Combinator Parsers

1. Basic

- Parser: A parser is a function that, given an input string, returns a set of possible parses. Each parse is typically a pair consisting of the parsed result and the remaining unparsed portion of the input.
- Combinator: A combinator is a higher-order function that takes one or more parsers as arguments and returns a new parser.

2. Formally defined parsers

Let P be a parser with the type signature:

$$P: \Sigma^* \to \mathcal{P}(\mathcal{R} \times \Sigma^*)$$

where Σ^* is the set of all possible input strings, \mathcal{R} is the set of parse results, and \mathcal{P} denotes the power set.

This means that a parser P takes an input string and returns a set of pairs. Each pair consists of a result and the remaining unparsed part of the input.

3. Combinators

• Choice: The choice combinator alt tries two parsers and returns the result of the first successful parser.

alt
$$(P,Q)$$
 def λs .filter results from $(P(s) \cup Q(s))$ (1)

• Sequence: The sequence combinator seq combines two parsers such that the second parser is applied to the remaining input after the first parser succeeds.

$$\operatorname{seq}(P,Q) \operatorname{\mathbf{def}} \lambda s.\{(r_1 \oplus r_2, s'') \mid (r_1, s') \in P(s)$$
 (2)

and
$$(r_2, s'') \in Q(s')$$
 (3)

where \oplus denotes some combination of the results r_1 and r_2 .

• Many: The many combinator many applies a parser zero or more times.

$$many(P) \operatorname{def} \lambda s.\{(results, s') \mid (4)$$

$$P$$
 and s' is the remaining input $\{$

• Many1: The many1 combinator many1 applies a parser one or more times.

$$many1(P) \operatorname{def} \operatorname{seq}(P, many(P))$$
 (7)

• Option: The option combinator opt applies a parser and returns a default value if the parser fails.

$$\operatorname{opt}(P, d) \operatorname{\mathbf{def}} \lambda s. \{(r, s) \mid (r, s) \in P(s)\} \cup \{(d, s) \mid \operatorname{if} P(s) \text{ fails}\}$$
 (8)

4. Formal definitions using Category Theory

In category theory, parsers can be modeled as functors between categories. For instance:

- Category of Parsers:
 - Objects: Parsers.
 - Morphisms: Combinators.
- Functorial Composition: A parser combinator can be viewed as a functor that maps parsers to new parsers. For example, the sequence combinator is a functor that maps a pair of parsers to a new parser.

Summary

The mathematical formalism of combinator parsers involves defining parsers as functions that map input strings to sets of parse results and remaining input. Combinators are higher-order functions that combine parsers in various ways. This formalism can be described using set theory, formal language theory, and category theory, providing a rigorous foundation for understanding and designing parser combinators.

Example: Parsing add(x, y) Expression

1. Category of Parsers

Let \mathcal{P} be the category of parsers:

- \bullet **Objects**: Parsers P that parse components of the expression.
- Morphisms: Functions that transform parsed results.

2. Basic Parsers

Define basic parsers for the operator and the arguments:

- Parser for "add": P_{add}
- Parser for argument "x": P_x
- Parser for argument "y": P_y

These parsers are defined as:

$$P_{\text{add}}(s) = \begin{cases} \{(\text{``add''}, s')\} & \text{if } s = \text{``add''} \cdot s' \\ \emptyset & \text{otherwise} \end{cases}$$
 (9)

$$P_x(s) = \begin{cases} \{(x, s')\} & \text{if } s = x \cdot s' \\ \emptyset & \text{otherwise} \end{cases}$$
 (10)

$$P_{y}(s) = \begin{cases} \{(y, s')\} & \text{if } s = y \cdot s' \\ \emptyset & \text{otherwise} \end{cases}$$
 (11)

3. Combining Parsers with Functors

Define a functor F that combines these parsers:

$$F: \mathcal{P} \times \mathcal{P} \times \mathcal{P} \to \mathcal{P} \tag{12}$$

The functor F maps P_{add}, P_x , and P_y to a new parser that parses the expression add(x, y).

4. Functor Action on Objects

Let P_{add}, P_x , and P_y be parsers:

$$F(P_{\text{add}}, P_x, P_y) = \lambda s.\{(\text{add}(a, b), s'') \mid (\text{``add''}, s')\}$$
 (13)

$$\in P_{\text{add}}(s), (a, s'') \in P_x(s'), (b, s'') \in P_y(s')$$
 (14)

Here, $P_{\text{add}}(s)$, $P_x(s')$, and $P_y(s'')$ parse "add", x, and y from the input strings s, s', and s'', respectively. The functor combines these parsers to produce a parser that parses add(x, y).

5. Functor Action on Morphisms

Let $\phi: P_x \to P_{x'}$ and $\psi: P_y \to P_{y'}$ be morphisms (functions that transform parsed results):

$$F(\phi, \psi) = \lambda(\operatorname{add}(a, b), s'').(\operatorname{add}(\phi(a), \psi(b)), s'')$$
(15)

Where ϕ and ψ transform the results of the parsers P_x and P_y , respectively.

6. Example: Parsing add(3, 4)

Consider the parsers P_{add} , P_x , and P_y that parse the strings "add", "3", and "4":

$$P_{\text{add}}(s) = \{(\text{``add''}, s)\}\$$
 (16)

$$P_x(s) = \{(3, s)\}\tag{17}$$

$$P_y(s') = \{(4, s')\}\tag{18}$$

The functor F produces a new parser $F(P_{\text{add}}, P_x, P_y)$ that parses the expression:

$$F(P_{\text{add}}, P_x, P_y)(s) = \{(\text{add}(3, 4), s'') \mid (\text{"add"}, s')$$
(19)

$$\in P_{\text{add}}(s), (3, s'') \in P_x(s'), (4, s'') \in P_y(s'')$$
 (20)

Thus, the parser $F(P_{\text{add}}, P_x, P_y)$ parses the expression add(3, 4).

7. Diagram

Here is a commutative diagram showing the functor F:

$$\begin{array}{cccc} P_{\mathrm{add}} & P_{x} & P_{y} & \xrightarrow{F} F(P_{\mathrm{add}}, P_{x}, P_{y}) \\ \phi & \phi & \psi & & \downarrow F(\phi, \psi) \\ P_{\mathrm{add}} & P_{x'} & P_{y'} & \xrightarrow{F} F(P_{\mathrm{add}}, P_{x'}, P_{y'}) \end{array}$$