WPROWADZENIE

Pliki do pobrania: - Plik nagłówkowy gauss.h

Rozwiązanie wielu problemów inżynierskich wymaga rozwiązania układów równań nieliniowych (wśród których choć jedno równanie jest równaniem nieliniowym). Dzisiejsze laboratorium będzie poświęcone metodzie Newtona-Raphsona pozwalającej rozwiązywać takie zagadnienia. W celu przypomnienia podstawowych zagadnień zaczniemy od problemu liniowego wypływającego ze statyki mechanizmu po uwolnieniu poszczególnych członów od więzów. Umiejętność rozwiązania zagadnienia liniowego jest nieodzownym elementem implementacji metody Newtona-Raphsona.

Problem liniowy

Rozważmy mechanizm pokazany na rysunku i uwolnijmy ten układ od więzów, uwydatniając siły w parach kinematycznych. Znana jest geometria układu oraz ciężary poszczególnych członów wynoszące $G_{AB}=25,\,G_{BC}=16$ oraz $G_{CD}=53$.

Dla układu o zadanej na rysunku geometrii oraz ciężarach członów podanych powyżej

równania równowagi wygladaja następująco:

W postaci macierzowej układ równań zapisuje się następująco:

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -4 & 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -3 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 2 \end{bmatrix} \begin{bmatrix} R_{Ax} \\ R_{Ay} \\ M_{A} \\ R_{Bx} \\ R_{By} \\ R_{Cx} \\ R_{Cy} \\ R_{Dx} \\ R_{Dx} \\ R_{Dx} \end{bmatrix} = \begin{bmatrix} 0 \\ 25 \\ 37.5 \\ 0 \\ 16 \\ 32 \\ 0 \\ 53 \\ 53 \end{bmatrix}$$

Zadanie 1

Napisz program w C, który obliczy siły i momenty przenoszone w parach kinematycznych. Do rozwiązania układu równań wykorzystaj metodę eliminacji Gaussa, której implementacja jest dostępna w pliku Gauss.h. (Wskazówka: Funkcja void Gauss(int n, double **M, double *F, double *x) przyjmuje podwójny wskaźnik do macierzy - z tego względu pamiętaj o zaalokowaniu dynamicznym dwuwymiarowej tablicy - tablica statyczna miałaby typ niezgodny z nagłówkiem funkcji). Sprawdź, czy otrzymujesz poprawne rozwiązanie wynoszące:

R_{Ax}		8.117647
R_{Ay}		39.088235
M_A		47.294118
R_{Bx}		-8.117647
R_{By}	=	-14.088235
R_{Cx}		-8.117647
R_{Cy}		1.911765
R_{Dx}		-8.117647
$\lfloor R_{Dy} \rfloor$		54.911765

Problem nieliniowy

Metoda Newtona-Raphsona

Metoda Newtona Raphsona wypływa z rozwinięcia funkcji wielu zmiennych w szereg Taylora, ucięcia go po członie liniowym i zapostulowania, że nieznany przyrost argumentów ma być taki, aby funkcja miała w tym miejscu wartość zero. Zapiszmy takie rozwinięcie dla funkcji $F(\vec{x})$, gdzie $\vec{x} = [x, y]$, a $\vec{h} = [h_x, h_y]$.

$$F(\vec{x}_0 + \vec{h}) = F(\vec{x}_0) + \frac{\partial F}{\partial x} h_x + \frac{\partial F}{\partial y} h_y + \dots$$

W zapisie indeksowym napiszemy dla funkcji F_i (może tych funkcji być cały wektor dla i=1,...,n)

$$F_i(\vec{x}_0 + \vec{h}) = F_i(\vec{x}_0) + \frac{\partial F_i}{\partial x_j} h_j + \dots$$

 $\frac{\partial F_i}{\partial x_j}$ to nic innego jak macierz Jacobiego. Wiadomo, że jest to macierz kwadratowa, jako że rozwiązujemy zagadnienie mające tyle samo równań co niewiadomych. Przyrównujemy rozwinięcie do zera - pozwoli nam to wyznaczyć takie przesunięcie argumentów, że gdyby liniowe rozwinięcie funkcji wokół danego punktu było słuszne, to w jednej iteracji otrzymywalibyśmy dokładne rozwiązanie zadania. Otrzymujemy:

$$F_i(\vec{x}_0 + \vec{h}) = F_i(\vec{x}_0) + \frac{\partial F_i}{\partial x_i} h_j = 0$$

i tym samym

$$\frac{\partial F_i}{\partial x_j} h_j = -F_i(\vec{x}_0)$$

Proces iteracyjny dla metody Newtona-Raphsona ma następującą postać: - Wybierz przybliżenie startowe x^1 . - Przypisz k = 1. - Wyznacz wektor \vec{h}^k , rozwiązując układ równań $\frac{\partial F_i(\vec{x}^k)}{\partial x_j}h^k_j=-F_i(\vec{x}^k)$. - Zaktualizuj przybliżenie rozwiązania: $\vec{x}^{k+1}=\vec{x}^k+\vec{h}^k$. - Przypisz k=k+1. - Wróc do punktu 3. i powtarzaj aż do osiągnięcia zbieżności.

Zadanie 2

Zajmijmy się teraz czworobokiem przegubowym pokazanym powyżej i rozważmy zadanie o położeniach (patrz: TMM I). Zadanie o położeniach zawsze prowadzi do układu równań nieliniowych. Do jego rozwiązania wykorzystamy metodę Newtona-Raphsona. Układ rozważymy we współrzędnych naturalnych (nieznanymi wielkościami będą współrzędne punktów (x_0, x_1) i (x_2, x_3) , a równania więzów będą wynikać z odchylenia członu kierującego o kat α od poziomu oraz długości dwóch pozostałych

członów). Tym samym równania członów są postaci:

$$x_0 = 5\cos\alpha$$

$$x_1 = 5\sin\alpha$$

$$(x_2 - x_0)^2 + (x_3 - x_1)^2 = 4$$

$$(3 - x_2)^2 + (x_3 - 0)^2 = 36$$

Po rozwinięciu i zapisaniu całego układu w postaci funkcji wektorowej wektorowego argumentu otrzymamy następujące sformułowanie naszego układu równań: $\vec{F}(\vec{x}) = \vec{0}$, gdzie

$$\vec{F}(\vec{x}) = \begin{bmatrix} x_0 - 5\cos\alpha \\ x_1 - 5\sin\alpha \\ x_2^2 - 2x_0x_2 + x_0^2 + x_3^2 - 2x_1x_3 + x_1^2 - 4 \\ -6x_2 + x_2^2 + x_3^2 - 27 \end{bmatrix}$$

Wyprowadziwszy powyższe równania możemy analitycznie policzyć macierz Jacobiego:

$$J = \frac{\partial \vec{F}}{\partial \vec{x}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2x_2 + 2x_0 & -2x_3 + 2x_1 & -2x_0 + 2x_2 & -2x_1 + 2x_3 \\ 0 & 0 & -6 + 2x_2 & 2x_3 \end{bmatrix}$$

Zadania do wykonania

5

- Napisz program, który rozwiąże zadanie o położeniach przy wykorzystaniu metody Newtona-Raphsona. W tym celu stwórz następujące funkcje:
- void Constraints(double *x, double *F);
- void JacobiMatrix(double **J, double *x);
- void NewtonRaphson(double *x);
- Zmodyfikuj program tak, aby nie wymagał analitycznego obliczenia macierzy Jacobiego, ale potrafił numerycznie obliczyć tę macierz. W tym celu stwórz dodatkową funkcję void JacobiMatrixFD(double **J, double *x); przybliżającą poprawną macierz Jacobiego macierzą obliczoną z użyciem metody różnic skończonych (ang. finite difference). Można tego dokonać z użyciem algorytmu zapisanego w poniższym pseudokodzie (metoda różnic skończonych 2-ego rzędu):

- Wybierz małą wartość, np. $\epsilon = 1e 8$, stwórz wektor \vec{x}' i \vec{x}'' .
- Pętla po wszystkich czterech kolumnach:
- Przypisz do \vec{x}' i \vec{x}'' bieżącą wartość \vec{x} .
- Zwiększ (zaburz) i-tą składową \vec{x}' o ϵ , a tę samą składową \vec{x}'' zmniejsz o ϵ .
- Wyznacz wektory wartości funkcji $\vec{F}(\vec{x}')$ oraz $\vec{F}(\vec{x}'')$.
- Doi-tejkolumny macierzy Jwpisz wartości $\frac{\vec{F}(\vec{x}') \vec{F}(\vec{x}'')}{2\epsilon}.$

W ramach testów sprawdź, czy macierz Jacobiego dla punktu startowego obliczona metodą dokładną i numeryczną ma te same wartości. Dla punktu startowego $\vec{x} = [0,5,3,6]$ macierz Jacobiego ma wartości

$$J = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -6 & -2 & 6 & 2 \\ 0 & 0 & 0 & 12 \end{array} \right]$$