02155 - Computer architecture and Engineering Fall 2022

Assignment 2

Group 31

Daniel F. Hauge (s201186)

This report contains 4 pages

A2.1

a)

P1

Instruction	1	2	3	4	5	6	7	8	9
addi a2, x0, 5	X								
lw a1, 0(a0)		x							
addi a1, a1, 5			x						
sw a 1 , $0(a0)$				X					
add a 1 , x 0 , a 2					X				
beq a1 , $x0$, branch1						x			
beq a 1 , a 2 , branch 2							x		
addi a 1 , a 1 , 6								x	
addi $a2$, $a2$, 7									X

P2

Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
addi a2, x0, 5	F	D	E	M	W																
lw a1, 0(a0)		F	D	E	M	W															
addi a1, a1, 5		İ	F	D	D	D	E	M	W												
sw a1 , 0(a0)		İ		F	F	F	D	D	D	E	M	W									
add a1 , x0 , a2				İ			F	F	F	D	E	M	W								
beq a1 , x0 , branch1										F	D	D	D	E	M	W					
beq a1, a2, branch2											F	F	F	D	E	M	W				
add a1 , a1 , a1														F	D						
add a2 , a2 , a2															F						
addi a1 , a1 , 6																F	D	E	M	W	
addi a2 , a2 , 7																	F	D	E	M	W

P3

Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
addi a2, x0, 5	F	D	E	M	W											
lw a1, 0(a0)		F	D	E	M	W						İ				
addi a1, a1, 5			F	D	D	E	M	W				İ				
sw a1 , 0(a0)			İ	F	F	D	E	M	W			İ				
add a1 , x0 , a2			İ			F	D	E	M	W		İ	İ			
beq a1 , x0 , branch1			İ				F	D	E	M	W	İ	İ			
beq a1 , a2 , branch2			İ				İ	F	D	E	M	W	İ	İ		
add a1 , a1 , a1			İ				İ	İ	F	D		İ	İ	İ		
add a2 , a2 , a2			İ				İ	İ		F		İ	İ	İ		
addi a1 , a1 , 6			İ				İ	İ			F	D	E	M	W	
addi a2 , a2 , 7				İ								F	D	E	M	w

b)

 $\mathbf{P1}$ requires 9 clock cycles, each taking 10 ns. $T_{P_1} = 9 \cdot 10 ns = 90 ns$

 $\mathbf{P2}$ required 21 clock cycles, each taking 2 ns. $T_{P_2} = 21 \cdot 2ns = 42ns$

 ${\bf P3}$ required 16 clock cycles, each taking 2 ns. $T_{P_3}=16\cdot 2ns=32ns$

 $\mathbf{c})$

Speedup of **P3** over **P1** is: $\frac{T_{P_1}}{T_{P_3}} = 2.8125$

Speedup of **P3** over **P2** is: $\frac{T_{P_2}}{T_{P_3}} = 1,3125$

A2.2

Total amount of cycles required of the program using double precision is given as: $C_{double} = 10^9$ Total amount of cycles spent on FP operations using double precision is:

$$C_{FP-double} = 10^9 \cdot 0.6 = 6 \cdot 10^8$$

Total amount of cycles spent on non-FP operations is:

$$C_R = 10^9 \cdot 0.4 = 4 \cdot 10^8$$

With single precision (binary32) and all FP operations being independent, 2 operations can always be executed in parallel, thus halving the required FP operations.

$$C_{FP\text{-}single} = \frac{C_{FP\text{-}double}}{2} = 3 \cdot 10^8$$

The total clock cycles required with single precision is:

$$C_{single} = C_{FP\text{-}single} + C_R = 7 \cdot 10^8$$

With half precision (binary16) and all FP operations being independent, 4 operations can be executed in parallel, thus quartering the required FP operations.

$$C_{FP\text{-}half} = \frac{C_{FP\text{-}double}}{4} = 1.5 \cdot 10^8$$

The total clock cycles required with single precision is:

$$C_{half} = C_{FP\text{-}half} + C_R = 5.5 \cdot 10^8$$

Execution time is found with the following equation:

$$\frac{CPU\ Clock\ Cycles}{Clock\ rate} = CPU\ Time$$

The execution times are:

$$\begin{split} T_{double} &= \frac{C_{double}}{f} = \frac{10^9}{4\,GHz} = \frac{10^9}{4\cdot 10^9 Hz} = 0.25s = 250ms \\ T_{single} &= \frac{C_{single}}{f} = \frac{7\cdot 10^8}{4\,GHz} = 175ms \\ T_{half} &= \frac{C_{half}}{f} = \frac{5.5\cdot 10^8}{4\,GHz} = 137.5ms \end{split}$$

Speedup of Single precision over Double precision is: $\frac{T_{double}}{T_{single}} \approx 1.428$

Speedup of Half precision over Double precision is: $\frac{T_{double}}{T_{half}} \approx 1,818$

A2.3

A2.4