

Tema 5: Interbloqueos

Sistemas Operativo

Contenia

Introducció

Condiciones

Modelado del

Estrategias para tratar los interbloqueos

Predicción Detección

Tema 5: Interbloqueos

Sistemas Operativos

Grado en Ingeniería Informática Departamento de Ingeniería Informática

Universidad de Cádiz

Contenido

Tema 5: Interbloqueos

Sistema: Operativo

Contenido

Introducció

Condicione: necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

- Introducción
- Condiciones necesarias para que se produzcan interbloqueos
- Modelado del interbloqueo
- Estrategias para tratar los interbloqueos
 - Prevención
 - 2 Predicción
 - O Detección

Recursos

Tema 5: Interbloqueos

Sistema Operative

Contenia

Introducción

necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Prevención Predicción Detección

- Los sistemas de computación suelen disponer de una gran variedad de recursos tales como dispositivos de E/S, ficheros, variables, etc.
- Podemos clasificar los recursos de distintas formas, una de ellas es:
 - Recursos compartibles Pueden ser asignados a más de un proceso simultáneamente.
 - Recursos no compartibles o críticos Si están asignados a un proceso no pueden asignarse a otro.

Exclusión mutua

Tema 5: Interbloqueos

Sistema Operativo

Contenid

Introducción

Condiciones necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos Prevención

Prevención Predicción Detección

- El acceso a los recursos críticos debe realizarse bajo exclusión mutua.
- Si un proceso tiene asignado un recurso crítico y abandona la CPU, otro proceso podría solicitar ese mismo recurso crítico. No se debe asignar el recurso a este segundo proceso mientras el primero lo retenga.
- La exclusión mutua no es fácil de conseguir y se requieren mecanismos tales como los semáforos, monitores o paso de mensajes para conseguirla.

Interbloqueo

Tema 5: Interbloqueos

Sistema Operativo

Contenia

Introducción

Condiciones necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Prevención Predicción

Definición

Bloqueo permanente de un conjunto de procesos que compiten por los recursos del sistema o que se comunican entre sí.

Cada proceso del conjunto está esperando un suceso que sólo puede ser causado por otro proceso del mismo conjunto.

Condiciones

Tema 5: Interbloqueos

Operation

Contenido

Introducció

Condiciones necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Prevención Predicción Detección Coffman, Elphick y Shoshani en 1971 establecen las condiciones para la aparición del interbloqueo.

Condiciones necesarias

- Exclusión mutua
- Retener y esperar Los procesos retienen recursos mientras esperan la asignación de otros.
- No apropiación No se puede quitar un recurso a un proceso.

Condición consecuencia de las anteriores

Espera circular Hay un conjunto de procesos en espera $\{p_0, \ldots, p_n\}$, tal que el proceso p_i está esperando un recurso retenido por p_{i+1} , para todo $i = \{0, \ldots, n\}$; y, p_n está esperando un recurso retenido por p_0 .

Modelado

Tema 5: Interbloqueos

Operati

Condiciones

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Prevención Predicción

El grafo de asignación de recursos consta de:

- Los círculos representan procesos.
- Los cuadrados grandes representan clases o tipos de recursos críticos.
- Los círculos pequeños dentro de los anteriores indican las unidades que existen de cada tipo de recurso.
- Arcos orientados representan asignación, solicitud y producción.

Tema 5: Interbloqueos

Sistemas

Contenid

Introducció

Condiciones

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Tema 5: Interbloqueos

Operation

Contenia

miroduccio

necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Tema 5: Interbloqueos

Sistemas Operativo

Contenid

Introducció

Condiciones

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Tema 5: Interbloqueos

> Sistemas Operativos

Contenido

Introducció

Condiciones necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Tema 5: Interbloqueos

Sistemas Operativo

Contenid

Introducció

Condiciones necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Tema 5: Interbloqueos

Sistemas Operativo

Contenid

Introducció

Condiciones necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Tema 5: Interbloqueos

> Sistemas Operativo

Contenido

Introducció

Condiciones necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Prevención

Estrategias para tratar los interbloqueos

Tema 5: Interbloqueos

Sistem: Operativ

Contenido

Introducción

necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Predicción Detección

Prevención

- Evitan que aparezca el interbloqueo eliminando una de las condiciones que deben darse para que éste se produzca. La única condición que no se puede eliminar es la exclusión mutua.
- Presentan un bajo uso de los recursos e introducen limitaciones a los programadores para solicitar los recursos.

Predicción

- Cada vez que un proceso solicita un recurso intenta averiguar si su concesión puede conducir a un interbloqueo. Dependiendo de la conclusión a la que llegue, concede o no los recursos solicitados.
- Introduce sobrecarga de trabajo en el sistema.

Detección y recuperación

- Cuando un proceso solicita un recurso, lo concede si está disponible.
- Cada cierto tiempo comprueba si existe interbloqueo.
- Si existe, inicia la recuperación para que desaparezca.
- Aprovecha mejor los recursos que las anteriores estrategias, pero puede implicar pérdidas de ejecuciones de procesos.

Métodos de Prevención

Tema 5: Interbloqueos

> Sistemas Operativo

Contenid

Introducciór

Condicione: necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos Prevención

Negación de la condición de retener y esperar

- Todo o nada Fuerza a los procesos a pedir todos los recursos que van a necesitar al principio de su ejecución. Si no están todos los recursos disponibles no se le da ninguno y no puede comenzar su ejecución.
- División de peticiones Se divide el proceso en fases que puedan considerarse independientes y se aplica la estrategia anterior a cada una de ellas.
- Petición incremental de recursos y liberación El proceso pide los recursos a medida que los necesita, si uno de ellos no está disponible debe devolver todos los que tiene asignados.

Métodos de Prevención

Tema 5: Interbloqueos

Prevención

Negación de la condición de no apropiación

 Cuando un proceso pide un recurso y no está disponible, el sistema está autorizado a retirarle todos los recursos que tiene ya asignados.

Negación de la condición de espera circular

 Se define una ordenación de los tipos de recursos y se exige a los procesos a que pidan los recursos en orden ascendente de numeración.

Predicción. Algoritmo del banquero

Tema 5: Interbloqueos

Introducció

Condiciones necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Predicción Detección

El sistema puede encontrarse en:

Estado seguro No existe interbloqueo, ni ninguna probabilidad de que se llegue a él.

Estado inseguro Existe cierta probabilidad de llegar a un interbloqueo.

Estado de interbloqueo Es un estado inseguro en el que existe ya el interbloqueo.

Esquema de funcionamiento

- El sistema se encuentra inicialmente en estado seguro.
- Los procesos declaran de antemano la cantidad de cada tipo de recurso que van a necesitar.
- Cada vez que un proceso solicita recursos, se analiza la solicitud para averiguar si su concesión conduciría a estado seguro o inseguro.
- Si conduce a estado seguro, se concede. En caso contrario, se deniega la solicitud.

Ejemplo del banquero

Tema 5: Interbloqueos

Contenido

.....

necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Predicción Detección

Situación actual de un sistema en estado seguro

		Asignación				
		R1 R2 R3				
	P1	0	0	1		
	P2	1	0	0		
	P3	2	3	5		
Г	Caliaitud DO					

	Demanda				
	R1 R2 R3				
P1	0	0	1		
P2	1	7	5		
P3	3	3	5		

Disponible				
R1 1				
R2	5			
R3	2			

Solicitud P2				
R1	0			
R2	4			
R3	2			

PASO 1 Cálculo de la matriz Necesidad = Demanda - Asignación

	Necesidad				
	R1 R2 R3				
P1	0	0	0		
P2	0	7	5		
P3	1	0	0		

Ejemplo del banquero (cont.)

Tema 5: Interbloqueos

. . .

necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Predicción

PASO 2 Creamos las estructuras Trabajo y Acabar

	Asignación				
	R1 R2 R3				
P1	0	0	1		
P2	1	0	0		
P3	2	3	5		

		Necesidad					
		R1	R3				
	P1	0	0	0			
	P2	0	7	5			
	P3	1	0	0			
_							

Trabajo			Acal	oar	
R1	1		P1	F	
R2	5		P2	F	
R3	2		P3	F	

PASO 3 P2 solicita (0,4,2): Comprobamos $Solicitud(P2) \leq Necesidad[P2]$ y Solicitud(P2) < Disponible

PASO 4 Simulamos la asignación y determinamos si el nuevo estado es seguro

	Asignación				
	R1 R2 R3				
P1	0	0	1		
P2	1	4	2		
P3	2	3	5		

	Necesidad				
	R1 R2 R3				
P1	0	0	0		
P2	0	3	3		
P3	1	0	0		

Trabajo			Acabar			
R1	1		P1	F		
R2	1		P2	F		
R3	0		P3	F		

PASO 5 Seleccionamos P1 pues Acabar[P1] = F y $Necesidad[P1] \le Trabajo$

Ejemplo del banquero (cont.)

Tema 5: Interbloqueos

.

Introducció

Condiciones necesarias

Modelado del interbloqueo

Estrategias para tratar los interbloqueos

Predicción Detección PASO 6 Actualizamos Trabajo = Trabajo + Asignado[P1], Asignado[P1] = Necesidad[P1] = 0, Acabar[P1] = V

	Asignación				
	R1 R2 R3				
P1	P1 0		0		
P2	1	4	2		
P3	2	3	5		

R1 R2 R3 P1 0 0 0 P2 0 3 3 P3 1 0 0		Ne	ecesida	ad							
P2 0 3 3		R1 R2 R3									
	P1	0	0	0							
P3 1 0 0	P2	0	3	3							
	P3	1	0	0							

Trab	ajo	Acal	bar
R1	1	P1	٧
R2	1	P2	F
R3	1	P3	F

PASO 7 Volver a PASO 5 seleccionando P3 pues Acabar[P3] = F y $Necesidad[P3] \le Trabajo$

PASO 8 Actualizamos Trabajo = Trabajo + Asignado[P3], Asignado[P3] = Necesidad[P3] = 0, Acabar[P3] = V

	As	ignaci	ón							
	R1 R2 R3									
P1	0	0	0							
P2	1	4	2							
P3	0	0	0							

	Necesidad									
	R1 R2 R3									
P1	0	0	0							
P2	0	3	3							
P3	0	0	0							

Trab	ajo	Aca	bar
R1	3	P1	V
R2	4	P2	F
R3	6	P3	V

PASO 9 Como P2 cumple que Acabar[P2] = F y $Necesidad[P2] \le Trabajo$, entonces $\forall iAcabar[i] = V$ por lo que el sistema está en estado seguro. Por tanto, se concede la petición

Detección

Tema 5: Interbloqueos

Operan

أممارا مسلما

Condiciones

Modelado del

interbloqueo

para tratar los interbloqueos

Predicción Detección

La detección del interbloqueo consta de dos fases:

Fase 1: Detección

- No impone restricciones a las peticiones de recursos. Se concede siempre que hay recursos libres.
- Cada cierto tiempo (intervalos regulares, peticiones denegadas, etc.) se ejecuta la detección para comprobar si hay interbloqueo y los procesos implicados

Fase 2: Recuperación Para eliminar el interbloqueo podemos:

- Apropiar recursos
- Matar procesos (todos o uno a uno)

Ambas opciones requieren:

- Elección de la víctima.
- Ejecutar la detección tras realizar una acción para comprobar que no hay interbloqueo.

Ejemplo algoritmo de detección

Tema 5: Interbloqueos

> Sistemas Operativo

Contenid

Introducció

Condiciones necesarias

Modelado de interbloqueo

Estrategias para tratar los interbloqueos

Prevención

Predicción

Detección

Dado el siguiente sistema

	As	ignaci	ón		S	olicitu	d	Disponible	
	R1 R2 R3			R1	R2	R3	R1	0	
P1	0	0	1	P1	0	0	1	R2	0
P2	2	0	0	P2	0	2	1	R3	1
P3	2	2	1	P3	1	0	0		

PASO 1 Creamos las estructuras Trabajo y Bloqueado

	Asignación			Asignación Solicitud			Trabajo		Bloqueado		
	R1	R2	R3		R1	R2	R3	R1	0	P1	V
P1	0	0	1	P1	0	0	1	R2	0	P2	V
P2	2	0	0	P2	0	2	1	R3	1	P3	V
P3	2	2	1	P3	1	0	0				

Ejemplo de detección (cont.)

Tema 5: Interbloqueos

Sistema Operativo

Contenid

Introducció

Condiciones necesarias

interbloqueo

Estrategias para tratar los interbloqueos

Prevención
Predicción
Detección

PASO 2 Escogemos P1 pues Bloqueado[P1] = V y $Solicitud[P1] \le Trabajo$

	As	ignaci	ón		S	Solicitud			ajo	Bloqueado	
	R1	R2	R3		R1	R2	R3	R1	0	P1	F
P1	0	0	0	P1	0	0	0	R2	0	P2	V
P2	2	0	0	P2	0	2	1	R3	2	P3	V
P3	2	2	1	3	1	0	0				

Ningún proceso Bloqueado[Pi]=V cumple $Solicitud[Pi] \leq Trabajo$, entonces como Bloqueado[Pi] = V para i = 2, 3, tenemos un interbloqueo entre los procesos P2 y P3.