MA 6011 (Cryptographic Mathematics)

Solve Problems 1–4 **before** the tutorial on Tuesday, 17 November.

Problem 1: Let the Edwards curve E be given by $x^2 + y^2 = 1 + 27x^2y^2$ modulo 53.

- (i) Verify that A = (26, 4) and B = (3, 48) are \mathbb{F}_{53} -points on E.
- (ii) Calculate the \mathbb{F}_{53} -point A+B.
- (iii) Calculate the \mathbb{F}_{53} -point 3A.

Problem 2: If p is a prime number, the set $U_p = \{1, 2, ..., p-1\}$ is a multiplicative abelian group. Find the order of each element in U_{13} .

Problem 3: Find the order of each \mathbb{F}_5 -point on the elliptic curve $y^2 = x^3 - 3x^2 + 3x$.

Problem 4: Use the Silver-Pohlig-Hellman algorithm to solve $3^x \equiv 12 \mod 19$.

Use sage to solve the following **before** we meet for the lab on Tuesday, 24 November.

Problem 5: For each divisor d of 52 find how many elements in the multiplicative abelian group U_{53} have order d.