Stochastic Methods for Finance

Exam July 5, 2021

Exercice 1 (for everybody)

Consider a Black-Scholes market and a derivative contract with payoff $F(n, S_T)$ at the maturity T given by

$$0$$
 if $0 < S_T < n;$
 $S_T - n$ if $n < S_T < 2n;$
 $2n$ if $2n < S_T < 3n;$
 $4n - S_T$ if $3n < S_T < 4n;$
 0 if $S_T > 4n.$

- i) Compute the price of the contract $F(n, S_T)$ at any time $t \in [0, T)$ and any n = 1, 2, ... and the limit of the price for $n \to \infty$;
 - ii) Compute the Delta of the contract $F(n, S_T)$ and the limit of the Delta for $n \to \infty$;
- iii) Illustrate graphically the change of price and Delta of $F(n, S_T)$ for a upward shift of the volatility;

Exercice 2 (for everybody)

Solve the following PDE for $t \leq T$:

$$\frac{\partial F}{\partial t} + x^2 \frac{\partial^2 F}{\partial x^2} + \frac{1}{2} \frac{\partial^2 F}{\partial y^2} + 2x = 0$$
$$F(T, x, y) = x^2 e^y.$$

Exercice 3 (for 7 and 9 ETCS, not for Data Science)

In the Black-Scholes model, find the price at time $t \leq T$ for a contract where the owner receives at the maturity T the payoff

$$F(S_T) = \sum_{n=1}^{2} F(n, S_T) - (S_T - 2)^+;$$

provided that the underlying asset did reach the upper barrier L, where $F(n, S_T)$ is the function defined in Exercise 1. Find the Delta of the contract.

Exercice 4 (for Data Science and 9 ECTS)

Consider a (stationary) binomial model for the evolution of a risky asset S, starting from the initial price $S_0 = 100$, and increasing (resp. decreasing) factor u = 1, 2 (resp. d = 0, 8). The interest rate is flat at 0, 5% per period (1 period = 1 year).

- i) Price 10 long positions in a European Call on S with maturity T=2 years and strike price $K_1=100$;
- ii) Find the price of 5 long positions in a American Put on S with maturity T=3 years and strike price $K_2=110$;
- iv) Find the position that the trader has to take in a European Call with maturity T = 1 year and strike price $K_3 = 95$ in order to obtain a Delta-neutral portfolio at time 0 involving the positions at points i) and ii).
- v) Find the amount of Forwards with maturity T=3 years the trader has to buy/sell at time T=2 years in order to Delta-neutralise the global position also at time T=2 years.