Frühjahr 25 Themennummer 3 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Bestimmen Sie Art und Lage aller lokalen Extrema von

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = xe^{-x^2 - y^2}.$$

b) Zeigen Sie, dass alle stationären Lösungen des ebenen autonomen Systems

$$x' = 2xy$$

$$y' = 1 - 2x^2$$

stabil sind.

Hinweis: Aufgabenteil a) kann hier hilfreich sein.

Lösungsvorschlag:

- a) Wir kürzen $g(x,y)=e^{-x^2-y^2}>0$ ab und bestimmen den Gradienten von f: $\nabla f(x,y)=g(x,y)(1-2x^2,-2xy)^{\rm T}=0\iff x=\pm\sqrt{\frac{1}{2}},y=0$. Die Auswertung der Hessematrix $H_f(x,y)=g(x,y)\begin{pmatrix} -6x+4x^3&-2y+4x^2y\\-2y+4x^2y&-2x+4xy^2\end{pmatrix}$ an den stationären Punkten führt auf die Matrizen $H_f\left(\pm\sqrt{\frac{1}{2}},0\right)=\begin{pmatrix} \mp\sqrt{8}&0\\0&\mp\sqrt{2}\end{pmatrix}$, also ist die Matrix für $x_+:=\left(\sqrt{\frac{1}{2}},0\right)$ negativ definit und x_+ ist ein lokales (striktes) Maximum und für $x_-:=\left(-\sqrt{\frac{1}{2}},0\right)$ ist sie positiv definit und x_- ist ein lokales (striktes) Minimum. Weitere stationäre Punkte gibt es nicht, also auch keine weiteren Extremalstellen.
- b) Bei f und -f handelt es sich um Lyapunovfunktionen diesen Systems, denn $\langle \nabla \pm f(x,y), (2xy,1-2x^2) \rangle = 0$ für alle $(x,y) \in \mathbb{R}^2$. Die Ruhelagen des Systems sind genau die in a) bestimmten stationären Punkte. Weil x_- ein striktes Minimum von f ist, handelt es sich hier um eine stabile Ruhelage. Weil x_+ ein striktes Minimum von -f ist, handelt es sich hier um eine stabile Ruhelagen. Weitere gibt es nicht, also ist jede Ruhelage stabil.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$