CMFD on Random Ray MOC 22.212 Final Project

Zhuoran Han

Nov, 2018

Outline

- MOC
- Random Ray
- CMFD
- Failure Log
- Results
- Summary

Outline

- MOC
- Random Ray
- 3 CMFD
- 4 Failure Log
- 6 Results
- 6 Summary

Characteristic Form of Transport Equation

$$rac{d\psi_g(s)}{ds} + \Sigma_g^{tr}(s)\psi_g(s) = Q_g(s)$$

FSR

$$Q_{r,g} = rac{1}{4\pi}(rac{\chi_{r,g}}{k_{ ext{eff}}}\sum_{g'=1}^G
u \Sigma_{r,g'}^{ extstyle F} \phi_{r,g} + \sum_{g'=1}^G \Sigma_{r,g' o g}^{ extstyle S} \phi_{r,g'})$$

For track k in region r

$$\frac{d\psi_{k,r,g}(s)}{ds} + \Sigma_g^{tr}(s)\psi_{k,r,g}(s) = Q_{r,g}(s)$$

Integrated from a entry point s' to an exit point s''

$$\psi_{k,g}(s'') = \psi_{k,g}(s')e^{-\tau_{k,r,g}} + \frac{Q_{r,g}}{\sum_{r,g}^{tr}}(1 - e^{-\tau_{k,r,g}})$$

Contribution for this segment

$$\Delta \psi_{k,g} = (\psi_{k,g}(s')e - \frac{Q_{r,g}}{\sum_{r,g}^{tr}})(1 - e^{-\tau_{k,r,g}})$$

Average angular flux contribution to FSR for track k $(I_{k,r} = s'' - s')$

$$\begin{split} \bar{\psi}_{k,r,g} &= \frac{1}{I_{k,r}} \int_{s'}^{s''} \psi_{k,r,g}(s) ds \\ \bar{\psi}_{k,r,g} &= \frac{1}{I_{k,r}} \left[\frac{\psi_{k,g}(s')}{\sum_{r,g}^{tr}} e^{-\tau_{k,r,g}} + \frac{I_{k,r} Q_{r,g}}{\sum_{r,g}^{tr}} (1 - \frac{e^{-\tau_{k,r,g}}}{\tau_{k,r,g}}) \right] \end{split}$$

FSR-averaged scalar flux in region r

$$\phi_{r,g} = \frac{1}{A_r} \int_A dA \int_{4\pi} d\Omega \psi_{k,r,g}$$

Use quadrature to perform integration.

If no polar quadrature, a.k.a $w_p = 1$ and p = 1, we have:

$$\phi_{r,g} = \frac{4\pi}{A_r} \sum_{k \in \Delta} w_{m(k)} w_k I_{k,r} \bar{\psi}_{k,r,g}$$

where $w_{m(k)}$ is azimuthal weight, w_k is the ray spacing.

Scalar Flux Final Form

$$\phi_{r,g} = \frac{4\pi}{\sum_{r,g}^{t} r} [Q_{r,g} + \frac{1}{A_r} \sum_{k \in A_r} w_{m(k)} w_k \Delta \psi_{k,r,g}]$$

What about current *J*?

$$J_{g}^{surf} = \sum_{k \in surf} 2\pi w_{m(k)} \frac{w_{k}}{\cos \theta_{k}} \psi_{k,r,g} \cdot \hat{n}$$

Figure 1: Current J crossing surface

Net Current tallied over surface, not averaged!!

$$J_g^{surf} = \sum_{k \in surf} 2\pi w_{m(k)} w_k \psi_{k,r,g}$$

This is the total leakage from the surface.

Update k_{eff}

$$L = \sum_{\text{Vacuum B.C}} \sum_{g=1}^{G} J_g^{surf}$$

$$k_{eff} = \frac{\sum_{r=1}^{R} \sum_{g=1}^{G} \nu \Sigma_{r,g}^{F} \phi_{r,g} A_r}{L + \sum_{r=1}^{R} \sum_{g=1}^{G} \Sigma_{r,g}^{A} \phi_{r,g} A_r}$$

Algorithm 1 Fixed source iteration for OpenMOC

```
\Phi_{r,q} \leftarrow 0 \quad \forall r, g \in \{R, G\}
                                                      # Initialize FSR scalar fluxes to zero
while Q_{r,q} \forall r not converged do
   for all m \in M do
                                                      # Loop over azimuthal angles
      for all k \in K(m) do
                                                      # Loop over tracks
         for all s \in S(k) do
                                                      # Loop over segments
            for all g \in G do
                                                  # Loop over energy groups
               for all p \in P do # Loop over polar angles
                  r \leftarrow R(s)
                                                # Get FSR for this segment
                  \Delta \Psi_{k,r,g,p} \leftarrow \left(\Psi_{k,g,p} - \frac{Q_{r,g}}{\Sigma_{r,g}^{tr}}\right) \left(1 - e^{-\tau_{k,r,g,p}}\right)
                  \Phi_{r,g} \leftarrow \Phi_{r,g} + \frac{4\pi}{A} \omega_{m(k)} \omega_p \omega_k \sin \theta_p l_{k,r} \Delta \Psi_{k,r,g,p}
                  \Psi_{k,q,p} \leftarrow \Psi_{k,q,p} - \Delta \Psi_{k,q,p}
               end for
            end for
         end for
      end for
      if B.C. are reflective then
                                                      # Set incoming flux for outgoing track
         \Psi_{k',q,p}(0) \leftarrow \Psi_{k,q,p}
                                                      # Reflective B.C.'s
      else
         \Psi_{k',q,p}(0) \leftarrow 0
                                                      # Vacuum B.C.'s
         L \leftarrow L + 2\pi\omega_{m(k)}\omega_p\omega_k \sin\theta_n\Psi_{k,q,n}
      end if
   end for
                                                      # Equation 2.17 and Algorithm 2
   Update k_{eff} and Q_{r,q} \forall r
end while
```

Figure 2: MOC main Algorithm

update FSR source

$$Q_{r,g} = rac{1}{4\pi}(rac{\chi_{r,g}}{k_{ ext{eff}}}\sum_{g'=1}^G
u \Sigma_{r,g'}^{ extstyle F} \phi_{r,g} + \sum_{g'=1}^G
\Sigma_{r,g' o g}^{ extstyle S} \phi_{r,g'})$$

Figure 3: update FSR source algorithm

Computational Reactor Physics Group

Outline

- MOC
- Random Ray
- CMFD
- Failure Log

14 / 55

Another Way to Evaluate the Integration?

$$\phi_{r,g} = rac{1}{A_r} \int_A dA \int_{4\pi} d\Omega \psi_{k,r,g}$$

Monte Carlo Integration

Figure 4: Monte Carlo Integration

Monte Carlo Integration

In a certain FSR, if we accumulate as many $\bar{\psi}_{i,r,g}$ as we can, and then take average, we shold get a good approximation of FSR-averaged scalar flux $\phi_{r,g}$.

$$\phi_{r,g} = 4\pi \frac{\sum_{i=1}^{N} \bar{\psi}_{r,g}^{i}}{N}$$

Derivation for Random Ray

For i^{th} trial in region r for energy g

$$\begin{split} \phi_{r,g}^{i} &= 4\pi \bar{\psi}_{i,r,g} \\ &= \frac{4\pi}{l_{k,r}^{i}} \left[\frac{\psi_{k,g}(s')}{\Sigma_{r,g}^{tr}} e^{-\tau_{k,r,g}} + \frac{l_{k,r}^{i} Q_{r,g}}{\Sigma_{r,g}^{tr}} (1 - \frac{e^{-\tau_{k,r,g}}}{\tau_{k,r,g}}) \right] \\ &= \frac{4\pi}{l_{k,r}^{i}} \left[\frac{l_{k,r}^{i} Q_{r,g}}{\Sigma_{r,g}^{tr}} + \frac{\Delta \psi_{k,g}^{i}}{\Sigma_{r,g}^{tr}} \right] \end{split}$$

Derivation for Random Ray

$$\begin{split} \phi_{r,g}^{i} l_{k,r}^{i} &= \frac{l_{k,r}^{i} 4\pi Q_{r,g}}{\Sigma_{r,g}^{tr}} + \frac{4\pi \Delta \psi_{k,g}^{i}}{\Sigma_{r,g}^{tr}} \\ l_{k,r}^{i} (\phi_{r,g}^{i} - \frac{4\pi Q_{r,g}}{\Sigma_{r,g}^{tr}}) &= \frac{4\pi \Delta \psi_{k,g}^{i}}{\Sigma_{r,g}^{tr}} \\ \phi_{r,g}^{i} - \frac{4\pi Q_{r,g}}{\Sigma_{r,g}^{tr}} &= \frac{4\pi \Delta \psi_{k,g}^{i}}{\Sigma_{r,g}^{tr} l_{k,r}^{i}} \end{split}$$

Derivation for Random Ray

If we take one guess of $\phi^i_{r,g}$, it would be

$$\phi_{r,g}^{i} = \frac{4\pi Q_{r,g}}{\sum_{r,g}^{tr}} + \frac{4\pi \Delta \psi_{k,g}^{i}}{\sum_{r,g}^{tr} I_{k,r}^{i}}$$

However, this is not accurate.

Derivation for Random Ray

A good representation would be taking the average value from N contributions in this FSR

$$\phi_{r,g} = \frac{4\pi Q_{r,g}}{\sum_{r,g}^{tr}} + \frac{4\pi \frac{\sum_{i=1}^{N} \Delta \psi_{k,g}^{i}}{N}}{\sum_{r,g}^{tr} \frac{\sum_{i=1}^{N} l_{k,r}^{i}}{N}}$$

$$= \frac{4\pi Q_{r,g}}{\sum_{r,g}^{tr}} + 4\pi \frac{\sum_{i=1}^{N} \Delta \psi_{k,g}^{i}}{\sum_{r,g}^{tr} \sum_{i=1}^{N} l_{k,r}^{i}}$$

$$= \frac{4\pi Q_{r,g}}{\sum_{r,g}^{tr}} + \frac{\sum_{i=1}^{N} 4\pi \Delta \psi_{k,g}^{i}}{\sum_{r,g}^{tr} d_{r}}$$

where d_r is the total distance travelled by all rays in FSR region r.

This is exactly the same process in John's dissertation.

Random Ray

Algorithm 1 MOC Power Iteration

- 1: Initialize Scalar Fluxes to 1.0
- 2: while K-effective and Scalar Flux Unconverged do
- 3: Compute Source (Equation 2.2)
- 4: Set Scalar Flux to Zero
- 5: Transport Sweep (Algorithm 2)
- Normalize Scalar Flux to Sum of Ray Distances
- Add Source to Scalar Flux (Equation 2.3)
- 8: Calculate K-effective
- 9: end while

Figure 5: Random Ray Algorithm 1

Random Ray

$$V_r = \frac{d_r}{D_{\text{total}}} \tag{2.1}$$

$$Q_{r,e} = \frac{1}{4\pi\Sigma_{t,r,e}} \left[S_{r,e} + \frac{1}{k} F_{r,e} \right]$$
 (2.2)

$$\phi_{r,e} = \frac{\phi_{r,e}}{\Sigma_{t,r,e} V_r} + 4\pi Q_{r,e}$$
 (2.3)

Random Ray

```
Algorithm 2 Transport Sweep
 1: for all Rays do
       Distance Travelled D=0
 2:
       Generate Randomized Ray (\hat{r}, \hat{\Omega})
 3:
       Apply Ray Starting Flux Condition
 4:
       while D < \text{Termination Distance do}
 5:
           Set Nearest Neighbor distance s = \infty
 6:
 7:
           for all CSG Cell Neighbors do
              Ray Trace to Find Distance s_n to Neighbor Surface
 8:
 9:
              if s_n < s then
10:
                  s = s_n
              end if
11:
12:
           end for
13:
           Attenuate Segment s (Algorithm 3)
           D = D + s
14:
           Move Ray Forward or Reflect
15:
       end while
16:
17: end for
```

Figure 6: Random Ray Algorithm 2

Monte Carlo Integration

```
Algorithm 3 Attenuate Segment
```

```
1: for all Energy Groups g \in G do
```

2:
$$\Delta \psi_g = (\psi_g - Q_{r,g}) \left(1 - e^{-\Sigma_{t,r,g} s} \right)$$

3:
$$\phi_{r,g} = \phi_{r,g} + 4\pi\Delta\psi_g$$

4:
$$\psi_g = \psi_g - \Delta \psi_g$$

5: end for

Figure 7: Random Ray Algorithm 3

Some Explanation

$$\begin{split} \phi_{r,g} &= \frac{4\pi Q_{r,g}}{\Sigma_{r,g}^{tr}} + \frac{(\sum_{i=1}^{N} 4\pi \Delta \psi_{k,g}^{i})/D_{total}}{\Sigma_{r,g}^{tr} V_{r}} \\ &= \frac{4\pi Q_{r,g}}{\Sigma_{r,g}^{tr}} + \frac{(\sum_{i=1}^{N} 4\pi \Delta \psi_{k,g}^{i})/D_{total}}{\Sigma_{r,g}^{tr} d_{r}/D_{total}} \\ &= \frac{4\pi Q_{r,g}}{\Sigma_{r,g}^{tr}} + \frac{\sum_{i=1}^{N} 4\pi \Delta \psi_{k,g}^{i}}{\Sigma_{r,g}^{tr} d_{r}} \end{split}$$

Compare with conventional MOC

MOC Final Form

$$\phi_{r,g} = \frac{4\pi}{\sum_{r,g}^{t} r} [Q_{r,g} + \frac{1}{A_r} \sum_{k \in A_r} w_{m(k)} w_k \Delta \psi_{k,r,g}]$$

Random Ray Final Form

$$\phi_{r,g} = \frac{4\pi}{\sum_{r,g}^{t} r} [Q_{r,g} + \frac{1}{d_r} \sum_{i \in FSR} \Delta \psi_{k,g}^{i}]$$

In random ray, "Area of FSR" is defined as the the total distance tallied in this FSR. Uniform weight, Spacing in unit.

What about current? How to update new k?

MOC Net

$$J_g^{surf} = \sum_{k \in surf} 2\pi w_{m(k)} w_k \psi_{k,r,g}$$

$$k_{eff} = \frac{\sum_{r=1}^{R} \sum_{g=1}^{G} \nu \sum_{r,g}^{F} \phi_{r,g} A_{r}}{L + \sum_{r=1}^{R} \sum_{g=1}^{G} \sum_{r,g}^{A} \phi_{r,g} A_{r}}$$

Random Ray

$$J_{g}^{surf} = \sum_{k \in surf} 2\pi \psi_{k,r,g}$$

$$k_{\text{eff}} = \frac{\sum_{r=1}^{R} \sum_{g=1}^{G} \nu \sum_{r,g}^{F} \phi_{r,g} d_r}{L + \sum_{r=1}^{R} \sum_{r=1}^{G} \sum_{r,g}^{A} \phi_{r,g} d_r}$$

There is always a bug!

Is J net current or averaged current?

What is the surface area for current to apply on?

Area = sum of length, what about length of an edge? Sum of collisions? What I have tried on a 1D homogeneous slab:

- J is net current, use it directly. Leakage too small
- J is averaged current, length is just the pitch. L is still small.
- J is averaged current, length is total number of collisions on the surface. L is too large.

How to scale it?

Outline

- MOC
- 2 Random Ray
- 3 CMFD
- 4 Failure Log
- 6 Results
- 6 Summary

Condensation

$$\begin{split} & \Sigma_{\mathbf{g}}^{A,i,j} & = \frac{\sum_{g \in \mathbf{g}} \sum_{r \in \{i,j\}} \frac{\sum_{r,g}^{A} \Phi_{r,g} A_{r}}{\Phi_{r,g} A_{r}}}{\sum_{g \in \mathbf{g}} \sum_{r \in \{i,j\}} \frac{\Phi_{r,g} A_{r}}{\Phi_{r,g} A_{r}}} \\ & \Sigma_{\mathbf{g}}^{F,i,j} & = \frac{\sum_{g \in \mathbf{g}} \sum_{r \in \{i,j\}} \frac{\sum_{r,g}^{F} \Phi_{r,g} A_{r}}{\Phi_{r,g} A_{r}}}{\sum_{g \in \mathbf{g}} \sum_{r \in \{i,j\}} \frac{\sum_{r,g}^{F} \Phi_{r,g} A_{r}}{\Phi_{r,g} A_{r}}} \\ & \Sigma_{\mathbf{g}}^{F,i,j} & = \frac{\sum_{g \in \mathbf{g}} \sum_{r \in \{i,j\}} \frac{\sum_{g \in \mathbf{g}} \sum_{r \in \{i,j\}} \frac{\sum_{g \in \mathbf{g}} \sum_{r \in \{i,j\}} \sum_{g \in \mathbf{g}} \sum_{g \in \mathbf{g}} \sum_{r \in \{i,j\}} \sum_{g \in \mathbf{g}} \sum_{g$$

Figure 8: Condensation in Energy and Space

Note: For diffusion coefficient, since I don't have a gap in the model, I can do it this way. Otherwise, transport XS has to be flux weighted.

2D Diffusion Equation

$$-\frac{\partial}{\partial x} \cdot D_{g}(x, y) \frac{\partial}{\partial x} \phi_{g}(x, y) - \frac{\partial}{\partial y} \cdot D_{g}(x, y) \frac{\partial}{\partial y} \phi_{g}(x, y)$$

$$+ (\Sigma_{g}^{A}(x, y) + \sum_{g'=1, g' \neq g}^{G} \Sigma_{g \to g'}^{S}(x, y)) \phi_{g}(x, y)$$

$$= \frac{\chi_{g}(x, y)}{k_{e}ff} \sum_{g'=1}^{G} \nu \Sigma_{g'}^{F}(x, y) \phi_{g'}(x, y) + \sum_{g'=1, g' \neq g}^{G} \Sigma_{g' \to g}^{S}(x, y) \phi_{g'}(x, y)$$

Discretization

$$\begin{split} &-\Delta(J_{g}^{i-1/2,j}-J_{g}^{i+1/2,j}))-\Delta(J_{g}^{i,j-1/2}-J_{g}^{i,j+1/2}))\\ &+\Delta^{2}(\Sigma_{g}^{A,i,j}+\sum_{g'=1,g'\neq g}^{G}\Sigma_{g\to g'}^{S,i,j})\phi_{g}^{i,j}-\Delta^{2}\sum_{g'=1,g'\neq g}^{G}\Sigma_{g'\to g}^{S,i,j}\phi_{g'}^{i,j}\\ &=\Delta^{2}\frac{\chi_{g}^{i,j}}{k_{e}ff}\sum_{g'=1}^{G}\nu\Sigma_{g'}^{F,i,j}\phi_{g'}^{i,j} \end{split}$$

Linear Diffusion Coefficient

$$J^{i+1/2,j} = -\hat{D}_g^{i+1/2,j} (\phi_g^{i+1,j} - \phi_g^{i,j})$$

$$\hat{D}_g^{i+1/2,j} = \frac{2 * D_g^{i,j} * D_g^{i+1,j}}{\Delta (D_g^{i,j} + D_g^{i+1,j})}$$

Non Linear Diffusion Correction

Current across coarse mesh must match.

$$\frac{\hat{J}_{g}^{i+1/2,j}}{\Delta} = -\hat{D}_{g}^{i+1/2,j} (\phi_{g}^{i+1,j} - \phi_{g}^{i,j}) - \tilde{D}_{g}^{i+1/2,j} (\phi_{g}^{i+1,j} + \phi_{g}^{i,j})
\tilde{D}_{g}^{i+1/2,j} = \frac{-\hat{D}_{g}^{i+1/2,j} (\phi_{g}^{i+1,j} - \phi_{g}^{i,j}) - \frac{\hat{J}_{g}^{i+1/2,j}}{\Delta}}{\phi_{\sigma}^{i+1,j} + \phi_{\sigma}^{i,j}}$$

Here \hat{J} is the overall net current on the surface

Discretization

$$\begin{split} & \Delta \Big(\hat{D}_{g}^{i-1/2,j} (\phi_{g}^{i-1,j} - \phi_{g}^{i,j}) + \tilde{D}_{g}^{i-1/2,j} (\phi_{g}^{i-1,j} + \phi_{g}^{i,j}) \Big) \\ & - \Delta \Big(\hat{D}_{g}^{i+1/2,j} (\phi_{g}^{i+1,j} - \phi_{g}^{i,j}) + \tilde{D}_{g}^{i+1/2,j} (\phi_{g}^{i-1,j} + \phi_{g}^{i,j}) \Big) \\ & + \Delta \Big(\hat{D}_{g}^{i,j-1/2} (\phi_{g}^{i,j-1} - \phi_{g}^{i,j}) + \tilde{D}_{g}^{i,j-1/2} (\phi_{g}^{i,j-1} + \phi_{g}^{i,j}) \Big) \\ & - \Delta \Big(\hat{D}_{g}^{i,j+1/2} (\phi_{g}^{i+1,j} - \phi_{g}^{i,j}) + \tilde{D}_{g}^{i,j+1/2} (\phi_{g}^{i,j+1} + \phi_{g}^{i,j}) \Big) \\ & + \Delta^{2} (\Sigma_{g}^{A,i,j} + \sum_{g'=1,g'\neq g}^{G} \Sigma_{g\to g'}^{S,i,j}) \phi_{g}^{i,j} - \Delta^{2} \sum_{g'=1,g'\neq g}^{G} \Sigma_{g'\to g}^{S,i,j} \phi_{g'}^{i,j} \\ & = \Delta^{2} \frac{\chi_{g}^{i,j}}{k_{e}ff} \sum_{g'=1}^{G} \nu \Sigma_{g'}^{F,i,j} \phi_{g'}^{i,j} \end{split}$$

Reflective B.C.

$$J = 0$$

Vacuum B.C.

Just use the non-linear term to balance the current

$$\frac{\hat{J}_{g}^{i+1/2,j}}{\Lambda} = -\tilde{D}_{g}^{i+1/2,j}(\phi_{g}^{i+1,j} + \phi_{g}^{i,j})$$

Algorithm for CMFD

Algorithm 1 CMFD Process

- 1: Condensation on fluxes, cross sections, and diffusion coefficients
- 2: Compute \hat{D} and \tilde{D} based on the tallied current
- 3: Formulate finite difference equations into form $M\phi=rac{1}{k}F$
- 4: Take an initial normalized flux vector $\phi^{(0)}$ and eigenvalue $k^{(0)}$
- 5: **while** ϕ , k $F\phi$ not converged **do**

6:
$$b = \frac{1}{k^{(0)}} F \phi^0$$

7:
$$\phi^{(1)} = M^{-1}\phi^{(0)}$$

8:
$$k^1 = \frac{\|F\phi^1\|}{\|F\phi^0\|} k^0$$

9:
$$\phi^0 = \phi^{(1)} \text{ and } \phi^0 = \frac{\phi^0}{\|\phi^0\|}$$

▶ Normalization

10: end while

Overall Acceleration Scheme

Algorithm 2 CMFD on Random Ray MOC

- 1: Initialize Problem
- 2: **while** ϕ , k, fission source not converged **do**
- 3: Caculate source based on k and ϕ
- 4: Perform one cycle of Random Ray MOC
- 5: Tally surface currents
- 6: Input ϕ and XS into CMFD Solver
- 7: Run Algorithm 2 and return eigenvalue k and eigenvector ϕ
- 8: Update ϕ in new shape and normalize it
- 9: Check convergence
- 10: end while

Should we pass k - eff out of CMFD solver or not?

CMFD

Update ϕ

$$\phi_{r,g}* = rac{\Phi_g^{i,j,new}}{\Phi_g^{i,j,old}}$$

 $\Phi_g^{i,j,old}$ is the normalized and condensed flux before diffusion solver, $\Phi_g^{i,j,new}$ is the normalized flux obtained from diffusion solver,

Outline

- 1 MOC
- Random Ray
- 3 CMFD
- Failure Log
- 6 Results
- 6 Summary

Yeah, my code is broken :(

Failure Log

- Started with a 3 by 3 identical pin cells, reflective B.C.It showed reasonable k-eff, but current tallied was too small. No need for non-linear correction, since flux shape is flat spatially.
- A center guide tube cell. Current tallied didn't look right.
- Hey, why not try vacuum B.C., homogenized, fake 1D, so that I can compare with my 2D diffusion solver.
- No cosine shape? Ahh, return ray should be set to 0.
- Had a curve shape, but it was still not cosine. Leakage was not right.
- Re-derived Random Ray, compared with conventional MOC.
- Hey! I can show the equivalence for Random Ray!
- Didn't help. Tried different methods to verify current. Failed.
- Tried more scaling methods. Still failed.
- This is my destiny. Ready to everyone I screwed up

Outline

- MOC
- 2 Random Ray
- CMFD
- 4 Failure Log
- Results
- 6 Summary

The Random Ray code is a pseudo random ray. By setting up the same random seed each in each iteration, neutron tracks are always the same. Since J cannot be tallied correctly, I only have some preliminary results for reflective B.C. cases. Instead of tallying currents and calculate \tilde{D} , we set them as 0 and only use linear diffusion terms. The 2D diffusion equations can only help to determine the flux shape in different energy, but not spatially.

2D Pincell Model: Pitch = 1.26cm and 1.6% enrichment fuel. k-eff is about 1.28. The statistic is on the 100 pcm order when having different dead zone, different number of particles, and different total length.

Figure 9: 1 ray, 300cm total length

44 / 55

Figure 10: 10 rays, 300cm total length

Figure 11: Flux in energy

Iterations	RR alone	RR with CMFD
2G 3 by 3	31	20
2G 5 by 5	62	45
10G 3 by 3	28	19
10G 5 by 5	63	41

Table 1: Iterations

Vacuum

I set up a 1 by 10 geometry and set only the left boundary as vacuum to model a 1D slab with 2 vacuum boundaries. By setting up one more reflective boundary, I can cut the size by half, and it will be faster for Random Ray code to run. However, because J cannot be tallied, nothing solid to show.

Vacuum

Figure 12: 1D Vacuum

Computational Reactor Physics Group

Outline

- MOC
- 2 Random Ray
- 3 CMFD
- 4 Failure Log
- 6 Results
- **6** Summary

Conclusion

Advantage

- No need to store boundary flux and no need to store cyclical tracking info
- Resolve angular variation at very tiny meshes
- Avoid corner crossing issues when tally currents

Conclusion

Problems

- Current Tally
- MC, slow
- Stochastic Convergence
- Dead Zone, # particles, total distance. (For now, I have to perform pre-testing to determine the parameters: Check if the length tallied in FSR/total length is the same as really volume fraction)

CMFD

Even though there is no contribution for faster spatial convergence, CMFD still helps to converge faster for energy-wise flux shape. If the key problem, current tally, is solved in the future, we should expect to see a speed up just like regular MOC.

Future Work

- Find the correct way to scale surface current.
- True Random.
- Python is slow. Rewrite in C++
- Ultimate goal: parallelization

Reference

- John Tramm's Ph.D. thesis
- Geoff Gunow's Ph.D. thesis
- Sam Shaner's M.S. thesis
- 212 Slides