DATA SCIENCE INTERNSHIP

TASK1 Data Preprocessing

Handle missing values and outlines appropriately. Normalize or scale features as needed . split the data into training and testing sets .

python

Import necessary libraries

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.impute import SimpleImputer

Load your dataset

Replace 'your_dataset.csv' with the path to your dataset file

df = pd.read_csv('your_dataset.csv')

1. Handle Missing Values

Let's impute missing values with the mean of the column (you can also use median or mode)

imputer = SimpleImputer(strategy='mean')

df_imputed = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)

2. Normalize/Scale the Features (if necessary)

We will use StandardScaler to scale numerical features

scaler = StandardScaler()

Assuming all columns are numeric, if not select numeric columns using df.select_dtypes(include=[float, int])

scaled_features = scaler.fit_transform(df_imputed)

3. Split the Data into Training and Testing Sets

Let's assume that the target variable (the variable you want to predict) is 'target_column'

X = df_imputed.drop('target_column', axis=1) # Features

y = df_imputed['target_column'] # Target variable

Splitting data into training (80%) and testing (20%) sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Optionally, you can use the scaled data:

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

Now, X_train_scaled and X_test_scaled are ready to be used for model training

Task2

Feature Engineering

Create additional features that might be useful for prediction equipment failure. Consider time based features rolling statistics and any other relevant transformation.

```
``python
```

Import necessary libraries

import pandas as pd

import numpy as np

Sample DataFrame (replace this with your actual dataset)

The dataset should have a 'timestamp' column and columns for equipment data (e.g., temperature, pressure)

df = pd.read_csv('your_equipment_data.csv')

Convert timestamp column to datetime format if not already df['timestamp'] = pd.to_datetime(df['timestamp'])

1. Time-Based Features

Create a feature for the hour of the day, day of the week, and month

df['hour'] = df['timestamp'].dt.hour

df['day_of_week'] = df['timestamp'].dt.dayofweek # Monday=0, Sunday=6

df['month'] = df['timestamp'].dt.month

Calculate the time difference from the last maintenance (example)

df['time_since_last_maintenance'] = (df['timestamp'] df['timestamp'].shift(1)).dt.total_seconds()

2. Rolling Statistics

Adding rolling statistics for key variables (e.g., temperature, pressure)

This can help capture patterns or trends over time.

For example, create a rolling window of 3 periods (you can adjust the window size)

```
df['temperature_rolling_mean'] = df['temperature'].rolling(window=3).mean()
df['pressure_rolling_mean'] = df['pressure'].rolling(window=3).mean()
```

Create rolling standard deviation (for variability) over a 3-period window df['temperature_rolling_std'] = df['temperature'].rolling(window=3).std() df['pressure_rolling_std'] = df['pressure'].rolling(window=3).std()

Calculate rolling sum to capture long-term trends

df['temperature_rolling_sum'] = df['temperature'].rolling(window=3).sum()

3. Cumulative Features

Cumulative sum of features like temperature or pressure, which could be useful to detect the effect of prolonged exposure

df['temperature_cumulative_sum'] = df['temperature'].cumsum()

4. Lag Features

Lagging features help in capturing temporal dependencies.

For example, lagging the temperature and pressure by 1 period (or more) df['temperature_lag_1'] = df['temperature'].shif t(1)

```
df['pressure_lag_1'] = df['pressure'].shift(1)
```

Lagging can also be done for other features like 'time_since_last_failure' if present in the dataset

```
df['time_since_last_failure'] = df['failure_timestamp'].shift(1)
```

5. Failure History Features (if applicable)

If you have the target column that indicates failure ('failure_flag'), you can create features based on previous failures.

```
df['failure_flag_lag_1'] = df['failure_flag'].shift(1)
df['failure_flag_lag_2'] = df['failure_flag'].shift(2)
```

6. Interaction Features

Interaction features can capture relationships between multiple variables. For instance, combining temperature and pressure.

```
df['temperature_pressure_interaction'] = df['temperature'] * df['pressure']
```

7. Other transformations: Exponentiation, logarithm, etc.

For instance, log-transform the temperature data if it's exponentially distributed.

```
df['log_temperature'] = np.log(df['temperature'] + 1) # Adding 1 to avoid log(0)
```

8. Target Encoding (if applicable)

If you have categorical features like 'equipment_type', you can encode it based on the target variable.

For example, encoding 'equipment_type' with the mean failure rate for each type of equipment.

```
df['equipment_type_failure_rate'] =
df.groupby('equipment_type')['failure_flag'].transform('mean')
```