Stats744: HW4

Illustrating Statistical Inference

Data:

As part of my thesis I have information about substitutions and their variation across four bacterial genomes: E. coli, B. subtilis, Streptomyces, and S. meliloti. The bacteria S. meliloti is a multi-repliconic bacteria and therefore each of it's replicons is analyzed separatly. The data is binary, stating at each site in the genome if there is a substitution, or there is not. This was also broken down into protein coding and non-protein coding sections of the genome. I previously fit a logistic regression to the data and obtained a table with the following results:

Bacteria and Replicon	Coefficent Estimate	Standard Error	z-value	P(> z)
E. coli Chromosome	-4.308×10^{-8}	2.584×10^{-9}	-16.67	$<2 \times 10^{-16}$
B. subtilis Chromosome	-4.971×10^{-8}	4.268×10^{-9}	-11.65	$<2 \times 10^{-16}$
Streptomyces Chromosome	1.989×10^{-8}	8.696×10^{-10}	57.37	$<2 \times 10^{-16}$
$S.\ meliloti$ Chromosome	-1.903×10^{-7}	2.13×10^{-8}	-8.934	$<2\times10^{-16}$
S. meliloti pSymA	-6.642×10^{-7}	2.801×10^{-8}	-23.71	$<2 \times 10^{-16}$
S. meliloti pSymB	1.769×10^{-7}	2.33×10^{-8}	7.593	3.11×10^{-14}

Bacteria and Replicon	Coefficent Estimate	Standard Error	z-value	Р
E. coli Chromosome	9.896×10^{-9}	7.159×10^{-9}	1.382	0.167
B. subtilis Chromosome Streptomyces Chromosome	-1.055×10^{-7} 1.635×10^{-7}	1.25×10^{-8} 2.893×10^{-9}	-8.436 56.5	$<2\times10^{-16}$ $<2\times10^{-16}$
S. meliloti Chromosome	-2.900×10^{-7}	3.852×10^{-8}	-7.527	5.18×10^{-14}
S. meliloti pSymA	-1.263×10^{-6}	5.595×10^{-8}	-22.57	$<2\times10^{-16}$
S. meliloti pSymB	4.771×10^{-7}	5.314×10^{-8}	8.978	$<2 \times 10^{-16}$

Read in the data and format: (I have over 160 million lines of data so it was just not feisable to run the logistic regressions. So I manually added the output from the logistic regression results)

I think I may have cheated a bit, but I made each bacteria a "term" even though they were not actually "terms" in the model. Each logistic regression model was run separatly on both the protein coding and non-protein coding sections of each bacterial replicon.

Graph

Discussion

I was really excited for this assignment because I think it is a cool way to present multiple coefficent estimates focusing on their significance. It never occured to me to present my logistic regression results like this.

```
#I tried many things to make the bacteria names italic (like the below code), but I ju
#dwplot() appears to not like expressions or paste...or substitute
#subs_dat %>% dwplot(relabel_predictors(c("ecoli" = expression(paste(italic("E.coli"),
                            "bass" = expression(paste(italic("B. subtilis"), " Chromoso
                            "strep" = expression(paste(italic("Streptomyces"), " Chromo
#
#
                            "sinoC" = expression(paste(italic("S.meliloti"), " Chromoso
                            "pSymA" = expression(paste(italic("S.meliloti"), " pSymA"))
#
                            "pSymB" = expression(paste(italic("S.meliloti"), " pSymB"))
#
#
  xlab("CHANGE ME (x10^2)") +
  geom_vline(xintercept=0,lty=2)+
#
   scale_colour_manual(values=c("#E08F8F", "#173FAA"),
#
                       name = "",
#
#
                       breaks=c("0", "1"),
                       labels = c("Protein Coding", "Non-Protein Coding"))
#
#I also tried this before I made the dwplot
```