

## Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Eletrónica e Telecomunicações e de Computadores (DEETC)

## **Redes de Internet (RI) – 2021/2022**

## Ficha nº 1 − VLAN, Spanning Tree (STP/RSTP), RIP e OSPF mono área

- A resposta à ficha é individual. Para ter aprovação à disciplina deve realizar e entregar a maioria das fichas propostas.
- A bibliografia a consultar é a recomendada para a disciplina. Pode e deve procurar mais informação em outras fontes (ex: os livros da biblioteca, as normas e a Internet).
- Deve justificar convenientemente todas as suas respostas, quer das perguntas de desenvolvimento, quer das perguntas de escolha múltipla.
- Recorra ao seu professor para esclarecer as dúvidas.
- A ficha resolvida deve ser entregue ao professor até: Ver moodle

|    | THISHIR TESOTTIAL GEVE SET CHILEGUE AS PROTESSOT ALC:                                                                                                                                                                                                                                                                                                                                                                      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) | Modelo OSI                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | <ul> <li>□ Os PDU de nível 1 chamam-se códigos de linha</li> <li>□ Os PDU de nível 2 denominam-se tramas#</li> <li>□ Os PDU de nível 3 designam-se pacotes#</li> <li>□ Os PDU de nível 4 designam-se segmentos e datagramas#</li> </ul>                                                                                                                                                                                    |
| 2) | Indique se os equipamentos separam ou não os domínios de colisão e de difusão (Sim/Não)                                                                                                                                                                                                                                                                                                                                    |
|    | Repetidor> Domínio de colisão: não Domínio de difusão: não                                                                                                                                                                                                                                                                                                                                                                 |
|    | Switch> Domínio de colisão: sim Domínio de difusão: não                                                                                                                                                                                                                                                                                                                                                                    |
|    | Router> Domínio de colisão: sim Domínio de difusão: sim                                                                                                                                                                                                                                                                                                                                                                    |
|    | Multilayer Switch-> Domínio de colisão:sim Domínio de difusão:sim/não; depende de estar a funcionar como router ou como switch                                                                                                                                                                                                                                                                                             |
| 3) | Sumarizando as seguintes redes: 10.32.0.0/14, 10.20.0.0/14, 10.16.0.0/14, 10.24.0.0/13, obtém-se:                                                                                                                                                                                                                                                                                                                          |
|    | <ul> <li>□ 10.16.0.0/12</li> <li>□ 10.16.0.0/14 e 10.24.0.0/13</li> <li>□ 10.16.0.0/12 e 10.32.0.0/14#</li> <li>□ Nenhuma das anteriores</li> </ul>                                                                                                                                                                                                                                                                        |
| 4) | Um switch:                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | <ul> <li>         □ É um comutador de nível 2#</li> <li>         □ O encaminhamento é efetuado a partir dos endereços IP dos PC a ele ligados</li> <li>         □ A distância entre 2 switches nunca pode ultrapassar 100 metros Falso, depende da norma Ethernet utilizada</li> <li>         □ Nunca há colisões na ligação ponto-a-ponto de um switch a um PC Podem existir se a ligação for half-duplex     </li> </ul> |
| 5) | Um switch:                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | ☐ A comutação Store and Forward descarta as tramas com endereço multicast ☐ A comutação Cut-through inicia a comutação das tramas logo após a receção do endereço de destino # ☐ A comutação Cut-throught filtra as tramas vítimas de colisão ☐ A comutação modified Cut though inicia a comutação das tramas após a receção do 512 bits #                                                                                 |

| 6) | Quais das seguintes atirmações são verdadeiras no que se refere ao STP (quando não existem VLAN)?                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <ul> <li>□ Existem duas root bridge por LAN a participar no STP, a primária e a secundária</li> <li>□ Todas as portas da root bridge são designated port</li> <li>□ Existe apenas um designated port por cada segmento de rede #</li> <li>□ Existe apenas um root port por cada switch Se for a root bridge não tem nenhuma root port</li> </ul>                                                                                                                                                                                              |
| 7) | Indique os estados da porta de um switch em que esta que não transmite tramas do utilizador.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | □ Disable# □ Blocking# □ Listening# □ Learning# □ Forwarding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8) | Em STP (IEEE802.1D) quais as afirmações verdadeiras quanto à transição de estados                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | <ul> <li>□ A transição para o estado Disable pode ter origem numa falha da porta Depende da implementação, também pode passar para um estado de blocking; em RSTP passaria simplesmente para um estado de discarding.#</li> <li>□ As transições para os estados Blocking ou Learning, ocorre após a recuperação da falha na porta</li> <li>□ A transição para o estado Listening é desencadeado por Timer interno do protocolo STP</li> <li>□ A transição para o estado Forwarding é efetuada após a conclusão do estado Listening</li> </ul> |
| 9) | Considere o protocolo STP (IEEE802.1D) e RSTP (IEEE802.1W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | <ul> <li>□ Os três estados em STP Disable, Blocking e Listening são agrupados num único estado Discarding em RSTP#</li> <li>□ Os BPDU nos dois protocolos diferem apenas no campo com a versão do protocolo</li> <li>□ Em ambos os protocolos os switches enviam os BPDU só após a receção de um BPDU no root port</li> <li>□ Uma porta no estado Backup cria redundância na conetividade do mesmo switch a um dado segmento#</li> </ul>                                                                                                      |
| 10 | ) Indique a respostas verdadeiras sobre uma porta Alternate em RSTP (IEEE802.1W)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | <ul> <li>□ Encontra-se no estado <i>Discarding</i> (bloqueada porque recebeu um BPDU superior) #</li> <li>□ Não recebe nem envia BPDU</li> <li>□ Garante alternativa de conetividade do mesmo <i>switch</i> à <i>root bridge</i>#</li> <li>□ Pode alterar a sua função para <i>Root port</i> ou <i>Designated port</i> #</li> </ul>                                                                                                                                                                                                           |
| 11 | ) Considere o protocolo RSTP (IEEE802.1W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | <ul> <li>□ Uma porta que opera em half-duplex é considerada uma porta com ligação ponto-a-ponto (P2P)</li> <li>□ A convergência é mais rápida se os switches comunicarem entre si através de ligações full-duplex#</li> <li>□ Uma porta de um switch considera quebra de ligação se não recebe BPDU durante 5 Hello-time (10 seg)</li> <li>□ O mecanismo proposal/agreement permite uma rápida recuperação de conectividade após uma alteração de topologia#</li> </ul>                                                                       |
| 12 | ) Considere o protocolo RSTP (IEEE802.1W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | <ul> <li>□ A bridge de root é eleita da mesma forma que no STP #</li> <li>□ As portas no estado blocking não deixam passar os BPDU</li> <li>□ Uma bridge/switch que suporte RSTP é compatível com STP #</li> <li>□ O tempo definido para o estado de learning diminui de 15s para 1500ms</li> <li>□ As portas alternate e backup estão num estado semelhante ao de blocking #</li> </ul>                                                                                                                                                      |
| 13 | ) Nas VLAN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | <ul> <li>□ As VLAN evitam os ciclos/loops das redes não sendo necessário utilizar o algoritmo Spanning Tree</li> <li>□ Podem existir tantas VLAN numa rede quantas se quiser, dependendo apenas da capacidade dos switches</li> <li>□ Um campo Type de uma trama Ethernet é inserido para informar que a trama transporta uma tag IEEE 802.1Q</li> </ul>                                                                                                                                                                                      |
|    | ☐ Uma rede que suporte VLAN não suporta tráfego <i>multicast</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

14) Os quadros seguintes apresentam o conteúdo de uma trama Ethernet 802.3 que transporta um BPDU numa ligação do mesmo switch em duas LAN distintas: LAN1 executa STP (IEEE802.1D) e LAN2 executa RSTP (IEEE802.1W). Analise o teor das mensagens e responda às questões apresentadas Ethernet 802.3 Bytes LLC PREAMBLE: DEST ADDR: SRC ADDR: 0 8 16 24 Bits 0180.C200.0000 0001.437B.9D01 1010 1010 D DSAP:0x42SSAP:0x42 CONTROL ENGTH / TYPE DATA (VARIABLE LENGTH) FCS: BIT: 3 0x0STP BPDU 31Bits 0 0 1 1 1 0 0 0 ROOT ID: 4097 / 0001.C9D6.4E77 ROOT ID: 32769 / 0001.4304.E390 ROOT PATH COST: 8 ROOT PATH COST BRIDGE ID: 32769 / 0090.2154.D81 BRIDGE ID: 32769 / 0001.4304.E390 PORT ID: 32793 MAX AGE: 20 HELLO TIME: 2 FORWARD DELAY: 15 a) Qual de destino endereço das tramas transportam ΩS aue BPDU: #são tramas multicast com endereço MAC: 0180.C200.0000 b) Os BPDU são transportadas sobre Ethernet II ou Ethernet 802.3: Ethernet 802.3 (subcamada LLC) c) Os BPDU são identificadas como STP ou RSTP a partir de que campo: Version d) Em que LAN o switch é a root bridge:\_ LAN1 e) Interprete o conteúdo das *flags* na BPDU RSTP IEEE802.3W: É um porta designated no estado learning 15) Considere as VLAN implementadas num só switch ☐ As VLAN simulam vários switches virtuais dentro do mesmo equipamento físico # ☐ Aumentam o número de domínios de colisão no switch# ☐ A comunicação entre VLAN é feita através do próprio *switch* ☐ As VLAN podem ser interligadas através de um router ou MLS (multilayer switch) # 16) Considere a norma de redes virtuais IEEE802.1Q ☐ A etiqueta de VLAN é inserida pelas máquinas ligadas aos *switches* ☐ O campo com a etiqueta de VLAN (nos trunks) tem a dimensão de 4 bytes# ☐ Nas ligações *trunk* não podem circular tramas sem etiqueta de VLAN ☐ Uma trama MAC de *broadcast* não é propagada nas ligações *trunk* 17) Uma porta trunk pode ser ligada entre um switch e um: ☐ Repetidor, como equipamento de passagem de tramas ☐ Switch# ☐ Router# ☐ Ponto de acesso de rede sem fios# ☐ Servidor# 18) Indique os comprimentos mínimos e máximos das tramas Ethernet 802.3, quando se utiliza em IEEE 802.1Q (VLAN): a) Nas portas trunk do switch:64 e 1522 bytes b) Nas portas acesso do switch:64 e 1518 bytes

**19)** Tenha em consideração a rede da figura seguinte, assuma que é usado o algoritmo *Spanning Tree*, preencha a tabela com os valores da configuração após estabilização da topologia ativa. Faça a verificação no *Packet Tracer*.



| Switch | Prioridade | MAC                |
|--------|------------|--------------------|
| SW1    | 16384      | 0001.7C1D.3C013C1A |
| SW2    | 24576      | 0002.7C1D.3C013C1A |
| SW3    | 32768      | 0003.7C1D.3C013C1A |
| SW4    | 40960      | 0004.7C1D.3C013C1A |
| SW5    | 49152      | 0005.7C1D.3C013C1A |
| SW6    | 57344      | 0006.7C1D.3C013C1A |

| Porta       | RPC | Troço | RP | DP | Block | Comentário |
|-------------|-----|-------|----|----|-------|------------|
| SW1//Gig0/1 | -   |       |    | X  |       |            |
| SW1//Gig0/2 | -   |       |    | X  |       |            |
| SW1//Fa0/1  | -   |       |    | X  |       |            |
| SW1//Fa0/2  | -   | -     | -1 | -  | -     |            |
| SW2//Gig0/1 | 4   |       | X  |    |       |            |
| SW2//Gig0/2 | 23  |       |    | X  |       |            |
| SW3//Gig0/1 | 4   |       | X  |    |       |            |
| SW3//Gig0/2 | 20  |       |    | X  |       |            |
| SW3//Fa0/1  | 27  |       |    | X  |       |            |
| SW4//Gig0/1 | 8   |       | X  |    |       |            |
| SW4//Gig0/2 | 16  |       |    | X  |       |            |
| SW4//Fa0/1  | 23  |       |    |    | X     |            |
| SW4//Fa0/2  | 19  |       |    |    | X     |            |
| SW5//Gig0/1 | 8   |       | X  |    |       |            |
| SW5//Gig0/2 | 16  |       |    | X  |       |            |
| SW5//Fa0/1  | -   | -     | -1 | -  | -     | -          |
| SW6//Gig0/1 | 12  |       | X  |    |       |            |
| SW6//Gig0/2 | 12  |       |    |    | X     |            |
| SW6//Fa0/1  | 31  |       |    | X  |       |            |
| SW6//Fa0/2  | 31  |       |    |    | X     |            |
| SW6// Fa0/3 | -   | _     | -  | -  | -     |            |

**20)** Considerando agora o uso de *Rapid Spanning Tree Protocol* (RSTP) preencha a tabela a seguir indicada. Pode fazer a verificação no *Packet Tracer*.

| Porta       | RPC | Troço | RP | DP | Alt. | Back. | Comentário |
|-------------|-----|-------|----|----|------|-------|------------|
| SW1//Gig0/1 | -   |       |    | X  |      |       |            |
| SW1//Gig0/2 | -   |       |    | X  |      |       |            |
| SW1//Fa0/1  | -   |       |    | X  |      |       |            |
| SW1//Fa0/2  | -   |       | -  | -  | -    |       |            |
| SW2//Gig0/1 | 4   |       | X  |    |      |       |            |
| SW2//Gig0/2 | 23  |       |    | X  |      |       |            |
| SW3//Gig0/1 | 4   |       | X  |    |      |       |            |
| SW3//Gig0/2 | 20  |       |    | X  |      |       |            |
| SW3//Fa0/1  | 27  |       |    | X  |      |       |            |
| SW4//Gig0/1 | 8   |       | X  |    |      |       |            |
| SW4//Gig0/2 | 20  |       |    | X  |      |       |            |
| SW4//Fa0/1  | 23  |       |    |    | X    |       |            |
| SW4//Fa0/2  | 19  |       |    |    | X    |       |            |
| SW5//Gig0/1 | 8   |       | X  |    |      |       |            |
| SW5//Gig0/2 | 16  |       |    | X  |      |       |            |
| SW5//Fa0/1  | -   |       | -  | -  | -    |       |            |
| SW6//Gig0/1 | 12  |       | X  |    |      |       |            |
| SW6//Gig0/2 | 12  |       |    |    | X    |       |            |
| SW6//Fa0/1  | 31  |       |    | X  |      |       |            |
| SW6//Fa0/2  | 31  |       |    |    |      | X     |            |
| SW6// Fa0/3 | -   |       | -  | -  | -    |       |            |

**21)** Considere a seguinte topologia de rede assumindo que o Switch1 tem a maior prioridade e os Switch2 e Switch3 têm prioridades iguais. Assuma que todos os *switches* utilizam *Spanning Tree* .



a) Assumindo que a ligação entre o *Switch1* e o *Switch2* falha, qual a consequência? Indique as trocas de mensagens e os novos parâmetros da nova topologia ativa.

Os *switches* que detetam a falha enviam pela *root port* TC-BPDU (BPDU de notificação de alteração da topologia), os que recebem estes BPDU devolvem TCA-BPDU (*acknowledge*) e reenviam os TC-BPDU na direção

da root bridge. Quando esta recebe o TC-BPDU devolve o TCA-BPDU. Inicia o envio de C-BPDU (BPDU "normais") com a flag TC activa. Como tal todos os switches são alertados da alteração da topologia e reduzem os seus "aging time" para "forward delay". Os switches recebem estes BPDU pelas portas em forwading e em blocking.

A *flag* TC é enviada ativa nos C-BPDU por um período de *"max age + forward delay"* segundos, o qual por omissão é 20+15=35 segundos.

O SW1 continua root e a porta Fa0/2 passa a root port.

b) Considere agora que se configura o algoritmo RSTP refaça a alínea a) perante a mesma falha.

Os switches que detetam a falha enviam pela root port TC-BPDU (BPDU de notificação de alteração da topologia), Os switches que recebem estas BPDU com o bit TCN ativo propagam essa informação pelo seu root port e designated port.aos restantes switches. As tabelas MAC de encaminhamento são apagadas. Nesta caso a falha da root port do switch 2 provoca a activação da porta alternate. Esta ao passar para o estado de forward notifica o root switch (switch0) que ocorreu uma alteração de topologia. O Switch 0 limpa a sua tabela de endereços MAC e difunde a alteração de topologia para o switch 1 que por sua vez também limpa a sua tabela de endereços MAC.

O SW1 continua root e a porta Fa0/2 passa a root port

## 22) Foram criadas as VLAN 1, 2, 3 e 4 e as ligações feitas de acordo com a figura e configurado o modo STP (PVST):



Identifique na tabela abaixo, <u>por VLAN</u>, qual a topologia da rede tendo em conta a aplicação do algoritmo STP.

| Topologia  | SWI         | SW1      | SW1      | SW1     |
|------------|-------------|----------|----------|---------|
| Resultante | SW0 SW2 SW3 | SW0 SW2  | SW0 SW2  | SW2 SW0 |
| STP        |             |          | SW3      | SW3     |
| VLAN       | VLAN 1 e 2  | VLAN 4 e | VLAN 3 e | VLAN e  |

23) Admitindo que um *router* possui o endereço 172.16.2.1/23 associado à sua interface Ethernet0, quais dos seguintes são endereços válidos para *hosts* associados à LAN da interface Ethernet0?

|            | □ 172.16.1.100<br>□ 172.16.1.198                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | □ 172.16.2.255#                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | □ 172.16.3.0#  Network address: 172.16.2.0 / 23                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | Broadcast: 172.16.3.255                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | Usable IP addresses: 172.16.2.1 - 172.16.3.254                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 24         | ) Dado o endereço IP 10.16.3.65/23, quais das seguintes afirmações são verdadeiras?                                                                                                                                                                                                                                                                                                                                                                                                |
| 25         | <ul> <li>□ O endereço de rede é o 10.16.3.0 255.255.254.0</li> <li>□ O endereço mais baixo atribuível dentro da rede é o 10.16.2.1 255.255.254.0#</li> <li>□ O último endereço válido na rede é o 10.16.2.254 255.255.254.0</li> <li>□ O endereço de broadcast desta rede é o 10.16.3.255 255.255.254.0#</li> <li>c) Necessita de realizar subnetting de uma rede para obter 5 sub-redes com 16 hosts, que máscara possuiria cada uma das 5 redes? /27, 255.255.255.224</li> </ul> |
|            | 172.16.64.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 26         | s) A rede 172.16.0.0/19 pode incluir até quantos <i>hosts</i> ?                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | □ 30 hosts □ 2046 hosts □ 4094 hosts □ 8190 hosts #                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27         | ') Quais das seguintes afirmações são verdadeiras, relativamente ao comando: ip route 172.16.4.0 255.255.255.0<br>192.168.4.2?                                                                                                                                                                                                                                                                                                                                                     |
|            | <ul> <li>□ É usado para definir uma rota estática#</li> <li>□ O comando configura uma rota default</li> <li>□ Está a ser utilizada a distância administrativa por defeito#</li> <li>□ Poderia ter sido utilizada uma interface em vez do endereço IP de next-hop 192.168.4.2#</li> </ul>                                                                                                                                                                                           |
| 28         | ) Qual dos seguintes comandos deve utilizar para mostrar os updates do RIP?                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>2</b> 9 | <ul> <li>☐ Show ip route</li> <li>☐ Debug ip rip#</li> <li>☐ Show protocols</li> <li>☐ Debug ip route</li> <li>I) Qual das afirmações é verdadeira relativamente aos protocolos de routing classless?</li> </ul>                                                                                                                                                                                                                                                                   |
| 30         | <ul> <li>□ O uso de VLSM é permitido#</li> <li>□ O RIPv1 é um protocolo classless</li> <li>□ O RIPv2 suporta classless routing#</li> <li>□ O uso de redes descontínuas não é permitido</li> <li>O has fazer troubleshooting num router a correr o protocolo RIP, repara que a rede 172.16.10.0 está a ser anunciada com uma métrica de 16, qual o significado?</li> </ul>                                                                                                          |
|            | <ul> <li>□ A rede está inacessível#</li> <li>□ A rede encontra-se a 16 hops</li> <li>□ Esta rota possui um delay de 16 microsegundos</li> <li>□ O débito para esta rede é de 16 pacotes por segundo</li> </ul>                                                                                                                                                                                                                                                                     |

32) Um *router* recebe um pacote com um endereço IP de origem 192.168.214.20 e um endereço IP de destino 192.168.22.3. Analisando a FIB abaixo, qual o destino do pacote?

R 192.168.215.0 [120/2] via 192.168.20.2, 00:00:23, Serial0/0

Corp#sh ip route

|                                                                                                       | R 192.168.115.0 [120/1] via 192.168.20.2, 0 R 192.168.30.0 [120/1] via 192.168.20.2, 0 C 192.168.20.0 is directly connected, Seri C 192.168.214.0 is directly connected, Fas                                                  | :00:23, Serial0/0<br>al0/0                                                          |                 |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------|
| ☐ O <i>router</i> irá realizar u                                                                      | •                                                                                                                                                                                                                             | sse (/24) #                                                                         |                 |
| 33) Quais das afirmações d                                                                            | definem route poisoning:                                                                                                                                                                                                      |                                                                                     |                 |
| <ul><li>☐ Um router anuncia co</li><li>☐ A informação que é r</li><li>☐ Previne que mensage</li></ul> | e rotas aprendidas por RIP na RIB, aper<br>com uma métrica para o infinito uma re<br>recebida por um <i>router</i> , não pode ser c<br>ens de <i>update</i> instalem na RIB uma rota<br>er informação de outro sobre uma rota | ede que fique indisponível<br>enviada pelo mesmo cami<br>ta que acabou de ficar dis | inho<br>ponível |
|                                                                                                       |                                                                                                                                                                                                                               | RIPv1                                                                               |                 |
| -                                                                                                     | 206.143.5.0/30 à Empresa KEDIT pelo<br><i>er</i> para aceder à Internet. Quais do                                                                                                                                             |                                                                                     | •               |
| ☐ Router-EmpresaA(co                                                                                  | onfig)# router rip<br>onfig-router)# network 206.143.5.0<br>onfig)# ip route 0.0.0.0 0.0.0.0 206.143<br>onfig-router)# network 206.143.5.0 def                                                                                |                                                                                     |                 |

| <b>36)</b> Em OSPF, o algoritmo Dijkstra para calcular as melhores rotas dentro de uma área é aplicado sobre:                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ LSA tipo 1 V ☐ LSA tipo 2 V ☐ LSA tipo 3 ☐ LSA tipo 4 ☐ LSA tipo 5                                                                                                                                                                                                                                                                                                                                     |
| 37) No caso de haver apenas uma área OSPF num domínio OSPF (AS):                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Não existem LSA tipo 3 ∨</li> <li>Não existem LSA tipo 4 ∨</li> <li>Não existem LSA tipo 5</li> <li>Não existem LSA tipo 7 ∨</li> </ul>                                                                                                                                                                                                                                                         |
| <b>38)</b> Em OSPF todos os <i>routers</i> criam o mapa (LSDB) de:                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>□ Todo o domínio (AS) OSPF</li> <li>□ Das áreas em que possui interfaces V</li> <li>□ Da área 0 e da área em que são <i>routers</i> interiores</li> <li>□ Da área 0 e das áreas em que existem ASBR</li> </ul>                                                                                                                                                                                  |
| <b>39)</b> Em OSPF, se dois <i>routers</i> são vizinhos entre si:                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>□ São adjacentes entre si</li> <li>□ Atualizam entre si as suas LSDB</li> <li>□ Os seus tempos entre mensagens Hello são iguais V</li> <li>□ A área a que dizem pertencer tem de ser a mesma V</li> <li>□ Possuem LSDB (mapas da área) iguais para as áreas em que são comuns V</li> </ul>                                                                                                      |
| 40) OSPF:                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>□ Numa área todos os routers possuem tabelas de routing iguais</li> <li>□ Cada router de uma área possui a sua LSDB ("mapa") distinta da dos outros routers da mesma área</li> <li>□ Devido a ser do tipo link-state o OSPF pode criar rotas com loops dentro de uma área daí obrigar à topologia el árvore de dois níveis</li> <li>□ Cada router é identificado pelo seu RouterID #</li> </ul> |
| 41) OSPF:                                                                                                                                                                                                                                                                                                                                                                                                |
| Indique a ordem (1, 2 e 3) pela qual um router escolhe um valor para seu routerId?                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>Configurado manualmente 1</li> <li>Obtido a partir dos endereços IP das interfaces físicas 3</li> <li>Obtido a partir dos endereços IP das interfaces loopback 2</li> <li>Obtido a partir dos endereços MAC das suas interfaces físicas</li> </ul>                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                          |

| 42) OSPF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>□ Os routers vizinhos trocam as suas LSDB entre si</li> <li>□ Dois routers com interfaces configuradas em áreas distintas, ligados entre si, nunca poderão estabelecer relação de adjacência #</li> <li>□ O intervalo de Dead é sempre maior ou igual ao intervalo de Hello #</li> <li>□ Todos os routers vizinhos numa rede BMA são adjacentes entre si e do designated router da respetiva rede</li> </ul>                                                          |
| 43) Numa rede usa-se OSPFv2 e RIPv2 em simultâneo. Um router recebe informações para o mesmo destino (rotas) via RIPv2 e via OSPFv2. Das duas rotas recebidas ele colocará na tabela de routing a rota:                                                                                                                                                                                                                                                                        |
| <ul> <li>□ RIPv2</li> <li>□ OSPFV2 #</li> <li>□ Ambas (ECMP - Equal Cost MultiPath)</li> <li>□ Nenhuma</li> </ul>                                                                                                                                                                                                                                                                                                                                                              |
| 44) Como é que um router a correr OSPFv2 anuncia aos outros routers OSPFv2 a que tipos de redes está ligado?                                                                                                                                                                                                                                                                                                                                                                   |
| ☐ LSA tipo 1 # ☐ LSA tipo 2 ☐ LSA tipo 3 ☐ LSA tipo 4                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 45) Os LSA que informam os routers de outra área sobre as rotas inter área são os:                                                                                                                                                                                                                                                                                                                                                                                             |
| ☐ LSA tipo 2 ☐ LSA tipo 3 # ☐ LSA tipo 4 ☐ LSA tipo 5                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>46)</b> Em OSPF, em quais dos seguintes casos é eleito um <i>Designated Router</i> ?                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>□ Rede stub Ethernet</li> <li>□ Ligações série ponto-a-ponto</li> <li>□ Segmento Ethernet com 5 routers ligados a ele V</li> <li>□ Rede NBMA com 4 ligações em que todos conseguem comunicar com todos V</li> </ul>                                                                                                                                                                                                                                                   |
| 47) Como é que os routers em OSPFv2 se tornam adjacentes?                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tornam-se vizinhos (usam <i>multicast</i> IP para transportarem as mensagens de <i>Hello</i> nas redes que suportem <i>multicast</i> ao nível data link) verificando os parâmetros comuns como área a que as respetivas interfaces comuns pertencem, o Hello time (HelloInterval), o Hold time (RouterDeadInterval), o reconhecimento como vizinhos(Neighbor) e a seguir trocam entre eles os LSA ( <i>Link State Update</i> ) de maneira a que as suas LSDB fiquem idênticas. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 48) Como é que um router a correr OSPFv2 pode tomar conhecimento de uma rota para uma rede qualquer num domínio contiguo ao seu, ligado via um ASBR, onde esteja a correr outro qualquer protocolo de <i>routing</i> ?                                                                                                                                                                                                                                                         |
| Redistribuição de rotas no ASBR, do protocolo de <i>routing</i> usado no outro domínio, para o OSPFv2.                                                                                                                                                                                                                                                                                                                                                                         |