2. Uma função diz-se constante sempre que o seu resultado é o mesmo, qualquer que seja o argumento. Por isso se designa uma tal função sublinhando o valor do seu resultado: se este for k, por exemplo, ter-se-á a função $\underline{k}:A\to K$, para k um valor de K, que satisfaz sempre a propriedade

$$\underline{k} \cdot f = \underline{k}$$

qualquer que seja k e f.¹

Mostre que $[\underline{k},\underline{k}]=\underline{k}$ aplicando a segunda lei universal dada acima.

Resolução

Qeremos mostrar que $\ [\underline{k},\underline{k}]=\underline{k}$

Partindo da propriedade universal-+ e fazendo $k=\underline{k}$ temos:

$$\underline{k} = [f, g]$$

{ propriedade universal de [f,g] }

$$\underline{k} \cdot i_1 = f \; ; \; \underline{k} \cdot i_2 = g$$

{ def.
$$\underline{k} \cdot f = \underline{k}$$
 }

$$\underline{k} = f$$
; $\underline{k} = g$

{ propriedade universal de [f,g] }

$$\underline{k} = [f, g] = [\underline{k}, \underline{k}]$$