d-SNE: Domain Adaptation using Stochastic Neighborhood Embedding

Xiang Xu[†] *, Xiong Zhou [‡] *, Ragav Venkatesan[‡] , Gurumurthy Swaminathan[‡] , Orchid Majumder [‡] Computational Biomedicine Lab, University of Houston, Houston, USA [‡] AWS AI, Seattle, USA

†xxu18@central.uh.edu, [‡]{xiongzho, ragavven, gurumurs, orchid}@amazon.com

CVPR, 2019

Presented by : Kangyeol Kim

DAVIAN Lab, Korea University

Few-shot / Semi-supervised DA

Figure 1: Domain adaptation in the true data space: Expectation vs. Reality.

$$q_{j|i} = \frac{e^{-\|y_i - y_j\|^2}}{\sum_{k \neq i} e^{-\|y_i - y_k\|^2}}$$

$$q_{j|i} = \frac{e^{-\|y_i - y_j\|^2}}{\sum_{k \neq i} e^{-\|y_i - y_k\|^2}}$$

	SNE	Symn	netric SNE	t-SNE		
Prob. In High-D	$p_{j i} = \frac{e^{-\frac{\ x_i - x_j\ ^2}{2\sigma_i^2}}}{\sum_{k \neq i} e^{-\frac{\ x_i - x_k\ ^2}{2\sigma_i^2}}}$	$p_{ij} = - \sum_{k}$	$e^{-\frac{\ x_{i}-x_{j}\ ^{2}}{2\sigma^{2}}}$ $e^{-\frac{\ x_{k}-x_{l}\ ^{2}}{2\sigma^{2}}}$	$p_{ij} = \frac{p_{j i} + p_{i j}}{2n}$		
Prob. In Low-D	$q_{j i} = \frac{e^{-\ y_i - y_j\ ^2}}{\sum_{k \neq i} e^{-\ y_i - y_k\ ^2}}$	$q_{ij} = \frac{1}{\sum_{k}}$	$\frac{e^{-\ y_i - y_j\ ^2}}{e^{-\ y_k - y_l\ ^2}}$	$q_{ij} = \frac{\left(1 + \ y_i - y_j\ ^2\right)^{-1}}{\sum_{k \neq l} (1 + \ y_k - y_l\ ^2)^{-1}}$		
Cost Function	$C = \sum_{i} \sum_{j} p_{j i} \log \frac{p_{j i}}{q_{j i}}$	$C = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$				
Gradient of Cost Function	$2\sum_{j}(p_{j i}-q_{j i}+p_{i j}-q_{i j})(y_{i}-y_{j})$	$4\sum_{j}(p_{ij}-q_{ij})(y_i-y_j)$		$4\sum_{j}(p_{ij}-q_{ij})(y_{i}-y_{j})\left(1+\ y_{i}-y_{j}\ ^{2}\right)^{-1}$		
			$(x,y)^2$	$-(\nu+1)$ $\nu+1$		

PDF

$$rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

PDF

$$rac{\Gamma\left(rac{
u+1}{2}
ight)}{\sqrt{
u\pi}\,\Gamma\left(rac{
u}{2}
ight)}\Big(1+rac{x^2}{
u}\Big)^{-rac{
u+1}{2}}$$

Strong Replusion

High-D	Low-D	p_{ij}	q_{ij}	$(p_{ij}-q_{ij})$	$(y_i - y_j)$	$(1 + y_i - y_j ^2)^{-1}$	Gradient
Large	Large	1	1	0	Large	Small	0
Small	Small	0	0	0	Small	Large	0
Small	Large	0	1	-1	Large	Small	Attraction
Large	Small	1	0	1	Small	Large	Repulsion

Motivation

To create this embedding space, we use a strategy that is very similar to the popular stochastic neighborhood embedding technique (SNE) [12]. To modify SNE for domain adaptation, we use a novel modified-Hausdorff distance metric in a $\min - \max$ formulation. d-SNE minimizes the distance between the samples from \mathcal{D}^s and \mathcal{D}^t so as to maximize the margin of inter-class distance for discrimination and minimize the intra-class distance from both domains to achieve domain-invariance. This discrimination is learnt as a max-margin nearest-neighbor form to make the network optimization easy. Our proposed idea is still learnable in an end-to-end fashion, therefore making it ideal for training neural networks.

- Point-to-point relationship between source domain and target domain
- Probability of being same class with point in source domain can be defined as:

$$p_{ij} = \frac{\exp(-d(x_i^s, x_j^t))}{\sum_{x \in \mathcal{D}^s} \exp(-d(x, x_j^t))}.$$

- Points-to-point relationship between source domain and target domain
- Probability of being specific class (1..k) can be defined as:

$$p_{j} = \frac{\sum_{x \in \mathcal{D}_{k}^{s}} \exp(-d(x, x_{j}^{t}))}{\sum_{x \in \mathcal{D}^{s}} \exp(-d(x, x_{j}^{t}))} = \sum_{i=0}^{N_{k}^{s}} p_{ij},$$

It corresponds with multinomial distribution as softmax output

• The objective function to minimize is then,

$$\sum_{x_j \in \mathcal{D}^t} \frac{1}{p_j} = \sum_{x_j \in \mathcal{D}^t} \left(\frac{\sum_{x \in \mathcal{D}_k^s} \exp(-d(x, x_j))}{\sum_{x \in \mathcal{D}_k^s} \exp(-d(x, x_j))}, \text{ for } k = y_j \right).$$
(4)

- Numerator inter-class distances
- Denominator intra-class distances

- The form of sum of exponentials leads to adverse effects in stochastic optimization due to scaling issue.
- Relax likelihood with the use of a modified-Hausdorffian distance.
- Only minimizing largest distance between the samples of the same class and maximize the smallest distance between the samples of different classes

$$\tilde{\mathcal{L}} = \sup_{x \in \mathcal{D}_k^s} \{ a | a \in d(x, x_j) \} - \inf_{x \in \mathcal{D}_k^s} \{ b | b \in d(x, x_j) \},$$
for $k = y_j$.

Experiment

Method	$ \mathcal{D}_k^t , \forall k$	Setting	${\tt A} \to {\tt D}$	${\tt A} \to {\tt W}$	${\tt D} \to {\tt A}$	${\tt D} \to {\tt W}$	${\tt W} \to {\tt A}$	$\mathtt{W} \to \mathtt{D}$	Avg.
DANN [7]			-	73.00	-	96.40	-	99.20	-
DRCN [8]		и	67.10 ± 0.30	68.70 ± 0.30	56.00 ± 0.50	96.40 ± 0.30	54.09 ± 0.50	99.00 ± 0.2	73.60
kNN-Ad [24]		и	84.10	81.10	58.30	96.40	63.80	99.20	80.48
I2I [17]			71.10	75.30	50.10	96.50	52.10	99.60	74.12
G2A [23]			87.70 ± 0.50	89.50 ± 0.50	72.80 ± 0.30	97.90 ± 0.30	71.40 ± 0.40	99.8 ± 0.4	86.50
SDA [27]	3		86.10 ± 1.20	82.70 ± 0.80	66.20 ± 0.30	95.70 ± 0.50	65.00 ± 0.5	97.60 ± 0.20	82.22
FADA [15]	3	\mathcal{S}	88.20 ± 1.00	88.10 ± 1.20	68.10 ± 0.60	96.40 ± 0.80	71.10 ± 0.90	97.50 ± 0.90	84.90
CCSA [16]	0		61.20 ± 0.90	62.3 ± 0.80	58.5 ± 0.80	80.1 ± 0.60	51.6 ± 0.90	95.6 ± 0.70	68.20
CCSA [16]	3		89.00 ± 1.20	88.20 ± 1.00	71.80 ± 0.50	96.40 ± 0.80	72.10 ± 1.00	97.60 ± 0.40	85.80
d-SNE (VGG-16)	0	s	62.40 ± 0.40	61.49 ± 0.75	48.92 ± 1.03	82.24 ± 1.42	47.52 ± 0.94	90.42 ± 1.00	65.49
	3		91.44 ± 0.23	90.13 ± 0.07	71.06 ± 0.18	97.10 ± 0.07	71.74 ± 0.42	97.46 ± 0.24	86.49
d-SNE (ResNet-101)	0	S	80.41 ± 0.79	75.26 ± 1.32	67.39 ± 0.18	96.39 ± 0.41	65.55 ± 1.91	98.31 ± 1.87	80.55
	3	0	94.65 ± 0.38	96.58 ± 0.14	$\textbf{75.51} \pm \textbf{0.44}$	99.10 ± 0.24	$\textbf{74.20} \pm \textbf{0.24}$	$\textbf{100.00} \pm \textbf{0.00}$	90.01

Proposed methods, 1D example

Figure 6: t-SNE visualization of d-SNE's latent-embedding space for the VisDA-C dataset. (a) Embeddings produced by the model trained with source images only. (b) Embeddings produced by the model trained with target images only and (c) The joint latent-embedding space of d-SNE. Different colors represent different classes. Embeddings from the source and target domains are indicated by circles and stars, respectively.