Numerical Optimization

Raja Damanik, M.Sc.

What we will learn

- Optimization & Application
- Newton Method
- Steepest Descent
- Constrained optimization problem setting

What is optimization

- Given a function f:
 - Find the maximum / minimum possible value of f.
 - Find the input that realizes this maximum / minimum value.
- f is called the objective function
- The input of f can be thought of factors that affect the value of the objective function

What is optimization

- In real life, one needs to carefully:
 - Identify what to optimize, i.e. what is the objective
 - What are factors that will affect the objective
 - How does each factor affect the objective

Application

Backbone of machine learning

Application

Understanding protein folding -> very important research!

Application

- Motion planning in robotics
- Investment

• Gradient in graph of y = f(x).

• Gradient for a surface z = f(x, y).

• Given

$$f: \mathbb{R}^n \to \mathbb{R}$$
.

• Define ∇f (read: $\operatorname{grad} f$) by

$$\nabla f \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

• At point (x_0, y_0) , the vector

$$\nabla f(x_0, y_0)$$

is the direction where f has steepest-ascend.

• At point (x_0, y_0) , the vector

$$-\nabla f(x_0,y_0)$$

is the direction where f has steepest-descend.

- If (x_0, y_0) are **local maxima / minima** then it must be the case that $\nabla f(x_0, y_0) = 0$.
- But... if $\nabla f(x_0, y_0) = 0$, it is not necessary that (x_0, y_0) are local minima / maxima. It can be a saddle point.
- Text in blue suggests: If we want to find local maxima / minima, try to solve $\nabla f = 0$. The local maxima / minima must be somewhere there.
- Text in red suggests: There must be another test to identify which is what: local minima / local maxima / saddle-point.

Hessian

Recall that in our setting,

$$f: \mathbb{R}^n \to \mathbb{R}$$

and

$$\nabla f \colon \mathbb{R}^n \to \mathbb{R}^n$$

• Now, the derivative of ∇f , as we know is just $J_{\nabla f}$.

Hessian

• We give $J_{\nabla f}$, a new name:

Hessian of f.

$$H_f \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix}$$

Analogy

$f \colon \mathbb{R} o \mathbb{R}$	$f{:}\mathbb{R}^n o\mathbb{R}$
f'(x)	$\nabla f(\mathbf{x})$
f''(x)	$H_f(\mathbf{x})$
$f^{\prime\prime\prime}(x)$	

Properties of Hessian matrix

• Hessian matrix H_f must be **symmetric** due to symmetricity of partial derivatives

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

Second-derivative test

Suppose $\nabla f(x^*) = 0$. Then:

- If $H_f(x^*)$ is positive definite, $f(x^*)$ is local minima.
- If $H_f(x^*)$ is negative definite, $f(x^*)$ is local maxima.
- Otherwise, $f(x^*)$ is a saddle-point.

Unconstrained optimization

Given a function

$$f: \mathbb{R}^n \to \mathbb{R}$$

• Find global optimum of f, that is:

```
x^* such that f(x^*) \leq f(x) for any x.
```

Assumption

- Function f is continuous & smooth (differentiable as many times as we like)
- We are interested in local minima

Strategy

• Numerical methods can only find local minima at most.

Newton Method

- Goal: Find the local minima of f(x).
- Idea:

Solve the non-linear system $\nabla f(\mathbf{x}) = \mathbf{0}$

Newton method

- 1. Set initial guess x_0
- 2. Compute ∇f and H_f
- 3. At each iteration:
 - 1. Compute matrix $H = H_f(x_k)$ and vector $b = \nabla f(x_k)$
 - 2. Compute vector s from linear-system Hs = b
 - 3. Update $x_{k+1} = x_k s$

Stopping criterion: $\|\nabla f(x_k)\| < \text{TOL}$

Properties of Newton Method

• Once the initial guess is close to the solution, it converges very fast (quadratic convergences). ☺

- But, there is a trade-off because in each iteration:
 - Computing ∇f and H_f requires $O(n^2)$ scalar-function calls
 - Computing s requires $O(n^3)$ scalar-function calls.

Strategy

• Instead of computing the Hessian H_f , we use an approximation to H_f that we update at each iteration.

- Three approximation-methods to H_f :
 - SR-1
 - DFP
 - BFGS

Quasi-Newton Method

- 1. Set initial guess x_0 and $B_0 = I$
- 2. At each iteration:
 - a. Compute $p_k = -B_k \nabla f(x_k)$
 - b. Define a scalar function in α : $g(\alpha) = f(x_k + \alpha p_k)$.
 - c. Using line-search, find step-size α^* that minimizes the scalar-function.
 - d. Update $x_{k+1} = x_k + \alpha^* p_k$
 - e. Update B_{k+1} using a suitable update formula (SR-1, DFP, BFGS)
- 3. Jika sudah dicapai konvergensi, berhenti

Updating B_k

Let
$$\delta^k = x_{k+1} - x_k$$
 and $\gamma^k = \nabla f(x_{k+1}) - \nabla f(x_k)$

• SR-1:

$$B^{k+1} = B^k + \frac{(\delta^k - B^k \gamma^k)(\delta^k - B^k \gamma^k)^T}{(\delta^k - B^k \gamma^k)^T \gamma^k}$$

• DFP:

$$B^{k+1} = B^k + \frac{\delta^k (\delta^k)^T}{(\delta^k)^T \gamma^k} - \frac{B^k \gamma^k (\gamma^k)^T B^k}{(\gamma^k)^T B^k \gamma^k}$$

• BFGS:

$$B^{k+1} = B^k + \left(1 + \frac{(\gamma^k)^T B^k \gamma^k}{(\delta^k)^T \gamma^k}\right) \frac{\delta^k (\delta^k)^T}{(\delta^k)^T \gamma^k}$$
$$- \left(\frac{\delta^k (\gamma^k)^T B^k + B^k \gamma^k (\delta^k)^T}{(\delta^k)^T \gamma^k}\right)$$

Steepest Descent

- Goal: Find the local minima of f(x).
- Idea:

Move from x_k to x_{k+1} towards the direction of steepest descent

Steepest Descent

- 1. Set initial guess x_0
- 2. Compute ∇f
- 3. At k-th iteration:
 - Compute $p_k = -\nabla f(x_k)$
 - Define a scalar function in α ,

$$g(\alpha) = f(x_k + \alpha p_k)$$

- Using line-search, find scalar α^* that minimizes $g(\alpha)$
- Update $x_{k+1} = x_k + \alpha^* p_k$

Stopping criterion: $\|\nabla f(x_k)\| < \text{TOL}$

Line-Search: Finding step-size α

- One can use Exact Line Search to find α : solve non-linear scalar equation $g'(\alpha) = 0$ using:
 - Bisecation method
 - Newton method (1-dimension version)
 - Secant method (1-dimension version)
- One can also use simpler & more relaxed method, e.g. Armijo Backtracking Line-Search.

Backtracking Line-Search

- 1. Set initial guess α_0 (e.g. $\alpha_0=1$) and $\ell=0$
- 2. Until $f(x_k + \alpha_i p_k) < f(x_k)$:
 - 1. Set $\alpha_{i+1} = \frac{1}{2}\alpha_i$ (or multiply by some constant in the interval (0,1)
 - 2. Increment ℓ by one
- 3. Set $\alpha^* = \alpha_\ell$.

Armijo-Backtracking Line-Search

- 1. Set initial guess α_0 (e.g. $\alpha_0=1$) and $\ell=0$
- 2. Until $f(x_k + \alpha_i p_k) \leq f(x_k) + 0.1\alpha_i \nabla f(x_k)^T p_k$:
 - 1. Set $\alpha_{i+1} = \frac{1}{2}\alpha_i$ (or multiply by some constant in the interval (0,1)
 - 2. Increment ℓ by one
- 3. Set $\alpha^* = \alpha_\ell$.

Note: In case of steepest-descent method, $p_k := -\nabla f(x_k)$

CONSTRAINED OPTIMIZATION

- Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$.
- Find the maximum and minimum of f(x) but with requirements that x satisfies $g(x) = \mathbf{0}$

Example:

If $x^2 + y^2 = 1$, what is the maximum and minimum of x + 2y?

If $x^2 + y^2 = 1$ and $y^2 - z^2 = 3$, what is the maximum and minimum of xyz?

Lagrange's Multiplier

Define Lagrange function

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \lambda^{\mathsf{T}} g(\mathbf{x})$$

where $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}^m$. λ is called the Lagrange's multiplier.

• Find x^* and λ which satisfy the non-linear system

$$\frac{\frac{d}{dx_i}L(x,\lambda)=0}{\frac{d}{d\lambda_i}L(x,\lambda)=0$$

• The system will find among the points in the constraint where f is **maximum and minimum**. To decide which one is maximum & minimum

Example 1

• If x and y satisfies $x^2 + y^2 = 1$, find the maximum and minimum value of

$$x + 2y$$
.

Example 2

• If $x^2 + y^2 = 1$ and $y^2 - z^2 = 3$, what is the maximum and minimum of xyz?

Idea of Lagrange Multipliers

- Draw on the input space (xy plane) the curve of g(x, y) = 0.
- Draw countour plot f(x,y) = c for various c on the input space.
- If f(x,y) is maximum / minimum, the curve of g(x,y)=0 and f(x,y)=c must be tangent.
- Hence, their gradient (tangent line) must be parallel, namely $\nabla f(x^*, y^*) = \lambda \nabla g(x, y)$.