Диаграмма Френеля

$$\hat{E}_P = \frac{a_1}{i(a_1 + a_2)} \langle \cos \psi \rangle \int_{R_L}^{R_f} \frac{2\pi E_0}{\lambda} e^{ikR} dR.$$

Интеграл Кирхгофа представляет собой вектор на комплексной плоскости. Графически этот вектор удобно представлять на диаграмме Френеля. Разберем случай круглого отверстия. Центру отверстия соответствует $R_i=z_p$. На диаграмме ось абсцисс совмещается с вектором e^{ikz_p} . Поэтому первое элементарное приращение подынтегральной функции $\frac{2\pi E_0}{\lambda}\,\mathrm{e}^{ikR}\,dR=\frac{2\pi E_0}{\lambda}\,\mathrm{e}^{ikz_p}\,dR$ направлено вправо. С увеличением R вблизи нижнего предела элементарное приращение $\frac{2\pi E_0}{\lambda}\,\mathrm{e}^{ik(z_p+dR)}\,dR$

приобретает наклон kdR по отношению к оси абсцисс. В результате конец вектора \hat{E}_P будет описывать дугу окружности радиуса E_0 . Длина дуги пропорциональна разности $R_f - R_i$, а хорда, стягивающая дугу, – амплитуде E_P . Пока в отверстие укладывается небольшое число зон Френеля, E_P зависит от R_f периодическим образом. При дальнейшем расширении отверстия $\cos \psi < 1$ и радиус окружности на комплексной плоскости монотонно уменьшается, то есть конец \hat{E}_P перемещается по свертывающейся спирали, так что $E_P \to E_0$ *.

Принцип Бабине

Пусть поле в точке наблюдения за экраном 1 равно

$$\hat{E}_{P1} = \frac{1}{i\lambda} \int_{S_1} E_0 \frac{e^{ikR}}{R} \cos \psi dS.$$

Тогда поле \hat{E}_{P2} за экраном 2, дополнительным к экрану 1, равно

$$\hat{E}_{P2} = \frac{1}{i\lambda} \int_{S_2} E_0 \frac{\mathrm{e}^{ikR}}{R} \cos \psi dS = \frac{1}{i\lambda} \int_{\infty} E_0 \frac{\mathrm{e}^{ikR}}{R} \cos \psi dS - \frac{1}{i\lambda} \int_{S_1} E_0 \frac{\mathrm{e}^{ikR}}{R} \cos \psi dS, = \hat{E}_0 - \hat{E}_{P1}.$$

где \hat{E}_0 — поле в точке наблюдения в отсутствие экрана.

Полученное равенство носит название принципа Бабине. Оно связывает между собой поля в точке наблюдения за взаимно дополнительными экранами:

$$\hat{E}_{P2} = \hat{E}_0 - \hat{E}_{P1}.$$

^{*} Напомним, что \hat{E}_P отсчитывается относительно значения, близкого к $\frac{1}{i}E_0\,\mathrm{e}^{ikz_p}$. Поэтому поле \hat{E}_0 на диаграмме (\hat{E}_P в отсутствие экрана) отличается от поля \hat{E}_0 в плоскости отверстия фазовым множителем e^{ikz_p} .