Iterative Solvers of Ax = b The Conjugate Gradient Method

CS 111: Introduction to Computational Science

Spring 2019 Lecture #8 Ziad Matni, Ph.D.

Administrative

Homework #4 due next Tuesday

- Midterm #1 is NEXT week Thursday (May 2nd)
 - Review questions are up!
 - Discuss further in section today

Lecture Outline

Iteration to solve Ax = b:Conjugate Gradient Method

Ax = b Solvers We've Learned So Far

- Pivoting
- LU Factorization
- Cholesky
- QR Factorization
- Jacobi's Method

Conjugate Gradient Iteration

- Another (more efficient) iterative algorithm to solve Ax = b.
- Start with a guess $x^{(0)}$, then compute $x^{(1)}$, $x^{(2)}$,
- Stop when you think you're close enough.
- In theory, CG can be used to solve any system Ax = b, provided only that <u>A is SPD</u>.
- In practice, how well CG works depends on specifics of A in subtle ways, involving eigenvalues and condition number.

Conjugate Gradient Iteration for Ax = b

 $x^{(0)} = 0$ approximate solution

 $r^{(0)} = b$ residual = b - Ax

 $d^{(0)} = r^{(0)}$ search direction

<u>for</u> $k = 1, 2, 3, \dots$

 $\alpha^{(k)} = (r^{(k-1)T} r^{(k-1)}) / (d^{(k-1)T} A d^{(k-1)})$ step length

 $x^{(k)} = x^{(k-1)} + \alpha^{(k)} d^{(k-1)}$ new approx. solution

 $r^{(k)} = r^{(k-1)} - \alpha^{(k)} A d^{(k-1)}$ new residual

 $\beta^{(k)} = (r^{(k)T} r^{(k)}) / (r^{(k-1)T} r^{(k-1)})$ improvement

 $d^{(k)} = r^{(k)} + \beta^{(k)} d^{(k-1)}$ new search direction

Conjugate Gradient Iteration for Ax = b

```
\begin{split} x_0 &= 0, \quad r_0 = b, \quad d_0 = r_0 \quad \text{(these are all vectors)} \\ \textbf{for} \quad k &= 1, 2, 3, \dots \\ & \alpha_k = (r^T_{k-1} r_{k-1}) \, / \, (d^T_{k-1} A d_{k-1}) \quad \text{step length} \\ & x_k = x_{k-1} + \alpha_k \, d_{k-1} \quad \text{approximate solution} \\ & r_k = r_{k-1} - \alpha_k \, A d_{k-1} \quad \text{residual} = b - A x_k \\ & \beta_k = (r^T_k r_k) \, / \, (r^T_{k-1} r_{k-1}) \quad \text{improvement} \\ & d_k = r_k + \beta_k \, d_{k-1} \quad \text{search direction} \end{split}
```

- One matrix-vector multiplication per iteration
- Two vector dot products per iteration
- Four n-vectors of working storage

Vector and Matrix Primitives for CG

- DAXPY: $v = \alpha^* v + \beta^* w$ (vectors v, w; scalars α , β)

 Time = O(n)
- DDOT: $\alpha = v^{T*}w = \sum_{j} v[j] * w[j]$ (vectors v, w; scalar α)

 Time = O(n)
- Matvec: v = A*w (matrix A, vectors v, w)
 - This is the hard part!
 - Time = $O(n^2)$ if A is a full matrix stored as a 2-D array
 - But all you need is a subroutine to compute v from w
 - If A is sparse, time = O(#nonzeros in A)

The Landscape of Ax=b Solvers

Examples!

See blackboard and Jupyter Notebook

Your To-Dos

- Homework #4 due Monday, April 29th
- Study for your midterm next week!

