More convergence of sequences

- (1) For each of the following sequences which of the following adjectives apply: bounded above, bounded below, bounded, (strictly) increasing, (strictly) decreasing, (strictly) monotone?

 - (b) The Fibonacci sequence $\{f_n\}_{n=1}^{\infty}$ where $f_1 = f_2 = 1$ and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$.

 - (c) $\{(-1)^n\}_{n=1}^{\infty}$ (d) $\{5+(-1)^n\frac{1}{n}\}_{n=1}^{\infty}$.
- (2) Prove or disprove the converse to Proposition 9.5.

Example 10.1:

- (1) A constant sequence $\{c\}_{n=1}^{\infty}$ converges to c.
- (2) The sequence $\{\frac{1}{n}\}_{n=1}^{\infty}$ converges to 0.

Theorem 10.2 (Limits and algebra): Let $\{a_n\}_{n=1}^{\infty}$ be a sequence that converges to L, and $\{b_n\}_{n=1}^{\infty}$ be a sequence that converges to M.

- (1) If c is any real number, then $\{ca_n\}_{n=1}^{\infty}$ converges to cL.
- (2) The sequence $\{a_n + b_n\}_{n=1}^{\infty}$ converges to L + M.
- (3) The sequence $\{a_nb_n\}_{n=1}^{\infty}$ converges to LM.
- (4) If $L \neq 0$ and $a_n \neq 0$ for all $n \in \mathbb{N}$, then $\left\{\frac{1}{a_n}\right\}_{n=1}^{\infty}$ converges to $\frac{1}{L}$.
- (5) If $M \neq 0$ and $b_n \neq 0$ for all $n \in \mathbb{N}$, then $\left\{\frac{a_n}{b_n}\right\}_{n=1}^{\infty}$ converges to $\frac{L}{M}$.
- (3) Use Theorem 10.2 and Example 10.1 to show that the sequence $\{2+5/n-7/n^2\}_{n=1}^{\infty}$ converges to 2.
- (4) Use Theorem 10.2 and Example 10.1 to show² that the sequence $\frac{2n+3}{3n-4}$ converges to $\frac{2}{3}$.
- (5) Use Theorem 10.1 to show that if $\{a_n\}_{n=1}^{\infty}$ converges to L, and $\{b_n\}_{n=1}^{\infty}$ converges to M, then $\{a_n-b_n\}_{n=1}^{\infty}$ converges to L-M.
- (6) Prove or disprove the following converse to part (2): If $\{a_n + b_n\}_{n=1}^{\infty}$ converges to L + M then $\{a_n\}_{n=1}^{\infty}$ converges to L and $\{b_n\}_{n=1}^{\infty}$ converges to M.
- (7) Prove part (1) of Theorem 10.2 in the special case c=2 by following the following steps:
 - Assume that $\{a_n\}_{n=1}^{\infty}$ converges to L.
 - We now want to show that $\{2a_n\}_{n=1}^{\infty}$ converges to something. We know what we have to write next!
 - Now we do some scratchwork: we want an N such that for n > N we have $|2a_n 2L| < \varepsilon$. Factor this to get some inequality with a_n . How can we use our assumption to get an N that "works"?
 - Complete the proof.
- (8) Prove³ part (1) of Theorem 10.1.
- (9) Prove⁴ part (2) of Theorem 10.1.
- (10) Prove⁵ part (3) of Theorem 10.1.

¹**Proposition 9.5:** Any convergent sequence is bounded.

²Hint: Divide the top and bottom by the same thing to get a sequence where part (5) above applies.

³Hint: You might deal with the cases c = 0 and $c \neq 0$ separately.

⁴Hint: The Triangle Inequality might be helpful in the form $|(a_n + b_n) - (L + M)| \le |a_n - L| + |b_n - M|$.

⁵Hint: You may need to use Proposition 9.5.