TD 02

Configuration d'un automate

Définition: On appelle *configuration d'un automate* en fonctionnement les valeurs de ses différents composants, à savoir la position de la tête L/E, l'état de l'automate et éventuellement le contenu de la mémoire auxiliaire (lorsqu'elle existe).

Il existe deux configurations spéciales:

- 1. La configuration *initiale* est celle qui correspond à l'état initial q0 et où la tête de L/E est positionnée sur le premier symbole du mot à lire.
- 2. Une configuration *finale* est celle qui correspond à un des états finaux qf et où le mot a été entièrement lu.

Mot reconnu par un automate

On dit qu'un mot **est reconnu par un automate** si, à partir d'une configuration initiale, on arrive à une configuration finale à travers une *succession de configurations* intermédiaires.

Un mot w est reconnu par l'automate A s'il existe une configuration successive

Configuration-initiale (*w*)
$$\models$$
* configuration-final(*w*) $(q_0, w) \models$ * (q_f, ε)

La relation \vdash permet de formaliser la notion d'étape élémentaire de calcul d'un automate. Ainsi on écrira, pour a dans A et v dans A* : $(q, av) \vdash (\delta(q, a); v)$

Langage reconnu par un automate

On dit qu'un *langage est reconnu par un automate* X lorsque tous les mots de ce langage sont reconnus par l'automate on note L(X)

```
L(X)={w \in A^* / Configuration-initiale (w) | * configuration-final(w)}
L(X)={w \in A^* / (q_0, w) | * (q, \varepsilon), avec q \in QF }
```

Passage de l'automate vers l'expression régulière

Soit $X = (A,Q, q_0, Q_F, \delta)$ un automate à états fini quelconque.

On note par L_i le langage reconnu par l'automate si son état initial était q_i .

Par conséquent, trouver le langage reconnu par l'automate revient à trouver L_0 étant donné que la reconnaissance commence à partir de l'état initial \mathbf{q}_0 . L'automate permet d'établir un système d'équations aux langages de la manière suivante :

```
- si \delta(q_i, a) = q_i alors on écrit : L_i = \alpha L_j;

- si q_i \in Q_F, alors on écrit : L_i = \varepsilon

- si L_i = \alpha et L_i = \beta alors on écrit : L_i = \alpha | \beta;
```

Il suffit ensuite de résoudre le système précédant à des substitutions et en utilisant la règle suivante :

la solution de l'équaitited by Bolt PBF (E) ANGH Soft We to Figure for Linear comme to in linear and the order of the contraction of the contracti

Exemple :

On cherche à déterminer le langage de l'automate suivant.

On s'intéresse au langage L1 des mots qui passent par l'état 1, et à L2 celui des mots qui passent par 2.

On a les équations suivantes.

- $L_1 = \varepsilon + aL_1 + bL_2$
- $L_2 = aL_1 + bL_2$

Ici ε apparaît puisque l'état 1 est initial.

Par le lemme d'Arden sur la seconde équation, il vient L2 = b*(aL1).

En récrivant la première, on a

-
$$L_1 = \varepsilon + aL_1 + b(b^*aL_1)$$

= $\varepsilon + aL_1 + b^*aL_1$
= $b^*aL_1 + \varepsilon$

Par le lemme d'Arden sur cette équation, on obtient

 $L_1 = (b^*a)^* \quad \varepsilon = (b^*a)^*$

finalement que :

Automate fini déterministe AFD

- \forall *q* i ∈ Q, \forall *a* ∈ X, il existe au plus un état *q* j tel que δ(*q* i, *a*) = *q* j;

- L'automate ne comporte pas de $$\epsilon$$ -transitions.

Algorithme : Déterminiser un AEF sans les ε-transitions

Principe : considérer des ensembles d'états plutôt que des états (dans l'algorithme suivant, chaque ensemble d'états représente un état du futur automate).

- 1- Partir de l'état initial $E^{(0)} = \{q_0\}$ (c'est l'état initial du nouvel automate);
- 2- Construire $E^{(1)}$ l'ensemble des états obtenus à partir de $E^{(0)}$ par la transition a :

$$\mathsf{E}^{(1)} = \mathsf{U}_{\mathsf{q}' \in \mathsf{E}(0)} \; \delta(\mathsf{q}', \mathsf{a})$$

3- Recommencer l'étape 2 pour toutes les transitions possibles et pour chaque nouvel ensemble $E^{(i)}$:

$$E^{(i)} = \bigcup_{q' \in E(i-1)} \delta(q', a)$$

- 4- Tous les ensembles contenant au moins un état final du premier automate deviennent finaux :
- 5- Renuméroter les états en tant qu'états simples.

Exercice 1: Expressions vs automates

- I. Trouver, intuitivement, des automates qui acceptent les langages dénotés par les expressions régulières :
- 1) $(a + b + c)^*$ abc $(a + b + c)^*$;

3) - (aba) *+ (bab) * 3 - 1 avec
$$\epsilon$$
-transition (aba)* + (bab)* (L1=L((aba)*) \cup L2=L((bab)*) Donc l'automate de L1 \cup L2

$$3-2$$
 sans ε -transition

(aba) *+ (bab) *=[
$$\epsilon$$
+ (aba) +]+ [ϵ + (bab) +]= [ϵ +aba (aba) *]+ [ϵ + bab (bab) *] = ϵ + aba (aba) * + bab (bab) *

6) -
$$(a + ab)*(\epsilon + ab)$$

- II. En utilisant l'algorithme de Glushkov , construire des automates correspondants aux expressions régulières :
 - 1) (a b + b)* b a 1 2 3 4 5

	a	b
0	1	3,4
1	•	2
2	1	3,4
3	1	3,4
4	5	-
5	-	-

- Etat d'enté : 0
- Etats de sorties : 5

2) - a* b* a* b* 1 2 3 4

	a	b
0	1,3	2,4
1	1,3	2,4
2	3	2,4
3	3	4
4	-	4

- Etat d'enté : 0
- Etats de sorties : {0,1,2,3,4}

3) - (a b + a)* b a 1 2 3 4 5

	a	b
0	1,3	4
1	-	2
2	1,3	4
3	1,3	4
4	5	-
5	-	-

- Etat d'enté : 0
- Etats de sorties : {5}

 $q_1 \;\; q_2 \;\; q_3 \;\; q_4 \;\;\; q_5 \quad \;\; q_6 \; q_7$

	0	1
q0	q 6	q1
q_1	q_3	\mathbf{q}_2
q_2	q ₃	q_1
q3	q4	q5
q ₄	q ₄	q_5
q_5	q_6	q_1
q 6	-	q7
q ₇	-	q_7

Etat d'enté : q0

Etats de sorties : $\{q_6,q_7\}$

	a	b
0	1	2,4
1	1	2,4
2	3	-
3	1	2,4
4	-	5
5	7	6
6	7	6
7		-

Etat d'enté : 0

Etats de sorties : {7}

6) -
$$(a + b)*(abb + \epsilon)$$
.
1 2 345

	a	b
0	1,3	2
1	1,3	2
2	1,3	2
3	-	4
4	-	5
5	-	-

Etat d'enté : 0

Etats de sorties : {0,1,2,5}

Exercice 2: Automates vs expressions

Soit $A = \{a,b\}$. Pour chacun des automates suivants, dire s'il est déterministe et s'il est complet. Décrire ensuite le langage reconnu par cet automate.

Automate M1

Exp(M1) = (a+b)*abbb(a+b)*

Automate M2

Automate M3 Printed by BoltPDF (c) NCH Software. Free for non-commercial use only.

Exp (M 2) = a*ab*

 $Exp(M 3) = a+a(ab)^* = (a(\epsilon+(ab)^*)=a(ab)^*$

Automate M 4

Automate M 5

Exp(M 4) = (

Exp(M 5) = aa + aa(aaaa)* = aa(aaaa)*

Exercice 3:

Soit l'automate M suivant

1. Déterminiser l'automate M

	a	b
{q o} 0	-	0,1,2
{q 1} 0,1,2	0,1	0,1,2
{q 2} 0,1	0,1	0,1,2

Etat d'entré : $\{q_0\}$

Etats de sortie : $\{q_0, q_1, q_2\}$

2. Donner le système d'équations de l'automate M

- $L_0=bL_1+\varepsilon$
- L_1 = bL_1 + aL_2 + ϵ
- L_2 = aL_2 + ϵ

3. Donner le langage reconnu par cet automate

On résoudre le système d'équations de l'automate M

$$-L_0=bL_1+\varepsilon \rightarrow L_0=b(b^*(aa^*+\varepsilon))+\varepsilon=bb^*aa^*+bb^*+\varepsilon$$
 ----- (3)

- L₁=bL₁+aL₂+
$$\epsilon \rightarrow$$
 L₁=bL₁+aa*+ $\epsilon \rightarrow$ L₁=b*(aa*+ ϵ) ----- (2)

- $L_2=aL_2+\epsilon \rightarrow L_2=a^*\epsilon = a^*$ ---- (1)

Le langage reconnu par l'automate M est L 0= bb*aa*+bb*+ ε