EE1002 Principles of Electrical Engineering Assignment 1 --- Solution Summary

Q1

a)
$$a = -\frac{3}{2}$$

b)
$$a = 6$$

 $\mathbf{Q2}$

a)
$$z = 1 - 3j$$

b)
$$\bar{z_2} = 8 - 6j$$

c)
$$a = -1, b = 3$$
 and $|z| = 10$

Q3

b)
$$-3t^{-4}$$

c)
$$-0.5t^{-3/2}$$

e)
$$0.5t^{-1/2}$$

f)
$$3e^{3t}$$

g)
$$-5e^{-5t}$$

h)
$$2\cos(2t + 3)$$

i)
$$0.5 \sec^2(\frac{t}{2} + 1)$$

$$\mathrm{j}) \quad \frac{1}{\sqrt{1-(t+\pi)^2}}$$

Q4

a)
$$12x^2 - 10x$$

b)
$$15\cos 5x + 8e^{4x}$$

c)
$$6e^{3x} - 8\cos 2x$$

d)
$$-\frac{3}{x^4} - 2.5\sin 5x$$

e)
$$2x^2 + 2e^{4x}$$

f)
$$0.5x^{-1/2} + \frac{1}{2x}$$

Q5

[Hint: choose the interval $0 \le t \le 2$. The general equation for the straight line is v = mt + c.]

$$v_{av} = 2.5$$

Q6

Q7

a) [Hint: let $x = a \sin t$]

$$\frac{\pi}{16}a^4$$

b) [Hint: let $\sqrt{5-4x} = u$, then $x = \frac{5}{4} - \frac{1}{4}u^2$]

 $\frac{1}{6}$

c) [Hint: let $\sqrt{x} = t$]

$$2 + 2 \ln \frac{2}{3}$$

d) [Hint: $x^4 \sin x$ is an odd function]

0

Q8

(a) $x = Ae^{2t}$

(b) $x = 3\ln|1 + t| + c$

(c) $y = \frac{1}{A - \sin x}$

Q9

[Hint: let $y = e^{kx}$]

a) $y = Ae^{2x} + Be^{-5x}$

b) $y(x) = C\cos 2x + D\sin 2x$

c) $y(x) = Ae^{-4x} + Bxe^{-4x}$

Q10

$$y = x\sin(x) - \frac{x\sin^3 x}{3} + Cx$$

Q11

The constant is 1, Both the numerator and denominator of the formula can be simplified to $\cos 2a$.

Q12

1. $f(x) = \sin\left(x + \frac{\pi}{2}\right) = \cos(x)$ in which A = 1 and $\phi = \frac{\pi}{2}$

2. $f(\alpha - \beta) = \cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) = \frac{56}{65}$