5 Choosing the smoothing parameter λ

1. **The problem:** Suppose we are given data $D = \{(t_i, y_i), i = 1, ..., n\}$. Our model is:

$$y_i = f(t_i) + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2), \ i.i.d.$$
 (1)

where f(t) is smooth. Given knot positions $\{t_i, i = 1, ..., n\}$, we can estimate f(t) with a smoothing spline $\hat{f}_{\lambda}(t)$.

How then should we choose the value of the smoothing parameter λ ? By setting $\lambda \to 0$, we obtain exactly the interpolating spline $\hat{f}_0(t)$ and a perfect fit to the data. However, this tends to *overfit* the data: applying it to to a new sample of data where model (1) still applies would produce a poor fit. Conversely, by setting $\lambda \to \infty$, we get:

$$f_{\infty}(t) = \begin{cases} \bar{y}, & \nu = 1, \ p = 1\\ \hat{a}_0 + \hat{a}_1 t, & \nu = 2, \ p = 3 \end{cases},$$

where $\bar{y} = \sum_i y_i/n$ and $\{\hat{a}_0, \hat{a}_1\}$ are the OLS linear regression parameters. If the true f(t) was constant or linear, this solution would be reasonable, but often we are interested in less regular functions.

- 2. **Training and test data:** One way to approach estimation of λ is to partition the set of indices $I = \{1, ..., n\}$ into two subsets I_1 and I_2 , where $I_1 \cup I_2 = S$ and $I_1 \cap I_2 = \phi$. Thus we obtain two datasets:
 - Training dataset: $D_1 = \{(t_i, y_i), i \in I_1\},\$
 - Test dataset: $D_2 = \{(t_i, y_i), i \in I_2\}.$

We fit a smoothing spline $\hat{f}_{\lambda,I_1}(t)$ to the training dataset, and judge the quality of the fit using the test dataset:

$$Q_{I_1:I_2}(\lambda) = \sum_{i \in I_2} \left(y_i - \hat{f}_{\lambda,I_1}(t_i) \right)^2.$$

We choose λ to minimise $Q_{I_1:I_2}(\lambda)$. Many algorithms exist for such minimisation, for example through evaluation on a fine grid of λ values, although many more computationally efficient algorithms exist.

3. Cross-validation or 'leave-one-out': This is an extreme form of the above principle. The test dataset D_2 comprises a single observation, (t_j, y_j) , for a given value of j. The training set D_1 is then $D_{-j} = \{(t_i, y_i), i \in I_{-j}\}$, where I_{-j} denotes the full set S excluding j. Then in a slightly amended notation we can write

$$Q_{-j:j}(\lambda) = \left(y_j - \hat{f}_{\lambda,-j}(t_j)\right)^2$$

to assess the quality of fit. Of course, j is arbitrary, so we repeat this process for each $j \in \{1, ..., n\}$ then average the assessments to form the *ordinary cross-validation criterion*:

$$Q_{OCV}(\lambda) = \frac{1}{n} \sum_{j=1}^{n} \left(y_j - \hat{f}_{\lambda,-j}(t_j) \right)^2.$$
 (2)

We then choose the value $\hat{\lambda}$ which minimises $Q_{OCV}(\lambda)$. Hopefully, a plot of $Q_{OCV}(\lambda)$ will appear as in Figure 1, but there is no theoretical guarantee that this curve will have a unique turning point, making it difficult to locate the minimum.

Figure 1: Illustrating a cross-validation function $Q_{OCV}(\lambda)$ for choosing $\hat{\lambda}$.

4. Computation considerations: At first sight, evaluation of $Q_{OCV}(\lambda)$ for a given λ appears computationally intensive: we must compute n different smoothing solutions, each corresponding to one of the left-out data points. Fortunately, there is a computational trick which enables us to compute $Q_{OCV}(\lambda)$ directly from the smoothing spline solution constructed from the whole dataset.