UNIVERSITY OF LONDON

291 0310 ZB

BSc EXAMINATION

for External Students: 2008

2910310 Artificial Intelligence [Eastern]

Duration: 2 hours 15 minutes

Date and Time: Thursday 22 May 2008: 2.30 - 4.45 pm

There are FIVE questions on this paper.

Do not attempt more than *FOUR* questions. All questions carry equal marks and full marks can be obtained for complete answers to *FOUR* questions.

Questions involving a description or explanation should, wherever possible, be accompanied by an appropriate example.

THIS EXAMINATION PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

Q1		The recommended course text has the following sketch for general search algorithm: function GENERAL-SEARCH(problem, Queuing-Function) returns a solution, or failure nodes MAKE-QUEUE(MAKE-NODE(initial-state[problem])) loop do if nodes is empty then return failure node REMOVE-FRONT(nodes) if GOAL-TEST[problem] applied to STATE(node) succeeds then return node nodes (Coursing Function(nodes EVRAND(nodes CORERATORS(node) love)))
		$nodes \leftarrow \text{Queuing-Function}(\text{nodes}, \textit{EXPAND}(node, \textit{OPERATORS[problem]}))$ end
		Adapted from Figure 3.10 The general search algorithm. (Note that Queuing-Function is a variable whose value will be a function.) [Russell and Norvig]
	a)	Briefly describe what each line of this algorithm achieves. [5]
	b)	Distinguish between uniform cost search and breadth first search giving the relative advantages of each.
		[6]
	c)	Sketch the algorithms required to be added to GENERAL-SEARCH, to perform these two searches.
		[4]
	d)	Define the terms: branching factor, informed search, space complexity, time complexity, optimality and completeness and explain how they apply to each search described in b) above.
		[10]
Q2		
	a)	Write down the truth tables for: negation, implication and conjunction. [6]
	b)	Using a truth table prove the following \sim (A & B) \sim A $\vee \sim$ B [6]
	c)	What does it mean for a sentence to be a theorem?
		[2]
	d)	What word is used to describe a logic for which: Theorems \subseteq Valid sentences? [1]
	e)	Using examples where appropriate, compare and contrast Propositional Calculus and
	,	First Order Predicate Calculus. [10]

Q1

Q3

a) 'An *agent* perceives its *environment* through *sensors* —which give rise to *percepts* — and acts on the environment through *effectors*.'

Define the terms in italics in the above quotation and say how these terms apply when the agent is an air conditioning unit.

[8]

b) Discuss the role of externally provided performance measures in the rationality of an agent.

[4]

c) Explain the concepts reflex agent and goal-based agent in the context of agents.

[4]

d) An agent's environment may be described as *accessible* and *deterministic*. Explain these terms giving examples of agents and such environments.

[4]

e) What alternatives are there to the use of agents and what advantages and/or disadvantages do these alternatives have?

[5]

- Q4 There are generally thought to be 5 levels or stages of analysis used in Natural Language understanding. For each of the 5 levels describe, using examples of language that you might find in an AI text book:
 - a) the problem to be solved and the general strategy adopted
 - b) the representational techniques used
 - c) an example of an ambiguity that may occur
 - d) a major problem (other than ambiguity) faced
 - e) to what extent AI has solved the problems

[25]

Q5

a) Explain the contrasting views of Artificial Intelligence known as Strong AI and Weak AI.

[4]

b) Giving your reasons, explain which of these two views you agree with most.

[3]

c) Outline the arguments that supporters of Searle might use to support or to refute your reasoning.

[9]

d) Turing can be thought of as taking a contrary view to that of Searle. Taking the arguments of Searle that you used in c) above how might one argue against them?

[9]

END OF EXAMINATION