Statistics-III – Assignment 1

- 1. (a) Suppose X and Y are i.i.d N(0,1). Using the Jacobian method, show that $\frac{X}{Y}$ has the Cauchy distribution.
- (b) If X and Y are independent continuous random variables which are symmetric about 0, then $\frac{X}{Y}$ and $\frac{X}{|Y|}$ have the same distribution. Therefore, if X and Y are i.i.d N(0,1), $\frac{X}{|Y|}$ also has the Cauchy distribution.
- **2.** Suppose X and Y are i.i.d N(0,1). Consider the transformation $(X,Y) \to (R,\Theta)$ where $X = R\cos\Theta$ and $Y = R\sin\Theta$. Find the joint distribution of (R,Θ) .
- **3.** Let Y_1, \ldots, Y_n be independent random variables with unit variance, and let $X_1 = Y_1, X_i = Y_i Y_{i-1}$ for $1 < i \le n$. Find the covariance matrix of $\mathbf{X} = (X_1, X_2, \ldots, X_n)'$.
- **4.** Suppose $\Sigma = \operatorname{Cov}(X) = \begin{pmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{pmatrix}$. Show that $-1/2 \le \rho \le 1$.
- **5.** Let X_1, \ldots, X_n be i.i.d Exponential with mean 1. Define $Y_1 = nX_{(1)}$, $Y_2 = (n-1)(X_{(2)} X_{(1)})$, $Y_i = (n-i+1)(X_{(i)} X_{(i-1)})$ for $3 \le i \le n$, where $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$ are the order statistics. Show that Y_1, \ldots, Y_n are i.i.d Exponential with mean 1.

(Hint. Note, in the joint density, $\sum_{i=1}^{n} x_{(i)} = \sum_{i=1}^{n} y_{i}$.)