1	1. In the field of audio communication, a steganographic method for embedding
2	data, comprising the steps of:
3	a first step of inputting a digital host audio signal;
4	dividing said host audio signal into non-overlapping frames;
5	computing the frame power fe;
6	a second step of inputting a digital signal to be embedded;
7	determining whether a "0" is to be embedded;
8	IF a "0" is to be embedded; THEN
9	setting the power of a tone at fo to a percentage of the power of fe;
10	setting the power of a tone at f ₁ to a fraction of the power of said
11	tone at f_0 ;
12	embedding said tone at f_0 and said tone at f_1 into said frame of said
13	host audio signal;
14	transmitting said frame of said host audio signal;
15	inputting next frame of said host audio signal and next bit of said
16	digital signal to be embedded; and
17	returning to said step of determining,
18	OTHERWISE;
19	setting the power of a tone at f ₁ to a percentage of the power of f _e ;
20	setting the power of a tone at fo to a fraction of the power of said
21	tone at f_1 ; and
22	returning to said step of embedding.
23	
24	
1	2. Method of claim 1, further comprising a steganographic method for recovering
2	embedded data, comprising the steps of:
3	receiving a digital audio signal containing an embedded digital signal;
4	dividing said received audio signal into non-overlapping frames;
5	computing the frame power fe of each said non-overlapping frame of said
6	received digital host audio signal:

7	determining whether $(I_e/I_0) > (I_e/I_1)$
8	IF $(f_e/f_0) > (f_e/f_1)$, THEN
9	declaring the embedded bit to be a "0"; and
10	returning to said step of computing said frame power for the next
11	frame of said received digital host audio signal;
12	OTHERWISE,
13	declaring the embedded bit to be a "1"; and
14	returning to said step of computing said frame power for the next
15	frame of said received digital host audio signal.
16	
1	3. Method of claim 1, wherein said non-overlapping frames are 16 milliseconds in
2	length.
3	
1	4. Method of claim 2, wherein said non-overlapping frames are 16 milliseconds in
2	length.
3	
1	5. Method of claim 1, wherein
2	said power of said tone at f ₀ is 0.25% the power of f _e ; and
3	said power of said tone at f_1 is 0.001 of the power of said tone at f_0
4	whenever a "0" is to be embedded.
5	
1	6. Method of claim 1, wherein
2	said power of said tone at f1 is 0.25% the power of fe; and
3	said power of said tone at f ₀ is 0.001 of the power of said tone at f ₀
4	whenever a "1" is to be embedded.
5	
1	7. In the field of audio communication, a steganographic method for embedding two
2	bits of data, comprising the steps of:
3	a first step of inputting a digital host audio signal;
4	dividing said host audio signal into non-overlapping frames;
5	computing the frame power f _e ;

6	a second step of inputting a digital signal to be embedded;
7	a first step of determining whether a "00" is to be embedded;
8	IF a "00" is to be embedded; THEN
9	setting the power of a tone at fo to a percentage of the power of fe;
10	setting the power of tones at f1, f2 and f3 to a fraction of the power of said tone
11	at f_0 ;
12	embedding said tone at f_0 and said tones at f_1 , f_2 and f_3 into said frame of said
13	host audio signal;
14	transmitting said frame of said host audio signal;
15	inputting next frame of said host audio signal and next two bits of said digital
16	signal to be embedded; and
17	returning to said first step of determining;
18	OTHERWISE;
19	a second step of determining whether a "01" is to be embedded;
20	IF a "01" is to be embedded; THEN
21	setting the power of a tone at f1 to a percentage of the power of fe;
22	setting the power of tones at f ₀ , f ₂ and f ₃ to a fraction of the power of said
23	tone at f_1 ;
24	embedding said tone at f_1 and said tones at f_0 , f_2 and f_3 into said frame of
25	said host audio signal;
26	transmitting said frame of said host audio signal;
27	inputting next frame of said host audio signal and next two bits of said
28	digital signal to be embedded; and
29	returning to said first step of determining;
30	OTHERWISE;
31 -	a third step of determining whether a "10" is to be embedded;
32	IF a "10" is to be embedded; THEN
33	setting the power of a tone at f2 to a percentage of the power of fe;
34	setting the power of tones at f ₀ , f ₁ and f ₃ to a fraction of the power of
35	said tone at f_2 ;

36	embedding said tone at f_2 and said tones at f_0 , f_1 and f_3 into said frame
37	of said host audio signal;
38	transmitting said frame of said host audio signal;
39	inputting next frame of said host audio signal and next two bits of said
40	digital signal to be embedded; and
41	returning to said first step of determining;
42,	OTHERWISE;
43	a fourth step of determining whether a "11" is to be embedded;
44	IF a "11" is to be embedded; THEN
45	setting the power of a tone at f ₃ to a percentage of the power of f _e ;
46	setting the power of tones at f ₀ , f ₁ and f ₂ to a fraction of the power of
47	said tone at f ₃ ;
48	embedding said tone at f_3 and said tones at f_0 , f_1 and f_2 into said
49	frame of said host audio signal;
50	transmitting said frame of said host audio signal;
51	inputting next frame of said host audio signal and next two bits of
52	said digital signal to be embedded; and
53	returning to said first step of determining.
54	•
1	8. Method of claim 7, further comprising a steganographic method for recovering
2	embedded data, comprising the steps of:
3	receiving a digital audio signal containing an embedded digital signal;
4	dividing said received digital audio signal into non-overlapping frames;
5	computing the frame power f_e and the frame power at f_0 , f_1 , f_2 and f_3 of each non-
6	overlapping frame of said received digital audio signal;
7	computing the ratios (f_e/f_0) , (f_e/f_1) , (f_e/f_2) and (f_e/f_3) ;
8	a first step of determining whether (f _e /f ₀) is the lowest ratio;
9	IF (f_e/f_0) is the lowest ratio; THEN
10	declaring the embedded bits to be "00"; and
11	returning to said step of computing the frame power f_{e} and the frame power at
12	f_0 , f_1 , f_2 and f_3 of next frame of said received digital host audio signal:

13	OTHERWISE;
14	a second step of determining whether (f_e/f_1) is the lowest ratio;
15	IF (f_e/f_1) is the lowest ratio; THEN
16	declaring the embedded bits to be "01"; and
17	returning to said step of computing the frame power fe and the frame
18	power at f ₀ , f ₁ , f ₂ and f ₃ of next frame of said received digital host audio
19	signal;
20 .	OTHERWISE;
21	a third step of determining whether (f _e /f ₂) is the lowest ratio;
22	IF (f_e/f_2) is the lowest ratio; THEN
23	declaring the embedded bits to be "10"; and
24	returning to said step of computing the frame power fe and the
25	frame power at f_0 , f_1 , f_2 and f_3 of next frame of said received
26	digital host audio signal;
27	OTHERWISE;
28	a fourth step of determining whether (f _e /f ₃) is the lowest ratio;
29	IF (f_e/f_3) is the lowest ratio; THEN
30	declaring the embedded bits to be "11"; and
31	returning to said step of computing the frame power fe
32	and the frame power at f_0 , f_1 , f_2 and f_3 of next frame of
33	said received digital host audio signal.
34	
1	9. Method of claim 7, wherein said non-overlapping frames are 16 milliseconds in
2	length.
3	
1	10. Method of claim 8, wherein said non-overlapping frames are 16 milliseconds in
2	length.
3	
1	11. Method of claim 7, wherein
2	said power of said tone at fo is 0.05% the power of fe; and
3	said power of said tones at f_1 , f_2 and f_3 is 0.001 of the power of said tone at f_0

4	whenever a "00" is to be embedded.
5	
1	12. Method of claim 7, wherein
2	said power of said tone at f ₁ is 0.05% the power of f _e ; and
3	said power of said tones at f_0 , f_2 and f_3 is 0.001 of the power of said tone at f_1
4	whenever a "01" is to be embedded.
5	
1	13. Method of claim 7, wherein
2	said power of said tone at f ₂ is 0.05% the power of f _e ; and
3	said power of said tones at f_0 , f_1 and f_3 is 0.001 of the power of said tone at f_2
4	whenever a "10" is to be embedded.
5	
1	14. Method of claim 7, wherein
2	said power of said tone at f ₃ is 0.05% the power of f _e ; and
3	said power of said tones at f_0 , f_1 and f_2 is 0.001 of the power of said tone at f_2
4	whenever a "11" is to be embedded.