INFO-F-302

Informatique Fondamentale Exercices - Automates*

Prof. Emmanuel Filiot

Exercice 1 Construire un automate qui reconnaît le langage :

- 1. $L = \{\varepsilon\}$.
- 2. $L_k = \{w \in \{a, b\}^* : |w| \in k\mathbb{N}\}, \text{ i.e. la taille de } w \text{ est un multiple de } k.$
- 3. $L = \{w \in \{a, b\}^* : n_a(w) \text{ est impair } \}$, i.e. w a un nombre impair de a.
- 4. $L = \{w \in \{a, b, c\}^* : abc \text{ est un facteur de } w\}.$
- 5. $L = \{w \in \{a, b, c\}^* : abc \text{ n'est pas un sous-mot de } w\}.$
- 6. $L = \{w \in (\{0,1\}^3)^* : \pi_1(w) + \pi_2(w) = \pi_3(w)\}$, i.e. les séquences de vecteurs binaires de dimension 3 où la somme binaire de la première et deuxième dimensions est égale a la troisième (des poids faibles aux poids forts, puis même question des forts aux faibles).

$$w = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_4 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}_8 \quad 1010 + 0011 = 1101$$

Exercice 2 Construire un automate minimal équivalent aux automates suivants :

- 1. l'automate a,
- 2. l'automate qui reconnaît le langage $L = \{bananas, ananas, nanas\},$
- 3. l'automate c,
- 4. l'automate d,
- 5. l'automate e,
- 6. l'automate f.

Exercice 3 Construire un automate pour chaque expression régulière :

- 1. (a + ab),
- $2. (a+ab)^*.$

^{*}http://www.ulb.ac.be/di/info-f-302/

Figure 1 – Automate a

FIGURE 2 – Automate c

FIGURE 3 – Automate d

Figure 4 – Automate e

Figure 5 – Automate f

Exercice 4 Donner l'expression régulière et l'automate pour les langages suivants $(\Sigma = \{0,1\})$:

- 1. $\{w: w \text{ a exactement deux } 0\},\$
- 2. $\{w: w \text{ a au moins deux } 0\},\$
- 3. $\{w : w \text{ a un nombre pair de } 0\},\$
- 4. $\{w : w \text{ n'a pas de } 0\},\$
- 5. $\{w:w \text{ est un identifiant valide dans le langage de programmation } C \}$. Ici Σ contient toutes les lettres et symboles sur votre clavier.

Exercice 5 Construire l'expression régulière pour $L(e_1) \cap L(e_2)$ pour chaque pair e_1 , e_2 ci dessous :

- 1. $e_1 = a(a+b)^*, e_2 = (a+b)^*b;$
- 2. $e_1 = (b^*ab^*ab^*)^*, e_2 = a(a+b)^*;$
- 3. $e_1 = (b^*ab^*ab^*)^*, e_2 = (b^*ab^*ab^*ab^*)^*.$

Ex 5:

Reg Exp (1: a(a+b)* ez: (a+b)* 6

Langage Mors ommençant para Mors qui terminent par le

Automate 30 0000015 93 20.50005

(2,3) 6 3 (7,7) 25

a 7 a 1,3