AERO-HYDRODYNAMICS OF SAILING

Third Edition

C.A. MARCHAJ

Contents

List of symbols x Preface to the third edition xiii

PART 1 Fundamental factors governing yacht performance Introduction: the nature of the problem 3 Performance 5 A Forces and geometry of sailing to windward 7 Aerodynamic and hydrodynamic forces 9 The Ten Degree Yacht 15 Speed made good to windward 23 B Sail/hull interaction in light and strong winds 24 Sheeting angle 31 Heeling forces 33 Hull responses 35 C Centreboard or fin-keel efficiency 37 Aspect ratio 40 12-Metre boats 43 D Optimum course to windward 47 Resistance 47 Sail area 55 Shifting ballast 55 E Stability effect on performance 60 Stability 60

Development 65

F	All-round performance 70				
	America's Cup 75				
	Waterline 75				
G	Highspeed sailing 84				
	Multihulls 86				
Transatlantic races 89					
	World speed records 99				
	Hydrofoils 103				
	Foil control 110				
	Lateral stability 114				
	The rig 115				
	Wing sails 116				
	Other solutions 122				

H Land and hard-water sailing craft 128
Ice yachts 130
Apparent wind 131
Stability 135
Speed potential 135
Sailing boats 141
Drag 145
References and notes 154

PART 2 Basic principles of aero-hydrodynamics: aerofoil and hydrofoil action

- A Elementary concepts and assumptions 167
 - (1) Air and water: analogies and differences 167
 - (2) Ideal and real fluids, two-dimensional flow 170
 - (3) Potential frictionless flow pattern; interrelation between velocity, pressure and force 172
 - (a) Bernoulli's equation 175
 - (b) Friction effect on flow pattern 182
 - (4) Circulation and Magnus effect 186
 - (a) Rotating cylinder as a crude aerofoil 189
 - (b) Fletner's rotorship 194
 - (5) How lift is generated by a foil 198
 - (a) Kutta-Joukowski hypothesis 202
 - (b) How quickly lift is developed 206
 - (c) Practical implications 209
 - (6) A closer look into some foil characteristics 211
 - (a) Methods of presenting pressure distribution 213
 - (b) Rate of lift growth with incidence (two-dimensional flow) 215
 - (c) Factors limiting lift growth 219
 - (d) Peculiar behaviour of some thick foils 224

- B Drag-viscosity phenomena 227
 - (1) The boundary layer, pressure drag and skin friction 227
 - (a) Laminar and turbulent boundary layer 230
 - (b) Calculation of skin friction 236
 - (2) Streamlining 240
- C Reynolds Number and scale effect 251
 - (1) What one can learn from golf ball behaviour 252
 - (2) Similarity law of Osborne Reynolds 256
 - (3) Ways of reducing drag 259
 - (4) Variation of foil drag with Reynolds Number 265
 - (a) Roughness of the wetted surface 269
 - (b) Shape (curvature) of the wetted surface and associated pressure gradient 275
 - (c) Ways of reducing skin friction: polymers, flexibility of wetted surface 286
 - (5) Lift and Reynolds Number effect on foil lift efficiency 296
 - (a) Effects of leading edge, camber and thickness on stall pattern 296
 - (b) Flow pattern round thin, sail-like foils 302
 - (c) Thick versus thin foil controversy 306
 - (d) Rig of Lady Helmsman 313
 - (e) Thin foil properties 321
 - (f) Padded sails 327
 - (g) Significance of pressure distribution, mast effect 328
 - (h) Roughness effect 339
- D Three-dimensional foils 343
 - (1) Vortex system developed round a finite span foil 347
 - (2) Mechanical and electromagnetic analogies 355
 - (a) Analogy for simple hydrofoil 358
 - (b) Variation of circulation along the span 360
 - (3) Induced flow and associated induced drag 367
 - (a) Effective angle of incidence and induced drag 371
 - (b) Elliptic planform, elliptic load distribution 376
 - (c) Sail plans 380
 - (d) Triangular planform 385
 - (4) Mirror-image concept of the sail or foil: effective aspect ratio 395
 - (5) Foil-shape effects 408
 - (a) Planform effects 411
 - (b) Influence of taper ratio and twist on foil efficiency 425
 - (c) Effect of aspect ratio on maximum lift 443
 - (d) Sweep angle effects and low AR foils 447
- (e) Slender body theory–implications and shortcomings 460 References and notes 473

PART 3 Research on sails: practical implications

- A Speed performance prediction: scope and limiting factors 485
- B Sail design in general 500
 - (1) Loading 504
- C How and why sail forces are determined 517
 - (1) Determination of sail forces by strain gauging the rig 522
 - (2) Determination of sail forces by measuring mooring loads 524
 - (3) Determination of sail forces by correlating results of full-scale trials and model tank test (Gimcrack sail coefficients) 526
 - (a) Instruments 530
 - (4) Analytically derived sail coefficients 535
 - (5) Determination of sail forces by wind tunnel tests 542
- D Wind tunnel results: factors affecting the sail forces and their effects on boat performance 548
 - (1) Finn sail tests 548
 - (a) Influence of kicking strap tension 549
 - (b) Influence of changes in luff and foot tension 554
 - (c) Influence of rig height above sea level 555
 - (d) Influence of wind speed on sail shape 556
 - (2) Effects of sail shape on boat performance 557
 - (3) Sail trim and tuning 565
 - (a) Kicking strap control 574
 - (b) Twist correction for wind gradient effect 581
 - (c) Sail camber control 582
 - (d) Evolution of the Finn mast 590
 - (e) Other methods of sail camber control 595
 - (4) More about headsail fairings, leading edge function and tell-tales 601
 - (a) Tests on head-foils 602
 - (b) Padded sails 607
 - (c) Leading edge function 610
 - (d) What do the tell-tales tell? 613
 - (5) Sail interaction, slotted foils 627
 - (a) Explanation of slotted foil action 628
 - (b) The effects of the mainsail on the jib 639
 - (c) The effects of the jib on the mainsail 642
 - (d) Some results of wind tunnel tests on sail interaction 642
 - (e) Tests on genoa overlap 651
 - (6) Downwind rolling 653
 - (a) Rolling in still water 654
 - (b) Self-excited rolling 658

(c)	Results	of wind tunnel	experiments	666
/ • \	ec: : c			

- (d) The influence of course sailed β 667
- (e) The influence of trim angle $\delta_{\rm m}$ 667
- (f) The influence of wind velocity 670
- (g) The influence of damping 671(h) Anti-rolling sail 675

References and notes 676

Appendix 1 Conversion factors, symbols and definitions 679

- (a) Dimensions and units 679
- (b) Conversion tables 683
- (c) Tables of conversion factors 685
- (d) Scientific notation 687
- (e) The Greek alphabet 687

Appendix 2 Are winged keels a great invention? 689

Appendix 3 High-speed sailing 713

Appendix 4 Methods of performance prediction 731

Index 751