Cubic Splines %-

$$P_1$$
 P_2
 P_2
 P_2
 P_2

Let
$$t_1 = 0$$

 $f(0) = P_1$ $f(t_2) = P_2$
 $f'(0) = P_1'$ $f'(t_2) = P_2'$

$$B_1 + B_2 t_2 + B_3 t_2^2 + B_4 t_2^3 = B_2 - 3$$

$$\beta_2 + 2\beta_3 t_2 + 3\beta_4 t_2^2 = \beta_2' - 9$$

Saluing for B₁, B₂, B₃ and B₉ in terms of P₁, P₂, P₁, P₂

$$P(t) = \prod + \prod t + \boxed{t^2}$$

