Elementary Linear Algebra - MATH 2250 - Day 26

Name:

1. What is the length of a complex vector $v = (v_1, \dots, v_n)$?

2. What is a unitary matrix?

3. The *n*-th roots of unity are all the (complex) numbers z that $z^n = 1$. That is, all the solutions to the equation $z^n - 1 = 0$. First, recall that if $z^n = 1$, then |z| = 1, that is z lives on the unit circle. Also, note that any point on the unit circle can be written as $\cos(t) + i\sin(t)$, for some $0 \le t < 2\pi$. Recall that $\cos(t) + i\sin(t) = e^{it}$. That is $z = e^{it}$, and $z^n = 1$ if $(e^{it})^n = 1$. But

$$1 = e^{2\pi}$$

That is

$$z^n = (e^{it})^n = 1 = e^{2\pi i}$$

Hence

$$z = e^{it} = \underline{\hspace{1cm}}$$

The number $z = \underline{\ell}$ is called the *primitive n*-th root of unity, and us usually denoted by ω (read: omega). All the *n*-th roots of unity are powers of ω : $1, \omega, \omega^2, \ldots, \omega^{n-1}$.

Find all the 4-th roots of unity: $\omega^0, \omega, \omega^2, \omega^3$, and draw them in a complex plane.

Check that $(\omega^i)^4 = 1$, for each $i = 1, \ldots, 3$.

4. Write F_4 , the 4×4 Fourier matrix.

$$F_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^{2} & i^{3} \\ 1 & i^{2} & i^{4} & i^{6} \\ 1 & i^{3} & i^{6} & i^{9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

5. Find F_4^{-1} .

6. Find F_2 and F_2^{-1} .

$$F_{2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, F_{2} = \frac{1}{2} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

7. Let ω be the primitive 4-th root of unity, and $D = \begin{bmatrix} 1 & 0 \\ 0 & \omega \end{bmatrix}$. Evaluate the matrix

$$\left[\begin{array}{c|c|c}
I_2 & D \\
\hline
I_2 & -D
\end{array}\right] \left[\begin{array}{c|c|c}
F_2 & O \\
\hline
O & F_2
\end{array}\right] \left[\begin{array}{c|c|c}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\hline
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right].$$

Compare this with F_4 .

They're equal