Architecture for a Fast Elliptic Curve Co-Processor

VLSI lab. Seminar

B. Ansari

Supervisor: Dr. H. Wu

March 2004

Outline

- 1. Introduction to Elliptic Curve Cryptography (From my first seminar)
- 2. Processor Architecture
- 3. Implementation
- 4. Result
- 5. Discussion

Elliptic Curve Cryptography (Why)

- ECC Proposed independently by Koblitz, Miller (1985)
- ECC Security is based on the elliptic curve discrete logarithm problem (ECDLP)
- It is estimated: RSA $4096 \equiv ECC 313$
- Implementation of elliptic curve cryptosystem requires:
 - Smaller chip size
 - Less power consumption
 - Faster (on Palm-Pilot), 512-bit RSA 3.4 min, 163-bit ECC-DSA 0.597 min
- IEEE, NIST, FIPS,

(Bits)	RSA KEY SIZE (Bits)	RATIO	AES KEY SIZE (Bits)	
163	1024	1:6		
256	3072	1:12	128	
384	7680	1:20	192	
512	15 360	1:30	256	

Elliptic Curve Cryptography (Application)

- Smartcards
- Handheld devices
- Wireless security
- IDs (Austrian National ID card)

At University of Waterloo!

Elliptic curves over $GF(2^m)$

The Challenge

Curve	Field size (in bits)	Estimated number of machine days	Prize (US\$)	Status
ECC2-79	79	352	HAC, Maple	SOLVED December 1997
ECC2-89	89	11278	HAC, Maple	SOLVED February 1998
ECC2K-95	97	8637	\$ 5,000	SOLVED May 1998
ECC2-97	97	180448	\$ 5,000	
ECC2K-108	109	1.3×10^{6}	\$ 10,000	SOLVED April 2000
ECC2-109	109	2.1×10^{7}	\$ 10,000	
ECC2K-130	131	2.7×10^9	\$ 20,000	
ECC2-131	131	6.6×10^{10}	\$ 20,000	
ECC2-163	163	2.9×10^{15}	\$ 30,000	
ECC2K-163	163	4.6×10^{14}	\$ 30,000	
ECC2-191	191	1.4×10^{20}	\$ 40,000	
ECC2-238	239	3.0×10^{27}	\$ 50,000	
ECC2K-238	239	1.3×10^{26}	\$ 50,000	
ECC2-353	359	1.4×10^{45}	\$ 100,000	
ECC2K-358	359	2.8×10^{44}	\$ 100,000	

Elliptic Curve

 \bullet Elliptic curve E is the graph of an equation of the form

$$E: y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$
 (1)

where $a_1, a_2, a_3, a_4, a_6 \in \mathcal{K}$.

• \mathcal{K} is a Field. For example, Fields of \mathbb{C} , \mathbb{R} , \mathbb{Q} , Finite Field over prime \mathbb{F}_p or Extension Field \mathbb{F}_{p^n}

• Notice the *Points* in \mathbb{F}_{23} graph

EC Point Addition addition formula

- We define a binary operation over E which makes E an Abelian group (Point Addition)
- Suppose:

$$P, Q \in E \text{ and } P1 = (x_1, y_1), P2 = (x_2, y_2) \text{ and } P3 = (x_3, y_3)$$

we define $P3 = P1 + P2$ (2)

EC Point Addition addition formula

Suppose $P, Q \in E$ and $P1 = (x_1, y_1)$ and $P2 = (x_2, y_2)$ we define P3 = P1 + P2 and $P3 = (x_3, y_3)$

- EC Group Low in $\mathbb{F}(2^m)$, P3 = P1 + P2
- if $P1 \neq P2$ (ADD)

$$\begin{cases} \lambda = \frac{y_1 + y_2}{x_1 + x_2} \\ x_3 = \lambda^2 + \lambda + x_1 + x_2 + a_2 \\ y_3 = (x_1 + x_3)\lambda + x_3 + y_1 \end{cases}$$

• if P1 = P2 (DBL)

$$\begin{cases} \lambda = \frac{y_1}{x_1} + x_1 \\ x_3 = \lambda^2 + \lambda + a_2 \\ y_3 = (x_1 + x_3)\lambda + x_3 + y_1 \end{cases}$$

- ullet For technical reason, we add a point at infinity to the elliptic curve, called ${\cal O}$
- Curves over different Fields $(\mathbb{R}, \mathbb{F}_{p^n}, \dots)$ can have different addition formula.

Elliptic Curve Discrete Logarithm Problem ECDSL

Basic operation in ECC is *point addition*(One-Way function)

$$P = \underbrace{P + P + P + \dots + P}_{k \quad times}$$

- Suppose Q = kP for some k. Given P and Q find k
- \bullet kP looks like k-1 additions, But ... That's all elliptic curve cryptography implementation is about
- No efficient algorithm is known at this time to solve the ECDLP

Elliptic Curve cryptosystem implementation Options, (Top-Down)

- 1. Defining Equation for Elliptic curve
- 2. Representation of points
 - Affine Coordinates
 - Projective/Mixed Coordinates
 - **@**
- 3. Scalar Multiplication technique kP ie. $kP = \underbrace{P + P + P + \cdots + P}_{k \text{ times}}$
 - Comb method
 - Window method
 - Scalar Recording
 - Parallel Processing
 - Security against side channel attack
- 4. Field Representation
 - Polynomial Basis

- Normal Basis
- Dual Basis
- 5. Finite Field operation Algorithm
 - Multiplication
 - Squaring
 - Inversion
- Speed of a ECC system is determined by the above factors.
- \bullet kP is the heart of an ECC, a fast kP means a fast cryptosystem

Elliptic Curve calculation, Arithmetic Hierarchy

 $\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline a_0 & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \\\hline A \text{ member of } GF(2^7) \\\hline \end{array}$

• Multiplication in $GF(2^5)$ and Squaring in $GF(2^7)$

from: H. Wu, Bit-Parallel Finite Field Multiplier and Squarer. IEEE transaction on Computer. July 2002

Processor Features

The processor implements the following features to achieve high execution speed.

- VLIW architecture
- RISC type instruction set
- One cycle instruction execution
- Pipeline finite field multiplier

Design Flow

Architecture, General View

- The Finite Field Arithmetic unit is modeled on VLIW type architecture which permits parallel execution.
- The Finite Field processing unit consists of an ALU a Multiplier and a register file.
- Very small 8-bit processor is provided
- The communication with the host processor is implemented through utilization of a command register and a data register.
- These units are controlled by the main control unit.

Architecture, General View

Finite Field multiplier

- Word Serial pipe line multiplier
- The size of the word is m/4 in $GF(2^m)$
- Architecture (HDL) is not hardwired to the size of the Galois Field.

Instruction Set

- The instructions set is sub divided into three categories.
 - Finite Field Arithmetic
 - Integer processing
 - Control Transfer
- The Compiler/Assembler analyzes the scalar multiplication program and detects Finite Field operations to be executed in parallel
- Such operations are packed into one "Finite Field Arithmetic" type instruction.

Instruction Set

8-bit processor	
MOV rx, d8	move immediate data to rx register
DJNZ rx, addr	decrement rx jump to addr if not zero
DEC rx, INC rx	increment rx, decrement rx
SHL $\{c,rx\}$, SHL $\{rx,c\}$	shift left Carry and rx
MOV ry, rx	move rx to ry
REP	repeat the next instruction r0 times
FF Arithmetic Unit	
SQR A	
ADD A, Rx	
SHL A	
START Mul	
STOP Mul	
MOV Rx, P	move product to Rx
MOV Rx, A	
MOV A, Rx	
MOV S, Rx	load multiplier register with Rx
Control Transfer	
JMP flg,set, addr	flg is Z (Zero flag), C (Carry flag), M (User flag)
CALL flg,set, addr	
CLR M ,Set M	
HALT	

Synthesis Result

The Processor is synthesized with Synopsys for $GF(2^{233})$

Unit	Area
Multiplier	1272102
ALU	28585
Squarer	4976
Register File	202799
Proc8	5617
Total	≈ 1555271

- Critical Path 3.3 nSec = $T_A + [\log(m + m/4) 1]T_X \approx 8T_X \approx 8 \times 0.3$
- Critical path is in the Parallel Multiplier

Performance

When implemented on a Xilinx Virtex 2000 FPGA: The processor can perform 10,000 scalar multiplication per second on $GF(2^{167})$. Which is faster that the resent FPGA implementations.

Table 1: Performance of the Elliptic Curve Processor

Design	kP (mSec)	Inv. (Cycle)	$GF(2^m)$	FPGA (LUT, FF)	Clk (MHz)	FPGA	Year	
[2]	0.21		167	3000, 1769	76.6	XCV400E	2000	
[3]	0.143	326 = 2m	163	20068, 6321	66.4	XCV2000	2002	Supports Unnamed Curves
[5]	0.121 + Inv.	>135 ?	233	19440, 16970	100	XCV6000	2003	
[4]	0.233	250	163	10017, 1930	66	XCV2000	2003	
Proposed	0.10	285	167	7562, 2364	66	XCV2000	2004	
Proposed	0.14	451	233	13900, 3164	66	XCV2000	2004	

References

- [1] J. Lopez and R. Dahab "Fast Multiplication on Elliptic Curves over $GF(2^n)$ without Precomputation" CHESS'99, Springer-Verlag, LNCS 1717, pp. 316-327 1999
- [2] Gerardo Orlando and Christof Paar "A High-Performance Reconfigurable Elliptic Curve Processor for $GF(2^m)$ " CHES 2000, LNCS 1965, pp. 41-56 2000
- [3] Nils Gura, Sheueling Chang Shantz, Hans Eberle, Sumit Gupta, Vipul Gupta, Daniel Finchelstein, Edouard Goupy, Douglas Stebila "An End-to-End Systems Approach to Elliptic Curve Cryptography" Sun Microsystems Laboratories 2002-2003
- [4] Jonathan Lutz "High performance elliptic curve cryptographic co-processor" Masters thesis, University of Waterloo 2003
- [5] C. Grabbe, M. Bednara, J. von zur Gathen, J. Shokrollahi, J. Teich "A High Performance VLIW Processor for Finite Field Arithmetic" *Proceedings of the* International Parallel and Distributed Processing Symposium (IPDPS'03) 2003