ACCESS BIOINFORMATICS DATABASES WITH BIO-PYTHON

This project is aimed to deploy python-based programming pipelines and scripts to automate biological data retrieval and analysis.

4. EXPASY

In this section, using the ExPASy module, I fetched domain details of the proteins that I retrieved and processed from the section above. ExPASy is an online bioinformatics resource operated by SIB (Swiss Institute of Bioinformatics). Prosite is a protein database, which consists of entries describing the protein families, domains and functional sites, as well as amino acid patterns and profiles in them.

4.1. PROSITE

Import Modules

In this step, I passed in the prosite ID to the ExPASy module to show the contents:

```
In [54]: handle = ExPASy.get_prosite_raw('PS51442')
     record = Prosite.read(handle)
print(record.description)
```

Coronavirus main protease (M-pro) domain profile.

Various PDB structures possessing this domain profile can be found:

```
In [55]: print(record.pdb_structs[:10])
```

```
['1LVO', '1P9S', '1P9U', '1Q2W', '1UJ1', '1UK2', '1UK3', '1UK4', '1WOF', '1Z1I']
```

These are the proteins containing the domain profile of coronavirus main protease (M-pro).

To find patterns in the domain, I created a similar variable handle, to which I passed in the ExPASy module followed by the prosite function, to which I passed in another ID PS00001. The prosite handle is then read.

```
In [56]: handle = ExPASy.get_prosite_raw('PS00001')
    record = Prosite.read(handle)
print(record.pattern)
```

```
N-\{P\}-[ST]-\{P\}.
```

The result shows that the common pattern within the domain is asparagine, proline, serine, and threonine.