Linji (Joey) Wang

Robotics Research Engineer

Objective

Passionate robotics engineer focused on developing intelligent autonomous systems through the integration of AI, computer vision, and control theory.

Education

Ph.D. in Computer Science

 ${\bf George\ Mason\ University}\ , \ {\bf Fairfax}, \ {\bf VA}$

2023 - Present

GPA: 4.0/4.0

- Research Area: Reinforcement Learning for Robotics
- Advisor: [Professor Name]
- Focus: Curriculum Learning for Efficient Robot Training

M.Sc. in Mechanical Engineering

 ${\bf Carnegie\ Mellon\ University}\ , \ {\bf Pittsburgh}, \ {\bf PA}$

2021 - 2023

GPA: 3.8/4.0

- Concentration: Machine Learning and Computer Vision
- Thesis: Vision-based 3D Scene Understanding for AR Applications

B.Sc. in Mechanical Engineering

University of Cincinnati , Cincinnati , OH

2017 - 2021

GPA: 3.9/4.0

- Summa Cum Laude, Dean's List All Semesters
- Exchange Program: Chongqing University, China

Selected Publications

- 1. **L. Wang**, J. Smith, A. Johnson (2024). Adaptive Curriculum Learning for Robotic Manipulation Tasks. IEEE International Conference on Robotics and Automation (ICRA).
- 2. **L. Wang**, M. Chen (2023). Real-time 3D Scene Understanding for Augmented Reality Applications . International Conference on Computer Vision (ICCV) Workshop.
- 3. **L. Wang** (2022). Neural Style Transfer: A Comprehensive Study of GAN Architectures . CMU Machine Learning Department Technical Report.

Experience

Graduate Research Assistant

George Mason University - AI Robotics Lab, Fairfax, VA

Aug 2023 - Present

- Developing novel curriculum learning algorithms for robotic manipulation tasks
- Implementing sim-to-real transfer techniques using domain randomization
- Leading research on adaptive difficulty adjustment in RL environments

Research Assistant

Computational Engineering Robotics Laboratory (CERLab), Pittsburgh, PA May 2021 - Dec 2022

- Developed real-time computer vision pipeline for 3D object detection and tracking
- Implemented AR visualization system for robotic manipulation guidance
- Published 2 conference papers on visual perception for robotics

Key Projects

Curriculum Learning for Robotic Manipulation (2023 - Present)

Developing adaptive curriculum generation methods for training robotic policies Technologies: PyTorch, IsaacGym, ROS2

Vision-based 3D Scene Understanding (2021 - 2023)

Real-time 3D reconstruction and semantic segmentation for AR applications Technologies: OpenCV, PCL, CUDA, Unity

GAN-based Image Style Transfer (2022)

Implemented and optimized various GAN architectures for artistic style transfer Technologies: PyTorch, Jupyter, Docker

Technical Skills

Primary: Robotic Manipulation, Motion Planning, Computer Vision, Control Systems

Software: ROS/ROS2, Gazebo, MoveIt, SLAM

Programming: Python, C++, MATLAB, CUDA

Hardware: Sensor Integration, Embedded Systems, Real-time Systems, Hardware-in-the-loop

Programming Languages: Python, C++, MATLAB, JavaScript, Julia, Bash

ML/AI Frameworks: PyTorch, TensorFlow, JAX, scikit-learn, OpenAI Gym, Stable Baselines3

Computer Vision: OpenCV, PCL, Open3D, COLMAP, MediaPipe

Robotics: ROS/ROS2, Gazebo, MoveIt, IsaacGym, PyBullet

Tools Platforms: Git/GitHub, Docker, AWS/GCP, LaTeX, Linux, SLURM

Awards & Honors

- Graduate Research Fellowship, George Mason University (2023)
- Outstanding Teaching Assistant Award, Carnegie Mellon University (2023)
- Dean's List, University of Cincinnati (2017-2021)