Full NR and LASSO Run

Tucker Morgan - tlm2152

3/26/2022

This file prepares our data, runs Newton-Raphson, runs LASSO, and plots some results at the bottom. I think this file should stay clean and relatively simple. I think the file should only take 15ish minutes to knit or run in full. I think the best idea is for plots to be saved as R objects and imported into the presentation / report, but open to ideas here.

```
source("./shared_code/setup.R")
knitr::opts_chunk$set(cache = TRUE)
source("./shared_code/data_prep.R")
```

Newton-Raphson

```
source("./shared_code/full_NR2.R")
source("./shared_code/roc_func.R")
roc_nr <- roc_func(nr_beta_est, bc_tst)</pre>
```

LASSO

```
source("./shared_code/logistic_lasso.R")
source("./shared_code/auc_calc_lasso.R")
```

Folding Data

```
filter(mean_auc == max(mean_auc)) %>%
  pull(lambda) %>%
  mean()
lasso_final_model <- logistic_lasso(inputs = bc_trn[,-1],</pre>
                                     output = bc_trn[,1],
                                     lambda_vec = selected_lambda)
lasso_betas <- lasso_final_model[[2]] %>% t()
# this is just for viz purposes
tst_lambda_vec <- exp(seq(from = log(lambda_max),</pre>
                           to = log(0.0001),
                           by = -(\log(\lambda_m) - \log(0.0001))/100)
lasso_final_range <- logistic_lasso(inputs = bc_trn[,-1],</pre>
                                     output = bc_trn[,1],
                                     lambda_vec = tst_lambda_vec)
lfr_df <- data.frame(do.call(cbind, lasso_final_range)) %>%
  select(-selected) %>%
  pivot_longer(cols = starts_with("beta"),
               names_prefix = "beta.",
               names_to = "beta_coef",
               values_to = "coef_est")
# storing lasso ROC object
roc_lasso <- roc_func(lasso_betas, bc_tst)</pre>
cv_res_lam <- cv_res[[1]]</pre>
# each of these plots could be saved as R objects and imported into other documents
lfr_df %>%
  group_by(lambda) %>%
  filter(beta_coef != "intercept") %>%
  ggplot(x = lambda, y = coef_est, group = beta_coef) +
  geom_path(aes(x = lambda, y = coef_est, group = beta_coef, col = beta_coef)) +
  coord_cartesian(xlim = c(0, 0.05)) + # this zooms in on the plot, comment out if flipping
# scale_x_reverse() +
                                        # this flips the x-axis if wanted
\# coord_cartesian(xlim = c(0.06, 0)) + \# this zooms in if flipped
  geom_vline(xintercept = selected_lambda) +
 labs(title = "Beta Coefficients in LASSO Model")
```



```
      compactness_mean
      — concave.points_se
      — fractal_dimension_se
      — smoothness_me

      compactness_se
      — concavity_se
      — fractal_dimension_worst
      — smoothness_se

      compactness_worst
      — concavity_worst
      — radius_se
      — smoothness_wo

      concave.points_mean
      — fractal_dimension_mean
      — radius_worst
      — symmetry_mean
```

Mean AUC vs. Lambda

ROC Curves from Test Data Predictions

Models (AUC) — LASSO (0.965) — Newton-Raphson (0.9765)

ROC Curves from Test Data Predictions

```
Sensitivity

Sensitivity

-0.5

-0.5

0.0

-0.5

0.0

-0.5

1.0

1.5

1 - Specificity
```

```
beta_names <-
  (dimnames(lasso_betas)[1]) %>%
  data.frame() %>%
  rename(beta_coef = 1)

cbind(nr_beta_est, lasso_betas) %>%
  data.frame() %>%
  round(digits = 4) %>%
  rename(NewtonRaphson = 1, LASSO = 2) %>%
  knitr::kable(caption = "Final Beta Coefficient Estimates")
```

Table 1: Final Beta Coefficient Estimates

	NewtonRaphson	LASSO
intercept	-162.1162	-0.7872
texture_mean	1.9226	0.3641
$smoothness_mean$	-180.9337	0.0000
compactness_mean	-206.9520	0.0000
concave points_mean	539.5020	0.9912
symmetry_mean	-71.9190	0.0000
fractal_dimension_mean	555.5034	0.0000
radius_se	66.8227	0.0000
texture_se	-3.7168	0.0000
$smoothness_se$	424.7338	0.0000
compactness_se	264.4495	0.0000
concavity_se	-215.0474	0.0000
concave points_se	1443.8850	0.0000
symmetry_se	-1672.7126	0.0000
fractal_dimension_se	-4616.3556	0.0000
radius_worst	1.9170	1.4934
$smoothness_worst$	29.3660	0.0702
compactness worst	-91.4676	0.0000

	NewtonRaphson	LASSO
concavity_worst	71.7133	0.2184
symmetry_worst	198.9776	0.1473
$fractal_dimension_worst$	429.9555	0.0000

Comparison to GLMNET Lasso

```
# standardize bc_trn[,-1]
bc_cov <- as.matrix(scale(bc_trn[,-1]))

glmnet_fit <- glmnet(x = bc_cov , y = bc_trn[,1], family = "binomial", lambda = selected_lambda)
glmnet_est <- as.vector(coef(glmnet_fit))

comp_est <- tibble(
    names = lasso_betas %>% rownames(),
    glmnet_est = glmnet_est,
    lasso_est = lasso_betas,
    diff = glmnet_est - lasso_est
)

comp_est %>% knitr::kable()
```

names	${\rm glmnet}_{\rm est}$	lasso_est	diff
intercept	-0.7871011	-0.78702295	-7.813567e-05
texture_mean	0.3635447	0.36303202	5.126401e-04
$smoothness_mean$	0.0000000	0.00000000	0.000000e+00
compactness_mean	0.0000000	0.00000000	0.000000e+00
concave points_mean	0.9917381	0.99111573	6.223495 e-04
symmetry_mean	0.0000000	0.00000000	0.000000e+00
$fractal_dimension_mean$	0.0000000	0.00000000	0.000000e+00
radius_se	0.0000000	0.00000000	0.000000e+00
texture_se	0.0000000	0.00000000	0.000000e+00
$smoothness_se$	0.0000000	0.00000000	0.000000e+00
$compactness_se$	0.0000000	0.00000000	0.000000e+00
concavity_se	0.0000000	0.00000000	0.000000e+00
concave points_se	0.0000000	0.00000000	0.000000e+00
symmetry_se	0.0000000	0.00000000	0.000000e+00
fractal_dimension_se	0.0000000	0.00000000	0.000000e+00
radius_worst	1.4918406	1.49103950	8.010547e-04
$smoothness_worst$	0.0698255	0.06954116	2.843550 e-04
$compactness_worst$	0.0000000	0.00000000	0.000000e+00
concavity_worst	0.2179862	0.21809637	-1.101823e-04
$symmetry_worst$	0.1470562	0.14687750	1.787403e-04
$fractal_dimension_worst$	0.0000000	0.00000000	0.000000e+00

The GLMNET lasso regression procedure and our logistic lasso procedure produce very similar (near identical) results. Yay!