PHYS12 CH3

Kinematics in Two Dimensions

Mr. Gullo

September 2024

1/29

- Introduction
- Vectors and Scalars
- 3 Vector Addition and Subtraction: Graphical Methods
- 4 Vector Addition and Subtraction: Analytical Methods
- Projectile Motion
- Worked Examples
- Conclusion

Mr. Gullo

- Introduction
- Vectors and Scalars
- 3 Vector Addition and Subtraction: Graphical Methods
- 4 Vector Addition and Subtraction: Analytical Methods
- Projectile Motion
- Worked Examples
- Conclusion

Mr. Gullo

• Kinematics in two dimensions

4/29

- Kinematics in two dimensions
- Vector addition and subtraction

4/29

- Kinematics in two dimensions
- Vector addition and subtraction
- Graphical and analytical methods

4 / 29

Mr. Gullo Sept 2024

- Kinematics in two dimensions
- Vector addition and subtraction
- Graphical and analytical methods
- Projectile motion

4 / 29

Mr. Gullo Sept 2024

- Introduction
- Vectors and Scalars
- 3 Vector Addition and Subtraction: Graphical Methods
- 4 Vector Addition and Subtraction: Analytical Methods
- Projectile Motion
- Worked Examples
- Conclusion

Vectors and Scalars

Scalar Quantities

- Have only magnitude
- Examples: mass, temperature, time

Vector Quantities

- Have magnitude and direction
- Examples: displacement, velocity, acceleration

- Introduction
- 2 Vectors and Scalars
- 3 Vector Addition and Subtraction: Graphical Methods
- 4 Vector Addition and Subtraction: Analytical Methods
- Projectile Motion
- Worked Examples
- Conclusion

7 / 29

Graphical Methods

Head-to-Tail Method

- Draw the first vector
- 2 Draw the second vector from the head of the first
- Resultant vector: from tail of first to head of second

Parallelogram Method

- Draw both vectors from a common point
- 2 Complete the parallelogram
- 3 Resultant vector: diagonal of the parallelogram

- Introduction
- 2 Vectors and Scalars
- 3 Vector Addition and Subtraction: Graphical Methods
- 4 Vector Addition and Subtraction: Analytical Methods
- Projectile Motion
- 6 Worked Examples
- Conclusion

Trig Review

Figure: SOHCAHTOA mnemonic

Figure: Sine and Cosine Laws

Vector Components

Components of a vector \vec{A} :

$$A_{x} = A\cos\theta$$
$$A_{y} = A\sin\theta$$

Where:

- A is the magnitude of the vector
- ullet θ is the angle with the positive x-axis

Figure: Vector Components

Resolve vectors into x and y components

Mr. Gullo Sept 2024 12 / 29

- Resolve vectors into x and y components
- ② Sum x-components: $R_x = \sum A_x$

Mr. Gullo Sept 2024 12 / 29

- Resolve vectors into x and y components
- ② Sum x-components: $R_x = \sum A_x$
- **3** Sum y-components: $R_y = \sum A_y$

Mr. Gullo Sept 2024 12 / 29

- Resolve vectors into x and y components
- 2 Sum x-components: $R_x = \sum A_x$
- Find magnitude: $R = \sqrt{R_x^2 + R_y^2}$

12 / 29

- Resolve vectors into x and y components
- ② Sum x-components: $R_x = \sum A_x$
- Find magnitude: $R = \sqrt{R_x^2 + R_y^2}$
- **5** Find direction: $\theta_R = \tan^{-1}\left(\frac{R_y}{R_x}\right)$

12/29

Mr. Gullo Sept 2024

- Introduction
- 2 Vectors and Scalars
- 3 Vector Addition and Subtraction: Graphical Methods
- 4 Vector Addition and Subtraction: Analytical Methods
- Projectile Motion
- 6 Worked Examples
- Conclusion

Mr. Gullo

Projectile Motion

Assumptions

- Air resistance is negligible
- Acceleration due to gravity (g) is constant
- Horizontal motion is at constant velocity

Key Concepts

- Two-dimensional motion
- Vertical motion: accelerated
- Horizontal motion: constant velocity

Equations of Motion

Horizontal motion:

$$x = v_{0x}t$$
$$v_x = v_{0x}$$

Where:

- $v_{0x} = v_0 \cos \theta$
- $v_{0y} = v_0 \sin \theta$

Vertical motion:

$$y = v_{0y}t - \frac{1}{2}gt^2$$
$$v_y = v_{0y} - gt$$

Range of a Projectile

For a projectile launched and landing at the same vertical level:

$$R = \frac{v_0^2 \sin 2\theta}{g}$$

Where:

- R is the range
- v_0 is the initial velocity
- ullet θ is the launch angle
- g is the acceleration due to gravity

- Introduction
- 2 Vectors and Scalars
- 3 Vector Addition and Subtraction: Graphical Methods
- 4 Vector Addition and Subtraction: Analytical Methods
- Projectile Motion
- Worked Examples
- Conclusion

17 / 29

Example 1: Vector Addition

Problem: Walk 18.0 m west, then 25.0 m north. Find distance and direction from start.

Solution steps:

- Resolve vectors into components
- Sum components
- Find magnitude of resultant
- Find direction

Figure: Vector Addition

Example 1: Solution

$$R_{\rm x} = -18.0 \text{ m}$$
 $R_{\rm y} = 25.0 \text{ m}$
 $R = \sqrt{(-18.0 \text{ m})^2 + (25.0 \text{ m})^2} = 30.8 \text{ m}$
 $\theta = \tan^{-1}\left(\frac{25.0}{-18.0}\right) = -54.25^{\circ}$

Answer: 30.8 m at 35.8° west of north

19 / 29

Example 2: Vector Components in Rotated Axes

Problem: You fly 32.0 km in a straight line in still air in the direction 35.0° south of west.

(a) Find the distances you would have to fly straight south and then straight west to arrive at the same point.

$$D_W = 32.0 \cos 35^\circ = 26.2 \text{ km}$$

$$D_S = 32.0 \sin 35^\circ = 18.4 \text{ km}$$

Example 2: Solution (continued)

(b) Find the distances you would have to fly first in a direction 45.0° south of west and then in a direction 45.0° west of north. These are the components of the displacement along a different set of axes-one rotated 45° .

$$heta' = 35^{\circ} - 45^{\circ} = -10^{\circ}$$
 $D_{SW} = 32.0 \cos 10^{\circ} = 31.5 \text{ km}$
 $D_{NW} = 32.0 \sin 10^{\circ} = 5.56 \text{ km}$

Figure: Rotated Axes

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

21/29

Example 3: Vector Addition Verification

Problem: Verify sum of vectors \vec{A} (27.5 m at 66° North of East) and \vec{B} (30.0 m at 112° North of East)

Steps:

- Resolve vectors into components
- Sum components
- Find magnitude and direction of resultant

Figure: Vector Addition

Example 3: Solution

Trigonometry is left as an exercise.

$$R_{\rm x} = 11.19~{\rm m} + (-11.25~{\rm m}) = -0.06~{\rm m}$$
 $R_{\rm y} = 25.28~{\rm m} + 28.00~{\rm m} = 53.28~{\rm m}$
 $R = \sqrt{(-0.06~{\rm m})^2 + (53.28~{\rm m})^2} = 53.28~{\rm m}$
 $\theta_R = {\rm tan}^{-1} \left(\frac{53.28}{-0.06}\right) \approx -89.9^\circ$

Result: 53.28 m almost due north, slightly west

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Mr. Gullo

Long Jump World Record Analysis

Problem: The world long jump record is 8.95 m (Mike Powell, USA, 1991). Treated as a projectile, what is the maximum range obtainable by a person with a take-off speed of 9.5 m/s? Assumptions:

- Scenario 1: Motion is on level ground (take-off and landing at same height)
- Scenario 2: Person's center of mass is 1.0 m above the ground at take-off
- Optimal angle is 45°
- Air resistance is negligible

24 / 29

Scenario 1: Level Ground

Using the range formula:

$$R = \frac{v_0^2 \sin 2\theta}{g} = \frac{(9.5 \text{ m/s})^2 \sin 90^\circ}{9.8 \text{ m/s}^2} = 9.21 \text{ m}$$

25/29

Scenario 2: 1.0 m Height Difference

• Find time of flight:

$$y = -1.0 \text{ m} = (9.5 \text{ m/s})(\sin 45^{\circ})t - \frac{1}{2}(9.80 \text{ m/s}^2)t^2$$

Solving: t = 1.51 s

② Calculate range:

$$R = v_0(\cos 45^\circ)t = (9.5 \text{ m/s})(\cos 45^\circ)(1.51 \text{ s}) = 10.44 \text{ m}$$

26/29

Mr. Gullo Sept 2024

Maximum obtainable range:

- Scenario 1 (level ground): 9.21 m
- Scenario 2 (1.0 m height difference): 10.44 m

Both scenarios exceed the world record of 8.95 m, likely due to idealized assumptions.

Mr. Gullo Sept 2024 27 / 29

- Introduction
- Vectors and Scalars
- 3 Vector Addition and Subtraction: Graphical Methods
- 4 Vector Addition and Subtraction: Analytical Methods
- Projectile Motion
- Worked Examples
- Conclusion

Mr. Gullo

Vectors are essential for describing motion in two dimensions

29 / 29

- Vectors are essential for describing motion in two dimensions
- Both graphical and analytical methods are important

29 / 29

Mr. Gullo Sept 2024

- Vectors are essential for describing motion in two dimensions
- Both graphical and analytical methods are important
- Projectile motion combines horizontal and vertical components

29 / 29

- Vectors are essential for describing motion in two dimensions
- Both graphical and analytical methods are important
- Projectile motion combines horizontal and vertical components
- Practice problem-solving to master these concepts

29 / 29

Mr. Gullo Sept 2024