The Effect of Zinc Compounds on Toxicity and Stability of Organo-Metal Halide Perovskite Materials

Soleimanioun, Nazilla¹; Mukul, Monika²; Sharma, Sameeksha¹; Rani, Mamta²; Tripathi, S.K.¹

- ¹ Department of Physics, Panjab University, Chandigarh, India
- ² Department of Physics, D.A.V University, Jalandhar, Punjab, India

Introduction

What is Perovskite?

- The active layer material of a new generation solar cell.
- Coming from Russian mineralogist Lev PEROVSKI.
- Similar crystal structure $\rightarrow ABX_3 \rightarrow Organo metal halide$
- This work is about Methylammonium lead Iodide (MAPbI₃)

Why Perovskites?

- Efficient absorption in the visible range.
- Simple and cheap synthesis method.
- High diffusion lengths (up to 1 μ m).

Some of their Issues:

- Presence of Toxic element i.e. Pb.
- Unstable against moisture and air etc.

Method

Selection of materials:

MAI (CH₃NH₃I), PbI₂, ZnI₂, ZnCl₂, GBL (γ-butyrolactone)

Synthesis:

 $\mathsf{MAPbI}_3 \to \mathsf{The}\ \mathsf{equimolar}\ \mathsf{ratio}\ (1:1)\ \mathsf{of}\ \mathsf{readily}\ \mathsf{synthesized}\ \mathsf{MAI}$ and PbI_2 were dissolved in GBL and kept at 60°C for overnight with stirring.

 ZnI_2 -MAPbI₃ and $ZnCI_2$ -MAPbI₃ were synthesized in same way by decreasing the 20% of PbI₂ concentration and adding 20% of ZnI_2 and $ZnCI_2$.

Deposition:

the naked perovskite films were prepared on glass slides by spinning for 30 seconds at 2000 rpm on the spin coater. The slides were heated on a hot plate for 10 min at 50°C.

References

- [1] N. Soleimanioun, M. Rani, S. Sharma, A. Kumar, S.K. Tripathi; "Binary metal zinc-lead perovskite built-in air ambient: Towards lead-less and stable perovskite materials"; Sol. Energy Mater. Sol. Cells. 191 (2019) 339–344.
- [2] N. Soleimanioun, M. Rani, B. Singh, G.S.S. Saini, S.K. Tripathi; "Potential replacement to lead: Alkali metal potassium and transition metal zinc in organo-metal halide perovskite materials"; *Journal of Alloys and Compounds* **861** (2021) 158207.

Characterization of Materials

Fig 1. XRPD of fresh samples.

Fig 3. UV-Vis of fresh & aged samples.

Fig 5. FTIR results of fresh samples.

Fig 2. XRPD of aged samples.

Fig 4. surface morphology of films.

Results and Discussion

XRPD:

- ✓ Deduction of peaks related to Pbl₂.
- ✓ Presence of new peaks shown by * related to new perovskite compounds.
- ✓ Shifts towards higher angles which can be due to the smaller ionic radii of Zn²⁺ in comparison to Pb²⁺ and reported to improve the crystallinity.
- ✓ For aged samples the lesser changes in structural characteristics are observed after adding Zn especially ZnCl₂.

UV-Vis spectroscopy:

- ✓ For fresh samples a slight redshift is observed which shows the particle size is increasing by adding Zn. The band gaps also is decreased.
- ✓ For aged samples a considerable redshift in pristine sample can indicate the faster degradation as compared with Zn ones.

FESEM images:

- ✓The change of grain shapes from cuboids to fibers are observed after adding Zn.
- ✓ Grain size: $MAPbl_3 \approx 0.3-0.5 \mu m$, $Znl_2-MAPbl_3 \approx 0.5-2.5 \mu m$ $ZnCl_2-MAPbl_3 \approx > 5 \mu m$

FTIR:

✓ It is observed that the change in the molecular parameters of the NH₃ group in perovskite molecules takes place on alloying with Zn.

✓ In aged samples a minor effect of moisture is observed.

Photoconductivity: $\sigma_{Ph} = I_{ph} t / VLd (Sm^{-1})$

 $MAPbl_{3} \approx 51*10^{-9} (Sm^{-1}), Znl_{2} - MAPbl_{3} \approx 53*10^{-9} (Sm^{-1}) & ZnCl_{2} - MAPbl_{3} \approx 200*10^{-9} (Sm^{-1})$

Conclusions

- Replacing Pb with Zn upto 20% was done successfully and the new compounds showed better characteristics than pristine sample.
- ❖ Zn can be introduced as an essential element to increase the stability of MAPbl₃.
- * ZnCl₂-MAPbl₃ behaved more conductive and stable than Znl₂-MAPbl₃ also.