Branch: master 2022-08-17 10:56:59+02:00

CONTINUOUS LOGIC FOR THE CLASSICAL LOGICIAN

1. A CLASS OF STRUCTURES

- **1 Definition.** In these notes we deal with 3-sorted¹ structures of the form $\mathcal{M} = \langle M, \check{M}, \mathbb{R} \rangle$. The language and its interpretation are subject to the following conditions.
 - 1. Functions may only have one of the following sorts (for any $m, n \in \omega$)
 - a. $\mathbb{R}^n \to \mathbb{R}$
 - b. $M^n \times \check{M}^m \to \text{any of } M, \ \check{M}, \text{ or } \mathbb{R}$
 - 2. There is a symbol for every (total) uniformly continuous function $\mathbb{R}^n \to \mathbb{R}$.
 - 3. The (functions that interpret the) terms of sort $M^n \to \mathbb{R}$ have bounded range.
 - 4. Every element of \check{M} is the image of some term of sort $M^n \to \check{M}$.
 - 5. There is only one predicate; it has sort \mathbb{R} and is interpreted as $x \leq 0$.

We call M the unit ball of M. The terminology is inspired by the example below.

- **2 Definition.** We write $\mathbb{T}(A)$ for the set of terms of sort $M^n \times \mathbb{R}^m \to \mathbb{R}$ with parameters in some $A \subseteq M$. Up to equivalence, these terms have the form f(t(x), y), where t(x) is a tuple of terms of sort $M^{|x|} \to \mathbb{R}$, and f is a function $\mathbb{R}^{|t|+|y|} \to \mathbb{R}$.
- **3 Definition.** We write $\mathbb{L}(A)$ for the set of formulas obtained inductively as follows
 - i. $\mathbb{L}(A)$ contains the atomic formula $t \leq 0$ for every term $t \in \mathbb{T}(A)$.
 - ii. It is closed under the Boolean connectives \land , \lor , and the quantifiers \forall , \exists of sort M.
 - iii. It is closed under the quantifier \forall of sort \mathbb{R} relativized to any definable subset of \mathbb{R} .

Note that in iii of the definition above, definability is intended with respect to the full first order language. In particular, if $\varphi(x, \varepsilon) \in \mathbb{L}(A)$, also $\forall \varepsilon > 0$ $\varphi(x, \varepsilon) \in \mathbb{L}(A)$.

4 Example (Metric spaces of finite diameter). Given a metric space M, d of finite diameter we define a structure $\mathcal{M} = \langle M, \check{M}, \mathbb{R} \rangle$ as follows. Set $M = \check{M}$ and let id: $M \to \check{M}$ be the identical isomorphism (so, \check{M} is irrelevant in this example). The function symbols are id and d. Note that 3 is satisfied because d is bounded..

1

¹In some examples it may be more natural to use (n+n'+1)-sorted structures $\mathcal{M} = \langle M_1, \dots, M_n, \check{M}_1, \dots, \check{M}_{n'}, \mathbb{R} \rangle$. The generalization is straightforeward.

5 Example (Banach spaces). Given a Banach space V we define a structure $\mathcal{M} = \langle M, \check{M}, \mathbb{R} \rangle$ as follows. Let $\check{M} = V$ and let $M = \{a \in \check{M} : \|a\| \le 1\}$ be the closed unit ball of V. Besides the symbols mentioned above, \mathbb{L} contains a function symbol for the natural embedding id : $M \to \check{M}$. It also contains a symbol for the norm $\|\cdot\| : \check{M} \to \mathbb{R}$. Finally, \mathbb{L} contains the usual symbols of the language of vector spaces. These have sort $\check{M}^n \to \check{M}$, for the appropriate $n \in \{0, 1, 2\}$.

Terms of sort $M^{|x|} \to \mathbb{R}$ have the form f(t(x)) where f is a uniformly continuous function and

$$t(x) = \left\| \sum_{i=1}^{|x|} \sum_{j=1}^{m} \lambda_{i,j} x_i \right\|.$$

Therefore, as for all $a \in M^{|x|}$

$$t^{\mathcal{M}}(a) \leq \sum_{i=1}^{|x|} \sum_{i=1}^{m} |\lambda_{i,j}|,$$

condition 3 of Definition 1 is satisfied. Conditions 4 is immediate.

If $\varphi \in \mathbb{L}(\mathbb{A})$ and $\varepsilon > 0$ we write φ_{ε} for the formula obtained by replacing in φ the atomic formulas $t \leq 0$ with $t - \varepsilon \leq 0$. Note that $\varphi \to \varphi_{\varepsilon}$.

2. L-ELEMENTARY RELATIONS

Let \mathcal{M} and \mathcal{N} be models. We say that $R \subseteq M \times N$ is an \mathbb{L} -elementary relation between \mathcal{M} and \mathcal{N} if for every $\varphi(x) \in \mathbb{L}$

$$\mathcal{M} \models \varphi(a) \Leftrightarrow \mathcal{N} \models \varphi(b)$$
 for every a and b such that $a R b$.

Recall that, when $a = a_1, \dots, a_n$ and $b = b_1, \dots, b_n$ are tuples, a R b stands for $a_i R b_i$ for every $i \in \{1, \dots, n\}$.

We define an equivalence relation $(\sim_{\mathcal{M}})$ on M as follows

1.
$$a \sim_{\mathfrak{M}} b \Leftrightarrow t^{\mathfrak{M}}(a) = t^{\mathfrak{M}}(b) \text{ for every } t(x) \in \mathbb{T}(M),$$
 where $|x| = |a| = |b| = 1$.

6 Lemma. The relation $(\sim_{\mathcal{M}}) \subseteq M^2$ is an \mathbb{L} -elementary relation. Moreover, it is maximal among these, i.e. no \mathbb{L} -elementary relation properly contains $(\sim_{\mathcal{M}})$.

Proof. Assume $a \sim_{\mathcal{M}} b$, where $a = a_1, \ldots, a_n$ and $b = b_1, \ldots, b_n$. Recall that this means that $a_i \sim_{\mathcal{M}} b_i$ for all $i \in \{1, \ldots, n\}$. Let Δ denote the diagonal relation on M. Note that $a_i \sim_{\mathcal{M}} b_i$ is equivalent to saying that $\Delta \cup \{(a_i, b_i)\}$ is an \mathbb{L} -elementary relation. As \mathbb{L} -elementary relations are closed under composition $\Delta \cup \{(a_1, b_1), \ldots, (a_n, b_n)\}$ is \mathbb{L} -elementary. It follows that for every $\varphi(x) \in \mathbb{L}$

2.
$$\mathcal{M} \models \varphi(a) \Leftrightarrow \mathcal{N} \models \varphi(b)$$
.

The converse implication $(2 \Rightarrow a \sim_{\mathcal{M}} b)$ is immediate.

7 Lemma. Let $R \subseteq M \times N$ be total and surjective \mathbb{L} -elementary relation. Then there is a unique maximal \mathbb{L} -elementary relation containing R. This maximal \mathbb{L} -elementary relation is equal to both $(\sim_{\mathcal{M}}) R$ and $R(\sim_{\mathbb{N}})$.

Proof. It is immediate to verify that $(\sim_{\mathfrak{M}})$ R is an \mathbb{L} -elementary relation containing R. Let S be any maximal \mathbb{L} -elementary relation containing R. By maximality, $(\sim_{\mathfrak{M}})$ S = S. As S is a total relation $(\sim_{\mathfrak{M}}) \subseteq SS^{-1}$. Therefore, by the lemma above, $(\sim_{\mathfrak{M}}) = SS^{-1}$. As R is a surjective relation, $S \subseteq SS^{-1}R$. Finally, by maximality, we conclude that $S = (\sim_{\mathfrak{M}})R$. A similar argument proves that $S = R(\sim_{\mathfrak{N}})$.

We write $\operatorname{Aut}(\mathcal{M})$ for the set of maximal, total and surjective, \mathbb{L} -elementary relations $R \subseteq M^2$. The choice of the symbol Aut is motivated by the lemma above. In fact any such relation R induces a unique automorphism on the (properly defined) quotient structure $\mathcal{M}/\sim_{\mathcal{M}}$.

Thought in most situations one could dispense with \mathfrak{M} in favour of $\mathfrak{M}/\sim_{\mathfrak{M}}$, in concrete cases one has a better grip on the first than on the latter. Therefore below we insist in working with \mathbb{L} -elementary relations in place of \mathbb{L} -elementary maps.

3. Ultraproducts

We recall some standard definitions about limits. Let I be a non-empty set. Let F be a filter on I. If $f: I \to \mathbb{R}$ and $\lambda \in \mathbb{R} \cup \{\pm \infty\}$ we write

$$\lim_{i \to F} f(i) = \lambda$$

if $f^{-1}[A] \in F$ for every $A \subseteq \mathbb{R} \cup \{\pm \infty\}$ that is a neighborhood of λ . Such a λ is unique and, when F is an ultrafilter, it always exists. When f is bounded, $\lambda \in \mathbb{R}$.

Let I be an infinite set. Let $\langle \mathcal{M}_i : i \in I \rangle$ be a sequence of structures, say $\mathcal{M}_i = \langle M_i, M_i, \mathbb{R} \rangle$, that are uniformly bounded, that is, the bounds in 3 of Definition 1 are the same for all \mathcal{M}_i .

Let F be an ultrafilter on I.

- **8 Definition.** We define a structure $\mathbb{N} = \langle \check{N}, \check{N}, \mathbb{R} \rangle$ that we call the ultraproduct of the models $\langle \mathcal{M}_i : i \in I \rangle$.
 - 1. N comprise the sequences $\hat{a}: I \to \bigcup_{i \in I} M_i$ such that $\hat{a}i \in M_i$.
 - 2. \check{N} comprise the sequences $t^{\mathbb{N}}(\hat{a})$ of the form $t^{\mathbb{M}_i}(\hat{a}i)$, where t(x) is a term of sort $M^n \to \check{M}$.
 - 3. If f is a function of sort $M^n \times \check{M}^m \to M$ then $f^{\mathcal{N}}(\hat{a}, t^{\mathcal{N}}(\hat{c}))$ is the sequence $f^{\mathcal{M}_i}(\hat{a}i, t^{\mathcal{M}_i}(\hat{c}i))$.
 - 4. Similarly when f is of sort $M^n \times \check{M}^m \to \check{M}$.

5. If f is a function of sort $M^n \times \check{M}^m \to \mathbb{R}$ then

$$f^{\mathcal{N}}(\hat{a}, t^{\mathcal{N}}(\hat{c})) = \lim_{i \to F} f^{\mathcal{N}_i}(\hat{a}i, t^{\mathcal{N}_i}(\hat{c}i)).$$

As usual, if $\mathcal{M}_i = \mathcal{M}$ for all $i \in I$, we say that \mathcal{N} is an ultrapower of \mathcal{M} .

The limit in 5 of the definition above always exists because F is an ultrafilter. It is finite because all models \mathcal{M}_i have the same bounds.

The following fact is easily proved by induction on the syntax.

9 Fact. For every term t(x) of sort $M^n \to \mathbb{R}$

$$t^{\mathcal{N}}(\hat{a}) = \lim_{i \to F} t^{\mathcal{N}_i}(\hat{a}i).$$

Finally, we prove

- **10 Proposition** (Łŏś Theorem). Let \mathbb{N} be as above and let $\varphi(x, y) \in \mathbb{L}(A)$. Let $\hat{a} \in N^{|x|}$. Then there is a function $u_{-}: \mathbb{R}^{+} \to F$ such that for every $\lambda \in \mathbb{R}^{|y|}$
 - 1. $\mathbb{N} \models \varphi(\hat{a}, \lambda) \Rightarrow u_{\varepsilon} \subseteq \{i \in I : \mathbb{M}_i \models \varphi_{\varepsilon}(\hat{a}i, \lambda)\} \text{ for every } \varepsilon > 0.$
 - $2. \hspace{1cm} \mathcal{N} \not \models \varphi(\hat{a},\lambda) \ \Rightarrow \ u_{\varepsilon} \subseteq \left\{i \in I \ : \ \mathcal{M}_{i} \not \models \varphi_{\varepsilon}(\hat{a}i,\lambda)\right\} \text{ for some } \varepsilon > 0.$

Proof. Suppose that $\varphi(x, y)$ is atomic, say

$$\varphi(x, y) = f(t(x), y) \le 0,$$

where t is a tuple of terms of sort $M^{|x|} \to \mathbb{R}$ and f is a uniformly continuous function $\mathbb{R}^{|t|+|y|} \to \mathbb{R}$. Let $\beta' \in \mathbb{R}^{|t|}$ be such that $\lim_{i \to F} t(\hat{a}i) = \beta'$.

Given $\varepsilon > 0$, let B_{ε} be a neighborhood of β' such that

$$\left|f(\beta,\,\lambda)-f(\beta',\lambda)\right|<\varepsilon\qquad \qquad \text{for every }\beta\in B_{\varepsilon}\text{ and every }\lambda\in\mathbb{R}^{|y|}.$$

Such a neighborhood exists by the uniform continuity of f. Finally, to obtain 1 and 2 above it suffices to define

$$u_{\varepsilon} \ = \ \big\{ i \ : \ t(\hat{a}i) \in B_{\varepsilon} \big\}.$$

The rest of the inductive proof is straightforeward and is left to the reader.