Astrometric Positions for 18 Irregular Satellites of Giant Planets from 23 Years of Observations

Altair Ramos Gomes Júnior (Observatório do Valongo)

Marcelo Assafin (OV)
Roberto Vieira Martins (ON)
Júlio I. Bueno de Camargo (ON)
Felipe Braga Ribas (UTFPR)
Bruno Eduardo Morgado (ON)
Alex Dias Oliveira (ON)
Gustavo Benedetti Rossi (ON)

Jean-Eudes Arlot (IMCCE)
Yann Duchemin (IMCCE)
Josselin Desmars (IMCCE)
Valéry Lainey (IMCCE)
William Thuillot (IMCCE)
Alexandre Andrei (ON)
Dario N. da Silva Neto (UESO)

Irregular Satellites

• Burns (1986): Satellites are irregular when their orbital planes precess primarily under the influence of torques from the Sun.

 Their orbits are eccentric, usually highly inclined and distant from their planets. The direction of their movements can be prograde or retrograde.

Irregular Satellites

Satellites of Jupiter

Satellites of Saturn

Irregular Satellites

- Capture:
 - Gas Drag (Cuk & Burns, 2003);
 - 3-body interation (Nesvorný et al., 2007);
 - Collision (Sheppard, 2006).

- Orbital Evolution:
 - Origin of the orbital family of satellites (Nesvorný et al., 2004);

Goal

- Organize and reduce three database with images of the irregular satellites of the giant planets observed between 1992 e 2014 at OPD, OHP e ESO.
- Obtain precise positions from these observations which can be used to:
 - New numerical integrations of the orbits of these satellites.
 - Predict and observe stellar occultations by these objects.

Observations

OPD (Itajubá) Telescopes

- 3 Telescopes: Perkin-Elmer (1.6m),
 Boller&Chivens (0.6m) and Zeiss (0.6m);
- 11 Detectors used;
- FOV: 5'x5' 13'x13';
- Pixel Scale: 0.176" 0.702";
- Filters used: Clear, U, B, V, R, I;
- 5248 observations (1992-2014).

OHP Telescope

- Aperture of 1.2m;
- CCD 1024x1024 pixel;
- Pixel scale of 0.69";
- FOV of 12'x12';
- Filters used: V, R, I;
- 2408 observations (1998-2008).

ESO Telescope

- 2.2m Max-Planck Telescope;
- Wide Field Imager Detector with 8 CCDs;
- The size of each CCD is 2k x 4k pixel with a pixel scale of 0.238";
- Each CCD has a FOV of 7.5'x15';
- The filter used was a broad-band R filter (ESO#844) with λc = 651.725 nm and Δλ = 162.184 nm;
- 810 observations (2007-2009).

Reduction Process

- Bias and flat-field calibration.
- PRAIA (Assafin et al., 2011):
 - Extract data of the header of the images;
 - Detect objects in the image (x, y);
 - Identify catalogue reference stars;
 - UCAC4
 - Obtain (α,δ) from gnomonic projection;
 - Global Reduction (Assafin et al., 2012) for the mosaic CCDs;
 - Identify targets in the images.
 - JPL ephemeris.

Astrometry

	Mean	UCAC4	
Telescope	σ_{lpha}	σ_{δ}	stars
	mas	mas	
PE(OPD)	52±27	49 ± 26	17
B&C (OPD)	56 ± 10	55 ± 10	36
Zeiss (OPD)	58 ± 7	57 ± 5	82
OHP	50 ± 10	49 ± 10	44
ESO	28 ± 6	28 ± 6	531

Mean errors are the standard deviations in the (O–C) residuals from (α, δ) reductions with the UCAC4 catalog.

RESULTS

Results

Number of Positions								
Satellite	OPD OHP		ESO	Total	Jacobson*			
Himalia	854	357	23	1234	1757			
Elara	403	187	46	636	1115			
Lysithea	60	84	90	234	431			
Leda	6	48	44	98	178			
Pasiphae	$-\bar{295}$ -	-248	66	609	$-\bar{1}629$			
Callirrhoe	9	-	16	25	95			
Megaclite	-	-	10	10	50			
Ananke _	$-\frac{1}{52}$	$-14\bar{1}$	-57^{-}	250	600			
Praxidike	-	-	2	2	59			
Carme	- 9 0 -	-204	$-\bar{3}7^{-}$	331	973			
Sinope	⁻ 41 ⁻	169	$-\bar{1}1^{-}$	221	854			
Themisto			16	16	55			

Results

Number of positions								
Satellite	OPD	OHP	ESO	Total	Jacobson*			
Phoebe	1239	516	32	1787	3479			
Siarnaq		20	56		239			
Paaliaq	_	_	11	11	82			
Albiorix			-46	- ₄₆ -	137			
Sycorax	_	_	35	35	237			
Nereid	803	_	99	902	716			

Results - Offsets

 -24 ± 46

 610 ± 24

 -45 ± 59

 -123 ± 59

 -202 ± 68

 -296 ± 53

 -59 ± 81

 -42 ± 69

i (Coulto - Offocto									
	OPD			OHP			ESO		
Satellite	N	$\Delta \alpha *$	$\Delta\delta$	N	$\Delta \alpha *$	$\Delta\delta$	N	$\Delta \alpha *$	$\Delta\delta$
		\max	\max		mas	\max		\max	\max
Himalia	854	-23 ± 116	-16 ± 50	357	-10 ± 53	-0 ± 59	23	-49 ± 78	7 ± 47
Elara	403	23 ± 102	-65 ± 67	187	$4\pm~61$	-40 ± 64	46	$80\pm~81$	$6\pm~80$
Lysithea	60	86 ± 90	-27 ± 79	84	-9 ± 81	-63 ± 58	90	63 ± 80	-32 ± 85
Leda	6	55 ± 143	-100 ± 67	48	-10 ± 115	-46 ± 74	44	$146 \pm\ 38$	43 ± 89
Pasiphae	295	3 ± 141	-86 ± 86	$\overline{248}$	-62 ± 109	-82± 86	$ \bar{66} $	83 ± 68	-87 ± 80
Callirrhoe	9	-5 ± 63	81 ± 33	_	-	-	16	$225\pm\ 28$	$45\pm\ 33$
Megaclite	_	-	-	_	-	-	10	-82 ± 50	62 ± 33
Ananke	$\begin{bmatrix} -52 \\ \end{bmatrix}$	-5 ± 95	-130 ± 137	141	51 ± 109	-88 ± 101	$ \bar{57}^{-}$	154 ± 143	-122 ± 24
Praxidike	_	-	-	_	-	-	2	-288 ± 6	-247 ± 27
Carme	90	-50 ± 79	-27 ± 103	$2\bar{0}4$	8 ± 122	-101 ± 94	$\bar{37}^{-}$	71 ± 89	-108 ± 75

169

516

20

 -63 ± 70

 -23 ± 67

 -28 ± 97

Nereid 803 26 ± 128 N: Number of positions $\Delta a^* = \Delta a \cos \delta$

41

1239

Sinope

Themisto

Phoebe

Siarnaq

Paaliaq

Albiorix

Sycorax

 269 ± 142

 6 ± 58

ENCELADE – June 13, 2016

 -48 ± 204

 -4 ± 39

 -64 ± 79

 -27 ± 82

 -1 ± 38

 -205 ± 101

11

16

32

56

11

46

35

99

 2 ± 188

 -684 ± 549

 -32 ± 86

 -39 ± 62

 468 ± 238

 152 ± 69

 -27 ± 136

 34 ± 124

Results - Carme

^{*} Relative to JPL jup300 ephemeris

Results - Carme

^{*} Relative to JPL jup300 ephemeris

Results – Himalia and Elara

Results – Lysithea and Leda

Results – Pasiphae and Ananke

Results -Sinope

Results – Phoebe and Nereid

Conclusion

 We identified 8466 observations of irregular satellites, from which we obtained 6523 suitable astrometric positions.

 Position errors estimated of about 60-80 mas depending on brightness.

All positions are available at the CDS

Results

A&A 580, A76 (2015)

DOI: 10.1051/0004-6361/201526273

© ESO 2015

Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations*,**,***

A. R. Gomes-Júnior¹, M. Assafin^{1,4}, R. Vieira-Martins^{1,2,3,4}, J.-E. Arlot⁴, J. I. B. Camargo^{2,3}, F. Braga-Ribas^{2,5}, D. N. da Silva Neto⁶, A. H. Andrei^{1,2,4}, A. Dias-Oliveira², B. E. Morgado¹, G. Benedetti-Rossi², Y. Duchemin^{4,7}, J. Desmars⁴, V. Lainey⁴, and W. Thuillot⁴

Next Steps

 Numerical Integration of the orbits of the Irregular Satellites.

 Predict and observe stellar occultations by these objects.

Re-reduce the observations with GAIA catalogue.

Thank You