5 Singular Value Decomposition

Exercise 5.1

Calculate by hand the SVD of

$$A = \left(\begin{array}{ccc} 3 & 2 & 2 \\ 2 & 3 & -2 \end{array}\right),$$

and, next (homework),

$$B = \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{array}\right).$$

Exercise 5.2

Let A be a matrix of size $n \times m$ with the SVD : $A = U\Sigma V^T$. Assume that A is of rank r and n > m.

1. Show that A can be rewritten as

$$A = \sum_{k=1}^{r} \sigma_k u_k v_k^T \tag{1}$$

where u_k is the k-th column of U and v_k is the k-th column of V.

- 2. Calculate the rank of each matrix $u_k v_k^T$.
- 3. Show that

$$A = U_r \Sigma_r V_r^T$$

where $U_r = [u_1 \cdots u_r]$, $V_r = [v_1 \cdots v_r]$ and $\Sigma_r = \text{diag}(\sigma_1, \dots, \sigma_r)$.

4. Homework : show the equality (1) when $n \leq m$.

Exercise 5.3

Let A be a matrix of size $n \times m$ and rank r with the SVD decomposition $A = U\Sigma V^T$. We assume the equality and the notations in (1) whatever the values of n and m.

- 1. Show that $Av_k = 0$ for all k > r.
- 2. Show that $Av_k \neq 0$ for all $k \leq r$.
- 3. Let K be the linear space such that $K = \{x | Ax = 0\}$. Show that the set of right singular vectors $\{v_1, \ldots, v_r\}$ form a basis of K.
- 4. Let $x \in \mathbb{R}^m$ and y = Ax. Show that there exists some real c_1, \ldots, c_r such that

$$Ax = \sum_{k=1}^{r} c_k u_k.$$

- 5. Let F be the linear space such that $F = \{y \in \mathbb{R}^n | y = Ax, x \in \mathbb{R}^m\}$. Show that the vectors $\{u_1, \ldots, u_r\}$ form a basis of F.
- 6. Knowing the SVD decomposition of A, how can we calculate easily the rank of A?

Exercise 5.4

The goal is to apply the SVD to an image with Python Jupyter. The image "lena512.png" is on the Jalon website.

1. Run and explain the following code:

```
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image # import Python Imaging Library (PIL)
imagray = Image.open('lena512.pgm')
plt.imshow(imagray, cmap='gray')
imagmat = np.matrix(imagray)
print(imagmat)
```

- 2. Compute the SVD of the image by using "np.linalg.svd".
- 3. Code the best image approximation of rank one. Plot this approximation. Hints: you can use the command "np.diag" to create a diagonal matrix.
- 4. Code and plot the best image approximations of rank $r \in \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$. What do you observe? Is the SVD useful to compress the image in order to decrease its storage space?
- 5. Give an estimate of the compression rate with respect to r. The compression rate is defined as the compressed size divided by the uncompressed size. Plot the compression rate as a function of r.