Systembiologie 551-1174-00L

Flux Balance Analysis

23 March, 2017 Jörg Stelling, D-BSSE

Content:

- From textbook biochemistry to genome-scale stoichiometric models
- The solution space of stoichiometric models
- Flux balance analysis

Steady-State Solution Spaces for Fluxes

Steady-State Solution Spaces for Fluxes

Stoichiometric Models: Dimensions

- □ Number of (internal) metabolites $\{A,B\}$: m = 2.
- □ Number of metabolic reactions $\{R1-R4\}$: n = 4.
- □ Sets of reversible and irreversible reactions: $rev = \{R3\}, irrev = \{R1,R2,R4\}, rev \cap irrev = 0.$

Stoichiometric Models: Representation

- \square Network representation: **Stoichiometric matrix** $S(m \times n)$.
- \square Rows \rightarrow Internal metabolites i; Columns \rightarrow Reactions j.
- \square Elements s_{ij} : Stoichiometric coefficients (>0 for products).

Stoichiometric Models: Flux Distributions

Which flux is feasible?

- = machbar, durchführbar
- Flux distribution: Specification of all fluxes in the network
 - \rightarrow Vector v of n reaction rates that is to be determined.
- □ **Feasibility criterion**: $v_i \ge 0$ for all irreversible reactions.

Balanced Networks: Quasi Steady State

- Metabolic networks: Fast reactions (msec seconds timescale) and high turnover of reactands.
- □ Quasi steady state → Metabolite balancing equation:

$$\frac{d c(t)}{dt} = S \cdot v(t) \xrightarrow[const.]{c(t), v(t)} 0 = S \cdot v$$

□ Homogeneous systems of linear equations:

Consumption of each metabolite equals production.

Balanced Networks: Null Space

$$0 = S \cdot v$$

- □ Solution $v = \theta \rightarrow$ Thermodynamic equilibrium.
- □ Metabolic networks: $n >> m \rightarrow$ More unknowns than equations \rightarrow Multiple compliant vectors v.
- □ **Linear algebra:** All possible solutions lie in the (vector) null space (or: kernel) of S with dimension n-rank(S).

Balanced Networks: Null Space

Kernel Matrix Represents the Solution Space

$$S = \begin{bmatrix} 1 & -1 & -1 & 0 \\ 0 & 1 & 1 & -1 \end{bmatrix} \quad \begin{array}{c} rev = \{R3\} \\ irrev = \{R1, R2, R4\} \end{array}$$

$$n$$
-rank(S) = $4 - 2 = 2$

- □ Basis vectors of the null space: Find n-rank(S) linearly independent solutions \rightarrow Arrange in a kernel matrix K.
- □ We can reconstruct all possible v by linear combination b of the columns of the kernel matrix: v = Kb.

Kernel Matrix: Enzyme Subsets

□ Enzyme subset: Set of reactions that (in steady state) always operate together in a fixed ratio →
 Rows in K differ only by scalar factor.

only influx has to be regulated and thus, the output is subsequently regulated too

How should enzymes in a subset be regulated?

Example Revisited: Enzyme Subsets

□ In a linear pathway, all enzymes form a subset
 and all steady-state fluxes have to be equal →

$$k_1 u = k_2[P] \Rightarrow [P] = \frac{k_1}{k_2} u$$

The Kernel Matrix Has Limitations

- Limitation: Kernel matrix is not a unique representation.
- □ Limitation: Reaction reversibilities are **not** considered.

Constraints Do Not Sufficiently Shrink The Solution Space

Systembiologie 551-1174-00L

Flux Balance Analysis

23 March, 2017 Jörg Stelling, D-BSSE

Content:

- From textbook biochemistry to genome-scale stoichiometric models
- The solution space of stoichiometric models
- Flux balance analysis

Constraint-Based Methods: Flux Balance Analysis

Flux Balance Analysis (FBA): Principles

- □ Idea so far: Incorporate more constraints into the model (reversibilities) → Smaller solution space → More predictive model.
- Biological assumption of FBA: The cell aims to achieve an optimal feasible steady state flux distribution.

What could be an optimal cell state?

¹⁾ maximal growth rate

²⁾ minimal energy consumption etc.

Flux Balance Analysis: Formally

- □ Quasi steady state assumption: $0 = S \cdot v$
- □ Reaction reversibilities / capacities: $\alpha_i \leq v_i \leq \beta_i$
- □ Optimal feasible steady state: $w^T \cdot v \rightarrow max!$

where the weights w encode the assumed cellular objective function such as maximal

growth rate: $w_{growth} = 1$, $w_{all other fluxes} = 0$

Flux Balance Analysis: Optimization

General optimization problem statement for FBA:

$$\Phi(\mathbf{v}) = \mathbf{w}^T \cdot \mathbf{v} \rightarrow \max!$$
problem is linearized
$$s.t.$$

$$\mathbf{S} \cdot \mathbf{v} = \mathbf{0}$$

$$\cos \mathbf{v} = \mathbf{0}$$

$$\cos \mathbf{v} = \mathbf{0}$$

□ Objective function and constraints are **linear** in the unknown fluxes $v \rightarrow$ **Linear program** \rightarrow Computationally efficient solution even for large models.

Flux Balance Analysis: Optimization

Flux Balance Analysis: Optimization

□ Simplex algorithm: Solutions lie on vertices → Start on vertex → Evaluate gradients and move along edges → Continue search or stop at optimal solution.

Caveat #1: Objective Function

- □ FBA results strongly depend on objective function.
- □ Use of 'natural' objective functions such as growth:
 - Not applicable to all organisms (e.g. cells in multicellular organisms → cancer ...).
 - Not applicable to all conditions (e.g. genetically engineered strain that did not evolve)..

Alternative / conflicting approaches to optimization.

Caveat #2: Alternate Optima

- Linear programming problem implies that finding a solution can be guaranteed:
 - Unique value of the objective function ('growth'),
 - But infinitely many flux distributions with optimal value of objective function may exist.

Without incorporating further constraints: Poor performance in predicting flux distributions.

Caveat #2: Alternate Optima

Approach: Flux Variability Analysis (FVA)

Flux Variability Analysis (FVA): Pseudocode

Inputs: Stoichiometric matrix $S(m \times n)$

Flux bound vectors α and β ($n \times 1$)

Output: Matrix of minimal and maximal fluxes $F(n \times 2)$

```
Set F to n x 2 zero matrix // initialization
```

For d = 1 to 2 // loop over the two directions

For z = 1 to n // loop over all reactions

Set w to n x 1 zero vector

Set w_z to $(-1)^d$

Solve linear program $w^T \cdot v \rightarrow max$!

that's FBA I think

s.t.

$$S \cdot v = 0$$

$$\alpha_i \leq v_i \leq \beta_i$$

Set $F_{z,d}$ to v_z

Flux Variability Analysis (FVA): Pseudocode

Inputs: Stoichiometric matrix and upper / lower

bounds for the fluxes

Output: Minimal and maximal fluxes

For each of the reaction directions

For each reaction as a target

Set weights for FBA such that the target

reaction is the objective in the correct

direction

Run FBA

Save optimized flux for the target reaction

End

End

Flux Variability Analysis (FVA): Pseudocode

that's fucking bullshit and wont give you any points in the exam

Load model
Compute something to find minimal and maximal fluxes
Plot results
Save data

This is NOT pseudocode

Summary: Teaching Goals II/III

- Network structure constrains network behavior but solutions (flux distributions) are most often not unique.
- □ Steady-state analysis relies on linear algebra: Null space, kernel matrix, ... → Feasible flux distributions, enzyme subsets, ...
- □ Flux balance analysis (FBA) adds optimality assumption in a linear (computationally efficient) optimization problem → Many applications (next week).

Exercise 6: Flux Balance Analysis

Goal

- Learning the basic ingredients of Flux Balance Analysis
- Simulate and interpret flux distributions in a toy metabolic model

