Adding Semantics to Ontologies

Cristiano Longo

Dipartimento di Matematica e Informatica, Università di Catania, Italy mailto://longo@dmi.unict.it

SOD2014

About

This talk is about the word Semantic in the "Semantic Web."

It will provides some basic theoretical notions for a better understanding of Semantic Web technologies (in particular OWL).

Topics

Some answers for the following questions will be provided:

- How can we represent knowledge? (ontologies)
- Which tools the Semantic Web framework offer to this end? (OWL)
- How representing knowledge with these tools can be useful? (reasoning

Topics

Some answers for the following questions will be provided:

- How can we represent knowledge? (ontologies)
- Which tools the Semantic Web framework offer to this end? (OWL)
- How representing knowledge with these tools can be useful? (reasoning

Topics

Some answers for the following questions will be provided:

- How can we represent knowledge? (ontologies)
- Which tools the Semantic Web framework offer to this end? (OWL)
- How representing knowledge with these tools can be useful? (reasoning)

Notice

For the sake of readability and for historical reason, we will use notation and terminology from *Descriptio Logics*, which underpin Semantic Web languages (in particular OWL).

Representing Knowledge in Logic and Computer Science

Ontologies

An ontology is a (partial) description of the world.

Usually, it is a finite set of statements such as, for example,

- human beings are mortals,
- Alice is the Bob's mother,
- Federico II was an emperor.

Basics

A knowledge domain is described in terms of

- individuals, to indicate domain items (Alice, Bob, ...),
- concepts (aka classes), which denote sets of domain objects (Person, Male, ...), and
- roles (aka properties), which are relations on domain items (parentOf, partnerOf,...).

Vocabulary and Assertions

Each ontology is divided into two parts:

- the TBox(vocabulary), in which *vocabulary terms* for concepts (i.e. sets) and roles (i.e. relations) are defined, and
- the ABox, which contains statements (namely, assertions) about real world items.

Concepts: Male, Female, Human, Woman, Man. Roles: relativeOf, childOf, grandChildOf.
Woman(Alice), $Man(Bob)$, $Alice$ relative $0f$ Bob , $Alice$ child $0f$ $Charlie$.

Vocabulary and Assertions

Each ontology is divided into two parts:

- the TBox(vocabulary), in which *vocabulary terms* for concepts (i.e. sets) and roles (i.e. relations) are defined, and
- the ABox, which contains statements (namely, assertions) about real world items.

TBox		
	Roles: relativeOf, childOf, grandChildOf.	
ABox	Woman($Alice$), Man(Bob), $Alice$ relativeOf Bob , $Alice$ childOf $Charlie$.	

Open World Assumption

Facts not explicitly mentioned in the ontology are *not* assumed to be false, their truth value is just unknown.

In general, no one has complete knowledge.

TBox	Concepts: Male, Female, Human, Woman, Man. Roles: relativeOf, childOf, grandChildOf.
ABox	Woman(Alice), Man(Bob), Alice relativeOf Bob, Alice childOf Charlie.

- What is the kinship relation between Alice and Bob? Charlie childOf Alice?
- Is Charlie a man? Is Charlie a human being?
- What about other persons in the world

Open World Assumption

Facts not explicitly mentioned in the ontology are *not* assumed to be false, their truth value is just unknown.

In general, no one has complete knowledge.

TBox	Concepts: Male, Female, Human, Woman, Man.	
	Roles: relativeOf, childOf, grandChildOf.	
ABox	Woman(Alice), Man(Bob), Alice relativeOf Bob, Alice childOf Charlie.	

- What is the kinship relation between Alice and Bob? Charlie childOf Alice?
- Is Charlie a man? Is Charlie a human being?
- What about other persons in the world?

Open World Assumption - Interpretations

All the possible worlds must be taken into account.

An interpretation associates sets, relations, and items of a given domain (i.e Universe) Δ to concepts and roles in the vocabulary. For example:

```
\begin{array}{rcl} \Delta & := & \{Alice, Bob, Charlie, Dana, Edwige\} \\ \text{Human} & := & \{Alice, Bob, Charlie, Dana\} \\ \text{Female} & := & \{Alice, Dana, Edwige\} \\ \text{Male} & := & \{Bob, Charlie\} \\ \text{Woman} & := & \{Alice, Dana\} \\ \text{Man} & := & \{BobCharlie\} \end{array}
```

Open World Assumption - Interpretations

All the possible worlds must be taken into account.

An interpretation associates sets, relations, and items of a given domain (i.e. Universe) Δ to concepts and roles in the vocabulary.

For example:

```
\begin{array}{lll} \Delta & := & \{ Alice, Bob, Charlie, Dana, Edwige \} \\ \text{Human} & := & \{ Alice, Bob, Charlie, Dana \} \\ \text{Female} & := & \{ Alice, Dana, Edwige \} \\ \text{Male} & := & \{ Bob, Charlie \} \\ \text{Woman} & := & \{ Alice, Dana \} \\ \text{Man} & := & \{ BobCharlie \} \end{array}
```

Open World Assumption - Interpretations

All the *possible worlds* must be taken into account. An *interpretation* associates sets, relations, and items of a given *domain* (i.e. Universe) Δ to concepts and roles in the vocabulary. For example:

Open World Assumption - Models (1/2)

Roughly speaking, an interpretation is a *model* for an ontology if it does not contradicts the ontology itself

For example:

is a model for

TBox	Concepts: Male, Female, Human, Woman, Man.	
	Roles: relativeOf, childOf, grandChildOf.	
ABox	Woman(Alice), $Man(Bob)$, $Alice$ relativeOf Bob ,	
	Alice childOf Charlie.	

Open World Assumption - Models (2/2)

Wherease the following is not.

```
\begin{array}{rcl} \Delta & := & \{Alice, Bob, Charlie, Dana, Edwige\} \\ \text{Human} & := & \{Alice, Bob, Charlie, Dana\} \\ \text{Female} & := & \{Alice, Dana, Edwige\} \\ \text{Male} & := & \{Bob, Charlie\} \\ \text{Woman} & := & \{Alice, Dana\} \\ \text{Man} & := & \{BobCharlie\} \end{array}
```

TBox	Concepts: Male, Female, Human, Woman, Man.	
	Roles: relativeOf, childOf, grandChildOf.	
ABox	Woman(Alice), $Man(Bob)$, $Alice$ relativeOf Bob ,	
	Alice childOf Charlie.	

Constraints

How to to associate meanings to vocabulary terms:

by means of constraints (placed in the TBox) expressed in a mathematical fashion involving concepts, roles, individuals.

Example			
T	all a sussain and an area also		
$\texttt{Human} \sqsubseteq \texttt{Mortal}$	all persons are mortal;		
${\tt Woman} \equiv {\tt Human} \sqcap {\tt Female}$	women are female human beings;		
$\mathtt{childOf} \circ \mathtt{childOf} \subseteq \mathtt{grandChildOf}$	the child of the child is the grandchild.		

In general, the syntax of a *Knowledge Representation Language* is characterized by the types of constraints it allows, mainly in term of *operators* (eg. \square , \circ , ...).

Constraints

How to to associate *meanings* to vocabulary terms:

by means of constraints (placed in the TBox) expressed in a mathematical fashion involving concepts, roles, individuals.

Example		
T	all a sussain and an area delta	
$\texttt{Human} \sqsubseteq \texttt{Mortal}$	all persons are mortal;	
${\tt Woman} \equiv {\tt Human} \sqcap {\tt Female}$	women are female human beings;	
$\mathtt{childOf} \circ \mathtt{childOf} \subseteq \mathtt{grandChildOf}$	the child of the child is the grandchild.	

In general, the syntax of a *Knowledge Representation Language* is characterized by the types of constraints it allows, mainly in term of *operators* (eg. \sqcap , \circ , ...).

Representing Knowledge the Semantic Web

Semantic Web Stack

Semantic Web technologies are stratified.

Figure: The Semantic Web stack

Representing Knowledge the Semantic Web

Semantic Web technologies are stratified.

Some of these are knowledge representation languages.

Figure: The Semantic Web stack

OWL is the concise name of the Web Ontology Language, currently at version 2.

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/

Three different *profiles* (fragments) have been defined for it (see http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/):

- OWL-RL quite good expressive power;
- OWL-QL for large ABox;
- OWL-EL very efficient, also in presence of large TBox.

Here we consider OWL-EL

OWL is the concise name of the Web Ontology Language, currently at version 2.

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/

Three different *profiles* (fragments) have been defined for it (see http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/):

- OWL-RL quite good expressive power;
- OWL-QL for large ABox;
- OWL-EL very efficient, also in presence of large TBox.

Here we consider OWL-EL.

OWL-EL is underpinned by the description logic \mathcal{EL}^{++} . It has been devided in the biohealth domain (SNOMED-CT).

Concept constructors of \mathcal{EL}^{++} are:

- \(\sum \) nothing;
- {a} nominal, the set with only member a;
- \bullet $\exists R.C$ existential restriction, all those items related with some element in C
- $C \sqcap D$ conjunction, all the members of both C and D
- concrete domains (e.g. age > 18)

Such constructors can be used to form complex concepts, e.g.

 $\exists childOf.\{Fido\} := \{Edwige\}, \quad \exists childOf.(Male \sqcap Human)$

OWL-EL and \mathcal{EL}^{++}

OWL-EL is underpinned by the description logic \mathcal{EL}^{++} . It has been devided in the biohealth domain (SNOMED-CT).

Concept constructors of \mathcal{EL}^{++} are:

- ⊤ (every)thing;
- {a} nominal, the set with only member a;
- $\exists R.C$ existential restriction, all those items related with some element in C;
- $C \sqcap D$ conjunction, all the members of both C and D;
- concrete domains (e.g. age > 18).

Such constructors can be used to form complex concepts, e.g.

 $\exists childOf.\{Fido\} := \{Edwige\}, \quad \exists childOf.(Male \sqcap Human)\}$

OWL-EL and \mathcal{EL}^{++}

OWL-EL is underpinned by the description logic \mathcal{EL}^{++} . It has been devided in the biohealth domain (SNOMED-CT).

Concept constructors of \mathcal{EL}^{++} are:

- ⊤ (every)thing;
- {a} nominal, the set with only member a;
- $\exists R.C$ existential restriction, all those items related with some element in C;
- $C \sqcap D$ conjunction, all the members of both C and D;
- concrete domains (e.g. age > 18).

Such constructors can be used to form complex concepts, e.g.

 $\exists childOf.\{Fido\} := \{Edwige\}, \exists childOf.(Male \sqcap Human).$

\mathcal{EL}^{++} concepts - Thing

Let us consider the following possible world (interpretation)

```
\begin{array}{lll} \Delta & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana}, \textit{Edwige}, \textit{Fido} \} \\ \text{Human} & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana} \} \\ \text{Female} & := & \{ \textit{Alice}, \textit{Dana}, \textit{Edwige} \} \\ \text{Male} & := & \{ \textit{Bob}, \textit{Charlie}, \textit{Fido} \} \end{array}
```

Alice childOf Charlie Alice childOf Dana Edwige childOf Fido Charlie relativeOf Bob Bob ownerOf Fido.

\mathcal{EL}^{++} concepts - Thing

Let us consider the following possible world

 $\begin{array}{lll} \Delta & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana}, \textit{Edwige}, \textit{Fido} \} \\ \text{Human} & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana} \} \\ \text{Female} & := & \{ \textit{Alice}, \textit{Dana}, \textit{Edwige} \} \\ \text{Male} & := & \{ \textit{Bob}, \textit{Charlie}, \textit{Fido} \} \end{array}$

Alice childOf Charlie Alice childOf Dana Edwige childOf Fido Charlie relativeOf Bob Bob ownerOf Fido.

 $\top := \{ Alice, Bob, Charlie, Dana, Edwige, Fido \}$

\mathcal{EL}^{++} concepts - Nothing

Let us consider the following possible world

 $\begin{array}{lll} \Delta & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana}, \textit{Edwige}, \textit{Fido} \} \\ \text{Human} & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana} \} \\ \text{Female} & := & \{ \textit{Alice}, \textit{Dana}, \textit{Edwige} \} \\ \text{Male} & := & \{ \textit{Bob}, \textit{Charlie}, \textit{Fido} \} \end{array}$

Alice childOf Charlie Alice childOf Dana Edwige childOf Fido Charlie relativeOf Bob Bob ownerOf Fido.

 $\bot := \emptyset$

Let us consider the following possible world

 $\begin{array}{lll} \Delta & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana}, \textit{Edwige}, \textit{Fido} \} \\ \text{Human} & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana} \} \\ \text{Female} & := & \{ \textit{Alice}, \textit{Dana}, \textit{Edwige} \} \\ \text{Male} & := & \{ \textit{Bob}, \textit{Charlie}, \textit{Fido} \} \end{array}$

Alice childOf Charlie Alice childOf Dana Edwige childOf Fido Charlie relativeOf Bob Bob ownerOf Fido.

 ${Alice} := {Alice}$

Let us consider the following possible world

 $\begin{array}{lll} \Delta & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana}, \textit{Edwige}, \textit{Fido} \} \\ \text{Human} & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana} \} \\ \text{Female} & := & \{ \textit{Alice}, \textit{Dana}, \textit{Edwige} \} \\ \text{Male} & := & \{ \textit{Bob}, \textit{Charlie}, \textit{Fido} \} \end{array}$

Alice childOf Charlie Alice childOf Dana Edwige childOf Fido Charlie relativeOf Bob Bob ownerOf Fido.

$\exists \mathtt{ownerOf}.\mathtt{Male} := \{Bob\}$

\mathcal{EL}^{++} concepts - conjunction (intersection)

Let us consider the following possible world

 $\begin{array}{rcl} \Delta & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana}, \textit{Edwige}, \textit{Fido} \} \\ \text{Human} & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana} \} \\ \text{Female} & := & \{ \textit{Alice}, \textit{Dana}, \textit{Edwige} \} \\ \text{Male} & := & \{ \textit{Bob}, \textit{Charlie}, \textit{Fido} \} \end{array}$

Alice childOf Charlie Alice childOf Dana Edwige childOf Fido Charlie relativeOf Bob Bob ownerOf Fido.

 $\texttt{Female} \sqcap \texttt{Human} := \{\textit{Alice}, \textit{Dana}\}$

Let us consider the following possible world

 $\begin{array}{rcl} \Delta & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana}, \textit{Edwige}, \textit{Fido} \} \\ \text{Human} & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana} \} \\ \text{Female} & := & \{ \textit{Alice}, \textit{Dana}, \textit{Edwige} \} \\ \text{Male} & := & \{ \textit{Bob}, \textit{Charlie}, \textit{Fido} \} \end{array}$

Alice childOf Charlie Alice childOf Dana Edwige childOf Fido Charlie relativeOf Bob Bob ownerOf Fido.

$\exists \mathtt{childOf.} \{\mathit{Fido}\} := \{\mathit{Edwige}\}$

\mathcal{EL}^{++} constraints

Constraints allowed in \mathcal{EL}^{++} TBox are of the types:

- $C \sqsubseteq D$ every member of C is a member of D as well;
- $C \equiv D$ the sets C and D coincide;
- $R_1 \circ ... \circ R_n \sqsubseteq S$ the *composition* of $R_1, ..., R_n$ is a subrelation of S;
- $dom(R) \sqsubseteq C$ if x is related to y by R, then x must be a member of C;
- range(R) $\subseteq C$ if x is related to y by R, then y must be a member of C.

\mathcal{EL}^{++} constraints - subsumption

The following is a model for

Man □ Human

 $\begin{array}{lll} \Delta & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana}, \textit{Edwige}, \textit{Fido} \} \\ \text{Human} & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana} \} \\ \text{Female} & := & \{ \textit{Alice}, \textit{Dana}, \textit{Edwige} \} \\ \text{Male} & := & \{ \textit{Bob}, \textit{Charlie}, \textit{Fido} \} \\ \text{Man} & := & \{ \textit{Bob}, \textit{Charlie} \} \end{array}$

\mathcal{EL}^{++} constraints - equivalence

The same is a model for

 $Man \equiv Human \sqcap Male$

 $\begin{array}{lll} \Delta & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana}, \textit{Edwige}, \textit{Fido} \} \\ \text{Human} & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana} \} \\ \text{Female} & := & \{ \textit{Alice}, \textit{Dana}, \textit{Edwige} \} \\ \text{Male} & := & \{ \textit{Bob}, \textit{Charlie}, \textit{Fido} \} \\ \text{Man} & := & \{ \textit{Bob}, \textit{Charlie} \} \end{array}$

\mathcal{EL}^{++} constraints - composition (1/2)

Let us consider

 ${\tt childOf} \circ {\tt relativeOf} \subseteq {\tt relativeOf}$ the child of a relative is a relative as well.

The following is *not* a model for this constraint (*Alice* should be relative of *Charlie*):

 $\Delta := \{Alice, Bob, Charlie, Dana, Edwige, Fido\} \mid$

 $Human := \{Alice, Bob, Charlie, Dana\}$

Female := {Alice, Dana, Edwige}

 $\mathtt{Male} := \{Bob, Charlie, Fido\}$

 $\mathtt{Man} := \{ Bob, Charlie \}$

\mathcal{EL}^{++} constraints - composition (2/2)

A model for childOf \circ relativeOf \subseteq relativeOf is: The following is *not* a model for this constraint (*Alice* should be relative of *Bob*):

 $\begin{array}{lll} \Delta & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana}, \textit{Edwige}, \textit{Fido} \} \\ \text{Human} & := & \{ \textit{Alice}, \textit{Bob}, \textit{Charlie}, \textit{Dana} \} \\ \text{Female} & := & \{ \textit{Alice}, \textit{Dana}, \textit{Edwige} \} \\ \text{Male} & := & \{ \textit{Bob}, \textit{Charlie}, \textit{Fido} \} \\ \text{Man} & := & \{ \textit{Bob}, \textit{Charlie} \} \end{array}$

\mathcal{EL}^{++} constraints - domain

It is a model for

 $dom(ownerOf) \sqsubseteq Human$ all owners are humans.

 $\begin{array}{rcl} \Delta & := & \{Alice, Bob, Charlie, Dana, Edwige, Fido\} \\ \text{Human} & := & \{Alice, Bob, Charlie, Dana\} \\ \text{Female} & := & \{Alice, Dana, Edwige\} \\ \text{Male} & := & \{Bob, Charlie, Fido\} \\ \text{Man} & := & \{Bob, Charlie\} \end{array}$

\mathcal{EL}^{++} constraints - range

But this is not a model for

 $range(ownerOf) \sqsubseteq Human$ all *owned* are humans.

 $\begin{array}{rcl} \Delta & := & \{ Alice, Bob, Charlie, Dana, Edwige, Fido \} \\ \text{Human} & := & \{ Alice, Bob, Charlie, Dana \} \\ \text{Female} & := & \{ Alice, Dana, Edwige \} \\ \text{Male} & := & \{ Bob, Charlie, Fido \} \\ \text{Man} & := & \{ Bob, Charlie \} \end{array}$

Using Knowledge encoded in \mathcal{EL}^{++}

Reasoning

Defining a formal semantics enables some $\ensuremath{\textit{reasoning}}$ task to be performed automatically.

Here we will see

- consistency checking, to check the absence of logical errors,
- inferencing, to extract hidden knowledge.

Reasoning - Consistency

An ontology is consistent if a possible world which matches it exists.

Let us consider the following ontology:

TBox	ABox
$ exttt{Woman} \equiv exttt{Female} \sqcap exttt{Human}$	Woman(Alice)
$\mathtt{Man} \equiv \mathtt{Male} \sqcap \mathtt{Human}$	Man(Charlie)
$childOf \circ relativeOf \subseteq relativeOf$	Alice childOf Charlie
$dom(ownerOf) \sqsubseteq Human$	Charlie relativeOf Bob
, , –	BobownerOf Fido

It is consistent (see before for a model).

Reasoning - Consistency - example 2

The following one is *not* consistent.

TBox	ABox
$ exttt{Woman} \equiv exttt{Female} \sqcap exttt{Human}$	Woman(Alice)
$ exttt{Man} \equiv exttt{Male} \sqcap exttt{Human}$	Man(Charlie)
$\verb childOf \circ relativeOf \subseteq relativeOf $	Alice childOf Charlie
$dom(ownerOf) \sqsubseteq Human$	Charlie relativeOf Bob
$\texttt{Male} \sqcap \texttt{Female} \equiv \bot$	BobownerOf Fido
	Female(Bob)

Bob must be Male, as it is a Man, all men are Male and Male and Female are disjoint.

Reasoning - Consistency - example 3

The following one is *not* consistent.

TBox	ABox
$ exttt{Woman} \equiv exttt{Female} \sqcap exttt{Human}$	Woman(Alice)
$ exttt{Man} \equiv exttt{Male} \sqcap exttt{Human}$	Man(Charlie)
$ ext{childOf} \circ ext{relativeOf} \subseteq ext{relativeOf}$	Alice childOf Charlie
$dom(ownerOf) \sqsubseteq Human$	Charlie relativeOf Bob
$\texttt{Human} \sqcap \textit{Edwige} \equiv \bot$	BobownerOf Fido
	Edwige ownerOf Fido

Edwige can't be the owner of Fido because Edwige is not a member of Human.

TBox	ABox
$ exttt{Woman} \equiv exttt{Female} \cap exttt{Human}$	Woman(Alice)
$ exttt{Man} \equiv exttt{Male} \sqcap exttt{Human}$	Man(Charlie)
$childOf \circ relativeOf \subseteq relativeOf$	Alice childOf Charlie
$dom(ownerOf) \sqsubseteq Human$	Charlie relativeOf Bob
	BobownerOf Fido
Inferred Statements	

TBox	ABox
$ exttt{Woman} \equiv exttt{Female} \sqcap exttt{Human}$	Woman(Alice)
$\mathtt{Man} \equiv \mathtt{Male} \sqcap \mathtt{Human}$	Man(Charlie)
$\verb childOf \circ relativeOf \subseteq relativeOf $	Alice childOf Charlie
$dom(ownerOf) \sqsubseteq Human$	Charlie relativeOf Bob
	BobownerOf Fido
Inferred Statements	
Female(Alice)	
Human(Alice)	

TBox	ABox
$ exttt{Woman} \equiv exttt{Female} \sqcap exttt{Human}$	Woman(Alice)
$\mathtt{Man} \equiv \mathtt{Male} \sqcap \mathtt{Human}$	Man(Charlie)
$childOf \circ relativeOf \subseteq relativeOf$	Alice childOf Charlie
$dom(ownerOf) \sqsubseteq Human$	Charlie relativeOf Bob
	BobownerOf Fido
Inferred Statements	
Female(Alice)	
Human(Alice)	
Male(Charlie)	
Human (Charlie)	

TBox	ABox
$ exttt{Woman} \equiv exttt{Female} \sqcap exttt{Human}$	Woman(Alice)
$\mathtt{Man} \equiv \mathtt{Male} \sqcap \mathtt{Human}$	Man(Charlie)
$\verb childOf \circ \verb relativeOf \subseteq \verb relativeOf $	Alice childOf Charlie
$dom(ownerOf) \sqsubseteq Human$	Charlie relativeOf Bob
	BobownerOf Fido
Inferred Statements	
Female(Alice)	
Human(Alice)	
Male(Charlie)	
Human(Charlie)	
Alice relativeOf Bob	

TBox	ABox
$ exttt{Woman} \equiv exttt{Female} \sqcap exttt{Human}$	Woman(Alice)
$\mathtt{Man} \equiv \mathtt{Male} \sqcap \mathtt{Human}$	Man(Charlie)
$\verb childOf \circ relativeOf \subseteq relativeOf $	Alice childOf Charlie
$dom(ownerOf) \sqsubseteq Human$	Charlie relativeOf Bob
	BobownerOf Fido
Inferred Statements	
Female(Alice)	
Human(Alice)	
Male(Charlie)	
Human(Charlie)	
Alice relativeOf Bob	
$\operatorname{Human}(Bob)$	

Thank You!

 $(\mathsf{questions?})$