Homework 3

Problem 1

Consider the problem

minimize
$$f(x)$$

s.t. $x \in \mathcal{X}$

where $\mathcal{X} = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \ge 1\}$ and $f(x) = x_2$.

- a. Find all point(s) satisfying a first order necessary optimality condition. Recall we studied two: FD-FONC and FONC.
- b. Which of the point(s) in part a satisfy a second order necessary optimality condition?
 - c. Which of the point(s) in part a are local minimizers?

Problem 2

Consider the problem

minimize
$$f(x) = -x_2^2$$

s.t. $|x_2| \le x_1^2$
 $x_1 \ge 0$

where $x_1, x_2 \in \mathbb{R}$.

a. Does the point $(x_1, x_2)^{\top} = (0, 0)$ satisfy the FD-FONC? b. Is the point $(x_1, x_2)^{\top} =$ (0,0) a local minimizer, a strict local minimizer, a local maximizer, a strict local maximizer, or none of the above?

Problem 3

Consider the problem

minimize
$$f(x)$$

s.t. $x \in \mathcal{X}$

where $f: \mathbb{R}^2 \to \mathbb{R}$ is given by $f(x) = 3x_1$ with $x = (x_1, x_2)^{\top}$, and $\mathcal{X} = \{x = (x_1, x_2)^{\top} : x \in \mathbb{R}^2 \}$ $x_1 + x_2^2 \ge 2$. Answer each of the following questions, showing complete justification.

- a. Does the point $x^* = (2,0)^{\top}$ satisfy the FD-FONC? b. Does the point $x^* = (2,0)^{\top}$ satisfy the FD-SONC?
- c. Is the point $x^* = (2,0)^{\top}$ a local minimizer?

Hint: Draw a picture with the constraint set and level sets of f.

Problem 4

Let $f: \mathbb{R}^2 \to \mathbb{R}$. Consider the problem

minimize
$$f(x)$$

s.t. $x_1, x_2 > 0$

where $x = (x_1, x_2)^{\top}$. Suppose that $\nabla f(0) \neq 0$, and

$$\frac{\partial f}{\partial x_1}(0) \le 0, \quad \frac{\partial f}{\partial x_2}(0) \le 0$$

Show that 0 cannot be a minimizer for this problem.

Problem 5

Let $\mathcal{X} = \{x \in \mathbb{R}^n : Ax = b\}$. Show that $d \in \mathbb{R}^n$ is a feasible direction at $x \in \mathcal{X}$ iff Ad = 0.

Problem 6

Consider the problem

maximize
$$c_1 x_1 + c_2 x_2$$

s.t. $x_1 + x_2 \le 1$.
 $x_1, x_2 \ge 0$

where c_1 and c_2 are constants such that $c_1 > c_2 \ge 0$. This is a linear programming problem. Assuming that the problem has an optimal feasible solution, use the FD-FONC to show that the unique optimal feasible solution x^* is $(1,0)^{\top}$.

Problem 7

Let $c \in \mathbb{R}^n$, $c \neq 0$, and consider the problem of minimizing the function $f(x) = c^{\top}x$ over a set $\mathcal{X} \subseteq \mathbb{R}^n$. Show that we cannot have a solution in the interior of \mathcal{X} .