Sicurezza dei sistemi informatici Firma elettronica E-commerce

Il contesto applicativo

• Commercio elettronico

Quanti **bit** ho guadagnato!!

collegamenti e transazioni sicure

Il contesto applicativo

• Commercio elettronico

Quanti **bit** ho guadagnato!!

commercio senza identificazione dell'acquirente (net shopping)

commercio con identificazione dell'acquirente (contratto) richiede firma autografa-digitale

Sicurezza Virus e worms Firewall e Crittografia reti private La tecnologia Definizioni virtuali Organizzazione Sicurezza delle Firma digitale Reti applicazioni Internet Piano sicurezza Firma digitale e Autorita` di Certificazione Smart-card e commercio elettronico

La crescente importanza della sicurezza informatica deriva principalmente da:

- Maggior informatizzazione dei processi aziendali
- Globalizzazione dei processi
- Nuovi paradigmi tecnologici

M. Mezzalama - Politecnico di Torino

Maggiore esposizione ad eventi indesiderati: WAN, LAN

La normativa

Le leggi di riferimento:

- Legge 518/92 (tutela giuridica sw)
- Legge 547/93 (reati informatici)
- Direttiva UE 97/66/CE del 15 dic. 97
 (trattamento dati a carattere personale e protezione vita privata nel settore tlc)

Legge 547/93

Sancisce come reato penale:

- accesso non autorizzato
- danneggiamento
- sabotaggio
- abusiva acquisizione di programmi e di dati
- diffusione di virus

La normativa

Le leggi di riferimento:

⁽Ancora un altro ⁻foglio di carta!∕

• Legge 675/96 (privacy)

Emanazione schema di regolamento
 norme in materia di individuazione
 delle misure minime per il
 trattamento dati personali

La normativa

• Art. 15, comma 2, legge n.59/97:

La normativa

- Art. 15, comma 2, legge n.59/97:
 "Gli atti, dati e documenti formati ... con strumenti informatici o telematici,... nonché la loro archiviazione trasmissione con documenti informatici, sono validi e rilevanti a tutti gli effetti di legge" (legge Bassanini)
- Legittimazione del documento elettronico

La normativa

- D.P.R. 513/97 "modalità di applicazione" della legge 59/97
 - -introduce la firma digitale
 - -regola la costituzione delle CA
- "Regolamento" D.P.C.M. in fase di emanazione

Sicurezza

L'insieme delle misure (di carattere organizzativo e tecnologico) mirate ad assicurare a ciascun utente o processo (e a nessun altro) tutti e soli i servizi previsti per quell'utente o processo, nei tempi e nelle modalità previste.

Le tecniche di sicurezza mirano a garantire:

- riservatezza
- integrità
- disponibilità

ma anche:

- autenticazione
- non ripudio

Le regole per la sicurezza

• Regola n.1:

le informazioni trasmesse o memorizzate devono essere inaccessibili a tutti, tranne a chi le invia e le riceve (riservatezza)

Le regole per la sicurezza

• Regola n.2:

le informazioni trasmesse o memorizzate non devono essere variate durante il tragitto (integrità)

Le regole per la sicurezza

• Regola n.3:

il ricevente deve avere certezza che le informazioni provengano dal vero mittente (autenticità)

Le regole per la sicurezza

• Regola n.4:

il mittente deve avere certezza che il ricevente sia quello corretto (autenticità)

Le regole per la sicurezza

• Regola n.5:

il ricevente non deve poter negare di aver ricevuto le informazioni e il mittente non deve poter negare di averle inviate (non ripudio)

Sicurezza

Alcune classificazioni:

- Attacchi passivi (mirati a conoscere dati, informazioni, configurazioni,...)
- Attacchi attivi (mirati ad alterare dati, informazioni, configurazioni,...)

Politica per la sicurezza

Le fasi principali:

- analisi del contesto (struttura, organizzazione, flussi informativi)
- analisi del sistema informatico(risorse fisiche, risorse logiche, processi)
- classificazione degli utenti e dei processi e relativi diritti di accesso
- analisi e valutazione della vulnerabilità e conseguenti rischi
- individuazione e pianificazione contromisure

Politica per la sicurezza

Le fasi principali:

- analisi del contesto (struttura, organizzazione, flussi informativi)
- analisi del sistema informatico(risorse fisiche, risorse logiche, processi)
- classificazione degli utenti e dei processi e relativi diritti di accesso
- analisi e valutazione della vulnerabilità e conseguenti rischi
- individuazione e pianificazione contromisure

M. Mezzalama - Politecnico di Torino

Alcune tipologie di attacco

NETWORK SNIFFING

Se i dati viaggiano sulla rete da una macchina all'altra in chiaro (cioè non cifrati in alcun modo) è possibile da una qualsiasi macchina della rete locale intercettare pacchetti e dati in transito

Alcune tipologie di attacco

IP SPOOFING:

costruzione di pacchetti IP per ingannare un server sulla provenienza delle chiamate in ingresso

M. Mezzalama - Politecnico di Torino

Crittografia Firma digitale

M. Mezzalama - Politecnico di Torino

Crittografia a chiave pubblica

Ogni utente ha due chiavi

Una delle chiavi è resa pubblica

La chiave segreta ("privata") è nota soltanto al suo proprietario.

Crittografia a chiave pubblica

Tutte le chiavi pubbliche sono consultabili in un elenco centralizzata

E' possibile firmare ed autenticare i propri documenti in modo inequivocabile.

Autenticazione

- L'autenticazione permette di:
 - conoscere l'identità del mittente
 - rilevare alterazioni nel testo
- ma:
 - il ricevente può falsificare il testo producendone uno diverso
 - generare un nuovo testo
 - il mittente disconoscere l'invio di un testo

Message digest (hash)

- è un riassunto del messaggio che si vuole proteggere
- allo scopo si usano algoritmi di hash:
 - MD5, genera un digest di 128 bit
 - SHA, genera un digest di 160 bit

messaggio

digest

Digest firmato con Kpri

Certificato a chiave pubblica

 La sola firma con una coppia di chiavi non mi garantisce la corrispondenza con un soggetto fisico

> Chi è Marco? Sarà proprio la firma di Marco?

Certificato a chiave pubblica

• E' necessario un *certificato d'autenticità* che garantisca in modo esplicito l'identità del soggetto (SIGILLO)

Riconosco il timbro!

Certifico che la seguente è la chiave pubblica di Mezzalama:

Firmato: il rettore ZICH

Certificato a chiave pubblica

"Una struttura dati per legare in modo sicuro una chiave pubblica ad alcuni attributi

- tipicamente lega una chiave ad un'identità
- firmato in modo elettronico dall'emettitore: una persona fidata o - meglio - l'autorità di certificazione (CA)
- con scadenza temporale
- revocabile sia dall'utente sia dall'emettitore
- richiede una RA

certificato X.509

versione

issuer

validità

soggetto

• chiave pubblica

• firma digitale della yy...y CA

algoritmo di firma RSA with MD2, 512

C = IT, O = Polito, OU=CA

1/1/96 - 31/12/96

C = IT, O = Polito,

CN = Marco Mezzalama

RSA, 1024, xxx...

Sicurezza e virus

M. Mezzalama - Politecnico di Torino

Modalità di infezione (modalità con cui si introducono e si duplicano nel sistema)

- BOOT VIRUS
- PARASITIC o MULTI VIRU
- MACRO VIRUS

M. Mezzalama - Politecnico di Torino

M. Mezzalama - Politecnico di Torino

Programmi che utilizzano la rete per propagarsi

2. HOAX Virus (e-mail)

ATTENZIONE!
Se ricevete un file del tipo ...
non apritelo!

E' un virus! Passate con urgenza questa informazione.