

(9) BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift DE 10E 12 01E A 1

(5) Int. Cl.⁶: **F 02 D 9/02**

_® DE 195 12 916 A 1

DEUTSCHES PATENTAMT

21) Aktenzeichen: 22) Anmeldetag:

6. 4.95

195 12 916.4

43 Offenlegungstag: 21. 12. 95

30 Innere Priorität: 32 33 31

18.06.94 DE 94 09 891.3

(71) Anmelder:

AB Elektronik GmbH, 59368 Werne, DE; Bocar S.A. C.V., Los Reyes Coyoacan, MX

(74) Vertreter:

Hoffmeister, H., Dipl.-Phys. Dr.rer.nat., Pat.-Anw., 48147 Münster

(72) Erfinder:

Habel, Georg, Romero de Terreros, Coyoacan, MX; Kappes, Ottmar, Paseos de Taxquena, Coyoacan, MX; Cruz, Sergio Hector Rangel, Ex-Hacienda Coapa, Coyoacan, MX; Apel, Peter, 59394 Südkirchen, DE; Wilczek, Klaus, 59368 Werne, DE; Wüstenbecker, Dirk, 59368 Werne, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Drosselklappenvorrichtung
- Die Erfindung betrifft eine Drosselklappenvorrichtung, bestehend aus
 - einem Gehäuseelement (4),
 - einem Drosselklappenwellenelement (3), an dem ein im Gehäuseelement (4) zwischen einem ersten Luftdurchsatzhohlraum und einem zweiten zu einem Fahrzeug-Motor führenden Luftdurchsatzhohlraum angeordnetes Drosselklappenelement (2) verstellbar in wenigstens einer Schließstellung, einer Leerlaufstellung und einer Vollgasstellung gehalten ist, und

- einer Verstelleinheit (11), die wenigstens eine Stellmotoreinheit (5) enthält und die mit dem Drosselklappenwellenelement (3) verbunden ist.

Um ein Fahren eines Fahrzeuges zu einer Werkstatt bzw. aus einer Gefahrenzone bei Ausfall der Stellmotoreinheit zu ermöglichen, ist der zweite Luftdurchsatzhohlraum mit einer Notlauf-Luftsteuereinrichtung (2, 3, 8, 9, 10) verbunden, mit der so viel Luft zuführbar ist, daß bei Ausfall der Stellmotoreinheit (5) ein Fahrzeug bewegbar ist.

Beschreibung

Die Erfindung betrifft eine Drosselklappenvorrichtung, bestehend aus

- einem Gehäuseelement,
- einem Drosselklappenwellenelement, an dem ein im Gehäuseelement zwischen einem ersten Luftdurchsatzhohlraum und einem zweiten zu einem Fahrzeug-Motor führenden Luftdurchsatz- 10 hohlraum angeordnetes Drosselklappenelement verstellbar in wenigstens einer Schließstellung, einer Leerlaufstellung und einer Vollgasstellung gehalten ist, und
- einer Verstelleinheit, die wenigstens eine Stell- 15 motoreinheit enthält und die mit dem Drosselklappenwellenelement verbunden ist.

In modernen Drosselklappenvorrichtungen wird die Drosselklappe mit einem Stellmotor verstellt. Diese Art 20 der Drosselklappenverstellung ist unter dem Fachbegriff Drive-by-wire bekannt. Der Stellmotor ist mit einer Drosselklappenwelle verbunden, die im Gehäuse drehbar gelagert ist.

Kommt es allerdings zu einem Ausfall des Stellmo- 25 tors, ist nicht sichergestellt, daß die Drosselklappe eine solche Stellung innehat, die es dem Fahrer ermöglicht, sein Fahrzeug zu einer Werkstatt zu fahren bzw. es aus einer Gefahrenzone zu bewegen. Demnach stellt sich der Erfindung die Aufgabe, eine Drosselklappenvor- 30 richtung der eingangs genannten Art so weiterzuentwickeln, daß ein Fahren eines Fahrzeuges zu einer Werkstatt bzw. aus einer Gefahrenzone bei Ausfall der Stellmotoreinheit möglich ist.

daß der zweite Luftdurchsatzhohlraum mit einer Notlauf-Luftsteuereinrichtung verbunden ist, mit der so viel Luft zuführbar ist, daß bei Ausfall der Stellmotoreinheit ein Fahrzeug bewegbar ist.

Die mit der Erfindung erzielten Vorteile bestehen ins- 40 besondere darin, daß bei Ausfall der Stellmotoreinheit eine solche Luftmenge zur Verfügung gestellt wird, daß der Luftstrom den Kraftstoff mitreißt und feinstzerstäubt der Luft beimischt, jedoch nicht vergast. Hierdurch entsteht ein zündfähiges Gemisch, das in bekann- 45 ter Art und Weise seiner Verwendung zugeführt wird. Gesichert wird damit, daß der Fahrer sein Fahrzeug, wenn auch mit verminderter Geschwindigkeit bewegen kann.

Die Notlauf-Steuereinrichtung läßt sich in drei Aus- 50 führungsformen realisieren:

die erste Realisierungsform ist dadurch gekennzeichnet,

- daß in der Verstelleinheit ein Rückstellfederelement und ein aber entgegengesetzt wirkendes, Öff- 55 nerfederelement kraftschlüssig mit dem Drosselklappenwellenelement verbunden sind,
- daß das Rückstellfederelement an einem Anschlagelement anschlägt und gespannt ist, wenn das toreinheit in Richtung der Vollgasstellung gedreht ist und
- daß die Öffnungsfeder an das Anschlagelement anschlägt und gespannt ist, wenn das Drosselklappenwellenelement durch die Stellmotoreinheit in 65 der Leerlaufstellung gehalten ist,
- so daß das Drosselklappenelement bei Ausfall der Stellmotoreinheit eine Position einnimmt, die

einen solchen Luftdurchsatz gewährleistet, daß das Fahrzeug bewegbar ist.

Hierdurch wird gewährleistet, daß die Drosselklappe 5 durch beide Federelemente bei Ausfall der Stellmotoreinheit in eine solche geöffnete Stellung gebracht wird, die insbesondere ein Herausbewegen des Fahrzeuges aus einer Gefahrenzone ermöglicht. Darüberhinaus ist gesichert, daß der Fahrer mit dieser Drosselklappenstellung das Fahrzeug in eine Werkstatt fahren kann. Von Vorteil ist darüber hinaus, daß die Federn so wirken, daß sie den normalen Drive-by-wire-Betrieb nicht behindern. Die Stellmotoreinheit ist bei Funktionsfähigkeit mühelos in der Lage, beide Federkräfte zu überwinden und so den Motor in Richtung Vollgasstellung, d. h. Volllast oder Leerlaufstellung zu fahren.

Die zweite Ausführungsvariante zeichnet sich dadurch aus, daß die Notlauf-Luftsteuereinrichtung derart ausgebildet ist,

- daß eine am Gehäuseelement angeordnete Ventileinheit mit einer durch das Gehäuseelement führenden Kraftstoffdunstausnehmung mit dem zweiten Luftdurchsatzhohlraum verbunden ist und

daß die Ventileinheit bei Ausfall der Stellmotoreinheit derart ansteuerbar ist, daß von einem Tank bzw. über eine Tankentlüftung der Luftdurchsatz für ein Bewegen des Fahrzeugs gewährleistet ist.

Die Ventileinheit hat an sich die Aufgabe, vom Tank abgegebene Kraftstoffdämpfe gezielt einer weiteren Verwendung zuzuführen. Durch eine gezielte Ansteuerung der Ventileinheit übernimmt diese bei Ausfall der Stellmotoreinheit die Aufgabe, dem Luftdurchsatzhohl-Erfindungsgemäß wird die Aufgabe dadurch gelöst, 35 raum so viel Luft zur Verfügung zu stellen, daß ein ausreichendes zündfähiges Gemisch zur Verfügung steht, die dem Fahrer ermöglicht, ganz gezielt sein Fahrzeug aus der Gefahrenzone bzw. an einen anderen Ort zu bewegen.

Die dritte Lösungsvariante zeichnet sich dadurch aus, daß die Notlauf-Luftsteuereinrichtung derart ausgebildet ist.

- daß in der Verstelleinheit wenigstens eine Rückstellfedereinheit angeordnet ist und
- daß die Stellmotoreinheit als ein Einrichtungs-Motor ausgebildet ist, dessen Motorbewegung einer Federbewegung der Rückstellfedereinheit entgegengesetzt ist,
- so daß das Drosselklappenelement bei Ausfall des Einrichtungs-Motors den Luftdurchsatz gewährleistet, daß das Fahrzeug bewegbar ist. Unter einem Einrichtungs-Motor wird ganz allgemein ein Motor verstanden, dessen Drehmoment vorzugsweise nur in einer Drehrichtung, d. h. im Uhrzeigersinn oder entgegen dem Uhrzeigersinn wirkt.

Ein gegen eine Rückstellfedereinheit arbeitender, als Torque-Motor ausgebildeter Einrichtungs-Motor sorgt Drosselklappenwellenelement durch die Stellmo- 60 dafür, daß nur bei funktionierender Stelleinheit das Drosselklappenelement entsprechend verstellt werden kann. Fällt hingegen die Stellmotoreinheit aus, drückt die Rückstellfedereinheit die Drosselklappe in eine solche Stellung, daß ein ausreichender Luftdurchsatz gewährleistet ist.

> Vorteilhaft ist es, wenn das Drosselklappenelement dann in folgenden Positionen haltbar ist:

a) oberhalb der Leerlaufstellung in einem ersten Limp-Home-Point,

3

b) unterhalb der Drosselklappenschließstellung in einem zweiten Limp-Home-Point,

c) oberhalb der Vollgasstellung in einem dritten Limp-Home-Point.

Hierdurch wird z. B. erreicht, daß der Fahrzeug-Motor eine Drehzahl zwischen 1000 und 2000 U/min er-Fahrzeug betreibbar ist.

Vorteilhaft ist es, wenn das Federmoment des Rückstellfederelements größer ist als das des Öffnungsfederelements. Dadurch, daß das Rückstellfederelement ein größeres Moment als das Öffnungsfederelement besitzt, 15 gestellt. ist sichergestellt, daß die Drosselklappe bei ausgefallener Stellmotoreinheit immer auf die Stellung sich hinbewegt, in der sich der Federanschlag befindet. Das Erreichen eines definierten Öffnungswinkels, der durch die Limp-Home-Points definiert ist, ist damit aus jeder Lage 20 gewährleistet. Ein erneutes Starten des Motors ist somit auch möglich. Beide Federn können auch eine gleiche Kraft aufweisen.

Um den zweiten und den dritten Limp-Home-Point realisieren zu können, kann der Torque-Motor eine 25 Drehrichtung bezogen auf das Drosselklappenelement haben, die von der Vollgasstellung zur Drosselklappenschließstellung oder von der Drosselklappenschließstellung zur Vollgasstellung aufweist.

Vorteilhaft ist es, wenn das Rückstell- und das Öffner- 30 federelement und die Rückstellfedereinheit(en) als Spiralfedern ausgebildet sind. Hierdurch wird eine Drehbewegung des Wellenelements erreicht. Selbstverständlich sind auch andere kraftspeichernde Elemente einsetzbar, die eine rückfedernde Wirkung hervorrufen, 35 z. B. Fluid-, Gasspeicher oder dergleichen.

Vorteilhaft ist es, wenn die Steuereinheit im Gehäusedeckelelement oder im Gehäuseelement angeordnet ist. Hierdurch wird erreicht, daß die entsprechenden

Steuersignale unmittelbar übertragen werden können.

Die Ventileinheit kann ein elektromagnetisch betätigbares Ventil sein, das eine im wesentlichen ringförmige Magnetspule umfaßt, die einen in axialer Richtung hin und her bewegbaren Magnetanker aus metallischem Werkstoff umschließt, wobei der Magnetanker auf der 45 dem Ventilsitz zugewandten Stirnseite mit einem Dichtkörper aus elastomerem Werkstoff verschlossen ist und wobei der Magnetanker und der Dichtkörper formschlüssig miteinander verbunden sind.

Im Ergebnis langwieriger Versuche wurde festge- 50 stellt, daß für die Realisierung einer Notlaufstellung der Luftdurchsatz zwischen 20 bis 80 kg Luft/h, vorzugsweise 40 kg Luft/h beträgt.

Die Erfindung wird nachstehend anhand der Zeicherfindungsgemäßen Lösung durch weitere Ausführungen ergänzt. Es zeigen:

Fig. 1 eine Drosselklappenvorrichtung mit einer Notlauf- Luftsteuereinrichtung in einer schematischen geschnittenen Darstellung,

Fig. 2 eine Notlauf-Luftsteuereinrichtung mit einem Anschlaghebelelement in einer Vollgasstellung in einer schematischen Seitenansicht,

Fig. 3 eine Notlauf-Luftsteuereinrichtung in einer Leerlaufstellung in einer schematischen Seitenansicht,

Fig. 4 eine Notlauf-Luftsteuereinrichtung in einer Limp-Home-Point-Stellung in einer schematischen Seitenansicht.

Fig. 5 und 6 eine Drosselklappenvorrichtung mit einer anderen Notlauf-Luftsteuereinrichtung in unterschiedlichen Lösungsvarianten,

Fig. 7a und 7b eine Unterbringungsvariante einer

5 Steuereinrichtung,

Fig. 8a und Fig. 8b eine funktionelle Darstellung des Luftdurchsatzes in Abhängigkeit vom Drosselklappenanstellwinkel,

Fig. 9 eine Drosselklappenvorrichtung mit einer weireicht und so ein solches Kraftmoment ausübt, daß das 10 teren Notlauf-Luftsteuereinrichtung in einer schematischen Schnittdarstellung und

Fig. 10 eine Drosselklappenvorrichtung gemäß Fig. 9 in einer weiteren Darstellung.

In Fig. 1 ist ein Teil eines Drive-by-wire-Systems dar-

Es besteht aus

- einer Drosselklappeneinheit 1 und
- einer Verstelleinheit 11.

Die Drosselklappeneinheit 1 und die Verstelleinheit 11 befinden sich in einem gemeinsamen Gehäuseelement 4. Im Gehäuseelement 4 ist durchgängig ein Drosselklappenwellenelement 3 drehverstellbar angeordnet. Mit ihm verbunden ist ein Drosselklappenelement 2 der Drosselklappeneinheit 1.

Die Verstelleinheit 11 umfaßt folgende Teile:

- eine Motoreinheit 5, die kraftschlüssig mit dem Drosselklappenwellenelement 3 verbunden sind und
- ein Rückstellfederelement 8 und
- ein Öffnerfederelement 9.

Wie weiterhin die Fig. 2 bis 4 zeigen, ist das Rückstellfederelement 8 und das Öffnerfederelement 9 ebenfalls kraftschlüssig an dem Drosselklappenwellenelement 3 angeordnet. Bei beiden Federelementen 8 und 9 handelt es sich um Spiralfedern, die entgegengesetzt wirken. Gleichfalls mit dem Drosselklappenwellenelement 3 ist ein Anschlaghebelelement 6 verbunden. Es schlägt einseitig an ein Verstellschraubenelement 7 an, mit dem eine Leerlaufstellung MS einjustierbar ist.

Die Arbeitsweise der Notlauf-Luftsteuereinrichtung gemäß den Fig. 1 bis 4 sei erläutert:

Wird das Gaspedal voll durchgetreten, wird durch die Stellmotoreinheit 5 das Drosselklappenwellenelement 2 in eine Vollgasstellung VL, wie es in Fig. 2 dargestellt ist, bewegt. Das Drosselklappenelement 2 ist dabei weit geöffnet. Ein Äquivalent für seinen Öffnungswinkel ist dabei die Stellung des Anschlaghebelelements 6, das den Öffnungswinkel des Drosselklappenelements 2 wiedergibt. Das Rückstellfederelement 8 ist dabei voll ausgelenkt und gespannt. Es liegt mit seinem abgebogenen nung näher erläutert. Hierbei werden die Vorteile der 55 Ende an einem Anschlaghebelelement 6 an. Die der Vollgasstellung VL entgegengesetzte Stellung des Drosselklappenelements ist die Leerlaufstellung MS. Hierbei fährt die Stellmotoreinheit 5 das Drosselklappenelement 2 in eine solche Position, daß der Motor im Leerlauf bewegbar ist. In diesem Fall schlägt das Öffnerfederelement 9 mit seinem Ende an dem Anschlaghebelelement 6 an und ist gespannt.

Da das Fahrzeug in der Leerlaufstellung MS nicht mehr zu bewegen ist, muß sichergestellt werden, daß bei 65 Ausfall der Motoreinheit 5 dem Fahrer noch eine ausreichende Leistung zur Verfügung steht, die es ihm ermöglicht, eine Werkstatt zu erreichen bzw. das Fahrzeug aus einer Gefahrenzone zu bewegen. Das Drosselklappen-

6

element wird dabei durch das Rückstellfederelement 8 aus der Vollaststellung VL und aus der Leerlaufstellung durch das weitere, aber entgegengesetzt wirkende Öffnerfederelement in Richtung eines Anschlagelements 10 gebracht. Hierdurch wird ein Limp-Home-Point LHP1 erreicht. Dadurch, daß das Rückstellfederelement 8 ein größeres Moment besitzt als das Öffnerfederelement 9 ist nun sichergestellt, daß die Drosselklappe im stromlosen Zustand immer auf die Winkelstellung bewegt wird, in der sich das Anschlagelement 10 befindet. Hierdurch wird das Drosselklappenelement in eine Position gebracht, die den Motor auf eine solche Drehzahl oberhalb der Leerlaufstellung MS bringt. Hierdurch wird gesichert, daß bei einem Ausfall der Motoreinheit 5 immer der Limp-Home-Point erreicht wird. Dadurch, daß 15 das Anschlaghebelelement 6 im Limp-Home-Point nicht an einem festen Anschlag anliegt, wird außerdem sichergestellt, daß dieser Punkt aus jeder Lage des Drosselklappenelements 5 erreicht wird. Erreicht wird darüber hinaus, daß durch das Vorsehen eines definierten Limp- 20 Home-Points LHP1, der durch den Punkt des Anschlagelements 10 definiert ist, ein einwandfreies Zusammenwirken der Drosselklappeneinheit 1 und der Stellmotoreinheit 5 bei Normalbetrieb gewährleistet wird.

Im Limp-Home-Point LHP1 findet an dem Drossel- 25 klappenwellenelement motorseitig eine Lastumkehrung statt. Diese Lastumlenkung hat auf die Dynamik des Motors jedoch nur sehr geringen Einfluß, da die als Schritt-, Gleichstrommotor oder dergleichen ausgebilwinkelabhängig gesteuert wird.

In Fig. 5 ist ein weiterer Teil eines Drive-by-wire-Systems dargestellt.

Es besteht aus

- einer Drosselklappeneinheit 51 und
- einer Verstelleinheit 61.

Die Drosselklappeneinheit 51 und die Verstelleinheit 61 befinden sich auch hier in einem gemeinsamen Ge- 40 häuseelement 54. Im Gehäuseelement ist ein Drosselklappenwellenelement 53 angeordnet, das ein Drosselklappenelement 52 hält.

Die Verstelleinheit 51 besteht aus folgenden Teilen:

- einem Torque-Motor (Einrichtungs-Motor) 55, der kraftschlüssig mit dem Drosselklappenelement 52 verbunden ist und
- einer Rückstellfedereinheit(en) 58.

Wie Fig. 5 zeigt, führt das Drosselklappenelement durch die Rückstellfedereinheit(en) eine kreisförmige Federbewegung F durch, die im Uhrzeigersinn gerichtet ist. Der Torque-Motor 55 als Einrichtungsmotor dreht sich mit seiner Motorbewegung M entgegen dem Uhr- 55 zeigersinn und wirkt damit der Federbewegung M entgegen. Wird der Torque-Motor 55 bis in seine Endstellung gefahren, nimmt das Drosselklappenelement 52 eine Drosselklappenschlußstellung DS ein. In diesem Fall entsteht oberhalb des Drosselklappenelements ein Luft- 60 durchsatzhohlraum 62 und unterhalb des Drosselklappenelements ein fahrzeugmotorseitiger Luftdurchsatzhohlraum 63. Läßt die vom Torque-Motor 55 ausgeübte Kraft entsprechend dem Fahrerwunsch (Vollaststellung) nach, ist die Federbewegung F größer als die Mo- 65 torbewegung M und das Drosselklappenelement 52 bewegt sich um 90° in eine senkrechte Stellung, d. h. in eine Vollgasstellung VL

In Fig. 6 ist ein Drive-by-wire-System dargestellt, das ähnlich dem der Fig. 5 aufgebaut ist.

Es besteht aus

- einer Drosselklappeneinheit 51 und
- einer Verstelleinheit 61.

In einem Gehäuseelement 54' befinden sich die Drosselklappeneinheit 51' und die Verstelleinheit 61'. Im Gehäuseelement 54' ist durchgängig ein Drosselklappenwellenelement 53' drehverstellbar angeordnet, mit dem ein Drosselklappenelement 2 verbunden ist.

Die Verstelleinheit 61' umfaßt folgende Teile:

- einen Torque-Motor 55', der kraftschlüssig mit dem Drosselklappenwellenelement 53' verbunden ist, und
- eine Rückstellfedereinheit(en) 58'.

Der Torque-Motor 55' als Einrichtungs-Motor führt eine Motorbewegung M durch, die in Uhrzeigersinn gerichtet ist. Die Rückstellfedereinheit(en) 58' hat demgegenüber eine Federbewegung F, die im Uhrzeigersinn entgegengerichtet ist. Durch ein Zusammenwirken des Torque-Motors 55' ist gleichfalls eine Verstellung des Drosselklappenelements von der Drosselklappenschließstellung DS bis hin zur Vollaststellung VL möglich. In der Drosselklappenschließstellung ist oberhalb des Drosselklappenelements ein Luftdurchsatzhohldete Stellmotoreinheit 5 nicht lastabhängig, sondern 30 raum 62' und unterhalb ein fahrzeugmotorseitiger Luftdurchsatzhohlraum 63' vorhanden. Bei Vollgasstellung VL werden beide Hohlräume 62' und 63' gleichfalls miteinander verbunden.

Die Arbeitsweise der Notlauf-Luftsteuereinrichtung 35 gemäß den Fig. 5 und 6 sei erläutert:

Der Torque-Motor 55 bewegt, wie die Fig. 5 zeigt, das Drosselklappenelement während des normalen Betriebs im Bereich von der Drosselklappenschließstellung DS (minimaler Luftdurchsatz) bis zur Vollgasstellung VL (maximaler Luftdurchsatz). Bei dieser Bewegung wird durch eine Veränderung der Stromzuführung die Drehkraft des Torque-Motors 55 so erhöht oder vermindert, daß sie die Federkraft der Rückstellfedereinheit(en) 58 vollkommen überwindet, neutralisiert oder kleiner ist. 45 Bei Ausfall der Stromversorgung des Torque-Motors 55 oder wenn der Torque-Motor ausgeschaltet wird, dreht die Rückstellfedereinheit(en) 58 das Drosselklappenelement 52 so weit, daß es über die Vollgasstellung VL hinaus auf einen Limp-Home-Point LHP2 gedreht wird 50 und dort entsprechend anschlägt. Hierbei schließt das Drosselklappenelement 52 gegenüber der Drosselklappenschließstellung DS einen Winkel a+ ein.

Bei der in Fig. 6 dargestellten Variante bewegt sich das Drosselklappenelement während des normalen Betriebs im Bereich von der Drosselklappenschließstellung DS (minimaler Luftdurchsatz) bis hin zur Vollgasstellung VL (maximaler Luftdurchsatz). Bei Ausfall der Stromversorgung des Torque-Motors bzw. dann, wenn der Motor ausgeschaltet wird, dreht die Rückstellfedereinheit(en) 58' das Drosselklappenelement über die Drosselklappenschließstellung DS hinaus auf einen Limp-Home-Point LHP3 und schließt gegenüber der Drosselklappenschließstellung damit einen Winkel a-

In Fig. 8a und 8b ist der Luftdurchsatz in Abhängigkeit vom Drosselklappenwinkel α dargestellt.

Die Meßkurven wurden unter folgenden Versuchsbedingungen aufgenommen:

Drosselklappenstutzen zylindrisch: 40 mm Durchmes-

Drosselklappe: 40 mm Durchmesser bei 0° (zylindrische Drosselklappe) Unterdruck bei geschlossener Drosselklappe: 364 mm/Hg

Luftmasse im Limp-Home-Point: 40 kg Luft/h.

Die aufgenommene Meßkurve zeigt eine umgekehrt glockenförmige Form. Der tiefste Punkt liegt bei 0° und etwa 0 kg Luft/h und der höchste Luftdurchsatz bei 90° mit etwa 480 kg Luft/h.

Im Ergebnis der durchgeführten Versuche und Meßreihen wurde überraschend festgestellt, daß zur Realisierung eines Notlaufverhaltens eines Motors die Notlaufstellung des Drosselklappenelements 52 bzw. 52' so gestellt sein muß, daß ein Luftdurchsatz von etwa 40 kg 15 Luft/h vom Luftdurchsatzhohlraum 62 bzw. 62' zum Luftdurchsatzhohlraum 63 bzw. 63' gegeben sein muß. Bei einer Drosselklappenschließstellung DS von etwa 0° liegt, wie Fig. 8a zeigt, der Drosselklappenanstellwinkel α + bei dem Limp-Home-Point LHP2 eines Systems 20 gemäß Fig. 5 bei etwa 158°. Ist die Drosselklappe um etwa 4° vorgeneigt, liegt der Limp-Home-Point LHP2 bei etwa 157° Drosselklappenanstellwinkel und bei einer Drosselklappenvorneigung von etwa 8° bei etwa 149° Drosselklappenanstellwinkel. Damit ist sicherge- 25 stellt, daß sich das Drosselklappenelement nicht in der Drosselklappenschließstellung DS verklemmen bzw. verbeißen kann.

Bei einem System gemäß Fig. 6 liegt der Limp-Home-Point LHP3 gemäß Fig. 8b bei einem Drosselklappenwinkel α – von etwa – 21° Drosselklappenanstellwin-

Der Zusammenhang zwischen einem erforderlichen Luftdurchsatz im Limp-Home-Point von etwa 40 kg Weise für das in den Fig. 1 bis 4 beschriebene System. Die Federelemente 8 und 9 sind dabei so einzustellen, daß sie das Drosselklappenelement 2 in einen Drosselklappenwinkel von etwa 21° ziehen, damit der notwendige Luftdurchsatz gegeben ist.

In den Fig. 9 und 10 ist ein weiterer Teil eines Driveby-wire-Systems dargestellt.

Es setzt sich aus

- einer Drosselklappeneinheit 90 und
- einer Verstelleinheit 107

Die Drosselklappeneinheit 90 und die Verstelleinheit 107 befinden sich in einem gemeinsamen Gehäuseele- 50 ment 98. Im Gehäuseelement 98 ist ein Drosselklappenwellenelement 99 angeordnet. Am Drosselklappenwellenelement 99 befindet sich ein Drosselklappenelement 100, das in einer Drosselklappenschließstellung DS einen Luftdurchsatzhohlraum 91 von einem Luftdurchsatzhohlraum 103 trennt. Mit der Drosselklappenwellenelement 99 ist die Verstelleinheit 107 verbunden. Sie besteht aus einer Stellmotoreinheit 91, die über eine Rotoreinheit 97 mit dem Drosselklappenwellenelement 99 verbunden ist. In die Verstelleinheit 107 ist ein Rück- 60 stellmechanismus integriert, der dafür sorgt, daß das Drosselklappenelement nach einer Verstellung in einen Drosselklappenwinkel immer in die Drosselklappenschließstellung DS zurückkehrt. Einsetzbar hierfür wäre z. B. eine Rückstellseder. An der gegenüberliegenden 65 ist. Diese Luft wird aus dem Tank bzw. über den Aktiv-Seite des Drosselklappenwellenelements 99 ist eine Winkelsensoreinheit 93 befestigt. Sie besteht aus einer stationären Einheit 93.1 und einer rotierenden Einheit

93.2. Die rotierende Einheit 93.2 ist mit dem Drosselklappenwellenelement verbunden, während die stationäre Einheit im Drosselklappengehäuseelement 98 gehalten ist. Das Drosselklappengehäuseelement 98 umschließt darüber hinaus, wie Fig. 10 zeigt, eine Ventileinheit 95. Die Ventileinheit 95 weist einen Anschlußstutzen 95.1 für einen Gummischlauch auf. Sie ist durch eine Kraftdunstausnehmung 102 mit dem Inneren des Gasgemischhohlraums 103 verbunden. Die Ventileinheit 95 hat an sich die Aufgabe, insbesondere die vom Tank bzw. Aktivkohlefilter der Tankentlüftung kommenden Benzindämpfe entsprechend zu steuern. Sie ist ein elektromagnetisch betätigbares Ventil (AKF-Ventil), umfassend eine ringförmig ausgebildete Magnetspule, die einen in axialer Richtung der Magnetspule hin und her bewegbare Magnetanker aus metallischem Werkstoff umschließt, wobei der Magnetanker auf der dem Ventilsitz zugewandten Stirnseite mit einem Dichtkörper aus elastomerem Werkstoff versehen ist. Der Magnetanker und der Dichtkörper sind formschlüssig miteinander verbunden. Bei dem elektromagnetisch betätigbaren Ventil handelt es sich um ein Komplett-Bauteil das insbesondere in der EP 06 23 772 A2 ausführlich beschrieben ist.

Der Ventileinheit 95 gegenüberliegend ist eine Zentralsteckereinheit 96 angeordnet. Im Gehäuseelement ist ein Leitungskanal 101 vorgesehen. Das Gehäuseelement 98 umschließt dabei darüber hinaus eine Drosselklappensteuereinheit 106. Sie ist gemäß Fig. 9 unmittelbar hinter der Stellmotoreinheit 91 positioniert.

Eine andere Möglichkeit der Unterbringung einer Steuereinheit ist in den Fig. 7a und 7b gezeigt. Hier wird eine Drosselklappensteuereinheit im Inneren eines Gehäusedeckelelements 65 angeordnet. Wesentlich ist, daß Luft/h und dem Drosselklappenwinkel gilt in analoger 35 in beiden Fällen die Steuereinheit 66 bzw. 106 vor äußeren Einflüssen geschützt direkter Bestandteil der Drosselklappeneinheit ist. Innerhalb des Gehäuseelements zu verlegende Steuerleitungen können geschützt in den Leitungskanal 101 geführt werden und zentral über die 40 Zentralsteckereinheit 96 nach außen geleitet werden. Um eine Temperatursensoreinheit 94 gleichfalls vor äu-Beren Einflüssen geschützt zu positionieren, ist diese im Inneren der Zentralsteckereinheit 96 angeordnet.

Die Arbeitsweise der Notlauf-Luftsteuereinrichtung, wie sie in den Fig. 9 und 10 dargestellt ist, sei erläutert: Wird das Gaspedal betätigt, wird dessen Stellungssignal auf die Drosselklappensteuereinheit 106 übertragen. Die Stellmotoreinheit 91 mit der Rotoreinheit 97 sorgt dabei dafür, daß der Drosselklappenwinkel von der Drosselklappenschließstellung DS bis hin zur Vollgasstellung VL entsprechend verstellt wird. Hierdurch wird ein Luftdurchsatz gewährleistet, der für die Bereitstellung eines entsprechenden Gemisches erforderlich ist. Mit Hilfe der Winkelsensoreinheit 93 wird der entsprechende Drosselklappenwinkel gemessen und für eine weitere Verarbeitung bereitgestellt.

Fällt die Stellmotoreinheit 91 aus, wird durch entsprechende Rückstellelemente das Drosselklappenelement 100 in die Drosselklappenschließstellung DS zurückgefahren. Danach wird die Ventileinheit mit einem Notlaufstellungssignal angesteuert. Das Notlaufstellungssignal führt zu einem dauerhaften Öffnen der Ventileinheit 95, und zwar wird die Öffnung so weit gestellt, daß ein Luftdurchsatz von etwa 40 kg Luft/h gewährleistet kohlefilter der Tankentlüftung dem Luftdurchsatzhohlraum 103 zugeführt. Die so zugeführte Luftmenge reicht, wie bereits beschrieben, aus, um das Fahrzeug

aus einer Gefahrenzone heraus zu bewegen bzw. es zu einer Werkstatt zur Behebung des Schadens zu fahren. Die Ansteuerung der Ventileinheit 95 sollte dabei so vorgenommen werden, daß sie von den üblicherweise verwendeten Steuersignalen unabhängig ist. Es ist zu gewährleisten, daß selbst bei Ausfall der Steuereinheit bzw. der Stromversorgung zur Drosselklappeneinheit 90 ein separates Ansteuern der Ventileinheit 95 gegeben

10 Bezugszeichenliste 1 Drosselklappeneinheit 2 Drosselklappenelement 3 Drosselklappenwellenelement 15 4 Gehäuseelement 5 Stellmotoreinheit 6 Anschlaghebelelement 7 Verstellschraubeneiement 8 Rückstellfederelement 20 9 Öffnerfederelement 10 Anschlagelement 11 Verstelleinheit 51,51' Drosselklappeneinheit 52, 52' Drosselklappenelement 25 53, 53' Drosselklappenwellenelement 54, 54' Gehäuseelement 55, 55' Torque-Motor (Einrichtungs-Motor) 58, 58' Rückstellfedereinheit(en) 61,61' Verstelleinheit 30 62, 62' Luftdurchsatzhohlraum 63, 63' Luftdurchsatzhohlraum 65 Gehäusedeckelelement 66 Drosselklappensteuereinheit 90 Drosselklappeneinheit 35 91 Stellmotoreinheit 92 Luftdurchsatzhohlraum 93 Winkelsensoreinheit 93.1 stationäre Einheit 93.2 rotierende Einheit 40 94 Temperatursensoreinheit 95 Ventileinheit 95.1 Anschlußstutzen 96 Zentralsteckereinheit 97 Rotoreinheit 45 98 Gehäuseelement 99 Drosselklappenwellenelement 100 Drosselklappenelement 101 Leitungskanal 102 Kraftstoffdunstausnehmung 50 103 Luftdurchsatzhohlraum 106 Drosselklappensteuereinheit 107 Verstelleinheit LHP1 Limp-Home-Point LHP2 Limp-Home-Point 55 LHP3 Limp-Home-Point VL Vollgasstellung MS Leerlaufstellung

Patentansprüche

DS Drosselklappenschlußstellung

M Motorbewegung

a Drosselklappenwinkel.

F Federbewegung

L Luftdurchsatz

1. Drosselklappenvorrichtung, bestehend aus einem Gehäuseelement (4; 54; 54'; 98),

- einem Drosselklappenwellenelement (3:53; 53'; 99), an dem ein im Gehäuseelement (4; 54; 54'; 98) zwischen einem ersten Luftdurchsatzholraum (62; 62'; 92) und einem zweiten zu einem Fahrzeug-Motor führende Luftdurchsatzhohlraum (63, 63'; 103) angeordnetes Drosselklappenelement (2; 52; 52'; 100) verstellbar in wenigstens einer Schließstellung (DS), einer Leerlaufstellung (MS) und einer Vollgasstellung (VS) gehalten ist, und

- einer Verstelleinheit (11; 61; 61'; 107), die wenigstens eine Stellmotoreinheit (5; 55; 55'; 91) enthält und die mit dem Drosselklappenwellenelement (3; 53; 53'; 99) verbunden ist, dadurch gekennzeichnet, daß der zweite Luftdurchsatzhohlraum (63; 63'; 103) mit einer Notlauf-Luftsteuereinrichtung (2, 3, 8, 9, 10, LHP1; 52, 55, 58, LHP2; 52', 55', 58', LHP3; 95, 102) verbunden ist, mit der so viel Luft zuführbar ist, daß bei Ausfall der Stellmotoreinheit (5; 55; 55'; 91) ein Fahrzeug bewegbar ist.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Notlauf-Luftsteuereinrichtung

derart ausgebildet ist,

daß in der Verstelleinheit (11) ein Rückstellfederelement (8) und ein aber entgegengesetzt wirkendes, Öffnerfederelement (9) kraftschlüssig mit dem Drosselklappenwellenelement (3) verbunden sind,

- daß das Rückstellfederelement (8) an einem Anschlagelement (10) anschlägt und gespannt ist, wenn das Drosselklappenwellenelement (3) durch die Stellmotoreinheit (5) in Richtung der Vollgasstellung (VL) gedreht ist und

 daß die Öffnungsfeder (9) an das Anschlagelement (11) anschlägt und gespannt ist, wenn das Drosselklappenwellenelement (3) durch die Stellmotoreinheit (5) in der Leerlaufstellung (MS) gehalten ist,

so daß das Drosselklappenelement (2) bei Ausfall der Stellmotoreinheit (5) eine Position (LHP1) einnimmt, die einen solchen Luftdurchsatz (L) gewährleistet, daß das Fahrzeug bewegbar ist.

3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Notlauf-Luftsteuereinrichtung derart ausgebildet ist,

60

65

daß eine am Gehäuseelement (98) angeordnete Ventileinheit (95) mit einer durch das Gehäuseelement (98) führenden Kraftstoffdunstausnehmung (102) mit dem zweiten Luftdurchsatzhohlraum (103) verbunden ist und

daß die Ventileinheit (95) bei Ausfall der Stellmotoreinheit (91) derart ansteuerbar ist, daß von einem Tank bzw. über eine Tankentlüftung der Luftdurchsatz (L) für ein Bewegen

des Fahrzeugs gewährleistet ist.

4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Notlauf-Luftsteuereinrichtung derart ausgebildet ist,

- daß in der Verstelleinheit (61; 61') wenigstens eine Rückstellfedereinheit (58; 58') angeordnet ist und
- daß die Stellmotoreinheit als ein Einrichtungs-Motor (55, 55') ausgebildet ist, dessen Motorbewegung (M) einer Federbewegung der Rückstellfedereinheit (58; 58') entgegengesetzt ist.

— so daß das Drosselklappenelement (52; 52') bei Ausfall des Einrichtungs-Motors (55; 55') den Luftdurchsatz (L) gewährleistet, daß das Fahrzeug bewegbar ist.

5. Vorrichtung nach Anspruch 1 oder 2, 1 oder 3 oder 1 oder 4, dadurch gekennzeichnet, daß das Drosselklappenelement (2; 52; 52') in folgenden Positionen, die den Luftdurchsatz bei Ausfall der Stellmotoreinheit bzw. des Einrichtung-Motors sichern, haltbar ist:

a) oberhalb der Leerlaufstellung (MS) in einem

ersten Limp-Home-Punkt (LHP1), b) unterhalb der Drosselklappenschließstel-

lung (DS) in einem zweiten Limp-Home-Punkt (LHP2),

c) oberhalb der Vollgasstellung (VL) in einem dritten Limp-Home-Punkt (LHP3).

6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Federmoment des Rückstellfederelements (8) größer ist als das 20 des Öffnungsfederelements (9).

7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Torque-Motor (55; 55') eine Drehrichtung bezogen auf das Drosselklappenelement (52; 52') von der Vollgasstellung (VL) zur Drosselklappenschließstellung (DS) oder von der Drosselklappenschließstellung (DS) zur Vollgasstellung (VL) hat.

8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Rückstell- und 30 das Öffnerfederelement (8, 9) und die Rückstellfedereinheit(en) (58; 58') als Spiralfedern ausgebildet sind.

9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Ventileinheit (95) 35 ein elektromagnetisch betätigbares Ventil, das eine im wesentlichen ringförmige Magnetspule umfaßt, die einen in axialer Richtung hin und her bewegbaren Magnetanker aus metallischem Werkstoff umschließt, wobei der Magnetanker auf der dem Ventilsitz zugewandten Stirnseite mit einem Dichtkörper aus elastomerem Werkstoff verschlossen ist und wobei der Magnetanker und der Dichtkörper formschlüssig miteinander verbunden sind.

10. Vorrichtung nach einem der Ansprüche 1 bis 9, 45 dadurch gekennzeichnet, daß die Steuereinheit (66; 106) im Gehäusedeckelelement (65) oder im Gehäuseelement (98) angeordnet ist.

11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Luftdurchsatz (L) 50 20 bis 80 kg Luft/h, vorzugsweise 40 kg Luft/h beträgt

Hierzu 8 Seite(n) Zeichnungen

55

60

- Leerseite -

Offenlegungstag:

DE 195 12 916 A1 F 02 D 9/02

21. Dezember 1995

Fig.1

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 195 12 918 A1 F 02 D 9/02**21. Dezember 1995

Fig.3

Fig.2

Offenlegungstag:

DE 195 12 916 A1 F 02 D 9/02

21. Dezember 1995

508 051/496

Offenlegungstag:

DE 196 12 916 A1 F 02 D 9/02

21. Dezember 1995

Nummer: Int. Cl.⁶; Offenlegungstag: DE 196 12 916 A1 F 02 D 9/02 21. Dezember 1995

508 051/496

Nummer: Int. Cl.⁶: Offenlegungstag: DE 195 12 916 A1 F 02 D 9/02 21. Dezember 1995

Offenlegungstag:

DE 196 12 916 A1 F 02 D 9/02

21. Dezember 1995

508 051/496

Offenlegungstag:

DE 195 12 916 A1 F 02 D 9/02

21. Dezember 1995

