RECURRENT NEURAL NETWORK FOR FORECASTING SOLAR ENERGY PRODUCTION

Jonathan Gao, Mathematics and Computer Science Division Supervisors Raj Sankaran, Bobby Jackson, and Seongha Park, Mathematics and Computer Science Division

Background

Solar Power

- Cleanest and most abundant renewable energy source [1]
- Energy production volatility reduces solar power efficiency [2]
- Need for solar energy production **forecasting methods** [2]

Recurrent Neural Networks

- Special class of neural network which keeps history of previous inputs [4]
 - Time-based (accepts sequences of data)
 - Popular for forecasting

Methodology

Our model used historical **solar irradiance** and **cloud coverage** data to predict future **solar irradiance** (Solar irradiance, cloud coverage linked to solar energy production) [3]

Training

- Preprocessed data, implemented model and training mechanisms, incorporated optimization framework, and configured connection to computing clusters
- Searched for the best model over these configurations:
 - RNN Type (standard RNN [4], LSTM [5], or GRU [6])
 - Number of stacked **RNN layers** (1-4)
 - Number of neurons per layer (32, 64, or 128)

Results

I trained and optimized a recurrent neural network to forecast solar irradiance

Conclusions

- Best performing model: 1-layer GRU with 32 neurons
- Promising results for hyperlocal solar energy production forecasting using edge computing with Argonne's Waggle sensors

Fig. 1: Solar irradiance prediction by the best performing model, a 1-layer GRU with 32 nodes with a 15-minute resampling frequency. Each hour (tick on x-axis) is predicted using the data of the 4 hours prior. **Left:** Solar irradiance prediction on a cloudy day. **Right:** Solar irradiance prediction on a sunny day.

Fig. 2: Solar irradiance prediction over a six-day stretch., including a variety of cloud conditions, by the best performing model, a 1-layer GRU with 32 nodes with a 15-minute resampling frequency. Each hour (tick on x-axis) is predicted using the data of the 4 hours prior. Note that nightfall is not included in the data; thus, each day is less than 24 hours.

rank	cell type	layers	neurons	loss
1	GRU	1	32	0.004806
2	GRU	2	32	0.004825
3	LSTM	4	32	0.004837
4	GRU	1	32	0.004866
5	LSTM	4	32	0.004895
6	GRU	1	32	0.004949
7	RNN	2	32	0.004961
8	RNN	1	128	0.005107
9	RNN	1	64	0.005218
10	RNN	2	64	0.005225
11	RNN	2	128	0.005234
12	GRU	2	32	0.006033
13	LSTM	2	32	0.006210
14	GRU	2	32	0.006322
15	GRU	3	128	0.006343
16	GRU	2	32	0.006347
17	RNN	3	32	0.006533
18	GRU	1	64	0.006539
19	GRU	4	128	0.006561
20	GRU	1	64	0.006635
21	GRU	2	128	0.006650
22	LSTM	2	128	0.006661
23	GRU	2	32	0.006686
24	GRU	3	32	0.006708
25	LSTM	3	32	0.006824
26	LSTM	3	32	0.006867
27	LSTM	3	32	0.006891
28	LSTM	1	128	0.006966
29	GRU	3	64	0.006978
30	LSTM	4	32	0.006979
31	RNN	3	128	0.007135
32	GRU	4	32	0.007163
33	GRU	1	128	0.007219
34	GRU	1	128	0.007246
35	LSTM	4	32	0.007266
36	GRU	4	32	0.007295
37	GRU	2	64	0.007326
38	LSTM	4	32	0.007399
39	LSTM	4	32	0.007428
40	LSTM	4	32	0.007452
- .				l. C

Table 1: Accuracy results for each trial. Hyperparameters were chosen using a TPESampler. Thus, values were selected unequally

Future Directions

- Dockerize for usage in Waggle sensors
- Compare models' resource usage and speed for **edge computing** in Waggle sensors
- Consider training for different time intervals

Acknowledgements

I would like to thank my phenomenal mentors Raj, Bobby, and Seongha for their guidance throughout this project and the Department of Energy for funding the SULI Program which allowed me to be here.

Sources: [1] Z. Pang, F. Niu, and Z. O'Neill, "Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons," Renewable Energy, vol. 156, pp. 279–289, Aug. 2020, doi: 10.1016/j.renene.2020.04.042. [2] D. Kaur, S. Islam, A. Mahmud, E. Haque, and Z. Y. Dong, "Energy Forecasting in Smart Grid Systems: A Review of the State-of-the-art Techniques," arXiv, Nov. 2020, doi: 10.48550/arXiv.2011.12598 [3] S. Park, Y. Kim, N. J. Ferrier, S. M. Collis, R. Sankaran, and P. H. Beckman, "Prediction of Solar Irradiance and Photovoltaic Solar Energy Product Based on Cloud Coverage Estimation Using Machine Learning Methods," Atmosphere, vol. 12, no. 3, p. 395, Mar. 2021, doi: 10.3390/atmos12030395. [4] C. Goller and A. Kuchler, "Learning task-dependent distributed representations by backpropagation through structure," Proceedings of International Conference on Neural Networks (ICNN'96), 1996, pp. 347-352 vol.1, doi: 10.1109/ICNN.1996.548916. [5] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, p. 1735-1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735 [6] K. Cho, B. Merrienboer, D. Bahdanau, and Y. Bengio, "On the Properties of Neural Machine Translation: Encoder-Decoder Approaches," arXiv, Sep. 2014, doi: 10.48550/arXiv.1409.1259