Contents

1	1 Groups	
	1 Groups	
	1.2 Groups	
	1.3 Symmetric Groups	
	1.4 Cayley Tables	
2	2 Subgroups	
3	2.1 Subgroups	
	2.2 Alternating Groups	
	2.3 Orders of Elements	
	2.4 Cyclic Groups	
	2.5 Non-cyclic Groups	
	3 Normal Subgroups	
	3.1 Homomorphisms and Isomorphisms	
	3.2 Cosets and Lagrange's Theorem	21

Contents 1

1 Groups

1.1 Notation

- 1. $\mathbb{N} = \{1, 2, ...\}$
- 2. $\mathbb{Z} = \{..., -1, 0, 1, ...\}$
- 3. $\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{N} \right\}$
- 4. \mathbb{R} = real numbers
- 5. $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i^2 = -1\}$

For $n\in\mathbb{N}$, $\mathbb{Z}_n=$ integers modulo $n=\{[0],...,[n-1]\}$ where $[r]=\{z\in\mathbb{Z}:Z\equiv r \ \mathrm{mod}\ n\}$ We note that the set $S=\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C},\mathbb{Z}_n$ has 2 operations $+,\cdot$.

For $n \in \mathbb{N}$, an $n \times n$ matrix over \mathbb{R} (or \mathbb{Q} or \mathbb{C}) is an $n \times n$ array

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

with $a_{ij} \in \mathbb{R}$.

Note we can also do $+, \cdot$. For $A, B \in M_n(\mathbb{R})$

$$A + B := \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix} \quad A \cdot B := \begin{bmatrix} \sum_{k=1}^{n} a_{ik} b_{kj} \end{bmatrix}$$

1.2 Groups

Definition 1.2.1

Let G be a set and $*: G \times G \to G$. We say G is a group if the following are satisfied:

- 1. Associativity: if $a, b, c \in G$, then a * (b * c) = (a * b) * c
- 2. Identity: there is $e \in G$ such that a * e = e * a = a for all $a \in G$
- 3. Inverses: for all $a \in G$, there is $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$

Definition 1.2.2

A group is called *abelian* if a * b = b * a for all $a, b \in G$

Exercise 1.2.1

Prove in the definition of a group, 1-sided identity and inverses are enough to have 2-sided identity and inverses

Proposition 1.2.1

previous exercise

Suppose G is a set, $*: G \times G \to G$ is associative. Suppose there is $e \in G$ such that e * a = a for all $a \in G$. Further suppose that for every $a \in G$, there is $a^{-1} \in G$ such that $a^{-1} * a = e$. Then for all $a \in G$,

- 1. a * e = a
- 2. $a * a^{-1} = e$

Proof of 1: Let $a \in G$, then

$$a^{-1} * a * e = e * e = e = a^{-1} * a$$

Multiplying on the left by a^{-1} gives

$$a^{-1^{-1}} * a^{-1} * a * e = a^{-1^{-1}} * a^{-1} * a$$

$$\implies e * a * e = e * a$$

$$\implies a * e = a$$

Proof of 2: Let $a \in G$, then

$$a^{-1}*a*a^{-1} = e*a^{-1} = a^{-1}$$

Again multiplying on the left by a^{-1} gives

$$a*a^{-1} = e$$

Proposition 1.2.2

Let G be a group, let $a \in G$. Then

- 1. The group identity is unique
- 2. The inverse of a is unique

Proof of 1: Suppose e_1, e_2 are both identities. Then

$$e_1 = e_1 \ast e_2 = e_2$$

Proof of 2: Suppose b_1, b_2 are inverses of a. Then

$$b_1 = b_1 * e = b_1 * (a * b_2) = (b_1 * a) * b_2 = e * b_2 = b_2$$

Example 1.2.1

 $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+)$ are all abelian groups

Example 1.2.2

 $(\mathbb{Z},\cdot),(\mathbb{Q},\cdot),(\mathbb{R},\cdot),(\mathbb{C},\cdot)$ are not groups as 0 has no inverse

Example 1.2.3

but $(\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{R} \setminus \{0\}, \cdot), (\mathbb{C} \setminus \{0\}, \cdot)$ are abelian groups

Definition 1.2.3

For a set (S, \cdot) let $S^* \subseteq S$ denote the set of all elements with inverses.

Exercise 1.2.2

what is \mathbb{Z}_n^* ?

Example 1.2.4

 $(M_n(\mathbb{R}),+)$ is an abelian group.

Example 1.2.5

 $\begin{array}{l} \text{Consider } \left(M_{n(\mathbb{R})},\cdot\right) \text{ The identity matrix is } \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \in M_n(\mathbb{R}) \\ \text{However, since not all } \\ M \in M_n(\mathbb{R}) \text{ have multiplicative inverses, } \left(M_n(\mathbb{R}),\cdot\right) \text{ is not a group.} \end{array}$

Notation

$$\operatorname{GL}_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) : \det(M) \neq 0 \}$$

Note

If $A,B\in \mathrm{GL}_n(\mathbb{R})$, then $\det(AB)=\det(A)\det(B)\neq 0$ Thus $AB\in \mathrm{GL}_n(\mathbb{R})$. The associativity of $\mathrm{GL}_n(\mathbb{R})$ inherits from $M_n(\mathbb{R})$. Also the identity matrix satisfies $\det(I)=1\neq 0$ and thus $I\in \mathrm{GL}_n(\mathbb{R})$. Finally, for $M\in \mathrm{GL}_n(\mathbb{R})$, there exists $M^{-1}\in M_n(\mathbb{R})$ such that $MM^{-1}=I=M^{-1}M$ since $\det(M^{-1})=\frac{1}{\det(M)}\neq 0$, we have $M^{-1}\in \mathrm{GL}_n(\mathbb{R})$. Thus $(\mathrm{GL}_n(\mathbb{R}),\cdot)$ is a group, called the general linear group of degree n over \mathbb{R}

Note

if $n \geq 2$, then $\operatorname{GL}_n(\mathbb{R})$ is not abelian.

Exercise 1.2.3

What is $(GL_1(\mathbb{R}), \cdot)$?

PMATH 347 Fall 2025 JAKE EDMONSTONE

Example 1.2.6

Let G, H be groups. The *direct product* is the set $G \times H$ with the component wise operation defined by

$$(g_1,h_1)*(g_2,h_2)=(g_1*_Gg_2,h_1*_Hh_2)$$

One can check that $G \times H$ is a group with identity (e_G, e_H) and the inverse of (g, h) is (g^{-1}, h^{-1})

Note

One can show by induction that if $G_1, ..., G_n$ are groups, then $G_1 \times \cdots \times G_n$ is also a group.

Notation

Given a group G and $g_1, g_2 \in G$, we often denote $g_1 * g_2$ by g_1g_2 and its identity by 1. Also the unique inverse of an element $g \in G$ is denoted by g^{-1} . Also for $n \in \mathbb{N}$, we define $g^n = g * g * \cdots * g$ (n-times) and $g^{-n} = (g^{-1})^n$. Finally, we denote $g^0 = 1$.

Proposition 1.2.3

Let G be a group and $g, h \in G$ we have

1.
$$q^{-1-1} = q$$

2.
$$(qh)^{-1} = h^{-1}q^{-1}$$

1.
$$g^{-1-1} = g$$

2. $(gh)^{-1} = h^{-1}g^{-1}$
3. $g^ng^m = g^{n+m}$ for all $n, m \in \mathbb{Z}$

4.
$$(g^n)^m = g^{nm}$$
 for all $n, m \in \mathbb{Z}$

Proof of 1: Since

$$g^{-1}g = 1 = gg^{-1}$$

so $g^{-1^{-1}} = g$

Proof of 2:

$$(gh)\big(h^{-1}g^{-1}\big)=g\big(hh^{-1}\big)g^{-1}=g1g^{-1}=1$$

Similarly,

$$\left(h^{-1}g^{-1}\right)(gh)=1$$

Thus $(gh)^{-1} = h^{-1}g^{-1}$

Proof of 3: We proceed by considering cases:

1. if n = 0 then

$$q^n q^m = q^0 q^m = 1q^m = q^m = q^{0+m} = q^{n+m}$$

2. if n > 0, we will proceed by induction on n. Case 1 establishes the base case. Let $m \in \mathbb{Z}$, $n \in \mathbb{Z}_{>0}$. Suppose that $g^n g^m = g^{n+m}$ Then

$$g^{n+1}g^m = gg^ng^m = gg^{n+m} = g^{n+m+1}$$

3. if n < 0, then n = -k for some $k \in \mathbb{N}$. We have

$$g^k g^n g^m = g^{k+n} g^m = g^0 g^m = g^m$$

also

$$g^k g^{n+m} = g^{k+m+n} = g^m$$

Thus

$$g^k g^n g^m = g^k g^{n+m}$$

So

$$g^n g^m = g^{n+m}$$

as desired.

Proof of 4: We proceed by considering cases:

- 1. if m = 0, then $(g^n)^m = (g^n)^0 = 1 = g^0 = g^{n0} = g^{nm}$
- 2. if m > 0, then

$$(g^n)^m = \underbrace{g^n g^n \cdots g^n}_{m \text{ times}} = g^{nm}$$

3. if m < 0, then m = -k for some $k \in \mathbb{N}$. We will induct on k. For k = 1 we see that $(g^n)^{-1} = g^{-n}$ since

$$g^n g^{-n} = g^{n-n} = g^0 = 1$$

Suppose $(g^n)^{-\ell} = g^{-n\ell}$ for all $1 \le \ell \le k$ Then

$$\left(g^{n}\right)^{-k-1}=\left(g^{n}\right)^{-k}\!\left(g^{n}\right)^{-1}=g^{-nk}g^{-n}=g^{-nk-n}=g^{-n(k+1)}$$

Exercise 1.2.4

prove 3,4

Warning

In general, it is not the case that if $g,h\in G$ then $(gh)^n=g^nh^n$, this is not true unless G is abelian

Proposition 1.2.4

Let G be a group and $g, h, f \in G$ Then

1. They satisfy the left and right cancellation. More precisely,

a. if
$$gh = gf$$
 then $h = f$

b. if
$$hg = fg$$
 then $h = f$

2. Given $a, b \in G$ the equations ax = b and ya = b have unique solutions for $x, y \in G$

Proof of 1-a: By left-multiplying by g^{-1} , we have

$$gh = gf \iff g^{-1}gh = g^{-1}gf \iff h = f$$

Proof of 1-b: similar to 1-a **Proof of 2:** Let $x = a^{-1}b$ then

$$ax = aa^{-1}b = b$$

If u is another solution, then au=b=ax. By 1-a, u=x. Similarly, $y=ba^{-1}$ is the unique solution of ya=b

1.3 Symmetric Groups

Definition 1.3.1

Given a non-empty set L, a permutation of L is a bijection from L to L. The set of all permutations of L is denoted by S_L

Example 1.3.1

Consider the set $L = \{1, 2, 3\}$ which has the following different permutations

$$\binom{123}{123}, \binom{123}{132}, \binom{123}{213}, \binom{123}{231}, \binom{123}{312}, \binom{123}{321}$$

Where $\binom{123}{123}$ denotes the bijection

$$\sigma:\{1,2,3\}\longrightarrow\{1,2,3\}$$

$$\sigma(1)=1, \sigma(2)=2, \sigma(3)=3$$

Notation

For $n\in\mathbb{N}$ we denote by $S_n=S_{\{1,2,\dots,n\}}$ the set of all permutations of $\{1,2,\dots,n\}$. We have seen that the order of $S_3=3!=6$. To consider the general S_n , we note that for a permutation $\sigma\in S_n$, there are n choices for $\sigma(1),\,n-1$ choices for $\sigma(2),\dots$, 1 choice for $\sigma(n)$ Thus

Proposition 1.3.1

$$|S_n| = n!$$

Symmetric Groups 7

Note

For Möbius quizzes, use "9 dots" for permutations.

Remark

Given $\sigma, \tau \in S_n$ we can compose them to get a new element $\sigma\tau$, where $\sigma\tau = \{1,2,...,n\} \to \{1,2,...,n\}$ given by $x \mapsto \sigma(\tau(x))$ Since both σ,τ are bijections, $\sigma\tau \in S_n$

Example 1.3.2

Compute $\sigma \tau$ and $\tau \sigma$ if

$$\sigma = \begin{pmatrix} 1234 \\ 3412 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1234 \\ 2431 \end{pmatrix}$$

Then $\sigma \tau(1)=\sigma(2)=4,...$ Then $\sigma \tau=\binom{1234}{4213},$ and $\tau \sigma=\binom{1234}{3124}$ We note that $\sigma \tau \neq \tau \sigma$

Note

For any $\sigma, \tau \in S_n$ we have that $\tau\sigma, \sigma\tau \in S_n$ but $\sigma\tau \neq \tau\sigma$ in general on the other hand, for any σ, τ, μ we have $\sigma(\tau\mu) = (\sigma\tau)\mu$. Also note the *identity permutation* $\varepsilon \in S_n$ is defined as

$$\varepsilon = \begin{pmatrix} 12 \cdots n \\ 12 \cdots n \end{pmatrix}$$

Thus for any $\sigma \in S_n$, we have $\sigma \varepsilon = \varepsilon \sigma = \sigma$

Finally, for $\sigma \in S_n$, since it is a bijection, there is a unique bijection $\sigma^{-1} \in S_n$ called the *inverse permutation* of σ such that for all $x, y \in \{1, 2, ..., n\}$

$$\sigma^{-1}(x) = y \Longleftrightarrow \sigma(y) = x$$

It follows that

$$\sigma(\sigma^{-1}(x)) = \sigma(y) = x$$

and

$$\sigma^{-1}(\sigma(y)) = y$$

i.e we have

$$\sigma\sigma^{-1}=\sigma^{-1}\sigma=\varepsilon$$

Symmetric Groups 8

Example 1.3.3

$$\sigma = \binom{12345}{45123}$$

Then

$$\sigma^{-1} = \binom{12345}{34512}$$

From the above we have

Proposition 1.3.2

 (S_n, \circ) is a group, called the symmetric group of degree n

Exercise 1.3.1

Write down all rotations and reflections that fix an equilateral triangle. Then check why it is the "same" as S_3

Example 1.3.4

Consider

$$\sigma = \begin{pmatrix} 123456789(10) \\ 317694258(10) \end{pmatrix} \in S_{10}$$

We note that $1 \to 3 \to 7 \to 2 \to 1$ and $4 \to 6 \to 4$ and $5 \to 9 \to 8$ and $10 \to 10$ Thus σ can be *decomposed* into one 4-cycle (1372), one 2-cycle (46), and one 3-cycle (598) and one 1-cycle (10) (we usually do not write 1-cycles) Note that these cycles are *pairwise disjoint* and we have

$$\sigma = (1372)(46)(598)$$

We can also write $\sigma = (46)(598)(1372)$, or $\sigma = (64)(985)(7213)$

Theorem 1.3.3

Cycle Decomposition

If Given $\sigma \in S_n$ with $\sigma \neq \varepsilon$, then σ is a product of (one or more) disjoint cycles of length at least 2. This factorization is unique up to the order of the factors.

Proof: See bonus 1.

Convention

Every permutation of S_n can be regarded as a permutation in S_{n+1} by fixing the number n+1, thus

$$S_1 \subseteq S_2 \subseteq \dots \subseteq S_n \subseteq S_{n+1}$$

Symmetric Groups 9

1.4 Cayley Tables

Definition 1.4.1

For a finite group G, defining its operation by means of a table is sometimes convenient. Given $x, y \in G$, the product xy is the entry of the table in the row corresponding to x and the column corresponding to y, such a table is a *Cayley table*.

Remark

By cancellation, the entries in each row or column of a Cayley table are all distinct

Example 1.4.1

Consider $(\mathbb{Z}_2, +)$ its Cayley table is

$$\begin{array}{c|cccc} \mathbb{Z}_2 & [0] & [1] \\ \hline [0] & [0] & [1] \\ \hline [1] & [1] & [0] \\ \end{array}$$

Example 1.4.2

Consider the group $\mathbb{Z}^* = \{1, -1\}$. Its Cayley table is

$$\begin{array}{c|cccc} \mathbb{Z}^* & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{array}$$

Note

If we replace 1 by [0] and -1 by [1] the Cayley tables of \mathbb{Z}^* and \mathbb{Z}_2 become the same. In this case, we say \mathbb{Z}^* and \mathbb{Z}_2 are *isomorphic* denoted by

$$\mathbb{Z}^* \cong \mathbb{Z}_2$$

Cayley Tables 10

Example 1.4.3

For $n \in \mathbb{N}$, the *cyclic group of order* n is defined by

$$C_n = \left\{1, a, a^2, ..., a^{n-1}\right\}$$
 with $a^n = 1$ and $1, a, ..., a^{n-1}$ are distinct

The Cayley table of C_n is as follows

C_n	1	a	a^2		a^{n-2}	a^{n-1}
1	1	a	a^2	•••	a^{n-2}	a^{n-1}
\overline{a}	a	a^2	a^3		a^{n-1}	1
a^2	a^2	a^3	a^4		1	a
:	:	:	:	٠.	:	:
	a^{n-2}				a^{n-4}	
a^{n-1}	a^{n-1}	1	a		a^{n-3}	a^{n-2}

Proposition 1.4.1

Let G be a group. Up to isomorphism, we have

- 1. If |G| = 1, then $G \cong \{1\}$
- 2. If |G| = 2, then $G \cong C_2$
- 3. If |G| = 3, then $G \cong C_3$
- 4. If |G|=4, then $G\cong C_4$ or $G\cong K_4\cong C_2\times C_2$

Proof of 1: obviously

Proof of 2: If |G|=2 then $G=\{1,g\}$ with $g\neq 1$ Then $g^2=g$ or $g^2=1$. We note that if $g^2=g$, then g=1 contradiction.thus $g^2=1$. Thus the Cayley table is as follows

$$\begin{array}{c|ccccc}
G & 1 & g \\
\hline
1 & 1 & g \\
\hline
g & g & 1
\end{array}$$

which is the same as C_2

Proof of 3: If |G|=3, then $G=\{1,g,h\}$ with $g\neq 1, h\neq 1, g\neq h$ By cancellation, we have $gh\neq g, gh\neq h$, thus gh=1. Similarly, we have hg=1. Also, on the row for g, we have g1=g, gh=1. Since all entries in this row are distinct, we have $g^2=h$. Similarly, we have $h^2=g$. Thus we obtain the following Cayley table

G	1	g	h
1	1	g	h
g	g	h	1
\overline{h}	h	1	g

Which is the same as C_3 .

Proof of 4: See assignment 1

Cayley Tables 11

Exercise 1.4.1

Consider the symmetry group of a non-square rectangle. How is it related to K_4 ?

2 Subgroups

2.1 Subgroups

Definition 2.1.1

Let G be a group and $H \subseteq G$. If H itself is a group, then we say H is a *subgroup* of G.

Note

We note that since G is a group, for $h_1, h_2, h_3 \in H \subseteq G$, we have

$$h_1(h_2h_3) = (h_1h_2)h_3$$

Thus

Proposition 2.1.1

Subgroup Test

Let G be a group, $H \subseteq G$. Then H is a subgroup of G if

- 1. If $h_1, h_2 \in H$, then $h_1 h_2 \in H$
- 2. $1_H \in H$
- 3. If $h \in H$, then $h^{-1} \in H$

Exercise 2.1.1

Prove that $1_H = 1_G$

Example 2.1.1

Given a group G, then $\{1\}$, G are subgroups of G

Example 2.1.2

We have a chain of groups

$$(\mathbb{Z},+)\subseteq (\mathbb{Q},+)\subseteq (\mathbb{R},+)\subseteq (\mathbb{C},+)$$

Subgroups 12

Example 2.1.3

Define

$$\operatorname{SL}_n(\mathbb{R}) = (\operatorname{SL}_n(\mathbb{R}), \cdot) \coloneqq \{M \in M_n(\mathbb{R}), \det(M) = 1\} \subseteq \operatorname{GL}_n(\mathbb{R})$$

Note that the identity matrix $I \in \mathrm{SL}_n(\mathbb{R})$. Let $A, B \in \mathrm{SL}_n(\mathbb{R})$, then

$$\det(AB) = \det(A)\det(B) = 1 \cdot 1 = 1$$

and

$$\det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{1} = 1$$

i.e. $AB, A^{-1} \in \mathrm{SL}_n(\mathbb{R})$. By the subgroup test (Proposition 2.1.1), $\mathrm{SL}_n(\mathbb{R})$ is a subgroup of $\mathrm{GL}_n(\mathbb{R})$. We call $\mathrm{SL}_n(\mathbb{R})$ the special linear group of order n over \mathbb{R}

Definition 2.1.2

Given a group G, we define the *center of* G to be

$$Z(G) \coloneqq \{z \in G \,|\, zg = gz \,\,\forall g \in G\}$$

Remark

Z(G) = G iff G is abelian.

Proposition 2.1.2

Z(G) is an abelian subgroup of G.

Proof: Note that $1 \in Z(G)$. Let $y, z \in Z(G)$ Then for all $g \in G$, we have

$$(yz)g = y(zg) = y(gz) = (yg)z = (gy)z = g(yz)$$

Thus $yz \in Z(G)$. Also, for $z \in Z(G)$, $g \in G$ we have

$$zg = gz \iff z^{-1}(zg)z^{-1} = z^{-1}(gz)z^{-1}$$
$$\iff gz^{-1} = z^{-1}g$$

Thus $z^{-1} \in Z(G)$. By the subgroup test (Proposition 2.1.1), Z(G) is a subgroup of G. Also, by the definition of Z(G), we see that it is abelian.

Proposition 2.1.3

Let H, K be subgroups of a group G. Then $H \cap G$ is also a subgroup.

Proof: Exercise

Subgroups 13

Proposition 2.1.4

Finite Subgroup Test

If $H \neq \emptyset$ is a finite subset of a group G, then H is a subgroup of G iff H is closed under its operation.

Proof:

 (\Longrightarrow) obvious

(\Leftarrow) For $H \neq \emptyset$, let $h \in H$. Since H is closed under its operation, we have $h, h^2, h^3, ... \in H$. Since H is finite, these elements are not all distinct. Thus $h^n = h^{n+m}$ for some $n, m \in \mathbb{N}$. By cancellation, $h^m = 1$ and thus $1 \in H$. Also, $1 = h^{m-1}h$ implies that $h^{-1} = h^{m-1}$ and thus $h^{-1} \in H$. By the subgroup test, H is a subgroup of G.

2.2 Alternating Groups

Definition 2.2.1

A transposition $\sigma \in S_n$ is a cycle of length 2. i.e. $\sigma = (ab)$ with $a, b \in \{1, 2, ..., n\}$ and $a \neq b$.

Example 2.2.1

Consider $(1245) \in S_5$. Also the composition (12)(24)(45) can be computed as

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 5 & 4 \\
1 & 4 & 3 & 5 & 2 \\
2 & 4 & 3 & 5 & 1
\end{pmatrix}$$

Thus we have (1245) = (12)(24)(45) Also we can show that

$$(1245) = (23)(12)(25)(13)(24)$$

We see from this example that the factorization into transpositions are NOT unique. However, one can prove (see Bonus 2)

Theorem 2.2.1 Parity Theorem

If a permutation σ has two factorizations

$$\sigma = \gamma_1 \gamma_2 \cdots \gamma_r = \mu_1 \mu_2 \cdots \mu_s$$

Where each γ_i and μ_i is a transposition, then $r \equiv s \pmod{2}$

Definition 2.2.2

A permutation σ is *even* (or *odd*) if it can be written as a product of an even (or odd) number of transpositions. By the previous theorem, a permutation is either even or odd, but not both.

Alternating Groups 14

PMATH 347 Fall 2025 JAKE EDMONSTONE

Theorem 2.2.2

For $n \geq 2$, let A_n denote the set of all even permutations in S_n

- 1. $\varepsilon\in A_n$ 2. If $\sigma,\tau\in A_n$, then $\sigma\tau\in A_n$ and $\sigma^{-1}\in A_n$ 3. $|A_n|=\frac{1}{2}n!$

From (1) and (2), we see (A_n) is a subgroup of S_n called the alternating group of degree n.

Proof of 1: We can write $\varepsilon = (12)(12)$. Thus ε is even.

Proof of 2: if $\sigma, \tau \in A_n$ we can write $\sigma = \sigma_1 \cdots \sigma_r$ and $\tau = \tau_1 \cdots \tau_s$ where σ_i, τ_j are transpositions and r, s are even integers. Then

$$\sigma \tau = \sigma_1 \cdots \sigma_r \tau_1 \cdots \tau_s$$

is a product of (r+s) transpositions and thus $\sigma \tau \in A_n$. Also, we note that σ_i is a transposition, we have $\sigma_i^2 = \varepsilon$ and thus $\sigma_i^{-1} = \sigma_i$. It follows that

$$\sigma^{-1} = \left(\sigma_1 \cdots \sigma_r\right)^{-1} = \sigma_r^{-1} \cdots \sigma_1^{-1} = \sigma_r \cdots \sigma_1$$

which is an even permutation.

Proof of 3: Let O_n denote the set of odd permutations in S_n . Thus $S_n = A_n \cup O_n$ and the parity theorem implies that $A_n \cap O_n = \emptyset$. Since $|S_n| = n!$, to prove $|A_n| = \frac{1}{2}n!$, it suffices to show that $|A_n|=|O_n|$. Let $\gamma=(12)$ and let $f:A_n\to O_n$ be defined by $f(\sigma)=\gamma\sigma$. Since σ is even, we have $\gamma\sigma$ is odd. Thus the map is well-defined. Also, if we have $\gamma \sigma_1 = \gamma \sigma_2$, then by cancellation, we get $\sigma_1 = \sigma_2$, thus f is injective. Finally, if $\tau \in O_n$, then $\sigma = \gamma \tau \in A_n$ and $f(\sigma) = \gamma \sigma = \gamma(\gamma \tau) = \gamma^2 \tau = \tau$. Thus f is surjective. It follows that f is a bijection, thus $|A_n| = |O_n|$. It follows that $|A_n| = \frac{1}{2}n! = |O_n|$

2.3 Orders of Elements

Notation

If G is a group and $g \in G$, we denote

$$\langle g \rangle = \left\{ g^k \,\middle|\, k \in \mathbb{Z} \right\} = \left\{ ..., g^{-1}, g^0 = 1, g, g^2, ... \right\}$$

Note that $1 = g^0 \in \langle g \rangle$. Also, if $x = g^m, y = g^n \in \langle g \rangle$ With $m, n \in \mathbb{Z}$, then $xy = g^n g^m = g^{n+m} \in \langle g \rangle$ and $x^{-1} = g^{-m} \in \langle g \rangle$. By the subgroup test, we have

Proposition 2.3.1

If *G* is a group and $g \in G$, then $\langle g \rangle$ is a subgroup of *G*.

Definition 2.3.1

Let G be a group with $g \in G$. We call $\langle g \rangle$ the cyclic subgroup of G generated by g. If $G = \langle g \rangle$ for some $g \in G$, then we say G is cyclic and g a generator of G.

Orders of Elements 15 **PMATH 347 Fall 2025** JAKE EDMONSTONE

Example 2.3.1

Consider $(\mathbb{Z}, +)$ Note that for all $k \in \mathbb{Z}$, we can write $k = k \cdot 1$. Thus we can see $(\mathbb{Z}, +) = \langle 1 \rangle$. Similarly, $(\mathbb{Z}, +) = \langle -1 \rangle$. We observe, for any integer $n \in \mathbb{Z}$ with $n \neq \pm 1$ there exist no $k \in \mathbb{Z}$ such that $k \cdot n = 1$. Thus ± 1 are the only generators of $(\mathbb{Z}, +)$.

Remark

Let G be a group and $g \in G$. Suppose there is $k \in \mathbb{Z}$ $k \neq 0$ such that $g^k = 1$ then $g^{-k} = (g^k)^{-1} = 1$. Thus we can assume $k \ge 1$. Then by the well-ordering principle, there exists the smallest positive integer n such that $g^n = 1$

Definition 2.3.2

Let G be a group and $g \in G$. If n is the smallest positive integer such that $g^n = 1$, then we say the order of g is n, denoted o(g) = n. If no such n exists, we say g has infinite order and write $o(g) = \infty$

Proposition 2.3.2

Let G be a group and $g \in G$ with $o(g) = n \in \mathbb{N}$. For $k \in \mathbb{Z}$ we have

- 2. $g^k=g^m$ iff $k\equiv m\pmod n$ 3. $\langle g\rangle=\{1,g,g^2,...,g^{n-1}\}$ where $1,g,...,g^{n-1}$ are all distinct. In particular, we have

Proof of 1:

 (\Leftarrow) if $n \mid k$, then k = nq for some $q \in \mathbb{Z}$. Thus

$$g^k = g^{nq} = (g^n)^q = 1^q = 1$$

 (\Longrightarrow) By the division algorithm, we can write k = nq + r with $q, r \in \mathbb{Z}$ and $0 \le r < n$. Since $g^k = 1$ and $q^n = 1$, we have

$$g^r = g^{k-nq} = g^k(g^n)^{-q} = 1 \cdot 1^{-q} = 1$$

Since $0 \le r < n$ and o(g) = n, we have r = 0 and hence $n \mid k$.

Proof of 2: Note that $q^k = q^m$ iff $q^{km} = 1$. By (1), we have $n \mid (km)$ i.e. $k \equiv m \pmod{n}$

Proof of 3: It follows from (2) that $1, g, ..., g^{n-1}$ are all distinct. Clearly, we have $\{1, g, ..., g^{n-1}\} \subseteq \langle g \rangle$. To prove the other inclusion, let $g^k \in \langle g \rangle$ for some $k \in \mathbb{Z}$. Write k = nq + r with $n, r \in \mathbb{Z}$ and $0 \le r < n$. Then

$$g^k = g^{nq+r} = g^{nq}g^r = (g^n)^q g^r = 1^q g^r = g^r \in \{1, g, ..., g^{n-1}\}$$

Thus
$$\langle g \rangle = \{1, g, ..., g^{n-1}\}$$

Orders of Elements 16

Proposition 2.3.3

Let *G* be a group and $g \in G$ with $o(g) = \infty$. For $k \in \mathbb{Z}$ we have

- 1. $g^k = 1$ iff k = 0
- $2. \ g^k = g^m \text{ iff } k = m$
- 3. $\langle g \rangle = \{..., g^{-1}, g^0 = 1, g, ...\}$ where g^i are all distinct

Proposition 2.3.4

Let G be a group and $g \in G$ with $o(g) = n \in \mathbb{N}$. If $d \in \mathbb{N}$, then $o(g^d) = \frac{n}{\gcd(n,d)}$. In particular, if $d \mid n$, then $\gcd(n,d) = d$ and $o(g^d) = \frac{n}{d}$

Proof: Let $n_1=\frac{n}{\gcd(n,d)}$ and $d_1=\frac{d}{\gcd(n,d)}$. By a result from Math 135, we have $\gcd(n_1,d_1)=1$. Note that

$$\left(g^d\right)_1^n = \left(g^d\right)^{rac{n}{\gcd(n,d)}} = \left(g^n\right)^{rac{d}{\gcd(n,d)}} = 1$$

Thus it remains to show that n_1 is the smallest such positive integer. Suppose $\left(g^d\right)^r=1$ with $r\in\mathbb{N}$. Since o(g)=n, by prop, we have $n\mid dr$. Thus there is $q\in\mathbb{Z}$ such that dr=nq. Dividing both sides by $\gcd(n,d)$ we get

$$d_1r = \frac{d}{\gcd(n,d)}r = \frac{n}{\gcd(n,d)}q = n_1q$$

Since $n_1 \mid d_1 r$ and $\gcd(n_1, d_1) = 1$, by a result from Math 135, we get $n_1 \mid r$ i.e. $r = n_1 \ell$ for some $\ell \in \mathbb{Z}$. Since $r_1, n_1 \in \mathbb{N}$, it follows that $\ell \in \mathbb{N}$. Since $\ell \geq 1$, we get $r \geq n_1$

2.4 Cyclic Groups

Remark

For a group G, if $G = \langle g \rangle$ for some $g \in G$, then G is a cyclic group. For $a, b \in G$, we have $a = g^n, b = g^m$ for some $m, n \in \mathbb{Z}$. We have

$$ab = g^n g^m = g^{n+m} = g^{m+n} = g^m g^n = ba$$

Proposition 2.4.1

Every cyclic group is abelian

Warning

The converse of the above prop is not true. For example the Klein 4 group is abelian, but not cyclic.

Proposition 2.4.2

Every subgroup of a cyclic group is cyclic.

Cyclic Groups 17

Proof: Let $G = \langle g \rangle$ be cyclic and $H \subseteq G$ a subgroup. If $H = \{1\}$, then H is cyclic. Otherwise, there is $g^k \in H$ with $k \in \mathbb{Z} \setminus \{0\}$. Since H is a group, we have $g^{-k} \in H$. Thus we can assume that $k \in \mathbb{N}$. Let m be the smallest positive integer such that $g^m \in H$.

<u>Claim</u>: $H = \langle g^m \rangle$

Proof is exercise, by division algorithm.

Proposition 2.4.3

Let $G=\langle g \rangle$ be a cyclic group with o(g)=n. Then $G=\langle g^k \rangle$ iff $\gcd(k,n)=1.$

Proof: By prop,

$$o\big(g^k\big) = \frac{n}{\gcd(n,k)} = n$$

Theorem 2.4.4

Fundamental Theorem of Finite Cyclic Groups

Let $G = \langle g \rangle$ be a cyclic group with $o(g) = n \in \mathbb{N}$.

- 1. If H is a subgroup of G, then $G = \langle g^d \rangle$ for some $d \mid n$. It follows that $|H| \mid |G|$.
- 2. Conversely, if $k \mid n$, then $g^{\frac{n}{k}}$ is the unique subgroup of G with order k.

Proof of 1: By prop, H is cyclic. Write $H = \langle g^n \rangle$ for some $m \in \mathbb{N} \cup \{0\}$. Let $d = \gcd(m, n)$. Claim: $H = \langle g^d \rangle$

Since $d \mid m$ we have m = dk for some $k \in \mathbb{Z}$. Then

$$g^m = g^{dk} = \left(g^d\right)^k \in \langle g^d \rangle$$

Thus $H=\langle g^m\rangle\subseteq\langle g^d\rangle$. To prove the other incursion, since $d=\gcd(m,n)$, there is $x,y\in\mathbb{Z}$ such that d=mx+ny. Then

$$g^d = g^{mx+ny} = (g^m)^x (g^n)^y = (g^m)^x 1^y = (g^m)^x \in \langle g^m \rangle$$

Thus $\langle g^d \rangle \subseteq \langle g^m \rangle = H$. It follows that $H = \langle g^d \rangle$. Note that since $d = \gcd(m, n)$, we have $d \mid n$. By prop, we have

$$|H| = o\big(g^d\big) = \frac{n}{\gcd(n,d)} = \frac{n}{d}$$

Thus $|H| \mid |G|$

Proof of 2: By prop, the cyclic subgroup $\langle g^{\frac{n}{k}} \rangle$ is of order

$$\frac{n}{\gcd(n,\frac{n}{k})} = \frac{n}{n/k} = k$$

To show uniqueness, let K be a subgroup of G with order $k \mid n$. By 1, let $K = \langle g^d \rangle$ where $d \mid n$. Then by props, we have,

$$k = |K| = o(g^d) = \frac{n}{\gcd(n, d)} = \frac{n}{d}$$

Cyclic Groups 18

It follows that $d = \frac{n}{k}$ and thus $K = \langle g^{\frac{n}{k}} \rangle$

2.5 Non-cyclic Groups

Definition 2.5.1

Let X be a non-empty subset of a group G, and let

$$\langle X \rangle \coloneqq \left\{ x_1^{k_1} \cdots x_m^{k_m} \ \middle| \ x_i \in X, k_i \in \mathbb{Z}, m \geq 1 \right\}$$

denote the set of all products of powers of (not necessarily distinct) elements of X. Note that this is clearly a group. $\langle X \rangle$ is called the *subgroup of G generated by X*.

Example 2.5.1

The Klein-4 group $K_4 = \{1, a, b, c\}$ with $a^2 = b^2 = c^2 = 1$ and ab = c. Thus

$$K_4 = \langle a, b \mid a^2 = 1 = b^2 \text{ and } ab = ba \rangle$$

Example 2.5.2

The symmetric group of order 3 $S_3=\left\{\varepsilon,\sigma,\sigma^2,\tau,\tau\sigma,\tau\sigma^2\right\}$ where $\sigma^3=\varepsilon=\tau^2$ and $\sigma\tau=\tau\sigma^2$ (one can take $\tau=(12)$ and $\sigma=(123)$) Thus

$$\langle \sigma, \tau \mid \sigma^3 = \varepsilon = \tau^2 \text{ and } \sigma\tau = \tau\sigma^2 \rangle$$

We can also replace σ, τ with $\sigma, \tau \sigma$ or $\sigma, \tau \sigma^2, ...,$ etc

Definition 2.5.2

For $n \geq 2$ the dihedral group of order 2n is defined by

$$D_{2n} = \{1, a, ..., a^{n-1}, b, ba, ..., ba^{n-1}\}$$

Where $a^n = 1 = b^2$ and aba = b. Thus

$$D_{2n} = \langle a, b \mid a^n = 1 = b^2 \text{ and } aba = b \rangle$$

Note

For n = 2 or 3 we have

$$D_4\cong K_4\quad \text{and}\quad D_6\cong S_3$$

Exercise 2.5.1

For $n \geq 3$, consider a regular n-gon and its group of symmetries. How does it relate to D_{2n} ?

Non-cyclic Groups 19

3 Normal Subgroups

3.1 Homomorphisms and Isomorphisms

Definition 3.1.1

Let G, H be groups. A mapping $\alpha: G \to H$ is a homomorphism if

$$\alpha(a *_G b) = \alpha(a) *_H \alpha(b) \quad \forall a, b \in G$$

To simplify notation, we often write

$$\alpha(ab) = \alpha(a)\alpha(b) \quad \forall a, b \in G$$

Example 3.1.1

Consider the determinant map

$$\det: \operatorname{GL}_n(\mathbb{R}) \longrightarrow \mathbb{R}^*$$
$$A \longmapsto \det A$$

Since $\det AB = \det A \det B$, the mapping \det is a homomorphism.

Proposition 3.1.1

Let $\alpha: g \to H$ be a group homomorphism. Then

- 1. $\alpha(1_G) = 1_H$
- 2. $\alpha(g^{-1}) = \alpha(g)^{-1} \quad \forall g \in G$
- 3. $\alpha(g^k) = \alpha(g)^k \quad \forall k \in \mathbb{Z}$

Definition 3.1.2

Let $\alpha: G \to H$ be a mapping between groups. If α is a homomorphism and α is bijective, we say α is an *isomorphism*. In this case, we say G, H are *isomorphic* and write $G \cong H$.

Proposition 3.1.2

We have

- 1. The identity map $id: G \to G$ is an isomorphism.
- 2. If $\sigma:G\to H$ is an isomorphism, then the inverse map $\sigma^{-1}:h\to G$ is also an isomorphism.
- 3. If $\sigma:G\to H$ and $\tau:H\to K$ is an isomorphism, the composite map $\tau\sigma:G\to K$ is also an isomorphism.

So \cong is (sort-of) an equivalence relation

Proof: Exercise.

PMATH 347 FALL 2025 JAKE EDMONSTONE

Example 3.1.2

Let $\mathbb{R}^+ = \{r \in \mathbb{R} \mid r > 0\}$. Then $(\mathbb{R}, +) \cong (\mathbb{R}^+, \cdot)$ since we see that

$$\sigma: \mathbb{R} \to \mathbb{R}^+$$
$$x \longmapsto e^x$$

is a bijection. Moreover, $\sigma(x+y)=e^{x+y}=e^x\cdot e^y=\sigma(x)\sigma(y)$ thus σ is an isomorphism.

Example 3.1.3

<u>Claim:</u> $(\mathbb{Q}, +) \ncong (\mathbb{Q}^*, \cdot)$ Suppose $\tau : (\mathbb{Q}, +) \to (\mathbb{Q}^*, \cdot)$ is an isomorphism. Thus τ is surjective. So there is some $q \in \mathbb{Q}$ such that $\tau(q) = 2$. Then

$$\tau \left(\frac{q}{2}\right)^2 = \tau \left(\frac{q}{2}\right) \tau \left(\frac{q}{2}\right) = \tau \left(\frac{q}{2} + \frac{q}{2}\right) = \tau(q) = 2$$

Thus $\tau(\frac{q}{2})$ is a rational number whose square is 2, a contradiction.

3.2 Cosets and Lagrange's Theorem

Definition 3.2.1

Let H be a subgroup of a group G. If $a \in G$, we define

$$Ha = \{ha \mid h \in H\}$$

to be the *right coset of H generated by a*. We define the left coset similarly.

Remark

Since $1 \in H$, we have H1 = H = 1H. Also $a \in Ha$ and $a \in aH$. Note that in general Ha and aH are not subgroups of G, and $aH \neq Ha$. However, if G is abelian, then Ha = aH.

Example 3.2.1

Let $K_4 = \{1, a, b, ab\}$. Let $H = \{1, a\}$ which is a subgroup of K_4 . Note that since K_4 is abelian, we have gH = Hg for all $g \in K_4$. Then the (right or left) cosets of H are

$$H1=\{1,a\}=1H$$

and

$$Hb = \{b, ab\} = Hab$$

Thus there are exactly two cosets of H in K_4

PMATH 347 FALL 2025 JAKE EDMONSTONE

Example 3.2.2

Let $S_3=\left\{ arepsilon,\sigma,\sigma^2,\tau,\tau\sigma,\tau\sigma^2 \right\}$ with $\sigma^3=arepsilon=\tau^2$ and $\sigma\tau\sigma=\tau$. Let $H=\left\{ arepsilon,\tau \right\}$ which is a subgroup of S_3 . Since $\sigma\tau=\tau\sigma^{-1}=\tau\sigma^2$, the right cosets of H are

$$\begin{split} H\varepsilon &= \{\varepsilon,\tau\} &= H\tau \\ H\sigma &= \{\sigma,\tau\sigma\} &= H\tau\sigma \\ H\sigma^2 &= \left\{\sigma^2,\tau\sigma^2\right\} &= H\tau\sigma^2 \end{split}$$

And the left cosets of H are

$$\varepsilon H = \{\varepsilon, \tau\} = \tau H$$
$$\sigma H = \{\sigma, \tau \sigma^2\} = \tau \sigma^2 H$$
$$\sigma^2 H = \{\sigma^2, \tau \sigma\} = \tau \sigma H$$

Notice that $H\sigma \neq \sigma H$ and $H\sigma^2 \neq \sigma^2 H$

Proposition 3.2.1

Let H be a subgroup of a group G and let $a, b \in G$.

- 1. Ha = Hb if and only if $ab^{-1} \in H$. In particular, we have Ha = H if and only if $a \in H$.
- 2. If $a \in Hb$, then Ha = Hb
- 3. Either Ha = Hb or $Ha \cap Hb = \emptyset$. Thus, the distinct right cosets of H forms a partition of G.

Proof of 1:

 (\Longrightarrow) If Ha=Hb, then $a=1a\in Ha=Hb$. Thus a=hb for some $h\in H$ and we have $ab^{-1}=h\in H$. (\Longleftrightarrow) Suppose $ab^{-1}\in H$ for all $h\in H$. Then for all $h\in H$,

$$ha=hab^{-1}b=h(ab^{-1})b\in H$$

Thus $Ha \subseteq Hb$. Note that if $ab^{-1} \in H$, since H is a subgroup, then

$$(ab^{-1})^{-1} = ba^{-1} \in H$$

Thus for all $h \in H$,

$$hb=h\big(ba^{-1}\big)a\in Ha$$

Thus $Hb \subseteq Ha$. It follows that Ha = Hb.

Proof of 2: If $a \in Hb$, then $ab^{-1} \in H$. Thus, by (1), we have Ha = Hb.

Proof of 3: Two cases:

- 1. If $Ha \cap Hb = \emptyset$, then we are done.
- 2. If $Ha \cap Hb \neq \emptyset$, then there exists $x \in Ha \cap Hb$. Since $x \in Hb$, by (2), we have Hb = Hx. Thus

$$Ha = Hx = Hb$$

Remark

The analogues of the previous prop also holds for left cosets

1. aH = bH if and only if $b^{-1}a \in H$

Exercise 3.2.1

Let G be a group and H a subset of G. For $a, b \in G$, do we still have Ha = Hb, or $Ha \cap Hb = \emptyset$ if H is not a subgroup of G.

Definition 3.2.2

By the previous prop, we see that G can be written as a disjoint union of right cosets of H. We define the index [G:H] to be the number of disjoint right (or left) cosets of H in G. (Note that [G:H] could be infinite).

Theorem 3.2.2

Lagrange's Theorem

Let H be a subgroup of a finite group G. We have $|H| \mid |G|$ and

$$[G:H] = \frac{|G|}{|H|}$$

Proof: Write k = [G:H] and let $Ha_1, ..., Ha_k$ be the distinct right cosets of H in G. By prop

$$G = Ha_1 \sqcup \cdots \sqcup Ha_k$$

is a disjoint union. Since $|Ha_i| = |H|$ for each i, we have

$$|G| = |Ha_1| + \dots + |Ha_k| = k|H|$$

It follows that $|H| \mid |G|$ and $[G:H] = k = \frac{|G|}{|H|}$.

Corollary 3.2.3

- 1. If G is a finite group and $g \in G$ then $o(g) \mid |G|$
- 2. If G is a finite group with |G| = n, then for all $g \in G$, we have $g^n = 1$

Proof of 1: Take $H = \langle g \rangle$ in the theorem. Note that |H| = o(g)

Proof of 2: Let o(g) = m then by (1), we have $m \mid n$. Thus

$$g^n = (g^m)^{\frac{n}{m}} = 1^{\frac{n}{m}} = 1$$

PMATH 347 FALL 2025 JAKE EDMONSTONE

Example 3.2.3

For $n \in \mathbb{N}$ with $n \geq 2$, let \mathbb{Z}_n^* be the set of (multiplicative) invertible elements in \mathbb{Z}_n . Let the Euler's φ -function $\varphi(n)$, denote the order of \mathbb{Z}_n^* . i.e.

$$\varphi(n) = |\{[k] \in \mathbb{Z}_n \mid k \in \{0, 1, ..., n-1\} \text{ and } \gcd(k, n) = 1\}|$$

As a direct consequence of the corollary, we see that if $a \in \mathbb{Z}$ with $\gcd(a,n) = 1$, then $a^{\varphi(n)} \equiv 1 \pmod{n}$. This is Euler's Theorem. If n = p, a prime number, then Euler's Theorem implies that $a^{p-1} \equiv 1 \pmod{p}$, which is Fermat's little theorem.

Recall

If |G|=2 then $G\cong C_2$, and |G|=3 then $G\cong C_3$.

Corollary 3.2.4

If G is a group with |G| = p a prime, then $G \cong C_p$, the cyclic group of order p.

Proof: Let $g \in G$ with $g \neq 1$. Then by corollary, we have $o(g) \mid p$. Since $g \neq 1$ and p is a prime, we have o(g) = p. By prop, we have

$$|\langle g \rangle| = o(g) = p$$

It follows that $G \cong \langle g \rangle \cong C_p$

Corollary 3.2.5

Let H and K be finite subgroups of a group G. If gcd(|H|, |K|) = 1, then $H \cap K = \{1\}$.

Proof: Note $H \cap K$ is a subgroup of H and K. So by Lagrange's Theorem, we have $|H \cap K| \mid |H|$ and $|H \cap K| \mid |K|$. It follows that $|H \cap K| \mid |\gcd(|H|, |K|)$, i.e. $|H \cap K| = 1$ Thus $|H \cap K| = 1$.