ACTIVITATS 2 UD1: INTRODUCCIÓ ALS SISTEMES INFORMÀTICS

Prof. Manuel Enguidanos SISTEMES INFORMÀTICS

Cicle Formatiu de Grau Superior de Desenvolupament d'Aplicacions Web

1. Explica qui és Von Neumann en el món de la informàtica:

John Von Neumann fue un matemático, físico, ingeniero, economista y científico de la computación húngaro-estadounidense que murió en 1957 a la edad de 53 años. Es considerado uno de los científicos más influyentes del siglo XX.

- Sus contribuciones a la informática incluyen la arquitectura de Von Neumann y el concepto de programa almacenado.
- En física cuántica, desarrolló la teoría matemática de la mecánica cuántica.
- En economía, desarrolló la teoría de juegos.

2. Dibuixa i explica l'esquema d'una arquitectura Von Neumann:

La arquitectura de Von Neumann es el diseño básico de todos los ordenadores modernos. Consta de tres componentes principales:

- Unidad central de proceso (CPU): Se considera el componente principal del ordenador ya que controla todo su funcionamiento. En su interior podemos encontrar:
 - Unidad de control (UC): controla el funcionamiento del ordenador enviando señales al resto de elementos para indicar cual es el que debe ponerse en funcionamiento en cada momento.
 - Unidad aritmética y lógica (ALU): realiza los cálculos necesarios.
- Memoria: almacena los datos y las instrucciones del programa.
- Unidad de entrada/salida (E/S): Se encarga de la comunicación entre la CPU y los periféricos.

3. Per a què serveixen els registres interns de la CPU? Cita els tipus de registres que pot tindre una CPU.

En el interior de la CPU existen 2 componentes principales: ALU y UC.

En el interior de la ALU encontramos los siguientes componentes:

- Registro de datos (RD): son los datos de entrada con los que se va a operar.
- Acumulador: almacena el resultado de la última operación.
- Registro de estado (RE): almacena el estado de la operación.
- Circuito operacional: realizas las operaciones aritmético/lógicas.

En el interior de la UC encontramos los siguientes componentes:

- Registro de instrucción (RI): contiene la instrucción que se está ejecutando.
- Registro contador de programa (CP): almacena la dirección de memoria donde está la siguiente instrucción.
- Decodificador: interpreta la operación.
- Secuenciador: genera microórdenes para que se ejecute la instrucción del RI.
- Reloj: sincroniza todas las órdenes.

4. Quins registres intervenen en una operació de lectura i d'escriptura en la memòria principal?

- Registro de direcciones: almacena la dirección de la memoria donde se va a realizar la lectura/escritura.
- Registro de intercambio: contiene el dato escrito o leído.
- Selector de memoria: el encargado de leer o escribir el dato.

5. Quants tipus de busos existeixen en l'ordinador? Dona una breu explicació de cadascun d'ells.

- Bus de datos: canal por el que se transportan los datos para procesar o para guardar en memoria.
- Bus de direcciones: canal por el se transportan las direcciones donde leer o escribir los datos.
- Bus de control: envía a la UC las señales para indicar que componente debe entrar en funcionamiento.

6. Explica els components pels quals estan compost els processadors.

El procesador tiene 2 componentes principales: ALU y UC (Especificados en detalle en la pregunta 3 aprovechando los dibujos)

7. Mira les propietats del teu ordinador i calcula quina capacitat de memòria té el teu equip:

Tal y como podemos apreciar la RAM tiene una capacidad de 8Gb (8*10⁹ bytes), es decir, 8.000 millones de bytes.

Especificaciones del dispositivo		
Nombre del dispositivo	2A1PC02	
Nombre completo del dispositivo	2A1PC02.ad.fpmislata.com	
Procesador	Intel(R) Core(TM) i3-4160 CPU @ 3.60GHz 3.60 GHz	
RAM instalada	8,00 GB (7,90 GB usable)	
Identificador de dispositivo	85BC8371-A368-40E5-B156- E227E870B944	
ld. del producto	00380-00000-00001-AA765	
Tipo de sistema	Sistema operativo de 64 bits, procesador basado en x64	
Lápiz y entrada táctil	La entrada táctil o manuscrita no está disponible para esta pantalla	

8. Relaciona les següents memòries amb la capacitat adequada i realitza una piràmide de jerarquia de memòria referent a la capacitat de cadascuna d'elles.

Memoria	Capacidad
Caché	500 GB
RAM	256 KB
Auxiliar	3 bytes
Registros CPU	4 GB

9. Relaciona les següents memòries amb el seu temps d'accés de forma adequada i després realitza una piràmide de jerarquia de memòria.

Memoria	Tiempo de acceso
Caché	0.006 ns
RAM	600 ms
Auxiliar	2 ns
Registros CPU	6 ns

10. Relaciona cada bus de comunicació amb les seues funcions:

14. Relaciona registres de la CPU amb la seua funció.

