ETSITS 102 744-3-1 V1.1.1 (2015-10)

Satellite Earth Stations and Systems (SES); Family SL Satellite Radio Interface (Release 1); Part 3: Control Plane and User Plane Specifications; Sub-part 1: Bearer Control Layer Interface

Reference

DTS/SES-00299-3-1

Keywords

3GPP, GPRS, GSM, GSO, interface, MSS, radio, satellite, TDM, TDMA, UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2015.
All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Contents

Intelle	ectual Property Rights	9
Forew	ord	9
Modal	l verbs terminology	9
Introdu	uction	9
1	Scope	10
	References	
2.1	Normative references	
2.2	Informative references.	
3	Symbols and abbreviations	11
3.1	Symbols	
3.2	Abbreviations	
4	Bearer Control Interface	11
4.1	Radio Interface Layering	
4.2	Bearer Control Layer	
4.3	Conventions used in the present document	
4.3.1	Presentation	
4.3.2	"Reserved" Fields and Values	
4.3.3	Boolean Variables	
4.3.4	ASN.1 Encoding Rules	13
5	Bearer Control Process	
5.1	Bearer Control Protocol Data Unit (BCtPDU)	
5.1.1	Return Bearer Control PDU Structure (RetBCtPDU)	
5.1.2	Forward Bearer Control PDU Structure (FwdBCtPDU)	
5.1.3	Return Bearer Control PDU Header Structure (RetBCtPDUHeader)	
5.1.3.1	Jr	
5.1.3.2	RetBCtPDU Header Structure Type 2	
5.1.4 5.1.5	Header Parameters	
5.1.5.1		
5.1.5.2		
5.1.5.3	6 1	
5.1.5.4	<u> </u>	
5.1.5.5	Comsig-or-ext-addr-present	26
5.1.5.6	Bearer-number-present	27
5.1.5.7	Timing-required (T)	27
5.1.5.8		
5.1.5.9		
5.1.5.10		
5.1.5.1 5.1.5.1	e	
5.1.5.1		
5.1.5.1	71	
5.1.5.1		
5.1.5.1	*	
5.1.5.1		
5.1.5.1	1.6 Imsi-DS-41	31
5.1.5.12	2 Common Signalling (ComSig) Types	32
5.1.5.12	C 71	
5.1.5.12	C 71	
5.1.5.12		
5.1.5.17		
5.1.5.13 5.1.5.13		
5.1.5.1 ⁴ 5.1.6	4 Backoff-and-benid	
J.1.U	Dou ayload	33

5.1.6.0	General	33
5.1.6.1	BCnPDU	
5.1.6.2	ALComPDU	
5.1.7	CRC	
5.2	Bearer Control Embedded Protocol Data Unit (BCtEPDU)	
5.2.1	Bearer Control Embedded PDU Structure	
5.2.2	BCtESDU Lists	
5.2.2.1	AttachBCtESDUList	
5.2.2.2	ReattachBCtESDUList	
5.2.2.3	SystemInformationBCtESDUList	
5.2.3	BCtESDU Sequences	
5.2.3.1	AttachedConnInfo	
5.2.3.2	ReattachedConnInfo	
5.2.3.3	ModifiedConnInfo	
5.3	Bearer Control SDUs (BCtSDU)	
5.3.0	General	
5.3.1	Bearer Control SDU Structure (BCtSDU)	
5.3.2	BCtSDU Parameters	
5.3.2.1	Bct-sdu-follows	
5.3.2.2	Extended-length	
5.3.2.3	S-length / length	
5.3.2.4	BCtSigType and ShortBCtSigType	
5.3.2.5	SDUPayload	
5.4	Bearer Control SDU Payloads	
5.4.0	General	
5.4.1	ConnPDU	39
5.4.2	Status	40
5.4.2.0	General	40
5.4.2.1	SequenceNumber	41
5.4.2.2	Queue-length	42
5.4.2.3	Time-head	42
5.4.2.4	Delivery-rate	42
5.4.2.5	Status-avp-list	42
5.4.3	BulletinBoard	42
5.4.3.0	General	42
5.4.3.1	Rnc-id	
5.4.3.2	Net-ver	
5.4.3.3	FrameNumber	
5.4.3.4	Spot-beam-present	
5.4.3.5	FwdBearer	
5.4.3.6	BCtID	
5.4.3.7	SpotBeamID	
5.4.3.8	BB-avp-list	
5.4.4	ReturnSchedule	
5.4.4.0	General	
5.4.4.1	RetChannelNumber	
5.4.4.1.0	General	
5.4.4.1.1	Offset	
5.4.4.1.2	ChannelIndex	
5.4.4.2	Bearer-type-and-spotid-included	
5.4.4.3	Res-plan-included	
5.4.4.4	Number-of-slot-plans	
5.4.4.5 5.4.4.6	ReturnBearerTypeShort	
5.4.4.6 5.4.4.7	SlotPlan	
5.4.4. <i>1</i> 5.4.4.8	ResourcePlan	
5.4.4.8 5.4.4.9	Return Schedule Examples	
5.4.4.9 5.4.5	StatusAckList	
5.4.5 5.4.6	QRate	
5.4.0 5.4.7	QLen	
5.4.8	SpecificAVPList	
5.4.6 5.4.0	AVPI jet	54 55

5.4.10	SpotBeamMap	56
5.4.10.0	General	
5.4.10.1	Spotbeam-map-version	
5.4.10.2	Total-number-of-spots and spotbeam-map-number	
5.4.10.3	SpotBeamInfo	
5.4.10.3.0	General	
5.4.10.3.1	Sb-prf	
5.4.10.3.2	SpotBeamMapType	
5.4.10.3.3	Number-of-vertices	
5.4.10.3.4	SpotbeamVertex	
5.4.10.3.5	SpotBeamAzimuth	
5.4.10.3.6	SpotBeamElevation	
5.4.10.3.7	SpotBeamRadius	
5.4.11	Bearer Tables	
5.4.11.0	General	
5.4.11.1	Bearer-table-follows	
5.4.11.2	Lowest-coding-rate-index-included	61
5.4.11.3	Coding-rates-offsets-included	
5.4.11.4	Coding-rates-usage-included	62
5.4.11.5	ReturnBearerTypeFull	62
5.4.11.6	ControlIndex	62
5.4.11.7	Coding-rates-offset	
5.4.11.8	Coding-rates-usage-bitmap	
5.4.11.9	Example BearerTables SDU	
5.4.12	GPSEphemeris	
5.4.12.0	General	
5.4.12.1	Iodc	
5.4.12.2	PRN-code	
5.4.12.3	GPSDataFirstSection	
5.4.12.3.0 5.4.12.3.1	General	
5.4.12.3.1	Satellite-accuracy	
5.4.12.3.2	Satellite-health	
5.4.12.3.4	T-gd	
5.4.12.3.5	T-oc	
5.4.12.3.6	Af-2	
5.4.12.3.7	Af-1	
5.4.12.3.8	Af-0	
5.4.12.3.9	C-rs	
5.4.12.3.10	Delta-n	
5.4.12.3.11	M-0	66
5.4.12.3.12	C-uc	66
5.4.12.3.13	Eccentricity	66
5.4.12.3.14	C-us	
5.4.12.4	GPSDataSecondSection	
5.4.12.4.0	General	
5.4.12.4.1	A-half	
5.4.12.4.2	T-oe	
5.4.12.4.3	C-ic	
5.4.12.4.4	Omega-0	
5.4.12.4.5	C-is	
5.4.12.4.6 5.4.12.4.7	I-0	
5.4.12.4.7	C-rcomega	
5.4.12.4.8 5.4.12.4.9	Omega-dot	
5.4.12.4.10	I-dot	
5.4.13	SystemInfoIndex	
5.4.14	BearerTableUpdate	
5.4.14.0	General	
5.4.14.1	Bearer-table-version	
5.4.14.2	Modrate	
5.5 Fr	mbedded Rearer Control SDIJ (RCtESDIJ)	75

5.5.0	General	75
5.5.1	Embedded Bearer Control SDU Structure	75
5.5.2	BCtESDU Parameters	77
5.5.2.1	Bct-esdu-follows	77
5.5.2.2	Extended-length	
5.5.2.3	Es-length/length	
5.5.2.4	BCtESDUType and ShortBCtESDUType	
5.6	Bearer Control ESDU Payloads	
5.6.0	General	
5.6.1	ConnectionAssociation	
5.6.1.0	General	
5.6.1.1	HardwareAndTBCnId	
5.6.1.2	UEHardwareID	
5.6.1.3	Direction	
5.6.1.4	HardwareID	
5.6.1. 4 5.6.2	ConnectionReassociation	
5.6.3	GroupConnectionAssociation	
5.6.3.0	General	
5.6.3.1	Count-C	
5.6.4	GroupConnectionReassociation	
5.6.5	HardwareAVPList	
5.6.6	AVPList	
5.6.7	SpotBeamMap	
5.6.8	BearerTableUpdate	
5.7	Bearer Control AVPs	
5.7.1	BCtAVP Structure	
5.7.1.0	General	
5.7.1.1	Param-len	90
5.7.1.2	Param-len-type	90
5.7.1.3	Parameters with length ::= 1	90
5.7.1.4	Parameters with length ::= 2	90
5.7.1.5	Parameters with length ::= 3	91
5.7.1.6	Parameters with length ::= 4	91
5.7.1.7	Parameters with length ::= 5	91
5.7.1.8	Parameters with length ::= 6	
5.7.1.9	Parameters with length::= 7	92
5.7.1.10	Parameters with length ::= 8	
5.7.2	TimingCorrectionParam	
5.7.3	ReturnBearerTypeParam	
5.7.4	SlotSizeControlParam	
5.7.5	MinResWaitParam	
5.7.6	AllocationSizeParam	
5.7.7	SlotSharingParam	
5.7.8	FracPeakDataVolAndLFracParam	
5.7.9	Status Ack Control Param	
5.7.10	ReportControlParam	
5.7.10	MinContStatusDelayParam	
	· · · · · · · · · · · · · · · · · · ·	
5.7.12 5.7.13	RandomisingControlParam	
	ResWaitMultiplierParam	
5.7.14	CommonSigRetryParam	
5.7.15	RNCIdParam	
5.7.16	ForwardBearerCodeRateParam	
5.7.16.0	General	
5.7.16.1	Block-num	
5.7.16.2	CodeRate	
5.7.17	ReceivedSignalQualityParam	
5.7.18	SignalQualityMeasurementIntervalParam	
5.7.19	AccessControlParam	
5.7.20	InitialRandomAccessBurstParam	
5.7.20.0	General	
5.7.20.1	BurstType	
5 7 21	ReturnI inkReferenceLevelParam	103

5.7.22	TimingCorrectionUpdateIntervalParam	104
5.7.23	MaxDelayAndDelayRangeParam	
5.7.23.0	General	
5.7.23.1	Use-primary-rctc	
5.7.23.2	Max-delay	
5.7.23.3	Delay-range	
5.7.24	ReferenceLevelAcknowledgeParam	
5.7.25	ForwardQoSControlParam	
5.7.26	InitialReferenceLevelParam	
5.7.27	QDiffParam	
5.7.28	SubbandCentreFrequencyOffsetsParam	
5.7.29	SubbandCentreFrequencyOffsetChangeParam	
5.7.30	SatelliteLocationParam	
5.7.30.0	General	
5.7.30.1	PointOneDegreesLongitude	
5.7.31	ChannelNoParam	
5.7.31.0	General	
5.7.31.1	Ack-required	
5.7.31.2	F-bearer and FBearerType	
5.7.31.3	CountDown	
5.7.31.4	FwdChannelNumber	
5.7.32	ControlledRandomAccessParam	
5.7.32.0	General	
5.7.32.0	AccessProbability	
5.7.32.1	AccessPriority	
5.7.32.3	PowerLevel	
5.7.32.4	FrequencyOffsetRange	
5.7.32.4	Timing Offset Range	
5.7.33	SharedReservationAccessParam	
5.7.33.0	General	
5.7.33.1	Reservation Duration	
5.7.33.2	FrequencyOffset	
5.7.33.3	Timing Offset	
5.7.33.4	DTXInterval	
5.7.34	PLMNInfoParam	
5.7.34.0	General	
5.7.34.1	Plmn-identity	
5.7.34.2	Plmn-index	
5.7.35	SleepModeParam	
5.7.35.0	General	
5.7.35.0	Logperiod	
5.7.35.1	Start-offset	
5.7.35.3	On-period	
5.7.35.4	Idle-count	
5.7.36 5.7.36	PrimaryBearerParam	
5.7.36.0	General	
5.7.36.1	F-bearer and F-Bearer Type	
5.7.36.2	Class-control	
5.7.36.3	Plmn-index	
5.7.37	SatelliteStateVectorsParam	
5.7.37.0	General	
5.7.37.0	Interval	
5.7.37.1	X-Vector, Y-Vector, Z-Vector	
5.7.37.2 5.7.38	Type0QoSParam	
5.7.38.0	General	
5.7.38.1		
5.7.38.2	Return-target-latencyReturn-discard-latency	
5.7.38.2 5.7.38.3	Return-discard-latency	
5.7.38.4	Return-nean-rate Return-peak-rate	
5.7.38.4 5.7.39	LeapSecondParam	
5.7.40	•	
5.7.40 5.7.41	NASSystemInfoParam LITCDate And TimeParam	124 12 <i>1</i>

5.7.42	TMPayloadPositionParam	125
5.7.42.0	TMPayloadPositionParam	125
5.7.42.1	Fec-block-num	125
5.7.42.2	Start-pos	125
5.7.43	GPSPolicyInfoParam	125
5.7.44	ReturnLinkReferenceLevelSetParam (Extension Class UE Only)	
5.7.45	InitialReferenceLevelSetParam (Extension Class UE Only)	127
5.7.46	BeamInfoParam	
5.7.47	ForwardCarrierLossParam (Extension Class UE Only)	129
5.7.48	MaxReturnCodeRateParam (Extension Class UE Only)	129
5.7.49	InitialReferenceLevelAndMaxCodeRateParam	130
5.7.50	RandomisedInitialAccessDelayParam	130
5.7.51	IntermodTestInfoParam	131
Annex A	(normative): ASN.1	132
History		133
•		

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Satellite Earth Stations and Systems (SES).

The present document is part 3, sub-part 1 of a multi-part deliverable. Full details of the entire series can be found in ETSITS 102 744-1-1 [i.1].

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "may not", "need", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction

This multi-part deliverable (Release 1) defines a satellite radio interface that provides UMTS services to users of mobile terminals via geostationary (GEO) satellites in the frequency range 1 518,000 MHz to 1 559,000 MHz (downlink) and 1 626,500 MHz to 1 660,500 MHz and 1 668,000 MHz to 1 675,000 MHz (uplink).

1 Scope

The present document defines the Bearer Control Layer (BCt) peer-to-peer interface of the Family SL satellite radio interface between the Radio Network Controller (RNC) and the User Equipment (UE) used in the satellite network.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are necessary for the application of the present document.

[1]	ETSI TS 125 331: "Universal Mobile Telecommunications System (UMTS); Radio Resource Control (RRC); Protocol specification (3GPP TS 25.331 Release 4)".
[2]	ETSI TS 123 003: "Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Numbering, addressing and identification (3GPP TS 23.003 Release 4)".
[3]	International Telegraph and Telephone Consultative Committee CCITT (now ITU-T) Red Book, Recommendation X.25.
[4]	ETSI TS 124 008: "Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Mobile radio interface Layer 3 specification; Core network protocols; Stage 3 (3GPP TS 24.008 Release 4)".
[5]	"Global Positioning System Standard Positioning Service Signal Specification", 2nd Edition, 2nd June 1995, GPS Navstar Joint Program Office.
[6]	ETSI TS 102 744-1-3: "Satellite Earth Stations and Systems (SES); Family SL Satellite Radio Interface (Release 1); Part 1: General Specifications; Sub-part 3: Satellite Radio Interface Overview".
[7]	ETSI TS 102 744-1-4: "Satellite Earth Stations and Systems (SES); Family SL Satellite Radio Interface (Release 1); Part 1: General Specifications; Sub-part 4: Applicable External Specifications, Symbols and Abbreviations".
[8]	ETSI TS 102 744-2-1: "Satellite Earth Stations and Systems (SES); Family SL Satellite Radio Interface (Release 1); Part 2: Physical Layer Specifications; Sub-part 1: Physical Layer Interface".
[9]	ETSI TS 102 744-2-2: "Satellite Earth Stations and Systems (SES); Family SL Satellite Radio Interface (Release 1); Part 2: Physical Layer Specifications; Sub-part 2: Radio Transmission and Reception".
[10]	ETSI TS 102 744-3-2: "Satellite Earth Stations and Systems (SES); Family SL Satellite Radio Interface (Release 1); Part 3: Control Plane and User Plane Specifications; Sub-part 2: Bearer Control Layer Operation".
[11]	ETSI TS 102 744-3-3: "Satellite Earth Stations and Systems (SES); Family SL Satellite Radio Interface (Release 1); Part 3: Control Plane and User Plane Specifications; Sub-part 3: Bearer Connection Layer Interface".

- [12] ETSI TS 102 744-3-4: "Satellite Earth Stations and Systems (SES); Family SL Satellite Radio Interface (Release 1); Part 3: Control Plane and User Plane Specifications; Sub-part 4: Bearer Connection Layer Operation".
- [13] ETSI TS 102 744-3-5: "Satellite Earth Stations and Systems (SES); Family SL Satellite Radio Interface (Release 1); Part 3: Control Plane and User Plane Specifications; Sub-part 5: Adaptation Layer Interface".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1] ETSI TS 102 744-1-1: "Satellite Earth Stations and Systems (SES); Family SL Satellite Radio Interface (Release 1); Part 1: General Specifications; Sub-part 1: Services and Architectures".

3 Symbols and abbreviations

3.1 Symbols

For the purposes of the present document, the symbols given in ETSI TS 102 744-1-4 [7], clause 3.1 apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in ETSI TS 102 744-1-4 [7], clause 3.2 apply.

4 Bearer Control Interface

4.1 Radio Interface Layering

As described in ETSI TS 102 744-1-3 [6], the satellite communication protocol is considered as a number of communication layers, as follows:

- Adaptation Layer (AL);
- Bearer Connection Layer (BCn);
- Bearer Control Layer (BCt); and
- Physical Layer (L1).

The satellite radio interface protocol stack is designed to seamlessly integrate with UMTS Non-Access Stratum entities, such as GPRS Mobility Management (GMM) and Mobility Management (MM), residing in the Core Network (CN) and in the upper layers of the User Equipment (UE).

The Bearer Control Layer is responsible for controlling the access to the physical layer (channel resource) for each of the connections which are established. The present document defines the Bearer Control Layer (BCt) peer-to-peer interface between the Radio Network Controller (RNC) and the User Equipment (UE), as shown in Figure 4.1.

Figure 4.1: Control Plane Protocol Stack Layering with Bearer Control Layer peer-to-peer interface indicated

4.2 Bearer Control Layer

The Bearer Control Layer includes at least one Bearer Control process, which operates over and manages specific Bearer Types (physical layer specifications for the Shared Access Bearer). The detailed behaviour of the Bearer Control process, and the interface definitions for peer-peer communication of the Bearer Control processes are unique to the particular Bearer Control Type, although the Bearer Control Layer as a whole provides the following functionality:

- transfer of Bearer Connection PDUs and Common Signalling PDUs between RNC and UE using the available physical layer capabilities;
- link adaptation to compensate for mobile transmission characteristics as required;
- scheduling of transmissions to match mobile transceiver capabilities and mode of operation (for example sleep mode and multi-channel operation);
- connection admission control for the purposes of determining the available quality of service for a connection which has requested a certain capacity;
- management of satellite resources (by means of allocation and deallocation of physical bearers) in such a way
 as to keep the risk of failing to meet the quality of service agreed on a connection basis acceptably low whilst
 keeping overall bearer efficiencies high.

The Bearer Control Layer Protocol Data Unit (PDU) structure and peer-peer Bearer Control Layer Signalling Data Unit (SDU) definitions are described in the present document.

4.3 Conventions used in the present document

4.3.1 Presentation

The following conventions are applied throughout the present document:

- In the ASN.1 notation, variable names are always in lower case letters with hyphenation used to improve readability (e.g. ret-bct-pdu-header). Data Types in the ASN.1 always start with an upper case letter and may contain additional upper case letters to improve readability (e.g. ReturnBCtPDUHeader).
- In the explanatory text, these variables are referred to in italics (.e.g. *ret-bct-pdu-header*), while Data Types are shown in Helvetica typeface (e.g. BCnPDU).

The layout of the data structures defined in the ASN.1 is also shown in a graphical representation. In general, the variable names are presented in the same way they are presented in the ASN.1, with the following exceptions:

- insufficient space does not allow the complete variable name to be presented and it is therefore abbreviated;
- only one particular value can be assigned to a variable in the particular structure that is presented in this case the variable is replaced by the appropriate numerical value;
- additional information may be added in brackets for explanatory reasons.

4.3.2 "Reserved" Fields and Values

Fields shown as Reserved BITSTRING (..) in the ASN.1 structures shall be set to zero by the sender and shall be ignored by the receiver.

Values not allocated in Distinguished Value Lists shall not be used by the sender and shall be ignored by the receiver.

- NOTE 1: Distinguished Value Lists of type Integer are being used instead of the ENUMERATED data type, where the allocated number range is larger than the number of items to be enumerated.
- NOTE 2: It should be noted that UEs may only support a lower RI-Version than the one supported by the RNC (the RI-Version is defined in ETSI TS 102 744-3-5 [13], clause 6.1.2.2). In this case, it is likely that Broadcast SDUs/AVPs transmitted by the RNC contain values that are considered as "reserved" by those UEs.

4.3.3 Boolean Variables

BOOLEAN variables shall be encoded as follows:

```
TRUE ::= 1
FALSE ::= 0
```

4.3.4 ASN.1 Encoding Rules

The ASN.1 presentation provided in the present document for this interface specification is normative. The encoding rules used for this interface specification are non-standard, using a structured form of packed encoding that ensures efficient packing of each encoded BCtPDU while maintaining preservation of octet boundaries for key fields. The presence or absence of optional parameters is signalled using flags which are explicitly encoded into the ASN.1 specification, and the number of elements in a list is either explicitly encoded in an ASN.1 specified field, or implicit due to a defined constraint. The encoding is represented in diagrammatic form with examples shown for each BCtPDU. The diagrams represent the encoded data structures and are normative for all data structures specified in the present document.

The encoding of all integers as specified in the ASN.1 into the data structures presented in diagrammatic form shall follow the rules below:

- Unsigned INTEGER values are encoded such that the range of values determines the field width (in terms of the number of bits required to encode the range), with the encoded value of 0 representing the lowest value in the range e.g.:
 - INTEGER(0..7) shall be encoded in three bits with '000' representing a value of 0, '001' representing 1, etc. to '111' representing a value of 7.
 - INTEGER(1..8) shall be encoded in three bits with '000' representing a value of 1, '001' representing 2, etc. to '111' representing a value of 8.
- Signed INTEGER values (i.e. those containing a negative range) shall ALWAYS be represented as two's complement, with the number of bits required for the encoding being one greater than (due to the need for a sign bit) the number of bits required to encode the maximum of either the positive or negative range; e.g.:
 - INTEGER (-8...7) shall be encoded in four bits with '0000' representing 0, '1000' representing -8, and '0111' representing +7.
 - INTEGER (-3...6) shall be encoded in four bits with '0000' representing 0, '1101' representing -3, and '0110' representing +6.

5 Bearer Control Process

5.1 Bearer Control Protocol Data Unit (BCtPDU)

5.1.1 Return Bearer Control PDU Structure (RetBCtPDU)

The Return Bearer Control PDU structure depends on the Return Bearer type used on the Physical Layer as follows.

For all Bearer Types except R80T0.5Q and R80T1Q, each RetBCtPDU consists of a Return BCtPDU Header, an optional sequence of one or more Bearer Control Signalling Data Units (BCtSDUs), an optional BCtPayload and a 16 bit Cyclic Redundancy Check as illustrated in Figure 5.1.

For Bearer Types R80T0.5Q and R80T1Q only, each RetBCtPDU consists of a Return BCtPDU Header, an optional sequence of one or more Bearer Control Signalling Data Units (BCtSDUs), an optional BCtPayload as illustrated in Figure 5.2. The Cyclic Redundancy Check is not present but later added by the Physical Layer per burst.

Figure 5.1: Return Bearer Control PDU Structures (all Bearer Types except R80T0.5Q and R80T1Q)

Figure 5.2: Return Bearer Control PDU Structures (Bearer Types R80T0.5Q and R80T1Q only)

Although not more than one BCnPDU or ALComPDU is present at the end of a BCtPDU, it is possible that additional BCnPDUs may be encapsulated within BCtSDUs of type 'BCnPDU'. This is specifically to maintain efficiency of the transport mechanisms when Bearer Connection PDUs contain High Level Data Link Control (HDLC) signalling information.

5.1.2 Forward Bearer Control PDU Structure (FwdBCtPDU)

The Bearer Control PDU has the following structure as shown below and in Figure 5.2a:

```
FwdBCtPDU ::=
    SEQUENCE {
        fwd-bct-pdu-header
            FwdBCtPDUHeader,
        bct-sdu-list
            SEQUENCE OF BCtSDU OPTIONAL,
        bct-payload
            BCtPayload OPTIONAL,
        crc
            INTEGER(0..65535)
}
```


Figure 5.2a: Forward Bearer Control PDU Structures

Although not more than one BCnPDU or ALComPDU is present at the end of a BCtPDU, it is possible that additional BCnPDUs may be encapsulated within BCtSDUs of type 'BCnPDU'. This is specifically to maintain efficiency of the transport mechanisms when Bearer Connection PDUs contain HDLC signalling information.

5.1.3 Return Bearer Control PDU Header Structure (RetBCtPDUHeader)

5.1.3.1 RetBCtPDU Header Structure Type 1

The Bearer Control PDU Header Type 1 shall be used for all BCtPDUs except for the first BCtPDU sent in a Return Block structure (see ETSI TS 102 744-2-2 [9]) using Return Bearer Types R80T0.5Q or R80T1Q. This Bearer Control PDU Header has the following structure:

```
RetBCtPDUHeader ::=
    SEQUENCE {
        bct-sdu-follows
            BOOLEAN,
        length-present
            BOOLEAN,
        comsig-or-ext-addr-present
            BOOLEAN,
        bearer-number-present
            BOOLEAN,
        header-structure
                                -- if comsig-or-ext-addr-present FALSE
                tbcn-id
                    TranslatedBearerConnectionID,
                id-and-type -- if comsig-or-ext-addr-present TRUE
                    SEQUENCE {
                        comsig-or-ext-addr
```

```
BOOLEAN,
                address-structure
                    CHOICE {
                         \verb|ext-addr-type-and-address||
                         -- if comsig-or-ext-addr FALSE
                             SEQUENCE {
                                 ext-addr-type
                                     ExtAddrType,
                                 extended-address
                                     BCnID
                             },
                         com-sig-type-and-address
                         -- if comsig-or-ext-addr TRUE
                             SEQUENCE {
                                 com-sig-type
                                    FromMobileComSigType,
                                 comsig-addr
                                     ComSigAddress
                             }
                    }
    },
timing
    -- included if bearer-number-present TRUE
    SEQUENCE {
        timing-required
            BOOLEAN,
        fwd-bearer
            FwdBearer,
        slot-num
            SlotNumber
    } OPTIONAL,
length
    INTEGER (0..255) OPTIONAL
```

Figures 5.3 to 5.14 illustrate the various combinations possible for the RetBCtPDUHeader format.

(MSE	3)		Bit N	٥V		((LSB)			
8	7	6	5	4	3	2	1			
Х	0	0	0					Octet 1		
	tbcn-id									

Figure 5.3: RetBCtPDUHeader (Connection specific, no length field)

(MSB)			Bit N	Bit No (LSB)						_	
	8	7	6	5	4	3		2		1	
	Х	1	0	0							Octet 1
		Octet 2									
		Octet 3									

Figure 5.4: RetBCtPDUHeader (Connection specific, with length field)

(MSB) Bit N					No (LSB)						_	
	8	7	6	5	4		3		2		1	
	Х	0	0	1								Octet 1
		Octet 2										
	t fwd-bearer slot-num									Octet 3		

Figure 5.5: RetBCtPDUHeader (Connection specific, no length field, timing octet present)

(MSE	3)		Bit N	lo				((LS	B)		
8	7	6	5	4		3		2		1		
Χ	1	0	1									Octet 1
			tbcr	n-id								Octet 2
t	fw	d-bear	er			slo	t-nı	um				Octet 3
length										<u> </u>	Octet 4	

Figure 5.6: RetBCtPDUHeader (Connection specific, with length field, timing octet present)

(MSB)	(MSB) Bit No (LSB)										
8	7	6	5	4	3 2 1						
Х	0	1	0	0	ext-addr-type=7	Octet 1					
						Octet 2					
	bcn-id										

Figure 5.7: RetBCtPDUHeader (BCnID, no length field)

(MSB))		Bit N	Bit No (LSB)					
8	7	6	5	4	3	2		1	
Х	1	1	0	0	ext-	addr	-type	e=7	Octet 1
									Octet 2
			bcn	ı-id					Octet 3
									Octet 4
	Octet 5								

Figure 5.8: RetBCtPDUHeader (BCnID, with length field)

(MSB))		Bit N	lo.	(LSB)					
8	7	6	5	4	3		2		1	
Х	0	1	1	0	ext-addr-type=7					Octet 1
										Octet 2
			bcn	-id						Octet 3
										Octet 4
t	fw	d-bear	er	slot-num						Octet 5

Figure 5.9: RetBCtPDUHeader (BCnID, no length field)

(MSB))		Bit N	10						
8	7	6	5	4	3 2 1	<u>.</u>				
Х	1	1	1	0	ext-addr-type=7	Octet 1				
			Octet 2							
	bcn-id									
t	fw	d-bear	er		slot-num	Octet 5				
	Octet 6									

Figure 5.10: RetBCtPDUHeader (BCnID, with length field)

(MSB) Bit No				(LSB)								
8	7	6	5	4	3	:	2	:	1	:		
Х	0	1	0	1	со	m-	sig-	Octet 1				
										Octet 2		
	comsig-addr											
										!		
										Octet m		

Figure 5.11: RetBCtPDUHeader (Comsig-addr, no length field)

	(LSB)	(MSB) Bit No				(MSB						
	3 2 1	4	5	6	7	8						
Octet 1	com-sig-type	1	0	1	1	Х						
Octet 2												
Octet 3	comsig-addr											
Octet m	length											

Figure 5.12: RetBCtPDUHeader (Comsig-addr, with length field)

	(MSB)								B)	
!	8	7	6	5	4	3	2			
	Х	0	1	1	1	cor	n-sig-	Octet 1		
				Octet 2						
		Octet 3								
i										
	t	fw	d-bear	er		slot-	num			Octet m
- 1		l .			l .					

Figure 5.13: RetBCtPDUHeader (Comsig-addr, no length field, timing octet present)

(MSB)		Bit No (LSB)							B)		
8	7	6	5	. 4	3	<u>:</u>					
Χ	1	1	1	1	cc	m·	sig-	Octet 1			
	Octet 3										
t	fw	d-bear	7								
	length										

Figure 5.14: RetBCtPDUHeader (Comsig-addr, with length field, timing octet present)

5.1.3.2 RetBCtPDU Header Structure Type 2

The Bearer Control PDU Header Type 2 shall be used for the first BCtPDUs sent in a Return Block structure (see ETSI TS 102 744-2-1 [8]) using Return Bearer Types R80T0.5Q or R80T1Q. This Bearer Control PDU Header has the following structure:

```
LdrBCtPDUHeader ::=
    SEQUENCE {
       bct-sdu-follows
           BOOLEAN,
       length-present
           BOOLEAN,
        comsig-or-ext-addr-present
           BOOLEAN,
        continuation-burst
           BOOLEAN,
                                    -- con in figures
       header-structure
            CHOICE {
                backoff-and-bcnid
                -- if comsig-or-ext-addr-present FALSE
                    SEQUENCE {
                       backoff
                           Backoff,
                        ext-address
                           BCnID
                    },
                com-or-ext-addr-type
                -- if comsig-or-ext-addr-present TRUE
                    SEQUENCE {
                        comsig-or-ext-addr
                           BOOLEAN,
                        address-structure
                            CHOICE {
```

```
ext-addr-type-and-address
                                    if comsig-or-ext-addr FALSE
                                      SEQUENCE {
                                          ext-addr-type
                                              ExtAddrType,
                                          fwd-bearer-info
                                              FwdBCtInfo,
                                          ext-addr
                                              BCnID
                                      },
                                  com-sig-type-and-address
                                    if comsig-or-ext-addr TRUE
                                     SEOUENCE
                                          com-sig-type
                                              FromMobileComSigType,
                                          fwd-bearer-info
                                              FwdBCtInfo,
                                          comsig-addr
                                              ComSigAddress
                                      }
                             }
    length
        INTEGER (0..255) OPTIONAL
}
where FwdBCtInfo is defined as follows:
FwdBCtInfo ::=
    SEQUENCE {
        rnc-id
            INTEGER (0..255),
        timing-required
            BOOLEAN.
        f-bearer
            FwdBearer,
        bct-id
            BCtID,
        spot-beam-id
            SpotBeamID
```

The information relating to the forward bearer, including RNC-Id, FbearerNo, BCtId and Spot-beam-ID is transmitted after the mobile terminal has retuned to a new forward bearer and before it has received communications from the RNC on the new forward physical bearer. These information elements may also be included if timing is required by the mobile terminal. The mobile terminal cannot describe the backoff when operating in this mode, so it shall use the Initial Reference Level for use with this spot beam type (unless overridden by the RNC using a broadcast or UE-specific signalling mechanism).

Figures 5.15 to 5.20 illustrate the combinations possible for the RetBCtPDUHeader format.

Figure 5.15: LdrBCtPDUHeader (BCnID, no length field)

(MSB)	SB) Bit No				_	(LSB)					
8	7	6	5	4		3		2	•	1	<u> </u>
sdu	1	0	con			Octet 1					
											Octet 2
bcn-id											Octet 3
											Octet 4
Length										Octet 5	

Figure 5.16: LdrBCtPDUHeader (BCnID, with length field)

5)	Bit No (LSB)									
7	6	5	4	3	:	2	:	1	: :	
0	1	con	0	ext-	ad	dr-ty	/pe	=7	Octet 1	
		rnc	-id						Octet 2	
f-	-beare	Octet 3								
spot-beam-id										
bcn-id										
	0	7 6 0 1 f-beare	7 6 5 0 1 con rnc f-bearer spot-be	7 6 5 4 0 1 con 0 rnc-id f-bearer spot-beam-id	7 6 5 4 3 0 1 con 0 ext- rnc-id f-bearer bear-id	7 6 5 4 3 0 1 con 0 ext-ad rnc-id bct-i spot-beam-id	7 6 5 4 3 2 0 1 con 0 ext-addr-ty rnc-id f-bearer bct-id spot-beam-id	7 6 5 4 3 2 7 7 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8	7	

Figure 5.17: LdrBCtPDUHeader (Ext-addr, no length field)

(MSB	(MSB) Bit No				(LSB)	(LSB)					
8	7	6	: 5	4	3 2 1	: :					
sdu	1	1	con	0	ext-addr-type=7	Octet 1					
	rnc-id										
t	f	Octet 3									
	Octet 4										
	Octet 6										
	Octet 7										
		Octet 8									

Figure 5.18: LdrBCtPDUHeader (Ext-addr, length field)

(MSB	MSB) Bit No					(LSB)				
8	7	6	5	4	3 2	2 1	<u> </u>			
sdu	0	1	con	1	com-si	g-type	Octet 1			
	rnc-id									
t	f-	Octet 3								
	Octet 4									
	Octet 6									
							! !			
	Octet m									

Figure 5.19: LdrBCtPDUHeader (Comsig-addr, no length field)

(MSB	Bit No (LS					B)				
8	7	6	5	4	3	2	•	1		
sdu	1	1	con	1	com-	-sig-	typ	е	Octet 1	
	Octet 2									
t	t f-bearer bct-id									
	Octet 4									
	Octet 5									
	Octet 6									
! !	1									
length									Octet m	

Figure 5.20: LdrBCtPDUHeader (Comsig-addr, with length field)

5.1.4 Forward Bearer Control PDU Header Structure (FwdBCtPDUHeader)

In the forward direction, the Bearer Control PDU Header has the following structure:

```
FwdBCtPDUHeader ::=
   SEQUENCE {
       bct-sdu-follows
           BOOLEAN,
       length-present
           BOOLEAN,
       bct-pdu-addr-type
           BCtPDUAddrType,
       header-structure
           CHOICE {
               tbcn-id
                            -- if comsig-or-ext-addr-present FALSE
                   TranslatedBearerConnectionID,
                id-and-type
                   SEQUENCE {
                       comsig-or-ext-address
                           BOOLEAN,
                        address-structure
                            CHOICE {
                               ext-addr-type-and-address
                                -- if comsig-or-ext-addr FALSE
                                   SEQUENCE {
                                        ext-addr-type
```

```
ExtAddrType,
                                  extended-address
                                      BCnID
                              },
                          \verb|com-sig-type-and-address||
                            if comsig-or-ext-addr TRUE
                              SEQUENCE {
                                  com-sig-type
                                      ToMobileComSigType,
                                  address
                                      CHOICE {
                                           broadcast
                                               NULL,
                                           comsig-addr
                                               ComSigAddress
                              }
                     }
    },
length
    INTEGER (0..255) OPTIONAL
```

The boolean variable comsig-or-ext-address is set to TRUE if common signalling is used in the PDU, or set to FALSE if extended addressing is used. For extended addressing, the format of extended-address is specified by the value in the field ext-addr-type as defined in clause 5.1.5.12.4. Figures 5.21 to 5.28 illustrate the various combinations possible for the BCtPDU Header format.

(MSB))		Bit N	VО		((LSB)	
8	7	6	5	4	3	2	1	; ; ;
Х	0	0	0	1	cor	n-sig	-type	Octet 1

Figure 5.21: FwdBCtPDUHeader (Broadcast, no length field)

(MSE	3)		Bit 1	No	(LSB)	
8	7	6	5	4	3 2 1	
Х	1	0	0	1	com-sig-type	Octet 1
			len	gth		Octet 2

Figure 5.22: FwdBCtPDUHeader (Broadcast, with length field)

(MSE	3)		Bit	No		((LSB)	
8	7	6	5	4	; 3	2	1	:
Х	0	0	1					Octet 1
			tbc	n-id				Octet 2

Figure 5.23: FwdBCtPDUHeader (Connection specific, no length field)

(MSB	3)		Bit	No				((LS	B)	
8	7	6	; ; 5	: 4	÷	3	÷	2		1	
Х	1	0	1								Octet 1
			tbo	n-id							Octet 2
			ler	ngth							Octet 3

Figure 5.24: FwdBCtPDUHeader (Connection specific, with length field)

(MSB	3)		Bit N	No			(LSB)	_
8	7	6	5	4	3	2	1	: ! !
Х	0	1	0	0	ext-	addr-	type=7	Octet 1
								Octet 2
			bcr	n-id				Octet 3
								Octet 4

Figure 5.25: FwdBCtPDUHeader (ext-address-type BCnID, no length field)

(MSB))		Bit N	NO.	(LSB)						
8	7	6	5	4	3 2 1	, , 					
Х	1	1	0	0	ext-addr-type=7	Octet 1					
	bcn-id										
	Length										

Figure 5.26: FwdBCtPDUHeader (ext-address-type BCnID, with length field)

	SB)	(L		_	No	Bit N)	(MSB)
	1	2		3	4	5		6	7	8
Octet 1	уре	-sig-t	om	С	1	0		1	0	Х
Octet 2										
Octet 3					g-addr	omsiç	C			 -
Octet m	,									<u>.</u>

Figure 5.27: FwdBCtPDUHeader (Comsig-addr, no length field)

(MSE	3)		Bit N	٧o	(LSB)						
8	7	6	5	4	3 2 1						
Х	1	1	0	1	com-sig-type	Octet 1					
						Octet 2					
		Octet 3									
-											
	length										

Figure 5.28: FwdBCtPDUHeader (Comsig-addr, with length field)

5.1.5 Header Parameters

5.1.5.1 Bct-sdu-follows

The BOOLEAN variable *bct-sdu-follows* indicates, when set to value '1', that a BCtSDU follows the header; else a BCnPDU follows the header.

5.1.5.2 Length-present

The BOOLEAN variable *length-present* indicates the presence of a length field within the header when set to the value '1'.

5.1.5.3 Length

The *length* field, if present, is an eight-bit value which specifies the content length of the PDU from the end of the header to the start of the CRC field. If the *length* field is absent, the PDU either fills the remaining space in a physical layer block or slot (up to a maximum content length of 256 octets), or is a PDU with the maximum content length of 256 octets.

5.1.5.4 BCtPDUAddrType

The variable *bct-pdu-addr-type* is a two-bit field which is used in the to-UE direction only, and determines the addressing mechanism used for the BCtPDU. The variable is encoded as follows and as shown in Table 5.1:

```
BCtPDUAddrType ::=
   INTEGER {
      broadcast (0),
      tbcn-id (1),
      comsig-or-ext-addr (2)
      -- reserved (3)
      } (0..3)
```

Table 5.1: BCtPDUAddrType

Type	Address Mechanism						
0 broadcast (NULL address)							
1	tbcn-id (specific connection association)						
2	comsig-addr (common signalling connection) or extended-address (specific connection association)						
3	not used (reserved)						

FEC Blocks (see ETSI TS 102 744-2-1 [8]) shall be filled by the RNC in the following order:

- 1) Broadcast BCtPDUs (bct-pdu-addr-type = 0);
- 2) BCtPDUs carrying an ALComPDU (bct-pdu-addr-type = 2 and comsig-or-ext-addr = TRUE);
- 3) BCtPDUs addressed by tBCnId (bct-pdu-addr-type = 1);
- 4) BCtPDUs addressed by BCnId (bct-pdu-addr-type = 2 and comsig-or-ext-addr = FALSE).

5.1.5.5 Comsig-or-ext-addr-present

The BOOLEAN variable *comsig-or-ext-addr-present* determines the choice of the addressing mechanism of the BCtPDU. If this variable is set to '1', then the sequence *comsig-type-and-address* or *ext-addr-type-and-address* is present in the header, else *tbcn-id* is present.

5.1.5.6 Bearer-number-present

The BOOLEAN variable *bearer-number-present* is used in the return (from-UE) direction only and specifies whether the sequence *timing* (containing the information fields *timing-required*, *fwd-bearer* and *slot-num*) is present. If this flag is set to '1', then this sequence is present. The information is used by the RNC to determine when the UE is uncertain about timing and which Forward Bearer the UE is tuned to.

5.1.5.7 Timing-required (T)

The BOOLEAN variable *timing-required* indicates whether the UE requires timing correction information. This flag is set to '1' whenever the UE transmits an initial or un-timed random access burst in a contention slot.

5.1.5.8 FwdBearer

The variable *fwd-bearer* field is a three-bit field which contains the *f-bearer* value transmitted by the RNC in the bulletin board (see clause 5.4.4) identifying the forward bearer to which the UE is currently tuned.

```
FwdBearer ::=
   INTEGER (0..7)
```

5.1.5.9 SlotNumber

The variable *slot-num* field is a four-bit field which indicates in which slot position within the return frame the UE considers that it is currently transmitting. Return slot timing is synchronized, but offset from, forward frames. *Slot-num* indicates the slot position within the return frame, with the return frame having a defined offset in time against the forward frame (as defined in ETSI TS 102 744-2-1 [8]).

```
SlotNumber ::=
   INTEGER (0..15)
```

The slot numbering period is 80 ms (i.e. equal to a return frame) and each slot has a duration of 5 ms, hence there are 16 slots numbered from 0 through to 15. A *slot-num* of zero indicates the first 5 ms period that corresponds with the start of the return frame and a *slot-num* of 15 indicates the last 5 ms slot in the (retimed) 80 ms frame.

Slot-num values are statically determined from the position of slots within a return frame and not related to the number of slots described in the Return Schedule slot plans. This information is used by the RNC to determine the timing correction information to provide to the UE.

For return bearer types R80T25X and R80T5X, *slot-num* is irrelevant and shall always be set to zero if *slot-num* is included in the BCtPDU header. For these bearer types the following paragraphs in the subsection are not applicable.

Figure 5.29 illustrates the slot numbering covering 80 ms (for return bearers other than R20T0.5Q, R80T0.5Q and R80T1Q) which would apply for the case where two slot plans (see clause 5.4.5.7) support the transmission of three consecutive 20 ms bursts, followed by 4 consecutive 5 ms bursts in the same frame period.

Figure 5.29: Example for two Slot Plans over 80 ms Return Frame Period showing Slot Numbering

Figure 5.30 illustrates the slot numbering for the bearer type R20T0.5Q. In this example, two slot plans define 320 ms while each slot has a duration of 20 ms, i.e. the time axis is stretched by a factor of four. In this case, the two slot plans cover four return frames of 80 ms duration each. However, the slot numbering remains the same as for all other bearer types and the start of Slot 0 shall coincide with the start of a return frame. This implies that for bearer type R20T0.5Q only slot numbers 0, 4, 8 and 12 are valid.

Return Frame 0 → Return Frame 1 → Return Frame 2 → Return Frame 3 →

Figure 5.30: Example for two Slot Plans defining a 320 ms Period showing Return Frame and Slot Numbering

5.1.5.10 TranslatedBearerConnectionID

The variable *tbcn-id* is a 12-bit address field used to identify a specific connection within the scope of the Bearer Control object managing this bearer. It is mapped to a Bearer Connection ID during the Establishment, Modify or Handover processes.

```
TranslatedBearerConnectionID ::=
    INTEGER (0..4095)
```

5.1.5.11 ComSigAddress

5.1.5.11.0 General

The parameter *comsig-addr* carries the Non Access Stratum (NAS) UE Identity which is used to address common signalling messages, and the data type ComSigAddress is defined as follows:

```
ComSigAddress ::=
    SEQUENCE {
        ue-id-type
            UEIdType,
        intial-ue-identity
            CHOICE {
                p-tmsi-seq
                     SEQUENCE {
                         reserved1
                             BIT STRING (SIZE (4)),
                         plmn-id
                             PLMN-Identity,
                         lac
                             BIT STRING (SIZE (16)),
                         p-tmsi
                             P-TMSI-GSM-MAP
                tmsi-seq
                     SEQUENCE {
                         reserved2
                             BIT STRING (SIZE (4)),
                         plmn-id
                             PLMN-Identity,
                             BIT STRING (SIZE (16)),
                         tmsi
                             TMSI-GSM-MAP
                imsi
                     IMSI-GSM-MAP,
                imei
                     IMEI,
                 imsi-DS-41-seq
                     SEQUENCE {
                         length
                             INTEGER (0..15),
                         imsi-DS-41
                             IMSI-DS-41 -- 5 to 7 octets
            }
    }
```

5.1.5.11.1 Ue-id-type

The data type UEIdType is defined as follows:

```
UEIdType ::=
    INTEGER {
        p-tmsi (0),
        tmsi (1),
        imsi (2),
        imei (3),
        imsi-DS-41 (4)
    } (0..15)
```

The data types used in the *initial-ue-identity* field are as specified in ETSI TS 125 331 [1], clause 10.3.3.15.

5.1.5.11.2 P-tmsi-seq

The *p-tmsi-seq* is used if the registration signalling uses a P-TMSI in the ComSigAddress. Since P-TMSI is only unique within one routing area, the *plmn-id* and *lac* (location area code) to which the P-TMSI relates are included.

NOTE: Normally the Routing Area Identification (RAI) would also need to be included to uniquely identify the Routing Area. However, due to the limited number of octets which may be available to carry the entire registration message, the RAI has not been included.

The parameter *plmn-id* is of type PLMN-ID (Public Land Mobile Network Identity) which is defined in ETSI TS 125 331 [1], clauses 10.3.1.11 and 11.3 as follows:

In this case *ue-id-type* and *initial-ue-identity* are encoded in a total of ten octets as shown in Figure 5.31:

(MSB)	Bit N	lo (LSB)	
8 7 6	5	4 ; 3 ; 2 ; 1 ;	
0 0 0	0	reserved	Octet 1
mcc (1st digit)		mcc (2 nd digit)	Octet 2
mcc (3 rd digit)		mnc (1 st digit)	Octet 3
mnc (2 nd digit)		mnc (3 rd digit)	Octet 4
	la	С	Octet 5
			Octet 6
			Octet 7
	p-tr	nsi	Octet 8
			Octet 9
			Octet 10

Figure 5.31: Ue-id-type and Initial-ue-identity: P-TMSI

5.1.5.11.3 Tmsi-seq

The *tmsi-seq* is used if the registration signalling uses a Temporary Mobile Subscriber Identity (TMSI) in the ComSigAddress. Since TMSI is only unique within one location area, the *plmn-id* and *lac* (location area code) to which the TMSI relates are included.

In this case ue-id-type and initial-ue-identity are encoded in a total of ten octets as shown in Figure 5.32:

(MSB)				Bit N	No.					(LS	B)	_
8	7	÷	6	÷	5	4	÷	3		2	i	1	:
0	0		0		1			res	er	/ed			Octet 1
	mcc	(1 st	dig	it)			m	cc (2 nd	dig	jit)		Octet 2
	mcc ((3 rd	dig	it)			m	nc ((1 st	dig	it)		 Octet 3
r	nnc (2 nd	dig	it)			m	nc (3 rd	dig	it)		 Octet 4
					la	C							Octet 5
													Octet 6
													Octet 7
					tm	ısi							Octet 8
													Octet 9
													Octet 10

Figure 5.32: Ue-id-type and Initial-ue-identity: TMSI

5.1.5.11.4 Imsi

In the case that neither TMSI nor P-TMSI are available then the International Mobile Subscriber Identity (IMSI) shall be used as the *initial-ue-identity* (ue-id-type = 2). The IMSI is defined in ETSI TS 125 331 [1], clauses 10.3.1.5 and 11.3 as follows:

```
IMSI-GSM-MAP ::=
     SEQUENCE (SIZE (6..15)) OF Digit
with
Digit ::=
     INTEGER (0..9)
```

In this case *ue-id-type* and *initial-ue-identity* are encoded in a total of eight octets as shown in Figure 5.33, with 7,5 octets providing for 15 digits to be encoded. In the event that the IMSI occupies less than 15 digits, then any remaining digits at the end of the sequence shall be filled with 0xF.

Figure 5.33: Ue-id-type and Initial-ue-identity: IMSI

5.1.5.11.5 Imei

In the case that no SIM card is inserted in the UE and that registration without SIM card is permitted (see clause 5.7.19) then the International Mobile Equipment Identity (IMEI) shall be used as the *initial-ue-identity* (*ue-id-type* = 3). The IMEI is defined in ETSI TS 125 331 [1], clauses 10.3.1.4 and 11.3 as follows:

```
IMEI ::=
     SEQUENCE (SIZE (15)) OF IMEI-Digit
with

IMEI-Digit ::=
     INTEGER (0..15)
```

In this case, ue-id-type and initial-ue-identity are encoded as shown in Figure 5.34.

Figure 5.34: Ue-id-type and Initial-ue-identity: IMEI

5.1.5.11.6 Imsi-DS-41

The *imsi-DS-41* parameter is used if a SIM card issued by a network to ANSI-41 standard is inserted into the UE. In this case, *ue-id-type* = 4 and the data type IMSI-DS-41 is defined in ETSI TS 125 331 [1], clause 11.3 as follows:

```
IMSI-DS-41 ::=
   OCTET STRING (SIZE (5..7))
```

The variable length of the *imsi-DS-41* parameter is signalled in the *length* field. The *ue-id-type* and *initial-ue-identity* are encoded as shown in Figure 5.35.

Figure 5.35: Ue-id-type and Initial-ue-identity: IMSI-DS-41

5.1.5.12 Common Signalling (ComSig) Types

5.1.5.12.1 ToMobileComSigType

The variable *com-sig-type* is defined in the to-UE direction as follows:

```
ToMobileComSigType ::=
   INTEGER {
        information (1),
        paging-type-1 (2),
        register-ack (3),
        register-rej (4),
        deregister-common (5)
   } (0..7)
```

5.1.5.12.2 FromMobileComSigType

The variable *com-sig-type* is defined in the from-UE direction as follows:

```
FromMobileComSigType ::=
    INTEGER {
        register (2)
    } (0..7)
```

5.1.5.12.3 Comsig-or-ext-addr

The boolean variable *comsig-or-ext-addr* is used to specify whether Common Signalling or extended addressing is used in the BCtPDU Header. If *comsig-or-ext-addr* is set to '1' then Common Signalling is used in the BCtPDU Header (see clause 5.1.5.11). If *comsig-or-ext-addr* is set to '0', then extended addressing is used in the BCtPDU Header (see clause 5.1.5.12.4).

5.1.5.12.4 Ext-addr-type-and-address

The sequence *ext-addr-type-and-address* consists of the variable *ext-addr-type* and the variable *extended-address*. At present, *extended-address* is always of type BCnID that allows a connection to be addressed by its Bearer Connection ID (BCnID).

The variable *ext-addr-type* allows adding further addressing mechanisms in both the forward and return directions. At present only one value is defined that allows a connection to be addressed by its Bearer Connection ID (BCnID):

```
ExtAddrType ::=
   INTEGER {
      reserved-addr-0(0),
      reserved-addr-1(1),
      reserved-addr-2(2),
      reserved-addr-3(3),
      reserved-addr-4(4),
      reserved-addr-5(5),
      reserved-addr-6(6),
      bcnid (7)
   } (0..7)
```

5.1.5.13 Continuation-burst

The Boolean variable *continuation-burst* (*con*) is set to TRUE when a burst will be transmitted in the next slot only if the burst or continuous sequence of bursts is being preceded with a Preamble Acquisition sequence. This information is used to signal to the RAN demodulator and decoder that a subsequent transmission will occur immediately.

5.1.5.14 Backoff-and-bcnid

The sequence backoff-and-bcnid is used in the LdrBCtPDUHeader for two purposes:

- 1) to provide for the UE to use addressing on the basis of Bearer Connection IDs (see clause 5.1.3.2); and
- 2) to allow the UE to inform the RNC of the maximum level of backoff (in the variable *backoff* in units of one dB) from the maximum power at which the mobile terminal is capable of operating (see clause 5.7.21).

5.1.6 BCtPayload

5.1.6.0 General

The *bct-payload* field contains either a Bearer Connection PDU (BCnPDU) or an Adaptation Layer Common Signalling PDU (ALComPDU) as determined by the header parameters.

```
BCtPayload ::=
CHOICE {
    common-pdu
    ALComPDU,
    bcn-pdu
    BCnPDU
}
```

5.1.6.1 BCnPDU

The *bcn-pdu* contains a Bearer Connection Layer Protocol Data Unit, the contents of which are transparent to the Bearer Control Layer. For a definition of Bearer Connection Protocol Data Unit, refer to ETSI TS 102 744-3-3 [11].

```
BCnPDU ::=
OCTET STRING (SIZE (0..255))
```

5.1.6.2 ALComPDU

The *common-pdu* contains an Adaptation Layer Common Signalling Protocol Data Unit (ALComPDU), the contents of which are transparent to the Bearer Control Layer. For a definition of Adaptation Layer Common Signalling Protocol Data Unit, refer to ETSI TS 102 744-3-5 [13].

```
ALComPDU ::=
OCTET STRING (SIZE (0..255))
```

5.1.7 CRC

The *crc* field is used to identify erroneous Bearer Control PDUs. Bearer Control PDUs which do not have a valid CRC shall be discarded by the receiving Bearer Control process unless the Bearer Connection supports the delivery of erroneous PDUs (see ETSI TS 102 744-3-2 [10]).

The Generator Polynomial $x^{16} + x^{12} + x^5 + 1$ as specified in [3], clause 2.2.7, shall be used to calculate the CRC.

The CRC calculation is illustrated in Figure 5.36.

Figure 5.36: CRC Calculation

On initialization, all delay elements are initialized to "1". The BCtPDU data (excluding the two CRC octets) is then clocked into the shift register, starting with Bit 1 of the first octet. After the last bit (Bit 8 of the last BCtPDU octet) has been clocked in, the ones complement of the shift register contents forms the CRC, which shall be appended to the BCtPDU as shown in Figure 5.37.

Figure 5.37: Mapping of CRC Bits

On receiving a BCtPDU, the entire BCtPDU (including the CRC octets) shall be clocked into the shift register, which has been initialized with all ones. Providing the BCtPDU has not been corrupted, the shift register will contain 0xF0B8 after the last bit of the BCtPDU (i.e. bit 8 of the second CRC octet) has been shifted in.

5.2 Bearer Control Embedded Protocol Data Unit (BCtEPDU)

5.2.1 Bearer Control Embedded PDU Structure

The Bearer Control Embedded PDU (BCtEPDU) is contained within an Establish, Modify or Handover Adaptation Layer Signalling PDU (ALSigPDU) as well as the RegisterAck Common Signalling PDU (ALComPDU) and is used to carry Bearer Control specific information associated with the connection synchronously with the AL-SigPDU. The Embedded PDU contains a sequence of Embedded Bearer Control SDUs (BCtESDUs) as follows:

5.2.2 BCtESDU Lists

5.2.2.1 AttachBCtESDUList

The AttachBCtESDUList is used to carry Bearer Control parameters required to attach a connection to the Bearer Control (as occurs during the Establishment of new connections, including the RegisterAck process) and is structured as follows:

```
AttachBCtESDUList ::=

SEQUENCE {

attached-conn-info

AttachedConnInfo,

hardware-info-list

SEQUENCE OF BCtESDU OPTIONAL

-- of type HardwareAVPList

}
```

The *hardware-info-list* is only normally present if the UE receiver is being retuned or if sleep mode parameters are being modified. For a definition of HardwareAVPList see clause 5.6.5.

5.2.2.2 ReattachBCtESDUList

The ReattachBCtESDUList is used to carry Bearer Control parameters required to reattach a connection to the Bearer Control (as occurs during the Handover of connections) and is structured as follows:

A ReattachedConnInfo is present when a set of connections is being handed over between Bearer Control processes during a Handover operation. The *hardware-info-list* contains channel information if the UE receiver is being retuned and may also contain sleep mode parameters if these are being modified. For a definition of HardwareAVPList see clause 5.6.5.

5.2.2.3 SystemInformationBCtESDUList

The ESDU-List is sent in the SystemInformation AL-Sig-PDU to transfer system information to a UE in connected mode. The ESDU-List has the following structure:

The sys-info-avp-list may contain any of the following AVP types: NASSystemInfo, PrimaryBearer, PLMNInfo, AccessControl, ReturnLinkReferenceLevel, ReturnLinkReferenceLevelSet, InitialReferenceLevelSet, MaxDelayAndDelayRange and CommonSigRetry while the hardware-info-list may contain a SleepMode AVP. This mechanism is typically used if the System Information needs to be updated rapidly for a particular UE (e.g. during a Handover). It is not a replacement for broadcast system information.

5.2.3 BCtESDU Sequences

5.2.3.1 AttachedConnInfo

This sequence of SDUs is used to provide the parameters associated with the connection which is being established at the bearer connection level.

```
AttachedConnInfo ::=

SEQUENCE {

    conn-association

    BCtESDU OPTIONAL -- of type ConnectionAssociation,

    conn-avp-list

    BCtESDU OPTIONAL -- of type AVPList
}
```

Conn-association (see clause 5.6.1) defines the association between the bearer connection and the translated bearer connection IDs which map to each hardware element within the UE. For a definition of AVPList see clause 5.4.10.

5.2.3.2 ReattachedConnInfo

This sequence of SDUs is used to provide the parameters associated with the bearer connections which are being handed over to this bearer control during a Handover operation.

```
BCtESDU OPTIONAL -- of type AVPList }
```

Conn-reassociation (see clause 5.6.2) defines the association between the bearer connection and the translated bearer connection IDs which map to each hardware element within the UE. For a definition of AVPList see clause 5.4.10.

5.2.3.3 ModifiedConnInfo

This sequence of SDUs is used to provide bearer control layer parameters associated with the bearer connection which is being modified.

```
ModifiedConnInfo ::=
    SEQUENCE {
        conn-avp-list
        BCtESDU -- of type AVPList
}
```

NOTE: Although the data type contains one element only, it has been defined as SEQUENCE in order to comply with ASN.1 rules.

For a definition of AVPList see clause 5.4.10.

5.3 Bearer Control SDUs (BCtSDU)

5.3.0 General

0x0D 0x0E..0x3F

Bearer Control SDUs (BCtSDUs) are used for the peer-to-peer communication between Bearer Control Processes at the UE and the RNC. Tables 5.2 and 5.3 define the different BCtSDU Types which can be sent either by the UE or the RNC.

SDUType	Interpretation	Contained In
0x00	ConnPDU	Connection Specific BCtPDU
0x01	Status	Connection Specific BCtPDU
0x020x03	Reserved	-
0x04	QRate	Connection Specific BCtPDU
0x05	QLen	Connection Specific BCtPDU
0x06	Reserved	-
0x07	AVPList	Connection Specific BCtPDU
0x080x3F	Reserved	-

Table 5.2: From-UE Bearer Control SDU Types

In the from-UE direction, the only AVPs supported in an AVPList SDU are the ReferenceLevelAcknowledge and ReceivedSignalQuality AVPs.

Contained In **SDUType** Interpretation ConnPDU 0x00 Connection Specific BCtPDU 0x01 BulletinBoard Broadcast BCtPDU ReturnSchedule Broadcast BCtPDU 0x02 Connection Specific BCtPDU 0x03 StatusAckList Broadcast BCtPDU 0x04 Reserved 0x05 Reserved 0x06 SpecificAVPList Broadcast BCtPDU 0x07 **AVPList** Any BCtPDU 80x0 SpotBeamMap Any BCtPDU 0x09 BearerTables **Broadcast BCtPDU** Broadcast BCtPDU 0x0A **GPSEphemeris** 0x0B Reserved Broadcast BCtPDU SystemInfoIndex 0x0C

Table 5.3: To-UE Bearer Control SDU Types

Connection Specific BCtPDU

BearerTableUpdate

Reserved

The ReturnSchedule may only be included in a Connection Specific BCtPDU when used for dedicated return channel operation with R80T2.5X and R80T5X bearers. In this case, the Return Schedule shall be the only BCtSDU within this BCtPDU.

The column 'Contained In' refers to the type of BCtPDU in which the particular SDU Type may be carried:

'Broadcast BCtPDU'

a BCtPDU using the Broadcast addressing mechanism (BCtPDUAddrType = 0);

connection Specific BCtPDU'

a BCtPDU using a translated Bearer Connection ID as the addressing mechanism (BCtPDUAddrType = 1) or using a Bearer Connection ID as the extended addressing mechanism (BCtPDUAddrType = 2 and comsig-or-ext-address = FALSE);

capacity a BCtPDU using any valid addressing mechanism (BCtPDUAddrType = 0, 1 or 2).

5.3.1 Bearer Control SDU Structure (BCtSDU)

The Bearer Control SDU (BCtSDU) Structure is as follows and the format is shown in Figures 5.38 and 5.39:

```
BCtSDU ::=
    SEQUENCE {
        bct-sdu-follows
            BOOLEAN,
        type-and-length
            CHOICE {
                 short
                     SEQUENCE {
                         extended-length
                             BOOLEAN, -- FALSE
                             ShortBCtSigType,
                         s-length
                             INTEGER (1..8)
                     },
                 long
                     SEQUENCE {
                         extended-length
                             BOOLEAN, -- TRUE,
                         sdu-type
                             BCtSigType,
                         length
                             INTEGER (1..256)
            },
        sdu-payload
            SDUPayload
    }
```


Figure 5.38: BCtSDU Structure (Short Length)

Figure 5.39: BCtSDU Structure (Extended Length)

5.3.2 BCtSDU Parameters

5.3.2.1 Bct-sdu-follows

This is a single-bit flag which, when set to '1' indicates that another BCtSDU follows this BCtSDU, else either the CRC, ALComPDU or a BCnPDU follows this BCtSDU.

5.3.2.2 Extended-length

This is a single-bit flag which, when set to '1' indicates that an extended type and length field are utilized within the BCtSDU header.

5.3.2.3 S-length / length

The *s-length* and *length* fields are a 3-bit and 8-bit value respectively, both of which are used to indicate the length of the SDU. The value of *s-length* / *length* represents the number of octets in the *sdu-payload*. The encoding of these parameters, which are defined as INTEGER(1..8) and INTEGER (1..256) respectively, follows the ASN.1 Packed Encoding Rules (PER - see clause 4.4.4) hence zero length payloads are not supported.

5.3.2.4 BCtSigType and ShortBCtSigType

The *s-type* / *sdu-type* parameter defines the Bearer Control Signalling Data Unit type. Values in the range 0x00..0x07 shall be encoded as a ShortBCtSigType, in a 3-bit field (i.e. the BCtSDU *type-and-length* field is of CHOICE *short*), unless the length of the SDU exceeds 8 bytes, in which case they shall be encoded as a BCtSigType, a 6-bit field. In this case the BCtSDU *type-and-length* field is of CHOICE *long*. Values in the range 0x08..0x3F are always encoded as a BCtSigType, a 6-bit field (i.e. *type-and-length* field is of CHOICE *long*). Different coding for this field is used in the From-UE and To-UE directions.

```
BCtSigType ::=
    CHOICE {
        to-mobile-sdu-type
            INTEGER {
                conn-pdu (0),
                bulletin-board (1),
                return-schedule (2),
                status-ack-list (3)
                specific-avp-list (6),
                avp-list (7),
                spot-beam-map (8),
                bearer-tables (9),
                gps-ephemeris (10),
                 - reserved (11)
                system-info-index(12)
                bearer-table-update(13)
                  - placeholder for priority-spot-beam-map (14)
            } (0..63),
        from-mobile-sdu-type
            INTEGER {
                conn-pdu (0),
                status (1),
                g-rate (4),
                avp-list (7)
            } (0..63)
```

```
ShortBCtSigType ::=
    CHOICE {
        to-mobile-sdu-type
            INTEGER {
                conn-pdu (0),
                bulletin-board (1),
                return-schedule (2),
                status-ack-list (3),
                specific-avp-list (6),
                avp-list (7)
            } (0..7),
        from-mobile-sdu-type
            INTEGER {
                conn-pdu (0),
                status (1),
                q-rate (4),
                q-len (5),
                avp-list (7)
            } (0..7)
    }
```

5.3.2.5 SDUPayload

This field contains the body of the bearer control signalling PDU and is type dependent.

```
SDUPayload ::=
    CHOICE {
        conn-pdu
            BCnPDU,
        status
            Status,
        q-rate
            QRate,
        q-len
            OLen,
        bulletin-board
            BulletinBoard,
        return-schedule
            ReturnSchedule,
        status-ack-list
            StatusAckList,
        specific-avp-list
            SpecificAVPList,
        avp-list
            AVPList,
        spotbeam-map
           SpotBeamMap,
        bearer-tables
            BearerTables,
        gps-ephemeris
            GPSEphemeris,
        system-info-index
            SystemInfoIndex,
        bearer-table-update
            BearerTableUpdate
    }
```

5.4 Bearer Control SDU Payloads

5.4.0 General

NOTE: Throughout clauses 5.4.1 to 5.4.15, the ASN.1 defines components of SDUPayload, while the figures illustrate the entire BCtSDU structure (i.e. including the fields *bct-sdu-follows* and *type-and-length*).

5.4.1 ConnPDU

The ConnPDU SDU is transferred in a connection specific BCtPDU and is **only** used when multiple Bearer Connection PDUs are to be transferred within a single Bearer Control PDU. The SDU Payload contains a BCnPDU and the format is shown in Figures 5.40 and 5.41.

(MSE	3)	_	Bit	No	(LSB)	
8	7	6	5	4	3 2 1	
Х	0	0	0	0	s-length	Octet 1
			BCr	ıPDU		
					·	Octet n ≤ 9

Figure 5.40: ConnPDU Bearer Control SDU (Short Length)

_...

	(MSB))							
:		7	6	5	4	3	2	: 1	:
	Х	1	0	0	0	0	0	0	Octet 1
			Octet 2						
				BCr	PDU				
									Octet n ≤ 258

Figure 5.41: ConnPDU Bearer Control SDU (Extended Length)

If the Bearer Connection needs to send HDLC signalling information, such as a selective reject (SREJ), or if only a small segment is to be transferred, it may not utilize the entire allocation offered by the transmit scheduler within the Bearer Control process. When this occurs, the transmit scheduler within the Bearer Control process **may** offer the residue of the allocation to the same Bearer Connection process. This BCtSDU should be used when the transmit scheduler receives multiple, consecutive segments from the same Bearer Connection process for transmission in the same block or slot (subject to the maximum size limit of a BCtPDU).

If the transmit scheduler offers resource to another Bearer Connection before offering the residue of a block or slot to the current Bearer Connection, the Bearer Connection PDUs will be encapsulated within different Bearer Control PDUs.

Where one or more ConnPDU SDUs are used to carry multiple segments in a BCtPDU, the first segment shall be carried in the first ConnPDU and the last segment in the BCt-Payload field of the BCtPDU. Similarly, on reception of a BCtPDU containing one or more ConnPDU SDUs, the ordering of the data is such that the first ConnPDU SDU is processed first, followed by the next ConnPDU SDU, until all ConnPDU SDUs are processed. The data contained in the BCt-Payload is processed last.

5.4.2 Status

5.4.2.0 General

The Status SDU is transmitted in a BCtPDU to transfer information about the queue status for a specific connection at a UE to the RNC and is used for the purpose of requesting resources. A detailed description on the use of this SDU is provided in ETSI TS 102 744-3-2 [10]. The SDU-Payload has the following structure:

```
INTEGER (0..511),
delivery-rate
   INTEGER (0..511),
status-avp-list
   AVPList OPTIONAL
}
```

The format of the BCtSDU when carrying a Status PDU is as shown in Figure 5.42.

Figure 5.42: Status Bearer Control SDU

The *retry-count* parameter shall be set to zero if the Status SDU is transmitted in a reserved slot. If transmitted in a contention slot, *retry-count* shall initially be set to one and incremented for each retransmission required (in a contention slot). The format of the BCtSDU when carrying a Status PDU with *status-avp-list* included is as shown in Figure 5.43.

(MSE	3)			Bit	No)					(LS	SE	3)		
8	7	6		5		4		3		2			1		
Х	1	0		0		0		0		0			1	Octet 1	_
			ngt	h								Octet 2			
sec	sequence-number retry-count												Octet 3	3	
	expo	nent			<	<								Octet 4	
		ma	antissa >> <								Octet 5	,			
		·he	ead				>		<		Octet 6	;			
	delivery-rate >											Octet 7			
	·													_	
!	status-avp-list												, , ,	_	
														Octet n	1

Figure 5.43: Status Bearer Control SDU with optional Status AVP List

5.4.2.1 SequenceNumber

This field contains a sequence-number which is incremented for each Status Message sent.

```
SequenceNumber ::=
    INTEGER (0..15)
```

5.4.2.2 Queue-length

This parameter provides the *queue-length* in units of bytes. It is divided into two parts, a four bit *exponent* and a ten bit *mantissa*. The queue length can then be calculated as follows:

```
queue-length = mantissa \times 2^{exponent}
```

When sending the parameter, queue-length shall be expressed with the maximum possible precision.

5.4.2.3 Time-head

Time-head refers to the delivery time of the first PDU in the calling process queue. The units of *time-head* are in 80 ms units, offset by the time the Status SDU was created minus 8 s. The expected delivery times of the head of the queue is therefore calculated from the value *time-head* according to the following formula:

```
Expected-delivery-time = time-head \times 0,08 s + time-of-creation-of-SDU - 8 s
```

If the delivery time is too large to fit in the field, the maximum field value 0x1FF shall be used. If the delivery time was more than 8 s earlier than the SDU creation time, a field value of 0x000 shall be used.

The parameter is intended for the purpose of policing QoS. If *expected-delivery-time* is more than (after) *time-of-creation*, the queue is currently ahead of schedule, exceeding the QoS. A negative value of (*expected-delivery-time* minus *time-of-creation*) means that the rate of servicing the queue up to now has fallen below minimum QoS, and that the rate needs to be increased to catch up. To report a negative value an offset of 8 seconds is added to the definition of *time-head*. Values implying a lag by more than 8 seconds are clipped to 8 seconds, as the service QoS is already critical; 8 seconds is a value chosen to represent deliveries significantly failing QoS.

5.4.2.4 Delivery-rate

The *delivery-rate* parameter gives the required delivery rate as calculated by the UE such that the entire queue at the UE can be delivered meeting the specified QoS. The parameter is defined in units of 128 bytes/s.

5.4.2.5 Status-avp-list

The *status-avp-list* may carry information from the UE to the RNC, such as Received Signal Quality. This parameter is of type AVPList which is defined as follows:

```
AVPList ::= SEQUENCE OF BCtAVP
```

The data type BCtAVP is defined in clause 5.7.

5.4.3 BulletinBoard

5.4.3.0 General

The BulletinBoard SDU is transferred in a Broadcast BCtPDU used to transfer information to all UEs about the current bearer. The BulletinBoard SDU is transmitted at regular intervals, but not necessarily in every frame. If a BulletinBoard SDU is scheduled for transmission in a particular frame, then:

- the BulletinBoard SDU shall be the first BCtSDU within the Broadcast BCtPDU (i.e. immediately after the BCtPDU header); and
- this Broadcast BCtPDU shall be transmitted as the first BCtPDU in the first FEC Block (see ETSI TS 102 744-2-1 [8]) of the frame.

The SDU Payload has the following structure, with format shown in Figures 5.44 to 5.46:

```
CHOICE {
            sb-not-present
                SEQUENCE {
                    spot-beam-present
                        BOOLEAN,
                                     -- FALSE
                    f-bearer
                        FwdBearer,
                    bct-id
                        BCtID
                },
            sb-present
                SEQUENCE {
                    spot-beam-present
                        BOOLEAN,
                                     -- TRUE
                    f-bearer
                        FwdBearer,
                    bct-id
                        BCtID,
                    spot-beam-id
                        SpotBeamID
        },
   bb-avp-list
        AVPList OPTIONAL
}
```


Figure 5.44: BulletinBoard Bearer Control SDU (sb-not-present)

Figure 5.45: BulletinBoard Bearer Control SDU (sb-present)

Figure 5.46: BulletinBoard Bearer Control SDU (sb-not-present with bb-avp-list)

5.4.3.1 Rnc-id

This 8-bit field is used to identify a RNC within a region. The purpose of the field is to assist with the process of recovery in the event that a channel is allocated to another RNC.

5.4.3.2 Net-ver

This 4-bit field is incremented whenever the RNC performs a software reset, or whenever the information held about UEs by the particular bearer may be obsolete. The purpose of the field is to assist with the process of recovery in the event of a problem within the RNC.

5.4.3.3 FrameNumber

This field is a 12-bit field of type INTEGER (0x000 ... 0xFFF). The value is used to identify the Frame Number of the Bearer Control at the RNC. The purpose of the field is to synchronize sleep mode and ciphering operation between the RNC and the UE.

```
FrameNumber ::=
INTEGER (0..4095)
```

5.4.3.4 Spot-beam-present

This BOOLEAN field indicates whether the optional spot-beam-id field is present.

5.4.3.5 FwdBearer

This field is a 3-bit field which is used to identify this Forward Bearer Number within the Bearer Control. The purpose of the field is to assist with the process of locating the UE within the Bearer Control.

5.4.3.6 BCtID

This field is a 4-bit field which is used to identify this Bearer Control within the Spot Beam (identified by *spot-beam-id*, if present) at a particular RNC (identified by the *rnc-id*). The purpose of the field is to identify error conditions within the UE.

```
BCtID ::=
    INTEGER (0..15)
```

5.4.3.7 SpotBeamID

The spot-beam-id field specifies the spot-beam in which the bearer is being transmitted.

```
SpotBeamID ::=
    INTEGER (0..255)
```

5.4.3.8 BB-avp-list

The *bb-avp-list* field is used to carry various configuration parameters which are intended for all UEs on the forward bearer. The field is of data type AVPList which is defined as follows:

```
AVPList ::= SEQUENCE OF BCtAVP
```

The data type BCtAVP is defined in clause 5.7.

5.4.4 ReturnSchedule

5.4.4.0 General

The ReturnSchedule SDU is sent in a Broadcast BCtPDU to transfer information to UEs about the availability of slots in the return direction, and may also be transmitted to a specific UE to allocate dedicated return channel resources. The SDU Payload has the following structure:

```
ReturnSchedule::=
    SEQUENCE {
        return-channel-no
            RetChannelNumber,
        bearer-type-and-spotid-included
           BOOLEAN,
        res-plan-included
            BOOLEAN,
        number-of-slot-plans
           INTEGER (1..4),
        bearer-type-and-spotid
            SEQUENCE {
                r-bearer-type
                    ReturnBearerTypeShort,
                spot-beam-id
                    SpotBeamID
            } OPTIONAL,
        slot-plans
            SEQUENCE SIZE (1..4) OF SlotPlan,
        res-plan
            ResourcePlan OPTIONAL,
        tbcn-id-list
            SEQUENCE SIZE (0..32) OF TranslatedBearerConnectionID
    }
```

5.4.4.1 RetChannelNumber

5.4.4.1.0 General

This field is used to specify the Channel Number to which the Return Schedule applies.

If RetChannelNumber is 0 or 0xFFFF, this indicates that the channel is unavailable.

5.4.4.1.1 Offset

The *offset* field is a one bit field defined as follows:

```
Offset ::=
INTEGER (0..1)
```

It is interpreted as shown in Table 5.4.

Table 5.4: Offset Field Values

Offset Value:	Interpretation
0:	0 Hz offset
1:	+1,25 kHz offset

5.4.4.1.2 ChannelIndex

The remaining 15 bits represent the *channel-index* field, which is expressed as a hexadecimal number, such that the L-Band transmit frequency can be calculated as described in ETSI TS 102 744-2-1 [8]. The return channel centre frequency is calculated from *channel-index* and *offset* as follows:

```
return\ frequency\ [MHz] = channel-index \times 0,0025 + offset \times 0,00125 + 1\ 611,500
```

The data type ChannelIndex is defined as follows:

```
ChannelIndex ::= INTEGER (0..32767)
```

5.4.4.2 Bearer-type-and-spotid-included

The *bearer-type-and-spot-id-included* field is of type BOOLEAN, and if set to '1' indicates that the *bearer-type-and-spot-id* sequence is included.

5.4.4.3 Res-plan-included

The res-plan-included field is of type BOOLEAN, and if set to '1' indicates that the res-plan field is present.

5.4.4.4 Number-of-slot-plans

This field is used to specify the number of slot-plans included in the ReturnSchedule SDU.

5.4.4.5 ReturnBearerTypeShort

The value in *r-bearer-type* field specifies the type of return bearer that shall be used by the UE in conjunction with the particular Return Schedule and the data type ReturnBearerTypeShort is defined as follows:

```
ReturnBearerTypeShort::=
    INTEGER ·
        r20t05q-or-r80t05q (0),
        r20t1q (1),
        r5t2q-or-r20t2q (2),
        r5t45q-or-r20t45q (3),
        r20t1q-or-r80t1q (4),
        r5t1x-or-r20t1x (5),
        r5t2x-or-r20t2x (6),
        r5t45x-or-r20t45x (7),
        r80t25x4 (8),
        r80t5x4 (9),
        r80t25x16 (10)
        r80t5x16 (11),
        r80t25x32 (12),
        r80t5x32 (13),
        r80t25x64 (14),
        r80t5x64 (15)
    } (0..15)
```

Bearer types are defined in ETSI TS 102 744-2-1 [8].

ReturnBearerTypeShort does not make a distinction based upon the use of the Distributed Unique Word burst format as it is implied by the UE Class.

If the field *r-bearer-type* is not included then the ReturnBearerTypeShort is broadcast to UEs in the ReturnBearerType AVP (see clause 5.7.3).

5.4.4.6 SpotBeamID

The *spot-beam-id* field is used if the bearer control at the RNC supports return channels associated with multiple spot beams; e.g. when the forward bearer (on which this schedule is sent) is transmitted in the regional beam but narrow beams are available to receive return channel transmissions. In this case, the *spot-beam-id* field specifies the spot beam to which the return schedule applies. The value of zero (0x00) is specifically used as a global beam identifier while the value of 255 (0xFF) shall be treated by the UE as if the *spot-beam-id* field was not present. The data type SpotBeamID is defined in clause 5.4.4.7.

5.4.4.7 SlotPlan

Values of slot-plans are defined as shown in Figure 5.47.

Slot Structure	Slot n			slot	(n+4)			Slot (n+8)
0				Not us	ed			
1		F	₹			F	₹	
2		F	₹		R	R	R	R
3		F	₹		R	R	R	С
4		F	₹		R	R	С	С
5		F	₹		R	С	С	С
6		F	₹		С	С	С	С
7	R	R	R	R	R	R	R	R
8	R	R	R	R	R	R	R	С
9	R	R	R	R	R	R	С	С
10	R	R	R	R	R	С	С	С
11	R	R	R	R	С	С	С	С
12	R	R	R	С	С	С	С	С
13	R	R	С	С	С	С	С	С
14	R	С	С	С	С	С	С	С
15	С	С	С	С	С	С	С	С

R=Reserved C=Contention (random access)

Figure 5.47: SlotPlan Structure

The values of slot-plan are defined in relation to a slot number, where four (short) slots may be combined to provide a long (reserved) slot, as is the case in slot structures 1 to 6. The actual slot duration (in ms) depends on the return bearer type (see clause 5.4.5.5) in use as shown in Table 5.5.

Table 5.5: Slot Durations vs. Return Bearer Types

R-Bearer-Type	Short Slot Duration	Long Slot Duration
0, 4	20 ms	80 ms
1	n/a	20 ms
2, 3, 5, 6, 7	5 ms	20 ms
8 to 15	80 ms	(not used)

5.4.4.8 ResourcePlan

The *res-plan* field, if present, indicates whether or not reserved slots for the slot plan(s) have Translated Bearer Connection IDs listed below. The mapping of Translated Bearer Connection IDs to reserved slots is explained in ETSI TS 102 744-3-2 [10].

If *res-plan* is not present, then Translated Bearer Connection IDs are included for **all** reserved slots in the slot plan, or there are no reserved slots in the plan.

If *res-plan* is present, each bit in *res-plan* is associated with a reserved slot in the slot plan. Starting with the first reserved slot in the first slot plan, working through the first slot plan and then starting with the first reserved slot in the second slot plan, etc., each reserved slot is taken in turn and has a corresponding bit in *res-plan*. The number of reserved slots depends on the number of slot plans specified as well as the actual slot plan(s) specified. The number of reserved slots for each slot plan can be determined from Figure 5.47. The total number of corresponding bits required in *res-plan* is then equal to the sum of the reserved slots specified in each of the slot plans included in the Return Schedule.

The resulting *res-plan* field is constructed such that it is aligned to a 4-bit boundary. It is packed such that the first (most-significant bit) relates to the first reserved slot etc., up to the total number of corresponding bits. Any unused bits (up to the next four-bit boundary) at the end of *res-plan* are set to zero.

As a result of the above, the ResourcePlan type is defined as follows:

```
ResourcePlan ::=
    CHOICE {
        res-plan4
            BIT STRING (SIZE (4)),
        res-plan8
            BIT STRING (SIZE (8)),
        res-plan12
            BIT STRING (SIZE (12)),
        res-plan16
            BIT STRING (SIZE (16)),
        res-plan20
            BIT STRING (SIZE (20)),
        res-plan24
            BIT STRING (SIZE (24)),
        res-plan28
            BIT STRING (SIZE (28)),
        res-plan32
            BIT STRING (SIZE (32))
}
```

5.4.4.9 Return Schedule Examples

This clause provides examples of different Return Schedules and shall not be considered as exhaustive.

The example shown in Figure 5.48 illustrates the case where only contention slots are available on this channel for mobiles tuned to this bearer.

((MSB))		Bit N	10		(l	_SB)	
:	8	7	6	5	4	3	2	1	: : :
	Х	0	0	1	0	0	1	0	Octet 1
				retu	rn-				Octet 2
		Octet 3							
	0	0	0	0	S	slot-pl	Octet 4		

Figure 5.48: ReturnSchedule Example: Contention Slots only

Figure 5.49 illustrates an example of a Return Schedule using a short BCtSDU structure with the maximum length of eight octets in the Return Schedule itself. Up to three tbcn-ids can be included in this case, leaving sufficient space for a res-plan4 field. Since this Resource Plan is limited to four bits, the maximum number of reserved slots is limited to four. The example shows slot-plan as either 3 or 11 (both slot plans have four reserved slots). Slot Plans with more than four reserved slots would require an eight bit res-plan, while for slot plans with less than four reserved slots, there would be no requirement to include a res-plan and/or there would be too many tbcn-ids included. Suitable values for res-plan in this example would be 0111, 1011, 1101 or 1110. The bitmap positions set to '1' select three out of the four reserved slots specified in slot-plan and associate the translated Bearer Connection IDs with the selected slots.

(MSB))		Bit	No			((LS	B)	
8	7	6	5	4	3	:	2	i	1	:
Х	0	0	1	0	1		1		1	Octet 1
			re	turn-						Octet 2
		Octet 3								
0	1	Octet 4								
	res-p	Octet 5								
			tb	cn-id 1					>	Octet 6
<			tbcn	-id 2						Octet 7
		Octet 8								
			tb	cn-id 3					>	Octet 9

Figure 5.49: ReturnSchedule Example: Res-Plan included

Figure 5.50 illustrates an example similar to the one above, however, for a value of *slot-plan* equal to 4 or 12 (i.e. three reserved slots). In this case, there is no requirement to include a *res-plan* field and the *tbcn-id-list* starts immediately after the *slot-plan* field. This leaves the last four bits in octet 9 unused, which therefore have to be zero padded. These two examples also illustrate that the first tbcn-id (represented by *tbcn-id 1* in the figures) may start on any 4-bit boundary.

(MSB))		Bit	No			(LS	B)	
8	7	6	5	4	3	-	2	:	1	
Х	0	0	1	0	1		1		1	Octet 1
			ret	urn-						Octet 2
				Octet 3						
0	0	0	0	slo	t-plar	า =	4 o	r 12	2	Octet 4
<			tbcn-		Octet 5					
			>	<						Octet 6
			tbo	n-id 2					>	Octet 7
<			Octet 8							
			>		zero _l	pad	ldin	g		Octet 9

Figure 5.50: ReturnSchedule Example: All reserved slots allocated

Figure 5.51 illustrates a case where two slot plans are included in one Return Schedule, which for return bearers with a slot duration of 5 ms (for short slots) represents a schedule period of 80 ms. The slot plans chosen for this example provide a total of three reserved slots over the entire schedule period.

		Bit	No	_		(LS	B)				
	6	5	4	3	į	2	•	1	: ! !			
	0	1	0	1		1		1	Octet 1			
		ret	urn-						Octet 2			
		Octet 3										
	Octet 4											
olan	2 = 0	6	<			Octet 5						
tbcn-id 1 >						-id 1 >						
			Octet 7									
> <												
	>	Octet 9										
		0	6 5 5 chan chan 2 = 6 tbcn-	0 1 0 return- channel-no 0 1 s plan 2 = 6 tbcn-id 1 tbcn-id 2	6 5 4 3 0 1 0 1 return- channel-no 0 1 slot-pl plan 2 = 6 < tbcn-id 1 tbcn-id 2 > <	6 5 4 3 0 1 0 1 return- channel-no 0 1 slot-plan plan 2 = 6 tbcn-id 1 tbcn-id 2 > <	6 5 4 3 2 0 1 0 1 1 return- channel-no 0 1 slot-plan 1 = plan 2 = 6	6 5 4 3 2 0 1 0 1 1 return- channel-no 0 1 slot-plan 1 = 1 plan 2 = 6 tbcn-id 1 tbcn-id 2 > <	6 5 4 3 2 1 0 1 0 1 1 1 return- channel-no 0 1 slot-plan 1 = 1 plan 2 = 6 tbcn-id 1 > tbcn-id 2 > <			

Figure 5.51: Return Schedule Example: Two Slot Plans included

A representation of a return burst slot plan associated with the example schedule (assuming slot durations of 20 ms and 5 ms), together with the allocation of tbcn-ids, is shown in Figure 5.52.

Figure 5.52: Example Return Slot Plan for 80 ms Schedule Period

Figure 5.53 illustrates an example of a Return Schedule using a long BCtSDU structure and where the *bearer-type* and *spot-beam-id* fields are included. In this particular example, no *res-plan* is included, so for all reserved slots a corresponding tbcn-id is included in the *tbcn-id-list*.

Although all the examples provided in this clause are of return schedules with single, dual and triple slot-plans, quadruple slot-plans are also possible (corresponding to a return schedule period of 160 ms for return bearers with a slot duration of 5 ms for short slots).

length	(MSB))		B)								
length	8	7	6	5	4		3	į	2		1	
return-	Х	1	0	0	0		0		1		0	Octet 1
channel-no Octe 1 0 1 0 r-bearer-type Octe spot-beam-id Octe slot-plan 1 slot-plan 2 Octe slot-plan 3 Octe tbcn-id 1 > Octe tbcn-id 2 Octet Octet Octet				len	gth							Octet 2
1 0 1 0 r-bearer-type Octe spot-beam-id Octe slot-plan 1 slot-plan 2 Octe slot-plan 3 Octe tbcn-id 1 > Octe tbcn-id 2 Octet Octet Octet				retu	ırn-							Octet 3
spot-beam-id Octe slot-plan 1 slot-plan 2 Octe slot-plan 3 < Octe tbcn-id 1 > Octe < tbcn-id 2 Octet				chanr	nel-no)						Octet 4
slot-plan 1 slot-plan 2 Octe slot-plan 3 < Octe tbcn-id 1 > Octe tbcn-id 2 Octet Octet Octet	1	0	1	0		r-k	oea	rer-	typ	е		Octet 5
Slot-plan 3 Octe tbcn-id 1 Octe tbcn-id 2 Octet Octet				spot-be	eam-	id						Octet 6
tbcn-id 1 > Octe tbcn-id 2 Octet Octet		slot-p	lan 1			S	lot-	pla	n 2			Octet 7
< tbcn-id 2 Octet > < Octet		slot-p	lan 3		<							Octet 8
> < Octet				tbcı	n-id 1						>	Octet 9
	<			tbcn-i	d 2							Octet 10
tbcn-id 3 > Octet				>	<							Octet 11
				tbcı	_ n-id 3	3					>	Octet 12
]
tbcn-id-list				tbcn-	id-list	t						; !
(continued) Octe				(conti	nued)						Octet n

Figure 5.53: ReturnSchedule Example: bearer-type-and-spotid included

All of the above examples are appropriate for when the Return Schedule is transmitted in a broadcast BCtPDU for allocation of resources to multiple mobile terminals. The Return Schedule is also used to allocate dedicated resources to individual mobile terminals, in which case it will be transmitted in a BCtPDU addressed to a specific mobile terminal. In this case there is no requirement for inclusion of tBCnID list as the tBCnID is implied by the BCtPDU addressing mechanism. This mode of operation is typically used for allocation of resources to a specific mobile terminal for High Data Rate (HDR) operation. Figure 5.54 illustrates the ReturnSchedule for allocation of resources to a specific mobile terminal, this example allocating resources using a single slot plan (scheduling period is 640 ms).

(MSI	3)						Ві	it N	0					(LS	SB))		
8	:	7			6	į	5	:	4	÷	3	:	2	:	1			
х		1			0		0		0		0		1		0		Octet	1
							Le	eng	th								Octet :	2
							re	tur	n-								Octet :	3
	channel-no											Octet 4	4					
1	1 1 0 0 r-bearer-type											Octet	5					
	spot-beam-id											Octet (6					
	slot-plan Res-plan												Octet [*]	7				

Figure 5.54: ReturnSchedule Example for use within addressed BCtPDU

5.4.5 StatusAckList

The StatusAckList SDU is transferred in a Broadcast BCtPDU and is used to acknowledge the receipt of status messages from UEs. The SDU Payload has the following structure:

```
StatusAckList::=
SEQUENCE (1..64) OF StatusAck
```

with StatusAck defined as follows:

where *sequence-number* is equal to the sequence number (defined in clause 5.4.2.1) sent in the Status SDU to be acknowledged. The format is as shown in Figure 5.55.

(MSB))	Bit No (LSB)								
8	7	6	: 5	. 4	3	:	2	:	1	
х	0	0	1	1		s-l	eng	jth		Octet 1
seq	uence-	numl	oer 1	<						Octet 2
		Octet 3								
seq	uence-	Octet 4								
		Octet 5								
		! ! !								
	(continued)									

Figure 5.55: StatusAckList Bearer Control SDU (short length)

An extended length field is required to describe the length of the schedule if more than four tbcn-ids are acknowledged in the list, as shown in Figure 5.56.

(MSB))	Bit No (LSB)											
8	7	6		5	:	4	:	3	:	2	:	1	:
Х	1	0		0		0		0		1		1	Octet 1
	length											Octet 2	
sequ	uence-	numl	ber	· 1	<	<							Octet 3
	tbcn-id 1 >											Octet 4	
sequ	sequence-number 2 <										Octet 5		
	tbcn-id 2 >										Octet 6		
!	status-ack-list												
(continued)										Octet n ≤ 130			

Figure 5.56: StatusAckList Bearer Control SDU (extended length)

5.4.6 QRate

The QRate SDU is transmitted in a BCtPDU to transfer information about the characteristics of the traffic being presented at the input to a specific connection to the RNC. The SDU-Payload currently only carries a QueueRate parameter and is formatted as below with structure as shown in Figure 5.57.

```
QRate ::=
    SEQUENCE {
          qr-range
```

```
QRateRange,
qr-value
QRateValue
}

where

QRateRange ::=
INTEGER (0..3)
QRateValue ::=
INTEGER (0..63)
```

(MSE	3)	Bit No (LS						
8	7	6	5	4	3	2	1	
Х	0	1	0	0	0	0	0	Octet 1
qr-ra	inge			Octet 2				

Figure 5.57: QRate SDU

The default definition of the QRate SDU is to carry a *queue-rate* parameter that gives the required delivery rate as calculated by the UE such that the entire queue at the UE can be delivered while meeting the specified QoS. The parameter is defined as shown in Table 5.6.

Table 5.6: QRate Range and Value Interpretation

QRate Range	Minimum Rate (kbit/s)	QRate Value units	Rate Range (kbit/s)
00	0	5 Octets per 80 ms (500 bps)	0 to 31,5
01	32	10 Octets per 80 ms (1 kbps)	32 to 95
10	96	20 Octets per 80 ms (2 kbps)	96 to 222
11	224	40 Octets per 80 ms (4 kbps)	224 to 476

The UE shall periodically update the QRate information towards the RNC as shown in the Default Update Rate column of the above table. The approach for calculation of the value to be provided in this SDU by the UE is described in ETSI TS 102 744-3-2 [10].

5.4.7 QLen

The QLen SDU is transmitted in a BCtPDU to transfer information about the state of the queue for a specific connection to the RNC and is used for the purpose of requesting resources for Background class connections and Interactive class connections with low information rate. A detailed description on the use of this SDU is provided in ETSI TS 102 744-3-2 [10]. The SDU-Payload currently only carries a Queue Length parameter and is formatted as follows:

```
QLen ::=
    SEQUENCE {
        ql-range
            QLenRange,
        ql-value
        QLenValue
    }
where:

QLenRange ::=
    INTEGER (0..3)
QLenValue ::=
    INTEGER (0..63)
```

The format of the BCtSDU when carrying a QLen SDU containing only queue length information is as shown in Figure 5.58.

(MSB))		Bit	No		(LSB)	
8	7	6	5	: 4	3	2	: 1	
х	0	1	0	1	0	0	0	Octet 1
ql-ra	nge			ql-va	Octet 2			

Figure 5.58: QLen SDU

The purpose of the QLen SDU is to carry a *queue-length* parameter that reports the required volume of data for the entire queue at the UE. The parameter is defined as shown in Table 5.7.

Table 5.7: QLen Range and Value Interpretation

QLen Range	Minimum Value (octets)	QLen Value Unit (octets)	Qlength Range supported (octets)
00	0	32	0 to 2 016
01	2 048	128	2 048 to 10 112
10	10 240	512	10 240 to 42 496
11	43 008	2 048	43 008 to 172 032

If the queue length exceeds 172 032 octets, then the maximum value 172 032 octets shall be reported, and continue to be reported when the Significant Delta QLen volume of data has been transmitted. The approach for calculation of the value to be provided in this SDU by the UE is described in ETSI TS 102 744-3-2 [10].

5.4.8 SpecificAVPList

The SpecificAVPList SDU may be used within a Broadcast BCtPDU to direct information at a specific UE, a connection within a UE, or hardware within a UE (depending upon the AVP context), for instance when a timing, frequency or power correction is required. The SDU Payload has the following structure, with format as shown in Figures 5.59 and 5.60:

```
SpecificAVPList ::=
    SEQUENCE {
        reserved
            BIT STRING (SIZE(4)),
        tbcn-id
            TranslatedBearerConnectionID,
        bct-avp-list
            SEQUENCE OF BCtAVP
    }
```


Figure 5.59: SpecificAVPList Bearer Control SDU (short length)

Figure 5.60: SpecificAVPList Bearer Control SDU (extended length)

The data type TranslatedBearerConnectionID is defined in clause 5.1.5.10, while BCtAVP is specified in clause 5.7.

5.4.9 AVPList

The AVPList SDU may be used in any of the following ways:

- in a Broadcast BCtPDU to change global parameters within all UEs tuned to the forward bearer;
- in a Common Signalling BCtPDU (RegisterAck) to carry timing and return link reference level information to a UE; and
- in a Connection Specific BCtPDU (i.e. which is addressed by a tbcn-id) to change parameters in a specific UE, in a specific Bearer Control within a UE, or specific hardware within a UE.

If the AVPList SDU is contained in a Broadcast BCtPDU (referred to as a broadcast AVPList throughout the present document), then it shall be transmitted as the first BCtSDU in the BCtPDU (i.e. immediately after the BCtPDU header). In addition, if the ForwardBearerCodeRate AVP is present, the AVPlist shall be transmitted in the first BCtPDU of an FEC block. If a BulletinBoard SDU is scheduled for transmission in the same FEC Block (see ETSI TS 102 744-2-1 [8]) then the bb-avp-list (see clause 5.4.4.8) shall be used to carry these AVPs instead (i.e. within a Broadcast BCtPDU, AVPList SDU and BulletinBoard SDU are mutually exclusive).

The SDU Payload has the following structure, with format as shown in Figures 5.61 and 5.62:

```
AVPList ::=
SEQUENCE OF BCtAVP
```


Figure 5.61: AVPList Bearer Control SDU (short length)

(MS	B)		Bit	No			(LSB)	
8	7	:6	5	4	3	2	1	
Х	1	0	0	0	1	1	1	Octet 1
		Octet 2						
								Octet 3
i I I			bct-	avp-lis	t			1
								Octet n

Figure 5.62: AVPList Bearer Control SDU (extended length)

The data type BCtAVP is specified in clause 5.7.

5.4.10 SpotBeamMap

5.4.10.0 General

This SDU is used to describe spot beam contour information to the UEs and has the following structure, with format as shown in Figure 5.63:

(MSB))		Bit	3)						
8	7	6	5	1						
Х	1	0	0	1	()	0		0	Octet 1
			Octet 2							
			Octet 3							
			Octet 4							
			Octet 5							
										Octet n

Figure 5.63: SpotBeamMap Bearer Control SDU

5.4.10.1 Spotbeam-map-version

The *spotbeam-map-version* field is used to indicate to the UEs that the spotbeam information has been updated and that it should obtain a complete list of spotbeam map information prior to taking any further action.

5.4.10.2 Total-number-of-spots and spotbeam-map-number

The parameters *total-number-of-spots* and *spotbeam-map-number* are provided in order for the UE to track the reception of spotbeam maps if a complete set of spotbeam maps is transmitted in a number of SpotBeamMap SDUs. This would be the case if the capacity of the physical layer is insufficient to transmit all SpotBeamInfo elements in a single SDU, or if the complete *spotbeam-info-list* would exceed the maximum length of the BCtPDU.

The *total-number-of-spots* parameter specifies the total number of spotbeam maps provided in the set. The parameter carries the same value in each of the SpotBeamMap SDUs transmitted.

The *spotbeam-map-number* parameter gives the sequence number of the first SpotBeamInfo element in the SpotBeamMap SDU, i.e. for the first SpotBeamMap SDU in a set, *spotbeam-map-number* equals 1.

5.4.10.3 SpotBeamInfo

5.4.10.3.0 General

The *spot-beam-info* structure is defined as follows, with format as shown in Figures 5.64 and 5.65:

```
SpotBeamInfo::=
    SEQUENCE {
       spotbeam-id
            SpotBeamID,
        reserved
           BIT STRING (SIZE (4)),
        sb-prf
            INTEGER (0..3),
        sb-data
            CHOICE {
                sb-vertices
                    SEQUENCE {
                        sb-type
                            SpotBeamMapType, -- sb-type = 0
                        number-of-vertices
                            INTEGER (0..63),
                        sb-vertex-list
                            SEQUENCE OF SpotbeamVertex
                regular-sb
                    SEQUENCE {
                        sb-type
                            SpotBeamMapType, -- sb-type = 1
                        spotbeam-azimuth
                            SpotBeamAzimuth,
                        spotbeam-elevation
                            SpotBeamElevation,
                        spotbeam-radius
                            SpotBeamRadius
                    }
            }
    }
```

(M	SB)		В	it No			(LSE	3)	
8	7	6	5	4	3	2	1		
			Octet 1						
	re	served		;	sb-prf	()	0	Octet 2
		r	numbei	r-of-ve	rtices				Octet 3
									Octet 4
!		s	ootbea	m-ver	tex-list			į	
									Octet n

Figure 5.64: SpotBeamInfo Structure using Spotbeam-Vertex-List Format

(MS	SB)		В						
8	7	6	6 5 4 3 2 1						1 - 1 -
		Octet 1							
	re	Octet 2							
		Octet 3							
		Octet 4							
		Octet 5							

Figure 5.65: SpotBeamInfo Structure using Regular Spotbeam Format

The data type SpotBeamID is defined in clause 5.4.4.7.

5.4.10.3.1 Sb-prf

The value in the *sb-prf* field indicates to the UE the spot beam preference level, i.e. which spot-beam the UE should move into (or the spot beam to which the mobile should make a request to move into). If there is more than one suitable spot beam to chose from then the UE shall choose the one with the highest *sb-prf* value.

5.4.10.3.2 SpotBeamMapType

The value in the two-bit field *sb-type* specifies the format of the remaining octets in the spotbeam-info structure:

```
SpotBeamMapType ::=
   INTEGER {
       spotbeam-vertex-list (0),
       regular-spotbeam (1)
   } (0..3)
```

Current implementations shall ignore the spot-beam information if *sb-type* is set to a reserved value.

5.4.10.3.3 Number-of-vertices

The *number-of-vertices* field specifies the length of the *spot-beam-vertex-list* expressed as the number of vertices (each vertex occupies two octets) as defined in clause 5.4.11.3.4.

5.4.10.3.4 SpotbeamVertex

The data type SpotbeamVertex is defined as:

```
SpotbeamVertex ::=
   INTEGER (0..65535)
```

and the value of a SpotbeamVertex is calculated as follows:

```
SpotBeamVertexValue = [360(\phi+90)]+\theta+180 where: \phi := \text{Latitude in degrees, rounded to the nearest integer with} (90^{\circ}S \equiv -90) \leq \phi \leq (90 \equiv 90^{\circ}N) and:
```

```
\theta := Longitude in degrees, rounded to the nearest integer with (180°W \equiv -180) \leq \theta \leq (179 \equiv 179°E)
```

Values between 0xFE88 and 0xFFFF are reserved.

5.4.10.3.5 SpotBeamAzimuth

The data type SpotbeamAzimuth is defined as:

```
SpotbeamAzimuth ::=
    INTEGER (0..255)
```

This element specifies the centre of a spot beam in terms of the azimuth angle from the satellite to the spot beam centre. The azimuth angle, A_{zc} , is expressed in degrees and encoded as follows:

```
A_z = (SpotBeamAzimuth-128)/10
```

5.4.10.3.6 SpotBeamElevation

The data type SpotbeamElevation is defined as:

```
SpotbeamElevation ::=
    INTEGER (0..255)
```

This element specifies the centre of a spot beam in terms of the elevation angle from the satellite to the spot beam centre. The elevation angle, E_{lc} , is expressed in degrees and encoded as follows:

```
E_1 = (SpotbeamElevation -128)/10
```

5.4.10.3.7 SpotBeamRadius

The data type SpotbeamRadius is defined as:

```
SpotbeamRadius ::=
    INTEGER (0..255)
```

This field describes the boundary of a spot beam as a constant "distance" in terms of satellite-centred azimuth and elevation angles from the satellite, i.e. the radius:

$$R = \sqrt{(A_z - A_{zc})^2 + (E_l - E_{lc})^2}$$

where A_{zc} and E_{lc} are the azimuth and elevation angles which point to the beam centre. The radius R is expressed in degrees and encoded as follows:

```
R = SpotBeamRadius/20
```

5.4.11 BearerTables

5.4.11.0 General

The BearerTable SDU may be used by the RNC to signal any changes in the properties of the physical layer return bearer types and subtypes in a connection specific BCtPDU. The implementation of this SDU is mandatory only for UE Classes 1 to 3 of RI-Versions below 0x83 (see ETSI TS 102 744-3-5 [13], clause 6.1.2.2). For all UE Classes from RI-Version 0x83 onwards, this function is provided by the BearerTableUpdate SDU (see clause 5.4.14). The SDU has the following structure:

```
BearerTables ::=
    SEQUENCE (1..12) OF BearerDefinition
```

The data type BearerDefinition is specified as follows, with format as shown in Figures 5.66 to 5.68:

```
BearerDefinition ::=
    SEQUENCE {
        bearer-table-follows
            BOOLEAN,
        lowest-coding-rate-index-included
            BOOLEAN,
        coding-rates-offsets-included
        BOOLEAN,
        coding-rates-usage-included
            BOOLEAN,
        r-bearer-type
```

```
ReturnBearerTypeFull,
    lowest-coding-rate-index-octet
        SEQUENCE {
            reserved2
               BIT STRING (SIZE (2)),
            lowest-coding-rate-index
                ControlIndex
        } OPTIONAL,
    \verb|coding-rates-offsets-list|\\
        SEQUENCE SIZE (10) OF
           coding-rates-offset
                INTEGER (0..3) OPTIONAL,
    coding-rates-usage-bitmap
       BIT STRING (SIZE (12)) OPTIONAL,
    reserved4
       BIT STRING (SIZE (4)) OPTIONAL
        -- padding to start next bearer definition -- on octet boundary
}
```

(MSB	6)	Bit No (LSB)									
8	7	6	5	4		3	<u>:</u>				
Х	1	0 0 1 0 0 1									Octet 1
	length									Octet 2	
btf	lcrii = 1	croi crui r-bearer-type = 1 = 1								Octet 3	
reser	ved2		lowes	Octet 4							
offse	et 1	offs	et 2	off	set :	3		off	set	4	Octet 5
offse	et 5	offs	et 6	off	set	7		off	set	8	Octet 6
offse	et 9	offse	et 10	<							Octet 7
coding-rates-usage-bitmap >										Octet 8	
bearer-definition-list											
(continued)									Octet n		

Figure 5.66: BearerTables Bearer Control SDU (all elements present)

(MSB))	Bit No (LSB)									
8	7	6	5	4		3	•	2	•	1	<u>:</u>
х	1	0 0 1 0 0 1									Octet 1
			len	Octet 2							
btf	Icrii = 1	croi = 1									Octet 3
reser	ved2	lowest-coding-rate-index									Octet 4
offse	et 1	offs	et 2	of	fset 3	3		off	set	4	Octet 5
offse	et 5	offs	et 6	of	fset	7		off	set	8	Octet 6
offse	et 9	offset 10 reserved4							Octet 7		
! !	bearer-definition-list										
	(continued)										Octet n

Figure 5.67: BearerTables Bearer Control SDU (coding-rates-usage-bitmap absent)

/I OD\

Dit Nia

(MSB))	Bit No (LSB)											
8	7	6	5	4	; 3	:	2	:	1	:			
х	1	0	0	1	0		0		1		Ос	tet 1	
			len	gth							Octet 2		
btf	Icrii = 1	croi = 0	crui = 1		r-bea	rer-	-typ	е			Ос	tet 3	
reser	lowest-coding-rate-index reserved2							Ос	tet 4				
<	< coding-rates-usage-bitmap								Ос	tet 7			
> reserved4								Ос	tet 8				
		bea	rer-def	finitio	n-list								
(continued)							Ос	tet n					

Figure 5.68: BearerTables Bearer Control SDU (coding-rates-offsets-list absent)

The BearerTables SDU can be used to describe to the UEs the full set of Return Bearer Types and Subtypes in relation to each other. A default set of Bearer Tables is stored in the UE and hence the Bearer Tables SDU needs to include entries only for those Bearers which are relevant to the particular operational configuration which have changed one or more of its properties. A detailed description of the application of this SDU can be found in ETSI TS 102 744-3-2 [10].

5.4.11.1 Bearer-table-follows

(NAOD)

This BOOLEAN flag indicates that the current Bearer Table will be continued in another Bearer Tables SDU. Bearer Tables may need to be split over several SDUs if the number of octets available in a forward bearer FEC block is insufficient to accommodate a full Bearer Table.

5.4.11.2 Lowest-coding-rate-index-included

This BOOLEAN flag indicates that the field *lowest-coding-rate-index* is included in the structure.

5.4.11.3 Coding-rates-offsets-included

This BOOLEAN flag indicates that the coding-rates-offsets-list is included in the structure.

5.4.11.4 Coding-rates-usage-included

This BOOLEAN flag indicates that the coding-rates-usage-bitmap is included in the structure.

5.4.11.5 ReturnBearerTypeFull

The *r-bearer-type* field specifies the type of return bearer to which the bearer definition refers. The data type ReturnBearerTypeFull is defined as follows:

```
ReturnBearerTypeFull ::=
    INTEGER {
                  r20t05q (0),
                 r80t05q (1)
                  r80t1q (2)
                  r20t1q (3),
                  r5t2q (4),
                  r20t2q (5),
                  r5t45q (6),
                 r20t45q (7),
r80t25x (8)
                  r80t5x (9)
                  r5t1x (10),
                  r20t1x (11),
                  r5t2x (12),
                  r20t2x (13),
                  r5t45x (14),
                  r20t45x (15)
             } (0..15)
```

5.4.11.6 Controllndex

The value in the *lowest-coding-rate-index* field is of the following type:

```
ControlIndex ::=
   INTEGER (0..63)
```

Values of ControlIndex provide an index to the columns in the Bearer Tables (see ETSI TS 102 744-2-1 [8]) where a step from one column to the next represents a step of 0,5 dB in Carrier-to-Noise (C/N_0) Ratio. The ControlIndex scale is based on a value of zero being equal to $C/N_0 = 36,5$ dBHz, with each increment representing an increment in C/N_0 by 0,5 dB. The *lowest-coding-rate-index* defines the leftmost column in the bearer table, i.e. the position of the lowest usable coding rate for the specified bearer type.

5.4.11.7 Coding-rates-offset

The value in the *coding-rates-offset* fields defines the number of columns to the next coding rate for the specified bearer. A value of zero indicates that no further coding rates are specified. The effective Controllndex for a given coding rate for the specified bearer (i.e. the lowest-coding-rate-index plus the sum of the coding-rates-offset up to the given coding rate) may be in the range 0 to 79.

5.4.11.8 Coding-rates-usage-bitmap

The *coding-rates-usage-bitmap* defines which coding rates may be used by the UEs. The leftmost bit in this bitmap refers to the coding rate in the leftmost column in the bearer table (i.e. the one indexed by *lowest-coding-rate-index*), etc.

This bitmap is 12 bits in length (although only 11 bits are required) in order to align to a half-octet boundary. Therefore the 12th bit in the bitmap is always zero.

5.4.11.9 Example BearerTables SDU

An example for the creation of a BearerTables SDU is explained in this clause. Figure 5.69 shows a selection from the Return Link Bearer Tables.

Figure 5.69: Selection from Bearer Table illustrating BearerTables SDU

The leftmost column (*lowest-coding-rate-index* = 30) contains the L3 bearer coding rate subtype. Moving from left to right, the next bearer subtype (L2) is located in the column marked by the Controllndex value 31, hence the first *coding-rates-offset* value is 1. Subtype L1 is indexed by a Controllndex value of 33, so the second *coding-rates-offset* value is 2, etc. This will result in a *coding-rate-offset-list* of 1 2 2 2 3 2 1 2 2. Since this list is of a fixed length of ten *coding-rate-offset* items, a '0' has to be appended to indicate the end of the list.

Finally, the *coding-rates-usage-bitmap* needs to be included. Assuming, for example, that coding rates L3, L2 and H6 are to be excluded, then the bitmap would be 0 0 1 1 1 1 1 1 1 0. Another two bits set to zero need to be appended to fill the entire *coding-rates-usage-bitmap*, which has a size of 12 bits.

The resulting SDU structure for the above example is then as shown in Figure 5.70:

(MSB))	Bit N			No (LSE						
8	7	6	5	4		3		2		1	: : :
Х	1	0	0	1		0		0		1	Octet 1
	length								Octet 2		
btf	1	1	1	r	r-bearer-type = 10						Octet 3
0	0	lowest-coding-rate-index = 29							Octet 4		
1	1		2			2			2		Octet 5
2		2			2			2			Octet 6
2	2 0 0 0 1 1				1	Octet 7					
1	1	1	1	1	- ~ -	0		0	Ĭ	0	Octet 8

Figure 5.70: Example BearerTables BCtSDU

5.4.12 GPSEphemeris

5.4.12.0 General

The GPSEphemeris SDU is transferred in a Broadcast BCtPDU and is used to transmit GPS Ephemeris data to UEs, to speed up the acquisition time of their GPS chips, from Cold to Hot acquisition.

As the amount of data to be transferred may exceed the capacity of the bearer type suitable for transmission on the Global Beam, the data is split into two separate SDUs, which are distinguished by means of the *gps-section* field (also see [5], clause 2.4.3, Table 2-2 and clause 2.4.4, Tables 2-4 and 2-5).

The SDU payload has the following structure:

```
GPSEphemeris ::=
   SEQUENCE {
    iodc
        INTEGER (0..1023),
        gps-section
        INTEGER (0..3),
```

5.4.12.1 lodc

The *iodc* (issue of data and clock) field is provided as specified in [5], clause 2.4.3 Table 2-2, to specify when the whole set of ephemeris data is being updated.

5.4.12.2 PRN-code

The 8-bit *prn-code* structure is as defined in [5], Table 2-1 (although the Signal Specification only specifies prn-codes in the range 1 to 32; higher values are for expansion by WAAS or EGNOS).

5.4.12.3 GPSDataFirstSection

5.4.12.3.0 General

The structure GPSDataFirstSection is defined as follows:

```
GPSDataFirstSection ::=
    SEQUENCE {
        week-no
            INTEGER (0..1023),
        satellite-accuracy
            INTEGER (0..15),
        satellite-health
            BIT STRING (SIZE(6)),
        reserved1
            BIT STRING (SIZE(4)),
        t-gd
            INTEGER (-128..127),
        t-oc
            INTEGER (0..65535),
        reserved2
            BIT STRING (SIZE(2)),
            INTEGER (-2097152..2097151),
        af-1
            INTEGER (-32768..32767),
            INTEGER (-128..127),
        c-rs
            INTEGER (-32768..32767),
        delta-n
            INTEGER (-32768..32767),
        m-0
            INTEGER (-2147483648..2147483647),
            INTEGER (-32768..32767),
        eccentricity
            INTEGER (0..4294967295),
            INTEGER (-32768..32767)
```

All negative integers are coded in two's complement arithmetic.

The resulting SDU structure is shown in Figure 5.71.

(MSB)	Bit No (LSB)					
8 7	6 5 4 3 2 1	· •				
x 1	0 0 1 0 1 0	Octet 1				
	length	Octet 2				
<	iodc	Octet 3				
>	0 0 reserved	Octet 4				
	Prn-code	Octet 5				
<	week-no	Octet 6				
>	satellite-accuracy <	Octet 7				
h	ealth > reserved1	Octet 8				
	t-gd	Octet 9				
	t-oc	Octet 10				
	1 00	Octet 11				
reserved2		Octet 12				
	af-0	Octet 13				
		Octet 14				
	af-1	Octet 15				
	ai i	Octet 16				
	af-2	Octet 17				
	0.70					
	C-rs					
	delta-n					
	deita-11					
		Octet 22				
1	m-0	 				
	Octet 25					
	Octet 26					
	Octet 27					
		Octet 28				
!	eccentricity	- _ - .				
		Octet 31				
	c-us	Octet 32				
	Octet 33					

Figure 5.71: GPSEphemeris Bearer Control SDU (containing GPSDataFirstSection)

5.4.12.3.1 Week-no

The *week-no* field is as defined in [5], clause 2.4.3 Table 2-2, representing the current GPS week at the start of the data transmission.

5.4.12.3.2 Satellite-accuracy

The *satellite-accuracy* structure is as defined in [5], clause 2.4.3 Table 2-2, being a 4-bit number which provides a look-up to the User Range Accuracy, whose meaning is defined in [5] clause 2.4.3.2.

5.4.12.3.3 Satellite-health

The *satellite-health* structure is as defined in [5], clause 2.4.3 Table 2-2 and clause 2.4.5.3, being a set of six BOOLEAN flags.

5.4.12.3.4 T-gd

The t-gd field is a satellite group delay correction term, in units of 2^{-31} seconds as defined for T_{gd} in [5], clause 2.4.3 Table 2-2 and clause 2.4.3.5.

5.4.12.3.5 T-oc

The t-oc field is the satellite clock correction parameter T_{oc} as defined in [5], clause 2.4.3 Table 2-2, in units of 2^4 seconds.

5.4.12.3.6 Af-2

The Af-2 field is the satellite clock correction parameter A_{f2} as defined in [5], clause 2.4.3 Table 2-2, in units of 2^{-55} sec/sec².

5.4.12.3.7 Af-1

The Af-I field is the satellite clock correction parameter $A_{\rm fl}$ as defined in [5], clause 2.4.3 Table 2-2, in units of 2^{-43} sec/sec.

5.4.12.3.8 Af-0

The Af-0 field is the satellite clock correction parameter A_{f0} as defined in [5], clause 2.4.3 Table 2-2, in units of 2^{-31} seconds.

5.4.12.3.9 C-rs

The *C-rs* field is the amplitude of the sine harmonic correction term to the orbit radius satellite clock correction parameter C_{rs} as defined in [5], clause 2.4.3 Tables 2-4 and 2-5, in units of 2^{-5} meters.

5.4.12.3.10 Delta-n

The *delta-n* field is the mean motion difference from computed value sparameter Δn as defined in [5], clause 2.4.3 Table 2-5, in units of 2^{-43} semicircles/sec.

5.4.12.3.11 M-0

The m-0 field is the mean anomaly at reference time parameter M_0 as defined in [5], clause 2.4.3 Table 2-5, in units of 2^{-31} semicircles.

5.4.12.3.12 C-uc

The C-uc field is the amplitude of the cosine correction term to the argument of latitude parameter C_{uc} as defined in [5], clause 2.4.3 Table 2-5, in units of 2^{-29} radians.

5.4.12.3.13 Eccentricity

The *Eccentricity* field is the eccentricity parameter e as defined in [5], clause 2.4.3 Table 2-5, unitless, scale factor 2⁻³³.

5.4.12.3.14 C-us

The *C-us* field is the amplitude of the sine harmonic correction term to the argument of latitude parameter C_{us} as defined in [5], clause 2.4.3 Table 2-5, in units of 2^{-29} radians.

5.4.12.4 GPSDataSecondSection

5.4.12.4.0 General

The structure GPSDatasecondSection is defined as follows:

```
GPSDataSecondSection ::=
    SEQUENCE {
       a-half
           INTEGER (0..4294967295),
           INTEGER (0..65535),
        c-ic
           INTEGER (-32768..32767),
        omega-0
           INTEGER (-2147483648..2147483647),
        c-is
           INTEGER (-32768..32767),
        i-0
           INTEGER (-2147483648..2147483647),
            INTEGER (-32768..32767),
           INTEGER (-2147483648..2147483647),
       omega-dot
           INTEGER (-8388608..8388607),
        i-dot
           INTEGER (-8192.. 8191),
       reserved1
            BIT STRING (SIZE(2))
```

All negative integers are coded in two's complement arithmetic.

The resulting SDU structure is shown in Figure 5.72.

(MSB)	Bit No (LSB)	
8 7	6 5 4 3 2 1	! !
x 1	0 0 1 0 1 0	Octet 1
	length	Octet 2
<	iodc	Octet 3
>	0 1 reserved1	Octet 4
	Prn-code	Octet 5
		Octet 6
 	a-half	
		Octet 9
	t-oe	Octet 10
	1-06	Octet 11
	c-ic	Octet 12
	C-10	Octet 13
		Octet 14
; !	omega-0	
		Octet 17
	c-is	Octet 18
	0-13	Octet 19
		Octet 20
! ! !	i-0	
		Octet 23
	0.70	Octet 24
	C-rc	Octet 25
		Octet 26
! ! !	omega	
		Octet 29
		Octet 30
	omega-dot	Octet 31
		Octet 32
<	i-dot	Octet 33
	> reserved2	Octet 34

Figure 5.72: GPSEphemeris Bearer Control SDU (containing GPSDataSecondSection)

5.4.12.4.1 A-half

The *A-half* field is the square root of the semi-major axis parameter $A^{1/2}$ as defined in [5], clause 2.4.3 Table 2-5, in units of 2^{-19} meters^{1/2}.

5.4.12.4.2 T-oe

The T-oe field is the reference time ephemeris parameter T_{oe} as defined in [5], clause 2.4.3 Table 2-5, in units of 2^4 seconds.

5.4.12.4.3 C-ic

The C-ic field is the amplitude of the cosine harmonic term to the angle of inclination parameter C_{ic} as defined in [5], clause 2.4.3 Table 2-5, in units of 2^{-29} radians.

5.4.12.4.4 Omega-0

The *omega-0* field is the longitude of ascending node of orbit plane at weekly epoch parameter OMEGA₀ as defined in [5], clause 2.4.3 Table 2-5, in units of 2^{-31} semicircles.

5.4.12.4.5 C-is

The *C-is* field is the amplitude of the sine harmonic term to the angle of inclination parameter C_{is} as defined in [5], clause 2.4.3 Table 2-5, in units of 2^{-29} radians.

5.4.12.4.6 I-0

The *i-0* field is the inclination angle at reference parameter i_0 as defined in [5], clause 2.4.3 Table 2-5, in units of 2^{-31} semicircles.

5.4.12.4.7 C-rc

The C-rc field is the amplitude of the cosine harmonic correction term to the orbit radiussatellite clock correction parameter C_{rc} as defined in [5], clause 2.4.3 Table 2-4 and Table 2-5, in units of 2^{-5} meters.

5.4.12.4.8 omega

The *omega* field is the argument of perigee parameter ω as defined in [5], clause 2.4.3 Table 2-5, in units of 2^{-31} semicircles.

5.4.12.4.9 Omega-dot

The *omega-dot* field is the rate of right ascension parameter OMEGADOT as defined in [5], clause 2.4.3 Table 2-5, in units of 2^{-43} semicircles/sec.

5.4.12.4.10 I-dot

The *i-dot* field is the rate of inclination angle parameter IDOT as defined in [5], clause 2.4.3 Table 2-5, in units of 2⁻⁴³ semicircles/sec.

5.4.13 SystemInfoIndex

The SystemInfoIndex SDU is a dynamic catalogue of all System Information elements that the RNC is broadcasting on the current forward bearer. This SDU is transferred in a Broadcast BCtPDU.

The SDU payload has the following structure, with format as shown in Figure 5.73:

```
index-part-elements-present
                    CHOICE {
                        index-part-one-elements-present
                            BitmapPartOne,
                        index-part-two-elements-present
                            BitmapPartTwo,
                        index-part-three-elements-present
                            BitmapPartThree,
                        index-part-four-elements-present
                            BitmapPartFour,
                        index-part-five-elements-present
                            EmptyBitmap,
                        index-part-six-elements-present
                            EmptyBitmap,
                        index-part-seven-elements-present
                            EmptyBitmap
                index-elements
                    SEQUENCE SIZE (1..8) OF SystemInfoElement
            }
    }
BitmapPartOne ::=
    BIT STRING {
        primary-bearer-present (0),
        spot-beam-map-present (1),
        gps-ephemeris-present (2),
        plmn-info-present (3),
        satellite-location-present (4),
        satellite-state-vectors-present (5),
        utc-date-and-time-present (6),
        timing-correction-update-interval-present (7)
    } (SIZE (8))
BitmapPartTwo ::=
    BIT STRING {
        common-signalling-retry-present (0),
        max-delay-and-delay-range-present (1),
        randomising-control-present (2),
        access-control-present (3),
        initial-random-access-burst-present (4),
        gps-policy-info-param-present (5),
        nas-system-information-present (6),
        return-bearer-type-present (7)
    } (SIZE (8))
BitmapPartThree ::=
    BIT STRING {
        beam-info-present (0),
        subband-centre-frequency-offsets-present (1),
        forward-bearer-table-present (2),
        bearer-tables-present (3),
        randomised-initial-access-delay-present (4),
        intermod-test-info-present (5),
        reserved1 (6),
        -- placeholder for priority-spot-beam-map-present (6)
        reserved0 (7)

    placeholder for priority-primary-bearer-present (7)

    } (SIZE (8))
BitmapPartFour ::=
    BIT STRING {
        subband-cf-offset-change-present (0),
        initial-reference-level-present (1),
        leap-second-present (2),
        reserved4 (3),
        reserved3 (4),
        reserved2 (5),
        reserved1 (6),
        reserved0 (7)
    } (SIZE (8))
EmptyBitmap ::=
    BIT STRING {
        reserved7 (0),
        reserved6 (1),
        reserved5 (2),
        reserved4 (3),
```

```
reserved3 (4),
reserved2 (5),
reserved1 (6),
reserved0 (7)
} (SIZE (8))
```


Figure 5.73: System Information Index SDU

The SystemInfoIndex is a sequence of one to seven *index-parts*. The *index-parts-present* bitmap indicates which *index-parts* are present in the sequence. The order of *index-parts* in the sequence is implied by the position of the corresponding bit in the *index-parts-present* bitmap, starting from the most significant bit position (index part seven) to the least significant bit position (index part one).

Each *index-part* contains an *index-part-elements-present* bitmap followed by a sequence of one to eight *index-elements*. The *index-part-elements-present* bitmap indicates which *index-elements* are present in the sequence. The order of *index-elements* in the sequence is implied by the position of the corresponding bit in the *index part-elements-present* bitmap, starting from the most significant bit position to the least significant bit position.

Since a version number does not apply to either of the UTCDateAndTime and SatelliteStateVectors AVPs and since there is always one instance of each of these AVPs, their presence will be indicated in the *index-part-one-elements-present* bitmap when they are being transmitted, but there will not be a corresponding *index-element* in the sequence for index part one.

Each *index-element* is of type SystemInfoElement and indicates the version and number of instances of each element of broadcast System Information (AVP or SDU). In all cases, a version number of 0 means "always receive", therefore this special instance of version number shall not be included in the range for wraparound of version numbers used to check the "uniqueness period". See ETSI TS 102 744-3-2 [10] for further information.

```
SystemInfoElement ::=
    CHOICE {
       primary-bearer
                                                 TypelIndexElement,
                                                 Type3IndexElement,
        spot-beam-map
        gps-ephemeris
                                                 TypelIndexElement,
        plmn-info
                                                 Type2IndexElement,
        satellite-location
                                                 Type2IndexElement,
        timing-correction-update-interval
                                                 Type3IndexElement,
        common-signalling-retry
                                                 Type3IndexElement,
        max-delay-and-delay-range
                                                 Type3IndexElement,
                                                 Type3IndexElement,
        randomising-control
        access-control
                                                 Type3IndexElement,
                                                 Type3IndexElement,
        initial-random-access-burst
                                                 Type3IndexElement,
        gps-policy-info-param
        nas-system-information
                                                 Type3IndexElement,
        return-bearer-type
                                                 Type3IndexElement,
        subband-centre-frequency-offsets
                                                 Type3IndexElement,
```

```
forward-bearer-table
                                                 Type2IndexElement,
                                                 TypelIndexElement,
        bearer-tables
        beam-info
                                                 Type3IndexElement,
        randomised-initial-access-delay
                                                 Type3IndexElement,
        intermod-test-info
                                                 Type3IndexElement,
        subband-centre-frequency-offset-change
                                                 Type3IndexElement,
        initial-reference-level
                                                 Type2IndexElement,
        leap-second
                                                 Type3IndexElement
TypelIndexElement ::=
    SEQUENCE {
        version
            INTEGER (0..255),
            -- value '0' denotes 'always receive'
        instances
            INTEGER (0..255)
Type2IndexElement ::=
    SEQUENCE {
        version
            INTEGER (0..15),
            -- value '0' denotes 'always receive'
        instances
            INTEGER (0..15)
Type3IndexElement ::=
    SEQUENCE {
        version
            INTEGER (0..255)
            -- value '0' denotes 'always receive'
            -- one instance implied except in case of SpotBeamMap
            -- where number of instances is advertised within the
            -- corresponding SpotBeamMap SDU
```

5.4.14 BearerTableUpdate

5.4.14.0 General

The BearerTableUpdate SDU may be used by the RNC to signal any changes in the properties of the physical layer return bearer types and subtypes in a connection specific BCtPDU. The implementation of this SDU is mandatory for UE Classes 6 to 15 of RI-Version 0x82 and for all UE Classes from RI-Version 0x83 onwards (see ETSI TS 102 744-3-5 [13], clause 6.1.2.2). The SDU has the following structure, with format as shown in Figure 5.74:

```
BearerTableUpdate ::=
    SEQUENCE {
        reserved
            BIT STRING (SIZE (4)),
        bearer-table-version
            BearerTableVersion,
        bearer-table-definitions
            SEQUENCE SIZE (1..16) OF ExtBearerDefinition
    }
```

The data type BearerTableVersion is specified as follows:

```
BearerTableVersion ::=
   INTEGER (0..15) -- value '0' is reserved
```

The data type ExtBearerDefinition is specified as follows:

```
ExtBearerDefinition ::=
    SEQUENCE {
        bearer-table-follows
            BOOLEAN,
        lowest-coding-rate-index-included
            BOOLEAN,
        coding-rates-offsets-included
        BOOLEAN,
        coding-rates-usage-included
        BOOLEAN,
```

```
r-bearer-type
   ReturnBearerTypeFull,
lowest-coding-rate-index-octet
    SEQUENCE {
        r-bearer-x
           CHOICE {
            -- depending on the value of r-bearer-type
                -- if r-bearer-type = 8 or 9
                modulation-rate
                   ModulationRate,
                -- else (any other r-bearer-type)
                reserved2
                    BIT STRING (SIZE (2))
            },
        lowest-coding-rate-index
           ControlIndex
    } OPTIONAL,
coding-rates-offsets-list
    CHOICE {
    -- depending on the value of r-bearer-type
       normal-bearer-coding-rate-offsets
        -- if r-bearer-type <> 1 or 2
            SEQUENCE {
               coding-rates-offset
                    SEQUENCE SIZE (10) OF INTEGER (0..3)
            },
        ldr--bearer-coding-rate-offsets
        -- if r-bearer-type = 1 or 2
            SEQUENCE {
                coding-rates-offset
                    SEQUENCE SIZE (16) OF INTEGER (0..3)
    } OPTIONAL,
coding-rates-usage-bitmap
    CHOICE {
        normal-bearer-usage-map
               BIT STRING (SIZE (12)),
        ldr-bearer-usage-map
                BIT STRING (SIZE (16))
   } OPTIONAL,
reserved4
   BIT STRING (SIZE (4)) OPTIONAL
   -- padding to start next bearer definition
-- on octet boundary
```

}

(MSB))	_	Bit N	No (LSB)							_	
8	7	6	5	4		3	•	2		1		
х	1	0	0	1		1		0		1	Octe	et 1
		Len	gth							Octe	et 2	
	rese	rved	be	are	r-ta	ble	-ve	rsic	on	Octe	et 3	
btf crii croi crui r-bearer-type = 1 = 1										Octe	et 4	
r-bea	lowest-coding-rate-index r-bearer-x										Octe	et 5
offse	et 1	offs	et 2	off	set	3		of	set	t 4	Octe	et 6
offse	et 5	offs	et 6	off	offset 7 offset 8						Octe	et 7
offse	et 9	offse	et 10	<							Octe	et 8
coding-rates-usage-bitmap >											> Octo	et 9
bearer-definition-list												
	(continued)										Octe	et n

Figure 5.74: BearerTableUpdate Bearer Control SDU (all elements present)

An example showing the usage for the description of an LDR bearer (r-bearer-type = 8 or 9) is shown below.

(MSB	3)	Bit No (LSB)									
8	7	6	5	4	3		2	1			
Х	1	0	0	1	1		0	1	Octet 1		
			len	gth					Octet 2		
	rese	rved		be	arer-ta	able	e-ve	rsion	Octet 3		
btf	Icrii = 1	croi = 1	crui = 1		r-bea	arer	-typ	е	Octet 4		
r-bea	arer-x		lowest	-cod	ing-ra	te-iı	Octet 5				
offse	et 1	offs	et 2	off	set 3		Octet 6				
offse	et 5	offs	et 6	off	set 7		Octet 7				
offse	et 9	offse	t 10	offset 11 offset 12					Octet 8		
offse	t 13	offse	et 14	offs	set 15		Octet 9				
1 1 1	bearer-definition-list										
		Octet n									

Figure 5.75: BearerTablesUpdate SDU (coding-rates-usage-bitmap absent), RBearerType = R80T0.5Q or R80T1Q

The BearerTableUpdate SDU is almost identical in format to the BearerTables SDU. It has two additional fields, bearer-table-version and bearer-x. The BearerTableUpdate SDU can be used to describe a full or partial set of Return Bearer Types and Subtypes in relation to each other.

The UE shall store the current Bearer Table and the associated version number in non-volatile programmable memory. At registration time, the UE reports the Bearer Table version to the RNC. If the version stored in the UE is not the most recent (i.e. not the version stored in the RNC), then the RNC will send a BearerTableUpdate SDU to the UE. The BearerTableUpdate SDU includes only the bearer information that is required to update the UE BearerTable to the most recent version (i.e. differences between the versions in the UE and RNC).

The BearerTableUpdate SDU cannot be broadcast because bearer tables are dependent upon UE class. A detailed description of the application of this SDU can be found in ETSI TS 102 744-3-2 [10].

5.4.14.1 Bearer-table-version

This field indicates the version of the current Bearer Table in the RNC. The information in the Bearer Table Update SDU will update the Bearer Table stored in the UE to this version. The value '0' is reserved.

5.4.14.2 Modrate

This field is used to carry modulation information for the R80T25X and R80T5X bearer types as follows:

```
ModulationRate ::=
   INTEGER {
        x4-modulation (0),
        x16-modulation (1),
        x32-modulation (2),
        x64-modulation (3)
   } (0..3)
```

This variable is only defined when the r-bearer-type field contains either value 8 or 9 corresponding to the R80T2.5X and R80T5X bearers.

5.5 Embedded Bearer Control SDU (BCtESDU)

5.5.0 General

Embedded Bearer Control SDUs are also used for the peer-to-peer communication between Bearer Control Processes at the UE and the RNC, however, they are embedded in an Embedded BCtPDU (see clause 5.2) within UE Specific Signalling Protocol Data Units (ALSigPDUs). The Bearer Control Embedded Signalling Data Units that are defined in the to-UE direction are shown in Table 5.8.

ESType/ ESDUType	Interpretation
0x00	Reserved
0x01	ConnectionAssociation
0x02	ConnectionReassociation
0x03	GroupConnectionAssociation
0x04	GroupConnectionReassociation
0x05	HardwareAVPList
0x06	Reserved
0x07	AVPList
0x08	SpotBeamMap
0x090x0C	Reserved
0x0D	BearerTableUpdate
0x0E0x3F	Reserved

Table 5.8: Bearer Control Embedded SDU Types (To-UE only)

5.5.1 Embedded Bearer Control SDU Structure

The Embedded Bearer Control SDU Structure is identical to the BCtSDU structure (see clause 5.3), except that *sdu-type* and *s-type* are replaced by *esdu-type* and *es-type* respectively.

```
BCtESDU ::=
    SEQUENCE {
        bct-esdu-follows
        BOOLEAN,
        type-and-length
        CHOICE {
```

```
short
            SEQUENCE {
                extended-length
                    BOOLEAN, -- FALSE
                es-type
                    ShortBCtESDUType,
                es-length
                    INTEGER (1..8)
            },
        long
            SEQUENCE {
                extended-length
                    BOOLEAN, -- TRUE
                esdu-type
                   BCtESDUType,
                length
                    INTEGER (1..256)
    }
esdu-payload
   CHOICE {
    -- as appropriate to the value of
    -- es-type or esdu-type
        conn-association
            ConnectionAssociation.
        conn-reassociation
            ConnectionReassociation,
        avp-list
           AVPList,
        hardware-avp-list
           HardwareAVPList,
        spot-beam-map
            SpotBeamMap,
        bearer-table-update
            BearerTableUpdate
    }
```

The body of the Bearer Control Embedded SDU is dependent on the value of *es-type / esdu-type*, with formats as shown in Figures 5.76 and 5.77.

Figure 5.76: Bearer Control Embedded SDU Structure (Short Length)

(MSE	3)	Bit No (LSB)									
8	7	6 5 4 3 2 1									
Х	x 1 esdu-type										
	length										
1 1 1		esdu-payload									
	Octet n+2										

Figure 5.77: Bearer Control Embedded SDU Structure (Extended Length)

5.5.2 BCtESDU Parameters

5.5.2.1 Bct-esdu-follows

This is a single-bit flag which, when set to '1' indicates that another BCtESDU follows this BCtESDU, else it indicates that this BCtESDU is the last one in the *bct-esdu-list*.

5.5.2.2 Extended-length

This is a single-bit flag which, when set to '1' indicates that an extended type and length field are utilized within the BCt-ESDU header.

5.5.2.3 Es-length/length

The *es-length* and *length* fields are a 3-bit and 8-bit value respectively, both of which are used to indicate the length of the ESDU. The value of this field represents the number of octets in the *esdu-payload*. The encoding of these parameters, which are defined as INTEGER(1..8) and INTEGER (1..256) respectively, follows the ASN.1 Packed Encoding Rules (PER - see clause 4.4.4), hence zero length payloads are not supported.

5.5.2.4 BCtESDUType and ShortBCtESDUType

The *es-type/esdu-type* parameter defines the Bearer Control Embedded Signalling Data Unit type. Values in the range 0x00..0x07 shall be encoded as a ShortBCtESDUType, in a 3-bit field (i.e. the BCtESDU *type-and-length* field is of CHOICE *short*), unless the length of the ESDU exceeds 8 bytes, in which case they shall be encoded as a BCtESDUType, a 6-bit field. In this case, the BCtESDU *type-and-length* field is of CHOICE *long*. Different coding for this field may be used in the From-UE and To-UE directions, however, at present ESDUs are sent in the To-UE direction only.

```
BCtESDUType ::=
    INTEGER {
        conn-association (1),
        conn-reassociation (2),
        hardware-avp-list (5),
        avp-list (7),
        spot-beam-map (8),
        bearer-table-update (13)
    } (0..63)
ShortBCtESDUType ::=
    INTEGER {
        conn-association (1),
        conn-reassociation (2),
        hardware-avp-list (5),
                       } (0..7)
        avp-list (7)
```

5.6 Bearer Control ESDU Payloads

5.6.0 General

NOTE: Throughout clauses 5.6.1 to 5.6.8, the ASN.1 defines components of ESDUPayload, while the figures illustrate the entire BCtESDU structure (i.e. including the fields *bct-esdu-follows* and *type-and-length*).

5.6.1 ConnectionAssociation

5.6.1.0 General

The ConnectionAssociation ESDU is transferred in an Embedded BCtPDU attached to Adaptation Layer signalling (Register-Ack or Establish PDUs) if there is a requirement to establish the relationship between a Bearer Connection ID and a translated Bearer Connection ID for each hardware element within the UE the connection is to operate over. The ConnectionAssociation ESDU is not present for connections that are addressed directly by their Bearer Connection ID rather than a translated Bearer Connection ID. The ESDU Payload has the following structure:

```
ConnectionAssociation::=
SEQUENCE OF HardwareAndTBCnId
```

The ConnectionAssociation BCtESDU may also be included in a Modify ALSigPDU. The format is as shown in Figures 5.78 and 5.79.

(MSB))		Bit I	No		((LSB)	
8	7	6	5	. 4	3	2	: 1	, , ,
Х	0	0	0	1	0	0	1	Octet 1
direc	ction	hw	/-id	<				Octet 2
			tbc	n-id			>	Octet 3

Figure 5.78: ConnectionAssociation Bearer Control Embedded SDU (single UE hardware element)

Figure 5.79: ConnectionAssociation Bearer Control Embedded SDU (multiple UE hardware elements)

If a connection is distributed over more than four UE hardware elements (extremely unlikely), then a long BCtESDU header needs to be used.

5.6.1.1 HardwareAndTBCnId

This is used to associate a specific tbnc-id with a specific hardware-id.

5.6.1.2 UEHardwareID

The UEHardwareId is used to identify specific transceiver hardware within the UE. This information element also includes a direction identifier that is used to control specific aspects of the UE hardware, or to reference unidirectional connections that are to be supported on this hardware.

```
UEHardwareID ::=
    SEQUENCE {
        direction
            Direction,
        hw-id
            HardwareId
```

For a UE which only supports a single transceiver pair, the value of '1' shall be associated with this hardware and used in the HardwareId information element. To reference the hardware without specifying a direction, the value of 0 shall be used for the Direction information element.

5.6.1.3 Direction

The Direction is used to identify a specific direction for which the tBCnId is applicable.

```
Direction ::= INTEGER {
   both-directions (0),
   downlink-only (1),
   uplink-only (2),
   reserved (3)
} (0..3)
```

5.6.1.4 HardwareID

The Hardwareld is used to identify specific transceiver hardware within the UE.

```
HardwareID ::=
   INTEGER (0..3)
```

The value of zero is reserved. For a UE which only supports a single transceiver pair, the value of '1' shall be associated with this hardware.

5.6.2 ConnectionReassociation

The ConnectionReassociation ESDU is transferred in an Embedded BCtPDU attached to Adaptation Layer signalling, (Modify or Handover ALSigPDUs) and is used to modify the relationship between a Bearer Connection ID and a translated Bearer Connection ID for each hardware element within the UE that the connection is to operate over. The Embedded SDU Payload has the following structure:

```
ConnectionReassociation ::=
    SEQUENCE {
        bearer-connection-id
            BCnID,
        connection-list
            SEQUENCE OF HardwareAndTBCnId OPTIONAL
    }
```

The ConnectionReassociation ESDU is included in a Handover ALSigPDU and may also be included in a Modify ALSigPDU if a handover process is occurring simultaneously. The format is shown in Figure 5.80.

(MSB	3)	_	Bit	No	_							
8	7	6	5	4	3	2	1	: ! !				
Х	0	0	1	0	1	0	0	Octet 1				
	bearer-connection-id											
direc	Octet 5											
	Octet 6											

Figure 5.80: ConnectionReassociation Bearer Control Embedded SDU (single UE hardware element)

If more than two hardware elements are associated with the connection (unlikely), then a long BCtESDU header is required as illustrated in Figure 5.81.

(MSB	3)		Bit	No			(LSB)	
8	7	6	5	4	3	2	1	
Х	1	0	0	0	0	1	0	Octet 1
			le	ngth				Octet 2
		Octet 3						
		Octet 4						
			Octet 5					
direc	tion 1	hv	v-id 1	<				Octet 6
			tb	cn-id 1			>	Octet 7
direc	tion 2	hv	v-id 2	<				Octet 8
		>	Octet 9					
	ı							
		Octet n						

Figure 5.81: ConnectionReassociation Bearer Control Embedded SDU (multiple UE hardware elements)

HardwareAndTBCnId is defined in clause 5.6.1.1.

The ConnectionReassociation ESDU may be transmitted without a tBCnId, as shown in Figure 5.82. In this case the tBCnID shall be no longer associated with this connection, and the UE may only transfer data for this connection if using BCnID extended addressing mode. After the tBCnID has been removed, a new tBCnID may be configured by the RNC using a Handover or Modify ALSigPDU containing a ConnectionReassociation ESDU containing a SEQUENCE OF HardwareAndTBCnId. The Handover ALSigPDU may be used to modify the UESS addressing mode, and this mechanism will be used if the addressing mode is being changed while the UE is maintained on the same Bearer Control.

(MSB))		Bit	No		((LSB)					
8	7	6	5	. 4	3	2	1					
Х	0	0	1	0	0	1	0	Octet 1				
	bearer-connection-id											
	Octet 4											

Figure 5.82: ConnectionReassociation Bearer Control Embedded SDU (tBCnID being removed by RNC)

5.6.3 GroupConnectionAssociation

5.6.3.0 General

The GroupConnectionAssociation ESDU is used whenever a MBMS connection is either being associated or modified, and is transferred in an Embedded BCtPDU attached to Adaptation Layer signalling (Establish PDUs) to establish the relationship between a Bearer Connection ID and one or more translated Bearer Connection IDs for each hardware element within the UE the connection is to operate over. It is also used to transfer the optional COUNT_C value, as defined in clause 5.8.1.2 in ETSI TS 102 744-3-4 [12], to be used for ciphering of the MBMS Connection when such behaviour is required.

The ESDU Payload has the following structure:

```
GroupConnectionAssociation::=
    SEQUENCE {
        forward-tbcnid HardwareAndTBCnId,
        return-tbcnid HardwareAndTBCnId OPTIONAL,
        count-c CountC OPTIONAL
    }
```

The GroupConnectionAssociation BCtESDU will always be included in an Establish ALSigPDU when a MBMS connection is being established, and may be included in a Modify ALSigPDU. The formats are as shown in Figures 5.83 to 5.86.

	(MSB)		Bit	No				
:	8	7	6	5	4	3	2	1	
	Х	0	0	1	1	0	0	1	Octet 1
	direc	tion	hw	v-id	<				Octet 2
			forwa	ard-tbo	n-id			>	Octet 3

Figure 5.83: GroupConnectionAssociation Bearer Control Embedded SDU (unidirectional downlink MBMS Connection)

(MSB)			Bit	No			(LSB)	
8	7	6	5	: 4	3	2	1	, , ,
Χ	0	0	1	1	0	1	1	Octet 1
direct	tion 1	h۷	w-id	<				Octet 2
		forw	ard-tb	cn-id			>	Octet 3
direct	tion 2	h۷	w-id	<				Octet 4
		ret	urn-tb	cn-id			>	Octet 5

Figure 5.84: GroupConnectionAssociation Bearer Control Embedded SDU (bidirectional MBMS Connection)

Figure 5.85: ConnectionAssociation Bearer Control Embedded SDU (uni-directional downlink ciphered MBMS Connection)

Figure 5.86: ConnectionAssociation Bearer Control Embedded SDU (bi-directional ciphered MBMS Connection)

Only one hardware ID can be signalled with this SDU. If connections need to be setup on multiple hardware elements, then this SDU will need to be transmitted multiple times, once for each Connection: UEHardwareID association. In addition, a maximum of four (4) UEHardwareID values are supported.

5.6.3.1 Count-C

The Count-C value is an INTEGER that is present if MBMS Connections are ciphered, and is used in deciphering of the downlink portion of the MBMS Connection only.

5.6.4 GroupConnectionReassociation

The GroupConnectionReassociation ESDU is used when a mobile terminal already has an association with a MBMS connection, and this connection is being modified. The ESDU is transferred in an Embedded BCtPDU attached to Adaptation Layer signalling, (Modify or Handover ALSigPDUs) and is used to modify the relationship between a Bearer Connection ID and one or more translated Bearer Connection IDs for each hardware element within the UE that the connection is to operate over. The Embedded SDU Payload has the following structure:

```
GroupConnectionReassociation::=
    SEQUENCE {
        bearer-connection-id
        BCnID,
        forward-tbcnid HardwareAndTBCnId,
        return-tbcnid HardwareAndTBCnId OPTIONAL,
        count-c CountC OPTIONAL
}
```

The GroupConnectionReassociation ESDU will be included in a Handover ALSigPDU for any bi-directional bearer connections with which the UE is associated, and may also be included in a Modify ALSigPDU if a modification and handover process are occurring simultaneously. The formats are as shown in Figures 5.87 to 5.90.

(MSB))		((LSB)									
8	7	6	5	4	3	2	1	! !					
х	0	1	0	0	1	0	0	Octet 1					
	bearer-connection-id												
direc	direction hw-id <												
	forward-tbcn-id >												

Figure 5.87: GroupConnectionReassociation Bearer Control Embedded SDU (unidirectional downlink MBMS Connection)

(MSB)		_	Bit	No	No (LSB)									
8	7	6 5 4 3 2 1 1												
Χ	0	1 0 0 1 1 0											Octet 1	
														Octet 2
	Bearer-connection-id													Octet 3
														Octet 4
direct	direction 1 hw-id <											Octet 5		
	forward-tbcn-id >											• [Octet 6	
direct	direction 2 hw-id <												Octet 7	
return-tbcn-id >											_[Octet 8		

Figure 5.88: GroupConnectionReassociation Bearer Control Embedded SDU (bidirectional MBMS Connection)

(MSB)	Bit No (LSB)								
8	7	6	5	4	3	1	2		1	
Х	1	0	0	0	1	(C	Ī	0	Octet 1
			Leng	jth (=8)					Octet 2
										Octet 3
		be	arer-co	nnect	ion-id					Octet 4
									Octet 5	
direc	direction hw-id <								Octet 6	
	forward-tbcn-id >							Octet 7		
							8			
	count-c						9			
							10			
							Octet 11			

Figure 5.89: GroupConnectionReassociation Bearer Control Embedded SDU (uni-directional downlink ciphered MBMS Connection)

(MSB)	Bit No (LSB)								
8	7	6	5	4		3	:	2	1	!
х	1	0	0	0		1		0	0	Octet 1
			Leng	th (=10	O)					Octet 2
										Octet 3
		bea	arer-co	onnect	ion	-id				Octet 4
							Octet 5			
direct	ion 1	hw-id <					Octet 6			
		fo	rward-	tbcn-ic	ł				>	Octet 7
direct	direction 2 hw-id <						Octet 8			
		r	eturn-	tbcn-ic	t				>	Octet 9
	10						10			
	count-c						11			
							12			
										Octet 13

Figure 5.90: GroupConnectionReassociation Bearer Control Embedded SDU (bi-directional ciphered MBMS Connection)

Only one hardware ID can be signalled with this SDU. If connections need to be setup on multiple hardware elements, then this SDU will need to be transmitted multiple times, once for each Connection: UEHardwareID association. In addition, a maximum of Four UEHardwareID values are supported.

5.6.5 HardwareAVPList

The HardwareAVPList ESDU may be used within a BCtEPDU attached to an Adaptation Layer Signalling PDU if the AVPs within the *bct-avp-list* are directed at specific hardware within the UE. The ESDU Payload has the following structure, with format as shown in Figures 5.91 to 5.92:

```
HardwareAVPList ::=
    SEQUENCE {
        hardware-id
            UEHardwareID,
        reserved
        BIT STRING (SIZE (4)),
        bct-avp-list
        SEQUENCE OF BCtAVP
    }
```


Figure 5.91: Hardware AVPList Bearer Control Embedded SDU (short length)

Figure 5.92: Hardware AVPList Bearer Control Embedded SDU (extended length)

UEHardwareld is defined in clause 5.6.1.2.

5.6.6 AVPList

The structure of the AVPList ESDU is identical to that of the AVPList SDU, which is specified in clause 5.4.10. Used within a BCt-EPDU attached to an ALSigPDU, the AVPs in this ESDU are used to control the UE as a whole rather than specific hardware, or to provide information about the bearer control to which the UE is being tuned.

5.6.7 SpotBeamMap

The structure of the SpotBeamMap ESDU is identical to that of the SpotBeamMap SDU, which is specified in clause 5.4.11.

5.6.8 BearerTableUpdate

The structure of the BearerTableUpdate ESDU is identical to that of the BearerTableUpdate SDU, which is specified in clause 5.4.15.

5.7 Bearer Control AVPs

Bearer Control AVPs (BCtAVP) are used to transfer parameters between Bearer Control processes within the Bearer Control Layer. Table 5.9 lists the BCtAVPs which may be carried from the RNC in BCtSDUs, while Table 5.10 lists those BCtAVPs which are supported in BCtESDUs. Table 5.11 summarizes those BCtAVPs that are applicable in the from-UE direction.

Table 5.9: BCtAVPs supported in BCtSDUs (from RNC to UE) (OP: optional presence, not applicable)

	Broadca	st	Specific
AVP Type	bb-avp-list or avp-list	specific-avp-list	avp-list
TimingCorrection	-	OP	OP
ReturnBearerType	OP	-	-
FracPeakDataVolAndLfrac	OP	-	-
StatusAckControl	OP	-	-
ReportControl	OP	OP	-
MinContStatusDelay	OP	-	-
RandomisingControl	OP	OP	-
ResWaitMultiplier	OP	OP	-
CommonSigRetry	OP	OP	-
ControlledRandomAccess	OP	-	-
SharedReservationAccess	OP	-	-
ForwardBearerCodeRate	OP	-	-
SignalQualityMeasurementInterval	OP	OP	OP
AccessControl	OP	-	-
InitialRandomAccessBurst	OP	-	-
ReturnLinkReferenceLevel	-	OP	OP
InitialReferenceLevelAndMaxCodeRate	-	OP	OP

	Broadca	st	Specific
AVP Type	bb-avp-list or avp-list	specific-avp-list	avp-list
InitialReferenceLevelSet	-	OP	OP
InitialReferenceLevelParam	OP		-
ReturnLinkReferenceLevelSet	-	OP	OP
MaxReturnCodeRate	-	OP	OP
TimingCorrectionUpdateInterval	OP		
MaxDelayAndDelayRange	OP	-	-
ForwardQoSControl	OP	OP	OP
SubbandCentreFrequencyOffsets	OP	-	-
SubbandCentreFrequencyOffsetChange	OP	-	-
SatelliteLocation	OP	-	-
ChannelNo	OP	OP	OP
BeamInfo	OP	OP	OP
PLMNInfo	OP	-	-
PrimaryBearer	OP	-	-
SatelliteStateVectors	OP	-	-
UTCDateAndTime	OP		
TMPayloadPositionParam	-	-	OP
NASSystemInfo	OP	-	-
GPSPolicyInfoParam	OP	-	-
RandomisedInitialAccessDelayParam	OP	-	-
IntermodTestInfoParam	OP	-	-
LeapSecondParam	OP	-	-

Table 5.10: BCtAVPs supported in BCtESDUs (from RNC to UE) (OP: optional presence, not applicable)

	Embedded				
AVP Type	avp-list	hardware-avp-list			
ReturnBearerType	-	OP			
MinResWait	OP	-			
AllocationSize	OP	-			
SlotSharing	OP	-			
FracPeakDataVolAndLfrac	OP	-			
StatusAckControl	OP	-			
ReportControl	OP	-			
MinContStatusDelay	OP	-			
RandomisingControl	OP	-			
ResWaitMultiplier	OP	-			
RNCId	OP	OP			
Qdiff	OP	-			
ChannelNo	OP	OP			
BeamInfo	OP	OP			
SlotSizeControl	OP	-			
SleepMode	-	OP			
Type0QoS	OP	-			
ReturnLinkReferenceLevel	OP	OP			
InitialReferenceLevelAndMaxCodeRate	OP	OP			
InitialReferenceLevelSet	OP	OP			
ReturnLinkReferenceLevelSet	OP	OP			
MaxReturnCodeRate	OP	OP			
MaxDelayAndDelayRange	OP	OP			
ForwardCarrierLoss	OP	OP			
SignalQualityMeasurementInterval	OP	OP			
NASSystemInfo	OP	-			
PrimaryBearer	OP	-			
Access Control	OP	-			
CommonSigRetry	OP	-			

The relevance of each of the above AVPs on the UE behaviour is specified in ETSI TS 102 744-3-2 [10].

Table 5.11: BCtAVPs supported in BCtSDUs (from UE to RNC)

AVP Type	May be carried in
ReceivedSignalQuality	status-avp-list, avp-list
ReferenceLevelAcknowledge	status-avp-list, avp-list

5.7.1 BCtAVP Structure

5.7.1.0 General

The structure of a Bearer Control AVP is as follows:

```
SEQUENCE {
                   BCtAVPType,
   bct-avp-type
   param-value
        CHOICE { -- as appropriate to the value of bct-avp-type
            access-control-param
                                                AccessControlParam,
            allocation-size-param
                                                AllocationSizeParam.
            beam-info-param
                                                BeamInfoParam.
            channel-no-param
                                               ChannelNoParam,
            controlled-random-access
                                                  ControlledRandomAccessParam,
            common-sig-retry-param
                                                CommonSigRetryParam,
            forward-carrier-loss-param
                                               ForwardCarrierLossParam,
            fwd-bearer-code-rate-param
                                                ForwardBearerCodeRateParam,
            fwd-qos-control-param
                                                ForwardQoSControlParam,
            frac-peak-data-vol-and-lfrac-param
                                                  FracPeakDataVolAndLFracParam,
            gps-policy-info-param
                                                GPSPolicyInfoParam,
            initial-random-access-burst-param
                                                   InitialRandomAccessBurstParam,
            initial-reference-level-param
                                                    InitialReferenceLevelParam,
            initial-reference-level-and-max-code-rate-param
                   InitialReferenceLevelAndMaxCodeRateParam,
            initial-reference-level-set-param
                                                    InitialReferenceLevelSetParam,
            intermod-test-info-param
                                                    IntermodTestInfoParam,
            leap-second
                                               LeapSecondParam,
            max-return-code-rate-param
                                              MaxReturnCodeRateParam,
            maxdelay-and-delayrange-param
                                                   MaxDelayAndDelayRangeParam,
            min-cont-status-delay-param
                                                MinContStatusDelayParam,
            min-res-wait-param
                                                MinResWaitParam
            nas-sys-info-param
                                                NASSystemInfoParam,
            plmn-info-param
                                                PLMNInfoParam.
            primary-bearer-param
                                                    PrimaryBearerParam,
            q-diff-param
                                                QDiffParam,
            randomised-initial-access-delay-param
                   RandomisedInitialAccessDelayParam,
                                           RandomisingControlParam,
            randomising-control-param
            received-signal-quality-param
                                                   ReceivedSignalQualityParam,
            reference-level-acknowledge
                                              ReferenceLevelAcknowledgeParam,
            report-control-param
                                                   ReportControlParam,
            res-wait-multiplier-param
                                                   ResWaitMultiplierParam,
            \verb"ret-bearer-type-param"
                                                ReturnBearerTypeParam,
            ret-link-reference-level-param
                                                    ReturnLinkReferenceLevelParam,
            ret-link-reference-level-set-param
                   ReturnLinkReferenceLevelSetParam,
            rnc-id-param
                                                RNCIdParam,
            satellite-location-param
                                                    SatelliteLocationParam,
                                                    SatelliteStateVectorsParam,
            satellite-state-vectors-param
            shared-reservation-access
                                                    SharedReservationAccessParam,
            signal-qual-meas-interval-param
                   SignalQualityMeasurementIntervalParam,
            sleep-mode-param
                                               SleepModeParam,
            slot-sharing-param
                                                SlotSharingParam,
            slot-size-control-param
                                                SlotSizeControlParam.
            status-ack-control-param
                                                    StatusAckControlParam,
            subband-cf-offset-param
                                                SubbandCentreFrequencyOffsetsParam,
            subband-cf-offset-change-param
                   SubbandCentreFrequencyOffsetChangeParam,
                                                TimingCorrectionParam,
            timing-correction-param
            timing-corr-update-interval-param
                    {\tt TimingCorrectionUpdateIntervalParam,}
```

Each Parameter-Value has a maximum length of 8 bytes. The parameter *bct-avp-type* determines the type of parameter. The data type BCtAVPType is defined as follows:

```
BCtAVPType ::=
    INTEGER {
        fwd-qos-control (1),
        tvpe-0-gos(5),
        timing-correction-len-1 (8),
        timing-correction-len-2 (9),
        channel-no-len-3 (10),
        channel-no-len-4 (11),
        ret-bearer-type (16),
        q-diff (17),
        sleep-mode (19),
        slot-size-control (24),
        subband-cf-offset (25)
        -- void: previously defined adjacent-channel (27),
        primary-bearer-len-5 (28),
        primary-bearer-len-6 (29),
        primary-bearer-len-7 (30),
        primary-bearer-len-8 (31),
        min-res-wait (32),
        beam-info (33),
         -- placeholder for priority-primary-bearer-len-5 (36)
        -- placeholder for priority-primary-bearer-len-7 (38)
        -- placeholder for priority-primary-bearer-len-8 (39)
        allocation-size (40),
        subband-cf-offset-change-len-3 (42),
        subband-cf-offset-change-len-6 (45),
        slot-sharing (48),
        frac-peak-data-vol-and-lfrac (56),
        status-ack-control (64),
        report-control (72).
        min-cont-status-delay (80),
        initial-reference-level-len-2 (89),
        initial-reference-level-len-3 (90),
        initial-reference-level-len-4 (91),
        initial-reference-level-len-5 (92),
        initial-reference-level-len-6 (93),
        initial-reference-level-len-7 (94),
        initial-reference-level-len-8 (95),
        forward-carrier-loss (96),
        randomising-control (104),
        res-wait-multiplier (112),
        common-sig-retry (120),
        rncid (128),
        controlled-random-access-len-3 (130),
        controlled-random-access-len-4 (131),
        controlled-random-access-len-5 (132),
        controlled-random-access-len-6 (133),
        shared-reservation-access-len-4 (139),
        shared-reservation-access-len-5 (140),
        shared-reservation-access-len-6 (141),
        shared-reservation-access-len-7 (142),
        shared-reservation-access-len-8 (143),
        fwd-bearer-code-rate-len-1 (144),
        fwd-bearer-code-rate-len-2 (145),
        fwd-bearer-code-rate-len-3 (146),
        fwd-bearer-code-rate-len-4 (147),
        fwd-bearer-code-rate-len-5 (148),
        fwd-bearer-code-rate-len-6 (149),
        fwd-bearer-code-rate-len-7 (150),
        fwd-bearer-code-rate-len-8 (151),
        received-signal-quality (152),
        signal-qual-meas-interval (160),
        leap-second (168),
        satellite-location-len-2 (169),
        access-control (170),
        gps-policy-info (171),
        satellite-state-vectors (172),
        satellite-location-len-6 (173),
        initial-random-access-burst-len-1 (176),
```

```
initial-random-access-burst-len-2 (177),
    initial-random-access-burst-len-3 (178),
    initial-random-access-burst-len-4 (179),
    initial-reference-level-set (183),
    ret-link-reference-level-len-1 (184),
    ret-link-reference-level-len-2 (185),
    initial-reference-level-and-max-code-rate (188),
   max-return-code-rate (189),
    ret-link-reference-level-set (191),
    timing-corr-update-interval (192),
   maxdelay-and-delayrange (200),
    reference-level-acknowledge (208),
    utc-date-and-time (212),
    tm-pay-load-position (217),
    -- void: previously defined forward-bearer-tables (224) to (227),
    randomised-initial-access-delay (233),
    intermod-test-info (237),
    plmn-info-len-3 (242),
   plmn-info-len-4 (243),
    nas-sys-info-len-1 (248),
   nas-sys-info-len-2 (249),
    nas-sys-info-len-3 (250),
    nas-sys-info-len-4 (251),
   nas-sys-info-len-5 (252),
    nas-sys-info-len-6 (253).
   nas-sys-info-len-7 (254),
    nas-sys-info-len-8 (255)
} (0..255)
```

The values are allocated such that the parameter length can be obtained from the lower three bits of *bct-avp-type*. Hence the definition of BCtAVPType above is equivalent to the following:

NOTE: This structure is shown in the text for explanatory purposes and is not included in Annex A.

The parameter type is defined independently for each *param-len* value. This results in a possible 32 parameter types for each parameter-length value. The resulting parameter structure is as follows:

which is equivalent to that shown in Figure 5.93:

Figure 5.93: BCtAVP Structure

5.7.1.1 Param-len

This three bit field indicates the length of the current parameter. This field forms the least significant three bits of the *param-type* field. The length of the *param-value* field is encoded in the *param-len* field as INTEGER(1..8) which implies that zero length *param-value* fields are not supported.

5.7.1.2 Param-len-type

This five bit field indicates the type of the parameter within the context of the *param-len* field value. This field forms the most significant five-bits of the *param-type* field.

5.7.1.3 Parameters with length ::= 1

Single octet parameters are defined as shown in Table 5.12.

Table 5.12: Bearer Control AVPs containing Param-Values with length ::= 1

ParamLen-Type	ParamType	Param-Value
0x01	0x08	TimingCorrectionParam
0x02	0x10	ReturnBearerTypeParam
0x03	0x18	SlotSizeControlParam
0x04	0x20	MinResWaitParam
0x05	0x28	AllocationSizeParam
0x06	0x30	SlotSharingParam
0x07	0x38	FracPeakDataVolAndLFracParam
0x08	0x40	StatusAckControlParam
0x09	0x48	ReportControlParam
0x0A	0x50	MinContStatusDelayParam
0x0C	0x60	ForwardCarrierLossParam
0x0D	0x68	RandomisingControlParam
0x0E	0x70	ResWaitMultiplierParam
0x0F	0x78	CommonSigRetryParam
0x10	0x80	RNCIdParam
0x12	0x90	ForwardBearerCodeRateParam
0x13	0x98	ReceivedSignalQualityParam
0x14	0xA0	SignalQualityMeasurementIntervalParam
0x15	0xA8	LeapSecondParam
0x16	0xB0	InitialRandomAccessBurstParam
0x17	0xB8	ReturnLinkReferenceLevelParam
0x18	0xC0	TimingCorrectionUpdateIntervalParam
0x19	0xC8	MaxDelayAndDelayRangeParam
0x1A	0xD0	ReferenceLevelAcknowledgeParam
0x1F	0xF8	NASSystemInfoParam

5.7.1.4 Parameters with length ::= 2

Parameter types with length := 2 are as shown in Table 5.13.

Table 5.13: Bearer ControlAVPs containing Param-Values with Length ::= 2

ParamLen-Type	Param-Type	Param-Value
0x00	0x01	ForwardQoSControlParam
0x01	0x09	TimingCorrectionParam
0x02	0x11	QDiffParam
0x03	0x19	SubbandCentreFrequencyOffsetsParam
0x04	0x21	BeamInfoParam
0x0B	0x59	InitialReferenceLevelParam
0x12	0x91	ForwardBearerCodeRateParam
0x15	0xA9	SatelliteLocationParam
0x16	0xB1	InitialRandomAccessBurstParam
0x17	0xB9	ReturnLinkReferenceLevelParam
0x1B	0xD9	TMPayloadPositionParam
0x1D	0xE9	RandomisedInitialAccessDelayParam
0x1F	0xF9	NASSystemInfoParam

5.7.1.5 Parameters with length ::= 3

Parameter types with length ::= 3 are as shown in Table 5.14.

Table 5.14: Bearer ControlAVPs containing Param-Values with Length ::= 3

ParamLen-Type	Param-Type	Param-Value
0x01	0x0A	ChannelNoParam
0x05	0x2A	SubbandCentreFrequencyOffsetChangeParam
0x0B	0x5A	InitialReferenceLevelParam
0x10	0x82	ControlledRandomAccessParam
0x12	0x92	ForwardBearerCodeRateParam
0x15	0xAA	AccessControlParam
0x16	0xB2	InitialRandomAccessBurstParam
0x1E	0xF2	PLMNInfoParam
0x1F	0xFA	NASSystemInfoParam

5.7.1.6 Parameters with length ::= 4

Parameter types with length ::=4 are as shown in Table 5.15.

Table 5.15: Bearer ControlAVPs containing Param-Values with Length ::= 4

ParamLen-Type	Param-Type	Param-Value
0x01	0x0B	ChannelNoParam
0x02	0x13	SleepModeParam
0x0B	0x5B	InitialReferenceLevelParam
0x10	0x83	ControlledRandomAccessParam
0x11	0x8B	SharedReservationAccessParam
0x12	0x93	ForwardBearerCodeRateParam
0x15	0xAB	GPSPolicyInfoParam
0x16	0xB3	InitialRandomAccessBurstParam
0x1E	0xF3	PLMNInfoParam
0x1F	0xFB	NASSystemInfoParam

5.7.1.7 Parameters with length ::= 5

Parameter types with length := 5 are as shown in Table 5.16.

Table 5.16: Bearer ControlAVPs containing Param-Values with Length ::= 5

ParamLen-Type	Param-Type	Param-Value
0x03	0x1C	PrimaryBearerParam
0x0B	0x5C	InitialReferenceLevelParam
0x10	0x84	ControlledRandomAccessParam
0x11	0x8C	SharedReservationAccessParam
0x12	0x94	ForwardBearerCodeRateParam
0x15	0xAC	SatelliteStateVectorsParam
0x17	0xBC	InitialReferenceLevelAndMaxCodeRateParam
0x1A	0xD4	UTCDateAndTimeParam
0x1F	0xFC	NASSystemInfoParam

5.7.1.8 Parameters with length ::= 6

Parameter types with length := 6 are as shown in Table 5.17.

Table 5.17: Bearer ControlAVPs with Containing Param-Values with Length ::= 6

ParamLen-Type	Param-Type	Param-Value
0x00	0x05	Type0QoSParam
0x03	0x1D	PrimaryBearerParam
0x05	0x2D	SubbandCentreFrequencyOffsetChangeParam
0x0B	0x5D	InitialReferenceLevelParam
0x10	0x85	ControlledRandomAccessParam
0x11	0x8D	SharedReservationAccessParam
0x12	0x95	ForwardBearerCodeRateParam
0x15	0xAD	SatelliteLocationParam
0x17	0xBD	MaxReturnCodeRateParam
0x1F	0xFD	NASSystemInfoParam

5.7.1.9 Parameters with length::= 7

Parameter types with length := 7 are as shown in Table 5.18.

Table 5.18: Bearer ControlAVPs containing Param-Values with Length ::= 7

ParamLen-Type	Param-Type	Param-Value								
0x03	0x1E	PrimaryBearerParam								
0x0B	0x5E	InitialReferenceLevelParam								
0x11	0x8E	SharedReservationAccessParam								
0x12	0x96	ForwardBearerCodeRateParam								
0x1F	0xFE	NASSystemInfoParam								

5.7.1.10 Parameters with length ::= 8

Parameter types with length := 8 are as shown in Table 5.19.

Table 5.19: Bearer ControlAVPs containing Param-Values with Length ::= 8

ParamLen-Type	Param-Type	Param-Value
0x03	0x1F	PrimaryBearerParam
0x0B	0x5F	InitialReferenceLevelParam
0x11	0x8F	SharedReservationAccessParam
0x16	0xB7	InitialReferenceLevelSet
0x17	0xBF	ReturnLinkReferenceLevelSet
0x1F	0xFF	NASSystemInfoParam

5.7.2 TimingCorrectionParam

This parameter is used within a SpecificAVPList or AVPList SDU to provide timing correction information to a particular UE for all UE Hardware Units controlled by the particular instance of this Bearer Control process type. The structure is defined below, with format as shown in Figures 5.94 to 5.95.

```
TimingCorrectionParam ::=
    CHOICE
        timing-correction-8
            INTEGER (-128 .. 127),
        timing-correction-16
            INTEGER (-32768 .. 32767)
    }
                      (MSB)
                                          Bit No
                                                               (LSB)
                                          5
                              7
                                                             2
                                                                    1
                        8
                                    6
                                                 4
                                                       3
                              0
                                    0
                                          0
                                                       0
                                                             0
                                                                    0
                        0
                                                 1
                                                                            Octet 1
                                   TimingCorrectionParam
                                                                            Octet 2
```

Figure 5.94: TimingCorrection BCtAVP (one octet)

Figure 5.95: TimingCorrection BCtAVP (two octets)

The value represents the timing correction in units of 0,25 symbols (rounded to the nearest unit) with a symbol in this context being referenced to the T1 bearer type (33 600 Bd). It is encoded either as a single byte signed (two's-complement) integer providing an adjustment range from -32 symbols to +31,75 symbols or as a two-byte signed (two's-complement) integer providing an adjustment range from -8 192 symbols to 8 191,75 symbols. Positive values indicate that the UE transmits too early and negative values indicate that the UE transmits too late.

5.7.3 ReturnBearerTypeParam

This parameter is used within a *bb-avp-list* or broadcast AVPList to specify the default return bearer type to be used by all UEs tuned to the forward bearer. If a return bearer type is specified in the ReturnSchedule SDU transmitted on the same forward bearer (see clauses 5.4.5.2 and 5.4.5.5) then the value in the ReturnSchedule SDU shall override the default. This AVP will also be sent in a BCtESDU in a Handover message to signal the default bearer type on the target bearer. The structure is defined below, with format as shown in Figure 5.96.

(MSE	3)		Bit N	10		.SB)		
8	7	6	5	4	3	2	1	
0	0	0	1	0	0	0	0	Octet 1
cw80	otaa	rese	erved	r-be	earer-	nort	Octet 2	

Figure 5.96: ReturnBearerType BCtAVP

The flags *cw80-acquisition-present* and *only-timed-access-allowed* shall apply to all R80T0.5Q and R80T1Q bearers regardless of the value in the *r-bearer-type-short* field.

5.7.4 SlotSizeControlParam

This parameter is used to specify the parameters which are to be used within the UE Bearer Control algorithms for calculating and reporting queue sizes. The structure is defined below, with format as shown in Figure 5.97.

```
SlotSizeControlParam ::=
    INTEGER (0..255)
                          -- min-offered-size
                       (MSB)
                                            Bit No
                                                                 (LSB)
                                     6
                                            5
                                                               2
                                                                      1
                                            1
                               0
                                     0
                                                         0
                                                               0
                                                                      0
                        0
                                                                              Octet 1
                                       min-offered-size
                                                                              Octet 2
```

Figure 5.97: SlotSizeControl BCtAVP

The units of *min-offered-size*, is in bytes. The default value for *min-offered-size* is 5 bytes. The use of these parameters is specified in ETSI TS 102 744-3-2 [10].

5.7.5 MinResWaitParam

This parameter is used in an AVPList SDU within an EPDU carried with an Establish or Modify AL-SigPDU to define the minimum timeout period that the specific connection shall use when waiting for a slot reservation. The structure is defined below, with format as shown in Figure 5.98.

```
MinResWaitParam ::=
    INTEGER (0 .. 255)
                       (MSB)
                                           Bit No
                                                                (LSB)
                        8
                              7
                                    6
                                           5
                                                 4
                                                       3
                                                             2
                                                                    1
                        0
                              0
                                    1
                                           0
                                                 0
                                                       0
                                                             0
                                                                    0
                                                                            Octet 1
                                     MinResWaitParam
                                                                            Octet 2
```

Figure 5.98: MinResWait BCtAVP

MinResWait is in units of 40 ms so the range of values supported is 0 to 10,2 seconds. If this parameter is absent then the default value of 6 seconds shall be utilized in the UE.

5.7.6 AllocationSizeParam

This parameter is used within an AVPList SDU within an EPDU carried with an Establish or Modify AL-SigPDU and defines the default segment size minus one to be used for the connection. The structure is defined below, with format as shown in Figure 5.99.

```
AllocationSizeParam ::= INTEGER (0 .. 255)
```

(MSB) Bit No												(B)		
8		7	•	6	i	5	•	4	•	3		2		1	
0		0		1		0		1		0		0		0	Octet 1
AllocationSizeParam												Octet 2			

Figure 5.99: AllocationSize BCtAVP

Allocation Size in units of bytes. If this parameter is absent the default value of 32 bytes is used.

5.7.7 SlotSharingParam

This parameter is used within in an AVPList SDU within an EPDU carried with an Establish or Modify AL-SigPDU and defines whether slots allocated to this connection may also carry Queue Status or Data from other connections from this UE. The structure is defined below, with format as shown in Figure 5.100.

```
SlotSharingParam ::=
    SEQUENCE {
        uess-takes-priority
            BOOLEAN,
        other-vbr-allowed
            BOOLEAN,
        other-cbr-allowed
            BOOLEAN,
        qlen-based-signalling
            BOOLEAN,
        variable-bit-rate
            BOOLEAN.
        constant-bit-rate
            BOOLEAN,
        other-data-allowed
            BOOLEAN.
        other-status-allowed
            BOOLEAN
    }
```

(MSB)		Bit I	No		(L	SB)	
8	7	6	5	4	3	2	1	
0	0	1	1	0	0	0	0	Octet 1
utp	ova	oca	qbs	vbr	cbr	oda	osa	Octet 2

Figure 5.100: SlotSharing BCtAVP

The *uess-takes-priority* flag is set if UE specific signalling connection takes priority over the data from this connection (i.e. the UESS is allowed to 'steal' resources from this connection). The default value for this parameter is FALSE.

The *other-vbr-allowed* flag is set if data or signalling from other variable bit rate connections (those which utilize QRate-based-signalling) is allowed to share this slot. The default value for this parameter is FALSE.

The *other-cbr-allowed* flag is set if data from other constant bit rate data connections (those which do not utilize volume or rate-based-signalling mechanisms) is allowed to share this slot. The default value for this parameter is FALSE.

The *qlen-based-signalling* flag is set when the QLen SDUs are to be used as the signalling mechanism instead of the acknowledged Status SDUs for UE specific signalling connections and RABs that require queue-length based signalling. The default value for this parameter is FALSE.

The *variable-bit-rate* flag is set for RABs that are to utilize the QRate SDUs. The default value for this parameter is FALSE.

The *constant-bit-rate* flag is set if a constant bit rate connection is established (a connection that does not utilize either volume or rate-based-signalling), the default value of this parameter is TRUE for Transparent mode connections or FALSE otherwise.

The *other-data-allowed* flag is set if RABs utilize the queue-length based signalling (either QLen or Status SDUs) are allowed to include data in resources allocated to this connection. The default value for this parameter is TRUE.

The *other-status-allowed* flag is set if RABs utilize the queue-length based signalling (either QLen or Status SDUs) are allowed to include queue status reports within resources allocated to this connection. The default value for this parameter is TRUE.

The use of *qlen-based-signalling*, *variable-bit-rate*, and *constant-bit-rate* flags is exclusive - only one of these flags shall be set for any connection.

5.7.8 FracPeakDataVolAndLFracParam

This parameter is used within a SpecificAVPList or AVPList SDU and specifies parameters to be used within the UE Bearer Control process for all connections. The structure is defined below, with format as shown in Figure 5.101.

Figure 5.101: FracPeakDataVolAndLFrac BCtAVP

Units of *frac-peak-data-vol* and *l-frac* are 0,125 so the value range is between 0 and 1,875. The default values for *frac-peak-data-vol* and *l-frac* are both 0,5.

5.7.9 StatusAckControlParam

This parameter is used within a SpecificAVPList or AVPList SDU and specifies parameters to be used within the UE Bearer Control process for all connections. The structure is defined below, with format as shown in Figure 5.102.

```
StatusAckControlParam ::=
    SEQUENCE {
                              INTEGER (0..15),
        t-ack-wait
        max-unackstatus
                              INTEGER (0..15)
                       (MSB)
                                           Bit No
                                                                 (LSB)
                                     6
                                            5
                        8
                                                        3
                               1
                                     0
                                                  0
                        0
                                            0
                                                        0
                                                               0
                                                                     0
                                                                             Octet 1
                             t-ack-wait
                                                   max-unackstatus
                                                                             Octet 2
```

Figure 5.102: StatusAckControl BCtAVP

Units of *t-ack-wait* are 40 ms. The default value for *t-ack-wait* is 6, resulting in 240 ms. This time is offset by the round-trip-time (rtt) specified for the UE algorithms in ETSI TS 102 744-3-2 [10]. The default value for *max-unackstatus* is 8.

5.7.10 ReportControlParam

This parameter is used within a SpecificAVPList or AVPList SDU and specifies a parameter to be used within the UE Bearer Control process for all connections. The structure is defined below, with format as shown in Figure 5.103.

```
ReportControlParam ::= INTEGER (0 .. 255)
```

(MS	SB)		Bit	No		(l	_SB)	
8	7	6	5	4	3	2	1	! ! !
0	1	0	0	1	0	0	0	Octet 1
	Octet 2							

Figure 5.103: ReportControl BCtAVP

Units of Report Control are 0,0625, so the value specified is between 0 and 15,9375. The default value is 0,3125.

5.7.11 MinContStatusDelayParam

This parameter is used within a SpecificAVPList or AVPList SDU and specifies a parameter to be used within the UE Bearer Control process for all connections. The structure is defined below, with format as shown in Figure 5.104.

MinContStatusDelayParam ::= INTEGER (0 .. 255)

(M	18	B)	Bit No								(LSB)						
: 8	3	÷	7		6	:	5	:	4	:	3	÷	2	:	1	•	
0)		1		0		1		0		0		0		0		Octet 1
MinContStatusDelayParam														Octet 2			

Figure 5.104: MinContStatusDelay BCtAVP

Units of *MinContStatusDelay* are 40 ms so the range of values supported is 0 to 10,2 seconds. The default value for *MinContStatusDelay* is 80 ms.

5.7.12 RandomisingControlParam

This parameter is used within a SpecificAVPList or AVPList SDU and specifies parameters to be used within the UE Bearer Control process for all connections. The structure is defined below, with format as shown in Figure 5.105.

```
RandomisingControlParam ::=
    SEQUENCE {
        max-randomising-level
                                      INTEGER (0..7),
        frame-randomiser
                                      INTEGER (0..31)
                       (MSB)
                                           Bit No
                                                                (LSB)
                                           5
                                                              2
                                     6
                                                       3
                                                                    1
                                     1
                                           0
                                                        0
                                                              0
                                                                    0
                                                                            Octet 1
                        max-rand-level
                                               frame-randomiser
                                                                            Octet 2
```

Figure 5.105: RandomisingControl BCtAVP

The default value for max-randomising-level is 4 and for frame-randomiser is 2.

5.7.13 ResWaitMultiplierParam

This parameter is broadcast by the RNC in congestion conditions to extend the time that UEs shall wait for reserved slots (before resending Status SDUs). This parameter overrides previously specified values. The structure is defined below, with format as shown in Figure 5.106.

```
ResWaitMultiplierParam ::=
    INTEGER (0..255)
```

	B)	(MSB) Bit No (LSB)												
	1	2		3	4	4	5		6		7	1	8	
Octet 1	0	0		0)	(1		1		1		0	
Octet 2	ResWaitMultiplier													

Figure 5.106: ResWaitMultiplier BCtAVP

ResWaitMultiplier is in units of 0,125 so the range of values supported is 0 to 31,875. If this parameter is absent the default value of 1 shall be used in the UE.

5.7.14 CommonSigRetryParam

This parameter is used within an AVPList SDU or within a *bb-avp-list* to define retry parameters for the Common Signalling connection (i.e. Registration and Deregistration related packets). CommonSigRetry is defined as follows, with format as shown in Figure 5.107:

```
CommonSigRetryParam ::=
    SEQUENCE {
        maxretrycount
            INTEGER (0..7),
        timeout
            INTEGER (0..31)
    }
                                                                 (LSB)
                       (MSB)
                                           Bit No
                               7
                                            5
                                                               2
                                                                     1
                        8
                                     6
                                                        3
                        0
                               1
                                     1
                                            1
                                                  1
                                                        0
                                                               0
                                                                     0
                                                                              Octet 1
                        maxretrycount
                                                     timeout
                                                                              Octet 2
```

Figure 5.107: CommonSigRetry BCtAVP

The default value of *maxretrycount* is 3 (i.e. the UE shall make four attempts before giving up). *Timeout* is in units of 0,5 s. The default value of *timeout* is 10 (i.e. 5 s).

5.7.15 RNCldParam

This parameter is used during inter-RNC handover to advise the UE of the RNC ID of the target RNC and is sent in a BCtESDU of the Handover message. The structure is defined below, with format as shown in Figure 5.108.

```
RNCIdParam ::=
    SEQUENCE {
        rnc-id
            INTEGER (0..255)
                       (MSB)
                                           Bit No
                                                                 (LSB)
                              7
                                           5
                                                              2
                                                                     1
                        8
                                     6
                                                 4
                                                        3
                               0
                                     0
                                                              0
                        1
                                           0
                                                  0
                                                        0
                                                                     0
                                                                             Octet 1
                                            RNCId
                                                                             Octet 2
```

Figure 5.108: RNCId BCtAVP

5.7.16 ForwardBearerCodeRateParam

5.7.16.0 General

This parameter describes coding rate and modulation index changes in the FEC blocks of the current or the next frame as specified in clause 5.7.16.1. On forward bearers that use no outer interleaving, this AVP is only provided if the coding rate changes from the coding rate of the first FEC block in the frame which is implicitly signalled in the unique word.

On outer interleaved forward bearers (i.e. F80T2.5X and F80T5X) this AVP is included if the coding rate or modulation index of any FEC Block in the frame are different from the first FEC block in the same frame. Optionally, this AVP may be included in every frame even if there is no such change.

This AVP shall be carried in a *bb-avp-list* (see clause 5.4.4.8) if a BulletinBoard SDU is scheduled for transmission, otherwise it shall be carried in a Broadcast AVPList BCtSDU (see clause 5.4.10). Furthermore, this AVP shall be the first one in the AVPList used. The structure is defined below, with format as shown in Figure 5.109.

The parameter *modulation-index-increase* specifies an increase in the modulation index being used in the FEC block specified by *block-num*. The increase in the modulation index specified shall remain selected for the rest of the frame or until another change is signalled as another BlockRate parameter in the same AVP. Due to the limitations of the physical layer, this information element is only used to switch between 4-QAM and 16-QAM (when the value is set to TRUE). When the value is set to FALSE, the modulation index is the same as that used for the first FEC block of the frame.

(MSB) Bit No							N	(LSB)					
8	:	7	:	6	:	5	:	4		3 2 1			
1		0		0		1		0		prm-len (= n - 1)	Octet 1		
mii		bl	locl	k-nı	ım	1			(coding-rate 1	Octet 2		
mii		bl	locl	ห-ทเ	ım	n			(coding-rate n	Octet n+1		

Figure 5.109: ForwardBearerCodeRate BCtAVP

5.7.16.1 Block-num

The parameter block-num defines the FEC Block within the frame at which the coding rate changes, where block-num = 0 refers to the first block in the frame, regardless of the FEC block in which the AVP is transmitted.

When operating with F80T1Q-4B, F80T1X-4B and F80T45X-8B bearers, the AVP refers to FEC blocks in the current frame.

EXAMPLE 1: When used with an F80T45X-8B for the FEC blocks:

```
block-num-1 = 2; coding-rate-1 = -1

(FEC Blocks 0-1, Signalled by UW)

(FEC Block 2, Bearer Sub-type L1)

block-num-2 = 3; coding-rate-2 = -3

(FEC Block 3, Bearer Sub-type L3)

block-num-3 = 4; coding-rate-3 = 0

(FEC Blocks 4-7, Bearer Sub-type R)
```

When operating with F80T2.5X and F80T5X bearers, the AVP refers to FEC blocks in the next frame. Also when operating with these forward bearers, in order to signal FEC block numbers for forward bearers with more than 8 FEC blocks per frame, the following rules apply:

If the value of 'block-num-n' is less than or equal to the value of 'block-num-m' where m<n, then the FEC block number to which this and all subsequent information element refers shall be increased by 8 to reference the FEC block number (8 + value of block-num-n). This allows this AVP to reference any FEC block in forward bearers supporting more than 8 FEC blocks per frame, however the constraint remains that a maximum number of 8 BlockRate values may be signalled with this AVP.

EXAMPLE 2: When used with an F80T5X16-9B for the FEC blocks in the next frame:

When operating with F80T2.5X4 and F80T5X4 bearers which support variable rate modulation, the AVP signals both the coding rate and the modulation for FEC blocks in the next frame.

EXAMPLE 3: When used with an F80T5X4-9B for the FEC blocks in the next frame:

5.7.16.2 CodeRate

The parameter *coding-rate* specifies the bearer subtype being used in the FEC block specified by *block-num*. The new bearer subtype specified shall remain selected for the rest of the frame or until another change is signalled, either as another block-num and coding-rate pair in the same AVP or in another AVP included in a further FEC block.

```
CodeRate ::=
   INTEGER (-8 .. 7)
```

where Bearer Subtypes (i.e. coding rates) map onto CodeRate values as shown in Table 5.20.

Table 5.20: CodeRate Values

CodeRate Value	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
R80T0.5Q and R80T1Q	L8	L7	L6	L5	L4	L3	L2	L1	R	H1	L14	L13	L12	L11	L10	L9
only																
All other Bearers	L8	L7	L6	L5	L4	L3	L2	L1	R	H1	H2	Н3	H4	H5	H6	n/a

5.7.17 ReceivedSignalQualityParam

This parameter which is carried in a *status-avp-list* (or AVPList for UESS connections that use the QLen signalling) is used by the UE to report the Carrier-to-Noise Ratio (C/N_0) of the received forward bearer to the RNC. The structure is defined below, with format as shown in Figure 5.110.

```
ReceivedSignalQualityParam ::=
    INTEGER (0..255)
```

(1	MS	B)		Bit No							(LSB)						
	8	-	7	:	6		5	!	4		3	-	2	!	1		
	1		0		0		1		1		0		0		0		Octet 1
	ReceivedSignalQuality													Octet 2			

Figure 5.110: ReceivedSignalQuality BCtAVP

The value of ReceivedSignalQualityParam is calculated by subtracting 20 dB from the measured C/N_0 value and multiplying the result by 4. The value therefore represents a C/N_0 range from 20 dBHz to 83,75 dBHz.

5.7.18 SignalQualityMeasurementIntervalParam

This parameter is used by RNC to control the number of frames over which the UE shall average the Carrier-to-Noise Ratio (C/N_0) measurement reported in the Received Signal Quality Bearer Control AVP. The structure is defined below, with format as shown in Figure 5.111.

```
SignalQualityMeasurementIntervalParam ::=
    SEQUENCE {
        reporting-on
            BOOLEAN.
        reserved
             BIT STRING (SIZE (2)),
        interval
             INTEGER (1..32)
    }
                                                                 (LSB)
                       (MSB)
                                           Bit No
                                            5
                              7
                                     6
                                                  4
                                                               2
                                                                     1
                        8
                                                        3
                               0
                                     1
                                                        0
                                                               0
                        1
                                            0
                                                  0
                                                                     0
                                                                             Octet 1
                       RO
                                                                             Octet 2
                              reserved
                                                     interval
```

Figure 5.111: SignalQualityMeasurementInterval BCtAVP

The value in the *interval* field shall be multiplied by eight to specify the number of frames over which the sliding average for the signal quality measurement shall operate, providing a range from 640 ms (interval = 1) to 20,48 s (interval = 32). The Boolean flag reporting-on is used by the RNC to control the reporting at a UE.

5.7.19 AccessControlParam

This parameter is used within a *bb-avp-list* to control the initial access of UEs to the RNC. This AVP is only included if access restrictions are to be enforced. The structure is defined below, with format as shown in Figure 5.112.

```
AccessControlParam ::=
    SEQUENCE {
        emergency-call-override-access-class
            BOOLEAN,
        reserved
            BIT STRING (SIZE (5)),
        sim-card-control
            SimCardControl,
        access-class
            BIT STRING (SIZE (16))
}
```


Figure 5.112: AccessControl BCtAVP

If the field *emergency-call-override-access-class* is TRUE, then the access restrictions shall not apply to UEs attempting to make an emergency call. Otherwise only those UEs belonging to an access class for which the corresponding bit is set to one in the field *access-class* shall attempt to access the RNC. Bit 8 of Octet 3 corresponds to Access Class 15, while Bit 1 of Octet 4 corresponds to Access Class 0.

The field *sim-card-control* specifies whether a UE without a SIM card may register at the RNC. The data type SimCardControl is defined as follows:

```
SimCardControl ::=
   INTEGER {
      imei-not-permitted (0),
      imei-permitted-emergency-call-only (1),
      imei-permitted (2)
      } (0..3)
```

5.7.20 InitialRandomAccessBurstParam

5.7.20.0 General

This parameter is used within a *bb-avp-list* to specify the burst types (together with coding rates) which may be used by UEs for initial random access to the RNC. The AVP is only sent if there is a change from the default Initial Random Access burst types and coding rates specified in ETSI TS 102 744-2-1 [8]. The structure is defined below, with format as shown in Figure 5.113.

```
InitialRandomAccessBurstParam ::=
    SEQUENCE (1..4) OF AccessBurst
AccessBurst ::=
    SEQUENCE{
        burst-type
        BurstType,
        coding-rate
        CodeRate
}
```


Figure 5.113: InitialRandomAccessBurst BCtAVP

The parameter *coding-rate* is defined in clause 5.7.16.2.

5.7.20.1 BurstType

The *burst-type* field specifies the type of burst that shall be used by the UE for initial random access purposes and is defined as follows:

```
BurstType
    INTEGER {
        r20t05q (0),
        -- reserved (1),
        -- reserved (2),
        r20t1q (3),
        r5t2q(4),
         -- reserved (5),
        r5t45q (6),
         -- reserved (7),
        r80t0.5q (8),
        r80t1q (9),
        r5t1x (10),
         -- reserved (11),
        r5t2x (12),
         -- reserved (13)
        r5t45x (14),
         -- reserved (15)
        } (0..15)
```

5.7.21 ReturnLinkReferenceLevelParam

This parameter is used within a SpecificAVPList or AVPList SDU to specify the reference level for the return link adaptation to a particular UE Hardware Unit. It may also include a transmit power backoff value or a backoff range over which the UE can trade-off transmit EIRP versus coding rate. The particular UE Hardware Unit that the AVP is intended for is determined by the translated Bearer Connection ID contained in the SpecificAVPList SDU or the translated Bearer Connection ID of the BCtPDU used to carry the AVPList SDU. The structure is defined below, with format as shown in Figures 5.114 and 5.115.

```
ReturnLinkReferenceLevelParam ::=
    SEQUENCE {
        reserved
            BIT STRING (SIZE (2)),
        reference-level
            ControlIndex,
        backoff-field
            SEQUENCE {
                 mode
                     INTEGER (0..3),
                 reserved
                     BIT STRING (SIZE (2)),
                 backoff
                     INTEGER (0..15)
        } OPTIONAL
                                                                (LSB)
                       (MSB)
                                           Bit No
                        8
                              7
                                     6
                                           5
                                                 4
                                                        3
                                                              2
                                                                    1
                        1
                              0
                                     1
                                           1
                                                  1
                                                        0
                                                              0
                                                                    0
                                                                            Octet 1
                                              reference-level
                                                                            Octet 2
                       reserved
```

Figure 5.114: ReturnLinkReferenceLevel BCtAVP (backoff value not included)

(MSE	(MSB) Bit No (LSB)									
8	7	6	5	4	3	2	1	1 - 1 - 1		
1	0	1	1	1	0	0	1	Octet 1		
rese	erved		Octet 2							
m	ode	rese		Octet 3						

Figure 5.115: ReturnLinkReferenceLevel BCtAVP (backoff value included)

The parameter *reference-level* is of data type Controllndex which is specified in clause 5.4.12.6. UE classes that support wrap around of control index shall interpret the received reference-level value according to the following rule:

```
If (reference-level < 16) then

reference-level = reference-level + 64

EndIf
```

The parameter *backoff* shall be used in different ways depending on the value of *mode*, as shown in Table 5.21. Further information on the reference level and the use of the parameter *backoff* is provided in ETSI TS 102 744-3-2 [10], clause 8.5.1.1.

Table 5.21: ReturnLinkReferenceLevel Mode Values: Expected UE Behaviour

Value of mode	EIRP and Coding Rate								
0	The UE hardware unit shall reduce its EIRP level by the amount (in dB) specified in <i>backoff</i> . The UE shall use a fixed coding rate which matches the operating point specified in <i>reference-level</i> (i.e. power control only).								
1	The UE hardware unit shall use the value in backoff to determine the minimum EIRP level at which the UE can transmit such that the coding rate may be selected over a possible range of ControlIndex values								
	from reference-level to reference-level – backoff + 1.								
	The value of backoff is thus applied in units of 0,5 dB.								
2	The UE hardware unit shall use the value in backoff to determine the minimum EIRP level at which the UE can transmit, such that the coding rate may be selected over a possible range of ControlIndex values								
	from reference-level								
	to reference-level – (2 x backoff) + 1								
	The value of backoff is thus applied in units of 1 dB.								
3	[reserved]								

If the AVP does not include mode and backoff then the UE shall use the last value of mode and backoff received. If no mode value has been received, a default backoff of 0 dB (with mode ::= 1) shall be used.

5.7.22 TimingCorrectionUpdateIntervalParam

This AVP is used within a *bb-avp-list* or a broadcast AVPList to specify the maximum time interval until a UE has to update its return channel transmission timing as specified in ETSI TS 102 744-3-2 [10]. The value of TimingCorrectionUpdateInterval is expressed in minutes. A value of zero is invalid and shall be ignored. The AVP has the following structure, with format as shown in Figure 5.116:

```
TimingCorrectionUpdateIntervalParam ::=
    INTEGER (0..255)
```

(MSB)					Bit No							(LSB)					
	8	i	7		6	i	5	:	4		3	i	2		1	i	
	1		1		0		0		0		0		0		0		Octet 1
	TimingCorrectionUpdateInterval										Octet 2						

Figure 5.116: TimingCorrectionUpdateInterval Bearer Control AVP

5.7.23 MaxDelayAndDelayRangeParam

5.7.23.0 General

This parameter is used to specify the maximum delay and the delay range required for initial access of UEs to the RNC (see ETSI TS 102 744-3-2 [10]). The data type MaxDelayAndDelayRangeParam is defined below and the corresponding AVP has the structure shown in Figure 5.117:

```
MaxDelayAndDelayRangeParam ::=
    SEQUENCE {
        use-primary-rctc
            BOOLEAN,
        max-delay
            INTEGER (0..7),
        delay-range
            INTEGER (0..15)
    }
                                                                (LSB)
                       (MSB)
                                           Bit No
                                           5
                                                              2
                                     6
                                                        3
                                                                     1
                                     0
                                           0
                                                        0
                                                              0
                               1
                                                  1
                                                                     0
                                                                             Octet 1
                        1
                                max-delay
                                                      delay-range
                                                                             Octet 2
                        up
```

Figure 5.117: MaxDelayAndDelayRange BCtAVP

5.7.23.1 Use-primary-rctc

The flag *use-primary-rctc* is used to control the method that shall be used by UEs for return channel timing control. If the flag is TRUE, then the UEs shall use the combination of primary and secondary method (as described in ETSI TS 102 744-3-2 [10]). If the flag is FALSE, then the UEs shall use the secondary method only.

5.7.23.2 Max-delay

The field *max-delay* specifies the maximum delay from the satellite to a UE located in the beam. The maximum delay is calculated from this value as follows:

```
maximum delay = 120 \text{ ms} + max\text{-}delay \times 5 \text{ ms}
```

5.7.23.3 Delay-range

The field *delay-range* specifies the maximum delay variation within the beam in units of 5 ms.

5.7.24 ReferenceLevelAcknowledgeParam

This parameter, which is carried in a *status-avp-list* (or AVPList for connections that do not require the transmission of Status SDUs, e.g. constant bit rate), is used by the UE to report that a ReturnLinkReferenceLevel, ReturnLinkReferenceLevelSet, InitialReferenceLevelSet or InitialReferenceLevelAndMaxCodeRate AVP has been received from the RNC. The data type ReferenceLevelAcknowledgeParam is defined below and the corresponding AVP has the structure as shown in Figure 5.118:

```
ReferenceLevelAcknowledgeParam ::=
    SEQUENCE {
        reserved
        BIT STRING (SIZE (7)),
        ack
```


Figure 5.118: ReferenceLevelAcknowledge Bearer Control AVP

The *ack* parameter is always TRUE when this AVP is sent, since a negative acknowledgement is impossible (the UE would have no knowledge that it had missed receiving the ReturnLinkReferenceLevel AVP). One octet is necessary to convey this information since the BCtAVP structure does not support empty AVPs.

5.7.25 ForwardQoSControlParam

This parameter is used to adjust the *response-time* parameter used in the Connection Layer of the UE. The AVP can be broadcast in a *bb-avp-list* or AVPList, or sent to a specific UE in a SpecificAVPList or AVPList SDU. The data type ForwardQoSControlParam is defined below and the corresponding AVP has the structure as shown in Figure 5.119:

```
ForwardQoSControlParam :: =
    SEQUENCE {
        thp
             TrafficHandlingPriority,
        reserved
             BIT STRING (SIZE (3)),
        f-bearer
             FwdBearer.
        response-time
             INTEGER (0..255)
    }
                                                                 (LSB)
                       (MSB)
                                            Bit No
                                            5
                        8
                                     6
                                                         3
                                                                      1
                        0
                               0
                                     0
                                            0
                                                  0
                                                         0
                                                                1
                                                                      0
                                                                              Octet 1
                           thp
                                                            f-bearer
                                                                              Octet 2
                                        reserved
                                         response-time
                                                                              Octet 3
```

Figure 5.119: ForwardQoSControl Bearer Control AVP

If this AVP is broadcast, then all the UEs which operate Acknowledged Mode connection(s) which belong to the specified UMTS Traffic Class and Priority specified in *thp* shall reconfigure these connections with the new *response-time* setting.

The parameter *thp* is defined as follows:

```
TrafficHandlingPriority ::=
   INTEGER {
        traffic-handling-priority-15-or-background (0),
        traffic-handling-priority-1 (1),
        traffic-handling-priority-2 (2),
        traffic-handling-priority-3 (3)
   } (0..3)
```

The parameter value reflects the Traffic Handling Priority received with the RANAP Radio Access Bearer (RAB) AssignmentRequest message if the Core Network requested a RAB setup for an Interactive Class connection. If a Background Class connection was requested by the Core Network then this shall be signalled to the UE as *traffic-handling-priority-15-or-background*.

If the AVP is addressed to a specific connection, the parameter *thp* shall be ignored and the value of *response-time* shall be applied to the specified connection only.

The parameter *f-bearer* specifies which forward bearer the *response-time* value applies. The parameter *response-time* is defined in units of 40 ms.

5.7.26 InitialReferenceLevelParam

This parameter is used to override the default Initial Reference Level behaviour that is used by a UE on this bearer control prior to link adaptation being completed, to determine the power level for the Initial Random Access Burst transmitted by a UE. When utilized, this AVP will be broadcast in a *bb-avp-list* of a Bulletin Board BCtSDU or AVPList. The structure is defined below, with format as shown in Figure 5.120.

```
InitialReferenceLevelParam ::=
    SEQUENCE {
        msb
            BIT STRING (SIZE (1)),
            -- most significant bit of UE-class
            --for all UEs in this list
        cim
            BIT STRING (SIZE (1)),
             - control-index-offset-multiplier
        control-index-base
            ControlIndex,
        ue-init-ref-list
            SEQUENCE SIZE (1..7) OF UeInitialRef
.:= UeInitialRef
    SEQUENCE {
        ue-class-lsb
            INTEGER(0..15),
        -- the least significant 4 bits of the UE class are specified
         -- in this information element
        ctrl-index-offset
            INTEGER (0..15)
        -- Control Index Offset in steps determined by cim:
        -- if cim = 0 then steps are 0.5dB, else 1dB
```


Figure 5.120: InitialReferenceLevelParam BCtAVP

This AVP defines Initial Reference Levels for each UE class that is expected to operate on this Bearer Control, and up to 7 UE classes may be described within each AVP.

The InitialReferenceLevel (in units of 0,5 dB) for each UE class specified in the AVP shall be derived as follows:

 $InitialReferenceLevel = control ext{-}index-base + (1+cim) \times ctrl ext{-}ind-offset$

The behaviour for utilizing the InitialReferenceLevel information is described in ETSI TS 102 744-3-2 [10].

5.7.27 QDiffParam

This parameter is used within an AVPList SDU within an establish or modify SDU to control the reporting of Q-status information for a particular Bearer Connection within the UE Bearer Control. The structure is defined below, with format as shown in Figure 5.121.

```
QDiffParam ::=
INTEGER (0 .. 65535)
```

(MSB)				No		((LSB)			
8	7	: 6	5	4	3	2	1	:		
0	0	0	1	0	0	0	1	Octet 1		
	Octet 2									
								Octet 3		

Figure 5.121: QDiff BCtAVP

Units of QDiff are in bytes. The default value is 1 024 bytes.

5.7.28 SubbandCentreFrequencyOffsetsParam

This parameter is used by RNC to signal to the UE the centre frequency of a 200 kHz subband. A separate value is provided for the forward and return link offset. The structure is defined below, with format as shown in Figure 5.122.

Figure 5.122: SubbandCentreFrequencyOffsets BCtAVP

The value in the *forward-(return)-link-centre-frequency-offset* field shall be multiplied by 1,25 kHz to determine the offset of a 200 kHz subband from a frequency grid aligned to integer multiples of 200 kHz starting at 1 518,000 MHz for the forward and 1 626,500 MHz for the return link. The default value of *forward-(return)-link-centre-frequency-offset* is 80 (equal to 100 kHz) and the AVP is only included if the actual values are different from the default.

5.7.29 SubbandCentreFrequencyOffsetChangeParam

This parameter is used by RNC to signal to the UE changes to the centre frequencies of the 200 kHz subband which may be applicable to parts of the forward or return frequency range. The structure is defined below, with format as shown in Figure 5.123.

Figure 5.123: SubbandCentreFrequencyOffsetChange BCtAVP

The *dir* field determines the direction (forward or return) while the value in the *f-start* field determines the lowest frequency to which the modified subband frequency offset is applicable. The value in the *f-start* field is provided in units of 100 kHz.

If the subband centre frequency offset is changed more than once across the forward and/or return frequency band, then the SubbandCFOffsetChangeInfo elements shall be in ascending order of *f-start*.

The value in the centre-frequency-offset field shall be multiplied by 1,25 kHz to determine the offset of a 200 kHz subband from a frequency grid aligned to integer multiples of 200 kHz starting at 1 518,000 MHz for the forward and 1 626,500 MHz for the return link.

5.7.30 SatelliteLocationParam

5.7.30.0 General

This parameter is used to describe the satellite location to the UE. The information is carried in the bulletin board. A RNC may transmit information about other satellites in the same *bb-avp-list* or broadcast AVPList, but the information about the current satellite (i.e. the satellite via which the information is being transmitted) shall always be the first SatelliteLocation AVP in this AVP List. If the information for a satellite has been modified (i.e. satellite longitude and/or primary and alternate frequencies have changed), the SatelliteLocation AVP corresponding to that satellite shall always contain the *identifying-frequencies* element (i.e. the AVP shall be of length 6). If the information for the current satellite is modified, there shall be two SatelliteLocation AVPs in the AVP list for this satellite: one AVP of length 2 (first in the AVP list) followed by one of length 6. The structure is defined below, with format as shown in Figure 5.124.

Figure 5.124: SatelliteLocation BCtAVP

5.7.30.1 PointOneDegreesLongitude

This field is 12 bits long and describes the location in terms of degrees of longitude East or West to a resolution of 0,1 degrees.

```
PointOneDegreesLongitude ::=
    INTEGER (-2048..2047)
```

The value shall be divided by ten to obtain the satellite location in degrees to an accuracy of 0,1 degree. Positive values of degrees longitude correspond to degrees East; negative values correspond to degrees West. Values in the range -2 048 to -1 801 and 1 800 to 2 047 are invalid.

5.7.31 ChannelNoParam

5.7.31.0 General

This parameter is used to instruct a UE Hardware Unit to tune to the specified channel number. The particular UE Hardware Unit to be tuned is determined by the Translated Bearer Connection Id contained in the SpecificAVPList or the translated Bearer Connection ID of the BCtPDU that carries the AVPList.

The ChannelNoParam AVP may also be included in an AVPList on an LDR or HDR bearer to broadcast a retune instruction to all mobile terminals on the physical bearer. This mechanism is used to allow the RNC to modify a bearer type within a current satellite sub-band.

The structure is defined below, with format as shown in Figures 5.125 and 5.126.

```
ChannelNoParam ::=
    SEOUENCE {
        channel-number
            FwdChannelNumber,
        ack-required
            BOOLEAN,
        f-bearer
            FwdBearer,
        f-bearer-type
            FBearerType
        count-down-field
            SEQUENCE {
                 reserved
                     BIT STRING (SIZE (4)),
                 count-down
                     CountDown
        } OPTIONAL
```


Figure 5.125: ChannelNo BCtAVP (count-down not included)

(MSB	3)											
8	7	6	5	4	3	2	1	<u> </u>				
0	0	0	0	1	0	1	1	Octet 1				
		Octet 2										
		number										
ar		f-bear	Octet 4									
	res	Octet 5										

Figure 5.126: ChannelNo BCtAVP (count-down included)

5.7.31.1 Ack-required

The *ack-required* flag shall be set if an acknowledgement (using mechanism described in ETSI TS 102 744-3-2 [10]) is requested from the particular UE to which the AVP is addressed. This flag shall not be set if the AVP is used to move multiple UE.

5.7.31.2 F-bearer and FBearerType

The *f-bearer* field contains a copy of the *f-bearer* number which is present in the Bulletin Board and represents the number of the bearer within the Bearer Control to which the UE is being asked to tune. The *f-bearer-type* field contains a definition of the Bearer Type of the forward bearer to which the UE hardware is being tuned. The data type FBearerType is defined as follows:

```
FBearerType ::=
    INTEGER {
        -- reserved (0)
        f80t1q4b (1),
        f80t1x4b (2),
        f80t45x8b (3),
        f80t1q1b (4),
        f80t25x4-5b (5),
        f80t25x16-5b (6),
        f80t25x32-6b (7),
        f80t25x64-7b (8),
        f80t5x4-9b (9),
        f80t5x16-9b (10)
        f80t5x32-11b (11),
        f80t5x64-13b (12)
         - reserved (13..15)
        } (0..15)
```

5.7.31.3 CountDown

The count-down parameter in this AVP is used to signal the number of forward frames until the retune instruction is to be actioned by the mobile terminals.

```
CountDown ::= INTEGER (0..15)
```

The information is broadcast on several consecutive frames prior to the RNC changing the bearer type or centre frequency of the bearer. The value of zero indicates that the bearer centre frequency or type will change for the next frame.

5.7.31.4 FwdChannelNumber

The parameter *channel-number* specifies the new receive frequency which the UE shall tune to. The data type FwdChannelNumber is defined as follows:

```
INTEGER (0..32767)
}
```

The parameters offset and channel-index are as specified in clauses 5.4.5.1.1 and 5.4.5.1.2, with the exception that the forward frequency is calculated as follows:

forward frequency [MHz] = channel-index \times 0,0025 + offset \times 0,00125 + 1 510,000

5.7.32 ControlledRandomAccessParam

5.7.32.0 General

This parameter is used to define radio resources in the return direction that may be used for Controlled Random Access purposes. The approach that is taken is to define groups of resources each of which is referenced by a tBCnID value that is specified by the Radio Network Controller and signalled in a Return Schedule. This allows the purpose of the random access resource to be constrained, and also allows control parameters to be transmitted to define the usage.

The ControlledRandomAccessParam AVP applies only to the current return scheduling period (which may be from 160 ms to 640 ms in duration, depending upon the number of slot-plans included in a Return Schedule). A new ControlledRandomAccessParam AVP will be transmitted for each return schedule period.

```
ControlledRandomAccessParam ::=
   SEQUENCE {
   ret-sched-tbcn-id
           TranslatedBearerConnectionID,
   code-rate
           CodeRate,
   rand-param-list
       CHOICE {
           rand-param-list1
               SEQUENCE {
                   prob-access
                                      AccessProbability,
                   priority-access
                                        AccessPriority
                   },
           rand-param-list2
               SEQUENCE {
                   prob-access
                                      AccessProbability,
                   priority-access
                                        AccessPriority,
                                          PowerLevel,
                   max-power
                   min-power
                                          PowerLevel
                   },
           rand-param-list3
               SEQUENCE {
                   prob-access
                                      AccessProbability.
                   priority-access
                                          AccessPriority,
                   max-power
                                          PowerLevel,
                   min-power
                                          PowerLevel,
                                          FregOffsetRange
                   freq-offset-range
           rand-param-list4
               SEQUENCE {
                   prob-access
                                      AccessProbability,
                   priority-access
                                     AccessPriority,
                   max-power
                                          PowerLevel,
                                          PowerLevel,
                   min-power
                   freq-offset-range
                                         FreqOffsetRange,
                   timing-offset-range
                                          TimingOffsetRange
           }
```

As a consequence of the optional information elements, the AVP may be variable length. The most relevant optional information elements are specified first to allow the optional inclusion of these elements without the requirement for presence flags. Illustrations of the shortest and longest variants for the RandomAccessBearer AVP are provided in Figures 5.127 and 5.128. For a definition of CodeRate, refer to clause 5.7.16.2.

(MS	B)				Bi	t N	lo (LSB)								
8	: 7	7	: 6	;	5	:	4	:	3	:	2	:	1	:	
1	()	0)	0		0		0		1		0		Octet 1
		ret-sched-tbcn-id										Octet 2			
	code-rate												Octet 3		
	prob-access priority-access													Octet 4	

Figure 5.127: ControlledRandomAccess BCtAVP (Minimum parameter list)

(MSB) Bit	Bit No (LSB)											
8 7 6 5	: 6 : 5 : 4 : 3 : 2 : 1											
1 0 0 0	0 1 0 1	Octet 1										
ret-sche	d-tbcn-id	Octet 2										
	code-rate											
prob-access	priority-access	Octet 4										
max-power												
freq-offs	Octet 6											
timing-off	Octet 7											

Figure 5.128: ControlledRandomAccess BCtAVP (all control parameters shown)

5.7.32.1 AccessProbability

The *AccessProbability* field is used to control the rate at which mobile terminals may access the random access slots. The probability of access may be modified in the range from 1/16 to 1.

```
AccessProbability ::=
INTEGER (1..16) -in units of 0.0625
```

A value of 16 corresponds to a probability of 1, which allows the mobile terminal to use the random access slots at any time as required. A value of 1 corresponds to a probability of 1/16, which allows a mobile terminal that needs to transmit to use each time slot with a probability of 1/16.

5.7.32.2 AccessPriority

The *AccessPriority* field is used to control the priority of connections from mobile terminals which may utilize the random access slots identified by this tBCnId. The *Access Priority* field allows 16 levels of priority which are directly mapped from RABAccessPriority defined in ETSI TS 102 744-3-5 [13] and allocated by the RNC during the RAB establishment procedure. The value of 0 has the lowest Access Priority. Common signalling shall use an implicit *AccessPriority* value of 15, while UE specific signalling connections shall use an implicit *AccessPriority* value of 14. The rules for use of Access Priority are defined in ETSI TS 102 744-3-2 [10].

```
AccessPriority ::= INTEGER (0..15)
```

5.7.32.3 PowerLevel

This parameter is used to define the EIRP range to be used by a mobile terminal when transmitting in a particular time-slot. This may be modified dynamically by the RAN. These values are specified as power level values, which represent relative increases in units of dB from the Nominal Reference Level required to close the link, as defined in the Bearer Tables annex to ETSI TS 102 744-2-1 [8]. If the PowerLevel information element is absent then the mobile terminal shall transmit at the nominal reference level for this bearer type, subject to any constraints regarding maximum backoff level for this UE class (i.e. the mobile terminal EIRP shall always be equal to or greater than the minimum EIRP for this bearer type, code rate and UE class).

```
PowerLevel ::=
INTEGER (0..15) -- in units of 1 dB
```

The parameter controls the minimum or maximum power level increase relative to the nominal Reference Level power level for this bearer in this type of spot beam (Reference Level values for each bearer type are specified in the physical layer chapter of the SDM). The parameter is specified in units of 1 dB.

5.7.32.4 FrequencyOffsetRange

This parameter is used to override the default Frequency Offset Range to be used by a mobile terminal when transmitting in a particular time-slot on a particular channel. This frequency offset range is relative to the centre frequency as defined by the channel number.

```
FreqOffsetRange ::=
    INTEGER (0..255)
-- Controls the maximum frequency offset from the nominal centre frequency value as specified by the Channel Number. Specified in units of 10Hz The default Frequency Offset Range value is 50, corresponding to a default frequency randomisation of +/- 500Hz.
```

5.7.32.5 Timing Offset Range

This parameter is used to define the relative Timing Offset Range to be used by a mobile terminal when transmitting in a particular time-slot on a particular channel. This timing offset range is relative to the nominal start time for each timeslot. The UE shall randomise over the specified Timing Offset Range when utilizing Controlled Random Access mode.

```
TimingOffsetRange ::=
    INTEGER (0..255)
-- Controls the maximum timing offset from the nominal correct timing value for this slot.
Specified in units of 1 symbol with a symbol in this context being referenced to the T1 bearer type (33,600 Bd). The default value is 50, corresponding to 50 symbols of timing offset randomisation.
```

5.7.33 SharedReservationAccessParam

5.7.33.0 General

Shared Reservation Access mode is used for access to LDR bearers when used for radio access bearers supporting streaming services, or for whenever a background or interactive radio access bearer requires capacity for a duration. The Bearer Connection requiring temporary radio resources is mapped to a "return-schedule-tBCnID" by the RNC, where this tBCnId is used solely for the purposes of identifying return radio resources for a specified period and is the value that will be used in the Return Schedule. The mobile terminal when using the allocated resources will always use the connection-specific tBCnID or BCnID in the return burst construct (as required for operation with the signalled bearer type).

```
SharedReservationAccessParam ::=
    SEQUENCE {
        tbcn-id
           TranslatedBearerConnectionID,
        return-schedule-tbcn-id
           TranslatedBearerConnectionID,
        resv-param-list
            CHOICE {
                resv-param-list1
                    SEQUENCE {
                        code-rate1
                                        CodeRate,
                        power-level1
                                        PowerLevel
                    },
                resv-param-list2
```

```
SEQUENCE {
            code-rate2 CodeRate,
            power-level2
                           PowerLevel,
            res-duration2
                           ReservationDuration
        },
    resv-param-list3
        SEQUENCE {
            code-rate3 CodeRate,
            power-level3
                            PowerLevel,
            res-duration3
                            ReservationDuration,
            freq-offset3
                            FreqOffset
        },
    resv-param-list4
        SEQUENCE {
            code-rate4 CodeRate,
            power-level4
                           PowerLevel,
                            ReservationDuration,
            res-duration4
            freq-offset4
                            FreqOffset,
            timing-offset4 TimingOffset
        },
    resv-param-list5
        SEQUENCE {
            code-rate5 CodeRate,
            power-level5
                            PowerLevel,
            res-duration5
                            ReservationDuration.
            freq-offset5
                            FreqOffset,
            timing-offset5 TimingOffset,
            dtx-interval5
                            DTXInterval
        }
}
```

The AVP may be of variable length (4, 5, 6, 7 or 8 octet payload), as illustrated in Figure 5.129:

Figure 5.129: SharedReservationAccess AVP Descriptor with resv-param-list1

The duration of the association between the connection specific 'tBCnID' and the 'return-schedule-tBCn-ID' is specified by the RNC using the 'reservation-duration' information element in this AVP. For the case above, whereby this BCtAVP only contains the CodeRate and Backoff, the persistence of the association is a single return schedule duration (i.e. the duration of the association applies to the return schedules received in the same forward frame as the SharedReservationAccess AVP). When the association needs to be for a longer duration, the RNC will include a ReservationDuration information element within the BCtAVP, as shown in Figure 5.130.

(MS	3B)	.SB)										
8	7	6	5	4	3	2	1					
1	0	0	0	1	1	0	0	Octet 1				
			tbcr	n-id				Octet 2				
	return-schedule-tbcn-id											
	cod	Octet 5										
	reservation-duration											

Figure 5.130: SharedReservationAccess AVP Descriptor with resv-param-list2

For improved dispersion of the transmitted signals, the RNC may optionally specify a particular frequency offset range for the transmissions from the mobile terminal, as shown in the version of the BCtAVP in Figure 5.131.

(MSE	3)	Bit No (LSB)												
8	7	6 5 4 3 2 1												
1	0		0		0		1		1		0		1	Octet 1
					tb	cn-	-id							Octet 2
												Octet 3		
	return-schedule-tbcn-id											Octet 4		
	code-rate power-level												Octet 5	
reservation-duration											Octet 6			
freq-offset											Octet 7			

Figure 5.131: SharedReservationAccess AVP Descriptor with resv-param-list3

For optimal dispersion of the transmitted signals, the RNC may optionally specify a particular frequency and timing offset for the transmissions from the mobile terminal, as shown in the version of the BCtAVP in Figure 5.132.

(MSB) Bit	(LSB)												
8 7 6 5	6 5 4 3 2 1												
1 0 0 0	0 0 0 1 1 1 0												
tbc	n-id		Octet 2										
	Octet 3												
return-sche	return-schedule-tbcn-id												
code-rate	power-	level	Octet 5										
reservatio	reservation-duration												
freq-	Octet 7												
timing	Octet 8												

Figure 5.132: SharedReservationAccess AVP Descriptor with resv-param-list3

To override the default DTX interval, the RNC may specify the DTX interval using the following construct for the BCtAVP, as shown in Figure 5.133.

(MSB)	Bit No		B)									
8 7 6	5 4	3	2	1								
1 0 0	0 1	1	1	1	Octet 1							
	tbcn-id				Octet 2							
					Octet 3							
return-	Octet 4											
code-rate		power-l	evel		Octet 5							
reser	vation-durat	ion			Octet 6							
	freq-offset											
ti	ming-offset				Octet 8							
		Octet 9										

Figure 5.133: SharedReservationAccess AVP Descriptor with resv-param-list4 (multiple return schedule duration with freq & timing offset control & DTX override)

CodeRate is defined in clause 5.7.16.2 and PowerLevel is defined in clause 5.7.32.3.

5.7.33.1 Reservation Duration

This parameter is used to define the duration of the reservation in slot-plans:

```
ReservationDuration ::=
INTEGER (0..255) -- in units of slot-plans
```

For example, when the value is 1, the association applies to a single 160 ms duration. When the value is 4 it corresponds to 640 ms duration, and when it is 16 it corresponds to 2 560 ms.

If this parameter is absent, or has a value of 0, the association applies to all slot-plans in any Return Schedules transmitted in the same FEC block as the SharedReservationAccess AVP. In this case, if there are two slot-plans in the Return Schedule, then the Reservation Duration is implicitly 320 ms.

5.7.33.2 FrequencyOffset

This parameter is used to override the default Frequency Offset to be used by a mobile terminal when transmitting in a particular time-slot on a particular channel. This frequency offset is relative to the centre frequency as defined by the channel number.

```
FreqOffset ::=
   INTEGER (-128..127)
-- Controls the frequency offset from the nominal centre frequency value as specified by the Channel Number. Specified in units of 10Hz The default Frequency Offset value is 0.
```

5.7.33.3 Timing Offset

This parameter is used to define the relative Timing Offset to be used by a mobile terminal when transmitting in a particular time-slot on a particular channel. This timing offset is relative to the normal transmit slot position of the UE with its timing corrected in primary or secondary timing mode (i.e. including Self Imposed Delay).

```
TimingOffset ::=
    INTEGER (0..255)
-- Controls the maximum timing offset from the nominal correct timing value for this slot.
Specified in units of 1 symbol with a symbol in this context being referenced to the T1 bearer type (33,600 Bd). The default value is 0.
```

5.7.33.4 DTXInterval

This parameter is used to override the default DTX Interval to be used by a mobile terminal.

```
DTXInterval ::=
    INTEGER (0..255)
-- Specified in units of 1 second. The default DTX Interval value is 10.
```

5.7.34 PLMNInfoParam

5.7.34.0 General

This parameter is used to broadcast a PLMN-ID (Public Land Mobile Network Identity) to all UEs. The structure is defined below, with format as shown in Figures 5.134 and 5.135.

```
PLMNInfoParam ::=
    SEQUENCE {
        plmn-identity
            SEQUENCE {
                mcc
                    SEQUENCE SIZE (3) OF Digit,
                mnc
                    SEQUENCE SIZE (3) OF Digit,
            }
        extension
            SEQUENCE {
                plmn-index
                    INTEGER (0..15),
                reserved
                    BIT STRING (SIZE (4))
            } OPTIONAL
    }
```

(MSB) Bit 1						Ν	0						
8		7	:	6		5	:	4	3	:	2	1	
1		1		1		1		0	0		1	0	Octet 1
	m	cc ((1st	dig	it)			ı	ncc (2	2 nd	digi	t)	Octet 2
	m	cc (3 rd	dig	it)			ı	mnc (1 st (digit	t)	Octet 3
	mı	nc (2 nd	dig	it)			ı	mnc (3 rd (digi	t)	Octet 4

Figure 5.134: PLMNInfo BCtAVP (single PLMN supported)

(MS	B)					Bit	N	No (LSB)								
8	:	7	:	6	:	5	:	4	:	3	:	2	:	1	:	
1		1		1		1		0		0		1		1		Octet 1
	mo	cc (1 st	digi	it)				m	ncc (2 nd	dig	it)			Octet 2
	mo	cc (3 rd	dig	it)		mnc (1st digit)									Octet 3
	mr	nc (2	2 nd	d digit) mnc (3 rd digit)									Octet 4			
	р	lmr	n-in	dex	(res	erv	⁄ed				Octet 5

Figure 5.135: PLMNInfo BCtAVP (multiple PLMNs supported)

5.7.34.1 Plmn-identity

The parameter *plmn-identity* shall be encoded as specified in [2], clause 12.1. If the Mobile Network Code (*mnc*) consists of two digits only, then the third digit shall be set to 0xF (i.e. not in the valid range of 0 to 9) and shall be ignored by the UE.

5.7.34.2 Plmn-index

If only one PLMN is supported by the Global Beam Common Channel on which this AVP is broadcast, then the *extension* octet is not present. If more than one PLMN needs to be supported, then one PLMN-ID Bearer Control AVP is transmitted for each PLMN and the *extension* octet is included. In this case, the parameter *plmn-index* shall be set to zero for the first PLMN-ID and then incremented by one for each additional PLMN-ID being broadcast.

5.7.35 SleepModeParam

5.7.35.0 General

This parameter is used to define the sleep-mode operation of the UE. Sleep mode AVPs are only sent in an AVPList SDU which forms part of a BCtSDU-List attached to Adaptation layer signalling. The structure is defined below, with format as shown in Figure 5.136.

```
SleepModeParam ::=
    SEQUENCE {
        idle-count
            INTEGER (0 .. 15),
        logperiod
            INTEGER (0 .. 15),
        start-offset
            INTEGER (0 .. 4095),
        on-period
            INTEGER (0 .. 4095)
}
```


Figure 5.136: SleepMode Bearer Control AVP

5.7.35.1 Logperiod

The *logperiod* value is used to specify the duration of the sleep mode period as follows:

```
sleep\_mode\_period = 2^{logperiod}
```

where sleep mode period is counted in frames (each frame is 80 ms duration). Since the frame number increments from 0 through to 2^{12} -1 and then resets to zero, a sleep mode period that is a power of 2 ensures that there are an exact number of sleep mode periods within the frame numbering space.

5.7.35.2 Start-offset

The frame numbers (*m*) of those frames where the UE is ready to receive after an inactive period (start of on-period) is calculated from the value of *start-offset* as follows:

```
m = (start\_offset + n \times sleep\_mode\_period) MOD 2^{12}
```

where n is an integer between 0 and $2^{(12\text{-logperiod})}-1$.

5.7.35.3 On-period

The *on-period* defines the minimum duration for which the UE shall receive the forward bearer. *On-period* is specified in units of 80 ms frames.

The off-period duration can be calculated by subtracting on-period from sleep_mode_period.

5.7.35.4 Idle-count

Once the UE has left sleep mode in order to transmit BCtPDUs to the RNC, it shall continuously receive the forward bearer for at least the *idle-period*, which is determined as follows:

```
idle-period = sleep\_mode\_period \times idle-count
```

Any further signalling activity by the UE during the *idle-period* shall cause the *idle-period* to be restarted. If no activity occurs within the *idle-period*, the UE may re-enter sleep mode operation.

5.7.36 PrimaryBearerParam

5.7.36.0 General

This parameter is used to specify the Primary Shared Access Bearer to be used by UEs located in the referenced spot-beam. The structure is defined below, with format as shown in Figures 5.137 and 5.138.

```
PrimaryBearerParam ::=
    SEQUENCE {
        spotbeam-id
            SpotBeamID,
        channel-number
            FwdChannelNumber,
        plmn-index-included
            BOOLEAN,
        f-bearer
            FBearer,
        f-bearer-type
            FBearerType,
        extension
            SEQUENCE {
                plmn-index
                    INTEGER (0..15),
                reserved
                    BIT STRING (SIZE (4))
            } OPTIONAL,
        class-control
            CHOICE {
                cc-8
                    BIT STRING (SIZE (8)),
                cc-16
                    BIT STRING (SIZE (16)),
                cc-24
                    BIT STRING (SIZE (24))
        } OPTIONAL
```

(MSE	3)											
8	7	6	1									
0	0	0	1	1	1	0	0	Octet 1				
	spotbeam-id											
	channel											
			num	ber				Octet 4				
0	0 f-bearer f-bearer-type											
	Octet 6											

Figure 5.137: PrimaryBearer BCtAVP (with 8 bit *class-control* field, *plmn-index* not included)

(MSE	(MSB) Bit No (LSB) 8 7 6 5 4 3 2 1											
8	7	6										
0	0	Octet 1										
		Octet 2										
	channel											
	number											
1		f-bear	er		f-bea	rer-typ	е	Octet 5				
	plmn-index reserved											
	class-control (class 81)											
	Octet 8											

Figure 5.138: PrimaryBearer Bearer Control AVP (with 16 bit *class-control* field and *plmn-index* included)

The data type SpotBeamID is defined in clause 5.4.4.7 while the data type FwdChannelNumber is defined in clause 5.7.32.5.

5.7.36.1 F-bearer and F-Bearer Type

The *f-bearer-type* field specifies the type of forward bearer of the specified Primary Bearer. The data type FBearerType is defined in clause 5.7.31.2.

The field *f-bearer* and its purpose is defined in clause 5.4.4.5.

5.7.36.2 Class-control

The *class-control* field is a bitmap that indicates which classes of UEs may use the Primary Bearer that is specified in this AVP. A UE may use the specified bearer if the corresponding bit is set in the bitmap. The size of the bitmap may be either 8, 16 or 24 bits and can be determined from the *prmlen* field in the AVP header and whether the *extension* octet is present. If the size of the *class-control* field is 16 bits, then the first octet shall relate to UE classes 8 through to 1 and the second octet shall relate to UE classes 16 through to 9. If the size of *class-control* is 24 bits then the third octet shall relate to UE classes 24 through to 17. If the *class-control* field is present in any form, the default interpretation for any octet of the bitmap which is not signalled shall be 0x00.

5.7.36.3 Plmn-index

Optionally, the parameter *plmn-index* may be present in the Primary Bearer AVP. In this case, a UE shall only select the advertized Primary Bearer if the *plmn-index* in this AVP is identical to the *plmn-index* included in the PLMNInfo AVP (see clause 5.7.34) that relates to the PLMN selected by the UE.

5.7.37 SatelliteStateVectorsParam

5.7.37.0 General

This parameter describes the exact position of the satellite in relation to its nominal position and allows the UE to calculate the round trip time to and from the satellite. The structure is defined below, with format as shown in Figure 5.139.

Figure 5.139: SatelliteStateVectors Bearer Control AVP

5.7.37.1 Interval

The *interval* value is used to specify the duration of the interval until the transmission of the next set of state vectors in units of 512 frames of 80 ms duration. This field is used to allow UEs entering sleep mode to be switched on in time to receive a new state vector AVP.

5.7.37.2 X-Vector, Y-Vector, Z-Vector

The satellite state vectors are given by the parameters *x-vector*, *y-vector* and *z-vector* in units of 488 m. These parameters are represented as a signed (two's-complement) integer.

5.7.38 Type0QoSParam

5.7.38.0 General

This parameter carries data used to inform the UE of the return QoS information used to control both connection and Bearer Control Layer behaviour for a specific connection. Type0QoS AVPs are only sent in an AVPList SDU which forms part of a BCtSDU-List attached to Connection layer signalling. Other Connection QoS AVPs may be defined in future. The structure is defined below, with format as shown in Figure 5.140.

Figure 5.140: Typ0QoS BCtAVP

5.7.38.1 Return-target-latency

The parameter *return-target-latency* is used to specify the return target latency (RetL) for the connection being established. RetL is derived as follows:

RetL ::= return-target-latency × 80 ms.

The default value for return-target-latency shall be 30, resulting in a default value of RetL of 2,4 seconds.

5.7.38.2 Return-discard-latency

The parameter *return-discard-latency* is used to specify the return discard latency (RetDiscardL) for the connection being established. RetDiscardL is derived as follows:

If (return-discard-latency > 0)

RetDiscardL ::= return-discard- $latency \times 20 \text{ ms}$

Else

RetDiscardL ::= Infinity

The default value for *return-discard-latency* shall be 3 000, resulting in a default value of RetDiscardL of 60 seconds. A value of 0 in *return-discard-latency* indicates that the data should never be discarded.

5.7.38.3 Return-mean-rate

The parameter *return-mean-rate* is used to define the mean rate (the rate at which this connection will nominally be serviced) in the return direction for the connection being established. The Return Mean Rate (RetMeanRate) is derived as follows:

RetMeanRate ::= return-mean-rate × 32 bytes/second

The default value for *return-mean-rate* is 20, resulting in a RetMeanRate value of 640 bytes/second or 5 120 bits/second.

5.7.38.4 Return-peak-rate

The parameter *return-peak-rate* is used to define the peak rate (the maximum rate at which this connection will be serviced) in the return direction for the connection being established. The Return Peak Rate (RetPeakRate) is derived as follows:

RetPeakRate ::= return-peak-rate × 32 bytes/second

The default value for *return-peak-rate* is 80, resulting in a RetPeakRate value of 2 560 bytes/second or 20 480 bits/second.

5.7.39 LeapSecondParam

This parameter is provided to allow UEs to calculate true UTC time from the GPS UTC time provided by the UTCDateAndTime AVP. The parameter is defined below and its structure is shown in Figure 5.141.

```
LeapSecondParam ::=
    INTEGER (-128..127)
```

	(MSB) Bit No															
:	8	:	7	÷	6	:	5	:	4	:	3	÷	2	:	1	:
	1		0		1		0		1		0		0		0	Octet 1
						L	eap	Se	con	d						Octet 2

Figure 5.141: LeapSecond BCtAVP

5.7.40 NASSystemInfoParam

This parameter is used to carry the Information Elements (IEs) required by the Non-Access-Stratum (NAS) Mobility Management entities of the UE. The contents are not interpreted by the Bearer Control Layer but passed directly to the Adaptation Layer, hence the type definition within the Bearer Control Layer is as follows.

```
NASSystemInfoParam ::=
   OCTET STRING (SIZE (1..8))
```

The information elements used within the Non Access Stratum at the UE are mapped onto the structure as shown in ETSI TS 124 008 [4], clause 10.5.1.12, and are illustrated in Figure 5.142. For a definition of the data types and its purpose refer to ETSI TS 124 008 [4], clause 10.5.1.12.

(MSB)			Bit	No		(1		
8	7	6	5	4	3	2	1	
1	1	1	1	1	1	0	1	Octet 1
			L	AC				Octet 2
			Octet 3					
			Octet 4					
			Octet 5					
			Octet 6					
		Octet 7						

Figure 5.142: NAS-SystemInfo BCtAVP (with mapping of NAS Information elements)

5.7.41 UTCDateAndTimeParam

This parameter specifies the GPS UTC date and time the forward bearer transmitted a frame with frame number zero (as indicated in the Bulletin Board SDU, see clause 5.4.4.3). It is used to broadcast the current time to UEs in order to assist GPS acquisition.

The GPS time transmitted in this AVP differs from UTC by the integer LEAP seconds (the value of LEAP was 14 on 1 January 2006 and is likely to change in future). The value broadcast by the RNC shall be the GPS time, and hence can be used directly by the UE without correction for the unknown value LEAP.

The structure is defined below, with format as shown in Figure 5.143.

```
UTCDateAndTimeParam ::=
    SEQUENCE {
        year
            INTEGER (2000..2127),
        month
            INTEGER (0..15),
            INTEGER (0..31),
        hours
            INTEGER (0..31),
        minutes
            INTEGER (0..63),
        seconds
            INTEGER (0..63),
        ten-milli-seconds
            INTEGER (0..127)
    }
```

(MSB))		Bit	No		(L	_	
8	7	6	5	4	3	2	1	
1	1	0	1	0	1	0	0	Octet 1
			year				<	Octet 2
	mon	nth >	day					Octet 3
		hours			V	minute	Octet 4	
minutes (cont) > < seconds								Octet 5
>	> ten-milli-seconds							Octet 6

Figure 5.143: UTCDateAndTime BCtAVP

5.7.42 TMPayloadPositionParam

5.7.42.0 General

This parameter is used within an AVPList SDU within a connection-specific BCtPDU to specify the position of the next Transparent Mode BCnPDU (BCtPDU payload), enabling the UE to recover the next BCnPDU for that connection, even if the CRC fails. The AVP is only present if the connection supports the delivery of erroneous PDUs. The structure is defined below, with format as shown in Figure 5.144.

```
TMPayloadPositionParam ::=
    SEQUENCE {
        reserved
             BIT STRING (SIZE (3)),
         fec-block-num
            INTEGER (0..7),
        start-pos
             INTEGER (0..1023)
    }
                                                                 (LSB)
                       (MSB)
                                            Bit No
                               7
                                     6
                                            5
                                                  4
                                                         3
                                                               2
                                                                      1
                         1
                               1
                                     0
                                            1
                                                  1
                                                         0
                                                               0
                                                                      1
                                                                              Octet 1
                                     fec-block-num
                        reserved
                                                                              Octet 2
                                                       <
                                            start-pos
                                                                              Octet 3
```

Figure 5.144: TMPayloadPosition BCtAVP

5.7.42.1 Fec-block-num

This parameter specifies the number of the FEC block containing the next BCnPDU for the connection, where *fec-block-num* = 0 refers to the first block in the frame, regardless of the FEC block in which the AVP is transmitted.

5.7.42.2 Start-pos

This parameter specifies the number of the first octet of the Transparent Mode BCnPDU within the FEC block for the connection where *start-pos* = 0 refers to the first octet within the FEC block.

5.7.43 GPSPolicyInfoParam

The GPSPolicyInfoParam provides information regarding the GPS Policy as it is enforced by the RNC in the beam (Location Area) in which it is broadcasted and allows the UE to optimize its GPS acquisition strategy. The parameter has the following structure, with format as shown in Figure 5.145:

```
GPSPolicyInfoParam ::=
    SEQUENCE {
        position-quality
        PositionQuality,
```

```
gps-display-enable
    GPSDisplayEnable,
position-accuracy
    PositionAccuracy,
loa
    LOA,
position-age
    PositionAge
```

}

Figure 5.145: GPSPolicyInfo BCtAVP

The parameter *position-quality* specifies the type of position information which the RNC expects during the registration process. The data type PositionQuality is defined as follows:

The flag *gps-display-enable* (abbreviated as gde in Figure 5.145) indicates if TRUE that it is permitted to make the GPS coordinates accessible to the user in the current spot beam (Location Area). The type GPSDisplayEnable is defined as follows:

```
GPSDisplayEnable ::= BOOLEAN
```

The parameter *position-accuracy* specifies the minimum number of GPS satellites that shall be used to obtain a position fix:

```
PositionAccuracy ::=
   INTEGER (0..15)
   -- minimum number of satellites for GPS fix
```

The parameter *loa* (loss of acquisition) specifies the maximum time in minutes for which the signal from the Forward Bearer received by the UE may be lost.

```
LOA ::=
INTEGER (0..255)
-- maximum LOA time in minutes
```

The parameter *position-age* specifies the maximum time in minutes for which the last GPS fix will be accepted by the RNC:

```
PositionAge ::=
INTEGER (0..65535)
-- maximum fix age in minutes
```

5.7.44 ReturnLinkReferenceLevelSetParam (Extension Class UE Only)

This parameter is used within a SpecificAVPList or AVPList SDU to set the reference levels for the return link adaptation for a set of bearer types for a particular UE Hardware Unit. It also includes a transmit power backoff value or a backoff range over which the UE can trade-off transmit EIRP versus coding rate. The particular UE Hardware Unit that the AVP is intended for is determined by the translated Bearer Connection ID contained in the SpecificAVPList SDU or the translated Bearer Connection ID of the BCtPDU used to carry the AVPList SDU. On occasion it may be necessary to send multiple instances of this parameter with different values of *bearer-set* to ensure all bearer types being used by the translated Bearer Connection are represented. The structure is defined below, with format as shown in Figure 5.146.

Figure 5.146: ReturnLinkReferenceLevelSet BCtAVP

The parameter *reference-level* is of data type Controllndex which is specified in clause 5.4.12.6. UE classes that support wrap around of control index shall interpret the received reference-level value according to the following rule:

```
If (reference-level < 16) then

reference-level = reference-level + 64

EndIf
```

The parameter backoff shall be used in different ways depending on the value of mode, as shown in Table 5.21.

When any Bearer Type within the bearer-set is not applicable for a UE class the value of the parameter ReferenceOffset will be set to 31.

5.7.45 InitialReferenceLevelSetParam (Extension Class UE Only)

This parameter is used within a SpecificAVPList or AVPList SDU to change the initial reference levels for the return link adaptation for a set of bearer types for a particular UE Hardware Unit without causing the current reference levels to be changed. It has the same structure as the *ReturnLinkReferenceLevelSetParam*. The structure is defined below, with format as shown in Figure 5.147.

```
InitialReferenceLevelSetParam ::=
    SEQUENCE {
        bearer-set
            INTEGER (0..3),
        reference-level
             ControlIndex,
        backoff
             INTEGER (0..15),
        mode
             INTEGER (0..3),
        reference-offsets
             SEQUENCE SIZE (10) OF ReferenceOffset
ReferenceOffset ::= INTEGER (0..31)
                       (MSB)
                                            Bit No
                                                                 (LSB)
                               7
                                            5
                                                  4
                                                               2
                                                                     1
                        8
                                     6
                                                         3
                               0
                         1
                                     1
                                                         1
                                                               1
                                                                      1
                                                  0
                                                                              Octet 1
                                               reference-level
                                                                              Octet 2
                       bearer-set
                                                              < offset-0
                               backoff
                                                   mode
                                                                              Octet 3
                           offset-0 >
                                                     offset-1
                                                                              Octet 4
                                                 <
                                                                >
                              < offset-2
                                                              offset-3
                                                                              Octet 5
                       offset-3 >
                                           <
                                               offset-4
                                                                              Octet 6
                                                                      <
                              offset-5
                                                       <
                                                          offset -6
                                                                              Octet 7
                                                              < offset-8
                        >
                                     <
                                         offset-7
                                                                              Octet 8
                          offset-8
                                                     offset-9
                                                                              Octet 9
```

Figure 5.147: InitialLinkReferenceLevelSet BCtAVP

5.7.46 BeamInfoParam

This AVP provides the UE with the type and identity of the current satellite beam (i.e. the beam in which the current forward bearer is being transmitted). The structure is defined below, with format as shown in Figure 5.148.

```
BeamInfoParam ::=
    SEQUENCE {
        reserved
            BIT STRING (SIZE(5)),
        satellite-beam-type
            INTEGER {
                 global(0),
                 regional(1),
                 narrow(2)
            } (0..7),
        current-spot-beam-id
            SpotBeamID
    }
                      (MSB)
                                           Bit No
                                                                (LSB)
                                                                    1
                        8
                              7
                                     6
                                           5
                                                 4
                                                        3
                                                              2
                                                        0
                        0
                              0
                                     1
                                           0
                                                 0
                                                              0
                                                                    1
                                                                            Octet 1
                                 reserved
                                                        sat-beam-type
                                                                            Octet 2
                                                                            Octet 3
                                    current-spot-beam-id
```

Figure 5.148: BeamInfo BCtAVP

5.7.47 ForwardCarrierLossParam (Extension Class UE Only)

This parameter is used to define the forward carrier synchronization loss timer duration of the UE. Forward Carrier Loss AVPs are only sent in an AVPList SDU which forms part of a BCtSDU-List attached to Adaptation layer signalling. The structure is defined below, with format as shown in Figure 5.149.

```
ForwardCarrierLossParam ::=
    SEQUENCE {
        sync-loss-timer
             INTEGER (1 .. 256)
                       (MSB)
                                            Bit No
                                                                 (LSB)
                                     6
                                            5
                         8
                                                         3
                         0
                                      1
                                            0
                                                         0
                                                               0
                               1
                                                  0
                                                                      0
                                                                              Octet 1
                                        sync-loss-timer
                                                                              Octet 2
```

Figure 5.149: ForwardCarrierLoss Bearer Control AVP

sync-loss-timer is in units of seconds. If this AVP is absent the default value defined in ETSI TS 102 744-3-2 [10] is used.

5.7.48 MaxReturnCodeRateParam (Extension Class UE Only)

This parameter is used within a SpecificAVPList or AVPList SDU to set the maximum code rate the UE can use on each bearer type. The particular UE Hardware Unit that the AVP is intended for is determined by the translated Bearer Connection ID contained in the SpecificAVPList SDU or the translated Bearer Connection ID of the BCtPDU used to carry the AVPList SDU. On occasion it may be necessary to send multiple instances of this parameter with different values of *bearer-set* to ensure all bearer types being used by the translated Bearer Connection are represented. The structure is defined below, with format as shown in Figure 5.150.

```
MaxReturnCodeRateParam ::=
    SEQUENCE {
        bearer-set
             INTEGER (0..3),
        reserved
            BIT STRING (SIZE(6)),
        max-code-rates
             SEQUENCE SIZE (10) OF CodeRate
CodeRate ::= INTEGER (-8 .. 7)
                                           Bit No
                                                                 (LSB)
                       (MSB)
                               7
                                           5
                                                               2
                                     6
                                                                     1
                        8
                                                        3
                                     1
                                                  1
                                                        1
                                                               0
                                                                     1
                                                                             Octet 1
                       bearer-set
                                                 reserved
                                                                             Octet 2
                             code-rate-0
                                                      code-rate-1
                                                                             Octet 3
                             code-rate-2
                                                      code-rate-3
                                                                             Octet 4
                             code-rate-4
                                                      code-rate-5
                                                                             Octet 5
                             code-rate-6
                                                      code-rate-7
                                                                             Octet 6
                             code-rate-8
                                                      code-rate-9
                                                                             Octet 7
```

Figure 5.150: MaxReturnCodeRate Bearer Control AVP

5.7.49 InitialReferenceLevelAndMaxCodeRateParam

This parameter is used within a SpecificAVPList or AVPList SDU to set the initial reference levels and maximum return code rate used for the return link adaptation for two bearer types for a particular UE Hardware Unit. The return bearer types to which the offset and maximum code rate values are applicable are included in the message as ReturnBearerTypeFull immediately preceding each offset/code-rate pair.

It also includes a transmit power backoff value or a backoff range over which the UE can trade-off transmit EIRP versus coding rate. The particular UE Hardware Unit that the AVP is intended for is determined by the translated Bearer Connection ID contained in the SpecificAVPList SDU or the translated Bearer Connection ID of the BCtPDU used to carry the AVPList SDU.

The parameter *backoff* shall be used in different ways depending on the value of *mode*, as defined in Table 5.21. The structure is defined below, with format as shown in Figure 5.151.

```
InitialReferenceLevelAndMaxCodeRateParam ::=
    SEOUENCE {
        reference-level
            ControlIndex,
        reserved
            BIT STRING (SIZE(2)),
        backoff
            INTEGER (0..15),
        mode
            INTEGER (0..3),
        r-bearer-type-0
            ReturnBearerTypeFull,
        offset-0
            ReferenceOffset,
        code-rate-0
            CodeRate,
        r-bearer-type-1
            ReturnBearerTypeFull,
        offset-1
            ReferenceOffset,
        code-rate-1
            CodeRate
ReferenceOffset ::= INTEGER (0..31)
CodeRate ::= INTEGER (-8 .. 7)
                                            Bit No
                                                                 (LSB)
                        (MSB)
                                                               2
                         8
                                     6
                                            5
                                                  4
                                                        3
                                                                     1
                               0
                                     1
                                            1
                                                  1
                                                        1
                                                               0
                         1
                                                                     0
                                                                             Octet 1
                                  reference-level
                                                              reserved
                                                                             Octet 2
                               backoff
                                                   mode
                                                              < r-bearer
                                                                             Octet 3
                        -type-0 >
                                               offset-0
                                                                     <
                                                                             Octet 4
                         code-rate-0 >
                                              r-bearer-type-1
                                                                     <
                                                                             Octet 5
                             offset-1
                                                      code-rate-1
                                                                             Octet 6
```

Figure 5.151: InitialReferenceLevelAndMaxCodeRate Bearer Control AVP

5.7.50 RandomisedInitialAccessDelayParam

This parameter is used within a broadcast avp-list to signal a time period over which the UE shall randomise its initial registration attempts. This AVP would typically be broadcast immediately after a site switch, to smooth out the rate at which UEs are allowed to reconnect to the network. The structure is defined below, with format as shown in Figure 5.152.

```
RandomisedInitialAccessDelayParam ::=
    SEQUENCE {
    initial-fixed-delay
```

```
INTEGER (0..255),
scaling
INTEGER (0..3),
randomised-delay-interval
INTEGER (0..63)
```

}

(MSB)				Bit No						(LSB)					
8		7	:	6		5	:	4	:	3		2	:	1	: : :
1		1		1		0		1		0		0		1	Octet 1
				initial-fixed-delay							Octet 2				
scaling randomised-delay-interval							Octet 3								

Figure 5.152: RandomisedInitialAccessDelay Bearer Control AVP

initial-fixed-delay is in units of 10 seconds, giving a possible range of 0 to 2 550 seconds in steps of 10 seconds. Units for *randomised-delay-interval* depend on the value of scaling, as shown in Table 5.22.

Table 5.22: RandomisedInitialAccessDelay Scaling values: Expected UE Behaviour

Scaling	Units for randomised-delay-interval	Possible range
0	seconds	0 to 63 s
1	10 seconds	0 to 630 s
2	30 seconds	0 to 1 890 s
3	60 seconds	0 to 3 780 s

Upon the expiry of *initial-fixed-delay*, the UE is required to select a random time within the *randomised-delay-interval* specified, after which it is permitted to attempt registration as per normal.

5.7.51 IntermodTestInfoParam

This parameter is used to broadcast two transmit and one receive frequency to be used by Aeronautical class UEs for intermodulation test purposes. The structure is defined below, with format as shown in Figure 5.153.

```
IntermodTestInfoParam ::=
    SEQUENCE {
        tx-frequency-one
            RetChannelNumber,
        tx-frequency-two
            RetChannelNumber,
        rx-frequency
            FwdChannelNumber
    }
```


Figure 5.153: IntermodTestInfo Bearer Control AVP

Annex A (normative): ASN.1

This annex collates the data structures in ASN.1 notation from the present document in alphabetical order, in a format that may be used in a program code compiler.

The code is reproduced in a text file that is contained in archive ts_1027440301v010101p0.zip which accompanies the present document.

History

Document history							
V1.1.1	October 2015	Publication					