1º TESTE DE ÁLGEBRA LINEAR

16.OUT.2019

Cursos: FÍSICA, MATEMÁTICA

Nome: EXEMPLO DE RESOLUÇÃO

Número:_____Curso:__

JUSTIFIQUE AS RESPOSTAS

1. Considere

$$A_{a,b} = \begin{bmatrix} 1 & a & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 2 & a & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ -1 & -1 & 0 & 0 & b \end{bmatrix}, \qquad \mathbf{b}_c = \begin{bmatrix} 0 \\ c \\ 1 \\ 1 \\ c \end{bmatrix}, \qquad \operatorname{com} a, b, c \in \mathbb{R}.$$

- (a) Calcule para que valores $a, b, c \in \mathbb{R}$ o sistema de equações $A_{a,b}\mathbf{x} = \mathbf{b}_c$, para $\mathbf{x} \in \mathbb{R}^5$, tem: (1) solução única, (2) infinitas soluções, (3) nenhuma solução.
- (b) Determine todas as soluções com componentes reais de $A_{1,0}\mathbf{x} = \mathbf{b}_0$.
- (c) Calcule a característica e bases dos espaços das colunas, das linhas e nulo de $A_{1,0}$.
- (d) Para que valores $a,b\in\mathbb{R}$ a matriz $A_{a,b}$ é não singular? Determine a inversa de $A_{-1,2}$.
- 2. Considere o conjunto S_f das funções y definidas em] $0, +\infty$ [com valores em $\mathbb R$ tais que $t^2y''(t)-2y(t)=f(t)$, para f uma função definida em] $0, +\infty$ [com valores em $\mathbb R$.
- (a) Determine para que funções f o conjunto S_f é um espaço linear real com a adição e a multiplicação usuais definidas ponto a ponto.
- (b) Determine uma base de S_0 (Sugestão: Identifique as funções $y \in S_0$ da forma $y(t) = t^2 z(t)$) e calcule a solução geral de $t^2 y''(t) 2y(t) = t$ para t > 0.

1. (d) De (a), Aa, b e' mão-singular (a+1 e b +0. A-1,2=[X 0], com X=[1-1], Y=[2-1], Z=[000][000]. $X^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, z^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1/2 \end{bmatrix} z^{-1} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1/2 \end{bmatrix} z^{-1} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1/2 \end{bmatrix} z^{-1} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1/2 \end{bmatrix} z^{-1} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1/2 \end{bmatrix} z^{-1} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1/2 \end{bmatrix} z^{-1} z$ 2.(a) Para Sq ser espaço limear tem do contera função y=0; lago, f=0.

41,42 € So => | t²y"-24,=0 = > t²(4,+42)"-2(4,+42)=0 => 41,+42 € So. y ∈ So, cell > t2 4"-2 y=0 e t2 (cy)"-2 (cy)=0 > cy ∈ So, Como So C R Joitot que e cum espaço limear real com as opereções usuais eté funções, oè So e So e fechado em releções à adições e à multiflicaçõe por mimeros reais, Sq é espaço linear (>> f=0. (b) yeso e y(+)= +9 (a(a-1)-2]+=0 H+>0 (a) a= 1+1/1+8 680, y,(+)=t2 e yz(+)=t-1 são soluções e y,yz e So y'(t) = 2t x(t) + t²x'(t), y"(t) = [t²x'(t) + 42x'(t) + (2-2)x(t)]t²\(\frac{1}{2}\) Se y & So e y(t) = t2x(t), como e x = - = e, portanto, x'(t) = e,t, x(t) = - e, t-3+c2, Com c1,2 e R Constantes, logo y(t)=t2 (- = t-3+c2) = e,t2-==t1. Portanto, So=doldy, yet) e como y, ye são lineamente independentes by, yet e una locre de So. yp(t)=-2t er volução particular de t²y"(t)-2y(t)=t paret>0. logo, a soluça gud de t²g"(t)-2y(t)=t, t>0 € 8/(t)= c1t2+ c2+ -2t, +20, com c1, ce (R.