Resultate Geometrie, Klasse 3

ab Seite 97

1a)
$$V = 2268 \text{ cm}^3$$

b)
$$S = 1119 \text{ cm}^2$$

c) V_{Würfel} = 21.952 cm³; V / V_{Würfel} = 103.3, aber es haben nur 7 Würfel längs, 4 Würfel in der Breite und 2 Würfel in der Höhe Platz: Es sind daher nur 56 kleine Würfel in der Schachtel zu verpacken!

b) 99.9 cm³ 0.0004 dm³ 17.69 m³ 10⁵ cm³

c)
$$3.6 \text{ m}^3 = 3.6 \cdot (10^2)^3 \text{ cm}^3 = 3.6 \cdot 10^6 \text{ cm}^3$$

d) $1 \text{ mm}^3 + 2000 \text{ mm}^3 + 3'000'000 \text{ mm}^3 = 3'002'001 \text{ mm}^3$

3a)
$$V = 231 \text{ cm}^3$$
 $S = 262 \text{ cm}^2$ b) $b = 4.5 \text{ cm}$ $S = 139.7 \text{ cm}^2$

$$S = 262 \text{ cm}^2$$

b)
$$b = 4.5 cm$$

$$S = 139.7 \text{ cm}^2$$

c)
$$c = 6 cm$$

$$V = 72 \text{ cm}^3$$

c)
$$c = 6 \text{ cm}$$
 $V = 72 \text{ cm}^3$ d) $V = 150.552 \text{ dm}^3$ $S = 25'124 \text{ cm}^2$

$$S = 25'124 \text{ cm}^2$$

1

4a)
$$h = 2.8 dm$$

- b) Würfelkante s = 26 cm, Volumen $V = 17'576 \text{ cm}^3$
- 8. Quader hat Volumen 12000 cm³, hat also bei 0.4 g/cm³ Dichte eine Masse von 4800 g. Wasser mit dieser Masse muss in einem Quader mit der Grundfläche von 40.25 cm² eine Höhe von 4.8 cm haben.

ab Seite 101

1a)
$$V = \frac{75}{2}\sqrt{3} \text{ cm}^3 \approx 64.95 \text{ cm}^3$$
 $S \approx 111.65 \text{ cm}^2$

$$S \approx 111.65 \text{ cm}^2$$

b)
$$V = 7.5 \text{ cm}^2 \cdot \text{h} = 60 \text{ cm}^3$$
 $h = 8 \text{ cm}$ $S = 135 \text{ cm}^2$

$$h = 8 cm$$

$$S = 135 \text{ cm}^2$$

c)
$$G = 24.5 \text{ cm}^2$$
, also Kathete $a = 7 \text{ cm}$ $M = 286.79 \text{ cm}^2$

$$M = 286.79 \text{ cm}^2$$

b) Sechseck liegt in x,y-Ebene; seine Grundfläche beträgt 2a) Schrägbild nach Zerlegung in Dreiecke G = 25. Die Höhe des Prismas ist 5. V = 125

5a) G ist regelmässiges 6-Eck mit s = 3cm, Höhe h = 18cm

$$C = 33.38 \text{ cm}^2$$
 $V = 420.888 \text{ cm}^2$

$$G = 23.38 \text{ cm}^2$$
 $S = 370.8 \text{ cm}^2$ $V = 420.888 \text{ cm}^3$

$$V = 420.888 \text{ cm}^3$$

b) Masse = 3'156.66 q

- 6. Das Prisma mit dem Trapez SABP als Grundfläche und der Höhe b = 4cm hat das Volumen $V_1 = 24(2 + \sqrt{3}) \text{ cm}^3 \approx 89.6 \text{ cm}^3$ Das Restprisma hat folglich das Volumen V₂ ≈ 102.4 cm³
- 8. $V = 10'692 \text{ m}^3$ Masse = 14'968.8 t Es sind <u>1'497 Wagen</u> nötig.

ab Seite 107

1b)
$$h = 5cm$$

c)
$$V \approx 69.3 \text{ cm}^3$$

1b) h = 5cm c)
$$V \approx 69.3 \text{ cm}^3$$
 2a) $V = 32 \text{ cm}^3$ b) $S \approx 66.6 \text{ cm}^2$

b)
$$S \approx 66.6 \text{ cm}^2$$

3.
$$V = \frac{1}{6} dm^3$$

6.
$$G = 166.3 \text{ cm}^2$$
 $h = 8\sqrt{3} \text{ cm} \approx 13.9 \text{ cm}$ Höhe Seitenfläche = $4\sqrt{15} \text{ cm}$ $\underline{S} = G + 6 \cdot \text{Inhalt(Seitenfläche)} \approx \underline{538.1 \text{ cm}^2}$ $\underline{V} = 768 \text{ cm}^3$

- 8. Grundfläche einer solchen Pyramide = halbe Würfel-Seitenfläche, Höhe ist Kantenlänge a des Würfels: $V = \frac{1}{6} a^3$
- 12a) h: h' = 2: 1, also a' = 0.5a = 2 dm $V_{A'B'C'D'S} = 4 \text{ dm}^3$ $V_{ABCDS} = 32 \text{ dm}^3$ $V_{ABCDS} : V_{A'B'C'D'S} = 8 : 1$
 - b) $V_{Pyramidenstumpf} = V_{ABCDS} V_{A'B'C'D'S} = 28 \text{ dm}^3$

ab Seite 113

1a)
$$V \approx 3'053.6 \text{ cm}^3$$
 $M \approx 678.6 \text{ cm}^2$ $S \approx 1187.5 \text{ cm}^2$

$$M \approx 678.6 \text{ cm}^2$$

$$S \approx 1187.5 \text{ cm}^2$$

b)
$$r \approx 2.3 \text{ cm}$$

d)
$$r = \frac{2V}{M}$$

d)
$$r = \frac{2V}{M}$$
 $G = 25\pi \text{ cm}^2$ $S \approx 229 \text{ cm}^2$

$$S \approx 229 \text{ cm}^2$$

3.
$$h \approx 10.9 \text{ cm}$$

5. Rohr hat Volumen
$$V = 240\pi$$
 cm³, Masse 5881 g

7. Abfallvolumen =
$$V_{Quader} - V_{Zylinder} \approx 429.2 \text{ cm}^3$$

10a)
$$V_1 = 80\pi \text{ cm}^3$$

$$V_2 = 50\pi \text{ cm}^3$$

10a)
$$V_1 = 80\pi \text{ cm}^3$$
 $V_2 = 50\pi \text{ cm}^3$ b) $0.25a^2b\pi = 0.25ab^2\pi \rightarrow a = b$

ab Seite 117

2a)
$$V \approx 236.4 \text{ cm}^3$$
 b) $V \approx 37.7 \text{ cm}^3$ $M \approx 47.1 \text{ cm}^2 \text{ S} \approx 75.4 \text{ cm}^2$

c)
$$r \approx 2.898 \text{ cm}$$
 $V \approx 44.2 \text{ cm}^3$

c)
$$r\approx 2.898~\text{cm}~V\approx 44.2~\text{cm}^3$$
 d) $r\approx 1.4~\text{dm}~s\approx 1.7~\text{dm}~S\approx 13.4~\text{dm}^2$

3a)
$$r = 1 cm$$

3a)
$$r = 1 \text{ cm}$$
 $h \approx 3.9 \text{ cm}$ $V \approx 4.1 \text{ cm}^3$ $S \approx 15.7 \text{ cm}^2$

$$S \approx 15.7 \text{ cm}^2$$

b)
$$r \approx 2.7$$
 cm

$$h \approx 3.0 \text{ cm}$$

$$V \approx 22.2 \text{ cm}^3$$

b)
$$r \approx 2.7 \text{ cm}$$
 $h \approx 3.0 \text{ cm}$ $V \approx 22.2 \text{ cm}^3$ $S \approx 55.9 \text{ cm}^2$

4a)
$$V \approx 28.3 \text{ cm}^3$$

4a)
$$V \approx 28.3 \text{ cm}^3$$
 b) $M \approx 271.4 \text{ cm}^2$

5a) Zwei Möglichkeiten:
$$V_1 = \frac{a^2b\pi}{3}$$
 $V_2 = \frac{ab^2\pi}{3}$

$$V_2 = \frac{ab^2\pi}{3}$$

b) Durch Rotation um Hypotenuse entstehen zwei gerade Kreiskegel mit gemeinsamer Grundfläche mit Radius $h_c = \frac{ab}{c}$. Ihre Höhen sind die Hypotenusenabschnitte. $V = V_1 + V_2 = \frac{a^2b^2\pi}{3c}$

7a)
$$V \approx 160.6 \text{ cm}^3$$

7a)
$$V \approx 160.6 \text{ cm}^3$$
 b) $V' = \frac{1}{8}V \approx 20.1 \text{ cm}^3$ ($k = 1:2 \rightarrow V = 1:8$)

c) V': V = 2:3
$$\rightarrow$$
 h': h = $\sqrt[3]{2:3}$ \rightarrow h' = $\sqrt[3]{\frac{2}{3}}$ h \approx 9.8 cm

10.
$$V_{Zelt} = V_{dreiseitiges Prisma} + V_{Kegel} \approx 8'094.4 \text{ m}^3$$

ab Seite 125

1a) S =
$$324\pi$$
 cm²

$$V = 972\pi \text{ cm}^3$$

b)
$$V = \frac{250}{3} \pi \text{ cm}^3$$
 $S = 75\pi \text{ cm}^2$

$$S = 75\pi \text{ cm}^2$$

2a)
$$r = \frac{1}{\sqrt{\pi}} \text{ m} \approx 0.56 \text{ n}$$

2a)
$$r = \frac{1}{\sqrt{\pi}} \text{ m} \approx 0.56 \text{ m}$$
 $V = \frac{4}{3\sqrt{\pi}} \text{ m}^3 \approx 0.75 \text{ m}^3$

b)
$$r = 1 cm$$

$$S = 4\pi \text{ cm}^2$$

c)
$$r = 13.5 \text{ m}$$

$$S \approx 2'290.2 \text{ m}^2$$

$$V\approx 10^{\prime}306.0~m^3$$

3

2d)
$$r = \sqrt{\frac{S}{4\pi}}$$
 $V \approx 4.19 \text{ dm}^3$

3a)
$$r = \sqrt[3]{\frac{3 \text{ V}}{4\pi}} \approx 10.47 \text{ cm}$$
 b) $r \approx 4.7 \text{ cm}$

- c) Volumen einer Schrotkugel = $\frac{2'000}{42'067 \cdot 11.35}$ cm³; Durchmesser d = 2r ≈ 0.2 cm
- 5. V_{Kegel}: V_{Halbkugel}: V_{Zylinder} = 1:2:3

9a)
$$V_{Kugel}=\frac{4}{3}\pi~m^3\approx 4.2~m^3$$
 $V_{Zylinder}=2\pi~m^3$ b) V_{Kugel} : $V_{Zylinder}=2:3$

12.
$$V_{\text{Kegel}} = V_{\text{Kugel}}$$
 $\underline{h} = 4\underline{r}$

15a)
$$r = \frac{r_{Erde}}{\sqrt{2}}$$
 Weglänge in 1 Woche \approx 198'108 km

- b) Weglänge in 1 Woche ≈ 140'084 km
- c) Weglänge in 1 Woche ≈ 280'167 km