Student ID:	Student Signature:
-------------	--------------------

UNIVERSITY OF GHANA

(All rights reserved)

BSC ENGINEERING/SECOND SEMESTER EXAMINATIONS: 2016/2017

SCHOOL OF ENGINEERING SCIENCES

FAEN 106: APPLIED ELECTRICITY (3 CREDITS)

INSTRUCTIONS:

ANSWER <u>ALL QUESTIONS IN SECTIONS A AND B</u> AND <u>THREE</u> (3) QUESTIONS - FROM SECTION C

SECTIONS A AND B ARE TO BE ANSWERED ON THE QUESTION SHEET

SECTION C SHOULD BE ANSWERED IN THE ANSWER BOOKLET PROVIDED

TIME ALLOWED: THREE (3) HOURS

SECTION A [20 MARKS]

Circle your choice of answer on the question paper.

- 1. In Ghana, power is transmitted at a linear frequency of 50 Hz which is equivalent to an angular frequency of
 - a) 314 s^{-1}
 - b) 50 s⁻¹
 - c) 314 rad s⁻¹
 - d) 50 rad s⁻¹
- 2. Electric current is simply the *rate of flow* of electric charge. Hence its unit could also be
 - a) C/s
 - b) J/s
 - c) J/C
 - d) A/s
- 3. To determine the average value of a symmetrical periodic waveform such as a sine wave, one can integrate the wave equation from:
 - a) 0 to 2π
 - b) $-\pi$ to π
 - c) $-\pi/2$ to $3\pi/2$
 - d) $-\pi$ to 0
- 4. The power dissipated in a 1.5-k Ω pure resistor when a voltage $\nu = 200 \sin \omega t$ volts is applied across it is:
 - a) 300 kW
 - b) 26.67 W
 - c) 8.89 W
 - d) 13.33 W

Smolent	E ID:	Student Signature:
1 (In a RLC AC circuit, heat dissipation a) Both the resistor and capacitor b) Both the resistor and inductor c) All three circuit elements	n occurs through
6. 3 6 1	d) Only the resistor In the derivation of the root mean squot the squares of the values (currents a) Over one cycle the average value b) Over one cycle, the average value o) Over one cycle, the average value of the average value.	e is zero e is too large
7 1	 d) Over one cycle, the average value A transformer is the main reason for because 	
1	b) It is a very high efficiency and c) It is a purely resistive circuit d) None of the above	reduites tittle of no maintenance over a long time
8. <i>'</i>	•	nterrupted rupted
9. ·	,	ic circuit that has a resistor R Ω in series with 10 also of resistance R Ω is:
10.	Assuming your ECG bill for the mo	onth of September 2016 was GHC 135. What is the the month if ECG charges 30 pesewas/unit and the

- a) 30 √2 A
- b) 30 √3 A
- c) 30/√3 A
- d) 30 A
- 12. A three-phase delta connected load receives power from a supply of 560 V. How much voltage is dropped across each phase?
 - a) 560 √3 V
 - b) 560/√3 V
 - c) 560 V
 - d) 560√2 V

Student ID: St	udent Signature:
 13. A three-phase wye-connected load has a flowing through the lines supplying the a) 25√3 A b) 25√3 A c) 25 A 	phase current of 25 A. How much current is load?
d) 25√2 A	
14. A three-phase resistive load has a phase	voltage of 240 V and a phase current of 18 A.
What is the total energy consumed by the	us three-phase load in 10 h?
a) 74.82 kWh	•
b) 129.6 kWh	
c) 129600 kWh	
d) 43.2 kWh ·	
15. An alternating current completes 4 cycle	es in 5 ms. What is its frequency?
a) 20 Hz	
b) 125 Hz	
c) 800 Hz	
d) 0.02 Hz	· · · · · · · · · · · · · · · · · · ·
 16. In a simple series DC circuit, the follow a) Same voltage drops across each series b) Each series component has the same c) Current is the same through each cond d) Voltage drops are the same as the son 17. For a simple DC circuit in which component is the component through each component is the component is the component is the component and voltage values of the limit of the current and voltage values of the limit of the	evalue of current and voltage imponent but voltage drops are different surce emf for each series component onents are all connected in parallel: the same is same as the source emf are the same for each component
d) 1 Ω	
19. In electrical measurements, the unit of c	onductance is the:
a) Ohm	
b) Mho	•
c) Farad	•
d) Coulomb	•
20. Electric companies use a larger unit of e	lectrical energy; the kWh , which is equivalent
to:	
a) 36 MJ	-
b) 0.36 MJ	
c) 3.6 MJ	
d) 360 MJ	

C4. 3 4 TT).	Otridant Circato a.
Student ID:	Student Signature:

SECTION B [20 MARKS]

Answer all questions in this section on the question paper by filling in the blanks.

- 1. In a three-phase generator, the windings (phases) are degrees out of phase with each other.
- 2. In a single-phase power transmission, the power falls to zero times during each cycle.
- 3. In Ghana, the peak value of the rms voltage of 240 V that reaches our homes is
- 4. For a purely resistive three-phase circuit, the power of the circuit is $V_L * I_L using$ the parameters of line voltage and line current.
- 5. From Fig. SECBQ5, Kirchhoff's Current Law (KCL), indicates that $I_2 = \dots$

Fig. SECBQ5

6. According to KVL, in Fig. SECBQ6, V_{R1} =

Fig. SECBQ6

- 7. In a circuit, an ammeter is connected in with the circuit components.
- 9. An Ohmmeter is used to measure the value of
- 11. A transformer works by the Principle of Magnetic
- 13. The effective value of voltage or current in an AC circuit is commonly known as the value.
- 14. The units of the resistivity of a wire is
- 15. A piece of wire of diameter 4mm and length 10 mm and resistance 20 Ω has resistivity
- 16. A three-phase circuit uses either wires or wires.
- 17. The peak current in a 1.8-k Ω resistor connected to a 120-V rms ac source is
- 18. An open circuit has an resistance.

Student ID: Student Signature:		
19. In a capacitive circuit, currentvoltage. 20. In an inductive circuit, currentvoltage.		
SECTION C [60 MARKS]		
Answer only three (3) questions from this section. Each question carries 20 marks.		
Q1.		
a) A single-phase network consists of three parallel branches, the currents in the respective branches being represented by:		
$i_1 = 20 \sin 314t$ amperes;		
$i_2 = 30 \sin (314t - \pi/4) \text{ amperes;}^{-1}$		
$i_3 = 18 \sin(314t + \pi/2)$ amperes.		
The supply voltage for the network is also represented by 200 sin314t volts.		
Calculate:		
 i. The total current in a form similar to the branch currents; [3 marks] ii. The impedance, resistance, and reactance of the network; [3 marks] iii. The circuit r.m.s. current and r.m.s. voltage in polar form; [2 marks] iv. The apparent power supplied by the sources in polar form; [2 marks] v. The apparent power supplied by the sources in rectangular (complex) form; [2 marks] vi. The active power absorbed and the power factor of the source. [2 marks] 		
b) An alternating voltage v has a periodic time of 20 ms and a maximum value of 200 V. When time $t = 0$, $v = -75$ volts. Deduce a sinusoidal expression for v . If this alternating voltage feeds a $50 \angle 8^0$ Ω impedance load, deduce a sinusoidal expression for the current, i , that is also generated. [6 marks]		

Q2.

a) Use a delta-star conversion to find the current I in the unbalanced bridge circuit in Fig. Q2 α if the source voltage is 150 V. Hence determine the rate of heat dissipation from the 9- Ω resistor and also from the entire circuit into the surrounding environment.

Fig. Q2a

[10 marks]

b) Determine the equivalent resistance, R_T, of the circuit of Fig. Q2b.

[6 marks]

Fig. Q2b

Note the resistance values are in $k\Omega$.

c) Two resistors when connected in series to a 110-V line use one fourth the power that is used when they are connected in parallel. If one resistor is 1.6 k Ω , what is the resistance of the other? [4 marks]

Stude	nt 🏻	D: Student Signature:	•••••
Q3.			
	a)	A transformer is a magnetic circuit. Explain why this is so.	[2 marks]
	b)	A transformer has a turns ratio of 2:7. Explain this to a layman.	[2 marks]
	c)	State two (2) advantages and two (2) disadvantages of an auto-transf	ormer.
			[4 marks]
	d)	A transformer has 800 primary turns and 2000 secondary turns. I voltage is 160 V, determine the secondary voltage assuming an ideal	-
	e)	An ideal transformer connected to a 250 V mains, supplies a 25 V, Calculate the transformer turns ratio and the current taken from the s	200 W lamp. upply.
	_	A 114 ' 4 (C.) 1	[4 marks]
	f)	A model-train transformer plugs into 120 V ac and draws 0.65 A wh 15 A to the train. Calculate:	lle supplying
		(i) the turns ratio of the transformer;	[2 marks]
		(ii) the voltage present across the tracks; and	[2 marks]
		(iii) the power transformed.	[2 marks]
04			
Q4.			
	a)	What is meant by three-phase $(3-\Phi)$ electric power?	[2 marks]
	b)	State three advantages of 3- Φ AC power over single-phase AC power	er. [3 marks]
	c)	Three loads, each of resistance 50 Ω are connected in star to a 4	-
		supply. Determine:	_
		i. The phase voltage;	[1 mark]
		ii. The phase current; and	[1 mark]
		iii. The line current.	[l mark]
	d)	Three identical coils, each of resistance 10Ω and inductance 42 mH	
		to a 415 V, 50 Hz, 3-Φ supply for 365 days. Determine the total energy (kWh) when the coils are connected:	rgy dissipated
		i. in star; and	[3 marks]
		ii. in delta.	[3 marks]
	e)	Purely resistive loads of 24 kW, 18 kW and 12 kW are connected	d between the
		neutral and the red, yellow and blue phases respectively of a 3-\$\Phi\$, fou	r-wire system.
		The line voltage is 415 V. Calculate:	
		i. The current in each line conductor (i.e., IR, Iy and IB); and	[3 marks]
		ii. The current in the neutral conductor.	[3 marks]

Student ID:	Student Signature:

Q5.

- a) A motor takes a current of 10 A when supplied from a 250 V ac supply. Assuming a power factor of 0.75 lagging find the power consumed. Find also the cost of running the motor for 10 weeks continuously if 1 kWh of electricity costs 7.20 GHp.

 [5 marks]
- b) If four identical lamps are connected in parallel and the combined resistance is 100 Ω , find the resistance of one lamp. [2 marks]
- c) The instantaneous voltage in an AC circuit at any time t seconds is given by: $v = 100 \sin (50\pi t 0.523) \text{ V}.$

Find:

т ши.		
i.	the peak-to-peak voltage, the periodic time, the frequency	and the phase
	angle;	[2 marks]
ii.	the voltage when $t = 0$;	[1 mark]
iii.	the voltage when $t = 8$ ms;	[1 mark]
iv.	the time in the first cycle when the voltage is - 40 V; and	[2 marks]
v.	the first time when the voltage is a maximum.	[2 marks]

d) A load takes 50 kW at a power factor of 0.8 lagging. Calculate the apparent power and the reactive power. Determine the capacitance required to reduce the reactive power to half of its original value if the load is operating from a 250-V, 50-Hz supply.

[5 marks]