Praktikum zur Einführung in die Physikalische Chemie,

Universität Göttingen

V5: Leitfähigkeit wässriger Elektrolyte

Durchführende: Alea Tokita, Julia Stachowiak

Assistentin: Annemarie Kehl

Versuchsdatum: 01.02.2016 Datum der ersten Abgabe: 08.02.2016

Messwerte:

Literaturwert:

Inhaltsverzeichnis

1	Auswertung					
	1.1	Bestimmung von Λ^0 und K_S für Essigsäure				
	1.2	Bestimmung von Λ^0 für Kaliumchlorid				
2	Fehlerrechnung					
	2.1	absolute Fehler				
	2.2	Fehlerrechnung				
		Fehlerfortpflanzung für Λ				
	2.4	Fehler für Λ^0 und $K_{\rm S}$ aus der Auftragung				
3	Lite	raturverzeichnis				

Auswertung

Aus den Messungen werden die Mittelwerte des Leitwertes L bestimmt und die Eigenleitfähigkeit des Wassers davon abgezogen. Mit der Zellkonstante Z der Leitfähigkeits-Messzelle wird die spezifische Leitfähigkeit κ für jede Lösung errechnet:

$$\kappa = \frac{Z}{R} = Z \cdot L \tag{1}$$

Daraus ergibt sich die molare Leitfähigkeit Λ der Lösungen:

$$\Lambda = \frac{\kappa}{c^*} \tag{2}$$

Für die Auftragungen wird die molare Leitfähigkeit bei der gemessenen Temperatur auf die Leitfähigkeit bei 25° C umgerechnet, der Koeffizient m ist für die beiden Lösungen unterschiedlich:

$$\Lambda(25^{\circ}C) = \Lambda(\Omega) \cdot [1 + m \cdot (25 - (\Omega/^{\circ}C))]$$
(3)

$$\begin{split} m_{\rm KCl} &= 2,31\cdot 10^{-2} \text{ für } 0,1\,{\rm M}>c_s>0,001\,{\rm M}\\ m_{\rm HAc} &= 1,44\cdot 10^{-2} \text{ für } 0,1\,{\rm M}>c_s>0,001\,{\rm M} \end{split}$$

1.1 Bestimmung von Λ^0 und $K_{ m S}$ für Essigsäure

Für den schwachen Elektrolyten kann das Ostwaldsche Verdünnungsgesetz umgeformt werden:

$$\frac{1}{\Lambda} = \frac{1}{\Lambda^0} + \frac{c^* \cdot \Lambda}{K_S \cdot (\Lambda^0)^2 \cdot c^0} \tag{4}$$

Aufgetragen wird $\frac{1}{\Lambda}$ gegen $\frac{c^* \cdot \Lambda}{c^0}$. Der reziproke Wert für die Grenzleitfähigkeit Λ^0 ergibt somit durch Extrapolation des Graphen als Schnittpunkt mit der Abszisse.

Als Steigung m bleibt $m=\frac{1}{K_S\cdot (\Lambda^0)^2}$. Die Säurekonstante K_S errechnet sich damit folgendermaßen:

$$K_{\rm S} = \frac{1}{m \cdot (\Lambda^0)^2} \tag{5}$$

	$\frac{1}{\Lambda(25^{\circ}\text{C})}$ in $\frac{\text{mol}}{\text{S}\cdot\text{cm}}$	$\frac{c^*}{c^0} \cdot \Lambda(25^{\circ}\text{C}) \text{ in } \frac{\text{S} \cdot \text{cm}}{\text{mol}}$	$\frac{1}{\Lambda}$ in $\frac{\text{mol}}{\text{S} \cdot \text{cm}}$
0,1 M			
0,01 M			
0,001 M			

Folgende Werte ergeben sich für die Auftragung:

Daraus ergibt sich:

$$\begin{split} K_{\mathrm{S}} &= 2, 5 \cdot 10^{-5} \\ \Lambda^{0} &= 0, 3 \, \frac{\mathrm{mol}}{\mathrm{S \cdot cm}} \end{split}$$

1.2 Bestimmung von Λ^0 für Kaliumchlorid

Für den starken Elektrolyten Kaliumchlorid wird das Kohlrausche Quadratwurzelgesetz Λ gegen \sqrt{c} aufgetragen:

$$\Lambda = \Lambda^0 - k \cdot \sqrt{c} \tag{6}$$

 Λ^0 ergibt sich ebenfalls aus Extrapolation als Schnittpunkt mit der Abszisse. Für die Auftragung ergeben sich als Werte:

	$\Lambda(25^{\circ}C)$ in $\frac{S \cdot cm}{mol}$	$\int \sqrt{c} \text{ in mol}^{\frac{1}{2}} \cdot l^{-\frac{1}{2}}$
0,1 M		
0,01 M		
0,001 M		

Für Λ^0 ergibt sich somit: $\Lambda^0=15$

$$\Lambda^{0} = 15$$

2 Fehlerrechnung

2.1 absolute Fehler

Die absoluten Fehler bzw. Messungenauigkeiten der Geräte betragen:

 Δ Temperatur = 0,1°C Δ Kolben = 1 mL Δ Pipette = 0,1 mL

2.2 Fehlerrechnung

Zuerst wird die absolute Standartabweichung der Leitwerte nach folgender Formel bestimmt:

$$s_{\rm N} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})}$$
 (7)

Da es sich um sehr wenige Werte handelt (jeweils 5), muss die Standartabweichung noch mit dem Student'schen t-Faktor multipliziert werden, um den Fehler für \bar{L} zu erhalten:

$$\Delta \bar{L} = t_N \cdot \bar{s}_N \tag{8}$$

Für 95,5% Konfidenz und 5 Messwerte beträgt dieser 2,8¹ Somit ergeben sich folgende Fehler für \bar{L} :

	0,1 M	0,01 M	0,001 M
Essigsäure			
$ar{L}$	7,46	2,346	6,99
$ s_N $	0,055	0,019	0,11
ΔL	0,15	0,054	0,31
Kaliumchlorid			
$ar{L}$	1,756	1,98	2,04
$ s_N $	0,017	0,017	0,025
ΔL	0,047	0,047	0,070

2.3 Fehlerfortpflanzung für Λ

 Λ wird in den Rechnungen weiterverwandt und aufgetragen, sodass eine Fehlerfortpflanzung nach Gauß durchgeführt werden muss. Die Formel dafür lautet:

¹Götz, Eckold: *Grundbegriffe der Fehleranalyse bei praktischen Messungen*, Institut für physikalische Chemie, Uni Göttingen, **2015**.

$$\Delta f = \sqrt{\sum_{i} \left(\frac{\delta f}{\delta x_{i}}\right)_{j}^{2} \cdot \Delta x_{i}^{2}} \tag{9}$$

Für $\kappa=Z\cdot L$ und $c^*=\frac{n}{V}$ ergibt sich aus $\Lambda=\frac{\kappa}{c^*}=\frac{Z\cdot L\cdot V}{n}$ folgende Fehlerfortpflanzung:

$$\Delta \Lambda = \sqrt{\left(\frac{Z \cdot V}{n}\right)^2 \cdot \Delta L^2 + \left(\frac{Z \cdot L}{n}\right)^2 \cdot \Delta V^2}$$
 (10)

Daraus ergeben sich folgende Fehler für ΔL , welche als Fehlerbalken in die Auftragungen eingetragen werden:

	0,1 M	0,01 M	0,001 M
ΔL Essigsäure	$100,6527 \approx 1 \cdot 10$	$362, 21 \approx 4 \cdot 10^2$	$20776,39 \approx 2 \cdot 10^4$
ΔL Kaliumchlorid	$31,5\approx 3\cdot 10$	$315, 2 \approx 3 \cdot 10^2$	$4692, 4 \approx 5 \cdot 10^3$

2.4 Fehler für Λ^0 und K_{S} aus der Auftragung

Durch die eingezeichneten Grenzgeraden kann aus der maximalen und minimalen Steigung der absolute Fehler für Λ^0 bestimmt werden:

Bestimmung des Fehlers für $K_{\rm S}$:

3 Literaturverzeichnis

- 1 Gerd Wedler: Lehrbuch der physikalischen Chemie, 5. Aufl., WILEY-VCH Verlag GmbH Co. KGaA, Weinheim, **2004**.
- 2 Götz, Eckold: Sriptum zur Einführung in die physikalische Chemie, Institut für physikalische Chemie, Uni Göttingen, **2015**.
- 3 Skriptum für das Praktikum zur Einführung in die Physikalische Chemie, Institut für physikalische Chemie, Uni Göttingen, **2015**.