Perceptual Losses for Real-Time Style Transfer and Super-Resolution

Stanford, 2016 _{발표} 최성욱

이미지 변환의 기존 방법들

	Per pixel loss function	Perceptual loss function		
최적화	Low-level pixel 정보 간의 차이 (Output vs ground-truth)	High-level feature 간의 차이		
구조	Feed-forward CNN	Forward CNN + Backward optimization		
활용	Super-resolution, Segmentation	Image generation		
단점	Perceptual difference 인식 못함	Computationally expensive		

두 방법론의 장점을 결합

- Per-pixel loss 아닌 perceptual loss function 이용

&

- Feed-forward 방식으로 quick approximation 가능

Image transform network (f_W)

Deep residual CNN (parameter ; W)

Input image (x) 를 output image (\hat{y}) 로 변환시킴 $(\hat{y} = f_W(x))$

$$W^* = \arg\min_{W} \mathbf{E}_{x,\{y_i\}} \left[\sum_{i=1}^{j} \lambda_i \ell_i(f_W(x), y_i) \right]$$

* loss function $l_i(\hat{y}, y_i)$ = output image \hat{y} 과 target image y_i 의 feature vector(또는 matrix) 의 차이

Loss network (Φ)

CNN(VGG-16), pre-trained for image classification

→ Perceptual & semantic information 을 측정

 $\Phi_j(y)$ = Loss network Φ 가 image y 를 process 할 때, j-th layer 에서 발생하는 feature vector

$$\ell_{feat}^{\phi,j}(\hat{y},y) = \frac{1}{C_i H_i W_i} \|\phi_j(\hat{y}) - \phi_j(y)\|_2^2$$

$$\ell_{style}^{\phi,j}(\hat{y},y) = \|G_j^{\phi}(\hat{y}) - G_j^{\phi}(y)\|_F^2$$

$$\left(G_j^{\phi}(x)_{c,c'} = \frac{1}{C_j H_j W_j} \sum_{h=1}^{H_j} \sum_{w=1}^{W_j} \phi_j(x)_{h,w,c} \phi_j(x)_{h,w,c'} \right)$$

$$W^* = \arg\min_{W} \mathbf{E}_{x,\{y_i\}} \left[\sum_{i=1}^{n} \lambda_i \ell_i(\underline{f_W(x)}, y_i) \right]$$

적용

Style transfer & Super-resolution

- 정답이 있는 문제가 아니기 때문에 (ill-posed), input image 에 대한 semantic reasoning 이 필요한 task

- Perceptual loss function 쓰면 semantic knowledge 전달 가능!

Task 에 따른 target 설정

- Style transfer 의 경우
 - ① content target y_c = input image x ② style target = y_s (output image \hat{y} 은 그 둘을 combine 한 결과)
- Super-resolution 의 경우
 - ① input image $x \vdash low$ -resolution image,
 - ② y_c 는 ground-truth high-resolution image (y_s 는 안 쓰임)

Higher layer 에서 reconstruct 한 것일수록 (오른쪽) 원래의 pixel 정보 많이 일어버리기 때문에 blurring 심해진다

Experiments

1. Style transfer

$$\hat{y} = \arg\min_{y} \lambda_c \ell_{feat}^{\phi, j}(y, y_c) + \lambda_s \ell_{style}^{\phi, J}(y, y_s) + \lambda_{TV} \ell_{TV}(y)$$

output image \hat{y} (=fw(x))를 white noise image 로 초기화 후 optimize \rightarrow loss 줄이는 방향으로 W 형성되며 image 나타남

Training details

- MS-COCO dataset
- 80k training images resized to 256x256 patches.
- Batch size: 4
- 40k iterations (~2 epochs)
- Optimizer used: Adam
- Learning rate: 1×10^{-3}
- Training takes ~4 hours on Titan X GPU

Style
The Muse,
Pablo Picasso,
1935

	Gatys et al. [11]				Speedup	
Image Size					100 300	
256 imes 256	3.17	9.52s	15.86s	0.015s	212x 636x / 1	060x
512 imes 512	10.97	32.91s	54.85s	0.05s	205x 615x 1	026x
1024×1024	42.89	128.66s	214.44s	0.21s	208x 625x 1	042x

2. Single-Image Super-Resolution

Issues to be defined

① ill-posed problem 이므로 semantic information 이 중요 : per-pixel loss 대신 Feature reconstruction loss 사용

② PSNR or SSIM 대신 Qualitative metrics 이용해서 평가

Training details

- 288x288 patches from 10k images from the MS-COCO
- Prepared low-resolution inputs by blurring with a Gaussian kernel (width σ =1.0) and downsampling with bicubic interpolation.
- Batch size: 4
- Iterations: 200k
- Optimizer: Adam
- Learning rate: 1×10^{-3}
- Compared against Super-resolution CNN

Ground Truth Bicubic Ours (ℓ_{pixel}) SRCNN [13] Ours (ℓ_{feat}) This image 31.78 / 0.8577 31.47 / 0.8573 32.99 / 0.8784 29.24 / 0.7841 Set5 mean 28.43 / 0.8114 28.40 / 0.8205 30.48 / 0.8628 27.09 / 0.7680

결론

 Feed-forward image transformation network combined with Perceptual loss function

- Style transfer) Similar quality, but much faster speed

- Super-resolution) Better reconstruction (edge, details)