

Winning Space Race with Data Science

Isaac Ramirez 31/03/2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection through API
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium
 - Machine Learning Prediction
- Summary of all results
 - Exploratory Data Analysis result
 - Interactive analytics in screenshots
 - Predictive Analytics result

Introduction

- Project background and context: In this project, we will predict if the Falcon 9 first stage will land successfully. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.
- Problems you want to find answers.
 - What factors determine if the rocket will land successfully?
 - · What operating conditions needs to be in place to ensure a successful landing

Methodology

Executive Summary

- Data collection methodology:
 - https://api.spacexdata.com/v4/
- Perform data wrangling
 - Data from 3 endpoints was grouped, null data was eliminated, and a new attribute was created: 'class'
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - The data was normalized and then several learning models with several parameters each were used to find the best one.

Data Collection

- Describe how data sets were collected.
- Data were collected from SpaceX API https://api.spacexdata.com/v4/

Data Collection – SpaceX API

- https://github.com/ulisacO4/finalproject/blob/main/jupyter-labsspacex-data-collection-api.ipynb
 - Rockets
 - Launch Site
 - Payload
 - Core

Data Wrangling

- We were discussing what factors we could use to determine whether a launch was successful or not.
- A new attribute was created: class; 1=successful launch, O=failed launch
- **GitHub URL:** https://github.com/ulisacO4/final-project/blob/main/labs-jupyter-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

- Used graphics
 - Catplot to understand how the payload mass and the number of launches are distributed, with respect to the place of launch
 - Countplot to understand the ratio of successful launches PER rocket orbit.
 - Scatterplot to understand how the payload mass and the number of launches are distributed, with respect to the orbit
 - Lineplot to observe how the rate of successful launches evolved over time

GitHub URL https://github.com/ulisac04/final-project/blob/main/jupyter-labs-eda-dataviz.ipynb

EDA with SQL

- Names of the launch sites
- All launches that were made from sites starting with the string 'CCA'
- The total payload mass sent from the "NASA (CRS)" station.
- the average payload mass for Booster_Version = 'F9 v1.1'
- date when the first successful landing outcome in ground pad was acheived.
- Names of the boosters which have succeeded in landing on a drone ship and have a payload mass between 4000 and 6000
- Total count of successful and failure mission outcomes
- Which booster_versions have transported the maximum recorded load?
- GitHub URL https://github.com/ulisac04/final-project/blob/main/jupyter-labs-eda-sql-coursera-sqllite.ipynb

Build an Interactive Map with Folium

- Map objects used: Markers, circles, lines
- Markers: to indicate points such as launch sites
- Circles: to indicate areas around specific coordinates.
- Lines are used to indicate distances between two points

• GitHub URL https://github.com/ulisac04/final-project/blob/main/lab_jupyter_launch_site_location.ipynb

Build a Dashboard with Plotly Dash

- Use a standing chart to see the ratios of successful launch vs. failed launch.
 Explain why you added those plots and interactions
- Use a plotted scatter graph to explain the relationship between uutcome and ayload mass peer booster version.

• GitHub URL https://github.com/ulisacO4/final-project/blob/main/dash interactivity.py

Predictive Analysis (Classification)

- Load the data and create a dataset.
- Divided the training and test data
- Tested the data with several classification methods and several hyperparameters.
- GitHub URL https://github.com/ulisac04/final-project/blob/main/SpaceX Machine Learning Prediction Part 5.jupyterlite.ipynb

Results

- Exploratory data analysis results
 - The average payload of F9 v1.1 booster almost 2.900kg.
 - Space X has 4 launch sites
 - Almost 100% of the missions were a success.

- Interactive analytics demo in screenshots
 - launches are always carried out near a coast

Flight Number vs. Launch Site

• The more launches, the higher the success rate

Payload vs. Launch Site

• VAFB SLC 4E: has a 100% success rate

Success Rate vs. Orbit Type

- SSO is 100% successful
- GTO is the most deficient

Flight Number vs. Orbit Type

 SSO and HEO are the most successful

 LEO is successful when there are more than 5 launches

Payload vs. Orbit Type

Launch Success Yearly Trend

• The success rate has improved over the years.

All Launch Site Names

- Find the names of the unique launch sites
- Present your query result with a short explanation here

```
select DISTINCT(Launch_Site) from SPACEXTABLE
```

CCAFS LC-40 VAFB SLC-4E KSC LC-39A CCAFS SLC-40

Launch Site Names Begin with 'CCA'

- Find 5 records where launch sites begin with `CCA`
- Present your query result with a short explanation here

. select * from SPACEXTABLE WHERE Launch_Site like 'CCA%' LIMIT 5

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcon
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachut
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachut
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attem
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attem
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attem

Total Payload Mass

- Calculate the total payload carried by boosters from NASA
- Present your query result with a short explanation here

```
select SUM(PAYLOAD_MASS__KG_) from SPACEXTABLE WHERE Customer = 'NASA (CRS)' GROUP BY Customer
```

```
SUM(PAYLOAD_MASS_KG_)
45596
```

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- Present your query result with a short explanation here

```
select AVG(PAYLOAD_MASS__KG_) from SPACEXTABLE where Booster_Version = 'F9 v1.1'
```

```
AVG(PAYLOAD_MASS__KG_)
2928.4
```

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- Present your query result with a short explanation here

```
select Date from SPACEXTABLE where Landing_Outcome = 'Success (ground pad)' LIMIT 1
```

Date

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

- List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
- Present your query result with a short explanation here

select DISTINCT(Booster_Version) from SPACEXTABLE where Landing_Outcome = 'Success (drone ship)' and PAYLOAD_MASS__KG_ >= 4000 and PAYLOAD_MASS__KG_ <=6000

Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- Present your query result with a short explanation here

```
%sql select COUNT(*) from SPACEXTABLE WHERE Mission Outcome LIKE '%Success%';
 * sqlite:///my_data1.db
Done.
 COUNT(*)
       100
 %sql select COUNT(*) from SPACEXTABLE WHERE Mission_Outcome LIKE '%Failure%';
 * sqlite:///my_data1.db
Done.
 COUNT(*)
```

Boosters Carried Maximum Payload

- List the names of the booster which have carried the maximum payload mass
- Present your query result with a short explanation here

select Booster Version from SPACEXTABLE where PAYLOAD MASS KG = (select MAX(PAYLOAD MASS KG) from SPACEXTABLE order by PAYLOAD MASS KG desc) **Booster Version** F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4 F9 B5 B1048.5 F9 B5 B1051.4 F9 B5 B1049.5 F9 B5 B1060.2 F9 B5 B1058.3 F9 B5 B1051.6 30 F9 B5 B1060.3 F9 B5 B1049.7

2015 Launch Records

- List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015
- Present your query result with a short explanation here

```
SELECT substr(Date,6,2), Date, Booster_Version, Landing_Outcome, Launch_Site FROM SPACEXTABLE WHERE Date LIKE '2015%' and Landing_Outcome = 'Failure (drone ship)'
```

```
substr(Date,6,2)DateBooster_VersionLanding_OutcomeLaunch_Site012015-01-10F9 v1.1 B1012Failure (drone ship)CCAFS LC-40042015-04-14F9 v1.1 B1015Failure (drone ship)CCAFS LC-40
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Present your query result with a short explanation here

Launch sites

Number of launches, per site

Successful launch rate at all sites

Relationship between payload mass and launch success segmented by booster type

Successful launch rate in CCSFS LC-40

Classification Accuracy

All models have the same Accuracy.
 (SVM slightly a little more)

Confusion Matrix

• Show the confusion matrix of the best performing model with an explanation

Conclusions

• The best success rate in launches is positively related to the number of launches that occur on that site Point 2

• Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

The SVM model is the best machine learning algorithm for this task.

