Using Al Algorithms to Classify Images

Rina BUOY

Applied Natural Language Processing Researcher Techo Startup Center

Contents

- Overview Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL)
- 2. Simple Feed Forward Neural Network (FFNN)
- 3. Convolutional Neural Network (CNN)
- 4. Demo

Al vs ML vs DL

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

313472

Feed Forward Neural Network

Perceptron

Dense Layers

Feed Forward Neural Network

Empirical Loss

The **empirical loss** measures the total loss over our entire dataset

$$\mathbf{X} = \begin{bmatrix} 4, & 5 \\ 2, & 1 \\ 5, & 8 \\ \vdots & \vdots \end{bmatrix} \qquad \begin{array}{c} \mathbf{z_1} \\ \mathbf{z_2} \\ \mathbf{z_3} \end{array} \qquad \begin{array}{c} f(x) & \mathbf{y} \\ \begin{bmatrix} 0.1 \\ 0.8 \\ 0.6 \\ \vdots \end{bmatrix} \\ \mathbf{x} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{y} \\$$

Also known as:

- · Objective function
- Cost function
- Empirical Risk

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(\mathbf{x}^{(i)}; \mathbf{W}), \mathbf{y}^{(i)})$$

Predicted

Actual

Empirical Loss

Cross entropy loss can be used with models that output a probability between 0 and 1

$$J(\mathbf{W}) = -\frac{1}{n} \sum_{i=1}^{n} \underline{y^{(i)} \log \left(f(x^{(i)}; \mathbf{W}) \right)} + (1 - \underline{y^{(i)}}) \log \left(1 - f(x^{(i)}; \mathbf{W}) \right)$$
Actual Predicted Actual Predicted

Empirical Loss

Mean squared error loss can be used with regression models that output continuous real numbers

Training

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}$
- 1. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Convolutional Neural Network (CNN)

Images Are Numbers

What the computer sees

157	153	174	168	150	152	129	151	172	161	155	156
156	182	163	74	76	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	186	215	211	158	139	76	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	256	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

An image is just a matrix of numbers [0,255]! i.e., 1080×1080×3 for an RGB image

Task In Computer Vision

Regression: output variable takes continuous value

Classification: output variable takes class label. Can produce probability of belonging to a particular class

Fully Connected Network (FC)

Input:

- 2D image
- Vector of pixel values

Fully Connected:

- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- And many, many parameters!

Fully Connected Network (FC)

Using Spatial Structure

Input: 2D image. Array of pixel values

Using Spatial Structure

Connect patch in input layer to a single neuron in subsequent layer.

Use a sliding window to define connections.

How can we weight the patch to detect particular features?

Convolution Operation

Suppose we want to compute the convolution of a 5x5 image and a 3x3 filter:

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs...

Convolution Operation

...

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,0	1,
0	0	1,0	1,	0
0	1	1,	0,0	0,

Pooling

max pool with 2x2 filters and stride 2

6	8		
3	4		

- 1) Reduced dimensionality
- 2) Spatial invariance

Applying Filters to Extract Features

- 1) Apply a set of weights a filter to extract **local features**
 - 2) Use multiple filters to extract different features
 - 3) Spatially **share** parameters of each filter (features that matter in one part of the input should matter elsewhere)

Representation Learning in Deep CNNs

End-to-End Image Classification using CNNs

- 1. Learn features in input image through convolution
- 2. Introduce **non-linearity** through activation function (real-world data is non-linear!)
- 3. Reduce dimensionality and preserve spatial invariance with pooling

Beyond Image Classification

Demo

Overview - Machine Learning with Amazon SageMaker

Thank you