Problema 4-E4 - Codare semnal imagine

Fotografia digitală este una dintre cele mai populare forme de reprezentare a informației vizuale. O fotografie este reprezentată ca o matrice de valori întregi și pozitive, din intervalul [0; 255], ce sunt distribuite pe linii și coloane. Datorită necesarului de memorie semnificativ, imaginile sunt de cele mai multe ori codate pentru a reduce informația transmisă.

Cerință

Având la dispoziție o imagine, A[][], de dimensiune m (număr de linii) x n (număr de coloane), să se realizeze codarea acesteia după cum urmează. Imaginea este transformată într-un vector de valori, v1[] (se parcurge imaginea de la stânga la dreapta și de sus în jos). Fiecare valoare **diferită** a vectorului, v1[i], este transformată în două valori: $[a\ b]$, unde a reprezintă valoarea propriu-zisă, iar b numărul de apariții a acesteia în vector. Aceste noi valori, concatenate, vor reprezenta semnalul codat al imaginii A[][], și sunt stocate în vectorul v2[]. Să se afișeze pe ecran cantitatea de date redusă, exprimată ca diferența dintre dimensiunile vectorilor v1[] și v2[]. Aceasta poate fi o valoare pozitivă sau negativă.

Date de intrare

Se vor citi de la tastatură (fluxul *stdin*) următoarele date:

- o valoare întreagă pentru numărul de linii m, urmată de caracterul newline (tasta Enter);
- o valoare întreagă pentru numărul de coloane *n*, urmată de caracterul *newline* (tasta *Enter*);
- valorile matricei **A**, introduse câte o valoare pe linie urmată de caracterul *newline* (tasta *Enter*), parcursă de la stânga la dreapta, și de sus în jos (parcurgere pe linii și coloane).

Date de ieșire

Programul va afișa pe ecran la ieșire, o singură valoare, întreagă, ce corespunde diferenței dintre dimensiunea celor doi vectori de date, vectorul inițial și cel final în urma codării, urmată de caracterul *newline* (tasta *Enter*).

ATENȚIE la respectarea cerinței problemei: afișarea rezultatelor trebuie făcută EXACT în modul in care a fost indicat! Cu alte cuvinte, pe stream-ul standard de ieșire nu se va afișa nimic în plus față de cerința problemei; ca urmare a evaluării automate, orice caracter suplimentar afișat, sau o afișare diferită de cea indicată, duc la un rezultat eronat și prin urmare la obținerea calificativului "Respins".

Restricții și precizări

- 1. Dimensiunile matricei sunt numere întregi, pozitive, mai mari strict decât 2 și mai mici decât 20. Valorile matricei sunt valori întregi, pozitive, în intervalul [0; 255].
- 2. Atenție: În funcție de limbajul de programare ales, fișierul ce conține codul trebuie să aibă una din extensiile .c, .cpp, .java, sau .m. Editorul web **nu va adăuga automat** aceste extensii și lipsa lor duce la imposibilitatea de compilare a programului!
- 3. Atenție: Fişierul sursă trebuie numit de candidat sub forma: <nume>.<ext> unde nume este numele de familie al candidatului și extensia este cea aleasă conform punctului anterior. Atenție la restricțiile impuse de limbajul Java legate de numele clasei și numele fișierului!

Exemplu

```
Intrare
                                                                                                 Ieşire
                                                                                                  4
3
4
2
2
1
3
4
3
2
4
2
4
4
4
                    \begin{bmatrix} 2 & 2 & 1 & 3 \end{bmatrix}
Explicație: A = \begin{vmatrix} 4 & 3 & 2 & 4 \end{vmatrix};
                   2 4 4 4
v1=[2 2 1 3 4 3 2 4 2 4 4 4] (prin parcurgere A);
v1=[1 2 2 2 2 3 3 4 4 4 4 4] (ordonat crescător);
Observație: pentru rezolvarea problemei nu este obligatorie ordonarea crescătoare a valorilor.
valori diferite:
v1[0]=1 -> a=1, b=1 (o singură apariție), [1 1];
v1[1]=2 -> a=2, b=4 (4 aparitii), [2 4];
v1[5]=3 -> a=3, b=2 (2 apariții), [3 2];
v1[7]=4 -> a=4, b=5 (5 apariţii), [4 5];
v2=[ [1 1] [2 4] [3 2] [4 5] ]=[1 1 2 4 3 2 4 5];
dimensiune(\mathbf{v1})=12;
dimensiune(v2)=8;
diferența=12-8=4.
```

Timp de lucru: 120 de minute