Genetic Algorithms

Prepared by Md. Shah Fahad

Genetic Algorithm Flow Chart

Simple Genetic Algorithm

- produce an initial population of individuals
- evaluate the fitness of all individuals
- while termination condition not met do
- select fitter individuals for reproduction
- recombine between individuals
- mutate individuals
- evaluate the fitness of the modified individuals
- generate a new population

End while

Basic principles 1

- Coding or Representation
 - String with all parameters
- Fitness function
 - Parent selection
- Reproduction
 - Crossover
 - Mutation
- Convergence
 - When to stop

Basic principles 2

- An individual is characterized by a set of parameters: Genes
- The genes are joined into a string: Chromosome
- The chromosome forms the genotype
- The genotype contains all information to construct an organism: the phenotype
- Reproduction is a "dumb" process on the chromosome of the genotype
- Fitness is measured in the real world ('struggle for life') of the phenotype

Population (Representations)

Chromosomes could be:

```
    Bit strings (0101 ... 1100)
    Real numbers (43.2 -33.1 ... 0.0 89.2)
    Permutations of element (E11 E3 E7 ... E1 E15)
    Lists of rules (R1 R2 R3 ... R22 R23)
```

Reproduction

Crossover

- Two parents produce two offspring
- There is a chance that the chromosomes of the two parents are copied unmodified as offspring
- There is a chance that the chromosomes of the two parents are randomly recombined (crossover) to form offspring
- Generally the chance of crossover is between 0.6 and 1.0
- Only crossover probability

Mutation

- There is a chance that a gene of a child is changed randomly
- Generally the chance of mutation is low (e.g. 0.001)
- Both mutation probability and rate

Parent/Survivor Selection

- Probability selection : proportional to their fitness
- Main idea: better individuals get higher chance
 - Chances proportional to fitness
 - Implementation: roulette wheel technique
 - Assign to each individual a part of the roulette wheel
 - Spin the wheel n times to select n individuals

$$fitness(A) = 3$$

$$fitness(B) = 1$$

$$fitness(C) = 2$$

Tournament Selection

- Selecting an individual from a population of individuals
- involves running several "tournaments" among a few individuals (or 'chromosomes') chosen at random from the population.
- The winner of each tournament (the one with the best fitness) is selected for <u>crossover</u>.
- Selection pressure is easily adjusted by changing the tournament size.
- If the tournament size is larger, weak individuals have a smaller chance to be selected.

Global Optimal

- Trade off between
 - Exploration: introduction of new combination of features
 - Exploitation (Premature convergence): keep the good features in the existing solution

One-point crossover 1

- Randomly one position in the chromosomes is chosen
- Child 1 is head of chromosome of parent 1 with tail of chromosome of parent 2
- Child 2 is head of 2 with tail of 1 Randomly chosen position

Two-point crossover

- Randomly two positions in the chromosomes are chosen
- Avoids that genes at the head and genes at the tail of a chromosome are always split

Uniform crossover

- A random mask is generated
- The mask determines which bits are copied from one parent and which from the other parent
- Bit density in mask determines how much material is taken from the other parent (takeover parameter)

Mask: 0110011000 (Randomly generated)

Parents: 1<u>01</u>00<u>01</u>110 <u>0</u>01<u>10</u>10<u>0010</u>

Offspring: 0011001010 1010010110

Types of mutation

- Flip Bit-This mutation operator takes the chosen genome and inverts the bits.
- **Boundary**-This mutation operator replaces the genome with either lower or upper bound randomly.
- Uniform-This operator replaces the value of the chosen gene with a uniform random value selected between the userspecified upper and lower bounds for that gene.
- ▶ **Gaussian** –This operator adds a unit Gaussian distributed random value to the chosen gene. If it falls outside of the user-specified lower or upper bounds for that gene, the new gene value is clipped.

Last three are used for real and float genes.

An example

- Simple problem: max x² over {0,1,...,31}
- GA approach:
 - Representation: binary code, e.g. $01101 \leftrightarrow 13$
 - Population size: 4
 - 1-point xover, bitwise mutation
 - Roulette wheel selection
 - Random initialization
- We show one generational cycle done by hand

X² example: crossover

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	0 1 1 0 1	4	01100	12	144
2	1 1 0 0 0	4	$1\ 1\ 0\ 0\ 1$	25	625
2	1 1 0 0 0	2	11011	27	729
4	10 0 1 1	2	10000	16	256
Sum					1754
Average					439
Max					729

X² example: mutation

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$f(x) = x^2$
1	01100	$1\ 1\ 1\ 0\ 0$	26	676
2	$1\ 1\ 0\ 0\ 1$	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ 0\ 1\ 1$	$1\ 1\ 0\ 1\ 1$	27	729
4	$1\ 0\ 0\ 0\ 0$	$1\ 0\ 1\ 0\ 0$	18	324
Sum				2354
Average				588.5
Max				729

x² example: selection

String	Initial	x Value	Fitness	$Prob_i$	Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	0 1 1 0 1	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	01000	8	64	0.06	0.22	0
4	$1\ 0\ 0\ 1\ 1$	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

A Simple Example

The Traveling Salesman Problem:

Find a tour of a given set of cities so that

- each city is visited only once
- the total distance traveled is minimized

Representation

Representation is an ordered list of city numbers known as an *order-based* GA.

```
1) London 3) Dunedin 5) Beijing 7) Tokyo 2) Venice 4) Singapore 6) Phoenix 8) Victoria CityList1 (3 5 7 2 1 6 4 8) CityList2 (2 5 7 6 8 1 3 4)
```

Crossover (Ordered)

Crossover combines inversion and recombination:

This operator is called the *Order1* crossover.

Mutation

Mutation involves reordering of the list:

* *
Before: (5 8 7 2 1 6 3 4)

After: (5 8 6 2 1 7 3 4)

TSP Example: 30 Cities

Solution $_{i}$ (Distance = 941)

Solution $_{j}$ (Distance = 800)

Solution $_k$ (Distance = 652)

Best Solution (Distance = 420)

Issues for GA Practitioners

- Choosing basic implementation issues:
 - representation
 - population size, mutation rate, ...
 - selection, deletion policies
 - crossover, mutation operators
- Termination Criteria
- Performance, scalability
- Solution is only as good as the evaluation function (often hardest part)

Benefits of Genetic Algorithms

- Concept is easy to understand
- Modular, separate from application
- Supports multi-objective optimization
- Good for "noisy" environments
- Always an answer; answer gets better with time
- Inherently parallel; easily distributed

When to Use a GA

- Alternate solutions are too slow or overly complicated
- Need an exploratory tool to examine new approaches
- Problem is similar to one that has already been successfully solved by using a GA
- Want to hybridize with an existing solution
- Benefits of the GA technology meet key problem requirements

Some GA Application Types

Domain	Application Types		
Control	gas pipeline, pole balancing, missile evasion, pursuit		
Design	semiconductor layout, aircraft design, keyboard configuration, communication networks		
Scheduling	manufacturing, facility scheduling, resource allocation		
Robotics	trajectory planning		
Machine Learning	designing neural networks, improving classification algorithms, classifier systems		
Signal Processing	filter design		
Game Playing	poker, checkers, prisoner's dilemma		
Combinatorial Optimization	set covering, travelling salesman, routing, bin packing, graph colouring and partitioning		