Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

EXAMPLES OF THE INPUT AND OUTPUT FOR THE WSDU*WATER.WET AND WSDU*WATER.WET-INLONG PROGRAMS

BY
RICHARD L. DADDOW
and
OWEN R. WILLIAMS

WSDG REPORT SERIES
WSDG-TN-00007
MARCH 1984

USDA FOREST SERVICE
WATERSHED SYSTEMS DEVELOPMENT GROUP
3825 EAST MULBERRY STREET
FORT COLLINS, COLORADO 80524

AD-33 Bookplate

NATIONAL

LIBRARY

Table of Contents

Page

1.0 Introduction

1
2.0 Examples of Input and Output for the WET Program

2.1 Example 1

2.2 Example 2

2.3 Example 3

3.0 Example of Input and Output for the WET-INLONG Program

417347

48

1.0 INTRODUCTION

The purpose of this Report is to familiarize first-time users of the WSDU*WATER.WET and WSDU*WATER.WET-INLONG programs (hereafter referred to as WET and WET-INLONG) with the input and output procedure for these two programs. The examples presented in this report were selected to show some of the various input and output capabilities available in both programs. These examples also illustrate the option of reviewing the input and output before actually executing the programs. This report is intended to be used as a supplement to WSDG Report Series, WSDG-AD-00007, "WSDU*WATER.WET: THE COMPUTERIZED VERSION OF CHAPTER III - HYDROLOGY - OF THE WRENSS HANDBOOK" by Owen R. Williams and Richard L. Daddow, 1984, USDA Forest Service, Watershed Systems Development Group, which contains details needed to execute the WET and WET-INLONG programs. Additional information about these two programs may be obtained by using the WSDG Userguide Program residing at the Fort Collins Computer Center. To initiate this program, issue the following command at a demand terminal,

@XQT WSDU*WSDG.USERGUIDE.

2.0 EXAMPLES OF INPUT AND OUTPUT FOR THE WET PROGRAM

Example I shows the complete WET input data and output for an analysis of a watershed in snow-dominated Hydrologic Region 4. There are two analyses requested by this set of input data. The first represents "existing" or baseline conditions and the second represents prediction of "proposed" conditions. Examples 2 and 3 illustrate WET analyses for watersheds in rain-dominated Hydrologic Regions 5 and 2 respectively. In each case, the input data is presented followed by the output from WET. Example 2 presents a comparison of baseline and proposed conditions and incorporates a user-supplied flow duration curve through the use of DISTRIBUTION cards. Example 3 demonstrates the use of FD CURVE and CHANGE cards in evaluating proposed silvicultural changes on a site-specific flow duration curve and on streamflows at specific dates.

In order to reduce to page-size dimensions, the WET output in these examples was changed slightly (i.e., in terms of spacing and use of abbreviations) from what a user would normally receive as printed output from a high-speed computer printer. In addition, the WET output bordered by top and bottom double-dashed lines actually represents one page of printed output from a high-speed computer printer.

2.1 EXAMPLE I

In this example, James Creek watershed, which comprises 1901 acres, is analyzed twice. The first watershed analysis simulates the baseline or unimpacted condition. In this instance, each of the three prescriptions (here subwatersheds) has one state. The user could have utilized more than one state had there been significant differences in vegetative cover density but such refinement was not required in this example. Each prescription differs on the basis of aspect, baseline cover density, and area.

The second watershed analysis simulates a proposed condition. The same three prescriptions are found but this time each has three states. Since snow redistribution is expected, each of the states has been identified as being in either an impacted/clearcut (deposition area), forest impacted (depletion area), or forest unimpacted condition. It should be noted that the user felt the depletion area would equal the deposition area (a useful assumption) hence the areas defined for impacted and forest impacted are equal. Furthermore, the user decided to utilize the mass balance approach within WET and defaulted to the program's snow retention coefficient values.

In both simulations, the user utilized the watershed precipitation values for the first prescription (Subdrainage I) and provided values for the next two (Subdrainages II and III). The user also defaulted to the evapotranspiration values of WRENSS, incorporated within the program, for the watershed and both of the prescriptions for which precipitation was supplied.

A listing of the input data and the resultant WET output for this example may be obtained by submitting the following commands.

@PRT,S WSDU*SAM.WETDATA4A @XQT WSDU*WATER.WET @ADD WSDU*SAM.WETDATA4A

EXAMPLE I - INPUT

Co1 5	10	15	20 2	5 30	35	40	45	50	55	60	65	70	75	80
UDENCC	ANALVCT	C EVA	אטור ר	OD DEC	TON A	CNON	1	2 :	2					
	ANALYSI HED JAM					- SNOW				10 01	00			
	ITATION		0 11.0					00	.00	.00	00			
	IPTIONO				350.03		.0		0 70.				3.0	12
	FORESTE		1	.25		350.0		3 2		1.00			0.0	1-
	IPTION1				163.01		.0		0 70.				3.0	12
PRECIP	ITATION	9.	6 11.6	8.2	.0	.00	.(00	.00	.00				
	FORESTE		1	.22		463.0		3 2		1.00				
	IPTION1						.0		0 70.				3.0	12
	ITATION		0 11.0		.0	.00	.(.00					
	FORESTE		1			588.0		3 2		1.00	0.0			
	HED JAM				_	4					00			
	ITATION		0 11.0		.0			00	.00 0 70.	.00			3.0	21
	IPTIONO UNIMPAC		AINAGE	.25		1 .25 110.0	.0	3 2		1.00			3.0	31
	FOR. IM			.25		370.0		2 2		-1.00				
	CLEARCU		1	.00		370.0			280.0					
	IPTION1				163.01		.0		0 70.				3.0	31
	ITATION		6 11.6		.0	.00		00	.00				0.0	01
STATE	UNIMPAC		1	.22	.0	85.0		3 2		1.00				
STATE 1	FOR. IM	PACTE	D 1	.22	.0	189.0		2 2		-1.0				
STATE	CLEARCU	Τ	1	.00	.0	189.0	.0	1 1	280.0	-1.0				
PRESCR	IPTION1				588.07	1 .18	.0	. (0 70.	0			3.0	31
-	ITATION		0 11.0		.0	.00		00	.00	.00				
	UNIMPAC		1	.18		244.0		3 2		1.00				
	FOR. IM					172.0		2 2		-1.0				
STAIF	CLEARCU	I	1	.00	•0	172.0	.0	1 1	280.0	-1.0				

WSDU*WATER.WET PROGRAM

WATERSHED SYSTEMS DEVELOPMENT GROUP FEBRUARY 1984

THIS PROGRAM IS A COMPUTERIZED VERSION OF THE HYDROLOGY PROCEDURE AS DESCRIBED IN THE HANDBOOK "AN APPROACH TO WATER RESOURCES EVALUATION NON-POINT SILVICULTURE SOURCES" (WRENSS). FOR A MORE DETAILED EXPLANATION OF THIS OUTPUT CONSULT THE HYDROLOGY CHAPTER IN THE HANDBOOK. THE USER OF THIS PROGRAM SHOULD BE AWARE OF THE STRENGTHS, WEAKNESSES, AND LIMITATIONS OF THE WATER YIELD ESTIMATION PROCEDURE.

SEE THE WSDG USERGUIDE PROGRAM

FOR CHANGES AND UPDATES INVOLVED

WITH THE EXECUTION OF THIS PROGRAM

TO INITIATE THE USERGUIDE PROGRAM

ENTER IN DEMAND: @XQT WSDU*WSDG.USERGUIDE

WRENSS ANALYSIS IDENTIFICATION: EXAMPLE FOR REGION 4 - SNOW

NUMBER OF WATERSHEDS TO BE ANALYZED: 2

MEASUREMENT SYSTEM: ENGLISH

	WATERSHED D	ATA FOR JAMES CF	REEK - BASELI	NE		
HYDROLOGIC REGION: REGIO	ON 4, ROCKY MOUN	TAIN INLAND/INTER	RMOUNTAIN	CONI	DITION: EXISTIN	
DOMINANT PRECIPITATION:	SNOW		TOTA	L WATERSHED ARE	EA: 1901.0 ACRE	
SNOW REDISTRIBUTION: NO	T LIKELY	NUMBER OF PRESCRIPTIONS:				
	••••••	PRECIPITATION			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
SEASON	MONTHS				INCHE	
WINTER SPRING SUMMER AND FALL	OCTOBER MARCH, A JULY, A	, NOVEMBER, DECEM APRIL, MAY, JUNE JGUST, SEPTEMBER	IBER, JANUARY	, FEBRUARY	8.0 11.0 7.8	
		TION DATA FOR SU		TNF		
		TION DATA FOR SU		INE		
TOTAL PRESCRIPTION AREA:	LOCATED IN W		REEK - BASEL	INEIL IDENTIFICAT	ION:	
	LOCATED IN WA		REEK - BASEL	IL IDENTIFICAT	ION: DEPTH: 3.0 FEE	
PRESCRIPTION ASPECT: EAS	LOCATED IN WA		REEK - BASEL	IL IDENTIFICAT		
PRESCRIPTION ASPECT: EAS CANOPY OPENING IN PRESCR	LOCATED IN WA	ATERSHED: JAMES C	REEK - BASEL	IL IDENTIFICATI AVERAGE SOIL AVERAGE TREE HE	DEPTH: 3.0 FEE	
PRESCRIPTION ASPECT: EAS CANOPY OPENING IN PRESCR BASELINE COVER DENSITY:	LOCATED IN WAR	ATERSHED: JAMES C	SC NUM	IL IDENTIFICATE AVERAGE SOIL AVERAGE TREE HE BER OF SILVICUL	DEPTH: 3.0 FEE EIGHT: 70.0 FEE LTURAL STATES:	
TOTAL PRESCRIPTION AREA: PRESCRIPTION ASPECT: EAS CANOPY OPENING IN PRESCRIPTION COMPART	LOCATED IN WAR	ATERSHED: JAMES C	NUM	AVERAGE SOIL AVERAGE TREE HE BER OF SILVICUL COVER DENSITY	DEPTH: 3.0 FEE EIGHT: 70.0 FEE LTURAL STATES:	

ODECCOLDITION EVADOTDANCE DATION CHIMMADY

PRESCRIPTION EVAPOTRANSPIRATION SUMMARY

PRESCRIPTION: SUBDRAINAGE I WATERSHED: JAMES CREEK - BASELINE CONDITION: EXISTING

		STATE		AREA						BASAL			ET MOD		CHES)
SEASON	COMPARTMENT	100111													ADJ
VINTER	UNIMPACTED	FORESTED	850.0	1.000	.447	1.00	1.00	8.00	8.00	.0	.25	1.00	1.00	1.80	1.80
SPRING	UNIMPACTED	FORESTED	850.0	1.000	.447	1.00	1.00	11.00	11.00	.0	.25	1.00	1.00	7.00	7.00
SUMMER /FALL	UNIMPACTED	FORESTED	850.0	1.000	.447	1.00	1.00	7.80	7.80	.0	.25	1.00	1.00	9.01	9.01

.....

PRESCRIPTION WATER BALANCE

PRESCRIPTION: SUBDRAINAGE I WATERSHED: JAMES CREEK - BASELINE CONDITION: EXISTING

		STATE	ADJUSTED	WEIGHT	ED EVAPOTRA	NSPIRATION	WATER A	VAILABLE FOR	STREAMFLOW
SEASON	COMPARTMENT	IDENTI - FICATION	PRECIPITATION (INCHES)	STATE	PRESCRIPT	WATERSHED	STATE	PRESCRIPT	WATERSHED
WINTER	UNIMPACTED	FORESTED	8.00	1.80	1.80	.80	6.20	6.20	2.77
SPRING	UNIMPACTED	FORESTED	11.00	7.00	7.00	3.13	4.00	4.00	1.79
SUMMER /FALL	UNIMPACTED	FORESTED	7.80	9.01	9.01	4.03	-1.21*	-1.21*	54*
ANNUAL	TOTAL				17.81	7.96		8.99	4.02
* NFGAT	TVE VALUES IN	DICATE STOR	AGE DEPLETION N	OT NEGA	TIVE FLOW				

${\tt SIX}$ DAY AVERAGE PRESCRIPTION HYDROGRAPH

PRESCRIPTION: SUBDRAINAGE I WATERSHED: JAMES CREEK - BASELINE

PRESCRIPTION ASPECT: EAST ENERGY-ASPECT CLASSIFICATION: MEDIUM

ORIGIN OF FLOW	FLOW (IN)	INTERPOLATION FACTOR
FORESTER	0.00	
FORESTED	8.99	-
OPEN	•00	-
TOTAL	8.99	-

	FLOW FROM	foreste	D AREAS	FLOW FI	ROM OPEN	AREAS	INTERPOL	.TD. FLOW	TOTAL	_ FLOW
6-DAY INTERVAL	(%/100)	(IN)	(CFS)	(%/100)	(IN)	(CFS)	(IN)	(CFS)	(IN)	(CFS)
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 0 21 2 23 24 25 6 27 28 29 30 · · · ·	.0000 .0000 .0000 .0000 .0000 .0000 .0050 .0150 .0300 .0450 .0650 .1000 .1375 .1400 .1375 .1400 .0200 .0025 .0000 .0000 .0000 .0000 .0000 .0000 .0000	.00 .00 .00 .00 .00 .00 .00 .01 .13 .27 .40 .58 .90 .117 1.24 1.26 1.21 1.03 .54 .18 .02 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .27 .80 1.61 2.41 3.49 5.36 6.97 7.37 7.51 7.24 6.17 3.22 1.07 .13 .00 .00 .00 .00	.0000 .0000 .0075 .0200 .0350 .0550 .0750 .1350 .1550 .1600 .1300 .0825 .0325 .0025 .0050 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .01 .13 .27 .40 .58 .90 1.17 1.24 1.26 1.21 1.03 .54 .18 .02 .00 .00 .00 .00	.00 .00 .00 .00 .00 .27 .80 1.61 2.41 3.49 5.36 6.97 7.37 7.51 7.24 6.17 3.22 1.07 .13 .00 .00 .00
56 57 58 59 60 61	.0000 .0000 .0000 .0000 .0000	.00 .00 .00 .00 .00	.00 .00 .00 .00	.0000 .0000 .0000 .0000 .0000	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00

		PRE SCR I PT 1	ION DATA FOR SUBD	RAINAGE II		
	LOCA	TED IN WAT	TERSHED: JAMES CR	EEK - BASELI	NE	
TOTAL PRESCRIPTI	ON AREA: 463.0	ACRES		\$0	IL IDENTIFICATI	ON:
PRESCRIPTION ASP	ECT: NORTH				AVERAGE SOIL	DEPTH: 3.0 FEET
CANOPY OPENING I	N PRESCRIPTION	: NO			AVERAGE TREE HE	IGHT: 70.0 FEET
BASELINE COVER D	ENSITY: .22 PE	RCENT AS A	A DECIMAL	NUM	BER OF SILVICUL	TURAL STATES: 1
		SU	MMARY OF STATE DA	 ЧТА		
STATE IDENTIFICATION FORESTED	COMPARTMENT UNIMPACTED	(ACRES)	DOMINANT VEGETATION 	(FT2/ACRE)	COVER DENSITY (PERCENT/100)	SNOW RETENTION COEFFICIENT
			PRECIPITATION			
SEASON		MONTHS				INCHES
WINTER . SPRING SUMMER AND FALL		MARCH, A	, NOVEMBER, DECEM APRIL, MAY, JUNE JGUST, SEPTEMBER	BER, JANUARY	, FEBRUARY	9.60 11.60 8.20

										·					
				PRESCR	IPTION	EVAPO	TRANSP	IRATIO	N SUMM	ARY 					
PRESCRI	[PTION: SUBD	RAINAGE II	[WATER	SHED: 3	JAMES (CREEK -	- BASEI	INE		CC	NDITIO	N: EXI	STING
		STATE		AREA		RETEN	COEF	PRECIF	P(IN)	BASAL AREA	COVE	R DEN.		ET(IN	CHES)
SEASON	COMPARTMENT	IDENTI - FICATION	ACRES	%PRE.	%WSD.	UNADJ	ADJ	UNADJ	ADJ	AREA (FT2/A)	(%)	%CDMX	COEF.	BASE.	ADJ
WINTED	UNIMPACTED	EODESTED	462.0	1 000	244	1.00	1.00	0.60	0.60	.0		1.00	1.00	1.20	1 20
	UNIMPACTED												1.00		
	UNIMPACTED									.0			1.00		
/FALL			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,				0.00	3420		*		1.00	3.00	3.00
					PRESC	RIPTION	WATER	BALAN	ICE						
PRESCRI	PTION: SUBDE	RAINAGE II			WATER	SHED	IAMES (REEK -	. RASFI	.INE		CO	NDITION	J. FYI	TING
25.00		STATE IDENTI	- PF	ADJUST RECIPIT	TATION					TION W					
SEASON	COMPARTMEN [*]	FICATI	ION	(INCHE	ES)	STATE	PRES	SCRIPT	WATER	SHED S	TATE	PRES	CRIPT	WATER	RSHED
WINTER	UNIMPACTED	FORESTE	ED	9.6	50	1.38	1	1.38	. 3	34	8.22	8	.22	2.	.00
SPRING	UNIMPACTED	FORESTE	:D	11.6	50	6.00	6	5.00	1.4	6	5.60	5	•60	1.	36
SUMMER /FALL				8.2							86*		.86*		.21*
ANNUAL							16	.44	4.0			12	.96	3.1	6

* NEGATIVE VALUES INDICATE STTORAGE DEPLETION NOT NEGATIVE FLOW

SIX DAY AVERAGE PRESCRIPTION HYDROGRAPH

WATERSHED: JAMES CREEK - BASELINE PRESCRIPTION: SUBDRAINAGE II

ENERGY-ASPECT CLASSIFICATION: LOW PRESCRIPTION ASPECT: NORTH

> ORIGIN OF FLOW FLOW (IN) INTERPOLATION FACTOR 12.96 FORESTED .00 12.96 OPEN TOTAL

6-DAY	FLOW FROM	FORESTED	AREAS	FLOW FRO	OM OPEN A	AREAS	INTERPOLT	D. FLOW	TOTAL	FLOW
INTERVAL	(%/100)	(IN)	(CFS)	(%/100)	(IN)	(CFS)	(IN)	(CFS)	(IN)	(CFS)
1 2	.0000	.00	.00	.0000	.00	.00	.00	.00	.00	.00
2	.0000 .0000	.00 .00	.00 .00	.0000	.00	.00 .00	.00 .00	.00 .00	.00 .00	.00
3 4	.0000	.00	.00	.0025	.00	.00	.00	.00	.00	.00
5 6	.0000	•00	.00	.0100	.00	.00	.00	.00	.00	•00
6	.0000	•00	.00	.0200	.00	.00	.00	.00	.00	.00
7 8	.0000	.00 .03	.00	.0325	.00	.00 .00	.00 .00	.00	.00 .03	.00
9	.0025 .0100	.03	.11 .42	.0525 .0950	.00	.00	.00	.00 .00	.13	.11
10	.0200	.26	.84	.1425	.00	.00	.00	.00	.26	2.00
11	.0475	.62	2.00	.1550	.00	.00	.00	.00	.62	
12	.0725	.94	3.05	.1550	.00	.00	.00	.00	.94	3.05 3.89
13 14	.0925	1.20	3.89	.1400	.00	.00	.00	.00	1.20 1.36	3.89 4.42
15	.1050 .1125	1.36 1.46	4.42 4.74	.0800 .0500	.00	.00 .00	.00	.00 .00	1.46	4.74
16	.1150	1.49	4.84	.0325	.00	.00	.00	.00	1.49	4.84
17	.1150	1.49	4.84	.0200	.00	.00	.00	.00	1.49	4.84
18	.1125	1.46	4.74	.0100	.00	.00	.00	.00	1.46	4.74
19	.0975	1.26	4.11	.0025	.00	.00	.00	.00	1.26	4.11
20 21	.0550 .0250	.71 .32	2.32 1.05	.0000	.00	.00 .00	.00 .00	.00 .00	.71 .32	2.32
22	.0125	.16	.53	.0000	.00	.00	.00	.00	.16	•53
23	•0050	•06	.21	.0000	.00	.00	•00	.00	•06	.53 .21
24	.0000	.00	.00	.0000	.00	.00	.00	.00	.00	.00
25 26	.0000	.00	.00	•0000	.00	.00	•00	.00	•00	.00
26 27	.0000 .0000	.00 .00	.00 .00	.0000	.00 .00	.00 .00	.00	.00 .00	.00 .00	.00
28	.0000	•00	.00	.0000	.00	.00	.00	.00	.00	.00
29 30	.0000	.00	.00	.0000	.00	.00	.00	.00	•00	.00
30	.0000	•00	•00	.0000	.00	.00	.00	•00	.00	.00
•	•	•	•	•	•	•	•	•	•	•
	•	•		•		•	•			•
56	.0000	•00	.00	.0000	.00	.00	.00	.00	.00	.00
57 58	.0000	•00	.00	.0000	.00	.00	.00	.00	.00	.00
	.0000 .0000	.00 .00	.00 .00	.0000 .0000	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00
59 60	.0000	•00	.00	.0000	.00	.00	.00	.00	.00	
61	.0000	.00	.00	.0000	.00	.00	.00	.00	.00	.00

		PRESCRIPT	ION DATA FOR SUB	DRAINAGE III		
	LOC	CATED IN WA	ATERSHED: JAMES C	CREEK - BASEL	INE	
TOTAL PRESCRIPT	ION AREA: 588.0	ACRES		SO	IL IDENTIFICATI	ON:
PRESCRIPTION AS	PECT: WEST				AVERAGE SOIL	DEPTH: 3.0 FEET
CANOPY OPENING	IN PRESCRIPTION	4: NO			AVERAGE TREE HE	IGHT: 70.0 FEET
BASELINE COVER	DENSITY: .18 PE	ERCENT AS A	A DECIMAL	NUM	BER OF SILVICUL	TURAL STATES: 1
		9	SUMMARY OF STATE	ΠΔΤΔ		
		S -	SUMMARY OF STATE	DATA		
STATE IDENTIFICATION	COMPARTMENT	-	DOMINANT VEGETATION		COVER DENSITY (PERCENT/100)	SNOW RETENTION COEFFICIENT
		AREA (ACRES)	DOMINANT VEGETATION	BASAL AREA (FT2/ACRE)		
IDENTIFICATION		AREA (ACRES)	DOMINANT VEGETATION LODGEPOLE PINE	BASAL AREA (FT2/ACRE)		1.00
IDENTIFICATION		AREA (ACRES)	DOMINANT VEGETATION LODGEPOLE PINE	BASAL AREA (FT2/ACRE)	.18	1.00
IDENTIFICATION		AREA (ACRES)	DOMINANT VEGETATION LODGEPOLE PINE	BASAL AREA (FT2/ACRE)	.18	1.00

PRESCRIPTION EVAPOTRANSPIRATION SUMMARY PRESCRIPTION: SUBDRAINAGE III WATERSHED: JAMES CREEK - BASELINE CONDITION: EXISTING _______ RETEN.COEF. PRECIP.(IN) BASAL COVER DEN. STATE AREA ET(INCHES) ----- ET MOD IDENTI- -----AREA SEASON COMPARTMENT FICATION ACRES %PRE. %WSD. UNADJ ADJ UNADJ ADJ (FT2/A) (%) %CDMX COEF. BASE. ADJ WINTER UNIMPACTED FORESTED 588.0 1.000 .309 1.00 1.00 8.00 8.00 .0 .18 1.00 1.00 1.80 1.80 1.00 1.00 7.00 7.00 SPRING UNIMPACTED FORESTED 588.0 1.000 .309 1.00 1.00 11.00 11.00 .0 . 18 SUMMER UNIMPACTED FORESTED 588.0 1.000 .309 1.00 1.00 7.80 7.80 .0 .18 1.00 1.00 9.01 9.01 /FALL PRESCRIPTION WATER BALANCE PRESCRIPTION: SUBDRAINAGE III WATERSHED: JAMES CREEK - BASELINE CONDITION: EXISTING _______ STATE ADJUSTED WEIGHTED EVAPOTRANSPIRATION WATER AVAILABLE FOR STREAMFLOW IDENTI -PRECIPITATION FICATION SEASON COMPARTMENT STATE PRESCRIPT WATERSHED PRESCRIPT WATERSHED (INCHES) STATE WINTER UNIMPACTED .56 **FORESTED** 8.00 1.80 1.80 6.20 6.20 1.92 SPRING UNIMPACTED 2.17 4.00 1.24 FORESTED 11.00 7.00 7.00 4.00 SUMMER UNIMPACTED FORESTED 7.80 9.01 9.01 2.79 -1.21* -1.21* -.37* /FALL 2.78 ANNUAL TOTAL 17.81 5.51 8.99

* NEGATIVE VALUES INDICATE STORAGE DEPLETION NOT NEGATIVE FLOW

SIX DAY AVERAGE PRESCRIPTION HYDROGRAPH

PRESCRIPTION: SUBDRAINAGE III WATERSHED: JAMES CREEK - BASELINE

PRESCRIPTION ASPECT: WEST ENERGY-ASPECT CLASSIFICATION: MEDIUM

ORIGIN OF FLOW	FLOW (IN)	INTERPOLATION FACTOR
FORESTED OPEN	8.99 .00	-
TOTAL	8.99	

6-DAY	FLOW FROM	M FORESTE	ED AREAS	FLOW F	ROM OPEN	AREAS	INTERPO	_TD. FLOW	TOTAL	. FLOW
INTERVAL	(%/100)	(IN)	(CFS)	(%/100)	(IN)	(CFS)	(IN)	(CFS)	(IN)	(CFS)
1	.0000	.00	.00	.0000	.00	00	.00	.00	.00	•00
1 2	.0000	.00	.00	.0000	.00	.00	.00	.00	•00	.00
3 4	.0000	.00	.00 .00	.0075 .0200	.00	.00 .00	.00	.00 .00	.00 .00	.00 .00
5	.0000	.00	.00	.0350	.00	.00	.00	.00	.00	.00
6 7	.0000 .0050	.00 .04	.00 .19	.0550 .0750	.00 .00	.00 .00	.00 .00	.00 .00	.00 .04	.00 .19
8 9	.0150	.13 .27	•56 1•11	.0950 .1350	.00	.00 .00	.00	.00 .00	.13 .27	.56 1.11
10	.0300 .0450	.40	1.67	.1550	.00 .00	.00	.00	.00	.40	1.67
11 12	.0650 .1000	•58 •90	2.41 3.71	.1600 .1300	.00	.00 .00	.00 .00	.00 .00	•58 •90	2.41 3.71
13	.1300	1.17	4.82	.0825	.00	.00	.00	•00	1.17	4.82
14 15	.1375 .1400	1.24	5.10 5.19	.0325 .0125	.00 .00	.00 .00	.00 .00	.00 .00	1.24 1.26	5.10 5.19
16	.1350	1.21	5.01	.0050	.00	.00	.00	.00	1.21	5.01
17 18	.1150 .0600	1.03 .54	4.27 2.23	.0000	.00 .00	.00 .00	.00 .00	.00 .00	1.03 .54	4.27 2.23
19 20	.0200 .0025	.18	.74 .09	.0000	.00	.00 .00	.00 .00	.00 .00	.18 .02	.74 .09
21 22	.0000	.00	.00	.0000	.00	.00	.00	.00	.00	•00
22 23	.0000	.00	.00 .00	.0000	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00
23 24	.0000	.00	.00	.0000	.00	.00	.00	.00	.00	.00
25 26	.0000	.00 .00	.00 .00	.0000	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00
27 28	.0000	.00	.00 .00	.0000	.00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00
29	.0000	.00	.00	.0000	.00	.00	.00	.00	.00	.00
30	.0000	.00	.00	.0000	.00	.00	.00	.00	.00	.00
•	•	•	•			•	•	•	•	•
56	.0000	.00	.00	.0000	.00	.00	.00	.00	.00	.00
57 58	.0000	.00	.00 .00	.0000	.00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00
59	.0000	.00	.00	.0000	.00	.00	.00	•00	•00	.00
60 61	.0000	.00	.00 .00	.0000	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00

WATE	RSHED WATER	BALANCE SUM	1ARY						
WATERSHED: JAMES CREEK - BASELINE CONDITION: EXISTING									
PRESCRIPTION IDENTIFICATION	ANNUAL EV		ANNUAL ST						
SUBDRAINAGE I	17.81	7.96	8.99	4.02					
SUBDRAINAGE II	16.44	4.00	12.96	3.16					
SUBDRAINAGE III	17.81	5.51	8.99	2.78					
TOTAL		17.47		9.96					

SIX DAY AVERAGE WATERSHED HYDROGRAPH

FOR

JAMES CREEK - BASELINE

.....

ORIGIN OF FLOW	FLOW (IN)	INTERPOLATION FACTOR
FORESTED	9.96	-
OPEN	• 00	-
TOTAL	9.96	-

6 DAY	FORES	TED FLOW	OPE	N FLOW	INTERPO	LTD. FLOW	TOTA	AL FLOW
6-DAY INTERVAL	(IN)	(CFS)	(IN)	(CFS)	(IN)	(CFS)	(IN)	(CFS)
1 2	.00 .00	•00 •00	.00 .00	.00 .00	.00 .00 .00	.00 .00	.00 .00 .00	.00 .00
3 4 5 6	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00
7 8 9	.03 .11	.45 1.47 3.14	.00 .00	.00 .00	.00 .00	.00 .00 .00	.03 .11 .24	.45 1.47 3.14
10 11 12	.37 .59 .91	4.92 7.90 12.12	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.37 .59 .91	4.92 7.90 12.12
13 14 15	1.18 1.27 1.31	15.69 16.90 17.44	.00 .00	.00 .00	.00 .00	.00 .00	1.18 1.27 1.31	15.69 16.90 17.44
16 17 18	1.28 1.15 .76	17.09 15.27 10.18	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	1.28 1.15 .76 .44	17.09 15.27 10.18 5.92
19 20 21 22	.44 .19 .08 .04	5.92 2.54 1.05 .53	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.19 .08 .04	2.54 1.05 .53
23 24	.02 .00	.21 .00	.00 .00	.00 .00	.00 .00	.00 .00 .00	.02 .00 .00	.21 .00 .00
25 26 27 28	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00	.00 .00	.00 .00
29 30	.00	.00 .00	.00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00
56 57	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	• 00 • 00	.00 .00	.00 .00
57 58 59 60	.00 .00	.00 .00 .00	.00 .00 .00	.00 .00	.00 .00 .00	.00 .00	.00 .00	.00 .00
61	.00	.00	.00	.00	.00	.00	.00	.00

	WATERSHED DATA FOR JAMES CREEK - PROPOSED					
HYDROLOGIC REGION: REG	ION 4, ROCKY MOUNTAIN INLAND/INTERMOUNTAIN CONDIT	TION: PROPOSED - A				
DOMINANT PRECIPITATION	: SNOW TOTAL WATERSHED A	REA: 1901.0 ACRES				
SNOW REDISTRIBUTION: LIKELY NUMBER OF PRESCRIPTION						
SNOW REDISTRIBUTION: L	IKELY NUMBER OF	PRESCRIPTIONS: 3				
SNOW REDISTRIBUTION: L	PRECIPITATION	PRESCRIPTIONS: 3				
SNOW REDISTRIBUTION: LSEASON		PRESCRIPTIONS: 3				

PRESCRIPTION DATA FOR SUBDRAINAGE I

LOCATED IN WATERSHED: JAMES CREEK - PROPOSED

TOTAL PRESCRIPTION AREA: 850.0 ACRES

A: 850.0 ACRES SOIL IDENTIFICATION:

CANOPY OPENING IN PRESCRIPTION: YES

PRESCRIPTION ASPECT: EAST

AVERAGE TREE HEIGHT: 70.0 FEET

AVERAGE SOIL DEPTH: 3.0 FEET

BASELINE COVER DENSITY: .25 PERCENT AS A DECIMAL

NUMBER OF SILVICULTURAL STATES: 3

SUMMARY OF STATE DATA

STATE IDENTIFICATION	COMPARTMENT	AREA (ACRES)	DOMINANT VEGETATION		COVER DENSITY (PERCENT/100)	SNOW RETENTION COEFFICIENT
UNIMPACTED	UNIMPACTED	110.0	LODGEPOLE PINE	.0	.25	1.00
FOR. IMPACTED	FORESTED IMPACTED	370.0	LODGEPOLE PINE	.0	.25	-1.00*
CLEARCUT	IMPACTED	370.0	LODGEPOLE PINE	.0	.00	-1.00*

^{*} NEGATIVE VALUES INDICATE UNSPECIFIED SNOW RETENTION COEFFICIENTS.

._____

PRESCRIPTION EVAPOTRANSPIRATION SUMMARY

PRESCRIPTION: SUBDRAINAGE I WATERSHED: JAMES CREEK - PROPOSED CONDITION: PROPOSED - A

		STATE IDENTI -		AREA		RETEN		PRECIF	P.(IN)	BASAL AREA		R DEN.	ET MOD	ET(IN	CHES)
SEASON	COMPARTMENT	FICATION	ACRES	%PRE.		UNADJ	ADJ	UNADJ	ADJ	(FT2/A)		%CDMX		BASE.	ADJ
WINTER WINTER WINTER	UNIMPACTED F.IMPACTED IMPACTED	UNIMPACTED F. IMPACTED CLEARCUT		.129 .435 .435	.058 .195 .195	1.00 1.00 1.27	1.00 .73 1.27	8.00 8.00 8.00	8.00 5.80 10.20	.0 .0 .0	.25 .25	1.00 1.00 .00	1.00 1.00 .60	1.80 1.80 1.80	1.80 1.80 1.08
SPRING SPRING SPRING	UNIMPACTED F.IMPACTED IMPACTED	UNIMPACTED F.IMPACTED CLEARCUT		.129 .435 .435	.058 .195 .195	1.00 1.00 1.27	.73	11.00 11.00 11.00	11.00 7.98 14.02	•0 •0 •0	.25 .25 .00	1.00 1.00 .00	1.00 1.00 1.08	7.00 6.02 7.00	7.00 6.02 7.52
SUM/FALL	UNIMPACTED F.IMPACTED IMPACTED	UNIMPACTED F.IMPACTED CLEARCUT		.129 .435 .435	.058 .195 .195	1.00 1.00 1.00	1.00 1.00 1.00	7.80 7.80 7.80	7.80 7.80 7.80	.0 .0 .0	.25 .25 .00	1.00 1.00 .00	1.00 1.00 .52	9.01 9.01 9.01	9.01 9.01 4.73

PRESCRIPTION WATER BALANCE

PRESCRIPTION: SUBDRAINAGE I WATERSHED: JAMES CREEK - PROPOSED CONDITION: PROPOSED - A

		STATE IDENTI -	ADJUSTED PRECIPITATION	WEIGHT	ED EVAPOTRA	NSPIRATION	WATER A	AVAILABLE FOR	STREAMFLOW
SEASON	COMPARTMENT		(INCHES)	STATE	PRESCRIPT	WATERSHED	STATE	PRESCRIPT	WATERSHED
WINTER	UNIMPACTED	UNIMPACTED	8.00	1.80	.23	.10	6.20	.80	.36
WINTER	F.IMPACTED	FOR.IMPACTED	5.80	1.80	.78	.35	4.00	1.74	.78
WINTER	IMPACTED	CLEARCUT	10.20	1.08	.47	.21	9.12	3.97	1.78
SPRING	UNIMPACTED	UNIMPACTED	11.00	7.00	.91	.41	4.00	.52	.23
SPRING	F.IMPACTED	FOR.IMPACTED	7.98	6.02	2.62	1.17	1.95	.85	.38
SPRING	IMPACTED	CLEARCUT	14.02	7.52	3.28	1.46	6.50	2.83	1.27
SUM/FALL	UNIMPACTED	UNIMPACTED	7.80	9.01	1.17	.52	-1.21*	16*	07*
	F.IMPACTED	FOR.IMPACTED	7.80	9.01	3.92	1.75	-1.21*	52*	23*
	IMPACTED	CLEARCUT	7.80	4.73	2.06	.92	3.07	1.34	.60
ANNUAL T	OTAL				15.43	6.90		11.37	5.08

^{*} NEGATIVE VALUES INDICATE STORAGE DEPLETION NOT NEGATIVE FLOW.

SIX DAY AVERAGE PRESCRIPTION HYDROGRAPH

PRESCRIPTION: SUBDRAINAGE I WATERSHED: JAMES CREEK - PROPOSED

PRESCRIPTION ASPECT: EAST ENERGY-ASPECT CLASSIFICATION: MEDIUM

ORIGIN OF FLOW	FLOW (IN)	INTERPOLATION FACTOR
FORESTED	3.23	-
OPEN	8.14 11.37	. -

6-DAY	FLOW FROM	M FORESTE	D AREAS	FLOW F	ROM OPEN	AREAS	INTERPOL	TD. FLOW	TOTAL	L FLOW
INTERVAL	(%/100)	(IN)	(CFS)	(%/100)	(IN)	(CFS)	(IN)	(CFS)	(IN)	(CFS)
1	2000	00	00	0000	00	00	00	00	00	•00
1 2	.0000 .0000	.00 .00	.00 .00	.0000	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .36
3 4	.0000	.00 .00	.00 .00	.0075 .0200	.06 .16	.36 .97	.00 .00	.00 .00	.06 .16	.36
5 6	.0000	•00	.00	.0350	.28	1.70	.00	.00	.28	.97 1.70
6 7	.0000 .0050	.00 .02	.00 .10	.0550 .0750	.45 .61	2.67 3.64	.00 .00	.00 .00	.45 .63	2.67 3.73
7 8	.0150	•05	.29	.0950	.77	4.61	.00	.00	.82	4.90 7.13
9 10	.0300 .0450	.10 .15	•58 •87	.1350 .1550	1.10 1.26	6.55 7.52	.00 .00	.00 .00	1.20 1.41 1.51	8.39 9.01
11 12	.0650 .1000	.21	1.25 1.93	.1600 .1300	1.30	7.76 6.31	.00 .00	.00 .00	1.51 1.38	9.01 8.23
13 14	.1300	.42	2.50	.0825	.67	4.00	.00	.00	1.09	8.23 6.51
14 15 16	.1375 .1400	.44 .45	2.65 2.70	.0325 .0125	.26 .10	1.58 .61	.00 .00	.00 .00	.71 .55	4.22 3.30
16 17	.1350 .1150	.44 .37	2.60 2.21	.0050 .0000	.04	.24 .00	.00 .00	.00 .00	.48 .37	2.84 2.21
18	.0600	.19	1.16	.0000	.00	.00	.00	.00	.19	1.16
19 20	.0200 .0025	.06 .01	.39 .05	.0000	.00 .00	.00 .00	.00 .00	.00 .00	.06 .01	.39 .05
21 22	.0000	.00	.00	.0000	.00	.00	.00	•00	.00	.00
23	.0000	.00 .00	.00 .00	.0000	.00 .00	.00 .00	.00	.00 .00	.00	.00
24 25	.0000	.00 .00	.00 .00	.0000 .0000	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00
26	.0000	.00	.00	.0000	.00	.00	.00	.00	.00	.00
27 28	.0000	.00 .00	.00 .00	.0000	.00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00
29 30	.0000	.00 .00	.00 .00	.0000	.00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00
•	•	• • •	• • • •	• • •	•	• • •	•	•	• • •	•00
•	•	•	•	•	•	•	•	•	•	:
5 6	.0000	.00	.00	.0000	.00	.00 .00	.00	.00 .00	.00 .00	.00
57 58	.0000 .0000	.00 .00	.00 .00	.0000	•00	.00	.00	.00	.00	.00
59 60	.0000	.00 .00	.00 .00	.0000	.00 .00	.00 .00	.00 .00	.00 .00	.00	.00
61	.0000	.00	.00	.0000	.00	.00	.00	.00	.00	.00

	PRES	SCRIPTIO	N DATA FOR SUBDE	RAINAGE II			
	LOCATED	IN WATE	RSHED: JAMES CRE	EEK - PROPOS	SED		
TOTAL PRESCRIPT	ION AREA: 463.0 ACRI	SO	OIL IDENTIFICAT	ION:			
PRESCRIPTION AS	PECT: NORTH		AVERAGE SOIL	DEPTH: 3.0 FEET			
CANOPY OPENING	IN PRESCRIPTION: YES	S		1	AVERAGE TREE HE	IGHT: 70.0 FEET	
BASELINE COVER	DENSITY: .22 PERCEN	T AS A D	ECIMAL	NUM	BER OF SILVICUL	TURAL STATES: 3	
	COMPARTMENT	AREA (ACRES)		BASAL AREA (FT2/ACRE)	(PERCENT/100)	COEFFICIENT	
FOR. IMPACTED CLEARCUT	UNIMPACTED FORESTED IMPACTED IMPACTED	189.0 189.0	LODGEPOLE PINE LODGEPOLE PINE	.0 .0	•22 •22 •00	-1.00* -1.00*	
* NEGATIVE VALU	ES INDICATE UNSPECI	FIED SNO	W RETENTION COE	FFICIENTS.			
SEASON	MO	NTHS				INCHES	
OCTOBER, NOVEMBER, DECEMBER, JANUARY, FEBRUARY 9.6 SPRING MARCH, APRIL, MAY, JUNE 11.6 SUMMER AND FALL JULY, AUGUST, SEPTEMBER 8.2							

PRESCRIPTION EVAPOTRANSPIRATION SUMMARY

PRESCRIPTION: SUBDRAINAGE II WATERSHED: JAMES CREEK - PROPOSED CONDITION: PROPOSED - A

		STATE IDENTI -		AREA		RETEN.	COEF.	PRECIF		BASAL AREA		R DEN.	ET MOD	ET(IN	CHES)
SEASON	COMPARTMENT	FICATION	ACRES	%PRE.	%WSD.	UNADJ	ADJ	UNADJ	ADJ	(FT2/A)		%CDMX	COEF.		ADJ
WINTER WINTER WINTER	UNIMPACTED F.IMPACTED IMPACTED	UNIMPACTED F.IMPACTED CLEARCUT	85.0 189.0 189.0	.408	.045 .099 .099	1.00 1.00 1.27	1.00 .73 1.27	9.60 9.60 9.60	9.60 6.96 12.24	.0 .0 .0	.22 .22 .00	1.00 1.00 .00	1.00 1.00 .60	1.38 1.38 1.38	1.38 1.38 .83
SPRING SPRING SPRING	UNIMPACTED F.IMPACTED IMPACTED	UNIMPACTED F.IMPACTED CLEARCUT	85.0 189.0 189.0		.045 .099 .099	1.00 1.00 1.27	.73	11.60 11.60 11.60	8.41	.0 .0	.22 .22 .00	1.00 1.00 .00	1.00 1.00 1.10	6.00 5.42 6.00	6.00 5.42 6.60
SUM/FALL	UNIMPACTED F.IMPACTED IMPACTED	UNIMPACTED F.IMPACTED CLEARCUT	85.0 189.0 189.0	.184 .408 .408	.045 .099 .099	1.00 1.00 1.00	1.00 1.00 1.00	8.20 8.20 8.20	8.20 8.20 8.20	•0 •0 •0	.22 .22 .00	1.00 1.00 .00	1.00 1.00 .45	9.06 9.06 9.06	9.06 9.06 4.08

PRESCRIPTION WATER RALANCE

PRESCRIPTION WATER BALANCE

PRESCRIPTION: SUBDRAINAGE II WATERSHED: JAMES CREEK - PROPOSED CONDITION: PROPOSED - A

		STATE IDENTI -	ADJUSTED PRECIPITATION	WEIGHT	ED EVAPOTRA	NSPIRATION	WATER AVAILABLE FOR STREAMFLOW			
SEASON	COMPARTMENT	FICATION	(INCHES)	STATE	PRESCRIPT	WATERSHED	STATE	PRESCRIPT	WATERSHED	
WINTER	UNIMPACTED	UNIMPACTED	9.60	1.38	.25	.06	8.22	1.51	.37	
WINTER	F.IMPACTED	F.IMPACTED	6.96	1.38	.56	.14	5.58	2.28	.55	
WINTER	IMPACTED	CLEARCUT	12.24	.83	.34	.08	11.41	4.66	1.13	
SPRING	UNIMPACTED	UNIMPACTED	11.60	6.00	1.10	.27	5.60	1.03	.25	
SPRING	F.IMPACTED	F.IMPACTED	8.41	5.42	2.21	.54	2.99	1.22	.30	
SPRING	IMPACTED	CLEARCUT	14.79	6.60	2.69	.66	8.19	3.34	.81	
SUM/FALL	UNIMPACTED	UNIMPACTED	8.20	9.06	1.66	.40	86*	16*	04*	
SUM/FALL	F.IMPACTED	F.IMPACTED	8.20	9.06	3.70	.90	86*	35*	09*	
SUM/FALL	IMPACTED	CLEARCUT	8.20	4.08	1.66	.41	4.12	1.68	.41	
ANNUAL TO	TAL	_			14.19	3.46		15.21	3.71	

^{*} NEGATIVE VALUES INDICATE STORAGE DEPLETION NOT NEGATIVE FLOW.

SIX DAY AVERAGE PRESCRIPTION HYDROGRAPH

PRESCRIPTION: SUBDRAINAGE II WATERSHED: JAMES CREEK - PROPOSED

PRESCRIPTION ASPECT: NORTH ENERGY-ASPECT CLASSIFICATION: LOW

ORIGIN OF FLOW FLOW (IN) INTERPOLATION FACTOR

FORESTED 5.53 OPEN 9.69 -

15.21

TOTAL

INTERPOLTD. FLOW TOTAL FLOW FLOW FROM FORESTED AREAS FLOW FROM OPEN AREAS 6-DAY (%/100) (IN) (CFS) (%/100) (IN) (CFS) (IN) (CFS) (IN) (CFS) INTERVAL .00 .00 .00 .00 .00 .00 .00 .02 .08 .10 .31 .19 .63 .0000 .00 .00 .00 .00 .0000 .00 .00 .00 .00 .0000 .00 .00 .0000 .00 .00 .00 .00 3 4 .0000 .00 .00 .0000 .00 .00 .00 .00 .00 .00 .02 .0025 .08 .0000 .00 .00 •00 .00 .10 .31 5 .0000 .0100 .00 .00 .19 6 .0000 .00 .0200 .63 .0000 .0325 .31 1.02 .31 1.02 7 .00 .51 .00 1.70 .04 .52 8 .00 .0025 .01 1.65 .92 .00 .00 . 18 .06 .0950 2.99 .98 3.17 9 .0100 .36 10 .11 .1425 1.49 .0200 1.38 4.48 .00 1.76 11 .0475 .26 .85 .1550 1.50 4.88 .00 .1550 .00 .0725 1.30 1.50 4.88 .00 1.90 12 .40 .00 .00 1.87 .51 .1400 6.06 13 .0925 1.66 1.36 4.40 .77 14 .1050 .0800 2.52 .00 .00 1.36 4.40 .58 1.89 .00 3.59 1.11 15 .0500 1.57 .00 .1125 .62 2.02 .48 .31 .95 16 .1150 .64 2.06 .0325 1.02 .00 .00 3.09 . 19 .63 .1150 .00 .00 .83 .64 .0200 2.69 17 2.06 .00 .72 .0100 .10 .31 .00 2.33 18 .1125 .62 2.02 .0025 .02 .08 19 .0975 1.75 .00 .00 .56 .54 .30 20 .0000 .0550 .30 .99 .00 .00 .00 .00 .99 .45 .0250 .14 .0000 .00 .00 .14 .45 21 .00 .00 22 .00 .00 .22 .00 .07 .0125 .07 .0000 .00 .00 .00 .09 .0000 .0050 .00 .00 .03 .09 23 .03 .00 24 .00 .0000 .0000 .00 .00 .00 .00 .00 .00 .00 25 26 .0000 .0000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0000 .00 .0000 .00 .00 .00 .00 .00 .00 .00 .00 .0000 .00 .00 27 28 .00 .00 .00 .0000 .0000 .00 .00 .0000 .00 .00 .00 .00 .00 .00 .00 .00 29 30 .0000 .00 .00 .0000 .00 .00 .00 .00 .00 .0000 .00 .00 .0000 .00 .00 .00 .00 .00 • • . . • • • • . • . .00 .00 .00 .00 .00 .0000 56 .0000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0000 .00 .00 57 .0000 .00 58 .00 .0000 .00 .0000 .00 .00 .00 .00 .00 59 60 .0000 .00 .00 .00 .00 .00 .0000 .00 .00 .00 .0000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0000 .0000 .00 .00 .00 .00

			N DATA FOR SUBD RSHED: JAMES CI		SED	
TOTAL PRESCRIPT	ION AREA: 588.0 ACR	ES		S	OIL IDENTIFICAT	ION:
PRESCRIPTION AS	PECT: WEST		AVERAGE SOIL	DEPTH: 3.0 FEET		
CANOPY OPENING	IN PRESCRIPTION: YE	S			AVERAGE TREE HE	IGHT: 70.0 FEET
BASELINE COVER	DENSITY: .18 PERCEN	T AS A D	ECIMAL	NUM	BER OF SILVICUL	TURAL STATES: 3
	COMPARTMENT	(ACRES)	VEGETATION	(FT2/ACRE)	(PERCENT/100)	COEFFICIENT
IDENTIFICATION		(ACRES)	VEGETATION	(FT2/ACRE)	(PERCENT/100)	
FOR. IMPACTED CLEARCUT	UNIMPACTED FORESTED IMPACTED IMPACTED	172.0 172.0	LODGEPOLE PINI LODGEPOLE PINI	.0	.18 .18 .00	1.00 -1.00* -1.00*
* NEGATIVE VALU	ES INDICATE UNSPECI	FIED SNO		FFICIENTS.		
			PRECIPITATION			
SEASON	MO	NTHS				INCHES
WINTER SPRING SUMMER AND FALL	MΑ	OVEMBER, DECEMI IL, MAY, JUNE ST, SEPTEMBER	BER, JANUARY	, FEBRUARY	8.00 11.00 7.80	

PRESCRIPTION EVAPOTRANSPIRATION SUMMARY

PRESCRIPTION: SUBDRAINAGE III WATERSHED: JAMES CREEK - PROPOSED - A

		STATE IDENTI-			RETEN.COEF. PRECIP.(IN)		BASAL COVER DEN.		ET(INCHES)						
SEASON	COMPARTMENT	FICATION	ACRES	%PRE.		UNADJ		UNADJ	ADJ	(FT2/A)	(%)	%CDMX		BASE.	ADJ
WINTER WINTER WINTER	UNIMPACTED F.IMPACTED IMPACTED	UNIMPACTED F.IMPACTED CLEARCUT		.415 .293 .293	.090	1.00 1.00 1.27	1.00 .73 1.27	8.00	8.00 5.80 10.20	.0 .0	.18 .18	1.00	1.00 1.00 .60	1.80 1.80 1.80	1.80 1.80 1.08
SPRING SPRING SPRING	UNIMPACTED F.IMPACTED IMPACTED	UNIMPACTED F.IMPACTED CLEARCUT		.415 .293 .293	.128 .090 .090	1.00 1.00 1.27	.73	11.00 11.00 11.00	11.00 7.98 14.02	•0 •0 •0	.18 .18	1.00	1.00 1.00 1.08	7.00 6.02 7.00	7.00 6.02 7.52
	UNIMPACTED F.IMPACTED IMPACTED	UNIMPACTED F.IMPACTED CLEARCUT	244.0 172.0 172.0	.415 .293 .293	.128 .090 .090	1.00 1.00 1.00	1.00 1.00 1.00	7.80 7.80 7.80	7.80 7.80 7.80	•0 •0 •0	.18 .18 .00	1.00	1.00 1.00 .52	9.01 9.01 9.01	9.01 9.01 4.73

PRESCRIPTION WATER BALANCE

PRESCRIPTION: SUBDRAINAGE III WATERSHED: JAMES CREEK - PROPOSED CONDITION: PROPOSED - A

		STATE IDENTI-			ED EVAPOTRA	INSPIRATION	WATER AVAILABLE FOR STREAM			
SEASON	COMPARTMENT	FICATION			PRESCRIPT	WATERSHED	STATE	PRESCRIPT	WATERSHED	
WINTER	UNIMPACTED	UNIMPACTED	8.00	1.80	.75	.23	6.20	2.57	.80	
WINTER	F.IMPACTED	F.IMPACTED	5.80	1.80	.53	.16	4.00	1.17	.36	
WINTER	IMPACTED	CLEARCUT	10.20	1.08	.32	.10	9.12	2.67	.83	
SPRING	UNIMPACTED	UNIMPACTED	11.00	7.00	2.90	.90	4.00	1.66	.51	
SPRING	F.IMPACTED	F.IMPACTED	7.98	6.02	1.76	.55	1.95	.57	.18	
SPRING	IMPACTED	CLEARCUT	14.02	7.52	2.20	.68	6.50	1.90	.59	
SUM/FALL	UNIMPACTED	UNIMPACTED	7.80	9.01	3.74	1.16	-1.21*	50*	15*	
	F.IMPACTED	F.IMPACTED	7.80	9.01	2.63	.81	-1.21*	35*	11*	
	IMPACTED	CLEARCUT	7.80	4.73	1.38	.43	3.07	.90	.28	
ANNUAL T	OTAL				16.21	5.01		10.59	3.27	

^{*} NEGATIVE VALUES INDICATE STORAGE DEPLETION NOT NEGATIVE FLOW.

SIX DAY AVERAGE PRESCRIPTION HYDROGRAPH

PRESCRIPTION: SUBDRAINAGE III WATERSHED: JAMES CREEK - PROPOSED

PRESCRIPTION ASPECT: WEST ENERGY-ASPECT CLASSIFICATION: MEDIUM

ORIGIN OF FLOW FLOW (IN) INTERPOLATION FACTOR

ORIGIN OF FLOW FLOW (IN) INTERPOLATION FORESTED 5.12 - OPEN 5.47 - TOTAL 10.59 -

6-DAY	FLOW FROM	M FORESTE	D AREAS	FLOW F	ROM OPEN	AREAS	INTERPOL	TD. FLOW	TOTA	L FLOW
INTERVAL	(%/100)	(IN)	(CFS)	(%/100)	(IN)	(CFS)	(IN)	(CFS)	(IN)	(CFS)
1 2	.0000	•00	.00	.0000	.00	.00	•00	.00	.00	•00
3	.0000 .0000	.00	.00 .00	.0000 .0075	.00 .04	.00 .17	.00 .00	.00 .00	.00 .04	.00 .17
4	.0000	.00	.00	.0200	.11	.45	.00	.00	.11	
5 6	.0000	.00	•00	.0350	. 19	.79	•00	•00	.19	.45 .79
	.0000	.00	•00	.0550	.30	1.24	•00	•00	-30	1.24 1.80
7 8	.0050 .0150	.03 .08	.11 .32	.0750 .0950	.41 .52	1.69 2.14	.00 .00	.00 .00	.44 .60	2.46
9	.0300	.15	.63	.1350	.74	3.04	•00	•00	.89	3.68
10	.0450	.23	.95	.1550	•85	3.50	.00	•00	1.08	4.45 4.98
11	.0650	.33	1.37	.1600	.87	3.61	•00	.00	1.21	
12 13	.1000 .1300	.51 .67	2.11 2.75	.1300 .0825	.71 .45	2.93 1.86	.00 .00	.00 .00	1.22	5.04 4.61
14	.1375	.70	2.75	.0325	.18	.73	.00	•00	.88	3.64
15	.1400	.72	2.96	.0125	•07	.28	•00	•00	.79	3.24
16	.1350	.69	2.85	.0050	.03	.11	.00	•00	.72	2.96
17 18	.1150 .0600	.59 .31	2.43 1.27	.0000 .0000	.00	.00 .00	.00 .00	.00 .00	.59 .31	2.43 1.27
19	.0200	.10	.42	.0000	.00	•00	.00	•00	.10	.42
20	.0025	.01	.05	.0000	.00	•00	.00	•00	.01	•05
21	.0000	.00	.00	.0000	.00	.00	•00	•00	•00	•00
22 23	.0000 .0000	.00	.00	.0000	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00
23 24	.0000	.00 .00	.00 .00	.0000	.00	•00	.00	•00	.00	•00
25	•0000	.00	.00	.0000	.00	.00	•00	.00	.00	•00
26	.0000	.00	.00	.0000	.00	•00	.00	•00	•00	•00
27 28	.0000 .0000	.00 .00	.00 .00	.0000 .0000	.00 .00	.00 .00	.00 .00	•00 •00	.00 .00	.00 .00
29	.0000	.00	.00	.0000	.00	.00	•00	•00	.00	.00
30	.0000	.00	.00	.0000	.00	.00	.00	.00	.00	.00
•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•
56	.0000	•00	.00	.0000	.00	.00	.00	•00	.00	.00
57	.0000	.00	.00	.0000	.00	•00	.00	•00	•00	• 00
58	.0000	.00	.00	.0000	.00	•00	•00	•00	•00	•00
59 60	.0000	.00 .00	.00 .00	.0000 .0000	.00 .00	.00 .00	.00 .00	.00 .00	•00 •00	.00 .00
61	.0000	.00	.00	.0000	•00	•00	•00	•00	•00	.00

WATER	SHED WATER	BALANCE	SUMMARY		
WATERSHED: JAMES CREEK	- PROPOSED		CONDITION:	PROF	POSED - A
PRESCRIPTION IDENTIFICATION		VAPOTRANS WEIGHTED			TREAMFLOW WEIGHTED
SUBDRAINAGE I	15.43	6.90	11	.37	5.08
SUBDRAINAGE II	14.19	3.46	15	.21	3.71
SUBDRAINAGE III	16.21	5.01	10	.59	3.27
TOTAL		15.37			12.06

SIX DAY AVERAGE WATERSHED HYDROGRAPH

FOR

JAMES CREEK - PROPOSED

ORIGIN OF FLOW	FLOW (IN)	INTERPOLATION FACTOR
FORESTED	4.37	-
OPEN	7.69	-
IATOT	12.06	-

6-DAY	FORESTED FLOW		OPEN	FLOW	INTERPOL	TD. FLOW	TOTAL	FLOW
INTERVAL	(IN)	(CFS)	(IN)	(CFS)	(IN)	(CFS)	(IN)	(CFS)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 5 5 5 7 5 8 9 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	.00 .00 .00 .00 .00 .00 .00 .00 .16 .26 .40 .52 .56 .50 .33 .19 .08 .02 .01 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .20 .65 1.39 2.18 3.48 5.34 6.91 7.44 7.67 7.52 6.71 4.44 2.56 1.09 .45 .22 .09 .00 .00 .00	.00 .00 .04 .11 .21 .34 .48 .63 .94 1.16 1.22 1.06 .77 .36 .18 .10 .05 .02 .01 .00 .00 .00 .00 .00 .00 .00	.00 .00 .53 1.50 2.80 4.54 6.35 8.40 12.58 15.50 16.25 14.11 10.27 4.83 2.46 1.38 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .04 .11 .21 .34 .49 .68 1.05 1.33 1.48 1.46 1.29 .92 .76 .67 .55 .36 .20 .08 .03 .02 .01 .00 .00 .00 .00	.00 .03 .53 1.50 2.80 4.54 6.55 9.05 13.97 17.67 19.45 17.18 12.26 10.13 8.89 7.34 4.76 2.64 1.09 .45 .22 .09 .00 .00 .00 .00

2.2 EXAMPLE 2

The rain-dominated, 8800 acre Trout Creek watershed is analyzed twice in this example. The first watershed analysis represents a baseline condition where only one prescription with one state (forested) is applied. The prescription, hence the watershed in this example, is assumed to behave hydrologically as though it had only one aspect (Northeast), one soil type and depth (sandy loam, 2.5 feet), one baseline leaf area index (40), one tree species (Douglas fir) and one precipitation regime. The user has gauged flow records and, therefore, supplies a flow duration curve (DISTRIBUTION input cards) instead of defaulting to the regional flow duration curve.

As part of an analysis for alternative management scenarios for this watershed, the user wishes to examine water yield at a point 12 years in the future. At that time, portions of the area are anticipated to be partially recovered, hydrologically, from harvest activities which were presumed to have occurred during the intervening time period. Thus, the second watershed analysis describes the proposed condition by using one prescription and four states. These four states must be identified so that the proposed condition at year 12 can evaluate the clearcuts which have had an opportunity to recover hydrologically. Therefore, three of the states describe the old clearcuts (12, 7, and 3 years) which have recovered to various degrees as indicated by their residual basal area (10, 6, and 3, respectively). The fourth state describes the remainder of the watershed which is yet to be harvested.

In using the DISTRIBUTION input option (i.e., user-supplied flow duration curve), the total streamflow computed by the WET model for each analysis is compared with the total streamflow entered on a DISTRIBUTION card which in this case is 36.5 inches. The ratio of the two values is then used to adjust the user-supplied flow duration curve.

A listing of the input data and resultant WET output for this example may be obtained by submitting the following commands.

@PRT,S WSDU*SAM.WETDATA5B @XQT WSDU*WATER.WET @ADD WSDU*SAM.WETDATA5B

EXAMPLE 2 - INPUT

Col 5	10	15	20	25	30	35	40	45	50	55	5	60	65	70	75	80
	I	ŀ	1	[-		1		-					ļ		
WRENSSA WATERSA DISTRIE DISTRIE	HED TR BUTION BUTION	0UT (CREEK .0 .0	- BAS 6. 3.	ELINE 3 2			5 18	2 800.0	2 0 1	0	12121	20)		
DISTRIE DISTRIE DISTRIE	BUTION BUTION	20 30 40	.0	•	8 6											
DISTRIE DISTRIE DISTRIE DISTRIE	BUTION BUTION BUTION	50 60 70 80	.0 .0 .0	•	5 4 3 2											
DISTRIE DISTRIE DISTRIE PRECIPI	BUTION BUTION		.0			. 0	00		00	0.0	,	00				
PRESCRI STATE F	PTION	O BAS			8800	.0 .026 .0880	.00 40.0		.00 0 0 3 2	.00		00. SANDY 0.		I	2.5	12
WATERSH	IED TR	OUT (- PRO	POSED				800.0			22121	20)		
DISTRIE			.0	6.												
DISTRIE		10 20		3. 2.												
DISTRIE DISTRIE		30			8											
DISTRIE		40			6											
DISTRI		50			5											
DISTRI		60			4											
DISTRI		70			3											
DISTRI		80	.0		2											
DISTRI	BUTION	90	.0		1											
DISTRI	BUTION	100	.0		0											
DISTRI			.0	36.												
PRECIP				2.0 13		0.0	.00		.00	.00		.00				
PRESCR:			OPOSE				40.0			.0		SANDY			2.5	41
STATE F				640.0		.0610			0 3 2		.0	.0				
STATE (610.0		.0 90			0 1 1		.0	.0				
STATE (6 6.0		.0 90			0 1 1 0 1 1		.0	.0				
SIAIL (JUI- 3	1 K		0 3.0	0	.0 90	.0	•	0 1 1		• 0	.0				

WSDU*WATER.WET PROGRAM

WATERSHED SYSTEMS DEVELOPMENT GROUP FEBRUARY 1984

THIS PROGRAM IS A COMPUTERIZED VERSION OF THE HYDROLOGY PROCEDURE AS DESCRIBED IN THE HANDBOOK "AN APPROACH TO WATER RESOURCES EVALUATION NON-POINT SILVICULTURE SOURCES" (WRENSS). FOR A MORE DETAILED EXPLANATION OF THIS OUTPUT CONSULT THE HYDROLOGY CHAPTER IN THE HANDBOOK. THE USER OF THIS PROGRAM SHOULD BE AWARE OF THE STRENGTHS, WEAKNESSES, AND LIMITATIONS OF THE WATER YIELD ESTIMATION PROCEDURE.

SEE THE WSDG USERGUIDE PROGRAM

FOR CHANGES AND UPDATES INVOLVED

WITH THE EXECUTION OF THIS PROGRAM

TO INITIATE THE USERGUIDE PROGRAM

ENTER IN DEMAND: @XQT WSDU*WSDG.USERGUIDE

WRENS ANALYSIS IDENTIFICATION: DISTRIBUTION CARD EXAMPLE

NUMBER OF WATERSHEDS TO BE ANALYZED: 2

MEASUREMENT SYSTEM: ENGLISH

	WATERSHE	ED DATA FOR TROU	JT CREEK - BASELI	NE 	
HYDROLOGIC REGION	: PROVINCE 5, NORTH	HWEST PROVINCE -P	PACIFIC COAST	CONDIT	ION: EXISTIN
DOMINANT PRECIPIT	ATION: RAIN		TOTAL	L WATERSHED AREA:	8800.0 ACRE
TYPE OF FLOW ANAL	YSIS: NOT APPLICABL	-E	LATITUDE: .0	NUMBER OF PRE	SCRIPTIONS:
		PRECIPITA	TION		
SEASON	MONTHS				INCHE
FALL WINTER SPRING SUMMER	SEPTEM DECEME MARCH,	MBER, OCTOBER, NO BER, JANUARY, FEB , APRIL, MAY JULY, AUGUST	OVEMBER BRUARY		27.0 32.0 13.0 5.0
	PR	ESCRIPTION DATA F			
	PR	ESCRIPTION DATA FIN WATERSHED: TRO	FOR BASELINE OUT CREEK - BASEL		
FOTAL PRESCRIPTIO	PR	ESCRIPTION DATA FIN WATERSHED: TRO	FOR BASELINE OUT CREEK - BASEL	INE	
	PR LOCATED I N AREA: 8800.0 ACRE	ESCRIPTION DATA FIN WATERSHED: TRO	FOR BASELINE OUT CREEK - BASEL	I NE	N: SANDY LOAM
PRESCRIPTION ASPE	PR LOCATED I N AREA: 8800.0 ACRE	ESCRIPTION DATA FIN WATERSHED: TRO	FOR BASELINE OUT CREEK - BASEL	INE DIL IDENTIFICATIO	N: SANDY LOAF PTH: 2.5 FEE
PRESCRIPTION ASPE CANOPY OPENING IN	PR LOCATED I N AREA: 8800.0 ACRE CT: NORTHEAST PRESCRIPTION: NO	ESCRIPTION DATA FIN WATERSHED: TRO	FOR BASELINE OUT CREEK - BASEL	INE DIL IDENTIFICATIO AVERAGE SOIL DE	N: SANDY LOAF PTH: 2.5 FEE IGHT: .0 FEE
PRESCRIPTION ASPE CANOPY OPENING IN	PR LOCATED I N AREA: 8800.0 ACRE CT: NORTHEAST PRESCRIPTION: NO	ESCRIPTION DATA FIN WATERSHED: TRO	FOR BASELINE OUT CREEK - BASEL SO	INE DIL IDENTIFICATIO AVERAGE SOIL DE AVERAGE TREE HE	N: SANDY LOAI PTH: 2.5 FEE IGHT: .0 FEE
PRESCRIPTION ASPE CANOPY OPENING IN BASELINE LEAF ARE	PR LOCATED I N AREA: 8800.0 ACRE CT: NORTHEAST PRESCRIPTION: NO	ESCRIPTION DATA F	FOR BASELINE OUT CREEK - BASEL SO NUMBER ATE DATA	INE DIL IDENTIFICATIO AVERAGE SOIL DE AVERAGE TREE HE BER OF SILVICULTU	N: SANDY LOAM PTH: 2.5 FEE IGHT: .0 FEET RAL STATES:
PRESCRIPTION ASPE CANOPY OPENING IN	PR LOCATED I N AREA: 8800.0 ACRE CT: NORTHEAST PRESCRIPTION: NO	ESCRIPTION DATA FIN WATERSHED: TRO	FOR BASELINE OUT CREEK - BASEL SO NUMI	INE DIL IDENTIFICATIO AVERAGE SOIL DE AVERAGE TREE HE BER OF SILVICULTU	N: SANDY LOAM PTH: 2.5 FEE IGHT: .0 FEE RAL STATES:

PRESCRIPTION EVAPOTRANSPIRATION SUMMARY

PRESCRIPTION: BASELINE WATERSHED: TROUT CREEK - BASELINE CONDITION: EXISTING

SEASON COMPARTMENT	STATE IDENTI- FICATION	(AC)	AREA %PRE.	%WSD.	PRECIP.	BASAL AREA (FT2/A)	LEAF AREA INDEX	ET MODIFIER COEF.	ROOT MODIFIER COEF.	ET (I	ADJ
FALL UNIMPACTED	FORESTED	8800.0	1.000	1.000	27.00	.0	40.00	1.00	.94	9.45	8.89
WINTER UNIMPACTED	FORESTED	8800.0	1.000	1.000	32.00	•0	40.00	1.00	1.00	7.13	7.13
SPRING UNIMPACTED	FORESTED	8800.0	1.000	1.000	13.00	•0	40.00	1.00	1.00	12.01	12.01
SUMMER UNIMPACTED	FORESTED	8800.0	1.000	1.000	5.00	•0	40.00	1.00	.98	10.28	10.06

PRESCRIPTION WATER BALANCE

PRESCRIPTION: BASELINE WATERSHED: TROUT CREEK - BASELINE

CONDITION: EXISTING

DOCCIDITATION	EVAPOTRAN	ISPIRATION	WATER AVAILABLE FOR STREAMFLOW		
(IN)	(IN)	WEIGHTED	(IN)	WEIGHTED	
27.00	8.89	8.89	18.11	18.11	
32.00	7.13	7.13	24.87	24.87	
13.00	12.01	12.01	.99	.99	
5.00	10.06	10.06	-5.06*	-5.06*	
77.00	38.08	38.08	38.92	38.92	
	27.00 32.00 13.00 5.00	PRECIPITATION (IN) (IN) 27.00 8.89 32.00 7.13 13.00 12.01 5.00 10.06	27.00 8.89 8.89 32.00 7.13 7.13 13.00 12.01 12.01 5.00 10.06 10.06	PRECIPITATION (IN) (IN) WEIGHTED (IN) 27.00 8.89 8.89 18.11 32.00 7.13 7.13 24.87 13.00 12.01 12.01 .99 5.00 10.06 10.06 -5.06*	

^{*} NEGATIVE VALUES INDICATE STORAGE DEPLETION NOT ACTUAL FLOW. ------

WATERSHED WATER BALANCE SUMMARY _____

WATERSHED: TROUT CREEK - BASELINE CONDITION: EXISTING

PRESCRIPTION IDENTIFICATION	(INCHES)		ANNUAL STA	
BASELINE	38.08	38.08	38.92	38.92
TOTAL		38.08		38.92

7-DAY AVERAGE FLOW DURATION CURVE

WATERSHED: TROUT CREEK - BASELINE

TOTAL STREAMFLOW: 38.9 IN REGIONAL STREAMFLOW: 36.5 IN

ADJUSTMENT RATIO: 1.066 CONDITION: EXISTING

POINT NUMBER	% EQUALED OR EXCEEDED	REGIONAL FLOW (IN)	PREDICTED FLOW (IN/7 DAYS)	PREDICTED FLOW (CFS)
1	•0	6.3	6.7	354.8
2	10.0	3.2	3.4	180.2
3	20.0	2.0	2.1	112.6
4	30.0	.8	.9	45.1
5	40.0	.6	.6	33.8
6	50.0	•5	.5	28.2
7	60.0	. 4	. 4	22.5
8	70.0	.3	.3	16.9
9	80.0	.2	.2	11.3
10	90.0	.1	.1	5.6
11	100.0	.0	.0	.0

	WATERSHED	DATA FOR TROU	IT CREEK - PROPOSE	D	
HYDROLOGIC REGION: P DOMINANT PRECIPITATI TYPE OF FLOW ANALYSI	ON: RAIN	EST PROVINCE -P	TOTAL	CONDITION: WATERSHED AREA: NUMBER OF PRES	
		PRECIPITA	TION		
SEASON FALL WINTER SPRING SUMMER	DECEMI MARCH				INCHES 27.00 32.00 13.00 5.00
		CRIPTION DATA	FOR PROPOSED OUT CREEK - PROPO	SED	
TOTAL PRESCRIPTION A PRESCRIPTION ASPECT: CANOPY OPENING IN PR BASELINE LEAF AREA I	NORTHEAST ESCRIPTION: YES		NUM	OIL IDENTIFICATION AVERAGE SOIL DEP AVERAGE TREE HEI BER OF SILVICULTUR	PTH: 2.5 FEET GGHT: .0 FEET RAL STATES: 4
		SUMMARY OF ST.			
STATE IDENTIFICATION	COMPARTMENT	AREA (ACRES)	ΠΩΜΙΝΔΝΤ	BASAL AREA (FT2/ACRE)	LEAF AREA
FORESTED CUT-12YR CUT- 7YR CUT- 3YR	UNIMPACTED IMPACTED IMPACTED IMPACTED	6100.0 900.0 900.0 900.0	DOUGLAS-FIR DOUGLAS-FIR	.0 .0 .0	40.00 10.00 6.00 3.00

PRESCRIPTION EVAPOTRANSPIRATION SUMMARY

PRESCRIPTION: PROPOSED WATERSHED: TROUT CREEK - PROPOSED CONDITION: PROPOSED - A

		STATE IDENTI-		AREA		PRECIP.	BASAL AREA	LEAF AREA	ET	ROOT		(IN)
SEASON	COMPARTMENT		(AC)	%PRE.	%WSD.	(IN)	(FT2/A)		COEF.	COEF.	BASE.	ADJ
FALL FALL	UNIMPACTED IMPACTED	FORESTED CUT-12YR	6100.0 900.0	.693 .102	.693 .102	27.00 27.00	.0	40.00 10.00	1.00 .95	.94 .94	9.45 9.45	6.16 .87
FALL	IMPACTED	CUT- 7YR	900.0	.102	.102	27.00	.0	6.00 3.00	.89 .79	.94	9.45 9.45	.81
FALL	IMPACTED	CUT- 3YR	900.0	.102	.102	27.00						
	UNIMPACTED IMPACTED	FORESTED CUT-12YR	6100.0 900.0	.693 .102	.693 .102	32.00 32.00	.0 .0	40.00 10.00	1.00 .67	1.00 1.00	7.13 7.13	4.94 .49
WINTER	IMPACTED IMPACTED	CUT - 7YR CUT - 3YR	900.0	.102	.102	32.00 32.00	.0	6.00 3.00	•53 •40	1.00 1.00	7.13 7.13	.39
											12.01	8.32
	UNIMPACTED IMPACTED	FORESTED CUT-12YR	6100.0 900.0	.693 .102	.693 .102	13.00 13.00	.0 .0	40.00 10.00	1.00 .80		12.01	.98
	IMPACTED IMPACTED	CUT- 7YR CUT- 3YR	900.0 900.0	.102 .102	.102 .102	13.00 13.00	.0 .0	6.00 3.00	.67 .50	1.00 1.00	12.01 12.01	.83 .61
	UNIMPACTED	FORESTED	6100.0	•693	•693	5.00	•0	40.00	1.00	•98	10.28	6.97
SUMMER	IMPACTED	CUT-12YR	900.0	.102	.102	5.00	.0	10.00	•98	•98	10.28	1.01
	IMPACTED IMPACTED	CUT- 7YR CUT- 3YR	900.0 900.0	.102 .102	.102 .102	5.00 5.00	.0 .0	6.00 3.00	.94 .84	.98 .98	10.28 10.28	.96 .86

PRESCRIPTION WATER BALANCE

PRESCRIPTION: PROPOSED WATERSHED: TROUT CREEK - PROPOSED CONDITION: PROPOSED - A

	DDFCIDITATION		SPIRATION	WATER AVAILABLE FOR STREAMFLOW		
SEASON	PRECIPITATION (IN)	(IN)	WEIGHTED	(IN)	WEIGHTED	
FALL	27.00	8.55	8.55	18.45	18.45	
WINTER	32.00	6.11	6.11	25.89	25.89	
SPRING	13.00	10.75	10.75	2.25	2.25	
SUMMER	5.00	9.80	9.80	-4.80*	-4.80*	
ANNUAL	77.00	35.21	35.21	41.79	41.79	

^{*} NEGATIVE VALUES INDICATE STORAGE DEPLETION NOT ACTUAL FLOW.

WATERSHED WATER BALANCE SUMMARY

WATERSHED: TROUT CREEK - PROPOSED CONDITION: PROPOSED - A

PRESCRIPTION IDENTIFICATION	ANNUAL EVAPOTRANS (INCHES) WEIGHTED		ANNUAL STREAMFLOW (INCHES) WEIGHTED		
PROPOSED	35.21	35.21	41.79	41.79	
TOTAL		35.21		41.79	

7-DAY AVERAGE FLOW DURATION CURVE

WATERSHED: TROUT CREEK - PROPOSED

TOTAL STREAMFLOW: 41.8 IN

REGIONAL STREAMFLOW: 36.5 IN

ADJUSTMENT RATIO: 1.145

CONDITION: PROPOSED - A

POINT NUMBER	% EQUALED OR EXCEEDED	REGIONAL FLOW (IN)	PREDICTED FLOW (IN/7 DAYS)	PREDICTED FLOW (CFS)
1	•0	6.3	7.2	381.0
2	10.0	3.2	3.7	193.5
3	20.0	2.0	2.3	120.9
4	30.0	.8	.9	48.4
5	40.0	.6	.7	36.3
6	50.0	•5	•6	30.2
7	60.0	•4	.5	24.2
8	70.0	•3	.3	18.1
9	80.0	•2	•2	12.1
10	90.0	.1	.1	6.0
11	100.0	.0	•0	•0

2.3 EXAMPLE 3

This example illustrates how two options in the WET program can be used to analyze changes due to proposed silvicultural activities on site-specific flow duration curves and on streamflows at specific dates of occurence. These two options use the least squares technique (see pages III.45-61 in WRENSS) instead of the evapotranspiration procedure used in the previous two examples.

The user in this case wishes to evaluate what effects to a critical fish habitat might be expected from a 50 percent reduction in watershed Leaf Area Index (a change from 6.0 to 3.0). The user's specific concern is for a particular location which has gauged flow records, and three representative dates as defined by the fisheries biologist. Thus we find one simulation of 144.2 hectare, rain dominated Grits Creek in which FLOW DURATION, FDCURVE, and CHANGE cards are used in the WET program.

A listing of the input data and resultant WET output for this example may be obtained by submitting the following commands.

- @PRT,S WSDU*SAM.WETDATA2B
- @XOT WSDU*WATER.WET
- @ADD WSDU*SAM.WETDATA2B

EXAMPLE 3 - INPUT

Co1 5	10	15 20	25	30	35	40	45	50	55	60	65	70	75	80
WATERSI PRECIPE PRESCRE STATE I	10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0	TS CREE 23.3 GRITS- O	K EXIST 75.2 60 EXISTIN 8 6.0 3.0	ΓΙΝG).5 27 NG 144	7.0	.00 6.0	2 1 1 ² .0	1 1 14.2 0 00 .0 3 2	1 0	10 01 .00 DCLAY		35.0	1.2	12

WSDU*WATER.WET PROGRAM

WATERSHED SYSTEMS DEVELOPMENT GROUP FEBRUARY 1984

THIS PROGRAM IS A COMPUTERIZED VERSION OF THE HYDROLOGY PROCEDURE AS DESCRIBED IN THE HANDBOOK "AN APPROACH TO WATER RESOURCES EVALUATION NON-POINT SILVICULTURE SOURCES" (WRENSS). FOR A MORE DETAILED EXPLANATION OF THIS OUTPUT CONSULT THE HYDROLOGY CHAPTER IN THE HANDBOOK. THE USER OF THIS PROGRAM SHOULD BE AWARE OF THE STRENGTHS, WEAKNESSES, AND LIMITATIONS OF THE WATER YIELD ESTIMATION PROCEDURE

WRENS ANALYSIS IDENTIFICATION: FDCURVE/CHANGE CARDS EXAMPLE
NUMBER OF WATERSHEDS TO BE ANALYZED: 1
MEASUREMENT SYSTEM: METRIC

	WATERSHED DATA FOR	GRITS CREEK EXISTING	
HYDROLOGIC REGION:	REGION 2, APPALACHIAN MOUNTA	INS AND HIGHLANDS	CONDITION: EXISTING
DOMINANT PRECIPITAT	ION: RAIN	TOTAL WA	TERSHED AREA: 144.2 HECTARES
TYPE OF FLOW ANALYS	IS: SPECIFIC CHANGES & CURVE	LATITUDE: 35.0	NUMBER OF PRESCRIPTIONS: 1
	PRFC		
SEASON	MONTHS		CM
FALL WINTER SPRING SUMMER	SEPTEMBER, OCTO DECEMBER, JANUA MARCH, APRIL, M JUNE, JULY, AUG	RY, FEBRUARY AY	23.30 75.20 60.50 27.00

PRESCRIPTION DATA FOR GRITS-EXISTING LOCATED IN WATERSHED: GRITS CREEK EXISTING

SOIL IDENTIFICATION: CLAY LOAM

AVERAGE SOIL DEPTH: 1.2 METERS

AVERAGE TREE HEIGHT: .O METERS

NUMBER OF SILVICULTURAL STATES: 1

TOTAL PRESCRIPTION AREA: 144.2 HECTARES

PRESCRIPTION ASPECT: SOUTHWEST

CANOPY OPENING IN PRESCRIPTION: NO

BASELINE LEAF AREA INDEX: 6.00

SUMMARY OF STATE DATA

STATE IDENTIFICATION	COMPARTMENT	AREA (HECTARES)	DOMINANT VEGETATION	BASAL AREA (M2/HA)	LEAF AREA INDEX
FORESTED	UNIMPACTED	144.2	DECIDUOUS	.0	6.00

PRESCRIPTION EVAPOTRANSPIRATION SUMMARY

PRESCRIPTION: GRITS-EXISTING WATERSHED: GRITS CREEK EXISTING

CONDITION: EXISTING

	STATE IDENTI-		AREA		PRECIP.	BASAL AREA	LEAF AREA	ET	ROOT	ET (CM)
SEASON COMPARTMENT		(HA)	%PRE.	%WSD.	(CM)	(M2/HA)	INDEX	COEF.			ADJ
FALL UNIMPACTED	FORESTED	144.2	1.000	1.000	23.30	.0	6.00	1.00	1.00	19.22	19.17
WINTER UNIMPACTED	FORESTED	144.2	1.000	1.000	75.20	.0	6.00	1.00	1.00	8.78	8.78
SPRING UNIMPACTED	FORESTED	144.2	1.000	1.000	60.50	.0	6.00	1.00	1.00	12.83	12.83
SUMMER UNIMPACTED	FORESTED	144.2	1.000	1.000	27.00	•0	6.00	1.00	1.00	37.89	37.80

PRESCRIPTION WATER BALANCE

PRESCRIPTION: GRITS-EXISTING WATERSHED: GRITS CREEK EXISTING CONDITION: EXISTING

	DOCCIDITATION	EVAPOTRAN	ISPIRATION	WATER AVAILABLE FOR STREAMFLOW			
SEASON	PRECIPITATION (CM)	(CM)	WEIGHTED	(CM)	WEIGHTED		
FALL	23.30	19.17	19.17	4.13	4.13		
WINTER	75.20	8.78	8.78	66.42	66.42		
SPRING	60.50	12.83	12.83	47.67	47.67		
SUMMER	27.00	37.80	37.80	-10.80*	-10.80*		
ANNUAL	186.00	78.58	78.58	107.42	107.42		

^{*} NEGATIVE VALUES INDICATE STORAGE DEPLETION NOT ACTUAL FLOW.

WATERSHED WATER BALANCE SUMMARY -----

WATERSHED: GRITS CREEK EXISTING CONDITION: EXISTING

PRESCRIPTION IDENTIFICATION	ANNUAL EVAPOTRANS (CM) WEIGHTED	ANNUAL STREAMFLOW (CM) WEIGHTED
GRITS-EXISTING	78.58 78.58	107.42 107.42
TOTAL	78.58	107.42

7-DAY AVERAGE FLOW DURATION CURVE

WATERSHED: GRITS CREEK EXISTING

WATERSHED ASPECT CODE: 1.0 LEAF AREA INDEX CHANGE: 3.0

RELATIVE ROOTING DEPTH: .98 CONDITION: EXISTING

B0 = -.03 B1 = -.03 B2 = .13 B3 = .02 B4 = .03

POINT NUMBER	% EQUALED OR EXCEEDED	EXISTING FLOW (CM)	FLOW CHANGE (CM)	PROPOSED FLOW (CM)	PROPOSED FLOW (M3/S)
1	•0	13.1	•02	13.1	.3127
2	10.0	3.9	.29	4.2	.1000
3	20.0	2.8	.33	3.1	.0745
4	30.0	2.0	• 35	2.3	.0560
5	40.0	1.8	.36	2.2	.0514
6	50.0	1.0	.38	1.4	•0329
7	60.0	.7	.39	1.1	.0260
8	70.0	•6	.39	1.0	•0236
9	80.0	. 4	.40	.8	.0190
10	90.0	.3	.40	.7	.0167
11	100.0	•0	.41	.4	.0098

CHANGES IN FLOW FOR SPECIFIC DATES AND EXISTING FLOW LEVELS

FOR

GRITS CREEK EXISTING

WATERSHED ASPECT CODE: 1.0 AVERAGE REGIONAL ROOTING DEPTH: 1.2 METERS

RELATIVE ROOTING DEPTH: .985 AVERAGE WATERSHED ROOTING DEPTH: 1.2 METERS

CALCULATION NUMBER	CHANGE IN LEAF AREA INDEX	DAY NUMBER	SINE DAY	EXISTING FLOW (CM)	CHANGE IN FLOW (CM)	PROPOSED FLOW (CM)	PROPOSED FLOW(M3/S)
1	3.00	90.	3.000	10.00	3.98	13.98	.33
2	3.00	180.	2.043	10.00	2.86	12.86	.31
3	3.00	270.	1.002	10.00	1.64	11.64	.28

3.0 EXAMPLE OF THE WET-INLONG PROGRAM

This example illustrates the use of the interactive data-entry WET-INLONG program to generate a WET input data set. The responses to the prompted questions listed in this example will be used to create the following WET input data file. This data set is the same WET input used for the first watershed analysis in Example 1 of this Report.

Col 5	10	15	20 2	5 3	0 35	5 40	45	50	55	60	65	70	75	80
											T			
WRENSSA	ANALYSIS	S EXA	MPLE F	OR RE	GION 4	1 - SNO	W	1	2					
WATERSH	HED JAME	ES CR	EEK -	BASEL	INE		4 219	01.0	2 3 2	10 01	00	.0		
PRECIPI	TATION	8.	0 11.0	7.8	.0	.00		00	.00	.00				
PRESCR I	[PTIONO:	SUBDR	AINAGE	I	850.03	30 .25	.0		.0 70.0)			3.0	12
STATE F	ORESTE)	1	.25	.0	850.0	.0	3 2	.0	1.00 ()			
PRESCRI	PTION1S	SUBDR	AINAGE	ΙΙ	463.01	lO .22	.0		.0 70.0)			3.0	12
PRECIPI	TATION	9.	6 11.6	8.2	.0	.00		00	.00	.00				
STATE F	ORESTE)	1	.22	.0	463.0	.0	3 2	.0	1.00 ()			
PRESCRI	PTION1S	SUBDR.	AINAGE	III	588.07	70 .18	.0		.0 70.0)			3.0	12
PRECIPI	TATION	8.	0 11.0	7.8	.0	.00		00	.00	.00				
STATE F	ORESTE)	1	.18	.0	588.0	.0	3 2	.0	1.00 ()			

After becoming accustomed to the WET-INLONG program, the user may desire to speed up the question-and-answer process by using a program called WSDU*WATER.WET-INSHORT. This program is a modified version of the WET-INLONG program. It prompts the user for input without the use of explanatory notes or listing of possible answers as found in the WET-INLONG program. However, outside of the differences in how the questions are presented, the WSDU*WATER.WET-INSHORT program is identical to the WSDU*WATER.WET-INLONG program in producing a WET input data set. Additional information about the WET-INSHORT program may be obtained from the following sources: WSDG-AD-00007, "WSDU*WATER.WET: The Computerized Version of Chapter III - Hydrology - of the WRENSS Handbook," and the WSDU*WSDG.USERGUIDE program.

>@XOT WSDU*WATER.WET-INLONG

WSDU*WATER.WET-INLONG PROGRAM WATERSHED SYSTEMS DEVELOPMENT GROUP FEBRUARY 1984

THIS PROGRAM CREATES A DATA FILE (CARDS) FOR INPUT TO THE WET PROGRAM. IF YOU HAVE ANY QUESTIONS ABOUT THE OPERATION OF THIS PROGRAM, PLEASE USE THE WSDG USERGUIDE PROGRAM. TO INITIATE THIS PROGRAM ENTER: @XQT WSDU*WSDG.USERGUIDE FOLLOWING TERMINATION OF THE WET-INLONG PROGRAM.

THE INPUT DATA FILE CREATED BY THIS PROGRAM IS WRITTEN TO UNIT 10. IF YOU WOULD LIKE TO EDIT ANY OF THE PARAMETERS YOU ENTERED DURING EXECUTION OF THIS PROGRAM, YOU MAY DO SO FOLLOWING COMPLETION OF THE PROGRAM BY ENTERING @ED,U 10.

NOTE: IF MORE THAN ONE INPUT DATA VALUE IS ENTERED ON ONE LINE. INSERT ONE OR MORE BLANK SPACES TO SEPARATE DATA VALUES.

ENTER WRENSS ANALYSIS IDENTIFICATION (MAX. 30 CHARACTERS). >EXAMPLE FOR REGION 4 - SNOW

ENTER THE NUMBER OF WATERSHEDS OR ANALYSIS FOR THIS WRENSS ANALYSIS RUN (MAX. VALUE: 999) >1

ENTER THE SYSTEM OF MEASUREMENT USED FOR THIS WRENSS ANALYSIS RUN 1=METRIC 2=ENGLISH >2

ENTER HYDROLOGIC REGION OR PROVINCE CODE NUMBER. >4

***** WATERSHED/ANALYSIS NUMBER 1 *****

ENTER WATERSHED/ANALYSIS IDENTIFICATION (MAX. 30 CHARACTERS). >JAMES CREEK - BASELINE

ENTER WATERSHED/ANALYSIS AREA IN ACRES OR HECTARES (MAX. VALUE: 9999.9) >1901

DOMINANT PRECIPITATION CODE: 1=RAIN 2=SNOW HYDROLOGIC REGIONS 2 AND 3 ARE RAIN-DOMINATED. HYDROLOGIC REGIONS 1 AND 4 ARE SNOW-DOMINATED. REGIONS 5, 6, AND 7 COULD BE EITHER. >2

ENTER SNOW REDISTRIBUTION CODE: 1=LIKELY 2=NOT LIKELY ENTER NUMBER OF PRESCRIPTIONS (MAX. VALUE: 20) ENTER CANOPY OPENING CODE FOR WATERSHED: 1=OPEN 2=NOT OPEN ENTER STREAMFLOW DISTRIBUTION INPUT CODE: O=NO INPUT 1=NORMALIZED BASELINE 6 DAY AVERAGE WATERSHED HYDROGRAPH FOLLOWS 2=BASELINE REGIONAL 7 DAY AVERAGE FLOW DURATION CURVE FOLLOWS >0 ENTER CONDITION CODE FOR WATERSHED: 1=EXISTING, 2=PROPOSED A, 3=PROPOSED B, . . . (MAX. 9 CONDITIONS). >1 ENTER FOUR SEASONAL PRECIPITATION VALUES FOR WATERSHED IN INCHES OR CENTIMETERS (MAX. VALUE: 999.9) IF REGION HAS ONLY THREE SEASONS, ENTER ZERO FOR THE FOURTH SEASON >8.0 11.0 7.8 0 DO YOU WANT TO ENTER BASELINE SEASONAL ET? (1=YES 2=NO) IF YOU CHOOSE NO, WET WILL DEFAULT TO WRENSS VALUES. ***** WATERSHED/ANALYSIS NUMBER 1 ***** ***** PRESCRIPTION NUMBER 1 ***** ENTER PRESCRIPTION IDENTIFICATION (MAX. 15 CHARACTERS). >SUBDRATNAGE I ENTER PRESCRIPTION AREA IN ACRES OR HECTARES (MAX. VALUE: 9999.9) >850 ENTER PRESCRIPTION ASPECT CODE: 1=N 2=NE 3=E 4=SE 5=S 6=SW 7=W 8=NW >3 DO YOU WISH TO ENTER BASELINE COVER DENSITY (BCD) OR ESTIMATE IT BY BASAL AREA? 1=BCD 2=ESTIMATE BY BASAL AREA >1 ENTER BASELINE COVER DENSITY (MAX. VALUE: .99)

>.25

ENTER AVERAGE TREE HEIGHT IN FEET OR METERS (MAX. VALUE: 399.9) >70.

SOIL DEPTH HAS NO SIGNIFICANCE IN SNOW-DOMINATED REGIONS, BUT WET REQUIRES THIS PARAMETER. ENTER AVERAGE SOIL DEPTH IN FEET OR METERS (MAX. VALUE: 12.9) >3.

ENTER NUMBER OF SILVICULTURAL STATES IN PRESCRIPTION
(MAX. VALUE: 50)
>1

ENTER CANOPY OPENING CODE FOR PRESCRIPTION: 1=OPEN 2=NOT OPEN >2

IS PRESCRIPTION PRECIPITATION DIFFERENT THAN MOST RECENT PRECIPITATION DATA ENTERED (1=YES 2=NO)? >2

***** WATERSHED/ANALYSIS NUMBER 1 *****

***** PRESCRIPTION NUMBER 1 *****

***** STATE NUMBER 1 *****

ENTER STATE IDENTIFICATION (MAX. 15 CHARACTERS). >FORESTED

ENTER DOMINANT VEGETATION CODE FOR STATE:
1=LODGEPOLE PINE 2=SPRUCE-FIR
3=PONDEROSA PINE 4=WESTERN LARCH
5=HEMLOCK-SPRUCE 6=DOUGLAS FIR
7=CONIFEROUS 8=DECIDUOUS 9=MIXED
>1

ENTER COVER DENSITY (MAX. VALUE: .99) >.25

ENTER AREA OF SILVICULTURAL STATE IN ACRES OR HECTARES (MAX. VALUE: 9999.9) >850

UNLESS THE USER SPECIFIES THE SNOW RETENTION COEFFICIENT, WET ALLOWS EACH PRESCRIPTION ONLY ONE IMPACTED STATE AND ONE FORESTED IMPACTED STATE. ENTER COMPARTMENT CODE 1=IMPACTED 2=FORESTED IMPACTED 3=UNIMPACTED >3

ENTER CANOPY OPENING CODE FOR STATE: 1=OPEN 2=NOT OPEN >2

ENTER SNOW RETENTION COEFFICIENT (MAX. VALUE: 2.00) IF UNKNOWN ENTER: -1 >1.0

***** WATERSHED/ANALYSIS NUMBER 1 *****
**** PRESCRIPTION NUMBER 2 *****

ENTER PRESCRIPTION IDENTIFICATION (MAX. 15 CHARACTERS). >SUBDRAINAGE II

ENTER PRESCRIPTION AREA IN ACRES OR HECTARES (MAX. VALUE: 9999.9) > 463

ENTER PRESCRIPTION ASPECT CODE: 1=N 2=NE 3=E 4=SE 5=S 6=SW 7=W 8=NW >1

DO YOU WISH TO ENTER BASELINE COVER DENSITY (BCD) OR ESTIMATE IT BY BASAL AREA?
1=BCD 2=ESTIMATE BY BASAL AREA
>1

ENTER BASELINE COVER DENSITY (MAX. VALUE: .99) > .22

ENTER AVERAGE TREE HEIGHT IN FEET OR METERS (MAX. VALUE: 399.9) >70.

ENTER AVERAGE SOIL DEPTH IN FEET OR METERS (MAX. VALUE: 12.9) >3.

ENTER NUMBER OF SILVICULTURAL STATES IN PRESCRIPTION (MAX. VALUE: 50) >1

ENTER CANOPY OPENING CODE FOR PRESCRIPTION: 1=OPEN 2=NOT OPEN >2

IS PRESCRIPTION PRECIPITATION DIFFERENT THAN MOST RECENT PRECIPITATION DATA ENTERED (1=YES 2=NO)? >1

ENTER FOUR SEASONAL PRECIPITATION VALUES FOR PRESCRIPTION IN INCHES OF CENTIMETERS (MAX. VALUE: 999.9) IF REGION HAS ONLY THREE SEASONS, ENTER ZERO FOR THE FOURTH SEASON >9.6 11.6 8.2 0

***** WATERSHED/ANALYSIS NUMBER 1 *****

***** PRESCRIPTION NUMBER 2 *****

***** STATE NUMBER 1 *****

ENTER STATE IDENTIFICATION (MAX. 15 CHARACTERS). > FORESTED

ENTER DOMINANT VEGETATION CODE FOR STATE:
1=LODGEPOLE PINE 2=SPRUCE-FIR
3=PONDEROSA PINE 4=WESTERN LARCH
5=HEMLOCK-SPRUCE 6=DOUGLAS FIR
7=CONIFEROUS 8=DECIDUOUS 9=MIXED
>1

ENTER COVER DENSITY (MAX. VALUE: .99) > .22

ENTER AREA OF SILVICULTURAL STATE IN ACRES OR HECTARES (MAX. VALUE: 9999.9) > 463

UNLESS THE USER SPECIFIES THE SNOW RETENTION COEFFICIENT, WET ALLOWS EACH PRESCRIPTION ONLY ONE IMPACTED STATE AND ONE FORESTED IMPACTED STATE.

ENTER COMPARTMENT CODE

1=IMPACTED 2=FORESTED IMPACTED 3=UNIMPACTED
>3

ENTER CANOPY OPENING CODE FOR STATE: 1=OPEN 2=NOT OPEN >2

ENTER SNOW RETENTION COEFFICIENT (MAX. VALUE: 2.00) IF UNKNOWN ENTER: -1 >1.0

**** WATERSHED/ANALYSIS NUMBER 1 ****

**** PRESCRIPTION NUMBER 3 ****

ENTER PRESCRIPTION IDENTIFICATION (MAX. 15 CHARACTERS). >SUBDRAINAGE III

ENTER PRESCRIPTION AREA IN ACRES OR HECTARES (MAX. VALUE: 9999.9) >588

ENTER PRESCRIPTION ASPECT CODE: 1=N 2=NE 3=E 4=SE 5=S 6=SW 7=W 8=NW >7

DO YOU WISH TO ENTER BASELINE COVER DENSITY (BCD)
OR ESTIMATE IT BY BASAL AREA?
1=BCD 2=ESTIMATE BY BASAL AREA
>1

ENTER BASELINE COVER DENSITY (MAX. VALUE: .99) > .18

ENTER AVERAGE TREE HEIGHT IN FEET OR METERS (MAX. VALUE: 399.9) >70.

ENTER AVERAGE SOIL DEPTH IN FEET OR METERS (MAX. VALUE: 12.9) >3.

ENTER NUMBER OF SILVICULTURAL STATES IN PRESCRIPTION (MAX. VALUE: 50) >1

ENTER CANOPY OPENING CODE FOR PRESCRIPTION: 1=OPEN 2=NOT OPEN >2

IS PRESCRIPTION PRECIPITATION DIFFERENT THAN MOST RECENT PRECIPITATION DATA ENTERED (1=YES 2=NO)? >1

ENTER FOUR SEASONAL PRECIPITATION VALUES FOR PRESCRIPTION IN INCHES OR CENTIMETERS (MAX. VALUE: 999.9) IF REGION HAS ONLY THREE SEASONS, ENTER ZERO FOR THE FOURTH SEASON >8.0 11.0 7.8 0

***** WATERSHED/ANALYSIS NUMBER 1 *****

***** PRESCRIPTION NUMBER 3 *****

***** STATE NUMBER 1 *****

ENTER STATE IDENTIFICATION (MAX. 15 CHARACTERS). >FORESTED

ENTER COVER DENSITY (MAX. VALUE: .99) > .18

ENTER AREA OF SILVICULTURAL STATE IN ACRES OR HECTARES (MAX. VALUE: 9999.9) > 588

UNLESS THE USER SPECIFIES THE SNOW RETENTION COEFFICIENT, WET ALLOWS EACH PRESCRIPTION ONLY ONE IMPACTED STATE AND ONE FORESTED IMPACTED STATE.

ENTER COMPARTMENT CODE

1=IMPACTED 2=FORESTED IMPACTED 3=UNIMPACTED
>3

ENTER CANOPY OPENING CODE FOR STATE: 1=OPEN 2=NOT OPEN >2

ENTER SNOW RETENTION COEFFICIENT (MAX. VALUE: 2.00) IF UNKNOWN ENTER: -1 >1.0

AT THIS POINT, THE USER HAS TWO OPTIONS:

1. EXECUTE WET WITH THE FILE THIS PROGRAM JUST CREATED, OR

2. SAVE THE FILE CREATED BY THIS PROGRAM FOR EDITING AND/OR SUBSEQUENT INPUT INTO WET. IF YOU CHOOSE THIS OPTION, ISSUE THE FOLLOWING COMMANDS PRIOR TO TERMINATING THIS COMPUTER SESSION:

@ASG,UP FILENAME.
@COPY 10., FILENAME.

DO YOU WANT TO EXECUTE WET NOW? (1=YES 2=NO) >2

THE 'CARD DECK' CREATED BY THIS PROGRAM IS IN THE TEMPORARY FILE 10. IT SHOULD BE COPIED TO ANOTHER FILE DURING THIS COMPUTER SESSION IF YOU WISH TO ACCESS IT AT ANOTHER TIME

PROGRAM TERMINATION

