目录

1	预览		5
1.1	first		5
	1.1.1	和差化积	5
	1.1.2	\heartsuit some easy replace	6
2	线性化	代数	7
2.1	线性	表出	7
	2.1.1	线性相关	8
	2.1.2	向量组等价	9
2.2	. 两个	方程同解	9
	2.2.1	已知特征值,求特征向量 ♡	10
	2.2.2	[分析]矩阵的对角化:	11
2.3	8 A; ‡	持征值;求可逆矩阵 P ,相应的对角矩阵 Λ	11
	2.3.1	相似的必要条件	11
	2.3.2	实对称矩阵 A (含参数),求可逆矩阵 P ,求对角矩阵 Λ	12
	2.3.3	实对称矩阵的正交规范化	12
	2.3.4	f(A)的特征值 及对应的特征向量	13
	2.	3.4.1 实对称矩阵必可对角化	13
	2.3.5	$A[x_1, x_2] = [b_1, b_2] \dots \dots$	13
2.4	行列	变换	14
2.5	方程	组同解	15
	2.5.1	x1=x2	15
2.6	5 A		17
	2.6.1	克拉默法则	18
2.7	7 已知	两个方程组的通解,求公共解。	20
200	*H\U	対角ル	0.1

目录

2.9 实对称可相似对角化⇔特征值相等	22
2.10 $A\alpha = 0; A\beta = 3\beta$	22
$2.11 (A+E)^n \qquad \dots \qquad \dots \qquad \dots$	22
2.12 AB=BA $A(Bx) = \lambda(Bx)$	23
2.13 细节点	23
3 最最最易错的分解	25
3.1 导函数的零点存在性	25
3.2 周期T	25
3.3 隐函数的存在定理	25
3.3.1 $\frac{x^2+c}{(x+a)(x+b)^2}$	26
3.3.2 arccos的区间	29
3.4 曲率圆	30
3.5 判断函数的凹凸性,并根据凹凸函数的图像性质求解	31
3.5.1 定积分计算	31
3.6 洛必达	32
4 高数基础	33
4.1 函数极限	33
4.1.1 极限的定义	33
4.1.2 极限的证明题	33
4.1.3 一些写错的极限计算	34
4.1.4 极限的判定	36
4.1.5 复合函数的奇偶性	37
4.1.6 复合函数的极限定理	38
4.1.7 重要极限∞0	39
$4.1.8 \frac{\infty}{\infty}$	40
4.1.9 1∞	40
4.1.10 复合函数	40
4.2 $f(x,y)$ 在 $f(0,0)$ 处	41
4.3 数列极限	42

目录

4.3.1 极限存在证明	. 43
4.3.2 极限的最值问题	. 43
4.3.3 极限的不等式性质(保号性的推广)	. 44
4.4 斜渐近线	. 45
4.4.1 一阶线性微分方程	. 45
4.5 连续与可导	. 46
4.5.1 导数无定义	. 48
$4.5.2 \lim_{n \to \infty} (a_1^n + \dots + a_m^n)^{\frac{1}{n}} = \max_{1 \le i \le m} \{a_i\}, (a_i > 0) \dots $. 48
4.6 方程实根数	. 48
4.6.1 分情况讨论	. 49
4.6.2 参数分离	. 49
4.7 绝对值 X	. 49
4.7.1 区间再现与绝对值	. 52
4.8 中值定理	. 53
4.8.1 构建辅助函数	. 53
4.8.2 罗尔	. 53
4.8.3 拉格朗日与递推不等式	. 53
4.8.4 图像与中值定理	. 54
4.8.5 不同区间上的拉氏	. 54
4.8.6 $f'' = g''$. 55
4.8.7 N-L定理	. 55
4.8.8 高阶莱布尼兹公式	. 56
4.8.9 泰勒	. 56
4.8.10 $f'(x) = \int_0^{\xi} f(x) dx$. 56
4.8.11 积分的几何意义(<mark>证明题</mark>)	. 57
4.9 sinx与cosx	. 57
4.10 函数图像与根	. 58
5 高数下	. 61
5.1 微分方程	
5.1.1 二阶, 少v	
O.1.1 一切、グV	. 61

5.1.2 高阶4阶	61
5.1.3 $y(x) = u(x)g(x)$ 的二阶微分方程	61
5.1.4 一个简单的倒带换	62
5.1.5 $\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{dy}}{\mathrm{dt}} \frac{\mathrm{dt}}{\mathrm{dx}}$	62
$5.1.6$ 倾斜角 α , $\frac{\mathrm{d}\alpha}{\mathrm{dx}}$, $\frac{\mathrm{dy}}{\mathrm{dx}}$, $\tan \alpha = -\frac{1}{y_x'}$	62
5.2 解的叠加性	63
5.2.1 高阶K重根	63
5.3 定积分应用	64
5.3.1 参数方程的积分	64
$5.3.2$ 旋转体体积,非 y 轴, $V=V_1-V_2$	65
5.3.3 积分比大小	66
5.4 反常积分	67
5.5 对称区间的积分	69
5.6 重积分	69
5.6.1 分段区间	70
5.6.2 区间相同,二重积分保序性	70
5.6.2.1 区间极坐标换元	71
5.6.3 二重积分存在	71
5.6.4 轮换对称性	72
5.7 二元函数最值问题	72
5.8 多元函数极值问题	73
6 积分表	75
索引	77
参考文献	79

第1章

预览[1]

1.1 first

[题目] 设n阶可逆矩阵A有特征值 λ ,对应的特征向量为 α ,证明 α 也是 A^-1 对应于 λ^{-1} 的特征向量

[证明] 由题设 $A\alpha = \lambda \alpha$,两边同乘 A^-1 ,则

 $(A^{-1}A)\alpha = \lambda (A^{-1}\alpha) \Rightarrow E\alpha = \lambda (A^{-1}\alpha) \Rightarrow \alpha = \lambda (A^{-1}\alpha)$ 因为A可逆,则 $|A| \neq 0$. 由|A|等于特征值之积,故 $\lambda \neq 0$. 综上, $A^{-1}\alpha = \frac{1}{\lambda}\alpha$. 故 α 也是 A^{-1} 对应于 λ^{-1} 的特征向量。

$$A^{-1}\alpha = \frac{1}{\lambda}\alpha$$

$$A = \alpha \alpha^T$$
 $A\alpha = \alpha(\alpha^T \alpha)$
$$\alpha \alpha^t = k$$

1.1.1 和差化积

和差化积公式:
$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

$$\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

[帮助记忆]

方法 1.可以只记第一个公式,将其它公式用诱导公式化成 $\sin{(\alpha)} + \sin{(\beta)}$ 的形式。 方法 2.找规律。前两个公式是 $\sin{n}\cos{\beta}$ 后两个公式是同名函数乘积。

口诀:

正加正, 正在前,

余加余,余并肩。

6

正减正,余在前,

余减余, 负正弦。

1.1.2 ♥some easy replace

$$x \in (0, +\infty)$$
 时,有 $0 < \frac{x}{x+1} < \ln(x+1)$.故 $\frac{x^3}{x+1} < \ln(x+1)x^2$.故 $\int_0^1 \frac{x^3}{x+1} dx < \int_0^1 \ln(x+1)x^2 dx$,即 $I_2 < I_1$.故选 A .

(%i14) tm_plot2d([log(1+t),t/(1+t)],[t,0,0.5])

(%o14) true

第2章

线性代数

2.1 线性表出

[2003年真题]设向量组 $I:\alpha_1,\alpha_2,\ldots,\alpha_t$ 可由向量组 $II:\beta_1,\beta_2,\ldots,\beta_s$ 线性表示,则

- A. 当t < s时,向量组II必线性相关
- B. 当t > s时,向量组II必线性相关
- \mathbb{C} . 当t < s时,向量组I 必线性相关
- D. 当t > s时,向量组I必线性相关

[简解] 根据定理: "若 $\alpha_1, \alpha_2, \cdots, \alpha_t$ 可有 $\beta_1, \beta_2, \cdots, \beta_s$ 线性表出,且t > s, 则 $\alpha_1, \alpha_2, \cdots, \alpha_t$ 必线性相关即若多数向量可以由少数向量线性表出,则此多数向量必线性相关,故选 D.

若 A 为 $m \times n$ 矩阵,则以下哪个选项是正确的?

因为r(A) = A的行秩= A的列秩,而A的列秩是列极大线性无关组的向量个数 \leq 列向量组的总向量个数= n. 同理A的行秩是行极大线性无关组的向量个数 \leq 行向量组的总向量个数= m. 综上, $r(A) \leq \min \ (m,n)$,即有 $r(A) \leq n$. 选D.

其余选项:

A: 只能得出 $r(A) \leq m$.

B:A的行秩是行极大线性无关组的向量个数 \leq 行向量组的总向量个数=m

2.1.1 线性相关

由特征值的定义

有 $[A(\lambda_2 \alpha_1), A(\lambda_1 \alpha_2)] = [\lambda_1 \lambda_2 \alpha_1, \lambda_1 \lambda_2 \alpha_2]$ 极大线性无关组中所含向量的个数r 称为向量组的秩,因此需判定 $[\lambda_1 \lambda_2 \alpha_1, \lambda_1 \lambda_2 \alpha_2]$ 中的线性无关向量。

由互不相同的特征值对应的特征向量线性无关,则 α_1 与 α_2 线性无关。

当 $\lambda_1 \neq 0$, $\lambda_2 \neq 0$ ⇒ $\lambda_1 \lambda_2 \neq 0$, 则 $\lambda_1 \lambda_2 \alpha_1 \neq 0$, $\lambda_1 \lambda_2 \alpha_2 \neq 0$, 故 $\lambda_1 \lambda_3 \alpha_1$ 与 $\lambda_1 \lambda_3 \alpha_3$ 线性无关,向量组 $A(\lambda_2 \alpha_1)$, $A(\lambda_1 \alpha_3)$ 的秩为 2.

♡ 设 $A = (\alpha_1, \alpha_2, \alpha_3)$ 是三阶矩阵,A*为A的伴随矩阵,若(0, 2, 1)^T是方程组A**x** = 0的一个基础解系,则A***x** = 0的基础解系可为

A. α_1 B. α_1, α_2 C. α_2, α_3 D. $\alpha_1, \alpha_2, \alpha_3$

[分析]没有具体的线性方程组,先用秩来决定线性无关解的个数,再用AB = O 来得到解向量。

[解答] 用秩来决定线性无关解的个数: 因为A**x**=0 只有 1 个线性无关的解,即 n-r(A)=1, n=3,从而 r(A)=2.由 r(A)=2=n-1,则 $r(A^*)=1$.有 $n-r(A^*)=3-1=2$,故 A^* **x**=0的基础解系中有 2 个线性无关的解向量。

用AB = O来得到解向量: 由 $A\mathbf{x} = 0$ 有非零解,则|A| = 0. 由 $A^*A = |A|E, \mathcal{D}|A| = 0$,有 $A^*A = O$,则A 的列向量全是 $A^*\mathbf{x} = 0$ 的解。

而秩r(A) = 2.故A的列向量中必有 2 个线性无关。 需找到这 2 个线性无关的列向量:

由
$$A\begin{bmatrix} 0\\2\\1 \end{bmatrix} = 0$$
,即 $(\alpha_1, \alpha_2, \alpha_3)\begin{bmatrix} 0\\2\\1 \end{bmatrix} = 0$,则 $2\alpha_2 + \alpha_3 = 0$,即 α_2, α_3 相关。

综上, α_1, α_2 无关, α_1, α_3 无关。 选B.

♡[2011年真题] 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是四阶矩阵,A*为A 的伴随矩阵,若 $(1,0,1,0)^T$ 是方程组 $A\mathbf{x} = 0$ 的一个基础解系,则

A*x=0的基础解系可为

 $A. \alpha_1, \alpha_3 B. \alpha_1, \alpha_2 C. \alpha_1, \alpha_2, \alpha_3 \mathcal{D}. \alpha_2, \alpha_3, \alpha_4$

2.2 两个方程同解 9

[分析]没有具体的线性方程组,先用秩来决定线性无关解的个数,再用AB=O 来得到解向量。

[解答] 用秩来决定线性无关解的个数: 因为Ax = 0只有 1 个线性无关的解, 即n - r(A) = 1, n = 4,从 而r(A) = 3. 由 r(A) = 3 = n - 1, 则 $r(A^*) = 1$. 有 $n - r(A^*) = 4 - 1 = 3$,故 $A^* \mathbf{x} = 0$ 的基础解系中有 3 个线 **性无关的解向量**。 用AB = O来得到解向量: 由Ax = 0 有非零解,则 |A| = 0. 由 $A^*A = |A|E, D, A|=0$, 有 $A^*A = O$.则A 的列向量全是 $A^*\mathbf{x} = 0$ 的解。 而秩r(A) = 3.故A的列向量中必有 3 个线性无关。

需找到这 3 个线性无关的列向量: 由
$$A\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = 0$$
,即 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = 0$,则 $\alpha_1 + \alpha_3 = 0$,即 α_1, α_3 相关。

综上, $\alpha_2, \alpha_3, \alpha_4$ 无关。

选D.

2.1.2 向量组等价

例 2.1.

若向量组(I) 是向量组(II) 的权大线性无关组,向量组(III) 是向量组(IV)的极大线性无关组,向量组(I) 与 (III)等价,则

A、由量组(II)与(IV)不等价,且(I)不一定可由(IV)线性表出

B、由重组(II)与(IV)等价,且(I)不一定可由(IV)线性表出 C、向量组(II)与(IV)等价,且(IV)可由(IV)线性表出 D、向量组(IV)与(IV)不等价,但(IV)可由(IIV)线性表出

解】

向量组完它的极大线性无关组等价,且等价具有递性,则 $(I) \sim (II) \sim (III) \sim (IV)$,且两两可以且相线性表出。 选C.

等价向量组的定义是可以互相线性表出

例 2.2.

$$[2022 年真题 \ \mathcal{Q} \ \alpha_1 = \begin{pmatrix} \lambda \\ 1 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ \lambda \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ \lambda \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 \\ \lambda \\ \lambda^2 \end{pmatrix},$$
若 向量组 (I) : $\alpha_1, \alpha_2, \alpha_3$ 与 向量组 (II) : $\alpha_1, \alpha_2, \alpha_4$ 等价,则 λ 的取值范围为
$$A.\{\lambda | \lambda \in \mathbb{R}\} \\ B.\{\lambda | \lambda \in \mathbb{R}, \lambda \neq -1\} \\ C.\{\lambda | \lambda \in \mathbb{R}, \lambda \neq -1, \lambda \neq -2\} \\ D.\{\lambda | \lambda \in \mathbb{R}, \lambda \neq -2\}$$

 $A(\alpha_1, \alpha_2, \alpha_3), B(\alpha_1, \alpha_2, \alpha_4)$ A|B 求解 λ

2.2 两个方程同解

线性无关的解的个数相同=>系数矩阵的秩相同

基础解系相同

Ar 令方程组()的系数矩阵为
$$A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 1 & a & 1 \end{bmatrix}$$
. 令方程组(ll)的系数矩阵为 $B = \begin{bmatrix} b & 2 & c \\ b^2 & 3 & c \end{bmatrix}$.

由方程组同解,则n-r(B)= 方程(ll)线性无关解的个数=方程(l)线性无关解的个数=方程(l)线性无关解的个数=n-r(A),即r(B)=r(A). 因为r(B)52,则r(A)52,即r(A)63,即r(A)63,即r(A)63,即r(A)64,即r(A)64,即r(A)64,即r(A)64,即r(A)65,即r(A)66 即r(A)66 即r(A)60 即r(A)66 即r(A)

$$AB = O$$
 $r(A) + r(B) \leq \min \{r(A), r(B)\}$

由于A,B均非零,故r(A)>0,且r(B)>0,即 $r(A)\geq 1$, $r(B)\geq 1$.由于AB=O,且A是 5×4 ,B是 4×6 矩阵,则 $r(A)+r(B)\leq 4$.代入 $r(A)\geq 1$,有 $r(B)\leq 4-r(A)\leq 3$.因为已得出 $r(B)\geq 1$,则 $1\leq r(B)\leq 3$.过 D.

AB=O时的秩:若 A是 m×n矩阵,B是 n×s矩阵,AB=O,则 r(A)+r(B)≤n.

已知 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,则[$\alpha_1,\alpha_2,\alpha_3$]可逆,又有 $A\alpha_1,A\alpha_2,A\alpha_3$ 的表达式,想到相似,即 $AP=PB\Leftrightarrow P^{-1}AP=B$.

1 2 3 4 5

列向量线性无关,可逆, $AP = PB \Leftrightarrow P^{-1}AP = B$

$$A \sim B; A_{\lambda} = B_{\lambda}$$

$$|\lambda E - A| = O$$

2.2.1 已知特征值, 求特征向量 ♡

 $\lambda \to A$, 系数矩阵,行最简形矩阵,自由未知量 $x_x = 1,0$;得到基础解系即属于特征值 λ_x 的特征向量

- 代入每个 λ_i ,得到线性方程组 (λ_i E-A) \mathbf{x} =0,通解即对应 λ_i 的全体特征向量(除去 0向量)

-

_

 $1. \ \exists \ \lambda_1 = \lambda_2 = 1 \ \mathrm{bf} \ , \ \ \mathrm{bf} \ (E-B)\mathbf{x} = 0,$ 系数矩阵 $E-B = \begin{bmatrix} 0 & 0 & 0 \\ -1 & -1 & -2 \\ -1 & -1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 令 x_2, x_3 为自由未知量, x_1 为独立未知量。令 x_2, x_3 为自由未知量, x_1 为独立未知量。令 $x_2 = 1, x_3 = 0,$ 则 $x_1 = -1$.令 $x_2 = 0, x_3 = 1,$ 则 $x_1 = -2$.故 $\eta_1 = (-1, 1, 0)^T, \eta_2 = (-2, 0, 1)^T$ 是一个基础解系,即属于特征值 $\lambda_1 = \lambda_2 = 1$ 的两个线性无关的特征向量。 $2. \ \exists \lambda_3 = 4 \mathrm{bf}$,由(4E-B) $\mathbf{x} = 0$,系数矩阵 $4E-B = \begin{bmatrix} 3 & 0 & 0 \\ -1 & 2 & -2 \\ -1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ 令 x_3 为自由未知量, x_1, x_2 为独立未知量。令 $x_3 = 1,$ 则 $x_2 = 1,$ $x_1 = 0.$ 故 $y_3 = (0, 1, 1)^T$ 是一个基础解系,即属于特征值 $x_3 = 4$ 的一个特征向量。综上, x_1, x_2, x_3 为三个线性无关的特征向量。选 $x_3 = 1, x_3 = 1, x_4 = 1, x_4$

2.2.2 [分析]矩阵的对角化:

令A的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,设A有n个线性无关的特征向量 $\alpha_1, \alpha_2, \dots, \alpha_n$,

取
$$P = [\alpha_1, \alpha_2, \cdots, \alpha_n]$$
,则有 $P^{-1}AP = \Lambda$,其中 $\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$.

[解答] 注意P的每一列为一个特征向量,且P中 $\alpha_1, \alpha_2, \langle \mathsf{cdotp} \rangle \langle \mathsf{cdotp} \rangle, \alpha_n$ 排列次序应与 Λ 中 λ_1 , $\lambda_2, \langle \mathsf{cdotp} \rangle \langle \mathsf{cdotp} \rangle \langle \mathsf{cdotp} \rangle, \lambda_n$ 的排列次序 一致。

<with|color|red|[解答]>

2.3 A; 特征值; 求可逆矩阵P, 相应的对角矩阵 A

[1999年真题]设矩阵
$$A = \begin{bmatrix} 3 & 2 & -2 \\ 0 & -1 & 0 \\ 4 & 2 & -3 \end{bmatrix}$$
, 已知 A 的特征值

为1. -1.-1. 求可逆矩阵 P. 使得 P^{-1} $AP = \Lambda$ 为对角矩阵?

并求出相应的对角矩阵。

2.3.1 相似的必要条件

$$[1992年真题] 设矩阵 $A = \begin{bmatrix} -2 & 0 & 0 \\ 2 & x & 2 \\ 3 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & y \end{bmatrix}, 求x + y$ 的值。$$

[分析]由相似求未知参数,用相似的必要条件: 1.迹相等; 2.行列式相等; 3.特征值相等

[解答]

相似矩阵的迹相等,则
$$\sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} b_{ii} \Rightarrow -2 + x + 1 = y + 2 - 1 \Rightarrow y = x - 2$$
.

相似矩阵的行列式相等,则 $|A| = |B| \Rightarrow (-2)(x-2) = -2y \Rightarrow y = x-2$.

所以"1.迹相等"与"2.行列式相等"得到的等式相同、需要使用"3.特征值相等".

因为对角矩阵 B 的特征值为-1,2,y,所以矩阵 A 的特征值也为-1,2,y.

用特征方程 $|\lambda E - A| = 0$ 的根来求A的特征值:

 $\exists \lambda = -2$ 是A的特征值,因此必有y = -2. 综上,x = y + 2 = 0,则答案为x + y = -2.

2.3.2 实对称矩阵A(含参数), 求可逆矩阵P, 求对角矩阵Λ

$$[2002年真题 \ 设实对称矩阵 A = \left| \begin{array}{ccc} a & 1 & 1 \\ 1 & a & -1 \\ 1 & -1 & a \end{array} \right|, 求可逆矩阵 P, 使 P^{-1}AP 为对角阵。$$

 $|\lambda E - A| = O$; 求特征值 λ_n Λ \checkmark ; 代入A, 化最简阶梯形矩阵, 自由未知数 X_n : $\mathrm{q1} \to$ 得到基础解系 (特征向量) P

1. 求特征值:

立特征方程:
$$|\lambda E - A| = \begin{vmatrix} \lambda - a & -1 & -1 \\ -1 & \lambda - a & 1 \\ -1 & 1 & \lambda - a \end{vmatrix} = \begin{vmatrix} \lambda - a - 1 & \lambda - a - 1 & 0 \\ -1 & \lambda - a & 1 \\ 0 & a + 1 - \lambda & \lambda - a - 1 \end{vmatrix}$$

$$= (\lambda - a - 1)^2 \begin{vmatrix} 1 & 1 & 0 \\ -1 & \lambda - a & 1 \\ 0 & -1 & 1 \end{vmatrix} = (\lambda - a - 1)^2 \begin{vmatrix} 1 & 1 & 0 \\ 0 & \lambda - a + 1 & 1 \\ 0 & -1 & 1 \end{vmatrix}$$

$$= (\lambda - a - 1)^2 (\lambda - a + 2)$$

2.3.3 实对称矩阵的正交规范化

对矩阵 A 执行特征值分解。

- 将得到的特征向量作为矩阵 Q 的列。
- 对 Q 的每一列向量 q_i 执行归一化: $q_i = \frac{q_i}{\|q_i\|}$,其中 $\|q_i\|$ 是向量 q_i 的欧几里得范数。

2.3.4 f(A)的特征值 及对应的特征向量

矩阵	A	kA	$\mathbf{A}^{\mathbf{k}}$	f(A)
特征值	λ	kλ	λ^{k}	f(λ)
对应特征向量	α	α	α	α

A的特征值已知? f(A)的特征值是?对应的特征向量变了吗?/

相似矩阵的性质 对应的特征向量是变的.

_	矩阵	A-1	A^*	$A^{-1}+f(A)$	运用相似矩阵的性质,有	1		$B = P^{-1}A^*P$	
					矩阵	A	A^*	В	$_{\mathrm{B+kE}}$
_	特征值	λ^{-1}	$ A \lambda^{-1}$	$\lambda^{\text{-}1} + f(\lambda)$	· 特征值	λ	$ \mathbf{A} \lambda^{-1}$	$ \mathrm{A} \lambda^{-1}$	$ \mathrm{A} \lambda^{\text{-}1} + \mathrm{k}$
					1.1 1111-1111	^	121/1	111/1	111/11
	对应特征向量	α	α	α	对应特征向量	α	α	$P^{-1}\alpha$	$P^{-1}\alpha$

2.3.4.1 实对称矩阵必可对角化

注意:特征值相同是任意矩阵相似的必要条件,但只当矩阵实对称时,才是充分条件。即: 矩阵相似⇒特征值相同

A与B(实对称矩阵) 相似的充分必要条件is A和B的特征值相同 $\rightarrow |\lambda_{b_a}E - A| = O$

2.3.5 $A[x_1, x_2] = [b_1, b_2]$

[分析】求矩阵方程 $A[\mathbf{x}_1,\mathbf{x}_2]=[\mathbf{b}_1,\mathbf{b}_2]$,即求2个线性方程组的解: $A\mathbf{x}_1=\mathbf{b}_1,A\mathbf{x}_2=\mathbf{b}_2$. 由题设,这两个方程组的通解为 $k_1 \xi + \eta_1,$ $k_2 \xi + \eta_2,$ k_1, k_2 为任意常数。 则所求矩阵 $X = [k_1 \xi + \eta_1, k_2 \xi + \eta_2]$

 $[2014年真题]设A = \left[\begin{array}{cccc} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{array}\right], E$ 为三阶单位矩阵。求满足AB = E 的所有矩阵 B.

$$\begin{bmatrix} 1 & -2 & 3 & -4 & \vdots & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & \vdots & 0 & 1 & 0 \\ 0 & 0 & 1 & -3 & \vdots & -1 & -4 & 1 \end{bmatrix}$$

例 2.3.

$$\mathbf{\mathfrak{Y}}\alpha = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \beta = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \gamma = \begin{bmatrix} 0 \\ 0 \\ 64 \end{bmatrix}, A = \alpha\beta^{\top}, B = \beta^{\top}\alpha$$
其中 β^{\top} 是 β 的转置,求解方程 $A^3\mathbf{x} + A^2B\mathbf{x} = 8B^2\mathbf{x} + \gamma$.

代入原方程得,16 $A\mathbf{x} + 16 A\mathbf{x} = 8 \cdot 16\mathbf{x} + \gamma$ 即 32 $(A - 4E)\mathbf{x} = \gamma$.

解线性方程组: $(A-4E)\mathbf{x} = \frac{\gamma}{32}$.对增广矩阵用高斯消元法:

2.4 行列变换

因为B可以由A经行变换得到, B = (矩阵左乘 A)

已知A 为 $n(n \ge 2)$ 阶可逆矩阵,为书写简洁,不妨设A 为三阶矩阵。

根据题设: 将A的第 1 行加到第 2 行得矩阵B,则 $B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A = E_{21}(1) A$.

因此 $B^{-1} = A^{-1} E_{21}(1)^{-1}$,其中 $E_{21}(1)$ 为 倍加初等矩阵。

利用倍加初等矩阵的逆矩阵,有 $E_2 1(1)^{-1} = E_{21}(-1)$,则 $B^- 1 = A^{-1} E_{21}(-1)$.

根据定义,有 $A^-1 = \frac{A^*}{|A|}, B^{-1} = \frac{B^*}{|B|},$ 从而 $\frac{B^*}{|B|} = \frac{A^*}{|A|}E_{21}(-1).$

因为将一行 (或列) 的k倍加到另一行 (或列),行列式的值不变,则|B| = |A|.

故 $B^* = A^* E_{21}(-1)$,即将 A^* 的第 2 列从第 1 列中减去得 B^* ,答案选 D

[分析]因为所求行列式中含 $\beta_1 + \beta_2$,想到 $|\alpha_3, \alpha_2, \alpha_1, \beta_1 + \beta_2| = |\alpha_3, \alpha_2, \alpha_1, \beta_1| + |\alpha_3, \alpha_2, \alpha_1, \beta_2|$. 试着将题设转化成等式右边的两项。

2.5 方程组同解 15

例 2.4.

[2021年真题]设A,B为n阶实矩阵,下列不成立的是

A.
$$r \begin{bmatrix} A & O \\ O & A^{T} A \end{bmatrix} = 2 r(A)$$

B. $r \begin{bmatrix} A & A B \\ O & A^{T} \end{bmatrix} = 2 r(A)$
C. $r \begin{bmatrix} A & B A \\ O & A A^{T} \end{bmatrix} = 2 r(A)$
D. $r \begin{bmatrix} A & O \\ BA & A^{T} \end{bmatrix} = 2 r(A)$

选 项 D:

广义高斯消元:

BA为 A的行变换(左乘行变换),故将分块矩阵行变换。

将行[AO]的(-B)倍,行[-BAO],加在行[BAA^{T}]上,得到

$$r \left[\begin{array}{cc} A & O \\ BA & A^{\top} \end{array} \right] = r \left[\begin{array}{cc} A & O \\ O & A^{\top} \end{array} \right] = r(A) + r(A^{\top}) = 2 \, r(A).$$

将列
$$\begin{bmatrix} A \\ O \end{bmatrix}$$
的 $(-B)$ 倍加在 列 $\begin{bmatrix} BA \\ AA^{\top} \end{bmatrix}$ 上。

将列变换写成完整的矩阵相乘形式,即看出错误所在:
$$\begin{bmatrix} A & BA \\ O & AA^{\top} \end{bmatrix} \begin{bmatrix} E & -B \\ O & E \end{bmatrix} = \begin{bmatrix} A & -AB + BA \\ O & AA^{\top} \end{bmatrix},$$
不能消去。
$$r \begin{bmatrix} A & O \\ O & A^{\top}A \end{bmatrix} = r(A) + r(A^{\top}A) = 2r(A),$$
故A正确。

选项 B: 广义高斯消元:

AB为 A的列变换(右乘列变换),故将分块矩阵列变换。

将列
$$\begin{bmatrix} A \\ O \end{bmatrix}$$
的 B 倍 $\begin{bmatrix} A B \\ O \end{bmatrix}$,从列 $\begin{bmatrix} A B \\ A^{\top} \end{bmatrix}$ 中减去,得到
$$\begin{bmatrix} A & AB \\ O & A^{\top} \end{bmatrix} = r \begin{bmatrix} A & O \\ O & A^{\top} \end{bmatrix} = r(A) + r(A^{\top}) = 2r(A)$$
,故B正确。注:写成矩阵相乘形式,
$$\begin{bmatrix} A & AB \\ O & A^{\top} \end{bmatrix} \begin{bmatrix} E & -B \\ O & E \end{bmatrix} = \begin{bmatrix} A & -AB + AB \\ O & A^{\top} \end{bmatrix} = \begin{bmatrix} A & O \\ O & A^{\top} \end{bmatrix}.$$

2.5 方程组同解

2.5.1 x1=x2

例 2.5.

已知线性方程组的通解为 $k_1(1,-3,1,0)^{\top}+k_2(0,-1,0,1)^{\top}$,其中 k_1,k_2 为任意常数,求该方程组满足 $2x_1=$ x_2 的全部解。

A.
$$k_1(1,2,1,-5)^{\top} + k_2(1,2,1,-2)^{\top}$$
,其中 k_1,k_2 为任意常数

B.
$$(1, 2, 1, -5)^{\top}$$

- C. $k(1,2,1,-5)^{T}$,其中k 为任意常数
- D. $k(1,2,1,-2)^{\top}$,其中k 为任意常数

[分析]即求原方程组与 $2x_1 = x_2$ 的公共解。原方程组未给出,不能联立方程。则将已知通解代入 $2x_1 =$ x_2 中。 [解答] 从 通 解 可 得 $x_1 = k_1, x_2 = -3k_1 - k_2$. 若 $2x_1 = x_2,$ 则 $2k_1 = -3k_1 - k_2 \Rightarrow k_2 = -5k_1$. 代 入 通 解,得 $x = k_1(1, -3, 1, 0)^{\top} - 5k_1(0, -1, 0, 1)^{\top} = k_1(1, 2, 1, -5)^{\top}$. 则通解为 $k(1, 2, 1, -5)^{\top}$,其中k 为任意常数。

[2005年真题] 已知齐次线性方程组

(1)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 5x_3 = 0, & \text{fight} \\ 2x_1 + b^2x_2 + b^2x_2 + b^2x_3 = 0 \end{cases}$$
 $\exists \mathbf{R},$ $\exists \mathbf{R},$

A.3 B.5 C.3或5D.2或5

[分析]方程组同解,则 1.线性无关解的个数相同⇒系数矩阵的秩相同; 2.基础解系相同 [解答] 令方程组 (1)的系数矩阵为 $A = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 1 & a \end{bmatrix}$.

令方程组(II)的系数矩阵为 $B=\left[\begin{array}{ccc} 1 & b & c \\ 2 & b^2 & c+1 \end{array}\right]$ 中十印如同知则的(x)=(x,y)=(x,y)

由方程组同解,则n-r(B)=方程 (II)线性无关解的个数=方程 (II)线性无关解的个数=n-r(A),即r(B)=

r(A). 因为 r(B) < 2,则 r(A) < 2,即 |A| = 0,有

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \end{vmatrix} \begin{vmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 1 & 1 & a \end{vmatrix} = 2 - a = 0, 则 a = 2.$$

x₃为自由未知量。

则方程组(1)的通解是 $k(-1,-1,1)^{\top}$, k 为任意常数。

以下由方程组(II)的通解也是 $k(-1,-1,1)^{\mathsf{T}}$,求出b 和c.

注意有两部分:

 $1.(-1,-1,1)^{\mathrm{T}}$ 是方程组 (II)的解; 2.方程组 (II) 只有 1 个线性无关解,即r(B)=2.

第1部分:

因为 $(-1,-1,1)^{\top}$ 应当是方程组 (II)的解,代入则得到 b,c 的方程组: $\begin{cases} -1-b+c=0 \\ -2-b^2+c+1=0 \end{cases}$,解得b=1, c=2 或b=0, c=1.

第2部分:

情况一: 当b=0,c=1,方程组(II)为 $\begin{cases} x_1+x_3=0\\ 2x_1+2x_3=0 \end{cases}$ 有 r(B)=1,从而(I)与(II)不同解,故b=0,c=1 应舍去。情况二: 当b=1,c=2时,方程组 $\Big(|1\rangle$ 为 $\Big\{ \begin{array}{l} x_1+x_2+2x_3=0\\ 2x_1+x_2+3x_3=0 \end{array} \Big\}$ 有r(B)=2,从而方程组(II) 只有 1 个 线性无关解,即通解是 $k(-1,-1,1)^{\top}$,k为任意常数,(I) 与 (II) 同解。

2.6 |A|

故a+b+c=2+1+2=5.选B

例 2.6.

设四元齐次线性方程组()的基础解系为 $\beta_1 = (0,0,1,0)^{\top}$, $\beta_2 = (-1,1,0,1)^{\top}$, 而另一四元齐次线性方程组 (II) 的基础解系为

 $\alpha_1 = (0, 1, 1, 0)^{\top}, \alpha_2 = (-1, -1, 0, 1)^{\top}.$ 则方程组()与(II)的公共解为

[分析]已知两个方程组的通解,求公共解。则令通解相等,解关于常数 k_1, k_2, l_1, l_2 的新方程组。

[解答]

 $设\eta$ 是方程组(I)与(II)的非零公共解,则

$$\eta = k_1 \, \beta_1 + k_2 \, \beta_2 = l_1 \, \alpha_1 + l_2 \, \alpha_2 \, .$$

那么
$$k_1 \beta_1 + k_2 \beta_2 - l_1 \alpha_1 - l_2 \alpha_2 = 0$$

再代入题设给出的 $\beta_1, \beta_2, \alpha_1, \alpha_2$,由此得齐次方程组(III)

$$\{-k_2+l_2=0$$

 $k_2 - l_1 + l_2 = 0$ 对系数矩阵高斯消元

$$k_1 - l_1 = 0$$

$$k_2 - l_1 = 0$$

$$A = \left[\begin{array}{cccc} 0 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{array} \right] \rightarrow \left[\begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

则令 k_1, k_2, l_1 为独立未知量、 l_2 为自由未知量。令 $l_2 = 1$,则 $l_1 = 2, k_1 = 2, k_2 = 1$.

即通解为 $h(2,1,2,1)^{\top}$,h为任意常数。则

$$\begin{bmatrix} k_1 \\ k_2 \\ l_1 \\ l_2 \end{bmatrix} = \begin{bmatrix} 2h \\ h \\ 2h \\ h \end{bmatrix}. \text{则 方 程 组 的 公 共 解 为}$$

$$n = l \cdot \alpha_1 + l \cdot \alpha_2 = 2h\alpha_1 + h\alpha_2 = h(2\alpha_1 + \alpha_2) = h(-1)$$

 $\bar{\eta} = l_1 \alpha_1 + l_2 \alpha_2 = 2h\alpha_1 + h\alpha_2 = h(2\alpha_1 + \alpha_2) = h(-1,1,2,1)^\top, h$ 为任意常数。

2.6 |A|

[2013年真题] $A = (a_{ij})$ 是三阶非零矩阵,|A|为A的行列式 A_{ij} 为 a_{ij} 的代数余子式, 若 $a_{ij}+A_{ij}=0$ (i, j=1,2,3),则 |A|=

$$a_{\rm ij} + A_{\rm ij} = O, a_{\rm ij} = -A_{\rm ij}, |A| = 0, -1; A \neq O; |A| = -1.$$

例 2.7.

$$r(A) = 3, |A| = 2, |A^{-1} - E| = 3, |A - E| = ?$$

$$|A - E| = |A| |E - A^{-1}| = 2 |-1(A^{-1} - E)| = 2 \times (-1)^3 |A^{-1} - E| = -6$$

例 2.8.

[2008年真题](本题请写出计算过程)已

$$A = \begin{bmatrix} 2a & 1 & & & & \\ a^2 & 2a & 1 & & & \\ & a^2 & 2a & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & a^2 & 2a & 1 \\ & & & & a^2 & 2a \end{bmatrix}$$

则|A|=

A.
$$n$$
 a^n 3. $(n+1)$ a^n D. $(n+1)$ u C. $\frac{a^n+a^{2n}}{2}=(2-1)^n$ D. $(2a)^n-(n-1)$ $a^{2(n-1)}$ $U_n=2a\,U_{n-1}+(-1)^{n+n-1}a^2\times 1\times U_{n-2}$ $U_n=2\,a\,U_{n-1}-a^2\,U_{n-2}$ $x^2-2ax+a^2=0$ $U_n=(c_1\,n+c_2)a^n$ 代入 $U_1,U_2,\rightarrow c_1,c_2$

2.6.1 克拉默法则

设 n元线性方程组 Ax = b,其中

$$A = \begin{bmatrix} 4 & 1 & & & & \\ 4 & 4 & 1 & & & & \\ & 4 & 4 & 1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & 4 & 4 & 1 \\ & & & & 4 & 4 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

已知行列式 $|A| = (n+1) 2^n$,则

A. 方程组有唯一解,且 $x_1 = \frac{n}{2(n+1)}$

B.方程组有一解,且 $x_1 = \frac{n}{n+1}$

C.方程组有无穷解,且 $\mathbf{x} = k(1,0,0,...,0)^{\top}$,其中 k为任意常数

D.方程组有无穷解,且 $\mathbf{x} = k(0,1,0,...,0)^{\top}$,其中 k为任意常数

由克拉默法则, $|A| \neq 0$ 时,n元线性方程组有唯一解。

由题这 $|A| = (n+1) \cdot 2^n$,故方程组有唯-解。

又由ke拉默法则,将 A的第一列替换为 b,有

$$\begin{vmatrix} 1 & 1 & & & & \\ 0 & 4 & 1 & & & \\ 0 & 4 & 4 & \ddots & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \\ 0 & & & 4 & 4 & 1 \end{vmatrix}$$

$$x_1 = \frac{|a|}{|A|}$$

令n 阶行列式 $D_n = |A| = (n+1) \cdot 2^n$, 则按第 1列展开:

$$\begin{vmatrix} 1 & 1 & & & \\ 0 & 4 & 1 & & \\ 0 & 4 & 4 & \ddots & \\ \vdots & \ddots & \ddots & 1 \\ 0 & & 4 & 4 \end{vmatrix} = 1 \cdot D_{n-1} = n \cdot 2^{n-1}.$$

2.6 |A|

克拉默法则

A**x** = 0 有非零解,根据克拉默法则,有|A| = 0 由A*A = |A| E, D |A| = 0, D A*A = D .则A 的列向量全是 A***x** = 0 的解。

设齐次线性方程组 $A\mathbf{x}=0$. 已知 $(1,1,\cdots,1)^{\top}$ 是方程组的解, A_{ij} 是 A 中元素 a_{ij} 的代数余子式,令 $\boldsymbol{\alpha}_i = [A_{i1},A_{i2},\cdots A_{in}]^{\top} \ (i=1,2,\cdots,n) \ , \ \ \mathbb{M}$

- A. α_i ($i=1,2,\dots,n$) 是 $A\mathbf{x}=0$ 的一个基础解系
- B. $\alpha_i(i=1,2,\dots,n)$ 是 $A\mathbf{x}=0$ 的解向量, 并两两线性相关
- C. $\alpha_i(i=1,2,\dots,n)$ 都为零向量, 故为 $A\mathbf{x}=0$ 的解向量
- D. $\alpha_i(i=1,2,\dots,n)$ 包含 $A\mathbf{x}=0$ 的解向量,但不能表出所有解向量

[分析] 由 A_{ij} 是A中元素 α_{ij} 的代数余子式,则[$\alpha_1,\alpha_2,\langle \mathsf{cdotp}\rangle\langle \mathsf{cdotp}\rangle,\alpha_n$]为 伴随矩阵 A^* . [解答] 已知 $(1,1,\cdots,1)^\mathsf{T}$ 是方程组的解,根据克拉默法则,有|A|=0. 由 $AA^*=|A|E$,且|A|=0,则 $AA^*=O$,即 A^* 的列向量 为 $A\mathbf{x}=0$ 的解向量。 因为|A|=0,则r(A)< n,有 $r(A^*)\leq 1$,分两种情况: 若 $r(A^*)=0$,则 $\alpha_i(i=1,2,\cdots,n)$ 都 为零向量,显然两两线性相关。 若 $r(A^*)=1$,则 A^* 的列向量的极大线性无关组只有 1 个向量,则两两线性相关。

例 2.9.

设 $A = (\alpha_1, \alpha_2, \alpha_3)$ 是三阶矩阵, A^* 为A 的伴随矩阵,若 $(0, 2, 1)^T$ 是方程组A**x** = 0的一个基础解系,则 A^* **x** = 0的

基础解系可为(a_1, a_2) (a1,a3)

例 2.10.

[2011年真题]设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是四阶矩阵,A*为A 的伴随矩阵,若 $(1,0,1,0)^{\mathsf{T}}$ 是方程组 $A\mathbf{x} = 0$ 的一个基础解系,则

 $A*\mathbf{x} = 0$ 的基础解系可为

A. α_1, α_3 B. α_1, α_2 C. $\alpha_1, \alpha_2, \alpha_3$ D. $\alpha_2, \alpha_3, \alpha_4$

用秩来决定线性无关解的个数: 因为A**x**=0只有 1 个线性无关的解,即n-r(A)=1, n=4, 从而 r(A)=3. 由 $r(A)=3=n-1, \text{则} r(A^*)=1.$ 有 $n-r(A^*)=4-1=3,$ 故 A^* **x**=0 的基础解系中有 3 个线性无关的解向量。 用AB=O来得到解向量: 由A**x**=0 有非零解,则|A|=0. 由 $A^*A=|A|E,$ 及|A|=0,有 $A^*A=O.$ 则A的列向量全是 A^* **x**=0 的解。 而秩r(A)=3,故A的列向量中必有 3 个线性无关。

需找到这 3 个线性无关的列向量:
$$\text{由 } A \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = 0, \mathbb{D}(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = 0, \text{则 } \alpha_1 + \alpha_3 = 0, \mathbb{D} \ \alpha_1, \alpha_3 \text{相关}.$$
 综上, $\alpha_2, \alpha_3, \alpha_4$ 无关。

选D.

2.7 已知两个方程组的通解,求公共解。

则令通解相等,解关于常数 k_1, k_2, l_1, l_2 的新方程组

[解答]

设 η 是方程组(1)与(11)的非零公共解,则

$$\eta = k_1 \beta_1 + k_2 \beta_2 = l_1 \alpha_1 + l_2 \alpha_2.$$

那么 $k_1 \beta_1 + k_2 \beta_2 - l_1 \alpha_1 - l_2 \alpha_2 = 0$ 再代入题设给出的 $\beta_1, \beta_2, \alpha_1, \alpha_2$,由此得齐次方程组 (III) $(-k_2 + l_2 = 0)$ $|k_2 - l_1 + l_2 = 0$ 对系数矩阵高斯消元.

$$k_1 - l_1 = 0$$

$$(k_2 - l_2 = 0)$$

$$A = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

则令 $k_1 \cdot k_2 \cdot l_1 \cdot$ 为独立已知 $l_2 \cdot$ 为自由未知

令 $l_2 = 1$,则 $l_1 = 2$, $k_1 = 2$, $k_2 = 1$. 即通解为 $h(2, 1, 2, 1)^{\top}$, h为任意常数。

则
$$\begin{bmatrix} k_1 \\ k_2 \\ l_1 \\ l_2 \end{bmatrix} = \begin{bmatrix} 2h \\ h \\ 2h \\ h \end{bmatrix}.$$

则方程组的公共解为 $\eta = l_1 \alpha_1 + l_2 \alpha_2 = 2 h \alpha_1 + h \alpha_2 = h (2 \alpha_1 + \alpha_2) = h (-1, 1, 2, 1)^{\mathsf{T}}, h$ 为任意常数。

例 2.11. Ax = O, Bx = O同解

[2022年真题 设矩阵 A, B均为 n阶方阵, 若Ax = 0与 Bx = 0同解, 则

$$A.\begin{pmatrix} A & O \\ E & B \end{pmatrix}$$
 $\mathbf{x} = 0$ 仅有零解

$$B.\begin{pmatrix} AB & B \\ O & A \end{pmatrix}$$
 $\mathbf{x} = 0$ 仅有零解

2.8 相似对角化 21

$$C.\begin{pmatrix} A & B \\ O & B \end{pmatrix}$$
 $\mathbf{x} = 0$ 与 $\begin{pmatrix} B & A \\ O & A \end{pmatrix}$ $\mathbf{x} = 0$ 同解
$$D.\begin{pmatrix} AB & B \\ O & A \end{pmatrix}$$
 $\mathbf{x} = 0$ 与 $\begin{pmatrix} BA & A \\ O & B \end{pmatrix}$ $\mathbf{x} = 0$ 同解

【分析】题设为方程组,选项为分块矩阵方程,故将选项写成方程组:

令
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}$$
, 其中 \mathbf{x}_1 , \mathbf{x}_2 为 n 维列向量,则
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \mathbf{x} = 0$$
等价于
$$\begin{cases} A\mathbf{x}_1 + B\mathbf{x}_2 = 0 \\ C\mathbf{x}_1 + D\mathbf{x}_2 = 0 \end{cases}$$
(2.2)

选项等价于卜列2个方程组同解:

方程组一:
$$\begin{cases} AB\mathbf{x}_1 + B\mathbf{x}_2 = 0 \\ A\mathbf{x}_2 = 0 \end{cases} \Leftrightarrow \begin{cases} AB\mathbf{x}_1 = 0 \\ A\mathbf{x}_2 = 0 \end{cases}$$
方程组二:
$$\begin{cases} BA\mathbf{x}_1 + A\mathbf{x}_2 = 0 \\ B\mathbf{x}_2 = 0 \end{cases} \Leftrightarrow \begin{cases} BA\mathbf{x}_1 = 0 \\ B\mathbf{x}_2 = 0 \end{cases}$$

以上等价应用了题设条件: 若 $A\mathbf{x}_2=0$,则 $B\mathbf{x}_2=0$,反之亦然。由 $AB\mathbf{x}_1=0$ 与 $BA\mathbf{x}_1=0$ 不

一定同解(注:只能得出 Bx_1 是

只能得出 $B\mathbf{x}_1$ 是 $A\mathbf{x}=0$ 的基础解系,及 $A\mathbf{x}_1$ 是 $B\mathbf{x}=0$ 的基础解系,不能得出同解

2.8 相似对角化

例 2.12.

例2(22数一):下述四个条件中,3阶矩阵A可对 角化的一个充分但不必要条件是()

- (A)A有3个互不相等的特征值
- (B)A有3个线性无关的特征向量
- (C)A有3个两两线性无关的特征向量
- (D)A的属于不同特征值的特征向量正交

 $A \Rightarrow$

B ⇔ A可相似对角化

 $_{-}^{\mathrm{C}} \Leftarrow$

D #

评注:数学定理的表述中有一些默认的潜台词,例如定理中说"p是q的充分条件",潜台词就是告诉你"p不是q的必要条件",因为否则的话他会表述为"p是q的充要条件"!这样的例子有很多,回忆高数中的""偏导数连续是可微的充分条件",潜台词就是有些可微的二元函数,偏导数并不连续!

例 2.13.

例
$$3(22$$
数三):设A为 3 阶矩阵,A= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,则A

的特征值为1,-1,0的充分必要条件是()

- (A)存在可逆矩阵P,P,使得 $A = P\Lambda Q$
- (B)存在可逆矩阵P,使得 $A = P\Lambda P^{-1}$
- (C)存在正交矩阵Q,使得 $A = Q\Lambda Q^{-1}$
- (D)存在可逆矩阵P,使得 $A = P\Lambda P^T$
- A A,矩阵等价的定义, AB相似则AB一定等价 \Leftarrow
- $B A \text{ and } \Lambda$ 相似(可对角化)的定义 \Leftrightarrow A的特征值为1, -1, 0
- C A不是实对称矩阵的时候, Q不一定存在 \Rightarrow
- D 矩阵合同的定义 ⇔

2.9 实对称可相似对角化⇔特征值相等

注意:特征值相同是任意矩阵相似的必要条件,但只当矩阵实对称时,才是充分条件。即: 矩阵相似 ⇒ 特征值相同.

2.10 $A\alpha = 0$; $A\beta = 3\beta$

设 A为 4阶矩阵,0 是A的特征值, α 是满足 $A\alpha=0$ 的 非零向量。已知对所有满足 $\alpha^{\top}\beta=0$ 的 4维列向量 β ,都 有 $A\beta=3\beta$,则

所有满足 $\alpha^{\top}\beta = 0$ 的 4 维列向量 β ,即方程 $\alpha^{\top}\beta = 0$ 的解。

因为 α 是非零向量,则 $r(\alpha)=1$,故 $\alpha^{\top}\beta=0$ 线性无关解的个数 $=4-r(\alpha)=4-1=3$.

由于 $A\beta = 3\beta$,由特征向量定义,则 β 为A对应特征值 3 的特征向量。

综上, A对应特征值 3 有 3 个线性无关的特征向量, 即特征值 3 为三重根。

由于 α 是满足 $A\alpha=0$ 的非零向量,则 α 为A对应特征值0的特征向量。

综上,A有特征值0, 3,3,3,且重根 3 有 3 个线性无关的特征向量,故A可以相似对角化。

2.11 $(A+E)^n$

展开
$$(A+E)^n = A^n + nA^{n-1} + \cdots + nA + E$$
.
先求 A^n :

利用矩阵乘法的结合律,有 $A^n = (\alpha \beta^\top) (\alpha \beta^\top) \cdots (\alpha \beta^\top) = \alpha (\beta^\top \alpha) \cdots (\beta^\top \alpha) \beta^\top$ 由条件, $\beta^\top \alpha = 0 - 1 + 1 = 0$,故当 n > 1 时, $A^n = O$

则
$$(A+E)^n = nA + E = n\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
 $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix} + E = \begin{bmatrix} 1 & n & n \\ 0 & 1-n & -n \\ 0 & n & n+1 \end{bmatrix}$

2.13 细节点 23

2.12 AB=BA $A(Bx) = \lambda(Bx)$

 $\bigcup A, B \ \, \exists n \ \, \text{阶矩阵}, \ \, \exists AB = BA, \text{矩阵} A \ \, \text{有} \, \, n \, \, \text{个不相等的特征值。已知 } \mathbf{x} \, \, \exists A \, \, \text{的特征向量,} \, \, \mathbb{M}$

- A. Bx 是 A 的特征向量, x 是 B 的特征向量
- B. Bx是A的特征向量,但x不一定是B的特征向量
- $C. \mathbf{x} \ \mathbb{E} B$ 的特征向量, $\mathbb{E} B \mathbf{x} \ \mathbf{x}$ 一定是A 的特征向量
- D. Bx不一定是A的特征向量,x不一定是B的特征向量

 $Bx \neq 0 Bx = kx$

 $\mathbf{B}\mathbf{x} = 0 = 0 \cdot x$

 $1.\ddot{a}$ $B\mathbf{x} \neq 0$,则由特征向量的定义, $B\mathbf{x}$ 是A 对应 λ 的特征向量。由于 A 的特征值不符等,则 A 对应 λ 只有一个线性无关的特征向量,由于 \mathbf{x} 是A 对应 λ 的特征向量,则 $B\mathbf{x}$ 与 \mathbf{x} 线性相关,即 $B\mathbf{x} = k\mathbf{x}, k \neq 0$,由特征向量的定义,即 \mathbf{x} 是 B 对应 k的特征向量。 $2.\ddot{a}$ $B\mathbf{x} = 0$,由特征向量的定义, $B\mathbf{x}$ 不是A 对应 λ 的特征向量。由 $B\mathbf{x} = 0 = 0 \cdot \mathbf{x}$,由特征向量的室的, \mathbf{x} 是 B 对应 0的特征向量。综上,无论 $B\mathbf{x}$ 是否为 0都得到 \mathbf{x} 是 B的特征向量。但只有 $B\mathbf{x} \neq 0$ 时, $B\mathbf{x}$ 才是 A的特征向量。因为 $B\mathbf{x}$ 可能为 0,故 $B\mathbf{x}$ 不一定是 A的特征向量。

2.13 细节点

第3章

最最最易错的分解

3.1 导函数的零点存在性

【导函数的零点存在性】

设 f'(x) 存在,如果 f(x) 有 k 个零点,则 f'(x) 至少有 k-1 个零点 \cdots , $f^{(k-1)}(x)$ 至少有 1 个零点。 "至多有几个零点 "定理:若 f'(x) 至多有 k 个零点,则 f(x) 至多有 k+1 个零点。 至少有几个零点:导数多一阶,零点个数 少 1 . (记住罗尔,则记住导数多一阶) 至多有 几个零点:导数少一阶,零点个数多 1 .

3.2 周期T

反例 f(x) = 1. 则 f(x) 可以任意有理数为周期。 F(x) = x + C不是周期函数。

3.3 隐函数的存在定理

- **例 3.1.** 有三元方程 $\frac{x}{y}+yz-e^z=1$,根据隐函数存在定理,存在点(2,1,0)的一个邻域,在此邻域内该方程
 - A. 只能确定一个具有连续偏导数的隐函数z = z(x, y)
 - B. 可确定两个具有连续偏导数的隐函数x = x(y, z)和z = z(x, y)
 - C. 可确定两个具有连续偏导数的隐函数y = y(x, z)和z = z(x, y)
 - D. 可确定两个具有连续偏导数的隐函数x = x(y, z)和y = y(x, z)

分别对x, y, z求偏导,有:

代入目标点的坐标x=2, y=1, z=0,有: $F'_x(2,1,0)=1, F'_y(2,1,0)=-2, F'_z(2,1,0)=0$.

根据隐函数存在定理,因为 F'_x 连续且 $F'_x(2,1,0)\neq 0$,故存在点(2,1,0)的一个邻域,可以确定隐函数x=x(y,0)

z)存在.同理可以确定隐函数

y = y(x, z) 存在.

因为 $F_z'(2,1,0) = 0$,故不能确定隐函数z = z(x,y)的存在性。

26 最最最易错的分解

故选 D.

注意 3.2.

隐函数存在定理为充分条件,即无法判定z=z(x,y)不存在。

3.3.1
$$\frac{x^2+c}{(x+a)(x+b)^2}$$

$$\frac{x^2+5}{(x-2)(x+1)^2} = \frac{A}{x-2} + \frac{B}{x+1} + \frac{C}{(x+1)^2}.(1)$$
 注意拆项时要写成 $\frac{B}{x+1} + \frac{C}{(x+1)^2}$ 两项,如果只有 $\frac{B}{x+1}$,可能不存在满足条件的 B .
$$x^2+5=A(x+1)^2+B(x-2)(x+1)+C(x-2)$$
 使用留数法:令 $x=2$,得 $A=1$. 同理,令 $x=-1$,可得 $C=-2$. 使用赋值法:令 $x=0$,解得 $B=0$ 即 $\frac{x^2+5}{(x-2)(x+1)^2} = \frac{1}{x-2} - \frac{2}{(x+1)^2}$.

有理分式: 分母能因式分解, 含二次式的高次幂, 则拆成分子为一次式的项

$$\frac{x^2-2\,x+2}{(2+x^2)^2} = \frac{A\,x+B}{2+x^2} + \frac{C\,x+D}{(2+x^2)^2}.$$

$$\int e^{x} \cdot \frac{x^{2}-2x+2}{(2+x^{2})^{2}} dx$$

(dbm:17.) kill(all)

done

$$\begin{aligned} & \text{(dbm:18.)} & \text{ eq1:} \frac{x^2-2\,x+2}{(2+x^2)^2}; \\ & \frac{x^2.-2.\,x+2.}{(x^2.+2.)^2.} \\ & \text{(dbm:18.)} & \text{ eq2:} \frac{a\,x+b}{2+x^2} + \frac{c\,x+d}{(2+x^2)^2} \\ & \frac{a\,x+b}{x^2.+2.} + \frac{c\,x+d}{(x^2.+2.)^2.} \end{aligned}$$

$$\begin{aligned} & (\mathsf{dbm} \colon \mathsf{18.}) \ \, \mathsf{solve}(\mathsf{eq1} - \mathsf{eq2} = 0, \left[\, a = -\frac{2}{3}, b, c, d \, \right]) \\ & \left[\left[\, a = -\left(\frac{2 \cdot}{3 \cdot} \right) = \%R26, \, b = \%R28, \, c = \%R27, \, d = -(a \, x^3 \cdot) + (1 \cdot - \%R28) \, x^2 \cdot + (-(2 \cdot a) - \%R27 - 2 \cdot) \, x - 2 \cdot \%R28 + 2 \cdot \, \right] \right] \\ & \left[\left[\, a = -\left(\frac{2 \cdot}{3 \cdot} \right) = \%R26, \, b = \%R28, \, c = \%R27, \, d = -(a \, x^3 \cdot) + (1 \cdot - \%R28) \, x^2 \cdot + (-(2 \cdot a) - \%R27 - 2 \cdot) \, x - 2 \cdot \%R28 + 2 \cdot \, \right] \right] \end{aligned}$$

3.3 隐函数的存在定理 27

```
(dbm:18.) eq1: 'frac(x^2 - 2*x + 2, (2 + x^2)'2);
  \operatorname{frac}(x^2. - 2. x + 2., (x^2. + 2.)^2.)
   (dbm:18.) eq2: 'frac(ax + b, 2 + x^2) + 'frac(cx + d, (2 + x^2)^2);
  \operatorname{frac}(d + \operatorname{cx}, (x^2 + 2)^2) + \operatorname{frac}(b + \operatorname{ax}, x^2 + 2)
   (dbm:18.) sol: linsolve([eq1 - eq2], [a, b, c, d]);
      原式 = \int_{2}^{8} \sqrt{\frac{x-2}{3x}} dx = \int_{0}^{\frac{1}{2}} \frac{12t^{2}}{(3t^{2}-1)^{2}} dt.
\frac{t^2}{(3\,t^2-1)^2} = \frac{t^2}{(\sqrt{3}\,t-1)^2(1+\sqrt{3}\,t)^2}是有理分式,分母能因式分解\frac{t^2}{(3\,t^2-1)^2} = \frac{A}{\sqrt{3}\,t-1} \,+\, \frac{B}{(\sqrt{3}\,t-1)^2} + \frac
 \frac{C}{\sqrt{3}t+1} + \frac{D}{(\sqrt{3}t+1)^2}
  (dbm:3.) f(a):=sqrt((a-2)/(3*a))
f(a) := \sqrt{\frac{a-2}{3}}
   (dbm:3.) if(a) := integrate(f(a), a, 2, 8)
jf(a) := integrate(f(a), a, 2., 8.)
   (dbm:3.) jf(a)
  \frac{-\log \left(\sqrt{2.} \sqrt{6.} + 4.\right) + \log \left(\sqrt{2.} \sqrt{6.} - 4.\right) - \log \left(-1.\right) + 2^{\frac{3.}{2}} \sqrt{6.}}{\sqrt{3}}
   (dbm:3.) zk(a):=integrate(f(a),a)
      zk(a) := integrate(f(a), a)
   (dbm:3.) expand(zk(a))
\frac{\sqrt{1. - \frac{2.}{a}} a}{\sqrt{3.}} - \frac{\log\left(\sqrt{1. - \frac{2.}{a}} + 1.\right)}{\sqrt{3.}} + \frac{\log\left(\sqrt{1. - \frac{2.}{a}} - 1.\right)}{\sqrt{3.}}
  (dbm:3.) factor(zk(a))
\frac{\sqrt{\frac{a-2.}{a}}\,a-\log\left(\sqrt{\frac{a-2.}{a}}+1.\right)+\log\left(\sqrt{\frac{a-2.}{a}}-1.\right)}{\sqrt{3.}}
```

28 最最最易错的分解

```
(dbm:3.) fullratsimp(zk(a))
\frac{\sqrt{\frac{a-2.}{a}} a - \log\left(\sqrt{\frac{a-2.}{a}} + 1.\right) + \log\left(\sqrt{\frac{a-2.}{a}} - 1.\right)}{\sqrt{3}}
 \begin{tabular}{llll} $$ (dbm:3.) $$ \inf_0^{\frac{1}{2}}\frac{12t^2}{\left(3t^2-1\right)^2} \mathbb{d}t. $$
incorrect syntax: { is not an infix operator
\int_0^{\frac{0}{f_{c}}}
(dbm:3.) hy(t):=\frac{12t^2}{(3t^2-1)^2}
hy(t) := \frac{12 \cdot t^2}{(3 \cdot t^2 - 1)^2}
(dbm:3.) if(t) := integrate(hy(t), t, 0, 1/2)
 jf(t) := integrate\left(hy(t), t, 0., \frac{1}{2.}\right)
(dbm:3.) fullratsimp(jf(t))
\frac{\sqrt{3.}\log(7. - 4.\sqrt{3.}) + 12.}{3.}
(dbm:3.) trace(hy(t))
trace: argument is apparently not a function or operator: hy(t)
(dbm:3.) step(hy(t))
incorrect syntax: ; is an unknown keyword in a do statement.
step(hy(t));
           求系数A, B, C, D.(1)两侧同乘(\sqrt{3}t-1)^2(\sqrt{3}t+1)^2,得
           t^2 = A \cdot (\sqrt{3} \ t - 1) \ (\sqrt{3} \ t + 1)^2 + B \cdot (\sqrt{3} \ t + 1)^2 + C \cdot (\sqrt{3} \ t + 1) \ (\sqrt{3} \ t - 1)^2 + D \cdot (\sqrt{3} \ t - 1)^2.
使用留数法: 令t = \frac{\sqrt{3}}{3} 可得 B = \frac{1}{12};令t = -\frac{\sqrt{3}}{3} 可得 D = \frac{1}{12}. 使用赋值法: 分别令t = 0和t = \sqrt{3},并代入B和
```

D的值,解得: $A = \frac{1}{12}, C = -\frac{1}{12}$

3.3 隐函数的存在定理 29

3.3.2 arccos的区间

```
\begin{split} \operatorname{(dbm:5)} & \operatorname{ac}(x) \coloneqq \operatorname{acos}(\cos(x)) \\ & \operatorname{as}(x) \coloneqq \operatorname{asin}(\sin(x)) \\ \\ \operatorname{ac}(x) \coloneqq \operatorname{arccos}\left(\cos(x)\right) \\ \\ \operatorname{(dbm:5)} & \operatorname{tm\_plot} 2d([\operatorname{ac}(x),\operatorname{as}(x),\sin(x),\cos(x)],[x,\frac{7\,\pi}{2},4\,\pi],[y,-2,3]) \\ \\ \operatorname{(image|\langle tuple|\langle raw-data\rangle|pdf\rangle|0.618par|||\rangle true} \end{split}
```

(dbm:5) tm_plot2 $d([\mathrm{ac}(x),\mathrm{as}(x),\sin(x),\cos(x)],[x,-3\,\pi,3\,\pi],[y,-3,4])$

true

 $\textbf{(dbm:5)} \hspace{0.2cm} \text{tm_plot2} d([\operatorname{ac}(x), \operatorname{as}(x), \operatorname{acos}(x), \operatorname{asin}(x)], [x, -1, 1], [y, -\pi, \pi])$

 ${\rm true}$

(dbm:5) as(x) := asin(sin(x));

30 最最最易错的分解

as(x) := arcsin(sin(x))

(dbm:5)

arcsin 的性质: $(\arcsin(\sin x)) = (2k-1)\pi - x$, $\arcsin(\sin(x)) = x - 2k\pi$ arcsin x 的值域是 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ arcsin $(\sin x)$ 等价于在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 中均到一点 x_0 使得 $\sin x_0 = \sin x$ 对 $\frac{\pi}{2} + 2kx \le x \le \frac{3\pi}{2} + 2k\pi$ $(k \in \pi)$ 最arcsin $(\sin(x)) = (2k+1)\pi - x$ 对 $-\frac{\pi}{2} + 2k\pi \le x \le \frac{\pi}{2} + 2k\pi$ $(k \in \mathbb{Z})$, 有 $\arcsin(\sin(x)) = x - 2k\pi$ 特

别对: $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \arcsin\left(\sin x\right) = x$.

类似的 $\arccos x$ 的值域是 $[0,\pi]$ 对 $-\pi + 2k\pi \le x \le 2k\pi (k \in \mathbb{Z})$ 有 $\arccos (\cos (x)) = 2k\pi - x$ 对 $2k\pi \le x \le \pi + 2k\pi (k \in \mathbb{Z})$ 有

 $\arccos(\cos(x)) = x - 2\pi(x$ 特别的,对于 $x \in [0, \pi]$ 对于 $x \in [0, \pi]$ 的,对于 $x \in [0, \pi]$ 的,有 $\arctan(\cos(x)) = 2k\pi - x$ 对 $2k\pi \le x \le \pi + 2k\pi$ $(k \in \mathbb{Z})$ 有

二重积分 $\int_{-\frac{5\pi}{2}}^{\frac{8\pi}{3}} dx \int_{-\frac{1}{2}}^{\cos x} f(x,y) dy$ 对应的积分区域为 $D = \left\{ (x,y) | \frac{5\pi}{2} \le x \le \frac{8}{3}\pi, -\frac{1}{2} \le y \le \cos x \right\}$ 如图所示,是 $y = -\frac{1}{2}$ 上方, $y = \cos x$ 下方, $x = \frac{5\pi}{2}$ 右侧的区域。交换积分顺序,将区域D 写为 $a \le y \le b, \varphi_1(y) \le x \le \varphi_2(y)$ 的形式: 求x 右边界.在边界上 $y = \cos x$.因为 $\frac{5\pi}{2} \le x \le \frac{8}{3}\pi$,故 $\operatorname{arccos}(\cos(x)) = x - 2\pi$.即 $x = \operatorname{arccos}(y) + 2\pi$.则

$$D = \left\{ (x, y) \mid \frac{5 \pi}{2} \le x \le \arccos(y) + 2 \pi, -\frac{1}{2} \le y \le 0 \right\}$$

3.4 曲率圆

曲率圆的导数性质: 曲线L与曲率圆C在切点处的y, y', y''均相等。同理,x, x', x''也相等

曲线L: y = f(x)上点 $(x_0, f(x_0))$ 处的曲率圆C: y = c(x)有如下性质:

1. $\[\] \[\] \[\] \[$

2.与 L 在 $(x_0, f(x_0))$ 处相切,即 $c'(x_0) = f'(x_0)$;

3.与L 在 $(x_0, f(x_0))$ 处有相同的曲率,根据曲率公式 $K = \frac{|y''|}{(1 + (y')^2)^{\frac{3}{2}}}$ 可知 $c''(x_0) = f''(x_0)$

即曲线L与曲率圆C在切点处的y, y', y''均相等。

[常见题型]

题目给出L: y = f(x)上某一点的曲率圆,求f(x)表达式中的待定系数。 求解方法为: 计算 $c(x_0), c'(x_0)$,

 $c''(x_0)$ 得到 $f(x_0), f'(x_0), f''(x_0)$,进而求解函数表达式。

[拓展] 同理,曲线L与曲率圆C在切点处的x,x',x''均相等。当 $y'=\infty$ 无法求解系数时,用x,x',x''求解。

3.5 判断函数的凹凸性,并根据凹凸函数的图像性质求解

例 3.3.

设 $f(x)=3^x+x$,且 f(x)=g(x)+h(x),其中 g(x)是奇函数, h(x)是偶函数,则 h(1)=

[分析] f(x) 的定义域关于原点对称,则 f(x) 可以写成奇函数和偶函数的和。

$$\mathbb{H} f(x) = \frac{f(x) - f(-x)}{2} + \frac{f(x) + f(-x)}{2}.$$

[解答]

$$h(x) = \frac{f(x) + f(-x)}{2}.$$

$$\mathbb{M}h(1) = \frac{f(1) + f(-1)}{2} = \frac{3^{1} + 1 + (3^{-1} - 1)}{2} = \frac{5}{3}$$

3.5.1 定积分计算

例 3.4.

32 最最易错的分解

求不定积分
$$\int \frac{1}{\sin^2 x \cos^4 x} \mathrm{d}x$$
.

$$\int \frac{1}{\sin^2 x \cos^4 x} dx$$

$$= -\int \frac{1}{\cos^4 x} d(\cot x)$$

$$= -\int \sec^4 x d(\cot x)$$

$$= -\int (1 + \tan^2 x)^2 d(\cot x)$$

$$= -\int \left(1 + \frac{1}{\cot^2 x}\right)^2 d(\cot x)$$

$$= -\int 1 + \frac{1}{\cot^4 x} + \frac{2}{\cot^2 x} d(\cot x)$$

$$= -\cot x + \frac{1}{3\cot^3 x} + \frac{2}{\cot x} + C$$

$$= -\frac{1}{\tan x} + \frac{\tan^3 x}{3} + 2\tan x + C$$

3.6 洛必达

例 3.5.

$$\frac{2}{\pi} = \lim_{x \to 1} \frac{\ln\left[2\,f(x) + 2\right]}{\cos\left(\frac{\pi}{2}\,x\right)} = \lim_{x \to 1} \frac{\ln\left[1 + 2\,f(x) + 1\right]}{\cos\left(\frac{\pi}{2}\,x\right)} = \lim_{x \to 1} \frac{2\,f(x) + 1}{\cos\left(\frac{\pi}{2}\,x\right)} = \lim_{x \to 1} \frac{2\,f'(x)}{-\frac{\pi}{2}\sin\left(\frac{\pi}{2}\,x\right)} = \frac{\lim_{x \to 1} f'(x)}{-\frac{\pi}{4}},$$
 故 $\lim_{x \to 1} f'(x) = -\frac{\pi}{4} \cdot \frac{2}{\pi} = -\frac{1}{2}$. 第三个等号用了 $\ln\left(1 + x\right)$ 的等价无穷小,第四个等号用了洛必达法则。 由 $f(x)$ 二阶可导,故 $f'(x)$ 连续,则 $f'(1) = \lim_{x \to 1} f'(x) = -\frac{1}{2}$.

第4章

高数基础

4.1 函数极限

4.1.1 极限的定义

[1996年真题]设函数 f(x) 在区间 $(-\delta, \delta)$ 内有定义,若当 $x \in (-\delta, \delta)$ 时,恒有 $[f(x)] < x^2, 则 x = 0$ 必是 f(x)的

A. 间断点 B. 连续而不可导的点 C. 可导的点, 且f'(0) = 0 D. 可导的点, 且 $f'(0) \neq 0$

$$| f(x)| \leq x^2 \text{可知}, \quad f(0) = 0. \quad \text{由} \left| \frac{f(x)}{x} \right| \leq \frac{x^2}{|x|} = \left| \frac{x^2}{x} \right| = |x|, \\ \text{則} \lim_x \to 0 \left| \frac{f(x)}{x} \right| = 0. \\ \text{又} - \left| \frac{f}{(}x \right) x \right| \leq \frac{f(x)}{x} \leq \frac{f(x)}{x} = 0.$$

C选项正确。

4.1.2 极限的证明题

已知
$$\lim_{x\to 0} f(x) = 0$$
,且 $f(x) - f(2x) = o(x)$,则 $\lim_{x\to 0} \frac{f(x)}{x} = o(x)$

由无穷小的定义,
$$f(x) - f(2x) = o(x)$$
 $\Rightarrow \lim_{x \to 0} \frac{f(x) - f(2x)}{x} = 0$

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{f(x) - f(\frac{x}{2}) + f(\frac{x}{2}) - f(\frac{x}{4}) + \cdots}{x}.$$

由无穷小的定义, $f(x)-f(2x)=o(x)\Rightarrow\lim_{x\to 0}\frac{f(x)-f(2x)}{x}=0$ 联系以上条件与结论 $\lim_{x\to 0}\frac{f(x)}{x}=0$,试将 f(x) 裂项求和,写为 $\lim_{x\to 0}\frac{f(x)}{x}=\lim_{x\to 0}\frac{f(x)-f(\frac{x}{2})+f(\frac{x}{2})-f(\frac{x}{4})+\cdots}{x}.$ 注意不能直接得出 $\lim_{x\to 0}\frac{f(x)-f(\frac{x}{2})}{x}+\lim_{x\to 0}\frac{f(\frac{x}{2})-f(\frac{x}{4})}{x}+\cdots=0$,因为有无穷多项。无穷个极限为 0 的项的和不一定为 0,例如 $\lim_{x\to 0}\frac{f(x)-f(\frac{x}{2})}{x}$

和不一定为
$$0$$
,例如
 $\frac{n}{2}$ 1

$$\lim_{n \to \infty} \sum_{n \to \infty} \frac{1}{n} = 1.$$

 $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} = 1.$ 所以用极限定义进一步得出:每一项不但趋于0,而且无穷小量在变小。

高数基础 34

【证明】 由极限定义,对于任意
$$\varepsilon$$
,存在 δ 使得当 $|x| < \delta$ 时, $\left| \frac{f(x) - f(2x)}{x} \right| < \varepsilon$, 即 $|f(x) - f(2x)| = |f(2x) - f(x)| < \varepsilon |x|$ 代入 $\frac{x}{2}$, 则 $|f(x) - f\left(\frac{x}{2}\right)| < \varepsilon \left|\frac{x}{2}\right| = \frac{\varepsilon}{2}|x|$. 同理, 有
$$\left| f\left(\frac{x}{2}\right) - f\left(\frac{x}{4}\right) \right| < \frac{\varepsilon}{4}|x|, \left| f\left(\frac{x}{4}\right) - f\left(\frac{x}{8}\right) \right| < \frac{\varepsilon}{8}|x|,$$

主意 x是任意一个满足 $|x| < \delta$ 的数,将它看为常数。即 x 不变,令 $n \to \infty$,有 $\lim_{n \to \infty} f\left(\frac{x}{2^n}\right) = 0$,则

$$|f(x)| = *l i m_{n \to \infty} \left| f(x) - f\left(\frac{x}{2^n}\right) \right|$$

$$= \lim_{n \to \infty} |f(x) - f\left(\frac{x}{2}\right) + f\left(\frac{x}{2}\right) - f\left(\frac{x}{4}\right) + f\left(\frac{x}{4}\right) - \dots + f\left(\frac{x}{2^{n-1}}\right) - f\left(\frac{x}{2^n}\right) \right|$$

$$\leq \lim_{n \to \infty} |f(x) - f\left(\frac{x}{2}\right)| + |f\left(\frac{x}{2}\right) - f\left(\frac{x}{4}\right)| + \dots + |f\left(\frac{x}{2^{n-1}}\right) - f\left(\frac{x}{2^n}\right)|$$

$$\leq \lim_{n \to \infty} \frac{\varepsilon}{2} |x| + \frac{\varepsilon}{4} |x| + \dots + \frac{\varepsilon}{2^n} |x|$$

$$= \varepsilon |x| \frac{1}{1 - \frac{1}{2}} = \varepsilon |x|$$

综上,当
$$|x|$$
< δ 时, $\frac{|f(x)|}{|x|}$ < ε ,
由极限定义,即 $\lim_{x\to 0}\frac{f(x)}{x}=0$.证毕。

4.1.3 一些写错的极限计算

设 $\lim_{n\to\infty} x_n$ 存在,则下列选项哪个是律误的?

$$A_{n\to\infty} \frac{x_{n+1}}{x_n}$$
可能为 1

B.
$$\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$$
可能小于

C.
$$\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$$
可能大于 1

及
$$\lim_{n \to \infty} x_n$$
 存在,则下列起 $A \lim_{n \to \infty} \frac{x_{n+1}}{x_n}$ 可能为 1 B. $\lim_{n \to \infty} \frac{x_{n+1}}{x_n}$ 可能小于 1 C. $\lim_{n \to \infty} \frac{x_{n+1}}{x_n}$ 可能大于 1 D. $\lim_{n \to \infty} \frac{x_{n+1}}{x_n}$ 可能不存在

曲
$$\lim_{n\to\infty} x_n = 0$$
 时, $\frac{0}{0}$ 为不定式,则 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$ 可能存在,可能不存在。故 D 正确。 令 $\lim_{n\to\infty} x_n = a$, $\exists a \neq 0$ 时,则 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \frac{x_{n\to\infty}}{\lim_{n\to\infty} x_n} = \frac{a}{a} = 1$ 故 A 正确。

令 lim
$$x_n = a$$
, 当 $a \neq 0$ 时,则 lim $\frac{x_{n+1}}{x} = \frac{x_{n\to\infty}}{\lim_{n\to\infty} x} = \frac{a}{a} = 1$ 故 A正确。

令
$$x_n=a^n, (|a|<1),$$
则 $\lim_{n\to\infty}x_n=0$ 而 $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=a<1$,故 B 正确。

反证:若 $\left|\lim_{n\to\infty} \frac{x_{n+1}}{x_n}\right| > 1$,由保号性,存在 N 使得当 n > N时, $\left|\frac{x_{n+1}}{x_n}\right| > 1$,故 $\lim_{n\to\infty} x_n = \infty$,极限不存在,与条件矛 盾。

$$\lim_{x\to 0^{-}} - \frac{\int_{0}^{1} \sqrt{2-2\cos(2xt)} \ dt}{x}$$

则左导数
$$\varphi'_{-}(0) = \lim_{x \to 0^{-}} -\frac{\int_{0}^{1} \sqrt{2 - 2\cos{(2 \operatorname{xt})}} \, \mathrm{d}t}{x} = \lim_{x \to 0^{-}} -\frac{\int_{0}^{2x} \sqrt{2 - 2\cos{u}} \, \mathrm{d}u}{2 \, x^{2}} = \lim_{x \to 0^{-}} -\frac{2 \cdot \sqrt{2 - 2\cos{(2 \operatorname{x})}}}{4 \, x} = \lim_{x \to 0^{-}} -\frac{2 \cdot \sqrt{4 \sin^{2} x}}{4 \, x} = \lim_{x \to 0^{-}} -\frac{|\sin{x}|}{x} = \lim_{x \to 0^{-}} \frac{\sin{x}}{x} = 1$$

其中倒数第一个等号使用了sin x的等价无穷小。

4.1 函数极限 35

 \circ [2022年真题] 当 $x \to 0$ 时, $\alpha(x)$, $\beta(x)$ 是非零无穷小量,给出以下四个命题

$$(1)$$
若 $\alpha(x) \sim \beta(x)$,则 $\alpha^2(x) \sim \beta^2(x)$;

$$(2)$$
若 $\alpha^2(x) \sim \beta^2(x)$,则 $\alpha(x) \sim \beta(x)$;

$$(3)$$
若 $\alpha(x) \sim \beta(x)$,则 $\alpha(x) - \beta(x) = o(\alpha(x))$;

$$(4)$$
若 $\alpha(x) - \beta(x) = o(\alpha(x)), 则 \alpha(x) \sim \beta(x)$

$$1.\frac{\alpha}{\beta} = 1, \frac{\alpha^2}{\beta^2} = 1 \times 1 = 1$$

$$2. \quad \frac{\alpha^2}{\beta^2} = 1 \quad \frac{\alpha}{\beta} = \pm 1$$

$$3 \quad \frac{\alpha}{\beta} = 1 \quad \frac{a - \beta}{\alpha} = 1 - \frac{\beta}{\alpha} = 0 \quad \text{yes}$$

$$4 \frac{\alpha - \beta}{\alpha} = 0 \qquad 1 - \frac{1}{\frac{\alpha}{\beta}} = 0 \quad \frac{\alpha}{\beta} = 1$$

♥wrong usually

$$\begin{split} &\lim_{x \to +\infty} \frac{\int_{1}^{x} 2\,t^{2} \left(\sqrt{1+\frac{1}{t}}-1\right)-t\,\mathrm{d}t}{\int_{1}^{x^{2}} \arcsin\frac{1}{\sqrt{t}}\,\mathrm{d}t} \\ &= \lim_{x \to +\infty} \frac{2\,x^{2} \left(\sqrt{1+\frac{1}{x}}-1\right)-x}{2\,x\cdot\arcsin\frac{1}{x}} \\ &= \lim_{x \to +\infty} \frac{2\,x^{2} \left(\sqrt{1+\frac{1}{x}}-1\right)-x}{2\,x\cdot\frac{1}{x}} \\ &= \lim_{x \to +\infty} \frac{1}{2} \left[2\,x^{2} \left(\frac{1}{2\,x}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2\,x^{2}}+o\left(\frac{1}{x^{2}}\right)\right)-x\right] \\ &= \lim_{x \to +\infty} \frac{1}{2} \left[x-\frac{1}{4}+o(1)-x\right] \\ &= -\frac{1}{8} \end{split}$$

例 4.1. $\lim_{x \to -1^+} \frac{\ln|1 + (x+1)|}{|x^3 - x|}$,跳跃间断点。

$$x = -1$$
 时,

右 极 限 : $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{(x+2)(x-1)\ln|1+(x+1)|}{x(x-1)(x+1)} = -\lim_{x \to -1^+} \frac{x+1}{x+1} = -1$ 左极限: $\lim_x \to -1^- f(x) = \lim_{x \to -1^-} \frac{(x+2)(x-1)\ln|1+(x+1)|}{x(1-x)(1+x)} = \lim_{x \to -1^-} \frac{x+1}{1+x} = 1$ 因为左、右极限存在但不相等,所以 $x = \pm 1$ 是f(x)的跳跃间断点

(%i1)
$$f(x) := \frac{\log(abs(1+(x+1)))}{abs(x^3-x)}$$

(%o1)
$$f(x) := \frac{\log(|1+(x+1)|)}{|x^3-x|}$$

(%i2)
$$\operatorname{tm}_{-}\operatorname{plot}2d([f(x)], [x, -10, 10], [y, -3, 7])$$

36 高数基础

(%o2) true

(%i3)

4.1.4 极限的判定

设函数 f(x)在 (0,1]上连续,在 (0,1)上可导,又设 $\lim_{x\to 0^+} f(x) = f(1) = 0$,用下列哪些定理可以证明:至少存在一点 $\xi\in(0,1)$ 使得 $f'(\xi)=0$.

- (1)费马定理;
- (2)极限定义;
- (3)夹逼定理;
- (4)闭区间上连续函数的最值定理;
- (5)函数可导,则区间内的最值为极值。

(原题为证明题,请写下完整证明,再作选择)

- A. 1,4,5
- B. 1, 2, 4, 5
- C. 1,3,5
- D.2, 3, 4

[分析]通常证明 $f'(\xi)=0$,用罗尔定理。 但这里的条件为 $\lim_{x\to 0^+}f(x)=f(1)$,不符合罗尔定理, 故用费马定理。 用费马定理证明 $f'(\xi)=0$,只需证明 (0,1)区间内存在极值。

[证明]

分两种情况讨论:

1.函数 f(x) = 0,则 f(x) 在(0,1]上处处有f'(x) = 0,命题得证。

4.1 函数极限 37

2. 函数 f(x) 不恒为0, 故存在 $f(c) \neq 0$ 不失一般性, 设 f(c) > 0. (如果设 f(c) < 0, 证法完全类似) 由 $\lim_{0^+} f(x) = 0$,根据极限定义,存在 δ ,使得当 $\mathbf{0} < x \le \delta$ 时,|f(x) - 0| < f(c) 由于在区间 $(0, \delta]$ 上|f(x)| < f(c),故 c 不在区间 $(0, \delta]$ 上,即 $\mathbf{c} \in (\delta, \mathbf{1}]$ 由f(x)在 $[\delta, \mathbf{1}]$ 上连续, 根据闭区间上连续函数的最值定理, f(x)在 $[\delta, \mathbf{1}]$ 上必取到它的最大值 $f(\xi)$ 因为 $f(\xi)$ 是最大值, 故 $f(\xi) \ge f(c) > f(\delta) > 0$,则 $\xi \ne \delta$ 且 $\xi \ne 1$,即 $\xi \in (\delta, 1)$,在区间内。 因为 f(x) 在 $(\delta, 1)$ 上可导,则区间内的最值为极值, 故 $f(\xi)$ 为极大值。 根据费马定理,如果极值点可导,则导数为 0,故 $f'(\xi) = 0$.

证毕。

(注:此命题是罗尔定理的推广)

以上证明依次用到了

- (2)极限定义;
- (4)闭区间上连续函数的最值定理;
- (5)函数可导,则区间内的最值为极值。
- (1)费马定理;

4.1.5 复合函数的奇偶性

例 4.2.

[2022年真题]设 $-\frac{n}{2} \le x_n \le \frac{n}{2}$,则 A. 若 $\lim_{n \to \infty} \cos(\sin x_n)$ 存在,则 $\lim_{n \to \infty} x_n$ 存在. B. 若 $\lim_{n \to \infty} \sin(\cos x_n)$ 存在,则 $\lim_{n \to \infty} x_n$ 存在 C.若 $\lim_{n \to \infty} \cos(\sin x_n)$ 存在,则 $\lim_{n \to \infty} \sin x_n$ 存在,但 $\lim_{n \to \infty} x_n$ 不一定存在. D.若 $\lim_{n \to \infty} \sin(\cos x_n)$ 存在,则 $\lim_{n \to \infty} \cos x_n$ 存在,但 $\lim_{n \to \infty} x_n$ 不一定存在.

判断复合函数奇偶性: 内偶则止于偶, 内奇则穿至外

意思是, 内部函数为偶函数, 则该复合函数就为偶函数。

内部函数为奇函数,则看外面的函数,

外面的函数为奇函数,则为奇函数,外面的函数为偶函数,则为偶函数

[分析]数列极限不存在的常见例子, 1. 反复横跳, 2. 趋于无穷。

由 $-\frac{\pi}{2} \le x_n \le \frac{\pi}{2}$,则考虑 $\{x_n\}$ 反复横跳,最常用的例子是: $x_n = \begin{cases} 1 & n$ 为奇数,-1, n为偶数。 若f(x)为偶函数,且f(1) = f(-1) = c存在,则 $\{f(x_n)\}$ 为常数数列,即 $\{f(x_n)\}$ 收敛。

由于 $\cos x, \cos (\sin x), \sin (\cos x)$ 都是偶函数,则 $\lim_{n\to\infty} \cos x_n$, $\lim_{n\to\infty} \cos (\sin x_n)$, $\lim_{n\to\infty} \sin (\cos x_n)$ 均为常数数列,故存在。但 $\lim_{n\to\infty} x_n$ 不存在。 $\lim_{n\to\infty} x_n$ 为奇函数, $\sin 1 \neq \sin (-1)$,故 $\lim_{n\to\infty} \sin x_n$ 不存在。

(%i3) $tm_plot2d([sin(cos(x)), cos(sin(x))], [x, -5, 5], [y, -1, 1])$

(%o3) true

(%i4)

原理很简单,以图像的方式来说就是,正常画图时我们默认的x是从负无穷到正无穷,可以把x本身看做一个奇函数,然后此时y该是什么函数就是什么函数,也就是内奇同外,然后看内层函数为偶函数的函数,可以使坐标轴横轴左右对称,让x为偶函数,也就是从左到右依次为正无穷,0,正无穷,也就是说,此坐标图上的右侧不变,左侧对称过去,此时无论外层函数为奇函数还是偶函数,对称过去都是偶函数,也就是内偶则偶。

4.1.6 复合函数的极限定理

设 f[g(x)] 在点 x_0 的某去心邻域内有定义。 若 $\lim_{x \to x_0} g(x) = u_0$, $\lim_{u \to u_0} f(u) = A$, 且存在 $\delta_0 > 0$, 当 $x \in \mathring{U}(x_0, \delta_0)$ 时,有 $g(x) \neq u_0$,(条件 (1)) 则 $\lim_{x \to x_0} f(g(x)) = \lim_{u \to u_0} f(u) = A$.

若不存在一个去心邻域使得 $g(x) \neq u_0$,则任何去心邻域里都可能有无穷多个无定义的点, 由它们组成的子数列必然无极限, 故原数列极限不存在。 例 如:令 $g(x) = x \sin\left(\frac{1}{x}\right)$, $f(u) = \frac{\sin u}{u}$,有 $\lim_{x \to 0} g(x) = 0$, $\lim_{x \to 0} f(u) = 1$.

[为什么需要条件(1)?]

因为 $f(u_0)$ 可能无定义。 条件中只给出 $\lim_u \to u_0$ f(u) = A, 而极限存在不代表 $f(u_0)$ 有定义。 但复合函数 $f(g(x)) = \frac{\sin\left(x\sin\left(\frac{1}{x}\right)\right)}{x\sin\left(\frac{1}{x}\right)}$ 在 g(x) = 0时无定义。 而当 $x = \frac{1}{n\pi}$ 时, $g(x) = x\sin\left(n\pi\right) = 0$.故无论 δ 多么小,在 x = 0 的 δ 去心邻域 $\mathring{U}(0,\delta)$ 内, g(x) 在无穷多个点上为 0,而f(g(x)) 在这些点上无定义。

题目 4.1.

4.1 函数极限 39

> 若 $\lim g(x) = c$, 其中 c 为常数或 ∞ , $\lim f(u) = 1$, 则下列哪个选项是正确的? $x \to 0$ g(x) 不存在,则 $\lim_{x \to 0} f(g(x))$ 必不存在 B. 若 $\lim_{x \to 0} g(x)$ 存在,则 $\lim_{x \to 0} f(g(x))$ 必存在 $\lim_{x \to 0} f(g(x))$ 必存在 D. 若 $\lim_{x \to 0} g(x)$ 趋于无穷,则 $\lim_{x \to 0} f(g(x))$ 可能不存在

选项 C 中,因为 $\lim_{x\to 0}g(x)=c$, 其中 c 为常数或 ∞ , 若 $\lim_{x\to 0}g(x)$ 不存在,则 $\lim_{x\to 0}g(x)=\infty$ 则在 x=0 的任何去心邻域内,都有 $g(x)\neq\infty$,满足条件 (1),故 $\lim_{x\to 0}f(g(x))=1$,极限存在 选 C. 【其余选项】

B:与定理比较,缺少条件(1),故错误。

D. **若** $\lim_{x\to 0} g(x)$ 趋于无穷,则 $\lim_{x\to 0} f(g(x))$ 必存在。故 D错误。

4.1.7 重要极限 ∞^0

例 4.3.
$$\diamondsuit$$
 $\lim_{x \to 0^+} (1 + e^{\frac{1}{\sin x}})^{\ln(1 + 2\sin x)} = C$, 求 $\ln C$.

$$\begin{split} *l \, i \, m_{x \to 0^+} \ln \left[\left(1 + e^{\frac{1}{\sin x}} \right)^{\ln \left(1 + 2\sin x \right)} \right] \\ = & \lim_{x \to 0^+} \left[\ln \left(1 + 2\sin x \right) \cdot \ln \left(1 + e^{\frac{1}{\sin x}} \right) \right] \\ = & \lim_{x \to 0^+} 2(\sin x) \ln \left(1 + e^{\frac{1}{\sin x}} \right) = \lim_{u \to +\infty} \frac{2 \ln \left(1 + e^u \right)}{u} \end{split}$$

$$\lim_{\substack{u\to +\infty\\ 0=2.}}\frac{2\ln{(1+e^u)}}{u}=\lim_{\substack{u\to +\infty\\ u\to +\infty}}\frac{2\ln{[e^u\,(e^{-u}+1)]}}{u}=\lim_{\substack{u\to +\infty\\ u\to +\infty}}\frac{2\,u+2\ln{(e^{-u}+1)}}{u}=2+\lim_{\substack{u\to +\infty\\ u\to +\infty}}\frac{2\ln{(e^{-u}+1)}}{u}=2+\lim_{\substack{u\to +\infty\\ u\to +\infty}}\frac{2\ln{(e$$

例 4.4.

(%i2) tm_plot2
$$d([\frac{(3x)^{\frac{1}{2x}}}{3}],[x,0.1,10],[y,-3,7])$$

(%o2) true

(%i3)

$$4.1.8 \frac{\infty}{\infty}$$

$$\lim_{n \to \infty} \frac{n^{\frac{n^2+n+1}{n}}}{(n+1)^n} (\sqrt[n]{2} - 1) =$$

首先化简。
$$\lim_{n\to\infty}\frac{n^{\frac{n^2+n+1}{n}}}{(n+1)^n}(\sqrt[n]{2}-1)=\lim_{n\to\infty}\frac{n^{n+1+\frac{1}{n}}}{(n+1)^n}(\sqrt[n]{2}-1)=\lim_{n\to\infty}\frac{n^n\cdot n\cdot n^{\frac{1}{n}}}{(n+1)^n}(\sqrt[n]{2}-1)=\lim_{n\to\infty}\frac{n}{\left(\frac{n+1}{n}\right)^n}(\sqrt[n]{2}-1)$$

第三步用了
$$\lim_{n\to\infty} n^{\frac{1}{n}} = 1$$
,并上下同除 n^n .
$$\lim_{x\to\infty} \frac{n}{\left(\frac{n+1}{n}\right)^n} (\sqrt[n]{2}-1) = \lim_{x\to+\infty} \frac{x}{\left(\frac{x+1}{x}\right)^x} (\sqrt[n]{2}-1)$$
,即数列极限 =函数极限。
$$\lim_{x\to+\infty} \frac{x}{\left(\frac{x+1}{x}\right)^x} (\sqrt[n]{2}-1) = \lim_{x\to+\infty} \frac{x}{e} \left(e^{\frac{\ln 2}{x}}-1\right) = \lim_{x\to+\infty} \frac{x}{e} \left(\frac{\ln 2}{x}\right) = \frac{\ln 2}{e}$$
 第一步用了 $\lim_{x\to+\infty} \left(1+\frac{1}{x}\right)^x = e$,第二步用了 e^x-1 的等价无穷小。

$4.1.9 1^{\infty}$

例 4.5.
$$\diamondsuit$$
 $\lim_{x\to 0} \left(\frac{\tan x}{\arctan x}\right)^{\frac{1}{\ln(1+x^2)}} = C$,求 $\ln C$. $=\frac{2}{3}$

[分析]

首先检验,由 $\tan x$ 和 $\arctan x$ 的等价无穷小,有 $\lim_{x\to 0} \frac{\tan x}{\arctan x} = \lim_{x\to 0} \frac{x}{x} = 1$,又 $\lim_{x\to 0} \frac{1}{\ln(1+x^2)} = \frac{1}{0} = \infty$, 故这是 1^{∞} 的类型三极限。 最常用的方法是将给定函数写成 $(1+x)^{\frac{1}{x}}$ 的形式,然后使用重要极限: $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$ $x)^{\frac{1}{x}} = e.$

也可以直接使用结论, 设 $\lim_{x} \to x_0 \, \alpha(x) = 0$, $\lim_{x \to x_0} \beta(x) = \infty$, $\lim_{x \to x_0} \alpha(x) \, \beta(x) = A$,

则

$$\lim_{x \to x_0} (1 + \alpha(x))^{\beta(x)} = \lim_{x \to x_0} \left\{ [1 + \alpha(x)]^{\frac{1}{a(x)}} \right\}^{a(x)\beta(x)} = e^A$$

4.1.10 复合函数

因为 $\ln \left[\cos \left(\frac{1}{x}\right) + 2\right]$ 是复合函数,故利用复合函数的单调性质,"同增异减"。

[解答]

4.2 f(x,y)£f(0,0)£

又因为x+2单调增加,故 $\cos(1)$

因为 $\frac{1}{x}$ 在 $(1,+\infty)$ 上单调减少,其值域范围是(0,1),且 $\cos x$ 在(0,1)上单调减少,故 $\cos \left(\frac{1}{x}\right)$ 在 $(1,+\infty)$ 上单调增加.

+2 单调增加;因为 $\ln x$ 单调增加,故 $\ln \left[\cos \left(\frac{1}{x}\right) + 2\right]$ 单调增加。

true

4.2 f(x,y)在f(0,0)处

连续?偏导数存在?偏导数连续?可微分?

二元函数
$$f(x,y) = \begin{cases} \frac{x^2 y^3}{(x^2 + y^2)^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
 =上

在点(0,0)处

- A. 不连续
- B. 连续但偏导数不存在
- C. 连续且偏导数存在但不可微
- D. 可微

$$\begin{split} & \pm \left| \frac{2\,x\,y}{x^2+y^2} \right| \leq 1, \\ & \iint \frac{x^2\,y^2}{(x^2+y^2)^2} \leq \frac{1}{4}, \\ & \text{即 函 数 有 界 }, \\ & = \frac{1}{4}, \\ & \text{即 函 数 有 R }, \\ & \text{而 lim}_x \to 0 \\ & y = 0, \\ & \text{故 与 有界函数的积为} \\ & \lim_{(x,y)\to(0,0)} \frac{x^2\,y^2}{(x^2+y^2)^2} \cdot y = 0. \\ & \text{则}*l\,i\,m_{(x,v)\to(0,0)}\,f(x,y) = f(0,0), \\ & \text{即在点 } (0,0) \text{ 处连续}. \end{split}$$

偏导数本质上是一元函数的导数。 定义一元函数 $\varphi(x)=f(x,y_0), \, \text{则}\, f_x'(x_0,y_0)=\varphi'(x_0).\,$ 易见当 $x,y\neq 0$ 时, f(x,0)=f(0,y)=0,则对应的一元函数连续且恒等于0. 故 $f_x'(0,0)=f_y'(0,0)=0$,偏导数存在。

判定可微:

$$\begin{split} \rho &= \sqrt{x^2 + y^2}, \\ & \underset{(x,y) \to (0,0)}{\mathbb{M}} \lim_{\rho} \frac{u}{\rho} = \lim_{(x,y) \to (0,0)} \frac{x^2 \, y^3}{(x^2 + y^2)^{\frac{5}{2}}}. \\ & \Leftrightarrow y = k \, x, \\ & \underset{y \to y \to 0}{\lim} \lim_{(x^2 + y^2)^{\frac{3}{2}}} = \lim_{x \to 0} \frac{k^3 \, x^5}{(1 + k^2)^{\frac{3}{2}} x^5} = \frac{k^3}{(1 + k^2)^{\frac{5}{2}}}, \end{split}$$

与k的取值有关,故极限 $\lim_{(x,y)\to 0} \frac{u}{\rho}$ 不存在,

则f(x,y)在(0,0)处不可微。

综上, f(x, y)在(0,0)处连续且偏导数存在但不可微。

特殊方法 构造特殊函数用排除法

4.3 数列极限

下列条件中有几个是 $\lim \to \infty x_n = A$ 的充分条件,几个是必要条件?

$$\begin{array}{l} (1)*li\,m_{n\to\infty}\,x_{2n}=*li\,m_{n\to\infty}\,x_{2n-1}=A.\\ (2)*li\,m_{n\to\infty}\,x_{3n}=*li\,m_{n\to\infty}\,x_{3n+1}=*li\,m_{n\to\infty}\,x_{3n-1}=A.\\ (3)*li\,m_{n\to\infty}\,x_{4n}=*li\,m_{n\to\infty}\,x_{4n-1}=A.\\ (4)*li\,m_{n\to\infty}\,x_{4n}=*li\,m_{n\to\infty}\,x_{4n-1}=*li\,m_{n\to\infty}\,x_{4n-2}=A. \end{array}$$

(1)(2)是充要条件,包含了全部子数列,命题 (4)中,未出现的子数列 $\{x_{4n-3}\}$ 可能发散,故原数列可能发散。故不是充分条件。

例 4.6.

$$\text{(\%i4)} \ \ \mathrm{tm_plot2} \\ d([\frac{3}{\sin(x)}, x^{\frac{1}{3}}, x^{\frac{1}{x}}, \log \bigg(\frac{3}{x}\bigg)], [x, 0, 100], [y, -20, 20])$$

4.3 数列极限 43

(%04)

true

3.926 sec

(%i5)

4.3.1 极限存在证明 设 f(x)是区间 $[0,+\infty)$ 上单调减少且非负的连续函数, $a_n = \sum_k = 1^n f(k) - \int_1^n f(x)$ d $x(n=1,2,\cdots)$ 证明数列 $\{a_n\}$ 的极限存在。 [解析] 1.证明极限存在,想到用单调有界定理,需要证明 $\{x_n\}$ 单调且有界。 2.证明数列 $\{x_n\}$ 的单调性,需证明对于任意n,都有 $x_n \geq x_{n+1}$ 或 $x_n \leq x_{n+1}$. 3. f(x) 单调减,则有 $f(k+1) \leq \int_k^k +1 f(x) \mathrm{d}x \leq f(k)$

4.3.2 极限的最值问题

例 4.7.

已知 $a_n = n \ln (1+n) - n \ln n, n = 1, 2, \dots,$ 则数列 $\{a_n\}$ A. 有最大值,有最小值 B. 有最大值,没有最小值 C. 没有最大值,积量

D. 没有最大值,没有最小值

【分析】将数列分成两部分考虑:有限的前N项,与n>N的无限项。

前N项是有限数列, 则必是有界数列, 则这N项的最大值与最小值存在。

对于后面的无限项, 有以下情况:

- 1. 数列极限不存在。若 $\lim_{n\to n^+} = +\infty$,则最大值不存在;若 $\lim_{n\to n^+} = -\infty$,则最小值不存在。
- 2. 数列极限 $\lim_{\epsilon} = A$ 存在,则由极限定义,后面的无限项都在极限的 ϵ 范围内。
- (2.a) 若数列中存在 a_i 使得 $a_i < A$, 则最小值存在。同理若存在 a_j 使得 $a_j > A$, 则最大值存在。
- (2.b) 若数列中不存在 a_i 使得 $a_i < A$,则最小值不存在。同理若不存在 a_i 使得 $a_i > A$,则最大值不存在。 例如 $\frac{1}{n}$, 其极限是 0, 但是任意 $a_i > 0$, 则最小值不存在。

先求数列极限:

$$n\ln(1+n)-n\ln n=n\ln\left(\frac{1+n}{n}\right)=n\ln\left(1+\frac{1}{n}\right)$$

由海涅定理, $\lim_{n\to\infty}n\ln\left(1+\frac{1}{n}\right)=\lim_{x\to+\infty}x\ln\left(1+\frac{1}{x}\right)=\lim_{x\to+\infty}x\cdot\frac{1}{x}=1.$
故由极限定义,对任意 $\varepsilon>0$, 存在正整数 N , 当 $n>N$ 时,恒有 $|\alpha_n-1|<\varepsilon$. 即 $n>N$ 时, a_n 和 1 的差距最大不超过 ε .

判断最大值是否存在:

对于
$$x>0$$
,有 $\ln(1+x)< x$,即 $\frac{\ln(1+x)}{x}<1$.令 $x=\frac{1}{n}$,则有 $n\ln\left(1+\frac{1}{n}\right)<1$.即 $a_n<1$.则对于任意 a_i ,总能找到一个 a_n ,使得 $a_n>a_i$.证明如下 取足够小的 ε ,使得 $\alpha_i<1-\varepsilon$,存在正整数 N ,当 $n>N$ 时,恒有 $|\alpha_n-1|<\varepsilon$. 因为 $\alpha_n<1$, $|\alpha_n-1|=$

 $1 - a_n < \varepsilon \Rightarrow a_n > 1 - \varepsilon > a_i$.

即数列中不存在最大值。

for this 因此我们将数列分成了两部分(1) 有限的前N项;与(2)n > N 的无限项,其中所有 a_n 都大于 a_1 .

4.3.3 极限的不等式性质(保号性的推广)

 \mathbb{R} $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$.

- 1. **若** A > B,则存在N > 0,使得当n > N时,有 $a_n > b_n$.
- 2. 若 存 在 N > 0, 使 得 当 n > N时, 有 $a_n \ge b_n$, 则 $A \ge B$.

[注意]

4.4 斜新近线 45

1.若 $A \ge B_1$,不能得出存在N > 0,使得当n > N时,有 $a_n \ge b_n$. 反例: $a_n = 0, b_n = \frac{1}{n}$,则A = B = 0,但 $\forall n$,有 $a_n < b_n$.

2. 若存在N > 0,使得当n > N时,有 $a_n > b_n$,不能得出A > B. 反例: $a_n = 0, b_n = -\frac{1}{n}$,则 $\forall n$,有 $a_n > b_n$,但 A = B = 0.

(%i8) tm_plot2 $d([\frac{1}{x}, \frac{-1}{x}, 0], [x, 0, 10], [y, -3, 2])$

(%08) true

1.022 sec

(%i9)

[拓展]

1. 令 $b_n=0$, 则 得 到 收 敛 数 列 的 保 号 性: 设 $\lim_{n\to\infty}a_n=A$, 若 A>0, 则存在 N>0, 使得当 n>N 时,有 $a_n>b_n$.

2.类似的,有函数极限的不等式性质: 设 $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$.

- 1) 若A > B,则存在 $\delta > 0$,使得当 $|x x_0| < \delta$ 时,有f(x) > g(x).
- 2) 若存在 $\delta > 0$,使得当 $|x x_0| < \delta$ 时, 有 $f(x) \ge g(x)$,则 $A \ge B$.

4.4 斜渐近线

4.4.1 一阶线性微分方程

例 4.8.

设
$$y=y(x)$$
 满足 $y'+y=\frac{2}{\pi}\arctan{(e^x)}$,且 $y(0)=\frac{1}{2}-\frac{\ln{2}}{\pi}$. 设 $y(x)$ 有 n 条渐近线,除了铅直渐近线以外,其余所有渐近线的斜率的和为 A ,所有渐近线与 y 轴交点的纵坐标的和为 B ,求 $A+B+n$.

$$\begin{split} A+B+n. \\ y &= e^{-x} \left(\int \frac{2}{\pi} \arctan\left(e^{x}\right) \cdot e^{x} \mathrm{d}x + C \right) \\ &= \frac{2}{\pi} e^{-x} \left(e^{x} \arctan\left(e^{x}\right) - \frac{1}{2} \ln\left(1 + e^{2x}\right) + C \right) \\ &= \frac{1}{\pi} \left(2 \arctan\left(e^{x}\right) - e^{-x} \ln\left(1 + e^{2x}\right) + C_{1} \right) \\ &= \lim_{x \to +\infty} \frac{y(x)}{x} \\ &= \lim_{x \to +\infty} \frac{2 \arctan\left(e^{x}\right) - e^{-x} \ln\left(1 + e^{2x}\right)}{x} \\ &= \frac{1}{\pi} \left(\lim_{x \to +\infty} \frac{2 \arctan\left(e^{x}\right) - e^{-x} \ln\left(1 + e^{2x}\right)}{x} \right) \\ &= \frac{1}{\pi} \left(\lim_{x \to +\infty} \frac{2 \cdot \frac{\pi}{2}}{x} - \lim_{x \to +\infty} \frac{e^{-x} \ln\left(e^{2x} \cdot \left(e^{-2x} + 1\right)\right)}{x} \right) \\ &= \frac{1}{\pi} \left(0 - \lim_{x \to +\infty} \frac{e^{-x} \left(\ln\left(e^{2x}\right) + \ln\left(e^{-2x} + 1\right)\right)}{x} \right) \\ &= -\frac{1}{\pi} \cdot \lim_{x \to +\infty} \frac{e^{-x} \cdot 2x + e^{-2x}}{x} \\ &= 0. \\ b &= kl \ i \ m_{x \to +\infty} + y(x) - a \ x \\ &= \lim_{x \to +\infty} \frac{1}{\pi} \left(2 \arctan\left(e^{x}\right) - e^{-x} \ln\left(1 + e^{2x}\right) \right) - 0 \cdot x \\ &= \lim_{x \to +\infty} \frac{1}{\pi} \left(2 \arctan\left(e^{x}\right) - e^{-x} \ln\left(1 + e^{2x}\right) \right) - 1 - \frac{1}{\pi} \lim_{x \to +\infty} \left(2 \arctan\left(e^{x}\right) - e^{-x} \ln\left(1 + e^{2x}\right) \right) \\ &= 1 - \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \ln\left(e^{2x} \cdot e^{-2x} + 1\right) \\ &= 1 - \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \left(\ln\left(e^{2x}\right) + \ln\left(e^{-2x} + 1\right)\right) \\ &= 1 - \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \left(\ln\left(e^{2x}\right) + \ln\left(e^{-2x} + 1\right)\right) \\ &= 1 - \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \left(2x + e^{-2x}\right) \\ &= 1 - \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}{\pi} \cdot 0 \\ &= 1 \cdot \frac{1}{\pi} \lim_{x \to +\infty} e^{-x} \cdot 2x = 1 - \frac{1}$$

令 $x \to -\infty$ 时的渐近线方程为 y = cx + d,有

则 $x \to +\infty$ 时的渐近线方程为 y = 1.

y = 0

4.5 连续与可导

设函数
$$f(x) = \left\{ \begin{array}{ll} \cos x, & 0 \leqslant x < \pi, \\ 1, & x = \pi \\ -1, & \pi < x \leqslant 2 \pi. \end{array} \right. F(x) = \int_0^x \! f(t) \mathrm{d}t \ \text{则}$$

 $A. x = \pi$ 是函数 F(x)的跳跃间断点 $A. x = \pi$ 是函数 F(x)的跳跃间断点

4.5 连续与可导 47

- $B. \ x = \pi$ 是函数 F(x)的可去间断点
- C. F(x) 在 $x = \pi$ 处连续但不可导
- D. F(x) 在 $x = \pi$ 处可导

[分析] $\int_0^x f(t) dt$ 是变上限积分,利用变上限积分的性质判断。[知个]

[解

判断连续性: 因为 f(x) 除有限个第一类间断点 $(x=\pi)$ 外处处连续,故 f(x) 可积。则 $\int_0^x f(t) \, \mathrm{d}t$ 为连续函数

判断可导性: 变上限积分 $F(x) = \int_0^x f(t) dt$ 在某一点的左右导数等于被积函数 f(x) 在这一点的左右极限。 由于 $\lim_{x \to \pi^-} f(x) = \cos \pi = -1 * l i m_{x \to \pi^+} f(x) = -1$,即 $\lim_{x \to \pi^-} f(x) = \lim_{x \to \pi^+} f(x)$,故 $F'_{\pi^{-1}}(x) = F'_{\pi^+}(x)$.左右导数相等,故F(x)在 $x = \pi$ 处可导。 综上,F(x)在 $x = \pi$ 处连续可导,故选D

例 4.9. 已知
$$f(x) = \lim_{n \to \infty} \frac{1+x}{1+x^{2n}}$$
,则 $f(x)$

- A. 在 x = 1, x = -1 处都连续
- B. 在x=1处连续, x=-1处不连续
- C. 在x=1, x=-1 处都不连续。
- D. 在x=1处不连续, x=-1处连续

$$f(x) = \begin{cases} 1+x & \exists |x| < 1\\ 0 & \exists |x| > 1\\ 0 & \exists x = -1\\ 1 & \exists x = 1 \end{cases}$$

2.分析 f(x)在x=1处的连续性: 左极限: $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} 1+x = 1+1=2$,但f(1)=1,故 $\lim_{x\to 1^-} f(x) \neq f(1)$,因此,函数在x=1处不连续。

3. 分析 f(x) 在 x=-1 处的连续性:因为当 $x\to -1^-$,即 x<-1,此时 |x|>1,所以 f(x)=0,则左极限: $\lim_{x\to -1^-}f(x)=0$,右极限: $\lim_{x\to -1^+}f(x)=\lim_{x\to -1^+}1+x=1+(-1)=0$,函数值: f(-1)=0, 综上

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} f(x) = f(-1) = 0$$

因此, 函数在x = -1处连续。

4. 最终结论: f(x)在x=1处不连续。 f(x)在x=-1处连续。

例 4.10.

[2001年真题] 设 f(0)=0,则 f(x) 在 x=0处可导的充要条件为 A. $\lim_{h\to 0}\frac{1}{h^2}f(1-\cos h)$ 存在 B. $\lim_{h\to 0}\frac{1}{h}f(1-e^h)$ 存在

$$\mathbb{C}.\lim_{h\to 0} \frac{1}{h^2} f(h-\sin h)$$
存在
$$\mathbb{D}.\lim_{h\to 0} \frac{1}{h} [f(2h)-f(h)]$$
存在

选项 C: 若取
$$f(x) = x^{\frac{2}{3}}$$
, 显然 $f(x)$ 在 $x = 0$ 处不可导
$$\lim_{h \to 0} \frac{1}{h^2} f(h - \sin h) = \lim_{h \to 0} \frac{(h - \sin h)^{\frac{2}{3}}}{h^2} = \lim_{h \to 0} \left(\frac{h - \sin h}{h^3}\right)^{\frac{2}{3}} = \left(\frac{1}{6}\right)^{\frac{2}{3}}$$
存在。 故选项 C 错误。

若取 $f(x) = \begin{cases} 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$,显然 f(x) 在 x = 0 处不可导,因为 f(x) 在 x = 0处不连续,但 $\lim_{h \to 0} \frac{1}{h} [f(2h) - f(h)] = \lim_{h \to 0} \frac{1-1}{h} = 0$ 存在。故选项 D 错误。

4.5.1 导数无定义

已知
$$f(x)$$
 连续,且 $\lim_{\Delta x \to 0} \frac{f(x_0 + (\Delta x)^2) - f(x_0 - (\Delta x)^2)}{(\Delta x)^2} = 6$,则关于 $f'(x_0)$ 正确的是:
$$f'(0^+) + f'(0^-) = 6$$
不能得出 $f'(0) = 6$

4.5.2
$$\lim_{n \to \infty} (a_1^n + \cdots + a_m^n)^{\frac{1}{n}} = \max_{1 \le i \le m} \{a_i\}, (a_i > 0)$$

例 4.11.

[2005年真题] 设函数 $f(x) = \lim_{n \to \infty} \sqrt[n]{1+|x|^{3n}}$,则 f(x)在 $(-\infty, +\infty)$ 内不可导点的个数为. $f(x) = \begin{cases} 1, & |x| \le 1. \\ |x|^3, & |x| > 1. \end{cases}$

4.6 方程实根数

[2011年真题]设k为参数,则关于方程k arctan x-x=0不同实根的个数,说法正确的是:

(注:考试中本题型为证明题,选择正确后需要对比详细过程)

- A. 若k > 0,则方程有 2 个实根; 若 $k \le 0$,则方程有 1 个实根
- B. 若 $k \ge 0$,则方程有 1 个实根;若k < 0,则方程有 2 个实根
- C. $\overline{a}_k > 1$,则方程有 3 个实根; $\overline{a}_k \leq 1$,则方程有 1 个实根
- D. 若 $k \ge 1$,则方程有 1 个实根;若k < 1,则方程有 3 个实根

4.7 绝对值[X] 49

[分析]

判定方程根的个数,一般通过求导判断函数形态,利用单调性和介值定理判定。 题目中函数的单调性受到k的影响。此类问题有两种解法: 1.分情况讨论:对于不同的k,判断单调区间的情况; 2.分离参数法:先将方程化为g(x)=k的形式,再讨论g(x)的形态。 如果可以分离参数,则尝试分离参数法。如果不能分离参数,或分离参数后g(x)的导数不易分析,则使用分情况讨论的方法。 本题参数可以分离,得到g(x)=k的形式,但g'(x)不容易分析,故建议分情况讨论。

4.6.1 分情况讨论

f(x)的无定义点, +f'(x)的无定义点 +f'(x) = 0的点(驻点)

f(x)是否为奇函数, 偶函数, 对称区间, f(0) = 0?

实数解 $\rightarrow x = g(k) \rightarrow$ 划分单调区间 \rightarrow

通过单调区间判断函数零点,

先考察各单调区间的端点是否为零点, 再考察每个区间内部的零点:

4.6.2 参数分离

g(x) = k 的根个数 \rightarrow 对g(x) 求导 \rightarrow 大致绘制g(x)的图像(主要g(x)在区间的单调情况)

和
$$g(x)_{\min}$$
和 $g(x)_{\max}$ 或者 $\lim_{x \to ?} g(x) =$

$$\lim_{x \to 0} f(x) = 5$$

$$\sum_{i=1}^{n} \lim_{x \to x \to \infty} \lim_{x \to \infty} \lim_{x \to x \to \infty} \lim_{x \to$$

4.7 绝对值|X|

判断绝对值函数在一点是否可导,有两个重要推论,做选择题时可以直接应用: $1. \varphi(x_0) = 0$ 且 $\varphi'(x_0) \neq 0 \Leftrightarrow x_0$ 是 $|\varphi(x)|$ 的不可导点;

 $2.\ f(x) = |\varphi(x)|\ g(x), |\varphi(x)|$ 在 $x = x_0$ 处不可导但 $\varphi(x)$ 可导,且g(x)在 $x = x_0$ 处连续,则综上,令 $\varphi(x) = x^2 - 1, g(x) = \sqrt[3]{(x^2 - 1)(x - 3)},$ 找f(x)的不可导点,即 1.找 $\varphi(x) = 0, \varphi'(x) \neq 0$ 且 $g(x) \neq 0$ 的点。2.找g(x) = 0, $g'(x) \neq 0$ 且 $\varphi(x) \neq 0$ 的点。f(x)在 $x = x_0$ 处可导的充要条件是 $g(x_0) = 0$.

```
loadfile: loading C:\Program Files\XmacsLabs\MoganResearch-1.2.9.5\plugins\maxima\lisp\
texmacs-maxima.lisp.
```

Loading C:/Users/admin/maxima/maxima-init.mac

Maxima 5.47.0 https://maxima.sourceforge.io

using Lisp SBCL 2.3.2

Distributed under the GNU Public License. See the file COPYING.

Dedicated to the memory of William Schelter.

The function bug_report() provides bug reporting information.

(%i12) h:sin(x);

(%o12) $\sin(x)$

(%i13) h_abs:abs(h);

(%o13) $|\sin(x)|$

(%i20) $g: x^2 + x$

(%o21) $x^2 + x$

(%i22) f:g*h_abs;

(%o22) $(x^2+x)|\sin(x)|$

(%i28) tm_plot2d([f,h_abs],[x,-4,7])

4.7 绝对值|X| 51

(%o28) true

(dbm:4) kill(all)

done

(dbm:4)
$$f: abs(x^2-1) \sqrt[3]{(x^2-1)(x-3)}$$

$$(x-3)^{\frac{1}{3}}(x^2-1)^{\frac{1}{3}}|x^2-1|$$

(dbm:4) $\operatorname{tm} \operatorname{plot} 2d(f,[x,-3,3])$

true

(dbm:4)

(%i7) kill(all)

(%00) done

$$\text{(\%i3)} \ \ \mathrm{tm_plot} 2d([(\%e^{2x}+2)^{\frac{1}{2}}+\%e^x,\log\biggl(\frac{x^2-2}{2\,x}\biggr)],[x,-10,10],[y,-3,7])$$

(%o3) true

[2010年真题] 计算二重积分 $\iint_D (x+y)^3 d\sigma$,其中D 由曲线 $x=\sqrt{1+y^2}$ 与直线 $x+\sqrt{2}\,y=0$ 及 $x-\sqrt{2}\,y=0$ 所 围成。

(%i7) tm_plot2 $d([x=(1+y^2)^{\frac{1}{2}},x+\sqrt{2}\;y=0,x-\sqrt{2}\;y=0],[x,-3,13],[y,-3,2])$

(%o7) true

(%i26) tm_draw3d(

 $surface_hide = true,$ $explicit(abs(y)*(x^2+y^2), x,-5,5,y,-5,5), grid = [50, 50], xaxis = true, yaxis = true, zaxis = true, title = "3D plot of abs(y) * (x^2 + y^2)");$

(%o26) true

(%i27)

4.7.1 区间再现与绝对值

$$\label{eq:limits} \begin{picture}[t]{0.9\textwidth} \put(0.5){\line(0.5){100}} \put(0.5){\line(0.5){10$$

4.8 中值定理 53

思路一: 积分 $\int_0^x t |\cos t| \, \mathrm{d}t$ 中有绝对值号,先根据积分区域脱去绝对值号。由 $\cos t$ 在 $x=\frac{\pi}{2}+n\pi$ 变号,故先考虑 $x=\frac{\pi}{2}+n\pi$.此思路也适用于其

[分析]由 $\cos t$ 是周期函数,先考虑x 为特殊值时的极限,如 $x=n\pi$,或 $x=\frac{\pi}{2}+n\pi$,再考虑任意x. 它函数,例如 $\int_0^x t^3 |\cos t| \mathrm{d}t$.

思路二:利用函数 $t|\cos t|$ 的特殊性质,即t为一次幂,结合区间再现公式简化计算: $\int_0^{n\pi} t|\cos t|\mathrm{d}t = \int_0^{n\pi} (n\pi - t)|\cos t|\mathrm{d}t = \int_0^{n\pi} n\pi |\cos t|\mathrm{d}t - \int_0^{n\pi} t|\cos t|\mathrm{d}t.$ 注意区间再现对其它函数,例如 $\int_0^x t^3 |\cos t|\mathrm{d}t \in \mathbb{R}$ 法简化计算。

- 2) 区间再现, 取上下区间 $[n\pi,0]$ f(a+b-x) (首先尝试)
- 3) 夹逼定理, 大题必须有, 小题忽略。

4.8 中值定理

4.8.1 构建辅助函数

[注:]以下用标准方法构建辅助函数。 用罗尔定理证明复杂函数的等式,先构建辅助函数。 将上式写成 $h'(\xi) + \phi(\xi) h(\xi) = 0$ 的形式, 则 $h(\xi) = f(\xi)$, $\phi(\xi) = \frac{g''(\xi)}{g'(\xi)}$,辅助函数 $F(x) = e^{\int \phi(x) \, \mathrm{d}x} h(x) = e^{\ln g'(x)} f(x) = g'(x) f(x)$.

4.8.2 罗尔

设奇函数 f(x) 在 [-a,a]上具有二阶导数,且 f(a)=ka. 求常数 k 的值,使得对于任何满足条件的 f(x),都存在 $\eta \in (-a,a)$,使得 $2f'(\eta)+f'(\eta)=5$

$$F'(x) = 2 f''(\eta) + f'(\eta) - 5$$

$$F(x); F(a) = F(-a); \qquad f(a) = -f(-a), f'(a) = f'(-a)$$

4.8.3 拉格朗日与递推不等式

例 4.12.

已知函数 f(x)可导,且 $\frac{1}{6} < f'(x) < \frac{1}{3}$,设数列 $\{x_n\}$ 满足 $x_{n+1} = 2 \ f(x_n) - a, (n = 1, 2, \dots n, a \in \mathbb{Z})$,则

 $x_{n+1} = 2 f(x_n) - a$ 为递推数列,则 $x_{n+1} - x_n = 2 [f(x_n) - f(x_{n-1})]$.

因为题设给定f'(x),想到用拉格朗日中值定理,得到递推不等式。

曲
$$x_{n+1} = 2 f(x_n) - a$$
, 得到 $x_{n+1} - x_n = 2 [f(x_n) - f(x_{n-1})]$
 $f(x_n) - f(x_{n-1}) = f'(\xi) (x_n - x_{n-1}),$
故 $x_{n+1} - x_n = 2 [f(x_n) - f(x_{n-1})] = 2 f'(\xi) (x_n - x_{n-1}),$
即 $\frac{x_{n+1} - x_n}{x_n - x_{n-1}} = 2 f'(\xi).$

$$\begin{split} \frac{1}{3} <& \frac{|x_{n+1}-x_n|}{|x_n-x_{n-1}|} < \frac{2}{3} \quad |x_{n+1}-x_n| > \frac{1}{3} \, |x_n-x_{n-1}|,$$
得到递推不等式。
$$& |x_{n+1}-x_n| > \frac{1}{3} \, |x_n-x_{n-1}| > \left(\frac{1}{3}\right)^2 |x_{n-1}-x_{n-2}| > \cdots > \left(\frac{1}{3}\right)^{n-1} |x_2-x_1|. \\ & \mathbb{M}|x_{n+1}-x_n| > \left(\frac{1}{3}\right)^{n-3} |x_4-x_3| = \frac{27}{3^n} \, |x_4-x_3|. \end{split}$$

4.8.4 图像与中值定理

设 f(x)在 [0,2] 上连续, 在 (0,2) 内存在二阶导数, 并设 f(0)=3, $f(2)=\frac{3}{2}$, $\min_{[0,2]}f(x)=1$. 可以证明存在 $\xi\in(0,2)$,使得 $f''(\xi)\leq c$,(c) 为常数) 求 c 的最小值,使不等式对任意满足条件的 f(x) 都成立。

true

4.8.5 不同区间上的拉氏

题目 4.3.

已知函数f(x)在 [0,1]上连续,在 (0,1) 上可导,且f(0)=0, f(1)=1. 证明:对任意的 a>0, b>0, 存在 $\eta,\zeta\in(0,1)$, 使得 $\frac{a}{f'(\eta)}+\frac{b}{f'(\zeta)}=a+b$.

【分析】题目没有明确要求 $\eta \neq \zeta$,但 $\frac{a}{f'(\eta)} + \frac{b}{f'(\zeta)}$ 为相加的形式,故这是不同区间上的双中值问题。

题目没有给出区间,需要自选区间。因为 $f'(\eta), f'(\zeta)$ 在分母中, $\frac{a}{f'(\eta)} + \frac{b}{f'(\zeta)} = \frac{1}{\frac{f'(\eta)}{a}} + \frac{1}{\frac{f'(\zeta)}{b}}$,将f(x)的值在(0,1)上分为长度为a:b的两个区间,即选 ξ 使得 $f(\xi) = \frac{a}{a+b}$.

 $Q: f'(\eta), f'(\zeta)$ 在分子呢?

A: 将[a,b]区间分为a: b的两个区间 $\xi = \frac{a}{a+b}$ 令拉式分母相等。

4.8 中值定理 55

首先证明存在一点 ξ 使得 $f(\xi) = \frac{a}{a+b}$

因为a>0,b>0,有a+b>0.所以 $\frac{a}{a+b}>0$ 因为a< a+b,所以 $\frac{a}{a+b}<1$. 令函数 f(x) 在[0,1] 的最大值为 M,最小值为 m.因为 f(0)=0, f(1)=1,有 $m\leq0,$ 1 $\leq M$ 综上

$$m \leq 0 < \frac{a}{a+b} < 1 \leq M.$$

根据连续函数介值定理,存在 $\xi \in (0,1)$,使 $f(\xi) = \frac{a}{a+b}$

$$f'(\eta) = \frac{f(\xi) - f(0)}{\xi - 0} = \frac{\frac{a}{a+b}}{\xi}$$

在 $(\xi,1)$ 上用拉格朗日中值定理,则存在 $\zeta \in (\xi,1)$,使

$$f'(\zeta) = \frac{f(1) - f(\xi)}{1 - \xi} = \frac{1 - \frac{a}{a + b}}{1 - \xi} = \frac{\frac{b}{a + b}}{1 - \xi}$$

故
$$\frac{a}{f'(\eta)} + \frac{b}{f'(\zeta)} = \frac{\xi}{\frac{1}{a+b}} + \frac{1-\xi}{\frac{1}{a+b}} = a+b. \quad (注意, \ f'(\eta)$$
为什么要取 $f(\xi) - f(0)$ not $f(1) - f(\xi)$? 你经常错)

4.8.6 f'' = g''

例 4.13. 设函数 f(x), g(x) 在[a,b] 上连续,在(a,b) 内具有二阶导数,f(a) - g(a) = a, f(b) - g(b) = b. 以下哪个条件可以证明存在 $\xi \in (a,b)$,使得 $f''(\xi) = g''(\xi)$?

- A. 存在 $\beta \in (a,b)$,使 $f(\beta) = g(\beta)$
- B. f(x) x, g(x)在(a,b)内存在相等的最大值
- C. 存在 $\eta \in (a,b)$,使 $f'(\eta) g'(\eta) = 1$
- D. f(x), g(x) 在(a,b) 内存在相等的最大值

【分析】

- 1. 证明 $f''(\xi) = g''(\xi)$, 等价于证明 $f''(\xi) g''(\xi) = 0$, 所以构建辅助函数 $F''(\xi) = f''(\xi) g''(\xi)$.
- 2. 通常,证明二阶导数 $F''(\xi)$ 有零点,在 F(x)上找三点相等,然后质复使用罗尔定理。
- 3. 由 f(a) g(a) = a, f(b) g(b) = b 可知,若 F(x) = f(x) g(x) x,则 F(a) = F(b) = 0. 只需找到第三个点 η ,证明存在 $\eta \in (a,b)$,使

 $F(\eta) = 0.$

4.8.7 N-L定理

牛顿-莱布尼兹定理: $\int_a^b f(x) dx = F(x)|_a^b = F(b) - F(a)$.

怎么考?

$$F(b) = \int_{a}^{b} f(x) dx + F(a)$$

设
$$G'(x) = e^{(x-3)^2}(x-3)^2, G(2) = 0, 求 \int_2^3 G(x) dx.$$

4.8.8 高阶莱布尼兹公式

题目 4.4.

已知
$$f(x) = (x^2 - 1)^n$$
, 求 $f^{(n+1)}(-1)$
A. $(n+1)!n(-2)^{n+1}$
B. $(n-1)!(-2)^{n-1}$
C. $(n+1)!n(-2)^{n-1}$
D. $(n+1)!(-2)^{n-1}$

[分析]求高阶导数在 $x \neq 0$ 的值,运用常见初等函数的n阶导数公式。

因为 $f(x) = (x^2 - 1)^n = (x + 1)^n (x - 1)^n$,求乘积的高阶导数,一般用高阶导数的莱布尼兹公式:

$$(uv)^{(n)} = u^{(n)}v + \frac{C_n^1}{n}u^{(n-1)}v' + \dots + C_n^k u^{(n-k)}v^{(k)} + \dots + uv^{(n)}$$

[解答]
$$f^{(n+1)}(x) = [(x+1)^n]^{(n+1)} (x-1)^n + C_{n+1}^1 [(x+1)^n]^{(n)} [(x-1)^n]^{(1)} + C_{n+1}^2 [(x+1)^n]^{(n-1)} [(x-1)^n]^{(2)} + \dots + C_{n+1}^{n+1} (x+1)^n [(x-1)^n]^{(n+1)}.$$

注意一个常用的性质: 令 $f(x) = (x - x_0)^n$,则 $f^{(n)}(x_0) = n!$, $f^{(k)}(x_0) = 0$, $(k \neq n)$.

所以x = -1时,只有第 2项不为 0,则

$$f^{(n+1)}(-1) = (n+1) \cdot n! n (-2)^{n-1} = (n+1)! n (-2)^{n-1}$$

答案为C.

4.8.9 泰勒

设函数 f(x)在闭区间[-1,1]上具有三阶连续导数,且 f(-1)=0, f(1)=2, f'(0)=0, 在开区间(-1,1)内至少存在一点 ξ ,使 f' $\mathcal{U}(\xi)=c$, (c 为常数),求c 的值。

本题需要求三阶导数的值。通常,证明高阶导数的不等式,或等于非0非1的常数,试用泰勒公式。 由于 f'(0)=0,应在 $x_0=0$ 处展开泰勒公式: $f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\frac{f'''(\eta)}{3!}x^3$ (η 在0与x之间). 在上式中分别取x=1 和x=-1,根据连续函数介值定理,存在 $\xi\in [\eta_2,\eta_1]\subset (-1,1)$,使 $f'''(\xi)=6$.

$4.8.10 \ f'(x) = \int_0^{\xi} f(x) dx$

(注意 $f'(\xi)$ 是 $\int_0^\xi f(t) \, \mathrm{d}t$ 的三阶导,而不是一阶导,故不能直接用微分方程法构建辅助函数) 对 $f'(x) \int_x^1 g(t) \, \mathrm{d}t + g'(x) \int_0^x f(t) \, \mathrm{d}t$ 的两项分别分部积分,得到: $\varphi(x) = \int \left[f'(x) \int_x^1 g(t) \, \mathrm{d}t + g'(x) \int_0^x f(t) \, \mathrm{d}x \right] \mathrm{d}x$ $= \int \left[f'(x) \int_x^1 g(t) \, \mathrm{d}t \right] \mathrm{d}x + \int \left[g'(x) \int_0^x f(t) \, \mathrm{d}t \right] \mathrm{d}x$ $= \left[f(x) \int_x^1 g(t) \, \mathrm{d}t - \int f(x) \right] - g(x)] \, \mathrm{d}x \right] + \left[g(x) \int_0^x f(t) \, \mathrm{d}t - \int g(x) \, f(x) \, \mathrm{d}x \right]$ $= f(x) \int_x^1 g(t) \, \mathrm{d}t + g(x) \int_0^x f(t) \, \mathrm{d}t$

4.9 $\sin x = \cos x$ 57

证明.

令
$$\varphi(x) = f(x) \int_{x_1}^1 g(t) dt + g(x) \int_{0}^x f(t) dt.$$
 有 $\varphi(0) = f(0) \int_{0}^1 g(t) dt + g(0) \int_{0}^1 f(t) dt = f(0) \int_{0}^1 g(t) dt + 0 = f(0) \int_{0}^1 g(t) dt,$ 同理 $\varphi(1) = g(1) \int_{0}^1 f(t) dt.$ 对 $\varphi(x)$ 使用罗尔定理,则存在 $\xi \in (0,1)$,使 $\varphi'(\xi) = 0$ 所以 $\varphi'(\xi) = f'(\xi) \int_{\xi}^1 g(t) dt + g'(\xi) \int_{0}^{\xi} f(t) dt = 0,$ 即 $\frac{f'(\xi)}{g'(\xi)} + \frac{\int_{0}^{\xi} f(t) dt}{\int_{\xi}^1 g(t) dt} = 0.$

4.8.11 积分的几何意义(证明题)

积分的几何意义:对AB线段积分,得到下方梯形的面积。

例 4.14.

设f(x)在[a,b]上有二阶连续导数,且f''(x) > 0.证明: $\frac{f(a) + f(b)}{2} > \frac{1}{b-a} \int_a^b f(x) dx$.

1. 包含 积分的 不 等 式 , 想 到 积 分 保 序 性 : $f(x) \ge g(x) \Rightarrow \int_a^b f(x) \ \mathrm{d}x \ge \int_a^b g(x) \ \mathrm{d}x$.

2. 由 f''(x) > 0,为凹函数, 则区间内任意一点的切线在函数下方, 任意两点的连线在函数上方。 注意 $\frac{f(a) + f(b)}{2} \cdot (b-a)$ 为两点连线下方梯形的面积, 所以用两点连线的性质证明。

过点A: (a, f(a)), B: (b, f(b)) 的直线方程为: $y = f(a) + \frac{f(b) - f(a)}{b - a} \cdot (x - a)$

由f''(x) > 0,则AB线段在f(x)上方,故

$$f(x) \le f(a) + \frac{f(b) - f(a)}{b - a} \cdot (x - a)$$
, 且等号只在 A, B 成立。

对不等式两端分别积分有

$$\int_{a}^{b} f(x) dx < \int_{a}^{b} f(a) + \frac{f(b) - f(a)}{b - a} \cdot (x - a) dx = \frac{f(a) + f(b)}{2} \cdot (b - a)$$

最后一步用了积分的几何意义:对AB线段积分,得到下方梯形的面积。

故
$$\frac{f(a)+f(b)}{2} > \frac{1}{b-a} \int_a^b f(x) dx$$
,证毕。

4.9 sinx与cosx

n项同类函数乘积,分母包含 2^n ,添起始项,来达到连锁消项的目的。

使用公式: $2\sin x \cos x = \sin 2x$

[解答] \diamondsuit $A = \cos(x)\cos(2x)\cdots\cos(2^nx)$.

1.若 $\sin x \neq 0$,添一项 $\sin x$,则

 $n \to \infty$ 时, $\sin (2^n + 1x)$ 振荡但有界,即 $-1 \le \sin (2^{n+1}x) \le 1$ 又 $\lim_{n \to \infty} \frac{1}{\gamma^{n+1}} = 0$,而 $\sin x \ne 0$ 为常数 故 $\lim_{n \to \infty} A = 0$.

2. 若 $\sin x = 0$,分两种情况, $x = 2k\pi$ 或 $x = (2k+1)\pi$,其中 $k = 0, 1, 2, \cdots$

 $若x=2k\pi$,

则lim $A = \cos(2k\pi)\cos(2k\pi)\cdots\cos(2k\pi) = 1\cdot 1\cdot \cdots = 1$.

 $n \to \infty$

若 $x = (2k+1)\pi$,

$$\iiint_{n \to \infty} A = \cos(\pi)\cos(2k\pi)\cdots\cos(2k\pi) = (-1)\cdot 1\cdots \cdot 1 = -1.$$

 $n \rightarrow \infty$

综上, 极限存在, 可能为 0,1 或-1.

4.10 函数图像与根

判定方程根的个数,一般通过求导判断函数形态,利用单调性和介值定理判定。 不易判断导数的单调区间时: 1.通过特殊点的值,由介值定理得出 f(x) 至少有几个零点2.通过求高阶导数的零点个数,得出 f(x) 至多有几个零点3.若 " 至 φ " = " 至 φ " ,则 得 到 零 点 个 数。

例 4.15. $f(x) = 3^x - 3x^2$

[解答] 对 f(x) 求导考察单调性: $f'(x) = \ln 3 \cdot 3^x - 6x$.不易判断单调区间, 故考察特殊点的函数值:

对
$$\int (\lambda)$$
 小寺ち奈丰响田: $\int (\lambda) = m \cdot 3 \cdot 3 = 0$
 $f(-1) = 3^{-1} - 3 \cdot (-1)^2 = -\frac{8}{3} < 0$;
 $f(0) = 3^0 - 3 \cdot 0^2 = 1 > 0$;
 $f(1) = 3^1 - 3 \cdot 1^2 = 0$;
 $f(3) = 3^3 - 3 \cdot 3^2 = 0$.

4.10 函数图像与根 59

 $x \in (-1,0)$ 时,因为f(x)连续,且f(-1) < 0,f(0) > 0,根据介值定理,f(x)在(-1,0) 上存在至少一个零点。因为x = 1 和x = 3 也是零点,故f(x)至少存在 3个零点。 考察二阶导数: $f''(x) = (\ln 3)^2 \cdot 3^x - 6$.其唯一零点为 $x = \log_3 \left(\frac{6}{(\ln 3)^2}\right)$.则f(x) 至多有 3 个零点。

故 f(x) 有且仅有 3 个零点。

第5章 高数下

5.1 微分方程

5.1.1 二阶, 少y

【分析】

 $y'' - \frac{x+3}{x+1}y' = 0$,可化为可分离变量的一阶微分方程,令 t = y'.

令
$$t=y'$$
,有 $y''=\frac{\mathrm{d}y'}{\mathrm{d}x}=\frac{\mathrm{d}t}{\mathrm{d}x}=t'$. 原方程化为 $t'-\frac{x+3}{x+1}t=0$,即 $\frac{\mathrm{d}t}{\mathrm{d}x}=\frac{x+3}{x+1}t$.

 $\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{x+3}{x+1} t$ t 滿足 $\frac{\mathrm{d}t}{\mathrm{d}x} = f(x) g(t)$ 的形式,是可分离变量的一阶微分方程。分离变量,两边积分求解。

5.1.2 高阶4阶

高阶常系数齐次线性方程的特征方程中,2 重复数根 $\lambda_{1,2}=\alpha\pm\beta i$ 对应通解中的 4 项 $e^{\alpha x}[(C_1+C_2x)\cos\beta x+$

歴2 里夏欽楡 $\lambda_{1,2} = \alpha \pm \beta i = -1 \pm 3 i$. 故其特征方程为 $(\lambda - \lambda_1) (\lambda - \lambda_2) (\lambda - \lambda_3) (\lambda - \lambda_4) = 0$, 即 $(\lambda - \lambda_1) (\lambda - \lambda_2) (\lambda - \lambda_3) (\lambda - \lambda_4) = (\lambda + 3 i + 1) (\lambda - 3 i + 1) (\lambda + 3 i + 1) (\lambda - 3 i + 1) = ((\lambda + 1)^2 - (3 i)^2) ((\lambda + 1)^2 - (3 i)^2) = (\lambda^2 + 2 \lambda + 10) (\lambda^2 + 2 \lambda + 10) = \lambda^4 + 4 \lambda^3 + 24 \lambda^2 + 40 \lambda + 100.$

$5.1.3 \ y(x) = u(x)g(x)$ 的二阶微分方程

[2016年真题]_i设 $y(x) = u(x)e^x$ 是二阶微分方程(2x-1)y' - (2x+1)y' + 2y = 0的解,已知u(-1) = e,

$$u(0) = -1$$
,已知 $y(1) = ae + \frac{b}{e} + c$,且 a, b, c 为有理数, 求 $a - b + c$.

[分析] 将 $y(x) = u(x) e^x$ 代入微分方程,得到关于u(x)的关系式,由此求出u(x)的表达式。

[解答] 由
$$y(x) = u(x) e^x$$
, 得 $y'(x) = u'(x) e^x + u(x) e^x = [u'(x) + u(x)] e^x$.

♡得到 (2x-1)u''(x)+(2x-3)u'(x)=0 为不显含u 的微分方程,

令
$$t = u'(x)$$
,有 $u''(x) = \frac{\mathrm{d}u'(x)}{\mathrm{d}x} = \frac{\mathrm{d}t}{\mathrm{d}x} = t'$.

原方程化为(2x-1)t'+(2x-3)t=0.

化为标准形式,除以t'的系数(2x-1)得 $t' + \frac{2x-3}{2x-1}t = 0 \Rightarrow \frac{dt}{dx} = -\frac{2x-3}{2x-1}t$

62 高数下

5.1.4 一个简单的倒带换

[2007年真题] 令微分方程 $y''(x+y'^2)=y'$ 满足初始条件y(1)=y'(1)=1的特解为y(x),求y(4)的值

[分析] 不显含y的微分方程,令t = y'(x),将y的二阶微分方程转化为t的一阶微分方程。

[解答] 令
$$t=y'(x)$$
, 有 $y''(x)=\frac{\mathrm{d}y'(x)}{\mathrm{d}x}=\frac{\mathrm{d}t}{\mathrm{d}x}=t'$. 原 方 程 变 为 $t'(x+t^2)=t$, 即 $\frac{\mathrm{d}t}{\mathrm{d}x}(x+t^2)=t$.

此时将t作为未知函数,x作为自变量,化为标准形式为 $\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{t}{(x+t^2)}$,不便于求解。 故将x作为未知函数,将上式转化为 $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x}{t} + t$,即 $\frac{\mathrm{d}x}{\mathrm{d}t} - \frac{x}{t} = t$. 令x' + p(t)x = q(t),其中 $p(t) = -\frac{1}{t}$,q(t) = t,代入一阶线性微分方程的通解公式: $^{5.1}$

5.1.5 $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$

用变量代换 $x = 2\cos t \ (0 < t < \frac{\pi}{2})$ 将微分方程 $(4 - x^2)$ $y'' - (x + \sqrt{4 - x^2})$ y' + y = 0 化为 $\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + A\frac{\mathrm{d}y}{\mathrm{d}t} + By = 0$, 求A + B.

$$\begin{split} y' &= \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{1}{2\sin t} \frac{\mathrm{d}y}{\mathrm{d}t}. \\ y'' &= \frac{\mathrm{d}y'}{\mathrm{d}x} \\ &= \frac{\mathrm{d}y'}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} \\ &= \frac{\mathrm{d}(-\frac{1}{2\sin t} \frac{\mathrm{d}y}{\mathrm{d}t})}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} \\ &= [\frac{\mathrm{d}(-\frac{1}{2\sin t})}{\mathrm{d}t} \cdot \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\mathrm{d}\frac{\mathrm{d}y}{\mathrm{d}t}}{\mathrm{d}t} \cdot (-\frac{1}{2\sin t})] \cdot \frac{\mathrm{d}t}{\mathrm{d}x} \\ &= \left[\frac{\cos t}{2\sin^2 t} \frac{\mathrm{d}y}{\mathrm{d}t} - \frac{1}{2\sin t} \frac{\mathrm{d}^2y}{\mathrm{d}t^2}\right] \cdot \left(-\frac{1}{2\sin t}\right). \end{split}$$

$$(5.1)$$

5.1.6 倾斜角 α , $\frac{\mathrm{d}\alpha}{\mathrm{dx}}$, $\frac{\mathrm{dy}}{\mathrm{dx}}$, $\tan \alpha = -\frac{1}{y_x'}$

例 5.1. 设非负函数 y(x) 具有二阶导数,记 α 为曲线 l: y=y(x) 在点(x,y) 处法线的倾角,若 $\frac{\mathrm{d}\alpha}{\mathrm{d}x}=\frac{1}{1+x^2}$,且 l: y=y(x) 与x 轴及直 线x=0, x=6 围成平面区域D 的面积为 36,且 y'(1)=1.求y(2).

设法线斜率为
$$k$$
,则 $k=-\frac{1}{y'}=\tan\alpha$.即 $\alpha=\arctan\left(-\frac{1}{y'}\right)$,所以 $\frac{\mathrm{d}\alpha}{\mathrm{d}x}=\frac{\mathrm{d}\arctan\left(-\frac{1}{y'}\right)}{\mathrm{d}x}=\frac{1}{1+\frac{1}{(y')^2}}\cdot\frac{y''}{(y')^2+1}$.

由已知条件
$$\frac{\mathrm{d}\alpha}{\mathrm{d}x} = \frac{1}{1+x^2}$$
有 $\frac{y^{\prime\prime}}{1+(y^\prime)^2} = \frac{1}{1+x^2}$, 即 $y^{\prime\prime} = \frac{1+(y^\prime)^2}{1+x^2}$.

不显含 y 的微分方程,令 t = y'(x),将 y 的二阶微分方程转化为 t的一阶微分方程。

5.1.
$$\mathbf{x} = \mathbf{e}^{-\int \mathbf{p(t)dt}} * \left| \int \mathbf{q(t)}^* \mathbf{e}^{\int \mathbf{p(t)dt}} \mathbf{dt} + \mathbf{C_1} \right|$$

5.2 解的叠加性 63

令
$$t = y'(x)$$
,有 $y''(x) = \frac{\mathrm{d}y'(x)}{\mathrm{d}x} = \frac{\mathrm{d}t}{\mathrm{d}x}$. 原方程变为 $\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1+t^2}{1+x^2}$. 分离变量得: $\frac{\mathrm{d}t}{1+t^2} = \frac{\mathrm{d}x}{1+x^2}$. 两边积分得: $\int \frac{\mathrm{d}t}{1+t^2} = \int \frac{1}{1+x^2} \mathrm{d}x$. $\Rightarrow \arctan t = \arctan x + C_1$

略。

5.2 解的叠加性

y' + p(x) y = q(x)是线性微分方程,利用其解的叠加性求解。

由
$$y_1 = (3+x^2)^3 - e^{2x}$$
, $y_2 = (3+x^2)^3 + e^{2x}$ **= $y' + p(x)$ $y = q(x)$ 的两个解,

可知:
$$y = y_2 - y_1 = [(3+x^2)^3 + e^{2x}] - [(3+x^2)^3 - e^{2x}] = 2e^{2x}$$

是齐次线性方程 y' + p(x) y = 0 的解;

$$y_1 + y_2 = (3 + x^2)^3 - e^{2x} + [(3 + x^2)^3 + e^{2x}] = 2(3 + x^2)^3$$
是

线性方程y' + p(x) y = q(x) + q(x)的解。

5.2.1 高阶K重根

k重复数根:通解中的2k项

$$e^{\alpha} x [(A_1 + A_2 x + \dots + A_k x^{k-1}) \cos \beta x + (B_1 + B_2 x + \dots + B_k x^{k-1}) \sin \beta x]$$

若 $\lambda_{1,2} = \alpha \pm \beta i, \beta > 0$ 为特征方程

$$r^{n} + a_{1}r^{n-1} + \cdots + a_{n-1}r + a_{n} = 0$$
的 k 重复数根,

则对应的齐次方程通解中的 2k项

$$e^{\alpha}x[(A_1+A_2x+\cdots+A_kx^{k-1})\cos\beta x+(B_1+B_2x+\cdots+B_kx^{k-1})\sin\beta x]$$

求高阶齐次方程的通解:将n个特征根对应的项相加得到通解

求n阶常系数线性齐次微分方程 $y^{(n)} + a_1(x) y^{(n-1)} + \cdots + a_{n-1}(x) y' + a_n(x) y = 0$ 的通解:

- 1 写出特征方程 $r^n + a_1 r^{n-1} + \cdots + a_{n-1} r + a_n = 0$,求出其特征根 r_i (i = 1, 2, ..., n)
- 2 对每一个根,判断对应形式: 单重实根r,对应一项 $Ce^{\alpha}x$;
- ∇k 重实根r,对应k项 $(C_1 + C_2 x + \cdots + C_k x^{k-1}) e^{\alpha x}$;

64 高数下

 \heartsuit 单重复数根 r_1 . $2 = \alpha \pm \beta i$, $\beta > 0$, 对应两项 $e^{\alpha} x (C_1 \cos \beta x + C_2 \sin \beta x)$;

♡k重复数根 r_1 . $2 = \alpha \pm \beta i$, $\beta > 0$, 对应2k 项 $e^{\alpha} x [(A_1 + A_2 x + \dots + A_k x^{k-1}) \cos \beta x + (B_1 + B_2 x + \dots + B_k x^{k-1}) \sin \beta x]$.

例 5.2. K重

已知以 $y=(C_1x+C_2)\cos 2x+(C_3x+C_4)\sin 2x$, $(C_1, C_2, C_3, C_4$ 为任意常数) 为通解的微分方程是 y'''''+ay'''+by''+cy'+dy=0,求 a+b+c+d.

3 将n个根对应的所有项相加便得通解,其中 C, C_i, A_i, B_i 为任意常数。

5.3 定积分应用

5.3.1 参数方程的积分

参数方程积分:
$$\int_{x(t_0)}^{x(t_1)} y \mathrm{d}x = \int_{t_0}^{t_1} y(t) \, x'(t) \mathrm{d}t$$
 设曲线 L 由参数方程
$$\begin{cases} x = x(t), & t_0 \leq t \leq t_1$$
确定。则:
$$\int_{x(t_0)}^{x(t_1)} g(y) \mathrm{d}x = \int_{t_0}^{t_1} g(y(t)) \mathrm{d}x(t) = \int_{t_0}^{t_1} g(y(t)) \, x'(t) \mathrm{d}t$$

$$\int_{y(t_0)}^{y(t_1)} h(x) \mathrm{d}y = \int_{t_0}^{t_1} h(x(t)) \mathrm{d}y(t) = \int_{t_0}^{t_1} h(x(t)) \, y'(t) \mathrm{d}t$$

例 5.3.

$$:\begin{cases} x = t^2 + 1, \\ y = 4t - t^2, \end{cases}$$
 $(t \ge 0). y = x + 1$ 为其一条切线,切点

为(2,3).求此切线与L (对应于 $x \le 2$ 的部分)及x轴所围成的平面 图形的面积。

$$\Rightarrow x(t) = t^2 + 1, y(t) = 4t - t^2.$$

先由参数方程判断曲线形态:

曲线端点: t=0时, $x=0^2+1=1$, $y=4\cdot 0-0^2=0$; $t=+\infty$ 时, $x=+\infty$, $y=-\infty$.

故两端点为(1,0), $(+\infty,-\infty)$. 曲线走向: 对于t>0, x'(t)=2t>0; y'(t)=4-2t. 故随着t 增加,有x 增加;在0< t< 2时y 增加,在t> 2时y减少。t= 2时y取最大值,此时 $x= 2^2+1=5$, $y= 4\cdot 2-2^2=4$. 故曲线由(1,0)向右上延伸至(5,4), 再向右下延伸至 $(+\infty,-\infty)$. 曲线及其切线如图所示,切线与x轴的交点为(-1,0),与L的切点为(2,3).

5.3 定积分应用 65

例 5.4.

设曲线
$$L$$
:
$$\begin{cases} x = 2t^3 + t^2, \\ y = \frac{1}{t} + \ln t - 1, \end{cases} (0 < t \le 1).$$

根据积分的几何意义:
$$S = \int_0^{+\infty} x dy$$
.

利用参数方程,将关于
$$y$$
 的积分转变成关于 t 的积分,则:
$$\int_0^{+\infty} x \mathrm{d}y = \int_1^0 x(t) \mathrm{d}y(t) = \int_1^0 x(t) \cdot y'(t) \mathrm{d}t = \int_1^0 \left(\frac{1}{t} - \frac{1}{t^2}\right) (2t^3 + t^2) \mathrm{d}t = \int_1^0 2t^2 - t - 1 \mathrm{d}t = \frac{2}{3}t^3 - \frac{t^2}{2} - t|_1^0 = \frac{5}{6}.$$

注:本题也可关于 $\mathrm{d}x$ 求积分。 $\int_0^1 y(t)\mathrm{d}x(t)$. 但对被积函数中的 $\ln x$ 需要使用分部积分。

5.3.2 旋转体体积, 非y轴, $V = V_1 - V_2$

D是由 $y=e^x$ 和其切线 $y=e\,x$ 以及 y轴所围成的平面区域。 D绕 x=1旋转而成的旋转体体积为 V ,已知 $\frac{V}{\pi}=a\,e^b+c$,其中 a,b,c 为有理数,求 a+b+c .

故 D 绕 x 轴的旋转体体积 V,为上述正方形绕 x=1 的旋转体体积 V_1 ,加上曲边三角形绕 x=1 的旋转体 体积 V_2 ,减去上述直角三角形绕 x=1

的旋转体体积 V_3 .

(%i12)

66 高数下

(%i6) tm_plot2 $d([\%e^x,\%e\,x,1,x=1],[x,-1,2],[y,-0.5,4])$

(%o6) true

(%i7)

5.3.3 积分比大小

即 $I_3 < I_1 < I_2$.

例 5.5.

[2012年真题] 设
$$I_k = \int_0^{k\pi} e^{x^2} \sin x \, dx, (k=1,2,3),$$
则有

(%i7)
$$f(x) := \sin(x);$$

 $g(x) := \%e^{x^{\frac{1}{5}}};$
(%o7) $f(x) := \sin(x)$

(%08)
$$g(x) := e^{x^{\frac{1}{5}}}$$

5.4 反常积分 67

(%i10) tm_plot2 $d([f(x)\ g(x)],[x,0,10],[y,-7,7])$

(%o10) true

(%i11) quit()

The end

(%i11)

5.4 反常积分

1.同敛散:若
$$\lim_{x \to s^+} \frac{f(x)}{g(x)} = l$$
, $(0 < |l| < +\infty)$, 则 $\int_s^h f(x) \mathrm{d}x$ 与 $\int_s^h g(x) \mathrm{d}x$ 同敛散。

$$2. \frac{\mathbf{充} \mathsf{分条件}}{\mathbf{...}} \ddot{\mathbf{...}} \ddot{f(x)} = 0, \\ \mathbf{...} \int_{s}^{h} g(x) \mathrm{d}x \mathbf{...} \mathbf{...} \mathbf{...} \mathbf{...} \int_{s}^{h} f(x) \mathrm{d}x \mathbf{...} \mathbf{..$$

命题 1. 若
$$\int_0^{+\infty} f^2(x) dx$$
 收敛,则 $\int_0^{+\infty} f(x) dx$ 收敛.

令
$$\lim_{x \to +\infty} \frac{f(x)}{f^2(x)} = \lim_{x \to +\infty} \frac{1}{f(x)} = +\infty$$
,得到一类函数 $f(x) = \frac{1}{x^p}, p > 0$

想到性质: $\int_{s}^{+\infty} \frac{1}{x^{P}} dx$ 在 P > 1 时收敛,在 $P \le 1$ 时发散。

则选择
$$p$$
, 使得 $\int_0^{+\infty} \frac{1}{x^{2p}} dx$ 收敛,而 $\int_0^{+\infty} \frac{1}{x^p} dx$ 发散,

即
$$2p > 1$$
且 $p \le 1$,故令 $p = 1$,得到一个反例 $f(x) = \frac{1}{x}$.

由于
$$f(x)$$
在 $x = 0$ 连续,修改反例,令 $f(x) = \frac{1}{x+1}$.

故命题 1 错误。

高数下 68

命题 2. 若存在
$$p > 1$$
, 使得 $\lim_{x \to +\infty} x^p f(x)$ 存在,则 $\int_0^{+\infty} f(x) dx$ 收敛. 认出 $\lim_{x \to +\infty} x^p f(x) = \lim_{x \to +\infty} \frac{f(x)}{\frac{1}{x^p}} = l$, 即定理 $1 = 2$ 中的条件形式, 有 $p > 1$ 时, $\int_0^{+\infty} \frac{1}{x^p} dx$ 收敛,则: 若 $0 < |l| < +\infty$,则由定理 1 , 得到 $\int_0^{+\infty} f(x) dx$ 收敛, 若 $l = 0$,则由定理 2 , 得到 $\int_0^{+\infty} f(x) dx$ 收敛。 故命题 2 正确。 $f^{+\infty}$

(%i3)
$$\ \, \mathrm{tm_plot} 2d([\frac{1}{x \, (\log(x))}, \frac{1}{x \, ((\log(x))^2)}, x^2 \frac{1}{x \, ((\log(x))^2)}], [x, 0, 20], [y, -3, 7])$$

(%o3) true

 $\text{(\%i24)} \ \ \operatorname{tm_plot2} d([x \, ((\log(x))^2), x \, (\log(x)), x \, \Big((\log(x))^{\frac{1}{2}}\Big), x, x^2], [x, 0, 100], [y, -3, 1000])$

5.6 重积分 69

(%o24) true

(%i25)

5.5 对称区间的积分

例 5.6.
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+\sin x} \, dx$$

求对称区间上的定积分,将积分 $\int_{-a}^{a} f(x) dx$, 拆成两项之和,然后并项处理:

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+\sin x} dx$$

$$= \int_{-\frac{\pi}{4}}^{0} \frac{1}{1+\sin x} dx + \int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin x} dx$$

$$= \int_{\frac{\pi}{4}}^{0} \frac{1}{1-\sin t} (-dt) + \int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin x} dx$$

$$= \int_{0}^{4} \left(\frac{1}{1+\sin x} + \frac{1}{1-\sin x}\right) dx$$

5.6 重积分

 $[2003年真题 \ \mathop{\mathcal{l}}
olimits f(x) = g(x) = \left\{ \begin{array}{l} 3, \quad \stackrel{\textstyle \star}{\text{T}} \ 0 \leq x \leq 1, \\ 0, \quad \text{其他}, \end{array} \right. \quad \text{而} D \ \ \text{表示全平面}, \quad \text{则} \iint_D f(x) \ g \ (y-x) \mathrm{d}x \mathrm{d}y = \left\{ \begin{array}{l} \left(-\frac{1}{2} \right) \left(-\frac{1}{$

[分析] 由于 f(x)和 g(x)为分段函数,所以被积函数 f(x) g(y-x)为分块函数,将积分区域按照被积函数 拆分,分别积分。

[解答] 又在 $0 \le x \le 1$ 时 f(x) = 3; 仅在 $0 \le y - x \le 1$ 时 g(y - x) = 3.则仅当 $0 \le x \le 1$, $0 \le y - x \le 1$ 时,被积函数不为0. 令此区域为 D_1 ,则 $D_1 = \{(x,y) | 0 \le x \le 1, 0 \le y - x \le 1\} = \{(x,y) | 0 \le x \le 1, x \le y \le 1 + x\}$.

有
$$f(x)$$
 $g(y-x) = \begin{cases} 3 \cdot 3, & (x,y) \in D_1, \\ 0, & 其他. \end{cases}$

70 高数下

5.6.1 分段区间

令

$$A = \iint_D \max\left(\frac{1}{x^2 y + 2x}, \frac{1}{3x}\right)$$

dxdy,其中 $D = \{(x, y) | 1 \le x \le 2, 0 \le y \le 1\}$. 已知 $A = a + b \ln 2 + c \ln 3$,其中a, b, c

为有理数, 求a+b+c.

[分析] 被积函数中 $\max\left(\frac{1}{x^2y+2x},\frac{1}{3x}\right)$ 是分块函数,先将积分区域拆分,去掉 \max 符号。[解答] 被积函数在区域D 的分界线为 $\frac{1}{x^2y+2x}=\frac{1}{3x}$,即 $y=\frac{1}{x}$.将D拆分为 $D_1\cup D_2$.如图所示。 $y=\frac{1}{x}$ 与x=2 相交于 $\left(2,\frac{1}{2}\right)$,与 y=1 相交于

(1,1).

5.6.2 区间相同, 二重积分保序性

已知 f(x,y) = x + y, g(x,y) = x - y. 区域 $D = \{0 \le y \le 3, h(y) \le x \le h(y) + 1\}$, 其中 h(x) 为某函数。以下选项正确的是:

$$\begin{split} & \text{A.} \langle \text{iint} \rangle_D f(x,y) \, \text{d}\sigma > \langle \text{iint} \rangle_D g(x,y) \, \text{d}\sigma \\ & \text{B.可能有} \langle \text{iint} \rangle_D f(x,y) \, \text{d}\sigma = \langle \text{iint} \rangle_D g(x,y) \, \text{d}\sigma \\ & \text{C.} \langle \text{iint} \rangle_D f(x,y) \, \text{d}\sigma < \langle \text{iint} \rangle_D g(x,y) \, \text{d}\sigma + 3 \\ & \text{D.} \langle \text{iint} \rangle_D f(x,y) \, \text{d}\sigma \leq \langle \text{iint} \rangle_D g(x,y) \, \text{d}\sigma \end{split}$$

在积分区域D上有 $y \ge 0$,故 $f(x,y) \ge g(x,y)$.

$$f(x,y)=x+y$$
 和 $g(x,y)=x-y$ 在积分区域 D 上连续,且不恒相等,
所以 $\iint_D f(x,y) \ \mathrm{d}\sigma > \iint_D g(x,y) \ \mathrm{d}\sigma$

5.6 重积分 71

综上选A.

5.6.2.1 区间极坐标换元

题目 5.1.

令
$$I = \iint_D \frac{r^2 \sin \theta}{(1 + r^2 \cos 2\theta)^{\frac{3}{2}}} dr d\theta$$
,其中 $D = \left\{ (r, \theta) | 0 \le r \le \sec \theta, 0 \le \theta \le \frac{\pi}{4} \right\}$ 一点 时已知 $I = a + b \ln (\sqrt{2} + 1)$, 其中 a, b 为有理数,求 $a - b$.

注意 5.7.
$$0 \leqslant r \leqslant \sec\theta, 0 \leqslant \theta \leqslant \frac{\pi}{4}$$
 How?
使用直角坐标计算二重积分,令 $x = r\cos\theta, y = r\sin\theta$.
计算直角坐标下的积分区域: $r \le \sec\theta \Rightarrow x = r\cos\theta \le 1$;
$$0 \le \theta \le \frac{\pi}{4} \Rightarrow \cos\theta \ge 0, \sin\theta \ge 0, \frac{x}{y} = \frac{r\cos\theta}{r\sin\theta} = \cot\theta \ge \cot\left(\frac{\pi}{4}\right) = 1, \text{即}x \ge y.$$
故积分区域的直角坐标解析式为 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le x\}.$

5.6.3 二重积分存在

设二元函数 $f(x,y) = xy^{\frac{3}{2}} \ln(x^4 + y^6),$ 则 $\lim_{(x,y)\to(0,0)} f(x,y) =$

[分析]二重极限存在,需证明点(x,y)以 任何方式 趋于点 (x_0,y_0) 时,函数f(x,y)都无限趋近于同一常数 A. |.运用 $\left|\frac{2xy}{x^2+y^2}\right| \le 1$,来证明对任何(x,y),不等式都成立;

常用方法: 2. 夹逼定理; 3. 将重极限转化为一元函数极限。 这里用 1.2.3.

[解答] 由
$$\left| \frac{2 x^2 y^3}{x^4 + y^6} \right| \le 1$$
,有 $\left| x^2 y^3 \right| \le \frac{x^4 + y^6}{2}$,则
$$0 \le \left| x y^{\frac{3}{2}} \ln (x^4 + y^6) \right| \le \sqrt{\frac{x^4 + y^6}{2}} \left| \ln (x^4 + y^6) \right|.$$

令 $t = x^4 + y^6$,则 $(x, y) \rightarrow (0, 0)$ 时, $t \rightarrow 0^+$,有

$$0 \le \lim_{(x,y) \to (0,0)} |f(x,y)| \le \lim_{t \to 0^+} \sqrt{\frac{t}{2}} |\ln t| = 0,$$

最后一个等式用了 $\lim_{x\to 0^+} x^{\delta} (\ln x)^k = 0, (常数 \delta > 0, k > 0).$

故由夹逼定理
$$\lim_{'}(x,y)\to (0,0)\ |f(x,y)|=0$$
,即 $\lim_{(}x,y)\to (0,0)'f(x,y)=0$

72 高数下

 \odot

(分析]判断二重极限是否存在,关键在于构建不同路径,看是否存在: 1.两种不同路径,点(x,y) 沿不同路径趋向于点 (x_0,y_0) 时,f(x,y) 趋于不同常数, 2.某一路径,点(x,y)沿此路径趋于 (x_0,y_0) 时,f(x,y)的极限不存在, 若1或2成立,则极限不存在。

构建路径的常用方法:

1.常见函数: $f(x,y) = \frac{x^n y^m}{x^{2n} + y^{2m}}$,令 $y^m = kx^n$,则k不同时,极限不同。 2.坐标轴方向: 令 $y = y_0$,或 $x = x_0$,即沿平行于x轴或y轴的方向趋于 (x_0,y_0) ,得到一个极限; 3.归零:分子分母有相同项,则构建路径使分子分母上的其他项为0; 4.分子低阶:构建路径使分母只余一项, 如 x^k ,选择k使分子为 x^k 的低阶无穷小,则极限为 ∞

这里用 4 即可.

5.6.4 轮换对称性

例 5.8.

[2008年真题]设 $D = \{(x,y)|x^2+y^2 \le 1\}, A = \iint_D (x^2-y) \, dx \, dy$,已知 $A = a + b \pi$,其中a,b为有理数,求a - b. 积分区域D 为半径为1的圆。相对于x 轴对称,且 y 是关于 y 的奇函数,则 $\iint_D y \, dx \, dy = 0$

$$\iiint_D (x^2 - y) \, \mathrm{d}x \mathrm{d}y = \iint_D x^2 \, \mathrm{d}x \mathrm{d}y$$

调换 $x, y, 区域D_{cr}$ 的形状不变,则利用 x, y 的轮换对称性进一步化简。

$$\iint_{\mathcal{D}} x^2 dx dy = \frac{1}{2} \iint_{\mathcal{D}} x^2 + y^2 dx dy.$$

积分区域为圆形,使用极坐标计算二重积分,令 $x=r\cos\theta$, $y=r\sin\theta$.则 $x^2+y^2=r^2\cos^2\theta+r^2\sin^2\theta=r^2(\sin^2\theta+\cos^2\theta)=r^2$.故

$$\begin{split} D &= \{(r,\theta) | \ 0 \leq r \leq 1, 0 \leq \theta \leq 2 \, \pi \} \\ &\frac{1}{2} \iint_{D} \! x^{2} + y^{2} \, \, \mathrm{d}x \mathrm{d}y = \frac{1}{2} \int_{0}^{2\pi} \! \mathrm{d}\theta \int_{0}^{1} \! r^{2} \cdot r \, \, \, \mathrm{d}r = \frac{1}{2} \int_{0}^{2\pi} \! \mathrm{d}\theta \int_{0}^{1} \! r^{3} \mathrm{d}r = \frac{1}{8} \int_{0}^{2\pi} \! r^{4} |_{0}^{1} \, \mathrm{d}\theta = \frac{1}{8} \int_{0}^{2\pi} \! \mathrm{d}\theta = \frac{\pi}{4}. \end{split}$$

$$\mathbb{E}[A = \frac{\pi}{4} \cdot \mathbb{E}[A = 0, b = \frac{1}{4}, a - b = -\frac{1}{4}]$$

5.7 二元函数最值问题

题目 5.2.

[2022年真題]设 $x \ge 0, y \ge 0,$ 满足 $x^2 + y^2 \le k e^{x+y}.$ 若 k 的最小值为 $ae^b + c$,其中 a,b,c为有理数,求 a+b+c.

先求函数在区域内的驻点: 即求所有偏导数为 0 的点

再求函数在边界线上可能的最值点: 边界线由 x=0 ($y\ge 0$) 和 y=0 ($x\ge 0$) 两部分组成,分别求两段边界的极值,和两段边界的分界点。

5.8 多元函数极值问题 73

将区域内驻点和边界上的极值点分别代入目标函数f(x,y)

设
$$k$$
 在 $y \ge |x|$ 上满足 $(1-x)$ $(y-1) \ge k e^y$,求 k 能取到的最大值。
$$f(1,1) = (1-1) (1-1) e^{-1} = 0, \\ f(3,3) = (1-3) (3-1) e^{-3} = -4 e^{-3}, \\ f(-1-\sqrt{2},1+\sqrt{2}) = (1-(-1-\sqrt{2})) (1+\sqrt{2}-1) e^{-1-\sqrt{2}} = (2+2\sqrt{2}) e^{-1-\sqrt{2}}, \\ f(0,0) = (0-1) (1-0) e^{-0} = -1,$$

5.8 多元函数极值问题

由
$$\lim_{x \to 0, y \to 0} \frac{f(x,y) - x^2 y + 2 x y^2}{(x^2 + y^2)^2} = 1$$
 可知, $x \to 0, y \to 0$ 时 $f(x,y) \sim x^2 y - 2 x y^2 + (x^2 + y^2)^2$. 构建路径,通过

多元极值定义判定(0,0)是否为极值?

y = kx

当 x = ky 趋向于 (0,0) 时, $f(x,y) \sim k^2 y^3 - 2 k y^3 + (k^2 + 1)^2 y^4$. 当 $k^2 - 2 k > 0$ 时,对于 y > 0 的点 $f(x,y) - f(0,0) = f(x,y) \sim k^2 y^3 - 2 k y^3 + (k^2 + 1)^2 y^4 \sim k^2 y^3 - 2 k y^3 = (k^2 - 2 k) y^3 > 0$;对于

y < 0的点, $f(x, y) - f(0, 0) \sim k^2 y^3 - 2 k y^3 = (k^2 - 2 k) y^3 < 0$

若存在(0,0) 的某邻域,此邻域内任意点均满足 $f(x,y) \geq f(0,0)$ (或 $f(x,y) \leq f(0,0)$)时,(0,0)为极值点。根据以上分析,对任意邻域,均存在

不满足条件的路径。故点(0,0) 不是f(x,y)的极值点。

第6章

积分表

$$\int x^n \ln(x) dx = \frac{x^{n+1}}{n+1} (\ln(x) - \frac{x^{n+1}}{(n+1)})$$

$$\int \ln(\sin x) dx = x \ln(\sin x) - \ln(\cos x) + C$$

平方6.1

2.立方根函数积分:

$$\int \sqrt[3]{x} \ dx = \frac{3}{4} x^{4/3} + C$$

3.其他根号函数积分:

4. 含有根号的三角函数积分:

5. 含有根号和指数的函数积分:

•
$$\int e^x \sqrt{1+e^x} \, dx$$
 (这类积分通常需要换元法)

6. 含有根号和有理函数的积分:

•
$$\int \frac{\sqrt{x}}{x^2+1} dx$$
 (可能需要分部积分法)

1.有理函数积分(部分分式分解):

$$\int \frac{1}{(x-a)(x-b)} dx = \frac{1}{b-a} \ln \left| \frac{x-a}{x-b} \right| + C$$

^{6.1.} 通常要用

76 积分表

2.根式函数积分:

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$$

$$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \ln \left(x + \sqrt{a^2 + x^2} \right) + C$$

3.指数函数与三角函数的积分:

$$\int e^{ax} \sin b \, x \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin b \, x - b \cos b \, x) + C$$

$$\int e^{ax} \cos b \, x \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos b \, x + b \sin b \, x) + C$$

- 三角函数的分式, 按顺序思考:
 - 1.凑微分,
 - 2.化简成一次式,或可以直接积分/凑微分积分的形式,
 - 3. 拆项,
 - 4.和差化积,
 - 5.万能代换。

不能凑微分,拆项或和差化积,所以用万能代换:命 $\tan\left(\frac{x}{2}\right) = t$.

[解答]原式=
$$\int \frac{\mathrm{d}}{x}\sin(2x) + 2\sin x = \int \frac{\mathrm{d}x}{2\sin x(\cos x + 1)}$$

(%i11) ds:
$$\sin\left(\frac{\log(abs(x))}{(x-1)(x-3)}\right)$$

(%o11)
$$\sin \left(\frac{\log (|x|)}{(x-3)(x-1)} \right)$$

(%i12)
$$tm_plot2d(ds, [x, -0.5, 3.5])$$

(%o12) true

索引

平方根函数积分:	平方根函数积分:

参考文献

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$