Sparse Robust Regression using Non-concave Penalized Density Power Divergence

Subhabrata Majumdar Joint work with Abhik Ghosh University of Florida Informatics Institute

IISA-2018 conference, Gainesville, FL May 19, 2018

Table of contents

- Motivation
- Pormulation
- Influence functions
- Theory
- Simulations

Outline

- Motivation
- Formulation
- Influence functions
- 4 Theory
- Simulations

Penalized linear regression

Standard linear regression model (LRM):

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where $\mathbf{y} = (y_1, \dots, y_n)^T$ are responses, $\mathbf{X} = (\mathbf{x}_1 \cdots \mathbf{x}_n)^T$ is the design matrix, and $\boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)^T \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ are the random error components.

Penalized linear regression

Standard linear regression model (LRM):

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where $\mathbf{y} = (y_1, \dots, y_n)^T$ are responses, $\mathbf{X} = (\mathbf{x}_1 \cdots \mathbf{x}_n)^T$ is the design matrix, and $\boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)^T \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ are the random error components.

Sparse estimators of $\beta = (\beta_1, \dots, \beta_p)^T$, are defined as the minimizer of:

$$\sum_{i=1}^{n} \rho(\mathbf{y}_{i} - \mathbf{x}_{i}^{T}\boldsymbol{\beta}) + \lambda_{n} \sum_{i=1}^{p} p(|\beta_{j}|),$$

where $\rho(.)$ is a loss function, p(.) is the sparsity inducing penalty function, and $\lambda_n \equiv \lambda$ is the regularization parameter depending on n.

Sparse penalized least squares

Linear model:
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$
, with $\mathbf{X} \in \mathbb{R}^{n \times p}, \boldsymbol{\beta} \in \mathbb{R}^p, \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ with $\sigma > 0$;

Lasso (Tibshirani, 1996)

$$\widehat{oldsymbol{eta}} = rac{1}{n} \operatorname{argmin}_{oldsymbol{eta}} \| \mathbf{y} - \mathbf{X} oldsymbol{eta} \|^2 + \lambda \| oldsymbol{eta} \|_1;$$

Sparse penalized least squares

Linear model: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, with $\mathbf{X} \in \mathbb{R}^{n \times p}, \boldsymbol{\beta} \in \mathbb{R}^p, \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ with $\sigma > 0$;

Lasso (Tibshirani, 1996)

$$\widehat{oldsymbol{eta}} = rac{1}{n} \operatorname{argmin}_{oldsymbol{eta}} \| \mathbf{y} - \mathbf{X} oldsymbol{eta} \|^2 + \lambda \| oldsymbol{eta} \|_1;$$

SCAD (Fan and Li, 2001) $\hat{\boldsymbol{\beta}} =$

 $eta = \operatorname{argmin}_{eta} \frac{1}{n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{j=1}^{p} p(|\beta_j|);$

MCP (Zhang, 2010)

Sparse Robust Regression

- Sparse versions of robust regression methods- RLARS (Khan et al., 2007), sparse least trimmed squares (Wang et al., 2007), LAD-lasso (Alfons et al., 2013);
- Robust high-dimensional M-estimation- Neghaban et al. (2012); Bean et al. (2013); Donoho and Montanari (2016); Lozano et al. (2016); Loh and Wainwright (2017)

• All methods until now focus on ℓ_1 -penalization. But the bias of lasso-type estimators is well-known.

- All methods until now focus on ℓ_1 -penalization. But the bias of lasso-type estimators is well-known.
- Many proposed methods lack theoretical rigor and only give algorithms.

- All methods until now focus on ℓ_1 -penalization. But the bias of lasso-type estimators is well-known.
- Many proposed methods lack theoretical rigor and only give algorithms.
- Robustness is either shown empirically or theoretically- not both.

- All methods until now focus on ℓ_1 -penalization. But the bias of lasso-type estimators is well-known.
- Many proposed methods lack theoretical rigor and only give algorithms.
- Robustness is either shown empirically or theoretically- not both.
- Conditions assumed on the design matrix are largely similar to non-robust cases.

Example

 $\mathbf{X}^T\mathbf{X}/n \to \mathbf{C}$ (Alfons et al., 2013)

Restricted eigenvalue condition (Lozano et al., 2016)

Outline

- Motivation
- Pormulation
- Influence functions
- 4 Theory
- Simulations

- Density Power Divergence is a generalization of the KL-divergence.
- DPD-based regression (Durio and Isaia, 2011) maximizes the loss function

$$L_n^{\alpha}(\beta,\sigma) = \frac{1}{(2\pi)^{\alpha/2}\sigma^{\alpha}\sqrt{1+\alpha}} \left[1 - \frac{(1+\alpha)^{3/2}}{\alpha} \frac{1}{n} \sum_{i=1}^n e^{-\alpha \frac{(y_i - x_i^T\beta)^2}{2\sigma^2}} \right]$$

- Density Power Divergence is a generalization of the KL-divergence.
- DPD-based regression (Durio and Isaia, 2011) maximizes the loss function

$$L_n^{\alpha}(\beta,\sigma) = \frac{1}{(2\pi)^{\alpha/2}\sigma^{\alpha}\sqrt{1+\alpha}} \left[1 - \frac{(1+\alpha)^{3/2}}{\alpha} \frac{1}{n} \sum_{i=1}^n e^{-\alpha \frac{(y_i - x_i^T \beta)^2}{2\sigma^2}} \right]$$

Why use DPD?

- Density Power Divergence is a generalization of the KL-divergence.
- DPD-based regression (Durio and Isaia, 2011) maximizes the loss function

$$L_n^{\alpha}(\beta,\sigma) = \frac{1}{(2\pi)^{\alpha/2}\sigma^{\alpha}\sqrt{1+\alpha}} \left[1 - \frac{(1+\alpha)^{3/2}}{\alpha} \frac{1}{n} \sum_{i=1}^n e^{-\alpha \frac{(y_i - x_i^T \beta)^2}{2\sigma^2}} \right]$$

Why use DPD?

Adaptive: Large α = more robust, less efficient. Small α = more robust, less efficient.

- Density Power Divergence is a generalization of the KL-divergence.
- DPD-based regression (Durio and Isaia, 2011) maximizes the loss function

$$L_n^{\alpha}(\beta,\sigma) = \frac{1}{(2\pi)^{\alpha/2}\sigma^{\alpha}\sqrt{1+\alpha}} \left[1 - \frac{(1+\alpha)^{3/2}}{\alpha} \frac{1}{n} \sum_{i=1}^n e^{-\alpha \frac{(y_i - x_i^T \beta)^2}{2\sigma^2}} \right]$$

Why use DPD?

Adaptive: Large α = more robust, less efficient. Small α = more robust, less efficient.

Generalized: As $\alpha \downarrow 0$, $L_n^{\alpha}(\beta, \sigma)$ coincides (in a limiting sense) with the negative log-likelihood.

(why? think L-Hospital's rule.)

Penalized DPD

$$L_n^{\alpha}(\boldsymbol{\beta}, \sigma) + \sum_{j=1}^{\rho} \boldsymbol{p}_{\lambda}(|\beta_j|)$$

where $p_{\lambda}(\cdot)$ is a penalty function (lasso, SCAD, MCP, ...).

Ghosh and Majumdar

Penalized DPD

$$L_n^{\alpha}(\boldsymbol{\beta}, \sigma) + \sum_{j=1}^{p} p_{\lambda}(|\beta_j|)$$

where $p_{\lambda}(\cdot)$ is a penalty function (lasso, SCAD, MCP, ...).

As $\alpha \downarrow$ 0, this becomes the (non-robust) non-concave penalized negative log-likelihood.

Computational algorithm

Starting from $\hat{\beta}, \hat{\sigma}$, Iteratively minimize the following:

$$egin{aligned} R^{lpha}_{\lambda}(oldsymbol{eta}) &= L^{lpha}_{n}(oldsymbol{eta}, \hat{\sigma}) + \sum_{j=1}^{p} p_{\lambda}(|eta_{j}|), \ S^{lpha}(\sigma) &= L^{lpha}_{n}(\hat{oldsymbol{eta}}, \sigma). \end{aligned}$$

Computational algorithm

Starting from $\hat{\beta}, \hat{\sigma}$, Iteratively minimize the following:

$$egin{align} R^lpha_\lambda(oldsymbol{eta}) &= L^lpha_n(oldsymbol{eta},\hat{\sigma}) + \sum_{j=1}^p p_\lambda(|eta_j|), \ S^lpha(\sigma) &= L^lpha_n(\hat{oldsymbol{eta}},\sigma). \ \end{aligned}$$

Update β using a Concave-Convex Procedure (CCCP):

$$p_{\lambda}(|\beta_{j}|) = \tilde{J}_{\lambda}(|\beta_{j}|) + \lambda|\beta_{j}| \simeq \nabla \tilde{J}_{\lambda}(|\beta_{j}^{c}|)\beta_{j} + \lambda|\beta_{j}|$$

where $\tilde{J}(\cdot)$ is differentiable and concave, β^c is a current solution.

• Update σ using gradient descent.

Updating $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}$

$$\hat{\boldsymbol{\beta}}^{(k+1)} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left\{ L_n^{\alpha} \left(\boldsymbol{\beta}, \hat{\boldsymbol{\sigma}}^{(k)} \right) + \sum_{j=1}^{p} \left[\nabla \tilde{J}_{\lambda} (|\hat{\boldsymbol{\beta}}_j^{(k)}|) \beta_j + \lambda |\beta_j| \right] \right\};$$

Updating $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}$

$$\hat{\boldsymbol{\beta}}^{(k+1)} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left\{ L_n^{\alpha} \left(\boldsymbol{\beta}, \hat{\boldsymbol{\sigma}}^{(k)} \right) + \sum_{j=1}^{p} \left[\nabla \tilde{J}_{\lambda} (|\hat{\beta}_j^{(k)}|) \beta_j + \lambda |\beta_j| \right] \right\};$$

$$\hat{\boldsymbol{\sigma}}^{2(k+1)} = \left[\sum_{i=1}^{n} w_i^{(k)} - \frac{\alpha}{(1+\alpha)^{3/2}} \right] \left[\sum_{i=1}^{n} w_i^{(k)} \left(y_i - \mathbf{x}_i^T \boldsymbol{\beta}^{(k+1)} \right)^2 \right]^{-1},$$

$$w_i^{(k)} := \exp \left\{ -\alpha \frac{(y_i - \mathbf{x}_i^T \boldsymbol{\beta}^{(k)})^2}{\sigma^{2(k)}} \right\}.$$

Tuning parameter selection

To choose λ , we use a robust High-dimensional BIC:

$$\mathsf{HBIC}(\lambda) = \log(\hat{\sigma}^2) + \frac{\log\log(n)\log p}{n} \|\hat{\boldsymbol{\beta}}\|_0, \tag{1}$$

and select the optimal λ^* that minimizes the HBIC over a pre-determined set of values Λ_n : $\lambda^* = \operatorname{argmin}_{\lambda \in \Lambda_n} \operatorname{HBIC}(\lambda)$.

Outline

- Motivation
- 2 Formulation
- Influence functions
- 4 Theory
- Simulations

Definition

The Influence Function (IF) is a classical tool of measuring the asymptotic local robustness of any estimator (Hampel, 1968, 1974).

Definition

The **Influence Function (IF)** is a classical tool of measuring the asymptotic local robustness of any estimator (Hampel, 1968, 1974).

Consider a contaminated version of the true distribution joint G given by $G_{\epsilon} = (1 - \epsilon)G + \epsilon \wedge_{(y_t, \mathbf{x}_t)}$ where ϵ is the contamination proportion and $\wedge_{(y_t, \mathbf{x}_t)}$ is the degenerate distribution at (y_t, \mathbf{x}_t) . Then, the IF of any functional T at G is defined as the *limiting (standardized) bias due to infinitesimal contamination:*

$$\mathcal{IF}((y_t, \mathbf{x}_t), \mathbf{T}_{\alpha}, G) = \lim_{\epsilon \to 0} \frac{\mathbf{T}_{\alpha}(G_{\epsilon}) - \mathbf{T}_{\alpha}(G)}{\epsilon} = \left. \frac{\partial}{\partial \epsilon} \mathbf{T}_{\alpha}(G_{\epsilon}) \right|_{\epsilon=0}.$$

IF for our estimates

Influence function plots for $\boldsymbol{\beta}$ (panels a and b, $(y_t, \|\mathbf{x}_{1t}\|_1)$ on the (x, y) axes, and ℓ_2 norms of IFs are plotted) and σ (panels c and d, $(y_t, \mathbf{x}_t^T \boldsymbol{\beta})$ on the axes). We assume \mathbf{x}_{1t} is drawn from $\mathcal{N}_5(\mathbf{0}, \mathbf{I})$, and $\boldsymbol{\beta}_1 = (1, 1, 1, 1, 1, 1)^T$, $\sigma = 1$. Panels a and c are for $\alpha = 0$, while b and d are for $\alpha = 0.5$

Outline

- Motivation
- Pormulation
- Influence functions
- Theory
- Simulations

Modified conditions for robustness: example

Denote the non-zero index set of the true coefficient vector β^* by S.

Restricted eigenvalue condition

$$\frac{\|\mathbf{X}\boldsymbol{\delta}\|^2}{n\|\boldsymbol{\delta}\|^2} \ge \kappa$$

for some $\kappa > 0$ and $\delta \in \mathbb{R}^p$ s.t. $\|\delta_{S^c}\|_1 \leq 3\|\delta_S\|_1$.

Modified conditions for robustness: example

Denote the non-zero index set of the true coefficient vector β^* by S.

Restricted eigenvalue condition

$$\frac{\|\mathbf{X}\boldsymbol{\delta}\|^2}{n\|\boldsymbol{\delta}\|^2} \geq \kappa$$

for some $\kappa > 0$ and $\delta \in \mathbb{R}^p$ s.t. $\|\delta_{S^c}\|_1 \leq 3\|\delta_S\|_1$.

Our condition

$$\min_{(\boldsymbol{\delta},\boldsymbol{\sigma}) \in \mathcal{N}_0} \Lambda_{\min} \left[\frac{1}{n} \mathbf{X}_{\mathcal{S}}^T \nabla^2 L_n^{\alpha}(\boldsymbol{\delta},\boldsymbol{\sigma}) \mathbf{X}_{\mathcal{S}} \right] \geq c$$

for c > 0, and

$$\mathcal{N}_0 = \left\{ (oldsymbol{\delta}, \sigma) : oldsymbol{\delta}_{\mathcal{S}^c} = oldsymbol{0}, \|(oldsymbol{\delta}_{\mathcal{S}}, \sigma) - (oldsymbol{eta}_{\mathcal{S}}^*, \sigma^*)\|_{\infty} < rac{\mathsf{min}_j \, |eta_j^*|}{2}
ight\}$$

Results

• Under a few conditions we prove that $\hat{\boldsymbol{\beta}}_{S^c} = \mathbf{0}$ and

$$\|\hat{\boldsymbol{\beta}}_{\mathcal{S}} - \hat{\boldsymbol{\beta}}_{\mathcal{S}}^*\|_{\infty} = O\left(\frac{\log n}{n^{\tau}}\right); \quad |\hat{\sigma} - \sigma^*| = O\left(\frac{\log n}{n^{\tau}}\right)$$

for some $0 < \tau < 0.5$.

Results

• Under a few conditions we prove that $\hat{\boldsymbol{\beta}}_{S^c} = \mathbf{0}$ and

$$\|\hat{\boldsymbol{\beta}}_{\mathcal{S}} - \hat{\boldsymbol{\beta}}_{\mathcal{S}}^*\|_{\infty} = O\left(\frac{\log n}{n^{\tau}}\right); \quad |\hat{\sigma} - \sigma^*| = O\left(\frac{\log n}{n^{\tau}}\right)$$

for some $0 < \tau < 0.5$.

• These rates improve to $O(\sqrt{s/n})$ and $O(n^{-1/2})$ respectively under stronger conditions.

Results

• Under a few conditions we prove that $\hat{\boldsymbol{\beta}}_{S^c} = \mathbf{0}$ and

$$\|\hat{\boldsymbol{\beta}}_{\mathcal{S}} - \hat{\boldsymbol{\beta}}_{\mathcal{S}}^*\|_{\infty} = O\left(\frac{\log n}{n^{\tau}}\right); \quad |\hat{\sigma} - \sigma^*| = O\left(\frac{\log n}{n^{\tau}}\right)$$

for some $0 < \tau < 0.5$.

- These rates improve to $O(\sqrt{s/n})$ and $O(n^{-1/2})$ respectively under stronger conditions.
- Under yet stronger conditions, we prove asymptotic normality.

Outline

- Motivation
- Pormulation
- Influence functions
- 4 Theory
- Simulations

• Obtain rows of **X** as n = 100 random draws from $\mathcal{N}(0, \Sigma_X)$, where Σ_X is a positive definite with $(i, j)^{\text{th}}$ element given by $0.5^{|i-j|}$.

- Obtain rows of **X** as n = 100 random draws from $\mathcal{N}(0, \Sigma_X)$, where Σ_X is a positive definite with $(i, j)^{\text{th}}$ element given by $0.5^{|i-j|}$.
- Given p, we consider two settings for β:
 - Setting A (strong signal): For $j \in \{1, 2, 4, 7, 11\}, \beta_j = j$, otherwise 0;
 - Setting B (weak signal): Set $\beta_1 = \beta_7 = 1.5$, $\beta_2 = 0.5$, $\beta_4 = \beta_{11} = 1$, and 0 otherwise.

- Obtain rows of **X** as n = 100 random draws from $\mathcal{N}(0, \Sigma_X)$, where Σ_X is a positive definite with $(i, j)^{\text{th}}$ element given by $0.5^{|i-j|}$.
- Given p, we consider two settings for β:
 - Setting A (strong signal): For $j \in \{1, 2, 4, 7, 11\}, \beta_j = j$, otherwise 0;
 - Setting B (weak signal): Set $\beta_1 = \beta_7 = 1.5$, $\beta_2 = 0.5$, $\beta_4 = \beta_{11} = 1$, and 0 otherwise.
- Generate the random errors as $\epsilon \sim N(0, 0.5^2)$, and set $\mathbf{y} = \mathbf{X}\beta + \epsilon$.

- Obtain rows of **X** as n = 100 random draws from $\mathcal{N}(0, \Sigma_X)$, where Σ_X is a positive definite with $(i, j)^{\text{th}}$ element given by $0.5^{|i-j|}$.
- Given p, we consider two settings for β:
 - Setting A (strong signal): For $j \in \{1, 2, 4, 7, 11\}, \beta_j = j$, otherwise 0;
 - Setting B (weak signal): Set $\beta_1 = \beta_7 = 1.5$, $\beta_2 = 0.5$, $\beta_4 = \beta_{11} = 1$, and 0 otherwise.
- Generate the random errors as $\epsilon \sim N(0, 0.5^2)$, and set $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$.
- Three outlier settings:
 - Y-outliers: We add 20 to the response variables of a random 10% of samples,
 - X-outliers: We add 20 to each of the elements in the first 10 rows of X for a random 10% of samples,
 - No outliers.

- Obtain rows of **X** as n = 100 random draws from $\mathcal{N}(0, \Sigma_X)$, where Σ_X is a positive definite with $(i, j)^{\text{th}}$ element given by $0.5^{|i-j|}$.
- Given p, we consider two settings for β:
 - Setting A (strong signal): For $j \in \{1, 2, 4, 7, 11\}, \beta_j = j$, otherwise 0;
 - Setting B (weak signal): Set $\beta_1 = \beta_7 = 1.5$, $\beta_2 = 0.5$, $\beta_4 = \beta_{11} = 1$, and 0 otherwise.
- Generate the random errors as $\epsilon \sim N(0, 0.5^2)$, and set $\mathbf{y} = \mathbf{X}\beta + \epsilon$.
- Three outlier settings:
 - Y-outliers: We add 20 to the response variables of a random 10% of samples,
 - X-outliers: We add 20 to each of the elements in the first 10 rows of X for a random 10% of samples,
 - No outliers.
- Methods compared- RLARS, sLTS, RANSAC, LAD-Lasso, DPD-lasso, log DPD-lasso, Lasso, SCAD, MCP. We repeat model fitting by our method (DPD-ncv), DPD-lasso and LDPD-lasso for $\alpha=0.2,0.4,0.6,0.8,1$, as well as for different values of the starting point, chosen by RLARS, sLTS and RANSAC.
- RLARS solution is used as our starting point.

$$\begin{split} \mathsf{MSEE}(\hat{\boldsymbol{\beta}}) &= (1/p) \| \hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0 \|^2, \\ \mathsf{RMSPE}(\hat{\boldsymbol{\beta}}) &= \sqrt{\| \mathbf{y}_{test} - \mathbf{X}_{test} \hat{\boldsymbol{\beta}} \|^2}, \\ \mathsf{EE}(\hat{\boldsymbol{\sigma}}) &= |\hat{\boldsymbol{\sigma}} - \boldsymbol{\sigma}_0|, \\ \mathsf{TP}(\hat{\boldsymbol{\beta}}) &= \frac{|\operatorname{supp}(\hat{\boldsymbol{\beta}}) \cap \operatorname{supp}(\boldsymbol{\beta}_0)|}{|\operatorname{supp}(\boldsymbol{\beta}_0)|}, \\ \mathsf{TN}(\hat{\boldsymbol{\beta}}) &= \frac{|\operatorname{supp}(\hat{\boldsymbol{\beta}}) \cap \operatorname{supp}(\boldsymbol{\beta}_0)|}{|\operatorname{supp}(\boldsymbol{\beta}_0)|}, \\ \mathsf{MS}(\hat{\boldsymbol{\beta}}) &= |\operatorname{supp}(\hat{\boldsymbol{\beta}})|. \end{split}$$

Table of outputs for p = 500 and Y-outliers

		0 . W D				
-	^	Setting B				
Method	$MSEE(\hat{\beta})$	$RMSPE(\hat{\beta})$	$EE(\widehat{\sigma})$	$TP(\hat{\boldsymbol{\beta}})$	$TN(\hat{\boldsymbol{\beta}})$	$MS(\hat{\boldsymbol{\beta}})$
	$(\times 10^{-4})$	$(\times 10^{-2})$				
RLARS	1.1	4.58	0.09	1.00	1.00	6.00
sLTS	6.2	6.06	0.23	1.00	0.93	40.07
RANSAC	6.2	4.82	0.24	1.00	0.92	44.00
LAD-Lasso	68.6	15.65	2.77	0.65	0.99	6.28
DPD-ncv, $\alpha = 0.2$	0.8	4.28	0.06	1.00	1.00	5.00
DPD-ncv, $\alpha = 0.4$	0.8	4.30	0.06	1.00	1.00	5.00
DPD-ncv, $\alpha = 0.6$	0.8	4.50	0.06	1.00	1.00	5.00
DPD-ncv, $\alpha = 0.8$	0.7	4.59	0.06	1.00	1.00	5.00
DPD-ncv, $\alpha = 1$	0.8	4.61	0.06	1.00	1.00	5.00
DPD-Lasso, $\alpha = 0.2$	61.3	15.10	0.05	1.00	0.00	499.08
DPD-Lasso, $\alpha = 0.4$	58.9	14.41	0.17	1.00	0.05	477.15
DPD-Lasso, $\alpha = 0.6$	56.5	14.85	0.14	1.00	0.10	450.22
DPD-Lasso, $\alpha = 0.8$	55.1	14.29	0.02	1.00	0.13	435.72
DPD-Lasso, $\alpha = 1$	54.2	14.16	0.01	1.00	0.13	433.65
LDPD-Lasso, $\alpha = 0.2$	2.1	5.09	0.07	1.00	0.99	10.19
LDPD-Lasso, $\alpha = 0.4$	2.2	5.12	0.09	1.00	0.99	7.97
LDPD-Lasso, $\alpha = 0.6$	2.3	5.14	0.11	1.00	0.99	7.62
LDPD-Lasso, $\alpha = 0.8$	2.3	5.14	0.13	1.00	1.00	7.38
LDPD-Lasso, $\alpha = 1$	2.3	5.15	0.14	1.00	1.00	7.38
Lasso	134.1	22.41	4.54	0.02	1.00	0.24
SCAD	128.6	20.97	3.60	0.32	0.99	8.72
MCP	141.6	21.09	3.69	0.24	0.99	4.52

Table of outputs for p = 500 and X-outliers

		O . III'				
		Setting B				
Method	$MSEE(\hat{\beta})$	$RMSPE(\hat{\beta})$	$EE(\widehat{\sigma})$	$TP(\hat{\boldsymbol{\beta}})$	$TN(\hat{\boldsymbol{\beta}})$	$MS(\hat{\boldsymbol{\beta}})$
	$(\times 10^{-4})$	$(\times 10^{-2})$				
RLARS	2.0	4.2	0.14	1.00	0.99	12.00
sLTS	8.7	5.3	0.24	1.00	0.92	42.50
RANSAC	5.8	5.9	0.26	1.00	0.98	15.00
LAD-Lasso	108.0	20.4	2.87	0.38	0.99	7.71
DPD-ncv, $\alpha = 0.2$	1.2	4.1	0.08	1.00	1.00	7.00
DPD-ncv, $\alpha = 0.4$	1.1	4.0	0.10	1.00	1.00	7.00
DPD-ncv, $\alpha = 0.6$	1.1	4.2	0.12	1.00	1.00	7.00
DPD-ncv, $\alpha = 0.8$	1.4	4.2	0.14	1.00	1.00	7.00
DPD-ncv, $\alpha = 1$	1.5	4.2	0.15	1.00	1.00	7.00
DPD-Lasso, $\alpha = 0.2$	59.5	13.8	0.05	1.00	0.01	495.26
DPD-Lasso, $\alpha = 0.4$	48.6	10.8	0.20	1.00	0.16	420.56
DPD-Lasso, $\alpha = 0.6$	35.3	9.2	0.28	1.00	0.35	329.12
DPD-Lasso, $\alpha = 0.8$	27.6	8.6	0.13	1.00	0.45	278.17
DPD-Lasso, $\alpha = 1$	25.7	9.2	0.01	1.00	0.47	267.29
LDPD-Lasso, $\alpha = 0.2$	1.9	5.0	0.06	1.00	0.98	15.14
LDPD-Lasso, $\alpha = 0.4$	1.8	5.0	0.07	1.00	0.98	14.04
LDPD-Lasso, $\alpha = 0.6$	1.8	5.1	0.07	1.00	0.98	14.03
LDPD-Lasso, $\alpha = 0.8$	1.8	5.0	0.07	1.00	0.98	14.47
LDPD-Lasso, $\alpha = 1$	1.8	5.0	0.07	1.00	0.98	13.90
LASSO	22.6	10.3	0.13	0.99	0.87	70.32
SCAD	45.8	13.8	0.55	0.81	0.98	16.25
MCP	45.2	12.8	0.49	0.81	0.97	16.45

Table of outputs for p = 500 and no outliers

		O . III' D				
		Setting B				
Method	$MSEE(\hat{\beta})$	$RMSPE(\hat{\boldsymbol{\beta}})$	$EE(\widehat{\sigma})$	$TP(\hat{\boldsymbol{\beta}})$	$TN(\hat{\boldsymbol{\beta}})$	$MS(\hat{\boldsymbol{\beta}})$
	$(\times 10^{-4})$	$(\times 10^{-2})$				
RLARS	1.4	4.73	0.12	1.00	0.99	10.00
sLTS	7.9	5.65	0.24	1.00	0.93	42.00
RANSAC	5.2	4.95	0.23	1.00	0.98	15.00
LAD-Lasso	4.7	3.90	0.42	1.00	1.00	7.30
DPD-ncv, $\alpha = 0.2$	1.4	4.73	0.12	1.00	0.99	10.00
DPD-ncv, $\alpha = 0.4$	1.4	4.73	0.12	1.00	0.99	10.00
DPD-ncv, $\alpha = 0.6$	1.4	4.73	0.12	1.00	0.99	10.00
DPD-ncv, $\alpha = 0.8$	1.4	4.73	0.12	1.00	0.99	10.00
DPD-ncv, $\alpha = 1$	1.4	4.73	0.12	1.00	0.99	10.00
DPD-Lasso, $\alpha = 0.2$	79.1	14.56	0.10	1.00	0.00	499.00
DPD-Lasso, $\alpha = 0.4$	58.2	12.98	0.25	1.00	0.14	429.70
DPD-Lasso, $\alpha = 0.6$	44.9	10.18	0.25	1.00	0.31	348.80
DPD-Lasso, $\alpha = 0.8$	19.9	8.86	0.05	1.00	0.57	215.60
DPD-Lasso, $\alpha = 1$	21.1	11.46	0.00	1.00	0.59	208.70
LDPD-Lasso, $\alpha = 0.2$	1.9	3.94	0.06	1.00	0.97	17.50
LDPD-Lasso, $\alpha = 0.4$	2.0	4.05	0.09	1.00	0.98	15.50
LDPD-Lasso, $\alpha = 0.6$	2.0	4.23	0.09	1.00	0.98	16.90
LDPD-Lasso, $\alpha = 0.8$	2.0	4.16	0.08	1.00	0.98	16.00
LDPD-Lasso, $\alpha = 1$	2.0	4.10	0.08	1.00	0.98	16.40
Lasso	2.1	3.59	0.33	1.00	0.98	12.90
SCAD	0.3	3.71	0.21	1.00	0.99	9.70
MCP	0.3	3.69	0.20	1.00	1.00	6.80

- We proposed a sparse regression method based on a generalization of the log-likelihood;
- We provide detailed theoretical analysis for the robustness and consistency properties of estimates of β and σ ;
- Future directions- robust high-dimensional testing for β , graphical models, group sparsity.

- We proposed a sparse regression method based on a generalization of the log-likelihood;
- We provide detailed theoretical analysis for the robustness and consistency properties of estimates of β and σ ;
- Future directions- robust high-dimensional testing for β , graphical models, group sparsity.

- We proposed a sparse regression method based on a generalization of the log-likelihood;
- We provide detailed theoretical analysis for the robustness and consistency properties of estimates of β and σ;
- Future directions- robust high-dimensional testing for β , graphical models, group sparsity.

- We proposed a sparse regression method based on a generalization of the log-likelihood;
- We provide detailed theoretical analysis for the robustness and consistency properties of estimates of β and σ ;
- Future directions- robust high-dimensional testing for β , graphical models, group sparsity.

Preprint available at: https://arxiv.org/abs/1803.03348

- Alfons, A., Croux, C., and Gelper, S. (2013). Sparse least trimmed squares regression for analyzing high-dimensional large data sets. Ann. Appl. Statist., 7:226–248.
- Bean, D., Bickel, P., El Karoui, N., and Yu, B. (2013). Optimal M-estimation in high-dimensional regression *Proc. Natl. Acad. Sci.*, 110(36):14563–14568.
- Donoho, D. and Montanari, A. (2016). High dimensional robust M-estimation: asymptotic variance via approximate message passing. Probab. Theory Relat. Fields, 166:935–969.
- Durio, A. and Isaia, E. D. (2011). The minimum density power divergence approach in building robust regression models. *Informatica*, 22(1):43–56.
- Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. J. Amer. Statist. Assoc., 96:1348–1360.
- Hampel, F. R. (1968). *Contributions to the Theory of Robust Estimation*. Ph.d. thesis, University of California, Berkeley, USA
- Hampel, F. R. (1974). The influence curve and its role in robust estimation. *J. Amer. Statist Assoc.*, 69:383–393
- Khan, J. A., van Aelst, S., and Zamar, R. H. (2007). Robust linear model selection based on least angle regression. J. Amer. Statist. Assoc., 102:1289–1299.
- Loh, P.-L. and Wainwright, M. J. (2017). Statistical consistency and asymptotic normality for high-dimensional robust M-estimators. Ann. Statist., 45(2):866–896.
- Lozano, A., Meinshausen, N., and Yang, E. (2016). Minimum Distance Lasso for robust high-dimensional regression. Electron. J. Stat., 10:1296–1340.
- High-Dimensional Analysis of M-Estimators with Decomposable Regularizers. Stat. Sci., 27(4):538–557
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58(267–288)
- Wang, H., Li, G., and Jiang, G. (2007). Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso. *J. Bus. Econ. Stat.*, 25(3):347–355.
- Zhang, C. H. (2010). Nearly Unbiased Variable Selection under Minimax Concave Penalty. *Ann. Statist.*, 38:894–942.

Preprint available at: https://arxiv.org/abs/1803.03348

- Alfons, A., Croux, C., and Gelper, S. (2013). Sparse least trimmed squares regression for analyzing high-dimensional large data sets. *Ann. Appl. Statist.*, 7:226–248.
- Bean, D., Bickel, P., El Karoui, N., and Yu, B. (2013). Optimal M-estimation in high-dimensional regression. *Proc. Natl. Acad. Sci.*, 110(36):14563–14568.
- Donoho, D. and Montanari, A. (2016). High dimensional robust M-estimation: asymptotic variance via approximate message passing. *Probab. Theory Relat. Fields*, 166:935–969.
- Durio, A. and Isaia, E. D. (2011). The minimum density power divergence approach in building robust regression models. *Informatica*, 22(1):43–56.
- Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. J. Amer. Statist. Assoc., 96:1348–1360.
- Hampel, F. R. (1968). *Contributions to the Theory of Robust Estimation*. Ph.d. thesis, University of California, Berkeley, USA.
- Hampel, F. R. (1974). The influence curve and its role in robust estimation. *J. Amer. Statist Assoc.*, 69:383–393. Khan, J. A., van Aelst, S., and Zamar, R. H. (2007). Robust linear model selection based on least angle
- regression. *J. Amer. Statist. Assoc.*, 102:1289–1299.

 Loh, P.-L. and Wainwright, M. J. (2017). Statistical consistency and asymptotic normality for high-dimensional
- robust M-estimators. *Ann. Statist.*, 45(2):866–896.
- Lozano, A., Meinshausen, N., and Yang, E. (2016). Minimum Distance Lasso for robust high-dimensional regression. *Electron. J. Stat.*, 10:1296–1340.
- Neghaban, S. N., Ravikumar, P., Wainwright, M. J., and Yu, B. (2012). A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers. *Stat. Sci.*, 27(4):538–557.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58(267–288).
- Wang, H., Li, G., and Jiang, G. (2007). Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso. *J. Bus. Econ. Stat.*, 25(3):347–355.
- Zhang, C. H. (2010). Nearly Unbiased Variable Selection under Minimax Concave Penalty. *Ann. Statist.*, 38:894–942

THANK YOU!