22401 HW4

Bin Yu

Feb 14, 2025

Question 1

(a)

. regress ozone rad temp wind

30	s =	ber of ob		MS	df		SS	Source
18.43	=	, 26)						
0.0000	=	b > F	1 Prob	3.7783347	3		11.3350041	Model
0.6802	=	quared	4 R-sq	.20500553	26		5.33014388	Residual
0.6433	d =	R-square	— Adj					
. 45278	=	t MSE	6 Root	.57466027	29		16.665148	Total
Interval]	Conf.	[95%	P> t	t	Err.	Std.	Coef.	ozone
.0053493	218	.0012	0.003	3.27	1004	.00	.0032856	rad
.0723249	849	.0223	0.001	3.90	1477	.012	.0473549	temp
0132546	926	1260	0.017	-2.54	4474	.027	0696736	wind
1.833157	041	-2.520	0.748	-0.32	0589	1.	343442	_cons

Figure 1: Regression Results

Interpretation:

• Coefficient and significance:

- rad: The coefficient is positive and statistically significant (p < 0.01). This suggests that as solar radiation (rad) increases, ozone levels tend to rise. Specifically, every 1-unit increase in rad is associated with an increase of approximately 0.0033 in ozone, holding the other variables constant.
- temp: The coefficient is also positive and significant (p < 0.01), indicating that higher temperatures (temp) are linked to higher ozone levels. A 1-degree increase in temperature corresponds to an increase of about 0.0474 in ozone, holding the other variables constant.
- wind: The coefficient is negative and statistically significant (p < 0.05), suggesting that stronger wind (wind) is associated with lower ozone. A 1-unit increase in wind speed reduces ozone by roughly 0.07, holding the other variables constant.
- Model fit: The R^2 is about 0.68, meaning the model explains approximately 68% of the variation in ozone.

Using the following code to compute the residuals and predicted values.

```
regress ozone rad temp wind

predict yhat, xb

predict rawres, resid

twoway scatter rawres ozone,
    title("Raw Residuals vs. Actual Ozone") ///
    xtitle("Actual Ozone") ///
    ytitle("Raw Residuals")
```


Figure 2: Raw Residuals vs. Actual Ozone

Interpretation

- Distribution Shift (Negative on the Left, Positive on the Right): Observing the plot, many residuals are negative for lower ozone values (left side) and positive for higher ozone values (right side). This could indicate a potential nonlinearity in the relationship, where the model might be under-predicting at higher ozone levels and over-predicting at lower ozone levels. Although not extremely severe, it is worth further investigation (e.g., by checking polynomial terms or transformations).
- Overall Randomness and Magnitude: Despite the left/right tendency, within each region the residuals appear relatively scattered at random. The points in the scatter plot do not follow a clear pattern or trend

with respect to the actual ozone values. This suggests that, broadly, the linear model form is appropriate and there is no obvious sign of systematic curvature or major violation of the linearity assumption.

• Constant Variance (Homoscedasticity): There is no obvious "fanning out" or narrowing that would strongly suggest heteroskedasticity. The spread of residuals from the horizontal axis is roughly consistent across the range of ozone.

(b)

Stata Code

Figure 3: Standardized Residuals vs. Fitted Values

Figure 5 shows the standardized residuals versus fitted values, providing a check for homoscedasticity and extreme points. The observations with id 17 and 26 have absolute standardized residuals greater than 2, indicating potential outliers.

(c)

Stata Code

list id ozone rad temp wind rstd if abs(rstd) > 2

. list id ozone rad temp wind rstd if abs(rstd) > 2

	id	ozone	rad	temp	wind	rstd
17.	17	4.86	223	79	5.7	2.597539
26.	26	3.33	284	72	20.7	2.214397

Figure 4: Standardized residuals with absolute standardized residuals greater than 2

Observations 17 and 26 have standardized residuals (|rstd| > 2) and are flagged as potential outliers. Below are summary statistics comparing these outliers to the remaining observations.

- . sum ozone rad temp wind if inlist(id, 17, 26)
- . sum ozone rad temp wind if !inlist(id, 17, 26)
- . sum rawres rstd yhat ozone if inlist(id, 17, 26)
- . sum rawres rstd yhat ozone if !inlist(id, 17, 26)

. sum ozone rad temp wind if inlist(id, 17, 26)

Variable	0bs	Mean	Std. Dev.	Min	Max
ozone	2	4.095	1.081874	3.33	4.86
rad	2	253.5	43.13351	223	284
temp	2	75.5	4.949747	72	79
wind	2	13.2	10.6066	5.7	20.7

. sum ozone rad temp wind if !inlist(id, 17, 26)

Variabl	.e	0bs	Mean	Std. Dev.	Min	Max
ozor	e	28	3.495357	.7409578	2.35	4.9
ra	d	28	202.1786	94.5935	7	323
tem	р	28	80.75	8.280387	64	94
wir	d	28	8.346429	2.983595	2.3	15.5

. sum rawres rstd yhat ozone if inlist(id, 17, 26)

Max	Min	Std. Dev.	Mean	0bs	Variable
1.126864	.7730325	.2501968	. 9499483	2	rawres
2.597539	2.214397	.2709223	2.405968	2	rstd
3.733136	2.556967	.8316767	3.145052	2	yhat
4.86	3.33	1.081874	4.095	2	ozone

. sum rawres rstd yhat ozone if !inlist(id, 17, 26)

Variable	0bs	Mean	Std. Dev.	Min	Max
rawres	28	0678535	.3513902	7570625	.7487786
rstd	28	1550411	.827566	-1.772312	1.733872
yhat	28	3.563211	.6181489	2.416788	4.686921
ozone	28	3.495357	.7409578	2.35	4.9

Figure 5: Comparisons between outliers and others

Findings

- Higher Ozone and Radiation on Average: The two outliers have an average ozone of 4.095 (vs. 3.495 among the others) and a higher average solar radiation (253.5 vs. 202.18). This suggests they lie in conditions more conducive to elevated ozone levels.
- Lower Temperature but Higher Wind: Outliers' mean temperature (75.5) is lower than that of the other group (80.75), their wind speed is substantially higher (13.2 vs. 8.35). This combination might deviate from the typical pattern captured by the model.
- Model Under-Prediction: The outliers show a mean rawres of about +0.95, whereas the non-outliers average around -0.07. Likewise, the rstd for these outliers is around +2.40, confirming that the model underestimates ozone for these two points, their fitted values (yhat ≈ 3.15) are notably below the actual

ozone (4.095), the model may require additional factors or a different functional form to accurately capture the high-wind, moderate-temperature regime in which these observations occur.

Overall, observations 17 and 26 differ from the rest of the sample by combining relatively high ozone levels with higher wind and lower temperature. The linear model under-predicts their ozone, reflected by large positive (and standardized) residuals. Additional predictors or a nuanced understanding of meteorological conditions might be needed to account for these outliers.

(d)

Stata Code

qnorm rstd
summ rstd

Figure 6: Q-Q Plot of Standardized Residuals

. summ rstd

rstd	30	.0156928	1.030698	-1.772312	2.597539
Variable	0bs	Mean	Std. Dev.	Min	Max

Figure 7: Mean and Variance of Standardized Residuals

Interpretation of Q-Q Plot and Summary Statistics

- General Conformity to Normality: The Q-Q plot (Figure 24) shows that most points lie close to the straight line, indicating that the standardized residuals largely follow a normal distribution.
- Mean and Standard Deviation: The mean of the standardized residuals is approximately 0.016 and the standard deviation is around 1.03, both of which are close to the theoretical values of 0 and 1, respectively. This supports the normality assumption.
- **High-End Tail:** The highest standardized residual is about 2.60. This suggests that while the upper tail is a bit heavier, it does not overwhelmingly violate the normality assumption.
- Overall Conclusion: Given the Q-Q plot alignment and near-ideal summary statistics, there is no strong evidence of non-normal errors. Minor deviations in the upper tail (e.g., a few points above the line) can be monitored, but do not appear to invalidate the assumption of normality for this model's residuals.

(e)

Stata Code

```
predict leverage, hat
predict cookd, cooksd

twoway scatter leverage id, mlabel(id) ///
    title("Leverage vs. Observation ID") ///
    xtitle("ID") ///
    ytitle("Leverage (hat)")

twoway scatter cookd id, mlabel(id) ///
    title("Cook's Distance vs. Observation ID") ///
    xtitle("ID") ///
    ytitle("Cook's Distance")
```

Plots and Summary Statistics

Figure 8: Leverage vs. Observation ID (left) and Cook's Distance vs. Observation ID (right)

. sum leverage,detail

ı	P	VE	r	a	a	ρ

	Percentiles	Smallest		
1%	.0361229	.0361229		
5%	.0511926	.0511926		
10%	.0589215	.0551465	0bs	30
25%	.0819771	.0626964	Sum of Wgt.	30
50%	.1108429		Mean	.1333333
		Largest	Std. Dev.	.0750839
75%	.1873134	.2049186		
90%	.2073998	.2098809	Variance	.0056376
95%	.234114	.234114	Skewness	1.620502
99%	.4055449	.4055449	Kurtosis	6.709178

- . predict cookd, cooksd
- . sum cookd,detail

Cook's D

-				
	Percentiles	Smallest		
1%	.0000533	.0000533		
5%	.0002085	.0002085		
10%	.0002535	.0002164	0bs	30
25%	.0025574	.0002906	Sum of Wgt.	30
50%	.0164936		Mean	.0549726
20%	.0104936		Mean	.0549720
		Largest	Std. Dev.	.1522104
75%	.0294941	.0906614		
90%	.0938307	.0969999	Variance	.023168
95%	.1506271	.1506271	Skewness	4.73156
99%	.8363168	.8363168	Kurtosis	24.78304

. list id ozone rstd cookd leverage if abs(rstd)>2

	id	ozone	rstd	cookd	leverage
17.	17		2.597539	.1506271	.0819771
26.	26		2.214397	.8363168	.4055449

Figure 9: Summary Statistics

Leverage (hat) values:

- Mean Leverage: 0.1333, with a standard deviation of 0.0751.
- Max Leverage: Observation 26 exhibits the highest leverage (≈ 0.4055), considerably above the rest of the

sample.

• Large leverage values suggest that the corresponding observation has predictor values substantially different from the majority of data and can exert a strong pull on the fitted regression line.

Cook's Distance:

- Mean Cook's D: 0.055, with a standard deviation of 0.1522.
- Max Cook's D: Observation 26 stands out again with a Cook's distance around 0.8363, which is far higher than the next largest value.
- #26 may have considerable influence on the regression results.

Specific Observations (list if |rstd| > 2):

- \bullet id = 17: Standardized residual = 2.60, Cook's D = 0.1506, leverge = 0.0820
- id = 26: Standardized residual = 2.21, Cook's D = 0.8363, leverage = 0.4055

Interpretation

- Observation 26: Has both high leverage and high Cook's distance, indicating that it is very influential. Removing or altering this data point could substantially change the fitted model.
- Observation 17: Displays a large standardized residual but less extreme Cook's distance and leverage. This suggests it is an outlier in terms of vertical distance from the regression line, though not as powerful an influencer of overall model fit.

Question 2

(a)

 ${\bf Model\ Specification:}\ {\bf We\ regress\ Sales\ on\ three\ predictors:}$

Sales =
$$\beta_0 + \beta_1 \cdot Age + \beta_2 \cdot Income + \beta_3 \cdot Price + \varepsilon$$
.

. regress Sales Age Income Price

Source	SS	df	MS	Number of ob - F(3, 47)	os = =	51 6.82
Model Residual	15594.4257 35831.0197	3 47	5198.1419 762.362122	Prob > F	=	0.0007 0.3032 0.2588
Total	51425.4454	50	1028.50891	201 201 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	=	27.611
Sales	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
Age Income Price _cons	4.155908 .019281 -3.399234 64.24826	2.198699 .0068833 .9891719 61.93301	1.89 2.80 -3.44 1.04	0.0652673 0.007 .0054 0.001 -5.389 0.305 -60.34	1337 9191	8.579119 .0331284 -1.409277 188.8414

Figure 10: Summary Statistics

Results:

• Overall fit: The R^2 is about 0.30, indicating that around 30% of the variation in Sales is explained by Age, Income, and Price. The F-test is significant (p = 0.0007), suggesting the model as a whole has predictive power.

• Coefficients:

- Age has a positive coefficient ($\hat{\beta}_1 \approx 4.16$) but is only marginally significant (p = 0.065).
- Income is positively associated with Sales (p = 0.007).
- Price has a negative coefficient (p = 0.001).

Figure 11: Residuals vs. Fitted Values

Figure 12: Q-Q Plot of Standardized Residuals

rstd	51	.00255	1.006584	-1.951511	4.776447
Variable	0bs	Mean	Std. Dev.	Min	Max
. summ rstd					

Figure 13: Summary of Standardized Residuals

Residual Analysis:

• Residuals vs. Fitted Values (Figure 11):

- The scatter of residuals around the zero line does not exhibit a clear "U-shape" or other strong pattern, suggesting no major violation of linearity.
- While most points cluster within ± 50 , there are one or two observations exceeding these bounds (e.g., a point above +100), which may indicate unusual consumption levels relative to what the model predicts.
- The variability of residuals appears roughly consistent across the range of fitted values, suggesting no severe heteroskedasticity.

• Normality Check:

- Q-Q Plot (Figure 24): Most standardized residuals lie close to the 45-degree reference line, indicating that the distribution of errors is reasonably normal for the bulk of observations. However, a small cluster of points deviate near the upper tail (above 2.5), with one point extending beyond 4.7. This outlier suggests the possibility of a right-skewed tail or a single data point that does not fit well under the current model.
- Summary Statistics: The mean standardized residual (0.0026) is nearly zero, and the standard deviation (1.0066) is close to 1, which is consistent with normally distributed errors, so the assumption of normal residuals is largely met.

(b)

To diagnose whether specific ranges of each predictor are associated with unusually large residuals, we plotted the standardized residuals (y-axis) against each predictor (x-axis): Age, Income, and Price.

Figure 14: Std Residuals vs. Age

Figure 15: Std Residuals vs. Income

Figure 16: Std Residuals vs. Price

Interpretation

• Std Residuals vs. Age (Figure 14):

- Residuals appear scattered randomly across the range of Age values (roughly 22 to 32).
- One or two observations show much larger positive residuals (exceeding +4) but do not strictly occur at the extremes of Age.
- Overall, there is no obvious trend such as increasing or decreasing residual magnitude with Age.

• Std Residuals vs. Income (Figure 15):

- The majority of points lie between -2 and +2, with one apparent outlier near Income ≈ 4000 displaying a standardized residual above 4.
- At the low and high ends of Income (below 3000 or above 4500), the residuals remain within a moderate range. However, as the value of income goes up, the extreme residual seems occur more, suggesting some potential pattern of misfit at extreme values of Income.

• Std Residuals vs. Price (Figure 16):

- Residuals cluster randomly near 0 for most observations, though a couple of points exceed ± 3 .
- There's no clear evidence that extreme Price values (e.g., above 40 or below 30) systematically produce large residuals.
- A single observation near Price ≈ 34 stands out with a standardized residual around +5, which could be a potential outlier.

Overall, while the majority of observations remain within |rstd| < 2, one observation with standardized residual that exceed +4 do not consistently occur at the far ends of Age, Income, or Price. It occur around the median of Age, Income, or Price. This suggests that *some* outliers may reflect other factors not captured by these predictors.

(c)

Identification of Outliers Using Standardized Residuals.

We flagged any observation with |rstd| > 2 as a potential outlier. The table below shows two cases:

. list state age income price sales rstd if abs(rstd) > 2

į	state	age	income	price	sales	rstd	:
	NV NH	27.8 28	4563 3737	44 34.1	189.5 265.7	2.702517 4.776447	٠.

Figure 17: Standaralized Residual vs. fitted values

- Nevada (NV) has a standardized residual of 2.70 and predicted sales about 189.5. It is moderately beyond the ± 2 threshold.
- New Hampshire (NH) has a standardized residual near 4.78, suggesting a substantial gap between its actual and predicted sales.

Figure 18: Cook's Distance by Observation Number

Cook's Distance:

- The Cook distance quantifies how much removing a single observation would change the overall regression estimates (coefficients).
- Observations of NH and NV show comparatively high Cook's D, indicating that dropping either one could meaningfully alter the slope estimates.

Comparisons to the Rest of the Dataset.

Summary of Key Predictors and Response

The table provides descriptive statistics for Sales, Age, Income, and Price, grouped by (a) all states except NV and NH (b) NV only, and (c) NH only:

. sum sales age income price if state!="NV" & state!="NH"

Variable	•			Std.		Min	Max
	•		117.21				200.40
age	1	49	27.45	1.	.91	22.90	32.30
income	1	49	3747.94	595.	.69	2626.00	5079.00
price		49	38.03	4.	.09	29.00	45.50

. sum sales age income price if state=="NV"

Variable	•				Min	Max
	+-			 		
sales		1	189.50		189.5	189.50
age		1	27.80		27.80	27.80
income		1	4563.00		4563.00	4563.00
price		1	44.00		44.00	44.00

. sum sales age income price if state=="NH"

Variable	•					Max
sales	•		265.70			265.70
age	İ	1	28.00		28.00	28.00
income		1	3737.00		3737.00	3737.00
price	1	1	34.10		34.10	34.10

Observations:

- Nevada (NV) has relatively high Sales (189.5) compared to the non-outlier mean (117.2) and a higher-than-average Income (4563) to the non-outlier mean (3747.94). Other features of NV are similar to non-outliers.
- New Hampshire (NH) has Sales = 265.7, far exceeding the mean of non-outliers (117.2). Other features of NH are similar to non-outliers.

Fitted Values and Residuals

After regenerating the fitted values (yhat), ordinary residuals (rawresid), and standardized residuals (i_stresid, e_stresid), we compare non-outliers vs. NV vs. NH:

. sum sales yhat rawresid i_stresid e_stresid if state!="NV" & state!="NH" $\,$

Variable	0bs		Std. Dev.	Min	Max
sales	49	117.2122	22.87057	65.5	200.4
yhat	49	121.299	17.88211	81.15414	169.3894
rawresid	49	-4.08676	16.64644	-50.4303	35.25572
i_stresid	49	-0.14998	0.63641	-1.95151	1.35471
e_stresid	49	-0.14994	0.64029	-2.01396	1.36718

. sum sales yhat rawresid i_stresid e_stresid if state=="NV"

Variable		0bs	Mean	Std. Dev.	Min	Max
sales		1	 189.5		189.5	189.5
yhat	1	1	118.1956		118.1956	118.1956
rawresid		1	71.30443	•	71.30443	71.30443
i_stresid		1	2.702517	•	2.702517	2.702517
e_stresid	-	1	2.909188	•	2.909188	2.909188

. sum sales yhat rawresid i_stresid e_stresid if state=="NH"

Variable		0bs	Mean	Std. Dev.	Min	Max
sales	 -	1	265.7		265.7	265.7
yhat		1	136.753		136.753	136.753

```
rawresid | 1 128.947 . 128.947 128.947 i_stresid | 1 4.776447 . 4.776447 4.776447 e_stresid | 1 6.587276 . 6.587276 6.587276
```

Interpretation of Residuals

• Non-Outliers:

- The mean raw residual is around -4.09, with a standard deviation of about 16.65.
- Standardized residuals remain within about (-2.01, +1.37), indicating that no severe outliers lie in this main group.

• Nevada (NV):

- The model under-predicts Sales by roughly 71.3 units, with $i_stresid \approx 2.70$ and $e_stresid \approx 2.91$ —both beyond the usual |2| cutoff.
- This confirms NV is an outlier in terms of *vertical distance*.

• New Hampshire (NH):

- The gap between actual and predicted Sales is even larger (+128.95), leading to $i_stresid \approx 4.78$ and $e_stresid \approx 6.59$.
- These values far exceed typical thresholds for standardized residuals, making NH a clear outlier.

Commentary

• Magnitude of Outliers: Nevada is beyond the common |2| boundary, and New Hampshire is far beyond, indicating it contributes unusual variability that might heavily influence regression coefficients or predictions.

• Possible Explanation:

 NV and NH's other demographic factors could drive elevated cigarette consumption not captured by Age, Income, and Price alone.

• Implications:

- Therefore, since NH and NV's sales cannot be explained by extreme Age, Income, and Price, including additional predictors may reduce the impact of these points.
- Alternatively, if NV and NH represent genuine but exceptional cases, one could model them separately (e.g., using dummy variables) to avoid distorting the primary relationships in the rest of the data.

Question 3

(a)

Model Specification: We fit a linear model using the natural logarithms of brain weight $(\ln(brainwt))$ and body weight $(\ln(bodywt))$, plus an indicator for being a primate (primate):

$$\ln(\text{brainwt}) = \beta_0 + \beta_1 \ln(\text{bodywt}) + \beta_2 \text{ primate } + \varepsilon.$$

Using the following code in Stata to fit the log-log model that includes primate as a binary indicator and perform the F-test:

```
gen byte primate = 0
```

. replace primate = 1 if inlist(name, "Gorilla", "Human", "Chimpanzee", "Rhesus monkey", "Potar monkey")

regress logbrainwt logbodywt primate

. test primate

. regress logbrainwt logbodywt primate

Source	SS	df	MS	Number of ob	s =	28
Model Residual Total	108.851548 46.5754685 155.427017	2 25 27	54.425774 1.86301874 5.75655617	R-squared Adj R-square	= = = d = =	29.21 0.0000 0.7003 0.6764 1.3649
logbrainwt	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
logbodywt primate _cons	.5019648 1.874158 2.197712	.0696973 .6738213 .3899392	7.20 2.78 5.64	0.000 .3584 0.010 .4863 0.000 1.394	966	.6455091 3.261919 3.000807

Figure 19: Regression Results

F-test for the Primate Indicator

```
(1) primate = 0
F(1, 25) = 7.74
Prob > F = 0.0101
```

This shows that $\beta_{\text{primate}} \neq 0$ is significant at the 1% level (p = 0.0101), thus rejecting the null hypothesis that the primate indicator has no effect, which means that primate is a significant predictor.

Comparing Models: With vs. Without Primate. We fit two regressions: one omitting primate, and one including it.

. regress logbrainwt logbodywt

Source	SS	d f	MS	Number of ob	s =	28
				F(1, 26)	=	40.26
Model	94.4390272	1	94.4390272	Prob > F	=	0.0000
Residual	60.9879893	26	2.3456919	R-squared	=	0.6076
				- Adj R-square	= b	0.5925
Total	155.427017	27	5.75655617	Root MSE	=	1.5316
logbrainwt	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]
logbodywt	.4959947	.0781694	6.35	0.000 .3353	152	.6566742
_cons	2.554898	. 413137	6.18	0.000 1.705	683	3.404113

Figure 20: Regression Results without primate

Interpretation.

- Model Fit. Including primate increases R^2 from 0.608 to 0.700, and the adjusted- R^2 also increases. This indicates that primate status explains additional variability in $\ln(\text{brainwt})$ beyond body weight alone.
- Statistical Significance. The F-test yields F = 7.74 with p = 0.0101, confirming that β_{primate} is significantly different from zero at about the 1% level.
- **Primate Effect.** The estimated coefficient of 1.874 on **primate** implies that, holding $\ln(\text{bodywt})$ constant, primates have an average brain weight $\exp(1.874) \approx 6.52$ times larger than non-primates.

(b)

Model Specification: use the log-log model by including an interaction term,

$$\ln(\text{brainwt}) = \beta_0 + \beta_1 \ln(\text{bodywt}) + \beta_2 \text{ primate} + \beta_3 [\ln(\text{bodywt}) \times \text{primate}] + \varepsilon.$$

Using the following code:

- . gen interaction = logbodywt * primate
- . regress logbrainwt logbodywt primate interaction

. regress logbrainwt logbodywt primate interaction

	Source	SS	df	MS	Number of obs	=	28
_					F(3, 24)	=	18.71
	Model	108.868136	3	36.2893787	Prob > F	=	0.0000
	Residual	46.5588804	24	1.93995335	R-squared	=	0.7004
_					Adj R-squared	=	0.6630
	Total	155.427017	27	5.75655617	Root MSE	=	1.3928

logbrainwt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logbodywt	.5029183	.0718654	7.00	0.000	.3545954	.6512411
primate	2.03779	1.898455	1.07	0.294	-1.880428	5.956007
interaction	0463171	.5008855	-0.09	0.927	-1.080094	.9874599
_cons	2.194066	.3998585	5.49	0.000	1.368798	3.019333

Figure 21: Regression Results

The test interaction command yields:

. test interaction

$$(1)$$
 interaction = 0

$$F(1, 24) = 0.01$$

 $Prob > F = 0.9271$

indicating that β_3 is statistically insignificant.

Interpretation No Significant Slope Difference: The interaction coefficient ($\beta_3 \approx -0.046$, p = 0.93) implies that primates do not have a systematically different slope relating ln(bodywt) to ln(brainwt). In other words, the rate at which brain weight changes with body weight on log-scale is the same for primates and non-primates.

Conclusion: While the primate indicator alone improved the model in Part (a), adding an interaction term does not further clarify the relationship, and the rate at which brain weight changes with body weight on log-scale is the same for primates and non-primates.

(c)

Model Setup: Here we regress brainwei on bodyweig without any logarithmic transformation:

brainwei =
$$\beta_0 + \beta_1$$
 bodyweig + ε .

Source	SS	df	MS		er of obs	=	28
Model	1372.62473	1	1372.62473		26)) > F	=	0.00 0.9785
Residual	48113597.9	_	1850522.99			=	0.9785
Residual	46113597.9	26	1050522.95	1990	uared R-squared	=	-0.0384
Total	48114970.5	27	1782035.94	-	: MSE	=	1360.3
brainwei	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
bodyweig	0004326	.0158853	-0.03	0.978	033085	3	.0322201
, ,							
_cons egress brai	576.3724 .nwei bodyweig	265.9121 if dinosa	2.17 ur==0	0.040	29.7822	8	1122.963
				0.040	29.7822	8	1122.963
				Numb	er of obs	=	25
egress brai	.nwei bodyweig	if dinosa	ur==0 MS	Numb - F(1,	per of obs 23)	= =	25 151.70
egress brai Source Model	.nwei bodyweig SS 41094325.4	if dinosa	ur==0 MS 41094325.4	Numb - F(1,	per of obs 23) 0 > F	=	25 151.70 0.0000
egress brai Source	.nwei bodyweig	if dinosa df	ur==0 MS	Numb - F(1, 4 Prob 3 R-sc	per of obs 23)	= =	25 151.70
egress brai Source Model	.nwei bodyweig SS 41094325.4	if dinosa df	ur==0 MS 41094325.4	Numb - F(1, 4 Prob 3 R-sc - Adj	per of obs 23) o > F quared	= = =	25 151.70 0.0000 0.8683
egress brai Source Model Residual	.nwei bodyweig SS 41094325.4 6230571.04	if dinosa df 1 23	ur==0 MS 41094325.4 270894.393	Numb - F(1, 4 Prob 3 R-sc - Adj	per of obs 23) 0 > F Juared R-squared : MSE	= = = =	25 151.70 0.0000 0.8683 0.8626
egress brai Source Model Residual Total	SS 41094325.4 6230571.04 47324896.4	if dinosa df 1 23	ur==0 MS 41094325.4 270894.393 1971870.68	Numb - F(1, 4 Prob 3 R-sc - Adj 3 Root	per of obs 23) 0 > F Juared R-squared : MSE	= = = = = =	25 151.70 0.0000 0.8683 0.8626 520.48

Figure 22: Regression Results including and excluding dinasors

Including Dinosaurs (All Observations). When we run the regression on the full sample (including Diplodocus, Triceratops, and Brachiosaurus), the slope is nearly zero ($\hat{\beta}_1 \approx -0.00043$, $p \approx 0.98$) and the model has $R^2 = 0.0000$. In other words, the presence of extremely large dinosaur bodies overwhelms the rest of the data, making a straight line fit on the raw scale practically meaningless.

Excluding Dinosaurs (Reduced Dataset). Once we drop all dinosaur observations (if dinosaur==0), the regression changes dramatically:

• $\hat{\beta}_1 = 0.943$ with p < 0.0001, indicating a significant positive relationship between body weight and brain weight on the arithmetic scale.

- $R^2 = 0.8683$, so nearly 87% of the variance in brainwei is now explained by bodyweig.
- The root MSE is about 520.48, which is much smaller relative to the brain weight range than before.

Why This Works Better

- Extreme Body Weights: Dinosaurs had body weights of thousands or tens of thousands of kilograms, far beyond the rest of the mammals in the dataset. Without a transformation (like a log transform), these extreme values cause the slope estimate to flatten severely when dinosaurs are included, because the regression tries to accommodate both typical mammals and enormously heavy dinosaurs on the same linear scale.
- **Heterogeneity of Species:** Dinosaurs likely follow a different allometric pattern (brain vs. body growth) than modern mammals. Removing them allows a single linear relationship to capture the mammalian data quite well.

(d)

(i) Regression with the Response in Original Units and the Predictor Logged

First, we regress the brainwei (original scale) on ln(bodywt). The Stata output is:

. regress bra.	inwei togbouyw						
Source	ss	df	MS	Numb	er of obs	=	28
				- F(1,	26)	=	5.12
Model	7910994.7	1	7910994.7	Prob	> F	=	0.0323
Residual	40203975.8	26	1546306.76	R-sq	uared	=	0.1644
				- Adj	R-squared	=	0.1323
Total	48114970.5	27	1782035.94	Root	MSE	=	1243.5
brainwei	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
logbodywt _cons	143.5545 33.13352	63.46717 335.4335		0.032 0.922	13.0958 -656.359	-	274.0131 722.6269

Figure 23: Regression Results

Interpretation:

- The slope $\hat{\beta}_1 \approx 143.55$ implies that a one-unit increase in ln(bodywt) (\approx multiplying body weight by $e \approx 2.72$) is associated with an additive increase of 143.6 grams in brain weight on average, and the relationship is significant p = 0.032.
- The R^2 is around 0.1644, indicating that only 16% of the variance in brain weight is explained by logged body weight on its own.

(ii) Box-Cox Transformation of the Response

rearess brainwei loabodywt

We then apply the user-written boxcox command:

. boxcox brainwei logbodywt Fitting comparison model

```
Iteration 0:    log likelihood = -240.72687
Iteration 1:    log likelihood = -225.64612
Iteration 2:    log likelihood = -215.07312
Iteration 3:    log likelihood = -187.69228
Iteration 4:    log likelihood = -186.98903
Iteration 5:    log likelihood = -186.98889
Iteration 6:    log likelihood = -186.98889
```

Fitting full model

Iteration 0: log likelihood = -238.21209Iteration 1: log likelihood = -175.11538Iteration 2: log likelihood = -174.53035Iteration 3: log likelihood = -174.53025Iteration 4: log likelihood = -174.53025

Number of obs = 28 LR chi2(1) = 24.92 Log likelihood = -174.53025 Prob > chi2 = 0.000

brainwei	 Std. Err.	_	 20070 00000	Interval]
			1123609	.1308372

Estimates of scale-variant parameters

	Coef.
	+
Notrans	1
logbodywt	.5126691
_cons	2.610343
	+
/sigma	1.53683

Test HO:	Restricted log likelihood	LR statistic chi2	P-value Prob > chi2
theta = -1 theta = 0 theta = 1	-261.65448 -174.54137 -238.21209	174.25 0.02 127.36	0.000 0.881 0.000

- $\hat{\lambda} \approx 0.0092$ is very close to 0, and we cannot reject $\lambda = 0$.
- This suggests that ln(brainwei) is an appropriate transformation of the response.
- Other tests $(\lambda = -1 \text{ or } \lambda = 1)$ yield significant differences and far worse fit.

Generating the Box-Cox Transform and Regressing:

- . gen BC_brain = (brainwei^0.0092 1) / 0.0092
- . regress BC_brain logbodywt

Source	ss	df	MS	Number of ob		28
Model Residual	100.867787 66.1093691	1 26	100.867787 2.54266804	R-squared	= =	39.67 0.0000 0.6041
Total	166.977156	27	6.18433912	- Adj R-square : Root MSE	d = =	0.5889 1.5946
BC_brain	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
logbodywt _cons	.5125987 2.61011	.0813853 .4301336		0.000 .3453 0.000 1.725		.6798887 3.494263

Figure 24: Regression Results after Box-Cox Transform

Now the slope is ≈ 0.513 for the Box-Cox–transformed response, with $R^2 \approx 0.60$. This represents a substantial improvement over the partial-log model (which had $R^2 \approx 0.16$). Moreover, because $\theta \approx 0$ from the Box-Cox procedure, it endorses a log transform of brainweight.

Conclusion and Comparison to the Fully Log-Log Model

• Box-Cox Conclusion:

- The best-fitting θ is very close to 0, so ln(brainweight) is recommended. This confirms that taking logs of both the response and the predictor (body weight) is the most appropriate transformation.
- In other words, an additive model on the Box-Cox scale is virtually identical to the standard log-log model.
- Interpretation of the Slope: Since $\theta \approx 0$, the slope coefficient (about 0.51) on log(bodywt) indicates that a 1% increase in body weight is associated with roughly a 0.51% increase in brain weight. In other words, brain weight scales as bodyweight $^{0.51}$.

• Comparison to Class Results (Log-Log):

- In class, using ln(brainweight) vs. ln(bodyweight), the slope was ≈ 0.496 , with $R^2 \approx 0.608$.
- Here, after the Box-Cox transform, the slope is ≈ 0.51 , and $R^2 \approx 0.60$. These are very similar, indicating a consistent allometric relationship.
- Hence, both approaches yield nearly the same conclusion: brain weight scales roughly as bodyweight^{0.5}.
 Box-Cox merely validates that ln(brainweight) is the correct form for modeling this dataset.