1	1.	A method for synthesizing a clock distribution circuit within an integrated circuit
2		device, said device comprised of a plurality of functional circuits and placed on a
3		substrate, said method comprising the steps of:
4		allocating at least one delaying circuit within each of said functional
5	·	circuits;
6		fabricating an intra-functional clock distribution network within each of the
7	*	functional circuits;
8		fabricating an inter-functional clock distribution network between each of
9		the functional circuits;
10		determining a clock skew for the inter-functional clock distribution network
11	•	and
12		compensating for the clock of said inter-functional clock distribution
13		network by inserting said delaying circuit at a terminal of said inter-
: 14		function clock distribution network where each of said functional
15		circuits is connected to said inter-functional clock distribution network.
1	2.	The method of claim 1 wherein compensating for said clock skew of said inter-
2		functional clock distribution network comprises the steps of:
3		determining a clock skew factor for one selected functional circuit
4		connected to one selected terminal of said inter-functional clock
5		distribution network: and

6		adjusting the delaying circuit within said one selected functional circuit to
7		cancel out said clock skew factor.
1	3.	The method of claim 2 wherein said delaying circuit includes:
2		a plurality of delaying buffer circuits, each delaying buffer circuit having an
3		first increment of delay; and
4		a plurality of interconnecting wiring segments placed between each of the
5	•	plurality of delaying buffer circuits, said interconnecting wiring
6		segments having a second increment of delay.
1	4.	The method of claim 3 wherein adjusting said delaying circuit comprises the step
2 .		of connecting a first quantity of said delaying buffer circuits with a second
3 .	:	quantity of said plurality of interconnecting wiring segments such that a sum of
4		the first increment of delay of said first quantity of the delaying buffer circuits and
5		the second quantity of delay of said interconnecting wiring segments is equal to
6		the clock skew factor
1	5	An apparatus for synthesizing a clock distribution circuit within an integrated $\sqrt{}$
2		circuit device, said device comprised of a plurality of functional circuits and
3		placed on a substrate, said apparatus comprising:
4		means for allocating at least one delaying circuit within each of said

functional circuits;

6		means for labricating an intra-functional c	ock distribution network within
7		each of the functional circuits;	
8		means for fabricating an inter-functional c	lock distribution network
9		between each of the functional circuits	· •
10		means for determining a clock skew for th	e inter-functional clock
1		distribution network; and	
12		means for compensating for the clock of s	aid inter-functional clock
13		distribution network by inserting said d	elaying circuit at a terminal of
4	•	said inter-function clock distribution ne	twork where each of said
15		functional circuits is connected to said	inter-functional clock distribution
16		network.	
1	6.	The apparatus of claim 5 wherein means for com	pensating for said clock skew of
2		said inter-functional clock distribution network co	mprises:
3		means for determining a clock skew facto	r for one selected functional
4 .	. *	circuit connected to one selected term	inal of said inter-functional clock
5	•	distribution network; and	
6		means for adjusting the delaying circuit w	thin said one selected functional
7		circuit to cancel out said clock skew fa	ctor.
1	7.	The apparatus of claim 6 wherein said delaying o	circuit includes:

2		a plurality of delaying buffer circuits, each delaying buffer circuit having an
3		first increment of delay; and
4		a plurality of interconnecting wiring segments placed between each of the
5		plurality of delaying buffer circuits, said interconnecting wiring
6		segments having a second increment of delay.
1	8.	The apparatus of claim 7 wherein the means for adjusting said delaying circuit
2		comprises means for connecting a first quantity of said delaying buffer circuits
3		with a second quantity of said plurality of interconnecting wiring segments such
4		that a sum of the first increment of delay of said first quantity of the delaying
5		buffer circuits and the second quantity of delay of said interconnecting wiring
6		segments is equal to the clock skew factor.
1	9.	An apparatus for synthesizing a clock distribution circuit within an integrated
2	.	circuit device, said device comprised of a plurality of functional circuits and
3		placed on a substrate, said apparatus comprising means for executing the steps
4	•	of:
5	·,	allocating at least one delaying circuit within each of said functional
6		circuits;
7		fabricating an intra-functional clock distribution network within each of the
R		functional circuits:

9		labificating art inter-functional clock distribution hetwork between each of
10		the functional circuits;
11 =		determining a clock skew for the inter-functional clock distribution network;
12		and
13		compensating for the clock of said inter-functional clock distribution
14		network by inserting said delaying circuit at a terminal of said inter-
15		function clock distribution network where each of said functional
16 ′		circuits is connected to said inter-functional clock distribution network;
17	10.	The apparatus of claim 9 wherein compensating for said clock skew of said inter-
18	-	functional clock distribution network comprises the steps of:
19		determining a clock skew factor for one selected functional circuit
20		connected to one selected terminal of said inter-functional clock
21	· (4)	distribution network; and
22		adjusting the delaying circuit within said one selected functional circuit to
23		cancel out said clock skew factor.
1	11.	The apparatus of claim 10 wherein said delaying circuit includes:
2		a plurality of delaying buffer circuits, each delaying buffer circuit having an
3		first increment of delay; and

4		a plurality of interconnecting wiring segments placed between each of the
5		plurality of delaying buffer circuits, said interconnecting wiring
6		segments having a second increment of delay.
1	12.	The apparatus of claim 11 wherein adjusting said delaying circuit comprises the
2		step of connecting a first quantity of said delaying buffer circuits with a second
3		quantity of said plurality of interconnecting wiring segments such that a sum of
4		the first increment of delay of said first quantity of the delaying buffer circuits and
5		the second quantity of delay of said interconnecting wiring segments is equal to
6		the clock skew factor.
1	13.	A clock distribution circuit within an integrated circuit device, said device
2		comprised of a plurality of functional circuits and placed on a substrate, said
3		clock distribution circuit comprising:
4	4.	at least one delaying circuit placed within each of said functional circuits;
5		an intra-functional clock distribution network within each of the functional
6		circuits; and
7	٠	an inter-functional clock distribution network between each of the
8		functional circuits;
9		wherein a clock skew for the inter-functional clock distribution network is
10		compensated by inserting said delaying circuit at a terminal of said

11		inter-infiction clock distribution network where each or said infictional
12		circuits is connected to said inter-functional clock distribution network.
1	14.	The clock distribution circuit of claim 12 wherein compensating for said clock
2	•	skew of said inter-functional clock distribution network comprises the steps of:
3		determining a clock skew factor for one selected functional circuit
4		connected to one selected terminal of said inter-functional clock
5	*	distribution network, and
6		adjusting the delaying circuit within said one selected functional circuit to
7		cancel out said clock skew factor.
1 .	15.	The clock distribution circuit of claim 14 wherein said delaying circuit includes:
2		a plurality of delaying buffer circuits, each delaying buffer circuit having ar
3	5	first increment of delay; and
4		a plurality of interconnecting wiring segments placed between each of the
·5		plurality of delaying buffer circuits, said interconnecting wiring
6		segments having a second increment of delay.
1	16.	The clock distribution circuit of claim 3 wherein adjusting said delaying circuit
2	·. ·	comprises the step of connecting a first quantity of said delaying buffer circuits
3		with a second quantity of said plurality of interconnecting wiring segments such
4	•	that a sum of the first increment of delay of said first quantity of the delaying

5		buffer circuits and the second quantity of delay of said interconnecting wiring
6		segments is equal to the clock skew factor.
1	17.	A integrated circuit synthesizing apparatus for synthesizing an integrated circuit
2		device, said device comprised of a plurality of functional circuits and placed on a
3		substrate, said integrated circuit synthesizing apparatus executing the steps of:
4		synthesizing a clock distribution circuit within said integrated circuit device,
5		said synthesizing comprising the steps of:
6		allocating at least one delaying circuit within each of said functional
7	• (circuits;
8		fabricating an intra-functional clock distribution network within each of
9		the functional circuits;
10		fabricating an inter-functional clock distribution network between each
11		of the functional circuits;
12		determining a clock skew for the inter-functional clock distribution
13		network; and
14		compensating for the clock of said inter-functional clock distribution
15		network by inserting said delaying circuit at a terminal of said inter-
16		function clock distribution network where each of said functional
17		circuits is connected to said inter-functional clock distribution
18		network;

l	18.	The integrated circuit synthesizing apparatus of claim 17 wherein compensating
2		for said clock skew of said inter-functional clock distribution network comprises
3		the steps of:
4		determining a clock skew factor for one selected functional circuit
5		connected to one selected terminal of said inter-functional clock
6		distribution network; and
7		adjusting the delaying circuit within said one selected functional circuit to
8		cancel out said clock skew factor.
1	19.	The integrated circuit synthesizing apparatus of claim 18 wherein said delaying
2		circuit includes:
3		a plurality of delaying buffer circuits, each delaying buffer circuit having an
4		first increment of delay; and
5		a plurality of interconnecting wiring segments placed between each of the
6		plurality of delaying buffer circuits, said interconnecting wiring
7		segments having a second increment of delay.
1	20.	The integrated circuit synthesizing apparatus of claim 19 wherein adjusting said
2		delaying circuit comprises the step of connecting a first quantity of said delaying
3		buffer circuits with a second quantity of said plurality of interconnecting wiring
4		segments such that a sum of the first increment of delay of said first quantity of

5		the delaying buffer circuits and the second quantity of delay of said
6		interconnecting wiring segments is equal to the clock skew factor.
1 7	21.	A medium for retaining a computer program which, when executed on a
2		computing system, executes a process for synthesizing a clock distribution circuit
3		within an integrated circuit device, said device comprised of a plurality of
4		functional circuits and placed on a substrate, said process comprising the steps
5		of:
6		allocating at least one delaying circuit within each of said functional
7		circuits;
8		fabricating an intra-functional clock distribution network within each of the
9		functional circuits;
10		fabricating an inter-functional clock distribution network between each of
11		the functional circuits;
12		determining a clock skew for the inter-functional clock distribution network;
13		and
14		compensating for the clock of said inter-functional clock distribution
15	•	network by inserting said delaying circuit at a terminal of said inter-
16		function clock distribution network where each of said functional
17		circuits is connected to said inter-functional clock distribution network.

the clock skew factor.

1	22.	The medium of claim 20 wherein compensating for said clock skew of said inter-
2		functional clock distribution network comprises the steps of:
3		determining a clock skew factor for one selected functional circuit
4		connected to one selected terminal of said inter-functional clock
5		distribution network; and
6		adjusting the delaying circuit within said one selected functional circuit to
7		cancel out said clock skew factor.
1	23.	The medium of claim 21 wherein said delaying circuit includes:
2 .	*	a plurality of delaying buffer circuits, each delaying buffer circuit having ar
3		first increment of delay; and
4		a plurality of interconnecting wiring segments placed between each of the
5		plurality of delaying buffer circuits, said interconnecting wiring
6		segments having a second increment of delay.
1 .	24.	The medium of claim 22 wherein adjusting said delaying circuit comprises the
2		step of connecting a first quantity of said delaying buffer circuits with a second
3		quantity of said plurality of interconnecting wiring segments such that a sum of
4	•	the first increment of delay of said first quantity of the delaying buffer circuits and
5 .	-	the second quantity of delay of said interconnecting wiring segments is equal to