Introduction to Digital Logic

Assist. Prof. Dr. Hamza Osman İLHAN

hoilhan@yildiz.edu.tr

Course Outline

- 1. Digital Computers, Number Systems, Arithmetic Operations, Decimal, Alphanumeric, and Gray Codes
- 2. Binary Logic, Gates, Boolean Algebra, Standard Forms
- 3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level Circuit Optimization
- 4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, High-Impedance Outputs
- 5. Implementation Technology and Logic Design, Design Concepts and Automation, The Design Space, Design Procedure, The major design steps
- 6. Programmable Implementation Technologies: Read-Only Memories, Programmable Logic Arrays, Programmable Array Logic, Technology mapping to programmable logic devices
- 7. Combinational Functions and Circuits
- 8. Arithmetic Functions and Circuits
- 9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
- 10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
- 11. Counters, register cells, buses, & serial operations
- 12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
- 13. Memory Basics

Introduction to Digital Logic

Lecture 4

Additional Gates and Circuits

- Other Gate Types
- Exclusive-OR Operator and Gates
 - High-Impedance Outputs

Other Gate Types

- Why?
 - Implementation feasibility and low cost
 - Power in implementing Boolean functions
 - Convenient conceptual representation
- Gate classifications
 - Primitive gate a gate that can be described using a single primitive operation type (AND or OR) plus an optional inversion(s).
 - Complex gate a gate that requires more than one primitive operation type for its description
- Primitive gates will be covered first

Buffer

• A buffer is a gate with the function F = X:

- In terms of Boolean function, a buffer is the same as a connection!
- So why use it?
 - A buffer is an electronic amplifier used to improve circuit voltage levels and increase the speed of circuit operation.

NAND Gate

• The basic NAND gate has the following symbol, illustrated for three inputs:

- AND-Invert (NAND)

• NAND represents <u>NOT AND</u>, i. e., the AND function with a NOT applied. The symbol shown is an AND-Invert. The small circle ("bubble") represents the invert function.

NAND Gates (continued)

• Applying DeMorgan's Law gives Invert-OR (NAND)

- This NAND symbol is called Invert-OR, since inputs are inverted and then ORed together.
- AND-Invert and Invert-OR both represent the NAND gate. Having both makes visualization of circuit function easier.
- A NAND gate with one input degenerates to an inverter.

NAND Gates (continued)

- The NAND gate is the natural implementation for the simplest and fastest electronic circuits
- *Universal gate* a gate type that can implement any Boolean function.
- The NAND gate is a universal gate
- NAND usually does not have an operation symbol defined since
 - the NAND operation is not associative, and
 - we have difficulty dealing with non-associative mathematics!

NOR Gate

• The basic NOR gate has the following symbol, illustrated for three inputs:

- OR-Invert (NOR)

• NOR represents <u>NOT - OR</u>, i. e., the OR function with a NOT applied. The symbol shown is an OR-Invert. The small circle ("bubble") represents the invert function.

NOR Gate (continued)

• Applying DeMorgan's Law gives Invert-AND (NOR)

- This NOR symbol is called Invert-AND, since inputs are inverted and then ANDed together.
- OR-Invert and Invert-AND both represent the NOR gate. Having both makes visualization of circuit function easier.
- A NOR gate with one input degenerates to an inverter.

NOR Gate (continued)

- The NOR gate is another natural implementation for the simplest and fastest electronic circuits
- The NOR gate is a universal gate
- NOR usually does not have a defined operation symbol since
 - the NOR operation is not associative, and
 - we have difficulty dealing with non-associative mathematics!

Exclusive OR/ Exclusive NOR

- The *eXclusive OR* (*XOR*) function is an important Boolean function used extensively in logic circuits.
- The XOR function may be;
 - implemented directly as an electronic circuit (truly a gate) or
 - implemented by interconnecting other gate types (used as a convenient representation)
- The *eXclusive NOR* function is the complement of the XOR function
- By our definition, XOR and XNOR gates are complex gates.

Exclusive OR/ Exclusive NOR

- Uses for the XOR and XNORs gate include:
 - Adders/subtractors/multipliers
 - Counters/incrementers/decrementers
 - Parity generators/checkers
- Definitions
 - The XOR function is: $X \oplus Y = XY + XY$
 - The eXclusive NOR (XNOR) function, otherwise known as equivalence is: $\overline{X} \oplus \overline{Y} = X Y + \overline{X} \overline{Y}$
- Strictly speaking, XOR and XNOR gates do no exist for more than two inputs. Instead, they are replaced by odd and even functions.

Truth Tables for XOR/XNOR

• Operator Rules: XOR

X	Y	X⊕Y	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

XNOR

X	Y	$\overline{(X \oplus Y)}$	
		or X≡Y	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

• The XOR function means:

X OR Y, but NOT BOTH

• Why is the XNOR function also known as the *equivalence* function, denoted by the operator \equiv ?

XOR/XNOR (Continued)

• The XOR function can be extended to 3 or more variables. For more than 2 variables, it is called an *odd function* or *modulo 2 sum* (*Mod 2 sum*), not an XOR:

$$X \oplus Y \oplus Z = \overline{X} \overline{Y} Z + \overline{X} Y \overline{Z} + X \overline{Y} \overline{Z} + X Y Z$$

- The complement of the odd function is the even function.
- The XOR identities:

$$X \oplus 0 = X$$
 $X \oplus 1 = \overline{X}$
 $X \oplus X = 0$ $X \oplus \overline{X} = 1$
 $X \oplus Y = Y \oplus X$
 $(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$

Symbols For XOR and XNOR

• XOR symbol:

• XNOR symbol:

• Symbols exist only for two inputs

XOR Implementations

• The simple SOP implementation uses the following structure:

• A NAND only implementation is:

Odd and Even Functions

- The odd and even functions on a K-map form "checkerboard" patterns.
- The 1s of an odd function correspond to minterms having an index with an odd number of 1s.
- The 1s of an even function correspond to minterms having an index with an even number of 1s.
- Implementation of odd and even functions for greater than 4 variables as a two-level circuit is difficult, so we use "trees" made up of:
 - 2-input XOR or XNORs
 - 3- or 4-input odd or even functions

Example: Odd Function Implementation

- Design a 3-input odd function $F = X \oplus Y \oplus Z$ with 2-input XOR gates
- Factoring, $F = (X \oplus Y) \oplus Z$
- The circuit:

Example: Even Function Implementation

- Design a 4-input odd function $F = W \oplus X \oplus Y \oplus Z$ with 2-input XOR and XNOR gates
- Factoring, $F = (W \oplus X) \oplus (Y \oplus Z)$
- At the second level use XNOR instead of XOR:

Parity Generators and Checkers

- In Chapter 1, a parity bit added to n-bit code to produce an n + 1 bit code:
 - Add odd parity bit to generate code words with even parity
 - Add even parity bit to generate code words with odd parity
 - Use odd parity circuit to check code words with even parity
 - Use even parity circuit to check code words with odd parity
- Example: n = 3. Generate even parity code words of length 4 with odd parity generator:
- Check even parity code words of length 4 with odd parity checker:
- Operation: (X,Y,Z) = (0,0,1) gives (X,Y,Z,P) = (0,0,1,1) and E = 0. Z

 If Y changes from 0 to 1 between P

 generator and checker, then E = 1 indicates an error.

Hi-Impedance Outputs

- Logic gates introduced thus far
 - have 1 and 0 output values,
 - cannot have their outputs connected together, and
 - transmit signals on connections in <u>only one</u> direction.
- Three-state logic adds a third logic value, Hi-Impedance (Hi-Z), giving three states: 0, 1, and Hi-Z on the outputs.
- The presence of a Hi-Z state makes a gate output as described above behave quite differently:
 - "1 and 0" become "1, 0, and Hi-Z"
 - "cannot" becomes "can," and
 - "only one" becomes "two"

Hi-Impedance Outputs (continued)

- What is a Hi-Z value?
 - The Hi-Z value behaves as an open circuit
 - This means that, looking back into the circuit, the output appears to be disconnected.
 - It is as if a switch between the internal circuitry and the output has been opened.
- Hi-Z may appear on the output of any gate, but we restrict gates to:
 - a 3-state buffer, or
 - a transmission gate,

each of which has one data input and one control input.

The 3-State Buffer

- For the symbol and truth table, IN is the <u>data input</u>, and EN, the <u>control input</u>.
- For EN = 0, regardless of the value on IN (denoted by X), the output value is Hi-Z.
- For EN = 1, the output value follows the input value.
- Variations:
 - Data input, IN, can be inverted
 - Control input, EN, can be inverted
 by addition of "bubbles" to signals.

Truth Table

EN	IN	OUT	
0	X	Hi-Z	
1	0	0	
1	1	1	

3-State Logic Circuit

- Data Selection Function: If s = 0, OL = IN0, else OL = IN1
- Performing data selection with 3-state buffers:

EN0	IN0	EN1	IN1	OL
0	X	1	0	0
0	X	1	1	1
1	0	0	X	0
1	1	0	X	1
0	X	0	X	X

• Since $EN0 = \overline{S}$ and EN1 = S, one of the two buffer outputs is always Hi-Z plus the last row of the table never occurs.

Transmission Gates

• The transmission gate is one of the designs for an electronic switch for connecting and disconnecting two points in a circuit:

Transmission Gates (continued)

- In many cases, X can be regarded as a data input and Y as an output. C and \overline{C} , with complementary values applied, is a control input.
- With these definitions, the transmission gate, provides a 3-state output:
 - C = 1, Y = X (X = 0 or 1)- C = 0, Y = Hi-Z
- Care must be taken when using the TG in design, however, since X and Y as input and output are interchangeable, and signals can pass in both directions.

Circuit Example Using TG

• Exclusive OR $F = A \oplus C$

• The basis for the function implementation is TG-controlled paths to the output