Tensões e Correntes Elétricas

Matheus Aparecido Souza Silva, Isabela Sant'Ana, Gustavo Peres, João Vitor Costa

Turma: TA Horário: 6M45 Curso: Engenharia Elétrica

1 Coleta de dados:

1.1 Tabela de dados das medições de resistências

Associação	Valor Nominal (Ω) ± Tolerância	Valor Experimental $(\Omega) \pm Incerteza$
R_1	$47\pm5\%$	46.70 ± 0.62
R_2	$220\pm5\%$	218.8 ± 2.2
R_3	$120\pm5\%$	120.9 ± 1.3
R _e (Série)	$387\pm5\%$	386.4 ± 3.7
R _e (Paralelo)	$29.277 \pm 5\%$	29.20 ± 0.46
R _e (Misto)	$94.935 \pm 5\%$	94.9 ± 1.0

1.2 Tabela de dados experimentais

	Resistores Individuais	Resistores em Série	Resistores em Paralelo	Associação Mista
$V_1 \pm \Delta V_1$	4.024 ± 0.022	0.491 ± 0.004	4.025 ± 0.022	0.491 ± 0.004
$V_2 \pm \Delta V_2$	4.028 ± 0.022	2.321 ± 0.013	4.029 ± 0.022	3.544 ± 0.019
$V_3 \pm \Delta V_3$	4.029 ± 0.022	1.223 ± 0.008	4.026 ± 0.022	3.544 ± 0.019
$V \pm \Delta V$		4.035 ± 0.022	4.026 ± 0.022	4.035 ± 0.022
$i_1 \pm \Delta i_1$	0.087 ± 0.004	0.011 ± 0.003	0.086 ± 0.004	
$i_2 \pm \Delta i_2$	0.018 ± 0.003	0.011 ± 0.003	0.019 ± 0.003	
$i_3 \pm \Delta i_3$	0.035 ± 0.003	0.011 ± 0.003	0.036 ± 0.003	
$i \pm \Delta i$		0.011 ± 0.003	0.141 ± 0.005	
$R_1 \pm \Delta R_1$	46.242 ± 2.141	44.63 ± 12.178	46.802 ± 2.191	
$R_2 \pm \Delta R_2$	223.5 ± 37.270	211 ± 57.546	212.052 ± 33.502	
$R_3 \pm \Delta R_3$	114.971 ± 9.874	118.18 ± 32.240	111.916 ± 9.346	
$R_e \pm \Delta R_e$		366.818 ± 100.061	28.553 ± 1.069	

2 Atividades

2.1 Associação de resistores em série:

2.1.1 Verificação da Lei das Malhas em Resistores em Série

A Lei das Malhas é um princípio fundamental em circuitos elétricos que estabelece que a soma das quedas de tensão em um circuito fechado (malha) é igual à fem da fonte de tensão. Para validar a Lei das Malhas, realizamos a análise das medições das quedas de tensão em resistores em série, levando em conta as incertezas associadas.

Os valores das quedas de tensão $(V_1, V_2, e V_3)$ foram obtidos a partir das medições experimentais, conforme apresentado na tabela de dados experimentais. Para a configuração de resistores em série, temos:

$$V_1 \pm \Delta V_1 = 0.491 \pm 0.004 \text{ V}$$

 $V_2 \pm \Delta V_2 = 2.321 \pm 0.013 \text{ V}$
 $V_3 \pm \Delta V_3 = 1.223 \pm 0.008 \text{ V}$

Agora, somamos as quedas de tensão, considerando as incertezas:

$$V_1 + V_2 + V_3 = (0.491 \pm 0.004) \text{ V} + (2.321 \pm 0.013) \text{ V} + (1.223 \pm 0.008) \text{ V}$$

= $4.035 \pm 0.025 \text{ V}$

A fem fornecida pela fonte de tensão foi medida como 4.025 ± 0.022 V. Comparando a soma das quedas de tensão com a fem:

$$E = 4.025 \pm 0.022 \,\mathrm{V}$$

Observamos que a soma das quedas de tensão em resistores em série $(4.035 \pm 0.025 \text{ V})$ está dentro do intervalo da fem $(4.025 \pm 0.022 \text{ V})$ fornecida pela fonte de tensão. Portanto, concluímos que a Lei das Malhas é satisfeita, e a análise das medições corrobora esse princípio fundamental em circuitos elétricos.

2.2 Associação de resistores em paralelo:

2.2.1 Verificação da Lei dos Nós em Resistores em Paralelo

A Lei dos Nós é um princípio fundamental em circuitos elétricos que estabelece que a soma das correntes que entram em um nó (ponto de conexão) é igual à soma das correntes que saem do nó. Para validar a Lei dos Nós, realizamos a análise das medições das correntes em resistores em paralelo, levando em conta as incertezas associadas.

Na tabela de dados experimentais, os valores relacionados aos resistores em paralelo são os seguintes:

$$i_1 \pm \Delta i_1 = 0.086 \pm 0.004 \,\mathrm{A}$$

 $i_2 \pm \Delta i_2 = 0.019 \pm 0.003 \,\mathrm{A}$
 $i_3 \pm \Delta i_3 = 0.036 \pm 0.003 \,\mathrm{A}$
 $i \pm \Delta i = 0.141 \pm 0.005 \,\mathrm{A}$ (corrente total medida na saída da fonte de tensão)

A Lei dos Nós estabelece que a soma das correntes que entram em um nó é igual à soma das correntes que saem do nó. Portanto, a soma das correntes em cada resistor em paralelo deve ser igual à corrente total medida na saída da fonte de tensão, levando em consideração as incertezas.

Vamos verificar isso calculando a soma das correntes em cada resistor em paralelo:

$$i_1 + i_2 + i_3 = (0.086 \pm 0.004) \,\text{A} + (0.019 \pm 0.003) \,\text{A} + (0.036 \pm 0.003) \,\text{A}$$

= 0.141 ± 0.010 A

Agora, você pode comparar essa soma com a corrente total medida na saída da fonte de tensão:

$$i \pm \Delta i = 0.141 \pm 0.005 \,\mathrm{A}$$

Observamos que a soma das correntes em resistores em paralelo $(0.141\pm0.010~\text{A})$ está dentro do intervalo da corrente total medida na saída da fonte de tensão $(0.141\pm0.005~\text{A})$. Portanto, concluímos que a Lei dos Nós é satisfeita, e a análise das medições corrobora esse princípio fundamental em circuitos elétricos.