J.N.T.U.H. UNIVERSITY COLLEGE OF ENGINEERING, SCIENCE & TECHNOLOGY HYDERABAD

KUKATPALLY, HYDERABAD - 500 085

Certificate

Certified that this is the bonafide record of the practical work done during

the academic year <u>2024-2025</u> by
Name Thakur Pratyush Singh
Roll Number 21011A0550 Class B.Tech IV Year I Semester
in the Laboratory of
of the Department of Computer Science and Engineering
Signature of the Staff Member Signature of the Head of the Department
Date of Examination 18/11/2024
Signature of the Examiner/s

External Examiner

Internal Examiner

J.N.T.U.H. UNIVERSITY COLLEGE OF ENGINEERING, SCIENCE & TECHNOLOGY HYDERABAD

KUKATPALLY, HYDERABAD - 500 085

Name	Thakur Pra	tyush S	ingh	Roll Number	21011A0550
		·			D () 1 (
Class_	CSE-Regular	_Year	IV	Laboratory	Data Analytics

List of Experiments

S.No.	Name of the Experiment	Date of Experiment	Page Number	Marks	Remarks
1.	Demonstrate Data Cleaning – missing values	24/07/24	1-2		
2.	Implement Data Normalization (Min-Max and Z-Score)	31/07/24	3		
3.	Implement Attribute Subset Selection for Data Reduction	07/08/24	4-6		
4.	Demonstrate Outlier Detection	14/08/24	7-8		
5.	MongoDB Installation and basic commands	21/08/24	9-12		
6.	Perform Analytics on any standard data set	04/09/24	13-16		
7.	Implement Linear Regression	18/09/24	17-18		
8.	Implement Logistic Regression	25/09/24	19-22		
9.	Construct Decision Tree for weather data set	16/10/24	23-24		
10.	Analyze Time-Series Data	23/10/24	25-26		
11.	Work on any Data Visualization tools	30/10/24	27-29		

1. Demonstrate Data Cleaning – missing values

```
library(tidyverse)
x \le sample(1:21, 20, replace = TRUE)
y \le sample(1:10, 20, replace = TRUE)
for(i in 1:20){
 a \le x[i]
 b \le y[i]
 mtcars[a,b] = NA
which(is.na(mtcars))
sum(is.na(mtcars))
na.exclude(mtcars)
View(mtcars)
dispna <- apply(mtcars["disp"],2,mean,na.rm=TRUE)</pre>
View(dispna)
newcars <- mtcars %>%
 mutate(disp=ifelse(is.na(disp), dispna, disp))
View(newcars)
```

Output:

Type	Value
double [1]	235.7226
double [1]	235,7226
	double [1]

Honda Civic	30.4	4	NA	52	4.93	1.615	18.52	NA	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Toyota Corona	NA	4	120.1	97	3.70	2.465	20.01	1	0	3	i i
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	9
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
Dodge Challenger	15.5	Q	219 0000	150	2.76	2 520	16 97	0	0	2	
Dodge Challenger AMC Javelin	15.5 15.2	8	318.0000 304.0000	150 150	2.76 3.15	3.520 3.435	16.87 17.30	0	0	3	2
CONTRACTOR OF THE STATE	AND SECUL	1098		0.000	(50855)	- TON-2008	1/13/00/2007 (A)	38	60080	804	
AMC Javelin	15.2	8	304.0000	150	3.15	3.435	17.30	0	0	3	i i
AMC Javelin Camaro Z28	15.2 13.3	8	304.0000 350.0000	150 245	3.15 3.73	3.435 3.840	17.30 15.41	0	0	3	

J.N.T.U.H. UCESTH

```
R + R 4.4.1 · ~/ €
> library(tidyverse)
> x <- sample(1:21, 20, replace = TRUE)
> y <- sample(1:10, 20, replace = TRUE)
> for(i in 1:20){
    a \leftarrow x[i]
    b \leftarrow y[i]
    mtcars[a,b] = NA
+ }
> which(is.na(mtcars))
 [1] 21 40 83 108 134 173 200 226 228 237 243 268 270 271 289 292 295 299
> sum(is.na(mtcars))
[1] 18
> na.exclude(mtcars)
                     mpg cyl disp hp drat
                                               wt qsec vs am gear carb
                    22.8
Datsun 710
                           4 108.0 93 3.85 2.320 18.61
                                                         1 1
                                                                 4
                                                                      1
Hornet Sportabout
                           8 360.0 175 3.15 3.440 17.02
                                                                 3
                                                                      2
                    18.7
Merc 230
                                                                      2
                    22.8
                           4 140.8 95 3.92 3.150 22.90
                    19.2
                           6 167.6 123 3.92 3.440 18.30 1
Merc 280
Lincoln Continental 10.4
                           8 460.0 215 3.00 5.424 17.82
                                                                      4
                                                            0
                                                                 3
Chrysler Imperial
                           8 440.0 230 3.23 5.345 17.42
                                                                 3
                                                                      4
                    14.7
                                                         0
                                                            0
Fiat 128
                    32.4
                         4 78.7 66 4.08 2.200 19.47
                                                         1
                                                                      1
                                                            1
Toyota Corolla
                    33.9
                          4 71.1 65 4.22 1.835 19.90
                                                            1
                                                                 4
                                                                      1
                                                                      2
Dodge Challenger
                           8 318.0 150 2.76 3.520 16.87
                                                         0 0
                                                                 3
                    15.5
                                                                      2
AMC Javelin
                    15.2
                           8 304.0 150 3.15 3.435 17.30
                                                         0 0
                                                                 3
Camaro Z28
                           8 350.0 245 3.73 3.840 15.41
                                                                 3
                    13.3
                                                         0 0
Pontiac Firebird
                    19.2
                           8 400.0 175 3.08 3.845 17.05
                                                                 3
                                                                      2
                                                         0 0
Fiat X1-9
                    27.3
                           4 79.0 66 4.08 1.935 18.90
                                                         1
                                                            1
                                                                 4
                                                                      1
Porsche 914-2
                    26.0
                           4 120.3 91 4.43 2.140 16.70
                                                         0
                                                            1
                                                                 5
                                                                      2
Lotus Europa
                    30.4
                          4 95.1 113 3.77 1.513 16.90
                                                         1
                                                            1
                                                                 5
                                                                      2
Ford Pantera L
                    15.8
                           8 351.0 264 4.22 3.170 14.50
                                                         0 1
                                                                 5
                                                                      4
Ferrari Dino
                    19.7
                           6 145.0 175 3.62 2.770 15.50
                                                         0 1
                                                                 5
                                                                      6
Maserati Bora
                    15.0
                         8 301.0 335 3.54 3.570 14.60 0 1
                                                                      8
                                                                 5
Volvo 142E
                    21.4 4 121.0 109 4.11 2.780 18.60 1 1
                                                                      2
```

2. Implement Data Normalization (Min-Max and Z-Score)

```
arr<-c(9.5,6.2,8.9,15.2,20.0,10.1,5.4,3.2,1.0,22.5,10.0,16.0)
#Min-Max
minarr<-min(arr)
maxarr<-max(arr)
arr2<-arr
for(i in 1:12){
    arr2[i]=round((arr[i]-minarr)/(maxarr-minarr))
}
print(arr2)
#Z-Score
meanarr<-mean(arr)
sdarr<-sd(arr)
for(i in 1:12){
    arr2[i]=round((arr[i]-meanarr)/sdarr,2)
}
print(arr2)</pre>
```

```
R - R 4.4.1 · ~/ ≈
> arr < -c(9.5, 6.2, 8.9, 15.2, 20.0, 10.1, 5.4, 3.2, 1.0, 22.5, 10.0, 16.0)
> #Min-Max
> minarr<-min(arr)
> maxarr<-max(arr)</pre>
> arr2<-arr
> for(i in 1:12){
   arr2[i]=round((arr[i]-minarr)/(maxarr-minarr))
+ }
> print(arr2)
[1] 0 0 0 1 1 0 0 0 0 1 0 1
> #Z-Score
> meanarr<-mean(arr)
> sdarr<-sd(arr)
> for(i in 1:12){
   arr2[i]=round((arr[i]-meanarr)/sdarr,2)
+ }
> print(arr2)
```

3. Implement Attribute Subset Selection for Data Reduction

```
library(leaps)

View(Titanic)
sum(is.na(Titanic))
Titanic <- na.omit(Titanic)
dim(Titanic)

fwd <- regsubsets(Freq~., data = Titanic, nvmax = 19, method = "forward")
summary(fwd)
coef(fwd, 3)

bwd <- regsubsets(Freq~., data = Titanic, nvmax = 19, method = "backward")
summary(bwd)
coef(bwd, 3)

full <- regsubsets(Freq~., data = Titanic, nvmax = 19)
summary(full)
coef(full, 3)
```

	Class	Sex ÷	Age =	Survived	Freq
1	1st	Male	Child	No	0
2	2nd	Male	Child	No	0
3	3rd	Male	Child	No	35
4	Crew	Male	Child	No	0
5	1st	Female	Child	No	0
6	2nd	Female	Child	No	0
7	3rd	Female	Child	No	17
8	Crew	Female	Child	No	0
9	1st	Male	Adult	No	118
10	2nd	Male	Adult	No	154

```
R → R 4.4.1 · ~/ ≈
> library(leaps)
Warning message:
package 'leaps' was built under R version 4.4.2
> View(Titanic)
> sum(is.na(Titanic))
[1] 0
> Titanic <- na.omit(Titanic)</pre>
> dim(Titanic)
[1] 4 2 2 2
> fwd <- regsubsets(Freq~., data = Titanic, nvmax = 19, method = "forward")
> summary(fwd)
Subset selection object
Call: regsubsets.formula(Freq ~ ., data = Titanic, nvmax = 19, method = "forward")
6 Variables (and intercept)
             Forced in Forced out
Class2nd
                  FALSE
                               FALSE
Class3rd
                  FALSE
                               FALSE
ClassCrew
                  FALSE
                               FALSE
SexFemale
                  FALSE
                               FALSE
AgeAdult
                  FALSE
                               FALSE
SurvivedYes
                  FALSE
                               FALSE
1 subsets of each size up to 6
Selection Algorithm: forward
          Class2nd Class3rd ClassCrew SexFemale AgeAdult SurvivedYes
   (1)""
1
   (1)""
                    11 11
                               11 11
                                          11 1/2 11
                                                      11 1/2 11
                                                                11 11
2
   (1)""
                    11 11
                               11 11
                                          11 1/2 11
                                                      H & H
                                                                11 1/2 11
3
   (1)""
                    11 11
                               11 1/2 11
                                          11 1/2 11
                                                      11 1/2 11
                                                                11 1/2 11
  (1)""
                    11 1/2 11
                               11 1/2 11
                                          H & H
                                                      H & H
                                                                11 1/4 11
6 (1) "*"
                     11 11
                               11 % 11
                                          11 1/2 11
                                                      11 % 11
                                                                11 1/11
> coef(fwd, 3)
                SexFemale
(Intercept)
                               AgeAdult SurvivedYes
    70.5625
                 -78.8125
                               123.9375
                                            -48.6875
> bwd <- regsubsets(Freq~., data = Titanic, nvmax = 19, method = "backward")
> summary(bwd)
Subset selection object
Call: regsubsets.formula(Freq ~ ., data = Titanic, nvmax = 19, method = "backward")
6 Variables
              (and intercept)
              Forced in Forced out
Class2nd
                  FALSE
                               FALSE
                  FALSE
Class3rd
                               FALSE
ClassCrew
                  FALSE
                               FALSE
SexFemale
                  FALSE
                               FALSE
AgeAdult
                  FALSE
                               FALSE
SurvivedYes
                  FALSE
1 subsets of each size up to 6
Selection Algorithm: backward
          Class2nd Class3rd ClassCrew SexFemale AgeAdult SurvivedYes
   (1)""
                                                      11 1/2 11
1
  (1)""
                    11 11
                               11 11
                                                                ....
                                          11 1/2 11
                                                      11 1/2 11
2
   (1)""
                     11 11
                               11 11
                                          11 * 11
                                                                11 × 11
                                                      11 1/2 11
3
   (1)""
                     и п
                               11 1/2 11
                                          11 % 11
                                                      11 1/2 11
                                                                11 1/2 11
4
  (1)""
                     11 🔅 11
                               11 1/2 11
                                          11 1/2 11
                                                      11 1/2 11
                                                                11 1/11
5
  (1) "*"
                     11 1/2 11
                               11 1/2 11
                                          11 1 11
                                                      11 1/2 11
                                                                II × II
> coef(bwd, 3)
(Intercept)
                SexFemale
                               AgeAdult SurvivedYes
    70.5625
                 -78.8125
                               123.9375
                                            -48.6875
```

```
> full <- regsubsets(Freq~., data = Titanic, nvmax = 19)
> summary(full)
Subset selection object
Call: regsubsets.formula(Freq ~ ., data = Titanic, nvmax = 19)
6 Variables (and intercept)
              Forced in Forced out
Class2nd
                  FALSE
                               FALSE
Class3rd
                  FALSE
                               FALSE
ClassCrew
                  FALSE
                               FALSE
SexFemale
                  FALSE
                               FALSE
AgeAdult
                  FALSE
                               FALSE
SurvivedYes
                  FALSE
                               FALSE
1 subsets of each size up to 6
Selection Algorithm: exhaustive
          Class2nd Class3rd ClassCrew SexFemale AgeAdult SurvivedYes
   (1)""
1
   (1)""
                     11 11
                               11 11
                                           11 1 11
                                                      11 1/2 11
                                                                 11 11
2
   (1)""
                     11 11
                               11 11
                                           11 1/2 11
                                                      H & H
                                                                11 1/2 11
3
   (1)""
                     H (H)
                               11 1/2 11
                                           11 * 11
                                                      11 1/2 11
                                                                 11 1/2 11
4
5 (1)""
                     11 🔅 11
                               11 1/2 11
                                           11 1/2 11
                                                      11 1/2 11
                                                                 11 1/2 11
6 (1) "*"
                     11 2 11
                               11 1/2 11
                                           11 14 11
                                                      11 1/2 11
                                                                II y II
> coef(full, 3)
                               AgeAdult SurvivedYes
(Intercept)
                SexFemale
     70.5625
                 -78.8125
                               123.9375
                                            -48.6875
```

4. Demonstrate Outlier Detection

```
day <- data.frame(
  temp = c(20,21,22,20,19,30,31,100,18,33),
  hum = c(55,60,65,50,45,70,75,80,85,200),
  windspeed = c(12,15,14,16,14,10,18,13,15,50)
)
View(day)

boxplot(day[,c('temp','hum','windspeed')])

for(i in c('hum','windspeed')) {
    data <- unlist(day[i])
    newdata <- data[data %in% boxplot.stats(data)$out]
    data[data %in% newdata] <- NA
    day[[i]] <- data
}

day <- drop_na(day)

boxplot(day[,c('temp','hum','windspeed')])</pre>
```

¢	windspeed	hum ‡	temp	
12		55	20	1
15		60	21	2
14		65	22	3
16		50	20	4
14		45	19	5
10		70	30	6
18		75	31	7
13		80	100	8
15		85	18	9

5. MongoDB Installation and basic commands

MongoDB Installation:

Step 1: Download MongoDB Community Server

- a. Visit the MongoDB Download Center
 - Go to MongoDB Community Server Download.
- b. Select the Installer:
 - Version: Choose the latest stable version
 - **Platform**: Windows
 - Package: MSI
- c. Download the MSI Installer

Step 2: Install MongoDB

- a. Run the MongoDB Installer
 - Locate the downloaded .msi file and double-click it.
- b. Follow the Installation Wizard
 - License Agreement: Accept the License Agreement.
 - **Setup Type**: Select Complete.
- c. Component Selection: Ensure the following options are checked:
 - MongoDB Server: Core database server.
 - MongoDB Shell (mongosh): Interactive shell for MongoDB.
- d. Service Configuration:
 - Choose Run Service as Network Service User (default).
 - Set the Data Directory and Log Directory (defaults are recommended).
- e. Finish Installation:
 - Click Install and wait for the process to complete.
 - Once done, click Finish.

Step 3: Add MongoDB to System PATH

- a. Edit Environment Variables
 - Press Win + S, type Environment Variables, and select 'Edit' the system environment variables.
 - In the System Properties window, click Environment Variables.
- b. Update PATH
 - Under System variables, find and select the 'Path' variable.
 - Click Edit > New.
 - Add the MongoDB 'bin' directory.
 - Click OK to save changes.

Step 4: Verify Installation

- a. Check MongoDB Server Version
 - Run 'mongod --version'
- b. Check MongoDB Shell Version
 - Run 'mongosh --version'
- c. Connect to MongoDB via MongoDB Shell
 - In Command Prompt, type 'mongosh'
 - This will open an interactive shell session connected to your local MongoDB instance.

Basic Commands:

```
test> use blog
switched to db blog
blog> db.createCollection("posts")
{ ok: 1 }
blog> db.createCollection("users")
{ ok: 1 }
blog> db.posts.insertOne({
    ... title: "Introduction to MongoDB",
    ... content: "MongoDB is a NoSQL database.",
    ... author: "John Doe",
    ... tags: ["mongodb", "nosql", "database"]
    ... })
{
    acknowledged: true,
    insertedId: ObjectId('66f371af3edbac1d74c73bf8')
}
```

```
blog> db.users.insertMany([ { username: "johndoe"
..., email: "johndoe@ex.com",
... age: 30
... },
... username: "jane",
... email: "jane@ex.com",
... age: 28
 acknowledged: true,
 insertedIds: {
    '0': ObjectId('66f372723edbac1d74c73bf9'),
   '1': ObjectId('66f372723edbac1d74c73bfa')
 }
blog> db.users.updateOne(
... { username: "johndoe" },
      { $set: { age: 31 } }
. . . )
 acknowledged: true,
 insertedId: null,
 matchedCount: 1,
 modifiedCount: 1,
 upsertedCount: 0
blog> db.posts.updateMany(
... { tags: "mongodb" },
       { $addToSet: { tags: "database" } }
 acknowledged: true,
 insertedId: null,
 matchedCount: 1,
 modifiedCount: 0,
 upsertedCount: 0
```

```
blog> db.users.deleteOne({ username: "janedoe" })
{ acknowledged: true, deletedCount: 0 }
blog> db.posts.deleteMany({ author: "John Doe" })
{ acknowledged: true, deletedCount: 1 }
blog> db.users.drop()
true
blog> db.posts.find()

blog> show collections
posts
blog> |
```

6. Perform Analytics on any standard data set

```
library(tidyverse)
library(titanic)
data("titanic train")
data("titanic test")
titanic test$Survived <- NA
titanic <- rbind(titanic train, titanic test)
head(titanic)
titanic$Sex = as.factor(titanic$Sex)
titanic$Survived = as.factor(titanic$Survived)
summary(titanic)
dropnull titanic <- titanic[rowSums(is.na(titanic)) <= 0, ]
survived list <- dropnull titanic[dropnull titanic$Survived == 1, ]
notsurvived list <- dropnull titanic[dropnull titanic$Survived == 0, ]
mytable <- table(titanic$Survived)</pre>
lbls <- paste(names(titanic), "\n", mytable, sep = " ")
pie(mytable, labels = lbls, main = 'Pie Chart')
hist(titanic$Age, xlab = 'Age', ylab = 'Frequency')
barplot(table(notsurvived_list$Sex), main = 'Gender of Non-Survivors', xlab = 'Gender', ylab =
'Frequency')
temp <- density(table(survived list$Fare))
plot(temp, type = 'n', main = 'Fare Charged')
polygon(temp, col = 'lightgray', border = 'gray')
boxplot(titanic$Fare, main = 'Fare')
```

```
R → R 4.4.1 · ~/ Ø
> library(tidyverse)
> library(titanic)
> data("titanic_train")
> data("titanic_test")
> titanic_test$Survived <- NA
> titanic <- rbind(titanic_train, titanic_test)
> head(titanic)
  PassengerId Survived Pclass
                                                                              Name
1
                     0
                                                           Braund, Mr. Owen Harris
            2
            2
                     1
                            1 Cumings, Mrs. John Bradley (Florence Briggs Thayer)
3
            3
                     1
                                                            Heikkinen, Miss. Laina
4
            4
                     1
                            1
                                     Futrelle, Mrs. Jacques Heath (Lily May Peel)
5
            5
                     0
                                                          Allen, Mr. William Henry
                                                                  Moran, Mr. James
6
            6
                     0
                                             Fare Cabin Embarked
     Sex Age SibSp Parch
                                   Ticket
1
   male 22
                                A/5 21171 7.2500
                       0
                 1
2 female 38
                                 PC 17599 71.2833
                                                                C
                       0
                                                    C85
                 1
3 female 26
                       0 STON/02. 3101282 7.9250
                                                                S
                 0
                                                                S
4 female 35
                                   113803 53.1000 C123
                 1
                       0
                                                                S
    male
         35
                 0
                       0
                                   373450 8.0500
    male NA
                 0
                       0
                                   330877 8.4583
> titanic$Sex = as.factor(titanic$Sex)
> titanic$Survived = as.factor(titanic$Survived)
> summary(titanic)
 PassengerId
               Survived
                              Pclass
                                              Name
                                                                 Sex
                  :549
                                 :1.000
                                          Length:1309
                                                             female:466
       : 1
1st Qu.: 328
                   :342
                          1st Qu.:2.000
                                          Class :character
                                                             male :843
Median: 655
               NA's:418
                          Median:3.000
                                          Mode :character
      : 655
                                 :2.295
                          Mean
 3rd Qu.: 982
                          3rd Qu.:3.000
       :1309
                                 :3.000
Max.
                          Max.
                    SibSp
                                     Parch
                                                    Ticket
                                                                         Fare
     Age
       : 0.17
                Min.
                       :0.0000
                                 Min.
                                        :0.000
                                                 Length:1309
                                                                    Min.
                                                                          : 0.000
1st Qu.:21.00
                1st Ou.:0.0000
                                 1st Qu.:0.000
                                                Class :character
                                                                    1st Qu.: 7.896
Median :28.00
                Median :0.0000
                                 Median :0.000
                                                 Mode :character
                                                                    Median: 14.454
      :29.88
Mean
                Mean
                      :0.4989
                                 Mean
                                       :0.385
                                                                          : 33.295
 3rd Qu.:39.00
                                                                    3rd Ou.: 31.275
                3rd Qu.:1.0000
                                 3rd Ou.:0.000
                       :8.0000
                                                                           :512.329
Max.
       :80.00
                Max.
                                 Max.
                                        :9.000
                                                                    Max.
                                                                    NA's
NA's
       :263
                                                                           :1
   Cabin
                     Embarked
Length:1309
                   Length:1309
Class :character Class :character
Mode :character Mode :character
```


Fare

7. Implement Linear Regression

```
data <- data.frame(
 years \exp = c(1.1, 1.3, 1.5, 2.0, 2.2, 2.9, 3.0, 3.2, 3.2, 3.7),
 Salary = c(39343.00, 46205.00, 37731.00, 43525.00, 39891.00, 56642.00, 60150.00, 54445.00,
64445.00, 57189.00)
library(caTools)
library(ggplot2)
split <- sample.split(data$Salary, SplitRatio = 0.7)
train <- subset(data, split == TRUE)
test <- subset(data, split == FALSE)
lm.r <- lm(formula = Salary \sim years exp, data = train)
coef(lm.r)
# Corrected ggplot code
ggplot() +
 geom point(aes(x = train\$years exp, y = train\$Salary), col = 'red') +
 geom line(aes(x = train)years exp, y = predict(lm.r, newdata = train)), col = 'blue') +
 ggtitle('Salary vs Experience')
```

```
R + R 4.4.1 · ~/ ≈
> data <- data.frame(
   years_exp = c(1.1, 1.3, 1.5, 2.0, 2.2, 2.9, 3.0, 3.2, 3.2, 3.7),
   salary = c(39343.00, 46205.00, 37731.00, 43525.00, 39891.00, 56642.00, 60150.00, 54445.0
0, 64445.00, 57189.00)
> library(caTools)
> library(ggplot2)
> split <- sample.split(data$Salary, SplitRatio = 0.7)
> train <- subset(data, split == TRUE)
> test <- subset(data, split == FALSE)
> lm.r <- lm(formula = Salary ~ years_exp, data = train)
> coef(lm.r)
(Intercept)
              years_exp
  29078.818
               8233.446
> # Corrected ggplot code
> ggplot() +
   geom_point(aes(x = train$years_exp, y = train$Salary), col = 'red') +
   geom_line(aes(x = train$years_exp, y = predict(lm.r, newdata = train)), col = 'blue') +
   ggtitle('Salary vs Experience')
>
```


8. Implement Logistic Regression

```
library(tidyverse)
library(ROCR)
library(caTools)
View(mtcars)
split <- sample.split(mtcars, SplitRatio = 0.8)
train <- subset(mtcars, split == TRUE)
test <- subset(mtcars, split == FALSE)
logistic_model <- glm(vs~wt + disp, data = train, family = binomial)
summary(logistic model)
predict reg <- predict(logistic model, test, type = "response")</pre>
predict reg
predict reg <- ifelse(predict reg > 0.5, 1, 0)
table(test$vs, predict reg)
missing classerr <- mean(predict reg != test$vs)
missing classerr
print(paste("Accuracy = ", 100 * (1 - missing classerr)))
library(ggplot2)
ggplot(mtcars, aes(x = wt + disp, y = vs))+
 geom point(alpha = 0.5)+
 stat smooth(method = "glm", se = FALSE, method.args = list(family = binomial), col = 'red')
library(ROCR)
ROCPred = prediction(predict reg, test$vs)
ROCPer = performance(ROCPred, measure = 'tpr', x.measure = 'fpr')
auc <- performance(ROCPred, measure = 'auc')</pre>
auc <- auc@y.values[[1]]
auc
plot(ROCPer, colorize = TRUE, print.cutoffs.at = seq(0.1, by = 0.1), main = "ROC Curve")
abline(a = 0, b = 1)
auc <- round(auc, 4)
legend(.6, .4, auc, title = "AUC", cex = 1)
```

*	mpg	cyl	disp	hp	drat ‡	wt =	qsec	vs ‡	am 🌼	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2

```
R + R 4.4.1 · ~/ ≈
> library(tidyverse)
> library(ROCR)
> library(caTools)
> View(mtcars)
> split <- sample.split(mtcars, SplitRatio = 0.8)
> train <- subset(mtcars, split == TRUE)
> test <- subset(mtcars, split == FALSE)
> logistic_model <- glm(vs~wt + disp, data = train, family = binomial)</pre>
> summary(logistic_model)
call:
glm(formula = vs ~ wt + disp, family = binomial, data = train)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.10933 3.25655
                                0.955
                                        0.3397
                                 0.676
                                         0.4989
wt
            1.12527
                       1.66397
                       0.01513 -2.032 0.0422 *
disp
           -0.03073
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 31.492 on 22 degrees of freedom
Residual deviance: 14.387 on 20 degrees of freedom
AIC: 20.387
Number of Fisher Scoring iterations: 6
```

```
> predict_reg <- predict(logistic_model, test, type = "response")
> predict_reg
       Mazda RX4 Wag
                                                                          Merc 450SL
                               Datsun 710
                                             Hornet Sportabout
         0.806431360
                              0.916876588
                                                   0.016559439
                                                                         0.236865438
         Merc 450SLC Lincoln Continental
                                                    Camaro Z28
                                                                   Pontiac Firebird
                                                   0.034668186
                                                                         0.007708147
         0.247185712
                              0.007210381
       Porsche 914-2
         0.860573996
> predict_reg <- ifelse(predict_reg > 0.5, 1, 0)
> table(test$vs, predict_reg)
    predict_reg
     0 1
   0 6 2
   101
> missing_classerr <- mean(predict_reg != test$vs)
> missing_classerr
 [1] 0.2222222
> print(paste("Accuracy = ", 100 * (1 - missing_classerr)))
 [1] "Accuracy = 77.7777777778"
> library(ggplot2)
> ggplot(mtcars, aes(x = wt + disp, y = vs))+
     geom_point(alpha = 0.5)+
     stat_smooth(method = "glm", se = FALSE, method.args = list(family = binomial), col = 'r
ed')
 'geom_smooth()` using formula = 'y \sim x'
> library(ROCR)
> ROCPred = prediction(predict_reg, test$vs)
> ROCPer = performance(ROCPred, measure = 'tpr', x.measure = 'fpr')
> auc <- performance(ROCPred, measure = 'auc')</pre>
> auc <- auc@y.values[[1]]
> auc
[1] 0.875
```


9. Construct Decision Tree for Weather data set

```
set.seed(42)
weatherdata <- data.frame(
 cloud3pm = sample(1:10, 1000, replace = TRUE),
 pressure3pm = sample(1000:1025, 1000, replace = TRUE),
 humidity3pm = sample(40:100, 1000, replace = TRUE),
 temp3pm = sample(10:35, 1000, replace = TRUE),
 wind3pm = sample(0.50, 1000, replace = TRUE),
 RainTomorrow = factor(sample(c('No', 'Yes'), 1000, replace = TRUE))
)
table(weatherdata$RainTomorrow)
repeat {
 sample \leq- sample(c(TRUE, FALSE), nrow(weatherdata), replace = TRUE, prob = c(0.8, 0.2))
 train <- weatherdata[sample, ]
 test <- weatherdata[!sample, ]
 if (length(unique(test$RainTomorrow)) == 2) break
library(partykit)
model <- ctree(RainTomorrow ~ ., data = train, control = ctree control(minsplit = 5, minbucket =
5, maxdepth = 10, mincriterion = 0.7)
plot(model, type = 'simple')
predict model <- predict(model, test)</pre>
mat <- table(test$RainTomorrow, predict model)
accuracy <- sum(diag(mat)) / sum(mat)
sprintf("Accuracy: %f", accuracy * 100)
```

Output:

J.N.T.U.H. UCESTH

```
R - R 4.4.1 · ~/ =>
 > set.seed(42)
 > weatherdata <- data.frame(</pre>
 + cloud3pm = sample(1:10, 1000, replace = TRUE),
      pressure3pm = sample(1000:1025, 1000, replace = TRUE),
      humidity3pm = sample(40:100, 1000, replace = TRUE),
     temp3pm = sample(10:35, 1000, replace = TRUE),
wind3pm = sample(0:50, 1000, replace = TRUE),
RainTomorrow = factor(sample(c('No', 'Yes'), 1000, replace = TRUE))
 + )
 > table(weatherdata$RainTomorrow)
  No Yes
 503 497
 > repeat {
 + sample <- sample(c(TRUE, FALSE), nrow(weatherdata), replace = TRUE, prob = c(0.8, 0.2))
      train <- weatherdata[sample, ]
test <- weatherdata[!sample, ]</pre>
      if (length(unique(test$RainTomorrow)) == 2) break
 > library(partykit)
 > model <- ctree(RainTomorrow ~ ., data = train, control = ctree_control(minsplit = 5, minbuc
 ket = 5, maxdepth = 10, mincriterion = 0.7))
 > plot(model, type = 'simple')
 > predict_model <- predict(model, test)</pre>
 > mat <- table(test$RainTomorrow, predict_model)</pre>
> accuracy <- sum(diag(mat)) / sum(mat)
> sprintf("Accuracy: %f ", accuracy * 100)
[1] "Accuracy: 45.614035 "
```

10. Analyse Time-Series Data

```
positiveCases <-
c(580,7813,28266,59287,75700,87820,95314,126214,471497,936851,1508725,2072113)
deaths < -c(17,270,565,1261,2126,2800,3285,4628,8951,21283,47210,88480,138475)
library(lubridate)
png(file='MultiTimeSeries.png')
mts <- ts(cbind(positiveCases, deaths), start = decimal date(ymd("2021-01-22")), frequency =
plot(mts, xlab = "Weekly Data", main = "COVID-19 Cases", col.main = "darkgreen")
dev.off()
library(forecast)
png(file="TimeSeries.png")
mts1 <- ts(positiveCases, decimal date(ymd("2021-01-22")), frequency = 365.25/7)
fit <- auto.arima(mts1)
fit <- forecast(fit, 5)
plot(forecast(fit, 5), xlab = "Weekly Data", ylab = "Positive Cases", main = "COVID 19 Cases",
col.main = "green")
dev.off()
```

```
R - R 4.4.1 · ~/ →
> positiveCases <- c(580,7813,28266,59287,75700,87820,95314,126214,471497,936851,1508725,2072
> deaths <- c(17,270,565,1261,2126,2800,3285,4628,8951,21283,47210,88480,138475)
> library(lubridate)
> png(file='MultiTimeSeries.png')
> mts <- ts(cbind(positiveCases, deaths), start = decimal_date(ymd("2021-01-22")), frequency
= 365.25/7)
Warning message:
In cbind(positiveCases, deaths) :
 number of rows of result is not a multiple of vector length (arg 1)
> plot(mts, xlab = "Weekly Data", main = "COVID-19 Cases", col.main = "darkgreen")
> dev.off()
null device
> library(forecast)
> png(file="TimeSeries.png")
> mts1 <- ts(positiveCases, decimal_date(ymd("2021-01-22")), frequency = 365.25/7)
> fit <- auto.arima(mts1)</pre>
> fit <- forecast(fit, 5)</pre>
> plot(forecast(fit, 5), xlab = "Weekly Data", ylab = "Positive Cases", main = "COVID 19 Case
  , col.main = "green")
> dev.off()
null device
```


COVID 19 Cases

11. Work on any Data Visualization tools

View(airquality)

barplot(airquality\$Ozone, main = 'Ozone Concentration in Air', xlab = 'Ozone Levels', horiz = TRUE)

hist(airquality\$Temp, main = "La Guardia Airport's Maximum Temperature(Daily)", xlab = "Temperature(Fahrenheit)", xlim = c(50,125), col = "yellow", freq = TRUE)

boxplot(airquality[,0:4], main = "Box Plots for Air Quality Parameters")

plot(airquality\$Ozone, airquality\$Month, main = "Scatterplot Example", xlab = "Ozone Concentration in ppb", ylab = "Month of Observation", pch = 19)

data <- matrix(rnorm(50, 0, 5), nrow = 5, ncol = 5)

colnames(data) <- paste0("col", 1:5)

rownames(data) <- paste0("row", 1:5) heatmap(data)

	Ozone	Solar.R	Wind	Temp	Month	Day
1	41	190	7,4	67	5	1
2	36	118	8.0	72	5	2
3	12	149	12.6	74	5	3
4	18	313	11.5	62	5	4
5	NA	NA	14.3	56	5	5
6	28	NA	14.9	66	5	6
7	23	299	8.6	65	5	7
8	19	99	13.8	59	5	8
9	8	19	20.1	61	5	9
10	NA	194	8.6	69	5	10

Ozone Concentration in Air

La Guardia Airport's Maximum Temperature(Daily)

Box Plots for Air Quality Parameters

Scatterplot Example

Ozone Concentration in ppb

J.N.T.U.H. UCESTH