

Polar™ **Power MOSFET**

F_c

Weight

IXTA06N120P IXTP06N120P

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	1200	V	
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	1200	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _C = 25°C	0.6	A	
I _{DM}	$\rm T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $\rm T_{_{\rm JM}}$	1.2	Α	
I _A E _{AS}	T _c = 25°C T _c = 25°C	0.6 50	A mJ	
dV/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	10	V/ns	
P_{D}	T _c = 25°C	42	W	
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260 °C		

Symbol (T _J = 25°C U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristi Typ.	c Value Max.	
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	1200			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 50\mu A$	2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±50	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			3	μА
	T _J = 125°	C		125	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$		27	34	Ω

1200V 0.6A 34Ω $\mathbf{R}_{\mathrm{DS(on)}}$

Features

- International Standard Packages

N/lb

g

g

Nm/lb.in

10..65 / 2.2..14.6

1.13 / 10

2.5

3.0

- Low Q_G
 Avalanche Rated
- Low Package Inductance
- Fast Intrinsic Rectifier

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Switch-Mode and Resonant-Mode **Power Supplies**
- AC and DC Motor Drives
- · Discharge Circiuts in Lasers, Spark Igniters, RF Generators
- High Voltage Pulse Power **Applications**

Mounting Force (TO-263)

Mounting Torque (TO-220)

TO-263

TO-220

6.86 8.38 2.54 BSC 14.73 15.75

0.254 BSC

1.91

1.00

2.67

1.77

•	SymbolTest ConditionsChara $(T_J = 25^{\circ}\text{C}, \text{ Unless Otherwise Specified})$ Min.		cteristic Values Typ. Max.		
g _{fs}		$V_{DS} = 30V, I_{D} = 0.5 \cdot I_{D25}, Note 1$	0.28	0.45	S
C _{iss} C _{oss} C _{rss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		236 15 3.2	pF pF pF
t _{d(on)} t _r t _{d(off)}	}	Resistive Switching Times $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D2S},$ $R_{G} = 50\Omega \text{ (External)}$		19 37 35 34	ns ns ns
$oldsymbol{Q}_{g(on)} \ oldsymbol{Q}_{gs} \ oldsymbol{Q}_{gd}$	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		13.3 2.4 7.8	nC nC nC
R _{thJC}		TO-220		0.50	3.0 °C/W °C/W

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C, U)$	Test Conditions Inless Otherwise Specified)	Chara Min.	acteristic Typ.	Values Max.
I _s	$V_{GS} = 0V$			0.6 A
I _{SM}	Repetitive, Pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			1.8 A
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5 V
t _{rr} }	$I_{_{\rm F}} = 0.6 {\rm A}, \; { m -di/dt} = 100 {\rm A/\mu s}$ $V_{_{\rm R}} = 100 {\rm V}, \; V_{_{\rm GS}} = 0 {\rm V}$		900	ns

1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$. Note:

.270

100

.580

.075

.039

.010 BSC

.620

.105

.060

.070

е

 $\overline{\mathsf{H}}$

L1

Fig. 1. Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 2. Output Characteristics @ T_J = 125°C

Fig. 3. $R_{DS(on)}$ Normalized to I_D = 0.3A Value vs.

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 0.3A Value vs.

Fig. 5. Maximum Drain Current vs. Case Temperature

Fig. 6. Input Admittance

IXYS Reserves The Right to Change Limits, Test Conditions, and Dimensions.

