Relación de problemas de Sistemas de ecuaciones y matrices

Ejercicio 1. Encuentra matrices cuadradas A y B para las que $(A + B)^2 \neq A^2 + 2AB + B^2$ y $(A + B)(A - B) \neq A^2 - B^2$. Explica por qué, en general, no se da la igualdad.

Ejercicio 2. Da un ejemplo de dos matrices $A, B \in \mathcal{M}_2(\mathbb{Z}_2)$, distintas de cero, tales que AB = 0 y $BA \neq 0$.

Ejercicio 3. Prueba que la matriz $A=\left(\begin{array}{cc}1&2\\2&1\end{array}\right)\in\mathcal{M}_2(\mathbb{Q})$ satisface una ecuación de la forma

$$A^2 + \alpha A + \beta Id = 0$$

Utiliza este hecho para ver que A es regular y calcular su inversa.

Ejercicio 4. Da un ejemplo de tres matrices A, P, Q, con coeficientes en \mathbb{Z}_2 , de forma que P y Q sean regulares y distintas, A sea distinta de cero y PA = QA.

Ejercicio 5. Una matriz se dice idempotente si $A^2 = A$.

- 1. Prueba que si A es idempotente y regular entonces A = Id.
- 2. Prueba que si A es idempotente, y B = Id A entonces B es idempotente y AB = 0.
- 3. Calcula todas las matrices $A \in \mathcal{M}_2(\mathbb{Z}_2)$ idempotentes.
- 4. Encuentra $A \in \mathcal{M}_3(\mathbb{Z}_2)$, $A \neq 0$, $A \neq Id$ que sea idempotente.

Ejercicio 6. Una matriz A se llama nilpotente si $A^n = 0$ para algún número natural n. Probar que la matriz

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)$$

es nilpotente y calcular el menor número natural tal que $A^n = 0$. Deducir que también es nilpotente cualquier matriz de la forma

$$N = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Ejercicio 7. Sean $A = \begin{pmatrix} 1 & a \\ b & 1 \end{pmatrix}$ y $B = \begin{pmatrix} c & 1 \\ 1 & d \end{pmatrix}$ dos matrices con coeficientes en \mathbb{Q} . Determina para que valores de a,b,c,d se verifica que $A \cdot B = B \cdot A$.

1

Ejercicio 8. Encuentra, si es posible, $P \in \mathcal{M}_4(\mathbb{Z}_3)$, regular, tal que PA = B, donde

$$A = \begin{pmatrix} 1 & 1 & 0 & 2 & 1 \\ 2 & 1 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 & 2 \\ 0 & 1 & 2 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 0 & 1 & 2 \\ 1 & 2 & 2 & 1 & 0 \\ 1 & 0 & 1 & 2 & 0 \\ 2 & 2 & 0 & 0 & 0 \end{pmatrix}$$

Ejercicio 9. Dado el sistema de ecuaciones con coeficientes en \mathbb{Z}_5 :

$$\begin{cases} 2x + y + 4z = 1\\ x + 2y + az = 4\\ 3x + (a+2)y + 2z = 2 \end{cases}$$

Discútelo según el valor del parámetro α . Si para $\alpha = 4$ es compatible, resuélvelo.

Preguntas de exámenes tipo test

Ejercicio 10. Acerca del siguiente sistema con coeficientes en \mathbb{R}

$$x + ay -z = 1$$

 $x + y +z = a$

podemos afirmar que:

- a) Independientemente del valor de a, es compatible determinado.
- b) Independientemente del valor de a, es compatible indeterminado.
- c) Es siempre incompatible.
- d) La compatibilidad o incompatibilidad depende del valor de a.

Ejercicio 11. Dadas dos matrices A y B en $\mathcal{M}_2(\mathbb{R})$ y tales que

$$A + B = \begin{pmatrix} 3 & 0 \\ 2 & 1 \end{pmatrix} \qquad A - B = \begin{pmatrix} -1 & -2 \\ 0 & 3 \end{pmatrix}$$

entonces $A^2 - B^2$ es igual a

a)
$$\begin{pmatrix} -7 & -2 \\ 6 & 3 \end{pmatrix}$$
 b) $\begin{pmatrix} -3 & -6 \\ -2 & -1 \end{pmatrix}$ c) $\begin{pmatrix} 2 & -2 \\ 2 & 2 \end{pmatrix}$ d) $\begin{pmatrix} -5 & -4 \\ 2 & 1 \end{pmatrix}$

Ejercicio 12. Sea $A \in \mathcal{M}_3(\mathbb{Q})$ tal que

$$A^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ -3 & 4 & -2 \\ 3 & -3 & 1 \end{pmatrix}$$

La matriz adjunta de A es

a)
$$\begin{pmatrix} -1 & 1 & 0 \\ -3 & 4 & -2 \\ 3 & -3 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & -1 & 0 \\ 3 & -4 & 2 \\ -3 & 3 & -1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 3 & -3 \\ -1 & -4 & 3 \\ 0 & 2 & -1 \end{pmatrix}$ d) $\begin{pmatrix} 2 & 1 & 2 \\ 3 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}$

Ejercicio 13. El determinante de la matriz

$$\begin{pmatrix} 2 & 1 & 0 & -1 \\ -3 & -2 & 3 & 3 \\ -2 & 3 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix} \in \mathcal{M}_4(\mathbb{Q})$$

vale

a)
$$-9$$
 b) -3 c) 0 d) 3

Ejercicio 14. Dado el sistema de ecuaciones lineales en \mathbb{Z}_7

$$x + y - z = 1$$
$$x + 2y + 2z = 2$$
$$2x + 3y + z = 3$$

¿cuál de las siguientes afirmaciones es correcta?

- a) Es compatible determinado.
- b) Es incompatible.
- c) Es compatible indeterminado.
- d) Tiene exactamente 35 soluciones.

Ejercicio 15. Sean
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 4 & 2 & -6 \end{pmatrix}$$
 y $B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Sea $X \in \mathcal{M}_3(\mathbb{R})$. Entonces

1. X = B es la única solución de la ecuación matricial AB = AX.

2.
$$X = C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 11 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$
 es la única solución de la ecuación matricial $AB = AX$.

- 3. Tanto B como C son soluciones de la ecuación matricial AB = AX.
- 4. La ecuación matricial AB = AX no tiene solución.

Ejercicio 16. Sea A la matriz

$$\begin{pmatrix} 3 & 0 & 1 & 2 \\ 0 & 1 & 0 & -7 \\ 6 & 1 & 4 & 8 \\ 0 & 2 & 0 & -1 \end{pmatrix} \in \mathcal{M}_4(\mathbb{Z}_p)$$

La matriz A es singular (es decir, no tiene inversa para el producto) para el siguiente valor de p

a)
$$p = 2$$
 b) $p = 3$ c) $p = 5$ d) $p = 7$

Ejercicio 17. Sean
$$A = \begin{pmatrix} 1 & 6 \\ 2 & 4 \end{pmatrix}$$
 y $B = \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix}$ dos matrices con coeficientes en \mathbb{Z}_7 . Entonces $(A \cdot B)^{-1}$

- a) No existe.
- b) vale $\begin{pmatrix} 5 & 2 \\ 6 & 1 \end{pmatrix}$.
- c) vale $\begin{pmatrix} 1 & 2 & 5 \\ 4 & 0 & 2 \end{pmatrix}$.
- d) vale $\begin{pmatrix} 0 & 1 \\ 7 & 0 \end{pmatrix}$.

Ejercicio 18. Dado el sistema de ecuaciones con coeficientes en \mathbb{Z}_7

$$\begin{cases} x + ay + 2z = 6 \\ 4x + 5y + az = 1 \end{cases}$$

la respuesta correcta es:

- a) El sistema es compatible indeterminado y tiene exactamente 7 soluciones.
- b) Es siempre compatible, pero depende del valor de α que sea compatible determinado o compatible indeterminado.

- c) Dependiendo del valor de a puede ser compatible o incompatible.
- d) Es compatible indeterminado, y el número de soluciones depende del valor de a.

Ejercicio 19. Señala la afirmación verdadera. La matriz en $\mathcal{M}_4(\mathbb{Z}_3)$

$$\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 2 \\
1 & 1 & 1 & 1 \\
a & 0 & 0 & a
\right)$$

- a) No tiene inversa para ningún valor de a.
- b) Tiene inversa para todo valor de a.
- c) Sólo tiene inversa para a = 1.
- d) Tiene inversa sólo cuando $a \neq 0$.

Ejercicio 20. En \mathbb{R} el rango de la matriz

$$\left(\begin{array}{cccc}
1 & 0 & a & -a \\
0 & 1 & b & b \\
1 & 1 & a+b & b-a
\end{array}\right)$$

es

- a) Depende de los valores de a y b.
- b) 3.
- c) 2.
- d) 4.

Ejercicio 21. Sea $A \in \mathcal{M}_3(\mathbb{Z}_2)$ tal que

$$A^{3} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \qquad y \qquad A^{5} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

Entonces

a)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

d) Los datos del enunciado no permiten calcular A.

Ejercicio 22. Sea $A \in \mathcal{M}_4(\mathbb{R})$. Entonces:

- a) La matriz $I A + A^{t}$ es simétrica.
- b) La matriz $I (A \cdot A^t)$ es simétrica.
- c) La matriz $I A^2$ es simétrica.
- d) La matriz I 2A es simétrica.

Ejercicio 23. Sea $A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 1 & 3 & 5 & 0 \\ 1 & 0 & 1 & 1 \\ 5 & 2 & 0 & 2 \end{pmatrix}$ con coeficientes en \mathbb{Z}_p es regular para

- a) p = 5.
- b) p = 7.
- c) p = 3.
- d) p = 2.

Ejercicio 24. Dada la matriz $A = \begin{pmatrix} 3 & 1 & 1 & 2 \\ 1 & 4 & 2 & 1 \\ 5 & 2 & 1 & 3 \end{pmatrix} \in \mathcal{M}_{3\times 4}(\mathbb{Z}_7)$, su forma normal de Hermite por

filas es:

- a) $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$
- b) $\begin{pmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix}.$
- c) $\begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 2 \end{pmatrix}$.
- $d) \left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right).$

Ejercicio 25. Sea $X \in \mathcal{M}_2(\mathbb{R})$ tal que

$$X \cdot \left(\begin{array}{cc} 3 & 2 \\ 7 & 1 \end{array} \right) = \left(\begin{array}{cc} -5 & 4 \\ -4 & 1 \end{array} \right)$$

Entonces

$$1. X^{-1} = \left(\begin{array}{cc} 3 & -2 \\ 1 & -1 \end{array}\right).$$

2.
$$X^{-1} = \begin{pmatrix} \frac{-25}{11} & \frac{-2}{11} \\ \frac{-23}{11} & \frac{-3}{11} \end{pmatrix}$$
.

3.
$$X^{-1} = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$$
.

4. La matriz X no es regular.

Ejercicio 26. Dado el sistema de ecuaciones con coeficientes en \mathbb{Z}_7

$$\begin{cases} 3x + y + 5z = 6 \\ 2x + 3y + z = a^{2} + 1 \end{cases}$$

- (a) El sistema es compatible indeterminado para cualquier valor de α, pero el número de soluciones depende de α.
- (b) El sistema es incompatible, independientemente del valor de a.
- (c) El sistema es compatible indeterminado para cualquier valor de a, y tiene 7 soluciones.
- (d) Según el valor de a el sistema puede ser compatible indeterminado o incompatible.

Ejercicio 27. Si $A \in \mathcal{M}_3(\mathbb{R})$ verifica que

$$\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \cdot A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix},$$

entonces A^{-1} es igual a:

a)
$$\begin{pmatrix} 0 & 1 & 1 \\ 2 & 2 & -3 \\ -1 & 0 & 2 \end{pmatrix}$$
. b) $\begin{pmatrix} 0 & -2 & -1 \\ 1 & 3 & 2 \\ 0 & -1 & 0 \end{pmatrix}$. c) $\begin{pmatrix} 2 & 1 & -1 \\ 0 & 0 & -1 \\ -1 & 0 & 2 \end{pmatrix}$. d) $\begin{pmatrix} 4 & -2 & -5 \\ -1 & 1 & 2 \\ 2 & -1 & -2 \end{pmatrix}$.

Ejercicio 28. Dados los sistemas de ecuaciones con coeficientes en \mathbb{Z}_7

$$\begin{cases} 2x + y + 4z = 3 \\ 3x + y + 2z = 5 \\ x + z = 0 \end{cases} \begin{cases} 3x + (b+5)z = 5b + 4 \\ x + 3y + (b+2)z = 2b + 4 \\ 2x + 4y + 5z = 5b \end{cases}$$

- 1. Son equivalentes para b = 3.
- 2. Son equivalentes para b = 4.
- 3. Son equivalentes para b = 5.
- 4. No son equivalentes para ningún valor de b.

Ejercicio 29. Di qué vale $a \in \mathbb{Z}_{11}$ para que los sistemas de ecuaciones

$$\begin{cases} x + 2z + t = 0 \\ 3x + y + az + 2t = 5 \\ 4x + 8z + t = 3 \end{cases} \begin{cases} x + 4y + 8z + 3t = 3 \\ 2x + y + t = 5 \\ y + 7z + 2t = 2 \end{cases}$$

sean equivalentes:

- (a) 4.
- (b) 10.

- (c) 2.
- (d) 1.

Ejercicio 30. Dado el sistema de ecuaciones con coeficientes en $\mathbb Q$

$$ax + y + z = b$$
$$x + by + z = a$$

- (a) El sistema es siempre compatible indeterminado.
- (b) Si a = b = 1 el sistema es incompatible.
- (c) Existen valores de a y b para los que el sistema es compatible determinado.
- (d) El sistema es compatible indeterminado si, y sólo si, $a \cdot b = 1$.

Ejercicio 31. Sea $A = \begin{pmatrix} 3 & 6 & 1 & -1 & 2 \\ 2 & 4 & 1 & 0 & -1 \\ 3 & 6 & 1 & -1 & 3 \end{pmatrix}$ y $B = \begin{pmatrix} 2 & 2\alpha & 3 & 4 & 1 \\ -1 & -\alpha & 3 & 7 & 3 \\ 1 & \alpha & 2 & 3 & 1 \end{pmatrix}$ dos matrices con coeficientes en \mathbb{Q} .

- (a) Para a = 2 las matrices A y B son equivalentes por filas.
- (b) Para a = -1 las matrices A y B son equivalentes por filas.
- (c) No existe ningún valor de α para el que las matrices A y B sean equivalentes por filas.
- (d) Para a = 1 las matrices A y B no son equivalentes por columnas.

Ejercicio 32. Dado el sistema de ecuaciones

$$2x - y = 4$$
$$4x + 3y = 3$$

con coeficientes en \mathbb{Z}_p

- a) Para p = 2 el sistema tiene dos soluciones.
- b) Para p = 3 el sistema tiene tres soluciones.
- c) Para p = 5 el sistema tiene cinco soluciones.
- d) Para p = 7 el sistema tiene siete soluciones.

Ejercicio 33. Sea $P \in \mathcal{M}_2(\mathbb{Q})$ tal que $P \cdot \begin{pmatrix} 3 & 1 & 1 \\ 0 & -1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 7 \\ -6 & -4 & 4 \end{pmatrix}$. Entonces:

(a)
$$P^{-1} = \begin{pmatrix} 1 & 2 \\ -2 & 2 \end{pmatrix}$$
.

(b)
$$P^{-1} = \frac{1}{6} \begin{pmatrix} 2 & -2 \\ 2 & 1 \end{pmatrix}$$
.

(c) La matriz P no tiene inversa.

(d)
$$P^{-1} = \begin{pmatrix} 2 & -2 \\ 2 & 1 \end{pmatrix}$$
.

Ejercicio 34. Sea
$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ \alpha & 1 & 1 & 1 \\ 3 & \alpha + 1 & 2 & 0 \\ 0 & 2 & 1 & 4 \end{pmatrix} \in \mathcal{M}_4(\mathbb{Z}_7).$$

Entonces la matriz A es regular:

- a) Para cualquier valor de $a \in \mathbb{Z}_7$.
- b) Para a = 1, 3, 4, 5, 6.
- c) Para a = 3, 4, 5, 6.
- d) Para a = 0, 2, 3, 5, 6.

Ejercicio 35. Sea la matriz con coeficientes en \mathbb{R}

$$\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 \\
2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 \\
0 & 1 & 0 & 1
\end{array}\right)$$

Entonces el rango de A es igual a

a) 2 b) 4 c) 1 d) 3

Ejercicio 36. El rango de la matriz con coeficientes en \mathbb{Z}_5

$$\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3 \\
0 & 3 & 3 & 0 \\
4 & 3 & 2 & 1
\end{array}\right)$$

es igual a

a) 1 b) 2 c) 3 d) 4

Ejercicio 37. Acerca del siguiente sistema con coeficientes en \mathbb{R}

$$\begin{array}{cccc} x & +ay & +(a-1)z & = & a \\ x & +ay & +az + 2at & = & a \end{array}$$

podemos afirmar que:

- a) Independientemente del valor de a, es compatible determinado.
- b) Independientemente del valor de a, es compatible indeterminado.
- c) Es siempre incompatible.
- **d)** La compatibilidad o incompatibilidad depende del valor de a.

Ejercicio 38. El sistema con coeficientes en \mathbb{R}

$$\begin{array}{rcl}
x & +ay & +3az & = & a+3 \\
ay & +2az & = & a+1
\end{array}$$

podemos afirmar que:

- a) Independientemente del valor de a, es compatible determinado.
- b) Independientemente del valor de a, es compatible indeterminado.
- c) Es incompatible independientemente del valor de a.
- **d**) La compatibilidad depende del valor de α .

Ejercicio 39. El rango de la matriz

$$\begin{pmatrix} 1 & 0 & 3 & 1 \\ 3 & 2 & 3 & 3 \\ 4 & 2 & 6 & 4 \\ 2 & 4 & 1 & 2 \end{pmatrix} \in \mathcal{M}_4(\mathbb{Q})$$

es

a) 1 b) 2 c) 3 d) 4

Ejercicio 40. El determinante de la matriz con coeficientes en \mathbb{Z}_7

$$\left(\begin{array}{ccccc}
4 & 1 & 1 & 1 \\
1 & 4 & 1 & 1 \\
1 & 1 & 4 & 1 \\
1 & 1 & 1 & 4
\end{array}\right)$$

- a) es 0.
- b) es 4!.
- c) es congruente con 4⁴ módulo 7.
- d) es congruente con 3³ módulo 7.

Ejercicio 41. El sistema con coeficientes en \mathbb{R}

$$\begin{cases} ax + y + z = 0 \\ x + ay + 2z = 3 \end{cases}$$

- a) es siempre compatible determinado.
- b) siempre es compatible indeterminado.
- c) es incompatible para algunos valores de a.
- d) es compatible, pero es determinado o indeterminado dependiendo de a.

Ejercicio 42. El rango de la matriz sobre \mathbb{Z}_7 :

$$\left(\begin{array}{ccccc}
4 & 3 & 2 & 3 \\
3 & 4 & 4 & 1 \\
2 & 5 & 3 & 2 \\
1 & 6 & 0 & 5
\end{array}\right)$$

- a) no puede calcularse.
- b) es 4.
- c) es 3.

d) es 2.

Ejercicio 43. El determinante de la matriz

$$\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
3 & 4 & 1 & 2 \\
4 & 1 & 2 & 3
\end{array}\right)$$

cuyos coeficientes están en \mathbb{Z}_7 , es:

a) 0 b) 2 c) 4 d) 6

Ejercicio 44. El sistema de ecuaciones

$$\begin{cases} ax + y + z = 1 \\ -x + ay + z = 0 \\ x - y + z = -1 \end{cases}$$

con coeficientes en \mathbb{R} ,

- a) siempre es compatible determinado.
- b) siempre es compatible indeterminado.
- c) es incompatible para algunos valores de a.
- d) es compatible, aunque puede ser determinado o indeterminado dependiendo de a.

Ejercicio 45. El rango de la matriz

$$\left(\begin{array}{ccccc}
1 & 4 & 2 & 3 \\
1 & 1 & 4 & 1 \\
1 & 3 & 1 & 3 \\
2 & 0 & 1 & 1
\end{array}\right)$$

cuyos coeficientes están en \mathbb{Z}_5 :

a) 1 b) 2 c) 3 d) 4

Ejercicio 46. El sistema de ecuaciones en \mathbb{R}

$$\begin{cases} x + az = -a \\ y + bz = b \\ x + y + (a + b)z = b - a \end{cases}$$

- a) Es siempre compatible indeterminado.
- b) Es compatible determinado para algunos valores de a y b.
- c) Es incompatible para algunos valores de a y b.
- d) Nunca es compatible indeterminado.

Ejercicio 47. El valor del determinante

$$\begin{vmatrix}
 1 & 0 & 0 & 1 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & -2 \\
 1 & 0 & -2 & 5
 \end{vmatrix}$$

en \mathbb{R} es

- a) 5.
- b) 1.
- c) No puede calcularse.
- d) 0.

Ejercicio 48. Dado el sistema de ecuaciones con coeficientes en \mathbb{Z}_3

- a) depende del valor de a que sea compatible determinado o incompatible, pero nunca es compatible indeterminado.
- b) según el valor de a puede ser compatible determinado, compatible indeterminado o incompatible.
- c) es siempre compatible. Depende del valor de a que sea compatible determinado o indeterminado.
- d) el rango de la matriz de coeficientes vale 2. Por tanto, o es compatible indeterminado o es incompatible.

Ejercicio 49. Sea la matriz
$$A = \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & \alpha & 1 \\ -1 & 1 & 3 & 1 \\ 0 & 2 & 0 & 1 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R})$$
. Entonces

- (a) Existe un número real a para el que el rango de A vale 1.
- (b) Existe $a \in \mathbb{R}$ para el que el rango de A vale 2.
- (c) El rango de A vale 4 para cualquier valor real del parámetro a.
- (d) Para cualquier $a \in \mathbb{R}$, el rango de A vale 3.

Ejercicio 50. Sean A y B dos matrices cuadradas 2×2 con coeficientes reales tales que

$$A + B = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}; \qquad A - B = \begin{pmatrix} 0 & -1 \\ 4 & -1 \end{pmatrix}$$

Entonces:

(a)
$$A^2 - B^2 = \begin{pmatrix} -2 & -2 \\ 10 & -5 \end{pmatrix}$$
.

(b)
$$A^2 - B^2 = \begin{pmatrix} -4 & -1 \\ 12 & -3 \end{pmatrix}$$
.

- (c) No existen matrices con las condiciones que nos da el enunciado.
- (d) $A^2 B^2 = \begin{pmatrix} 0 & -3 \\ 8 & -7 \end{pmatrix}$.

Ejercicio 51. Dada la matriz
$$\begin{pmatrix} 2 & 4 & 1 & 0 \\ 4 & 1 & 3 & 1 \\ 5 & 3 & 4 & 5 \end{pmatrix} \in \mathcal{M}_{3\times 4}(\mathbb{Z}_7)$$
, su forma normal de Hermite por filas es:

- (a) $\left(\begin{array}{cccc} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right).$
- (b) $\left(\begin{array}{cccc} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{array} \right).$
- (c) $\left(\begin{array}{cccc} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{array} \right).$
- (d) $\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$

Ejercicio 52. El determinante de la matriz $\begin{pmatrix} 1 & 0 & 1 & 4 \\ 2 & 2 & 0 & 0 \\ 3 & 1 & 1 & 1 \\ 4 & 1 & 3 & 4 \end{pmatrix}$ con coeficientes en \mathbb{Z}_5 es

- 1. 1
- 2. 2
- 3. 3
- 4. 4