Определение 0.1. Доказательство в исчислении высказываний — это некоторая конечная последовательность выражений $\alpha_1, \alpha_2 \dots \alpha_n$ из языка L, такая, что каждое из утверждений $\alpha_i (1 \le i \le n)$ либо является аксиомой, либо получается из других утверждений $\alpha_{P_1}, \alpha_{P_2} \dots \alpha_{P_k}$ $(P_1 \dots P_k < i)$ по правилу вывода.

Определение 0.2. Высказывание α называется доказуемым, если существует доказательство $\alpha_1, \alpha_2 \dots \alpha_k$, и в нем α_k совпадает с α .

Определение 0.3. Вывод из допущений. Пусть Γ – некоторый список высказываний, а α — некоторое высказывание. Тогда мы будем говорить, что высказывание α выводимо из Γ (и записывать это как $\Gamma \vdash \alpha$), если существует такая последовательность высказываний $\alpha_1, \alpha_2, \ldots \alpha_{n-1}, \alpha$ (называемая выводом α из Γ), что каждое из высказываний α_i — это

- либо аксиома,
- либо получается по правилу Modus Ponens из предыдущих высказываний,
- либо высказывание из списка Г.

Элементы Γ мы будем называть *допущениями*. Также эти элементы называют предположениями или гипотезами.

Теорема 0.1. Теорема о дедукции. Утверждение $\Gamma \vdash \alpha \to \beta$ справедливо тогда и только тогда, когда справедливо, что $\Gamma, \alpha \vdash \beta$.

Лемма 0.2. $\vdash \alpha \rightarrow \alpha$

Определение 0.4. Введем обозначение. Пусть α — это некоторое высказывание, а x — некоторое истинностное значение. Тогда обозначим за $_{[x]}\alpha$ высказывание α , если x — истина, и $\neg(\alpha)$, если x — ложь. Также, если формула α — это формула c n пропозициональными переменными $P_1 \dots P_n$, и $x_1 \dots x_n$ — некоторые истинностные значения, то за $\llbracket \alpha \rrbracket^{P_1:=x_1,\dots P_n:=x_n}$ обозначим значение формулы α при подстановке значений $x_1 \dots x_n$ вместо переменных $P_1 \dots P_n$.

Лемма 0.3. Если $\Gamma, \Sigma \vdash \alpha$, то $\Gamma, \Delta, \Sigma \vdash \alpha$. Если $\Gamma, \Delta, \Sigma, \Pi \vdash \alpha$, то $\Gamma, \Sigma, \Delta, \Pi \vdash \alpha$.

Лемма 0.4. Если справедливы 3 утверждения: $\Gamma \vdash \gamma$, $\Delta \vdash \delta$ и γ , $\delta \vdash \alpha$, то справедливо и Γ , $\Delta \vdash \alpha$

Лемма 0.5. Каждое из построенных по таблицам истинности утверждений доказуемо.

Лемма 0.6 (Правило контрапозиции). Каковы бы ни были формулы α и β , справедливо, что $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

Лемма 0.7. Правило исключенного третьего. Какова бы ни была формула $\alpha, \vdash \alpha \lor \neg \alpha$

Лемма 0.8. Об исключении допущения. Пусть справедливо $\Gamma, \rho \vdash \alpha$ и $\Gamma, \neg \rho \vdash \alpha$. Тогда также справедливо $\Gamma \vdash \alpha$.

Теорема 0.9. О полноте исчисления высказываний. Пусть справедливо $\models \alpha$. Тогда также справедливо, что $\vdash \alpha$.

Лемма 0.10.

Теорема 0.11. О корректности исчисления высказываний. Пусть справедливо $\vdash \alpha$. Тогда также справедливо, что $\models \alpha$.

Теорема 0.12. В интуиционистском исчислении высказываний невозможно доказать правило исключенного третьего: $P \vee \neg P$.

Определение 0.5. Рассмотрим некоторый ориентированный граф без циклов (без потери общности мы можем взять дерево вместо такого графа). Узлы мы назовем *мирами* и пронумеруем натуральными числами: $W = \{W_1, W_2, \dots, W_n\}$. Будем писать $W_i \leq W_j$, если существует путь из W_i в W_j . Также мы считаем, что $W_i \leq W_i$ (из каждой вершины существует путь в саму себя).

Определение 0.6. Каждому узлу сопоставим множество вынужденных переменных ИИВ и будем писать $W_i \Vdash A_k$, если переменная A_k вынуждена в мире W_i . При этом, если $W_i \preceq W_i$, то всегда должно быть выполнено и $W_i \Vdash A_k$.

Определение 0.7. *Моделью Крипке (шкалой Крипке)* назовем упорядоченную тройку — множество миров, отношение порядка на мирах и отношение вынужденности. Будем говорить, что формула α *вынуждается* моделью (или является истинной в данной модели), если $W_i \Vdash \alpha$ в любом мире W_i . Будем записывать это как $\Vdash \alpha$.

Лемма 0.13. О монотонности. Если $W \Vdash \alpha$ и $W_i \preceq W_j$, то $W_j \Vdash \alpha$.

Теорема 0.14. О корректности ИИВ относительно моделей Крипке. Если формула α выводима в интуиционистском исчислении высказываний, то она истинна во всех мирах всех моделей Крипке.

Определение 0.8. Назовем пропозициональное исчисление *табличным*, если для этого исчисления существует полная модель, (модель, в которой истинны те и только те формулы, которые выводимы в этом исчислении), и она может быть представлена конечной таблицей. То есть существуют $n \in \mathbb{N}$, $V = \{v_1, v_2, \dots, v_n\}$, где $v_n = \mathbb{N}$, а также таблицы истинности для всех четырёх связок.

Теорема 0.15. ИИВ не является табличным.

Определение 0.9. *Терм* исчисления предикатов (еще мы его будем называть предметным выражением) — это:

- предметная переменная маленькая буква начала или конца латинского алфавита, возможно, с индексом или апострофом.
- применение функции (функции мы будем обозначать латинскими буквами середины алфавита: f, g, h, \ldots): если $\theta_1 \ldots \theta_n$ термы и f ϕ ункциональный символ (то есть символ, обозначающий некоторую функцию), то $f(\theta_1, \ldots \theta_n)$ тоже терм. Также, частным случаем функций являются константы это нульместные функции. Обычно мы их будем обозначать маленькими буквами c или d, возможно, c индексами.

Определение 0.10. Φ *ормула* исчисления предикатов (еще мы ее будем называть логическим выражением) — это:

- если α и β формулы исчисления предикатов, то $\neg \alpha$, $\alpha \& \beta$, $\alpha \lor \beta$, $\alpha \to \beta$ также формула. Связки расставлены в порядке убывания приоритета. Как и в исчислении высказываний, импликация правоассоциативна, остальные операции левоассоциативны.
- если α формула и x предметная переменная, то $\forall x\alpha$ и $\exists x\alpha$ также формулы. Кванторы имеют приоритет, одинаковый с отрицанием, и, как и отрицание, действуют только на ближайшее за ними логическое выражение. Например, формула $\forall x P(x,5) \lor P(x,7)$ соответствует формуле ($\forall x P(x,5)) \lor P(x,7)$.

• применение предиката (предикаты мы будем обозначать большими латинскими буквами, возможно, с индексами): если $\theta_1 \dots \theta_n$ — термы, и P-npedukamhuŭ символ, то $P(\theta_1, \dots \theta_n)$ — формула. В частности, при n=0 предикат становится аналогом предметной переменной из исчисления высказываний.

Определение 0.11. Дана некоторая формула s. Будем говорить, что подстрока s_1 строки s является подформулой, если она в точности соответствует какому-то одному нетерминалу в дереве разбора строки s.

Определение 0.12. Если в формулу входит подформула, полученная по правилам для кванторов (то есть, $\forall x\alpha$ или $\exists x\alpha$), то мы будем говорить, что формула α находится в области действия данного квантора по переменной x. Также, будем говорить, что любая подформула формулы α находится в области действия данного квантора.

Определение 0.14. Будем говорить, что терм θ свободен для подстановки в формулу ψ вместо x (или просто свободен для подстановки вместо x), если после подстановки θ вместо свободных вхождений x ни одно вхождение свободной переменной в θ не станет связанным.

Определение 0.15. Формула в исчислении предикатов общезначима, если она истинна на любом предметном множестве D, при любой оценке предикатных и функциональных символов, и при любых оценках свободных предметных переменных.

Определение 0.16. Пусть имеется некоторое исчисление предикатов с множеством аксиом A, и пусть дан некоторый (возможно, пустой) список Γ формул исчисления предикатов. Тогда, вывод формулы α в исчислении с аксиомами $A \cup \Gamma$ мы назовем выводом из допущений Γ , и будем записывать это как $\Gamma \vdash \alpha$.

Теорема 0.16. Теорема о дедукции. Если $\Gamma, \alpha \vdash \beta$, и в доказательстве отстутствуют применения правил для кванторов, использующих свободные переменные из формулы α , то $\Gamma \vdash \alpha \to \beta$ Обратно, если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \to \beta$.

Лемма 0.17. $\llbracket \psi \rrbracket^{x \coloneqq \llbracket \theta \rrbracket} = \llbracket \psi [x \coloneqq \theta] \rrbracket$, если θ свободна для подстановки в ψ вместо x.

Теорема 0.18. Исчисление предикатов корректно, т.е. любое доказуемое утверждение общезначимо.

Определение 0.17. Назовём Γ — множество *замкнутых* формул — непротиворечивым, если ни для какой формулы α невозможно показать, что $\Gamma \vdash \alpha$ и $\Gamma \vdash \neg \alpha$.

Определение 0.18. Полным непротиворечивым множеством (непротиворечивым бескванторным множеством) формул назвем такое множество Γ , что для любой замкнутой (замкнутой и бескванторной) формулы α либо $\alpha \in \Gamma$, либо $(\neg \alpha) \in \Gamma$.

Лемма 0.19. Если Γ — непротиворечивое множество формул, то для любой формулы α либо $\Gamma \cup \{\alpha\}$, либо $\Gamma \cup \{\neg \alpha\}$ непротиворечиво.

Теорема 0.20. Любое множество непротиворечивых формул Γ мы можем дополнить до полного (полного бескванторного) множества.

Определение 0.19. Моделью непротиворечивого множества формул мы назовем такие оценки предикатов и функциональных символов, что каждая из формул данного множества истинна. Также, по аналогии с исчислением высказываний, введём обозначение: $\Gamma \models \alpha \ (\alpha \ \text{следует} \ \text{из} \ \Gamma)$, если $\llbracket \alpha \rrbracket = \mathbb{N}$ в любой модели множества Γ .

Теорема 0.21. Если $\Gamma \vdash \alpha$, то $\Gamma \models \alpha$.

Теорема 0.22. Если Γ имеет модель, то оно непротиворечиво.

Лемма 0.23. Пусть Γ — полное непротиворечивое множество бескванторных формул. Тогда существует модель для Γ .

Определение 0.20. Назовём формулу α формулой с поверхностными кванторами, если существует такой узел в дереве разбора формулы, не являющийся квантором, ниже которого нет ни одного квантора, а выше — нет ничего, кроме кванторов.

Лемма 0.24. Для любой формулы исчисления предикатов найдётся эквивалентная ей формула с поверхностными кванторами.

Теорема 0.25. Теорема Гёделя о полноте исчисления предикатов. Пусть Γ — непротиворечивое множество формул исчисления предикатов. Тогда существует модель для Γ .

Теорема 0.26. Если $\models \alpha$, то $\vdash \alpha$.

Теорема 0.27. Так определенное сложение коммутативно.

Определение 0.21. Теорией первого порядка мы назовем исчисление предикатов с расширенным языком (к стандартным конструкциям мы добавляем функции и предикаты, возможно, с особым синтаксисом) и дополнительными аксиомами. Эти дополнения к исчислению предикатов мы назовем нелогическими или математическими. В противоположность им, стандартные конструкции и аксиомы исчисления предикатов мы назовем логическими.

Теорема 0.28. $\vdash a = a$

Определение 0.22. Структура. Структурой теории первого порядка мы назовем упорядоченную тройку $\langle D, F, P \rangle$, где $F = \langle F_0, F_1, ... \rangle$ — списки оценок для 0-местных, 1-местных и т.д. функций, и $P = \langle P_0, P_1, ... \rangle$ — списки оценок для 0-местных, 1-местных и т.д. предикатов, D — предметное множество.

Определение 0.23. Назовем структуру корректной, если любая доказуемая формула истинна в данной структуре.

Определение 0.24. Моделью теории мы назовем любую корректную структуру.

Теорема 0.29. Доказуемо, что $a = b \to b = a$ и что $a^{-1} \cdot a = 1$.

Теорема 0.30. Следующие функции являются примитивно-рекурсивными: сложение, умножение, ограниченное вычитание (которое равно 0, если результат вычитания отрицателен), целочисленное деление, остаток от деления, проверка значения на простоту.

Определение 0.25. Если R-n-местное отношение, то его характеристической функцией мы назовем функцию

$$C_R(x_1, \dots x_n) = \left\{ egin{array}{ll} 1, & \mathrm{если} \ (x_1, \dots x_n) \in R \\ 0, & \mathrm{если} \ (x_1, \dots x_n) \notin R \end{array}
ight.$$

Определение 0.26. Рекурсивным отношением называется отношение, характеристическая функция которого рекурсивна.

Определение 0.27. Функцией Аккермана мы назовем так определенную функцию:

$$A(m,n) = \left\{ \begin{array}{c} n+1, & \text{если } m=0 \\ A(m-1,1), & \text{если } m>0, n=0 \\ A(m-1,A(m,n-1)), & \text{если } m>0, n>0 \end{array} \right.$$

Также нам будет удобно другое обозначение: $\alpha_m(n) = A(m,n)$. Данное обозначение позволяет рассматривать функцию Аккермана как семейство функций от одной переменной.

Лемма 0.31. $\alpha_{m+1}(n) = \alpha_m^{n+1}(1)$.

Лемма 0.32. Для функции Аккермана справедливы следующие свойства:

- 1. Если $m_1 < m_2$, то $A(m_1, n) < A(m_2, n)$
- 2. Если $n_1 < n_2$, то $A(m, n_1) < A(m, n_2)$
- 3. $\alpha_1(n) = n + 2$
- 4. $\alpha_2(n) = 2n + 3$
- 5. $\alpha_{m+2}(n) > \alpha_m^{n+2}(n)$

Теорема 0.33. Функция Аккермана растет быстрее любой примитивно-рекурсивной функции. Точнее, какова бы ни была примитивно-рекурсивная фукнция $p: N^n \to N$, мы можем подобрать такую константу K, что $p(\overrightarrow{x}) \le \alpha_K(max(\overrightarrow{x}))$ при любом x.

Теорема 0.34. Функция Аккермана не является примитивно-рекурсивной.

Определение 0.28. Арифметическая функция — функция $f: N^n \to N$. Арифметическое отношение — n-арное отношение, заданное на N.

Определение 0.29. Арифметическое отношение R называется выразимым (в формальной арифметике), если существует такая формула $\alpha(x_1, \ldots x_n)$ с n свободными переменными, что для любых натуральных чисел $k_1 \ldots k_n$

- 1. если $(k_1, \ldots k_n) \in R$, то доказуемо $\alpha(\overline{k_1}, \ldots \overline{k_n})$
- 2. если $(k_1, \ldots k_n) \notin R$, то доказуемо $\neg \alpha(\overline{k_1}, \ldots \overline{k_n})$.

Определение 0.30. Введем следующее сокращение записи: пусть $\exists ! y \phi(y)$ означает

$$\exists y \phi(y) \& \forall a \forall b (\phi(a) \& \phi(b) \to a = b)$$

Здесь a и b — некоторые переменные, не входящие в формулу ϕ свободно.

Определение 0.31. Арифметическая функция f от n аргументов называется представимой в формальной арифметике, если существует такая формула $\alpha(x_1, \dots x_{n+1})$ с n+1 свободными пременными, что для любых натуральных чисел $k_1 \dots k_{n+1}$

- 1. $f(k_1,\ldots k_n)=k_{n+1}$ тогда и только тогда, когда доказуемо $\alpha(\overline{k_1},\ldots \overline{k_{n+1}})$.
- 2. Доказуемо $\exists ! b(\alpha(\overline{k_1}, \dots \overline{k_n}, b)$

Теорема 0.35. Функции Z, N, U_i^n являются представимыми.

Теорема 0.36. Если функции f и $g_1, \dots g_m$ представимы, то функция $S\langle f, g_1, \dots g_m \rangle$ также представима.

Определение 0.32. β -функция Геделя - это функция $\beta(b,c,i) = b\%(1+c\cdot(i+1))$. Здесь операция (%) означает взятие остатка от целочисленного деления.

Лемма 0.37. Функция примитивно-рекурсивна, и при этом представима в арифметике формулой $B(b,c,i,d) \coloneqq \exists q((b=q\cdot(1+c\cdot(i+1))+d) \& (d<1+c\cdot(i+1)))$

Теорема 0.38. Китайская теорема об остатках. Если $u_1, \ldots u_n$ — попарно взаимно простые целые числа, и $k_1, \ldots k_n$ — целые числа, такие, что $0 \le k_i < u_i$ при любом i, то найдется такое целое число b, что $k_i = b\%u_i$ при любом i.

Лемма 0.39. Для любой конечной последовательности чисел k_0 ... k_n можно подобрать такие константы b и c, что $\beta(b,c,i)=k_i$ для $0\leq i\leq n$.

Теорема 0.40. Всякая рекурсивная функция представима в арифметике.

Теорема 0.41. Всякое рекурсивное арифметическое отношение выразимо в формальной арифметике.

Определение 0.33. Ограниченные кванторы $\exists_{x < y} \phi(x)$ и $\forall_{x < y} \phi(x)$ — сокращения записи для выражений вида $\exists x (x < y \& \phi(x))$ и $\forall x (x \ge y \lor \phi(x))$

Теорема 0.42. Пусть P_1 и P_2 — рекурсивные отношения. Тогда следующие комбинации отношений также являются рекурсивными отношениями:

- 1. $F(x_1, \ldots x_n, z) := \forall_{y < z} P_1(x_1, \ldots x_n, y)$
- 2. $E(x_1, \ldots x_n, z) := \exists_{y < z} P_1(x_1, \ldots x_n, y)$
- 3. $P_1(x_1, \dots x_n) \to P_2(x_1, \dots x_n)$
- 4. $P_1(x_1, \ldots x_n) \vee P_2(x_1, \ldots x_n)$
- 5. $P_1(x_1, \ldots x_n) \& P_2(x_1, \ldots x_n)$
- 6. $\neg P_1(x_1, \dots x_n)$

Определение 0.34. Гёделева нумерация. Дадим следующие номера символам языка формальной арифметики:

Теорема 0.43. Любая представимая в формальной арифметике функция является рекурсивной.

Определение 0.35. Мы будем называть теорию непротиворечивой, если не найдется такой формулы α , что доказуемо как α , так и $\neg \alpha$.

Лемма 0.44. Если теория противоречива, то в ней доказуема любая формула.

Определение 0.36. Мы будем называть теорию ω -непротиворечивой, если, какова бы ни была формула P(x) со свободной переменной x, такая, что для любого натурального числа p доказуемо $P(\overline{p})$, то формула $\exists p \neg P(p)$ недоказуема.

Лемма 0.45. ω -непротиворечивость влечёт непротиворечивость.

Теорема 0.46. Первая теорема Гёделя о неполноте арифметики.

- 1. Если формальная арифметика непротиворечива, то недоказуемо $\sigma(\overline{\langle \langle \sigma \rangle \rangle})$.
- 2. Если формальная арифметика ω -непротиворечива, то недоказуемо $\neg \sigma(\overline{\langle \langle \sigma \rangle \rangle})$.

Теорема 0.47. Теорема Гёделя в форме Россера. Если формальная арифметика непротиворечива, то не доказуема как формула $\rho(\overline{\langle \langle \rho \rangle \rangle})$, так и её отрицание.

Лемма 0.48. Каково бы ни было число n, доказуемы следующие утверждения:

- $\bullet \vdash a \leq \overline{n} \to (a = \overline{0} \lor a = \overline{1} \lor \dots \lor a = \overline{n})$
- $\bullet \vdash (a = \overline{0} \lor a = \overline{1} \lor \dots \lor a = \overline{n}) \to a \le \overline{n}$

Теорема 0.49. Вторая теорема Гёделя о неполноте арифметики. Если арифметика непротиворечива, то в ней не существует доказательства *Consis*.

Определение 0.37. Колмогоровской сложностью K(x) натурального числа x мы назовем минимальную длину (в битах) записи рекурсивной функции (в кодировке ASCII, в синтаксисе, использованном в данном конспекте; вместо символа μ мы будем использовать M), вычисляющей данное число.

Теорема 0.50. Теорема Чайтина о неполноте. Существует такое число L (вообще говоря, зависящее от конкретного абстрактного алгоритма, способа записи и т.п.), что ни для какого числа x нет способа доказать в формальной арифметике, что $K(\overline{x}) > L$.

Определение 0.38. Эквивалентность. Запись $a \leftrightarrow b$ является сокращением записи для $\equiv a \to b \& b \to a$.

Определение 0.39. Будем говорить, что множество x является подмножеством множества y, если любой элемент x принадлежит y. Формально: $x \subseteq y$ является сокращением записи для $\forall z (z \in x \to z \in y)$.

Определение 0.40. Принцип объемности. Два множества называются равными, если они являются подмножествами друг друга. Формально: x=y является сокращением записи для $x \subseteq y \& y \subseteq x$.

Определение 0.41. Пересечением множеств x и y называется множество, состоящее в точности из тех элементов, которые присутствуют и в x и в y. Формально: $x \cap y$ — это такое множество z, что $\forall t (t \in z \leftrightarrow t \in x \& t \in y)$

Определение 0.42. Пустое множество \emptyset — множество, которому не принадлежит никакой элемент: $\forall x \neg x \in \emptyset$. **Теорема 0.51.** 1. Для любого множества X существует множество $\{X\}$, содержащее в точности X.

- 2. Если существует хотя бы одно множество, то существует пустое множество.
- 3. Пустое множество единственно.
- 4. Для двух множеств существует множество, являющееся их пересечением.

Определение 0.43. Дизъюнктным (разделённым) множеством называется множество, элементы которого не пересекаются. Формально:

$$Dj(x) \equiv \forall y \forall z ((y \in x \ \& \ z \in x \ \& \ \neg y = z) \rightarrow \neg \exists t (t \in y \ \& \ t \in z))$$

Определение 0.44. Прямым произведением дизъюнктного множества a называется множество $\times a$ всех таких множеств b, что:

- ullet пересекается с каждым из элементов множества a в точности в одном элементе
- b содержит элементы только из $\cup a$.

Формально:

$$\forall b(b \in \times a \leftrightarrow (b \subseteq \cup a \& \forall y(y \in a \rightarrow \exists! x(x \in y \& x \in b))))$$

Определение 0.45. Упорядоченная пара. Упорядоченной парой двух множеств a и b назовем множество $\{a, \{a, b\}\}$, еще будем записывать его так: $\langle a, b \rangle$

Лемма 0.52. Упорядоченную пару можно построить для любых множеств, также $\langle a,b\rangle = \langle c,d\rangle$ тогда и только тогда, когда a=b и c=d.

Определение 0.46. Бинарное отношение Бинарным отношением на множестве X назовем подмножество множества всех упорядоченных пар элементов из X.

Определение 0.47. Упорядочивание Отношение R на множестве S упорядочивает X, если это отношение транзитивно и оно образует линейный порядок (строгое неравенство: справедливо $\forall x \forall y (x \in X \to y \in X \to R(x,y) \lor x = y \lor R(y,x))$ и $\forall x \neg R(x,x)$). Отношение вполне упорядочивает S, если к тому же для любого непустого подмножества S выполнено $\exists x (x \in B \& \forall y (y \in B \to \neg R(y,x)))$.

Определение 0.48. Множество x - транзитивное, если $z \in y, y \in x \to z \in x$.

Определение 0.49. Ординал (порядковое число) — транзитивное, вполне упорядоченное с помощью отношения (\in) множество.

Определение 0.50. Ординал x называется npedenbhum, если $\neg x = \emptyset \& \neg \exists y (y \cup \{y\} = x)$.

Определение 0.51. Ординал x называется *конечным*, если он меньше любого предельного ординала. То есть, он не содержит ни одного предельного: $\neg \exists t (t \in x \& \neg \exists y (y \cup \{y\} = t))$

Определение 0.52. Ординал ω — это минимальный предельный ординал.

Теорема 0.53. Ординал ω существует.

Определение 0.53. Верхней гранью подмножества x некоторого вполне упорядоченного множества S мы назовем всякий такой элемент y, что он больше всех элементов из x.

Минимальной верхней гранью подмножества x некоторого вполне упорядоченного множества S мы назовем множество $\mathrm{Upb}_S(x) = \min\{y \mid y \in S \& \forall t (t \in x \to t < y)\}.$

Определение 0.54.

Определение 0.55. Арифметические операции над ординалами. За a+1 обозначим $x \cup \{x\}$. Тогда следующими рекурсивными определениями мы введем операции сложения, умножения и возведения в степень:

$$a+b \equiv \left\{ \begin{array}{c} a, & b \equiv 0 \\ (a+c)+1, & b \equiv c+1 \\ \mathrm{Upb_{ord}} \{a+c \mid c < b\}, & b-\mathrm{предельный ординал} \end{array} \right.$$

$$a \cdot b \equiv \left\{ \begin{array}{c} 0, & b \equiv 0 \\ (a \cdot c)+a, & b \equiv c+1 \\ \mathrm{Upb_{ord}} \{a \cdot c \mid c < b\}, & b-\mathrm{предельный ординал} \end{array} \right.$$

$$a^b \equiv \left\{ \begin{array}{c} 1, & b \equiv 0 \& a > 0 \\ (a^c) \cdot a, & b \equiv c+1 \\ \mathrm{Upb_{ord}} \{a^c \mid c < b\}, & b-\mathrm{предельный ординал} \end{array} \right.$$

Определение 0.56. Назовем множества X и Y равномощными, если найдется биективное отображение X на Y. Будем записывать это как |X| = |Y|. Будем говорить, что множество X имеет мощность не превышающую Y, если найдется инъективное отображение X в Y. Будем записывать это как $|X| \leq |Y|$. Будем записывать |X| < |Y|, если известно, что $|X| \leq |Y|$, но неверно, что |X| = |Y|.

Определение 0.57. Кардинальные числа Кардинальное число - такой ординал x, что $y < x \leftrightarrow |y| < |x|$.

Определение 0.58. Мощность модели. Пусть M — модель некоторой теории первого порядка. Напомним, что модель задаётся предметным множеством D, и функциями, соответствующим всем предикатам теории и всем функциональным символам теории. Тогда, назовем мощность множества D мощностью модели.

Определение 0.59. Элементарная подмодель. Пусть M — модель некоторой теории первого порядка, с предметным множеством D, и пусть определено D_1 , $D_1 \subset D$. Тогда структура M_1 , построенная на предметном множестве D_1 с предикатами и функциями, получающимися из предикатов и функций M путем сужения их области определения на D_1 называется элементарной подмоделью M, если:

- 1. любая функция теории f замкнута на D_1 (т.е. если $x_1 \in D_1, \dots x_n \in D_1$, то $f(x_1, \dots x_n) \in D_1$)
- 2. Любая формула $A(x_1, \dots x_n)$ теории при любых значениях $x_1, \dots x_n$ из D_1 , истинная в M, истинна также и в M_1 .

Лемма 0.54. Элементарная подмодель теории является моделью данной теории.

Определение 0.60. Назовём теорию счётно-аксиоматизируемой (конечно-аксиоматизируемой), если ее множество аксиом и правил вывода имеет счётную (конечную) мощность.

Теорема 0.55. Теорема Лёвенгейма-Сколема. Пусть M — модель некоторой теории первого порядка, и пусть T — множество всех формул этой теории. Тогда у M есть элементарная подмодель, такая, что $|M| = \max(|T|, \aleph_0)$.