LSTAT 2040 - TP 5

Méthodes d'estimation et propriétés

Exercice 1

Soit X_1, X_2, \ldots une suite de variables aléatoires iid dont la distribution commune a pour densité

$$f(x;\theta) := \theta x^{\theta - 1} I(0 < x < 1),$$

où $\theta > 0$.

- (a) Trouver un estimateur de θ par la méthode des moments
- (b) Montrer que l'estimateur obtenu est consistant pour θ .
- (c) Trouver la distribution asymptotique de cet estimateur.

Exercice 2

Soit X_1, X_2, \ldots une suite de variables aléatoires iid dont la distribution commune est $N(\theta, \theta)$ où $\theta > 0$.

- (a) Trouver l'estimateur de maximum de vraisemblance (MLE) de θ .
- (b) Trouver la distribution asymptotique de cet estimateur à partir du CLT et de la méthode delta.
- (c) Calculer l'information de Fisher contenue dans l'échantillon sur θ .
- (d) Que peut-on dire sur la variance asymptotique du MLE?

Exercice 3

Soit 2.3, 2.5, 2.6, 2.9 et 3.9 un échantillon iid de taille 5 issu d'une distribution uniforme continue sur l'intervalle $[\theta, \theta+2]$ où $\theta>0$. Parmi les trois estimateurs suivants : $\hat{\theta}_1=1.84$, $\hat{\theta}_2=1.94$ et $\hat{\theta}_3=2.84$, un seul peut correspondre au MLE. Lequel ? Pourquoi ?

Exercice 4

Soit une urne contenant θ boules numérotées de 1 à θ , où θ est supposé inconnu. Soit X_1, \ldots, X_n un échantillon aléatoire composé de n boules pêchées de cette urne, avec remise.

- (a) Que vaut l'estimateur des moments de θ ?
- (b) Que vaut le MLE de θ ?
- (c) Si n=4 avec $x_1=x_2=x_3=3$ et $x_4=12$, calculer les deux estimateurs et discuter le résultat.

Exercice 5

Soit X_1, \ldots, X_5 un échantillon iid de taille 5 où l'on observe les valeurs -10, 8, 3, 6 et 1. On sait que la densité f de la loi commune des $(X_i)_{i=1,\ldots,5}$ dépend d'un paramètre $\theta > 0$ et que $f(x;\theta) = 0$ si $x \notin [-\theta,\theta]$. Parmi les graphiques ci-dessous, un seul peut représenter la fonction de vraisemblance de l'échantillon. Lequel ? Pourquoi ?

Exercice 6

Soit X_1, X_2, \ldots une suite de variables aléatoires iid dont la distribution commune est $Gamma(k, \theta)$. On rappelle que pour tout $r \in \mathbb{N}$,

$$E[X_1^r] = \theta^r \prod_{i=1}^r (k+i-1).$$

- (a) Trouver un estimateur de (k, θ) par la méthode des moments.
- (b) Quelle est la distribution asymptotique de cet estimateur?

Exercice 7

Soit X_1, X_2, \ldots une suite de variables aléatoires iid dont la distribution commune a pour densité

$$f(x;\theta) := \frac{2x}{\theta^2} \exp\left(-\frac{x^2}{\theta^2}\right) I(x \ge 0),$$

où $\theta > 0$.

- (a) Trouver le MLE de θ .
- (b) Trouver le MLE de θ^2 .
- (c) Prouver que $\hat{\theta}$ est consistant pour θ à partir de la loi des grands nombres et du CMT.
- (d) Trouver la distribution asymptotique de $\hat{\theta}$ à partir du CLT et de la méthode delta.

Exercice 8

Soit X_1, X_2, \ldots une suite de variables aléatoires iid dont la distribution commune est $\text{Unif}(0, 2\theta + 1)$ où $\theta > 0$.

- (a) Calculer le MLE de θ .
- (b) Calculer le MLE de la variance de la distribution commune des $(X_i)_{i \in \mathbb{N}}$.

Exercice 9

Supposons que l'on dispose de N balles dans une urne, chaque balle pouvant être de couleur jaune, rouge ou bleue. Supposons que l'on extrait au hasard k boules de cette urne (avec remise). On considère les variables aléatoires X et Y représentant respectivement le nombre de boules jaunes et rouges tirées dans l'urne. On note également $\pi_1 \in (0,1)$ la probabilité de pêcher une boule jaune et $\pi_2 \in (0,1)$ la probabilité de pêcher une boule rouge.

- (a) Sur base d'un échantillon iid $(X_1, Y_1), \ldots, (X_n, Y_n)$, trouver le MLE de (π_1, π_2) .
- (b) Trouver la distribution asymptotique de cet estimateur à partir du CLT et de la méthode delta.

Exercice 10

Soit X_1, X_2, \ldots une suite de variables aléatoires iid dont la distribution commune a pour densité

$$f(x; \mu, \sigma) := \frac{1}{2\sigma} \exp\left(-\frac{|x - \mu|}{\sigma}\right),$$

où $(\mu, \sigma) \in \mathbb{R} \times (0, \infty)$. Trouver le MLE de (μ, σ) .