<u>Claims</u>

1. A method of preparing a compound according to formula (I):

$$R_1O-N$$

$$\begin{array}{c}
N \\
A \\
\downarrow \\
R_2
\end{array}$$
(I)

s wherein

10

15

A is a carbonyl group -(C=O)-;

B is selected from the group consisting of an oxadiazole ring, an amido group of the formulae $-(C=0)-NR_3R_4$, and $-(CH_2)n-X-R_8$;

wherein the oxadiazole ring is any of the formulae:

R₁ is H or a C₁-C₆-alkyl;

 R_2 is selected from the group consisting of aryl, heteroaryl and saturated or unsaturated 3-8-membered cycloalkyl;

R₃ and R₄ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, alkoxy, sulfanyl, acyl, alkoxycarbonyl, aminocarbonyl, saturated or unsaturated 3-8-membered cycloalkyl which may contain 1 to 3 heteroatoms selected of N, O, S, aryl, heteroaryl, C₁-C₆-alkyl aryl and C₁-C₆-alkyl heteroaryl;

20

25

X is O or NR_9 ;

R₈ is selected from the group consisting of hydrogen, C₁-C₆-alkyl, C₁-C₆-alkyl aryl, heteroaryl, C₁-C₆-alkyl heteroaryl, C₂-C₆-alkenyl, C₂-C₆-alkenyl aryl, C₂-C₆-alkenyl heteroaryl, C₂-C₆-alkynyl, C₂-C₆-alkynyl aryl, C₂-C₆-alkynyl heteroaryl, C₃-C₈-cycloalkyl, heterocycloalkyl, C₁-C₆-alkyl cycloalkyl, C₁-C₆-alkyl heterocycloalkyl, C₁-C₆-alkyl acyloxy, C₁-C₆-alkyl alkoxy, alkoxycarbonyl, C₁-C₆-alkyl alkoxycarbonyl, aminocarbonyl, C₁-C₆-alkyl aminocarbonyl, C₁-C₆-alkyl acylamino, C₁-C₆-alkyl ureido, amino, C₁-C₆-alkyl amino, sulfonyloxy, C₁-C₆-alkyl sulfonyloxy, sulfonyl, C₁-C₆-alkyl sulfonyl, sulfinyl, C₁-C₆-alkyl sulfonyl, sulfinyl, C₁-C₆-alkyl sulfonyl, sulfonyl amino;

R₇ is selected from the group consisting of hydrogen, sulfonyl, amino, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, wherein said alkyl, alkenyl, alkynyl chains are optionally interrupted by a heteroatom selected from N, O or S, aryl, heteroaryl, saturated or unsaturated 3-8-membered cycloalkyl, heterocycloalkyl, wherein said cycloalkyl, heterocycloalkyl, aryl or heteroaryl groups are optionally fused with 1-2 further cycloalkyl, heterocycloalkyl, aryl or heteroaryl group, an acyl moiety, C₁-C₆-alkyl aryl, C₁-C₆-alkyl heteroaryl, C₁-C₆-alkenyl aryl, C₁-C₆-alkynyl heteroaryl, C₁-C₆-alkyl cycloalkyl, C₁-C₆-alkyl heterocycloalkyl, C₁-C₆-alkyl heterocycloalkyl, C₁-C₆-alkynyl heterocycloalkyl, C₁-C₆-alkynyl eycloalkyl, C₁-C₆-alkynyl heterocycloalkyl, alkoxycarbonyl, aminocarbonyl, C₁-C₆-alkyl acyloxy, C₁-C₆-alkyl alkoxy, C₁-C₆-alkyl acyloxy, C₁-C₆-alkyl alkoxy, C₁-C₆-alkyl amino, C₁-C₆-alkyl amino, C₁-C₆-alkyl amino, C₁-C₆-alkyl sulfonyloxy, C₁-C₆-alkyl sulfonyloxy, C₁-C₆-alkyl sulfonyl, C₁-C₆-alkyl sulfonyl, C₁-C₆-alkyl sulfonyl, C₁-C₆-alkyl sulfonyl, C₁-C₆-alkyl sulfonyl, C₁-C₆-alkyl sulfonyl, hydroxy, halogen and cyano;

 R_9 is selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkyl aryl, C_1 - C_6 -alkyl heteroaryl, aryl and heteroaryl;

 R_8 and $R_9\,can$ form together with the N atom to which they are linked to, a 5-8 membered saturated or unsaturated heterocycloalkyl ring; and

10

n is an integer from 1 to 3;

said method comprises the following steps:

<u>Step 1</u>: transformation of the pyrrolidine of formula (II) into an acyl derivative of formula (IV) using an acylating agent (III):

HO
$$_{N}$$
 COOH + $_{2}$ COOH (III) (IV)

<u>Step 2</u>: Oxidation of the acyl derivative (IV), with a oxidizing agent, obtaining a pyrrolidone of formula (V):

HO, COOH
$$\stackrel{\stackrel{\circ}{C}=0}{\stackrel{\circ}{R_1}}$$
(IV)
$$\stackrel{\circ}{C}=0$$

$$\stackrel{\circ}{R_2}$$

$$\stackrel{\circ}{R_2}$$

$$\stackrel{\circ}{C}=0$$

$$\stackrel{\circ}{R_2}$$

$$\stackrel{\circ}{C}=0$$

$$\stackrel{\circ}{R_2}$$

<u>Step 3</u>: Transformation of the pyrrolidone of formula (V) into compound (VII) using a suitable alkoxylamine, aryloxylamine or hydroxylamine of general formula (VI):

Step 4: Transformation of the compound (VII) with an amine of general formula

(VIII) or an N-hydroxyamidine of general formula (IX) thus yielding compounds (Ia) and (Ib), or transforming compound (VII) first into a nitrile (VIIa), which is then transformed into the hydroxyamidine (VIIb) that is then reacted with a carboxylic acid

R⁷-COOH to yield compound (Ic), or first esterifying and than reducing compound (VII) using a suitable esterification or reducing agent, respectively, thus yielding compound (Id):

€.\$

2. The method of preparing a compound according to formula (I) according to claim 1:

$$R_1O-N$$
 N
 A
 R_2
 R_2

wherein

10

15

20

A is a carbonyl group -(C=O)-;

B is either an amido group of formula –(C=O)-NR₃R₄ or an oxadiazole ring of any of the formulae:

R₇ is selected from the group consisting of hydrogen, sulfonyl, amino, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, wherein said alkyl, alkenyl, alkynyl chains are optionally interrupted by a heteroatom selected from N, O or S, aryl, heteroaryl, saturated or unsaturated 3-8-membered cycloalkyl, heterocycloalkyl, wherein said cycloalkyl, heterocycloalkyl, aryl or heteroaryl groups are optionally fused with 1-2 further cycloalkyl, heterocycloalkyl, aryl or heteroaryl group, an acyl moiety, C₁-C₆-alkyl aryl, C₁-C₆-alkyl heteroaryl, C₁-C₆-alkenyl aryl, C₁-C₆-alkenyl heteroaryl, C₁-C₆-alkynyl aryl, C₁-C₆-alkynyl heteroaryl, C₁-C₆-alkyl cycloalkyl, C₁-C₆-alkynyl heterocycloalkyl, C₁-C₆-alkynyl heterocycloalkyl, C₁-C₆-alkynyl heterocycloalkyl, alkoxycarbonyl, aminocarbonyl, C₁-C₆-alkyl carboxy, C₁-C₆-alkyl acyl, C₁-C₆-alkyl alkoxy, C₁-C₆-alkyl alkoxy-

carbonyl, C₁-C₆-alkyl aminocarbonyl, C₁-C₆-alkyl acylamino, C₁-C₆-alkyl ureido, C₁-C₆-alkyl amino, C₁-C₆-alkyl ammonium, C₁-C₆-alkyl sulfonyloxy, C₁-C₆-alkyl sulfonyl, C₁-C₆-alkyl sulfinyl, C₁-C₆-alkyl sulfonyl, C₁-C₆-alkyl sulfonyl, hydroxy, halogen and cyano;

5 R_1 is H or a C_1 - C_6 -alkyl;

R₂ is selected from the group consisting of aryl, heteroaryl and saturated or unsaturated 3-8-membered cycloalkyl;

 R_3 and R_4 are independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, alkoxy, sulfanyl, acyl, alkoxycarbonyl, aminocarbonyl, saturated or unsaturated 3-8-membered cycloalkyl which may contain 1 to 3 heteroatoms selected of N, O, S, aryl, heteroaryl, C_1 - C_6 -alkyl aryl and C_1 - C_6 -alkyl heteroaryl;

said method comprises the following steps:

<u>Step 1</u>: transformation of the pyrrolidine of formula (II) into an acyl derivative of formula (IV) using an acylating agent (III):

<u>Step 2</u>: Oxidation of the acyl derivative (IV), with a oxidizing agent, obtaining a pyrrolidone of formula (V):

10

15

10

HO
$$\sim$$
 COOH \sim COOH

<u>Step 3</u>: Transformation of the pyrrolidone of formula (V) into compound (VII) using a suitable alkoxylamine, aryloxylamine or hydroxylamine of general formula (VI):

O
$$R_1O-N$$
 $COOH$ $+$ R_1ONH_2 $COOH$ $C=O$ R_1 (VI) R_2 (VII)

<u>Step 4</u>: Transformation of the compound (VII) with an amine of general formula (VIII) or an N-hydroxyamidine of general formula (IX) thus yielding compounds (Ia) and (Ib), or transforming compound (VII) first into a nitrile (VIIa), which is then transformed into the hydroxyamidine (VIIb) that is then reacted with a carboxylic acid R⁷-COOH to yield compound (Ic).:

- 3. The method according to claim 1 or 2, wherein the acyl chloride of step 1 is 1'1-biphenyl-4-carbonyl chloride or 2'-methyl-1'1-biphenyl-4-carbonyl chloride.
- 5 4. The method according to any of claims 1 to 3, wherein the *oxidizing* agent of Step 2 is pyridine-sulfurtrioxide complex (Py-SO₃) in combination with DMSO.
 - 5. The method according to any of claims 2 to 4, wherein the reaction is performed in presence of triethylamine.
- 6. The method according to any of claims 1 to 5, wherein the alkoxylamine used in step 3 is O-methylhydroxylamine hydrochloride.
 - 7. The method according to any of claims 1 to 6, wherein R_1 is a methyl group, R_2 is a biphenyl.
 - 8. The method according to any of claims 1 to 7, wherein B is an amido group of the formula –(C=O)NHR₅, with R₅ being an C₁-C₆-alkyl aryl group.
- 15 9. The method according to claim 8, wherein R_5 is a phenylethyl group, which is substituted with an amino or hydroxy group.
 - 10. The method according to any of claims 1 to 7, wherein B is a 1,2,4 oxadiazole substituent

with R₇ being a C₁-C₆-alkyl or a cycloalkyl optionally containing one or 2 hetereroatoms.

11. The method according to any of claims 1, 3, 4, or 6 to 7, wherein B is –(CH₂)n-X-R₈, with X being O, R₈ being hydrogen; and n being 1.

WO 2005/082848 PCT/EP2005/050852

43

12. The method according to any of claims 1 to 11, wherein the compound is selected from the group consisting of:

 $(2S,4E \text{ and } 4Z)-N-[(2S)-2-\text{hydroxy-}2-\text{phenylethyl}]-4-(\text{methoxyimino})-1-[(2'-\text{methyl}[1,1'-\text{biphenyl}]-4-yl)\text{carbonyl}]-2-pyrrolidine carboxamide,}$

5 (3E,5S)-1-([1,1'-biphenyl]-4-ylcarbonyl)-5-[3-(2-hydroxyethyl)-1,2,4-oxadiazol-5-yl]-3-pyrrolidinone *O*-methyloxime,

10

20

(3Z,5S)-1-([1,1'-biphenyl]-4-ylcarbonyl)-5-[3-(2-hydroxyethyl)-1,2,4-oxadiazol-5-yl]-3-pyrrolidinone O-methyloxime,

(3E,5S)-5-[3-(2-hydroxyethyl)-1,2,4-oxadiazol-5-yl]-1-[(2'-methylbiphenyl-4-yl)carbonyl]pyrrolidin-3-one O-methyloxime,

(3Z,5S)-5-[3-(2-hydroxyethyl)-1,2,4-oxadiazol-5-yl]-1-[(2'-methylbiphenyl-4-yl)carbonyl]pyrrolidin-3-one *O*-methyloxime,

(3EZ,5S)-1-([1,1'-biphenyl]-4-ylcarbonyl)-5-{5-[(dimethylamino)-methyl]-1,2,4-oxadiazol-3-yl}-3-pyrrolidinone *O*-methyloxime,

15 (3*Z*,5*S*)-1-([1,1'-biphenyl]-4-ylcarbonyl)-5-{5-[(dimethylamino)-methyl]-1,2,4-oxadiazol-3-yl}-3-pyrrolidinone *O*-methyloxime,

(3E,5S)-1-([1,1'-biphenyl]-4-ylcarbonyl)-5- $\{5-[(dimethylamino)-methyl]$ -1,2,4-oxadiazol-3-yl $\}$ -3-pyrrolidinone *O*-methyloxime,

(3EZ,5S)-5-{5-[(dimethylamino)methyl]-1,2,4-oxadiazol-3-yl}-1-[(2'-methylbiphenyl-4-yl)carbonyl]-pyrrolidin-3-one O-methyloxime,

(3Z,5S)-5-{5-[(dimethylamino)methyl]-1,2,4-oxadiazol-3-yl}-1-[(2'-methylbiphenyl-4-yl)carbonyl]-pyrrolidin-3-one *O*-methyloxime,

(3*E*,5*S*)- 5-{5-[(dimethylamino)methyl]-1,2,4-oxadiazol-3-yl}-1-[(2'-methylbiphenyl-4-yl)carbonyl]-pyrrolidin-3-one *O*-methyloxime, and

WO 2005/082848 PCT/EP2005/050852

44

(3Z/E, 5S)-1-(biphenyl-4-yl carbonyl)-5-hydroxymethyl) pyrrolidine-3-one-O-methyloxime.