ANALYSIS I EXTENSION LECTURE 6. CONSTRUCTION OF \mathbb{R} THROUGH \mathbb{Q}

ASILATA BAPAT

Definition of \mathbb{R}

Henceforth we write rationals as usual: $[(-3,5)] \rightarrow -\frac{3}{5}$.

Definition. A sequence s of numbers in \mathbb{Q} is a function

$$s: \mathbb{N} \mapsto \mathbb{Q}$$

Definition. A sequence s of numbers in \mathbb{Q} is called <u>convergent to $q \in \mathbb{Q}$ </u> if for every $n \in \mathbb{N}$ where $n \neq 0$, there is $m \in \mathbb{N}$ such that for each M > m we have

$$d(s_M, q) < \frac{1}{n}$$

Especially, we say that a sequence s is <u>null</u> if $s \to 0$.

Definition. A sequence s of \mathbb{Q} is called <u>Cauchy</u> if for every $n \in \mathbb{N}$ where $n \neq 0$, there is $m \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ where $n \neq 0$, there is a $m \in \mathbb{N}$ such that for every P, Q > m, we have

$$d(s_P, s_Q) < \frac{1}{n}$$

Theorem. If a sequence s_n converges to $q \in \mathbb{Q}$, then it is Cauchy.

Proposition. There exists Cauchy sequences in \mathbb{Q} that are not convergent.

We would like a enlargement of \mathbb{Q} , in which $Cauchy \iff convergent$

Definition. We will say a field F is <u>complete</u> if every Cauchy sequence converge.

<u>Idea</u>: Given any $q \in \mathbb{Q}$, say $q = \frac{1}{2}$; consider the sequence (q, q, q, \cdots) . This is a Cauchy sequence with limit q. Also, $S_n = (q + \frac{1}{n})$, then $s_n \to q$.

Now let $s_n = 3, 3.1, 3.14, 3.141, 3.1415, \cdots$. This is a Cauchy sequence, but it probably does not converge in \mathbb{Q} . But we <u>want</u> it to converge.

Let

$$R = \{ \text{ all Cauchy sequences of } \mathbb{Q} \}$$

and let $\mathbb{P}(\mathbb{N} \times \mathbb{Q})$ be the power set of $\mathbb{N} \times \mathbb{Q}$ = all relations $\mathbb{N} \to \mathbb{Q}$. We look at $\{ F \in \mathbb{P}(\mathbb{N} \times \mathbb{Q}) \mid F \text{ is a function that defines a Cauchy sequence } \}$

We want all element of R to be the representative for its "limit", even if it does not exist. However there is a problem: $(1, 2, 2, 2, \cdots)$ and $(2, 2, 2, 2, \cdots)$ go to the same limit, but they are different sequences. The way to deal with it is to include equivalence relations. We say two sequence (a_n) and (b_n) are equivalent (written as $(a_n) \sim (b_n)$) if their difference $(a_n - b_n)$ converges to 0.

Definition. We define real number \mathbb{R} as

$$\mathbb{R} := R / \sim =$$
 equivalence classes under this relation

Lemma. Every Cauchy sequence is bounded. This means there is some M s.t. $|a_n| \leq M$.

Lemma. Every Cauchy sequence (a_n) that does not converge to 0 is bounded away from 0. Explicitly, this means that $\exists \varepsilon > 0$ and $N \in \mathbb{N}$ s.t. $\forall n \in \mathbb{N}$ and n > N, $|a_n| > \varepsilon$

Proposition. \sim is an equivalence relation.

Proof.

- (1) (Reflexivity) $(a_n) \sim (a_n)$ because $(a_n a_n)$ is the zero sequence.
- (2) (Symmetry) If $(a_n) \sim (b_n)$ then $(a_n b_n) \to 0$. From the definition, $(b_n a_n) \to -0 = 0$. So $(b_n) \sim (a_n)$
- (3) (Transitivity) Say $(a_n) \sim (b_n)$ and $(b_n) \sim (c_n)$. Then $\forall \varepsilon > 0, \exists N_1 \in \mathbb{N}$ such that

-
$$\forall n > N_1$$
 we have $|a_n - b_n| < \frac{\varepsilon}{2}$.

-
$$\forall \varepsilon > 0, \exists N_2 \in \mathbb{N} \text{ s. t. } \forall n > N_2, \text{ we have } |b_n - c_n| < \frac{\varepsilon}{2}$$

Now let $N = \max\{N_1, N_2\}$. So if n > N, then

$$|a_n - c_n| \le |a_n - b_n| + |b_n - c_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Since ε is arbitrary, we see $(a_n - c_n) \to 0$. So $(a_n) \sim (c_n)$.

We now show that \mathbb{R} is well-defined.

Proof. \mathbb{Q} is embedded into $\mathbb{R}(\mathbb{Q} \stackrel{i}{\hookrightarrow} \mathbb{R})$. That is, given any rational number q we can construct a sequence converging to q as follows:

$$q \mapsto [(q, q, q, \dots)]$$

If
$$p \neq q$$
, $i(p) \neq i(q)$ then $i(p) \neq i(q)$ because $[(p-q, p-q, \dots)] \neq [(0, 0, 0, \dots)]$

In particular, in \mathbb{R} we have a $0 = [(0, 0, 0, \dots)]$ and a $1 = [(1, 1, 1, 1, \dots)]$, as shown above, therefore $0 \neq 1$.

Properties of \mathbb{R}

(1) (Addition) We say that:

$$[(a_n)] + [(b_n)] := [(a_n + b_n)]$$

Then addition is well-defined, commutative, and associative. Also $[(a_n)] + 0 = [(a_n)]$

(2) (Multiplication) We say

$$[(a_n)] \cdot [(b_n)] = [(a_n b_n)]$$

Claim. Multiplication of \mathbb{R} is well defined.

Proof. Suppose that $[(a_n)] = [(c_n)]$ and $[(b_n)] = [(d_n)]$. We will show that $[(a_nb_n) = [(c_nd_n)]$, meaning that the sequence $(a_nb_n - c_nd_n) \to 0$. We know

$$(a_n - c_n) \to 0$$
 and $(b_n - d_n) \to 0$

Further, these are Cauchy sequences. Recall that if (s_n) is Cauchy, then $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ s. t. $\forall m, n > N$, we have $|s_m - s_n| < \varepsilon$

Fix some ε , the corresponding N, and some n > N. Then $\forall m > N$, we have

$$s_m \leqslant |s_m - s_n| + |s_n| \leqslant \varepsilon + |s_n|$$

So the sequence is bonded above by the max of $\{ |s_1|, |s_2|, \dots, |s_N|, \dots, |s_{n_1}|, |s_n| + \varepsilon \}$. Consider

$$|a_n b_n - c_n d_n| = |a_n b_n - b_n c_n + b_n c_n - c_n d_n| = |b_n (a_n - c_n) + c_n (b_n - d_n)|$$

$$\leq |b_n| |a_n - c_n| + |c_n| |b_n - d_n|$$

Let M be a positive upper bound for both b_n and c_n . Then $\forall \varepsilon > 0$,

- $\exists N_1$ s.t. if $n > N_1$, then

$$|a_n - c_n| < \frac{\varepsilon}{2M}$$

- $\exists N_2$ s.t. if $n > N_2$, then

$$|b_n - d_n| < \frac{\varepsilon}{2M}$$

So if $N = \max\{N_1, N_2\}$ and n > N, then

$$|a_n b_n - c_n d_n| < M \cdot \frac{\varepsilon}{2M} + M \cdot \frac{\varepsilon}{2M} = \varepsilon$$

So $|a_n - b_n| \to 0$, indicating $(a_n b_n) \sim (c_n d_n)$. So multiplication is well-defined.

Further, multiplication distributes over addition; and $[(a_n)] \cdot 1 = [(a_n)]$.

(3) (Division) If $[(a_n)] \neq 0$, then \exists some (b_n) s.t. $[(a_n b_n)] = 1$.

Proof. Suppose $[(a_n)] \neq 0$, which means that (a_n) is Cauchy but <u>does not converge</u> to 0. So, by definition, $\exists \varepsilon > 0$ s. t. $\forall N \in \mathbb{N}, \exists n > N$ s. t. $|a_n| > \varepsilon$ Now fix an $\varepsilon > 0$. So $\exists N \in \mathbb{N}$ s. t. $\forall m, n > N$, we have $|a_m - a_n| < \frac{\varepsilon}{2}$.

Fix n to be some natural number larger than \tilde{N} , s.t. $|a_n| > \varepsilon$. Observe that

$$|a_n| < |a_n - a_m| + |a_m| < \frac{\varepsilon}{2}$$

This means that $\exists \varepsilon > 0$ and $N_1 \in \mathbb{N}$ s.t. $\forall m > N_1$, we have $a_m > \frac{\varepsilon}{2}$; in particular, $a_m \neq 0$ for sufficiently large m.

Define the sequence b_n as follows:

- If $n \leqslant N_1$, set $b_n = 1$.
- If $n > N_1$, set $b_n = \frac{1}{a_n}$.

Notice that b_n is Cauchy because the sequence $\frac{1}{a_n}$ is Cauchy. Moreover, we can compute (a_nb_n)

- If $n \leq N$, $a_n b_n = a_n$
- If n > N, $a_n b_n = 1$

So $\forall n > N, a_n b_n = 1$. This means that $[(a_n b_n)] = 1$. Therefore every nonzero element of \mathbb{R} has an inverse.

(4) (Order) Let $[(a_n)]$ and $[(b_n)] \in \mathbb{R}$. We say $[(a_n)] \geqslant [(b_n)]$ iff either $[(a_n)] = [(b_n)]$, or $\exists N \in \mathbb{N} \text{ s. t. } \forall n > N, \ a_n \geqslant b_n$.

Claim. This is a total order on \mathbb{R}

Proof. Suppose $[(a_n) \neq (b_n)]$, so $a_n - b_n \nrightarrow 0$. So $\exists \varepsilon > 0$ s. t. $\forall N \in \mathbb{N}, \exists n > N$ s. t. $|a_n - b_n| > \varepsilon$.

Fix this ε . As before, we see that $\exists N_1 \in \mathbb{N} \text{ s.t. } \forall m, n > N_1, |a_m - a_n| < \frac{\varepsilon}{2}$ and $\exists N_2 \in \mathbb{N} \text{ s.t. } \forall m, n > N_2, |b_m - b_n| < \frac{\varepsilon}{2}$.

Let $M = \max\{N_1, N_2\}$. Fix n > M's.t. $|a_n - b_n| > \varepsilon$. Suppose WLOG $a_n > b_n$, so $a_n - b_n > \varepsilon$. Then $a_m \ge a_n - \frac{\varepsilon}{2}$, and $b_m \le b_n + \frac{\varepsilon}{2}$. Therefore,

$$a_m - b_m \geqslant a_n - \frac{\varepsilon}{2} - b_n - \frac{\varepsilon}{2} \geqslant 0$$

So, $\forall m > M$, $a_m \geqslant b_m$.

(5) (Completeness) We first introduce the definition of Least Upper Bound, as follows:

Definition (Least Upper Bound). Let $S \subseteq \mathbb{R}$ be non-empty.

A number $x \in \mathbb{R}$ is an <u>upper bound</u> for S if $\forall s \in S$, we have $x \geqslant s$.

A number $x \in \mathbb{R}$ is the <u>least upper bound</u> for S if $\forall y$ upper bound of S, we have $x \leqslant y$.

Theorem. Every bounded set of reals that has a upper bound has a least upper bound.

Proof. Let $S \subseteq \mathbb{R}$ be nonempty. Let $u \in \mathbb{R}$ be an upper bound for S. Assume that u is rational (by increasing if required). Choose some $l \in \mathbb{Q}$ s.t. l < s for some $s \in S$. We will define sequence u_n and l_n , of rationals as follows:

- (i) $u_0 = u$, and $l_0 = l$.
- (ii) For each $n \in \mathbb{N}$, $m_n = \frac{u_n + l_n}{2}$.
- (iii) If m_n is an upper bound for S, set

$$u_{n+1} = m_n \text{ and } l_{n+1} = l_n$$

Otherwise, set

$$u_{n+1} = u_n \text{ and } l_{n+1} = m_n$$

Observations,

- (a) $\forall n \in \mathbb{N}, u_{n+1} \leqslant u_n$.
- (b) $\forall n \in \mathbb{N}, l_{n+1} \geqslant l_n$.
- (c) $\forall n \in \mathbb{N}, u_n \geqslant l_n$.
- (d) By induction, $u_{n+1} l_{n+1} = \frac{u l}{2^n}$.
- (e) If m > n, then $|u_m u_n| \leq \frac{u l}{2^{n-1}}$. This shows u_n is Cauchy.
- (f) Similarly, l_n is Cauchy.
- (g) $\forall s \in S, u_n \geqslant s$, so $[(u_n)] \geqslant s$ for all $s \in S$. $\Longrightarrow [(u_n)]$ is an upper bound.
- (h) $[(l_n)]$ is never a upper bound for S.
- (i) $[(l_n)] = [(u_n)]$ because the difference goes to 0.

Now we claim that $[(u_n)]$ is a least upper bound for S. Suppose now, $\exists b \in \mathbb{N}$ which is an upper bound for S and $[(u_n)] > b$. So $[(l_n)] > b$. So $\exists n \in \mathbb{N}$ s. t. $l_n > b$. However, since l_n is not an upper bound for S, b cannot be one.