Differential Equations. Review for Test 2, Spring '13.

Also study all the homework and quizzes, as well as examples in class notes.

Note: Some questions on the actual test may state "Set up the differential equation only." Note: Don't forget that the answer will have an unknown constant or constants, unless it is an IVP.

1. Set up (but don't solve) the vector diff. eq. for $\vec{x}(t)$ which give the lbs of Cl at time t in the two tanks shown below. Your answer should be written $\vec{x}' = A\vec{x} + \vec{b}$ where you find A and \vec{b} .

- 2. Solve the differential equation generally: $4x^2y'' + y = 0$. You are given that one solution is $y_1 = \sqrt{x} \ln x$.
- 3. Solve the diff. eq.: y'' + 8y' + 16y = 0.
- 4. Solve the diff. eq.: y'' + 9y = 0.

Solve the diff. eq.: y'' - 4y' + 5y = 0.

Review 2

5. • Given a diff. eq. $a_2y'' + a_1y' + a_0y = 7\sin x + 5xe^{2x}$ which has the complimentary solution $y_c = c_1e^{2x} + c_2xe^{2x}$. Find the form of the particular solution y_p using only the variables A, B, C, D.

- Given the diff. eq. $y'' + 4y' 2y = 2x^2 3x + 6$ and the form of the particular solution $y_p = Ax^2 + Bx + C$. Find the particular solution.
- 6. Solve the diff. eq. $y'' + y = \sec x$ by variation of parameters.
- 7. Given a diff. eq. $y'' + P(x)y' + Q(x)y = e^{-x}\sqrt{x}$ which has the complimentary solution $y_c = c_1e^{-x} + c_2xe^{-x}$.
 - Check that the Wronskian of y_1 and y_2 is $W = e^{-2x}$.
 - Find the particular solution y_p .
- 8. Solve the differential equation (generally): $x^2y'' + 3xy' = 0$.
 - Given that the solution to the above diff. eq. is $y = c_1 + c_2 x^{-2}$, solve the initial value problem where y(1) = 0; y'(1) = 4.
- 9. Solve the diff. eq. $25x^2y'' + 25xy' + 4y = 0$.
- 10. Set up (but don't solve) the differential equation for the motion x(t) of a 4lb weight attached to a spring, which is stretched 15 inches by the weight. It is damped by friction with strength equalling $\frac{2}{5}$ of the vertical velocity at any time, and driven by a force $f(t) = \sin 7t$.
- 11. The solution to a spring-mass system is $x(t) = -2\cos(5t) \sqrt{3}\sin(5t)$. Write the solution in the alternate form $x(t) = A\sin(\omega t + \phi)$. What are the amplitude and the period?
- 12. Solve (find $\vec{x}(t)$) for the vector diff. eq. $\vec{x}' = \begin{pmatrix} -6 & 2 \\ -3 & 1 \end{pmatrix} \vec{x}$ using eigenvalues and eigenvectors. Your answer, written as a linear combination of vectors, will have two unknown constants!