

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur - 441 110

Department of Artificial Intelligence & Data Science

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problem-solving skills through emerging technologies.

Session 2025-2026

Vision: Dream of where you want.	Mission: Means to achieve Vision

Program Educational Objectives of the program (PEO): (broad statements that describe the professional and career accomplishments)

PEO1	Preparation	P: Preparation	Pep-CL abbreviation
PEO2	Core Competence	E: Environment	pronounce as Pep-si-lL
		(Learning Environment)	easy to recall
PEO3	Breadth	P: Professionalism	
PEO4	Professionalism	C: Core Competence	
PEO5	Learning	L: Breadth (Learning in	
	Environment	diverse areas)	

Program Outcomes (PO): (statements that describe what a student should be able to do and know by the end of a program)

Keywords of POs:

Engineering knowledge, Problem analysis, Design/development of solutions, Conduct Investigations of Complex Problems, Engineering Tool Usage, The Engineer and The World, Ethics, Individual and Collaborative Team work, Communication, Project Management and Finance, Life-Long Learning

PSO Keywords: Cutting edge technologies, Research

"I am an engineer, and I know how to apply engineering knowledge to investigate, analyse and design solutions to complex problems using tools for entire world following all ethics in a collaborative way with proper management skills throughout my life." *to contribute to the development of cutting-edge technologies and Research*.

Integrity: I will adhere to the Laboratory Code of Conduct and ethics in its entirety.

Name and Signature of Student and Date

(Signature and Date in Handwritten)

Yeshwantrao Chavan College of Engineering

NAAC A++

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Artificial Intelligence & Data Science

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

Session	2025-26 (ODD)	Course Name	BIG DATA AND HADOOP-LAB
Semester	7 AIDS	Course Code	22ADS704
Roll No	03	Name of Student	Debasrita Chattopadhyay

Practical Number	03
Course Outcome	 Understand big data analytics and its business applications. Analyze the HADOOP and Map Reduce technologies associated with big data analytics. Apply Big Data analytics Using Pig and Hive.
Aim	Write a MapReduce Program to Calculate Frequency of Words from Datasets.
Problem Definition	Write a MapReduce Program to Calculate Frequency of Words from Datasets.
Theory (100 words)	Counting the frequency of words is a typical example of the MapReduce programming model that is used in many distributed data processing frameworks like Hadoop. MapReduce repartitions processing phases or "stages" into Map and Reduce. The Map stage will splits the input data (text files) into key-value pairs, consisting of a key that is the word and the value that is usually a count of one (representing a single occurrence). At that point, the framework will "shuffle" and "sort" the key-value pairs into an intermediate format that groups all the same keys together. Finally, in the Reduce stage, the results can be summarized or aggregated for each key that will provide the frequency of each word across the input dataset. This model inherently supports scalability and parallelization of data processing across multiple nodes in a cluster.
Procedure and Execution (100 Words)	 Steps of Implementation Install Hadoop and configure HDFS. Prepare the input dataset (text files) and upload it to HDFS. Write a Mapper class that splits lines into words
	 and emits (word, 1) pairs. Write a Reducer class that sums the values for each word key.

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur - 441 110

NAAC A++ Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: <u>www.ycce.edu</u>

Department of Artificial Intelligence & Data Science

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

- 5. Write a **Driver class** to configure and run the MapReduce job.
- 6. Compile the Java code and create a JAR file.
- 7. Run the MapReduce job using the Hadoop command.
- 8. Retrieve the output from HDFS and display the word frequencies.

```
Code:
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.util.StringTokenizer;
public class WordCount {
  public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    public void map(Object key, Text value, Context context
    ) throws IOException, InterruptedException {
       StringTokenizer itr = new
StringTokenizer(value.toString());
       while (itr.hasMoreTokens()) {
         word.set(itr.nextToken().replaceAll("[^a-zA-Z]",
"").toLowerCase());
         if (!word.toString().isEmpty()) {
            context.write(word, one);
         }
```


Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur - 441 110

NAAC A++ Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: <u>www.ycce.edu</u>

Department of Artificial Intelligence & Data Science

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

```
public static class IntSumReducer
        extends Reducer<Text, IntWritable, Text, IntWritable> {
     private IntWritable result = new IntWritable();
     public void reduce(Text key, Iterable<IntWritable> values,
                   Context context
     ) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
           sum += val.get();
        result.set(sum);
        context.write(key, result);
  public static void main(String[] args) throws Exception {
     Configuration conf = new Configuration();
     Job job = Job.getInstance(conf, "word count");
     job.setJarByClass(WordCount.class);
     job.setMapperClass(TokenizerMapper.class);
     job.setCombinerClass(IntSumReducer.class);
     job.setReducerClass(IntSumReducer.class);
     job.setOutputKeyClass(Text.class);
     job.setOutputValueClass(IntWritable.class);
     FileInputFormat.addInputPath(job, new Path(args[0]));
     FileOutputFormat.setOutputPath(job, new Path(args[1]));
     System.exit(job.waitForCompletion(true)? 0:1);
Output:
        theiadocker-srita201326:/home/project$ curl https://urc...
3.6/hadoop-3.3.6.tar.gz --output hadoop-3.3.6.tar.gz
tal % Received % Xferd Average Speed Time Time
Dload Upload Total Spent
    theia@theiadocker-srita201326:/home/project$ curl https://dlcdn.apache.org/hadoop/common/had
              696M
                                     0:00:28 0:00:28
    theia@theiadocker-srita201326:/home/project$
```


Yeshwantrao Chavan College of Engineering

Department of Artificial Intelligence & Data Science

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

Yeshwantrao Chavan College of Engineering

NAAC A++

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Artificial Intelligence & Data Science

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

Yeshwantrao Chavan College of Engineering

NAAC A++

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Artificial Intelligence & Data Science

Vision of the Department

 $To \ be \ a \ well-known \ centre \ for \ pursuing \ computer \ education \ through \ innovative \ pedagogy, \ value-based \ education \ and \ industry \ collaboration.$

Mission of the Department

	ness (d'W'o /
	Marrion 1.7.4. Problems theis@theisdocker-srita201326: /home/project/hadoop-3.3.6 ×
	th_ envvars display computed Hadoop environment variables fs run a generic filesystem user client
	gridmix submit a mix of synthetic job, modeling a profiled from production load jar (jar> run a jar file. NOTE: please use "yarn jar" to launch YARN applications,
	not this command. jnipath prints the java.library.path
	kdiag Diagnose Kerberos Problems kerbname show auth_to_local principal conversion key manage keys via the KeyProvider
	rumenfolder scale a rumen input trace rumentrace convert logs into a rumen trace
	s3guard 53 Commands trace view and modify Hadoop tracing settings
	version print the version Daemon Commands:
	kms run KMS, the Key Management Server
	registrydns run the registry DNS server theia@theia@toker-sritaz@1326:/home/project/hadoop-3.3.6\$ curl https://cf-courses-data.s3.us.cloud-object-storage.appdo main.cloud/12M-BD0225EH-SkillsNetwork/labs/data/data.txtoutput data.txt
	% Total % Received % Xferd Average Speed Time Time Time Current txtoutput Dload Upload Total Spent Left Speed
	100 47 100 47 0 0 373 0
	W17/
	Marrinn 1.7.4. △ Problems ∑ theia@theiadocker-srita201326: /home/project/hadoop-3.3.6. ×
	Map output materialized bytes=59
	Input split bytes=105 Combine input records=6
	Combine output records=4 Reduce input groups=4
	Reduce shuffle bytes=59 Reduce input records=4
	Reduce output records=4 Spilled Records=8
	Shuffled Maps =1 Failed Shuffles=0
	Merged Map outputs-1 GC time elapsed (ms)=12 Total committed heap usage (bytes)=379584512
	Shuffle Errors BAD ID=0
	CONNECTION=0 ID ERROR=0
	MRONG_LENGTH=0 MRONG_MAP=0
	WRONG REDUCE=0 File Input Format Counters
	Bytes Read=47 File Output Format Counters
	Bytes Written=49 theia@theiadocker-srita201326:/home/project/hadoop-3.3.6\$ ls output
	theia@theiadocker-srita201326:/home/project/hadoop-3.3.6\$ ls output SUCCESS part-r-00000
	theia@theiadocker-srita201326:/home/project/hadoop-3.3.6\$ cat output/part-r-00000
	theia@theiadocker-srita201326:/home/project/hadoop-3.3.6\$ cat output/part-r-00000
	BigData 2 Hadoop 1
	IBM 1
	MapReduce 2 theia@theiadocker-srita201326:/home/project/hadoop-3.3.6\$
	theragenerationer -streaming project/madoop-3.3.03
Output Analysis	The output will be stored in the HDFS output directory in part-r-
	00000 file.
	The output confirms the total occurrences of each word across all
	input files.
	•
	Can handle large datasets distributed over multiple nodes
	efficiently.
Link of student	
Github profile where	
lab assignment has	
been uploaded	
Conclusion	MD1 D
Conclusion	MapReduce Program to Calculate Frequency of Words from
	Datasets implemented successfully.
	<u> </u>

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur - 441 110

Department of Artificial Intelligence & Data Science

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

