2D Pinned Truss Analysis

http://staff.bath.ac.uk/abscjkw/ComputerPrograms/C++programs/2Dpinned.zip

What You Need To Be Able To Do

2D-Pinned Mathematics

How to calculate the member forces How to form the stiffness matrix How to invert a matrix

2D-Pinned Computer Program

How to read in data files
How to write out a DXF file
How to represent a "structure" in the computer
How to solve a 2D-Pinned analysis

The Maths

$$K d = F$$

$$d = \frac{1}{K}F$$

$$d = \left[K^{-1}\right]F$$

The Matrix

$$K \quad d = F$$

$$\begin{bmatrix} k_{x_{1}x_{1}} & k_{x_{1}y_{1}} & k_{x_{1}x_{2}} & k_{x_{1}y_{2}} & \cdots & k_{x_{1}x_{n}} & k_{x_{1}y_{n}} \\ k_{y_{1}x_{1}} & k_{y_{1}y_{1}} & k_{y_{1}x_{2}} & k_{y_{1}y_{2}} & \cdots & k_{y_{1}x_{n}} & k_{y_{1}y_{n}} \\ k_{x_{2}x_{1}} & k_{x_{2}y_{1}} & k_{x_{2}x_{2}} & k_{x_{2}y_{2}} & \cdots & k_{x_{2}x_{n}} & k_{x_{2}y_{n}} \\ k_{y_{2}x_{1}} & k_{y_{2}y_{1}} & k_{y_{2}x_{2}} & k_{y_{2}y_{2}} & \cdots & k_{y_{2}x_{n}} & k_{y_{2}y_{n}} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ k_{x_{n}x_{1}} & k_{x_{n}y_{1}} & k_{x_{n}x_{2}} & k_{x_{n}y_{2}} & \cdots & k_{x_{n}x_{n}} & k_{x_{n}y_{n}} \\ k_{y_{n}x_{1}} & k_{y_{n}y_{1}} & k_{y_{n}x_{2}} & k_{y_{n}y_{2}} & \cdots & k_{y_{n}x_{n}} & k_{y_{n}y_{n}} \end{bmatrix} \begin{bmatrix} x_{1} \\ y_{1} \\ x_{2} \\ y_{2} \\ \vdots \\ x_{n} \\ y_{n} \end{bmatrix} = \begin{bmatrix} f_{x_{1}} \\ f_{y_{1}} \\ f_{x_{2}} \\ \vdots \\ x_{n} \\ y_{n} \end{bmatrix}$$

Summary

We need to read in the data

Nodal coordinates
Member connectivities
Supports
Loads

We need to do the maths

Build the stiffness matrix
Apply the boundary conditions
Invert the matrix
Solve for the displacements
Solve for member forces

We need to output our findings

DXF of initial structure
DXF of deflected structure
Text file of member forces

