Thomas S. Binns, MSci

NEUROTECHNOLOGY SCIENTIST & SOFTWARE ENGINEER

Email: t.s.binns@outlook.com | LinkedIn: tsbinns | GitHub: tsbinns | Website: tsbinns.com | London, UK

PROFESSIONAL SUMMARY

I am a highly motivated research scientist and software engineer with >6 years of experience with machine learning, HCIs, and signal processing applied to multimodal time-series. I am driven to create real-time, high-resolution precision systems at the forefront of neurotechnology. Now finishing my PhD. I am looking for a career where I can utilise my vast experience in signal analysis, real-time machine-learning-based HCls, and software engineering to innovate and bring cutting-edge neurotechnology to market.

SKILLS AND EXPERTISE

- Biomedical time-series analysis Machine (incl. deep) learning
- Scientific software development TensorFlow, PyTorch, Sklearn
- Independence & team working Clear & concise communication Resilience & self-motivation
- Real-time, multimodal HCIs
- Agile, DevOps, MLOps

SELECTED ACHIEVEMENTS

- Google Summer of Code grant recipient; implemented real-time-compatible, data-driven signal processing algorithms for machine learning pipelines in the open-source MNE ecosystem for Python.
- Sony Global Internship Programme participant; invited for my expertise in signal processing, machine learning, and HCIs to develop a multimodal (EEG-acoustic), real-time HCI recommendation system.
- Lead author of the open-source PyBispectra toolbox for advanced non-linear time-series analyses; developed to identify biomarkers and therapeutic responses in my clinical neuromodulation work.
- Member of a \$500,000 grant from the National Science Foundation, USA; invited to maintain and grow the hugely popular open-source MNE ecosystem for electrophysiological signal analysis in Python.

SELECTED PROFESSIONAL EXPERIENCE

SONY COMPUTER SCIENCE LABORATORIES, TOKYO, JAPAN

Neurotechnology Systems Intern

01/2025 - 08/2025

I worked on a \$3 Million research project for AI systems in a dynamic, interdisciplinary team of neuroscientists, computer scientists, and engineers to develop a multimodal, real-time HCI system for music recommendation using EEG and acoustic signals, delivering results on time and within budget:

- Developed a multimodal HCI system for real-time decoding, ensembling linear techniques and deep learning approaches to improve accuracies by 15% while keeping latencies <80 ms.
- Identified task-relevant features for decoding through in-depth explorations of EEG and non-neural signals using Python, producing robust and real-time-feasible decoding features.
- Designed, validated, and executed machine learning algorithms using the discovered task-relevant features in Python, establishing an accurate and modular multimodal system for decoding.
- Rapid in-silico and in-vitro prototyping and validation of a real-time HCl system, combining opensource and proprietary software tools in collaboration with engineers to meet project deadlines.

NEUROMODULATION UNIT, CHARITÉ - UNIVERSITÄTSMEDIZIN BERLIN, GERMANY **Clinical Neuromodulation Research Scientist**

07/2021 - 05/2025

I identified biomarkers and therapeutic mechanisms for a €1.5 Million neuromodulation research project in a collaborative, international team of neuroscientists, computer scientists, and clinicians, using machine learning methods applied to multimodal signals (ECoG, LFP, ECG, EMG) in Parkinson's disease patients:

Developed real-time neurofeedback paradigms using machine-learning-based neural decoding pipelines, achieving accuracies >85% for movement-related neural activity in latencies <15 ms.

- Designed and executed advanced multimodal signal processing pipelines using novel multivariate algorithms in Python, identifying biomarkers and DBS mechanisms for the first time in humans.
- Designed and executed multimodal (ECoG-LFP) experimental paradigms through collaboration with clinical teams to acquire first-of-its-kind human Parkinson's data for biomarker identification.
- Communicated findings to biomedical professionals through international conferences and highimpact journals according to project timelines and deliverables, helping to secure future funding.

BERNSTEIN CENTER FOR COMPUTATIONAL NEUROSCIENCE BERLIN, GERMANY

Neurotechnology Research Scientist

08/2019 - 08/2020

I worked in the Haynes group to develop and execute offline signal processing pipelines and online neurofeedback paradigms using machine learning and EEG-based BCIs with movement signals to explore human movement and decision making, delivering outcomes within deadlines to secure future funding:

- Developed real-time neurofeedback systems using machine-learning-based neural decoding pipelines, achieving accuracies ~80% for decision-related neural activity in latencies <20 ms.
- Designed, validated, and executed EEG-based paradigms for real-time neurofeedback using MATLAB and Python, identifying neural mechanisms of decision making.
- Identified task-relevant features for decoding through in-depth explorations of EEG and movement signals in MATLAB and Python, producing robust and real-time-feasible decoding features.
- Designed and executed offline machine learning algorithms applied to EEG, EMG, and accelerometer signals using MATLAB and Python, identifying neural mechanisms of movement.

EDUCATION

CHARITÉ - UNIVERSITÄTSMEDIZIN BERLIN, GERMANY

PhD Computational and Medical Neuroscience Awaiting final assessment 09/2021 - Present

UNIVERSITY OF ABERDEEN. UK

MSci (Hons) Neuroscience with Psychology First-Class 09/2016 - 06/2021

SELECTED PROFESSIONAL MEMBERSHIPS

MNE SOFTWARE, UNIVERSITY OF WASHINGTON, USA

Maintainer 11/2023 – Present

I am a maintainer and developer of the MNE ecosystem, a set of Python toolboxes for electrophysiological data analysis with over 3,000 stars on GitHub and citations in over 5,000 peer-reviewed scientific papers:

- Developed toolboxes, operating in CI/CD workflows within solo to large-sized teams to implement new signal processing, machine learning, statistics, and visualisation features.
- Maintained toolboxes, following design patterns and established best practices to implement bug fixes, design and maintain automated workflows, and create software releases.
- Community support and triaging of user queries through managing forums and issue trackers to provide technical assistance to users, and handle bug reports and feature requests.
- Conducted code reviews of PRs to supervise the implementation of new features and bug fixes.

SELECTED NEUROTECHNOLOGY PUBLICATIONS

- **Binns, TS**, ..., Haufe, S, Kühn, AA, Neumann, WJ (2025). Shared pathway-specific network mechanisms of dopamine and deep brain stimulation for the treatment of Parkinson's disease. *Nature Communications*. DOI: 10.1038/s41467-025-58825-z.
- **Binns, TS**, Furuya, S, Cheung, VKM (Accepted). A real-time multimodal system for music preference decoding combining EEG and acoustic features. In: *Extended Abstracts for the Late-Breaking Demo Session of the 26th International Society for Music Information Retrieval Conference.*
- **Binns, TS**, ..., Haufe, S (2025). PyBispectra: A toolbox for advanced electrophysiological signal processing using the bispectrum. *Journal of Open Source Software*. DOI: 10.21105/joss.08504.

References available upon request