

Introduction au calcul flottant

MT09 Vincent.Martin@utc.fr

> UTC Compiègne France

UTC, A2020

Plan

- 1 Introduction
- Représentation des nombres
- Calculs en précision limitée
- Travail pour la prochaine fois

Plan

- Introduction
- Représentation des nombres
- Calculs en précision limitée
- 4 Travail pour la prochaine fois

Une suite curieuse

Quelle est la limite de la suite $(u_n)_{n\in\mathbb{N}}$?

$$u_n = 111 - \frac{1130}{u_{n-1}} + \frac{3000}{u_{n-1}u_{n-2}}, \qquad u_0 = 2, \ u_1 = -4$$

```
18.5000000000000
                            17
                                   7.2350211655349
4
       9.37837837837838
                            18
                                  22.0620784635258
5
       7.80115273775217
                            19
                                  78.5755748878722
6
       7 15441448097533
                            20
                                  98.3495031221654
7
       6.80678473692481
                            21
                                  99 8985692661829
8
       6.59263276872179
                            22
                                  99.9938709889028
9
       6.44946593405393
                            23
                                  99.9996303872863
10
       6.34845206074662
                            24
                                  99.9999777306795
11
       6.27443866272812
                            25
                                  99.9999986592167
12
       6.21869676858216
                            26
                                  99.999999193218
13
       6 17585385581539
                                  99 999999951478
14
       6.14262717048101
                            28
                                  99.999999997083
15
       6.12024870457016
                            29
                                  99.999999999825
16
       6.16608655959810
                            30
                                  99.999999999989
```


Une suite curieuse

Quelle est la limite de la suite $(u_n)_{n\in\mathbb{N}}$?

$$u_n = 111 - \frac{1130}{u_{n-1}} + \frac{3000}{u_{n-1}u_{n-2}}, \qquad u_0 = 2, \ u_1 = -4$$

Pourtant:

$$u_n = \frac{3 \cdot 6^{n+1} - 4 \cdot 5^{n+1}}{3 \cdot 6^n - 4 \cdot 5^n} \Rightarrow \lim_{n \to \infty} u_n = 6$$

Plan

- Introduction
- Représentation des nombres
- 3 Calculs en précision limitée
- 4 Travail pour la prochaine fois

Écriture des entiers en base 2

En base 10

Chiffres 0, 1, ..., 9

$$n = d_p 10^p + \ldots + d_1 10 + d_0, \quad 0 \le d_i \le 9, \ d_p \ne 0$$

$$1789 = 1000 + 700 + 80 + 9 = 1 \cdot 10^3 + 7 \cdot 10^2 + 8 \cdot 10^1 + 9 \cdot 10^0$$

Écriture des entiers en base 2

En base 10

Chiffres 0, 1, ..., 9

$$n = \textit{d}_{\textit{p}} 10^{\textit{p}} + \ldots + \textit{d}_{1} 10 + \textit{d}_{0}, \quad 0 \leq \textit{d}_{\textit{i}} \leq 9, \ \textit{d}_{\textit{p}} \neq 0$$

$$1789 = 1000 + 700 + 80 + 9 = 1 \cdot 10^3 + 7 \cdot 10^2 + 8 \cdot 10^1 + 9 \cdot 10^0$$

En base 2

Chiffres = 0, 1

$$n = d_p 2^p + \ldots + d_1 2 + d_0, \quad 0 \le d_i \le 1, \ d_p \ne 0,$$

$$(42)_{10} = 32 + 8 + 2 = 1 \cdot 2^5 + 0.2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$$

= $(101010)_2$

Écriture scientifique des réels

$$x = \pm f \cdot 10^e$$
, $1/10 \le f < 1$

Exemple

- $825.34 = 0.8253410^3$ écriture finie
- \bullet 8.2534 = 0.82534 10¹
- $0.0082534 = 0.8253410^{-2}$
- $1/2 = 0.5 \, 10^0$ fraction, écriture finie
- $1/3 = 0.3333333333... 10^0$ fraction, périodique
- \bullet 4/7 = 0.5714285714285... fraction périodique
- $\pi = 0.314159265358...10^{1}$, infini, non périodique

$$x = \pm f \cdot 2^e$$
, $2^{-1} \le f < 1$

f mantisse, *e* exposant (entier, unique si $x \neq 0$)

$$x = \pm f \cdot 2^e$$
, $2^{-1} \le f < 1$

f mantisse, *e* exposant (entier, unique si $x \neq 0$)

Nombres flottants: f sur t chiffres

Taille mot mémoire limitée $\Rightarrow x \in F$ ensemble fini (nombre flottants machine)

$$f = \frac{d_1}{2} + \frac{d_2}{2^2} + \dots + \frac{d_t}{2^t}, \qquad 0 \le d_i \le 1, \qquad d_1 \ne 0$$

= $(0.d_1 d_2 \dots d_t)_2$

Exposant $L \le e \le U$

UTC. A2020

$$x = \pm f \cdot 2^e$$
, $2^{-1} \le f < 1$

f mantisse, e exposant (entier, unique si $x \neq 0$)

Nombres flottants: f sur t chiffres

Taille mot mémoire limitée $\Rightarrow x \in F$ ensemble fini (nombre flottants machine)

$$f = \frac{d_1}{2} + \frac{d_2}{2^2} + \dots + \frac{d_t}{2^t}, \qquad 0 \le d_i \le 1, \qquad d_1 \ne 0$$

= $(0.d_1 d_2 \dots d_t)_2$

Exposant $L \le e \le U$

Système caractérisé par

Nombre de chiffres t (en base 2)

Exposants min et max L et U

$$x = \pm f \cdot 2^e$$
, $2^{-1} \le f < 1$

f mantisse, *e* exposant (entier, unique si $x \neq 0$)

Nombres flottants: f sur t chiffres

Taille mot mémoire limitée $\Rightarrow x \in F$ ensemble fini (nombre flottants machine)

$$f = \frac{d_1}{2} + \frac{d_2}{2^2} + \dots + \frac{d_t}{2^t}, \qquad 0 \le d_i \le 1, \qquad d_1 \ne 0$$

= $(0.d_1 d_2 \dots d_t)_2$

Exposant $L \le e \le U$

Système caractérisé par

Nombre de chiffres *t* (en base 2)

Exposants min et max L et U

Ensemble fini

$$\operatorname{card} F = 1 + 2^{t} (U - L + 1) \underbrace{\operatorname{utc}}_{\text{Complete Complete Complete$$

Quelques exemples

•
$$3/2 = 1 + 1/2 = 2(1/2 + 1/4) = 2^1 \times 0.11$$

Quelques exemples

•
$$3/2 = 1 + 1/2 = 2(1/2 + 1/4) = 2^1 \times 0.11$$

•
$$5/2 = 2 + 1/2 = 4(1/2 + 1/8) = 2^2 \times 0.101$$
,

Quelques exemples

•
$$3/2 = 1 + 1/2 = 2(1/2 + 1/4) = 2^1 \times 0.11$$

•
$$5/2 = 2 + 1/2 = 4(1/2 + 1/8) = 2^2 \times 0.101$$
,

1/10, pas de représentation finie :

$$1/10 = \frac{1}{16} \frac{16}{10} = \frac{1}{16} (1 + \frac{3}{5}) = \frac{1}{16} (1 + \frac{9}{16} \frac{1}{1 - 1/16})$$

$$= 2^{-4} \left(1 + \frac{9}{16} + \frac{9}{16^2} + \frac{9}{16^3} + \dots \right)$$

$$= 2^{-3} \left(\frac{1}{2} + \frac{1}{2^2} + \frac{0}{2^3} + \underbrace{\frac{0}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{0}{2^7} + \frac{0}{2^8} + \frac{1}{2^9}}_{\text{période}} + \dots \right)$$

Exemple: t = 3, L = -1, U = 2, card F = 33: \Rightarrow F tout petit par rapport à \mathbb{R} !

Exemple:
$$t = 3, L = -1, U = 2, \text{ card } F = 33 :$$

 \implies F tout petit par rapport à \mathbb{R} !

Nombres positifs de F entre 1/2 et 1, $f = 2^0 \times (0.1 d_2 d_3)_2$ (e = 0):

$$1/2 = (0.100)_2, \quad 3/4 = 1/2 + 1/4 = (0.110)_2$$

 $5/8 = 1/2 + 1/8 = (0.101)_2, \quad 7/8 = 1/2 + 1/4 + 1/8 = (0.111)_2$

Exemple :
$$t = 3, L = -1, U = 2, \text{ card} F = 33$$
 :

 \Longrightarrow F tout petit par rapport à \mathbb{R} !

Nombres positifs de F entre 1/2 et 1, $f = 2^0 \times (0.1 d_2 d_3)_2$ (e = 0):

$$1/2 = (0.100)_2, \quad 3/4 = 1/2 + 1/4 = (0.110)_2 \\ 5/8 = 1/2 + 1/8 = (0.101)_2, \quad 7/8 = 1/2 + 1/4 + 1/8 = (0.111)_2$$

Ecart entre flottants successifs :

$$\delta_0 = \frac{1}{8} = 2^{-3} = 2^{-t}$$
 si $e = 0$, $\delta_2 = \frac{1}{2} = 2^{-1} = 2^{-t+2}$ si $e = 2$,

$$\delta_1 = \frac{1}{4} = 2^{-2} = 2^{-t+1}$$
 si $e = 1$, $\delta_1 = \frac{1}{16} = 2^{-4} = 2^{-t-1}$ si $e = 1$

Exemple :
$$t = 3, L = -1, U = 2, \text{ card } F = 33$$

Écart absolu variable entre 2 flottants successifs

$$f_1 = 2^e \times (0.1d_2d_3)_2$$
 et $f_2 = 2^e \times [(0.1d_2d_3)_2 + 1/8]$:

$$\delta_e = 2^{-t+e}$$
 (dépend de e).

Exemple :
$$t = 3, L = -1, U = 2, \text{ card} F = 33$$

Écart absolu variable entre 2 flottants successifs

$$f_1 = 2^e \times (0.1 d_2 d_3)_2$$
 et $f_2 = 2^e \times [(0.1 d_2 d_3)_2 + 1/8]$:

$$\delta_e = 2^{-t+e}$$
 (dépend de e).

Mais écart relatif majoré par une constante

(note :
$$f_1 \ge 2^e \times (0.100)_2$$
, donc $1/f_1 \le 1/(2^e \times (0.100)_2)$)

$$\delta_r = \frac{f_1 + \delta_e - f_1}{f_1} \le \frac{\delta_e}{2^e \times (0.10 \cdots 0)_2} = \frac{2^{-t}}{1/2} = 2^{-t+1} = 2\varepsilon_{\text{mach}}$$

Exemple :
$$t = 3, L = -1, U = 2, \text{ card } F = 33$$

Écart absolu variable entre 2 flottants successifs

$$f_1 = 2^e \times (0.1d_2d_3)_2$$
 et $f_2 = 2^e \times [(0.1d_2d_3)_2 + 1/8]$:

$$\delta_e = 2^{-t+e}$$
 (dépend de e).

Mais écart relatif majoré par une constante

(note :
$$f_1 \ge 2^e \times (0.100)_2$$
, donc $1/f_1 \le 1/(2^e \times (0.100)_2)$)

$$\delta_r = rac{f_1 + \delta_e - f_1}{f_1} \le rac{\delta_e}{2^e imes (0.10 \cdots 0)_2} = rac{2^{-t}}{1/2} = 2^{-t+1} = 2 arepsilon_{ ext{mach}}$$

$$\varepsilon_{\mathrm{mach}} = \mathbf{2}^{-t}$$

Exemple : t = 3, L = -1, U = 2, card F = 33

Plus petit nombre positif de $F: 1/4 = 2^{-1-1}$. $F_{min} = 2^{L} \times (0.10 \cdots 0)_{2} = 2^{L} \times 1/2 = 2^{L-1}$.

 $F_{\text{min}} = 2^{2} \times (0.10 \cdots 0)_{2} = 2^{2} \times 1/2 = 2^{2}$

"Trou » important autour de 0.

Exemple :
$$t = 3, L = -1, U = 2, \text{ card } F = 33$$

Plus petit nombre positif de F: $1/4 = 2^{-1-1}$.

$$F_{\min} = 2^{L} \times (0.10 \cdots 0)_{2} = 2^{L} \times 1/2 = 2^{L-1}.$$

"Trou » important autour de 0.

Plus grand nombre positif de F:

$$7/2 = 2^2 \times (0.111)_2 = 2^2 \times ((1.00)_2 - (0.001)_2) = 4 \times (1 - 1/8) = 4 \times 7/8.$$

$$F_{\text{max}} = 2^{\frac{U}{2}} \times (0.11 \cdots 1)_2 = 2^{\frac{U}{2}} \times (1 - 2^{-\frac{t}{2}}) \approx 2^{\frac{U}{2}}.$$

12/27

Arrondi – epsilon machine

Approcher $x \in \mathbb{R}$ par $fl(x) \in F : (x > 0)$

Arrondi au plus proche fl(x) est l'élément de F le plus proche de x (fl(x) éloigné au plus de $\delta_e/2$ de x)

$$\frac{|x - fI(x)|}{|x|} \le 2^{-t} = \varepsilon_{\mathsf{mach}}$$

Arrondi – epsilon machine

Approcher $x \in \mathbb{R}$ par $f(x) \in F : (x > 0)$

Arrondi au plus proche fl(x) est l'élément de F le plus proche de x (fl(x) éloigné au plus de $\delta_e/2$ de x)

$$\frac{|x - fl(x)|}{|x|} \le 2^{-t} = \varepsilon_{\mathsf{mach}}$$

Exemple (5 chiffres significatifs) : $x = \sqrt{7} \approx 2.6457513...$ Arrondi fl(x) = 2.6458

Arrondi – epsilon machine

Approcher $x \in \mathbb{R}$ par $f(x) \in F : (x > 0)$

Arrondi au plus proche fl(x) est l'élément de F le plus proche de x (fl(x) éloigné au plus de $\delta_e/2$ de x)

$$\frac{|x - fI(x)|}{|x|} \le 2^{-t} = \varepsilon_{\mathsf{mach}}$$

Exemple (5 chiffres significatifs) : $x = \sqrt{7} \approx 2.6457513...$

Arrondi fl(x) = 2.6458

 $\varepsilon_{\rm mach} = 2^{-t}$ caractéristique de l'arithmétique.

$$fl(x) = x(1+\varepsilon), \ |\varepsilon| \le \varepsilon_{\mathsf{mach}}$$

Calculatrice $\varepsilon_{\text{mach}} \approx 10^{-10}$

Avec Scilab $\varepsilon_{\text{mach}} = 2^{-53} \approx 1.11 \, 10^{-16} \approx 16 \text{ chiffres}$ (Scilab: "%eps" = $2\varepsilon_{\text{mach}} \approx 2.22 \, 10^{-16}$).

Nombre flottants : le système IEEE 754

Simple précision (float):

32 bits,
$$t = 23 + 1$$
, $L = -126$, $U = 127$, $x_{\text{max}} \approx 10^{38}$, $x_{\text{min}} \approx 10^{-38}$

Nombre flottants : le système IEEE 754

Simple précision (float):

32 bits,
$$t = 23 + 1$$
, $L = -126$, $U = 127$, $x_{\text{max}} \approx 10^{38}$, $x_{\text{min}} \approx 10^{-38}$

Double précision (double):

64 bits,
$$t = 52 + 1$$
, $L = -1022$, $U = 1023$, $x_{\text{max}} \approx 10^{308}$, $x_{\text{min}} \approx 10^{-308}$

Propriétés de la norme IEEE 754

Utilisé par Java, processeurs Intel, PowerPC (norme internationale)

Bit caché gagne en précision

Norme précise règles d'arrondi (au plus proche, vers 0, vers $\pm \infty$)

Il existe ± 0 , $\pm \infty$

Nombres dénormalisés (entre 0 et x_{min})

NaN = " Not a Number" pour 0/0, ∞/∞ , fonction isnan(x)

UTC. A2020

Plan

- Introduction
- Représentation des nombres
- Calculs en précision limitée
- 4 Travail pour la prochaine fois

Calcul sur les nombres flottants

En général, le résultat exact d'une opération sur deux flottants n'est pas un flottant machine.

Exemple

En base 10 ou en base 2, avec 3 chiffres significatifs (t = 3):

Le dernier chiffre (en rouge) ne peut pas être pris en compte.

Soit une opération arithmétique notée "*" dans $\{+,-,\times,\setminus,\sqrt\}$. Pour $(x,y)\in F^2$, le résultat du calcul x*y n'est pas dans F.

Propriétés de l'arithmétique flottante

Soit une opération arithmétique notée "*" dans $\{+,-,\times,\setminus,\sqrt\}$. Pour $(x,y)\in F^2$, le résultat du calcul x*y n'est pas dans F.

Mais on peut raisonner sur les calculs flottants, car :

Axiome

Pour $(x, y) \in \mathbb{F}^2$, le résultat flottant du calcul x * y est noté $(x * y) \in \mathbb{F}$.

C'est l'arrondi de la valeur exacte de x * y,

$$(x \circledast y) = fl(x * y) \in F.$$

Propriétés de l'arithmétique flottante

L'arithmétique flottante est commutative et non associative.

Pour faire les calculs (explications simplifiées) :

Soit $x_1 = f_1 \times 10^{e_1}$ et $x_2 = f_2 \times 10^{e_2}$ dans F, tel que $f_1 > f_2 > 0$.

- on insère des 0 dans f₂ (décalage de virgule)
 x₁ et x₂ écrits avec le même exposant e₁.
- on ajoute les mantisses (calcul exact).
- \odot on effectue un arrondi sur le résultat \longrightarrow garder t chiffres.

UTC, A2020

Propriétés de l'arithmétique flottante

L'arithmétique flottante est commutative et non associative.

Pour faire les calculs (explications simplifiées) :

Soit
$$x_1 = f_1 \times 10^{e_1}$$
 et $x_2 = f_2 \times 10^{e_2}$ dans \digamma , tel que $f_1 > f_2 > 0$.

- on insère des 0 dans f₂ (décalage de virgule)
 x₁ et x₂ écrits avec le même exposant e₁.
- on ajoute les mantisses (calcul exact).
- \odot on effectue un arrondi sur le résultat \longrightarrow garder t chiffres.

Exemple 1 : (arithmétique base 10,
$$t = 7$$
 chiffres) : $a = 0.1234567$, $b = 0.4711325 \cdot 10^4$, $c = -b$

$$b \oplus c = 0$$
, $(a \oplus (b \oplus c)) = a = 0.1234567$

$$(a \oplus b) = 0.471144810^4, \quad (a \oplus b) \oplus c = 0.123$$

Soustraction de deux nombres voisins

Exemple 2 : Soustraction de deux nombres voisins

a = 0.1234567, b = 0.1234560, $a \ominus b = 0.710^{-6}$ (exact). Si a et b sont connus à 6 chiffres près, $a \ominus b$ n'a qu'un chiffre significatif : révèle une perte de précision dans un calcul précédent.

Annulation destructrice

Exemple 3: a = 123456, b = 12.3456, c = 123450, arithmétique (décimale) avec 6 chiffres. Calcul de a + b - c = 18.3456 (résultat exact).

Annulation destructrice

Exemple 3: a = 123456, b = 12.3456, c = 123450, arithmétique (décimale) avec 6 chiffres. Calcul de a+b-c=18.3456 (résultat exact).

Annulation destructrice: seulement deux chiffres exacts. Erreur d'arrondi dans la première opération, la seconde est exacte. L'annulation révèle une perte d'information précédente (même résultat pour $b \in [11.5, 12.5]$).

Annulation destructrice

Exemple 3 : a = 123456, b = 12.3456, c = 123450, arithmétique (décimale) avec 6 chiffres. Calcul de a + b - c = 18.3456 (résultat exact).

Annulation destructrice: seulement deux chiffres exacts. Erreur d'arrondi dans la première opération, la seconde est exacte. L'annulation révèle une perte d'information précédente (même résultat pour $b \in [11.5, 12.5[)$.

Autre ordre

 $a \ominus c = 6$, puis $b \oplus (a \ominus c) = 18.3456$, exact.

Calcul des racines de $x^2 - 2px + 1$, quand $p \gg 1$ (ex : $p = 10^7$)

Calcul des racines de $x^2 - 2px + 1$, quand $p \gg 1$ (ex : $p = 10^7$)

Algorithme 1

$$x^{+} = p + \sqrt{p^{2} - 1}$$

 $x^{-} = p - \sqrt{p^{2} - 1}$

Algorithme 2

$$x^{+} = p + \sqrt{p^{2} - 1}$$

 $x^{-} = 1/(p + \sqrt{p^{2} - 1})$

Calcul des racines de $x^2 - 2px + 1$, quand $p \gg 1$ (ex : $p = 10^7$)

Algorithme 1

$$x^{+} = p + \sqrt{p^{2} - 1}$$

 $x^{-} = p - \sqrt{p^{2} - 1}$

Avec Scilab

Algorithme 2

$$x^{+} = p + \sqrt{p^{2} - 1}$$

 $x^{-} = 1/(p + \sqrt{p^{2} - 1})$

Avec Scilab

$$x^+ = 2.000000000000010^7$$

 $x^- = 5.000000000000010^{-8}$

Calcul des racines de $x^2 - 2px + 1$, quand $p \gg 1$ (ex : $p = 10^7$)

Algorithme 1

$$x^{+} = p + \sqrt{p^{2} - 1}$$

 $x^{-} = p - \sqrt{p^{2} - 1}$

Avec Scilab

$$x^+ = 2.000000000000010^7$$

$$x^- = 5.029141902923610^{-8}$$

Algorithme instable

Algorithme 2

$$x^{+} = p + \sqrt{p^{2} - 1}$$

 $x^{-} = 1/(p + \sqrt{p^{2} - 1})$

Avec Scilab

$$x^+ = 2.000000000000010^7$$

$$x^- = 5.000000000000010^{-8}$$

Algorithme stable

Calcul des racines de $x^2 - 2px + 1$, quand $p \gg 1$ (ex : $p = 10^7$)

Algorithme 1

$$x^{+} = p + \sqrt{p^{2} - 1}$$

 $x^{-} = p - \sqrt{p^{2} - 1}$

Avec Scilab

Algorithme instable

Algorithme 2

$$x^{+} = p + \sqrt{p^{2} - 1}$$

 $x^{-} = 1/(p + \sqrt{p^{2} - 1})$

Avec Scilab

$$x^+ = 2.000000000000010^7$$

 $x^- = 5.00000000000010^{-8}$

Algorithme stable

Solutions exactes:

 $x^+ = 1.999999999999999510^7, x^- = 5.000000000000125010^{-8}$

Une suite curieuse (très simple)

$$u_{n+1} = \alpha u_n + \beta$$
, $n = 0, 1, \dots$, u_0 donné

Solution : $u_n = \alpha^n u_0 + \frac{\alpha^{n-1}}{\alpha-1} \beta$.

On prend : $\alpha = 4$, $\beta = -1$: $u_n = 1/3 + 4^n(u_0 - 1/3)$.

Si $u_0 = 1/3$, alors la suite est constante : $u_n = 1/3$, $\forall n$. Pourtant...

Une suite curieuse (très simple)

$$u_{n+1} = \alpha u_n + \beta, \quad n = 0, 1, \dots, \quad u_0 \text{ donné}$$

Solution : $u_n = \alpha^n u_0 + \frac{\alpha^{n-1}}{\alpha-1} \beta$.

On prend : $\alpha = 4$, $\beta = -1$: $u_n = 1/3 + 4^n(u_0 - 1/3)$.

Si $u_0 = 1/3$, alors la suite est constante : $u_n = 1/3$, $\forall n$. Pourtant...

0 0.333333333333

1 0.333333333333

2 0.333333333333

. . . .

11 0.333333333255

.

23 0.33203125

24 0.328125

25 0.3125

26 0.25

27 0.0

28 -1.0

29 -5.0

30 -21.0

Une suite curieuse (très simple)

$$u_{n+1} = \alpha u_n + \beta, \quad n = 0, 1, \dots, \quad u_0 \text{ donné}$$

Solution : $u_n = \alpha^n u_0 + \frac{\alpha^n - 1}{\alpha - 1} \beta$.

On prend : $\alpha = 4$, $\beta = -1$: $u_n = 1/3 + 4^n(u_0 - 1/3)$.

Si $u_0 = 1/3$, alors la suite est constante : $u_n = 1/3$, $\forall n$. Pourtant...

Si $u_0 = 1/3(1-\delta)$ avec $\delta \approx \varepsilon_{\text{mach}}$, alors $u_n = 1/3(1-4^n\delta) \to -\infty$!!

Plan

- Introduction
- 2 Représentation des nombres
- Calculs en précision limitée
- Travail pour la prochaine fois

À faire pour la prochaine fois : cours

Cours

- travailler le chapitre 1 : Introduction au calcul flottant.
 - Tout. Faire les exercices d'application du cours (pas les exercices de TD).
- lire le chapitre 2 : résolution de systèmes linéaires : méthodes directes.
 - Sections 2.2.2 et 2.2.3 uniquement (début de l'algorithme de Gauss).
- réviser au besoin l'algèbre. Chapitre 0 : Algèbre linéaire.
 - 0.1 Espace vectoriel.
 - 0.2 Applications linéaires,
 - 0.3 Matrices.
 - 0.5 Systèmes linéaires.

À faire pour la prochaine fois : TD

- TD Exercices à faire en autonomie.
 - Chapitre 0 : Exercice B.1.10 TD0-Exercice10 (bien utiliser les notations du cours)
 - questions 1) à 7) uniquement.
 - A_i : colonne j de la matrice A
 - A_i : ligne i de la matrice A
 - Chapitre 1 : Exercice C.2.1 TD1-Exercice1 : (1 + x) 1 = ?
 - Chapitre 0 : Exercice B.1.12 TD0-Exercice12 (matrices par blocs)
 - Chapitre 0 : Exercice B.1.11 TD0-Exercice11 (matrices triangulaires)
- TD en présentiel (pour information).
 - Chapitre 0 : Exercice B.1.10 TD0-Exercice10
 - questions 8) et 9) uniquement.
 - Chapitre 1 : Exercice C.2.3 TD1-Exercice3 : Suite récurrente linéaire d'ordre 2
 - Chapitre 2 : Exercice C.2.1 TD2-Exercice1 : élimination de Gauss et LU
- Attention : c'est chargé ! Gros travail. Adaptations à prévoir.

À faire pour la prochaine fois : TP

- TP
 - Venir en TP (semaine A ou semaine B).
 - Pas de préparation à faire pour le TP1.

