Set 10: Modeling the Dynamics of Endemic Diseases and Epidemics in Populations

Rakshit Pandhi (202201426)* and Kalp Shah (202201457)†

Dhirubhai Ambani Institute of Information & Communication Technology,

Gandhinagar, Gujarat 382007, India

CS302, Modeling and Simulation

This study models the spread of infectious diseases, distinguishing between endemic diseases, which persist in a population, and epidemics, which spread rapidly. Using coupled equations, we analyze the dynamics of infected, susceptible, and recovered groups. These models help understand disease behavior and support public health planning.

I. EPIDEMIC DISEASES

A. Model Equations

Consider a population size of N, through which an infection spreads. The population is divided into three classes — the infected class x(t), the susceptible class y(t), and the recovered class z(t), so that x(t) + y(t) + z(t) = N (constant). The coupled dynamics of these variables is given by:

$$\dot{x} = Axy - Bx \tag{1}$$

$$\dot{y} = -Axy \tag{2}$$

$$\dot{z} = Bx \tag{3}$$

in which A is the infection rate and B is the removal rate (A, B > 0). At t = 0, $x(0) = x_0$ and z(0) = 0. Hence, $y(0) = y_0 = N - x_0$, where x_0 is small $(x_0 \ll N)$.

The Euler Solutions to above equations are given as:

$$x_{n+1} = x_n + (Ax_n y_n - Bx_n)\Delta t \tag{4}$$

$$y_{n+1} = y_n + (-Ax_ny_n)\Delta t \tag{5}$$

$$z_{n+1} = z_n + (Bx_n)\Delta t \tag{6}$$

The total number of students in a boarding school is 763. Initially, a single student introduces an infectious disease in this population. Taking $A=2.18\times 10^{-3}~{\rm day}^{-1}$ and $B=0.44~{\rm day}^{-1}$ in all plots.

B. Results

FIG. 1: Where $\Delta t = 1$ hour, $x_0 = 1$, and $y_0 = 762$. The time when x reaches its maximum value is 6.46 days.

FIG. 2: Log plot

FIG. 3: Recovered Population, Where $\Delta t = 1$ hour, $z_0 = 0$.

FIG. 5: Infected vs. Susceptible, Where $\Delta t = 1$ hour, $x_0 = 1$, $y_0 = 762$. The threshold value is $\rho = 201.8349$ and the Reproduction Number is R = 3.7754.

II. ENDEMIC DISEASES

A. Model Equation

In this scenario, the total population size, denoted by N, fluctuates over time. When considering per capita death and birth rates, represented by a and b respectively (where both are greater than 0), the corresponding system of equations becomes

$$\dot{x} = Axy - Bx - ax \tag{7}$$

$$\dot{y} = bN - Axy - ay \tag{8}$$

$$\dot{z} = Bx - az \tag{9}$$

$$\dot{N} = (b - a)N \tag{10}$$

Assuming $a=b=0.02~{\rm year^{-1}},$ leading to a fixed N, we take $A=10^{-6}~{\rm year^{-1}},$ $B=0.333~{\rm year^{-1}},$ $N=10^6,$ $x_0=10^5,$ and $y_0=9\times 10^5.$

The Euler Solutions to above equations are given as:

$$x_{n+1} = x_n + (Ax_ny_n - Bx_n - ax_n)\Delta t \tag{11}$$

$$y_{n+1} = y_n + (bN_n - Ax_ny_n - ay_n)\Delta t \tag{12}$$

$$z_{n+1} = z_n + (Bx_n - az_n)\Delta t \tag{13}$$

FIG. 4: Log plot

B. Results

FIG. 6: Where $\Delta t = 1$ day and $x_0 = 10^5$

- \bullet Time when x reaches peak 1 is 4.2410 years.
- ullet Time when x reaches peak 2 is 63.8410 years.
- \bullet Time when x reaches peak 3 is 120.6986 years.

FIG. 7: Where $\Delta t = 1$ day and $y_0 = 9 \times 10^5$

FIG. 8: Where $\Delta t = 1$ day and $z_0 = 0$