TITLE PAGE

Class	:	BE - 8
Roll. No		42428
Assignment No.		B. 2
Assignment Name	:	2:1 MUX using TG
Date Of Performance	:	21-11-2020

Theory:

Schematic of TG-

For
$$C=1$$
, $O|P=I|P$
 $C=0$, $O|P=0$

Schematic of 2:1 MUX using TG.

Symbol of TG

Truth Table

C	OP
1	IIP
0	0

Symbol of 2:1 MUX

Truth Table

5	YMUX
0	Io
1	II

All PMOS & N MOS Devices have sizes-

$$P = n = \left(\frac{500}{100}\right) nm = 5$$

 $P/n = 1$

LAYOUT

a) Transmission Gate

b) 2:1 MUX using 2 Transmission Gates

Waveforms a) Output of Transmission Gate when c = 1 1.20 Display delay Bus value between... IN and. Analog simulation of D:\Study\Practical Work\4th year\VLSI\Part B\Review\TG.MSK Evaluate min/max/ar Frequency III. FFT Time scale 1.20 Step(ps) 0.100 Reset ₩ More X Close P=0.019µW Out $\label{total control of the contro$ b) Output of Transmission Gate when c = 0 Analog simulation of D:\Study\Practical Work\4th year\VLSI\Part B\Review\TG.MSK 1.20

c) Output of 2:1 MUX

Conclusion:

Thus we have:

- 1) Drawn the LAYOUT for Transmission Gate using 90 nm Foundry.
- 2) Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.
- 3) Using the above verified LAYOUT of Transmission gate, drawn the LAYOUT for 2:1 MUX.
- 4) Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.
- 5) TG is a CMOS Switch; hence it gives both STRONG-1 and STRONG-0 at the output.
- 6) Multiplexer is built using 2 TG Switches and 1 CMOS Inverter hence, it is a CMOS Multiplexer, gives both STRONG-1 and STRONG-0 at the output.
- 7) TG Logic reduces the transistor count for MUX implementation over CMOS Logic from 20 to 6.