Bonus Lecture! Yay!

EMBL Bio-IT/ALMF Course

Image Analysis with Python 2018

Sessions 3 – 5

Jonas Hartmann
Gilmour group, EMBL Heidelberg

Agenda

- **▶** Parameter optimization
- **▶** Smart microscopy
- **▶** Object tracking
- **▶** Machine learning for segmentation
- **▶** More machine learning

Parameter Optimization

- Selecting parameters is important but difficult!
 - Examples: sigma, SE size, morphology params, DT sigma, min_distance, ...
 - Option 1: Use reasoning based on 'limits'
 - Option 2: Trial and error
 - This can be automated!
 - 1. Create some manual gold standard segmentations
 - 2. Automatically screen through 100s of parameter combinations
 - 3. This becomes feasible by using the compute cluster
 - 4. Tobias Rasse (ALMF) is developing a framework for this at EMBL!

- Direct coupling of microscopy and image analysis
- ► Example 1: Region Of Interest (ROI) detection
 - Identify ROI in low-res high-FOV image
 - Instruct microscope to acquire ROI in high-res

Published 2011 in Nature Methods by Ellenberg & Pepperkok groups

- **▶** Direct coupling of microscopy and image analysis
- ► Example 2: Live object tracking

Scale bars: 15µm

Object Tracking

- Assign each labeled object at time to a corresponding object at t1
 - Approach: segment independently, then link objects (by optimization)
 - Linking based on: space, movement, object properties
 - Easier for small δt
 - Challenges: poor segmentation, overlapping objects, dividing/merging objects

From Fiji's TrackMate plugin

From Eric Betzig's group

Object Tracking

► Assign each labeled object at time t0 a corresponding object at t1

Machine Learning for Segmentation

- Goal: foreground-background detection by machine learning
 - This is a classification task: classify pixels into groups
 - Approach: supervised learning
 - Manually label example pixels
 - Extract features (intensity, neighborhood, ...)
 - Train classifier, e.g. random forest
 - Make prediction for all other pixels

From the Ilastik website

Machine Learning for Segmentation

- Machine learning in python
 - scikit-learn (sklearn)
- Deep Learning
 - Keras, Tensorflow, PyTorch

Similar approach (but without neural networks): speak to Christian Tischer, ALMF

Machine Learning for Segmentation

Machine Learning for Image Analysis

Date: Monday 29 - Wednesday 31 October 2018

Venue: EMBL - EMBL- Heidelberg, Meyerhofstraße, 69117, Heidelberg, Germany

Application opens: Monday May 07 2018

Application deadline: Friday June 15 2018

Participation: Open application with selection

This is a blended learning course on Machine Learning for Image Analysis, consisting of three online sessions with associated hands-on exercises prior to the workshop, a three day face-to-face workshop at EMBL Heidelberg and two optional online sessions with associated hands-on exercises after the workshop.

- Deep neural network autoencoder
 - First Learn to reconstruct mem+nuc image from more sparse representation
 - Next learn to reconstruct other channels based on mem+nuc

Deep neural network autoencoder

Adapted from allencell.org

Deep neural network autoencoder

Adapted from allencell.org

Deep neural network autoencoder

Adapted from allencell.org

- Advantages: construction of 'atlases' without feature engineering!
- Disadvantages: encoded model is a 'black box'

That's all!

Thanks!