

Instituto Federal de Educação, Ciência e Tecnologia do Ceará PPGER — PPGCC

Aula 9: Toolbox Matlab de PDS

Processamento Digital de Sinais Prof. Dr. Pedro Pedrosa

pedrosarf@ifce.edu.br

pedropedrosa.maracanav.ifce.edv.br

Objetivos

- Conhecer os métodos da Toolbox Matlab de medições e extração de características para PDS
- Entender a convolução no Matlab

O que a toolbox fornece?

- Extração de características do sinal e redução dos conjuntos de dados sem perder informação
- Localização de picos no sinal e determinação da altura, largura e distância para os vizinhos
- Medição de características no domínio do tempo, como amplitudes de pico a pico e envelopes de sinal
- Medição de métricas de pulso

O que a toolbox fornece?

- No domínio da frequencia, mede a frequência fundamental, média, medianas e harmônicas
- Mede a Faixa Dinâmica Livre de Espúrios (SFDR), relação sinal-ruído (SNR), Distorção Harmônica Total (THD), relação sinal/ruído e distorção (SINAD) e ponto de interceptação de terceira ordem (TOI)

Estatísticas Descritivas

- cummax
- cummin
- envelope
- max
- mean
- meanfreq
- medfreq
- median
- min

- movmad
- movmedian
- peak2peak
- peak2rms
- rms
- rssq
- seqperiod
- std
- var

- alignsignals
- cusum
- dtw
- edr
- findchangept
- finddelay
- findpeaks
- findsignal

Métricas de Pulso e Transição

 Mede tempo de subida/queda, taxa de variação, período do pulso, ciclo de trabalho.

Medições Espectrais

- Calcula a largura de banda.
- Computa a frequência média ou mediana de um espectro de potência.
- Estima a potência sobre uma determinada faixa de frequência.
- Mede a distorção harmônica.

Root Mean Square (RMS)

Encontrando Picos

- Pico local é uma amostra de dados que é maior do que suas duas amostras vizinhas ou é igual a Inf.
- pks = findpeaks(data)
- [pks,locs] = findpeaks(data)
- [pks,locs,w,p] = findpeaks(data)
- pks é o vetor de picos locais, locs são os índices, w é a largura e p as proeminências dos picos.

Encontrando Picos


```
[p, l] = findpeaks(relNums,year);
[pks, locs] = findpeaks(relNums,year,'MinPeakProminence',40);
```


Encontrando Picos

Ordenando os Picos

[~,locs_Rwave] = findpeaks(ECG_data,'MinPeakHeight',0.5,... 'MinPeakDistance',200);

[~,min_locs] = findpeaks(**-ECGsuavizado**,'MinPeakDistance',40);

% Picos entre -0.2mV e -0.5mV locs_Qwave = min_locs(smoothECG(min_locs)>-0.5 & smoothECG(min_locs)<-0.2);

Convolução com sinal e imagem

Tam Filtro	Preen
3	2
4	3
5	4
tf	tf - 1

sinal_preen = [zeros(1, tam_filtro-1) sinal zeros(1, tam_filtro-1)];

Tam Filtro	Sinal Filt
3	6 = 4 + 2
4	7 = 4 + 3
5	8 = 4 + 4

sinal_filt = zeros(1, length(sinal) + tam_filtro - 1);

for i = 1 : length(sinal_filt)

end

sinal_seg = sinal_preen(i:tam_filtro+i-1);
sinal_filt(i) = sum(sinal_seg .* filtro);

$$f[n_1, n_2] **h[n_1, n_2] = \sum_{m_1 = -\infty}^{\infty} \sum_{m_2 = -\infty}^{\infty} f[m_1, m_2] h[n_1 - m_1, n_2 - m_2]$$

Exemplo

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

h

2	2	2	3
-2	2	3	3
-2	-2	1	2
1	3	2	2
_			

5	4	4	-2
9	6		
f*h			

Como adicionar as colunas e linhas de zero na imagem?

Encaminhamentos

- Dúvidas?
- Próximo assunto
 - Extração de atributos via Wavelet em Sinais