Manifolds

Cloudifold

 $March\ 24,\ 2022$

0 Manifolds and Maps

Definition 0.1. A map $f: U \to \mathbb{R}^m$ (where U is an open subset of \mathbb{R}^n) is called C^k if the k-th derivative of f exist and continuous.

f is called C^{∞} or **smooth** if f is C^k for any $k \in \mathbb{N}$.

 $f: U \to V$ is called C^{ω} or **analytic** if f is C^{∞} and for all $x \in U$, there exists open neighborhood U_x such that the Taylor series expansion of f at x pointwise converges to f on U_x

Definition 0.2. For a C^r $(r \ge 1)$ map $f: U \to R^m$ (where U is an open subset of \mathbb{R}^n), $y \in f(U)$ is called a **regular value** of f if for any $x \in f^{-1}(y)$, the rank of the Jacobian matrix of f at x is m.

Note. By Weierstrass M-test, the "pointwise converges" condition in the definition of C^{ω} function can be replaced equivalently by "uniform converges".

Definition 0.3. An *n*-dimensional C^r manifold (we assume $r \ge 1$) (M, A) is datas:

- A T_2 space M whose topology have a countable basis
- $A = \{(U_j, \varphi_j)\}_{j \in J}$, which consists of open cover $\{U_j\}_{j \in J}$ of M and homeomorphisms $\{\varphi_j : U_j \to O_j\}_{j \in J}$. (where O_j is an open subset of \mathbb{R}^n)

with condition:

• Forall $i, j \in J$, the homeomorphism $\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$ is C^r . (these maps are called **transition maps**)

A single (U_i, φ_i) is called a **chart**, A is called (C^r) atlas or differential structure.

Note. Manifolds defined above are locally compact, hence paracompact and compactly generated Hausdorff.

Definition 0.4. Suppose M, N are C^r manifolds with dimensions n, k and at as $A = \{(U_j, \varphi_j)\}_{j \in J}, B = \{(V_i, \phi_i)\}_{i \in I}$. The **product of two manifolds** is a (n + k)-dimensional manifold with underlying space $M \times N$ and at as $A \times B := \{(U_j \times V_i, \varphi_j \times \phi_i)\}_{(j,i) \in J \times I}$.

Definition 0.5. Suppose N is C^r manifolds with dimension n and atlas $A = \{(U_j, \varphi_j)\}_{j \in J}$, M is another manifold. $h: M \hookrightarrow N$ is topological embedding. The **induced atlas** on M is atlas $h^*A := \{(h^{-1}(U_j), \varphi_j \circ h)\}_{j \in J}$.

Definition 0.6. Suppose N is C^r manifolds with dimension n and at a $A = \{(U_j, \varphi_j)\}_{j \in J}$, M is subspace of N. M is a C^r submanifold of dimension k of (N, A) if for any $x \in M$ there exists a chart (U_j, φ_j) such that $x \in U_j$ and

$$\varphi_j(M \cap U_j) = \phi_j(U_j) \cap \mathbb{R}^k$$

Such charts combine together give a atlas of M.

We also say that M is a submanifold of **codimension** n - k.

Note. Open subset U of a n-dimensional manifold M is obviously a submanifold of dimension n.

Example 0.1. The **real general linear group** $GL_n(\mathbb{R})$ is an open analytic submanifold of $(n \times n)$ -dimensional manifold $M_n(\mathbb{R})$ since $GL_n(\mathbb{R}) = \det^{-1}(\mathbb{R} - \{0\})$ and the manifold structure (and topology) of $Mat_{n \times n}(\mathbb{R})$ is given by bijection in (**Set**) $Mat_{n \times n}(\mathbb{R}) \hookrightarrow \mathbb{R}^{n \times n}$.

Example 0.2. The (non-compact) **real Stiefel manifold** $\operatorname{St}_k(\mathbb{R}^n)$ is the set of \mathbb{R} -linear monomorphisms $\mathbb{R}^k \to \mathbb{R}^n$, which is equivalent (in **Set**) to the set of linearly independent elements

$$(a_1,\ldots,a_k)\in\mathbb{R}^n\times\cdots\times\mathbb{R}^n=\mathbb{R}^{n\times k}$$

(also called set of k-frames in \mathbb{R}^n)

 $\operatorname{St}_k(\mathbb{R}^n)$ is an open analytic submanifold of $\mathbb{R}^{n \times k}$, since $\operatorname{St}_k(\mathbb{R}^n) = \bigcap_{1 \le r \le n-k+1} \det_r^{-1}(\mathbb{R} - \{0\})$.

Where \det_r is defined by:

$$\det_{r} \left(\begin{bmatrix} a_{1,1} & \cdots & a_{1,k} \\ a_{2,1} & \cdots & a_{2,k} \\ \vdots & & \vdots \\ a_{n-1,1} & \cdots & a_{n-1,k} \\ a_{n,1} & \cdots & a_{n,k} \end{bmatrix} \right) := \det \left(\begin{bmatrix} a_{r,1} & \cdots & a_{r,k} \\ a_{r+1,1} & \cdots & a_{r+1,k} \\ \vdots & & \vdots \\ a_{r+k-1,1} & \cdots & a_{r+k-1,k} \end{bmatrix} \right)$$

Example 0.3. The Grassmann manifold $\operatorname{Gr}_k(\mathbb{R}^n) = \operatorname{St}_k(\mathbb{R}^n) / \operatorname{GL}_k(\mathbb{R})$ is the set k-dimensional subspaces of \mathbb{R}^n . Define $U_V := \{W \in \operatorname{Gr}_k(\mathbb{R}^n) \mid \operatorname{rank}(p_V|_W : W \to V) = k\}$, where $p_V : \mathbb{R}^n \to V$ is the orthogonal projection. Let $i_W: V \to W$ be inverse of $p_V|_W$, define bijection:

$$\begin{array}{c} U_V \xrightarrow{\varphi_V} \operatorname{Hom}_{\mathbb{R}}(V,V^\perp) \approx \mathbb{R}^{k \times (n-k)} \\ W \longmapsto p_{V^\perp} \circ i_W \\ \operatorname{Im}(\operatorname{id}_V \times M) \longleftrightarrow M \end{array}$$

Where $p_{V^{\perp}}: \mathbb{R}^n = V \oplus V^{\perp} \to V^{\perp}$.

Atlas on $\operatorname{Gr}_k(\mathbb{R}^n)$ is given by $\{(U_V, \varphi_V)\}_{V \in \operatorname{Gr}_k(\mathbb{R}^n)}$. We verify that the transition maps are analytic. Suppose E is spaned by $\mathbf{e}_1, \dots, \mathbf{e}_k, V$ have orthonormal basis $[\mathbf{v}_1, \cdots, \mathbf{v}_k]$ and V^{\perp} have orthonormal basis $[\mathbf{v}_{k+1}, \cdots, \mathbf{v}_n]$. Let $\mathrm{GL}_n(\mathbb{R}) \ni T : E \oplus E^{\perp} \to V \oplus V^{\perp}$ be the transformation sends each \mathbf{e}_i to \mathbf{v}_i . Let [T] be its matrix respect to $[\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n]$, and $[T^{-1}]$ is matrix of its inverse. then $p_{V^{\perp}}$ is given by

$$a = [\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n] \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \mapsto [\mathbf{v}_{k+1}, \mathbf{v}_{k+2}, \cdots, \mathbf{v}_n] [T^{-1}]_{i > k} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Suppose $M \in \operatorname{Hom}_{\mathbb{R}}(E, E^{\perp})$ satisfy $W := \operatorname{Im}(\operatorname{id}_E \times M) \in U_V$, (that is $M \in \varphi_E^{-1}(U_E \cap U_V)$) let $[m_{i,j}]_{k \leq i \leq n, 1 \leq j \leq k}$ be its matrix respect to $[\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n]$. Then $p_V|_W$ is given by:

$$a = [\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n] \begin{bmatrix} I_k \\ M \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{bmatrix} \longmapsto [\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k] [T^{-1}]_{i \le k} \begin{bmatrix} I_k \\ M \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{bmatrix}$$

And i_W is given by:

$$b = [\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k] \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix} \longmapsto [\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n] \begin{bmatrix} I_k \\ M \end{bmatrix} \left(\begin{bmatrix} T^{-1} \end{bmatrix}_{i \leq k} \begin{bmatrix} I_k \\ M \end{bmatrix} \right)^{-1} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}$$

Finally, we see that $p_{V^{\perp}} \circ i_W$ is:

$$b = \left[\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right] \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{k} \end{bmatrix} \longmapsto \left[\mathbf{v}_{k+1}, \mathbf{v}_{k+2}, \cdots, \mathbf{v}_{n}\right] \left[T^{-1}\right]_{i > k} \begin{bmatrix} I_{k} \\ M \end{bmatrix} \left(\left[T^{-1}\right]_{i \leq k} \begin{bmatrix} I_{k} \\ M \end{bmatrix}\right)^{-1} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{k} \end{bmatrix}$$

and it is an analytic function on M.

Definition 0.7. Let (M,A), (N,B) be C^r -manifolds, a continuous map $f:M\to N$ is said to be C^k $(k \leq r)$ if for any charts $(U, \varphi_U) \in A$, $(V, \phi_V) \in B$, map

$$\phi_V \circ f \circ \varphi_U^{-1} : \varphi_U(U \cap f^{-1}(V)) \to \phi_V(V)$$

is C^k .

A C^r -diffeomorphism between two C^r -manifolds M, N is a C^r -map $f: M \to N$ with its C^r inverse $f^{-1}: N \to M$.

If C^r -diffeomorphism between C^r -manifolds M, N exists, then M, N are said to be C^r -diffeomorphic. Set of C^k maps from M to N is noted $\operatorname{Hom}_{C^r}(M,N)$.

Note. A C^r map which is a C^1 -diffeomorphism is a C^r -diffeomorphism.

Example 0.4. $(-)^{\perp}: \operatorname{Gr}_k(\mathbb{R}^n) \to \operatorname{Gr}_{n-k}(\mathbb{R}^n)$ is a C^{ω} -diffeomorphism.

$$\varphi_{V^{\perp}} \circ (-)^{\perp} \circ \varphi_{V}^{-1} : \operatorname{Mat}_{k \times (n-k)}(\mathbb{R}) \ni M \mapsto M^{T} \in \operatorname{Mat}_{(n-k) \times k}(\mathbb{R})$$

Definition 0.8. Let (M, A) be a C^r -manifold, $x \in M$ the **tangency relation** defined on $\operatorname{Hom}_{C^1}(\mathbb{R}|_{\sim 0}, M)_x := \{ \gamma \in \operatorname{Hom}_{C^1}(O, M) \mid 0 \in O \in \tau_{\mathbb{R}}, \ \gamma(0) = x \} \ (\tau_X \text{ is set of all open sets of } X)$ is equivalence relation which have two equivalent definitions:

1. $\gamma_1(t) \sim_T \gamma_2(t)$ if there exists chart $(U, \varphi_U) \in A$ such that $x \in U$ and

$$\frac{\mathrm{d}(\varphi_U \circ \gamma_1)}{\mathrm{d}\,t}|_{t=0} = \frac{\mathrm{d}(\varphi_U \circ \gamma_2)}{\mathrm{d}\,t}|_{t=0}$$

2. $\gamma_1(t) \sim_T \gamma_2(t)$ if for any chart $(U, \varphi_U) \in A$ such that $x \in U$, we have

$$\frac{\mathrm{d}(\varphi_U \circ \gamma_1)}{\mathrm{d}\,t}|_{t=0} = \frac{\mathrm{d}(\varphi_U \circ \gamma_2)}{\mathrm{d}\,t}|_{t=0}$$

Note. 2. \Longrightarrow 1. is obvious.

1. \implies 2. because transition maps are C^r -diffeomorphisms, whose derivatives are linear isomorphisms.

Definition 0.9. Let (M,A) be a *n*-dimensional C^r -manifold, $x \in M$ the space of tangent vectors on M at x is defined by: $T_x(M) := \operatorname{Hom}_{C^1}(\mathbb{R}|_{\sim 0}, M)_x / \sim_T$.

Note. If (U, φ_U) is a chart with $x \in U$, then φ_U defines a bijection $d(\varphi_U \circ -) : T_x(M) \to \mathbb{R}^n$ by:

$$\frac{\mathrm{d}(\varphi_U \circ \gamma)}{\mathrm{d}\,t} \longleftrightarrow [\gamma]_{\sim_T} \qquad \gamma_{\mathbf{v}} : f_{\mathbf{v}}^{-1}(\varphi_U(U)) \xrightarrow{f_{\mathbf{v}}} \varphi_U(U) \xrightarrow{\varphi_U^{-1}} U$$

If (V, φ_V) is another chart with $x \in V$, then we have commutative diagram:

where $y = \varphi_U^{-1}(x)$.

Definition 0.10. Let (M,A) be an n-dimensional C^{r+1} -manifold, the space of all tangent vectors of M is a 2n-dimensional C^r -manifold defined by $T(M) := \bigsqcup_{x \in M} T_x(M)$ with at $\{(T(U), \phi_U)\}_{U \in A}$

(called natural atlas) defined by

The **tangent bundle** on M is the bundle

$$p_M: T(M) \to M$$

 $(x, [\gamma]_{\sim T}) \mapsto x$

Definition 0.11. Let (M,A),(N,B) be two C^{r+1} -manifolds, and $f:M\to N$ is an C^{r+1} map. Define an C^r map between bundles $Tf:TM\to TN$ by

$$Tf: TM \xrightarrow{\qquad \qquad \qquad} TN \\ \downarrow \qquad \qquad \qquad \downarrow \\ (x, [\gamma]_{\sim_T}) \longmapsto \qquad \qquad (f(x), [f \circ \gamma]_{\sim_T}) \\ \downarrow \uparrow \qquad \qquad \downarrow \uparrow \\ (\varphi_U(x), d(\varphi_U \circ \gamma)) \longmapsto \qquad (\phi_V(f(x)), d(\phi_V \circ f \circ \varphi_U^{-1}) \circ d(\varphi_U \circ \gamma))$$

Note. In fact, T is a functor from category of C^{r+1} manifolds to C^r manifolds. And there is natural diffeomorphism $T(M \times N) \approx_{\mathrm{d}} TM \times TN$.

Example 0.5. Use atlas of $S^n := \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} \mid \sqrt{\sum_i x_i^2} = 1\}$ given by stereographic projections:

$$U_0 := S^n - (1, 0, \dots, 0) \xrightarrow{\varphi_0} \mathbb{R}^n$$

$$(x_0, x_1, \dots, x_n) \longmapsto (\frac{x_1}{1 - x_0}, \dots, \frac{x_n}{1 - x_0})$$

$$(\frac{s^2 - 1}{s^2 + 1}, \frac{2x'_1}{s^2 + 1}, \dots, \frac{2x'_n}{s^2 + 1}) \longleftrightarrow (x'_1, \dots, x'_n)$$

$$\text{where } s^2 := \sum_{1 \le i \le n} x'_i^2 = \frac{1 + x_0}{1 - x_0}$$

$$U_\infty := S^n - (-1, 0, \dots, 0) \xrightarrow{\varphi_\infty} \mathbb{R}^n$$

$$(x_0, x_1, \dots, x_n) \longmapsto (\frac{x_1}{1 + x_0}, \dots, \frac{x_n}{1 + x_0})$$

$$(\frac{1 - s'^2}{s'^2 + 1}, \frac{2x'_1}{s'^2 + 1}, \dots, \frac{2x'_n}{s'^2 + 1}) \longleftrightarrow (x'_1, \dots, x'_n)$$

$$\text{where } s'^2 := \sum_{1 \le i \le n} x'_i^2 = \frac{1 - x_0}{1 + x_0}$$

There is a diffeomorphism $TS^n \times \mathbb{R} \approx_{\mathrm{d}} S^n \times \mathbb{R}^{n+1}$ defined as:

$$TU_{\lambda} \times \mathbb{R} \approx \varphi_{\lambda}(U_{\lambda}) \times \mathbb{R}^{n} \times \mathbb{R} \to U_{\lambda} \times \mathbb{R}^{n+1}$$
$$(\mathbf{x}', \mathbf{v}, a) \mapsto (\varphi_{\lambda}^{-1}(\mathbf{x}'), d(\varphi_{\lambda}^{-1})\mathbf{v} + a \cdot \mathbf{e}_{K})$$
$$(\varphi_{\lambda}(\mathbf{x}), d(\varphi_{\lambda})\mathbf{v}', p_{K}\mathbf{v}') \leftrightarrow (\mathbf{x}, \mathbf{v}')$$

where $\lambda = 0$ or ∞ , $K = \ker d(\varphi_0) = \ker d(\varphi_\infty)$ is a 1-dimensional linear subspace, \mathbf{e}_K is the unit vector in it, and p_K is the orthogonal projection onto it. It is easy to check it is compatible with transition maps.

Note. In fact, embedding $i: M \hookrightarrow \mathbb{R}^k$ produces injective linear maps $T_x(M) \to T_{i(x)}\mathbb{R}^k$