1

ARM ASSIGNMENT

Koushik Kalyani koushikkalyani369@gmail.com IITH - Future Wireless Communication

CONTENTS

III. K-MAP IMPLEMENTATION

I	Question	1		В	}
II	Answer	1		0	1
III	K-Map Implementation	1			
IV	Truth Table	1	0	$\lfloor 1 \rfloor$	0
V	Logic Diagram	₁ A	1	1	0
VI	Components	1	1		U
VII	Implementation	1			

I. QUESTION

The logic block shown has an output F given by

- (A) A + B
- (C) $A + \bar{B}$

- (B) $A \cdot \bar{B}$
- (D) \bar{B}

II. ANSWER

The above question can be solved as

- $\to \underline{\overline{A} + \overline{B}} + \overline{A + \overline{B}}$
- $\rightarrow \underline{\overline{A \cdot B + \overline{A} \cdot B}}$
- $\rightarrow \overline{(A+\bar{A})B} \rightarrow \overline{B}$

Therefore, the output $F = \bar{B}$.

Therefore $F = \bar{B}$

IV. TRUTH TABLE

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

Truth table for Boolean funtion F

V. LOGIC DIAGRAM

Fig. 2

VI. COMPONENTS

Components	Values	Quantity
VAMAN	ARM	1
Jumper	F-M	5
Wires		
Breadboard		1
LED		1
Resistor	$\leq 220Ohms$	1

VII. IMPLEMENTATION

VAMAN PIN	INPUT	OUTPUT
22	В	
21		F

Connections

Procedure

- 1. Connect the circuit as per the above table.
- 2. Connect inputs to Vcc for Logic 1, ground for Logic 0.
- 3. Execute the circuit using the below codes.

Approach 1

https://github.com/koushikkalyani/FWC/blob/main/ARM/main.c

4. Change the values of *B* in the Hardware and verify the Truth Table.

How to execute

- 1. Just write your algorithm code in existing code in "main.c".
- 2. Go to gcc-project directory and type command "make clean" then to compile type "make".
- 3. This will generate .bin file which needs to be sent to your laptop .Connect your mobile Hotspot to your laptop and type command. "scp output/bin/blink.bin pi@192.168.0.114:"change your ip address and in place of pi write your laptop system name.
- 4. To see your ip address in your laptop unbuntu terminal connect your hotspot and type "ipconfig".
- 5. In your laptop if TinyFPGA is not install then do the following

git clone –recursive https://github.com/QuickLogic-Corp/TinyFPGA-Programmer-Application.git sudo apt install python3-pip

- sudo pip3 install tinyfpgab pyserial sudo reboot
- Now download flash.sh and top.bin from the given link https://github.com/koushikkalyani/FWC/tree /main/ARM
- 7. In flash.sh change directory of tinyfpga according to your system.
- 8. flas.sh top.bin blink.bin should be in one directory.
- 9. Open terminal and type command "bash flash.sh blink.bin.".