Exercise 0.1 (7.15). Let dim $V < \infty, F = \mathbb{C}$, and let $A \in \text{End}(V)$ be normal. Prove that if B commutes with A, then it commutes with A^* as well.

Exercise 0.2 (8.6). Let $A \in \text{End}(V)$ be nilpotent, and $U \subset V$ invariant. Show that the quotient map $\overline{A} \in \text{End}(V/U)$ is nilpotent.

Proof. Suppose $A^k=0$ for some k>0. We claim that $\overline{A}^k=0$ for the same k. We recall by lemma 2.16 that $\overline{A}\in \operatorname{End}(V/U)$ is the unique endomorphism making $\overline{A}\circ\pi=\pi\circ A$ commute where $\pi\colon V\to V/U$ is the quotient map. It thus immediately follows that $\overline{A^k}=0$ since this satisfies the commutative criterion. Now, we claim that suppose that for N we have shown $\overline{A}^N\circ\pi=\pi\circ A^N$. Then we get

$$\pi \circ A^{N+1} = (\pi \circ A) \circ A^N = \overline{A} \circ \pi \circ A^N = \overline{A}^{N+1} \circ \pi$$

so since the case for N=1 was shown, we get by induction that $\overline{A}^k \circ \pi = \pi \circ A^k = 0$. Now, π is surjective by lemma 2.9, so given some $\overline{x} \in V/U$, let $x \in V$ be such that $\pi(x) = \overline{x}$. Then $\overline{A}^k \overline{x} = \overline{A}^k (\pi(x)) = \pi \circ A^K(x) = \pi(0) = \overline{0}$. So indeed \overline{A}^k is equal to the zero endomorphism in End (V/U). Thus \overline{A} is nilpotent.

Exercise 0.3 (10.11). Show $\chi_{A^{-1}}(\lambda) = (-\lambda)^n \det(A)^{-1} \chi_A(\lambda^{-1})$ for $A \in GL(V)$, $\lambda \neq 0$ and $n = \dim V$.

Proof. We have

$$\det (A^{-1} - \lambda I) = \det (A^{-1} (I - \lambda A))$$

$$= \det (-A^{-1} \lambda (A - \lambda^{-1} I))$$

$$= \det (A^{-1}) \det (-\lambda I) \det (A - \lambda^{-1} I)$$
 (Thm 10.1.(ii))
$$= \det (A)^{-1} (-\lambda)^n \chi_A (\lambda^{-1})$$

where the last step follows since $\det (A^{-1}) = \det(A)^{-1}$ by theorem 10.3, $\det (-\lambda I) = (-\lambda)^{\dim V} = (-\lambda)^n$ by theorem 10.1.(i), and $\det (A - \lambda^{-1}I) = \chi_A(\lambda^{-1})$ by definition 10.19, (10.2) and that $\chi_A(x) := \chi_{[A]}(x)$.