Alignment of Language Models (DPO)

Tanmoy Chakraborty
Associate Professor, IIT Delhi
https://tanmoychak.com/

Policy Gradient/PPO for LLM alignment

- Collect human preferences (x, y_+, y_-)
- Learn a reward model

$$\phi^* = \underset{\phi}{\operatorname{argmax}} \sum_{(x,y_+,y_-) \in D} \log \sigma(r_{\phi}(x,y_+) - r_{\phi}(x,y_-))$$

Train the policy

$$\theta^* = \operatorname{argmax}_{\theta} E_{\pi_{\theta}(y|x)} r_{\phi^*}(x, y) - \beta . KL(\pi_{\theta}(y|x) || \pi_{ref}(y|x))$$

- Optionally
 - Also learn the value function

Question: Why do we need this intermediate step of learning reward model?

Direct Preference Optimization on preferences

Credit: https://arxiv.org/pdf/2305.18290

The non-parametric case

Assume that the policy & reward model can be arbitrary

Learn a reward model

model
$$r^* = \operatorname*{argmax}_r \sum_{(x,y_+,y_-) \in D} \log \sigma(r(x,y_+) - r(x,y_-)) \qquad \text{evaluation}$$

$$= \operatorname*{argmax}_r E_{\pi(y|x)} r^*(x,y) - \beta. KL(\pi(y|x)||\pi_{ref}(y|x))$$

Train the policy

$$\pi^* = \underset{\pi}{\operatorname{argmax}} E_{\pi(y|x)} r^*(x, y) - \beta. KL(\pi(y|x)||\pi_{ref}(y|x))$$

Primary idea of DPO: Cut out the middle-man r^*

· Question: What does the optimal policy look like?

at does the optimal policy look like?
$$\pi^* = \operatorname*{argmax}_{\pi} E_{\pi(y|x)} r^*(x,y) - \beta. KL(\pi(y|x)||\pi_{ref}(y|x)) \rightarrow \operatorname*{reward-mani}_{\pi} \operatorname{mizehon}_{\pi}$$
 subject to $\sum_{y \in Y} \pi(y|x) = 1$ ohjestive
$$r^*(\pi_{i}Y) - \beta. KL(\pi(y|x)||\pi_{ref}(y|x)) \rightarrow \operatorname{reward-mani}_{\pi} \operatorname{mizehon}_{\pi}$$

$$\frac{1}{2}(x,\lambda) = E_{\pi(y|x)} r^*(x,y) - \beta KL(\pi(y|x)) | \pi_{\pi y}(y|x))$$

$$\frac{1}{2}(x,\lambda) = 0 + \lambda \left(\frac{1}{2} \pi(y|x) - 1 \right)$$

$$\frac{1}{2}(y_0|x) = 0 + \lambda \left(\frac{1}{2} \pi(y|x) - 1 \right)$$

$$\begin{cases}
(\pi, \lambda) = \sum_{y \in Y} \pi(y|x) Y^*(\pi, y) - \sum_{y \in Y} \pi(y|x) \log \frac{\pi(y|x)}{\pi_{nny}(y|x)} + \lambda \left(\sum_{y \in Y} \pi(y|x) - 1\right) \\
\nabla_{\pi(y_0|x)} \mathcal{L}(\pi, \lambda) = Y^*(\pi, y_0) - \left[1 + \log \frac{\pi(y_0|x)}{\pi_{nny}(y_0|x)}\right] + \lambda
\end{cases}$$
We know
$$\nabla_{\pi(y_0|x)} = 0$$

$$= \sum_{x \in \{y_0|x\}} \pi(y_0|x) - 1 - \log \frac{\pi^*(y_0|x)}{\pi_{nny}(y_0|x)} + \lambda = 0$$

$$\begin{array}{lll}
\gamma^* (\pi_{i} y_{0}) + \lambda & -1 & = & \log \pi^* (y_{0} | \pi) \\
e^{\gamma^* (\pi_{i} y_{0})} + \lambda & = & \pi^* (y_{0} | \pi) \\
& = & \pi^* (y_$$

Write r in terms of optimal policy

$$T^{*}(y|x) = \pi_{reg}(y|x) \exp(r^{2}(\pi_{r}y))$$

$$T^{*}(\pi_{r}y_{0}) + \overline{\lambda} = \log \frac{\pi^{2}(y_{0}|x)}{\pi_{reg}(y_{0}|x)}$$

$$T^{*}(\pi_{r}y_{0}) = \log \frac{\pi^{*}(y_{0}|x)}{\pi_{reg}(y_{0}|x)} - \overline{\lambda}$$

$$T^{*}(\pi_{r}y_{0}) = \log \frac{\pi^{*}(y_{0}|x)}{\pi_{reg}(y_{0}|x)} - \log Z$$

The parametric policy & reward $(\pi_{\theta}, r_{\theta})$

- In reality, the policy will be parametrized as a language model $\pi_{ heta}$
- Idea: Let's parameterize the reward function in terms of the policy parameters.

$$r_{\theta}(x, y) = \beta \cdot \log \frac{\pi_{\theta}(y|x)}{\pi_{ref}(y|x)} - \log Z_{x}(\theta)$$

• Next, train these parameterized reward function directly on human-preferences.

Training the reward function

Given a pair of human preferences (x, y_+, y_-)

Reward of the positive output

$$r_{\theta}(x, y_+) = \beta \cdot \log \frac{\pi_{\theta}(y_+|x)}{\pi_{ref}(y_+|x)} - \log Z_x(\theta)$$

Reward of the negative output

$$r_{\theta}(x, y_{-}) = \beta . \log \frac{\pi_{\theta}(y_{-}|x)}{\pi_{ref}(y_{-}|x)} - \log Z_{x}(\theta)$$

Training objective

$$\underset{\theta}{\operatorname{argmax}} \sum_{(x,y_+,y_-)\in D} \log \sigma(r_{\theta}(x,y_+) - r_{\theta}(x,y_-))$$

The training objective

The DPO objective

Human Preferences

Interpreting the objective

- For a positive output, $\frac{\pi_{\theta}(y_{+}|x)}{\pi_{ref}(y_{+}|x)}$ should be high
- If the reference model already assigned high probability to y_+ (say, 0.8)
 - $\pi_{\theta}(y_{+}|x)$ will have to be relatively higher (say 0.9) \rightarrow
- If the reference model assigned low probability to y_+ (say, 0.1)

0.9 ~ 0.11

- $\pi_{\theta}(y_{+}|x)$ will be relatively higher that $\pi_{ref}(y_{+}|x)$ (say, 0.11)
- In absolute terms, it might still be low

Adjust variable length output generated by the policy model

Interpreting β $\log \sigma \left(\beta \left[\log \frac{\pi_{\theta}(y_{+}|x)}{\pi_{ref}(y_{+}|x)} - \log \frac{\pi_{\theta}(y_{-}|x)}{\pi_{ref}(y_{-}|x)}\right]\right)$

 Higher the value of β, more the model attempts to increase the gap between the reward of +ve and –ve outputs.

PPO vs DPO

- Ongoing debate about the efficacy of the two algorithms
- PPO is difficult to implement
- DPO is simpler no reward function or value functions are required
- DPO is prone to generating a biased-policy that favors out-of-distribution responses.
- PPO can capture spurious correlations in the reward function.
 - Many reward functions have a length bias Higher length outputs have higher rewards.
 - PPO training with these reward functions results in longer outputs from the policy.

$$\log \sigma \left(\beta \left[\log \frac{\pi_{\theta}(y_{+}|x)}{\pi_{ref}(y_{+}|x)} - \log \frac{\pi_{\theta}(y_{-}|x)}{\pi_{ref}(y_{-}|x)} \right] \right)$$

$$\log \sigma \left(\beta \left[\log \frac{\pi_{\theta}(y_{+}|x)}{\pi_{ref}(y_{+}|x)} - \log \frac{\pi_{\theta}(y_{-}|x)}{\pi_{ref}(y_{-}|x)}\right]\right) \qquad \pi_{ref}(y_{0}|x) = 0$$

$$0.5 \qquad 0.5 \qquad \text{Say } y_{0} = (the, the, the)$$

At the beginning of training

$$\log \sigma \left(\beta \left[\log \frac{\pi_{\theta}(y_{+}|x)}{\pi_{ref}(y_{+}|x)} - \log \frac{\pi_{\theta}(y_{-}|x)}{\pi_{ref}(y_{-}|x)}\right]\right)^{\pi_{\theta}(y_{o}|x) = 0}$$

After few steps of training, either $\pi_{\theta}(y_{+}|x)$ will increase or $\pi_{\theta}(y_{-}|x)$ will decrease

- If $\pi_{\theta}(y_{+}|x)$ increases, there is no issue
- If $\pi_{\theta}(y_{-}|x)$ decreases, where does the probability go?
 - Ideally, it should go to y_+
 - Most often it goes to y₊ & others (y_o)
- · After training, you might end up with

$$\log \sigma \left(\beta \left[\log \frac{\pi_{\theta}(y_{+}|x)}{\pi_{ref}(y_{+}|x)} - \log \frac{\pi_{\theta}(y_{-}|x)}{\pi_{ref}(y_{-}|x)}\right]\right)$$

 $\pi_{\theta}(y_o|x) = 0.3$ Say $y_0 = (the, the, the)$

Unfortunately, this is quite common

How to deal with out-of-distribution bias in DPO?

Possible Solution: Online DPO

- If the probability of a certain OOD output increases
 - It gets sampled in online DPO
 - Gets a low reward
 - Its probability decreases
- Resampling should be done frequently to prevent OOD bias

Open Problem: How to deal with out-of-distribution bias in offline DPO?

Credit: Direct Language Model Alignment from Online AI Feedback

Performance Comparison: Offline vs Online DPO

Method	Win	Tie	Loss	Quality
TL;DR				
Online DPO Offline DPO	63.74% 7.69%	28.57%	7.69% $63.74%$	3.95 3.46
Helpfulness				
Online DPO Offline DPO	58.60% 20.20%	21.20%	20.20% $58.60%$	4.08 3.44
Harmlessness				
Online DPO Offline DPO	60.26% 3.84%	35.90%	3.84% $60.26%$	4.41 3.57

Table 2: Win/tie/loss rate of DPO with OAIF (online DPO) against vanilla DPO (offline DPO) on the TL; DR, Helpfulness, Harmlessness tasks, along with the quality score of their generations, judged by *human raters*.

Credit: Direct Language Model Alignment from Online AI Feedback

Main Takeaways

- DPO can learn the policy directly from human/AI preferences
 - No reward model or value function needed
- Can be biased towards OOD samples
- To prevent bias
 - A reward model can be trained
 - Outputs can be sampled frequently from the policy and ranked using the reward model

