SINTAXA

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
,

unde φ , ψ și χ sunt formule.

Regula de deducție

Pentru orice formule φ, ψ ,

din φ și $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$
.

Propoziția 1.37

- (i) dacă φ este axiomă, atunci Γ ⊢ φ ;
- (ii) dacă $\varphi \in \Gamma$, atunci $\Gamma \vdash \varphi$;
- (iii) dacă $\Gamma \vdash \varphi$ și $\Gamma \vdash \varphi \rightarrow \psi$, atunci $\Gamma \vdash \psi$.

Propoziția 1.39

Fie Γ, Δ mulțimi de formule.

(i) Dacă $\Gamma \subseteq \Delta$, atunci $Thm(\Gamma) \subseteq Thm(\Delta)$, adică, pentru orice formulă φ ,

$$\Gamma \vdash \varphi \text{ implică } \Delta \vdash \varphi.$$

- (ii) $Thm \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ , $\vdash \varphi$ implică $\Gamma \vdash \varphi$.
- (iii) Dacă $\Gamma \vdash \Delta$, atunci $Thm(\Delta) \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ ,

$$\Delta \vdash \varphi \text{ implică } \Gamma \vdash \varphi.$$

(iv) $Thm(Thm(\Gamma)) = Thm(\Gamma)$, adică, pentru orice formulă φ , $Thm(\Gamma) \vdash \varphi \; ddacă \Gamma \vdash \varphi$.

Propoziția 1.45

Pentru orice formulă φ , $\vdash \varphi \rightarrow \varphi$.

Teorema 1.46 (Teorema deducției)

Fie $\Gamma \subseteq Form \ \text{si} \ \varphi, \psi \in Form. \ Atunci$

$$\Gamma \cup \{\varphi\} \vdash \psi \quad ddaca \Gamma \vdash \varphi \rightarrow \psi.$$

Propoziția 1.47

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)).$$

Propoziția 1.48

Pentru orice mulțime de formule Γ și orice formule φ, ψ, χ ,

$$\Gamma \vdash \varphi \rightarrow \psi \quad \text{si} \quad \Gamma \vdash \psi \rightarrow \chi \quad \Rightarrow \quad \Gamma \vdash \varphi \rightarrow \chi.$$

Propoziția 1.52

Pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\psi\} \vdash \varphi \quad \text{si} \quad \Gamma \cup \{\neg \psi\} \vdash \varphi \quad \Rightarrow \quad \Gamma \vdash \varphi.$$

Propoziția 1.53

Pentru orice formule φ, ψ ,

$$\{\varphi \wedge \psi\} \qquad \vdash \qquad \psi \tag{47}$$

$$\{\varphi,\psi\} \vdash \varphi \wedge \psi$$
 (48)

$$\{\varphi,\psi\} \vdash \chi \quad ddac\check{a} \quad \{\varphi \land \psi\} \vdash \chi$$
 (49)

$$\vdash \qquad \varphi \wedge \psi \leftrightarrow \psi \wedge \varphi \tag{50}$$

(S7.1) (Metoda reducerii la absurd)

Să se arate că pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \rightarrow \varphi) \Rightarrow \Gamma \vdash \psi.$$

(S7.2) Să se arate că pentru orice formule φ, ψ ,

- (i) $\{\psi, \neg \psi\} \vdash \varphi$;
- (ii) $\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi)$;
- (iii) $\vdash \neg \neg \varphi \rightarrow \varphi$;
- (iv) $\vdash \varphi \rightarrow \neg \neg \varphi$.

(S7.3) ("Reciproca" axiomei 3)

Să se arate că pentru orice formule φ, ψ ,

$$\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi).$$

(S7.4) Să se arate că pentru orice formule φ, ψ,

$$\{\psi, \neg \varphi\} \vdash \neg (\psi \to \varphi).$$