Statistics for Business and Economics 7th Edition

Chapter 6

Sampling and Sampling Distributions

Chapter Goals

After completing this chapter, you should be able to:

- Describe a simple random sample and why sampling is important
- Explain the difference between descriptive and inferential statistics
- Define the concept of a sampling distribution
- Determine the mean and standard deviation for the sampling distribution of the sample mean, \overline{X}
- Describe the Central Limit Theorem and its importance
- Determine the mean and standard deviation for the sampling distribution of the sample proportion, p̂
- Describe sampling distributions of sample variances

Tools of Business Statistics

Descriptive statistics

Collecting, presenting, and describing data

Inferential statistics

 Drawing conclusions and/or making decisions concerning a population based only on sample data

Populations and Samples

 A Population is the set of all items or individuals of interest

Examples: All likely voters in the next election
 All parts produced today
 All sales receipts for April

A Sample is a subset of the population

Examples: 1000 voters selected at random for interview
 A few parts selected for destructive testing
 Random receipts selected for audit

Population vs. Sample

Population

Sample

Why Sample?

- Less time consuming than a census
- Less costly to administer than a census
- It is possible to obtain statistical results of a sufficiently high precision based on samples.

Simple Random Samples

- Every object in the population has an equal chance of being selected
- Objects are selected independently
- Samples can be obtained from a table of random numbers or computer random number generators

 A simple random sample is the ideal against which other sample methods are compared

Inferential Statistics

 Making statements about a population by examining sample results

Inferential Statistics

Drawing conclusions and/or making decisions concerning a population based on sample results.

Estimation

 e.g., Estimate the population mean weight using the sample mean weight

Hypothesis Testing

 e.g., Use sample evidence to test the claim that the population mean weight is 120 pounds

Sampling Distributions

 A sampling distribution is a distribution of all of the possible values of a statistic for a given size sample selected from a population

Chapter Outline

Sampling Distributions

Sampling
Distribution of
Sample
Mean

Sampling
Distribution of
Sample
Proportion

Sampling
Distribution of
Sample
Variance

Sampling Distributions of Sample Means

Sampling Distributions

Sampling
Distribution of
Sample
Mean

Sampling
Distribution of
Sample
Proportion

Sampling
Distribution of
Sample
Variance

- Assume there is a population ...
- Population size N=4
- Random variable, X, is age of individuals
- Values of X:

18, 20, 22, 24 (years)

(continued)

Summary Measures for the Population Distribution:

$$\mu = \frac{\sum X_i}{N}$$

$$= \frac{18 + 20 + 22 + 24}{4} = 21$$

$$\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{N}} = 2.236$$

(continued)

Now consider all possible samples of size n = 2

1 st	2 nd Observation			
Obs	18	20	22	24
18	18,18	18,20	18,22	18,24
20	20,18	20,20	20,22	20,24
22	22,18	22,20	22,22	22,24
24	24,18	24,20	24,22	24,24

16 possible samples (sampling with replacement)

(continued)

Summary Measures of this Sampling Distribution:

$$E(\overline{X}) = \frac{\sum_{i=1}^{\overline{X}_{i}}}{N} = \frac{18 + 19 + 21 + \dots + 24}{16} = 21 = \mu$$

$$\begin{split} \sigma_{\overline{X}} &= \sqrt{\frac{\sum (\overline{X}_i - \mu)^2}{N}} \\ &= \sqrt{\frac{(18 - 21)^2 + (19 - 21)^2 + \dots + (24 - 21)^2}{16}} = 1.58 \end{split}$$

Expected Value of Sample Mean

- Let X₁, X₂, . . . X_n represent a random sample from a population
- The sample mean value of these observations is defined as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

Standard Error of the Mean

- Different samples of the same size from the same population will yield different sample means
- A measure of the variability in the mean from sample to sample is given by the Standard Error of the Mean:

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

 Note that the standard error of the mean decreases as the sample size increases

If sample values are not independent

(continued)

- If the sample size n is not a small fraction of the population size N, then individual sample members are not distributed independently of one another
- Thus, observations are not selected independently
- A correction is made to account for this:

$$Var(\overline{X}) = \frac{\sigma^2}{n} \frac{N-n}{N-1}$$
 or

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

If the Population is Normal

 If a population is normal with mean μ and standard deviation σ, the sampling distribution of X is also normally distributed with

$$\mu_{\overline{X}} = \mu$$

and

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

If the sample size n is not large relative to the population size N, then

$$\mu_{\overline{X}} = \mu$$

and

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

Z-value for Sampling Distribution of the Mean

Z-value for the sampling distribution of $\overline{\chi}$:

$$Z = \frac{(\overline{X} - \mu)}{\sigma_{\overline{X}}}$$

where: X = sample mean

 μ = population mean

 $\sigma_{\bar{x}}$ = standard error of the mean

Sampling Distribution Properties

$$\mu_{\bar{x}} = \mu$$

(i.e. X is unbiased)

Sampling Distribution Properties

(continued)

For sampling with replacement:

If the Population is not Normal

- We can apply the Central Limit Theorem:
 - Even if the population is not normal,
 - ...sample means from the population will be approximately normal as long as the sample size is large enough.

Properties of the sampling distribution:

$$\mu_{\bar{x}} = \mu$$
 and

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

Central Limit Theorem

As the sample size gets large enough...

If the Population is **not** Normal

(continued)

Sampling distribution properties:

Central Tendency

$$\mu_{\bar{x}} = \mu$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

How Large is Large Enough?

- For most distributions, n > 25 will give a sampling distribution that is nearly normal
- For normal population distributions, the sampling distribution of the mean is always normally distributed

Example

- Suppose a large population has mean μ = 8 and standard deviation σ = 3. Suppose a random sample of size n = 36 is selected.
- What is the probability that the sample mean is between 7.8 and 8.2?

Example

(continued)

Solution:

- Even if the population is not normally distributed, the central limit theorem can be used (n > 25)
- ... so the sampling distribution of X is approximately normal
- ... with mean $\mu_{\bar{x}} = 8$
- ...and standard deviation $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{3}{\sqrt{36}} = 0.5$

Example

(continued)

Solution (continued):

$$P(7.8 < \mu_{\overline{X}} < 8.2) = P\left(\frac{7.8 - 8}{3/\sqrt{36}} < \frac{\mu_{\overline{X}} - \mu}{\sigma/\sqrt{n}} < \frac{8.2 - 8}{3/\sqrt{36}}\right)$$
$$= P(-0.5 < Z < 0.5) = 0.3830$$

