CSP I

- 1. Tree Search
 - a. Expand tree to a new level
 - i. Consider new moves to apply!
 - ii. Leaf nodes in tree should be terminal states
 - 1. Problem when leaf nodes are nonterminals! (pretend our utility values are heuristic values)
 - b. Can apply this to single player games
- 2. Example
 - a. Want to assign a color (RGB) to each region of Australia
 - i. Model each region as a graph
 - ii. Add edge connecting adjacent regions

3. Trouble with Tree Search

ii.

- a. What if we have constraints?
 - i. In this example: adjacent regions can't have the same color

iii.

- b. Tree Search crazy inefficient
 - i. Will find correct answer (if one exists)
 - ii. Tree will consider all possible orderings of vertices!

- d. Tree is massive
- e. Ordering of Vertices doesn't need to be permuted!
 - i. Wasteful!
 - ii. Solution doesn't depend on ordering of vertices!

f.

- 4. CSP
 - a. A CSP or "Constrained Satisfaction Problem" meets this template
 - b. Variables $X = \{X_1, X_2, ..., X_n\}$
 - i. Each variable X has its own domain
 - 1. Possible values that can be assigned to
 - ii. Each variable must be assigned a value
 - c. Constraints $C = \{C_1, C_2, ..., C_m\}$
 - i. Each constraint is Boolean: relates variables to each other
 - ii. In map coloring:

1. Adjacent variables must have different colors

a.
$$C_i \leftarrow X_1 != X_p$$

- d. An assignment:
 - i. Set of variables with their assignments
 - ii. A partial assignment = not all variables have an assignment
 - iii. A complete assignment = all variables have an assignment
 - iv. A legal assignment = assignment satisfies contraints
- e. Search for a complete & legal assignment:
 - i. Pick ordering of variables (reduces tree size)
 - ii. Dfs the tree!
- f. It is possible to not be able to find a complete & legal assignment!
- 5. Tree Pruning
 - a. Typically model CSPs as a constraint graph
 - i. Every n-ary (n > 2) constraint can be converted to a bunch of binary constraints
 - ii. Each variable becomes a vertex
 - iii. (unary/binary) constraints becomes edges
 - b. Prune the tree?
 - i. Tree is still massive
 - ii. Once we make partial assignment {WA = red}:
 - 1. Can we infer anything about adjacent vertices?

- 6. Node & Arc Consistency
 - a. Goal: prune domain D_i for variable X_i
 - i. Pruning domain = pruning tree!
 - b. How?

c.

- i. Lets say variable X_i has some unary constraints:
 - 1. Reduce domain to all values that satisfy this constraint
 - 2. Node Consistency (1-consistency)
- ii. Let's say X_i, X_j participate in some binary constraint c
 - 1. When we have an assignment $X_i = v$
 - a. Reduce X_j 's domain to values that satisfy c knowing $D_i = \{v\}$
 - b. Arc Consistency (2-consistency)

- c. After pruning D_j if $D_j = 0$
 - i. Cannot find legal assignment!
 - ii. Stop expanding that branch!

7. AC-3 + REVISE: Forward Checking Neighbors

d.

```
a. queue \leftarrow \{C(X_i, X_i)\}_{(i,j)}
                                          # All constraints (assume to be binary)
while queue not empty:
        C(X_i, X_i) \leftarrow \text{queue.pop()}
        D_i, D_i \leftarrow domains of X_i & X_j
        Revised \leftarrow False
        for each x_i in D_i:
                 if no x_i in D_i satisfies C(X_i, X_i):
                 Possible Implementation:
                 for xj in Dj:
                         if \{Xi=xi, Xj=xj\} satisfies C(Xi, Xj):
                                  return False
                 return True
                 ,,,,,,
                         D_i.remove(x_i)
                         Revised ← True
        if revised is True:
        If Di becomes empty after revision, that means the constraint C(Xi, Xi)
        cannot be satisfied. Because there exists a constraint that cannot be
        satisfied, announce Failure.
        ,,,,,,
```

if D_i empty.

return False

for each X_k in X_i .neighbors.remove(X_j):

queue.append($C(X_k, X_i)$)

return True

- b. If all constraints are satisfied, AC-3 returns True; otherwise, AC-3 returns False
- c. Sometimes AC-3 finds the solution too!