绝密★启用前

2019年普通高等学校招生全国统一考试

文科数学

注意事项:

1. 答卷前, 考生务必将自己的姓名和准考证号填写在答题	合位則,	上分少付日 6 的姓名 4 任
------------------------------	------------------------	-----------------

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需

改动,用植	家 皮擦十净后,冉	选涂其它答案标号。但	答非选择题时,将答案	《与在答题卡上。 与		
在本试卷_	上无效。					
3. 考	试结束后,将本记	、 卷和答题卡一并交回。				
一、选择题	题: 本题共 12 小題	远 ,每小题 5 分,共 60	分。在每小题给的四个	、选项中,只有一项		
是符合	合题目要求的 。					
1. 已知约	美合 A = {-1,0,1,2	$B = \{x \mid x^2 \le 1\}, \emptyset$	$A \cap B =$			
A. {-	1,0,1}	в. {0,1}	C. $\{-1,1\}$	D. $\{0,1,2\}$		
2. 若 $z(1+i) = 2i$,则 $z=$						
A1	-i	B1+i	C. 1-i	D. 1+i		
3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是						
A. $\frac{1}{6}$		B. $\frac{1}{4}$	C. $\frac{1}{3}$	D. $\frac{1}{2}$		
4. 《西游	记》《三国演义》	《水浒传》和《红楼梦	梦》是中国古典文学瑰宝	医, 并称为中国古典		
小说四	大名著.某中学为了	一解本校学生阅读四大 名	名著的情况,随机调查 [—]	了 100 学生, 其中阅		
读过《	西游记》或《红楼	梦》的学生共有 90 位	,阅读过《红楼梦》的	学生共有 80 位,阅		
读过《	西游记》且阅读过	《红楼梦》的学生共有	60位,则该校阅读过	《西游记》的学生人		
数与该	校学生总数比值的	估计值为				
A. 0.5	·	B. 0.6	C. 0.7	D. 0.8		
5 3 WL C	· () 2-i : 2		M.			

5. 函数 $f(x) = 2\sin x - \sin 2x$ 在0, 2π]的零点个数为

C. 4 B. 3 D. 5

6. 已知各项均为正数的等比数列 $\{a_n\}$ 的前 4 项和为 15,且 $a_5=3a_3+4a_1$,则 $a_3=$ B. 8 C. 4

D. 2

7. 己知曲线 $y = ae^x + x \ln x$ 在点(1, ae)处的切线方程为 y=2x+b,则

- A. a=e, b=1 B. a=e, b=1 C. $a=e^{-1}, b=1$ D. $a=e^{-1}, b=-1$
- 8. 如图,点 N 为正方形 ABCD 的中心, $\triangle ECD$ 为正三角形,平面 ECD 上平面 ABCD, M 是 线段 ED 的中点,则

- A. BM=EN, 且直线 BM、EN 是相交直线
- B. BM≠EN, 且直线 BM, EN 是相交直线
- C. BM=EN, 且直线 BM、EN 是异面直线
- D. BM≠EN, 且直线 BM, EN 是异面直线
- 9. 执行下边的程序框图,如果输入的为0.01,则输出的值等于

- A. $2 \frac{1}{2^4}$ B. $2 \frac{1}{2^5}$ C. $2 \frac{1}{2^6}$ D. $2 \frac{1}{2^7}$
- 10. 已知 F 是双曲线 C: $\frac{x^2}{4} \frac{y^2}{5} = 1$ 的一个焦点,点 P 在 C 上,O 为坐标原点,若

|OP| = |OF|,则 $\triangle OPF$ 的面积为

- A. $\frac{3}{2}$ B. $\frac{5}{2}$ C. $\frac{7}{2}$ D. $\frac{9}{2}$

11. 记不等式组 $\begin{cases} x+y & ... 6, \\ 2x-y \ge 0 \end{cases}$ 表示的平面区域为D. 命题 $p:\exists (x,y) \in D, 2x+y & ... 9;$ 命题 $q: \forall (x,y) \in D, 2x+y$, 12.下面给出了四个命题 ① $p \vee q$ 这四个命题中, 所有真命题的编号是 A. (1)(3) B. (1)(2) C. 23 D. (3)(4) 12. 设f(x)是定义域为 \mathbf{R} 的偶函数,且在 $(0,+\infty)$ 单调递减,则 A. $f(\log_3 \frac{1}{4}) > f(2^{-\frac{3}{2}}) > f(2^{-\frac{2}{3}})$ B. $f(\log_3 \frac{1}{4}) > f(2^{-\frac{2}{3}}) > f(2^{-\frac{3}{2}})$ C. $f(2^{-\frac{3}{2}}) > f(2^{-\frac{2}{3}}) > f(\log_3 \frac{1}{4})$ D. $f(2^{-\frac{2}{3}}) > f(2^{-\frac{3}{2}}) > f(\log_3 \frac{1}{4})$ 二、填空题:本题共4小题,每小题5分,共20分。 13. 己知向量 $\mathbf{a} = (2,2), \mathbf{b} = (-8,6)$,则 $\cos \langle \mathbf{a}, \mathbf{b} \rangle =$ ______ 14. 记 S_n 为等差数列 $\{a_n\}$ 的前 n 项和,若 $a_3 = 5, a_7 = 13$,则 $S_{10} =$ _______ 15. 设 F_1 , F_2 为椭圆 $C: \frac{x^2}{36} + \frac{y^2}{20} = 1$ 的两个焦点, M为C上一点且在第一象限.若 $\triangle MF_1F_2$ 为 等腰三角形,则M的坐标为 16. 学生到工厂劳动实践,利用 3D 打印技术制作模型.如图,该模型为长方体 $ABCD - A_iB_iC_iD_i$ 挖去四棱锥 O—EFGH 后所得的几何体,其中 O 为长方体的中心,E, F, G, H 分别为所在棱的中点, AB = BC = 6cm, $AA_1 = 4$ cm, 3D 打印所用原料密度为

0.9 g/cm³,不考虑打印损耗,制作该模型所需原料的质量为______g.

- 三、解答题: 共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
- (一) 必考题: 共60分。

17. (12分)

为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同。经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:

记C为事件: "乙离子残留在体内的百分比不低于5.5",根据直方图得到P(C) 的估计值为0.70.

- (1) 求乙离子残留百分比直方图中a, b的值;
- (2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).

18. (12分)

 $\triangle ABC$ 的内角 A、B、C 的对边分别为 a、b、c,已知 $a\sin\frac{A+C}{2}=b\sin A$.

- (1) 求*B*;
- (2) 若 $\triangle ABC$ 为锐角三角形,且 c=1,求 $\triangle ABC$ 面积的取值范围.

19. (12分)

图 1 是由矩形 ADEB、 $Rt \triangle ABC$ 和菱形 BFGC 组成的一个平面图形,其中 AB=1, BE=BF=2, $\angle FBC=60^{\circ}$.将其沿 AB,BC 折起使得 BE 与 BF 重合,连结 DG,如图 2.

- (1) 证明图 2 中的 A, C, G, D 四点共面, 且平面 ABC 上平面 BCGE;
- (2) 求图 2 中的四边形 ACGD 的面积.

20. (12分)

已知函数 $f(x) = 2x^3 - ax^2 + 2$.

- (1) 讨论 f(x) 的单调性;
- (2) 当0 < a < 3时,记 f(x) 在区间0,1]的最大值为M,最小值为m,求 M-m 的取值范围. 21. (12 分)

已知曲线 $C: y = \frac{x^2}{2}$, D 为直线 $y = -\frac{1}{2}$ 上的动点,过 D 作 C 的两条切线,切点分别为 A,

B.

- (1) 证明: 直线 AB 过定点:
- (2) 若以 $E(0, \frac{5}{2})$ 为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求该圆的方程.
- (二)选考题:共 10分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。
- 22. 选修 4-4: 坐标系与参数方程](10分)

如图,在极坐标系 Ox 中, A(2,0) , $B(\sqrt{2},\frac{\pi}{4})$, $C(\sqrt{2},\frac{3\pi}{4})$, $D(2,\pi)$, 弧 \widehat{AB} , \widehat{BC} , \widehat{CD} 所在圆的圆心分别是 (1,0) , $(1,\frac{\pi}{2})$, $(1,\pi)$, 曲线 M_1 是弧 \widehat{AB} , 曲线 M_2 是弧 \widehat{BC} , 曲线 M_3 是弧 \widehat{CD} .

- (1) 分别写出 M_1 , M_2 , M_3 的极坐标方程;
- (2) 曲线 M 由 M_1 , M_2 , M_3 构成,若点 P 在 M 上,且 $|OP| = \sqrt{3}$,求 P 的极坐标.

23. 选修 4-5: 不等式选讲](10分)

设 $x, y, z \in \mathbf{R}$, 且x + y + z = 1.

- (1) 求 $(x-1)^2 + (y+1)^2 + (z+1)^2$ 的最小值;
- (2) 若 $(x-2)^2 + (y-1)^2 + (z-a)^2 \ge \frac{1}{3}$ 成立,证明: $a \le -3$ 或 $a \ge -1$.

2019年普通高等学校招生全国统一考试

文科数学 · 参考答案

- 一、选择题
- 1. A 2. D 3. D 4. C 5. B 6. C 7. D 8. B 9. C 10 . B 11. A 12. C
- 二、填空题
- 13. $-\frac{\sqrt{2}}{10}$
- 14. 100
- 15. $(3,\sqrt{15})$ 16. 118.8

- 三、解答题
- 17. 解: (1) 由己知得0.70=a+0.20+0.15, 故a=0.35.

b=1-0.05-0.15-0.70=0.10.

- (2) 甲离子残留百分比的平均值的估计值为
- $2 \times 0.15 + 3 \times 0.20 + 4 \times 0.30 + 5 \times 0.20 + 6 \times 0.10 + 7 \times 0.05 = 4.05$.
- 乙离子残留百分比的平均值的估计值为

 $3\times0.05+4\times0.10+5\times0.15+6\times0.35+7\times0.20+8\times0.15=6.00$.

18. 解: (1) 由题设及正弦定理得 $\sin A \sin \frac{A+C}{2} = \sin B \sin A$.

因为
$$\sin A \neq 0$$
,所以 $\sin \frac{A+C}{2} = \sin B$.

由
$$A + B + C = 180^{\circ}$$
,可得 $\sin \frac{A + C}{2} = \cos \frac{B}{2}$,故 $\cos \frac{B}{2} = 2\sin \frac{B}{2}\cos \frac{B}{2}$.

因为
$$\cos \frac{B}{2} \neq 0$$
,故 $\sin \frac{B}{2} = \frac{1}{2}$,因此 $B=60^{\circ}$.

(2) 由题设及(1)知 $\triangle ABC$ 的面积 $S_{\triangle ABC} = \frac{\sqrt{3}}{4}a$.

由正弦定理得
$$a = \frac{c\sin A}{\sin C} = \frac{\sin(120^\circ - C)}{\sin C} = \frac{\sqrt{3}}{2\tan C} + \frac{1}{2}$$
.

由于 $\triangle ABC$ 为锐角三角形,故 $0^{\circ}< A<90^{\circ}$, $0^{\circ}< C<90^{\circ}$.由(1)知 $A+C=120^{\circ}$,所以

$$30^{\circ} < C < 90^{\circ}$$
,故 $\frac{1}{2} < a < 2$,从而 $\frac{\sqrt{3}}{8} < S_{\triangle ABC} < \frac{\sqrt{3}}{2}$.

因此,
$$\triangle ABC$$
 面积的取值范围是 $\left(\frac{\sqrt{3}}{8}, \frac{\sqrt{3}}{2}\right)$.

19. 解: (1) 由己知得*AD || BE, CG || BE*, 所以*AD || CG*, 故*AD, CG*确定一个平面,从而 *A, C, G, D*四点共面.

由己知得 $AB \perp BE$, $AB \perp BC$, 故 $AB \perp$ 平面BCGE.

又因为AB \subset 平面ABC, 所以平面ABC \bot 平面BCGE.

(2) 取CG的中点M, 连结EM, DM.

因为AB//DE, $AB \perp$ 平面BCGE, 所以 $DE \perp$ 平面BCGE, 故 $DE \perp CG$.

由己知,四边形BCGE是菱形,且 $\angle EBC$ =60°得 $EM \perp CG$,故 $CG \perp$ 平面DEM.

因此 $DM \perp CG$.

在Rt \triangle DEM中,DE=1,EM= $\sqrt{3}$,故DM=2.

所以四边形ACGD的面积为4.

20. **M**: (1) $f'(x) = 6x^2 - 2ax = 2x(3x - a)$.

$$\Leftrightarrow f'(x) = 0$$
, $\# x = 0$ $\vec{y} x = \frac{a}{3}$

若
$$a>0$$
,则当 $x \in (-\infty,0)$ $\bigcup \left(\frac{a}{3},+\infty\right)$ 时, $f'(x)>0$; 当 $x \in \left(0,\frac{a}{3}\right)$ 时, $f'(x)<0$. 故

$$f(x)$$
在 $(-\infty,0)$, $\left(\frac{a}{3},+\infty\right)$ 单调递增,在 $\left(0,\frac{a}{3}\right)$ 单调递减;

若 a=0, f(x) 在 $(-\infty, +\infty)$ 单调递增;

若
$$a < 0$$
,则当 $x \in \left(-\infty, \frac{a}{3}\right) \cup (0, +\infty)$ 时, $f'(x) > 0$; 当 $x \in \left(\frac{a}{3}, 0\right)$ 时, $f'(x) < 0$. 故

$$f(x)$$
 在 $\left(-\infty, \frac{a}{3}\right)$, $(0, +\infty)$ 单调递增,在 $\left(\frac{a}{3}, 0\right)$ 单调递减.

(2) 当
$$0 < a < 3$$
 时,由(1)知, $f(x)$ 在 $\left(0, \frac{a}{3}\right)$ 单调递减,在 $\left(\frac{a}{3}, 1\right)$ 单调递增,所以 $f(x)$

在 0,1]的最小值为
$$f\left(\frac{a}{3}\right) = -\frac{a^3}{27} + 2$$
, 最大值为 $f(0)=2$ 或 $f(1)=4-a$.于是

$$m = -\frac{a^3}{27} + 2$$
, $M = \begin{cases} 4 - a, 0 < a < 2, \\ 2, 2 \le a < 3. \end{cases}$

所以
$$M-m = \begin{cases} 2-a+\frac{a^3}{27}, 0 < a < 2, \\ \frac{a^3}{27}, 2 \le a < 3. \end{cases}$$

当
$$0 < a < 2$$
时,可知 $2 - a + \frac{a^3}{27}$ 单调递减,所以 $M - m$ 的取值范围是 $\left(\frac{8}{27}, 2\right)$.

当
$$2 \le a < 3$$
 时, $\frac{a^3}{27}$ 单调递减,所以 $M - m$ 的取值范围是 $[\frac{8}{27}, 1)$.

综上, M-m 的取值范围是[$\frac{8}{27}$,2).

21.
$$\Re:$$
 (1) $\partial D\left(t, -\frac{1}{2}\right)$, $A(x_1, y_1)$, $\partial x_1^2 = 2y_1$.

由于 y' = x , 所以切线DA的斜率为 x_1 , 故 $\frac{y_1 + \frac{1}{2}}{x_1 - t} = x_1$.

整理得 $2tx_1-2y_1+1=0$.

设 $B(x_2,y_2)$,同理可得 $2tx_2-2y_2+1=0$.

故直线AB的方程为2tx-2y+1=0.

所以直线AB过定点 $(0,\frac{1}{2})$.

(2) 由 (1) 得直线*AB*的方程为 $y = tx + \frac{1}{2}$.

曲
$$\begin{cases} y = tx + \frac{1}{2} \\ y = \frac{x^2}{2} \end{cases}, \quad \overline{\exists} \ \exists \ x^2 - 2tx - 1 = 0.$$

于是 $x_1 + x_2 = 2t$, $y_1 + y_2 = t(x_1 + x_2) + 1 = 2t^2 + 1$.

设M为线段AB的中点,则 $M\left(t,t^2+\frac{1}{2}\right)$.

由于 $\overrightarrow{EM} \perp \overrightarrow{AB}$,而 $\overrightarrow{EM} = (t, t^2 - 2)$, \overrightarrow{AB} 与向量(1, t)平行,所以 $t + (t^2 - 2)t = 0$.解得t = 0或 $t = \pm 1$.

当=0时, $|\overrightarrow{EM}|$ =2,所求圆的方程为 $x^2 + \left(y - \frac{5}{2}\right)^2 = 4$;

当 $t = \pm 1$ 时, $|\overrightarrow{EM}| = \sqrt{2}$, 所求圆的方程为 $x^2 + \left(y - \frac{5}{2}\right)^2 = 2$.

22.解: (1) 由题设可得, 弧 \widehat{AB} , \widehat{BC} , \widehat{CD} 所在圆的极坐标方程分别为 $\rho=2\cos\theta$, $\rho=2\sin\theta$, $\rho=-2\cos\theta$.

所以 M_1 的极坐标方程为 $\rho=2\cos\theta\left(0\leq\theta\leq\frac{\pi}{4}\right)$, M_2 的极坐标方程为

$$\rho = 2\sin\theta \left(\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}\right), \quad M_3 \text{ 的极坐标方程为 } \rho = -2\cos\theta \left(\frac{3\pi}{4} \le \theta \le \pi\right).$$

(2) 设 $P(\rho,\theta)$, 由题设及(1) 知

若
$$0 \le \theta \le \frac{\pi}{4}$$
,则 $2\cos\theta = \sqrt{3}$,解得 $\theta = \frac{\pi}{6}$;

若
$$\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$$
,则 $2\sin\theta = \sqrt{3}$,解得 $\theta = \frac{\pi}{3}$ 或 $\theta = \frac{2\pi}{3}$;

若
$$\frac{3\pi}{4} \le \theta \le \pi$$
,则 $-2\cos\theta = \sqrt{3}$,解得 $\theta = \frac{5\pi}{6}$.

综上,
$$P$$
的极坐标为 $\left(\sqrt{3},\frac{\pi}{6}\right)$ 或 $\left(\sqrt{3},\frac{\pi}{3}\right)$ 或 $\left(\sqrt{3},\frac{2\pi}{3}\right)$ 或 $\left(\sqrt{3},\frac{5\pi}{6}\right)$.

23. 解: (1) 由于 $[(x-1)+(y+1)+(z+1)]^2$

$$= (x-1)^2 + (y+1)^2 + (z+1)^2 + 2[(x-1)(y+1) + (y+1)(z+1) + (z+1)(x-1)]$$

$$\leq 3 \left[(x-1)^2 + (y+1)^2 + (z+1)^2 \right],$$

故由已知得
$$(x-1)^2+(y+1)^2+(z+1)^2 \ge \frac{4}{3}$$
,

当且仅当
$$x=\frac{5}{3}$$
, $y=-\frac{1}{3}$, $z=-\frac{1}{3}$ 时等号成立.

所以
$$(x-1)^2 + (y+1)^2 + (z+1)^2$$
的最小值为 $\frac{4}{3}$.

(2) 由于

$$[(x-2)+(y-1)+(z-a)]^2$$

$$= (x-2)^2 + (y-1)^2 + (z-a)^2 + 2[(x-2)(y-1) + (y-1)(z-a) + (z-a)(x-2)]$$

$$\leq 3 \left[(x-2)^2 + (y-1)^2 + (z-a)^2 \right],$$

故由己知
$$(x-2)^2 + (y-1)^2 + (z-a)^2 \ge \frac{(2+a)^2}{3}$$
,

当且仅当
$$x = \frac{4-a}{3}$$
, $y = \frac{1-a}{3}$, $z = \frac{2a-2}{3}$ 时等号成立.

因此
$$(x-2)^2+(y-1)^2+(z-a)^2$$
的最小值为 $\frac{(2+a)^2}{3}$.

由题设知 $\frac{(2+a)^2}{3} \ge \frac{1}{3}$,解得 $a \le -3$ 或 $a \ge -1$.