પ્રશ્ન 1(અ) [3 ગુણ]

ક્લાઉડ કમ્પ્યુટિંગની વ્યાખ્યા આપો. ક્લાઉડ કમ્પ્યુટિંગના ઉપયોગો સમજાવો.

જવાબ:

કલાઉડ કમ્પ્યુટિંગ એ ઇન્ટરનેટ ("ક્લાઉડ") દ્વારા કમ્પ્યુટિંગ સેવાઓ જેવી કે સર્વર, સ્ટોરેજ, ડેટાબેઝ, નેટવર્કિંગ, સોફ્ટવેર અને વિશ્લેષણની ડિલિવરી છે.

ક્લાઉડ કમ્પ્યુટિંગના ઉપયોગો:

ઉપયોગ	นต์า
ડેટા સ્ટોરેજ	ફાઇલો અને દસ્તાવેજો ઓનલાઇન સ્ટોર કરવા
વેબ એપ્લિકેશન	વેબ બ્રાઉઝર દ્વારા સોફ્ટવેર ચલાવવા
ઇમેઇલ સેવાઓ	Gmail, Outlook ક્લાઉડ પર હોસ્ટ કરવા
બેકઅપ અને રિકવરી	ઓટોમેટિક ડેટા બેકઅપ અને આપત્તિ પુનઃપ્રાપ્તિ

મેમરી ટ્રીક: "SWEB" - Storage, Web apps, Email, Backup

પ્રશ્ન 1(બ) [4 ગુણ]

ક્લાઉડ સ્ટોરેજ સોલ્યુશન શું છે? ઓબ્જેક્ટ સ્ટોરેજ વિગતે સમજાવો.

જવાબ:

કલાઉડ સ્ટોરેજ સોલ્યુશન એ ઓનલાઇન સેવાઓ છે જે ઇન્ટરનેટ-કનેક્ટેડ ઉપકરણો દ્વારા ડેટા સ્ટોરેજ, મેનેજમેન્ટ અને એક્સેસ પ્રદાન કરે છે.

ઓબ્જેક્ટ સ્ટોરેજની વિગતો:

વિશેષતા	વર્ણન
સ્ટ્રક્ચર	બકેટ/કન્ટેનરમાં ઓબ્જેક્ટ તરીકે ડેટા સ્ટોર કરે છે
મેટાડેટા	દરેક ઓબ્જેક્ટમાં ડેટા, મેટાડેટા અને યુનિક ID હોય છે
સ્કેલેબિલિટી	વર્ચ્યુઅલી અનલિમિટેડ સ્ટોરેજ ક્ષમતા
એક્સેસ	પ્રોગ્રામેટિક એક્સેસ માટે RESTful APIs

ડાયાગ્રામ:

મેમરી ટ્રીક: "SMAR" - Scalable, Metadata-rich, API-accessible, Resilient

પ્રશ્ન 1(ક) [7 ગુણ]

હાર્ડવેર વર્ચ્યુઅલાઇઝેશન અને સોફ્ટવેર વર્ચ્યુઅલાઇઝેશન વિગતે સમજાવો.

જવાબ:

હાર્ડવેર વર્ચ્યુઅલાઇઝેશન:

- ભૌતિક સ્તર અમૂર્તીકરણ જે ભૌતિક હાર્ડવેર ઘટકોના વર્ચ્યુઅલ વર્ઝન બનાવે છે
- **હાઇપરવાઇઝર** એક જ ભૌતિક સર્વર પર બહુવિધ વર્ચ્યુઅલ મશીનોનું સંચાલન કરે છે

સોફ્ટવેર વર્ચ્યુઅલાઇઝેશન:

- **એપ્લિકેશન સ્તર અમૂર્તીકરણ** જે સોફ્ટવેરને અલગ વાતાવરણમાં ચલાવવાની મંજૂરી આપે છે
- રનટાઇમ વાતાવરણ વિવિધ પ્લેટફોર્મ પર સુસંગતતા પ્રદાન કરે છે

તુલના કોષ્ટક:

પાસું	હાર્ડવેર વર્ચ્યુઅલાઇઝેશન	સોફ્ટવેર વર્ચ્યુઅલાઇઝેશન
સ્તર	હાર્ડવેર/OS સ્તર	એપ્લિકેશન સ્તર
પ્રદર્શન	મૂળ જેવું	થોડું ઓવરહેડ
રિસોર્સ ઉપયોગ	ઊંચો	મધ્યમ
આઇસોલેશન	સંપૂર્ણ	એપ્લિકેશન-વિશિષ્ટ

આર્કિટેક્ચર ડાયાગ્રામ:

ਮੇਮਣੀ ਟ੍ਰੀਡ: "HAPI" - Hardware abstraction, Application isolation, Performance consideration, Infrastructure management

પ્રશ્ન 1(ક) OR [7 ગુણ]

ક્લાઉડ વર્ચ્યુઅલાઇઝેશન શું છે? વર્ચ્યુઅલાઇઝેશનની લાક્ષણિકતાઓ સમજાવો.

જવાબ:

ક્લાઉડ વર્ચ્યુઅલાઇઝેશન એ ક્લાઉડ વાતાવરણમાં ગતિશીલ રીતે ફાળવી અને સંચાલિત કરી શકાય તેવા કમ્પ્યુટિંગ રિસોર્સ (સર્વર, સ્ટોરેજ, નેટવર્ક)ના વર્ચ્યુઅલ વર્ઝન બનાવવાની પ્રક્રિયા છે.

વર્ચ્યુઅલાઇઝેશનની લાક્ષણિકતાઓ:

લાક્ષણિકતા	વર્ણન
રિસોર્સ પુલિંગ	બહુવિધ ભૌતિક રિસોર્સને પુલમાં જોડવા
આઇસોલેશન	વર્સ્યુઅલ મશીનો સ્વતંત્ર રીતે કામ કરે છે
લાસ્ટિસિટી	માંગ પર આધારિત ગતિશીલ સ્કેલિંગ
કાર્યક્ષમતા	બહેતર હાર્ડવેર ઉપયોગ

ફાયદાઓ:

- હાર્ડવેર એકીકરણ દ્વારા **ખર્ચમાં ઘટાડો**
- રિસોર્સ ફાળવણીમાં **લવચીકતા**
- વધતી માંગ માટે સ્કેલેબિલિટી
- કેન્દ્રીકરણ દ્વારા સરળીકૃત **મેનેજમેન્ટ**

વર્ચ્યુઅલાઇઝેશન સ્ટેક:

મેમરી ટ્રીક: "RIEM" - Resource pooling, Isolation, Elasticity, Management

પ્રશ્ન 2(અ) [3 ગુણ]

કલાઉડ સિક્યુરિટી ચેલેન્જીસ કયાં છે?

જવાબ:

ક્લાઉડ સિક્યુરિટી ચેલેન્જીસ:

ચેલેન્જ	વર્ણન
ડેટા બ્રીચ	સંવેદનશીલ માહિતીની અનધિકૃત ઍક્સેસ
ઍક્સેસ મેનેજમેન્ટ	યુઝર પરમિશન અને ઓથેન્ટિકેશન નિયંત્રણ
કોમ્પ્લાયન્સ	નિયમનકારી અને ઉદ્યોગ ધોરણો પૂરા કરવા
વેન્ડર લોક-ઇન	યોક્કસ ક્લાઉડ પ્રોવાઇડર પર નિર્ભરતા

મેમરી ટ્રીક: "DACV" - Data breaches, Access control, Compliance, Vendor dependency

પ્રશ્ન 2(બ) [4 ગુણ]

laaS વિગતે સમજાવો.

જવાબ:

Infrastructure as a Service (laaS) ઇન્ટરનેટ પર વર્ચ્યુઅલાઇઝ્ડ કમ્પ્યુટિંગ ઇન્ફ્રાસ્ટ્રક્ચર પ્રદાન કરે છે, જેમાં સર્વર, સ્ટોરેજ અને નેટવર્કિંગ શામેલ છે.

laaS ยวรì:

ยรร	વર્ણન
કમ્પ્યુટ	વર્ચ્યુઅલ મશીનો અને પ્રોસેસિંગ પાવર
સ્ટોરેજ	બ્લોક, ફાઇલ અને ઓબ્જેક્ટ સ્ટોરેજ
નેટવર્કિંગ	વર્ચ્યુઅલ નેટવર્ક, લોડ બેલેન્સર, ફાયરવૉલ
મેનેજમેન્ટ	મોનિટરિંગ, સિક્યુરિટી અને બેકઅપ ટૂલ્સ

laaS આર્કિટેક્ચર:

ફાયદાઓ:

- પે-પ્રર-યુઝ પ્રાઇસિંગ મોડલ
- માંગ પર સ્કેલેબિલિટી
- ઘટેલા મૂડી ખર્ચ

મેમરી ટ્રીક: "CSNM" - Compute, Storage, Network, Management

પ્રશ્ન 2(ક) [7 ગુણ]

Identity and access management વિગતે સમજાવો.

જવાબ:

Identity and Access Management (IAM) એ ક્લાઉડ વાતાવરણમાં ડિજિટલ ઓળખ અને રિસોર્સની ઍક્સેસ નિયંત્રિત કરવા માટેનું ફ્રેમવર્ક છે.

iasu MAI

ยรร	รเช้
ઓથેન્ટિકેશન	યુઝર ઓળખ યકાસવી
ઓથરાઇઝેશન	ઍક્સેસ પરમિશન નક્કી કરવી
યુઝર મેનેજમેન્ટ	યુઝર એકાઉન્ટ બનાવવા, બદલવા, ડિલીટ કરવા
રોલ-બેઝ્ડ ઍક્સેસ	ભૂમિકા પર આધારિત પરમિશન આપવી

IAM પ્રોસેસ ફ્લો:

મુખ્ય વિશેષતાઓ:

- સીમલેસ ઍક્સેસ માટે Single Sign-On (SSO)
- વધારેલી સુરક્ષા માટે Multi-Factor Authentication (MFA)
- ઍક્સેસ નિયંત્રણ માટે **પોલિસી મેનેજમેન્ટ**
- કોમ્પ્લાયન્સ ટ્રેકિંગ માટે ઓડિટ લોગિંગ

સુરક્ષા ફાયદાઓ:

- કેન્દ્રીકૃત ઓળખ મેનેજમેન્ટ
- ઘટેલા સુરક્ષા જોખમો
- નિયમોનું **કોમ્પ્લાયન્સ**
- સુધારેલ યુઝર અનુભવ

મેમરી ટ્રીક: "AURU" - Authentication, Authorization, User management, Role-based access

પ્રશ્ન 2(અ) OR [3 ગુણ]

ક્લાઉડમાં Access control અને authentication ની જરૂરિયાત.

જવાબ:

Access Control અને Authentication ની જરૂરિયાત:

જરૂરિયાત	કારણ
ડેટા પ્રોટેક્શન	સંવેદનશીલ ડેટાની અનધિકૃત ઍક્સેસ અટકાવવા
રેગ્યુલેટરી કોમ્પ્લાયન્સ	કાનૂની અને ઉદ્યોગ આવશ્યકતાઓ પૂરી કરવા
રિસોર્સ સિક્યુરિટી	કોણ ક્લાઉડ રિસોર્સ વાપરી શકે તે નિયંત્રિત કરવા
કોસ્ટ મેનેજમેન્ટ	અનધિકૃત રિસોર્સ વપરાશ અટકાવવા

મેમરી ટ્રીક: "DRRC" - Data protection, Regulatory compliance, Resource security, Cost management

પ્રશ્ન 2(બ) OR [4 ગુણ]

PaaS વિગતે સમજાવો.

જવાબ:

Platform as a Service (PaaS) એ ક્લાઉડ-બેઝ્ડ પ્લેટફોર્મ છે જે ગ્રાહકોને અંતર્ગત ઇન્ફ્રાસ્ટ્રક્ચર સાથે વ્યવહાર કર્યા વગર એપ્લિકેશન ડેવલપ, ચલાવવા અને મેનેજ કરવાની મંજૂરી આપે છે.

PaaS ยะระเ

ยรร	นย์่า
ડેવલપમેન્ટ ટૂલ્સ	IDEs, debuggers, compilers
રનટાઇમ એન્વાયરનમેન્ટ	એપ્લિકેશન એક્ઝિક્યુશન પ્લેટફોર્મ
ડેટાબેઝ મેનેજમેન્ટ	બિલ્ટ-ઇન ડેટાબેઝ સેવાઓ
મિડલવેર	ઇન્ટિગ્રેશન અને કોમ્યુનિકેશન સેવાઓ

PaaS આર્કિટેક્ચર:

ફાયદાઓ:

- ઝડપી એપ્લિકેશન ડેવલપમેન્ટ
- ઘટેલી જટિલતા
- બિલ્ટ-ઇન સ્કેલેબિલિટી

મેમરી ટ્રીક: "DRDM" - Development tools, Runtime, Database, Middleware

પ્રશ્ન 2(ક) OR [7 ગુણ]

DevSecOps વિગતે સમજાવો.

જવાબ:

DevSecOps એ DevOps પ્રક્રિયામાં સિક્યુરિટી પ્રેક્ટિસ ઇન્ટિગ્રેટ કરે છે, જે સમગ્ર ડેવલપમેન્ટ લાઇફસાઇકલ દરમિયાન સિક્યુરિટીને સહેજ જવાબદારી બનાવે છે.

DevSecOps સિદ્ધાંતો:

સિદ્ધાંત	વર્ણન
Shift Left	ડેવલપમેન્ટમાં વહેલી સિક્યુરિટી ઇન્ટિગ્રેટ કરવી
ઓટોમેશન	ઓટોમેટેડ સિક્યુરિટી ટેસ્ટિંગ અને કોમ્પ્લાયન્સ
કોલેબોરેશન	સિક્યુરિટી ટીમો ડેવલપમેન્ટ અને ઓપરેશન સાથે કામ કરે છે
સતત મોનિટરિંગ	ચાલુ સિક્યુરિટી મૂલ્યાંકન

DevSecOps પાઇપલાઇન:

સિક્યુરિટી ઇન્ટિગ્રેશન પોઇન્ટ્સ:

- ડેવલપમેન્ટ દરમિયાન કોડ એનાલિસિસ
- CI/CD પાઇપલાઇનમાં **વલ્નરેબિલિટી સ્કેનિંગ**
- ડિપ્લોયમેન્ટ પહેલાં કોમ્પ્લાયન્સ ચેક
- પ્રોડક્શનમાં **રનટાઇમ પ્રોટેક્શન**

ફાયદાઓ:

- વહેલી વલ્નરેબિલિટી ડિટેક્શન
- ઝડપી સિક્યુરિટી ફિક્સ
- ઘટેલો સિક્યુરિટી ડેટ
- સુધારેલ કોમ્પ્લાયન્સ

મેમરી ટ્રીક: "SACM" - Shift left, Automation, Collaboration, Monitoring

પ્રશ્ન 3(અ) [3 ગુણ]

Edge Computing મહત્વનું કેમ છે?

જવાબ:

Edge Computing નું મહત્વ:

ફાયદો	વર્ણન
ઘટાડેલ લેટન્સી	સ્રોતની નજીક ડેટા પ્રોસેસિંગ
બેન્ડવિડ્થ ઓપ્ટિમાઇઝેશન	ક્લાઉડ પર ઓછા ડેટા ટ્રાન્સમિશન
રિયલ-ટાઇમ પ્રોસેસિંગ	ક્રિટિકલ એપ્લિકેશન માટે તત્કાલ પ્રતિસાદ
ડેટા પ્રાઇવેસી	સ્થાનિક પ્રોસેસિંગ સંવેદનશીલ ડેટાને સ્થાનિક રાખે છે

મેમરી ટ્રીક: "RBRD" - Reduced latency, Bandwidth optimization, Real-time processing, Data privacy

પ્રશ્ન 3(બ) [4 ગુણ]

ડેટા સેન્ટર વ્યાખ્યાયિત કરો. ડેટા સેન્ટરના પ્રકારોની યાદી આપો. કોઈ એક સમજાવો.

જવાબ:

ડેટા સેન્ટર એ IT ઓપરેશન માટે કમ્પ્યુટર સિસ્ટમ, સ્ટોરેજ સિસ્ટમ, નેટવર્કિંગ સાધનો અને સહાયક ઇન્ફ્રાસ્ટ્રક્યર રાખતી સુવિધા છે.

ડેટા સેન્ટરના પ્રકારો:

увіч	นย์ฯ
એન્ટરપ્રાઇઝ	સંસ્થાઓ દ્વારા માલિકી ધરાવતા ખાનગી ડેટા સેન્ટર
કોલોકેશન	બહુવિધ ભાડૂતોને જગ્યા ભાડે આપતી સહેજ સુવિધા
હાઇપરસ્કેલ	ક્લાઉડ પ્રદાતાઓ માટે મોટા પાયે સુવિધાઓ
એજ	અંતિમ વપરાશકર્તાઓની નજીક નાની સુવિધાઓ

એન્ટરપ્રાઇઝ ડેટા સેન્ટર (વિગતવાર):

- ઇન્ફ્રાસ્ટ્રક્યર પર **સંપૂર્ણ નિયંત્રણ**
- સંસ્થાની જરૂરિયાતો માટે **કસ્ટમાઇઝ્ડ**
- ઉચ્ચ સુરક્ષા અને કોમ્પ્લાયન્સ
- નોંધપાત્ર મૂડી રોકાણ જરૂરી

ડેટા સેન્ટર આર્કિટેક્ચર:

મેમરી ટ્રીક: "ECHE" - Enterprise, Colocation, Hyperscale, Edge

પ્રશ્ન 3(ક) [7 ગુણ]

ક્લાઉડ ડેટાબેઝના પ્રકારો વિગતે સમજાવો.

જવાબ:

ક્લાઉડ ડેટાબેઝના પ્રકારો:

1. SQL ડેટાબેઝ (રિલેશનલ):

• સ્ટ્રક્ચર: પૂર્વ-નિર્ધારિત સ્ક્રીમા સાથે ટેબલ-આધારિત

• **ACID ગુણધર્મો:** ડેટા સુસંગતતા સુનિશ્ચિત કરે છે

• **G**ียเ**๔ะย**เ้า: Amazon RDS, Google Cloud SQL

2. NoSQL ડેટાબેઝ:

NoSQL yasıs	વર્ણન	ઉપયોગ કેસ
ડોક્યુમેન્ટ	JSON જેવા દસ્તાવેજો	કન્ટેન્ટ મેનેજમેન્ટ, કેટાલોગ
કી-વેલ્યુ	સરળ કી-વેલ્યુ જોડી	સેશન મેનેજમેન્ટ, કેશિંગ
કોલમ-ફેમિલી	વાઇડ કોલમ સ્ટોરેજ	એનાલિટિક્સ, ટાઇમ-સીરીઝ ડેટા
ગ્રાફ	નોડ્સ અને સંબંધો	સોશિયલ નેટવર્ક, રેકમેન્ડેશન

ડેટાબેઝ તુલના:

પસંદગીના માપદંડો:

- ડેટા સ્ટક્ચર આવશ્યકતાઓ
- સ્કેલેબિલિટી જરૂરિયાતો
- ક્રોન્સિસ્ટન્સી આવશ્યકતાઓ
- પ્રદર્શન અપેક્ષાઓ

ફાયદાઓ:

- મેનેજડ સેવાઓ ઓપરેશનલ ઓવરહેડ ઘટાડે છે
- ઓટોમેટિક સ્કેલિંગ અને બેકઅપ
- ગ્લોબલ ડિસ્ટ્રિબ્યુશન ક્ષમતાઓ
- કોસ્ટ-ઇફેક્ટિવ પે-પર-યુઝ મોડલ

મેમરી ટ્રીક: "DKCG" - Document, Key-value, Column-family, Graph

પ્રશ્ન 3(અ) OR [3 ગુણ]

ક્લાઉડ કમ્પ્યુટિંગમાં મશીન લર્નિંગની ભૂમિકા શું છે? તે સમજાવો.

જવાબ:

ક્લાઉડ કમ્પ્યુટિંગમાં મશીન લર્નિંગની ભૂમિકા:

ભૂમિકા	વર્ણન
રિસોર્સ ઓપ્ટિમાઇઝેશન	રિસોર્સ ફાળવણીની આગાહી અને ઓપ્ટિમાઇઝેશન
સિક્યુરિટી એન્હાન્સમેન્ટ	અસામાન્યતા અને ધમકીઓ શોધવા
કોસ્ટ મેનેજમેન્ટ	ખર્ચ અને વપરાશ પેટર્ન ઓપ્ટિમાઇઝ કરવા
પ્રદર્શન મોનિટરિંગ	સિસ્ટમ નિષ્ફળતાની આગાહી અને અટકાવવી

મેમરી ટ્રીક: "RSCP" - Resource optimization, Security enhancement, Cost management, Performance monitoring

પ્રશ્ન 3(બ) OR [4 ગુણ]

કલાઉડ સ્કેલેબિલિટી શું છે? વિગતે સમજાવો.

જવાબ:

કલાઉડ સ્કેલેબિલિટી એ પ્રદર્શનને અસર કર્યા વગર માંગ પર આધારિત કમ્પ્યુટિંગ રિસોર્સ ગતિશીલ રીતે વધારવા અથવા ઘટાડવાની ક્ષમતા છે. સ્કેલેબિલિટી પ્રકારો:

увіг	વર્ણન	પદ્ધતિ
વર્ટિકલ (સ્કેલ અ૫)	હાલના મશીનમાં વધુ પાવર ઉમેરવો	CPU, RAM, સ્ટોરેજ અપગ્રેડ
હોરિઝોન્ટલ (સ્કેલ આઉટ)	રિસોર્સ પુલમાં વધુ મશીનો ઉમેરવા	લોડ ડિસ્ટ્રિબ્યુશન

સ્કેલેબિલિટી પ્રક્રિયા:

ફાયદાઓ:

- ગતિશીલ રિસોર્સ ફાળવણી દ્વારા કોસ્ટ કાર્યક્ષમતા
- પીક લોડ દરમિયાન **પ્રદર્શન** જાળવણી
- ઉપલબ્ધતા સુધારો

મેમરી ટ્રીક: "VH" - Vertical scaling, Horizontal scaling

પ્રશ્ન 3(ક) OR [7 ગુણ]

ડેટા કોન્સિસ્ટન્સી અને ક્યુરેબિલિટી વિગતે સમજાવો.

જવાબ:

ડેટા કોન્સિસ્ટન્સી એ ખાતરી કરે છે કે બધા નોડ્સ વિતરિત સિસ્ટમમાં એક જ સમયે સમાન ડેટા જુએ.

ડેટા ક્યુરેબિલિટી એ સિસ્ટમ નિષ્ફળતાના કિસ્સામાં પણ ડેટા પર્સિસ્ટન્સની ગેરંટી આપે છે.

કોન્સિસ્ટન્સી મોડલ્સ:

મોડલ	વર્ણન	ઉપયોગ કેસ
સ્ટ્રોંગ	બધા રીડ્સ સૌથી તાજેતરના લેખન મેળવે છે	ફાઇનાન્શિયલ સિસ્ટમ
ઇવેન્ચ્યુઅલ	સમય સાથે સિસ્ટમ કોન્સિસ્ટન્ટ બને છે	સોશિયલ મીડિયા
વીક	કોન્સિસ્ટન્સી ક્યારે થશે તેની કોઈ ગેરંટી નથી	ગેમિંગ, રિયલ-ટાઇમ

ડ્યુરેબિલિટી મેકેનિઝમ્સ:

મેકેનિઝમ	นย์า
રેપ્લિકેશન	વિવિધ સ્થાનોમાં બહુવિધ કોપીઝ
બેકઅપ	નિયમિત ડેટા સ્નેપશોટ
રિડન્ડન્સી	RAID, erasure coding
વર્ઝનિંગ	ડેટાના બહુવિદ્ય વર્ઝન

CAP થિયોરમ:

અમલીકરણ વ્યૂહરચનાઓ:

- ક્યુરેબિલિટી માટે **મલ્ટી-રીજન** રેપ્લિકેશન
- ઉપલબ્ધતા માટે **કોરમ-આદ્યારિત** કોન્સિસ્ટન્સી
- ડેટા ઇન્ટિગ્રિટી માટે ચેકસમ્સ
- રિકવરી માટે ટ્રાન્ઝેક્શન લોગ્સ

મેમરી ટ્રીક: "SEWR" - Strong consistency, Eventual consistency, Weak consistency, Replication strategies

પ્રશ્ન 4(અ) [3 ગુણ]

ડેટા સ્કેલિંગની ભૂમિકા લખો.

જવાબ:

ડેટા સ્કેલિંગની ભૂમિકા:

ભૂમિકા	વર્ણન
પ્રદર્શન જાળવણી	વધેલા ડેટા વોલ્યુમને કાર્યક્ષમ રીતે હેન્ડલ કરવું
સ્ટોરેજ ઓપ્ટિમાઇઝેશન	બહુવિધ સિસ્ટમ્સમાં ડેટા વિતરણ
કવેરી પ્રદર્શન	ઝડપી ડેટા રિટ્રીવલ સ્પીડ જાળવવી
કોસ્ટ મેનેજમેન્ટ	સ્ટોરેજ કોસ્ટ સાથે પ્રદર્શનનું સંતુલન

મેમરી ટ્રીક: "PSQC" - Performance, Storage optimization, Query performance, Cost management

પ્રશ્ન 4(બ) [4 ગુણ]

Kubernetes વ્યાખ્યાયિત કરો. કારણ સાથે સમજાવો: Kubernetes એ cloud computing નો આવશ્યક ભાગ છે.

જવાલ:

Kubernetes એ ઓપન-સોર્સ કન્ટેનર ઓર્કેસ્ટ્રેશન પ્લેટફોર્મ છે જે કન્ટેનરાઇઝ્ડ એપ્લિકેશનોના ડિપ્લોયમેન્ટ, સ્કેલિંગ અને મેનેજમેન્ટને ઓટોમેટ કરે છે.

Kubernetes ક્લાઉડ કમ્પ્યુટિંગ માટે કેમ આવશ્યક છે:

કારણ	સમજાવટ
કન્ટેનર ઓર્કેસ્ટ્રેશન	ક્લસ્ટર્સમાં બહુવિધ કન્ટેનરોનું સંચાલન
ઓટો-સ્કેલિંગ	માંગ પર આધારિત રિસોર્સ ગતિશીલ ગોઠવણી
સર્વિસ ડિસ્કવરી	ઓટોમેટિક લોડ બેલેન્સિંગ અને નેટવર્કિંગ
સેલ્ફ-હીલિંગ	નિષ્ફળ કન્ટેનર્સને ઓટોમેટિક રીતે બદલવા

Kubernetes આર્કિટેક્ચર:

આવશ્યક કાયદાઓ:

- ક્લાઉડ પ્રોવાઇડર્સમાં **પ્લેટફોર્મ સ્વતંત્રતા**
- કન્ટેનર ડેન્સિટી દ્વારા **રિસોર્સ કાર્યક્ષમતા**
- CI/CD પાઇપલાઇન્સ સાથે DevOps ઇન્ટિગ્રેશન

મેમરી ટ્રીક: "CASS" - Container orchestration, Auto-scaling, Service discovery, Self-healing

પ્રશ્ન 4(ક) [7 ગુણ]

ડેટા સેન્ટર નેટવર્ક ટોપોલોજીઝ સમજાવો.

જવાબ:

ડેટા સેન્ટર નેટવર્ક ટોપોલોજીઝ એ ડેટા સેન્ટરની અંદર નેટવર્ક ઘટકો કેવી રીતે એકબીજા સાથે જોડાયેલા છે તે વ્યાખ્યાયિત કરે છે.

સામાન્ય ટોપોલોજીઝ:

ટોપોલોજી	વર્ણન	ફાયદાઓ	નુકસાન
થ્રી-ટાયર	કોર, એગ્રિગેશન, એક્સેસ લેયર	સરળ, હાયરાર્કિકલ	મર્યાદિત સ્કેલેબિલિટી
સ્પાઇન-લીફ	નોન-બ્લોકિંગ, ફ્લેટ આર્કિટેક્ચર	ઉચ્ચ બેન્ડવિડ્થ, સ્કેલેબલ	જટિલ કોન્ફિંગરેશન
ફેટ ટ્રી	બહુવિદ્ય પાથ સાથે ટ્રી સ્ટ્રક્ચર	સારી ફોલ્ટ ટોલરન્સ	ઓવરસબસ્ક્રિપ્શન સમસ્યાઓ

સ્પાઇન-લીફ આર્કિટેક્ચર:

આધુનિક ટ્રેન્ડ્સ:

- પ્રોગ્રામેબલ નેટવર્ક માટે Software-Defined Networking (SDN)
- લવચીક સેવાઓ માટે **Network Function Virtualization (NFV)**
- વધારેલી સુરક્ષા માટે **માઇક્રો-સેગમેન્ટેશન**

પસંદગીના માપદંડો:

- બેન્ડવિડ્થ આવશ્યકતાઓ
- લેટન્સી સંવેદનશીલતા
- સ્કેલેબિલિટી જરૂરિયાતો
- કોસ્ટ વિચારણાઓ

આધુનિક ટોપોલોજીઝના ફાયદાઓ:

- નોન-બ્લોકિંગ કોમ્યુનિકેશન પાથ
- ઇકવલ-કોસ્ટ મલ્ટિ-પાથ રાઉટિંગ
- હોરિઝોન્ટલ સ્કેલિંગ ક્ષમતા
- ઘટાડેલ નેટવર્ક કન્જેશન

મેમરી ટ્રીક: "TSF" - Three-tier, Spine-leaf, Fat tree

પ્રશ્ન 4(અ) OR [3 ગુણ]

ક્લાઉડમાં ફાઇલ સ્ટોરેજ સમજાવો.

જવાબ:

ક્લાઉડમાં ફાઇલ સ્ટોરેજ સમજાવો.

જવાબ:

કલાઉડ ફાઇલ સ્ટોરેજ એ પરંપરાગત ફાઇલ સિસ્ટમ જેવું જ હાયરાર્કિકલ ફાઇલ સિસ્ટમ એક્સેસ નેટવર્ક પર પ્રદાન કરે છે.

લાક્ષણિકતાઓ:

વિશેષતા	વર્ણન
હાયરાર્કિકલ સ્ટ્રક્ચર	ફોલ્ડર અને સબફોલ્ડર સંગઠન
POSIX કોમ્પ્લાયન્સ	સ્ટાન્ડર્ડ ફાઇલ સિસ્ટમ ઇન્ટરફેસ
નેટવર્ક એક્સેસ	SMB, NFS પ્રોટોકોલ સપોર્ટ
શેર્ડ એક્સેસ	બહુવિદ્ય યુઝર્સ એક સાથે એક્સેસ કરી શકે છે

મેમરી ટ્રીક: "HPNS" - Hierarchical, POSIX-compliant, Network access, Shared access

પ્રશ્ન 4(બ) OR [4 ગુણ]

સર્વરલેસ કમ્પ્યુટિંગ સમજાવો.

જવાબ:

સર્વરલેસ કમ્પ્યુટિંગ એ ક્લાઉડ કમ્પ્યુટિંગ મોડલ છે જ્યાં ક્લાઉડ પ્રોવાઇડર્સ ઓટોમેટિક રીતે સર્વર ઇન્ફ્રાસ્ટ્રક્ચરનું સંચાલન કરે છે, જે ડેવલપર્સને કોડ પર ધ્યાન આપવાની મંજૂરી આપે છે.

મુખ્ય વિશેષતાઓ:

વિશેષતા	વર્ણન
ઇવેન્ટ-ડ્રિવન	ઇવેન્ટ્સ દ્વારા ટ્રિગર થતા ફંક્શન્સ
ઓટો-સ્કેલિંગ	ઓટોમેટિક રિસોર્સ ફાળવણી
પે-પર-એક્ઝિક્યુશન	વાસ્તવિક ઉપયોગ પર આધારિત બિલિંગ
સ્ટેટલેસ	ફંક્શન્સ સ્ટેટ જાળવતા નથી

સર્વરલેસ આર્કિટેક્ચર:

ફાયદાઓ:

- કોઈ સર્વર મેનેજમેન્ટ જરૂરી નથી
- વેરિયેબલ વર્કલોડ માટે કોસ્ટ કાર્યક્ષમતા
- ઝડપી સ્કેલિંગ ક્ષમતાઓ

મેમરી ટ્રીક: "EAPS" - Event-driven, Auto-scaling, Pay-per-execution, Stateless

પ્રશ્ન 4(ક) OR [7 ગુણ]

SDN (Software Defined Networking) આર્કિટેક્ચર સમજાવો.

જવાબ:

Software Defined Networking (SDN) એ નેટવર્ક કંટ્રોલ પ્લેનને ડેટા પ્લેનથી અલગ કરે છે, જે સોફ્ટવેર દ્વારા કેન્દ્રીકૃત નેટવર્ક મેનેજમેન્ટને સક્ષમ બનાવે છે.

SDN આર્કિટેક્ચર લેયર્સ:

લેચર	ธเน้	ઘટકો
એપ્લિકેશન લેયર	નેટવર્ક એપ્લિકેશન અને સેવાઓ	ફાયરવૉલ, લોડ બેલેન્સર
કંટ્રોલ લેચર	કેન્દ્રીકૃત નેટવર્ક ઇન્ટેલિજન્સ	SDN કંટ્રોલર
ઇન્ફ્રાસ્ટ્રક્ચર લેચર	નેટવર્ક ફોરવર્ડિંગ ઉપકરણો	સ્વિય, રાઉટર

SDN આર્કિટેક્ચર ડાયાગ્રામ:

મુખ્ય પ્રોટોકોલ્સ:

• OpenFlow: કંટ્રોલર અને સ્વિચ વચ્ચે કોમ્યુનિકેશન

• **NETCONF:** નેટવર્ક કોન્ફિગરેશન પ્રોટોકોલ

• **REST APIs:** નોર્થબાઉન્ડ એપ્લિકેશન ઇન્ટરફેસ

SDN ફાયદાઓ:

ફાયદો	વર્ણન
કેન્દ્રીકૃત નિયંત્રણ	નેટવર્ક મેનેજમેન્ટનું એક બિંદુ
પ્રોગ્રામેબિલિટી	સોફ્ટવેર-આદ્યારિત નેટવર્ક કોન્ફિગરેશન
લવચીકતા	ગતિશીલ નેટવર્ક રિકોન્ફિગરેશન
કોસ્ટ રિડક્શન	કમોડિટી હાર્ડવેર ઉપયોગ

ઉપયોગ કેસ:

- ડેટા સેન્ટર નેટવર્કિંગ
- કેમ્પસ નેટવર્ક
- વાઇડ એરિયા નેટવર્ક
- નેટવર્ક ફંક્શન વર્ચ્યુઅલાઇઝેશન

પડકારો:

- સિંગલ પોઇન્ટ ઓફ ફેલ્યોર (કંટ્રોલર)
- સ્કેલેબિલિટી ચિંતાઓ
- સિક્યુરિટી વિચારણાઓ
- વેન્ડર ઇન્ટરઓપરેબિલિટી

મેમરી ટ્રીક: "ACI" - Application layer, Control layer, Infrastructure layer

પ્રશ્ન 5(અ) [3 ગુણ]

Infrastructure as Code (IaC) વિગતે સમજાવો.

જવાબ:

Infrastructure as Code (IaC) એ મેન્યુઅલ પ્રક્રિયાઓને બદલે મશીન-રીડેબલ ડેફિનિશન ફાઇલો દ્વારા કમ્પ્યુટિંગ ઇન્ફ્રાસ્ટ્રક્ચરનું સંચાલન અને પ્રોવિઝન કરે છે.

IaC લાક્ષણિકતાઓ:

લાક્ષણિકતા	વર્ણન	
વર્ઝન કંટ્રોલ	રિપોઝિટરીમાં સ્ટોર થતી ઇન્ફ્રાસ્ટ્રક્યર ડેફિનિશન	
ઓટોમેશન	ઓટોમેટેડ ડિપ્લોયમેન્ટ અને મેનેજમેન્ટ	
કોન્સિસ્ટન્સી	ડિપ્લોયમેન્ટ્સમાં સમાન વાતાવરણ	
રિપીટેબિલિટી	પુનઃઉત્પાદનક્ષમ ઇન્ફ્રાસ્ટ્રક્ચર સેટઅપ	

મેમરી ટ્રીક: "VACR" - Version control, Automation, Consistency, Repeatability

પ્રશ્ન 5(બ) [4 ગુણ]

SLA નું ફુલ ફોર્મ આપો અને વિગતે સમજાવો.

જવાબ:

SLA - Service Level Agreement

SLA ડેફિનિશન: સર્વિસ પ્રોવાઇડર અને ગ્રાહક વચ્ચેનો કરાર જે અપેક્ષિત સર્વિસ લેવલ અને પ્રદર્શન મેટ્રિક્સ વ્યાખ્યાયિત કરે છે.

SLA ઘટકો:

ยรร	વર્ણન	
ઉપલબ્ધતા	અપટાઇમ ટકાવારી (99.9%, 99.99%)	
પ્રદર્શન	રિસ્પોન્સ ટાઇમ, થ્રુપુટ મેટ્રિક્સ	
સપોર્ટ	સમસ્યાઓ માટે રિસ્પોન્સ ટાઇમ	
પેનાલ્ટીઝ	SLA ઉલ્લંઘન માટે વળતર	

SLA મેટ્રિક્સ:

ફાયદાઓ:

- બન્ને પક્ષો માટે સ્પષ્ટ અપેક્ષાઓ
- પ્રદર્શન મેઝરમેન્ટ સ્ટાન્ડર્ડ્સ
- પેનાલ્ટીઝ દ્વારા **રિસ્ક મિટિગેશન**

મેમરી ટ્રીક: "APSP" - Availability, Performance, Support, Penalties

પ્રશ્ન 5(ક) [7 ગુણ]

હાઇપરવાઇઝર્સ વિગતે સમજાવો.

જવાબ:

હાઇપરવાઇઝર (વર્ચ્યુઅલ મશીન મોનિટર) એ સોફ્ટવેર છે જે ભૌતિક હાર્ડવેરને અમૂર્ત બનાવીને વર્ચ્યુઅલ મશીનો બનાવે અને મેનેજ કરે છે.

હાઇપરવાઇઝરના પ્રકારો:

уѕіг	વર્ણન	ઉદાહરણો	લાક્ષણિકતાઓ
ટાઇપ 1 (બેર મેટલ)	સીધું હાર્ડવેર પર ચાલે છે	VMware vSphere, Hyper-V	બહેતર પ્રદર્શન, એન્ટરપ્રાઇઝ ઉપયોગ
ટાઇપ 2 (હોસ્ટેડ)	હોસ્ટ ઓપરેટિંગ સિસ્ટમ પર ચાલે છે	VirtualBox, VMware Workstation	સરળ સેટઅપ, ડેસ્કટોપ ઉપયોગ

હાઇપરવાઇઝર આર્કિટેક્ચર:

હાઇપરવાઇઝર કાર્યો:

รเช่	વર્ણન
રિસોર્સ ફાળવણી	CPU, મેમરી, સ્ટોરેજ વિતરણ
આઇસોલેશન	અલગ VM વાતાવરણ
હાર્ડવેર અમૂર્તીકરણ	વર્ચ્યુઅલ હાર્ડવેર પ્રેઝન્ટેશન
VM લાઇફસાઇકલ મેનેજમેન્ટ	VM બનાવવા, શરૂ કરવા, બંધ કરવા, ડિલીટ કરવા

વર્ચ્યુઅલાઇઝેશન તકનીકો:

• **હાર્ડવેર-એસિસ્ટેડ** વર્ચ્યુઅલાઇઝેશન (Intel VT-x, AMD-V)

- સુધારેલ પ્રદર્શન માટે પેરાવર્ચ્યુઅલાઇઝેશન
- સુસંગતતા માટે **બાઇનરી ટ્રાન્સલેશન**

પ્રદર્શન વિચારણાઓ:

- વર્ચ્યુઅલાઇઝેશન લેયરથી **CPU ઓવરહેડ**
- વર્ચ્યુઅલ મેમરી સાથે મેમરી મેનેજમેન્ટ
- સ્ટોરેજ અને નેટવર્ક માટે I/O ઓપ્ટિમાઇઝેશન
- VM વચ્ચે **રિસોર્સ શેક્યુલિંગ**

ફાયદાઓ:

- હાર્ડવેર કોસ્ટ ઘટાડીને **સર્વર કન્સોલિડેશન**
- VM સ્નેપશોટ દ્વારા **ડિઝાસ્ટર રિકવરી**
- ઝડપી પ્રોવિઝનિંગ ટેસ્ટિંગ એન્વાયરનમેન્ટ
- લીગેસી એપ્લિકેશન **સપોર્ટ**

પડકારો:

- બેર મેટલ સરખામણીમાં **પ્રદર્શન ઓવરહેડ**
- મેનેજમેન્ટમાં **જટિલતા**
- એન્ટરપ્રાઇઝ હાઇપરવાઇઝર્સ માટે **લાઇસન્સિંગ કોસ્ટ**
- શેર્ડ રિસોર્સીસ માટે **સિક્યુરિટી** વિચારણાઓ

મેમરી ટ્રીક: "RAIH" - Resource allocation, isolation, Hardware abstraction

પ્રશ્ન 5(અ) OR [3 ગુણ]

ડેટા સેન્ટર્સમાં ઓટોમેશન શું છે? વિગતે સમજાવો.

જવાબ:

ડેટા સેન્ટર ઓટોમેશન એ મેન્યુઅલ હસ્તક્ષેપ વગર નિયમિત કાર્યો ઓટોમેટિક રીતે કરવા માટે સોફ્ટવેર અને ટેકનોલોજીઝનો ઉપયોગ છે.

ઓટોમેશન વિસ્તારો:

વિસ્તાર	વર્ણન	
પ્રોવિઝનિંગ	ઓટોમેટિક સર્વર અને સર્વિસ ડિપ્લોયમેન્ટ	
મોનિટરિંગ	સતત પ્રદર્શન અને હેલ્થ ટ્રેકિંગ	
સ્કેલિંગ	ગતિશીલ રિસોર્સ ગોઠવણી	
મેઇન્ટેનન્સ	ઓટોમેટેડ પેચિંગ અને અપડેટ્સ	

મેમરી ટ્રીક: "PMSM" - Provisioning, Monitoring, Scaling, Maintenance

પ્રશ્ન 5(બ) OR [4 ગુણ]

ક્લાઉડમાં ડેટા સિક્યુરિટી શું છે? વિગતે સમજાવો.

જવાબ:

કલાઉડ ડેટા સિક્યુરિટી એ ક્લાઉડ વાતાવરણમાં સ્ટોર, પ્રોસેસ અને ટ્રાન્સમિટ થતા ડેટાને અનધિકૃત એક્સેસ, ભ્રષ્ટાચાર અને ચોરીથી સુરક્ષિત રાખવાનો સમાવેશ કરે છે.

સિક્યુરિટી પગલાં:

પગલું	વર્ણન
એન્ક્કિપ્શન	રેસ્ટ અને ટ્રાન્ઝિટમાં ડેટા પ્રોટેક્શન
એક્સેસ કંટ્રોલ	યુઝર ઓથેન્ટિકેશન અને ઓથરાઇઝેશન
બેકઅપ એન્ડ રિકવરી	નુકસાન સામે ડેટા પ્રોટેક્શન
કોમ્પ્લાયન્સ	નિયમનકારી આવશ્યકતાઓનું પાલન

સિક્યુરિટી અમલીકરણ:

બેસ્ટ પ્રેક્ટિસ:

- ઝીરો-ટ્રસ્ટ સિક્યુરિટી મોડલ
- નિયમિત સિક્યુરિટી ઓડિટ
- ડેટા ક્લાસિફિકેશન અને હેન્ડલિંગ

મેમરી ટ્રીક: "EABC" - Encryption, Access controls, Backup, Compliance

પ્રશ્ન 5(ક) OR [7 ગુણ]

વર્ચ્યુઅલ મશીન્સ શું છે? વર્ચ્યુઅલ મશીન્સ બનાવવા અને મેનેજ કરવાના સ્ટેપ્સ સમજાવો.

જવાબ:

વર્ચ્યુઅલ મશીન (VM) એ ભૌતિક કમ્પ્યુટરના સોફ્ટવેર-આધારિત એમ્યુલેશન છે જે અલગ વાતાવરણમાં ઓપરેટિંગ સિસ્ટમ અને એપ્લિકેશન ચલાવે છે.

VM ઘટકો:

ยะร	વર્ણન
વર્ચ્યુઅલ CPU	એમ્યુલેટેડ પ્રોસેસર કોર્સ
વર્ચ્યુઅલ મેમરી	VM માટે ફાળવેલ RAM
વર્ચ્યુઅલ સ્ટોરેજ	વર્ચ્યુઅલ હાર્ડ ડિસ્ક
વર્ચ્યુઅલ નેટવર્ક	નેટવર્ક ઇન્ટરફેસ એમ્યુલેશન

વર્ચ્યુઅલ મશીન બનાવવાના સ્ટેપ્સ:

1. પ્લાનિંગ ફેઝ:

• **રિસોર્સ એસેસમેન્ટ:** CPU, RAM, સ્ટોરેજ આવશ્યકતાઓ નક્કી કરવી

• **OS પસંદગી:** ગેસ્ટ ઓપરેટિંગ સિસ્ટમ પસંદ કરવું

• **નેટવર્ક કોન્ફિગરેશન:** IP એડ્રેસિંગ અને કનેક્ટિવિટી પ્લાન કરવી

2. VM બનાવવાની પ્રક્રિયા:

3. વિગતવાર બનાવવાના સ્ટેપ્સ:

સ્ટેપ	એક્શન	વિગતો
1	VM કન્ટેનર બનાવવું	VM નામ અને સ્થાન વ્યાખ્યાયિત કરવું
2	CPU ફાળવવું	વર્ચ્યુઅલ પ્રોસેસર કોર્સ એસાઇન કરવા
3	મેમરી એસાઇન કરવી	RAM ફાળવવી (2GB-16GB સામાન્ય)
4	સ્ટોરેજ બનાવવું	વર્ચ્યુઅલ હાર્ડ ડિસ્ક સેટ કરવી
5	નેટવર્ક સેટઅપ	વર્ચ્યુઅલ નેટવર્ક એડેપ્ટર કોન્ફિગર કરવું
6	OS ઇન્સ્ટોલેશન	ગેસ્ટ ઓપરેટિંગ સિસ્ટમ ઇન્સ્ટોલ કરવું

VM મેનેજમેન્ટ ઓપરેશન્સ:

પાવર મેનેજમેન્ટ:

• સ્ટાર્ટ/સ્ટોપ: VM પાવર સ્ટેટ કંટ્રોલ કરવું

• **સસ્પેન્ડ/રિઝ્યુમ:** VM એક્ઝિક્યુશન પોઝ અને રિઝ્યુમ કરવું

• **રીસેટ:** VM ને ફોર્સ રીસ્ટાર્ટ કરવું

રિસોર્સ મેનેજમેન્ટ:

• હોટ-એડ CPU/મેમરી: શટડાઉન વગર રિસોર્સ ઉમેરવા

• સ્ટોરેજ એક્સપાત્થન: ડિસ્ક કેપાસિટી વધારવી

• નેટવર્ક રિકોન્ફિગરેશન: નેટવર્ક સેટિંગ્સ બદલવી

મેઇન્ટેનન્સ ઓપરેશન્સ:

ઓપરેશન	હેતુ	આવર્તન
સ્નેપશોટ્સ	પૉઇન્ટ-ઇન-ટાઇમ બેકઅપ	મોટા ફેરફારો પહેલાં
ક્લોનિંગ	સમાન કોપીઝ બનાવવા	સ્ક્રેલિંગ/ટેસ્ટિંગ માટે
માઇગ્રેશન	હોસ્ટ્સ વચ્ચે VM ખસેડવું	મેઇન્ટેનન્સ માટે
બેકઅપ	ડેટા પ્રોટેક્શન	દૈનિક/સાપ્તાહિક

VM લાઇફસાઇકલ મેનેજમેન્ટ:

બેસ્ટ પ્રેક્ટિસ:

- નિયમિત બેકઅપ અને સ્નેપશોટ મેનેજમેન્ટ
- ઓપ્ટિમાઇઝેશન માટે રિસોર્સ મોનિટરિંગ
- સિક્યુરિટી પેચિંગ અને અપડેટ્સ
- વર્કલોડ આધારિત પ્રદર્શન ટ્યુનિંગ

મોનિટરિંગ અને ટ્રબલશૂટિંગ:

• પ્રદર્શન મેટ્રિક્સ: CPU, મેમરી, ડિસ્ક I/O

• ઇવેન્ટ લોગ્સ: સિસ્ટમ અને એપ્લિકેશન ઇવેન્ટ્સ

• નેટવર્ક કનેક્ટિવિટી: પિંગ, ટ્રેસરાઉટ ટેસ્ટ્સ

• રિસોર્સ યુટિલાઇઝેશન: કેપાસિટી પ્લાનિંગ

VM સિક્યુરિટી:

• ગેસ્ટ OS હાર્ડનિંગ: બિનજરૂરી સર્વિસ દૂર કરવી

• **નેટવર્ક આઇસોલેશન:** VLAN સેગમેન્ટેશન

• એક્સેસ કંટ્રોલ: યુઝર ઓથેન્ટિકેશન

• એન્ટીવાઇરસ પ્રોટેક્શન: મેલવેર સ્કેનિંગ

મેમરી ટ્રીક: "CVMN" - CPU, Virtual memory, Network, Storage