Introduction to Computational Physics SS2023

Lecturers: Rainer Spurzem, Stefan Reißl, Ralf Klessen Tutors (group number in brackets): Jeong Yun Choi (1), Patricio Alister (2), Vahid Amiri (3), Matheus Bernini Peron (4), Bastián Reinoso (5), León-Alexander Hühn (6), Florian Schulze (7), Marcelo Vergara (8)

> Exercise 5 from May 17, 2023 Return before noon of May 26, 2023

1 Numerical linear algebra methods

• Consider the following matrix equation:

$$\begin{pmatrix} \epsilon & 1/3 \\ 1/3 & 1/3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/6 \end{pmatrix}$$

where ϵ is a small number, say, $\epsilon = 10^{-6}$.

- Solve the above system numerically by hand (or write a small program that does this) using either the Gauß-Jordan method or the Gaussian elimination and backs-ubstitution technique (your choice), but without pivoting. Use single precision, and take $\epsilon = 10^{-6}$ (if you prefer to take double precision, then use $\epsilon = 10^{-12}$). Check the result by back-substituting $(x, y)^T$ into the above equation and checking if you get the correct right-hand-side, i.e. $(1/3, 1/6)^T$.
- Do the same, but now with row-wise pivoting. What do you notice, compared to the previous attempt? How small can you make ϵ without running into precision problems?
- Solve the above equations using LU-decomposition and back-substitution from a library of your choice, for example as provided in python by the scipy.linalg package. To connect to the naming convention adopted in the Numerical Recipes book, import lu as ludcmp (for LU decomposition) and solve_triangular as lubskb (for LU back-substitution). Check if the same results are obtained using the library routine you selected.
- This matrix is symmetric. But it also works for non-symmetric matrices. Try one out, and check that you use the correct order of indices for the matrix. Recall that some programming languages use (row,column) order while others use (column,row) order.

2 Tridiagonal matrices (homework)

Consider the following tridiagonal $N \times N$ matrix equation

$$\begin{pmatrix} b_1 & c_1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ a_2 & b_2 & c_2 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & a_3 & b_3 & c_3 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_{N-2} & b_{N-2} & c_{N-2} & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & a_{N-1} & b_{N-1} & c_{N-1} \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & a_N & b_N \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{N-2} \\ x_{N-1} \\ x_N \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{N-2} \\ y_{N-1} \\ y_N \end{pmatrix}$$

- 1. Derive the iterative expressions for Gaussian elimination, in a form that can be directly implemented as a numerical subroutine. Do *not* apply pivoting here, because in the *special case* of tridiagonal matrix equations pivoting is rarely necessary in practice. (3 points)
- 2. Derive the iterative expressions for backward substitution, also for implementation as a numerical subroutine. (3 points)
- 3. Program a subroutine that, given the values $a_2 \cdots a_N$, $b_1 \cdots b_N$, $c_1 \cdots c_{N-1}$ and $y_1 \cdots y_N$, finds the solution vector given by $x_1 \cdots x_N$. (10 points)
- 4. Take N=10, and set all a values to -1, all b values to 3/2, all c values to -1 and all y values to 1/10. What is the solution for the $x_1 \cdots x_N$? (2 points)
- 5. Put your solution $x_1 \cdots x_N$ back into the original matrix equation above and find how much the result deviates from the original right-hand-side $y_1 \cdots y_N$. Is this satisfactory? (2 points)