Демонстрация возможностей нотбука с Кластеризацией

Первоначальный отбор признаков для предобработки

Выбор индекса

Обработка дат при наличии

```
Обработка дат
cb = date_preproc_widget(df)
В признаках присутствуют даты?(у/n)
Укажите столбцы с датой:
           Genre
           date test
df = date_preproc(df, cb, dayfirst =True)
Столбец date_test
Что делать с датой?
1.Преобразовать
2.Удалить
1.Количество дней до текущей даты
2.Количество дней до другой даты
```

Вывод распределений признаков

Удаление объектов с большим числом пропусков

Удаление признаков с низкой вариативностью

Удаление низковариативных признаков df = drop_unvariative_cols(df) Признаки с низким коэффициентом вариативности std mean : category: 0.000 Удалить признаки с низкой вариативностью? (y/n): У Удалить признаки, с коэфф. вариативности не больше: 0

Обработка аномалий (для каждого признака)

Удаление признаков с большим числом пропусков

```
        %NA
        Тип

        Unknown feature
        82.09% float64

        Unknown feature 2
        72.64% float64

        Genre
        0.5% object

        Удалить признаки с большим процентом NA? (y/n) у

        Удалить признаки, с % NA>= 50
```

Выбор заполнения пропусков для остальных признаков

```
Выберите метод заполнения пропусков для каждого признака
Признак Genre
Распределение:
Female 0.56
Male 0.44
Name: Genre, dtype: float64

Заполнить NA:
1.Female (Мода)
2.Male
3.Случайно (с весами из распределения)
4.Ручной ввод
```

Построение матрицы корреляции

Кодирование и масштабирование признаков

Koдирование признаков df = encoding(df) Genre, уникальных значений: 2 Способ кодирования: 1.LabelEncoder 2.OneHot 3.Удалить этот признак Выбор: 1

Выбор метода для рассмотрения

Подбор параметров для методов кластеризации

Кластеризация Выбор метода method = choice_method_widget() Выберите метод кластеризации Метод: K-means Agglomerative DBSCAN

kmeans

Построение силуэтов для различного количества кластеров

Построение характеристик кластеров

Средние значения характеристик в кластерах				
	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
cluster				
0	0.391753	28.577320	60.185567	68.000000
1	0.449275	52.173913	46.333333	40.971014
2	0.531250	41.750000	87.593750	16.125000

Genre

Annual Income (k\$)

Кластер 1