Parsing

- There are two general approaches to Parsing, corresponding to leftmost and rightmost derivations
 - What is a leftmost derivation?
- If we trace out the steps of a leftmost derivation, adding nodes to the AST as we do each step, we will perform top-down parsing of the code
- If we do a rightmost derivation of the grammar, we end up building the tree from the bottom, using bottom-up parsing
- Bottom-up parsing is the more powerful, and easier to automate approach
 - However, our project will be to build a top-down parser because it is much easier to hand-code
- We will do top-down in this chapter, and save bottom-up for Chapter 5

Top-Down Parsing

- There are 2 major approaches to top-down parsing
 - Backtracking parsers
 - Non-backtracking or predictive parsers
- Backtracking parsers are nice theoretically, but are too timeconsuming for a practical compiler
 - We will not cover in CS-3510
- There are 2 major predictive algorithms we will cover:
 - Recursive-descent parsing
 - Will be used on term project
 - LL(1) parsing
 - 1st L means left-to-right scan, 2nd L means leftmost derivation, 1 means it looks ahead at 1 token to do prediction

- In Recursive-Descent Parsing, we (as in: you) essentially do a direct implementation of the grammar rules
- For every non-terminal in the language, we write a method that knows how to scan for it
- Consider the arithmetic grammar below
 - We would write 5 methods, one for each non-terminal
 - E.g., parseExpr(), parseTerm(), etc.
 - But we will NOT make 5 classes in our parser!

```
expr -> expr addop term | term term -> term mulop factor | factor factor -> ( expr ) | IDENT | NUM addop -> + | - mulop -> * | /
```

Let's look at parseFactor

```
expr -> expr addop term | term term -> term mulop factor | factor factor -> ( expr ) | IDENT | NUM addop -> + | - mulop -> * | /
```

```
private Expression parseFactor () {
  switch (currentToken.tokenType) {
    case Token.LPAREN TOKEN:
      advanceToken();
      Expression returnExpr = parseExpression ();
      matchToken(Token.RPAREN_TOKEN);
      return returnExpr;
      break:
    case Token.IDENT TOKEN:
      Token oldToken = advanceToken();
      return createIdentExpr(oldToken);
      break:
    case Token.NUM TOKEN:
      Token oldToken = advanceToken();
      return createNumExpr(oldToken);
      break:
    default:
      logParseError();
      return null;
```

- How about parseExpression
 - The technique we just looked at doesn't really work with choice real well
 - Any ideas of how to attack this?
- Remember EBNF? How would you express the expr production in EBNF?
- expr -> term {addop term}

```
expr -> expr addop term | term term -> term mulop factor | factor factor -> ( expr ) | IDENT | NUM addop -> + | - mulop -> * | /
```

- The EBNF form suggests the solution
 - expr -> term {addop term}
 - Look for a term, and then do a while looking for addop term

```
private Expression parseExpression () {
    Expression lhs = parseTerm();
    while (isAddop (currentToken.tokenType)) {
        Token oldToken = advanceToken();
        Expression rhs = parseTerm();
        // make lhs the result, so set up for next iter
        lhs = createBinopExpr (oldToken.tokenType, lhs, rhs);
    }
    return lhs;
}
```

Let's look at an IfStatement: if_stmt -> if (expr) stmt [else stmt]

```
private Statement parseIfStmt () {
  matchToken (Token.IF TOKEN);
  matchToken (Token.LPAREN TOKEN);
  Expression ifExpr = parseExpression();
  matchToken(Token.RPAREN_TOKEN);
  Statement thenStmt = parseStatement();
  Statement elseStmt = null;
  if (currentToken.tokenType == Token.ELSE_TOKEN) {
    AdvanceToken();
    elseStmt = parseStatement();
  Statement returnStmt = new IfStatement(ifExpr, thenStmt, elseStmt);
  return returnStmt;
```

- What would the code for parseWhileStmt look like?
 - First, what does a while production look like?
 - Second, what does the WhileStmt class look like?
 - Third, what does the actual parseWhileStmt routine look like?

```
private Statement parseWhileStmt () {
}
```

Piece of Cake ... project #2 is gonna take about 45 minutes to

code up

... well not so fast

- There are a few minor details we've overlooked
- We looked at parseFactor, where: factor -> (expr) | IDENT | NUM
 - There are 3 separate productions for factor
 - We combined into 1 procedure
 - How did we choose which of the 3 productions we should use?
 - What do we do if the first token of the right-hand side is a non-terminal?

- Example: Look at item #26 on page 492
 - factor -> (expr) | var | call | NUM
 - We have two terminals, and two non-terminals
 - How would we write this routine?
- We can only differentiate between the 4 choices based on the input token
- Look at var and call
 - Both must start with ID
- So, if nextToken == (we should use factor -> (expr)
- But if nextToken == ID, we still have a problem
 - Could be either a call or var
- Need to look at token after nextToken
 - What do we do if it is a [?

- So, what we need to do for non-terminals on rhs of a production is to find the first terminal in their productions
 - If any of these non-terminals' productions have a nonterminal as the first item on their rhs, then we recursively follow this 2nd non-terminal and find what tokens are legal for it
 - This is called finding the first set for a non-terminal
 - If we can resolve all ambiguity, using the first sets for all nonterminals on rhs, then we are able to parse the grammar
- However, there is another possible item (other than terminals and non-terminals) on the rhs - an ε
 - If we have an ε on the rhs, then the nextToken may not be part of this production

- Example: Look at item #12 on page 492
 - stmt_list -> stmt_list stmt | ε
 - To differentiate between the 2 possible productions, we need to use nextToken
 - What can legally follow a stmt_list in this grammar?
- If the nextToken is a } (see item #10), we know we have completed a stmt_list and are looking at the enclosing compound_stmt
 - We should use the stmt_list -> ε production
- Anytime we have ε productions, we must look at tokens which can follow the current non-terminal
 - This is called finding the follow set of the non-terminal

- So, to properly build a recursive-descent parser, we are going to have to be able to generate first sets and follow sets for our grammar
 - We will put off formally looking at the algorithms for this until after we talk about LL(1) parsing
 - Once you understand these algorithms, you should have all the tools you need to build a recursive-descent parser
 - For now, just understand there is some added complexity we have to worry about in some cases
- Note: EBNF may simplify this a bit
 - We could write stmt_list -> { stmt }
 - Then if the nextToken is in the first set of stmt, and not in the follow set of stmt_list, we know to recurse

- We will return to first/follow sets, but time for LL(1) parsing
 - LL(1) parsing is another top-down, leftmost derivation parsing technique
 - Left-to-right scan, leftmost derivation, 1 token look-ahead
 - Not great for hand coding
 - Good for automation; however, the LR parsing techniques in Chapter 5 are more powerful
 - Thus, LL(1) parsing is only occasionally used in practice
 - However, it provides a good introduction to the type of parsers we will see next chapter
- An LL(1) parser does not use recursive calls like the recursivedescent parser
 - It uses a stack, a parse table, and a simple algorithm which iterates till the stack and input stream are empty

- Easiest way to understand an LL(1) parser is to see an example
 - We will see what the parser does, and later explain how it knew to make the proper choices
- We start with a stack with just the start symbol S on it
- We terminate the input stream of tokens with a \$
- We can show the operation of the parse with a table, showing the state of the stack, the current state of the input string, and the action we take at each state
 - 2 possible actions
 - 1. If a non-terminal is on the top of stack, expand it, pushing rhs onto stack (called a generate)
 - 2. If a terminal is on the top of stack, it had better match the first token of input string
 - If so, remove token from both stack and string (called a match)

- Example: Consider grammar S -> (S) S | ε
 - Input string: ()()
- We put S on stack
- Since we have a non-terminal on top of stack, we expand it
 - S -> (S)S
 - We will see later how we chose which production to use (parse table created from first/follow sets)
 - We push the tokens on rhs of production onto stack, so the first symbol on rhs is now on top of stack
 - Note this means a leftmost derivation
- A (is on top of stack, we match it to input stream, removing both
- Now, an S is on top of stack we choose S -> ε
 - Continue till stack and input string both empty

- Before we look further into the details, back to the big picture
 - We are building an AST
 - When we do a generate step, we may create a new node in the tree
 - This node's children are associated with the nonterminals being pushed back on the stack
 - The items on the stack must then be referenced back to their parent node in some way, so that when they generate their node can be connected as a child of the parent

- When the top of stack is a token, it must match first token in the input string, or an error has occurred
 - No choice for parser to make
- When the top of stack is a non-terminal, the parser will do a generate
 - The parser may have to make a choice of which production to use for the generate
 - We express the choices the parser should make in the LL(1)
 Parse Table
 - This is simply a 2D array of non-terminals versus possible look-ahead tokens
 - For a given non-terminal and a given look-ahead, the LL(1) parse table contains the proper production to use

• For the grammar $S \rightarrow (S)S \mid \varepsilon$ the table would be as follows:

	()	\$	
S	S->(S)S	S-> ε	S-> ε	

- When we started the parse, the (was the look-ahead
 - Thus, we chose S -> (S) S
- So, when we encounter a non-terminal on top of stack, we simply look this symbol up in the parse table using the lookahead, and this tells us what to do
 - We just need to know how to generate the table, and we should be able to make a parser
 - You may have guessed that first/follow sets will be used to generate the table

• For the following grammar and parse table, what would be the steps in an LL(1) parse (show the stack/input states)?

Input =
$$id + id * id$$

	id	+	*	()	\$
Е	E->TE'			E->TE'		
E'		E'->+TE'			Ε'->ε	Ε'->ε
Т	T->FT'			T->FT'		
T'		Τ'-> ε	T'->*FT'		Τ'-> ε	Τ'-> ε
F	F->id			F->(E)		

- Before we look at how to generate the first/follow sets, need to look at a few issues
- For the parse table to be effective at directing a parse, it can have at most one possible production in each entry
 - It may not be possible to create a parse table with only one valid entry, and thus LL(1) parsing cannot be done
 - If a valid LL(1) parse table can be generated for a particular grammar, we say the grammar is an LL(1) grammar
 - If not, the grammar in its current form is not an LL(1) grammar
 - An LL(1) parser cannot be used to parse it (unless you build in a special case)
 - However, more powerful parsers may be successful
 - E.g., LR parsers in next chapter

- An example of a special case in the parse table would be for nested if-statements
 - We've already seen that they can be ambiguous
 - Specifically, the productions else_part -> else stmt | ε create a conflict in an LL(1) parse table for the ELSE TOKEN look-ahead
 - However, we know that if the look-ahead is an ELSE_TOKEN, we want to associate it with the closest if, so we can just remove the else_part -> ε production from the parse table at the conflicting location

- Although we can hard-wire special cases into the parser (as seen in the if-else example), we prefer not to do this too often
 - However, you will find that the C- grammar on pg 492 is far from being LL(1)
 - We need techniques for converting a non-LL(1) grammar to be LL(1)
- We will look at 2 techniques for possibly converting a grammar to be LL(1)
 - Left recursion removal
 - Left factoring
- However, there is no guarantee they will be successful in making an LL(1) grammar
 - For grammars common to HLLs, they typically are fairly successful

- If we want to make an operation left associative, we often make the production involving it left recursive
 - expr -> expr addop term | term
 - For recursive-descent, we would write this as EBNF
 - expr -> term { addop term }
 - But this doesn't help if we are trying to build an automated LL(1) parser
 - Instead, we can rewrite this to eliminate the left recursion
 - expr -> term expr'
 expr' -> addop term expr' | ε
 - This simple conversion will frequently make a grammar LL(1)
 - Note: the same technique can be applied to multiple cases
 - We can convert expr -> expr + term | expr term | term

A more general form is A -> A B | A F | D | E

- That was relatively straightforward however, there is a more complicated case (which thankfully doesn't occur very frequently in common languages)
 - A -> B aB -> A a
- A technique exists for this case, but it will not always be successful
 - Approach is to arbitrarily order the non-terminals (A comes before B), and then systematically remove recursion

- Example:
 - A -> B a | A a | c
 - $-B \rightarrow Bb|Ab|d$
- We will assume that A comes before B
 - First eliminate left recursion in A
 - A -> B a A' | c A'
 A' -> a A' | ε
 B -> B b | A b | d
 - Next, since A is before B, we must eliminate any A as first token on rhs of a B production (I.e., fix B -> A b above)
 - Direct substitute the values of A
 - A -> B a A' | c A'
 A' -> a A' | ε
 B -> B b | B a A' b | c A' b | d

Current state of the grammar (from prev page)

```
    A -> B a A' | c A'
    A' -> a A' | ε
    B -> B b | B a A' b | c A' b | d
```

Next we must eliminate the immediate recursion in B

```
    A -> B a A' | c A'
    A' -> a A' | ε
    B -> c A' b B' | d B'
    B' -> b B' | a A' b B' | ε
```

- Algorithm is in text basically just nested loops
 - When outer is pointing at A, fix immediate A recursion and any references to A within subsequent productions
- Well, that's real ugly remember, this technique is used as part of automatic parser generators, not for hand coding
 - Also makes creation of the AST more complicated

- Consider the original grammar: expr -> expr addop term | term
 - We changed it to: expr -> term expr'
 expr' -> addop term expr' | ε

- Did this alter the grammar and the parse tree we created?
- Unfortunately, there was a reason we chose left recursion to capture the associativity properly
 - The new parse tree (if built straight from grammar) doesn't capture the associativity correctly
 - Therefore, we must be sure that the routines that actually build the AST build it correctly
 - Adds further complexity to the LL(1) parser

- New grammar: expr -> term expr' expr' -> addop term expr' | ε
- When we expand first production, will push expr' on stack, followed by term
 - Eventually, we will have parsed the entire term (resulting in an Expression), and the expr' will be on top of the stack
 - Expr' needs to add the Expression created by term to the 2nd
 Expression created by the term it parses
 - Thus, the original term and expr' must be interconnected in some way, so that the 1st Expression gets passed to expr'
 - We're not going to talk about how that would be done, but just be aware that left recursion removal adds problems

- Examples
 - Look at items 1-5 on page 492.
 - What transformations need to be made to eliminate left recursion?
 - Look at item 12
 - What transformations need to be made to eliminate left recursion?
 - Does this answer make sense?
 - Would this change alter the parse tree or AST?
 - Does it change the syntax of the language?

Left Factoring

- Eliminating left recursion may be effective in converting many grammars
 - However, problems other than left recursion cause conflicts in the parse table
 - Look at item #20 on pg 492
 - simple_expr -> add_expr relop add_expr | add_expr
 - Creates a conflict in parse table
 - Left factoring can fix this
- Left factoring is used where two or more grammar choices have a common prefix string (starting with either terminal or nonterminal)
 - A -> B a | B b becomes
 - A -> B A'
 - A' -> a | b

Left Factoring

- If we were working with regular expressions, we are essentially doing: A -> B a | B b becomes A -> B (a | b) and then making up a new non-terminal for (a | b)
- How would you left factor item #20, pg 492 ?
- How would you left factor item # 19, pg 492 ?
- How would you left factor
 - if_stmt -> if (expr) stmt | if (expr) stmt else stmt
- Text gives algorithm for this (remember we want to automate)
 - Iterative outer while iterates while (changesMade)

Left Factoring

- Example:
 - expr -> ident := expr | ident (expr_list) | other
 - What does this look like left-factored?
 - Note that we have combined an assignment statement and a call statement into one production
 - Typically, when we parse the expr -> production we would want to create the expression node in the AST
 - But we don't know it's type yet
 - AST generation using the LL(1) parser will get a bit tricky, and require us delay creating the statement
 - But requires us to pass the ident along until the statement gets created

First/Follow Sets

- Hopefully you see how an LL(1) parser works, and how to convert a grammar to be LL(1)
 - But we haven't talked about how to create the parse table
- We will use the idea of first sets and follow sets to create the table
 - Recall we also need them for recursive-descent parsing
- First sets
 - Consider expr -> var = expr | simple_expr (item #18)
 - Your recursive-descent (or LL(1)) parser needs to decide which production to choose, based only on nextToken
 - But both var and simple_expr are non-terminals, which gives us no clue
 - If we knew the legal 1st tokens of both var and simple_expr, perhaps we could make the correct choice of productions
 - We develop first sets for non-terminals to guide us

First/Follow Sets

- First sets (cont)
 - Definition If X is a non-terminal, first(X) is the set of all terminals that begin the strings which can be derived from X
 - If ε is a legal derivation of X, then ε is in first(X)
 - first(X) contains
 - For each production X -> X₁ X₂ X₃ ...
 - If X_1 is a terminal, add X_1 to first(X)
 - If X_1 is a non-terminal, add first(X_1) ε to first(X)
 - If first(X₁) contains ε, then add first(X₂)- ε to first(X)
 - Continue down chain as long as first(X_i) contains
 - If first(X_n) contains ε, then first(X) contains ε

First/Follow Sets

```
for (nt = 0; nt < numNonTerminals; nt++)
  nonTerm[nt].first = null;
while (changesMade) {
  changesMade = false;
  for (prod = 0; prod < numProd; prod++) {
    rhsIndex = 0;
    foundEpsilon = true;
    currProd = production [prod];
    while (foundEpsilon && (rhsIndex < currProd.maxIndex) ) {
       changesMade |= addFirstMinusEpsilon (currProd.rhs[rhsIndex], currProd.lhs);
       foundEpsilon = isEpsilonInFirst(currProd.rhs[rhsIndex]);
       rhsIndex++;
    if (foundEpsilon) {
       changesMade |= AddEpsilonToFirst (currProd.lhs);
```

- Before we do examples, want to do one definition we will need later
 - We say that a non-terminal A is nullable if there exists a derivation A =>* ε
 - Same as saying nullable if first(A) contains ε
- Example: find the first sets for the following grammar

```
expr -> expr addop term | term addop -> + | - term -> term mulop factor | factor mulop -> * factor ->( expr ) | NUM
```

- We will do more examples in conjunction with follow sets
- Recall we were trying to find the first sets in order to decide between 2 or more productions, given a next Token
 - But we just saw that sometimes a non-terminal can be nullable, I.e., its first set contains ε
 - Consider items 27,28 on page 493
 - Certainly args is nullable
 - If nextToken is a), then perhaps this would guide us to choose the args -> ε production
 - This is the reason we get interested in follow sets
 - If a non-terminal is nullable, its follow set becomes a player in deciding what production the top-down parser should use

• Definition of follow(A): For a non-terminal A, follow(A) is the set of terminals which can appear immediately to the right of A in some sentential form, i.e., a derivation of the form

S =>* B A a C exists, where B, C are strings and a is a terminal

- follow(A) will contain:
 - If A is the start symbol, follow(A) contains \$ (the input string terminator)
 - If a production B -> C A D exists, then follow(A) contains first(D)- ε
 - If there is a production B -> C A D, and first(D) contains ε, then follow(A) contains follow(B)

Algorithm for computing follow sets

```
follow (S) = \{ \$ \}
follow (all other non-terminals) = { }
while (changesMade) {
   for (each production A -> X_1 X_2 X_3 ...) {
      for (each non-terminal X<sub>i</sub>) {
         add first(X_{i+1}) to follow(X_i)
         if \varepsilon is in first(X_{i+1} ...)
            add first (X_{i+2}) to follow(X_i)
         if \varepsilon is in first(X_{i+1} \dots X_n)
            add follow(A) to follow(X_i)
```

Let's do the earlier example and compute follow sets

```
expr -> expr addop term | term addop -> + | - term -> term mulop factor | factor mulop -> * factor ->( expr ) | NUM
```

```
first(expr) = { (, NUM }
first(addop) = { +, - }
first(term) = { (, NUM }
first(mulop) = { * }
first(factor) = { (, NUM }
```

Example: compute first and follow sets for the following grammar

```
stmt -> if_stmt | other if_stmt -> if ( expr ) stmt else_part else_part -> else stmt | \epsilon expr -> 0 | 1
```

Example: compute first and follow sets for the following grammar

```
stmt\_seq \rightarrow stmt \ stmt\_seq' \\ stmt\_seq' \rightarrow ; \ stmt\_seq \mid \epsilon \\ stmt \rightarrow s
```

- OK, we were computing these sets for use in creating an LL(1) parsing table, or for use in a recursive-descent parser
- Building a parse table
 - For each production A -> B, for each terminal a in first(B) add this production to the parse table at location M[A, a]
 - If first(B) contains ε, for each terminal a in follow(A), add this production to M[A, a]
- Using this same definition of building a parse table, we can define an LL(1) grammar in terms of first and follow sets
 - A grammar is LL(1) if
 - For every production A -> B | C, first(B) and first(C) contain no common elements
 - For every non-terminal A such that first(A) contains ε, first(A) intersect follow(A) is empty

Construct parse table for the following

```
expr -> expr addop term | term addop -> + | - term -> term mulop factor | factor mulop -> * factor ->( expr ) | NUM
```

```
first(expr) = { (, NUM }
first(addop) = { +, - }
first(term) = { (, NUM }
first(mulop) = { * }
first(factor) = { (, NUM }
```

```
follow(expr) = { ($, +, -, ) }
follow(addop) = { (, NUM }
follow(term) = { $, +, -, *, ) }
follow(mulop) = {(, NUM }
follow(factor) = {$, +, -, *, ) }
```

Construct parse table for the following

```
expr -> term expr2
expr2 -> addop term expr2 | ε
term -> factor term2
term2 -> mulop factor term2 | ε
factor -> ( expr ) | NUM
addop -> + | -
mulop -> *
```

```
first(expr) = { (, NUM }
first(expr2) = { +, -, ε }
first(term) = { (, NUM }
first(term2) = { *, ε }
first(factor) = { (, NUM }
first(addop) = { +, - }
first(mulop) = { * }
```

```
follow(expr) = { $, ) }
follow(expr2) = { $, ) }
follow(term) = { $, +, -, ) }
follow(term2) = { $, +, -, ) }
follow(factor) = { $, *, +, -, ) }
follow(addop) = { (, NUM }
follow(mulop) = { (, NUM }
```

- For your project, you will need to develop first and follow sets by hand, and use them to guide your development of the recursivedescent routines
- We didn't say a lot about Error Recovery when we looked at Scanners
 - One option would be to raise an Exception when you find a series of characters which doesn't make a legal token
 - Early compilers halted on the 1st error
 - A better approach is to "log" the error in some manner, and then initiate recovery
 - In the Scanner, when you see a character which isn't legal, you simply log the error, return to state 0, essentially throw away any previous characters, and then press on
 - Logging error may mean passing on to parser as an ERROR_TOKEN and letting the parser handle it

- Error Recovery within the parser is a bit more tricky
- Wide range of possible solutions
 - 1. Print the word "ERROR" and then stop compiling
 - That's all that's required for Project #2
 - Not all that helpful
 - When encounter an error, log it, and try to recover somehow so you can keep looking for other errors (error recovery)
 - 3. When encounter an error, attempt to correct the error and continue compiling (error correction)
 - Must attempt to determine the simplest change (adding, deleting, or changing a token) which will produce correct code
 - Very complicated, and not frequently used on nonacademic compilers

- Probably you will want an error recovery plan which finds errors, logs their occurrence and location (line #), stores a description of the compiler's best guess for what is wrong, and then presses on
 - Pressing on is non-trivial, because pressing on can result in secondary errors being reported which were caused by the original error
 - Remember, we said to always debug errors starting with the 1st one – the rest are suspect!
 - Even if you recover well, if you have a syntax error in something like a variable declaration, you will have many secondary errors

- There are not well-established practices for error recovery as there are for many other compiler areas
 - Most techniques tend to be specific to the language and the parsing technique
- General principles
 - Discover error as close to where it occurred as possible
 - Want to be able to identify to user
 - Should recover as quickly as possible I.e., skip over as little code as possible in order to get to a "sync" point from which to start parsing again
 - Should minimize secondary errors
 - Must avoid infinite loop on errors
- Note these aren't independent e.g., trying to skip too few characters may result in an infinite loop

- One technique which works for recursive-descent parsers is panic mode recovery
 - It is actually more intelligent and effective than name implies
- For each procedure (parseExpression, parselfStmt, etc.), we define what the text calls synchronizing tokens
 - If an error is found, we start to consume (throw away) tokens until a synchronizing token is found
- The set of synchronizing tokens contains the follow set to the present structure being parsed
 - It may also contain other tokens too important to be ignored,
 like { or ELSE, from which we can figure out how to recover
- The parse routines pass the synchronizing set along from routine to routine
 - E.g., if doing parseParenExpr (expr), when call parseExpr we can tell it that it's follow set will be)

- We aren't going to go into recursive-descent error recovery any deeper in this course
 - Error recovery for LL(1) parsers is similar; you can store the synchronizing set in the parse table
 - We will briefly visit error recovery regarding bottom-up parsers in Chap 5
- That's it for top-down parsing
 - Recursive-descent is the best choice for hand coding
 - Most real-world compilers use bottom-up parsing (Chap 5)