第二章 线性规划

修贤超

https://xianchaoxiu.github.io

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

线性规划问题的数学模型

■标准形式

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

- 满足约束条件的 x_j $(j = 1, \dots, n)$ 称为可行解
- 全部可行解的集合称为可行域
- 使目标函数达到最优的可行解称为<mark>最优解</mark>

适用范围

■ 只有两个变量的线性规划问题

max
$$z = c_1 x_1 + c_2 x_2$$

s.t.
$$\begin{cases} a_{i1} x_1 + a_{i2} x_2 = b_i \ (i = 1, \dots, m) \\ x_1 x_2 \ge 0 \end{cases}$$

■ 具体步骤

□ 第一步: 建立平面直角坐标系

□ 第二步: 图示约束条件, 找出可行域

□ 第三步: 图示目标函数

□ 第四步: 确定最优解

例 1

$$\max z = 2x_1 + 3x_2$$
s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

- □ 决策变量: x₁, x₂
- \Box 目标函数: max $z = 2x_1 + 3x_2$

具体步骤

■ 第一步: 建立平面直角坐标系

■ 第二步: 图示约束条件, 找出可行域

$$\max z = 2x_1 + 3x_2$$
s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

具体步骤

■ 第一步: 建立平面直角坐标系

■ 第二步: 图示约束条件, 找出可行域

■ 第三步: 图示目标函数 $\max z = 2x_1 + 3x_2$

■ 第四步: 确定最优解为 $x_1 = 4, x_2 = 2$, 最优值为 $z^* = 14$

无穷多最优解

■ 目标函数的直线族与约束条件平行

$$\max z = 2x_1 + 4x_2$$
s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

无界解

■ 建立数学模型时遗漏了某些必要的资源约束条件

$$\max z = x_1 + x_2$$
s.t.
$$\begin{cases} -2x_1 + x_2 \le 4 \\ x_1 - x_2 \le 2 \\ x_1, x_2 \ge 0 \end{cases}$$

无可行解

■ 当存在矛盾的约束条件时会出现无可行域

$$\max z = 2x_1 + 3x_2$$
 s.t.
$$\begin{cases} x_1 + x_2 \ge 10 \\ x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

例 2

$$\max z = 4x_1 + 3x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 6 \\ -3x_1 + 2x_2 \le 3 \\ 2x_1 + x_2 \le 4 \\ 2x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

课堂练习1

$$\max z = 2x_1 + 3x_2$$
s.t.
$$\begin{cases} 2x_1 + 2x_2 \le 14 \\ 4x_1 \le 12 \\ 3x_2 \le 15 \\ x_1, x_2 \ge 0 \end{cases}$$

课堂练习1(答案)

$$\max z = 2x_1 + 3x_2$$

s.t.
$$\begin{cases} 2x_1 + 2x_2 \le 14 \\ 4x_1 \le 12 \\ 3x_2 \le 15 \\ x_1, x_2 \ge 0 \end{cases}$$

启示

- 若线性规划问题的可行域存在,则可行域是一个凸集
- 若线性规划问题的最优解存在,则最优解一定是凸集的某个顶点
- 解题思路
 - □ 先找出凸集的任一顶点,计算在顶点处的目标函数值
 - □ 比较周围相邻顶点的目标函数值是否比这个值大,如果为否,则该顶点就 是最优解的点,否则转到比这个点的目标函数值更大的另一顶点
 - □ 重复上述过程,一直到找出使目标函数值达到最大的顶点为止

小结

- 图解法仅求解两个变量的线性规划问题
- 解的存在性
 - □ 唯一解
 - □ 无穷多解
 - □ 无界解
 - □ 无解/无可行解
- 课后作业: P43, 习题 1.1

Q&A

Thank you!

感谢您的聆听和反馈