

ChatGPT及大模型专题研讨会

大型语言模型的涌现能力: 现象与解释

新浪微博 张俊林

2023-03

Outline

什么是大模型的涌现能力

02 LLM表现出的涌现现象

03 LLM模型规模和涌现能力的关系

模型训练中的顿悟现象

05 LLM涌现能力的可能原因

复杂系统中的涌现现象

涌现(Emergence):或称创发、突现、呈展、演生,是一种现象,为许多小实体相互作用后产生了大实体,而这个大实体展现了组成它的小实体所不具有的特性。(wiki 定义)

生活中的涌现现象

大型语言模型 (LLM): 模型规模快速增长

问题: 超级大模型会出现涌现现象吗?

规模大的Large Language Model:

- ✓ GPT 3.0 :175B
- ✓ GPT 3.5:175B
- ✓ LaMDA:130B
- ✓ Gopher:280B
- ✓ PaLM:540B
- ✓ PaLM-E:566B

LLM的规模效应: 下游任务表现-伸缩法则&&涌现能力

伸缩法则:知识密集型任务 涌现能力:多步骤构成的任务

LLM的规模效应:下游任务表现-U形曲线

From: Inverse scaling can become U-shaped

Outline

01 什么是大模型的涌现能力

02 LLM表现出的涌现现象

03 LLM模型规模和涌现能力的关系

位 模型训练中的顿悟现象

05 LLM涌现能力的可能原因

涌现现象-In Context Learning: 什么是In Context Learning

In Context Learning:给LLM几个示例,不调整模型参数,LLM即可解决某个领域的问题

In Context Learning=few shot prompting

涌现现象-In Context Learning: In Context Learning涌现能力

In Context Learning的涌现现象

涌现现象-CoT: 什么是思维链(Chain-of-Thought)

Standard Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. <

From: Chain of thought prompting elicits reasoning in large language models

涌现现象-CoT: 思维链的涌现能力

- Standard prompting
- Chain-of-thought prompting
- --- Prior supervised best

Model scale (# parameters in billions)

CoT涌现现象:数学问题

- Standard prompting
- Chain-of-thought prompting

Model scale (# parameters in billions)

CoT涌现现象:符号推理问题

涌现现象: 其它涌现能力

其它涌现现象:遵循指令、复杂数学运算等

Outline

02 LLM表现出的涌现现象

03 LLM模型规模和涌现能力的关系

模型训练中的顿悟现象

05 LLM涌现能力的可能原因

模型规模和涌现现象的关系: In Context Learning

与具体任务 / 具体模型相关:某些任务13B规模即可,有些任务需要540B,大部分要达到70B

	Emergent scale			
	Train. FLOPs	Params.	Model	Reference
Few-shot prompting abilities				
• Addition/subtraction (3 digit)	2.3E + 22	13B	GPT-3	Brown et al. (2020)
 Addition/subtraction (4-5 digit) 	3.1E + 23	175B		
• MMLU Benchmark (57 topic avg.)	3.1E + 23	175B	GPT-3	Hendrycks et al. (2021a)
 Toxicity classification (CivilComments) 	1.3E + 22	7.1B	Gopher	Rae et al. (2021)
• Truthfulness (Truthful QA)	5.0E + 23	280B		
• MMLU Benchmark (26 topics)	5.0E + 23	280B		
 Grounded conceptual mappings 	3.1E + 23	175B	GPT-3	Patel & Pavlick (2022)
• MMLU Benchmark (30 topics)	5.0E + 23	70B	Chinchilla	Hoffmann et al. (2022)
 Word in Context (WiC) benchmark 	2.5E + 24	540B	PaLM	Chowdhery et al. (2022)
• Many BIG-Bench tasks (see Appendix E)	Many	Many	Many	BIG-Bench (2022)

模型规模和涌现现象的关系: CoT等其它涌现能力

与具体任务 / 具体模型相关:有些任务40M即可,有些任务需要达到280B,大部分需要达到50B

	Emergent	scale			
	Train. FLOPs	Params.	Model	Reference	
Augmented prompting abilities					
• Instruction following (finetuning)	1.3E + 23	68B	FLAN	Wei et al. (2022a)	
• Scratchpad: 8-digit addition (finetuning)	8.9E + 19	40M	LaMDA	Nye et al. (2021)	
 Using open-book knowledge for fact checking 	1.3E + 22	7.1B	Gopher	Rae et al. (2021)	
 Chain-of-thought: Math word problems 	1.3E + 23	68B	LaMDA	Wei et al. (2022b)	
• Chain-of-thought: StrategyQA	2.9E + 23	62B	PaLM	Chowdhery et al. (2022)	
• Differentiable search index	3.3E + 22	11B	T5	Tay et al. (2022b)	
 Self-consistency decoding 	1.3E + 23	68B	LaMDA	Wang et al. (2022b)	
 Leveraging explanations in prompting 	5.0E + 23	280B	Gopher	Lampinen et al. (2022)	
• Least-to-most prompting	3.1E + 23	175B	GPT-3	Zhou et al. (2022)	
 Zero-shot chain-of-thought reasoning 	3.1E + 23	175B	GPT-3	Kojima et al. (2022)	
• Calibration via P(True)	2.6E + 23	52B	Anthropic	Kadavath et al. (2022)	
 Multilingual chain-of-thought reasoning 	2.9E + 23	62B	PaLM	Shi et al. (2022)	
• Ask me anything prompting	1.4E + 22	6B	EleutherAI	Arora et al. (2022)	

把模型做小影响LLM的涌现能力吗: 小模型代表Chinchilla

Chinchilla: DeepMind发布于2021年的LLM,SOTA性能,模型规模70B,训练数据量1400B

貌似Chinchilla在MMLU任务 是具备涌现能力的

可能的推论:

- 1.减小模型大小增加训练数据数量,可能不影响小模型 的涌现能力
- 2.如果上述假设成立,那么我们目前应该把模型先做小,再推大(保险起见,不应小于70B)

把模型做小影响LLM的涌现能力吗: 小模型代表LLaMA

LLaMA: Meta发布的开源LLM,规模从7B到65B,本质上是开源的Chinchilla

		Humanities	STEM	Social Sciences	Other	Average
GPT-NeoX	20B	29.8	34.9	33.7	37.7	33.6
GPT-3	175B	40.8	36.7	50.4	48.8	43.9
Gopher	280B	56.2	47.4	71.9	66.1	60.0
Chinchilla	70B	63.6	54.9	79.3	73.9	67.5
PaLM	8B	25.6	23.8	24.1	27.8	25.4
	62B	59.5	41.9	62.7	55.8	53.7
	540B	77.0	55.6	81.0	69.6	69.3
LLaMA	7B	34.0	30.5	38.3	38.1	35.1
	13B	45.0	35.8	53.8	53.3	46.9
	33B	55.8	46.0	66.7	63.4	57.8
	65B	61.8	51.7	72.9	67.4	63.4

Table 9: Massive Multitask Language Understanding (MMLU). Five-shot accuracy.

貌似LLaMA在MMLU任务 也是具备涌现能力的

效果比Chinchilla略好些 +1.8

因为涌现能力跟任务相关 所以可能需要对更多任务评估

Outline

01 什么是大模型的涌现能力

02 LLM表现出的涌现现象

03 LLM模型规模和涌现能力的关系

模型训练中的顿悟现象

05 LLM涌现能力的可能原因

模型训练过程中的顿悟现象: Grokking

Grokking: 训练数据较少的某些数学任务(取余问题),训练过程三阶段(记忆期、平台期、泛化期) (a+b) mod c =?

记忆期: 这些例子我记住了

平台期: 我再想一想

泛化期: 我明白规律了

模型训练过程中的顿悟现象: Grokking

Grokking的泛化:目前看是在学习一种输入的好的表征,这种表征可以体现当前学习任务的任务结构

Grokking现象对应的训练动态

模型训练过程中的顿悟现象: Grokking

Grokking可以解释LLM的涌现现象吗?

目前个别研究暗示两者应该存在某种关联,但是并未有研究建立两者之间的直接关系

Grokking看着更像是在训练过程中出现的涌现现象,和LLM的规模怎样建立起联系?

使用Grokking解释LLM涌现的核心在于说清楚:为何规模小的LLM模型不能出现Grokking?

后面会给出一种个人猜测,试图从Grokking角度来解释LLM的涌现现象

Outline

01 什么是大模型的涌现能力

02 LLM表现出的涌现现象

03 LLM模型规模和涌现能力的关系

模型训练中的顿悟现象

05 LLM涌现能力的可能原因

涌现能力原因猜想一: 任务评价指标不够平滑

Emoji_movie任务:输入Emoji,要求LLM给出完全正确的电影名称

```
Q: What movie does this emoji describe? 👧 🐟 🐠 🐡
     i'm a fan of the same name, but i'm not sure if it's a good idea
2m:
     the movie is a movie about a man who is a man who is a man ...
16m:
53m: the emoji movie 🐟 🐠 🠡
125m: it's a movie about a girl who is a little girl
244m: the emoji movie
422m: the emoji movie
     the emoji movie
1b:
    the emoji movie
2b:
     the emoji for a baby with a fish in its mouth
4b:
      the emoji movie
8b:
      the emoji is a fish
27b:
128b: finding nemo
```

例子:finding nemo(海底总动员)

涌现能力原因猜想一: 任务评价指标不够平滑

Emoji_movie任务:输入Emoji,要求LLM给出完全正确的电影名称

精确匹配:涌现现象

多项选择:scaling law现象

涌现能力原因猜想二:复杂任务 vs 子任务

猜想:最终任务过于复杂,由多个子任务构成,子任务符合Scaling Law,最终任务体现为涌现

假设: 最终任务T由5个sub-T构成,每个sub-T从40%提升到60%,最终任务从1.1% 提升到 7.8%

国际象棋:合法移动 vs 将死

合法移动: Scaling Law vs 将死: 涌现

涌现能力原因猜想二:复杂任务 vs 子任务

证据: CoT任务,62B和540B模型错误例子分析

Types of errors made by a 62B language model:

Semantic understanding (62B made 20 errors of this type, 540B fixes 6 of them)

One step missing (62B made 18 errors of this type, 540B fixes 12 of them)

Other
(62B made 7 errors of this type,
540B fixes 4 of them)

单步推理错误: 540B PaLM模型修正了62B模型18个错误中的12个

语义理解错误: 540B PaLM模型修正了62B模型20个错误中的6个

事实一: Grokking现象是描述数据量较少ML任务的,但是最少数据量需要达到阈值

训练集合使用比例对Grokking现象的影响

事实二: LLM模型规模越大,记忆数据的能力越强

Q: What is 24 times 18? A: ____ *Model:* 432 \(\sqrt{Q} \)
Q: What is 23 times 18? A: ____ *Model:* 462 \(\sqrt{X} \)

乘法运算:出现频次的影响

模型越大记忆能力越强: T(N,0.9)记住90%训练数据需要看到训练数据次数

问题:为什么当模型规模变大后,有些任务会出现涌现现象?

简单的解释:只利用事实1即可,就是说Grokking的出现要求:最少数据量需要达到阈值

某个任务T,尽管LLM总的训练数据量是足够大的,但是具体到任务T本身,相关数据量其实很少

大规模LLM相对规模小些的LLM来说,增加了训练数据量,所以任务T的训练数据量增加,达到最小 阈值

对于任务T来说,当LLM规模达到某个值→T的训练数据超过特定值→发生Grokking→学会规律→效果变好

问题:为什么当模型规模变大后,有些任务会出现涌现现象?

复杂的解释: 假设训练数据量保持不变,如何解释?同时利用事实1和事实2

某个任务T,尽管LLM总的训练数据量是足够大的,但是具体到任务T本身,相关数据量S其实很少

大规模LLM相对规模小些的LLM来说,记忆能力强,能有效记忆S中更多训练数据,当模型规模足够大,记忆S中的有效训练数据量,达到最小阈值

对于任务T来说,当LLM规模达到某个值→记忆T的训练数据超过特定值→发生Grokking→学会规律→效果变好

