An Overview of Fluid Animation

Christopher Batty Jan 13, 2016

Reminders

- 1st round presentations start Monday.
 Graded on...
 - 1. Knowledge/coverage of technical concepts
 - 2. Organization
 - 3. Slide quality
 - 4. Speaking/presentation skills
- 1st round of paper reviews due Sunday, 5pm.
- Start thinking about project topics.
- Piazza (or email) with any questions.

What distinguishes fluids?

What distinguishes fluids?

- No "preferred" shape.
- Always flows when force is applied.
- Deforms to fit its container.
- Internal forces depend on velocities, not displacements/deformation (compare w/ elastic objects)

Examples

For further detail on today's material, see Robert Bridson's online fluid notes. http://www.cs.ubc.ca/~rbridson/fluidsimulation/ (There's also a book, which is available in the library.)

Basic Theory

Eulerian vs. Lagrangian

Lagrangian: Point of reference moves with the material.

Eulerian: Point of reference is stationary.

e.g. Weather balloon (Lagrangian) vs. weather station on the ground (Eulerian)

Eulerian vs. Lagrangian

Consider an evolving scalar field (e.g., temperature).

Lagrangian view: Set of *moving particles*, each with a temperature value.

Eulerian vs. Lagrangian

Consider an evolving scalar field (e.g., temperature).

Eulerian view: A fixed grid of temperature values, that temperature *flows through*.

Relating Eulerian and Lagrangian

Consider the temperature T(x,t) at a point following a given path, x(t).

How can the temperature measured at x(t) change?

- 1. There is a hot/cold "source" at the current point.
- 2. Following the path, the point moves to a cooler/warmer location.

Time derivatives

Mathematically:

$$\frac{D}{Dt}T(x(t),t) = \frac{\partial T}{\partial t} + \frac{\partial T}{\partial x}\frac{\partial x}{\partial t}$$

Chain rule!

$$= \frac{\partial T}{\partial t} + \nabla T \cdot \frac{\partial x}{\partial t}$$

Definition of *∇*

$$= \frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T$$

Choose $\frac{\partial x}{\partial t} = u$

Material Derivative

This is called the *material derivative*, and denoted $\frac{D}{Dt}$. (AKA total derivative.)

Advection

To track a quantity T moving (passively) through a velocity field:

$$\frac{DT}{Dt} = 0 \qquad \text{or equivalently} \qquad \frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T = 0$$

This is the advection equation.

Think of colored dye or massless particles drifting around in fluid.

Advection

Equations of Motion

For general continuum materials, we essentially had Newton's second law: F = ma.

The Navier-Stokes equations are the same equations again, specialized to fluids.

Navier-Stokes

Density × Acceleration = Sum of Forces

$$\rho \frac{D\boldsymbol{u}}{Dt} = \sum_{i} \boldsymbol{F}_{i}$$

Expanding the material derivative...

$$\rho \frac{\partial \mathbf{u}}{\partial t} = -\rho(\mathbf{u} \cdot \nabla \mathbf{u}) + \sum_{i} \mathbf{F}_{i}$$

What are the forces on a fluid?

Primarily:

- Pressure
- Viscosity
- Simple "external" forces
 - (e.g. gravity, buoyancy, user/artistic forces)

Also:

- Surface tension
- Coriolis
- Possibilities for more exotic fluid types:
 - Elasticity (e.g. silly putty)
 - Shear thickening / thinning (e.g. "oobleck", ketchup, paints)
 - Electromagnetic forces: magnetohydrodynamics, ferrofluids, etc.
- Various others...

Exotic Fluids - Oobleck

Oobleck Simulation

Oobleck: Viscoplastic v.s. Shear-Thickening

```
Simulation parameters (viscoplastic): \rho: 1000.0 kg/m³ \kappa: 109.0 kPa \mu: 11.2 kPa \sigma_{\gamma}: 0.1 Pa \eta: 10.0 m: 1.0 \sigma_{\tau}: 1.0 \eta_{\rho}: 0.3 #points: 519171-534871 grid res.: 157×157×157 dt: 0.5×10<sup>-5</sup>s subgrid geom. rem.: no Simulation parameters (shear-thickening): \rho: 1000.0 kg/m³ \kappa: 109.0 kPa \mu: 11.2 kPa \sigma_{\gamma}: 0.1 Pa \eta: 10.0 m: 2.8 \sigma_{\tau}: 1.0 \eta_{\rho}: 0.3 #points: 519171-529365 grid res.: 157×157×157 dt: 0.5×10<sup>-5</sup>s subgrid geom. rem.: no
```

Exotic Fluids - Ferrofluid

Fluid equations of motion...

Change in velocity at a fixed point

Advection (of *velocity*)

Forces (pressure, viscosity gravity,...)

Operator splitting

Break the full, nonlinear equation into substeps:

1. Advection:
$$\rho \frac{\partial u}{\partial t} = -\rho (\boldsymbol{u} \cdot \nabla \boldsymbol{u})$$

2. Pressure:
$$\rho \frac{\partial u}{\partial t} = \mathbf{F}_{pressure}$$

3. Viscosity:
$$\rho \frac{\partial u}{\partial t} = F_{viscosity}$$

4. External:
$$\rho \frac{\partial u}{\partial t} = \mathbf{F}_{other}$$

1. Advection

Advection

We already considered advection of a passive scalar quantity, T, under velocity \boldsymbol{u} .

$$\frac{\partial T}{\partial t} = -\boldsymbol{u} \cdot \nabla T$$

In Navier-Stokes advection term, we have:

$$\frac{\partial \boldsymbol{u}}{\partial t} = -\boldsymbol{u} \cdot \nabla \boldsymbol{u}$$

Velocity u is advected (carried along) by itself, too!

Advection

That is, (u, v, w) components of velocity u are advected as separate scalars.

Can often reuse the same numerical method.

2. Pressure

Pressure

What does pressure do?

- Enforces incompressibility (fights compression).

Typical fluids (mostly) do not visibly compress.

Exceptions: high velocity, high pressure, ...

Incompressibility

Compressible velocity field

Incompressible velocity field

Incompressibility

Intuitively, net flow into/out of a given region should be zero (no sinks/sources).

Integrate the net flow across the boundary of a closed

region (yellow):

$$\int_{\partial\Omega} \boldsymbol{u} \cdot \boldsymbol{n} = 0$$

Incompressibility

$$\int_{\partial\Omega} \boldsymbol{u} \cdot \boldsymbol{n} = 0$$

By divergence theorem:

$$\iint_{\Omega} \nabla \cdot \boldsymbol{u} = 0$$

But this is true for any region, so $\nabla \cdot u = 0$ everywhere.

Incompressibility implies $m{u}$ is divergence-free.

Pressure

Where does pressure come in?

- Pressure is the force needed to ensure the incompressibility constraint, $\nabla \cdot \boldsymbol{u} = 0$.
- Pressure force has the following form:

$$\boldsymbol{F}_{p} = -\nabla p$$

Let's see why...

Helmholtz Decomposition

Aside: Pressure as Lagrange Multiplier

Interpret as an optimization:

Find the closest \boldsymbol{u}_{new} to \boldsymbol{u}_{old} where $\nabla \cdot \boldsymbol{u}_{new} = 0$

$$\underset{\boldsymbol{u}_{new}}{\operatorname{argmin}} \frac{\rho}{2} \|\boldsymbol{u}_{new} - \boldsymbol{u}_{old}\|^{2}$$
 subject to $\nabla \cdot \boldsymbol{u}_{new} = 0$

The Lagrange multiplier for the incompressibility constraint is the pressure.

3. Viscosity

High Speed Honey

Viscosity

What characterizes a viscous liquid?

- "Thick", highly damped behaviour.
- Strong resistance to flow.

Loss of energy due to internal friction between molecules moving at different velocities.

- opposes relative motion.
- causes an exchange of momentum.

Loss of energy due to internal friction between molecules moving at different velocities.

- opposes relative motion.
- causes an exchange of momentum.

Loss of energy due to internal friction between molecules moving at different velocities.

- opposes relative motion.
- causes an exchange of momentum.

Loss of energy due to internal friction between molecules moving at different velocities.

- opposes relative motion.
- causes an exchange of momentum.

Imagine fluid particles with general velocities.

Each particle interacts with nearby neighbours, exchanging momentum. Velocities gradually tend towards uniformity.

Diffusion

The momentum exchange is related to:

- Velocity gradient, ∇u , in a region.
- Viscosity coefficient, μ .

Net effect is a smoothing or *diffusion* of the velocity over time.

Diffusion is typically modeled using the heat equation:

$$\frac{\partial T}{\partial t} = \alpha \nabla \cdot \nabla T$$

(e.g. modeling dye or heat spreading through a region.)

Diffusion

Diffusion applied to velocity gives our viscous force:

$$\boldsymbol{F}_{viscosity} = \rho \frac{\partial \boldsymbol{u}}{\partial t} = \mu \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \boldsymbol{u}$$

Usually, we can diffuse each scalar component of the vector field $\mathbf{u} = (u, v, w)$ separately.

4. External Forces

Gravity.
It's not just a good idea.
It's the Law.

External Forces

Any other forces you may want.

Simplest is gravity:

$$-F_g = \rho g$$
 for $g = (0, -9.81, 0)$

Buoyancy models are similar,

- e.g.,
$$F_b = \beta (T_{current} - T_{ref}) \boldsymbol{g}$$

Artistic/user controls

e.g. Artistic control - Liquid Monster

Discretizing the Equations for Fluid Animation

1. Advection

Advection of a Scalar

Consider advecting a quantity, arphi

– temperature, color, smoke density, ... according to a (fixed) velocity field $m{u}$.

Allocate a grid (2D array) that stores scalar φ and velocity u.

Eulerian

Approximate derivatives with finite differences.

$$\frac{\partial \varphi}{\partial t} + \boldsymbol{u} \cdot \nabla \varphi = 0$$

FTCS = Forward Time, Centered Space:

$$\frac{\varphi_i^{n+1} - \varphi_i^n}{\Delta t} + u \frac{\varphi_{i+1}^n - \varphi_{i-1}^n}{2\Delta x} = 0$$

Unconditionally Unstable!

Lax:

$$\frac{\varphi_i^{n+1} - (\varphi_{i+1}^n + \varphi_{i-1}^n)/2}{\Delta t} + u \frac{\varphi_{i+1}^n - \varphi_{i-1}^n}{2\Delta x} = 0 \quad \frac{\text{Conditionally}}{\text{Stable!}}$$

Many possible methods, stability can be a challenge.

Lagrangian

Advect data "forward" from grid points by integrating position according to grid velocity (e.g. forward Euler).

Problem: New data position doesn't necessarily land back on a grid point.

Semi-Lagrangian

- Look backwards in time from a grid point (blue), to see where its new data is coming from (black).
- Interpolate data at the previous time position.

Semi-Lagrangian - Details

- 1. Look up velocity $u_{i,i}$ at grid point.
- 2. Integrate position for a timestep of $-\Delta t$ (FE).
 - e.g. $x_{back} = x_{i,j} \Delta t \boldsymbol{u}_{i,j}$
- 3. (Bilinearly) Interpolate φ at x_{back} , call it φ_{back} .
- 4. Assign $\varphi_{i,j} = \varphi_{back}$ for the new time.

Unconditionally stable! (Why?)

(Though dissipative – loses energy over time.)

Advection of Velocity

This handles scalars. What about advecting velocity?

$$\frac{\partial \boldsymbol{u}}{\partial t} = -\boldsymbol{u} \cdot \nabla \boldsymbol{u}$$

Same method:

- Trace back with current velocity
- Interpolate velocity at that point
- Assign it to the grid point at the new time.

Caution: Do not overwrite the velocity field you're using to trace back! (Make a copy.)

2. Pressure

Recall... Helmholtz Decomposition

Input Velocity field Curl-Free Divergence-Free (incompressible) (irrotational) $\nabla \times \varphi$ ∇p uFpressure u_{old} u_{new}

Pressure Projection - Derivation

(1)
$$\rho \frac{\partial u}{\partial t} = -\nabla p$$
 and (2) $\nabla \cdot u = 0$

Discretize (1) in time...

$$u_{new} = u_{old} - \frac{\Delta t}{\rho} \nabla p$$

Then plug into (2)...

$$\nabla \cdot \left(\boldsymbol{u}_{old} - \frac{\Delta t}{\rho} \nabla p \right) = 0$$

Pressure Projection

Implementation:

1) Solve a linear system of equations for p:

$$\frac{\Delta t}{\rho} \nabla \cdot \nabla p = \nabla \cdot \boldsymbol{u}_{old}$$

2) Given p, plug back in to update velocity:

$$u_{new} = u_{old} - \frac{\Delta t}{\rho} \nabla p$$

Implementation

$$\frac{\Delta t}{\rho} \nabla \cdot \nabla p = \nabla \cdot \boldsymbol{u}_{old}$$

 $\frac{\Delta t}{\rho} \nabla \cdot \nabla p = \nabla \cdot \boldsymbol{u}_{old}$ Discretize with finite differences (at staggered positions):

e.g., in 1D:

$$\frac{\Delta t}{\rho} \left(\frac{\frac{p_{i+1} - p_i}{\Delta x} - \frac{p_i - p_{i-1}}{\Delta x}}{\Delta x} \right) = \frac{u_{i+1} - u_i}{\Delta x}$$

Solid Boundary Conditions

Free Slip:

$$\boldsymbol{u}_{new} \cdot \boldsymbol{n} = 0$$

i.e., Fluid cannot penetrate or flow out of the wall, but may slip along it.

Air ("Free surface") Boundary Conditions

Assume air (liquid exterior) is at some constant atmospheric pressure, $p=p_{atm}$ or p=0.

3. Viscosity

PDE:
$$\rho \frac{\partial \boldsymbol{u}}{\partial t} = \mu \nabla \cdot \nabla \boldsymbol{u}$$

Again, apply finite differences.

Discretized in time:

$$u_{new} = u_{old} + \frac{\Delta t \mu}{\rho} \nabla \cdot \nabla u_*$$

 u_{old} -> explicit time integration

 u_{new} -> implicit time integration

Viscosity – Time Integration

Explicit integration:
$$u_{new} = u_{old} + \frac{\Delta t \mu}{\rho} \nabla \cdot \nabla u_{old}$$

- Compute $\frac{\Delta t \mu}{\rho} \nabla \cdot \nabla \boldsymbol{u}_{old}$ from current velocities.
- Add on to current \boldsymbol{u} .
- Quite unstable (stability restriction: $\Delta t \approx O(\Delta x^2)$)

Implicit integration:
$$u_{new} = u_{old} + \frac{\Delta t \mu}{\rho} \nabla \cdot \nabla u_{new}$$

- Stable even for high viscosities, large steps.
- Must solve a system of equations.

Viscosity – Implicit Integration

Solve for u_{new} :

$$u_{new} - \frac{\Delta t \mu}{\rho} \nabla \cdot \nabla u_{new} = u_{old}$$

(Apply separately for each velocity component.)

e.g. in 1D:

$$u_{i+1}$$
 u_i u_{i-1}

$$u_i - \frac{\Delta t \mu}{\rho} \left(\frac{\frac{u_{i+1} - u_i}{\Delta x} - \frac{u_i - u_{i-1}}{\Delta x}}{\Delta x} \right) = u_i^{old}$$

Viscosity - Solid Boundary Conditions

No-Slip:

$$u_{new} = 0$$

No-slip Condition

Viscosity - Free Surface Conditions

Treat air as negligible, so enforce zero momentum exchange between liquid and "air".

The proper conditions are quite involved:

$$(-p\mathbf{I} + \mu(\nabla u + \nabla u^T)) \cdot n = \mathbf{0}$$

See [Batty & Bridson, 2008] for the standard solution in graphics. (Needed e.g., for honey coiling.)

Viscous coiling simulation

4. External Forces

Gravity.
It's not just a good idea.
It's the Law.

Gravity

Discretized form is:

$$u_{new} = u_{old} + \Delta t g$$

Simply increment the vertical velocities at each step!

Gravity

Notice: in a closed fluid-filled container, gravity (alone) won't do anything!

Incompressibility cancels it out. (Assuming constant density.)

After gravity step

After pressure step

Simple Buoyancy

Track an extra scalar field T, representing local temperature, generated at a heat source.

Apply diffusion to T, and advect it along with the velocity field.

The difference between current and "reference" temperature induces a buoyancy force.

Simple Buoyancy

e.g.

$$u_{new} = u_{old} + \Delta t \beta (T_{current} - T_{ref}) g$$

 β dictates the strength of the buoyancy force.

For an enhanced version of this:

"Visual simulation of smoke", [Stam et al., 2001].

User Forces

Add whatever additional

forces we want:

Wind forces near a mouse click.

 Paddle forces in Plasma Pong.

Plasma Pong game (eventually taken down due to copyright claim by Atari)

Ordering of Steps

Order is important.

Why?

- 1) Incompressibility is not satisfied at intermediate steps.
- 2) Advecting with a divergent field causes volume/material loss or gain!

Ordering of Steps

For example, consider advection in this field:

The Big Picture

Liquids

Liquids

What's missing?

We still need a surface representation.

Interaction between Solver and Surface Tracker

Solver-to-Surface Tracker

Given: current surface geometry, velocity field, and timestep.

Compute: new surface geometry by advection.

Surface Tracker-to-Solver

Given the surface geometry, identify the type of each cell. Solver uses this information for boundary conditions.

Surface Tracker

Ideally:

- Efficient
- Accurately follows the velocities
- Handles merging/splitting ("topology changes")
- Conserves volume
- Retains small features and details
- Gives a smooth surface for rendering
- Provides convenient geometric operations (postprocessing?)
- Easy to implement...

Very hard (impossible?) to do all of these at once.

Surface Tracking Options

- 1. Particles
- 2. Level sets
- 3. Volume-of-fluid (VOF)
- 4. Triangle meshes
- 5. Hybrids (many of these)

Particles

[Zhu & Bridson 2005]

Particles

Perform passive Lagrangian advection on each particle.

For rendering, need to reconstruct a surface.

Level sets

[Losasso et al. 2004]

Level sets

Each grid point stores signed distance to the surface (inside <= 0, outside > 0).

Surface is the interpolated zero isocontour.

Densities / Volume of fluid

Thin Surface Fluid Animation

Mass Density Resolution 128³

Fluid Solver Resolution 643

Volume-Of-Fluid

Each cell stores fraction f ϵ [0,1] indicating how empty/full it is.

Surface is the transition region, $f \approx 0.5$.

1	1	0.	0	0	0
1	1	1	0.4	0	0
1	1	1	0.4	0	0
1	1	0.8	0	0	0
1	1	0.5	0	0	0

Meshes

[Brochu et al 2010]

Meshes

Store a triangle mesh.

Advect its vertices, and deal with collisions.

Reminders

- 1st round presentations start Monday.
 Graded on...
 - 1. Knowledge/coverage of technical concepts
 - 2. Organization
 - 3. Slide quality
 - 4. Speaking/presentation skills
- 1st round of paper reviews due Sunday, 5pm.
- Start thinking about project topics.
- Piazza (or email) with any questions.

Free Surface Boundary Conditions

Only the pressure gradient matters, so simplify by assuming $p = p_{atm} = 0$.

