Force de Laplace Étude du champ magnétique

Rapport du Laboratoire

Liviu Arsenescu, Cătălin Bozan 23.04.2024

Table des Matières

1	Des	Description de l'expérience						
	1.1	Buts	1					
	1.2	,						
		1.2.1 Les différentes grandeurs physiques rencontrées	1					
		1.2.2 Modèle Théoriques	1					
	1.3	Principe de l'expérience	3					
	1.4	Schéma et montage de l'expérience	3					
	1.5							
		1.5.1 Étalonnage bobine-aimant	3					
		1.5.2 Force de Laplace en fonction du courant I	4					
		1.5.3 Force de Laplace en fonction de l'angle θ	4					
		1.5.4 En utilisant le teslamètre	4					
2	Mesures							
	2.1	Mesures constantes:	4					
	2.2							
		2.2.1 <i>I</i> variable	4					
		2.2.2 θ variable	5					
3	Ana	alyse des mesures et résultats	5					
	3.1	δm en fonction du courant I	6					
	3.2	δm en fonction de l'angle θ	6					
	3.3	Choix et calcul d'incertitudes	7					
		3.3.1 Choix des incertitude :	7					
		3.3.2 Calcul d'incertitudes	7					
	3.4	Discussion des résultats :	8					
4	Syn	athèse et conclusion	8					

1 Description de l'expérience

1.1 Buts

- Étude de la force de Laplace
- Démontrer la dépendance linéaire de la force par rapport au courent électrique, et l'angle θ

1.2 Éléments théoriques

1.2.1 Les différentes grandeurs physiques rencontrées

ullet F_L - force de Laplace - $[F_L] = {
m N}$

ullet P et N - force du poids et force normale $P, N = \mathbb{N}$

ullet $oldsymbol{I}$ - courant électrique $oldsymbol{I}$ - $oldsymbol{I}$ = A

• l - longueur du conducteur - l = m

• θ - l'angle entre les vecteurs $I\vec{l}$ et \vec{B} - θ = dégrées

• m - différentes masses - m = g

ullet $oldsymbol{g}$ - l'accélération gravitationnelle de la Terre ullet - $oldsymbol{g}=\mathrm{ms}^{-1}$

1.2.2 Modèle Théoriques

Pour décrire le modèle mathématique dont on a besoin, on partira de la formule suivante :

$$ec{F_L} = I ec{l} imes ec{B}$$

Comme on le sait, la norme d'un vecteur résultant d'un produit vectoriel peut être écrit comme suit :

$$||\vec{F_L}|| = ||\vec{Il}|| \cdot ||\vec{B}||sin(\theta) \Rightarrow ||\vec{F_L}|| = IlBsin\theta$$

Pour la configuration de la bobine, on peut représenter les forces agissant comme suit :

Figure 1: Système de forces de la bobine

En utilisant la troisième loi de Newton, on peut construire le système de forces suivant sur l'aimant :

Figure 2: Système de forces sur l'aimant

En utilisant la deuxième loi de Newton dans la dernière figure, on obtient :

$$\Sigma \vec{F} = 0 \Rightarrow \vec{F_L} + \vec{N} + \vec{P} = 0$$

On observe que les forces agissent uniquement sur l'axe y, ce qui permet de déduire l'équation suivante :

$$\pm F_L + N - P = 0$$

En alimentant la bobine en courant, on constate que deux masses différentes apparaissent sur la balance :

- m_0 masse de l'aimant
- \bullet m_1 masse apparente de l'aimant

Avec ces deux mesures, on peut développer à nouveau l'équation :

$$\pm F_L + m_1 g - m_0 g = 0$$
$$|F_L| = |m_1 - m_0|g$$
$$|F_L| = \delta mg$$

Où δm est le module de la différence entre m_1 et m_0 . Égalant ce que on a obtenu pour $||\vec{F_L}||$ et pour $|F_L|$, on obtient :

$$\frac{|F_L| = \delta mg}{||\vec{F_L}|| = IlB\sin(\theta)} \right\} \Rightarrow \delta mg = \frac{IlB\sin(\theta)}{g}$$

On peut donc conclure que δm est une fonction qui dépend de I, l, B, $sin(\theta)$.

1.3 Principe de l'expérience

Comme indiqué ci-dessus, l'expérience consiste à calculer la valeur du champ magnétique B par trois méthodes différentes :

- On va mesurer la pente de la fonction δm en faisant varier uniquement le courant I, ce qui nous permettra de calculer B.
- On va mesurer la pente de la fonction δm en faisant varier uniquement l'angle θ , d'où on peut calculer de la même façon B.
- \bullet On mesure B à l'aide d'un teslamètre.

1.4 Schéma et montage de l'expérience

Pour réaliser l'expérience, on doit faire un dispositif qui nous permettre de générer la force de Laplace sur un aimant. On a donc :

- Une source de courant continu
- Un ampèremètre
- Un socle
- Une tige
- Un noix double
- Une bobine à orientation réglable
- Un aimant en U
- Une balance
- Trois câbles de connexion
- Un teslamètre
- Une règle

Figure 3: Système de forces de la bobine

1.5 Déroulement de l'expérience

1.5.1 Étalonnage bobine-aimant

- On met l'aimant sur la balance
- On fixe la bobine réglable sur le support
- On connecte la bobine en série avec l'ampèremètre à la source de courant
- En utilisant la tête rotative, on fixe la bobine de manière à ce que la force de Laplace soit nulle, et on considère cette angle comme $\theta = 0^{\circ}$

1.5.2 Force de Laplace en fonction du courant I

- On règle l'angle de la bobine a 90°, et on lui donne un courant de 4A
- On mesure δm pour des valeurs de I, par intervalles de 0,4A, de 4A à 0A

1.5.3 Force de Laplace en fonction de l'angle θ

- On fixe le courant à 4A, et on ramène la bobine à 0°
- On mesure δm pour des valeurs de θ de 5 en 5, de 90°à 0°

1.5.4 En utilisant le teslamètre

• On place la sonde du teslamètre dans la zone entre les pôles de l'aimant, puis on mesure le champ magnétique B

2 Mesures

2.1 Mesures constantes:

- $L = (0.010 \pm 0.001)$ m longueur de la section de la bobine
- n = 11 nombre de spires
- $m_0 = (70.40 \pm 0.01)$ g masse de l'aimant
- $\Delta I = \pm 0.01 \text{ A}$ incertitude sur le courant électrique
- $\Delta\theta = \pm 2$ °- incertitude de l'angle
- $B_3 = -43.3 \text{ mT}$ champ magnétique mesuré avec le teslamètre
- $\Delta B_3 = \pm 0.4 \text{ mT}$ incertitude du champ magnétique

2.2 Tableaux des mesures :

2.2.1 I variable

I(A)	$\delta m(g)$	$\Delta(\delta m)(\mathbf{g})$
0.41	-0.12	0.02
0.81	-0.33	0.02
1.20	-0.56	0.02
1.60	-0.77	0.02
2.01	-1.01	0.02
2.40	-1.22	0.02
2.81	-1.46	0.02
3.21	-1.68	0.02
3.61	-1.90	0.02
4.01	-2.13	0.02

Tableau 1: I variable

Légende :

- I courant électrique (en A)
- δm différence entre les masses m_1 et m_0 (en g)
- $\Delta(\delta m)$ incetitude de δm (en g)

2.2.2 θ variable

$\theta(^{\circ})$	$\delta m(g)$	$\Delta(\delta m)(g)$	$\sin(\theta)$	$\Delta \sin(\theta)$
0	0.09	0.02	0.00	0.03
5	-0.10	0.02	0.09	0.03
10	-0.30	0.02	0.17	0.03
15	-0.49	0.02	0.26	0.03
20	-0.66	0.02	0.34	0.03
25	-0.85	0.02	0.42	0.03
30	-1.01	0.02	0.50	0.03
35	-1.17	0.02	0.57	0.03
40	-1.33	0.02	0.64	0.03
45	-1.46	0.02	0.71	0.02
50	-1.58	0.02	0.77	0.02
55	-1.69	0.02	0.82	0.02
60	-1.79	0.02	0.87	0.02
65	-1.88	0.02	0.91	0.01
70	-1.94	0.02	0.94	0.01
75	-2.00	0.02	0.97	0.01
80	-2.03	0.02	0.98	0.01
85	-2.06	0.02	1.00	0.01
90	-2.13	0.02	1.00	0.01

Tableau 2: θ variable

Légende :

- \bullet θ l'angle entre les vecteurs $I\vec{l}$ et \vec{B} (en degrées)
- δm différence entre les masses m_1 et m_0 (en g)
- $\Delta(\delta m)$ incetitude de δm (en g)

3 Analyse des mesures et résultats

Pour calculer le champ magnétique B en faisant varier le courant ou l'angle, on construit une régression linéaire à l'aide de la formule suivante :

$$\delta m = \frac{IlBsin(\theta)}{g}$$

l est la longueur du conducteur, donc $l=nL=(0.110\pm0.001)$ m.

3.1 δm en fonction du courant I

La fonction que on a utilisée pour créer la régression linéaire :

$$\delta m = \frac{lBsin(\theta)}{g} \cdot I$$

Où on note a_1 la pente de la fonction. Avec ça, on obtient :

$$B_1 = (-49.0 \pm 0.4) \text{ mT}$$

3.2 δm en fonction de l'angle θ

La fonction que on a utilisée pour créer la régression linéaire :

$$\delta m = \frac{lBI}{g} \cdot \sin(\theta)$$

Où on note a_2 la pente de la fonction. Avec ça, on obtient :

$$B_2 = (-48.2 \pm 0.5) \text{ mT}$$

3.3 Choix et calcul d'incertitudes

3.3.1 Choix des incertitude:

- Pour le courant électrique : on a examiné la fluctuation globale de l'alimentation électrique, et on a remarqué que on a une incertitude de lecture de $\Delta I=0.1$ A
- Pour l'angle : on a déplacé très lentement la tête de la bobine et, à $\Delta\theta = 2^{\circ}$ près, on n'a constaté aucun changement dans l'expérience
- Pour la longueur de la section de la bobine : on a choisi l'incertitude indiquée sur l'instrument de mesure
- Pour la mesure au teslamètre : on a choisi la valeur indiquée par l'appareil avant de s'approcher de l'aimant
- Pour les masses : on a choisi l'incertitude indiquée par la balance

3.3.2 Calcul d'incertitudes

On sait que la différence entre m_0 et m_1 se calcule comme suit :

$$\delta m = |m_1 - m_2|$$

Puisqu'il s'agit de la différence entre les deux, on peut calculer l'incertitude en additionnant leurs incertitudes :

$$\Delta(\delta m) = 0.2 \text{ g}$$

Pour calculer l'incertitude de la fonction sin, on utilise la formule suivante :

$$\Delta sin(\theta) = |cos(\theta)| \cdot \Delta \theta$$

Pour la première pente obtenue, on calcule l'incertitude comme suit :

$$\Delta B_1 = \left(\frac{\Delta a_1}{a_1} + \frac{\Delta l}{l}\right) \cdot B_1$$

Et pour la deuxième pente obtenue, on fait le calcul suivant :

$$\Delta B_2 = \left(\frac{\Delta a_2}{a_2} + \frac{\Delta lI}{lI}\right) \cdot B_2$$

3.4 Discussion des résultats :

On a obtenu trois valeurs pour le champ magnétique :

$$B_1 = (-49.0 \pm 0.4) \text{ mT}$$

 $B_2 = (-48.2 \pm 0.5) \text{ mT}$
 $B_3 = (-43.3 \pm 0.4) \text{ mT}$

Le fait que ces valeurs soient très proches les unes des autres permet de tirer les conclusions suivantes :

- La fonction δm dépend linéairement de I et de θ , donc la fonction $||\vec{F_L}||$ en dépend également.
- On peut également en déduire que la force $\vec{F_L}$ créée par la bobine est exactement la même, mais de signe opposé dans le système de force de l'aimant, mettant ainsi en évidence le principe d'action-réaction.

4 Synthèse et conclusion

Dans ce laboratoire, on a cherché à comprendre et à démontrer les formules trouvées dans le cadre théorique de la force de Laplace.

Pour atteindre cet objectif, on a calculé le champ magnétique d'un aimant de trois manières différentes :

- ullet On l'a trouvé en faisant varier uniquement le courant électrique I
- On l'a trouvé en faisant varier uniquement l'angle θ
- On a utilisé un teslamètre pour le mesurer

Le résultat de cette expérience est que on a prouvé que on a bien une dépendance linéaire entre $||\vec{F_L}||$ et les termes qui composent sa formule, et que la force $\vec{F_L}$ existe à la fois dans la bobine et dans l'aimant.