Nonparametric Identification and Estimation of Level-k Auctions

Yonghong An

Johns Hopkins University

February 14, 2011

Bidding Strategies in First-price Sealed-bid Auctions

- lacksquare Bidder i forms her own valuation of the object: v_i
 - Bidders' values are private and independent
 - Common knowledge: value distribution, number of bidders
- Bidder i maximizes her expected utility function

$$U_i = (v_i - b_i) \Pr(\max_{j \neq i} b_j < b_i)$$

- Winning probability $\Pr(\max_{j \neq i} b_j < b_i)$ depends on bidder *i*'s belief about her opponents' bidding behavior
- Bidders' beliefs about their opponents' bidding behavior?
 - ullet Approach 1: perfectly correct beliefs o Nash equilibrium
 - Nash equilibrium is too demanding: seldom observed
 e.g. experimental auctions (Cox, Smith, and Walker, 1983,
 1988); p-beauty contest (Nagel, 1995; Ho, Camerer, and
 Weigelt, 1998)

The Level-k Auction Model: Heterogeneous Beliefs

- Bidders have different levels of sophistication ⇒ Heterogenous (possibly incorrect) beliefs about others' behavior
- Beliefs (types) have a hierarchical structure (Stahl and Wilson, 1994, 1995; Nagel 1995)

Туре	Belief about other bidders' behavior
1	all other bidders are type- $L0$ (bid na $\ddot{\text{u}}$ vely)
2	all other bidders are type-1
:	:
k	all other bidders are type- $(k-1)$

- ullet Specification of type-L0 is crucial, assumed by the researchers
- Explains overbidding in experimental auctions (Crawford and Iriberri, 2007)
- Level-k belief explains non-equilibrium behavior in other games (Costa-Gomes and Crawford, '06; Crawford and Iriberri, '07a)

Motivation and Contributions

- Existing evidence on the level-k auction model are mixed (Crawford and Iriberri, 2007, Georganas, 2009, Gillen 2009; Ivanov, Levin, and Niederle, 2010) because the evidence
 - relies on experimental data and parametric assumptions
 - ullet depends on (arbitrarily) specification of type-L0
- Motivation: two questions
 - Can we identify the model nonparametrically for field data?
 - Do field data support the level-k auction model?
- Contributions of this paper
 - ullet A methodology for nonparametric analysis of level-k auctions
 - Applicable to other settings, e.g., Goldfarb and Xiao (2010)
 - Empirical evidence from field data that support the model
 - bidders' behavior in field auctions, policy implications

Preview of the Results

- A nonparametric methodology that identifies and estimates
 - The number of bidders' types
 - Probability of each type
 - Distribution of bidders' values
 - ullet Specification of type-L0
- Empirical evidence from US Forest Service Timber Auctions
 - Bidders are of three types
 - ullet Level-k auction model is supported by field data

Road Map

- Motivation and contributions, preview of results, literature
- 2 Theoretical model of level-k auctions
- Nonparametric identification
- Nonparametric estimation
- Monte Carlo evidence
- 6 Empirical application: US Forest Service timber auctions

The Theoretical Model

Basic setup and bidding strategies

- Basic setup
 - Risk-neutral bidders, indexed by $i \in \{1, 2, ..., I\}, I \geq 2$
 - Independent private value (IPV), $v_i \sim F(\cdot), v_i \perp v_j, v_i \in [\underline{v}, \overline{v}]$
 - A bidder's type $\tau \in \{(L1,\omega),(L2,\omega),...,(Lm,\omega)\}$
 - Specification of type-L0: ω
 - Simplification of notation: $\tau \in \{L1, L2, ..., Lm\}$
- ullet Bidding strategy of type-Lk bidders
 - Utility maximization problem $\max_{b_i} (v_i b_i) \Pr(\max_{j \neq i} b_j \leq b_i)$
 - $b_i = s_{Lk}(v_i, I, F)$

The Theoretical Model

A regularity condition and properties on support of bid distribution

- Bidding strategy of bidder i (of type Lk): $b_i = s_{Lk}(v_i, I, F)$
- A regularity condition: the bidding strategy is monotonically increasing in value v_i , i.e., $s'_{l,k}(\cdot,I,F)>0$
- Properties on supports of bid distribution functions
 - ullet Lower bounds of bids' supports for all types are equal to \underline{v}
 - Upper bounds are monotonically decreasing in type
 - Properties on supports can be used to identify the model

The Data Structure

- Independent, homogeneous auctions with number of bidders I
- All the bids in each auction
- Each bidders' identity
- Three bids (in three auctions) of each bidder

Data structure

Identity	Bid 1	Bid 2	Bid 3
Bean Lumber Co.	88.51	81.32	86.69
Simmons Lumber Co.	74.53	61.35	60.47
÷:	:	:	i

- Bids for two bidders are not necessarily from the same auction
- ullet Number of bidders, N, is the sample size

Assumption 1. The econometrician observes data described above.

The Econometric Model

Main components

- ullet Independent, homogeneous auctions with number of bidders I
- Bidders' are of type L1, L2, ..., Lm ($m \ge 1$): $p(\tau = Lk) > 0, \sum_{\tau} p(\tau) = 1, \ 1 \le k \le m$
- Type does not change across auctions
- Value distribution is independent of type distribution
- ullet Bidders' values: i.i.d. $v_i \sim F(v)$, $v \in [\underline{v}, \overline{v}]$
- Reserve price is non-binding

The Econometric Model

An example (two types) of the model structure

The Identification Problem

① Observed distribution of bids G(b) (b_1 , b_2 , or b_3): mixed behavior of different-type bidders

$$G(b) = \sum_{\tau \in \mathcal{K}} G(b|\tau)p(\tau) \tag{1}$$

- $G(b|\tau)$: bid distribution for type τ ; $p(\tau)$: probability of type τ
- ② Bidding strategy of type τ , $s_{\tau}(\cdot)$, maps value distribution $F(\cdot)$ to bid distribution $G(b|\tau)$

$$G(b|\tau) = F\left(s_{\tau}^{-1}(b)\right) \tag{2}$$

Definition: The level-k auction model is identified if for a given observed bid distribution G(b), there is a unique pair for distributions of types and values $(p(\cdot), F(\cdot))$, and a unique specification of type-L0 such that Eq.(1), Eq(2) hold.

Preview of Identification

Two-step identification procedure

Preview of Identification

Intuition and methodology of identification

- - Intuition: correlation of bids is only due to correlation of types
 - Methodology: Hu (2008) on misclassification

	Misclassification model	level- \boldsymbol{k} auction model
true value	X^* (discrete)	au
dependent variable	Y	3rd bid
measurement of X^{st}	$X: X^* + \epsilon$	discretized 1st bid
Instrument	Z	discretized 2nd bid

- $oldsymbol{2}$ Identify value distribution and specification of type-L0
 - ullet Intuition: type-Lk bidders' bidding strategy is a best response to value distribution and type-L(k-1) bidders' behavior
 - Methodology: the model implied relationship between value and bid

Conditional independence

The law of total probability

$$\begin{split} g\left(b_{1},b_{2},b_{3}\right) &= \sum_{\tau \in \mathcal{K}} g\left(b_{1},b_{2},b_{3},\tau\right) \\ &= \sum_{\tau \in \mathcal{K}} g\left(b_{2}|\tau,b_{1},b_{3}\right) g\left(b_{1}|\tau,b_{3}\right) g\left(\tau,b_{3}\right). \end{split}$$

Assumption 2. The joint density of (b_1, b_2, b_3, τ) exists and is bounded away from zero and infinity.

Assumption 3.
$$g(b_1, b_2, b_3|\tau) = g(b_1|\tau)g(b_2|\tau)g(b_3|\tau)$$
.

- Bids of different bidders with the same type are independent
- Bids for each bidder are independent across auctions

$$g(b_1, b_2, b_3) = \sum_{\tau \in \mathcal{K}} g(b_1 | \tau) g(b_2 | \tau) g(\tau, b_3)$$

Discretization of bids

I need two "measurements" for unobserved type τ . Choose bids b_1 and b_3 , and discrete them to be the measurements.

• Discretize b_1 and b_3 as d_1 and d_3 , respectively:

$$d = \left\{ \begin{array}{ll} 1 & \text{if } b \in [\underline{b}, b^1], \\ 2 & \text{if } b \in (b^1, b^2], \\ \vdots & \\ M & \text{if } b \in (b^{M-1}, \overline{b}], \end{array} \right.$$

$$\underline{b} < b^1 < b^2 < \ldots < b^{M-1} < \bar{b}$$

- ullet Both bids are disretized to M integers
- The methods of discretization for two bids can be different

Discretized version of joint distribution

The equation associating observable and unknowns

$$g\left(b_{1},b_{2},b_{3}\right)=\sum_{\tau\in\mathcal{K}}g\left(b_{1}|\tau\right)g\left(b_{2}|\tau\right)g\left(\tau,b_{3}\right)$$

↓ discretized version

$$g\left(d_{1},b_{2},d_{3}\right)=\sum_{\tau\in\mathcal{K}}g\left(d_{1}|\tau\right)g\left(b_{2}|\tau\right)g\left(\tau,d_{3}\right)$$

↓ in matrix form

$$B_{b_2,d_1,d_3} = B_{d_1|\tau} D_{b_2|\tau} B_{\tau,d_3}$$

The diagonal matrix $D_{b_2|\tau}$ consists m bid distribution conditional on type: $g(b_2|L1),...,g(b_2|Lm)$

Definition of matrices

$$\begin{array}{rcl} B_{b_2,d_1,d_3} & \equiv & [g(b_2,d_1=i,d_3=j)]_{i,j}\,, \\ B_{d_1|\tau} & \equiv & [g\left(d_1=i|\tau=Lk\right)]_{i,k}\,, \\ B_{\tau,d_3} & \equiv & [g\left(\tau=Lk,d_3=j\right)]_{k,j}\,, \\ B_{d_1,d_3} & \equiv & [g\left(d_1=i,d_3=j\right)]_{i,j}\,, \\ D_{b_2|\tau} & \equiv & \mathrm{diag}\Big[g(b_2|L1) \ g(b_2|L2) \ \dots \ g(b_2|Lm)\Big]. \\ B_{d_1,d_3} & = & B_{d_1|\tau}B_{\tau,d_3} \\ g(d_1,d_3) & = & \sum_{\tau\in\mathcal{K}}g(d_1,d_3,\tau) = \sum_{\tau\in\mathcal{K}}g(d_1|\tau,d_3)g(\tau,d_3) \\ & = & \sum_{\tau\in\mathcal{K}}g(d_1|\tau)g(\tau,d_3). \end{array}$$

Identifying number of types

Lemma (number of types)

The number of types, m, is equal to rank of the matrix $B_{d_1,d_3}=B_{d_1|\tau}B_{\tau,d_3}$ under the following two conditions (1) $M\geq m$; (2) bid distribution of any type is not a linear combination of those for other types.

Exemplify the lemma above: three types: L1, L2, and L3

$$B_{d_1|\tau} = \begin{pmatrix} \Pr(d_1 = 1|L1) & \Pr(d_1 = 1|L2) & \Pr(d_1 = 1|L3) \\ \Pr(d_1 = 2|L1) & \Pr(d_1 = 2|L2) & \Pr(d_1 = 2|L3) \\ \vdots & \vdots & \vdots \\ \Pr(d_1 = M|L1) & \Pr(d_1 = M|L2) & \Pr(d_1 = M|L3) \end{pmatrix}$$

The rank is equal to three whenever $M \geq m = 3$

Eigenvalue-eigenvector decomposition

Assumption 4. There exists a method of discretization such that $Rank(B_{d_1,d_3})=m.$

- The number of types, m, is equal to the largest value of M such that the matrix B_{d_1,d_3} is full rank
- Choose M=m, then all the matrices are $m\times m$
- ullet $B_{d_1,d_3}^{-1}=B_{ au,d_3}^{-1}B_{d_1| au}^{-1}$ and $B_{b_2,d_1,d_3}=B_{d_1| au}D_{b_2| au}B_{ au,d_3}$ lead to

Main Equation (Eigenvalue-eigenvector decomposition)

$$B_{b_2,d_1,d_3}B_{d_1,d_3}^{-1} = B_{d_1|\tau}D_{b_2|\tau}B_{d_1|\tau}^{-1}$$

Is the decomposition unique?

Uniqueness of eigenvalue-eigenvector decomposition

Assumption 5. For any two different types $Lk, Lj \in \mathcal{K}$, the set $\{b: g(b|\tau=Lk) \neq g(b|\tau=Lj)\}$ has nonzero Lebesgue measure, where $k,j \in \{1,2,...m\}$.

- This assumption rules out identical eigenvalues
- Normalization of eigenvectors: dividing each column by the column sum since sum of each column for $B_{d_1|_{\mathcal{T}}}$ is one
- Ordering of m eigenvalues: monotonic supports of bids for different types
- Probability of each type is identified from the mixture model

Conclusion (the first step of identification):

Bid distribution conditional on type, $g(b|\tau)$, is identified from observed bid distribution for each of the m identified types.

A value-bid relationship

Proposition (A crucial value-bid relationship)

$$v \equiv \xi_{Lk}(b, G(\cdot | Lk - 1), I) = b + \frac{1}{I - 1} \frac{G(b|Lk - 1)}{g(b|Lk - 1)}.$$

▶ Proof

- ullet Type Lk's bidding strategy is associated with type L(k-1)'s bid distribution
- ullet Intuition: type-Lk bidders' bidding strategy depends on type-L(k-1)'s bidding strategy and value distribution; bid distribution of type-L(k-1) contains the same information

Identification of $s_{Lk}^{-1}(\cdot)$ $(k \ge 2)$ and $F(\cdot)$

Proposition (bidding strategies and value distribution)

The inverse of bidding strategy for type-Lk bidders, $s_{Lk}^{-1}(b,F,I)$, can be identified as $s_{Lk}^{-1}(b,F,I)=\xi_{Lk}(b,G(b|Lk-1),I)$, where k=2,3,...,m. Moreover, the value distribution $F(\cdot)$ can be uniquely determined as $F(\cdot)=G(\xi_{Lk}(\cdot,G(\cdot|Lk-1),I)|Lk)$ by bidding strategy and the corresponding bid distribution of any type-Lk, where k=2,...,m.

Intuition: bidding strategy is a (one-to-one, monotonic)
 mapping from value distribution to bid distribution

$$\left. \begin{array}{c} G(b|Lk-1) \Rightarrow \xi_{Lk}(\cdot) \\ G(b|Lk) \end{array} \right\} \Rightarrow F(\cdot)$$

Identification of type-L0

• Bidding strategy for bidders of type-L1, $s_{L1}(\cdot)$, is identified from $F(\cdot)$ and $G(\cdot|L1)$

Type-L1 bidders' belief: bid distribution $Z(\cdot)$, with density $z(\cdot)$

- Type-L1 bidder's maximization problem $\max_{b_i}(v_i-b_i)\Pr(\max_{j\neq i}b_j\leq b_i)=\max_{b_i}(v_i-b_i)Z^{I-1}(b_i)$
- Optimal bidding strategy $s_{L1}(\cdot)$: $s_{L1}^{-1}(b) = b + \frac{1}{I-1}\frac{Z(b)}{z(b)}$
- $s_{L1}^{-1}(b)$ is identified $\Longrightarrow Z(\cdot)$ is identified

Identification of type-L0: Cont'

A testable implication (when bidders are of three or more types):
 CDFs of values for different types are the same

Conclusion (the second step of identification):

Value distribution and specification of type- L0 are both identified.

The results provide a testable implication of the model.

Main result on identification

The identification procedure is constructive, and it implies a two-step procedure of estimation

① Estimating bid distribution and it density $G(b|\tau)$, $g(b|\tau)$, boundaries of bid distribution

$$B_{Eb_2,d_1,d_3}B_{d_1,d_3}^{-1} = B_{d_1|\tau}D_{Eb_2|\tau}B_{d_1|\tau}^{-1}$$

② Pseudo-value $\widehat{\xi}(\cdot)$, value and type distributions F(v) and $p(\tau)$

$$v \equiv \xi_{k_{\theta}}(b, G(\cdot|j_{\theta}), I) = b + \frac{1}{I - 1} \frac{G(b|j_{\theta})}{g(b|j_{\theta})}$$

1 Estimate eigenvector matrix $B_{d_1|\tau}$ by eigen-decomposition

$$\widehat{B}_{d_1|\tau} := \phi\left(\widehat{B}_{Eb_2,d_1,d_3}\widehat{B}_{d_1,d_3}^{-1}\right),$$

where
$$\widehat{B}_{Eb_2,d_1,d_3} = \left(\frac{1}{N} \sum_{i=1}^{N} b_{i2} \mathbf{1}(d_{i1} = j, d_{i3} = k)\right)_{j,k}$$

2 Estimate joint distribution of bid and type $G(b_2, \tau)$

$$G(b_2, d_1) = B_{d_1|\tau}G(b_2, \tau) \to \widehat{G}(b_2, \tau) = \widehat{B}_{d_1|\tau}^{-1}\widehat{G}(b_2, d_1),$$

where
$$\widehat{G}(b_2, d_1 = j) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}(b_{i2} < b_2, d_{i1} = k)$$

 $\ensuremath{\mathfrak{S}}$ Estimate conditional bid distribution $G(b_2|\tau) = G(b_2,\tau)/p(\tau)$

Nonparametric Estimation

The second step

- Estimates of boundaries
 - ullet All types share the same lower bound $\widehat{\underline{b}}=\inf\left\{b_{it}
 ight\}$
 - Upper bound

$$\widehat{b}_{Lk} = \begin{cases} \sup \{b_{it}, i = 1, 2, ..., N, t = 1, 2, 3\} & \text{if } k = 1\\ \inf \{b : \widehat{G}(b|Lk) = 1\} & \text{if } k > 1 \end{cases}$$

- Boundary effects
 - ullet $\widehat{G}(\cdot)/\widehat{g}(\cdot)$ is asymptotically biased

$$\bullet \ \widehat{\xi}_{Lk}(b) = \left\{ \begin{array}{ll} b + \frac{1}{I-1} \frac{\widehat{G}(b|Lj)}{\widehat{g}(b|Lj)} & \text{if } \ \underline{\hat{b}} + \frac{\rho h}{2} \leq b_{it} \leq \widehat{\bar{b}} - \frac{\rho h}{2}, \\ +\infty & \text{otherwise}, \end{array} \right.$$

- Estimate of $p(\tau)$: $\widehat{p}(\tau = Lk) = \widehat{B}_{d_1|\tau}^{-1}\widehat{p}(d_1)$.
- Estimate of F(v)
 - $\widehat{F}(\widehat{\xi}_{Lk}(b)) = \widehat{G}(b|Lk)$

Nonparametric Test of Level-k Auctions

- A testable implication of level-k auctions: value distribution is identical for each type
 - Condition: three (or more) consecutive types
- $H_0: F_{Lk}(v) = F_{Li}(v)$
- Test statistic $\widehat{S}_n = \frac{1}{n} \sum_{i=1}^n \left[\widehat{F}_{Lk}(v_i) \widehat{F}_{Lj}(v_i) \right]^2$
 - ullet The asymptotic distribution of \widehat{S}_n is not clear
- Generate T samples by bootstrap, compute test statistic $\{\widehat{S}_{n,(i)}\}_{i=1}^T$, $\{\widehat{S}_{n,i}\}_{i=1}^T$ arranged in increasing order of magnitude
- ullet A bootstrap critical region of significance level lpha:

$$\widehat{S}_n > \widehat{S}_{n,(\lceil (1-\alpha)T \rceil)}$$

Monte Carlo

- Two types: random type-1 (55%), random type-2 (45%)
 - $\log v \sim \mathcal{N}(0,1), v \in [0.2, 2]$
 - Sample size N = 200, 500, 5000
 - Three bidders in each auction
 - Replications S = 400
- 2 Three types: random type-1 (50%), random type-2 (30%), truthful type-1 (20%)
 - $\log v \sim \mathcal{N}(5,3), v \in [0.2,5]$
 - Sample size N = 500, 5000
 - Three bidders in each auction
 - Replications S=400
 - First identify number of types: test whether $det(B_{d_1,d_3}) = 0$

Figure: Results of estimation: two-types, $N=200\,$

Figure: Results of estimation: two-types, $N=500\,$

Figure: Results of estimation: two-types, N=5000

Figure: Estimated bid distribution: bootstrap 90% CI, N=5000

Table: Estimates of type distributions: two-type setting

		True Value	Estimate
N = 200	p(L1,R)	0.55	0.68
		-	(0.42)
	p(L2,R)	0.45	0.32
		-	(0.42)
N = 5000	p(L1,R)	0.55	0.56
		-	(0.35)
	p(L2,R)	0.45	0.44
		-	(0.35)

Figure: Results of estimation: three-types, N=500

Figure: Results of estimation: three-types, $N=5000\,$

Table: Estimates of type distributions: three-type setting

		True Value	Estimate
N = 500	p(L1,R)	0.50	0.44
		-	(0.43)
	p(L2,R)	0.30	0.40
		-	(0.40)
	p(L1,T)	0.20	0.16
		-	(0.28)
N = 5000	p(L1,R)	0.50	0.46
		-	(0.24)
	p(L2,R)	0.30	0.27
		-	(0.39)
	p(L1,T)	0.20	0.27
		-	(0.39)

Data: USFS timber auction data

- Studies used this data set
 - Nonequilibrium behavior for risk neutral bidders
 - Risk-aversion: Baldwin (1995), Athey and Levin (2001),
 Campo, Guerre, Perrigne, and Vuong (2003)
 - Risk-aversion
 ⇔ level-k: Dohmen, Falk, Huffman, Sunde
 (2010)
 - Independent private value paradigm
 - Haile, Hong, and Shum (2003) finds evidence for "scaled sale"
 - Reserve price is nonbinding: Haile (2001) among others
- Sample description
 - Sealed bid, scaled sale: 1982-1993 in all regions
 - Eliminate salvage and small-business set-aside auctions
 - Choose those bidders who participate in at least three auctions
 - Choose those auctions with three bidders

Estimation: a preliminary regression

- Control for auction-specific heterogeneity
 - The approach: run a preliminary regression of bids on auction characteristics, and use the residuals for analysis
 Haile, Hong, and Shum (2003) and Bajari, Houghton, Tadelis, and Berkeley (2007)
 - Appraisal value captures the heterogeneity: Haile (2001) and Campo, Guerre, Perrigne, and Vuong (2003)

Summary statistics

Variable	Mean	Std	Minimum	Maximum
Auctions participated	4.99	4.56	3	65
Bids (\$/MBF)	11.14	11.98	0.02	105.16

Sample size 462: number of identified bidders

Estimation of number of types

- Hypothesis testing $\det(B_{d_1,d_3})=0$, 5% significance level
 - Reject $det(B_{d_1,d_3}) = 0$ for M=2, 3
 - Fail to reject $det(B_{d_1,d_3}) = 0$ for M=4, M=5
- Conclusion: data support three types

Estimation of bid and value distributions, sample size $462\,$

Table: Estimated type distribution

	Estimate	Median
$p({\sf the\ lowest\ type})$	0.07	0.03
	(0.22)	_
$p(the\ higher\ type)$	0.80	0.71
	(0.33)	_
$p(the\ highest\ type)$	0.13	0.16
	(0.28)	-

Value distributions and hypothesis testing

- No specification of lowest type
- Estimate two value distribution functions $F_2(\cdot)$, $F_3(\cdot)$
- Hypothesis testing, $H_0: F_2(\cdot) = F_3(\cdot)$
 - Test statistic S_{23} : average "distance" between two distribution functions
 - Result: $\widehat{S}_{23} = 0.0072 \pm 0.0583$
 - Fail to reject the hypothesis under 5% significance level
- Implications:
 - ullet Can not reject the level-k auction model
 - Bidders are more sophisticated than those in experiments

Hypothesis testing with specification of the lowest type

- Specification the lowest type: $\tau = (L1, R)$
 - three types: (L1, R), (L2, R), (L3, R)
- Hypothesis testing: $F_1(\cdot) = F_2(\cdot)$, $F_1(\cdot) = F_3(\cdot)$
 - ullet Test statistic $\widehat{S}_{12} = 0.0459 \pm 0.1105$, $\widehat{S}_{13} = 0.0431 \pm 0.1539$
 - Fail to reject both hypotheses under 5% significance level
 - ullet $\widehat{S}_{23}=0.0072\pm0.0583$ is much smaller than both \widehat{S}_{12} and \widehat{S}_{13}
- Implications:
 - Specification of the lowest type might not correct
 - Bidders are more sophisticated than subjects in experiments

Summary

- Results
 - Nonparametric methodology that identifies and estimates
 - Number of types
 - Probability of each type
 - Underlying value distribution
 - $\bullet \ \ \mathsf{Specification} \ \ \mathsf{of} \ \ \mathsf{type-}L0 \\$
 - 2 Empirical evidence
 - Bidders are of three types: understand bidders' behavior in field auctions
 - Data support level-k auction model: policy implications
- Possible extensions
 - More general beliefs
 - More general settings in which heterogenous behavior is due to (discrete) unobserved heterogeneity, e.g., entry games in I.O.

Related Literature

Both $s_k(\cdot)$ and $s_j(\cdot)$ are strictly increasing, for each $b \in [\underline{v}, s_k(\overline{v})]$, where $s_k(v_1) = b, \ v_1 \in [\underline{v}, \overline{v}]$, there exists a unique valuation $v_2 \in [\underline{v}, \overline{v}]$ such that $s_k(v_1) = s_j(v_2) = b$.

$$v_{1} = b + \frac{1}{I-1} \frac{F(s_{j}^{-1}(s_{k}(v_{1})))}{f(s_{j}^{-1}(s_{k}(v_{1})))} \frac{1}{\frac{ds_{j}^{-1}(t)}{dt}|_{t=s_{k}(v_{1})}}$$

$$= b + \frac{1}{I-1} \frac{F(s_{j}^{-1}(s_{j}(v_{2})))}{f(s_{j}^{-1}(s_{j}(v_{2})))} \frac{1}{\frac{ds_{j}^{-1}(t)}{dt}|_{t=s_{j}(v_{2})}}$$

$$= b + \frac{1}{I-1} \frac{F(v_{2})}{f(v_{2})} \frac{1}{\frac{ds_{j}^{-1}(t)}{dt}|_{t=s_{j}(v_{2})}}.$$
(3)

The change of variables for type j implies

$$G(b|j) = F(v_2)g(b|j) = f(v_2)\frac{ds_j^{-1}(t)}{dt}|_{t=s_j(v_2)}.$$

Combine these two equations,

$$\frac{G(b|j)}{a(b|j)} = \frac{F(v_2)}{f(v_2)} \left(\frac{ds_j^{-1}(t)}{dt}|_{t=s_j(v_2)}\right)^{-1}.$$
 (4)

Nonparametric Identification

Extension: two dimensional unobserved heterogeneity

- Multiple specifications of type-L0
 - Eigenvalue-eigenvector decomposition still applies
 - Supports of bids are not monotonic
- Exemplifying identification
 - $\tau \in \{(L1, R), (L2, R), (L1, T)\}, (L1, \cdot)$ is identified
 - $G_A(b)$, $G_B(b)$, $G_C(b)$: three anonymous bid distribution functions, $G_A(b)$ has the largest upper bound
 - $G_A(b)$ is bid distribution of type-(L1,R) or type-(L1,T)
 - Two alternative hypotheses: (1) $G_{L1}^R(b) = G_A(b)$; (2) $G_{L1}^T(b) = G_A(b)$
 - Under hypothesis (1)
 - $G_A(b) \Rightarrow F_A(\cdot)$
 - If $G_B(\cdot) = G_{L_2}^R(\cdot), \Rightarrow F_B(\cdot)$

Figure: Estimated specification of type-L0: N=5000

Figure: Estimated bid distribution: bootstrap 90% CI

Figure: Estimated value distribution

Figure: Distribution of statistic

