PROJECT STATEMENT OF WORK K1 WATER DISINFECTION GENERATOR

University of New Mexico School of Engineering

DIEGO CHAVEZ & DAVID KIRBY

AQUA RESEARCH, LLC 5601 MIDWAY PARK PLACE NE ALBUQUERQUE, NM 87109

31 OCTOBER 2019

TABLE OF CONTENTS

1.	Executive Summary	2
2.	Business Need	2
3.	PRODUCT SCOPE DESCRIPTION	2
	PROJECT SCOPE DESCRIPTION	
5.	SPONSOR SUPPORT ELEMENTS	5
6	APPROVALS	5

1. EXECUTIVE SUMMARY

Aqua Research, LLC develops innovative water treatment technologies that meet the extreme needs within developing countries and provides sustainable water purification to outdoor enthusiasts, travelers, emergency preppers, first responders, Peace Corps, and the military. Aqua Research also provides consulting services for innovative state-of-the-art technologies. Aqua Research's expertise primarily resides in electrolytic technologies that produce disinfectants from common table salt to a variety of water filtration technologies. Aqua Research sets out to create the world's best personal water purifier – the smallest, easiest, and most cost-effective water treatment solution for developing countries. Students working on this project will help to see this goal through to fruition by designing a prototype of a K1 water disinfection generator.

2. BUSINESS NEED

Chlorine is the gold standard for disinfection for drinking water, health care facilities, low income settings, disasters, industrial applications, and many others. Chlorine can be made cheaply and effectively using electrolysis of a saltwater brine solution with common table salt and power being the only consumables. This technology represents a huge world-wide market potential. Control systems to be designed must be effective at controlling the concentration of chlorine generated in the process, the systems must be capable of recovering from power disruptions, and the systems must identify and communicate alarm conditions.

3. PRODUCT SCOPE DESCRIPTION

The design team will work closely with Aqua Research's technical lead to:

- expand on an earlier circuit board design and software program
 - o analyze previous board used BeagleBone Black (see Figure 1)

Figure 1: BeagleBone Black

 compare block diagrams of newer boards to determine if better options are available (see Figure 2)

Figure 2: High Level Block Diagram of BeagleBone Black

- build a production control board
 - Aqua Research would like to incorporate titanium sensors that will monitor saltwater brine levels as well as clean water.
- upgrade and enhance the software for communications, alarms, and diagnostics
 - o For Aqua Research, detecting problems in remote areas and notifying end users is critical. This would ideally be done via a mobile phone application.
- and build a prototype operational system
 - The board chosen will ultimately determine which programming language used. Ideally, a hardware design language such as VHDL or Verilog would be used to create fast, low-power operation.

There are no working prototypes for comparison, so the only quantitative deliverable that we could improve upon is designing a board that is faster, uses less power, and has smaller form factor than the BeagleBone Black. This could be done using a Raspberry Pi Zero W (see Figure 3), which also features wireless and Bluetooth Low Energy (BLE). All of these considerations will need to be addressed in the product design.

Figure 3: Raspberry Pi Zero W

4. PROJECT SCOPE DESCRIPTION

To make this project successful, the students will need to analyze the previous design, create an action plan, and collaborate with the sponsor in order to satisfy the organization's desired outcomes. This will be done by breaking the project into five phases: project planning, research and development, design production, testing and optimization, and, finally, creating an operational prototype.

PROJECT SCHEDULE				
Task	Duration (Weeks)	Start	End	
PHASE I: Project Planning	2	12-Oct 2019	31-Oct 2019	
Statement of Work			31-Oct 2019	
Gantt Chart			31-Oct 2019	
Manpower Cost Estimates			31-Oct 2019	
Preliminary Requirements			31-Oct 2019	
Functional Specs			31-Oct 2019	
Test Plans			31-Oct 2019	
P&ID Criteria				
PHASE II: Research & Development	6	31-Oct 2019	12-Dec 2019	
Research Previous Hardware				
Block Diagram				
Analyze Design Code				

Analyze Current Capabilities			
Determine Future Capabilities			
Ethics Report			05-Dec 2019
Revisions to Functional Specs			28-Jan 2020
PHASE III: Design Production	12	12-Dec 2019	01-Mar 2020
Develop Software			
Integrate Controls			
PHASE IV: Testing & Optimization	8	01-Mar 2020	20-Apr 2020
Test for Unexpected Behavior			
PHASE V: Operational Prototype	16	01-Mar 2020	07-May 2020
Characterization Report			23-Apr 2020
Exit Knowledge Probe			05-May 2020
Project Notebooks			07-May 2020
Final Design Report			07-May 2020
Posters			07-May 2020
Senior Design Expo			12-May 2020

5. SPONSOR SUPPORT ELEMENTS

SPONSOR SUPPORT ELEMENTS			
Element	First Needed	Needed Until	
Sponsor's Technical Advisor, at least 1 hr/wk	12-Oct 2019	12-May 2020	
Sponsor's Internal Research Reports on K1 Prototype	12-Oct 2019	12-May 2020	
Authorization/Funding to Order Components	12-Oct 2019	12-May 2020	
Assistance with Fabrication of Boards (if necessary)	TBD		

6. APPROVALS

The signatures of the people below indicate an understanding in the purpose and content of this document by those signing it. By signing this document, you indicate that you approve of the proposed project outlined in this Statement of Work and that the next steps may be taken to create a Requirements Document and proceed with the project.

Approver Name	Title	Signature	Date
Rodney Herrington	Sponsor		
Tim Cushman	Technical Mentor		
David Kirby	Project Manager		
Diego Chavez	Project Manager		
Romero Jordan	Instructor		