Theoretische Informatik I, Übung 11

Universität Potsdam, WiSe 2024/25

1 Parsing und Umwandlung von kontextfreien Grammatiken in PDA

Gegeben sei folgende kontextfreie Grammatik $G = (\{0,1\},\{S\},P,S)$ mit den Regeln $S \to 01 \mid 10 \mid 0S1 \mid 1S0$.

- 1. Nutzen Sie den einfachen Parser aus der Vorlesung um die Linksableitung des Wortes 001011 zu bestimmen.
- 2. Wandeln Sie nun die Grammatik in einen äquivalenten Pushdown-Automaten um, wie im Beweis zu Satz 11.3.
- 3. Geben Sie nun jeweils eine erfolgreiche Konfigurationsfolge und eine nicht-erfolgreiche Konfigurationsfolge für das Wort an.

2 Pushdown-Automaten analysieren

Gegeben sei der folgende Pushdown-Automat $P = (\{q_0, q_1\}, \{a, b\}, \{A, \#\}, \delta, q_0, \#, \{q_1\})$ mit

δ	a	b	ε
q_0	$\#: (q_0, A\#)$ $A: (q_0, AA)$		$A:(q_1,A)$
q_1		$A:(q_1,arepsilon)$	$\#:(q_1,\varepsilon)$

- 1. Ist der Pushdown-Automat deterministisch? Begründen Sie Ihre Antwort.
- 2. Werten Sie die Abarbeitung der Wörter aabb, aaab und abbb schrittweise aus. Geben Sie dafür alle möglichen Konfigurationsfolgen an.
- 3. Bestimmen Sie L(P) und N(P).
- 4. Wie könnte der Automat angepasst werden, sodass L(P) = N(P) gilt?

3 Pushdown-Automaten konstruieren

Geben Sie Pushdown-Automaten an, die folgende Sprachen akzeptieren: (Sie dürfen sich dabei aussuchen, ob ihr Automat durch akzeptierenden Zustand oder durch leeren Keller akzeptiert. Versuchen Sie auch Automaten zu finden, die durch beides akzeptieren.)

- 1. $L = \{ a^n b^{n+m} a^m \mid n, m \ge 0 \}$
- 2. $L = \{ a^i b^j c^k \mid i = j \lor j = k \}$
- 3. $L = \{ w \in \{a,b\}^* \mid |w|_a > |w|_b \}$ (Menge aller Wörter mit mehr a's als b's)