

ECEN5807 supplementary notes

Introduction to MATLAB/Simulink for switched-mode power converters

ECEN5807
Colorado Power Electronics Center
University of Colorado, Boulder

ECEN5807 supplementary notes

1.1 Getting started with MATLAB/Simulink

- Starting and running simulations in MATLAB/Simulink
- Constructing Simulink models
- Examples:
 - Open-loop synchronous buck converter model Simulink file: buck_open_loop.mdl
 - Buck converter and PWM subsystem models
 - Closed-loop synchronous buck converter model with an analog controller Simulink file: buck_closed_loop.mdl
 - Load transient model and simulations
 Simulink file: buck_closed_loop_load.mdl

1.2 Digitally controlled buck converter: Simulink models and simulations

- System model
- A/D converter, discrete-time compensator, and DPWM models Simulink file: buck closed loop discrete.mdl

1.1 Starting MATLAB/Simulink

• Start MATLAB:

(double-click on the MATLAB shortcut)

- Open a file, in the MATLAB window menu:
 - Select file: buck_open_loop.mdl, then Open
- This opens a pre-configured Simulink model for an open-loop synchronous buck switching converter

- Converter parameters:
 - $L = 4.1 \mu H, R_L = 80 \text{ m}\Omega$
 - $C = 376 \, \mu \text{F}, R_{esr} = 5 \, \text{m}\Omega$
 - $f_s = 100 \text{ KHz}$
 - $V_g = 12 \text{ V}, D = 0.42$
 - Load $R = 1 \Omega$

Transient Simulations in Simulink

- Make your copy of the Simulink model for further edits
 In the current Simulink window:
 - File → Save As → File Name: enter my_buck_open_loop.mdl, then Save
- Check or adjust simulation parameters:
 - Simulation → Simulation parameters

• This opens a window to adjust simulation parameters such as Start Time, Stop

Time, solver options, step size, etc.

• The default parameters and options are usually fine, except:

- Enter appropriate **Stop time**(3 ms in this example)
- Enter Max step size of about 1/100 of the switching period (0.1 μs in this example)

Starting Transient Simulation

- In the current Simulink window:
 - Simulation → Start or

click on the Start button in the toolbar

Current simulation time and progress are shown here

View Simulation Results

- In the my_buck_open_loop Simulink window, double-click the Scope block
- Use rectangular box, X-axis, or Y-axis Zoom tools to view waveforms details

Construction of Simulink Models

Buck converter subsystem

L

 R_L

 $R_C \le$

Simulink models are block-diagrams consisting of

- "Sources" (such as Constant Vg block)
- "Sinks" (such as **Scope**) and
- Various functional blocks, including subsystems

Buck Converter Subsystem

• System equations:

$$\frac{di_L}{dt} = \frac{1}{L} \left(V_g \cdot d - i_L R_L - V_o \right)$$

$$\frac{dv_C}{dt} = \frac{1}{C} \left(i_L - i_{out} \right)$$

$$v_o = v_C + R_{esc} (i_L - i_{out})$$

• Double-click on the **buck converter** subsystem block to view a Simulink implementation of the system equations

- Inputs:
 - Input voltage V_g
 - Switching signal $d = \{0,1\}$
 - Load current *i*_{out}
- Outputs:
 - Output voltage V_o
 - Inductor current i_L

Buck Converter Subsystem

On this slide, the subsystem model is annotated with the system equations and Simulink block names, such as Product, Gain, Integrator, etc., shown in red

PWM Subsystem

Help

- In the my_buck_open_loop window, double-click on the PWM block to open the subsystem window
- Double-click on the Saw-tooth waveform block to view or change the block parameters
- Note that **Time values** [0 0.001e-5 1e-5] and the corresponding **Output values** [1 0 1] define the sawtooth waveform in the PWM (switching frequency is: 1/1e-5 = 100 KHz)

10

OΚ

Cancel

Constructing a Closed-Loop Model

- In this step, the objective is to construct and simulate a closed-loop voltage regulator using a simple continuous-time integral compensator
- Save my_buck_open_loop.mdl as my_buck_closed_loop.mdl
- In the my_buck_closed_loop window, click on the Library Browser button

to open the Simulink Library Browser window

Simulink Library Browser

Constructing the Closed-Loop Model, continued

In the Simulink Library Browser window, select

Simulink → Continuous → Integrator

- Drag an Integrator block to the my_buck_closed_loop window, click the left mouse button to place the integrator
- Similarly, add the following Simulink blocks to my_buck_closed_loop:
 - Two Gain blocks
 (Simulink → Math → Gain)
 - A Sum block
 (Simulink → Math → Sum)
 - A Constant block
 (Simulink → Sources → Constant)
- Delete the **Duty Cycle D** (**Constant**): select the **Duty Cycle D** block and press **Delete** key

my_buck_closed_loop after the
 edits listed on this page

Copec Constructing the Closed-Loop Model, completed

- Change the orientation of the blocks for easier wiring:
 - Select the Gain block, click the right mouse button, select Format → Rotate block
 - Similarly, using Rotate block or Flip block, change the orientation of the Integrator, Sum, Gain1 and Constant blocks
- Double-click on the Sum block to change the input for the sensed output voltage to minus (–); reorder the symbols +, –, and | as desired
- Wire the blocks to construct the closed-loop model
- Set the model parameters (double click the block and edit the default values):
 - **Gain** = 0.4 (gain *H* of the voltage divider sensing the output voltage)
 - Gain1 = 1000 (gain of the integral compensator); you may need to resize the block to show the parameter value: select then drag a corner to resize the block
 - Constant = 2 (constant V_{ref} = 2, so that in steady-state $V_o = V_{ref}/H = 5 \text{ V}$)
- Run a simulation to verify that the output voltage comes to $V_{ref}/H = 5$ V in steady state

my_buck_closed_loop after the edits listed on this page

Closed-Loop Simulation Results

The output voltage V_o and the inductor current i_L during a start-up transient in the closed-loop buck converter with the continuous-time integral compensator

Details of the steady-state output voltage V_o and the inductor current i_L in the closed-loop buck converter with the continuous-time integral compensator

Adding a Step Load Transient Model

- In this step, the objective is to add a step load transient to the closed-loop converter model
- In the Simulink Library Browser window,
 select Simulink → Sources → Pulse
 Generator
- Place a Pulse Generator block and another Sum block in the my_buck_closed_loop window
- Click on the block name to rename the
 Pulse generator to Step load
- Wire the blocks as shown in the diagram
- Set the parameters of the **Step load** block as shown on the next page
- Save the system model asmy_buck_closed_loop_load.mdl

Step Load Transient Parameters

- The objective is to set the parameters of the **Step load** pulse generator block to step the total load resistance from 2 Ω to 1 Ω and back, corresponding to a 50% to 100% load transient
- Double click on the **Step load** block to open the **Block Parameters** window
- Set Amplitude to 1, the Period to 2 ms, and the Pulse Width to 50%
- With these parameters, the **Step load** block periodically adds the resistance of 1 Ω to the constant load resistance of 1 Ω . As a result, the total load resistance is 2 Ω from 0 to 1 ms, 1 Ω from 1 ms to 2 ms, back to 2 Ω from 2 ms to 3 ms, etc.
- Note that in this model the step load change occurs instantaneously

Step Load Transients

Review the step-load transient simulation results

Start-up, 50-to-100% and 100-to-50% load transient responses in the closedloop converter with the simple continuous-time integral compensator

Details of the 100-to-50% load transient response in the closed-loop converter with the simple continuoustime integral compensator

17 **ECEN5807**

 i_I

Optional Exercises

1.1.1 Add a **Scope** block (**Simulink** \rightarrow **Sinks** \rightarrow **Scope** in the Library Browser) to observe the duty-cycle command d and the switching signal c waveforms.

Note: in Scope window, click on the **Parameters** button to change the **Number of axis** to 2 in the **General** tab. Also, uncheck **Limit data points to last** in the Data history tab to allow the Scope to display long waveforms

1.1.2 In the buck_closed_loop models, the output of the Integrator block can be arbitrarily large. If the compensator output "winds-up" far away from the 0-to-1 duty-cycle command range, during start-up or over-loads, the output voltage may have large overshoots or undershoots before returning to regulation. Double-click on the Integrator block to add realistic saturation limits.

Exercises

- 1.1.3 Add a Saturation block (Simulink \rightarrow Discontinuities \rightarrow Saturation in the Library Browser) to model limits D_{min} and D_{max} for the duty-cycle command
- 1.1.4 Change the step-load-transient model to test the closed-loop converter response under 0-to-100% (i.e. 0-to-5 A) load transients.
- 1.1.5 Add a soft-start feature to the model. Hint: a **MinMax** block (**Simulink** \rightarrow **Math Operations** \rightarrow **MinMax** in the Library Browser) can be used to select the minimum of two signals. Connect one of the MinMax block inputs to the duty-cycle command from the compensator, and connect the other input to a slow ramp generator (**Simulink** \rightarrow **Sources** \rightarrow **Ramp** in the Library Browser). In this implementation, the output voltage will still overshoot because of the duty-cycle saturates at D_{max} , which is greater than the steady-state value. Can you improve the soft-start model?
- 1.1.6 Change the model to test for a transient response to a step in the input voltage.

* Note: in MATLAB 6.1, and earlier versions, the "Discontinuities" section of the Simulink library was called "Nonlinear"

ECEN5807

1.2 Digitally-Controlled Buck Converter: Simulink Models and Simulations

- The objective of this part is to develop and explain details of a Simulink model for a digitally-controlled buck converter, including Simulink models for:
 - A/D converter
 - Discrete-time compensator
 - Digital PWM
- The buck converter model and the parameters are the same as in Section 1.1 (same parameters as in the Simulink file: buck_closed_loop_load.mdl)
 - $L = 4.1 \, \mu H, R_L = 80 \, \text{m}\Omega$
 - $C = 376 \, \mu F, R_{esr} = 5 \, \text{m}\Omega$
 - $-f_{s} = 100 \text{ KHz}$
 - $-V_{g} = 12 \text{ V}$
 - Maximum load current: 5 A
- Open the file buck_closed_loop_discrete.mdl and save the system model as my buck closed loop discrete.mdl

Digitally Controlled Buck Converter Simulink Model

- The buck converter block and the step load transient model are the same as in the continuous-time buck_closed_loop_load system
- Note the parts of the system that model the digital controller including:
 - A/D converter
 - Discrete-time integral compensator, and
 - Digital PWM
- Run a simulation and doubleclick on the Scope block to observe the output waveforms
- The output voltage and inductor current waveforms are shown on the next page, in comparison with the waveforms obtained from the continuous-time example in buck_closed_loop_load

Start-Up and Step-Load Transient Waveforms

Scope waveforms in the digitally controlled converter model buck_closed_loop_load_discrete

Scope waveforms in the analog controlled converter model buck closed loop load

- Note that the transient waveforms are almost the same except for a slight difference in the inductor current waveform during start up. Where does the difference come from? Hint: add a **Scope** block to observe the sampled and quantized error signal e_q after the **A/D** Limits block during the start-up transient.
- Next, we examine details of the A/D converter, Discrete-time compensator and Digital PWM models

ECEN5807

A/D Converter Model: Delay t_{d1}

- **Delay td1** block is a **Transport Delay** block (**Simulink** \rightarrow **Continuous** \rightarrow **Transport Delay** from the Library Browser). This block models the total time between sampling the error signal e and updating the duty cycle command d_c at the beginning of the next switching period. This delay must be long enough to include the A/D conversion time, as well as processing and computation delays in

the compensator.

- Double click on the **Delay td1** block to view/change the delay t_{d1} (4 µs in this example)

 Usually there is no need to change the default values of other parameters in this block. Optional: click on the **Help** button to see more details about the block

Double-click on the **Scope1** block and zoom in on the waveforms following the step-load transient at 1 ms. See the annotated waveforms on the next page.

Waveform details in the digital controller

Error signals: $e=V_{ref}-V_o$ $e_d=e$ delayed by t_{d1} $e_s=e_d$ after **Zero-Order Hold**

Duty-cycle command d_c

Switching signal *c*

A/D Converter Model: Zero-Order Hold

- The **Zero-Order Hold** block (**Simulink** \rightarrow **Discrete** \rightarrow **Zero-Order Hold** in the Library Browser) samples the error signal, *i.e.* converts the signal from continuous time to discrete time
- Double click on the block to view the **Sample time** ($T_s = 10 \mu s$ in this example)
- Note that the **Sample time** is the same as the switching period T_s defined by the period of the sawtooth waveform in the **PWM** subsystem
- Observe the **Scope1** waveform e_h after the **Zero-Order Hold** block (shown earlier)
- Notice that the sampling of the delayed error signal e_d occurs at the beginning of each switching period, i.e. at 0, T_s , $2T_s$, etc. It coincides with the rising edge of the switching signal c.
- It is important to note that the Zero-Order Hold is added to the Simulink model only for the purpose of explicitly modeling the sampling effect. The system dynamic model does not include a ZOH transfer function

A/D Converter Model: A/D Quantizer

- A/D Quantizer block is a Quantizer block (Simulink → Discontinuities → Quantizer from the Library Browser).
- Double click on the block to view/change the **Quantization interval** $(q_{A/D} = 1/64 \text{ V in this example})$
- The Quantization interval equals the LSB value (in Volts) of the A/D converter. In this example, the A/D converter has 7-bit resolution over 2 V {-1V to +1V} voltage range. Hence, the Quantization interval is

$$q_{A/D} = 2/2^7 = 1/2^6 = 1/64 = 15.6 \text{ mV}$$

With the box Treat as gain when linearizing checked, the "gain" of the Quantizer block in a linearized model is 1. Otherwise, a "small-signal" gain equal to zero is assumed. Optional: click Help for more details

Block Parameters: A/D Quantizer	×
Quantizer	-
Discretize input at given interval.	
Parameters	-
Quantization interval:	
1/64	
▼ Treat as gain when linearizing	
OK Cancel Help Apply	

A/D Converter Model: A/D Limits

- A/D Limits block is a Saturation block (Simulink → Discontinuities → Saturation from the Library Browser).
- Double click on the block to view/change the Upper limit (+1 V in this example) or the Lower limit (-1 V in this example)
- This block models the conversion range (or window) of the A/D converter
- Optional exercise 1.2.1: add a Scope block to observe the error signals e_h and e_q before and after the A/D Quantizer and the A/D Limits blocks:
 - Note the effect of A/D Limits during the startup transient; experiment with making the A/D conversion range smaller
 - Note that in steady state the quantized error e_q is exactly zero

Discrete-time Integral Compensator

- The Discrete-time Integral Compensator block is a Discrete Zero-Pole block (Simulink → Discrete → Discrete Zero-Pole in the Library Browser)
- Double click on the block to view the block Parameters
- The block implements a discrete system transfer function in the following factored pole/zero form:

$$H(z) = K \frac{Z(z)}{P(z)} = K \frac{(z-Z_1)(z-Z_2)\dots(z-Z_m)}{(z-P_1)(z-P_2)\dots(z-P_n)}$$

- The Parameters are specified as follows:
 - **Zeros:** [Z1 Z2 Zm] ([0], in this example)
 - Poles: [P1 P2 Pn] ([1] in this example)
 - **Gain:** K (1 in this example)
 - Sample time ("-1 for inherited" means that the sample time is inherited from the Zero-Order Hold block in this example)
- Note that a discrete-time integrator with no delay is implemented in this example

Discrete-time Compensator

- There are a number of other ways to implement a discrete transfer function (see Simulink > Discrete blocks in the Library Browser), such as one or a combination of the following blocks:
 - Discrete Transfer Fcn block
 - Discrete Filter block
 - Discrete-Time Integrator block
 - A combination of Unit Delay, Gain and Sum blocks
- Exercise 1.2.2: the parameter of the Gain1 block is set to 0.01 to match the gain of the discrete-time integral compensator to the gain of the continuous-time integral compensator in the buck closed loop model. Show that this is true.
- Exercise 1.2.3: implement the compensator using the Discrete-Time Integrator block from the Library Browser. What should **Gain1** be in this case? Verify your implementation by simulation. Is this implementation completely equivalent to the implementation shown above? Why not?
- Exercise 1.2.4: implement the discrete-time integral compensator using a Unit Delay block and a Sum block. Verify your implementation by simulation.

29 **ECEN5807**

Digital PWM

- Digital PWM model includes a DPWM Quantizer block (a Quantizer block), a DPWM limits block (a **Saturation** block) and the analog **PWM** subsystem block
- Double-click on the DPWM Quantizer to view/change the **Quantization interval** parameter, *i.e.* the LSB value of the duty cycle. In this example, the DPWM resolution is 10 bits over the 0-to-1 range, so that the **Quantization interval** is $q_{DPWM} = 1/2^{10} = 1/1024$
- Double-click on the **DPWM limits** block to view/change:
 - Upper limit (i.e. the maximum duty cycle), 0.8 in this example, or
 - Lower limit (i.e. the minimum duty cycle), 0.0 in this example
- **Exercise 1.2.5:** change the DPWM resolution to 7 bits and run a simulation. Low-frequency oscillations can be observed in the output voltage. Why? What is, approximately, the frequency of the oscillations? Compare this frequency to the corner frequency f_o of the buck converter LC filter.

30 **ECEN5807**

Exercises

- 1.2.7 In the buck_closed_loop_discrete models, the output of the integral compensator can be arbitrarily large. If the compensator output "winds-up" far away from the 0-to-1 duty-cycle command range, during start-up or over-loads, the output voltage may have large overshoots or undershoots before returning to regulation. Change the model to add realistic saturation limits for the integral compensator. Hint: do Exercise 1.2.4 first.
- **1.2.6** Change the step-load-transient model to test the closed-loop converter response under 0-to-100% (i.e. 0-to-5 A) load transients.
- 1.2.7 Add a soft-start feature to the model.
- **1.2.8** Change the model to test for a transient response to a step in the input voltage.