Data Science

Decision Tree Learning

OBJECTIVE

- WHAT IS A DECISION TREE? HOW DO WE USE IT?
- HOW TO BUILD A DECISION TREE
- ADVANTAGES & DISADVANTAGES
- TUNING PARAMETERS
- BUILDING A DECISION TREE IN PYTHON

OBJECTIVE

- WHAT IS A DECISION TREE? HOW DO WE USE IT?
- HOW TO BUILD A DECISION TREE
- ADVANTAGES & DISADVANTAGES
- TUNING PARAMETERS
- BUILDING A DECISION TREE IN PYTHON

- Supervised learning algorithm
 - Regression: Numerical
 - Classification: Categorical
- Builds a tree by repeatedly splitting the dataset
- Easy to interpret
- Variable importance and selection
- Sets the foundation for state of the art ensemble techniques

Will there be a tennis match today?

- For new observations follow tree to leaf nodes
- Leaf nodes show the prediction
- Important variables are higher in the tree

Quinlan 1986

Will there be a tennis match today?

- For new observations follow tree to leaf nodes
- Leaf nodes show the prediction
- Important variables are higher in the tree

Quinlan 1986

Q1: The outlook is overcast. Will there be a tennis match?

Will there be a tennis match today?

- For new observations follow tree to leaf nodes
- Leaf nodes show the prediction
- Important variables are higher in the tree

Quinlan 1986

Q1: The outlook is overcast. Will there be a tennis match?

A1: Yes

Will there be a tennis match today?

- For new observations follow tree to leaf nodes
- Leaf nodes show the prediction
- Important variables are higher in the tree

Quinlan 1986

Q1: The outlook is overcast. Will there be a tennis match?

A1: Yes

Q2: Sunny outlook with normal humidity. Tennis Match?

Will there be a tennis match today?

- For new observations follow tree to leaf nodes
- Leaf nodes show the prediction
- Important variables are higher in the tree

Quinlan 1986

Q1: The outlook is overcast. Will there be a tennis match?

A1: Yes

Q2: Sunny outlook with normal humidity. Tennis Match?

A2: Yes

What is this doing?

What is this doing?

Partitioning the feature space by making axis perpendicular cuts

What is this doing?

Partitioning the feature space by making axis perpendicular cuts Q: How do we classify or regress now?

What is this doing?

Partitioning the feature space by making axis perpendicular cuts Q: How do we classify or regress now?

A: Feature space is partitioned into rectangles. Take a vote or average within rectangle.

OBJECTIVE

- WHAT IS A DECISION TREE? HOW DO WE USE IT?
- HOW TO BUILD A DECISION TREE
- ADVANTAGES & DISADVANTAGES
- TUNING PARAMETERS
- BUILDING A DECISION TREE IN PYTHON

- Various algorithms:
 - ID3, C4.5, CART, etc

- Various algorithms:
 - ID3, C4.5, CART, etc

Q: What questions would you ask?

- Various algorithms:
 - ID3, C4.5, CART, etc

- What feature to use at a node?
- How many features should I use?
- How big do I make my tree?
- Are there any constraints on the leaf nodes?

- Various algorithms:
 - ID3, C4.5, CART, etc

Questions:

- What feature to use at a node?
- How many features should I use?
- How big do I make my tree?
- Are there any constraints on the leaf nodes?

Q: Why are these questions important?

- Various algorithms:
 - ID3, C4.5, CART, etc

- What feature to use at a node?
- How many features should I use?
- How big do I make my tree?
- Are there any constraints on the leaf nodes?
 - Q: Why are these questions important?
 - Q: Any ideas on how to solve these problems?

- What feature to use at a node?
 - 3

- How many features should I use?
- How big do I make my tree?
- Are there any constraints on the leaf nodes?

- What feature to use at a node?
 - Information Gain
 - Gini Impurity
 - Etc
- How many features should I use?
- How big do I make my tree?
 - ?
- Are there any constraints on the leaf nodes?

- What feature to use at a node?
 - Information Gain
 - Gini Impurity
 - Etc
- How many features should I use?
 - Cross Validation
- How big do I make my tree?
- Are there any constraints on the leaf nodes?

- What feature to use at a node?
 - Information Gain
 - Gini Impurity
 - Etc
- How many features should I use?
 - Cross Validation
- How big do I make my tree?
 - Cross Validation
- Are there any constraints on the leaf nodes?
 - [

- What feature to use at a node?
 - Information Gain
 - Gini Impurity
 - Etc
- How many features should I use?
 - Cross Validation
- How big do I make my tree?
 - Cross Validation
- Are there any constraints on the leaf nodes?
 - Cross Validation

Entropy: Expected information contained in a message

Entropy = $-\Sigma$ p log(p)

Entropy: Expected information contained in a message Entropy = $-\Sigma$ p log(p)

Q: What is the entropy of a 90/10 coin? A 50/50 coin?

Entropy: Expected information contained in a message Entropy = $-\Sigma$ p log(p)

Q: What is the entropy of a 90/10 coin? A 50/50 coin?

A: 90/10 = .47 50/50 = 1.0

The higher the entropy the higher the information content. We can use this to determine which feature will give us the most information gain.

Entropy: Expected information contained in a message Entropy = $-\Sigma$ p log(p)

Q: What is the entropy of a 90/10 coin? A 50/50 coin?

A: 90/10 = .47 50/50 = 1.0

The higher the entropy the higher the information content. We can use this to determine which feature will give us the most information gain.

Entropy: Expected information contained in a message Entropy = $-\Sigma$ p log(p)

Q: What is the entropy of a 90/10 coin? A 50/50 coin?

A: 90/10 = .47 50/50 = 1.0

The higher the entropy the higher the information content. We can use this to determine which feature will give us the most information gain.

Information Gain = Entropy(parent) - average entropy(children)

Entropy: Expected information contained in a message Entropy = $-\Sigma$ p log(p)

Q: What is the entropy of a 90/10 coin? A 50/50 coin?

A: 90/10 = .47 50/50 = 1.0

The higher the entropy the higher the information content. We can use this to determine which feature will give us the most information gain.

Information Gain = Entropy(parent) - average entropy(children)

X	Υ	Z	С
1	1	1	1
1	1	0	1
0	0	1	0
1	0	0	0

Example:

Q: What feature is the best?

Entropy = $-\Sigma$ p log(p)

Informo	Information Gain = Entropy(parent) - average entropy(children)				
V	v	7		Example:	

X	Υ	Z	С
1	1	1	1
1	1	0	1
0	0	1	0
1	0	0	0

Q: What feature is the best?

Entropy = $-\Sigma$ p log(p) Information Gain = Entropy(parent) - average entropy(children)

X	Υ	Z	C
1	1	1	1
1	1	0	1
0	0	1	0
1	0	0	0

Example:

Q: What feature is the best?

What is Information Gain? Entropy(Parent) = ?

Entropy = $-\Sigma$ p log(p)

Information Gain = Entropy(parent) - average entropy(children)

X	Υ	Z	С
1	1	1	1
1	1	0	1
0	0	1	0
1	0	0	0

Example:

Q: What feature is the best?

- Entropy(Parent) = 1
- X:?

Entropy = $-\Sigma$ p log(p)

Information Gain = Entropy(parent) - average entropy(children)

X	Υ	Z	С
1	1	1	1
1	1	0	1
0	0	1	0
1	0	0	0

Example:

Q: What feature is the best?

- Entropy(Parent) = 1
- X: $C1 = -(1/3)\log(1/3) (2/3)\log(2/3) = .9184$, C2 = 0
 - Info Gain = 1 (3/4) * 0.9184 0 = 0.3112
- Y:?

Entropy = $-\Sigma$ p log(p)

Information Gain = Entropy(parent) - average entropy(children)

X	Υ	Z	C
1	1	1	1
1	1	0	1
0	0	1	0
1	0	0	0

Example:

Q: What feature is the best?

- Entropy(Parent) = 1
- X: $C1 = -(1/3)\log(1/3) (2/3)\log(2/3) = .9184$, C2 = 0
 - Info Gain = 1 (3/4) * 0.9184 0 = 0.3112
- Y: C1 = 0, C2 = 0
 - Info Gain = 1-0-0=1
- Z:?

Entropy = $-\Sigma$ p log(p)

Information Gain = Entropy(parent) - average entropy(children)

X	Υ	Z	С
1	1	1	1
1	1	0	1
0	0	1	0
1	0	0	0

Example:

Q: What feature is the best?

- Entropy(Parent) = 1
- X: $C1 = -(1/3)\log(1/3) (2/3)\log(2/3) = .9184$, C2 = 0
 - Info Gain = 1 (3/4) * 0.9184 0 = 0.3112
- Y: C1 = 0, C2 = 0
 - Info Gain = 1-0-0= 1
- Z: C1 = 1, C2 = 1
 - Info Gain = $1 (1/2) \cdot 1 = (1/2) \cdot 1 = 0$

Entropy = $-\Sigma$ p log(p)

Information Gain = Entropy(parent) - average entropy(children)

X	Υ	Z	С
1	1	1	1
1	1	0	1
0	0	1	0
1	0	0	0

Example:

Q: What feature is the best?

A: Feature Y is the best feature

- Entropy(Parent) = 1
- X: $C1 = -(1/3)\log(1/3) (2/3)\log(2/3) = .9184$, C2 = 0
 - Info Gain = 1 (3/4) * 0.9184 0 = 0.3112
- Y: C1 = 0, C2 = 0
 - Info Gain = 1-0-0= 1
- Z: C1 = 1, C2 = 1
 - Info Gain = $1 (1/2) \cdot 1 = (1/2) \cdot 1 = 0$

OBJECTIVE

- WHAT IS A DECISION TREE? HOW DO WE USE IT?
- HOW TO BUILD A DECISION TREE
- ADVANTAGES & DISADVANTAGES
- TUNING PARAMETERS
- BUILDING A DECISION TREE IN PYTHON

Advantage & Disadvantages

Advantages:

- Can handle continuous and categorical predictors
- Interpretability
- Ensembles are extremely powerful

Disadvantages

- Overfitting
- Predictive power
- High Variance

OBJECTIVE

- WHAT IS A DECISION TREE? HOW DO WE USE IT?
- HOW TO BUILD A DECISION TREE
- ADVANTAGES & DISADVANTAGES
- TUNING PARAMETERS
- BUILDING A DECISION TREE IN PYTHON