PV-C01-Quiz1

1. Which of the followings are not formal verification methods?
☐ model checking
☐ abstract interpretation
✓ number theory
☐ static analysis
☐ type systems
2. What are the kinds of program analysis?
✓ static & dynamic analysis
☐ robust analysis
easy-peasy analysis
☐ introspect analysis
3. How is static analysis of a program performed?
☐ while running the program
✓ without running the program
☐ after the execution of the program
☐ none of the above
PV-C02-Quiz1
1. Hoare logic
✓ assumes termination
□ proves termination
☐ implies termination
☐ none of the above
2. How is reasoning in Hoare logic done?
✓ backwards, from postcondition to precondition
☐ forwards, from precondition to postcondition
□ one step forward, two steps backwards
☐ none of the above
3. Consider the assertions $P = (x > 1)$ and $Q = (x = 7)$. Which of the following is true?
☐ P is stronger than Q
✓ P is weaker than Q
☐ Q is weaker than P

PV-C03-Quiz1

1. For a Hoare triple of the form {P} C {Q}, which of the followings is false?

☐ P is the precondition
☑ C is a first-order formula
☐ Q is the postcondition
☐ P is a first-order formula
2. A loop invariant must hold
☐ throughout the execution of the loop body
✓ between loop iterations
☐ never holds
☐ none of the above
3. Which of the followings is true?
☐ The loop invariant can automatically be deduced
There is no algorithm to find the loop invariant
☐ Loop invariants are always true
☐ If the loop terminates, the loop condition must be true
PV-C04-Quiz1
1. Which of the followings is true for Weakest Precondition calculus?
\square Given a precondition P, some code C, and postcondition Q, it establishes if the Hoare triple
{P} C {Q} is true.
☐ Given some code C and a precondition P, it finds some unique Q which is the weakest
postcondition for C and P.
□ Given some code C and a postcondition Q, it finds all P such that the Hoare triple {P} C {Q is true.
☑ Given some code C and a postcondition Q, it finds the unique P which is the weakest
precondition for C and Q.
2. What does it mean total correctness?
☐ it is equivalent with partial correctness
☑ it is equivalent with termination and partial correctness
☐ it is equivalent with termination
□ none of the above
3. What is the rule for sequences in Weakest Precondition calculus?
\vee wp(C1; C2,Q) \equiv wp(C1,wp(C2,Q))
\square wp(C1; C2,Q) \equiv wp(C1,Q)
4. In the Weakest Precondition calculus, finding a loop invariant is
□ easy
☐ done in PTIME
✓ undecidable
☐ done in EXPTIME

PV-C05-Quiz1

How is a state represented in Separation logic?
☐ Store
☐ Heap
☑ Store x Heap
☐ none of the above
2. What is aliasing?
two different program variables containing the same location
☐ two commands with the same semantics
\square when a program variable is recaptured
☐ none of the above
3. Which of the following connectives is in separation logic?
✓ -
□ AG
PV-C06-Quiz1
1. What is a SAT solver?
☐ an imperative programming language
a program that automatically decides whether a propositional formula is satisfiable
☐ a functional programming language
☐ an algorithm for computing the CNF of a formula
2. Which of the following formulas is in CNF, where - stands for negation of a variable?
✓ (p / -q) /\ (r / p)
\Box (p \land -q) / (r \land p)
□ p / -q / (r /\ p)
☐ none of the above
3. What clause do you obtain after applying the resolution rule for the clauses {x1, x2, x3} and {
x2,x4}, where - stands for negation of a variable?
$\Box \{x1,x2,x3,-x2,x4\}$
□ {x1,x2,x3,x4}
✓ {x1,x3,x4}
☐ {x1,x3} and {x4}
4. Which of the followings is the representation as vectors of vectors of literals forthe CNF form
$(x1 / x2) \land (-x2 / x3)$, where - stands for negation?
✓ 1,2],[-2,3
□ [1,2,-2,3]
\square [1,2,3]

_					_
()	- 4	വ		റ	വ
1 1	- 1	/		_	-5
-		, –	1.5	_	, $f \cup$

PV-C07-Quiz1

1.	Consider a first-order signature with a constant symbol a, a function symbol f of arity 1, and a predicate symbol P of arity 1. Which of the followings is a term? □ P(a) v f(f(a)) □ P(a) -> f(a) □ f(P(a))
2.	Consider a first-order signature with a constant symbol a, a function symbol f of arity 1, and a
	predicate symbol P of arity 1. Which of the followings is an atomic formula in first-order logic? ✓ P(a) ☐ f(f(a)) ☐ P(a) -> f(a) ☐ f(P(a))
3.	Consider a first-order signature with a constant symbol a, a function symbol f of arity 1, and a predicate symbol P of arity 1. Which of the followings is a formula in first-order logic? ✓ P(a) / P(f(a)) ☐ f(f(a)) ☐ P(a) -> f(a) ☐ P(P(a))
'	/-C08-Quiz1
1.	For what can we use the Nelson-Oppen method?
	☐ to solve the SAT problem
	☐ for static analysis
	✓ for combining theory solvers
	□ none of the above
2.	In symbolic execution, at the beginning of the analysis, the path constraint is ☐ undefined
	☐ a random first-order formula
	✓ the syntactic symbol for true
	☐ the syntactic symbol for false
3.	What is concolic execution good for?
	□ solving the SAT problem
	✓ driving the symbolic execution
	□ combining theory solvers
	I I none of the above