Nombre de la asignatura: Recursos Distribuidos de Energía y Demanda.

LGAC: Sustentabilidad en Sistemas Energéticos

Tiempo de dedicación del estudiante a las actividades de:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

DOC: Docencia; TIS: Trabajo independiente significativo; TPS: Trabajo profesional supervisado

1. Historial de la asignatura.

Fechas revisión	Participantes	Observaciones, cambios o
/actualización		justificación
Marzo de 2017	Dr. Iván Valencia Salazar	Análisis y conformación del
	Dr. Genoveva Domínguez Sánchez	programa. Metodología del
		desarrollo del curso,
		prácticas propuestas

2. Pre-requisitos y correquisitos.

Asignatura optativa después del primer período.

3. Objetivo de la asignatura.

Proporcionar al alumno las herramientas necesarias para el desarrollo y gestión de proyectos de sustentabilidad en sistemas energéticos de generación.

4. Aportación al perfil del graduado.

La materia contribuye a la conformación de una actitud crítica y responsable en el egresado, ante los conocimientos en el desarrollo proyectos de generación a partir de energías renovables. Así mismo, se contribuye a que el alumno genere una capacidad de análisis sobre los sistemas de generación, para la toma de desiciones de aplicabilidad o no de dicho sistema.

5. Contenido temático. Se establece el temario (temas y subtemas) que conforman los contenidos del programa de estudio, debiendo estar organizados y secuenciados.

Unidad	Temas	Subtemas
		1.1 Generalidades
1		1.2 Hidráulica
	Sistemas de micro generación	1.3 Fotovoltaica
II	Operación y gestión de sistemas	2.1 Generalidades
	híbridos	
		2.2 Sistemas Interconectados a la Red
		2.3 Sistemas Aislados
Ш	Gestión de la Demanda	3.1 Generalidades
		3.2 Recursos de participación de la demanda
		3.3 Variables económicas de la demanda
		3.4 Metodologías de optimización
IV	Mercado Energético	4.1 Generalidades
		4.2 Situación actual
		4.3 Oferta y Demanda
		4.4 Comercialización

6. Metodología de desarrollo del curso. Queda a elección del docente manejar un problema específico para cada unidad, o bien un solo problema para todo el curso.

7. Sugerencias de evaluación.

- Portafolio de Evidencias: Recopilación de todas las investigaciones, evidencias de trabajos, proyectos, problemas, reportes de proyectos, etc.
- Rúbricas de evaluación: Matriz de calificación para exposiciones, trabajos, proyectos, resolución de problemas, tareas
- -Desarrollar, organizar y presentar al final de cada unidad el contenido de cada uno de los elementos del proyecto de gestión energética.
- Presentar los documentos correspondientes al proyecto ejecutivo

8. Bibliografía y Software de apoyo.

- 1. Munteanu, I.; Iuliana A.; Cutululis N. y Ceanga E. (2008). Optimal Control of Wind Energy Systems. Springer.
- 2. German Energy Society. (2008). Planning and installing photovoltaic systems. 2nd Edition. Ed. Earthscan.
- 3. Heier, S. y Waddington R. (2006). Grid integration of wind energy conversion systems.

9. Actividades propuestas. Se deberán desarrollar las actividades que se consideren necesarias por tema.

Unidad	Actividad
I	Realizar estudio comparativo de ventajas y desventajas de cada sistema de
	generación de acuerdo a un proyecto específico.
II	Realizar una arquitectura de sistemas aislados y sistemas interconectados a
	la red, analizando los puntos de falla en cada caso.
III	Realizar un análisis de optimización.
IV	Realización de un análisis económico-financiero de un proyecto de energías renovables.

10. Nombre y firma del catedrático responsable.

Dr. Iván Valencia Salazar	
Dr. Genoveva Domínguez Sánchez	