Contents

1	Cha	apter 02 - Basic Structures	1
	1.1	Sets	1
		1.1.1 Definition 2	1
		1.1.2 Definition 3	1
		1.1.3 Definition 4	2
		1.1.4 Countable and Uncountable Sets	2
		1.1.5 Example	2
		1.1.6 Definition 6	2
	1.2	Set Operations	2
		1.2.1 Definition 1	2
		1.2.2 Definition 2	3
		1.2.3 Definition 3	3
		1.2.4 Definition 4	3
		1.2.5 Definition 5	3
		1.2.6 Proof	3
		1.2.7 Proof:	4
		1.2.8 Union	4
		1.2.9 Intersection	4
	1.3	Functions	4
		1.3.1 Example	4
		1.3.2 Properties	5
		1.3.3 Example 2.3.24	5
		1.3.4 Example 2.3.73.b	5
	1.4	Sequences and Summations	6
	1.5	Cardinality of Sets	6
	1.6	Matrices	6

1 Chapter 02 - Basic Structures

1.1 Sets

 \in : belong to, is in

1.1.1 Definition 2

Two sets are equal if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \iff x \in B)$. We write A = B if A and B are equal sets.

1.1.2 Definition 3

The set A is also a subset of B, and B is a superset of A, if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B. If, instead, we want to stress that B is a

superset of A, we use the equivalent notation $B \supseteq A$. (So, $A \subseteq B$ and $B \supseteq A$ are equivalent statements.)

1.1.3 Definition 4

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|.

1.1.4 Countable and Uncountable Sets

- Countable
 - \mathbb{N}
 - $-\mathbb{Z}$
 - $-\mathbb{Q}$
- Uncountable
 - $-\mathbb{R}$
 - $-\mathbb{C}$

Let $S_0 = \{x\}$, and $S_1 = \{\{x\}\}$.

$$S_0 \neq S_1 \tag{1}$$

1.1.5 Example

- 1. List the members of these sets.
 - a) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$

$$S = \left\{ x \in \mathbb{R} \mid x^2 = 1 \right\}$$

b) $\{x \mid x \text{ is a positive integer less than } 12\}$

$$S = \{x \in \mathbb{R} \mid 0 \le x < 12\}$$

1.1.6 Definition 6

Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by $\mathcal{P}(S)$.

1.2 Set Operations

1.2.1 Definition 1

Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

$$A \cup B = \{x \in U \mid (x \in A) \lor (x \in B)\}$$
 (2)

1.2.2 Definition 2

Let A and B be sets. The intersection of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B.

$$A \cap B = \{x \in U \mid (x \in A) \land (x \in B)\}$$

$$\tag{3}$$

1.2.3 Definition 3

Two sets are disjoint if their intersection is the empty set.

1.2.4 Definition 4

Let A and B be sets. The difference of A and B, denoted by A - B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.

1.2.5 Definition 5

Let U be the universal set. The complement of the set A, denoted by \bar{A} , is the complement of A with respect to U. Therefore, the complement of the set A is U - A.

1.2.6 **Proof**

Let A, B be sets from U. Show that $A \subseteq B$ if and only if $\overline{B} \subseteq \overline{A}$.

Proof:

• For " \Longrightarrow "

Given $A \subseteq B$, need to show $\overline{B} \subseteq \overline{A}$. Then $\forall x \in A$, we have $x \in B$.

By contrapositive we have

$$\neg (x \in B) \implies \neg (x \in A)$$
$$x \notin B \implies x \notin A, \quad \overline{B} \subseteq \overline{A}$$

• For "←="

Given $\overline{B} \subseteq \overline{A}$, we have $\forall y \in \overline{B}$, $y \in \overline{A}$ then the contrapositive is

$$\neg (y \in \overline{A}) \implies \neg (y \in \overline{B})$$
$$y \in A \implies y \in B$$

1.2.7 **Proof:**

Use the identities to show that $\overline{(A \cup B)} \cap \overline{(B \cup C)} \cap \overline{(A \cup C)} = \overline{A} \cap \overline{B} \cap \overline{C}$

Proof:

$$\overline{A} \cap \overline{B} \cap \overline{C} = (\overline{A} \cap \overline{B}) \cap (\overline{B} \cap \overline{C}) \cap (\overline{A} \cap \overline{C})$$
$$= \overline{A} \cap (\overline{B} \cap \overline{B}) \cap (\overline{C} \cap \overline{C}) \cap \overline{A}$$
$$= \overline{A} \cap \overline{B} \cap \overline{C}$$

1.2.8 Union

The union is a collection of sets is the set that contains those elements that are member s of at least one set in the collection.

$$A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$$

1.2.9 Intersection

The intersection of a collection of sets is the set that contains those elements that are members of all the sets in the collection.

$$A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i$$

Functions 1.3

• Sets: A, B, C, domain, codomain, range

• Relations: functions (f, g, h)

• Elements: image, preimage

Example 1.3.1

$$f_1: \mathbb{R} \to \mathbb{R} \text{ as } y = f_1(x) = 3x - 2$$

 $f_2: \mathbb{R} \to \mathbb{R} \text{ as } y = e^x$

$$f_2: \mathbb{K} \to \mathbb{K} \text{ as } y = e^{-x}$$

$$f_3: \mathbb{R} \to \mathbb{R} \text{ as } y = \sqrt{x}$$

$$f:A\to B$$
 range $(f)=\{y\in B\mid \forall x\in S\subseteq A\}$

1.3.2 Properties

- 1) f is injective one-to-one
- 2) f is surjective –
- 3) f is bijective if 1) and 2)

Let $f: A \to B$ be a function.

We say f is injective if

$$(x_1 \neq x_2 \implies f(x_1) \neq f(x_2)) \iff (f(x_1) = f(x_2) \implies x_1 = x_2)$$

We say f is surjective if $\forall y \in B$, $\exists x \in A$ such that $y = f(x) \iff \text{range}(f) = B$ We say f is bijective if f is injective and surjective.

Monotonic Function: We say f is increasing (strictly increasing) if $x_1 > x_2 \implies f(x_1) > f(x_2)$

1.3.3 Example 2.3.24

Let $f: \mathbb{R} \to \mathbb{R}$ and let f(x) > 0 for all $x \in \mathbb{R}$. Show that f(x) is strictly increasing if and only if the function $g(x) = \frac{1}{f(x)}$ is strictly decreasing.

where the first implication comes from the fact that $f(x) > 0, \forall x \in \mathbb{R}$.

1.3.4 Example 2.3.73.b

Prove or disprove each of these statements about the floor and ceiling functions.

$$|2x| = 2|x|$$

Consider x = 1.6

$$\lfloor 2x \rfloor = \lfloor 2 \cdot 1.6 \rfloor = \lfloor 3.2 \rfloor = 3$$

2 | x | = 2 | 1.6 | = 2(1) = 2

Hence |2x| = 2|x| for all $x \in \mathbb{R}$ is false.

- 1.4 Sequences and Summations
- 1.5 Cardinality of Sets
- 1.6 Matrices