In-SRAM Boolean Operations

Group 3

Yu-Sheng Ting, Cheng-Lin Lee, Xinxin Wang, I-Kang Wu, Yufan Gao, Ganrun Xu

Outline

- Introduction
- Design and Implementation
 - In-SRAM Operation
 - Cell Size Specification
 - Data Disturbing
 - Integration with Baseline Processor
- Simulation Result
 - SRAM functionality
 - SRAM with the Baseline Processor
 - Static Noise Margin Analysis
- Conclusion

Introduction

- Motivation: Moving data over hierarchy takes time in baseline processor
- In-SRAM boolean operations help to reduce the total execution time by avoiding the data movement

Baseline Processor

Load operand1 to RF	Load operand2 to RF	Boolean Operation in ALU	Store result back to memory	
10 111	10 11	III ALO		l 4 cycle

With in-SRAM Boolean Operation

In-SRAM Operation

- Bit-line computation technology
 - AND → BL
 - NOR → BLB
- AND/NOR
 - BL/BLB pre-charge to high
 - Active two wordlines
 - Sense the change on BL/BLB

Cell Size Specification

- Read stability: N1/N3>N2/N4
- Leakage control: N2/N4 length个

SRAM cell

Write stability: N2/N4>P1/P2

250n/120n

280n/120n

N2

230n/130n

BLB

Discharge stability: N>P, P2/P3>P4

- Leakage control: N1/N2↓
- Power control: N1 ↓
 - High to low: N2>P2

• Current mirror: P1=P2

precharge

Precharge & discharge Sense amplifier

Data Disturbing

Integration with Baseline Processor

 SRAM and DMEM are two memory module with the same hierarchical level.

 Four additional instructions from CPU controller to SRAM

SRAM SPICE Simulation

Testcase

Part1:NOR

Part2:AND

 Examining the read result in the end of the read cycle

Simulation of SRAM with Baseline Processor

- IMEM not available in SPICE simulation...
 - Simulate using NC-Verilog
 - Build a behavioral model for SRAM cells in Verilog
- Waveform

WL_duty

🚾 clk

🚾 clk b

🚾 rf_d[15:0]

rf_we[15:0]

•	Testing	assem	bl [,]	y c	cod	e:
---	---------	-------	-----------------	-----	-----	----

_	Note	Operation	Instruction
		reg4=D	540D
		reg5=A	550A
- store to SRAM		SRAM[0]=reg4	04F0
		SRAM[1]=reg5	05F1
	0x000D & 0x000A = 0x0008	SRAM[1]=SRAM[0] & SRAM[1]	0041
in-SRAM boolea		nop	0000
operation	0x000D ~ 0x0008 = 0xFFF2	SRAM[1]=SRAM[0] ~ SRAM[1]	0081
		nop	0000
- load from SRAM		reg6=SRAM[1]	06C1

Static Noise Margin Analysis

• Sweep the temperature from -55°C to 125 °C

Conclusion

What we learn:

- The efficeincy of baseline processor can be improved by implementing the SRAM in memory computation
- The SRAM cell needs to be carefully sized for Read & Write operations
- Data disturbing issue is solved by adjusting the duty cycle of the WL

Progress:

- Finished: SRAM layout and functionality test
- Ongoing: layout integration with baseline processor and SRAM
- Future work: Monte Carlo simulation

