# DATA SCIENCE AS 9 PROBLEMS

AP

# A GENTLE-YET-FOCUSSED INTRODUCTION

Chapter 2 describes the core computational problems of Data Science



In memoriam: Tom Fawcett

### 1. Classification and class probability

#### Instance:

a collection (dataset) of datapoints from X

ullet a classification system  $C = \{c_1, c_2, \dots c_k\}$ 

**Solution:** classification function  $\gamma: \mathbf{X} o C$ 

Measure: misclassification

# **MISCLASSIFICATION: DETECTION**

binary, only one class is important



# MISCLASSIFICATION: MULTI-CLASS



**Figure 8.** Examples of some easily misclassified categories. Misclassification occurs due to the strong similarities in the objects' colours and shapes.



### Source

### 2. Regression/value estimation

#### **Instance:**

- a collection (dataset) of numerical  $<\mathbf{x},y>$  datapoints
- a regressor (independent) value x

**Solution:** a regressand (dependent) value y

that complements x

Measure: error over the collection

[PF] "classification predicts whether something will happen, whereas regr. predicts how much something will happen."

### 3. Similarity

Identify similar individuals based on data known about them.

#### Instance:

- ullet a collection (dataset) of datapoints from  ${f X}$ , e.g.,  ${\Bbb R}^n$
- (distance functions for some of the dimensions)

**Solution:** similarity function  $\sigma: \mathbf{X} \to \mathbb{R}$ 

[Measure: error]

## Good similarity measures are the key to accurate detection/classification



### 4. Clustering (segmentation)

group individuals in a population together by their similarity (but not driven by any specific purpose)

#### Instance:

- ullet a collection (dataset)  ${f D}$  of datapoints from  ${f X}$ , e.g.,  $\mathbb{R}^n$
- $\bullet$  a relational structure on X (a graph)
- a small integer k

**Solution:** a partition of  $\mathbf{D}$  into  $\mathcal{C}_1, \ldots \mathcal{C}_k$ 

**Measure:** network modularity Q: proportion of the relational structure that respects the clusters.

Detection version: k is part of the output.

See an example research work (from yours truly)

5. Co-occurence (frequent itemset mining)

similarity of objects based on their appearing together in transactions.

#### Instance:

- ullet a collection (dataset)  ${f T}$  of itemsets (subsets of  ${f X}$ ) or sequences
- ullet a the shold au

**Solution:** All frequent patterns: subsets that appear in  ${f T}$  above au

Detection version:  $\tau$  is part of the output.

Market-basket analysis, (some) recommendation systems

6. Profiling (behaviour description)

#### Instance:

- ullet a user description  ${f u}$  drawn from a  ${f D}$  collection
- a stimulus  $a \in \mathbf{A}$
- ullet a set of possible responses  ${f R}$

**Solution:** a functional reaction of **u** to **a**, i.e.,  $ho: \mathbf{U} \times \mathbf{A} \to \mathbf{R}$ 

Application: anomaly/fraud detection.

Example research work on Social media profiling

### 7. Link prediction

Instance: a dynamical graph (network) G, i.e., a sequence

$$< V, E>, \ < V, E' = E + \{(u,v)\}>, \ < V, E'' = E' + \{(r,s)\}> . . . .$$



Question: what is the next link to be created?

What YouTube video will you watch next?

Alternatives: predict the **strength** of the new link; link deletion.

#### 8. Data reduction

#### Instance:

- ullet a collection (dataset)  ${f D}$  of datapoints from  ${f X}$ , e.g.,  ${\Bbb R}^m$
- [a distinct independent variable  $x_i$ ]

**Solution:** a projection of  ${f D}$  onto  ${\Bbb R}^n$  , n < m

**Measure:** error in the estimation of  $x_i$ 

Example: genre identification in consumer behaviour analysis

### 9. Causal modelling

#### Instance:

- a collection (dataset)  ${\bf D}$  of datapoints from  ${\bf X}$ , e.g.,  $\mathbb{R}^m$
- a distinct dependent variable  $x_i$

**Solution:** a variable  $x_j$  of  ${\bf D}$  that controls  $x_i$ 

**Measure:** effectiveness of  $x_j$  tuning to tune  $x_i$  in turn.

Example: Exactly What food causes you to put on weight?

Controlled clinical trials, A/B testing.

# FROM PROBLEMS TO ALGORITHMS

### Computer Science is often metaphoric: it uses abstractions that allow us to

- focus our problem-solving
- communicate with the computer

### Examples:

- interpreted languages (Python)
- data models (SQL and relational tables)
- TCP/IP computer networks

Problem → Algorithm → Implementation (code)

For a given problem, more than one algorithm may be available For a given algorithm, more than one implementation is possible Only with clarity about the problem we can look for the algorithms.

# **SUPERVISED ALGORITHMS**

Previous instance/solution pairs are available and fed to the a.

A. may 'memorise' past solutions and re-apply them, via some similarity criterion

A. may also 'learn' a model and apply it to future inputs

# **METHOD**

- obtain a dataset of examples, inc. the "target" dimension, called label
- split it in training and test data
- run a. on the test data, find a putative solution
- test the quality/pred. power against test data

Regression has a numeric target while classification has a categorical/binary one

# P. WITH GOOD SUPERVISED ALGORITHMS

1: Regression

2: Classification

9: Causal Modelling

# P. WITH MOSTLY UNSUPERVISED A.

4: Clustering

5: co-occurrence grouping

6: profiling

# P. WITH A MIX OF SUPERVISED AND UNSUPERVISED

3: Similarity matching,

7: link prediction,

8: data reduction