Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_tehnologic* Barem de evaluare și de notare

Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte) $2(5-\sqrt{2})=10-2\sqrt{2}$ 2p $10 - 2\sqrt{2} + 2\sqrt{2} = 10$ 3p 2p f(3) = 02p 1p f(-3) + f(3) = 0**3.** $5^{2x} = 5^2$ **2p** 3p x = 1 $20\% \cdot 100 = 20$ 2p Prețul după scumpire este 120 de lei 3p $AB = \sqrt{(3-1)^2 + (1-1)^2}$ 3p 2p 6. **2p** 2p $\cos 30^{\circ} + \cos 150^{\circ} = 0$

	C0550 1 C05150 0		
SUBIECTUL al II-lea (30 de puncte)			
1.a)	$\det A = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1 - 0 =$	3p	
	=1	2p	
b)	$x = 0 \Rightarrow B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$	2p	
	$A - B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	3р	
c)	$A + B = \begin{pmatrix} 1 + x & -2 \\ 0 & 1 + x \end{pmatrix} \Rightarrow \det(A + B) = (1 + x)^2$	3р	
	$(1+x)^2 = 0 \Leftrightarrow x = -1$	2p	
2.a)	$2 \circ (-2) = 2 + (-2) + 3 =$	3p	
	= 3	2p	
b)	$x \circ (-3) = x + (-3) + 3 = x$, pentru orice număr real x	2p	
	$(-3) \circ x = (-3) + x + 3 = x \Rightarrow x \circ (-3) = (-3) \circ x = x$, pentru orice număr real x	3р	

c)	$2013 \circ (-2013) = 3$	2p
	$3 = x \circ x \Leftrightarrow 3 = 2x + 3 \Leftrightarrow x = 0$	3 p

	$3 = x \circ x \Leftrightarrow 3 = 2x + 3 \Leftrightarrow x = 0$	3p
SUBIECTUL al III-lea		(30 de puncte)
1.a)	$\lim_{x \to +\infty} \frac{x+1}{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right) =$	3р
	=1	2p
b)	$f'(x) = -\frac{1}{x^2}$, pentru orice $x \in (0, +\infty)$	2p
	$f'(x) < 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este descrescătoare pe intervalul $(0, +\infty)$	3p
c)	$y - f(1) = f'(1) \cdot (x - 1)$	2p
	$f'(1) = -1$, $f(1) = 2 \Rightarrow$ ecuația tangentei este $y = -x + 3$	3 p
2.a)	$\left \int_{0}^{1} f'(x) dx = f(x) \right _{0}^{1} =$	3p
	= f(1) - f(0) = 3	2 p
b)	$F'(x) = (x^3 + x + 1)^{1} = 3x^2 + 1$	3p
	$F'(x) = f(x)$, pentru orice $x \in \mathbb{R} \Rightarrow F$ este o primitivă a funcției f	2 p
c)	$\mathcal{A} = \int_{0}^{1} f(x) dx = \int_{0}^{1} (3x^{2} + 1) dx =$	2p
	$=\left(x^3+x\right)\Big _0^1=2$	3p