Supporting communication in children with non-typical speech using Deep Learning

James Toop

Data Science, Capstone Project

Purpose – The importance of communication

Communication is a basic human right and ensures that people can:

- Express themselves;
- Control their environment;
- Make friends and build relationships;
- Make sense of the world around them.

Purpose – The importance of communication

Communication has greater importance for a person with a learning disability.

- May not able to interpret their environment as easily as others;
- Inability can cause frustration and behaviours that might be seen as challenging;
- Can lead to being marginalised or excluded by society.

Purpose – Supporting communication

A variety of techniques have been developed to support children for whom speech is difficult:

- Communication systems such as Makaton or PECS;
- Easy read symbols;
- Speech and language therapy.

Example of Makaton signing

Purpose – Supporting communication

With supported communication a child with a speech disorder or severe learning disability will be better able to:

- Express their needs, feelings or opinions;
- Make choices;
- Interact with others and form relationships;
- Develop skills which will help them access learning opportunities.

Objective -

Use Deep Learning techniques to build a model that can identify an audio sample of non-typical speech and suggest possible words as a tool for helping parents support their child's communication.

Approach – The raw datasets

2 datasets totalling almost 140,000 - one second audio samples of single spoken words

- **Speech Commands:** 105,829 audio samples of 35 spoken keywords;
- **Ultrasuite:** 14,286 audio samples from 86 different children, 28 with speech disorders;
- After processing, 33,800 audio samples of 991 spoken words;

Speech Commands audio example

Ultrasuite audio example

Approach -

Preparing the data and creating the models

Iterating through models, adjusting architecture and variables in response to previous results

- Significant preprocessing to isolate and resample Ultrasuite audio samples then extract spectrograms and other features
- Create simple, baseline model based on reduced dataset as proof-of-concept and observed results.
- Final model uses a Convolutional Neural Network.

Example spectrogram for "Girl" audio sample

Conclusion -

Lower accuracy, minimised overfitting

Lower accuracy not a hindrance to usefulness of the app

- Most models did not generalise well, tending to overfit the training data. Likely because of the nature of speech impairments.
- Final model produced the most balanced results correctly identifying the spoken keyword for 70% of the "unseen" audio samples.

"Final" model accuracy during training

Confusion Matrix

Actual Label

Conclusion – Potential next steps

Recommendations -

- Continue to use other model architectures and enable to accept longer audio samples as these are more representative of atypical speech patterns.
- Source additional data in the form of further audio samples potentially even using the app as a means for gathering additional samples and improving the model.
- Use data augmentation when training the model, in particular the MixSpeech method that a weighted combination of features such as Mel Spectrograms with MFCCs.

Thank you.

Any questions?

Appendix -

Model results highlights

Model Iteration	Model Details	Training Accuracy	Validation Accuracy
1	Baseline model with single layer	81%	67%
2	Baseline model varying learning rate and batch size	94%	65%
3	Deeper network model	96%	72%
4	Deeper network model but adding dropout layers	85%	70%
5	CNN	83%	70%
6	CNN #2 (descending number of neurons over the first 3 layers)	93%	70%
7	CNN #3 (change dropout layer from 0.3 to 0.5)	94%	69%
8	CNN #4 (Neuron tweaks etc.)	90%	70%
9	CNN #5 (changes to epochs and batch size.) - FINAL	90%	71%

Appendix – Making a prediction

Martha says... frog !


```
# Run inference on the unseen audio file
mfccs = librosa.feature.mfcc(audio_sample, sr, n_mfcc=13, n_fft=2048, hop_length=512)
mfccs = mfccs.T
mfccs = mfccs[np.newaxis, ..., np.newaxis]
prediction = us_cnn_model.predict(mfccs)
predicted_index = np.argmax(prediction)

predicted_keyword = us_keywords[predicted_index]
print('Martha says...', predicted_keyword, '!')
```