WHAT IS CLAIMED IS:

- 1. A gelatin-based substrate for fabricating protein arrays, the substrate comprising:
 - --gelatin having at least one surface;
- --a polymer scaffold affixed to the gelatin surface; wherein the polymer in the scaffold is rich in reactive units capable of immobilizing proteins.
- 2. A gelatin-based substrate for fabricating protein arrays, the substrate comprising:
 - --gelatin having at least one surface;
 - --a polymer scaffold affixed to the gelatin surface; and
 - -- a trifunctional compound A-L-B;

wherein A is a functional group capable of interacting with the polymer scaffold; L is a linking group capable of interacting with A and with B; and B is a specific functionality that provides one or more reactive units capable of interacting with a protein capture agent.

- 3. The gelatin-based substrate of claim 1 or 2 wherein the reactive unit is aldehyde, epoxy, hydrazide, vinyl sulfone, succinimidyl ester, carbodiimide, maleimide, dithio, iodoacetyl, isocyanate, isothiocyanate, or aziridine.
- 4. The gelatin-based substrate of claim 2 wherein the precursor polymer is rich in thiols, amines, phosphines, alcohols, or carboxylic acids.
- 5. The gelatin-based substrate of claim 2 wherein the precursor polymer is rich in primary or secondary amines.

- 6. The gelatin-based substrate of claim 2 wherein A may be the same or different from B.
- 7. The gelatin-based substrate of claim 1 or 2 wherein the interaction between the gelatin and the polymer scaffold is a covalent bond.
- 8. The gelatin-based substrate of claim 2 wherein the interaction between the scaffold and A is a physical binding or a chemical reaction.
- 9. The gelatin-based substrate of claim 2 wherein the interaction between the protein capture agent and B is a physical binding or a chemical reaction.
- 10. The gelatin-based substrate of claim 2 wherein the polymer forming the polymer scaffold is represented by Formula I:

$$\begin{array}{c} -H - \\ - G \\ \hline \\ X \\ \hline \\ CH_2 - CR_1 \\ \hline \\ y \\ \hline \\ Q \\ v \\ \hline \\ L \\ W \\ SO_2R_2 \end{array}$$

Formula 1

wherein \mathbf{R}_1 is a hydrogen atom or a C_1 - C_6 alkyl group; Q is $-CO_2$ -, or $CONR_1$; v is 1 or 0; w is 1-3; \mathbf{L} is a divalent linking group containing at least one linkage selected from the group consisting of $-CO_2$ - and $-CONR_1$, and containing 3-15 carbon atoms, or a divalent unit containing at least one linkage selected from the group consisting of -O-, $-N(R_1)$ -, -CO-, $-SO_2$ -, $-SO_2$ -, $-SO_3$ -, $-SO_2N(R_1)$ -, $-N(R_1)CON(R_1)$ - and $-N(R_1)CO_2$ -, and containing 1-12 carbon atoms in which R_1 has the same meaning as defined above; R_2 is $-CH=CH_2$ or $-CH_2$ - CH_2X_1 wherein X_1 is a substituent replaceable by a nucleophilic group or releasable in the form of

HX₁ by a base, X₁ is $-S_2O_3$, $-SO_4$, -Cl, -Br, -I, quaternary ammonium, pyridinium, or -CN, and sulfonate esters; x and y both represent molar percentages ranging from 10 to 90 and 90 to 10; **G** comprises repeating units of an α , β -ethylenically unsaturated addition polymerizeable monomer that imparts water-solubility to the polymer; and monomer **H** is the polymerized form of a vinylsulfone or vinylsulfone precursor unit covalently bound to a polymerizeable α , β -ethylenically unsaturated function by an organic spacer which consists of Q and L, of which Q is an optional component.

- 11. The gelatin-based substrate of claim 10 wherein H in the formula I contains a vinylsulfone moiety or a vinylsulfone precuror.
- 12. The gelatin-based substrate of claim 11 wherein H in the formula I comprises a dehydrochlorinated form of a chloroethylsulfone-containing unit.
- 13. The gelatin-based substrate of claim 10 wherein G in the formula I comprises repeating units of acrylamide, sodium 2-acrylamido-2-methanepropionate, sulfopropyl acrylate and methacrylate salts, or sodium styrenesulfonate.
- 14. The gelatin-based substrate of claim 1 or 2 wherein the polymer forming the polymer scaffold is poly(vinylamine), poly(propyleneimine), poly(N-aminopropyl methacrylamide) or poly(n-vinylimidazole).
- 15. The gelatin-based substrate of claim 2 wherein either A or B, or both, is aldehyde, epoxy, hydrazide, vinyl sulfone, succinimidyl ester, carbodiimide, maleimide, dithio, iodoacetyl, isocyanate, isothiocyanate, or aziridine.

- 16. The gelatin-based substrate of claim 2 wherein B is an affinity tag capable of interacting non-covalently with a protein capture agent.
- 17. The gelatin-based substrate of claim 2 wherein B is streptavidin, biotin, glutathione-S-transferase, glutathione, or histidine tags.
- 18. The gelatin-based substrate of claim 2 wherein L is a diradical of such a length that the shortest through-bond path between the ends that connect A to B is not greater than 10 atoms.
- 19. The substrate of claim 1 or 2 wherein the gelatin is alkaline pretreated.
- 20. The substrate of claim 1 or 2 wherein the gelatin is pig gelatin or fish gelatin.
- 21. The substrate of claim 1 or 2 wherein the gelatin coverage is 0.2 to 100 grams per square meter.
- 22. The substrate of claim 1 or 2 wherein the gelatin coverage is 10 to 50 grams per square meter.
- 23. The substrate of claim 2 further comprising a protein capture agent in physical or chemical interaction with B.
- 24. The substrate of claim 1 or 2 wherein the protein capture agent is an antibody, a protein scaffold, a peptide, a nucleic acid ligand or a molecular imprinting polymer.

- 25. A method of making a gelatin-based substrate for fabricating protein arrays comprising the steps of:
 - --providing a support;
 - --coating on the support a composition containing gelatin;
- --bonding a polymer scaffold to a surface of the gelatin; wherein the polymer in the scaffold is rich in reactive units capable of immobilizing proteins.
- 26. A method of making a gelatin-based substrate for fabricating protein arrays comprising the steps of:
 - --providing a support;
 - --coating on the support a composition containing gelatin;
 - --affixing a polymer scaffold to a surface of the gelatin; and
 - --bonding a trifunctional compound A-L-B to the polymer

scaffold;

wherein A is a functional group capable of bonding to the polymer scaffold; L is a linking group capable of connecting A with B; and B is a reactive unit that provides one or more reactive units capable of interacting with a protein or protein capture agent.

- 27. The method of claim 26 wherein the trifunctional compound ALB is affixed while coating the gelatin on the substrate.
- 28. The method of claim 26 wherein the trifunctional compound ALB is affixed after coating the gelatin on the substrate.
- 29. The method of claim 26 wherein the protein capture agent is antibody, protein scaffold, peptide, nucleic acid ligand, or a molecular imprinting polymer.