Программирование микроконтроллеров STM32

Внешние прерывания EXTI. Системный таймер.

Предыдущий пример

- Постоянный опрос кнопки
- Примитивная задержка

Контроллер внешних прерываний

Контроллер внешних прерываний

- Поддержка 32 внешних прерывания/событий (50/50)
- Возможность конфигурирования каждого прерывания по отдельности
- Возможность детектирования переднего/заднего фронтов
- Статус регистр для каждой линии прерывания
- Поддержка эмулирования каждой линии прерывания

Связь EXTI, NVIC и SYSCFG

EXTI0[3:0] bits in the SYSCFG_EXTICR1 register

LL_SYSCFG_SetEXTISource (Только один пин!)

- 1) LL_SYSCFG_EXTI_PORTx -> LL_SYSCFG_EXTI_PORTA
- 2) LL_SYSCFG_EXTI_LINEx -> LL_SYSCFG_EXTI_LINE0

Внутренняя структура EXTI

Настраиваем EXTI

- LL_EXTI_EnableIT_0_31 -> Включить прерывание
 LL EXTI LINE x
- LL_EXTI_EnableFallingTrig_0_31 -> Задний фронт
 LL_EXTI_LINE_x
- LL_EXTI_EnableRisingTrig_0_31 -> Передний фронт
 LL_EXTI_LINE_x
- LL_EXTI_IsActiveFlag_0_31LL_EXTI_LINE_x
- LL_EXTI_ClearFlag_0_31LL EXTI_LINE_x

Настраиваем NVIC

- NVIC_EnableIRQ -> Включить прерывание
 - IRQn_Type IRQn)
- NVIC_SetPriority -> Настроить приоритет
 - IRQn_Type IRQn
 - uint32_t priority

Системный таймер

Timer events (counter overflow)
In Cortex-M0 core those events
are called SysTick interrupts

Системный таймер

Системный таймер

Системный таймер. Инициализация

- SysTick_Config (количество тактов)
- Имплементация void SysTick_Handler(void)

Репозиторий

https://github.com/edosedgar/stm32f0_ARM