Ve370 Introduction to Computer Organization

Homework 8

1. Exercise 5.3.5

There are many different design parameters that are important to a cache's overall performance. The table below lists parameters for different direct-mapped cache designs.

	Cache Data Size	Cache Block Size	Cache Access Time		
a.	32 KB	2 words	1 cycle		
b.	32 KB	4 words	2 cycle		

5.3.5 [20] <5.2, 5.3> Generate a series of read requests that have a lower miss rate on a 2 KB 2-way set associative cache than the cache listed in the table. Identify one possible solution that would make the cache listed in the table have an equal or lower miss rate than the 2 KB cache. Discuss the advantages and disadvantages of such a solution.

2. Exercise 5.5.2

Exercise 5.5

Recall that we have two write policies and write allocation policies, and their combinations can be implemented either in L1 or L2 cache.

		L1	L2		
a	a.	Write through, non-write allocate	Write back, write allocate		
lt).	Write through, write allocate	Write back, write allocate		

5.5.2 [20] <5.2, 5.5> Describe the procedure of handling an L1 write-miss, considering the component involved and the possibility of replacing a dirty block.

3. Exercise 5.5.5

Consider the following program and cache behaviors.

	Data Reads per 1000 Instructions	Data Writes per 1000 Instructions			Block Size (byte)
a.	250	100	0.30%	2%	64
b.	200	100	0.30%	2%	64

5.5.5 [5] <5.2, 5.5> For a write-back, write-allocate cache, assuming 30% of replaced data cache blocks are dirty, what are the minimal read and write bandwidths needed for a CPI of 2?

4. Exercise 5.7.1

Exercise 5.7

In this exercise, we will look at the different ways capacity affects overall performance. In general, cache access time is proportional to capacity. Assume that main memory accesses take 70 ns and that memory accesses are 36% of all instructions. The following table shows data for L1 caches attached to each of two processors, P1 and P2.

		L1 Size	L1 Miss Rate	L1 Hit Time
a.	P1	2 KB	8.0%	0.66 ns
	P2	4 KB	6.0%	0.90 ns
b.	P1	16 KB	3.4%	1.08 ns
	P2	32 KB	2.9%	2.02 ns

5.7.1 [5] <5.3> Assuming that the L1 hit time determines the cycle times for P1 and P2, what are their respective clock rates?

5. Exercise 5.7.3

5.7.3 [5] <5.3> Assuming a base CPI of 1.0 without any memory stalls, what is the total CPI for P1 and P2? Which processor is faster?

- 6. Exercise 5.7.4
- 7. Exercise 5.7.5
- 8. Exercise 5.7.6

For the next three problems, we will consider the addition of an L2 cache to P1 to presumably make up for its limited L1 cache capacity. Use the L1 cache capacities and hit times from the previous table when solving these problems. The L2 miss rate indicated is its local miss rate.

	L2 Size	L2 Miss Rate	L2 Hit Time	
a.	1 MB	95%	5.62 ns	
b.	8 MB	68%	23.52 ns	

- **5.7.4** [10] <5.3> What is the AMAT for P1 with the addition of an L2 cache? Is the AMAT better or worse with the L2 cache?
- **5.7.5** [5] <5.3> Assuming a base CPI of 1.0 without any memory stalls, what is the total CPI for P1 with the addition of an L2 cache?
- **5.7.6** [10] <5.3> Which processor is faster, now that P1 has an L2 cache? If P1 is faster, what miss rate would P2 need in its L1 cache to match P1's performance? If P2 is faster, what miss rate would P1 need in its L1 cache to match P2's performance?
- 9. Exercise 5.8.1
- 10. Exercise 5.8.2
- 11. Exercise 5.8.3
- 12. Exercise 5.8.4

Exercise 5.8

This exercise examines the impact of different cache designs, specifically comparing associative caches to the direct-mapped caches from Section 5.2. For these exercises, refer to the table of address streams shown in Exercise 5.3.

- **5.8.1** [10] <5.3> Using the references from Exercise 5.3, show the final cache contents for a three-way set associative cache with two-word blocks and a total size of 24 words. Use LRU replacement. For each reference identify the index bits, the tag bits, the block offset bits, and if it is a hit or a miss.
- **5.8.2** [10] <5.3> Using the references from Exercise 5.3, show the final cache contents for a fully associative cache with one-word blocks and a total size of 8 words. Use LRU replacement. For each reference identify the index bits, the tag bits, and if it is a hit or a miss.
- **5.8.3** [15] <5.3> Using the references from Exercise 5.3, what is the miss rate for a fully associative cache with two-word blocks and a total size of 8 words, using LRU replacement? What is the miss rate using MRU (most recently used) replacement? Finally what is the best possible miss rate for this cache, given any replacement policy?

Multilevel caching is an important technique to overcome the limited amount of space that a first level cache can provide while still maintaining its speed. Consider a processor with the following parameters:

	Base CPI, No Memory Stalls	Processor Speed	Main Memory Access Time	First Level Cache Miss Rate per Instruction	Second Level Cache, Direct-Mapped Speed	Global Miss Rate with Second Level Cache, Direct-Mapped	Second Level Cache, Eight-Way Set Associative Speed	Global Miss Rate with Second Level Cache, Eight-Way Set Associative
a.	1.5	2 GHz	100 ns	7%	12 cycles	3.5%	28 cycles	1.5%
b.	1.0	2 GHz	150 ns	3%	15 cycles	5.0%	20 cycles	2.0%

5.8.4 [10] <5.3> Calculate the CPI for the processor in the table using: 1) only a first level cache, 2) a second level direct-mapped cache, and 3) a second level eightway set associative cache. How do these numbers change if main memory access time is doubled? If it is cut in half?