

1 We claim:

2

- 3 1. A non-invasive spectrometric device for assessing the level of
4 hemoglobin in mammalian tissues comprising (a) wavelength
5 filter means for transmitting or reflecting wavelengths of
6 light; (b) light intensity sensor means arranged and disposed
7 to measure the intensity of the wavelengths transmitted or
8 reflected by the wavelength filter means and generate an
9 electrical signal therefrom, (c) output processing means
10 connected to the light intensity sensor means to receive and
11 process the output therefrom; and (d) display means
12 connected to the output processing means to display the
13 output.
- 14 2. The device of claim 1 wherein the light intensity sensor
15 means is arranged and disposed in stacked relation to the
16 wavelength filter means such that wavelengths of light are
17 transmitted through the wavelength filter means into the
18 light intensity sensor means.
- 19 3. The device of claim 1 wherein the light intensity sensor
20 means is arranged and disposed in angular relation to the
21 wavelength filter means such that wavelengths of light are
22 reflected from the wavelength filter means into the light
23 intensity sensor means.
- 24 4. The device of claim 1 wherein the wavelength filter means
25 comprises at least one pair of planer substrates in parallel-

- 1 opposed relation, at least one layer of light-wavelength
2 modulating material disposed between the pair of planer
3 substrates to achieve spectral coverage in the visible light
4 spectrum, and a power source in power-providing
5 communication with the substrate.
- 6 5. The device of claim 4 wherein the substrates are electrically
7 conducting substrates.
- 8 6. The device of claim 4 wherein the light-wavelength
9 modulating material comprises deformed helix ferroelectric
10 liquid crystals (DH-FLC), electrically tuned to exhibit pre-
11 determined wavelength selection properties.
- 12 7. The device of claim 6 wherein the molecules in the layers of
13 the DH-FLC are aligned perpendicular to the surfaces of the
14 planer substrates.
- 15 8. The device of claim 5 wherein the power source is in
16 electrical communication with the substrates to create an in-
17 plane electric field.
- 18 9. The device of claim 4 wherein the power source is in thermal
19 communication with one of the pair of substrates to create a
20 temperature change in the wavelength modulating material.
- 21 10. The device of claim 9 wherein the power source is a
22 transparent resistive heater positioned on the planer exterior
23 surface of one of the pair of substrates.

- 1 11. The device of claim 5 wherein the light-wavelength
2 modulating material comprises a layer of holographic
3 polymer dispersed liquid crystals (H-PDLC).
- 4 12. The device of claim 11 wherein one layer of H-PDLC is
5 arranged between two parallel-opposed electrically
6 conducting substrate layers so as to form a spatial gradient
7 in the H-PDLC from one edge of the substrate layers to the
8 opposing edge of the substrate layers.
- 9 13. The device of claim 11 wherein one layer of H-PDLC is
10 arranged between two parallel-opposed electrically
11 conducting substrate layers and wherein the H-PDLC has an
12 index of refraction variable in response to an applied electric
13 field.
- 14 14. The device of claim 11 comprising a stack composed of a
15 plurality of layers of H-PDLC arranged in alternating,
16 superposed, relation to a plurality of substrate layers,
17 wherein the number of substrate layers equals the number of
18 layers of H-PDLC plus one.
- 19 15. The device of claim 12 wherein the stack is composed of
20 between two and twenty layers of H-PDLC layers.
- 21 16. The device of claim 5 wherein the light-wavelength
22 modulating material comprises at least one layer of cholesteric
23 liquid crystals (CLC).
- 24 17. The device of claim 14 forming a stack composed a plurality
25 of CLC layers arranged in alternating, superposed, relation to

- 1 a plurality of substrate layers, the plurality of CLC layers
2 having the capacity to reflect light of different, per-
3 determined wavelengths, the stack having a number of
4 substrate layers one greater than the number of CLC layers
5 and wherein the power source produces electrical energy
6 perpendicular to the pitch axis of the CLC layers.
- 7 18. The device of claim 15 further comprising a passive optical
8 element disposed in parallel relation between two reflective
9 CLC of opposite-handedness.
- 10 19. The device of claim 16, composed of one layer of CLC
11 disposed between two layers of electrically conducting
12 substrate, wherein the one layer of CLC is subjected to a in-
13 plane electric field to produce different pitch sizes as the
14 electric field is increased.
- 15 20. The device of claim wherein the light intensity sensor means
16 is selected from the group consisting of an array of CCD and
17 a photodiode.
- 18