MATH 241, Fall 2008 Exam 3: December 3

NAME							Discussion section			
	1	2	3	4	5	6	7	8	Total	

Arrange your work as clearly and neatly as possible, and cross out incorrect work. **Unless otherwise noted, you must justify all answers to receive full credit.** You may not use calculators, notes, or any other kinds of aids.

1. (15 points) Find all the local minima and local maxima of $x^4 - 8x^2 + 8$.

2. (15 points) Find the absolute minimum and absolute maximum values of $f(x) = \frac{x}{x^2 + 4}$ on the interval [0,4].

3. (10 points) Evaluate $\frac{d}{dx} \left[\int_1^{\cosh(x)} t \sin(t) dt \right]$. (No need to simplify the result.)

4. (10 points) Find where the graph of $y = x + \cos 2x$ is concave up for $0 \le x \le \pi$.

5. (10 points) Evaluate $\int_{-1}^{1} (3t - 6)(t - 2) dt$.

6. (10 points) Evaluate $\int_1^3 \frac{9}{u^4} du$.

7. (15 points) A poster is to have a total area of 150 in². When printed, it must leave a top margin of 2 in, and margins on the sides and bottom of 1 in each. What are the overall poster dimensions that give the maximum possible printed area? (The diagram does not show the solution!)

