ECEn 671: Mathematics of Signals and Systems Moon: Chapter 14.

Randal W. Beard

Brigham Young University

December 1, 2020

Table of Contents

Gradient Descent

Gradient Descent: Multivariable Case

Application: LMS Adaptive Filtering

Gauss-Newton Optimization

Levenberg-Marquardt Optimization

Section 1

Gradient Descent

The topic for the remainder of the course is minimization and maximization of functions.

In particular we will constrain our attention to continuously differentiable functions.

Suppose we have a function of the form

and we would like to find x^* , what should we do?

The basic idea of gradient descent is to pick any $x^{[0]}$ and then move "downward". To move down, we look at the slope of f.

If
$$\frac{\partial f}{\partial x}(x^{[k]})$$
 is positive, chose $x^{[k+1]} < x^{[k]}$.

If
$$\frac{\partial f}{\partial x}(x^{[k]})$$
 is negative, choose $x^{[k+1]}>x^{[k]}$

i.e.

$$x^{[k+1]} = x^{[k]} - \alpha \frac{\partial f}{\partial x}(x^{[k]}),$$

where α is the step size.

Before moving to the multivariable case, lets consider the potential problems with this approach.

Problem 1: Local Minima. If f looks like this:

then if the initial condition is at $x^{[0]}$, the iteration

$$x^{[k+1]} = x^{[k]} - \alpha \frac{\partial f}{\partial x} (x^{[k]})$$

will converge to x^+ , if α is small enough.

Other initial conditions will result in x^{++} while others will give x^* , the true minimum.

This is a fundamental problem with <u>any</u> method that relies on derivative information. There are no completely satisfactory solutions to the problem. However there are many ad-hoc fixes.

Example

- ► Execute from numerous "random" initial conditions and pick the lowest solution.
- Occassionally introduce random jumps in x.
- etc...

Problem 2: Step Size. The selection of α can have a major effect on the convergence of the sequence

$$x^{[k+1]} = x^{[k]} - \alpha \frac{\partial f}{\partial x}(x^{[k]})$$

For example,

Note f is very steep on sides, so $\alpha \frac{\partial f}{\partial x}(x^{[k]})$ could be large. This could cause $x^{[1]}$ to overshoot the minimum. This could cause (1) instability, (2) limit cycles, (3) extremely slow and oscillatory convergence

Lesson: Don't make α too large.

However if α is too small, then convergence will be very slow.

Most implementations adapt the size of α .

Section 2

Gradient Descent: Multivariable Case

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a multivariable function.

Example

If
$$x \in \mathbb{R}^n$$
 then $f(x) = x_1^2 + x_2^2 + \cdots + x_n^2$ maps $\mathbb{R}^n \to \mathbb{R}$.

The gradient of a multivariable function is

$$\frac{\partial f}{\partial x} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

and maps $\mathbb{R}^n \to \mathbb{R}^n$.

Example

If
$$f(x) = x_1^2 + \dots + x_n^2$$
 then $\frac{\partial f}{\partial x} = \begin{pmatrix} 2x_1 \\ 2x_2 \\ \vdots \\ 2x_n \end{pmatrix}$

The gradient points perpendicular to the level curves of f.

Theorem (Moon Theorem 14.5)

Let $f: \mathbb{R}^m \to \mathbb{R}$ be a differentiable function in some open set D. The gradient $\frac{\partial f}{\partial x}(x)$ points in the direction of the maximum increase of f at the point x.

Proof.

Expand $f(x + \lambda y)$ in a Taylor series as

$$f(x + \lambda y) = f(x) + \lambda \frac{\partial f^T}{\partial x}(x)y + \text{Higher Order Terms (HOT)}$$

where HOT. are $O(\lambda^2)$, i.e.,

$$\lim_{\lambda \to 0} \frac{H.O.T.}{\lambda} = 0.$$

We would like to find y that maximizes $f(x + \lambda y)$ as $\lambda \to 0$. By Cauchy-Schwartz, $\frac{\partial f^T}{\partial x}y$ is maximized when $y = \frac{\partial f}{\partial y}$.

For multivarible functions, the gradient descent formula is

$$x^{[k+1]} = x^{[k]} - \alpha_k \frac{\partial f}{\partial x} (x^{[k]})$$

Again, the selection of the step size is very important. If α_k is too small convergence will be slow.

If α_k is too large, algorithm could be unstable.

How to pick the right α ?

Locally around a min or max, every smooth function can be approximated by a quadratic (Taylor series).

We can gain insight about the selection of α by studying quadratic functions.

Let
$$f(x) = x^T R x - 2b^T x$$
 where $x \in \mathbb{R}^m, b \in \mathbb{R}^m, R = R^T > 0$.

Taking the gradient we get

$$\frac{\partial f}{\partial x} = 2Rx - 2b.$$

So the gradient descent algorithm is

$$x^{[k+1]} = x^{[k]} - 2\alpha (Rx^{[k]} - b).$$

Let x^* satisfy $Rx^* = b$ then

$$x^{[k+1]} - x^* = x^{[k]} - x^* - 2\alpha(Rx^{[k]} - Rx^*)$$

Define $y^{[k]} = x^{[k]} - x^*$ and $\mu = 2\alpha$, then

$$y^{[k+1]} = y^{[k]} - \mu R y^{[k]}$$
$$= (I - \mu R) y^{[k]}$$
$$\implies y^{[k]} = (I - \mu R)^k y^{[0]}.$$

Since *R* is symmetric positive definite

$$R = Q\Lambda Q^T$$

where Q-orthogonal. Therefore,

$$y^{[k]} = (QQ^{T} - \mu Q \Lambda Q^{T})^{k} y^{[0]}$$

= $Q(I - \mu \Lambda)^{k} Q^{T} y^{[0]}$

Letting $z = Q^T y$,

$$z^{[k]} = (I - \mu \Lambda)^k z^{[0]} \tag{1}$$

$$\Longrightarrow z_i^{[k]} = (1 - \mu \lambda_i)^k z_i^{[0]} \tag{2}$$

which converges if $|1 - \mu \lambda_i| < 1$, i = 1, ..., m.

Therefore, convergence happens when

$$-1 < 1 - \mu \lambda_i < 1$$

$$\iff -2 < -\mu \lambda_i < 0$$

$$\iff 0 < \mu \lambda_i < 2$$

$$\iff 0 < \mu < \frac{2}{\lambda_i}$$

Recall that $\lambda_i > 0$ when R is positive definite, so if

$$0<\alpha<\frac{1}{\lambda_{\mathsf{max}}(R)}$$

then steepest descent converges for quadratic functions.

Note that the convergence along each eigenaxis is determined by $\frac{1}{\lambda_i}$.

Therefore if R is ill-conditioned, i.e., $\frac{\lambda_{\max}}{\lambda_{\min}}$ is large, then convergence for gradient descent will be much slower along some axes than others.

Section 3

Application: LMS Adaptive Filtering

Recall the RLS adaptive filter algorithm.

The objective is to minimize the error

$$J(\mathbf{h}) = (d[t] - y[t])^2.$$

- ► The RLS minimizes the squared error of all past outputs, but LMS only minimizes the squared error of the current output.
- ▶ The RLS algorithm was derived using the projection theorem.
- ► LMS is derived using gradient descent.

Assume that the output of the adaptive filter is

$$y[t] = \sum_{\ell=0}^{m-1} h[\ell] f[t-\ell] = \mathbf{f}^{\top}[t] \mathbf{h}$$

where

$$\mathbf{f}[t] = egin{pmatrix} f[t] \\ f[t-1] \\ \vdots \\ f[t-m+1] \end{pmatrix} ext{ and } \mathbf{h} = egin{pmatrix} h[0] \\ h[1] \\ \vdots \\ h[m-1] \end{pmatrix}$$

Then

$$J(\mathbf{h}) = (d[t] - y[t])^{2}$$

$$= (d[t] - \mathbf{f}^{\top}[t]\mathbf{h})^{2}$$

$$= d^{2}[t] - d[t]\mathbf{f}^{\top}[t]\mathbf{h} - d[t]\mathbf{h}^{\top}f[t] + \mathbf{h}\mathbf{f}[t]\mathbf{f}^{\top}[t]\mathbf{h}$$

where

$$\frac{\partial J}{\partial \mathbf{h}} = 2\mathbf{f}[t]\mathbf{f}^{\top}[t]\mathbf{h} - 2d[t]\mathbf{f}[t]$$

So let

$$\mathbf{h}[t+1] = \mathbf{h}[t] - \alpha \frac{\partial J}{\partial \mathbf{h}}(\mathbf{h}[t])$$

gives

$$\mathbf{h}[t+1] = \mathbf{h}[t] - 2\alpha(\mathbf{f}[t]\mathbf{f}^{\top}[t]\mathbf{h}[t] - d[t]\mathbf{f}[t])$$
$$= \mathbf{h}[t] + \mu\mathbf{f}[t](d[t] - \mathbf{f}^{\top}[t]\mathbf{h}[t])$$

$$\mathbf{h}[t+1] = \mathbf{h}[t] + \mu \mathbf{f}[t]e[t]$$

This is known as the LMS adaptive filter.

Compare to RLS...

For discussion on convergence, consult Moon Chap 14...

Section 4

Gauss-Newton Optimization

Consider the least squares problem

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2^2$$

where $A \in \mathbb{R}^{m \times n}$ is tall. We know that the solution is

$$x^* = (A^\top A)^{-1} A^\top b.$$

Can we pose this as a gradient descent problem?

Define the residual as

$$\mathbf{r}(x) = \begin{pmatrix} r_1(x) \\ \vdots \\ r_m(x) \end{pmatrix} = Ax - b$$

and define the sum-of-squares error as

$$S(x) = \frac{1}{2} \mathbf{r}^{\top}(x) \mathbf{r}(x)$$

$$= \frac{1}{2} \sum_{j=1}^{m} r_j^2(x)$$

$$= \frac{1}{2} (Ax - b)^{\top} (Ax - b)$$

$$= \frac{1}{2} ||Ax - b||_2^2.$$

The least squares problem is to find x that minimizes S(x).

The gradient of S is given by

$$\frac{\partial S}{\partial x} = \frac{\partial \mathbf{r}}{\partial x}^{\top}(x)\mathbf{r}(x)$$
$$= A^{\top}(Ax - b) = A^{\top}Ax - A^{\top}b.$$

So the gradient descent algorithm gives

$$x^{[k+1]} = x^{[k]} - \alpha \left(A^{\top} A x^{[k]} - A^{\top} b \right)$$

In general, we might allow $\alpha>0$ to be a positive definite matrix $\mathscr{A}>0$:

$$x^{[k+1]} = x^{[k]} - \mathscr{A}\left(A^{\top}Ax^{[k]} - A^{\top}b\right).$$

Selecting

$$\mathscr{A} = (A^{\top}A)^{-1}$$

gives

$$x^{[k+1]} = x^{[k]} - (A^{\top}A)^{-1} \left(A^{\top}Ax^{[k]} - A^{\top}b \right)$$

= $x^{[k]} - (A^{\top}A)^{-1}(A^{\top}A)x^{[k]} + (A^{\top}A)^{-1}A^{\top}b$
= $(A^{\top}A)^{-1}A^{\top}b$,

which is the optimal solution.

Noting that $A = \frac{\partial \mathbf{r}}{\partial x}$, we have shown that the iteration

$$x^{[k+1]} = x^{[k]} - \left(\frac{\partial \mathbf{r}^{\top}}{\partial x}(x^{[k]})\frac{\partial \mathbf{r}}{\partial x}(x^{[k]})\right)^{-1} \frac{\partial \mathbf{r}^{\top}}{\partial x}(x^{[k]})\mathbf{r}(x^{[k]})$$

converges to the optimal in one step when $\mathbf{r}(x) = Ax - b$.

Nonlinear Least Squares

Let $r_j(x)$, $j=1,\ldots,m$ be a general set of residual function to be minimized. In other words, suppose we wish to solve

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} \mathbf{r}^\top(x) \mathbf{r}(x).$$

Let $\mathbf{J}(x) \stackrel{\triangle}{=} \frac{\partial \mathbf{r}}{\partial x}(x)$. Then the <u>Gauss-Newton</u> (GN) iteration algorithm is given by

$$x^{[k+1]} = x^{[k]} - \left(\mathbf{J}^{\top}(x^{[k]})\mathbf{J}(x^{[k]})\right)^{-1}\mathbf{J}^{\top}(x^{[k]})\mathbf{r}(x^{[k]})$$

We know that the GN method converges in one step for the linear least squares problem.

Section 5

Levenberg-Marquardt Optimization

Nonlinear Least Squares

The downside of GN is that the matrix $J^{\top}(x)J(x)$ may be ill-conditions at some states x.

For the general nonlinear least squares problem, we have

$$\frac{\partial \frac{1}{2} \mathbf{r}^{\top}(x) \mathbf{r}(x)}{\partial x} = \frac{\partial \mathbf{r}^{\top}}{\partial x} (x) \mathbf{r}(x) = \mathbf{J}^{\top}(x) \mathbf{r}(x).$$

Therefore we have

Gradient Descent
$$x^{[k+1]} = x^{[k]} - \alpha \mathbf{J}^{\top}(x^{[k]})\mathbf{r}(x^{[k]})$$

Gauss-Newton $x^{[k+1]} = x^{[k]} - \left(\mathbf{J}^{\top}(x^{[k]})\mathbf{J}(x^{[k]})\right)^{-1}\mathbf{J}^{\top}(x^{[k]})\mathbf{r}(x^{[k]}).$

Note that there is no inverse for Gradient Descent, but it may converge slowly, even for linear residuals.

Nonlinear Least Squares

The <u>Levenberg-Marquardt</u> (LM) iteration is a combination of gradient descent and Gauss-Newton:

$$x^{[k+1]} = x^{[k]} - \left(\lambda I + \mathbf{J}^{\top}(x^{[k]})\mathbf{J}(x^{[k]})\right)^{-1}\mathbf{J}^{\top}(x^{[k]})\mathbf{r}(x^{[k]}),$$

where $\lambda = 1/\alpha$.

Note that $\lambda I + \mathbf{J}^{\top} \mathbf{J}$ is guaranteed to be full rank and well conditioned for large λ .

Standard practice:

- lacktriangle For the first iteration make λ large (e.g., $pprox 10^4$)
- ▶ If squared error decreases, decrease λ for next iteration (e.g., by half).
- ▶ If squared error increases, increase λ for next iteration (e.g., by 2x).

Weighted Nonlinear Least Squares

If $W=W^{\top}>0$ is a weighting matrix, then

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} \mathbf{r}^\top(x) W \mathbf{r}(x).$$

results in

$$\begin{aligned} &(\mathsf{GD}) \quad x^{[k+1]} = x^{[k]} - \lambda^{-1} \mathbf{J}^\top W \mathbf{r}\big|_{x^{[k]}} \\ &(\mathsf{GN}) \quad x^{[k+1]} = x^{[k]} - \left(\mathbf{J}^\top W \mathbf{J}\right)^{-1} \mathbf{J}^\top W \mathbf{r}\big|_{x^{[k]}} \\ &(\mathsf{LM}) \quad x^{[k+1]} = x^{[k]} - \left(\lambda I + \mathbf{J}^\top W \mathbf{J}\right)^{-1} \mathbf{J}^\top W \mathbf{r}\big|_{x^{[k]}}. \end{aligned}$$