STAT111: Mathematical Statistics II

Spring 2024

Homework 1 David Yang

1. Evaluate the integral

$$\int_0^\infty x^5 e^{-2x} \, dx$$

using integration by recognition. That is, recognize this function as proportional to a standard pdf and identify the constant multiplier needed to make the integral equal 1. Then take the reciprocal of that constant.

Solution. The integrand is the kernel of a Gamma(6, 2) random variable.

Using this fact, we know that the PDF integrates to 1, i.e.

$$\int_0^\infty \frac{2^6}{\Gamma(6)} x^5 e^{-2x} \, dx = 1.$$

Solving for the integral we want to evaluate, we find that

$$\int_0^\infty x^5 e^{-2x} \, dx = \frac{\Gamma(6)}{2^6} = \frac{(6-1)!}{64} = \boxed{\frac{15}{8}}.$$

- 2. Suppose that $X \sim \operatorname{Gamma}\left(\alpha, \frac{\alpha}{\mu}\right)$ is parameterized so that the mean is μ .
 - a) Identify the mode of the pdf for X as a function of α and μ . That is, for what value of x is $f_x(x)$ (or $\ln f_x(x)$) maximized?

Solution. $X \sim \text{Gamma}\left(\alpha, \frac{\alpha}{\mu}\right)$ has pdf

$$f_X(x) = \frac{\left(\frac{\alpha}{\mu}\right)^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\left(\frac{\alpha}{\mu}\right)x}.$$

 $f_X(x)$ is maximized when $\ln(f_X(x))$ is maximized. For convenience, let $\ell(x)$ denote $\ln(f_X(x))$. Note that

$$\ell(x) = \ln(f_X(x)) = \ln\left(\frac{\left(\frac{\alpha}{\mu}\right)^{\alpha}}{\Gamma(\alpha)}\right) + (\alpha - 1)\ln(x) - \left(\frac{\alpha}{\mu}\right)x.$$

We take the derivative of $\ell(x)$ and set it to 0 to solve for the maximum:

$$\ell'(x) = \frac{\alpha - 1}{x} - \frac{\alpha}{\mu}.$$

Note that $\ell'(x) = 0$ when $\frac{\alpha - 1}{x} - \frac{\alpha}{\mu}$. Solving for x, we find that $x = \frac{\mu(\alpha - 1)}{\alpha}$.

However, note that this is the mode only when $\alpha > 1$ (for which x > 0); when $\alpha \le 1$, the mode occurs at x = 0. Thus, the mode of the pdf for X as a function of α and μ is

$$x = \begin{cases} 0 & \text{if } \alpha \le 1; \\ \frac{\mu(\alpha - 1)}{\alpha} & \text{if } \alpha > 1 \end{cases}$$

b) Let $Y = \frac{1}{X}$, so that Y follows a reciprocal-Gamma $\left(\alpha, \frac{\alpha}{\mu}\right)$ distribution. Find the pdf for Y, and identify its mode as a function of α and u.

Solution. Let $Y = \frac{1}{X}$. By the change of variables formula for pdfs, we know that

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} (g^{-1}(y)) \right|$$

where $g^{-1}(y) = \frac{1}{y}$ and $\frac{d}{dy}(g^{-1}(y)) = \frac{d}{dy}(\frac{1}{y}) = -\frac{1}{y^2}$.

Plugging these back into our above formula, we have that

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} \left(g^{-1}(y) \right) \right|$$

$$= \left[\frac{\left(\frac{\alpha}{\mu} \right)^{\alpha}}{\Gamma(\alpha)} \left(\frac{1}{y} \right)^{\alpha - 1} e^{-\left(\frac{\alpha}{\mu} \right) \left(\frac{1}{y} \right)} \right] \left(\frac{1}{y^2} \right)$$

$$= \frac{\left(\frac{\alpha}{\mu} \right)^{\alpha}}{\Gamma(\alpha)} y^{-\alpha - 1} e^{-\frac{\alpha}{\mu y}}.$$

Thus, the pdf for Y is

$$f_Y(y) = \frac{\left(\frac{\alpha}{\mu}\right)^{\alpha}}{\Gamma(\alpha)} y^{-\alpha - 1} e^{-\frac{\alpha}{\mu y}}.$$

To identify the mode of y, we can once again work to maximize the log of the pdf for Y, denoted $\ell(y)$ for convenience. Note that

$$\ell(y) = \ln\left(\frac{\left(\frac{\alpha}{\mu}\right)^{\alpha}}{\Gamma(\alpha)}\right) + (-\alpha - 1)\ln(y) - \frac{\alpha}{\mu y}.$$

Taking the derivative of $\ell(y)$, we find

$$\ell'(y) = \frac{-\alpha - 1}{y} + \frac{\alpha}{\mu y^2}.$$

The mode occurs when $\ell'(y) = 0$, or when $\frac{\alpha+1}{y} + \frac{\alpha}{\mu y^2}$. Solving for y, we find that the mode is at

$$y = \frac{\alpha}{\mu(\alpha+1)}$$

for all $\alpha > 0$.

- 3. Let $F(x) = \frac{x}{x+2}I_{(x>0)}$.
 - a) Show that $F_x(x)$ is a CDF and find the corresponding pdf.

Solution. First, note that $F_x(x)$ is nondecreasing as

$$F_x'(x) = \frac{2}{(x+2)^2} > 0$$

for any x.

Furthermore,

$$\lim_{x \to -\infty} F(x) = 0$$

as F(x) = 0 for any $x \le 0$.

Finally, note that

$$\lim_{x \to \infty} F(x) = \lim_{x \to \infty} \frac{x}{x+2} = 1.$$

Thus, $F_x(x)$ satisfies all the properties of a CDF. The corresponding pdf for X is simply $F'_x(x)$, or

$$f(x) = \frac{2}{(x+2)^2} I_{(x>0)}.$$

b) Identify these as the CDF and pdf for an F^* random variable (give the parameter values a, b, and c).

Solution. Recall that if $X \sim F^*(a, b, c)$, then

$$f_X(x) \propto \frac{x^{a-1}}{(c+x)^{a+b}} I(x>0).$$

Comparing the derived PDF $f_x = \frac{2}{(x+2)^2} I_{(x>0)}$ to an F^* distribution kernel, we find that $a=1,\ b=1,$ and c=2, so

$$X \sim F^*(1,1,2).$$

c) For a random variable X that follows this F^* distribution, represent X in terms of two independent Gamma random variables and a positive constant c. Use this representation to identify the distributions of $Y = \frac{1}{X}$ and of $R = \frac{X}{2+X}$.

Solution. Recall that $F^*(a,b,c) = c\frac{V_1}{V_2}$ where $V_1 \sim \text{Gamma}(a,1)$ and $V_2 \sim \text{Gamma}(b,1)$.

It follows that since $X \sim F^*(1,1,2)$,

$$X = 2\frac{V_1}{V_2}$$

where $V_1 \sim \text{Gamma}(1,1)$ and $V_2 \sim \text{Gamma}(1,1)$ are independent.

Furthermore, note that for $Y = \frac{1}{X} = \frac{1}{2} \frac{V_2}{V_1}$, we have that

$$Y \sim F^*\left(1, 1, \frac{1}{2}\right)$$

and for $R = \frac{X}{2+X}$,

$$R \sim \text{Beta}(1,1)$$

by properties of the F^* distribution.

4. Suppose $X \mid \theta \sim \operatorname{Poisson}(\theta)$, with $\theta \sim \operatorname{Gamma}(\alpha, \lambda)$. Find the marginal pmf for X by integrating θ out of the joint pmf/pdf. Show that this is a Negative Binomial distribution that represents the count of successes at the time of our α th failure (if α happens to be an integer) and identify the success probability.