Cálculo diferencial e Integral I Semestre 2023-1 Grupo 4031

Problemas de: números reales Torres Brito David Israel

August 18, 2022

- **1.** Pruebe que si $a, b \in \mathbb{R}$, entonces -(a+b) = (-a) + (-b).
- **2.** Pruebe que si $a, b \in \mathbb{R}$ son tales que a b = b a, entonces a = b.
- **3.** Pruebe que si $a, b \in \mathbb{R}$, entonces -(a b) = b a.
- **4.** Pruebe que si $a, b \in \mathbb{R}$ son tales que ab = 0, entonces a = 0 o b = 0.

Demostración

1.

$-(a+b) = -(a \cdot 1 + b \cdot 1)$	Identidad multiplicación
$= -(1 \cdot (a+b))$	P. Distributiva
= -1(a+b)	Notación
$= (-1 \cdot a) + (-1 \cdot b)$	P. Distributiva
$= -(1 \cdot a) + -(1 \cdot b)$	Notación
= (-a) + (-b)	Identidad multiplicación

2.

$$a-b=b-a$$
 Hipótesis
$$(a-b)+b=(b-a)+b$$
 Sumando b ambos lados
$$a=(b+b)-a$$
 Asociando
$$a+a=b+b$$
 Sumando a ambos lados
$$2a=2b$$
 Definición
$$a=b$$
 Multiplicando 2^{-1} ambos lados

3.

$$-(a-b) = -(a+(-b))$$
 Notación
 $= (-a) + (-(-b))$ Por ejercicio 1
 $= (-a) + (b)$ Inverso aditivo es único
 $= b-a$ Conmutatividad

4. Primero demostraremos que si $a \in \mathbb{R}$, entonces $a \cdot 0 = 0$.

$$a \cdot 0 = a \cdot 0 + 0$$
 Neutro aditivo
 $= a \cdot 0 + (a + (-a))$ Neutro aditivo
 $= a \cdot 0 + (a \cdot 1 + (-a))$ Identidad de la multiplicación
 $= (a \cdot 0 + a \cdot 1) + (-a)$ Asociatividad
 $= (a \cdot (0+1)) + (-a)$ P. Distributiva
 $= a \cdot 1 + (-a)$ Neutro aditivo
 $= a + (-a)$ Identidad de la multiplicación
 $= 0$ Neutro aditivo

Ahora, supongamos que $a \neq 0$.

$b = b \cdot 1$	Identidad de la multiplicación
$=b\cdot \left(a\cdot a^{-1}\right)$	Identidad de la multiplicación
$= (b \cdot a) \cdot a^{-1}$	Asociatividad
$= (a \cdot b) \cdot a^{-1}$	Conmutatividad
$= 0 \cdot a^{-1}$	Por hipótesis
$= a^{-1} \cdot 0$	Conmutatividad
=0	Demostración

5.

$$a^{2} = b^{2}$$

$$a = \sqrt{b^{2}}$$

$$a = \pm b$$