

ESEIAAT

205116

SIMULACIÓ DE SISTEMES INDUSTRIALS I LOGÍSTICS

GABBARD DIAGRAMS

Oludumila Samuel Olayinka

Paper author

Gutierrez Cabello Jordi

Lecturer

Table of Contents

List of figures			
	Descriptions of experiment		
	Gabbard Diagram		
	Result		
Conclusion			

List of figures

Fig. 1.0.	GABBARD PLOT OF COSMOS 1408 DEBRIS	5
	G. 1327 1112 1 201 01 00011100 2 100 3251110	

1. Descriptions of experiment

1.1. Gabbard Diagram

In this practical you have to read the TLEs contained in the file Cosmos1408.txt and create a Gabbard diagram. In the xx axis you should put the orbital period, and in the yy axis the apogee and the perigee (see examples in the course slides).

You can use the Matlab m-file "readtle.m" to obtain the data from the different fragments. If you prefer to use other programming language that is fine with me. In all cases, please provide comments to what you are doing in the code.

The period is obtained as $PP=2\pi\pi$ $\square aa3\mu\mu$

where aa is the semi-major axis (obtained from the TLE file), and $\mu\mu$ =3.986004×10₁₄ m₃/s₂ is the Earth's gravitational parameter.

The apogee and perigee are calculated as $rr_{pp}=aa(1-ee) rr_{aa}=aa(1+ee)$

being ee the orbital eccentricity (again, obtained from the Cosmos1408.txt file).

1.2. Result

Fig. 1.0. Gabbard plot of COSMOS 1408 debris

Conclusion

Python code was use to compute the Gabbard plot of COSMOS 1408 debris. The plot shows the debris are in circular orbit.

The python code is attached in atena.