

Tutorial de uso

ChemLogic

Escolha os produtos e reagentes:

Sulfato de Alumínio

Cloreto Férrico

Policloreto de Alumínio

Hidróxido de Sódio

Areia

Antracito

Hipoclorito de Sódio

Ácido Fluossilícico

Dosagem

×

X

Hipoclorito de Sódio

Ácido Fluossilícico

Arraste os produtos químicos

Para coagulante você pode escolher entre **Sulfato de Alumínio**, **Policloreto de Alumínio** ou **Cloreto Férrico**.

Para Alcalinizante, o **Hidróxido de Sódio** é a opção ideal.

Na filtração, você pode optar por **Areia** e **Carvão Antracitoso**, ou os dois juntos.

Na dosagem, **Hipoclorito de Sódio** para desinfectar e **Ácido Fluossilíco** para as cáries, obrigatório no Brasil.

- Adicione o número de habitantes
- Defina o consumo médio de água por habitante
- Adicione os analisadores nas etapas que quiser

Botão de informações

No botão de informações você vai encontrar as equações de **balanço de massa**, valores simulados de dimensionamento e outras informações importantes.

Informações	>	×
Balanço de Massa do Coagulante	~	
Dosagem e Concentração de Policloreto de Alumínio	~	
Balanço de Massa e dosagem do Alcalinizante	~	
Dimensionamento	~	

 \wedge

$$M_{C,e} = M_{C,s}$$

$$(Q_{AB} \times C_{CAB}) + M_C = (Q_{AB} + Q_C) \times D_C$$

* considerando C_{CAB} e Q_C como 0 $M_C = (Q_{AB} + Q_C) \times D_C$ $M_C = C_C \times Q_C$

$$C_C \times Q_C = Q_{AB} \times D_C$$

 $D_C = (C_C \times Q_C) / Q_{AB}$

Variável	Descrição
Q_{AB}	Vazão de água bruta
C_{CAB}	Concentração de coagulante na água bruta
M_{C}	Massa de coagulante
Q_{C}	Vazão de coagulante
D _C	Dosagem de coagulante
C _C	Concentração de coagulante

0,0085 m

Perda de carga no vertedor no trecho divergente

Altura do rebaixo no inicio do canal a jusante	0,1381 m
Distância da comporta ao nível da água a jusante	0,1273 m
Altura da lâmina de elevação da comporta	0,2902 m
Distância do vertedor à comporta	3 m

Dimensões padronizadas de Parshall

W (POL)	W (CM)	Α	В	C	D	E	F	G	K	N	X	Y	VAZÃ
1"	2,5	36,3	35,6	9,3	16,8	22,9	7,6	20,3	1,9	2,9	-	-	0,3 - 5,0
3"	7,6	46,6	45,7	17,8	25,9	45,7	15,2	30,5	2,5	5,7	2,5	3,8	0,8 - 53
6"	15,2	61,0	61,0	39,4	40,3	61,0	30,5	61,0	7,6	11,4	5,1	7,6	1,4 - 11
9"	22,9	88,0	86,4	38,0	57,5	76,3	30,5	45,7	7,6	11,4	5,1	7,6	2,5 - 25
1'	30,5	137,2	134,4	61,0	84,5	91,5	61,0	91,5	7,6	22,9	5,1	7,6	3,1 - 45
1 1/2'	45,7	144,9	142,0	76,2	102,6	91,5	61,0	91,5	7,6	22,9	5,1	7,6	4,2 - 69
2'	61,0	152,5	149,6	91,5	120,7	91,5	61,0	91,5	7,6	22,9	5,1	7,6	11,9 - 9
3'	91,5	167,7	164,5	122,0	157,2	91,5	61,0	91,5	7,6	22,9	5,1	7,6	17,3 - 1
4'	122,0	183,0	179,5	152,5	193,8	91,5	61,0	91,5	7,6	22,9	5,1	7,6	36,8 - 1
5'	152,5	198,3	194,1	183,0	230,3	91,5	61,0	91,5	7,6	22,9	5,1	7,6	45,3 - 2
6'	183,0	213,5	209,0	213,5	266,7	91,5	61,0	91,5	7,6	22,9	5,1	7,6	73,6 - 2
7'	213,5	228,8	224,6	244,0	303,0	91,5	61,0	91,5	7,6	22,9	5,1	7,6	85,0 - 3
8.	244,0	244,0	239,2	274,5	349,0	91,5	61,0	91,5	7,6	22,9	5,1	7,6	99,1 - 3
10"	305,0	274,5	427,0	366,0	475,9	122,0	91,5	183,0	15,3	34,3	-	_	200,0 -

Obrigada!

Acadêmica Dara Karoliny de Oliveira Profa. e dra. Aline Resmini Melo

Dúvidas: (48) 99111-0850