Économétrie 2 : TD11-12

Modèles de Durée

Alice Lapeyre & Claire Leroy

April 13, 2022

Plan de la séance

Résumé du Chapitre 6

2 Exercice 1

3 Exercice 2

Modèle de durée

Modélisation de durée dans un état.

- Ex : temps passé au chômage, nombre d'années d'études
- N.B.1: On modélise un seul état
 - e.g. en emploi vs au chômage et non en emploi, au chômage ou inactif
- N.B.2: Une transition pour chaque individu
 - économie du travail: lorsque l'individu retrouve un emploi, il le garde pour toujours.

Deux spécificités :

- Durée = variable aléatoire positive, continue ou discrète
 - N.B. discrète car (i) intrinsèquement discrète (semestres d'études) ou (ii) processus continu observé à intervalle discrets (statut d'emploi observé dans l'enquête emploi)
- Problème de la censure e.g. distribution de la durée de vie d'une cohorte dont beaucoup de membres sont encore vivants (durée de vie \geq âge actuel)

Modèles de durée - Outils

Durée : T

- durée totale qu'un individu passe dans un certain état de la nature
- variable aléatoire, ≥ 0 , de f.d.r. F: $Pr(T \leq t) = F(t), t \geq 0$
- lorsque T est continue, on note f sa densité: f(t) = dF(t)

Fonction de survie : S(t) = Pr(T > t) = 1 - F(t)

• i.e. probabilité que l'individu reste dans cet état au moins t périodes

Fonction de hasard :
$$h(t) = \lim \frac{Pr(T \in]t, t + \eta[|T>t)}{\eta} = \frac{f(t)}{S(t)}$$

- ullet i.e. probabilité de quitter cet état en T=t, sachant que l'individu n'a pas quitté l'état avant cela
- NB : h(t) = -[lnS(t)]'

Modèles de durée - Outils

Modéliser l'effet de variables X sur h(t)

- But : connaître l'effet de certaines caractéristiques X sur la probabilité de sortir d'un certain état en t
- Exemple : X = toucher une allocation chômage ou non. T = durée passée au chômage.
- NB : X peut être fixe ou varier dans le temps (X_t)

Modèles vus en cours :

- Modèle à hasard proportionnel : $h(t|X=x) = \phi(x)h_0(t)$
- Modèle de vie accélérée : $h(t|X=x) = \phi(x)h_0(\phi(x)t)$
 - Que l'on peut écrire aussi : $ln(T) = -ln(\phi(X)) + \varepsilon$
- Modèle à hétérogénéité individuelle : $h(t|\nu, X = x) = \nu \phi(x) h_0(t)$, avec ν l'hétérogénéité individuelle inobservée

Modèles de durée - Estimation

Problème de censure :

- La durée T n'est pas observée pour tout le monde
- On observe Y = min(T, C) et D = 1(T < C)
 - D : indicatrice de non-censure
 - Pour les individus non-censurés (D=1) on observe bien Y=T
 - Pour les individus censurés (D=0) on observe une durée censurée Y=C (la durée censurée est inférieure à la vraie durée T)

Estimation: cf Ch6 slide 15

- MCO : non convergent, car problème de censure
- Maximum de vraisemblance : convergent
 - Hypothèses paramétriques sur ϕ , h_0 et ν

Plan de la séance

Résumé du Chapitre 6

2 Exercice 1

3 Exercice 2

Enoncé

 $\frac{\mbox{Objet d'étude}}{\mbox{entre les dates}}: \mbox{durées de chômage T pour des actifs entrant au chômage}$

On suppose n'observer que les individus encore au chômage à la date b. \rightarrow échantillonnage dans un stock \neq échantillonnage dans un flux. (plus de détails dans la question 1)

On note A la date d'entrée au chômage (A \in [0, b]), supposée observée pour les individus de l'échantillon.

(1) Expliquer intuitivement pourquoi l'échantillon obtenu contient trop de durées de chômage longues.

On n'observe que les individus qui sont encore au chômage à la date b. Par conséquent, on n'observe pas les individus qui ont une durée de chômage inférieure à $b-A_i$. Ce faisant, l'échantillon contient trop de durées de chômages longues.

(1) Expliquer intuitivement pourquoi l'échantillon obtenu contient trop de durées de chômage longues.

Cas pratique: Enquête emploi aux Etats-Unis

• statut d'emploi dans la semaine de référence - celle qui comprend le 12 du mois

 Parmi les individus tombés au chômage le 22/01, seuls sont observés ceux qui sont restés au chômage au moins 20 jours (i.e. jusqu'à la date de l'interview). Ceux avec des épisodes de chômage plus courts comme i - ne font pas parti de notre échantillon de chômeurs.

7/38

(1) Expliquer intuitivement pourquoi l'échantillon obtenu contient trop de durées de chômage longues.

Intuition de la "règle": "on n'observe pas les individus qui ont une durée de chômage inférieure à $b-A_i$ "

- Si on normalise t à 0 au 12/01 alors b = 30
- Alors i et j tombent au chômage le 22/01: $A_i = A_j = 10$
- $T_i = 13 < b A_i$: non observé
- $T_j \ge b A_j$: observé

(2) Montrer que la loi de T pour un individu de l'échantillon est non pas la loi marginale de T (i.e. la loi dans la population entière), mais plutôt la loi de T|S=1, où l'on définira S en fonction de A et T.

Soit $S_i=1$ { $T_i>b-A_i$ }, l'indicatrice d'appartenance à l'échantillon. La distribution conditionnelle de la durée du chômage dans cet échantillon s'écrit:

$$\begin{split} F_{T|S=1,X,A}(t) &= \mathbb{P}(T \leq t | S=1,X,A) \\ &= \frac{\mathbb{P}(T \leq t \cap S=1 | X,A)}{\mathbb{P}(S=1 | X,A)} \quad \text{car } P(A|B) = \frac{P(A \cap B)}{P(B)} \text{ (Bayes)} \\ &= \frac{\mathbb{P}(b-A < T \leq t | X,A)}{\mathbb{P}(T>b-A | X,A)} \quad \text{par définition de } S_i \\ &= \frac{F_{T|X}(t) - F_{T|X}(b-A)}{S_{T|X}(b-A)} \neq F_{T|X}(t) \end{split}$$

où la dernière ligne nécessite de supposer $T \perp\!\!\!\perp A|X$ - c'est l'hypothèse à expliciter dans la question suivante

(2) Montrer que la loi de T pour un individu de l'échantillon est non pas la loi marginale de T (i.e., la loi dans la population entière), mais plutôt la loi de T|S=1, où l'on définira S en fonction de A et T .

Distribution conditionnelle de la durée du chômage dans cet échantillon:

$$F_{T|S=1,X,A}(t) = \frac{F_{T|X}(t) - F_{T|X}(b-A)}{S_{T|X}(b-A)}$$

Pour trouver la densité de la durée du chômage dans l'échantillon, il suffit de dériver:

$$f_{T|S=1,X,A}(t) = F'_{T|S=1,X,A}(t)$$

= $\frac{f_{T|X}(t)}{S_{T|X}(b-A)}$.

N.B.: on dérive une fonction de la forme: g(x) = [f(x) - f(a)]/h(a). On a donc g'(x) = f'(x)/h(a)

(3) On suppose tout d'abord observer, pour tous les individus de l'échantillon, leur durée de chômage. Montrer, à l'aide d'une hypothèse qu'on explicitera, que la log-vraisemblance conditionnelle de l'échantillon $(T_i, X_i, A_i)_{i=1...n}$ s'écrit :

$$\mathcal{L}_n(\theta) = \sum_{i=1}^n \ln f_{T|X;\theta}(T_i|X_i) - \ln S_{T|X;\theta}(b - A_i|X_i),$$

où $f_{T|X;\theta}$ (resp. $S_{T|X;\theta}$) désigne la densité (resp. survie) conditionnelle de T|X, paramètre par θ .

Densité de la durée de chômage de l'échantillon:

$$f_{T|S=1,X,A}(t) = F'_{T|S=1,X,A}(t)$$

= $\frac{f_{T|X}(t)}{S_{T|X}(b-A)}$.

Log-densité:

$$\ln f_{T|S=1,X,A}(t) = \ln f_{T|X}(t) - \ln S_{T|X}(b-A).$$

(3) (...) Montrer, à l'aide d'une hypothèse qu'on explicitera, que la log-vraisemblance conditionnelle de l'échantillon $(T_i, X_i, A_i)_{i=1...n}$ s'écrit :

$$\mathcal{L}_n(\theta) = \sum_{i=1}^n \ln f_{T|X;\theta}(T_i|X_i) - \ln S_{T|X;\theta}(b - A_i|X_i),$$

En faisant l'hypothèse que la distribution de T est caractérisée à l'aide d'un paramètre θ , la contribution de l'individu i à la log-vraisemblance:

$$\ln(f_{T|X;\theta}(T_i|X_i)) - \ln(S_{T|X;\theta}(b - A_i|X_i)).$$

En sommant sur toutes les observations (et en prenant en compte l'indépendance des i), on trouve l'expression de $\mathcal{L}_n(\theta)$ dans l'énoncé.

(4) (i) Supposons qu'il n'y a pas de covariable et $f_{T|\theta}(t) = \theta \exp(-\theta t)$. Montrer alors que l'estimateur du MV $\hat{\theta}$ vérifie:

$$\frac{1}{\widehat{\theta}} = \frac{1}{n} \sum_{i=1}^{n} T_i + A_i - b.$$

Hypothèse: T suit une loi exponentielle de paramètre $\theta > 0$. Dans ce cas, on peut montrer que $S_T(t) = \exp(-\theta t)$.

$$egin{aligned} S_{\mathcal{T}}(t) &= \mathbb{P}(\mathcal{T} > t) \ &= 1 - F(t) \ &= 1 - (1 - \exp(- heta t)) \quad \text{f.d.r d'une loi exponentielle} \ &= \exp(- heta t) \end{aligned}$$

(4) (i) Montrer alors que $\hat{\theta}_{EMV}$ vérifie: $\frac{1}{\hat{\theta}} = \frac{1}{n} \sum_{i=1}^{n} T_i + A_i - b$.

La log-vraissemblance devient:

$$\begin{split} \mathcal{L}_n(\theta) &= \sum_{i=1}^n \ln f_{T|X;\theta}(T_i|X_i) - \ln S_{T|X;\theta}(b - A_i|X_i) \\ &= \sum_{i=1}^n \ln(\theta \exp(-\theta t)) - \ln(\exp(-\theta t)) \\ &\text{en remplaçant } f_{T|\theta}(t) \text{ et } S_T(t) \text{ par leurs expressions} \\ &= \sum_{i=1}^n \ln(\theta) - \theta T_i + (b - A_i)\theta, \end{split}$$

(4) (i) Montrer alors que $\hat{\theta}_{EMV}$ vérifie: $\frac{1}{\hat{\theta}} = \frac{1}{n} \sum_{i=1}^{n} T_i + A_i - b$.

Log-vraissemblance:

$$\mathcal{L}_n(\theta) = \sum_{i=1}^n \ln(\theta) - \theta T_i + (b - A_i)\theta,$$

Condition du premier ordre:

$$\frac{\partial \mathcal{L}_n(\theta)}{\partial \theta} = 0 \iff \sum_{i=1}^n \frac{1}{\hat{\theta}} - T_i + b - A_i = 0$$

$$\iff n \frac{1}{\hat{\theta}} - \sum_{i=1}^n (T_i - b + A_i) = 0$$

$$\iff \frac{1}{\hat{\theta}} = \frac{1}{n} \sum_{i=1}^n T_i - b + A_i = 0$$

De plus, $\forall \theta > 0$, $\frac{\partial^2 \mathcal{L}_n(\theta)}{\partial \theta^2} = -n\frac{1}{\hat{\theta}^2} < 0 \Rightarrow \hat{\theta}$ maximum global. C'est bien l'EMV.

(4) (ii) En déduire que E(T|S=1)=E(T)+b-E(A|S=1). Commenter, en lien avec la question 1.

On remarque que l'équation proposée $(\frac{1}{\hat{\theta}} = \frac{1}{n} \sum_{i=1}^{n} T_i + A_i - b.)$ est la contrepartie empirique de la condition théorique suivante:

$$\theta^{-1} = \mathbb{E}(T|S=1) + \mathbb{E}(A|S=1) - b,$$

Or, comme $T \sim \mathcal{E}(\theta)$, $\mathbb{E}(T) = \theta^{-1}$. On a donc bien:

$$\mathbb{E}(T|S=1) = \mathbb{E}(T) + b - \mathbb{E}(A|S=1),$$

D'après l'énoncé $\mathbb{E}(A|S=1) < b$ car $A \in [0,b]$, donc $\mathbb{E}(T|S=1) > \mathbb{E}(T)$ ce qui est cohérent avec la remarque faite à la question 1, selon laquelle on observe trop de durées de chômage longues.

Plan de la séance

Résumé du Chapitre 6

2 Exercice 1

3 Exercice 2

Enoncé

Objet d'étude : effet de certains facteurs sur la survie au cancer du sein

On observe à la date t_1 :

- dead: indicatrice de non-censure
 - = 0 si l'individu est toujours vivant (T censurée)
 - = 1 si l'individu est décédé (T non censuré)
 - cf question 1
- t : durée (en mois) depuis laquelle le cancer a été détecté
- le vecteur de variables explicatives X qui inclut:
 - age: variable continue
 - smoking: continue ou indicatrice (?)
 - dietfat: nombre moyen de kcalories lipidiques par semaine

(1) Relier t et dead à la variable d'intérêt T

Soit T_i la durée de survie de l'individu i au cancer du sein une fois qu'il a été détecté (t=0). N.B: il s'agit d'une <u>durée relative</u> par rapport à la détection. Pour rappel, t est la durée depuis laquelle le cancer a été détecté.

Considérons l'individu i observé en t_1 :

- Cas 1: $dead_{i,t_1} = 1$, le patient est décédé en t_1 :
 - on observe la durée de survie $T_i = t \rightarrow \mathbf{cas}$ non-censuré
- Cas 2: $dead_{i,t_1} = 0$, l'individu est toujours vivant.
 - sa durée de survie est au moins égale à t_1 i.e. $t_1 < T_i o$ cas censuré

(2) (i) Commenter la sortie correspondant à la figure 1. On décrira en particulier le nombre de données censurées.

```
Commande Stata: stset t, failure(dead) on définit la variable d'intérêt Y et l'indicatrice de non censure D
```

Sortie Stata:

```
failure event: dead != 0 & dead < .
:. time interval: (0, t]
:it on or before: failure</pre>
```

- failure event: dead != 0 dead < .
 - c'est l'évènement de "sortie": décès de l'individu dead == 1
 - ici, on passe par la négative i.e. indicatrice non-nulle et non-manquante
- obs. time interval: (0, t]
 - on observe les individus de la période 0 (détection du cancer) à la période t

(2) Commenter la sortie correspondant à la figure 1. On décrira en particulier le nombre de données censurées.

```
80 total observations
0 exclusions

80 observations remaining, representing
(b) 58 failures in single-record/single-failure data
(c)1257.07 total analysis time at risk and under observation
at risk from t =
0 earliest observed entry t =
0 last observed exit t =
0 1
```

- (a): échantillon = 80 obs., toutes inclues dans l'analyse
 - exclusion des durées négatives (aucune ici)
- (b): 58 obs. pour lesquelles la durée est non-censurée

 → 80-58 = 22 obs. pour lesquelles ont ne connaît pas la c
 - \rightarrow 80-58 = 22 obs. pour lesquelles ont ne connaît pas la durée de survie exacte mais simplement une borne inf.
- (d) : analyse des failures
 - individus à risque de mourir dès t = 0 (dès le diagnostique)
 - décès le plus tardif en t=35, i.e. 35 mois après le diagnostique

(2) (ii) Commenter la sortie correspondant à la figure 1. On décrira en particulier le modèle considéré

<u>Commande Stata:</u> streg dietfat age smoking, distribution(weibull)

- On n'a pas besoin de rappeler quelle est la variable expliquée ni la variable de durée
- On renseigne uniquement les variables de contrôle supplémentaires
- Estimation par maximum de vraisemblance
 - ightarrow besoin de spécifier la distribution de $h_0(t)$
- Modèle de Weibull:
 - fonction de survie: $S(t) = \exp(-\lambda t^{\mu})$
 - fonction de hasard: $h(t) = \lambda \mu t^{\mu-1}$
 - • taux de hasard décroissant ($\mu < 1$), croissant ($\mu > 1$), ou constant ($\mu = 1$)

(2) (ii) Commenter la sortie correspondant à la figure 1. On décrira en particulier le modèle considéré

<u>Ici:</u> dans notre modèle de Weibull, on contrôle par un ensemble de variables explicatives ($\lambda = \theta_i := \exp(X_i^T \beta)$). Les fonctions de survie et de hasard s'écrivent donc:

• fonction de survie:

$$S(t) = \exp(\theta_i t^p)$$

fonction de hasard:

$$h(t) = \theta_i p t^{p-1}$$

densité:

$$f(t) = \theta_i p t^{p-1} \exp(-\theta_i t^p) \mathbb{1} \{t > 0\}$$

N.B.: Dans le cours la dépendance d'état se note μ . Dans cet exercice et sur les sorties Stata, elle se note p

(2) (iii) On décrira en particulier l'effet des variables explicatives et la dépendance d'état estimée.

of subject of failure	s =	80 58		Number	of obs	-	80
ne at risk	= 125	7.07		LR chi	1/21	_	250.96
likelihood	= -13.35	2142		Prob >		=	0.0000
t	Haz. Ratio	Std. Err.	z	P> z	[95% (Conf.	Interval]
dietfat	9.22956	2.219297	9.24	0.000	5.7	761095	14.78621
age	1.749267	.0985256	9.93	0.000	1.5	566438	1.953436
smoking	5.203393	1.704893	5.03	0.000	2.7	737728	9.889696
_cons	1.07e-20	4.98e-20	-9.92	0.000	1.2	22e-24	9.46e-17
/ln_p	1.431728	.0978872	14.63	0.000	1.2	239872	1.623583
p	4.185925	.4097485			3.4	455172	5.071228
1/p	.2388958	.0233848			.19	971909	.2894212

Ce que l'on va regarder:

- Significativité globale du modèle
- Significativité des coefficients et signe et amplitude de l'effet
- p (μ) : dépendance d'état

(2) (iii) On décrira en particulier l'effet des variables explicatives et la dépendance d'état estimée.

Etape 1: Significativité globale du modèle

of subjects		80 58		Number	of obs	- 80
e at risk	= 125	7.07		LR chi2		= 250.96 = 0.0000
TIKETINOOU	13.33	2142		PIOD >	CHIZ -	
_t	Haz. Ratio	Std. Err.	Z	P> z	[95% Conf.	. Interval]
dietfat	9.22956	2.219297	9.24	0.000	5.76109	95 14.78621
age	1.749267	.0985256	9.93	0.000	1.56643	38 1.953436
smoking	5.203393	1.704893	5.03	0.000	2.73772	28 9.889696
_cons	1.07e-20	4.98e-20	-9.92	0.000	1.22e-2	24 9.46e-17
/ln_p	1.431728	.0978872	14.63	0.000	1.2398	72 1.623583
р	4.185925	.4097485			3.4551	72 5.071228
1/p	.2388958	.0233848			.197190	.2894212

- Estimation par maximum de vraisemblance (pas de R^2)
- Pouvoir explicatif du modèle (p/r à un modèle avec une constante): $LR \sim \chi^2$
- H0: nullité jointe des coefficients
- p-valeur = $0.000 \rightarrow \text{modèle significatif}$

(2) (iii) On décrira en particulier l'effet des variables explicatives et la dépendance d'état estimée.

Etape 2: Significativité des coefficients + lecture

Effet d'une variable explicative:

- hazard rate sous forme de ratio: $\beta_0 > 0$ si $exp(\beta_0) > 1$
- dietfat: à lire p/r à quelqu'un qui a consommé 0 calories
- smoking: à lire p.r. à quelqu'un qui ne fume pas

(2) (iii) On décrira en particulier l'effet des variables explicatives.

Etape 2: Significativité des coefficients + lecture

of subject		80 58		Number	of obs	-	80
me at risk	= 125	7.07					
likelihood	= -13.35	2142		LR chi2 Prob >		=	250.96 0.0000
t	Haz. Ratio	Std. Err.	z	P> z	[95% Cor	nf.]	[nterval]
dietfat	9.22956	2.219297	9.24	0.000	5.761		14.78621
age	1.749267	.0985256	9.93	0.000	1.566	438	1.953436
smoking	5.203393	1.704893	5.03	0.000	2.737	728	9.889696
_cons	1.07e-20	4.98e-20	-9.92	0.000	1.22e	-24	9.46e-17
/ln_p	1.431728	.0978872	14.63	0.000	1.239	872	1.623583
p 1/p	4.185925	.4097485			3.455 .1971		5.071228
1/1/	.2300930	.0233040			. 19/1	. 909	.2094212

- Toutes les variables explicatives ont un effet positif et significatif sur la probabilité instantanée de décéder.
- La population fumeuse a une probabilité instantanée de décès qui est égale à 5,20 fois celle de la population non fumeuse.
- Autrement dit, ceteris paribus, fumer par rapport à ne pas fumer multiplie le taux de hasard par 5,20.

(2) (iiv) On décrira en particulier la dépendance d'état estimée.

Etape 3 : Dépendance d'état p

- ullet p > 1 (resp. < 1) : dépendance au temps positive (resp. négative)
 - \rightarrow plus simple de comparer le log p/r à 0

of subject		80 58		Number	of obs	3 =	80
ne at risk		7.07		LR chi2		_	250.96
likelihood	13.35	2142		Prob >		-	0.0000
t	Haz. Ratio	Std. Err.	z	P> z	[95%	Conf. In	nterval]
dietfat	9.22956	2.219297	9.24	0.000		761095	14.78621
age	1.749267	.0985256	9.93	0.000	1.	566438	1.953436
smoking	5.203393	1.704893	5.03	0.000	2.	737728	9.889696
_cons	1.07e-20	4.98e-20	-9.92	0.000	1.	22e-24	9.46e-17
/ln_p	1.431728	.0978872	14.63	0.000	1.	239872	1.623583
р	4.185925	.4097485			3.	455172	5.071228
1/p	.2388958	.0233848			. 1	971909	.2894212

- $p \approx 4.19 > 1$: dépendance d'état (ou dépendance temporelle) positive
- i.e. taux de hasard h(t) croissant avec le temps t
- i.e. temps a un effet positif sur la probabilité de mourir

(3) (i) La moyenne de t est-elle un estimateur sans biais de E(T) ?

Non, car il y a problème de censure : on n'observe la durée de survie T que pour ceux qui sont décédés. La moyenne de t sera a priori biaisée à la baisse.

L'espérance théorique de la loi de Weibull est :

$$\mathbb{E}(T_i|X_i) = \theta_i^{-1/p} \Gamma(1+1/p) = \exp(-X_i^T \beta/p) \Gamma(1+1/p)$$

- formule de l'espérance admise : détails <u>ici</u> (page 12)
- on utilise ici une propriété de la fonction exponentielle: $exp(na) = (exp(a))^n$

En intégrant par rapport à X, on obtient :

$$\mathbb{E}(T_i) = \mathbb{E}[\mathbb{E}(T_i|X_i)] = E(\exp(-X_i^T\beta/\rho))\Gamma(1+1/\rho)$$

(3) (ii) Comment peut-on estimer E(T) à partir du modèle ?

En intégrant par rapport à X, on obtient :

$$\mathbb{E}(T_i) = \mathbb{E}[\mathbb{E}(T_i|X_i)] = E(\exp(-X_i^T\beta/p))\Gamma(1+1/p)$$

On pourrait alors prendre sa contrepartie empirique:

$$\widehat{\mathbb{E}(T)} = \Gamma(1 + 1/\hat{\rho}) \frac{1}{n} \sum_{i=1}^{n} \exp\left(-\frac{X_{i}^{T} \hat{\beta}}{\hat{\rho}}\right)$$

(3) (iii) Commenter les sorties ci-dessous.

```
    predict time, mean time
    end of do-file
```

. su t

Variable	Obs	Mean	Std. Dev.	Min	Max
t	80	15.71337	13.59278	.33	35

- . display time 48.202061
- predict time, mean time : prédit la durée de survie moyenne, valeur stockée dans la variable *time*
- $su\ t\ (su = summarize)$: stat. desc. de la variable $t\ (censur\'ee)$
- display time : affiche la valeur prédite i.e. durée de survie moyenne

(3) (ii) Commenter les sorties ci-dessous.

. predict time, mean time

.
end of do-file

. su t

Variable	Obs	Mean	Std. Dev.	Min	Max
t	80	15.71337	13.59278	.33	35

. display time 48.202061

Conclusion

- Moyenne empirique de t : 15.7
- $\widehat{\mathbb{E}(T)} = 48.2$
- On avait bien un biais vers le bas

(4) Montrer que l'effet marginal moyen de X_k sur T vérifie : $\Delta_k = -\beta_k E(T)/p$. Comment peut-on estimer Δ_k ?

On a (cf. question précédente) que $\mathbb{E}(T|X) = \exp\left(-\frac{X^T\beta}{p}\right)\Gamma\left(\frac{1}{p}+1\right)$. Donc, l'effet marginal moyen s'écrit:

$$\Delta_k = \mathbb{E}\left[\frac{\partial \mathbb{E}(T|X)}{\partial X_k}\right] = -\frac{\beta_k}{\rho} \times \exp\left(-\frac{X^T \beta}{\rho}\right) \Gamma\left(\frac{1}{\rho} + 1\right)$$
$$= -\beta_k \mathbb{E}(T)/\rho$$

Ce qui s'estime par:

$$\hat{\Delta}_k = -\widehat{\beta_k}\widehat{\mathbb{E}(T)}/\hat{p}$$

Remarque: l'effet d'une variable sur le taux de défaillance (β_k) est du signe opposé à son effet sur la durée de survie moyenne (Δ_k) .

(5) On considère un modèle avec la constante seule et un modèle incluant seulement age et smoking. Commenter les résultats.

Etape 1: Lecture des coefficients associés aux variables explicatives

	dietfat	age	smoking	cons
Modèle 1	9.23***	1.75***	5.20***	1.07e-20***
Modèle 2		1.18***	2.47***	0.00***
Modèle 3				.11***

- age : change peu mais smoking : coefficient divisé par deux <u>Intuition?</u> Biais de variable omise dans modèle 2 potentiellement
 - corr(smoking,dietfat) < 0: fumeurs ayant par exemple tendance à manger moins gras que les autres (?)
 - corr(died,dietfat) > 0 : fumer augmente le risque de décès du cancer du sein
- ⇒ coefficient de smoking biaisé à la baisse.

(5) On considère maintenant un modèle avec la constante seule et un modèle incluant seulement age et smoking. Commenter les résultats suivants.

Etape 2: Lecture du paramètre de dépendance d'état

In(p)	1.43***	.36***	33***
Controles			
dietfat	✓		
age	✓	✓	
smoking	✓	✓	
constante	✓	✓	✓

- rappel de cours: comparaison p (μ) avec 1, ici on prend le log, on compare donc le log à 0
- Modèle 1 & 2 (modèles avec des contrôles): dépendance d'état positive
- Modèle 3 (constante uniquement): dépendance d'état négative

(5) Commenter les résultats suivants.

Etape 2: Lecture du paramètre de dépendance d'état

In(p)	1.43***	.36***	33***
Contrôles			
dietfat	✓		
age	✓	✓	
smoking	✓	✓	
constante	✓	✓	✓

- Dépendance d'état négative = plus le temps passe et moins il est probable que l'on décède
- En réalité, en l'absence de contrôle, les personnes a risque meurent plus vite et les autres vivent plus longtemps
- Fausse intuition que la probabilité de mourir diminue dans le temps car il ne s'agit pas des mêmes individus (age, conso cigarette, conso alim) → biais de variable omise

(6) (i) On considère enfin deux modèles avec hétérogénéité inobservée, incluant ou non la variable dietfat.

Modèle avec hétérogénéité inobservée: c'est-à-dire que pour chaque individu il existe un facteur multiplicatif ν_i , indépendant de X_i , qui modifie le taux de défaillance. Cela revient à supposer un taux de défaillance de la forme:

$$\tilde{h}_T(t; X, \nu) = \nu \rho \exp(X^T \beta) t^{\rho - 1}$$

où l'on suppose que $\nu \sim f_{\nu}(\nu) = \gamma^{\gamma} \nu^{\gamma-1} \exp(-\gamma \nu) / \Gamma(\gamma) \mathbb{1}\{\nu > 0\}.$

(6) (ii) Commenter les résultats.

/ln_p /ln_the	1.087761 .3307466	.222261 .5250758	4.89 0.63	0.000 0.529	.6521376 698383	1.523385 1.359876
р	2.967622	.6595867			1.91964	4.587727
1/p	.3369701	.0748953			.2179729	.520931
theta	1.392007	.7309092			.4973889	3.895711

LR test of theta=0: chibar2(01) = 22.57

Prob >= chibar2 = 0.000

- \bullet LR test of theta=0 : test de la nullité de la variance pour la loi de l'hétérogénéité inobservée ν
 - H0: absence d'hétérogénéité inobservée
 - Modèle sans dietfat: p-valeur: $.000 \rightarrow$ on rejette H0: il y a de l'hétérogénéité inobservée
 - ullet Modèle avec dietfat: p-valeur: 1.000
 ightarrow on ne rejette pas H0
 - Lorsque l'on prend en compte le régime alimentaire des individus, il ne persiste plus d'heterogeneité inobservée
- Par ailleurs, les résultats qualitatifs sont globalement inchangés par rapport aux estimations sans hétérogénéité. (modèle à modèle)

Checklist - TD modèles de durée 2

- **9** Bien comprendre l'intuition du problème de censure On n'observe la durée Y non-censurée que pour les individus déjà sortis de l'état $\to \bar{Y}$ sous-estime la vraie durée E[T] passée dans l'état.
- Connaître la définition de la fonction de survie S(t) et de la fonction de hasard h(t) (similaire à l'idée de taux de mortalité en t)
- Savoir interpréter les résultats d'estimation de modèle de durée
 - Significativité globale du modèle \Rightarrow Likelihood Ratio (LR) test
 - Coefficients associés aux variables X_k : effets de la variable X_k sur h(t). Interprétation qualitative et quantitative + significativité. NB: attention Stata reporte les hazard ratio
- Comprendre ce qu'est la dépendance d'état
 - Dépendance d'état : effet de la variable temps sur h(t)
 - Dépendance d'état positive : probabilité de sortir de l'état en t augmente avec le temps (h(t) croissante avec t)
 - Savoir interpréter la sortie Stata : $p > 1 \Rightarrow$ dépendance d'état positive
- Comprendre pourquoi contrôler pour d'autres facteurs affectant h(t) est important : biais de variable omise