R-L TRANSIENTS

$$-V_{s} + iR + L \frac{di}{dt} = 0$$

$$\frac{di}{dt} * \left(\frac{R}{L}\right) i = \frac{V_{s}}{L}$$

$$P = \frac{R}{L} j Q = \frac{V_{s}}{L}$$

$$e^{\int_{0}^{t} P dx} = e^{\frac{R}{L} \int_{0}^{t} dx} = e^{\frac{R}{L} \int_{0}^{t} dx}$$

$$i(t) = \frac{V_S}{R} \left(1 - e^{-t/\frac{1}{R}} \right)$$

TIME CONSTANTS

TIME CONSTANT EQUATIONS

NATURAL RESPONSE

$V_{S} = 0.33 \, \mu F$ $V_{S} = V_{S} e^{-t/RC}$ $i(t) = V_{S} e^{-t/RC}$

STEP (FORCED) RESPONSE

DEPENDENT SOURCES

$$V_{1}^{2} - 4I_{1}^{4} + \frac{1}{3} = 0$$
 $I_{1}^{5} = \frac{2-V_{1}}{6}$
 $I_{3}^{5} = \frac{V_{1}}{3}$
 $V_{1}^{5} = \frac{1.43}{3}$
 $V_{1}^{5} = \frac{95.2}{3}$
 $V_{2}^{5} = \frac{476}{3}$
 $V_{3}^{5} = \frac{476}{3}$
 $V_{4}^{5} = \frac{476}{3}$

$$2 \vee \frac{I_1 + 6 \Omega}{I_1 + 4I_1} + \frac{3 \Omega}{4I_1}$$

THÉVENIN EQUIVALENT CIRCUITS

THÉVENIN EQUIVALENT CIRCUITS

Any load applied to the Thévenin EgCkt experiences the same current as the original elet.

All information about the internal chtry is LOST.

THÉVENIN EQUIVALENT CIRCUITS

CHRISTINA'S WORLD by ANDREW WYETH

LIGHT IN WINDOW, WHAT CAUSED IT?

Z. Calculate Rth (THREE WAYS)

- a. Voc-Isc (SHORT CKT)
- b. Zero out indep. sources, attack known test source to port.
- C. Fero out indep, sources, look into port, calculate Rux
- * Does not work in ckts with dependent sources!

Method A
$$R_{th} = \frac{V_{oc}}{T_{sc}} = \frac{V_{s} \frac{R_{z}}{R_{t}+R}}{V_{s}/R_{s}} = \frac{R_{s}R_{z}}{R_{t}+R_{z}} = R_{s} ||R_{z}||$$

Method B $R_{1} = \frac{V_{T}}{I_{T}}$ $R_{2} = \frac{V_{T}}{I_{T}}$ $R_{2} = \frac{V_{T}}{R_{1}R_{2}}$ $R_{3} = \frac{V_{T}}{R_{1}R_{2}}$ $R_{4} = \frac{V_{T}}{R_{1}R_{2}}$ $R_{5} = R_{1} || R_{2}$ $R_{1} = R_{2} || R_{3}$

MAXIMUM POWER TRANSFER

THÉVENIN EQUIVALENT CIRCUIT

