### ЛЕКЦІЯ 4

#### ПОВТОРНІ НЕЗАЛЕЖНІ ВИПРОБУВАННЯ

Нагадаємо, що випробування називають *незалежними*, якщо ймовірність будь-якого результату випробування не залежить від того, які наслідки мали інші випробування.

Повторні незалежні випробування — це важливий концепт у теорії ймовірностей, який описує ситуації, коли одна й та сама випадкова подія повторюється багаторазово незалежно від попередніх результатів.



Рис. 4.1. Основні схеми для повторних незалежних випробувань Окрім вищеназваних схем для розв'язання задач використовується Поліноміальна схема, яка є узагальненням схеми (формули) Бернуллі.

# 4.1. Формула Бернуллі. Найймовірніша кількість успіхів

У теорії ймовірності, формула Бернуллі дозволяє обчислити ймовірність успіхів у серії незалежних експериментів.

**Теорема 4.1.** Якщо ймовірність p настання події A в кожному випробуванні постійна, то ймовірність  $P_n(m)$  того, що подія A на ступить m раз в n незалежних випробуваннях, обчислюється за формулою (4.1):

$$P_n(m) = C_n^m \cdot p^m \cdot q^{n-m} \ (m = 1, 2, ..., n).$$
 (4.1)

**Доведення.** Нехай проводиться серія з n незалежних в сукупності випробувань. В кожному з цих випробувань подія A може з'явитись зі сталою ймовірністю p і не з'явитись з ймовірністю q = 1 - p. Така серія випробувань називається *схемою Бернуллі*.

Знайдемо ймовірність того, що в схемі Бернуллі подія A з'явиться рівно m разів  $(0 \le m \le n)$ . Настання події A будемо називати «успіхом»

Позначимо через  $P_n(m)$  ймовірність того, що в серії з n незалежних в сукупності випробувань подія A з'явиться рівно m разів. Нехай подія  $A_i$  полягає у тому, що подія A з'явилась у i-му випробуванні. З теорем додавання і множення ймовірностей, дістанемо

$$\begin{array}{c} P_n(m) = P(A_1 \cdot \overline{A_2} \cdot \ldots \cdot A_m \cdot \overline{A_{m+1}} \cdot \overline{A_{m+2}} \cdot \ldots \cdot \overline{A_n}) + \cdots \\ + P(\overline{A_1} \cdot \overline{A_2} \cdot \ldots \cdot \overline{A_{n-m}} \cdot A_{n-m+1} \cdot A_{n-m+2} \cdot \ldots \cdot A_n) = \\ = P(A_1) \cdot P(A_2) \cdot \ldots \cdot P(A_m) \cdot P(\overline{A_{m+1}}) \cdot P(\overline{A_{m+2}}) \cdot \ldots \cdot P(\overline{A_n}) + \cdots \\ + P(\overline{A_1}) \cdot P(\overline{A_2}) \cdot \ldots \cdot P(\overline{A_{n-m}}) \cdot P(A_{n-m+1}) \cdot P(A_{n-m+2}) \cdot \ldots \cdot P(A_n) = \\ = \underbrace{p \cdot p \cdot \ldots \cdot p}_{m} \cdot \underbrace{q \cdot q \cdot \ldots \cdot q}_{n-m} + \cdots + \underbrace{p \cdot p \cdot \ldots \cdot p}_{m} \cdot \underbrace{q \cdot q \cdot \ldots \cdot q}_{n-m}. \end{array}$$
 Всього доданків  $p^m \cdot q^{n-m}$  буде стільки, скількома способами можна з

Всього доданків  $p^m \cdot q^{n-m}$  буде стільки, скількома способами можна з n випробувань вибрати m, а отже отримуємо (4.1).

Формула (4.1) називається формулою Бернуллі.

Формула Бернуллі широко використовується в задачах з дискретної ймовірності, наприклад:

- Задачі з монетами (ймовірність випадання певної кількості гербів при підкиданні монети кілька разів).
- Задачі з урнами (ймовірність витягнути певну кількість кульок певного кольору).
- Генетичні задачі (ймовірність певної кількості успадкувань ознаки).

Формула Бернуллі дає точні значення ймовірностей  $P_n(m)$ , проте при великих значеннях n вона приводить до громіздких обчислень.

**Приклад 4.1.** Підкидаємо три рази монету. Знайдіть ймовірність того, що випало рівно два герба.

Розв'язання. За формулою Бернуллі

$$P_3(2) = C_3^2 \cdot \left(\frac{1}{2}\right)^2 \cdot \left(\frac{1}{2}\right)^{3-2} = 3 \cdot \frac{1}{4} \cdot \frac{1}{2} = \frac{3}{8}.$$

**Відповідь.**  $P_3(2) = \frac{3}{8}$ .

**Приклад 4.2.** Яка ймовірність того, що при n підкиданнях грального кубика хоча б два рази з'явиться шістка (подія A)?

**Розв'язання.** Знайдемо ймовірність події  $\bar{A}$  — шістка з'явилась менше двох раз.

$$P(\bar{A}) = P_n(0) + P_n(1).$$
 Оскільки  $p = \frac{1}{6}$ ,  $q = \frac{5}{6}$ , то 
$$P(\bar{A}) = C_n^0 \cdot \left(\frac{1}{6}\right)^0 \cdot \left(\frac{5}{6}\right)^n + C_n^1 \cdot \left(\frac{1}{6}\right)^1 \cdot \left(\frac{5}{6}\right)^{n-1} = \left(\frac{5}{6}\right)^n + n \cdot \frac{5^{n-1}}{6^n} = \frac{5^{n-1}}{6^n} \cdot (5+n).$$
 Тоді  $P(A) = 1 - P(\bar{A}) = 1 - \frac{5^{n-1}}{6^n} \cdot (5+n).$ 

**Відповідь.** 
$$P(A) = 1 - \frac{5^{n-1}}{6^n} \cdot (5+n)$$
.

**Приклад 4.3.** Випадково зустрінутий на вулиці перехожий з ймовірністю 0,3 — шатен, з ймовірністю 0,4 — блондин, з ймовірністю 0,2 — брюнет і з ймовірністю 0,1 — рудий. Яка ймовірність того, що серед зустрінутих 6 людей a) не менше 4 блондинів, b0 хоча b0 один рудий, b0 b3 блондина b3 шатена?

#### Розв'язання.

а)  $P_6(4 \le m \le 6) = C_6^4 \cdot p^4 \cdot q^2 + C_6^5 \cdot p^5 \cdot q^1 + C_6^6 \cdot p^6 \cdot q^0$ . За умовою p=0,4; q=0,6.

$$P_6(4 \le m \le 6) = 15 \cdot (0.4)^4 \cdot (0.6)^2 + 6 \cdot (0.4)^5 \cdot (0.6)^1 + 1 \cdot (0.4)^6 \cdot (0.6)^0 = 0.1792.$$

**6**)  $P_6(1 \le m \le 6) = 1 - P_6(0)$ .

В цьому випадку, за умовою,  $p=0,1;\ q=0,9.$  Звідки

$$P_6(1 \le m \le 6) = 1 - (0.1)^0 \cdot (0.9)^6 = 0.468559.$$

в) Розглянемо наступні події:  $A = \{$ зустрілись 3 блондина і 3 шатена $\}$ ;  $B_i = \{i$ -тий зустрінутий — блондин $\}$ ;  $C_i = \{i$ -тий зустрінутий — шатен $\}$  (i = 1,2,...,6).

Тоді

$$P(A) = P(B_1 \cdot B_2 \cdot B_3 \cdot C_4 \cdot C_5 \cdot C_6) + P(B_1 \cdot B_2 \cdot C_3 \cdot B_4 \cdot C_5 \cdot C_6) + \dots + P(C_1 \cdot C_2 \cdot C_3 \cdot B_4 \cdot B_5 \cdot B_6).$$

Доданків буде стільки, скількома способами можна вибрати трьох, наприклад, блондинів з шести чоловік, тобто  $C_6^3$ . Кожен доданок дорівнює  $(0,3)^3 \cdot (0,4)^3 \cdot (0,3)^0$ .

Тоді

$$P(A) = 20 \cdot (0.3)^3 \cdot (0.4)^3 \cdot (0.3)^0 = 0.03456.$$

**Відповідь.** a)  $P_6(4 \le m \le 6) = 0,1792$ ; б)  $P_6(1 \le m \le 6) = 0,468559$ ; в) P(A) = 0,03456.

**Приклад 4.4.** Підводний човен атакує крейсер: випускає по ньому одну за одною 4 торпеди. Ймовірність попадання кожної дорівнює  $\frac{3}{4}$ . Кожна з торпед з однаковою ймовірністю може попасти в один з 10 відсіків крейсера. Якщо торпеди попали хоча б в два різних відсіки, то крейсер буде потоплено. Яка ймовірність цього (подія A)?

**Розв'язання.** Нехай події  $A_i$  полягають у тому, що в крейсер попало i торпед (i=2,3,4). В цих випадках крейсер може бути потоплен. Тоді

$$P(A_2) = P_4(2) = C_4^2 \cdot \left(\frac{3}{4}\right)^2 \cdot \left(\frac{1}{4}\right)^2 = \frac{27}{128};$$
  
$$P(A_3) = P_4(3) = C_4^3 \cdot \left(\frac{3}{4}\right)^3 \cdot \left(\frac{1}{4}\right)^1 = \frac{27}{64};$$

$$P(A_4) = P_4(4) = C_4^4 \cdot \left(\frac{3}{4}\right)^4 \cdot \left(\frac{1}{4}\right)^0 = \frac{81}{256}.$$

Треба врахувати, що всі i торпед можуть попасти в один відсік; ймовірність цього  $\frac{1}{10^{i-1}}$ . Тоді крейсер не буде потоплено. Отже,

$$\begin{split} P(A) &= P(A_2) \cdot P(A/A_2) + P(A_3) \cdot P(A/A_3) + P(A_4) \cdot P(A/A_4) = \\ &= \frac{27}{128} \cdot \left(1 - \frac{1}{10^{2-1}}\right) + \frac{27}{64} \cdot \left(1 - \frac{1}{10^{3-1}}\right) + \frac{81}{256} \cdot \left(1 - \frac{1}{10^{4-1}}\right) \approx \\ &\approx 0.9236. \end{split}$$

**Відповідь.**  $P(A) \approx 0.9236$ .

**Приклад 4.5.** Ймовірність виготовлення на автоматичному верстаті стандартної деталі дорівнює 0,8. Знайти ймовірності можливого числа появи бракованих деталей серед 5 відібраних.

**Розв'язання.** Ймовірність виготовлення бракованої деталі p = 1 - 0.8 = 0.2. Шукані ймовірності знаходимо за формулою (4.1):

$$P_5(0) = C_5^0 \cdot (0,2)^0 \cdot (0,8)^5 = 0,32768;$$

$$P_5(1) = C_5^1 \cdot (0,2)^1 \cdot (0,8)^4 = 0,4096;$$

$$P_5(2) = C_5^2 \cdot (0,2)^2 \cdot (0,8)^3 = 0,2048;$$

$$P_5(3) = C_5^3 \cdot (0,2)^3 \cdot (0,8)^2 = 0,0512;$$

$$P_5(4) = C_5^4 \cdot (0,2)^4 \cdot (0,8)^1 = 0,0064;$$

$$P_5(5) = C_5^5 \cdot (0,2)^5 \cdot (0,8)^0 = 0,00032.$$

Отримані результати представимо у вигляді таблиці 4.1.

Таблиця 4.1. Результати для можливого числа бракованих деталей

| m        | 0       | 1      | 2      | 3      | 4      | 5       |
|----------|---------|--------|--------|--------|--------|---------|
| $P_n(m)$ | 0,32768 | 0,4096 | 0,2048 | 0,0512 | 0,0064 | 0,00032 |

Згідно табл. 4.1, отримані ймовірності зобразимо графічно точками з координатами  $(m, P_n(m))$ . Поєднуючи ці точки, отримаємо багатокутник, або полігон, розподілу ймовірностей (рис. 4.1).



Рис. 4.1. Багатокутник розподілу при n=5

Розглядаючи багатокутник розподілу ймовірностей (рис. 4.1), ми бачимо, що є такі значення m (в даному випадку, одне  $-m_0=1$ ), що мають найбільшу ймовірність  $P_n(m)$ .

**Відповідь.**  $P_5(0) = 0.32768; P_5(1) = 0.4096; P_5(2) = 0.2048; P_5(3) = 0.0512; P_5(4) = 0.0064; P_5(5) = 0.00032.$ 

Число  $m_0$  настання події A в n незалежних випробуваннях називається найймовірніше, якщо ймовірність здійснення цієї події  $P_n(m)$  буде, принаймні, не менше ймовірностей інших подій  $P_n(m)$  при будь-якому n.

**Теорема 4.2.** Найймовірніше число  $m_0$  появ події A в n випробуваннях визначається з нерівностей (4.2):

$$n \cdot p - q \le m_0 \le n \cdot p + p. \tag{4.2}$$

**Доведення.** Для знаходження  $m_0$  запишемо систему нерівностей

$$\begin{cases}
P_n(m_0) \ge P_n(m_0 + 1), \\
P_n(m_0) \ge P_n(m_0 - 1).
\end{cases}$$

3 першої нерівності, враховуючи формулу Бернуллі, матимемо

$$\frac{n!}{m_0!\cdot (n-m_0)!}\cdot p^{m_0}\cdot q^{n-m_0}\geq \frac{n!}{(m_0+1)!\cdot (n-m_0-1)!}\cdot p^{m_0+1}\cdot q^{n-m_0-1}.$$
 Оскільки

$$(m_0 + 1)! = m_0! \cdot (m_0 + 1),$$

то 
$$\frac{1}{n-m_0} \cdot q \ge \frac{1}{m_0+1} \cdot p$$
, або  $(m_0+1) \cdot q \ge (n-m_0) \cdot p$ .

Остаточно  $m_0 \ge n \cdot p - q$ , враховуючи, що p + q = 1.

Аналогічно для другої нерівності  $m_0 \ge n \cdot p + p$ .

Об'єднуючи отримані рішення двох нерівностей, приходимо до подвійного нерівності:

$$n \cdot p - q \le m_0 \le n \cdot p + p$$
.

Оскільки  $n \cdot p + p - (n \cdot p - q) = p + q = 1$ , число  $m_0$  завжди існує, причому, якщо  $n \cdot p + q$  — ціле число, то найймовірніших чисел буде два:  $m_0 = n \cdot p - q$  і  $m_0 = n \cdot p + p$ .

Якщо ймовірність появи події A в кожному з n випробувань дорівнює p, то кількість випробувань, які необхідно здійснити, щоб з ймовірністю P можна було стверджувати, що подія A відбудеться хоча б один раз, обчислюється за формулою (4.3):

$$n \ge \frac{\ln(1-P(A))}{\ln(1-p)}$$
 (4.3)

Обчислення ймовірностей за формулою Бернуллі при великих значеннях n і m пов'язане з певними труднощами.

**Приклад 4.6.** Ймовірність відмовлення кожного приладу при його випробуванні складає 0,2. Скільки приладів потрібно випробувати, щоб з ймовірністю не менше 0,9 отримати хоча б один прилад, який відмовить.

**Розв'язання.** Нехай  $A = \{$ при n випробувань хоча б один прилад відмовить $\}$ .

Тоді p = 0.2; P(A) = 0.9. Одержимо за формулою (4.3):

$$n \ge \frac{\ln(0,1)}{\ln(0.8)} \approx 10,3; \ n \ge 11.$$

Відповідь. Необхідно випробувати не менше 11 приладів.

### 4.2. Локальна теорема Муавра-Лапласа

*Локальна теорема Муавра-Лапласа*  $\epsilon$  важливим результатом теорії ймовірностей. Вона апроксиму $\epsilon$  ймовірність появи події A рівно m разів в серії з n повторних незалежних випробувань (при великих значеннях параметра n).

**Теорема 4.3.** Якщо ймовірність p появи події A у кожному випробуванні стала і відмінна від 0 і 1, то ймовірність  $P_n(m)$  того, що подія A відбудеться m разів b b випробуваннях для достатньо великих значень b b наближено обчислюється за формулою (4.4):

$$P_n(m) \approx \frac{1}{\sqrt{n \cdot p \cdot q}} \cdot \varphi(x),$$
 (4.4)

де  $\varphi(x) = \frac{1}{\sqrt{2 \cdot \pi}} \cdot e^{-\frac{x^2}{2}} - функція Гауса, таблиця значень якої наведено в додатку 1 Гмурмана, де <math>x = \frac{m - n \cdot p}{\sqrt{n \cdot p \cdot q}}$ . Чим більше n, тим точніше формула (4.4). Вона дає невелику похибку, якщо  $n \cdot p \cdot q \ge 10$ .

Доведення. Процес доведення має наступні етапи.

## Формула Бернуллі

Ймовірність того, що випадкова величина A настане рівно m разів в серії з n експериментів обчислюється за формулою (4.1).

## Формула Стірлінга

Для великих n використовуємо наближення Стірлінга для факторіалів:

$$n! \approx \sqrt{2 \cdot \pi \cdot n} \cdot \left(\frac{n}{e}\right)^n$$
.

Застосуємо формулу Стірлінга до біноміального коефіцієнта:

$$C_n^m = \frac{n!}{m! \cdot (n-m)!} \approx \frac{\sqrt{2 \cdot \pi \cdot n} \cdot \left(\frac{n}{e}\right)^n}{\sqrt{2 \cdot \pi \cdot m} \cdot \left(\frac{m}{e}\right)^n \cdot \sqrt{2 \cdot \pi \cdot (n-m)} \cdot \left(\frac{n-m}{e}\right)^{n-m}}.$$
Спрощення

Спрощуємо це наближення:

$$C_n^m \approx \frac{\sqrt{2 \cdot \pi \cdot n} \cdot \left(\frac{n}{e}\right)^n}{\sqrt{2 \cdot \pi \cdot m} \cdot \left(\frac{m}{e}\right)^n \cdot \sqrt{2 \cdot \pi \cdot (n-m)} \cdot \left(\frac{n-m}{e}\right)^{n-m}}$$

Далі:

$$C_n^m pprox rac{\sqrt{n} \cdot \left(rac{n}{m}
ight)^m \cdot \left(rac{n}{n-m}
ight)^{n-m}}{\sqrt{2 \cdot \pi \cdot m \cdot (n-m)}}.$$

### Підставлення

Підставимо це у формулу для  $P_n(m)$ :

$$P_n(m) = C_n^m \cdot p^m \cdot q^{n-m} \approx \frac{\sqrt{n} \cdot \left(\frac{n}{m}\right)^m \cdot \left(\frac{n}{n-m}\right)^{n-m}}{\sqrt{2 \cdot \pi \cdot m \cdot (n-m)}} \cdot p^m \cdot q^{n-m}.$$

Перепишемо в зручнішій формі:

$$P_n(m) \approx \frac{\sqrt{n}}{\sqrt{2 \cdot \pi \cdot m \cdot (n-m)}} \cdot \left(\frac{n^n}{m^m \cdot (n-m)^{n-m}}\right) \cdot p^m \cdot q^{n-m}.$$

Логарифмічне перетворення:

Враховуючи  $m = n \cdot p + \Delta$ , логарифмуючи 2, 3 та 4 множники, а також застосовуючи розкладання в ряд Тейлора, отримуємо:

$$P_n(m) \approx \frac{1}{\sqrt{2 \cdot \pi \cdot p \cdot q}} \cdot e^{-\frac{\Delta^2}{2 \cdot n \cdot p \cdot q}},$$

звідки й отримуємо формулу (4.4).

#### Властивості

- **1.** Функція  $\varphi(x)$  парна:  $\varphi(x) = \varphi(-x)$ ;
- **2.** Функція  $\varphi(x)$  монотонно спадна (практично можна вважати, що для x > 4:  $\varphi(x) \approx 0$ ).

|      | Значение функции $\varphi(x)=rac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}}$ |      |             |      |      |      |      |      |      |      |  |  |
|------|---------------------------------------------------------------------|------|-------------|------|------|------|------|------|------|------|--|--|
| x    | 0                                                                   | 1    | 2           | 3    | 4    | 5    | 6    | 7    | 8    | 9    |  |  |
|      | Сотые доли x                                                        |      |             |      |      |      |      |      |      |      |  |  |
| 0,0  | 0,3989                                                              | 3989 | 3989        | 3988 | 3986 | 3984 | 3982 | 3980 | 3977 | 3973 |  |  |
| 0,1  | 3970                                                                | 3965 | 3961        | 3956 | 3951 | 3945 | 3939 | 3932 | 3925 | 3918 |  |  |
| 0,2  | 3910                                                                | 3902 | 3894        | 3885 | 3876 | 3867 | 3857 | 3847 | 3836 | 3825 |  |  |
| 0,3  | 3814                                                                | 3802 | 3790        | 3778 | 3765 | 3752 | 3739 | 3726 | 3712 | 3697 |  |  |
| 0,4  | 3683                                                                | 3668 | 3653        | 3637 | 3721 | 3605 | 3588 | 3572 | 3555 | 3538 |  |  |
| 0,5  | 3521                                                                | 3503 | 3485        | 3467 | 3448 | 3429 | 3411 | 3391 | 3372 | 3352 |  |  |
| 0,6  | 3332                                                                | 3312 | 3292        | 3271 | 3251 | 3230 | 3209 | 3187 | 3166 | 3144 |  |  |
| 0,7  | 3123                                                                | 3101 | 3079        | 3056 | 3034 | 3011 | 2989 | 2966 | 2943 | 2920 |  |  |
| 0,8  | 2897                                                                | 2874 | <b>2850</b> | 2827 | 2803 | 2780 | 2756 | 2732 | 2709 | 2685 |  |  |
| 0,9  | 2661                                                                | 2637 | 2613        | 2589 | 2565 | 2541 | 2516 | 2492 | 2468 | 2444 |  |  |
| 1,0  | -2420                                                               | 2396 | 2371        | 2347 | 2323 | 2299 | 2275 | 2251 | 2227 | 2203 |  |  |
| 1,1  | 2179                                                                | 2155 | 2131        | 2107 | 2083 | 2059 | 2036 | 2012 | 1989 | 1965 |  |  |
| 1,2  | 1942                                                                | 1919 | 1895        | 1872 | 1849 | 1827 | 1804 | 1781 | 1759 | 1736 |  |  |
| -1.3 | 154                                                                 | 1692 | 1660        | 7    | 1626 | 1604 | 1582 | 1561 | 1540 | 151  |  |  |

Рис. 4.2. Фрагмент таблиці функції Гауса



Рис. 4.3. Функція Гауса

**Приклад 4.7.** Перевірки податкової інспекції показали, що кожне друге мале підприємство порушує фінансову дисципліну. **1.** Знайти ймовірність того, що серед 800 малих підприємств району порушили фінансову дисципліну: 380 підприємств. **2.** Яке найймовірніше число малих підприємств, що порушили фінансову дисципліну?

**Розв'язання. 1.** За умовою p=0,5. Число малих підприємств достатньо велике n=800, тому застосуємо локальну формулу Муавра-Лапласа, крім того

$$n \cdot p \cdot q = 800 \cdot 0.5 \cdot (1 - 0.5) = 200.$$

Для цього знайдемо

$$x = \frac{380 - 800 \cdot 0.5}{\sqrt{800 \cdot 0.5 \cdot 0.5}} = -1.414.$$

За формулою (4,4) знайдемо:

$$P_{800}(380) \approx \frac{\varphi(-1,414)}{\sqrt{800 \cdot 0,5 \cdot 0,5}} \approx \frac{\varphi(1,414)}{\sqrt{200}} \approx \frac{0,1468}{\sqrt{200}} \approx 0,0106.$$

2. Тепер знайдемо найймовірніше число малих підприємств, що порушили фінансову дисципліну.

Маємо:  $800 \cdot 0.5 - 0.5 \le m_0 \le 800 \cdot 0.5 + 0.5$ , тобто  $399.5 \le m_0 \le 400.5$ . Звідси  $m_0 = 400$ .

Ймовірність цієї події, з-за того, що  $x = 400 - 800 \cdot 0,5 = 0$ , дорівнює

$$P_{800}(400) \approx \frac{\varphi(0)}{\sqrt{200}} \approx \frac{0.3989}{\sqrt{200}} \approx 0.0282.$$

**Відповідь.** 1.  $P_{800}(380) \approx 0.0106$ ; m = 400; 2.  $P_{800}(400) \approx 0.0282$ .

## 4.3. Інтегральна теорема Муавра-Лапласа

*Інтегральна теорема Муавра-Лапласа*  $\epsilon$  результатом теорії ймовірностей, який дозволя $\epsilon$  апроксимувати ймовірність появи події A від  $m_1$  до  $m_2$  разів в серії з n повторних незалежних випробувань.

**Теорема 4.4.** Якщо ймовірність p появи події A в кожному випробуванні стала і відмінна від 0 і 1, то ймовірність того, що число m появ події A в n незалежних випробуваннях буде міститься у границях від  $m_1$  до

 $m_2$  (включно), для достатньо великих n наближено обчислюється за формулою (4.5):

$$P_n(m_1 \le m \le m_2) \approx \Phi(x_2) - \Phi(x_1),$$
 (4.5)

 $P_{n}(m_{1} \leq m \leq m_{2}) \approx \Phi(x_{2}) - \Phi(x_{1}), \tag{4.5}$   $\partial e \, \Phi(x) = \frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{0}^{x} e^{-\frac{t^{2}}{2}} \, dt - \phi y$ нкція Лапласа, таблиця значень якої наведена в додатку 2 Гмурмана,  $\partial e \, x_{1} = \frac{m_{1} - n \cdot p}{\sqrt{n \cdot p \cdot q}}, \, x_{2} = \frac{m_{2} - n \cdot p}{\sqrt{n \cdot p \cdot q}}.$ 

**Доведення.** Інтегральна теорема Муавра-Лапласа  $\epsilon$  наслідком центральної граничної теореми. Доведення буде надано пізніше.

Формула (4.5) дає невелику похибку для  $n \cdot p \cdot q \ge 10$ .

| x    | $\Phi(x)$ | x    | $\Phi(x)$ | x    | $\phi(x)$ | x    | $\phi(x)$ |
|------|-----------|------|-----------|------|-----------|------|-----------|
| 0,00 | 0,0000    | 0,49 | 0,1879    | 0,98 | 0,3365    | 1,47 | 0,4292    |
| 10.0 | 0.0040    | 0.50 | 0.1915    | 0.99 | 0.3389    | 1.48 | 0.4300    |
| 0.02 | 0.0080    | 0.51 | 0.1950    | 1.00 | 0.3413    | 1.49 | 0.4319    |
| 0.03 | 0.0120    | 0.52 | 0.1985    | 1.01 | 0.3438    | 1.50 | 0.4332    |
| 0.04 | 0.0160    | 0.53 | 0.2019    | 1.02 | 0.3461    | 1.51 | 0.434     |
| 0.05 | 0.0199    | 0.54 | 0.2054    | 1.03 | 0.3485    | 1.52 | 04357     |
| 0.06 | 0.0239    | 0.55 | 0.2088    | 1.04 | 0.3508    | 1.53 | 0.4370    |
| 0.07 | 0.0279    | 0.56 | 0.2123    | 1.05 | 0.3531    | 1.54 | 0.438     |
| 0.08 | 0.0319    | 0.57 | 0.2157    | 1.06 | 0.3554    | 1.55 | 0.439     |
| 0.09 | 0.0359    | 0.58 | 0.2190    | 1.07 | 0.3577    | 1.56 | 0.440     |
| 0.10 | 0.0398    | 0.59 | 0.2224    | 1.08 | 0.3599    | 1.57 | 0.4413    |
| 0.11 | 0.0438    | 0.60 | 0.2257    | 1.09 | 0.3621    | 1.58 | 0.4429    |
| 0.12 | 0.0478    | 0.61 | 0.2291    | 1.10 | 0.3643    | 1.59 | 0.444     |
| 0.13 | 0.0517    | 0.62 | 0.2324    | 1.11 | 0.3665    | 1.60 | 0.4452    |
| 0.14 | 0.0557    | 0.63 | 0.2357    | 1.12 | 0.3686    | 1.61 | 0.4463    |
| 0.15 | 0.0596    | 0.64 | 0.2389    | 1.13 | 0.3708    | 1.62 | 0.4474    |
| 0.16 | 0.0636    | 0.65 | 0.2422    | 1.14 | 0.3729    | 1.63 | 0.448     |
| 0.17 | 0.0675    | 0.66 | 0.2454    | 1.15 | 0.3749    | 1.64 | 0.449     |
| 0.18 | 0.0714    | 0.67 | 0.2486    | 1.16 | 0.3770    | 1.65 | 0.450     |
| 0.19 | 0.0753    | 0.68 | 0.2517    | 1.17 | 0.3790    | 1.66 | 0.451     |
| 0.20 | 0.0793    | 0.69 | 0.2549    | 1.18 | 0.3810    | 1.67 | 0.452     |
| 0.21 | 0.0832    | 0.70 | 0.2580    | 1.19 | 0.3830    | 1.68 | 0.4535    |
| 0.22 | 0.0871    | 0.71 | 0.2611    | 1.20 | 0.3949    | 1.69 | 0.4545    |
| 0.23 | 0.0910    | 0.72 | 0.2642    | 1.21 | 0.3869    | 1.70 | 0.455     |
| 0.24 | 0.0948    | 0.73 | 0.2673    | 1.22 | 0.3888    | 1.71 | 0.456     |
| 0.25 | 0.0987    | 0.74 | 0.2703    | 1.23 | 0.3907    | 1.72 | 0.457     |
| 0.26 | 0.1026    | 0.75 | 0.2734    | 1.24 | 0.3925    | 1.73 | 0.458     |
| 0.27 | 0.1064    | 0.76 | 0.2764    | 1.25 | 0.3944    | 1.74 | 0.459     |
| 0.28 | 0.1103    | 0.77 | 0.2794    | 1.26 | 0.3962    | 1.75 | 0.459     |
| 0.29 | 0.1141    | 0.78 | 0.2823    | 1.27 | 0.3980    | 1.76 | 0.4600    |
| 0.30 | 0.1179    | 0.79 | 0.2852    | 1.28 | 0.3997    | 1.77 | 0.4616    |
| 0.31 | 0.1217    | 0.80 | 0.2881    | 1.29 | 0.4015    | 1.78 | 0.462     |
| 0.32 | 0.1255    | 0.81 | 0.2910    | 1.30 | 0.4032    | 1.79 | 0.463     |
| 0.33 | 0.1293    | 0.82 | 0.2939    | 1.31 | 0.4049    | 1.80 | 0.464     |
| 0.34 | 0.1331    | 0.83 | 0.2967    | 1.32 | 0.4066    | 1.81 | 0.464     |
| 0.35 | 0.1368    | 0.84 | 0.2995    | 1.33 | 0.4082    | 1.82 | 0.4656    |
| 0.36 | 0.1406    | 0.85 | 0.3023    | 1.34 | 0.4099    | 1.83 | 0.466     |
| 0.37 | 0.1443    | 0.86 | 0.3051    | 1.35 | 0.4115    | 1.84 | 0.467     |
| 0.38 | 0.1480    | 0.87 | 0.3078    | 1.36 | 0.4131    | 1.85 | 0.467     |
| 0.39 | 0.1517    | 0.88 | 0.3106    | 1.37 | 0.4147    | 1.86 | 0.4686    |
| 0.40 | 0.1554    | 0.89 | 0.3133    | 1.38 | 0.4162    | 1.87 | 0.469     |
| 0.41 | 0.1591    | 0.90 | 0.3159    | 1.39 | 0.4177    | 1.88 | 0.469     |
| 0.42 | 0,1628    | 0.91 | 0.3186    | 1.40 | 0.4192    | 1.89 | 0.470     |
| 0.43 | 0.1664    | 0.92 | 0.3212    | 1.41 | 0.4207    | 1.90 | 0.471     |
| 0.44 | 0.1700    | 0.93 | 0.3238    | 1.42 | 0.4222    | 1.91 | 0.471     |
| 0.45 | 0.1736    | 0.94 | 0.3264    | 1.43 | 0.4236    | 1.92 | 0.4720    |
| 0.46 | 0.1772    | 0.95 | 0.3289    | 1.44 | 0.4251    | 1.93 | 0.4732    |
| 0.47 | 0.1808    | 0.96 | 0.3315    | 1.45 | 0.4265    | 1.94 | 0,4738    |
| 0.48 | 0.1844    | 0.97 | 0.3340    | 1.46 | 0.4279    | 1.95 | 0.474     |

Рис. 4.4. Фрагмент таблиці значень функції Лапласа

Графік функції Лапласа представлено на рис (4.3), а фрагмент таблиці значень на рис. 4.4.

#### Властивості

- **1.** Функція Лапласа  $\Phi(x)$  непарна  $(\Phi(-x) = -\Phi(x))$ ;
- 2. Функція Лапласа монотонно зростаюча;
- **3.**  $\Phi(x) \to 0,5$ , для  $x \to +\infty$  (для  $x \ge 5$  можна вважати, що  $\Phi(x) = 0,5$ ).

**Приклад 4.8.** Ймовірність появи події в кожному з 100 незалежних випробувань стала і рівна p = 0.8. Знайти ймовірність того, що подія з'явиться не менше 75 раз і не більше 90 разів.

**Розв'язання.** Скористаємося інтегральною теоремою Муавра-Лапласа (4.5).

За умовою, n=100; p=0,8; q=0,2;  $m_1=75$ ;  $m_2=90$ . Обчислимо  $x_1$  і  $x_2$ :

$$x_{1} = \frac{m_{1} - n \cdot p}{\sqrt{n \cdot p \cdot q}} = \frac{75 - 100 \cdot 0.8}{\sqrt{100 \cdot 0.8 \cdot 0.2}} = -1.25;$$

$$x_{2} = \frac{m_{2} - n \cdot p}{\sqrt{n \cdot p \cdot q}} = \frac{90 - 100 \cdot 0.8}{\sqrt{100 \cdot 0.8 \cdot 0.2}} = 2.5.$$

Враховуючи, що функція Лапласа непарна, тобто  $\Phi(-x) = -\Phi(x)$ , отримаємо:

 $P_{100}(75 \le m \le 90) = \Phi(2,5) - \Phi(-1,25) = 0,4938 + 0,3944 = 0,8882.$  Відповідь.  $P_{100}(75 \le m \le 90) = 0,8882.$ 

**Приклад 4.9.** Ймовірність появи події в кожному з незалежних випробувань рівна 0,8. Скільки потрібно виконати випробувань, щоб з ймовірність 0,9 можна було очікувати, що подія з'явиться не менше 75 разів?

**Розв'язання.** За умовою  $p=0.8; q=0.2; m_1=75; m_2=n; P_n(75 \le m \le n)=0.9.$ 

Скористаємося інтегральною теоремою Лапласа (4.5).

Підставляючи дані завдання, отримаємо

$$0.9 = \Phi\left(\frac{n - n \cdot 0.8}{\sqrt{n \cdot 0.8 \cdot 0.2}}\right) - \Phi\left(\frac{75 - n \cdot 0.8}{\sqrt{n \cdot 0.8 \cdot 0.2}}\right)$$

або

$$0.9 = \Phi\left(\frac{\sqrt{n}}{2}\right) - \Phi\left(\frac{75 - n \cdot 0.8}{0.4 \cdot \sqrt{n}}\right).$$

Очевидно, число випробувань n > 75, тому  $\frac{\sqrt{n}}{2} > \frac{\sqrt{75}}{2} \approx 4,33$ .

Оскільки функція Лапласа зростає і  $\Phi(4,33) \approx 0.5$ , то можна покласти  $\Phi\left(\frac{\sqrt{n}}{2}\right) = 0.5$ . Отже,

$$0.9 = 0.5 - \Phi\left(\frac{75 - n \cdot 0.8}{0.4 \cdot \sqrt{n}}\right).$$

Таким чином, отримуємо рівняння (4.6)

$$\Phi\left(\frac{75 - n \cdot 0.8}{0.4 \cdot \sqrt{n}}\right) = -0.4. \tag{4.6}$$

За таблицею у рис. 4.4 знайдемо  $\Phi(1,28) = 0,4$ . Звідси з співвідношення (4.6), враховуючи, що функція Лапласа непарна, отримаємо

$$\frac{75 - n \cdot 0.8}{0.4 \cdot \sqrt{n}} = -1.28.$$

Розв'язавши це рівняння, як квадратне відносно  $\sqrt{n}$ , отримаємо  $\sqrt{n}=10$ . Отже, шукане число випробувань n=100. Відповідь. n=100.

## Наслідки з інтегральної теореми Муавра-Лапласа

**1.** 
$$P_n(|m-n\cdot p|\leq \varepsilon)\approx 2\cdot \Phi\left(\frac{\varepsilon}{\sqrt{n\cdot p\cdot q}}\right);$$

2. 
$$P_n\left(\alpha \leq \frac{m}{n} \leq \beta\right) \approx \Phi(z_2) - \Phi(z_1)$$
,  $\partial e \ z_1 = \frac{\alpha - p}{\sqrt{\frac{p \cdot q}{n}}}, \ z_2 = \frac{\beta - p}{\sqrt{\frac{p \cdot q}{n}}}$ 

3. 
$$P_n(|\frac{m}{n} - p| \le \varepsilon) \approx 2 \cdot \Phi\left(\frac{\varepsilon \cdot \sqrt{n}}{\sqrt{p \cdot q}}\right)$$
.

Доведення. Доведемо властивість 1.

$$\begin{split} &P_{n}(|m-n\cdot p|\leq \varepsilon) = P_{n}(n\cdot p - \varepsilon \leq m \leq n\cdot p + \varepsilon) \approx \\ &\approx \Phi\left(\frac{n\cdot p + \varepsilon - n\cdot p}{\sqrt{n\cdot p\cdot q}}\right) - \Phi\left(\frac{n\cdot p - \varepsilon - n\cdot p}{\sqrt{n\cdot p\cdot q}}\right) = \\ &= \Phi\left(\frac{\varepsilon}{\sqrt{n\cdot p\cdot q}}\right) - \Phi\left(\frac{-\varepsilon}{\sqrt{n\cdot p\cdot q}}\right) = \\ &= \Phi\left(\frac{\varepsilon}{\sqrt{n\cdot p\cdot q}}\right) + \Phi\left(\frac{\varepsilon}{\sqrt{n\cdot p\cdot q}}\right) = 2\cdot \Phi\left(\frac{\varepsilon}{\sqrt{n\cdot p\cdot q}}\right). \end{split}$$

Наслідки 2 і 3 доводяться аналогічно.

**Приклад 4.10.** Ймовірність виготовити на заводі виріб найвищої якості дорівнює 0,9. Навмання беруть 200 виробів. Визначити межі, в яких перебуватиме відносна частота появи виробів найвищої якості з ймовірністю 0,96.

**Розв'язання.** За умовою задачі: n = 200; p = 0.9;  $P_n(|\frac{m}{n} - 0.9| \le \varepsilon) \approx 0.96$ . Підставивши ці значення в наслідок 3, дістанемо:

$$P_n\left(\left|\frac{m}{n}-0.9\right| \le \varepsilon\right) \approx 2 \cdot \Phi\left(\frac{\varepsilon \cdot \sqrt{200}}{\sqrt{0.9 \cdot 0.1}}\right) \approx 0.96;$$

$$2 \cdot \Phi\left(\frac{\varepsilon \cdot \sqrt{200}}{\sqrt{0,9 \cdot 0,1}}\right) \approx 0.96;$$

$$\Phi\left(\frac{\varepsilon \cdot \sqrt{200}}{\sqrt{0,9 \cdot 0,1}}\right) \approx 0.48;$$

$$\varepsilon \cdot 27.14 = 2.06;$$

$$\varepsilon = 0.044.$$

Тоді

$$\left| \frac{m}{n} - 0.9 \right| \le 0.044;$$

$$-0.044 \le \frac{m}{n} - 0.9 \le 0.044;$$

$$0.9 - 0.044 \le \frac{m}{n} \le 0.9 + 0.044;$$

$$0.856 \le \frac{m}{n} \le 0.944.$$

**Відповідь.**  $0.856 \le \frac{m}{n} \le 0.944$ .

## 4.4.Формула Пуассона

**Формула** Пуассона (4.7) використовується для обчислення ймовірності того, що певна кількість подій відбудеться за фіксований інтервал часу або в певній області простору, коли події відбуваються незалежно одна від одної і з постійною середньою швидкістю.

**Теорема 4.5.** Якщо ймовірність р появи події A у кожному випробуванні прямує до 0  $(p \to 0)$  з одночасним необмеженим зростанням числа n випробувань  $(n \to \infty)$ , то ймовірність  $P_n(m)$  того, що подія A відбудеться m разів в n незалежних випробувань, обчислюється за формулою (4.7):

$$P_n(m) \approx \frac{\lambda^m \cdot e^{-\lambda}}{m!},$$
 (4.7)

 $\partial e \lambda = n \cdot p \le 10.$ 

**Доведення.** Розглянемо випадковий процес (серію з n експериментів), у якому події відбуваються незалежно одна від одної, з постійною середньою швидкістю  $\lambda$ .

# Ймовірність подій за малий інтервал часу $\Delta t$

Припустимо, що  $\Delta t$   $\epsilon$  малим інтервалом часу. Тоді ймовірність того, що відбудеться одна подія в цьому інтервалі часу, пропорційна  $\Delta t$ :

$$P_n(m=1\ \text{подія в }\Delta t)=ppprox \lambda\cdot\Delta t.$$

Ймовірність того, що події не відбудеться в  $\Delta t$ :

$$P_n(m=0\ \mathrm{подій}\ \mathrm{B}\ \Delta t)=q=1-ppprox 1-\lambda\cdot\Delta t.$$

Ймовірність того, що відбудеться більше ніж одна подія в  $\Delta t$ , настільки мала, що її можна знехтувати:

$$P_n(m \ge 2 \text{ подій в } \Delta t) \approx 0.$$
 Розбиття інтервалу часу

Розділимо інтервал часу [0;t] на n малих інтервалів  $[0;\Delta t]$ , де  $\Delta t = \frac{t}{n}$ . Ймовірність k подій Нехай k подій відбудеться за інтервал часу [0;t]. Ми можемо вважати, що ці k подій відбуваються у n малих інтервалах часу  $[0;\Delta t]$ . Тоді за формулою Бернуллі (4.1):

$$P_n(m) = C_n^m \cdot (\lambda \cdot \Delta t)^m \cdot (1 - \lambda \cdot \Delta t)^{n-m}$$

Підставимо  $\Delta t = \frac{t}{n}$ :

$$P_n(m) = C_n^m \cdot \left(\lambda \cdot \frac{t}{n}\right)^m \cdot \left(1 - \lambda \cdot \frac{t}{n}\right)^{n-m}.$$

<u>Границі при  $n \to \infty$ </u>:

Коли  $n \to \infty$ , вираз  $\left(1 - \lambda \cdot \frac{t}{n}\right)^{n-m}$ . можна наблизити за допомогою експоненти:

$$\left(1-\lambda\cdot\frac{t}{n}\right)^n\to e^{-(\lambda\cdot t)}.$$

Тоді:

$$\left(1-\lambda\cdot\frac{t}{n}\right)^{-m}\to 1.$$

Таким чином, маємо:

$$P_n(m) = \lim_{n \to \infty} \left( C_n^m \cdot \left( \lambda \cdot \frac{t}{n} \right)^m \cdot \left( 1 - \lambda \cdot \frac{t}{n} \right)^{n-m} \right).$$

## Комбінаторний вираз

Комбінаторний вираз для біноміального коефіцієнта:

$$C_n^m = \frac{n!}{k!(n-k)!}.$$

Коли  $n \to \infty$ , ми можемо використовувати:

$$C_n^m \approx \frac{n^k}{k!}$$
.

Тоді:

$$P_n(m) \approx \frac{(\lambda \cdot t)^m \cdot e^{-(\lambda \cdot t)}}{m!},$$

звідки підставивши t=1, отримуємо (4.7).

Формулу Пуассона застосовують для подій, що рідко трапляються, таблиця значень якої наведена на рис 4.5.

|    | λ      |        |        |        |        |        |        |        |        |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| m. | 0.1    | 0.2    | 0.3    | 0.4    | 0.5    | 0.6    | 0.7    | 0.8    | 0.9    |
| 0  | 0.9048 | 0.8187 | 0.7408 | 0.6703 | 0.6065 | 0.5488 | 0.4966 | 0.4493 | 0.4066 |
| 1  | 0.0905 | 0.1638 | 0.2222 | 0.2681 | 0.3033 | 0.3293 | 0.3476 | 0.3596 | 0.3696 |
| 2  | 0.0045 | 0.0164 | 0.0333 | 0.0536 | 0.0758 | 0.0988 | 0.1217 | 0.1438 | 0.1647 |
| 3  | 0.0002 | 0.0011 | 0.0033 | 0.0072 | 0.0126 | 0.0198 | 0.0284 | 0.0383 | 0.0494 |
| 4  | -      | -      | 0.0002 | 0.0007 | 0.0016 | 0.0030 | 0.0050 | 0.0077 | 0.0111 |
| 5  | -      | -      | -      | 0.0001 | 0.0002 | 0.0004 | 0.0007 | 0.0012 | 0.0020 |
| 6  | -      | -      | -      | -      | -      | -      | 0.0001 | 0.0002 | 0.0003 |

Рис. 4.5. Таблиця значень  $P_n(m) \approx \frac{\lambda^{m} \cdot e^{-\lambda}}{m!}$ 

|    | λ      |        |        |        |        |        |        |        |        |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| m  | 1.0    | 2.0    | 3.0    | 4.0    | 5.0    | 6.0    | 7.0    | 8.0    | 9.0    |
| 0  | 0.3679 | 0.1353 | 0.0498 | 0.0183 | 0.0067 | 0.0025 | 0.0009 | 0.0003 | 0.0001 |
| 1  | 0.3679 | 0.2707 | 0.1494 | 0.0733 | 0.0337 | 0.0149 | 0.0064 | 0.0027 | 0.0011 |
| 2  | 0.1839 | 0.2707 | 0.2240 | 0.1465 | 0.0842 | 0.0446 | 0.0223 | 0.0107 | 0.0055 |
| 3  | 0.0313 | 0.1804 | 0.2240 | 0.1954 | 0.1404 | 0.0892 | 0.0521 | 0.0286 | 0.0150 |
| 4  | 0.0153 | 0.0902 | 0.1680 | 0.1954 | 0.1755 | 0.1339 | 0.0912 | 0.0572 | 0.0337 |
| 5  | 0.0081 | 0.0361 | 0.1008 | 0.1563 | 0.1755 | 0.1606 | 0.1277 | 0.0916 | 0.0607 |
| 6  | 0.0005 | 0.0120 | 0.0504 | 0.1042 | 0.1462 | 0.1606 | 0.1490 | 0.1221 | 0.0911 |
| 7  | 0.0001 | 0.0034 | 0.0216 | 0.0595 | 0.1044 | 0.1377 | 0.1490 | 0.1396 | 0.1318 |
| 8  | -      | 0.0009 | 0.0081 | 0.0298 | 0.0655 | 0.1033 | 0.1304 | 0.1396 | 0.1318 |
| 9  | -      | 0.0002 | 0.0027 | 0.0132 | 0.0363 | 0.0688 | 0.1014 | 0.1241 | 0.1318 |
| 10 | -      | -      | 0.0008 | 0.0053 | 0.0181 | 0.0413 | 0.0710 | 0.0993 | 0.1180 |
| 11 | -      | -      | 0.0002 | 0.0019 | 0.0034 | 0.0225 | 0.0452 | 0.0722 | 0.0970 |
| 12 | -      | -      | 0.0001 | 0.0006 | 0.0013 | 0.0113 | 0.0264 | 0.0481 | 0.0728 |
| 13 | -      | -      | -      | 0.0002 | 0.0005 | 0.0052 | 0.0142 | 0.0296 | 0.0504 |
| 14 | -      | -      | -      | 0.0001 | 0.0002 | 0.0022 | 0.0071 | 0.0169 | 0.0324 |
| 15 | -      | -      | -      | -      | -      | 0.0009 | 0.0033 | 0.0090 | 0.0194 |
| 16 | -      | -      | -      | -      | -      | 0.0003 | 0.0014 | 0.0045 | 0.0109 |
| 17 | -      | -      | -      | -      | -      | 0.0001 | 0.0006 | 0.0021 | 0.0058 |
| 18 | -      | -      | -      | -      | -      | -      | 0.0002 | 0.0009 | 0.0029 |
| 19 | -      | -      | -      | -      | -      | -      | 0.0001 | 0.0004 | 0.0014 |
| 20 | -      | -      | -      | -      | -      | -      | -      | 0.0002 | 0.0006 |
| 21 | -      | -      | -      | -      | -      | -      | -      | 0.0001 | 0.0003 |
| 22 | -      | -      | -      | -      | -      | -      | -      | -      | 0.0001 |

Рис. 4.6. Таблиця значень  $P_n(m) \approx \frac{\lambda^m \cdot e^{-\lambda}}{m!}$  (продовження)

Приклад 4.11. База отримує 10000 стандартних виробів. Транспортування цих виробів приводить до пошкодження у середньому 0,02% виробів. Знайти ймовірність того, що з 10000 виробів: 1. буде пошкоджено: a) 3 вироби; b) хоча b 3 вироби; b2. не буде пошкоджено: a0 9997 виробів; б) хоча б 9997 виробів.

Розв'язання. 1. а) Ймовірність того, що транспортування пошкодить виріб, дорівнює 0,0002. Оскільки p — мале, n — велике і  $\lambda = n \cdot p = 10000 \cdot$  $0,0002=2\leq 10,$  ми можемо застосувати формулу Пуассона:  $P_{10000}(3)=\frac{2^3\cdot e^{-2}}{3!}.$ 

$$P_{10000}(3) = \frac{2^3 \cdot e^{-2}}{3!}.$$

Використовуючи таблицю рис. 4.5, отримаємо:  $P_{10000}(3) = 0.18045$ .

**б**) Ймовірність  $P_{10000}(m \ge 3)$  знайдемо так:

$$\begin{split} P_{10000}(m \ge 3) &= 1 - P_{10000}(m < 3) \\ &= 1 - \left( P_{10000}(0) + P_{10000}(1) + P_{10000}(2) \right) \\ &= 1 - \left( 0.13534 + 0.27067 + 0.27067 \right) = 0.32332. \end{split}$$

**2. а)** У даному випадку p = 1 - 0,0002 = 0,9998. Потрібно знайти  $P_{10000}(9997)$ .

Оскільки ймовірність p велика, ми не можемо застосувати формулу Пуассона. Крім того, оскільки  $n \cdot p \cdot q \approx 2 < 10$ , ми не можемо скористатись інтегральною формулою Муавра — Лапласа. Але подія {не пошкоджено 9997 виробів з 10000} рівносильна події {пошкоджено 3 вироби з 10000}, ймовірність якої ми вже знайшли. Тому  $P_{10000}(9997) = 0,18045$ .

б) Подія {не пошкоджено хоча б 9997 з 10000 виробів} рівносильна події {пошкоджено не більше, ніж 3 вироби з 10000}, для якої p = 0.0002. Тому:

$$P_{10000}(m \le 3) = P_{10000}(0) + P_{10000}(1) + P_{1000}(2) + P_{10000}(3) =$$
  
= 0,13534 + 0,27067 + 0,27067 + 0,18045 = 0,85713.

**Відповідь.** 1. а)  $P_{10000}(3) = 0.18045$ ; б)  $P_{10000}(m \ge 3) = 0.32332$ ; 2. а)  $P_{10000}(9997) = 0.18045$ ; б)  $P_{10000}(m \le 3) = 0.85713$ .

#### 4.5. Поліноміальна схема

В поліноміальній (мульниноміальній) схемі здійснюється перехід від послідовності незалежних випробувань з двома наслідками (A та  $\bar{A}$ ) до послідовності незалежних випробувань з k наслідками ( $A_1, A_2, ..., A_k$ ), які виключають одне одного. При цьому в кожному випробуванні події  $A_1, A_2, ..., A_k$  настають з ймовірностями  $p_1, p_2, ..., p_k$  відповідно. Тоді ймовірність  $P_n(m_1, m_2, ..., m_k)$  того, що в серії з n випробувань подія  $A_1$  настане  $m_1$  разів; подія  $A_2$  настане  $m_2$  разів;...; подія  $A_k$  настане  $m_k$  разів ( $m_1 + m_2 + \cdots + m_k = n$ ) визначається за формулою (4.8):

$$(m_1 + m_2 + \dots + m_k = n)$$
 визначається за формулою (4.8): 
$$P_n(m_1, m_2, \dots, m_k) = \frac{n!}{m_1! \cdot m_2! \cdot \dots \cdot m_k!} \cdot p_1^{m_1} \cdot p_2^{m_2} \cdot \dots \cdot p_k^{m_k}. \tag{4.8}$$

Формула (4.8) отримано з урахуванням того, що подія  $A = \{$  в серії з n випробувань подія  $A_1$  настане  $m_1$  разів; подія  $A_2$  настане  $m_2$  разів;...; подія  $A_k$  настане  $m_k$  разів $\}$ ,  $(m_1 + m_2 + \cdots + m_k = n)$  можна представити, як суму несумісних подій, ймовірності яких за теоремою про множення незалежних подій дорівнюють  $p_1^{m_1} \cdot p_2^{m_2} \cdot \ldots \cdot p_k^{m_k}$   $(p_1 + p_2 + \cdots + p_k = 1)$ .

В частинному випадку  $m_1=m; m_2=n-m; p_1=p; p_2=q.$  Таким чином, отримуємо формулу Бернуллі (4.1).

**Приклад 4.12.** В урні міститься 10 кульок: 5 червоних, 3 зелених та 2 сині. 3 урни навмання беруть 5 кульок. Яка ймовірність того, що серед них будуть: 2 червоних, 2 зелених та 2 синя кульки?

**Розв'язання.** З умови задачі отримуємо:  $m_1=2; m_2=2; m_3=1; n=5; p_1=0,5; p_2=0,3; p_3=0,2.$ 

За формулою (4.8):

$$P_5(2,2,1) = \frac{5!}{2!\cdot 2!\cdot 1!} \cdot 0,5^2 \cdot 0,3^2 \cdot 0,2^1 = 0,135.$$
 Відповідь.  $P_5(2,2,1) = 0,135.$