

Introducción a Modelos Psicométricos

Clases 2 y 3: Herramientas estadísticas para la psicometría

Iwin Leenen y Ramsés Vázquez-Lira

Facultad de Psicología, UNAM

Programa de Licenciatura y Posgrado en Psicología Semestre 2019–1

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
 - Niveles de medición
- 2 Estadística univariada
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

Algunas nociones preliminares de la estadística

Objetos, variables y observaciones

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
 - Niveles de medición
- 2 Estadística univariada
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

Algunas nociones preliminares de la estadística

Obietos, variables y observaciones

Objetos, variables y observaciones

En la estadística aplicada, se dispone de los datos de varios objetos o unidades experimentales.

Por ejemplo

- Hemos registrado la interacción social de 50 niños en el patio de la escuela.
- Tenemos las respuestas en un cuestionario de 60 participantes en un taller de mindfulness.
- Tenemos los resultados de 1,000 alumnos en el examen de entrada de la UNAM.

Para hacer referencia a las unidades experimentales, se suele asignarles un número. Por ejemplo, se habla del resultado del "alumno i" en el examen.

Algunas nociones preliminares de la estadística

Objetos, variables v observaciones

Objetos, variables y observaciones

En la estadística aplicada, se dispone de los datos de varios objetos o unidades experimentales.

Por ejemplo:

- Hemos registrado la interacción social de 50 niños en el patio de la escuela.
- Tenemos las respuestas en un cuestionario de 60 participantes en un taller de mindfulness.
- Tenemos los resultados de 1,000 alumnos en el examen de entrada de la UNAM.

Para hacer referencia a las unidades experimentales, se suele asignarles un número. Por ejemplo, se habla del resultado del "alumno i" en el examen.

Algunas nociones preliminares de la estadística

Objetos, variables y observaciones

Objetos, variables y observaciones

En la estadística aplicada, se dispone de los datos de varios objetos o unidades experimentales.

Por ejemplo:

- Hemos registrado la interacción social de 50 niños en el patio de la escuela.
- Tenemos las respuestas en un cuestionario de 60 participantes en un taller de mindfulness.
- Tenemos los resultados de 1,000 alumnos en el examen de entrada de la UNAM.

Para hacer referencia a las unidades experimentales, se suele asignarles un número. Por ejemplo, se habla del resultado del "alumno i" en el examen.

Algunas nociones preliminares de la estadística

Objetos, variables y observaciones

Objetos, variables y observaciones

Para poder sistematizar los datos, se definen una o más variables. Es común representar las variables por letras mayúsculas X, Y, etc.

Por ejemplo

- Para el registro de la interacción social, se define la variable X: "Número de otros niños con los que habla".
- Para evaluar el efecto del taller, se definen las variables:
 - X_{ore}: "Puntuación en la aplicación pre
 - X_{post}: "Puntuación en la aplicación post
 - Y: "Diferencia entre las puntuación pre y post"
- Para el examen de opción múltiple, se definen las variables X₁ a X₁₂₀: "Puntuación en la pregunta j del examen".

Objetos, variables y observaciones

Objetos, variables y observaciones

Para poder sistematizar los datos, se definen una o más variables. Es común representar las variables por letras mayúsculas X, Y, etc.

Por ejemplo:

- Para el registro de la interacción social, se define la variable X: "Número de otros niños con los que habla".
- Para evaluar el efecto del taller, se definen las variables:
 - X_{pre}: "Puntuación en la aplicación pre"
 - X_{post}: "Puntuación en la aplicación post"
 - Y: "Diferencia entre las puntuación pre y post".
- Para el examen de opción múltiple, se definen las variables X₁ a X₁₂₀: "Puntuación en la pregunta j del examen".

Objetos, variables y observaciones

Objetos, variables y observaciones

Se observan para los objetos valores en las variables.

Por ejemplo

 El niño i tuvo el valor de 8 en la variable X "Número de de otros niños con los que habla":

$$x_i = 8$$

 El alumno i contestó correctamente en la pregunta j del examen de opción múltiple

Es decir, tiene el valor 1 en la variable X_i :

$$x_{ij} = 1.$$

Objetos, variables y observaciones

Objetos, variables y observaciones

Se observan para los objetos valores en las variables.

Por ejemplo:

 El niño i tuvo el valor de 8 en la variable X "Número de de otros niños con los que habla":

$$x_i = 8$$
.

 El alumno i contestó correctamente en la pregunta j del examen de opción múltiple.

Es decir, tiene el valor 1 en la variable X_i :

$$x_{ij} = 1$$
.

Algunas nociones preliminares de la estadística

Notación con el signo sumatorio

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
 - Niveles de medición
- 2 Estadística univariada
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

El signo sumatorio Σ (Sigma)

¿Qué significa la siguiente expresión?

$$\sum_{k=3}^{6} \frac{k^2}{2} = ?$$

El signo sumatorio Σ (Sigma)

¿Qué significa la siguiente expresión?

$$\sum_{k=3}^{6} \frac{k^2}{2} = \underbrace{\frac{3^2}{2}}_{k=3} + \underbrace{\frac{4^2}{2}}_{k=4} + \underbrace{\frac{5^2}{2}}_{k=5} + \underbrace{\frac{6^2}{2}}_{k=6} = 43$$

- índice sumatorio: k
- término genérico: $\frac{k^2}{2}$
- límites: 3 (límite inferior) y 6 (límite superior)

El signo sumatorio Σ (Sigma)

Otro ejemplo:

$$\sum_{i=1}^n x_i = ?$$

El signo sumatorio Σ (Sigma)

Otro ejemplo:

$$\sum_{i=1}^{n} x_{i} = \underbrace{x_{1}}_{i=1} + \underbrace{x_{2}}_{i=2} + \underbrace{x_{3}}_{i=3} + \dots + \underbrace{x_{n}}_{i=n}$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=2}^{4} \sum_{j=3}^{5} x_{ij} = 1$$

Algunas nociones preliminares de la estadística

Notación con el signo sumatorio

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=2}^{4} \sum_{j=3}^{5} x_{ij} = \sum_{i=2}^{4} \left(\sum_{j=3}^{5} x_{ij} \right)$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=2}^{4} \sum_{j=3}^{5} x_{ij} = \sum_{i=2}^{4} \left(\sum_{j=3}^{5} x_{ij} \right)$$
$$= \sum_{j=3}^{5} x_{2j} + \sum_{j=3}^{5} x_{3j} + \sum_{j=3}^{5} x_{4j}$$
$$= \sum_{i=2}^{5} x_{2i} + \sum_{j=3}^{5} x_{4j} + \sum_{j=3}^{5} x_{4j}$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=2}^{4} \sum_{j=3}^{5} x_{ij} = \sum_{i=2}^{4} \left(\sum_{j=3}^{5} x_{ij} \right)$$

$$= \sum_{j=3}^{5} x_{2j} + \sum_{j=3}^{5} x_{3j} + \sum_{j=3}^{5} x_{4j}$$

$$= \left(x_{23} + x_{24} + x_{25} \right) + \left(x_{33} + x_{34} + x_{35} \right) + \left(x_{43} + x_{44} + x_{45} \right)$$

Algunas nociones preliminares de la estadística

Notación con el signo sumatorio

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=1}^{4} \sum_{j=i+1}^{4} (x_i - x_j)^2 = ?$$

Algunas nociones preliminares de la estadística

Notación con el signo sumatorio

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=1}^{4} \sum_{j=i+1}^{4} (x_i - x_j)^2 = \sum_{i=1}^{4} \left[\sum_{j=i+1}^{4} (x_i - x_j)^2 \right]$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=1}^{4} \sum_{j=i+1}^{4} (x_i - x_j)^2 = \sum_{i=1}^{4} \left[\sum_{j=i+1}^{4} (x_i - x_j)^2 \right]$$

$$= \sum_{j=1+1}^{4} (x_1 - x_j)^2 + \sum_{j=2+1}^{4} (x_2 - x_j)^2 + \sum_{j=3+1}^{4} (x_3 - x_j)^2 + \sum_{j=4+1}^{4} (x_4 - x_j)^2$$

$$= \sum_{j=1+1}^{4} (x_1 - x_j)^2 + \sum_{j=2+1}^{4} (x_2 - x_j)^2 + \sum_{j=3+1}^{4} (x_3 - x_j)^2 + \sum_{j=4+1}^{4} (x_4 - x_j)^2$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{j=1}^{4} \sum_{j=i+1}^{4} (x_i - x_j)^2 = \sum_{i=1}^{4} \left[\sum_{j=i+1}^{4} (x_i - x_j)^2 \right]$$

$$= \sum_{j=1+1}^{4} (x_1 - x_j)^2 + \sum_{j=2+1}^{4} (x_2 - x_j)^2 + \sum_{j=3+1}^{4} (x_3 - x_j)^2 + \sum_{j=4+1}^{4} (x_4 - x_j)^2$$

$$= \sum_{j=1}^{4} (x_1 - x_j)^2 + \sum_{j=2+1}^{4} (x_2 - x_j)^2 + \sum_{j=3+1}^{4} (x_3 - x_j)^2 + \sum_{j=4+1}^{4} (x_4 - x_j)^2$$

$$= \sum_{j=2}^{4} (x_1 - x_j)^2 + \sum_{j=3}^{4} (x_2 - x_j)^2 + \sum_{j=4}^{4} (x_3 - x_j)^2 + \sum_{j=5}^{4} (x_4 - x_j)^2$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=1}^{4} \sum_{j=i+1}^{4} (x_i - x_j)^2 = \sum_{i=1}^{4} \left[\sum_{j=i+1}^{4} (x_i - x_j)^2 \right]$$

$$= \sum_{j=1+1}^{4} (x_1 - x_j)^2 + \sum_{j=2+1}^{4} (x_2 - x_j)^2 + \sum_{j=3+1}^{4} (x_3 - x_j)^2 + \sum_{j=4+1}^{4} (x_4 - x_j)^2$$

$$= \sum_{j=2}^{4} (x_1 - x_j)^2 + \sum_{j=3}^{4} (x_2 - x_j)^2 + \sum_{j=4}^{4} (x_3 - x_j)^2 + \sum_{j=5}^{4} (x_4 - x_j)^2$$

$$= \left[(x_1 - x_2)^2 + (x_1 - x_3)^2 + (x_1 - x_4)^2 \right] + \left[(x_2 - x_3)^2 + (x_2 - x_4)^2 \right]$$

$$+ \left[(x_3 - x_4)^2 \right]$$

Algunas nociones preliminares de la estadística

Niveles de medición

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
 - Niveles de medición
- 2 Estadística univariada
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

Niveles de medición

Nivel de medición

Ejemplo

El sociólogo que investiga el comportamiento electoral en las últimas elecciones define una variable X númerica que asigna los siguientes valores a cada candidato para la presidencia:

- Ricardo Anaya Cortés $\rightarrow X = 1$
- José Antonio Meade Kuribreña $\rightarrow X = 2$
- ullet Andrés Manuel López Obrador o X=3
- Jaime Rodríguez Calderón $\rightarrow X = 4$
- otro candidato $\rightarrow X = 5$.

¿Qué operaciones sobre la variable X tienen sentido? ¿Qué significa ¿3>1?, ¿1+2=3?, etc.

Algunas nociones preliminares de la estadística

Niveles de medición

Nivel de medición

El nivel de medición (o el nivel de la escala):

- considera la admisibilidad de las operaciones aritméticas a los valores de la variable.
- depende de las transformaciones que se pueden aplicar a los valores sin que cambie la interpretación empírica (Más libertad que hay para transformar, menos información está presente en los valores.)

Algunas nociones preliminares de la estadística

Niveles de medición

Escala nominal

Definición

Si una escala es de medida nominal, entonces los números asignados a las observaciones se pueden transformar a otros números cualesquiera, siempre y cuando:

- dos observaciones que tienen el mismo número asignado antes de la transformación, siguen teniendo el mismo número después de la transformación;
- dos observaciones que tienen asignados números diferentes, siguen con números diferentes después de la transformación.

Ejemplo

En el ejemplo de los partidos políticos, podemos aplicar sin problemas esta transformación:

Votó por:		Valor anterior X	Valor nuevo X^*
	\longrightarrow	1	
JAMK	\longrightarrow	2	2
AMLO	\longrightarrow		-1
	\longrightarrow	4	
	\longrightarrow		

Algunas nociones preliminares de la estadística

└ Niveles de medición

Escala nominal

Definición

Si una escala es de medida nominal, entonces los números asignados a las observaciones se pueden transformar a otros números cualesquiera, siempre y cuando:

- dos observaciones que tienen el mismo número asignado antes de la transformación, siguen teniendo el mismo número después de la transformación;
- dos observaciones que tienen asignados números diferentes, siguen con números diferentes después de la transformación.

Ejemplo

En el ejemplo de los partidos políticos, podemos aplicar sin problemas esta transformación:

		valor anterior		Valor nuevo
Votó por:		X		<i>X</i> *
RAC	\longrightarrow	1	\longrightarrow	0
JAMK	\longrightarrow	2	\longrightarrow	2
AMLO	\longrightarrow	3	\longrightarrow	-1
JRC	\longrightarrow	4	\longrightarrow	3.8
Otro	\longrightarrow	5	\longrightarrow	$\sqrt{\pi}$

Algunas nociones preliminares de la estadística

Niveles de medición

Escala ordinal

Definición

Si una escala es de medida ordinal, entonces los números asignados a las observaciones se pueden transformar a otros números cualesquiera, siempre y cuando la transformación respeta el orden en los valores originales.

Ejemplo

Por ejemplo, si pedimos a un estudiante evaluar el desempeño de su profesor utilizando cuatro categorías

	Valor anterior <i>X</i>	Valor nuevo X*
	1	-4
Poco satisfactorio	2	
Neutro		9
	4	10
Muy satisfactorio		10.1

Algunas nociones preliminares de la estadística

Niveles de medición

Escala ordinal

Definición

Si una escala es de medida ordinal, entonces los números asignados a las observaciones se pueden transformar a otros números cualesquiera, siempre y cuando la transformación respeta el orden en los valores originales.

Ejemplo

Por ejemplo, si pedimos a un estudiante evaluar el desempeño de su profesor utilizando cuatro categorías

		Valor anterior X		Valor nuevo X^*
Totalmente insatisfactorio	\longrightarrow	1	\longrightarrow	<u>-4</u>
Poco satisfactorio	\longrightarrow	2	\longrightarrow	8
Neutro	\longrightarrow	3	\longrightarrow	9
Satisfactorio	\longrightarrow	4	\longrightarrow	10
Muy satisfactorio	\longrightarrow	5	\longrightarrow	10.1

— Algunas nociones preliminares de la estadística

Niveles de medición

Escala de intervalo

Definición

Si una escala es de nivel intervalo, entonces la transformación debe no solo respeta el orden, sino también las diferencias relativas entre los valores originales. Es decir, solo transformaciones lineales están permitidas.

Ejemplo

Por ejemplo, si medimos la temperatura corporal de un bebé:

Valor anterior C°		Valor nuevo <i>F</i> °
	\longrightarrow	
37	\longrightarrow	
	\longrightarrow	100.4
	\longrightarrow	102.2
	\longrightarrow	104.0

Algunas nociones preliminares de la estadística

Niveles de medición

Escala de intervalo

Definición

Si una escala es de nivel intervalo, entonces la transformación debe no solo respeta el orden, sino también las diferencias relativas entre los valores originales. Es decir, solo transformaciones lineales están permitidas.

Ejemplo

Por ejemplo, si medimos la temperatura corporal de un bebé:

Valor anterior		Valor nuevo
C °		F°
36	\longrightarrow	96.8
37	\longrightarrow	98.6
38	\longrightarrow	100.4
39	\longrightarrow	102.2
40	\longrightarrow	104.0

Algunas nociones preliminares de la estadística

Niveles de medición

Escala de razón

Definición

Si una escala es de nivel razón, entonces la transformación debe respeta las razones entre los valores originales. Es decir, solo se permiten transformaciones de multiplicar los valores originales con una constante

Ejemplo

Por ejemplo, si medimos la distancia de los capitales de los estados hacia el zocalo del Distrito Federal:

	Valor anterior X (km.)	Valor nuevo X^* (millas)
Merida	1240	771
		227
Puebla	110	
Veracruz	313	194

Algunas nociones preliminares de la estadística

Niveles de medición

Escala de razón

Definición

Si una escala es de nivel razón, entonces la transformación debe respeta las razones entre los valores originales. Es decir, solo se permiten transformaciones de multiplicar los valores originales con una constante

Ejemplo

Por ejemplo, si medimos la distancia de los capitales de los estados hacia el zocalo del Distrito Federal:

	Valor anterior		Valor nuevo
	X (km.)		X* (millas)
Chihuahua	1009	\longrightarrow	627
Merida	1240	\longrightarrow	771
Oaxaca	365	\longrightarrow	227
Puebla	110	\longrightarrow	68
Veracruz	313	\longrightarrow	194

Clases 2 y 3: Herramientas estadísticas para la psicometría

Algunas nociones preliminares de la estadística

Niveles de medición

Escala absoluto

Definición

Si una escala es de nivel absoluto, no se permite ninguna transformación.

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

Distribuciones univariadas

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas empíricas

Datos observados de una muestra

Supongamos que hemos registrado de 50 pacientes el índice de masa corporal (IMC):

No.	IMC								
1	25	11	25	21	42	31	26	41	29
2	25	12	21	22	27	32	27	42	28
3	24	13	22	23	22	33	24	43	23
4	20	14	30	24	25	34	33	44	27
5	22	15	26	25	34	35	24	45	27
6	23	16	28	26	22	36	22	46	19
7	24	17	23	27	22	37	23	47	24
8	26	18	20	28	24	38	29	48	23
9	20	19	19	29	26	39	24	49	26
10	25	20	28	30	22	40	23	50	27

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas empíricas

Datos observados de una muestra

Supongamos que hemos registrado de 50 pacientes el índice de masa corporal (IMC):

No.	IMC								
1	25	11	25	21	42	31	26	41	29
2	25	12	21	22	27	32	27	42	28
3	24	13	22	23	22	33	24	43	23
4	20	14	30	24	25	34	33	44	27
5	22	15	26	25	34	35	24	45	27
6	23	16	28	26	22	36	22	46	19
7	24	17	23	27	22	37	23	47	24
8	26	18	20	28	24	38	29	48	23
9	20	19	19	29	26	39	24	49	26
10	25	20	28	30	22	40	23	50	27

frec(25) = 5

Distribuciones univariadas empíricas

Datos observados de una muestra

Supongamos que hemos registrado de 50 pacientes el índice de masa corporal (IMC):

No.	IMC								
1	25	11	25	21	42	31	26	41	29
2	25	12	21	22	27	32	27	42	28
3	24	13	22	23	22	33	24	43	23
4	20	14	30	24	25	34	33	44	27
5	22	15	26	25	34	35	24	45	27
6	23	16	28	26	22	36	22	46	19
7	24	17	23	27	22	37	23	47	24
8	26	18	20	28	24	38	29	48	23
9	20	19	19	29	26	39	24	49	26
10	25	20	28	30	22	40	23	50	27

$$frec(25) = 5$$

$$p(29) = \frac{2}{50} = .04$$

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas empíricas

Función de frecuencia y proporción

Se puede resumir la distribución de la variable X (IMC) en una tabla, que muestra la función de frecuencia y la función de proporción:

j	Xj	$frec(x_j)$	$p(x_j)$
1	19	2	.04
2	20	3	.06
3	21	1	.02
4	22	7	.14
5	23	6	.12
6	24	7	.14
7	25	5	.10
8	26	5	.10
9	27	5	.10
10	28	3	.06
11	29	2	.04
12	30	1	.02
13	33	1	.02
14	34	1	.02
15	42	1	.02
Total		50	1.00

Distribuciones univariadas empíricas

Función de frecuencia y proporción

Se puede representar gráficamente la función de frecuencia o proporción:

Índice de masa corporal

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x (x = 0, 1, 2, ..., 10) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es $\frac{1}{3}$.
- Las respuestas son independientes

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x (x = 0, 1, 2, ..., 10) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es $\frac{1}{3}$.
- Las respuestas son independientes

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x ($x=0,1,2,\ldots,10$) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es ¹/₃.
- Las respuestas son independientes

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x ($x=0,1,2,\ldots,10$) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es $\frac{1}{3}$.
- Las respuestas son independientes

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x ($x=0,1,2,\ldots,10$) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es ¹/₃.
- Las respuestas son independientes

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x ($x=0,1,2,\ldots,10$) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es ¹/₃.
- Las respuestas son independientes.

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x ($x=0,1,2,\ldots,10$) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es ¹/₃.
- Las respuestas son independientes.

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$
.

Distribuciones univariadas

Distribuciones univariadas teóricas para variables discretas

Función de probabilidad

Esta distribución teórica de la variable X (puntaje en el examen) se puede resumir en una tabla, mostrando la función de probabilidad de X:

j	Xj	$\pi_{\chi}(x_j)$
1	0	.017
2	1	.087
3	2	.195
4	3	.260
5	4	.228
6	5	.137
7	6	.057
8	7	.016
9	8	.003
10	9	.000
11	10	.000
Total		1.000

Función de probabilidad

Y se puede representar gráficamente:

Clases 2 y 3: Herramientas estadísticas para la psicometría

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas teóricas para variables continuas

Modelo estadístico y función de densidad

Supongamos que:

- Se aplica un examen en la computadora y, para una pregunta concreta, se registra el tiempo X (en segundos) entre el momento en que se muestra la pregunta en la pantalla y el momento de la selección de la respuesta;
- La variable X tiene la siguiente distribución.

Clases 2 y 3: Herramientas estadísticas para la psicometría

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas teóricas para variables continuas

Modelo estadístico y función de densidad

Supongamos que:

- Se aplica un examen en la computadora y, para una pregunta concreta, se registra el tiempo X (en segundos) entre el momento en que se muestra la pregunta en la pantalla y el momento de la selección de la respuesta;
- La variable *X* tiene la siguiente distribución:

Modelo estadístico y función de densidad

Supongamos que:

- Se aplica un examen en la computadora y, para una pregunta concreta, se registra el tiempo X (en segundos) entre el momento en que se muestra la pregunta en la pantalla y el momento de la selección de la respuesta;
- La variable X tiene la siguiente distribución:

Modelo estadístico y función de densidad

Supongamos que:

- Se aplica un examen en la computadora y, para una pregunta concreta, se registra el tiempo X (en segundos) entre el momento en que se muestra la pregunta en la pantalla y el momento de la selección de la respuesta;
- La variable X tiene la siguiente distribución:

Nota: $\varphi_{\mathbf{x}}$ se llama la función de densidad de la variable X.

Besumir la tendencia central de una distribución

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

La media aritmética y el valor esperado

 Para distribuciones empíricas (la variable X observada en una muestra), se define la media aritmética:

$$\overline{x} = \sum_{j=1}^m p(x_j) x_j,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

- Para distribuciones teóricas, se define la media poblacional o el valor esperado
 - Para variables discretas

$$\mathscr{E}(X) = \sum_{j=1}^{m} \pi_{\chi}(x_j) x_j,$$

donde la suma es entre todos los posibles valores que puede asumir la variable X

Para variables continuas

$$\mathscr{E}(X) = \int\limits_{-\infty}^{+\infty} \varphi_X(x) \, x \, dx$$

La media aritmética y el valor esperado

 Para distribuciones empíricas (la variable X observada en una muestra), se define la media aritmética:

$$\overline{x} = \sum_{j=1}^m p(x_j)x_j,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

- Para distribuciones teóricas, se define la media poblacional o el valor esperado.
 - Para variables discretas:

$$\mathscr{E}(X) = \sum_{j=1}^{m} \pi_{X}(x_{j}) x_{j},$$

donde la suma es entre todos los posibles valores que puede asumir la variable X.

Para variables continuas

$$\mathscr{E}(X) = \int\limits_{-\infty}^{+\infty} \varphi_X(x) \, x \, \mathrm{d}x$$

La media aritmética y el valor esperado

 Para distribuciones empíricas (la variable X observada en una muestra), se define la media aritmética:

$$\overline{x} = \sum_{j=1}^m p(x_j) x_j,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

- Para distribuciones teóricas, se define la media poblacional o el valor esperado.
 - Para variables discretas:

$$\mathscr{E}(X) = \sum_{j=1}^{m} \pi_{X}(x_{j}) x_{j},$$

donde la suma es entre todos los posibles valores que puede asumir la variable X.

Para variables continuas:

$$\mathscr{E}(X) = \int_{-\infty}^{+\infty} \varphi_X(x) \, x \, dx.$$

Efecto de una transformación lineal en la media

• Definimos la nueva variable Y a partir de la variable X:

$$Y = aX + b$$

donde a y b son dos constantes cualesquiera.

• Entonces, la media aritmética de la variable Y se obtiene por:

$$\overline{y} = a\overline{x} + b.$$

Entonces, la media poblacional de la variable Y se obtiene por

$$\mathscr{E}(Y) = a\mathscr{E}(X) + b$$

Efecto de una transformación lineal en la media

Definimos la nueva variable Y a partir de la variable X:

$$Y = aX + b$$

donde a y b son dos constantes cualesquiera.

• Entonces, la media aritmética de la variable *Y* se obtiene por:

$$\overline{y} = a\overline{x} + b.$$

Entonces, la media poblacional de la variable Y se obtiene por

$$\mathscr{E}(Y) = a\mathscr{E}(X) + b$$

Efecto de una transformación lineal en la media

• Definimos la nueva variable Y a partir de la variable X:

$$Y = aX + b$$

donde *a* y *b* son dos constantes cualesquiera.

• Entonces, la media aritmética de la variable Y se obtiene por:

$$\overline{y} = a\overline{x} + b.$$

• Entonces, la media poblacional de la variable *Y* se obtiene por:

$$\mathscr{E}(Y) = a\mathscr{E}(X) + b.$$

La media de una suma de variables

• Definimos la nueva variable Y a partir de las variable X_1 y X_2 como:

$$Y = X_1 + X_2.$$

Entonces, la media aritmética de la variable Y se obtiene por

$$\overline{y} = \overline{x}_1 + \overline{x}_2.$$

Entonces, la media poblacional de la variable Y se obtiene por

$$\mathscr{E}(Y) = \mathscr{E}(X_1) + \mathscr{E}(X_2)$$

La media de una suma de variables

• Definimos la nueva variable Y a partir de las variable X_1 y X_2 como:

$$Y = X_1 + X_2.$$

• Entonces, la media aritmética de la variable *Y* se obtiene por:

$$\overline{y} = \overline{x}_1 + \overline{x}_2.$$

Entonces, la media poblacional de la variable Y se obtiene por:

$$\mathscr{E}(Y) = \mathscr{E}(X_1) + \mathscr{E}(X_2)$$

La media de una suma de variables

• Definimos la nueva variable Y a partir de las variable X_1 y X_2 como:

$$Y = X_1 + X_2.$$

• Entonces, la media aritmética de la variable *Y* se obtiene por:

$$\overline{y} = \overline{x}_1 + \overline{x}_2.$$

• Entonces, la media poblacional de la variable *Y* se obtiene por:

$$\mathscr{E}(Y) = \mathscr{E}(X_1) + \mathscr{E}(X_2).$$

Resumir la variabilidad de una distribución

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

La varianza

Para distribuciones empíricas, se define la varianza muestral:

$$s_X^2 = \sum_{j=1}^m p(x_j)(x_j - \overline{x})^2,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

Para distribuciones teóricas, se define la varianza poblacional como:

$$\sigma_X^2 = \mathscr{E}\left[(X - \mu_X)^2 \right].$$

donde μ_X es $\mathcal{E}(X)$.

Para variables discretas:

$$\sigma_X^2 = \sum_{j=1}^m \pi_X(x_j) (x_j - \mu_X)^2$$

para variables continuas

$$\sigma_X^2 = \int_{-\infty}^{+\infty} \varphi_X(x) (x - \mu_X)^2 dx$$

La varianza

Para distribuciones empíricas, se define la varianza muestral:

$$s_X^2 = \sum_{j=1}^m p(x_j)(x_j - \overline{x})^2,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

Para distribuciones teóricas, se define la varianza poblacional como:

$$\sigma_{X}^{2} = \mathscr{E}\left[\left(X - \mu_{X}\right)^{2}\right],$$

donde μ_X es $\mathscr{E}(X)$.

Para variables discretas

$$\sigma_X^2 = \sum_{i=1}^m \pi_X(x_i) (x_j - \mu_X)^2$$

para variables continuas

$$\sigma_X^2 = \int\limits_{-\infty}^{+\infty} \varphi_X(x) (x - \mu_X)^2 dx$$

La varianza

Para distribuciones empíricas, se define la varianza muestral:

$$s_X^2 = \sum_{j=1}^m p(x_j)(x_j - \overline{x})^2,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

Para distribuciones teóricas, se define la varianza poblacional como:

$$\sigma_X^2 = \mathscr{E}\left[\left(X - \mu_X\right)^2\right],\,$$

donde μ_X es $\mathscr{E}(X)$.

Para variables discretas:

$$\sigma_X^2 = \sum_{j=1}^m \pi_X(x_j) (x_j - \mu_X)^2$$

para variables continuas:

$$\sigma_X^2 = \int_{-\infty}^{+\infty} \varphi_X(x) (x - \mu_X)^2 dx$$

La desviación estándar

La desviación estándar es la raiz cuadrada de la varianza:

Para distribuciones empíricas:

$$s_X = \sqrt{s_X^2}$$

Para distribuciones teóricas:

$$\sigma_X = \sqrt{\sigma_X^2}$$

Estadísticos y parámetros de variabilidad

Efecto de una transformación lineal en la varianza y desviación estándar

Si la variable Y se obtiene por una transformación lineal de la variable X, es decir Y = aX + b, entonces:

• la varianza y desviación estándar muestral de la variable Y se obtiene por:

$$s_Y^2 = a^2 s_X^2$$

$$s_Y = |a| \, s_X$$

• la varianza y desviación estándar poblacional de la variable Y se obtiene por:

$$\sigma_{\rm Y}^2 = a^2 \, \sigma_{\rm Y}^2$$

$$\sigma_Y = |a| \, \sigma_X$$

Estadísticos y parámetros de variabilidad

Efecto de una transformación lineal en la varianza y desviación estándar

Si la variable Y se obtiene por una transformación lineal de la variable X, es decir Y = aX + b, entonces:

• la varianza y desviación estándar muestral de la variable Y se obtiene por:

$$s_Y^2 = a^2 s_X^2$$

$$s_Y = |a| s_X$$

• la varianza y desviación estándar poblacional de la variable Y se obtiene por:

$$\sigma_Y^2 = a^2 \, \sigma_X^2$$

$$\sigma_{\mathsf{Y}} = |\mathsf{a}| \, \sigma_{\mathsf{X}}$$

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

Distribuciones acumuladas

Función de frecuencia y proporción acumulada

Definición

Definición

Para una variable X, que asume m distintos valores $x_1, x_2, x_3, \ldots, x_m$ donde $x_1 < x_2 < x_3 < \cdots < x_m$, se define:

La función de frecuencia acumulada:

$$afrec(x_j) = \sum_{k=1}^{j} frec(x_k)$$

La función de proporción acumulada:

$$F(x_j) = \sum_{k=1}^j p(x_k)$$

Función de frecuencia y proporción acumulada

Definición

Definición

Para una variable X, que asume m distintos valores $x_1, x_2, x_3, \ldots, x_m$ donde $x_1 < x_2 < x_3 < \cdots < x_m$, se define:

La función de frecuencia acumulada:

$$afrec(x_j) = \sum_{k=1}^{j} frec(x_k)$$

La función de proporción acumulada:

$$F(x_j) = \sum_{k=1}^{j} p(x_k)$$

Distribuciones acumuladas

Función de frecuencia y proporción acumulada

Definición

Definición

Para una variable X, que asume m distintos valores $x_1, x_2, x_3, \ldots, x_m$ donde $x_1 < x_2 < x_3 < \cdots < x_m$, se define:

La función de frecuencia acumulada:

$$afrec(x_j) = \sum_{k=1}^{j} frec(x_k)$$

La función de proporción acumulada:

$$F(x_j) = \sum_{k=1}^j p(x_k)$$

Función de frecuencia y proporción acumulada

Función de frecuencia y proporción acumulada

		f()	-()	
	x_j	$frec(x_j)$	$p(x_j)$	
1	19	2	.04	
2	20	3	.06	
3	21	1	.02	
4	22	7	.14	
5	23	6	.12	
6	24	7	.14	
7	25	5	.10	
8	26	5	.10	
9	27	5	.10	
10	28	3	.06	
11	29	2	.04	
12	30	1	.02	
13	33	1	.02	
14	34	1	.02	
15	42	1	.02	
Total		50	1.00	

Distribuciones acumuladas

Función de frecuencia y proporción acumulada

Función de frecuencia y proporción acumulada

j	Xj	$frec(x_j)$	$p(x_j)$	$afrec(x_j)$	
1	19	2	.04	2	
2	20	3	.06	5	
3	21	1	.02	6	
4	22	7	.14	13	
5	23	6	.12	19	
6	24	7	.14	26	
7	25	5	.10	31	
8	26	5	.10	36	
9	27	5	.10	41	
10	28	3	.06	44	
11	29	2	.04	46	
12	30	1	.02	47	
13	33	1	.02	48	
14	34	1	.02	49	
15	42	1	.02	50	
Total		50	1.00		

Distribuciones acumuladas

Función de frecuencia y proporción acumulada

Función de frecuencia y proporción acumulada

j	Xj	$frec(x_j)$	$p(x_j)$	$afrec(x_j)$	$F(x_j)$
1	19	2	.04	2	.04
2	20	3	.06	5	.10
3	21	1	.02	6	.12
4	22	7	.14	13	.26
5	23	6	.12	19	.38
6	24	7	.14	26	.52
7	25	5	.10	31	.62
8	26	5	.10	36	.72
9	27	5	.10	41	.82
10	28	3	.06	44	.88
11	29	2	.04	46	.92
12	30	1	.02	47	.94
13	33	1	.02	48	.96
14	34	1	.02	49	.98
15	42	1	.02	50	1.00
Total		50	1.00		

Representación gráfica de la función de proporción acumulada

Representación gráfica de la función de proporción acumulada

Representación gráfica de la función de proporción acumulada

Estadística univariada

☐ Distribuciones acumuladas

Función de distribución

Definición

Definición

Para una variable X discreta, que asume m distintos valores $x_1, x_2, x_3, \ldots, x_m$ donde $x_1 < x_2 < x_3 < \cdots < x_m$, se define la función de distribución como:

$$\Phi_X(x_j) = \sum_{k=1}^j \pi_X(x_k)$$

Definición

Para una variable X continua, se define la función de distribución como:

$$\Phi_X(x) = \int_{-\infty}^x \varphi_X(u) du$$

lo cual corresponde con el área debajo de φ_{v} a la izquierda de x

Estadística univariada

Distribuciones acumuladas

Función de distribución

Definición

Definición

Para una variable X discreta, que asume m distintos valores $x_1, x_2, x_3, \ldots, x_m$ donde $x_1 < x_2 < x_3 < \cdots < x_m$, se define la función de distribución como:

$$\Phi_X(x_j) = \sum_{k=1}^j \pi_X(x_k)$$

Definición

Para una variable X continua, se define la función de distribución como:

$$\Phi_X(x) = \int_{-\infty}^x \varphi_X(u) du,$$

lo cual corresponde con el área debajo de φ_{x} a la izquierda de x.

Distribuciones acumuladas

Función de distribución

Definición

La distribución normal acumulada

Estadística univariada

Distribuciones acumuladas

Función de distribución

Definición

Estadística univariada

Distribuciones acumuladas

Función de distribución

Definición

Estadística univariada

Distribuciones acumuladas

Función de distribución

Definición

Estadística univariada

Cuantiles

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

Los cuantiles se definen a partir de la distribución acumulada.

Para distribuciones empíricas:

Definición

Para cualquier r, 0 < r < 1, el cuantil de orden r se define como sigue:

• Caso 1: Existe (al menos) un valor x, para el cual F(x) = rTodos los valores x que cumplen F(x) = r son un cuantil de orden rSi se quiere un valor único, se calcula:

$$\frac{x_{\min} + x_{\max}}{2}$$
,

donde x_{\min} y x_{\max} son los valores mínimos y máximos, respectivamente, que cumplen F(x) = r.

• Caso 2: No existe un valor x, para el cual F(x) = rEl cuantil de orden r es el valor x más pequeño que cumple F(x) > r

Notación: x

Los cuantiles se definen a partir de la distribución acumulada.

Para distribuciones empíricas:

Definición

Para cualquier r, 0 < r < 1, el cuantil de orden r se define como sigue:

• Caso 1: Existe (al menos) un valor x, para el cual F(x) = rTodos los valores x que cumplen F(x) = r son un cuantil de orden rSi se quiere un valor único, se calcula:

$$\frac{x_{\min} + x_{\max}}{2}$$
,

donde x_{\min} y x_{\max} son los valores mínimos y máximos, respectivamente, que cumplen F(x) = r.

• Caso 2: No existe un valor x, para el cual F(x) = rEl cuantil de orden r es el valor x más pequeño que cumple F(x) > r

Notación: x

Los cuantiles se definen a partir de la distribución acumulada.

Para distribuciones empíricas:

Definición

Para cualquier r, 0 < r < 1, el cuantil de orden r se define como sigue:

Caso 1: Existe (al menos) un valor x, para el cual F(x) = r
 Todos los valores x que cumplen F(x) = r son un cuantil de orden r.
 Si se quiere un valor único, se calcula:

$$\frac{x_{\min} + x_{\max}}{2}$$
,

donde x_{\min} y x_{\max} son los valores mínimos y máximos, respectivamente, que cumplen F(x) = r.

• Caso 2: No existe un valor x, para el cual F(x) = rEl cuantil de orden r es el valor x más pequeño que cumple F(x) > r.

Notación: xr

Los cuantiles se definen a partir de la distribución acumulada.

Para distribuciones teóricas:

Definición

Para cualquier r, 0 < r < 1, el cuantil de orden r se define como sigue:

• Caso 1: Existe (al menos) un valor x, para el cual $\Phi_{\chi}(x) = r$ Todos los valores x que cumplen $\Phi_{\chi}(x) = r$ son un cuantil de orden r. Si se quiere un valor único, se calcula:

$$\frac{x_{\min} + x_{\max}}{2}$$
,

donde x_{\min} y x_{\max} son los valores mínimos y máximos, respectivamente, que cumplen $\Phi_X(x)=r$.

• Caso 2: No existe un valor x, para el cual $\Phi_X(x) = r$ El cuantil de orden r es el valor x más pequeño que cumple $\Phi_X(x) > r$.

Notación: ξ_r

Cuantiles

Estadística univariada

Cuantiles

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Covariación
 - Covariación lineal: Covarianza y correlación
- 4 Algunas nociones inferenciales

Datos bivariados

 Datos bivariados → Disponemos de los valores en dos variables para cada una de las n observaciones

De forma abstracta

	Χ	Y
1	<i>x</i> ₁	<i>y</i> ₁
2	<i>x</i> ₂	<i>y</i> ₂
3	x ₃ x ₄	<i>y</i> 3
4	<i>x</i> ₄	<i>y</i> ₄
:	÷	÷
i	x_i	y i
:	:	÷
n	Xn	Уn

Datos bivariados

 Datos bivariados → Disponemos de los valores en dos variables para cada una de las n observaciones

Ejemplo

	Nivel educativo	Fumador
1	Secundaria	No fuma
2	Bachillerato	No fuma
3	Universitario	Poco
4	Secundaria	No fuma
į	<u>:</u>	:
i	Primaria	Intensivo
:	÷	:
50	Secundaria	No fuma

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Covariación
 - Covariación lineal: Covarianza y correlación
- 4 Algunas nociones inferenciales

Función de frecuencia y proporción bivariada

Representación tabular

Se puede presentar la función de frecuencia o proporción bivariada en una tabla de frecuencias y proporciones:

Frecuencia y proporción bivariada para *Nivel Educativo* (X) y *Fumador* (Y)

j	k	Xj	Уk	$frec_{\chi\gamma}(x_j,y_k)$	$p_{\chi \chi}(x_j, y_k)$
1	1	Primaria	No fuma	2	.04
1	2	Primaria	Poco	1	.02
1	3	Primaria	Intensivo	1	.02
2	1	Secundaria	No fuma	11	.22
2	2	Secundaria	Poco	2	.04
2	3	Secundaria	Intensivo	5	.10
3	1	Bachillerato	No fuma	8	.16
3	2	Bachillerato	Poco	5	.10
3	3	Bachillerato	Intensivo	3	.06
4	1	Universitario	No fuma	11	.22
4	2	Universitario	Poco	1	.02
4	3	Universitario	Intensivo	0	.00
				50	1.00

Estadística bivariada

Distribuciones bivariadas

Función de frecuencia y proporción bivariada

Tabla de contingencia

Pero es mejor presentar las frecuencias o proporciones en una tabla de contingencia:

Tabla de contingencia para Nivel Educativo y Fumador

Nivel Educativo					
Fumador	Primaria	Secundaria	Bachillerato	Universitario	Tota
No fuma	2	11	8	11	32
Poco	1	2	5	1	ę
Intensivo	1	5	3	0	ę
Total	4	18	16	12	50

Estadística bivariada

Distribuciones bivariadas

Función de frecuencia y proporción bivariada

Tabla de contingencia

Pero es mejor presentar las frecuencias o proporciones en una tabla de contingencia:

Nivel Educativo						
Fumador	Primaria	Secundaria	Bachillerato	Universitario	Tota	
No fuma	2	11	8	11	32	
Poco	1	2	5	1	9	
Intensivo	1	5	3	0	9	
Total	4	18	16	12	į	

Frecuencias marginales

Función de frecuencia y proporción bivariada

Tabla de contingencia

Pero es mejor presentar las frecuencias o proporciones en una tabla de contingencia:

Tabla de contingencia para Nivel Educativo y Fumador

Nivel Educativo					
Fumador	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

Gran total

Función de frecuencia y proporción bivariada

Tabla de contingencia

Pero es mejor presentar las frecuencias o proporciones en una tabla de contingencia:

Tabla de contingencia para Nivel Educativo y Fumador

Nivel Educativo					
Fumador	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	.04	.22	.16	.22	.64
Poco	.02	.04	.10	.02	.18
Intensivo	.02	.10	.06	.00	.18
Total	.08	.36	.32	.24	1.00

Estadística bivariada

Distribuciones bivariadas

Distribución condicional

Definición

Definición

La función de proporción condicional, $p_{X|Y}(x_j|y_k)$, indica cuál es la proporción de observaciones que tienen el valor x_j en la variable X, solo considerando la submuestra de observaciones con el valor y_k en la variable Y.

Para todos los x_j y y_k

$$\boxed{ p_{X|Y}(x_j|y_k) = \frac{\textit{frec}_{XY}(x_j, y_k)}{\textit{frec}_{Y}(y_k)} }$$

Estadística bivariada

Distribuciones bivariadas

Distribución condicional

Definición

Definición

La función de proporción condicional, $p_{X|Y}(x_j|y_k)$, indica cuál es la proporción de observaciones que tienen el valor x_j en la variable X, solo considerando la submuestra de observaciones con el valor y_k en la variable Y.

Para todos los x_j y y_k :

$$p_{X|Y}(x_j|y_k) = \frac{\textit{frec}_{XY}(x_j, y_k)}{\textit{frec}_{Y}(y_k)}$$

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

	Nivel Educativo (Y)					
Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total	
No fuma						
Poco						
Intensivo						
ρ_{Y}						

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	$\frac{2}{32} = .063$				
Poco					
Intensivo					
P _Y					

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	$\frac{2}{32} = .063$	$\frac{11}{32} = .344$	$\frac{8}{32} = .250$	$\frac{11}{32} = .344$	$\frac{32}{32} = 1.00$
Poco					
Intensivo					
ρ_{Y}					

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

	Nivel Educativo (Y)					
Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total	
No fuma	$\frac{2}{32} = .063$	$\frac{11}{32} = .344$	$\frac{8}{32} = .250$	$\frac{11}{32} = .344$	$\frac{32}{32} = 1.00$ $\frac{9}{9} = 1.00$	
Poco	$\frac{1}{9} = .111$	$\frac{2}{9} = .222$	$\frac{5}{9} = .555$	$\frac{1}{9} = .111$	$\frac{9}{9} = 1.00$	
Intensivo				_		
ρ_{γ}						

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Nivel Educativo (Y)					
Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

	Nivel Educativo (Y)					
Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total	
No fuma	$\frac{2}{32} = .063$	$\frac{11}{32} = .344$	$\frac{8}{32} = .250$	$\frac{11}{32} = .344$	$\frac{32}{32} = 1.00$	
Poco	$\frac{1}{9} = .111$	$\frac{2}{9} = .222$	$\frac{5}{9} = .555$	$\frac{1}{9} = .111$	$\frac{9}{9} = 1.00$	
Intensivo	$\frac{1}{9} = .111$	$\frac{5}{9} = .555$	$\frac{3}{9} = .333$	$\frac{\ddot{0}}{9} = .000$	$\frac{9}{9} = 1.00$	
ρ_{Y}						

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Nivel Educativo (Y)					
Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

	Nivel Educativo (Y)						
Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total		
No fuma	$\frac{2}{32} = .063$	$\frac{11}{32} = .344$	$\frac{8}{32} = .250$	$\frac{11}{32} = .344$	$\frac{32}{32} = 1.00$		
Poco	$\frac{1}{9} = .111$	$\frac{2}{9} = .222$	$\frac{5}{9} = .555$	$\frac{1}{9} = .111$	$\frac{9}{9} = 1.00$		
Intensivo	$\frac{1}{9} = .111$	$\frac{5}{9} = .555$	$\frac{3}{9} = .333$	$\frac{0}{9} = .000$	$\frac{9}{9} = 1.00$		
ρ_{Y}	$\frac{4}{50} = .080$	$\frac{18}{50} = .360$	$\frac{16}{50} = .320$	$\frac{12}{50} = .240$	$\frac{50}{50} = 1.00$		

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

Tabla de contingencia: Distribución condicional $\rho_{\chi|\chi}$

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma					
Poco					
Intensivo					
ρ_{Y}					

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

Tabla de contingencia: Distribución condicional $\rho_{\chi|\chi}$

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	$\frac{2}{4} = .500$				
Poco					
Intensivo					
p_{γ}					

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Nivel Educativo (Y)					
Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	$\frac{2}{4} = .500$				
Poco	$\frac{1}{4} = .250$				
Intensivo	$\frac{1}{4} = .250$				
ρ_{Y}	$\frac{4}{4} = 1.000$				

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	$\frac{2}{4} = .500$	$\frac{11}{18} = .611$			
Poco	$\frac{1}{4} = .250$	$\frac{2}{18} = .111$			
Intensivo	$\frac{1}{4} = .250$	$\frac{2}{18} = .111$ $\frac{5}{18} = .278$			
ρ_{γ}	$\frac{4}{4} = 1.000$	$\frac{18}{18} = 1.000$			

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

Tabla de contingencia: Distribución condicional $\rho_{\chi|\chi}$

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	$\frac{2}{4} = .500$	$\frac{11}{18} = .611$	$\frac{8}{16} = .500$		
Poco	$\frac{1}{4} = .250$	$\frac{2}{18} = .111$	$\frac{5}{16} = .313$		
Intensivo	$\frac{1}{4} = .250$	$\frac{5}{18} = .278$	$\frac{3}{16} = .188$		
p_{γ}	$\frac{4}{4} = 1.000$	$\frac{18}{18} = 1.000$	$\frac{16}{16} = 1.000$		

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	$\frac{2}{4} = .500$	$\frac{11}{18} = .611$	$\frac{8}{16} = .500$	$\frac{11}{12} = .917$	
Poco	$\frac{1}{4} = .250$	$\frac{2}{18} = .111$	$\frac{5}{16} = .313$	$\frac{1}{12} = .083$	
Intensivo	$\frac{1}{4} = .250$	$\frac{5}{18} = .278$	$\frac{3}{16} = .188$	$\frac{0}{12} = .000$	
p_{γ}	$\frac{4}{4} = 1.000$	$\frac{18}{18} = 1.000$	$\frac{16}{16} = 1.000$	$\frac{12}{12} = 1.000$	

Distribución condicional

Ejemplo

Tabla de contingencia: Distribución de frecuencia bivariada

Nivel Educativo (Y)					
Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total
No fuma	2	11	8	11	32
Poco	1	2	5	1	9
Intensivo	1	5	3	0	9
Total	4	18	16	12	50

Tabla de contingencia: Distribución condicional $\rho_{\chi|\chi}$

	Nivel Educativo (Y)						
Fumador (X)	Primaria	Secundaria	Bachillerato	Universitario	Total		
No fuma	$\frac{2}{4} = .500$	$\frac{11}{18} = .611$	$\frac{8}{16} = .500$	$\frac{11}{12} = .917$	$\frac{32}{50} = .64$		
Poco	$\frac{1}{4} = .250$	$\frac{2}{18} = .111$	$\frac{5}{16} = .313$	$\frac{1}{12} = .083$	$\frac{9}{50} = .18$		
Intensivo	$\frac{1}{4} = .250$	$\frac{5}{18} = .278$	$\frac{3}{16} = .188$	$\frac{0}{12} = .000$	$\frac{9}{50} = .18$		
p_{γ}	$\frac{4}{4} = 1.000$	$\frac{18}{18} = 1.000$	$\frac{16}{16} = 1.000$	$\frac{12}{12} = 1.000$	$\frac{50}{50} = 1.00$		

Función de proporción condicional

Representaciones gráficas: Diagrama de rectángulos partidos

Nivel educativo

Función de proporción condicional

Representaciones gráficas: Diagrama de rectángulos partidos

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Covariación
 - Covariación lineal: Covarianza y correlación
- 4 Algunas nociones inferenciales

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec

Grupo Sanguíneo (Y)					
Fumador (X)	0	Α	В	AB	Total
No fuma	35	28	14	7	84
Poco	10	8	4	2	24
Intensivo	5	4	2	1	12
Total	50	40	20	10	120

Tabla de contingencia: Distribución condicional $p_{Y|X}$

		Grupo San	guíneo (Y)		
Fumador (X)	0	А	В	AB	Total

No fuma

Poco Intensivo

 p_{γ}

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec_{XY}

Grupo Sanguíneo (Y)						
Fumador (X)	0	Α	В	AB	Total	
No fuma	35	28	14	7	84	
Poco	10	8	4	2	24	
Intensivo	5	4	2	1	12	
Total	50	40	20	10	120	

Fumador (X)	0	A	В	AB	Total
No fuma	$\frac{35}{84} = .417$	$\frac{28}{84} = .333$	$\frac{14}{84} = .167$	$\frac{7}{84} = .083$	$\frac{84}{84} = 1.00$
Poco	0.	· ·	0.	· ·	0.
Intensivo					
ρ_{γ}					
p_{γ}					

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec

Grupo Sanguíneo (Y)					
Fumador (X)	0	Α	В	AB	Total
No fuma	35	28	14	7	84
Poco	10	8	4	2	24
Intensivo	5	4	2	1	12
Total	50	40	20	10	120

Grupo Sanguíneo (Y)					
Fumador (X)	0	Α	В	AB	Total
No fuma	$\frac{35}{84} = .417$ $\frac{10}{24} = .417$	$\frac{28}{84} = .333$	$\frac{14}{84} = .167$	$\frac{7}{84} = .083$	$\frac{84}{84} = 1.00$
Poco	$\frac{10}{24} = .417$	$\frac{8}{24} = .333$	$\frac{4}{24} = .167$	$\frac{2}{24} = .083$	$\frac{84}{24} = 1.00$
Intensivo					
P _Y					

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec_{XY}

	Grupo Sanguíneo (Y)					
Fumador (X)	0	Α	В	AB	Total	
No fuma	35	28	14	7	84	
Poco	10	8	4	2	24	
Intensivo	5	4	2	1	12	
Total	50	40	20	10	120	

	Grupo Sanguíneo (Y)						
Fumador (X)	0	A	В	AB	Total		
No fuma	$\frac{35}{84} = .417$	$\frac{28}{84} = .333$	$\frac{14}{84} = .167$	$\frac{7}{84} = .083$	$\frac{84}{84} = 1.00$		
Poco	$\frac{10}{24} = .417$	$\frac{8}{24} = .333$	$\frac{4}{24} = .167$	$\frac{2}{24} = .083$	$\frac{24}{24} = 1.00$		
Intensivo	$\frac{5}{12} = .417$	$\frac{4}{12} = .333$	$\frac{2}{12} = .167$	$\frac{1}{12} = .083$	$\frac{12}{12} = 1.00$		
p _v							

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec

	Grupo Sanguíneo (Y)					
Fumador (X)	0	Α	В	AB	Total	
No fuma	35	28	14	7	84	
Poco	10	8	4	2	24	
Intensivo	5	4	2	1	12	
Total	50	40	20	10	120	

Fumador (X)	0	Α	В	AB	Total
No fuma	$\frac{35}{84} = .417$	$\frac{28}{84} = .333$	$\frac{14}{84} = .167$	$\frac{7}{84} = .083$	$\frac{84}{84} = 1.00$
Poco	$\frac{10}{24} = .417$	$\frac{8}{24} = .333$	$\frac{4}{24} = .167$	$\frac{2}{24} = .083$	$\frac{24}{24} = 1.00$
Intensivo	$\frac{5}{12} = .417$	$\frac{4}{12} = .333$	$\frac{2}{12} = .167$	$\frac{1}{12} = .083$	$\frac{12}{12} = 1.00$
ρ_{Y}	$\frac{50}{120} = .417$	$\frac{40}{120} = .333$	$\frac{20}{120} = .167$	$\frac{10}{120} = .083$	$\frac{120}{120} = 1.00$

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada $frec_{\chi \chi}$

				,,,	
		Grupo Sar	nguíneo (Y)		
Fumador (X)	0	Α	В	AB	Total
No fuma	35	28	14	7	84
Poco	10	8	4	2	24
Intensivo	5	4	2	1	12
Total	50	40	20	10	120

Tabla de contingencia: Distribución condicional $p_{X|Y}$

		Grupo Sar	nguíneo (Y)		
Fumador (X)	0	Α	В	AB	ρ_{χ}

No fuma Poco

Intensivo

Total

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec

				,,,	
		Grupo Sar	nguíneo (Y)		
Fumador (X)	0	Α	В	AB	Total
No fuma	35	28	14	7	84
Poco	10	8	4	2	24
Intensivo	5	4	2	1	12
Total	50	40	20	10	120

Fumador (X)	0	Α	В	AB	ρ_X
No fuma	$\frac{35}{50} = .70$ $\frac{10}{50} = .20$				
Poco	$\frac{10}{50} = .20$				
Intensivo	$\frac{5}{50} = .10$				
Total	$\frac{50}{50} = 1.00$				
	50				

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec

				,,,			
		Grupo Sanguíneo (Y)					
Fumador (X)	0	Α	В	AB	Total		
No fuma	35	28	14	7	84		
Poco	10	8	4	2	24		
Intensivo	5	4	2	1	12		
Total	50	40	20	10	120		

	Grupo Sanguíneo (Y)				
0	Α	В	AB	ρ_X	
$\frac{35}{50} = .70$	$\frac{28}{40} = .70$				
$\frac{10}{50} = .20$	$\frac{8}{40} = .20$				
$\frac{5}{50} = .10$	$\frac{4}{40} = .10$				
$\frac{50}{50} = 1.00$	$\frac{40}{40} = 1.00$				
	$\frac{\frac{50}{50}}{\frac{5}{50}} = .20$ $\frac{5}{50} = .10$	$\frac{5}{50} = .10$ $\frac{4}{40} = .10$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec

	Grupo Sanguíneo (Y)				
Fumador (X)	0	Α	В	AB	Total
No fuma	35	28	14	7	84
Poco	10	8	4	2	24
Intensivo	5	4	2	1	12
Total	50	40	20	10	120

Grupo Sanguíneo (Y)					
Fumador (X)	0	Α	В	AB	ρ_X
No fuma	$\frac{35}{50} = .70$	$\frac{28}{40} = .70$	$\frac{14}{20} = .70$		
Poco	$\frac{10}{50} = .20$	$\frac{8}{40} = .20$	$\frac{4}{20} = .20$		
Intensivo	$\frac{5}{50} = .10$	$\frac{4}{40} = .10$	$\frac{2}{20} = .10$		
Total	$\frac{50}{50} = 1.00$	$\frac{40}{40} = 1.00$	$\frac{20}{20} = 1.00$		

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec_{XY}

-					
	Grupo Sanguíneo (Y)				
Fumador (X)	0	Α	В	AB	Total
No fuma	35	28	14	7	84
Poco	10	8	4	2	24
Intensivo	5	4	2	1	12
Total	50	40	20	10	120

Grupo Sanguíneo (Y)					
Fumador (X)	0	Α	В	AB	ρ_X
No fuma	$\frac{35}{50} = .70$	$\frac{28}{40} = .70$	$\frac{14}{20} = .70$	$\frac{7}{10} = .70$	
Poco	$\frac{10}{50} = .20$	$\frac{8}{40} = .20$	$\frac{4}{20} = .20$	$\frac{2}{10} = .20$	
Intensivo	$\frac{5}{50} = .10$	$\frac{4}{40} = .10$	$\frac{2}{20} = .10$	$\frac{1}{10} = .10$	
Total	$\frac{50}{50} = 1.00$	$\frac{40}{40} = 1.00$	$\frac{20}{20} = 1.00$	$\frac{10}{10} = 1.00$	

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec_{XY}

	Grupo Sanguíneo (Y)				
Fumador (X)	0	Α	В	AB	Total
No fuma	35	28	14	7	84
Poco	10	8	4	2	24
Intensivo	5	4	2	1	12
Total	50	40	20	10	120

	Grupo Sanguíneo (Y)				
Fumador (X)	0	Α	В	AB	ρ_X
No fuma	$\frac{35}{50} = .70$	$\frac{28}{40} = .70$	$\frac{14}{20} = .70$	$\frac{7}{10} = .70$	$\frac{84}{120} = .70$
Poco	$\frac{10}{50} = .20$	$\frac{8}{40} = .20$	$\frac{4}{20} = .20$	$\frac{2}{10} = .20$	$\frac{120}{120} = .70$ $\frac{24}{120} = .20$
Intensivo	$\frac{5}{50} = .10$	$\frac{4}{40} = .10$	$\frac{2}{20} = .10$	$\frac{1}{10} = .10$	$\frac{12}{120} = .10$
Total	$\frac{50}{50} = 1.00$	$\frac{40}{40} = 1.00$	$\frac{20}{20} = 1.00$	$\frac{10}{10} = 1.00$	$\frac{120}{120} = 1.00$

└─ Variables independientes

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada $frec_{\chi \gamma}$

Fumador (X)	0	Α	В	AB	Total
No fuma	35	28	14	7	84
Poco	10	8	4	2	24
Intensivo	5	4	2	1	12
Total	50	40	20	10	120

Tabla de contingencia: Distribución de proporción bivariada $p_{\chi \chi}$

	Grupo Sanguíneo (Y)				
Fumador (X)	0	Α	В	AB	ρ_{χ}
No fuma					
Poco					
Intensivo					
ρ_{γ}					

Variables independientes

Independencia de variables

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada $frec_{\chi \chi}$

Fumador (X)	0	Α	В	AB	Total
No fuma	35	28	14	7	84
Poco	10	8	4	2	24
Intensivo	5	4	2	1	12
Total	50	40	20	10	120

Tabla de contingencia: Distribución de proporción bivariada $\rho_{\chi \gamma}$

	Grupo Sanguíneo (Y)				
Fumador (X)	0	Α	В	AB	p_{χ}
No fuma	$\frac{35}{120} = .292$	$\frac{28}{120} = .233$	$\frac{14}{120} = .117$	$\frac{7}{120} = .058$	$\frac{84}{120} = .70$
Poco	$\frac{10}{120} = .083$	$\frac{8}{120} = .067$	$\frac{4}{120} = .033$	$\frac{2}{120} = .017$	$\frac{31}{120} = .70$ $\frac{24}{120} = .20$
Intensivo	$\frac{5}{120} = .042$	$\frac{4}{120} = .033$	$\frac{2}{120} = .017$	$\frac{1}{120} = .008$	$\frac{12}{120} = .10$
ρ_{γ}	$\frac{50}{120} = .417$	$\frac{40}{120} = .333$	$\frac{20}{120} = .167$	$\frac{10}{120} = .083$	$\frac{120}{120} = 1.00$

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada $\mathit{frec}_{\mathit{XY}}$

Fumador (X)	0	Α	В	AB	Total
No fuma	35	28	14	7	84
Poco	10	8	4	2	24
Intensivo	5	4	2	1	12
Total	50	40	20	10	120

Tabla de contingencia: Distribución de proporción bivariada $\boldsymbol{p}_{\boldsymbol{XY}}$

		Grupo Sanguíneo (Y)				
Fumador (X)	0	Α	В	AB	ρ_{χ}	
No fuma	$\frac{35}{120} = .292$	$\frac{28}{120} = .233$	$\frac{14}{120} = .117$	$\frac{7}{120} = .058$	$\frac{84}{120} = .70$	
Poco	$\frac{10}{120} = .083$	$\frac{8}{120} = .067$	$\frac{4}{120} = .033$	$\frac{2}{120} = .017$	$\frac{24}{120} = .20$	
Intensivo	$\frac{5}{120} = .042$	$\frac{4}{120} = .033$	$\frac{2}{120} = .017$	$\frac{1}{120} = .008$	$\frac{12}{120} = .10$	
ρ_{Y}	$\frac{50}{120} = .417$	$\frac{40}{120} = .333$	$\frac{20}{120} = .167$	$\frac{10}{120} = .083$	$\frac{120}{120} = 1.00$	
		0.4	O OF			

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec

	Grupo Sanguíneo (Y)					
Fumador (X)	0	Α	В	AB	Total	
No fuma	35	28	14	7	84	
Poco	10	8	4	2	24	
Intensivo	5	4	2	1	12	
Total	50	40	20	10	120	

Tabla de contingencia: Distribución de proporción bivariada $p_{\chi \gamma}$

Fumador (X)	0	Α	В	AB	ρ_{χ}
No fuma	$\frac{35}{120} = .292$	$\frac{28}{120} = .233$	$\frac{14}{120} = .117$	$\frac{7}{120} = .058$	$\frac{84}{120} = .70$
Poco	$\frac{10}{120} = .083$	$\frac{8}{120} = .067$	$\frac{4}{120} = .033$	$\frac{\frac{1}{2}}{120} = .017$	$\frac{24}{120} = .20$
Intensivo	$\frac{5}{120} = .042$	$\frac{4}{120} = .033$	$\frac{2}{120} = .017$	$\frac{1}{120} = .008$	$\frac{12}{120} = .10$
ρ_{γ}	$\frac{50}{120} = .417$	$\frac{40}{120} = .333$	$\frac{20}{120} = .167$	$\frac{10}{120} = .083$	$\frac{120}{120} = 1.00$

$$\frac{12}{120} \times \frac{40}{120} = \frac{4}{120}$$

Ejemplo

Datos de 120 personas sobre su grupo sanguíneo y conducta fumadora:

Tabla de contingencia: Distribución de frecuencia bivariada frec

Fumador (X)	0	Α	В	AB	Total
No fuma	35	28	14	7	84
Poco	10	8	4	2	24
Intensivo	5	4	2	1	12
Total	50	40	20	10	120

Tabla de contingencia: Distribución de proporción bivariada $\rho_{\chi \gamma}$

Fumador (X)	0	Α	В	AB	ρ_{χ}
No fuma	$\frac{35}{120} = .292$	$\frac{28}{120} = .233$	$\frac{14}{120} = .117$	$\frac{7}{120} = .058$	$\frac{84}{120} = .70$
Poco	$\frac{10}{120} = .083$	$\frac{8}{120} = .067$	$\frac{4}{120} = .033$	$\frac{2}{120} = .017$	$\frac{24}{120} = .20$
Intensivo	$\frac{5}{120} = .042$	$\frac{4}{120} = .033$	$\frac{2}{120} = .017$	$\frac{1}{120} = .008$	$\frac{12}{120} = .10$
ρ_{Y}	$\frac{50}{120} = .417$	$\frac{40}{120} = .333$	$\frac{20}{120} = .167$	$\frac{10}{120} = .083$	$\frac{120}{120} = 1.00$
		24	10 2		

$$\frac{24}{120} \times \frac{10}{120} = \frac{2}{120}$$

Definición

Definición

Dos variables X y Y son independientes si, y sólo si, se cumple cualquiera de las siguientes tres condiciones:

(a)
$$p_{X|Y}(x|y) = p_X(x)$$
 para todos los pares (x, y) con $frec_Y(y) > 0$.

(b)
$$p_{Y|X}(y|x) = p_Y(y)$$
 para todos los pares (x, y) con $\mathit{frec}_X(x) > 0$.

(c)
$$p_{XY}(x, y) = p_X(x) p_Y(y)$$
 para todos los pares (x, y) .

Definición

Definición

Dos variables X y Y son *independientes* si, y sólo si, se cumple cualquiera de las siguientes tres condiciones:

(a)
$$p_{X|Y}(x|y) = p_X(x)$$
 para todos los pares (x, y) con $frec_Y(y) > 0$.

(b)
$$p_{Y|X}(y|x) = p_Y(y)$$
 para todos los pares (x, y) con $\mathit{frec}_X(x) > 0$.

(c)
$$p_{XY}(x, y) = p_X(x) p_Y(y)$$
 para todos los pares (x, y) .

No son condiciones diferentes; ¡son **equivalentes**! Si una se cumple, entonces las otras tambien.

Definición

La definición anterior se generaliza para independencia de $m \ (m \geqslant 2)$ variables:

Definición

Las variables $X_1, X_2, \dots X_m$ son *independientes* si, y sólo si:

$$p_{X_1X_2...X_m}(x_1, x_2, ..., x_m) = p_{X_1}(x_1) p_{X_2}(x_2) ... p_{X_m}(x_m)$$

para todos los vectores (x_1, x_2, \dots, x_m)

Definición

Las definiciones anteriores aplican también a variables en distribuciones teóricas:

Definición

Para variables discretas

Las variables $X_1, X_2, \dots X_m$ son *independientes* si, y sólo si:

$$\pi_{X_1 X_2 \dots X_m}(x_1, x_2, \dots, x_m) = \pi_{X_1}(x_1) \, \pi_{X_2}(x_2) \, \dots \, \pi_{X_m}(x_m)$$

para todos los vectores (x_1, x_2, \ldots, x_m) .

Definiciór

Para variables continuas

Las variables $X_1, X_2, \dots X_m$ son *independientes* si, y sólo si

$$\varphi_{X_1 X_2 \dots X_m}(x_1, x_2, \dots, x_m) = \varphi_{X_1}(x_1) \varphi_{X_2}(x_2) \dots \varphi_{X_m}(x_m)$$

para todos los vectores (x_1, x_2, \dots, x_m) .

Definición

Las definiciones anteriores aplican también a variables en distribuciones teóricas:

Definición

Para variables discretas:

Las variables $X_1, X_2, \dots X_m$ son *independientes* si, y sólo si:

$$\pi_{X_1 X_2 \dots X_m}(x_1, x_2, \dots, x_m) = \pi_{X_1}(x_1) \pi_{X_2}(x_2) \dots \pi_{X_m}(x_m)$$

para todos los vectores (x_1, x_2, \ldots, x_m) .

Definiciór

Para variables continuas

Las variables $X_1, X_2, \dots X_m$ son *independientes* si, y sólo s

$$\varphi_{X_1 X_2 \dots X_m}(x_1, x_2, \dots, x_m) = \varphi_{X_1}(x_1) \varphi_{X_2}(x_2) \dots \varphi_{X_m}(x_m)$$

para todos los vectores (x_1, x_2, \ldots, x_m) .

Definición

Las definiciones anteriores aplican también a variables en distribuciones teóricas:

Definición

Para variables discretas:

Las variables $X_1, X_2, \dots X_m$ son *independientes* si, y sólo si:

$$\pi_{X_1 X_2 \dots X_m}(x_1, x_2, \dots, x_m) = \pi_{X_1}(x_1) \pi_{X_2}(x_2) \dots \pi_{X_m}(x_m)$$

para todos los vectores (x_1, x_2, \ldots, x_m) .

Definición

Para variables continuas:

Las variables $X_1, X_2, \dots X_m$ son *independientes* si, y sólo si:

$$\varphi_{X_1X_2...X_m}(x_1,x_2,...,x_m) = \varphi_{X_1}(x_1)\,\varphi_{X_2}(x_2)\,\ldots\,\varphi_{X_m}(x_m)$$

para todos los vectores (x_1, x_2, \dots, x_m) .

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Covariación
 - Covariación lineal: Covarianza y correlación
- 4 Algunas nociones inferenciales

Covariación

Representación gráfica de variables cuantitativas

Diagrama de dispersión

Si las dos variables son cuantitativas, es común representar la asociación gráficamente en un diagrama de dispersión:

Datos bivariados

i	IMC	PAS
1	21	109
2	25	129
3	27	128
4	20	112
5	33	129
6	23	121
7	24	116
8	28	177
9	23	128
10	27	122
11	22	164
12	26	114
13	29	133
14	24	111
:		
49	26	114
50	26	121

Representación gráfica de variables cuantitativas

Diagrama de dispersión

Si las dos variables son cuantitativas, es común representar la asociación gráficamente en un diagrama de dispersión:

Datos bivariados

Diagrama de dispersión

i	IMC	PAS
1	21	109
2	25	129
3	27	128
4	20	112
5	33	129
6	23	121
7	24	116
8	28	177
9	23	128
10	27	122
11	22	164
12	26	114
13	29	133
14	24	111
		:
40	00	444
49	26	114
50	26	121

Representación gráfica de variables cuantitativas

Diagrama de dispersión

Si las dos variables son cuantitativas, es común representar la asociación gráficamente en un diagrama de dispersión:

Datos bivariados

Diagrama de dispersión

Representación gráfica de variables cuantitativas

Diagrama de dispersión

Si las dos variables son cuantitativas, es común representar la asociación gráficamente en un diagrama de dispersión:

Datos bivariados

21

25

20

33

23

24

9 23

10 27

3 27

6

8 28

11 22

12 26

13 29

14 24

49 26

50 26

133

111

114

121

Diagrama de dispersión

Covariación

Covariación entre variables cuantitativas

Algunos ejemplos

Algunos ejemplos

Covariación lineal

Algunos ejemplos

Algunos ejemplos

Covariación

Covariación entre variables cuantitativas

Algunos ejemplos

Covariación lineal directa

Covariación lineal inversa

Algunos ejemplos

Algunos ejemplos

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Covariación
 - Covariación lineal: Covarianza y correlación
- 4 Algunas nociones inferenciales

Covarianza: Ejemplo introductorio

Covarianza: Ejemplo introductorio

Covariación lineal: Covarianza y correlación

Covarianza: Definición

Definición

Para dos variables X y Y, que tienen valores en n observaciones, la covarianza, representada por s_{XY} , se define como:

$$s_{XY} = \frac{\sum_{i=1}^{n} [(x_i - \overline{x})(y_i - \overline{y})]}{n}.$$

Se puede interpretar la covarianza como la media del producto de las puntuaciones diferenciales en ambas variables.

Covariación lineal: Covarianza y correlación

Covarianza: Definición

Definición

Para dos variables X y Y, que tienen valores en n observaciones, la covarianza, representada por s_{XY} , se define como:

$$s_{XY} = \frac{\sum_{i=1}^{n} [(x_i - \overline{x})(y_i - \overline{y})]}{n}.$$

Se puede interpretar la covarianza como la media del producto de las puntuaciones diferenciales en ambas variables.

Covarianza: Definición

Para distribuciones teóricas, se define la covarianza de forma análoga:

Definición

Para dos variables X y Y con una distribución conjunta de probabilidad (π_{XY}) o densidad (φ_{XY}) , la covarianza, representada por σ_{XY} , se define como:

$$\sigma_{XY} = \mathscr{E}[(X - \mu_X)(Y - \mu_Y)].$$

Es decir, la covarianza es el valor esperado del producto de las puntuaciones diferenciales en ambas variables.

Covarianza: Definición

Para distribuciones teóricas, se define la covarianza de forma análoga:

Definición

Para dos variables X y Y con una distribución conjunta de probabilidad (π_{XY}) o densidad (φ_{XY}) , la covarianza, representada por σ_{XY} , se define como:

$$\sigma_{XY} = \mathscr{E}\left[(X - \mu_X)(Y - \mu_Y) \right].$$

Es decir, la covarianza es el valor esperado del producto de las puntuaciones diferenciales en ambas variables.

Clases 2 y 3: Herramientas estadísticas para la psicometría

Estadística bivariada

Covariación lineal: Covarianza y correlación

Covarianza: Propiedades

Propiedad 1

Propiedad 1: Covarianza entre dos variables independientes

Si las variables X y Y son independientes, entonces:

$$s_{\chi \gamma} =$$

Clases 2 y 3: Herramientas estadísticas para la psicometría

Estadística bivariada

Covariación lineal: Covarianza y correlación

Covarianza: Propiedades

Propiedad 1

Propiedad 1: Covarianza entre dos variables independientes

Si las variables X y Y son independientes, entonces:

$$s_{\chi \gamma} = 0$$

Covarianza: Propiedades

Propiedad 1

Propiedad 1: Covarianza entre dos variables independientes

Si las variables X y Y son independientes, entonces:

$$s_{\chi \gamma}=0$$

¡Ojo! La relación inversa no necesariamente es verdad

La propiedad anterior dice:

independencia \implies covarianza nula

Sin embargo,

covarianza nula ≠ independencia

Covarianza: Propiedades

Propiedad 1

Propiedad 1: Covarianza entre dos variables independientes

Si las variables X y Y son independientes, entonces:

$$s_{\chi \gamma}=0$$

¡Ojo! La relación inversa no necesariamente es verdad

La propiedad anterior dice:

independencia \Longrightarrow independencia lineal

Sin embargo,

independencia lineal \implies independencia

Covariación lineal: Covarianza y correlación

Covarianza: Propiedades

Propiedad 2

Propiedad 2: Efecto de una transformación lineal en la covarianza

Si la variable T, se obtuvo a través de una transformación lineal de X, es decir, si

$$T = aX + b$$

para constantes a y b cualesquiera,

entonces la covarianza de T con otra variable Y cumple

$$s_{TY} =$$

Covariación lineal: Covarianza y correlación

Covarianza: Propiedades

Propiedad 2

Propiedad 2: Efecto de una transformación lineal en la covarianza

Si la variable T, se obtuvo a través de una transformación lineal de X, es decir, si

$$T = aX + b$$

para constantes a y b cualesquiera,

entonces la covarianza de T con otra variable Y cumple

$$s_{TY} = as_{XY}$$

Clases 2 y 3: Herramientas estadísticas para la psicometría

Estadística bivariada

Covariación lineal: Covarianza y correlación

Covarianza: Propiedades

Propiedad 3

Propiedad 3: Propiedad distributiva de la covarianza respecto de la suma

Si la variable T, se obtuvo por la suma de las variables X y Y, es decir, si

$$T = X + Y$$

entonces la covarianza de *T* con cualquier otra variable *Z* cumple

$$s_{TZ} =$$

Covariación lineal: Covarianza y correlación

Covarianza: Propiedades

Propiedad 3

Propiedad 3: Propiedad distributiva de la covarianza respecto de la suma

Si la variable T, se obtuvo por la suma de las variables X y Y, es decir, si

$$T = X + Y$$

entonces la covarianza de T con cualquier otra variable Z cumple

$$s_{TZ} = s_{XZ} + s_{YZ}$$

Varianza de una suma de variables

Si la variable T, se obtuvo por la suma de las variables X y Y, es decir, si

$$T = X + Y$$

entonces la varianza de la variable T se da por:

$$s_T^2 =$$

Covariación lineal: Covarianza y correlación

Varianza de una suma de variables

Si la variable T, se obtuvo por la suma de las variables X y Y, es decir, si

$$T = X + Y$$

entonces la varianza de la variable T se da por:

$$s_T^2 = s_X^2 + s_Y^2 + 2s_{XY}$$

Clases 2 y 3: Herramientas estadísticas para la psicometría

Estadística bivariada

Covariación lineal: Covarianza y correlación

Covarianza: Interpretación

Covarianza: Interpretación

Vimos que multiplar la(s) variable(s) con una constante afecta la covarianza.

Esto implica que la covarianza depende de la "unidad de la escala"

Por ejemplo, si

 X_1 : Peso en kilogramos X_2 : Peso en gramos $(X_2 = 1000X_1)$ Y_1 : Talla en metros Y_2 : Talla en centimetros $(Y_2 = 100Y_1)$.

entonces

$$s_{X_2Y_2} \neq s_{X_1Y_1}$$

Covarianza: Interpretación

Vimos que multiplar la(s) variable(s) con una constante afecta la covarianza.

Esto implica que la covarianza depende de la "unidad de la escala"

Por ejemplo, si

 X_1 : Peso en kilogramos X_2 : Peso en gramos $(X_2 = 1000X_1)$ Y_1 : Talla en metros Y_2 : Talla en centimetros $(Y_2 = 100Y_1)$.

entonces

$$s_{\chi_2 Y_2} \neq s_{\chi_1 Y_1}$$
 $(s_{\chi_2 Y_2} = 100000 s_{\chi_1 Y_1})$

Covarianza: Interpretación

Vimos que multiplar la(s) variable(s) con una constante afecta la covarianza.

Esto implica que la covarianza depende de la "unidad de la escala"

Por ejemplo, si

$$X_1$$
: Peso en kilogramos X_2 : Peso en gramos $(X_2 = 1000X_1)$
 Y_1 : Talla en metros Y_2 : Talla en centimetros $(Y_2 = 100Y_1)$,

entonces

$$s_{\chi_2 Y_2} \neq s_{\chi_1 Y_1}$$
 $(s_{\chi_2 Y_2} = 100000 s_{\chi_1 Y_1})$

---- Es difícil interpretar la covarianza

Covariación lineal: Covarianza y correlación

Correlación: Definición

Definición

Para dos variables X y Y, que tienen valores en n observaciones, el coeficiente de correlación, representada por r_{XY} , se define como:

$$r_{XY} = \frac{s_{XY}}{s_X s_Y}.$$

Note

La correlación es definida si y solo si la desviación estándar es diferente de 0 para ambas variables

Covariación lineal: Covarianza y correlación

Correlación: Definición

Definición

Para dos variables X y Y, que tienen valores en n observaciones, el coeficiente de correlación, representada por r_{XY} , se define como:

$$r_{XY} = \frac{s_{XY}}{s_X s_Y}.$$

Nota

La correlación es definida si y solo si la desviación estándar es diferente de 0 para ambas variables

Covariación lineal: Covarianza y correlación

Correlación: Definición

Para distribuciones teóricas, se define la correlación de forma análoga:

Definición

Para dos variables X y Y con una distribución conjunta de probabilidad (π_{XY}) o densidad (φ_{XY}) , el coeficiente de correlación, representada por ρ_{XY} , se define como:

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \, \sigma_Y}.$$

Clases 2 y 3: Herramientas estadísticas para la psicometría

Estadística bivariada

Covariación lineal: Covarianza y correlación

Correlación: Propiedades

Propiedad 1

Propiedad 1: Correlación entre dos variables independientes

Si las variables X y Y (con $s_{\chi}>$ 0 and $s_{\gamma}>$ 0) son independientes, entonces:

$$r_{XY} =$$

Covariación lineal: Covarianza y correlación

Correlación: Propiedades

Propiedad 1

Propiedad 1: Correlación entre dos variables independientes

Si las variables X y Y (con $s_{\chi}>$ 0 and $s_{\gamma}>$ 0) son independientes, entonces:

$$r_{XY} = 0$$

Covariación lineal: Covarianza y correlación

Correlación: Propiedades

Propiedad 1

Propiedad 1: Correlación entre dos variables independientes

Si las variables X y Y (con $s_\chi >$ 0 and $s_\gamma >$ 0) son independientes, entonces:

$$r_{XY} = 0$$

¡Ojo! La relación inversa no necesariamente es verdad

$$r_{yy} = 0 \implies \text{independencia}$$

Correlación: Propiedades

Propiedad 2

Propiedad 2: Efecto de una transformación lineal en la correlación

Si la variable T, se obtuvo a través de una transformación lineal de X, es decir, si

$$T = aX + b$$

para constantes $a \neq 0$ y b,

entonces la correlación de T con cualquier otra variable Y cumple

$$r_{TY} =$$

Correlación: Propiedades

Propiedad 2

Propiedad 2: Efecto de una transformación lineal en la correlación

Si la variable T, se obtuvo a través de una transformación lineal de X, es decir, si

$$T = aX + b$$

para constantes $a \neq 0$ y b,

entonces la correlación de T con cualquier otra variable Y cumple

$$r_{TY} = \begin{cases} r_{XY} & \text{si } a > 0 \\ -r_{XY} & \text{si } a < 0 \end{cases}$$

Clases 2 y 3: Herramientas estadísticas para la psicometría

Estadística bivariada

Covariación lineal: Covarianza y correlación

Correlación: Propiedades

Propiedad 3

Propiedad 3: Límites de la correlación

Para variables X y Y (con $s_\chi >$ 0 y $s_\gamma >$ 0), siempre se cumple:

$$-1 \leqslant r_{XY} \leqslant +1$$

Visualizar correlaciones

Ejemplo

$$r_{XY} = +1.00$$

$$r_{XY} = -1.00$$

Visualizar correlaciones

Visualizar correlaciones

Visualizar correlaciones

Ejemplo

$$r_{XY} = +0.40$$

$$r_{XY} = -0.40$$

Visualizar correlaciones

$$r_{XY} = +0.20$$

$$r_{XY} = -0.20$$

Visualizar correlaciones

Ejemplo

$$r_{XY} = 0.00$$

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales
 - Estadística inferencial: Objetivos y ejemplos
 - Estimación de parámetros
 - Intervalos de confianza

Algunas nociones inferenciales

Estadística inferencial: Objetivos y ejemplos

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales
 - Estadística inferencial: Objetivos y ejemplos
 - Estimación de parámetros
 - Intervalos de confianza

Estadística inferencial: Objetivos

- Objetivo general: Hacer inferencias sobre características de un modelo estadístico a partir de (datos observados en) una muestra.
- La especificación de un modelo estadístico → función de probabilidad/densidad de las variables aleatorias de interés.
- En muchas ocasiones, se especifica el modelo estadístico parcialmente

Por ejemplo

Se especifica que las calificaciones en un examen diagnóstico tienen una distribución normal, pero no se dan valores para la media y la varianza de esta distribución:

$$X \sim \mathcal{N}(\mu, \sigma^2) \qquad \begin{cases} \mu = ? \\ \sigma^2 = ? \end{cases}$$

Estadística inferencial: Objetivos

- Objetivo general: Hacer inferencias sobre características de un modelo estadístico a partir de (datos observados en) una muestra.
- La especificación de un modelo estadístico → función de probabilidad/densidad de las variables aleatorias de interés.
- En muchas ocasiones, se especifica el modelo estadístico parcialmente

Por ejemplo

Se especifica que las calificaciones en un examen diagnóstico tienen una distribución normal, pero no se dan valores para la media y la varianza de esta distribución:

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$\begin{cases} \mu = ? \\ \sigma^2 = ? \end{cases}$$

Estadística inferencial: Objetivos

- Objetivo general: Hacer inferencias sobre características de un modelo estadístico a partir de (datos observados en) una muestra.
- La especificación de un modelo estadístico → función de probabilidad/densidad de las variables aleatorias de interés.
- En muchas ocasiones, se especifica el modelo estadístico parcialmente.

Por ejemplo:

Se especifica que las calificaciones en un examen diagnóstico tienen una distribución normal, pero no se dan valores para la media y la varianza de esta distribución:

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$\begin{cases} \mu = ? \\ \sigma^2 = ? \end{cases}$$

Algunas nociones inferenciales

Estadística inferencial: Obietivos y eiemplos

Estadística inferencial: Objetivos

Objetivos específicos:

- Estimación de parámetros A partir de los datos de una muestra asignar valores a los parámetros desconocidos en el modelo estadístico.
- Contraste de hipótesis Evaluar, a la luz de los datos observados en una muestra, si el modelo estadístico especificado (la "hipótesis nula") es razonable/plausible.

Algunas nociones inferenciales

Estadística inferencial: Obietivos y eiemplos

Estadística inferencial: Objetivos

Objetivos específicos:

- Estimación de parámetros
 - A partir de los datos de una muestra asignar valores a los parámetros desconocidos en el modelo estadístico.
- Contraste de hipótesis

Evaluar, a la luz de los datos observados en una muestra, si el modelo estadístico especificado (la "hipótesis nula") es razonable/plausible.

Estadística inferencial

Ejemplos

• Unos expertos en educación elaboraron un examen de admisión a la universidad.

Una pregunta de investigación importante al respecto puede ser: ¿Cuál es la probabilidad de que alguien que pasa el examen de admisión apruebe los exámenes del primer semestre de la carrera de psicología?

Se formaliza en términos de dos variables aleatorias:

$$X = \begin{cases} 1 & \text{si pasa el examen de admisión} \\ 0 & \text{si no pasa el examen de admisión} \end{cases}$$

$$\int 1 & \text{aprueba los exámenes del primer semestri}$$

$$Y = \begin{cases} 1 & \text{aprueba los exámenes del primer semestre} \\ 0 & \text{no aprueba los exámenes del primer semestre} \end{cases}$$

Se desea conocer la probabilidad Pr(Y = 1|X = 1).

→ Estimación de parámetros.

Estadística inferencial

Ejemplos

• Un profesor quiere investigar la hipótesis de que las notas de las mujeres en su examen son más altas que las de los hombres.

Supone que tanto en la población de mujeres como en la población de hombres las notas tienen una distribución normal:

$$\begin{cases} \text{Mujeres:} & X \sim \mathcal{N}(\mu_X, \sigma^2) \\ \text{Hombres:} & Y \sim \mathcal{N}(\mu_Y, \sigma^2) \end{cases}$$

y contrasta la hipótesis:

$$H_0: \mu_X = \mu_Y$$

→ Contraste de hipótesis.

Algunas nociones inferenciales

Estimación de parámetros

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales
 - Estadística inferencial: Objetivos y ejemplos
 - Estimación de parámetros
 - Intervalos de confianza

Algunas nociones inferenciales

Estimación de parámetros

Estimación puntual

Supongamos que deseamos estimar un parámetro θ de una distribución teórica/poblacional $\pi_{\!\chi}$ o $\varphi_{\!\chi}.$

¿Cómo encontramos un buen estimador de θ ?

¿Qué estadístico utilizar para el parámetro?

Estimación de parámetros

Métodos de estimación

Se han propuesto varios métodos. Los más conocidos son:

- El método de los momentos (o el método por analogía) El estimador es el homólogo muestral del parámetro poblacional
- El método de mínimos cuadrados
 - El estimador minimiza las diferencias cuadráticas entre los valores observados en la muestra y los valores derivados del modelo estadístico.
- 3 El método de máxima verosimilitud
 - El estimador maximiza la verosimilitud (la plausibilidad) del parámetro a la luz de los datos observados. El valor que se asigna al parámetro maximiza la probabilidad de los datos observados.

Métodos de estimación

Se han propuesto varios métodos. Los más conocidos son:

- El método de los momentos (o el método por analogía)
 El estimador es el homólogo muestral del parámetro poblacional
- 2 El método de mínimos cuadrados

El estimador minimiza las diferencias cuadráticas entre los valores observados en la muestra y los valores derivados del modelo estadístico.

- 3 El método de máxima verosimilitud
 - El estimador maximiza la verosimilitud (la plausibilidad) del parámetro a la luz de los datos observados. El valor que se asigna al parámetro maximiza la probabilidad de los datos observados.

Métodos de estimación

Se han propuesto varios métodos. Los más conocidos son:

- El método de los momentos (o el método por analogía)
 El estimador es el homólogo muestral del parámetro poblacional
- 2 El método de mínimos cuadrados

El estimador minimiza las diferencias cuadráticas entre los valores observados en la muestra y los valores derivados del modelo estadístico.

3 El método de máxima verosimilitud

El estimador maximiza la verosimilitud (la plausibilidad) del parámetro a la luz de los datos observados. El valor que se asigna al parámetro maximiza la probabilidad de los datos observados.

Para evaluar la bondad de un estimador, se consideran varios criterios. Los más importantes son:

• Carencia de sesgo Un estadístico T es un estimador insesgado de un parámetro θ si y solo si:

$$\mathscr{E}(T) = \theta$$

- La media aritmética X es un estimador insesgado de la media poblaciona μ_X .
- La varianza muestral S_χ^2 no es un estimador insesgado de la varianza poblacional σ_χ^2 .
- La cuasivarianza muestral \tilde{S}_X^2 sí es un estimador insesgado de la varianza poblacional σ_X^2 .

Para evaluar la bondad de un estimador, se consideran varios criterios. Los más importantes son:

• Carencia de sesgo Un estadístico T es un estimador insesgado de un parámetro θ si y solo si:

$$\mathscr{E}(T) = \theta$$

- \blacksquare La media aritmética \overline{X} es un estimador insesgado de la media poblacional μ_X .
- La varianza muestral S_X^2 no es un estimador insesgado de la varianza poblacional σ_X^2 .
- La cuasivarianza muestral \tilde{S}_X^2 sí es un estimador insesgado de la varianza poblacional σ_X^2 .

Para evaluar la bondad de un estimador, se consideran varios criterios. Los más importantes son:

• Carencia de sesgo Un estadístico T es un estimador insesgado de un parámetro θ si y solo si:

$$\mathscr{E}(T) = \theta$$

- \blacksquare La media aritmética \overline{X} es un estimador insesgado de la media poblacional μ_X .
- La varianza muestral S_χ^2 no es un estimador insesgado de la varianza poblacional σ_χ^2 .
- La cuasivarianza muestral \tilde{S}_X^2 sí es un estimador insesgado de la varianza poblacional σ_X^2 .

Para evaluar la bondad de un estimador, se consideran varios criterios. Los más importantes son:

• Carencia de sesgo Un estadístico T es un estimador insesgado de un parámetro θ si y solo si:

$$\mathscr{E}(T) = \theta$$

- \blacksquare La media aritmética \overline{X} es un estimador insesgado de la media poblacional $\mu_X.$
- La varianza muestral S_χ^2 no es un estimador insesgado de la varianza poblacional σ_χ^2 .
- La cuasivarianza muestral \tilde{S}_{χ}^2 sí es un estimador insesgado de la varianza poblacional σ_{χ}^2 .

Algunas nociones inferenciales

Estimación de parámetros

Evaluar la bondad de los estimadores

Carencia de sesgo

Estimación de parámetros

Evaluar la bondad de los estimadores

Para evaluar la bondad de un estimador, se consideran varios criterios. Los más importantes son:

• Eficiencia Un estimador T de un parámetro θ es más eficiente conforme

$$\mathscr{E}\Big[(T-\theta)^2\Big]$$

se acerca a 0.

Algunas nociones inferenciales

Estimación de parámetros

Evaluar la bondad de los estimadores

Eficiencia

Para evaluar la bondad de un estimador, se consideran varios criterios. Los más importantes son:

Consistencia

Un estimador es consistente si, conforme el tamaño de la muestra aumenta, tiene mejor eficiencia.

En otras palabras:

Un estimador es consistente si muestras más grandes dan mejores estimaciones.

Un estimador $T_{(n)}$ de un parámetro θ es consistente si para cualquier $\varepsilon > 0$:

$$\lim_{n\to\infty} \P(\theta-\varepsilon < T_{(n)} < \theta+\varepsilon) = 1.$$

Intervalos de confianza

Índice

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales
 - Estadística inferencial: Objetivos y ejemplos
 - Estimación de parámetros
 - Intervalos de confianza

- Es deseable acompañar la estimación puntual con información sobre el margen de error.
- Se construye un intervalo [a, b] que contiene el parámetro de interés "con cierto nivel de confianza".
- El nivel de confianza se determina a priori.
- El complemento del nivel de confianza se llama el nivel de significancia o el nivel de riesgo.

Se suele representar el nivel de significancia por α .

 \rightarrow el nivel de confianza es 1 $-\alpha$.

- Es deseable acompañar la estimación puntual con información sobre el margen de error.
- Se construye un intervalo [a, b] que contiene el parámetro de interés "con cierto nivel de confianza".
- El nivel de confianza se determina a priori.
- El complemento del nivel de confianza se llama el nivel de significancia o el nivel de riesgo.

Se suele representar el nivel de significancia por α

 \rightarrow el nivel de confianza es 1 $-\alpha$.

- Es deseable acompañar la estimación puntual con información sobre el margen de error.
- Se construye un intervalo [a, b] que contiene el parámetro de interés "con cierto nivel de confianza".
- El nivel de confianza se determina a priori.
- El complemento del nivel de confianza se llama el nivel de significancia o el nivel de riesgo.

Se suele representar el nivel de significancia por α

 \rightarrow el nivel de confianza es 1 $-\alpha$.

- Es deseable acompañar la estimación puntual con información sobre el margen de error.
- Se construye un intervalo [a, b] que contiene el parámetro de interés "con cierto nivel de confianza".
- El nivel de confianza se determina a priori.
- El complemento del nivel de confianza se llama el nivel de significancia o el nivel de riesgo.

Se suele representar el nivel de significancia por α \rightarrow el nivel de confianza es 1 - α .

- Es deseable acompañar la estimación puntual con información sobre el margen de error.
- Se construye un intervalo [a, b] que contiene el parámetro de interés "con cierto nivel de confianza".
- El nivel de confianza se determina a priori.
- El complemento del nivel de confianza se llama el nivel de significancia o el nivel de riesgo.

Se suele representar el nivel de significancia por α .

 \rightarrow el nivel de confianza es 1 $-\alpha$.

- Es deseable acompañar la estimación puntual con información sobre el margen de error.
- Se construye un intervalo [a, b] que contiene el parámetro de interés "con cierto nivel de confianza".
- El nivel de confianza se determina a priori.
- El complemento del nivel de confianza se llama el nivel de significancia o el nivel de riesgo.

Se suele representar el nivel de significancia por α .

 \rightarrow el nivel de confianza es 1 $-\alpha$.

Intervalo de confianza: Interpretación

• Interpretaciones erróneas del intervalo de confianza son muy comunes.

Por ejemplo, no es correcto interpretar el intervalo de confianza de 95 % de [a, b] para un parámetro de interés como:

"La probabilidad de que el parámetro se encuentra entre a y b es 95 %".

Interpretación correcta

"Si se repitiera el estudio un gran número de veces bajo las mismas condiciones y se calculara cada vez un intervalo de 95 % de confianza, entonces para el 95 % de los casos el intervalo de confianza contendría el parámetro de interés."

Intervalos de confianza

Intervalo de confianza: Interpretación

Interpretaciones erróneas del intervalo de confianza son muy comunes.

Por ejemplo, no es correcto interpretar el intervalo de confianza de 95 % de [a, b] para un parámetro de interés como:

"La probabilidad de que el parámetro se encuentra entre a y b es 95 %".

• Interpretación correcta:

"Si se repitiera el estudio un gran número de veces bajo las mismas condiciones y se calculara cada vez un intervalo de 95 % de confianza, entonces para el 95 % de los casos el intervalo de confianza contendría el parámetro de interés."

Algunas nociones inferenciales

Intervalos de confianza

Intervalo de confianza: Interpretación

