Package 'growthmodels'

February 20, 2015

1001441 20, 2013
Type Package
Title Nonlinear Growth Models
Version 1.2.0
Date 2013-11-23
Author Daniel Rodriguez Perez
Maintainer Daniel Rodriguez Perez <daniel.rodriguez.perez@gmail.com></daniel.rodriguez.perez@gmail.com>
Description A compilation of nonlinear growth models used in many areas
License GPL-3
<pre>URL https://github.com/drodriguezperez/growthmodels</pre>
BugReports https://github.com/drodriguezperez/growthmodels/issues
Collate 'negativeExponential.R' 'monomolecular.R' 'mitcherlich.R' 'gompertz.R' 'logistic.R' 'chapmanRichards.R' 'richard.R' 'vonBertalanffy.R' 'weibull.R' 'loglogistic.R' 'mmf.R' 'schnute.R' 'stannard.R' 'brody.R' 'growthmodels.R' 'blumberg.R'
NeedsCompilation no
Repository CRAN
Date/Publication 2013-11-23 17:11:06
R topics documented:
growthmodels-package blumberg brody chapmanRichards generalisedLogistic generalisedRichard gompertz logistic loglogistic mitcherlich

	nmodels-package growthmodels: Nonlinear Growth Models	_
Index	1	17
	weibull	15
	vonBertalanffy	
	stannard	
	schnute	
	negativeExponential	
	monomolecular	
	mmf	1(

Description

A compilation of nonlinear growth models used in many areas.

Details

Package: growthmodels

Version: 1.2.0 License: GPL-3

Author(s)

Daniel Rodriguez Perez <daniel.rodriguez.perez@gmail.com>

References

- D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
- M. M. Kaps, W. O. W. Herring, and W. R. W. Lamberson, "Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle.," Journal of Animal Science, vol. 78, no. 6, pp. 1436-1442, May 2000.
- A. Tsoularis and J. Wallace, "Analysis of logistic growth models.," Math Biosci, vol. 179, no. 1, pp. 21-55, Jul. 2002.
- A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.

http://en.wikipedia.org/wiki/Generalised_logistic_function

blumberg 3

blumberg

Blumberg growth model

Description

Computes the Blumberg growth model and its inverse

$$y(t) = \frac{\alpha * (t + t_0)^m}{w_0 + (t + t_0)^m}$$

Usage

```
blumberg(t, alpha, w0, m, t0 = 0) 
blumberg.inverse(x, alpha, w0, m, t0 = 0)
```

Arguments

t	time
X	size
alpha	upper asymptote
w0	a reference value at $t = t0$
m	slope of growth
t0	time shift (default 0)

References

A. Tsoularis and J. Wallace, "Analysis of logistic growth models.," Math Biosci, vol. 179, no. 1, pp. 21-55, Jul. 2002.

```
growth <- blumberg(0:10, 10, 2, 0.5)
# Calculate inverse function
time <- blumberg.inverse(growth, 12, 2, 0.5)</pre>
```

4 chapmanRichards

brody

Brody growth model

Description

Computes the Brody growth model and its inverse

$$y(t) = \alpha - (\alpha - w_0)exp(-kt)$$

Usage

```
brody(t, alpha, w0, k)
brody.inverse(x, alpha, w0, k)
```

Arguments

t	time
X	size
alpha	upper asymptote
w0	the value at $t = 0$

k growth rate

References

M. M. Kaps, W. O. W. Herring, and W. R. W. Lamberson, "Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle.," Journal of Animal Science, vol. 78, no. 6, pp. 1436-1442, May 2000.

Examples

```
growth <- brody(0:10, 10, 5, 0.3)
# Calculate inverse function
time <- brody.inverse(growth, 10, 5, 0.3)</pre>
```

chapmanRichards

Chapman-Richards growth model

Description

Computes the Chapman-Richards growth model and its inverse

$$y(t) = \alpha(1 - \beta exp(-kt)^{1/(1-m)})$$

generalisedLogistic 5

Usage

```
chapmanRichards(t, alpha, beta, k, m)
chapmanRichards.inverse(x, alpha, beta, k, m)
```

slope of growth

Arguments

t time
x size
alpha upper asymptote
beta growth range
k growth rate

References

m

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

Examples

```
growth <- chapmanRichards(0:10, 10, 0.5, 0.3, 0.5)
# Calculate inverse function
time <- chapmanRichards.inverse(growth, 10, 0.5, 0.3, 0.5)</pre>
```

generalisedLogistic Generalised Logistic growth model

Description

Computes the Generalised Logistic growth model

$$y(t) = A + \frac{U - A}{1 + \beta exp(-k(t - t_0))}$$

Usage

```
generalisedLogistic(t, A, U, k, beta, t0)
generalisedLogistic.inverse(x, A, U, k, beta, t0 = 0)
```

6 generalisedRichard

Arguments

t	time
x	size
A	the lower asymptote
U	the upper asymptote
k	growth range
beta	growth range
t0	time shift (default 0)

References

http://en.wikipedia.org/wiki/Generalised_logistic_function

Examples

```
growth <- generalisedLogistic(0:10, 5, 10, 0.3, 0.5, 3)
# Calculate inverse function
time <- generalisedLogistic.inverse(growth, 5, 10, 0.3, 0.5, 3)</pre>
```

generalisedRichard

Generalised Richard growth model

Description

Computes the Generalised Richard growth model and its inverse

$$y(t) = A + \frac{U - A}{(1 + \beta exp(-k(t - t_0)))^{(1/m)}}$$

Usage

```
generalisedRichard(t, A, U, k, m, beta, t0) generalisedRichard.inverse(x, A, U, k, m, beta, t0 = 0)
```

Arguments

τ	time
X	size
A	the lower asymptote
U	the upper asymptote
k	growth range
m	slope of growth
beta	growth range
t0	time shift (default 0)

gompertz 7

References

http://en.wikipedia.org/wiki/Generalised_logistic_function

Examples

```
growth <- generalisedRichard(0:10, 5, 10, 0.3, 0.5, 1, 3)
time <- generalisedRichard.inverse(growth, 5, 10, 0.3, 0.5, 1, 3)</pre>
```

gompertz

Gompertz growth model

Description

Computes the Gompertz growth model and its inverse

$$y(t) = \alpha exp(-\beta exp(-k^t))$$

Usage

```
gompertz(t, alpha, beta, k)
gompertz.inverse(x, alpha, beta, k)
```

Arguments

t	time
X	size
alpha	upper asymptote
beta	growth displacement
k	growth rate

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

```
growth <- gompertz(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- gompertz.inverse(growth, 10, 0.5, 0.3)</pre>
```

8 loglogistic

logistic

Logistic growth model

Description

Computes the Logistic growth model

$$y(t) = \frac{\alpha}{1 + \beta exp(-kt)}$$

Usage

```
logistic(t, alpha, beta, k)
logistic.inverse(x, alpha, beta, k)
```

Arguments

t	time
X	size

alpha upper asymptote beta growth range k growth rate

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

Examples

```
growth <- logistic(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- logistic.inverse(growth, 10, 0.5, 0.3)</pre>
```

loglogistic

Log-logistic growth model

Description

Computes the Log-logistic growth model

$$y(t) = \frac{\alpha}{1 + \beta exp(-klog(t))}$$

mitcherlich 9

Usage

```
loglogistic(t, alpha, beta, k)
loglogistic.inverse(x, alpha, beta, k)
```

Arguments

t	time
Χ	size

alpha upper asymptote
beta growth range
k growth rate

References

A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.

Examples

```
growth <- loglogistic(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- loglogistic.inverse(growth, 10, 0.5, 0.3)</pre>
```

mitcherlich

Mitcherlich growth model

Description

Computes the Mitcherlich growth model

$$y(t) = (\alpha - \beta k^t)$$

Usage

```
mitcherlich(t, alpha, beta, k)
mitcherlich.inverse(x, alpha, beta, k)
```

Arguments

t	time
x	size

alpha upper asymptote beta growth range k growth rate

10 mmf

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

Examples

```
growth <- mitcherlich(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- mitcherlich.inverse(growth, 10, 0.5, 0.3)</pre>
```

 mmf

Morgan-Mercer-Flodin growth model

Description

Computes the Morgan-Mercer-Flodin growth model

$$y(t) = \frac{(w_0 \gamma + \alpha t^m)}{\gamma} + t^m$$

Usage

```
mmf(t, alpha, w0, gamma, m)
mmf.inverse(x, alpha, w0, gamma, m)
```

Arguments

t	time
X	size
alpha	upper asymptote
w0	the value at $t = 0$
gamma	parameter that controls the point of inflection
m	growth rate

References

A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.

```
growth <- mmf(0:10, 10, 0.5, 4, 1)
# Calculate inverse function
time <- mmf.inverse(growth, 10, 0.5, 4, 1)</pre>
```

monomolecular 11

monomolecular

Monomolecular growth model

Description

Computes the monomolecular growth model

$$y(t) = \alpha(1 - \beta exp(-kt))$$

Usage

```
monomolecular(t, alpha, beta, k)
monomolecular.inverse(x, alpha, beta, k)
```

Arguments

t	time
Х	size
alpha	upper as

alpha upper asymptote beta growth range k growth rate

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

Examples

```
growth <- monomolecular(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- monomolecular.inverse(growth, 10, 0.5, 0.3)</pre>
```

negativeExponential

Negative exponential growth model

Description

Computes the negative exponential growth model

$$y(t) = \alpha(1 - exp(-kt))$$

12 richard

Usage

```
negativeExponential(t, alpha, k)
negativeExponential.inverse(x, alpha, k)
```

Arguments

t time x size

alpha upper asymptote k growth rate

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

Examples

```
growth <- negativeExponential(0:10, 1, 0.3)
# Calculate inverse function
time <- negativeExponential.inverse(growth, 10, 0.3)</pre>
```

richard

Richard growth model

Description

Computes the Richard growth model and its inverse

$$y(t) = \frac{\alpha}{(1 + \beta exp(-kt))^{(1/m)}}$$

Usage

```
richard(t, alpha, beta, k, m)
richard.inverse(x, alpha, beta, k, m)
```

Arguments

t time x size alpha upper

alpha upper asymptote beta growth range k growth rate m slope of growth

schnute 13

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

Examples

```
growth <- richard(0:10, 10, 0.5, 0.3, 0.5)
time <- richard.inverse(growth, 10, 0.5, 0.3, 0.5)</pre>
```

schnute

Schnute growth model

Description

Computes the Schnute growth model

$$y(t) = [r_0 + \beta exp(kt)]^m$$

Usage

```
schnute(t, r0, beta, k, m)
schnute.inverse(x, r0, beta, k, m)
```

Arguments

t	time
X	size
r0	reference value
beta	growth displacement
k	growth rate
m	slope of growth

References

A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.

```
growth <- schnute(0:10, 10, 5, .5, .5)
# Calculate inverse function
time <- schnute.inverse(growth, 10, 5, .5, .5)</pre>
```

14 vonBertalanffy

stannard

Stannard growth model

Description

Computes the Stannard growth model

$$y(t) = \alpha \left[1 + \exp(-(\beta + kt)/m) \right]^{-m}$$

Usage

```
stannard(t, alpha, beta, k, m)
stannard.inverse(x, alpha, beta, k, m)
```

Arguments

t	time
Х	size

alpha upper asymptote beta growth displacement

k growth rate
m slope of growth

References

A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.

Examples

```
growth <- stannard(0:10, 1, .2, .1, .5)
# Calculate inverse function
time <- stannard.inverse(growth, 1, .2, .1, .5)</pre>
```

vonBertalanffy

von Bertalanffy growth model

Description

Computes the von Bertalanffy growth model

$$y(t) = (\alpha^{(1-m)} - \beta * exp(-kt))^{(1/(1-m))}$$

weibull 15

Usage

```
vonBertalanffy(t, alpha, beta, k, m)
vonBertalanffy.inverse(x, alpha, beta, k, m)
```

Arguments

t	time
Х	size

alpha upper asymptote beta growth range k growth rate m slope of growth

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

Examples

```
growth <- vonBertalanffy(0:10, 10, 0.5, 0.3, 0.5)
# Calculate inverse function
time <- vonBertalanffy.inverse(growth, 10, 0.5, 0.3, 0.5)</pre>
```

weibull

Weibull growth model

Description

Computes the Weibull growth model

$$y(t) = \alpha - \beta exp(-k * t^m)$$

Usage

```
weibull(t, alpha, beta, k, m)
weibull.inverse(x, alpha, beta, k, m)
```

Arguments

t	time
X	size

alpha upper asymptote beta growth range k growth rate m slope of growth

16 weibull

References

D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.

```
growth <- weibull(0:10, 10, 0.5, 0.3, 0.5)
# Calculate inverse function
time <- weibull.inverse(growth, 10, 0.5, 0.3, 0.5)</pre>
```

Index

```
blumberg, 3
brody, 4
{\it chapmanRichards}, {\it 4}
{\tt generalisedLogistic}, {\tt 5}
{\tt generalisedRichard}, {\tt 6}
gompertz, 7
{\it growth models (growth models-package)}, \, 2
growthmodels-package, 2
logistic, 8
loglogistic, 8
mitcherlich, 9
mmf, 10
{\tt monomolecular}, {\tt 11}
{\tt negativeExponential}, 11
richard, 12
schnute, 13
stannard, 14
vonBertalanffy, 14
weibull, 15
```