

7.7 MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Limits for Occupational/Controlled Exposures					
0.3–3.0	614 1842/f 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6	
(B) Limits for General Population/Uncontrolled Exposure					
0.3–1.34	614 824 <i>1</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300–1500 1500–100,000			f/1500 1.0	30 30

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

HCT PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Test Dates:	EUT Type:	FCC ID:	Page 2 4 of 42
HCTR1003FR20	March 24, 2010	UHF RFID Reader	XBV-MKUH-300	1 490 2 4 014

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)/d}$

and

 $S = E ^2 / 3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and

$$d (cm) = 100 * d (m)$$

yields

$$d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

$$P(mW) = 10 ^ (P(dBm) / 10)$$
 and

$$G (numeric) = 10 ^ (G (dBi) / 10)$$

yields

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

HCT PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT			www.hct.co.kr
Test Report No. HCTR1003FR20	Test Dates: March 24, 2010	EUT Type: UHF RFID Reader	FCC ID: XBV-MKUH-300	Page 2 5 of 42

LIMITS

From §1.1310 Table 1 (B), the maximum value of $S = f/1500 \text{ mW/cm}^2$

For the highest frequency of 927 MHz, $S = 0.31 \text{ mW/cm}^2$

RESULTS

No non-compliance noted:

Output Power (dBm)	Antenna Gain (dBi)	Power Density Limit (mW/cm^2)	MPE Distance (cm)
29.79	2.12	0.31	20

HCT PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT			www.hct.co.kr
Test Report No.	Test Dates:	EUT Type:	FCC ID:	Page 2 6 of 42
HCTR1003FR20	March 24, 2010	UHF RFID Reader	XBV-MKUH-300	