

Državni izpitni center

SPOMLADANSKI IZPITNI ROK

NAVODILA ZA OCENJEVANJE

Petek, 14. junij 2019

SPLOŠNA MATURA

Odgovor

IZPITNA POLA 1

Naloga	Odgovor
1	□•
7	₽
8	り •
4	り •
9	∀•
9	₽
2	₽
8	□ •
6	□ •

Odgovor	0	O	O •	O	٧	Q •	Q •	٧	O •
Naloga	10	7	12	13	14	15	16	. 41	18

Naloga	Odgovor
19	4 ₽
20	○
21	• C
22	○
23	4 B
24	₽
25	□ •
56	٧.
27	○

♦ B

Naloga 28 29 30 31 32 33 34 35

∵

∢ **⇔**

⋖ •

ပ •

∵

B	-
O.	12
O.	13
∀*	14
◆ B	15
◆ B	16
• D	17
0 •	18

Za vsak pravilen odgovor 1 točka.

Skupno število točk IP 1: 35

IZPITNA POLA 2

1. Merjenje

ter a preglednica: a b	2002	Dodatna navodila
stevilo rež na lilimeter d [μm] φ [º] 11 ma milimeter 50 20 1,84 31,1 50 20 1,84 31,1 50 20 1,84 31,1 50 5,00 7,37 7,80 200 5,00 7,37 7,80 250 4,00 9,37 6,14 300 3,33 11,1 5,19 24 25		Izračun d v μm 1 točka.
50 20 1,84 31,1 100 10,0 3,61 15,9 150 6,67 5,63 10,2 200 5,00 7,37 7,80 250 4,00 9,37 6,14 300 3,33 11,1 5,19 2 of [μm] ↑ 12 8 8	φ [°] $\frac{1}{\sin\varphi}$	Izračun 1/sinợ 1 točka. Kandidat dobi točko za posamezen stolpec, če je v stolpcu največ en
100 10,0 3,61 15,9 150 6,67 5,63 10,2 200 5,00 7,37 7,80 250 4,00 9,37 6,14 300 3,33 11,,1 5,19 2	1,84 31,1	napačen rezultat.
150 6,67 5,63 10,2 200 5,00 7,37 7,80 250 4,00 9,37 6,14 300 3,33 11,1 5,19 2 • graf: a [lum 12 18 8 9 10,2 10,2 10,2 10,4 10,5 10,4 10,5 10,6 10,6 10,7 10,7 10,8 10,9	3,61	
200 5,00 7,37 7,80 250 4,00 9,37 6,14 300 3,33 111,1 5,19 300 2,20 20 20 20 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5,63	
250 4,00 9,37 6,14 300 3,33 111,1 5,19 300 2,0 4,00 9,37 6,14 2,19 3,33 111,1 5,19 3,19 3,33 111,1 5,19 3,19 3,19 3,19 3,19 3,19 3,19 3,19 3	7,37	
300 3,33 11,1 5,19 * graf: d [\text{lum}] ^4 16 8 8	9,37	
2 • graf: d [11,1	
	Pravi	Pravilno vnesene točke 1 točka.
	Prem	Premica, ki se točkam najbolje prilega 1 točka.
	•	
70 74 70 74 70	10 15 20 25 30 254/cir.()	
06 62 02 61 01 6	67 07 61	

			-
£.	7	• koeficient: $k=0.64~\mu \mathrm{m}$ $k=\frac{d_2-d_1}{\sin \varphi_1}=0.64~\mu \mathrm{m}$ $\sin \varphi_2-\frac{1}{\sin \varphi_1}$	Postopek 1 točka. Rezultat 1 točka. Za pravilne štejemo vrednosti koeficienta med 0,62 μm in 0,66 μm.
1.4	-	• valovna dolžina: $\lambda=0.64~\mu \mathrm{m}$ $\lambda=k=0.64~\mu \mathrm{m}$	Rezultat 1 točka.
1.5	_	 odgovor: Laserska svetloba je rdeče barve. 	Pravilen odgovor 1 točka.
1.6	2	• zapisa: $L=(10,00\pm0,03)$ m , $L=10,00$ m(1±0,003) $\delta_L=\frac{\Delta L}{L}=\frac{0,03}{10,00}=0,003$	Izračunana relativna napaka 1 točka. Pravilna zapisa z absolutno in relativno napako 1 točka.
1.7	2	• razdalja: $x=32,1$ cm 1,84° = 0,0321 (rd), $x=\varphi L=0,0321\cdot 10,00$ m = 0,321 m	Postopek 1 točka. Rezultat 1 točka.
7.8	က	• absolutna napaka: $\Delta \varphi = 0.02^\circ$ $\delta_x = \frac{\Delta x}{x} = \frac{0.2 \text{ cm}}{32.1 \text{ cm}} = 0.0062$ $\delta_\varphi = \delta_x + \delta_L = 0.0092$ $\Delta \varphi = \varphi \delta_\varphi = 1.84^\circ.0.0092 = 0.017^\circ$	Pravilno izračunana relativna napaka $x \dots 1$ točka. Pravilno izračunana relativna napaka kota \dots 1 točka. Pravilno izračunana absolutna napaka kota \dots 1 točka.

LC.

2. Mehanika

Vpr.		Točke Rešitev	Dodatna navodila
2.1	~	$lacktriangle$ sila teže: 9,8 N $F_g=mg=1{ m kg}\cdot 9$,8 m s $^{-2}=9$,8 N	
2.2	7	• statična komponenta: 8,5 N $F_{\rm s} = F_{\rm g} \cos(\alpha) = 9,8 \; {\rm N} \cdot 0,866 = 8,5 \; {\rm N}$ • dinamična komponenta: 4,9 N $F_{\rm d} = F_{\rm g} \sin(\alpha) = 9,8 \; {\rm N} \cdot 0,5 = 4,9 \; {\rm N}$	Dinamična komponenta 1 točka. Statična komponenta 1 točka.
2.3	8	\bullet sila trenja: 2,6 N $F_{\rm t} = F_{\rm s} k_{\rm t} = 8,5 \; {\rm N} \cdot 0,3 = 2,55 \; {\rm N}$	Postopek 1 točka. Rezultat 1 točka.
2.4	7	• pospešek: 1,2 m s^-2 $\sum F = a \sum m \to a = \frac{\sum F}{\sum m} = \frac{mg - F_{\rm d} - F_{\rm t}}{2m} = 1,17 \text{ m s}^{-2}$	Postopek 1 točka. Rezultat 1 točka.
2.5	7	• čas: 1,6 s $h = \frac{1}{2}at^2 \rightarrow t = \sqrt{\frac{2h}{a}} = 1,6 \text{ s}$	Postopek 1 točka. Rezultat 1 točka.
2.6	-	\bullet opravljeno delo: -3.8 J $A = F_{\rm t}s = -2.55 \; {\rm N\cdot 1,5} \; {\rm m} = -3.83 \; {\rm J}$	
2.7	8	* zmanjšanje potencialne energije: $-7,4$ J $\Delta W_{\rm p} = -mg (h-h \sin(\alpha)) = \\ = -1 {\rm kg \cdot 9,8 m s^{-2} \cdot 1,5 m \cdot (1-0,5) = -7,35 J}$	Postopek 1 točka. Rezultat 1 točka.
2.8	ო	• sunek sile: 3,8 Ns $F \cdot \Delta t = m \cdot \Delta v = m \cdot 2v = 2m\sqrt{2ah} = = 2 \text{ kg}\sqrt{2} \cdot 1,17 \text{ m s}^{-2} \cdot 1,5 \text{ m} = 3,75 \text{ Ns}$	Izraz za hitrost 1 točka. Izraz za sunek sile 1 točka. Rezultat 1 točka.

3. Termodinamika

Vpr.	Točke	Rešitev	Dodatna navodila
3.1	7	lacktriangle plinska enačba: $vV = nRT$	
		lacktriangle poimenovanje količin: p – tlak, V – prostornina, n – množina snovi, R – splošna plinska konstanta, T – temperatura	
3.2	7	◆ masa zraka: 0,17 g	Izraz 1 točka.
		$m = rac{p VM}{RT} = rac{1,00 \cdot 10^5 \mathrm{Pa} 150 \cdot 10^{-6} \mathrm{m}^3 29 \mathrm{kg mol}^{-1}}{8314 \mathrm{J K}^{-1} \mathrm{kmol}^{-1} 300 \mathrm{K}} = 174 \mathrm{mg}$	Rezultat 1 točka.
3.3	7	◆ sprememba prostornine: 2,5 ml	Izraz 1 točka.
		$\Delta V = V_2 - V_1 = rac{V_1 T_2}{T_1} - V_1 = 150 \mathrm{ml} \Big(rac{295 K}{300 K} - 1\Big) = -2,5 \mathrm{ml}$	Rezultat 1 točka.
3.4	7	◆ gostota zraka: 1,2 kg m ⁻³	
		$ ho = rac{m}{V_2} = rac{1,74 \cdot 10^{-4} \; ext{kg}}{147,5 \cdot 10^{-6} \; ext{m}^3} = 1,18 \; ext{kgm}^{-3}$	Nezulal I tocka.
3.5	7	◆ oddana toplota: 0,88 J	Izraz 1 točka.
		$Q=m_{ m z}c_p\DeltaT=$ 1,74 \cdot 10 $^{-4}$ kg 1014 Jkg $^{-1}{ m K}^{-1}$ 5,0 K $=$ 0,882 J	Rezultat 1 točka.
3.6	7	 odgovor: Velikost spremembe notranje energije je manjša od velikosti izmenjane toplote. 	Odgovor 1 točka. Utemelijtev 1 točka.
		 utemeljitev: Med ohlajanjem zunanji zrak stisne zrak v bučki in opravi delo. 	Možne so tudi drugačne fizikalno smiselne utemeljitve.
3.7	-	◆ sprememba višine: 31 cm	
		$\Delta h = \frac{\Delta V}{S} = \frac{2.5 \cdot 10^{-6} \text{ m}^3}{8.0 \cdot 10^{-6} \text{ m}^2} = 0,312 \text{ m}$	
3.8	7	◆ sprememba tlaka: 0,35 kPa	Izraz 1 točka.
		$\Delta p = ho g \Delta h =$ 1,2 kg m $^{-3}$ 9,81 m s $^{-1}$ 30 m $=$ 353 Pa	Rezultat 1 točka.
3.9	-	 odgovor: Kapljica se dvigne. utemeljitev: Tlak okoliškega zraka v 10. nadstropju je nižji kot v pritličju, zato se zrak v bučki nekoliko raztegne. 	

_

4. Elektrika in magnetizem

Vpr.	Točke	Točke Rešitev	Dodatna navodila
4.1	-	$lacktriangle$ energija v akumulatorju: 306 MJ 85000 W \cdot 3600 s = 306 MJ	
4.2	~	$ullet$ energija v kilogramu akumulatorja: 440 kJ $\frac{W}{m} = \frac{306~{ m MJ}}{700~{ m kg}} = 437~{ m kJkg^{-1}}$	
4.3	7	• tok: 380 A $P = UI \rightarrow I = \frac{P}{U} = \frac{150000 \text{ W}}{400 \text{ V}} = 375 \text{ A}$	Izraz 1 točka. Rezultat 1 točka.
4.4	2	\bullet čas vožnje: 68 min $A=Pt\to t=\frac{A}{P}=\frac{306~{\rm MJ}}{75000~{\rm W}}=4080~{\rm s}=68~{\rm min}$	Izraz 1 točka. Rezultat 1 točka.
4.5	7	• presek žice: 75 mm² $S = \frac{S_0}{I_0}I = \frac{1 \text{mm}^2}{10 \text{A}} \cdot 750 \text{A} = 75 \text{mm}^2$	Izraz 1 točka. Rezultat 1 točka.
4.6	-	• gostota magnetnega polja: 3,8 mT $B = \frac{\mu_0 I}{2\pi r} = \frac{4\pi \cdot 10^{-7} \text{ VsA}^{-1} \text{ m}^{-1} \cdot 375 \text{ A}}{2\pi \cdot 0,02 \text{ m}} = 3,75 \text{ mT}$	
4.7	က	• čas polnjenja: 3,4 h $P = 3UI = 3 \cdot 230 \text{ V} \cdot 16 \text{ A} = 11 \text{ kW}$ $Pt\eta = \Delta W_{\text{e}} \rightarrow t = \frac{\Delta W_{\text{e}}}{P\eta} = \frac{306 \text{ MJ} \cdot 0,4}{11 \text{ kW} \cdot 0,9} = 12 \cdot 10^3 \text{ s} = 3,4 \text{ h}$	Izračun moči polnilnice 1 točka. Izraz 1 točka. Rezultat 1 točka.
4.8	က	♦ naboj: 34 kAs $e = \frac{\eta mg \Delta h}{U} = \frac{0.75 \cdot 2300 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 800 \text{ m}}{400 \text{ V}} = 33.8 \text{ kAs}$	Izraz za shranjeno energijo 1 točka. Izraz za naboj 1 točka. Rezultat 1 točka.

5. Nihanje, valovanje in optika

Vpr.	Točke	Točke Rešitev	Dodatna navodila
5.1	8	$ \bullet \mbox{ enačba: } a_0 = \omega^2 x_0 \\ \bullet \mbox{ poimenovanje količin: } a_0 - \mbox{amplituda pospeška, } \omega - \mbox{krožna} \\ \mbox{frekvenca, } x_0 - \mbox{amplituda odmika} $	Zapis enačbe 1 točka. Poimenovanje količin 1 točka. Kandidat lahko krožno frekvenco izrazi s frekvenco ali nihajnim časom.
5.2	7	• frekvenca: $v = 0.89 \text{ Hz}$ $v = \frac{1}{4t} = \frac{1}{4 \cdot 0.28 \text{ s}} = 0.893 \text{ Hz}$	Postopek 1 točka. Rezultat 1 točka.
5.3	7	$ ightharpoonup$ pospešek: $a_0=1,6\mathrm{m/s^2}$ $a_0=4\pi^2\nu^2x_0=4\pi^2\cdot 0,893^2\mathrm{s^{-2}\cdot 0,050}\;\mathrm{m=1,57}\;\mathrm{m/s^2}$	Postopek 1 točka. Rezultat 1 točka.
5.4	8	• gostota: $\rho = 780 \text{ kg/m}^3$ $\rho = \frac{\rho_v g x_0}{a_0 h} = \frac{1000 \text{ kg/m}^3 \cdot 9.81 \text{ m/s}^2 \cdot 0.05 \text{ m}}{1.57 \text{ m/s}^2 \cdot 0.40 \text{ m}} = 781 \frac{\text{kg}}{\text{m}^3}$	Postopek 1 točka. Rezultat 1 točka.
5.5	က	• čas: $t = 5,6$ s $c = \lambda v = 2,0 \text{ m} \cdot 0,893 \text{ s}^{-1} = 1,79 \text{ m/s}$ $t = \frac{L}{c} = \frac{10 \text{ m}}{1,79 \text{ m/s}} = 5,59 \text{ s}$	Hitrost valovanja 1 točka. Postopek izračuna časa 1 točka. Rezultat 1 točka.
5.6	7	• kot: $\alpha = 42^\circ$ $\alpha = \arcsin \frac{2.0 \text{ m}}{3.0 \text{ m}} = 41.8^\circ$	Postopek 1 točka. Rezultat 1 točka.
5.7	7	$lack \bullet$ skupno število ojačitev: 3 ojačitve $N=rac{d\sin{\pi}}{\lambda}=rac{d}{\lambda}=rac{3.0}{2.0}rac{m}{m}=1,5\Rightarrow$ najvišji red ojačitve je 1 Nastane centralna ojačitev in dve ojačitvi 1. reda.	Postopek 1 točka. Odgovor 1 točka.

6

6. Moderna fizika in astronomija

Vpr.	Točke	Rešitev	Dodatna navodila
6.1	~	♦ opis: Cepitev je jedrska reakcija, pri kateri iz težjega jedra nastaneta vsaj dve lažji jedri.	Upoštevamo tudi druge podobne in smiselne odgovore.
6.2	~	◆ pojasnilo: Jedro izotopa ²³⁸ U ima 3 nevtrone več kot jedro izotopa ²³⁵ U .	
6.3	-	imena glavnih sestavnih delov: kontrolna palica	
		betonsko ohišje	
		gorivni element	
6.4	7	• število atomov: $5, 4.10^{27}$ $N = \frac{0.042.50.10^3 \text{ kg} \cdot 6,02.10^{26}}{235 \text{ kg}} = 5,38.10^{27}$	Postopek 1 točka. Izračun 1 točka.
6.5	7	• število atomov na dan: $6,1.10^{24}$ $N_1 = \frac{0,62.5,38.10^{27}}{1,5.365 \text{ dan}} = 6,09.10^{24}$	Postopek 1 točka. Izračun 1 točka.
9.9	м	• moč elektrarne: 2,0 GW $P = \frac{W}{t} = \frac{6,1 \cdot 10^{24} \cdot 173 \text{ MeV}}{24 \cdot 3600 \text{ s}} = 1,95 \text{ GW}$	Pretvorba iz MeV v J 1 točka. Postopek 1 točka. Izračun 1 točka.
6.7	7	• neznano jedro: $^{92}_{36}$ Kr $^{235}_{92}$ U + $^{1}_{0}$ n $\rightarrow ^{236}_{92}$ U $\rightarrow ^{141}_{56}$ Ba + $^{92}_{36}$ Kr $+ 3^{1}_{0}$ n	Pravilni zapis nevtronov ter vrstni števili za Ba in U 1 točka. Neznano jedro 1 točka.

	Pretvorba iz energije v maso 1 točka. Postopek 1 točka. Izračun 1 točka.
: 300	

Skupno število točk IP 2: 45