Chapitre 5 :

Fonctions dérivables_Partie 2

5.4. Théorèmes des accroissements finis (T.A.F).

Théorème 1. (Théorème de Rolle)

Si f est une fonction **continue** sur un intervalle [a, b] et **dérivable** sur [a, b[, telle que : f(a) = f(b). Alors :

$$\exists c \in]a, b[$$
 tel que $f'(c) = 0$

Théorème 2. (Théorème des accroissements finis)

Si f est une fonction **continue** sur un intervalle [a, b] et **dérivable** sur [a, b]. Alors :

$$\exists c \in]a, b[$$
 tel que $f(b) - f(a) = (b - a)f'(c)$

Exemple. On va utiliser le T.A.F Pour montrer l'inégalité :

$$\sqrt{x+1} < 1 + \frac{x}{2} \quad , \qquad \forall x > 0$$

En effet, On pose $f(x)=\sqrt{x+1}$. On a : $f'(x)=\frac{1}{2\sqrt{x+1}}$ et f(0)=1. Donc d'après le T.A.F , appliqué à l'intervalle [0,x] :

$$\exists c \in]a, b[$$
 tel que $\frac{\sqrt{x+1}-1}{x} = f'(c) = \frac{1}{2\sqrt{c+1}} < \frac{1}{2}$

D'où le résultat.

Théorème 3. (Théorème des accroissements finis généralisés)

Si f,g sont deux fonctions **continues** sur un intervalle [a,b] et **dérivables** sur]a,b[, telles que $g'(x) \neq 0$ pour $x \in [a,b]$ et $g(a) \neq g(b)$. Alors :

$$\exists c \in]a, b[$$
 tel que $(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c)$

Théorème 4. (Inégalité des accroissements finis)

Si f est une fonction **continue** sur un intervalle [a,b] et **dérivable** sur]a,b[, telle $m \le f'(x) \le M$. Alors :

$$m(b-a) \le f(b) - f(a) \le M(b-a)$$

En particulier si $|f'(x)| \le M$, on a : $|f(b) - f(a)| \le M(b - a)$

Proposition8. (Règle de L'Hôpital)

Soient f, g sont deux fonctions **dérivables** sur]a, b[, telle que $g'(x) \neq 0$ pour $x \in]a$, b[et il y a une indétermination de la forme $\frac{0}{0}$ $où \frac{\infty}{\infty}$. Si on a $\lim_{x \to a} \frac{f'(x)}{g'(x)} = \ell$ Alors : $\lim_{x \to a} \frac{f(x)}{g(x)} = \ell$.

• On obtient le même résultat quand $x \stackrel{<}{\rightarrow} b$ et $x \rightarrow a$ et $\rightarrow b$.

Exemple. Pour
$$f(x) = \sin x$$
, $g(x) = x$ on a: $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$

5.5. Formules de Taylor.

Théorème 5. (Formule de Taylor-Lagrange)

Soit f une fonction de classe C^n sur un intervalle I et dérivable à l'ordre (n+1) sur I.

Alors pour tous $a \in I$ et $x \in I$ avec $\neq a$, il existe $c \in I$ (entre $x \ et \ a$) tel que :

$$f(x) = f(a) + \frac{(x-a)}{1!}f'(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a) + \frac{(x-a)^{n+1}}{(n+1)!}f^{(n+1)}(c)$$

Remarque.

1) La partie polynômiale s'appelle « Polynôme de Taylor », noté $P_T(x)$:

$$P_T(x) = f(a) + \frac{(x-a)}{1!}f'(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a)$$

2) La dernière expression s'appelle « Reste de Lagrange », notée $R_n(x)$:

$$R_n(x) = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

3) Pour x = a + h et $c = a + \theta h$ avec $\theta \in]0,1[$, on a la deuxième version:

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \dots + \frac{h^n}{n!}f^{(n)}(a) + \frac{h^{n+1}}{(n+1)!}f^{(n+1)}(a+\theta h)$$

Corollaire. (Formule de Maclaurin-Lagrange)

Si on prend a=0 dans le théorème précédent, alors pour tous $x\neq 0$ il existe c entre x et 0 tel que :

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \frac{x^{n+1}}{(n+1)!}f^{(n+1)}(c)$$

Exemples.

1) La Formule de Taylor-Lagrange de la fonction $f(x) = e^x$ au voisinage de a=1 est donnée pour c entre x et 1 par :

$$e^x = e + e(x-1) + \frac{e}{2}(x-1)^2 + \dots + \frac{e}{n!}(x-a)^n + \frac{e^c}{(n+1)!}(x-1)^{n+1}$$

2) La Formule de Maclaurin -Lagrange de la fonction $f(x) = e^x$ au voisinage de a = 0 est donnée pour c entre x et 1 par :

$$e^x = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + \frac{e^c x^{n+1}}{(n+1)!}$$

Où bien pour $0 < \theta < 1$:

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \dots + \frac{x^{n}}{n!} + \frac{e^{\theta x} x^{n+1}}{(n+1)!}$$

Théorème 6. (Formule de Taylor-Young)

Soit f une fonction de classe \mathcal{C}^n sur un intervalle I et $a \in I$.

Alors pour tous $x \in I$ avec $x \neq a$, on a:

$$f(x) = f(a) + \frac{(x-a)}{1!}f'(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a) + (x-a)^n \varepsilon(x)$$

Avec $\lim_{x\to a} \varepsilon(x) = 0$.

Corollaire. (Formule de Mac Laurin-Young)

Si a=0 dans le théorème précédent, alors pour tous $x \neq 0$ on a :

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + x^n \varepsilon(x)$$

Avec $\lim_{x\to 0} \varepsilon(x) = 0$.

Exemple.

La Formule de Mac Laurin-Young de la fonction $f(x) = \ln(x+1)$ au voisinage de a=0 est donnée par :

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} \dots \dots + (-1)^{n-1} \frac{x^n}{n} + x^n \varepsilon(x)$$

Avec $\lim_{x\to 0} \varepsilon(x) = 0$.

Définition. (Développement limité DL)

On appel **développement limité** à l'ordre n de f au voisinage a l'expression :

$$f(x) = \alpha_0 + \alpha_1(x - a) + \dots + \alpha_n(x - a)^n + \varepsilon(x)$$

Avec $\lim_{x \to a} \varepsilon(x) = 0$

Exemples.

- La formule de Taylor-Young est un développement limité à l'ordre n de f au voisinage de a.
- La formule de Mac Laurin-Young est un développement limité à l'ordre n de f au voisinage de 0.