AT MIL TORIAL

UNDERSTAND PROVISION AND MM AR GUMENT $1 \sqrt{2}$ 2) DYNAMIC AROGR AND INDUCTION ARG A GAIN PYTHON IMPLEM OF INDUCTION ARGUMENT

Imperial College London

Algorithmic Trading and Machine Learning PROBLEM SET 2

Friday 27 November 2020 Claudio Bellani, c.bellani17@imperial.ac.uk

Exercise 1. Consider the following trade execution setting. Time t is discrete, and it ranges from 0, start of the execution, to T, execution horizon. Let X_t denote the time-t quantity left to execute by time T. Let S_t denote the time-t price of the asset being traded. We assume both permanent and transient price impact and we let S_t be

$$S_t = s_0 + \sigma s_0 W_t - \theta(X_t - x_0) - \gamma \sum_{u=1}^t \Delta X_u e^{-\rho(t-u)},$$
(1)

where s_0 is the initial value of the asset price, $-\Delta X_{t+1} = -X_{t+1} + X_t$ is the quantity executed in the subinterval [t, t+1], and W is a standard one-dimensional Brownian motion. We let \mathfrak{F} be the filtration generated by W.

1.1 Obizhaeva&Wang (2012). Consider the following expected execution cost

$$F(t, s, \{X_u\}_{u=t}^T) = \mathbb{E}_t \left[\sum_{u=t}^{T-1} (-\Delta X_{u+1}) \left(S_u - \alpha \Delta X_{u+1} \right) \middle| S_t = s \right], \tag{2}$$

where S_t is as in equation (1), and $\alpha \geq 0$. Find the optimal execution strategy

$$\{X_t^{\star}\}_{t=0}^T = \operatorname{argmin} \left\{ F(0, s_0, \{X_t\}_{t=0}^T) : X_{t+1} \hat{\in} \mathfrak{F}_t \forall t, \ X_0 = x_0, \ X_T = 0 \right\}$$

Exercise 2. Consider the following trade execution setting. Time t is continuous and it ranges from 0, start of the execution, to 1, execution horizon. Let X_t denote the time-t quantity left to execute by time 1. Let S_t denote the time-t price of the asset being traded. Let \mathfrak{F} be the market information filtration. Given a finite collection of trading times $\{t_n\}$ in the unit interval [0,1], define

$$\mathcal{A}(\{t_n\}) := \Big\{ X : [0,1] \to \mathbb{R} : \ X \text{ is piecewise constant, right-continuous, } X \text{ is } \mathfrak{F}\text{-predictable,}$$

$$X \text{ has discontinuities at } \{t_u\}, \ X_0 = x_0, \ X_1 = 0 \Big\}.$$

This is the set $\mathcal{A}(\{t_n\})$ of all piecewise constant right-continuous predictable processes with jump times among the specified $\{t_n\}$. For a generic X in $\mathcal{A}(\{t_n\})$ we set $dX_t := X_t - X_{t-} = \lim_{\epsilon \downarrow 0} (X_t - X_{t-\epsilon})$, so that

$$dX_t = \sum_n x_n \mathbb{1}\{t = t_n\},\,$$

where $x_{n+1} := X_{t_{n+1}} - X_{t_n}$ for $n = 0, \ldots$ For any bounded \mathbb{R} -valued function $\kappa = \kappa(s, t)$ defined on $[0, 1] \times [0, 1]$ we have

$$\int_0^t \kappa(s,t)dX_s = \sum_{t_n \le t} \kappa(t_n,t)x_n.$$

Let N be a positive integer. Define $t_n^{(N)} := n/N$, and $\mathcal{A}^{(N)} := \mathcal{A}(\{t_n^{(N)}\})$.

2.1 Find

$$X^{(N),\star} = \operatorname{argmin} \left\{ \mathbb{E} \left[-\int_0^1 S_t^{(N)} dX_t^{(N)} \right] : X^{(N)} \in \mathcal{A}^{(N)} \right\},$$

where

$$S_t^{(N)} = s_0 - \int_0^t \Big(\theta + \kappa(s,t)\Big) dX_s^{(N)} + \sigma s_0 W_t,$$

where $\kappa(s,t) = \gamma \exp(-\rho(t-s))$, and W is a standard one-dimensional Brownian motion.

2.2 Does $X^{(N),\star}$ have a pointwise limit as $N \to \infty$? If it does, establish the limit.

Problem Set 2 - Solutions

EXERCICE 1

Observe that we can write
$$S_{t+1} = (1 - e^{-5})(s_0 + rs_0 hb_0 - \theta(X_t - x_0)) + e^{-5}S_t - (\theta+8)\Delta X_{t+1} + rs_0 \Delta h_{t+1}$$

We can compute

$$\begin{aligned}
&\text{Et} \left[S_{t+1} \left| S_{t} \right|^{2} , X_{t} \right] \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right) \varphi(x) + e^{-g} + \left(g \right) Y_{t} \\
&= \left(1 - e^{-g} \right$$

where $\varphi(x) := s_0 - \theta_x + \theta_{x_0}$. Similarly we can compute

Define

C* (3x)= inf {F(t, s, {X}) : Xu, ê fu tu, Xu=+, X==0}

and assume the functional form.

G (5x,v):= E [-OX+1) (St - XX+1) S=5 X=+, OX+1, -v) Given the assumed functional form of C* we can express for te T-1 6 (sxr) = v (s+dv) + Gt+1 (x-v)2 + G, to, E, St., St. = , X=x, SX, = -v) + Czer(x-v) Et [St. | St=s, Xt=x, Xt+,=-v] + C4/61(X-V) + GE+, El Sty Ster Ster Ster - W In the other hard, give the constraint X=0, C+ (5+) = G+ (5+x+) = x(5+x+), CIT-1 = 4, CZT-1=0, GT-1=1, CMT-1=0, GT-10, G=0.

PAGE 2

the indiction argument proceeds as follows:

-IX* = arginin {G_{E}(\$,\$,\$v): v eP}}

G_{E}(\$,\$x) = G_{E}(\$,\$x,-IX*_{E+1})

Equating G_{E}(\$,\$x) = C_{E}(\$,\$x) we get (backward) recursive relations for the coefficients C1, 1, 5, 1,

EXERCISE 2.1 Notra that $S_{t_{m+1}}^{(N)} = S_{t_m}^{(N)} - (\theta + \gamma) x_{m+1}$ and thus - Jo 5 (N) dX(N) = - \(\sum_{M < N} \) \(\tau_{n+1} \) \(\tau_{n+1} \) = - [(S(N) + (8+8) X M+1) X MAN . Perfer X(N). " is the solution to Exercise 1 with the following replacements: 5 4 ON .

EXERCISE 2.2

See PROPOSITION 2 AM OBIZHARVA & WANG (2012)

EXERCISE Notia that EXERCISE OBIZHAWA & WANG ROIZ See PROPOSITION

EXERCISE OBIZHAEVA & WANG PROPOSITION