1.1 • Note that the polynomial $f(x) = (x-7)^3 - 2$ satisfies $f(7+\sqrt[3]{2}) = 0$ since

$$f(7 + \sqrt[3]{2}) = (7 + \sqrt[3]{2} - 7)^3 - 2 = 2 - 2 = 0.$$

• Note that the polynomial $f(x) = (x^2 - 8)^2 - 60$ satisfies $f(\sqrt{3} + \sqrt{5}) = 0$ since

$$f(\sqrt{3} + \sqrt{5}) = (5 + 3 + 2\sqrt{15} - 8)^2 - 60 = 60 - 60 = 0$$

- 1.8 (a) $\{1, 5, 7, 11\}$
 - (b) $\{1, 3, 5, 7\}$
 - (c) We claim that the set $\Phi(n) = \{k \in [n] : \gcd(n,k) = 1\}$ is the set of units of $\mathbb{Z}/n\mathbb{Z}$. Note that if $\gcd(a,n) = 1$ then there exists $x,y \in \mathbb{Z}$ such that ax + ny = 1. Therefore $1 = ax + ny \equiv ax \mod n$. Thus $x \mod n$ is the inverse of a. However consider for contradiction that $\Phi(n)$ does not contain all of the units. Thus there exists $u \in \mathbb{Z}/n\mathbb{Z}$ which $u \not\in \Phi(n)$ and there exists $w \in \mathbb{Z}/n\mathbb{Z}$ such that $uw \equiv 1 \mod n$. Thus by the definition of modular arithmatic there exists $m \in \mathbb{Z}$ then uw + my = 1. Thus by definition of the $\gcd(u,n) = 1$. Thus $u \in \Phi(n)$. This is a contradiction. Thus $\Phi(n)$ contains all of the units of $\mathbb{Z}/n\mathbb{Z}$.
- 2.2 Proving that F[[x]] is a ring
 - Addition is an abelian group.
 - Commutativity: Suppose $a, b \in F[[x]]$ where $a = \sum_{i=0} a_i x^i, b = \sum_{i=0} b_i x^i$. Then

$$a+b = \sum_{i=0}^{\infty} a_i x^i + \sum_{i=0}^{\infty} b_i x^i = \sum_{i=0}^{\infty} (a_i + b_i) x^i = \sum_{i=0}^{\infty} (b_i + a_i) x^i = \sum_{i=0}^{\infty} b_i x^i + \sum_{i=0}^{\infty} a_i x^i = b + a$$

– Identity: Suppose $a \in F[[x]]$. Then

$$0 + a = a + 0 = \sum_{i=0}^{n} a_i x^i + \sum_{i=0}^{n} 0x^i = \sum_{i=0}^{n} (a_i + 0)x^i = \sum_{i=0}^{n} a_i x^i = a.$$

Thus 0 is the additive identity for F[[x]].

- Associativity: Suppose $a, b, c \in F[[x]]$. Then

$$(a+b) + c = \sum_{i=0}^{\infty} (a_i + b_i) x^i + \sum_{i=0}^{\infty} c_i x^i$$

$$= \sum_{i=0}^{\infty} (a_i + b_i + c_i) x^i$$

$$= \sum_{i=0}^{\infty} a_i x^i + (b_i + c_i) x^i$$

$$= \sum_{i=0}^{\infty} a_i x^i + \sum_{i=0}^{\infty} (b_i + c_i) x^i$$

$$= a + (b + c)$$

- Additive inverses: Suppose $a \in F[[x]]$. Then by definition $a = \sum_{i=0} a_i x^i$. Since F is a field then the sequence $(-a_0, -a_1, \cdots) \subseteq F$. Therefore we can construct $b = \sum_{i=0} -a_i x^i$. Thus $a + b = \sum_{i=0} (a_i a_i) x^i = \sum_{i=0} 0 x^i = 0$. Thus b is the inverse of a.
- Multiplication is commutative: Suppose $a, b \in F[[x]]$ Then

$$(ab)_n = \sum_{i+j=n} a_i b_j$$

$$= \sum_{j+i=n} b_j a_i \text{ commutativity of } F$$

$$= \sum_{l+k=n} b_l a_k \text{ let } l = j, k = i$$

$$= (ba)_n$$

Since the nth coefficient is the same, then the power series is identical.

• Multiplication is associative: Suppose $a, b, c \in F[[x]]$. Then

$$(ab)c = \left(\sum_{i=0}^{\infty} \sum_{k+j=i} a_k b_j x^i\right) \left(\sum_{l=0}^{\infty} c_l x^l\right)$$
$$= \sum_{i=0}^{\infty} \sum_{i=j+k+l} a_j b_k c_l x^i$$
$$= \left(\sum_{j=0}^{\infty} a_j x^j\right) \left(\sum_{n=0^{\infty}} \sum_{k+l=n} b_k c_l x^n\right)$$
$$= a(bc)$$

• Distributive rule: Suppose $a, b, c \in F[[x]]$. Then

$$c(a+b) = \left(\sum_{i=0}^{\infty} c_i x^i\right) \left(\sum_{i=0}^{\infty} a_i + \sum_{i=0}^{\infty} b_i\right)$$
$$= \sum_{i=0}^{\infty} \sum_{j+k=i}^{\infty} c_j (a_k + b_k) x^i$$
$$= \sum_{i=0}^{\infty} \sum_{j+k=i}^{\infty} c_j a_k x^i + \sum_{i=0}^{\infty} \sum_{j+k=i}^{\infty} c_j b_k x^i$$
$$= ca + cb$$

The units of F[[x]] have to be pairs of power series of the form $A = \sum_{i=0}^{\infty} a_i x^i$ and $B = \sum_{i=0}^{\infty} b_i x^i$ satisfying AB = 1. Therefore b_0 must be $\frac{1}{a_0}$, giving us a requirement that the original power series A must have a non-zero constant term, and that for $n > 0, \sum_{i+j=n} a_i b_j = 0$. Note that we can use the second condition to define b_n recursively via $b_n = \frac{-1}{a_0} \sum_{i=0}^{n-1} a_{n-i} b_i$. This gives us that the sum

$$\sum_{i+j=n} a_i b_j = a_0 b_n + \sum_{i=0}^{n-1} a_{n-i} b_i = -\sum_{i=0}^{n-1} a_{n-i} b_i + \sum_{i=0}^{n-1} a_{n-i} b_i = 0$$

Satisfying the requirements that all of the non-constant mononomial terms have a coefficient of 0. Therefore the only requirement on a given power series to be invertible is that there must be a non-zero constant term.

- 3.2 Suppose $I \subset \mathbb{Z}[i]$ and consider $x \in I$. By definition of $\mathbb{Z}[i]$ there exists $a, b \in \mathbb{Z}$ such that x = a + bi where at least one of the a, b is non-zero. Therefore the element $a bi \in \mathbb{Z}[i]$ since $-b \in \mathbb{Z}$. Thus by the definition of an ideal $(a bi)(a + bi) \in I$. Therefore $a^2 b^2 \in I$. Since $a, b \in \mathbb{Z}$ then I contains an integer.
- 3.6 Let the automorphism be denoted $\psi: R[x,y] \to R[x,y]$, given by $\psi(p(x,y)) = p(x+f(y),y)$
 - Injectivity: Suppose $p, q \in R[x, y], \psi(p) = \psi(q)$. We want to show that p = q. Note that we can set z = x + f(y). From our original supposition we have that p(z, y) = q(z, y). Therefore trivially p(x, y) = q(x, y)
 - Surjectivity: Suppose $p \in R[x,y]$. We want to show there exists $p' \in R[x,y]$ such that $\psi(p') = p$. We claim that p' = p(x f(y), y). Observe that $\psi(p') = p(x f(y)) + f(y), y) = p(x,y)$.
 - Homomorphism requirements: Suppose $p, q, r \in R[x, y], g = pq, w = g + r$ then

$$\psi(pq+r) = \psi(w(x,y)) = w(x+f(y),y) = g(x+f(y),y) + r(y)$$
$$= p(x+f(y),y)q(x+f(y),y) + r(x+f(y),y) = \psi(p)\psi(q) + \psi(r)$$

Additionally, since ψ is a substitution map on the variables x,y, then it does not affect constants, thus $\psi(1) = 1$.

- 3.12 We must show that $I+J=i+j: i\in I, j\in J$ is an ideal in the ring R
 - Suppose $a, b \in I + J$. Then there exists $a_i, b_i \in I, a_j, b_j \in J$ such that $a = a_i + a_j, b = b_i + b_j$. Therefore $a + b = a_i + a_j + b_i + b_j = (a_i + b_i) + (a_j + b_j)$. Since I, J are closed under addition then $a_i + b_i \in I, a_j + b_j \in J$. Since a + b is the sum of an element from I and an element from J then it's an element of I + J.
 - Suppose $c \in R$, $a \in I + J$. Then there exists $a_i \in I$, $a_j \in J$ such that $a_i + a_j = a$. Thus $ca = c(a_i + a_j)ca_i + ca_i$. Since ideals "absorb" multiplication then $ca_i \in I$, $ca_j \in J$. Thus by the definition of I + J, $ca \in I + J$.

Therefore I + J is an ideal of R.

4.1 Since the substitution homomorphism is surjective from $\mathbb{Z}[x]$ to \mathbb{Z} then we can apply the correspondence theorem. This gives us a bijective correspondence between ideals in $\mathbb{Z}[x]$ containing x-1 and ideals in \mathbb{Z} . Note that the ideals in \mathbb{Z} are exactly (n) where $n \in \mathbb{Z}$. Since constants are unaffected by substitution then this says that all of the ideals which contain (x-1) are exactly the ideals of the form (n, x-1).

Alex Valentino Homework 7
451

5.6 (a) Let $\phi: R[x] \to R[\alpha]$ be the substitution homomorphism $\phi(x) = \alpha, \pi: R[x] \to R[x]/(ax-1)$ be the projection map, and $\psi: R[x]/(ax-1) \to R[\alpha]$ be the isomorphism guaranteed by the first isomorphism theorem. We know by the first isomorphism theorem that $R[x]/(ax-1) \cong R[\alpha]$. Therefore we must show that all elements in R[x]/(ax-1) are equal to cx^k , where $c \in R$. Given a polynomial in R[x], $p(x) = b_0 + b_1 x + \cdots + b_n x^n$, one can remove the constant term b_0 by adding $b_0(ax-1)$. Note that our new polynomial is equivalent in R[x]/(ax-1). Therefore we can continue the process via adding $(b_1 + b_0 ax)(ax-1)$, which will elimate the x. This process can be continued til we end up with a polynomial of the form bx^n where $b \in R$. Since ψ is a bijection between R[x]/(ax-1) and $R[\alpha]$ then we have that all elements in $R[\alpha]$ are of the form $b\alpha^n$.

- (b) Note that if $b \in \ker \psi$ then there exists $p(x) \in R[x]$ such that b = (ax 1)p(x). Since $p(x) \in R[x]$ then it takes the form $p(x) = c_0 + c_1x + \cdots + c_nx^n$. Therefore we have the equation $b = (ax - 1)(c_0 + c_1x + \cdots + c_nx^n)$, which must satisfy $-c_0 = b, c_0a = c_1, c_1a = c_2, \cdots, c_{n-1}a = c_n, 0 = c_na$. Thus going up the equations we end with $0 = a^nb$.
- (c) \Rightarrow Suppose R' is the zero ring. Then trivially all elements are in the kernel. Thus there exists an n for every element $b \in R$ where $a^nb = 0$. This implies that all elements are either zero divisors or $a^n = 0$. If every element is a zero divisor then R is the zero ring, making a trivially nilpotent. Otherwise $a^n = 0$, thus making a nilpotent.
 - (\Leftarrow) Suppose a is nilpotent. We want to show that R' is the zero ring. Then by definition there exists $n \in \mathbb{N}$ such that $a^n = 0$. Thus all elements $b \in R$ satisfy $a^n b = 0$. Thus all elements from R are in the kernel of γ . Thus R' is the zero ring.
- 6.1 Let $\varphi : \mathbb{R}[x] \to \mathbb{C} \times \mathbb{C}$ be the homomorphism given by $\varphi(x) = (1, i), \varphi(r) = (r, r), r \in \mathbb{R}$.
 - We claim that $im\varphi = \mathbb{R} \times \mathbb{C}$. Observe that no matter the polynomial, the first coordinate must be a real number because both $\varphi(x), \varphi(r)$ have a real number in the first coordinate, and we are taking linear combinations of x and $r \in \mathbb{R}$. Furthermore the second coordinate spans \mathbb{C} since $ax + b \in \mathbb{R}[x]$

$$\varphi(ax+b) = \varphi(a)\varphi(x) + \varphi(b) = (a,a)(1,i) + (b,b) = (a+b,a+bi)$$

Clearly the second coordinate spans all of \mathbb{C} .

• We claim that $\ker \varphi = (x^4 - 1)$. Note that $\varphi(x^4) = \varphi(x)^4 = (1, i)^4 = (1^4, i^4) = (1, 1)$, therefore $\varphi(x^4) = \varphi(1)$. Thus $\varphi(x^4 - 1) = 0$. Note that if there exists a smaller polynomial which generates the kernel then it must divide $x^4 - 1$. Note that $\varphi(x^2 + 1) = (2, 0)$ and $\varphi(x^2 - 1) = (0, -2)$, thus the divisors are non-zero. Therefore $x^4 - 1$ is the smallest polynomial in the kernel. Therefore $\ker \varphi = (x^4 - 1)$.