Tutorial & Practical 9: Bootstrap Methods

Question 1

In this question we explore the bias reduction performance of a bootstrap estimator of a third power of the mean of a population assumed to be a scalar $\theta_0 = \theta(F_0) = \mu^3$ where

$$\mu = \int x dF_0(x)$$

Let $X = \{x_1, ..., x_n\}$ be a sample drawn from F_0 where $x_i \in \mathbb{R}$, used for the estimation of θ_0 .

- 1. Provide the form of the nonparametric estimator obtained from the empirical distribution F_1 .
- 2. Derive the expression of the bias $b_1 = \mathbb{E}(\hat{\theta} \theta_0)$.
- 3. Derive the expression of the bootstrap estimate of b_1 .
- 4. Use this expression to derive the bootstrap bias-reduced estimate $\hat{\theta}_1$ of θ
- 5. Derive the expression of the bias $b_2 = \mathbb{E}\left(\hat{\theta}_1 \theta_0\right)$
- 6. Compare b_1 and b_2

Question 2

In this question we explore the bias reduction performance of a bootstrap estimator of a third power of the mean of a Normal population $N(\mu, \sigma^2)$ when the parameters are estimated using the maximum likelihood estimator from a set $X = \{x_1, ..., x_n\} \sim F_0, x_i \in \mathbb{R}$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$

- 1. Provide the form of the nonparametric estimator $\hat{\theta}$ obtained from the empirical distribution F_1 and its associated bias b_1 .
- 2. Derive the expression of the bootstrap bias-reduced estimate $\hat{\theta}$ of θ
- 3. Derive the expression of the bias associated with $\hat{\theta}_1$, b_2 and compare it with b_1
- 4. What is the value of b_2 when considering $\tilde{\sigma}^2$

$$\tilde{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

instead of $\hat{\sigma}^2$

Question 3

Suppose that we estimate the distribution of $\hat{\theta} - \theta$ by the bootstrap distribution $\hat{\theta}^* - \hat{\theta}$. Denote the α -percentile of $\hat{\theta}^* - \hat{\theta}$ by $H^{-1}(\alpha)$. Derive the interval for θ that results from inverting the relation

$$\hat{H}^{-1}(\alpha) \le \hat{\theta} - \theta \le \hat{H}^{-1}(1 - \alpha)$$