

Matematikk valgfag – Forelesing 1

Fourierrekker I

Hans Jakob Rivertz IDI-AIT 20. August 2020

Plan

Læringsmål

Trigonometriske rekker

Indu produbt a prihl produkt

Indreprodukt mellom funksjoner definert på et intervall Periodiske funksjoner Indreprodukt mellom sinus og cosinus-funksjoner

Trigonometriske rekker

Odde og jevne funksjoner

Odde og jevne funksjoner Odde og jevne periodiske utvidelser Sinus- og cosinusrekker

Innhold

Læringsmål

Trigonometriske rekker

Indreprodukt mellom funksjoner definert på et intervall Periodiske funksjoner Indreprodukt mellom sinus og cosinus-funksjoner Trigonometriske rekker

Odde og jevne funksjoner

Odde og jevne funksjoner Odde og jevne periodiske utvidelser Sinus- og cosinusrekker

Læringsmål

- Kjenne til indreprodukt mellom funksjoner definert på et intervall.
- Ortogonal (uendelig) basis av trigonometriske funksjoner.
- Kjenne definisjonen av trigonometriske rekker.
- Kjenne til at enhver stykkvis glatt funksjon definert på et intervall kan skrives som en trigonometrisk rekke.
- Kunne regne ut koeffisientene til en trigonometrik rekke.
- Fourierrekker av jevne og odde funksjoner.
- Sinus- og cosinus-rekker

Innhold

Læringsmå

Trigonometriske rekker

Indreprodukt mellom funksjoner definert på et intervall Periodiske funksjoner Indreprodukt mellom sinus og cosinus-funksjoner Trigonometriske rekker

Odde og jevne funksjoner

Odde og jevne funksjoner Odde og jevne periodiske utvidelser Sinus- og cosinusrekker

Indreprodukt mellom funksjoner

Ligner proble-produkt
$$X = [x_1, x_2, x_3]$$
 $Y = [x_1, x_2, x_3]$ $X \cdot Y = x_1 \cdot x_1 + x_2 \cdot y_2 + x_3 \cdot y_3$

<u>Definisjon</u>

Indreproduktet $\langle f, g \rangle$ mellom funksjonene f og g definert på intervallet [a,b] er gitt ved integralet

$$\langle f,g\rangle=\int_0^b f(x)g(x)\,\mathrm{d}x.$$

Samplet version dela opp inter-callet i n like dela med length
$$\Delta x = (b-a)/n$$
. In samplings punter X_1, \dots, X_n $[f(x^*), \dots, f(x^*)] \cdot [g(x^*), \dots, g(x^*)] = \sum_{j=1}^n f(x^*_j)g(x^*_j) \xrightarrow{n \to \infty} ganga med $\Delta x : \sum_{j=1}^n f(x^*_j)g(x^*_j)\Delta x \to \int_{\alpha} f(x)g(x)dx$$

Eksempel på indreprodukt mellom funksjoner

La f(x) = 1 og g(x) = x, begge definert på intervallet [-1, 1]. Indreproduktene $\langle f, g \rangle$, $\langle f, f \rangle$ og $\langle g, g \rangle$ er

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx = \int_{-1}^{1} x dx = 0$$

$$\langle f, f \rangle = \int_{-1}^{1} f(x)^{2} dx = \int_{-1}^{1} dx = 2$$

$$\langle g, g \rangle = \int_{-1}^{1} g(x)^{2} dx = \int_{-1}^{1} x^{2} dx = 2/3$$

$$\int_{-1}^{1} \chi^{2} dx = \left[\frac{1}{3} \chi^{3} \right]_{-1}^{1} = \frac{1}{3} \cdot 1^{3} - \frac{1}{3} (-1)^{3} = \frac{2}{3}$$

Ortogonale funksjoner

$$\vec{X} \cdot \vec{y} = 0$$

Fra eksempelet i forige foil så vi at $\langle f, g \rangle = 0$. Vi definerer

Definisjon

To funksjoner f og g definert på et intervall [a,b] kalles **ortogonale** hvis $\langle f,g\rangle=0$.

Definisjon

En mengde $S = \{f_1, f_2, ...\}$ av funksjoner definert på et intervall [a, b] kalles for en **innbyrdes ortogonal** familie av funksjoner på [a, b] hvis

$$\langle f_i, f_j \rangle = 0$$
, $\textit{når } i \neq j \; \textit{hvis} \; \langle f_i, f_i \rangle \neq 0 \; \forall i, j = 1, 2, 3, \dots$

familie synonymt med mengde

Periodiske funksjoner

Definisjon

En funksjon definert på \mathbb{R} kalles for periodisk med peiode T hvis f(x+T)=f(x) for alle $x\in\mathbb{R}$.

Indreproduktet mellom to periodiske funksjoner f og g med periode T = 2L er definert ved

$$\langle f,g\rangle = \int_{-L}^{L} f(x)g(x) dx.$$

Indreprodukt mellom sinus og cosinus-funksjoner

Setning

Funksjonene

$$1, \cos \frac{\pi x}{L}, \cos \frac{2\pi x}{L}, \dots, \cos \frac{n\pi x}{L}, \dots, \\ \sin \frac{\pi x}{L}, \sin \frac{2\pi x}{L}, \dots, \sin \frac{n\pi x}{L}, \dots$$

danner en familie av inbyrdes ortogonale funksjoner på intervallet [-L, L].

211

$$f(0) = 1$$
 $f(L) = 1$ $f(2L) - f(T) = 1$

Sjekk av setningen

En trigonometrisk identitet (se tabell i kompendiet) gir

$$\int_{-L}^{L} \cos \frac{n\pi x}{L} \cos \frac{m\pi x}{L} dx$$

$$= \int_{-L}^{L} \frac{1}{2} \left[\cos \left(\frac{(n-m)\pi x}{L} \right) + \cos \left(\frac{(n+m)\pi x}{L} \right) \right] dx$$

- I spesialtilfellet der m = n blir svaret lik L
- I spesialtilfellet der $m \neq n$ blir svaret lik 0

Trigonometriske rekker

Definisjon (Trigonometriske rekker)

En trigonometrisk rekke er en uendelig rekke på formen

$$a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi n x}{L} + b_n \sin \frac{\pi n x}{L} \right), \tag{1}$$

der $a_0, a_1, \ldots, b_1, b_2, \ldots$ er konstante koeffisienter og der L er en reell konstant.

Enkelt eksempel

En trigonometrisk rekke kan ha uendelig mange ledd men det er ikke noe i veien fra at kun et endelig antall ledd er forskjellig fra null

Eksempel

$$1 + \sin x - \cos 2x + \sin 3x$$

er en trigonometrisk rekke der $L=\pi$. Alle koeffisienter bortsett fra $a_0=1$, $b_1=1$, $a_2=-1$ og $b_3=1$ er lik null.

Elexanged
$$\int_{(x)} (x) = a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L}$$

$$\left(\int_{(x)} (x) dx + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} + a_n \cos \frac{n\pi$$

$$= 0 + 0 + a_2 \cdot L + 0 - \cdots 0 = a_2 L$$

Setning (Formler for koefisientene til en Trig. rekke)

Hvis en funksjon f(x) er lik en trigonometrisk rekke

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right),$$

så kan vi regne ut verdiene til koeffisientene ved hjelp av formelene

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{\pi nx}{L} dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{\pi nx}{L} dx.$$

LJ-L Glevarend

Definisjon (Fourierrekken til funkjonen f)

La f(x) være en stykkevis kontinuerlig, periodisk funksjon med periode 2L. Dens **Fourierrekke** er definert ved

$$a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L},$$

der

$$a_{0} = \frac{1}{2L} \int_{-L}^{L} f(x) dx,$$

$$a_{n} = \frac{1}{L} \int_{-L}^{L} \cos \frac{n\pi x}{L} f(x) dx, \text{ for } n = 1, 2, 3, \dots \text{ og}$$

$$b_{n} = \frac{1}{L} \int_{-L}^{L} \sin \frac{n\pi x}{L} f(x) dx, \text{ for } n = 1, 2, 3, \dots$$

Stykkvis glatte funksjoner

Definisjon

En funksjon f(x) kalles stykkvis glatt hvis både f(x) og f'(x) er stykkvis kontinuerlige.

Eksempel

Sagtann-funksjonen med periode T=2L, definert ved f(x)=x for alle $x\in (-L,L]$. For alle heltall k er f(x)=f(x-kT) når $x\in (-L+2kL,L+2kL]$.

Fundamentalt teorem for fourierrekker

Setning

Fourierrekken til en periodisk stykkvis glatt funksjon f(x) med periode 2L konvergerer mot f i alle punkter x, bortsett fra punkter der f er diskontinuerlig. I et slikt punkt, $x = x_0$, konvergerer f mot gjennomsnittet av høyre- og venstre-sidegrensene til f(x).

$$\frac{1}{2}\left(\lim_{x\to x_0^-}f(x)+\lim_{x\to x_0^+}f(x)\right).$$

Eksempel (Fourier til sagtann med periode T=2)

Finn Fourierrekken til sagtannfunksjonen med periode T=2.

Løsning: Perioden er 2. Derfor er L = 1. Koeffisientene er

Løsning: Perioden er 2. Derfor er
$$L = 1$$
. Koeffisientene er $a_0 = \frac{1}{2} \int_{-1}^{1} t \, \mathrm{d}t = 0$, where $a_0 = \int_{-1}^{1} t \cos n\pi t \, \mathrm{d}t = \left[t \frac{1}{n\pi} \sin n\pi t \right]_{-1}^{1} - \frac{1}{n\pi} \int_{-1}^{1} \sin n\pi t \, \mathrm{d}t = 0$, where $a_0 = \int_{-1}^{1} t \sin n\pi t \, \mathrm{d}t = \left[t \frac{1}{n\pi} \cos n\pi t \right]_{-1}^{1} + \frac{1}{n\pi} \int_{-1}^{1} \cos n\pi t \, \mathrm{d}t$

$$= \left[-1 \frac{1}{n\pi} \cos n\pi - 1 \frac{1}{n\pi} \cos(-n\pi) \right] = \frac{2}{n\pi} (-1)^n.$$

Fourierrekken til f(t) er $\sum_{n=1}^{\infty} \frac{2}{n\pi} (-1)^n \sin n\pi x$

Figur til eksempel (tilnærming med 4 sinusledd)

Figur: De 4 første sinus leddene i rekken $\sum_{n=1}^{\infty} \frac{2}{n\pi} (-1)^n \sin n\pi t$ tilnærmer den periodiske funksjonen f(t) = t, $1 \le t < 1$, f(t+2) = f(t).

Figur til eksempel (tilnærming med 8 sinusledd)

Figur: De 8 første sinus leddene i rekken $\sum_{n=1}^{\infty} \frac{2}{n\pi} (-1)^n \sin n\pi t$ tilnærmer den periodiske funksjonen f(t) = t, $1 \le t < 1$, f(t+2) = f(t).

Innhold

Læringsmå

Trigonometriske rekker

Indreprodukt mellom funksjoner definert på et intervall Periodiske funksjoner Indreprodukt mellom sinus og cosinus-funksjoner Trigonometriske rekker

Odde og jevne funksjoner

Odde og jevne funksjoner Odde og jevne periodiske utvidelser Sinus- og cosinusrekker

Odde og jevne funksjoner

Definisjon

En funksjon f(x) kalles **jevn** hvis f(-x) = f(x) for alle $x \in \mathbb{R}$. En funksjon f(x) kalles **odde** hvis f(-x) = -f(x) for alle $x \in \mathbb{R}$.

Jenne fundasjoner:
$$1, x^2, x^4, x^6, ..., x^{2n}$$
.

Odde $-11 - x, x^3, x^5, x^7, ..., x^{2n+1}$.

 $5m(x) = x - \frac{1}{6}x^2 + \frac{1}{120}x^5 - \frac{1}{7!}x^7 + ...$
 $5m(-x) = -5m(x)$

Eksempler på jevne og odde funksjoner

w = longtant.

- $\sin \omega x$ er en odde funksjon
- $\cos \omega x$ er en jevn funksjon
- 1 + x er hverken jevn eller odde
- Sagtannfunksjonen er en odde funksjon

Fourier av odde og jevne funksjoner

Setning (Fourier for odde funksjoner)

For odde funksjoner er alle a-ene null. Dvs $a_0 = a_1 = a_2 = \cdots = 0$.

Setning (Fourier for jevne funksjoner)

For jevne funksjoner er alle b-ene null. Dvs $b_1 = b_2 = b_3 = \cdots = 0$.

Fourierrekken for odde funksjoner

Setning

La f(x) være en stykkvis kontinuerlig periodisk funksjon.

Hvis f(x) er **odde** så er

$$f \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L},$$

der

$$b_n = \frac{2}{L} \int_0^L \sin \frac{n \pi x}{L} f(x) dx, \quad n = 1, 2, 3,$$

Fourierrekken for jevne funksjoner

Setning

La f(x) være en stykkvis kontinuerlig periodisk funksjon. Hvis f(x) er **jevn** så er

$$f \sim a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L},$$

der

$$a_0 = \frac{1}{L} \int_0^L f(x) dx \ og \ a_n = \frac{2}{L} \int_0^L \cos \frac{n\pi x}{L} f(x) dx, \quad n = 1, 2, 3, \dots$$

Odde og jevne periodiske utvidelser

En funksjon definert på et intervall [0, L] kan utvides til en periodisk funskjon med periode 2L på to fornuftige måter. De to måtene kalles for en **jevn periodiske utvidelse**

$$f_{jevn}(x) = \begin{cases} f(x), & 0 < x < L \\ f(-x), & -L < x < 0 \end{cases}$$

og en odde periodisk utvidelse.

$$f_{odde}(x) = \begin{cases} f(x), & 0 < x < L \\ -f(-x), & -L < x < 0 \end{cases}$$

$$f(x) = x \quad x \in Co(L)$$

 $folk(-x) = -f(-(-x)) = -f(x) = -folk(x)$
 $x > 0$

Sinus- og cosinusrekker

Definisjon

La f være definert på [0, L]. Fourierrekken til f_{odde} kalles for **sinusrekken** til f

Definisjon

La f være definert på [0, L]. Fourierrekken til f_{jevn} kalles for **cosinusrekken** til f

Eksempel

Finn **cosinusrekken** til funksjonen $f(x) = \sin x$, $0 < x < \pi$.

Merk at selv om sin x er odde er det den **jevne** funksjonen

$$f_{jevn}(x) = \begin{cases} \sin(x), & 0 < x < \pi \\ -\sin(-x), & -\pi < x < 0 \end{cases}$$

vi skal finne Fourierrekken til. Da vet vi at $b_1 = 0$, $b_2 = 0$ og så videre. Vi skal derfor kun regne ut a_0 og a_1 , a_2 og så videre.

Finne a_0 til f_{jevn} fra forrige foil

$$\frac{1}{L} = \frac{1}{T}$$

$$a_0 = \frac{1}{\pi} \int_0^{\pi} \sin x \, dx = \frac{1}{\pi} \Big[-\cos x \Big]_0^{\pi}$$
$$= \frac{1}{\pi} \Big(-\cos \pi - (-\cos 0) \Big) = \frac{2}{\pi}$$

Finne a_n til f_{jevn}

$$a_n = \frac{2}{\pi} \int_0^{\pi} \sin x \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} \frac{1}{2} \left(\sin(1-n)x - \sin(1+n)x \right) dx$$

$$J_{0} = \frac{1}{\pi} \left[-\frac{1}{1-n} \cos(1-n)x + \frac{1}{1+n} \cos(1+n)x \right]_{0}^{\pi}$$

$$= \begin{cases} 0, & \text{når } n \text{ er odde} \\ \frac{4n}{(1-n^{2})^{2}}, & \text{når } n \text{ er jevn} \end{cases}$$

$$\alpha_1 = \frac{2}{\pi} \cdot \frac{1}{2} \int_0^{\pi} (\sin \theta - \sin 2x) dx = 0$$

