Name: Loo Wee Lun

Exercise 36 Let D be a right \mathbb{Z} -module and $m \in \mathbb{Z}$. We aim to prove that

$$D \otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z}) \cong D/mD$$

where $mD = \{md : d \in D\}.$

- 1. Define a map $\beta: D \times (\mathbb{Z}/m\mathbb{Z}) \to D/mD$ by $\beta(d, \overline{a}) = ad + mD$. Prove that β is well-defined and \mathbb{Z} -balanced.
- 2. By the Universal Property of Tensor Product, we have a group homomorphism $\Phi: D \otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z}) \to D/mD$ such that $\Phi(d \otimes \overline{a}) = ad + mD$. Prove that Φ is an isomorphism.

Proof.

Define $\beta: D \times (\mathbb{Z}/m\mathbb{Z}) \to D/mD$ by $\beta(d, \overline{a}) = ad + mD$. It is clear that mD is a right \mathbb{Z} -submodule of D. We first show that β is well-defined. Let $a_1, a_2 \in \mathbb{Z}$ such that $\overline{a}_1 = \overline{a}_2$ in $\mathbb{Z}/m\mathbb{Z}$. We claim that $\beta(d, \overline{a}_1) = \beta(d, \overline{a}_2)$. Note

$$\overline{a}_1 = \overline{a}_2 \implies a_1 - a_2 \in m\mathbb{Z}$$

$$\implies a_1 d - a_2 d = (a_1 - a_2) \ d \in mD \ \forall d \in D$$

$$\implies a_1 d + mD = a_2 d + mD$$

$$\implies \beta(d, \overline{a}_1) = \beta(d, \overline{a}_2)$$

This shows that β is well-defined.

Next we show that β is \mathbb{Z} -balanced. First, additivity in the first argument:

$$\beta(d_1 + d_2, \overline{a}) = a(d_1 + d_2) + mD = (ad_1 + ad_2) + mD$$

= $(ad_1 + mD) + (ad_2 + mD)$
= $\beta(d_1, \overline{a}) + \beta(d_2, \overline{a})$

Next, note that $\overline{a}_1 + \overline{a}_2 = \overline{a_1 + a_2}$. We then show additivity in the second argument:

$$\begin{split} \beta(d, \overline{a}_1 + \overline{a}_2) &= \beta(d, \overline{a_1 + a_2}) \\ &= (a_1 + a_2)d + mD \\ &= (a_1d + a_2d) + mD \\ &= (ad_1 + mD) + (ad_2 + mD) \\ &= \beta(d_1, \overline{a}) + \beta(d_2, \overline{a}) \end{split}$$

Thirdly, to show compatibility with scalar multiplication, by applying additivity in the first and second argument, which we have proved to be true, we see that

$$\beta(d \cdot n, \overline{a}) = \beta(nd, \overline{a})$$

$$= \beta(\underbrace{d + \dots + d}_{n \text{ times}}, \overline{a})$$

$$= \underbrace{\beta(d, \overline{a}) + \dots + \beta(d, \overline{a})}_{n \text{ times}}$$

$$= \beta(d, \underline{a}, \dots, \overline{a})$$

$$= \beta(d, n\overline{a})$$

$$= \beta(d, n \cdot \overline{a})$$

Altogether, this shows that β is \mathbb{Z} -balanced, which proves the first statement.

For the second statement, as mentioned in the statement, by the Universal Property of Tensor Product we have a group homomorphism $\Phi: D \otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z}) \to D/mD$ such that $\Phi(d \otimes \overline{a}) = ad + mD$. We will

show that it is an isomorphism. Firstly, note that Φ is already well-defined by the statement of Universal Property of Tensor Product.

Showing injectivity of Φ is equivalent to showing that it has a trivial kernel, i.e. $\ker \Phi = \{0\}$. First note that since $\otimes_{\mathbb{Z}}$ is \mathbb{Z} -balanced, we have that

$$\sum_{i} (d_{i} \otimes \overline{a}_{i}) = \sum_{i} (d_{i} \otimes (a_{i} \cdot \overline{1})) = \sum_{i} ((d_{i} \cdot a_{i}) \otimes \overline{1}) = \sum_{i} (a_{i} d_{i} \otimes \overline{1})$$

$$(1)$$

Suppose $\sum_{i} (d_i \otimes \overline{a}_i) \in \ker \Phi$ where i is finite, then

$$\Phi\left(\sum_{i}(d_{i}\otimes\overline{a}_{i})\right)=\Phi\left(\sum_{i}(a_{i}d_{i}\otimes\overline{1})\right)=\sum_{i}a_{i}d_{i}+mD=0+mD$$

This implies that $\sum_i a_i d_i \in mD$, so write $\sum_i a_i d_i = md$ for some $d \in D$. Substituting back to Equation 1, we get that

$$\sum_{i}(d_{i}\otimes\overline{a}_{i})=\sum_{i}(a_{i}d_{i}\otimes\overline{1})\overset{(*)}{=}\left(\sum_{i}a_{i}d_{i}\right)\otimes\overline{1}=md\otimes\overline{1}=d\otimes\overline{m}$$

where at (*) we apply the additivity in the first argument, one of the property of tensor product being \mathbb{Z} -balanced. Note $\overline{m} = \overline{0}$ in $\mathbb{Z}/m\mathbb{Z}$. To conclude, we have that

$$d \otimes \overline{a} = d \otimes \overline{0} = 0$$

This shows that $\ker \Phi$ is trivial, and thus Φ is injective.

Next, for surjectivity, suppose given $ad + mD \in D/mD$. Then simply consider $d \otimes \overline{a} \in D \otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z})$ and see that

$$\Phi(d \otimes \overline{a}) = ad + mD$$

This proves surjectivity of Φ .

Altogether, we have shown that Φ is an isomorphism, and thus

$$D \otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z}) \cong D/mD$$

as required. \Box