Exercise Assignment 4

Brandon Hosley Mike Davis

Exercise Assignment 4

3.4 c)

Convert $[1011]_2$ from binary to decimal, assuming unsigned binary. $1011_2 = 11_{10}$

3.4 e

Convert $[11111]_2$ from binary to decimal, assuming unsigned binary. $11111_2 = 31_{10}$

3.13 a)

Write the polynomial representation of 29.458_{10} $(2)10^1 + (9)10^0 + (4)10^{-1} + (5)10^{-2} + (8)10^{-2}$

3.13 c)

What is the decimal value of 1011.100101_2 $1011.100101_2 = 11.65625_{10}$

3.16 a)

Convert $[51]_{10}$ to binary using nine-bit two's compliment. $51_{10} = 000110011_2$

3.16 e)

Convert $[-256]_{10}$ to binary using nine-bit two's compliment. $-256_{10} = 100000000_2$

3.20 c)

Perform a binary addition, assuming nine-bit two's compliment. Show the effect on the status bits:

 $\begin{array}{c} 1\ 0001\ 1011 \\ \underline{ADD\ 1\ 0101\ 0100} \\ 0\ 0110\ 1111 \\ N\ =\ 1 \\ Z\ =\ 0 \\ V\ =\ 1 \\ C\ =\ 1 \end{array}$

ES4 3

3.20 e)

Perform a binary addition, assuming nine-bit two's compliment. Show the effect on the status bits:

```
\begin{array}{c} 0\ 0011\ 0100 \\ \underline{ADD\ 0\ 1101\ 0010} \\ 1\ 0000\ 0110 \\ N=0 \\ Z=0 \\ V=1 \\ C=0 \end{array}
```

3.21 c)

With two's complement binary representation what is the range of numbers in binary and decimal notation for: a four-bit cell

```
A four bit cell has:

range_2 = 1000 \text{ to } 0111

range_{10} = -8 \text{ to } 7
```

3.21 d)

With two's complement binary representation what is the range of numbers in binary and decimal notation for: a five-bit cell

```
A five-bit cell has: range_2 = 10000 to 01111 range_{10} = -16 to 15
```

ES4 4

References

Warford, J. (2009). $Computer\ systems$ (4th ed.). Jones and Bartlett.