ViRel: Unsupervised Visual Relations Discovery with Graph-level Analogy

Thomas and the same

Daniel Zeng*, Tailin Wu*, Jure Leskovec

Stanford University

Figure 2. t-SNE visualization of

relation embeddings. 0 is 'none',

1 is 'inside', 2 is 'same-color',

Introduction

- Visual relations form the basis of understanding our compositional world, as relationships between visual objects capture key information in a scene.
- We tackle learning and discovering relations without supervision, where relation types and labels are not known a priori
- In contrast, when relations are learned with predefined labels in a supervised context, this limits us to settings which depend on those seen relations

Problem Statement

- Input: [16 x 16 x 9 x n] images, and no knowledge of objects, nor relation types, nor underlying graph per example
- The goal: Infer the global relation types
- Graph $E(g_i)$ of each image x_i
- Relational graph structure $E(G_t)$ for each task t
 - \circ Requires identifying relation e_{kl} between object pairs
 - Metric: Relation Classification Accuracy %

Dataset: BabyARC

- Collection of images (observations) x_i
- Each image x_i belongs to some known task $t \in T$.
- Each task t has an unknown unique task graph $G_t = (V, E)$, where nodes V are objects and edges E are the corresponding relations
- All of its corresponding images share this common relational subgraph E(G_t)
- Objects in x_i part of relational subgraph: "core" objects
 Not part of relational subgraph: "distractor" objects

Figure 1. The relations in dataset, 'same-shape', 'same-color', 'inside'

Methods

- Each image x_i is represented as latent graph g_i after CNN + MLP, becomes $z_i^{(g)}$ after graph isomorphism network (GIN)
- Two types of loss functions to train CR-GNN architecture (above)
 - Contrastive objective

$$\mathcal{L}_{ ext{contrastive}} = \sum_{i,j \in ext{same-task}} ||f_g(g_i) - f_g(g_j)||_2 \ + \sum_{k,m \in ext{diff-task}} \max(0,\eta - ||f_g(g_k) - f_g(g_m)||_2$$

- graph representation $f_g(g_i)$ should be similar within the task (intra-task loss), and should be different between different tasks (inter-task loss). η is margin hyperparameter
- Classification objective

$$\mathcal{L}_{ ext{classify}} = \sum_{orall i \in n} \mathcal{L}_{CE}(ext{Linear}(f_g(g_i)), y)$$

- standard cross-entropy loss, between the true task ID y against the predicted task ID
- Additional regularizer: Information Bottleneck (IB)
 - Constraints information between input and relation embedding

$$\mathcal{L}_{\mathrm{IB}} = \mathcal{I}(X; Z^{(r)})$$

Results

Table 1. Relation classification accuracy for 2-3 core objects

Method	# DISTRACTORS		
	0	1	0-2
CLASSIFY	0.923	0.926	0.946
CLASSIFY + IB	0.919	0.918	0.901
CONTRASTIVE	0.959	0.961	0.954
Contrastive + IB	0.952	0.963	0.957
BEST	0.959	0.963	0.957

Table 2. Relation classification accuracy for 2-4 core objects

METHOD	# DISTRACTORS		
	0	1	0-2
CLASSIFY	0.956	0.955	0.965
CLASSIFY + IB	0.960	0.962	0.959
CONTRASTIVE	0.965	0.971	0.965
CONTRASTIVE + IB	0.960	0.973	0.971
BEST	0.965	0.973	0.971

- Apply k-means clustering to assign cluster labels to each of the learned relation embeddings
- Model performance is similar between both objectives
 Contrastive objective performing slightly better
- No accuracy degradation due to varying the number of introduced distractor objects, in all cases
- Overall slight improvement with more tasks in 2-4 core objects setting compared to 2-3 core objects
- Model infers the global relation types, as the *t*-SNE visualization shows clustering of relation embeddings by same relation label, shown in Figure 2

Conclusion / Future Work

- Our method achieves above 95% accuracy in relation classification, discovers the relation graph structure for most tasks, and further generalizes to unseen tasks with more complicated relational structures
- Limitation: model only learns the necessary relation representations needed to distinguish between the given tasks, such as overlapping clusters in Figure 2
- Future work is expanding towards more datasets, potentially CLEVR generation with graph structure