This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- CÓLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

4						
`		•		,	,	
	,					
		•				
	,	·				
			·			

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-241056

(43)Date of publication of application: 16.09.1997

(51)Int.CI.

C04B 24/26 C08F220/04 C08F228/02 C08F290/06 // C04B103:40

(21)Application number: 08-049724

(71)Applicant: KAO CORP

(22)Date of filing:

07.03.1996

(72)Inventor: YAMATO FUJIO

YADOKORO YOSHIAKI

(54) ADMIXTURE FOR CONCRETE

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an admixture very effective in ensuring flowability of a hydraulic compsn. such as cement paste, mortar or fresh concrete, reducing the viscosity of the compsn. and retaining the flowability.

SOLUTION: This admixture contains a copolymer of a polyalkylene glycol monoester monomer (a) having an unsatd. bond represented by the formula with a monomer (b) copolymerizable with the monomer (a) as the principal component. In the formula, R1 is H or methyl, A0 is 2–3C oxyalkylene, (n) is a number of 2–300 and R2 is 6–18C alkyl.

$$R_1$$

 $CH_2 = C COO(AO)_{a} - R_{a}$

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平9-241056

(43)公開日 平成9年(1997)9月16日

(51) Int. Cl. 6	識別記号	庁内整理	番号	FΙ					技術表示箇所
C04B 24/26			CO4B 24/26		i		F		
								Α	
								E	
								H	
C08F220/04	MLS	7824-4J		C08F2	220/04	•	MLS		
		a a	客查請求	未請求	請求	項の数 6	OL	(全7頁)	最終頁に続く
(21)出願番号	特願平8-49724			(71)出	願人	0000009	18	-	
	•					花王株式	代会社		
(22) 出願日	平成8年(1996)3	月7日				東京都中	中央区日	本橋茅場町	1 丁目14番10号
				(72)発	明者	倭 富士	上桜		
						和歌山媽	具和歌山	市湊1334	花王株式会社研
						究所内			
				(72)発	明者	谷所 身			
						和歌山屿	具和歌山	市湊1334	花王株式会社研
						究所内			
				(74)代	理人	弁理士	古谷	馨 (外3:	名)
	•								
	· <u>.</u>								

(54) 【発明の名称】コンクリート用混和剤

(57)【要約】

【課題】 セメントペースト、モルタル及びコンクリート等の水硬性組成物の流動性、粘性低減及び流動性の保持性に優れた効果を発現するコンクリート用混和剤を提供する。

【解決手段】 下記の一般式(A)で表される不飽和結合を有するポリアルキレングリコールモノエステル単量体(a)と単量体(b)との共重合体を主成分として含有するコンクリート用混和剤。

【化5】

$$CH_2 = C - COO(AO) - R_2$$
 (A)

(式中、 R_1 は水素又はメチル基を、A0は炭素数 $2 \sim 3$ の オキシアルキレン基を、 R_2 は炭素数 $6 \sim 18$ のアルキル基を表す)

【特許請求の範囲】

【請求項1】 下記の一般式(A)で表される単量体 (a) と単量体 (a) と共重合可能な単量体 (b) との 共重合体を主成分として含有するコンクリート用混和 剤。

1

【化1】

$$\begin{array}{c}
R_1 \\
CH_2 = C - C00(A0)_n - R_2
\end{array} (A)$$

· (式中、R₁:水素又はメチル基

AO: 炭素数2~3のオキシアルキレン基

n:2~300 の数

R₂: 炭素数 6~18のアルキル基

を表す)

【請求項2】 単量体(b)が下記の一般式(B)及び (C) で表される化合物の中から選ばれる1種以上であ る請求項1記載のコンクリート用混和剤。

【化2】

(式中、R₃~R₅:水素、メチル基又は(CH₂)m₁COOM₁

: 水素又はメチル基

:0~2の数

M1, X, Y: 水素、アルカリ金属、アルカリ土類金属、アン モニウム、アルキルアンモニウム又は置換アルキルアン 30 クリート用混和剤に関する。 モニウム

を表す)

【請求項3】 単量体(a)において一般式(A)中の nが5~100 の数である請求項1又は2記載のコンクリ ート用混和剤。

【請求項4】 単量体(a)において一般式(A)中の nが 100~300 の数である請求項1又は2記載のコンク リート用混和剤。

【請求項5】 共重合体を構成する単量体 (a)、単量 体 (b) の反応単位の組成比が、単量体 (a) /単量体 40 を表す)。 (b) =10/90~90/10 (モル比) である請求項1~4 の何れか1項に記載のコンクリート用混和剤。

【請求項6】 共重合体の重量平均分子量が 3,000~1, 000,000 である請求項1~5の何れか1項に記載のコン クリート用混和剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はコンクリート用混和 剤に関する。更に詳しくは、セメントペースト、モルタ ル及びコンクリート等の水硬性組成物の流動性、粘性低 50

減及び流動性の保持性に優れた効果を発現するコンクリ ート用混和剤に関するものである。

[0002]

【従来の技術及び発明が解決しようとする課題】コンク リート用混和剤の中で、流動効果の大きい代表的なもの に、ナフタレンスルホン酸ホルムアルデヒド縮合物(以 下、ナフタレン系と称す)、メラミンスルホン酸ホルム アルデヒド縮合物 (以下、メラミン系と称す) 、ポリカ ルボン酸塩(以下、ポリカルボン酸系と称す)等の混和 10 剤が知られている。

【0003】これらの混和剤はセメントペースト、モル タル及びコンクリート等の流動効果に優れた特徴はある が、スラリーやコンクリートの粘性低減の面からは充分 とは言えず、取扱上問題点を有する。即ち、粉体スラリ ーの粘性が高いことによるハンドリング性、またコンク リート粘性が高いことによる充填不足等を招くものであ

【0004】更に、コンクリートについては流動性の経 時的な低下、粘性の経時的な増大が施工面で課題となっ 20 ており、解決が望まれている。

[0005]

【課題を解決するための手段】本発明者らは、上述の問 題点を解決するため、鋭意検討を行った結果、高流動 性、粘性低減及び流動保持性に優れたコンクリート用混 和剤を見出し、本発明を完成するに至った。

【0006】即ち、本発明は、下記の一般式(A)で表 される不飽和結合を有するポリアルキレングリコールモ ノエステル単量体(a)と単量体(a)と共重合可能な 単量体(b) との共重合体を主成分として含有するコン

[0007]

【化3】

$$\begin{array}{c}
R_1 \\
CH_2 = C - C00(A0)_n - R_2
\end{array} (A)$$

【0008】 (式中、R1:水素又はメチル基

AO: 炭素数2~3のオキシアルキレン基

n : 2~300 の数

R₂: 炭素数 6~18のアルキル基

【0009】近年、ポリアルキレングリコールモノエス テル単量体とアクリル酸及び/又は不飽和ジカルボン酸 系単量体との共重合物類(特公昭59-18338号、特公平2-78978 号、特公平2-7901号、特公平2-11542 号、特開平 3-75252 号、特開昭59-162163 号公報)等の水溶性ビニ ル重合体が知られているが、これらの構造はポリアルキ レングリコールの末端が水素又は炭素数1~5の低級ア ルキル基である。これらについては本発明の目的とする 性能を満足することができない。。

【0010】特に、スラリー及びコンクリート等の粘性

低減に関しては、従来の水溶性ビニル重合体では充分と はいえなかった。本発明者らは粘性低減につき、界面活 性剤の構造とスラリー粘性の関係を探究したところ、ポ リアルキレングリコール鎖の末端基による粘性への影響 が極めて大きいことを見出し、ポリアルキレングリコー ル鎖の末端を炭素数6~18のアルキル基にすることで粘 性低減に優れた効果を発現させることに成功にした。

[0011]

【発明の実施の形態】以下に本発明のコンクリート用混 和剤について詳細に説明する。一般式 (A) で表される 10 酸、又はこれらのアルカリ金属塩、アルカリ土類金属 単量体 (a) としては、炭素数 6~18のアルコールにポ リアルキレングリコールを付加せしめたものと(メタ) アクリル酸とのエステル化物である。ポリアルキレング リコールとしては、エチレンオキサイド及び/又はプロ ピレンオキシドが挙げられるが、エチレンオキシド及び プロピレンオキシドの両付加物についてはランダム付 加、ブロック付加、交互付加等の何れでも用いることが できる。付加モル数は平均で2~300 であればよい。

【0012】これらの中でも、ポリアルキレングリコー ルの付加モル数が5~100 の範囲の単量体(a)を用い た共重合体は流動性と粘性低減に効果を示し、特に50~ 100の範囲の単量体 (a) を用いた共重合体は流動性、 粘性低減及び流動保持性に優れ、さらに、 100~300 の 範囲の単量体 (a) を用いた共重合体は流動性と流動保 持性に極めて優れる。

【0013】ポリアルキレングリコールの付加モル数が 300を超えた場合や、2未満の場合は目的の性能を得る ことができず、特に基本的な流動性能が低下傾向とな

【0014】単量体(a)と共重合可能な単量体(b) としては、アクリル酸、メタクリル酸、クロトン酸、無 水マレイン酸、マレイン酸、無水イタコン酸、イタコン 酸、無水シトラコン酸、シトラコン酸、フマル酸、アク リロニトリル、(メタ)アクリル酸エステル、(メタ) アクリルアミド、スチレン、スチレンスルホン酸等が挙 げられる。

【0015】これら共重合可能な単量体の中で、下記一 般式(B)及び(C)で表される化合物の中から選ばれ る1種以上が、特に本発明の目標とする性能を満足する ものである。

【化4】

【0017】 (式中、R₃~R₅:水素、メチル基又は(C

 H_2) m_1 COOM₁

: 水素又はメチル基

:0~2の数

M,, X, Y: 水素、アルカリ金属、アルカリ土類金属、アン モニウム、アルキルアンモニウム又は置換アルキルアン モニウム

を表す)

しくない。

一般式 (B) で表される化合物としては、アクリル酸系 単量体として、アクリル酸、メタクリル酸、クロトン 塩、アンモニウム塩、アミン塩、置換アミン塩が挙げら れる。また、不飽和ジカルボン酸系単量体として、無水 マレイン酸、マレイン酸、無水イタコン酸、イタコン 酸、無水シトラコン酸、シトラコン酸、フマル酸、又は これらのアルカリ金属塩、アルカリ土類金属塩、アンモ ニウム塩、アミン塩、置換アミン塩が挙げられる。

【0018】一般式(C)で表される化合物としては、 アリルスルホン酸、メタリルスルホン酸、又はこれらの アルカリ金属塩、アルカリ土類金属塩、アンモニウム 20 塩、アミン塩、置換アミン塩等が使用される。

【0019】本発明における共重合体を構成する単量体 (a)、単量体(b)の反応単位の組成比が、単量体 (a) /単量体(b) =10/90~90/10(モル比)の範 囲が特に、流動性、粘性低減及び流動保持性に優れる。 上記のモル比が、10/90未満の場合及び90/10よりも大 きい場合は流動性と流動保持性が低下傾向となり、好ま

【0020】本発明における共重合体の製造法は公知の 方法で製造することができる。例えば、特開昭59-16216 30 3 号、特公平2-11542 号、特公平2-7901号、特公平2-78 97号公報等の溶媒重合法が挙げられる。

【0021】溶媒重合法において用いる溶剤としては、 水、メチルアルコール、エチルアルコール、イソプロピ ルアルコール、ベンゼン、トルエン、キシレン、シクロ ヘキサン、nーヘキサン、脂肪族炭化水素、酢酸エチ ル、アセトン、メチルエチルケトン等が挙げられる。取 扱と反応設備から考慮すると水及び炭素数1~4の低級 アルコールが好ましい。

【0022】水系の重合開始剤としては、アンモニウム 40 又はアルカリ金属の過硫酸塩あるいは過酸化水素等の水 溶性の開始剤が使用される。水系以外の溶剤を用いる溶 媒重合にはベンゾイルパーオキシド、ラウロイルパーオ キシド等が重合開始剤として使用される。

【0023】また、重合開始剤と併用して、促進剤とし て亜硫酸水素ナトリウムやメルカプトエタノールやアミ ン化合物を使用することも可能であり、これら重合開始 剤あるいは促進剤を適宜選択して用いることができる。

【0024】本発明における共重合体の重量平均分子量 (ゲルパーミエーションクロマトグラフィー法/ポリス 50 チレンスルホン酸換算) は 3,000~1,000,000 の範囲が

20

良く、 5,000~100,000 の範囲がより好ましい。分子量が大きすぎると分散性が低下傾向を示し、また分子量が小さすぎるとスランプ保持性が低下傾向を示す。

【0025】本発明のコンクリート用混和剤のコンクリートへの添加量はセメントに対して固形分で0.02~1.0 重量%が好ましく、0.05~0.5 重量%がより好ましい。【0026】また、本発明のコンクリート用混和剤は公知の添加剤(材)と併用することができる。例えば、AE剤、AE減水剤、流動化剤、高性能減水剤、遅延剤、早強剤、促進剤、起泡剤、発泡剤、消泡剤、増粘剤、防10水剤、防泡剤や珪砂、高炉スラグ、フライアッシュ、シ

[0027]

リカフューム等が挙げられる。

【実施例】以下、本発明を具体的に説明するが、本発明 はこれらの実施例に限定されるものではない。

【0028】本発明における重合に使用した単量体 (a)の内容と記号を以下に示す。但し、EOはエチレン オキシド、POはプロピレンオキシドを表す。

【0029】A-1:n-ヘキサノールEO付加物・アクリル酸エステルナトリウム塩 (EO付加モル数=5) A-2:インデカノールEO付加物・メタクリル酸エステルナトリウム塩 (EO付加モル数=25)

A-3:n-オクタノールEO付加物・アクリル酸エステルナトリウム塩 (EO付加モル数=60)

A-4:n-ヘキサノールEO付加物・メタクリル酸エステルナトリウム塩(EO付加モル数=80)

A-5:n-ヘキサノールEO・POブロック付加物・メタクリル酸エステルナトリウム塩 (EO付加モル数=100、PO付加モル数=15)

A-6:n-ヘキサノールEO付加物・メタクリル酸エス 30 テルナトリウム塩 (EO付加モル数=150)

A-7:オレイルアルコールEO付加物・メタクリル酸エステルナトリウム塩 (EO付加モル数=280)

A-8 (比較):メタノールEO付加物・メタクリル酸エステルナトリウム塩 (EO付加モル数=350)

A-9 (比較): n-ブタノールEO付加物・メタクリル酸エステルナトリウム塩 (EO付加モル数=25)。

【0030】以下に共重合体の製造例を示す。

【0031】製造例1(混和剤の記号AB-1)

攪拌機付き反応容器に水20モルを仕込み、攪拌しながら 40 窒素置換し、窒素雰囲気中で75℃まで昇温した。 A − 1 を 1.6モル、アクリル酸を 0.4モル(モル比=80/20)、水を10モル混合溶解したものと20%過硫酸アンモニウム水溶液0.01モル及び2ーメルカプトエタノール3 g の三者をそれぞれ同時に反応系に2時間かけて滴下する。次に20%過硫酸アンモニウム水溶液0.03モルを30分かけて滴下し、1時間同温度(75℃)で熟成する。熟成後95℃に昇温して、35%過酸化水素9 g を 1 時間かけて滴下し、2時間同温度(95℃)で熟成する。熟成終了後、48%水酸化ナトリウム 0.7モルを加えて中和、分子量 7,6 50

00の共重合体を得た。

【0032】製造例2(混和剤の記号AB-2) 攪拌機付き反応容器に水20モルを仕込み、攪拌しながら 窒素置換し、窒素雰囲気中で75℃まで昇温した。A-2 を 0.5モル、メタクリル酸を 0.5モル(モル比=50/5 0)、水を10モル混合溶解したものと20%過硫酸アンモニ ウム水溶液0.01モル及び2-メルカプトエタノール3 g の三者をそれぞれ同時に反応系に2時間かけて滴下す る。次に20%過硫酸アンモニウム水溶液0.03モルを30分

0)、水を10モル混合溶解したものと20%過硫酸アンモニウム水溶液0.01モル及び2ーメルカプトエタノール3gの三者をそれぞれ同時に反応系に2時間かけて滴下する。次に20%過硫酸アンモニウム水溶液0.03モルを30分かけて滴下し、1時間同温度(75℃)で熟成する。熟成後95℃に昇温して、35%過酸化水素9gを1時間かけて滴下し、2時間同温度(95℃)で熟成する。熟成終了後、48%水酸化ナトリウム 0.7モルを加えて中和、分子量19,000の共重合体を得た。 【0033】製造例3(混和剤の記号AB-3)

攪拌機付き反応容器に水32モルを仕込み、攪拌しながら窒素置換し、窒素雰囲気中で95℃まで昇温した。 A - 3を 0.5モル、マレイン酸モノナトリウム塩を0.5 モル (モル比=50/50)、90℃温水を22モル混合溶解したものと20%過硫酸アンモニウム水溶液0.01モル及び2ーメルカプトエタノール3gの三者をそれぞれ同時に反応系に2時間かけて滴下する。次に20%過硫酸アンモニウム水溶液0.03モルを30分かけて滴下し、1時間同温度(95

で)で熟成する。熟成後95℃で35%過酸化水素 9 g を 1 時間かけて滴下し、2 時間同温度(95℃)で熟成する。 分子量23,000の共重合体を得た。

【0034】製造例4(混和剤の記号AB-4)

攪拌機付き反応容器に水45モルを仕込み、攪拌しながら窒素置換し、窒素雰囲気中で75℃まで昇温した。 A - 4を 0.5モル、アクリル酸を 0.4モル、メタリルスルホン酸ナトリウムを 0.1モル (モル比=50/40/10)、水を35モル混合溶解したものと20%過硫酸アンモニウム水溶液 0.01モル及び2ーメルカプトエタノール4gの三者をそれぞれ同時に反応系に2時間かけて滴下する。次に20%過硫酸アンモニウム水溶液0.03モルを30分かけて滴下し、1時間同温度 (75℃)で熟成する。熟成後95℃に昇温して、35%過酸化水素12gを1時間かけて滴下し、2時間同温度 (95℃)で熟成する。熟成終了後、48%水酸化ナトリウム 0.6モルを加えて中和、分子量35,000の共重合体を得た。

【0035】製造例5(混和剤の記号AB-5) 攪拌機付き反応容器に水20モルを仕込み、攪拌しながら 窒素置換し、窒素雰囲気中で75℃まで昇温した。A-5 を0.08モル、メタクリル酸を0.12モル(モル比=40/6 の)、水を15モル混合溶解したものと20%過硫酸アンモニ ウム水溶液0.01モル及び2ーメルカプトエタノール1g の三者をそれぞれ同時に反応系に2時間かけて滴下す る。次に20%過硫酸アンモニウム水溶液0.03モルを30分 かけて滴下し、1時間同温度(75℃)で熟成する。熟成 後95℃に昇温して、35%過酸化水素5gを1時間かけて 滴下し、2時間同温度 (95℃) で熟成する。熟成終了 後、48%水酸化ナトリウム 0.7モルを加えて中和、分子 量42,000の共重合体を得た。

【0036】製造例6(混和剤の記号AB-6) 攪拌機付き反応容器に水23モルを仕込み、攪拌しながら 窒素置換し、窒素雰囲気中で75℃まで昇温した。A-6 を0.08モル、アクリル酸ナトリウムを0.12モル(モル比 =40/60)、水を22モル混合溶解したものと20%過硫酸ア ンモニウム水溶液0.01モル及び2-メルカプトエタノー ル2gの三者をそれぞれ同時に反応系に2時間かけて滴 10 下する。次に20%過硫酸アンモニウム水溶液0.03モルを 30分かけて滴下し、1時間同温度(75℃)で熟成する。 熟成後95℃に昇温して、35%過酸化水素9gを1時間か けて滴下し、2時間同温度(95℃)で熟成する。熟成終 了後、分子量54,000の共重合体を得た。

【0037】製造例7 (混和剤の記号AB-7) 攪拌機付き反応容器に水15モルを仕込み、攪拌しながら 窒素置換し、窒素雰囲気中で75℃まで昇温した。A-7 を0.03モル、アクリル酸を0.07モル (モル比=30/70)、 水を12モル混合溶解したものと20%過硫酸アンモニウム 20 水溶液0.01モル及び2-メルカプトエタノール4gの三 者をそれぞれ同時に反応系に2時間かけて滴下する。次 に20%過硫酸アンモニウム水溶液0.03モルを30分かけて 滴下し、1時間同温度(75℃)で熟成する。熟成後95℃ に昇温して、35%過酸化水素12gを1時間かけて滴下 し、2時間同温度 (95℃) で熟成する。熟成終了後、48 %水酸化ナトリウム 0.7モルを加えて中和、分子量46,0 00の共重合体を得た。

【0038】製造例8(混和剤の記号AB-8)(比較) 攪拌機付き反応容器に水45モルを仕込み、攪拌しながら 30 剤のコンクリート評価方法を以下に示す。 窒素置換し、窒素雰囲気中で75℃まで昇温した。A-8 を 0.1モル、アクリル酸を 0.9モル(モル比=10/90)、 水を40モル混合溶解したものと20%過硫酸アンモニウム 水溶液0.01モル及び2-メルカプトエタノール3gの三 者をそれぞれ同時に反応系に2時間かけて滴下する。次

に20%過硫酸アンモニウム水溶液0.03モルを30分かけて 滴下し、1時間同温度(75℃)で熟成する。熟成後95℃ に昇温して、35%過酸化水素10gを1時間かけて滴下 し、2時間同温度 (95℃) で熟成する。熟成終了後、48 %水酸化ナトリウム 0.7モルを加えて中和、分子量41,0 00の共重合体を得た。

【0039】製造例9(混和剤の記号AB-9)(比較) 攪拌機付き反応容器に水20モルを仕込み、攪拌しながら 窒素置換し、窒素雰囲気中で75℃まで昇温した。A-9 を 0.5モル、メタクリル酸を 0.5モル(モル比=50/5 0)、水を10モル混合溶解したものと20%過硫酸アンモニ ウム水溶液0.01モル及び2ーメルカプトエタノール3g の三者をそれぞれ同時に反応系に2時間かけて滴下す る。次に20%過硫酸アンモニウム水溶液0.03モルを30分 かけて滴下し、1時間同温度(75℃)で熟成する。熟成 後95℃に昇温して、35%過酸化水素9gを1時間かけて 滴下し、2時間同温度 (95℃) で熟成する。熟成終了 後、48%水酸化ナトリウム 0.7モルを加えて中和、分子 量16,000の共重合体を得た。

【0040】共重合体の比較重合物の他に、実施例に使 用した比較混和剤の内容と記号を以下に示す。

混和剤の記号NS:ナフタレン系混和剤(マイテイ150 ; 花王(株)製)

混和剤の記号MS:メラミン系混和剤(マイテイ150-V 2:花王(株)製)

混和剤の記号PC:ポリアルキレングリコールモノエス テル単量体・メタクリル酸共重合体 (FC-600C : 日本触 媒化学(株)製)。

【0041】本発明のコンクリート用混和剤と比較混和

【0042】〈コンクリート用混和剤としての評価〉コ ンクリートの配合条件を表1に示す。

[0043]

【表1】

10

コンクリート配合と使用材料

w/c	s / a	単位量(kg/m³)							
(%)	(%)	С	w	s	G				
60. 0	48.7	292	175	874	920				
使用本	使用材料								
w	:	水道水							
С	:	中央普通	重ポルト	ランドセ: 比[メント 重=3.16				
s	:	紀の川直	雀川砂	比重=2	2. 57				
G	:	宝塚産	幹石	比重=2.6	51				
s.	/a:	66/66	+砂利((容積率)					

【0044】コンクリートの製造は、表1に示すコンクリートの配合により、材料とコンクリート用混和剤を傾胴ミキサーで25rpm×3分間混練りして調整した。JIS A-1101法によって流動性(スランプ値)を測定後、さら20に4rpmで60分間回転させ、90分までのスランプ値(cm)を測定し、さらにコンクリート中のモルタル部分(3mm 篩通過分)を採取してB型粘度計(東京鋼機(株)製)

で粘度を測定した。また、初期スランプ値は20±1 cmになるように混和剤の添加量で調整した。流動性の効果は、添加量が少ないほど効果があり、流動保持性は90分までの経時変化が小さいほど効果があることを示す。評価結果を表2に示す。

[0045]:

【表2】

E 1116	C P 1 (2/5/2	I SEPTIME (PIN)	24/			
K	混和剤	添加量*	スラ	直後の粘度		
分	記号	(%)	直後	60分後	90分後	(cps)
	AB- 1	0. 26	20.0	17.0	15. 5	2500
	AB - 2	0. 25	20.0	17.5	16. 0	2100
本	AB- 3	0. 23	20. 5	18.0	16. 0	2200
発	AB - 4	0. 22	20.5	18.0	17. 0	2300
明	AB- 5	0. 20	20.0	19.0	18.5	2700
品	AB- 6	0.22	20.0	19.5	19.0	3300
	AB- 7	0.24	20.5	19.0	18. 0	3500
	AB- 8	0.45	20.5	15.5	12.5	6600
比	AB- 9	0.31	20.0	15.0	12. 0	4200
較	NS	0.56	20.0	10.0	6.0	8800
品	MS	0.62	20.5	11.0	9. 0	9100
	P C	0. 27	20.5	16.5	13.0	5500

* セメントに対する固形分%を示す。

【0046】〈評価結果〉表2で明らかなように、本発明のコンクリート用混和剤は比較品に較べて流動性に優れ、スランプの低下が少なく、特に粘性が低い結果である。

[0047]

【発明の効果】本発明のコンクリート用混和剤をセメント組成物に添加すれば、長時間にわたりスランプの変化少ないことから、コンクリートの品質管理が容易となる。さらに粘性の低減に優れることから、施工時のトラブルが解消される。

フロントページの続き

(51) Int. Cl. 6	識別記号	庁内整理番号	FI	技術表示箇所
C 0 8 F 228/02	MNR		C O 8 F 228/02	MNR
290/06	MRS		290/06	MRS
// CO4B 103:40				

