# 数据可视化 课堂笔记

## 1. 数据筛选和处理

### Numpy

| 方法                                       | 描述             |
|------------------------------------------|----------------|
| np.array()                               | 数组             |
| np.arange(start,end,step)                | 按步长step生成数组    |
| np.linspace(start,end,num)               | 按数量num生成数组     |
| np.info()                                | 查看numpy帮助      |
| np.reshape()                             | 重构矩阵结构生成新数组对象  |
| np.resize()                              | 重构矩阵结构不生成新数组对象 |
| np.ones()                                | 幺矩阵            |
| np.zeros()                               | 零矩阵            |
| np.eye()                                 | 单位矩阵           |
| np.full()                                | 填充矩阵           |
| np.ones_like()                           | 和给定矩阵形状相同的幺矩阵  |
| np.zeros_like()                          | 和给定矩阵形状相同的零矩阵  |
| np.full_like()                           | 和给定矩阵形状相同的填充矩阵 |
| np.square()、np.power()、np.log()、         | 幂指对数等运算        |
| np.sin()、np.cos()                        | 三角函数运算         |
| np.floor()、np.ceil()、np.round()          | 取整运算           |
| np.amax()、np.amin()、np.sum()、np.median() | 聚合运算           |
| np.random()                              | 随机运算           |
| np.loadtxt()、np.savetxt()                | 文本文件存取         |
| np.tofile()、 np.fromfile()               | 数据文件存取         |

| 属性       | 描述     |
|----------|--------|
| shape    | 矩阵形状   |
| ndim     | 矩阵维度   |
| size     | 元素数量   |
| itemsize | 元素数据大小 |
| dtype    | 元素数据类型 |

#### **Pandas**

| 方法                            | 描述               |
|-------------------------------|------------------|
| pd.Series                     | 生成系列Series对象     |
| pd.DataFrame()                | 生成数据表DataFrame对象 |
| pd.to_csv()、pd.read_csv()     | 读写csv文件          |
| pd.to_excel()、pd.read_excel() | 读写excel文件        |
| pd.to_json()、pd.read_json()   | 读写json文件         |

## 2. Matplotlib.pyplot模块

### plot()函数 - 绘制线图

```
plt.plot(x, y, 'xxx', linestyle=, marker=, color=, linewidth=, label= )
```

x:点的横坐标,可迭代对象y:点的纵坐标,可迭代对象linestyle:线的样式,字符串

| linestyle | 线形  |
|-----------|-----|
| Ų         | 实线  |
| 11        | 虚线  |
| 11        | 点划线 |
| 1,1       | 点虚线 |
| 11        | 无线  |

linewidth: 线的粗细,数值marker: 点的样式,字符串

| marker            | 标记点     |
|-------------------|---------|
| !                 | 点       |
| 11 ,              | 像素      |
| '\\' '\\' '>' '<' | 上下左右三角形 |
| '1' '2' '3' '4'   | 上下左右三叉线 |
| '0'               | 圆形      |
| 's' 'D'           | 方形      |
| 'p'               | 五边形     |
| 'h' 'H'           | 六边形     |
| 1*1               | 五角星     |
| '+' 'X'           | 十字交叉    |
| 277               | 横线和竖线   |

markersize: 点的大小,数值alpha: 透明度,0~1数值color: 颜色,字符串

| color          | 字符串 |
|----------------|-----|
| 'r', '#FF0000' | 红   |
| 'g', '#008000' | 绿   |
| 'b', '#0000FF' | 蓝   |
| 'y', '#FFFF00' | 黄   |
| 'c', '#00FFFF' | 青   |
| 'm', '#FF00FF' | 品   |
| 'k', '#000000' | 黑   |
| 'w', '#FFFFF'  | 白   |

• label: 图标签, 可用作legend文字

#### legend()函数 - 生成图例

```
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-10,10,20)
y1 = x**2 + 2*x + 1
y2 = - x**2 - 2*x - 21
plt.plot(x,y1,linestyle='-',linewidth=3, marker='o',color='r',label='y1')
plt.plot(x,y2,linestyle='--',marker='.',color='b',label='y2')
```

```
# 按位置设置标签和字号
plt.legend(labels=['y1','y2'], fontsize=15)

# 标签支持公式, 参考LaTex公式语法
plt.legend(labels=['$y=x^2+2x+1$','$y=-x^2-2x-21$'])

# 指定图例位置
plt.legend(loc='upper center')

# 不显示边框
plt.legend(frameon=False)

# 分两列显示图例
plt.legend(ncol=2)

# 显示图例边框阴影
plt.legend(shadow=True)
```

| 常用参数     | 描述        |
|----------|-----------|
| labels   | 图例标签列表    |
| loc      | 图例位置      |
| fontsize | 字体大小      |
| frameon  | 是否显示图例边框  |
| ncol     | 图例列数,默认1列 |
| title    | 图例标题      |
| shadow   | 是否显示图例阴影  |

#### title()函数 - 设置标题

```
import matplotlib.pyplot as plt import numpy as np

x = np.linspace(-10,10,21)
y1 = x**2 + 2*x + 1
y2 = - x**2 - 2*x -21
plt.plot(x,y1,linestyle='-',linewidth=3,
marker='.',markersize=10,color='#FF0000')
plt.plot(x,y2,linestyle='--',marker='D')

plt.title('This is the title',fontstyle='oblique',fontweight='bold')
// 中文标题需设置中文字体字典
Fangsong = {'family' : 'Fangsong','weight' : 'normal','size' : 15}
plt.title('这是一个标题',fontdict=Fangsong, backgroundcolor='k',color='w')
```

| 常用参数                | 描述                                                                              |
|---------------------|---------------------------------------------------------------------------------|
| fontsize            | 设置字体大小,默认12                                                                     |
| fontweight          | 设置字体粗细,可选参数 ['light', 'normal', 'medium', 'semibold', 'bold', 'heavy', 'black'] |
| fontstyle           | 设置字体类型,可选参数[ 'normal'   'italic'   'oblique' ]                                  |
| verticalalignment   | 设置水平对齐方式,可选参数 ['center'   'top'   'bottom'   'baseline' ]                       |
| horizontalalignment | 设置垂直对齐方式,可选参数 ['left'   'right'   'center' ]                                    |
| rotation            | 旋转角度,可选参数为[ 'vertical'   'horizontal' ]也可以为角度                                   |
| alpha               | 透明度,参数值0至1之间                                                                    |

#### xlabel()、ylabel()函数 - 设置x、y轴标签

```
// 常用参数
plt.xlabel('$x$',horizontalalignment='right',verticalalignment='top')
plt.ylabel('$y=x^2+2x+1$',horizontalalignment='left',verticalalignment='center')

// 设置支持中文字体
Fangsong = {'family' : 'Fangsong','weight' : 'normal','size' : 15}
plt.xlabel('X轴',fontdict=Fangsong)
plt.ylabel('Y轴',rotation=0,fontdict=Fangsong)
```

| 常用参数                | 描述       |
|---------------------|----------|
| 'TEXT'              | 显示标签文字   |
| size                | 字号       |
| rotation            | 旋转       |
| horizontalalignment | 水平对齐方式   |
| verticalalignment   | 垂直对齐方式   |
| fontdict            | 字体(字典类型) |

#### font:

```
# 字体字典: 仿宋体
Fangsong = {'family' : 'Fangsong','weight' : 'normal','size' : 15,}
# 字体字典: 简黑体
Simhei = {'family' : 'SimHei','weight' : 'normal','size' : 15,}

# matplotlib设置全局中文字体简体黑
plt.rcParams['font.sans-serif'] = ['SimHei']
# matplotlib正常显示中文负号
plt.rcParams['axes.unicode_minus'] = False
```

#### xlim()、ylim()函数 - 设置x、y轴显示范围

```
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-10,10,21)
y1 = x**2 + 2*x + 1
y2 = - x**2 - 2*x -21
plt.plot(x,y1,linestyle='-',linewidth=3,
marker='.',markersize=10,color='#FF0000')
plt.plot(x,y2,linestyle='--',marker='D')
plt.xlim(0,5)
plt.ylim(-100,100)
```

### xticks()、yticks()函数 - 设置x、y轴刻度 grid()函数 - 设置网格线(与xticks、yticks对齐)

```
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-10, 10, 21)
y1 = x**2 + 2*x + 1
y2 = -x**2 - 2*x -21
plt.plot(x,y1,linestyle='-',linewidth=3,
marker='.',markersize=10,color='#FF0000')
plt.plot(x,y2,linestyle='--',marker='D')
plt.xlim(0,5)
plt.ylim(-100,100)
# 设置刻度
plt.xticks(x, rotation=-90)
# 中文刻度显示需使用中文字体
plt.xticks(range(5), labels=['O','-','=','E','M'], fontproperties='SimHei')
# 设置网格
plt.grid()
```

### figure和axes

- figure是作图的画布: matplotlib.figure.Figure
- 你可以在figure上面铺展axes,事实上,你画的图其实都是画在axes上的:
   matplotlib.pyplot.axes, axes其实是在一幅画布上,规划出的一个个科学作图的坐标轴系统

```
plt.gcf() # 意为, get current figure
plt.gca() # 意为, get current axes
```



### subplots()函数 - 生成子图矩阵框架

subplots()函数生成一个figure对象和figure容器中的axes坐标轴,如果有多个坐标轴,这些坐标轴被放到一个列表中

figure, axes = plt.subplots(n,m)

#### figure

| 常用参数      | 描述        |
|-----------|-----------|
| num       | 图编号       |
| figsize   | 图大小       |
| facecolor | 窗口的背景颜色   |
| edgecolor | 窗口边框颜色    |
| frameon   | 是否绘制窗口的图框 |

```
fig = plt.figure(figsize=(6,3))
fig.add_subplot(121) # 1行2列,第1个
fig.add_subplot(122) # 1行2列,第2个
fig.add_axes(121)
fig.add_axes(122)
```

#### bar() 函数 - 绘制条形图/柱状图

bar(x, height, width=0.8, bottom=None, \*, align='center', data=None, \*\*kwargs)

| 常用参数        | 描述     |
|-------------|--------|
| х           | 横坐标    |
| height      | 条形高度   |
| width       | 条形宽度   |
| bottom      | 条形的起点  |
| align       | 条形的对齐点 |
| color       | 条形颜色   |
| tick_label  | 下标签    |
| orientation | 竖条还是横条 |

### scatter()函数 - 绘制散点图

```
scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None,
vmax=None,
alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None,
**kwargs)
```

| 常用参数        | 描述         |
|-------------|------------|
| x,y         | 坐标向量       |
| S           | size 标记大小  |
| С           | color 标记颜色 |
| marker      | 标记样式       |
| cmap        | 设置色彩盘      |
| norm        | 设置亮度, 0~1  |
| alpha       | 透明度, 0~1   |
| orientation | 竖条还是横条     |
| linewidths  | 线宽         |
| edgecolors  | 轮廓颜色       |

### pie() 函数 - 绘制饼图

pie(x, explode=None, labels=None, colors=None, autopct=None,
 pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None,
 radius=None, counterclock=True, wedgeprops=None, textprops=None,
 center=(0, 0), frame=False, rotatelabels=False, hold=None, data=None)

| 常用参数          | 描述                                                                                     |
|---------------|----------------------------------------------------------------------------------------|
| Х             | (每一块)的比例,如果sum(x) > 1会使用sum(x)归一化;                                                     |
| labels        | (每一块)饼图外侧显示的说明文字;                                                                      |
| explode       | (每一块)离开中心距离;                                                                           |
| startangle    | 起始绘制角度,默认图是从x轴正方向逆时针画起,如设定=90则从y轴正方向画起;                                                |
| shadow        | 在饼图下面画一个阴影。默认值:False,即不画阴影;                                                            |
| labeldistance | label标记的绘制位置,相对于半径的比例,默认值为1.1, 如<1则绘制在饼图内侧;                                            |
| autopct       | 控制饼图内百分比设置,可以使用format字符串或者format function '%1.1f指小数点前后位数(没有用空格补齐);                     |
| pctdistance   | 类似于labeldistance,指定autopct的位置刻度,默认值为0.6;                                               |
| radius        | 控制饼图半径,默认值为1;                                                                          |
| counterclock  | 指定指针方向;布尔值,可选参数,默认为:True,即逆时针。将值改为False即可改为顺时针。                                        |
| wedgeprops    | 字典类型,可选参数,默认值:None。参数字典传递给wedge对象用来画一个<br>饼图。例如:wedgeprops={'linewidth' 3}设置wedge线宽为3。 |
| textprops     | 设置标签(labels)和比例文字的格式;字典类型,可选参数,默认值为:<br>None。传递给text对象的字典参数。                           |
| center        | 浮点类型的列表,可选参数,默认值: (0,0)。图标中心位置。                                                        |
| frame         | 布尔类型,可选参数,默认值:False。如果是true,绘制带有表的轴框架。                                                 |
| rotatelabels  | 布尔类型,可选参数,默认为:False。如果为True,旋转每个label到指定的角度。                                           |

# hist() 函数 - 绘制直方图

| 参数       | 描述                                                                                                            |
|----------|---------------------------------------------------------------------------------------------------------------|
| х        | 数据集,最终的直方图将对数据集进行统计                                                                                           |
| bins     | 统计的区间分布,分多少个桶,在range区间上的分桶数量                                                                                  |
| range    | tuple, 显示的区间                                                                                                  |
| density  | bool,默认为false,显示的是频数统计结果,为True则显示频率统计结果,这里需要注意,频率统计结果=区间数目/(总数*区间宽度),和normed效果一致,官方推荐使用density                |
| histtype | 可选{'bar', 'barstacked', 'step', 'stepfilled'}之一,默认为bar,推荐使用默认配置,<br>step使用的是梯状,stepfilled则会对梯状内部进行填充,效果与bar类似 |
| align    | 可选{'left', 'mid', 'right'}之一,默认为'mid',控制柱状图的水平分布,left或者right,会有部分空白区域,推荐使用默认                                  |
| log      | bool,默认False,即y坐标轴是否选择指数刻度                                                                                    |
| stacked  | bool,默认为False,是否为堆积状图                                                                                         |

## 3. Seaborn 模块

## Relational plots 关系图

| relplot     | Figure-level interface for drawing relational plots onto a FacetGrid. |
|-------------|-----------------------------------------------------------------------|
| scatterplot | Draw a scatter plot with possibility of several semantic groupings.   |
| lineplot    | Draw a line plot with possibility of several semantic groupings.      |

### Distribution plots 分布图

| displot  | Figure-level interface for drawing distribution plots onto a FacetGrid.     |
|----------|-----------------------------------------------------------------------------|
| histplot | Plot univariate or bivariate histograms to show distributions of datasets.  |
| kdeplot  | Plot univariate or bivariate distributions using kernel density estimation. |
| ecdfplot | Plot empirical cumulative distribution functions.                           |
| rugplot  | Plot marginal distributions by drawing ticks along the x and y axes.        |
| distplot | DEPRECATED: Flexibly plot a univariate distribution of observations.        |

### Categorical plots 分类图

| catplot    | Figure-level interface for drawing categorical plots onto a FacetGrid.   |
|------------|--------------------------------------------------------------------------|
| stripplot  | Draw a scatterplot where one variable is categorical.                    |
| swarmplot  | Draw a categorical scatterplot with non-overlapping points.              |
| boxplot    | Draw a box plot to show distributions with respect to categories.        |
| violinplot | Draw a combination of boxplot and kernel density estimate.               |
| boxenplot  | Draw an enhanced box plot for larger datasets.                           |
| pointplot  | Show point estimates and confidence intervals using scatter plot glyphs. |
| barplot    | Show point estimates and confidence intervals as rectangular bars.       |
| countplot  | Show the counts of observations in each categorical bin using bars.      |

# Regression plots 回归图

| [lmplot]  | Plot data and regression model fits across a FacetGrid. |
|-----------|---------------------------------------------------------|
| regplot   | Plot data and a linear regression model fit.            |
| residplot | Plot the residuals of a linear regression.              |

## Matrix plots 矩阵图

| heatmap           | Plot rectangular data as a color-encoded matrix.             |
|-------------------|--------------------------------------------------------------|
| <u>clustermap</u> | Plot a matrix dataset as a hierarchically-clustered heatmap. |

# Joint grids 联合图

| <u>jointplot</u>                    | Draw a plot of two variables with bivariate and univariate graphs. |
|-------------------------------------|--------------------------------------------------------------------|
| JointGrid                           | Grid for drawing a bivariate plot with marginal univariate plots.  |
| JointGrid.plot                      | Draw the plot by passing functions for joint and marginal axes.    |
| <pre>JointGrid.plot_joint</pre>     | Draw a bivariate plot on the joint axes of the grid.               |
| <pre>JointGrid.plot_marginals</pre> | Draw univariate plots on each marginal axes.                       |

#### Pair grids

| (pairplot)             | Plot pairwise relationships in a dataset.                      |
|------------------------|----------------------------------------------------------------|
| (PairGrid)             | Subplot grid for plotting pairwise relationships in a dataset. |
| PairGrid.map           | Plot with the same function in every subplot.                  |
| PairGrid.map_diag      | Plot with a univariate function on each diagonal subplot.      |
| (PairGrid.map_offdiag) | Plot with a bivariate function on the off-diagonal subplots.   |
| (PairGrid.map_lower)   | Plot with a bivariate function on the lower diagonal subplots. |
| PairGrid.map_upper     | Plot with a bivariate function on the upper diagonal subplots. |

#### 关系数据可视化 (relplot())

relplot() 关系数据可视化主要有两种图折线图lineplot和散点图 scatterplot

• scatterplot() (with kind="scatter"; the default)

```
import seaborn as sns
sns.set_theme(style="darkgrid")

tips = sns.load_dataset("tips") # 导入seaborn自带数据集
print(tips.head(5))
sns.relplot(x="total_bill", y="tip", data=tips);
```

```
sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips);
```

• lineplot() (with kind="line")

```
import seaborn as sns
sns.set_theme(style="darkgrid")

flights = sns.load_dataset("flights")
print(flights.head(5))
may_flights = flights.query("month == 'May'")
sns.lineplot(data=may_flights, x="year", y="passengers")
```

```
flights_wide = flights.pivot("year", "month", "passengers")
flights_wide.head()
sns.lineplot(data=flights_wide["May"])
```