

数字信号处理

——时域离散信号和系统

信号来源

❖ 采样概念

信号表示

信号表示

- *表示方法
 - > 集合
 - ≻公式
 - ▶图形
 - > 表格

信号分类

- ❖信号类型
 - > 模拟信号
 - > 离散时间信号
 - > 数字信号
 - ▶量化误差

信号分类

信号分类

Continuous-time or analog signal

Discrete-time signal

- *基本序列
 - > 单位脉冲
 - ▶单位阶跃
 - > 矩形序列
 - ▶指数序列
 - > 正弦型序列

- *单位序列
 - > 单位脉冲
 - ▶单位阶跃
 - > 二者关系

- *矩形序列
 - ▶表示形式
 - \rightarrow 与 $\delta[n]$ 的关系
 - ▶与u[n]的关系

* 指数序列

- ▶序列形式
- > 收敛特性

❖ 复指数-正弦序列关系

- ▶基本形式
- > 相互转换

- ❖ 复指数/正弦序列
 - > 周期序列概念
 - ➤ 时域周期N
 - > 频域周期2π
 - > 数字周期的特殊性

- ❖系统概念
 - > 模拟系统
 - > 离散时间系统
 - > 数字系统

- ❖系统的"四性"
 - > 线性
 - ▶时不变性
 - > 因果性
 - ▶稳定性

- ❖线性
 - ▶叠加定理
 - > 公式描述
 - > 系统判定

- ❖时不变特性
 - > 移位概念
 - > 公式描述
 - > 系统判定

❖LTI系统

- ▶LTI概念
- ▶卷积描述

- ❖描述方法
 - > 线性卷积
 - > 差分方程(以后章节)
 - >频域描述(以后章节)

- *线性卷积
 - ▶卷积要求
 - > 计算方法

$$x_3[n] = x[3]\delta[n-3]$$

$$y_3[n] = x[3]h[n-3]$$

**卷积解析计算实例

>要求:

$$x(n) = a^n u(n)$$
 , $h(n) = R_4(n)$

> 求解:

$$n < 0$$
, $y(n) = 0$

$$0 \le n \le 3$$
, $0 \le m \le n$, $y(n) \ne 0$

$$y(n) = \sum_{m=0}^{n} R_4(m)a^{n-m}u(n-m) = \sum_{m=0}^{n} a^{n-m} = a^n \frac{1 - a^{-n-1}}{1 - a^{-1}}$$

$$n \ge 4$$
, $0 \le m \le 3$, $y(n) \ne 0$

$$y(n) = \sum_{m=0}^{n} R_4(m)a^{n-m}u(n-m) = \sum_{m=0}^{3} a^{n-m} = a^n \frac{1-a^{-4}}{1-a^{-1}}$$

❖LTI系统的连接

- ▶ 并联/串联
- > 等效形式

- * 因果性
 - >基本含义
 - > 充要条件
 - > 系统判定

- * 稳定性
 - >基本含义
 - > 充要条件
 - > 系统判定

❖充要条件证明:

> 充分条件

$$|y[n]| = \left| \sum_{m=0}^{\infty} h[m]x(n-m) \right| \le \sum_{m=0}^{\infty} |h[m]x[n-m]| \le p \sum_{m=0}^{\infty} |h[m]| < \infty$$

> 必要条件(反证法)

$$\sum_{n=-\infty}^{\infty} |h[n]| = \infty \qquad x[-n] = \begin{cases} 1 & h[n] \ge 0 \\ -1 & h[n] < 0 \end{cases} \qquad |x[n]| = 1 < \infty$$

$$y[0] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] \bigg|_{n=0} = \sum_{k=-\infty}^{\infty} h[k]x[-k] = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$

- *差分方程
 - > 数学描述
 - > 前向差分
 - > 反向差分
 - > 对比卷积

- ❖数学描述
 - ▶基本形式

$$\sum_{i=0}^{M} b_i x[n-i] = \sum_{i=0}^{N} a_i y[n-i]$$

▶微分方程

*差分形式

> 前向差分

$$y[n] = \sum_{i=0}^{M} b_i x[n-i] - \sum_{i=1}^{N} a_i y[n-i] \qquad a_0 = 1$$

> 反向差分(介绍)

$$y[n-N] = \sum_{i=0}^{M} b_i x[n-i] - \sum_{i=0}^{N-1} a_i y[n-i] \qquad a_N = 1$$

❖ 递推求解

> 基本形式

$$y[n] = \sum_{i=0}^{M} b_i x[n-i] - \sum_{i=1}^{N} a_i y[n-i] \qquad a_0 = 1$$

> 初始条件

$$x[n], x[n-1], \dots, x[n-M], y[n-1], y[n-2], \dots, y[n-N]$$

> 递推求解

*差分实例

$$ightharpoonup$$
 基本形式 $y(n) = ay(n-1) + x(n)$

$$\rightarrow$$
 初始条件 $x(n) = \delta(n), y(-1) = 1$

》 遊推求解
$$n = 0$$
 $y(0) = ay(-1) + \delta(0) = a + 1$ $n = 1$ $y(1) = ay(0) + \delta(1) = a(a + 1)$ $n = 2$ $y(2) = ay(1) + \delta(2) = a^2(a + 1)$ \vdots

 $y(n) = ay(n-1) + \delta(n) = a^{n}(a+1)u(n)$

本章小结

❖离散时间信号

> 数学描述

> 数字信号

> 判别系统

> 典型序列

***LTI系统**

> 周期序列

> 线性卷积

❖离散时间系统

> 差分方程

▶系统"四性"

> 数值计算

谢谢大家!