

The Processing of Chinese Ba constructions: A Usage-based approach Shiyi Lu² Yucheng Liu¹

Peking University University of Florida

INTRODUCTION

- Ba constructions in Mandarin Chinese are daunting for language learners; also Chinese native speakers can often not explain when and how these constructions are used
- Ba constructions could be considered as special verb-argument constructions.
- (e.g. 把*Ba* 书book 放put 在这里here / put book here)
- Constructions are form-meaning pairings. The verb is core of the verbargument construction and serves as the interface of form and meaning.
- Ellis et al. (2014), Römer et al. (2015) and Gries et al. (2015) inspired us.

QUESTIONS

- What's the statistical pattern of verb usage (frequency, contingency, semantic centrality) in *Ba* constructions in BCC Chinese corpus (BLCU Corpus Center)
- Are native speakers sensitive to these statistical features when they are processing *Ba* constructions?

METHODS

- Corpus analysis: Calculate type and token frequencies of verbs that appear in each Ba constructions.
 - Frequency:
 - Zipfian distribution: generate a verb type-token frequency list and fit the Zipfian distribution model.
 - Selectiveness of verbs: compare the rank of verb frequency in construction with BCC corpus.
 - Contingency:
 - Faithfulness: the proportion of tokens of total verb usage that appear in this particular construction.
 - Directional Mutual Information: an information science statistic that has been shown to predict language processing fluency.
 - Directional one-way association: ΔP (from verb to construction Δ Pwc or from construction to verb Δ Pcw) (Shanks, 1995)
- Semantic network analysis: Build up semantic networks of verbs according to their semantic similarity with Pajek (social network analysis software).
 - Semantic centrality:
 - Scale-free or random network
 - Betweenness centrality
- Experiment 1: Free association test
 - 156 participants were asked to complete the blanks in 34 Ba constructions skeletons with the first verb that came to their mind.
- Experiment 2: Word fluency test (probe depth of construction knowledge)
 - 77 participants were asked to complete the blanks in 17 Ba constructions skeletons with as many verbs as possible.

Example stimulus:

1. 把 他 (她) 在

把它_____在 Ba He (She) / It_ at

RESULTS

- Corpus analysis
 - Frequency:

Verb	FreqCons	FreqBCC	faithfulness	MIcw	MIwc	ΔPcw	ΔPwc	
放	43674	954721	0.046	22.723	20.142	0.270	0.045	
留	4584	410256	0.011	20.689	19.327	0.027	0.011	

Semantic network analysis

Verb	RankFreq	Degree	Closeness	Betweenness	Eigenvecto
打	97	82	0.589	0.267	0.225
夹	38	64	0.532	0.114	0.250
带	40	53	0.523	0.074	0.244
	·		·		

- Experiment 1 & 2

 - Analysis 1

Frequency of collected verbs and BCC frequency of verbs in constructions

- Analysis 2
- Correlation:

• Correlation:

Frequency of collected verbs and BCC ΔPcw

- Analysis 3
- Correlation:

Frequency of collected verbs and semantic centrality

- Overall Frequency Analysis
 - Correlation:

Frequency of collected verbs and BCC overall frequency of verb

- **Combined Analysis**
- Correlation:

Frequency of collected verbs across different constructions and BCC frequency of verbs in constructions, BCC ΔPcw, semantic centrality

Coefficients	Estimate	SE	t	Pr (> t)
(Intercept)	0.08	0.11	0.68	0.50
BCC ConsFreq	0.06	0.05	1.06	0.29
BCCΔPcw	22.55	3.65	6.18	5.79e-09 ***
BCC Sem centrality	4.34	1.80	2.41	0.0171 *
Signifi.code: '***'0.001 '**'0.0	01 '*' 0.05			
Residual SE: 0.3926 df = 148				
Multiple R-squared: 0.3404	Adjusted R-squared: 0.3271			
F-statistic: 25.46 on 3 and 148 df		p = 2.43e-13		
	Relative importance metrics		Variance Inflation test	
	lmg	first		vif
BCC ConsFreq	0.06	0.12		1.34
BCCΔPcw	0.24	0.31		1.36
BCC Sem centrality	0.05	0.07		1.04

Example: Combined Analysis

DISCUSION AND CONCLUSION

The processing of Chinese Ba constructions is **sensitive** to frequency, contingency and semantic centrality. This lead us to the discussion:

- **Entrenchment** (Analysis 1)
 - Usage of verbs in Ba constructions entrenches in the linguistic knowledge as frequency accumulates.
- Contingency (Analysis 2)
 - Association of *Ba* constructions and verbs is actually the pairing process of form and meaning.
- **Prototypicality of semantics** (Analysis 3)
 - A handful of verbs emerge as prototype in the semantic networks, their meanings construct the prototypicality of meaning of Ba constructions.
- Combined Effect (Combined Analysis)
 - The result of our combined analysis is a little bit different from Ellis et al. (2014), which the three factors all have statistical significant contribution to the processing of verb-argument constructions.

REFERENCES

Ellis, N. C.; O'Donnell, M. B.; Römer, U. 2014. The processing of verb-argument constructions is sensitive to form, function, frequency, contingency and prototypicality. Cognitive Linguistics, 25(1), 55-98.

Römer, U.; O'Donnell, M. B.; Ellis, N. C. 2015. Chapter 2. Using COBUILD grammar patterns for a large-scale analysis of verb-argument constructions. Gries, S. T.; Ellis, N. C. 2015. Statistical measures for Usage-based linguistics. Currents in Language Learning, 2, 228-255.

Shanks, D. R. 1995. The psychology of associative learning. Cambridge: Cambridge University Press.

CONTACT

Yucheng Liu liuyucheng@ufl.edu