Question (1) [20 Marks]

- a- The roles of Lexical analyzer are 1- ----- 2- ----- 3- ----- (3 Marks)
- b- Discuss the concept of Grammar , Context-Free Grammar. (4 Marks)
- c- given the following NFA, write the equivalent Reg. expression

(5 Marks)

d- Refer to problem 1-c, construct the equivalent DFA, show your work step-by step

(8 Marks)

Question (2) [15 Marks]

- a- Give the regular expressions that represent the following strings over the alphabet {a,b,c} (6 Marks)
 - 1) All strings containing odd number of c's.
 - 2) All strings that have at least one c and at least one b.
- b A grammar with $N = \{S, A, B\}, T = \{a, b\}$ and P are as follows: (9 Marks)
 - 1- S→ aAB
 - 2- A→bBb
 - 3- B→A
 - 4- B→ λ

Show **leftmost derivation and rightmost derivation** of the string a b⁴. Then choose **the correct answer** in the following :

- (1) Number of applications of Rule number 2 is
 - A ONE
- B- TWO
- C- Three
- D- FOUR
- (2) Number of applications of Rule number 3 is only once
- (A: TRUE /
- B: FALSE)

- (3) Number of applications of rule number 4 is 3 times
- (A: TRUE /
- B: FALSE)

Question 3 [15 Marks]

a- Show the FIRST and FOLLOW sets using the following Grammar:

(5 Marks)

$$R \rightarrow +TR \mid \lambda$$

b- Given the following SLR table and Grammar G

(10 Marks)

(1)	$E \rightarrow$	E -	-T
		-	

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

$$(4) \quad T \to F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow id$$

STATE	ACTION				GOTO				
	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1	1	s 6				acc			
2	1	r2	s7		r2	r2	1		
3		r4	r4		r4	r4	i		
4	s5			84			8	2	3
5		r6	r6		r6	r6			
6	s5			84				9	3
7	s5			s4			1		10
8		s6			s11		1		
9		r1	s7		r1	r1	1		
10	[r3	r3		r3	r3	1		
11		r5	r5		r5	r5			

Parsing table for expression grammar

Use them to parse the input (id1+id2) * id3

Question 4 [20 Marks]

a- Use the following table and Grammar to perform the Non-recursive predictive parsing for id* (id+id) (8 Marks)

NON -	INPUT SYMBOL					
TERMINAL	id	+	*	()	\$
E	$E \to TE'$			$E \to TE'$		
E'		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' \to \epsilon$
T	$T \to FT'$			$T \to FT'$		
T'		$T' \to \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \to \epsilon$
F	$F o \mathbf{id}$			$F \to (E)$		

$$\begin{array}{cccc} E & \rightarrow & T \ E' \\ E' & \rightarrow & + T \ E' \ | \ \epsilon \\ T & \rightarrow & F \ T' \\ T' & \rightarrow & * F \ T' \ | \ \epsilon \\ F & \rightarrow & (E) \ | \ \mathbf{id} \end{array}$$

b- Given the grammar

Use shift-reduce method to parse the string (id+id)

(7 Marks)

c- Define the Term SDD, illustrate using simple example.

(5 Marks)