

408 计算机网络冲刺背诵手册

北街学长倾力之作

作者: 北街

时间: 2025/08/17

版本: 1.0

目录

第一章 计算机网络概述

1.1 计算机网络的定义、功能和分类

定义: 互连的、自主的计算机集合,通过通信线路连接,实现资源共享和信息传递。 主要功能:

• 数据通信: 点对点数据传输

• 资源共享: 硬件、软件、数据共享

• 分布式处理: 多台计算机协同处理任务

• 提高可靠性: 备用设备和冗余路径

• 负载均衡: 任务分配优化

分类方式:

分类材	示准 类型 特点	<u> </u>
	PAN (个域网)	10m 以内, 蓝牙、红外
覆盖范围	LAN (局域网)	几 km,以太网
	MAN (城域网)	10-100km,城市范围
	WAN (广域网)	100km 以上,Internet
 拓扑结构	总线型	共享总线,冲突检测
3日11、2日43	星型	中心节点, 易扩展
	环型	令牌传递,无冲突
 传输技术	广播式	共享信道,竞争访问
	点对点	专用链路,存储转发

1.2 计算机网络的组成与结构

网络组成三要素:

- 1. 硬件: 计算机、通信线路、网络设备
- 2. 软件: 网络操作系统、网络管理软件
- 3. 协议: 通信规则和标准

网络结构:

- 网络边缘: 主机 (端系统), 运行应用程序
- 接入网: 连接端系统到边缘路由器
- 网络核心: 路由器网状网络, 分组交换

1.3 计算机网络的性能指标

1.3.1 速率相关指标

核心概念对比:

指标	定义	区别
速率 (Rate)	数据传输速率,单位时间传输比 特数	理论最大值,bps
带宽 (Bandwidth)	信道能通过的最高数据率	物理概念,Hz 或 bps
吞 吐 量 实际单位时间传输的数据量 (Throughput)		实际测量值≤带宽

1.3.2 时延相关指标

四种时延组成:

- 发送时延 = $\frac{L}{R}$ (L: 分组长度, R: 发送速率)
- 传播时延 = $\frac{d}{s}$ (d: 物理距离, s: 传播速率)
- 处理时延: 路由器处理分组的时间
- 排队时延: 分组在队列中等待的时间
- 重要概念:
- 时延带宽积 = 传播时延 × 带宽("管道"中的比特数)
- 往返时间 RTT: 从发送方到接收方再返回的时间

1.3.3 其他性能指标

- 信道利用率: $U = \frac{T_0}{T_0 + RTT}$ (停止等待协议)
- 网络利用率: 信道利用率加权平均值
- 丢包率: 丢失分组数/总分组数
- 误码率 BER: 传输中出错的比特占总比特数的比率 记忆要点:
- 1. 发送时延看发送方,传播时延看距离
- 2. 利用率过高导致时延急剧增加
- 3. 时延带宽积 = 链路容量

1.4 计算机网络体系结构

1.4.1 网络协议与分层

协议三要素:

- 1. 语法: 数据格式、编码、信号电平
- 2. 语义: 控制信息的含义,差错处理
- 3. 同步: 事件顺序的详细说明

分层的优点:

- 降低复杂性,便于设计和维护
- 标准化接口,促进互操作性
- 模块化设计, 便于更新和扩展

1.4.2 OSI 七层模型

j.	三次 名称 主	要功能	关键设备/协议
7	应用层	为应用程序提供网络服务	HTTP, FTP, SMTP, DNS
6	表示层	数据加密、压缩、格式转换	SSL/TLS, JPEG, MPEG
5	会话层	建立、管理、终止会话	NetBIOS, RPC
4	传输层	端到端可靠传输	TCP, UDP
3	网络层	路径选择,逻辑寻址	IP, ICMP, 路由器
2	数据链路层	成帧,差错检测与纠正	以太网, PPP, 交换机
1	物理层	比特流传输	集线器,中继器

1.4.3 TCP/IP 四层模型

TCP/IP 层	对应 OSI 层	主要协议
应用层	应用层 + 表示层 + 会话层	HTTP, FTP, SMTP, DNS, Telnet
传输层	传输层	TCP, UDP
网际层	网络层	IP, ICMP, ARP, RARP
网络接口层	数据链路层 + 物理层	以太网, PPP, SLIP

记忆口诀:

- OSI: 物数网传会表应
- 各层 PDU: 比特 \rightarrow 帧 \rightarrow 分组/包 \rightarrow 段 \rightarrow 报文

第二章 物理层

2.1 物理层基本概念

物理层任务:在物理媒体上传输比特流,定义电气、机械、功能、过程特性。 四个特性:

- 1. 机械特性:接口形状、尺寸、引脚数
- 2. 电气特性: 电压范围、传输速率、距离限制
- 3. 功能特性: 引脚的功能分配
- 4. 过程特性: 建立连接的工作步骤

2.2 数据通信基础

2.2.1 基本术语

通信基础概念:

- 数据: 传送信息的实体
- 信号: 数据的电气/光学表现
 - 模拟信号: 连续变化
 - ▲ 数字信号: 离散变化
- 信道: 传输信号的通道
 - 单工: 单向传输(广播)
 - ▲ 半双工: 双向交替传输(对讲机)
 - ◆ 全双工:双向同时传输(电话)
- 信源: 产生和发送数据的源点
- 信宿: 接收数据的终点

重要术语:

- 码元: 在数字通信中时间轴上的一个信号单元
- 波特率: 每秒传输的码元个数,单位 Baud
- 比特率: 每秒传输的比特个数,单位 bps
- 关系: 比特率 = 波特率 × $\log_2 V$ (V 为每个码元可能的离散值个数) 编码与调制:
- 编码: 数据变换为数字信号
 - ▲ 不归零编码 (NRZ): 1 用高电平, 0 用低电平
 - ▶ 归零编码 (RZ): 信号在码元结束前归零
 - ▲ 曼彻斯特编码: 位中间有跳变, 自同步
 - ▲ 差分曼彻斯特编码: 位开始有无跳变表示数据
- 调制: 数据变换为模拟信号
 - 调幅 (ASK): 改变载波幅度
 - 调频 (FSK): 改变载波频率
 - 调相 (PSK): 改变载波相位
 - ▲ 正交调幅 (QAM): 同时调幅和调相

三种交换方式:

交换方式	特点	应用场景
电路交换	建立专用物理连接	传统电话网络
	三阶段:建立、通信、释放	实时通信
报文交换	整个报文存储转发	早期数据网络
	存储转发延迟大	电子邮件
分组交换	将报文分割成分组	现代数据网络
	存储转发延迟小	Internet

数据报 vs 虚电路:

数据报:每个分组独立路由,无连接虚电路:预先建立路径,面向连接

2.2.2 奈奎斯特定理和香农定理

奈奎斯特定理(理想信道):

$$C = 2W \log_2 V \text{ (bps)}$$

其中: W= 带宽 (Hz), V= 信号电平数 香农定理 (实际信道):

$$C = W \log_2(1 + S/N) \text{ (bps)}$$

其中: S/N= 信噪比,单位 dB 时: $S/N_{dB} = 10 \log_{10}(S/N)$ 记忆要点:

- 奈奎斯特: 理想无噪声, 主要看电平数
- 香农: 考虑噪声,实际信道极限
- 两者取较小值为实际极限

2.3 传输介质

2.3.1 有线传输介质

介质类型	特点	应用场景
双绞线	抗干扰能力强,成本低	局域网,电话线

5 类线: 100Mbps

介质类型	特点	应用场景
	6 类线:1Gbps	
同轴电缆	带宽大,抗干扰强	有线电视,早期以太网
	50Ω: 数字传输	
	75Ω: 模拟传输	
光纤	带宽极大,不受电磁干扰	长距离高速传输
	单模:长距离	主干网络
	多模: 短距离	建筑物内部

2.3.2 无线传输介质

- 无线电波: 长距离,穿透性强,全向传播
- 微波: 视距传播,点对点通信
- 红外线: 短距离, 需要视距, 安全性好
- 激光: 高带宽,方向性强,易受干扰

2.4 信道复用技术

复用目的:提高信道利用率,多个用户共享信道

复用方式	原理	特点
频分复用 FDM	不同频率载波传输	模拟通信,频谱分割
时分复用 TDM	不同时间片传输	数字通信,时间分割
统 计 时 分 复 用 STDM	按需分配时间片	提高效率,复杂控制
波分复用 WDM	不同波长光信号	光纤通信,容量巨大
码分复用 CDM	不同编码序列	CDMA,抗干扰强

记忆技巧:

• FDM: 频率分开用

TDM: 时间轮流用 WDM: 波长分开用 CDM: 编码区分用

2.5 物理层设备

中继器 (Repeater):

- 功能: 放大和重新整形信号, 延长传输距离
- 工作层次: 物理层
- 特点:
 - ▶ 两端口设备,连接同种传输媒体
 - ▲不理解帧、分组等高层概念
 - 简单的信号放大,不检查数据内容
 - 延长单段传输距离,但不增加总带宽
- 限制: 5-4-3 规则(以太网中最多 5 段, 4 个中继器, 3 段有主机)

集线器 (Hub):

- 功能: 多端口中继器, 星型拓扑中心
- 工作层次: 物理层
- 特点:
 - 所有端口共享总带宽
 - 半双工工作方式
 - 单一冲突域和广播域
 - 使用 CSMA/CD 协议
- 缺点:
 - 冲突域大,效率低
 - 不能隔离冲突
 - 所有端口必须同速率
 - 己基本被交换机取代

中继器 vs 集线器:

设备	中继器	集线器
端口数量	2 个	多个 (4-24)
拓扑结构	总线延长	星型中心
冲突域	1 个	1 个
主要用途	距离延长	网络集中

第三章 数据链路层

3.1 数据链路层基本概念

数据链路层功能:

1. 封装成帧: 在网络层分组前后添加帧头和帧尾

2. 透明传输: 保证任何比特组合都能传输

3. **差错检测**: 检测传输中的差错 4. **差错纠正**: 纠正某些传输差错

5. 流量控制: 防止接收方缓存溢出

三个基本问题:

• 封装成帧: 确定帧的边界

• 透明传输: 解决帧定界符在数据中出现的问题

• 差错检测: 接收方检测传输差错

3.2 封装成帧

帧的结构:

帧头 数据部分 (IP 数据报) 帧尾

帧定界方法:

- 1. 字符计数法: 帧头指明帧长度
- 2. 字符填充法: 使用特殊字符作为定界符
- 3. 零比特填充法:连续5个1后插入0
- 4. 违法编码法: 使用物理层违法信号

透明传输:确保数据中任意比特组合都不会被误认为控制信息

- 字符填充: 遇到定界符时前面加转义字符
- 比特填充: 遇到连续 5 个 1 时插入 0

3.3 差错控制

3.3.1 差错检测

差错产生原因:

- 噪声干扰、设备故障、传输衰减
- 误码率 BER: 出错比特数/传输总比特数

奇偶校验:

- 简单奇偶校验: 检测奇数个比特错误
- 二维奇偶校验: 按行列分别校验, 可定位错误

循环冗余校验 CRC:

- 1. 选择生成多项式 G(x), k 个数据位, r 个校验位
- 2. 发送方:将数据左移 r 位,除以 G(x) 得余数作为 CRC
- 3. 接收方: 收到数据除以 G(x), 余数为 0 则无错

CRC 特点:

- 检错能力强,漏检概率为 2-r
- 能检测出所有奇数位错误
- 能检测出长度 ≤r 的突发错误
- 只能检错,不能纠错

3.3.2 差错纠正

海明码:

- 海明距离: 两个等长字符串对应位不同的个数
- 纠错能力: 纠正 t 个错误需要海明距离 ≥2t+1
- 检错能力: 检测 t 个错误需要海明距离 ≥t+1 海明码编码规则:
- 1. 校验位位置: 2⁰, 2¹, 2², ...
- 2. 数据位: 其余位置
- 3. 每个校验位负责特定位置的奇偶性

3.4 流量控制与可靠传输

3.4.1 停止等待协议

工作原理:

- 1. 发送方发送一帧后停止,等待确认
- 2. 收到 ACK 后发送下一帧
- 3. 超时则重传当前帧

自动重传请求 ARQ:

- 确认机制:接收方发送 ACK 确认
- 超时重传: 发送方设置定时器
- 编号机制:数据帧和 ACK 帧编号

效率分析:

信道利用率 =
$$\frac{T_0}{T_0 + RTT}$$

其中 T_0 为发送时间,RTT为往返时间

3.4.2 滑动窗口协议

基本概念:

- 发送窗口: 发送方可连续发送的帧数
- 接收窗口: 接收方可接收的帧数
- 窗口滑动: 确认后窗口向前移动

后退 N 帧协议 (GBN):

- 发送窗口: 1 W_T,接收窗口: 1
- 累积确认:确认序号 n 表示 n 之前的帧都正确接收
- 出错处理: 重传出错帧及其后所有帧
- 序号范围: $W_T + 1 \le 2^k$

选择重传协议 (SR):

• 发送窗口: W_T , 接收窗口: W_R

- 单独确认: 每帧单独确认
- 出错处理: 只重传出错帧
- 序号范围: $W_T + W_R \leq 2^k$

协议对比:

特性	GBN	SR	
接收窗口	1	$W_R \ge 1$	
确认方式	累积确认	单独确认	
重传策略	回退重传	选择重传	
复杂度	较简单	较复杂	
效率	较低	较高	

3.5 介质访问控制

问题: 多个节点共享同一广播信道,如何协调访问?

3.5.1 信道划分

频分多址 FDMA:

- 将信道按频率划分给不同用户
- 无冲突, 但频谱利用率低

时分多址 TDMA:

- 将信道按时间划分给不同用户
- 需要严格同步,有时隙浪费

码分多址 CDMA:

- 每用户分配唯一的码序列
- 抗干扰能力强,频谱利用率高
- 应用: 3G 移动通信

3.5.2 随机访问

ALOHA 协议:

- 纯 ALOHA: 想发就发,冲突后随机延时重发
 - ▲ 最大吞吐量: 18.4%
 - 冲突检测: 通过确认机制
- 时隙 ALOHA:将时间分成时隙,只能在时隙开始发送
 - 最大吞吐量: 36.8%
 - ▲减少了冲突概率

载波监听多路访问 CSMA:

- 基本思想: 发送前先监听信道
- 1-坚持 CSMA: 信道空闲立即发送, 忙则持续监听
- 非坚持 CSMA: 信道忙则等待随机时间再监听
- p-坚持 CSMA: 信道空闲以概率 p 发送

CSMA/CD (载波监听/冲突检测):

- 1. 发送前: 载波监听,信道空闲才发送
- 2. 发送中: 边发送边监听, 检测冲突
- 3. 冲突处理: 停止发送, 发送干扰信号
- 4. **退避算法**:二进制指数退避 最小帧长要求:

 $L_{min} = 2 \times \tau \times R$

其中 τ 为单程传播时延,R为发送速率

CSMA/CA (载波监听/冲突避免):

- 用于无线网络(难以检测冲突)
- 预约信道: RTS/CTS 机制
- 确认机制: ACK 确认
- 应用: WiFi (IEEE 802.11)

3.5.3 轮流协议

令牌传递:

- 令牌按固定顺序在节点间传递
- 持有令牌的节点可发送数据
- 应用: 令牌环网、FDDI

轮询:

- 主节点轮询各从节点
- 被轮询节点可发送数据
- 开销: 轮询时延、等待时延

3.6 局域网

3.6.1 局域网基本概念

局域网特点:

- 覆盖范围小(几 km 以内)
- 数据传输速率高(10Mbps 10Gbps)
- 误码率低(10⁻⁸ 10⁻¹²)
- 各站点地位平等
- 共享传输媒体

局域网拓扑结构:

- 总线型: 所有节点连在一条总线上
- 星型: 所有节点连接到中央节点
- 环型: 节点连成环状结构
- 树型: 层次结构,有根节点

3.6.2 以太网

IEEE 802.3 标准特点:

- 使用 CSMA/CD 访问控制
- 无连接、不可靠的服务
- 发送前不握手
- 不确认接收到的帧

以太网帧格式:

前导码	帧开始符	目的地址	源地址	类型	数据	填充	FCS
7 字节	1字节	6字节	6字节	2 字节	46-1500 字节	0-46 字节	4字节

字段说明:

- 前导码: 7 个字节的 10101010, 用于同步
- 帧开始符: 10101011, 标识帧开始
- 地址字段: MAC 地址, 48 位
- 类型字段: 上层协议类型 (如 0x0800 表示 IP)
- 数据字段: 46-1500 字节, 不足 46 字节需填充
- FCS: 帧校验序列, CRC 校验

MAC 地址:

- 48 位 (6 字节), 全球唯一
- 前 24 位: 厂商标识(OUI)
- 后 24 位: 厂商内部编号
- 广播地址: FF-FF-FF-FF-FF
- 组播地址: 第一字节最低位为1

以太网发展:

—————— 标准	速率	————————————————————— 特点
10BASE-T	10 Mbps	双绞线,星型拓扑
100BASE-TX	100 Mbps	快速以太网, 保持帧格式
1000BASE-T	1 Gbps	千兆以太网,4对双绞线
10GBASE-T	10 Gbps	万兆以太网,光纤为主

3.6.3 无线局域网

IEEE 802.11 标准:

- 使用 CSMA/CA 访问控制
- 隐藏终端问题: A 能听到 B, C 能听到 B, 但 A 听不到 C
- 暴露终端问题: 不必要的等待

RTS/CTS 机制:

- 1. 发送方先发 RTS (请求发送)
- 2. 接收方回应 CTS (允许发送)

- 3. 其他节点听到 CTS 后保持静默
- 4. 发送数据,接收方发送 ACK

WiFi 标准演进:

标准	速率	频段
802.11	2 Mbps	2.4 GHz
802.11b	11 Mbps	2.4 GHz
802.11g	54 Mbps	2.4 GHz
802.11n	600 Mbps	2.4/5 GHz
802.11ac	6.93 Gbps	5 GHz
802.11ax	9.6 Gbps	2.4/5 GHz

3.7 广域网

广域网特点:

- 覆盖范围广(几十到几万公里)
- 通常使用点对点链路
- 主要解决路由和流量控制问题

点对点协议 PPP:

PPP 协议特点:

- 面向字节, 异步串行
- 不可靠传输(无确认机制)
- 支持多种网络层协议
- 有差错检测功能

PPP 帧格式:

标志字段	地址字段	控制字段	协议字段	信息字段	FCS	标志字段
7E	FF	03	2 字节	可变长	2 字节	7E

PPP 工作状态:

- 1. 静止状态: 物理层不可用
- 2. 建立状态: 建立链路, 配置选项
- 3. 认证状态:身份认证(可选)
- 4. 网络状态: 进行网络层配置
- 5. 打开状态:链路可用,传输数据
- 6. 终止状态: 关闭链路

高级数据链路控制 HDLC:

- 面向比特的协议
- 使用零比特填充法

- 支持半双工和全双工
- 主要用于同步串行线路

3.8 数据链路层设备

3.8.1 网桥

网桥功能:

- 连接两个或多个局域网
- 存储转发工作方式
- 根据 MAC 地址表转发帧
- 可以隔离冲突域

透明网桥工作原理:

- 1. 学习:根据源 MAC 地址学习站点位置
- 2. 转发: 查表决定转发端口
- 3. 过滤: 同一段内通信不转发
- 4. 老化: 定期删除过期表项

3.8.2 以太网交换机

交换机特点:

- 多端口网桥,每端口一个冲突域
- 全双工工作, 无冲突
- 支持不同速率端口
- 可构成星型拓扑

交换方式:

- 存储转发:接收完整帧后检查再转发
- 直通交换: 读取目的地址后立即转发
- 无片段交换: 读取 64 字节后开始转发 生成树协议 STP:
- 目的: 消除网络中的环路
- 方法: 构造生成树, 阻塞部分端口
- 根网桥: 优先级最高的交换机
- 端口状态: 根端口、指定端口、阻塞端口

VLAN 虚拟局域网:

- 逻辑分割物理网络
- 同一 VLAN 内可通信,不同 VLAN 间需路由
- 实现方式:端口 VLAN、MAC VLAN、协议 VLAN
- 标准: IEEE 802.1Q (VLAN 标记)

记忆要点:

- 数据链路层负责相邻节点间的可靠传输
- CRC 只能检错不能纠错,海明码可以纠错
- CSMA/CD 用于有线网络, CSMA/CA 用于无线网络
- 以太网帧最小 64 字节,数据部分最少 46 字节
- 交换机学习 MAC 地址,路由器学习 IP 地址

第四章 网络层

4.1 网络层概述

网络层主要功能:

- 1. 路由选择:确定分组从源到目的的最佳路径
- 2. 分组转发: 根据路由表转发分组到下一跳
- 3. 异构网络互连: 连接不同的网络
- 4. 拥塞控制: 防止网络过载

网络层设计思路:

- 网络层向上提供的服务: 无连接、尽力而为
- 网络层核心功能: 转发和路由
- 路由器功能: 存储转发、路由选择

SDN 基本概念:

- 软件定义网络: 控制平面与数据平面分离
- 核心思想: 网络可编程、集中控制、开放接口
- 架构组成:
 - 应用层: 网络应用程序
 - 控制层: SDN 控制器 (大脑)
 - 基础设施层: SDN 交换机(执行)
- 优势: 灵活配置、统一管理、快速创新
- 协议: OpenFlow 协议 (控制器与交换机通信)

4.2 网络层提供的两种服务

服务类型	虚电路服务	数据报服务
连接方式	面向连接	无连接
可靠性	网络保证可靠性	主机保证可靠性
路径	所有分组同一路径	每个分组独立路由
分组顺序	有序到达	可能乱序
差错处理	网络负责重传	端系统负责重传
拥塞控制	网络负责	端系统负责
典型应用	X.25, ATM	Internet (IP)

Internet 采用数据报服务的原因:

- 网络核心部分简单、可靠性高
- 端系统智能化,差错处理能力强
- 能够适应多种应用需求
- 网络造价大大降低

4.3 IPv4

4.3.1 IPv4 地址

IPv4 地址格式:

- 32 位二进制,通常用点分十进制表示
- 结构: 网络号+主机号
- 分为 A、B、C、D、E 五类

IPv4 地址分类:

 类别	第一字节范围	网络号位数	网络数量
A 类	1-126	8 位	$2^7 - 2 = 126 \uparrow$
B类	128-191	16 位	$2^{14} = 16384 \uparrow$
C类	192-223	24 位	$2^{21} = 2097152 \uparrow$
D类	224-239		组播地址
E类	240-255		保留地址

特殊 IP 地址:

- 0.0.0.0: 本网络本主机
- 255.255.255.255: 受限广播地址
- 127.x.x.x: 环回地址 (loopback)
- 169.254.x.x: 链路本地地址
- 私有地址:
 - A 类: 10.0.0.0/8B 类: 172.16.0.0/12C 类: 192.168.0.0/16

子网划分与 CIDR:

- 子网掩码: 区分网络号和主机号
- VLSM: 可变长子网掩码
- CIDR: 无类域间路由,消除传统分类限制
- CIDR 表示法: 192.168.1.0/24

子网划分计算:

子网数 =
$$2^n$$
 (4.1)

(4.2)

每个子网主机数 = $2^m - 2$ (4.3)

(4.4)

子网掩码长度 = 32 - m (4.5)

其中 n 为借用的主机位数, m 为剩余主机位数

4.3.2 地址解析协议 ARP

ARP 功能:将 IP 地址解析为 MAC 地址

ARP 工作过程:

- 1. 主机 A 要发送给主机 B, 查找 ARP 缓存表
- 2. 若无对应项,广播 ARP 请求(Who has IP_B? Tell IP_A)
- 3. 主机 B 收到请求,单播 ARP 应答(IP_B is at MAC_B)
- 4. 主机 A 收到应答, 更新 ARP 表, 发送数据帧

ARP 报文格式:

硬件类型	2 字节
协议类型	2 字节
硬件地址长度	1字节
协议地址长度	1 字节
操作码	2 字节
发送方硬件地址	6字节
发送方协议地址	4 字节
目标硬件地址	6 字节
目标协议地址	4 字节

ARP 相关协议:

- RARP: 反向地址解析, MAC→IP
- 免费 ARP: 检测地址冲突、更新 ARP 表
- 代理 ARP: 路由器代为应答 ARP 请求

4.3.3 网络地址转换 NAT

NAT 产生背景:

- IPv4 地址空间不足
- 私有网络需要访问 Internet
- 节约公有 IP 地址

NAT 工作原理:

- 1. 内部主机使用私有 IP 地址
- 2. 访问外网时, NAT 设备替换源 IP 为公网 IP
- 3. 维护 NAT 转换表记录对应关系
- 4. 外网回复时,根据转换表还原私有 IP

NAT 类型:

• 静态 NAT: 一对一固定映射

- 动态 NAT: 一对多动态分配
- NAPT: 端口地址转换, 多对一映射

NAT 转换表示例:

内部 IP: 端口	外部 IP: 端口	目标 IP: 端口	状态
192.168.1.2:1024	202.1.1.1:8001	8.8.8.8:53	活跃
192.168.1.3:1025	202.1.1.1:8002	163.1.1.1:80	活跃

NAT 的优缺点:

- 优点: 节约 IP 地址、提供安全性、灵活组网
- 缺点: 违反端到端原则、影响某些协议、增加延迟

4.3.4 动态主机配置协议 DHCP

DHCP 功能:

- 自动为主机分配 IP 地址
- 配置子网掩码、默认网关、DNS 服务器
- 统一管理网络配置参数

DHCP 工作过程(四次握手):

- 1. DHCP Discover: 客户端广播发现 DHCP 服务器
- 2. DHCP Offer: 服务器提供 IP 地址配置
- 3. DHCP Request: 客户端请求使用该配置
- 4. DHCP ACK: 服务器确认分配

DHCP 地址分配方式:

- 静态分配: 为特定 MAC 地址预留 IP
- 动态分配: 从地址池临时分配
- 自动分配: 永久分配, 类似静态

DHCP 租约管理:

- 租约时间: IP 地址的使用期限
- 续约: 租约到期前自动续租
- 释放: 主机主动释放 IP 地址
- 回收: 租约到期后回收地址

DHCP 中继:

- 跨子网 DHCP 服务
- 路由器转发 DHCP 报文
- 避免每个子网部署 DHCP 服务器

4.3.5 IP 数据报

IP 数据报格式:

0 16		31	
版本	首部长度	服务类型	总长度
标识		标志	片偏移
生存时间 TTL	协议	首部校	验和
	源 IP 地址	止	
	目的 IP 地址		
可选字段(长度可变)			
数据部分			

重要字段说明:

- 版本: 4位, IPv4=4, IPv6=6
- 首部长度: 4位,以4字节为单位,最小值5
- 总长度: 16 位,包括首部和数据,最大65535字节
- 标识: 16位, 唯一标识数据报的分片
- 标志: 3 位, DF (不分片)、MF (更多分片)
- 片偏移: 13 位,以8字节为单位
- TTL: 8位,跳数限制,每经过路由器减1
- 协议: 8 位,指示上层协议(TCP=6, UDP=17)

IP 分片与重组:

分片原因:

- 数据报长度超过网络的 MTU (最大传输单元)
- 以太网 MTU=1500 字节, 其他网络可能更小

分片过程:

- 1. 保持标识字段相同
- 2. 除最后一片外, MF=1, 最后一片 MF=0
- 3. 片偏移 = 前面所有分片数据长度 ÷8
- 4. 除最后一片外,数据长度必须是8的倍数

重组过程:

- 目的主机根据标识字段识别分片
- 根据片偏移确定分片位置
- 直到收到 MF=0 的分片才开始重组
- 重组失败则丢弃所有分片

分片计算示例: 原数据报 3800 字节, MTU=1500 字节

- 第一片: 20 字节首部 +1480 字节数据, 片偏移 =0
- 第二片: 20 字节首部 +1480 字节数据, 片偏移 =1480÷8=185
- 第三片: 20 字节首部 +840 字节数据, 片偏移 =2960÷8=370

4.3.6 网际控制报文协议 ICMP

ICMP 功能:

- 差错报告: 向源主机报告差错情况
- 网络探测: 测试网络连通性
- 不纠正差错, 只报告差错

ICMP 报文类型:

类型	名称	用途
0	回送应答	ping 响应
3	目标不可达	网络/主机/端口不可达
4	源点抑制	拥塞控制 (已废弃)
5	重定向	路由重定向

——— 类型	名称	用途
8	回送请求	ping 请求
11	时间超过	TTL=0 或重组超时
12	参数问题	IP 首部字段错误

ICMP 应用:

- ping: 使用回送请求和应答测试连通性
- traceroute: 利用 TTL 超时逐跳探测路径
 - 1. 发送 TTL=1 的数据包,第一个路由器返回超时
 - 2. 发送 TTL=2 的数据包,第二个路由器返回超时
 - 3. 重复直到到达目标主机

4.4 IPv6

IPv6产生背景:

- IPv4 地址空间不足(43 亿个地址)
- IPv4 首部复杂,处理效率低
- 缺乏对实时服务的支持
- 安全性不足

IPv6 地址特点:

- 地址长度: 128位(16字节)
- 地址数量: 2¹²⁸ ≈ 3.4 × 10³⁸ 个
- 表示方法: 冒号十六进制,如 2001:0db8:85a3::8a2e:0370:7334
- 地址压缩: 连续的 0 组可用:: 表示(只能用一次)

IPv6 地址类型:

- 单播地址: 一对一通信
- 组播地址: 一对多通信(FF00::/8)
- 任播地址: 一对最近一个通信
- 没有广播地址: 用组播代替

IPv6 数据报格式:

- 固定首部: 40 字节, 简化处理
- 扩展首部: 可选, 提供灵活性
- 取消校验和: 由上层协议负责
- 取消分片: 只能在源端分片

IPv6与 IPv4 对比:

 特性	IPv4	IPv6	
地址长度	32 位	128 位	
首部长度	20-60 字节(可变)	40 字节 (固定)	
校验和	有	无	
分片	路由器可分片	只能源端分片	
地址配置	手动或 DHCP	自动配置	
安全性	可选 IPSec	强制 IPSec	
QoS 支持	有限	内置支持	
Ç - 2-14		. •	

IPv4 到 IPv6 过渡技术:

• 双协议栈: 同时运行 IPv4 和 IPv6

• 隧道技术: IPv6 数据包封装在 IPv4 中传输

• 地址转换: NAT64 等技术

4.5 路由算法与路由协议

4.5.1 路由算法

路由算法分类:

 分类标准	类型 1	类型 2
适应性	静态路由(人工配置)	动态路由(自动计算)
信息来源	全局信息	局部信息
算法类型	距离向量算法	链路状态算法

距离向量算法(DV):

- 基本思想: 每个节点维护到所有目的地的距离向量
- 更新规则: $D_x(y) = \min_{v} \{c(x, v) + D_v(y)\}$
- 信息交换: 定期与邻居交换距离向量
- 优点: 简单、分布式
- 缺点: 收敛慢、无穷计数问题

链路状态算法(LS):

- 基本思想: 每个节点维护整个网络拓扑
- 算法核心: Dijkstra 最短路径算法
- 信息传播: LSA (链路状态通告) 洪泛
- 优点: 收敛快、无环路
- 缺点: 内存消耗大、计算复杂

Dijkstra 算法步骤:

- 1. 初始化:设源节点距离为 0,其他为 ∞
- 2. 选择当前未访问节点中距离最小的节点
- 3. 更新该节点所有邻居的距离
- 4. 标记该节点为已访问
- 5. 重复直到所有节点被访问

4.5.2 自治系统与路由协议

自治系统(AS):

- 在统一管理下的路由器集合
- 使用相同的路由协议
- AS 号 (ASN) 全球唯一

路由协议分类:

- 内部网关协议(IGP): AS 内部使用
- 外部网关协议(EGP): AS 之间使用RIP 协议(距离向量):
- 度量: 跳数 (最大 15 跳)
- 更新: 每30秒广播路由表
- 特点: 简单、适合小型网络
- 版本: RIPv1 (有类)、RIPv2 (无类)
- 防环机制: 水平分割、毒性逆转

OSPF 协议(链路状态):

- 度量: 带宽(代价值)
- 更新: LSA 洪泛, 增量更新
- 特点: 收敛快、支持 VLSM、支持认证
- 区域: 骨干区域 (Area 0) 和普通区域
- LSA 类型: 路由器 LSA、网络 LSA、汇总 LSA 等 BGP 协议(路径向量):
- 用途: AS 间路由、Internet 骨干路由
- 特点: 基于策略、支持 CIDR
- 路径信息: AS 路径, 防止环路
- 连接类型: eBGP (外部)、iBGP (内部)
- 属性: 下一跳、AS 路径、本地优先等 路由协议对比:

协议	算法	度量	适用范围	
RIP	距离向量	跳数	小型网络	

协议	算法	度量	适用范围
OSPF	链路状态	带宽	企业网络
BGP	路径向量	策略	Internet 骨干

4.6 IP 组播

组播基本概念:

- 单播: 一对一通信
- 广播: 一对所有通信
- 组播: 一对多通信(一对一组)
- 任播: 一对最近一个通信

组播优点:

- 节约网络带宽
- 减轻服务器负担
- 支持多媒体应用

组播地址:

- D 类地址: 224.0.0.0-239.255.255.255
- 本地链路组播: 224.0.0.x (不转发)
- 预留组播地址:
 - 224.0.0.1: 所有主机
 - 224.0.0.2: 所有路由器
 - 224.0.0.5: OSPF 路由器

IGMP 协议:

- 功能: 主机向路由器报告组成员关系
- 版本: IGMPv1、IGMPv2、IGMPv3
- 报文类型: 查询、报告、离开
- 工作原理:
 - 1. 路由器周期性发送查询
 - 2. 主机响应报告组成员身份
 - 3. 离开时发送离开报文

组播路由协议:

- PIM-DM: 密集模式,洪泛剪枝
- PIM-SM: 稀疏模式,显式加入
- DVMRP: 距离向量组播路由

4.7 移动 IP

移动 IP 基本概念:

- 支持移动节点在不同网络间移动
- 保持原有 IP 地址不变
- 维持现有的网络连接

基本术语:

- 归属网络: 移动节点的原始网络
- 外地网络: 移动节点当前所在网络
- 归属代理: 归属网络中的路由器
- 外地代理: 外地网络中的路由器
- 转交地址:外地网络分配的临时地址 移动 IP 工作过程:
- 1. 代理发现:移动节点发现可用代理
- 2. 注册: 向归属代理注册转交地址
- 3. 隧道传输:数据包通过隧道转发
- 4. 注销: 返回归属网络时注销

4.8 网络层设备

路由器工作原理:

路由器功能:

- 路径选择: 运行路由算法,维护路由表
- 分组转发: 根据目的 IP 地址转发分组
- 协议转换: 连接不同类型的网络
- 流量控制: 防止网络拥塞

路由器结构:

- 输入端口: 物理层和数据链路层处理
- 交换结构: 高速转发分组
- 输出端口: 输出链路调度和队列管理
- 路由处理器:运行路由协议,维护路由表 转发表查找:
- 最长前缀匹配: 选择匹配位数最多的表项
- 默认路由: 0.0.0.0/0, 匹配所有目的地
- 查找算法: 线性查找、二分查找、树查找

路由器 vs 交换机:

特性	交换机	路由器
工作层次	数据链路层	网络层
转发依据	MAC 地址	IP 地址
广播域	不分割	分割
冲突域	分割	分割
主要功能	帧交换	路由选择

记忆要点:

- 网络层实现端到端的数据传输
- IP 地址分为网络号和主机号两部分
- 路由算法分为距离向量和链路状态两大类
- ICMP 用于差错报告,不纠正差错
- IPv6 地址 128 位, IPv4 地址 32 位
- 路由器工作在网络层,交换机工作在数据链路层

第五章 传输层

5.1 传输层概述

传输层功能: 为应用进程提供逻辑通信,实现端到端的数据传输端口号分类:

熟知端口: 0-1023 (系统保留)

注册端口: 1024-49151 (应用程序)动态端口: 49152-65535 (临时分配)

复用与分解:

• 复用: 发送方多个进程数据通过一个传输层协议发送

• 分解: 接收方根据端口号将数据分发给对应进程

5.2 UDP 协议

UDP 特点:

• 无连接、不可靠、面向报文

• 开销小、传输效率高

• 支持一对一、一对多、多对多通信

UDP 首部格式 (8 字节):

源端口号 (16bit)	目的端口号 (16bit)	
UDP 长度 (16bit)	UDP 校验和 (16bit)	
数据		

适用场景: DNS 查询、TFTP、SNMP、音视频流

5.3 TCP 协议

5.3.1 TCP 首部

0		16	31
源端口 (16)		目的端口 (16)	
	序·	号 (32)	
	确り	号 (32)	
数据偏移 (4)	保留 (6) 控制位 (6) 窗口大小 (16)		
校验和((16)	紧急	指针 (16)
选项 (可变) + 填充			
数据部分			

5.3.2 TCP 特点

• 面向连接: 通信前需建立连接

• 可靠传输: 无差错、不丢失、不重复、按序到达

• 面向字节流: 把应用层数据看成字节流

• 全双工通信: 双向同时传输

• 点对点: 只能一对一通信

5.3.3 TCP 报文段

重要字段:

- 序号: 本报文段第一个字节的序号
- 确认号: 期望收到下个报文段的第一个字节序号
- 窗口大小:接收窗口大小,用于流量控制
- 标志位: URG、ACK、PSH、RST、SYN、FIN

5.3.4 TCP 连接管理

三次握手建立连接:

- 1. 客户端: SYN=1, seq=x
- 2. 服务器: SYN=1, ACK=1, seq=y, ack=x+1
- 3. 客户端: ACK=1, seq=x+1, ack=y+1 四次挥手释放连接:
- 1. 客户端: FIN=1, seq=u
- 2. 服务器: ACK=1, seq=v, ack=u+1
- 3. 服务器: FIN=1, ACK=1, seq=w, ack=u+1
- 4. 客户端: ACK=1, seq=u+1, ack=w+1 记忆要点:
- 三次握手: 防止失效连接请求到达服务器
- 四次挥手: 需要等待服务器数据发送完成
- TIME_WAIT 状态: 等待 2MSL, 确保最后 ACK 到达

5.3.5 TCP 可靠传输

可靠传输机制:

- 1. 序号与确认号: 保证按序、无重复
- 2. 校验和: 检测差错
- 3. 定时器: 超时重传
- 4. 滑动窗口: 流量控制和效率

超时重传机制:

- RTT 测量: $RTT_s = (1 \alpha) \times RTT_s + \alpha \times RTT_m$
- RTO 计算: $RTO = RTT_s + 4 \times RTT_D$
- 超时翻倍: 重传时 RTO 翻倍,最大 64 秒 快速重传:
- 收到 3 个重复 ACK 立即重传
- 不等超时,提高效率

5.3.6 TCP 流量控制

目的: 防止发送方发送过快,导致接收方缓存溢出 滑动窗口机制:

- 接收窗口 rwnd: 接收方通告的可用缓存空间
- 发送窗口: min(rwnd, cwnd)
- 零窗口: rwnd=0 时停止发送, 定期探测

5.3.7 TCP 拥塞控制

拥塞控制 vs 流量控制:

- 流量控制:考虑接收方处理能力拥塞控制:考虑网络传输能力
- 四种算法:
- 1. 慢开始: cwnd 指数增长至 ssthresh

 $cwnd_{new} = cwnd_{old} \times 2$

2. 拥塞避免: cwnd 线性增长

 $cwnd_{new} = cwnd_{old} + 1$

- 3. 快重传: 收到 3 个重复 ACK 立即重传
- 4. **快恢复**: 快重传后 cwnd 减半,进入拥塞避免 拥塞控制状态转换:
- 超时: ssthresh = cwnd/2, cwnd = 1, 慢开始
- 快重传: ssthresh = cwnd/2, cwnd = ssthresh, 拥塞避免 记忆口诀:
- 慢开始: 小心试探, 指数增长
- 拥塞避免: 稳步前进,线性增长
- 快重传: 及时发现, 立即重传
- 快恢复: 适度惩罚, 减半继续

第六章 应用层

6.1 应用层概述

网络应用模型:

- 1. 客户/服务器模式 (C/S)
 - 服务器: 永远运行, 固定 IP 地址, 提供服务
 - 客户端: 主动发起通信, 可间歇运行
- 2. 对等模式 (P2P)
 - 对等方: 既是客户端又是服务器
 - 直接通信, 无专用服务器
 - 可扩展性好,但管理复杂

6.2 动态主机配置协议 DHCP

DHCP 功能:动态分配 IP 地址和网络配置参数,实现网络的即插即用。

DHCP 优点:

• 自动配置:减少手工配置错误

• 集中管理: 统一管理 IP 地址分配

• 动态分配: 提高 IP 地址利用率

• 移动支持: 便于移动设备接入网络

DHCP 工作原理: DHCP 报文类型:

报文类型	发送方向	功能
DHCP DISCOVER	客户端 → 服务器	广播寻找 DHCP 服务器
DHCP OFFER	服务器→客户端	提供 IP 地址配置
DHCP REQUEST	客户端 → 服务器	请求使用特定 IP 地址
DHCP ACK	服务器 → 客户端	确认分配 IP 地址
DHCP NAK	服务器 → 客户端	拒绝 IP 地址请求
DHCP RELEASE	客户端 → 服务器	释放 IP 地址
DHCP RENEW	客户端 → 服务器	续租 IP 地址

DHCP 四步握手过程:

1. 发现 (DISCOVER):

- 客户端开机后广播 DHCP DISCOVER 报文
- 源 IP: 0.0.0.0, 目的 IP: 255.255.255
- 包含客户端 MAC 地址

2. 提供 (OFFER):

- DHCP 服务器收到 DISCOVER 后回应 OFFER 报文
- 包含建议的 IP 地址、子网掩码、默认网关、DNS 服务器
- 包含租约时间

3. 请求 (REQUEST):

- 客户端选择一个 OFFER, 发送 REQUEST 报文
- 广播形式, 让其他 DHCP 服务器知道选择结果
- 包含所选择的服务器标识符

4. 确认 (ACK):

- 被选中的 DHCP 服务器发送 ACK 确认
- 包含最终的 IP 配置参数
- 客户端开始使用分配的 IP 地址

DHCP 租约管理:

租约时间:

- 默认租约时间: 通常为8天
- T1 时间: 租约时间的 50%, 开始续租
- T2 时间: 租约时间的 87.5%, 向任何 DHCP 服务器续租
- 租约到期:释放 IP地址,重新申请

续租过程:

- 客户端在 T1 时间向原服务器发送 REQUEST
- 服务器回应 ACK 延长租约
- 如果原服务器不可达,在T2时间广播REQUEST
- 任何 DHCP 服务器都可以响应续租

DHCP 中继代理:

- 解决 DHCP 服务器跨网段问题
- 中继代理接收客户端广播
- 单播转发给 DHCP 服务器
- 转发服务器响应给客户端

DHCP 报文格式:

字段	长度	说明
OP	1字节	操作类型: 1= 请求, 2= 回应
НТҮРЕ	1字节	硬件地址类型: 1= 以太网
HLEN	1 字节	硬件地址长度: 6=MAC 地址
HOPS	1 字节	中继跳数
XID	4 字节	事务 ID, 匹配请求和响应

字段	长度	说明
SECS	2 字节	客户端启动后经过的秒数
FLAGS	2 字节	标志位,最高位为广播标志
CIADDR	4 字节	客户端 IP 地址
YIADDR	4 字节	你的 IP 地址(服务器分配)
SIADDR	4 字节	服务器 IP 地址
GIADDR	4 字节	网关 IP 地址(中继代理)
CHADDR	16 字节	客户端硬件地址
OPTIONS	可变	选项字段,包含各种配置参数

DHCP 选项:

- 选项 1: 子网掩码
- 选项 3: 默认网关
- 选项 6: DNS 服务器
- 选项 51: IP 地址租约时间
- 选项 53: DHCP 消息类型
- 选项 54: DHCP 服务器标识符

DHCP 安全考虑:

- DHCP 欺骗: 恶意 DHCP 服务器分配错误配置
- DHCP 饥饿攻击: 耗尽 IP 地址池
- 防护措施: DHCP 侦听、端口安全、MAC 地址绑定

DHCP 故障排除:

- 检查 DHCP 服务器状态
- 检查 IP 地址池是否耗尽
- 检查网络连通性
- 检查 DHCP 中继代理配置

6.3 域名系统 DNS

DNS 功能: 域名与 IP 地址的映射 域名层次结构:

www.example.com.

- 根域: . (dot)
- 顶级域: com, org, cn, edu

- 二级域: example
- 主机名: www

DNS 查询过程:

- 1. 递归查询: 客户端 → 本地 DNS 服务器
- 2. 迭代查询: 本地 DNS → 根 DNS → 顶级域 DNS → 权威 DNS

6.4 万维网 WWW

6.4.1 HTTP 协议

HTTP 特点:

- 基于 TCP, 端口 80
- 无状态协议
- 支持持久连接和非持久连接

HTTP 方法:

- **GET**: 请求资源
- POST: 提交数据
- PUT: 上传文件
- DELETE: 删除资源
- HEAD: 只要响应头

常见状态码:

	代码 含义 说明	
200	OK	请求成功
301	Moved Permanently	永久重定向
302	Found	临时重定向
304	Not Modified	未修改,使用缓存
400	Bad Request	请求语法错误
401	Unauthorized	需要身份验证
403	Forbidden	服务器拒绝请求
404	Not Found	资源不存在
500	Internal Server Error	服务器内部错误

6.5 文件传输协议 FTP

FTP 基本概念:

- 基于 TCP 的可靠文件传输协议
- 使用两个并行连接: 控制连接和数据连接
- 支持 ASCII 和二进制两种传输模式

FTP 连接模式:

控制连接:

- •端口21, 持续整个FTP会话
- 传输 FTP 命令和响应
- 面向字符,使用7位 ASCII 编码

数据连接:

- 端口 20 (主动模式) 或动态端口(被动模式)
- 只在传输文件时建立
- 每传输一个文件就建立和关闭一次

主动模式 vs 被动模式:

模式	主动模式 (PORT)	被动模式 (PASV)
数据连接发起方	服务器	客户端
服务器数据端口	20	动态分配
防火墙友好性	较差	较好
NAT 兼容性	较差	较好
适用场景	早期应用	现代应用

常用 FTP 命令:

• USER username: 指定用户名

PASS password: 指定密码LIST: 列出目录内容

• RETR filename: 下载文件

• STOR filename: 上传文件

• PWD: 显示当前目录

• CWD path: 改变目录

• QUIT: 退出 FTP 会话

FTP 响应码:

- 1xx: 肯定的初步回答
- 2xx: 肯定的完成回答(如 220 Ready)
- 3xx: 肯定的中间回答(如 331 Password required)
- 4xx: 瞬时否定的完成回答(如 425 Can't open connection)
- 5xx: 永久性否定的完成回答(如 500 Command not recognized)

6.6 电子邮件系统

电子邮件系统组成:

- 用户代理 (UA): 用户与邮件系统的接口
- 邮件服务器: 存储和转发邮件
- 邮件传输协议: SMTP、POP3、IMAP邮件地址格式:

username@domain.com

电子邮件格式与 MIME:

RFC 822 邮件格式:

- 信封: 传输时使用的地址信息
- 首部: 邮件头字段
 - From: 发件人
 - To: 收件人
 - Subject: 主题
 - Date: 发送日期
 - Cc: 抄送
 - Bcc: 密件抄送
- 主体: 邮件正文内容

MIME 扩展:

- 多用途互联网邮件扩展: 支持多媒体邮件
- 解决问题: RFC 822 只支持 7 位 ASCII 字符
- MIME 首部字段:
 - MIME-Version: 版本信息
 - Content-Type: 内容类型
 - Content-Transfer-Encoding: 传输编码
 - Content-Disposition: 内容处置

主要 MIME 类型:

内容类型	说明
text/plain	纯文本
text/html	HTML 文档
image/jpeg	JPEG 图像
image/gif	GIF 图像
audio/mpeg	MP3 音频
video/mp4	MP4 视频
application/pdf	PDF 文档

 内容类型
 说明

 multipart/mixed
 多部分混合内容

 multipart/alternative
 多部分可选内容

MIME 编码方式:

• Base64: 将二进制数据转换为 64 个可打印字符

• Quoted-Printable: 可打印字符引用编码

• 7bit: 7位 ASCII 字符

• 8bit: 8 位字符

6.6.1 SMTP 协议

SMTP 特点:

- 简单邮件传输协议,端口25
- 基于 TCP 的可靠传输
- 只能传输 7 位 ASCII 字符
- 推送协议(push)

SMTP 工作过程:

- 1. 建立 TCP 连接 (端口 25)
- 2. 握手: 服务器发送 220 Ready
- 3. 邮件传输:
 - HELO/EHLO: 客户端标识
 - MAIL FROM: 发件人地址
 - RCPT TO: 收件人地址
 - DATA: 邮件内容
- 4. 结束: QUIT 命令关闭连接

SMTP 命令示例:

Listing 6.1: SMTP 会话示例

- S: 220 mail.example.com Ready
- 2 C: HELO client.example.com
- 3 S: 250 Hello client.example.com
- 4 C: MAIL FROM: < sender@example.com >
- 5 S: 250 OK
- 6 C: RCPT TO:<recipient@example.com>
- 7 S: 250 OK
- 8 C: DATA
- 9 S: 354 Start mail input
- 10 C: Subject: Test Email
- 11 C:
- 12 C: This is a test message.

- 13 C: .
- 14 S: 250 Message accepted
- 15 C: QUIT
- 16 S: 221 Goodbye

扩展 SMTP (ESMTP):

- 支持认证: AUTH 命令
- 支持加密: STARTTLS
- 支持二进制传输: 8BITMIME
- 支持较大邮件: CHUNKING

6.6.2 POP3 协议

POP3 特点:

- 邮局协议版本 3,端口 110
- 拉取协议 (pull)
- 下载并删除模式
- 无状态协议

POP3 工作阶段:

- 1. 认证阶段:
 - USER username: 指定用户名
 - PASS password: 指定密码
- 2. 事务阶段:
 - LIST: 列出邮件
 - RETR n: 检索第 n 封邮件
 - DELE n: 删除第n封邮件
 - STAT: 获取邮箱统计信息
- 3. 更新阶段:
 - QUIT: 退出,删除标记的邮件

6.6.3 IMAP 协议

IMAP 特点:

- 互联网消息访问协议,端口 143
- 邮件保留在服务器上
- 支持多设备同步
- 有状态协议

IMAP 优势:

- 支持在线和离线工作
- 支持文件夹管理
- 支持部分邮件下载
- 支持搜索功能
- 支持多用户访问同一邮箱

邮件协议对比:

特性	SMTP	РОР3	IMAP
用途	发送邮件	接收邮件	接收邮件
端口	25	110	143
邮件存储	转发	下载删除	服务器保存
多设备支持	N/A	不支持	支持
离线工作	N/A	支持	支持
文件夹管理	N/A	不支持	支持

邮件安全:

- SMTPS: SMTP over SSL/TLS, 端口 465/587
- POP3S: POP3 over SSL/TLS, 端口 995
- IMAPS: IMAP over SSL/TLS, 端口 993
- SPF: 发送方策略框架, 防止邮件伪造
- DKIM: 域名密钥识别邮件,数字签名
- DMARC: 域名消息认证报告一致性

附录 A 重要术语速查表

A.1 中英文术语对照

中文术语		—————————————————————————————————————	
计算机网络	Computer Network	互连的自主计算机集合	
带宽	Bandwidth	信道能通过的最高数据率	
时延	Delay/Latency	数据从源到目的地所需时间	
吞吐量	Throughput	单位时间内实际传输的数据量	
协议	Protocol	网络中数据交换的规则集合	
分组交换	Packet Switching	将数据分割成分组传输	
电路交换	Circuit Switching	建立专用物理链路	
以太网	Ethernet	最常用的局域网技术	
CSMA/CD	Carrier Sense Multiple Access with Collision Detection	载波监听多路访问/冲突检测	
交换机	Switch	数据链路层设备,学习 MAC 地址	
路由器	Router	网络层设备,转发 IP 分组	
网关	Gateway	连接不同网络的设备	
子网掩码	Subnet Mask	用于划分网络和主机部分	
VLSM	Variable Length Subnet Mask	可变长子网掩码	
CIDR	Classless Inter-Domain Routing	无类域间路由	
NAT	Network Address Translation	网络地址转换	

中文术语	英文术语	简要说明	
DHCP	Dynamic Host Configuration Protocol	动态主机配置协议	
ARP	Address Resolution Protocol	地址解析协议	
ICMP	Internet Control Message Protocol	网际控制报文协议	
RIP	Routing Information Proto- col	路由信息协议	
OSPF	Open Shortest Path First	开放最短路径优先	
BGP	Border Gateway Protocol	边界网关协议	
ТСР	Transmission Control Protocol	传输控制协议	
UDP	User Datagram Protocol	用户数据报协议	
НТТР	HyperText Transfer Protocol	超文本传输协议	
HTTPS	HTTP Secure	安全的 HTTP	
FTP	File Transfer Protocol	文件传输协议	
SMTP	Simple Mail Transfer Protocol	简单邮件传输协议	
POP3	Post Office Protocol 3	邮局协议版本 3	
IMAP	Internet Message Access Protocol	互联网消息访问协议	
DNS	Domain Name System	域名系统	
SNMP	Simple Network Management Protocol	简单网络管理协议	
SSL/TLS	Secure Socket Layer/Transport Layer Security	安全套接字层/传输层安全	

中文术语	英文术语	简要说明
VPN	Virtual Private Network	虚拟专用网络
IPSec	IP Security	IP 安全协议
DES	Data Encryption Standard	数据加密标准
AES	Advanced Encryption Standard	高级加密标准
RSA	Rivest-Shamir-Adleman	RSA 公钥算法
MD5	Message Digest 5	消息摘要算法 5
SHA	Secure Hash Algorithm	安全散列算法

A.2 重要公式汇总

A.2.1 性能计算公式

	Message Digest 5	消息摘要算法 5	
	Secure Hash Algorithm	安全散列算法	
V			
总			
t			
<i>#</i>	文送时延 = $\frac{L}{R}$ (L : 分组长度, R	: 发送速率)	(A.1)
			(A.2)
f	传播时延 = $\frac{d}{s}$ (d : 距离, s : 传播	速率)	(A.3)
			(A.4)
	总时延 = 发送时延 + 传播时延	+ 处理时延 + 排队时延	(A.5)
n-1-7	7. # 安和		(A.6)
时处	延帯宽积 = 传播时延×帯宽		(A.7) (A.8)
信道	道利用率 = $\frac{T_0}{T_0 + RTT}$ (停止等符	竞协议)	(A.9)
	10 1 1111		(A.10)
1	悸农公式 = $W \log_2(1 + S/N)$ (信	道容量)	(A.11)
			(A.12)
奈奎其	所特公式 = $2W \log_2 V$ (理想信道	1)	(A.13)

A.2.2 子网划分公式

子网数 = 2^n (n: 借用的主机位数) (A.14) (A.15) 每个子网主机数 = $2^m - 2$ (m: 剩余主机位数) (A.16) (A.17) 子网地址 = 网络地址 AND 子网掩码 (A.18)

A.2.3 TCP 窗口计算

发送窗口 = \min (拥塞窗口,接收窗口) (A.19) (A.20) 慢开始阈值 = \max (飞行中字节数/2,2×MSS) (A.21) (A.22) 超时间隔 = 估计 RTT + 4×RTT 偏差 (A.23)

A.3 常用端口号

端口号	协议	说明
20/21	FTP	文件传输协议(20数据,21控制)
22	SSH	安全外壳协议
23	Telnet	远程登录协议
25	SMTP	简单邮件传输协议
53	DNS	域名系统
80	HTTP	超文本传输协议
110	POP3	邮局协议版本 3
143	IMAP	互联网消息访问协议
443	HTTPS	安全的 HTTP
993	IMAPS	安全的 IMAP

 端口号	协议	说明	
995	POP3S	安全的 POP3	