Lecture 3 Notes for STT861

Kenyon Cavender

2019-09-04

1 Review

Def A set with only one outcome from **S** is called a **simple event**.

Def A set with more than one outcome is known as a **composite event**.

Def A **set function** is a function defined on a set.

Def Probability is a set function which takes a real value.

Def The **Power Set** $\mathscr{P} =$ collection of all subset of **S**

2 Class Notes

Remark Consider $\mathbf{S} = \{H, T\}$ and $\mathscr{P}(\mathbf{S}) = \{\emptyset, \{H\}, \{T\}, \mathbf{S}\}$

If **S** is countable, we can take $\mathscr{P}(\mathbf{S})$ as the domain for probability function P.

However, if S is uncountable, then S is too large, and it is not possible to define a function for $\mathscr{P}(S)$

<u>Def</u> \mathscr{A} is a collection of subsets of $\mathbf{S}[\neq \emptyset]$ satisfying:

- i) $\mathbf{S} \in \mathscr{A}$
- ii) if $A \subset \mathscr{A}$, then $A^c \in \mathscr{A}$
- iii) if $A_1, A_2, ... \in \mathscr{A}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$

We call \mathcal{A} a σ - algebra (or σ - field)

Any domain should be a σ - field

Ex 1 For
$$\mathbf{S} = \{H, T\}$$
 let's define $\mathscr{A} = \{\emptyset, \mathbf{S}\}$ (the trivial σ - field)

Ex 2
$$\mathbf{S} = \{a, b, c\}$$
 let's deffine $\mathscr{A} = \{\emptyset, \{a\}, \{b, c\}, \mathbf{S}\}$ (a σ - field)

 $\underline{\mathbf{Def}}$ (S, \mathscr{A}) is a measurable space

Def (S, \mathcal{A}, P) is a (probability) measure space

Ex 3 If
$$A, B \in \mathcal{A}$$
, is $A \cup B$ in \mathcal{A} ?

Yes. By req. iii) if
$$A_1 = A, A_2 = B, A_3 = \emptyset = A_4 = A_5...$$

Ex 4 If $A, B \in \mathcal{A}$ is $A \cap Bin\mathcal{A}$?

Yes. By req ii) $A^c, B^c \in \mathcal{A} \Rightarrow A^c \cup B^c \in \mathcal{A}$

Therefore, $(A^c \cup B^c)^c \in \mathscr{A}$

By De Morgan's law, $(A^c \cup B^c)^c = A \cap B$

<u>Def</u> Given sample space $S(\neq \emptyset)$, and the measurable space (S, \mathscr{A})

A function $P: \mathscr{A} \mapsto \mathbb{R}$ is called probability if it satisfies:

- a. $P(A) \geq 0$ for any $A \in mathscr A$
- b. P(S) = 1
- c. if A_1, A_2 ... are disjoint sets from \mathscr{A} , then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Desired Properties of P(.)

- a. $P(\emptyset) = 0$
- b. If A and B are disjoint then $P(A \cup B) = P(A) + P(B)$
- c. $P(A^c) = 1 P(A)$
- d. If $A \subset B$ then $P(A) \leq P(B)$
- e. $P(A) \le 1$