UNIVERSIDADE DO OESTE DE SANTA CATARINA - UNOESC CIÊNCIA DA COMPUTAÇÃO COMPUTAÇÃO APLICADA A REGIONALIDADE

Lucas Gabriel da Rosa

Marcos Vinícius Simionato

Michell Henrique da Silva Spagnol

BOVINEPRO

Lucas Gabriel da Rosa

Marcos Vinícius Simionato

Michell Henrique da Silva Spagnol

BOVINEPRO

Trabalho de Computação Aplicada a Regionalidade apresentado como requisito parcial para entrega da disciplina de Ciência da Computação na Universidade do Oeste de Santa Catarina.

Professor(a): Mauricio Roberto Gonzatto

SUMÁRIO

SUMARIO	
INTRODUÇÃO	4
HISTÓRIA DE USUÁRIO	5
REQUISITOS DO PROJETO	6
REQUISITOS FUNCIONAIS	6
REQUISITOS NÃO FUNCIONAIS	6
DIAGRAMA DE CASO DE USO	7
MODELO DE ENTIDADE RELACIONAMENTO	7
SCRIPT DAS TABELAS DO BANCO DE DADOS	8
ESBOÇOS DE TELAS	10
CRONOGRAMA	10
CONCLUSÃO	10

INTRODUÇÃO

A criação de gado leiteiro desempenha um papel crucial na indústria agropecuária em todo o mundo, contribuindo para o suprimento de leite e seus derivados. A busca por eficiência na produção de leite tem levado a avanços significativos na criação e manejo do gado leiteiro, resultando no desenvolvimento de sistemas cada vez mais especializados e tecnologicamente avançados.

Este trabalho tem como objetivo explorar os diversos aspectos que compõem o sistema de gado leiteiro, desde as práticas de manejo e nutrição até os desafios enfrentados pelos produtores no contexto atual. Além disso, examinaremos as tendências e inovações que moldam a indústria do gado leiteiro, incluindo a aplicação de tecnologias emergentes, a sustentabilidade ambiental e a busca por melhores padrões de bem-estar animal.

Para isso, será essencial compreender as complexidades desse sistema, considerando as variáveis climáticas, os sistemas de produção, as demandas do mercado e as questões de saúde animal. Ao fazer isso, poderemos traçar um panorama abrangente e atualizado do sistema de gado leiteiro, destacando seu papel na economia global, na alimentação humana e no contexto ambiental.

Muitas vezes pode ser complicado registar todo o histórico do animal que existe na propriedade, por isso seria mais efetivo ter um programa para registar esses dados para o agricultor.

HISTÓRIA DE USUÁRIO

Como um produtor de gado leiteiro, desejo registrar a quantidade de leite produzida por um bovino, registrar também as inseminações e monitorar o período de gestação.

Critérios de Aceitação:

- Eu, como responsável, posso selecionar o bovino que foi submetido à inseminação.
- Eu, como responsável, posso inserir a data da inseminação.
- Eu, como responsável, posso escolher o tipo de inseminação realizada (inseminação artificial ou natural).
- Posso adicionar observações adicionais, como o touro utilizado ou outras informações relevantes.
- O sistema deve registrar a data, o tipo de inseminação e outras informações associadas ao bovino.
- A informação de inseminação deve ser exibida no histórico reprodutivo do bovino.
- Eu, como produtor, posso inserir a quantidade de leite produzida por esse bovino em um campo numérico.
- Os valores de produção de leite e a média mensal devem ser armazenados no sistema para referência futura.

Exemplo:

- Eu, o produtor, acesso o sistema através do aplicativo móvel.
- Selecionar o bovino de identificação "B123" no menu suspenso.
- Insiro a quantidade de leite produzida hoje, que é 15 litros, no campo designado.
- Escolho a data de hoje como a data do registro.
- Após salvar, o sistema calcula automaticamente a média mensal de produção para "B123" e a exibe na tela.
- O sistema armazena os dados, então posso ver o histórico de produção do "B123" no futuro.

- Escolhi "Inseminação Artificial" como o tipo de inseminação.
- Adicionei a observação de que o touro "T789" foi usado para a inseminação.
- Depois de salvar, o sistema registrou a data, o tipo de inseminação e a observação para o bovino "B456".
- Ao visualizar o histórico reprodutivo de "B456", vejo a nova entrada com todos os detalhes da inseminação.

REQUISITOS DO PROJETO

REQUISITOS FUNCIONAIS

- RF.001 Cadastro no Bovino (Raça, idade,)
- RF.002 Registro de Produção de Leite(quantia por dia e média mensal)
- RF.003 Registro de Inseminação dos bovinos
- RF.004 Contagem de tempo de Gestação
- RF.005 Historico de Crias e registro de abortos

REQUISITOS NÃO FUNCIONAIS

- RNF.001 Leitura do pelo Brinco do animal
- RNF.002 Sistema em Mobile
- RNF.003 Ícones Grandes e Intuitivos
- RNF.004 Sistema Regular de Backup
- RNF.005 Custos: O sistema deve ser financeiramente viável, incluindo custos de implementação, manutenção e treinamento.

DIAGRAMA DE CASO DE USO

MODELO DE ENTIDADE RELACIONAMENTO

SCRIPT DAS TABELAS DO BANCO DE DADOS

```
CREATE DATABASE bovinepro;
CREATE TABLE agricultor (
 id INT PRIMARY KEY,
 nome VARCHAR(255) NOT NULL,
 senha VARCHAR(255) NOT NULL
);
CREATE TABLE raca (
  ID INT PRIMARY KEY,
 nome VARCHAR(255) NOT NULL
);
CREATE TABLE fazenda (
  id INT PRIMARY KEY,
  nome VARCHAR(255) NOT NULL,
  area DECIMAL(10, 2) NOT null,
  agricultor_id INT,
 FOREIGN KEY (agricultor_id) REFERENCES agricultor(ID)
);
CREATE TABLE gado (
  id INT PRIMARY KEY,
  nome VARCHAR(255) NOT NULL,
  datanasc DATE NOT NULL,
  sexo CHAR(1) NOT NULL,
  raca_id INT,
  FOREIGN KEY (raca_id) REFERENCES Raca(ID),
 fazenda id INT,
 FOREIGN KEY (fazenda_id) REFERENCES fazenda(ID)
);
```

```
CREATE TABLE producaoleite (
id INT PRIMARY KEY,
datatirada DATE NOT NULL,
qtd INT NOT NULL,
nome_id INT,
FOREIGN KEY (nome_id) REFERENCES Gado(ID)
);
```

ESBOÇOS DE TELAS

CRONOGRAMA

	Agosto				Setembro				Outubro			
	SEM 1	SEM 2	SEM 3	SEM 4	SEM 1	SEM 2	SEM 3	SEM 4	SEM 1	SEM 2	SEM 3	SEM 4
Levantamento de dados												
RF.001												
RF.002												
RF.003												

CONCLUSÃO

O sistema de gado leiteiro é uma parte fundamental da indústria agropecuária global, desempenhando um papel vital na produção de leite e seus derivados, que são elementos essenciais na dieta humana. Durante nossa exploração dos diversos

aspectos desse sistema, ficou claro que ele é caracterizado por uma complexidade notável, influenciada por uma série de fatores, desde as práticas de manejo e nutrição até os desafios enfrentados pelos produtores.

No decorrer deste trabalho, destacamos a importância da busca constante por eficiência e inovação na produção de leite, refletida em avanços tecnológicos e práticas de manejo aprimoradas. Ao mesmo tempo, enfatizamos a crescente conscientização sobre questões relacionadas à sustentabilidade ambiental e ao bem-estar animal, que estão moldando a forma como o gado leiteiro é criado e gerenciado.

É evidente que o futuro do sistema de gado leiteiro exigirá uma abordagem equilibrada e holística. Os produtores precisarão continuar adotando práticas sustentáveis, minimizando o impacto ambiental e garantindo o bem-estar de seus animais. Além disso, a incorporação de tecnologias emergentes, como a automação e o monitoramento digital, desempenhará um papel crucial na otimização da produção de leite.

A indústria do gado leiteiro está em constante evolução, adaptando-se às demandas do mercado e às mudanças nas preferências dos consumidores. À medida que enfrentamos desafios como as mudanças climáticas e a necessidade de alimentar uma população global crescente, o sistema de gado leiteiro continuará a desempenhar um papel central na segurança alimentar e na economia global.

Em resumo, o sistema de gado leiteiro é um exemplo notável de como a agricultura moderna está evoluindo para atender às necessidades da sociedade e do planeta. À medida que avançamos, é fundamental manter um equilíbrio entre a produtividade, a sustentabilidade e o bem-estar, garantindo que a produção de leite continue a ser uma parte vital da nossa dieta e da economia agrícola.