

SEM – protokol k prvému projektu

Martin Babača xbabac02

2. decembra 2023

Obsah

1	Úvod	2	
2	Meranie pomocou napäťového deliča	2	
3	Meranie pomocou wheatstonovho mostíku	3	
4	Meranie pomocou wheatstonovho mostíku s operačným zosilňova	ıčom	4
5	Záver	5	

1 Úvod

Cieľom merania je meranie malých zmien odporu (použitie tenzometra). Meranie je realizované v simulačnom prostredí KiCad. K výpočtu presnosti merania uvažujeme použitie 12-bitového AD prevodníku s rozsahom 0-3,3V.

Pri použití digitálneho prevodníku je chyba meranej hodnoty rovná polovici najmenšieho rozdielu rôznych výstupných hodnôt. Pre použitý AD prevodník je chyba = $\frac{3.3}{212-1}*0.5 \doteq 0.40293$ mV.

V kapitole 2 je k meraniu použitý napäťový delič.

2 Meranie pomocou napäťového deliča

Schéma 1 zobrazuje zapojenie napäťového deliča. K meraniu bol použitý 3,3V zdroj z dôvodu zhodného rozsahu s použitým AD prevodníkom. Hodnota odporu $R_1=200\,$ bola zvolená tak, aby bola rovná odporu nezaťaženého tenzometra. Hodnota R odporu termistoru je určená vzťahom 1:

$$R = \frac{V_1}{\frac{V_1 c_1 - V_1}{R_1}} \tag{1}$$

Dosiahnuté hodnoty merania odporu a hmotnosti sú zhrnuté v tabuľke 1. Tenzometer nameral zápornú hmotnosť, fyzikálne ale nie je záporná hmotnosť správne a je nutné použiť absolútnu hodnotu nameraných hodnôt. Záporné hodnoty sú spôsobené použitím tenzometru v závernom smere.

Obr. 1: Schéma zapojenia napäťového deliča

$t = 2n, n \in \mathbb{N}$	a	b	R	M
1	t + 0,001	t + 0.2	200.187	-0.0467
2	t + 0.23	t + 0.45	202.849	-0.7123
3	t + 0.55	t + 0.70	202.483	-0.6208
4	t + 0.80	t + 1,30	202.768	-0.6920
5	t + 1,35	t + 1,60	202.894	-0.7234
6	t + 1,79	t + 2,00	201.785	-0.4462

Tabuľka 1: Namerané hodnoty odporu R a hmotnosti M v časových intervaloch < a,b> pomocou napäťového deliča.

3 Meranie pomocou wheatstonovho mostíku

Schéma zapojenia mostíku je znázornená na obrázku 2. Hodnota odporu R sa určuje z hodnôt napájacieho napätia $Vcc_2=3,3$, rozdielu napätí $V_2=V_{11}-V_{22}$ a odporov $R_1=R_6=R_5$. Vzťah pre výpočet hodnoty R pomocou wheatstonovho mostíku platí vzťah 2.

$$R = \frac{R_1 * V c c_2 - 2R_1 * V_2}{R_1 * V c c_2 + 2R_1 * V_2} * R_1$$
 (2)

Dosiahnuté výsledky sú zhrnuté v tabuľke 2.

Obr. 2: Schéma zapojenia wheatstonovho mostíku

$t = 2n, n \in \mathbb{N}$	a	b	R	M
1	t + 0,001	t + 0.2	200.188	-0.047
2	t + 0.23	t + 0.45	202.848	-0.712
3	t + 0.55	t + 0.70	202.483	-0.6208
4	t + 0.80	t + 1,30	202.768	-0.6921
5	t + 1,35	t + 1,60	202.893	-0.7232
6	t + 1,79	t + 2,00	201.784	-0.4459

Tabuľka 2: Namerané hodnoty odporu R a hmotnosti M v časových intervaloch < a, b > pomocou wheatstonovho mostíku.

4 Meranie pomocou wheatstonovho mostíku s operačným zosilňovačom

Schéma 3 zobrazuje zapojenie z predchádzajúcej úlohy s využitím operačného zosilňovaču. Hodnota odporov, ktoré boli pridané oproti zapojeniu zapojeniu v predošlej kapitole, boli experimentálne nastavené na hodnotu $R_f=20\mathrm{k}\Omega$. Hodnota odporu R termistoru je určená vzťahom ??:

$$R = R_1 \left(1 + \frac{2R_1 V_3}{R_f U c c_2 - R_1 V_3}\right) \tag{3}$$

Dosiahnuté hodnoty merania odporu a hmotnosti sú zhrnuté v tabuľke 3.

Obr. 3: Schéma zapojenia wheatstonovho mostíku s operačným zosilňovačom

$t = 2n, n \in \mathbb{N}$	a	b	R	M
1	t + 0,001	t + 0.2	201.275	-0.3187
2	t + 0.23	t + 0.45	202.721	-0.6802
3	t + 0.55	t + 0.70	202.662	-0.6654
4	t + 0.80	t + 1,30	202.714	-0.6784
5	t + 1,35	t + 1,60	202.724	-0.681
6	t + 1,79	t + 2,00	202.021	-0.5054

Tabuľka 3: Namerané hodnoty odporu R a hmotnosti M v časových intervaloch < a,b> pomocou wheatstonovho mostíku s operačným zosilňovačom.

5 Záver

Správanie simulovaného tenzometra bolo zmerané tromi metódami. Z namerania negatívnej hmotnosti je zrejmé, že tenzometer bol použitý v opačnom smere, než aký je udávaný štandardne. V prípade prvého, resp. druhého merania bol rozdiel najvyššej a najnižšej nameranej hodnoty na prevodníku 15, resp. 16 jednotiek prevodníku. To je 0, 37%, resp. 0, 39% rozsahu prevodníku. S využitím operačného zosilňovaču bolo medzi najvyššou a nižšou hodnotou až 1470 hodnôt, teda bolo využitých až 35, 89% rozsahu. Meranie bolo presné.