

Hands-on workshop on object categorization using Linux, C++ & OpenCV

14 februari 2014

IWT-Tetra-project TOBCAT (nr. 120135)

Your lunch is sponsered by

PROGRAM

09u30	Welcome and coffee
10u00	Official welcoming & introduction EAVISE
10u15	Introduction object categorization + a look at the algorithm
11u 00	Break with coffee
11u15	First hands-on: object annotation tool and preprocessing of the necessary data
12u30 13u30	Warm lunch & coffee (sponsered by $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
15u00	Break with refreshments
15u15	Some downsides to the techniques / discussion on the quality of an object detector model
16u15 16u30	Questions & evaluation of workshop End of workshop

EAVISE

Embedded Artificially intelligent VISion

Engineering

- Translating state-of-the-art image processing algorithms to solutions for specific problems in industrial applications.
- Implementing advanced image processing techniques on embedded systems.
- Optimizing vision algorithms to reach real time performance.
- Applying new Artificial Intelligence techniques in computer vision applications.

PROGRAM

09u30	Welcome and coffee
10u00	Official welcoming & introduction EAVISE
10u15	Introduction object categorization + a look at the algorithm
11u00	Break with coffee
11u15	First hands-on: object annotation tool and preprocessing of the necessary data
12u30	Warm lunch & coffee (sponsered by ** data vision)
13u30	Second hands-on: a deeper look at the training process, training an object model and testing the actual detector
15u00	Break with refreshments
15u15	Some downsides to the techniques / discussion on the quality of an object detector model
16u15 16u30	Questions & evaluation of workshop End of workshop

RECENT EVOLUTION OF VISUAL **OBJECT DETECTION**

1980 's

759265 122223 A 3 8 0 7

1990 's to begin 2000 's

For the moment

WHAT IS OBJECT CATEGORIZATION?

Object recognition
Object identification

WHAT IS OBJECT CATEGORIZATION?

 FOCUS → objects within a same class show in between variations in color, shape, size, ... e.g. cars

It becomes harder when more and more variation occurs

OVERAL APPROACH WITH OBJECT CATEGORIZATION TECHNIQUES

- Training step: learning a general description from and object class and store it into a model
- Detection step: searching in new images for objects by comparing the existing model with the input image

OVERAL APPROACH WITH OBJECT CATEGORIZATION TECHNIQUES

A LOT OF VARIATION CHALLENGES

Lighting

Object pose

Clutter

Occlusion

Intra-class appearance

Viewpoint

GETTING A ROBUST DETECTOR

- State-of-the-art techniques are able to do alot:
 - Learning variation (appearance, scale, shape, ...)
 contained in object classes.
 - Compensating for clutter occlusion and overlapping objects.

AIM OF TOBCAT PROJECT

- Introducing these modern state-of-the-art techniques of object classification to the target group of industrial companies.
- Making the available technology transparent and easy to use for industrial companies, making them able to use the technology themselves.

APPLICATIONS IN TOBCAT (1)

APPLICATIONS IN TOBCAT (2)

APPLICATIONS IN TOBCAT (3)

PROGRAM

09u30	Welcome and coffee
10u00	Official welcoming & introduction EAVISE
10u15	Introduction object categorization + a look at the algorithm
11u 00	Break with coffee
11u15	First hands-on: object annotation tool and preprocessing of the necessary data
12u30	Warm lunch & coffee (sponsered by 💠 data vision)
13u30	Second hands-on: a deeper look at the training process, training an object model and testing the actual detector
15u00	Break with refreshments
15u15	Some downsides to the techniques / discussion on the quality of an object detector model
16u15 16u30	Questions & evaluation of workshop End of workshop

STATE-OF-THE-ART ALGORITMES

- 1. Viola&Jones: Haar/AdaBoost [CVPR2001] (workshop)
- 2. Dalal&Triggs: HOG/SVM [CVPR2005]
- 3. Felzenswalb: deformable part models [CVPR2010]
- 4. Dollár: integral channel features [BMVC2009]

3.

Short wrap-up of all steps needed in the algorithm It all starts from a sliding window approach

- 1. Selecting features from window
- 2. Building a set of weak classifiers
- 3. Combining weak classifiers to a single strong classifier

- 1. Selecting features from window
 - Using HAAR-like wavelets
 - Small filters on image by comparing pixel values in square regions

- Sum pixel intensity values grey area
 - sum pixel intensity values white area
- 24x24 pixels \rightarrow +-50,000 features
- Use of integral image
- Fast calculation of sums

- 2. Building a set of weak classifiers
 - AdaBoost algorithm
 - Which feature or combination of features can be used to separate objects and non-objects in a rough way
 - Do this until a certain preferred level of separation is reached, e.g. 50% good separation.

- 3. Combining weak classifiers to a single strong classifier
 - Cascade / waterfall structure
 - Weak classifiers → faster calculation / less features
 - To reduce the error (individually very high)
 - 'Early rejection' principle

PROGRAM

09u30	Welcome and coffee
10u00	Official welcoming & introduction EAVISE
10u15	Introduction object categorization + a look at the algorithm
11u 00	Break with coffee
11u15	First hands-on: object annotation tool and preprocessing of
	the necessary data
12u30	Warm lunch & coffee (sponsered by 💠 data vision)
13u30	Second hands-on: a deeper look at the training process,
	training an object model and testing the actual detector
15u00	Break with refreshments
15u15	Some downsides to the techniques / discussion on the quality
	of an object detector model
16u15	Questions & evaluation of workshop
16u30	End of workshop
	· · · · · · · · · · · · · · · · · · ·

IDEA OF FIRST HANDS-ON SESSION

- From a dataset, prepping all data to be able to built a complete object model.
- Goal: make a company able to detect an object class on different backgrounds.
- Required steps:

SOME GUIDELINES FOR HANDS-ON PARTS OF THE WORKSHOP

- Login on computers using tobcat account, pwd = tobcat
- Open a terminal window
 - Standard ~/ directory

- We will work from
 - /home/tobcat/workshop/
- Some of the most used commands
 - cd <path> → changing folder
 - Is → summing the contents of a folder
 - ./<executable_name> [green color in ls] → code snippets
 - o If executable is not green → chmod +x <executable>

SOME GUIDELINES FOR HANDS-ON PARTS OF THE WORKSHOP

- As a C++ development environment we use Code::Blocks.
 - Preinstalled on the system

- Folder software contains all configured projects
- Folder code blocks contains code for second hands-on
- Re-occurring problem = Code::Blocks 'forgets' OpenCV
 - Project Build Options Linker settings Additional Linker Commands
 - Add `pkg-config opencv --libs` [with correct quotes!]
- If there are any software problems, do not hesitate to call for an assistant or to interrupt the hands-on!

Lets changed the directory towards ../workshop/data/mini_model/

There is an existing structure

- Positive folder contains images with objects
- Negative folder contains images without objects
- This structure needs to be manually composed
- Names of folders are not important, however choosing a meaningful name can help to understand everything.

Which steps do we have to take in order to be able to train an object model of a specific object class?

1. All code snippets work using txt files with references to the actual data

SNIPPET – ./folder_listing

NEEDED – positives.txt / negatives.txt / testset.txt

2. Object annotation – segmenting positive objects from their background information

SNIPPET – ./annotate_images

NEEDED – annotation of each object – universal format


```
NAME
       #DETECTIONS X1 Y1 W1 H1 ... Xn Yn Wn Hn
D:\cookies\positives\ 1.png 6 160 1 138 132 321 5 136 141 153 139 151
D:\cookies\positives\ la.png 5 90 50 150 146 25 199 168 155 1 354 192
D:\cookies\positives\ 2.png 6 141 14 148 138 309 2 141 146 165 164 150
D:\cookies\positives\ 2a.png 3 87 47 152 151 33 209 158 138 4 358 135
D:\cookies\positives\ 3.png 6 131 43 156 129 299 4 142 137 180 180 149
D:\cookies\positives\ 3a.png 3 81 34 143 154 25 206 174 146 6 347 137
D:\cookies\positives\ 4.png 6 132 57 153 129 199 195 143 137 261 349 1
D:\cookies\positives\ 4a.png 3 77 36 150 157 31 195 160 154 8 349 138
D:\cookies\positives\ 5.png 6 117 69 143 152 253 5 154 149 345 145 152
D:\cookies\positives\ 5a.png 3 77 39 147 156 34 201 153 150 5 355 142
D:\cookies\positives\_6.png 6 87 89 149 154 180 219 153 143 228 14 148
D:\cookies\positives\ 7.png 6 197 19 148 146 75 116 146 153 173 239 14
```


Which steps do we have to take in order to be able to train an object model of a specific object class?

- 3. The annotated data has to be translated to an OpenCV specific data storage format
 - Universal format for model training
 - Reshapes training data to average dimensions
 SNIPPET ./average_dimensions & ./create_samples
 NEEDED datavector.vec

Usefull tools - snippets for companies

- ./video2images lots of data is captured as video material. This snippet will make sure that videos can be cut into frames without compression loss.
- 2. ./generate_negatives a lot of companies collect images from objects but not the actual backgrounds without objects
 - Reads an annotation file
 - Cuts the annotations from the positive images
 - Uses the cut result as negative background images
 - Has influence on performance! (unnatural image constructions)

LUNCH

The lunch is offered to us by **data vision**

- A system of self service (dessert / soup / lunch)
- We eat in dining room 'de fruytenborg'
- Coffee afterwards is included

PITCH – Data Vision

A small company pitch by **data vision**

PROGRAM

09u30	Welcome and coffee
10u00	Official welcoming & introduction EAVISE
10u15	Introduction object categorization + a look at the algorithm
11u 00	Break with coffee
11u15	First hands-on: object annotation tool and preprocessing of
	the necessary data
12u30	Warm lunch & coffee (sponsered by 💠 data vision)
13u30	Second hands-on: a deeper look at the training process,
	training an object model and testing the actual detector
15u00	Break with refreshments
15u15	Some downsides to the techniques / discussion on the quality
	of an object detector model
16u15	Questions & evaluation of workshop
16u30	End of workshop

TRAINING PROCES + TESTING DETECTOR WITH OBJECT MODEL

Until now, we prepared data for training an actual object model.

- ./train_cascade →SNIPPET
- Test with 'simple' model
 - Get the hang of it!
 - Variation in candies itself → segmentation here would already be a difficult task
 - On a test set background from our lab
- We will take a closer look at the output of the training

TRAINING PROCES + TESTING DETECTOR WITH OBJECT MODEL

For the second hands-on session, we will focus on an already trained object model:

- Go to .../data/candy_model/
- 160 positive images 1000 negative images
- 18 stage classifier = # combined weak detectors

First we will test the interface of OpenCV for object detection, play with important parameters, then we will do it ourselves.

- 1. Preprocessing image grayscale / histogram equalization
- 2. Detection and parameter influence in code
- 3. Visualization and parameter influence in code

ROTATION INVARIANCE

1 model = 1 orientation

- How can we deal with 1 single model
- Should we place all rotations in a single model?
- Should we rotate the image or the patch?

Live simulation of the rotation invariant candy detector

- Influence of parameters
- Real time performance possible using specific knowledge?
- Taking a look at parameters in source code

PROGRAM

09u30	Welcome and coffee
10u00	Official welcoming & introduction EAVISE
1 0 u15	Introduction object categorization + a look at the algorithm
11u00	Break with coffee
11u15	First hands-on: object annotation tool and preprocessing of the necessary data
12u30	Warm lunch & coffee (sponsered by 💠 data vision)
13u30	Second hands-on: a deeper look at the training process, training an object model and testing the actual detector
15u 00	Break with refreshments
15u15	Some downsides to the techniques / discussion on the quality of an object detector model
16u15 16u30	Questions & evaluation of workshop End of workshop

Rotation was already discussed before

Technique is partially resistant to clutter

- Depends strongly on training data
- Only perfect objects → imperfect objects will never be detected

Technique is not resistant to occlusion.

- Detectors fail pretty soon when occlusion happens
- However the DPM approach is a valid alternative and a bit more robust than V&J framework

In beginning of session we discussed 4 techniques, so what can you expect from OpenCV and C++ possibilities?

- Viola & Jones in OpenCV
 - Well supported tutorials / documentation / bug free
 - Large community gives great support
- SVM + HOG
 - Partial components in OpenCV, a detection framework
 - Not combined to an effective training/detection framework
 - Machine learning SVM → bad support/code

In beginning of session we discussed 4 techniques, so what can you expect from OpenCV and C++ possibilities?

- DPM model of Felzenszwalb
 - OpenCV only has detection Latent SVM module
 - Based on Pascal VOC Challenge models & software
 - Not latest implementation, no new models since challenge was stopped
 - Training original project:
- ICF Dollar
 - OpenCV 'development' branch ...

In beginning of session we discussed 4 techniques, so what can you expect from OpenCV and C++ possibilities?

- All software will be made available on TOBCAT website, also code developed in future.
- Also through a github account (source code repository)
 https://github.com/StevenPuttemans/tobcat

PROGRAM

09u30	Welcome and coffee
10u00	Official welcoming & introduction EAVISE
10u15	Introduction object categorization + a look at the algorithm
11u 00	Break with coffee
11u15	First hands-on: object annotation tool and preprocessing of the necessary data
12u30	Warm lunch & coffee (sponsered by 💠 data vision)
13u30	Second hands-on: a deeper look at the training process, training an object model and testing the actual detector
15u00	Break with refreshments
15u15	Some downsides to the techniques / discussion on the quality of an object detector model
16u15 16u30	Questions & evaluation of workshop End of workshop

EVALUATING OBJECT DETECTORS: RECEIVER OPERATING CHARACTERISTIC

INTRODUCTION TO ROC CURVES

- ROC = Receiver Operating Characteristic
- Started in electronic signal detection theory (1940s - 1950s)
- Has become very popular in biomedical applications, particularly radiology and imaging
- Also used in machine learning applications to assess classifiers
- Can be used to compare tests/procedures

ROC CURVES: EXAMPLE CASE

- Consider diagnostic test for a disease
- Test has 2 possible outcomes:
 - 'positive' = suggesting presence of disease
 - o 'negative'
- An individual can test either positive or negative for the disease

True disease state vs. Test result

Disease Test	positive	negative
Disease	True Positive TP	False Negative FN (Type II error)
No disease	False Positive FP (Type I error)	True Negative TN

SPECIFIC EXAMPLE

Test Result

THRESHOLD

Test Result

Test Result

with the disease

Test Result

Test Result

MOVING THE THRESHOLD: RIGHT

MOVING THE THRESHOLD: LEFT

ROC CURVE

ROC CURVE COMPARISON

A good test:

Tune Positive Rate O % False Positive Rate

A poor test:

ROC CURVE EXTREMES

Best Test:

Worst test:

The distributions don't overlap at all

The distributions overlap completely

AREA UNDER ROC CURVE (AUC)

- Overall measure of test performance
- Comparisons between two tests based on differences between (estimated) AUC
- For continuous data, AUC equivalent to Mann-Whitney U-statistic (nonparametric test of difference in location between two populations)

AUC FOR ROC CURVES

APPLICATION ON OBJECT DETECTORS

Detector scans image in a sliding window fashion:

- · Sliding window over image
- Each sub-window is analyzed by detector

WHAT THE DETECTOR SEES

EVALUATING DETECTOR RESULTS

Detector result Ground Truth	detected	not detected
Object present	True Positive	False Negative
Object not present	False Positive	True Negative

PROBLEM WITH ROC CURVES FOR DETECTORS

- Number of true negatives is not easily countable for images
- Alternative: precision-recall curve

PRECISION-RECALL CURVES FOR PEDESTRIAN DETECTORS

Results of state-of-theart pedestrian detectors on standard test set "Caltech"

Threshold = 5

TP? (object detected)

FP? (detection of a non object)

FN? (object not detected)

Threshold = 5

TP? (object detected)

FP? (detection of a non object)

FN? (object not detected)

Threshold = 5

TP? (object detected)

FP? (detection of a non object)

FN? (object not detected)

Threshold = 5

TP? (object detected)

FP? (detection of a non object)

FN? (object not detected)

Precision =
$$TP / (TP + FP)$$

Recall =
$$TP / (TP + FN)$$

CONCLUSION

- To evaluate an object detector we need to:
 - Annotate a set of images
 - Train the detector on a subset of those images (training set)
 - Use the remaining images (test set) to calculate the TP, FP & FN rates
 - Follow up by calculating precision & recall values
 - Plot the precision-recall curves based on different threshold values for a parameter
- Attention OpenCV: some detectors (e.g. Viola&Jones) don't give automated scores for each detection, which makes creating PR some a hard taks to do.

PROGRAM

09u30	Welcome and coffee
10u00	Official welcoming & introduction EAVISE
10u15	Introduction object categorization + a look at the algorithm
11u 00	Break with coffee
11u15	First hands-on: object annotation tool and preprocessing of the necessary data
12u30	Warm lunch & coffee (sponsered by * data vision)
13u30	Second hands-on: a deeper look at the training process, training an object model and testing the actual detector
15u00	Break with refreshments
15u15	Some downsides to the techniques / discussion on the quality of an object detector model
16u15 16u30	Questions & evaluation of workshop End of workshop

