

Seminar Algorithms for Big Data

Fast Random Integer Generation in an Interval Based on a paper of the same title by Daniel Lemire

Lukas Geis Supervised by Dr. Manuel Penschuck

29th February 2024 · Algorithm Engineering (Prof. Dr. Ulrich Meyer)

0

1

Lukas Geis

1 1 0 1 0 0

W = 8 independent uniform bits

W = 8 independent uniform bits

Goal:

1 1 0 1 0 0

interpret as unsigned 8-bit integer

Goal:

interpret as unsigned 8-bit integer

Goal:

209 in binary

interpret as unsigned 8-bit integer

Goal:

209 in binary

interpret as uniform 8-bit integer in $[0, 2^8)$

Goal:

Table of Contents

- 1 Preliminaries
 - Formal Definition
 - Operations
 - The Naive Approach
- 2 Unbiased Algorithms
 - The OpenBSD Algorithm
 - The Java Algorithm
 - The Bitmask Algorithm
- 3 Lemire's Algorithm
 - Multiply-And-Shift
 - The Algorithm
- 4 Summary

Input:

Preliminaries

Formal Definition

Input:

• source of uniform random integers in $[0,2^W)$: rand()

GOETHE UNIVERSITÄT

Input:

- source of uniform random integers in $[0, 2^W)$: rand()
- \blacksquare upper bound of interval $n \in \mathbb{N}$

GOETHE UNIVERSITÄT

Input:

- source of uniform random integers in $[0, 2^W)$: rand()
- upper bound of interval $n \in \mathbb{N}$

Output:

Input:

- source of uniform random integers in $[0, 2^W)$: rand()
- upper bound of interval $n \in \mathbb{N}$

Output:

 \blacksquare uniform random integer in interval [0, n)

0

GOETHE UNIVERSITÄT

Input:

- source of uniform random integers in $[0, 2^W)$: rand()
- upper bound of interval $n \in \mathbb{N}$

Output:

Input:

- source of uniform random integers in $[0, 2^W)$: rand()
- \blacksquare upper bound of interval $n \in \mathbb{N}$

Output:

GOETHE UNIVERSITÄT

Input:

- source of uniform random integers in $[0, 2^W)$: rand()
- upper bound of interval $n \in \mathbb{N}$

Output:

Preliminaries

Operations

Definition (Common Operations)

■ Integer-Division: $x \div y \qquad \coloneqq |x/y|$

- Integer-Division: $x \div y \qquad \coloneqq |x/y|$
- Remainder-Operation: $x \mod y := x (x \div y)y$

- Integer-Division: $x \div y := \lfloor x/y \rfloor$
- Remainder-Operation: $x \mod y := x (x \div y)y$
- Bit-RightShift: $x \gg W := x \div 2^W$

- $x \div y := |x/y|$ ■ Integer-Division:
- $x \mod y \coloneqq x (x \div y)y$ ■ Remainder-Operation:
- $x \gg W := x \div 2^W$ Bit-RIGHTSHIFT:
- $x \ll W := x \cdot 2^W$ Bit-LeftShift:

■ Integer-Division:
$$x \div y := \lfloor x/y \rfloor$$

■ Remainder-Operation:
$$x \mod y := x - (x \div y)y$$

■ Bit-RightShift:
$$x \gg W := x \div 2^W$$

■ Bit-LeftShift:
$$x \ll W := x \cdot 2^W$$

■ Bitwise-And:
$$x \& y$$

■ Integer-Division:
$$x \div y := \lfloor x/y \rfloor$$

■ Remainder-Operation:
$$x \mod y := x - (x \div y)y$$

■ Bit-RightShift:
$$x \gg W := x \div 2^W$$

■ Bit-LeftShift:
$$x \ll W := x \cdot 2^W$$

■ Bitwise-And:
$$x \& y \to x \mod 2^W := x \& (2^W - 1)$$

Definition (Common Operations)

- $x \div y := |x/y|$ ■ Integer-Division:
- $x \mod y := x (x \div y)y$ ■ Remainder-Operation:
- $x \gg W := x \div 2^W$ Bit-RightShift:
- $x \ll W := x \cdot 2^W$ Bit-LeftShift:
- $x \& y \rightarrow x \mod 2^W \coloneqq x \& (2^W 1)$ Bitwise-AND:

Definition (Power Remainder)

For $W, n \in \mathbb{N}$, we write \mathcal{R} for $2^W \mod n$.

Preliminaries

The Naive Approach

 $rand() \mod n$

 $rand() \mod n$

Does this work?

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

Is the generated number uniform in [0, n)?

The Naive Approach - Bias

Preliminaries

The Naive Approach - Bias

GOETHE UNIVERSITÄT

In general, applying $x \mod n$ to $[0, 2^W)$ yields

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Deterministic Mappings

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

$$\underbrace{0,1,\ldots,n-1}^{n \text{ values}},\underbrace{0,1,\ldots,n-1}^{n \text{ values}}$$

We have a leftover interval that introduces bias.

Deterministic Mappings

Every deterministic mapping $f: [0, 2^W) \to [0, n)$

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

$$\underbrace{0,1,\ldots,n-1}^{n \text{ values}},\underbrace{0,1,\ldots,n-1}^{n \text{ values}}$$

We have a leftover interval that introduces bias.

Deterministic Mappings

Every deterministic mapping $f: [0, 2^W) \to [0, n)$ does not generate uniform random integers in one step

The Naive Approach - Bias

In general, applying $x \mod n$ to $[0, 2^W)$ yields

$$\underbrace{0,1,\ldots,n-1}^{n \text{ values}},\underbrace{0,1,\ldots,n-1}^{n \text{ values}}$$

We have a leftover interval that introduces bias.

Deterministic Mappings

Every deterministic mapping $f: [0, 2^W) \to [0, n)$ does not generate uniform random integers in one step whenever n does not divide 2^W .

Unbiased Algorithms

Unbiased Algorithms

The OpenBSD Algorithm

GOETHE UNIVERSITÄT

■ Shift the rejection interval to the left:

■ Shift the rejection interval to the left:

■ Shift the rejection interval to the left:

■ Algorithm:

■ Shift the rejection interval to the left:

- Algorithm:
 - Generate a uniform random number $x \in [0, 2^W)$ until $x \ge \mathcal{R}$

Shift the rejection interval to the left:

- Algorithm:
 - Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}$
 - Return $x \mod n$

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \ge \mathcal{R}$
- \blacksquare Return $x \mod n$

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \ge \mathcal{R}$
- \blacksquare Return $x \mod n$

Efficiency

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \ge \mathcal{R}$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \ge \mathcal{R}$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

 \blacksquare one for computing \mathcal{R}

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

- \blacksquare one for computing \mathcal{R}
- \blacksquare and one for computing $x \mod n$.

Unbiased Algorithms

The Java Algorithm

GOETHE UNIVERSITÄT

Unbiased Algorithms

The Java Algorithm

Unbiased Algorithms

The Java Algorithm

■ Consider $x - (x \mod n)$ for $x \in [0, 2^W)$:

 \blacksquare Map every number to the next-smallest multiple of n

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R} > 2^W n$

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R} > 2^W n$
- Algorithm:

The Java Algorithm

■ Consider $x - (x \mod n)$ for $x \in [0, 2^W)$:

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R} > 2^W n$
- Algorithm:
 - (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$

The Java Algorithm

■ Consider $x - (x \mod n)$ for $x \in [0, 2^W)$:

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R} > 2^W n$
- Algorithm:
 - (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
 - (2) Return r if $x r \le 2^W n$ else goto (1)

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

GOETHE UNIVERSITÄT

The Java Algorithm - Efficiency

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

Efficiency

■ At least one integer division operation

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}$

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}$
- Happens with probability $\frac{2^W \mathcal{R}}{2^W} > \frac{1}{2}$

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r \le 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}$
- Happens with probability $\frac{2^W \mathcal{R}}{2^W} > \frac{1}{2}$
- Expected number of integer division operations is $\frac{2^W}{2^W \mathcal{R}} < 2$

The Bitmask Algorithm - Representation

Unbiased Algorithms

The Bitmask Algorithm - Representation

GOETHE UNIVERSITÄT

 \blacksquare Consider the binary representation of n:

GOETHE UNIVERSITÄT

The Bitmask Algorithm - Representation

 \blacksquare Consider the binary representation of n:

GOETHE UNIVERSITÄT

The Bitmask Algorithm - Representation

 \blacksquare Consider the binary representation of n:

$$n \xrightarrow{\text{binary}} 2^{W-1} \underbrace{2^{\lfloor \log_2 n \rfloor}}_{\text{only 0's}} \underbrace{2^1 2^0}_{\text{1}} \downarrow \downarrow$$

$$0, \dots, 0, 1, \underbrace{1, \dots, 0, 1}_{\text{series of 0's and 1's}}$$

■ Every number $x \le n$ only needs the last $\lfloor \log_2 n \rfloor + 1$ bits

The Bitmask Algorithm - Representation

 \blacksquare Consider the binary representation of n:

$$n \xrightarrow{\text{binary}} 2^{W-1} \underbrace{2^{\lfloor \log_2 n \rfloor}}_{\text{only 0's}} \underbrace{2^1 2^0}_{\text{\downarrow}}$$

$$0, \dots, 0, 1, \underbrace{1, \dots, 0, 1}_{\text{series of 0's and 1's}}$$

- Every number $x \le n$ only needs the last $\lfloor \log_2 n \rfloor + 1$ bits
- Get these bits with a bitwise-And with

$$2^{W-1} \underbrace{2^{\lfloor \log_2 n \rfloor}}_{\text{only 0's}} 2^{120} \downarrow \qquad \downarrow \downarrow \downarrow \downarrow$$

$$2^{\lfloor \log_2 n \rfloor + 1} - 1 \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\text{only 0's}}, \underbrace{1, 1, \dots, 1, 1}_{\text{only 1's}}$$

Unbiased Algorithms

The Bitmask Algorithm - Mask

GOETHE UNIVERSITÄT

■ How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?

Unbiased Algorithms

The Bitmask Algorithm - Mask

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- \blacksquare Count the number ℓ of leading 0's in n!

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- \blacksquare Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} \underbrace{\begin{array}{c} 2^{W-1} & 2^{\lfloor \log_2 n \rfloor} & 2^1 2^0 \\ \downarrow & \downarrow & \downarrow \\ 0\text{'s} & 1, 1, \dots, 0, 1 \\ \text{series of 0's and 1's} \end{array}}_{\text{and 1's}}$$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- \blacksquare Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} 2^{W-1} \underbrace{2^{\lfloor \log_2 n \rfloor}}_{\ell \text{ 0's}} \underbrace{2^{1}2^{0}}_{\downarrow \downarrow}$$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} 2^{W-1} \underbrace{2^{\lfloor \log_2 n \rfloor}}_{\ell \text{ 0's}} \underbrace{2^{1}2^{0}}_{\downarrow \downarrow}$$

- Algorithm:

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} \underbrace{\begin{array}{c} 2^{W-1} & 2^{\lfloor \log_2 n \rfloor} & 2^1 2^0 \\ \downarrow & \downarrow & \downarrow \\ 0\text{'s} & \underbrace{1, \dots, 0, 1}_{\text{series of 0's and 1's}} \end{array}}_{\text{and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} 2^{W-1} \underbrace{2^{\lfloor \log_2 n \rfloor}}_{\text{0's}} \underbrace{2^{1}2^{0}}_{\text{1}} \underbrace{\downarrow}_{\text{1}} \underbrace{\downarrow}_{\text{series of 0's and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
 - (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's in n!

$$n \xrightarrow{\text{binary}} 2^{W-1} \underbrace{2^{\lfloor \log_2 n \rfloor}}_{\text{0's}} \underbrace{2^{1}2^{0}}_{\text{1}} \downarrow \downarrow$$

$$\underbrace{0, \dots, 0}_{\text{0's}}, 1, \underbrace{1, \dots, 0, 1}_{\text{series of 0's and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
 - (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
 - (3) Return b if b < n else goto (2)

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

GOETHE UNIVERSITÄT

The Bitmask Algorithm - Efficiency

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Efficiency

 \bullet b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} - 1 < 2n$

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Efficiency

■ b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} - 1 < 2n$ success probability at least $\approx \frac{1}{2}$

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation
- No integer division at all

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation
- No integer division at all
- Computation of leading 0's requires clz instruction/algorithm

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation
- No integer division at all
- Computation of leading 0's requires clz instruction/algorithm
- Roughly as expensive as a div instruction

Lemire's Algorithm

Multiply-And-Shift

Multiply-And-Shift

■ Map rand() to [0,n) divisionless with $(rand() \cdot n) \gg W$:

Multiply-And-Shift

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$(\texttt{rand()} \cdot n) \gg W$$

$$(\mathtt{rand()} \cdot n) \div 2^W$$

$$(\underbrace{\mathtt{rand()}}_{\in [0,2^W)} \cdot n) \div 2^W$$

$$\underbrace{\left(\mathtt{rand}\left(\right)\cdot n\right)}_{\in\left[0,n\cdot2^{W}\right)}\div2^{W}$$

$$\underbrace{(\mathtt{rand}()\cdot n)}_{\in [0,n\cdot 2^W)} \div 2^W$$

$$n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$$

$$\underbrace{(\mathtt{rand}()\cdot n)}_{\in [0,n\cdot 2^W)} \div 2^W$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

■ Map rand() to [0,n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

■ Map rand() to [0,n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

■ Mapping is deterministic!

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

- Mapping is deterministic!
- \blacksquare Mapping can not be uniform for all n!

The Algorithm - Intervals

The Algorithm - Intervals

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

The Algorithm - Intervals

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{\text{th interval mapped to 0 by }\gg W}^{n\cdot 2^W}_{\text{values}},\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to }i\text{ by }\gg W},\underbrace{(n-1)^{\text{th interval mapped to }n-1\text{ by }\gg W}_{\text{mapped to }n-1\text{ by }\gg W}$$

The Algorithm - Intervals

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{0^{\text{th interval}},\dots,\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to 0 by }\gg W}}_{\text{limiterval mapped to i by }\gg W}\underbrace{(n-1)^{\text{th interval}}_{n-1 \text{ by }\gg W}}_{\text{mapped to $n-1$ by }\gg W}$$

■ Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}, (i+1) \cdot 2^W)$

The Algorithm - Intervals

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{0^{\text{th interval}},\dots,\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to 0 by }\gg W}}_{i^{\text{th interval}},\dots,\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to }n-1\text{ by }\gg W},$$

- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1) \cdot 2^W - (i \cdot 2^W + \mathcal{R}) = 2^W - \mathcal{R}$$

The Algorithm - Intervals

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{0^{\text{th interval}},\dots,\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to 0 by }\gg W}}_{i^{\text{th interval}},\dots,\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to }n-1\text{ by }\gg W},$$

- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1) \cdot 2^W - (i \cdot 2^W + \mathcal{R}) = 2^W - \mathcal{R}$$

which is divisible by n

The Algorithm - Intervals

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{0^{\text{th interval}},\dots,\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to 0 by }\gg W}}_{i^{\text{th interval}},\dots,\underbrace{(n-1)\cdot 2^W,\dots,n\cdot 2^W-1}_{\text{mapped to }n-1\text{ by }\gg W},$$

- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1) \cdot 2^W - (i \cdot 2^W + \mathcal{R}) = 2^W - \mathcal{R}$$

which is divisible by n

■ Every restricted i^{th} interval has $\frac{2^W - \mathcal{R}}{n} = \lfloor \frac{2^W}{n} \rfloor$ multiples of n

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

The Algorithm - Intervals

■ Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

$$\underbrace{0,\dots,2^W-1,\dots,\underbrace{i\cdot 2^W,\dots,(i+1)\cdot 2^W-1}_{\text{0th interval mapped to 0 by }\gg W},\underbrace{i^{\text{th interval mapped to }i^{\text{th interval mapped to }n-1\text{ by }\gg W}}_{\text{mapped to }i^{\text{th interval mapped to }n-1\text{ by }\gg W}}$$

- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1) \cdot 2^W - (i \cdot 2^W + \mathcal{R}) = 2^W - \mathcal{R}$$

which is divisible by n

- Every restricted i^{th} interval has $\frac{2^W \mathcal{R}}{n} = \lfloor \frac{2^W}{n} \rfloor$ multiples of n
- \blacksquare We can make Multiply-And-Shift uniform by only accepting multiples of n in restricted intervals

When do we reject $x := rand() \cdot n$?

The Algorithm - Rejection

When do we reject $x := rand() \cdot n$?

■ $x \in [i \cdot 2^W, i \cdot 2^W + \mathcal{R})$ for some i < n

When do we reject $x := rand() \cdot n$?

- $\mathbf{x} \in [i \cdot 2^W, i \cdot 2^W + \mathcal{R})$ for some i < n
- Applying $x \mod 2^W$ to any i^{th} interval yields

When do we reject $x := rand() \cdot n$?

- $x \in [i \cdot 2^W, i \cdot 2^W + \mathcal{R})$ for some i < n
- Applying $x \mod 2^W$ to any i^{th} interval yields

When do we reject $x := rand() \cdot n$?

- $\mathbf{x} \in [i \cdot 2^W, i \cdot 2^W + \mathcal{R}) \text{ for some } i < n$
- Applying $x \mod 2^W$ to any i^{th} interval yields

$$\underbrace{\frac{2^W \text{ values}}{0,1,\dots,\mathcal{R}-1}}_{\text{rejected part}},\underbrace{\mathcal{R},\dots,n,\dots,2^W-1}_{\text{restricted }i^{\text{th}} \text{ interval}}$$

• We reject x if $x \mod 2^W < \mathcal{R}$

The Algorithm - Sketch

 $\mathbf{1} \ \overline{\mathcal{R} \leftarrow 2^W \bmod n}$

/* Compute rejection threshold */

$$\mathbf{1} \ \overline{\mathcal{R} \leftarrow 2^W \bmod n}$$

/* Compute rejection threshold */

 $\mathbf{2}$ while true do

GOETHE The Algorithm - Sketch

$$\mathbf{1} \ \overline{\mathcal{R} \leftarrow 2^W \bmod n}$$

/* Compute rejection threshold */

- 2 while true do
 - $x \leftarrow \text{rand}()$

1
$$\mathcal{R} \leftarrow 2^W \mod n$$
 /* Compute rejection threshold */
2 while $true$ do
3 | $x \leftarrow \text{rand}()$
4 | $m \leftarrow x \cdot n$ /* Use $2W$ bits for representation */


```
1 \mathcal{R} \leftarrow 2^W \mod n /* Compute rejection threshold */
2 while true do
3 | x \leftarrow \text{rand}()
4 | m \leftarrow x \cdot n | /* Use 2W bits for representation */
5 | l \leftarrow m \& (2^W - 1) | /* m \mod 2^W */
```



```
1 \mathcal{R} \leftarrow 2^W \mod n /* Compute rejection threshold */
2 while true do
3 | x \leftarrow \text{rand}()
4 | m \leftarrow x \cdot n | /* Use 2W bits for representation */
5 | l \leftarrow m \& (2^W - 1) | /* m \mod 2^W */
6 | if l \geq \mathcal{R} then | /* Apply rejection rule */
```



```
1 \mathcal{R} \leftarrow 2^W \mod n /* Compute rejection threshold */
2 while true do
3 | x \leftarrow \text{rand}()
4 | m \leftarrow x \cdot n | /* Use 2W bits for representation */
5 | l \leftarrow m \& (2^W - 1) | * m \mod 2^W */
6 | if l \geq \mathcal{R} then | /* Apply rejection rule */
7 | | return m \gg W
```


GOETHE UNIVERSITÄT

Consider the first iteration of the loop:

Consider the first iteration of the loop:

■ We reject x if $l < \mathcal{R}$

Consider the first iteration of the loop:

• We reject x if $l < \mathcal{R}$

 \longrightarrow we need to compute \mathcal{R} beforehand

Consider the first iteration of the loop:

- We reject x if $l < \mathcal{R}$
- \longrightarrow we need to compute \mathcal{R} beforehand

■ But we know $\mathcal{R} < n$

Consider the first iteration of the loop:

Consider the first iteration of the loop:

We can alter the first iteration of the loop:

Consider the first iteration of the loop:

We can alter the first iteration of the loop:

■ We do not compute \mathcal{R} beforehand

Consider the first iteration of the loop:

We can alter the first iteration of the loop:

- We do not compute \mathcal{R} beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}

Consider the first iteration of the loop:

We can alter the first iteration of the loop:

- We do not compute \mathcal{R} beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}
- If not, we compute \mathcal{R} and proceed as before

Consider the first iteration of the loop:

We can alter the first iteration of the loop:

- We do not compute \mathcal{R} beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}
- \blacksquare If not, we compute \mathcal{R} and proceed as before

With what probability do we need to compute \mathcal{R} :

Consider the first iteration of the loop:

We can alter the first iteration of the loop:

- We do not compute \mathcal{R} beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}
- \blacksquare If not, we compute \mathcal{R} and proceed as before

With what probability do we need to compute \mathcal{R} :

• We assume x to be uniform in $[0, 2^W)$

Consider the first iteration of the loop:

We can alter the first iteration of the loop:

- We do not compute \mathcal{R} beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}
- If not, we compute \mathcal{R} and proceed as before

With what probability do we need to compute \mathcal{R} :

• We assume x to be uniform in $[0,2^W)$ \longrightarrow l is also uniform in $[0,2^W)$

Consider the first iteration of the loop:

We can alter the first iteration of the loop:

- We do not compute \mathcal{R} beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}
- If not, we compute \mathcal{R} and proceed as before

With what probability do we need to compute \mathcal{R} :

- We assume x to be uniform in $[0,2^W)$ \longrightarrow l is also uniform in $[0,2^W)$
- We compute \mathcal{R} if l < n

Consider the first iteration of the loop:

We can alter the first iteration of the loop:

- We do not compute \mathcal{R} beforehand
- If $l \ge n$, we accept x without computing \mathcal{R}
- If not, we compute \mathcal{R} and proceed as before

With what probability do we need to compute \mathcal{R} :

- We assume x to be uniform in $[0,2^W)$ \longrightarrow l is also uniform in $[0,2^W)$

1 $x \leftarrow \text{rand}()$

- 1 $x \leftarrow \text{rand}()$
- $2 m \leftarrow x \cdot n$

/* Use 2W bits for representation */


```
1 x \leftarrow \text{rand()}
```

$$2 m \leftarrow x \cdot n$$

3
$$l \leftarrow m \& (2^W - 1)$$

/* Use
$$2W$$
 bits for representation */
/* $m \mod 2^W$ */


```
1 x \leftarrow \text{rand}()
                                                /* Use 2W bits for representation */
2 m \leftarrow x \cdot n
l \leftarrow m \& (2^W - 1)
                                                                           /* m \mod 2^W */
4 if l < n then
                                                            /* Possibly skip division */
10 return m \gg W
```



```
1 x \leftarrow \text{rand}()
                                                 /* Use 2W bits for representation */
2 m \leftarrow x \cdot n
                                                                             /* m \mod 2^W */
3 l \leftarrow m \& (2^W - 1)
4 if l < n then
                                                             /* Possibly skip division */
5 \mathcal{R} \leftarrow 2^W \mod n
                                                       /* Compute rejection threshold */
10 return m \gg W
```



```
1 x \leftarrow \text{rand}()
                                                   /* Use 2W bits for representation */
\mathbf{2} \ m \leftarrow x \cdot n
3 l \leftarrow m \& (2^W - 1)
                                                                               /* m \mod 2^W */
4 if l < n then
                                                               /* Possibly skip division */
    \mathcal{R} \leftarrow 2^W \mod n
                                                        /* Compute rejection threshold */
     while l < \mathcal{R} do
                                                                 /* Apply rejection rule */
10 return m\gg W
```



```
1 x \leftarrow \text{rand}()
                                                                   /* Use 2W bits for representation */
\mathbf{2} \ m \leftarrow x \cdot n
3 l \leftarrow m \& (2^W - 1)
                                                                                                        /* m \mod 2^W */
4 if l < n then
                                                                                   /* Possibly skip division */
5 \mathcal{R} \leftarrow 2^W \mod n
                                                                          /* Compute rejection threshold */
       while l < \mathcal{R} do
                                                                                      /* Apply rejection rule */
egin{array}{c|c} \mathbf{7} & x \leftarrow \mathtt{rand()} \\ \mathbf{8} & m \leftarrow x \cdot n \\ \mathbf{9} & l \leftarrow m & (2^W-1) \end{array}
10 return m\gg W
```


Summary

expected number of integer division operations maximum number of Unbiased? integer division operations

	integer division	maximum number of integer division	Unbiased?
	operations	operations	
Modulo Reduction	1	1	X

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	Х
Multiply-and-Shift	0	0	X

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	X
OpenBSD	2	2	1

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	Х
Multiply-and-Shift	0	0	×
OpenBSD	2	2	✓
Java	$rac{2^W}{2^W - \mathcal{R}}$	∞	✓

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	X
OpenBSD	2	2	✓
$\overline{\mathrm{Java}}$	$rac{2^W}{2^W - \mathcal{R}}$	∞	✓
Bitmask	$\begin{bmatrix} 2 & -\kappa \\ 0 \end{bmatrix}$	0	✓

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	X
OpenBSD	2	2	✓
Java	$rac{2^W}{2^W-\mathcal{R}}$	∞	✓
Bitmask	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	✓
Lemire	$\frac{n}{2W}$	1	✓

