Cardinality

Definition: Cardinality

To say that two sets A and B have the same *cardinality*, denoted by |A| = |B|, means that there exists a bijection $f: A \to B$.

Notation

Let $n \in \mathbb{N}$:

$$[n] = \{1, \dots, n\}$$

Definition: Finite

To say that a set A is *finite* means that either $A=\emptyset$ or there exists a bijection $f:A\to [n]$ for some $n\in\mathbb{N}$. For the empty set: $|\emptyset|=0$. For a non-empty finite set: |A|=n. If A is not finite then it is *infinite*.

Definition: Countable

To say that a set A is *countable* means that either A is finite or $|A| = |\mathbb{N}|$. If A is not countable then it is *uncountable*.

Theorem

$$|\mathbb{Z}| = |\mathbb{N}|$$

Proof. Let $f: \mathbb{N} \to \mathbb{Z}$ be the bijection that enumerates the elements in \mathbb{Z} as follows:

$$f(1) = 0$$

$$f(2) = -1$$

$$f(3) = 1$$

$$f(4) = -2$$

$$f(5) = 2$$

:

Therefore
$$|\mathbb{Z}| = |\mathbb{N}|$$
.

Theorem

$$|2\mathbb{N}| = |\mathbb{N}|$$

Proof. Let $f: \mathbb{N} \to 2\mathbb{N}$ be the bijection that enumerates the elements in $2\mathbb{N}$ as follows:

$$f(1) = 2$$

 $f(2) = 4$
 $f(3) = 6$
 $f(4) = 8$
 $f(5) = 10$
:

Therefore $|2\mathbb{N}| = |\mathbb{N}|$.

Theorem

Every subset of N is countable.

Proof. Assume $U \subset \mathbb{N}$. If U is finite then done, so assume that U is infinite. By the well-ordering principle, there exists some least element $u_1 \in U$ and $U = \{u_1, u_2, u_3, \ldots\}$ can be ordered such that $u_1 < u_2 < u_3 < \cdots$. So let $f : \mathbb{N} \to U$ be defined by $f(i) = u_i$. Thus, f is a bijection that enumerates the elements in U.

Therefore U is countable.

Corollary

Let A and B be sets such that $A \subset B$. If B is countable then A is countable.

Proof. Assume that B is countable. If B is finite then A must be finite and thus countable, so assume that B is infinite. This means that there exists a bijection $f:B\to\mathbb{N}$, and so $f_A:A\to\mathbb{N}$ must be a bijection to a subset of N. But all subsets of N are countable.

Therefore A is countable.

Corollary

Let A and B be sets such that $A \subset B$. If A is uncountable then B is uncountable.

Theorem

Every infinite set has a countably infinite subset.

Proof. Assume that X is an infinite set. If X is countable then done, so assume that X is uncountable. Select $x_1 \in X$ and let $U = \{x_1, x_2, x_3, \ldots\}$ where $x_i \in X$ and x_{i+1} is selected from $X - \left(\bigcup_{j=1}^i \{x_j\}\right)$. Now, let $f: \mathbb{N} \to U$ be defined by $f(i) = u_i$. Thus, f is a bijection that enumerates the elements in U.

Therefore $U \subset X$ and U is countable.

Theorem

A set if finite if and only if every injection on the set is bijective.

Proof. Let X be a set. X is finite iff for every injection $f: X \to X$ it is the case that |f(X)| = |X| iff every injection on X is bijective.

Theorem

A set is infinite if and only if there exists an injection from the set to a proper subset of itself.

Proof. X is finite if and only if every injection on X is bijective, is equivalent to: X is infinite if and only if there exists an injection on X that is not bijective, is equivalent to: X is infinite if and only if there exists an injection on X that is not surjective, is equivalent to: X is infinite if and only if there exists an injection on X to a proper subset of itself.

Example

If X is infinitely countable then all infinite subsets are also countable, so assume that X is uncountable. An injection to a proper subset can be constructed as follows:

- 1. Select an infinitely countable subset of X and call it U.
- 2. Construct an infinitely countable subset of U and call it S. Note that |S| = |U|.
- 3. Select a bijection $g: U \to S$.
- 4. Construct the set $A=S\cup (X-U)$. Note $A\subsetneq X$, since it does not contain the elements in U-S.
- 5. Define the injection $f: X \to A$ as follows:

$$f(x) = \begin{cases} g(x), & x \in U \\ x, & x \notin U \end{cases}$$

Theorem

The union of two countable sets is countable.

Proof. Let A and B be two countable sets. Since it is possible that $A \cap B \neq \emptyset$ define new sets as follows:

$$A' = A$$
$$B' = B - A$$

Note that $A \cup B = A' \cup B'$ and $A' \cap B' = \emptyset$. If A' or B' is finite then the finite set(s) can be enumerated first, followed by any countably infinite set, so assume that neither A' nor B' are

finite. Let $A'=\{a_1,a_2,\ldots\}$ and $B'=\{b_1,b_2,\ldots\}$ and define $f:\mathbb{N}\to A'\cup B'$ as follows:

$$f(1) = a_1$$

$$f(2) = b_1$$

$$f(3) = a_2$$

$$f(4) = b_2$$
:

Thus, f is a bijection that enumerates the elements of $A' \cup B'$ and hence $A' \cup B'$ is countable.

 $A \cup B$ is countable.

Lemma

Let $\{U_i : i \in N\}$ be a countably infinite number of countably infinite sets such that the U_i are pairwise disjoint. Then:

$$U = \bigcup_{i \in \mathbb{N}} U_i$$

is countable.

Proof. Let $U_i = \{u_{ij} : j \in \mathbb{N}\}$ and arrange the U_i as the rows of a matrix. Note that the u_{ij} are distinct and in one-to-one correspondence with the elements of U.

Now, enumerate the u_{ij} along the diagonals as follows:

This is a one-to-one correspondence between the u_{ij} and \mathbb{N} and hence the u_{ij} are countable.

Therefore, U is countable.

Theorem

The union of countably many countable sets is countable.

Proof. Let $A=\bigcup_{i\in I}A_i$ be a union of countably many countable sets. In order to remove dupli-

cates from the A_i (elements in the intersections of two or more A_i), let:

$$A'_1 = A_1$$

 $A'_i = A_i - \bigcup_{j=1}^{i-1} A_j$

Note that the A'_i are pairwise disjoint and $A = \bigcup_{i \in I} A'_i$

Now arrange the A_i' as the rows of a matrix B. This means that the b_{ij} are distinct and in one-to-one correspondence with the elements of A. Let U be a matrix consisting of a countably infinite number of rows and columns as described in the preceding lemma. There is an injection between the rows in B and the rows in B. Furthermore, there is an injection between the columns of each row B_i and its corresponding row B_i . Thus, there is a one-to-one correspondence between the elements of B, and hence the elements of A, and the elements of some subset C of the elements of B. But the subset of a countable set is countable and so C is countable.

Therefore A is countable.

Theorem

The set \mathbb{Q} is countable.

Proof. Let $\{Q_i: i \in \mathbb{N}\}$ be a family of sets where $Q_i = \left\{\frac{p}{i} \mid p \in \mathbb{Z}\right\}$. Note that:

$$\mathbb{Q} = \bigcup_{i \in \mathbb{N}} Q_i$$

But $\{Q_i : i \in \mathbb{N}\}$ is a countable number of countable sets, and hence is countable.

Therefore, Q is countable.

Theorem

The set of all finite subsets of a countable set is countable.

Proof. Assume that A is a countable set. Let A_i be the set of all finite subsets of A such that $|A_i|=i\in\mathbb{N}$ and let $\{A_i:i\in\mathbb{N}\}$ be the family of all such sets. Note that $B=\bigcup_{i\in\mathbb{N}}A_i$ is a union of a countable number of finite (countable) sets.

Therefore, B is countable.