Mass Based on its Spatiotemporal Curvature

Ivo Draschkow¹

¹ Independent researcher

E-mail: cosmology@draschkow.de

Received xxxxxx Accepted for publication xxxxxx Published xxxxxx

Abstract

Any coherent mass formation, regardless of its density, is subject to a relativistic curvature, which, as proven here, accounts for a certain proportion of the Schwarzschild radius. General Relativity reveals a minimum state of this proportion for quantum-sized structures and thereby unveils a fundamental spectrum.

Keywords: Gravitational Lorentz Factor — Gravitational Radius — Quantum Mass

1. Introduction

My results show that the object-specific amount of gravitationally caused spatiotemporal curvature, which I denote by the symbol L, is directly proportional to the mass of all objects that lie in the same region of a curvature spectrum. The maximum value of L must be the Schwarzschild radius r_s . This study proves that it is not only this extreme case that exhibits the aforementioned proportionality. L produces a mass-specific spectrum between r_s and a fundamental L_{min} for which size and density of a mass are small and low enough for gravity to tend to zero.

2. Gravitational Relativistic Contraction

Since all mass-based objects cause gravitational time dilation, I investigated how this relativistic curvature of spacetime, represented by a specific radial contraction according to the Schwarzschild metric, might be related to mass.

Typically, to obtain the gravitational time dilation on a mass surface, the reciprocal Lorentz factor α depending on the surface escape velocity v_e , which is expressed by the mean radius r and surface gravity g, can be used to avoid M and G:

$$\alpha = \sqrt{1 - \frac{v_e^2}{c^2}} = \sqrt{1 - \frac{2gr}{c^2}}$$
 (1)

For time dilation states below the surface of a uniformly dense mass, the Lorentz factor must be adjusted according to

the gravitational potential to provide the correct data. At the corresponding radius, r_r

$$\alpha(r_x) = \sqrt{1 - \frac{g\left(3r^2 - r_x^2\right)}{rc^2}} \tag{2}$$

represents the distance-dependent factor related to the center of mass. This optimized function can be used to obtain the searched amount of curvature. To do this, we must integrate $1 - \alpha(r_x)$ from 0 to r:

$$L = \int_0^r (1 - \alpha(r_x)) dr_x$$

$$= \int_0^r \left(1 - \sqrt{1 - \frac{g(3r^2 - r_x^2)}{rc^2}} \right) dr_x \tag{3}$$

With this formula, the radius of a uniform mass is evaluated over its entire distance according to the Lorentz contraction valid at each position, and all local contraction deltas are added together.

For a black hole with $2gr = c^2$ we get as expected

$$L_{max} = (1 - 0) \cdot r = r_s \tag{4}$$

To determine the possible spectrum of L we need to look for its minimum. If g and r tend to zero, $\alpha(r_x)$ can be simplified

$$\alpha(r_{x}) = \lim_{(g,r)\to(0,0)} \sqrt{1 - \frac{g(3r^{2} - r_{x}^{2})}{rc^{2}}} = 1 - \frac{g(3r^{2} - r_{x}^{2})}{2rc^{2}}$$
(5)

to ignore the relativistic progression of **L**. Excitingly, the resulting minimum contraction is a fixed fraction of the Schwarzschild radius:

$$L_{min} = \int_0^r \frac{g(3r^2 - r_x^2)}{2rc^2} dr_x = \frac{4gr^2}{3c^2} = \frac{2}{3}r_s \qquad (6)$$

 r_s is exactly 1.5 times larger compared to L_{min} and therefore perfectly follows the gravitational potential between the surface and the core of the object. The spectrum of spatiotemporal curvatures for any possible mass formations in our universe is therefore

$$\frac{2}{3}r_{S} \le L \le r_{S} \tag{7}$$

The classic formula for the mass of a black hole

$$M_b = \frac{1}{2} \cdot \frac{r_s c^2}{G} \tag{8}$$

becomes the basis of the object-unspecific version:

$$M = k \cdot \frac{Lc^2}{G} \tag{9}$$

k hast to be adjusted to the respective spectral value of L:

$$k = \frac{1}{2} \cdot \frac{r_s}{L} = \frac{3}{4} \cdot \frac{L_{min}}{L} \tag{10}$$

For quantum particles or small structures with very low densities, the mass can therefore be expressed as

$$M_q = \frac{3}{4} \cdot \frac{L_{min}c^2}{G} \tag{11}$$

By using the object-specific L instead of L_{min} in this formula, even the calculated masses of most celestial bodies correspond almost exactly to the values from the NASA reference. This is not surprising because the effect of time dilation on planets and many stars is practically negligible and there is hardly any relevant difference between their specific L and L_{min} :

Moon:
$$r = 1737400 \, m$$
 $g = 1.622 \, \frac{m}{s^2}$

 $m{L} = 0.000072635313444758 \, m \quad m{L_{min}} = 0.000072635313443221 \, m$

$$M_{\mathbb{C}} \approx 0.75*0.00007263531 \ m*c^2/G$$

 $\approx 7.34 \cdot 10^{22} \ kg$

Venus:
$$r = 6051800 \, m$$
 $g = 8.87 \frac{m}{s^2}$ $L = 0.004819367945878921 \, m$ $L_{min} = 0.004819367943935975 \, m$

$$M_{\odot} \approx 0.75*0.00481936794 \ m*c^2/G$$

 $\approx 4.87 \cdot 10^{24} \ kg$

Earth:
$$r = 6371000 \, m$$
 $g = 9.81 \frac{m}{s^2}$
 $L = 0.005907198279239902 \, m$ $L_{min} = 0.005907198276467089 \, m$
 $M_{\oplus} \approx 0.75*0.00590719827 \, m*c^2/G$
 $\approx 5.97 \cdot 10^{24} \, kg$

Sun:
$$r = 695700000 m$$
 $g = 274 \frac{m}{s^2}$
 $L = 1967.399343096 m$ $L_{min} = 1967.396526477 m$
 $M_{\odot} \approx 0.75*1967.39 \ m*c^2/G$
 $\approx 1.99 \cdot 10^{30} \ kg$

The digits marked in red show the deviation of the object-specific L from the mass-specific L_{min} . However, for neutron stars an adjustment of k according to (10) is necessary:

Typical neutron star:
$$r = 11000 \, m$$
 $g = 2 \cdot 10^{12} \frac{m}{s^2}$
 $L = 4552.266474936 \, m$ $L_{min} = 3590.150847533 \, m$
 $M_{\rm n} \approx \underline{0.591} *4552.27 \, m *c^2/G$
 $\approx 3.62 \cdot 10^{30} \, kg$

3. Conclusions

A given mass may of course occupy different volumes depending on its substantial matrix and the forces acting on it, but regardless of its actual volume, it produces at least a fixed minimum in terms of its relativistic curvature. L can be viewed as a spatiotemporal spectrum of action for arbitrary mass states in our universe. The presence of a fix L_{min} bound to r_s is a discovery that represents a fundamental value. L_{min} describes the mass horizon of spacetime for its transition to classical mass. It could depict the crucial bulge resulting from a primary excitation state that brought mass out of spacetime, and it could probably be the basis for all mass forms. The distribution of substance in spacetime may initially have been so fleeting that it hardly differed from it.

References

- [1] NASA Space Science Data Coordinated Archive, Moon Fact Sheet. Retrieved from
 - https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html
- [2] NASA Space Science Data Coordinated Archive, Venus Fact Sheet. Retrieved from https://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html
- [3] NASA Space Science Data Coordinated Archive, Earth Fact Sheet. Retrieved from
 - https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
- [4] David B. Newell and Eite Tiesinga, Editors, NIST SP 330, 2019 edition, The International System of Units (SI), 46. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.3 30-2019.pdf
- [5] NASA Space Science Data Coordinated Archive, Sun Fact Sheet. Retrieved from
 - https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html