

Departamento de Matemática y Física

Curso: Matemática III

Código: 0826301

Introducción al Algebra Lineal

Arelis Díaz

Celular: 04269129844 Email: jdiaz@unet.edu.ve

07 de septiembre del 2021

Algebra Lineal

- □ Estudia los temas correspondientes a matrices, sistemas de ecuaciones lineales, espacios vectoriales y transformaciones lineales.
- □ Plantea la teoría abstracta que sustenta la resolución de sistemas de ecuaciones lineales.
- ☐ Se utiliza en diferentes áreas de matemática e ingeniería.

Matrices

Una matriz es un arreglo rectangular de m. n números dispuestos en m renglones (filas) y n columnas.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & & a_{ij} & & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}$$
Renglones o filas
$$A+B = (a:j+b:j)$$

- \Box Cada entrada o componente de la matriz se representa por a_{ij} y es el número que aparece en el renglón i y la columna j.
- \square Decimos que la matriz es de tamaño $m \times n$ que se lee m por n
- \square Para denotar la matriz usamos la notación $A=(a_{ij})$ $\mathcal{B}=(b_{ij})$

Tipos de matrices

• Una matriz de tamaño $1 \times n$ se llama vector renglón:

$$(x_1 \otimes x_2 \cdots x_n) \longrightarrow (\times \land \times 2 \times 3 \cdots \times n)$$

• Una matriz de tamaño $m \times 1$ se llama vector columna:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

• Cuando m=n, se dice que la matriz es cuadrada. En ese caso decimos que la matriz es de orden n y su diagonal principal son los elementos $a_{11},a_{22},\cdots,a_{nn}$

<u>Ejemplos</u>

• Una matriz cuadrada de tamaño 3×3

maño
$$3 \times 3$$
 $\begin{pmatrix} 1 & 0 & 3 \\ 4 & 3 & 0.5 \\ \sqrt{2} & -1/2 & 0 \end{pmatrix}$
 $\begin{pmatrix} 2 & 0 \\ 4 & 3 & 0.5 \\ \sqrt{2} & -1/2 & 0 \end{pmatrix}$
 $\begin{pmatrix} 2 & 0 \\ 4 & 3 & 0.5 \\ \sqrt{2} & -1/2 & 0 \end{pmatrix}$
 $\begin{pmatrix} 2 & 0 \\ 4 & 3 & 0.5 \\ \sqrt{2} & -1/2 & 0 \end{pmatrix}$

• Una matriz de tamaño 3×2

$$\begin{pmatrix} 2 & 0 \\ 1 & -1 \\ 4 & 0 \end{pmatrix}_{3\times2}$$
 coando no son
coadradas se les
dree rectangular

• Una matriz de tamaño 2×4

$$\begin{pmatrix} 1 & -2 & \sqrt{3} & 5 \\ -1 & 1 & 3 & 0 \end{pmatrix}_{2\times4}$$

Matrices Especiales

- Matriz Diagonal: Es una matriz cuadrada cuyas componentes que no están en la diagonal principal son iguales a cero
- Matriz Identidad: Es una matriz diagonal cuyos elementos de la diagonal son todos iguales a uno. La matriz identidad de tamaño n se denota por I_n
- Matriz Nula: Es una matriz cuyas componentes son todas iguales a cero. La matriz nula de tamaño $m \times n$ se denota por $O_{m \times n}$

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$I_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$a_{11} = (-2)^{1+1}$$
 $a_{21} = (-2)^{3+1} = (-2)^{4} = 16$
 $a_{24} = 2 - 2(4) = -6$
 $a_{33} = (-2)^{3+3} = (-2)^{6}$
 $a_{33} = (-2)^{3+3} = (-2)^{6}$
 $a_{23} = 2 - 2(3) = -4$
 $a_{23} = 2 - 2(3) = -4$

Ejemplo: Sea $A = (a_{ij})$ una matriz de tamaño 3×4 cuyas componentes están definidas por $\underbrace{a_{ij}}_{} = \begin{cases} i-2j & : i < j \\ (-2)^{i+j} & : i \geq j \end{cases}$. Hallar explícitamente la matriz A.

Solución: Buscamos las entradas de la matriz A aplicando la definición dada:

$$a_{11} = (-2)^{1+1} = 4$$
 $a_{12} = 1 - 2(2) = -3$ $a_{13} = 1 - 2(3) = -5$ $a_{14} = 1 - 2(4) = -7$ $a_{21} = (-2)^{2+1} = -8$ $a_{22} = (-2)^{2+2} = 16$ $a_{23} = 2 - 2(3) = -4$ $a_{24} = 2 - 2(4) = -6$ $a_{31} = (-2)^{3+1} = 16$ $a_{32} = (-2)^{3+2} = -32$ $a_{33} = (-2)^{3+3} = 64$ $a_{34} = 3 - 2(4) = -5$

Entonces:

$$A = \begin{pmatrix} 4 & -3 & -5 & -7 \\ -8 & 16 & -4 & -6 \\ 16 & -32 & 64 & -5 \end{pmatrix}$$

Igualdad de Matrices

Dos matrices $A=\left(a_{ij}\right)$ y $B=\left(b_{ij}\right)$ son iguales, lo que se denota por A=B, si se cumple que son de igual tamaño y $a_{ij}=b_{ij}$ para todo i y j.

<u>Ejemplo</u>: Encuentre los valores de las incógnitas para los cuales las siguientes matrices A y B son iguales.

$$A = \begin{pmatrix} 2 & x+5 & 4 \\ y-5 & 0 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 2z & 0 & w-1 \\ 2 & 0 & v \end{pmatrix}$$

<u>Solución</u>: Para hallar las incógnitas usamos el hecho de que las matrices dadas son iguales, por lo que podemos igualar sus componentes y despejar las incógnitas:

•
$$2 = 2z \Rightarrow z = 1$$

•
$$x + 5 = 0 \Rightarrow x = -5$$

•
$$4 = w - 1 \Rightarrow w = 4 + 1 = 5$$

•
$$y - 5 = 2 \Rightarrow y = 2 + 5 = 7$$

•
$$v = -1$$

Los valores de las incógnitas son: z = 1, x = -5, w = 5, y = 7

Suma de Matrices

Sean $A=\left(a_{ij}\right)$ y $B=\left(b_{ij}\right)$ del mismo tamaño $m\times n$. Entonces la suma de A y B denotada por A+B, es la matriz $m\times n$ definida por $A+B=\left(a_{ij}+b_{ij}\right)$

Ejemplo:

$$\begin{pmatrix} 1 & 3 \\ -4 & 1/2 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ -1 & 4 \\ 2 & 7 \end{pmatrix} = \begin{pmatrix} 1+2 & 3+0 \\ -4-1 & \frac{1}{2}+4 \\ 0+2 & -1+7 \end{pmatrix} = \begin{pmatrix} 3 & \frac{3}{9} \\ -5 & \frac{9}{2} \\ 2 & 6 \end{pmatrix}$$

Escalar => número real

Producto de un Escalar por una Matriz

Sean α un número real y $A=\left(a_{ij}\right)$ una matriz de tamaño $m\times n$, entonces el producto del escalar α por la matriz A, denotado por αA , es la matriz de tamaño $m\times n$ definida por

$$\alpha A = (\alpha \widehat{a}_{ij})$$

Ejemplo:

$$3\begin{pmatrix} -1 & 5\\ 1/7 & \sqrt[3]{5} \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 3(-1) & 3(5)\\ 3\begin{pmatrix} \frac{1}{7} \end{pmatrix} & 3\sqrt[3]{5}\\ 3(2) & 3(0) \end{pmatrix} = \begin{pmatrix} -3 & 15\\ \frac{3}{7} & 3\sqrt[3]{5}\\ 6 & 0 \end{pmatrix} = \sqrt[3]{4}$$

Propiedades
$$M(m \times n) = \begin{cases} 3x + 2 = 8 \\ 3x + 2 - 2 = 8 - 2 \end{cases}$$
 Respiredades $3x + 0 = 6$ $3x + 0 = 6$ Sean A, B y C tres matrices de tamaño $m \times n$ y sean $\alpha, \beta \in \mathbb{R}$. Entonces:

$$\int A + O_{m \times n} = A$$

II.
$$0A = O_{m \times n}$$

III.
$$A + B = B + A$$

Entonces:

$$I. \quad A + O_{m \times n} = A$$
 $II. \quad 0A = O_{m \times n}$
 $III. \quad A + B = B + A$

(Ley conmutativa para la suma de matrices)

IV.
$$(A + B) + C = A + (B + C)$$
 (Ley asociativa para la suma de matrices)

$$V.$$
 $\alpha(A+B)=\alpha A+\alpha B$ (Ley distributiva para la multiplicación por un escalar)

VII.
$$(\alpha + \beta)A = \alpha A + \beta A$$

$$3A + B = C$$

$$3A = C - B$$

$$A = \frac{1}{3}(C - B)$$

<u>Ejercicio</u>

Sean las matrices
$$A = \begin{pmatrix} 1 & 4 \\ -2 & -2 \\ 0 & -8 \end{pmatrix}$$
, $B = \begin{pmatrix} -4 & 7 \\ 0 & 1 \\ 8 & -3 \end{pmatrix}$ y $C = \begin{pmatrix} 5 & -9 \\ 3 & 0 \\ 6 & 1 \end{pmatrix}$.

- 1. Realice las siguientes operaciones: 6B 7A + 0C y 2A 3B + 4C
- 2. Encuentre la matriz D tal que 2A + 2B D es la matriz nula de tamaño 3×2

$$6B - 7A + 0C =$$

$$\underbrace{6 \begin{pmatrix} -4 & 7 \\ 0 & 1 \\ 8 & -3 \end{pmatrix}}_{} - 7 \begin{pmatrix} 1 & 4 \\ -2 & -2 \\ 0 & -8 \end{pmatrix} + 0 \begin{pmatrix} 5 & 9 \\ 3 & 0 \\ 6 & 1 \end{pmatrix} = \begin{pmatrix} -24 & 42 \\ 0 & 6 \\ -18 \end{pmatrix} - \begin{pmatrix} 7 & 28 \\ -14 & -14 \\ 0 & -56 \end{pmatrix} + \begin{pmatrix} 6 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\underbrace{6 \begin{pmatrix} -4 \end{pmatrix}_{} - 7 \begin{pmatrix} 1 \end{pmatrix}_{} + 0 \begin{pmatrix} 5 \\ 0 \end{pmatrix}_{} - 31 & 14 \\ 0 & -56 \end{pmatrix}}_{} - 31 & 14$$

$$\begin{pmatrix} 6(-4) - 7(1) + 0(5) & 6(7) - 7(4) + 0(9) \\ 6(0) - 7(-2) + 0(3) & 6(1) - 7(-2) + 0(0) \\ 6(8) - 7(0) + 0(6) & 6(-3) - 7(-8) + 0(1) \end{pmatrix} = \begin{pmatrix} -31 & 14 \\ 14 & 20 \\ 48 & 38 \end{pmatrix}$$

$$\begin{bmatrix}
-24 - 7 + 0 & 42 - 28 + 0 \\
0 + 14 + 0 & 6 + 14 + 0 \\
48 - 0 + 0 & -18 + 56 + 0
\end{bmatrix} = \begin{bmatrix}
-31 & 14 \\
14 & 20 \\
48 & 38
\end{bmatrix}$$

$$2A - 3B + 4C =$$

$$2\begin{pmatrix} 1 & 4 \\ -2 & -2 \\ 0 & -8 \end{pmatrix} - 3\begin{pmatrix} -4 & 7 \\ 0 & 1 \\ 8 & -3 \end{pmatrix} + 4\begin{pmatrix} 5 & -9 \\ 3 & 0 \\ 6 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 2+12+20 & 8-21-36 \\ -4-0+12 & -4-3+0 \\ 0-24+24 & -16+9+4 \end{pmatrix} = \begin{pmatrix} 34 & -49 \\ 8 & -7 \\ 0 & -3 \end{pmatrix}$$

Buscamos D tal que $2A + 2B - D = O_{3\times 2}$. Por las propiedades de las matrices podemos escribir

$$D = 2A + 2B - O_{3 \times 2} = 2A + 2B$$

$$D = 2 \begin{pmatrix} 1 & 4 \\ -2 & -2 \\ 0 & -8 \end{pmatrix} + 2 \begin{pmatrix} -4 & 7 \\ 0 & 1 \\ 8 & -3 \end{pmatrix} = \begin{pmatrix} 2 - 8 & 8 + 14 \\ -4 + 0 & -4 + 2 \\ 0 + 16 & -16 - 6 \end{pmatrix}$$

$$D = \begin{pmatrix} -6 & 22 \\ -4 & -2 \\ 16 & -22 \end{pmatrix}$$

Ejercicios Propuestos

1. Dados
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$
 y $B = \begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$ resuelva la siguiente ecuación para X :
$$(A + 3B + 3 \times = 5 \times -5 \triangle + 5B)$$

$$(3(2A + B + X) = 5(X - A + B)$$

$$(3(2A + B + X) = 5(X - A + B)$$

$$(3(2A + B + X) = 5(X - A + B)$$

2. Sean
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & 0 \\ 0 & 6 \end{pmatrix}$ y $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, encuentre una matriz X tal que $AX + XB = C$ de matrices

3. Considere
$$A = \begin{pmatrix} 1 & -3 & 6 \\ 4 & 1 & -6 \\ 7 & 9 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 3 & 9 \\ 3 & 4 & 1 \\ 1 & 4 & 6 \end{pmatrix}$ y $C = \begin{pmatrix} 7 & 4 & 2 \\ -5 & 2 & 2 \\ 1 & 5 & 7 \end{pmatrix}$

Hallar:

a)
$$A - 2B$$
, $A + B + C$, $3A + 2B - 4C$, $C - B - A$

e) La matriz D para la cual A+B+C+D es igual a $O_{3\times 3}$

f) La matriz E para la cual A + 2B + C + 2E es la matriz I_3

$$A + B + C + D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad A + 2B + C + 2E = I_3$$

$$2E = I_3 - A - 2B - C$$

$$E = \frac{1}{2} (I_3 - A - 2B - C)$$