QuickSort

Melhor Caso

O pivô escolhido divide o array em duas partes aproximadamente iguais. A recorrência é:

T(n)=n+2*T(n/2)

Cálculo do Custo Total em Formato de Somatória:

Nível 0 (Raiz):

Custo é n

Nível 1:

O array é dividido em duas sublistas de tamanho n/2 . Custo total neste nível é 2* n/2=n

Nível 2:

Cada sublista é dividida em duas partes de tamanho n/4 Custo total neste nível é 4*(n/4)=n

Nível k:

Existem 2^k sublistas, cada uma de tamanho n*(2^k)

Custo total neste nível é 2^k * n/(2^k) = n

Número Total de Níveis:

O número de níveis é log2n

Somatória : T(n)=Custo Nivel 0+Custo Nivel I 1+Custo nNivel 2+...+Custo no Nivel log2n

$$T(n) = \sum_{k=0}^{\log_2 n} n$$

$$T(n) = (\log_2 n + 1) \cdot n$$

Recorrência: T(n)=n+2 · T(n/2)
Custo Total em cada Nível: n
Número Total de Níveis: log2n
Somatória Total dos Custos: T(n)=(log2n+1)
Complexidade: O(nlogn)
Médio Caso:
pivô divide o array de forma que as partes são aproximadamente iguais, em média. A recorrência para o caso médio é a mesma do melhor caso
Pior Caso
pivô escolhido é sempre o menor ou o maior elemento, levando a partições altamente desbalanceadas. O array é dividido de forma que uma das partições tem n−1 elementos e a outra tem 0 elementos
Recorrencia:
Nível 0 (Raiz):
Custo é n
Nível 1:
O array é dividido em uma sublista de tamanho n-1e uma de tamanho 0.
Custo é n-1
Nível 2:
A sublista de tamanho n−1 é dividida em uma sublista de tamanho n−22 e uma de tamanho 0.
Custo é n-2.
Nível k:

• A cada nível, o custo é n-k, até que a sublista tenha tamanho 1

$$T(n) = \sum_{k=0}^{n-1} (n-k)$$
 $T(n) = n + (n-1) + (n-2) + \ldots + 1$ $T(n) = \frac{1}{2} \frac{n(n+1)}{2}$

Recorrência: T(n)=n+T(n-1)

Custo Total em cada Nível: n-k (onde k é o nível atual)

Número Total de Níveis: n

Somatória Total dos Custos: T(n)=(n(n+1))/2

Complexidade: O(n²)