HuStar Al Course: Computer Vision

Semantic Segmentation

Ju Gwangjin

Computer Graphics Lab.

Semantic Segmentation with Fully Convolutional Networks

Overview

Classification -> Semantic segmentation

- Semantic segmentation based on deep learning
 - FCN, DeepLab, DeconvNet, U-Net, Pyramid Scene Parsing Network

- Classification determine label of image
 - Find function: Image -> number of label
 - e.g. 32x32x3 -> 10x1
- Semantic segmentation determine label of each pixel
 - Find function: Image -> number of label x Image width x Image height
 - e.g. 32x32x3 -> 10x32x32, harder ⊗
 - But not 32x32 times harder problem because locality ©
 - What is difference of two task?

Image classification

Semantic segmentation

• Semantic segmentation

• Instance Segmentation (Advenced)

Image classification

- Semantic segmentation
 - Given an input image, obtain pixel-wise segmentation mask using a deep Convolutional Neural Network (CNN)

- Converting fully connected layers to convolution layers
 - Each fully connected layer is interpreted as a convolution
 - spatial filter that covers entire input field

- Network architecture^[Long15]
 - End-to-End CNN architecture for semantic segmentation
 - Convert fully connected layers to convolutional layers

• Skip architecture

• Skip architecture - Ensemble of three different scales

Jonathan et al., Fully convolutional networks for semantic segmentation, CVPR 2015.

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation

U-Net

- U-Net: Convolutional Networks for Biomedical Image Segmentation
- Today's practice is based on U-Net.
 - To reduce computation, we reduce channel a lot

