Minia University Computer and Systems Eng. Dept. LAB(1), CS 113 Final Exam Faculty of Engineering
First Year
June -- , 2017
Time allowed: 3 Hrs.

Notes:

- Please verify that there are **5** pages in your exam booklet.

- Do all of your answers in the spaces provided in this examination booklet, or on the back side of the page preceding the question.
- Good Luck!

QUESTION (I) (20 points):

- (1.1) State the superposition theorem.
- (1.2) List the steps in applying the theorem.
- (1.3) Describe how you can verify it experimentally.

QUESTION (II) (20 points):

- (2.1) Verify the meters readings in Figure 1 and determine if there is a fault in the circuit.
- (2.2) If R_2 opens, what will meters read?
- (2.3) If the voltage source V_s has an internal resistance R_s =100 Ω , determine its effect on the meters readings.

Figure 1

QUESTION (III) (20 points):

- (3.1) What is the resonant frequency and what are the applications of the resonant circuits?
- (3.2) Describe how you can verify the response of a series R-L-C circuit experimentally.
- (3.3) Describe how you can find experimentally Q factor of a coil using a series R-L-C circuit.

QUESTION (IV) (20 points):

Complete the following sentences:

1-	Two series capacitors (one 1μ F, the other of unknown value) are charged from a 12 V source. The 1μ F capacitor is charged to 8 V and the other to 4 V. the value of the unknown capacitor is
2-	The tolerance of a resistor of nominal value 2 $k\Omega$ and a measured resistance of 2020 Ω is
3-	the term "Voltage Regulation" means
	In a band-stop filter, the output voltage at the critical frequencies is
	A meter has a scale of 5 percent of FSD on the 10 mA scale. The meter reads 4 mA. the smallest value that the actual current may be is
6-	Maximum power is transferred from a source to a load when
7-	The primary purpose of a resistor is to
8-	A resistor that has the colored bands blue-gray-orange-silver has a minimum value of
9-	A certain circuit produces 15 V across its open output terminals, and when a load is connected across its output terminals, it produces 12 V. The Thevenin equivalent for this circuit is
10	-For the circuit described in Question 9, maximum power is transferred to
11	-A sine wave has an average value of 10 V. Its rms value is
12	-A 10 kHz pulse waveform consists of pulses that are 10 μ s wide. Its duty cycle is
13	-In a four-branch parallel resistor circuit, there are 10 mA of current in each branch. If one of the branches opens, the current in each of the other three branches is
14	-An ohmmeter is connected across an inductor and the pointer indicates an infinite value. The inductor is
15	-At the critical frequency, the output of a filter is down from its maximum by
16	-When the current through a $10k\Omega$ resistor is 10 mA, the power is
17	-In an RC low-pass filter, the output is taken across
18	-An inductor, a resistor, and a switch are connected in series to a 12 V battery. At the instant the switch is closed, the inductor voltage is
19	-When the frequency of the source voltage is increased, the impedance of a parallel RC circuit
20-	One period of a 2 kHz sine wave is found to occupy 5 cm on an oscilloscope screen. The time base must be set at

QUESTION (V) (20 points):

- (5.1) Design and show how to verify experimentally a full wave rectifier circuit.
- (5.2) Briefly discuss the ripple effect on the output from a filtered rectifier circuit.
- (5.3) What is the effect of using the zener diode in rectifier circuits?

With my best wishes,

Prof. Dr. M. Moness