Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA with K states that recognizes some language A

- (a) Suppose A is non empty
- ullet Then there must be an accept state $\ q \in F \$ that can be reached from the start state $\ q_0$:
- ullet Let w be the string that can be accepted by N when traveling along the shortest path $\ q_0$ to $\ q$.
- Let n be the length of w.
- Then, the sequence of state $q_0,q_1...q$ in the shortest path from q_0 to q has length n+1.
- Note that all the states from q_1 to q in this sequence must be distinct; otherwise we would find a shorter path from q_0 to q by removing the repeated states.
- Since there are only K states in N and there are n distinct states in the shortest path from q_0 to q, we have $n \le K$.
- \bullet Clearly, w is accepted by N because q is an accept state
- So A contains a string of length at most K.
- (b) Example:

Suppose $\Sigma = \{0,1\}$ and N be the NFA with $K = \delta$ states.

Let A be the language recognized by N.

The State diagram of N is as follows

- Clearly N accepts the empty string.
- For any nonempty string w, N will reject w if and only if the length of w is divisible by 2 and 5.
- ullet Thus ${\overline {\it A}}$ consists of all non empty strings of length divisible by 10
- So \overline{A} is non-empty and the shortest string in \overline{A} has length 10 > K
- Hence we got the contradiction of part (a) when we replace A by \overline{A} .
- (c) We know that " Every non deterministic finite automaton has an equivalent

deterministic finite automaton"

- So we convert N into a DFA M that also recognizes A, where the set of states in M is the set of subsets of Q.
- Then we swap the accept and non accept states of M to obtain a DFA $ar{M}$ that recognizes $ar{A}$.
- ullet Note that $ar{M}$ has $\mathbf{2}^{\mathit{K}}$ states.
- Applying part (a) by replacing N with \bar{M} , we can conclude that if \bar{A} is non-empties, then \bar{A} contains a string of length at most 2^K .
- (d) The idea used in part (b) can be generalized to obtain a bound close to an exponential form.
- Let $2 \le P_1 < P_2 < ... < P_n \le \sqrt{K}$ be all the primes in $\left[1, \sqrt{K}\right]$

浙ICP备16034203号-2

ullet For each P_i , construct a DFA M_i of P_i states that rejects only strings of length divisible of P_i .

- ullet Finally, construct an NFA M by union all these M_i machines in the following ways:
- ightharpoonup create a separate starting state q_0 add an ϵ transition from q_0 to the starting states of each $M_{i'}$ and also designate q_0 as an accepting state.
- ightarrow This machine M will have $1+P_1+P_2+...+P_m \leq K$ states.
- \rightarrow On the other hand, M rejects a string w if and only if a is non empty and |w| is divisible by $P_1P_2...P_m$
- ightarrow Hence, the shortest string is rejected by M has length $P_1P_2...P_m$.
- → Now coming to the analysis of the bound,

By the prime Number theorem, there are approximately $\ln n$ prime numbers in [0,n] for n sufficiently large.

$$\rightarrow$$
 Hence, $m \approx \frac{1}{2} \ln K$

$$ightarrow$$
 Since there are about $\frac{1}{4} \ln K$ primes in $\left[0, \sqrt[4]{K}\right]$, there are about $m - \frac{1}{4} \ln K \approx \frac{1}{4} \ln K$ primes in $\left[\sqrt[4]{K}, \sqrt{K}\right]$

Thus
$$P_1 P_2 ... P_m \ge \left(\sqrt[4]{K}\right)^{\frac{1}{4} \ln K} = K^{\frac{1}{16} \ln K}$$