EE 619 (ZELE)

Project-1 [15 Marks]

Submission Deadline: 29th March 11:55 PM

- Submission must be in the format ROLLNO_EE619_Project1.pdf only
- Submissions after deadline will not be accepted under any circumstances
- Report all values preferably in tabular format where ever it is appropriate
- The submission must contain appropriate plots labelled clearly
- Please go through the supporting material for noise and non-linearity simulations

Consider the Common Source LNA shown below (Fig. 1). Design the LNA in UMC 65 nm technology to meet the following specifications.

- Center frequency $(f_0) = 2.49$ GHz and Bandwidth > 100 MHz
- Gain (Vout/Vin) $@f_0 > 20 \text{ dB}$
- S11 $@f_0 < -13 \text{ dB}$
- IIP3 (Input referred to 50Ω) > -2 dBm
- P1dB (Input referred to 50Ω) > -12 dBm
- NF $@f_0 < 2.5 dB$
- Total Power (including bias circuitry) < 4 mW

Component	Instance in UMC 65
MOSFET	N_12_LLLVTRF
Inductor	L_SY30K_RFVIL
Capacitor	MIMCAPS_20F_M1_RFKF
Resistor	RNHR_LLRF

Fig.1 Common Source LNA

Table.1 List of components from UMC 65 lib

Use $V_{DD} = 1.2 \text{ V}$, $C_{LOAD} = 250 \text{ fF}$.

Use components C_{Large} , C_{LOAD} , PORT (50 Ω), I_{BIAS} from analogLib and rest from UMC 65 library.

- 1. Bias the circuit appropriately and tabulate the values of I_{BIAS} , L_G , L_S , L_D , C_G , C_D , C_{Large} , R_B and W/L for all the transistors. Report power dissipation. Show the annotated DC operating points of the circuit.
- 2. Show the plots of Gain, S_{11} , IIP3, P1dB, NF and annotate the important points clearly.
- 3. Tabulate the noise contribution of the individual devices. Identify the major noise contributors.