Dynamic Programming (5)

By: Aminul Islam

Minimum Cost Path Problem

Minimum Cost Path Problem

Minimum Cost Path Problem Statement: Given a two dimensional cost matrix having a cost at each cell. The cost is to travel through that cell. Find the minimum cost it will take to reach bottom-right corner cell (m, n) from top left corner cell (0, 0). The only allowed directions to move from a cell are right or down.

Minimum Cost Path Problem

Minimum Cost Path Problem Statement: Given a two dimensional cost matrix having a cost at each cell. The cost is to travel through that cell. Find the minimum cost it will take to reach bottom-right corner cell (m, n) from top left corner cell (0, 0). The only allowed directions to move from a cell are right or down.

	1	7	9	2
coct	8	6	3	2
cost	1	6	7	8
	2	9	8	2

```
int minCost(int cost[][], int m, int n)
{
    if (n < 0 || m < 0)
        return INT_MAX_VALUE;
    else if (m == 0 && n == 0)
        return cost[m, n];
    else
        return cost[m, n] + min( minCost(cost, m-1, n), minCost(cost, m, n-1));
}</pre>
```

```
int minCost(int cost[][], int m, int n)
{
   if (n < 0 || m < 0)
      return INT_MAX_VALUE;
   else if (m == 0 && n == 0)
      return cost[m, n];
   else
      return cost[m, n] + min( minCost(cost, m-1, n),
minCost(cost, m, n-1));
}</pre>
Time complexity, T(n) =
```

```
int minCost(int cost[][], int m, int n)
{
    if (n < 0 || m < 0)
        return INT_MAX_VALUE;
    else if (m == 0 && n == 0)
        return cost[m, n];
    else
        return cost[m, n] + min( minCost(cost, m-1, n), minCost(cost, m, n-1));
}</pre>
Time complexity, T(n) = T(n-1) + T(n-1) + 1
```

```
int minCost(int cost[][], int m, int n)
   if (n < 0 | | m < 0)
      return INT_MAX_VALUE;
   else if (m == 0 \&\& n == 0)
      return cost[m, n];
   else
      return cost[m, n] + min( minCost(cost, m-1, n),
minCost(cost, m, n-1));
Time complexity, T(n) = T(n-1)+T(n-1)+1
T(n) \in O(2^n)
```

Algorithm: DP solution to Minimum Cost Path Problem

Algorithm: DP solution to Minimum Cost Path

```
Problem
int minCost( int cost[][], int n, int m )
   int sol[n, m];
   int i, j;
   sol[0, 0] = cost[0, 0];
   for(int j=1; j < m; j++) {
      sol[0, j] = sol[0, j-1] + cost[0, j];
   for(int i=1; i < n; i++) {
      sol[i, 0] = sol[i-1, 0] + cost[i, 0];
   for (i=1: i<n: i++)
      for (j=1; j < m; j++)
        sol[i, j] = cost[i, j] + min(sol[i-1, j], sol[i, j-1])
   return sol[n, m];
```

	1	7	9	2
cost	8	6	3	2
COST	1	6	7	8
	2	9	8	2

	1	7	9	2
cost	8	6	3	2
cost	1	6	7	8
	2	9	8	2

sol[0, 0] = cost[0, 0];

	1	7	9	2
cost	8	6	3	2
cost	1	6	7	8
	2	9	8	2

sol[0, 0] = cost[0, 0];

	1		
sol			
SUI			

cost | 1 | 7 | 9 | 2 | 8 | 6 | 3 | 2 | 1 | 6 | 7 | 8 | 2 | 9 | 8 | 2 |

```
for(int j=1; j < m; j++) {
   sol[0, j] = sol[0, j-1] + cost[0, j];
}</pre>
```

```
sol 1
```

cost | 1 | 7 | 9 | 2 | 8 | 6 | 3 | 2 | 1 | 6 | 7 | 8 | 2 | 9 | 8 | 2 |

```
for(int j=1; j < m; j++) {
   sol[0, j] = sol[0, j-1] + cost[0, j];
}</pre>
```

```
sol 1 8 sol
```

cost | 1 | 7 | 9 | 2 | 8 | 6 | 3 | 2 | 1 | 6 | 7 | 8 | 2 | 9 | 8 | 2 |

```
for(int j=1; j < m; j++) {
   sol[0, j] = sol[0, j-1] + cost[0, j];
}</pre>
```

```
sol 1 8 17
```

```
cost 1 7 9 2
8 6 3 2
1 6 7 8
2 9 8 2
```

```
for(int j=1; j < m; j++) {
   sol[0, j] = sol[0, j-1] + cost[0, j];
}</pre>
```

```
sol 1 8 17 19
```

```
cost \begin{vmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{vmatrix}
```

```
for(int i=1; i < n; i++) {
   sol[i, 0] = sol[i-1, 0] + cost[i, 0];
}</pre>
```

```
sol 1 8 17 19
```

```
for(int i=1; i < n; i++) {
   sol[i, 0] = sol[i-1, 0] + cost[i, 0];
}</pre>
```

```
for(int i=1; i < n; i++) {
   sol[i, 0] = sol[i-1, 0] + cost[i, 0];
}</pre>
```

```
for(int i=1; i < n; i++) {
   sol[i, 0] = sol[i-1, 0] + cost[i, 0];
}</pre>
```

```
sol 1 8 17 19
9 0 0 0 0
10 0 0 0 0
```

$$cost \begin{vmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{vmatrix}$$

	1	8	17	19
ام	9			
sol	10			
	12			

$$cost \begin{bmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{bmatrix}$$

	1	8	17	19
sol	9	14		
SUI	10			
	12			

$$cost \begin{vmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{vmatrix}$$

sol	1	8	17	19
	9	14	17	
	10			
	12			

$$cost \begin{bmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{bmatrix}$$

	1	8	17	19
sol	9	14	17	19
SOI	10			
	12			

$$cost \begin{bmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{bmatrix}$$

	1	8	17	19
sol	9	14	17	19
SOI	10	16		
	12			

$$cost \begin{vmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{vmatrix}$$

	1	8	17	19
sol	9	14	17	19
SOI	10	16	23	
	12			

$$cost \begin{vmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{vmatrix}$$

	1	8	17	19
sol	9	14	17	19
SOI	10	16	23	27
	12			

$$cost \begin{vmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{vmatrix}$$

	1	8	17	19
sol	9	14	17	19
	10	16	23	27
	12	21		

$$cost \begin{vmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{vmatrix}$$

sol	1	8	17	19
	9	14	17	19
	10	16	23	27
	12	21	29	

$$cost \begin{bmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{bmatrix}$$

sol	1	8	17	19
	9	14	17	19
	10	16	23	27
	12	21	29	29

cost	1	7	9	2
	8	6	3	2
	1	6	7	8
	2	9	8	2

return sol[n, m];

sol	1	8	17	19
	9	14	17	19
	10	16	23	27
	12	21	29	29

return sol[n, m];

sol	1	8	17	19
	9	14	17	19
	10	16	23	27
	12	21	29	29

• The cost of Minimum Cost Path is:

return sol[n, m];

sol	1	8	17	19
	9	14	17	19
	10	16	23	27
	12	21	29	29

• The cost of Minimum Cost Path is: 29

sol	1	8	17	19
	9	14	17	19
	10	16	23	27
	12	21	29	29

- The cost of Minimum Cost Path is: 29
- Time Complexity =

sol	1	8	17	19
	9	14	17	19
	10	16	23	27
	12	21	29	29

- The cost of Minimum Cost Path is: 29
- Time Complexity =O(mn) or $O(n^2)$

sol	1	8	17	19
	9	14	17	19
	10	16	23	27
	12	21	29	29

- The cost of Minimum Cost Path is: 29
- Time Complexity = O(mn) or $O(n^2)$
- The Minimum Cost Path (optimal solution) is:

$$cost \begin{bmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{bmatrix}$$

return sol[n, m];

	1	8	17	19
sol	9	14	17	19
	10	16	23	27
	12	21	29	29

- The cost of Minimum Cost Path is: 29
- Time Complexity = O(mn) or $O(n^2)$
- The Minimum Cost Path (optimal solution) is:

 $\rightarrow 2$

$$cost \begin{vmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{vmatrix}$$

	1	8	17	19
sol	9	14	17	19
	10	16	23	27
	12	21	29	29

- The cost of Minimum Cost Path is: 29
- Time Complexity = O(mn) or $O(n^2)$
- The Minimum Cost Path (optimal solution) is:

$$\rightarrow$$
 8 \rightarrow 2

	1	8	17	19
sol	9	14	17	19
	10	16	23	27
	12	21	29	29

- The cost of Minimum Cost Path is: 29
- Time Complexity = O(mn) or $O(n^2)$
- The Minimum Cost Path (optimal solution) is:

$$\rightarrow$$
 2 \rightarrow 8 \rightarrow 2

sol	1	8	17	19
	9	14	17	19
	10	16	23	27
	12	21	29	29

- The cost of Minimum Cost Path is: 29
- Time Complexity = O(mn) or $O(n^2)$
- The Minimum Cost Path (optimal solution) is:

$$\rightarrow$$
 3 \rightarrow 2 \rightarrow 8 \rightarrow 2

$$cost \begin{bmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{bmatrix}$$

sol	1	8	17	19
	9	14	17	19
	10	16	23	27
	12	21	29	29

- The cost of Minimum Cost Path is: 29
- Time Complexity = O(mn) or $O(n^2)$
- The Minimum Cost Path (optimal solution) is:

$$\rightarrow$$
 6 \rightarrow 3 \rightarrow 2 \rightarrow 8 \rightarrow 2

	1	8	17	19
sol	9	14	17	19
	10	16	23	27
	12	21	29	29

- The cost of Minimum Cost Path is: 29
- Time Complexity = O(mn) or $O(n^2)$
- The Minimum Cost Path (optimal solution) is:

$$\rightarrow 7 \rightarrow 6 \rightarrow 3 \rightarrow 2 \rightarrow 8 \rightarrow 2$$

	1	8	17	19
sol	9	14	17	19
	10	16	23	27
	12	21	29	29

- The cost of Minimum Cost Path is: 29
- Time Complexity = O(mn) or $O(n^2)$
- The Minimum Cost Path (optimal solution) is:

$$1 \rightarrow 7 \rightarrow 6 \rightarrow 3 \rightarrow 2 \rightarrow 8 \rightarrow 2$$

$$cost \begin{bmatrix}
1 & 7 & 9 & 2 \\
8 & 6 & 3 & 2 \\
1 & 6 & 7 & 8 \\
2 & 9 & 8 & 2
\end{bmatrix}$$

return sol[n, m];

	1	8	17	19
sol	9	14	17	19
	10	16	23	27
	12	21	29	29

- The cost of Minimum Cost Path is: 29
- Time Complexity = O(mn) or $O(n^2)$
- The Minimum Cost Path (optimal solution) is:

$$1 {\rightarrow}~7 {\rightarrow}~6 {\rightarrow}~3 {\rightarrow}~2 {\rightarrow}~8 {\rightarrow}~2$$

• Can you write the algorithm to find out the optimal solution?

Exercise: Minimum Cost Path Problem

cost | 1 | 3 | 5 | 8 | 4 | 2 | 1 | 7 | 4 | 3 | 2 | 3 |

Exercise: Revised Minimum Cost Path Problem

Exercise: Revised Minimum Cost Path Problem

Minimum Cost Path Problem Statement: Given a two dimensional cost matrix having a cost at each cell. The cost is to travel through that cell. Find the minimum cost it will take to reach bottom-right corner cell (m, n) from top left corner cell (0, 0). The only allowed directions to move from a cell are right or down or diagonally lower cell.

Exercise: Revised Minimum Cost Path Problem

Minimum Cost Path Problem Statement: Given a two dimensional cost matrix having a cost at each cell. The cost is to travel through that cell. Find the minimum cost it will take to reach bottom-right corner cell (m, n) from top left corner cell (0, 0). The only allowed directions to move from a cell are right or down or diagonally lower cell.

```
int minCost(int cost[][], int m, int n)
{
   if (n < 0 || m < 0)
        return INT_MAX_VALUE;
   else if (m == 0 && n == 0)
        return cost[m, n];
   else
        return cost[m, n] + min( minCost(cost, m-1, n-1),
minCost(cost, m-1, n), minCost(cost, m, n-1));
}</pre>
```

```
int minCost(int cost[][], int m, int n)
   if (n < 0 | | m < 0)
      return INT_MAX_VALUE;
   else if (m == 0 \&\& n == 0)
      return cost[m, n];
   else
      return cost[m, n] + min( minCost(cost, m-1, n-1),
minCost(cost, m-1, n), minCost(cost, m, n-1));
Time complexity, T(n) =
```

```
int minCost(int cost[][], int m, int n)
   if (n < 0 | | m < 0)
      return INT_MAX_VALUE:
   else if (m == 0 \&\& n == 0)
      return cost[m. n]:
   else
      return cost[m, n] + min( minCost(cost, m-1, n-1),
minCost(cost, m-1, n), minCost(cost, m, n-1));
Time complexity, T(n) = T(n-1)+T(n-1)+T(n-1)+1
```

```
int minCost(int cost[][], int m, int n)
   if (n < 0 | | m < 0)
      return INT_MAX_VALUE:
   else if (m == 0 \&\& n == 0)
      return cost[m. n]:
   else
      return cost[m, n] + min( minCost(cost, m-1, n-1),
minCost(cost, m-1, n), minCost(cost, m, n-1));
Time complexity, T(n) = T(n-1)+T(n-1)+T(n-1)+1
T(n) = \frac{3^n-1}{2} (Assuming T(0) = 0)
```

```
int minCost(int cost[][], int m, int n)
   if (n < 0 | | m < 0)
      return INT_MAX_VALUE:
   else if (m == 0 &  n == 0)
      return cost[m. n]:
   else
      return cost[m, n] + min( minCost(cost, m-1, n-1),
minCost(cost, m-1, n), minCost(cost, m, n-1));
Time complexity, T(n) = T(n-1)+T(n-1)+T(n-1)+1
T(n) = \frac{3^{n}-1}{2} (Assuming T(0) = 0)
T(n) \in O(3^n)
```

Revised Algorithm: DP solution to Minimum Cost Path Problem

Revised Algorithm: DP solution to Minimum Cost

```
int minCost( int cost[][Path Problem
   int sol[n, m];
   int i, j;
   sol[0, 0] = cost[0, 0];
   for(int j=1; j < m; j++) {
      sol[0, j] = sol[0, j-1] + cost[0, j];
   for(int i=1; i < n; i++) {
      sol[i, 0] = sol[i-1, 0] + cost[i, 0];
   for (i=1: i<n: i++)
      for (j=1; j<m; j++)
        sol[i, j] = cost[i, j] + min(sol[i-1, j-1], sol[i-1, j],
sol[i, j-1])
   return sol[n, m];
```

60/9

Revised Algorithm: DP solution to Minimum Cost

```
int minCost( int cost[][],ath Problem
   int sol[n, m];
   int i, j;
   sol[0, 0] = cost[0, 0];
   for(int j=1; j < m; j++) {
      sol[0, j] = sol[0, j-1] + cost[0, j];
   for(int i=1; i < n; i++) {
      sol[i, 0] = sol[i-1, 0] + cost[i, 0];
   for (i=1; i<n; i++)
      for (j=1; j<m; j++)
        sol[i, j] = cost[i, j] + min(sol[i-1, j-1], sol[i-1, j],
sol[i, j-1])
   return sol[n, m];
   Time Complexity =
```

61/9

Revised Algorithm: DP solution to Minimum Cost

```
int minCost( int cost[][],ath Problem
   int sol[n, m];
   int i, j;
   sol[0, 0] = cost[0, 0];
   for(int j=1; j < m; j++) {
      sol[0, j] = sol[0, j-1] + cost[0, j];
   for(int i=1; i < n; i++) {
      sol[i, 0] = sol[i-1, 0] + cost[i, 0];
   for (i=1; i<n; i++)
      for (j=1; j<m; j++)
        sol[i, j] = cost[i, j] + min(sol[i-1, j-1], sol[i-1, j],
sol[i, j-1])
   return sol[n, m];
  • Time Complexity = O(mn) or O(n^2)
```