1. Bias-variance-noise decomposition

Нужно показать, что

$$\mathbf{E}_{x,y}^{'}\mathbf{E}_{X^{l}}(y-a_{X^{l}}(x))^{2} = \mathbf{E}_{x,y}(y-\mathbf{E}(y|x))^{2} + \mathbf{E}_{x,y}(\mathbf{E}(x|y)-\mathbf{E}_{X^{l}}a(x))^{2} + \mathbf{E}_{x,y}\mathbf{E}_{X^{l}}(a(x)-\mathbf{E}_{X^{l}}a(x))^{2}$$

$$\mathbf{E}_{x,y}\mathbf{E}_{X^{l}}(y-a_{X^{l}}(x))^{2} = \mathbf{E}_{x,y}\mathbf{E}_{X^{l}}y^{2} - 2\mathbf{E}_{x,y}\mathbf{E}_{X^{l}}ya_{X^{l}}(x) + \mathbf{E}_{x,y}\mathbf{E}_{X^{l}}a_{X^{l}}^{2}(x)$$

$$\mathbf{E}_{x,y}(y - \mathbf{E}(y|x))^2 = \mathbf{E}_{x,y}y^2 - 2 \cdot \mathbf{E}_{x,y}y\mathbf{E}(x|y) + \mathbf{E}_{x,y}(\mathbf{E}_{x,y}(x|y))^2$$

$$\mathbf{E}_{x,y}(\mathbf{E}(x|y) - \mathbf{E}_{X^l}a(x))^2 = \mathbf{E}_{x,y}(\mathbf{E}(x|y))^2 - 2 \cdot \mathbf{E}_{x,y} \cdot \mathbf{E}(x|y) \cdot \mathbf{E}_{X^l}a(x) + \mathbf{E}_{x,y}(\mathbf{E}_{X^l}a(x))^2$$

$$\mathbf{E}_{x,y}\mathbf{E}_{X^l}(a(x)-\mathbf{E}_{X^l}a(x))^2=\mathbf{E}_{x,y}\mathbf{E}_{X^l}a(x)^2-2\cdot\mathbf{E}_{x,y}\mathbf{E}_{X^l}a(x)\cdot\mathbf{E}_{X^l}a(x)+\mathbf{E}_{x,y}(\mathbf{E}_{X_l}a(x))^2$$
 Видим, что всё сокращается, если просуммировать.

2. Смещение и разброс в бэггинге

$$a(x) = \frac{1}{M} \sum_{m=1}^{M} a_m(x).$$

По условию все базовые алгоритмы распределены одинаково. Найдем смещение алгоритма a(x):

$$\mathbf{Bias}^2 a(x) = \mathbf{E}_{x,y} (\mathbf{E}(y|x) - \mathbf{E}_{X^l}(a(x))^2$$

Выразим
$$\mathbf{E}_{X^l}(a(x))$$
 через a_1, \dots, a_m : $\mathbf{E}_{X^l}a(x) = \mathbf{E}_{X^l}(\frac{1}{M}\sum_{m=1}^{N} Ma_m(x) = \frac{1}{M}M \cdot \mathbf{E}_{X^l}(a_1(x)) = \mathbf{E}_{X^l}(a_1(x)).$

Таким образом, смещение алгоритма не изменяется.

Теперь найдем разброс нового алгоритма, положив смещение алгоритма равным 0 (можно просто рассмотреть новый алгоритм, вычтя нужное число):

$$\begin{aligned} \mathbf{Var} a(x) &= \mathbf{E}_{x,y} \mathbf{E}_{X^l} (a(x) - \mathbf{E}_{X^l} a(x))^2 = \mathbf{E}_{x,y} \mathbf{E}_{X^l} (a(x) - \mathbf{E}_{X^l} a_1(x))^2 = \mathbf{E}_{x,y} \mathbf{E}_{X^l} a(x)^2 \\ \text{Заменим } a(x) \text{ на } \frac{1}{M} \sum_{m=1}^{M} a_m(x) \text{ в } \mathbf{E}_{X^l} a(x)^2 : \\ \mathbf{E}_{X^l} a(x)^2 &= \mathbf{E}_{X^l} (\frac{1}{M} \sum_{m=1}^{M} a_m(x))^2 = \frac{1}{M^2} M \cdot \mathbf{E}_{X^l} a_1(x)^2 + \frac{1}{M^2} \sum_{i \neq j} \mathbf{E}_{X^l} a_i(x) a_j(x) = \frac{1}{M} \mathbf{E}_{X^l} a_1(x)^2 + \frac{1}{M^2} \sum_{i \neq j} r_{ij} \mathbf{E}_{X^l} a_i(x) \cdot \mathbf{E}_{X^l} a_j(x). \end{aligned}$$

Таким образом,

$$\mathbf{Var}a(x) \leq \frac{1}{M}\mathbf{Var}a_1(x) + \frac{1}{M^2} \cdot M(M-1)\mathbf{Var}a_1(x) = \mathbf{Var}a_1(x)$$
 неравенство следует из оценки корреляций алгоритмов 1. Если хотя бы между несколькоми алгоритмами корреляция будет меньше 1, то получим строгое неравенство.

Т.е. разброс алгоритма уменьшается при бэггинге.

3. Корреляция ответов базовых алгоритмов

Пусть ξ_1,\dots,ξ_M — одинаково распределенные случайные величины с дисперсией $\sigma^2,$ и $\forall i,j: \frac{cov\xi_i\xi_j}{\sigma^2}=\rho>0.$ Найдем дисперсию среднего этих случайных величин, считая, что их мат. ожидания 0 (в

Найдем дисперсию среднего этих случайных величин, считая, что их мат. ожидания 0 (в противном случаем будем просто вычтем мат. ожидание и будем работать с новыи случайными величинами, у которых мат. ожид. 0)

$$\mathbf{D}(\frac{1}{m}\sum_{i=1}^{M}\xi_{i}) = \frac{1}{M^{2}}\mathbf{E}(\xi_{1} + \ldots + \xi_{M})^{2} = \frac{1}{M^{2}} \cdot M\sigma^{2} + \frac{1}{M^{2}}\sum_{i \neq j}\mathbf{cov}(\xi_{i}, \xi_{j}) = \frac{\sigma^{2}}{M} + \frac{1}{M^{2}} \cdot M(M-1)\rho\sigma^{2} = \frac{\sigma^{2}}{M} + \rho\sigma^{2} - \frac{\rho\sigma^{2}}{M} = \rho\sigma^{2} + (1-\rho)\frac{\sigma^{2}}{M}.$$