Pattern Recognition, Homework 3

- 309553018 林孟學

1. Part 1

(1) (5%) Please compute the Entropy and Gini Index of the given array by the formula on the slides.

```
Gini of data is 0.4628099173553719
Entropy of data is 0.9456603046006401
```

(2) (20%) Implement the Decision Tree algorithm (CART, Classification and Regression Trees) and train the model by the given arguments, and print the accuracy score on the test data.

(2.1) Using Criterion='gini' to train the model and show the accuracy score of test data by Max_depth=3 and Max_depth=10, respectively.

```
Accuracy clf_depth3: 0.916083916083916
Accuracy clf_depth10: 0.9090909090909091
```

(2.2) Using Max_depth=3 to train the model and show the accuracy score of test data by Criterion='gini' and Criterion='entropy', respectively.

```
Accuracy clf_depth3: 0.916083916083916
Accuracy clf_depth10: 0.9090909090909091
```

(3) (15%) Plot the feature importance of your Decision Tree model. You can use the model for Question 2.1, max depth=10.

Here I use the formula in the reference.

- (4) (20%) Implement the random forest algorithm by using the CART you just implemented for Question 2.
 - (4.1) Using Criterion='gini', Max_depth=None,
 Max_features=sqrt(n_features), Bootstrap=True to train the model and
 show the accuracy score of test data by n_estimators=10 and
 n_estimators=100, respectively.

```
def predict(self, X):
    predictSum = np.zeros(len(X.index))
    for DT in self.decision_trees:
        predictSum += DT.predict(X)

    predictSum \( \subseteq self.n_estimators \)

    pred = np.zeros(len(X.index), dtype=int)
    pred[predictSum < 0.5] = 0
    pred[predictSum \( \geq 0.5 \)] = 1

    return pred</pre>
```

```
Accuracy clf_10tree: 0.9300699300699301
Accuracy clf_100tree: 0.9370629370629371
```

(4.2) Using Criterion='gini', Max_depth=None, N_estimators=10, Bootstrap=True, to train the model and show the accuracy score of test data by Max_features=sqrt(n_features) and Max_features=n_features, respectively

```
Accuracy clf_random_features: 0.9440559440559441
Accuracy clf_all_features: 0.951048951048951
```

2. Part 2

(1)

(15%) By differentiating the error function below with respect to α_m ,

$$E = e^{-\alpha_m/2} \sum_{n \in T_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in M_m} w_n^{(m)}$$

$$= (e^{\alpha_m/2} - e^{-\alpha_m/2}) \sum_{n=1}^N w_n^{(m)} I(y_m(x_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^N w_n^{(m)}$$

show that the parameters α_m in the AdaBoost algorithm are updated using

$$\alpha_m = ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\} \text{ in which } \epsilon_m \text{ is defined by } \epsilon_m = \frac{\sum\limits_{n=1}^N w_n^{(m)} I(y_m(x_n) \neq t_n)}{\sum\limits_{n=1}^N w_n^{(m)}}.$$

DE =	$=\left(\begin{array}{c} \frac{1}{2} \end{array}\right)$	eam/2	+ = 6	- Gm/z		V _h (7h) [(In (X)	,))		
					N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						Em
	1/2	(eam	/2 + C	-am/z	$\left\langle \sum_{n=1}^{N} \gamma_{n} \right\rangle$	Vn 1	(ym (xi	n)≠tn	$\left \frac{\sqrt{2}}{2} \right $	$W_h^{(m)}$	
			- 1	e-am/z	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	J _n (m)	/ Z 7	/n (m)	= 0		<i></i>
	ć	Em e	2m/2 +			/					
			Em e	am/z	= (1-	- Em) 1	e-am/z				
		l	n (Em) +	$\frac{G_m}{z}$	= ln ([1-Em)-	+ - am				
				\mathcal{Q}_m	= ln	(1- Em)) - Ln ((ε_m)			
					= ln	(1- Em	_)				

(2)

(15%) Consider a data set comprising 400 data points from class C_1 and 400 data points from class C_2 . Suppose that a tree model A splits these into (300, 100) assigned to the first leaf node (predicting C_1) and (100, 300) assigned to the second leaf node (predicting C_2), where (n, m) denotes that n points come from class C_1 and m points come from class C_2 . Similarly, suppose that a second tree model B splits them into (200, 0) and (200, 400), respectively. Evaluate the misclassification rates for the two trees and hence show that they are equal. Similarly, evaluate the pruning criterion $C(T) = \sum_{\tau=1}^{N} Q_{\tau}(T) + \lambda |T|$ for the cross-entropy case $Q_{\tau}(T) = -\sum_{k=1}^{N} p_{\tau k} ln(p_{\tau k})$ for the two trees and show that tree B is lower than tree A. Leaf nodes are indexed by

 $\tau = 1,..., |T|$, with leaf node τ represents a region R_{τ} , and $p_{\tau k}$ is the proportion of data points in region R_{τ} assigned to class k, where k = 1,..., K.

Hint: The answer should contain λ which is the regularization parameter.

A
400 400
→ 300 → 100 → 100 → 100 → 100 HOD
mis classification rate
A: (100+100)/800 = 1
B: (200)/800 = 4
$A P_{11} = \frac{300}{400} P_{12} = \frac{100}{400}$
P21 = 400 P22 = 300
Q1(TA) = - (= ly = + + ly +)
Qz (TA) = - (+lg + + 3 lg =)
$C(T_A) = -2(\frac{3}{4}l_y\frac{3}{4} + \frac{1}{4}l_y\frac{1}{4}) + 2 \times 2^{1/2}$ = 0.488 + 22

B
$$P_{11} = \frac{270}{200} \quad P_{12} = \frac{9}{200}$$

$$P_{21} = \frac{200}{600} \quad P_{22} = \frac{400}{600}$$

$$Q_{1}(T_{B}) = -\left(\frac{1}{3}l_{1} + \frac{2}{3}l_{2} + \frac{2}{3}l_{3} + \frac{2}{3}l_{3}\right)$$

$$C(T_{B}) = -\left(\frac{1}{3}l_{1} + \frac{2}{3}l_{3} + \frac{2}{3}l_{3} + \frac{2}{3}l_{3}\right) + 2 \times 2$$

$$= 0.159 + 27$$

$$C(T_{A}) \qquad > C(T_{B})$$

$$= 0.488 + 27 \qquad = 0.159 + 27$$

(3) $(10\%) \mbox{ Verify that if we minimize the sum-of-squares error between a set of training values $\{t_n\}_{n=1\sim N}$ (N$ is number of training data) and a single predictive value t, then the optimal solution for t is given by the mean of the $\{t_n\}_{n=1\sim N}$.}$

Find a	argm	īn :	N (tn	t)²
$\frac{d}{dt}$	X / / / /	(tn-	t)2	= 0	
	$\sum_{n=1}^{N} Z$	(tn-	t)×	(-1):	= 0
	× (tn-t) =	D	
	»=1	tn =	X t	シェハ	√×t
		4	$\frac{\sum_{n=1}^{N}t_{n}}{N}$		
		L =	\sim		