

Re-training of the b-tagging DL1 tagger

Dominik Derendarz & Adam Trzupek 17/12/2019 HI jet weekly

Idea

- Retrain one of the official ALTAS taggers (DL1) adding FCal Σ E_T information on heavy ion data
 - → Not sure how feasible would be to have different networks trained for different centrality classes
 - → Possible solution would be to add variable describing the event (not a jet) centrality
 - → Use the example of the DL1 training show during ATLAS tracking workshop: https://indico.cern.ch/event/795039/sessions/303160/#20190607
 - → Btag information extracted with *FlavourTagPerformanceFramework*

Samples

- Validation sample of Pythia dijet events (JZ1-4) with b filter overlaid with 2018 data
 - → JIRA ATLHI-240

```
mc16_5TeV.42027{1|2|3|4}.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ1_bbfilter.recon.AOD.e7383_d1521_r11472
```

⇒ Signal only sample JZ1-4 (1k per slice) mc16_valid.42027{1|2|3|4}.Pythia8EvtGen_A14NNPDF23L0_jetjet_JZ4_bbfilter.recon.AOD.e7383_s3428_r11320

• Sample of Pythia+Powheg tt events (40k events) mc16_13TeV.410470.PhPy8EG_A14_ttbar_hdamp258p75_nonallhad.deriv.DAOD_FTAG1.e6337_s3126_r10201_p3703

DL1 tagger

Low level taggers

Input	Variable	Description
Kinematics	p_{T}	Jet p_{T}
	η	Jet η
	$\log(P_b/P_{\mathrm{light}})$	Likelihood ratio between the b-jet and light-
IP2D/IP3D		flavour jet hypotheses
	$\log(P_b/P_c)$	Likelihood ratio between the b - and c -jet hypo-
		theses
	$\log(P_c/P_{\mathrm{light}})$	Likelihood ratio between the c-jet and light-
		flavour jet hypotheses
	m(SV)	Invariant mass of tracks at the secondary vertex
		assuming pion mass
	$f_E(SV)$	Energy fraction of the tracks associated with
SV1		the secondary vertex
5 7 1	$N_{\text{TrkAtVtx}}(\text{SV})$	Number of tracks used in the secondary vertex
	$N_{2\text{TrkVtx}}(SV)$	Number of two-track vertex candidates
	$L_{xy}(SV)$	Transverse distance between the primary and
		secondary vertex
	$L_{xyz}(SV)$	Distance between the primary and the second-
		ary vertex
	$S_{xyz}(SV)$	Distance between the primary and the second-
		ary vertex divided by its uncertainty
	$\Delta R(\vec{p}_{\rm jet}, \vec{p}_{\rm vtx})(SV)$	ΔR between the jet axis and the direction of the
		secondary vertex relative to the primary vertex.
	m(JF)	Invariant mass of tracks from displaced vertices
	$f_E(JF)$	Energy fraction of the tracks associated with
		the displaced vertices
JETFITTER	$\Delta R(\vec{p}_{\rm jet}, \vec{p}_{\rm vtx})({\rm JF})$	ΔR between jet axis and vectorial sum of mo-
JEIFITIER		menta of all tracks attached to displaced vertices
	$S_{xyz}(JF)$	Significance of average distance between PV
		and displaced vertices
	$N_{\text{TrkAtVtx}}(\text{JF})$	Number of tracks from multi-prong displaced
		vertices
	$N_{2\text{TrkVtx}}(\text{JF})$	Number of two-track vertex candidates (prior
		to decay chain fit)
	$N_{1-\text{trk vertices}}(JF)$	Number of single-prong displaced vertices
	$N_{\geq 2\text{-trk vertices}}(JF)$	Number of multi-prong displaced vertices
	$L_{xyz}(2^{\text{nd}}/3^{\text{rd}}\text{vtx})(\text{JF})$	Distance of 2 nd or 3 rd vertex from PV
	$L_{xy}(2^{\text{nd}}/3^{\text{rd}}\text{vtx})(\text{JF})$	Transverse displacement of the 2 nd or 3 rd vertex
ImpErment a tagging	$m_{\rm Trk}(2^{\rm nd}/3^{\rm rd}{\rm vtx})({\rm JF})$	Invariant mass of tracks associated with 2 nd or
JetFitter c-tagging		3 rd vertex
	$E_{\rm Trk}(2^{\rm nd}/3^{\rm rd}{\rm vtx})({\rm JF})$	Energy fraction of the tracks associated with
		2 nd or 3 rd vertex
	$f_E(2^{\rm nd}/3^{\rm rd}{\rm vtx})({\rm JF})$	Fraction of charged jet energy in 2 nd or 3 rd
		vertex
	$N_{\text{TrkAtVtx}}(2^{\text{nd}}/3^{\text{rd}}\text{vtx})(\text{JF})$	Number of tracks associated with 2 nd or 3 rd
		vertex
	$Y_{\text{trk}}^{\text{min}}, Y_{\text{trk}}^{\text{max}}, Y_{\text{trk}}^{\text{avg}} (2^{\text{nd}}/3^{\text{rd}}\text{vtx})(\text{JF})$	Min., max. and avg. track rapidity of tracks at
	urk / urk / urk (= / = / = / = / = / = /	2 nd or 3 rd vertex

DL1 tagger

Dijet + b-filter + overlay

Input	Variable	Description			
Kinematics	$p_{ m T}$	Jet p _T			
Kinematics	η	Jet η			
	$\log(P_b/P_{\mathrm{light}})$	Likelihood ratio between the b-jet and light-			
IP2D/IP3D		flavour jet hypotheses			
	$\log(P_b/P_{\rm c})$	Likelihood ratio between the b - and c -jet hypo-			
		theses			
	$\log(P_c/P_{\mathrm{light}})$	Likelihood ratio between the c-jet and light-			
		flavour jet hypotheses			
	m(SV)	Invariant mass of tracks at the secondary vertex			
		assuming pion mass			
	$f_E(SV)$	Energy fraction of the tracks associated with			
CV1		the secondary vertex			
SV1	$N_{\text{TrkAtVtx}}(\text{SV})$	Number of tracks used in the secondary vertex			
	$N_{\rm 2TrkVtx}(SV)$	Number of two-track vertex candidates			
	$L_{xy}(SV)$	Transverse distance between the primary and			
	.,, ,	secondary vertex			
	$L_{xyz}(SV)$	Distance between the primary and the second-			
	7,21	ary vertex			
	$S_{xyz}(SV)$	Distance between the primary and the second-			
		ary vertex divided by its uncertainty			
	$\Delta R(\vec{p}_{\rm jet}, \vec{p}_{\rm vtx})({\rm SV})$	ΔR between the jet axis and the direction of the			
	d len't transfer	secondary vertex relative to the primary vertex.			
	m(JF)	Invariant mass of tracks from displaced vertices			
	$f_E(JF)$	Energy fraction of the tracks associated with			
	72.	the displaced vertices			
	$\Delta R(\vec{p}_{\rm jet}, \vec{p}_{\rm vtx})({\rm JF})$	ΔR between jet axis and vectorial sum of mo-			
JETFITTER	Q jets I vets	menta of all tracks attached to displaced vertices			
	$S_{xyz}(JF)$	Significance of average distance between PV			
	2,72,00	and displaced vertices			
	$N_{\mathrm{TrkAtVtx}}(\mathrm{JF})$	Number of tracks from multi-prong displaced			
		vertices			
	$N_{\rm 2TrkVtx}({ m JF})$	Number of two-track vertex candidates (prior			
		to decay chain fit)			
	$N_{1-\text{trk vertices}}(\text{JF})$	Number of single-prong displaced vertices			
	$N_{\geq 2\text{-trk vertices}}(JF)$	Number of multi-prong displaced vertices			
	$L_{xyz}(2^{\text{nd}}/3^{\text{rd}}\text{vtx})(\text{JF})$	Distance of 2 nd or 3 rd vertex from PV			
	$L_{xy}(2^{\text{nd}}/3^{\text{rd}}\text{vtx})(\text{JF})$	Transverse displacement of the 2 nd or 3 rd vertex			
	$m_{\rm Trk}(2^{\rm nd}/3^{\rm rd}{\rm vtx})({\rm JF})$	Invariant mass of tracks associated with 2 nd or			
JetFitter c-tagging	in lik(= / o · in)(co/	3 rd vertex			
	$E_{\rm Trk}(2^{\rm nd}/3^{\rm rd}{\rm vtx})({\rm JF})$	Energy fraction of the tracks associated with			
	=11k(= /5 /m)(=2)	2 nd or 3 rd vertex			
	$f_E(2^{\rm nd}/3^{\rm rd}{\rm vtx})({\rm JF})$	Fraction of charged jet energy in 2 nd or 3 rd			
	JE(2 /0 (01)(01)	vertex			
	$N_{\text{TrkAtVtx}}(2^{\text{nd}}/3^{\text{rd}}\text{vtx})(\text{JF})$	Number of tracks associated with 2 nd or 3 rd			
	TIKALVIX (2 / 5 TIA)(31)	- I I I I I I I I I I I I I I I I I I I			
		vertex			
	$Y_{\text{trk}}^{\text{min}}, Y_{\text{trk}}^{\text{max}}, Y_{\text{trk}}^{\text{avg}} (2^{\text{nd}}/3^{\text{rd}}\text{vtx})(\text{JF})$	Min., max. and avg. track rapidity of tracks at			

DL1 training

Light and b-jets pT (downsample light jets pT spectra to match b-jets)

DL1 training

Light and b-jets pT (downsample light jets pT spectra to match b-jets)

- → ~35k jets (both b & light) (even number events)
- → tested on ~130k jets (odd number events)

DL1 training

Light and b-jets pT (downsample light jets pT spectra to match b-jets)

- → ~35k jets (both b & light) (even number events)
- → tested on ~130k jets (odd number events)

DL1 tagger - centrality

Improvement comes form proper treatment of the centrality dependence of the tagger inputs.

JetFitter energy fraction

Distributions in overlay and signal only samples for b-jets significantly different

JetFitter energy fraction

Distributions in overlay and signal only samples for b-jets significantly different

JetFitter energy fraction

Distributions in overlay and signal only samples for b-jets significantly different

70-80% from the overlay very similar to signal only distribution for b-jets

JetFitter jet mass

ATL-PHYS-PUB-2018-025

Table 2: Fractions of selected b-jets with JetFitter vertices reconstructed in different topologies, their purity and the average generated, $\langle N_{\rm Bdec} \rangle$, and reconstructed, $\langle N_{\rm Bdec}^{\rm JF} \rangle$, B-hadron charged decay multiplicity for JetFitter decay chains in simulated $t\bar{t}$ events.

	JF Vert.	≥1 Single Trk	0 Single Trk	≥1 Single Trk		
	All	0 Multi Trk	1 Multi Trk	1 Multi Trk	2 Multi Trk	≥3 Multi Trk
Fraction	0.893	0.147	0.414	0.227	0.102	0.004
Purity	0.846	0.684	0.894	0.825	0.839	0.769
$< N_{\rm Bdec} >$	4.9	3.8	4.8	5.1	6.3	7.3
$< N_{ m Bdec}^{ m JF} >$	3.0	1.1	2.9	3.7	4.9	6.0

Tracks from secondary vertex

Tracks from tertiary vertex

Fight axis

ATL-PHYS-PUB-2018-025

Table 2: Fractions of selected b-jets with JetFitter vertices reconstructed in different topologies, their purity and the average generated, $\langle N_{\rm Bdec} \rangle$, and reconstructed, $\langle N_{\rm Bdec}^{\rm JF} \rangle$, B-hadron charged decay multiplicity for JetFitter decay chains in simulated $t\bar{t}$ events.

	JF Vert.	≥1 Single Trk	0 Single Trk	≥1 Single Trk		
	All	0 Multi Trk	1 Multi Trk	1 Multi Trk	2 Multi Trk	≥3 Multi Trk
Fraction	0.893	0.147	0.414	0.227	0.102	0.004
Purity	0.846	0.684	0.894	0.825	0.839	0.769
$< N_{\rm Bdec} >$	4.9	3.8	4.8	5.1	6.3	7.3
$< N_{\rm Bdec}^{\rm JF} >$	3.0	1.1	2.9	3.7	4.9	6.0

Fractions of selected b-jets with JetFitter vertices reconstructed in different topologies

Signal only	
Dijet + b-filter + overlay	

	MC sample	Any topo.	≥ 1 Single Trk 0 Multi Trk	0 Single Trk 1 Multi Trk	≥ 1 Single Trk 1 Multi Trk	2 Multi Trk	≥ 3 Multi Trk	0 Single Trk 0 Multi Trk
,	pp(JZ1,2,3,4; 1K evt)	0.81	0.17	0.41	0.16	0.064	0.003	0.19
	pp (overlay, JZ1,2,3,4)	0.85	0.16	0.33	0.22	0.13	0.014	0.15
	pp (overlay, JZ1,2,3,4, FCalEt > 3.76 TeV)	0.93	0.11	0.19	0.30	0.28	0.046	0.07
	pp (overlay, JZ1,2,3,4 FCalEt <0.056 TeV)	0.80	0.18	0.41	0.14	0.06	0.002	0.20

ATL-PHYS-PUB-2018-025

Table 2: Fractions of selected b-jets with JetFitter vertices reconstructed in different topologies, their purity and the average generated, $\langle N_{\rm Bdec} \rangle$, and reconstructed, $\langle N_{\rm Bdec}^{\rm JF} \rangle$, B-hadron charged decay multiplicity for JetFitter decay chains in simulated $t\bar{t}$ events.

	JF Vert.	≥1 Single Trk	0 Single Trk	≥1 Single Trk		
	All	0 Multi Trk	1 Multi Trk	1 Multi Trk	2 Multi Trk	≥3 Multi Trk
Fraction	0.893	0.147	0.414	0.227	0.102	0.004
Purity	0.846	0.684	0.894	0.825	0.839	0.769
$< N_{\rm Bdec} >$	4.9	3.8	4.8	5.1	6.3	7.3
$< N_{ m Bdec}^{ m JF} >$	3.0	1.1	2.9	3.7	4.9	6.0

Purity of tracks for selected b-jets with JetFitter vertices reconstructed in different topologies

Signal only
Dijet + b-filter +
overlay

	MC sample	Any topo.	≥ 1 Single Trk 0 Multi Trk	0 Single Trk 1 Multi Trk	≥ 1 Single Trk 1 Multi Trk	2 Multi Trk	≥ 3 Multi Trk	0 Single Trk 0 Multi Trk
/	pp(JZ1,2,3,4; 1K evt)	0.89	0.81	0.92	0.87	0.86	0.72	0.52
	pp (overlay, JZ1,2,3,4)	0.51	0.43	0.65	0.49	0.43	0.35	0.25
	pp (overlay, JZ1,2,3,4, FCalEt > 3.76 TeV)	0.22	0.19	0.26	0.22	0.22	0.22	0.12
	pp (overlay, JZ1,2,3,4 FCalEt <0.056 TeV)	0.89	0.79	0.92	0.87	0.89	0.84	0.46

	MC sample	Any topo.		0 Single Trk 1 Multi Trk	≥ 1 Single Trk 1 Multi Trk	2 Multi Trk		0 Single Trk 0 Multi Trk
	Average ge	nerated nun	nber of tracks	for selected <i>b</i>	-jets with JetFit	tter vertices in	different topol	ogies
Signal only	pp(JZ1,2,3,4; 1K evt)	4.9	3.9	4.9	5.2	6.3	7.2	5.1
Dijet +	pp (overlay, JZ1,2,3,4)	4.9	4.1	4.8	5.0	5.5	5.9	5.0
b-filter + overlay	pp (overlay, JZ1,2,3,4, FCalEt > 3.76 TeV)	4.9	4.4	4.6	4.8	5.2	5.5	4.9
Overlay	pp (overlay, JZ1,2,3,4 FCalEt <0.056 TeV)	4.9	4.0	5.0	5.3	6.2	7.4	5.2
	Average reco	nstructed n	umber of track	s for selected	b-jets with Jet	Fitter vertices i	n different top	ologies
Signal only	pp(JZ1,2,3,4; 1K evt)	3.1	1.3	3.0	4.2	5.7	8.0	0.2
Dijet +	pp (overlay, JZ1,2,3,4)	4.4	2.0	3.4	5.4	7.3	10.4	0.6
b-filter + overlay	pp (overlay, JZ1,2,3,4, FCalEt > 3.76 TeV)	7.2	3.7	4.6	7.3	9.5	12.2	1.5
	pp (overlay, JZ1,2,3,4 FCalEt <0.056 TeV)	3.1	1.3	3.0	4.3	5.4	7.5	0.2

Summary and next steps

Btagging algorithms running in the heavy ion reconstruction

- \rightarrow Adding FCal Σ E_T to the DL1 tagger will make it more robust
- → Performance in the peripheral events quite similar to performance in pp collisions
- → Performance in the central events degrading most probably due to tracks from UE background

Next steps

- → Try to reduce contribution from UE tracks
 - ▶ Higher p_T threshold was shown in the past to be useful
 - Rerunning of the low level algorithms should be possible in derivation step
- → Use larger sample for training
 - Inclusive dijet sample
- → Validate on data
 - Performance of algorithm on the light jets should be straight forward
 - Use muon tagged jets as a source of b jets