

# Algorithms & Data Structures

Part – 3: Topic 2

Anish Jindal anish.jindal durham.ac.uk



# Trees



### **Trees**

Now for something more data-structurely.

General trees will be studied in Part 4, we'll use only a special type:

(Rooted) binary trees.



## (Rooted) binary tree

A tree whose elements have at most 2 children is called a binary tree.

Since each element can have only 2 children, we typically name them the left and right child.

Rooted - one node, known as the root, is designated as the topmost node.

All other nodes in the tree are descendants of the root.







A (rooted) binary tree is a finite set of nodes which are either empty or consists of a root and two disjoint binary trees – left subtree and right subtree.

- one entry point, the root
  - parentless
- Every node has at most two children
  - non-root node has a unique "parent" drawn above it or each node's "children" are drawn right below it
- Each child node is labeled as being either left child or right child
  - Child-less nodes are called "leaves"



### **Properties of rooted binary trees**

Every node (excluding root) is connected by a directed edge from exactly one other node.

edge: the link from one node to another siblings: two nodes that have the same parent path length: the number of edges that must be traversed to get from one node to another



path length from root to this node is 3



## **Left** ≠ **Right**

The following two binary trees are *different:* 



In the first binary tree, node A has a left child but no right child; in the second, node A has a right child but no left child



### Size and depth



The **size** of a binary tree is the number of nodes in it

This tree has size 12

The **depth** of a node is its distance from the root

- a is at depth zero
- e is at depth 2

The **depth** of a binary tree is the depth of its deepest node

This tree has depth 4



### **Properties of rooted binary trees**

#### Lemma

Let T be a rooted binary tree of height h. Then

- T has at most  $2^{h+1} 1$  nodes,
- T has at most 2<sup>h</sup> leaves.

#### Proof.

The max number of nodes is in a complete tree of height h (i.e. all levels are complete):  $1 + 2 + 2^2 + ... + 2^h = 2^{h+1} - 1$ .

The second statement follows by induction on h. Case h=0 is obvious. Consider the left and right subtrees of the root of T. Then each of them has height  $\leq h-1$  and (by induction hypothesis)  $\leq 2^{h-1}$  leaves. Then T has at most  $2^{h-1}+2^{h-1}=2^h$  leaves.



## Arithmetic expression represented by a binary tree

- An arithmetic expression can be represented by a binary tree whose leaves are associated with variables or constants, and whose internal nodes are associated with one of the operators +, -, ×, and /.
- The tree below represents the expression:



### We'll be using binary trees to store data

How? Perhaps more importantly, why?

Well, they aren't really all that different from lists

Recall: in a (doubly-linked) list, each node had

pointer to predecessor, pointer to successor, item

In a binary tree, it's very similar: each node has

- pointer to parent (or NULL, or possibly to itself, if root)
- pointer to left child (or NULL, or to itself, if there isn't one)
- pointer to right child (or NULL, or to itself, if there isn't one)
- item (or element)

Can then navigate tree much like a list





### Why indeed?

Because they're terribly useful to store data in, giving fast **insert**, **lookup**, and **delete** operations (dictionary operations)!

```
(. . . if done properly)
```

The idea is simple: suppose you've got a sequence of such "dictionary operations", e.g.

```
insert(12), insert(27), delete(12), insert(12), lookup(27), . . .
```

Start with an empty tree

- For each insert operation, traverse existing tree according to fixed rules, and insert new element in appropriate place
- For each lookup operation, traverse tree according to fixed rules
- For each **delete** operation, first do a lookup, and, if found, delete (and fix tree structure if necessary)



### **Array- representation of binary tree**

One advantage of an array-based representation of a binary tree is that a position *p* can be represented by the single integer.



However, space usage of an array-based representation depends greatly on the shape of the tree

Some update operations for trees cannot be efficiently supported.

For example, deleting a node and promoting its child takes O(n) time because it is not just the child that moves locations within the array, but all descendants of that child.



## How to search in a binary tree?



- (1) Start at the root
- (2) Search the tree level by level, until you find the element you are searching for or you reach a leaf.

Is this better than searching a linked list?

$$No \rightarrow O(n)$$





Binary Search Tree (BST)

### **Binary search tree (BST)**

The simple binary search tree may, for some input sequences, not be particularly good

Anyway, basic principle of dictionary data structures could just as well be implemented with list:

- insert(x): append to list
- lookup(x): traverse list and return "TRUE" (plus perhaps pointer to location of element) if found
- delete(x): first lookup, then splice out

BST (binary search tree) not all that different, really.



A **binary search tree** (BST) is a tree in which no node has more than two children (not necessarily exactly two).

The one additional crucial property of BSTs (this is what we call an invariant):

#### BST property

You must build and maintain the tree such that it's true for **every node** *v* of the tree that:

- all elements in its left sub-tree are "smaller" than v
- all elements in its right sub-tree are "bigger" than v

Smaller and bigger refer to the value. The left/right sub-tree refers to the tree rooted in a node's left/right child.

Just saying "left child smaller and right child bigger" not sufficient!

(Why?)

Your operations that modify the tree must take care not to destroy this property!



# **Example**





### Before we go to BST operations:

May know tree traversals from elsewhere.

To traverse (or walk) the tree is to visit each node in the tree exactly once

Tree traversals are naturally recursive

Since a BST has three "parts," there are six possible ways to traverse the binary tree:

- root, left, right
- left, root, right
- left, right, root

- root, right, left
- right, root, left
- right, left, root



### **Preorder traversal**

In preorder, the root is visited *first* 

Here's a preorder traversal to print out all the elements in the tree:

#### PREORDER-TREE-WALK (x)

```
    1 if x ≠ NIL
    2 print x.key
    3 PREORDER-TREE-WALK (x.left)
    4 PREORDER-TREE-WALK (x.right)
```



# **Example**





### **Inorder traversal**

In inorder, the root is visited in the middle

Here's an inorder traversal to print out all the elements in the tree:

#### INORDER-TREE-WALK (x)

```
    1 if x ≠ NIL
    2 INORDER-TREE-WALK (x.left)
    3 print x.key
    4 INORDER-TREE-WALK (x.right)
```



### Postorder traversal

In postorder, the root is visited *last* 

Here's a postorder traversal to print out all the elements in the tree:

#### POSTORDER-TREE-WALK (x)

```
1 if x \neq NIL

2 POSTORDER-TREE-WALK (x.left)

3 POSTORDER-TREE-WALK (x.right)

4 print x.key
```



### Tree traversals using "flags"

The order in which the nodes are visited during a tree traversal can be easily determined by imagining there is a "flag" attached to each node, as follows:



To traverse the tree, collect the flags:



### Test your knowledge!



What is the result of a post order traversal of the tree to the left?

- A. FCGAKHLDJ
- B. FGCKLHJDA
- C. ACFGDHKLJ
- D. ACDFGHJKL
- E. LKJHGFDCA



## **Examples**



• in-order: 1,3,4,6,7,8,10,13,14

pre-order: 8,3,1,6,4,7,10,14,13

post-order: 1,4,7,6,3,13,14,10,8

For BSTs, the in-order traversal gives the elements in sorted order!

No coincidence, either!

Anybody notice anything interesting?



### In-order traversal of BSTs sorts

#### By def, in BST

- everything on the left of a node is smaller, and
- everything on the right is bigger.

#### In-order traversal

- first recurses into left, then
- prints node, then
- recurses into right.

#### Means:

- first the entire left sub-tree is being printed (all the smaller guys),
- then the node itself,
- then the right sub-tree with the bigger guys.

Formal proof – in practicals!



### A class for BSTs

Assume we've got a data structure Node for nodes:

```
class Node:
    11 11 11
    Tree node: left and right child + data
                which can be any object
    11 11 11
    def __init__(self, data):
         11 11 11
        Node constructor
        @param data node data object
         11 11 11
         self.left = None
         self.right = None
         self.data = data
```



root = Node(8)

creates single node with data (value, payload, key) 8.



To be called on root of tree.

- If match, return (don't insert again).
- If new key is smaller than that of current node, insert on left.
- Otherwise, insert on right.



```
class Node:
    def insert(self, data):
        11 11 11
        Insert new node with data
        Oparam data node data object to insert
        11 11 11
        if data < self.data:
            if self.left is None:
                 self.left = Node(data)
            else:
                 self.left.insert(data)
        else:
            if self.right is None:
                 self.right = Node(data)
            else:
                 self.right.insert(data)
```



Consider following sequence of operations after the root = Node(8)

```
root.insert(3)
root.insert(10)
root.insert(1)
```

That'll give us





#### Add this sequence:

```
root.insert(6)
root.insert(4)
root.insert(7)
root.insert(14)
root.insert(13)
```

#### Output:





## Searching in a BST

To be called on the root of the tree.

- If match, return.
- If what we're looking for is smaller, go left (can't be anywhere else).
- Otherwise, go right.





### Searching in a BST

```
class Node:
    def lookup(self, data, parent=None):
        Lookup node containing data
        Oparam data node data object to look up
        @param parent node's parent
        Oreturns node and node's parent if found or None, None
        11 11 11
        if data < self.data:
            if self.left is None:
                return None, None
            return self.left.lookup(data, self)
        elif data > self.data:
            if self.right is None:
                return None, None
            return self.right.lookup(data, self)
        else:
            return self, parent
```



# **Searching in a BST**

```
node, parent = root.lookup(7)
node, parent = root.lookup(15)
```





### What about deleting?

Most difficult dictionary operation on BSTs.

We first do a lookup on the element that we wish to remove. If that returns "not found" then we're done (element not in tree).

Otherwise, three cases to be considered:

- If node is a leaf (no child) then simply remove it
- If node has one child (left or right) then remove and replace it with that one child lift (the one) sub-tree up.
- If node has two children then... what?



### Deleting from a BST: counting children

```
class Node:
    def children_count(self):
        11 11 11
        Returns the number of children
        Oreturns number of children: 0, 1, 2
        11 11 11
        if node is None:
             return None
        cnt = 0
        if self.left:
             cnt += 1
        if self.right:
             cnt += 1
        return cnt
```



### **Deleting from a BST: setup**

```
class Node:
    def delete(self, data):
        11 11 11
        Delete node containing data
        @param data node's content to delete
        11 11 11
        # get node containing data
        node, parent = self.lookup(data)
        if node is not None:
            children_count = node.children_count()
        . . .
```



```
def delete(self, data):
    ...
    if children_count == 0:
        # if node has no children, just remove it
        if parent.left is node:
            parent.left = None
        else:
            parent.right = None
        del node
    ...
```



root.delete(1)





#### Deleting from a BST: one child

```
def delete(self, data):
    elif children_count == 1:
        # if node has 1 child
        # replace node by its child
        if node.left:
                n = node.left
        else:
                n = node.right
        if parent:
            if parent.left is node:
                    parent.left = n
            else:
                    parent.right = n
        del node
    . . .
```



### Deleting from a BST: one child

root.delete(14)





Before we go there: how do you find the smallest element in a given tree?



Answer: starting from root, always go left



Before we go there: how do you find the smallest element bigger than that in a given node?



Answer: starting from that node, take one step to the right, then always go left



Why is that important, or useful?

Because if we wanted to remove a given node u, we could

- find the smallest node v that's bigger
- copy v's data into u
- delete v

Example:

root.delete(3)





BST property maintained, everything all right! (Could also have identified largest in left sub-tree and copied that node's data across!)

```
def delete(self, data):
    else:
       # if node has 2 children
        # find its successor
       parent = node
        successor = node.right
        while successor.left:
            parent = successor
            successor = successor.left
        # replace node data by its successor data
        node.data = successor.data
        # fix successor's parent's child
        if parent.left == successor:
            parent.left = successor.right
        else:
            parent.right = successor.right
```



"Successor" here means w.r.t. sorted order (left-most in right subtree)

### Traversing a BST

```
class Node:
     . . .
    def print_tree(self):
         11 11 11
        Print tree content inorder
         11 11 11
         if self.left:
             self.left.print_tree()
        print self.data,
         if self.right:
             self.right.print_tree()
```



### **BST: Complexity**

- O(h)— searching, insertions, deletions.
  - O(log n) In the average case.
- In the worse case, these degenerates to O(N) how?
  - but this can be avoided by using balanced trees (AVL, Red-Black)



### Test your knowledge!

delete(23)







# Thank you

