

Transformations

- Ed Angel
- Professor of Computer Science, Electrical and Computer Engineering, and Media Arts
- University of New Mexico

Objectives

- Introduce standard transformations
 Rotation
 Translation
 Scaling
 Shear
- Derive homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

General Transformations

A transformation maps points to other points and/or vectors to other vectors

Affine Transformations

- Line preserving
- Characteristic of many physically important transformations
 Rigid body transformations: rotation, translation
 Scaling, shear
- Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints

Pipeline Implementation

Notation

We will be working with both coordinate-free representations of transformations and representations within a particular frame

P,Q, R: points in an affine space

u, v, w: vectors in an affine space

a, b, g: scalars

p, q, r: representations of points

-array of 4 scalars in homogeneous coordinates

u, v, w: representations of points

-array of 4 scalars in homogeneous coordinates

Translation

 Move (translate, displace) a point to a new location

Displacement determined by a vector d
 Three degrees of freedom
 P'=P+d

How many ways?

Although we can move a point to a new location in infinite ways, when we move many points there is usually only one way

object

translation: every point displaced by same vector

Translation Using Representations

Using the homogeneous coordinate representation in some frame

Hence
$$p' = p + d$$
 or

$$x'=x+dX$$

$$y'=y+dy$$

$$z'=z+dZ$$

Translation Matrix

We can also express translation using a 4 x 4 matrix T in homogeneous coordinates p'=Tp where

$$\mathbf{T} = \mathbf{T}(dx, dy, dz) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

Rotation (2D)

Consider rotation about the origin by q degrees radius stays the same, angle increases by *q*

Rotation about the z axis

 Rotation about z axis in three dimensions leaves all points with the same z
 Equivalent to rotation in two dimensions in planes of constant z

or in homogeneous coordinates

$$p'=RZ(q)p$$

Rotation Matrix

$$\mathbf{R} = \mathbf{R}\mathbf{Z}(\mathbf{q}) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about x and y axes

Same argument as for rotation about z axis
 For rotation about x axis, x is unchanged
 For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{RX}(\mathbf{q}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}\mathbf{y}(q) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Angel: Interactive Computer Graphics 5E @ Addison-Wesley 2009

Scaling

Expand or contract along each axis (fixed point of origin)

Reflection

corresponds to negative scale factors

Inverses

 Although we could compute inverse matrices by general formulas, we can use simple geometric observations

```
Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)
```

Rotation:
$$\mathbf{R} - 1(\mathbf{q}) = \mathbf{R}(-\mathbf{q})$$

- Holds for any rotation matrix
- Note that since cos(-q) = cos(q) and sin(-q) = -sin(q)

$$\mathbf{R} - \mathbf{1}(\mathbf{q}) = \mathbf{R} \mathbf{T}(\mathbf{q})$$

Scaling: S-1(sx, sy, sz) =
$$S(1/sx, 1/sy, 1/sz)$$

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a matrix
 M=ABCD is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent

$$p' = ABCp = A(B(Cp))$$

 Note many references use column matrices to represent points. In terms of column matrices

$$p'T = pTCTBTAT$$

General Rotation About the Origin

A rotation by q about an arbitrary axis can be decomposed into the concatenation of rotations about the *x*, *y*, and *z* axes

$$R(q) = Rz(qz) Ry(qy)$$

 $Rx(qx)$

qx qy qz are called the Euler

Note that Glassens do not commute We can use rotations in another order but with different angles

Rotation About a Fixed Point other than the Origin

Move fixed point to origin Rotate

Move fixed point back

$$\mathbf{M} = \mathbf{T}(\mathbf{pf}) \mathbf{R}(\mathbf{q}) \mathbf{T}(-\mathbf{pf})$$

Instancing

 In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size

We apply an instance transformation to its

vertices to
Scale
Orient
Locate

Shear

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along x axis

$$\mathbf{H}(\mathbf{q}) = \begin{bmatrix} 1 & \cot \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

