Tema 1. Introducción

Introducción a las Redes de Computadores

Isidro Calvo

Dpto. Ingeniería de Sistemas y Automática Septiembre 2012

Índice

- Rol de las redes de computadoras
- Terminología básica de comunicaciones
- Clasificación de las redes de computadoras
- Software de redes
- Modelo de referencia OSI de ISO
- Pila de protocolos de TCP/IP
- Modelo de referencia usado durante el curso
- Estandarización de tecnologías de comunicación

Rol de las redes de computadoras

- 1977, Ken Olsen (Presidente de DEC, 2º proveedor de computadoras tras IBM de entonces):
 - Pregunta: ¿Porqué DEC no persigue el mercado de las computadoras personales
 - Respuesta: No hay razón alguna para que un individuo tenga una computadora en su casa
- La historia demostró lo contrario y hoy DEC no existe.
- ¿Para qué se usan las computadoras hoy?
 - Procesamiento de textos
 - Juegos
 - Multimedia
 - Almacenamiento de datos
 - □ Acceso a Internet:
 - Acceso a información remota
 - Comunicación persona a persona
 - Entretenimiento interactivo
 - Comercio electrónico

Rol de las redes de computadoras

- Presentes en diferentes tipos de aplicaciones:
 - Empresariales
 - □ Domésticas y de ocio
 - Industriales y de producción
 - Comercio electrónico
- Permiten:
 - Conectar dispositivos situados a largas distancias
 - Acceder a información remota
 - Establecer diferentes tipos de comunicación
 - Conectar dispositivos y tecnologías heterogéneos
 - Crear aplicaciones interactivas

Rol de las redes de computadoras

Terminología básica de comunicaciones

- Modelo simplificado de la comunicación
- Tipos de datos y sus características
- Tipos de enlace
- Canal de comunicación
- Unidades métricas
- Paradigmas de comunicación en aplicaciones distribuidas
- Calidad de Servicio QoS

Terminología básica de comunicaciones Modelo simplificado de la comunicación

- Fuente: Genera los datos a transmitir. (Teléfonos / Ordenadores)
- Transmisor: Convierte los datos en señales a transmitir (Módem / Tarjeta de red)
- Sistema de transmisión: Redes de transmisión que transporta los datos (RTC / RDSI / Internet / LAN / WAN)
- Receptor: Recibe la señal del sistema de transmisión y la convierte en datos para el dispositivo destino (Módem / Tarjeta de red)
- Destino: Toma los datos del receptor y los utiliza en destino (Teléfono / Ordenadores)

Terminología básica de comunicaciones Modelo simplificado de la comunicación

Ejemplo: Comunicación vía Modem

(b) Example

Tema 1. Introducción a las redes - Isidro Calvo (UPV/EHU)

Terminología básica de comunicaciones Modelo simplificado de la comunicación

Ejemplo: Comunicación a través de redes

Terminología básica de comunicaciones Tipos de datos y sus características

Problemas del Porimer Mundo

Terminología básica de comunicaciones Tipos de datos y sus características

- Datos en modo bloque (Representación digital):
 - □ Texto
 - Texto plano, Texto formateado, Hipertexto
 - Imágenes
 - Generados por computador, Imágenes digitalizadas
- Datos continuos (Representación analógica y/o digital)
 - Audio
 - Voz
 - Audio general
 - □ Vídeo
 - Clips de vídeo, Películas (Video on demand), Videoconferencia, etc.
- Algoritmos de compresión que reducen el tamaño de los diferentes tipos de datos:
 - ☐ GZIP (datos), JPEG (imagen), WMA (audio), MPEG (audio y vídeo), etc.

Terminología básica de comunicaciones Canal de comunicación

- Canal de comunicación:
 - Hace referencia al medio de transmisión físico, p.e. un cable de comunicación, o a una conexión lógica sobre un medio compartido, p.e. un canal (frecuencia) de radio
 - Un canal transporta una señal con información de una fuente a un destino
 - La capacidad de transmisión de un canal se mide en ancho de banda en Hercios (Hz) o tasa de datos en bits por segundo (bps)
- Clasificación:
 - Respecto al flujo de datos (comunicación Duplex y Half-Duplex):
 - Simétricos: igual flujo de datos en ambas direcciones.
 Ejemplo: línea telefónica de voz
 - **Asimétricos**: diferente flujo de datos en ambas direcciones. *Ejemplo*: ADSL Velocidad de subida vs. velocidad de bajada
 - □ Respecto a la *temporización*:
 - Síncrono: Tasa de envío de información (bits) constante Ejemplo: Comunicación vía serie clásica – RS 232
 - Asíncrono: Tasa de información (bits) variable
 Ejemplo: Envío de ficheros a través de Internet

Terminología básica Tipos de enlace

Terminología básica de comunicaciones Unidades métricas

- Las velocidades de comunicación máximas del canal (ancho de banda) se miden en bits/seg
- Normalmente expresan velocidades máximas
 - Test de velocidad en: http://www.testdevelocidad.es/

- Se usan para medir el volumen de *datos enviados* y el *tiempo* de entrega. Ejemplos:
 - Una línea de comunicación de 1 Mbps permite transmitir 10⁶ (1.000.000) bits por segundo
 - Un reloj de 100 pseg marca un tick cada 10⁻¹⁰ (0.000000001) segundos

Exp.	Explicit	Prefix	Ехр.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10-6	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 -12	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.00000000000001	femto	10 ¹⁵	1,000,000,000,000	Peta
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa
10 ⁻²¹	0.0000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 -24	0.0000000000000000000000000000000000000	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

Terminología básica de comunicaciones Aplicaciones distribuidas

- Una aplicación distribuida es una aplicación que se ejecuta en dos o más ordenadores conectados a través de una red.
- Paradigmas de comunicación frecuentemente utilizados en aplicaciones distribuidas:
 - □ Cliente / Servidor
 - □ Peer to Peer
 - □ Publisher / Subscriber

100

Terminología básica de comunicaciones Paradigmas de comunicación en aplicaciones distribuidas

- Cliente / Servidor
 - Las tareas se reparten entre los proveedores de recursos o *servicios*, llamados *servidores*, y los demandantes, llamados *clientes*.
 - Un cliente realiza peticiones a otro programa, el servidor, que le da respuesta.
 - Ej: Descarga de una página Web

M

Terminología básica de comunicaciones Paradigmas de comunicación en aplicaciones distribuidas

- Peer to Peer (P2P)
 - Todos o algunos aspectos de la comunicación funcionan sin clientes ni servidores fijos, sino que los participantes se comportan como iguales entre sí actuando simultáneamente como clientes y servidores.
 - □ Los participantes permiten usar una porción de sus recursos a otros participantes.
 - Proyecto SETI (Search for ExtraTerrestrial Intelligence), http://es.wikipedia.org/wiki/SETI
 - Software de descarga de ficheros (eMule, Kazaa, etc.)

w

Terminología básica de comunicaciones Paradigmas de comunicación en aplicaciones distribuidas

- Publicador / Subscriptor (*Publisher/Subscriber*)
 - Es un modelo de comunicación en el que los productores de los mensajes (publicadores) los envían a un intermediario que los distribuye entre los participantes registrados (subscriptores) a un determinado tipo de mensaje (tópicos)
 - Ventajas:
 - Aplicaciones poco acopladas
 - Alto grado de escalabilidad
 - Desventajas:
 - Posible existencia de cuellos de botella
 - Comunicación no orientada a conexión

Tema 1. Introducción a las redes - Isidro Calvo (UPV/EHU)

Terminología básica de comunicaciones Paradigmas de comunicación en aplicaciones distribuidas

Publicador / Subscriptor

Terminología básica de comunicaciones Calidad de servicio (QoS)

- Calidad de servicio (Quality of Service)
 - Algunas aplicaciones, en especial aplicaciones multimedia o industriales, requieren que un servicio se proporcione con unas características determinadas
 - □ Parámetros típicos:
 - Tasa de bits entregados (Bit rate)
 - Máximo Retardo (*Delay*)
 - Máxima Variación del Retardo (*Jitter*)
 - Tasa de bits erróneos (Bit error rate)
 - Algunas redes proporcionan mecanismos para negociar contratos entre los extremos finales de la conexión de forma que se aseguren unos valores determinados de estos parámetros

Clasificación de las redes

- Según la tecnología de transmisión:
 - Conmutación de circuitos
 - □ Conmutación de paquetes
- Según la topología:
 - Estrella
 - □ Bus
 - Malla
 - Anillo
 - □ Arbol
- Según el área que cubren:
 - □ WAN (Wide Area Network)
 - ☐ MAN (Metropolitan Area Network)
 - □ LAN (Local Area Network)
 - □ PAN (Personal Area Network)
 - Internet

Clasificación de las redes de computadores Tecnologías de transmisión

- Conmutación de circuitos
 - Orientado a conexión

- Conmutación de paquetes
 - No orientada a conexión:
 - Los paquetes pueden seguir diferentes caminos

- Orientado a conexión:
 - Se establece un circuito por el que se envían TODOS los paquetes

Clasificación de las redes de computadores Topología

Tema 1. Introducción a las redes - Isidro Calvo (UPV/EHU)

- WAN (Wide Area Network)
 - Conectan subredes separadas grandes distancias, del orden de 100 Km a 1000 Km, a través de países o continentes
 - □ Descansan en infraestructuras de comunicaciones compartidas, propiedad de empresas privadas o instituciones gubernamentales.
 - □ Frecuentemente cruzan rutas de acceso público
 - □ Algunas tecnologías usuales:
 - ATM, Frame Relay, RDSI (ISDN), Red Telefónica Básica (RTB), GPRS, UMTS, etc.

Tema 1. Introducción a las redes - Isidro Calvo (UPV/EHU)

- MAN (Metropolitan Area Network)
 - Son redes de alta velocidad (banda ancha) que dan cobertura en una zona geográficamente extensa. Típicamente cubren una ciudad o área metropolitana (distancias de hasta 10 Km)
 - Pueden ser públicas o privadas
 - Algunas aplicaciones:
 - Distribución de VoIP, Sistemas de videovigilancia municipal, Interconexión entre LANs, Conexión ordenador a ordenador, etc.
 - □ Pueden ser cableadas o inalámbricas:
 - Red de televisión por cable, o WiMAX (IEEE 802.16).

LAN (Local Area Network)

- Son redes de propiedad privada localizados en un edificio o un conjunto de edificios (p.e. un campus o una empresa) separados por pocos kilómetros de longitud.
- □ Se utilizan para conectar computadoras en instituciones, empresas, fábricas o incluso procesos industriales.
- □ Permiten compartir recursos como impresoras o sistemas de almacenamiento
- □ Las velocidades de transmisión son normalmente mucho mayores (p.e. Gigabit Ethernet proporciona tasas de hasta 1 Gbps)
- □ Disponibles en diferentes topologías: Bus, Anillo, Estrella, Malla o Árbol
- □ Permiten conocer de antemano los peores tiempos de transmisión
- □ Pueden ser cableadas (LAN) o inalámbricas (WLAN)
 - Ej: Ethernet (IEEE 802.3), Wifi (Wide Fidelity, IEEE802.11a/b/g)

Tema 1. Introducción a las redes - Isidro Calvo (UPV/EHU)

LAN (Local Area Network)

- PAN (Personal Area Network)
 - Redes usadas para comunicar diferentes tipos de dispositivos, tales como PCs, PDAs, teléfonos digitales, cámaras de fotos, sensores, etc. entre sí.
 - ☐ Su alcance es del orden de unos pocos metros.
 - □ Las redes PAN pueden usarse bien para interconectar los dispositivos entre sí o para conectar a redes de mayor nivel como Internet
 - □ Frecuentemente son redes inalámbricas (WPAN IEEE 802.15)
 - Algunas tecnologías típicas:
 - IrDA, Bluetooth (IEEE802.15.1), Zigbee (IEEE802.15.4), etc.

Clasificación de las redes de computadores Internet como red de redes

Clasificación de las redes de computadores Internet como red de redes

Software de redes

- Las aplicaciones actuales requieren el intercambio de información heterogénea (texto, ficheros, audio y vídeo) entre ordenadores de diferentes tipos
- Se trata de un problema que requiere un software complejo
- Solución: Aplicación de la filosofía: "Divide y vencerás"

En las ciencias de la computación, el término **divide y vencerás** (**DYV**) hace referencia a uno de los más importantes paradigmas de diseño algorítmico. El método está basado en la resolución recursiva de un problema dividiéndolo en dos o más subproblemas de igual tipo o similar. El proceso continúa hasta que éstos llegan a ser lo suficientemente sencillos como para que se resuelvan directamente. Al final, las soluciones a cada uno de los subproblemas se combinan para dar una solución al problema original. (Wikipedia)

Resultado:

□ Arquitecturas de referencia

.

Software de redes Arquitecturas de referencia

- Software de redes altamente estructurado (jerarquizado) en una pila de capas o niveles
- Cada capa o nivel realiza una funcionalidad diferente
- El número de capas, nombre, contenido y función de cada una difieren en función de la arquitectura de referencia
- Elementos clave en una arquitectura:
 - Capas con sus funcionalidades (qué hace cada una)
 - □ Servicios (qué ofrece/pide cada capa)
 - Interfaces entre capas adyacentes (cómo ofrece/pide servicios)
 - Protocolos (cómo se entienden capas homólogas)
- Características
 - Cada capa resuelve una parte del problema
 - Cada capa sólo interacciona directamente con las capas adyacentes e indirectamente con sus homólogas
 - Sustituir una capa no plantea problema al conjunto (siempre que la nueva cumple con las mismas funcionalidades)
 - Las operaciones se invierten en recepción

Software de redes Capas, Servicios, Protocolos e Interfaces

Filosofía:

- □ capa k ofrece servicios a capa (k+1)
- capa k sólo ve servicios de la capa (k-1)
- capa k de un sistema sólo se comunica con capa homóloga de otro sistema según un *protocolo*
- interfaz describe la comunicación entre capas adyacentes (cómo pedir y ofrecer servicios)

Tema 1. Introducción a las redes - Isidro Calvo (UPV/EHU)

Software de redes ¿Qué es un protocolo?

- Los protocolos permiten comunicar entidades equivalentes en sistemas distintos
- Es un lenguaje y por tanto dos entidades que se comunican con un protocolo determinado deben "hablar" el mismo idioma
- Entidades:
 - □ Aplicaciones de usuario
- Sistemas
 - Computador
 - Terminal
 - □ Sensor remoto

Software de redes Elementos clave de un protocolo

- Sintaxis
 - □ Formato de los datos a enviar
 - □ Niveles de las señales eléctricas
- Semántica
 - □ Control de la información
 - ☐ Gestión de errores
- Temporización
 - □ Sincronización de velocidades entre dispositivos
 - □ Secuenciación

Software de redes Arquitecturas de referencia

Ejemplo 1:

Tema 1. Introducción a las redes - Isidro Calvo (UPV/EHU)

Software de redes Arquitecturas de referencia

- Ejemplo 2:
 - http://redesdecomputadores.umh.es/simil_filosofo_traductor_se_cretaria.swf

Identificar:

capas, protocolos, servicios, interfaces y canal

Software de redes Arquitecturas de referencia

- Descomposición del problema de la comunicación:
 - □ Número variable de capas (4/5 capas para Internet 7 en el modelo OSI de ISO)
 - Cada capa añade información específica (Protocol Data Unit PDU ó Header / Tail)
 - Algunas capas pueden dividir un mensaje muy grande en varios más pequeños
 - Las operaciones realizadas en origen se invierten en destino
 - □ Se resuelven los problemas de direccionamiento:
 - Cada ordenador necesita una dirección en la red
 - Cada aplicación necesita un identificador para

Software

Software de redes Servicios implementadas en las capas

- Algunos ejemplos de servicios implementados por las capas:
 - □ **Direccionamiento:** Cada capa necesita un mecanismo para identificar a los emisores y a los receptores
 - Ejemplo: Dirección IP
 - ☐ Control de errores: Los circuitos de comunicación física no son perfectos. Ejemplo: Bit de paridad, comprobación de CRC (Cyclic Redundancy Check)
 - □ Control de flujo: Un emisor rápido puede saturar de datos a un receptor más lento
 - Ejemplo: Envío de mensajes de aviso
 - □ (Des)Fragmentación de la información: No es posible o rentable enviar mensajes muy largos (o cortos)
 - *Ejemplo*: Descomposición de un fichero grande en paquetes pequeños (p.e. 1500 bytes en Ethernet) para su transmisión.
 - □ **Enrutado**: Si existen varias rutas entre origen y destino deben tomarse decisiones para escoger la más adecuada, en base a una función de coste.
 - Multiplexado: Permite utilizar un único canal (físico o lógico) para establecer múltiples conexiones

Softu

Software de redes Comunicación entre capas al mismo nivel

- Las capas pueden ofrecer dos tipos de servicios a las capas que están sobre ellas:
 - Servicios orientados a conexión:
 - Comparación con el SERVICIO TELEFÓNICO
 - Fases del servicio:
 - Establecimiento de un canal de comunicación extremo a extremo
 - Transmisión de datos. Todos van por el mismo camino, no hace falta direccionar los datos
 - Normalmente los datos llegan en orden
 - Finalizar la conexión
 - Negociación de los parámetros de QoS
 - Servicios NO orientados a conexión:
 - Comparación con el SERVICIO POSTAL
 - Características:
 - No se establece un canal o circuito virtual
 - Los mensajes pueden ir por diferentes caminos
 - Todos los mensajes deben llevar la dirección de destino
 - Los datos pueden no llegar en orden

Software de redes Modelos de referencia

- Dos enfoques diferentes:
- Modelo OSI (Open System Interconnection) de ISO
 - □ Adoptado por la ISO (*International Organization for Standardization*) en 1984
 - □ Modelo general muy estructurado con unas capas muy definidas
 - □ No es una arquitectura de red, dado que no especifica los servicios y protocolos utilizados en cada capa. Sólo indica las capas existentes
 - □ De gran valor a nivel teórico
 - □ Define un conjunto de protocolos poco utilizados en la actualidad
 - Utiliza 7 capas
- Modelo (Pila de protocolos) TCP/IP
 - Orígenes en la red utilizada para interconectar universidades e instalaciones gubernamentales en los años 70
 - Definida para interconectar redes heterogéneas
 - Modelo improvisado a medida que han aparecido nuevas necesidades
 - □ Modelo de referencia poco claro. Se mezclan las funcionalidades
 - □ Define protocolos muy extendidos en la actualidad
 - ☐ Constituye el núcleo de Internet
 - Utiliza 4 capas

Modelo OSI de ISO Niveles

- Capa física
- Capa de enlace a datos
- Capa de red
- Capa de transporte
- Capa de sesión
- Capa de presentación
- Capa de aplicación

Modelo OSI de ISO Niveles

Modelo OSI de ISO Capa física

- Misión: Transmisión de bits entre nodos conectados
- Principales funciones:
 - Definir el medio o medios físicos por los que viaja la información: cable de pares trenzados, interfaz RS232, coaxial, guías de onda, aire, fibra óptica.
 - Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) usados para la transmisión de los datos por los medios físicos.
 - □ Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).
 - □ Transmitir el flujo de bits a través del medio.
 - Garantizar la conexión (aunque no la fiabilidad de dicha conexión).

Ejemplos:

□ EIA RS-232 (puertos COM), IEEE 802.3 (Ethernet), IEEE 802.11 (Wifi), USB, Bluetooth, etc.

Modelo OSI de ISO Capa física - Cableado

- Pares de cobre: 4 a 8 hilos trenzados 2 a 2 (mínima interferencia eléctrica)

 UTP Cable (4-pair)

 TWISTED
 - El más usado
 - UTP (Unshielded Twisted Pair) Sin apantallamiento
 - STP (Shielded Twisted Pair) Con malla cobre, menor atenuación, mayor distancia
 - Ancho de banda depende de grosor, aislamiento, grado de trenzado,...
 - Ej: RTB, RJ11 (4 pines, usado en telefonía), RJ45 (8 pines, usado en Ethernet)
- Coaxial: núcleo Cu, aislante, malla conductora (Cu, Al) y capa aislante
 - Mejor apantallamiento → mayor distancia y velocidad
 - Banda base (50 Ω), Banda ancha (75 Ω)
- **Fibra óptica**: 2 fibras de vidrio concéntricas ultrafinas con diferente índice de refracción
 - Sistemas de transmisión: LEDs (fibra multimodo), diodos láser (fibra monomodo)
 - WDM (Wavelength Division Multiplexing)

Modelo OSI de ISO Capa física – Cableado

Modelo OSI de ISO Capa física – Cables submarinos

- Mapa de los cables submarinos del mundo
 - <u>http://www.telegeography.com/telecom-resources/telegeography-infographics/submarine-cable-map/</u>

w

Modelo OSI de ISO Capa física – Espectro electromagnético

Espectro electromagnético

Uso en telecomunicaciones

Modelo OSI de ISO Capa enlace a datos

- Misión: Conseguir que la información circule, libre de errores, entre dos máquinas que estén conectadas directamente
- Principales funciones:
 - □ Define el formato de los bloques de información (tramas /frames) enviados
 - □ Dotar a cada *interfaz de red* de una dirección de capa de enlace
 - ☐ Gestionar la detección y/o corrección de errores (Subcapa LLC)
 - Solucionar los problemas de control de flujo (para evitar que un equipo más rápido desborde a otro más lento) (Subcapa LLC)
 - □ En caso de medios de comunicación compartidos arbitrar el uso del medio (Subcapa MAC)

Ejemplos:

- Estándares MAC del IEEE: 802.3 (*Ethernet*), 802.4 (*Token bus*), 802.5 (*Token Ring*), 802.11 (*WiFi*), 802.16 (*WiMax*)
- Estándar LLC del IEEE: 802.2

М

Modelo OSI de ISO Capa enlace a datos

- Capa de enlace a red = MAC + LLC
- En aquellas redes en las que el medio físico está compartido (lo que sucede en la mayoría de las LAN) se definen 2 subcapas:
 - MAC (Media Access Control) Política de acceso al medio.
 - Ej: Ethernet IEEE802.3, Token Bus IEEE 802.4, Token Ring IEEE 802.5, Wifi IEEE802.11
 - □ **LLC** (*Logical Link Control*) Proporciona los mecanismos básicos de control de errores y de control de flujo para establecer un enlace lógico punto a punto sobre una red de tipo broadcast.
 - Definido en IEEE802.2

Tema 1. Introducción a las redes - Isidro Calvo (UPV/EHU)

Modelo OSI de ISO Capa de red

- Misión: control de la subred, enviar paquetes de origen a destino
- Principales funciones:
 - Conocer la topología de la red
 - Identificar los nodos de la red (host y routers)
 - Decisión de la ruta que los paquetes deben seguir (*Enrutado ó encaminado*).
 Esta ruta puede ser estática o dinámica.
 - Control de tráfico, evitar atascos, congestión
 - Reserva de medios para servicios con QoS que indique la capa de transporte
 - Contabilidad del tráfico (facturación)
 - Trabaja con paquetes de tamaño fijo (p.e. ATM usa un tamaño de 53 bytes) o variable (p.e. TCP/IP: menor de 64 KB)

Ejemplos:

- CCITT X.25 (redes de conmutación de paquetes)
- □ IP (*Internet Protocol*) sin conexión, integración de subredes
- Capa ATM del modelo de referencia de ATM (Usada internamente en las telecos)

Modelo OSI de ISO Capa de red (Nodos Host / End Systems vs. Routers)

Tema 1. Introducción a las redes - Isidro Calvo (UPV/EHU)

w

Modelo OSI de ISO Capa de transporte

- **Misión:** Aceptar los datos provenientes de las capas superiores, dividirlos en unidades más pequeñas si es necesario, pasar éstas a la capa de red y asegurarse de que todas las piezas llegan correctamente al otro extremo
- Principales funciones:
 - Fragmentar / recomponer datos de sesión para pasárselos a la capa de red
 - Multiplexar varias sesiones a través de una única conexión de red
 - Establecer el tipo de servicio para la capa de sesión: orientado a conexión o no, parámetros de QoS
 - Control de la conexión: inicio y fin, flujo entre host rápido y lento, buffers, multiplexación
 - □ **Control de errores**: determinar qué se hace cuando se detecta un error en la transmisión
- Ejemplos:
 - □ CCITT X.224 (OSI TP4)
 - TCP (Transmission Control Protocol) orientado a conexión, comunicación fiable
 - □ UDP (User Datagram Protocol) no orientado a conexión, no garantiza comunicación fiable

Modelo OSI de ISO Capa de sesión

- Misión: establecer un servicio de comunicación fiable entre las aplicaciones que se ejecutan en máquinas diferentes
- Principales funciones:
 - Control de diálogo: Dar seguimiento de a quién le toca transmitir
 - Administración de token: Impedir que las aplicaciones situadas en los extremos de la sesión realicen una misma operación crítica al mismo tiempo
 - Recuperación: Añadir puntos de referencia en transmisiones largas para poder continuar desde donde se encontraban después de un fallo.

Ejemplos:

- RTP (Real-Time Protocol) y RTCP (Real-Time Control Protocol) Protocolos de sesión sobre UDP para aplicaciones multimedia sobre redes TCP/IP
- □ PPTP (Point to Point Tunneling Protocol)
- NetBIOS (Network Basic Input Output System)
- □ X.225 (ISO-SP, OSI Session Layer Protocol, ISO 8327)

Modelo OSI de ISO Capa de presentación

■ **Misión:** se encarga de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres (ASCII, Unicode, EBCDIC), números (*little-endian* tipo Intel, *big-endian* tipo Motorola), sonido o imágenes, los datos lleguen de manera reconocible

La capa de presentación es la primera que trabaja más con el contenido de la comunicación que en cómo se establece

Principales funciones:

- Controlar la sintaxis y semántica de la información transmitida
- □ *Cifrar y comprimir* los datos enviados
- Formatear los datos: Esta capa actuar cómo traductor de formatos

Ejemplos:

- □ ASCII
- Unicode
- □ ISO 8859

Modelo OSI de ISO Capa de aplicación

■ **Misión:** Ofrecer a las aplicaciones (de usuario o no) la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (POP y SMTP), gestores de bases de datos y protocolos de transferencia de archivos (FTP).

Nota: El usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente. Así por ejemplo un usuario no manda una petición "HTTP/1.0 GET index.html" para conseguir una página en html, ni lee directamente el código html/xml.

Algunos protocolos d	le la ca _l	pa de a	plicación
--	-----------------------	---------	-----------

- HTTP (HyperText Transfer Protocol) Protocolo de transferencia de páginas HTML
- □ FTP (File Transfer Protocol) Protocolo de transferencia de archivos para transferencia de archivos
- □ **DNS** (*Domain Name Service*) Servicio de nombres de dominio
- □ **DHCP** (*Dynamic Host Configuration Protocol*) Protocolo de configuración dinámica de anfitrión
- □ NAT (Network Address Translation) Traducción de dirección de red
- □ SSH (Secure SHell)
- □ TELNET para acceder a equipos remotos.
- POP (Post Office Protocol), IMAP (Internet Message Access Protocol) SMTP (Simple Mail Transport Protocol) para correo electrónico en TCP/IP
- □ **NTP** (Network Time Protocol)
- □ **Protocolos de ISO**: X.400 (Email), X.500 (Servicios de directorio), FTAM (*File Access Transfer and Management*)

Modelo TCP/IP Principales características

- Toma el nombre de dos de los protocolos más representativos: TCP e IP.
- El modelo OSI es más fácil de entender, pero el modelo TCP/IP es el que realmente se usa.
- Especificada y usada extensivamente antes del modelo de referencia de OSI
- Desarrollada por el DoD (Department of Defense) de los USA
 - □ Orígenes en ARPANET (1972)
 - Comunicar ordenadores por caminos redundantes (Topología en malla)
- Forma el núcleo de Internet.
 - Comunica diferentes redes de área local
 - □ Forma una red de Redes

Modelo TCP/IP Topología en malla

Rutas desde B		
<u>Hacia</u>	Enlace	Coste
Α	1	1
В	local	0
С	2	1
D	1	2
_E	4	1

Rutas desde C			
<u>Hacia</u>	Enlace	Coste	
Α	2	2	
В	2	1	
С	local	0	
D	5	2	
<u>E</u>	5	_1	

local

Tema 1. Introducción a las redes - Isidro Calvo (UPV/EHU)

10

Modelo TCP/IP Comparación con el modelo OSI de ISO

- TCP / IP supone una aproximación:
 - Más pragmática:
 - Primero surgen los protocolos y luego el modelo
 - Se solucionan problemas particulares, no "genéricos"
 - Evolución al ritmo de la implementación
 - Más simple
 - No válida como modelo de referencia
- Número de capas más reducido (4 capas)
 - Realmente define protocolos a nivel de red, transporte y aplicación, dejando abierto el uso de diversos estándares en los niveles 1 y 2 de OSI

Modelo TCP/IP Comparación con el modelo OSI de ISO

Modelo TCP/IP Comparación con el modelo OSI de ISO

OSI	TCP / IP
Elegante, modular, académico, abstracto, general	Improvisado, asimétrico, particular
Menos condicionado por protocolos	Arquitectura definida tras protocolos
Válido como modelo de referencia	Arquitectura particular
Distinción clara de los conceptos: servicio, interfaz, protocolo	Se confunden servicios, interfaces y protocolos
Redes broadcast no previstas (creación subcapa MAC)	Se adapta fácilmente a todo tipo de red
Interconexión redes heterogéneas no previstas	Nacida para interconexión de redes heterogéneas
Capas de sesión y presentación con poco contenido	Fusión de capas sesión, presentación y aplicación
Modelo más complejo	Modelo más simple

1

Modelo TCP/IP Niveles

- Capa de enlace de host a red
- Capa de internet
- Capa de transporte
- Capa de aplicación

Modelo TCP/IP Niveles – Capa de enlace de host a red

- Corresponde a las capas 1 y 2 del modelo OSI de ISO
- Cualquier protocolo que permita 'encapsular' los paquetes IP
- Algunos protocolos frecuentemente utilizados:
 - Ethernet cableada
 - □ Wifi
 - □ SLIP (Serial Line IP) Obsoleto. Paquetes IP encapsulados en línea serie, formato asíncrono
 - □ PPP (*Point to Point Protocol*). *Sucesor de SLIP*. Síncrono y asíncrono
 - □ X.25: Paquetes IP encapsulados en X.25
 - □ UMTS, GPRS
 - □ Redes de fibra óptica (ATM, FDDI, Ethernet)
 - □ Etc.

Modelo TCP/IP Niveles – Capa de Internet

- Equivale a nivel 3 de OSI en modo no conectado y sin control de flujo ni pérdida paquetes
- Principales protocolos:
 - □ IP: (Internet Protocol) Formación datagramas, fragmentación y reensamblado, tiempo de vida de los paquetes, tipo de protocolo superior, destino/origen, opciones adicionales, definición de un sistema de direccionamiento (Direcciones IP)
 - □ ARP (Address Resolution Protocol): Transformación direcciones entre nivel 2 (Enlace) y 3 (Internet)
 - □ **ICMP** (Internet Control Message Protocol): Información sobre problemas de envío de datagramas, gestión de red, tratamiento errores, etc.
 - □ **RIP** (Routing Information Protocol), **OSPF** (Open Shortest Path First): Protocolos de enrutado para determinar la mejor ruta que un paquete debe seguir a través de diversos routers.

Modelo TCP/IP Protocolo IP - Cabecera IPv4

Cada paquete IP tiene una cabecera que incluye los siguientes campos:

- Versión En IPv4 es 4
- IHL (Internet Header Length) Logitud de la cabecera)
- **TOS** (*Type of Service*) Prioridad, retardo, fiabilidad,... (QoS)
- Length Tamaño total (cabecera más datos) datagrama en bytes
- Identification Num. secuencia para reensamblar los que lo tengan igual

- Flags DF si se puede fragmentar, MF si es el último fragmento
- •Offset. Posición relativa de un datagrama en uno fragmentado
- TTL (Time to Live). Se decrementa en routers
- Checksum Permite comprobar errores de la cabecera
- Type Protocolo de nivel superior usado
- Address. Dirección IP origen (source) y destino (destination)
- Options Seguridad, Timestamp, etc.

Modelo TCP/IP Protocolo IP – Direcciones IPv4

- Las direcciones IPv4 usan 32 bits:
 - □ Prefijo: Indica una red física (Asignado por el NIC, Network Information Centre)
 - Sufijo: Identifica un nodo dentro de una red (Asignado por el administrador local)
- Formato: XXX.XXX.XXX.XXX (donde XXX va de 0..255)
- Tipos de direcciones
 - □ Clases A, B, C, D y E
- Algunas direcciones interesantes:
 - Localhost: 127.0.0.1
 - □ Direcciones para redes locales: 192.168.XXX.XXX
 - □ Direcciones multicast (Clase D): Rango 224-239.X.X.X

Modelo TCP/IP Protocolo IP – Direcciones IPv4

Modelo TCP/IP Protocolo IP – Direcciones IPv4

Modelo TC

Modelo TCP/IP Niveles – Capa de transporte

- Asume algunas de las tareas de la capa de transporte y de sesión del modelo OSI
- La pila TCP/IP proporciona dos protocolos principales
 - □ TCP (Transmission Control Protocol) Orientado a conexión
 - □ UDP (User Datagram Protocol) No orientado a conexión

Modelo TCP/IP Niveles – ProtocoloTCP

- TCP (*Transmission Control Protocol*)
- Protocolo orientado a conexión
 - Comunicación fiable entre pares de procesos
 - Gestión de la conexión (establecimiento, mantenimiento, fin)
 - Transporte de datos: (full dúplex, control de errores y flujo, paquetes ordenados, temporizaciones, control prioridad)
 - Notificación errores
 - Puede usarse en redes fiables y no fiables
- **Conexión:** Dirección IP + Puerto, diferentes conexiones usan diferentes puertos
- Puerto TCP (16 bits/65536) identifica una conexión en una máquina
- Algunos números de puerto están predefinidos para ser usados por protocolos estándar (p.e. puerto 80 tráfico HTTP)
 - http://es.wikipedia.org/wiki/Anexo:Números de puerto

.

Modelo TCP/IP Capa de transporte – Cabecera paquete TCP

Información añadida a cada paquete TCP:

re.

Modelo TCP/IP Niveles – Capa de Transporte – UDP

- UDP User datagram protocol
- Protocolo no orientado a conexión.
- Usa puertos (ports) para identificar las aplicaciones a las que van destinados los datagramas (puertos UDP de 16 bits => hay 65536)
- Algunos números de puerto están predefinidos para ser usados por protocolos estándar
 - http://es.wikipedia.org/wiki/Anexo:Números_de_puerto
- Ventajas:
 - Protocolo más eficiente
 - □ Reduce la sobrecarga
- Desventajas:
 - No fiable
 - □ No se garantiza ni la entrega ni se controla la duplicación
- Usos:
 - En aplicaciones multimedia
 - ☐ Gestión de red

Capa de transporte Cabecera UDP

Información añadida a cada paquete UDP:

Modelo TCP/IP Niveles – Capa de aplicación

Algunos protocolos de la capa de aplicación:

- □ HTTP (HyperText Transfer Protocol) Protocolo de transferencia de páginas HTML
- □ FTP (File Transfer Protocol) Protocolo de transferencia de archivos para transferencia de archivos
- □ **DNS** (*Domain Name Service*) Servicio de nombres de dominio
- DHCP (Dynamic Host Configuration Protocol) Protocolo de configuración dinámica de anfitrión
- □ NAT (Network Address Translation) Traducción de dirección de red
- □ SSH (Secure SHell)
- □ TELNET para acceder a equipos remotos.
- POP (Post Office Protocol), IMAP (Internet Message Access Protocol)
 SMTP (Simple Mail Transport Protocol) para correo electrónico en TCP/IP
- □ **NTP** (*Network Time Protocol*)

Modelo TCP/IP Niveles

BGP = Border Gateway Protocol OSPF = Open Shortest Path First

FTP = File Transfer Protocol RSVP = Resource ReSerVation Protocol HTTP = Hypertext Transfer Protocol SMTP = Simple Mail Transfer Protocol

ICMP = Internet Control Message Protocol SNMP = Simple Network Management Protocol

IGMP = Internet Group Management Protocol TCP = Transmission Control Protocol IP = Internet Protocol UDP = User Datagram Protocol

MIME = Multi-Purpose Internet Mail Extension

UDP = User Datagram Proto

Tutorial TCP/IP

http://www.rfc-es.org/rfc/rfc1180-es.txt

Modelo de referencia usado en el curso

- Modelo mixto de 5 capas
 - □ Nivel físico (Capa 1 de OSI)
 - Nivel de enlace a red (Capa 2 de OSI)
 - Nivel de red (Capa de Internet de TCP/IP)
 - □ Nivel de transporte (Capa de Transporte de TCP/IP)
 - Nivel de aplicación (Capa de Aplicación de TCP/IP)

5	Application layer
4	Transport laver

- Network layer
- Data link layer
- Physical layer

Estandarización ¿Quién es quien en las telecomunicaciones?

Tema 1. Introducción a las redes - Isidro Calvo (UPV/EHU)

Estandarización ¿Quién es quien en las telecomunicaciones?

- Estándar de facto (de hecho) vs. Estándar de iure (de derecho)
- Principales organismos de estandarización:
 - □ ISO: International Organization for Standardization
 - ITU: International Communication Union (Antiguamente CCITT)
 - CCITT: Consultative Committee for International Telegraphy and Telephony
 - Serie V: Comunicación de datos por la red telefónica:
 - Serie X: Redes de datos y comunicación entre sistemas abiertos y seguridad
 - □ ANSI: American National Standards Institute
 - IEEE: Institute of Electrical and Electronics Engineers
 - □ IETF: Internet Engineering Task Force
 - Regula las propuestas y los estándares de Internet, en los documentos RFC (Request for Comments)
 - □ W3C: World Wide Web Consortium
 - Consorcio internacional que produce recomendaciones para la World Wide Web (p.e. HTTP, HTML, URL, Servicios Web, etc.)

Estandarización Estándares definidos en IEEE802

Number	Topic
802.1	Overview and architecture of LANs
802.2 ↓	Logical link control
802.3 *	Ethernet
802.4 ↓	Token bus (was briefly used in manufacturing plants)
802.5	Token ring (IBM's entry into the LAN world)
802.6 ↓	Dual queue dual bus (early metropolitan area network)
802.7 ↓	Technical advisory group on broadband technologies
802.8 †	Technical advisory group on fiber optic technologies
802.9 ↓	Isochronous LANs (for real-time applications)
802.10↓	Virtual LANs and security
802.11 *	Wireless LANs
802.12↓	Demand priority (Hewlett-Packard's AnyLAN)
802.13	Unlucky number. Nobody wanted it
802.14↓	Cable modems (defunct: an industry consortium got there first)
802.15 *	Personal area networks (Bluetooth)
802.16 *	Broadband wireless
802.17	Resilient packet ring

Los importantes están marcados con *. Los marcados con ↓ están en hibernación.

Los marcados con † han perdido interés.