Ferienkurs Mathematik für Physiker I Probeklausur 31.3.2017

Kurze Fragen

Beantworten bzw. lösen Sie die folgenden kurzen Fragen und Aufgaben:

- (a) Was ist eine Gruppe? Wann wir eine Gruppe "abelsch" genannt?
- (b) Überprüfen Sie, ob die vier Vektoren $b_1 = (0, 3-2, 4), b_2 = (1, 0, 2, 6), b_3 = (1, 1, -1, 1),$ und $b_4 = (4, 5, -2, 2)$ eine Basis des \mathbb{R}^4 bilden.
- (c) Es sei $V=K_{\mathbb{R}}\left[x\right]$ der \mathbb{R} -Vektorraum der reellwertigen Polynome. Überprüfen Sie, ob die Abbildung

$$F: V \to V, f \to \frac{\mathrm{d}}{\mathrm{d}x}f$$

einen Endomorphismus definiert.

(d) Bestimmen Sie die Determinante der Matrix

$$M = \begin{pmatrix} 1 & -3 & 5 \\ -2 & -4 & 2 \\ 6 & 1 & 3 \end{pmatrix}.$$

- (e) Es sei V ein Vektorraum und $F \in \text{End}(V)$. Was ist die Definition der Mengen Bild(F) und Kern(F)?
- (f) Sind die folgenden Matrizen invertierbar? Eine Begründung ist nicht notwendig.

$$A = \begin{pmatrix} 2 & 4 \\ -3 & 6 \end{pmatrix} \quad B = \begin{pmatrix} 1 & -2 & 4 \\ -2 & -7 & 3 \\ 4 & 3 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 2 & -0 & -3 \\ -2 & 1 & 2 \\ 6 & 0 & 4 \end{pmatrix}$$

(g) Es sei \mathbb{R}^3 der dreidimensionale Vektorraum über den reellen zahlen. Zeigen oder widerlegen Sie, dass $K:=\left\{(x_1,x_2,x_3)\in\mathbb{R}^3|0=x_1^2+x_2^2+x_3^2\right\}\subset\mathbb{R}^3$ einen Untervektorraum bildet

Aufgabe 1: Gruppen

Seien (H, \circ) und (G, *) Gruppen und $f: G \to H$ ein Gruppenhomomorphismus. Weiter seien e_G, e'_G neutrale Elemente in (G, *) und e_H jenes in (H, \circ) . Zeigen Sie, dass gilt:

- (a) $e_G = e'_G$,
- (b) $f(e_G) = e_H$,
- (c) $\forall a \in G : f(a^{-1}) = (f(a))^{-1}$.
- (d) Sei nun (P, \triangle) eine weitere Gruppe in der gelte $\forall a \in (P, \triangle) : a^2 = e_p$ mit e_p dem neutralen Element. Zeigen Sie, dass (P, \triangle) kommutativ ist.

Aufgabe 2: Schnitt von Untervektorräumen

Bestimmen Sie den Schnitt der beiden Untervektorräume

$$U := \operatorname{span}\left(\begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\3 \end{pmatrix}\right), \quad W := \operatorname{span}\left(\begin{pmatrix} 3\\-1\\2 \end{pmatrix}, \begin{pmatrix} -1\\1\\-1 \end{pmatrix}\right)$$

des \mathbb{R}^3 und geben Sie eine Basis an.

Hinweis: Der Schnitt der Vektorräume ist die Menge aller Vektoren die als Linearkombination der Basisvektoren von U und V dargestellt werden kann.

Aufgabe 3: Darstellungsmatrizen

Im Vektorraum $\mathbb{R}[x]_3$ der Polynome p(x) vom Grad deg ≤ 3 ist für ein $a \in \mathbb{R}$ die Abbildung $\varphi : \mathbb{R}[x]_3 \to \mathbb{R}[x]_3$ durch

$$\varphi(\mathbf{p}) = \mathbf{p}(a) + \mathbf{p}'(a)(x-a)$$

erklärt.

- (a) Zeigen Sie die Linearität von φ .
- (b) Berechnen Sie die Darstellungsmatrix von φ bezüglich der geordneten Basis $E:=(1,x,x^2,x^3)$ von $\mathbb{R}[x]_3$.
- (c) Bestimmen Sie eine geordnete Basis B von $\mathbb{R}[x]_3$ bezüglich der die Darstellungsmatrix von φ Diagonalgestalt hat.

Aufgabe 4: Eigenwerte von Matrizen

Wir betrachten die Matrizen :

$$A = \begin{pmatrix} 2 & 1 & 0 \\ -4 & 0 & 4 \\ 5 & 1 & -3 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

- (a) Finden Sie die Eigenwerte der beiden Matrizen und bestimmen Sie für jeden der Eigenwerte die algebraische Vielfachheit.
- (b) Die Matrizen A und B sind diagonalisierbar. Finden Sie jeweils eine Basis aus Eigenvektoren.
- (c) Bestimmen Sie für beide Matrizen jeweils die Determinante und das Produkt der Eigenwerte. Was fällt ihnen auf?

Aufgabe 5: Polynominterpolation

Gegeben ist die folgende Tabelle an Messwertepaaren:

Bestimmen Sie ein Polynom vom Grad 3, das diese Messwerte annimmt.

Aufgabe 6: Wahr oder Falsch

Sind die folgenden Aussagen wahr oder falsch? Sie brauchen keine Beweise zu führen.

- (a) Es gibt eine invertierbare Matrix $A \in \mathbb{R}^{2 \times 2}$ mit dem Eigenwert 0.
- (b) Der Nullvektor ist immer linear Abhängig.
- (c) Es gibt eine Matrix $A \in \mathbb{R}^{2 \times 2}$ die keine Reellen und genau einen komplexen Eigenwert hat.
- (d) Die Matrix $A=\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$ ist nur für $\lambda \neq 0$ nicht diagonalisierbar.
- (e) Eine bijektive Abbildung ist immer linear.
- (f) Die Menge $V:=\{f\in \mathrm{Abb}(\mathbb{R},\mathbb{R})|\mathrm{nur}\ \mathrm{f\"{u}r}\ \mathrm{endlich}\ \mathrm{viele}\ x\in\mathbb{R}\ \mathrm{gilt} f(x)\neq 0\}\subsetneq \mathrm{Abb}(\mathbb{R},\mathbb{R})$ ist ein Untervektorraum.
- (g) Die Determinante ist die Summe der Eigenwerte.