Vanishing Gradient Problem in ANN

IMP Interview Question

- The vanishing gradient problem occurs when gradients become extremely small during backpropagation, causing early layers in a neural network to learn very slowly or not at all.
- This is a major issue in deep neural networks (especially those with sigmoid/tanh activations).
 - You face this problem when there are many (8 to 10) hidden layers.

Occurs only in case of sigmoid & tanh activation functions.

Why Does the Vanishing Gradient Occur?

Chain Rule

• During backpropagation, gradients are calculated using the chain rule

$$rac{\partial \mathcal{L}}{\partial W_1} = rac{\partial \mathcal{L}}{\partial \hat{y}} \cdot rac{\partial \hat{y}}{\partial z_L} \cdot rac{\partial z_L}{\partial a_{L-1}} \cdots rac{\partial a_1}{\partial z_1} \cdot rac{\partial z_1}{\partial W_1}$$

- If many of these terms are < 1, their product shrinks exponentially.
- If activation functions like Sigmoid or Tanh are used, their derivatives are between 0 and 1.
- When these small derivatives are multiplied in multiple layers, they shrink exponentially, leading to vanishing gradients.

Activation Functions Matter

Activation	Gradient Behavior
Sigmoid	Max gradient = 0.25 (vanishes for extreme inputs).
Tanh	Max gradient = 1 (still vanishes for large inputs).
ReLU	Gradient = 0 (if input < 0) or 1 (if input > 0).

Deep Networks Suffer More

- In a 10-layer network with sigmoid:
- $TotalGradient \approx (0.25)^{10} = Nearlyzero!$

How to recognize Vanishing Gradient Problem?

- 1. Pay attention at the loss
 - If the loss does not reduce, it's an indication of vanishing gradient problem
- 2. Plot graphs of weight

- Plot Epoch vs Value graph
- If the graph is a straight line, it means the weight is not changing indicating vanishing gradient problem.

How to Solve the Vanishing Gradient Problem?

1. Use Different Activation Functions

Replace Sigmoid/Tanh with:

Activation	Why It Helps
ReLU (Rectified Linear Unit)	Avoids small gradients by keeping positive values unchanged $f(x) = \max(0,x)$
Leaky ReLU	Fixes ReLU's zero-gradient issue for negative values
ELU (Exponential Linear Unit)	Further smoothens gradient flow

2. Reduce the hidden layers

- Major con: You lose the complex patterns.
- · Not effective for most of the times.

3. Weight Initialization

• Use He Initialization (for ReLU) or Glorot/Xavier (for sigmoid/tanh):

• Xavier/Glorot Initialization (for Sigmoid, Tanh):
$$W \sim \mathcal{N}(0, \frac{1}{\mathrm{fan_in} + \mathrm{fan_out}})$$
• He Initialization (for ReLU):
$$W \sim \mathcal{N}(0, \frac{2}{\mathrm{fan_in}})$$

4. Batch Normalization

• Normalizes layer outputs to **mean=0, std=1**, keeping gradients stable.

model.add(Dense(128))
model.add(BatchNormalization())
model.add(Activation('relu'))

5. Use Residual Connections (Skip Connections)

- It's a building block
- ResNet (Residual Networks) solve vanishing gradients by adding shortcuts:

$$x_{l+1} = f(W_l x_l) + x_l$$

• This helps gradients flow directly to earlier layers.

Residual block in Keras

x = Dense(128)(inputs)

x = BatchNormalization()(x)

x = Activation('relu')(x)

outputs = Add()([x, inputs]) # Skip connection

Exploding Gradient Problem

When you multiply numbers greater than 1, you get a larger numberA

- It's opposite of vanishing gradient problem
- If gradients grow too large (common in RNNs), training becomes unstable.
- Fix: Use gradient clipping.