

The different purposes

Common usage

- Search engine
- Spellchecker

Academic

- Plagiarism detection
- DNA sequencing

Industry

Database matching

The different purposes

Common usage

- Search engine
- Spellchecker

Academic

- Plagiarism detection
- DNA sequencing

Industry

Database matching

On-line vs off-line

Accuracy

Travel distance

On-line vs off-line

Accuracy

Travel distance

- Q what pwerfol
- What pwerfol Search with DuckDuckGo
- Q what powerful king united ancient egypt
- Q what powerful technique is king k known for

On-line vs off-line

Accuracy

Travel distance

\sim	100	
Q	what	pwerfol

- Q what powerful king united ancient egypt
- Q what powerful technique is king k known for

list_A	list_B
Accenture	Addobbe
Adobe	Accent Ilxure
Akamai Technologies	
Alexandria Real Estate Equities	duP0nt+
Berkshire Hathaway	
Bio-Techne	Kalcommm
Biogen	cisco-systems
Boeing	cisco-systems

On-line vs off-line

Accuracy

Travel distance

Algorithms

 O, Ω , and Θ notation

Naive - Θ(nm)

Hamming - $\Theta(n)$

Levenshtein - $\Theta(n + d^2)$

N-Gram

BK Tree

Bitap

Hamming Distance

For a string S and T of the same length, the number of positions which are different

```
S = "slide"
```

T = "pride"

Since $S[0] \neq T[0]$ and $S[1] \neq T[1] =>$ The hamming distance is 2

Levenshtein distance

Insertion

Deletion

Substitution

Edit distance

Levenshtein distance

Complexity O(|a| x |b|)

Upper boundary K

 $O(\min(|a|, |b|) \times K)$

		S	Y	D	N	Y		M	E	Y	Е	R
	0	1	2	3	4	5	6	7	8	9	10	11
S	1	0	1	2	3	4	5	6	7	8	9	10
Y	2	1	0	1	2	3	4	5	6	7	8	9
D	3	2	1	0	1	2	3	4	5	6	7	8
N	4	3	2	1	1	2	3	4	4	5	6	7
E	5	4	3	2	1	2	3	4	5	5	6	7
Y	6	5	4	3	2	1	2	3	4	5	6	7
	7	6	5	4	3	2	1	2	3	4	5	6
M	8	7	6	5	4	3	2	1	2	3	4	5
E	9	8	7	6	5	4	3	2	1	2	3	4
I	10	9	8	7	6	5	4	3	2	2	3	4
E	11	10	9	8	7	6	5	4	3	3	2	3
R	12	11	10	9	8	7	6	5	4	4	3	2

The Sauce

https://www.baeldung.com/cs/fuzzy-search-algorithm

https://www.researchgate.net/publication/31594565 Generalized Hamming Distance

https://en.wikipedia.org/wiki/Approximate string matching

https://en.wikipedia.org/wiki/Hamming distance

https://www.geeksforgeeks.org/applications-of-string-matching-algorithms/

Conclusion

Strings are pretty cool