ResNets vs. Neural ODEs

March 17th, 2020

Overview

- What are...
 - ResNets?
 - O Neural ODEs?
- ECG Classification
- Model Comparison

ResNet

- What is it?
 - Residual neural network
 - Consists of residual blocks
- Why is it useful?
 - Deep neural networks were performing worse not better
 - Shortcut connections help!
 - ResNets have state-of-the-art accuracy on image classification tasks

Bridge to Neural ODEs

Residual Block

$$\mathbf{h}_{t+1} = \mathbf{h}_t + f(\mathbf{h}_t, \theta_t)$$

ResNet Equation

Looks like Euler's method!

Neural ODEs

• What?

Neural ordinary differential equations

How?

- Use ODE solver to get predictions from model input
- Backpropagate with adjoint method

Why?

- Rely on 300 years of ODE research
- Memory/accuracy
- Can adjust errors
- Continuous dynamics

ECG Classification

MIT-BIH ECG dataset

110,000 annotated samples

5 classes

- o 0: Normal beat
- 1: Supraventricular premature beat
- 2: Premature ventricular contraction
- 3: Fusion of ventricular and normal beat
- 4: Unclassified beat

Model Building (feature layers)

ResNet:

- Six residual blocks stacked
- Each residual block
 consisted of two
 convolutions,
 normalizations and ReLU
 activations

NeuralODE:

- Same structure as a single residual block
- Called odeint_adjoint function from torchdiffeq
 - Forward: dopri5 solver
 - Backward: adjoint method

Model Comparison

ResNet

NeuralODE

```
Training... epoch 1
Training... epoch 1
                                                           Percent trained: 100.0% Time elapsed: 61.9 min
   Percent trained: 100.0% Time elapsed: 11.0 min
                                                           val loss: 0.23
   val loss: 0.36
Training... epoch 2
                                                       Training... epoch 2
   Percent trained: 100.0% Time elapsed: 10.8 min
                                                           Percent trained: 100.0% Time elapsed: 71.2 min
   val loss: 0.79
                                                           val loss: 0.14
Training... epoch 3
                                                       Training... epoch 3
   Percent trained: 100.0% Time elapsed: 10.4 min
                                                           Percent trained: 100.0% Time elapsed: 73.6 min
   val loss: 0.23
                                                           val loss: 0.12
Training... epoch 4
                                                       Training... epoch 4
   Percent trained: 100.0% Time elapsed: 10.1 min
                                                           Percent trained: 100.0% Time elapsed: 80.5 min
   val loss: 0.13
                                                           val loss: 0.09
Training... epoch 5
                                                       Training... epoch 5
   Percent trained: 100.0% Time elapsed: 10.1 min
                                                           Percent trained: 100.0% Time elapsed: 97.4 min
   val loss: 0.1
                                                           val loss: 0.09
```

ResNet vs. NeuralODE

ResNet accuracy: 0.974 ODENet accuracy: 0.976

Accuracy

- Models perform comparably (baseline 0.83)
- NeuralODE slightly better
 - Can be tuned further with ODEsolver errors

Number of tunable parameters in...

ResNet: 182853 ODENet: 59333

Memory

- NeuralODE has ⅓ of the parameters
- Comes at cost of longer training times

Conclusions

- NeuralODEs offer interesting take on neural networks with a lot of active research
 - Augmented NeuralODEs
 - Stochastic NeuralODEs
- Tradeoff between memory and speed
- Next steps:
 - Investigate applications, such as continuous normalizing flows
 - Make generative latent time series model