

PERTEMUAN

Struktur Data & Algorin

What is an MD5 hash?

HASHING

Hashing

- Hashing
- Hash Tables
- Fungsi (Hash Functions)
- □ Collision Resolution
- Menerapakan Hash Table

Hashing

Pengertian Hash

Kita dapat membangun struktur data yang dapat dicari dalam waktu O (1).
Konsep ini disebut sebagai hashing

Hash Table

- Hash table adalah kumpulan item yang disimpan sedemikian rupa agar mudah ditemukan nanti.
- Setiap posisi Hash table, slot, dapat menampung item dan dinamai dengan nilai integer mulai dari 0.
- Misalnya, kita akan memiliki slot bernama 0, slot bernama 1, slot bernama 2, dan seterusnya.
- Awalnya, tabel hash tidak berisi item sehingga setiap slot kosong.

Hash Table

- Untuk mengimplementasikan tabel hash dengan menggunakan daftar dengan setiap elemen diinisialisasi ke nilai khusus None.
- \Box Berikut adalah tabel hash kosong dengan ukuran m = 11 value None.

Hash Table

- Pemetaan antara item dan slot tempat item tersebut berada dalam tabel hash disebut hash function.
- Hash function akan mengambil item apa pun dalam koleksi dan mengembalikan integer dalam kisaran nama slot, antara 0 dan m-1.
- Bagaimana kita harus menggunakan fungsi hash?

- Salah satu fungsi hash (hash function) yang bisa kita gunakan adalah metode sisanya.
- Saat disajikan dengan item, fungsi hash adalah item dibagi dengan ukuran tabel, ini kemudian nomor slotnya.

- Asumsikan bahwa kita memiliki himpunan bilangan integer 54, 26, 93, 17, 77, dan 31.
- Tetapkan tabel hash kosong dari m=11
- Selanjutnya, fungsi hash: h(item)= item % 11
 - \Box 54 = 54 / 11 = 10 Sisa 10
 - \square 26 = 26/11 = 4
 - 93 = 93/11 = 5
 - □ 17 = 17/11 = 6
 - 77 = 77/11 = 0
 - 31 = 31/11 = 9

Item	Hash Value
54	10
26	4
93	5
17	6
77	0
31	9

- Bagaimana dapat menempati 6 dari 11 slot.
- Ini disebut sebagai file faktor beban, and is biasanya dilambangkan dengan

$$\lambda =$$
.

 \Box contoh ini, $\lambda = 6/11$.

Hash Function – Remainder Methode

· Tabel hash.

Hash Function – Remainder Methode

- Saat user ingin mencari item, kita cukup menggunakan fungsi hash untuk menghitung nama slot untuk item tersebut dan kemudian memeriksa tabel hash untuk melihat apakah ada.
- Operasi pencarian ini adalah 0 (1), karena jumlah waktu yang konstan diperlukan untuk menghitung nilai hash dan kemudian mengindeks tabel hash di lokasi itu.

Hash Function – Remainder Methode

- bagaimana jika Anda memiliki dua item yang akan menghasilkan lokasi yang sama?
- Misalnya 44% 11 dan 77% 11 adalah sama.
- Ini dikenal sebagai tabrakan / collision (juga dikenal sebagai benturan).
- fungsi hash secara umum!

- Fungsi hash yang memetakan setiap item ke dalam slot unik disebut sebagai fungsi hash yang sempurna.
- Tujuan membuat fungsi hash adalah yang meminimalkan jumlah tabrakan, mudah dihitung, dan mendistribusikan item dalam tabel hash secara merata.
- Ada beberapa teknik untuk pembahaan ini!

- Jika dicontohkan pada nomor telepon 436-555-4601
- Kami akan mengambil digit dan membaginya menjadi kelompok 2 (43,65,55,46,01).
- Setelah penjumlahan, 43 + 65 + 55 + 46 + 01, kita mendapatkan 210.
- Jika kita mengasumsikan tabel hash kita memiliki 11 slot, maka kita perlu melakukan langkah ekstra untuk membagi dengan 11 dan menyimpan sisanya.
- 210% 11 adalah 1 jadi nomor telepon 436-555-4601 di-4 3 6 5 5 5 4 6 0 1

- Untuk metode kuadrat tengah (Mid Square Method), pertama kita mengkuadratkan item, lalu mengekstrak beberapa bagian dari digit yang dihasilkan.
- Misalnya, jika itemnya 44, pertama-tama kita akan menghitung 442 = 1.936.
- Dengan mengekstrak dua digit tengah, 93, dan melakukan langkah sisanya, kita mendapatkan 93% 11 = 5

- Untuk metode kuadrat tengah (Mid Square Method), pertama kita mengkuadratkan item, lalu mengekstrak beberapa bagian dari digit yang dihasilkan.
- Misalnya, jika itemnya 44, pertama-tama kita akan menghitung 442 = 1.936.
- Dengan mengekstrak dua digit tengah, 93, dan melakukan langkah sisanya, kita mendapatkan 93% 11 = 5

Comparison Table

Item	Remainder	Mid-Square
54	10	3
26	4	7
93	5	9
17	6	8
77	0	4
31	9	6

Collision Resolution

- Salah satu metode untuk menyelesaikan tabrakan melihat ke tabel hash dan mencoba menemukan slot terbuka lain untuk menampung item yang menyebabkan tabrakan.
- Kita bisa mulai dari posisi nilai hash asli dan kemudian bergerak secara berurutan melalui slot sampai kita menemukan slot pertama yang kosong.
- Proses resolusi tabrakan ini disebut sebagai pengalamatan terbuka yang mencoba menemukan slot atau alamat terbuka berikutnya dalam tabel hash.

Collision Resolution

Dengan mengunjungi setiap slot secara sistematis satu per satu, kami melakukan teknik pengalamatan terbuka yang disebut *linear probing*.

SELESAI