

Overview on molecular property predictions

Seongok Ryu

Department of Chemistry, KAIST

Contents

- Overview on molecular property predictions
- Message passing neural network
- Assignment #7

Overview on molecular property predictions

What we have done?

→ Supervised learning of molecular properties, e.g. logP and toxicity

What we have done?

→ Supervised learning of molecular properties, e.g. logP and toxicity

What is supervised learning?

 \rightarrow Learning a function that maps an input X to an output Y based on given $\{X,Y\}$ pairs

What we have done?

→ Supervised learning of molecular properties, e.g. logP and toxicity

What is supervised learning?

 \rightarrow Learning a function that maps an input X to an output Y based on given $\{X,Y\}$ pairs

For what?

→ Statistical inference: the process of using data analysis to deduce properties of an underlying probability distribution

$$p(\mathbf{\theta}|\mathbf{X},\mathbf{Y}) = \frac{p(\mathbf{Y}|\mathbf{X},\mathbf{\theta})p(\mathbf{\theta})}{p(\mathbf{Y}|\mathbf{X})}$$

How can we obtain nice models?

 \rightarrow Using proper dataset, $\{X, Y\}$

: molecular fingerprint (structural descriptor), SMILES, molecular graph

: qualified dataset – amount and quality

How can we obtain nice models?

 \rightarrow Using proper dataset, $\{X,Y\}$

: molecular fingerprint (structural descriptor), SMILES, molecular graph

: qualified dataset – amount and quality

→ Setting the appropriate model

: linear regression, support vector machine (SVM)

: multi-layer perceptron (MLP), convolutional neural network (CNN),

recurrent neural network (RNN), graph neural network (GNN)

How can we obtain nice models?

 \rightarrow Using proper dataset, $\{X, Y\}$

: molecular fingerprint (structural descriptor), SMILES, molecular graph

: qualified dataset – amount and quality

→ Setting the appropriate model

: linear regression, support vector machine (SVM)

: multi-layer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), graph neural network (GNN)

→ Avoid overfitting

: controlling model capacity, regularization

Molecular fingerprint

- ✓ Structural descriptor featurized by the deterministic algorithm, i.e.) hash function
- ✓ Do not require additional parameters to featurize molecules
- ✓ However, it can miss information in featurization process

Molecular fingerprint

- ✓ Structural descriptor featurized by the deterministic algorithm, i.e.) hash function
- ✓ Do not require additional parameters to featurize molecules
- ✓ However, it can miss information in featurization process

SVM: relatively low number of parameters

Molecular fingerprint

- ✓ Structural descriptor featurized by the deterministic algorithm, i.e.) hash function
- ✓ Do not require additional parameters to featurize molecules
- ✓ However, it can miss information in featurization process

SVM: relatively low number of parameters

MLP : large number of parameters universal function approximator

- ✓ String representation of molecular structure
- ✓ Most of small drug molecules can be represented with less than 120 characters
- ✓ Useful for digitizing moleucles
- ✓ However, its topological information can be spoiled.

- ✓ String representation of molecular structure
- ✓ Most of small drug molecules can be represented with less than 120 characters
- ✓ Useful for digitizing moleucles
- ✓ However, its topological information can be spoiled.

Cc1cn2c(CN(C)C(=O)c3ccc(F)cc3C)c(C)nc2s1 Cc1cc(F)ccc1C(=O)N(C)Cc1c(C)nc2scc(C)n12

Figure 1. Two almost identical molecules with markedly different canonical SMILES in RDKit. The edit distance between two strings is 22 (50.5% of the whole sequence).

- ✓ String representation of molecular structure
- ✓ Most of small drug molecules can be represented with less than 120 characters
- ✓ Useful for digitizing moleucles
- ✓ However, its topological information can be spoiled.

CNN: sampling entities effectively with parameter sharing

- ✓ String representation of molecular structure
- ✓ Most of small drug molecules can be represented with less than 120 characters
- ✓ Useful for digitizing moleucles
- ✓ However, its topological information can be spoiled.

CNN: sampling entities effectively with parameter sharing

128 × 1 (97 × 1) × 128

(1 × 1) × 128

(1 × 1) × 128

1D max pooling

RNN: find relations between entities effectively

Molecular graph

- ✓ 2D representation of molecular structures
- ✓ Nodes: atom descriptors, e.g.) atom types, # of hydrogen
- ✓ Edges : connectivity between atoms, bond types, distance
- ✓ Most powerful except conformational information is required

Molecular graph

- ✓ 2D representation of molecular structures
- ✓ Nodes: atom descriptors, e.g.) atom types, # of hydrogen
- ✓ Edges: connectivity between atoms, bond types, distance
- ✓ Most powerful except conformational information is required

GCN: conv-net suitable for graph structure

Molecular graph

- ✓ 2D representation of molecular structures
- ✓ Nodes: atom descriptors, e.g.) atom types, # of hydrogen
- ✓ Edges : connectivity between atoms, bond types, distance
- ✓ Most powerful except conformational information is required

GCN: conv-net suitable for graph structure

GAT: applying attention to capture relations

Accuracy of different models

Accuracy in logP predictions

	FP - MLP	SMILES - CNN	Graph – GCN	SMILES - RNN1	SMILES – RNN2	SMILES – RNN3	 My best (???)
MAE	0.31	0.15	0.088	0.13	0.05	0.072	 0.01
Std.dev	0.42	0.20	0.137	0.18	0.08	0.11	 -

When we update the i-th node state

MPNN:
$$H_i^{(l)} = f(H_i^{(l)}, m_i^{(l+1)})$$

When we update the i-th node state

MPNN:
$$H_i^{(l)} = f(H_i^{(l)}, m_i^{(l+1)})$$

The message state $m_{ij}^{(l+1)}$ is updated as a function of i- and j-th node states and edge features.

$$m_i^{(l+1)} = \left(\begin{array}{c} \\ \\ \end{array} + \begin{array}{c} \\ \end{array} + \begin{array}{c} \\ \end{array} \right)$$

When we update the i-th node state

MPNN:
$$H_i^{(l)} = f(H_i^{(l)}, m_i^{(l+1)})$$

$$m_{ij}^{(l+1)} = M^{(l)} \left(H_i^{(l)}, H_j^{(l)}, e_{ij} \right)$$

 e_{ij} : ex) single/double/aromatic/... bond

$$m_i^{(l+1)} = \sum_{j \in N_i} m_{ij}^{(l+1)}$$

$$H_i^{(l)} = GRU(H_i^{(l)}, m_i^{(l+1)})$$

GGNN: using GRU for updating and message states as summation of adjacent node states.

GGNN: using GRU for updating and message states as summation of adjacent node states.

In this case, $x_t = m_i^{(l+1)}$

$$m_i^{(l+1)} = \sum_j H_j^{(l)}$$

GGNN: using GRU for updating and message states as summation of adjacent node states.

$$H_i^{(l+1)} = (1 - z_i^{(l)}) \odot H_i^{(l)} + z_i^{(l)} \odot \widetilde{H}_i^{(l+1)}$$

: weighted summation with update rate $z_i^{(l)}$ of temporary state $\widetilde{H}_i^{(l+1)}$ and previous state $H_i^{(l)}$

In this case, $x_t = m_i^{(l+1)}$

$$m_i^{(l+1)} = \sum_j H_j^{(l)}$$

$$r_i^{(l+1)} = \sigma\left(W_r \cdot \left[H_i^{(l+1)}, m_i^{(l+1)}\right]\right)$$
 : forget rate

GGNN: using GRU for updating and message states as summation of adjacent node states.

$$H_i^{(l+1)} = (1 - z_i^{(l)}) \odot H_i^{(l)} + z_i^{(l)} \odot \widetilde{H}_i^{(l+1)}$$

: weighted summation with update rate $z_i^{(l)}$ of temporary state $\widetilde{H}_i^{(l+1)}$ and previous state $H_i^{(l)}$

$$\widetilde{H}_i^{(l+1)} = \tanh\left(W \cdot \left[r^{(l+1)} \odot H_i^{(l)}, m_i^{(l+1)}\right]\right)$$

: temporary state is updated with product of forget rate $r^{(l+1)}$ and previous state $H_i^{(l)}$, and message state $m_i^{(l+1)}$

In this case,
$$x_t = m_i^{(l+1)}$$

$$m_i^{(l+1)} = \sum_i H_i^{(l)}$$

$$\mathbf{z}_i^{(l+1)} = \sigma\left(W_z \cdot \left[H_i^{(l+1)}, m_i^{(l+1)}\right]\right)$$
: update rate

$$r_i^{(l+1)} = \sigma\left(W_r \cdot \left[H_i^{(l+1)}, m_i^{(l+1)}\right]\right)$$
 : forget rate

Accuracy of different models

Accuracy in logP predictions

	FP - MLP	SMILES - CNN	Graph – GCN	SMILES - RNN1	SMILES – RNN2	SMILES - RNN3	Graph – GGNN	Graph - my best*
MAE	0.31	0.15	0.088	0.13	0.05	0.072	0.02	0.006
Std.dev	0.42	0.20	0.137	0.18	0.08	0.11	-	-

^{*:} using modified self-attention, which used in the Transformer (SOTA at NLP), and gated skip-connection

Assignment #7

Implementation of GGNN

- In this class, TA overviewed possible statistical modelings for logP prediction
- In this week, we learned gated graph neural network (GGNN).
- Therefore, implement the GGNN.
- Report your results MAE, std. dev, and truth-prediction plot.
- In addition, please submit the report. Students have to describe the "meaning of statistical modeling, inputs for molecular applications, model architectures have been used and summarized results".

