Introduction to NGS Technologies

Ignacio Medina

im411@cam.ac.uk

Head of Computational Biology Lab HPC Service, University of Cambridge, UK

EMBL-EBI Scientific collaborator Genome Campus, Hinxton, Cambridge, UK

Relative throughput of the different HT technologies

NGS emerges with a potential of data production that will, eventually wipe out conventional HT technologies in the years coming

Too many sequences to be handled in a standard computer

	Sanger (1st-gen) Sequencing	Next-Gen Sequencing, and 3rd generation
Whole Genome	Human (early drafts), model organisms, bacteria, viruses and mitochondria (chloroplast), low coverage	New human (!), individual genome, exomes, 2,500 normal (1K genome project), 25,000 cancer (TCGA and ICGC initiatives), CNV, matched control pairs, time course, rare-samples
RNA	cDNA clones, ESTs, Full Length Insert cDNAs, other RNAs	RNA-Seq: Digitization of transcriptome, alternative splicing events, miRNA, allele specific transcripts
Communities	Environmental sampling, 16S RNA populations, ocean sampling,	Human microbiome, deep environmental sequencing, Bar-Seq
Other		Epigenome, rearrangements, ChIP-Seq

NGS technologies

Cost-effective
Fast
Ultra throughput
Cloning-free
Short reads

Differences between the various platforms:

- Nanotechnology used.
- Read length
- Chemistry and enzymology.
- Signal to noise detection in the software
- Software/images/file size/pipeline
- Cost
- Applications

Similarities- LOTS of DATA General ways of dealing at the sequences

- Assemble them and look at what you have
- You map them (align against a known genome) and then look at what you have.
- Or a mixture of both!
- Sometimes you select the DNA you are sequencing
- or you try to sequence everything
- Depends on biological question, sequencing machine you have, and how much time and money you have.
- NGS is relatively cheap but think what you want to answer, because the analysis won't do magic

Next-gen sequencers From John McPherson, OICR

Next Generation Sequencers In the past 3 main platforms:

- Solexa/illumina
- **Roche 454**
- ABI SOLID
 - Follow an approach similar to Sanger sequencing, but do away with separation of fragments by size and "read" the sequence as the reaction occurs
 - Several different "next generation" sequencing platforms developed and commercialized, more on the way.
 - Simultaneously sequence entire libraries of DNA sequence fragments

454 (Roche)

- First next generation method to be commercially available
- Uses a "sequencing by synthesis" (SBS) approach:
 - DNA is broken into pieces of 500-1,400 bp, ligated to adaptors, and amplified on tiny beads by PCR (emulsion PCR)
 - Beads (with DNA attached) are placed into tiny wells (one bead per well) on a PicoTiter Plate that has millions of wells. Each well is connected to an optical fibre.
 - DNA is sequenced by adding polymerase and DNA bases containing pyrophosphate. The different bases (A,C,G,T) are added sequentially in a flow chamber
 - When a base complementary to the template is added, the pyrophosphate is released and a burst of light is produced
 - The light is detected and used to call the base
- Initially 100-150 bp, but they have been improved to 600-1000 bp
- >1 million, filter-passed reads per run (20 hours)
- 1 billion bases per day

Roche 454: GS FLX System

- Good for
 - "de novo" sequencing (longer reads)
 - Resequencing (expensive)
 - New bacterial genomes.
 - Amplicons
- Pyrosequencing. Bias with long polinucleotide streches

Roche 454 GS FLX

Throughput	400-600 million high-quality, filter-passed bases per run* 1 billion bases per day	
Run Time	10 hours	
Read Length	Average length = 400 bases	
Accuracy	Q20 read length of 400 bases (99% at 400 bases and higher for prior bases)	
Reads per run	>1 million high-quality reads	
Data	Trace data accepted by NCBI since 2005	
Computing Requirements	Cluster recommended (Roche GS FLX Titanium Cluster available)	
Robustness	No complex optics or lasers; reagents have long shelf life	

GS Junior, benchtop

System Performance		
Throughput	35 million high-quality, filtered bases per run*	
Run Time	10 hours sequencing 2 hours data processing	
Avg. Read Length	400 bases*	
Accuracy	Q20 read length of 400 bases (99% accuracy at 400 bases)	
Reads per Run	100,000 shotgun, 70,000 amplicon	
Sample Input	gDNA, amplicons, cDNA, or BACs depending on the application	
Physical Dimensions	40 cm wide x 60 cm deep x 40 cm high (the size of a laser printer) Weight = 55 lbs.	
Computing	Linux-based OS on HP desktop computer included. All software is point-and-click.	
*Tunical results Average and long	th and number of reads depend on specific sample and genomic characteristics	

Illumina

- •Over 90% of all sequencing data is produced on Illumina systems.
- •Uses a "sequencing by synthesis" approach:
 - DNA is broken into small fragments and ligated to an adaptor.
 - The fragments are attached to the surface of a flow cell and amplified.
 - DNA is sequenced by adding polymerase and labeled reversible terminator nucleotides (each base with a different color).
 - The incorporated base is determined by fluorescence.
 - The fluorescent label is removed from the terminator and the 3' OH is unblocked, allowing a new base to be incorporated
- •Started with 35 bp, increased now to up to 150 bp
- •One run can give up to 10-600 Gb, 300-6000 million paired-end reads
- •75-85% of bases at or above Q30

Illumina HiSeq 2500

There is a second secon

600 Gb/run in 11 days 2x100 bp fragments 3-6 billion reads per run

Illumina Systems

Illumina MiSeq

175-245 Mb 4h 1x 36bp **1.5-2.0 Gb** 27h 2x150 bp

Illumina HiSeq X Ten

1800 Gb/run in <3 days 2x150 bp fragments 6 billion reads per run

Consists of a set of **10 HiSeq X** ultra-high-throughput instruments that deliver over **18,000 human genomes** per year at the price of **\$1000** per genome.

PacBio

From Michael Metzker, http://view.ncbi.nlm.nih.gov/pubmed/19997069

Pacific Bioscience

SMRT: Singel Molecule Real time DNA synthesis Up to 12000 nt 50 bases/second

ZMW: Zero Mode Waveguide

Ion Torrent

\$ 50.000

\$ 500 /sample

1 hour/run

> 200 nt lengths

Reads H+ released by DNA

polymerase

Comparison

Roche 454

- Long fragments
- •Errors: poly nts
- Low throughput
- Expensive
- De novo sequencing
- Amplicon sequencing
- RNASeq

Illumina

- Short fragments
- •Errors: Hexamer bias
- High throughput
- Cheap
- Resequencing
- De novo sequencing
- ChipSeq
- RNASeq
- MethylSeq

SOLID

- Short fragments
- Color-space
- High throughput
- Cheap
- Resequencing
- ChipSeq
- RNASeq
- MethylSeq

Basic steps NGS data processing

File formats

```
AAATAAAAATATTTATTTAACTTCTAAACGATGTCGTT
+ILLUMINA-GA 0000:1:1:4010:1065#0/1
հիհիհիհիհիհիհիհիհիհիհիհիհիհի<u>հիհիհի</u>
@ILLUMINA-GA 0000:1:1:4093:1065#0/1
AAATAACTAAGAAATTTGTCACAAATTTCTAAATTCTT
+ILLUMINA-GA 0000:1:1:4093:1065#0/1
affffgegggaffccfd_ffcdfdfgffgcgggfgggg
carbonell@bender:/scratch2/jcarbonell$
carbonell@bender:/scratch2/jcarbonell$ head ivia15 06 pair2.remdup.fq -n 20
@ILLUMINA-GA 0000:1:1:1395:1061#0/2
GGACCAAGCAAGACAATGCTAAATTCTTTGCAGAGATA
+ILLUMINA-GA 0000:1:1:1395:1061#0/2
hcaehghce_Wffffffafa]ffcfgghgheahehWff
@ILLUMINA-GA_0000:1:1:1855:1066#0/2
                                fastg: sequence data and qualities
GTTAATTCCTTGTCGCCGTTTTATGTGATGCGCATCCA
+ILLUMINA-GA 0000:1:1:1855:1066#0/2
ffffcffffdhhdfcfffdfff]cc``^`dfffcchha
@ILLUMINA-GA 0000:1:1:3567:1062#0/2
                                                                                           SAM/BAM: mapping data and qualities
-
TGAGTCCGGCGGACGAACGTCGCCAGCCCCACCCCCCA
+ILLUMINA-GA 0000:1:1:3567:1062#0/2
hhhhhhhghhhhcgfccff]fdffS[efffchhhhhh
@ILLUMINA-GA 0000:1:1:4010:1065#0/2
FTGTTTGACAGTTAATGATGGTCCTATTACATAACAGT
+ILLUMINA-GA 0000:1:1:4010:1065#0/2
@ILLUMINA-GA 0000:1:1:4093:1065#0/2
AATCCAAGAGCAAACAAGTTGCCAAGAGATGCAAGGAC
+ILLUMINA-GA_0000:1:1:4093:1065#0/2
dffffffhdhhhhggfhfhhcghg_fQfbbfffffdfa
carbonell@bender:/scratch2/jcarbonell$
carbonell@bender:/<mark>scratch2/jcarbonell$ samtools view ivial5_06_pairl.remdup_bwa_bwa_ref01_upper_mapped.bam | head -n 10</mark>
ILLUMINA-GA 0000:1:1:1395:1061#0
                                       scaffold 13
                                                                                             AATAGANACCACATTGTAAAACTTTAGTCGCTGTTTTC affffaBa``cc^ccfc ffcffddfc[ffddbbdfcc XT:A:R NM:i:1 SM:i:0 AM:i:0 X0:i:261
M:i:1 X0:i:0 XG:i:0 MD:Z:6A3]
ILLUMINA-GA_0000:1:1:1395:1061#0
                                       scaffold_13
                                                     800074 0
                                                                                             TATCTCTGCAAAGAATTTAGCATTGTCTTGCTTGGTCC ffWhehaehghggfcff]afaffffffW_echgheach XT:A:R NM:i:1 SM:i:0 AM:i:0 XO:i:3 X1:i:
      XM:i:1 X0:i:0 XG:i:0 MD:Z:21C16
ILLUMINA-GA 0000:1:1:1855:1066#0
                                       scaffold 65
                                                     576129 0
                                                                               576129 0
                                                                                             TTTTTTTCTCTTTTTTTGTGGCCATATTCTTCTTCTT cX]cffacW `ccfff[ffggegfffd[fd]fcfffff XT:A:R NM:i:2 SM:i:0 AM:i:0 XO:i:2 X1:i:
                                 89
                                                                  38M
      XM:i:2 X0:i:0 XG:i:0 MD:Z:3G4A29
                                       scaffold 215
                                                                                             CCCCAAGGCTATAGCCCACCCGTTTTTTGGGNATTTTT gfgggggffffffffffcgggggeeeeeeeBeggggg XT:A:R NM:i:1 SM:i:0 AM:i:0 X0:i:250
ILLUMINA-GA 0000:1:1:3567:1062#0
                                                                                8554
M:i:1 X0:i:0 XG:i:0 MD:Z:31C6
                                       scaffold_215
                                                                                             TGAGTCCGGCGGACGACGCCCACCCCCA hhhhhhhhghhhhcgfccff]fdffS[efffchhhhhhh` XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:4 X1:i
ILLUMINA-GA_0000:1:1:3567:1062#0
      XM:i:2 X0:i:0 XG:i:0 MD:Z:18T1G17
                                       scaffold 76
                                                                                             ILLUMINA-GA 0000:1:1:4010:1065#0
                                                     865926 60
                                                                  38M
                                                                               866076 188
      XM:i:0 XO:i:0 XG:i:0 MD:Z:38
ILLUMINA-GA 0000:1:1:4010:1065#0
                                       scaffold 76
                                                                                865926 -188
                                                                                             ILLUMINA-GA 0000:1:1:4093:1065#0
                                       scaffold 57
                                                     479190 12
                                                                  38M
                                                                               479354 202
                                                                                             AAATAACTAAGAAATTTGTCACAAATTTCTAAATTCTT affffgegggaffccfd_ffcdfdfgffgcgggfgggg XT:A:R NM:i:l SM:i:0 AM:i:0 XO:i:7 Xl:i:
      XM: i:1 X0:i:0 XG:i:0 MD:Z:12G25
LLUMINA-GA 0000:1:1:4093:1065#0
                                       scaffold 57
                                                                                             GTCCTTGCATCTCTTGGCAACTTGTTTGCTCTTGGATT afdfffffbbfQf_ghgchhfhfqghhhhhdhffffffd XT:A:U NM:i:0 SM:i:20 AM:i:0 X0:i:1 X1:i:
                                                     479354 20
                                                                                479190 -202
      XM:i:0 X0:i:0 XG:i:0 MD:Z:38
ILLUMINA-GA 0000:1:1:6805:1068#0
                                                                                             scaffold 11
                                                     3541452 0
                                                                                3541616 202
      XO:i:0 XG:i:0 MD:Z:8A29
```

Most common applications of NGS

RNA-seq /Transcriptomics

- Quantitative
- Descriptive Alternative splicing
 - miRNA profiling

Resequencing

- Mutation calling
- Profiling
- Genome annotation

De novo sequencing

Exome sequencing Targeted sequencing

Copy number variation

Metagenomics Metatranscriptomics

ChIP-seq /Epigenomics

- Protein-DNA interactions
- Active transcription factor binding sites
- Histone methilation

- Whole GENOME Resequencing
 - Need reference genome
 - Variation discovery

Whole Genome Shotgun Sequencing Method

Align Contiguous Sequences

GCATTTCGAGTTACCTGGACAACCAGTGGTACTGAGGACGCAAGAGGCTTGATTGGCCAATAATAGTATAT

Generate Finished Sequence

- Whole GENOME "de novo" sequencing
 - Uncharacterized genomes with no reference genome available
 - known genomes where significant structural variation is expected.
 - Long reads or mate-pair libraries. Sequencing mostly done by Roche 454 and also Illumina.
 - Assembly of reads is needed: Computational intensive
 - E.g. Genome bacteria sequencing

- Whole EXOME Resequencing
 - Need reference genome
 - Available for Human and Mouse
 - Variation discovery on ORFs
 - 2% of human genome (lower cost)
 - 85% disesease mutation are in the exome
 - Need probes complementary to exons
 - Nimblegen
 - Agilent

E.g. Human exome

- Targeted Resequencing
 - Capture of specific regions in the genome
- Custom genes panel sequencing
 - Allows to cover high number of genes related to a disease
 - E.g. Disease gene panel
- Low cost and quicker than capillary sequencing
- Multiplexing is possible
- Need custom probes complementary to the genomic regions
 - Nimblegen
 - Agilent

- Amplicon sequencing
 - Sequencing of regions amplified by PCR.
 - Shorter regions to cover than targeted capture
 - No need of custom probes
 - Primer design is needed
 - High fidelity polymerase
 - Multiplexing is needed

 E.g. P53 exon amplicon sequencing

Transcriptomics - 1

RNA-Seq

- Sequencing of mRNA
- rRNA depleted samples
- Very high dynamic range
- No prior knwoledge of expressed genes
- Gives information about (richer than microarrays)
 - Differential expression of known or unknown transcripts during a treatment or condition
 - Isoforms and
 - New alternative splicing events
 - Non-coding RNAs
 - Post-transcriptional mutations or editing,
 - Gene fusions

Transcriptomics - 2

- RNA-Seq
 - Sequencing of mRNA

- Detecting gene fusions

Applications of RNAseq

Qualitative:

- * Alternative splicing
- * Antisense expression
- * Extragenic expression
- * Alternative 5' and 3' usage
- * Detection of fusion transcripts

. . . .

Tophat/Cufflinks
Scripture
Alexa

Quantitative:

- * Differential expression
- * Dynamic range of gene expression

. . . .

edgeR DESeq baySeq **NOISeq**

Advantages of RNAseq?

RNAseq

- * Non targeted transcript detection
- * No need of reference genome
- * Strand specificity
- * Find novels splicing sites
- * Larger dynamic range
- * Detects expression and SNVs
- * Detects rare transcripts

. . . .

microarrays

- * Restricted to probes on array
- * Needs genome knowledge
- * Normally, not strand specific
- * Exon arrays difficult to use
- * Smaller dynamic range
- * Does not provide sequence info
- * Rare transcripts difficult

. . . .

and.... are there any disadvantages?????

Transcriptomics - 3

- miRNA/small nonCoding RNA sequencing
 - RNA Size selection step
 - 18-40 bp
 - Profiling of known miRNAs
 - miRNA discovery

TFBS detection

ChIP-Seq

 Identification of genomic region for gDNA binding proteins:

Transcription
 Factor binding
 site detection

Epigenomics - I

Epigenomics refers to functionally relevant modifications to the genome that do not involve a change in the nucleotide sequence

 Play a role in turning genes off or on

Epigenomic Marks.

a)Methyl groups attach to the backbone of a DNA molecule.

b)A variety of chemical tags attach to the tails of histones. This action affects how tightly DNA is wound around the histones.

ChIP-Seq: Histone methylation detection

Epigenomics - 2

Methyl-Seq

- CpG island methylation
- Bisulfite sequencingbased method
- > E.g. Cancer studies.
 - Different degree of chromatin methylation affects expression of genes

New huge projects coming

Many big projects during the last years:

- ENCODE http://genome.ucsc.edu/ENCODE/
- 1000 Genomes projects http://www.1000genomes.org/
- ICGC http://icgc.org/
- ...

New projects coming soon:

- BRIDGE https://bridgestudy.medschl.cam.ac.uk/index.shtml
- Genomics England (http://www.genomicsengland.co.uk/) will produce tens of PB of data (1PB == 1000TB)

Successful NGStories

A map of human genome variation from populationscale sequencing

The 1000 Genomes Project Consortium

Affiliations | Contributions | Corresponding author

Nature 467, 1061–1073 (28 October 2010) | doi:10.1038/nature09534 Received 20 July 2010 | Accepted 30 September 2010 | Published online 27 October 2010

Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution

Brian T. Wilhelm¹*†, Samuel Marguerat¹*†, Stephen Watt¹†, Falk Schubert¹†, Valerie Wood¹, Ian Goodhead¹†, Christopher J. Penkett¹†, Jane Rogers¹ & Jürg Bähler¹†

Exome sequencing identifies the cause of a Mendelian disorder

Sarah B. $Ng^{1,*}$, Kati J. Buckingham^{2,*}, Choli Lee¹, Abigail W. Bigham², Holly K. Tabor², Karin M. Dent³, Chad D. Huff⁴, Paul T. Shannon⁵, Ethylin Wang Jabs^{6,7}, Deborah A. Nickerson¹, Jay Shendure^{1,†}, and Michael J. Bamshad^{1,2,8,†}

¹Department of Genome Sciences, University of Washington, Seattle, Washington, USA ²Department of Pediatrics, University of Washington, Seattle, Washington, USA ³Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA ⁴Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA ⁵Institute of Systems Biology, Seattle WA, USA ⁶Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA ⁷Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland ⁸Seattle Children's Hospital, Seattle, Washington, USA

Figure 2. Genomic structure of the exons encoding the open reading frame of *DHODH*DHODH is composed of 9 exons that encode untranslated regions (orange) and protein coding sequence (blue). Arrows indicate the locations of 11 different mutations found in 6 families with Miller syndrome.

liller syndrome

Method

Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts

Joshua Z Levin*, Michael F Berger[†], Xian Adiconis*, Peter Rogov*, Alexandre Melnikov*, Timothy Fennell*, Chad Nusbaum*, Levi A Garraway^{†§} and Andreas Gnirke*

Addresses: *Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, MA 02141, USA.
*Cancer Program, Broad Institute of MIT and Harvard, 5 Cambridge Center, Cambridge, MA 02142, USA.
*Sequencing Platform, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, MA 02141, USA.
*Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.

NUF caa T	cct	ctg	ggt												AAT	GGA(GAC	AGT	TTT	GAZ	AGAG			,	xon 2)
NUF	214	(exc	n 29)																			XKF	3 (e	xon 3)
caa	cct	ctq	ggt	tcad	get	ttt	gc	caa	agc	tto	ag	GTG:	гтт	GCA	CAC	CGT'	TAG	AAA'	TAC	CAC	CAAA	TG	GTT	GAA	AAATC
		_		s			-		-			v	С	T	P		E		T	T	N	G		TOP	
NUF	NUP214 (exon 29) XKR3 (exon 4)																								
caa	cct	ctg	ggt	tcag	get	ttt	gc	caa	agc	tto	ago	CAT	rgc:	TGA'	TGA	CAT	TTT	CCC	GTT	ATC	CAGI	'TA	CTT	ATG	GGGC
Т	S	G	F	S	F	(2	Q	A	S	A	L	L	M	T	F	S	L	L	S	V	T	Y	G	
	NUP214 (exon 27) attttctccatcaggCATTGCTGATGACATTTTCCCTGTTATCAGTTACTTATGGGGCCATTCGCTGCAATATACT F S P S G I A D D I F P V I S Y L W G H S L Q Y T																								

Figure 3
Sequences from NUP214-XKR3 fusion transcripts detected after hybrid selection. After hybrid selection, 152 reads were aligned to the transcriptome and detected as NUP214-XKR3 fusions. From top to bottom, we observed 137, four, eight, and three reads for these transcripts. The NUP214 (exon 27) to XKR3 (exon 4) has a stop codon downstream (not shown). Only NUP214 (exon 29) to XKR3 (exon 4) retains an open reading frame downstream of the fusion. Before hybrid selection, eight reads were aligned to the transcriptome and detected as NUP214-XKR3 fusions; only the NUP214 (exon 29) to XKR3 (exon 1) retains an open reading frame downstream of the fusion. Before hybrid selection, eight reads were aligned to the transcriptome and detected as NUP214-XKR3 fusions; only the NUP214 (exon 29) to XKR3 (exon 1) retains an open reading frame downstream of the fusion.

NATURE GENETICS | ARTICLE

The genome of the domesticated apple (*Malus* × *domestica* Borkh.)

Riccardo Velasco, Andrey Zharkikh, Jason Affourtit, Amit Dhingra, Alessandro Cestaro, Ananth Kalyanaraman, Paolo Fontana, Satish K Bhatnagar, Michela Troggio, Dmitry Pruss, Silvio Salvi, Massimo Pindo, Paolo Baldi, Sara Castelletti, Marina Cavaiuolo, Giuseppina Coppola, Fabrizio Costa, Valentina Cova, Antonio Dal Ri, Vadim Goremykin, Matteo Komjanc, Sara Longhi, Pierluigi Magnago, Giulia Malacarne, Mickael Malnoy \implies et al.

Affiliations | Contributions | Corresponding author

Nature Genetics 42, 833–839 (2010) | doi:10.1038/ng.654
Received 19 November 2009 | Accepted 03 August 2010 | Published online 29 August 2010

Letter

Nature 456, 387-390 (20 November 2008) | doi:10.1038/nature07446; Received 12 May 2008; Accepted 22 September 2008

Sequencing the nuclear genome of the extinct woolly mammoth

Webb Miller $^{\underline{1}}$, Daniela I. Drautz $^{\underline{1}}$, Aakrosh Ratan $^{\underline{1}}$, Barbara Pusey $^{\underline{1}}$, Ji Qi $^{\underline{1}}$, Arthur M. Lesk $^{\underline{1}}$, Lynn P. Tomsho $^{\underline{1}}$, Michael D. Packard $^{\underline{1}}$, Fangqing Zhao $^{\underline{1}}$, Andrei Sher $^{\underline{2},\underline{9}}$, Alexei Tikhonov $^{\underline{3}}$, Brian Raney $^{\underline{4}}$, Nick Patterson $^{\underline{5}}$, Kerstin Lindblad-Toh $^{\underline{5}}$, Eric S. Lander $^{\underline{5}}$, James R. Knight $^{\underline{6}}$, Gerard P. Irzyk $^{\underline{6}}$, Karin M. Fredrikson $^{\underline{7}}$, Timothy T. Harkins $^{\underline{7}}$, Sharon Sheridan $^{\underline{7}}$, Tom Pringle $^{\underline{8}}$ & Stephan C. Schuster $^{\underline{1}}$

Species composition of metagenomic DNA extracted from mammoth hair

Not that easy, some challenges

Secondary analysis: Finding the mutations causative of diseases

The simplest case: monogenic disease due to a single gene

The principle: comparison of patients (or families) and reference controls

candidate gene (shares mutation for all patients but no controls)

Is this approach realistic? Can we detect such rare variants so easily?

- a)Interrogating 50Mb produces too many variants
- b)In many cases we are not hunting new but known variants
- c)Same phenotype can be due to different mutations and different genes

Filtering with multiple family information

	Families									
	1	2	3	4	5	6				
Variants	3403	82	4	0	0	0				
Genes	2560	331	35	8	1	0				

Problem: how to prioritize putative candidate genes

Clear individual gene associations are difficult to find integme diseases

They can have different mutations (or combinations).

Many cases have to be used to obtain significant associations to many markers.

The only common element is the pathway (yet unknow) affected.

Conclusions

NGS is revolutionizing how we do genome research But it will also revolutionize our lives....

If we manage to process and analyze ALL the DATA

