Fundamentals of UQ (AM 238) Homework 2

Question 1: Consider the random variable

$$Y = \sum_{j=1}^{n} b_j X_j,\tag{1}$$

where at least one b_j is non-zero, and (X_1, \ldots, X_n) are jointly Gaussian random variables with mean $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_n)$ and covariance matrix $\boldsymbol{\Sigma}$.

- a) Show that Y is a Gaussian random variable.
- b) Compute the mean and the variance of Y as a function of $\{b_i\}$, μ and Σ .

Question 2: Consider the two-dimensional random vector $\mathbf{X} = [X_1, X_2]$ with joint PDF

$$p(x_1, x_2) = \begin{cases} K \cos^2(10x_1x_2) & (x_1, x_2) \in [0, 1] \times [0, 1] \\ 0 & \text{otherwise} \end{cases}$$
 (2)

 $where^{1}$

$$K = \frac{40}{\text{Si}(20) + 20}, \qquad \text{Si}(x) = \int_0^x \frac{\sin(t)}{t} dt.$$
 (3)

- a) Compute the conditional PDFs $p(x_1|x_2)$ and $p(x_2|x_1)$.
- b) Write a computer code that samples the PDF (2) using the Gibbs' sampling algorithm. Plot the PDF (2) and the samples you obtain from the Gibbs' algorithm on a 2D contour plot, similarly to Figure 3 in the course note 2.
- c) Write a program to calculate the sample mean and sample standard deviation of the random function

$$f(y; X_1, X_2) = \sin(4\pi X_1 y) + \cos(4\pi X_2 y) \qquad y \in [0, 1], \tag{4}$$

where X_1 and X_2 are random variables with joint PDF given by equations (2)-(3). To this end, generate $N = 5 \times 10^4$ samples of the function (4) over a grid of 500 evenly-spaced spatial points in $y \in [0, 1]$, and compute the required statistics². Plot the mean and standard deviation you obtain as a function of y.

 $^{{}^{1}\}mathrm{Si}(x)$ is a special function known as sine integral.

²It may be convenient to store each sample of (4) as a row vector in a 50000×500 matrix.

Question 3: Write a computer code that estimates the PDF of the random variable

$$\overline{X}_N = \frac{X_1 + \dots + X_N}{N}$$
 (sample mean) (5)

where $\{X_j\}$ are independent identically distributed Cauchy random variables with PDF

$$p_{X_j}(x) = \frac{1}{\pi(1+x^2)}$$
 $j = 1, \dots, N$ (6)

using the inverse CDF function and relative frequency approach you developed in Homework 1. Plot your results for $N = 10^3$ an $N = 10^5$.