Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1 to 7 (Canceled).

1	8. A computer implemented best indicator adaptive (BIA) method for demand
2	forecasting comprising the steps of:
3	implementing a plurality of forecasting subsystems which make use of
4	indicators Load (L), Ship (S) and Customer Acceptances (CA) history (CA _{hist});
5	generating a forecast (CA_L) from Load (L) by modeling the ratio of
6	quarter-to-date load to quarter CA actual as a random variable with gamma
7	distribution so that the CA becomes a variable with generalized gamma
8	distribution and computing the sample mean and sigma of the Load-to-CA
9	ratio for a final forecasted CA_L demand;
10	generating a forecast (CA _S) from Ship (S) by modeling the ratio of
11	quarter-to-date ship to quarter CA actual as a random variable with gamma
12	distribution so that the CA becomes a variable with generalized gamma
13	distribution and computing the sample mean and sigma of the Ship-to-CA
14	ratio for a final forecasted CA_S demand;
15	generating a forecast (CA _{LS}) from Load and Ship (LS) by forecasting
16	Customer Acceptances (CA) based on Load (L), Ship (S) and Customer
17	Acceptances history (CA_{hist}) to generate CA_{LS} by estimating the functional
18	relationship and the parameters relating the two ratios Load-to-CA and Ship-
19	to-CA;
20	generating a forecast from Customer Acceptances history (CA _{hist});
21	refining the forecasts based on distribution demand using Customer
22	Requested Date (CRAD) by
23	generating a forecast from Load (L) and CRAD as $CA_{L,CRAD}$,
24	generating a forecast from Ship (S) and CRAD as CA _{S.CRAD} , and

25	generating a forecast from Load (L) and Ship (S) and CRAD as
26	$CA_{LS,CRAD}$;
27	for each forecast CA_L , CA_S , CA_{LS} , $CA_{L,CRAD}$, $CA_{S,CRAD}$, $CA_{LS,CRAD}$, and
28	CA _{hist} , determining a forecast error;
29	eliminating CA _{LS} and CA _{LS,CRAD} if data is for a historical period shorter
30	than a predetermined period;
31	for all remaining forecasts, selecting the forecast having the smallest
32	error; and
33	outputting the selected forecast as an optimum forecast.
1	9. A computer implemented best indicator adaptive (BIA) method for demand
2	forecasting comprising the steps of:
3	inputting Load (L), Ship (S) and Customer Acceptances (CA) quarterly
4	history (CA _{hist}) data;
5	implementing a plurality of forecasting subsystems making use of four
6	sources of information, Load (L), Ship (S), Customer Acceptances quarterly
7	history (CA _{hist}), and Customer Request Date (CRAD);
8	forecasting Customer Acceptances (CA) based on Load (L) to generate
9	CA_L by modeling a ratio of quarter-to-date load to quarter CA actual as a
10	random variable with gamma distribution so that the CA becomes a variable
11	with generalized gamma distribution whose mean and sigma can be easily
12	computed from the sample mean and sigma of the Load-to-CA ratio;
13	forecasting Customer Acceptances (CA) based on Ship (S) to generate
14	CA_S by modeling the ratio of quarter-to-date ship to quarter CA actual as a
15	random variable with gamma distribution so that the CA becomes a variable
16	with generalized gamma distribution whose mean and sigma can be easily
17	computed from the sample mean and sigma of the Ship-to-CA ratio;
18	forecasting Customer Acceptances (CA) based on Load (L), Ship (S)
19	and Customer Acceptances history (CA _{hist}) to generate CA _{LS} by estimating the
20	functional relationship and the parameters relating the two ratios Load-to-CA

21	and Ship-to-CA;
22	using a log mean to sigma ratio of CRAD distribution, adjusting the
23	forecasts CA_L , CA_S and CA_{LS} to arrive at more accurate forecasts $CA_{L,CRAD}$,
24	$CA_{S,CRAD}$, and $CA_{LS,CRAD}$;
25	for each forecast CA_L , CA_S , CA_{LS} , $CA_{L,CRAD}$, $CA_{S,CRAD}$, $CA_{LS,CRAD}$, and
26	CA _{hist} , determining a forecast error;
27	eliminating CA_{LS} and $CA_{LS,CRAD}$ if data is for a historical period shorter
28	than a predetermined period;
29	eliminating any other forecast due to expert knowledge;
30	for all remaining forecasts, selecting the forecast having the smallest
31	error; and
32	outputting the selected forecast as the final optimum forecast.