

# Mark Scheme (Final) January 2009

**GCE** 

GCE Core Mathematics C4 (6666/01)



#### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.



#### January 2009 6666 Core Mathematics C4 Mark Scheme

| Question<br>Number | Scheme                                                                                                                  |                                                                                                                                                                   | Marks     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>1.</b> (a)      | C: $y^2 - 3y = x^3 + 8$                                                                                                 |                                                                                                                                                                   |           |
|                    | $\left\{ \frac{\cancel{x}}{\cancel{x}} \times \right\}  2y \frac{dy}{dx} - 3 \frac{dy}{dx} = 3x^2$                      | Differentiates implicitly to include either $\pm ky \frac{dy}{dx}$ or $\pm 3 \frac{dy}{dx}$ . (Ignore $\left(\frac{dy}{dx} = \right)$ .)                          | M1        |
|                    | $[X \times ]$ $dx$ $dx$                                                                                                 | Correct equation.                                                                                                                                                 | A1        |
|                    | $(2y-3)\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$                                                                          | A correct (condoning sign error) attempt to combine or factorise their $2y \frac{dy}{dx} - 3 \frac{dy}{dx}$ .  Can be implied.                                    | M1        |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2}{2y - 3}$                                                                 | $\frac{3x^2}{2y-3}$                                                                                                                                               | A1 oe [4] |
| (b)                | $y = 3 \implies 9 - 3(3) = x^3 + 8$                                                                                     | Substitutes $y = 3$ into $C$ .                                                                                                                                    | M1        |
|                    | $x^3 = -8 \implies \underline{x = -2}$                                                                                  | Only $\underline{x = -2}$                                                                                                                                         | A1        |
|                    | $(-2,3) \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3(4)}{6-3} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 4$ | $\frac{dy}{dx} = 4 \text{ from correct working.}$ Also can be ft using their 'x' value and $y = 3$ in the correct part (a) of $\frac{dy}{dx} = \frac{3x^2}{2y-3}$ | A1 √      |
|                    |                                                                                                                         |                                                                                                                                                                   | [3]       |
|                    |                                                                                                                         |                                                                                                                                                                   | 7 marks   |

**1(b) final A1**  $\sqrt{\ }$ . Note if the candidate inserts their x value and y = 3 into  $\frac{dy}{dx} = \frac{3x^2}{2y-3}$ , then an answer of  $\frac{dy}{dx}$  = their  $x^2$ , may indicate a correct follow through.



| Question<br>Number | Scheme                                                                                                                      |                                                                                                                  | Marks                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|
| <b>2.</b> (a)      | Area(R) = $\int_{0}^{2} \frac{3}{\sqrt{(1+4x)}} dx = \int_{0}^{2} 3(1+4x)^{-\frac{1}{2}} dx$                                |                                                                                                                  |                       |
|                    | $= \left[ \frac{3(1+4x)^{\frac{1}{2}}}{\frac{1}{2}.4} \right]_{0}^{2}$                                                      | Integrating $3(1+4x)^{-\frac{1}{2}}$ to give $\pm k(1+4x)^{\frac{1}{2}}$ .  Correct integration.  Ignore limits. | M1                    |
|                    | $= \left[\frac{3}{2}(1+4x)^{\frac{1}{2}}\right]_{0}^{2}$ $= \left(\frac{3}{2}\sqrt{9}\right) - \left(\frac{3}{2}(1)\right)$ | Substitutes limits of 2 and 0 into a changed function and subtracts the correct way round.                       | M1                    |
|                    | $= \frac{9}{2} - \frac{3}{2} = \underline{3} \text{ (units)}^2$ (Answer of 3 with no working scores M0A0M0A0.)              | <u>3</u>                                                                                                         | <u>A1</u> [4]         |
| (b)                | Volume = $\pi \int_{0}^{2} \left( \frac{3}{\sqrt{(1+4x)}} \right)^{2} dx$                                                   | Use of $V = \pi \int y^2 dx$ .<br>Can be implied. Ignore limits and $dx$ .                                       | B1                    |
|                    | $= \left(\pi\right) \int_0^2 \frac{9}{1+4x}  \mathrm{d}x$                                                                   |                                                                                                                  |                       |
|                    | $= (\pi) \left[ \frac{9}{4} \ln \left  1 + 4x \right  \right]_0^2$                                                          | $\pm k \ln  1 + 4x $ $\frac{9}{4} \ln  1 + 4x $                                                                  | M1<br>A1              |
|                    | $= (\pi) \left[ \left( \frac{9}{4} \ln 9 \right) - \left( \frac{9}{4} \ln 1 \right) \right]$                                | Substitutes limits of 2 and 0 and subtracts the correct way round.                                               | dM1                   |
|                    | So Volume = $\frac{9}{4}\pi \ln 9$                                                                                          | $\frac{9}{4}\pi \ln 9$ or $\frac{9}{2}\pi \ln 3$ or $\frac{18}{4}\pi \ln 3$                                      | A1 oe isw [5] 9 marks |

Note the answer must be a one term exact value. Note, also you can ignore subsequent working here.

Note that ln1 can be implied as equal to 0.

Note that  $= \frac{9}{4}\pi \ln 9 + c$  (oe.) would be awarded the final A0.



| Question<br>Number | Scheme                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      | Marks                  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| <b>3.</b> (a)      | $27x^2 + 32x + 16 \equiv A(3x+2)(1-x) + B(1-x) + C(3x+2)^2$                                                                                                                                                           | Forming this identity                                                                                                                                                                                                                                | M1                     |
|                    | $x = -\frac{2}{3},  12 - \frac{64}{3} + 16 = \left(\frac{5}{3}\right)B \implies \frac{20}{3} = \left(\frac{5}{3}\right)B \implies B = 4$ $x = 1, \qquad 27 + 32 + 16 = 25C \implies 75 = 25C \implies C = 3$          | Substitutes either $x = -\frac{2}{3}$ or $x = 1$ into their identity or equates 3 terms or substitutes in values to write down three simultaneous equations.  Both $B = 4$ and $C = 3$ (Note the A1 is dependent on both method marks in this part.) | M1                     |
|                    | Equate $x^2$ : $27 = -3A + 9C \implies 27 = -3A + 27 \implies 0 = -3A$ $\implies A = 0$ $x = 0,  16 = 2A + B + 4C$ $\implies 16 = 2A + 4 + 12 \implies 0 = 2A \implies A = 0$                                         | Compares coefficients or substitutes in a third $x$ -value or uses simultaneous equations to show $A = 0$ .                                                                                                                                          | B1 [4]                 |
| (b)                | $f(x) = \frac{4}{(3x+2)^2} + \frac{3}{(1-x)}$ $= 4(3x+2)^{-2} + 3(1-x)^{-1}$ $= 4\left[2\left(1 + \frac{3}{2}x\right)^{-2}\right] + 3(1-x)^{-1}$                                                                      | Moving powers to top on any one of the two expressions                                                                                                                                                                                               | M1                     |
|                    | $= 1\left(1 + \frac{3}{2}x\right)^{-2} + 3(1-x)^{-1}$ $= 1\left\{1 + (-2)(\frac{3x}{2}); + \frac{(-2)(-3)}{2!}(\frac{3x}{2})^2 + \dots\right\}$ $+ 3\left\{1 + (-1)(-x); + \frac{(-1)(-2)}{2!}(-x)^2 + \dots\right\}$ | Either $1 \pm (-2)(\frac{3x}{2})$ or $1 \pm (-1)(-x)$ from either first or second expansions respectively Ignoring 1 and 3, any one correct $\{\underline{\dots}\}$ expansion.  Both $\{\underline{\dots}\}$ correct.                                | dM1;<br>A1<br>A1       |
|                    | $= \left\{1 - 3x + \frac{27}{4}x^2 + \dots\right\} + 3\left\{1 + x + x^2 + \dots\right\}$ $= 4 + 0x; + \frac{39}{4}x^2$                                                                                               | $4+(0x)$ ; $\frac{39}{4}x^2$                                                                                                                                                                                                                         | A1; A1<br>[ <b>6</b> ] |



| Question<br>Number | Scheme                                                                                                                           |                                                                                                                                                                       | Marks         |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <b>3.</b> (c)      | Actual = f (0.2) = $\frac{1.08 + 6.4 + 16}{(6.76)(0.8)}$<br>= $\frac{23.48}{5.408}$ = 4.341715976 = $\frac{2935}{676}$           | Attempt to find the actual value of f(0.2) or seeing awrt 4.3 and believing it is candidate's actual f(0.2).                                                          |               |
|                    | Or $Actual = f(0.2) = \frac{4}{(3(0.2) + 2)^2} + \frac{3}{(1 - 0.2)}$ $= \frac{4}{6.76} + 3.75 = 4.341715976 = \frac{2935}{676}$ | Candidates can also attempt to find the actual value by using $\frac{A}{(3x+2)} + \frac{B}{(3x+2)^2} + \frac{C}{(1-x)}$ with their <i>A</i> , <i>B</i> and <i>C</i> . | M1            |
|                    | Estimate = $f(0.2) = 4 + \frac{39}{4}(0.2)^2$<br>= $4 + 0.39 = 4.39$                                                             | Attempt to find an estimate for $f(0.2)$ using their answer to (b)                                                                                                    | M1√           |
|                    | %age error = $\frac{ 4.39 - 4.341715976 }{4.341715976} \times 100$                                                               | $\left  \frac{\text{their estimate - actual}}{\text{actual}} \right  \times 100$                                                                                      | M1            |
|                    | =1.112095408 = 1.1%(2sf)                                                                                                         | 1.1%                                                                                                                                                                  | A1 cao<br>[4] |
|                    |                                                                                                                                  |                                                                                                                                                                       | 14 marks      |



| Question<br>Number | Scheme                                                                                                                                                                                                                   |                                                                                                                             | Marks      |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------|
| <b>4.</b> (a)      | $\mathbf{d}_1 = -2\mathbf{i} + \mathbf{j} - 4\mathbf{k}  ,  \mathbf{d}_2 = q\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$                                                                                                      |                                                                                                                             |            |
|                    | As $ \left\{ \mathbf{d}_{1} \bullet \mathbf{d}_{2} = \begin{pmatrix} -2 \\ 1 \\ -4 \end{pmatrix} \bullet \begin{pmatrix} q \\ 2 \\ 2 \end{pmatrix} \right\} = \underline{(-2 \times q) + (1 \times 2) + (-4 \times 2)} $ | Apply dot product calculation between two direction vectors, ie. $\underline{(-2 \times q) + (1 \times 2) + (-4 \times 2)}$ | M1         |
|                    | $\mathbf{d}_1 \bullet \mathbf{d}_2 = 0 \implies -2q + 2 - 8 = 0$ $-2q = 6 \implies \underline{q = -3}  AG$                                                                                                               | Sets $\mathbf{d}_1 \bullet \mathbf{d}_2 = 0$ and solves to find $\underline{q = -3}$                                        | A1 cso [2] |
| (b)                | Lines meet where:                                                                                                                                                                                                        |                                                                                                                             |            |
|                    | $\begin{pmatrix} 11\\2\\17 \end{pmatrix} + \lambda \begin{pmatrix} -2\\1\\-4 \end{pmatrix} = \begin{pmatrix} -5\\11\\p \end{pmatrix} + \mu \begin{pmatrix} q\\2\\2 \end{pmatrix}$                                        |                                                                                                                             |            |
|                    | First two of $\mathbf{j}$ : $11 - 2\lambda = -5 + q\mu$ (1)<br>$\mathbf{j}$ : $2 + \lambda = 11 + 2\mu$ (2)<br>$\mathbf{k}$ : $17 - 4\lambda = p + 2\mu$ (3)                                                             | Need to see equations (1) and (2). Condone one slip. (Note that $q = -3$ .)                                                 | M1         |
|                    | (1) + 2(2) gives: $15 = 17 + \mu \implies \mu = -2$                                                                                                                                                                      | Attempts to solve (1) and (2) to find one of either $\lambda$ or $\mu$                                                      | dM1        |
|                    | (2) gives: $2 + \lambda = 11 - 4 \implies \lambda = 5$                                                                                                                                                                   | Any one of $\underline{\lambda = 5}$ or $\underline{\mu = -2}$<br>Both $\underline{\lambda = 5}$ and $\underline{\mu = -2}$ | A1<br>A1   |
|                    | (3) $\Rightarrow$ 17 - 4(5) = $p + 2(-2)$                                                                                                                                                                                | Attempt to substitute their $\lambda$ and $\mu$ into their <b>k</b> component to give an equation in $p$ alone.             | ddM1       |
|                    | $\Rightarrow p = 17 - 20 + 4 \Rightarrow \underline{p = 1}$                                                                                                                                                              | p=1                                                                                                                         | A1 cso [6] |
| (c)                | $\mathbf{r} = \begin{pmatrix} 11\\2\\17 \end{pmatrix} + 5 \begin{pmatrix} -2\\1\\-4 \end{pmatrix}  \text{or}  \mathbf{r} = \begin{pmatrix} -5\\11\\1 \end{pmatrix} - 2 \begin{pmatrix} -3\\2\\2 \end{pmatrix}$           | Substitutes their value of $\lambda$ or $\mu$ into the correct line $l_1$ or $l_2$ .                                        | M1         |
|                    | Intersect at $\mathbf{r} = \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix}$ or $(1, 7, -3)$                                                                                                                                   | $\begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix} \text{ or } \underbrace{(1,7,-3)}_{}$                                           | A1         |
|                    | <u>\                                    </u>                                                                                                                                                                             | <u>\( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>                                                                              | [2]        |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                              | Marks    |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (d)                | Let $\overrightarrow{OX} = \mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$ be point of intersection $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix} - \begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix} = \begin{pmatrix} -8 \\ 4 \\ -16 \end{pmatrix}$ | Finding vector $\overrightarrow{AX}$ by finding the difference between $\overrightarrow{OX}$ and $\overrightarrow{OA}$ . Can be ft using candidate's $\overrightarrow{OX}$ . | M1 √ ±   |
|                    | $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AX}$ $\overrightarrow{OB} = \begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix} + 2 \begin{pmatrix} -8 \\ 4 \\ -16 \end{pmatrix}$                                                                     | $\begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix} + 2 \left( \text{their } \overrightarrow{AX} \right)$                                                                            | dM1√     |
|                    | Hence, $\overrightarrow{OB} = \begin{pmatrix} -7\\11\\-19 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-7\mathbf{i} + 11\mathbf{j} - 19\mathbf{k}}$                                                                                                                                             | $ \frac{\begin{pmatrix} -7\\11\\-19 \end{pmatrix}}{\text{or } \frac{-7\mathbf{i} + 11\mathbf{j} - 19\mathbf{k}}{\text{or } (-7, 11, -19)}} $                                 | A1       |
|                    |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                              | [3]      |
|                    |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                              | 13 marks |



| Question<br>Number | Scheme                                                                                                                                                      |                                                                                                                                    | Marks     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5. (a)             | Similar triangles $\Rightarrow \frac{r}{h} = \frac{16}{24} \Rightarrow r = \frac{2h}{3}$                                                                    | Uses similar triangles, ratios or trigonometry to find either one of these two expressions oe.                                     | M1        |
|                    | $V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{2h}{3}\right)^2 h = \frac{4\pi h^3}{27}  \mathbf{AG}$                                                | Substitutes $r = \frac{2h}{3}$ into the formula for the volume of water $V$ .                                                      | A1 [2]    |
| (b)                | From the question, $\frac{dV}{dt} = 8$                                                                                                                      | $\frac{\mathrm{d}V}{\mathrm{d}t} = 8$                                                                                              | B1        |
|                    | $\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{12\pih^2}{27} = \frac{4\pih^2}{9}$                                                                                 | $\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{12\pi h^2}{27} \text{ or } \frac{4\pi h^2}{9}$                                            | B1        |
|                    | $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} = 8 \times \frac{9}{4\pi h^2} = \frac{18}{\pi h^2}$ | Candidate's $\frac{dV}{dt} \div \frac{dV}{dh}$ ;                                                                                   |           |
|                    | $\frac{\mathrm{d} r}{\mathrm{d} r} \frac{\mathrm{d} r}{\mathrm{d} r} \frac{\mathrm{d} n}{\mathrm{d} n} = \frac{4\pi n}{n} \frac{\pi n}{n}$                  | $\frac{8 \div \left(\frac{12\pi h^2}{27}\right) \text{ or } 8 \times \frac{9}{4\pi h^2} \text{ or } \frac{18}{\pi h^2} \text{ oe}$ | A1        |
|                    | When $h = 12$ , $\frac{dh}{dt} = \frac{18}{\underline{144 \pi}} = \frac{1}{\underline{8\pi}}$                                                               | $\frac{18}{144\pi} \text{ or } \frac{1}{8\pi}$                                                                                     | A1 oe isw |
|                    | <b>\</b>                                                                                                                                                    |                                                                                                                                    | [5]       |
|                    | \                                                                                                                                                           |                                                                                                                                    | 7 marks   |

Note the answer must be a one term exact value.

Note, also you can ignore subsequent working after  $\frac{18}{144\pi}$ 



| Question<br>Number | Scheme                                                                                                                                                                        | Marks     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>6.</b> (a)      | $\int \tan^2 x  dx$                                                                                                                                                           |           |
|                    | $\left[ NB : \underline{\sec^2 A = 1 + \tan^2 A} \text{ gives } \underline{\tan^2 A = \sec^2 A - 1} \right]$ The correct <u>underlined identity</u> .                         | M1 oe     |
|                    | $= \int \sec^2 x - 1  \mathrm{d}x$                                                                                                                                            |           |
|                    | $= \underline{\tan x - x} (+ c)$ Correct integration with/without + c                                                                                                         | A1        |
| (b)                | $\int_{-1}^{1} \ln r  dr$                                                                                                                                                     | [2]       |
|                    | $\int \frac{1}{x^3} \ln x  dx$                                                                                                                                                |           |
|                    | $\begin{cases} u = \ln x & \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x^{-3} & \Rightarrow v = \frac{x^{-2}}{-2} = \frac{-1}{2x^2} \end{cases}$               |           |
|                    | $= -\frac{1}{2x^2} \ln x - \int -\frac{1}{2x^2} \cdot \frac{1}{x} dx$ Use of 'integration by parts' formula in the correct direction.  Correct expression.                    | M1<br>A1  |
|                    |                                                                                                                                                                               | AI        |
|                    | $= -\frac{1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^3} dx$ An attempt to multiply through $\frac{k}{x^n}, n \in \square, n \dots 2 \text{ by } \frac{1}{x} \text{ and an}$ |           |
|                    | $= -\frac{1}{2x^2} \ln x + \frac{1}{2} \left( -\frac{1}{2x^2} \right) (+c)$ attempt to  "integrate" (process the possible)                                                    |           |
|                    | $\frac{2x}{2(2x)}$ "integrate" (process the result);                                                                                                                          | M1        |
|                    | <u>correct solution</u> with/without + c                                                                                                                                      | A1 oe [4] |

Correct direction means that  $u = \ln x$ .



| Question<br>Number | Scheme                                                                                                                          |                                                                                                                              | Marks      |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------|
| (c)                | $\int \frac{e^{3x}}{1+e^x}  \mathrm{d}x$                                                                                        |                                                                                                                              |            |
|                    | $\left\{ u = 1 + e^x \implies \frac{du}{dx} = e^x ,  \frac{dx}{du} = \frac{1}{e^x} ,  \frac{dx}{du} = \frac{1}{u - 1} \right\}$ | Differentiating to find any one of the three underlined                                                                      | <u>B1</u>  |
|                    | $= \int \frac{e^{2x} \cdot e^{x}}{1 + e^{x}} dx = \int \frac{(u - 1)^{2} \cdot e^{x}}{u} \cdot \frac{1}{e^{x}} du$              | Attempt to substitute for $e^{2x} = f(u)$ ,<br>their $\frac{dx}{du} = \frac{1}{e^x}$ and $u = 1 + e^x$                       | M1*        |
|                    | or = $\int \frac{(u-1)^3}{u} \cdot \frac{1}{(u-1)} du$                                                                          | or $e^{3x} = f(u)$ , their $\frac{dx}{du} = \frac{1}{u-1}$ and $u = 1 + e^x$ .                                               | 111        |
|                    | $= \int \frac{(u-1)^2}{u}  \mathrm{d}u$                                                                                         | $\int \frac{(u-1)^2}{u}  \mathrm{d}u$                                                                                        | A1         |
|                    | $= \int \frac{u^2 - 2u + 1}{u}  \mathrm{d}u$                                                                                    | An attempt to multiply out their numerator to give at least three terms                                                      |            |
|                    | $= \int u - 2 + \frac{1}{u}  \mathrm{d}u$                                                                                       | and divide through each term by $u$                                                                                          | dM1*       |
|                    | $=\frac{u^2}{2}-2u+\ln u \ \left(+c\right)$                                                                                     | Correct integration with/without +c                                                                                          | A1         |
|                    | $= \frac{(1+e^x)^2}{2} - 2(1+e^x) + \ln(1+e^x) + c$                                                                             | Substitutes $u = 1 + e^x$ back into their integrated expression with at least two terms.                                     | dM1*       |
|                    | $= \frac{1}{2} + e^{x} + \frac{1}{2}e^{2x} - 2 - 2e^{x} + \ln(1 + e^{x}) + c$                                                   |                                                                                                                              |            |
|                    | $= \frac{1}{2} + e^{x} + \frac{1}{2}e^{2x} - 2 - 2e^{x} + \ln(1 + e^{x}) + c$                                                   |                                                                                                                              |            |
|                    | $= \frac{1}{2}e^{2x} - e^x + \ln(1 + e^x) - \frac{3}{2} + c$                                                                    | . 25                                                                                                                         |            |
|                    | $= \frac{1}{2}e^{2x} - e^{x} + \ln(1 + e^{x}) + k $ <b>AG</b>                                                                   | $\frac{\frac{1}{2}e^{2x} - e^x + \ln(1 + e^x) + k}{\text{must use a } + c \text{ and } " - \frac{3}{2} " \text{ combined.}}$ | A1 cso [7] |
|                    |                                                                                                                                 |                                                                                                                              | 13 marks   |



| Question<br>Number | Scheme                                                                                                                           |                                                                                           | Marks        |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------|
| 7. (a)             | At A, $x = -1 + 8 = 7$ & $y = (-1)^2 = 1 \implies A(7,1)$                                                                        | A(7,1)                                                                                    | B1 [1]       |
| (b)                | $x=t^3-8t,  y=t^2,$                                                                                                              |                                                                                           |              |
|                    | $x = t^{3} - 8t,  y = t^{2},$ $\frac{dx}{dt} = 3t^{2} - 8,  \frac{dy}{dt} = 2t$                                                  |                                                                                           |              |
|                    | $\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2t}{3t^2 - 8}$                                                               | Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$<br>Correct $\frac{dy}{dx}$         | M1<br>A1     |
|                    | At A, $m(\mathbf{T}) = \frac{2(-1)}{3(-1)^2 - 8} = \frac{-2}{3-8} = \frac{-2}{-5} = \frac{2}{5}$                                 | Substitutes for <i>t</i> to give any of the four underlined oe:                           | <u>A1</u>    |
|                    | T: $y - (\text{their 1}) = m_T (x - (\text{their 7}))$                                                                           | Finding an equation of a tangent with their point and their tangent gradient              |              |
|                    | or $1 = \frac{2}{5}(7) + c \implies c = 1 - \frac{14}{5} = -\frac{9}{5}$<br>Hence <b>T</b> : $y = \frac{2}{5}x - \frac{9}{5}$    | or finds c and uses $y = (\text{their gradient})x + "c".$                                 | dM1          |
|                    | gives <b>T</b> : $2x - 5y - 9 = 0$ <b>AG</b>                                                                                     | 2x-5y-9=0                                                                                 | A1 cso [5]   |
| (c)                | $2(t^3 - 8t) - 5t^2 - 9 = 0$                                                                                                     | Substitution of both $x = t^3 - 8t$ and $y = t^2$ into <b>T</b>                           | M1           |
|                    | $2t^3 - 5t^2 - 16t - 9 = 0$                                                                                                      |                                                                                           |              |
|                    | $(t+1)\{(2t^2 - 7t - 9) = 0\}$ $(t+1)\{(t+1)(2t - 9) = 0\}$ $\{t = -1 \text{ (at } A)\}\ t = \frac{9}{2} \text{ at } B$          | A realisation that $(t+1)$ is a factor.                                                   | dM1          |
|                    | $\left\{t = -1 \text{ (at } A\right)\right\} \ t = \frac{9}{2} \text{ at } B$                                                    | $t = \frac{9}{2}$                                                                         | A1           |
|                    | $x = \left(\frac{9}{2}\right)^2 - 8\left(\frac{9}{2}\right) = \frac{729}{8} - 36 = \frac{441}{8} = 55.125 \text{ or awrt } 55.1$ | Candidate uses their value of <i>t</i> to find either the <i>x</i> or <i>y</i> coordinate | ddM1         |
|                    | $y = \left(\frac{9}{2}\right)^2 = \frac{81}{4} = 20.25$ or awrt 20.3<br>Hence $B\left(\frac{441}{8}, \frac{81}{4}\right)$        | One of either <i>x</i> or <i>y</i> correct.<br>Both <i>x</i> and <i>y</i> correct.        | A1<br>A1 [6] |
|                    | Thence $B\left(\frac{8}{8},\frac{4}{4}\right)$                                                                                   | awrt                                                                                      |              |
|                    |                                                                                                                                  |                                                                                           | 12 marks     |



Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark.
 ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.
 Oe or equivalent.



#### January 2009 6666 Core Mathematics C4 Appendix

| Question<br>Number  | Scheme                                                                                                                                                                                                              | Marks |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Aliter 1. (a)       | $C: \ y^2 - 3y = x^3 + 8$                                                                                                                                                                                           |       |
| Way 2               | Differentiates implicitly to include either                                                                                                                                                                         |       |
|                     | $\left\{ \frac{\cancel{x}}{\cancel{x}} \times \right\}  2y - 3 = 3x^2 \frac{dx}{dy} \qquad \qquad \pm kx^2 \frac{dx}{dy}  \text{(Ignore } \left(\frac{dx}{dy}\right) = 1.$                                          | M1    |
|                     | Correct equation.                                                                                                                                                                                                   | A1    |
|                     | $2y - 3 = 3x^2 \frac{1}{\left(\frac{dy}{dx}\right)}$ Applies $\frac{dx}{dy} = \frac{1}{\left(\frac{dy}{dx}\right)}$                                                                                                 | dM1   |
|                     | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2}{2y - 3}$ $\frac{3x^2}{2y - 3}$                                                                                                                                       |       |
|                     |                                                                                                                                                                                                                     | [4]   |
| Aliter 1. (a) Way 3 | $C:  y^2 - 3y = x^3 + 8$                                                                                                                                                                                            |       |
|                     | gives $x^3 = y^2 - 3y - 8$<br>$\Rightarrow x = (y^2 - 3y - 8)^{\frac{1}{3}}$                                                                                                                                        |       |
|                     | $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{3} \left( y^2 - 3y - 8 \right)^{-\frac{2}{3}} \left( 2y - 3 \right)$ Differentiates in the form $\frac{1}{3} \left( f(y) \right)^{-\frac{2}{3}} \left( f'(y) \right)$ . | M1    |
|                     | dy 3 (Source differentiation).                                                                                                                                                                                      | A1    |
|                     | $\frac{dx}{dy} = \frac{2y - 3}{3(y^2 - 3y - 8)^{\frac{2}{3}}}$                                                                                                                                                      |       |
|                     | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3\left(y^2 - 3y - 8\right)^{\frac{2}{3}}}{2y - 3}$ Applies $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)}$                      | dM1   |
|                     | $\frac{dy}{dx} = \frac{3(x^3)^{\frac{2}{3}}}{2y - 3} \implies \frac{dy}{dx} = \frac{3x^2}{2y - 3}$ $\frac{3(x^3)^{\frac{2}{3}}}{2y - 3} \text{ or } \frac{3x^2}{2y - 3}$                                            |       |
|                     |                                                                                                                                                                                                                     | [4]   |



| Question<br>Number   | Scheme                                                                                                                                                                                                                                                                                                                                                                | Marks           |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Aliter 2. (a) Way 2  | Area(R) = $\int_{0}^{2} \frac{3}{\sqrt{(1+4x)}} dx = \int_{0}^{2} 3(1+4x)^{-\frac{1}{2}} dx$<br>{Using substitution $u = 1 + 4x \implies \frac{du}{dx} = 4$ }<br>{change limits:<br>When $x = 0$ , $u = 1$ & when $x = 2$ , $u = 9$ }<br>So, Area(R) = $\int_{1}^{9} 3u^{-\frac{1}{2}} \frac{1}{4} du$                                                                |                 |
|                      | $= \begin{bmatrix} \frac{3}{4} \frac{u^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} \end{bmatrix}_{0}^{2}$ $= \begin{bmatrix} \frac{3}{2} u^{\frac{1}{2}} \end{bmatrix}_{0}^{2}$ $= \begin{bmatrix} \frac{3}{2} u^{\frac{1}{2}} \end{bmatrix}_{0}^{9}$ Integrating $\pm \lambda u^{-\frac{1}{2}}$ to give $\pm k u^{\frac{1}{2}}$ .  Correct integration.  Ignore limits. | M1<br><u>A1</u> |
|                      | Substitutes limits of either $ (u = 9 \text{ and } u = 1) \text{ or } $ $= \left(\frac{3}{2}\sqrt{9}\right) - \left(\frac{3}{2}(1)\right) $ in $x$ , $(x = 2 \text{ and } x = 0)$ into a changed function and subtracts the correct way round.                                                                                                                        | M1              |
| <b>Aliter</b> 2. (a) | $= \frac{9}{2} - \frac{3}{2} = \underline{3} \text{ (units)}^2$ $\underline{3}$ $Area(R) = \int_{0}^{2} \frac{3}{\sqrt{(1+4x)}} dx = \int_{0}^{2} 3(1+4x)^{-\frac{1}{2}} dx$                                                                                                                                                                                          | <u>A1</u> [4]   |
| Way 3                | {Using substitution $u^2 = 1 + 4x \implies 2u \frac{du}{dx} = 4 \implies \frac{1}{2}u du = dx$ }<br>{change limits:<br>When $x = 0$ , $u = 1$ & when $x = 2$ , $u = 3$ }<br>So, Area( $R$ ) = $\int_{-\frac{\pi}{u}}^{3} \frac{1}{2}u du = \int_{-\frac{\pi}{u}}^{3} \frac{1}{2}u du$                                                                                 |                 |
|                      | $= \left[\frac{3}{2}u\right]_{1}^{3}$ $= \left[\frac{3}{2}u\right]_{1}^{3}$ Integrating $\pm \lambda$ to give $\pm ku$ .  Correct integration.  Ignore limits.                                                                                                                                                                                                        | M1<br><u>A1</u> |
|                      | Substitutes limits of either $ (u = 3 \text{ and } u = 1) \text{ or } $ $= \left(\frac{3}{2}(3)\right) - \left(\frac{3}{2}(1)\right) $ in $x$ , $(x = 2 \text{ and } x = 0)$ into a changed function and subtracts the correct way round .                                                                                                                            | M1              |
|                      | $=\frac{9}{2}-\frac{3}{2}=\underline{3} \text{ (units)}^2$                                                                                                                                                                                                                                                                                                            | <u>A1</u> [4]   |



| Question<br>Number  | Scheme                                                                                                                                                                                         | Marks           |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Aliter 3. (a) Way 2 | $27x^{2} + 32x + 16 \equiv A(3x+2)(1-x) + B(1-x) + C(3x+2)^{2}$ Forming this identity                                                                                                          | M1              |
|                     | $x^2$ terms: $27 = -3A + 9C$ (1)<br>x terms: $32 = A - B + 12C$ (2) equates 3 terms.<br>constants: $16 = 2A + B + 4C$ (3)                                                                      | M1              |
|                     | (2) + (3) gives $48 = 3A + 16C$ (4)<br>(1) + (4) gives $75 = 25C \implies C = 3$<br>(1) gives $27 = -3A + 27 \implies 0 = -3A \implies A = 0$                                                  |                 |
|                     | (2) gives $32 = -B + 36 \implies B = 36 - 32 = 4$ Both $B = 4$ and $C = 3$ Decide to award B1 for $A = 0$                                                                                      | A1<br>B1<br>[4] |
| <b>3.</b> (a)       | If the candidate assumes $A = 0$ and writes the identity $27x^2 + 32x + 16 \equiv B(1-x) + C(3x+2)^2$ and goes on to find $B = 4$ and $C = 3$ then the candidate is awarded M0M1A0B0.          |                 |
| <b>3.</b> (a)       | If the candidate has the incorrect identity $27x^2 + 32x + 16 \equiv A(3x+2) + B(1-x) + C(3x+2)^2$ and goes on to find $B = 4$ , $C = 3$ and $A = 0$ then the candidate is awarded M0M1A0B1.   |                 |
| <b>3.</b> (a)       | If the candidate has the incorrect identity $27x^2 + 32x + 16 = A(3x+2)^2(1-x) + B(1-x) + C(3x+2)^2$ and goes on to find $B = 4$ , $C = 3$ and $A = 0$ then the candidate is awarded M0M1A0B1. |                 |



| Question<br>Number  | Scheme                                                                                                           |                                                                                                                | Marks      |
|---------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------|
| Aliter 3. (b) Way 2 | $f(x) = \frac{4}{(3x+2)^2} + \frac{3}{(1-x)}$                                                                    |                                                                                                                |            |
|                     | $= 4(3x+2)^{-2} + 3(1-x)^{-1}$                                                                                   | Moving powers to top on any one of the two expressions                                                         | M1         |
|                     | $= 4(2+3x)^{-2} + 3(1-x)^{-1}$                                                                                   |                                                                                                                |            |
|                     | $=4\left\{ (2)^{-2} + (-2)(2)^{-3}(3x); + \frac{(-2)(-3)}{2!}(2)^{-4}(3x)^{2} + \right\}$                        | Either $(2)^{-2} \pm (-2)(2)^{-3}(3x)$ or $1 \pm (-1)(-x)$ from either first or second expansions respectively | dM1;       |
|                     | $+3\left\{1+(-1)(-x);+\frac{(-1)(-2)}{2!}(-x)^2+\ldots\right\}$                                                  | Ignoring 1 and 3, any one correct $\{\underline{\dots}\}$ expansion.                                           | A1         |
|                     |                                                                                                                  | Both $\{\underline{\dots}\}$ correct.                                                                          | A1         |
|                     | $=4\left\{\frac{1}{4} - \frac{3}{4}x + \frac{27}{16}x^2 + \ldots\right\} + 3\left\{1 + x + x^2 + \ldots\right\}$ |                                                                                                                |            |
|                     | $= 4 + 0x ; + \frac{39}{4}x^2$                                                                                   | $4 + (0x)$ ; $\frac{39}{4}x^2$                                                                                 | A1; A1 [6] |
|                     |                                                                                                                  |                                                                                                                | [0         |



| Question<br>Number  | Scheme                                                                                                                 |                                                                                                             | Marks      |
|---------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------|
| Aliter 3. (c) Way 2 | Actual = f (0.2) = $\frac{1.08 + 6.4 + 16}{(6.76)(0.8)}$<br>= $\frac{23.48}{5.408}$ = 4.341715976 = $\frac{2935}{676}$ | Attempt to find the actual value of $f(0.2)$                                                                | M1         |
|                     | Estimate = $f(0.2) = 4 + \frac{39}{4}(0.2)^2$<br>= $4 + 0.39 = 4.39$                                                   | Attempt to find an estimate for f(0.2) using their answer to (b)                                            | M1 √       |
|                     | %age error = $\left  100 - \left( \frac{4.39}{4.341715976} \times 100 \right) \right $                                 | $\left  100 - \left( \left( \frac{\text{their estimate}}{\text{actual}} \right) \times 100 \right) \right $ | M1         |
|                     | =  100 - 101.1120954                                                                                                   |                                                                                                             |            |
|                     | =  -1.112095408  = 1.1% (2sf)                                                                                          | 1.1%                                                                                                        | A1 cao [4] |
| <b>3.</b> (c)       | Note that:                                                                                                             |                                                                                                             |            |
|                     | %age error = $\frac{ 4.39 - 4.341715976 }{4.39} \times 100$                                                            | Should be awarded the final marks of M0A0                                                                   |            |
|                     | =1.0998638 = 1.1% (2sf)                                                                                                |                                                                                                             |            |
| <b>3.</b> (c)       | Also note that:<br>%age error = $\left  100 - \left( \frac{4.341715976}{4.39} \times 100 \right) \right $              | Should be awarded the final marks of M0A0                                                                   |            |
|                     | =1.0998638 = 1.1% (2sf)                                                                                                |                                                                                                             |            |
|                     | so be wary of 1.0998638                                                                                                |                                                                                                             |            |



| Question<br>Number  | Scheme                                                                                                                                                                            |                                                                                                                                            | Marks      |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>4.</b> (a)       | -2q + 2 - 8 is sufficient for M1.                                                                                                                                                 |                                                                                                                                            |            |
| Aliter 4. (b) Way 2 | Only apply <b>Way 2</b> if candidate does not find both $\lambda$ and $\mu$ .                                                                                                     |                                                                                                                                            |            |
| , , , u, , _        | Lines meet where:                                                                                                                                                                 |                                                                                                                                            |            |
|                     | $\begin{pmatrix} 11\\2\\17 \end{pmatrix} + \lambda \begin{pmatrix} -2\\1\\-4 \end{pmatrix} = \begin{pmatrix} -5\\11\\p \end{pmatrix} + \mu \begin{pmatrix} q\\2\\2 \end{pmatrix}$ |                                                                                                                                            |            |
|                     | i: $11 - 2\lambda = -5 + q\mu$ (1)<br>First two of <b>j</b> : $2 + \lambda = 11 + 2\mu$ (2)<br><b>k</b> : $17 - 4\lambda = p + 2\mu$ (3)                                          | Need to see equations (2) and (2). Condone one slip. (Note that $q = -3$ .)                                                                | M1         |
|                     | (2) gives $\lambda = 9 + 2\mu$                                                                                                                                                    |                                                                                                                                            |            |
|                     | (1) gives $11 - 2(9 + 2\mu) = -5 - 3\mu$                                                                                                                                          | Attempts to solve (1) and (2) to find one of either $\lambda$ or $\mu$                                                                     | dM1        |
|                     | $11 - 18 - 4\mu = -5 - 3\mu$                                                                                                                                                      |                                                                                                                                            |            |
|                     | gives: $11 - 18 + 5 = \mu \implies \mu = -2$                                                                                                                                      | Any one of $\lambda = 5$ or $\mu = -2$                                                                                                     | A1         |
|                     | (3) gives $17 - 4(9 + 2\mu) = p + 2\mu$                                                                                                                                           | Candidate writes down a correct equation containing $p$ and one of either $\lambda$ or $\mu$ which has already been found.                 | A1         |
|                     | (3) $\Rightarrow$ 17 - 4(9 + 2(-2)) = p + 2(-2)                                                                                                                                   | Attempt to substitute their value for $\lambda$ (= 9 + 2 $\mu$ ) and $\mu$ into their <b>k</b> component to give an equation in $p$ alone. | ddM1       |
|                     | $\Rightarrow 17 - 20 = p - 4 \Rightarrow \underline{p = 1}$                                                                                                                       | $\underline{p=1}$                                                                                                                          | A1 cso [6] |
| <b>4.</b> (c)       | If no working is shown then any two out of the three coordinates can imply the first M1 mark.                                                                                     |                                                                                                                                            | M1         |
|                     | Intersect at $\mathbf{r} = \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix}$ or $(1, 7, -3)$                                                                                            | $\begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix} \text{ or } \underbrace{(1,7,-3)}_{}$                                                          | A1         |
|                     |                                                                                                                                                                                   |                                                                                                                                            | [2]        |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Aliter 4. (d)      | Let $\overrightarrow{OX} = \mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$ be point of intersection                                                                                                                                                                                                                                                                                                                                                            |        |
| Way 2              | Finding the difference between their $\overrightarrow{OX}$ (can be implied) and $\overrightarrow{OA}$ . $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix} - \begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix} = \begin{pmatrix} -8 \\ 4 \\ -16 \end{pmatrix}$ $\overrightarrow{AX} = \pm \begin{pmatrix} \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix} - \begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix}$ | M1 √ ± |
|                    | $\overrightarrow{OB} = \overrightarrow{OX} + \overrightarrow{XB} = \overrightarrow{OX} + \overrightarrow{AX}$                                                                                                                                                                                                                                                                                                                                          |        |
|                    | $\overrightarrow{OB} = \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix} + \begin{pmatrix} -8 \\ 4 \\ -16 \end{pmatrix}$ their $\overrightarrow{OX}$ + $\begin{pmatrix} \text{their } \overrightarrow{OX} \end{pmatrix}$ + $\begin{pmatrix} \text{their } \overrightarrow{AX} \end{pmatrix}$                                                                                                                                                                  | dM1√   |
|                    | Hence, $\overline{OB} = \begin{pmatrix} -7\\11\\-19 \end{pmatrix}$ or $\overline{OB} = \underline{-7\mathbf{i} + 11\mathbf{j} - 19\mathbf{k}}$ $\qquad \qquad \underbrace{\begin{pmatrix} -7\\11\\-19 \end{pmatrix}}$ or $\underline{-7\mathbf{i} + 11\mathbf{j} - 19\mathbf{k}}$ or $\underline{(-7, 11, -19)}$                                                                                                                                       | Al     |
| Aliter             | At $A$ , $\lambda = 1$ . At $X$ , $\lambda = 5$ .                                                                                                                                                                                                                                                                                                                                                                                                      | [3]    |
| 4. (d)<br>Way 3    | $\frac{1}{2} = (thoir \frac{1}{2}) + (thoir \frac{1}{2} + thoir \frac{1}{2})$                                                                                                                                                                                                                                                                                                                                                                          | M1√    |
|                    | $\overline{OB} = \begin{pmatrix} 11\\2\\17 \end{pmatrix} + 9 \begin{pmatrix} -2\\1\\-4 \end{pmatrix}$ Substitutes their value of $\lambda$ into the line $l_1$ .                                                                                                                                                                                                                                                                                       | dM1√   |
|                    | Hence, $\overrightarrow{OB} = \begin{pmatrix} -7\\11\\-19 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-7\mathbf{i} + 11\mathbf{j} - 19\mathbf{k}}$ $\underbrace{\begin{pmatrix} -7\\11\\-19 \end{pmatrix}}$ or $\underline{-7\mathbf{i} + 11\mathbf{j} - 19\mathbf{k}}$ or $\underline{(-7, 11, -19)}$                                                                                                                                         | Al     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [3]    |



| Question<br>Number   | Scheme                                                                                                                                                                                                                                                                                                                                                                                                   | Marks |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>Aliter 4.</b> (d) | $\overrightarrow{OA} = 9\mathbf{i} + 3\mathbf{j} + 13\mathbf{k}$<br>and the point of intersection $\overrightarrow{OX} = \mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$                                                                                                                                                                                                                                         |       |
| Way 4                | Finding the difference between their $\overrightarrow{OX}$ (can be implied) and $\overrightarrow{OA}$ . $(\overrightarrow{AX} =) \pm \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix}$ $(\overrightarrow{AX} =) \pm \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix}$                                                                                                                                                |       |
|                      | $ \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix} \rightarrow \begin{pmatrix} Minus 8 \\ Plus 4 \\ Minus 16 \end{pmatrix} \rightarrow \begin{pmatrix} -7 \\ 11 \\ -19 \end{pmatrix} $ their $\overrightarrow{OX}$ + their $\overrightarrow{AX}$                                                                                                                                                               | dM1√  |
|                      | Hence, $\overrightarrow{OB} = \begin{pmatrix} -7\\11\\-19 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-7\mathbf{i} + 11\mathbf{j} - 19\mathbf{k}}$ $\begin{pmatrix} -7\\11\\-19 \end{pmatrix}$ or $\underline{-7\mathbf{i} + 11\mathbf{j} - 19\mathbf{k}}$ or $\underline{(-7, 11, -19)}$                                                                                                        | A1    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                          | [3]   |
| Aliter 4. (d) Way 5  | $\overrightarrow{OA} = 9\mathbf{i} + 3\mathbf{j} + 13\mathbf{k}$ and $\overrightarrow{OB} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$<br>and the point of intersection $\overrightarrow{OX} = \mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$                                                                                                                                                                     |       |
| , , <b></b> , ,      | As $X$ is the midpoint of $AB$ , then                                                                                                                                                                                                                                                                                                                                                                    |       |
|                      | $(1,7,-3) = \left(\frac{9+a}{2}, \frac{3+b}{2}, \frac{13+c}{2}\right)$ Writing down any two of these "equations" correctly.                                                                                                                                                                                                                                                                              | M1√   |
|                      | a = 2(1) - 9 = -7<br>b = 2(7) - 3 = 11<br>c = 2(-3) - 13 = -19 An attempt to find at least two of $a, b$ or $c$ .                                                                                                                                                                                                                                                                                        | dM1√  |
|                      | Hence, $\overrightarrow{OB} = \begin{pmatrix} -7\\11\\-19 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-7\mathbf{i} + 11\mathbf{j} - 19\mathbf{k}}$ $\underbrace{\begin{pmatrix} -7\\11\\-19 \end{pmatrix}}$ or $\underline{-7\mathbf{i} + 11\mathbf{j} - 19\mathbf{k}}$ or $\underbrace{\begin{pmatrix} -7\\11\\-19 \end{pmatrix}}$ or $\underbrace{(-7, 11, -19)}$ or $a = -7, b = 11, c = -19$ | A1    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                          | [3]   |



| Question<br>Number  | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                       | Marks  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Aliter 4. (d) Way 6 | Let $\overrightarrow{OX} = \mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$ be point of intersection $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix} - \begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix} = \begin{pmatrix} -8 \\ 4 \\ -16 \end{pmatrix}$ and $ \overrightarrow{AX}  = \sqrt{64 + 16 + 256} = \sqrt{336} = 4\sqrt{21}$                                                                                                                                                         | Finding the difference between their $\overrightarrow{OX}$ (can be implied) and $\overrightarrow{OA}$ . $\overrightarrow{AX} = \pm \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix} - \begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix}$ Note $ \overrightarrow{AX}  = \sqrt{336}$ would imply M1. | M1√ ±  |
|                     | $\overrightarrow{BX} = \overrightarrow{OX} - \overrightarrow{OB} = \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix} - \begin{pmatrix} 11 - 2\lambda \\ 2 + \lambda \\ 17 - 4\lambda \end{pmatrix} = \begin{pmatrix} -10 + 2\lambda \\ 5 - \lambda \\ -20 + 4\lambda \end{pmatrix}$ Hence $ \overrightarrow{BX}  =  \overrightarrow{AX}  = \sqrt{336}$ gives $(-10 + 2\lambda)^2 + (5 - \lambda)^2 + (-20 + 4\lambda)^2 = 336$                                                                                                                     | Writes distance equation of $ \overrightarrow{BX} ^2 = 336$ where $\overrightarrow{BX} = \overrightarrow{OX} - \overrightarrow{OB} \text{ and}$ $\overrightarrow{OB} = \begin{pmatrix} 11 - 2\lambda \\ 2 + \lambda \\ 17 - 4\lambda \end{pmatrix}$                                   | dM1√   |
|                     | $100 - 40\lambda + 4\lambda^{2} + 25 - 10\lambda + \lambda^{2} + 400 - 160\lambda + 16\lambda^{2} = 336$ $21\lambda^{2} - 210\lambda + 525 = 336$ $21\lambda^{2} - 210\lambda + 189 = 0$ $\lambda^{2} - 10\lambda + 9 = 0$ $(\lambda - 1)(\lambda - 9) = 0$ At $A$ , $\lambda = 1$ and at $B$ $\lambda = 9$ , so, $\overrightarrow{OB} = \begin{pmatrix} 11 - 2(9) \\ 2 + 9 \\ 17 - 4(9) \end{pmatrix}$ Hence, $\overrightarrow{OB} = \begin{pmatrix} -7 \\ 11 \\ -19 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-7i + 11j - 19k}$ | $\begin{pmatrix} -7\\11 \end{pmatrix}$ or $-7\mathbf{i} + 11\mathbf{i} - 19\mathbf{k}$                                                                                                                                                                                                | A1 [3] |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             | Marks  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <b>5.</b> (a)      | Similar shapes ⇒ either                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |        |
|                    | $\frac{\frac{\frac{1}{3}\pi(16)^2 24}{V} = \left(\frac{24}{h}\right)^3}{V} \text{ or } \frac{V}{\frac{\frac{1}{3}\pi(16)^2 24}{V}} = \left(\frac{h}{24}\right)^3}{\frac{\frac{1}{3}\pi r^2(24)}{V}} = \left(\frac{24}{h}\right)^3} \text{ or } \frac{V}{\frac{\frac{1}{3}\pi r^2(24)}{V}} = \left(\frac{h}{24}\right)^3}$ | Uses similar shapes to find either one of these two expressions oe.                                                                                                         | M1     |
|                    | $V = 2048\pi \times \left(\frac{h}{24}\right)^3 = \frac{4\pi h^3}{27}  \mathbf{AG}$                                                                                                                                                                                                                                       | Substitutes their equation to give the correct formula for the volume of water $V$ .                                                                                        | A1 [2] |
| <b>5.</b> (a)      | Candidates simply writing:                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |        |
|                    | $V = \frac{4}{9} \times \frac{1}{3} \pi h^3$ or $V = \frac{1}{3} \pi \left(\frac{16}{24}\right)^2 h^3$                                                                                                                                                                                                                    | would be awarded M0A0.                                                                                                                                                      |        |
| (b)                | From question, $\frac{dV}{dt} = 8 \implies V = 8t (+ c)$                                                                                                                                                                                                                                                                  | $\frac{\mathrm{d}V}{\mathrm{d}t} = 8 \text{ or } V = 8t$                                                                                                                    | B1     |
|                    | $h = \left(\frac{27V}{4\pi}\right)^{\frac{1}{3}} \implies h = \left(\frac{27(8t)}{4\pi}\right)^{\frac{1}{3}} = \left(\frac{54t}{\pi}\right)^{\frac{1}{3}} = 3\left(\frac{2t}{\pi}\right)^{\frac{1}{3}}$                                                                                                                   | $\frac{\left(\frac{27(8t)}{4\pi}\right)^{\frac{1}{3}}}{4\pi} \text{ or } \left(\frac{54t}{\pi}\right)^{\frac{1}{3}} \text{ or } 3\left(\frac{2t}{\pi}\right)^{\frac{1}{3}}$ | B1     |
|                    | $\frac{dh}{dt} = 3\left(\frac{2}{\pi}\right)^{\frac{1}{3}} \frac{1}{3} t^{-\frac{2}{3}}$                                                                                                                                                                                                                                  | $\frac{\mathrm{d}h}{\mathrm{d}t} = \pm k  t^{-\frac{2}{3}};$                                                                                                                | M1;    |
|                    | $dt (\pi) 3$                                                                                                                                                                                                                                                                                                              | $\frac{\mathrm{d}h}{\mathrm{d}t} = 3\left(\frac{2}{\pi}\right)^{\frac{1}{3}} \frac{1}{3}t^{-\frac{2}{3}}$                                                                   | A1 oe  |
|                    | When $h = 12$ , $t = \left(\frac{12}{3}\right)^3 \times \frac{\pi}{2} = 32\pi$                                                                                                                                                                                                                                            |                                                                                                                                                                             |        |
|                    | So when $h = 12, \ \frac{dh}{dt} = \left(\frac{2}{\pi}\right)^{\frac{1}{3}} \left(\frac{1}{32\pi}\right)^{\frac{2}{3}} = \left(\frac{2}{1024\pi^3}\right)^{\frac{1}{3}} = \frac{1}{8\pi}$                                                                                                                                 | $\frac{1}{8\pi}$                                                                                                                                                            | A1 oe  |
|                    | (n) (32n) (102+n) <u>6n</u>                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             | [5]    |



| Question<br>Number | Scheme                                                                                           |                                                                                                                  | Marks      |
|--------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------|
| 7. (a)             | It is acceptable for a candidate to write $x = 7$ , $y = 1$ , to gain B1.                        | A(7,1)                                                                                                           | B1 [1]     |
| Aliter (c) Way 2   | $x = t^3 - 8t = t(t^2 - 8) = t(y - 8)$                                                           |                                                                                                                  |            |
|                    | So, $x^2 = t^2(y-8)^2 = y(y-8)^2$                                                                |                                                                                                                  |            |
|                    | $2x - 5y - 9 = 0 \implies 2x = 5y + 9 \implies 4x^2 = (5y + 9)^2$                                |                                                                                                                  |            |
|                    | Hence, $4y(y-8)^2 = (5y+9)^2$                                                                    | Forming an equation in terms of <i>y</i> only.                                                                   | M1         |
|                    | $4y(y^2 - 16y + 64) = 25y^2 + 90y + 81$                                                          |                                                                                                                  |            |
|                    | $4y^3 - 64y^2 + 256y = 25y^2 + 90y + 81$                                                         |                                                                                                                  |            |
|                    | $4y^3 - 89y^2 + 166y - 81 = 0$                                                                   |                                                                                                                  |            |
|                    | (y-1)(y-1)(4y-81) = 0                                                                            | A realisation that $(y-1)$ is a factor.<br>Correct factorisation                                                 | dM1        |
|                    | $y = \frac{81}{4} = 20.25$ (or awrt 20.3)                                                        | Correct y-coordinate (see below!)                                                                                | 711        |
|                    | $x^2 = \frac{81}{4} \left( \frac{81}{4} - 8 \right)^2$                                           | Candidate uses their y-coordinate to find their x-coordinate.  Decide to award A1 here for correct y-coordinate. | ddM1<br>A1 |
|                    | $x = \frac{441}{8} = 55.125$ (or awrt 55.1)<br>Hence $B\left(\frac{441}{8}, \frac{81}{4}\right)$ | Correct x-coordinate                                                                                             | A1 [6]     |



| Question<br>Number  | Scheme                                                                                                                                     | Mark | s   |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| Aliter 7. (c) Way 3 | $t = \sqrt{y}$                                                                                                                             |      |     |
|                     | So $x = \left(\sqrt{y}\right)^3 - 8\left(\sqrt{y}\right)$                                                                                  |      |     |
|                     | 2x - 5y - 9 = 0  yields                                                                                                                    |      |     |
|                     | $2(\sqrt{y})^3 - 16(\sqrt{y}) - 5y - 9 = 0$ Forming an equation in terms of y only.                                                        | M1   |     |
|                     | $\Rightarrow 2\left(\sqrt{y}\right)^3 - 5y - 16\left(\sqrt{y}\right) - 9 = 0$                                                              |      |     |
|                     | $\left(\sqrt{y}+1\right)\left\{\left(2y-7\sqrt{y}-9\right)=0\right\}$ A realisation that $\left(\sqrt{y}+1\right)$ is a factor.            | dM1  |     |
|                     | $\left(\sqrt{y}+1\right)\left\{\left(\sqrt{y}+1\right)\left(2\sqrt{y}-9\right)=0\right\}$ Correct factorisation.                           | A1   |     |
|                     | $y = \frac{81}{4} = 20.25$ (or awrt 20.3) Correct y-coordinate (see below!)                                                                |      |     |
|                     | $x = \left(\sqrt{\frac{81}{4}}\right)^3 - 8\left(\sqrt{\frac{81}{4}}\right)$ Candidate uses their y-coordinate to find their x-coordinate. | ddM1 |     |
|                     | Decide to award A1 here for correct y-coordinate.                                                                                          | A1   |     |
|                     | $x = \frac{441}{8} = 55.125$ (or awrt 55.1) Correct <i>x</i> -coordinate Hence $B(\frac{441}{8}, \frac{81}{4})$                            | A1   | [6] |