Question	Answer	Marks	Guidance
(a)	Use suvat to find expressions for S_A or S_B		For s_A must be using $u = 8$ and time of $t \pm 4$ For s_B , using $s = ut + \frac{1}{2}at^2$ with $u = 20$ and $a = \pm 2$
	$(s_A =)8(4+t)[=32+8t]$	A1	Any unsimplified expression; ISW
	$(s_B =) 20t - \frac{1}{2} \times 2 \times t^2$	A1	Any unsimplified expression; ISW If 0 marks scored then allow SC: B1 for $(s_A =)8t$ and B1 for $(s_B =)20(t-4)-\frac{1}{2}\times2\times(t-4)^2$ maximum 2/3
		3	

Question	Answer	Marks	Guidance
(b)	$8(4+t) = 20t - \frac{1}{2} \times 2 \times t^2$	*M1	Equating their expressions for s_A and s_B to form an equation in t where s_A is of the form $\pm 8t \pm 32$ and s_B is of the form $\pm 20t \pm \frac{1}{2} \times 2 \times t^2$
	Attempt to solve a 3-term quadratic to find at least one t value	DM1	For reference $t^2 - 12t + 32 = 0$ Allow if no working seen and have correct real solution(s) to <i>their</i> 3-term quadratic. If working shown and if using the formula, it must be using the correct formula. If factorising must have 3 of the 4 terms correct of $(t-4)(t-8)$
	t = 4 and 8	A1	If 0 marks scored then allow SC: M1 for $\pm 8t = \pm 20(t \pm 4) \pm \frac{1}{2} \times 2 \times (t \pm 4)^2$ and A1 for $t = 8$ and 12 maximum 2/3.
		3	

Question	Answer	Marks	Guidance
(c)	Straight line	B1 FT	Positive gradient, intersecting positive s axis. Full domain not required. FT if they get $s_A = 8t$ using the SC in (a)
	Inverted quadratic, passing through origin.	B1 FT	Full domain not required but must clearly go beyond the maximum. FT if they get $s_B = 20(t-4) - \frac{1}{2} \times 2 \times (t-4)^2$ using the SC in (a) , with curve though positive t axis before turning point.
	All correct, line through $(0, 32)$, quadratic through $(20, 0)$, intersections indicated at $t = 4$ and $t = 8$.	B1	Intersections must occur before the turning point.
		3	