E.1 On considère la fonction f dont l'image d'un nombre x est définie par la relation:

$$f(x) = \frac{\sqrt{x^2 - 1} - 1}{x + 1}$$

Notons \mathcal{C}_f la courbe représentative de la fonction f.

- \bigcirc Déterminer l'ensemble de définition de la fonction f.
 - (b) Déterminer les limites de la fonction f en ses bornes.
 - C La courbe \mathscr{C}_f admet-elle des asymptotes? Si oui, préciser lesquelles.
- 2 a Déterminer l'expression de la fonction f' dérivée de la fonction f.
 - b Dresser le tableau de variations de la fonction f sur l'intervalle $[1; +\infty[$.
- 3 a Justifier que la fonction f ne s'annule qu'une fois sur l'intervalle $[1; +\infty[$.
 - b Tracer la courbe représentative de la fonction f à l'aide de votre calculatrice; utiliser les fonctions de votre calculatrice pour déterminer une valeur approchée de ce zéro de la fonction f.

E.2 On considère la fonction f définie sur \mathbb{R} dont l'image d'un nombre x est définie par la relation :

$$f(x) = x - 1 + \frac{2}{x^2 + 1}$$

- 1 Déterminer l'expression de la dérivée f' de la fonction f, ainsi que celle de la dérivée seconde f''.
- (2) (a) Etudier le signe de la fonction f''.
 - b En déduire le tableau de variations de la fonction f'. (Une valeur approchée des extrémums sera cherchée à l'aide de la calculatrice)
- 3 a Montrer que la fonction f' s'annule pour x=1 et aussi en un nombre α vérifiant l'encadrement : $0.2 < \alpha < 0.3$
 - (b) En déduire le tableau de signes de la fonction f'.
- 4 a Déterminer la valeur des deux limites suivantes : $\lim_{x\mapsto -\infty} f(x) \quad ; \quad \lim_{x\mapsto +\infty} f(x)$
 - b Dresser le tableau de variations de la fonction f.

 (Une valeur approchée des extrémums sera cherchée à l'aide de la calculatrice)

E.3

1 On considère la fonction polynôme P définie pour tout réel x par :

$$P(x) = 2x^3 - 3x^2 - 1$$

- \bigcirc Etudier les variations de P.
- b Montrer que l'équation P(x)=0 admet une racine réelle et une seule, α , et que α appartient à l'intervalle]1,6;1,7[
- 2 Soit \mathcal{D} l'ensemble des réels strictement supérieurs à -1. On considère la fonction numérique f définie sur \mathcal{D} par :

$$f(x) = \frac{1-x}{1+x^3}$$

On désigne par (\mathscr{C}) la courbe représentative de f dans le plan rapporté à une repère orthonormé $(on\ prendra\ comme\ unité\ 4\ cm).$

(a) Etudier les variations de f (on utilisera pour cela les résultats du (1)).

- b Ecrire une équation de la droite (Δ) tangente à la courbe (\mathscr{C}) au point d'abscisse 0. Etudier la position de la courbe (\mathscr{C}) par rapport à la droite (Δ) dans l'intervalle]-1;1[.
- C Montrer que la courbe (\mathscr{C}) est située au-dessus de sa tangente au point d'abscisse 1. Tracer la courbe (\mathscr{C}) , la droite (Δ) et la tangente à (\mathscr{C}) au point d'abscisse 1.
- E.4 On considère la fonction f définie par : $f(x) = x^3 + 3 \cdot x$
- \bigcirc Dresser le tableau de variations de la fonction f.
 - b Justifier que le nombre 5 admet un unique antécédent par la fonction f; on notera α ce nombre.
- 2 On pose pour valeur $a_0 = 0$ et $b_0 = 2$. On souhaite construire par la méthode de dichotomie les deux suites (a_n) et (b_n) adjacentes et convergentes vers α .
 - a Compléter le tableau ci-dessous:

_						
	a_n	c_n	b_n	$f(a_n)$	$f(c_n)$	$f(b_n)$
n=0						
n=1						
n=2						
n=3						
n=4						
n=5						

(b) Avec quelle précision obtient-on la valeur de α à l'aide du tableau.