

Institute for Hadronic Structure and Fundamental Symmetries School of Natural Sciences Technical University of Munich

Development of FPGA frontend electronics of the scintillating fiber hodoscope of AMBER at CERN

Tim Maehrholz

Bachelor's Thesis

Supervisor:

Prof. Dr.

Chair of

Second Examiner:

PD Dr.

January 2025

	Abstract

Here will be my abstract for thesis Thesis template from the ZNN, updated for Biblatex and Biber.

Contents

1.	Int	roduc	etion	1
2.	The	eoreti	cal concepts and overview of AMBER	3
	2.1.	Measu	rment of the charge radius of the proton (PRM)	3
		2.1.1.	Previous measurements of the proton radius	3
		2.1.2.	Elastic scattering of muons on protons	3
	2.2.	Genera	al setup for PRM at AMBER	4
		2.2.1.	Detectors for PRM	4
		2.2.2.	Scintillating fiber hodoscope(SFH)	7
	2.3.	Field l	Programmable Gate Arrays (FPGAs)	8
3.	Fro	ntenc	d electronic of the scintillating fiber hodoscope	9
	3.1.	Overv	iew of the frontend electronics	9
		3.1.1.	Processing of the SFH signal	10
		3.1.2.	The analog frontend electronics (FEE) PCB	10
		3.1.3.	The iFTDC	11
	3.2.	The C	itiroc1A ASIC	11
		3.2.1.	Signal processing of the Citiroc1A	12
	3.3.	Config	guration of the Citiroc1A	13
		3.3.1.	The slow control register	14
		3.3.2.	The probe register	15
4.	De	velopi	ment of the FPGA firmware for the SFH	17
	4.1.	Overv	iew of the firmware	17
		4.1.1.	The IPBUS protocol	17

Contents

		4.1.2.	The firmware structure	18
	4.2.	Config	guration of the Citiroc1A ASIC	19
		4.2.1.	Status and control register	20
		4.2.2.	Configuration state machine	20
		4.2.3.	Verification state machine	21
5.	Res	sults		23
6.	Dis	cussic	on	25
7.	Co	nclusi	on and Outlook	27
	7.1.	Conclu	asion	27
	7.2.	Outloo	bk	27
A	ppe	ndix .	A.Configurable registers of the Citiroc1A ASIC	29
\mathbf{A}	ppe	ndix]	B. Code	37

CHAPTER 1

Introduction

"What we observe is not nature itself, but nature exposed to our method of questioning." [Werner Heisenberg] [7]

Progress in particle physics has always been driven by the desire to understand the fundamental building blocks of our universe.

Our current best theory for the innnerworkings of our world, the standart model of particle physics shows us, that the matter we see around us is mostly made up of down and up qurks and electrons. Combinations of these quarks, held together by the strong nuclear force form the proton and neutron, the nuclei of the atoms that make up the matter of the everyday world. Eventhough the proton was discovered over a hundred years ago by Ernest Rutherford[10], it is still not fully understood.

Since the proton, unlike the electron is a composite particle, it follows that it has an internal structure. The semantic meaning of size in the realm of particle physics is not as straight forward as in the macroscopic world. An answer to the question, what is the size of the proton can be given by looking at the charge distribution of the proton, which defines the charge radius of the proton.

The proton radius measurment at AMBER at CERN aims to reselve a discrepency between the charge radius of the proton as measured by the Lamb shift in muonic and ordinary hydrogen and the electron-proton scattering experiments, the so called proton radius puzzel.

To achieve this, the PRM experiment will measure the cross section of elastic scattering of muons on protons. The scintillating fiber hodoscope is a key component of the PRM experiment, as it provides crucial time measurements of the incoming and scattered mouns,

needed for the measurment of the proton radius[1].

This thesis will focus on the development of the FPGA driven frontend electronics of the scintillating fiber hodoscope for the proton radius measurment at AMBER at CERN, especially on the development of the FPGA firmware required for the control of the Citiroc1A ASIC, a part of the readout and trigger electronic.

Theoretical concepts and overview of AMBER

2.1. Measurment of the charge radius of the proton (PRM)

The proton is a baryon, a composite particle made up of one down quark and two up quarks. From this follows that the proton is not a point particle, but has an internal sturucture.

The internal structure can be discribed by the structure functions of the proton, the electric and magnetic form factors G_E and G_M . [1]

2.1.1. Previous measurements of the proton radius

The charge radius of the proton has been massured several times before with different methods. The two premier methods are electron proton scattering experiments and the Lamb shift in muonic and ordinary hydrogen. The results of these measurements differ by five standard deviations as shown in Figure 2.1, this has given rise to the so called proton radius puzzle. [1]

2.1.2. Elastic scattering of muons on protons

The AMBER PRM experiment at CERN aims to reslove the proton radius puzzle, by measuring the elastic scattering of muons on protons. The first order cross section, taking

Figure 2.1.: Previous measurements of the proton radius from electron proton scattering experiments and the Lamb shift in muonic and ordinary hydrogen, the measurements differ from each other by five standard deviations. [1]

into account only interactions where one virtual photon was exchanged, for the elastic scattering of muons on a proton target is

$$\frac{d\sigma}{dQ^2} = \frac{\pi\alpha^2}{Q^4 m_p^2 p_\mu^2} \left[\left(G_E^2 + \tau G_M^2 \right) \frac{4E_\mu^2 m_p^2 - Q^2 (s - m_\mu^2)}{1 + \tau} - G_M^2 \frac{2m_\mu^2 Q^2 - Q^4}{2} \right] \tag{2.1}$$

with $Q^2 = -q^2$ the squared transferred four-momentum, $\tau = Q^2/4m_p^2$, $s = (p_\mu + p_p)^2$, G_E the electric form factor of the proton, G_M the magnetic form factor of the proton and α the fine structure constant. [2]

Through determining the form factor G_E for small Q^2 , the charge radius of the Proton can be claculated with the following equation [2]

$$r_p^2 = -6 \frac{dG_E}{dQ^2} \bigg|_{Q^2 = 0} \tag{2.2}$$

2.2. General setup for PRM at AMBER.

2.2.1. Detectors for PRM

To determine the magentic G_M and electric form G_E factors of the proton and thus the charge radius of the Proton, the experimental cross section of the elastic scattering of muons on protons has to be measured.

The general setup of the PRM experiment, with focus on the new detectors needed for the proton radius measurment, is shown in Figure 2.2.

Figure 2.2.: General setup of the Amber experiment with new detectors for PRM. [5]

The incoming muon beam with an energy of $100 \,\text{GeV}[1]$ and an beam rate of $2 \times 10^6[3]$ particles per second is scattered on a pressurized hydrogen gas target, located in the Time Projection Chamber (TPC), which also acts as the detector for the recoil path of

the scattered proton.

The reconstruction of the path of the muon is achieved through the usage of two detector types, combined into one unified tracking station (UTS) as shown in Figure 2.3.

Each UTS consists of three layers of pixilized silicon detectors (ALPIDEs), for precises positional measurments (spacial resolution of about 8 µm [6]) of the incoming and scattered muons, but lacking the time resolution(5 µs[6]) required for the PRM experiment. For this reason each UTS includes a scintillating fiber hodoscope (SFH),the detector of intrest for this thesis, which provides the time precision(300 ps[6]) for the measurment. Four of these unified tracking stations, two before and two after the active target, are placed in the beamline as shown in 2.2. The measurment of the momentum of the scattered moun is done by existing COMPASS detectors located after the, for the PRM newly included, detectors[1].

Figure 2.3.: Unified tracking station (UTS) with three layers of pixilized silicon detectors (ALPIDEs) and the scintillating fiber hodoscope (SFH). [5]

2.2.2. Scintillating fiber hodoscope(SFH)

Figure 2.4.: Scintillating fiber hodoscope (SFH) with some of the scintillating fibers of the four layers installed. The frontend electronics are not attached. [5]

The scintillating fiber hodoscope shown in Figure 2.4, the detector for which the FPGA driven frontend electronics are developed in this thesis, is used to measure the precise timing(300 ps[6]) of the incoming and scattered muons. Every SFH contains four layers of scintillating fibers, two in x and two in y direction. Each layer is made up of 192[6], 500 μm thick[4] fibers, in total 768[6] fibers per SFH. When charged particels, muons in

this case, pass through a scintillating fiber they excite the scintillating material, which then emits photons. Both ends of every fiber are conected to a silicon photomultiplier (SiPM) which converts the photons into an electrical signal, that is then processed by the frontend electronics.

2.3. Field Programmable Gate Arrays (FPGAs)

hallo

Frontend electronic of the scintillating fiber hodoscope

3.1. Overview of the frontend electronics

Figure 3.1.: Sideview of the frontend electronics that will be attached on the sides of the SFH, the fiber holders will be attached to the fibers. The SiPM arrays transform the incoming photons into electric signals, that are then transferred to the frontend electronics by the PCB interposer.[5]

3.1.1. Processing of the SFH signal

The frontend electronics of the scintillating fiber hodoscope process the signals from the scintillating fibers. They can be attached on all four sides of the SFH, as can be seen in Figure 2.4. The fibers are conected to the fiber holders on both ends as shown in Figure 3.1. There are in total 768[6] fibers per SFH. Since both ends produce an electric signal, a total of 1546 signals or 384 signals, for every attached electronics unit have to be processed.

The incoming photons are transformed into electric signals by the SiPM arrays. The SiPM signals are then transmitted to the analog frontend electronics (FEE) PCB by the interposer PCB also shown in Figure 3.1.[5]

3.1.2. The analog frontend electronics (FEE) PCB

Figure 3.2.: The analog frontend electronics (FEE) PCB with the six Citiroc1A ASICs, on the left side the power supply is connected. The output of the Citiroc1A is transmitted to the iFTDC over three flex PCBs.[5]

The analog frontend electronics (FEE) PCB, shown in Figure 3.2, together with the iFTDC form the heart of the frontend electronics. The FEE PCB incorporates six Citiroc1A ASICs, which are designed to amplify and process the signals from the SiPM arrays. Each Citiroc1A ASIC handles 32 signals. The output of the Citiroc1A is then transmitted to the iFTDC over three flex PCBs. The power supply is connected to the

FEE PCB on the left side as shown in 3.2. Two Citirroc1A ASICs are each controlled by one Artix-7 FPGA located on the iFTDC.[8]

3.1.3. The iFTDC

Figure 3.3.: The iFTDC with three Artix-7 FPGA, the three flex PCBs that connect the iFTDC with the FEE PCB and the power supply.[8]

The iFTDC, depicted in Figure 3.3 is a FPGA based time-to-digital converter. It consists of three Artix-7 FPGA, who each control two Citiroc1A ASICs. The FPGA handels the readout as well as the configuration of the Citiroc1A ASICs[8].

INSERT: here stil hast to be includes how ethernet works how ipbus works and how jtag is implemented ans stuff analong this line

3.2. The Citiroc1A ASIC

The Citiroc1A ASIC is a frontend application-specific integrated circuit developed by Weeroc for the readout of SiPM detectors. It allows for the readout of 32 channels and is sensitive to $\frac{1}{3}$ of a photoelectron.[11]

The Citiroc1A ASIC is controlled and readout by the Artix-7 FPGA on the iFTDC, each FPGA controlling two Citiroc1A ASICs.[8] The focus of this thesis is the development of

the FPGA firmware for the control of the Citiroc1A ASICs, but a provesional readout firmware for testing the configuration of the Citiroc1A will also be developed.

3.2.1. Signal processing of the Citiroc1A

Figure 3.4.: General ASIC block scheme of the Citiroc1A. [11]

The general block scheme of the Citiroc1A is shown in Figure 3.4.

The Citiroc1A allows for the fine tuning of the SiPM bias voltage for each channel via the 8-bit input DAC.

The input signals are amplified with a variable high or low gain, configurable for every channel as depicted in Figure 3.5. The PRM experiment requires the maximal high gain of 62.[8]

The amplified signals are then shaped by either the slow (ssh) or fast shaper (fsh) as shown in Figure 3.4. The fast shaper is used for the PRM experiment, since it has a 15 ns peaking time and a better time resultion, which is needed for the time precision of the SFH.[11]

The ASIC has two discriminators, the charge discriminator and the time discriminator. In this thesis we will only look at the time discriminator, since it provides the time information. The time discriminator threshold is adjustable via a 10 bit dac for all channels and an additional 4 bit dac for every individual channel as shown in Figure 3.4 [11].

Figure 3.5.: High gain amplification of the Citiroc1A. The gain is adjustable from 0 to 1575 fF in 25 fF steps.[11]

3.3. Configuration of the Citiroc1A

Figure 3.6.: The two configurable registers of the Citiroc1A are selected using the Select signal. The FPGA communicates with the Citiroc1A through the signals Clk_sr, Rstb_sr, Srin_sr, and Load_sr, while the Srout signal is sent back from the Citiroc1A to the FPGA for verification. [11]

The configuration of the Citiroc1A is achieved by the FPGA via the five signals shown in Figure 3.6. The Select signal allows the choice between configuring the slow control, for Select = 1 or the probe register, for Select = 0.[11]

Figure 3.7.: The slow control chronogram, depicting the bitstream writing process controled by Clk_sr the clock signal and Srin_sr the data signal. A rising edge of Load_sr is required, after successful verification with the Srout signal to load the slow control register. [11]

3.3.1. The slow control register

The slow control register is used to set values for internal variables like the high gain for a channel or the time discriminator threshold. It also allowes for the FPGA to turn of spesific stages of the Citiroc1A, like the slow shaper or the time discriminator. The register is 1144 bits long. A full list of all the register that can be set is shown in Table A.1 in Appendix A.

The process of writing the bitstream into the slow control register by the FPGA is illustrated in Figure 3.7.

The Rstb_sr signal is an asynchronous active-high reset for the serial register, applying to both the slow control and probe register.

The FPGA processes the bitstream sequentially, starting with the most significant bit (MSB). Each bit is sent on the Srin_sr signal in coordination with a rising edge of the Clk_sr clock signal.

The Load sr signal is used to load the bitstream into the slow control register. After all bits have been sent to the Citiroc1A, a rising edge on Load sr is required to load the slow control register.

The Srout signal is sent back from the Citiroc1A to the FPGA for bitstream verification. Only after the FPGA has sent the full bitstream twice, does the Srout signal take on the value of the bitstream, since the Srout signal is shifted by the length of the bitstream.[11]

One should only set the rising edge of the Load_sr signal after verifying that the Srout signal takes on the correct values.

3.3.2. The probe register

Figure 3.8.: Scheme block of internal probing system, allowing the routing of internal signals to probe pins for debugging purposes. It is configured via the probe register. [11]

The probe register is used for routing internal signals to several output pins for debugging purposes. It's functionality is ilustrated in Figure 3.8. The register consists of 256 bits and is written the sameway as the slow control register, with the difference that the bits are directly written into the Citiroc1A without requiring a rising edge on Load_sc.[11] The full list of all the register that can be set in the probe register is shown in Table A.2 in Appendix A.

The internal signals for each channel that can be routed to the output pins are shown in Table 3.1.

Only one signal can be routed to each output pin at a time, without potentially causing a short circuit.[11]

Signal Source	Description	Output Pin
High and low gain preamplifier, slow and fast shapers	Outputs of preamplifiers and shapers	out_probe
PeakSensing_modeb_LG PeakSensing_modeb_HG	Internal peak-sensing signal for low gain Internal peak-sensing signal for high gain	digital_probe -
Output of input DAC	DAC output voltage (5 V)	out_probe_dac_5_V

Table 3.1: Internal signal routing to output pins for each channel.

Development of the FPGA firmware for the SFH

4.1. Overview of the firmware

The firmware developed in this thesis for the three Artix-7 FPGAs, located on the iFTDC as described in Section 3.1.3, must perform several functionalities. The main tasks of the firmware are to configure the Citiroc1A ASIC, explained in Section 3.3, communication with the controlling coputer via ethernet and the IPBUS protocol and a provisional readout of the time triggerd data from the Citiroc1A ASIC.

The fimrmware is written in VHSIC Hardware Description Language (VHDL) and is synthesized and implemented using the Xilinx Vivado Design Suite. Several IP-cores, provided by Xilinx, are used to simplfy the development of the firmware for several task like the implementation of the memory.

4.1.1. The IPBUS protocol

The IPBUS protocol used for the communication between the FPGA and the controlling computer is a simple protocol for controlling IP-aware hardware devices with a 32 bit read and write bus using UDP as the transport protocol.[9]

The IPBUS protocol defines a read and write command enabling successful write and read operations of a 32 bit register, with a 32 bit address in the FPGA.

The commands can be issued on the controlling computer with the μ HAL library, which allowes the user to issue read and write commands with a python script and an XML file defining the address of the registers.[9]

The address space inside the FPGA is defined in the firmware. The address space is

divided into seprate address spaces for each of the slaves by the leading bits of the address. For some slaves, the address space is further divided into subspaces for the different registers of the slave.

4.1.2. The firmware structure

The firmware has a hierarchical structure. In this section, I will describe the structure of the relevant components of the firmware.

The top level modul of the firmware contains the outgoing and incoming signals of the FPGA.

The top level modul instantiates a wrapper modul for the IPBUS protocol and the slave entities and a synchronizer modul for the incoming time triggerd Citiroc1A signals.

The wrapper modul contains the IPBUS protocol logic and the address decoding logic as well as a modul containing the slaves.

The slave modul contains several slaves for the different tasks of the firmware. For each of the Citiroc1A ASICs, a slave is instantiated for the configuration and verification of the ASIC, along with 32 hitcounters for the 32 channels of the Citiroc1A ASIC.

4.2. Configuration of the Citiroc1A ASIC

The configuration of the slow control and probe registers of the Citiroc1A ASIC, along with the verification of this configuration, is handled by two finite state machines. Both state machines each control a random access memory (RAM) with a depth of 64 addresses, where each address stores 32 bits of data. The state machines in turn are controlled by the status and control register, which can be written by the controlling computer via the ipbus protocol.

4.2.1. Status and control register

4.2.2. Configuration state machine

Figure 4.1.: Finite state machine for configuring the Citiroc1A ASIC. States associated with the same processes are highlighted using the same color.

4.2.3. Verification state machine

Figure 4.2.: Finite state machine for verifying the configuration of the Citiroc1A ASIC. States belonging to the same processes are represented with the same color.

		\sim
ATT A		h
$(: H \Delta)$	$\mathcal{P} + \mathcal{H} + \mathcal{H}$	- 1
$\mathbf{V}IIII$		٠,

Results

CHAPTER 6

Discussion

Discussion

CHAPTER 7

Conclusion and Outlook

7.1. Conclusion

Conclusion

7.2. Outlook

Outlook

APPENDIX A

Configurable registers of the Citiroc1A ASIC

Table A.1.: Configurable registers of the slow control register[5]

Field	Bits	Default	Position	Description
Register:channel_thr_time	•			
ch_0	4	0	0	Channel-dependent 4-bit
				threshold for time discrimi-
				nator.
:				
ch_31	4	0	-	-
Register:channel_thr_charge				
ch_0	4	0	128	Channel-dependent 4-
				bit threshold for charge
				discriminator.
:				
ch_31	4	0	-	-
Register:discriminator_power	·			
discriminator_charge_en	1	0	256	Enable charge discrimina-
				tor.
discriminator_charge_pp	1	0	-	Power pulse for charge dis-
				criminator.
discriminator_latched_output	1	0	-	1: latched, 0: direct output.

Configurable registers of the slow control register continued on next page

Field	Bits	Default	Position	Description
discriminator_time_en	1	1	-	Enable time discriminator.
discriminator_time_pp	1	1	-	Power pulse for time discriminator.
4bit_dac_charge_en	1	0	261	Enable 4-bit charge DAC.
4bit_dac_charge_pp	1	0	-	Power pulse for 4-bit charge DAC.
4bit_dac_time_en	1	1	-	Enable 4-bit time DAC.
4bit_dac_time_pp	1	1	-	Power pulse for 4-bit time DAC.
ch_{-0}	1	1	265	0: masked, 1: unmasked.
:				
ch_31	1	1	-	-
Register:track_and_hold_power				
high_gain_pp	1	0	297	Enable high gain.
high_gain_en	1	0	-	-
low_gain_pp	1	0	-	Power pulse for low gain.
low_gain_en	1	0	-	Enable low gain.
weak_bias	1	0	-	1: weak bias (600kHz max),
				0: high bias (5MHz max).
Register:peak_detector_power				
high_gain_pp	1	0	302	Enable high gain for peak
				detector.
high_gain_en	1	0	-	-
low_gain_pp	1	0	-	Power pulse for low gain.
low_gain_en	1	0	-	Enable low gain for peak de-
				tector.
Register:select_peak_sensing				
high_gain_th	1	0	306	0: peak detector, 1: track
				and hold.
low_gain_th	1	0	-	-
peak_sensing_cell_bypass	1	0	-	0: cell active, 1: bypass
				peak sensing cell.
peak_sensing_external_trigger	1	0	-	0: internal trigger, 1: exter-
				nal trigger.

Configurable registers of the slow control register continued on next page

Field	Bits	Default	Position	Description
Register:shaper	'	1		
fast_shaper_follower_pp	1	0	310	Power pulse for fast shaper follower.
fast_shaper_en	1	1	-	Enable fast shaper.
fast_shaper_pp	1	1	-	Power pulse for fast shaper.
low_gain_slow_shaper_pp	1	0	-	Power pulse for low gain slow shaper.
low_gain_slow_shaper_en	1	0	-	Enable low gain slow shaper.
low_gain_slow_shaper_time_const	3	0	-	See the table above for values.
high_gain_slow_shaper_pp	1	0	-	Power pulse for high gain slow shaper.
high_gain_slow_shaper_en	1	0	-	Enable high gain slow shaper.
high_gain_slow_shaper_time_const	3	0	-	See the table above for values.
Register:pre_amp_power		1		
low_gain_weak_bias	1	0	323	0: normal bias, 1: weak bias.
high_gain_pp	1	1	-	Power pulse for high gain preamp.
high_gain_en	1	1	-	Enable high gain preamp.
low_gain_pp	1	0	-	Power pulse for low gain preamp.
low_gain_en	1	0	-	Enable low gain preamp.
fast_shaper_low_gain	1	0	-	0: fast shaper on high gain.
Register:input_dac	•	•		
dac_en	1	1	329	Input DAC for bias correction.
dac_ref	1	1	-	Voltage ref: 1 = internal 4.5V, 0 = internal 2.5V, depends on vdd_dac.

Configurable registers of the slow control register continued on next page

ch_0	_			Description	
	8	255	-	VSipm = V_HV - V_DAC	
				(check what makes sense	
				here).	
ch_0_en	1	1	-	Enable channel 0 input	
				DAC.	
:					
ch_31	8	255	-	Same as ch_0 for channel 31.	
ch_31_en	1	1	-	Enable channel 31 input	
				DAC.	
Register:channel_preamp					
ch_0hg	6	62	619	High gain preamp setting.	
ch_0_lg	6	0	-	Low gain preamp setting.	
ch_0_ctest_hg	1	0	-	1: Connect injection capac-	
				itance for test signal.	
ch_0_ctest_lg	1	0	-	1: Connect low gain injec-	
				tion capacitance.	
ch_0_disable	1	0	-	1 disables preamp for chan-	
				nel 0.	
<u>:</u>					
ch_31_hg	6	62	-	High gain preamp setting.	
ch_31_lg	6	0	-	Low gain preamp setting.	
ch_31_ctest_hg	1	0	-	1: Connect injection capac-	
				itance for test signal.	
ch_31_ctest_lg	1	0	-	1: Connect low gain injec-	
				tion capacitance.	
ch_31_disable	1	0	-	1 disables preamp for chan-	
				nel 0.	
Register:service_blocks					
temp_pp	1	1	999	Enable power pulse for tem-	
				perature monitoring.	
temp_en	1	1	-	Enable temperature moni-	
				toring.	
band_gap_pp	1	1	-	Enable power pulse for band	
				gap reference.	

Configurable registers of the slow control register continued on next page

Field	Bits	Default	Position	Description
band_gap_en	1	1	-	Enable band gap reference.
Register:threshold_dac	'		ı	
charge_dac_en	1	0	1103	Enable charge threshold
				DAC.
charge_dac_pp	1	0	-	Power pulse for charge threshold DAC.
time_dac_en	1	1		Enable time threshold
time_dac_en	1	1	-	DAC.
$time_dac_pp$	1	1	_	Power pulse for time thresh-
				old DAC.
$charge_threshold$	10	0	-	Charge threshold value.
$time_threshold$	10	_	_	Time threshold value (e.g.,
				200 for 1 cell min, 250 for 2
				cells).
Register:otaq_power				
high_gain_en	1	1	1127	Enable high gain for OTAQ.
high_gain_pp	1	1	_	Power pulse for high gain
				OTAQ.
low_gain_en	1	0	-	Enable low gain for OTAQ.
low_gain_pp	1	0	-	Power pulse for low gain
				OTAQ.
debug_probe_en	1	1	-	Enable debug probe.
debug_probe_pp	1	1	-	Power pulse for debug
				probe.
Register:input_output				
$output_buffer_bias$	1	0	1133	Output OTA buffer bias: 0
				= auto bias, $1 =$ force on.
val_event_receiver_en	1	1	-	Enable validation event re-
				ceiver.
val_event_receiver_pp	1	1	-	Power pulse for validation
				event receiver.
raz_chn_en	1	1	-	Enable RAZ channel.
raz_chn_pp	1	1	-	Power pulse for RAZ chan-
			1	

Configurable registers of the slow control register continued on next page

Appendix A. Configurable registers of the Citiroc1A ASIC

Field Description Bits Default Position digital_output_en Enable digital multiplexed 1 1 output. 1 1 Enable OR32 output. $or 32_output_en$ -1 Enable OR32 over-current $or32_oc_output_en$ 1 output. Trigger polarity: 0 = posi-1 0 trigger_polarity tive (rising edge), 1 = negative (falling edge). $or32_t_oc_en$ 1 1 Enable OR32 timeout over-_ current. Enable 32 triggers. 1 1 32_triggers_en 1143

Table A.2.: Configurable registers of the probe register[5]

Register	Field	Bits	Position	Type
out_probe_fast_shaper	ch_0	1	0	Analog - Out_probe
	:		:	
	ch_31	1	31	
out_probe_slow_shaper_lg	ch_0	1	32	Analog - Out_probe
	:		:	
	ch_31	1	63	
digital_probe_peak_sense_lg	ch_0	1	64	Digital - Digital_probe
	:		:	
	ch_31	1	95	
out_probe_slow_shaper_hg	ch_0	1	96	Analog - Out_probe
	:		:	
	ch_31	1	127	
digital_probe_peak_sense_hg	ch_0	1	128	Digital - Digital_probe
	:		:	
	ch_31	1	159	
out_probe_preamp_hg	ch_0	1	160	Analog - Out_probe
	:		:	
	ch_31	1	191	
out_probe_preamp_lg	ch_0	1	192	Analog - Out_probe
	:		:	
	ch_31	1	223	
input_dac_probe	ch_0	1	224	Analog - Out_probe_dac_5V
	:		:	
	ch_31	1	255	

APPENDIX B

Code

this is code

List of Figures

2.1.	Previous measurements of the proton radius from electron proton scattering	
	experiments and the Lamb shift in muonic and ordinary hydrogen, the	
	measurements differ from each other by five standard deviations. $[1]$	4
2.2.	General setup of the Amber experiment with new detectors for PRM. [5] .	5
2.3.	Unified tracking station (UTS) with three layers of pixilized silicon detec-	
	tors (ALPIDEs) and the scintillating fiber hodoscope (SFH). $[5]$	6
2.4.	Scintillating fiber hodoscope (SFH) with some of the scintillating fibers of	
	the four layres installed. The frontend electronics are not attached. [5]	7
3.1.	Sideview of the frontend electronics that will be attached on the sides	
	of the SFH, the fiber holders will be attached to the fibers. The SiPM	
	arrays transform the incoming photons into electric signals, that are then	
	transferred to the frontend electronics by the PCB interposer.[5]	9
3.2.	The analog frontend electronics (FEE) PCB with the six Citiroc1A ASICs,	
	on the left side the power supply is connected. The output of the Citiroc1A	
	is transmitted to the iFTDC over three flex PCBs.[5]	10
3.3.	The iFTDC with three Artix-7 FPGA, the three flex PCBs that connect	
	the iFTDC with the FEE PCB and the power supply.[8]	11
3.4.	General ASIC block scheme of the Citiroc1A. [11]	12
3.5.	High gain amplification of the Citiroc1A. The gain is adjustable from 0 to	
	$1575\mathrm{fF}$ in $25\mathrm{fF}$ steps.[11]	13
3.6.	The two configurable registers of the Citiroc1A are selected using the Select	
	signal. The FPGA communicates with the Citiroc1A through the signals	
	Clk_sr, Rstb_sr, Srin_sr, and Load_sr, while the Srout signal is sent back	
	from the Citiroc1A to the FPGA for verification. [11]	13

3.7.	The slow control chronogram, depicting the bitstream writing process con-	
	troled by Clk_sr the clock signal and Srin_sr the data signal. A rising edge	
	of Load_sr is required, after successful verification with the Srout signal to	
	load the slow control register. [11]	14
3.8.	Scheme block of internal probing system, allowing the routing of internal	
	signals to probe pins for debugging purposes. It is configured via the probe	
	register. [11]	15
4.1.	Finite state machine for configuring the Citiroc1A ASIC. States associated	
	with the same processes are highlighted using the same color	20
4.2.	Finite state machine for verifying the configuration of the Citiroc1A ASIC.	
	States belonging to the same processes are represented with the same color.	21

Bibliography

- [1] B Adams et al. COMPASS++/AMBER: Proposal for Measurements at the M2 beam line of the CERN SPS Phase-1: 2022-2024. Tech. rep. Geneva: CERN, 2019. URL: https://cds.cern.ch/record/2676885 (cit. on pp. 2-6).
- [2] B. Adams et al. Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS (COMPASS++/AMBER). 2019. arXiv: 1808.00848 [hep-ex]. URL: https://arxiv.org/abs/1808.00848 (cit. on p. 4).
- [3] Maxim Alexeev et al. "Design and Testing of a new Tracking System for the Proton Charge Radius Measurement with the AMBER Experiment at CERN". In: *PoS* VERTEX2023 (2024), p. 049. DOI: 10.22323/1.448.0049 (cit. on p. 5).
- [4] The AMBER Collaboration. AMBER Status Report 2024. Tech. rep. Geneva: CERN, 2024. URL: https://cds.cern.ch/record/2907624 (cit. on p. 7).
- [5] Karl Eichhorn. Private Communication. Nov. 2024 (cit. on pp. 5–7, 9, 10, 29, 35).
- [6] J M Friedrich and O Denisov. AMBER Status Report 2022. Tech. rep. Geneva: CERN, 2022. URL: https://cds.cern.ch/record/2810822 (cit. on pp. 6, 7, 10).
- [7] Werner Heisenberg. *Physics and Philosophy: The Revolution in Modern Science*. Ed. by Ruth Nanda Anshen. Amherst, N.Y.: Prometheus Books, 1958 (cit. on p. 1).
- [8] Igor Konorov. Private Communication. Oct. 2024 (cit. on pp. 11, 12).
- [9] C. Ghabrous Larrea et al. "IPbus: a flexible Ethernet-based control system for xTCA hardware". In: Journal of Instrumentation 10.02 (Feb. 2015), p. C02019. DOI: 10.1088/1748-0221/10/02/C02019 (cit. on p. 17).
- [10] Barrie M. Peake. "The discovery of the electron, proton, and neutron". In: *Journal of Chemical Education* 66.9 (1989), p. 738. DOI: 10.1021/ed066p738 (cit. on p. 1).

[11] Weeroc. citiroc1a-datasheet-v2-53. Dec. 2019. URL: https://www.weeroc.com/~documents/products/citiroc-la/citiroc1a-datasheet-v2-53/?layout=file (cit. on pp. 11-15).

	Acknowledgement
I want to thank:	
Tutor .	
Professor .	

Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass ich die von mir eingereichte Arbeit bzw. die von mir namentlich gekennzeichneten Teile selbständig verfasst und ausschließlich die angegebenen Hilfsmittel benutzt habe. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ort, Datum

Unterschrift