Lecture 14 Quantitative Political Science

Prof. Bisbee

Vanderbilt University

Lecture Date: 2023/10/26

Slides Updated: 2023-10-29

Agenda

- 1. Finishing up correlation
- 2. Linear regression
- 3. Sum of squares

Finishing up correlation

• Recall the correlation measure:

```
\ r = \frac{(X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{X_i - \bar{X}}(Y_i - \bar{X})^2 \sum_{i=1}^{\infty} \frac{(X_i - \bar{X})^2}{\sqrt{X_i - \bar{X}}}
```

• The quantities in this formula appear a **lot** in regression, so much that they have their own symbols

- Thus we can rewrite as \(r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}\)

- Want to say something about the line itself
- Start with geometry

```
\circ (y = a + bx) \text{ or } (y = \beta_0 + \beta_1 x) \text{ or } (y = \alpha_1 x)
```

- \(a\) or \(\beta_0\) or \(\alpha\) is the intercept
- \(b\) or \(\beta_1\) is the slope
- Many lines we could draw...we want the "best"

• **Residual**: mistake made by a line \(u_i = y_i - \hat{y}_i\)


```
summary(lm(Y~X))
```

```
##
## Call:
  lm(formula = Y \sim X)
##
  Residuals:
      Min 1Q Median 3Q
                                     Max
  -2.02214 -0.51682 0.02647 0.51386 1.58939
##
  Coefficients:
     Estimate Std. Error t value Pr(>|t|)
  (Intercept) 0.6405
                        0.3875 1.653 0.142
## X
      0.6237 0.4099 1.522 0.172
##
## Residual standard error: 1.151 on 7 degrees of freedom
## Multiple R-squared: 0.2486, Adjusted R-squared: 0.1412
## F-statistic: 2.316 on 1 and 7 DF, p-value: 0.1719
```


Residuals

- \(u_i = y_i \hat{y}_i\)
- Line of best fit is the one that minimizes these mistakes
- Could minimize \(\big|y_i \hat{y}_i\)\ but absolute values are an absolute pain to work with
- Instead, minimize \(((y_i \hat{y}_i)^2\)
- Or more accurately, minimize all of them: \(SSR = \sum_i (y_i \hat{y}_i)^2\)
- Sum of Squared Residuals (SSR)

Regression Line

- Add hats \(\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i\) to reflect **estimates** instead of population parameters (just like \(\theta\) versus \(\hat{\theta}\))
- Substitute this into our definition of \(u_i\)

```
\ \begin{aligned} u_i &= y_i - \hat{y}_i \\ &= y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)\\ (u_i)^2 &= [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2 \\ \sum_i(u_i)^2 &= \sum_i[y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2 \\ \end{aligned} $$
```

• Values of \(\hat{\beta}_0\) and \(\hat{\beta}_1\) that minimize SSR define the formula for the least squares line

Regression Line

• Values of \(\hat{\beta}_0\) and \(\hat{\beta}_1\) that minimize SSR define the formula for the **least squares line**

```
\ \begin{aligned} \frac{\partial SSR}{\partial \hat{\beta}_0} &= \frac{\partial}{\partial \hat{\beta}_0} \sum_i[y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2 \\ &= -2 \sum_i y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)\\ &= -2 \bigg( \sum_i y_i - \hat{\beta}_0 - \hat{\beta}_1 \sum_i x_i\bigg) \end{aligned} $$
```

• Set equal to zero to find the minimum

```
$$ -2 \big( \sum_i y_i - n \hat y
```

Regression Line

• Values of \(\hat{\beta}_0\) and \(\hat{\beta}_1\) that minimize SSR define the formula for the **least squares line**

```
\ \begin{aligned} \frac{\partial SSR}{\partial \hat{\beta}_1} &= \frac{\partial}{\partial \hat{\beta}_1} \sum_i[y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2\\ &= -2\sum_i \bigg[y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)\bigg]x_i\\ &= -2 \bigg( \sum_i x_iy_i - \hat{\beta}_0 \sum_i x_i - \hat{\beta}_1 \sum_i x^2_i\bigg) \end{aligned} $$
```

• Set equal to zero to find the minimum

```
$$ -2 \big( \sum_i x_i - \hat x_i - \hat
```

Solving for zero and rearranging yields the Normal Equations

```
$$ \begin{aligned} n\hat{\beta}_0 + \hat{\beta}_1 \sum_i x_i &= \sum_i y_i\\ \hat{\beta}_0 \sum_i x_i + \hat{\beta}_1 \sum_i x_i^2 &= \sum_i x_iy_i \end{aligned} $$
```

In matrix notation

 $\$ \begin{bmatrix} n & \sum\nolimits_{i}x_{i} \ \sum\nolimits_{i}x_{i} & \sum\nolimits_{i}x_{i}^{2} \end{bmatrix} \begin{bmatrix} \widehat{\beta }_{0} \ \widehat{\beta }_{1} \end{bmatrix} = \begin{bmatrix} \sum\nolimits_{i}y_{i} \ \sum\nolimits_{i}x_{i}y_{i} \end{bmatrix} \$

Rearranging

Aside on Matrix Math

- Read chapter 6 in Brenton's book
- For us today, you need to understand matrix multiplication and inversion
- Multiplication: Let \(\mathbf{A}\\) be an \(n \times m\) matrix and \(\mathbf{B}\\) be an \(m \times n\) matrix.
 - Denote elements in \(\mathbf{A}\\) as \(a_{ij}\\) and elements in \(\mathbf{B}\\) as \(b_{ij}\\), where \(i\) index rows and \(j\) indexes columns
 - Matrix multiplication creates a new matrix \(\mathbf{AB}\\) whose \(ij\)th element is the **dot product** of the \(i\)th row of \(\mathbf{A}\\) and the \(j\)th column of \(\mathbf{B}\\).

```
\ \mathbf{A}= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \text{ and } \mathbf{B=} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} $$
```

```
$$ \mathbf{AB}= \begin{bmatrix} a_{11}*b_{11} + a_{12}*b_{21} & a_{11}*b_{12} + a_{12}*b_{22} \\ a_{21}*b_{11} + a_{22}*b_{21} & a_{21}*b_{12} + a_{22}*b_{21} \\ a_{22}*b_{21} & a_{21}*b_{22} \end{bmatrix} $$
```

Aside on Matrix Math

• Do these:

```
$$ \mathbf{A}= \begin{bmatrix} 2 & 0 \\ -5 & 3 \end{bmatrix} \text{ and } \mathbf{B=} \begin{bmatrix} 4 & 10 \\ 1 & 3 \end{bmatrix} $$

$$ \mathbf{AB}= \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} $$

$$ \mathbf{AB}= \begin{bmatrix} 2 & 10 \\ 0 & 1 \\ -1 & 5 \end{bmatrix} \text{ and } \mathbf{B=} \begin{bmatrix} 1 & 4 \\ -1 & 10 \end{bmatrix} $$

$$ \mathbf{AB}= \begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} $$
```

Aside on Matrix Math

```
The inverse of a 2\times2 matrix $$ \mathbf{A=} \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$ is $$ \mathbf{A}^{\mathbb{-1}}=\frac{1}{\det \mathbb{A}} \ \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} $$
```

SO

```
\ \begin{bmatrix} n & \sum_ix_i \\ \sum_ix_i & \sum_ix_i^2 \end{bmatrix} ^{-1} = \frac{1}{n\sum_ix_i^2 - (\sum_ix_i)^2} \begin{bmatrix} \sum_ix_i^2 & -\sum_ix_i \\ -\sum_ix_i & n \end{bmatrix} $$
```

\$\$ \begin{bmatrix} \widehat{\beta}_{0} \\ \widehat{\beta}_{1} \end{bmatrix} = \frac{1}{n\sum_ix_i^2 - (\sum_ix_i)^2} \begin{bmatrix} \sum_ix_i^2 & -\sum_ix_i \\ -\sum_ix_i & n \end{bmatrix} \begin{bmatrix} \sum_ix_i \\ \sum_ix_iy_i \\ \end{bmatrix} \$\$

Which means

\$\$ \widehat{\beta }_0 = \frac{\sum_ix_i^2\sum_iy_i-\sum_ix_i\sum_ix_iy_i}{n\sum_ix_i^2-\left(\sum_ix_i\right)^2} \$\$

and

\$\$ \widehat{\beta }_{1}=\frac{n\sum_ix_i_i\sum_ix_i\sum_iy_i}{n\sum_ix_i^2-\left(\sum_ix_i\right)^2} \$\$

• Simplifying

Note that

- (Trivially, this also gives us \((S_{yy} = \sum_i Y_i^2 n\bar{Y}^2)\)
- Also note that

 $\$ \begin{aligned} S_{xy} &=\sum_i\left(X_i-\bar{X}\right) \left(Y_i-\bar{Y}\right)\\ &=\sum_iX_i\bar{Y}-\sum_iX_i\bar{Y}-\sum_i\bar{X}\bar{Y} \\ &=\sum_iX_i\bar{Y} \\ &=\s

• Therefore

```
$$ \begin{aligned} \hat{\beta}_1 &= \frac{S_{xy}}{S_{xx}} \end{aligned} $$
```

- Note that \(\frac{cov(x,y)}{var(x)} = \frac{\frac{S_{xy}}{n}}{\frac{S_{xx}}{n}}\)
- So

```
\ \hat{\beta}_1 = \frac{cov(x,y)}{var(x)} $$
```

• For \(\hat{\beta}_0\), start with the derivative set to zero

```
\ \begin{aligned} -2\left( \sum_iy_i-n\widehat{\beta }_0-\widehat{\beta }_{1}\sum_ix_i\right) &= 0 \\ \sum_iy_i-n\widehat{\beta }_0-\widehat{\beta }_0-n\widehat{\beta }_{1}\bar{x} &= 0 \\ \widehat{\beta }_0-n\widehat{\beta }_{1}\bar{x} &= 0 \\ \widehat{\beta }_0 &=\bar{y}-\widehat{\beta }_{1}\bar{x},\text{and so} \\ \widehat{\beta }_0 &=\bar{y}-\frac{S_{xy}}{S_{xx}}\bar{x} \end{aligned} $$
```

- Nothing we've done yet requires assumptions about distributions of \(x\) or \(y\)
- Just straight math footwork
- Some additional properties

Prop 1. $(\hat y)_1 = \frac{y}{\Delta x}$:

- Take derivative of \(\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x\) with respect to \(x\).
- \(\frac{d\hat{y}}{dx} = \hat{\beta}_1\). A one-unit change in \(x\) is associated with a \(\hat{\beta}_1\) unit change in \(\hat{y}\). Or \(\hat{\beta}_1 = \frac{\hat{y}}{\Delta x}\)

Prop 2. $(\sum_i \hat{u}_i = 0)$:

- We define \(\hat{u}_i = y_i \hat{y}_i\) and substitute in \(\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1x_i\) to get \(\hat{u}_i = y_i (\hat{\beta}_0 + \hat{\beta}_1x_i)\).
- Sum it to see \(\sum_i\hat{u}_i = \sum_iy_i (\hat{\beta}_0 + \hat{\beta}_1x_i)\), and recall from \(\frac{\partial SSR}{\partial \hat{\beta}_0} = 0\) that \(\sum_i y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i) = 0\).

Prop 3. $(\hat{u})_i = 0$:

- From previous slide, \(\sum_i \hat{u}_i = 0\).
- Thus $(\frac{1}{n}n\sum_i hat{u}_i = 0)$ and therefore $(n\hat{u}_i = 0)$ so $(\frac{u}_i = 0)$

Prop 4. $\langle (cov(x, hat\{u\}) = 0 \rangle)$:

- We know from F.O.C. for \(\hat{\beta}_1\) that \(\sum_i \bigg[y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i)\bigg]x_i = 0\).
- We defined \(y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i) = \hat{u}_i\) so we can rewrite as \(\sum_i \hat{u}_ix_i = 0\)

 $\$ \begin{aligned} cov(x,\hat{u}) &= \frac{\sum_i(\hat{u}_i)(x_i - \bar{x})}{n}\\ &= \frac{\sum_i \hat{u}_ix_i}{n} - \frac{\bar{x}\sum_i \hat{u}_i}{n} \\ &= 0 - 0 \end{aligned} \$\$

```
Prop 5. (\frac{1}{n}\sum_i \frac{y_i}{n}\sum_i y_i)
```

```
$$ \begin{aligned} y_i &= \hat{y}_i + \hat{u}_i\\ \sum\nolimits_i y_i &= \sum\nolimits_i \hat{y}_i + \sum\nolimits_i \hat{u}_i\\ \sum\nolimits_i y_i &= \sum\nolimits_i \hat{y}_i + 0\\ \frac{1}{n}\sum\nolimits_i y_i &= \frac{1}{n}\sum\nolimits_i \hat{y}_i \end{aligned} $$
```

Prop 6. The coordinate $((\bar{x},\bar{y}))$ is always on the line of best fit

Note that \(\hat{\beta}_0 = \bar{y} - \hat{\beta}_1\bar{x}\)

 $\$ \begin{aligned} \hat{y} &= \hat{\beta}_0 + \hat{\beta}_1 x_i\\ \hat{y}(\bar{x}) &= \bar{y} - \hat{\beta}_1 \bar{x} + \hat{\beta}_1 \bar{x}\\ \hat{y}(\bar{x}) &= \bar{y} \end{aligned} \$\$

Prop 7. $\langle (cov(\hat{y}_i,\hat{u}_i) = 0 \rangle$

```
\ \begin{aligned} cov(\hat{y}_i,\hat{u}_i) &= \frac{\sum_{i,\hat{y}_i}^{n}\\ &= \frac{(\sum_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n})}{n}\\ &= \frac{(\sum_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{y}_i}^{n}_{i,\hat{
```

Sum of Squares

- Process of fitting least squares is decomposing \((y_i\)) into two parts: \(\hat{y}_i\) and \(\hat{u}_i\)
- Total sum of squares (SST): \(\sum_i(y_i \bar{y})^2\)
- Explained sum of squares (SSE): \(\sum_i(\hat{y}_i \bar{y})^2\)
- Residual sum of squares (SSR): \(\sum_i \hat{u}_i^2\)
- Prove: \(SST = SSR + SSE\)

Sum of Squares

```
\ \begin{aligned} SST &= \sum_i(y_i - \bar{y})^2\\ &= \sum_i(y_i - \hat{y}_i + \hat{y}_i + \bar{y})^2\\ &= \sum_i(\hat{u}_i)^2 + \sum_i (\hat{y}_i - \bar{y})^2 + 2\sum_i (\hat{y}_i - \bar{y})\\ &= SSR + SSE + 2\sum_i (\hat{y}_i + \bar{y})\hat{u}_i \end{aligned} $$
```

- We just demonstrated that \(cov(\hat{y}_i,\hat{u}_i) = \frac{\sum(\hat{y}_i \bar{y})\hat{u}_i}{n} = 0\)
- Therefore \((SST = SSR + SSE + 0\)

(R^2)

- \(SST = \sum_i(y_i \bar{y})^2\) is the sample variance of \((y\).
- If \(y\) could be perfectly explained by a straight line over values of \(x\), the \(SSE = \sum_i(\hat{y}_i \bar{y})^2\) would be equal to the \(SST\)
- Therefore \(\frac{SSE}{SST} = 1\).
- This never actually happens, but we can use this ratio to measure the "goodness of fit"

 - The proportion of sample variation in \(y\) that is explained by \(x\)
- The name comes from the fact that, in the bivariate context, \((R^2 = (r)^2\))