MATH 300: Homework 1

Aren Vista

September 14, 2025

Question 1

In the usual number system. P: 1+1=0 and Q: 3<5 Write the following truth values for expr:

- 1. $P \lor Q$
- 2. $P \wedge Q$
- 3. $\sim P$
- $4. P \implies Q$
- 5. $\sim Q \implies \sim P$

0.1 Truth Table

P	Q	$P \lor Q$	$P \wedge Q$	$\sim P$	$P \implies Q$	$\sim Q \implies \sim P$
\mathbf{T}	\mathbf{T}	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$
${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$

Question 2

The Pythagorean theorem from (high school) plane geometry says: If a and b are the legs of a right-angle triangle with c as the hypotenuse, then $c^2 = a^2 + b^2$. Write this statement as $H \implies C$. What are the converse and contra-positive statements?

- 1. H ="If a and b are the legs of a right-angle triangle with c as the hypotenuse"
- 2. $C = c^2 = a^2 + b^2$

0.2 Writing Statments

1. Direct: $P: H \implies C$

"If a and b are the legs of a right-angle triangle with c as the hypotenuse" then " $c^2 = a^2 + b^2$ "

2. Contra-positive: $\sim C \implies \sim H$: " $c^2 = a^2 + b^2$ "

If " $c^2 \neq a^2 + b^2$ " then "a and b are NOT the legs of a right-angle triangle with c as the hypotenuse"

3. Converse: $C \implies H$

If " $c^2 = a^2 + b^2$ " then "a and b are the legs of a right-angle triangle with c as the hypotenuse"

2

Question 3

Show using truth tables that $\sim (P \wedge Q) \equiv \sim P \vee \sim Q$

0.3 Truth Table

Observe columns corresponding to $\sim (P \wedge Q)$ and $\sim P \vee \sim Q$ are identical; therefore are logically equivalent.

Question 4

Show that the statement $(P \lor \sim Q) \lor (Q \lor \sim P)$ is a tautology

0.4 Truth Table

Observe that the column corresponding to $(P \lor \sim Q) \lor (Q \lor \sim P)$ is always true; therefore is a tautology.

Question 5

Show the addition table for \mathbb{Z}_5 .

0.5 Z_5 Addition Table

X	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3