Lecture Notes: Real Analysis — The Archimedian Property, Density of the Rationals, and Absolute Value (Course: MIT 18.100A)

Thobias K. Høivik

March 22, 2025

 \mathbb{R} is the unique ordered field with the least upper bound property containing \mathbb{Q} . **Simple fact:** If $x, y \in \mathbb{R} \land x < y \Rightarrow \exists r \in \mathbb{R}$ such that x < r < y, for instance $r = \frac{x+y}{2}$. Then, we ask the question: $x, y \in \mathbb{R} \land x < y$, then, does there exist $r \in \mathbb{Q}$ such that x < r < y?

Theorem 1 (The Archimedian Property). If $x, y \in \mathbb{R}$ and x > 0 then $\exists n \in \mathbb{N}$ such that nx > y.

Theorem 2 (Density of the Rationals (the answer)). If $x, y \in \mathbb{R}$ and x < y then $\exists r \in \mathbb{Q}$ such that x < r < y

Proof (Archimedian Property). We prove this by contradiction.

1. Assume the negation: Suppose the claim is false. Then there exists $x, y \in \mathbb{R}$ with x > 0 such that for every $n \in \mathbb{N}$,

$$nx \leq y$$
.

This means that the set

$$S = \{ nx \mid n \in \mathbb{N} \}$$

is bounded above by y.

2. Apply the Least Upper Bound (LUB) property: Since \mathbb{R} has the Least Upper Bound Property, the set S has a least upper bound, say b_0 , i.e.,

$$b_0 = \sup S$$
.

By the definition of supremum, for every $\varepsilon > 0$, there exists some $n \in \mathbb{N}$ such that

$$b_0 - \varepsilon < nx < b_0$$
.

3. **Derive a contradiction**: Consider $b_0 - x$. Since b_0 is the least upper bound, it must be that

$$b_0 - x < nx$$

for some $n \in \mathbb{N}$, implying

$$(n+1)x = nx + x > b_0.$$

But this contradicts the assumption that b_0 is an upper bound for S, because $(n+1)x \in S$ and should not exceed b_0 .

Thus, the assumption was false, proving that for any x > 0 and any $y \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that

$$nx > y$$
.

Proof (Density of the Rationals). Suppose $x, y \in \mathbb{R}, x < y$. Then, there are three cases:

- 1. x < 0 < y
- 2. $0 \le x < y$
- 3. $x < y \le 0$

Case 1: Choose $r = 0 \in \mathbb{Q}$

Case 2: Suppose $0 \le x < y$. By the archimedian property $\exists n \in \mathbb{N}$ such that n(y - x) > 1. Then, by the archimedian property again $\exists l \in \mathbb{N}$ such that l > nx.

Thus, $S = \{k \in \mathbb{N} : k > nx\} \neq \emptyset$. The well-ordering property of \mathbb{N} , S has least element m. Since $m \in S \Rightarrow nx < m$. Since m is the least element of S, $m-1 \notin S \Rightarrow m-1 \leq nx \Rightarrow m \leq nx+1$. Then, $nx < m \leq nx+1 < ny \Rightarrow x < \frac{m}{n} < y$, so $r = \frac{m}{n} \in \mathbb{Q}$.

Case 3: Suppose $x < y \le 0$. Then, $0 \le -y < x$. By case 2, $\exists r' \in \mathbb{Q}$ such that -y < r' < -x. Then, multiplying by -1 gives x < -r' < y so r = r'.

Theorem 3. Assume $S \subset \mathbb{R}$ is nonempty and bounded above, i.e $\exists \sup S$. Then $x = \sup S \Leftrightarrow$

- 1. x is an upper bound of S
- 2. $\forall \mathcal{E} > 0, \exists y \in S \ s.t \ x \mathcal{E} < y < x$

Proof. Suppose $S \subset \mathbb{R}$ nonempty and bounded above. First we prove the left-to-right implication: Assume x is the supremum of S. Then x is an upper bound of S. Let $\mathcal{E} > 0$. Then, $x - \mathcal{E} \in \mathbb{R}$. By the density of \mathbb{Q} in \mathbb{R} , $\exists y \in \mathbb{Q}$ such that $x - \mathcal{E} < y < x \Rightarrow x - \mathcal{E} < y \leq x$. Now for the right-to-left implication:

Suppose x is an upper bound of S and that $\forall \mathcal{E} > 0, \exists y \in S \text{ s.t } x - \mathcal{E} < y \leq x$, but x is not the supremum of S. Then $\exists z \in \mathbb{R} \text{ s.t } x - \mathcal{E} < y \leq z < x$. Since $z < x \Rightarrow x - z > 0$. Choose $\mathcal{E} = x - z$. Then, $x - (x - z) < y \leq z < x \Rightarrow z < y \leq z < x$, which contradicts our assumption that z < x so our assumption must be false and properties 1 and 2 must imply that x is the supremum of S.

Thus, we have shown that x is the supremum of S if and only if x is an upper bound of S and for any value arbitrarily close to x there exists some value y in between them.

Remark: There is an analogous statement for the infimum of a set S, which works in the same way.

Theorem 4. $\sup\{1-\frac{1}{n}: n \in \mathbb{N}\}=1$

Proof. Note $1 - \frac{1}{n} < 1$, $\forall n \in \mathbb{N}$ so 1 is an upper bound. Let $\mathcal{E} > 0$. Then by the archimedian principle $\exists n \in \mathbb{N}$ such that $\frac{1}{\mathcal{E}} < n$. Then, $1 - \mathcal{E} < 1 - \frac{1}{n} < 1$. Thus $\sup\{1 - \frac{1}{n} : n \in \mathbb{N}\} = 1$. \square

Definition 1. For $x \in \mathbb{R}$, $A \subset \mathbb{R}$ we define $x + A = \{x + a : a \in A\}$, $x \cdot A = \{x \cdot a : a \in A\}$.

Theorem 5. If $x \in \mathbb{R}$ and A is bounded above then x + A is bounded above and $\sup(x + A) = x + \sup A$.

Proof. Suppose $x \in \mathbb{R}$ and A is bounded above with $\sup A = b_0$. Then $\forall a \in A : a \leq b$, where b is any arbitrary upper bound of A. $b_0 \leq b \Rightarrow a \leq b_0 \Rightarrow x + a \leq x + b_0$. So, $x + b_0$ is an upper bound, but we can more concretely show that it is in fact the l.u.b. Suppose $x + b_0$ is not in fact the least upper bound. Then, $\exists c < x + b_0$ a smaller upper bound. However, subtracting $x \cdot c - x < b_0$ which means that b_0 is not the least upper bound of A anymore with this assumption, and thus it must be false and $x + b_0$ is in fact the l.u.b. Thus $\sup(x + A) = x + \sup A$.

Note that in the proof of **Theorem 5** we could also (and it may have been more rigorous to) use the epsilon definition to prove we had indeed found the l.u.b.

Theorem 6. If $x \in \mathbb{R}$ and A is bounded above then $x \cdot A$ is bounded above and $\sup(x \cdot A) = x \cdot \sup A$.

This is proved in a similar fashion as in **Theorem 5**, one just needs to find some epsilon that will make it magically work.

Theorem 7. If $A, B \subset \mathbb{R}$ with A bounded above and B bounded below and $\forall x \in A, \forall y \in B$ if $x \leq y$ then $\sup A \leq \inf B$.

Proof. Let $y \in B$. Then $\forall x \in A : x \leq y \Rightarrow y$ is an upper bound of A and therefore $\sup A \leq y$. Thus, $\sup A$ is a lower bound of B $\Rightarrow \sup A \leq \inf B$.

Definition 2 (Absolute Value). If $x \in \mathbb{R}$

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$