修改记录

更新日期	更新类型	更新人	更新内容
2015-6-19	Α	Echo	新建文档
2016-5-2	Α	Echo	完成文档初稿

注:

M-->修改

A -->添加

作者 Echo <echo.xjtu@gmail.com>保留本文档最终解释权

保留文档更新但不在第一时间通知用户的权利

请使用 PDF 书签阅读本文档,快速定位所需内容!

更多信息请关注

作者博客: http://blog.sina.com.cn/xjtuecho

作者微博: http://weibo.com/eth0

作者淘宝: http://shop114445313.taobao.com/ 作者 github 主页: https://github.com/xjtuecho/

最新文档和设备固件请访问 github 项目主页: https://github.com/xjtuecho/UARTCAN/

UARTCAN 用户手册

UARTCAN 是一款 CAN 接口调试工具。可以使 CAN 接口调试与串口调试一样方便。配合低成本的 USB 转 TTL 数据线,可以将 UARTCAN 转化成一款 USBCAN 设备。UARTCAN 同样提供 USB 接口版本。

UARTCAN 具备独特的 TERM 工作模式,借助超级终端等终端模拟软件,可以在 PC 上轻松进行 CAN 接口调试。用户只需要学习少数几个命令,便可以轻松上手。

UARTCAN 同时具备 PKT 工作模式,该工作模式下,所有通讯数据按照 16 字节定长数据包来组织,CRC 数据校验保证了数据完整性,特别适合用户编程处理。该模式下用户还可以使用 PC 上常见的 CANTest 软件来进行调试。

UARTCAN 主要特性如下:

- 32 位 ARM 处理器 72M 主频处理能力强大
- 独特的 TERM 工作模式无需专用上位机软件
- 精心设计的 PKT 工作模式便于用户二次开发
- CRC 校验技术避免数据出错
- 兼容周立功 CANTest 软件
- 同时提供 TTL 版本和 USB 版本满足不同需求
- 体积小巧便携使用方便
- 支持固件升级
- 成本低廉

1 外观与接口

1.1端子布局

主板端子布局如图 1 所示。USB 版本功能与 TTL 版本完全相同,固件可通刷,唯一差别是 TTL 接口更换为 USB 接口。

图 1 TTL 版本主板端子布局

1.2端子说明

D1 为指示 LED。

J3 为 TTL 接口,四个信号分别为+5V、GND、TXD、RXD。 +5V 和 GND 两个网络同时负责给 UARTCAN 模块进行供电。 J4 为 CAN 接口,三个信号分别为 GND、CANH、CANL。 K1 为用户按键。 短按 K1, D1 闪烁指示通讯协议。闪烁一次表示 PKT 模式,闪烁两次表示 TERM 模式。 长按 K1 可以在两种模式之前切换,切换结果立即生效并保存。

2 快速入门

- 1) 将 UARTCAN 与 USB 转 TTL 线连接,注意 RXD 与 TXD 交叉连接。(USBCAN 直接将 USB 插入电脑,转到第 3 步)
- 2) 将 USB 转 TTL 连接电脑,安装驱动程序,到设备管理器记下对应串口号。
- 3) 打开"超级终端"软件,新建连接见图 2,点击确定,使用 USB 转 TTL 对应的 COM 口,见图 3,按照图 4 设置 COM 口参数,点击"确定"按钮。
- 4) 输入 help 回车, 查看在线帮助。
- 5) 输入"std 44 11223344"回车,发送 ID 为 0x44,四个字节 0x11、0x22、0x33、0x44 标准数据帧。
- 6) 输入"ext 44 11223344"回车,发送 ID 为 0x44,四个字节 0x11、0x22、0x33、0x44 扩展数据帧。
- 7) CAN 接口收到的数据会在"超级终端"中实时显示。
- 8) 更多功能请仔细阅读本手册。

图 2 超级终端新建连接

图 3 连接使用 USB 转 TTL 对应 COM 口

图 4 COM 口参数

3 性能指标

3.1 CAN 接口指标

波特率最低 40kbps,最高 1Mbps,支持的波特率如下: 40k、50k、60k、80k、90k、100k、125k、150k、200k、250k、300k、400k、500k、600k、800k、900k、1M。

3.2UART 接口参数

UART 接口为标准 TTL 接口。

VCC 供电为 5V, TXD 和 RXD 可以接受 5V 或者 3.3V 电平。

UART 接口支持常见波特率,波特率范围 2400bps-921600bps,默认波特率 115200。1 位起始位,8位数据位,1位停止位,无校验,参考图 4。

4 工作模式

UARTCAN 模块支持三种工作模式: TERM 模式, PKT 模式, BOOT 模式, 默认上电后自动进入 TERM 模式。见图 5。

图 5 三种工作模式

4.1 TERM 模式

在 TERM 模式下,用户可以使用命令行终端方式收发 CAN 数据。UARTCAN 提供了一系列命令操作 CAN 接口数据。

该模式下,PC 端使用"超级终端"软件控制 UARTCAN,无需专门上位机软件。相关命令可参考 5 见下方。

4.2 PKT 模式

PKT模式下, CAN 接口数据采用 16 字节固定的长度进行封包, 然后通过异步串口传输。固定长度的封包便于软件编程处理。串口网络传输数据带 CRC 校验, 提高了数据完整性。PKT模式下可以借助各种串口调试助手软件调试 CAN 网络。

通过使用专用的驱动,PKT 模式下也可以使用 CANTest 等常见 CAN 网络调试软件。详情可参考 6 见下方。

4.3BOOT 模式

BOOT 模式用来升级用户程序,或者修改内部 EEPROM 的内容,控制设备运行参数。进入 BOOT 方式有两种,分别如下:

- 1) 设置好超级终端参数连接 UARTCAN, 按住键盘上的 'e' 按键, 给 UARTCAN 上电。 进入 BOOT 模式。
- 2) TERM 模式下,执行 reboot 1000 命令,延时 1 秒后重启,马上按住键盘上的 'e' 按键,重启后进入 BOOT 模式,见图 6。

XBOOT for STM32F10x v16.3.30 Flash:64kB SN:53FF6E065088545338391887 ECHO Studio <echo.xjtu@gmail.com>. All Rights Reserved.

图 6 TERM 模式下进入 BOOT 模式操作流程

BOOT 模式下运行 UARTCAN 的 bootloader 程序,可更新 UARTCAN 设备固件。

4.4模式间切换

TERM 模式和 PKT 模式可以通过长按按键进行切换,切换以后自动记忆当前工作模式。通过短按按键查看当前工作模式。

BOOT 模式进入方式见 4.3 节。

5 TERM 模式控制命令

5.1 can

显示、设置 CAN 接口参数。

命令格式: can [baud|mode|init] CAN interface params setup.

不带参数的 can 命令显示当前 CAN 接口状态,命令输出见图 7。

can can [baud|mode|init] CAN interface params setup. CAN baud = 100kbps mode = 0 Normal RX lost = 0 success = 0 show = 1 TX lost = 0 success = 0 repeat = 0 interval = 0ms

图 7 不带参数 can 命令输出

输出结果分四行:

第一行为命令格式。

第二行为 CAN 接口波特率与工作模式设置,可选的工作模式见表 1。

 工作模式
 取值
 备注

 Normal
 0
 正常模式(常用)

 LoopBack
 1
 环回模式

 Silent
 2
 静默模式

 Silent_LoopBack
 3
 环回静默模式

表 1 CAN 接口工作模式

第三行为接收 CAN 数据帧信息,lost 和 success 分别表示接收失败和成功的 CAN 数据帧数量,show=1 表示显示接收到的数据帧,show=0 表示不显示接收到的数据帧,可以使用 ctrl+p 按键切换。

第四行为发送的 CAN 数据帧信息,lost 和 success 分别表示发送失败和成功的 CAN 数据 帧数量,repeat 表示重复发送数量,interval 表示发送间隔,repeat 和 interval 可以用过 repeat 命令设置,用来重复发送相同的数据帧,详见 repeat 命令。

5.1.1 can baud

baud 子命令可以设置 CAN 接口波特率,见图 8,使用"can baud"命令查看当前 CAN 接口波特率,使用"can baud 500"将 CAN 接口波特率设置为 500kbps。

can baud
can baud [baud in kbps] set CAN baudrate.
CAN baud = 100kbps
can baud 500
set CAN baud to 500kbps, save and init to apply new baud.

图 8 can baud 设置 CAN 接口波特率

修改 CAN 接口波特率以后,需要执行"param save"命令保存参数,并且执行"can init"命令重新初始化 CAN 接口使能新波特率。

5.1.2 can mode

mode 子命令可以设置 CAN 接口工作模式,见图 9。使用"can mode"命令查看当前 CAN 接口工作模式,使用"can mode 1"将 CAN 接口工作模式设置为环回模式。

can mode
can mode [0|1|2|3] set CAN work mode.
CAN mode = 0 Normal
can mode 1
set CAN mode to 1 LoopBack, save and init to apply new mode.

图 9 can mode 设置 CAN 接口工作模式

修改 CAN 接口工作模式以后,需要执行"param save"命令保存参数,并且执行"can init" 命令重新初始化 CAN 接口使能新工作模式。

5.1.3 can init

修改 CAN 接口参数以后,需要执行"can init"命令重新初始化 CAN 接口,命令输出见图 10。

can init init CAN interface according to user config...

图 10 can init 命令输出

5.2 filter

显示、设置 CAN 接口滤波参数。(该命令使用复杂,如无特殊需要,建议使用默认设置)。

命令格式: filter [0-6] [mode|scale|act|r0|r1] [param] CAN filter setup.

UARTCAN 支持最多 7 个滤波器设置,编号 0-6,不带参数的 filter 命令显示当前 CAN 接口滤波器设置,见图 11。

mode 取值为 idlist 或者 idmask;

scale 取值 32 或者 16;

act 取值 1 或者 0;

RO 和 R1 为两个寄存器,具体意义由 mode 和 scale 取值决定。

图 11 不带参数的 filter 命令输出

第一个参数为滤波器编号,带一个参数的 filter 命令输出当前滤波器设置,如:"filter 0" 命令输出当前滤波器 0 的设置;"filter 1"命令输出当前滤波器 1 的设置,见图 12。可以使用该命令依次查看 7 个滤波器设置。

```
filter 0 filter 0 MODE=idmask SCALE=32 ACT=1 R0=0x00000000 R1=0x00000000 filter 1 filter 1 MODE=idmask SCALE=32 ACT=0 R0=0x00000000 R1=0x00000000 图 12 带一个参数查看当前滤波器信息
```

所有命令第一个参数为滤波器编号, UARTCAN 支持编号 0-6 共 7 个滤波器, 为了便于叙述, 本节以 0 号滤波器为例。

5.2.1 filter 0 mode

设置滤波器滤波模式。

"filter 0 mode 0"设置为 0 号滤波器为 idmask 模式,"filter 0 mode 1"设置 0 号滤波器为 idlist 模式。具体过程见图 13。滤波模式会影响其它参数的设置。

图 13 filter 0 mode 命令使用举例

5.2.2 filter 0 scale

设置滤波器位宽(16位或32位)。

"filter 0 scale 0"设置 0 号滤波器为 16 位,"filter 0 scale 1"设置 0 号滤波器为 32 位。见图 14。

```
filter 0 scale 0
filter 0 MODE=idmask SCALE=16 ACT=1 R0=0x00000000 R1=0x00000000
filter 0 scale 1
filter 0 MODE=idmask SCALE=32 ACT=1 R0=0x00000000 R1=0x00000000
filter 0 scale 0
filter 0 MODE=idmask SCALE=16 ACT=1 R0=0x00000000 R1=0x00000000
```

图 14 filter 0 scale 命令使用举例

5.2.3 filter 0 act

使能或者禁止滤波器。

"filter 0 act 0"禁止 0 号滤波器, "filter 0 act 1"使能 0 号滤波器。见图 15。

注意, CAN 接口必须使能至少一个滤波器才能顺利收到数据。

filter 0 act 0

filter 0 MODE=idmask SCALE=32 ACT=0 R0=0x00000000 R1=0x00000000

filter 0 act 1

filter 0 MODE=idmask SCALE=32 ACT=1 R0=0x00000000 R1=0x000000000 图 15 filter 0 act 命令使用举例

5.2.4 filter 0 r0

每一组滤波器工作模式分为 idmask 和 idlist 两种,每一组滤波器位宽可以为 32 位或者 16 位,因此存在 4 种组合方式:

- 1) 1 组 32 位 idmask 滤波器
- 2) 2组 32位 idlist 滤波器
- 3) 2 组 16 位 idmask 滤波器
- 4) 4 组 16 位 idlist 滤波器

四种组合方式及其 ID 映射见图 16。

One 32-Bit Filter - Identifier Mask CAN_FxR1[31:24] CAN_FxR1[23:16] CAN_FxR1[15:8] CAN_FxR1[7:0] Mask CAN_FxR2[31:24] CAN_FxR2[23:16] CAN_FxR2[15:8] CAN_FxR2[7:0] Mapping Two 32-Bit Filters - Identifier List CAN_FxR1[31:24] CAN_FxR1[23:16] CAN_FxR1[15:8] CAN_FxR1[7:0] CAN_FxR2[31:24] CAN_FxR2[23:16] CAN_FxR2[15:8] CAN_FxR2[7:0] STID[10:3] EXID[17:13] Mapping EXID[4:0] Two 16-Bit Filters - Identifier Mask CAN_FxR1[15:8] CAN_FxR1[7:0] CAN_FxR1[31:24] CAN_FxR1[23:16] Mask CAN FxR2[15:8] CAN FxR2[7:0] Mask CAN_FxR2[31:24] CAN_FxR2[23:16] Mapping STID[10:3] STID[2:0] RTR DE EXID[17:15 Four 16-Bit Filters - Identifier List CAN_FxR1[15:8] CAN_FxR1[7:0] ID CAN_FxR1[31:24] CAN_FxR1[23:16] ID CAN_FxR2[15:8] CAN_FxR2[7:0] CAN_FxR2[31:24] ID CAN_FxR2[23:16] Mapping STID[2:0] RTR DE EXID[17:15]

图 16 不同组合方式下滤波器 ID 映射

用户需要按照实际滤波需求计算出 r0, 然后使用"filter 0 r0"命令设置 r0 寄存器。

filter 0 r0 11

filter 0 MODE=idmask SCALE=32 ACT=1 RO=0x00000011 R1=0x00000000 filter 0 r1 22

filter 0 MODE=idmask SCALE=32 ACT=1 R0=0x00000011 R1=0x00000022 图 17 r0 与 r1 设置命令

filter 0 r1 5.2.5

设置 r1 寄存器, 与 "filter 0 r0"配合使用, 参考图 17。

以只接收 ID 为 0xAA 的扩展数据帧为例,设置如下:

使用 idlist 方式, 32 位滤波器, r1 设置为(0xAA<<3)+4=0x554, 设置过程与结果见图 18。

filter 0 r1 554

filter 0 MODE=idlist SCALE=32 ACT=1 R0=0x00000000 R1=0x00000554 param save

Save parameters to EEPROM...

can init

init CAN interface according to user config... RX:00000008 DATA MSG ID=0x000000AA LEN=8 DATA=11 22 33 44 55 66 77 88 RX:00000009 DATA MSG ID=0x000000AA LEN=8 DATA=11 22 33 44 55 66 77 88

图 18 滤波器设置实例

更多滤波器设置方法请参考 STM32 用户手册 CAN 接口部分。

5.3 std

通过 CAN 接口发送标准帧。

命令格式: std [hex ID] [hex DATA | remote].

std 44 12345678 TX:00000002 DATA MSG ID=0x0044 DATA=12 34 56 78

std 44 remote

TX:00000003 REMOTE MSG ID=0x0044 std 33 001122334455667788 TX:00000004 DATA MSG ID=0x0033 DATA=00 11 22 33 44 55 66 77

图 19 std 命令发送数据

命令实例见图 19。

第一个参数为帧 ID,十六进制,十六位。

第二个参数如果为 remote,表示远程帧,如果为 hex 字符串,表示实际数据,最大 8 个字节。

5.4 ext

通过 CAN 接口发送扩展帧。

命令格式: ext [ID] [hex DATA | remote].

ext 44 12345678 TX:00000005 DATA MSG ID=0x00000044 DATA=12 34 56 78

ext 44 remote

TX:00000006 REMOTE MSG ID=0x00000044 ext 33 001122334455667788

TX:00000007 DATA MSG ID=0x00000033 DATA=00 11 22 33 44 55 66 77

图 20 ext 命令发送数据

命令实例见图 20。

第一个参数为帧 ID,十六进制,三十二位。

第二个参数如果为 remote,表示远程帧,如果为 hex 字符串,表示实际数据,最大 8 个字节。

5.5 uart

显示、设置 UART 异步串口参数。

命令格式: uart [baud|mode|addr] UART interface params setup.

不带参数的 uart 命令显示当前 UART 接口状态,执行结果见图 21。

uart uart [baud|mode|addr] UART interface params setup. UART baud = 115200bps mode = 0 TERM addr = 1

图 21 不带参数的 uart 命令输出

5.5.1 uart baud

baud 子命令可以设置 UART 接口波特率,见图 22,使用"uart baud"命令查看当前 UART 接口波特率,使用"uart baud 57600"将 UART 接口波特率设置为 57600bps。

uart baud UART baud = 115200bps uart baud 57600 set UART baud to 57600bps, save & reboot to apply new baud.

图 22 uart baud 命令设置 UART 接口波特率

修改 UART 接口波特率以后,需要执行"param save"命令保存参数,并且执行"reboot" 命令重启系统使能新波特率。

5.5.2 uart mode

mode 子命令可以设置 UART 接口工作模式,见图 23,使用"uart mode"命令查看当前 UART 接口工作模式,使用"uart mode 1"将 UART 接口工作模式设置为 PKT 模式。

uart mode
UART mode = 0 TERM
uart mode 1
set UART mode to 1 PKT, save & reboot to apply new mode.
uart mode 0
set UART mode to 0 TERM, save & reboot to apply new mode.

图 23 uart mode 命令 UART 接口工作模式

修改 UART 接口工作模式以后,需要执行"param save"命令保存参数,并且执行"reboot" 命令重启系统使能新工作模式。

5.5.3 uart addr

addr 子命令可以设置 UART 接口地址,见图 24,使用"uart addr"命令查看当前 UART 接口地址,使用"uart addr 2"将 UART 接口地址设置为 2。

uart addr UART addr = 1 uart addr 2 set UART addr to 2, save & reboot to apply new addr. 图 24 uart addr 命令设置 UART 接口地址

5.6 clear

清理 CAN 发送接收计数器。 命令格式: clear

5.7 param

操作设备参数。

命令格式: param [load|save|restore] Operate parameters.

param save: 保存参数到内置 EEPROM。

param load: 从内置 EEPROM 加载参数。

param restore:恢复默认参数。

5.8 repeat

设置 CAN 数据帧发送重复次数和时间间隔。

命令格式: repeat [num] [int(ms)] CAN TX repeat times and interval.

该命令用于连续发送数据帧,执行情况参考图 25,每隔 100ms 重复发送一次数据帧, 总共发送了 6 个数据帧。

clear 命令可以清除 repeat 和 interval 设置。

```
repeat 5 100
Set TX repeat = 5 interval = 100ms
std 44 11223344
TX:00000000 DATA MSG ID=0x0044 DATA=11 22 33 44
TX:00000001 DATA MSG ID=0x0044 DATA=11 22 33 44
TX:00000001 DATA MSG ID=0x0044 DATA=11 22 33 44
TX:00000002 DATA MSG ID=0x0044 DATA=11 22 33 44
TX:00000003 DATA MSG ID=0x0044 DATA=11 22 33 44
TX:00000004 DATA MSG ID=0x0044 DATA=11 22 33 44
TX:00000005 DATA MSG ID=0x0044 DATA=11 22 33 44
TX:00000005 DATA MSG ID=0x0044 DATA=11 22 33 44
can
can [baud|mode|init] CAN interface params setup.
CAN baud = 100kbps mode = 0 Normal
RX lost = 0 success = 0 show = 1
TX lost = 0 success = 6 repeat = 5 interval = 100ms
```

图 25 使用 repeat 命令连续发送数据帧

5.9 reboot

重启 UARTCAN,带一个延时参数,延时单位毫秒,不带参数立即重启。

命令格式: reboot [delay ms] Restart system.

延时 1 秒以后重启: reboot 1000。延时重启可以用来进入 BOOT 模式,具体方法请参考 4.3。

修改 UART 接口参数以后,需要重启生效。

5.10 help

显示在线帮助。 命令格式: help 命令输出见图 26。

```
can -> can [baud|mode|init] CAN interface params setup.
filter -> filter [0-6] [mode|scale|act|r0|r1] [param] CAN filter setup.
std -> std [hex ID] [hex DATA | remote] send standard CAN data/remote message.
ext -> ext [hex ID] [hex DATA | remote] send extended CAN data/remote message.
uart -> uart [baud|mode|addr] UART interface params setup.
clear -> clear RX and TX frame counter.
param -> param [load|save|restore] Operate parameters.
repeat -> repeat [num] [int(ms)] CAN TX repeat times and interval.
reboot -> reboot [delay ms] Restart system.
help -> help Info.
version -> display SW version and SN.
```

图 26 help 命令输出

5.11 version

显示设备软硬件版本信息。 命令格式: version 命令输出见图 27。 version UARTCAN v16.5.2 Flash:64kB SN:54FF6D064971535716460687 ECHO Studio <echo.xjtu@gmail.com>. All Rights Reserved.

图 27 version 命令输出

5.12 ctrl+p

RX:00000032 DATA MSG ID=0x0000 LEN=8 DATA=00 01 02 03 04 05 06 07 RX:00000033 REMOTE MSG ID=0x0000 RX:00000034 DATA MSG ID=0x00000000 LEN=8 DATA=00 01 02 03 04 05 06 07

RX:00000035 REMOTE MSG ID=0x00000000

图 28 超级终端接收到的 CAN 数据帧

TERM 模式下,超级终端会实时显示 CAN 接口收到的数据,见图 28。通过帧 ID 长度区 分标准帧和扩展帧,标准帧 ID 为 16 位,扩展帧为 32 位。

按下 ctrl+p 组合键,可暂停 CAN 帧接收显示,再次按下 ctrl+p 继续显示接收到的数据包。 暂停显示以后,设备在后台继续接收 CAN 帧,可以使用 can 命令查看接收到的数据帧 数量。

PKT 模式通讯协议

PKT 模式下使用固定长度的数据包进行通信,适用于上位机软件和 MCU 处理。

6.1封包格式

数据包固定 16 字节,按字节依次编号为 0-15,分为 5 个区域:设备地址、功能码、ID 区、DATA区、校验区。见图 29。

设备地址	功能码	ID区	DATA⊠	校验区
一字节	一字节	四字节	八字节	二字节

图 29 PKT 模式 16 字节封包组成

设备地址 6.1.1

一个字节, 默认地址 0x01, 有效范围 1-247, 需要和 UARTCAN 实际 设备地址为 BYTEO, 地址对应。建议使用默认地址 0x01。

UARTCAN 与上位机通讯采用"请求一应答"方式,上位机发送一个请求数据包,UARTCAN 根据请求数据包内容进行响应操作,然后进行应答,请求与应答数据包采用相同的固定 16 字节封包格式。

6.1.2 功能码

功能码为 BYTE1,一个字节。功能码定义了一个 PKT 模式数据包的功能, ID 区和 DATA 区数据的意义与功能码密切相关。PKT模式下支持的功能码见表 2。

ID 区与 DATA 区 功能码 名称 描述 0x00 **IDLE** UARTCAN 不做任何响应 无关,建议填0 数据包回显 收到数据原样返回 0x01 **ECHO** 0x02 **RDEE** 保留 0x03 WREE 保留

表 2 功能码定义

0x04	LDEE	保留		
0x05	SAEE	保留		
0x06	REBOOT	重启 UARTCAN	无关,建议填0	
0x07	DEVINFO		返回数据在 DATA 区, DATAO 和 DATA1	
		获取 UARTCAN 设备信息	为 MCU 固件版本,DATA2 和 DATA3	
			为 CAN 波特率	
0x08	DEVSN	大取 UARTCAN 设备序列号	返回 12 字节序列号,占据 ID 区和	
		次级 UANTCAN 反雷力/列号	DATA ⊠	
0x09	LED	控制主板 LED	DATA 区首字节非零点亮,零熄灭	
0x0A	INITCAN	初始化 CAN	发送数据占用ID区,IDO和ID1为CAN	
		70J 外日化 CAN	接口波特率,ID2 为 CAN 工作模式	
0x30-0x38	STD	发送标准帧,低4位为数	ID 区共 32 位,靠右对齐; DATA 区为	
		据长度	实际数据	
0x40	STDRMT	发送标准远程帧	ID 区共 32 位,靠右对齐	
0x50-0x58	EXT	发送扩展帧,低4位为数	ID 区共 32 位,靠右对齐; DATA 区为	
		据长度	实际数据	
0x60	EXTRMT	发送扩展远程帧	ID 区共 32 位,靠右对齐	

6.1.3 ID ⊠

ID 区共 4 个字节 32 位,数据采用 Big Endian,高字节在前,低字节在后。 无论 11 位的 标准帧还是 29 位扩展帧,数据均靠右对齐。 非 CAN 数据帧的情况下,ID 区也可以用来存放数据。

6.1.4 DATA ⊠

DATA 区共 8 个字节,用来存储 CAN 数据帧最大 8 个字节。如果数据帧不够 8 个字节,优先使用编号靠前字节,剩余字节用 0x00 补齐。

6.1.5 校验区

校验区共 2 个字节,16 位,采用 Little Endian,即<mark>低字节在前,高字节在后</mark>。校验算法采用 CRC 校验,具体请参考 MODBUS 协议 CRC 校验码算法。

一种具体的实现请参考图 30。

```
uint16_t ModbusCRC(const uint8_t *data, uint16_t dataLen)
{
    uint16_t i = 0, j = 0, crc=0xFFFF, flag=0;

    for (i = 0; i < dataLen; i++)
    {
        crc ^= data[i];
        for (j = 0; j < 8; j++)
        {
            flag = crc & 0x00001;
            crc >>= 1;
            if (flag)
            {
                crc ^= 0xA001;
            }
        }
        return crc;
}
```

图 30 ModbusCRC 参考算法实现

6.2 通讯举例

图 31 ECHO 功能码通讯测试

图 32 DEVSN 功能码通讯测试

图 33 发送 ID 为 0x44 8 个数据字节的标准帧

6.3 CANTest 软件使用说明

CANTest 软件是广州致远电子开发的一款 CAN 调试软件,使用广泛。

通过替换 DLL 文件,UARTCAN 也可以用 CANTest 软件作为上位机软件。将 CANTest 安装目录下的 ControlCAN.dll 文件重命名为 ControlCAN_zlg.dll,然后将 UARTCAN 提供的 ControlCAN.dll 文件拷贝到 CANTest 目录下,启动时设备选择 USBCAN1.

图 34 CANTest 软件 DLL 替换

CANTest 软件仅供学习研究使用,波特率最低 50k,不支持滤波器设置,只支持正常工作模式。使用 UARTCAN 完整功能请使用 TERM 模式。

7 其它常用操作

7.1 固件升级

进入 BOOT 模式,方法请参考 4.3。

执行 ymodem 命令。看到输出字符"C"以后,选择超级终端菜单"传送(T)->发送文件(S)", 弹出图 35 界面,点击"浏览(B)"按钮,选择待升级的固件文件,后缀名为.hex,协议选择"Ymodem",点击发送按钮,等待升级完成。

图 35 选择固件文件

升级过程见图 36,ymodem 命令会尝试先擦除旧固件,然后写入新固件,升级成功以后给出提示信息。

执行 ymodem 命令显示字符"C"时,可以按"A"键取消当前升级过程。

```
ymodem
          16 @ 0x080044000 is not empty! Erasing 17 @ 0x08004400 is not empty! Erasing
 Page
 Page
          18 @ 0x08004800 is not empty! Erasing 19 @ 0x08004C00 is not empty! Erasing
 Page
                                                                          0K!
                                             empty!
                                                       Erasing
                                                                          0K!
 Page
 Page
          20 @ 0x08005000 is not
                                             empty!
                                                       Erasing
          21 @ 0x08005400 is not empty!
22 @ 0x08005800 is not empty!
 Page
                                                       Erasing
 Page
                                                       Erasing
 Page
          23 @ 0x08005C00 is not
                                             empty!
                                                       Erasing
          24 @ 0x08006000 is not 25 @ 0x08006400 is not 26 @ 0x08006800 is not
                                             empty!
 Page
                                                       Erasing
 Page
                                             empty!
                                                       Frasing
                                                        Erasing
 Page
                                             empty!
          27 @ 0x08006C00 is not empty! Erasing 28 @ 0x08007400 is not empty! Erasing 29 @ 0x08007400 is not empty! Erasing 29 @ 0x08007400 is not empty! Erasing
                                                                          OK!
 Page
 Page
 Page
          30 @ 0x08007800 is not empty!
                                                       Erasing
 Page
 Page
          31 @ 0x08007C00 is not empty! Erasing
ymodem update firmware, press A to abort
 Update firmware OK!
 File Name: UARTCAN.hex
 File Size: 44998
End Addr: 0x08007E60
```

图 36 固件升级过程

7.2恢复出厂设置

按住按键上电, UARTCAN 恢复出厂设置。

TERM 模式下,执行 param restore 命令可以加载出厂设置,继续执行 param save 命令保存出厂设置。

7.3 查看与切换工作模式

按下按键,LED 闪烁一次表示 PKT 模式,LED 闪烁两次表示 TERM 模式。长按按键可在两种模式之间切换。切换结果立即生效并保存。

8 FAQ

8.1 串口速度能比上 CAN 接口吗?

能。

CAN 最高波特率是 1Mbps, STM32 的 UART1 最高波特率 4.5Mbps, USB 转串口芯片

CH340G 最高波特率 2Mbps, PL2303HXD 最高波特率 12Mbps。串口最高波特率要高于 CAN。

8.2如何记录数据?

利用超级终端的"捕获文字"功能,菜单"传送(T)->捕获文字(C)"。

