Introducción

A.1.2 Actividad de aprendizaje

Objetivo

Realizar un sensor medidor de luz (lux) a través de un circuito electrónico, utilizando un simulador, y un LDR (Light dependent Resistor).

Instrucciones

- Se sugiere para el desarrollado de la presenta actividad, utilice uno de los siguientes simuladores: Autodesk Tinkercad, Virtual BreadBoard, Easy EDA por lo cual habrá que familiarizarse antes, e incluso instalarse o registrarse dentro de la plataforma.
- Toda actividad o reto se deberá realizar, utilizando el estilo MarkDown con extension .md y el entorno de desarrollo VSCode, debiendo ser elaborado como un documento single page, es decir si el documento cuanta con imágenes, enlaces o cualquier documento externo debe ser accedido desde etiquetas y enlaces, y debe ser nombrado con la nomenclatura A1.2_NombreApellido_Equipo.pdf.
- Es requisito que el .MD contenga una etiqueta del enlace al repositorio de su documento en GITHUB, por ejemplo Enlace a mi GitHub y al concluir el reto se deberá subir a github.
- Desde el archivo .md exporte un archivo .pdf que deberá subirse a classroom dentro de su apartado correspondiente, sirviendo como evidencia de su entrega, ya que siendo la plataforma oficial aquí se recibirá la calificación de su actividad.
- Considerando que el archivo .PDF, el cual fue obtenido desde archivo .MD, ambos deben ser idénticos.
- Su repositorio ademas de que debe contar con un archivo **readme**.md dentro de su directorio raíz, con la información como datos del estudiante, equipo de trabajo, materia, carrera, datos del asesor, e incluso logotipo o imágenes, debe tener un apartado de contenidos o indice, los cuales realmente son ligas o **enlaces a sus documentos .md**, *evite utilizar texto* para indicar enlaces internos o externo.
- Se propone una estructura tal como esta indicada abajo, sin embargo puede utilizarse cualquier otra que le apoye para organizar su repositorio.
- readme.md
 - blog
 - C0.1_x.md
 - C0.2_x.md
 - img
 - docs
 - A0.1 x.md
 - A0.2 x.md
 - A1.2 x.md
 - A1.3_x.md

1. Utilice el siguiente listado de materiales para la elaboración de la actividad y agregue en la columna Fuente de consulta su enlace *bibliográfico*.

Cantidad	Descripción	Fuente de consulta	
1	Sensor Fotoresistencia LDR de 2M	Naylamp mechatronics,datasheet	
1	Resistencia 1k	Zonamaker	
1	Fuente de alimentación de 5v.		

2. Considerando que el elemento LDR es un sensor fotoresistivo es decir varia su resistencia en base a la cantidad de luz que incide sobre el, **Que observa en el grafico siguiente?**

3. Ensamble el circuito que se muestra utilizado el simulador que halla considerado, colocando la fotorresistencia en la posición LDR y resistencia de acuerdo con la imagen del esquemático:

Imagen Esquemático del circuito

- 4. coloque la imagen finalmente obtenida del circuito ensamblado dentro de su simulador.
- 5. Mida la **resistencia** de la fotorresistencia con el ohmetro bajo las siguientes condiciones: ausencia de luz u oscuridad, luz ambiente, luz intensiva y registre en la tabla correspondiente.
- 6. Calcule el **valor de voltaje Vout teórico** para cada una de las condiciones antes indicadas asi como el valor de voltaje Vout medido y registre en la tabla correspondiente.
- 7. Calcule el **valor de exactitud** de voltaje entre lo teórico y lo medido para cada condición y registre en la tabla correspondiente.

Numero	Condición	Impedancia en fotoresistencia	Voltaje Vout teórico	Voltaje Vout medido	% V.Medido/ V.Teórico
Ausencia de luz					
Luz ambiental					
Luz intensa					

- 8. **Grafique** a través de los valores registrados en la tabla anterior de tal manera que se pueda observar el comportamiento de la curva del componente LDR e **inserte la grafica**.
- 9. Inserte imágenes de **evidencias** tales como son reuniones de los integrantes del equipo realizadas para el desarrollo de la actividad
- 10. Incluya las conclusiones individuales y resultados observados durante el desarrollo de la actividad.

Criterios	Descripción	Puntaje
Instrucciones	Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?	10
Desarrollo	Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad?	60
Demostración	El alumno se presenta durante la explicación de la funcionalidad de la actividad?	20
Conclusiones	Se incluye una opinión personal de la actividad por cada uno de los integrantes del equipo?	10

🛕 Ir a sensores