

planetmath.org

Math for the people, by the people.

transitive actions are primitive if and only if stabilizers are maximal subgroups

 $Canonical\ name \qquad Transitive Actions Are Primitive If And Only If Stabilizers Are Maximal Subgroups$

Date of creation 2013-03-22 17:19:07 Last modified on 2013-03-22 17:19:07

Owner rm50 (10146) Last modified by rm50 (10146)

Numerical id 6

Author rm50 (10146) Entry type Theorem Classification msc 20B15 **Theorem 1.** If G is transitive on the set A, then G is primitive on A if and only if for each $a \in A$, G_a is a maximal subgroup of G. Here $G_a = \operatorname{Stab}_G(a)$ is the stabilizer of $a \in A$.

Proof. First claim that if G is transitive on A and $B \subset A$ is a http://planetmath.org/BlockSyste with $a \in B$, then $G_B = \{ \sigma \in G \mid \sigma(B) = B \}$ is a subgroup of G containing G_a . It is obvious that G_B is a subgroup, since

$$\sigma \in G_B \Rightarrow \sigma(B) = B \Rightarrow \sigma^{-1}(\sigma(B)) = \sigma^{-1}(B) \Rightarrow B = \sigma^{-1}(B) \Rightarrow \sigma^{-1} \in G_B$$
$$\sigma, \tau \in G_B \Rightarrow (\sigma\tau)(B) = \sigma(\tau(B)) = \sigma(B) = B \Rightarrow \sigma\tau \in G_B$$

But also, if $\sigma \in G_a$ for $a \in B$, then $\sigma(a) = a$, so $\sigma(B) \cap B \neq \emptyset$ and thus $\sigma(B) = B$ since B is a block system and thus $\sigma \in G_B$. This proves the claim.

To prove the theorem, note that for each $a \in A$, there is by the claim a 1-1 correspondence between containing a and subgroups of G containing G_a . Thus, G is primitive on A if and only if all blocks are either of size 1 or equal to A, if and only if any group containing G_a is either G_a itself or G, if and only if for all $a \in A$, G_a is maximal in G.