Brain Tumor Segmentation with Random Forest and U-Net

Shuhan Xiao and Alexander Kugele

Heidelberg University

Motivation

Brain tumors need immediate treatment Even experts can not segment perfectly

Takes time to go through a complete MR scan

Efficiently segmenting tumors automatically improves treatment planing

Dataset

3D MR scans of 275 human brains
4 scan types, T1, T1c, T2 and Flair
depth = 155, height = 240, width = 240

⇒ 170500 images
5 classes (we only use 2)
center-cropped to 80% of their size

Features

Gaussian, LoG, Gaussian gradient
Hessian and structure tensor eigenvalues
equalized histogram
29 features in total

Random Forest [1]

default settings of scikit-learn implementation trained in batch-mode

100 estimators per batch, 3 batches of 1k images

Advantages and disadvantages

- + Simple
- + Rarely overfits
- + Variable image input size
- Optimized implementation available
- No GPU training
- No incremental training (for vanilla RF)
- Features have to be hand-selected

Final Scores

	Dice [%]	Sensitivity [%]	Specificity [%]
Random Forest	65.9	77.1	99.1
U-Net	69.3	73.1	

RF: Results

training time $\approx 13 \, \text{h}$ inference time $\approx 2 - 20 \, \text{s}$ per image load time $\approx 310 \, \text{s}$ disk space $\approx 15 \, \text{GB}$ (pickled) memory space during inference $\approx 20 \, \text{GB}$

U-Net: Results

training time $\approx 1.5 \, \text{h}$ inference time $\approx 0.5 \, \text{s}$ per image load time $\approx 20 \, \text{s}$ disk space $\approx 0.3 \, \text{GB}$ memory space during inference $\approx 0.7 \, \text{GB}$

Loss

Conclusion

Both methods achieve similar results regarding the scores

Random Forest is easier to set up

U-Net is easier and faster to train

None of the two methods could achieve state-of-theart results out of the box

References

[1] M. Ristin, M. Guillaumin, J. Gall, and L. Van Gool. Incremental learning of random forests for large-scale image classification.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3):490–503, March 2016.

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation.

In International Conference on Medical image computing and computer-assisted intervention, pages 234–241.

Springer, 2015.

1.0