4. Усилитель мощности

При усилении сигналов практически всегда мощность сигнала в нагрузке оказывается большей, чем мощность, потребляемая входной цепью усилителя от источника, то есть имеет место усиление мощности. Однако по установившейся традиции усилителями мощности называют только такие схемы, у которых амплитуды напряжений и токов на выходе сравнимы по величине с напряжениями и токами источников питания.

Свойства усилителей мощности принято характеризовать максимальной мощностью сигнала в нагрузке; мощностью, потребляемой от источников питания, и коэффициентом полезного действия при максимальном сигнале на выходе; мощностью, рассеиваемой на коллекторах транзисторов. Сигнал в усилителях мощности не является малым в том смысле, в каком бывает возможным линеаризовать вольт-амперную характеристику полупроводникового прибора в окрестности рабочей точки.

На практике большое распространение получил так называемый двухтактный усилитель мощности на двух транзисторах VT1 и VT2 *противоположной полярности* (рис. 4.1), позволяющий развивать большую мощность сигнала в нагрузке $R_{\rm H}$ с относительно небольшим сопротивлением.

4.1. Принцип действия и основные характеристики (гипотетический случай)

Точка $\mathcal A$ на рис. 4.1 является одновременно коллектором транзистора VT3 и базой транзистора VT1 и транзистора VT2. Начальный ток транзистора VT3 и сопротивление R_{K3} выбирают такими, чтобы потенциал коллектора этого транзистора относительно земли был равен нулю. Тогда оба транзистора VT1 и VT2 в исходном состоянии находятся на границе запирания: их эмиттерные токи равны нулю, никакой ток не течет по резистору R_{H} , следовательно, потенциал эмиттеров транзисторов VT1 и VT2 относительно земли также равен нулю и равны нулю напряжения между базами и эмиттерами этих транзисторов.

Дальнейшее рассмотрение в пределах этого раздела основывается на умозрительно допускаемом предположении, что воображаемые зависимости эмиттерных (и коллекторных) токов транзисторов VT1 и VT2 от напряжений база—эмиттер имеют вид ломаных, состоящих из двух прямых с точкой излома в нуле (рис. 4.2).

Принцип действия

Во время действия отрицательной полуволны переменного сигнала на входе транзистора VT3 потенциал коллектора этого транзистора относительно земли — вследствие уменьшения его коллекторного тока — возрастает и приобретает положительное значение (рис. 4.3a); в результате этого транзистор n-p-n-типа VT1 отпирается и по резистору $R_{\rm H}$ течет его эмиттерный ток, тогда как транзистор p-n-p-типа VT2 продолжает оставаться запертым, поскольку потенциал его базы в это время положительнее потенциала эмиттера на величину $u_{\rm E31}$. Таким образом, при подаче на базу транзистора VT3 отрицательного сигнала на выходе возникает положительное напряжение; при этом транзистор VT1 и нагрузка $R_{\rm H}$ образуют эмиттерный повторитель, обеспечивающий передачу изменения потенциала $u_{\mathcal{A}} \equiv u_{\rm K3} \equiv u_{\rm 61}$ на выход с коэффициентом, близким к 1, когда сопротивление $R_{\rm H}$ не слишком мало.

Точно так же при положительном значении переменного сигнала на базе транзистора VT3 транзистор VT1 оказывается запертым (рис. 4.36) и отрицательное приращение потенциала $u_{\mathcal{A}} \equiv u_{\mathsf{K}3} \equiv u_{\mathsf{6}2}$ через эмиттерный повторитель на транзисторе VT2 с резистором R_{H} в цепи его эмиттера проходит на выход. Свойства транзисторов предполагаются идентичными, так что имеет место полная симметрия части схемы от коллектора транзистора VT3 до нагрузки по отношению к сигналам различной полярности. Следовательно, при

чередовании отрицательных и положительных полуволн входного сигнала $u_{63}(t)$ транзисторы VT1 и VT2 поочередно отпираются и запираются (двухтактный режим работы), в результате чего ток, текущий через нагрузку $R_{\rm H}$, меняет свое направление и на выходе возникает переменное напряжение $u_{\rm BhX}(t)$.

В каждый из полупериодов сигнала нагрузка $R_{\rm H}$ оказывается подключенной к эмиттеру того или другого транзистора; благодаря этому выходное сопротивление схемы в целом в течение всего времени остается довольно малым, и сигнал на нагрузке почти не зависит от сопротивления $R_{\rm H}$, если только сама эта величина не слишком мала [см. (1.1)].

Максимальная мощность сигнала в нагрузке

На рис. 4.4 представлены коллекторные характеристики транзисторов VT1 и VT2, совмещенные таким образом, чтобы линия нагрузки на них являлась продолжением одна другой. При построении линий нагрузки различием по величине между эмиттерными и коллекторными токами пренебрегают: $i_{\text{K1}} \approx i_{\text{31}}, i_{\text{K2}} \approx i_{\text{32}}, \text{tg} \phi = 1/R_{\text{H}}$. Смысл такого построения состоит в наглядном изображении мгновенных состояний транзисторов VT1 и VT2, выражаемых парой значений $u_{\text{K31}}, i_{\text{K1}}$ и $u_{\text{K32}}, i_{\text{K2}}$ соответственно: в исходном режиме состояние транзисторов выражается точкой \mathcal{O} , при этом напряжение между

коллектором и эмиттером каждого транзистора равно $U_{\Pi 1} = U_{\Pi 2} = U_{\Pi}$, а их коллекторные и эмиттерные токи равны нулю; в момент времени $t_{\mathcal{P}}$, когда состояние транзистора VT1 выражается точкой \mathcal{P} , а транзистор VT2 при этом заперт, выходное напряжение $u_{\text{вых}}$ и ток $i_{R_{\text{н}}}$, текущий по нагрузке, имеют значения, отмеченные пунктирными линиями на временных диаграммах; ток $i_{R_{\text{н}}}$ формально равен разности эмиттерных токов транзисторов.

Рис. 4.4

Когда в результате воздействия входного сигнала точка, изображающая состояние транзисторов, перемещается по состыкованной нагрузочной прямой, соответствующие этим точкам значения на оси абсцисс определяют величину выходного напряжения $u_{\mathsf{Bыx}}$, а ординаты этих точек задают величину тока в нагрузке i_{R_0} .

Размах сигнала на выходе становится максимальным, когда предельные состояния транзисторов VT1 и VT2 изображаются точками, в которых нагрузочная прямая пересекает линии насыщения при $u_{\text{K}\Im 1}=U'$ и $u_{\text{K}\Im 2}=U'$. Таким образом, максимальная амплитуда выходного сигнала равна

$$\max U_{\text{Bbix } m} = U_{\Pi} - U'$$
,

 $\max U_{{\sf Bыx}.m} pprox U_{\sf \Pi}$ при $U' << U_{\sf \Pi}$. Максимальная амплитуда выходного сигнала практически не зависит от величины нагрузки $R_{\sf H}$; сопротивлением $R_{\sf H}$ определяется амплитуда тока в нагрузке, в частности, $\max I_{R_{\sf H},m} = \max U_{{\sf Bыx}.m}/R_{\sf H}$.

При наличии на нагрузке $R_{\rm H}$ синусоидального напряжения с амплитудой $U_{{\rm Bых.}m}$ мощность, рассеиваемая сигналом в нагрузке, равна $P_{\rm H} = \left(U_{{\rm Bыx.}m}/\sqrt{2}\,\right)^2 \Big/R_{\rm H}$. Следовательно, максимальная мощность сигнала в нагрузке выражается равенством

$$\max P_{\rm H} = \left(\frac{\max U_{\rm BbIX.}m}{\sqrt{2}}\right)^2 \cdot \frac{1}{R_{\rm H}} \ .$$

Мощность, потребляемая от источников питания

Если напряжение на нагрузке $R_{\rm H}$ является синусоидальным и его амплитуда равна $U_{{\rm BыX}.m}$, то коллекторный ток каждого из транзисторов как функция времени в пределах одного полупериода является отрезком синусоиды, а в пределах другого полупериода равна нулю (рис. 4.5). Амплитуда $I_{{\rm K}.m}$ синусоидальных импульсов приблизительно равна $U_{{\rm BыX}.m}/R_{{\rm H}}$, а среднее значение тока каждого транзистора при усреднении по периоду имеет величину $I_{\rm K} = I_{{\rm K}.m}/\pi$. Поэтому мощность, P_0 , потребляемая транзисторами VT1 и VT2 от источников питания, равна

$$P_0 = 2 \cdot I_{\mathsf{K}} \cdot U_{\mathsf{\Pi}} = \frac{2}{\pi} \cdot I_{\mathsf{K}.m} \cdot U_{\mathsf{\Pi}} = \frac{2}{\pi} \cdot \frac{U_{\mathsf{BbIX}.m} \cdot U_{\mathsf{\Pi}}}{R_{\cdot \cdot}} \,.$$

Мощность P_0 принимает максимальное значение при $U_{{\sf Bых.}m} = \max U_{{\sf Bыx.}m} pprox U_{\sf \Pi}$: $\max P_0 pprox 2U_{\sf \Pi}^2 / (\pi R_{\sf H})$.

Часто мощность, потребляемая другими цепями в схеме усилителя, в том числе цепью $VT3 - R_{K3}$ на рис. 4.1, оказывается много меньше, чем найденное здесь значение P_0 , поэтому о величине P_0 говорят как о приближенном значении мощности, потребляемой от источников питания всем усилителем.

Рис. 4.5

Коэффициент полезного действия

Отношение мощности сигнала в нагрузке $P_{\rm H}$ к мощности $P_{\rm O}$, потребляемой от источников питания, по определению есть коэффициент полезного действия (КПД) схемы: $\eta = P_{\rm H}/P_{\rm 0}$. Величина КПД не может превосходить своего предельного значения тах η, соответствующего максимальному выходному сигналу:

$$\eta \leq \max \eta = \max \frac{U_{\mathtt{BbIX},m}^2 / (2R_{\mathtt{H}})}{2U_{\mathtt{BbIX},m}U_{\Pi} / (\pi R_{\mathtt{H}})} = \frac{\pi}{4} \cdot \frac{\max U_{\mathtt{BbIX},m}}{U_{\Pi}} \approx \frac{\pi}{4}.$$

Мощность, рассеиваемая на коллекторах транзисторов

Разность между мощностью P_{0} , потребляемой усилителем от источников питания, и мощностью $P_{\rm H}$ сигнала в нагрузке — это энергия $P_{\rm pacc}$, рассеиваемая за единицу времени на коллекторах транзисторов. Мощность, рассеиваемая на коллекторах транзисторов, уходит на нагревание транзисторов, и нужно позаботиться о том, чтобы эта величина в расчете на один транзистор не превосходила предельного значения P_{Makc} . Важно отметить, что величина

$$P_{\mathsf{pacc}} = rac{2}{\pi} \cdot rac{U_{\mathsf{BыX}.m} \cdot U_{\mathsf{\Pi}}}{R_{\mathsf{H}}} - rac{U_{\mathsf{BыX}.m}^2}{2R_{\mathsf{H}}}$$

достигает максимума не при наибольшем выходном сигнале, а при значении $U_{{\sf Bых}.m}$, равном $2U_{\Pi}/\pi$; само максимальное значение $P_{\sf pacc}$ равно

$$\max P_{\mathsf{pacc}} = P_{\mathsf{pacc}} \Big|_{U_{\mathsf{BblX},m} = 2U_{\mathsf{\Pi}}/\pi} = \frac{2U_{\mathsf{\Pi}}^2}{\pi^2 R_{\mathsf{H}}}.$$

Неравенством

$$\frac{\max P_{\text{pacc}}}{2} \le P_{\text{MAKC}},$$

выполнение которого должно быть обеспечено, определяется минимально допустимое сопротивление нагрузки $R_{\rm H}$.

4.2. Нелинейные искажения

Каждому из выходных транзисторов в двухтактном усилителе мощности приходится поочередно переходить из запертого состояния в режим сравнительно больших токов. При этом неизбежно наступают такие моменты, когда мгновенные значения сигналов $u_{\rm B1}(t)$ и $u_{\rm B2}(t)$ на базах транзисторов относительно земли невелики и принадлежат той части зависимости $i_{\rm 31,2}\left(u_{\rm B31,2}\right)$, в которой особенно сказывается ее нелинейность. В результате сигнал на выходе двухтактного усилителя мощности, собранного по схеме на рис. 4.1, имеет характерные искажения типа «ступеньки», показанные сплошной линией на рис. 4.6.

Правда, наличие нагрузки в цепи эмиттера обеспечивает меньшее отклонение по форме выходного сигнала от входного по сравнению с тем, какое имело бы место при непосредственной подаче входного сигнала между базой и эмиттером транзистора.

Чтобы пояснить сказанное, построим зависимость $i_{\Im}\left(u_{\text{BX}}\right)$ для отдельно взятого эмиттерного повторителя на основе вольт-амперной характеристики $i_{\Im}\left(u_{\text{Б}\Im}\right)$ эмиттерного перехода транзистора (рис. 4.7). На этом графике ось абсцисс используется одновременно для откладывания значений $u_{\text{Б}\Im}$ и u_{BX} в одном масштабе. Пусть $u'_{\text{Б}\Im}$ — какое-то конкретное значение напряжения между базой и эмиттером, а i'_{\Im} — соответствующее ему значение эмиттерного тока. В результате протекания тока i'_{\Im} по резистору нагрузки R_{H} напряжение между эмиттером и землей равно $i'_{\Im}R_{\text{H}}$. Откладывая эту величину вправо от точки $u'_{\textmd{Б}\Im}$ на оси абсцисс, находим значение напряжения на базе относительно земли $u'_{\textmd{BX}} = u'_{\textmd{Б}\Im} + i'_{\Im}R_{\text{H}}$, соответствующее выбранному $u'_{\textmd{Б}\Im}$. Следовательно, точка с координатами $\left(u'_{\textmd{BX}}, i'_{\Im}\right)$ должна принадлежать искомой зависимости $i_{\Im}\left(u_{\textmd{BX}}\right)$. Повторяя это рассуждение для других значений $u_{\textmd{Б}\Im}$, построим всю кривую $i_{\Im}\left(u_{\textmd{BX}}\right)$. С увеличением $u_{\textmd{BX}}$ — по мере того, как напряжение $u_{\textmd{Б}\Im}$ становится малым по сравнению с $u_{\textmd{BыX}} = i_{\Im}R_{\textmd{H}}$, — зависимость $i_{\Im}\left(u_{\textmd{BX}}\right)$ приближается к линейной.

Для наглядности совместим зависимости $i_{31}(u_{\mathcal{A}})$ и $i_{32}(u_{\mathcal{A}})$ для транзисторов VT1 и VT2 в двухтактном эмиттерном повторителе (рис. 4.8a) таким образом, чтобы можно было графически определять мгновенные значения разностного тока $i_{31}-i_{32}$, текущего по нагрузке $R_{\rm H}$, при положительных и отрицательных значениях общего для обоих транзисторов входного сигнала $u_{\mathcal{A}}$ (рис. 4.8δ).

Рис. $4.8 \tilde{o}$

$$u_{\mathcal{A}} = u_{\mathsf{B}\mathsf{3}\mathsf{1}} + I_{\mathsf{0}} \left(e^{u_{\mathsf{B}\mathsf{3}\mathsf{1}}/U_{T}} - \mathsf{1} \right) \cdot R_{\mathsf{H}}$$

относительно $u_{\rm E31}$ при $u_{\cal A}>0$ и аналогичное уравнение — относительно $u_{\rm E32}$ — при $u_{\cal A}<0$.

О другом источнике нелинейных искажений см. в п.4.4.

4.3. Режим АВ

Уменьшение нелинейных искажений является важной проблемой. Ради подавления искажений типа «ступеньки» переходят к другому режиму работы транзисторов VT1 и VT2.

До сих пор предполагалось, что в начальном состоянии транзисторы VT1 и VT2 в двухтактном усилителе мощности находятся на границе запирания и при подаче периодического двуполярного сигнала строго поочередно отпираются и запираются (режим B). Теперь будет рассмотрен случай, когда оба транзистора VT1 и VT2 в исходном состоянии приоткрыты, так что при малых значениях входного сигнала в обоих транзисторах еще текут токи, а в запертом состоянии каждый из них находится лишь в пределах меньшей, чем половина, части периода (режим AB).

Для обеспечения начального смещения транзисторов VT1 и VT2 в коллекторную цепь транзистора VT3 включают диоды VD1 и VD2, как показано на рис. 4.9.

По аналогии с предыдущей схемой (рис. 4.1), начальное значение потенциала точки $\mathcal A$ относительно земли устанавливается равным нулю ($U_{\mathcal A}=0$). Вольт-амперные характеристики диодов предполагаются одинаковыми, они практически совпадают с характеристиками $i_3\left(u_{59}\right)$ транзисторов. В результате протекания постоянного тока I_{K3} на каждом из диодов VD1 и VD2 возникает постоянное напряжение, равное $U^{\rm o}$, которое служит начальным напряжением $U_{591}^{\rm o}=U^{\rm o}$ и $U_{592}^{\rm o}=-U^{\rm o}$ на базах транзисторов VT1 и VT2 относительно земли. Коль скоро свойства эмиттерных переходов транзисторов VT1 и VT2 также являются идентичными, их эмиттерные токи равны между собой, то есть один и тот же ток $I_3^{\rm o}$ является эмиттерным током транзистора VT1 и эмиттерным током транзистора VT2, так что никакой ток не ответвляется в нагрузку $R_{\rm h}$.

При подаче на вход транзистора VT3 переменного сигнала в цепи его коллектора возникает переменный ток, по отношению к которому сопротивление открытых диодов VD1 и VD2 очень мало по сравнению с сопротивлением $R_{\rm K3}$ (порядка $r_{\rm 33} \approx U_T/I_{\rm K3}$); из этого следует, что переменные напряжения $u_{\rm 61}$ и $u_{\rm 62}$ на базах транзисторов VT1 и VT2 относительно земли приблизительно равны между собой и совпадают с переменным напряжением $u_{\mathcal A}$ в точке $\mathcal A$. Таким образом, можно считать, что с точки зрения переменного сигнала базы транзисторов VT1 и VT2 соединены вместе и подача сигнала на выходные транзисторы осуществляется точно так же, как это делается в схеме без начального смещения; это означает также, что напряжения на диодах при протекании через них переменного тока в первом приближении остаются неизменными и равными $U^{\rm o}$.

При наличии начального смещения поведение транзисторов VT1 и VT2 в двухтактном эмиттерном повторителе заметно отличается от случая, когда они открываются и запираются строго поочередно (рис. 4.10 и 4.11).

Рис. 4.10

Рис. 4.11

Чтобы построить зависимости $i_{31}(u_{\mathcal{A}})$ и $i_{32}(u_{\mathcal{A}})$, удобно ввести в качестве новых переменных приращения напряжений база—эмиттер $\Delta u_{\mathsf{E}31}$ и $\Delta u_{\mathsf{E}32}$: $u_{\mathsf{E}31}=U^{\mathsf{O}}+\Delta u_{\mathsf{E}31}$, $u_{\mathsf{E}32}=U^{\mathsf{O}}+\Delta u_{\mathsf{E}32}$. В любой момент времени $u_{\mathsf{E}1}=u_{\mathsf{E}31}+u_{\mathsf{B}\mathsf{L}\mathsf{K}}$ и $u_{\mathsf{E}32}+u_{\mathsf{E}2}=u_{\mathsf{B}\mathsf{L}\mathsf{K}}$, откуда

$$\left(u_{\mathsf{B}1} - u_{\mathsf{B}2} \right) - u_{\mathsf{B}32} = u_{\mathsf{B}31} \ \text{или } 2 U^{\mathsf{O}} - \left(U^{\mathsf{O}} + \Delta u_{\mathsf{B}32} \right) = U^{\mathsf{O}} + \Delta u_{\mathsf{B}31} \, ;$$

следовательно, $\Delta u_{\text{БЭ2}} = -\Delta u_{\text{БЭ1}}$. Вольт-амперная характеристика $i_{\text{Э1}}(u_{\mathcal{A}})$ строится по правилу

$$u_{\mathcal{A}} = \Delta u_{\mathsf{B}\mathsf{3}\mathsf{1}} + I_{\mathsf{3}}^{\mathsf{o}} \cdot \left(e^{\Delta u_{\mathsf{B}\mathsf{3}\mathsf{1}}/U_T} - e^{-\Delta u_{\mathsf{B}\mathsf{3}\mathsf{1}}/U_T} \right) \cdot R_{\mathsf{H}}$$

путем вычисления $u_{\mathcal{A}}$ для каждого из возможных значений $\Delta u_{\mathsf{Б}\mathsf{3}1}$. Аналогично строится характеристика $i_{\mathsf{3}2}\left(u_{\mathcal{A}}\right)$. Из рис. 4.10 видно, что при достаточно больших U^{o} разность токов $i_{\mathsf{3}1}-i_{\mathsf{3}2}$ практически линейно зависит от $u_{\mathcal{A}}$ и в $u_{\mathsf{Bbl}\mathsf{X}}$ искажений типа «ступеньки» не происходит.

Временные диаграммы на рис. 4.11 показывают, что при синусоидальном напряжении в точке $\mathcal A$ оба транзистора VT1 и VT2 остаются открытыми в течение значительной части периода.

В этих условиях геометрическое место точек $\left(u_{\text{K}\Im1,2},i_{\text{K}1,2}\right)$, отображающих состояние транзистора на его коллекторных характеристиках, уже не является прямой линией («линией нагрузки»), а представляет собой кривую, проходящую через точку начального состояния $\left(U_\Pi,I_3^\circ\right)$ и простирающуюся до значения $u_{\text{K}\Im}$, примерно вдвое превышающего напряжение питания (рис. 4.12; здесь величины коллекторного и эмиттерного тока транзистора VT1 считаются одинаковыми и то же самое для транзистора VT2). Умозрительный переход от мгновенных значений напряжений $u_{\text{K}\Im1}$ и $u_{\text{K}\Im2}$ к значениям выходного сигнала $u_{\text{Bых}}$, равного $\left(i_{\text{K}1}-i_{\text{K}\Im2}\right)\cdot R_{\text{H}}$, осуществляется согласно равенствам $u_{\text{Bых}}=+U_{\Pi 1}-u_{\text{K}\Im 1}$ и $u_{\text{Bыx}}=-U_{\Pi 2}+u_{\text{K}\Im 2}$, где, как и ранее, $U_{\Pi 1}=U_{\Pi 2}=U_\Pi$.

Платой за устранение искажений типа «ступенька» является бо́льшая мощность, потребляемая от источников питания при том же значении выходного сигнала, и, как следствие, меньший КПД.

4.4. Числовой пример и другие необходимые замечания

I. Искажения типа «ступеньки» в отсутствие первоначального смещения на базах транзисторов VT1 и VT2 — или при недостаточно большой величине U^0 — не являются единственным проявлением нелинейности схемы. Другой причиной искажений является экспоненциальная зависимость коллекторного тока транзистора VT3 от напряжения между его базой и эмиттером. Существуют два способа уменьшения искажений такого типа.

Рис. 4.12

Первый из них заключается в том, чтобы источником сигнала на входе транзистора VT3 был не источник напряжения, а источник тока. Другими словами, желательно, чтобы выходное сопротивление R' части схемы, предшествующей выходному каскаду усилителя, было много больше входного сопротивления $h_{113}^{(3)}$ транзистора VT3 (рис. 4.13; $h_{113}^{(3)} = \left(h_{213}^{(3)}+1\right)r_3^{(3)}$, $r_3^{(3)} \approx U_T/I_{\rm K3}$). Когда условие $R' >> h_{113}^{(3)}$ выполнено, почти вся ЭДС e'(t) приложена к резистору R', поэтому ток $i_{R'}(t)$, протекающий по этому резистору, и практически равная ему переменная составляющая базового тока транзистора VT3 $i_{63}(t)$ повторяют форму сигнала e'(t). В той мере, в какой коллекторный ток транзистора VT3 пропорционален его базовому току, нелинейность характеристики $i_{\rm K3}(u_{\rm E33})$ мало сказывается на выходном сигнале $u_{\rm Bыx}$. (От сопротивления резистора R' в цепи базы транзистора VT3 зависит

поведение коллекторного тока этого транзистора в области верхних частот: чем больше R', тем меньше верхняя граничная частота усилителя в целом.)

Рис. 4.13

Рис. 4.14

Дальнейшее уменьшение искажений достигается с помощью так называемой отрицательной обратной связи, которая охватывает всю конструкцию из транзисторов VT1, VT2 и VT3 в результате соединения резистором R'' выхода двухтактного эмиттерного повторителя с базой транзистора VT3 (рис. 4.14). Сигналы на коллекторе транзистора VT3 и на его базе находятся в противофазе, поэтому действие обратной связи заключается в таком искажении сигнала $u_{633}(t)$, которое компенсирует нелинейность преобразования при переходе от напряжения база—эмиттер транзистора VT3 к его коллекторному току. (В схеме на рис. 4.14 предполагается наличие в источнике сигнала такого смещения по постоянному току \mathcal{E}' , которое обеспечивает нулевое напряжение на выходе усилителя при e'(t)=0.)

II. Электронная промышленность выпускает много *мощных* транзисторов, предназначенных для использования в выходных каскадах усилителей мощности и в источниках питания и допускающих протекание токов величиной несколько десятков ампер и рассеяние мощности на их коллекторах несколько десятков ватт.

В процессе работы такие транзисторы сильно нагреваются, поэтому при проектировании схем на таких транзисторах особое внимание обращают на отвод тепла. С этой целью предусматривается крепление каждого из них на соответствующем радиаторе, обеспечивая хороший механический и тепловой контакт между коллектором транзистора и радиатором.

III. Числовой пример.

Рассматриваемая здесь схема на *маломощных* транзисторах (рис. 4.15) не является примером реального усилителя мощности, а представляет собой учебную модель такого усилителя, с которой можно проводить эксперименты в лабораторных условиях и тем самым приобрести основные навыки работы с усилителями мощности.

У транзисторов КТ315 и КТ361 предельно допустимые значения коллекторного тока $I_{\rm K.makc}$ и мощности $P_{\rm Makc}$, рассеиваемой на коллекторе, равны соответственно 100 мА и 150 мВт. Напряжение $U^{\rm O}$ на кремниевых диодах Д220 равняется 0.62...0.67 В при токе от 1 до 10 мА.

Значением сопротивления $R_{\rm K3}$ определяется коллекторный ток $I_{\rm K3}$ транзистора VT3 в исходном состоянии. Если обеспечено нулевое значение напряжения в точке \mathcal{A} и $U^{\rm o}=0.65~{\rm B}$, то $I_{\rm K3}=\left(U_{\rm \Pi1}-U^{\rm o}\right)\Big/R_{\rm K3}\approx 4.7~{\rm mA}$. Поскольку начальное значение напряжений база—эмиттер транзисторов VT1 и VT2 тоже равно $0.65~{\rm B}$ и вольт-амперные характеристики диодов и эмиттерных переходов транзисторов очень близки, значение токов $I_{\rm 3,K}^{\rm o}$ также порядка $5~{\rm mA}$.

Рис. 4.15

Сопротивление нагрузки $R_{\rm H}$ необходимо выбрать таким, чтобы удовлетворялись следующие ограничения снизу, если имеется в виду достичь максимальной амплитуды сигнала на выходе, равной $\max U_{{\sf Bыx}.m}$:

- а) ток в нагрузке $\max U_{\mathtt{Bыx}.m}/R_{\mathtt{H}}$ не должен превосходить $I_{\mathsf{K.MAKC}}$;
- б) мощность, рассеиваемая на коллекторе каждого из транзисторов VT1 и VT2, должна быть меньше P_{Makc} ; при этом необходимо принять во внимание, что в режиме AB в исходном состоянии на каждом из коллекторов рассеивается мощность $U_\Pi \cdot I_\mathsf{K}^0$, а при наличии только переменного (синусоидального) сигнала на выходе в наихудшем случае (при $U'_{\mathsf{BblX}.m} = 2U_\Pi/\pi$ в гипотетических, идеализированных условиях) КПД составляет всего 50%; считая приближенно, что рассеиваемая на нагрузке мощность $\max U^2_{\mathsf{BblX}.m}/(2R_\mathsf{H})$ не должна превосходить

$$2 \cdot \left(P_{\mathsf{MAKC}} - U_{\mathsf{\Pi}} \cdot I_{\mathsf{K}}^{\mathsf{o}} \right)$$
 ,

получаем второе условие для R_{H} ;

в) сама нагрузка (резистор $R_{\rm H}$) может иметь ограничение по допустимой рассеиваемой мощности.

Если в данном примере имеется в виду достичь максимальной амплитуды сигнала на выходе, равной 9 В, то согласно условию а) $R_{\rm H}$ должно быть больше или равно 90 Ом, а согласно условию б) — не меньше, чем (81 В 2)/(2·0.2 Вт) \approx 200 Ом; по условию в) в данном примере допустимая мощность, рассеиваемая на нагрузке $R_{\rm H}$, не должна быть меньше 0.2 Вт. [У самых маленьких по размеру распространенных резисторов, не предназначенных для размещения на печатной плате, максимально допустимая мощность рассеяния 0.125 Вт; при таком ограничении сопротивление нагрузки в условиях разбираемого примера должно быть не меньше 300 Ом.]

В разбираемом числовом примере предполагается, что у транзистора VT3 $h_{219}^{(3)}=h_{219}^{(3)}=100$ и заданием небольшого смещения по постоянному току E' у источника сигнала достигается нулевое значение напряжения $U_{\mathcal{A}}$ в точке \mathcal{A} относительно земли; при E' и $U_{\text{БЭ3}}=0.65$ В постоянная составляющая тока базы $I_{\text{Б3}}$ транзистора VT3 равна $\left(E'+U_{\text{П2}}-U_{\text{БЭ3}}\right)/R''\approx 47$ мкА , что и обеспечивает указанный выше коллекторный ток I_{K3} этого транзистора, равный 4.7 мА.

Если частота синусоидального переменного сигнала e'(t) равна 10 к Γ ц, то сопротивление переменному току конденсатора C' пренебрежимо мало по сравнению с сопротивлением R'. Кроме того, R' много больше входного сопротивления транзистора VT3, равного

$$h_{\rm 119}^{(3)} = \left(h_{\rm 219}^{(3)} + 1\right) \cdot r_{\rm 33} \approx h_{\rm 219}^{(3)} U_T \left/I_{\rm K3} \approx 500~{\rm Om}~. \right.$$

Поэтому справедливо считать, что почти все переменное напряжение e'(t) падает на R', и переменные составляющие базового и коллекторного токов транзистора VT3 являются синусоидальными. Для достижения амплитудой выходного сигнала $U_{\mathrm{Bыx},m}$ значения 9 В нужно, чтобы примерно такой же была амплитуда переменного сигнала в точке \mathcal{A} . Пренебрегая сопротивлением открытых диодов VD1 и VD2 по переменному току, находим, что для этого необходимо, чтобы амплитуда переменной составляющей коллекторного тока транзистора VT3 $I_{\mathrm{K3},m}$ равнялась $U_{\mathrm{Bыx},m}/R_{\mathrm{K3}}=4.5$ мА , а амплитуда переменной составляющей базового тока $I_{63,m}$ равнялась 45 мкА. С учетом сказанного требуемая амплитуда сигнала e'(t), подаваемого на вход усилителя, равна $I_{63,m} \cdot R'$, то есть приблизительно 0.2 В.

Осталось уточнить, в какой степени полная нагрузка в коллекторной цепи транзистора VT3 отличается от сопротивления резистора R_{K3} из-за того, что параллельно с этим резистором включен вход двухтактного эмиттерного повторителя на транзисторах VT1 и VT2.

Пусть $h_{219}^{(1,2)}=h_{219}^{(1,2)}=100$ и $I_{3,\mathrm{K}}^{\mathrm{o}}\approx I_{\mathrm{K3}}\approx 5$ мА . Тогда с точки зрения постоянных токов в исходном режиме ток базы транзистора VT1 величиной 50 мкА является одной десятой частью тока, текущего по резистору R_{K3} , а равный ему ток базы транзистора VT2 — это 10% тока I_{K3} , втекающего со стороны коллектора в транзистор VT3. Постоянный ток, текущий через диоды VD1 и VD2, на 10% меньше тока I_{K3} и равного ему тока, текущего по резистору R_{K3} .

Что же касается переменных составляющих базовых токов транзисторов VT1 и VT2, то проще всего учесть их, обратившись к совмещенным коллекторным характеристикам этих транзисторов (рис. 4.12). Из того, что линия нагрузки для разностного тока $i_{3,\text{K1}}-i_{3,\text{K2}}$ является прямой, следует, что входное сопротивление двухтактного эмиттерного повторителя для разности базовых токов транзисторов VT1 и VT2 можно считать равным входному сопротивлению простого эмиттерного повторителя с нагрузкой R_{H} в цепи его эмиттера. Другими словами, в условиях данного числового примера параллельно с $R_{\text{K3}} = 2$ кОм включено сопротивление, примерно равное $h_{21_3}^{(1,2)} \cdot R_{\text{H}} = 20$ кОм. Погрешность ошибки, совершаемой без учета этого шунтирующего действия со стороны входа двухтактного эмиттерного повторителя, — те же 10%.

IV. Режимом А называют такую работу однокаскадного усилителя, когда транзистор под действием входного сигнала не запирается ни на какую часть периода. В режиме А работают усилители малых сигналов. Этот режим невыгодно использовать в усилителях мощности, так как КПД схемы в этом случае много меньше, чем при работе в режиме В, когда транзисторы в двухтактном выходном каскаде поочередно открываются и запираются, или в режиме АВ.

V. Выходные каскады операционных усилителей имеют вид усилителей мощности рассмотренного вида, работающие в режиме AB.

Задание 4

1. В этом задании речь идет о схеме, приведенной на рис. 4.16, со значениями параметров согласно одному из вариантов, перечисленных в табл. 1.

Схема с малосигнальными транзисторами в качестве VT1 и VT2 (рис. 4.16) с сопротивлением нагрузки $R_{\rm H}$, равным нескольким сотням Ом, — это всего лишь иллюстрация принципа действия усилителя мощности, предназначенная для учебного лабораторного эксперимента.

Предполагается, что напряжения питания $U_{\Pi 1}$ и $U_{\Pi 2}$ будут такими, как указано на рисунке ($U_{\Pi 1} = U_{\Pi 2} = U_{\Pi}$), амплитуда максимального сигнала на выходе $\max U_{\text{вых.}m}$ будет порядка 10 В, а измерения по переменному току будут проводиться на частоте f, равной 10 к Γ ц.

Рис. 4.16

Таблица 1

NºNº	R_{H}	$\max P_{R_{H}}$	$\max I_{R_{\rm H}}$	R _{K3}	<i>I</i> ^o ,K	R _{E3}	h ₁₁₉	R_{M}
	Ом	Вт	мА	кОм	мА	кОм	Ом	кОм
1	270	0.185	37	2.7	4.2	270	600	6.2
2	300	0,167	33	3.0	3.8	300	660	6.8
3	330	0.151	30	3.3	3.4	330	735	7.5
4	360	0.139	28	3.6	3.15	360	800	8.2
5	390	0.128	26	3.9	2.9	390	860	9.1
6	430	0.116	23	4.3	2.6	430	960	10
7	470	0.106	21	4.7	2.4	470	1040	11
8	510	0.098	20	5.1	2.2	510	1140	12
9	560	0.089	18	5.6	2.0	560	1250	13

 $\max P_{\rm H} = \left(\max U_{{\sf Bыx.m}}/\sqrt{2}\right)^2/R_{\rm H}$ в табл. 1 — это максимальная мощность сигнала в нагрузке (при максимальной амплитуде сигнала на выходе), а $I_{\rm Э,K}^{\rm o}$ — эмиттерные (коллекторные) токи покоя транзисторов VT1 и VT2 в исходном состоянии в режиме AB; здесь этот ток выбран равным $0.1 \cdot \max I_{R_{\rm H}}$.

В отсутствие сигнала коллекторный ток $I_{\rm K3}$ транзистора VT3 будет приблизительно равен току $I_{\rm 3,K}^{\rm o}$, поэтому $R_{\rm K3} = \left(U_{\rm \Pi} - U^{\rm o}\right) / I_{\rm K3}$, где $U^{\rm o}$ — напряжение на открытом диоде; здесь, на стадии оценки ожидаемых значений токов и напряжений, можно положить $U^{\rm o}$ равным 0.65 В. Сопротивление резистора $R_{\rm 53}$ должно быть примерно в 100...200 раз больше $R_{\rm K3}$ (о том, как подобрать величину $R_{\rm 53}$, см. ниже в п. 2) .

Указанные в табл. 1 значения R_{F3} и $h_{119}^{(3)} = \left(h_{219}^{(3)} + 1\right) \cdot r_{93}$, $r_{93} = U_T / I_{\text{K3}}$, найдены в предположении, что $h_{219}^{(3)} = h_{219}^{(3)} = 100$. Для наблюдений и измерений, о которых пойдет речь в п. 3 этого задания, нужно взять 'сопротивление источника' R_{N} в 10 раз больше входного сопротивления $h_{119}^{(3)}$ транзисто-

ра VT3 ($R_{\rm M} \approx 10 \cdot h_{119}^{(3)}$). Емкость конденсатора $C_{\rm M53}$ между источником сигнала и базой транзистора VT3 должна быть такой (из интервала $0.1 \dots 1.0$ мк Φ), чтобы его сопротивление переменному току на частоте f было много меньше $R_{\rm M} + h_{112}^{(3)}$.

Пары $R_{\varphi 1}, C_{\varphi 1}$ и $R_{\varphi 2}, C_{\varphi 2}$ представляют собой фильтры, предназначенные для того, чтобы по постоянным напряжениям на $R_{\varphi 1}$ и $R_{\varphi 2}$ находить средние значения коллекторных токов $I_{\mathsf{K}1}$ и $I_{\mathsf{K}2}$ транзисторов VT1 и VT2 по правилу: $I_{\mathsf{K}1,2} = \left(U_{\mathsf{\Pi}1,2} - \left|U_{\mathsf{K}1,2}\right|\right) / R_{\varphi 1,2}$. Сопротивления резисторов $R_{\varphi 1}$ и $R_{\varphi 2}$ следует выбрать одинаковыми из интервала 110...180 Ом; емкости электролитических конденсаторов $C_{\varphi 1}$ и $C_{\varphi 2} - 100$ мкФ или 220 мкФ (при собирании схемы необходимо соблюдать указанную на рис. 4.16 полярность включения).

Наконец, в данном случае целесообразно использовать качестве диодов VD1 и VD2 транзисторы КТ315 с замкнутыми накоротко базами и коллекторами (рис. 4.17). При этом вольтамперные характеристики «диодов» практически совпадают с зависимостями $i_{K,3}(u_{5,3})$ транзисторов VT1 и VT2.

Рис. 4.17

Внимание! Если вам предстоит выполнение задания 5, то вам нужно будет воспользоваться схемой, которую вы соберёте, выполняя задание 4. В этом случае данную схему (рис. 4.16, 4.17) следует собирать компактно в левой части макетной платы и не разбирать её по окончании выполнения задания 4.

- 2. Соберите схему, представленную на рис. 4.16, 4.17. Включите питание и осуществите отладку схемы по постоянному току, выполнив следующие действия:
- а) Убедитесь в том, что напряжения $U_{\Pi 1}$ и $U_{\Pi 2}$ равны ± 12 В соответственно.
- б) Подключите источник сигнала к входу схемы [к точке слева (на рисунке) от резисторов $R_{\rm N}$ и $R_{\rm E3}$], а вход цифрового вольтметра постоянного напряжения к точке ${\cal A}$.
- в) При $\mathcal{E}_{\mathsf{N}.m}=0$, где $\mathcal{E}_{\mathsf{N}.m}$ амплитуда синусоидального сигнала, вырабатываемого компьютерным генератором, изменяя $\mathit{Уровень}$ (напряжение смещения) E_{N} , добейтесь того, чтобы напряжение $U_{\mathcal{A}}$ в точке \mathcal{A} относительно земли отличалось от нуля не более чем на ± 0.25 В. Если при выбранном ранее значении сопротивления $R_{\mathsf{E}3}$ не удается добиться требуемого напряжения в точке \mathcal{A} , то необходимо изменить сопротивление резистора $R_{\mathsf{E}3}$ и выбрать его таким, чтобы требуемое смещение E_{N} не превосходило ± 1 В.
- г) Измерьте постоянные напряжения $U_{\rm K1}$ и $U_{\rm K2}$ на коллекторах транзисторов VT1 и VT2. Если значения этих напряжений будут отличаться от напряжений питания $U_{\Pi 1}$ и $U_{\Pi 2}$ более, чем на 2...3 В, то необходимо увеличить сопротивления резисторов $R_{\rm K3}$ и $R_{\rm E3}$ и вновь выполнить действия, указанные выше в п. в).
- д) Если постоянное напряжение $U_{\text{вых}}$ выходит за пределы $\pm 0.25\,$ В при $\left|U_{\mathcal{A}}\right| \leq 0.25\,$ В, то желательно подобрать пару транзисторов VT1 и VT2, обеспечивающих меньшую разность напряжений в точке \mathcal{A} и на выходе.
- е) Результаты отладки схемы по постоянному току напряжения на коллекторах и базах всех транзисторов, а также значения $E_{\rm N}$, $U_{\cal A}$, $U^{\rm O}$ и $U_{\rm Bbix}$ следует зафиксировать в рабочей тетради. Полезно также определить путем расчета постоянные коллекторные токи $I_{\rm K1}$, $I_{\rm K2}$ и $I_{\rm K3}$ и мощность $P_{\rm pacc}$, рассеиваемую на коллекторах транзисторов VT1 и VT2 в отсутствие сигнала.
- 3. Подайте от компьютерного генератора синусоидальный сигнал с амплитудой $\mathcal{E}_{\mathsf{N}.m}$ в несколько десятков милливольт или порядка 100 мВ и с помощью осциллографа убедитесь в возникновении на выходе неискаженного по форме синусоидального сигнала с амплитудой $U_{\mathsf{Bыx}.m}$, равной нескольким вольтам. Определите коэффициент усиления $K_e(def) = U_{\mathsf{Bыx}.m} / \mathcal{E}_{\mathsf{N}.m}$ и сравните его с ожидаемым значением $h_{213}^{(3)} R_{\mathsf{K3}} / \left(R_{\mathsf{N}} + h_{113}^{(3)} \right)$.

Установите амплитуду входного сигнала $\mathcal{E}_{\mathsf{N}.m}$ такой, чтобы амплитуда выходного сигнала $U_{\mathsf{Bыx}.m}$ была равна 3 В. Измерьте постоянные напряжения $U_{\mathsf{K}1}$ и $U_{\mathsf{K}2}$ на коллекторах транзисторов VT1 и VT2, произведите необходимые вычисления и заполните 1-ю строку в следующей таблице:

Таблина 2

$U_{{\tt BЫX}.m}$	P_{H}	I_{K1}	$P_0^{(1)}$	$P_{pacc}^{(1)}$	I _{K2}	$P_0^{(2)}$	$P_{pacc}^{(2)}$	η
В	мВт	мА	мВт	мВт	мА	мВт	мВт	-
3								
6								
9								

Здесь, в табл. 2:

$$P_{\rm H} = \left(U_{\rm BыX.m}/\sqrt{2}\right)^2/R_{\rm H}$$
 — мощность, рассеиваемая на нагрузке; $I_{\rm K1} = \left(U_{\Pi 1} - U_{\rm K1}\right)/R_{\Phi 1}$ — постоянный ток, текущий по резистору $R_{\Phi 1}$; $P_0^{(1)} = I_{\rm K1} \cdot U_{\Pi 1}$ — мощность, потребляемая от источника питания $U_{\Pi 1}$; $P_{\rm pacc}^{(1)} = P_0^{(1)} - P_{\rm H}/2 - I_{\rm K1}^2 \cdot R_{\Phi 1}$ — мощность, рассеиваемая на коллекторе транзистора VT1; $I_{\rm K2} = \left(U_{\Pi 2} - U_{\rm K2}\right)/R_{\Phi 2}$ — постоянный ток, текущий по резистору $R_{\Phi 2}$; $P_0^{(2)} = I_{\rm K2} \cdot U_{\Pi 2}$ — мощность, потребляемая от источника питания $U_{\Pi 2}$; $P_{\rm pacc}^{(2)} = P_0^{(2)} - P_{\rm H}/2 - I_{\rm K2}^2 \cdot R_{\Phi 2}$ — мощность, рассеиваемая на коллекторе транзистора VT2;

 $\eta = P_{\rm H} / \left(P_{\rm H} + P_{\rm pacc}^{(1)} + P_{\rm pacc}^{(2)} \right) -$ коэффициент полезного действия (КПД).

Повторите измерение напряжений $U_{\rm K1}$ и $U_{\rm K2}$ при $U_{\rm вых.}{}_m=$ 6 В и при $U_{\rm вых.}{}_m=$ 9 В и заполните 2-ю и 3-ю строки таблицы.

4. Осуществите с помощью осциллографа наблюдение искажений в выходном сигнале или их отсутствие, выполнив следующие действия.

Подайте на вход синусоидальный сигнал такой величины $\mathcal{E}_{\mathsf{N}.m}$, чтобы в случае, когда схема остается такой, как она представлена на рис. 4.16, 4.17, амплитуда сигнала на выходе $U_{\mathsf{Bых}.m}$ была равна 1...3 В. Убедитесь в том, что искажения отсутствуют или мало заметны. Теперь замкните накоротко диоды VD1 и VD2, соединив между собой базы транзисторов VT1 и VT2, и при том же значении амплитуды входного сигнала $\mathcal{E}_{\mathsf{N}.m}$ рассмотрите искажения типа «ступеньки», наступающие в $u_{\mathsf{Bыx}}(t)$ вблизи нуля. Обратите внимание на то,

что во втором случае размах сигнала $u_{\text{вых}}$ меньше, чем в отсутствие искажений. Зарисуйте осциллограммы в обоих случаях, «наложив» изображения одно на другое в одном масштабе по оси ординат.

(Замечание: Если при переходе к случаю, когда диоды замкнуты накоротко, нарушается требование нуля на выходе в отсутствие сигнала, то перед тем, как осуществить вторую часть этого опыта, необходимо скорректировать смещение $E_{\rm u}$ и только после этого перейти к наблюдению сигнала на выходе при той же самой величине сигнала $\mathcal{E}_{\rm u}$.)

5. (*Факультативно*.) Разомкните осуществленное ранее (в п. 4) соединение баз транзисторов VT1 и VT2 между собой.

Подайте на вход синусоидальный сигнал такой величины, чтобы в случае, когда схема остается такой, как она представлена на рис. 4.16, 4.17, амплитуда сигнала на выходе $U_{{\sf Bых.}m}$ была равна 6...8 В. Убедитесь в том, что искажения отсутствуют или мало заметны. Теперь замкните накоротко резистор $R_{\sf N}$ во входной цепи, соединив проводником точки, к которым подключены выводы этого резистора, и *уменьшите сигнал*, подаваемый от компьютерного генератора, настолько, чтобы при замкнутом накоротко резисторе $R_{\sf N}$ полный размах сигнала на выходе был таким же, как перед этим (равным $2U_{\sf Bыx.}m$). Рассмотрите возникающие при этом искажения $u_{\sf Bыx}(t)$, заключающиеся в том, что верхняя полуволна в пределах периода оказывается затупленной, а нижняя — заостренной, что является проявлением экспоненциального характера зависимости $i_{\sf K3}(u_{\sf БЭ3})$. Зарисуйте осциллограммы в обоих случаях, «наложив» изображения одно на другое в одном масштабе по оси ординат.

6. (Φ акультативно.) Сохранив неизменной собранную ранее схему, замените резистор $R_{\rm N}$ на новый с сопротивлением, равным 2...3 $h_{113}^{(3)}$, и соедините выход усилителя с базой транзистора VT3 двумя последовательно включенными резисторами $R_{\rm O.C.}'$ и $R_{\rm O.C.}''$, образующими цепь обратной связи (о.с.), как показано на рис. 4.18. Сопротивление каждого из резисторов $R_{\rm O.C.}'$ и $R_{\rm O.C.}''$ можно выбрать примерно равным $R_{\rm D3}/2$. Пусть первоначально между точкой соединения резисторов $R_{\rm O.C.}'$, $R_{\rm O.C.}''$ и землей включен изображенный на рис. 4.18 пунктиром конденсатор C сравнительно большой емкости (0.1...1.5 мкФ).

Необходимо заново при $e_{\rm N}(t)=0$ подобрать у источника сигнала такое смещение $E_{\rm N}$, чтобы постоянное напряжение на выходе (в точке соединения эмиттеров VT1 и VT2) было равно нулю.

Включите на входе синусоидальный сигнал с такой амплитудой $\mathcal{E}_{\text{и.m}}$, при которой полный размах выходного сигнала $\max u_{\text{вых}} - \min u_{\text{вых}}$ (удвоенная амплитуда) был бы равен 12...16 В. Рассмотрите форму колебания на выходе, в которой должен проявиться экспоненциальный характер зависимости $i_{\text{K3}}(u_{\text{БЭ3}})$, и зарисуйте осциллограмму в рабочей тетради.

Теперь извлеките конденсатор C и увеличьте входной сигнал настолько, чтобы полный размах сигнала на выходе $u_{\rm BЫX}(t)$ был таким же, как и ранее. Обратите внимание на то, что в данном случае искажения вследствие экспоненциального характера зависимости $i_{\rm K3}(u_{\rm E33})$ заметны меньше. Зарисуйте новую осциллограмму на том же самом рисунке, что был сделан ранее, и сравните форму колебания на выходе, когда действует обратная связь (в отсутствие конденсатора C), со случаем, когда действие обратной связи исключено (при наличии в схеме конденсатора C).