MAT-27 - Álgebra Linear

Lista 8 - Segundo semestre de 2024

Matriz de transformação linear, posto

Questão 1. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por T(x, y, z) = (2x + y + z, 3x - y - z, x + y). Determine a matriz $[T]_{\alpha\beta}$, onde:

- (a) $\alpha = \{e_1, e_2, e_3\}, \beta = \{e_1, e_2, e_3\}.$
- **(b)** $\alpha = \{(0,1,1), (1,0,1), (1,1,0)\}, \beta = \{(0,1,1), (1,0,1), (1,1,0)\}.$

Questão 2. Determine o operador linear do \mathbb{R}^2 cuja matriz em relação à base $\{(1,2),(0,5)\}$ é $\begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix}$.

Questão 3. Considere a transformação linear T(p(x)) = p'(x). Em cada um dos itens abaixo, V é o domínio, W contradomínio, α base para V e β é base para W. Determine a matriz $[T]_{\alpha\beta}$.

- (a) $V = P_3(\mathbb{R}), W = P_2(\mathbb{R}), \alpha = \{x, x + x^2, x^2 + x^3, x^3 + 1\}, \beta = \{1, x, x^2\}.$
- **(b)** $V = W = [\sin x, \cos x], \ \alpha = \beta = {\sin x, \cos x}.$

Questão 4. Seja $T: \mathbb{C}^3 \to \mathbb{C}^2$ definida por T(x,y,z) = (2x+3y-(i+1)z,ix-(2i+3)y+4z).

- (a) Considerando \mathbb{C}^3 e \mathbb{C}^2 como \mathbb{C} -espaços vetoriais, determine $[T]_{\alpha\beta}$, onde $\alpha = \{e_1, e_2, e_3\}$ e $\beta = \{e_1, e_2\}$.
- (b) Considere o mesmo do item (a) e determine $[T]_{\alpha\beta}$, onde $\alpha = \{e_1 + ie_2, e_2 ie_3, e_3\}$ e $\beta = \{(i, 1), (1, i)\}$.
- (c) Considerando \mathbb{C}^3 e \mathbb{C}^2 como \mathbb{R} -espaços vetoriais, determine $[T]_{\alpha\beta}$, com $\alpha = \{e_1, ie_1, e_2, ie_2, e_3, ie_3\}$ e $\beta = \{e_1, ie_1, e_2, ie_2\}$.

Questão 5. Sejam S e T operadores lineares do \mathbb{R}^3 tais que S(x,y,z)=(x+z,2y,y-z) e a matriz de 2S-T em relação à base canônica é

$$\left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{array}\right].$$

Determine a matriz de T em relação à base canônica. Determine também T(x, y, z).

Questão 6. Considere o operador linear T do \mathbb{R}^3 definido por $T(1,0,0)=(1,1,1),\ T(0,1,0)=(1,0,1)$ e T(0,0,1)=(0,0,4). Mostre que T é um isomorfismo e determine seu isomorfismo inverso.

Questão 7. Sejam $V = P_3(\mathbb{R})$, B a base canônica de V e $T: V \to V$ definida por $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_0 + a_1x + a_2\left(\frac{3}{2}x^2 - \frac{1}{2}\right) + a_3\left(\frac{5}{2}x^3 - \frac{3}{2}x\right)$.

- (a) Mostre que T é isomorfismo e determine T^{-1} , $[T]_B$ e $[T^{-1}]_B$.
- (b) Determine bases C e D de V tais que $[T]_{BD} = I_4$ e $[T]_{CB} = I_4$.

Questão 8. Seja V um espaço vetorial. Um operador linear $T:V\to V$ é chamado de nilpotente se existe um inteiro positivo k tal que $T^k=0$ (operador nulo). Neste caso, o *índice de nilpotência* de T é o menor número inteiro positivo tal que isso ocorre, ou seja, $T^k=0$ mas $T^{k-1}\neq 0$.

- (a) Se $T:V\to V$ é nilpotente de índice k e $v\in V$ é tal que $T^{k-1}(v)\neq 0$, mostre que $B=\{v,T(v),T^2(v),\ldots,T^{k-1}(v)\}\subseteq V$ é L.I.
- (b) Se V tem dimensão finita $n \geq 1$ e $T: V \to V$ é nilpotente de índice n, mostre que $B = \{v, T(v), T^2(v), \dots, T^{n-1}(v)\}$ é base de V, onde $v \in V$ satisfaz $T^{n-1}(v) \neq 0$, e determine $[T]_B$ e o posto de T.

Questão 9. Considere a transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ dada por $T(x_1, x_2, x_3, x_4) = (0, -2x_1, x_2, 2x_4)$ e o subespaço de \mathbb{R}^4 : W = [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)].

- (a) Mostre que $T(W) \subseteq W$.
- (b) Mostre que a restrição $T|_W:W\to W$ é nilpotente de índice 3 (veja definição na Questão 8).
- (c) Determine uma base B de W, e uma base C de V que contenha B, de modo que

$$[T]_C = \left[\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{array} \right].$$

Questão 10. Um operador linear $p:V\to V$ é chamado de *projeção* se $p^2=p$. Sejam V um \mathbb{K} -espaço vetorial de dimensão finita $n\in p:V\to V$ uma projeção.

- (a) Mostre que $v \in \text{Im } p$ se, e somente se, p(v) = v.
- **(b)** Mostre que $V = \ker p \oplus \operatorname{Im} p$.
- (c) Mostre que existe uma base B de V tal que $[p]_B = \begin{bmatrix} I_k & 0_{k,n-k} \\ 0_{n-k,k} & 0_{n-k} \end{bmatrix}$, onde k é o posto de p.
- (d) Conclua que se $A \in M_n(\mathbb{K})$ é tal que $A^2 = A$, então A é semelhante a matriz $\begin{bmatrix} I_k & 0_{k,n-k} \\ 0_{n-k,k} & 0_{n-k} \end{bmatrix}$, onde k é o posto de A.

Questão 11. Sejam V um \mathbb{K} -espaço vetorial de dimensão finita e U,W dois subespaços de V tais que $V=U\oplus W$. Defina $p:V\to V$ da seguinte maneira: dado v=u+w com $u\in U$ e $w\in W$, p(v)=w. Mostre que:

- (a) $p^2 = p$, isto é, p é uma projeção;
- **(b)** $U = \ker p \in W = \operatorname{Im} p;$
- (c) se V tem produto interno e $U=W^{\perp}$, então para todo $v\in V$, p(v) é a projeção ortogonal de v em W.

Respostas

Questão 1

(a)
$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & -1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -3/2 & 0 & 1/2 \\ 5/2 & 1 & 3/2 \\ -1/2 & 2 & 3/2 \end{bmatrix}$$

Questão 2

$$T(x,y) = \left(\frac{13}{5}x + \frac{1}{5}y, \frac{86}{5}x - \frac{3}{5}y\right)$$

Questão 3

(a)
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 3 & 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Questão 4

(a)
$$\begin{bmatrix} 2 & 3 & -1 - i \\ i & -2i - 3 & 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 5/2 - 2i & -1 - 4i & 3/2 + i/2 \\ i/2 & -2 + 2i & -1/2 - 5i/2 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 2 & 3 & -1-i \\ i & -2i-3 & 4 \end{bmatrix}$$
 (b) $\begin{bmatrix} 5/2-2i & -1-4i & 3/2+i/2 \\ i/2 & -2+2i & -1/2-5i/2 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 & 3 & 0 & -1 & 1 \\ 0 & 2 & 0 & 3 & -1 & -1 \\ 0 & -1 & -3 & 2 & 4 & 0 \\ 1 & 0 & -2 & -3 & 0 & 4 \end{bmatrix}$

Questão 5

$$T(x, y, z) = (x - y + 2z, 3y, -x - 3z)$$

Questão 6

$$T^{-1}(x, y, z) = \left(y, x - y, -\frac{x}{4} + \frac{z}{4}\right)$$

Questão 7

(a)
$$[T]_B = \begin{bmatrix} 1 & 0 & -1/2 & 0 \\ 0 & 1 & 0 & -3/2 \\ 0 & 0 & 3/2 & 0 \\ 0 & 0 & 0 & 5/2 \end{bmatrix}, \quad [T^{-1}]_B = \begin{bmatrix} 1 & 0 & 1/3 & 0 \\ 0 & 1 & 0 & 3/5 \\ 0 & 0 & 2/3 & 0 \\ 0 & 0 & 0 & 2/5 \end{bmatrix},$$

$$T^{-1}(a_0 + a_1x + a_2x^2 + a_3x^3) = a_0 + a_1x + a_2\left(\frac{1}{3} + \frac{2}{3}x^2\right) + a_3\left(\frac{3}{5}x + \frac{2}{5}x^3\right)$$

(b)
$$D = \left\{1, x, \frac{3}{2}x^2 - \frac{1}{2}, \frac{5}{2}x^3 - \frac{3}{2}x\right\}, \quad C = \left\{1, x, \frac{1}{3} + \frac{2}{3}x^2, \frac{3}{5} + \frac{2}{5}x^3\right\}$$

Questão 8

(b)
$$[T]_B = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \quad \text{posto}(T) = n - 1.$$

Questão 9

(c)
$$B = \{(-1/2, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)\}\ e\ C = B \cup \{(0, 0, 0, 1)\}.$$