

The University of Manchester

Language Models as Hierarchy Encoders

Yuan He¹, Zhangdie Yuan², Jiaoyan Chen^{3,1}, Ian Horrocks¹

¹University of Oxford, ²University of Cambridge, ³University of Manchester

Motivation

Existing pre-trained LMs lack explicit hierarchy interpretation

- Pre-trained LMs can predict relations like "A is B" and "B is C" but struggle to infer the transitive relationship "A is C" [1]
- These models typically encode hierarchical entities based on similarities rather than structural relationships [2]

Limitations of existing hyperbolic embeddings

- · Classic hyperbolic embeddings, such as Poincare Embeddings [3] and Hyperbolic Entailment Cone [4], are **static** and only capture hierarchy within a **fixed entity set**
- Hyperbolic word embeddings [5] face limitations due to word-level tokenisation and unified word representations

Preliminaries

Hyperbolic Geometry

- A form of non-Euclidean geometry characterised by its constant negative Gaussian curvature
- The distance between points grows exponentially as they approach the manifold's boundary
- Provides a **theoretical guarantee** for embedding tree-like structures [4]
- **Poincaré ball**: A *d*-dimensional open ball $\mathbb{B}_c^d = \{\mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||^2 < \frac{1}{c}\}$
- **Distance function**: $d_c(\mathbf{u}, \mathbf{v}) = \frac{2}{\sqrt{c}} \tanh^{-1}(\sqrt{c} || -\mathbf{u} \oplus_c \mathbf{v} ||)$ where \oplus_c denotes the Möbius addition.

Hierarchy

- A directed acyclic graph $G(V, \mathcal{E})$ where V represents **entities** as vertices and \mathcal{E} represents direct subsumption relationships as edges
- Indirect subsumptions T are derived from transitive reasoning
- **Negative subsumptions** are $(e_1 \in \mathcal{E}, e_2 \in \mathcal{E}) \notin \mathcal{E} \cup \mathcal{T}$ (closed-world assumption)

References

[1] Lin et al. "Does bert know that the is-a relation is transitive?" In: ACL 2022. [2] Liu et al. "Self-alignment pretraining for biomedical entity representations" In: NAACL 2021

[3] Nickel et al. "Poincaré embeddings for learning hierarchical representations" In: NeurIPS 2017.

[4] Ganea et al. "Hyperbolic entailment cones for learning hierarchical embeddings" In: ICML 2018.

[5] Tifrea et al. "Poincare glove: Hyperbolic word embeddings." In: ICLR 2018.

Huggingface Hub

Hierarchy Transformer Encoder (HIT)

Construction

- The output embedding space of transformer encoder-based LMs is often a **d-dimensional hyper-cube** due to the tanh activation function in the last layer. We can then construct a **Poincaré ball** of radius \sqrt{d} (a **d**dimensional hyper-sphere) so that its boundary circumscribes the output embedding space of LMs
- We utilise the sentence transformer architecture except that we exclude the normalisation layer after mean pooling over token embeddings as it prevents hierarchical organisation

Pre-trained

Hierarchy Re-trained

Fig 1. Illustration of how hierarchies are explicitly encoded in HIT.

Fig 2. Illustration of the impact of hyperbolic clustering and centripetal losses.

Hyperbolic Losses

 Hyperbolic Clustering Loss: to cluster related entities while distancing unrelated ones

$$\mathcal{L}_{cluster} = \sum_{(e,e^+,e^-)\in\mathcal{D}} \max(d_c(\mathbf{e},\mathbf{e}^+) - d_c(\mathbf{e},\mathbf{e}^-) + \alpha,0)$$

 Hyperbolic Centripetal Loss: to position the parent entities closer to the manifold's origin than child counterparts

$$\mathcal{L}_{centri} = \sum_{(e,e^+,e^-)\in\mathcal{D}} \max(\|\mathbf{e}^+\| - \|\mathbf{e}\| + \beta, 0)$$

- The overall loss is the linear combination of the above two losses.
- Subsumption Prediction Function: to probe the resulting HIT model to predict entity subsumptions

$$s(e_1 \sqsubseteq e_2) = -(d_c(\mathbf{e}_1, \mathbf{e}_2) + \lambda(\|\mathbf{e}_2\|_c - \|\mathbf{e}_1\|_c))$$

Evaluation

Task Definition

- Multi-hop Inference: Trained on asserted (one-hop) subsumptions and tested on transitively inferred (multi-hop) subsumptions
- Mixed-hop Prediction: Trained on incomplete asserted subsumptions and tested on arbitrary, probably unseen subsumptions
- Mixed-hop Prediction (Transfer): Trained on asserted subsumptions of one hierarchy and tested on arbitrary subsumptions of another hierarchy
- Evaluation Metrics: Precision, Recall, and F-score

Dataset

Source	#Entity	#DirectSub	#IndirectSub	#Dataset (Train/Val/Test)	
WordNet	74,401	75,850	587,658	multi: 834K/323K/323K mixed: 751K/365K/365K	
Schema.org	903	950	1,978	mixed: -/15K/15K	
FoodOn	30,963	36,486	438,266	mixed: 361K/261K/261K	
DOID	11,157	11,180	45,383	mixed: 122K/31K/31K	
SNOMED	364,352	420,193	2,775,696 mix	xed: 4,160K/1,758K/1,758K	

Results

	Random Negatives			Hard Negatives					
Model	Precision	Recall	F-score	Precision	Recall	F-score			
NaivePrior	0.091	0.091	0.091	0.091	0.091	0.091			
Multi-hop Inference (WordNet)									
PoincaréEmbed	0.862	0.866	0.864	0.797	0.867	0.830			
HyperbolicCone	0.817	0.996	0.898	0.243	0.902	0.383			
all-MiniLM-L12-v2	0.127	0.585	0.209	0.108	0.740	0.188			
+ fine-tune	0.811	0.515	0.630	0.819	0.530	0.643			
+ HIT	0.880	0.927	0.903	0.910	0.906	0.908			
	N	Mixed-hop P	rediction (Wo	rdNet)					
all-MiniLM-L12-v2	0.127	0.583	0.209	0.111	0.625	0.188			
+ fine-tune	0.794	0.517	0.627	0.859	0.515	0.644			
+ HIT	0.875	0.895	0.885	0.886	0.857	0.871			
Transfer Mixed-hop Prediction (WordNet \rightarrow DOID)									
PoincaréGloVe	0.265	0.314	0.287	0.283	0.318	0.299			
all-MiniLM-L12-v2	0.342	0.451	0.389	0.159	0.455	0.235			
+ fine-tune	0.585	0.621	0.603	0.868	0.179	0.297			
+ HIT	0.696	0.711	0.704	0.810	0.435	0.566			

Analysis

- The hyperbolic norms of entity embeddings in **HIT** capture the natural expansion of hierarchies
- HIT demonstrates a stronger linear relationship between entity hyperbolic norms and depths

12 14 16 18 20 22 24

0.130

Future Work

- Mitigate catastrophic forgetting
- Develop hierarchy-based semantic search

The Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024) Language Models as Hierarchy Encoders