Introducción al Régimen Transitorio Teoría de Circuitos

Oscar Perpiñán Lamigueiro

- ① Conceptos Fundamentales
- 2 Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden

Conceptos Fundamentales ¿Qué es el régimen transitorio?

Respuesta de una red lineal

- 2 Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden

Permanente y Transitorio

Régimen permanente o estacionario

Las tensiones y corrientes de un circuito son constantes (continua) o periódicas (alterna) (circuito estabilizado)

Régimen transitorio

- Para alcanzar el régimen permanente (o para alternar entre dos regímenes permanentes) el circuito atraviesa el régimen transitorio.
- ▶ Posibles cambios: activación o apagado de fuentes, cambio en las cargas, cambio en el circuito (línea).
- ► En general, el estado transitorio es indeseado en sistemas eléctricos, pero provocado en sistemas electrónicos.

Acumulación de Energía

Régimen Permanente

Energía acumulada en bobinas y condensadores

Régimen Transitorio

- Redistribución y disipación de energía acumulada.
- La redistribución de energía **no** se puede realizar de forma **inmediata**
- Duración corta (μs) pero superior a 0, dependiendo de relación entre acumulación y disipación (resistencia).

① Conceptos Fundamentales

¿Qué es el régimen transitorio?

Respuesta de una red lineal

- 2 Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden

Ecuaciones integro-diferenciales

Al aplicar Kirchhoff a un circuito lineal obtenemos ecuaciones integro-diferenciales.

$$u_L(t) = L \cdot \frac{di_L(t)}{dt} \leftrightarrow i_L(t) = \frac{1}{L} \int_{-\infty}^t u_L(t') dt'$$
$$i_C(t) = C \cdot \frac{du_C(t)}{dt} \leftrightarrow u_C(t) = \frac{1}{C} \int_{-\infty}^t i_C(t') dt'$$

Por ejemplo, la ecuación de un circuito RLC será de la forma:

$$a \cdot \frac{d^2 f(t)}{dt^2} + b \cdot \frac{df(t)}{dt} + c \cdot f(t) = g(t)$$

Respuesta completa de una red lineal

La solución de esta ecuación para t>0 (respuesta completa del circuito lineal al transitorio) tiene dos componentes:

$$f(t) = f_n(t) + f_{\infty}(t)$$

- Respuesta **natural** o propia, $f_n(t)$:
 - Respuesta sin fuentes.
 - Determinada por la energía almacenada previamente y por la configuración del circuito.
 - Contiene constantes de integración. Se necesita información del estado del circuito en el instante que da origen al transitorio.
- ▶ Respuesta **forzada** o particular, $f_{\infty}(t)$:
 - ▶ Determinada por las fuentes existentes en t > 0.
 - ightharpoonup Es la respuesta del circuito tras un tiempo suficiente, $t \to \infty$ (régimen permanente).

Condiciones iniciales

- ightharpoonup El instante del cambio se representa habitualmente con t=0:
 - $t = 0^-$: tiempo inmediatamente anterior al cambio.
 - $ightharpoonup t = 0^+$: tiempo inmediatamente posterior al cambio.
- ► Las **condiciones iniciales** son el estado del circuito en el instante temporal en el que se produce el cambio.
- Determinan las **constantes de integración** de la respuesta natural.
- **Se calculan** con las energías almacenadas en bobinas y condensadores en $t = 0^-$.
- **Se aplican** a la topología del circuito en $t = 0^+$.

Resistencia

No acumula energía: sigue los cambios de forma instantánea.

$$u(t) = Ri(t)$$

Inductancia

La corriente en una bobina no puede variar de forma abrupta (implica tensión infinita).

$$u_L(t) = L \cdot \frac{di_L(t)}{dt} \leftrightarrow i_L(t) = \frac{1}{L} \int_{-\infty}^t u_L(t') dt'$$

$$i_L(0^-) = i_L(0^+)$$

Capacidad

La tensión en un condensador no puede variar de forma abrupta (implica corriente infinita).

$$i_{C}(t) = C \cdot \frac{du_{C}(t)}{dt} \leftrightarrow u_{C}(t) = \frac{1}{C} \int_{-\infty}^{t} i_{C}(t') dt'$$

$$u_{C}(0^{-}) = u_{C}(0^{+})$$

Ejemplo

El interruptor lleva en la posición (1) desde un tiempo infinito y pasa a la posición (2) en t = 0:

- Conceptos Fundamentales
- 2 Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden

Definición

- ► Circuitos que tienen un **único elemento de acumulación** (o *varios elementos que pueden ser simplificados a un elemento equivalente*) y parte resistiva.
- ► Ecuación diferencial de primer orden: la respuesta natural es siempre una exponencial decreciente.
- Circuitos típicos:
 - ► RL serie
 - RC paralelo

Respuesta natural y forzada

- El método de resolución analiza el circuito en tres etapas:
 - **1** Cálculo de las **condiciones iniciales**, analizando el circuito en t < 0.
 - **2 Respuesta natural**: análisis del circuito *sin fuentes* en t > 0 (la energía acumulada en t < 0 se disipa en la resistencia).
 - **3 Respuesta forzada**: análisis del circuito *con fuentes* en t > 0 (la respuesta está determinada por la forma de onda de las fuentes).

- Conceptos Fundamentales
- 2 Circuitos de Primer Orden
 - Circuito RL serie
 - Circuito RC paralelo
 - Análisis Sistemático
- 3 Circuitos de Segundo Orden

Circuito básico

- ightharpoonup En t < 0 la fuente alimenta el circuito RL (la bobina almacena energía).
- ightharpoonup En t=0 la fuente se desconecta.
- ightharpoonup En t > 0 la bobina se descarga en la resistencia.

Respuesta natural

Ecuaciones

$$u_R(t) + u_L(t) = 0$$
$$Ri + L\frac{di}{dt} = 0$$

Solución Genérica

$$i(t) = Ae^{st}$$

Ecuación Característica

$$s + \frac{R}{L} = 0 \Rightarrow s = -\frac{R}{L}$$

Condiciones Iniciales

Analizando circuito para $t < 0 \dots$

... obtenemos
$$i(0^-) = I_0 = \frac{U_0}{R}$$

Respuesta Natural

Por otra parte, para t > 0:

$$i(t) = Ae^{-R/Lt}$$
$$i(0^+) = Ae^0 = A$$

Y dada la condición de continuidad, $i(0^+) = i(0^-)$:

$$A = I_0$$

Por tanto, la respuesta natural es:

$$i(t) = I_0 e^{-R/Lt}$$

Constante de tiempo

$$i(t) = I_0 e^{-t/\tau}$$

- $au = \frac{L}{R}$ es la constante de tiempo (unidades [s]).
- ▶ Ratio entre almacenamiento (*L*) y disipación (*R*).
- ightharpoonup Valores altos de au implican decrecimiento lento.
- ► La respuesta natural «desaparece» tras $\simeq 5\tau$.

Balance Energético

La energía acumulada en la bobina en t < 0 se disipa en la resistencia en t > 0

$$W_R = \int_0^\infty Ri^2(t)dt =$$

$$= \int_0^\infty R(I_0e^{-t/\tau})^2dt =$$

$$= \frac{1}{2}LI_0^2 = W_L$$

Respuesta forzada

Cambiemos el funcionamiento del interruptor: en t > 0 la fuente alimenta el circuito RL.

Respuesta forzada

Las ecuaciones son ahora:

$$u_R(t) + u_L(t) = u(t) \rightarrow Ri + L\frac{di}{dt} = U_0$$

Para la solución particular, i_{∞} , se propone una función análoga a la excitación (analizando circuito para t>0)

$$i(t) = i_n(t) + i_{\infty}(t)$$
$$i_n(t) = Ae^{st}$$
$$i_{\infty}(t) = U_0/R$$

Constante de integración

Particularizamos las ecuaciones en $t = 0^+$:

$$i(0^{+}) = i_{n}(0^{+}) + i_{\infty}(0^{+})$$

$$i(0^{+}) = A + i_{\infty}(0^{+})$$

$$A = i(0^{+}) - i_{\infty}(0^{+})$$

Respuesta completa (ejemplo)

$$i(t) = i_n(t) + i_{\infty}(t)$$

$$i_n(t) = Ae^{st}$$

$$i_{\infty}(t) = U_0/R$$

$$A = i(0^+) - i_{\infty}(0^+)$$

Suponiendo que la bobina está inicialmente descargada, $i(0^-)=0$, y teniendo en cuenta la condición de continuidad, $i(0^+)=i(0^-)=0$, obtenemos $A=0-U_0/R$.

La solución completa es:

$$i(t) = \frac{U_0}{R} (1 - e^{-\frac{t}{\tau}})$$

Respuesta completa

Expresión general de la respuesta completa

$$i(t) = [i(0^+) - i_{\infty}(0^+)] e^{-t/\tau} + i_{\infty}(t)$$

- $i(0^+)$: corriente en la bobina, condiciones iniciales, $i(0^-) = i(0^+)$.
- $ightharpoonup i_{\infty}(t)$: corriente en la bobina en régimen permanente para t>0.
- lacksquare $i_{\infty}(0^+)$: corriente en la bobina en régimen permanente particularizada en t=0.

Equivalente de Thévenin

- Conceptos Fundamentales
- 2 Circuitos de Primer Orden

Circuito RL serie

Circuito RC paralelo

Análisis Sistemático

3 Circuitos de Segundo Orden

Circuito básico

- ightharpoonup En t < 0 la fuente alimenta el circuito RC (el condensador se carga).
- ightharpoonup En t=0 se desconecta la fuente
- ightharpoonup En t > 0 el condensador comienza a descargarse en la resistencia.

Respuesta natural

Ecuaciones

$$i_R(t) + i_C(t) = 0$$
$$Gu + C\frac{du}{dt} = 0$$

Solución Genérica

$$u(t) = Ae^{st}$$

Respuesta natural

$$I_0e^{-G/Ct}$$

Constante de tiempo

- $au = \frac{C}{C}$ es la constante de tiempo (unidades [s]).
- ▶ Ratio entre almacenamiento (*C*) y disipación (*G*).

$$u(t) = U_0 e^{-t/\tau}$$

Balance Energético

La energía acumulada en el condensador en t<0 se disipa en la resistencia (conductancia) en t>0

$$W_G = \int_0^\infty Gu^2(t)dt = \frac{1}{2}CU_0^2 = W_C$$

Expresión general de la respuesta completa

$$u(t) = [u(0^+) - u_{\infty}(0^+)] e^{-t/\tau} + u_{\infty}(t)$$

- $\triangleright u(0^+)$: tensión en el condensador, condiciones iniciales, $u(0^-) = u(0^+)$.
- $\blacktriangleright u_{\infty}(t)$: tensión en el condensador en régimen permanente para t>0.
- lacksquare $u_{\infty}(0^+)$: tensión en el condensador en régimen permanente particularizada en t=0.

Ejemplo con respuesta forzada

$$u(t) = [u(0^+) - u_{\infty}(0^+)] e^{-t/\tau} + u_{\infty}(t)$$

Suponiendo que el condensador está inicialmente descargado:

$$u(0^{+}) = u(0^{-}) = 0$$

 $u_{\infty}(0^{+}) = I_{0}/G$
 $u(t) = \frac{I_{0}}{G}(1 - e^{-\frac{t}{\tau}})$

Equivalente de Norton

- Conceptos Fundamentales
- 2 Circuitos de Primer Orden

Circuito RL serie

Circuito RC paralelo

Análisis Sistemático

3 Circuitos de Segundo Orden

Equivalente de Thévenin/Norton

Procedimiento General

- ▶ Dibujar el circuito para t < 0.
 - ▶ Determinar variables en régimen permanente, $u_c(t)$, $i_L(t)$.
 - Particularizar para t = 0, obteniendo $u_c(0^-)$ o $i_L(0^-)$.
 - Continuidad: $u_c(0^+) = u_c(0^-)$, $i_L(0^+) = i_L(0^-)$.
- ▶ Dibujar el circuito para t > 0.
 - Calcular el equivalente de Thevenin (Norton) visto por el elemento de acumulación.
 - La constante de tiempo de la respuesta natural es $\tau = \frac{L}{R_{th}}$ o $\tau = \frac{C}{G_{th}}$.
 - ► Calcular las variables $i_L(t)$ o $u_c(t)$ en régimen permanente, obteniendo $i_\infty(t)$ o $u_\infty(t)$.
- Obtener respuesta completa:

$$i_L(t) = (i_L(0^+) - i_{\infty}(0^+)) e^{-t/\tau} + i_{\infty}(t)$$

$$u_C(t) = (u_C(0^+) - u_{\infty}(0^+)) e^{-t/\tau} + u_{\infty}(t)$$

- Conceptos Fundamentales
- 2 Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden

Introducción

- Circuitos que tienen dos elementos de acumulación que intercambian energía, y parte resistiva que disipa energía.
- ► Ecuación diferencial de segundo orden: la respuesta natural incluye exponenciales decrecientes y quizás señal sinusoidal.
- Circuitos típicos:
 - ► RLC serie
 - ► RLC paralelo

Respuesta natural y forzada

- El método de resolución analiza el circuito en dos etapas:
 - ightharpoonup Sin fuentes: **respuesta natural** (la energía acumulada en t < 0 se redistribuye).
 - Con fuentes: respuesta forzada (determinada por la forma de onda de las fuentes).

- Conceptos Fundamentales
- 2 Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden
 - Circuito RLC serie
 - Circuito RLC paralelo

Circuito básico

Respuesta natural (t > 0)

$$Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C} \int_{-\infty}^{t} i(t')dt' = 0$$

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{1}{C}i = 0 \Rightarrow \sqrt{\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i} = 0$$

Solución

Ecuación diferencial

$$\frac{d^{2}i}{dt^{2}} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i = 0$$
$$i_{n}(t) = A_{1}e^{s_{1}t} + A_{2}e^{s_{2}t}$$

Ecuación característica

$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0$$

$$s_{1,2} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^{2} - \frac{1}{LC}}$$

Parámetros

$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0$$

$$s^{2} + 2\alpha s + \omega_{0}^{2} = 0$$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$i_{n}(t) = A_{1}e^{s_{1}t} + A_{2}e^{s_{2}t}$$

$$\alpha = \frac{R}{2L}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

$$\xi = \frac{\alpha}{\omega_0}$$

- \triangleright α : coeficiente de amortiguamiento exponencial
- $ightharpoonup \omega_0$: pulsación natural no amortiguada
- $ightharpoonup \omega_d$: pulsación natural amortiguada
- \triangleright ξ : factor de amortiguamiento

Posibles soluciones

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$\alpha > \omega_0, \xi > 1$$

- $ightharpoonup s_{1,2}$: dos soluciones reales (negativas) distintas
- ► Circuito sobreamortiguado.

$$\alpha = \omega_0, \xi = 1$$

- $ightharpoonup s_{1,2}$: solución real doble.
- ► Circuito con amortiguamiento crítico.

$\alpha < \omega_0, \xi < 1$

- $ightharpoonup s_{1,2}$: dos soluciones complejas conjugadas
- ► Circuito subamortiguado.

Tipos de Respuesta

- ► Tipo de respuesta determinado por relación entre *R* y *L*, *C* (disipación y almacenamiento).
- Resistencia crítica ($\alpha = \omega_0, \xi = 1$):

$$R_{cr} = 2\sqrt{\frac{L}{C}}$$

Tipos

- ► $R > R_{cr}$, $\alpha > \omega_0$, $\xi > 1$: **sobreamortiguado**
- ► $R = R_{cr}$, $α = ω_0$, ξ = 1: amortiguamiento crítico
- ► $R < R_{cr}$, $α < ω_0$, ξ < 1: subamortiguado

Circuito Sobreamortiguado ($\alpha > \omega_0$)

Amortiguamiento Crítico ($\alpha = \omega_0$)

Circuito Subamortiguado ($\alpha < \omega$)

$$i_n(t) = (B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t))e^{-\alpha t}$$

Valores Importantes

- ► **Tiempo de Subida**: tiempo para subir de 10% al 90% del valor en régimen permanente.
- ► Tiempo de Establecimiento: tiempo para que la diferencia entre la respuesta y el régimen permanente permanezca dentro de una banda del 1%.

Valores Importantes

- Valor máximo y Tiempo del Valor Máximo.
- ➤ Sobretensión: porcentaje del valor máximo respecto del régimen permanente.

Condiciones Iniciales

Dos constantes a determinar

Son necesarias dos tipos de condiciones iniciales:

$$i_L(0^+) = i_L(0^-)$$
 $u_L(t) = L \cdot \frac{di_L(t)}{dt} \longrightarrow \frac{di_L(t)}{dt} \Big|_{t=0^+} = \frac{1}{L} u_L(0^+)$

Derivadas en el origen

Para obtener valores de las derivadas en el origen hay que resolver el circuito en $t=0^+$ empleando las condiciones de continuidad.

Derivadas en $t = 0^+$

$$\frac{di_L(t)}{dt}\bigg|_{t=0^+} = \frac{1}{L}u_L(0^+)$$

$$u_L(0^+) = -u_R(0^+) - u_c(0^+)$$

$$u_R(0^+) = Ri_L(0^+)$$

$$\frac{di_L(t)}{dt}\bigg|_{t=0^+} = -\frac{1}{L}\left(Ri_L(0^+) + u_c(0^+)\right)$$

Respuesta Completa

Las condiciones iniciales deben evaluarse teniendo en cuenta la respuesta forzada (si existe).

$$i_L(0^+) = i_n(0^+) + i_\infty(0^+)$$
 $\frac{di_L}{dt}\Big|_{t=0^+} = \frac{di_n}{dt}\Big|_{t=0^+} + \frac{di_\infty}{dt}\Big|_{t=0^+}$

Ejemplo de Respuesta Completa

Circuito RLC serie sobreamortiguado con generador de tensión DC funcionando en t > 0.

Respuesta Completa

$$i_L(t) = I_{\infty} + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Condiciones Iniciales

$$i_L(0^+) = I_{\infty} + A_1 + A_2$$

 $\frac{di_L(t)}{dt}\Big|_{t=0^+} = 0 + A_1s_1 + A_2s_2$

- ① Conceptos Fundamentales
- 2 Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden

Circuito RLC serie

Circuito RLC paralelo

Circuito básico

Respuesta natural (t > 0)

$$Gu(t) + C\frac{du(t)}{dt} + \frac{1}{L} \int_{-\infty}^{t} u(t')dt' = 0$$
$$\frac{d^2u}{dt^2} + \frac{G}{C}\frac{du}{dt} + \frac{1}{LC}u = 0$$

Solución

Ecuación diferencial

$$\frac{d^2u}{dt^2} + \frac{G}{C}\frac{du}{dt} + \frac{1}{LC}u = 0$$
$$u_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Ecuación característica

$$s^{2} + \frac{G}{C}s + \frac{1}{LC} = 0$$

$$s_{1,2} = -\frac{G}{2C} \pm \sqrt{\left(\frac{G}{2C}\right)^{2} - \frac{1}{LC}}$$

Parámetros

Ecuación característica

$$s^{2} + \frac{G}{C}s + \frac{1}{LC} = 0$$
$$s^{2} + 2\alpha s + \omega_{0}^{2} = 0$$
$$s_{1,2} = -\alpha \pm \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$u_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

$$\alpha = \frac{G}{2C}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

$$\xi = \frac{\alpha}{\omega_0}$$

Tipos de Respuesta

- ▶ Tipo de respuesta determinado por relación entre G y L, C (disipación y almacenamiento).
- Conductancia crítica ($\alpha = \omega_0, \xi = 1$):

$$G_{cr}=2\sqrt{rac{C}{L}}$$

Tipos

- $G > G_{cr}$, $\alpha > \omega_0$, $\xi > 1$: **sobreamortiguado**
- $G = G_{cr}$, $\alpha = \omega_0$, $\xi = 1$: amortiguamiento crítico
- ► $G < G_{cr}$, $\alpha < \omega_0$, $\xi < 1$: subamortiguado

Tipos de Respuesta

ightharpoonup Circuito Sobreamortiguado ($\alpha > \omega_0$)

$$u_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

ightharpoonup Amortiguamiento Crítico ($\alpha = \omega_0$)

$$u_n(t) = (A_1 + A_2 t)e^{st}$$

ightharpoonup Circuito Subamortiguado ($\alpha < \omega$)

$$u_n(t) = (B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t))e^{-\alpha t}$$

Condiciones Iniciales

Dos constantes a determinar

Son necesarias dos tipos de condiciones iniciales:

$$i_C(t) = C \cdot \frac{du_C(t)}{dt} \longrightarrow \frac{du_C(t)}{dt} \Big|_{t=0^+} = \frac{1}{C}i_C(0^+)$$

Derivadas en el origen

Para obtener valores de las derivadas en el origen hay que resolver el circuito en $t=0^+$ empleando las condiciones de continuidad.

Derivadas en $t = 0^+$: ejemplo RLC paralelo

$$\left. \frac{du_c(t)}{dt} \right|_{t=0^+} = \frac{1}{C} i_C(0^+)$$

$$i_C(0^+) = -i_R(0^+) - i_L(0^+)$$

 $i_R(0^+) = \frac{1}{R}u_C(0^+)$

$$\left| \frac{du_{c}(t)}{dt} \right|_{t=0^{+}} = -\frac{1}{C} \left(\frac{1}{R} u_{C}(0^{+}) + i_{L}(0^{+}) \right)$$

Respuesta Completa

Las condiciones iniciales deben evaluarse teniendo en cuenta la respuesta forzada (si existe).

$$u_{C}(0^{+}) = u_{n}(0^{+}) + u_{\infty}(0^{+})$$

$$\frac{du_{C}(t)}{dt}\Big|_{t=0^{+}} = \frac{du_{n}(t)}{dt}\Big|_{t=0^{+}} + \frac{du_{\infty}(t)}{dt}\Big|_{t=0^{+}}$$

Ejemplo de Respuesta Completa

Circuito RLC paralelo sobreamortiguado con generador de corriente DC funcionando en t > 0.

Respuesta Completa

$$u_c(t) = U_{\infty} + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Condiciones Iniciales

$$u_c(0^+) = U_{\infty} + A_1 + A_2$$

$$\frac{du_C(t)}{dt}\Big|_{t=0^+} = 0 + A_1s_1 + A_2s_2$$