Boğaziçi University Department of Mathematics

Math 132

Date:	March 14, 2019	Full Name :
Time:	13:00	Student ID :
		:
Spring 2018/2019– Midterm 1. Part 1		

 $\mathbf{Q} \mathbf{1}$ Consider the real number e.

- a) Prove that e is irrational.
- b) Prove that e satisfies 2.71828182845904523536 < e < 2.71828182845904523537.
- **Q 2** Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers.
 - a) Show that if $\{a_n\} \to l$ and $\{b_n\} \to m$ then $\{a_nb_n\} \to lm$ as $n \to \infty$.
 - b) Prove or disprove: if $\{a_n\}$ converges but $\{b_n\}$ diverges then $\{a_nb_n\}$ also diverges.
 - c) Show that if $\sum_{n=0}^{\infty} a_n = L$ and $\sum_{n=0}^{\infty} b_n = M$, then $\sum_{i=0}^{\infty} c_n = LM$, where

$$c_n = \sum_{n=0}^n a_i b_{n-i}.$$

Q 3 Suppose that $\sum_{n=0}^{\infty} a_n x^n = f(x)$ and $\sum_{n=0}^{\infty} b_n x^n = g(x)$ for all $x \in (-R, R)$ where R > 0. Prove that for any positive integer n, the n-th derivative of the function

$$h(x) = f(x)g(x)$$

is defined at x = 0. Moreover find a formula which express this derivative using only the terms of $\{a_n\}$ and $\{b_n\}$.

Q 4 Let \mathbf{r} , \mathbf{F} , \mathbf{n} and \mathbf{m} be vectors such that \mathbf{m} is a unit vector perpendicular to \mathbf{r} and \mathbf{n} is a unit vector in the direction of $\mathbf{r} \times \mathbf{F}$.

- a) Prove that $\mathbf{r} \times \mathbf{F} = |\mathbf{r}| . |\text{Proj}_{\mathbf{m}} \mathbf{F}| . \mathbf{n}$
- b) Now prove the formula $\mathbf{r} \times (\mathbf{F_1} + \mathbf{F_2}) = (\mathbf{r} \times \mathbf{F_1}) + (\mathbf{r} \times \mathbf{F_2})$ using part a).