Lec 2

C3A - Display Technology

Peter Raynes

Lecture 2

- LC materials
 - The range of LC phases
 - Chemical structures of LC materials
 - Mixtures
- Physical properties
 - Spontaneous ordering
 - Anisotropic properties
 - Elastic constants
- Principles of LCDs
 - Surface alignment
 - Alignment by electric field
 - Competition between surfaces and electric field

Self-organising Soft Matter

Liquid Crystal Phases

- Occurence
 - Thermotropic (temperature)
 - Lyotropic (concentration)
- Constituent molecules
 - Small molecules
 - Big molecules (polymers)
 - Rods (calamitic)
 - Disks (discotic)

Thermotropic Calamitic LCs

- Finite temperature range
- Isotropic (I)
- Nematic (N)
 - Molecular axes ordered
 - No positional order
- Chiral Nematic (N*)
 - (Cholesteric)
 - Helical rotation (pitch)
- Smectic (S_A, S_B etc)
 - Positional order
 - Many smectic phases

Typical LC Materials

MBBA

- First room temperature material
- 20 °C to 47 °C
- Totally unstable

$$H_3CO$$
 N
 C_4H_9

- Cyanobiphenyls (CB)
 - First useful LC material
 - Chemically & photochemically stable
 - Colourless
 - Excellent performance in displays
 - LC at room temperature but narrow range
 - eg 5CB (R = C₅ H₁₁-: 23 °C to 35 °C)
- Phenyl cyclohexanes (PCH)
 - Second useful LC
 - eg 5PCH (31 °C to 55 °C)

Summary of LC Chemistry

Wider Temperature Range

Single compounds have narrow LC range

$$C_5H_{11}$$
 CN $23^{\circ}C$ to $35^{\circ}C$

Eutectic binary mixtures have broader LC range

$$C_5H_{11}$$
 CN C_8H_{17} CN

- Binary phase diagrams
 - Easy to find eutectic

Multi-component Eutectic Mixtures

- Must be close to eutectic composition
- Schroder van Laar Equation $\ln(X_i) = \frac{\Delta H_i}{R} \left(\frac{1}{T_i} \frac{1}{T} \right)$ where:

 ΔH_i is latent heat of melting of i T_i is melting point of component i

R gas constant

• Solubility equation $\ln(c_i) = a_i T_i + b_i$ where:

c; is concentration (wt %) of i T is temp.,

 a_i and b_i are constants

E7 Cyanobiphenyl Mixture

4 Components

■ 5CB
$$24 \Rightarrow 35 \, ^{\circ}C$$

■ 7
$$CB$$
 30 \Rightarrow 42 ° C

■ 5
$$CT$$
 130 \Rightarrow 240 $^{\circ}C$

- First generation
 - (-15 to -10) \Rightarrow 60 °C
- Second Generation
 - (-15 to -13) \Rightarrow 60 °C
 - Not wanted my manufacturer!

Spontaneous Ordering

- Director n is a unit vector describing average orientation
- Average over:
 - time at a point in space
 - space at a snapshot in time
- Distribution function $f(\theta, \phi) d\Omega$:
 - probability of finding the molecule pointing in the small

solid angle $d\Omega = \sin\theta \ d\theta \ d\phi$ around the direction (θ, ϕ)

Nematics have cylindrical symmetry about n

$$\Rightarrow f(\theta, \phi) = f(\theta)$$

n and -n are equivalent

$$\Rightarrow$$
 $f(\theta) \equiv f(\theta - \pi)$ symmetry

Nematic Order Parameter

$$S = \frac{1}{2} \langle 3\cos^2 \theta - 1 \rangle \equiv \frac{\int \frac{1}{2} f(\theta) (3\cos^2 \theta - 1) d\Omega}{\int \frac{1}{2} f(\theta) d\Omega}$$

Perfect order

$$f(\theta) = 1$$
 at $\theta = 0$ and $\theta = \pi$, but $f(\theta) = 0$ when $0 < \theta < \pi$

$$\Rightarrow S \sim \frac{1}{2} \langle 3\cos^2 \pi - 1 \rangle = 1$$

Total disorder

 $f(\theta) = 1$ for the whole range of angles $0 \le \theta \le \pi$

$$\Rightarrow S \sim \int_{0}^{2\pi} d\phi \int_{0}^{\pi} \frac{1}{2} (3\cos^{2}\theta - 1) \sin\theta d\theta = 0$$

- Typical nematic LC
 - S = 0.3 to 0.4 at N-I
 - Weakly second order
 - S increases as T lowered
 - S results in anisotropic properties

Anisotropic Physical Properties

- Dielectric permittivities
- Refractive indices
- Elastic constants
- Viscosities

Dielectric Permittivities - Molecular Contributions

- Two polarisation contributions:
- 1. Anisotropic molecular polarisabilities (α)
 - ⇒ contribute up to optical frequencies

- 2. Permanent molecular dipole moments (μ)
 - ⇒ field skews molecular distribution
 - \Rightarrow net polarisation
 - contributes to permittivity but only at low frequencies
- Langevin theory for an isotropic fluid $\Rightarrow P = M\mu^2 E / 3k_B T$

Dielectric Permittivities - Ordering Effects

Theory extended to anisotropic fluids (LC) by Maier and Meier

defining
$$\Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$$
 and $\varepsilon = \frac{1}{3} \left(\varepsilon_{\parallel} + 2 \varepsilon \right)$

$$\Rightarrow \Delta \varepsilon \propto \left[\Delta \alpha + \frac{F}{k_B T} \left(\mu_{||}^2 - \frac{\mu_{\perp}^2}{2} \right) \right] S \text{ and } \overline{\varepsilon} \propto \overline{\alpha} + \frac{F}{3k_B T} \left(\mu_{||}^2 + \mu_{\perp}^2 \right)$$

molecular structure	$\mu_{ }$	μ_{\perp}	Δε
C ₅ H ₁₁ CN	4.8	0.0	+15
R — CN	0.0	4.0	-5

- $\Delta \epsilon$ dominated by dipole moment
- Relaxation at medium frequencies

Refractive Indices - Molecular Contributions

Polarisability anisotropy

$$\Delta \alpha = \alpha_{||} - \alpha_{\perp}$$

 $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} \textbf{Delocalised electron clouds in} \\ \textbf{phenyl rings enhance} & \alpha \\ \end{tabular}$

- Roughly coplanar phenyl rings in 5CB \Rightarrow large $\alpha_{||} \Rightarrow$ large $\Delta \alpha$ and Δn
- Cyclohexane ring
 - No delocalised electron cloud
 - Less planar
 - \Rightarrow smaller $\alpha_{||} \Rightarrow$ smaller $\Delta \alpha$ and Δn

Molecular structure	Δα	Δn
C ₅ H ₁₁ CN	19.4	0.194
C ₅ H ₁₁ — CN	16.0	0.125
C ₇ H ₁₅ — CN	11.1	0.045

Refractive Indices - Ordering Effects

- No dipole contributions at optical frequencies
- Use Maier and Meier equations with no diploes

$$\Rightarrow$$
 $\Delta \varepsilon \propto \Delta \alpha S$ and $\bar{\varepsilon} \propto \bar{\alpha}$

• From definition of the refractive index $n = \frac{c_{vacuum}}{v_{medium}} = \sqrt{\varepsilon}$

$$\Rightarrow$$
 $\left(n_{\parallel}^2 - n_{\perp}^2\right) \propto \Delta \alpha S$ and $\overline{n^2} \propto \overline{\alpha}$

$$\Rightarrow S\Delta\alpha/\alpha = (n_{\parallel}^2 - n_{\perp}^2)/(\overline{n^2} - 1)$$

Refractive Indices - Variation with Temperature

Order parameter dominates

$$n_{\parallel} \propto \left(1 + \frac{\alpha}{\alpha} + \frac{2}{3}\Delta\alpha S\right)^{1/2}$$

$$n_{\perp} \propto \left(1 + \overline{\alpha} - \frac{1}{3}\Delta\alpha S\right)^{1/2}$$

 $\blacksquare \quad \text{Haller plot assumes} \quad S = \left(1 - \frac{T}{T_{NI}}\right)^b$

- $\qquad \text{Plot log } \left(\frac{n_{||}^2 n_{\perp}^2}{n^2 1} \right) \text{versus log} \left(1 \frac{T}{T_{NI}} \right)$
 - \Rightarrow Measurement of order parameter

Elastic Constants - Definition

- With no forces applied⇒ no spatial variation of director
- Elastic torques oppose any distortions
- Long range distortions
 - do not change order 5
 - length scale >> molecular length
- 3 elastic constants describe distortion e
 - splay (K_{11}) , twist (K_{11}) and bend (K_{33})
- Used to calculate distortion energy

Elastic Constants - Typical Values

- Typically K_{ii} ~ 10 pN
 - 5 pN < K₁₁ < 20 pN
 - $K_{22} / K_{11} \sim 0.5$
 - $0.5 < K_{33} / K_{11} < 3.0$
- Temperature dependence
 - theory suggests $K_{ii} \sim 5^2$

Viscosities - Definitions

• Shear (or Miesowicz) viscosities η_1 , η_2 and η_3

- From force required to move top plate
- 6 (5) Leslie viscosities for nematics
- Shear viscosities are combinations

Viscosities - Some Results

Alignment on Surfaces

- Two types of surface alignment
 - Normal (homeotropic)
 - Surfactants
 - Planar (homogeneous)
 - Oblique evaporation
 - Rubbing polymer coating
- LC between two surfaces
 - Uniform alignment
 - Controlled alignment
 - 'Single crystal' of LC

PLANAR

Alignment in Electric Field

- Electric permittivity
 - $\Delta \epsilon = \epsilon_{||} \epsilon_{\perp}$
 - Dielectric anisotropy ($\Delta \epsilon$)
- Alignment type
 - Sign of $\Delta \epsilon$
- Alignment strength
 - Magnitude of $\Delta\epsilon$

Competition Between Fields and Surfaces

Fundamental to most LCDs

- Threshold voltage Vc
 - V< Vc: nothing happens</p>
 - V>Vc ⇒ small reorienation
 - V>>Vc ⇒ strong reorienation
- Vc depends on k_{ii} and $\Delta \epsilon$ and is typically ~ 1V

Next Lecture

- Twisted nematic (TN) LCD
 - Device structure
 - Defects
 - Properties
- Passive addressing
 - RMS addressing
 - Alt & Pleshko analysis
- Continuum Theory
 - Static continuum theory
 - Application to switching mechanisms
 - Analytical calculations
 - Numerical calculations