Computation in BSL

We can replace

$$(+ n_1 n_2)$$

with

$$\mathbf{n}_1 + \mathbf{n}_2$$

if n_1 and n_2 are both numbers

Computation in BSL

We can replace

 $(f a_1 a_2)$

with

the result of calling f with a_1 and a_2

if a_1 and a_2 are atomic data

This generalizes to n-ary functions with n arguments

The Design Recipe

- I. Analyze the problem, describe the data
- 2. Write a signature, header, and purpose statement
- 3. Create examples
- 4. Inventory and strategize
- 5. Apply the strategy
- 6. Write tests

The Design Recipe

the structural design recipe	atomic (numbers, strings, images, etc)	intervals (of numbers) and enumerations (of atoms)	compound data (structures, finite fixed-size trees)	self-referential data descriptions (N, lists)	mutually-referential data descriptions (trees, forests)	functions as data	processing complex data in parallel
extract description(s) of data from problem statement							
articulate a concise purpose statement and signature							
work through functional examples							
create an outline							
fill in the outline							
turn examples into test suite							

The Design Recipe

mutually-referential data descriptions (trees, forests) intervals (of numbers) and enumerations (of atoms) compound data (structures, finite fixed-size trees) self-referential data descriptions (N, lists) atomic (numbers, strings, images, etc) processing complex data in parallel functions as data the structural design recipe extract description(s) of data from problem statement articulate a concise purpose statement and signature work through functional examples create an outline fill in the outline turn examples into test suite