Chapter 3, Section 3

James Lee

April 25, 2025

1. Let X be a Noetherian scheme. Show that X is affine if and only if X_{red} (II, Ex. 2.3) is affine.

Proof. One direction is clear. Suppose $X_{\text{red}} = \operatorname{Spec} A$ where A is a Noetherian ring with no nilpotent elements, let $f: X_{\text{red}} \to X$ be the natural map, and let \mathscr{F} be any quasi-coherent sheaf on X. Following the hint, consider the filtration

$$\mathscr{F} \supset \mathscr{N} \cdot \mathscr{F} \supset \mathscr{N}^2 \cdot \mathscr{F} \supset \cdots$$

where \mathscr{N} is the sheaf of nilpotent elements on X. Note that $X \cong X_{\text{red}}$ as topological space, and the associated morphism of sheaves $\mathscr{O}_X \to f_* \mathscr{O}_{X_{\text{red}}}$ is surjective with kernel \mathscr{N} . Thus, each of the quotients of this filtration can be naturally viewed as A-modules. In particular, we have a natural isomorphism (2.10)

$$H^i(X, \mathcal{N}^r \cdot \mathcal{F}/\mathcal{N}^{r+1}\mathcal{F}) \cong H^i(X_{\text{red}}, f^*(\mathcal{N}^r \cdot \mathcal{F}/\mathcal{N}^{r+1} \cdot \mathcal{F})).$$

Also, the nilradical of a Noetherian ring is nilpotent, so there exists a positive integer r > 0 such that $\mathcal{N}^r = 0$ (A.M. 7.15). Using our hypothesis and (3.7), we climb up the filtration and deduce that $H^1(X, \mathcal{F}) = 0$. Hence, X is affine by (3.7).

2. Let X be a reduced Noetherian scheme. Show that X is affine if and only if each irreducible component is affine.

Proof. Suppose $X = \operatorname{Spec} A$ is affine for some reduced Noetherian ring A. The irreducible components of X correspond to the minimal prime ideals $\mathfrak p$ of A (A.M. Ex. 1.20). In particular, the irreducible components of X are precisely $\operatorname{Spec} A/\mathfrak p$. Conversely, let $X_i = \operatorname{Spec} A_i$ be the irreducible components of X, where A_i is a reduced Noetherian ring for each $i=1,\ldots,n$, and let $\mathscr F$ be any quasi-coherent sheaf on X. We have $\mathscr F|_{U_i}\cong \widetilde M_i$ for some A_i -module M_i , and we have a natural map $\mathscr F\to j_*\mathscr F|_{X_i}=j_*j^*\mathscr F$ (I, Ex. 1.18). Thus, we have a natural map of $\mathscr O_X$ -modules $\phi:\mathscr F\to\bigoplus_{i=1}^n j_*\mathscr F|_{X_i}$. Each $j_*\mathscr F|_{X_i}$ has vanishing cohomology for i>0 by (2.10) and (3.5). Cohomology commutes with direct sums (2.9), so it suffices to show ϕ is an isomorphism. It is clearly injective. Conversely, let $(f_1,\ldots,f_n)\in\bigoplus_{i=1}^n j_*\mathscr F|_{X_i}$, where f_i is an element belonging to some localization of M_i .

6. Let X be a Noetherian scheme.

- (a) Show that the sheaf \mathscr{G} constructed in the proof of (3.6) is an injective object in the category $\mathfrak{Qco}(X)$ of quasi-coherent sheaves on X. Thus, $\mathfrak{Qco}(X)$ has enough injectives.
- (b) Show that any injective object of $\mathfrak{Qco}(X)$ is flasque.
- (c) Conclude that one can compute cohomology as the derived functors of $\Gamma(X,\cdot)$, considered as a functor $\mathfrak{Qco}(X)$ to \mathfrak{Ab} .

Proof.

(a) The Hom functor commutes with finite direct sums in the second argument, so we can assume $\mathscr{G} = j_*\tilde{I}$, where $j: U = \operatorname{Spec} A \to X$ is an open immersion, and I is an injective A-module. Suppose $\mathscr{N} \to \mathscr{M}$ is an injective map of \mathscr{O}_X -modules, and we are given any $f: \mathscr{N} \to j_*\tilde{I}$. Since j^* is left exact, the induced map of A-modules $j^*\mathscr{N} \to j^*\mathscr{M}$ is also injective. For any such f there is an associated morphism of A-modules $g: j^*\mathscr{N} \to \tilde{I}$ by adjointness of j_* , so there exists an extension of g to $j^*\mathscr{M}$ by injectivity of \tilde{I} . By adjointness of j^* again, we obtain a morphism $\mathscr{M} \to j_*\tilde{I}$ that naturally extends $f: \mathscr{N} \to j_*\tilde{I}$, which is what we wanted to show.

- (b) Let $\mathscr I$ be an injective object of $\mathfrak{Qco}(X)$.
- (c)
- 7. Let A be a Noetherian ring, let $X = \operatorname{Spec} A$, let $\mathfrak{a} \subseteq A$ be an ideal, and let $U \subseteq X$ be the open set $X V(\mathfrak{a})$.
 - (a) For any A-module M, establish the following formula of Deligne:

$$\Gamma(U, \tilde{M}) \cong \varinjlim_{n} \operatorname{Hom}_{A}(\mathfrak{a}^{n}, M).$$

(b) Apply this in the case of an injective A-module I, to give another proof of (3.4).

Proof.

- (a)
- (b)

2