Question 1. A study was performed to examine the effect of diet on depression in 600 graduate students at one university.

Graduate students were randomized to diet groups such that 300 graduate students were assigned a standard American diet and 300 graduate students were assigned a plant based diet.

All food and beverages were provided by the study center for two months and no students dropped out of the study.

Information was also collected on the students' self-reported exercise for an average week.

After two months, the graduate students took an exam in order to determine if they were clinically depressed or not.

The following table provides the variable coding.

	Variable Coding
diet	0 = standard American diet 1 = plant based diet
exercise	0 = exercise less than an average of 3 hours a week 1 = exercise greater than or equal to an average of 3 hours a week
depressed	0 = Not depressed 1 = Depressed

The following SAS programs were run and partial output is included on the next few pages.

Note: SAS gave the following output for all models:

Convergence criterion (GCONV=1E-8) satisfied.

Please note that this is not a real study. This example is just being used to test and illustrate concepts from the class.

Model 1.A

PROC LOGISTIC;

MODEL depressed (EVENT = '1') = diet / COVB;
FREQ n;

Model Fit Statistics				
Criterion Intercept Only Intercept and Covariates				
AIC	830.547	772.283		
SC	834.944	781.077		
-2 Log L	828.547	768.283		

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	60.2640	1	<.0001	
Score	59.2252	1	<.0001	
Wald	57.1256	1	<.0001	

Analysis of Maximum Likelihood Estimates					
Parameter DF Estimate Standard Wald Chi-Square Pr > ChiSq					
Intercept	1	0.4895	0.1189	16.9390	<.0001
diet	1	-1.3053	0.1727	57.1256	<.0001

Model 1.B

PROC LOGISTIC;

MODEL depressed (EVENT = '1') = exercise / COVB;
FREQ n;

Model Fit Statistics				
Criterion Intercept Only Intercept and Covariates				
AIC	830.547	798.156		
SC	834.944	806.950		
-2 Log L	828.547	794.156		

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	34.3913	1	<.0001	
Score	34.0805	1	<.0001	
Wald	33.4018	1	<.0001	

Analysis of Maximum Likelihood Estimates					
Parameter DF Estimate Standard Chi-Square Pr > ChiSq					
Intercept	1	0.3483	0.1192	8.5341	0.0035
exercise	1	-0.9744	0.1686	33.4018	<.0001

Model 1.C

PROC LOGISTIC;

MODEL depressed (EVENT = '1') = diet exercise / COVB;
FREQ n;

Model Fit Statistics				
Criterion Intercept Only Intercept and Covariates				
AIC	830.547	736.602		
SC	834.944	749.793		
-2 Log L	828.547	730.602		

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	97.9446	2	<.0001	
Score	92.7105	2	<.0001	
Wald	81.9487	2	<.0001	

Α	Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	1.0821	0.1619	44.6895	<.0001	
diet	1	-1.3913	0.1809	59.1761	<.0001	
exercise	1	-1.0832	0.1807	35.9537	<.0001	

Estimated Covariance Matrix				
Parameter	Intercept diet exercise			
Intercept	0.0262	-0.01832	-0.01901	
diet	-0.01832	0.032712	0.005487	
exercise	-0.01901	0.005487	0.032637	

INITIALS:____

Model 1.D

PROC LOGISTIC;

MODEL depressed (EVENT = '1') = diet exercise diet* exercise / COVB;
FREQ n;

Model Fit Statistics				
Criterion Intercept Only Intercept and Covariates				
AIC	830.547	730.313		
SC	834.944	747.900		
-2 Log L	828.547	722.313		

Testing Global Null Hypothesis: BETA=0						
Test	Chi-Square	DF	Pr > ChiSq			
Likelihood Ratio	106.2344	3	<.0001			
Score	101.0480	3	<.0001			
Wald	86.6121	3	<.0001			

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	1.3949	0.2074	45.2163	<.0001
diet	1	-1.9354	0.2700	51.3933	<.0001
exercise	1	-1.6034	0.2632	37.1051	<.0001
diet*exercise	1	1.0454	0.3651	8.1959	0.0042

Estimated Covariance Matrix						
Parameter	Intercept	diet	exercise	dietexercise		
Intercept	0.043029	-0.04303	-0.04303	0.043029		
diet	-0.04303	0.072886	0.043029	-0.07289		
exercise	-0.04303	0.043029	0.069287	-0.06929		
dietexercise	0.043029	-0.07289	-0.06929	0.133332		

Question 2. An investigator ran the following code for a small study and was very confused. The study had a binary outcome (disease=1 for the disease and 0 otherwise), a binary exposure variable (exposure=1 for the exposure and 0 otherwise), and one binary covariate (covariate = 0 or 1). The SAS code and partial output is given below.

Model 2.

```
DATA test;
INPUT covariate exposure disease n;
DATALINES;
0 1 1 6
0 1 0 3
0 0 1 1
0 0 0 6
;
RUN;

PROC LOGISTIC;
MODEL disease (EVENT = '1') = exposure covariate / COVB;
FREQ n;
RUN;
```

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSo							
Likelihood Ratio	4.7312	1	0.0296				
Score	4.3900	1	0.0361				
Wald	3.7049	1	0.0543				

Note: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.

covariate = 0

Analysis of Maximum Likelihood Estimates						
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	-1.7918	1.0801	2.7518	0.0971	
exposure	1	2.4849	1.2910	3.7049	0.0543	
covariate	0	0				

Odds Ratio Estimates					
Effect	95% Wald Point Estimate Confidence Limits				
exposure	12.000	0.956	150.688		

Question 1.1 [5 points] For **Model 1.A**, is there a significant association between the odds of depression and diet using a Wald test? (Provide the odds ratio and corresponding 95% Wald CI.)

Yes, there is a significant association between depression and diet using a Wald test (p-value<0.0001). The OR=0.271 and the 95% Wald CI= (0.193,0.380).

OR: exp(-1.3053)= 0.2710912

95% Wald CI= (exp(-1.3053-1.96*0.1727), exp(-1.3053+1.96*0.1727))= (0.1932459, 0.3802950)

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	0.4895	0.1189	16.9390	<.0001
diet	1	-1.3053	0.1727	57.1256	<.0001

Odds Ratio Estimates					
Effect	95% Wald Point Estimate Confidence Limits				
diet	0.271	0.193	0.380		

Question 1.2 [5 points] For **Model 1.A**, is there a significant association between the odds of depression and diet using a Likelihood Ratio test? (Provide the test statistic and corresponding p-value.)

Yes, there is a significant association between the odds of depression and diet using a Likelihood Ratio test (p-value<0.0001,Chi-square test statistic=60.2640).

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiS							
Likelihood Ratio	<mark>60.2640</mark>	1	<.0001				
Score	59.2252	1	<.0001				
Wald	57.1256	1	<.0001				

Question 1.3 [5 points] For Model 1.A, despite a fairly large sample size of n=600 and a non-rare outcome in the sample with no sparsity in the cells of the contingency table, the chi-square test statistic for the association between the odds of depression and diet is smallest and the corresponding p-value is largest for the Wald test compared to the Score test and Likelihood Ratio test. Why is this the case in general?

In general, the Wald test has lower power compared to the Score and LRT.

Question 1.4 [10 points] For Model 1D, is there a significant association between the odds of depression and average weekly exercise among graduate students assigned to the standard American diet (diet=0)? (Provide an OR and 95% Wald CI.)

Yes, there is a significant association between exercise and the odds of depression among graduate students assigned to the standard American diet. (OR=0.2 and 95% Wald CI=(0.12,0.33))

Let

 $\text{logit}(P(\text{depression}_i=1)) = \beta_0 + \beta_{diet} \text{diet}_i + \beta_{exercise} \text{exercise}_i + \beta_{interaction} \text{diet}_i * \text{exercise}_i$

$$\widehat{OR} = \frac{exp(\hat{\beta}_0 + \hat{\beta}_{exercise})}{exp(\hat{\beta}_0)} = exp(\hat{\beta}_{exercise}) = \exp(-1.6034) = 0.2012112$$

95% Wald CI: $(\exp(-1.6034-1.96*0.2632), \exp(-1.6034+1.96*0.2632)) = (0.1201190, 0.3370486)$

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	1.3949	0.2074	45.2163	<.0001
diet	1	-1.9354	0.2700	51.3933	<.0001
exercise	1	-1.6034	0.2632	37.1051	<.0001
diet*exercise	1	1.0454	0.3651	8.1959	0.0042

Question 1.5 [10 points] For **Model 1D**, is there a significant association between the odds of depression and average weekly exercise among graduate students assigned to the plant based diet (diet=1)? (Provide an OR and 95% Wald CI)

Yes, there is a significant association between exercise and the odds of depression among graduate students assigned to the plant based diet. (OR=0.57 & 95% Wald CI=(0.35,0.94))

Let

 $logit(P(depression_i=1))=\beta_0 + \beta_{diet}diet_i + \beta_{exercise}exercise_i + \beta_{interaction}diet_i * exercise_i$

$$\widehat{OR} = \frac{exp(\hat{\beta}_0 + \hat{\beta}_{diet} + \hat{\beta}_{exercise} + \hat{\beta}_{interaction})}{exp(\hat{\beta}_0 + \hat{\beta}_{diet})} = exp(\hat{\beta}_{exercise} + \hat{\beta}_{interaction})$$

$$= exp(-1.6034 + 1.0454) = 0.5723526$$

$$\sqrt{Var(\hat{\beta}_{exercise} + \hat{\beta}_{interaction})} = \sqrt{Var(\hat{\beta}_{exercise}) + Var(\hat{\beta}_{interaction}) + 2 * Cov(\hat{\beta}_{exercise}, \hat{\beta}_{interaction})}$$
$$= \sqrt{0.069287 + 0.133332 + 2 * -0.06929} = \sqrt{0.064039} = 0.2530593$$

95% Wald CI: (exp((-1.6034+1.0454)-1.96*0.2530593),exp((-1.6034+1.0454)+1.96*0.2530593)) =(0.3485421,0.9398793)

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	1.3949	0.2074	45.2163	<.0001
diet	1	-1.9354	0.2700	51.3933	<.0001
exercise	1	<mark>-1.6034</mark>	0.2632	37.1051	<.0001
diet*exercise	1	1.0454	0.3651	8.1959	0.0042

Estimated Covariance Matrix						
Parameter Intercept diet exercise dietexercis						
Intercept	0.043029	-0.04303	-0.04303	0.043029		
diet	-0.04303	0.072886	0.043029	-0.07289		
exercise	-0.04303	0.043029	0.069287	<mark>-0.06929</mark>		
dietexercise	0.043029	-0.07289	-0.06929	0.133332		

Question 1.6 [10 points] In **Model 1.D**, using a Likelihood Ratio Test, is the interaction between diet and exercise significantly associated with the odds of depression? (Provide a Likelihood Ratio Test Statistics to support your answer.)

Yes, the interaction between diet and exercise is significantly associated with the odds of depression (LRT statistic=16.578, p-value<0.05).

LRT: $-2*(722.313-730.602) = 16.578 > \chi^2_{1,0.95} = 3.841$ then p-value<0.05

Model 1C

Model Fit Statistics		
Criterion Intercept Only Intercept and Covariat		Intercept and Covariates
AIC	830.547	736.602
SC	834.944	749.793
-2 Log L	828.547	730.602

Model 1D

Model Fit Statistics		
Criterion Intercept Only Intercept and Covariate		
AIC	830.547	730.313
SC	834.944	747.900
-2 Log L	828.547	722.313

Question 1.7 [5 points] For Models 1.A, 1.B, 1.C, and 1.D, which is the best model based on AIC?

Model 1.D, the full model with the interaction, is the best model based on AIC since this model has the lowest AIC by at least 2 points.

Question 1.8 [5 points] For Models 1.A, 1.B, 1.C, and 1.D, which is the best model based on BIC?

Model 1.C, the model with diet and exercise, is the best model based on BIC since this model has a BIC within 2 points of the full model (i.e Model 1D).

749.793-747.900= 1.893

Question 1.9 [5 points] In general, why do the models selected by AIC and BIC differ in Question 1.7 and 1.8?

Because BIC penalizes the additional covariates more extremely than AIC.

Model 1A

Model Fit Statistics		
Criterion Intercept Only Intercept and Covariate		
AIC	830.547	<mark>772.283</mark>
SC	834.944	<mark>781.077</mark>
-2 Log L	828.547	768.283

Model 1B

Model Fit Statistics			
Criterion Intercept Only Intercept and Covariate			
AIC	830.547	<mark>798.156</mark>	
SC	834.944	806.950	
-2 Log L	828.547	794.156	

Model 1C

Model Fit Statistics		
Criterion Intercept Only Intercept and Covariate		
AIC	830.547	<mark>736.602</mark>
SC	834.944	749.793
-2 Log L	828.547	730.602

Model 1D

Model Fit Statistics		
Criterion Intercept Only Intercept and Covariate		
AIC	830.547	<mark>730.313</mark>
SC	834.944	747.900
-2 Log L	828.547	722.313

INITIALS:

Question 1.12 [10 points] In the study for question 1 (Models 1.A, 1.B, 1.C, 1.D), are exactly 300 graduate students (i.e. 50% of the 600 graduate students) depressed after the 2 month diet? Justify your answer for full credit.

No.

If 300 of the graduate students are depressed. The -2 log L for the null model is as follows.

$$-2*logL = -2*(300*log(300/600) + 300*log(300/600)) = 831.7766$$

But based on the SAS output, -2 log L for the null=828.547 which doesn't match -2 Log L from above.

For Model 1A

Model Fit Statistics			
Criterion Intercept Only Intercept and Covariate			
AIC	830.547	772.283	
SC	834.944	781.077	
-2 Log L	828.547	768.283	

Response Profile		
Ordered Value	Ordered Value depressed	
1	0	322
2	1	278

$$logit(Pr(disease_i = 1)) = \beta_0 + \beta_E exposure_i + \beta_C covariate_i$$

In matrix form,

$$logit(Pr(Y = 1)) = X\beta$$

where

$$\mathbf{Y} = \begin{bmatrix} 1\\1\\1\\1\\1\\0\\0\\0\\1\\0\\0\\0\\0\\0 \end{bmatrix} and \mathbf{\beta} = \begin{bmatrix} \beta_0\\\beta_E\\\beta_C \end{bmatrix}$$

Give the dimensions of the matrix X and write X in matrix form with ALL the values inputted from Model 2 (i.e. elements of X should be 0s and 1s. Not $exposure_i$ or $covariate_i$). Use Y given above as a guide. Do NOT use dots (i.e. ...) or arrows (i.e. ->). Give ALL of the elements of X.

X has 16 rows and 3 columns

Then there are 9 rows with the intercept=1, covariate =0 and exposure =1. So there are 9 rows of (110) in \mathbf{X} . There are 7 rows with the intercept=1, covariate =0 and exposure=0. So there are 7 rows of (100) in \mathbf{X} .

```
X = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}
```

```
DATA test;
INPUT covariate exposure disease n;
DATALINES;
0 1 1 6
0 1 0 3
0 0 1 1
0 0 0 6
;
RUN;
```

INITIALS:	BIOS 6612 Midterm Exam

p. 17

Question 2.2 [5 points] Explain why the following note was given by SAS for the Model 2 output.

Note: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown. **covariate =** 0

The covariate is 0 for all subjects which is a linear combination of the intercept column in X (i.e. the covariate column is equivalent to the intercept column of X minus itself).

INITIAI	LS:
---------	-----

BIOS 6612 Midterm Exam

p. 18

Question 2.3 [5 points] The OR for the exposure is very large (i.e. OR=12) and the 95% Wald CI is very wide (0.956,150.688), but the corresponding p-value is relatively modest (i.e p-value=0.0543). Explain why the Wald test is not performing well in this scenario.

The sample size is relatively small (n=16) and the Wald test does not perform well for small sample sizes.

Odds Ratio Estimates			
95% Wald Effect Point Estimate Confidence Limits			
exposure	12.000	0.956	150.688

INITIALS:	BIOS 6612: Mid-Term Exam, p. 2

Study: A study was performed to examine whether dietary fiber intake has an effect on HbA1c levels. The HbA1c test (hemoglobin A1c test) is a laboratory test used to estimate average blood glucose levels. Normal HbA1c levels are 4%-6%, but are commonly higher in cigarette smokers. Dietary fiber intake was measured as a continuous variable (grams/day) and vitamin C usage was measured as a categorical variable from a food frequency questionnaire. The study sample consisted of 125 smokers and 75 non-smokers, for a total of 200 participants.

The following variables are available for the analysis:

hba1c: hemoglobin A1c levels (%) fiber: dietary fiber intake (grams/day)

smoker: current smoking status (0 = non-smokers; 1 = smokers)

vitC: supplement of vitamin C (2= large dose, 1= normal dose, 0=no dose)

Vitamin C	New indicator variables					
Usage	vitC_none vitC_normal vitC_large					
vitC_none	1	0	0			
vitC_normal	0	1	0			
vitC_large	0	0	1			

Model 1:

You perform a simple linear regression of HbA1c (*hba1c*) on dietary fiber intake (*fiber*). The following SAS output was obtained.

```
PROC REG;
MODEL hbalc = fiber;
RUN;
```

Analysis of Variance							
Sum of Mean							
Source	DF	Squares	Square	F Value	Pr > F		
Model	XXXXX	XXXXX	2.60748	XXXXX	0.2135		
Error	XXXXX	XXXXX	XXXXX				
Corrected Total	XXXXX	XXXXX					

Parameter Estimates						
Variable DF Estimate Error t Value Pr > t						
Intercept	1	6.62683	0.23910	27.72	<.0001	
fiber	1	-0.01855	0.01487	-1.25	0.2135	

Model 2:

You perform a t-test and a simple linear regression of HbA1c (*hba1c*) on smoking status (smoker). The following SAS output was obtained and then sections were blanked out.

```
proc ttest;
var hbalc;
class smoker;
run;
```

smoker	N	Mean	Std Dev	Std Err	Minimum	Maximum
0	125	5.5324	0.4719	0.0422	4.5300	7.5500
1	75	7.7157	1.0592	0.1223	5.5000	10.6600
Diff (1-2)		-2.1833	0.7475	0.1092		

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	XXXXX	XXXXX	<.0001
Satterthwaite	Unequal	91.9	-16.87	<.0001

```
PROC REG;
MODEL hbalc = smoker / covb;
RUN;
```

Analysis of Variance						
Source DF Sum of Squares Mean Square F Value Pr > F						
Model	Q2A	223.45052	XXXXX	Q2E	<.0001	
Error	Q2B	Q2D	0.55881			
Corrected Total	Q2C	334.09564				

Parameter Estimates						
Variable	VariableDFParameterStandardEstimateErrort ValuePr > t					
Intercept	1	Q2F	0.06686	82.74	<.0001	
smoker	1	Q2G	XXXXX	Q2H	Q2I	

INITIALS:BI	IOS 6612: Mid-Term Exam, p. 4
-------------	-------------------------------

Model 3:

You perform a linear regression of HbA1c (*hba1c*) on fiber, smoking status (smoker), and fiber*smoker (fiber_smoke). The following SAS output was obtained.

PROC REG;
MODEL hba1c = fiber smoker fiber_smoke / covb;
RUN;

Analysis of Variance						
Source DF Squares Square F Value Pr > F						
Model	3	229.16117	76.38706	142.68	<.0001	
Error	196	104.93447	0.53538			
Corrected Total	199	334.09564				

Root MSE	0.73170	R-Square	0.6859
Dependent Mean	6.35115	Adj R-Sq	0.6811
Coeff Var	11.52070		

Parameter Estimates							
Variable	Parameter Standard DF Estimate Error t Value Pr > t						
Intercept	1	5.84243	0.16545	35.31	<.0001		
fiber	1	-0.02118	0.01038	-2.04	0.0427		
smoker	1	2.43152	0.28710	8.47	<.0001		
fiber_smoke	1	-0.01549	0.01773	-0.87	0.3834		

Covariance of Estimates							
Variable	Intercept	fiber	smoker	fiber_smoke			
Intercept	0.0273743493	-0.001577284	-0.027374349	0.0015772839			
fiber	-0.001577284	0.0001077386	0.0015772839	-0.000107739			
smoker	-0.027374349	0.0015772839	0.0824244199	-0.004724646			
fiber_smoke	0.0015772839	-0.000107739	-0.004724646	0.0003144918			

INITIALS:	BIOS 6612: Mid-Term Exam, p. !	5

Model 4: You perform a linear regression of HbA1c (*hba1c*) on vitamin C usage where vitC_normal=1 for normal dosages of vitamin C & 0 otherwise, vitC_large=1 for large dosages of vitamin C & 0 otherwise, and vitC_none= 1 for no vitamin C dosage and 0 otherwise.

Model 4a:

PROC REG;

MODEL hbalc = vitC_none vitC_normal vitC_large / noint covb;
RUN;

Analysis of Variance							
Source DF Sum of Squares Mean Square F Value Pr > F							
Model	Q4A	XXXXX	XXXXX	XXXXX	<.0001		
Error	Q4B	XXXXX	Q4D				
Uncorrected Total	Q4C	XXXXX					

Parameter Estimates							
Variable DF Parameter Estimate Standard Error t Value Pr > t							
vitC_none	1	6.52479	0.11740	55.58	<.0001		
vitC_normal	1	6.26842	0.20775	30.17	<.0001		
vitC_large	1	5.94372	0.19530	30.43	<.0001		

Covariance of Estimates						
Variable vitC_none vitC_normal vitC_large						
vitC_none	0.0137827786	0	0			
vitC_normal	0	0.0431618594	0			
vitC_large	0	0	0.0381430386			

Model 4b:

PROC REG;

MODEL hbalc =vitC_normal vitC_large;

Analysis of Variance							
Source DF Sum of Squares Mean Square F Value Pr > F							
Model	2	10.98596	5.49298	3.35	0.0371		
Error	197	323.10968	1.64015				
Corrected Total	199	334.09564					

Parameter Estimates							
Variable DF Parameter Estimate Standard Error t Value Pr > t							
Intercept	1	Q4E	Q4G	XXXXX	<.0001		
vitC_normal	1	Q4F	Q4H	XXXXX	0.2840		
vitC_large	1	-0.58107	0.22787	-2.55	0.0115		

INITIALS:	BIOS 6612: Mid-Term Exam, p. 6

Model 5:

You perform a simple linear regression of HbA1c (*hba1c*) on dietary fiber intake (*fiber*) and smoking status (*smoker*). The following SAS output was obtained.

PROC REG;

MODEL hbalc = fiber smoker;

Analysis of Variance								
Source DF Sum of Squares Mean Square F Value Pr > F								
Model	2	228.75255	114.37628	213.89	<.0001			
Error	197	105.34308	0.53474					
Corrected Total	199	334.09564						

Parameter Estimates								
Variable DF Parameter Estimate Standard Error t Value Pr > t								
Intercept	1	5.92014	0.13943	42.46	<.0001			
fiber	1	XXXXX	XXXXX	Q5A	0.0019			
smoker	1	2.19877	0.10692	20.56	<.0001			

INITIALS:	BIOS 6612: Mid-Term Exam, p. 7
-----------	--------------------------------

Question 1. 10 points. For **Model 1**, provide a brief interpretation of the association between dietary fiber intake and HbA1c levels, including the **95%** CI, point estimate, p-value, and decision.

95% CI: $-0.01855\pm1.972*(0.01487) = (-0.04787364, 0.01077364)$

There is not a significant association between fiber intake and HbA1c levels in this study (p = 0.2135). For every 1 gram/day increase in dietary fiber intake, HbA1c levels decrease by 0.01855 percentage points (95% CI: -0.048 to 0.011).

Parameter Estimates							
Variable DF Estimate Error t Value							
Intercept	1	6.62683	0.23910	27.72	<.0001		
fiber	1	<mark>-0.01855</mark>	0.01487	-1.25	0.2135		

PROC GLM;

MODEL hba1c = fiber / clparm;

ı	Parameter	Estimate	Standard Error	t Value	Pr > t	95% Confid	ence Limits
	Intercept	6.626829255	0.23909756	27.72	<.0001	6.155324684	7.098333825
	fiber	<mark>-0.01855</mark>	0.01487	-1.25	0.2135	<mark>-0.04787364</mark>	0.01077364

Question 2A. 10 points. Fill in the missing values for Model 2 (parts Q2A-Q2E). Justify your answers for full credit.

```
Q2A.
```

 \overline{DF} model =p =1

O2B.

DF error =n-p-1 =200-1-1=198

Q2C.

DF total = DF model+ DF error= n-1 =200-1= 199

Q2D.

SS error= SS total -SS model = 334.09564- 223.45052=110.6451

Q2E.

MS model = SS model / DF model =223.45052/1 =223.45052 F-stat= MS model/ MS error= 223.45052/ 0.55881=399.8685

```
proc ttest;
  var hba1c;
  class smoker;
  run;
```

smoker	N	Mean	Std Dev	Std Err	Minimum	Maximum
0	125	5.5324	0.4719	0.0422	4.5300	7.5500
1	75	7.7157	1.0592	0.1223	5.5000	10.6600
Diff (1-2)	-2.1833	0.7475	0.1092		

	Method	Variances	DF	t Value	Pr > t
	Pooled	Equal	XXXXX	XXXXX	<.0001
Sat	terthwaite	Unequal	91.9	-16.87	<.0001

```
PROC REG;
MODEL hba1c = smoker / covb;
RUN;
```

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	1 Q2A	223.45052	223.45052 XXXXX	399.87 Q2E	<.0001			
Error	198 Q2B	110.64511 Q2D	0.55881					
Corrected Total	199 Q2C	334.09564						

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	5.5324 <mark>Q2F</mark>	0.06686	82.74	<.0001			
smoker	1	2.1833 <mark>Q2G</mark>	0.10918 XXXXX	20.00 <mark>Q2H</mark>	Q2I			

Question 2B. 10 points. Fill in the missing values for Model 2 (parts Q2F-Q2J). Justify your answers for full credit.

O2F.

Beta0 = mean of HbAc1 for smoker 0= 5.5324

Q2G.

Beta0+ Beta1=Mean of hbac1 for smoker 1 Beta1= Mean of hbac1 for smoker 1- Beta0

Beta1= Mean of hbac1 for smoker 1- Mean of hbac1 for smoker 0

Beta1=7.7157-5.5324=2.1833

Q2H.

t-stat= sqrt(F-stat from ANOVA table Q2E)= sqrt(399.87) = 19.99675 approx. = 20.00

Q2I.

p-value for overall F-stat from ANOVA table: p-value <.0001

```
proc ttest;
var hbalc;
class smoker;
run;
```

smoker	N	Mean	Std Dev	Std Err	Minimum	Maximum
0	125	5.5324	0.4719	0.0422	4.5300	7.5500
1	75	7.7157	1.0592	0.1223	5.5000	10.6600
Diff (1-2)		-2.1833	0.7475	0.1092		

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	XXXXX	XXXXX	<.0001
Satterthwaite	Unequal	91.9	-16.87	<.0001

```
PROC REG;
MODEL hba1c = smoker / covb;
RUN;
```

Analysis of Variance								
Source DF Sum of Squares Mean Square F Value Pr >								
Model	1 Q2A	223.45052	223.45052 XXXXX	399.87 Q2E	<.0001			
Error	198 Q2B	110.64511 Q2D	0.55881					
Corrected Total	199 Q2C	334.09564						

Parameter Estimates								
Variable	DF	Parameter	Estimate	Standard Error	t Value	Pr > t		
Intercept	1	5.5324	Q2F	0.06686	82.74	<.0001		
smoker	1	2.1833	Q2G	0.10918 XXXXX	20.00 <mark>Q2H</mark>	Q2I		

Question 3A. 10 points. Provide an interpretation of the relationship between HbA1c and fiber for non-smokers in **Model 3** (include a point estimate, test statistic and decision).

E[HbA1c]=Beta0 + Beta_fiber * fiber+ Beta_smoker * smoker +Beta_int fiber * smoker

For smoker=0

E[HbA1c]=Beta0 + Beta fiber * fiber

Point estimate: Beta fiber = -0.02118

Test stat: -2.04

There is a significant relationship between HbA1c and fiber for non-smokers (p-value=0.0427). On average, HbA1c decreases by 0.02118 units for non-smokers.

Parameter Estimates								
	Parameter Standard							
Variable	DF	Estimate	Error	t Value	Pr > t			
Intercept	1	5.84243	0.16545	35.31	<.0001			
fiber	1	<mark>-0.02118</mark>	0.01038	<mark>-2.04</mark>	0.042 <mark>7</mark>			
smoker	1	2.43152	0.28710	8.47	<.0001			
fiber_smoke	1	-0.01549	0.01773	-0.87	0.3834			

Covariance of Estimates								
Variable	Intercept	fiber	smoker	fiber_smoke				
Intercept	0.0273743493	-0.001577284	-0.027374349	0.0015772839				
fiber	-0.001577284	0.0001077386	0.0015772839	-0.000107739				
smoker	-0.027374349	0.0015772839	0.0824244199	-0.004724646				
fiber_smoke	0.0015772839	-0.000107739	-0.004724646	0.0003144918				

Question 3B. 10 points. Provide an interpretation of the relationship between HbA1c and fiber for smokers in **Model 3** (include a point estimate, test statistic and decision).

E[HbA1c]=Beta0 + Beta_fiber * fiber+ Beta_smoker * smoker +Beta_int fiber * smoker

For smoker=1

E[HbA1c]=[Beta0 + Beta smoker] + [Beta fiber+ Beta int] * fiber

Point estimate: Beta fiber+ Beta int = -0.02118+-0.01549= -0.03667

Var(Beta_fiber+ Beta_int)= Var(Beta_fiber)+ Var(Beta_int)+ 2 cov(Beta_fiber, Beta_int) = 0.0001077386+0.0003144918+2*-0.000107739 = 0.0002067524

Test stat: $-0.03667/\text{sqrt}(0.0002067524) = -2.550267 > t_{196,0.975} = 1.9723 \text{ So p-value} < 0.05$

There is a significant relationship between HbA1c and fiber for smokers (p-value<0.05). On average, HbA1c decreases by 0.03667 units for smokers.

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	5.84243	0.16545	35.31	<.0001			
fiber	1	<mark>-0.02118</mark>	0.01038	-2.04	0.0427			
smoker	1	2.43152	0.28710	8.47	<.0001			
fiber_smoke	1	<mark>-0.01549</mark>	0.01773	-0.87	0.3834			

Covariance of Estimates									
Variable	Intercept	Intercept fiber smoker							
Intercept	0.0273743493	-0.001577284	-0.027374349	0.0015772839					
fiber	-0.001577284	0.0001077386	0.0015772839	-0.000107739					
smoker	-0.027374349	0.0015772839	0.0824244199	-0.004724646					
fiber_smoke	0.0015772839	-0.000107739	-0.004724646	0.0003144918					

PROC GLM; MODEL hba1c = fiber smoker fiber_smoke; ESTIMATE 'no smoker' fiber 1; ESTIMATE 'smoker' fiber 1 fiber_smoke 1;

		Standard		
Parameter	Estimate	Error	t Value	Pr > t
no smoker	-0.02117731	0.01037972	-2.04	0.0427
smoker	<u>-0.03667010</u>	0.01437892	<mark>-2.55</mark>	<mark>0.0115</mark>

INITIALS:	BIOS 6612: Mid-Term Exam, p. 12
Question 3C. 10 points. Does the	e relationship between HbA1c and fiber significantly depend
on smoking status? Give a p-value	ue to support this decision.

The relationship between HbA1c and fiber does not significantly depend on smoking status (p-value=0.3834).

Model 4

Parameter Estimates								
Variable	able DF Estimate Error t Value Pr >							
Intercept	1	5.84243	0.16545	35.31	<.0001			
fiber	1	-0.02118	0.01038	-2.04	0.0427			
smoker	1	2.43152	0.28710	8.47	<.0001			
fiber_smoke	1	-0.01549	0.01773	-0.87	0.3834			

Question 4A. 10 points. Fill in the missing values for Model 4a (parts Q4A-Q4D). Justify your answers for full credit.

Q4A.

DF model = p = 3 b/c no intercept

Q4B.

DF error = n-p-0 = 200-3 = 197

Q4C.

DF total= **DF** model+ **DF** error= 3+197 =200

Q4D.

MS error from cell means model= MS error from reference cell model= 1.64015

Model 4a:

MODEL hbalc = vitC_none vitC_normal vitC_large / noint covb;

Analysis of Variance						
Source DF Sum of Squares Mean Square F Value Pr > F						
Model	Q4A 3	XXXXX 8078.40722	XXXXX 2692.80241	XXXXX 1641.80	<.0001	
Error	Q4B 197	XXXXX 323.10968	Q4D 1.64015			
Uncorrected Total	Q4C 200	XXXXX 8401.51690				

Parameter Estimates							
Variable DF Parameter Estimate Standard Error t Value Pr > t							
vitC_none	1	6.52479	0.11740	55.58	<.0001		
vitC_normal	1	6.26842	0.20775	30.17	<.0001		
vitC_large	1	5.94372	0.19530	30.43	<.0001		

Covariance of Estimates								
Variable	Variable vitC_none vitC_normal vitC_large							
vitC_none	0.0137827786	0	0					
vitC_normal	0	0.0431618594	0					
vitC_large	0	0	0.0381430386					

Model 4b:

MODEL hba1c =vitC_normal vitC_large;

Analysis of Variance							
Source DF Sum of Squares Mean Square F Value Pr > F							
Model	2	10.98596	5.49298	3.35	0.0371		
Error	197	323.10968	1.64015				
Corrected Total	199	334.09564					

Root MSE	1.28068	R-Square	0.0329
Dependent Mean	6.35115	Adj R-Sq	0.0231
Coeff Var	20.16459		

Parameter Estimates							
Variable	DF	DF Parameter Estimate Standard Error t Value Pr >					
Intercept	1	Q4E 6.52479	Q4G 0.11740	XXXXX 55.58	<.0001		
vitC_normal	1	Q4F -0.25637	Q4H 0.23863	XXXXX -1.07	0.2840		
vitC_large	1	-0.58107	0.22787	-2.55	0.0115		

Question 4B. 10 points. Fill in the missing values for Model 4 (parts Q4E-Q4H). Justify your answers for full credit.

Cell means model:

E[hbac1]=Beta_none * VitC_none+ Beta_normal * VitC_normal+ Beta_large * VitC_large Reference model:

E[hbac1]=Gamma_0 + Gamma _normal * VitC_normal+ Gamma _large * VitC_large

Q4E.

Gamma0= Beta none=6.52479

Q4F.

Gamma normal= Beta normal- Beta none= 6.26842-6.52479= -0.25637

Q4G.

SE(Gamma0)= SE(Beta none)= 0.11740

Q4H.

SE(Gamma _normal)= sqrt(var[Beta_normal- Beta_none])

= sqrt(var[Beta_normal]+var[Beta_none]-2cov[Beta_normal, Beta_none])

=sqrt(0.0137827786+0.0431618594-2*0) = 0.2386308

Model 4a:

MODEL hbalc = vitC_none vitC_normal vitC_large / noint covb;

Parameter Estimates								
Variable	DF	F Parameter Estimate Standard Error t Value Pr >						
vitC_none	1	<mark>6.52479</mark>	<mark>0.11740</mark>	55.58	<.0001			
vitC_normal	1	<mark>6.26842</mark>	0.20775	30.17	<.0001			
vitC_large	1	5.94372	0.19530	30.43	<.0001			

Covariance of Estimates							
Variable vitC_none vitC_normal vitC_large							
vitC_none	0.0137827786	0	0				
vitC_normal	0	0.0431618594	0				
vitC_large	0	0	0.0381430386				

Model 4b:

MODEL hbalc =vitC normal vitC large;

Analysis of Variance						
Source DF Sum of Squares Mean Square F Value Pr > F						
Model	2	10.98596	5.49298	3.35	0.0371	
Error	197	323.10968	1.64015			
Corrected Total	199	334.09564				

Root MSE	1.28068	R-Square	0.0329
Dependent Mean	6.35115	Adj R-Sq	0.0231
Coeff Var	20.16459		

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	Q4E 6.52479	Q4G 0.11740	XXXXX 55.58	<.0001
vitC_normal	1	Q4F -0.25637	Q4H 0.23863	XXXXX -1.07	0.2840
vitC_large	1	-0.58107	0.22787	-2.55	0.0115

INITIALS:_____

BIOS 6612: Mid-Term Exam, p. 15

Question 4C. 10 points. Using **Model 4a**, test whether HbA1c is the same for those taking normal doses of vitamin C (vitC_normal) versus those taking large doses of vitamin C (vitC large). **Provide only the null hypothesis and test statistic.**

Ho: Beta_normal – Beta_large =0

$$t = \frac{\beta_{normal} - \beta_{large}}{SE\left(\beta_{normal} - \beta_{large}\right)} = \frac{6.26842 - 5.94372}{\sqrt{0.0431618594 + 0.0381430386}} = \frac{0.3247}{0.2851401} = 1.138738$$

	Standard Standard			
Parameter	Estimate	Error	t Value	Pr > t
normal-large	<mark>0.3247</mark>	0.2851401	<mark>1.14</mark>	0.2562

Model 4a:

PROC REG;

MODEL hbalc = vitC_none vitC_normal vitC_large / noint covb; RUN;

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
vitC_none	1	6.52479	0.11740	55.58	<.0001	
vitC_normal	1	<mark>6.26842</mark>	0.20775	30.17	<.0001	
vitC_large	1	5.94372	0.19530	30.43	<.0001	

Covariance of Estimates					
Variable vitC_none vitC_normal vitC_large					
vitC_none	0.0137827786	0	0		
vitC_normal	0	0.0431618594	0		
vitC_large	0	0	0.0381430386		

Question 5. 10 points. Give the absolute value of the t statistic for fiber in **Model 5** (part **Q5A**). **Show your work for full credit.** Hint: this question requires a partial F-test.

t-stat for H0: Beta_fiber=0 in Model 5 equals the square root of the partial F-test between model 4 with smoker and fiber and model 2 with just smoker.

Partial F-test: [(SS model (full)- SS model (reduced))/k] / MSE(full) =((228.75255-223.45052)/1)/ 0.53474=9.915155

Absolute value of t-stat= sqrt(9.915155)= 3.148834

Model 5:

PROC REG;

MODEL hbalc = fiber smoker;

RUN;

	Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	<mark>228.75255</mark>	114.37628	213.89	<.0001
Error	197	105.34308	<mark>0.53474</mark>		
Corrected	199	334.09564			
Total					

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	5.92014	0.13943	42.46	<.0001	
fiber	1	XXXXX -0.02648	XXXXX 0.00841	Q5A -3.15	0.0019	
smoker	1	2.19877	0.10692	20.56	<.0001	

Model 2:

PROC REG;

MODEL hbalc = smoker / covb;

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1 Q2A	<mark>223.45052</mark>	223.45052 XXXXX	399.87 Q2E	<.0001
Error	198 Q2B	110.64511 Q2D	0.55881		
Corrected Total	199 Q2C	334.09564			

INITIALS:

BIOS 6612: Mid-Term Exam, p. 17

Question 6 Extra Credit: 5 points. Using the output for Model 1 calculate the correlation between fiber and HbAc1. Justify your answers for full credit.

In simple linear regression, $\left(correlation \ coefficient\right)^2 = R^2 = \frac{SS_{Model}}{SS_{Total}}$

Then we need the SS model and SS total.

DF model=1

Then SS model = MS model * DF model =2.60748*1=2.60748

The F stat= t stat for fiber squared. F stat= $(-1.25)^2=1.5625$

F stat = MS model /MS error

Then MS error = MS model/ F stat =2.60748 /1.5625=1.668787

MS error DF= n-p-1=200-1-1=198

SS error= MS error * DF= 1.668787*198=330.4198

SS total= SS model +SSerror= 2.60748+330.4198=333.0273

$$\left(correlation\ coefficent\right) = -\sqrt{R^2} = -\sqrt{\frac{SS_{Model}}{SS_{Total}}} = -\sqrt{\frac{2.60748}{333.0273}} = -0.08848519$$

PROC REG;

MODEL hbalc = fiber;

RUN;

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	XXXXX 1	XXXXX 2.60748	<mark>2.60748</mark>	XXXXX 1.56	0.2135
Error	XXXXX 198	XXXXX 331.48816	XXXXX 1.67418		
Corrected Total	XXXXX 199	XXXXX 334.09564			

Parameter Estimates					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	6.62683	0.23910	27.72	<.0001
fiber	1	-0.01855	0.01487	<mark>-1.25</mark>	0.2135

Proc corr;

Var hba1c fiber;

run;

Pearson Correlation Coefficients, N = 200 Prob > r under H0: Rho=0				
	hba1c fiber			
hba1c	1.00000	-0.08834		
0.2135				
fiber	-0.08834	1.00000		