Assignment -2 Team Leader :Benny George Beevan Rich Solomonjohn Salate shalinth Rohit Alroy

```
In[1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlibinline
   importscipy.stats
   #import statsmodels.api as sms
   import statsmodels.formula.api as smf
   from statsmodels.stats.stattools
   import jarque_bera
In[2]: data=pd.read_csv('Churn_Modelling.csv') data
```

Out[2]:		RowNu	ımber C	ustomerId	Surnar	ne CreditScore	Geography	Gender A	ge Tenure)	Balance	NumOfP
	0		1	15634602	Hargrave	619	France	Female	42	2	0.00	
	1		2	15647311	Hill	608	Spain	Female	41	1	83807.86	
	2		3	15619304	Onio	502	France	Female	42	8	159660.80	
	3		4	15701354	Boni	699	France	Female	39	1	0.00	
	4		5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	
	9995		9996	15606229	Obijiaku	771	France	Male	39	5	0.00	
	9996		9997	15569892	Johnstone	516	France	Male	35	10	57369.61	
	9997		9998	15584532	Liu	709	France	Female	36	7	0.00	
	9998		9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	
9999		10000	156283	19 Wa	alker 792	France Fema	ale 28	4 130142.	79			

10000 rows × 14 columns

Describe Function

data[['Age','Surname','Tenure','Balance']].describe() Out[7]: Age **Tenure Balance** min 18.000000 0.000000 0.000000 25% 32.000000 3.000000 0.000000 50% 37.000000 5.000000 97198.540000 75% 44.000000 7.000000 127644.240000 max 92.000000 10.000000 250898.090000 count 10000.000000 10000.000000 10000.000000 38.921800 76485.889288 mean 5.012800 std 10.487806 2.892174 62397.405202

```
Out[15]:
         RowNumber
                              int64
         CustomerId
                              int64
         Surname
                             object
         CreditScore
                              int64
                             object
         Geography
         Gender
                             object
         Age
                              int64
         Tenure
                              int64
                            float64
         Balance
         NumOfProducts
                              int64
         HasCrCard
                              int64
         IsActiveMember
                              int64
         EstimatedSalary
                           float64
         Exited dtype:
                              int64
         object
         data.isnull().any()
In [16]:
Out[16]: RowNumber
                            False
         CustomerId
                            False
         Surname
                            False
         CreditScore
                            False
         Geography
                            False
                           False
         Gender
         Age
                            False
         Tenure
                            False
         Balance
                           False
         NumOfProducts
                          False
         HasCrCard
                           False
         IsActiveMember
                            False
         EstimatedSalary False
         Exited
                            False
         dtype: bool
```

UNIVARIATE ANALYSIS

```
In [18]: sns.histplot(data.Age,kde=True)
```

Out[18]: <AxesSubplot:xlabel='Age', ylabel='Count'>

In [15]:

data.dtypes

BIVARIATE ANALYSIS

MULTIVARIATE ANALYSIS

In [47]: sns.pairplot(data)

Out[47]: <seaborn.axisgrid.PairGrid at 0x1cb8b759610>

Perform descriptive statistics on the dataset

In [3]: data.describe(include='all')

Out[3]:		RowNumber	CustomerId S	Surname	CreditScore	Geography (Sender	Age	Tenure
	count	10000.00000	1.000000e+04	10000	10000.000000	10000	10000	10000.000000	10000.000000
	unique	NaN	NaN	2932	NaN	3	2	NaN	NaN
	top	NaN	NaN	Smith	NaN	France	Male	NaN	NaN
	freq	NaN	NaN	32	NaN	5014	5457	NaN	NaN
	mean	5000.50000	1.569094e+07	NaN	650.528800	NaN	NaN	38.921800	5.012800
	std	2886.89568	7.193619e+04	NaN	96.653299	NaN	NaN	10.487806	2.892174
	min	1.00000	1.556570e+07	NaN	350.000000	NaN	NaN	18.000000	0.000000
	25%	2500.75000	1.562853e+07	NaN	584.000000	NaN	NaN	32.000000	3.000000
	50%	5000.50000	1.569074e+07	NaN	652.000000	NaN	NaN	37.000000	5.000000
	75%	7500.25000	1.575323e+07	NaN	718.000000	NaN	NaN	44.000000	7.000000
	max	10000.00000	1.581569e+07	NaN	850.000000	NaN	NaN	92.000000	10.000000
In [4]:									
	C	data.count()							

Out[4]:	RowNumber	10000
	CustomerId	10000
	Surname	10000
	CreditScore	10000
	Geography	10000
	Gender	10000
	Age	10000
	Tenure	10000
	Balance	10000
	NumOfProducts	10000
	HasCrCard	10000
	IsActiveMember	10000
	EstimatedSalary	10000
	Exited dtype:	10000
	int64	

Handle the Missing values.

Fill with Zeros for NAN values

```
In [7]: a =data.fillna(0) a
```

	R	owNumbe	r Customerl	d Surname	CreditScore	Geography	/ Gender	Age	Tenure	Balance Nu	ımOfF
()	1	15634602	Hargrave	619	France	Female	42	2	0.00	
1	I	2	15647311	Hill	608	Spain	Female	41	1	83807.86	
2	2	3	15619304	Onio	502	France	Female	42	8	159660.80	
3	3	4	15701354	Boni	699	France	Female	39	1	0.00	
4	1	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	
999	5	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	
9996	6	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	
9997	7	9998	15584532	Liu	709	France	Female	36	7	0.00	
9998	3	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	
99	10000	156283	19 Wa	alker 792	France Fema	ale 28	4 130142.	79			

10000 rows x 14 columns

rows x 14 columns

Out[7]:

Find the outliers and replace the outliers

In [8]:	a										
Out[8]:		RowNumber	CustomerId	Surna	me CreditScore	e Geography	Gender A	ge Ten	ure	Balan	ce NumOfP
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	
	•••										
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	
9999		10000 15628	8319 W	alker 792	France Fem	ale 28	4 130142.	79			
10000		rows × 14 co	lumns								

```
sns.boxplot(x=data[col],ax=ax)
fig.tight_layout()
plt.show()
                                                                                                      1.580
le7
          2000
                    4000 600
RowNumber
                                                                               1.570
CustomerId
                                                                                                                                        600
CreditScore
                              6000
                                       8000
                                                 10000
                                                                1.560
                                                                         1.565
                                                                                             1.575
                                                                                                                        400
                                                                                                                                                               800
                      50
Age
                                                                                                                                     100000 150000
Balance
         30
                                                                                                                            50000
                                                                                                                                                        200000
 1.0
                 2.0 2.5
NumOfProducts
                                          3.5
                                                 4.0
                                                                              0.4 0.6
HasCrCard
                                                                                                 0.8
                                                                                                           1.0
                                                                                                                                                                    1.0
         1.5
                                                          0.0
                                                                    0.2
                                                                                                                   0.0
                                                                                                                             0.2
                                                                                                                                      0.4 0.6
IsActiveMember
 0 25000 50000 75000 100000125000150000175000 200000
EstimatedSalary
```

ax=fig.add_subplot(rows,cols,i+1)

```
In [14]:
    data['CreditScore'].hist()
```

Out[14]: <AxesSubplot:>


```
In[15]: print('SkewnessvalueofAge:',data['Age'].skew())
    Age_mean=data['Age'].mean() print('Mean of Age
    is:',Age_mean) Age_std= data['Age'].std()
    print('Standard Deviation of Age is: ',Age_std)
    low= Age_mean-(3 * Age_std) high= Age_mean+ (3 *
    Age_std)
    Age_outliers= data[(data['Age'] <low) | (data['Age'] >high)]
    #print('OutliersofAgeis:\n',Age_outliers)
    print('Outliers of Age is:')
    Age_outliers.head()
Skewness value of Age: 1.0113202630234552
```

Mean of Age is:38.9218

Standard Deviation of Age is: 10.487806451704591

Outliers of Age is:

Out[15]:	RowNumber CustomerId			Surname CreditScore Geography Gender Age Tenure					Balance	NumOfPro	
	85	86	15805254	Ndukaku	652	Spain	Female	75	10	0.00	
	158	159	15589975	Maclean	646	France	Female	73	6	97259.25	
	230	231	15808473	Ringrose	673	France	Male	72	1	0.00	
	252	253	15793726	Matveyeva	681	France	Female	79	0	0.00	
	310	311	15712287	Pokrovskii	652	France	Female	80	4	0.00	

```
In []: #datal=pd.read_csv('Churn_Modelling.csv')
    #datal.head()

In [4]: import numpyas np #for numpy operations
    import pandas as pd#for creating DataFrame using Pandas
    # to split the dataset using sklearn
    from sklearn.model_selectionimport train_test_split
    # load titanic dataset
    datal = pd.read csv('Churn Modelling.csv',
Loading [MathJax]/extensions/Safe.js
```

Check for Categorical columns and perform encoding.

```
usecols=['Surname','Gender','Geography'])
data1.head()
```

Out[4]:	Surname Geography Gender								
	0	Hargrave	France	Female					
	1	Hill	Spain	Female					
	2	Onio	France	Female					
	3	Boni	France	Female					
	4	Mitchell	Spain	Female					

In [5]: pd.get_dummies(data1)
Out[5]:

	Surname_Abazu	Surname_Abbie	Surname_Abbott	Surname_Abdullah	Surname_Abdulov	Surname_Abel
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
		0	0	0	0	0
	0					
	0					
		0	0	0	0	0
9996	0	0	0	0	0	0
9997	0	0	0	0	0	0
9998	0	0	0	0	0	0
	0 0	0 0	0 0			

10000 rows × 2937 columns

9999

```
In [17]:
# Returns dictionary having key as category and values asnumber
deffind_category_mappings(data, variable):
    return {k: i for i, k inenumerate(data[variable].unique())}
# Returns the column after mapping with dictionary definteger_encode(data,variable,
    ordinal_mapping): data[variable]=data[variable].map(ordinal_mapping)
    for variable in ['Surname','Geography','Gender']:
    mappings=find_category_mappings(datal,variable)
    integer_encode(datal, variable, mappings) datal.head()
```

Out [17]: Surname Geography Gender

0	0	0	0
1	1	1	0
2	2	0	0
3	3	0	0
4	4	1	0

Split the data into dependent and independent variables.

Dependent Variable: A dependent variable is a variable whose value depends on another variable.

Independent Variable : An Independent variable is a variable whose value never depends on another variable.

```
In [6]: print("TheMinimumvalueofDataset:\n",data1.min(numeric_only=True)) print("\n")
    print("TheMaximumvalueofDataset:\n",data1.max(numeric_only=True)) print("\n")
    print("TheMeanvalueofDataset:\n",data1.mean(numeric_only=True)) print("\n")

    print(data1.count(0))
    print(data1.shape) print(data1.size)
```

```
The Minimum value ofDataset:
   Series([], dtype:float64)
```

```
Out [7]:

Geography Gender

France Female

Spain Female

France Female

France Female

France Female

Spain Female
```

Scale the independent variables

```
Out[8]: Index(['Geography', 'Gender'], dtype='object') In[12]:
          from sklearn.preprocessingimportscale x=scale(x)
In[16]:
          Х
Out[16]:
                Geography Gender
             0
                   France Female
                    Spain Female
             2
                   France Female
                   France Female
                    Spain Female
             4
          9995
                   France
                             Male
          9996
                   France
                             Male
          9997
                   France Female
          9998
                  Germany
                             Male
```

In[8]:

9999

France

Female

 $\verb"names=x.columnsnam"$

Split the data into training and testing

The train-test split is used to estimate the performance of machine learning algorithms that are applicable for prediction-based Algorithms/Applications. By default, the Test set is split into 30 % of actual data and the training set is split into 70% of the actual data.

	Geography	Gender
7389	Spain	Female
9275	Germany	Male
2995	France	Female
5316	Spain	Male
356	Spain	Female

```
Out[21]: ((8000, 2), (8000,), (2000, 2), (2000,))
```