A Differential Geometry Basics Cheat Sheet

By Nick Konz

This is designed to be a quick, yet rigorous introduction/reference to the basic principles found within differential geometry, covering only the bare minimum of topics needed.

Largely adapted from Spivak's A Comprehensive Introduction to Differential Geometry, 3rd Edition and Mendelson's Introduction to Topology, 3rd Edition

1 Prerequisite Knowledge

We only assume basic knowledge of continuity and differentiability in the context of functions and topology. Here, \forall means "for all" or "for each", and \exists means "there exists".

1.1 Some Basic Topology

Definition 1.1. Neighborhood. Let $a \in \mathbb{R}^n, \delta > 0$. The δ -neighborhood of a is the set

$$U(a,\delta) = \left\{ x \in \mathbb{R}^n : ||x - a|| < \delta \right\}. \tag{1}$$

Definition 1.2. *Metric Space.* Let X be some nonempty set and d be the mapping/function $d: X \times X \to \mathbb{R}$. The pair (X, d) is a **metric space** if, $\forall x, y, z \in X$,

- 1. $d(x,y) \ge 0$
- 2. d(x,y) = 0 if and only if (iff) x = y
- 3. d(x,y) = d(y,x)
- 4. $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

Definition 1.3. Topological Space. Let X be a nonempty set and \mathcal{J} be a collection of subsets of X. (X, \mathcal{J}) is a **topological space** if

- 1. $X \in \mathcal{J}$
- 2. $\varnothing \in \mathcal{J}$, where \varnothing is the empty set
- 3. If $O_1, O_2, \ldots, O_n \in \mathcal{J}$, then $\bigcap_{i=1}^n O_i \in \mathcal{J}$
- 4. If $\forall \alpha \in I$, $O_{\alpha} \in \mathcal{J}$, then $\bigcup_{\alpha \in I} O_{\alpha} \in \mathcal{J}$ (*I* is some *indexing set*).

We label X as the **underlying set**, \mathcal{J} as the **topology** on X, and members of \mathcal{J} as **open sets**.

Remark. Topological and metric spaces (X, \mathcal{J}) and (X, d), respectively, are sometimes notated simply as X.

Definition 1.4. Homeomorphism. Let (X, \mathcal{J}) and (Y, \mathcal{K}) be topological spaces. (X, \mathcal{J}) and (Y, \mathcal{K}) are **homeomorphic** if \exists inverse functions, or **homeomorphisms**, $f: X \to Y$ and $g: Y \to X$ such that f, g are continuous.

2 Manifolds

Definition 2.1. *Manifold.* A **manifold** is a metric space M such that if $x \in M$, \exists some neighborhood U of x and some $n \in \{0, 1, 2...\}$ such that U is homeomorphic to \mathbb{R}^n . If \exists such an n that is the same $\forall x \in M$, we say that M is n-dimensional, which can be notated as M^n .

Remark. Think of a manifold as being a surface that is locally Euclidean.

Definition 2.2. C^{∞} -related Homeomorphisms. Let M be some manifold, and let U, V be open subsets of M. Two homeomorphisms $x: U \to x(U) \subset \mathbb{R}^n$ and $y: V \to y(V) \subset \mathbb{R}^n$ (for some n) are C^{∞} -related if the maps

$$y \circ x^{-1} : x(U \cap V) \to y(U \cap V) \tag{2}$$

$$x \circ y^{-1} : y(U \cap V) \to x(U \cap V)$$
 (3)

are infinitely differentiable, or C^{∞} .

Definition 2.3. Atlas. A family of mutually C^{∞} -related homeomorphisms whose domains cover M (i.e. their union equals M) is an **atlas** of M.

Definition 2.4. Chart/Coordinate System. A chart or coordinate system for some manifold M is a homeomorphism x from some open $U \in M$ to an open subset of \mathbb{R}^n , denoted (x, U). A chart of M is a member of some atlas of M.

Remark. Charts/coordinate systems (x, U) create a way of assigning coordinates to points on U, and are sometimes notated simply with x.

Definition 2.5. Differentiable Manifold. A differentiable, smooth or C^{∞} manifold is a pair (M, \mathcal{A}) , where M is some manifold, and \mathcal{A} is some maximal atlas for M, i.e. the union of all possible atlases of M.