S_I^* -ЗАМЫКАНИЕ МНОЖЕСТВА МУЛЬТИФУНКЦИЙ РАНГА 2

Тагласов Эдуард Станиславович

Иркутский государственный университет

23.11.22

Мультифункции

Пусть $E_2 = \{0, 1\}$. Множество всех мультифункций ранга 2 определяется следующим образом:

$$M_{2,n} = \{f|f: E_2^n \to 2^{E_2}\}, M_2 = \bigcup_n M_{2,n}$$

Мультифункции

Пусть $E_2 = \{0, 1\}$. Множество всех мультифункций ранга 2 определяется следующим образом:

$$M_{2,n} = \big\{ f | f : E_2^n \to 2^{E_2} \big\}, M_2 = \bigcup_n M_{2,n}$$

S_I -суперпозиция

Суперпозиция $f(f_1(x_1,...,x_m),...,f_n(x_1,...,x_m))$ задает мультифункцию $g(x_1,...,x_m)$ следующим образом. Если $(\alpha_1,...,\alpha_m)\in E_2^m$, то по определению:

$$g(\alpha_1,\dots,\alpha_m) = \begin{cases} \bigcap\limits_{\beta_i \in f_i(\alpha_1,\dots,\beta_n), \text{ если пересечение не пусто;} \\ \bigcup\limits_{\beta_i \in f_i(\alpha_1,\dots,\alpha_m)} f(\beta_1,\dots,\beta_n), \text{ иначе.} \\ \beta_i \in f_i(\alpha_1,\dots,\alpha_m) \end{cases}$$

Суперпозиция $f(f_1(x_1,...,x_m),...,f_n(x_1,...,x_m))$ задает мультифункцию $g(x_1,...,x_m)$ следующим образом. Если $(\alpha_1,...,\alpha_m)\in E_2^m$, то по определению:

$$g(\alpha_1,\dots,\alpha_m) = \begin{cases} \varnothing, \text{ если существует } i \in \{1,\dots,n\} \text{ такой, что} \\ f_i(\alpha_1,\dots,\alpha_m) = \varnothing \text{ или } f(\beta_1,\dots,\beta_n) = \varnothing \\ \text{для некоторого набора } (\beta_1,\dots,\beta_n) \text{ такого,} \\ \text{что } \beta_j \in f_j(\alpha_1,\dots,\alpha_m), \ j \in \{1,\dots,n\}; \\ \bigcap\limits_{\beta_i \in f_i(\alpha_1,\dots,\alpha_m)} f(\beta_1,\dots,\beta_n), \text{ если пересечение не пусто;} \\ \bigcup\limits_{\beta_i \in f_i(\alpha_1,\dots,\alpha_m)} f(\beta_1,\dots,\beta_n), \text{ иначе.} \end{cases}$$

$$g(x_1, x_2) = f(f_1(x_1, x_2), f_2(x_1, x_2))$$

x_1	x_2	f	f_1	f_2	g
0	0	1	0	_	
0	1	*	1	_	
1	0	0	_	0	
1	1	_	*	1	

$$g(x_1, x_2) = f(f_1(x_1, x_2), f_2(x_1, x_2))$$

x_1	x_2	f	f_1	f_2	g
0	0	1	0	_	
0	1	*	1	_	
1	0	0	_	0	
1	1	_	*	1	

$$g(x_1, x_2) = f(f_1(x_1, x_2), f_2(x_1, x_2))$$

x_1	x_2	f	f_1	f_2	g
0	0	1	0	_	*
0	1	*	1	_	
1	0	0	_	0	
1	1	_	*	1	

$$g(x_1, x_2) = f(f_1(x_1, x_2), f_2(x_1, x_2))$$

x_1	x_2	f	f_1	f_2	g
0	0	1	0	_	*
0	1	*	1	_	
1	0	0	_	0	
1	1	_	*	1	

$$g(x_1, x_2) = f(f_1(x_1, x_2), f_2(x_1, x_2))$$

x_1	x_2	f	f_1	f_2	g
0	0	1	0	_	*
0	1	*	1	_	0
1	0	0	_	0	
1	1	_	*	1	

$$g(x_1, x_2) = f(f_1(x_1, x_2), f_2(x_1, x_2))$$

x_1	x_2	f	f_1	f_2	g
0	0	1	0	_	*
0	1	*	1	_	0
1	0	0	_	0	
1	1	_	*	1	

$$g(x_1, x_2) = f(f_1(x_1, x_2), f_2(x_1, x_2))$$

x_1	x_2	f	f_1	f_2	g
0	0	1	0	_	*
0	1	*	1	_	0
1	0	0	_	0	_
1	1	_	*	1	

$$g(x_1, x_2) = f(f_1(x_1, x_2), f_2(x_1, x_2))$$

x_1	x_2	f	f_1	f_2	g
0	0	1	0	_	*
0	1	*	1	_	0
1	0	0	_	0	_
1	1	_	*	1	*

S_I^st -замыкание

Замыкание множества $Q\subseteq M_2$ (обозначим [Q]) — множество всех мультифункций из M_2 , которые можно получить из множества Q с помощью операций:

S_I^st -замыкание

- введение фиктивных переменных;
- ullet S_I^* -суперпозиция.

Задача

Сформулировать и доказать критерий S_I^* -полноты множества мультифункций ранга 2;

S_I^st -предполные множества мультифункций

$$K_6 = \text{Pol}R_6; R_6 = \begin{pmatrix} 0 & * & * & * & * & 0 & 1 & - \\ 1 & 0 & 1 & - & * & * & * \end{pmatrix};$$

S_I^st -предполные множества мультифункций

$$K_7 = \mathrm{Pol} R_7; \, R_7 = \left(\begin{array}{cccccccccc} 0 & 0 & 0 & 0 & 1 & 0 & 0 & * & * & \alpha \\ 0 & 0 & 0 & 1 & 1 & 1 & - & 1 & - & \beta \\ 0 & 0 & 1 & 0 & 1 & - & 1 & - & 1 & \gamma \\ 0 & 1 & 1 & 1 & 1 & * & * & * & * & * & \delta \end{array} \right),$$

где $(\alpha\beta\gamma\delta)^T$ — всевозможные недвоичные столбцы, которые одновременно удовлетворяют двум условиям:

- 1) если $-\in \{\alpha, \beta, \gamma, \delta\}$, то $\alpha, \beta, \gamma, \delta \in \{*, 0, -\}$;
- 2) если набор $(\alpha\beta\gamma\delta)$ содержит *, то его можно доопределить до набора $(\alpha'\beta'\gamma'\delta')$, который не содержит *, так, что $(\alpha'\beta'\gamma'\delta')^T\in R_7$.

Лемма 1

Пусть функции f, f_1, \ldots, f_s сохраняют предикат R. Тогда функция $g(x_1, \ldots, x_n) = f(f_1, \ldots, f_s)$ на двоичных наборах из предиката возваращает набор из предиката.

Лемма 2

Пусть функция $f(x_1,\dots,x_m)$ принимает все 4 значения $\{*,0,1,-\}$, а множество R полно в O_2 . Тогда множество $\{f\cup R\}$ является полным в M_2 .