Q1. MDPs: Grid-World Water Park

Consider the MDP drawn below. The state space consists of all squares in a grid-world water park. There is a single waterslide that is composed of two ladder squares and two slide squares (marked with vertical bars and squiggly lines respectively). An agent in this water park can move from any square to any neighboring square, unless the current square is a slide in which case it must move forward one square along the slide. The actions are denoted by arrows between squares on the map and all deterministically move the agent in the given direction. The agent cannot stand still: it must move on each time step. Rewards are also shown below: the agent feels great pleasure as it slides down the water slide (+2), a certain amount of discomfort as it climbs the rungs of the ladder (-1), and receives rewards of 0 otherwise. The time horizon is infinite; this MDP goes on forever.

(a) How many (deterministic) policies π are possible for this MDP?

 2^{11}

(b) Fill in the blank cells of this table with values that are correct for the corresponding function, discount, and state. *Hint: You should not need to do substantial calculation here.*

	γ	s = A	s = E
$V_3^*(s)$	1.0	0	4
$V_{10}^*(s)$	1.0	2	4
$V_{10}^*(s)$	0.1	0	2.2
$Q_1^*(s, \text{west})$	1.0		0
$Q_{10}^*(s, \text{west})$	1.0		3
$V^*(s)$	1.0	∞	∞
$V^*(s)$	0.1	0	2.2

 $V_{10}^*(A)$, $\gamma = 1$: In 10 time steps with no discounting, the rewards don't decay, so the optimal strategy is to climb the two stairs (-1 reward each), and then slide down the two slide squares (+2 rewards each). You only have time to do this once. Summing this up, we get -1 - 1 + 2 + 2 = 2.

 $V_{10}^*(E)$, $\gamma=1$: No discounting, so optimal strategy is sliding down the slide. That's all you have time for. Sum of rewards =2+2=4.

 $V_{10}^*(A), \gamma = 0.1$. The discount rate is 0.1, meaning that rewards 1 step further into the future are discounted by a factor of 0.1. Let's assume from A, we went for the slide. Then, we would have to take the actions $A \to B, B \to C, C \to D, D \to E, E \to F, F \to G$. We get the first -1 reward from $C \to D$, discounted by γ^2 since it is two actions in the future. $D \to E$ is discounted by γ^3 , $E \to F$ by γ^4 , and $F \to G$ by γ^5 . Since γ is low, the positive rewards you get from the slide have less of an effect as the larger negative rewards you get from climbing up. Hence, the sum of rewards of taking the slide path would be negative; the optimal value is 0.

 $V_{10}^*(E)$, $\gamma=0.1$. Now, you don't have to do the work of climbing up the stairs, and you just take the slide down. Sum of rewards would be 2 (for $E \to F$) + 0.2 (for $F \to G$, discounted by 0.1) = 2.2.

 $Q_{10}^*(E, west), \gamma = 1$. Remember that a Q-state (s,a) is when you start from state s and are committed to taking a. Hence, from E, you take the action West and land in D, using up one time step and getting an immediate reward of 0. From D, the optimal strategy is to climb back up the higher flight of stairs and then slide down the slide. Hence, the rewards would be $-1(D \to E) + 2(E \to F) + 2(F \to G) = 3$.

 $V^*(s), \gamma = 1$. Infinite game with no discount? Have fun sliding down the slide to your content from anywhere.

 $V^*(s), \gamma = 0.1$. Same reasoning apply to both A and E from $V_{10}^*(s)$. With discounting, the stairs are more costly to climb than the reward you get from sliding down the water slide. Hence, at A, you wouldn't want to head to the slide. From E, since you are already at the top of the slide, you should just slide down.

Use this labeling of the state space to complete the remaining subproblems:

(c) Fill in the blank cells of this table with the Q-values that result from applying the Q-update for the transition specified on each row. You may leave Q-values that are unaffected by the current update blank. Use discount $\gamma = 1.0$ and learning rate $\alpha = 0.5$. Assume all Q-values are initialized to 0. (Note: the specified transitions would not arise from a single episode.)

	Q(D, west)	Q(D, east)	Q(E, west)	Q(E, east)
Initial:	0	0	0	0
Transition 1: $(s = D, a = \text{east}, r = -1, s' = E)$		-0.5		
Transition 2: $(s = E, a = \text{east}, r = +2, s' = F)$				1.0
Transition 3: $(s = E, a = \text{west}, r = 0, s' = D)$				
Transition 4: $(s = D, a = \text{east}, r = -1, s' = E)$		-0.25		

The agent is still at the water park MDP, but now we're going to use function approximation to represent Q-values. Recall that a policy π is greedy with respect to a set of Q-values as long as $\forall a, s \ Q(s, \pi(s)) \geq Q(s, a)$ (so ties may be broken in any way).

For the next subproblem, consider the following feature functions:

$$f(s,a) = \begin{cases} 1 & \text{if } a = \text{east,} \\ 0 & \text{otherwise.} \end{cases}$$

$$f'(s,a) = \begin{cases} 1 & \text{if } (a = \text{east}) \land \text{isSlide}(s), \\ 0 & \text{otherwise.} \end{cases}$$
(Note: isSlide(s) is true iff the state s is a slide square, i.e. either F or G.)

Also consider the following policies:

(d) Which are greedy policies with respect to the Q-value approximation function obtained by running the single Q-update for the transition (s = F, a = east, r = +2, s' = G) while using the specified feature function? You may assume that all feature weights are zero before the update. Use discount $\gamma = 1.0$ and learning rate $\alpha = 1.0$. Circle all that apply.

You see the sample (F, east, G, +2). Use approximate Q-Learning to update the weights.

You should get that the new weights are both going to be positive since the sample reward was positive and the feature value was on for both f(F, east) [since you took action east] and f'(F, east) [since you took action east, and you were on the water slide].

Now, with your new weights, you need to see which greedy policy can be possible.

For f, going East is preferred if possible (when you calculate the Q-value, any Q-state with action east has a positive value, anything else has a value of 0. Hence, throw out π_1 and π_3 , since some arrows go west.

For f', going East is preferred if you are on the slide (otherwise, everything else is just 0). All three policies contain the fact that you move east from F and G, so all policies are good.

Q2. Direct Evaluation

Consider the grid-world given below and an agent who is trying to learn the optimal policy. Rewards are only awarded for taking the *Exit* action from one of the shaded states. Taking this action moves the agent to the Done state, and the MDP terminates. Assume $\gamma=1$ and $\alpha=0.5$ for all calculations. All equations need to explicitly mention γ and α if necessary.

(a) The agent starts from the top left corner and you are given the following episodes from runs of the agent through this grid-world. Each line in an Episode is a tuple containing (s, a, s', r).

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5
(1,3), S, $(1,2)$, 0	(1,3), S, (1,2), 0	(1,3), S, (1,2), 0	(1,3), S, (1,2), 0	(1,3), S, (1,2), 0
(1,2), E, $(2,2)$, 0	(1,2), E, $(2,2)$, 0	(1,2), E, (2,2), 0	(1,2), E, (2,2), 0	(1,2), E, (2,2), 0
(2,2), E, $(3,2)$, 0	(2,2), S, (2,1), 0	(2,2), E, $(3,2)$, 0	(2,2), E, (3,2), 0	(2,2), E, (3,2), 0
(3,2), N, $(3,3)$, 0	(2,1), Exit, D, -100	(3,2), S, (3,1), 0	(3,2), N, (3,3), 0	(3,2), S, (3,1), 0
(3,3), Exit, D, $+50$		(3,1), Exit, D, $+30$	(3,3), Exit, D, $+50$	(3,1), Exit, D, $+30$

Fill in the following Q-values obtained from direct evaluation from the samples:

$$Q((3,2), N) = _{\underline{}}$$

$$Q((3,2), S) = _{\underline{}}$$

$$Q((2,2), E) = \underline{40}$$

Direct evaluation is just averaging the discounted reward after performing action a in state s.