1	1.	A method of producing an electromechanical device, comprising
2		poling an electroactive ceramic;
3		laser machining the electroactive ceramic to form a desired shape; and
4		incorporating the electroactive ceramic into an electromechanical sensor
5		or actuator.
6		
7	2.	The method of claim 1, wherein laser machining includes machining grooves into
8		a surface of the electroactive ceramic.
9		
10	3.	The method of claim 2, further comprising depositing an electrode material into
11		the grooves in the surface of the electroactive ceramic.
12		
13	4.	The method of claim 1, further comprising depositing an electrode material onto a
14		surface of the electroactive ceramic produced by laser machining.
15		
16	5.	The method of claim 1, wherein the produced sensor or actuator is a strain-
17		relieved, planar transducer.
18		
19	6.	The method of claim 1, wherein the electroactive ceramic is selected from the
20		group consisting of piezoelectric ceramics and electrostrictive ceramics.
21		
22	7.	The method of claim 1, wherein poling the electroactive ceramic precedes laser
23		machining.
24		
25	8.	The method of claim 1, wherein poling the electroactive ceramic follows laser
26		machining.
27		
28	9.	The method of claim 1, wherein the electroactive ceramic comprises grooves
29		which render its electromechanical properties anisotropic.
30		

	1	10.	The method of claim 1, wherein at least 1% of the electroactive ceramic is
	2		removed during laser machining.
	3		
	4	11.	The method of claim 10, wherein at least 5% of the electroactive ceramic is
	5		removed during laser machining.
	6		
	7	12.	The method of claim 10, wherein at least 20% of the electroactive ceramic is
	8		removed during laser machining.
	9		
	10	13.	The method of claim 10, wherein at least 50% of the electroactive ceramic is
	11		removed during laser machining.
400	12		
****	13	14.	The method of claim 10, wherein at least 75% of the electroactive ceramic is
:	14		removed during laser machining.
	15		
	16	15.	The method of claim 10, wherein at least 90% of the electroactive ceramic is
	17		removed during laser machining.
	18		
	19	16.	The method of claim 1, wherein the electroactive ceramic possesses a surface area
	20		at least 10% greater after machining than its surface area before machining.
	21		
	22	17.	An electromechanical device, comprising
	23		a substantially planar electroactive ceramic member having grooves defined on a
	24		planar surface of the member, whereby the grooves allow the member to
	25		conform to a curved surface.
	26		
	27	18.	The electromechanical device of claim 17, wherein the device is an
	28		electromechanical sensor or actuator.
	29		

	1	19.	The electromechanical device of claim 17, wherein the device can conform to a
	2		curved surface having a radius of curvature no greater than 0.25".
	3		
	. 4	20.	The electromechanical device of claim 17, wherein the grooves are substantially
	5		parallel and the member can conform to a cylindrical surface.
	6		
	7	21.	The electromechanical device of claim 17, wherein the grooves are substantially
	8		concentric and the member can conform to a spherical surface.
	9		
	10	22.	An electromechanical device, comprising
	11		a substantially planar bimorph electroactive ceramic member having slots defined
	12		in the member, whereby the slots multiply an electromechanical bending
	13		response of the bimorph member.
	14		
Ţ	15	23.	The electromechanical device of claim 22, wherein the device is an
L	16		electromechanical sensor or actuator.
	17		
	18	24.	The electromechanical device of claim 22, wherein the slots are substantially
	19		concentric.
	20		
	21	25.	The electromechanical device of claim 22, wherein the slots are substantially
	22 , 2		parallel.