TIADPE

Relative positioning by dead reckoning

Christian Fischer Pedersen Assistant Professor cfp@eng.au.dk

Section of Electrical and Computer Engineering
Department of Engineering
Aarhus University

December 8, 2014

Outline

Positioning

Dead reckoning

Outline

Positioning

Dead reckoning

Positioning

Fundamental in

Location based services and mobile robotics

Different methods

- Absolute positioning: With reference to beacons
- Relative positioning: Continuous offset relative to initial absolute position
- Hybrid positioning: Combination of absolute and relative positioning

Outline

Positioning

Dead reckoning

Dead reckoning purposes

- Deducing net movement from a past absolute position (fix)
- Used for determining position between fixes and for and for forecasting future positions
- ► Hence, dead reckoning is an **interpolation** and **extrapolation** technique
- From a fix a DR track can be plotted, i.e. a plot of the **intended** positions of the object forward in time
- ▶ DR points are typically computed for every change in: 1) course or 2) speed or 3) at every hour (or other threshold)

Dead reckoning fundamentals

- ▶ Deducing often based on fix, fix-time, waypoints, and speeds
- Fix: An absolute position
- Fix-time: The time when at the fix
- Waypoint: Point through which a track passes
- Leg: Straight line path between consecutive waypoints
- Speed: The speed on a leg

ositioning Dead reckoning

Dead reckoning example 1

Figure: West for 1 hour at 10 knots. North for three hours at 7 knots (Mathworks, 2014 [1])

Dead reckoning example 2

Figure: DR point does not match perfectly with LOP at 15:23 (Mathworks, 2014 [1])

References I

[1] Mathworks (2014). Mapping toolbox: Navigation. R2014b documentation.