

Design Principles of Programming Languages 编程语言的设计原理

Haiyan Zhao, Di Wang 赵海燕,王迪

Peking University, Spring Term 2024

Type-Level Computation 类型层计算

We Have Studied ...

Principle

The uses of type systems go beyond detecting errors.

- Type systems offer support for abstraction, safety, efficiency, ...
- Language design goes hand-in-hand with type-system design.

Observation

Different combinations lead to different languages.

- System $F + \lambda \mu$ supports polymorphic recursive types.
- System F + λ_{\leq} : supports bounded quantification (see Chap. 26).

The Essence of λ

Principle (Computation)

 λ -abstraction is **THE** mechanism of defining computation.

- In λ_{\rightarrow} , λx :T. t abstracts terms out of terms.
- In System F, λX . t abstracts **terms** out of **types**.

Principle (Characterization of Computation)

Typing is **THE** mechanism of characterizing computation.

- Syntactically: types characterize terms.
- Semantically: a type denotes a set of terms that evaluates to particular values.

Question

Can we introduce computation to the type level? How to characterize such type-level computation?

Type Operators

Remark

We have seen **parametric** type definitions:

Observation

Pair, Sum, and List behave like type-level functions!

```
Pair = \lambda T1. \lambda T2. (\forall X. (T1 \rightarrow T2 \rightarrow X) \rightarrow X);
Sum = \lambda T1. \lambda T2. (\forall X. (T1 \rightarrow X) \rightarrow (T2 \rightarrow X) \rightarrow X);
List = \lambda T. (\forall x. (T \rightarrow X \rightarrow X) \rightarrow X \rightarrow X);
```

Type-Level Computation

Principle (Type-Level Computation)

 λ -abstraction is **THE** mechanism of defining computation.

```
Pair = \lambda T1. \lambda T2. (\forall X. (T1 \rightarrow T2 \rightarrow X) \rightarrow X);
Sum = \lambda T1. \lambda T2. (\forall X. (T1 \rightarrow X) \rightarrow (T2 \rightarrow X) \rightarrow X);
List = \lambda T. (\forall x. (T \rightarrow X \rightarrow X) \rightarrow X \rightarrow X);
```

We introduce λX . T to abstract types out of types.

Observation

Type-level computation allows writing the same type in different ways.

Example

Consider Id = λ X. X. The following types are equivalent: Nat \rightarrow Bool Nat \rightarrow Id Bool Id Nat \rightarrow Id Bool Id Nat \rightarrow Bool Id (Nat \rightarrow Bool)

Type-Level Abstraction & Application

Syntax

$$\begin{split} T &\coloneqq \textbf{X} \mid \textbf{\lambda} \textbf{X}. \, \textbf{T} \mid \textbf{T} \, \textbf{T} \mid \textbf{T} \to \textbf{T} \mid \textbf{Bool} \mid \textbf{Nat} \mid \dots \\ \textbf{TV} &\coloneqq \textbf{\lambda} \textbf{X}. \, \textbf{T} \mid \textbf{TV} \to \textbf{TV} \mid \textbf{Bool} \mid \textbf{Nat} \mid \dots \end{split}$$

$$\begin{split} & \text{Evaluation: } T \longrightarrow T' \\ & \frac{T_1 \longrightarrow T_1'}{T_1 \ T_2 \longrightarrow T_1' \ T_2} & \frac{T_2 \longrightarrow T_2'}{TV_1 \ T_2 \longrightarrow TV_1 \ T_2'} & \overline{(\lambda X. \ T_{12}) \ TV_2 \longrightarrow [X \mapsto TV_2] T_{12}} \\ & \frac{T_1 \longrightarrow T_1'}{(T_1 \to T_2) \longrightarrow (T_1' \to T_2)} & \frac{T_2 \longrightarrow T_2'}{(TV_1 \to T_2) \longrightarrow (TV_1 \to T_2')} \end{split}$$

Question

It seems that we formulate a type-level untyped lambda calculus. Any issues?

Issue 1: Unequal Equivalent Types

Example

Consider Id = λ X. X. Two type-level values λ X. Id X and λ X. X are unequal but equivalent.

Observation

We do not care about how types evaluate.

We care about if they are equivalent.

Equivalence: $S \equiv T$

$$T \equiv T$$
 $S \equiv T$

$$\frac{T \equiv S}{S \equiv T}$$

$$\frac{S \equiv U \qquad U \equiv T}{S \equiv T}$$

$$\frac{S_1 \equiv T_1 \qquad S_2 \equiv T_2}{S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2}$$

$$\frac{S_2 \equiv T_2}{\lambda X. S_2 \equiv \lambda X. T_2}$$

$$S_2 \equiv T_2$$

$$S_2 \equiv \lambda X. T_2$$

$$S_1 \equiv T_1$$

$$S_2 \equiv T_2$$

$$S_1 S_2 \equiv T_1 T_2$$

$$\overline{(\lambda X.\,T_{12})\,T_2\equiv [X\mapsto T_2]T_{12}}$$

Issue 2: Errors in Type-Level Computation

Example

```
Consider (\lambda X. X X) Nat. The type evaluates to Nat. Nat, which is an illy-formed type. Consider (\lambda X. X X) (\lambda X. X X). The type's evaluation diverges.
```

Principle (Characterization of Type-Level Computation)

Recall that **types** characterize **terms**.

What can characterize types?

Kinds: "Types of Types"

Kinds characterize types.

```
* proper types (e.g., Boo1 and Nat \rightarrow Boo1)

* \Rightarrow * type operators, i.e., functions from proper types to proper types

* \Rightarrow * \Rightarrow * functions from proper types to type operators, i.e., two-argument operators

(* \Rightarrow *) \Rightarrow * functions from type operators to proper types
```

Terms, Types, and Kinds

Terms

Question

- What is the difference between $\forall X \ X \rightarrow X \text{ and } \lambda X \ X \rightarrow X$?
- Why doesn't an arrow type Nat \rightarrow Nat have an arrow kind like $* \Rightarrow *$?

Kinding

Syntax

$$\begin{split} T &:= X \mid \lambda X \text{::} K \text{.} \ T \mid T \ T \mid T \to T \mid Bool \mid Nat \mid \dots \\ K &:= * \mid K \Rightarrow K \end{split}$$

$$\Gamma &:= \varnothing \mid \Gamma, x \text{:} \ T \mid \Gamma, X \text{::} \ K \end{split}$$

$\Gamma \vdash T :: K$: "type T has kind K in context Γ "

$$\begin{array}{c} X :: \mathsf{K} \in \Gamma \\ \hline \Gamma \vdash X :: \mathsf{K} \end{array} \qquad \begin{array}{c} \Gamma, X :: \mathsf{K}_1 \vdash \mathsf{T}_2 :: \mathsf{K}_2 \\ \hline \Gamma \vdash \lambda X :: \mathsf{K}_1 \end{array} \qquad \begin{array}{c} \Gamma \vdash \mathsf{T}_1 :: \mathsf{K}_{11} \Rightarrow \mathsf{K}_{12} \qquad \Gamma \vdash \mathsf{T}_2 :: \mathsf{K}_{11} \\ \hline \Gamma \vdash \mathsf{T}_1 :: * \qquad \Gamma \vdash \mathsf{T}_2 :: * \\ \hline \Gamma \vdash \mathsf{T}_1 \to \mathsf{T}_2 :: * \end{array} \qquad \begin{array}{c} \Gamma \vdash \mathsf{Bool} :: * \end{array} \qquad \begin{array}{c} \Gamma \vdash \mathsf{Bool} :: * \end{array}$$

Observation

The kinding relation $\Gamma \vdash T :: K$ is very similar to the typing relation $\Gamma \vdash t : T$.

λ_{ω} = λ_{\rightarrow} + Type Operators

t	::=		terms:
		χ	variable
		λx:T. t	abstraction
		t t	application
ν	:=		values:
		λx:T. t	abstraction value
Τ	:=		types:
		X	type variable
		λX::K. T	operator abstraction
		TT	operator application
		$T\toT$	type of functions
Γ	:=		contexts:
		Ø	empty context
		$\Gamma, x : T$	term variable binding
		Γ, X :: K	type variable binding
K	:=		kinds:
		*	kind of proper types
		$K \Rightarrow K$	kind of operators

Typing

Typing

$$\begin{array}{c} \underline{x:T\in\Gamma}\\ \hline \Gamma\vdash x:T \end{array} \qquad \begin{array}{c} \underline{\Gamma\vdash T_1 : *} \quad \Gamma, x:T_1\vdash t_2:T_2\\ \hline \Gamma\vdash \lambda x:T_1 \cdot t_2:T_1\to T_2 \end{array} \qquad \begin{array}{c} \underline{\Gamma\vdash t_1:T_{11}\to T_{12}} \quad \Gamma\vdash t_2:T_{11}\\ \hline \Gamma\vdash t:S \quad S\equiv T \quad \Gamma\vdash T: *\\ \hline \Gamma\vdash t:T \end{array}$$

Observation

If $\varnothing \vdash t : T$, then $\varnothing \vdash T :: *$.

Question

How to decide type equivalence $S \equiv T$ algorithmically?

Approach 1: Parallel Reduction

 $S \Rightarrow T$: "type S parallelly reduces to type T"

$$\frac{S_1 \Rrightarrow T_1 \qquad S_2 \Rrightarrow T_2}{S_1 \to S_2 \Rrightarrow T_1 \to T_2} \qquad \frac{S_2 \Rrightarrow T_2}{\lambda X :: K_1. \, S_2 \Rrightarrow \lambda X :: K_1. \, T_2} \qquad \frac{S_1 \Rrightarrow T_1 \qquad S_2 \Rrightarrow T_2}{S_1 \, S_2 \Rrightarrow T_1 \, T_2}$$

$$\frac{32 \Rightarrow 12}{\lambda X :: K_1 . S_2 \Rightarrow \lambda X :: K_1 . T_2}$$

$$\frac{S_1 \Rightarrow T_1 \qquad S_2 \Rightarrow T_2}{S_1 S_2 \Rightarrow T_1 T_2}$$

$$\frac{S_{12} \Rrightarrow T_{12} \qquad S_2 \Rrightarrow T_2}{(\lambda X :: K_{11}.\, S_{12})\, S_2 \Rrightarrow [X \mapsto T_2] T_{12}}$$

Example

Let $S \stackrel{\text{def}}{=} Id \, \text{Nat} \rightarrow \text{Bool}$ and $T \stackrel{\text{def}}{=} Id \, (\text{Nat} \rightarrow \text{Bool})$. Then

$$S = ((\lambda X :: *. \ X) \ \text{Nat}) \rightarrow \text{Bool} \Rightarrow \text{Nat} \rightarrow \text{Bool}, \qquad \text{T} = (\lambda X :: *. \ X) \ (\text{Nat} \rightarrow \text{Bool}) \Rightarrow \text{Nat} \rightarrow \text{Bool}.$$

$$\mathsf{T} = (\lambda X \text{::*.} \, X) \; (\texttt{Nat} \to \texttt{Bool}) \Rrightarrow \texttt{Nat} \to \texttt{Bool}$$

Theorem

 $S \equiv T$ if and only if there exists some U such that $S \Rightarrow^* U$ and $T \Rightarrow^* U$.

Approach 2: Weak-Head Reduction

$S \rightsquigarrow T$: "type S weak-head reduces to type T"

Weak-head reduction only reduces **outermost** type-level applications.

$$\frac{T_1 \rightsquigarrow T_1'}{T_1 \ T_2 \rightsquigarrow T_1' \ T_2}$$

$$\overline{(\lambda X :: K. T_{12}) T_2 \rightsquigarrow [X \mapsto T_2] T_{12}}$$

We denote by $S \downarrow T$ to mean "type S weak-head normalizes to type T."

$$\frac{\mathsf{T}\not\leadsto}{\mathsf{T}\Downarrow\mathsf{T}}$$

$$\frac{\mathsf{S} \leadsto \mathsf{T} \qquad \mathsf{T} \Downarrow \mathsf{T}'}{\mathsf{S} \Downarrow \mathsf{T}'}$$

$\Gamma \vdash S \Leftrightarrow T :: K \text{ and } \Gamma \vdash S \leftrightarrow T :: K$: Algorithmic and Structural Equivalence

$$\frac{S \Downarrow S' \qquad T \Downarrow T' \qquad \Gamma \vdash S \leftrightarrow T :: *}{\Gamma \vdash S \Leftrightarrow T :: *}$$

$$\frac{X \not\in \Gamma \qquad \Gamma, X :: K_1 \vdash S \: X \Leftrightarrow T \: X :: K_2}{\Gamma \vdash S \Leftrightarrow T :: K_1 \Rightarrow K_2}$$

$$\frac{X :: K \in \Gamma}{\Gamma \vdash X \leftrightarrow X :: K}$$

$$\frac{X :: K \in \Gamma}{\Gamma \vdash X \leftrightarrow X :: K} \qquad \frac{\Gamma \vdash S_1 \leftrightarrow T_1 :: * \qquad \Gamma \vdash S_2 \leftrightarrow T_2 :: *}{\Gamma \vdash S_1 \to S_2 \leftrightarrow T_1 \to T_2 :: *}$$

Parallel Reduction vs. Weak-Head Reduction

Example

```
Pair = λY::*. {Y,Y};
List = λY::*. (μX. <nil:Unit,cons:{Y,X}>);
Determine that List(List(Pair(Nat))) and List(List({Nat.Nat})) are equivalent.
```

Parallel Reduction

```
 \begin{split} & List(List(Pair(Nat))) \Rightarrow^* \mu X. < nil:Unit, cons: \{\mu Y. < nil:Unit, cons: \{\{Nat, Nat\}, Y\} >, X\} > \\ & List(List(\{Nat, Nat\})) \Rightarrow^* \mu X. < nil:Unit, cons: \{\mu Y. < nil:Unit, cons: \{\{Nat, Nat\}, Y\} >, X\} > \\ & List(\{Nat, N
```

Parallel Reduction vs. Weak-Head Reduction

Example

```
Pair = λ Y :: *. {Y,Y};
List = λ Y :: *. (μX. <nil:Unit,cons:{Y,X}>);
Determine that List(List(Pair(Nat))) and List(List({Nat,Nat})) are equivalent.
```

Weak-Head Reduction

```
\label{eq:weighted_pair} We \ start \ with \varnothing \vdash List(List(Pair(Nat))) \Leftrightarrow List(List(\{Nat,Nat\})) \ :: \ *. List(List(\{Nat,Nat\})) \ \Downarrow \ \mu X. \ < nil: Unit, cons: \{List(\{Nat,Nat\}), X\} >   Extructural \ equivalence, we \ resort \ to \ check \varnothing \vdash Pair(Nat) \ \Leftrightarrow \ \{Nat,Nat\} \ :: \ *. Pair(Nat) \ \Downarrow \ \{Nat,Nat\}   \{Nat,Nat\} \ \Downarrow \ \{Nat,Nat\}
```

System F_{ω} : The Combination of System F and λ_{ω}

Syntax

```
\begin{split} t &\coloneqq x \mid \lambda x : T. \ t \mid t \ t \mid \lambda \lambda : K. \ t \mid t \ [T] \mid \{ \mbox{*}T, t \} \ as \ T \mid let \ \{X, x\} = t \ in \ t \\ v &\coloneqq \lambda x : T. \ t \mid \lambda \lambda : K. \ t \mid \{ \mbox{*}T, v \} \ as \ T \\ T &\coloneqq X \mid \lambda \lambda : K. \ T \mid T \mid T \rightarrow T \mid \forall \lambda : K. \ T \mid \{ \exists \lambda : K, T \} \\ \Gamma &\coloneqq \varnothing \mid \Gamma, x : T \mid \Gamma, \lambda : K \\ K &\coloneqq * \mid K \Rightarrow K \end{split}
```

Observation

- The universal type $\forall X$. T becomes $\forall X$::K. T, i.e., we can abstract terms out of **type operators**.
- The existential type $\{\exists X, T\}$ becomes $\{\exists X :: K, T\}$, i.e., we can pack a term to hide some **type operator**.

Typing, Kinding, and Type Equivalence

Typing

$$\frac{\Gamma, X :: K_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda X :: K_1 .: t_2 : \forall X :: K_1 .: T_2}$$

$$\Gamma \vdash t_2 : [X \mapsto U]T_2$$

$$\Gamma \vdash U :: K_1$$

$$\Gamma \vdash \{*U, t_2\} \text{ as } \{\exists X :: K_1, T_2\} : \{\exists X :: K_1, T_2\}$$

$$\begin{split} \frac{\Gamma \vdash t_{1} : \forall X \text{::} K_{11}. \, T_{12} & \Gamma \vdash T_{2} \text{::} \, K_{11}}{\Gamma \vdash t_{1} \, [T_{2}] : [X \mapsto T_{2}] T_{12}} \\ & \qquad \qquad \Gamma \vdash t_{1} : \{\exists X \text{::} K_{11}, T_{12}\} \\ & \qquad \qquad \frac{\Gamma, X \text{::} K_{11}, x : T_{12} \vdash t_{2} : T_{2} & \Gamma \vdash T_{2} \text{::} *}{\Gamma \vdash \text{let} \, \{X, x\} = t_{1} \, \text{in} \, t_{2} : T_{2}} \end{split}$$

Kinding and Type Equivalence

$$\frac{\Gamma, X :: K_1 \vdash T_2 :: *}{\Gamma \vdash \forall X :: K_1 . T_2 :: *}$$

$$\frac{S_2 \equiv T_2}{\forall X :: K_1. S_2 \equiv \forall X :: K_1. T_2}$$

$$\frac{\Gamma, X :: K_1 \vdash T_2 :: *}{\Gamma \vdash \{\exists X :: K_1, T_2\} :: *}$$

$$\frac{S_2 \equiv T_2}{\{\exists X :: K_1, S_2\} \equiv \{\exists X :: K_1, T_2\}}$$

Review: Abstract Data Types (ADTs)

Definition

An abstract data type (ADT) consists of

- a type name A,
- a concrete representation type T,
- implementations of operations for manipulating values of type T, and
- an abstraction boundary enclosing the representation and operations.

Abstract Type Operators

Question

We want to implement an ADT of pairs.

- The ADT provides operations for building pairs and taking them apart.
- Those operations need to be **polymorphic**.

The abstract type Pair would not be a proper type, but an abstract type operator!

```
PairSig = {\exists Pair :: *\Rightarrow*\Rightarrow*,
{pair: \forall X. \forall Y. X\rightarrowY\rightarrow(Pair X Y),
fst : \forall X. \forall Y. (Pair X Y)\rightarrowX,
snd : \forall X. \forall Y. (Pair X Y)\rightarrowY}};
```

Abstract Type Operators

Example

```
pairADT = \{*(\lambda X. \lambda Y. \forall R. (X \rightarrow Y \rightarrow R) \rightarrow R).
                   \{pair = \lambda X. \lambda Y. \lambda x: X. \lambda y: Y. \lambda R. \lambda p: (X \rightarrow Y \rightarrow R). p x y. \}
                    fst = \lambda X. \lambda Y. \lambda p: (\forall R. (X \rightarrow Y \rightarrow R) \rightarrow R). p[X](\lambda x: X . \lambda y: Y . x),
                     snd = \lambda X. \lambda Y. \lambda p: (\forall R. (X \rightarrow Y \rightarrow R) \rightarrow R). p[Y](\lambda x: X, \lambda y: Y, y)}
                 as PairSig:
▶ pairADT : PairSig
let {Pair,pair} = pairADT
in pair.fst [Nat] [Bool] (pair.pair [Nat] [Bool] 5 true);
▶ 5 : Nat
```

More Examples

Option: Combination with Variants

```
Option = \lambda X. <none:Unit,some:X>;
none = \lambda X. <none=unit> as (Option X);
\blacktriangleright none : \forall X. (Option X)
some = \lambda X. \lambda x:X. <some=x> as (Option X);
\blacktriangleright some : \forall X. X \rightarrow (Option X)
```

List: Combination with Variants, Tuples, and Recursive Types

```
List = \mu L: (* \Rightarrow *). \lambda X. <nil:Unit,cons:\{X,(L X)\}>;

nil = \lambda X. <nil=unit> as (List X);

\blacktriangleright nil : \forall X. (List X)

cons = \lambda X. \lambda h: X. \lambda t: (List X). <cons=\{h,t\}> as (List X);

\blacktriangleright cons : \forall X. X \rightarrow (List X) \rightarrow (List X)
```

More Examples

Queue: Implementing a Queue using Two Lists

```
QueueSig = \{\exists 0 : *\Rightarrow *.
                 \{\text{empty}: \forall X. (0 X),
                   insert: \forall X. X \rightarrow (0 X) \rightarrow (0 X).
                   remove: \forall X. (0 X) \rightarrow \text{Option } \{X,(0 X)\}\}\};
queueADT = \{*(\lambda X. \{List X.List X\}).
                 \{\text{emptv} = \lambda X. \{\text{nil} [X], \text{nil} [X]\}.
                   insert = \lambda X. \lambda a: X. \lambda g: \{List X, List X\}. \{(cons [X] a g.1), g.2\},
                   remove =
                    \lambda X. \lambda g:{List X.List X}.
                      let q' = case q.2 of < nil=u> \Rightarrow {nil [X], reverse [X] q.1}
                                                  | \langle cons = \{h, t\} \rangle \Rightarrow a
                      in case q'.2 of
                         <nil=u> ⇒ none [{X.{List X.List X}}]
                      | \langle cons=\{h,t\} \rangle \Rightarrow some [\{X,\{List X,List X\}\}] \{h,\{q'.1,t\}\}\}  as QueueSig;
▶ queueADT : OueueSiq
```

Preservation

Observation

The structural rule (T-Eq) makes induction proof difficult:

$$\frac{\Gamma \vdash t : S \qquad S \equiv T \qquad \Gamma \vdash T :: *}{\Gamma \vdash t : T}$$

Preservation of Shapes (for Arrows)

 $\text{If } S_1 \to S_2 \Rrightarrow^* \mathsf{T} \text{, then } \mathsf{T} = \mathsf{T}_1 \to \mathsf{T}_2 \text{ with } S_1 \Rrightarrow^* \mathsf{T}_1 \text{ and } S_2 \Rrightarrow^* \mathsf{T}_2.$

Inversion (for Arrows)

If $\Gamma \vdash \lambda x : S_1 . s_2 : T_1 \rightarrow T_2$, then $T_1 \equiv S_1$ and $\Gamma, x : S_1 \vdash s_2 : T_2$. Also $\Gamma \vdash S_1 :: *$.

Theorem (30.3.14)

If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Progress

Canonical Forms (for Arrows)

If t is a closed value with $\varnothing \vdash t : T_1 \to T_2$, then t is an abstraction.

Theorem (30.3.16)

Suppose t is a closed, well-typed term (that is, $\varnothing \vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Kinding

Remark

Recall that we observed that if $\varnothing \vdash t : T$, then $\varnothing \vdash T :: *$.

Context Formation

∅ ctx

$$\frac{\Gamma \operatorname{ctx} \qquad \Gamma \vdash T :: *}{\Gamma, x : T \operatorname{ctx}}$$

$$\frac{\Gamma \operatorname{ctx}}{\Gamma, X :: K \operatorname{ctx}}$$

Theorem

If Γ ctx and $\Gamma \vdash t : T$, then $\Gamma \vdash T :: *$.

Fragments of System F_{ω}

Definition

In System F_1 , the only kind is * and no quantification (\forall) or abstraction (λ) over types is permitted. The remaining systems are defined with reference to a hierarchy of kinds at **level** i:

$$\begin{split} &\mathcal{K}_1 = \varnothing \\ &\mathcal{K}_{i+1} = \{*\} \cup \{J \Rightarrow K \mid J \in \mathcal{K}_i \land K \in \mathcal{K}_{i+1}\} \\ &\mathcal{K}_{\omega} = \bigcup_{1 \leqslant i} \mathcal{K}_i \end{split}$$

Example

- System F_1 is the simply-typed lambda-calculus λ_{\rightarrow} .
- In System F_2 , we have $\mathcal{K}_2 = \{*\}$, so there is no lambda-abstraction at the type level but we allow quantification over proper types.
 - F₂ is just the System F; this is why System F is also called the **second-order lambda-calculus**.
- For System F_3 , we have $\mathfrak{K}_3 = \{*, * \Rightarrow *, * \Rightarrow * \Rightarrow *, \ldots\}$, i.e., type-level abstractions are over proper types.

Remark

The kinding system of λ_{ω} and F_{ω} consists of only * and $K_1 \Rightarrow K_2$. Can we extend kinding to support more versatile type-level computation?

Observation

We can extend type-level computation as long as **type equivalence remains decidable**.

Natural-Number Kind

$$\begin{split} \mathsf{K} &\coloneqq * \mid \mathsf{K} \Rightarrow \mathsf{K} \mid \mathbb{N} \\ \mathsf{T} &\coloneqq \mathsf{X} \mid \lambda \mathsf{X} \vdots \mathsf{K}, \mathsf{T} \mid \mathsf{T} \mathsf{T} \mid \mathsf{T} \to \mathsf{T} \mid \forall \mathsf{X} \vdots \mathsf{K}, \mathsf{T} \mid \{\exists \mathsf{X} \vdots \mathsf{K}, \mathsf{T}\} \mid \mathsf{ZERO} \mid \mathsf{SUCC} \; \mathsf{T} \mid \ldots \end{split}$$

With recursive types, we can define length-indexed lists:

```
List = \lambda X. \muL:: (\mathbb{N} \Rightarrow*). \lambdaM:: \mathbb{N}. IF ISZERO(M) THEN Unit ELSE {X,(L (PRED M))}; \blacktriangleright List : * \Rightarrow \mathbb{N} \Rightarrow *
```


Example

```
List = \lambda X. \mu L :: (\mathbb{N} \Rightarrow^*). \lambda M :: \mathbb{N}. IF ISZERO(M) THEN Unit ELSE \{X, (L \text{ (PRED M))}\};
\blacktriangleright List : ^* \Rightarrow \mathbb{N} \Rightarrow^*

nil = \lambda X. unit as (List X ZERO);
\blacktriangleright nil : \forall X. (List X ZERO)

cons = \lambda X. \lambda M :: \mathbb{N}. \lambda h : X. \lambda t : (List X M). \{h, t\} as (List X (SUCC M));
\blacktriangleright cons : \forall X. \forall M :: \mathbb{N}. X \rightarrow (List X M) \rightarrow (List X (SUCC M))
```

Example

```
PLUS = \muP::(\mathbb{N} \Rightarrow \mathbb{N} \Rightarrow \mathbb{N}). \lambdaM::\mathbb{N}. \lambdaN::\mathbb{N}. IF ISZERO(M) THEN N ELSE SUCC (P (PRED M) N); \blacktriangleright PLUS :: \mathbb{N} \Rightarrow \mathbb{N} \Rightarrow \mathbb{N}
```


Natural-Number Kind

Type-level recursion would render type equivalence **undecidable**.

Let us consider IN as an inductively-defined kind.

Below are the kinding rules for \mathbb{N} :

$$\frac{\Gamma \vdash \mathsf{T}_1 :: \mathbb{N}}{\Gamma \vdash \mathsf{ZERO} :: \mathbb{N}} \qquad \frac{\Gamma \vdash \mathsf{T}_1 :: \mathbb{N}}{\Gamma \vdash \mathsf{SUCC} \; \mathsf{T}_1 :: \mathbb{N}}$$

$$\frac{\Gamma \vdash \mathsf{T}_0 : \mathbb{I} \mathsf{N} \qquad \Gamma \vdash \mathsf{T}_1 :: \mathsf{K} \qquad \Gamma, \mathsf{Y} :: \mathsf{K} \vdash \mathsf{T}_2 :: \mathsf{K}}{\Gamma \vdash \mathsf{ITER} \; \mathsf{T}_0 \; \mathsf{WITH} \; \mathsf{ZER0} \Rightarrow \mathsf{T}_1 \; | \; \mathsf{SUCC} \Rightarrow \mathsf{Y}. \; \mathsf{T}_2 :: \mathsf{K}}$$

Example

```
List = \lambda X. \lambda M : \mathbb{N}. ITER M OF ZERO \Rightarrow Unit | SUCC \Rightarrow Y. \{X,Y\};
```

▶ List : * \Rightarrow N \Rightarrow *

PLUS = λ M: N. λ N: N. ITER M OF ZERO \Rightarrow N | SUCC \Rightarrow Y. SUCC Y;

ightharpoonup PLUS :: $\mathbb{N} \Rightarrow \mathbb{N} \Rightarrow \mathbb{N}$

Term-Level Case on Type-Level Natural Numbers

List = λX . $\lambda M :: \mathbb{N}$. ITER M OF ZERO \Rightarrow Unit | SUCC \Rightarrow Y. $\{X,Y\}$;

```
\frac{\Gamma \vdash T_0 :: \mathbb{N} \qquad \Gamma, T_0 \equiv \overline{\mathsf{ZERO}} :: \mathbb{N} \vdash t_1 : T \qquad \Gamma, Y :: \mathbb{N}, T_0 \equiv \overline{\mathsf{SUCC}} \, Y :: \mathbb{N} \vdash t_2 : T \qquad \Gamma \vdash T :: *}{\Gamma \vdash \mathsf{tcase} \, T_0 \, \mathsf{of} \, \overline{\mathsf{ZERO}} \Rightarrow t_1 \mid \mathsf{SUCC} \, Y \Rightarrow t_2 : T}
```

Example

```
PLUS = \lambda M::N. \lambda N::N. ITER M OF ZERO \Rightarrow N | SUCC \Rightarrow Y. SUCC Y;

PLUS :: N \Rightarrow N \Rightarrow N

append : \forall X. \forall M::N. \forall N::N. (List X M) \rightarrow (List X N) \rightarrow (List X (PLUS M N))

append = \lambda X. fix \lambda f. \lambda M::N. \lambda N::N. \lambda 11:(List X M). \lambda 12:(List X N).

tcase M of ZERO \Rightarrow let unit = 11 in 12 as (List X (PLUS M N))

SUCC M' \Rightarrow let {h,t} = 11 in {h,(f M' N t 12)} as (List X (PLUS M N));
```

▶ List :: * \Rightarrow N \Rightarrow *

Remark

Because type-equivalence constraints can appear in the context, we need **hypothetical** type equivalence. Ref: J. Chenev and R. Hinze. 2003. First-Class Phantom Types. Technical report. Cornell University.

Hypothetical Type Equivalence: $\Gamma \vdash S \equiv T :: K$

$$\frac{\Gamma \vdash \Gamma :: K}{\Gamma \vdash T \equiv T :: K}$$

$$\frac{\Gamma \vdash T :: K}{\Gamma \vdash T \equiv T :: K} \qquad \qquad \frac{\Gamma \vdash T \equiv S :: K}{\Gamma \vdash S \equiv T :: K}$$

$$\frac{\Gamma \vdash S \equiv U :: K \qquad \Gamma \vdash U \equiv T :: K}{\Gamma \vdash S \equiv T :: K}$$

$$\frac{\Gamma \vdash S_1 \equiv T_1 :: * \qquad \Gamma \vdash S_2 \equiv T_2 :: *}{\Gamma \vdash S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2 :: *}$$

$$\frac{\Gamma, X :: K_1 \vdash S_2 \equiv T_2 :: K_2}{\Gamma \vdash \lambda X :: K_1 .: S_2 \equiv \lambda X :: K_1 .: T_2 :: K_1 \Rightarrow K_2}$$

$$\frac{\Gamma \vdash S_1 \equiv T_1 :: K_{11} \Rightarrow K_{12} \qquad \Gamma \vdash S_2 \equiv T_2 :: K_{11}}{\Gamma \vdash S_1 S_2 \equiv T_1 T_2 :: K_{12}}$$

$$\frac{\Gamma, X : K_{11} \vdash T_{12} :: K_{12}}{\Gamma \vdash (2X :: K_{11}) \vdash T_{12} :: K_{12}} \qquad \Gamma \vdash T_{2} :: K_{11}}{\Gamma \vdash (2X :: K_{11}) \vdash T_{12} :: K_{12}}$$

Hypothetical Type Equivalence: $\Gamma \vdash S \equiv T :: K$

$$\begin{array}{c} \Gamma \vdash S_1 \equiv T_1 :: \mathbb{N} \\ \hline \Gamma \vdash \mathsf{ZERO} \equiv \mathsf{ZERO} :: \mathbb{N} & \Gamma \vdash \mathsf{S}_1 \equiv \mathsf{T}_1 :: \mathbb{K} \\ \hline \Gamma \vdash \mathsf{SUCC} \ S_1 \equiv \mathsf{SUCC} \ \mathsf{T}_1 :: \mathbb{N} \\ \hline \\ \Gamma \vdash \mathsf{ITER} \ \mathsf{S}_0 \equiv \mathsf{T}_0 :: \mathbb{N} & \Gamma \vdash \mathsf{S}_1 \equiv \mathsf{T}_1 :: \mathsf{K} & \Gamma, \mathsf{Y} :: \mathsf{K} \vdash \mathsf{S}_2 \equiv \mathsf{T}_2 :: \mathsf{K} \\ \hline \\ \Gamma \vdash \mathsf{ITER} \ \mathsf{S}_0 \ \mathsf{WITH} \ \mathsf{ZERO} \Rightarrow \mathsf{S}_1 \mid \mathsf{SUCC} \Rightarrow \mathsf{Y}. \ \mathsf{S}_2 \equiv \mathsf{ITER} \ \mathsf{T}_0 \ \mathsf{WITH} \ \mathsf{ZERO} \Rightarrow \mathsf{T}_1 \mid \mathsf{SUCC} \Rightarrow \mathsf{Y}. \ \mathsf{T}_2 :: \mathsf{K} \\ \hline \\ \Gamma \vdash \mathsf{ITER} \ \mathsf{ZERO} \ \mathsf{WITH} \ \mathsf{ZERO} \Rightarrow \mathsf{T}_1 \mid \mathsf{SUCC} \Rightarrow \mathsf{Y}. \ \mathsf{T}_2 \equiv \mathsf{T}_1 :: \mathsf{K} \\ \hline \\ \Gamma \vdash \mathsf{ITER} \ (\mathsf{SUCC} \ \mathsf{T}_0) \ \mathsf{WITH} \ \mathsf{ZERO} \Rightarrow \mathsf{T}_1 \mid \mathsf{SUCC} \Rightarrow \mathsf{Y}. \ \mathsf{T}_2 :: \mathsf{K} \\ \hline \\ \Gamma \vdash \mathsf{ITER} \ (\mathsf{SUCC} \ \mathsf{T}_0) \ \mathsf{WITH} \ \mathsf{ZERO} \Rightarrow \mathsf{T}_1 \mid \mathsf{SUCC} \Rightarrow \mathsf{Y}. \ \mathsf{T}_2 :: \mathsf{K} \\ \hline \\ \vdash \mathsf{TER} \ \mathsf{T}_0 \ \mathsf{WITH} \ \mathsf{ZERO} \Rightarrow \mathsf{T}_1 \mid \mathsf{SUCC} \Rightarrow \mathsf{Y}. \ \mathsf{T}_2 :: \mathsf{K} \\ \hline \\ \mathsf{T} \vdash \mathsf{TER} \ \mathsf{T}_0 \ \mathsf{WITH} \ \mathsf{ZERO} \Rightarrow \mathsf{T}_1 \mid \mathsf{SUCC} \Rightarrow \mathsf{Y}. \ \mathsf{T}_2 :: \mathsf{K} \\ \hline \\ \mathsf{T} \vdash \mathsf{TER} \ \mathsf{T}_0 \ \mathsf{WITH} \ \mathsf{ZERO} \Rightarrow \mathsf{T}_1 \mid \mathsf{SUCC} \Rightarrow \mathsf{Y}. \ \mathsf{T}_2 :: \mathsf{K} \\ \hline \\ \mathsf{T} \vdash \mathsf{TER} \ \mathsf{T}_0 \ \mathsf{WITH} \ \mathsf{ZERO} \Rightarrow \mathsf{T}_1 \mid \mathsf{SUCC} \Rightarrow \mathsf{Y}. \ \mathsf{T}_2 :: \mathsf{K} \\ \hline \\ \mathsf{V} \vdash \mathsf{TER} \ \mathsf{T}_0 \ \mathsf{WITH} \ \mathsf{ZERO} \Rightarrow \mathsf{T}_1 \mid \mathsf{SUCC} \Rightarrow \mathsf{Y}. \ \mathsf{T}_2 :: \mathsf{K} \\ \hline \\ \mathsf{V} \vdash \mathsf{V} \mathsf{TER} \ \mathsf{V}_0 \ \mathsf{WITH} \ \mathsf{ZERO} \Rightarrow \mathsf{V}. \ \mathsf{V} \vdash \mathsf{V}. \ \mathsf{V} \vdash \mathsf{V$$

Hypothetical Type Equivalence: $\Gamma \vdash S \equiv T :: K$

$$\frac{S \equiv T :: \mathbb{N} \in \Gamma}{\Gamma \vdash S \equiv T :: \mathbb{N}}$$

$$\frac{\Gamma \vdash \text{SUCC } S_1 \equiv \text{SUCC } T_1 :: \mathbb{N}}{\Gamma \vdash S_1 \equiv T_1 :: \mathbb{N}}$$

Example

```
tcase\ M\ of\ ZER0 \Rightarrow t1 \mid SUCC\ M' \Rightarrow t2 t1 \equiv let\ unit = l_1\ in\ l_2\ as\ (List\ X\ (PLUS\ M\ N)) t2 \equiv let\ \{h,t\} = l_1\ in\ \{h,(f\ M'\ N\ t\ l_2)\}\ as\ (List\ X\ (PLUS\ M\ N)) Let T_{app} \equiv \forall X :: *.\ \forall M :: Nat.\ \forall N :: Nat.\ (List\ X\ M) \rightarrow (List\ X\ N) \rightarrow (List\ X\ (PLUS\ M\ N)). We need to check X :: *, f : T_{app}, M :: \mathbb{N}, N :: \mathbb{N}, l_1 :: List\ X\ M, l_2 :: List\ X\ N, M \equiv ZER0 :: \mathbb{N} \vdash t1 :: List\ X\ (PLUS\ M\ N) X :: *, f : T_{app}, M :: \mathbb{N}, N :: \mathbb{N}, l_1 :: List\ X\ M, l_2 :: List\ X\ N, M' :: \mathbb{N}, M \equiv SUCC\ M' :: \mathbb{N} \vdash t2 :: List\ X\ (PLUS\ M\ N)
```

append $\equiv \lambda X$. **fix** $\lambda f:$ _. $\lambda M::$ N. $\lambda N::$ N. $\lambda l_1:$ (List XM). $\lambda l_2:$ (List XN).

Indexed Types

Observation

Previously, to support type-level natural numbers, we enriched the type level with natural-number operations.

- This approach complicates type-equivalence checking.
- This approach cannot make use of automatic solvers for natural-number reasoning.

Principle

We can separate natural numbers from the type level to reside in its own index level.

```
\begin{split} S &\coloneqq \{\alpha : \mathbb{N} \mid \theta\} \mid \{\theta\} \\ I &\coloneqq \alpha \mid n \mid I + I \mid I \times I \mid \dots \\ \theta &\coloneqq \top \mid \bot \mid \neg \theta \mid \theta \land \theta \mid \theta \lor \theta \mid I = I \mid I \leqslant I \mid \dots \\ K &\coloneqq * \mid K \Rightarrow K \mid \mathbb{N} \Rightarrow K \\ T &\coloneqq X \mid \lambda X :: K . T \mid T T \mid T \to T \mid \forall X :: K . T \mid \{\exists X :: K , T\} \mid \lambda \alpha :: \mathbb{N} . T \mid T I \mid \forall S . T \mid \{\exists S , T\} \end{split}
```

 $\text{Length-indexed lists: } \lambda \; X. \quad \mu \; L \; \text{:: ($\mathbb{N}$$$*). \quad \lambda \; \text{M::} \mathbb{N}. \; \{\exists \; \{\text{M=0}\}, \text{Unit}\} \; + \; \{\exists \; \{\text{M'::} \mathbb{N} \; | \; \text{M=M'+1}\}, \{\text{X,(L M')}\}\}.$

Indexed Types

Remark

The kind $\{\alpha : \mathbb{N} \mid \theta\}$ is usually called a **refinement** kind.

Ref: H. Xi and F. Pfenning. 1999. Dependent Types in Practical Programming. In *Princ. of Prog. Lang.* (POPL'99). doi: 10.1145/292540.292560.

Index Checking

$$\frac{\Gamma \vdash t : \forall \{\alpha : \mathbb{N} \mid \theta\}, T \qquad \Gamma \vdash i :: \{\alpha :: \mathbb{N} \mid \theta\}}{\Gamma \vdash t :[i] : [\alpha \mapsto i]T} \qquad \frac{\Gamma \vdash t : \forall \{\theta\}, T \qquad \Gamma \vdash \emptyset :: \{\theta\}}{\Gamma \vdash t :[0] : T}$$

$$\frac{\Gamma \models [\alpha \mapsto i]\theta}{\Gamma \vdash i :: \{\alpha :: \mathbb{N} \mid \theta\}} \qquad \frac{\Gamma \models \theta}{\Gamma \vdash \emptyset :: \{\theta\}}$$

Constraint Checking

For example, consider $\{a : \mathbb{N} \mid a \ge 5\}$, $x : (List Nat a) \models \neg(a = 0)$. We can resort to check validity of the formula in first-order logic: $\forall a : \mathbb{N} . (a \ge 5) \implies \neg(a = 0)$.

Extensible Records

Remark

In Chap. 11, we studied records, i.e., named tuples, which are not extensible.

Extensible Records

• **Extension**: We can extend a record r with label ℓ and term t by $\{\ell = t \mid r\}$.

```
origin = \{x = 0 \mid \{y = 0 \mid \{\}\}\};
origin3 = \{z = 0 \mid \text{origin}\};
named = \lambda s. \lambda r. \{\text{name = s \mid r}\};
```

• **Selection**: The selection operation $r.\ell$ selects the value of a label ℓ from a record r.

```
distance = \lambda p. sqrt ((p.x * p.x) + (p.y * p.y));
distance (named "2d" origin) + distance origin3;
```

• **Restriction**: The restriction operation $r-\ell$ removes a label ℓ from a record r.

```
update_name = \lambda r. \lambda s. {name = s | r - name };
rename_name_nn = \lambda r. {nn = r.name | r - name };
```

Scoped Labels

Observation

Typing extensible records needs to ensure the **safety** of the operations.

- Selection $r.\ell$ and restriction $r-\ell$ requires the label ℓ to be **present** in r.
- Usually, extension $\{\ell=t\mid r\}$ requires the label ℓ to be **absent** in r.

Scoped Labels

Let us consider **ordered** and **scoped** labels in records, which allow **duplicated** labels.

Ref: D. Leijen. 2005. Extensible records with scoped labels. In *Symp. on Trends in Functional Programming* (TFP'05), 297–312.

```
p = {x=2, x=true};
    p : {x:Nat, x:Bool}
p.x;
    2 : Nat
    (p - x).x;
    true : Bool
```

Type-Level Rows

Principle

A **row** is a list of labeled types, which can be manipulated at the type level.

$$\begin{split} &K := * \mid K \Rightarrow K \mid \mathsf{row} \\ &T := X \mid \lambda X :: K . \ T \mid T \ T \ T \ T \ T \ \forall X :: K . \ T \mid \left\{ \exists X :: K , T \right\} \mid \text{(|)} \mid \text{(|\ell : T \mid T)} \mid \left\{ T \right\} \end{split}$$

For example, the record type $\{x : Nat, y : Nat\}$ is encoded as $\{(x : Nat \mid (y : Nat \mid (y)))\}$. Below are the kinding rules for row:

$$\Gamma \vdash (\!(\!)\!) :: row$$

$$\frac{\Gamma \vdash \mathsf{T}_1 :: * \qquad \Gamma \vdash \mathsf{T}_2 :: \mathsf{row}}{\Gamma \vdash (\ell : \mathsf{T}_1 \mid \mathsf{T}_2) :: \mathsf{row}}$$

$$\frac{\Gamma \vdash T :: row}{\Gamma \vdash \{T\} :: *}$$

Well-Typed Record Operations

$$\begin{split} \{\ell = _ \mid _\} : \forall \mathsf{R} \text{::row.} \ \forall \mathsf{X} \text{::*.} \ X \rightarrow \{\mathsf{R}\} \rightarrow \{(\ell : \mathsf{X} \mid \mathsf{R})\} \\ (_.\ell) : \forall \mathsf{R} \text{::row.} \ \forall \mathsf{X} \text{::*.} \ \{(\ell : \mathsf{X} \mid \mathsf{R})\} \rightarrow \mathsf{X} \\ (_-\ell) : \forall \mathsf{R} \text{::row.} \ \forall \mathsf{X} \text{::*.} \ \{(\ell : \mathsf{X} \mid \mathsf{R})\} \rightarrow \{\mathsf{R}\} \end{split}$$

Row Equivalence

Question

The type $\forall R::row. \forall X::*. \{(\ell : X \mid R)\} \to X$ of the selection operation requires ℓ to be the **first** label. How to relax this requirement?

Type-Level Row Equivalence

Example

```
 \begin{array}{c} \vdots & x \neq y \\ \hline \varnothing \vdash \{x = \theta \mid \{y = \text{true} \mid \{\}\}\} : \{ \langle x : \text{Nat} \mid \langle y : \text{Bool} \mid \langle | \rangle \rangle ) \} & \overline{\{ \langle x : \text{Nat} \mid \langle y : \text{Bool} \mid \langle | \rangle \rangle \} \} \equiv \{ \langle y : \text{Bool} \mid \langle x : \text{Nat} \mid \langle | \rangle \rangle \} \}} \\ \hline & \varnothing \vdash \{x = \theta \mid \{y = \text{true} \mid \{\}\}\} : \{ \langle y : \text{Bool} \mid \langle x : \text{Nat} \mid \langle | \rangle \rangle \} \} \\ \hline & \varnothing \vdash \{x = \theta \mid \{y = \text{true} \mid \{\}\}\} . y : \text{Bool} \\ \hline \end{array}
```

Use Rows for Extensible Variants

Principle

Records model labeled tuples. Variants model a labeled choice among values.

$$\mathsf{T} \coloneqq \mathsf{X} \mid \lambda \mathsf{X} \colon \mathsf{K} \cdot \mathsf{T} \mid \mathsf{T} \; \mathsf{T}$$

For example, the variant type <none : Unit, some : Nat> is encoded as <(none : Unit | (some : Nat | ()()))>.

Well-Typed Variant Operations

• Injection: We write $\ell = t$ to build a variant with label ℓ and term t.

$$\langle \ell = : \forall R :: row. \forall X :: *. X \rightarrow \langle \ell : X \mid R \rangle$$

• **Embedding**: We write $\langle \ell | \nu \rangle$ to embed a variant ν in a type that also allows label ℓ .

$$\langle \ell \mid _ \rangle : \forall R::row. \forall X::*. \langle R \rangle \rightarrow \langle (\ell : X \mid R) \rangle$$

• **Decomposition**: We write $\ell \in v$? $t_1 : t_2$ to decompose a variant v and check if it is labeled with ℓ .

$$(\ell \in _?_:_): \forall R::row. \forall X::*. \forall Y::*. \langle (\ell : X \mid R) \rangle \rightarrow (X \rightarrow Y) \rightarrow (\langle R \rangle \rightarrow Y) \rightarrow Y$$

Type-Level Labels

Question

Can we also introduce a kind for **labels**?

Principle

$$\begin{split} \mathsf{K} &\coloneqq * \mid \mathsf{K} \Rightarrow \mathsf{K} \mid \mathsf{row} \mid \mathsf{label} \\ \mathsf{T} &\coloneqq \mathsf{X} \mid \lambda \mathsf{X} \\ &\colon \mathsf{K} \cdot \mathsf{T} \mid \mathsf{T} \mid \mathsf{T} \to \mathsf{T} \mid \forall \mathsf{X} \\ &\colon \mathsf{K} \cdot \mathsf{T} \mid \left\{ \exists \mathsf{X} \\ &\colon \mathsf{K} \cdot \mathsf{T} \right\} \mid (\!\!|) \mid (\!\!| \mathsf{T} : \mathsf{T} \mid \mathsf{T}) \mid \left\{ \mathsf{T} \right\} \mid <\mathsf{T} > \mid \#\ell \\ \end{split}$$

$$\frac{\Gamma \vdash T_1 :: label \qquad \Gamma \vdash T_2 :: * \qquad \Gamma \vdash T_3 :: row}{\Gamma \vdash (\!(T_1 :: T_2 \mid T_3)\!) :: row}$$

Type-Level Record Computation

Question

Can we support non-trivial type-level record computation?

Principle

Ref: A. Chlipala. 2010. Ur: Statically-Typed Metaprogramming with Type-Level Record Computation. In *Prog. Lang. Design and Impl.* (PLDI'10), 122–133. doi: 10.1145/1806596.1806612.

$$\Gamma \vdash \mathsf{map} :: (* \Rightarrow *) \Rightarrow \mathsf{row} \Rightarrow \mathsf{row}$$

Example

Consider Meta = λ T. {(#name:String, #show:(T \rightarrow String) }}. Then map Meta (#x:Nat, #y:Bool) is equivalent to (#x:(Meta Nat), #y:(Meta Bool)).

Example: A Generic Table Formatter


```
Meta = \lambda T. {\| #name:String, #show:(T \rightarrow String)\|};
► Meta :: * ⇒ *
Folder = \lambda R :: row. \forall TF :: (row \Rightarrow^*).
                    (\forall L::label. \forall T. \forall R::row. TF R \rightarrow TF (| L : T | R |) \rightarrow TF (|) \rightarrow TF R;
► Folder :: row ⇒ *
▶ mk_table : \forall R::row. Folder R \rightarrow { map Meta R } \rightarrow { R } \rightarrow String
mk_{table} = \lambda R:row. \lambda f1:(Folder R). \lambda mr:\{map Meta R\}. \lambda x:\{R\}.
        fl (\lambdaR::row. {map Meta R} \rightarrow {R} \rightarrow String)
             (\lambda L::label. \lambda T. \lambda R::row.
                 \lambda acc:({map Meta R}\rightarrow{R}\rightarrowString).
                 \lambda mr: \{ map Meta (L:T|R) \}.
                 \lambda x:\{(L:T|R)\}.
"" ^ mr.L.name ^ "" ^ mr.L.show x.L ^ "" ^ acc (mr-L) (x-L))
             (\lambda_{-}:\{\text{map Meta }\emptyset)\}, \lambda_{-}:\{\emptyset\}, "") \text{ mr } x
```

The Essence of λ : Characterization

Principle

Types characterize terms. Kinds characterize types.

Question

Can we have more than three levels of expressions?

Aside (Pure Type Systems, Part I)

Let S be a set of **sorts**, e.g., $S = \{*, \square\}$ where

- * represents the sort of all (proper) types and
- □ represents the sort of **all kinds**.

Let M be a set of **axioms**, e.g., $M = \{(\varnothing \vdash * : \Box)\}$, meaning "* is a kind for (proper) types."

One can definitely add more sorts to S and more axioms to M accordingly!

The Essence of λ : Abstraction

Principle

- In λ_{\rightarrow} , we use λx :T. t to abstract terms out of terms.
- In λ_{ω} , we use λX ::K. T to abstract types out of types.

Aside (Pure Type Systems, Part II)

Let S be a set of sorts, e.g., $S = \{*, \square\}$. Let M be a set of axioms, e.g., $M = \{(\varnothing \vdash * : \square)\}$.

Let $R \subseteq S \times S$ be a set of **rules**: for each $(s_1, s_2) \in R$, we have

$$\frac{\Gamma \vdash A : s_{1} \quad \Gamma \vdash B : s_{2}}{\Gamma \vdash A \leadsto_{s_{2}}^{s_{1}} B : s_{2}} \text{ Arrow } \frac{\Gamma, x : A \vdash b : B \quad \Gamma \vdash A \leadsto_{s_{2}}^{s_{1}} B : s_{2}}{\Gamma \vdash \lambda x : A . b : A \leadsto_{s_{2}}^{s_{1}} B} \text{ Abs}$$

$$\frac{\Gamma \vdash F : A \leadsto_{s_{2}}^{s_{1}} B \quad \Gamma \vdash a : A}{\Gamma \vdash F a : B} \text{ App}$$

$$\frac{\Gamma \vdash A: s_1 \quad \Gamma \vdash B: s_2}{\Gamma \vdash A \leadsto_{s_2}^{s_1} B: s_2} \text{ Arrow } \frac{\Gamma, x: A \vdash b: B \quad \Gamma \vdash A \leadsto_{s_2}^{s_1} B: s_2}{\Gamma \vdash \lambda x: A. b: A \leadsto_{s_2}^{s_1} B} \text{ Abs }$$

$$\frac{\Gamma \vdash F: A \leadsto_{s_2}^{s_1} B \quad \Gamma \vdash a: A}{\Gamma \vdash F a: B} \text{ App }$$

λ_{\rightarrow} : Abstracting Terms out of Terms

$$\begin{array}{lll} \text{Let R} \stackrel{\text{def}}{=} \{(*,*)\}. \text{ Then } \leadsto_*^* \text{ represents arrow types} \to. \\ & \frac{\Gamma \vdash T_1 : * \qquad \Gamma \vdash T_2 : *}{\Gamma \vdash T_1 \leadsto_*^* T_2 : *} & \text{means} & \text{``if } T_1, T_2 \text{ are types, then } T_1 \to T_2 \text{ is a type''} \\ & \frac{\Gamma, x : T_1 \vdash t_2 : T_2 \qquad \Gamma \vdash T_1 \leadsto_*^* T_2 : *}{\Gamma \vdash \lambda x : T_1 : t_2 : T_1 \leadsto_*^* T_2} & \text{means} & \text{the typing rule (T-Abs)} \\ & \frac{\Gamma \vdash t_1 : T_{11} \leadsto_*^* T_{12} \qquad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 t_2 : T_{12}} & \text{means} & \text{the typing rule (T-App)} \\ \end{array}$$

Let $R \subseteq S \times S$ be a set of **rules**: for each $(s_1, s_2) \in R$, we have

$$\frac{\Gamma \vdash A: s_1 \qquad \Gamma \vdash B: s_2}{\Gamma \vdash A \leadsto_{s_2}^{s_1} B: s_2} \text{ Arrow } \frac{\Gamma, x: A \vdash b: B \qquad \Gamma \vdash A \leadsto_{s_2}^{s_1} B: s_2}{\Gamma \vdash \lambda x: A. b: A \leadsto_{s_2}^{s_1} B} \text{ Abs}$$

$$\frac{\Gamma \vdash F : A \leadsto_{s_2}^{s_1} B \qquad \Gamma \vdash \alpha : A}{\Gamma \vdash F \alpha : B} \text{ App}$$

λ_{ω} : Abstracting Types out of Types

Let
$$R \stackrel{\text{def}}{=} \{(*,*), (\square,\square)\}$$
. Then \leadsto_*^* represents arrow types \to and \leadsto_\square^\square represents arrow kinds \Rightarrow .
$$\frac{\Gamma \vdash K_1 : \square \qquad \Gamma \vdash K_2 : \square}{\Gamma \vdash K_1 \leadsto_\square^\square K_2 : \square} \qquad \text{means} \qquad \text{``if } K_1, K_2 \text{ are kinds, then } K_1 \Rightarrow K_2 \text{ is a kind''}}{\frac{\Gamma, X : K_1 \vdash T_2 : K_2 \qquad \Gamma \vdash K_1 \leadsto_\square^\square K_2 : \square}{\Gamma \vdash \lambda X : K_1 . T_2 : K_1 \leadsto_\square^\square K_2}} \qquad \text{means} \qquad \text{the typing rule (K-Abs)}}{\frac{\Gamma \vdash T_1 : K_{11} \leadsto_\square^\square K_{12} \qquad \Gamma \vdash T_2 : K_{11}}{\Gamma \vdash T_1 T_2 : K_{12}}} \qquad \text{means} \qquad \text{the typing rule (K-App)}}$$

The Essence of λ : Abstraction

Principle

In System F, we use λX . t to abstract **terms** out of **types**.

Observation

We can think of λX . t as λX :**. t, i.e., a type abstraction should be applied to a proper type.

The type of $\lambda X::*$. t then has the form $\forall X::*$. T—not an arrow!

 $\forall X::*$. T can be thought of as a **dependent arrow** $(X::*) \Rightarrow T$: the domain is a **kind** and the range is a **type**.

In next chapter, we will see a generalized form $\forall X::K$. T, or as a dependent arrow $(X::K) \rightrightarrows T$.

Aside (Pure Type Systems, Part III)

Let $R \subseteq S \times S$ be a set of **rules**: for each $(s_1, s_2) \in R$, we have

$$\frac{\Gamma \vdash A : s_1 \qquad \Gamma \vdash B : s_2}{\Gamma \vdash A \leadsto_{s_2}^{s_1} B : s_2} \mathsf{Arrow} \quad \mathsf{becomes} \quad \frac{\Gamma \vdash A : s_1 \qquad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (x : A) \leadsto_{s_2}^{s_1} B : s_2} \mathsf{Arrow}^\mathsf{D}$$

Then $(X : *) \leadsto^{\square}_{*} T$ represents $\forall X :: * . T!$

$$\frac{\Gamma, x : A \vdash b : B}{\Gamma \vdash \lambda \sim s_2^{s_1} B : s_2} Abs \quad be$$

$$\frac{\Gamma, x: A \vdash b: B \qquad \Gamma \vdash A \leadsto_{s_2}^{s_1} B: s_2}{\Gamma \vdash \lambda x: A. b: A \leadsto_{s_2}^{s_1} B} \text{Abs} \quad \text{becomes} \quad \frac{\Gamma, x: A \vdash b: B \qquad \Gamma \vdash (x:A) \leadsto_{s_2}^{s_1} B: s_2}{\Gamma \vdash \lambda x: A. b: (x:A) \leadsto_{s_2}^{s_1} B} \text{Abs}^{\mathbb{D}}$$

$$\frac{\Gamma \vdash F: A \leadsto_{s_2}^{s_1} B \qquad \Gamma \vdash \alpha: A}{\Gamma \vdash F \, \alpha: B} \mathsf{App}$$

becomes

$$\frac{\Gamma \vdash F : (x:A) \leadsto_{s_2}^{s_1} B \qquad \Gamma \vdash \alpha : A}{\Gamma \vdash F \alpha : [x \mapsto \alpha] B} \mathsf{App}^\mathsf{D}$$

System F: Abstracting Terms out of Types

Let $R \stackrel{\text{def}}{=} \{(*, *), (\square, *)\}$. Then \leadsto^* represents arrow types \to and \leadsto^\square represents universal types \forall .

$$\frac{\Gamma \vdash \mathsf{K}_1 : \Box \qquad \Gamma, X : \mathsf{K}_1 \vdash \mathsf{T}_2 : *}{\Gamma \vdash (X : \mathsf{K}_1) \leadsto^{\Box}_{*} \mathsf{T}_2 : *}$$

means "if K_1 is a kind and T_2 is a type, then $\forall X::K_1. T_2$ is a type"

means the typing rule (T-TAbs)

$$\Gamma \vdash \lambda X : \mathsf{K}_1 \cdot \mathsf{t}_2 : (X : \mathsf{K}_1) \rightsquigarrow^{\square}_{*} \mathsf{T}_2$$

$$\Gamma \vdash \mathsf{t}_1 : (X : \mathsf{K}_{11}) \rightsquigarrow^{\square}_{*} \mathsf{T}_{12} \qquad \Gamma \vdash \mathsf{T}_2 : \mathsf{K}_{11}$$

means the typing rule (T-TApp)

$$\Gamma \vdash \mathsf{t}_1 \ [\mathsf{T}_2] : [\mathsf{X} \mapsto \mathsf{T}_2] \mathsf{T}_{12}$$

The Essence of λ : Abstraction

Aside (Pure Type Systems, Part IV)

```
\begin{array}{ccc} \lambda_{\longrightarrow} & \text{abstract terms out of terms} & \{(*,*)\} \\ & F & \text{abstract terms out of types} & \{(*,*),(\square,*)\} \\ & \lambda_{\varpi} & \text{abstract types out of types} & \{(*,*),(\square,\square)\} \\ & F_{\varpi} & F + \lambda_{\varpi} \text{ (next chapter)} & \{(*,*),(\square,*),(\square,\square)\} \end{array} There are eight variants, each of which is (*,*) plus a subset of \{(\square,*),(\square,\square),(*,\square)\}!
```

Question

What does the rule $(*, \Box)$ mean? "Abstracting **types** out of **terms** by λx :T. T?"

$$\frac{\Gamma \vdash T_{1} : * \qquad \Gamma, x : T_{1} \vdash K_{2} : \square}{\Gamma \vdash (x : T_{1}) \leadsto_{\square}^{*} K_{2} : \square} \text{ Arrow}^{D} \qquad \frac{\Gamma, x : T_{1} \vdash T_{2} : K_{2} \qquad \Gamma \vdash (x : T_{1}) \leadsto_{\square}^{*} K_{2} : \square}{\Gamma \vdash \lambda x : T_{1} . T_{2} : (x : T_{1}) \leadsto_{\square}^{*} K_{2}} \text{ Abs}^{D}$$

$$\frac{\Gamma \vdash T_{1} : (x : T_{11}) \leadsto_{\square}^{*} K_{12} \qquad \Gamma \vdash t_{2} : T_{11}}{\Gamma \vdash T_{1} : [t_{2}] : [x \mapsto t_{2}] K_{12}} \text{ App}^{D}$$

$$\begin{split} & \text{K} := * \mid (x\text{:T}) \leadsto_{\square}^* \text{K} \\ & \text{T} := \text{Nat} \mid \lambda x\text{:T. T} \mid \text{T} \left[t \right] \mid (x\text{:T}) \leadsto_*^* \text{T} \\ & \text{t} := \text{zero} \mid \text{succ}(t) \mid x \mid \lambda x\text{:T. t} \mid t \text{ t} \end{split}$$

$$\frac{\Gamma, x: T_1 \vdash T_2 :: K_2 \qquad \Gamma \vdash T_1 :: *}{\Gamma \vdash \lambda x: T_1. T_2 :: (x:T_1) \leadsto_{\square}^* K_2} \text{ K-VAbs} \qquad \frac{\Gamma \vdash T_1 :: (x:T_{11}) \leadsto_{\square}^* K_{12} \qquad \Gamma \vdash t_2 :: T_{11}}{\Gamma \vdash T_1 :: (x:T_{11}) \leadsto_{\square}^* T_{12}} \text{ K-VApp}$$

$$\frac{\Gamma, x: T_1 \vdash t_2 :: T_2 \qquad \Gamma \vdash T_1 :: *}{\Gamma \vdash \lambda x: T_1. t_2 :: (x:T_1) \leadsto_{\square}^* T_2} \text{ T-Abs} \qquad \frac{\Gamma \vdash t_1 :: (x:T_{11}) \leadsto_{\square}^* T_{12} \qquad \Gamma \vdash t_2 :: T_{11}}{\Gamma \vdash t_1 t_2 :: [x \mapsto t_2] T_{12}} \text{ T-App}$$

Example (Dependent Types)

Consider the type NatList and its two introduction terms nil and cons.

NatList :: Nat
$$\leadsto_{\square}^* *$$

nil : NatList [zero]
cons : (n:Nat) \leadsto_*^* Nat \leadsto_*^* NatList [n] \leadsto_*^* NatList [succ(n)]

The Essence of λ : The Lambda Cube

Aside (Pure Type Systems, Part V)


```
\begin{array}{lll} \lambda_{\rightarrow} & \text{simply-typed lambda-calculus} & \{(*,*)\} \\ F & \text{parametric polymorphism} & \{(*,*),(\square,*)\} \\ \lambda_{\omega} & \text{type operators} & \{(*,*),(\square,\square)\} \\ \lambda P & \text{dependent types} & \{(*,*),(*,\square)\} \\ F_{\omega} & \text{higher-order polymorphism} & \{(*,*),(\square,*),(\square,\square)\} \\ CC & \text{calculus of constructions} & \{(*,*),(\square,*),(\square,\square),(*,\square)\} \end{array}
```

Homework

Question

Extend System F_{ω} with local type definition as follows.

$$t := \dots \mid let X = T in t$$

 $\Gamma := \dots \mid \Gamma : X :: K = T$

For example, the term **let** X=Nat **in** (λ x:X. x + 1) 4 evalutes to 5. Extend the rules for context formation Γ ctx, type equivalence $\Gamma \vdash S \equiv T$:: K, kinding $\Gamma \vdash T$:: K, typing $\Gamma \vdash t$: T, and evaluation $t \longrightarrow t'$.