1. Porządek leksykograficzny, minimum:

<u>LEXICOGRAPHICAL MIN</u> - jako zmienną wchodzącą i wychodzącą wybieramy te zmienne, które są najmniejsze względem porządku leksykograficznego

2. Porządek leksykograficzny, maksimum:

<u>LEXICOGRAPHICAL MAX</u> - jako zmienną wchodzącą i wychodzącą wybieramy te zmienne, które są największe względem porządku leksykograficznego

3. Wybór zmiennej wejściowej o największym współczynniku funkcji celu

<u>LARGEST COEFFICIENT</u> - wybieramy zmienną o największym współczynniku funkcji celu. Zasada ta maksymalizuje wzrost funkcji celu.

4. Wybór zmiennej wejściowej o najmniejszym współczynniku funkcji celu

<u>LEAST COEFFICIENT</u> - wybieramy zmienną, która ma najmniejszy współczynnik w funkcji celu

5. Wybór zmiennej, który prowadzi do największego wzrostu funkcji celu

LARGEST INCREASE - wybieramy tą parę zmiennych wchodzących i wychodzących, która wpływa na maksymalny przyrost funkcji celu. Przeprowadzenie tego wyboru jest stosunkowo bardziej kosztowne niż inne reguły, gdyż wymaga przejrzenia potencjalnie wielu kombinacji zmiennych, ale gwarantuje najlepsze zachowanie algorytmu w skali lokalnej.

6. Wybór zmiennej, który prowadzi do najmniejszego wzrostu funckji celu

LOWEST INCREASE - wybieramy tą pare zmiennych wchodzących i wychodzących, która wpływa na minimalny przyrost funkcji celu. Przeprowadzenie tego wyboru jest stosunkowo bardziej kosztowne niż inne reguły, gdyż wymaga przejrzenia potencjalnie wielu kombinacji zmiennych, ale gwarantuje najlepsze zachowanie algorytmu w skali lokalnej.

7. Wybór zmiennej, który prowadzi do wierzchołka w kierunku najbliższym wektorowi c (gradientowi funkcji celu)

STEEPEST EDGE MAX - wybieramy zmienną, która prowadzi do wierzchołka w kierunku najbliższym wektorowi c, czyli gradientowi funkcji celu. Tak więc maksymalizujemy stosunek

$$\frac{c^T(x1-x2)}{||x1-x2||}$$

gdzie x2 jest podstawowym wykonalnym rozwiązaniem dla obecnej tabeli sympleksowej. Natomiast x1 jest to rozwiązanie dla tabeli, które zostanie uzyskane poprzez wprowadzanie zmiennej do podstaw problemu.

8. Wybór zmiennej, który prowadzi do wierzchołka w kierunku najdalszym od wektora c (gradientu funkcji celu)

STEEPEST EDGE MIN - wybieramy zmienną, która prowadzi do wierzchołka w kierunku najdalszym wektorowi c, czyli gradientowi funkcji celu. Tak więc minimalizujemy stosunek

$$\frac{c^T(x1-x2)}{||x1-x2||}$$

gdzie x2 jest podstawowym wykonalnym rozwiązaniem dla obecnej tabeli sympleksowej. Natomiast x1 jest to rozwiązanie dla tabeli, które zostanie uzyskane poprzez wprowadzanie zmiennej do podstaw problemu.

9. Wybór zmiennej wchodzącej o najmniejszym indeksie; jeżeli jest wiele wyborów zmiennej wychodzącej, to wybór zmiennej wychodzącej o najmniejszym indeksie

<u>BLAND RULE</u> - wybieramy zmienną o najmniejszym indeksie. Jeśli istnieje kilka możliwości na zmienną wychodzącą, także wybieramy tę o najmniejszym indeksie.

10. Wybór losowy (prawdopodobieństwo jednostajne)

RANDOM RULE - zarówno zmienną wchodzącą jak i wychodzącą wybieramy w sposób losowy. Oba te losowania są od siebie niezależne.

	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
I.	5	3	3	5	5	5	4	4	5	3
II.	2	2	2	4	2	4	2	4	2	2
III.	7	7	8	6	9	8	7	8	7	6
IV.	2	2	2	2	2	2	2	2	2	2
V.	0	0	0	0	0	0	0	0	0	0
VI.	_	-	-	_	-	-	-	-	-	-
VII.	7	7	8	6	9	8	7	8	7	8
VIII.	11	11	9	5	3	11	7	5	11	2
IX.	0	0	0	0	0	0	0	0	0	0
Х.	5	5	12	14	5	18	9	14	5	13
XI.	2	2	2	3	2	2	2	4	2	2

STEPPEST EDGE jest najlepszą metodą wyboru zmiennych w metodzie sympleks. Rownie dobrą metodą jest RANDOM EDGE. Pozwala ona na możliwie najlepsze określenie granicy liczby kroków metody sympleks.