

AnalogNAS https://github.com/IBM/analog-nas

Technologies

IBM AIHWKit

AnalogNAS

- Automatically design resilient deep learning architectures for Analog In-memory Computing.
- In-memory computing is a promising technology for AI accelerators. It significantly allows for reduced energy consumption.
- Fully written in Python on top of AIHWkit.
- IBM-managed open-source project.

GitHub: https://github.com/IBM/analog-nas

AIHWKit Github: https://github.com/IBM/aihwkit

Contacts: Hadjer Benmezian, Kaoutar El Maghraoui

(<u>Hadjer.benmeziane1@ibm.com</u>, kelmaghr@us.ibm.com)

© 2023 IBM Corporation

Automation is key for Deep Learning 2.0

Novel Applications

Extend the search space definition with other neural networks for Object detection, image segmentation, or language modelling.

Hyperparameter Optimization

Allow developers to run
Bayesian optimization for
hyperparameter
optimization, including
hardware parameters.

```
rpu_config = InferenceRPUConfig()
rpu config.modifier.std dev = 0.06
rpu_config.modifier.type = WeightModifierType.ADD_NORMAL
rpu config.mapping.digital bias = True
rpu_config.mapping.weight_scaling_omega = 1.0
rpu_config.mapping.weight_scaling_columnwise = False
rpu config.mapping.out scaling columnwise = False
rpu_config.remap.type = WeightRemapType.LAYERWISE_SYMMETRIC
rpu_config.clip.type = WeightClipType.LAYER_GAUSSIAN
rpu_config.clip.sigma = 2.0
rpu_config.forward = IOParameters()
rpu_config.forward.is_perfect = False
rpu config.forward.out noise = 0.0
rpu_config.forward.inp_bound = 1.0
rpu_config.forward.inp_res = 1 / (2**8 - 2)
rpu config.forward.out bound = 12
rpu_config.forward.out_res = 1 / (2**8 - 2)
rpu_config.forward.bound_management = BoundManagementType.NONE
rpu config.forward.noise management = NoiseManagementType.NONE
rpu_config.pre_post.input_range.enable = True
rpu config.pre post.input range.decay = 0.01
rpu_config.pre_post.input_range.init_from_data = 50
rpu_config.pre_post.input_range.init_std_alpha = 3.0
rpu config.pre post.input range.input min percentage = 0.995
rpu_config.pre_post.input_range.manage_output_clipping = False
rpu_config.noise_model = PCMLikeNoiseModel(g_max=25.0)
rpu config.drift compensation = GlobalDriftCompensation()
```

Reinforcement learningbased search strategy

Contribute to core components of AnalogNAS by implementing a reinforcement learning agent.

AnalogNAS IBM Research

Get started!