МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Лекция № 11

Дифференциальное исчисление функции одной переменной (часть 2)

Теорема 1. Пусть функции u = f(x) и v = g(x) имеют в некоторой точке x производные u' и v'. Тогда

- 1) функция $y = u \pm v$ также имеет производную в той же точке, равную $y' = u' \pm v'$;
- 2) функция $y = u \cdot v$ также имеет производную в той же точке, равную $y' = u' \cdot v + u \cdot v'$;
- 3) если функция v отлична от нуля, то функция $y = \frac{u}{v}$ также имеет производную в той же точке, равную $y' = \frac{u' \cdot v u \cdot v'}{v^2}$.

Доказательство. Придадим x приращение Δx , тогда функции u,v и y тоже получат приращения $\Delta u, \Delta v \ u \ \Delta y.$ Их новые значения

$$u + \Delta u$$
, $v + \Delta v$ u $y + \Delta y$.

Тогда имеем

1)

$$y + \Delta y = (u + \Delta u) \pm (v + \Delta v).$$

Отсюда

$$\Delta y = \Delta u \pm \Delta v, \qquad \frac{\Delta y}{\Delta x} = \frac{\Delta u}{\Delta x} \pm \frac{\Delta v}{\Delta x}$$

И

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} \pm \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = u' \pm v',$$

так что производная y' существует и равна

$$y' = (u \pm v)' = u' \pm v'.$$

2) Рассмотрим приращение произведения:

$$y + \Delta y = (u + \Delta u)(v + \Delta v),$$

так что

$$\Delta y = \Delta u \cdot v + u \cdot \Delta v + \Delta u \cdot \Delta v$$

И

$$\frac{\Delta y}{\Delta x} = \frac{\Delta u}{\Delta x} \cdot v + u \cdot \frac{\Delta v}{\Delta x} + \frac{\Delta u}{\Delta x} \cdot \Delta v.$$

Так как при $\Delta x \to 0$, и $\Delta v \to 0$, то

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} \cdot v + u \cdot \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = u' \cdot v + u \cdot v',$$

т.е. существует производная y' и равна

$$y' = (u \cdot v)' = u' \cdot v + u \cdot v'.$$

3) Рассмотрим приращение частного

$$y + \Delta y = \frac{u + \Delta u}{v + \Delta v},$$

выражая отсюда Δy и записывая $\frac{u}{v}$ вместо y, получим

$$\Delta y = \frac{\Delta u \cdot v - u \Delta v}{v(v + \Delta v)}$$

И

$$\frac{\Delta y}{\Delta x} = \frac{\frac{\Delta u}{\Delta x} \cdot v - u \cdot \frac{\Delta v}{\Delta x}}{v(v + \Delta v)}.$$

Устремляя в последнем равенстве $\Delta x \to 0$ (при этом одновременно $\Delta v \to 0$), имеем

$$y' = \left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}.$$

Теорема доказана.

производная сложной функции

Теорема 2. Пусть

- 1) функция u = g(x) имеет в некоторой точке x_0 производную $u_x' = g'(x_0)$,
- 2) функция y = f(u) имеет в соответствующей точке $u_0 = g(x_0)$ производную $y_u' = f'(u)$.

Тогда сложная функция y = f(g(x)) в точке x_0 также будет иметь производную, равную

$$\left(f(g(x_0))\right)' = f_u'(g(x_0)) \cdot g'(x_0).$$

производная сложной функции

Доказательство. Пусть Δx — произвольное приращение x_0 , Δu — это соответствующее приращение функции u=g(x) и Δy — приращение функции y=f(u), вызванное приращением Δu . Тогда по определению дифференцируемости

$$\Delta y = y_u' \cdot \Delta u + \alpha \cdot \Delta u$$

(lpha зависит от Δu и вместе с ним стремится к нулю). Разделим это равенство почленно на Δx и получим

$$\frac{\Delta y}{\Delta x} = y_u' \cdot \frac{\Delta u}{\Delta x} + \alpha \cdot \frac{\Delta u}{\Delta x}.$$

Если теперь здесь Δx устремить к нулю, то будет стремиться к нулю и Δu , а тогда, как мы уже знаем, к нулю будет стремиться и зависящая от Δu величина α . Следовательно, существует предел

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y_u' \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = y_u' \cdot u_x'.$$

Теорема доказана.

производная сложной функции

Примеры. Найти производные следующих функций:

a)
$$y = \sqrt{x^2 + 5}$$
;

б)
$$y = x^{x}$$
.

ПРОИЗВОДНАЯ ОБРАТНОЙ ФУНКЦИИ

Пусть функция y=f(x) задана на множестве X и имеет своей областью значений множество Y. Возьмем какое-нибудь конкретное значение $y_0 \in Y$. Тогда существует хотя бы одно значение $x_0 \in X$ такое, что $y_0 = f(x_0)$. Таким образом, каждому $y \in Y$ соответствует одно или несколько значений $x \in X$. Так на множестве Y определяется однозначная или многозначная функция $x = \varphi(y)$. Ее называют **обратной функцией** к функции f(x) и обозначают $f^{-1}(y)$.

ПРОИЗВОДНАЯ ОБРАТНОЙ ФУНКЦИИ

Теорема 3. Пусть функция y = f(x) определена, монотонно возрастает (убывает) и непрерывна на некотором множестве X. Пусть также функция f в точке x_0 имеет конечную и отличную от нуля производную $f'(x_0)$. Тогда для обратной функции g(y) в соответствующей точке $y_0 = f(x_0)$ также существует производная, равная $\frac{1}{f'(x_0)}$.

Доказательство. Придадим $y=y_0$ произвольное приращение Δy , тогда соответственное приращение Δx получит и функция x=g(y). Заметим, что при $\Delta y \neq 0$, в силу однозначности самой функции y=f(x), и $\Delta x \neq 0$. Имеем

$$\frac{\Delta x}{\Delta y} = \frac{1}{\frac{\Delta y}{\Delta x}}$$

Если Δy устремим к нулю, то, в силу непрерывности функции x=g(y), и приращение $\Delta x \to 0$. Но тогда знаменатель правой части будет стремится κ $f'(x_0) \neq 0$, а, следовательно, существует предел левой части, равный обратной величине $\frac{1}{f'(x_0)}$, который и представляет собой производную функции $g'(y_0)$. Теорема доказана.

ПРОИЗВОДНАЯ ОБРАТНОЙ ФУНКЦИИ

Примеры. Вычислить производные указанных функций:

- a) $y = \ln x$,
- б) $y = \arcsin x$

Лемма 1. Пусть функция f(x) имеет конечную производную в точке x_0 . Если $f'(x_0) > 0$ ($f'(x_0) < 0$), то для значений x, достаточно близких к x_0 справа, будет $f(x) > f(x_0)$ ($f(x) < f(x_0)$), а для значений x, достаточно близких к x_0 слева, будет $f(x) < f(x_0)$ ($f(x) > f(x_0)$).

Доказательство. По определению производной и

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Если $f'(x_0) > 0$, то найдется такая окрестность $(x_0 - \delta, x_0 + \delta)$ точки x_0 , в которой (при $x \neq x_0$)

$$\frac{f(x)-f(x_0)}{x-x_0} > 0.$$

Пусть сначала $x_0 < x < x_0 + \delta$, так что $x - x_0 > 0$. Тогда из предыдущего неравенства следует, что и $f(x) - f(x_0) > 0$, т.е. $f(x) > f(x_0)$.

Если же $x_0 - \delta < x < x_0$, то $x - x_0 < 0$ и имеем $f(x) < f(x_0)$. Лемма доказана.

Теорема 4 (Ферма). Пусть функция f(x) определена на некотором промежутке X и во внутренней точке c из этого промежутка принимает наибольшее (наименьшее) значение. Если существует конечная производная f'(c) в этой точке, то f'(c) = 0.

Доказательство. Пусть для определенности f(x) принимает в точке c наибольшее значение.

Проведем доказательство от противного. Предположим, что $f'(c) \neq 0$. Тогда возможны два варианта: либо f'(c) > 0, либо f'(c) < 0.

Пусть f'(c) > 0, тогда по лемме 1 f(x) > f(c), если x > c и достаточно близко к c. Если f'(c) < 0, и тогда опять f(x) > f(c), если x < c и достаточно близко к c. В обоих случаях f(c) не может быть наибольшим значением функции f(x) на X. Получили противоречие, следовательно, f'(c) = 0. Теорема доказана.

Замечание 1. Мы знаем, что производная y' = f'(x) функции y = f(x) есть угловой коэффициент касательной к кривой y = f(x). Обращение в нуль производной f'(c) геометрически означает, что в соответствующей точке этой кривой касательная параллельна оси Ox.

Замечание 2. В доказательстве теоремы существенно было использован тот факт, что c является внутренней точкой промежутка, так как нам пришлось рассматривать точки промежутка, лежащие и левее точки c, и правее. Без этого предположения теорема становится неверной: если функция f(x) определена в замкнутом промежутке и достигает своего наибольшего (наименьшего) значения на одном из концов этого промежутка, то производная f'(x) на этом конце (если существует) может и не равняться нулю.

Теорема 5 (Ролля). Пусть выполнены три условия:

- 1) функция f(x) определена и непрерывна на [a,b];
- 2) существует конечная производная f'(x), в (a, b);
- 3) на концах промежутка функция принимает равные значения: f(a) = f(b). Тогда найдется точка c между a и b, что f'(c) = 0.

Доказательство. По условию теоремы функция f(x) непрерывна на [a,b], следовательно, по ІІ теореме Вейерштрасса, она принимает в этом промежутке наибольшее M и наименьшее m значения. Рассмотрим два случая:

- 1. Пусть M=m. Тогда f(x) в промежутке [a,b] постоянна, т.е. неравенство $m \leq f(x) \leq M$ в этом случае дает f(x)=M для всех x из [a,b]. Поэтому f'(x)=0 на всем промежутке, тогда в качестве точки с можно взять любую точку промежутка [a,b].
- 2. Пусть теперь M>m. Оба этих значения достигаются функцией, но так как по условию теоремы выполняется равенство f(a)=f(b), то хоть одно из них достигается в некоторой точке с между a и b. Тогда по теореме Ферма в этой точке с производная равна нулю. Теорема доказана.

Геометрически теорема Ролля означает следующее: если крайние ординаты кривой y = f(x) равны, то на кривой найдется точка, в которой касательная параллельна оси Ox.

Теорема 6 (Лагранжа/о среднем значении). Пусть

- 1) функция f(x) определена и непрерывна на [a,b];
- 2) существует конечная производная f'(x), по крайней мере, в (a,b).

Тогда между a и b найдется такая точка c, что выполняется равенство

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Доказательство. Введем вспомогательную функцию, определив ее в промежутке [a,b] следующим образом:

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Эта функция удовлетворяет всем условиям теоремы Ролля. Действительно, F(x) непрерывна на [a,b], как разность между непрерывной функцией f(x) и линейной функцией. В промежутке (a,b) она имеет конечную производную

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$

И, наконец, непосредственной подстановкой убеждаемся, что F(a) = F(b) = 0, т.е. F(x) принимает равные значения на концах промежутка. Тогда к функции F(x) можно применить теорему Ролля, т.е. утверждать, что существует точка $c \in (a,b)$: F'(c) = 0. Таким образом, имеем

$$f'(c) - \frac{f(b) - f(a)}{b - a} = 0,$$

откуда получаем

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Теорема доказана.

Теперь рассмотрим геометрический смысл теоремы Лагранжа.

Отношение

$$\frac{f(b) - f(a)}{b - a} = \frac{BC}{AC}$$

есть угловой коэффициент секущей AB, а f'(c) есть угловой коэффициент касательной к кривой y=f(x) в точке с абсциссой x=c.

Таким образом, утверждение теоремы Лагранжа равносильно следующему: на дуге AB всегда найдется, по крайней мере, одна точка M, в которой касательная параллельна хорде AB.

Теорема 7 (Коши).

Пусть

- 1) функции f(x) и g(x) определена и непрерывна на [a,b];
- 2) существуют конечная производная f'(x) и g'(x) по крайней мере, в (a,b);
- 3) $g'(x) \neq 0$ в промежутке (a, b).

Тогда между a и b найдется такая точка c, что выполняется равенство

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}.$$

