STAT 521: Homework Assignment 1 Due on February 1st, 2024

Problem 1: (30 pt)

Consider the following sampling design from a finite population $U = \{1, 2, 3\}$. Let y_i be the study item of interest in unit i in the population. We are interested in estimating the population total of y.

Sample (A)	Pr(A)	HT estimator	HT var. est.	SYG var. est.
$A_1 = \{1, 2\}$	0.5			
$A_2 = \{1, 3\}$	0.25			
$A_3 = \{2, 3\}$	0.25			

- 1. Compute the HT estimators and the two variance estimators for each sample. Check the unbiasedness of the variance estimators. (May assume $y_1 = 3, y_2 = 6, y_3 = 2$ here only.)
- 2. Now, consider the special case of $y_k = \pi_k$, where π_k is the first order inclusion probability of unit k. What is the variance of the HT estimator?
- 3. Also, under the case of $y_k = \pi_k$, compute HT variance estimator and SYG variance estimator for each sample. (They are not the same.) Which variance estimator do you prefer? Why?

Problem 2: (30pt)

Let U be a finite population of size N. We define the following sampling design: we first select a sample A_1 according to a simple random sampling (without replacement) of fixed size n_1 . We then select a sample A_2 in U outside of A_1 according to a simple random sampling design without replacement of fixed size n_2 . The final sample A consists of A_1 and A_2 .

- 1. What is the sampling distribution of A? What is interesting about this result?
- 2. We define the estimator of \bar{Y} , the finite population mean of y, by

$$\bar{y}_{\alpha} = \alpha \bar{y}_1 + (1 - \alpha)\bar{y}_2$$

with $0 < \alpha < 1$, where \bar{y}_1 is the sample mean of y in A_1 and \bar{y}_2 is the sample mean of y in A_2 . Show that \bar{y}_{α} is unbiased for \bar{Y} for any α .

3. Find the optimal value of α that minimizes the variance of \bar{y}_{α} .

[Hints for (3):] Since

$$V(\bar{y}_{\alpha}) = \alpha^{2}V(\bar{y}_{1}) + (1 - \alpha)^{2}V(\bar{y}_{2}) + 2\alpha(1 - \alpha)Cov(\bar{y}_{1}, \bar{y}_{2}),$$

it is minimized at

$$\alpha^* = \frac{V(\bar{y}_2) - Cov(\bar{y}_1, \bar{y}_2)}{V(\bar{y}_1) + V(\bar{y}_2) - 2Cov(\bar{y}_1, \bar{y}_2)}.$$

Problem 3: (20 pt)

A community in the San Francisco Bay area consists of approximately 100,000 persons. It is desired to estimate in this community, the proportion of persons who are not covered by some form of health insurance. One would like to be 95% certain that this estimate is within 15% of the true proportion, which is believed to lie somewhere between 10% and 20% of the total population. That is, we wish to achieve

$$P\left(\frac{\left|\hat{P} - P\right|}{P} \le 0.15\right) = 0.95$$

where P is the true proportion satisfying $0.1 \le P \le 0.2$. Assuming simple random sampling, how large a sample is needed?