

Análise e Desenvolvimento de Sistemas

ALGORITMOS E ESTRUTURA DE DADOS EM PYTHON

RELATÓRIO DE AULAS PRÁTICAS

Nome:
RA:
Polo de matrícula:
Local da realização da Aula Prática:
Ano da postagem

<u>TÍTULO DA ATIVIDADE (ROTEIRO OU AULA): IMPLEMENTANDO ALGORITMOS EM PYTHON</u>

ORIENTAÇÕES:

Cada aluno (ou equipe) deve produzir um relatório curto (1 a 2 páginas) contendo:

Resumo Teórico:

- Explicar, com palavras próprias, o que é lógica de programação e por que ela é importante.
- Mencionar brevemente o que é pseudocódigo e fluxograma e como ajudam na organização de ideias.
- Citar as vantagens de usar Python para aprender programação.
- Definição de algoritmo, variável, condicional, laço;

Código-Fonte Comentado:

- Inserir o código-fonte completo da atividade proposta.
- Comentar as principais linhas, ressaltando o uso de print(), input(), variáveis etc.

REFERÊNCIAS: O aluno deverá colocar o nome dos livros e *sites* utilizados para a realização da atividade. As regras para fazer referência ao material utilizado deverão ser de acordo com a ABNT.

CRITÉRIOS PARA AVALIAÇÃO

Critério	Peso	Descrição
Qualidade do Resumo Teórico	2,0	Clareza e correlação correta entre conceitos.
Estrutura e Organização do Código Funcionamento da Solução	3,0	O código deve estar indentado corretamente, usar nomes de variáveis adequados e conter comentários informativos (quando necessários).
	3,0	Execução sem erros, entrada e saída corretas, uso de condições e laços.
Criatividade e Aprimoramentos	2,0	Adição de perguntas extras, uso de strings multilinha, personalização das mensagens e outras melhorias que demonstrem domínio do conteúdo.

<u>TÍTULO DA ATIVIDADE (ROTEIRO OU AULA): ESTRUTURAS DE DADOS LINEARES EM PYTHON: LISTAS, PILHAS, FILAS E EFICIÊNCIA. NOTAÇÃO BIG-O</u>

ORIENTAÇÕES:

Cada aluno deve produzir um relatório sucinto (2 a 3 páginas) contendo:

Resumo Teórico

- Definição de listas, pilhas, filas e introdução à notação Big-O.
- Código-fonte comentado das soluções desenvolvidas.
- Reflexão sobre desafios encontrados e critérios para selecionar cada estrutura:

Códigos-Fontes Comentados

- Inserir o código-fonte completo da atividade proposta.
- Comentar as principais linhas, ressaltando o uso das estruturas de dados.

REFERÊNCIAS: O aluno deverá colocar o nome dos livros e *sites* utilizados para a realização da atividade. As regras para fazer referência ao material utilizado deverão ser de acordo com a ABNT.

CRITÉRIOS PARA AVALIAÇÃO

Critério	Peso	Descrição
Clareza do Resumo Teórico	2,0	Clareza e correlação correta entre conceitos.
Organização e Comentários do Código	3,0	O código deve estar indentado corretamente, usar nomes de variáveis adequados e conter comentários informativos (quando necessários).
Funcionalidade do Código	2,0	Execução sem erros, entrada e saída corretas.
Criatividade e Aprimoramentos	3,0	Funcionalidades extras, simulações realistas

<u>TÍTULO DA ATIVIDADE (ROTEIRO OU AULA): ESTRUTURAS DE DADOS NÃO LINEARES - ÁRVORES E GRAFOS EM PYTHON</u>

ORIENTAÇÕES:

Cada aluno deve produzir um relatório curto (2 a 3 páginas), contendo:

Resumo Teórico:

- Definição de árvore e grafo, vantagens de cada estrutura.
- Comentário sobre a escolha de Python para ilustrar algoritmos de percursos;

Códigos Desenvolvidos:

- Inserir o código-fonte completo da atividade proposta.
- Comentar as principais linhas, ressaltando criação de vértices, filas, laços e condições de parada.

Conclusão:

Descrever se a aula ajudou no entendimento de árvores e grafos.

REFERÊNCIAS: O aluno deverá colocar o nome dos livros e *sites* utilizados para a realização da atividade. As regras para fazer referência ao material utilizado deverão ser de acordo com a ABNT.

CRITÉRIOS PARA AVALIAÇÃO

Critério	Peso	Descrição
Clareza do Resumo Teórico	2,0	Clareza e correlação correta entre conceitos.
Organização e Comentários do Código	3,0	O código deve estar indentado corretamente, usar nomes de variáveis adequados e conter comentários informativos (quando necessários).
Funcionalidade do Código	2,0	Execução sem erros, entrada e saída corretas.
Criatividade e Aprimoramentos	3,0	Inclusão de pesos, tratamento de exceções ou visualização gráfica simples.

<u>TÍTULO DA ATIVIDADE (ROTEIRO OU AULA): ALGORITMOS DE ORDENAÇÃO EM PYTHON (Bubble Sort, Selection Sort, Insertion Sort, Merge Sort e Quick Sort)</u>

ORIENTAÇÕES:

Cada aluno deve produzir um relatório sintético (2 a 3 páginas) contendo:

Resumo Teórico:

- Definir ordenação e justificar sua relevância em ciência da computação.
- Explicar diferenças conceituais entre algoritmos quadráticos e loglineares.
- Comentar vantagens e limitações de cada método;

Códigos Desenvolvidos:

- Inserir as implementações completas, destacando linhas decisivas (trocas, partições, fusões).
- Incluir tabela dos tempos obtidos nas medições.

REFERÊNCIAS: O aluno deverá colocar o nome dos livros e *sites* utilizados para a realização da atividade. As regras para fazer referência ao material utilizado deverão ser de acordo com a ABNT.

CRITÉRIOS PARA AVALIAÇÃO

Critério	Peso	Descrição
Clareza do Resumo Teórico	2,0	Clareza e correlação correta entre conceitos.
Organização e Comentários do Código	3,0	O código deve estar indentado corretamente, usar nomes de variáveis adequados e conter comentários informativos (quando necessários).
Funcionalidade do Código	3,0	Execução correta e apresentação dos resultados de tempo.
Criatividade e Aprimoramentos	2,0	Introdução de visualização gráfica simples, pivô aleatório ou otimizações.

<u>TÍTULO DA ATIVIDADE (ROTEIRO OU AULA): ALGORITMOS DE PESQUISA - BUSCA LINEAR E BUSCA BINÁRIA EM PYTHON</u>

ORIENTAÇÕES:

Cada aluno deve produzir um relatório (2 a 3 páginas) contendo:

Resumo Teórico:

- Explicar a diferença entre pesquisa exaustiva e pesquisa por divisão.
- Comparar custos de busca linear e binária em termos de complexidade e de requisitos de ordenação;

Códigos Desenvolvidos:

- Inserir implementações completas de ambos os métodos.
- Apresentar tabela com tempos coletados para três tamanhos distintos de listas.

REFERÊNCIAS: O aluno deverá colocar o nome dos livros e *sites* utilizados para a realização da atividade. As regras para fazer referência ao material utilizado deverão ser de acordo com a ABNT.

CRITÉRIOS PARA AVALIAÇÃO

Critério	Peso	Descrição
Clareza do		Clareza conceitual e uso correto de terminologia.
Resumo	2,0	
Teórico		
Organização e		O código deve estar indentado corretamente,
Comentários do	3,0	usar nomes de variáveis adequados e conter
Código		comentários informativos (quando necessários).
Funcionalidade do Código	3,0	Execução correta e apresentação dos resultados de tempo.
Criatividade e Aprimoramentos	2,0	Execução correta e apresentação dos resultados de tempo.

<u>TÍTULO DA ATIVIDADE (ROTEIRO OU AULA): TABELAS DE DISPERSÃO (HASH TABLES) E OS HEAPS EM PYTHON</u>

ORIENTAÇÕES:

Cada aluno deve produzir um relatório (2 a 3 páginas) contendo:

Resumo Teórico:

- Definir tabelas de dispersão, explicar colisões e tratamentos.
- Descrever heaps binários e justificar eficiência em filas de prioridade;

Códigos Desenvolvidos:

- Inserir implementações das medições solicitadas, com observações sobre linhas-chave (cálculo de hash, heappush, heappop).
- Apresentar tabela dos tempos obtidos em cada experimento.

REFERÊNCIAS: O aluno deverá colocar o nome dos livros e *sites* utilizados para a realização da atividade. As regras para fazer referência ao material utilizado deverão ser de acordo com a ABNT.

CRITÉRIOS PARA AVALIAÇÃO

Critério	Peso	Descrição
Clareza do Resumo Teórico	2,0	Precisão conceitual e clareza de exposição.
Organização e Comentários do Código	3,0	O código deve estar indentado corretamente, usar nomes de variáveis adequados e conter comentários informativos (quando necessários).
Funcionalidade do Código	3,0	Execução sem erros, coleta e exibição confiável dos tempos.
Criatividade e Aprimoramentos	2,0	Implementação de heap de máx-prioridade, visualizações simples ou análise de fator de carga.

<u>TÍTULO DA ATIVIDADE (ROTEIRO OU AULA): ALGORITMOS DE GRAFOS - DIJKSTRA, BELLMAN-FORD, KRUSKAL E PRIM EM PYTHON</u>

ORIENTAÇÕES:

Cada aluno deve produzir um relatório (2 a 3 páginas) contendo:

Resumo Teórico:

- Explicar diferenças entre caminhos mínimos de fonte única e árvores geradoras mínimas.
- Apontar condições de aplicabilidade (pesos negativos, denso x esparso);

Códigos Desenvolvidos:

- Incluir implementações completas, indicando linhas de relaxamento e união-busca.
- Apresentar tabela de tempos e pesos totais das árvores.

REFERÊNCIAS: O aluno deverá colocar o nome dos livros e *sites* utilizados para a realização da atividade. As regras para fazer referência ao material utilizado deverão ser de acordo com a ABNT.

CRITÉRIOS PARA AVALIAÇÃO

Critério	Peso	Descrição
Clareza do		
Resumo	2,0	Precisão conceitual e clareza de exposição.
Teórico		
Organização e		O código deve estar indentado corretamente,
Comentários do Código	3,0	usar nomes de variáveis adequados e conter comentários informativos (quando necessários).
Funcionalidade do Código	3,0	Execução sem erros, resultados coerentes.
Criatividade e Aprimoramentos	2,0	Uso de visualizações, análise de ciclos negativos ou comparação com bibliotecas externas.

<u>TÍTULO DA ATIVIDADE (ROTEIRO OU AULA): TÉCNICAS DE DIVISÃO E</u> CONQUISTA E DE PROGRAMAÇÃO DINÂMICA EM PYTHON

ORIENTAÇÕES:

Cada aluno deve produzir um relatório (2 a 3 páginas) contendo:

Resumo Teórico:

- A explanação das diferenças estruturais entre divisão e conquista e programação dinâmica.
- A justificativa dos ganhos obtidos com memoização ou tabulação nos problemas escolhidos;

Descrição das Classes Criadas:

- A inclusão das três versões do algoritmo escolhido (recursiva simples, memoizada, bottom-up).
- A apresentação dos tempos medidos em tabela.

REFERÊNCIAS: O aluno deverá colocar o nome dos livros e *sites* utilizados para a realização da atividade. As regras para fazer referência ao material utilizado deverão ser de acordo com a ABNT.

CRITÉRIOS PARA AVALIAÇÃO

Critério	Peso	Descrição
Clareza do Resumo Teórico	2,0	A inclusão das três versões do algoritmo escolhido (recursiva simples, memoizada, bottom-up).
Organização e Comentários do Código	3,0	A apresentação dos tempos medidos em tabela.
Funcionalidade do Código	3,0	A inclusão das três versões do algoritmo escolhido (recursiva simples, memoizada, bottom-up).
Criatividade e Aprimoramentos	2,0	Análise gráfica, discussão sobre consumo de memória ou casos extremos

