

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC169701

1 of 78 Page:

FCC Radio Test Report FCC ID: 2ABES-PILOTX01

Original Grant

TB-FCC169701 Report No.

Pathway Innovations and Technologies, Inc. **Applicant**

Equipment Under Test (EUT)

EUT Name Ultra10

Model No. : KR2109

Serial Model No. Ultra9, Ultra10, Ultra11, Ultra12, Ultra13, Ultra15, Ultra16

Brand Name : HoverCam : 2019-10-18 **Receipt Date**

: 2019-10-18 to 2019-11-25 **Test Date**

Issue Date 2020-01-02

: FCC Part 15, Subpart C (15.247:2019) **Standards**

: ANSI C63.10: 2013 **Test Method**

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness

Engineer

Engineer

Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301 Fax: +86 75526509195

Page: 2 of 78

Revision History

Version	Description	Issued Date
Rev.01	Initial issue of report	2020-01-02
101		(ana)
URI)		(B)
	TO DE	The state of the s
3		M. B. C. C.
	MBI MUDIS	
U.O.		C WILL
		000
TUDE		
0.877	The state of the s	
4033		
33	1000	

Page: 3 of 78

Contents

COV	NTENTS	3
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	11
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
	5.1 Test Standard and Limit	16
	5.2 Test Setup	17
	5.3 Test Procedure	18
	5.4 EUT Operating Condition	19
	5.5 Test Data	
5.	RESTRICTED BANDS REQUIREMENT	43
	6.1 Test Standard and Limit	43
	6.2 Test Setup	43
	6.3 Test Procedure	43
	6.4 EUT Operating Condition	44
	6.5 Test Data	44
6.	BANDWIDTH TEST	60
	7.1 Test Standard and Limit	60
	7.2 Test Setup	60
	7.3 Test Procedure	
	7.4 EUT Operating Condition	60
	7.5 Test Data	61
7.	PEAK OUTPUT POWER TEST	67
	8.1 Test Standard and Limit	67
	8.2 Test Setup	

Page: 4 of 78

	8.3 Test Procedure	67
	8.4 EUT Operating Condition	
	8.5 Test Data	
8.	POWER SPECTRAL DENSITY TEST	71
	9.1 Test Standard and Limit	71
	9.2 Test Setup	
	9.3 Test Procedure	71
	9.4 EUT Operating Condition	71
	9.5 Test Data	72
9.	ANTENNA REQUIREMENT	78
	10.1 Standard Requirement	78
	10.2 Antenna Connected Construction	

Page: 5 of 78

1. General Information about EUT

1.1 Client Information

Applicant	•	Pathway Innovations and Technologies, Inc.	
Address	:	9985 Pacific Heights Blvd., Suite 100 San Diego, CA 92121, USA	
Manufacturer		ShenZhen KerunVisual Technology Co., LTD.	
Address		Unit A, F/11, Bldg.1, Senyang Electronic Technology Park, Tianliao Community, Guangming High Tech Zone, Guangming New District, Shenzhen, China 518132	

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Ultra10			
Models No.	:	KR2109,Ultra9,Ultra10,Ultra11,Ultra12,Ultra13,Ultra15,Ultra16			
Model Difference	\	All these models are in the same PCB, layout and electrical circuit, the only difference is model No.			
		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz		
1000	67	Number of Channel:	802.11b/g/n(HT20):11 channels see note(3)		
Product Description		RF Output Power:	802.11b: 8.14dBm 802.11g: 7.96dBm 802.11n (HT20): 7.85dBm		
Docomption		Antenna Gain:	0.5dBi Wire Antenna		
	3	Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM)		
Power Supply	3	Input: AC 100-240V, 50 Output: DC 5V, 3A/9V-3	AC Adapter(JHD-AP045U-PD-CS502): Input: AC 100-240V, 50/60Hz, 1.5A Output: DC 5V, 3A/9V-3A/12V-3A/15V-3A/20V-2.25A DC 3.8V by 12000mAh Li-ion battery.		
Software Version	:	Android 7.1.2	A MODE		
Hardware Version		V0.7			
Connecting I/O Port(S)		Please refer to the User's Manual			
Remark		The adapter and antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.			

Note:

(1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC

Page: 6 of 78

KDB 558074 D01 DTS Means Guidance v05.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		
Note:CH 01~CH 11 for 802.11b/g/n(HT20)					

(4) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

TV	EUT	Adapter	

1.4 Description of Support Units

	Equipment Information						
Name	Model	S/N	Manufacturer	Used "√"			
TV	24PFL3545/T3	Wj1a1405000189	PHILIPS	1			
Cable Informa	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
			-				

Page: 7 of 78

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode Description					
Mode 1	Charging with TX B Mode				

For Radiated Test			
Final Test Mode Description			
Mode 2	TX Mode B Mode Channel 01/06/11		
Mode 3	TX Mode G Mode Channel 01/06/11		
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a fixed unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 78

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	Ampak RF Test Tool		
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	DEF	DEF	DEF
IEEE 802.11g OFDM	DEF	DEF	DEF
IEEE 802.11n (HT20)	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})	
	Level Accuracy:		
Conducted Emission	9kHz~150kHz	±3.42 dB	
	150kHz to 30MHz	±3.42 dB	
Dadiated Emission	Level Accuracy:	±4.60 dB	
Radiated Emission	9kHz to 30 MHz		
Radiated Emission	Level Accuracy:	±4.40 dB	
Radiated Emission	30MHz to 1000 MHz		
Radiated Emission	Level Accuracy:	±4.20 dB	
Radialed Ellission	Above 1000MHz	14.20 UD	

Page: 9 of 78

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 78

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 1							
	rd Section	Test Item	Judgment	Remark			
FCC	IC	1000	o a a gillone				
15.203	1	Antenna Requirement	PASS	N/A			
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A			
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A			
15.247(a)(2)	RSS 247	6dB Bandwidth	PASS	N/A			
10.247 (4)(2)	5.2 (1)	COD BUILDWIGHT	17100	14//			
15.247(b)	RSS 247	Peak Output Power	PASS	N/A			
13.247(0)	5.4 (4)	Teak Output Tower	1 700	IN/A			
15 247(0)	RSS 247	Dower Spectral Density	DACC	N/A			
15.247(e)	5.2 (2)	Power Spectral Density	PASS	IN/A			
45 047(4)	RSS 247	Don'd Edge	DACC	NIZA			
15.247(d)	5.5	Band Edge	PASS	N/A			
15.247(d)&	RSS 247	Transmitter Radiated Spurious	DACC	NI/A			
15.209	5.5	Emission	PASS	N/A			

Note: (1)"/" for no requirement for this test item.(2)N/A is an abbreviation for Not Applicable.

Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

⁽³⁾All tests were conducted using the adapter and antenna gain provided by the applicant, The laboratory tests only according to the information provided by the applicant.

Page: 11 of 78

3. Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 13, 2019	Jul. 12, 2020
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 13, 2019	Jul. 12, 2020
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 13, 2019	Jul. 12, 2020
LISN	Rohde & Schwarz	ENV216	101131	Jul. 13, 2019	Jul. 12, 2020
Radiation Emission	Test			•	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	FSVR	1311.006K40-10094 5-DH	Feb. 10, 2019	Feb. 09, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.03, 2019	Mar. 02, 2020
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 13, 2019	Jul. 12, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Jul. 27, 2019	Jul. 26, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Condu	cted Emissio	1			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 13, 2019	Jul. 12, 2020
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 16, 2019	Sep. 15, 2020
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 16, 2019	Sep. 15, 2020
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 16, 2019	Sep. 15, 2020
The little	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 16, 2019	Sep. 15, 2020
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 16, 2019	Sep. 15, 2020

Page: 12 of 78

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Evenuency	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No.: TB-FCC169701 Page: 13 of 78

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please see the next page.

Page: 14 of 78

Page: 15 of 78

Page: 16 of 78

Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 17 of 78

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 18 of 78

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 19 of 78

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 20 of 78

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	25 ℃			Relative Hu	midity:	55%	11.75	
Test Voltage:	AC 120	V/60Hz		/IIO				
Ant. Pol.	Horizor	ntal	WUP?		MARIE			
Test Mode:	TXBM	ode 2412M	lHz					
Remark:	mark: Only worse case is reported							
80.0 dBuV/m								
30 1 2 2	ha bear and the second	and the state of t	3		W/Worded water out	56	6 dB	
30.000 40 50		80	(MHz)	300	400 5	500 600 700	1000.00	
No. Mk. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
ı	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector	
1 35.	6240	44.21	-17.23	26.98	40.00	-13.02	QP	
2 41.	2765	45.64	-20.44	25.20	40.00	-14.80	QP	
3 130	.8369	46.28	-21.72	24.56	43.50	-18.94	QP	
4 419	.1081	41.99	-12.08	29.91	46.00	-16.09	QP	
5 * 530	.1014	49.62	-9.30	40.32	46.00	-5.68	QP	
	.7744	48.48	-9.25	39.23	46.00	-6.77	QP	
*:Maximum data	x:Over lim	it !:over marg		39.23	46.00	-b.//	QP	

Page: 21 of 78

		The state of the s			
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical		30/27		
Test Mode:	TX B Mode 2412MHz				
Remark:	Only worse case is re	eported			
80.0 dBuV/m					

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	30.1054	49.46	-13.85	35.61	40.00	-4.39	QP
2	İ	43.0505	55.62	-21.17	34.45	40.00	-5.55	QP
3		75.4464	54.12	-23.08	31.04	40.00	-8.96	QP
4		129.9226	54.48	-21.74	32.74	43.50	-10.76	QP
5	İ	530.1014	49.62	-9.30	40.32	46.00	-5.68	QP
6		556.7744	48.48	-9.25	39.23	46.00	-6.77	QP

^{*:}Maximum data x:Over limit !:over margin

Page: 22 of 78

Above 1GHz

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2412MHz		
Remark:	No report for the emission	which more than 10 dE	B below the prescribed
	limit.		

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.836	29.17	13.56	42.73	54.00	-11.27	AVG
2		4824.082	42.89	13.56	56.45	74.00	-17.55	peak

Page: 23 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical						
Test Mode:	TX B Mode 2412MHz	TX B Mode 2412MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
I							

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.128	28.99	13.56	42.55	54.00	-11.45	AVG
2		4823.536	43.76	13.56	57.32	74.00	-16.68	peak

Page: 24 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX B Mode 2437MHz	TX B Mode 2437MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

N	o. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.585	42.94	13.86	56.80	74.00	-17.20	peak
2	*	4873.925	29.36	13.86	43.22	54.00	-10.78	AVG

Page: 25 of 78

	Temperature:	25 ℃	Relative Humidity:	55%				
	Test Voltage:	AC 120V/60Hz						
	Ant. Pol.	Vertical						
	Test Mode:	TX B Mode 2437MHz	TX B Mode 2437MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.								

ı	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4874.048	43.50	13.86	57.36	74.00	-16.64	peak
2	,	*	4874.428	29.50	13.86	43.36	54.00	-10.64	AVG

Page: 26 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX B Mode 2462MHz	TX B Mode 2462MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.568	42.53	14.15	56.68	74.00	-17.32	peak
2	*	4924.786	29.50	14.15	43.65	54.00	-10.35	AVG

Page: 27 of 78

	Temperature:	25 ℃	Relative Humidity:	55%				
	Test Voltage:	AC 120V/60Hz						
	Ant. Pol.	Vertical						
	Test Mode:	TX B Mode 2462MHz	TX B Mode 2462MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.								

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.366	43.39	14.15	57.54	74.00	-16.46	peak
2	*	4924.720	29.53	14.15	43.68	54.00	-10.32	AVG

Page: 28 of 78

	Temperature:	25 ℃	Relative Humidity:	55%			
	Test Voltage:	st Voltage: AC 120V/60Hz					
	Ant. Pol. Horizontal						
	Test Mode:	TX G Mode 2412MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

1	No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4823.463	28.09	13.56	41.65	54.00	-12.35	AVG
2			4824.547	43.97	13.56	57.53	74.00	-16.47	peak

Page: 29 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	MUDE					
Ant. Pol.	Vertical						
Test Mode:	TX G Mode 2412MHz	TX G Mode 2412MHz					
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.						

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.254	43.80	13.56	57.36	74.00	-16.64	peak
2	*	4824.334	28.94	13.56	42.50	54.00	-11.50	AVG

Page: 30 of 78

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz	MUDDE				
Ant. Pol.	Horizontal					
Test Mode:	TX G Mode 2437M	Hz				
Remark:	No report for the en prescribed limit.	nission which more than 10 dB	3 below the			

No	. Mk	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.332	44.31	13.86	58.17	74.00	-15.83	peak
2	*	4874.576	29.42	13.86	43.28	54.00	-10.72	AVG

Page: 31 of 78

•	Temperature:	25 ℃	Relative Humidity:	55%			
•	Test Voltage:	AC 120V/60Hz					
4	Ant. Pol.	Vertical					
•	Test Mode:	TX G Mode 2437MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.462	44.60	13.86	58.46	74.00	-15.54	peak
2	*	4874.536	29.50	13.86	43.36	54.00	-10.64	AVG

Page: 32 of 78

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz	MUDE				
Ant. Pol.	Horizontal					
Test Mode:	TX G Mode 2462MHz	TX G Mode 2462MHz				
Remark:	emark: No report for the emission which more than 10 dB below the prescribed limit.					

N	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4924.502	29.18	14.15	43.33	54.00	-10.67	AVG
2			4924.536	43.13	14.15	57.28	74.00	-16.72	peak

Page: 33 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX G Mode 2462MF	łz					
Remark:	ark: No report for the emission which more than 10 dB below the prescribed limit.						
100 0 ID VI							

No	o. M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4924.328	29.41	14.15	43.56	54.00	-10.44	AVG
2		4924.475	43.41	14.15	57.56	74.00	-16.44	peak

Page: 34 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX N(HT20) Mode 241	2MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

N	o. I	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		4823.432	30.80	13.56	44.36	54.00	-9.64	AVG
2			4824.158	44.58	13.56	58.14	74.00	-15.86	peak

Page: 35 of 78

Temperature:	25 ℃	Relative Humidity: 55%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol. Vertical							
Test Mode:	TX N(HT20) Mode	TX N(HT20) Mode 2412MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							
100 0 dPul//m							

No	. Mk	c. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.425	29.62	13.56	43.18	54.00	-10.82	AVG
2		4823.574	42.74	13.56	56.30	74.00	-17.70	peak

Page: 36 of 78

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal					
Test Mode: TX N(HT20) Mode 2437MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4874.128	32.68	13.86	46.54	54.00	-7.46	AVG
2		4874.403	43.28	13.86	57.14	74.00	-16.86	peak

Page: 37 of 78

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		1137
Test Mode:	TX N(HT20) Mode 2437M	Hz	
Remark:	No report for the emission prescribed limit.	which more than 10 dE	3 below the

No	. Mk	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.268	43.91	13.86	57.77	74.00	-16.23	peak
2	*	4874.225	29.67	13.86	43.53	54.00	-10.47	AVG

Page: 38 of 78

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal		133				
Test Mode:	TX N(HT20) Mode 2462MH	z					
Remark:	No report for the emission v prescribed limit.	which more than 10 dB	below the				

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.166	44.29	14.15	58.44	74.00	-15.56	peak
2	*	4924.388	29.41	14.15	43.56	54.00	-10.44	AVG

Page: 39 of 78

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		133
Test Mode:	TX N(HT20) Mode	2462MHz	
Remark:	No report for the en prescribed limit.	nission which more than 10 dB	below the

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.258	43.33	14.15	57.48	74.00	-16.52	peak
2	*	4924.736	29.50	14.15	43.65	54.00	-10.35	AVG

Page: 40 of 78

Conducted Emission Test Data

Page: 41 of 78

Page: 42 of 78

Page: 43 of 78

5. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)

FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)			
Band (MHz)	Peak	Average		
2310 ~2390	74	54		
2483.5 ~2500	74	54		

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: TB-FCC169701
Page: 44 of 78

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please see the next page.

Page: 45 of 78

(1) Radiation Test

Page: 46 of 78

Page: 47 of 78

Page: 48 of 78

Page: 49 of 78

Page: 50 of 78

Page: 51 of 78

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX G Mode 2462MHz		
Remark:	N/A		

No	o. Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2464.000	81.47	1.08	82.55	Fundamental	Fundamental Frequency	
2	X	2466.800	91.89	1.10	92.99	Fundamental	Frequency	peak
3		2483.500	42.30	1.17	43.47	74.00	-30.53	peak
4		2483.500	31.85	1.17	33.02	54.00	-20.98	AVG

Page: 52 of 78

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	Million	
Ant. Pol.	Vertical		1133
Test Mode:	TX G Mode 2462MHz		
Remark:	N/A		
100.0 dBuV/m			

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2465.900	91.87	1.09	92.96	Fundamenta	I Frequency	peak
2	*	2468.500	80.91	1.11	82.02	Fundamenta	I Frequency	AVG
3		2483.500	31.74	1.17	32.91	54.00	-21.09	AVG
4		2483.500	43.95	1.17	45.12	74.00	-28.88	peak

Page: 53 of 78

Page: 54 of 78

0.0

2446.000 2456.00

2466.00

2476.00

2486.00

Report No.: TB-FCC169701

Page: 55 of 78

2526.00

2546.00 MHz

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		11313
Test Mode:	TX N(HT20) Mode 246	62MHz	
Remark:	N/A		7
100.0 dBuV/m			
	1 X		
	2		
	- Mahalahar	(RF) FCC I	PART 15C (PEAK)
		(BE) ECC	PART 15C (AVG)
50		(AF) FCC	TAIT 15C (AVG)
	3 X		

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2465.200	91.82	1.09	92.91	Fundamental I	Frequency	peak
2	*	2465.700	80.72	1.09	81.81	Fundamental I	Frequency	AVG
3		2483.500	42.40	1.17	43.57	74.00	-30.43	peak
4		2483.500	31.43	1.17	32.60	54.00	-21.40	AVG

2496.00

2506.00

2516.00

Page: 56 of 78

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX N(HT20) Mode	2462MHz	
Remark:	N/A	WIDE STATE	
	•		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2457.100	91.94	1.05	92.99	Fundamental	Frequency	peak
2	*	2464.200	80.80	1.08	81.88	Fundamental	Frequency	AVG
3		2483.500	42.99	1.17	44.16	74.00	-29.84	peak
4		2483.500	31.59	1.17	32.76	54.00	-21.24	AVG

Page: 57 of 78

(2) Conducted Test

Page: 58 of 78

Page: 59 of 78

Page: 60 of 78

6. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC	Part 15 Subpart C(15.247)	/RSS-210
Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

Page: 61 of 78

7.5 Test Data

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Test Mode:	TX 802.11B Mode		
Channel frequence	cy 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	8.577	10.2993	
2437	8.107	10.2982	>=0.5
2462	8.166	10.3321	

802.11B Mode

2412 MHz

62 of 78 Page:

63 of 78 Page:

Temperate	ure: 2	5 ℃	Relative Humidity:	55%
Test Volta	ge: A	C 120V/60Hz	MODE	
Test Mode	e: T.	X 802.11G Mode		
Channel f	requency	6dB Bandwidth	99% Bandwidth	Limit
(MI	Hz)	(MHz)	(MHz)	(MHz)
24	12	16.422	16.5038	
24	37	16.422	16.4997	>=0.5
24	62	16.422	16.4851	
		802 110	3 Mode	1

802.11G Mode

2412 MHz

Page: 64 of 78

Report No.: TB-FCC169701 Page: 65 of 78

			WAY A STATE OF THE
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	MANAGE	A VIV
Test Mode:	TX 802.11N(HT20) Mode	Time of the state	(1:3)
Channel frequence	cy 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	17.644	17.6954	
2437	17.643	17.6946	>=0.5
2462	17.613	17.6884	
	000 441///		'

802.11N(HT20) Mode

2412 MHz

Page: 66 of 78

Page: 67 of 78

7. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Par	t 15 Subpart C(15.247)/RS	S-210
Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v04. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

Page: 68 of 78

8.5 Test Data

Temperature:	25 ℃	Relative Humidity	/ : 55%
Test Voltage:	AC 120V/60Hz		TO DO
Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
	2412	8.12	
802.11b	2437	8.08	
	2462	8.14	
	2412	7.89	
802.11g	2437	7.96	30
	2462	7.78	
000.44	2412	7.85	
802.11n	2437	7.84	
(HT20)	2462	7.83	
	Resu	ult: PASS	

	Duty Cycle	
Mode	Channel frequency (MHz)	Test Result
	2412	
802.11b	2.11b 2437	
	2462	
	2412	
802.11g	2437	>98%
	2462	
000 44 =	2412	
802.11n (HT20)	2437	
(П120)	2462	

Page: 69 of 78

Page: 70 of 78

Page: 71 of 78

8. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FC	CC Part 15 Subpart C(15.2	47)
Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

Page: 72 of 78

9.5 Test Data

nperature:	25 ℃		Relative Humic	dity: 55%
t Voltage:	AC 120V	//60Hz		en libe
t Mode:	TX 802.1	11B Mode		
Channel Free	quency	Power	Density	Limit
(MHz)	•		z/dBm)	(dBm)
2412		•	7.38	, ,
2437		-18	3.02	8
2462		-18	3.14	-
2.32			B Mode	
			MHz	
		2412	. IVIT12	
* Agilent				Mkr1 2.4129000 GHz
Ref 15 dBm		Atten 25 dB		-17.38 dBm
Peak Log				
10				
dB/ Offst				
1 dB			1	
	rker "	man manner manner		un,
2.4	1290 0 000		W	" Who have a second
-17	<u>/</u> 38∖dBm			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
M1 S2				
S3 FC				
AA				
Center 2.412	CH-			Span 15 MHz
#Res BW 3 I		#\/B\/\	10 kHz S	Span 15 MHZ weep 1.715 s (401 pts)

Page: 73 of 78

Page: 74 of 78

Temperature:	25 °C Temp		perature:	25 ℃	
Test Voltage:	AC 120V/60Hz			A NUC	
Test Mode:	TX 802.1	1G Mode		מניות	
Channel Frequency		Power Density		Limit	
(MHz)		(3 kHz/dBm) (d		(dBm)	
2412		-22.05			
2437		-22.18		8	
2462		-22.38			
		802.11G Mode	,		
		2412 MHz			
* Agilent					
Pof 15 dBm		Atton 25 dB	Mkr	1 2.4079375 GHz	

Page: 75 of 78

Report No.: TB-FCC169701 Page: 76 of 78

Temperature:	25 ℃		Temperature	: 25 ℃		
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11N(HT20) Mode					
Channel Frequency		Power Density		Limit		
(MHz)		(3 kHz/dBm)		(dBm)		
2412		-21.82	!			
2437		-22.94		8		
2462		-21.93				
802.11N(HT20) Mode						

2412 MHz

77 of 78 Page:

Page: 78 of 78

9. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0.5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a Wire Antenna. It complies with the standard requirement.

	Antenna Type	
□ Perma	anent attached antenna	
▽ Uniqu	ue connector antenna	0813
□ Profe	essional installation antenna	

----END OF REPORT----