Московский Физико-Технический Институт

Кафедра радиоэлектроники и прикладной информатики

Практическая работа 205М

Моделирование статических характеристик биполярных транзисторов

Работу выполнил Ринат Валиев, 711 гр.

Под руководством Д.Н. Щелкунова

Оборудование

В работе используется набор биполярных транзисторов №2.

p-n-p	n-p-n
транзистор	транзистор
Q2N3072	Q2N3020

Таблица 1: Биполярные транзисторы из используемого набора

Приведем некоторые характеристические параметры для транзисторов из таблицы 1.

```
Q2N3072: PNP(Is=650.6E-18 Xti=3 Eg=1.11 Vaf=115.7 Bf=60.06 Ne=1.829 + Ise=211.4f Ikf=1.079 Xtb=1.5 Br=4.32 Nc=2 Isc=0 Ikr=0 Rc=.715 + Cjc=14.76p Mjc=.5383 Vjc=.75 Fc=.5 Cje=19.82p Mje=.3357 Vje=.75 + Tr=122n Tf=761.3p Itf=.65 Vtf=5 Xtf=1.7 Rb=10)
```

```
Q2N3072: NPN(Is=14.1f Xti=3 Eg=1.11 Vaf=100 Bf=88.85 Ne=1.5 Ise=0 + Ikf=.75 Xtb=1.5 Br=5.591 Nc=2 Isc=0 Ikr=0 Rc=.7 Cjc=15.69p + Mjc=.3603 Vjc=.75 Fc=.5 Cje=55.06p Mje=.1553 Vje=.75 Tr=854.5p + Tf=1.008n Itf=1.3 Vtf=5 Xtf=55 Rb=10)
```

Во всех приведенных ниже схемах показаны транзисторы, аналогичные приведенным в таблице 1.

Выполнение

1. Составим схему (рис. 1). Получим зависимости токов переноса IC(Q1) и токов рекомбинации IB(Q1) для прямого Q1 и IE(Q2), IB(Q2) инверсного Q2 включения n-p-n транзистора от напряжения источника V1. Приведем графики полученных зависимостей в логарифмическом масштабе, также приведем графики десятичных логарифмов отношения токов переноса к токам рекомбинации $log_{10}(IC(Q1)/IB(Q1))$ и $log_{10}(IE(Q2)/IB(Q2))$.

Рис. 1: Схема включения транзисторов для моделирования токов переноса и рекомбинации n-p-n транзистора

Рис. 2: Прямое включение n-p-n транзистора

Рис. 3: Инверсное включение n-p-n транзистора

2. Составим схему (рис. 4). Получим зависимости токов переноса -IC(Q1) и токов рекомбинации -IB(Q1) для прямого Q1 и -IE(Q2), -IB(Q2) инверсного Q2 включения р-п-р транзистора от напряжения источника V1. Приведем графики полученных зависимостей в логарифмическом масштабе, также приведем графики десятичных логарифмов отношения токов переноса к токам рекомбинации $\log_{10}(IC(Q1)/IB(Q1))$ и $\log_{10}(IE(Q2)/IB(Q2))$.

Рис. 4: Схема включения транзисторов для моделирования токов переноса и рекомбинации p-n-p транзистора

Рис. 5: Прямое включение p-n-р транзистора

Рис. 6: Инверсное включение p-n-р транзистора

3. Составим схему (рис. 7). Установим ток источника тока I1 равным 1mA, напряжение источника напряжения V1 оставим равным 0VDc, установим пробник напряжения на цепь эмиттера Q1, проведем сканирование по V1 в диапазоне от -0.7V до +1V, измерим напряжение V(Q1:e) на эмиттере Q1 при V1=0. Установим на источнике V2 это напряжение. В результате этого токи эмиттеров обоих транзисторов при V1=0 будут одинаковыми.

Получим токи коллектора обоих транзисторов от V1. Повторим при трех значениях температуры: 17, 27, 37.

Для транзистора Q1 получим зависимость тока коллектора от V1 при значениях тока эмиттера: 0, 1mA, 2mA, 3mA, 4mA.

Рис. 7: Схема моделирования выходных вольт-амперных характеристик n-p-n транзистора в схеме с общей базой

Рис. 8: Ток коллектора для обоих транзисторов при разных температурах

Рис. 9: Зависимость тока коллектора Q1 от V1 при разных значениях тока эмиттера

4. Составим схему (рис. 10). Установим (аналогично предыдущему пункту) на источнике V2 такое напряжение, чтобы токи эмиттеров обоих транзисторов при $V1{=}0$ были равными $1{\rm mA}$.

Получим токи коллектора обоих транзисторов от V1. Повторим при трех значениях температуры: 17, 27, 37.

Для транзистора Q1 получим зависимость тока коллектора от V1 при значениях тока эмиттера: 0, 1 mA, 2 mA, 3 mA, 4 mA.

Рис. 10: Схема моделирования выходных вольт-амперных характеристик p-n-p транзистора в схеме с общей базой

Рис. 11: Ток коллектора для обоих транзисторов при разных температурах

Рис. 12: Зависимость тока коллектора Q1 от V1 при разных значениях тока эмиттера

5. Составим схему (рис. 13). Установим напряжение источника V2 равным 0.65V- 0.75V так, чтобы при сканировании по V1 от 0V до +1.0V ток коллектора Q2 при V1= +1V был в интервале от 1mA до 10mA. Измерим ток базы Q2 при V1=+1V и установим это значение тока для источника I1.

Получим токи коллектора обоих транзисторов от V1.

Исключим из схемы транзистор Q2 и получим зависимости тока коллектора Q1 от напряжения V1 для нескольких значений параметра I1: 2uA, 4uA, 6uA, 8uA, 10uA. При фиксированном токе базы получим зависимости тока коллектора Q1 от напряжения V1 для трёх значений температуры: -40, 27 и 85 градусов.

Рис. 13: Схема моделирования выходных вольт-амперных характеристик n-p-n транзистора в схеме с общим эмиттером

Рис. 14: Ток коллектора для обоих транзисторов

Рис. 15: Ток коллектора для Q1 при разных значениях параметра I1

Рис. 16: Ток коллектора для Q1 при разных температурах

6. Составим схему (рис. 17). Установим напряжение источника V2 таким, чтобы при сканировании по V1 от -1V до 0V ток коллектора Q2 при V1=-1V был в интервале от 1mA до 10mA. Измерим ток базы Q2 при V1=-1V и установим это значение тока для источника I1.

Получим токи коллектора обоих транзисторов от V1.

Исключим из схемы транзистор Q2 и получим зависимости тока коллектора Q1 от напряжения V1 для нескольких значений параметра I1: 2uA, 4uA, 6uA, 8uA, 10uA. При фиксированном токе базы получим зависимости тока коллектора Q1 от напряжения V1 для трёх значений температуры: -40, 27 и 85 градусов.

Рис. 17: Схема моделирования выходных вольт-амперных характеристик p-n-p транзистора в схеме с общим эмиттером

Рис. 18: Ток коллектора для обоих транзисторов

Рис. 19: Ток коллектора для Q1 при разных значениях параметра I1

Рис. 20: Ток коллектора для Q1 при разных температурах

7. Составим схему (рис. 21) моделирования напряжения на коллекторе транзистора в схеме с общим эмиттером при нулевом токе коллектора в зависимости от тока базы n-p-n и n-p-n транзисторов ($U_{ce0}(IB)$)

Получим зависимости напряжений на коллекторах транзисторов от тока базы.

Рис. 21: Схема моделирования U_{се0}

Рис. 22: Зависимость напряжений на коллекторах транзисторов от тока базы