

FIG. 1: Evolution of the equation-of-state parameter of effective dark energy.

III. PERTURBATIONS

We now turn to the evolution of density fluctuations. In f(R) gravity, the evolution equation of density fluctuations, δ , deeply in the sub-horizon regime is given by [7]

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G_{\text{eff}}\rho\delta = 0, \quad G_{\text{eff}} = \frac{G}{F} \frac{1 + 4\frac{k^2}{a^2} \frac{F'}{F}}{1 + 3\frac{k^2}{a^2} \frac{F'}{F}}.$$
 (7)

In the previous paper[6] we obtained an analytic solution for the high-curvature regime when the scale factor evolves as $a(t) \propto t^{2/3}$ and F takes an asymptotic form $F \simeq 1 - 2n\lambda (R/R_s)^{-2n-1}$. In the present paper, we numerically integrate (7) up to z = 0 without using the approximation $|F - 1| \ll 1$.

The wavenumber of our particular interest is the scale corresponding to σ_8 normalization, for which we find $k_{\rm eff}(r=8h^{-1}{\rm Mpc})=0.174h{\rm Mpc}^{-1}$. Since the standard $\Lambda{\rm CDM}$ model normalized by CMB data explains galaxy clustering at small scales well, $\delta_{\rm fRG}$ should not be too much larger than $\delta_{\Lambda{\rm CDM}}$ on these scales. We may typically require $(\delta_{\rm fRG}/\delta_{\Lambda{\rm CDM}})^2 \lesssim 1.1$. Although we neglect non-linear effects here, the difference between linear calculation and non-linear N-body simulation remained smaller than 5% at wavenumber $0.174h{\rm Mpc}^{-1}[8]$.

The left panel of Fig. 2 represents $(\delta_{\text{fRG}}/\delta_{\Lambda\text{CDM}})^2$ as a function of λ for n=2 together with two fitting functions. The solid line is from the analytic formula obtained in Ref. [6], and the broken line is numerical fitting using an exponential function $1 + b_n e^{-q_n \lambda}$. From these analysis, we can constrain the parameter space as the right panel of Fig. 2. The region which satisfy $(\delta_{\text{fRG}}/\delta_{\Lambda\text{CDM}})^2 < 1.1$ lies above the solid line. The region below the dotted line