Bi nô me	Référence	But du TP	Durée du TP	Leçons en lien avec le TP	Commentaires
7		Dosage par conductimétrie de NaCl dans le sérum physiologique	12 min 30 (en comptant l'analyse)	LC6 : Chimie Analytique Quantitative	- si [NaCl] > 0.4, on commence à s'éloigner de Kohlrausch - en leçon, j'ai montré une dilution, la mesure de la conductivité de la solution produite, et celle du sérum
7	JFLM Chimie générale p19	Dosage colorimétrique du vinaigre par la soude (phénolphtaléine)	4 min 30	LC6 : Chimie Analytique Quantitative	- titrer la soude en préparation avec un acide solide (pour connaître précisément [acide]) - le phénol. n'est plus utilisable par les lycéens : on la remplace par du bleu de thymol (virage : pH 8-9,6)
1	<mark>Le maréchal</mark> p78	Dosage de Winkler	20 min (avec présentatio n théorique)	LC23 : Diagrammes E-pH	-long mais marche, pour illustrer les domaines du diagramme -et bonne application (contrôle de la qualité de l'eau)
1	Sarrazin p123	réactivité du fer avec l'iode	2 min	LC23 : Diagrammes E-pH	-expérience qualitative, visuel
1	Sarrazin p128	dismutation de l'iode en milieu basique	2 min	LC23 : Diagrammes E-pH	- qualitatif, coloré et visuel
1	Mesplède p 119 (pas sure de la page)	constante d'équilibre de Fe(SCN)2+	4 min	LC07 : Evolution spontanée d'un système chimique	-dosage par étalonnage spectro à faire en préparation (donc on travaille sur une réaction totale) -mesurer l'absorbance de la solution pour la cas non total pour trouver l'avancement
1	Le maréchal p 191	pile fer-cuivre	2 min	LC07 : Evolution spontanée d'un système chimique	-c'est juste niveau lycée, mesure de fem et de i -attention le courant débité est de l'ordre du mA, il ne faut pas griller les ampèremètres (attention au calibre, bien se mettre au plus grand d'abord)
7	JFLM I, p96	Complexes du cobalt	5-10 min	Complexes Solvants Éq. chimique	- on peut voir le passage d'une phase à l'autre des espèces - différents équilibres de complexation en compétition, qu'on peut déplacer en chauffant
7	JFLM I, p55	Arbre de Saturne	2 min	Oxydo-Réduc	- ça va très vite : on plonge du zinc dans Pb2+ et ça forme du plomb qui brille. Pas très spectaculaire mais pourquoi pas
7	JFLM I, p90	Dosage de Volhard	10-15 min	Dosage par excès avec précipitation	- illustre bien le dosage par excès - bcp de gestes expérimentaux (filtration Büchner, dosage, etc) - titrage par une solution titrante à partir de solide : Ct bien connue

B in ô m e	Référence	But du TP	Durée du TP	Leçons en lien avec le TP	Commentaires
4	40 expérience s illustrées de chimie générale et organique	Déterminer la stœchiométrie d'un complexe et sa constante de formation (ici thiocyanatofer III)	2h max pour préparer mais ensuite la mesure est rapide (absorbance au spectrophoto mètre puis graphe)	Complexes	Bon TP, très visuel car on se retrouve avec 16 solutions en dégradé orange et on obtient les bons résultats. Attention au temps de préparation de toutes les solutions (d'où les 2h) mais en étant organisé c'est largement faisable. Pour une leçon, préparer toutes les solutions en préparation (peut être en garder une pour manipuler devant le jury) et mesurer l'absorbance en direct en aillant déjà la longueur d'onde d'étude.
4	40 expérience s illustrées de chimie générale et organique	Construire le diagramme E-pH de l'argent	1h comprenant la préparation des solutions et 2 titrages (mesurer E et pH simultanéme nt, puis tracer E=f(pH))	Diagramme E-pH (mais du coup pas sure que cela convienne car il y a écrit « construction exclue »	Le TP fonctionne mais diluer la soude (ce n'est pas indiqué dans le livre) lors du titrage du nitrate d'argent par la soude car sinon le pH augmente trop brusquement et on n'observe pas la rupture de pente (ou alors peut être verser de demi ml en demi ml)
8	J'intègre Chimie PCSI tout-en-un, Fosset	Réactivité des halogénures	10 minute pour sortir le matériel et tester la réaction 2min en leçon	Classification périodique (réactivité similaire sur une colonne)	prendre les concentration à 0,1mol L-1 AgX précipite bien, très visuel
8	J'intègre Chimie PCSI tout-en-un, Fosset	Illustration du pouvoir réducteur des alcalins	6 min	Classification périodique	Équation chimique et but de la manip : $X(s)+H_2O(l) = X^*(aq)+HO^*(aq)+1/2H_2(g)$ $X = Li$, Na On peut ajouter de la phénolphtaléine Tester avant et ne pas mettre un trop gros morceau. Utiliser gants et lunettes
8	J'intègre Chimie PCSI tout-en-un, Fosset	Illustration du pouvoir oxydant des halogènes	2min	Classification périodique	Équation chimique et but de la manip : $I_2(aq) + 2S_2O_3^{2-}(aq) = 2I^-(aq) + S_4O_6^{2-}(aq)$ $CI_2(aq) + 2Fe^{2+}(aq) = 2CI^-(aq) + 2Fe^{3+}(aq)$ (ajouter du thiosulfate pour mettre en évidence le fer (III) avec la coloration en rouge) Pour le chlore on opère sous hotte La manip avec le dichlore ne se fait pas en lycée.

B in ô m e	Référence	But du TP	Durée du TP	Leçons en lien avec le TP	Commentaires
4	Chimie générale, Le Maréchal	Cinétique de la réaction de dismutation de l'eau oxygénée	1h (réaction rapide mais mise en place pas évidente)	Cinétique	La réaction fonctionne bien mais elle est beaucoup trop rapide : il faut mesurer le volume de dioxygène formé en fonction du temps grâce à une burette retournée mais les bulles arrivent trop rapidement, impossible de faire une mesure correcte. Par contre on peut illustrer le rôle du catalyseur en montrant que la masse du dioxyde de manganèse est la même avant et après la réaction. Mais autant utiliser une réaction plus adaptée pour illustrer la catalyse
4	40 expérience s illustrées de chimie générale et organique	Titrage de l'acétone contenue dans un dissolvant	1h	Chimie analytique	Fonctionne bien et assez pédagogique car titrage d'un produit du quotidien. Titrage indirect par excès, titrage pHmétrique mais peut aussi se faire par conductimétrie. On peut ajouter du vert de bromocrésol pour un effet plus visuel.
8	Mesplède (chimie générale et analytique)	Oxydation des ions iodure par le peroxodisulfate et suivi spectro	5 à 10 minutes suivant durée de suivi voulue	Cinétique et catalyse	Expérience très complète et bien décrite dans le livre. On peut peut-être augmenter légèrement les concentrations suggérées. La réaction démarre dès la mise en contact des réactifs : il faut aller vite sur le spectrophotomètre.
8	Mesplède +Physique- Chimie TS Hachette	Catalyse de la réaction iodure - peroxodisulfate	2 minutes	Cinétique et catalyse	On montre l'action des ions Fer II dans la catalyse de la réaction (catalyse homogène).
9	Florilège, Daumarie, p275	Détermination de la constante de Faraday par électrolyse	30 min	Oxydoréduction Electrolyse	 remplacer HNO3 par sulfate de cuivre, sinon formation du gaz NO2 avant que l'électrolyse démarre agitation peser l'électrode de l'anode au lieu de la cathode
9	Des expérience s de la famille acide-base , Cachau, p165	Détermination de la zone de virage d'un indicateur coloré à base de chou rouge	15 min	Acide-base Indicateur coloré	Marche très bien mais y aura-t-il du chou aux oraux? zone de virage large, beaucoup de couleurs différentes, très parlant Le rendre quantitatif : mesurer le pH et faire des spectres pour déterminer les longueurs d'onde de formes de la molécules
9	Mesplède, Orga p167	Synthèse d'un éther aromatique SN2	1h30		échec : pas de précipitation, pb de concentration ou trop chauffé ?
9	Mesplède, Générale, p212	Décomposition du peroxyde d'hydrogène	5 min	Catalyse	ions fer(II): marche du tonnerre fil de platine ou dioxyde de manganèse: ok autre catalyseur qui marche bien: radis mais il en existe bcp d'autres, le H2O2 se fait catalyser par bcp de choses

B in ô m e	Référence	But du TP	Durée du TP	Leçons en lien avec le TP	Commentaires
9	Florilège, Daumarie, p131	Purification du sel gris de Guérande	30 min		bonne purification (obtention d'un sel bien blanc), mais aucun intérêt quantitatif
9	Mesplède, générale p199	Suivi cinétique de l'oxydation des ions iodure par le peroxodisulfate	10 min	Cinétique homogène	Simple, efficace et infaillible Le rendre quantitatif avec plusieurs ajustements de pente
9	Mesplède, générale p199	Horloge chimique: détermination d'une énergie d'activation à partir de différentes T	1h	Cinétique homogène	A fuir! 3ème groupe à s'être cassé les dents là-dessus, pb de concentration dans le sujet?
9	JFLM, orga p76	Synthèse de l'ester de lavande	30 min		Synthèse au micro-onde pas assez de NaHCO3 -> 20 mL au lieu de 10mL
9	JFLM, orga p118	Synthèse du nylon : réaction de polycondensati on	15 min		Marche très bien Voir comment le caractériser (acide phosphomolybdique ?)
9	Des expérience s de la famille red-ox, Cachau, p317	Détermination du produit de solubilité de l'iodure de plomb(II) par conductimétrie	20 min		Mesure absolue de la conductivité pas assez précise, il faudrait répéter la mesure avec des solutions nouvelles pour une statistique

Bi nô me	Référence	But du TP	Durée du TP	Leçons en lien avec le TP	Commentaires
3	http://lfrdr dc.org/wp -content/u ploads/20 16/01/TP- Oranges. pdf	Extraire la R-Limonène de l'ecorce d'orange	hydrodistilla tion qui dure une 40 aine de min	LC3: Structure Spatiale des molécules (Ou toute autre leçon mentionnant la stéréochimie)	La quantité de phase organique extraite est très petite, on a eu du mal à l'utiliser. La correctrice a indiqué qu'il fallait retirer la partie blanche (intérieure) de la peau d'orange. On n'a pas testé mais il faudrait essayer.
3	http://www.l emag.odns.f r/lemagbrun ot/Librairie2/ tpbinaire.pdf	Tracer le diagramme binaire Liquide Vapeur du mélange eau propanol	Assez long car il faut refaire la distillation fractionnée avec différentes quantités de eau/propan ol	Diagramme binaire/distilla tion. Thermochimi e ?	On mesure la température du mélange à l'ébullition pour différentes valeurs de x, on peut alors tracer la courbe du bas du diagramme. Problèmes : on obtenait toujours une Température différente de celle attendue. Peut-être faut-il que le thermocouple mesure la température du liquide plutôt que celle de la vapeur ? Remarque : le montage sur le lien est un peu bizarre, on a utilisé un ballon monocol colonne de vigreux et on utilise un thermocouple.
3	Daumarie , Florilège de chimie pratique p186	Dosage pH metrique d'une soude carbonatée	30 min	Acides/bases, Chimie quantitative	Préparation de la soude carbonatée un peu bizarre : souffler dessus pdt 10 min avec une pipette graduée. Mais le dosage marche normalement assez bien.
3		Déterminer Température de fusion de l'acide maléique + comparer à celle de l'acide fumarique	10-15 min	Structure spatiale des molécules, stéréochimie, liaisons inter-molécula ires.	L'acide maléique au labo semble ancien puisque la température obtenue est autour de 150°C alors qu'elle est normalement autour de 135°C. Emilie propose de dire en leçon si ça arrive : "Je propose de refaire cette manip avec de l'acide maléique neuf, pour déterminer si cette valeur est due à l'ancienneté de la substance" plutôt que de critiquer la substance direct
1	Cachau Red Ox p248	Tracer les courbes i(V) de l'eau	15 min	LC28 / LC26	Attention pour la mesure du courant les multimetre sont capricieux ne pas hésiter à en changer si le calibre mA ne marche pas
1	Cachau acide base p129	Détermination de l'enthalpie de formation de l'eau	10 min	LC19 / LC20	On trouve le bon ODG mais pas la valeur exacte c'est normal il y a des pertes/ dissipation Utiliser un thermocouple
1	Cachau Red Ox p391	Titrage de l'eau de javel	5min	LC06	marche bien / on peut mettre du toluène pour repérer l'équivalence
1	Cachau Red Ox p 337	Synthèse de l'eau de Javel	30min	LC28/LC26	Savoir justifier le choix des électrodes / plus on attend plus on récupère des ions CLO-

1		Réaction de Cannizarro (formation d'acide benzoïque)	2h	LC09/LC10/L C13	c'est long / il y a deux produits d'intérêts donc beaucoup de choses à faire
1		Enthalpie de dissolution de l'acide benzoïque	1h	LC27/LC20	Attention ça précipite dans la pipette jaugée ne pas hésiter à chauffer la pipette avec un décapeur thermique
4	Florilège de chimie pratique, Daumarie	Détermination du pKa du bleu de Bromophénol (BBP)	2h	Acide/Base	Visuel: mesurer l'absorbance d'une solution de BBP en fonction de son pH. La solution passe du bleu au jaune. L'ordonnée à l'origine de pH=f(A) donne le pKa du BBP. Fonctionne bien.
4	La Chimie Expériment ale : Chimie générale, Le Maréchal	La bouteille bleue	5 min	Cinétique Oxydo-réducti on	Très bonne manip qualitative, visuelle et pédagogique, idéale pour une intro de leçon! Mise en valeur d'un indicateur coloré RedOx. Mise en valeur de deux vitesses de réaction différente. L'interprétation n'est pas compliquée.
4	Florilège de chimie pratique, Daumarie	Détermination de la constante de partage du diiode entre le cyclohexane et l'eau	1h	Solvant Extraction liquide-liquide	Dosage de la quantité de diiode dans la phase aqueuse et dans la phase orga. Le rapport des concentrations en diiode dans chaque phase donne le coefficient de partage. Attention, dans la phase aqueuse il y a très peu de diiode donc l'équivalence arrive très vite, peut être mettre de suite le thiodène.
6	Je prépare, Expériences de chimie, Dunac p470	Construction diagramme binaire de l'acide stéraïque-acide benzoïque		LC11 (a posteriori peut être pas approprié niveau lycée) LC18	Fonctionne très bien Pour laver les tubes à essaies utiliser l'acétone
6	Je prépare, experiences de chimie, Dunac p134 et 140	Determination experimentale de longueur de liaison		LC1 LC17	Rapide et simple Attention il n'y a pas d'accès à la balance lors de la leçon
6	La chimie experiement ale, JFLM p136	Synthèse de l'indigo		LC12	Utiliser un petit ballon plutôt qu'un tube à essaie Coloré et fonctionne bien
6	La chimie experimenta le, TOME2, JFLM p86	Synthèse de l'éthanolate d'isoamyle		LC22 LC24	Estérification avec Montage Dean Stark
6	La chimie experimenta le JFLM p187	Electrolyse de l'eau		LC2	Le BBT ne fonctionne pas très bien, utiliser un autre colorant Il y a des cuves spéciales pour l'électrolyse dans la salle de TP mettre le colorant direct dans la burette

6	La chimie expérimenta le JFLM p90	Dosage de Volhard		LC5 LC28	Coloré, visuel, on voit le précipité se former Fonctionne bien	
---	---	----------------------	--	-------------	--	--

Bi nô me	Référence	But du TP	Durée du TP	Leçons en lien avec le TP	Commentaires
6	Florilège de chimie pratique, Daumarie	Synthèse de l'aspirine		LC13 LC14	Estérification avec montage à reflux, essorage sur Büchner et caractérisation sur banc Kofler (si échec possibilité de faire une CCM pour vérifier qu'on a bien fait de l'aspirine) Utiliser un bain d'huile pour chauffer! la température est importante et on y a pas accès avec un chauffe ballon! Pour la recristallisation ne pas mettre trop de solvant (sinon ne recristallise pas)
4	BUP n°879 (1)	Étude de l'équilibre entre NO2(g) et N2O4(g) : influence de la température et de la pression	Prévoir 30min pour fabriquer le gaz Puis une fois que le gaz est dans les seringues, c'est très rapide.	LC 22 : Evolution et equilibre chimique	Marche bien Mettre très peu d'eau au fond du cristallisoir, de l'ordre du centimètre d'épaisseur d'eau Mettre environ 10g de cuivre solide et faire une petite colline avec dans le cristallisoir. Il ne faut pas être timide en acide nitrique pour que le gaz soit bien coloré. Pour l'influence de la température, rien à signaler. Pour l'influence de la pression, filmer ou photograpĥier l'évolution de la couleur du mélange pour que ce soit plus visuel en leçon. Les seringues bouchées se trouvent sur l'étagère où il y a les gants. Quand on a fini, pour se débarrasser du gaz, ouvrir la seringue dans un cristallisoir d'eau.
4	Des expériences de la famille acide base (Danielle Cachau-Her eillat, de boeck)	Détermination du pKa de l'acide acétique	Prévoir 1h en préparation pour faire une belle courbe avec bcp de points surtout au niveau du saut de pH	LC22 : Evolution et équilibre chimique	Rien à signaler, marche bien Pour le passage en leçon : mettre tout en place (j'ai réservé une partie de prélèvement de la solution à titrer pour montrer les gestes) et prendre 2 ou 3 points. Puis basculer sur la courbe complète réalisée en préparation et l'exploiter. C'est pas ouf de compléter la courbe en direct.
9	Des expériences de la famille acide base (Danielle Cachau-Her eillat, de boeck) p129	Détermination de l'enthalpie de réaction : H+ + HO> H20	20 min sans titrage		déterminer aussi la masse équivalente du calorimètre

		0 11 1	41.00		[
9	La chimie expérimenta le, tome 2, JFLM p86	Synthèse de l'étanoate d'isoamyle : déplacement d'équilibre par élimination de l'eau formée	1h20		Dean-Stark, marche bien mais évaporateur HS
4	100 manipulatio ns de chimie générale et analytique (Mesplede)	Réaction des ions iodure par les ions peroxodisulfate	5 minutes pour la réaction et 10 minutes pour traiter les résultats	Cinétique	Ça a l'air d'avoir bien marché, mettre très rapidement le milieu réactionnel dans le spectro. Les exploitations sont bien expliquées dans le livre. On a eu un souci avec ces exploitations, nous n'avons pas réussi à trouver les bons ordres partiels, on ne sait pas si c'est notre faute ou si on ne maîtrise pas Regressi
4	La chimie expérimenta le : chimie générale (JF Le Maréchal)	Dosage du dioxygène dans l'eau : Méthode de Winkler	40 min pour préparer la solution à titrer 5 minutes pour le dosage	Diagramme E-pH	Marche nickel!
4		Formation de cristaux de sulfate de cuivre	10 minutes pour préparer la solution saturée puis laisser cristalliser pendant le reste du TP	Solides cristallins	Commencer par chauffer une petite quantité de solution de sulfate de cuivre saturée. Introduire du sulfate de cuivre solide jusqu'à ce qu'il y ait saturation (la solubilité de CuSo4 est très grande donc vraiment partir d'une petite quantité de solution de sulfate de cuivre saturée). Augmenter la chauffe pour dissoudre l'excès, ce n'est pas grave si tout n'est pas dissous. Attacher un fil à un crayon et poser le crayon en équilibre sur le bécher, le fil ne doit pas toucher les bords du bécher. Laisser cristalliser pendant la fin du TP
9	Chimie Organique expérimenta le (Chavanne p227)	Hydrodistillation de l'huile essentielle de clous de girofle	10 min pour préparer, laisser tourner pendant 3h puis évap et carac		prévoir une ampoule de coulée dans le ballon pour pouvoir réintroduire de l'eau en cours de réaction
9	400 manip commentée s de chimie orga (Bayle, p284)	Réaction de Cannizzaro sans solvant (dismutation d'aldhéhydes, synthèse d'alcool)	30 min pour le mécanisme	LC9, 10,13, 15	cette version sans solvant permet d'avoir une réaction beaucoup plus rapide caractérisations : dosage pH-métrie de la phase aqueuse, mesure point de fusion
8	Cachau Red-Ox	Courbe i-E du fer	20 min	LC28	ça marche très bien, on peut même observer le mur du solvant. On peut inverser les fils aux bornes du générateur (électrode de travail et contre électrode s'échangent) pour observer la zone de courant négatif.

Bi nô me	Référence	But du TP	Durée du TP	Leçons en lien avec le TP	Commentaires