UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA CURSO DE CIÊNCIAS DA COMPUTAÇÃO

DISCIPLINA: Cálculo Numérico para Computação - INE5409 PROFESSOR: Júlio Felipe Szeremeta

TRABALHO 02: ANÁLISE DOS MÉTODOS DE QUEBRA E ANÁLISE DA DIFRENÇA NA UTILIZAÇÃO DE DIVISÕES SUCESSIVAS E DA FORMA DE HORNER PARA OBTER VALORES DE $P_n^{(k)}(v)$

Glaucia De Pádua Lucas Pereira Da Silva

> Florianópolis Maio de 2011

SUMÁRIO

1 ANÁLISE DOS MÉTODOS DE QUEBRA	2
1.1 Método Da Bisseção	2
1.2 Método Da Falsa Posição	4
1.3 Método Da Falsa Posição Modificado	6
2 ANÁLISE DO MÉTODO DE DIVISÃO SUCESSIVAS E FORMA DE HORNE	R8
2.1 Forma De Horner Com Coeficientes Calculados Diretamente	
2.3 Comparação Entre Forma De Horner e Forma Das Divisões Sucessiva	as10
ANEXO A – MÉTODO DA BISSEÇÃO	12
ANEXO B – MÉTODO DA FALSA POSIÇÃO	13
ANEXO C – MÉTODO DA FALSA POSIÇÃO MODIFICADO	
ANEXO D – FORMA DE HORNER COM COEFICIENTES CALCULADOS	
DIRETAMENTE	
ANEXO E – FORMA DAS DIVISÕES SUCESSIVAS	17

1 ANÁLISE DOS MÉTODOS DE QUEBRA

Realizaremos a análise do desempenho da utilização de três métodos de quebra diferentes para solver a seguinte equação:

$$x-(\ln x)^x=0$$

Para solver esta equação usaremos os três métodos de quebra estudados: Método da bisseção, método da falsa posição e da falsa posição modificado.

1.1 Método Da Bisseção

Neste método tomaremos **xm** como sendo o ponto médio de **a** e **b** fornecidos e refinaremos a solução até a precisão desejada. O intervalo **[a, b]** irá sendo diminuído de forma que quando o sinal de **f(a)** for igual ao sinal de **f(xm)** então **a** passa a ser **xm** e caso contrário **b** passa a ser **xm**. O pseudo código utilizado para a resolução do sistema através deste método é fornecido abaixo:

Procedimento métodoDaBisseção

```
Ler a, b, e
fa = f(a) : fb = f(b) : erro = |a-b|
Se (fa>0 e fb>0) ou (fa<0 e fb<0) Faça:
   Escreva: "Solução não encontrada no intervalo"
   Interrompa Procedimento
Fim Se
Enquanto erro>=e Faça:
   xm = (a+b)/2 : fxm = f(xm)
   Se fxm igual a 0 Faça:
     Escreva: "Solução encontrada", xm
      Interrompa Procedimento
   Fim Se
   Se (fa>0 e fxm>0) ou (fa<0 e fxm<0) Faça:
      a = xm : fa = fxm
   Senão
     b = xm : fb = fxm
   Fim Se Senão
   erro = |a-b|
```

```
Fim Enquanto
Escreva: "Solução encontrada", xm
Fim Procedimento

Procedimento f
Receber x
Retornar x - (ln x)*
Fim Procedimento
```

O pseudo código acima foi implementado na linguagem Java e obteve os seguintes resultados:

a	xm	b	f(a)	f(xm)	f(b)	erro
3	4	5	1,6740310399	0,3066384227	-5,7986915783	2
4	4,5	5	0,3066384227	-1,7764754052	-5,7986915783	1
4	4,25	4,5	0,3066384227	-0,5571526285	-1,7764754052	0,5
4	4,125	4,25	0,3066384227	-0,0869586301	-0,5571526285	0,25
4	4,0625	4,125	0,3066384227	0,1187418587	-0,0869586301	0,125
4,0625	4,09375	4,125	0,1187418587	0,0181973447	-0,0869586301	0,0625
4,09375	4,109375	4,125	0,0181973447	-0,0337938553	-0,0869586301	0,03125
4,09375	4,1015625	4,109375	0,0181973447	-0,0076528677	-0,0337938553	0,015625
4,09375	4,09765625	4,1015625	0,0181973447	0,0053084231	-0,0076528677	0,0078125
4,09765625	4,099609375	4,1015625	0,0053084231	-0,0011631559	-0,0076528677	0,00390625
4,09765625	4,0986328125	4,099609375	0,0053084231	0,0020748977	-0,0011631559	0,001953125
4,0986328125	4,0991210938	4,099609375	0,0020748977	0,0004564372	-0,0011631559	0,0009765625
4,0991210938	4,0993652344	4,099609375	0,0004564372	-0,0003532177	-0,0011631559	0,00048828125
4,0991210938	4,0992431641	4,0993652344	0,0004564372	0,0000516451	-0,0003532177	0,00024414063
4,0992431641	4,0993041992	4,0993652344	0,0000516451	-0,0001507774	-0,0003532177	0,00012207031
4,0992431641	4,0992736816	4,0993041992	0,0000516451	-0,0000495639	-0,0001507774	0,00006103516
4,0992431641	4,0992584229	4,0992736816	0,0000516451	0,0000010412	-0,0000495639	0,00003051758
4,0992584229	4,0992660522	4,0992736816	0,0000010412	-0,0000242613	-0,0000495639	0,00001525879
4,0992584229	4,0992622375	4,0992660522	0,0000010412	-0,0000116100	-0,0000242613	0,00000762939
4,0992584229	4,0992603302	4,0992622375	0,0000010412	-0,0000052844	-0,0000116100	0,00000381470
4,0992584229	4,0992593765	4,0992603302	0,0000010412	-0,0000021216	-0,0000052844	0,00000190735
4,0992584229	4,0992588997	4,0992593765	0,0000010412	-0,0000005402	-0,0000021216	0,00000095367
4,0992584229	4,0992586613	4,0992588997	0,0000010412	0,0000002505	-0,0000005402	0,00000047684
4,0992586613	4,0992587805	4,0992588997	0,0000002505	-0,0000001449	-0,0000005402	0,00000023842
4,0992586613	4,0992587209	4,0992587805	0,0000002505	0,0000000528	-0,0000001449	0,00000011921
4,0992587209	4,0992587507	4,0992587805	0,0000000528	-0,0000000461	-0,0000001449	0,00000005960
4,0992587209	4,0992587358	4,0992587507	0,0000000528	0,0000000034	-0,0000000461	0,00000002980
4,0992587358	4,0992587432	4,0992587507	0,000000034	-0,0000000213	-0,0000000461	0,0000001490
4,0992587358	4,0992587395	4,0992587432	0,000000034	-0,0000000090	-0,0000000213	0,00000000745
4,0992587358	4,0992587376	4,0992587395	0,000000034	-0,0000000028	-0,0000000090	0,00000000373
4,0992587358	4,0992587367	4,0992587376	0,000000034	0,000000003	-0,0000000028	0,0000000186
4,0992587367	4,0992587372	4,0992587376	0,000000003	-0,000000013	-0,0000000028	0,00000000093
4,0992587367	4,0992587369	4,0992587372	0,000000003	-0,000000005	-0,000000013	0,00000000047
4,0992587367	4,0992587368	4,0992587369	0,000000003	-0,000000001	-0,000000005	0,00000000023
4,0992587367	4,0992587368	4,0992587368	0,000000003	0,000000001	-0,000000001	0,0000000012

Portanto o x encontrado com 10 dígitos de segurança é 4,0992587368. Para encontrar o valor de x com 10 dígitos de segurança neste método precisamos de 35 iterações.

1.2 Método Da Falsa Posição

Este método se assemelha ao método da bisseção com a diferença que não usaremos o x médio de [a, b], mas sim um x por onde passa a reta que liga f(a) a f(b). Outra diferença é que controlaremos a saída do algorítimo por x e x_0 ao invés de controlar por a e b. Assim o pseudo código ficou da seguinte maneira:

```
Procedimento métodoDaFalsaPosição
    Ler a, b, e
    fa = f(a) : fb = f(b) : erro = |a-b|
    Se (fa>0 e fb>0) ou (fa<0 e fb<0) Faça:
        Escreva: "Solução não encontrada no intervalo"
        Interrompa Procedimento
    Fim Se
    xx = (a-(fa*(b-a))/(fb-fa))*10
    Enquanto erro>=e Faça:
        xx = 0xx
        xx = a-(fa*(b-a))/(fb-fa) : fxx = f(xx)
        Se fxx igual a 0 Faça:
          Escreva: "Solução encontrada", xx
          Interrompa Procedimento
        Fim Se
        Se (fa>0 e fxx>0) ou (fa<0 e fxx<0) Faça:
          a = xm : fa = fxx
        Senão
          b = xx : fb = fxx
        Fim Se Senão
        erro = |xx-xx0|
    Fim Enquanto
    Escreva: "Solução encontrada", xx
Fim Procedimento
Procedimento f
    Receber x
    Retornar \mathbf{x} - (\ln \mathbf{x})^{\mathbf{x}}
Fim Procedimento
```

Ao tentarmos resolver o problema proposto por esse método fizemos 33 iterações. O que percebemos analisando a tabela mais abaixo contendo as 33 iterações é uma estagnação no ponto **b**. Estagnação esta que aumenta o tempo de resolução do método já que um lado da função fica fixo e apenas o outro lado vai se aproximando da solução.

Assim a solução encontrada foi: 4,0992587367.

	V192	b	f(a)	f(xm)	f(b)	0540
a 3,0000000000	xm 3,4480377837	5,0000000000	1,6740310399	1,3612956981	-5,7986915783	erro 2,0000000000
•	•	,	•	•	•	
3,4480377837	3,7431052757	5,000000000 5,0000000000	1,3612956981	0,9168139982	-5,7986915783	4,0323400529
3,7431052757	3,9146990097	,	0,9168139982	0,5365573761	-5,7986915783	0,2950674920
3,9146990097	4,0066174577	5,0000000000	0,5365573761	0,2875493978	-5,7986915783	0,1715937340
4,0066174577	4,0535506227	5,0000000000	0,2875493978	0,1467092684	-5,7986915783	0,0919184480
4,0535506227	4,0769052962	5,0000000000	0,1467092684	0,0729563673	-5,7986915783	0,0469331650
4,0769052962	4,0883749274	5,0000000000	0,0729563673	0,0358150307	-5,7986915783	0,0233546735
4,0883749274	4,0939709241	5,0000000000	0,0358150307	0,0174703167	-5,7986915783	0,0114696312
4,0939709241	4,0966924121	5,0000000000	0,0174703167	0,0084953806	-5,7986915783	0,0055959967
4,0966924121	4,0980138681	5,000000000	0,0084953806	0,0041248283	-5,7986915783	0,0027214880
4,0980138681	4,0986550288	5,000000000	0,0041248283	0,0020012840	-5,7986915783	0,0013214560
4,0986550288	4,0989659998	5,0000000000	0,0020012840	0,0009706355	-5,7986915783	0,0006411607
4,0989659998	4,0991167975	5,0000000000	0,0009706355	0,0004706827	-5,7986915783	0,0003109710
4,0991167975	4,0991899167	5,0000000000	0,0004706827	0,0002282253	-5,7986915783	0,0001507977
4,0991899167	4,0992253694	5,0000000000	0,0002282253	0,0001106577	-5,7986915783	0,0000731192
4,0992253694	4,0992425587	5,0000000000	0,0001106577	0,0000536526	-5,7986915783	0,0000354527
4,0992425587	4,0992508930	5,0000000000	0,0000536526	0,0000260133	-5,7986915783	0,0000171893
4,0992508930	4,0992549338	5,0000000000	0,0000260133	0,0000126124	-5,7986915783	0,0000083342
4,0992549338	4,0992568929	5,0000000000	0,0000126124	0,0000061151	-5,7986915783	0,0000040408
4,0992568929	4,0992578428	5,0000000000	0,0000061151	0,0000029648	-5,7986915783	0,0000019592
4,0992578428	4,0992583033	5,0000000000	0,0000029648	0,0000014375	-5,7986915783	0,0000009499
4,0992583033	4,0992585266	5,0000000000	0,0000014375	0,0000006970	-5,7986915783	0,0000004606
4,0992585266	4,0992586349	5,0000000000	0,0000006970	0,0000003379	-5,7986915783	0,0000002233
4,0992586349	4,0992586874	5,0000000000	0,0000003379	0,000001638	-5,7986915783	0,0000001083
4,0992586874	4,0992587128	5,0000000000	0,000001638	0,0000000794	-5,7986915783	0,0000000525
4,0992587128	4,0992587252	5,0000000000	0,0000000794	0,000000385	-5,7986915783	0,0000000255
4,0992587252	4,0992587312	5,0000000000	0,000000385	0,000000187	-5,7986915783	0,000000123
4,0992587312	4,0992587341	5,000000000	0,000000187	0,0000000091	-5,7986915783	0,0000000060
4,0992587341	4,0992587355	5,000000000	0,0000000091	0,0000000044	-5,7986915783	0,0000000029
4,0992587355	4,0992587361	5,000000000	0,0000000044	0,0000000021	-5,7986915783	0,000000014
4,0992587361	4,0992587365	5,000000000	0,0000000021	0,000000010	-5,7986915783	0,000000007
4,0992587365	4,0992587366	5,000000000	0,000000010	0,000000005	-5,7986915783	0,000000003
4,0992587366	4,0992587367	5,0000000000	0,000000005	0,0000000002	-5,7986915783	0,0000000002

O gráfico abaixo mostra em azul a função inicial do nosso problema e em vermelho a reta ligando os primeiros pontos tomados: \boldsymbol{a} e \boldsymbol{b} (3 e 5). Analisando o gráfico podemos perceber claramente que \boldsymbol{b} ficará estagnado.

1.3 Método Da Falsa Posição Modificado

Fim Procedimento

No método anterior nos deparamos com o problema da estagnação em \boldsymbol{b} . Neste método contornaremos esse problema dividindo $\boldsymbol{f(x)}$ por 2 sempre que houver um principio de estagnação. Segue abaixo o algorítimo utilizado:

```
Procedimento métodoDaFalsaPosiçãoModificado
    Ler a, b, e
    fa = f(a) : fb = f(b) : erro = |a-b| : fxx0 = fa
    Se (fa>0 e fb>0) ou (fa<0 e fb<0) Faça:
        Escreva: "Solução não encontrada no intervalo"
        Interrompa Procedimento
    Fim Se
    Enquanto erro>=e Faça:
        xx = a-(fa*(b-a))/(fb-fa) : fxx = f(xx)
        Se fxx iqual a 0 Faça:
          Escreva: "Solução encontrada", xx
          Interrompa Procedimento
        Fim Se
        Se (fa>0 e fxx>0) ou (fa<0 e fxx<0) Faça:
          a = xm : fa = fxx
          Se (fxx>0 e fxx0>0) ou (fxx<0 e fxx0<0) Faça:
               fb = fb/2
          Fim Se
        Senão
          b = xx : fb = fxx
          Se (fxx>0 e fxx0>0) ou (fxx<0 e fxx0<0) Faça:
               fa = fa /2
          Fim Se
        Fim Se Senão
        erro = |a-b|
    Fim Enquanto
    Escreva: "Solução encontrada", xx
Fim Procedimento
Procedimento f
    Receber x
    Retornar \mathbf{x} - (\ln \mathbf{x})^{\mathbf{x}}
```

Ao executador o método da falsa posição modificada percebemos que ele converge muito mais rapidamente que o método da bisseção, além de não possuir o problema da estagnação encontrado no método da falsa posição. Para solver o problema com este método utilizamos apenas 10 iterações.

a	XX	b	f(a)	f(xx)	f(b)	erro
3	3,4480377837	5	1,6740310399	1,3612956981	-5,7986915783	2
3,4480377837	3,9438972675	5,000000000	1,3612956981	0,4611500238	-2,8993457892	1,5519622164
3,9438972675	4,1987726908	5,000000000	0,4611500238	-0,3544771913	-1,4496728946	1,0561027325
3,9438972675	4,0880020808	4,1987726908	0,4611500238	0,0370320587	-0,3544771913	0,2548754233
4,0880020808	4,1071463903	4,1987726908	0,0370320587	-0,0263070294	-0,1772385957	0,1107706101
4,0880020808	4,0991950616	4,1071463903	0,0370320587	0,0002111642	-0,0263070294	0,0191443096
4,0991950616	4,0993206939	4,1071463903	0,0002111642	-0,0002054850	-0,0131535147	0,0079513288
4,0991950616	4,0992587340	4,0993206939	0,0002111642	0,0000000094	-0,0002054850	0,0001256324
4,0992587340	4,0992587396	4,0993206939	0,0000000094	-0,0000000094	-0,0001027425	0,0000619600
4,0992587340	4,0992587368	4,0992587396	0,0000000094	0,000000000	-0,0000000094	0,000000057

Na décima iteração deste método encontramos a solução do sistema com ${\it x}$ igual a ${\it 4,0992587368}$.

2 ANÁLISE DO MÉTODO DE DIVISÃO SUCESSIVAS E FORMA DE HORNER

Faremos aqui uma análise para comprovar que existe uma diferença na precisão ao se calcular $P_n^{(k)}(v)$ pelo forma da divisão sucessiva e pela forma de Horner calculado diretamente os coeficientes. Para realizar essa análise usaremos um polinômio de grau 20 onde $a_1 = 1$ e $a_i = 1$ in i. Tomaremos também $v = \sqrt{2}$.

2.1 Forma De Horner Com Coeficientes Calculados Diretamente

A forma de **Horner** consiste em "aninhar" um polinômio a fim de diminuir o número de operações para se obter $P_n(v)$. Na forma "tradicional" calcularíamos $P_n(v)$ da seguinte maneira:

$$p_n(v) = a_1 v^n + ... + a_n v + a_{n+1}$$

Assim, teríamos n somas e 2n-1 multiplicações para encontrar $P_n(v)$. Porém se fizermos pela forma de Horner teremos n somas e n multiplicações, sendo uma ótima melhora. A forma de Horner é apresentada da seguinte maneira:

$$p_n(v) = (((a_1v + a_2)v + a_3)v + \cdots + a_n)v + a_{n+1}$$

No pseudo código abaixo geraremos $P_n^{(k)}(v)$ para o problema apresentado anteriormente utilizando a forma de Horner com os coeficientes calculados diretamente. A cada k iteração geraremos os coeficientes do polinômio da derivada k+1 e obteremos $P_n^{(k)}(v)$ através da multiplicação "aninhada".

Escrever: "Valores de $P_n^{(k)}(x)$: ", (valores_k, k = 0, grau)

Fim Procedimento

Procedimento obterValoresPorHorner

Procedimento calcularValor Receber grau, v, (coeficientes; i = 1, grau+1) valor = coeficientes; Repita i = 1 até grau valor = valor*v + coeficientes; Fim Repita Retornar valor Fim Procedimento Procedimento calcularDerivada Receber grau, coeficientes coeficientesgrau+1 = 0 Repita i = 1 até grau posicao = grau - i coeficientesposicao+1 = coeficientesposicao+1*i

O pseudo código acima foi implementado (assim como os demais códigos neste trabalho) na linguagem Java e se encontra anexo ao trabalho.

2.2 Forma Das Divisões Sucessivas

Retornar coeficientes

Fim Repita

Fim Procedimento

Para obter os valores de $P_n^{(k)}(v)$ nesta forma usaremos divisões sucessivas do polinômio e a cada divisão pegaremos o valor de $P_n^{(k)}(v)$. Esta forma se assemelha com a de Horner com a exceção que não calcularemos os coeficientes da derivada. O que faremos neste caso é usar como coeficientes da derivada os coeficientes resultantes da divisão do polinômio da derivada anterior. Ou seja a derivada k+1 será calculada dividindo-se o polinômio da derivada k.

Procedimento obterValoresPorDivisõesSucessivas

```
Ler grau, v, (coeficientesi, i = 1, grau+1)
novoGrau = grau
coeficientes = dividirPolinômio(grau, v, coeficientes)
valoreso = coeficientesnovoGrau+1
fatorial = 1
Repita i = 1 até grau
novoGrau = novoGrau-1
fatorial = fatorial*i
```

```
coeficientes = dividirPolinô(novoGrau, v, coeficientes)
    valores = coeficientesnovoGrau+1*fatorial
Fim Repita
Escrever: "Valores de Pn(k)(x): ", (valoresk, k = 0, grau)
Fim Procedimento

Procedimento dividirPolinômio
Receber grau, v, coeficientes
novosCoeficientes = coeficientes
Repita i = 1 até grau
    novosCoeficientesi+1 = novosCoeficientesi*v+coeficientesi+1
Fim Repita
Retornar novosCoeficientes1
Fim Procedimento
```

O código implementado na linguagem Java se encontra no Anexo E deste trabalho.

2.3 Comparação Entre Forma De Horner e Forma Das Divisões Sucessivas

Analisaremos aqui as duas formas utilizadas para calcular todos os valores de $P_n^{(k)}(v)$. Ambos os métodos calculam $P_n^{(k)}(v)$ de forma semelhante, através da multiplicação "aninhada". A diferença está na geração dos coeficientes de cada polinômio. Na forma de Horner cada k derivada do polinômio é calculada separadamente, utilizando apenas a derivada anterior. Já na forma de divisões sucessivas calculamos cada k derivada através da divisão do polinômio k-1.

A diferença nesse caso é que para a forma de divisões sucessivas será utilizado o valor \mathbf{v} para calcular a próxima derivada, enquanto que na forma de Horner não. Esse é um fator que influenciará na precisão de cada valor $\mathbf{P}_n^{(k)}(\mathbf{v})$ já que na forma das divisões sucessivas teremos recursão dentro de recursão e devido a isso se \mathbf{v} for afetado por erro de arredondamento então nosso algorítimo sofrerá de instabilidade numérica.

Assim se espera que o algorítimo da forma de Horner com os coeficientes calculados diretamente seja menos afetado por erros de arredondamento em relação a forma das divisões sucessivas.

Na tabela abaixo calculamos cada valor de $P_n^{(k)}(v)$ para cada forma,

mostrando assim existir diferença na precisão do cálculo de $P_n^{(k)}(v)$.

Forma Das Divisões Sucessivas	Forma De Horner
4282,6275668966155	4282,6275668966155
50206,5582132537 <mark>8</mark>	50206,5582132537 <mark>9</mark>
578391,7684093146	578391,7684093146
6454789,165637489	6454789,165637489
69182126,1805768 <mark>9</mark>	69182126,1805768 <mark>8</mark>
707264945,7482531	707264945,7482531
6853954583,53008 <mark>3</mark>	6853954583,53008 <mark>2</mark>
62574877214,4434 <mark>5</mark>	62574877214,4434 <mark>6</mark>
534775517727,40 <mark>62</mark>	534775517727,40 <mark>594</mark>
4248435276224,72 <mark>27</mark>	4248435276224,72 <mark>4</mark>
31130027967516,0 <mark>1</mark>	31130027967516,0 <mark>08</mark>
208503695579257,00	208503695579257,0 <mark>3</mark>
1263015589672722,2	1263015589672722,2
683042855320130 <mark>2</mark>	683042855320130 <mark>3</mark>
324489197435841 <mark>32</mark>	32448919743584144
1325998766736221 <mark>12</mark>	1325998766736221 <mark>60</mark>
4529962661492545 <mark>30</mark>	4529962661492545 <mark>90</mark>
1241639242460238 <mark>080</mark>	1241639242460238 <mark>340</mark>
2559179334895205400	2559179334895205400
3524960974265457700	352496097426545 <mark>6600</mark>
2432902008176640000	2432902008176640000

Os dígitos em vermelho na tabela representam os dígitos que diferem em cada forma. O que percebemos aqui ao se fazer uma análise na tabela é que neste caso em especifico a diferença na precisão da utilização de um método ou de outro não foi tão grande, podendo ser até indiferente o uso de uma forma ou de outra dependendo da precisão desejada.

O importante a se ressaltar é que apesar de nesse caso a diferença de precisão ser relativamente pequena, existe sim diferença ao se usar um método ou outro e essa diferença dependerá de cada problema e tende a aumentar se o grau do polinômio for maior.

ANEXO A - MÉTODO DA BISSEÇÃO

```
public class MetodoDaBissecao
      private static final double ZERO = 0.0;
      private static final int DOIS = 2;
      public static double calcular(double a, double b, double e)
      {
            double fa = f(a);
            double fb = f(b);
            double xm = Double.NaN;
            if (verificarSeTemMesmoSinal(fa, fb)) return xm;
            double erro = Math.abs(a-b);
            while (erro >= e)
                  xm = (a+b)/DOIS;
                  double fxm = f(xm);
                  if (fxm == ZERO)
                  {
                        return xm;
                  System.out.printf("%.10f %.10f %.10f %.10f %.10f %.10f
                        %.11f\n", a, xm, b, fa, fxm, fb, erro);
                  if (verificarSeTemMesmoSinal(fa, fxm))
                        a = xm;
                        fa = fxm;
                  }
                  else
                  {
                        b = xm;
                        fb = fxm;
                  erro = Math.abs(a-b);
            }
            return xm;
      }
      private static double f(double x)
            double ln = Math.log(x);
            double elevadoLn = Math.pow(ln, x);
            return x-elevadoLn;
      }
      private static boolean verificarSeTemMesmoSinal(double a, double b)
            return (a > ZERO && b > ZERO) || (a < ZERO && b < ZERO);
      }
}
```

ANEXO B - MÉTODO DA FALSA POSIÇÃO

```
public class MetodoDaFalsaPosicao
      private static final double ZERO = 0.0;
      public static double calcular(double a, double b, double e)
            double fa = f(a);
            double fb = f(b);
            double xx = (a-fa*(b-a)/(fb-fa))*10;
            if (verificarSeTemMesmoSinal(fa, fb))
            {
                  return Double.NaN;
            double erro = Math.abs(a-b);
           while (erro >= e)
                  double xx0 = xx;
                  xx = a-fa*(b-a)/(fb-fa);
                  double fxx = f(xx);
                  if (fxx == ZER0)
                  {
                        return xx;
                  System.out.printf("%.10f %.10f %.10f %.10f %.10f %.10f
                        %.11f\n", a, xx, b, fa, fxx, fb, erro);
                  if (verificarSeTemMesmoSinal(fa, fxx))
                        a = xx;
                        fa = fxx;
                  }
                  else
                  {
                        b = xx;
                        fb = fxx;
                  erro = Math.abs(xx-xx0);
            }
            return xx;
      }
      private static double f(double x)
      {
            double ln = Math.log(x);
            double elevadoLn = Math.pow(ln, x);
            return x-elevadoLn;
      }
      private static boolean verificarSeTemMesmoSinal(double a, double b)
            return (a > ZERO && b > ZERO) || (a < ZERO && b < ZERO);
      }
}
```

ANEXO C - MÉTODO DA FALSA POSIÇÃO MODIFICADO

```
public class MetodoDaFalsaPosicaoModificado
      private static final double ZERO = 0.0;
      private static final int DOIS = 2;
      public static double calcular(double a, double b, double e)
      {
            double fa = f(a);
            double fb = f(b);
            double xx = Double.NaN;
            double fxx0 = fa;
            if (verificarSeTemMesmoSinal(fa, fb))
                  return xx;
            double erro = Math.abs(a-b);
            while (erro >= e)
                  xx = a-fa*(b-a)/(fb-fa);
                  double fxx = f(xx);
                  System.out.printf("%.10f %.10f %.10f %.10f %.10f %.10f
                        %.11f\n", a, xx, b, fa, fxx, fb, erro);
                  if (fxx == ZER0)
                        return xx;
                  if (verificarSeTemMesmoSinal(fa, fxx))
                        a = xx;
                        fa = fxx;
                        if (verificarSeTemMesmoSinal(fxx, fxx0))
                              fb = fb/D0IS;
                  }
                  else
                        b = xx;
                        fb = fxx;
                        if (verificarSeTemMesmoSinal(fxx, fxx0))
                              fa = fa/DOIS;
                        }
                  erro = Math.abs(a-b);
            }
            return xx;
      }
      private static double f(double x)
            double ln = Math.log(x);
```

```
double elevadoLn = Math.pow(ln, x);

return x-elevadoLn;
}

private static boolean verificarSeTemMesmoSinal(double a, double b)
{
    return (a > ZERO && b > ZERO) || (a < ZERO && b < ZERO);
}</pre>
```

ANEXO D – FORMA DE HORNER COM COEFICIENTES CALCULADOS DIRETAMENTE

```
public class ValoresDoPolinomioPorHorner
      private static final int ZERO = 0;
      private static final int UM = 1;
      public static double[] calcular(int grau, double v, double[]
            coeficientes)
      {
            double[] valoresDoPolinomio = new double[21];
            valoresDoPolinomio[ZERO] = calcularValor(grau, v,
                  coeficientes);
            int novoGrau = grau;
            for (int cont = UM; cont <= grau; cont++, novoGrau--)</pre>
                  coeficientes = calcularCoeficientesDaDerivada(novoGrau,
                        coeficientes);
                  valoresDoPolinomio[cont] = calcularValor(novoGrau-UM, v,
                        coeficientes);
            }
            return valoresDoPolinomio;
      }
      private static double calcularValor(double grau, double v, double[]
            coeficientes)
      {
            double valor = coeficientes[ZERO];
            for (int cont = UM; cont <= grau; cont++)</pre>
            {
                  valor = valor*v+coeficientes[cont];
            return valor;
      }
      private static double[] calcularCoeficientesDaDerivada(int grau,
            double[] coeficientes)
      {
            double[] coeficientesDaDerivada = new double[grau];
            for (int cont = UM; cont <= grau; cont++)</pre>
                  int posicao = grau-cont;
                  coeficientesDaDerivada[posicao] =
                        coeficientes[posicao]*cont;
            return coeficientesDaDerivada;
      }
}
```

ANEXO E - FORMA DAS DIVISÕES SUCESSIVAS

```
public class ValoresDoPolinomioPorDivisoesSucessivas
      private static final int ZERO = 0;
      private static final int UM = 1;
      public static double[] calcular(int grau, double v, double[]
            coeficientes)
      {
            double[] valoresDoPolinomio = new double[grau+UM];
            double[] polinomioDividido = dividirPolinomio(grau, v,
                  coeficientes);
            valoresDoPolinomio[ZERO] =
                  polinomioDividido[polinomioDividido.length-UM];
            long fatorial = 1;
            for (int cont = UM; cont <= grau; cont++)</pre>
                  int novoGrau = grau-cont;
                  fatorial *= cont;
                  polinomioDividido = dividirPolinomio(novoGrau, v,
                        polinomioDividido);
                  valoresDoPolinomio[cont] =
                        fatorial*polinomioDividido
                              [polinomioDividido.length-UM];
            }
            return valoresDoPolinomio;
      }
      public static double[] dividirPolinomio(int grau, double v, double[]
            coeficientes)
      {
            double[] coeficientesDoPolinomioDividido = new double[grau+UM];
            coeficientesDoPolinomioDividido[ZERO] = coeficientes[ZERO];
            for (int cont = UM; cont <= grau; cont++)</pre>
            {
                  coeficientesDoPolinomioDividido[cont] =
                        coeficientesDoPolinomioDividido[cont-
                              UM]*v+coeficientes[cont];
            }
            return coeficientesDoPolinomioDividido;
      }
}
```