- 3.3 Soient $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ des suites réelles. Soient $\alpha, \beta \in \mathbb{R}$.
 - 1) (a) $((u_n)_{n\in\mathbb{N}} + (v_n)_{n\in\mathbb{N}}) + (w_n)_{n\in\mathbb{N}} =$ $(u_n + v_n)_{n\in\mathbb{N}} + (w_n)_{n\in\mathbb{N}} =$ $((u_n + v_n) + w_n)_{n\in\mathbb{N}} =$ $(u_n + (v_n + w_n))_{n\in\mathbb{N}} =$ $(u_n)_{n\in\mathbb{N}} + (v_n + w_n)_{n\in\mathbb{N}} =$ $(u_n)_{n\in\mathbb{N}} + ((v_n)_{n\in\mathbb{N}} + (w_n)_{n\in\mathbb{N}})$
 - (b) Considérons la suite $(z_n)_{n\in\mathbb{N}}$ définie par $z_n=0$ pour tout $n\in\mathbb{N}$. $(u_n)_{n\in\mathbb{N}}+(z_n)_{n\in\mathbb{N}}=(u_n+z_n)_{n\in\mathbb{N}}=(u_n+0)_{n\in\mathbb{N}}=(u_n)_{n\in\mathbb{N}}$ $(z_n)_{n\in\mathbb{N}}+(u_n)_{n\in\mathbb{N}}=(z_n+u_n)_{n\in\mathbb{N}}=(0+u_n)_{n\in\mathbb{N}}=(u_n)_{n\in\mathbb{N}}$
 - (c) $(u_n)_{n\in\mathbb{N}} + (-u_n)_{n\in\mathbb{N}} = (u_n + (-u_n))_{n\in\mathbb{N}} = (0)_{n\in\mathbb{N}} = (z_n)_{n\in\mathbb{N}}$
 - (d) $(u_n)_{n\in\mathbb{N}} + (v_n)_{n\in\mathbb{N}} = (u_n + v_n)_{n\in\mathbb{N}} = (v_n + u_n)_{n\in\mathbb{N}} = (v_n)_{n\in\mathbb{N}} + (u_n)_{n\in\mathbb{N}}$
 - 2) (a) $\alpha \cdot (\beta \cdot (u_n)_{n \in \mathbb{N}}) = \alpha \cdot (\beta u_n)_{n \in \mathbb{N}} = (\alpha (\beta u_n))_{n \in \mathbb{N}} = ((\alpha \beta) u_n)_{n \in \mathbb{N}} = (\alpha \beta) \cdot (u_n)_{n \in \mathbb{N}}$
 - (b) $(\alpha + \beta) \cdot (u_n)_{n \in \mathbb{N}} = ((\alpha + \beta) u_n)_{n \in \mathbb{N}} = (\alpha u_n + \beta u_n)_{n \in \mathbb{N}} = (\alpha u_n)_{n \in \mathbb{N}} + (\beta u_n)_{n \in \mathbb{N}} = \alpha \cdot (u_n)_{n \in \mathbb{N}} + \beta \cdot (u_n)_{n \in \mathbb{N}}$
 - (c) $\alpha \cdot ((u_n)_{n \in \mathbb{N}} + (v_n)_{n \in \mathbb{N}}) = \alpha \cdot (u_n + v_n)_{n \in \mathbb{N}} = (\alpha (u_n + v_n))_{n \in \mathbb{N}} = (\alpha u_n + \alpha v_n)_{n \in \mathbb{N}} = (\alpha u_n)_{n \in \mathbb{N}} + (\alpha v_n)_{n \in \mathbb{N}} = \alpha \cdot (u_n)_{n \in \mathbb{N}} + \alpha \cdot (v_n)_{n \in \mathbb{N}}$
 - (d) $1 \cdot (u_n)_{n \in \mathbb{N}} = (1 \cdot u_n)_{n \in \mathbb{N}} = (u_n)_{n \in \mathbb{N}}$