

Machine Learning for Signal Processing Hidden Markov Models

Yuxuan Wu and Zhongyuan Zhai

Problem 2: State segmentation

 Given only a sequence of observations, how do we determine which sequence of states was followed in producing it?

The HMM as a generator

 The process goes through a series of states and produces observations from them

States are hidden

HMM assumed to be generating data

• The observations do not reveal the underlying state

The state segmentation problem

State segmentation: Estimate state sequence given observations

Estimating the State Sequence

 Many different state sequences are capable of producing the observation

- Solution: Identify the most *probable* state sequence
 - The state sequence for which the probability of progressing through that sequence and generating the observation sequence is maximum
 - i.e $P(o_1, o_2, o_3, ..., S_1, S_2, S_3, ...)$ is maximum

Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

$$P(o_1, o_2, o_3, ..., s_1, s_2, s_3, ...) =$$

$$P(o_1|s_1)P(o_2|s_2)P(o_3|s_3)...P(s_1)P(s_2|s_1)P(s_3|s_2)...$$

Needed:

$$\arg\max_{s_1, s_2, s_3, \dots} P(o_1 \mid s_1) P(s_1) P(o_2 \mid s_2) P(s_2 \mid s_1) P(o_3 \mid s_3) P(s_3 \mid s_2)$$

Estimating the state sequence

- Once again, exhaustive evaluation is impossibly expensive
- But once again a simple dynamic-programming solution is available

$$P(o_1, o_2, o_3, ..., s_1, s_2, s_3, ...) =$$

$$P(o_1|s_1)P(o_2|s_2)P(o_3|s_3)...P(s_1)P(s_2|s_1)P(s_3|s_2)...$$

Needed:

$$\arg\max_{s_1, s_2, s_3, \dots} P(o_1 \mid s_1) P(s_1) P(o_2 \mid s_2) P(s_2 \mid s_1) P(o_3 \mid s_3) P(s_3 \mid s_2)$$

The HMM as a generator

 Each enclosed term represents one forward transition and a subsequent emission

The state sequence

• The probability of a state sequence $?,?,?,s_x,s_y$ ending at time t, and producing all observations until o_t

-
$$P(o_{1..t-1}, ?,?,?,?, s_x, o_t,s_y) = P(o_{1..t-1},?,?,?,s_x) P(o_t|s_y)P(s_y|s_x)$$

• The *best* state sequence that ends with s_x , s_y at t will have a probability equal to the probability of the best state sequence ending at t-l at s_x times $P(o_t|s_y)P(s_y|s_x)$

Extending the state sequence

• The probability of a state sequence $?,?,?,s_x,s_y$ ending at time t and producing observations until o_t

-
$$P(o_{1..t-1}, o_t, ?, ?, ?, ?, s_x, s_y) = P(o_{1..t-1}, ?, ?, ?, s_x) P(o_t | s_y) P(s_y | s_x)$$

Trellis

 The graph below shows the set of all possible state sequences through this HMM in five time instants

12

The cost of extending a state sequence

• The cost of extending a state sequence ending at s_x is only dependent on the transition from s_x to s_y , and the observation probability at s_v

The cost of extending a state sequence

• The best path to s_y through s_x is simply an extension of the best path to s_x

The Recursion

• The overall best path to s_y is an extension of the best path to one of the states at the previous time

15

The Recursion

• Prob. of best path to $s_v =$ $\mathsf{Max}_{\mathsf{s}_{\mathsf{x}}} \; \mathsf{BestP}(o_{1..\mathsf{t}-1},?,?,?,\mathsf{s}_{\mathsf{x}}) \; \mathsf{P}(o_{t}|s_{y}) \mathsf{P}(s_{y}|s_{x})$

16

Finding the best state sequence

- The simple algorithm just presented is called the VITERBI algorithm in the literature
 - After A.J.Viterbi, who invented this dynamic programming algorithm for a completely different purpose: decoding error correction codes!

time

In this example all other states have score 0 since $P(s_i) = 0$ for them

- State with best path-score
- State with path-score < best</p>
- State without a valid path-score

$$P_{j}(t) = \max_{i} \left[P_{i}(t-1) t_{ij} b_{j}(t) \right]$$

State transition probability, i to j

Score for state j, given the input at time t

Total path-score ending up at state *j* at time *t*

→ time

19

$$P_{j}(t) = \max_{i} \left[P_{i}(t-1) t_{ij} b_{j}(t) \right]$$

State transition probability, *i* to *j*

Score for state *j*, given the input at time *t*

Total path-score ending up at state *j* at time *t*

time

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION

Problem3: Training HMM parameters

- We can compute the probability of an observation, and the best state sequence given an observation, using the HMM's parameters
- But where do the HMM parameters come from?
- They must be learned from a collection of observation sequences

HMM Parameters

- The transition probabilities
 - Often represented as a matrix as here
 - T_{ij} is the probability that when in state i, the process will move to j
- The probability π_i of beginning at any state s_i
 - The complete set is represented as π
- The state output distributions
 - Typically histograms, Gaussians, or Gaussian mixtures
 - Assuming Gaussian
 - Parameters are mean and variance

$$T = \begin{pmatrix} .6 & .4 & 0 \\ 0 & .7 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

Learning HMM parameters: Simple procedure – counting

- Given a set of training instances
- Iteratively:
- 1. Initialize HMM parameters
- 2. Segment all training instances
- 3. Estimate transition probabilities and state output probability parameters by counting

Learning by counting example

- Explanation by example in next few slides
- 2-state HMM, Gaussian PDF at states, 3 observation sequences
- Example shows ONE iteration
 - How to count after state sequences are obtained

- We have an HMM with two states s1 and s2.
- Observations are vectors x_{ii}
 - i-th sequence, j-th vector

- We are given the following three observation sequences
 - And have already estimated state sequences

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	X _{a1}	X_{a2}	X_{a3}	X_{a4}	X _{a5}	X _{a6}	X _{a7}	X _{a8}	X_{a9}	X_{a10}

Observation 2

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X_{b1}	X _{b2}	X_{b3}	X_{b4}	X_{b5}	X_{b6}	X_{b7}	X_{b8}	X_{b9}

Observation 3

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X _{c1}	X _{c2}	X _{c3}	X_{c4}	X _{c5}	X _{c6}	X _{c7}	X _{c8}

• Initial state probabilities (usually denoted as π):

- We have 3 observations
- 2 of these begin with S1, and one with S2
- $\pi(S1) = 2/3, \pi(S2) = 1/3$

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
stat	S1) 1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	λ_{a1}	X_{a2}	X_{a3}	X_{a4}	X_{a5}	X_{a6}	X_{a7}	X_{a8}	X_{a9}	X_{a10}

Observation 2

Time	1	2	3	4	5	6	7	8	9
stat	S2	§ 2	S1	S1	S2	S2	S2	S2	S1
Obs	A _{b1}	X_{b2}	X_{b3}	X_{b4}	X_{b5}	X_{b6}	X_{b7}	X_{b8}	X_{b9}

Observation 3

Time	1	2	3	4	5	6	7	8
stat	S 1	\$ 2	S1	S 1	S1	S2	S2	S2
Obs	Ael	X _{c2}	X_{c3}	X_{c4}	X_{c5}	X _{c6}	X_{c7}	X_{c8}

Transition probabilities:

State S1 occurs 11 times in non-terminal locations

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	Xal	Xaz	X_{a3}	X_{a4}	X _{a5}	1 a6	Ya/	X _{a8}	Y ay	X _{a10}

Observation 2

Time	1	2	2	4	5	6	7	8	0
state	S2	S2	S1	S1	32	S2	S2	S2	S1
Obs	X _{b1}	X _{b2}	X _{b3}	X _{b4}	X _{b5}	X _{b6}	X _{b7}	X _{b8}	X _{b9}

Observation 3

Time	1	2	3	1	5	6	7	8
state	S1	S2	S1	S1	S 1	S2	S2	S2
Obs	Acl	X _{c2}	A _{c3}	Λ_{c4}	Λ_{c5}	X _{c6}	X_{c7}	X _{c8}

Transition probabilities:

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times

Observation 1

Time	1	4	3	4	5	6		8	9	10
state	S1	S1	S2	S2	S2	S1	S 1	S	S1	S1
Obs	Yal	Maz	\mathbf{Y}_{a3}	X_{a4}	X _{a5}	Y a6	Ya/	X_{a8}	Yay	Yalu

Observation 2

Time	1	2	2	4	6	7	8	0
state	S2	S2	S1	S1 32	S2	S2	S2	S1
Obs	X _{b1}	X _{b2}	X _{b3}	Y _{b4} Y ₀₅	X _{b6}	X _{b7}	X _{b8}	X _{b9}

Observation 3

Time	1	2	3	4		7	8
state	S1	S2	S1	S1	S2	S2	S2
Obs	Ac1	X _{c2}	Λ_{c3}	Λ_{c4}	c5 Vc6	X _{c7}	X_{c8}

Transition probabilities:

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times
- It is followed immediately by S2 5 times

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	Si	S2	\$2	S2	S1	S1	S2	SI	S1
Obs	X _{al}	Xaz	X_{a3}	X _{a4}	X _{a5}	Y a6	Y _a /	X_{a8}	7 ay	Xaiu

Observation 2

Time	1	2	2	1	0	6	7	8	0
state	S2	S2	S1	S1	S2	S	S2	S2	S1
Obs	X _{b1}	X _{b2}	λ_{b3}	λ_{b4}	X_{b5}	Y _{b6}	X _{b7}	X _{b8}	X _{b9}

Observation 3

Time	1	2	3	1	5	6	X	8
state	S1	S2	SI	S1	S1	S2	S	S2
Obs	$\Lambda_{\rm cl}$	X_{c2}	A _{c3}	Λ_{c4}	Λ_{c5}	X	X _{e7}	X _{c8}

Transition probabilities:

- State S1 occurs 11 times in non-terminal locations
- Of these, it is followed immediately by S1 6 times
- It is followed immediately by S2 5 times
- P(S1 | **S1**) = 6/11; P(S2 | **S1**) = 5/11

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	X_{a1}	X_{a2}	X_{a3}	X_{a4}	X_{a5}	X_{a6}	X_{a7}	X_{a8}	X_{a9}	X_{a10}

Observation 2

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X _{b1}	X _{b2}	X _{b3}	X_{b4}	X _{b5}	X _{b6}	X _{b7}	X _{b8}	X _{b9}

Observation 3

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X _{c1}	X _{c2}	X_{c3}	X_{c4}	X _{c5}	X _{c6}	X_{c7}	X_{c8}

• Transition probabilities:

State S2 occurs 13 times in non-terminal locations

Observation 1

Time	1	2	ĵ	4	5	6	7	ô	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs.	X _{a1}	X _{a2}	X_{a3}	X_{a4}	X _{a5}	X_{a6}	X_{a7}	X _{a8}	X_{a9}	X_{a10}

Observation 2

Time	1	2	3	4	5	6	7	Q	9
state	S2	S2	S1	S1	S2	S2)S2 (S2	S1
Obs	λ_{b1}	A _{b2}	X_{b3}	X _{b4}	X _{b5}	A _{b6}	A _{b7}	A _{b8}	X _{b9}

Observation 3

Time	1	2	3	4	5	6	7	9
state	S1	S2	S1	S1	S1	S2)S2	S2
Obs	X _{c1}	A _{c2}	X _{c3}	X _{c4}	X _{c5}	λ_{c6}	Λ_{e7}	A _{c8}

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times

Observation 1

Time	1	2	â	4	5	6		ô	9	10
state	S1	S1	S2	S2	S2	S1	<i>\$</i> 1	S	S1	\$1
Obs	X_{a1}	X _{a2}	X_{a3}	X_{a4}	X_{a5}	Yau	X_{a7}	X _{a8}	V	X_{a10}

Observation 2

Time	1	2	3	4	5	6	7	0	9	
state	S2	S ₁	S1	\$1	S2	S2	S2	S2	S1)
Obs	λ_{b1}	Λ_{b2}	Xız	X_{b4}	λ_{b5}	λ_{b6}	A _{b7}	λ_{b8}	Yko	

Observation 3

Time	1	2	3	4	5	6	7	
state	S1	S ₁	S1	§ 1	S1	S2	S2	S2
Obs	X _{c1}	Λ_{c2}	Xa	X _{c4}	X _{c5}	λ_{c6}	Λ_{e7}	A _{c8}

Transition probabilities:

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times
- It is followed immediately by S2 8 times

Observation 1

Time	1	2	3	4		1	7	ô	9	10
state	S1	S1	S	S ₂	32	91	S1	S2	S1	S1
Obs	X_{a1}	X _{a2}	X_{a3}	74	Yap	X _{a6}	X _{a7}	X _{a8}	X _{a9}	X_{a10}

Observation 2

Time	1	2 3	1	5 6		
state	S2	S1 S1	\$1	S2 () S2 ((1) S2 (1) S	SL SI
Obs	λ_{b1}	112	X_{b4}	Ab5 Ab6	167	1 pg

Observation 3

Time	1	2	3	4	5	6	17	
state	S1	S2	S1	S1	S1	S2	1)S1	S^2
Obs	X _{c1}	Λ_{c2}	X_{c3}	X_{c4}	X _{c5}	Λ_{c6}	1 2 65	100

Transition probabilities:

- State S2 occurs 13 times in non-terminal locations
- Of these, it is followed immediately by S1 5 times
- It is followed immediately by S2 8 times

$$-$$
 P(S1 | S2) = 5 / 13; P(S2 | S2) = 8 / 13

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	X_{a1}	X_{a2}	X_{a3}	X_{a4}	X_{a5}	X_{a6}	X_{a7}	X_{a8}	X_{a9}	X_{a10}

Observation 2

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X _{b1}	X _{b2}	X_{b3}	X_{b4}	X _{b5}	X _{b6}	X _{b7}	X _{b8}	X _{b9}

Observation 3

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X_{c1}	X _{c2}	X_{c3}	X_{c4}	X _{c5}	Xc6	X_{c7}	X_{c8}

Parameters learnt so far

• State initial probabilities, often denoted as π

$$-\pi(S1) = 2/3 = 0.66$$

$$-\pi(S2) = 1/3 = 0.33$$

State transition probabilities

$$- P(S1 \mid S1) = 6/11 = 0.545; P(S2 \mid S1) = 5/11 = 0.455$$

$$- P(S1 \mid S2) = 5/13 = 0.385; P(S2 \mid S2) = 8/13 = 0.615$$

Represented as a transition matrix

$$A = \begin{pmatrix} P(S1 \mid S1) & P(S2 \mid S1) \\ P(S1 \mid S2) & P(S2 \mid S2) \end{pmatrix} = \begin{pmatrix} 0.545 & 0.455 \\ 0.385 & 0.615 \end{pmatrix}$$

Each row of this matrix must sum to 1.0

- State output probability for S1
 - There are 13 observations in S1

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	X_{a1}	X _{a2}	X_{a3}	X_{a4}	X_{a5}	X_{a6}	X_{a7}	X_{a8}	X_{a9}	X_{a10}

Observation 2

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X _{b1}	X _{b2}	X_{b3}	X_{b4}	X _{b5}	X _{b6}	X _{b7}	X_{b8}	X_{b9}

Observation 3

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X _{c1}	X _{c2}	X_{c3}	X_{c4}	X _{c5}	Xc6	X _{c7}	X_{c8}

- State output probability for S1
 - There are 13 observations in S1

- Segregate them out and count
 - Compute parameters (mean and variance) of Gaussian output density for state S1

Time	1	2	6	7	9	10
state	S1	S1	S1	S1	S1	S1
Obs	X_{a1}	X_{a2}	X _{a6}	X_{a7}	X _{a9}	X_{a10}

$$P(X \mid S_1) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_1 \mid}} \exp\left(-0.5(X - \mu_1)^T \Theta_1^{-1} (X - \mu_1)\right)$$

Time	3	4	9
state	S1	S1	S1
Obs	X_{b3}	X_{b4}	X _{b9}

$$\mu_{1} = \frac{1}{13} \begin{pmatrix} X_{a1} + X_{a2} + X_{a6} + X_{a7} + X_{a9} + X_{a10} + X_{b3} + \\ X_{b4} + X_{b9} + X_{c1} + X_{c2} + X_{c4} + X_{c5} \end{pmatrix}$$

Time	1	3	4	5
state	S1	S1	S1	S1
Obs	X _{c1}	X _{c2}	X_{c4}	X_{c5}

$$\Theta_{1} = \frac{1}{13} \begin{pmatrix} (X_{a1} - \mu_{1})(X_{a1} - \mu_{1})^{T} + (X_{a2} - \mu_{1})(X_{a2} - \mu_{1})^{T} + \dots \\ (X_{b3} - \mu_{1})(X_{b3} - \mu_{1})^{T} + (X_{b4} - \mu_{1})(X_{b4} - \mu_{1})^{T} + \dots \\ (X_{c1} - \mu_{1})(X_{c1} - \mu_{1})^{T} + (X_{c2} - \mu_{1})(X_{c2} - \mu_{1})^{T} + \dots \end{pmatrix}$$

11755/18797

- State output probability for S2
 - There are 14 observations in S2

Observation 1

Time	1	2	3	4	5	6	7	8	9	10
state	S1	S1	S2	S2	S2	S1	S1	S2	S1	S1
Obs	X_{a1}	X _{a2}	X_{a3}	X_{a4}	X _{a5}	X _{a6}	X_{a7}	X_{a8}	X_{a9}	X_{a10}

Observation 2

Time	1	2	3	4	5	6	7	8	9
state	S2	S2	S1	S1	S2	S2	S2	S2	S1
Obs	X_{b1}	X_{b2}	X_{b3}	X_{b4}	X_{b5}	X _{b6}	X_{b7}	X_{b8}	X_{b9}

Observation 3

Time	1	2	3	4	5	6	7	8
state	S1	S2	S1	S1	S1	S2	S2	S2
Obs	X _{c1}	X _{c2}	X_{c3}	X_{c4}	X _{c5}	X _{c6}	X _{c7}	X_{c8}

- State output probability for S2
 - There are 14 observations in S2

- Segregate them out and count
 - Compute parameters (mean and variance) of Gaussian output density for state S2

Time	3	4	5	8
state	S2	S2	S2	S2
Obs	X_{a3}	X _{a4}	X _{a5}	X_{a8}

$$P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp(-0.5(X - \mu_2)^T \Theta_2^{-1}(X - \mu_2))$$

Time	1	2	5	6	7	8
state	S2	S2	S2	S2	S2	S2
Obs	X _{b1}	X _{b2}	X _{b5}	X _{b6}	X _{b7}	X _{b8}

Time	2	6	7	8
state	S2	S2	S2	S2
Obs	X _{c2}	X _{c6}	X _{e7}	X_{c8}

$$\mu_2 = \frac{1}{14} \begin{pmatrix} X_{a3} + X_{a4} + X_{a5} + X_{a8} + X_{b1} + X_{b2} + X_{b5} + \\ X_{b6} + X_{b7} + X_{b8} + X_{c2} + X_{c6} + X_{c7} + X_{c8} \end{pmatrix}$$

$$\Theta_1 = \frac{1}{14} \left((X_{a3} - \mu_2)(X_{a3} - \mu_2)^T + \dots \right)$$

We have learnt all the HMM parmeters

• State initial probabilities, often denoted as π

$$-\pi(S1) = 0.66$$
 $\pi(S2) = 1/3 = 0.33$

State transition probabilities

$$A = \begin{pmatrix} 0.545 & 0.455 \\ 0.385 & 0.615 \end{pmatrix}$$

State output probabilities

State output probability for S1

State output probability for S2

$$P(X \mid S_1) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_1 \mid}} \exp\left(-0.5(X - \mu_1)^T \Theta_1^{-1} (X - \mu_1)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right) P(X \mid S_2) = \frac{1}{\sqrt{(2\pi)^d \mid \Theta_2 \mid}} \exp\left(-0.5(X - \mu_2)^T \Theta_2^{-1} (X - \mu_2)\right)$$

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{obs} \delta_{t=1}(s_i)}{N_{obs}}$$

$$P(s_{j}|s_{i}) = \frac{\sum_{obs} \sum_{t=1}^{T-1} \delta_{t,t+1}(s_{j}|s_{i})}{\sum_{obs} \sum_{t=1}^{T-1} \delta_{t}(s_{i})} \quad \mu_{i} = \frac{\sum_{obs} \sum_{t=1}^{T} \delta_{t}(s_{i}) X_{obs}(t)}{\sum_{obs} \sum_{t=1}^{T} \delta_{t}(s_{i})}$$

$$\mu_i = \frac{\sum_{obs} \sum_{t=1}^{T} \delta_t(s_i) X_{obs}(t)}{\sum_{obs} \sum_{t=1}^{T} \delta_t(s_i)}$$

$$\Theta_{i} = \frac{\sum_{obs} \sum_{t=1}^{T} \delta_{t}(s_{i}) (X_{obs}(t) - \mu_{i}) (X_{obs}(t) - \mu_{i})^{T}}{\sum_{obs} \sum_{t=1}^{T} \delta_{t}(s_{i})}$$

- Assumes state output PDF = Gaussian
 - For GMMs, estimate GMM parameters from collection of observations at any state

11755/18797 49

Machine Learning For Signa Processing Group

Training by segmentation: Viterbi training

- Initialize all HMM parameters
- Segment all training observation sequences into states using the Viterbi algorithm with the current models
- Using estimated state sequences and training observation sequences, reestimate the HMM parameters
- This method is also called a "segmental k-means" learning procedure

Thing to Spirite configuration of the Configuration

Poll 1

Alternative to counting: SOFT counting

- Expectation maximization
- Every observation contributes to every state

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{obs} \delta_{t=1}(s_i)}{N_{obs}}$$

$$P(s_{j}|s_{i}) = \frac{\sum_{obs} \sum_{t=1}^{T-1} \delta_{t,t+1}(s_{j}|s_{i})}{\sum_{obs} \sum_{t=1}^{T-1} \delta_{t}(s_{i})} \quad \mu_{i} = \frac{\sum_{obs} \sum_{t=1}^{T} \delta_{t}(s_{i}) X_{obs}(t)}{\sum_{obs} \sum_{t=1}^{T} \delta_{t}(s_{i})}$$

$$\mu_i = \frac{\sum_{obs} \sum_{t=1}^{T} \delta_t(s_i) X_{obs}(t)}{\sum_{obs} \sum_{t=1}^{T} \delta_t(s_i)}$$

$$\Theta_{i} = \frac{\sum_{obs} \sum_{t=1}^{T} \delta_{t}(s_{i}) (X_{obs}(t) - \mu_{i}) (X_{obs}(t) - \mu_{i})^{T}}{\sum_{obs} \sum_{t=1}^{T} \delta_{t}(s_{i})}$$

- Assumes state output PDF = Gaussian
 - For GMMs, estimate GMM parameters from collection of observations at any state

53 11755/18797

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_{j} | s_{i}) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i}, state(t+1) = s_{j} | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} | Obs)}$$

$$\mu_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

$$\Theta_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)(X_{Obs,t} - \mu_{i})(X_{Obs,t} - \mu_{i})^{T}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

Every observation contributes to every state

Poll 2

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_{j} | s_{i}) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i}, state(t+1) = s_{j} | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} | Obs)}$$

$$\mu_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

$$\Theta_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)(X_{Obs,t} - \mu_{i})(X_{Obs,t} - \mu_{i})^{T}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

Where did these terms come from?

$$P(state(t) = s \mid Obs)$$

- The probability that the process was at s when it generated X_t given the entire observation
 - Dropping the "Obs" subscript for brevity

$$P(state(t) = s \mid X_1, X_2, ..., X_T) \propto P(state(t) = s, X_1, X_2, ..., X_T)$$

- We will compute $P(state(t) = s_i, x_1, x_2, ..., x_T)$ first
 - This is the probability that the process visited s at time t while producing the entire observation

$$P(state(t) = s, x_1, x_2, ..., x_T)$$

• The probability that the HMM was in a particular state *s* when generating the observation sequence is the probability that it followed a state sequence that passed through *s* at time *t*

$$P(state(t) = s, x_1, x_2, ..., x_T)$$

- This can be decomposed into two multiplicative sections
 - The section of the lattice leading into state s at time t and the section leading out of it

The Forward Paths

- The probability of the red section is the total probability of all state sequences ending at state s at time t
 - This is simply $\alpha(s,t)$
 - Can be computed using the forward algorithm

→ time

1

The Backward Paths

- The blue portion represents the probability of all state sequences that began at state s at time t
 - Like the red portion it can be computed using a backward recursion

The Backward Recursion

$$\beta(s,t) = P(x_{t+1}, x_{t+2}, ..., x_T \mid state(t) = s)$$

$$\beta(s,t) = \sum_{s'} \beta(s',t+1) P(s'|s) P(x_{t+1}|s')$$

- $\beta(s,t)$ is the total probability of ALL state sequences that depart from s at time t, and all observations after x_t
 - $-\beta(s,T)=1$ at the final time instant for all valid final states

62

The complete probability

$$\alpha(s,t)\beta(s,t) = P(x_{t+1}, x_{t+2}, ..., x_T, state(t) = s)$$

Poll 3

Posterior probability of a state

The probability that the process was in state s
 at time t, given that we have observed the
 data is obtained by simple normalization

$$P(state(t) = s \mid Obs) = \frac{P(state(t) = s, x_1, x_2, ..., x_T)}{\sum_{s'} P(state(t) = s, x_1, x_2, ..., x_T)} = \frac{\alpha(s, t)\beta(s, t)}{\sum_{s'} \alpha(s', t)\beta(s', t)}$$

• This term is often referred to as the gamma term and denoted by $\gamma_{\text{s.t}}$

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_{j} | s_{i}) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i}, state(t+1) = s_{j} | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} | Obs)}$$

$$\mu_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

$$\Theta_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)(X_{Obs,t} - \mu_{i})(X_{Obs,t} - \mu_{i})^{T}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

These have been found

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_{j} | s_{i}) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i}, state(t+1) = s_{j} | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} | Obs)}$$

$$\mu_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

$$\Theta_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)(X_{Obs,t} - \mu_{i})(X_{Obs,t} - \mu_{i})^{T}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

Where did these terms come from?

$$P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$$

$$P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$$

 $\alpha(s,t)$

$$P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$$

$$\alpha(s,t) P(s'|s) P(x_{t+1}|s')$$

$$P(state(t) = s, state(t+1) = s', x_1, x_2, ..., x_T)$$

$$\alpha(s,t)P(s'|s)P(x_{t+1}|s')\beta(s',t+1)$$

The a posteriori probability of transition

$$P(state(t) = s, state(t+1) = s' | Obs) = \frac{\alpha(s,t)P(s'|s)P(x_{t+1}|s')\beta(s',t+1)}{\sum_{s_1} \sum_{s_2} \alpha(s_1,t)P(s_2|s_1)P(x_{t+1}|s_2)\beta(s_2,t+1)}$$

The a posteriori probability of a transition given an observation

Update rules at each iteration

$$\pi(s_i) = \frac{\sum_{Obs} P(state(t=1) = s_i \mid Obs)}{\text{Total no. of observation sequences}}$$

$$P(s_{j} | s_{i}) = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i}, state(t+1) = s_{j} | Obs)}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} | Obs)}$$

$$\mu_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs) X_{Obs,t}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

$$\Theta_{i} = \frac{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)(X_{Obs,t} - \mu_{i})(X_{Obs,t} - \mu_{i})^{T}}{\sum_{Obs} \sum_{t} P(state(t) = s_{i} \mid Obs)}$$

These have been found

Poll 4

Training without explicit segmentation: Baum-Welch training

 Every feature vector associated with every state of every HMM with a probability

- Probabilities computed using the forward-backward algorithm
- Soft decisions taken at the level of HMM state
- In practice, the segmentation based Viterbi training is much easier to implement and is much faster
- The difference in performance between the two is small, especially if we have lots of training data

HMM Issues

- How to find the best state sequence: Covered
- How to learn HMM parameters: Covered
- How to compute the probability of an observation sequence: Covered

Magic numbers

- How many states:
 - No nice automatic technique to learn this
 - You choose
 - For speech, HMM topology is usually left to right (no backward transitions)
 - For other cyclic processes, topology must reflect nature of process
 - No. of states 3 per phoneme in speech
 - For other processes, depends on estimated no. of distinct states in process

Applications of HMMs

Classification:

- Learn HMMs for the various classes of time series from training data
- Compute probability of test time series using the HMMs for each class
- Use in a Bayesian classifier
- Speech recognition, vision, gene sequencing, character recognition, text mining...
- Prediction
- Tracking

Applications of HMMs

- Segmentation:
 - Given HMMs for various events, find event boundaries
 - Simply find the best state sequence and the locations where state identities change
- Automatic speech segmentation, text segmentation by topic, geneome segmentation, ...