

Algoritmos de Escalonamento

Temas

Por que usá-los?

Tipos

Calculando

11 Por que usá-los?

São encarregados de organizar e conduzir os processos para que nenhum deles monopolize a CPU.

21 Tipos

FIFO (First In, First Out)

Este algoritmo é muito direto e simples, mas também aquele com o menor desempenho. Basicamente, neste algoritmo, o primeiro processo que chega é executado e, uma vez finalizado, o próximo é executado.

Processos	Chegada	Tempo de uso da CPU (ms)
P1	0	11
P2	2	3
P3	3	3
P4	4	3

Algoritmos de Escalonamento

SJF (Shortest Job First)

Os processos mais curtos são priorizados primeiro, independentemente da chegada; e caso os processos sejam iguais, utilizará o método FIFO.

Processos	Chegada	Tempo de uso da CPU (ms)
P1	0	8
P2	2	5
P3	3	2
P4	4	5

DigitalHouse>

SRTF (Shortest remaining time first)

Adicionando a substituição de processos ao algoritmo SJF obtemos SRTF, capaz de substituir um processo de longa duração para executar outros mais curtos.

Processos	Chegada	Tempo de uso da CPU (ms)
P1	0	8
P2	2	5
P3	4	2
P4	5	5

DigitalHouse>

Round Robin (RR)

Este algoritmo é circular, sempre retornando ao primeiro processo após passar pelo último. Para controlar este método, a cada processo é atribuído um intervalo de tempo denominado quantum. Exemplo de quantum = 4.

Processos	Chegada	Tempo de uso da CPU (ms)
P1	0	9
P2	1	5
P3	2	3
P4	4	3

10

9

Digital Houses

14

15

13

31 Calculando

Processos	Chegada	Tempo de uso da CPU (ms)
P1	0	9
P2	1	5
P3	2	3
P4	4	3

FIFO

Processos	Chegada	Tempo de uso da CPU (ms)	Inicio	Fim
P1	0	9	0	9
P2	1	5	9	14
P3	2	3	14	17
P4	4	3	17	20

FIFO

10 11 12 13 14

15 | 16 | 17

18 | 19 | 20

Processos	Chegada	Tempo de uso da CPU (ms)	Inicio	Fim
P1	0	9	0	9
P2	1	5	15	20
P3	2	3	9	12
P4	4	3	12	15

1 2 3 4 5 6 7 8 9

16 | 17 | 18 | 19 | 20

10 11 12

13 | 14 | 15

SRTF

Processos	Chegada	Tempo de uso da CPU (ms)	Inicio	Fim
P1	0	9	0 > 12	1 > 20
P2	1	5	1 > 8	2 > 12
P3	2	3	2	5
P4	4	3	5	8

SRTF

3

6 7 8

DigitalHouse>

Round Robin (Q=4)

Processos	Chegada	Tempo de uso da CPU (ms)	Inicio	Fim
P1	0	9	0 > 14 > 19	4 > 18 > 20
P2	1	5	4 > 18	8 > 19
P3	2	3	8	11
P4	4	3	11	14

Round Robin (Q=4)

Agora é a sua vez

FIFO				
Processos Chegada Tempo de uso da CPU Inicio Fim				
P1	0	3		
P2	2	6		
P3	4	4		
P4	6	5		
P5	8	2		

DigitalHouse>