Τριγωνομετρικές ταυτότητες

ΑΣΚΗΣΕΙΣ

1

Υπολογισμός τριγωνομετρικών αριθμών

1. Εξετάστε αν υπάρχει γωνία $\theta \in (0, 2\pi)$ τέτοια ώστε να ισχύει

α.
$$n\mu\theta = 1$$
 και $συν\theta = -1$.

β. ημθ =
$$-\frac{1}{3}$$
 και συνθ = $\frac{2\sqrt{2}}{3}$.

$$\gamma$$
. εφθ = 2 και σφθ = $\frac{1}{2}$

δ.
$$συνθ = \frac{1}{3} και εφθ = 3$$

Αν ναι, σε ποιο τεταρτημόριο ανήκει;

2. Δίνεται γωνία $\omega \in \left(0, \frac{\pi}{2}\right)$ για την οποία ισχύει ημ $\omega = \frac{3}{5}$. Υπολογίστε τους υπόλοιπους τριγωνομετρικούς αριθμούς.

3. Δίνεται γωνία $\omega \in \left(\pi, \frac{3\pi}{2}\right)$ για την οποία ισχύει συν $\omega = -\frac{5}{12}$. Υπολογίστε τους υπόλοιπους τριγωνομετρικούς αριθμούς.

4. Δίνεται γωνία $\omega \in \left(\frac{\pi}{2}, \pi\right)$ για την οποία ισχύει εφ $\omega = -2$. Υπολογίστε τους υπόλοιπους τριγωνομετρικούς αριθμούς.

5. Δίνεται γωνία $\omega \in \left(\frac{3\pi}{2}, 2\pi\right)$ για την οποία ισχύει σφ $\omega = -\frac{1}{3}$. Υπολογίστε τους υπόλοιπους τριγωνομετρικούς αριθμούς.

6. Έστω γωνία $\omega \in \left(0, \frac{\pi}{2}\right)$ για την οποία ισχύει ότι 3συνx-2=0. Να βρεθούν οι τριγωνομετρικοί αριθμοί της γωνίας.

7. Να βρείτε τους τριγωνομετρικούς αριθμούς της γωνίας $\omega \in \left(\frac{\pi}{2}, \pi\right)$ για την οποία ισχύει

$$9n\mu^2\omega - 4 = 0$$

Απόδειξη ταυτοτήτων

8. Αποδείξτε τις ακόλουθες τριγωνομετρικές ταυτότητες.

$$\alpha. (\eta \mu x + \sigma v x)^2 + (\eta \mu x - \sigma v x)^2 = 2$$

$$β. ημ3x + συν2x · ημx = ημx$$

 $γ. εφx + σφx = {1 \over ημx \cdot συνx}$

δ. $\frac{\eta \mu x}{\epsilon \varphi x} + \frac{\sigma v v x}{\sigma \varphi x} = \eta \mu x + \sigma v v x$