Лабораторная работа № 7

Решение задачи Коши для ОДУ 1-го порядка

Тема: Численное решение задачи Коши для обыкновенного дифференциального уравнения первого порядка

$$F(x,u(x),u^{-1}(x))=0, u(x_0)=u_0$$

Задание

Для данной задачи Коши на промежутке $[x_0, x_n]$:

$$\frac{du}{dx}(x) = f(x, u(x))$$

- 1. Привести уравнение к нормальной форме $\frac{du}{dx}(x) = f(x, u(x))$
- 2. Найти приближенное решение по явной разностной схеме Эйлера с точностью 10^{-4} , используя оценку погрешности полученного решения по методу Рунге. Построить графики приближенного решения и оценки его погрешности.
- 3. Выбрать разностную схему из семейства схем Рунге-Кутты 2-го порядка, взяв конкретное значение параметра . Найти приближенное решение по этой разностной схеме приближенное решение примерно с той же точностью, что, полученное в пункте 2.
- 4. Найти приближенное решение, используя функцию MathCAD rkfixed с тем же шагом, что и в пункте 3.
- 5. Вычислить разность решений, полученных в пункте 3 и в пункте 4 и сравнить с оценкой погрешности в пункте 3.
- 6. сравнить полученные решения графически.

Варианты индивидуальных заданий

Ba-				
ри-	F(x,u,u [⊢])	x_0	u_0	\mathcal{X}_n
ант				
1	(e ^x +1)du+e ^x dx	0	0.5	2
2	u ln(u)+x <u>du</u> dx	1	e	2.5
3	$\sqrt{4-x^2}\cdot\frac{du}{dx}+xu^2+x$	0	-tg(2)	1.8
4	$(e^x+1)udu-e^xdx$	0	1	2
5	sin(x)du-uln(u)dx	π/2	e	4
6	$\frac{udu}{1+x} - \frac{xdx}{1+u}$	0.5	1	2
7	$(1+u^2)dx$ - xdu	$\pi/4$	1	3.5
8	2√udx− du	0	1	2

9	(e ^x +2)du+2e ^x dx	0	0.3	2
10	u ln(u+1)+0.5 <i>x <mark>du</mark></i>	1	0.5 <i>e</i>	3
11	(x- xu²)dx- (u+ux²)du	1	1	3.2
12	$3(x^2u+u)du+\sqrt{2+u^2}dx$	0	1	2
13	$\cos(x)du$ - $u\ln(u+1)dx$	1	3	2.7
14	$(x-xu)dx-(u^2+ux^2)du$	0	1	2
15	$\sqrt{3-x^2}\cdot\frac{du}{dx}+xu^2-x$	0	0.5	1.5
16	(u+1) ln(u)+x du/dx	1	1	2.5
17	$\frac{udu}{1+2x} - \frac{xdx}{1+3u}$	0	2	2
18	(2 -u²)dx- 0.5xdu	1	1.25	2.75
19	$2\sqrt{\mu+1} dx - xdu$	0.5	15	2
20	$\sqrt{10-x^2} \cdot \frac{du}{dx} - xu^2 + x^2$	1	1.5	3

В приложении приведены копии фрагментов MathCAD-документа с реализацией некоторых разностных схем для рассматриваемой задачи.

Для явной схемы Эйлера, имеющей первый порядок точности, получены приближенные решения для двух значений шага разностной схемы и дана оценка погрешности этих решений по методу Рунге.

Приведена запись в MathCAD алгоритма, использующего разностную схему Эйлера-Коши, которая относится к классу разностных схем Рунге-Кутты второго порядка.

Получено приближенное решение той же задачи с помощью MathCAD-функции **rkfixed**, реализующей разностную схему Рунге-Кутты четвертого порядка точности. Аргументами этой функции являются: вектор, задающий начальные значения решения системы ОДУ, начальная и конечная точка промежутка, на котором строится решение, количество узлов и имя вектор-функции, описывающей правые части системы.

Приложение

Правые части уравнений, промежуток и начальные условия

$$F(t,u,v) := \begin{bmatrix} \frac{\left(u^2 - v^2\right)}{t} \\ \frac{(u+v)}{t} \end{bmatrix} \qquad a := 1 \qquad b := 3 \qquad X^{\langle 0 \rangle} := \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Явная схема Эйлера

$$\begin{split} n := & 50 \qquad \qquad h := \frac{b-a}{n} \qquad k := 0.. \ n \qquad \qquad t_k := a + k \cdot h \\ & X^{\left\langle k+1 \right\rangle} := X^{\left\langle k \right\rangle} + h \cdot F \bigg[\ t_k, \Big(X^{\left\langle k \right\rangle} \Big)_0, \Big(X^{\left\langle k \right\rangle} \Big)_1 \ \bigg] \end{split}$$

$$\begin{split} Y^{\left\langle 0\right\rangle} := & \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad n := 2 \cdot n \qquad \quad h := \frac{b-a}{n} \qquad k := 0 ... \, n \qquad \quad t_k := a + k \cdot h \end{split}$$

$$Y^{\left\langle k+1\right\rangle} := Y^{\left\langle k\right\rangle} + h \cdot F \left[t_k, \left(Y^{\left\langle k\right\rangle}\right)_0, \left(Y^{\left\langle k\right\rangle}\right)_1 \right]$$

$$Z1_{m} := \left| \left(\mathbf{X}^{\langle \mathbf{m} \rangle} \right)_{0} - \left(\mathbf{Y}^{\langle 2 \cdot \mathbf{m} \rangle} \right)_{0} \right| \qquad \qquad \qquad Z2_{m} := \left| \left(\mathbf{X}^{\langle \mathbf{m} \rangle} \right)_{1} - \left(\mathbf{Y}^{\langle 2 \cdot \mathbf{m} \rangle} \right)_{1} \right|$$

$$\max(Z1) = 0.05 \qquad \qquad \max(Z2) = 0.041$$

Оценка погрешности по методу Рунге

Схема Эйлера-Коши

$$X^{\langle 0 \rangle} := \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \qquad k := 0.. n \qquad \qquad t_k := a + k \cdot h$$

$$\boldsymbol{X}^{\langle k+1 \rangle} := \boldsymbol{X}^{\langle k \rangle} + \frac{h}{2} \cdot \left[F \left[\boldsymbol{t}_{k}, \left(\boldsymbol{X}^{\langle k \rangle} \right)_{0}, \left(\boldsymbol{X}^{\langle k \rangle} \right)_{1} \right] \dots + F \left[\boldsymbol{t}_{k} \right) + h, \left[\boldsymbol{X}^{\langle k \rangle} + h \cdot F \left[\boldsymbol{t}_{k}, \left(\boldsymbol{X}^{\langle k \rangle} \right)_{0}, \left(\boldsymbol{X}^{\langle k \rangle} \right)_{1} \right] \right]_{0}, \left[\boldsymbol{X}^{\langle k \rangle} + h \cdot F \left[\boldsymbol{t}_{k}, \left(\boldsymbol{X}^{\langle k \rangle} \right)_{0}, \left(\boldsymbol{X}^{\langle k \rangle} \right)_{1} \right] \right]_{1} \right] \right]$$

MathCAD-функция rkfixed

$$s := \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $n := 20$ $D(t, s) := F(t, s_0, s_1)$

W := rkfixed(s, a, b, n, D)

Разность приближенных решений

p := 0.. n

