Unit 4

Lecture 4

Multiplexers

- A digital multiplexer is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line.
- ➤ The selection of a particular input line is controlled by a set of selection lines.
- ➤ Normally, there are 2ⁿ input lines and n selection lines whose bit combinations determine which input is selected.

Fig: Logic Diagram: 4-to-1 line Multiplexer

s ₁	s_0	Y
0	0	10
0	1	I_1
1	0	12
1	1	I_3

Table: Function table

Fig: Block Diagram of Multiplexer

Demultiplexer

- A demultiplexer is a circuit that receives information on a single line and transmits this information on one of 2ⁿ possible output lines.
- The selection of a specific output line is controlled by the bit values of n selection lines.
- >A Decoder with an enable input can function as a demultiplexer.
- ➤ Here, enable input and input variables for decoder is taken as data input line and selection lines for the demultiplexer respectively.

1x4 De-Multiplexer

1x4 De-Multiplexer has one input I, two selection lines, $s_1 \& s_0$ and four outputs Y_3 , Y_2 , $Y_1 \& Y_0$. The **block diagram** of 1x4 De-Multiplexer is shown in the following figure.

The single input 'I' will be connected to one of the four outputs, Y_3 to Y_0 based on the values of selection lines s_1 & s0. The **Truth table** of 1x4 De-Multiplexer is shown below

Selection Inputs		Outputs			
S ₁	S ₀	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

From the above Truth table, we can directly write the **Boolean functions** for each output as

Y₂=S₁S₀'|Y₂=s₁s₀'| Y₁=S₁'S₀|Y₁=s₁'s₀| Y₀=S₁'S₀'|

From the above Truth table, we can directly write the **Boolean functions** for each output as

$$Y3 = S1 S0 I$$

$$Y2 = S1 S0$$
, I

$$Y1 = S1$$
' $S0I$

$$Y0=S1'S0'I$$

Fig: Logic Diagram