Final Project: STAT8051

Jeonghwan Lee, Jinwen Fu, Jooyong Lee, Seungwon Lee

University of Minnesota Twin-Cities

December 12, 2022

Outline

- Data Overview
- 2 Data Pre-processing(Jeonghwan)
- Model Fitting
- 4 Model Interpretation & Suggestions

Data Overview

	Policy	Driver	Vehicle
Observation	49162	106294	169237
Number of Variables	18	5	5
NA(Missing value)	24625	670	1608

Table: Data overview

- The data is consist of data sets(Policy, Driver, Vehicle).
- Policy is consist of 49162 unique policy-id.
- Driver and Vehicle contain multiple observations for each policy-id.

Data Overview-Policy

Data Overview-Driver

Data Overview-Vehicle

Data Overview-Summary

- From the Policy, there are apparent differences in Conversion Rate, among different groups (Conversion Rate is proportion of convert-ind=1 for each group).
- From the **Driver**, distribution of variables is different according to *Living Status*.
- From the Vehicle, there are no apparent differences in the distribution among variables.

Data Pre-processing

- → **Goal 1**: Fill missing values with proper values for all data sets.
- → Goal 2: Convert zip to longitude and latitude.
- → Goal 3: Merge information from Vehicle and Driver to Policy.

Handling Missing Values

Predictor	# of NA
zip	472
Agent_cd	5430
quoted_amt	112
Prior_carrier_grp	5000
Cov_package_type	770
CAT_zone	250
n_safty_rating	77

- Delete rows with NA
- Naive Imputation: Filling NA values with the mean(mode) of each columns.
- Multiple Imputation: Imputing NA values using information of non-missing values.

zip to lon,lat

state	county	zip	lon	lat
NY	Bronx	10465	-73.82426	40.82622
FL	Miami-Dade	33141	-80.1484407	25.8535635
WI	Milwaukee	53210	-87.9751299	43.0671805

Table: Example of converting zip

 By using Google API geocode, we could convert zip into lon and lat data.

Merging Predictors

 The Driver and Vehicle data was merged into Policy data by calculating the mean(mode) of each predictors.

policy_id	safty_rating	age	living_status
policy_5	74	60	rent
policy_5	30	20	dependent
policy_5	29	16	dependent

Table: Driver

policy_id	safty_rating	age	living_status
policy_5	44.333	32	dependent

Table: Policy

Models

models	best in-sample AUC	out of AUC
Logistic Regression	0.6382	-
Randomforest	0.6597	-
XGBoost	0.6838	0.67665

Table: Model Performances

• XGBoost shows the best in-sample AUC, and we use it as a model for the test set.

Hyperparameter Tuning

 RandomizedSearchCV: Optimization of accuracy through one or few "random" parameters. We chose it as this one can outperform the search grid when only a few parameters affect the outcome of our models.

Experiments-Feature Importance

What the Model Suggests

- Use Logistic regression to illustrate the black box
- ullet On training set: prediction \sim important features

predictor	coefficient	significance
driver age	2.154e-03	***
living_dependent	0	***
living_own	1.277e-01	***
living_rent	1.271e-01	***
cat zone	-2.232e-02	***
driver number	-2.337e-02	***
discount	4.483e-02	***
quote amount	-3.912e-06	***

Table: Feature Coefficients

User Persona

• Select the policies whose predicted probability is near 1

User Persona

• How does a most likely Costumer look like?

value
around 44
1 or 2
rent or owned
1
low
yes
around 4324.75
yes
FL, NJ or NY

Table: User Persona