

Logic for Ontologists

John Beverley, PhD

Assistant Professor, University at Buffalo Co-Director, National Center for Ontological Research Affiliate Faculty, Institute of Artificial Intelligence and Data Science

Outline

• A Brief History of Logics in Ontology Engineering

• Description Logic: ALC and Extensions

• The Bisimulation Theorem

Outline

• A Brief History of Logics in Ontology Engineering

• Description Logic: ALC and Extensions

• The Bisimulation Theorem

- FOL consists of the following vocabulary:
 - Logical operators and connectives
 - Predicates
 - Variables
 - Punctuation

- FOL consists of the following vocabulary:
 - Logical operators and connectives (~, →, &, v, ∀_, ∃_)
 - Predicates
 - Variables
 - Punctuation

- FOL consists of the following vocabulary:
 - Logical operators and connectives (\sim , \rightarrow , &, v, \forall _, \exists _)
 - Predicates
 - Variables
 - Punctuation

- FOL consists of the following vocabulary:
 - Logical operators and connectives (~, →, &, v, ∀_, ∃_)
 - Predicates (P_, R_, ...P_ _, R_ _,...P_ _ _, R_ __, ...)
 - Variables
 - Punctuation

- FOL consists of the following vocabulary:
 - Logical operators and connectives (\sim , \rightarrow , &, v, \forall _, \exists _)
 - Predicates (P_, R_, ...P_ _, R_ _,...P_ _ _, R_ __, ...)
 - Variables
 - Punctuation

- FOL consists of the following vocabulary:
 - Logical operators and connectives (~, →, &, v, ∀_, ∃_)
 - Predicates (P_, R_, ...P_ _, R_ _,...P_ _, R_ _,...)
 - Variables (x, y, z, ...)
 - Punctuation

- FOL consists of the following vocabulary:
 - Logical operators and connectives (~, →, &, v, ∀_, ∃_)
 Predicates (P_, R_, ...P_, R_, ...)

 - Variables (x, y, z, ...)
 - Punctuation

- FOL consists of the following vocabulary:
 - Logical operators and connectives (~, →, &, v, ∀_, ∃_)
 - Predicates (P_, R_, ...P_ _, R_ _,...P_ _, R_ _,...)
 - Variables (x, y, z, ...) variables fill in slots for predicates too
 - Punctuation

- FOL consists of the following vocabulary:
 - Logical operators and connectives (~, →, &, v, ∀_, ∃_)
 - Predicates (P_, R_, ...P_ _, R_ _,...P_ _ _, R_ __, ...)
 - Variables (x, y, z, ...)
 - Punctuation ([,], (,), {, })

• English sentence: "All bald men are happy."

• English sentence: "All bald men are happy."

• First Paraphrase: Everything that is bald and a man is happy.

• English sentence: "All bald men are happy."

• First Paraphrase: Everything that is bald and a man is happy

• Second Paraphrase: For every x, if x is bald and a man, then x is happy

• English sentence: "All bald men are happy."

• First Paraphrase: Everything that is bald and a man is happy

• Second Paraphrase: For every x, if x is bald and a man, then x is happy

• $\forall (B_ \& M_) \rightarrow H_)$

• English sentence: "All bald men are happy."

• First Paraphrase: Everything that is bald and a man is happy

• Second Paraphrase: For every x, if x is bald and a man, then x is happy

• $\forall x((Bx \& M_) \rightarrow H_)$

• English sentence: "All bald men are happy."

• First Paraphrase: Everything that is bald and a man is happy

• Second Paraphrase: For every x, if x is bald and a man, then x is happy

The variable associated with "V" binds variables associated with predicates within its scope

• $\forall x((Bx \& M_) \rightarrow H_)$

• English sentence: "All bald men are happy."

• First Paraphrase: Everything that is bald and a man is happy

• Second Paraphrase: For every x, if x is bald and a man, then x is happy

• $\forall x((Bx \& Mx) \rightarrow H_{\underline{\hspace{1cm}}})$

• English sentence: "All bald men are happy."

• First Paraphrase: Everything that is bald and a man is happy

• Second Paraphrase: For every x, if x is bald and a man, then x is happy

• $\forall x((Bx \& Mx) \rightarrow H_{\underline{\hspace{0.5cm}}})$

• English sentence: "All bald men are happy."

• First Paraphrase: Everything that is bald and a man is happy

• Second Paraphrase: For every x, if x is bald and a man, then x is happy

In this case all the variables are within the scope of "V"

• $\forall x ((Bx \& Mx) \rightarrow Hx)$

• English sentence: "All bald men are happy."

• First Paraphrase: Everything that is bald and a man is happy

• Second Paraphrase: For every x, if x is bald and a man, then x is happy

• $\forall x((Bx \& Mx) \rightarrow Hx)$

For every x, if x is bald and a man, then x is happy This restricts the domain to just bald men All the things

Supplemented FOL

• Researchers frequently add names to the FOL language

- FOL consists of the following vocabulary:
 - Logical operators and connectives (~, →, &, v, ∀_, ∃_)
 - Predicates (P_, R_, ...P_ _, R_ _,...P_ _, R_ _,...)
 - Variables (x, y, z, ...)
 - Punctuation ([,], (,), {, })

Supplemented FOL

• Researchers frequently add names to the FOL language

- FOL consists of the following vocabulary:
 - Logical operators and connectives (~, →, &, v, ∀_, ∃_)
 - Predicates (P_, R_, ...P_ _, R_ _,...P_ _, R_ _,...)
 - Variables (x, y, z, ...)
 - Punctuation ([,], (,), {, })
 - Names

Supplemented FOL

• Researchers frequently add names to the FOL language

- FOL consists of the following vocabulary:
 - Logical operators and connectives (~, →, &, v, ∀_, ∃_)
 - Predicates (P_, R_, ...P_ _, R_ _,...P_ _, R_ _,...)
 - Variables (x, y, z, ...)
 - Punctuation ([,], (,), {, })
 - Names (a, b, c, d, ...)

Supplemented FOL

• Researchers frequently add names to the FOL language

- FOL consists of the following vocabulary:
 - Logical operators and connectives (~, →, &, v, ∀_, ∃_)
 - Predicates (P_, R_, ...P_ _, R_ _,...P_ _, R_ _,...)
 - Variables (x, y, z, ...)
 - Punctuation ([,], (,), {, })
 - Names (a, b, c, d, ...)

Supplemented FOL

• Compare:

- Someone is bald and happy
 - Ex(Bx & Hx)

- John is bald and happy
 - (Bj & Hj)

Binary Relations

• FOL includes predicates, e.g. is red, is bald, and relations, e.g. is part of, is between, is next to, etc.

- For example (give John's arm the name 'a'):
 - John has an arm and it is part of John
 - part of(a, j)
 - John has a sister, Kellye
 - is related to (j, k)
 - John is between Sam and Deborah
 - is between (j, s, d)

Pervasiveness

• FOL is *very* expressive, which is one of the reasons that it is used so widely as the formal language underpinning science

• You may have heard that the language of *mathematics* underwrites all of modern science...

• Note, contemporary mathematics is written in First-Order Logic

Theorem: $(\forall x \mid : P \Rightarrow Q) \equiv \{x \mid P\} \subseteq \{x \mid Q\}$ Proof: $\{x \mid P\} \subseteq \{x \mid Q\}$ $\langle Def. of Subset \subseteq , with v not \rangle$ occurring free in P or Q) $(\forall v \mid v \in \{x \mid P\} : v \in \{x \mid Q\})$ $\langle v \in \{x \mid R\} \equiv R[x := v], \text{ twice} \rangle$ $(\forall v \mid P[x := v] : Q[x := v])$ = (Trading; Dummy renaming) $(\forall x \mid : P[x := v][v := x] \Rightarrow$ Q[x := v][v := x])= $\langle R[x := v][v := x] \equiv R \text{ if } v$ does not occur free in R, twice) $(\forall x \mid : P \Rightarrow Q)$

FOL is Too Expressive...

• Once we add ternary relations, the formal language becomes undecidable

• What this means – roughly – is that we can't determine in FOL for every expression whether that expression is **false** or we **just haven't found a counterexample to it**

• Put another way, it's impossible in FOL to construct a step-by-step procedure whose evaluation for truth or falsity **always** terminates for **any** FOL sentence

Restricting FOL

• Undecidability arises with respect to FOL because it is too expressive

• This observation led computer scientists to reflect on how the expressivity of FOL might be restricted so that the resulting language was decidable

• The idea then was to find the **most expressive version** of FOL that would not result in undecidability

Restricting FOL

• This research program – started in the 1980s – continues to this day, with varying degrees of success

Notably, it spurred the creation of new logics based on FOL, called description logics

• Description logics are a family of logics designed to be expressive decidable languages based on FOL

Web Ontology Language

 Most relevant to us ontology engineers is that description logics provide the theoretical foundation on which the Web Ontology Language
 (OWL) is based

• In the remainder of this lesson, we will explore description logics of varying degrees of expressivity

• Thereby providing theoretical understanding of OWL, which will occupy much of our subsequent discussion

Outline

• A Brief History of Logics in Ontology Engineering

• Description Logic: ALC and Extensions

• The Bisimulation Theorem

• Basically, description logics start with FOL, and add the following:

• Relations of no greater than arity of 2 are allowed

• The same object may have multiple names

• Not asserting something does not mean it is false

• Basically, description logics start with FOL, and add the following:

• Relations of no greater than arity of 2 are allowed Binary Fragment of FOL

• The same object may have multiple names

• Not asserting something does not mean it is false

• Basically, description logics start with FOL, and add the following:

• Relations of no greater than arity of 2 are allowed

Binary Fragment of FOL

• The same object may have multiple names

Unique Name Assumption

• Not asserting something does not mean it is false

• Basically, description logics start with FOL, and add the following:

• Relations of no greater than arity of 2 are allowed

Binary Fragment of FOL

• The same object may have multiple names

Unique Name Assumption

• Not asserting something does not mean it is false

Open World Assumption

ALC Syntax

Definition 2.1. Let \mathbf{C} be a set of *concept names* and \mathbf{R} be a set of role names disjoint from \mathbf{C} . The set of \mathcal{ALC} concept descriptions over \mathbf{C} and \mathbf{R} is inductively defined as follows:

- Every concept name is an \mathcal{ALC} concept description.
- \top and \bot are \mathcal{ALC} concept descriptions.
- If C and D are \mathcal{ALC} concept descriptions and r is a role name, then the following are also \mathcal{ALC} concept descriptions:

```
C \sqcap D (conjunction),

C \sqcup D (disjunction),

\neg C (negation),

\exists r.C, (existential restriction), and

\forall r.C (value restriction).
```

Signature =
$$\{\mathsf{T}, \mathsf{\bot}, \mathsf{\Box}, \mathsf{\sqcap}, \mathsf{\neg}, \mathsf{\exists}, \mathsf{\forall}, \mathsf{r}_{1...n}, \mathsf{C}_{1...n}\}$$

- Concept Descriptions:
 - C_{1...n}
 - r_{1...n}
 - T
 - 1
 - C ⊔ D
 - C □ D
 - ¬C
 - ∃r.C
 - ∀r.C

Signature =
$$\{\mathsf{T}, \mathsf{\bot}, \mathsf{\Box}, \mathsf{\sqcap}, \mathsf{\neg}, \mathsf{\exists}, \mathsf{\forall}, \mathsf{r}_{1...n}, \mathsf{C}_{1...n}\}$$

- Concept Descriptions:
 - C_{1...n} Correspond to classes, such as Teacher, Reindeer, etc. which are often assumed to be collections of similar enough instances in the world, such

Signature =
$$\{\mathsf{T}, \mathsf{\bot}, \mathsf{\Box}, \mathsf{\sqcap}, \mathsf{\neg}, \mathsf{\exists}, \mathsf{\forall}, \mathsf{r}_{1...n}, \mathsf{C}_{1...n}\}$$

- Concept Descriptions:
 - C_{1...n}
 - ${ullet}$ ${f r}_{1...n}$ Corresponds to relations holding between instances such as loves or parent

of or next to

Signature =
$$\{\mathsf{T}, \mathsf{\bot}, \mathsf{\Box}, \mathsf{\sqcap}, \mathsf{\neg}, \mathsf{\exists}, \mathsf{\forall}, \mathsf{r}_{1...n}, \mathsf{C}_{1...n}\}$$

- Concept Descriptions:
 - C_{1...n}
 - r_{1...n}
 - T Corresponds to everything in the domain; in practice this is used to represent the most general class, i.e. the ultimate parent class of every other class

Signature =
$$\{\mathsf{T}, \mathsf{\bot}, \mathsf{\Box}, \mathsf{\sqcap}, \mathsf{\neg}, \mathsf{\exists}, \mathsf{\forall}, \mathsf{r}_{1...n}, \mathsf{C}_{1...n}\}$$

- Concept Descriptions:
 - C_{1...n}
 - r_{1...n}
 - T
 - \(\perp \) Corresponds to nothing in the domain; in practice this is used to represent the least general class, i.e. the class that contains nothing

Signature =
$$\{\mathsf{T}, \mathsf{\bot}, \mathsf{\Box}, \mathsf{\sqcap}, \mathsf{\neg}, \mathsf{\exists}, \mathsf{\forall}, \mathsf{r}_{1...n}, \mathsf{C}_{1...n}\}$$

- Concept Descriptions:
 - C_{1...n}
 - r_{1...n}
 - T
 - 1
 - C \sqcup D Corresponds to the grouping of all instances of class C with all the instances of class D; this is sometimes called (imprecisely) the *union* of C and D

Signature =
$$\{\mathsf{T}, \mathsf{\bot}, \mathsf{\Box}, \mathsf{\sqcap}, \mathsf{\neg}, \mathsf{\exists}, \mathsf{\forall}, \mathsf{r}_{1...n}, \mathsf{C}_{1...n}\}$$

• Concept Descriptions:

• C □ D – Corresponds to all instances that are members of both C and D; sometimes called (imprecisely) the *intersection* of C and D

Signature =
$$\{\mathsf{T}, \mathsf{\bot}, \mathsf{\Box}, \mathsf{\sqcap}, \mathsf{\neg}, \mathsf{\exists}, \mathsf{\forall}, \mathsf{r}_{1...n}, \mathsf{C}_{1...n}\}$$

• Concept Descriptions:

- C_{1...n}
 r_{1...n}
- T
- C 🗆 D
- C \sqcap D
- $\neg C$ Corresponds to all instances that are not members of C.

Signature =
$$\{\mathsf{T}, \mathsf{\bot}, \mathsf{\Box}, \mathsf{\sqcap}, \mathsf{\neg}, \mathsf{\exists}, \mathsf{\forall}, \mathsf{r}_{1...n}, \mathsf{C}_{1...n}\}$$

- Concept Descriptions:
 - C_{1...n}
 - r_{1...n}
 - T
 - 1
 - C ⊔ D
 - C □ D
 - ¬C

• $\exists r.C$ – Corresponds to all instances that are related to some C.

Signature =
$$\{T, \bot, \Box, \Box, \neg, \exists, \forall, r_{1...n}, C_{1...n}\}$$

- Concept Descriptions:
 - C_{1...n}
 - r_{1...n}
 - T
 - 1
 - C ⊔ D
 - C □ D
 - ¬C
 - ∃r.C
 - ∀r.C Corresponds to all instances that are related to only C.

ALCI Signature = ALC Signature + $\{r_{1...n}^{-}\}$

• r_{1...n} – Corresponds to inversions of relations such as r between instances, such as the inverse of 'loves' being 'loves-', i.e. 'loved by'

ALCI Signature = ALC Signature + $\{r_{1...n}^{-}\}$

• r_{1...n} – Corresponds to inversions of relations such as r between instances, such as the inverse of 'loves' being 'loves', i.e. 'loved by'

ALCI Signature = ALC Signature +
$$\{r_{1...n}^{-}\}$$

• r_{1...n} – Corresponds to inversions of relations such as r between instances, such as the inverse of 'loves' being 'loves', i.e. 'loved by'

ALCI Signature = ALC Signature + $\{r_{1...n}^{-}\}$

• r_{1...n} – Corresponds to inversions of relations such as r between instances, such as the inverse of 'loves' being 'loves-', i.e. 'loved by'

ALC Extensions: ALCN (cardinality)

ALCN Signature = ALC Signature + $\{ \le n \ r, \ge n \ r \}$

- \leq n r Corresponds to restriction that r is related to no more than n instances
- \geqslant n r Corresponds to restriction that r is related to no fewer than n instances

ALC Extensions: ALCN (cardinality)

ALCN Signature = ALC Signature +
$$\{ \le n \ r, \ge n \ r \}$$

- \leq n r Corresponds to restriction that r is related to no more than n instances
- \geqslant n r Corresponds to restriction that r is related to no fewer than n instances

ALC Extensions: ALCN (cardinality)

ALCN Signature = ALC Signature +
$$\{ \le n \ r, \ge n \ r \}$$

- \leq n r Corresponds to restriction that r is related to no more than n instances
- \geqslant n r Corresponds to restriction that r is related to no fewer than n instances

ALC Extensions: ALCQ (qual. cardinality)

ALCQ Signature = ALC Signature + $\{ \le n \text{ r.C}, \ge n \text{ r.C} \}$

- ≤n r.C Corresponds to restriction that r is related to no more than n Cs
- >n r.C Corresponds to restriction that r is related to no fewer than n Cs

ALC Extensions: ALCQ (qual. cardinality)

ALCQ Signature = ALC Signature + $\{ \le n \text{ r.C}, \ge n \text{ r.C} \}$

- <n r.C Corresponds to restriction that r is related to no more than n Cs
- >n r.C Corresponds to restriction that r is related to no fewer than n Cs

ALC Extensions: ALCQ (qual. cardinality)

ALCQ Signature = ALC Signature + $\{ \le n \text{ r.C}, \ge n \text{ r.C} \}$

- \leq n r.C Corresponds to restriction that r is related to no more than n Cs
- >n r.C Corresponds to restriction that r is related to no fewer than n Cs

ALC Extensions: ALCO (nominal)

ALCO Signature = ALC Signature + $\{\{a\}, \{b\}, ...\}$

• {a} – Corresponds to the instance mapped to by the name "a"

ALC Extensions: ALCO (nominal)

ALCO Signature = ALC Signature +
$$\{\{a\}, \{b\}, ...\}$$

• {a} – Corresponds to the instance mapped to by the name "a"

• Note

• Nominals allow for defining classes by enumerations of instances

ALCO Signature = ALC Signature +
$$\{\{a\}, \{b\}, ...\}$$

• {a} – Corresponds to the instance mapped to by the name "a"

• Note

• Nominals allow for defining classes by enumerations of instances

The Beatles consist of john, paul, ringo, and george

ALCO Signature = ALC Signature +
$$\{\{a\}, \{b\}, ...\}$$

• {a} – Corresponds to the instance mapped to by the name "a"

- Nominals allow for defining classes by enumerations of instances

 The Beatles consist of john, paul, ringo, and george
- In ALC, the connective \Box can be used to combine *classes*

ALCO Signature = ALC Signature +
$$\{\{a\}, \{b\}, ...\}$$

• {a} – Corresponds to the instance mapped to by the name "a"

- Nominals allow for defining classes by enumerations of instances

 The Beatles consist of john, paul, ringo, and george
- In ALC, the connective □ can be used to combine *classes*Great Bands = The Beatles □ The Eagles □ Metallica □...

ALCO Signature = ALC Signature +
$$\{\{a\}, \{b\}, ...\}$$

• {a} – Corresponds to the instance mapped to by the name "a"

- Nominals allow for defining classes by enumerations of instances

 The Beatles consist of john, paul, ringo, and george
- In ALC, the connective □ can be used to combine classes

 Great Bands = The Beatles □ The Eagles □ Metallica □...
- But no native connectives link *instances*

ALCO Signature = ALC Signature +
$$\{\{a\}, \{b\}, ...\}$$

• {a} – Corresponds to the instance mapped to by the name "a"

Note

- Nominals allow for defining classes by enumerations of instances

 The Beatles consist of john, paul, ringo, and george
- In ALC, the connective □ can be used to combine *classes*Great Bands = The Beatles □ The Eagles □ Metallica □...
- But no native connectives link *instances*

Beatles = john? paul? ringo? george

ALCO Signature = ALC Signature +
$$\{\{a\}, \{b\}, ...\}$$

• {a} – Corresponds to the instance mapped to by the name "a"

- Nominals allow for defining classes by enumerations of instances

 The Beatles consist of john, paul, ringo, and george
- In ALCO, treating instances as singleton classes permits using \(\mathbb{U}\)

ALCO Signature = ALC Signature +
$$\{\{a\}, \{b\}, ...\}$$

• {a} – Corresponds to the instance mapped to by the name "a"

- Nominals allow for defining classes by enumerations of instances

 The Beatles consist of john, paul, ringo, and george
- In ALCO, treating instances as singleton classes permits using ☐

 The Beatles = {john} ☐ {paul} ☐ {ringo} ☐ {george}

ALCO Signature = ALC Signature +
$$\{\{a\}, \{b\}, ...\}$$

• {a} – Corresponds to the instance mapped to by the name "a"

- Nominals allow for defining classes by enumerations of instances

 The Beatles consist of john, paul, ringo, and george
- In ALCO, treating instances as singleton classes permits using ☐

 The Beatles = {john} ☐ {paul} ☐ {ringo} ☐ {george}
- Since \sqcup can only be used to combine classes

ALC Semantics

Definition 2.2. An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of a non-empty set $\Delta^{\mathcal{I}}$, called the interpretation domain, and a mapping $\cdot^{\mathcal{I}}$ that maps

- every concept name $A \in \mathbf{C}$ to a set $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, and
- every role name $r \in \mathbf{R}$ to a binary relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.

$$\begin{split} \top^{\mathcal{I}} &= \Delta^{\mathcal{I}}, \\ \bot^{\mathcal{I}} &= \emptyset, \\ (C \sqcap D)^{\mathcal{I}} &= C^{\mathcal{I}} \cap D^{\mathcal{I}}, \\ (C \sqcup D)^{\mathcal{I}} &= C^{\mathcal{I}} \cup D^{\mathcal{I}}, \\ (\neg C)^{\mathcal{I}} &= \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}, \\ (\exists r.C)^{\mathcal{I}} &= \{d \in \Delta^{\mathcal{I}} \mid \text{there is an } e \in \Delta^{\mathcal{I}} \text{ with } (d,e) \in r^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}}\}, \\ (\forall r.C)^{\mathcal{I}} &= \{d \in \Delta^{\mathcal{I}} \mid \text{for all } e \in \Delta^{\mathcal{I}}, \text{ if } (d,e) \in r^{\mathcal{I}}, \text{ then } e \in C^{\mathcal{I}}\}. \end{split}$$

ALC Semantics

Definition 2.2. An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of a non-empty set $\Delta^{\mathcal{I}}$, called the interpretation domain, and a mapping $\cdot^{\mathcal{I}}$ that maps

- every concept name $A \in \mathbf{C}$ to a set $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, and
- every role name $r \in \mathbf{R}$ to a binary relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.

LHS: The interpretation I maps the conjunction of C and D to a set S. **RHS:** The intersection S' of the set which I maps C to and the set which I maps D to.

Equivalence: This statement asserts that S = S'.

 $(\exists r.C)^{\mathcal{I}} = \{ d \in \Delta^{\mathcal{I}} \mid \text{there is an } e \in \Delta^{\mathcal{I}} \text{ with } (d, e) \in r^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}} \},$ $(\forall r.C)^{\mathcal{I}} = \{ d \in \Delta^{\mathcal{I}} \mid \text{for all } e \in \Delta^{\mathcal{I}}, \text{ if } (d, e) \in r^{\mathcal{I}}, \text{ then } e \in C^{\mathcal{I}} \}.$

Interpretations

Example: Interpretation

$$\Delta^{\mathcal{I}} = \{m, c6, c7, et\},$$
 $\mathsf{Teacher}^{\mathcal{I}} = \{m\},$
 $\mathsf{Course}^{\mathcal{I}} = \{c6, c7, et\},$
 $\mathsf{Person}^{\mathcal{I}} = \{m, et\},$
 $\mathsf{PGC}^{\mathcal{I}} = \{c7\},$
 $\mathsf{teaches}^{\mathcal{I}} = \{(m, c6), (m, c7), (et, et)\}$

Exercise: Diagram a Model

- $N_I = \{sun, morning_star, evening_star, moon, home\}.$
- $N_C = \{Planet, Star\}.$
- $N_R = \{ orbitsAround, shinesOn \}.$

We now define an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ as follows: Let our domain $\Delta^{\mathcal{I}}$ contain the following elements: $\odot, \, \xi, \, \xi, \, \xi, \, \zeta, \, \gamma, \, \gamma, \, \gamma, \, \xi, \, \xi, \, \xi$. We define the interpretation function by

```
\begin{array}{lll} & \mathbf{sun}^{\mathcal{I}} = \odot & \mathbf{Planet}^{\mathcal{I}} = \{ \column{2}{c} \colum
```


Outline

• A Brief History of Logics in Ontology Engineering

• Description Logic: ALC and Extensions

• The Bisimulation Theorem

Bisimulation

• Up to now, we've seen examples of differences in expressivity, e.g. ALC doesn't have a constructor for inverse roles.

• Examples are only suggestive, however; it isn't yet clear that, for example, a constructor for inverse roles cannot be defined using only the ALC syntax; if such a constructor can be defined, then ALCI is not more expressive than ALC

• We will be using a **bisimulation strategy** for demonstrating flavors of description logic are more or less expressive than one another

Bisimulation

• Examples are only suggestive, however; it isn't yet clear that, for example, a constructor for inverse roles cannot be defined using only the ALC syntax; if such a constructor can be defined, then ALCI is not more expressive than ALC

• It is challenging to prove a negative, i.e. "You cannot define an inverse role constructor in ALC"

• Bisimulation is a way to prove a negative via an indirect route

Bisimulation

- Q is a bisimulation if and only if:
 - i. $d_1 \varrho d_2$ implies $d_1 \in A^{I1}$ if and only if: $d_2 \in A^{I2}$ for all $d_1 \in \Delta^{I1}$, $d_2 \in \Delta^{I2}$ and $A \in C$
 - i. $d_1 \varrho d_2$ and $(d_1, d'_1) \in r^{I1}$ implies the existence of $d'_2 \in \Delta^{I2}$ such that: $d'_1 \varrho d'_2$ and $(d_2, d'_2) \in r^{I2}$ for all $d_1, d'_1 \in \Delta^{I1}$, $d_2 \in \Delta^{I2}$ and $r \in R$
 - ii. $d_1 \varrho d_2$ and $(d_2, d'_2) \in r^{I2}$ implies the existence of $d'1 \in \Delta^{I1}$ such that: $d'_1 \varrho d'_2$ and $(d_1, d'_1) \in r^{I1}$ for all $d_1 \in \Delta^{I1}$, $d_2, d'_2 \in \Delta^{I2}$ and $r \in R$

LOGIC

Bisimulation

- Q is a *bisimulation* if and only if:
 - i. $d_1 \varrho d_2$ implies $d_1 \in A^{I1}$ if and only if: $d_2 \in A^{I2}$ for all $d_1 \in \Delta^{I1}$, $d_2 \in \Delta^{I2}$ and $A \in C$
 - i. $d_1 \varrho d_2$ and $(d_1, d'_1) \in r^{I1}$ implies the existence of $d'_2 \in \Delta^{I2}$ such that: $d'_1 \varrho d'_2$ and $(d_2, d'_2) \in r^{I2}$ for all $d_1, d'_1 \in \Delta^{I1}, d_2 \in \Delta^{I2}$ and $r \in R$
 - ii. $d_1 \varrho d_2$ and $(d_2, d'_2) \in r^{I2}$ implies the existence of $d'1 \in \Delta^{I1}$ such that: $d'_1 \varrho d'_2$ and $(d_1, d'_1) \in r^{I1}$ for all $d_1 \in \Delta^{I1}$, $d_2, d'_2 \in \Delta^{I2}$ and $r \in R$

- Claim: d_1 is bisimilar to f_1
- Invariance: d₁ and f₁ are both instances of M

- Claim: d_1 is bisimilar to f_1
- Zig:

If role c relates d₁ to d₂

• Zig:

If role c relates d₁ to d₂ then there is a mapping from d₂ to f₂ where d₂ and f₂ are both instances of M

• Zig:

If role c relates d_1 to d_2 then there is a mapping from d_2 to f_2 where d_2 and f_2 are both instances of M and role c maps f_1 to f_2

• Zig:

If role c relates d_1 to d_2 then there is a mapping from d_2 to f_2 where d_2 and f_2 are both instances of M and role c maps f_1 to f_2 and f_1 to f_3

• Zag:

If role c relates d₂ to d₃ and d₄

• Zag:

If role c relates d₂ to d₃ and d₄ then there is a mapping from d₃ to f₄ and d₄ to f₅ as well as from d₃ to f₆ and d₄ to f₇ where d₃, f₄, and f₆ are instances of M and d₄, f₅, and f₇ are instances of F and

• Zag:

If role c relates d₂ to d₃ and d₄ then there is a mapping from d₃ to f₄ and d₄ to f₅ as well as from d₃ to f₆ and d₄ to f₇ where d₃, f₄, and f₆ are instances of M and d₄, f₅, and f₇ are instances of F and c relates f₂ to f₄ and f₅ and related f₃ to f₆ and f₇

• Claim: d₁ is not bisimilar to e₁

- Claim: d₁ is not bisimilar to e₁
- Invariance: d₁ and e₁ are both instances of M

- Claim: d_1 is not bisimilar to e_1
- Zig:

If role c relates d₁ to d₂

• Zig:

If role c relates d₁ to d₂ then there is a mapping from d₂ to e₂ where d₂ and e₂ are both instances of M and from d₂ to e₃ where d₂ and e₃ are both instances of M

• Zig:

If role c relates d_1 to d_2 then there is a mapping from d_2 to e_2 where d_2 and e_2 are both instances of M and from d_2 to e_3 where d_2 and e_3 are both instances of M and role c maps e_1 to e_2 and e_1 to e_3

• Claim: d₁ is not bisimilar to e₁

• Zag:

If role c relates d₂ to d₃ and d₄

• Zag:

If role c relates d_2 to d_3 and d_4 then there is a mapping from d_3 to e_4 and from d_3 to e_5 such that d_3 and e_4 are instances of M and e_5 is an instance of F

• Zag:

If role c relates d_2 to d_3 and d_4 then there is a mapping from d_3 to e_4 and from d_3 to e_5 such that d_3 and e_4 are instances of M and e_5 is an instance of F and c relates e_2 to e_4

• Claim: d_1 is not bisimilar to e_1

• Zag:

If role c relates d_2 to d_3 and d_4 then there is a mapping from d_3 to e_4 and from d_3 to e_5 such that d_3 and e_4 are instances of M and e_5 is an instance of F and c relates e_2 to e_4 and c relates e_2 to e_5

• Claim: d_1 is not bisimilar to e_1

• Zag:

If role c relates d_2 to d_3 and d_4 then there is a mapping from d_3 to e_4 and from d_3 to e_5 such that d_3 and e_4 are instances of M and e_5 is an instance of F and c relates e_2 to e_4 and c relates e_2 to e_5

• The language of ALC is not expressive enough to distinguish between bisimilar elements.

• Bisimulation is a relationship between interpretations/elements; interpretations are distinct from syntaxes

• For example, bisimulations between interpretations are distinct from the syntax of ALC

 $\exists c.(M \sqcap \exists c.M \sqcap \exists c.F)$

 $\exists y(c(x,y) \& M(y) \& \exists z(c(y,z) \& M(z)) \& \exists u(c(y,u) \& F(u)))$

Any x that has at least one son y who has at least one son z and at least one one daughter u

Any x that has at least one son y who has at least one son z and at least one one daughter u

Both graphs satisfy the ALC expression: $\exists c.(M \sqcap \exists c.M \sqcap \exists c.F)$

• There is an ALCI concept C such that C \neq D holds for all ALC concepts D.

• Recall, ALCI adds only " $\exists r-.T$ " to the syntax of ALC. To prove ALCI is more expressive than ALC, we must show there is no expression in ALC that is equivalent to $\exists r-.T$

• Suppose there is such an expression in ALC – call it D - we will show this assumption leads to contradiction.

• Consider d₂ and e₂ in the following diagram:

• There is a bisimulation between them, so $d_2 \in D^{I1}$ just in case $e_2 \in D^{I2}$

- There is a bisimulation between them, so $d_2 \in D^{I1}$ just in case $e_2 \in D^{I2}$
- However, $d_2 \in (\exists r .T)^{I1}$

- There is a bisimulation between them, so $d_2 \in D^{I1}$ just in case $e_2 \in D^{I2}$
- However, $d_2 \in (\exists r .T)^{I1}$

- There is a bisimulation between them, so $d_2 \in D^{I1}$ just in case $e_2 \in D^{I2}$
- However, $d_2 \in (\exists r -. \top)^{I1}$ and $e_2 \notin (\exists r -. \top)^{I2}$

- That is, the ALCI expression $\exists r$ —. T can be satisfied by d_2 in the left graph but not e_2 in the right, since the latter lacks any role to have an inverse
- Because there is a bisimulation between d_2 and e_2 and d_2 satisfies $\exists r-.T$ but e_2 doesn't, ALCI can distinguish between bisimilar graphs that ALC cannot

• There is an ALCN concept C such that C \neq D holds for all ALC concepts D.

• Recall, ALCN adds only " \leq r.1" to the syntax of ALC. To prove ALCI is more expressive than ALC, we must show there is no expression in ALC that is equivalent to \leq r.1

• Suppose there is such an expression in ALC – call it D - we will show this assumption leads to contradiction.

• Consider the following diagram:

• There is a bisimulation between the elements, so $d_1 \in D^{I1}$ just in case $e_1 \in D^{I2}$

- There is a bisimulation between the elements, so $d_1 \in D^{I1}$ just in case $e_1 \in D^{I2}$
- However, $d_1 \in (\leq r.1)^{I1}$

- There is a bisimulation between the elements, so $d_1 \in D^{I1}$ just in case $e_1 \in D^{I2}$
- However, $d_1 \in (\leq r.1)^{I1}$

- There is a bisimulation between the elements, so $d_1 \in D^{I1}$ just in case $e_1 \in D^{I2}$
- However, $d_1 \in (\leq r.1)^{I1}$ and $e_1 \notin (\leq r.1)^{I2}$

- There is a bisimulation between the elements, so $d_1 \in D^{I1}$ just in case $e_1 \in D^{I2}$
- However, $d_1 \in (\leq r.1)^{I1}$ and $e_1 \notin (\leq r.1)^{I2}$

• Consider the following diagram:

• That is, the ALCN expression \leq r.1 can be satisfied by d₁ in the left graph but not e₁ in the right, since the latter is related to more than 1 element

• Because there is a bisimulation between d_1 and e_1 and d_1 satisfies $\leq r.1$ but e_1 doesn't, ALCN can distinguish between bisimilar graphs that ALC cannot