Application 1: Simulation

- Il-Chul Moon
 Dept. of Industrial and Systems Engineering KAIST
- <u>icmoon@kaist.ac.kr</u>

Weekly Objectives

- This week, we briefly learn the concept and the application of computer simulations
 - Introduction purpose
- Objectives are
 - Understanding the concepts of modeling and simulation

Real world problems

- Role of ISE?
 - Developing a specialized solution through science and engineering?
 - Developing a managerial solution through computational analyses?
 - Both!
 - However, you need to comprehend your problem first.

Military/Terrorism

Management

Markets/Finance

Government/Politics

Manufacturing

Medicine

How to comprehend a problem?

- The way to comprehend a given program
 - Estimate the outputs of a given input
 - Estimate the progress of the program in the system
 - Just as we traced the function calls of the recursion in the execution timeline
- How to comprehend a problem?
 - Estimate the future of a given status-quo
 - Estimate the progress of problem factors in the system
 - However, the real-world problem is not a program in a well-defined programming language

Markets/Finance

Models and why modeling?

- Since, it is difficult to trace the real-world problems.
 - We create a model that simplifies the real-world problems
 - The model is a simplification of the real world problems.
 - The model is an essence of the real world problems.

- Why use montage? Not picture?
- Antoine de Saint-Exupery
 - Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away
- What to remove?
 - What to leave in the model
 - What to remove from the real world
 - Determined by objectives

Reduction by objectives

Two Types of Models

- Models to solve
 - Numerical modeling
 - Linear programming, Integer programming
 - Goal: converting the real world problems into formula, then finding optimal solutions through solvers
- Models to simulate
 - System dynamics, discrete event models, agent based models
 - Event graphs, petri-net, agent modeling
 - Goal: approximating to the real world problems, then finding the optimal solutions through repetitive simulations

Markets/Finance

Manufacturing

Mathematical Solution

Model Simulation

Infectious Disease

- SIR model (1925)
- A lifecycle of a patient
 - Susceptible
 - Infectious
 - Recovery
- More susceptible and infectious people
 - Infectious people increases
- After some time, infectious people get recovered
- This is a model without the loss of population
- See how to represent the interactions between infectious and susceptible populations

SIR model in details

Hospital Management

- In hospitals
 - Patients go through
 - Waiting area
 - Exam room
 - Treatment room
 - Exit
 - These are a sequence of the patient care process

Airport Model

- In airports
 - Passengers go through
 - Check-in counter
 - Security check
 - Maybe, restaurant
 - Gates
 - Plane
 - Gates
 - Maybe, border control
 - Baggage claim
 - These are a sequence of airport travel process

Example: Traffic Network Modeling

- Traffic
 - Agent: individual vehicles
 - Space: road network
- Problem
 - No center control of agents
 - Agents choose their route based upon the latency from the selfish and rational perspective
 - Then, how to model and simulate this distributed traffic agent model?

Traffic Model

Emergency Response Routing

Simulation for Military Training

Simulation for Missile Defense

Example: Trading Agent Competition

- Trading Agent Competition
 - An international forum
 - To promote high quality research into the trading agent problem
 - Basically, each research group produce a trading agent and starts free-for-all
 - Prof. Michael Wellman created the forum in 2002 based upon the "Travel Agent Scientrio"
 - Then,
 - What is the trading agent?
 - Why does the trading agent problem receive attentions?
 - Let's follow the history of TAC

Travel Agent Scenario

Trading Agent Competition: PowerTAC

