyr Ala His Arg Val Asn Val Ser Arg Arg Val Thr
 195 200 205
 Val Ile Lys Leu Glu Pro Val Asp Ala Glu Thr Xaa Xaa Xaa Leu Tyr
 210 215 220
 Arg Ile Arg Phe Ser Thr Thr Glu Phe Phe Xaa Xaa Xaa Xaa Xaa
 225 230 235 240

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1702 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTCCAACCTT	TAAAACAT	CATAAATAGT	AAAAAAAGTAG	CCGGAAAAAT	AAAATAAAA	60
GTCTATTCT	CTTTCCCTTA	AAATCCAAAT	CCTATAAACT	CATAGCTTTC	TCTGTTCTT	120
ACTTATACCT	CACGTTATAC	ATATATATAG	AGTTTCTATA	AATGCTTCTC	TTTCCTCTCG	180
AACAAATCTT	CCTCACTTCT	CTCATTCCCA	CACTCACCTT	CCTCTCTATA	TATTAACCCC	240
TATCTACTTA	ACTCTTCTTC	TAACTCTAAT	CTCTCTCTCT	ATTTACTCTG	CTTCCTGTTCT	300
CACTCTGAAA	GAACCAAAAC	ATGACGGTGG	TTAGAGAGTA	CGACCCGACC	CGAGACTTAG	360
TCGGCGTGG	GGACGTGGAA	CGACGGTGTG	AAGTCGGACC	AAGCGGCAAG	CTTTCTCTT	420
TCACCGACCT	TTTGGGTGAC	CCGATTGTA	GAATCCGACA	TTCACCTTCC	TATCTCATGC	480
TGGTGGCTGA	GATGGGTACG	GAGAAGAAGG	AGATAGTGGG	CATGATTAGA	GGATGTATCA	540
AAACCGTTAC	ATGTGGCCAA	AAACTCGATT	TAAATCACAA	ATCTCAAAC	GATGTCGTTA	600
AGCCTCTTA	CACTAAACTC	GCTTACGTCT	TGGGCCTTCG	CGTCTCTCCT	TTTCACAGGA	660
GACAAGGGAT	TGGGTTTAAG	CTCGTGAAGA	TGATGGAGGA	ATGGTTTACA	CAAACGGAG	720
CTGAGTATT	GTATATTGCA	ACTGAGAACG	ATAATCAAGC	TTCTGTGAAT	TTGTTCACCG	780
GGAAATGTGG	TTATTCGGAG	TTTCGTACAC	CGTCGATTTT	GGTTAACCCG	GTTTACGCTC	840
ATCGAGTTAA	TGTTTCGCCG	CGAGTCACGG	TTATCAAGTT	AGAGCCGGTT	GATGCTGAGA	900

72

CGTTGTACCG AATCCGGTTT AGCACAAACAG AGTTTTTCCC GCGGGATAATT GATTGGTAC	960
TTAATAACAA ACTCTCGCTT GGGACTTCG TCGCGGTGCC ACCTGGAAGC TGTTATGGAT	1020
CCGGGTCTGG ATCATGGCCC GGTTGGCTA AATTCCCTCGA ATATCCACCC GAGTCATGGG	1080
CCGTATTAAG CGTGTGGAAT TGTAAGACT CGTTTCTGTT AGAAGTACGT GGAGCGTCGA	1140
GATTGAGACG TGTGGTGGCT AAAACGACGC GAGTAGTTGA TAAAACGTTG CCGTTTCTGA	1200
AACTACCTTC GATACCGTCC GTTTTCAAC CTGGACT TCATTTATG TATGGAATCG	1260
GAGGAGAAGG TCCACGCGCG GTGAAGATGG TGAAATCCTT GTGTGCTCAC GCGCATAACT	1320
TGGCTAAGGC AGGTGGTTGT GGTGTCGTGG CGGCGGAAGT TGCCGGAGAA GACCCGTTGC	1380
GGCGAGGAAT ACCACATTGG AAAGTGCTAT CGTGTGACGA GGATCTTGG TGTATAAACG	1440
GGCTTGGAGA TGACTATAGT GATGGTGTG TTGGTGATTG GACTAAATCG CCACCTGGCG	1500
TTTCCATTTT TGTAGACCCT AGAGAATTIT AAAACTTTT TTTTAACCT ATAATATATA	1560
TTCTCTATTA ACCACTTGAT GTAAATTAG GGGTTTTCTT CTAAGTTTAT AGATTTCTT	1620
GTTTTAGAAT TAATCTTTT TTTAGGTAAC TTTTTTGCT TTTTGTGGG TTTTGTGGG	1680
TTTTGTGGG TGTTATAAAAT TA	1702

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4146 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

TGTCATAATC AGTACAAAAT AAATCACCTA CCAACCTGAA CTATATGTTA TATATTTGA	60
GGGGCCACGT CAAGTGTGCC GTTTATTTT GTGTTTATGA TTGTTTAATA TTTGTGCGTG	120
TGATGGTGT TCTTGCTTAG TTTCCACTTA ATACACAATC AAATATCAAG TGGAACTATT	180
TATGAAAATT GTTCTCGAG AAGAATTCTG ACCCTAAAAG GTCATTTGAG GGCTTGAGGC	240
TTATTGTTTC CAAATTACAC CAGTAAACAA GGGTTTTTTT TTGTCAACAA AGATTATTGT	300
AATTCGAATT TCGTCTACAA TAAAACAATT TTCTTACTAA AACAAAACAA TTAGCTGACG	360
GTTGATATT CGGCTTTGA GTTTAATTAA CTAATTGGTG ATTATGTTGA TGATCTTCA	420
CACCTAATGA AGTGTCAATGT ATATGTATAT ATGTATATAC TTATGTATAT ATAAAACGTA	480
CATATAATCA TTTGTCAATAT ATATCATCAT GTATTGCATG ACTAAACTAC CCTTAAAAGA	540
GGAATACGAT AGACATGACC TTTAGGAATT TGTTTTTTC TTCTAAATGG ATTCCCTCGC	600
TTCTTTTAG CCTCGTAGTG AATTGAACA TTGCAGTTAT TTCTAGTAAG ATATTTTTC	660

TGTATTTTC GGAAAATGTT AAAAACTAAT TATAACACAAT TTACTTTCTC TCTCAACTCT	720
TATTTTACGT TACTGTTTTT TTTTCCTCT TGCAAAATTAA GAGCTGATGT ATTTACATTT	780
ACTAGTAATT TGGTAGATAG ACAGTTAATG TAGTATATAG ATGGGGTTGA GGGCAAATGA	840
TTACTTGGGA GATGGTGCAA TGCATCAGAG TGATGATGTG GAATTTAATA AGTGTGAATT	900
TATGGGCAA GGAAGGGAAC TAGTAGTAGA AAGGGAAATA AATACAGTAC AAGTAAGAGG	960
AAAACGAAAA GAGAGATAGA AACCATAATA ATGAGTTAAC GCAGACATAG CGGCCATT	1020
CAACTTCTCA CTCCCACCTA CAACTTCTCC TTCTGGCAA GTTTCCACA TCAATGCTCG	1080
TCTTAATCAC CATTAACTC TACTCATCAT TAATACGTTG AAGCCCACCA TTTCAAAATT	1140
TACTAGGAGT ATTTATTCTG GAAAAACATT TAAATGTCCC TAATTATAAG AGATTTAATT	1200
TCATATTTAT TGTATTAAAG AGAATTACA TTAGCTGTCA AAAAAAAA AAAAGAGAA	1260
TTAACATTAT TTTACAGAAC ATAAAATTTT GAAAATAGAT AGCGCCACTG CATGTAAGAA	1320
CATACAAATT TCTTTTTTC AACAAATCT ATTTATATT TTTCTTTTG TGACATTAT	1380
GTGTAGTTG TAGTAAACTA AAAAGTGTGG ACCAACACAA TTTAAATCAT TCGATTTGT	1440
AGCAAAAACA TTTTGTTC AATTCCAAG CAGCAAATAT GGAAGGAATA TAAATTCTT	1500
ACTATTTTC CTCTAACAC ATAAAAGTAA AAAAGCATT CAATGATCAG TTAAATCTG	1560
GTTAGAATTAC TACCTTATCA TTTAGAACTA GCTAATATT AAATTCAAT ATACAAAAAA	1620
TAAAATGGGA ACTGTAGAGA CTAGAGACTA TAAATAGAGG ATTGAGAAGA AGAACTTTA	1680
AAGCTCTATC AATCATGAAC TACTCGCCTT CTCCACCTT TAAACTCAT CATAAATAGT	1740
AAAAAAGTAG CGGGAAAAT AAAATAAAA GTCTATTCT CTTCTTTA AAATCCAAT	1800
CCTATAAACT CATAGCTTTC TCTGTTCTT ACTTATACCT CACGTTATAC ATATATATAG	1860
AGTTTCTATA AATGCTCTC TTTCTCTCG AACAAATCTT CCTCACTCT CTCATTTCCA	1920
CACTCACCTT CCTCTCTATA TATTAACCC TATCTACTTA ACTCTTCTTC TAACTCTAAT	1980
CTCTCTCTCT ATTTACTCTG CTTCTGTTCT CACTCTGAAA GAACCAAAAC ATGACGGTGG	2040
TTAGAGAGTA CGACCCGACC CGAGACTTAG TCGGCGTGG A GACGTGGAA CGACGGTGTG	2100
AAGTCGGACC AAGCGGCAAG CTTCTCTTT TCACCGACCT TTTGGGTGAC CCGATTGTA	2160
GAATCCGACA TTCACCTTCC TATCTCATGC TGGTAATAAC ATGTTTACCA ATCTTTATC	2220
TTCTTTTACT TGTATGTCTC TTCAAAACT CTGTTTGTGTT TTTGAACCTA GAAGTAGAAA	2280
ACATAGAACCA CCAACTTCTC AACCTTGTT TAATCCAAA AACCCATTAA CCATAAACAA	2340
TTAAAGTTCG GTTCTTTTT TGGTATCATT TCTATTTTT TCCGATTCTT GATAAGATCA	2400
AAAGACTCAT CATTATATT ATTTTTGCA ACCAAATGAT ACCCGAGTAA CTATAACTAA	2460
TAAAGTTCC TCTTTATTAT AAAAGGTAA AAACATATAA TAACGGAAA TTTAAATTAT	2520
GGGACTGTAA CAGGTGGCTG AGATGGGTAC GGAGAAGAAG GAGATAGTGG GCATGATTAG	2580
AGGATGTATC AAAACCGTTA CATGTGGCCA AAAACTCGAT TTAAATCACA AATCTCAAAA	2640
CGATGTCGTT AAGCCTCTT ACACAAACT CGCTTACGTC TTGGGCCTTC GCGTCTCTCC	2700

TTTCACAGG TACCCTTCCG	2760
TTTCCTCCC ACTCATAATC	
ACACGCTATT ATAGATTTG	
GTTATCTAAA CTAGTTTGG	2820
TTTTGCAGG AGACAAGGGA	
TTGGGTTAA GCTCGTGAAG	
ATGATGGAGG AATGGTTAG	2880
ACAAAACGGA GCTGAGTATT	
CGTATATTGC AACTGAGAAC	
GATAATCAAG CTTCTGTGAA	2940
TTTGTTCACC GGGAAATGTG	
GTTATTGGA GTTTCGTACA	
CCGTCGATTT TGGTTAACCC	3000
GGTTTACGCT CATCGAGTTA	
ATGTTTCGCG GCGAGTCACG	
GTTATCAAGT TAGAGCCGGT	3060
TGATGCTGAG ACGTTGTACC	
GAATCCGGTT TAGCACAAACA	
GAGTTTTTCC CGCGGGATAT	3120
TGATTGCGTA CTTAATAACA	
AACTCTCGCT TGGGACTTTG	
GTCGCGGTGC CACGTGGAAG	3180
CTGTTATGGA TCCGGGTCTG	
GATCATGGCC CGGTTCGGCT	
AAATTCTCG AATATCCACC	3240
CGAGTCATGG GCCGTATTAA	
GCGTGTGGAA TTGTAAAGAC	
TCGTTCTGT TAGAAGTACG	3300
TGGAGCGTCG AGATTGAGAC	
GTGTGGTGGC TAAAACGACG	
CGAGTAGTTG ATAAAACGTT	3360
GCCGTTCTG AAACACCTT	
CGATACCGTC CGTTTCGAA	
CCTTTGGAC TTCATTTAT	3420
GTATGGAATC GGAGGAGAAG	
GTCCACGCGC GGTGAAGATG	
GTGAAATCCT TGTGTGCTCA	3480
CGCGCATAAC TTGGCTAAGG	
CAGGTGGTTG TGGTGTGCG	
GCGCGGAAG TTGCCGGAGA	3540
AGACCCGTT CGGCGAGGAA	
TACCACATTG GAAAGTGCTA	
TCGTGTGACG AGGATCTTG	3600
GTGTATAAAG CGGCTGGAG	
ATGACTATAG TGATGGTGT	
GTTGGTGATT GGACTAAATC	3660
GCCACCTGGC GTTCCATT	
TTGTAGACCC TAGAGAATT	
TAAAACTTTT TTTTTAACTC	3720
TATAATATAT ATTCTCTATT	
AACCACCTGA TGTTAAATT	
GGGGTTTTCT TCTAAGTTA	3780
TAGATTTCT TGTTTTAGAA	
TTAATCTTTT TTTTAGGTAA	
CTTTTTTTGC TTTTGTTTT	3840
GTTTTGTTG GTGTTATAAA	
TTAGTGGTAA	
GAGGTAATAT CTCCTACTTT	3900
TGGGTTTG TGCTCTTGTC	
TTGTAATGG ATCTAGCTTT	
TTAAGATACT TTTCTTTGT	3960
GGCCAAACCA AACGCCGAC	
CTGATTATTA TTTCCAAGTA	
GATAAAATTT CATGAACGCA	4020
CTGATAACGTA TAATGATGCA	
ATTTGTGTTA AGACGATACT	
TTGGAGATAA AATTACAATA	4080
TGACAATGAT AGAAAATGTT	
ACCAATAACG ATTAGCATTA	
TCGTGTGTC CATCAAGTAT	4140
AACTAAGAGA AAGACGCACA	
TTTCTTAA GAGTAAATAA	
AATATT	4146

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 398 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

75

Met Thr Val Val Arg Glu Tyr Asp Pro Thr Arg Asp Leu Val Gly Val
 1 5 10 15

Glu Asp Val Glu Arg Arg Cys Glu Val Gly Pro Ser Gly Lys Leu Ser
 20 25 30

Leu Phe Thr Asp Leu Leu Gly Asp Pro Ile Cys Arg Ile Arg His Ser
 35 40 45

Pro Ser Tyr Leu Met Leu Val Ala Glu Met Gly Thr Glu Lys Lys Glu
 50 55 60

Ile Val Gly Met Ile Arg Gly Cys Ile Lys Thr Val Thr Cys Gly Gln
 65 70 75 80

Lys Leu Asp Leu Asn His Lys Ser Gln Asn Asp Val Val Lys Pro Leu
 85 90 95

Tyr Thr Lys Leu Ala Tyr Val Leu Gly Leu Arg Val Ser Pro Phe His
 100 105 110

Arg Arg Gln Gly Ile Gly Phe Lys Leu Val Lys Met Met Glu Glu Trp
 115 120 125

Phe Arg Gln Asn Gly Ala Glu Tyr Ser Tyr Ile Ala Thr Glu Asn Asp
 130 135 140

Asn Gln Ala Ser Val Asn Leu Phe Thr Gly Lys Cys Gly Tyr Ser Glu
 145 150 155 160

Phe Arg Thr Pro Ser Ile Leu Val Asn Pro Val Tyr Ala His Arg Val
 165 170 175

Asn Val Ser Arg Arg Val Thr Val Ile Lys Leu Glu Pro Val Asp Ala
 180 185 190

Glu Thr Leu Tyr Arg Ile Arg Phe Ser Thr Thr Glu Phe Phe Pro Arg
 195 200 205

Asp Ile Asp Ser Val Leu Asn Asn Lys Leu Ser Leu Gly Thr Phe Val
 210 215 220

Ala Val Pro Arg Gly Ser Cys Tyr Gly Ser Gly Ser Gly Ser Trp Pro
 225 230 235 240

Gly Ser Ala Lys Phe Leu Glu Tyr Pro Pro Glu Ser Trp Ala Val Leu
 245 250 255

Ser Val Trp Asn Cys Lys Asp Ser Phe Leu Leu Glu Val Arg Gly Ala
 260 265 270

Ser Arg Leu Arg Arg Val Val Ala Lys Thr Arg Arg Val Val Asp Lys
 275 280 285

Thr Leu Pro Phe Leu Lys Leu Pro Ser Ile Pro Ser Val Phe Glu Pro
 290 295 300

Phe Gly Leu His Phe Met Tyr Gly Ile Gly Gly Glu Gly Pro Arg Ala
 305 310 315 320

Val Lys Met Val Lys Ser Leu Cys Ala His Ala His Asn Leu Ala Lys
 325 330 335

Ala Gly Gly Cys Gly Val Val Ala Ala Glu Val Ala Gly Glu Asp Pro
 340 345 350

Leu Arg Arg Gly Ile Pro His Trp Lys Val Leu Ser Cys Asp Glu Asp

76

355

360

365

Leu Trp Cys Ile Lys Arg Leu Gly Asp Asp Tyr Ser Asp Gly Val Val
370 375 380
Gly Asp Trp Thr Lys Cys His Leu Ala Phe Pro Phe Leu Glx
385 390 395

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GAGTTGCGCA TG

12

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Gly Val Ala His
1

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

TGCTACAATC AGAATTCTTG CAGT

24

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Ala Thr Ile Arg Ile Leu Ala Val
1 5

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: YES

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

GGATCCTCTA GTCA~~AA~~TTCAC CGC

23

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

AGATCTGGTA TATTCCGTCT GCAC

24

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid

78

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: YES

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

CCGGATTTCGG TTTGTAGC

18

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: YES

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GACGTGCATG TTCTTGGG

18

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: YES

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GAAAGCCACA TCACCTGC

18

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

GGGGTGGAGT TATCCAC

17

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 17 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GACACCGGGA AGTATCG

17

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CTGCTTCAT AGAAGAGGC

19

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GTCAGAACAA ACCTGCTCC

19

80

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

CACCCAGGTC TTGGTGG

17

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GGCCGCCATG GATGCG

16

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TCTCAATCAA GAGGAGGC

18

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

81

- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CTTGAAGGAT CCGAGTG

18

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

CAGGTTGGCG AGTTCCCTCG

19

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

CTTGCTGTAA TTCTCCATGC

20

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

82

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CCCTGGACCA GCTCCTGG

18

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

TGGCGCAAGC ATCGTCCC

18

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

AAATGTTCAAG GAATCTCTCG

20

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CTGGCTGGCA GCCACGCC

18

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GCGTTCTCAA AGCTGCGG

18

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

ACTGATGGGT CTTCTGGG

18

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GGATCAGGAT GGACCCGG

18

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

84

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

TGGTTGCTGA AGCCAGGG

18

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

TCCATTCATA GAGAGTGCGG

19

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

ATGCCCAAGA ACATGCACG

19

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

SUBSTITUTE SHEET (RULE 26)

85

20

CAACTGATCC TTTACCCTGC

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

GTTGTTAGGT CAACTTGCG

19

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

CTCTGTTAGG GCTTCCTCC

19

(2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

GAATCAGATT TCGCGAGG

18

(2) INFORMATION FOR SEQ ID NO:50:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

GTCCAAATGG AGGAAGCC

18

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

CCACGACTGT ACAATTGACC TTG

23

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

CATGATCGCA AGTTGACC

18

(2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

87

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

AGAAAACCTCT TATCAAGCTA CG

22

(2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

AAGCTTATGG GTGCTCGTG

20

(2) INFORMATION FOR SEQ ID NO:55:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

GGAAAGAGAG AAAGACTCAG

20

(2) INFORMATION FOR SEQ ID NO:56:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

GCCACCAAGT CATAACCCG

18

86

(2) INFORMATION FOR SEQ ID NO:57:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

CCTTCTATAT TTGGTTCC

18

(2) INFORMATION FOR SEQ ID NO:58:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

CCATTCTCCG GAATAATCC

19

(2) INFORMATION FOR SEQ ID NO:59:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

CACGGAGCAG GATAAGGGTA

20

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

SUBSTITUTE SHEET (RULE 26)

89

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

CGGATTGGAT TGTGTGTGCG

19

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

CGCCACTGCA TGTAAGAAC

19

(2) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

TCCACACGCT TAATACGGC

19

(2) INFORMATION FOR SEQ ID NO:63:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: YES

90

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

GGTACGGAGA AGAAGGAG

18

(2) INFORMATION FOR SEQ ID NO:64:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

CGCGGGATAT TGATTCGGT

19

(2) INFORMATION FOR SEQ ID NO:65:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

GTGTTGAACA CGCCCCACAA

19

(2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

ACGACACCAAC AACCACCT

18

(2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:

SUBSTITUTE SHEET (RULE 26)

91

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

GACAAGAAGA CACAAACC

18

(2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

GAATCGGAGG AGAAGGTC

18

(2) INFORMATION FOR SEQ ID NO:69:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

Xaa													
1													15

Xaa	Met	Phe	Gly	Tyr	Arg	Ser	Asn	Val	Pro	Lys	Val	Arg	Leu	Thr	Thr
20														30	

Asp	Arg	Leu	Val	Val	Arg	Leu	Val	His	Asp	Arg	Asp	Ala	Trp	Arg	Leu
35														45	

Ala	Asp	Tyr	Tyr	Ala	Glu	Asn	Arg	His	Phe	Leu	Lys	Pro	Trp	Glu	Pro
50														60	

92

Val Arg Asp Glu Ser His Cys Tyr Pro Ser Gly Trp Gln Ala Arg Leu
 65 70 75 80
 Gly Met Ile Asn Glu Phe His Lys Gln Gly Ser Ala Phe Tyr Phe Gly
 85 90 95
 Leu Phe Asp Pro Asp Glu Lys Glu Ile Ile Gly Val Ala Asn Phe Ser
 100 105 110
 Asn Val Val Arg Gly Ser Phe His Ala Cys Tyr Leu Gly Tyr Ser Ile
 115 120 125
 Gly Gln Lys Trp Gln Gly Lys Gly Leu Met Phe Glu Ala Leu Thr Ala
 130 135 140
 Ala Ile Arg Tyr Met Gln Arg Thr Gln His Ile His Arg Ile Met Ala
 145 150 155 160
 Asn Tyr Met Pro His Xaa Xaa Xaa Xaa Asn Lys Arg Ser Gly Asp Leu
 165 170 175
 Leu Ala Arg Leu Gly Phe Glu Lys Glu Gly Tyr Ala Lys Asp Tyr Leu
 180 185 190
 Leu Ile Asp Gly Gln Trp Arg Asp His Val Leu Thr Ala Leu Thr Thr
 195 200 205
 Pro Asp Trp Thr Pro Gly Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
 210 215 220
 Xaa
 225 230 235 240

(2) INFORMATION FOR SEQ ID NO:70:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

Xaa
 1 5 10 15
 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Met Glu Thr Glu Ile Lys Val Ser
 20 25 30
 Glu Ser Leu Glu Leu His Ala Val Ala Glu Asn His Val Lys Pro Leu
 35 40 45
 Tyr Gln Leu Ile Cys Lys Asn Lys Thr Trp Leu Gln Gln Ser Leu Asn
 50 55 60
 Trp Pro Gln Phe Val Gln Ser Glu Glu Asp Thr Arg Lys Thr Val Gln
 65 70 75 80

93

Gly Asn Val Xaa Met Leu His Gln Arg Gly Tyr Ala Lys Met Phe Met
 85 90 95

Ile Phe Xaa Xaa Lys Glu Asp Glu Leu Ile Gly Val Ile Ser Phe Xaa
 100 105 110

Asn Arg Ile Glu Pro Leu Asn Lys Thr Ala Glu Ile Gly Tyr Trp Leu
 115 120 125

Asp Glu Ser His Gln Gly Gln Gly Ile Ile Ser Gln Ala Leu Gln Ala
 130 135 140

Leu Ile His His Tyr Ala Gln Ser Gly Glu Leu Arg Arg Phe Val Ile
 145 150 155 160

Lys Cys Arg Val Asp Xaa Xaa Xaa Asn Pro Gln Ser Asn Gln Val
 165 170 175

Ala Leu Arg Asn Gly Phe Ile Leu Glu Gly Cys Leu Lys Gln Ala Glu
 180 185 190

Phe Leu Asn Asp Ala Tyr Asp Asp Val Asn Leu Tyr Ala Arg Ile Ile
 195 200 205

Asp Ser Gln Xaa
 210 215 220

Xaa
 225 230 235 240

(2) INFORMATION FOR SEQ ID NO:71:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

Xaa Xaa Xaa Xaa Xaa Xaa Met Leu Trp Ser Ser Asn Asp Val Thr
 1 5 10 15

Gln Gln Gly Ser Arg Pro Lys Thr Lys Leu Gly Gly Ser Xaa Met Ser
 20 25 30

Ile Ile Ala Thr Val Lys Ile Gly Pro Asp Glu Ile Ser Ala Met Arg
 35 40 45

Ala Val Leu Asp Leu Phe Gly Lys Glu Phe Glu Asp Ile Pro Thr Tyr
 50 55 60

Ser Asp Arg Gln Pro Thr Asn Glu Tyr Leu Ala Asn Leu Leu His Ser
 65 70 75 80

Glu Thr Phe Ile Ala Leu Ala Ala Phe Asp Arg Gly Thr Ala Ile Gly
 85 90 95

94

Gly Leu Ala Xaa Xaa Ala Tyr Val Leu Pro Lys Phe Glu Gln Ala Arg
 100 105 110

Ser Glu Xaa Xaa Xaa Xaa Xaa Ile Tyr Ile Tyr Asp Leu Ala Val
 115 120 125

Ala Ser Ser His Arg Arg Leu Gly Val Ala Thr Ala Leu Ile Ser His
 130 135 140

Leu Lys Arg Xaa Val Ala Val Glu Leu Gly Ala Tyr Val Ile Tyr Val
 145 150 155 160

Gln Ala Asp Tyr Gly Xaa Xaa Xaa Asp Asp Pro Ala Val Ala Leu
 165 170 175

Tyr Thr Lys Leu Gly Val Arg Glu Asp Val Met His Phe Asp Ile Asp
 180 185 190

Pro Arg Thr Ala Thr Xaa
 195 200 205

Xaa
 210 215 220

Xaa
 225 230 235 240

(2) INFORMATION FOR SEQ ID NO:72:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

Xaa Xaa Xaa Xaa Xaa Xaa Met Leu Arg Ser Ser Asn Asp Val Thr
 1 5 10 15

Gln Gln Gly Ser Arg Pro Lys Thr Lys Leu Gly Gly Ser Ser Met Gly
 20 25 30

Ile Ile Arg Thr Cys Arg Leu Gly Pro Asp Gln Val Lys Ser Met Arg
 35 40 45

Ala Ala Leu Asp Leu Phe Gly Arg Glu Phe Gly Asp Val Ala Thr Tyr
 50 55 60

Ser Gln His Gln Pro Asp Ser Asp Tyr Leu Gly Asn Leu Leu Arg Ser
 65 70 75 80

Lys Thr Phe Ile Ala Leu Ala Ala Phe Asp Gln Glu Ala Val Val Gly
 85 90 95

Ala Leu Ala Xaa Xaa Ala Tyr Val Leu Pro Lys Phe Glu Gln Ala Arg
 100 105 110

95

Ser Glu Xaa Xaa Xaa Xaa Xaa Ile Tyr Ile Tyr Asp Leu Ala Val
 115 120 125
 Ser Gly Glu His Arg Arg Gln Gly Ile Ala Thr Ala Leu Ile Asn Leu
 130 135 140
 Leu Lys His Xaa Glu Ala Asn Ala Leu Gly Ala Tyr Val Ile Tyr Val
 145 150 155 160
 Gln Ala Asp Tyr Gly Xaa Xaa Xaa Asp Asp Pro Ala Val Ala Leu
 165 170 175
 Tyr Thr Lys Leu Gly Ile Arg Glu Glu Val Met His Phe Asp Ile Asp
 180 185 190
 Pro Ser Thr Ala Thr Xaa
 195 200 205
 Xaa
 210 215 220
 Xaa
 225 230 235 240

(2) INFORMATION FOR SEQ ID NO:73:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

Met Thr Thr Leu Asp Asp Thr Ala Tyr Arg Tyr Arg Thr Ser Val Pro
 1 5 10 15
 Gly Asp Ala Glu Ala Ile Glu Ala Leu Asp Gly Ser Phe Thr Thr Asp
 20 25 30
 Thr Val Phe Arg Val Thr Ala Thr Gly Asp Gly Phe Thr Leu Arg Glu
 35 40 45
 Val Pro Val Asp Pro Pro Leu Thr Lys Val Xaa Xaa Phe Pro Asp Asp
 50 55 60
 Glu Ser Asp Asp Glu Ser Asp Asp Gly Glu Asp Gly Asp Pro Asp Ser
 65 70 75 80
 Arg Thr Phe Val Ala Tyr Gly Asp Xaa Xaa Xaa Xaa Xaa Asp Gly
 85 90 95
 Asp Leu Ala Xaa Xaa Gly Phe Val Val Ile Ser Tyr Ser Ala Trp Asn
 100 105 110
 Arg Arg Xaa Xaa Xaa Xaa Xaa Leu Thr Val Glu Asp Ile Glu Val
 115 120 125

96

Ala Pro Glu His Arg Gly His Gly Val Gly Arg Ala Leu Met Gly Leu
 130 135 140
 Ala Thr Glu Xaa Phe Ala Gly Glu Arg Gly Ala Gly His Leu Trp Leu
 145 150 155 160
 Glu Val Thr Asn Val Xaa Xaa Xaa Xaa Asn Ala Pro Ala Ile His Ala
 165 170 175
 Tyr Arg Arg Met Gly Phe Thr Leu Cys Gly Leu Asp Thr Ala Leu Tyr
 180 185 190
 Asp Gly Thr Ala Ser Asp Gly Glu Arg Gln Ala Leu Tyr Met Ser Met
 195 200 205
 Pro Cys Pro Xaa
 210 215 220
 Xaa
 225 230 235 240

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

Met Thr Thr Thr His Gly Ser Thr Tyr Glu Phe Arg Ser Ala Arg Pro
 1 5 10 15
 Gly Asp Ala Glu Ala Ile Glu Gly Leu Asp Gly Ser Phe Thr Thr Ser
 20 25 30
 Thr Val Phe Glu Val Asp Val Thr Gly Asp Gly Phe Ala Leu Arg Glu
 35 40 45
 Val Pro Ala Asp Pro Pro Leu Val Lys Val Xaa Xaa Phe Pro Asp Asp
 50 55 60
 Gly Gly Ser Asp Gly Glu Asp Gly Ala Glu Gly Glu Asp Ala Asp Ser
 65 70 75 80
 Arg Thr Phe Val Ala Val Gly Ala Xaa Xaa Xaa Xaa Xaa Asp Gly
 85 90 95
 Asp Leu Ala Xaa Xaa Gly Phe Ala Ala Val Ser Tyr Ser Ala Trp Asn
 100 105 110
 Gln Arg Xaa Xaa Xaa Xaa Xaa Xaa Leu Thr Ile Glu Asp Ile Glu Val
 115 120 125
 Ala Pro Gly His Arg Gly Lys Gly Il Gly Arg Val Leu Met Arg His
 130 135 140

97

Ala Ala Asp Xaa Phe Ala Arg Glu Arg Gly Ala Gly His Leu Trp Leu
 145 150 155 160
 Glu Asn Thr Asn Val Xaa Xaa Xaa Xaa Asn Ala Pro Ala Ile His Ala
 165 170 175
 Tyr Arg Arg Met Gly Phe Ala Phe Cys Gly Leu Asp Ser Ala Leu Tyr
 180 185 190
 Gln Gly Thr Ala Ser Glu Gly Glu Xaa His Ala Leu Tyr Met Ser Met
 195 200 205
 Pro Cys Pro Xaa
 210 215 220
 Xaa
 225 230 235 240

(2) INFORMATION FOR SEQ ID NO:75:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 240 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Met Lys Ile Ser Val Ile Pro Glu
 1 5 10 15

Gln Val Ala Glu Thr Leu Asp Ala Xaa Glu Asn His Phe Ile Val Arg
 20 25 30

Glu Val Phe Asp Val His Leu Ser Asp Gln Gly Phe Glu Leu Ser Thr
 35 40 45

Arg Ser Val Ser Pro Tyr Arg Lys Asp Tyr Xaa Xaa Ile Ser Asp Asp
 50 55 60

Asp Ser Asp Glu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Ser
 65 70 75 80

Ala Cys Tyr Gly Ala Phe Xaa Ile Xaa Xaa Xaa Xaa Xaa Asp Gln
 85 90 95

Glu Leu Val Xaa Xaa Gly Lys Ile Glu Leu Asn Xaa Ser Thr Trp Asn
 100 105 110

Asp Leu Xaa Xaa Xaa Xaa Xaa Ala Ser Ile Glu His Ile Val Val
 115 120 125

Ser His Thr His Arg Gly Lys Gly Val Ala His Ser Leu Ile Glu Phe
 130 135 140

Ala Lys Lys Xaa Trp Ala Leu Ser Arg Gln Leu Leu Gly Ile Arg Leu
 145 150 155 160

98

Glu	Thr	Gln	Thr	Asn	Xaa	Xaa	Xaa	Xaa	Asn	Val	Pro	Ala	Cys	Asn	Leu
					165				170					175	
Tyr	Ala	Lys	Cys	Gly	Phe	Thr	Leu	Gly	Gly	Ile	Asp	Leu	Phe	Thr	Tyr
					180			185					190		
Lys	Thr	Arg	Pro	Gln	Val	Ser	Asn	Glu	Thr	Ala	Met	Tyr	Trp	Tyr	Trp
					195			200			205				
Phe	Ser	Gly	Ala	Gln	Asp	Asp	Ala	Xaa							
					210			215			220				
Xaa															
					225			230			235			240	

(2) INFORMATION FOR SEQ ID NO:76:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

Xaa	Met														
1									10					15	
Ala	Lys	Phe	Lys	Ile	Arg	Pro	Ala	Thr	Ala	Ser	Asp	Cys	Ser	Xaa	Xaa
								20			25		30		
Xaa	Xaa	Asp	Ile	Leu	Arg	Leu	Ile	Lys	Glu	Leu	Ala	Lys	Tyr	Glu	Tyr
							35		40			45			
Met	Glu	Asp	Gln	Val	Ile	Leu	Thr	Glu	Lys	Asp	Leu	Gln	Glu	Asp	Gly
						50		55			60				
Phe	Gly	Glu	His	Pro	Phe	Tyr	His	Cys	Leu	Val	Ala	Glu	Val	Pro	Lys
						65		70			75		80		
Glu	His	Trp	Thr	Pro	Xaa	Xaa	Xaa	Xaa	Glu	Gly	His	Ser	Ile	Val	
					85			90			95				
Gly	Phe	Ala	Xaa	Xaa	Met	Tyr	Tyr	Phe	Thr	Tyr	Asp	Pro	Trp	Ile	Gly
					100			105			110				
Lys	Leu	Xaa													
					115			120			125				
Met	Ser	Asp	Tyr	Arg	Gly	Phe	Gly	Ile	Gly	Ser	Glu	Ile	Leu	Lys	Asn
							130		135			140			
Leu	Ser	Gln	Xaa	Val	Ala	Met	Lys	Cys	Arg	Cys	Ser	Ser	Met	His	Phe
							145		150			155		160	
Leu	Val	Ala	Glu	Trp	Xaa	Xaa	Xaa	Xaa	Asn	Glu	Pro	Ser	Ile	Asn	Phe
					165			170			175				

99

Tyr Lys Arg Arg Gly Ala Ser Asp Leu Ser Ser Glu Glu Gly Trp Xaa
 180 185 190

Xaa Xaa Xaa Xaa Arg Leu Phe Lys Ile Asp Lys Glu Tyr Leu Leu Lys
 195 200 205

Met Ala Ala Glu Glu Xaa
 210 215 220

Xaa
 225 230 235 240

(2) INFORMATION FOR SEQ ID NO:77:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

Xaa Met
 1 5 10 15

Ala Lys Phe Val Ile Arg Pro Ala Thr Ala Ala Asp Cys Ser Xaa Xaa
 20 25 30

Xaa Xaa Asp Ile Leu Arg Leu Ile Lys Glu Leu Ala Lys Tyr Glu Tyr
 35 40 45

Met Glu Glu Gln Val Ile Leu Thr Glu Lys Asp Leu Leu Glu Asp Gly
 50 55 60

Phe Gly Glu His Pro Phe Tyr His Cys Leu Val Ala Glu Val Pro Lys
 65 70 75 80

Glu His Trp Thr Pro Xaa Xaa Xaa Xaa Glu Gly His Ser Ile Val
 85 90 95

Gly Phe Ala Xaa Xaa Met Tyr Tyr Phe Thr Tyr Asp Pro Trp Ile Gly
 100 105 110

Lys Leu Xaa Xaa Xaa Xaa Xaa Leu Tyr Leu Glu Asp Phe Phe Val
 115 120 125

Met Ser Asp Tyr Arg Gly Phe Gly Ile Gly Ser Glu Ile Leu Lys Asn
 130 135 140

Leu Ser Gln Xaa Val Ala Met Arg Cys Arg Cys Ser Ser Met His Phe
 145 150 155 160

Leu Val Ala Glu Trp Xaa Xaa Xaa Asn Glu Pro Ser Ile Asn Phe
 165 170 175

Tyr Lys Arg Arg Gly Ala Ser Asp Leu Ser Ser Glu Glu Gly Trp Xaa
 180 185 190

100

Xaa Xaa Xaa Xaa Arg Leu Phe Lys Ile Asp Lys Glu Tyr Leu Leu Lys
 195 200 205

Met Ala Thr Glu Glu Xaa
 210 215 220

Xaa
 225 230 235 240

(2) INFORMATION FOR SEQ ID NO:78:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

Xaa Met
 1 5 10 15

Asn His Ala Gln Leu Arg Arg Val Thr Ala Glu Ser Phe Ala His Tyr
 20 25 30

Arg His Gly Leu Ala Gln Leu Leu Phe Glu Thr Val His Gly Gly Xaa
 35 40 45

Xaa Ala Ser Val Gly Phe Met Ala Asp Leu Asp Met Gln Gln Ala Tyr
 50 55 60

Ala Trp Cys Asp Gly Leu Lys Ala Asp Ile Ala Ala Gly Ser Leu Leu
 65 70 75 80

Leu Trp Val Val Ala Xaa Xaa Xaa Xaa Glu Asp Asp Asn Val Leu
 85 90 95

Ala Ser Ala Xaa Xaa Gln Leu Ser Leu Cys Gln Lys Pro Asn Gly Leu
 100 105 110

Asn Arg Xaa Xaa Xaa Xaa Xaa Xaa Ala Glu Val Gln Lys Leu Met Val
 115 120 125

Leu Pro Ser Ala Arg Gly Arg Gly Leu Gly Arg Gln Leu Met Asp Glu
 130 135 140

Val Glu Gln Xaa Val Ala Val Lys His Lys Arg Gly Leu Leu His Leu
 145 150 155 160

Asp Thr Glu Ala Xaa Xaa Xaa Xaa Gly Ser Val Ala Glu Ala Phe
 165 170 175

Tyr Ser Ala Leu Ala Tyr Thr Arg Val Gly Glu Leu Pro Gly Tyr Cys
 180 185 190

Ala Thr Pro Asp Gly Arg Leu His Pro Thr Ala Ile Tyr Phe Lys Thr
 195 200 205

101

(2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

Xaa Xaa Xaa Met Pro Asn Val Thr Ile Ala Arg Glu Ser Pro Leu
20. 25 30

Gln Asp Ala Val Val Gln Leu Ile Glu Glu Leu Asp Arg Xaa Xaa Xaa
35 40 45

Xaa Xaa Xaa Xaa Xaa Tyr Leu Gly Asp Leu Tyr Pro Ala Glu Ser Asn
 50 55 60

His Leu Xaa Xaa Xaa Leu Asp Leu Gln Thr Leu Ala Lys Pro Asp Ile
65 70 75 80

Arg Phe Leu Val Ala Xaa Xaa Xaa Xaa Xaa Arg Arg Ser Gly Thr Val
85 90 95

Val Gly Cys Xaa Xaa Gly Ala Ile Ala Ile Asp Thr Glu Gly Gly Tyr
 100 105 110

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Glu Val Lys Arg Met Phe Val
115 120 125

Gln Pro Thr Ala Arg Gly Gly Gln Ile Gly Arg Arg Leu Leu Glu Arg
130 135 140

Ile Glu Asp Xaa Glu Ala Arg Ala Ala Gly Leu Ser Ala Leu Leu Leu
145 150 155 160

Glu Thr Gly Val Tyr Xaa Xaa Xaa Xaa Gln Ala Thr Arg Ile Ala Leu
165 170 175

Tyr Arg Lys Gln Gly Phe Ala Asp Arg Gly Pro Phe Gly Pro Tyr Gly
 180 185 190

Pro Asp Pro Leu Ser Leu Phe Met Glu Lys Pro Ieu Xaa Xaa Xaa Xaa
195 200 205

102

Xaa			
225	230	235	240

(2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

Xaa Xaa Xaa Xaa Xaa Met Pro Ile Asn Ile Arg Arg Ala Thr Xaa Ile			
1	5	10	15
Asn Asp Ile Ile Cys Met Gln Asn Ala Asn Leu His Asn Leu Pro Glu			
20	25	30	
Asn Tyr Met Met Lys Tyr Tyr Met Tyr His Thr Leu Ser Trp Pro Glu			
35	40	45	
Ala Ser Phe Val Ala Thr Thr Thr Leu Asp Cys Glu Asp Ser Asp			
50	55	60	
Glu Gln Asp Glu Asn Asp Lys Leu Glu Leu Thr Leu Asp Gly Thr Asn			
65	70	75	80
Asp Gly Arg Thr Ile Lys Leu Asp Pro Thr Tyr Leu Ala Pro Gly Glu			
85	90	95	
Lys Leu Val Xaa Xaa Gly Tyr Val Leu Val Lys Met Asn Asp Asp Pro			
100	105	110	
Asp Gln Gln Asn Glu Pro Pro Asn Gly His Ile Thr Ser Leu Ser Val			
115	120	125	
Met Arg Thr Tyr Arg Arg Met Gly Ile Ala Glu Asn Leu Met Arg Gln			
130	135	140	
Ala Leu Phe Ala Leu Arg Glu Val His Gln Ala Glu Tyr Val Ser Leu			
145	150	155	160
His Val Arg Gln Ser Xaa Xaa Xaa Xaa Asn Arg Ala Ala Leu His Leu			
165	170	175	
Tyr Arg Asp Thr Leu Ala Phe Glu Val Leu Ser Xaa Xaa Xaa Ile			
180	185	190	
Glu Lys Ser Tyr Tyr Gln Asp Gly Glu Asp Ala Tyr Ala Met Lys Lys			
195	200	205	
Val Leu Lys Leu Glu Glu Leu Gln Ile Ser Asn Xaa Xaa Xaa Phe Thr			
210	215	220	
His Arg Arg Leu Lys Glu Asn Glu Glu Lys Leu Glu Asp Asp Leu Glu			

103

225

230

235

240

(2) INFORMATION FOR SEQ ID NO:81:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 240 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

Met	Glu	Ile	Val	Tyr	Lys	Pro	Leu	Asp	Ile	Arg	Asn	Glu	Glu	Gln	Phe
1				5					10						15
Ala	Ser	Ile	Lys	Lys	Leu	Ile	Asp	Ala	Asp	Leu	Ser	Glu	Pro	Tyr	Ser
		20				25				30					
Ile	Tyr	Val	Tyr	Arg	Tyr	Phe	Leu	Asn	Gln	Xaa	Xaa	Xaa	Trp	Pro	Glu
	35				40					45					
Leu	Thr	Tyr	Ile	Ala	Xaa										
	50				55				60						
Xaa	Val	Asp	Asn	Lys	Ser										
65					70				75				80		
Gly	Thr	Pro	Asn	Ile	Pro	Xaa									
	85				90					95					
Xaa	Xaa	Ile	Xaa	Xaa	Gly	Cys	Ile	Val	Cys	Lys	Met	Asp	Xaa	Xaa	Xaa
	100					105				110					
Pro	His	Arg	Asn	Val	Arg	Leu	Arg	Gly	Tyr	Ile	Gly	Met	Leu	Ala	Val
	115					120				125					
Glu	Ser	Thr	Tyr	Arg	Gly	His	Gly	Ile	Ala	Lys	Lys	Leu	Val	Glu	Ile
	130					135				140					
Ala	Ile	Asp	Lys	Met	Gln	Arg	Glu	His	Cys	Asp	Glu	Xaa	Ile	Met	Leu
145					150				155				160		
Glu	Thr	Glu	Val	Glu	Xaa	Xaa	Xaa	Asn	Ser	Ala	Ala	Leu	Asn	Leu	
	165				170				175						
Tyr	Xaa	Glu	Gly	Met	Gly	Phe	Ile	Arg	Met	Lys	Xaa	Xaa	Xaa	Arg	
	180					185				190					
Met	Phe	Arg	Tyr	Tyr	Leu	Asn	Glu	Gly	Asp	Ala	Phe	Lys	Leu	Xaa	Xaa
	195					200				205					
Ile	Leu	Pro	Leu	Thr	Glu	Lys	Ser	Cys	Thr	Arg	Ser	Thr	Phe	Leu	Met
	210					215				220					
His	Gly	Arg	Leu	Ala	Thr	Xaa									
225						230				235				240	

(2) INFORMATION FOR SEQ ID NO:82:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

- 105 -

WHAT IS CLAIMED IS:

1. An isolated nucleic acid sequence comprising the nucleic acid sequence encoding the sequences selected from the group consisting of SEQUENCE ID NOS: 1 and 2.
2. An isolated protein sequence comprising the amino acid sequence set forth in SEQUENCE ID NO: 3.
3. An isolated nucleic acid sequence comprising the nucleic acid sequence encoding the sequences set forth in SEQUENCE ID NO: 4.
4. An isolated nucleic acid sequence comprising the nucleic acid sequence encoding the sequence set forth in SEQUENCE ID NO: 5.
5. An isolated protein sequence comprising the amino acid sequence set forth in SEQUENCE ID NO: 6.
6. An isolated nucleic acid sequence comprising the nucleic acid sequence encoding the sequence set forth in SEQUENCE ID NO: 7.
7. An isolated protein sequence comprising the amino acid sequence set forth in SEQUENCE ID NO: 8.
8. An isolated nucleic acid sequence comprising the nucleic acid sequence encoding the sequence set forth in SEQUENCE ID NO: 9.
9. An isolated protein sequence comprising the amino acid sequence set forth in SEQUENCE ID NO: 10.
10. An isolated nucleic acid sequence comprising the nucleic acid sequence encoding the sequence set forth in SEQUENCE ID NO: 11.
11. An isolated protein sequence comprising the amino acid sequence set forth in SEQUENCE ID NO: 12.
12. An isolated nucleic acid sequence comprising the nucleic acid sequence encoding the sequences selected from the group consisting of SEQUENCE ID NO: 14 and 15.
13. An isolated protein sequence comprising the amino acid sequence set forth in SEQUENCE ID NO: 16.

- 106 -

14. A DNA sequence comprising a sequence complementary to an isolated nucleic acid sequence of claim 1.

15. A transformed plant cell comprising the nucleic acid sequence selected from the group consisting of SEQUENCE ID NOS: 1, 2, 4, 5, 7, 9, 11, 14, and 15.

16. A plant comprising a heterologous nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 2, 4, 5, 7, 9, 11, 14, and 15.

17. A DNA sequence comprising a sequence complementary to an isolated nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 2, 4, 5, 7, 9, 11, 14, and 15.

1/34

FIG. 1

2/34

EcoR I Allele Blot

FIG. 2

3/34

FIG. 3

4/34

FIG. 4

5/34

FIGURE 5a

6/34

FIGURE 5b

7/34

Figures 5a, 5b and 5c: The sequence of the EIN2 locus.

FIGURE 5C

8/34

FIG. 6

9/34

FIG. 7A

COTYLEDONS

FIG. 7B

10/34

pileup.msf(ei11) 1
 pileup.msf(ei13)
 pileup.msf(ei12)
 pileup.msf(ei13)
 Consensus
mg DLoM..... SvaDir MenePddlos dnVoEIDvaD
 -----M-----D

pileup.msf(ei11) 51
 pileup.msf(ei13)
 pileup.msf(ei12)
 pileup.msf(ei13)
 Consensus
 DEmDVDELEk RMWRDKWRLK RLKEQQsKcK EGVDgsKQRO SW..EOARRK
 DEiDVDELER RMWRDKWRLK RLKEQd.KGK EGVDooKQRO SO..EOARRK
 EEmEIEELEk k iWRDKqRLK RLKEmoKnG1 gtr lIKQqh ddfpEhsskr
 EEiDaDDLER RMMKDrvRLK RiKErQKaGs qGaqt.Ketp kkisDQAqRK
 -E----LE- --W-D--RLK R-KE-----K---
 pileup.msf(ei11) 101
 pileup.msf(ei13)
 pileup.msf(ei12)
 pileup.msf(ei13)
 Consensus
 KMSRAQDGIL KYMLKMMEVc KAQGFVYGII PEKGPVTGc SDNLREWWKD
 KMSRAQDGIL KYMLKMMEVc KAQGFVYGII PEnGPVTGc SDNLREWWKD
 tMykaQDGIL KYMsKtMERy KAQRVYVGIV 1EnGktVaGs SDNLREWWKD
 KMSRAQDGIL KYMLKLMEVc KvrGFVYGII PEKGPVcGs SDN1RoWWKE
 -M--AODGIL KYM-K-ME-- K--GFVYG1- -E-GK-V-G- SDN-R-WMK-
 pileup.msf(ei11) 151
 pileup.msf(ei13)
 pileup.msf(ei12)
 pileup.msf(ei13)
 Consensus
 KVRFDRNGPA A1AKYQsENN ISCGSnDcNs IVGPTPHLQ ELQDTTLGSL
 KVRFDRNGPA A1tKYQdENN Ip.CihEGNN p!GPTPHLQ ELQDTTLGSL
 KVRFDRNGPA A1iKhQrDiN ISdGSDsGse vgdtsaqkLI ELQDTTLGcL
 KVFDkNGPA A1AKYeeEcI afGkSDgnrNsqfvLQ DLQDqATLGSL
 KV-FD-NGPA A1-K-----L- -LQD-TLG-L
 pileup.msf(ei11) 201
 pileup.msf(ei13)
 pileup.msf(ei12)
 pileup.msf(ei13)
 Consensus
 LSALMQHCDP PQRRFPLEKG VsPPWWPnGn EEWMPQLGLP nE..QGPPPY
 LSALMQHCDP PQRRFPLEKG VPPPWWPnGk EDWMPQLGLP KD..QGPoPY
 LSALfpHCnR PQRRFPLEKG VtPPWWPtGk EDWWDQLsLP vDfrgvPPPY
 LSsLMQHCDP PQRKYLEKG tPPPWtGn EEWVvKLGLP Ks...qsPPY
 LS-L--HC-P PQR--PLEKG --PPWWp-G- E-WW--L-LP -----PY
 pileup.msf(ei11) 251
 pileup.msf(ei13)
 pileup.msf(ei12)
 pileup.msf(ei13)
 Consensus
 KKPHDLKKaW KVGVLTAVIK HMsPDIAKIR KLVRosKcLQ DKMTAKESAT
 KKPHDLKKaW KVGVLTAVIK HMFPDIKIR KLVRosKcLQ DKMTAKESAT
 KKPHDLKKIW K1GVligVlr HMsDIsnlp nLVRsSrsLQ EKNTsrEgAI
 rKPHDLKKmW KVGVLTAVin HMLPDIAKik rhVRWSKcLQ DKMTAKESAI
 -KPHDLKK-W K-GVL--VI- HM--DI--I- --VR-S--LQ -KMT--E-A-
 pileup.msf(ei11) 301
 pileup.msf(ei13)
 pileup.msf(ei12)
 pileup.msf(ei13)
 Consensus
 WLAIiNQEEv vaReLYPES.CPPLSs SssIGSgSLL iNDCEYDVE
 WLAIiNQEEs IaReLYPES.CPPLSL Sg..GScSLL mNDCSqYDVE
 WLAalyrEka ivdq..... .iaM SrenntSnF lvpattggDpD
 WLAViNQEEs liqqpssDng nsnvtehrr gnnadrrkpv vNsdSDYDvD
 WLA----E-----D-

FIG. 8

FIG. 8A

FIG. 8A

FIG. 8B

11/34

351 pileup.msf(ei11) pileup.msf(ei13) pileup.msf(ei12) pileup.msf(ei13) Consensus	GFEKEqHgFD VEErKPEiVM mhpLafsgVA KMQhFPIKEE VottvNIEFT GFEKESH.YE VEEIKPEkVM nssnfGm.VA KMhdFPVKEE Vpag.NsEFm vLfpEstdYD VE..... LiGgthr tnQqYP... E fennyNcvYk GtEeaSgsvs skDsrrnql. q KeOptalshs VrdqdkoEkh -----	400
401 pileup.msf(ei11) pileup.msf(ei13) pileup.msf(ei12) pileup.msf(ei13) Consensus	RKRKqNnDMN vmVMDRSagY TCENggCPHS kmnLGFqDRs SRDNHQmVCP RKRKpNRDLN t.1MDR.TvF TCENigCaHS eisrGFLDRN SRDNHQLaCP RKfeedfgMp m....hpTIL TCENs1CPyS QphMGFLDRN IRENHQmTCP RrRKrpR... iRSgtv nrqeeeqPea QqrniLpDmN hvDap1LeYn R-----D-----	450
451 pileup.msf(ei11) pileup.msf(ei13) pileup.msf(ei12) pileup.msf(ei13) Consensus	YRDnRLaYGA ..SkFHMGgm KIVV...pqq PV....QPI DLsGVgVPEn hRDsRLpYGA opSrFHvnev KpVVgFpqPr PVNsvo.QPI DLTG1.VPED YkvTsF....yapT.kPy gMTG1MVP.. ingThqeddv vdpniaLGpe dngleLvvPe fnNnyTyIPI vneqtMmPvD -----P-----P--	500
501 pileup.msf(ei11) pileup.msf(ei13) pileup.msf(ei12) pileup.msf(ei13) Consensus	GQKM1tELmo MYDRnVQS... .nQTpptLM ENQSmvidak aaqNqQ1nFn GQKM1sELms MYDRnVQS... .nQT.amvM ENQVsILqP tvhNhQehLq ...cpDyng M. qqqVOS... f0dqf... NhpndlyrP kapqr.... erpMiygpnp nqElqfgSgy nfynpsavFv hNQedDiLht qie..... -----S-----N-----	550
551 pileup.msf(ei11) pileup.msf(ei13) pileup.msf(ei12) pileup.msf(ei13) Consensus SGNQm Fmq..... fpgnmvegsf fedlnipnra NnnnsSnNQt Ffqqnnnnnn vFkFdtadhn GNdd Lved..... m NtqapphNog Feeapggv\q plglgnEdg -----N-----	600
601 pileup.msf(ei11) pileup.msf(ei13) pileup.msf(ei12) pileup.msf(ei13) ConsensusqgtN nGVNNRFOMV FDSTpFDMAo FDYRDDWqtG amEgmGkqqq nfeaahNnnN nssgNRFQLV FDSTpFDMAo FDYRDDmSmp Gv..VGTmdgLNpsp st1NqnLgLv L.pTdFn... G GeEtVGTenn vtgseLpqtyq sG11spL... TdLDfdy ggFgDDFSwf Ga..... -----T-----	650
651 pileup.msf(ei11) pileup.msf(ei13) pileup.msf(ei12) pileup.msf(ei13) Consensus	664 qQQQQQDVSI W... MQQkQQDVSI W... LhnQgQE1pt swiq	

FIG. 8B

12/34

FIG. 9

13/34

FIGURE 10

14/34

FIGURE 11

15/34

FIGURE 12

16/34

FIGURE 13

17/34

FIGURE 14

160	{ rimJ : E. coli }	gminefhkqg safyfg!fp dekei i gvan f snvrgsfh gnv.mlhqrg ykmfmiF .: kedel.igvis f.nriepInk etfAiAaafd rgtaiaggLA.	oCylgYsIqq kwqGkGImfe shqGqGli sq alqal.ihya qsgelrrfv
	{ N3nat : Pseudomonas }	kTFiAaafd qeovgalA.	oYWLpkf eq orse..... .oYWLpkf eq orse.....
	{ Nhot : E. coli }	rTFvAygd..	iYyldAvos eHrRqGloL LinLkh.eA nAlGoyviyv
	{ nat I : Streptomyces }	rTFvAvgo..	iYyldAvsg eHRghGVGr LMglate.fA gerGogh!wl
	{ sat : Streptomyces }	acYgAf..i	iYydievap gHRGkGIGrv LMraod.fA renGogh!wl
	{ sat : E. coli }	ehWtp....	asLehi wsh THRGKGVohs Liefdkk.wA lsrqlgirl
	{ ssat : Mouse }	eghsivgFA.	iYdefVms dyRGFGIGse ilknLsq.yA mkrCSSmhf

FIG. 15

FIG. 15A

SUBSTITUTE SHEET (RULE 26)

{ssat: Human}
 {tab: Pseudomonas}
 {lat: Azospirillum}
 {ard: Yeast}
 {MAK3: Yeast}
 {HLS1: Arabidopsis}
 {aac(6'): Citrobacter}
 Consensus

ehWtp.....eghsivgFA. .mYf tydpw igkl Yledf fVms dyRGfG|Gse iLknLsq.vA mrcrccsmhf
 lwwA.....eddrvlasA. .qLsLcqkpn glnr oevQkLmVlp sGrgG|Grq LMeveq.vA vkhkrglhl
 rflVA.....rrsgtvvgc. .Gola dteg gy gevkrmfVqp tArGgq|Gr Llerfd.eA roaGlsalL
 dgrtikdpt ylogekLv. .CYVLvkamnd dpdqneppn ghltLsvmr tyRrmG|oen tMrqlfslr evhqaeyvtL
 gtpnip.....i. .GcIvckmd ..phrnvr lr gYlgmLaves tyRghGlakk Lveiaidmq rehcd.e. imL
 cgqkldnhk ...sqndvw. .kpIYtkl .. aYvglrvsp fHrqGIGfk LvkMltewfr q.ngaeysy i
 espnlcfgl! innslvgni. .GLrpmyket we..... :hpLwRp dyqnkGIGk LlkElun.A reqGigial
 -F-A--- -----LA- -GYNL----- -YI-L-V-- -HRG-GIG-- LL-L---A ---G---L

{rimJ: E.coli}
 {rimI: E.coli}
 {N3nat: Pseudomonas}
 {Nnat: E.coli}
 {natI: Streptomyces}
 {sat: Streptomyces}
 {sat: E.coli}
 {ssat: Mouse}
 {ssat: Human}
 {tab: Pseudomonas}
 {lat: Azospirillum}
 {ard: Yeast}
 {MAK3: Yeast}
 {HLS1: Arabidopsis}
 {aac(6'): Citrobacter}
 Consensus

{rimJ: E.coli} GfekeGydkd yllidgqWrd hvltalLtpd wtpgr
 {rimI: E.coli} kcrvd...N posnvalrn GfileccIkq oefindoydd vnlYariids q.
 {N3nat: Pseudomonas} qadyg...d dPAVdlytkl Gredvnmhd idprtot...
 {Nnat: E.coli} qadyg...d dPAVdlytkl Gireeemhd idpstot...
 {natI: Streptomyces} evtnv...N aPAIhaYrrm GfIICldta lydgatasige rqlYMsmpc p.
 {sat: Streptomyces} evtnv...N aPAIhaYrrm GfafcGldso lygglosege .halYMsmpc p.
 {sat: E.coli} etqtn...N vPAcnLyakc GfIlgGidf tyktrpqvsn etamYwywf s gaqddo...
 {ssat: Mouse} lvaw...N epSlnFyKrr Gasdlsseeg w.....rlfk idkeylkm aee...
 {ssat: Human} lvaw...N epSlnFyKrr Gasdlsseeg w.....rlfk idkeylkm tee...
 {tab: Pseudomonas} dteo...g svAefYso1 oytrvGeLpg ycafpdgrlh ptaiYfklig qpt...
 {lat: Azospirillum} etgyy...q atrIalYrkq GFadrGpfsp ygdplslfm ekpl...
 {ard: Yeast} hvrqs...N raAlhYrdt lofevl... ieksyycdg edaYmkv1 kieelqsn. .fthr like neekleddle
 {MAK3: Yeast} eteve...N saAmlY.eg mgfimrk... .mfryyLne gdaFkl.. il pitekscts tflmngi lal
 {HLS1: Arabidopsis} atend...N qasVmlFtgk cysefrtps ilvnpvydhr vnvsrvtvi klepvdaet. .lyr' fst leff.
 {aac(6'): Citrobacter} glddeyrrts lsltitiedn ifdsiknikn inkhyefyq knYYivgi i prongknkpd iwmwks' ke ...
 Consensus

240

19/34

161

nymph...N krsgdLLor1 GekeGydkd yllidgqWrd hvltalLtpd wtpgr
 kcrvd...N posnvalrn GfileccIkq oefindoydd vnlYariids q.
 qadyg...d dPAVdlytkl Gredvnmhd idprtot...
 qadyg...d dPAVdlytkl Gireeemhd idpstot...
 evtnv...N aPAIhaYrrm GfIICldta lydgatasige rqlYMsmpc p.
 etqtn...N vPAcnLyakc GfIlgGidf tyktrpqvsn etamYwywf s gaqddo...
 lvaw...N epSlnFyKrr Gasdlsseeg w.....rlfk idkeylkm aee...
 lvaw...N epSlnFyKrr Gasdlsseeg w.....rlfk idkeylkm tee...
 dteo...g svAefYso1 oytrvGeLpg ycafpdgrlh ptaiYfklig qpt...
 etgyy...q atrIalYrkq GFadrGpfsp ygdplslfm ekpl...
 hvrqs...N raAlhYrdt lofevl... ieksyycdg edaYmkv1 kieelqsn. .fthr like neekleddle
 eteve...N saAmlY.eg mgfimrk... .mfryyLne gdaFkl.. il pitekscts tflmngi lal
 atend...N qasVmlFtgk cysefrtps ilvnpvydhr vnvsrvtvi klepvdaet. .lyr' fst leff.
 glddeyrrts lsltitiedn ifdsiknikn inkhyefyq knYYivgi i prongknkpd iwmwks' ke ...
 Consensus

FIG. 15B

20/21

FIG. 16

21/34

FIGURE 17

22/34

FIGURE 18

EIN3 cDNA

23/34

TCTTCTTCTTCCTCTCCTCATCTCGTATCTCTAAGTTGTCGAAGTTCT
 TTTGATGAAACTAGGGTTTATTATCTTCTCCCTCTTTTCCCACCACTAGAA
 AAGGCAGAGACCTTTCTTCATCATTTTATTCTCCTCTCTGCTGT
 TCATTTCTCCAGGTTACAATGATGTTAATGAGATGGGAATGTGGAAACAT
 GGATTTCTCTCTGGATCACTGGTGAAGTTGATTTCTGTCTGTTCCACA
 AGCTGAGCCTGATTCCATTGTTGAAGATGACTATACTGATGATGAGATTGATG
 TTGATGAATTGGAGAGGAGGATGTGGAGAGACAAAATGCGGCTAAACGTCT
 CAAGGAGCAGGATAAGGGTAAGAAGGTGTTGATGCTGCTAAACAGAGGCA
 GTCTCAAGAGCAAGCTAGGAGGAAGAAATGTCTAGAGCTCAAGATGGGATC
 TTGAAGTATATGTTGAAGATGATGGAAGTTGAAAGCTCAAGGCTTTGTTTAT
 GGGATTATTCCGGAGAAATGGGAAGCCTGTGACTGGTCTCTGATAATTTAAG
 GGAGTGGTGGAAAGATAAGGTTAGGTTGATCGTAATGGTCTGCGGCTATTAA
 CCAAGTATCAAGCGGAGAATAATATCCGGGGATTCAAGGTAATAACCC
 GATTGGACCGACTCCTCATACCTTGCAAGAGCTTCAAGACACGACTCTTGGA
 TCGCTTGTCTCGTTGATGCAACACTGTGATCCTCCTCAGAGACGTTTCC
 TTTGGAGAAAGGAGTTCCCTCCCGCGGTGGCTAATGGAAAGAGGATTGG
 TGGCCTCAACTTGGTTGCTAAAGATCAAGGTCTGCACCTACAAGAAC
 CTCATGATTGAAAGAAGCGTGGAAAGTCGGCGTTTACTGCGGTTATCAA
 GCATATGTTCTGATATTGCTAAGATCCGTAAGCTCGTGAGGCAATCTAAAT
 GTTTGCAGGATAAGATGACTGCTAAAGAGAGGTGCTACCTGGCTTGTATT
 AACCAAGAAGAGTCCTGGCTAGAGAGCTTATCCGAGTCATGTCCACCTC
 TTTCTCTGTCGGTGGAAAGTTGCTGCTTCTGATGAATGATTGCAAGTCATAC
 GATGTTGAAGGTTTCGAGAAGGAGTCTCACTATGAAGTGGAAAGAGCTCAAGC
 CAGAAAAAGTTATGAATTCTCAAACCTTGGATGGTCTAAATGCATGAC
 TTCCTGTCAAAGAAGAAGTCCCAGCAGGAAACTCGGAATTGAGAAAGA
 GAAAGCCAACAGAGATCTGAAACACTATTATGGACAGAACCGTTTACCTG
 CGAGAAATCTGGGTGTGCGCACAGCGAAATCAGCCGGGATTCTGGATAG
 GAATTGAGAGACAACCATTCAACTGGCATGTCACATCGAGACAGTCGCTTA
 CCGTATGGAGCAGCACCATCCAGGTTGATGTCATGAAGTTAACGCTG
 TAGTTGGATTTCCTCAGCCAAGGCCAGTGAACACTCAGTAGCCCCAACCAATTGA
 CTTAACGGGTATAGTTCCTGAAAGATGGACAGAACAGATCTCAGAGCTCATG
 TCCATGTACGACAGAAATGTCCAGAGCAACCAACCTCTATGGTCATGGAAA
 ATCAAAGCGTGTCACTGCTTCAACCCACAGTCATAACCATCAAGAACATCT
 CCAGTTCCCAGGAAACATGGTGGAGGAAGTTCTTGAAGACTGAAACATC
 CCAACAGAGCAAACAACAAACAGCAGCAACAAATCAAACGTTTCAAG
 GGAACAACAACAACAATGTGTTAAGTTCGACACTGCAGATCACAAACAA
 CTTGAAGCTGCACATAACAACAAATAACAGTAGCGGCAACAGGTTCCAG
 CTTGTGTTGATTCCACACCGTTGACATGGCGTCAATTGATTACAGAGATGA
 TATGTCGATGCCAGGAGTAGTAGGAACGATGGATGGAATGCAGCAGAAGCA
 GCAGATGATCCATATGGTTCTAAAGTCTGGTAGTAGATTTCATCTCTT
 ATTTTATCTTGTGTTCTACATTCACTCAACCATGTAATATTTTCTGG
 TCTCTCTGTCATCGCTTGTATGATGTCGTGTAAGAGTCTCTAAAC
 TCTGTTACTGTGTCTTGTCTCGGCTGGTGAATCTCTGTGTCATCATCAG
 CTTTAGTTACACACCCGACTGGGGATGAACGAACACTAAATGTAAGTTTC
 A

FIGURE 19A

EIN3 genomic

24/34

AGAGCAGTGAGTATTNCCACNAGCCGCTTGTAAATTACATATTAATTGTGTA
 ATAATAATAATAATGATGTCTAAATTTATGTGTAAGAAATGAAATTAAAATG
 ATATATATGTATATTATATATCTANACATATATATATATAAATAGAGTATAT
 ATACTATGATCTATCTTCCTGATCTACAGAGAGACTCCACAAAGAAACGAAA
 TAAACAAAAGTCGCTTCTAGCCACGTGATCTTCGTCGACTTTCTTCTTCTT
 CTTCTTCTCCTCTCCTCATCTCGTATCTCAACTTTGTCGAAGTTCTTTG
 ATGAAACTAGGGTTATTATCTTCCTTCTTCCCCTACCCATCACCATAGAAAAGG
 CAGAGACCTTTCTTCATCATTTTATTCTCCTTCTCTGCTGTTCATTC
 TCCAGGTACTATACGCTCTTCTTCTATTGATTTTAGGGTTATTATTGATACT
 GAAGATGATGATAGGTTATTCAAGGGTTACTAGATGATGGTTTACTTT
 AGTTTACTAGTGTTACACGATCTAATTCAAGTTATNCTACTTTAGTTT
 TTNTTGGGTGAAGTTTGTATTGTTATAAAATGTTGATCTATTGAAATG
 TTCTCTTCTTATTCAATATGATCCTTCTATATTGTTCTATGTTGAAG
 ATCTCATCCTTTGGAAATTGAATCTGTTGATAATTATTATTATCCGATTGA
 TTATTAGTTAGGAGTGATTAACGATCTGATTATGTGTTTATTACTTAA
 ACTTTGATTGAATTGAAAAGCCCCCTTTTATAATTAGGGTTGATGATT
 TTAGTAAGTTGTTGATTCAAGAGAAATATAATTGTACTGATTAGTTGTTG
 TGTATTGATTGTTACAGGTTACAATGATGTTAATGAGATGGGAATGTG
 AACATGGATTCTCTCTGGATCACTGGTGAAGTTGATTCTGTCTGT
 TCCACAAGCTGAGCCTGATTCCATTGTTGAAGATGACTATACTGATGAGA
 TTGATGTTGATGAATTGGAGAGGGAGTGGAGAGAGACAAATGCGGCTAA
 ACGTCTCAAGGAGCAGGATAAGGGTAAAGAAGGGTGTGATGCTGCTAACAG
 AGGCAGTCTCAAGAGCAAGCTAGGAGGAAGAAAATGCTAGAGCTCAAGATG
 GGATCTGAAGTATATGTTGAAGATGGAAGTTGAAAGCTGTGACTGGT
 GTTATGGGATTATTCCGGAGAATGGGAAGCCTGTGACTGGTCTCTGATAA
 TTAAGGGAGTGGTGGAAAGATAAGGTTAGGTTGATCGTAATGGCCTGCG
 CTATTACCAAGTATCAAGCGGAGAATAATATCCCGGGATTCAAGGTAAT
 AACCCGATTGGACCGACTCCTCATACCTGCAAGAGCTCAAGACACGACT
 CTTGGATCGCTTGTCTGCGTTGATGCAACACTGTGATCCTCCTCAGAGAC
 GTTTCTTGGAGAAAGGGAGTCCCTCCTCGTGGTGGCTAATGGGAAAGA
 GGATTGGTGGCCTCAACTGGTTGCCTAAAGATCAAGGTCTGCACCTAC
 AAGAAGCCTCATGATTGAAGAAGGCGTGGAAAGTCGGCGTTTACTGCGG
 TTATCAAGCATATGTTCTGATATTGCTAAGATCCGTAAGCTCGTGAGGCA
 TCTAAATGTTGCAGGATAAGATGACTGCTAAAGAGAGTGCTACCTGGCTG
 TATTATTAACCAAGAAGAGTCCTGGCTAGAGAGCTTATCCGAGTCATGTC

FIGURE 19B

25/34

EIN3 peptide

MMFNEMGMCGNMDFFSSGSLGEVDFCPVPQAEPDSIVEDDYTDDIEDVDELE
RRMWRDKMRLKRLKEQDKGKEGVDAAKQRQSQEQRKMSRAQDGILKYM
LKMMEVCKAQGFVYGIIPENGKPVTVASDNLREWWKDVKVRFDRNGPAAITKYQ
AENNIPGIHEGNNPIGPTPHTLQELQDTTLGSLLSALMQHCDPPQRPFLEKGV
PPPWPNGKEDWWPQLGLPKDCQGPAPYKKPHDLKKAWKVGVLTAVIKHMFP
DIAKIRKLVRQSKCLQDKMTAKESATWLAIINQEESLARELYPESCPPLSLSGG
SCSLLMNDCSQYDVEGFEKESHYEVVEELKPEKVMNSSNFGMVAKMHDFPVK
EEVPAGNSEFMRKRKPNDLNTIMDRTVFTCENLGCAHSEISRGFLDRNSRDN
HQLACPHRDSRLPYGAAPSRFHVNEVKPVVGFPQPRPVNSVAQPIDLTGIVPE
DGQKMICELMSMYDRNVQSNQTSVMENQSVSLLQPTVHNHQEHLQFPGN
MVEGSFFEDLNIPNRANNNNSSNNQTFFQGNNNNNNVFKFDTADHNNFEAAH
NNNNNSSGNRFQLVFDSTPFDMASF DYRDDMSMPGVVGTMDGMQQKQQDV
SIWF

FIGURE 19C

EIL1 cDNA

26/34

GGCGGCTTCAAACCTACAAACCCAGAAACCACACAGTAATTAATGTCT
 CTTTCTTCTTCCCAGTGTATCTTAAACAGACTTTCTTATTCTCATCTC
 TGAAGTGTGGGATTCAAGACTTCTTATCTGTTCTTATAAAACAA
 GAGAGAGATACCACTTGGTCTTATTGCAACTCTTCAGGTTAAGA
 AATCGATAGGCTCTGTTCTGATTGTGGTGGAAAGAGAcATGATGATGTTAC
 GAGATGGGAATGTATGGAAACATGGATTTCTCTCCTCCACATCTCGA
 1GTG1GtccATTACCAAGCTGAACAAGAACCTGTagTGAgTGACTACA
 CCGATGATGAGATGGATGAGCTTGAGCAGAGGATGTGGAGAGACAAAATGC
 GTTGAACAGTCTCAAGGAGAACAGAGTAAGTGTAAAGGAGGCCGATG
 GTTCGAAACAGAGGCAGTcgCaAGAGCAAGCTAGGAGGAAGAAAA1g1CTAGA
 GCCCAAGATGGGATCTTGAAGTATATGTTGAAGATGA1GGAAGTTGTAAAG
 CTCAAGGCTTGTATTGGTATTATTCTGAGAAGGGTAAGCCTGTGACTGG
 1GCTTCGGAtATTTGAGGGATGGTgGAAAGATAAGGTTAGGTTGATCGTA
 ATGGTCCAgCTGCTATTGCTAAGTATCAG1CAGAGAAT1ATATTCTGGAGGG
 AGTAATGATTGTAACAGCTTGGTTGGTCCAACACCc1ATACGc1TCAGGAGCT
 TCAGGACACGACTCTGGTTCgCTTTATCGGCTTGTGATGCAACATTGTGAT
 CCACCGCAGAGACGGTTCCCTTGgaGAAaGGAGTTCTCACCTTGGTGGC
 CTAATGGGAATGAAGAg1gGTGGCCTcaGCT1gG1TACCAAATGAGCAAGGTCC
 TCCTCCTTATAAGAACGCTCATGATTGAAGAAAGCTTGGAAA1gTCGGTGT
 TaACTGCGGTGATCAAGCATATgTCGCCGGATATTGCGAAGATCCGTAAGCT
 TGTGAGGCAATCAAATGCTTgCAGGATAAGATGACGGCGAAAGAGAGTGC
 TACTTGGCTTGCCATTATAACCAAGAAGAGGTTGTTGGCTGGGAgCTTAT
 CCCGAGTCATGCCCTCTCTTCTTCATCATTAGGAAGCGGGTCGC
 1cTCATTAAATGATTGTAAGCGAGTATGACGTTGAGGTTCCGAGAAGGAAACaA
 CATGGTTTCGATGTGGaAGAGCGGAAACAGAGATAGTGTGATGATgCATCCTC
 TA1gCAAGCTTGGGTTgCTAAAATGCAACATTTCCTAAGGAGGAGGT
 CgCCAcACGGTAAACTTAGAGTTACGGAGAAAGAGGAAAGCAGAACAAATGAT
 ATGAATGTTATGGTAATGGACAGATCAGCAGGTTACAC1GTGAGaATGGTca
 GTGTCTCACAGCAAATGA1ATCTGGATTCAAGACAGGAGTTCAAGGGAC
 AACCAACAGATgGTTGTCCATATAGAGACAATCGTTAGCGTATGGAGCAT
 CCAAGTTcATATGGGTTAAACAATCGTTCCAGATGGTTGATTGACACCCATT
 CCGATCGACcTATCGGGCGTTGGAGTCCGAAACGGGCaGAAGATGAT
 CACCGAGCTTATGGCCATGTACGACAGAAATGTCACAGCAACAAACGCC
 TCCTACTTTGATGGAAAACAAAGCATGGTCATTGATGCAAAAGCAGCTCAG
 AATCAGCAGCTGAATTCAACAGTGGCAATCAAATGTTATGCAACAAGGGA
 CGAACAAACGGGGTTAAACAATCGTTCCAGATGGTTGATTGACACCCATT
 CGATATGGCAGCATTGATTACAGAGATGATTGGCAAACGGAGCAATGGA
 AGGAATGGGGAAAGCAGCAGCAGCAGCAGCAGCAGCAGCA1AGATGTATCA
 ATATGGTTCTGAATATTACACAATCTGTAAATATTCTTCTTCTATAAAACT
 CTGTTACCTACTTACCTGACTGGGTATGTATTCTATTGCAACAAACACTCAT
 CTATATTGTTGATGATGAAAGCCATCTATTTTTTGTGTCGAAAGTC
 ATTAACTCGCTTCATTGTTATAATGTCACATCCATTGAAACATCATTCTC
 ATGCTACAAGTTGATTCTTGAGGCGGCCGC

FIGURE 20A

27/34

EIL1 peptide

MMMFNEMGMYGNMDFFSSSTS LDVCPLPQAEQEPVVEDVDYTDDDEM DVDE
LEKRMWRDKMRLKRLKEQQSKCKEGVDGSKQRQSQEQRKKMSRAQDGIL
KYMLKMMEVCKA QGFVYGIIP EKGKPVTGASDNLREWWDKVRFD RNPAAIA
KYQSENNISGGSNDCNSL VGPPTPHTLQELQD T LGSLLSALMQHCDPPQRRF
PLEKGVSPPWWPNGNEEWWPQLGLPNEQG PPPYKKPHDLKKAWKVGVLTAV
IKHMSPDIAKIRKL VRQSKCLQDKMTAKESATWLAIINQEEVVA RELY PESCPPL
SSSSSLGSGSLLINDCSE YDVEGFEKEQHGFDVEERKPEIVMMHPLASFGVA
KMQHFPIKEEVATTVNLE FTRKRKQNN DMNVMDRSAGYTCENGQC PHSKM
NLGFQDRSSRDNHQMVC PYRDNRLAYGASKFHMGGMKL VVPQQPVQP IDLS
GVGVPE NGQK MITE LMAMYDRNVQSNQTP TL MENQSMVIDAKAAQ NQQLNF
NSGNQMFMQQGTNNGVNNRFQMVFDSTPFDMAAFDYRDDWQTGAMEGMGK
QQQQQQQQDVSIW F

FIGURE 20B

EIL2 cDNA

28/34

CAGATTCTATGGATATGTATAACAACAATATAGGGATGTTCCGGAGTTAGTT
GTAGCTGGCGCCTCCATTACAGAGGGACATATGTGTTCTGATTGCATAC
GGCTTGTGCGATCTGAGTAGTGATGAGGAAATGGAATAGAGGGAGCTT
GAGAAGAACAGATCTGGAGAGACAAGCAGCGTTAAAGCGGCTCAAGGAAATG
GCGAAGAACGGTCTAGGAACAAGATTGTTGTAAGCAGCAACATGATGATT
TTCCAGAGCACTCTAGTAAGAGAACCATGTACAAGGCACAAGATGGGATCTT
GAAGTACATGTCGAAGAACATGGAGCGATATAAAGCTCAAGGTTTGTTATG
GGATTGTTAGAGAAATGGGAAAACGGTAGCGGGATCTCTGATAATCTCCG
TGAATGGTGGAAAGACAAAGTGAGGTTGATAGGAACGGCCCAGCTGCTATA
ATCAAGCACCAAAGGGATATCAATCTTCTGATGGAAGTGAATTAGGGTCTGA
GGTTGGGGATTCTACCGCACAGAAGTTGCTTGAGCTCAAGATACTACTCTT
GGAGCTCTGTTATCGGCTCTGTTCTCACTGCAACCCCTCTCAGAGGGCGGT
TTCCGTTGGAGAAAGCGTGACACCGCCATGGTGGCCAACGGGGAAAGAAG
ATTGGTGGGATCAACTGTCCTTACCGTTGATTTGAGGTGTTCCGCCACCT
TACAAGAACGCTCATGATCTCAAGAACGCTGTGGAAAATTGGTGTGTTGATTGG
TGTAAATCAGACATATGGCTCTGACATTAGCAACATACCAATCTCGTGAGAC
GGTCTAGAAGTTGAGGAGAAATGACGTCAAGAGAACGGCGC
TTTATGGCTCGCTGCTTACCGAGAAAAGGCTATTGTTGATCAAATAGCCA
TGTCTAGAGAAAACAACACTTCTAACTTTCTGTTCTGCAACCCGGTGG
GACCCAGATTTGTTCTGAAATCTACAGACTATGATGTTGAACGATTGG
TGGCACTCATCGGACCAATCAGCAGTATCCTGAATTGAAAACAACAC
TGTGTTACAAGAGAAAGTTGAGAAGATTGAGGATGCCAATGCACTTCAAC
ACTCTAACATGTGAGAACAGTCTCTGCTTATAGCCAACCACATATGGGA
TTCTGACAGGAACCTAACAGAGAATACCCAAATGACTGTTCTTATAAAGT
CACTCTCTTACCAACCAACTAACCCCTATGGTATGACGGGTTAATGGTTC
CTTGTCCGGATTATAACGGGATGCAGCAGCAGGTTAGAGCTTCAAGACCA
GTTAACATCCCAACGATCTACAGACCAAAAGCTCCACAAAGAGGCAAC
GATGACTGGTTGAGGATTGAACTCTCTCGACGCTGAATCAGAAC
TGGTTAGTCTTACCTACTGACTTCAATGGAGGTGAGGAAACAGTAGGAACA
GAGAACAACTGCATAATCAAGGGCAAGAGATTGCCCCACATCTGGATTAGT
AAAGAAAGCTCAGAGTTTCTTATGTTTCTAGTCTTATAGCTTGTCTC
TTGCTTATTCTCTCATTAAACACAGTTTGTATCTCTCCATTAGCCCCATG
TAGCAATGGAGAAGATTAGGTTCTATAAGTTAATAACCAAATTCAA

FIGURE 21A

29/34

EIL2 peptide

DSMDMYNNNIGMFRSLVCSSAPPTEGHMCSDSHTALCDDLSSDEEMEIEEL
EKKIWRDKQRLKRLKEMAKNGLGRILLKQQHDDFPEHSSKRTMYKAQDGILK
YMSKTMERKYKAQGFVYGVILENGKTVAGSSDNLREWWKDKVRFDRNGPAAIK
HQRDINLSDGSDGSEVGDSTAQLLELQDFTLGALLSALFPHCNPPQRRFPL
EKGVTPPPWWPTGKEDWWDQLSLPVDFRGVPPPYKKPHDLKKLWKIGVLIGVIR
HMASDISNIPNLVRRRSRSLQEKMITSREGALWLAALYREKAIVDQIAMSRENNNT
SNFLVPATGGDPDVLFPESTDYDVELIGGTHRTNQQYPEFENNYNCVYKRKFE
EDFGMPMHPTLLTCENSICPYSQPHMGFLDRNLRENHQMTCPYKVTSFYQPT
KPYGMTGLMVPVCPDYNGMQQQVQSFQDQFNHPNDLYRPKAPQRGNDDLVED
LNPSPSTLNQNGLVLPTDFNGGEETVGTEENNHLHNQQQELPTSWIQ

FIGURE 21B

EIL3 cDNA

30/34

TTCCCCGTGAGAACGACAGGGAGAAAGAATAAAACCCCTAAATTCTTTAATTC
GGCGCTTCAGATTATCGTTGTTAAGGTTTGATGATTTGTTAAATGGGC
GATCTTGTATGTCCTGAGCACATCAGGATGGAGAATGAGCCTGATGATT
TAGCTAGTGATAATGTTGCTGAGATTGATGTGAGTGATGAAGAGAGATTGATGCT
GACGACCTTGAGAGACGGATGTGAAAGATCGTGTCAAGGCTAAAAGAATCA
AAGAGCGACAAAAAGCTGGCTCTAAGGAGCTCAAACGAAGGGAGACACC
TAAGAAAATCTCTGATCAAGCTCAGAGGAAGAAAATGTCCTAGAGCTCAAGAT
GGTATCCTTAAGTACATTGTTGAAGCTTATGGAAGTCTGCAAAGTTGCGGGGT
TTGTCTATGGTATAAACCGGAAAAGGGCAAGCCTGTGAGTTGGCTCTCTG
ACAATATAAGAGCTTGGTGGAAAGAGAAAGTGAAGTTGATAAGA_aCGGTCT
GCTGCTATTGCTAAATACGAAGAGGGAGTTAGCGTTGGAAATCTGATGG
GAATAGGAATTACAGTTGTTCCAGGATTGCAAGATGCTACTTAGGGT
CTTGTATCTCTTGATGCAACATTGTGATCCTCTCAAAGGAAGTATCCGT
TGGAGAAAGGGACGCCCTCGCTTGGTGGCAACGGGAATGAAGAATGGT
GGGTGAAACTCGGCTGCCTAAAGCCAGAGTCCTCCTACCGAAAACCTC
ATGATCTCAAGAAGATGTGGAGGTGGAGTTAACGGCAGTGATCAATCAT
ATGTTACCTGATATTGCAAAGATTAAGAGGCATGTTGTCAGTCGAAATGTT
ACAGGACAAGATGACAGCTAAAGAGAGTGCATTGGTGGCGGTTGAAC
CAAGAGGAATCTTGATTGAGCAGCTAGCAGTGCACATGAAACTCCAATG
TGACTGAGACACATCGTAGGGTAATAACGCTGACAGGAGGAACCTGTGGT
CAACAGTGACAGTGACTATGATGTTGATGGACAGAGGAAGCTTCAGGTTCA
GTTTCATCTAAAGACAGTAGAAGAAATCAGATTCAAAGAACAAACAG
CCATCTCACATTCACTGAGAGATCAAGATAAAGCAGAGAACATCGCAGAAG
GAAAAGACCTCGAATTAGATCGGAACTGTCAATCGACAAGAGGAAGAACAA
CCTGAAGCTCAACAAAGAAACATCTTACCTGATATGAATCATGTTGATGCC
CTCTGCTAGAAATAACATCACGGTACTCATCAAGAGGAGATGTTGTCGA
CCCAAATATTGCCTTAGGACCAGGGAT_aTGgTCTGGAACTAGTGGTTCTG
AGITCAATAaCcAAcATACTTATCTTCCACTGTTAATGAACAAACTATGATGC
CTGTAGACGAAGGCCAATGCTTATGGACCCAAACCTAACCAAGAGCT
TCAATTGGGTAGGGTACAACCTCACAACTCCCTGTCAGTGTGACATA
ACCAGGAAGACGACATTCTCCATACACAGATAGAAAATGAATACACAAGCACC
ACCTCACAACAGTGGGTCAGGGAGGCCCCAGGGAGGAGTACTTCACCCCT
TGGTTTACTCGGAAATGAAGACGGTGTAAACAGGGAGTGAGTTGCCTCAGTAT
CAGAGTGGCATTCTGCTCCATTGACTGACTTGGACTTTGACTATGGTGGTTT
TGGTGATGATTCTCATGGTTGGAGCTAGTGTCTTGCCATTGGAG
ATTACATAGTTCAAAAGGACATGGCAATAGTCTGGCTAGTACAGTTACTTCT
CTTCTTCACTTCTGATCTTATATTCTTCCCTTTTTCTTATAATATTCT
TAGATTGTTAAGAGAAACAATTTCCTTGAATAAGTTGCCAGAAGAACTGC
TTGCCCGTTGTAATGGCTCTAGGGAAAGCAGTTAGCGTATCATCATTGTA
AATTACCTGTGAG

FIGURE 22A

HLS1 cDNA:

31/34

CTCCAACTTTAAACTCATCATAAATAGTAAAAAGTAGCCGGAAAAATAAA
ATAAAAAGTCTATTTCTCTTCAAAATCCAAATCTATAAACTCATAGCT
TTCTCTGTTCTTACTTATACCTCACGTATACATATATAGAGTTCTATA
AATGCTTCTCTTCCTCTGAACAAATCTCCTCACTTCTCTCATTTCCACAC
TCACCTTCTCTCTATATAATTAAACCTATCTACTTAACCTCTCTTAACCT
AATCTCTCTCTATTTACTCTGTTCTACTCTGAAAGAACCCAAAAC
ATGACGGTGGTTAGAGAGTACGACCGGACCGAGACTTAGTCGGCGTGGAG
GACGTGGAACGACGGTGTGAAGTCGGACCAAGCGGCAAGCTTCTCTTCA
CCGACCTTTGGGTGACCCGATTGTAGAATCCGACATTCACTTCTATCT
CATGCTGGTGGCTGAGATGGGTACGGAGAAGAAGGGAGATAGTGGGCATGATT
AGAGGATGTATCAAACCGTTACATGTGGCCAAAAACTCGATTTAAATCACAA
ATCTAAACGATGTCGTTAACGCTCTTACACTAAACTCGCTTACGTCTGG
GCCCTCGCGTCTCTCCCTTACAGGAGACAAGGGATTGGGTTAAGCTCGT
GAAGATGATGGAGGAATGGTTAGACAAAACGGAGCTGAGTATTGTTATATTG
CAACTGAGAACGATAATCAAGCTCTGTGAATTGGTTACCCGGAAATGTGGT
TATTGGAGTTCTGTACACCGTCGATTGGTTAACCCGGTTACGCTCATCG
AGTTAATGTTCGCGCGAGTCACGGTTATCAAGTTAGAGCCGGTTGATGCT
GAGACGTTGACCGAATCCGGTTAGCACAACAGAGTTTCCCGCGGATA
TTGATTGGTACTTAATAACAAACTCTCGCTGGGACTTTCGTCGCGGTGCCA
CGTGGAAAGCTGTTATGGATCCGGGCTGGATCATGGCCCGGTTGGCTAAAT
TCCTCGAATATCCACCCGAGTCATGGCCGTATTAAGCGTGTGGAATTGAA
AGACTCGTTCTGTTAGAAGTACGTGGAGCGTCGAGATTGAGACGTGTGGTG
GCTAAACGACGCGAGTAGTTGATAAAACGTTGCCGTTCTGAAACTACCTT
CGATACCGTCCGTTTCAACCTTTGGACTTCATTTATGTATGGAATCGGA
GGAGAAGGTCCACGCGCGGTGAAGATGGTGAATCCCTGTGTGCTCACGCG
CATAACTTGGCTAAGGCAGGTGGTTGTGGTGTGTCGTCGGCGCGGAAGTTGCC
GGAGAAGACCCGTTGCGCGAGGAATACCACATTGGAAAGTGCTATCGTGT
GACGAGGATCTTGGTGATAAAGCGGCTGGAGATGACTATAGTGTGATGGTG
TGTGGTGATTGGACTAAATGCCACCTGGCGTTCCATTGGTAGACCCCT
AGAGAATTAAACTTTTAACTTATAATATATTCTTATTAAACCACT
TGATGTTAAATTAGGGGTTTCTAAGTTATAGATTCTGTTTGTGTTTGTGTT
ATCTTTTTAGGTAACCTTTTGCTTTGTTTGTGTTTGTGTTTGTGTTTGTGG
GTGTTATAAATTA

FIGURE 23A

HLS1 genomic sequence:

32/34

FIGURE 23B

33/34

CGTGGAAAGCTGTTATGGATCCGGGTCTGGATCATGGCCGGTCGGCTAAAT
TCCTCGAATATCCACCCGAGTCATGGGCCGTATTAAGCGTGTGGAATTGAA
AGACTCGTTCTGTTAGAAGTACGTGGAGCGTCGAGATTGAGACGTGTTG
GCTAAAACGACGCGAGTAGTTGATAAAACGTTGCCGTTCTGAAACTACCTT
CGATAACCGTCCGTTTCGAACCTTTGGACTTCATTTATGTATGGAATCGGA
GGAGAAGGTCCACCGCGGGTGAAGATGGTGAATCCTTGTGTGCTACGCG
CATAACTTGGCTAAGGCAGGTGGTTGTGGTGTGTCGTGGCGCGGAAGTTGCC
GGAGAAGACCCGTTGCCGGAGGAATACCACATTGGAAAGTGCTATCGTGT
GACGAGGATCTTGGTGTATAAAGCGGCTTGGAGATGACTATAGTGTGGTGT
TGTTGGTGTGAACTAAATCGCCACCTGGCGTTCCATTGTTGAGACCTTA
GAGAATTAAACCTTTTAACTCTATAATATATATTCTCTATTAAACCACTT
GATGTTAAATTAGGGGTTTCTTAAGTTATAGATTCTTGTGTTAGAATT
ATCTTTTTAGGTAACCTTTTGTCTTGTGTTGTTGTTGTTGTGG
GTGTTATAAATTAGtggtaagaggtaatatctccactttgggttgttgttgttgtaaatggacttagc
tttttaagatacttttgcaccaaaaacgcgcacccgtattttccaaatggacttaga
gcactgatacgataatgtatgcacatttggttaagacgatactttggagataaaaattacaatatgacaatgtataga
aaatgttaccaataacgattacgttgcattatcgatgttgtgcacatcaactaactaagagaaaagacgcacatttttta
agagtaataaaaaatt

FIGURE 23B

34/34

HLS1 polypeptide:

MTVVREYDPTRDLVGVEDVERRCEVGPMSGKLSLFTDLLGDPICRIRHSPSYML
VAEMGTEKKEIVGMIRGCICKTCGQKLDLNHKSQNDVVKPLYTKLAYVLGLRV
SPFHRRQQGIGFKLVKMMEEWFRQNGAEYSYIATENDNQASVNLFTGKCGYSE
FRTPSILVNPVYAHRVNVSRVTVIKLEPVDAETLYRIRFSTTEFFPRDIDSVLNN
KLSLGTTFVAVPRGSCYGSWSWPGSAKFLEYPPESWAFLSVWNCKDSFLL
EVRGASRLRRVVAKTRVVDTLPFLKLPSIPSVFEPFGLHFMYGIGGEGRPA
VKMVKSCLCAAHNLAKAGGCGVAAEVAGEDPLRRGIPHWKVLSCDEDLWC
KRLGDDYSDGVGDWTKCHLAFFPL

FIGURE 23C

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US95/07744

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :C07K 14/415; C12N 5/00, 15/29; A01H 5/00, 7/00
US CL :536/23.6, 23.1; 530/370; 800/200; 435/240 .4

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 536/23.6, 23.1; 530/370; 800/200

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, GenEMBL sequence databases

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Science, Volume 241, issued 26 August 1988, A. B. Bleecker et al, "Insensitivity to ethylene conferred by a dominant mutation in <i>Arabidopsis thaliana</i> ", pages 1086-1089, see entire document.	1-17
A	Cell, Volume 72, issued 12 February 1993, J. J. Kieber et al, "CTR1, a negative regulator of the ethylene response pathway in <i>Arabidopsis</i> , encodes a member of the Raf family of protein kinases", pages 427-441, see entire document.	1-17
A	The Plant Cell, Volume 2, issued June 1990, P. Guzman et al, "Exploiting the triple response of <i>Arabidopsis</i> to identify ethylene-related mutants", pages 513-523, see entire document.	1-17

Further documents are listed in the continuation of Box C. See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search Date of mailing of the international search report

14 SEPTEMBER 1995

05 OCT 1995

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer *ELIZABETH C. KEMMERER*
ELIZABETH C. KEMMERER
Telephone No. (703) 308-0196