Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Кафедра мікроелектроніки

3BIT

про виконання лабораторної роботи №2 з дисципліни: «Напівпровідникова електроніка» Тема роботи: «Дослідження випрямляючих напівпровідникових діодів»

Виконав студент 3-го курсу групи ДП-91 Ремез Сергій Олександрович		
•	(підпис)	(дата здачі)
Перевірив Королевич Любомир Миколайович		
	<u></u>	(дата здачі)

1. МЕТА РОБОТИ

Теоретичне вивчення та експериментальне дослідження електричного пробою електронно- діркового переходу; дослідження вольт-амперних характеристик і параметрів напівпровідникових стабілітронів.

2. ЗАВДАННЯ

- 1. Вивчити принцип дії і структуру параметрів (паспортних даних) стабілітронів.
- 2. Зібрати схему дослідження напівпровідникових стабілітронів.
- 3. Виміряти вольт-амперні характеристики двох стабілітронів в прямому і зворотньому напрямках при кімнатній температурі.
- 4. Провести температурні дослідження ВАХ двох стабілітронів при температурі +70 °С (для прямої та зворотньої полярності напруги).
- 5. Визначити температурний коефіцієнт напруги стабілізації, а також температурний коефіцієнт прямої напруги стабілітронів при заданих струмах І st та І пр. (Значення струмів задаються викладачем).
- 6. *Виміряти температурний коефіцієнт двох зустрічно ввімкнених стабілітронів при тих же струмах і температурах. Порівняти отримані результати з розрахунковими ТКН і .
- 7. **Провести вимірювання коефіцієнта стабілізації вихідної напруги схеми на малюнку 1.
- 8. Побудувати графіки вольт-амперних характеристик досліджених стабілітронів.
- 9. За побудованими графіками характеристик визначити основні параметри стабілітронів: напругу стабілізації, диференційний опір r st , статичний опір стабілітрона R ST , та інші. Розрахувати коефіцієнт якості стабілітрона Q = R st /r st .

3. СХЕМА ВИМІРЮВАННЯ

Рис.1. Схема експериментальної установки для дослідження вольт-амперної

характеристики стабілітронів.

Рис.2. Графічне визначення окремих параметрів стабілітрона за його вольт-амперною характеристикою.

3. РЕЗУЛЬТАТИ ВИМІРЮВАНЬ

3.1. Результати вимірювань

Табл. №4.1. ВАХ стабілітрона №1. Умови досліджень: пряме зміщення, *T*₁=20°C

I_D , MA	0	1	1,6	3	3,55	5,4	5,9	7,1	8,2	9	10
U_D , B	0	0,611	0,629	0,642	0,648	0,660	0,663	0,668	0,674	0,677	0,680

Табл. №4.2. ВАХ стабілітрона №1. Умови досліджень: зворотне зміщення, T_1 =20°C

		1		, ,	, ,	1		, -	
I_D , м A	0	1	2	3	4	5,6	7,5	8,6	10
U_D , B	0	8,61	8,62	8,63	8,64	8,65	8,66	8,66	8,67

Табл. №4.3. ВАХ стабілітрона №2 Умови досліджень: пряме зміщення, *T*₁=20°C

I_D , MA	0	1		3,4		, , ,	5,9					10
U_D , B	0	0,644	0,664	0,678	0,683	0,689	0,694	0,7	0,701	0,705	0,708	0,709

Табл. №4.4. ВАХ стабілітрона №2. Умови досліджень: зворотне зміщення, T_1 =20°C

I_D , MA	0	1	1,7	2,6	3,3	4,5	5,8	6,6	7,4	8,4	9,2	10
U_D , B	0	2,6	2,87	3,03	3,12	3,24	3,35	3,4	3,45	3,5	3,54	3,57

3.1.1. Пряма гілка ВАХ.

Рис.3: Графічна залежність для прямої гілки ВАХ стабілітронів.

3.1.2. Зворотня гілка ВАХ.

Рис.4: Графічна залежність для зворотньої гілки ВАХ стабілітронів.

4.РОЗРАХУНКИ

Важливо: За несправності термостату, за попереднім погодженням з викладачем, деякі завдання будуть упущені у зв'язку з відсутністю необхідних даних: температурні дослідження ВАХ стабілітронів зі завдань 4-5 включно.

- 4.1. Розрахунок опорів та інших параметрів діода-стабілітрона: Із вольт-амперної характеристики визначити (див. побудову на графіках ВАХ).
- 4.2.1 Знайдемо параметри для діода стабілітрона №1

Для прямої гілки:

Виходячи з графіку Рис.3 у пункті, визначимо параметри прямої гілки ВАХ стабілітрона в робочій точці 0_1 :

- Струм $I_{np1} = 5,84 \text{ мA};$
- Напруга $U_{\text{пр1}} = 0,673 \text{ B};$
- Потужність $P_{\text{пр}} = I_{\text{пр1}} \cdot U_{\text{пр1}} = 5,84 \cdot 10^{-3} \cdot 0,673 = 3,93$ мВт;
- За апроксимацією Шоклі випливає, що при $I_{np} \to 0$ спад напруги визначається лише висотою потенціального бар'єра, тобто:

$$arphi_0 - arphi_T = rac{(U_2 - U_1) \cdot (-I_1)}{(I_2 - I_1)} + U_1;$$
 $arphi_0 = rac{(U_2 - U_1) \cdot (-I_1)}{(I_2 - I_1)} + U_1 + arphi_T,$
де $arphi_T$ — тепловий потенціал $arphi_T = rac{k \cdot T}{a},$

де $k=1,381\cdot 10^{-23}\,\frac{\text{Дж}}{\text{K}}$ - стала Больцмана, $T=293,15\ \text{K}\ (20\ensuremath{\,^{\circ}\text{C}})$ - температура, $q=1,602\cdot 10^{-19}\ \text{K}$ л - електричний заряд.

$$\varphi_T = \frac{1,381 \cdot 10^{-23} \cdot 293,15}{1,602 \cdot 10^{-19}} = 25,27 \text{ MB};$$

Потенціал $\varphi_{01} = 0.616$ В;

Опір бази
$$r_b = \frac{U_{\rm пp} - \varphi_0}{I_{\rm np}} = \frac{0,673 - 0,616}{5,84} \cdot 10^3 = 9,76$$
 Ом;

Струм виродження
$$I_{\text{вир}} = \frac{\varphi_{\text{т}}}{r_{h}} = \frac{25,27 \cdot 10^{-3}}{4,36} = 2,589$$
 мА;

Для зворотньої гілки:

Виходячи з графіку Рис.4 у пункті:

- Мінімальна напруга стабілізації $U_{\text{ст }min1} = 8,61 B$;
- Максимальна напруга стабілізації $U_{\text{ст}\ max1} = 8,67\ B;$
- Напруга стабілізації знайдемо за наступною формулою:

$$U_{CT1} = \frac{U_{CT min2} + U_{CT max2}}{2} = \frac{8,61 + 8,67}{2} = 8,64 \text{ B};$$

 Маючи значення напруги стабілізації, можна графічно отримати струм стабілізації:

Струм $I_{\text{ст }min1} = 1$ мА;

Струм стабілізації $I_{\text{ст1}} = 4,1 \text{ мA}$;

 Скориставшись графіком ВАХ характеристики Рис.4, оберемо робочу точку О₃, що знаходиться посеред діапазону стабілізації, тому ми можемо знайти параметри робочої точки:

Струм $I_{po6} = 4,15$ мА;

Напруга $U_{po6} = 8,65 B$;

Потужність $P_{\text{роб}} = I_{\text{роб}} \cdot U_{\text{роб}} = 4,15 \cdot 10^{-3} \cdot 8,65 = 35,856$ мВт;

Потужність $P_{\rm ct} = I_{\rm ct2} \cdot U_{\rm ct2} = 4,15 \cdot 10^{-3} \cdot 8,64 = 35,542$ мВт;

Диференційний опір $r_{\text{диф}} = \frac{dU}{dI} = \frac{\Delta U}{\Delta I} = \frac{8,64 - 8,6334}{4,1 - 4,0995} = \frac{0,0066}{0,0005} \approx 13,2 \text{ Ом};$

Статичний опір $R_{\rm ct}=rac{U_{
m po6}}{I_{
m po6}}=rac{8,65}{4,15}\cdot 10^3 pprox 2084,33~{
m Om}$;

Коефіцієнт якості стабілітрона $Q=\frac{R_{\rm cr}}{r_{\rm диф}}=\frac{2084,33}{13,2}=157,9;$

Параметр якості $\frac{U_{\text{CT }max2} - U_{\text{CT }min2}}{U_{\text{CT2}}} = \frac{8,67 - 8,61}{8,64} = 0,00694$;

4.2.2. Знайдемо параметри для діода стабілітрона №2

Для прямої гілки:

Виходячи з графіку Рис. 3 у пункті, визначимо параметри прямої гілки ВАХ стабілітрона в робочій точці 0_2 :

- CTpym $I_{np} = 5.9 \text{ mA};$
- Напруга $U_{\rm пр} = 0,685 \text{ B};$
- ullet Потужність $P_{
 m np} = I_{
 m np} \cdot U_{
 m np} = 5,9 \cdot 10^{-3} \cdot 0,685 = 4,04$ мВт;

• За апроксимацією Шоклі випливає, що при $I_{np} \to 0$ спад напруги визначається лише висотою потенціального бар'єра, тобто:

$$arphi_0 - arphi_T = rac{(U_2 - U_1) \cdot (-I_1)}{(I_2 - I_1)} + U_1;$$
 $arphi_0 = rac{(U_2 - U_1) \cdot (-I_1)}{(I_2 - I_1)} + U_1 + arphi_T,$
де $arphi_T$ — тепловий потенціал $arphi_T = rac{k \cdot T}{a},$

де $k=1,381\cdot 10^{-23}\,\frac{\mbox{Дж}}{\mbox{K}}$ - стала Больцмана, $T=293,15\mbox{ K}$ (20°C) - температура, $q=1,602\cdot 10^{-19}\mbox{ K}$ л - електричний заряд.

$$\varphi_T = \frac{1,381 \cdot 10^{-23} \cdot 293,15}{1,602 \cdot 10^{-19}} = 25,27 \text{ MB};$$

Потенціал $\varphi_{01} = 0,633$ В;

Опір бази
$$r_b = \frac{U_{\text{пр}} - \varphi_0}{I_{\text{пр}}} = \frac{0,685 - 0,633}{5,9} \cdot 10^3 = 8,81 \text{ Ом;}$$

Струм виродження
$$I_{\text{вир}} = \frac{\varphi_{\text{т}}}{r_h} = \frac{25,27 \cdot 10^{-3}}{8,81} = 2,868 \text{ мA};$$

Для зворотньої гілки:

Виходячи з графіку Рис.4 у пункті:

- Мінімальна напруга стабілізації $U_{\text{ст}\,min2} = 2,87\,B$;
- Максимальна напруга стабілізації $U_{\text{ст}\,max2} = 3,57B;$
- Напруга стабілізації знайдемо за наступною формулою:

$$U_{CT2} = \frac{U_{CT min2} + U_{CT max2}}{2} = \frac{2,87 + 3,57}{2} = 3,22 \text{ B};$$

• Маючи значення напруги стабілізації, можна графічно отримати струм стабілізації:

Струм $I_{\text{ст }min1} = 1,7$ мА;

Струм стабілізації $I_{\text{ст1}} = 4,47 \text{ мA}$;

 Скориставшись графіком ВАХ характеристики Рис.4, оберемо робочу точку О₄, що знаходиться посеред діапазону стабілізації, тому ми можемо знайти параметри робочої точки:

Струм
$$I_{pof} = 4,5$$
 мА;

Напруга $U_{po6} = 3,25 B;$

Потужність
$$P_{\text{роб}} = I_{\text{роб}} \cdot U_{\text{роб}} = 4,5 \cdot 10^{-3} \cdot 3,25 = 14,625 \text{ мВт};$$
 Потужність $P_{\text{ст}} = I_{\text{ст2}} \cdot U_{\text{ст2}} = 4,47 \cdot 10^{-3} \cdot 3,22 = 14,439 \text{ мВт};$ Диференційний опір $r_{\text{диф}} = \frac{dU}{dI} = \frac{\Delta U}{\Delta I} = \frac{3,22-3,26}{4,47-4,476} = \frac{0,04}{0,006} \approx 66 \text{ Ом};$ Статичний опір $R_{\text{ст}} = \frac{U_{\text{роб}}}{I_{\text{роб}}} = \frac{3,25}{4,5} \cdot 10^3 \approx 772,2 \text{ Ом};$ Коефіцієнт якості стабілітрона $Q = \frac{R_{\text{ст}}}{r_{\text{диф}}} = \frac{772,2}{6,6} = 109,42;$ Параметр якості $\frac{U_{\text{ст}} \max 2 - U_{\text{ст}} \min 2}{U_{\text{ст2}}} = \frac{3,57-2,87}{3,22} = 0,217;$

6.АНАЛІЗ РЕЗУЛЬТАТІВ ДОСЛІДЖЕНЬ ТА ВИСНОВКИ З ВИКОНАНОЇ РОБОТИ.

Табл. №6.1. Зведені дані.

Основні	для діода типу	для діода типу	для діода типу	для діода типу
параметри:	№ 1,	№ 1,	№ 2,	№ 2,
(умовне познач.,	пряма гілка	зворотня гілка	пряма гілка	зворотня гілка
розмірність)	BAX	BAX	BAX	BAX
Струм $I_{пр}$, мА	5,84	-	5,9	-
Напруга $U_{\rm np}$, В	0,673	-	0,685	-
Потужність, Рпр,	3,93	-	4,04	-
мВт				
Потенціал φ , В	0,616	-	0,633	-
Опір бази $r_{\rm f}$, Ом	9,76	-	8,81	-
Струм		-		-
виродження $I_{\text{вир}}$,	2,589		2,868	
мА				
Мінімальна	-		-	
напруга		8,61		2,87
стабілізації				

$U_{ m cr}$ min , В				
Максимальна	-		-	
напруга		8,67		3,57
стабілізації				
$U_{\mathrm{cr}max},\mathrm{B}$				
Напруга	-	8,64	-	3,22
стабілізації $U_{c_{\mathrm{T}}}$, В				
Струм $I_{\text{ст}\ min}$, мА	-	1	-	1,7
Струм стабілізації	-	4,1	-	4,47
$I_{\rm CT},{ m MA}$				
Струм $I_{\text{роб}}$, мА	-	4,15	-	4,5
Напруга U_{po6} , В	-	8,65	-	3,25
Потужність $P_{\text{роб,}}$	-	35,856	-	14,625
мВт				
Диференційний	-	13,2	-	66
опір $r_{{ m ди} { m \varphi}},$ Ом				
Статичний опір	-	2084,33	-	722,2
$R_{\rm ct}$, Om				
Коефіцієнт якості	-	157,9	-	109,42
стабілітрона Q				
Параметр якості	-	0,00694	-	0,217

висновок

У ході виконання роботи було проведено дослідження електричного пробою р-п переходу та дослідження вольт-амперних характеристик і параметрів напівпровідникових стабілітронів.