

PROBLEMA

Se dau N dame si o tabla de sah de dimensiune NxN.

Sa se gaseasca toate modalitatile de a aranja toate damele astfel încât oricare doua dame sa nu se atace.

Doua dame se ataca daca se afla pe aceeasi linie, coloana sau diagonala.

SOLUTIA CLASICA

In C++ ca sa rezolvam aceasta problema, am folosi backtracking ca una din solutii.

Insa...cum ar fi sa incercam ceva nou?

O alta abordare putin mai complexa la o problema simpla?

1) INITIALIZAREA POPULATIEI

QUEEN

Formam un sir de regine:

- alegem numarul de regine (cromozomi) => 8
- cream o permutare pentru cele 8 regine
 - o reprezinta o tabla de regine
 - pozitia in vector => coloana
 - valoarea in vector => randul
 - o ex: [7, 4, 5, 1, 6, 3, 0, 2]
- cream mai multe permutari care vor reprezenta populatia de table cu regine

WORKSHOP AI | ALGORITMI GENETICI

1) INITIALIZAREA POPULATIEI

ESTE O SOLUTIE VALIDA?

DIN PACATE,

HAI SA VEDEM
CUM PASTRAM
DOAR
SOLUTIILE
VALIDE

2) CALCULAM NIVELUL DE POTRIVIRE

- 1) Cream o matrice aleatorie de valori
 - ele reprezinta ponderea fiecarui careu pe tabla
 - reprezinta cat de bine e sa pozitionam o regina intr-un careu
- 2) "Curatam" populatia de duplicate
- 3) Calculam gradul de potrivire al unei table
- 4) In functie de ponderi si de gradul de potrivire penalizam solutiile care au conflicte

WORKSHOP AI | ALGORITMI GENETICI

2) CALCULAM NIVELUL DE POTRIVIRE

>0 INSEAMNA
CA EXISTA
REGINE CARE SE
ATACA PE
DIAGONALA

2) CALCULAM NIVELUL DE POTRIVIRE

TURNIR

REGULI

3) SELECTIA TABLELOR CELE MAI "FIT"

QUEEN

Selectia de tip turnir:

- alegem un numar aleatoriu de table (echipe de regine)
- echipele se vor lupta iar castigatorul se alege in functie de nivelul de potrivire

Selectia parintilor:

- se aleg cei mai buni parinti bazati pe cele mai inalte scoruri
 - ex: avem scorurile 8, 4, 2, 1, 3, 6, 5, 7
 - vor fi parintii: (8,7) (6,5) (4,3) (2,1)

3) SELECTIA TABLELOR CELE MAI FIT: TURNIR

WORKSHOP AI | ALGORITMI GENETICI

3) SELECTIA TABLELOR CELE MAI FIT: TURNIR

4) GENE, PARINTI SI MUTATII

1) Definim o functie de incrucisare a cromozomilor

• ex:

parintele 1: 5 2 3 1 6 4 8 7

o parintele 2: 18647532

o copilul: 3164 (parintele 1)

87
 52 (parintele 2)

2) Cream populatie noua intre perechile de parinti aranjate anterior

4) GENE, PARINTI SI MUTATII

3) Mutam acele gene ale copilului (noua tabla)

- definim o probabilitate de mutatie (ex: 10%)
- calculam o valoare aleatorie intre 0 si 100
- daca probabilitatea e mai mare decat valoarea, se interschimba doi cromozomi (doua regine)
- cele doua regine sunt pozitionate: prima in prima jumatate, a doua in a doua jumatate si iau aleatoriu
- ex:
 - o tabla: 71024356
 - probabilitate de mutatie: 0.2 (20%)
 - valoarea aleatorie: 3
 - tabla_mutata: 7 6 0 2 4 3 5 1

WORKSHOP AI | ALGORITMI GENETICI

4) GENE, PARINTI SI MUTATII

5) SELECTIE NATURALA

1) Calculam din nou scorurile de potrivire a noii populatii de table

- 2) Selectia tablelor care supravietuiesc:
 - se aleg aleatoriu in functie de scorul de potrivire

6) GENERATII PANA LA GASIREA TABLE PERFECTE

- 1) Decidem un numar de generatii pe care dorim sa il avem
- 2) Calculam scorurile supravietuitorilor
- 3) Formam noi perechi de parinti
- 4) Intersectam cromozomii
- 5) Mutam genele
- 6) Vedem supravietuitorii
- 7) Selectam cel mai bun individ dintre toti

7) SUPRAVIETUITOAREA NOASTRA ESTE TABLA:

PROBLEMA CELOR N REGINE

HAIDETI SA DEMO FACEMUN DEMO

JACLINA-IANA BULAT STUDENTA ANUL 3