UNITED STATES PATENT APPLICATION FOR:

HETEROCYCLIC NITROGEN-CONTAINING ACTIVATORS AND CATALYST SYSTEMS FOR OLEFIN POLYMERIZATION

INVENTORS:

MATTHEW HOLTCAMP

DAVID A. CANO

ATTORNEY DOCKET NUMBER: UNIV/0016

CERTIFICATION OF MAILING UNDER 37 C.F.R. 1.10

I hereby certify that this New Application and the documents referred to as enclosed therein are being deposited with the United States Postal Service on June 24, 2003, in an envelope marked as "Express Mail United States Postal Service", Mailing Label No. EV 351031291 US, addressed to: Commissioner for Patents, Mail Stop PATENT APPLICATION, P.O. Box 1450, Alexandria, VA 22313-1450

Signature

LOOP, D. EDMONDS

Name

6/24/2003

Date of signature

HETEROCYCLIC NITROGEN-CONTAINING ACTIVATORS AND CATALYST SYSTEMS FOR OLEFIN POLYMERIZATION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation-in-part of co-pending U.S. patent application

Serial No. 10/058,571, filed January 28, 2002. This application is also a continuation-in-part

of co-pending U.S. patent application Serial No. 10/186,361, filed June 28, 2002.

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] The present invention relates to polymerization catalyst activators, to methods of

making these activators, to polymerization catalyst systems containing these activators, and

to polymerization processes utilizing the same. More specifically, the present invention

relates to a polymerization catalyst activator comprising two or more heterocyclic nitrogen-

containing ligands coordinated to a Group 13 atom.

Description of the Related Art

[0003] Polymerization catalyst compounds are typically combined with an activator (or

co-catalyst) to yield compositions having a vacant coordination site that will coordinate,

insert, and polymerize olefins. Metallocene polymerization catalysts, for example, are

typically activated with aluminoxanes which are generally oligomeric compounds containing

-Al(R)-O- subunits, where R is an alkyl group. The most common aluminoxane activator is

methylaluminoxane (MAO), produced by the hydrolysis of trimethylaluminum (TMA).

MAO, however, is expensive to utilize because it must be added in great excess relative to

the metallocene and because of the high cost of TMA. Additionally, MAO tends to be

unstable as it precipitates out of solution over time.

[0004] As a result, alternative activators for metallocenes and other single-site

polymerization catalysts have been discovered in recent years. For example, perfluorophenyl

aluminum and borane complexes containing one anionic nitrogen-containing group have

recently gained much attention.

2

[0005] Activator complexes having a Group 13 atom have also been suggested as a viable alternative to the expensive aluminoxane activators. For example, U.S. Patent Nos. 6,147,173 and 6,211,105 disclose a polymerization process and polymerization catalyst where the catalyst includes an activator complex having a Group 13 element and at least one halogenated, nitrogen-containing aromatic group ligand.

[0006] Each of these alternatives, including the formation of aluminoxane, require multistep, complicated syntheses. There is a need, therefore, to provide a simpler method of cocatalyst synthesis and catalyst activation. There is also a need to improve catalyst economics by providing a highly active co-catalyst.

SUMMARY OF THE INVENTION

[0007] An aluminum activator and catalyst system for olefin polymerization is provided. The catalyst system comprises a polymerization catalyst and an activator comprising two or more heterocyclic nitrogen-containing ligands coordinated to a Group 13 atom. In one aspect, the activator is a reaction product of one or more Group 13 atom-containing compounds and one or more heterocyclic nitrogen-containing compounds.

[0008] In another aspect, the catalyst system includes at least one activator represented by any one of the following formulas:

(a)
$$(R'_X M (JY)_y)_n$$
 or

(b)
$$[((JY)_y R'_x)_n M-O-M ((R'_x (JY)_y)_n]_m$$
 or

(c)
$$(OMR'_x(JY)_y)_n$$

wherein:

M is a Group 13 atom;

O is oxygen;

(JY) is a heterocyclic nitrogen-containing ligand coordinated to M;

R' is a substituent group bonded to M;

x is an integer from 0 to 4;

y is 2 or more;

Express Mail No.: EV 351031291 US

x + y = the valence of M in formula (a); x + y = the valence of M - 1 in formula (b); and x + y = valence of M - 2 in formula (c);

n is 1 or 2 in formula (a); n is 2 in formula (b); and n is an number from 1 to 1,000 in formula (c); and

m is a number from 1 to 10.

In yet another aspect, the aluminum activator includes two or more heterocyclic nitrogen-containing ligands coordinated to an aluminum atom. In one embodiment, the coordination of the heterocyclic nitrogen containing ligands to the aluminum atom causes a proton on at least one of the ligands to migrate from a first position thereof to a second position thereof. The activator is a reaction product of one or more Group 13 atom-containing compounds and one or more heterocyclic nitrogen-containing compounds selected from the group consisting of pyrroles, imidazoles, pyrazoles, pyrrolines, pyrrolidines, purines, carbazoles, indoles, phenyl indoles, 2,5, dimethyl pyrroles, 3-pentafluorophenyl pyrrole, 3,4 difluoropyrroles, derivatives thereof, radicals thereof, and combinations thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.

[0011] Figure 1a shows a perspective drawing of the solid-state structure for the $[NC_8H_5(CH_3)][NC_8H_6(CH_3)]A1[C_2H_5]_2$ molecule. Nonhydrogen atoms are represented by 50% probability thermal vibration ellipsoids and hydrogen atoms are represented by arbitrarily-small spheres which are in no way representative of their true thermal motion.

[0012] Figure 1b shows a perspective drawing of the solid-state structure for the $[NC_8H_5(CH_3)][NC_8H_6(CH_3)]A1[C_2H_5]_2$ molecule. This view is as in Figure 1b but atoms are

now represented by: aluminum, a large cross-hatched sphere; nitrogen, medium-sized shaped spheres; carbon, medium-sized open spheres; and hydrogen, small open spheres.

[0013] Figure 2a shows a perspective drawing of the solid-state structure for the [NC₁₂H₈]₃A1[HNC₁₂H₈] molecule. Nonhydrogen atoms are represented by 50% probability thermal vibration ellipsoids and hydrogen atoms are represented by arbitrarily-small spheres which are in no way representative of their true thermal motion.

[0014] Figure 2b shows a perspective drawing of the solid-state structure for the [NC₁₂H₈]₃A1[HNC₁₂H₈] molecule. This view is as in Figure 1b but atoms are now represented by: aluminum, a large cross-hatched sphere; nitrogen, medium-sized shaped spheres; carbon, medium-sized open spheres; and hydrogen, small open spheres.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

An activator and a catalyst system for olefin polymerization are provided. The activator includes two or more heterocyclic ligands having four or more fused ring members, and more preferably five or more fused ring members. At least one ring of the heterocyclic ligand includes an atom selected from Group 15 or 16 of the Period Table of the Elements. As used herein, in reference to Periodic Table "Groups" of Elements, the "new" numbering scheme for the Periodic Table Groups are used as in the CRC HANDBOOK OF CHEMISTRY AND PHYSICS (David R. Lide ed., CRC Press 81st ed. 2000).

[0016] Preferably, at least one ring of the heterocyclic ligand includes at least one nitrogen, oxygen, and/or sulfur atom, and more preferably includes at least one nitrogen atom. In one aspect, the two or more heterocyclic nitrogen-containing ligands include at least one indolyl and at least one indolum. In another aspect, the two or more heterocyclic nitrogen-containing ligands include at least one carbazole and at least one carbazolyl.

In a preferred embodiment, the activator is a reaction product of one or more Group 13 atom-containing compounds and one or more heterocyclic nitrogen-containing compounds. In one aspect, the one or more heterocyclic nitrogen-containing compounds is selected from the group consisting of indoles, carbazoles, pyrroles, imidazoles, purines, pyrrolines, indolines, isoquinolines, isoquinolines, quinolines, quinolines, quinoxalines,

Express Mail No.: EV 351031291 US

derivatives thereof, and combinations thereof. In another aspect, the one or more heterocyclic nitrogen-containing compounds is selected from the group consisting of pyrroles, imidazoles, pyrazoles, pyrrolines, pyrrolidines, purines, carbazoles, indoles, phenyl indoles, 2,5-dimethyl pyrroles, 3-pentafluorophenyl pyrroles, 3,4-difluoropyrroles, derivatives thereof, and combinations thereof. In yet another aspect, the one or more heterocyclic nitrogen-containing compounds is an indole represented by Formula (IA).

$$X6$$
 $X7$
 H
 $X2$
 $X5$
 $X4$
 $X3$
 (IA)

[0018] Each substituent X2 to X7 is independently selected from hydrogen, halogens, alkyl groups, aryl groups, alkoxide groups, aryloxide groups, cyano groups, nitrous groups, sulfonyl groups, nitrile groups, phosophyl groups, and alkyl substituted aryl groups wherein each group may be halogenated or partially halogenated. The one or more heterocyclic nitrogen-containing compounds may include at least one indole selected from the group consisting of 4-bromoindole, 4-fluoroindole, 5-bromoindole, 5-chloroindole, 5-fluoroindole, 4,5,6,7-tetrafluoroindole, 2-methylindole, and 3-methylindole.

Express Mail No.: EV 351031291 US

[0019] In still another aspect, the one or more heterocyclic nitrogen-containing compounds is a carbazole represented by Formula (IB).

$$N-H$$

(IB)

The carbazole represented by Formula (IB) may be substituted. Each substituent may be independently selected from hydrogen, halogens, alkyl groups, aryl groups, alkoxide groups, aryloxide groups, cyano groups, nitrous groups, sulfonyl groups, nitrile groups, phosophyl groups, and alkyl substituted aryl groups wherein each group may be halogenated or partially halogenated. In a particular embodiment, a substituted carbazole may include 3,6-dichlorocarbazole, 3,6-dinitrocarbazole, and 3,6-diphenylcarbazole, any derivative thereof, or any combination thereof.

In one aspect, the one or more Group 13 atom-containing compounds and the one or more heterocyclic nitrogen-containing compounds are reacted at conditions sufficient for at least one proton located at a first position on at least one of the heterocyclic nitrogen-containing compounds to migrate to a second position upon nitrogen coordination to the Group 13 atom. As a result, an activator is produced having at least one heterocyclic nitrogen-containing compound radical and at least one neutral heterocyclic nitrogen-containing compound coordinated to the Group 13 atom.

[0022] The one or more Group 13 atom-containing compounds preferably include aluminum or boron. In one aspect, the Group 13 atom-containing compounds may include aluminoxane, modified aluminoxane, tri(n-butyl) ammonium tetrakis(pentafluorophenyl)boron, a trisperfluorophenyl boron metalloid precursor or a trisperfluoronapthyl boron metalloid precursor, polyhalogenated heteroborane anions,

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-noctylaluminum, tris(2,2',2"-nona-fluorobiphenyl) fluoroaluminate, perchlorates, periodates, iodates and hydrates, (2,2'-bisphenyl-ditrimethylsilicate)•4THF and organo-boron-aluminum compound, silylium salts and dioctadecylmethylammonium-bis(tris(pentafluorophenyl)borane)-benzimidazolide and combinations thereof.

[0023] In one aspect, the Group 13 atom-containing compound is an alkyl aluminum represented by the following formula (II):

$$AlR_3$$
 (II)

[0024] wherein each R is independently a substituted or unsubstituted alkyl group and/or a substituted or unsubstituted aryl group. Preferably R is an alkyl group containing 1 to 30 carbon atoms. Some specific non-limiting examples of alkylaluminums include trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-noctylaluminum, tri-iso-octylaluminum, triphenylaluminum, and combinations thereof.

In another aspect, the Group 13 atom-containing compound is an aluminoxane. Preferred aluminoxanes are oligomeric compounds containing -Al(R)-O- or $-Al(R)_2$ -O-subunits, where R is an alkyl group. Examples of aluminoxanes include methylaluminoxane (MAO), modified methylaluminoxane (MMAO), ethylaluminoxane, triethylaluminoxane, isobutylaluminoxane, tetraethyldialuminoxane and di-isobutylaluminoxane. There are a variety of methods for preparing aluminoxane and modified aluminoxanes, such as the methods described in U.S. Patent No. 4,542,199 and Chen and Marks, 100 Chem. Rev. 1391 (2000).

In yet another aspect, the Group 13 atom-containing compound is a boron-containing compound. Exemplary boron-containing compounds include organoboranes which include boron and one or more alkyl, aryl, or aralkyl groups. Some specific embodiments include substituted and unsubstituted trialkylboranes and triarylboranes, such as tris(pentafluorophenyl)borane, triphenylborane, tri-n-octylborane, and derivatives thereof, for example. These and other boron-containing compounds are described in U.S. Patent Nos. 5,153,157; 5,198,401; and 5,241,025.

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

[0027] Preferably, the one or more Group 13 atom-containing compounds and the one or more heterocylic nitrogen-containing compounds yield an activator represented by the following Formulas (III), (IV), or (V).

[0028]
$$(R'_X M (JY)_V)_n$$
 (III)

or

or

$$[0030] \qquad (OMR'_{X}(JY)_{y})_{n} \qquad (V)$$

[0031] In Formula (III), (IV), and (V), M is a Group 13 atom, such as boron or aluminum. (JY) represents the heterocylic nitrogen-containing ligand and is associated with M, and preferably coordinated to M. x is an integer from 0 to 4.

[0032] In Formula (III), n is 1 or 2. In Formula (IV), n is 2. In Formula (V), n is a number from 1 to 1000, preferably 1 to 100.

[0033] In Formula (IV), m is a number from 1 to 10.

[0034] In Formula (III), x + y = the valence of M.

[0035] In Formula (IV), x + y = the valence of M - 1.

In Formula (V), x + y = the valence of M - 2.

[0037] Each R' is a substituent group bonded to M. Non-limiting examples of substituent R' groups include hydrogen, linear or branched alkyl radicals, linear or branched alkenyl radicals, linear or branched alkynyl radicals, cycloalkyl radicals, aryl radicals, acyl radicals, aroyl radicals, alkoxy radicals, aryloxy radicals, alkylthio radicals, dialkylamino radicals, alkoxycarbonyl radicals, aryloxycarbonyl radicals, carbomoyl radicals, alkyl radicals, dialkyl radicals, carbamoyl radicals, acyloxy radicals, acylamino radicals,

aroylamino radicals, straight alkylene radicals, branched alkylene radicals, cyclic alkylene radicals, or any combination thereof.

More specific embodiments of R' include a methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, benzyl or phenyl group, including all their isomers, for example tertiary butyl, isopropyl, and the like. Other embodiments of R' include hydrocarbyl radicals such as fluoromethyl, fluoroethyl, difluoroethyl, iodopropyl, bromohexyl, chlorobenzyl; hydrocarbyl substituted organometalloid radicals including trimethylsilyl, trimethylgermyl, methyldiethylsilyl and the like; halocarbyl-substituted organometalloid radicals including tris(trifluoromethyl)silyl, methyl-bis(difluoromethyl)silyl, bromomethyldimethylgermyl and the like; disubstituted boron radicals including dimethylboron for example; disubstituted Group 15 radicals including dimethylamine, dimethylphosphine, diphenylamine, methylphenylphosphine; and Group 16 radicals including methoxy, ethoxy, propoxy, phenoxy, methylsulfide and ethylsulfide.

Further, each R' may include carbon, silicon, boron, aluminum, nitrogen, phosphorous, oxygen, tin, sulfur, or germanium atoms and the like. Still further, each R' may include olefins such as olefinically unsaturated substituents including vinyl-terminated ligands, such as but-3-enyl, prop-2-enyl, hex-5-enyl and the like, for example. Also, at least two R' groups, preferably two adjacent R' groups, may be joined to form a ring structure having from 3 to 30 atoms selected from carbon, nitrogen, oxygen, phosphorous, silicon, germanium, aluminum, boron, or a combination thereof. Also, a substituent group R' such as 1-butanyl may form a carbon sigma bond to the metal M.

Catalyst Compositions

The activators described above may be utilized in conjunction with any suitable polymerization catalyst to form an active polymerization catalyst system. The catalyst system may be supported or non-supported. Typically, the mole ratio of the metal of the activator to the metal of the catalyst compound is in the range of between 0.3:1 to 10,000:1, preferably 100:1 to 5000:1, and most preferably 500:1 to 2000:1. Exemplary polymerization catalysts include metallocene catalyst compositions, Group 15-containing metal catalyst

compositions, and phenoxide transition metal catalyst compositions, which are discussed in more detail below.

The term "activator" as used herein refers to any compound or component, or combination of compounds or components, capable of enhancing the ability of a catalyst to polymerize olefin monomers to form polyolefins. The term "catalyst" is used interchangeably with the term "catalyst component", and includes any compound or component, or combination of compounds or components, that is capable of increasing the rate of a chemical reaction, such as the polymerization or oligomerization of one or more olefins. The term "catalyst system" as used herein includes at least one "catalyst" and at least one "activator". The "catalyst system" may also include other components, such as a support for example. The catalyst system may include any number of catalysts in any combination as described herein, as well as any activator in any combination as described herein.

Metallocene Catalyst Compositions

The catalyst system may include at least one metallocene catalyst component as described herein. Metallocene catalyst compounds are generally described throughout in, for example, 1 & 2 METALLOCENE-BASED POLYOLEFINS (John Scheirs & W. Kaminsky eds., John Wiley & Sons, Ltd. 2000); G.G. Hlatky in 181 COORDINATION CHEM. REV. 243-296 (1999) and in particular, for use in the synthesis of polyethylene in 1 METALLOCENE-BASED POLYOLEFINS 261-377 (2000). The metallocene catalyst compounds as described herein include "half sandwich" and "full sandwich" compounds having one or more Cp ligands (cyclopentadienyl and ligands isolobal to cyclopentadienyl) bound to at least one Group 3 to Group 12 metal atom, and one or more leaving group(s) bound to the at least one metal atom. Hereinafter, these compounds will be referred to as "metallocenes" or "metallocene catalyst components". The metallocene catalyst component is supported on a support material in a particular embodiment as described further below, and may be supported with or without another catalyst component.

The Cp ligands are one or more rings or ring system(s), at least a portion of which includes π -bonded systems, such as cycloalkadienyl ligands and heterocyclic analogues. The ring(s) or ring system(s) typically comprise atoms selected from the group consisting of

Express Mail No.: EV 351031291 US

Groups 13 to 16 atoms, and more particularly, the atoms that make up the Cp ligands are selected from the group consisting of carbon, nitrogen, oxygen, silicon, sulfur, phosphorous, germanium, boron and aluminum and combinations thereof, wherein carbon makes up at least 50% of the ring members. Even more particularly, the Cp ligand(s) are selected from the group consisting of substituted and unsubstituted cyclopentadienyl ligands and ligands isolobal to cyclopentadienyl, non-limiting examples of which include cyclopentadienyl, indenyl, fluorenyl and other structures. Further non-limiting examples of such ligands include cyclopentadienyl, cyclopentaphenanthreneyl, indenyl, benzindenyl, fluorenyl, octahydrofluorenyl, cyclopentaphenanthreneyl, indenyl, benzindenyl, fluorenyl, octahydrofluorenyl, cyclopentacyclododecene, phenanthrindenyl, 3,4-benzofluorenyl, 9-phenylfluorenyl, 8-H-cyclopent[a]acenaphthylenyl, 7H-dibenzofluorenyl, indeno[1,2-9]anthrene, thiophenoindenyl, thiophenofluorenyl, hydrogenated versions thereof (e.g., 4,5,6,7-tetrahydroindenyl, or "H₄Ind"), substituted versions thereof (as described in more detail below), and heterocyclic versions thereof.

The metal atom "M" of the metallocene catalyst compound, as described [0044] throughout the specification and claims, may be selected from the group consisting of Groups 3 through 12 atoms and lanthanide Group atoms in one embodiment; and selected from the group consisting of Groups 3 through 10 atoms in a more particular embodiment, and selected from the group consisting of Sc, Ti, Zr, Hf, V, Nb, Ta, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, and Ni in yet a more particular embodiment; and selected from the group consisting of Groups 4, 5 and 6 atoms in yet a more particular embodiment, and a Ti, Zr, Hf atoms in yet a more particular embodiment, and Zr in yet a more particular embodiment. The oxidation state of the metal atom "M" may range from 0 to +7 in one embodiment; and in a more particular embodiment, is +1, +2, +3, +4 or +5; and in yet a more particular embodiment is +2, +3 or +4. The groups bound the metal atom "M" are such that the compounds described below in the formulas and structures are neutral, unless otherwise indicated. The Cp ligand(s) form at least one chemical bond with the metal atom M to form the "metallocene catalyst compound". The Cp ligands are distinct from the leaving groups bound to the catalyst compound in that they are not highly susceptible to substitution/abstraction reactions.

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

[0045] In one aspect, the one or more metallocene catalyst components are represented by the formula (VI):

$$[0046] CpACpBMXn (VI)$$

wherein M is as described above; each X is chemically bonded to M; each Cp group is chemically bonded to M; and n is 0 or an integer from 1 to 4, and either 1 or 2 in a particular embodiment.

The ligands represented by Cp^A and Cp^B in formula (VI) may be the same or different cyclopentadienyl ligands or ligands isolobal to cyclopentadienyl, either or both of which may contain heteroatoms and either or both of which may be substituted by a group R. In one embodiment, Cp^A and Cp^B are independently selected from the group consisting of cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, and substituted derivatives of each.

Independently, each Cp^A and Cp^B of formula (VI) may be unsubstituted or substituted with any one or combination of substituent groups R. Non-limiting examples of substituent groups R as used in structure (VI) include hydrogen radicals, alkyls, alkenyls, alkynyls, cycloalkyls, aryls, acyls, aroyls, alkoxys, aryloxys, alkylthiols, dialkylamines, alkylamidos, alkoxycarbonyls, aryloxycarbonyls, carbomoyls, alkyl- and dialkyl-carbamoyls, acyloxys, acylaminos, aroylaminos, and combinations thereof.

More particular non-limiting examples of alkyl substituents R associated with [0050] formula (VI) through (V) include methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, benzyl, phenyl, methylphenyl, and tert-butylphenyl groups and the like, including all their isomers, for example tertiary-butyl, isopropyl, and the like. Other possible radicals include substituted alkyls and aryls such as, for example, fluoromethyl, fluroethyl, iodopropyl, bromohexyl, chlorobenzyl and hydrocarbyl difluroethyl, organometalloid radicals including trimethylsilyl, trimethylgermyl, methyldiethylsilyl and halocarbyl-substituted organometalloid radicals including the like: and tris(trifluoromethyl)silyl, methylbis(difluoromethyl)silyl, bromomethyldimethylgermyl and the like; and disubstituted boron radicals including dimethylboron for example; and disubstituted Group 15 radicals including dimethylamine, dimethylphosphine,

Express Mail No.: EV 351031291 US

diphenylamine, methylphenylphosphine, Group 16 radicals including methoxy, ethoxy, propoxy, phenoxy, methylsulfide and ethylsulfide. Other substituents R include olefins such as but not limited to olefinically unsaturated substituents including vinyl-terminated ligands, for example 3-butenyl, 2-propenyl, 5-hexenyl and the like. In one embodiment, at least two R groups, two adjacent R groups in one embodiment, are joined to form a ring structure having from 3 to 30 atoms selected from the group consisting of carbon, nitrogen, oxygen, phosphorous, silicon, germanium, aluminum, boron and combinations thereof. Also, a substituent group R group such as 1-butanyl may form a bonding association to the element M.

[0051] Each X in the formula (VI) above and for the formulas/structures (II) through (V) below is independently selected from the group consisting of: any leaving group in one embodiment; halogen ions, hydrides, C1 to C12 alkyls, C2 to C12 alkenyls, C6 to C12 aryls, C7 to C_{20} alkylaryls, C_1 to C_{12} alkoxys, C_6 to C_{16} aryloxys, C_7 to C_{18} alkylaryloxys, C_1 to C_{12} fluoroalkyls, C₆ to C₁₂ fluoroaryls, and C₁ to C₁₂ heteroatom-containing hydrocarbons and substituted derivatives thereof in a more particular embodiment; hydride, halogen ions, C₁ to C₆ alkyls, C₂ to C₆ alkenyls, C₇ to C₁₈ alkylaryls, C₁ to C₆ alkoxys, C₆ to C₁₄ aryloxys, C₇ to C₁₆ alkylaryloxys, C₁ to C₆ alkylcarboxylates, C₁ to C₆ fluorinated alkylcarboxylates, C₆ to C₁₂ arylcarboxylates, C₇ to C₁₈ alkylarylcarboxylates, C₁ to C₆ fluoroalkyls, C₂ to C₆ fluoroalkenyls, and C_7 to C_{18} fluoroalkylaryls in yet a more particular embodiment; hydride, chloride, fluoride, methyl, phenyl, phenoxy, benzoxy, tosyl, fluoromethyls and fluorophenyls in yet a more particular embodiment; C_1 to C_{12} alkyls, C_2 to C_{12} alkenyls, C_6 to C_{12} aryls, C_7 to C_{20} alkylaryls, substituted C_1 to C_{12} alkyls, substituted C_6 to C_{12} aryls, substituted C_7 to C_{20} alkylaryls and C_1 to C_{12} heteroatom-containing alkyls, C_1 to C_{12} heteroatom-containing aryls and C₁ to C₁₂ heteroatom-containing alkylaryls in yet a more particular embodiment; chloride, fluoride, C_1 to C_6 alkyls, C_2 to C_6 alkenyls, C_7 to C_{18} alkylaryls, halogenated C_1 to C₆ alkyls, halogenated C₂ to C₆ alkenyls, and halogenated C₇ to C₁₈ alkylaryls in yet a more methylphenyl, embodiment; fluoride, methyl, ethyl, propyl, phenyl, dimethylphenyl, trimethylphenyl, fluoromethyls (mono-, di- and trifluoromethyls) and fluorophenyls (mono-, di-, tri-, tetra- and pentafluorophenyls) in yet a more particular embodiment.

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

Other non-limiting examples of X groups in formula (VI) include amines, phosphines, ethers, carboxylates, dienes, hydrocarbon radicals having from 1 to 20 carbon atoms, fluorinated hydrocarbon radicals (e.g., $-C_6F_5$ (pentafluorophenyl)), fluorinated alkylcarboxylates (e.g., $CF_3C(O)O$), hydrides and halogen ions and combinations thereof. Other examples of X ligands include alkyl groups such as cyclobutyl, cyclohexyl, methyl, heptyl, tolyl, trifluoromethyl, tetramethylene, pentamethylene, methylidene, methyoxy, ethyoxy, propoxy, phenoxy, bis(N-methylanilide), dimethylamide, dimethylphosphide radicals and the like. In one embodiment, two or more X's form a part of a fused ring or ring system.

[0053] In another aspect, the metallocene catalyst component includes those of formula (VI) where Cp^A and Cp^B are bridged to each other by at least one bridging group, (A), such that the structure is represented by formula (VII):

$$[0054] CpA(A)CpBMXn (VII)$$

These bridged compounds represented by formula (VII) are known as "bridged metallocenes". CpA, CpB, M, X and n in structure (VII) are as defined above for formula (VI); and wherein each Cp ligand is chemically bonded to M, and (A) is chemically bonded to each Cp. Non-limiting examples of bridging group (A) include divalent hydrocarbon groups containing at least one Group 13 to 16 atom, such as but not limited to at least one of a carbon, oxygen, nitrogen, silicon, aluminum, boron, germanium and tin atom and combinations thereof; wherein the heteroatom may also be C1 to C12 alkyl or aryl substituted to satisfy neutral valency. The bridging group (A) may also contain substituent groups R as defined above (for formula (VI)) including halogen radicals and iron. More particular nonlimiting examples of bridging group (A) are represented by C₁ to C₆ alkylenes, substituted C₁ to C₆ alkylenes, oxygen, sulfur, R'₂C=, R'₂Si=, -Si(R')₂Si(R'₂)-, R'₂Ge=, R'P= (wherein "=" represents two chemical bonds), where R' is independently selected from the group consisting of hydride, hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, hydrocarbyl-substituted organometalloid, halocarbyl-substituted organometalloid, disubstituted boron, disubstituted Group 15 atoms, substituted Group 16 atoms, and halogen radical; and wherein two or more R' may be joined to form a ring or ring

Express Mail No.: EV 351031291 US

system. In one embodiment, the bridged metallocene catalyst component of formula (VII) has two or more bridging groups (A).

Other non-limiting examples of bridging group (A) include methylene, ethylene, ethylidene, propylidene, isopropylidene, diphenylmethylene, 1,2-dimethylethylene, 1,2-diphenylethylene, 1,1,2,2-tetramethylethylene, dimethylsilyl, diethylsilyl, methyl-ethylsilyl, trifluoromethylbutylsilyl, bis(trifluoromethyl)silyl, di(n-butyl)silyl, di(n-propyl)silyl, di(propyl)silyl, di(n-hexyl)silyl, dicyclohexylsilyl, diphenylsilyl, cyclohexylphenylsilyl, t-butylcyclohexylsilyl, di(t-butylphenyl)silyl, di(p-tolyl)silyl and the corresponding moieties wherein the Si atom is replaced by a Ge or a C atom; dimethylsilyl, diethylsilyl, dimethylgermyl and diethylgermyl.

In another embodiment, bridging group (A) may also be cyclic, comprising, for example 4 to 10, 5 to 7 ring members in a more particular embodiment. The ring members may be selected from the elements mentioned above, from one or more of B, C, Si, Ge, N and O in a particular embodiment. Non-limiting examples of ring structures which may be present as or part of the bridging moiety are cyclobutylidene, cyclopentylidene, cyclohexylidene, cycloheptylidene, cyclooctylidene and the corresponding rings where one or two carbon atoms are replaced by at least one of Si, Ge, N and O, in particular, Si and Ge. The bonding arrangement between the ring and the Cp groups may be either cis-, trans-, or a combination.

The cyclic bridging groups (A) may be saturated or unsaturated and/or carry one or more substituents and/or be fused to one or more other ring structures. If present, the one or more substituents are selected from the group consisting of hydrocarbyl (e.g., alkyl such as methyl) and halogen (e.g., F, Cl) in one embodiment. The one or more Cp groups which the above cyclic bridging moieties may optionally be fused to may be saturated or unsaturated and are selected from the group consisting of those having 4 to 10, more particularly 5, 6 or 7 ring members (selected from the group consisting of C, N, O and S in a particular embodiment) such as, for example, cyclopentyl, cyclohexyl and phenyl. Moreover, these ring structures may themselves be fused such as, for example, in the case of a naphthyl group. Moreover, these (optionally fused) ring structures may carry one or more

Express Mail No.: EV 351031291 US

substituents. Illustrative, non-limiting examples of these substituents are hydrocarbyl (particularly alkyl) groups and halogen atoms.

[0059] The ligands Cp^A and Cp^B of formulae (VI) and (VII) are different from each other in one embodiment, and the same in another embodiment.

In yet another aspect, the metallocene catalyst components include mono-ligand metallocene compounds (e.g., mono cyclopentadienyl catalyst components) such as described in WO 93/08221 for example. In this embodiment, the at least one metallocene catalyst component is a bridged "half-sandwich" metallocene represented by the formula (VIII):

[0061]
$$\operatorname{Cp}^{A}(A)\operatorname{QMX}_{n}$$
 (VIII)

wherein Cp^A is defined above and is bound to M; (A) is a bridging group bonded to Q and Cp^A; and wherein an atom from the Q group is bonded to M; and n is 0 or an integer from 1 to 3; 1 or 2 in a particular embodiment. In formula (VIII) above, Cp^A, (A) and Q may form a fused ring system. The X groups and n of formula (VIII) are as defined above in formula (VI) and (VII). In one embodiment, Cp^A is selected from the group consisting of cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, substituted versions thereof, and combinations thereof.

In formula (VIII), Q is a heteroatom-containing ligand in which the bonding atom (the atom that is bonded with the metal M) is selected from the group consisting of Group 15 atoms and Group 16 atoms in one embodiment, and selected from the group consisting of nitrogen, phosphorus, oxygen or sulfur atom in a more particular embodiment, and nitrogen and oxygen in yet a more particular embodiment. Non-limiting examples of Q groups include alkylamines, arylamines, mercapto compounds, ethoxy compounds, carboxylates (e.g., pivalate), carbamates, azenyl, azulene, pentalene, phosphoyl, phosphinimine, pyrrolyl, pyrozolyl, carbazolyl, borabenzene other compounds comprising Group 15 and Group 16 atoms capable of bonding with M.

[0064] In yet another aspect, the at least one metallocene catalyst component is an unbridged "half sandwich" metallocene represented by the formula (IX):

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

$$[0065] CpAMQqXn (IX)$$

wherein Cp^A is defined as for the Cp groups in (VI) and is a ligand that is bonded to M; each Q is independently bonded to M; Q is also bound to Cp^A in one embodiment; X is a 'leaving group as described above in (VI); n ranges from 0 to 3, and is 1 or 2 in one embodiment; q ranges from 0 to 3, and is 1 or 2 in one embodiment. In one embodiment, Cp^A is selected from the group consisting of cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, substituted version thereof, and combinations thereof.

In formula (IX), Q is selected from the group consisting of ROO $^-$, RO $^-$,

[0068] Described another way, the "half sandwich" metallocenes above can be described as in formula (X), such as described in, for example, US 6,069,213:

[0069]
$$Cp^{A}M(Q_2GZ)X_n$$
 or $T(Cp^{A}M(Q_2GZ)X_n)_m$ (X)

[0070] wherein M, Cp^A, X and n are as defined above;

Q₂GZ forms a polydentate ligand unit (*e.g.*, pivalate), wherein at least one of the Q groups form a bond with M, and is defined such that each Q is independently selected from the group consisting of -O, -NR, $-CR_2$ — and -S-; G is either carbon or silicon; and Z is selected from the group consisting of R, -OR, $-NR_2$, $-CR_3$, -SR, $-SiR_3$, $-PR_2$, and hydride, providing that when Q is -NR-, then Z is selected from the group consisting of -OR, $-NR_2$, -SR, $-SiR_3$, $-PR_2$; and provided that neutral valency for Q is satisfied by Z; and wherein each R is independently selected from the group consisting of C_1 to C_{10} heteroatom containing groups, C_1 to C_{10} alkyls, C_6 to C_{12} aryls, C_6 to C_{12} alkylaryls, C_1 to C_{10} alkoxys, and C_6 to C_{12} aryloxys;

n is 1 or 2 in a particular embodiment; and

Express Mail No.: EV 351031291 US

[0073] T is a bridging group selected from the group consisting of C_1 to C_{10} alkylenes, C_6 to C_{12} arylenes and C_1 to C_{10} heteroatom containing groups, and C_6 to C_{12} heterocyclic groups; wherein each T group bridges adjacent " $Cp^AM(Q_2GZ)X_n$ " groups, and is chemically bonded to the Cp^A groups.

[0074] m is an integer from 1 to 7; m is an integer from 2 to 6 in a more particular embodiment.

[0075] In another aspect, the at least one metallocene catalyst component can be described more particularly in structures (XIa), (XIb), (XIc), (XId) (XIe) and (XIf):

[0076]

$$R^{2}$$
 R^{2}
 R^{1}
 R^{5}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5

Attorney Docket No.: 2003U02 (UNIV/0016) Express Mail No.: EV 351031291 US

[0077]

$$R^3$$
 R^4
 R^4
 R^5
 R^6
 R^7
 R^8

(XIb)

[0078]

$$R^3$$
 R^4
 R^5
 R^6
 R^7
 R^8
 R^7
 R^8
 R^9
 R^{10}
 R^{11}

(XIc)

Attorney Docket No.: 2003U02 (UNIV/0016) Express Mail No.: EV 351031291 US

[0079]

$$R^3$$
 R^4
 R^5
 R^6
 R^2
 R^1
 R^*
 R^8
 R^9
 R^{10}

(XId)

[0080]

$$R^{11}$$
 R^{8}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{5}

(XIe)

Express Mail No.: EV 351031291 US

[0081]

wherein in structures (XIa) to (XIf) M is selected from the group consisting of Group 3 to Group 12 atoms, and selected from the group consisting of Group 3 to Group 10 atoms in a more particular embodiment, and selected from the group consisting of Group 3 to Group 6 atoms in yet a more particular embodiment, and selected from the group consisting of Group 4 atoms in yet a more particular embodiment, and selected from the group consisting of Zr and Hf in yet a more particular embodiment; and is Zr in yet a more particular embodiment;

wherein Q in (XIa) to (XIf) is selected from the group consisting of alkylenes, aryls, arylenes, alkoxys, aryloxys, amines, arylamines (e.g., pyridyl) alkylamines, phosphines, alkylphosphines, substituted alkyls, substituted aryls, substituted alkoxys, substituted aryloxys, substituted amines, substituted alkylamines, substituted phosphines, substituted alkylphosphines, carbamates, heteroallyls, carboxylates (non-limiting examples of suitable carbamates and carboxylates include trimethylacetate, trimethylacetate, methylacetate, p-toluate, benzoate, diethylcarbamate, and dimethylcarbamate), fluorinated alkyls, fluorinated aryls, and fluorinated alkylcarboxylates; wherein the saturated groups defining Q comprise from 1 to 20 carbon atoms in one embodiment; and wherein the aromatic groups comprise from 5 to 20 carbon atoms in one embodiment;

[0084] wherein each R* is independently: selected from the group consisting of hydrocarbylenes and heteroatom-containing hydrocarbylenes in one embodiment; and selected from the group consisting of alkylenes, substituted alkylenes and heteroatom-

Express Mail No.: EV 351031291 US

containing hydrocarbylenes in another embodiment; and selected from the group consisting of C_1 to C_{12} alkylenes, C_1 to C_{12} substituted alkylenes, and C_1 to C_{12} heteroatom-containing hydrocarbylenes in a more particular embodiment; and selected from the group consisting of C_1 to C_4 alkylenes in yet a more particular embodiment; and wherein both R^* groups are identical in another embodiment in structures (XIf);

A is as described above for (A) in structure (VII), and more particularly, selected from the group consisting of a chemical bond, -O, -S, $-SO_2$, -NR, $=SiR_2$, $=GeR_2$, $=SnR_2$, $-R_2SiSiR_2$, RP, C_1 to C_{12} alkylenes, substituted C_1 to C_{12} alkylenes, divalent C_4 to C_{12} cyclic hydrocarbons and substituted and unsubstituted aryl groups in one embodiment; and selected from the group consisting of C_5 to C_8 cyclic hydrocarbons, $-CH_2CH_2$, $=CR_2$ and $=SiR_2$ in a more particular embodiment; wherein and R is selected from the group consisting of alkyls, cycloalkyls, aryls, alkoxys, fluoroalkyls and heteroatom-containing hydrocarbons in one embodiment; and R is selected from the group consisting of C_1 to C_6 alkyls, substituted phenyls, phenyl, and C_1 to C_6 alkoxys in a more particular embodiment; and R is selected from the group consisting of methoxy, methyl, phenoxy, and phenyl in yet a more particular embodiment;

[0086] wherein A may be absent in yet another embodiment, in which case each R^* is defined as for R^1 - R^{13} ;

[0087] each X is as described above in (VI);

[0088] n is an integer from 0 to 4, and from 1 to 3 in another embodiment, and 1 or 2 in yet another embodiment; and

R¹ through R¹³ are independently: selected from the group consisting of hydrogen radical, halogen radicals, C_1 to C_{12} alkyls, C_2 to C_{12} alkenyls, C_6 to C_{12} aryls, C_7 to C_{20} alkylaryls, C_1 to C_{12} alkoxys, C_1 to C_{12} fluoroalkyls, C_6 to C_{12} fluoroaryls, and C_1 to C_{12} heteroatom-containing hydrocarbons and substituted derivatives thereof in one embodiment; selected from the group consisting of hydrogen radical, fluorine radical, chlorine radical, bromine radical, C_1 to C_6 alkyls, C_2 to C_6 alkenyls, C_7 to C_{18} alkylaryls, C_1 to C_6 fluoroalkyls, C_2 to C_6 fluoroalkenyls, C_7 to C_{18} fluoroalkylaryls in a more particular

embodiment; and hydrogen radical, fluorine radical, chlorine radical, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, hexyl, phenyl, 2,6-di-methylpheyl, and 4-tertiarybutylpheyl groups in yet a more particular embodiment; wherein adjacent R groups may form a ring, either saturated, partially saturated, or completely saturated.

The structure of the metallocene catalyst component represented by (XIa) may take on many forms such as disclosed in, for example, US 5,026,798, US 5,703,187, and US 5,747,406, including a dimmer or oligomeric structure, such as disclosed in, for example, US 5,026,798 and US 6,069,213.

[0091] In a particular embodiment of the metallocene represented in (XId), R^1 and R^2 form a conjugated 6-membered carbon ring system that may or may not be substituted.

[0092] Non-limiting examples of metallocene catalyst components consistent with the description herein include:

[0093] cyclopentadienylzirconium X_n ,

[0094] indenylzirconium X_n ,

[0095] (1-methylindenyl)zirconium X_n ,

[0096] (2-methylindenyl)zirconium X_n ,

[0097] $(1-propylindenyl)zirconium X_n$,

[0098] $(2-propylindenyl)zirconium X_n$,

[0099] (1-butylindenyl)zirconium X_n ,

[00100] (2-butylindenyl)zirconium X_n ,

[00101] (methylcyclopentadienyl)zirconium X_n ,

[00102] tetrahydroindenylzirconium X_n ,

[00103] (pentamethylcyclopentadienyl)zirconium X_n ,

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

[00104] cyclopentadienylzirconium X_n ,

[00105] pentamethylcyclopentadienyltitanium X_n ,

[00106] tetramethylcyclopentyltitanium X_n ,

[00107] 1,2,4-trimethylcyclopentadienylzirconium X_n ,

[00108] dimethylsilyl(1,2,3,4-tetramethylcyclopentadienyl)(cyclopentadienyl)zirconium X_n ,

[00109] dimethylsilyl(1,2,3,4-tetramethylcyclopentadienyl)(1,2,3-trimethylcyclopentadienyl)zirconium X_n ,

[00110] dimethylsilyl(1,2,3,4-tetramethylcyclopentadienyl)(1,2-dimethylcyclopentadienyl)zirconium X_n ,

[00111] dimethylsilyl(1,2,3,4-tetramethyl-cyclopentadienyl)(2-methylcyclopentadienyl)zirconium X_n ,

[00112] dimethylsilyl(cyclopentadienyl)(indenyl)zirconium X_n,

[00113] dimethylsilyl(2-methylindenyl)(fluorenyl)zirconium X_n ,

[00114] diphenylsilyl(1,2,3,4-tetramethyl-cyclopentadienyl)(3-propylcyclopentadienyl)zirconium X_n ,

[00115] dimethylsilyl(1,2,3,4-tetramethylcyclopentadienyl)(3-t-butylcyclopentadienyl)zirconium X_n ,

[00116] dimethylgermyl(1,2-dimethylcyclopentadienyl)(3-isopropylcyclopentadienyl)zirconium X_n ,

[00117] dimethylsilyl(1,2,3,4-tetramethyl-cyclopentadienyl)(3-methylcyclopentadienyl) zirconium X_n ,

[00118] diphenylmethylidene(cyclopentadienyl)(9-fluorenyl)zirconium X_n ,

Attorney Docket No.: 2003U02 (UNIV/0016) Express Mail No.: EV 351031291 US

[00119]	diphenylmethylidene(cyclopentadienyl)(indenyl)zirconium X_n ,
[00120]	iso-propylidenebis(cyclopentadienyl)zirconium X _n ,
[00121]	iso-propylidene(cyclopentadienyl)(9-fluorenyl)zirconium X _n ,
[00122]	$iso-propylidene (3-methylcyclopentadienyl) (9-fluorenyl) zirconium \ X_n,\\$
[00123]	ethylenebis(9-fluorenyl)zirconium X_n ,
[00124]	meso-ethylenebis(1-indenyl)zirconium X _n ,
[00125]	ethylenebis(1-indenyl)zirconium X _n ,
[00126]	ethylenebis(2-methyl-1-indenyl)zirconium X _n ,
[00127]	ethylenebis (2-methyl-4,5,6,7-tetrahydro-1-indenyl) zirconium X_n ,
[00128]	ethylenebis (2-propyl-4,5,6,7-tetrahydro-1-indenyl) zirconium X_n ,
[00129]	ethylenebis (2-isopropyl-4,5,6,7-tetrahydro-1-indenyl) zirconium X_n ,
[00130]	ethylenebis (2-butyl-4,5,6,7-tetrahydro-1-indenyl) zirconium X_n ,
[00131]	ethylenebis (2-isobutyl-4,5,6,7-tetrahydro-1-indenyl) zirconium X_n ,
[00132]	dimethylsilyl(4,5,6,7-tetrahydro-1-indenyl)zirconium X_n ,
[00133]	diphenyl(4,5,6,7-tetrahydro-1-indenyl)zirconium X_n ,
[00134]	ethylenebis $(4,5,6,7$ -tetrahydro-1-indenyl) zirconium X_n ,
[00135]	dimethylsilylbis(cyclopentadienyl)zirconium X_n ,
[00136]	dimethylsilylbis(9-fluorenyl)zirconium X _n ,
[00137]	dimethylsilylbis(1-indenyl)zirconium X _n ,
[00138]	dimethylsilylbis(2-methylindenyl)zirconium X_n ,

Attorney Docket No.: 2003U02 (UNIV/0016) Express Mail No.: EV 351031291 US

[00139]	dimethylsilylbis(2-propylindenyl)zirconium X_n ,
[00140]	dimethylsilylbis(2-butylindenyl)zirconium X_n ,
[00141]	diphenylsilylbis(2-methylindenyl)zirconium X_n ,
[00142]	diphenylsilylbis(2-propylindenyl)zirconium X_n ,
[00143]	diphenylsilylbis(2-butylindenyl)zirconium X_n ,
[00144]	$dimethylgermylbis (2-methylindenyl) zirconium \ X_n \\$
[00145]	dimethylsilylbis(tetrahydroindenyl)zirconium X_n ,
[00146]	dimethylsilylbis(tetramethylcyclopentadienyl)zirconium X_n ,
[00147]	dimethylsilyl(cyclopentadienyl)(9-fluorenyl)zirconium X _n ,
[00148]	diphenylsilyl(cyclopentadienyl)(9-fluorenyl)zirconium X _n ,
[00149]	$diphenylsilylbis(indenyl)zirconium X_n,$
[00150] X _n ,	cyclotrimethylenesilyl(tetramethylcyclopentadienyl)(cyclopentadienyl)zirconium
[00151] zirconium	cyclotetramethylenesilyl(tetramethylcyclopentadienyl)(cyclopentadienyl) X_n ,
[00152] X _n ,	cyclotrimethylenesilyl (tetramethylcyclopentadienyl) (2-methylindenyl) zirconium
[00153] methylcyc	cyclotrimethylenesilyl(tetramethylcyclopentadienyl)(3- lopentadienyl)zirconium X_n ,
[00154]	$cyclotrimethylenesilylbis (2-methylindenyl) zirconium \ X_n, \\$
[00155] trimethylc	cyclotrimethylenesilyl(tetramethylcyclopentadienyl)(2,3,5-yclopentadienyl)zirconium X_n ,

Attorney Docket No.: 2003U02 (UNIV/0016) Express Mail No.: EV 351031291 US

[00156]	$cyclotrimethylenesilylbis (tetramethylcyclopentadienyl) zirconium \ X_n, \\$
[00157]	$dimethyl silyl (tetramethyl cyclopenta dieneyl) (N-tert-butylamido) titanium \ X_n,$
[00158]	bis(cyclopentadienyl)chromium X _n ,
[00159]	bis(cyclopentadienyl)zirconium X _n ,
[00160]	$bis(n-butylcyclopentadienyl)zirconium X_n,$
[00161]	bis(n-dodecyclcyclopentadienyl)zirconium X _n ,
[00162]	bis(ethylcyclopentadienyl)zirconium X _n ,
[00163]	bis(iso-butylcyclopentadienyl)zirconium X _n ,
[001,64]	bis(iso-propylcyclopentadienyl)zirconium X _n ,
[00165]	bis(methylcyclopentadienyl)zirconium X_n ,
[00166]	bis(n-oxtylcyclopentadienyl)zirconium X _n ,
[00167]	bis(n-pentylcyclopentadienyl)zirconium X _n ,
[00168]	bis(n-propylcyclopentadienyl)zirconium X _n ,
[00169]	bis(trimethylsilylcyclopentadienyl)zirconium X_n ,
[00170]	bis(1,3-bis(trimethylsilyl)cyclopentadienyl)zirconium X _n ,
[00171]	bis(1-ethyl-2-methylcyclopentadienyl)zirconium X _n ,
[00172]	bis(1-ethyl-3-methylcyclopentadienyl)zirconium X_n ,
[00173]	bis(pentamethylcyclopentadienyl)zirconium X _n ,
[00174]	bis(pentamethylcyclopentadienyl)zirconium X _n ,
[00175]	bis(1-propyl-3-methylcyclopentadienyl)zirconium X_n ,

PATENT Attorney Docket No.: 2003U02 (UNIV/0016) Express Mail No.: EV 351031291 US

[00176]	bis(1-n-butyl-3-methylcyclopentadienyl)zirconium X_n ,
[00177]	$bis (1-is obutyl-3-methyl cyclopenta dienyl) zirconium \ X_n,$
[00178]	$bis(1-propyl-3-butylcyclopentadienyl)zirconium X_n,$
[00179]	bis(1,3-n-butylcyclopentadienyl)zirconium X_n ,
[00180]	bis(4,7-dimethylindenyl)zirconium X_n ,
[00181]	bis(indenyl)zirconium X_n ,
[00182]	bis(2-methylindenyl)zirconium X _n ,
[00183]	cyclopentadienylindenylzirconium X _n ,
[00184]	bis(n-propylcyclopentadienyl)hafnium X _n ,
[00185]	$bis(n-butylcyclopentadienyl)hafnium X_n,$
[00186]	bis(n-pentylcyclopentadienyl)hafnium X _n ,
[00187]	(n-propyl cyclopentadienyl)(n-butyl cyclopentadienyl)hafnium X_n ,
[00188]	$bis [(2-trimethyl silylethyl) cyclopentadienyl] hafnium \ X_n,$
[00189]	bis(trimethylsilyl cyclopentadienyl)hafnium X_n ,
[00190]	bis(2-n-propylindenyl)hafnium X _n ,
[00191]	bis(2-n-butylindenyl)hafnium X_n ,
[00192]	dimethylsilylbis(n-propylcyclopentadienyl)hafnium X_n ,
[00193]	$dimethyl silylbis (n-butyl cyclopenta dienyl) hafnium \ X_n,$
[00194]	bis(9-n-propylfluorenyl)hafnium X _n ,
[00195]	bis(9-n-butylfluorenyl)hafnium X _n ,

Express Mail No.: EV 351031291 US

(9-n-propylfluorenyl)(2-n-propylindenyl)hafnium X_n , [00196] bis(1-n-propyl-2-methylcyclopentadienyl)hafnium X_n, [00197] [00198] (n-propylcyclopentadienyl)(1-n-propyl-3-n-butylcyclopentadienyl)hafnium X_n, dimethylsilyl(tetramethylcyclopentadienyl)(cyclopropylamido)titanium X_n, [00199] dimethylsilyl(tetramethyleyclopentadienyl)(cyclobutylamido)titanium X_n , [00200] dimethylsilyl(tetramethyleyclopentadienyl)(cyclopentylamido)titanium X_n , [00201] [00202] dimethylsilyl(tetramethylcyclopentadienyl)(cyclohexylamido)titanium X_n , dimethylsilyl(tetramethylcyclopentadienyl)(cycloheptylamido)titanium X_n, [00203] dimethylsilyl(tetramethylcyclopentadienyl)(cyclooctylamido)titanium X_n, [00204] [00205] dimethylsilyl(tetramethylcyclopentadienyl)(cyclononylamido)titanium X_n, dimethylsilyl(tetramethylcyclopentadienyl)(cyclodecylamido)titanium X_n, [00206] dimethylsilyl(tetramethylcyclopentadienyl)(cycloundecylamido)titanium X_n, [00207] dimethylsilyl(tetramethylcyclopentadienyl)(cyclododecylamido)titanium X_n, [00208] dimethylsilyl(tetramethylcyclopentadienyl)(sec-butylamido)titanium X_n, [00209] dimethylsilyl(tetramethylcyclopentadienyl)(n-octylamido)titanium X_n, [00210] [00211] dimethylsilyl(tetramethylcyclopentadienyl)(n-decylamido)titanium X_n, dimethylsilyl(tetramethylcyclopentadienyl)(n-octadecylamido)titanium X_n, [00212] methylphenylsilyl(tetramethylcyclopentadienyl)(cyclopropylamido)titanium X_n, [00213] methylphenylsilyl(tetramethylcyclopentadienyl)(cyclobutylamido)titanium X_n, [00214] methylphenylsilyl(tetramethylcyclopentadienyl)(cyclopentylamido)titanium X_n, [00215]

[00216]

[00217]

[00218]

[00219]

[00220]

[00221]

[00222]

[00223]

[00224]

[00225]

[00226]

[00227]

[00228]

[00229]

[00230]

[00231]

[00232]

[00233]

[00234]

[00235]

methylphenylsilyl(tetramethylcyclopentadienyl)(cyclohexylamido)titanium X_n , methylphenylsilyl(tetramethylcyclopentadienyl)(cycloheptylamido)titanium X_n, methylphenylsilyl(tetramethylcyclopentadienyl)(cyclooctylamido)titanium X_n, methylphenylsilyl(tetramethylcyclopentadienyl)(cyclononylamido)titanium X_n, methylphenylsilyl(tetramethylcyclopentadienyl)(cyclodecylamido)titanium, X_n, methylphenylsilyl(tetramethylcyclopentadienyl)(cycloundecylamido)titanium X_n, methylphenylsilyl(tetramethylcyclopentadienyl)(cyclododecylamido)titanium X_n, methylphenylsilyl(tetramethylcyclopentadienyl)(sec-butylamido)titanium X_n, methylphenylsilyl(tetramethylcyclopentadienyl)(n-octylamido)titanium X_n, methylphenylsilyl(tetramethylcyclopentadienyl)(n-decylamido)titanium X_n , methylphenylsilyl(tetramethylcyclopentadienyl)(n-octadecylamido)titanium X_n, diphenylsilyl(tetramethylcyclopentadienyl)(cyclopropylamido)titanium X_n , diphenylsilyl(tetramethylcyclopentadienyl)(cyclobutylamido)titanium X_n, diphenylsilyl(tetramethylcyclopentadienyl)(cyclopentylamido)titanium X_n , diphenylsilyl(tetramethylcyclopentadienyl)(cyclohexylamido)titanium X_n, diphenylsilyl(tetramethylcyclopentadienyl)(cycloheptylamido)titanium X_n , diphenylsilyl(tetramethylcyclopentadienyl)(cyclooctylamido)titanium X_n, diphenylsilyl(tetramethylcyclopentadienyl)(cyclononylamido)titanium X_n, diphenylsilyl(tetramethylcyclopentadienyl)(cyclodecylamido)titanium X_n, diphenylsilyl(tetramethylcyclopentadienyl)(cycloundecylamido)titanium X_n,

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

[00236]	$diphenyl silyl (tetramethyl cyclopenta dienyl) (cyclododecylamido) titanium \ X_n,$
[00237]	$diphenyl silyl (tetramethyl cyclopenta dienyl) (sec-butylamido) titanium \ X_n,$
[00238]	$diphenyl silyl (tetramethyley clopenta dienyl) (n-octylamido) titanium \ X_n,$
[00239]	$diphenyl silyl (tetramethyley clopenta dienyl) (n-decylamido) titanium \ X_n,$
[00240]	$diphenyl silyl (tetramethyl cyclopenta dienyl) (n-octa decylamido) titanium \ X_n,$
[00241]	and derivatives thereof.

[00242] By "derivatives thereof", it is meant any substitution or ring formation as described above in one embodiment; and in particular, replacement of the metal "M" (Cr, Zr, Ti or Hf) with an atom selected from the group consisting of Cr, Zr, Hf and Ti; and replacement of the "X" group with any of C_1 to C_5 alkyls, C_6 aryls, C_6 to C_{10} alkylaryls, fluorine or chlorine; n is 1, 2 or 3.

[00243] It is contemplated that the metallocene catalysts components described above include their structural or optical or enantiomeric isomers (racemic mixture), and may be a pure enantiomer in one embodiment.

[00244] As used herein, a single, bridged, asymmetrically substituted metallocene catalyst component having a racemic and/or meso isomer does not, itself, constitute at least two different bridged, metallocene catalyst components.

[00245] The "metallocene catalyst component" may comprise any combination of any "embodiment" described herein.

Group 15-Containing Catalyst Compositions

"Group 15-containing catalyst components", as referred to herein, include Group 3 to Group 12 metal complexes, wherein the metal is 2 to 4 coordinate, the coordinating moiety or moieties including at least two Group 15 atoms, and up to four Group 15 atoms. In one embodiment, the Group 15-containing catalyst component is a complex of a Group 4 metal and from one to four ligands such that the Group 4 metal is at least 2 coordinate, the

Express Mail No.: EV 351031291 US

coordinating moiety or moieties including at least two nitrogens. Representative Group 15-containing compounds are disclosed in, for example, WO 98/46651, WO 99/01460; EP A1 0 893,454; EP A1 0 894 005; US 5,318,935; US 5,889,128 US 6,333,389 B2 and US 6,271,325 B1.

[00247] In one embodiment, the Group 15-containing catalyst components may include Group 4 imino-phenol complexes, Group 4 bis(amide) complexes, and Group 4 pyridylamide complexes that are active towards olefin polymerization to any extent.

[00248] The Group 15-containing catalyst component may be more particularly described by the following formula (XII):

$$\alpha_a\beta_b\gamma_g MX_n \qquad \quad \cdot (XII)$$

wherein β and γ are groups that each comprise at least one Group 14 to Group 16 atom; and β (when present) and γ are groups bonded to M through between 2 and 6 Group 14 to Group 16 atoms, at least two atoms being Group 15-containing atoms.

More particularly, β and γ are groups selected from Group 14 and Group 15-containing: alkyls, aryls, alkylaryls, and heterocyclic hydrocarbons, and chemically bonded combinations thereof in one embodiment; and selected from Group 14 and Group 15-containing: C_1 to C_{10} alkyls, C_6 to C_{12} aryls, C_6 to C_{18} alkylaryls, and C_4 to C_{12} heterocyclic hydrocarbons, and chemically bonded combinations thereof in a more particular embodiment; and selected from C_1 to C_{10} alkylamines, C_1 to C_{10} alkoxys, C_6 to C_{20} alkylarylamines, C_6 to C_{18} alkylaryloxys, and C_4 to C_{12} nitrogen containing heterocyclic hydrocarbons, and C_4 to C_{12} alkyl substituted nitrogen containing heterocyclic hydrocarbons and chemically bonded combinations thereof in yet a more particular embodiment; and selected from anilinyls, pyridyls, quinolyls, pyrrolyls, pyrimidyls, purinyls, imidazyls, indolyls, C_1 to C_6 alkyl substituted groups selected from anilinyls, pyridyls, quinolyls, pyrrolyls, pyrimidyls, purinyls, imidazyls, selected from anilinyls, pyridyls, quinolyls, pyrrolyls, pyrimidyls, purinyls, imidazyls, imidazyls, pyrrolyls, pyrimidyls, purinyls, imidazyls, imidazyls, pyrrolyls, pyrrolyls, pyrimidyls, purinyls, imidazyls, imidazyls, pyrrolyls, pyrrolyls, pyrimidyls, purinyls, imidazyls, imidazyls, pyrrolyls, pyrrolyls, pyrrolyls, pyrimidyls, purinyls, imidazyls,

indolyls, amine substituted anilinyls, pyridyls, quinolyls, pyrrolyls, pyrimidyls, purinyls, imidazyls, and indolyls; hydroxy substituted groups selected from anilinyls, pyridyls, quinolyls, pyrrolyls, pyrimidyls, purinyls, imidazyls, and indolyls; methyl-substituted phenylamines, and chemically bonded combinations thereof in yet a more particular embodiment;

[00251] α is a linking (or "bridging") moiety that, when present, forms a chemical bond to each of β and γ , or two γ 's, thus forming a "γαγ" or "γα β " ligand bound to M; α may also comprise a Group 14 to Group 16 atom which may be bonded to M through the Group 14 to Group 16 atom in one embodiment; and more particularly, α is a divalent bridging group selected from alkylenes, arylenes, alkenylenes, heterocyclic arylenes, alkylarylenes, heteroatom containing alkylenes and heterocyclic hydrocarbonylenes in one embodiment; and selected from C_1 to C_{10} alkylenes, C_2 to C_{10} alkenylenes, C_3 to C_{10} alkylenes, C_4 to C_{10} alkyleneamines, C_5 to C_{10} alkyleneamines, C_6 to C_{12} aryleneamines, and substituted derivatives thereof in yet a more particular embodiment;

a is an integer from 0 to 2; a is either 0 or 1 in a more particular embodiment; and a is 1 in yet a more particular embodiment; b is an integer from 0 to 2; g is an integer from 1 to 2; wherein in one embodiment, a is 1, b is 0 and g is 2; M is selected from Group 3 to Group 12 atoms in one embodiment; and selected from Group 3 to Group 10 atoms in a more particular embodiment; and selected from Group 3 to Group 6 atoms in yet a more particular embodiment; and selected from Ni, Cr, Ti, Zr and Hf in yet a more particular embodiment; and selected from Zr and Hf in yet a more particular embodiment; and n is an integer from 0 to 4 in one embodiment; and an integer from 1 to 3 in a more particular embodiment; and an integer from 2 to 3 in yet a more particular embodiment.

[00253] As used herein, "chemically bonded combinations thereof" means that adjacent groups, (β and γ groups) may form a chemical bond between them; in one embodiment, the β and γ groups are chemically bonded through one or more α groups there between.

[00254] As used herein, the terms "alkyleneamines", "aryleneamines", describe alkylamines and arylamines (respectively) that are deficient by two hydrogens, thus forming

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

chemical bonds with two adjacent γ groups, or adjacent β and γ groups. Thus, an example of an alkyleneamine is $-CH_2CH_2N(CH_3)CH_2CH_2$, and an example of a heterocyclic hydrocarbylene or aryleneamine is $-C_5H_3N$ — (divalent pyridine). An "alkylene-arylamine" is a group such as, for example, $-CH_2CH_2(C_5H_3N)CH_2CH_2$ —.

[00255] Described another way, the Group 15-containing catalyst component is represented by the structures (XIII) and (XIV):

[00256]

$$R^{3} \xrightarrow{R^{1}} \xrightarrow{E} R^{7}$$

$$R^{2} \xrightarrow{X} R^{6}$$

$$R^{4}$$

(XIII)

[00257]

*R
$$E$$
 R^5
 E
 MX_n
 R^4
 R^6

(XIV)

[00258] wherein E and Z are Group 15 elements independently selected from nitrogen and phosphorus in one embodiment; and nitrogen in a more particular embodiment;

[00259] L is selected from Group 15 atoms, Group 16 atoms, Group 15-containing hydrocarbylenes and a Group 16 containing hydrocarbylenes in one embodiment; wherein R³ is absent when L is a Group 16 atom; in yet a more particular embodiment, when R³ is

Express Mail No.: EV 351031291 US

absent, L is selected from heterocyclic hydrocarbylenes; and in yet a more particular embodiment, L is selected from nitrogen, phosphorous, anilinyls, pyridyls, quinolyls, pyrrolyls, pyrimidyls, purinyls, imidazyls, indolyls; C₁ to C₆ alkyl substituted groups selected from anilinyls, pyridyls, quinolyls, pyrrolyls, pyrimidyls, purinyls, imidazyls, and indolyls; C₁ to C₆ alkylamine substituted groups selected from anilinyls, pyridyls, quinolyls, pyrimidyls, purinyls, imidazyls, indolyls; amine substituted anilinyls, pyridyls, quinolyls, pyrrolyls, pyrimidyls, pyrimidyls, purinyls, imidazyls, and indolyls; hydroxy substituted groups selected from anilinyls, pyridyls, quinolyls, pyrrolyls, pyrimidyls, purinyls, imidazyls, and indolyls; methyl-substituted phenylamines, substituted derivatives thereof, and chemically bonded combinations thereof;

[00260] L' is selected from Group 15 atoms, Group 16 atoms, and Group 14 atoms in one embodiment; and selected from Group 15 and Group 16 atoms in a more particular embodiment; and is selected from groups as defined by L above in yet a more particular embodiment, wherein "EZL" and "EZL" may be referred to as a "ligand", the EZL and EZL' ligands comprising the R* and R¹-R² groups;

[00261] wherein L and L' may or may not form a bond with M;

[00262] y is an integer ranging from 0 to 2 (when y is 0, group L', *R and R³ are absent);

[00263] M is selected from Group 3 to Group 5 atoms, Group 4 atoms in a more particular embodiment, and selected from Zr and Hf in yet a more particular embodiment;

[00264] n is an integer ranging from 1 to 4 in one embodiment; n is an integer ranging from 2 to 3 in a more particular embodiment;

[00265] each X is as defined above;

[00266] R^1 and R^2 are independently: divalent bridging groups selected from alkylenes, arylenes, heteroatom containing alkylenes, heteroatom containing arylenes, substituted alkylenes, substituted arylenes and substituted heteroatom containing alkylenes, wherein the heteroatom is selected from silicon, oxygen, nitrogen, germanium, phosphorous, boron and sulfur in one embodiment; selected from C_1 to C_{20} alkylenes, C_6 to C_{12} arylenes, heteroatom-

Express Mail No.: EV 351031291 US

containing C_1 to C_{20} alkylenes and heteroatom-containing C_6 to C_{12} arylenes in a more particular embodiment; and in yet a more particular embodiment selected from $-CH_2-$, $-C(CH_3)_2-$, $-C(C_6H_5)_2-$, $-CH_2CH_2-$, $-CH_2CH_2-$, $-Si(CH_3)_2-$, $-Si(C_6H_5)_2-$, $-C_6H_{10}-$, $-C_6H_4-$, and substituted derivatives thereof, the substitutions including C_1 to C_4 alkyls, phenyl, and halogen radicals;

[00267] R³ is absent in one embodiment; a group selected from hydrocarbyl groups, hydrogen radical, halogen radicals, and heteroatom-containing groups in a more particular embodiment; and selected from linear alkyls, cyclic alkyls, and branched alkyls having 1 to 20 carbon atoms in yet a more particular embodiment;

[00268] *R is absent in one embodiment; a group selected from hydrogen radical, Group 14 atom containing groups, halogen radicals, and a heteroatom-containing groups in yet a more particular embodiment;

[00269] R^4 and R^5 are independently: groups selected from alkyls, aryls, substituted aryls, cyclic alkyls, substituted cyclic arylalkyls and multiple ring systems in one embodiment, each group having up to 20 carbon atoms, and between 3 and 10 carbon atoms in a more particular embodiment; selected from C_1 to C_{20} alkyls, C_1 to C_{20} aryls, C_1 to C_{20} arylalkyls, and heteroatom-containing groups (for example PR_3 , where R is an alkyl group) in yet a more particular embodiment; and

[00270] R⁶ and R⁷ are independently: absent in one embodiment; groups selected from hydrogen radicals, halogen radicals, heteroatom-containing groups and hydrocarbyls in a more particular embodiment; selected from linear, cyclic and branched alkyls having from 1 to 20 carbon atoms in yet a more particular embodiment;

[00271] wherein R^1 and R^2 may be associated with one another, and/or R^4 and R^5 may be associated with one another as through a chemical bond.

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

[00272] Described yet more particularly, the Group 15-containing catalyst component can be described as the embodiments shown in structures (IV), (V) and (VI) (where "N" is nitrogen):

[00273]

$$\begin{bmatrix} R^{2'} \\ R^{3'} \\ R^{4'} \end{bmatrix}$$

$$\begin{bmatrix} R^{6'} \\ R^{6'} \\ \end{bmatrix}$$
w

[00274]

$$\begin{bmatrix} R^{3'} & R^{2'} \\ R^{4'} & & \\ &$$

(XVI)

(XV)

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

[00275]

$$\begin{bmatrix} R^* & R^{1'} & R^{2'} \\ R^* & N & N \\ R^{1'} & N & M(X)_n \\ R^{3'} & N & M(X)_n \end{bmatrix}$$

(XVII)

wherein structure (XV) represents pyridyl-amide structures, structure (XVI) represents imino-phenol structures, and structure (XVII) represents bis(amide) structures; wherein w is an integer from 1 to 3, and 1 or 2 in a more particular embodiment, and 1 in yet a more particular embodiment; M is a Group 3 to Group 13 element, a Group 3 to Group 6 element in a more particular embodiment, and a Group 4 element in yet a more particular embodiment; each X is independently selected from hydrogen radicals, halogen ions (desirably, anions of fluorine, chlorine, and bromine); C₁ to C₆ alkyls; C₁ to C₆ fluoroalkyls, C₆ to C₁₂ aryls; C₆ to C₁₂ fluoroalkyls, C₁ to C₆ alkoxys, C₆ to C₁₂ aryloxys, and C₇ to C₁₈ alkylaryloxys; n is an integer ranging from 0 to 4, and from 1 to 3 in a more particular embodiment, and from 2 to 3 in yet a more particular embodiment, and 2 in yet a more particular embodiment;

[00277] and further, wherein in structures (XV), (XVI) and (XVII), R^1 , is selected from hydrocarbylenes and heteroatom-containing hydrocarbylenes in one embodiment, and selected from $-SiR_2$ –, alkylenes, arylenes, alkenylenes and substituted alkylenes, substituted alkenylenes and substituted arylenes in another embodiment; and selected from $-SiR_2$ –, C_1 to C_6 alkylenes, C_6 to C_{12} arylenes, C_1 to C_6 substituted alkylenes and C_6 to C_{12} substituted arylenes in another embodiment, wherein R is selected from C_1 to C_6 alkyles and C_6 to C_{12} aryles; and

[00278] R^2 , R^3 , R^4 , R^5 , R^6 , and R^* are independently selected from hydride, C_1 to C_{10} alkyls, C_6 to C_{12} aryls, C_6 to C_{18} alkylaryls, C_4 to C_{12} heterocyclic hydrocarbyls, substituted C_1 to C_{10} alkyls, substituted C_6 to C_{12} aryls, substituted C_6 to C_{18} alkylaryls, and substituted

Express Mail No.: EV 351031291 US

 C_4 to C_{12} heterocyclic hydrocarbyls and chemically bonded combinations thereof in one embodiment; wherein R^* is absent in a particular embodiment; and in another embodiment, R^* -N represents a nitrogen containing group or ring such as a pyridyl group or a substituted pyridyl group that is bridged by the R^1 , groups. In yet another embodiment, R^* -N is absent, and the R^1 , groups form a chemical bond to one another.

In one embodiment of structures (XV), (XVI) and (XVII), R^1 , is selected from methylene, ethylene, 1-propylene, 2-propylene, $=Si(CH_3)_2$, $=Si(phenyl)_2$, -CH=, $-C(CH_3)=$, $-C(phenyl)_2-$, -C(phenyl)= (wherein "=" represents two chemical bonds), and the like.

In a particular embodiment of structure (XVI), R², and R⁴, are selected from 2-1002801 methylphenyl, 2-n-propylphenyl, 2-iso-propylphenyl, 2-iso-butylphenyl, 2-tert-butylphenyl, 2-fluorophenyl, 2-chlorophenyl, 2-bromophenyl, 2-methyl-4-chlorophenyl, 2-n-propyl-4chlorophenyl, 2-iso-propyl-4-chlorophenyl, 2-iso-butyl-4-chlorophenyl, 2-tert-butyl-4chlorophenyl, 2-methyl-4-fluorophenyl, 2-n-propyl-4-fluorophenyl, 2-iso-propyl-4fluorophenyl, 2-iso-butyl-4-fluorophenyl, 2-tert-butyl-4-fluorophenyl, 2-methyl-4bromophenyl, 2-n-propyl-4-bromophenyl, 2-iso-propyl-4-bromophenyl, 2-iso-butyl-4bromophenyl, 2-tert-butyl-4-bromophenyl, and the like.

In yet another particular embodiment of structures (XV) and (XVII), R², and R³, [00281] are selected from 2-methylphenyl, 2-n-propylphenyl, 2-iso-propylphenyl, 2-iso-butylphenyl, 2-tert-butylphenyl, 2-fluorophenyl, 2-chlorophenyl, 2-bromophenyl, 4-methylphenyl, 4-npropylphenyl, 4-iso-propylphenyl, 4-iso-butylphenyl, 4-tert-butylphenyl, 4-fluorophenyl, 4chlorophenyl, 4-bromophenyl, 6-methylphenyl, 6-n-propylphenyl, 6-iso-propylphenyl, 6-i butylphenyl, 6-tert-butylphenyl, 6-fluorophenyl, 6-chlorophenyl, 6-bromophenyl, dimethylphenyl, 2,6-di-n-propylphenyl, 2,6-di-iso-propylphenyl, 2,6-di-isobutylphenyl, 2,6di-tert-butylphenyl, 2,6-difluorophenyl, 2,6-dichlorophenyl, 2,6-dibromophenyl, 2,4,6trimethylphenyl, 2,4,6-tri-n-propylphenyl, 2,4,6-tri-iso-propylphenyl, butylphenyl, 2,4,6-tri-tert-butylphenyl, 2,4,6-trifluorophenyl, 2,4,6-trichlorophenyl, 2,4,6tribromophenyl, 2,3,4,5,6-pentafluorophenyl, 2,3,4,5,6-pentachlorophenyl, 2,3,4,5,6pentabromophenyl, and the like.

[00282] In another embodiment of structures (XV), (XVI) and (XVII), X is independently selected from fluoride, chloride, bromide, methyl, ethyl, phenyl, benzyl, phenyloxy, benzloxy, 2-phenyl-2-propoxy, 1-phenyl-2-propoxy, 1-phenyl-2-butoxy and the like.

[00283] As used herein, "chemically bonded combinations" means that adjacent groups may form a chemical bond between them, thus forming a ring system, either saturated, partially unsaturated, or aromatic.

[00284] Non-limiting examples of the Group 15-containing catalyst component are represented by the structures (XVIIIa) - (XVIIIf) (where "N" is nitrogen):

[00285]

$$R^{5}$$
 R^{5}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{6}
 R^{1}
 R^{2}
 R^{8}

(XVIIIa)

Attorney Docket No.: 2003U02 (UNIV/0016) Express Mail No.: EV 351031291 US

[00286]

$$R^2$$
 R^3
 R^1
 R^2
 R^1
 R^1
 R^2
 R^1
 R^1
 R^2
 R^3
 R^4
 R^5
 R^4
 R^3
 R^4
 R^3
 R^4
 R^4
 R^3
 R^4
 R^4

[00287]

$$R^4$$
 R^3
 R^1
 R^2
 R^2
 R^2

XVIIId

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

[00288]

$$\begin{array}{c|cccc}
R^1 & R^5 & R^4 & R^1 \\
\hline
R^2 & & & & \\
\hline
(X)_n & & & \\
\end{array}$$

XVIIIe

[00289]

$$R^{5}$$
 R^{5}
 R^{6}
 R^{6}
 R^{4}
 R^{4}
 R^{5}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}

(XVIIIf)

[00290] wherein in structures (XVIIIa) through (XVIIIf) M is selected from Group 4 atoms in one embodiment; and M is selected from Zr and Hf in a more particular embodiment; and wherein R¹ through R¹¹ in structures (XVIIIa) through (XVIIIf) are selected from hydride, fluorine radical, chlorine radical, bromine radical, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl and phenyl; and X is selected from fluorine ion, chlorine ion, bromine ion, methyl, phenyl, benzyl, phenyloxy and benzyloxy; and n is an integer ranging from 0 to 4, and from 2 to 3 in a more particular embodiment.

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

[00291] The Group 15-containing catalyst components are prepared by methods known in the art, such as those disclosed in, for example, EP 0 893 454 A1, US 5,889,128, US 6,333,389 B2 and WO 00/37511.

[00292] The "Group 15-containing catalyst component" may comprise any combination of any "embodiment" described herein.

Phenoxide Transition Metal Catalyst Compositions

[00293] Phenoxide transition metal catalyst compositions are heteroatom substituted phenoxide ligated Group 3 to 10 transition metal or lanthanide metal compounds wherein the metal is bound to the oxygen of the phenoxide group. Phenoxide transition metal catalyst compounds may be represented by Formula XIX or XX:

[00294]

$$R^2$$
 Q_{n-1}
 Q_{n-1}
 Q_{n-1}

(XIX)

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

[00295] or

$$R^2$$
 R^4
 R^4

[00296] wherein R^1 is hydrogen or a C_4 to C_{100} group, preferably a tertiary alkyl group, preferably a C_4 to C_{20} alkyl group, preferably a C_4 to C_{20} tertiary alkyl group, preferably a neutral C_4 to C_{100} group and may or may not also be bound to M;

(XX)

[00297] at least one of R^2 to R^5 is a heteroatom containing group, the rest of R^2 to R^5 are independently hydrogen or a C_1 to C_{100} group, preferably a C_4 to C_{20} alkyl group, preferred examples of which include butyl, isobutyl, t-butyl, pentyl, hexyl, heptyl, isohexyl, octyl, isooctyl, decyl, nonyl, dodecyl, and any of R^2 to R^5 also may or may not be bound to M;

[00298] Each R¹ to R⁵ group may be independently substituted or unsubstituted with other atoms, including heteroatoms or heteroatom containing group(s);

[00299] O is oxygen;

[00300] M is a Group 3 to Group 10 transition metal or lanthanide metal, preferably a Group 4 metal, preferably M is Ti, Zr or Hf;

n is the valence state of the metal M, preferably 2, 3, 4, or 5; and

[00302] Q is, and each Q may be independently be, an alkyl, halogen, benzyl, amide, carboxylate, carbamate, thiolate, hydride or alkoxide group, or a bond to an R group containing a heteroatom which may be any of R¹ to R⁵.

[00303] A heteroatom containing group may be any heteroatom or a heteroatom bound to carbon, silicon or another heteroatom. Preferred heteroatoms include boron, aluminum, silicon, nitrogen, phosphorus, arsenic, tin, lead, antimony, oxygen, selenium, and tellurium. Particularly preferred heteroatoms include nitrogen, oxygen, phosphorus, and sulfur. Even more particularly preferred heteroatoms include nitrogen and oxygen. The heteroatom itself may be directly bound to the phenoxide ring or it may be bound to another atom or atoms that are bound to the phenoxide ring. The heteroatom containing group may contain one or more of the same or different heteroatoms. Preferred heteroatom containing groups include imines, amines, oxides, phosphines, ethers, ketones, oxoazolines heterocyclics, oxazolines, thioethers, and the like. Particularly preferred heteroatom containing groups include imines. Any two adjacent R groups may form a ring structure, preferably a 5 or 6 membered ring. Likewise the R groups may form multi-ring structures. In one embodiment any two or more R groups do not form a 5 membered ring.

[00304] In a preferred embodiment the heteroatom substituted phenoxide transition metal compound is an iminophenoxide Group 4 transition metal compound, and more preferably an iminophenoxidezirconium compound.

Supported Catalyst Systems

[00305] The activator and/or the polymerization catalyst compound may be combined with one or more support materials or carriers using any one of the support methods known in the art or as described below. In one embodiment the activator is in a supported form, for example deposited on, contacted with, vaporized with, bonded to, or incorporated within, adsorbed or absorbed in, or on, a support or carrier. In another embodiment, the activator and a catalyst compound may be deposited on, contacted with, vaporized with, bonded to, or incorporated within, adsorbed or absorbed in, or on, a support or carrier.

[00306] The terms "support" or "carrier" for purposes of this patent specification are used interchangeably and are any support material, preferably a porous support material, including

inorganic or organic support materials. Non-limiting examples of inorganic support materials include inorganic oxides and inorganic chlorides. Other carriers include resinous support materials such as polystyrene, functionalized or crosslinked organic supports, such as polystyrene, divinyl benzene, polyolefins, or polymeric compounds, zeolites, talc, clays, or any other organic or inorganic support material and the like, or mixtures thereof.

In one embodiment, the heterocyclic compounds and the aluminum alkyl and/or the aluminoxanes described above are combined with one or more support materials or carriers. In another embodiment the heterocyclic compound is combined with a support material, preferably silica, treated with the alkylaluminum or the aluminoxane compound, such that the support has aluminum alkyl groups bonded thereto. The supported catalyst systems may be prepared, generally, by the reaction of the heterocyclic compound with an aluminum alkyl or aluminoxane, the addition of the catalyst precursor, followed by addition of a support material such as silica or alumina.

[00308] The support materials utilized may be any of the conventional support materials. Preferably the supported material is a porous support material, for example, talc, inorganic oxides and inorganic chlorides. Other support materials include resinous support materials such as polystyrene, functionalized or crosslinked organic supports, such as polystyrene divinyl benzene polyolefins or polymeric compounds, zeolites, clays, or any other organic or inorganic support material and the like, or mixtures thereof.

[00309] The preferred support materials are inorganic oxides that include those Group 2, 3, 4, 5, 13 or 14 metal oxides. The preferred supports include silica, fumed silica, alumina, silica-alumina and mixtures thereof. Other useful supports include magnesia, titania, zirconia, magnesium chloride, montmorillonite, phyllosilicate, zeolites, talc, clays and the like. Also, combinations of these support materials may be used, for example, silica-chromium, silica-alumina, silica-titania and the like. Additional support materials may include those porous acrylic polymers. Other support materials include nanocomposites, aerogels, spherulites, and polymeric beads. Another support is fumed silica available under the trade name CabosilTM TS-610, available from Cabot Corporation. Fumed silica is

Express Mail No.: EV 351031291 US

typically a silica with particles 7 to 30 nanometers in size that has been treated with dimethylsilyldichloride such that a majority of the surface hydroxyl groups are capped.

[00310] In another embodiment, any of the conventionally known inorganic oxides, such as silica, support materials that retain hydroxyl groups after dehydration treatment methods will be suitable in accordance with the invention. Because of availability, both of silica and silica containing metal oxide based supports, for example, silica-alumina, are preferred. Silica particles, gels and glass beads are most typical.

In these metal oxide compositions may additionally contain oxides of other metals, such as those of Al, K, Mg, Na, Si, Ti and Zr and should preferably be treated by thermal and/or chemical means to remove water and free oxygen. Typically such treatment is in a vacuum in a heated oven, in a heated fluidized bed or with dehydrating agents such as organo silanes, siloxanes, alkyl aluminum compounds, etc. The level of treatment should be such that as much retained moisture and oxygen as is possible is removed, but that a chemically significant amount of hydroxyl functionality is retained. Thus calcining at up to 800 °C or more up to a point prior to decomposition of the support material, for several hours is permissible, and if higher loading of supported anionic activator is desired, lower calcining temperatures for lesser times will be suitable. Where the metal oxide is silica, loadings to achieve from less than 0.1 mmol to 3.0 mmol activator/g SiO₂ are typically suitable and can be achieved, for example, by varying the temperature of calcining from 200°C to 1,000 °C, such as from 300°C to 900°C, 400°C to 875°C, 500°C to 850°C, 600°C to 825°C, 700°C to 800°C, and any combination of any limit with any lower limit.

[00312] The tailoring of hydroxyl groups available as attachment sites in this invention can also be accomplished by the pre-treatment with a less than stoichimetric amount of a chemical dehydrating agent. If calcining temperatures below 400°C are employed, difunctional coupling agents (e.g., (CH₃)₃SiCl₂) may be employed to cap hydrogen bonded pairs of silanol groups which are present under the less severe calcining conditions. Similarly, use of the Lewis acid in excess of the stoichimetric amount needed for reaction with the transition metal compounds will serve to neutralize excess silanol groups without significant detrimental effect for catalyst preparation or subsequent polymerization.

In another embodiment, the support is a polymeric support, including hydroxyl-[00313] functional-group-containing polymeric substrates, but functional groups may be any of the primary alkyl amines, secondary alkyl amines, and others, where the groups are structurally incorporated in a polymeric chain and capable of a acid-base reaction with the Lewis acid such that a ligand filling one coordination site of the aluminum is protonated and replaced by the polymer incorporated functionality. See, for example, the functional group containing polymers of U.S. Patent No. 5,288,677.

It is preferred that the support material, most preferably an inorganic oxide, has a [00314] surface area in the range of from about 10 to about 700 m²/g, pore volume in the range of from about 0.1 to about 4.0 cc/g and average particle size in the range of from about 5 to about 500 µm. More preferably, the surface area of the support material is in the range of from about 50 to about 500 m²/g, pore volume of from about 0.5 to about 3.5 cc/g and average particle size of from about 10 to about 200 µm. The average pore size of the carrier is typically in the range of from 10 to 1000Å, preferably 50 to about 500Å, and most preferably 75 to about 350Å.

The support materials may be treated chemically, for example with a fluoride [00315] compound as described in WO 00/12565. Other supported activators are described in for example WO 00/13792 that refers to supported boron containing solid acid complex.

[00316] In one embodiment, the support material having an alkylaluminum and/or the aluminoxane compound bonded thereto may be prepared by combining the aluminum containing compound with the support material in a suitable solvent. In one embodiment, the combining is carried out at any suitable pressure and temperature under an inert atmosphere. Preferably the combining is at atmospheric pressure, ambient temperature under nitrogen. More preferably the mixture is heated to less than about 200° C, more preferably less than 150°C. The reactants are contacted for a suitable about of time for example, for at least about 1 minute, preferably about 1 minute to about 10 hours, more preferably for about 1 minute to about 3 hours.

In another embodiment, an antistatic agent or surface modifier that is used in the [00317] preparation of the supported catalyst system as described in PCT publication WO 96/11960

may be used with catalyst systems including the activator compounds described herein. The catalyst systems may also be prepared in the presence of an olefin, for example 1-hexene.

[00318] In another embodiment, the activator and/or catalyst system may be combined with a carboxylic acid salt of a metal ester, for example aluminum carboxylates such as aluminum mono, di- and tri- stearates, aluminum octoates, oleates and cyclohexylbutyrates, as described in U.S. Patents 6,300,436 and 6,306,984.

In another embodiment there is a method for producing a supported metallocene-type catalyst system, which maybe used to support the activator described herein. In this method, the catalyst compound is slurried in a liquid to form a catalyst solution or emulsion. A separate solution is formed containing the activator. The liquid may be any compatible solvent or other liquid capable of forming a solution or the like with the catalyst compounds and/or activator. In the most preferred embodiment the liquid is a cyclic aliphatic or aromatic hydrocarbon, most preferably toluene. The catalyst compound and activator solutions are mixed together heated and added to a heated porous support or a heated porous support is added to the solutions such that the total volume of the metallocene-type catalyst compound solution and the activator solution or the metallocene-type catalyst compound and activator solution is less than four times the pore volume of the porous support, more preferably less than three times, even more preferably less than two times; preferred ranges being from 1.1 times to 3.5 times range and most preferably in the 1.2 to 3 times range.

In one embodiment, a method of forming a supported catalyst system, the amount of liquid, in which the activator and/or a catalyst compound is present, is in an amount that is less than four times the pore volume of the support material, more preferably less than three times, even more preferably less than two times; preferred ranges being from 1.1 times to 3.5 times range and most preferably in the 1.2 to 3 times range. In an alternative embodiment, the amount of liquid in which the activator is present is from one to less than one times the pore volume of the support material utilized in forming the supported activator.

[00321] In one embodiment, the amount of heterocyclic nitrogen-containing compound ranges from 0.05 equivalents to 10.0 equivalents per equivalent of alkylaluminum. In another embodiment, the amount of heterocyclic nitrogen-containing compound ranges from

Express Mail No.: EV 351031291 US

0.2 equivalents to 5.0 equivalents per equivalent of alkylaluminum. In yet another

embodiment, the amount of heterocyclic nitrogen-containing compund ranges from 1.0

equivalents to 4.0 equivalents per equivalent of alkylaluminum.

Polymerization Process

The activators and catalysts described above, whether supported or not, are [00322]

suitable for use in any prepolymerization and/or polymerization process over a wide range of

temperatures and pressures. The temperatures may be in the range of from -60°C to about

280°C, preferably from 50°C to about 200°C. In one embodiment, the polymerization

temperature is above 0°C, above 50°C, above 80°C, above 100°C, above 150°C, or above

200°C. In one embodiment, the pressures employed may be in the range from 1 atmosphere

to about 500 atmospheres or higher.

Polymerization processes include solution, gas phase, slurry phase, and a high [00323]

pressure process, or a combination thereof. Particularly preferred is a gas phase or slurry

phase polymerization of one or more olefin(s) at least one of which is ethylene or propylene.

[00324] In one embodiment, the process is a solution, high pressure, slurry or gas phase

polymerization process of one or more olefin monomers having from 2 to 30 carbon atoms,

preferably 2 to 12 carbon atoms, and more preferably 2 to 8 carbon atoms. The invention is

particularly well suited to the polymerization of two or more olefin monomers of ethylene,

propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene and 1-decene.

Other monomers useful include ethylenically unsaturated monomers, diolefins [00325]

having 4 to 18 carbon atoms, conjugated or nonconjugated dienes, polyenes, vinyl monomers

and cyclic olefins. Non-limiting monomers useful in the invention may include norbornene,

norbornadiene, isobutylene, isoprene, vinylbenzocyclobutane, styrenes, alkyl substituted

styrene, ethylidene norbornene, dicyclopentadiene and cyclopentene.

In another embodiment, a copolymer of ethylene is produced, where with [00326]

ethylene, a comonomer having at least one alpha-olefin having from 4 to 15 carbon atoms,

preferably from 4 to 12 carbon atoms, and most preferably from 4 to 8 carbon atoms, is

polymerized in a gas phase process.

51

[00327] In another embodiment, ethylene or propylene is polymerized with at least two different comonomers, optionally one of which may be a diene, to form a terpolymer.

[00328] In one embodiment, the invention is directed to a polymerization process, particularly a gas phase or slurry phase process, for polymerizing propylene alone or with one or more other monomers including ethylene, and/or other olefins having from 4 to 12 carbon atoms.

Typically in a gas phase polymerization process, a continuous cycle is employed where in one part of the cycle of a reactor system, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization. This heat is removed from the recycle composition in another part of the cycle by a cooling system external to the reactor. Generally, in a gas fluidized bed process for producing polymers, a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. The gaseous stream is withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and fresh monomer is added to replace the polymerized monomer.

[00330] The reactor pressure in a gas phase process may vary from about 100 psig (690 kPa) to about 500 psig (3448 kPa), preferably in the range of from about 200 psig (1379 kPa) to about 400 psig (2759 kPa), more preferably in the range of from about 250 psig (1724 kPa) to about 350 psig (2414 kPa).

[00331] The reactor temperature in a gas phase process may vary from about 30°C to about 120°C, preferably from about 60°C to about 115°C, more preferably in the range of from about 70°C to 110°C, and most preferably in the range of from about 70°C to about 95°C. In another embodiment, the reactor temperature in a gas phase process is above 60°C.

[00332] Other gas phase processes include series or multistage polymerization processes. Gas phase processes may also include those described in U.S. Patent Nos. 5,627,242, 5,665,818 and 5,677,375, and European publications EP-A- 0 794 200 EP-B1-0 649 992, EP-A- 0 802 202 and EP-B- 634 421.

Express Mail No.: EV 351031291 US

In another embodiment, the process may produce greater than 500 lbs of polymer per hour (227 Kg/hr) to about 200,000 lbs/hr (90,900 Kg/hr) or higher of polymer, preferably greater than 1000 lbs/hr (455 Kg/hr), more preferably greater than 10,000 lbs/hr (4540 Kg/hr), even more preferably greater than 25,000 lbs/hr (11,300 Kg/hr), still more preferably greater than 35,000 lbs/hr (15,900 Kg/hr), still even more preferably greater than 50,000 lbs/hr (22,700 Kg/hr) and most preferably greater than 65,000 lbs/hr (29,000 Kg/hr) to greater than 100,000 lbs/hr (45,500 Kg/hr).

A slurry polymerization process generally uses pressures in the range of from about 1 to about 50 atmospheres and even greater and temperatures in the range of 0°C to about 120°C. In another embodiment, the slurry process temperature is above 100°C. In a slurry polymerization, a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which ethylene and comonomers and often hydrogen along with catalyst are added. The suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally after a distillation, to the reactor. The liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane. The medium employed should be liquid under the conditions of polymerization and relatively inert. When a propane medium is used the process must be operated above the reaction diluent critical temperature and pressure. Preferably, a hexane or an isobutane medium is employed.

In another embodiment, the polymerization technique is referred to as a particle form polymerization, or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution. Such technique is well known in the art, and described in for instance U.S. Patent No. 3,248,179 which is fully incorporated herein by reference. Other slurry processes include those employing a loop reactor and those utilizing a plurality of stirred reactors in series, parallel, or combinations thereof. Non-limiting examples of slurry processes include continuous loop or stirred tank processes. Also, other examples of slurry processes are described in U.S. Patent No. 4,613,484, which is herein fully incorporated by reference.

[00336] In another embodiment, this process may produce greater than 2000 lbs of polymer per hour (907 Kg/hr), more preferably greater than 5000 lbs/hr (2268 Kg/hr), and most preferably greater than 10,000 lbs/hr (4540 Kg/hr). In another embodiment the slurry reactor may produce greater than 15,000 lbs of polymer per hour (6804 Kg/hr), preferably greater than 25,000 lbs/hr (11,340 Kg/hr) to about 100,000 lbs/hr (45,500 Kg/hr).

[00337] Examples of solution processes are described in U.S. Patent Nos. 4,271,060, 5,001,205, 5,236,998 and 5,589,555 and PCT WO 99/32525.

[00338] In one embodiment, the slurry or gas phase process is operated in the presence of the catalyst system described herein and in the absence of or essentially free of any scavengers, such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like. This process is described in PCT publication WO 96/08520 and U.S. Patent No. 5,712,352 and 5,763,543.

In another embodiment, the method provides for injecting the catalyst system described herein into a reactor, particularly a gas phase reactor. In one embodiment the catalyst system is used in the unsupported form, preferably in a liquid form such as described in U.S. Patent Nos. 5,317,036 and 5,693,727 and European publication EP-A-0 593 083. The polymerization catalyst in liquid form can be fed with an activator, and/or a support, and/or a supported activator together or separately to a reactor. The injection methods described in PCT publication WO 97/46599 may be utilized.

[00340] Where an unsupported catalyst system is used the mole ratio of the metal of the activator component to the metal of the catalyst compound is in the range of between 0.3:1 to 10,000:1, preferably 100:1 to 5000:1, and most preferably 500:1 to 2000:1.

Polymer Products

[00341] The polymers produced can be used in a wide variety of products and end-use applications. The polymers produced include linear low density polyethylene, elastomers, plastomers, high density polyethylenes, medium density polyethylenes, low density polyethylenes, polypropylene and polypropylene copolymers.

The polymers, typically ethylene based polymers, have a density in the range of from 0.86g/cc to 0.97 g/cc, preferably in the range of from 0.88 g/cc to 0.965 g/cc, more preferably in the range of from 0.900 g/cc to 0.96 g/cc, even more preferably in the range of from 0.905 g/cc to 0.95 g/cc, yet even more preferably in the range from 0.910 g/cc to 0.940 g/cc, and most preferably greater than 0.915 g/cc, preferably greater than 0.920 g/cc, and most preferably greater than 0.925 g/cc. Density is measured in accordance with ASTM-D-1238.

The polymers produced typically have a molecular weight distribution, a weight average molecular weight to number average molecular weight (M_w/M_n) of greater than 1.5 to about 15, particularly greater than 2 to about 10, more preferably greater than about 2.2 to less than about 8, and most preferably from 2.5 to 8. The polymers may have a narrow molecular weight distribution and a broad composition distribution or vice-versa, and may be those polymers described in U.S. Patent No. 5,798,427.

Also, the polymers typically have a narrow composition distribution as measured by Composition Distribution Breadth Index (CDBI). Further details of determining the CDBI of a copolymer are known to those skilled in the art. See, for example, PCT Patent Application WO 93/03093, published February 18, 1993. The polymers in one embodiment have CDBI's generally in the range of greater than 50% to 100%, preferably 99%, preferably in the range of 55% to 85%, and more preferably 60% to 80%, even more preferably greater than 60%, still even more preferably greater than 65%. In another embodiment, polymers produced using a catalyst system described herein have a CDBI less than 50%, more preferably less than 40%, and most preferably less than 30%.

The polymers in one embodiment have a melt index (MI) or (I₂) as measured by ASTM-D-1238-E (190/2.16) in the range from no measurable flow to 1000 dg/min, more preferably from about 0.01 dg/min to about 100 dg/min, even more preferably from about 0.1 dg/min to about 50 dg/min, and most preferably from about 0.1 dg/min to about 10 dg/min.

[00346] In one embodiment, the polymers have a melt index ratio (I_{21}/I_2) $(I_{21}$ is measured by ASTM-D-1238-F) (190/21.6) of from 10 to less than 25, more preferably from about 15 to less than 25. The polymers, in a preferred embodiment, have a melt index ratio (I_{21}/I_2) of

from greater than 25, more preferably greater than 30, even more preferably greater that 40, still even more preferably greater than 50 and most preferably greater than 65. For example, the melt index ratio (I_{21}/I_2) may be of from 5 to 300, 10 to 200, 20 to 180, 30 to 160, 40 to 120, 50 to 100, 60 to 90, and a combination of any upper limit with any lower limit.

[00347] In yet another embodiment, propylene based polymers are produced. These polymers include atactic polypropylene, isotactic polypropylene, hemi-isotactic and syndiotactic polypropylene. Other propylene polymers include propylene block or impact copolymers. Propylene polymers of these types are well known in the art see for example U.S. Patent Nos. 4,794,096, 3,248,455, 4,376,851, 5,036,034 and 5,459,117.

[00348] The polymers may be blended and/or coextruded with any other polymer. Non-limiting examples of other polymers include linear low density polyethylenes, elastomers, plastomers, high pressure low density polyethylene, high density polyethylenes, polypropylenes and the like.

The polymers produced and blends thereof are useful in such forming operations as film, sheet, and fiber extrusion and co-extrusion as well as blow molding, injection molding and rotary molding. Films include blown or cast films formed by coextrusion or by lamination useful as shrink film, cling film, stretch film, sealing films, oriented films, snack packaging, heavy duty bags, grocery sacks, baked and frozen food packaging, medical packaging, industrial liners, membranes, etc. in food-contact and non-food contact applications. Fibers include melt spinning, solution spinning and melt blown fiber operations for use in woven or non-woven form to make filters, diaper fabrics, medical garments, geotextiles, etc. Extruded articles include medical tubing, wire and cable coatings, pipe, geomembranes, and pond liners. Molded articles include single and multi-layered constructions in the form of bottles, tanks, large hollow articles, rigid food containers and toys, etc.

EXAMPLES

[00350] In order to provide a better understanding, the following non-limiting examples are offered. In each of the examples to follow: indole and 4-flouroindole were purchased from Aldrich and used as received; anhydrous toluene and pentane were purchased from

Aldrich and dried overnight over a sodium potassium alloy; 5-Bromoindole and 5-chloroindole were purchased from Biosynth Biochemica & Synthetica and used as received; (1,3-MeBuCp)₂Zr-Me₂, 20 wt% solution in toluene was purchased from Norquay Single-Site Catalysts and used as received; and 4,5,6,7-tetrafluoroindole was purchased from Matrix and used as received.

EXAMPLE 1:

In a 100 mL round bottom flask, 2-methylindole (1.0grams) was combined with triethylaluminum (0.434 grams) in toluene (40 mls). Ethane evolution from the solution was observed. The solution was heated for 70 minutes at 100°C. The solution was then cooled to room temperature, and concentrated to a thick oil. Tan crystals grew from the solution on the bottom of the flask. A proton NMR study revealed that the crystal contained the following molecule:

$$[NC_8H_5(CH_3)][NC_8H_6(CH_3)]$$
 $Al[C_2H_5]_2$

[00352] ¹H NMR (C_6D_6): δ 0.66 & 0.72 (overlapping quartets), 1.30 (t), 1.44 (s), 2.22 (s), 2.51(s), 6.55 (s), 6.75 (d), 6.87 (m), 7.04 (m), 7.54 (d), 7.77 (m).

[00353] A crystallography of the crystals was also performed. Single crystals of [NC₈H₅(CH₃)][NC₈H₆(CH₃)]Al[C₂H₅]₂ were subjected to X-rays by Victor Day at Crystalytics, located in Lincoln, Nebraska. The X-ray structure determination revealed a neutral four-coordinate aluminum center. One ethyl moiety of the parent triethylaluminum was protonated off via one equivalent of 2-methylindole. The second equivalent of 2-methyl-indole was coordinated to the aluminum center. The proton of the indole was determined to have migrated to the 3 position of the indole yielding a -CH₂- group. The proton migration resulted in a shortening of the N21-C22 bond 1.313(5)A compared to the other indole ligand N11-C12 bond (1.393(5) A). An ORTEP of the structure is displayed in Figure 1a and a ball and stick perspective drawing of the solid-state structure is shown in Figure 1b. Atomic Coordinates for Nonhydrogen Atoms are listed in Table 1, and the Anisotropic Thermal Parameters are listed in Table 2. Atomic Coordinates for Hydrogen

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

Atoms are listed in Table 3. Selected bond lengths are shown in Table 4 and selected bond angles are shown in Table 5. Selected torsion angles are shown in Table 6.

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

[00354] Table 1. Atomic Coordinates for Nonhydrogen Atoms in Crystalline $[NC_8H_5(CH_3)][NC_8H_6(CH_3)]A1[C_2H_5]_2^a$

Atom	Fraction Coord	linates	Equivalent Iso	tropic Thermal Paramete
Type ^b	10^4x	10 ⁴ y	10^4 z	U, $Å^2 \times 10^3 c$
A1	3302(1)	2000(1)	5858(2)	31(1)
N ₁₁	3287(2)	3065(2)	6897(4)	30(1)
N ₂₁	2533(2)	2182(2)	3231(5)	26(1)
C_1	2730(4)	1226(4)	7050(7)	44(1)
C_2	3167(4)	1301(3)	9178(6)	55(2)
C ₃	4395(3)	1635(4)	5642(8)	39(1)
C ₄	4267(4)	874(3)	4448(8)	76(2)
C ₁₂	3973(3)	3490(3)	8172(6)	29(1)
C ₁₃	3672(3)	4167(3)	8877(6)	36(1)
C ₁₄	2096(3)	4677(3)	8243(7)	39(1)
C ₁₅	1260(3)	4510(3)	7192(7)	38(1)
C ₁₆	1050(4)	3842(3)	5969(7)	41(1)
C ₁₇	1685(3)	3331(3)	5790(6)	35(1)
C ₁₈	2540(3)	3490(3)	6840(5)	26(1)
C ₁₉	2762(3)	4178(3)	8047(6)	32(1)
C ₂₀	4887(3)	3225(3)	8650(6)	39(1)
C ₂₂	2525(3)	2852(3)	2267(6)	30(1)
C ₂₃	1767(4)	2862(3)	506(7)	41(1)
C ₂₄	695(3)	1638(4)	-799(7)	38(1)
C ₂₅	503(3)	848(4)	-424(7)	43(2)
C ₂₆	986(3)	447(3)	1223(6)	40(1)
C ₂₇	1657(3)	864(3)	2514(6)	31(1)
C ₂₈	1838(3)	1654(3)	2151(5)	24(1)
C ₂₉	1369(3)	2040(3)	485(6)	30(1)
C ₃₀	3191(3)	3502(3)	2810(6)	41(1)

a The numbers in parentheses are the estimated standard deviations in the last significant digit.

b Atoms are labeled in agreement with Figure 1A.

c This is one-third of the trace of the orthogonalized Uij tensor.

PATENT

Express Mail No.: EV 351031291 US

[00355] Table 2. Anisotropic Thermal Parameters for Nonhydrogen Atoms in Crystalline $[NC_8H_5(CH_3)][NC_8H_6(CH_3)]A1[C_2H_5]_2^{a,b}$

Atom			•	arameters (Ų x		
Type ^c	U ₁₁	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
A1	34(1)	34(1)	26(1)	1(1)	13(1)	0(1)
N_{11}	24(2)	39(2)	27(2)	-5(2)	10(2)	-6(2)
N ₂₁	24(2)	31(2)	28(2)	-5(2)	15(2)	-4(2)
C_i	52(4)	48(4)	37(3)	6(3)	22(3)	-2(3)
C_2	70(4)	67(4)	33(3)	12(2)	25(3)	4(3)
C_3	36(3)	39(4)	43(3)	-8(3)	14(3)	-3(3)
C_4	55(4)	86(5)	85(5)	-29(4)	22(4)	19(4)
C ₁₂	28(3)	36(3)	21(2)	1(2)	6(2)	-10(2)
C ₁₃	42(3)	36(3)	25(3)	-7(2)	7(3)	-16(3)
C ₁₄	53(4)	40(3)	32(3)	-8(3)	25(3)	2(3)
C ₁₅	40(4)	38(3)	40(3)	4(3)	21(3)	6(3)
C ₁₆	31(3)	57(4)	34(3)	-1(3)	12(3)	3(3)
C ₁₇	37(3)	43(3)	25(3)	-4(3)	12(3)	4(3)
C_{18}	28(3)	29(3)	22(3)	3(2)	12(2)	-1(2)
C ₁₉	40(4)	32(3)	25(3)	7(2)	13(3)	-4(3)
C_{20}	34(3)	53(3)	31(3)	-7(2)	12(2)	-4(3)
C_{22}	40(3)	31(3)	27(3)	-1(2)	21(3)	2(3)
C_{23}	51(4)	54(4)	26(3)	4(3)	22(3)	5(3)
C_{24}	37(3)	49(4)	32(3)	0(3)	17(3)	3(3)
C ₂₅	32(4)	60(4)	35(3)	-16(3)	12(3)	-10(3)
C_{26}	51(4)	37(3)	41(4)	-6(3)	26(3)	-3(3)
C ₂₇	33(3)	33(3)	27(3)	-8(3)	9(3)	0(3)
C_{28}	28(3)	27(3)	21(3)	-9(2)	12(2)	2(2)
C_{29}	33(3)	37(3)	24(3)	-4(2)	17(2)	0(3)
C=	56(3)	40(3)	39(3)	5(2)	30(3)	0(3)

a The numbers in parentheses are the estimated standard deviations in the last significant digit.

b The form of the anisotropic thermal parameter is: $\exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*)].$

c Atoms are labeled in agreement with Figure 1A.

PATENT

Table 3. Atomic Coordinates for Hydrogen Atoms in Crystalline [00356] $[NC_8H_5(CH_3)][NC_8H_6(CH_3)]A1[C_2H_5]_2^{a,b}$

Atom		Fraction	n Coordinates		Isotropic Thermal
Type ^c		10 ⁴ x	10 ⁴ y	10 ⁴ z	Parameter, Å ² x 10 ³
H_{1a}		2070(30)	1360(30)	6660(70)	73(17)
-I _{1b}		2740(30)	570(30)	6840(60)	64(16)
·I _{2a}		2879	928	9771	82
H_{2b}		3121	1874	9553	. 82
H_{2c}		3777	1147	9549	82
I_{3a}		4700(30)	2050(20)	5550(60)	35(15)
I_{3b}		4890(30)	1490(30)	6930(70)	56(15)
·1 _{4a}		4824	696	4403	114
H_{4b}		3872	1004	3202	114
H_{4c}		4023	427	4963	114
H ₁₃		4040(20)	4590(20)	9790(50)	15(10)
H_{14}		2260(20)	5080(20)	9320(60)	46(13)
H ₁₅		810(20)	4920(20)	7390(50)	37(12)
H ₁₆		430(20)	3770(20)	5200(50)	19(11)
H ₁₇		1520(20)	2860(20)	5030(50)	21(12)
-I _{20a})	5269	3633	9482	58
I _{20b}		5022	3186	7526	58
-I _{20c}		4972	2682	9256	58
H _{23a}		1400(30)	3400(30)	330(60)	63(16)
H _{23b}		1920(20)	2900(20)	-360(50)	17(12)
-I ₂₄		370(30)	2040(30)	-1750(60)	61(16)
H ₂₅		60(30)	550(30)	-1250(60)	53(16)
·1 ₂₆		920(20)	-170(20)	1360(50)	36(13)
·I ₂₇		2040(20)	570(20)	3430(50)	33(14)
H _{30a}		3534	3448	4123	62
-I _{30b}		2915	4050	2577	62
H _{30c}		3567	3443	2093	62

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

a Hydrogen atoms were located from a difference Fourier. The four methyl groups (C₂, C₄, C₂₀, C₃₀ and their hydrogens) were eventually refined as rigid rotors (using idealized sp³-hybridized geometry and a C-H bond length of 0.98 Å) which were allowed to rotate around their respective C-C bonds in least-squares cycles. The remaining hydrogen atoms were included in the structural model as individual isotropic atoms whose parameters were refined. The isotropic thermal parameters of all methyl hydrogen atoms were fixed at values 1.5 times the equivalent isotropic thermal parameter of the carbon atom to which they are covalently bonded.

- b The numbers in parentheses are the estimated standard deviations in the last significant digit for parameters which are refined.
- c Hydrogen atoms are labeled with the same numerical subscript(s) as the carbon atoms to which they are covalently bonded and carry an additional literal subscript (a,b or c) where necessary to distinguish between hydrogens bonded to the same carbon.

PATENT

Express Mail No.: EV 351031291 US

[00357] Table 4. Bond Lengths in Crystalline $[NC_8H_5(CH_3)][NC_8H_6(CH_3)]A1[C_2H_5]_2^a$

Туре ^в	Length, Å	Type ^b	Length, Å
A1-N ₁₁	1.901(4)	A1-N ₂₁	2.009(4)
A1-C ₁	1.988(5)	A1-C ₃	1.971(5)
C_1 - C_2	1.558(6)	C_3 - C_4	1.508(6)
N_{11} - C_{12}	1.393(5)	N_{21} - C_{22}	1.313(5)
N_{11} - C_{18}	1.403(5)	N_{21} - C_{28}	1.438(5)
C_{12} - C_{13}	1.392(6)	C_{22} - C_{23}	1.495(6)
C_{12} - C_{20}	1.491(6)	C_{22} - C_{30}	1.471(6)
C ₁₃ -C ₁₉	1.415(6)	C_{23} - C_{29}	1.478(6)
C ₁₄ -C ₁₅	1.363(6)	C_{24} - C_{25}	1.369(6)
C_{14} - C_{19}	1.420(6)	C_{24} - C_{29}	1.368(6)
C ₁₅ -C ₁₆	1.397(6)	C_{25} - C_{26}	1.404(7)
C ₁₆ -C ₁₇	1.384(6)	C_{26} - C_{27}	1.379(6)
C_{17} - C_{18}	1.386(6)	C_{27} - C_{28}	1.362(6)
C ₁₈ -C ₁₉	1.414(6)	C_{28} - C_{29}	1.397(6)
C ₁ -H _{1a}	1.05(5)	C_3 - H_{3a}	0.86(4)
C_1 - H_{1b}	1.07(5)	C_3 - H_{3b}	1.07(5)
C ₁₄ -H ₁₄	1.01(4)	C_{24} - H_{24}	0.98(5)
C ₁₅ -H ₁₅	1.05(4)	C ₂₅ -H ₂₅	0.92(4)
C ₁₆ -H ₁₆	1.00(3)	C_{26} - H_{26}	1.01(4)
C ₁₇ -H ₁₇	0.94(3)	C ₂₇ -H ₂₇	0.90(4)
C ₁₃ -H ₁₃	1.01(3)	C ₂₃ -H _{23a}	1.03(5)
	•	C ₂₃ -H _{23b}	0.80(4)

a The numbers in parentheses are the estimated standard deviations in the last significant digit.

b Atoms are labeled in agreement with Figure 1A.

PATENT

Table 5. Bond Angles in Crystalline $[NC_8H_5(CH_3)][NC_8H_6(CH_3)]A1[C_2H_5]_2^a$ [00358]

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Type ^b	Angle, (deg)	Type ^b	Angle, (deg)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N ₁₁ A1N ₂₁	101.6(2)	C ₁ A1N ₂₁	109.3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$N_{11}A1C_1$	106.6(2)	C_3A1N_{21}	103.1(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N ₁₁ A1C ₃	117.3(2)	C ₃ A1C ₁	117.5(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C12N11A1	127.9(3)	C22N21A1	125.1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CCA1	100 2(4)	CCAI	111 4(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				· .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{13}C_{12}N_{11}$	110.4(4)	$N_{21}C_{22}C_{23}$	111.5(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		122.5(4)	$N_{21}C_{22}C_{30}$	124.7(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{13}C_{12}C_{20}$	127.1(4)	$C_{30}C_{22}C_{23}$	123.8(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{12}C_{13}C_{19}$	107.8(4)	$C_{29}C_{23}C_{22}$	103.1(4)
$C_{29}C_{23}H_{23a}$ 121(3) $C_{29}C_{23}H_{23b}$ 110(3)		126(2)		113(3)
$C_{29}C_{23}H_{23b}$ 110(3)	$C_{19}C_{13}H_{13}$	126(2)	$C_{22}C_{23}H_{23b}$	111(3)
			$C_{29}C_{23}H_{23a}$	121(3)
$H_{23a}C_{23}H_{23b}$ 99(4)			$C_{29}C_{23}H_{23b}$	110(3)
			$H_{23a}C_{23}H_{23b} \\$	99(4)

PATENT

Type ^b	Angle, (deg)	Туре ^ь	Angle, (deg)
$C_{15}C_{14}C_{19}$	119.4(5)	C ₂₉ C ₂₄ C ₂₅	118.4(5)
$C_{14}C_{15}C_{16}$	120.9(5)	$C_{24}C_{25}C_{26}$	121.5(5)
			•
$C_{17}C_{16}C_{15}$	120.9(5)	$C_{27}C_{26}C_{25}$	119.4(5)
$C_{16}C_{17}C_{18}$	119.2(5)	$C_{28}C_{27}C_{26}$	119.0(5)
$C_{17}C_{18}N_{11}$	129.5(4)	$C_{27}C_{28}N_{21}$	128.5(4)
$N_{11}C_{18}C_{19}$	110.1(4)	$C_{29}C_{28}N_{21}$	110.2(4)
$C_{17}C_{18}C_{19}$	120.4(4)	$C_{27}C_{28}C_{29}$	121.2(4)
$C_{13}C_{19}C_{14}$	134.8(4)	$C_{24}C_{29}C_{23}$	132.6(4)
$C_{18}C_{19}C_{13}$	106.0(4)	$C_{28}C_{29}C_{23}$	106.9(4)
$C_{18}C_{19}C_{14}$	119.1(4)	$C_{24}C_{29}C_{28}$	120.5(5)
$C_{15}C_{14}H_{14}$	123(2)	$C_{25}C_{24}H_{24}$	131(3)
$C_{19}C_{14}H_{14}$	117(2)	$C_{29}C_{24}H_{24}$	109(3)
$C_{14}C_{15}H_{15}$	115(2)	$C_{24}C_{25}H_{25}$	122(3)
$C_{16}C_{15}H_{15}$	124(2)	$C_{26}C_{25}H_{25}$	117(3)
$C_{15}C_{16}H_{16}$	116(2)	$C_{25}C_{26}H_{26}$	120(2)
$C_{17}C_{16}H_{16}$	123(2)	$C_{27}C_{26}H_{26}$	119(2)
$C_{16}C_{17}H_{17}$	118(2)	$C_{26}C_{27}H_{27}$	118(3)
$C_{18}C_{17}H_{17}$	122(2)	$C_{28}C_{27}H_{27}$	121(3)

The numbers in parentheses are the estimated standard deviations in the last significant digit.

Atoms are labeled in agreement with Figure 1A.

Table 6. Torsion Angles in Crystalline [NC₈H₅(CH₃)][NC₈H₆(CH₃)]A1[C₂H₅]₂^a [00359]

ype ^b	Angle, (deg)	Type ^b	Angle, (deg)
C ₃ -A1-N ₁₁ -C ₁₂	-28.4(4)	A1-N ₁₁ -C ₁₈ -C ₁₉	168.2(3)
C_1 -A1- N_{11} - C_{12}	105.7(4)	C_{17} - C_{18} - C_{19} - C_{13}	-179.3(4)
N_{21} -A1- N_{11} - C_{12}	-139.9 (3)	N_{11} - C_{18} - C_{19} - C_{13}	-0.6(5)
C_3 -A1- N_{11} - C_{18}	167.2(4)	C_{17} - C_{18} - C_{19} - C_{14}	3.3(6)
C_1 -A1- N_{11} - C_{18}	-58.7(4)	N_{11} - C_{18} - C_{19} - C_{14}	-177.9(4)
N ₂₁ -A1-N ₁₁ -C ₁₈	55.7(3)	C12-C ₁₃ -C ₁₉ -C ₁₈	0.0(5)
N_{11} -A1- N_{21} - C_{22}	40.0(4)	C12-C ₁₃ -C ₁₉ -C ₁₄	176.7(5)
C_3 -A1- N_{21} - C_{22}	-81.8(4)	C15-C ₁₄ -C ₁₉ -C ₁₈	-3.5(6)
C_1 -A1- N_{21} - C_{22}	152.5(4)	C15-C ₁₄ -C ₁₉ -C ₁₃	-179.(5)
N_{11} -A1- N_{21} - C_{28}	-132.6(3)	C_{28} - N_{21} - C_{22} - C_{30}	-173.1(4)
C_3 -A1- N_{21} - C_{28}	105.6(3)	$A1-N_{21}-C_{22}-C_{30}$	13.2(6)
C_1 -A1- N_{21} - C_{28}	-20.1(4)	C_{28} - N_{21} - C_{22} - C_{23}	5.1(5)
N_{11} -A1- C_1 - C_2	-53.0(4)	A1-N ₂₁ -C ₂₂ -C ₂₃	-168.6(3)
C_3 -A1- C_1 - C_2	81.0(4)	N_{21} - C_{22} - C_{23} - C_{29}	-5.7(5)
N_{21} -A1- C_1 - C_2	-162.1(3)	C_{30} - C_{22} - C_{23} - C_{29}	172.4(4)
N ₁₁ -A1-C ₃ -C ₄	-167.9(4)	C_{29} - C_{24} - C_{25} - C_{26}	-0.6(7)
C ₁ -A1-C ₃ -C ₄	62.9(5)	C_{24} - C_{25} - C_{26} - C_{27}	1.4(7)
N ₂₁ -A1-C ₃ -C ₄	-57.3(5)	C_{25} - C_{26} - C_{27} - C_{28}	-0.4(7)
C_{18} - N_{11} - C_{12} - C_{13}	-0.9(5)	C_{26} - C_{27} - C_{28} - C_{29}	-1.4(7)
A1-N ₁₁ -C ₁₂ -C ₁₃	-167.6(3)	C_{26} - C_{27} - C_{28} - N_{21}	-175.7(4)
C_{18} - N_{11} - C_{12} - C_{20}	179.3(4)	C_{22} - N_{21} - C_{28} - C_{27}	172.5(4)
A1-N ₁₁ -C ₁₂ -C ₂₀	12.6(6)	$A1-N_{21}-C_{28}-C_{27}$	-13.9(6)
N_{11} - C_{12} - C_{13} - C_{19}	0.6(5)	C_{22} - N_{21} - C_{28} - C_{29}	-2.4(5)
C_{20} - C_{12} - C_{13} - C_{19}	-179.7(4)	$A1-N_{21}-C_{28}-C_{29}$	171.2(3)
C19-C14-C15-C16	1.9(7)	C_{25} - C_{24} - C_{29} - C_{28}	-1.2(6)
C ₁₄ -C ₁₅ -C ₁₆ -C ₁₇	0.0(7)	C_{25} - C_{24} - C_{29} - C_{23}	177.3(5)
C ₁₅ -C ₁₆ -C ₁₇ -C ₁₈	-0.2(7)	C_{27} - C_{28} - C_{29} - C_{24}	2.2(6)
C_{16} - C_{17} - C_{18} - N_{11}	-180.0(4)	N_{21} - C_{28} - C_{29} - C_{24}	177.5(4)
C ₁₆ -C ₁₇ -C ₁₈ -C ₁₉	-1.5(6)	C_{27} - C_{28} - C_{29} - C_{23}	-176.6(4)
C_{12} - N_{11} - C_{18} - C_{17}	179.5(4)	N_{21} - C_{28} - C_{29} - C_{23}	-1.3(5)
A1-N ₁₁ -C ₁₈ -C ₁₇	-13.2(6)	C_{22} - C_{23} - C_{29} - C_{24}	-174.6(5)
C_{12} - N_{11} - C_{18} - C_{19}	0.9(4)	C_{22} - C_{23} - C_{29} - C_{28}	4.0(5)

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

Type^b Angle, (deg) Type^b Angle, (deg)

EXAMPLE 2:

Preparation of [NC₈H₆][NC₈H₇]Al[C₂H₅]₂: In a 100 mL round bottom flask, indole (1.0grams) was combined with triethylaluminum (0.487 grams) in toluene (40 mls). Vigorous ethane evolution from the solution (yellow-green) was observed. After several hours, conversion to the title species had occurred. [NC₈H₆][NC₈H₇]Al[C₂H₅]₂ was identified by proton NMR. ¹H NMR (C₆D₆): δ 0.68 (m), 1.43 (t), 2.0 (s), 6.6 (d), 6.8 (m), 6.9, 7.04 (m), 7.2 (m), 7.6 (m), 7.95 (m).

EXAMPLE 3:

[00361] Preparation of [NC₈H₅F][NC₈H₆F]Al[C₂H₅]₂: In a 100 mL round bottom flask, 4-fluoroindole (1.0 grams) was combined with triethylaluminum (0.422 grams) benzene (C₆D₆) (20 mls). Ethane evolution from the solution was observed. After six hours, conversion to title species had largely taken place. [NC₈H₅F][NC₈H₆F]Al[C₂H₅]₂ was identified by proton NMR and fluorine NMR. ¹H NMR (C₆D₆): δ 0.58 (m), 1.49 (t), 2.0 (s), 6.5-7.6. ¹⁹F NMR: δ -115.8, -121.7. Ethane, δ 0.791 (s).

EXAMPLE 4:

Preparation of [NC₈H₅Br][NC₈H₆Br]Al[C₂H₅]₂: In a 100 mL round bottom flask, 5-bromoindole (0.822 grams) was combined with triethylaluminum (0.239 grams) benzene (C₆D₆) (20 mls). Ethane evolution from the solution was observed. After two hours, conversion to the title species had largely taken place. [NC₈H₅Br][NC₈H₆Br]Al[C₂H₅]₂ was identified by proton NMR. ¹H NMR (C₆D₆): δ 0.587 (m), 1.34 (t), 1.83 (s), 6.59, 6.71, 6.8, 7.11, 7.34, 7.51, 8.06. Ethane, δ 0.791 (s).

The numbers in parentheses are the estimated standard deviations in the last significant digit.

b Atoms are labeled in agreement with Figure 1A.

Express Mail No.: EV 351031291 US

EXAMPLE 5:

[00363] Preparation of $[NC_8H_2F_4][NC_8H_3F_4]Al[C_2H_5]_2$: In a 100 mL round bottom flask, 4,5,6,7-tetrafluoroindole (1.0 grams) was combined with triethylaluminum (0.301 grams) benzene (C₆D₆) (20 mls). Ethane evolution from the solution was observed. After two hours, conversion to the title species had largely taken place. $[NC_8H_2F_4][NC_8H_3F_4]Al[C_2H_5]_2$ was identified by proton NMR. ¹H NMR (C_6D_6) : δ 0.54 (m), 1.25 (t), 2.16 (s), 6.8, 7.39, 7.53. Ethane, δ 0.791 (s).

EXAMPLE 6:

Preparation of $[NC_8H_5(CH_3)]_2[NC_8H_6(CH_3)]Al[C_2H_5]$: In a 100 mL round bottom flask, 3-methylindole (1.0 grams) was combined with triethylaluminum (0.29 grams) in toluene (20 mls). Ethane evolution from the solution was observed. The solution was heated for four hours at 50 C. A first portion of the yellow solution was cooled to room temperature, and a second portion was left at room temperature for two days. A yellow powder formed. The yellow powder was filtered and rinsed with pentane. $[NC_8H_5(CH_3)]_2[NC_8H_6(CH_3)]Al[C_2H_5]$ was identified by proton NMR. ¹H NMR (C_6D_6): δ 0.30(d), 0.86 (q), 1.29 (t), 2.38, (s), 2.4 (s), 2.5(sh), 6.6 (m), 7-8 (m).

The experiment was repeated with deuterated 3-methylindole(D). In this test run, the acidic H was approximately 50 to 80 % deuterated. The resulting product revealed a loss of the peak intensity at 2.5. Furthermore, the doublet at 0.30 ppm resulted in a multiplet due to a deuterium neighbor.

Polymerizations

[00366] Polymerizations were performed in a glass-lined 20-mL autoclave reactor equipped with a mechanical stirrer, an external heater for temperature control, a septum inlet and a regulated supply of dry nitrogen and ethylene in an inert atmosphere (Nitrogen) glove box. The reactor was dried and degassed thoroughly at 115 °C. The diluent and comonomer were added at room temperature and atmospheric pressure. The reactor was then brought to process pressure and charged with ethylene while stirring at 800 RPM. The activator and catalyst were added via syringe with the reactor at process conditions. The polymerization was continued while maintaining the reaction vessel within 3 °C of the target process

temperature and 5 psig of target process pressure (by automatic addition of ethylene on demand) until a fixed uptake of ethylene was noted (corresponding to calculated 0.15g polymer) or until a maximum reaction time of 20 minutes had passed. The reaction was stopped by pressurizing the reactor to 30 psig above the target process pressure with a gas mixture composed of 5 mol% oxygen in argon. The polymer was recovered by vacuum centrifugation of the reaction mixture. Bulk polymerization activity was calculated by dividing the yield of polymer by the total weight of the catalyst charge by the time in hours and by the absolute monomer pressure in atmospheres. The specific polymerization activity was calculated by dividing the yield of polymer by the total number of µmoles of transition metal contained in the catalyst charge by the time in hours.

EXAMPLE 7:

[00367] The reaction of triethylaluminum and 4,5,6,7-tetrafluoroindole was allowed to take place for six hours at room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with the aluminum complex in a ratio of 1:3. Ethylene-octene copolymerizations were then performed at 100°C. Polymerizations were then carried out. See Table 5. The solution was then aged for 24 hours, and the polymerization study was repeated. See Table 6.

[00368] The activity numbers in Tables 7 and 8 illustrate the large difference in polymerization activity between day 1 and 2. Not wishing to be bound by theory, the activity difference may be related to the slow activation rate between catalyst and activator and/or the slow formation of a reactive 4,5,6,7 -tetrafluoroindolyl aluminum species at room temperature.

Express Mail No.: EV 351031291 US

[00369] Table 7. Day 1: Polymerization of $(1,3-\text{MeBuCp})_2\text{Zr-Me}_2$ / Et2Al(4,5,6,7-tetrafluoroindolyl) (4,5,6,7-tetrafluoroindoleH).

Row	μmol. Zr	Comonomer	Average	Average	Average	Yield	Activity (g/μmo
		Incorporation	Mw	Mn	PDI		*hr)
A	0.05		· · · · · · · · · · · · · · · · · · ·			0.000	0.00
Α	0.05					0.000	0.01
Α .	0.05					0.000	0.00
Α	0.05					0.000	0.00
Α	0.05					0.000	0.00
Α	0.05					0.001	0.03
	average					0.000	0.00
	stddev					0.001	0.02
В	0.07					0.006	0.12
В	0.07					0.007	0.14
В	0.07					0.004	0.08
В	0.07					0.006	0.13
В	0.07					0.008	0.18
В	0.07					0.009	0.19
	average					0.008	0.17
	stddev		~			0.001	0.03
С	0.092	4.1	213426	124328	1.72	0.018	0.30
C	0.092					0.011	0.18
$_{i}\mathbf{C}$	0.092	3.7	226262	133451	1.70	0.024	0.39
C	0.092	3.7	212638	125764	1.69	0.020	0.33
C	0.092	3.2	227958	138590	1.64	0.031	0.50
C	0.092	3.5	234483	140536	1.67	0.037	0.60
	average	3	225026	134963	1.67	0.029	0.48
	stddev	0	11214	8026	0.02	0.009	0.14
D	0.11	3.7	227161	136889	1.66	0.039	0.53
D	0.11	4.0	223867	132269	1.69	0.041	0.56
D	0.11					0.014	0.19
D	0.11					0.012	0.71
D	0.11	4.2	217413	130460	1.67	0.040	0.70

Row	μmol. Zr	Comonomer	Average	Average	Average	Yield	Activity (g/μmol
		Incorporation	Mw	Mn	PDI		*hr)
D	0.11	3.3	234065	138588	1.69	0.045	0.72
•	average	4	225739	134524	1.68	0.032	0.71
	stddev	1	11774	5747	0.02	0.018	0.01
E	0.13	4.1	203694	122739	1.66	0.049	0.57
E	0.13	3.1	212643	126291	1.68	0.048	0.67
E	0.13	3.9	187767	113237	1.66	0.047	0.73
E	0.13	3.5	209049	121665	1.72	0.046	0.69
E	0.13	3.8	195957	117215	1.67	0.042	0.60
E	0.13	3.6	187573	110766	1.69	0.041	0.68
	average	4	197526	116549	1.69	0.043	0.65
	stddev	0	10824	5480	0.02	0.002	0.05
F	0.16	3.6	172873	104361	1.66	0.048	0.60
F	0.16	3.7	166283	99917.3	1.66	0.049	0.71
F	0.16	3.5	162240	99475.9	1.63	0.046	0.62

Express Mail No.: EV 351031291 US

[00370] **Table 8.** Day 2: Polymerization of (1,3-MeBuCp)₂Zr-Me₂ / Et2Al(4,5,6,7-tetrafluoroindolyl) (4,5,6,7-tetrafluoroindoleH).

□mol.	Column	Comonomer	Average	Average	Average	Actual	Yield	Activity
Zr		Incorporation	Mw	Mn	PDI	Quench		(g/µmol*hr)
						Time		
0.05	1	•			•	2400.86	0.0106	0.32
0.05	2					2400.91	0.0144	0.43
0.05	3	2.98	185203	116321	1.59	2400.64	0.0212	0.64
0.05	4					2400.82	0.0058	0.17
0.05	5	5.03	182686	110824	1.65	2402.13	0.0155	0.46
0.05	6	4.01	175204	109579	1.60	2400.39	0.0153	0.46
	average	4.52	178945	110202	1.62	2401.11	0.01	0.37
	stddev	0.72	5291	881	0.04	0.91	0.01	0.17
		•						
0.07	1	5.97	152771	99558.1	1.53	600.59	0.0465	3.98
0.07	2	6.05	156945	103812	1.51	802.89	0.0420	2.69
0.07	3	6.15	141375	95382.2	1.48	646.33	0.0468	3.72
0.07	4	17.53	187405	120370	1.56	2058.99	0.0442	1.10
0.07	5	9.73	155668	104313	1.49	1389.22	0.0432	1.60
0.07	6	10.09	152454	103467	1.47	782.48	0.0427	2.81
	average	12.45	165176	109383	1.51	1410.23	0.04	1.84
	stddev	4.40	19318	9524	0.04	638.51	0.00	0.88
0.09	1	6.44	116408	79221.8	1.47	300.43	0.0514	6.69
0.09	2	7.12	124983	84600.4	1.48	223.94	0.0592	10.34
0.09	3	8.64	110404	75603.7	1.46	214.84	0.0578	10.53
0.09	4	18.65	121221	82913.3	1.46	243.87	0.0508	8.15
0.09	5	15.30	111898	75233.7	1.49	211.26	0.0512	9.48
0.09	6	9.07	113080	77885.9	1.45	186.62	0.0573	12.01
	average	14.34	115400	78678	1.47	213.92	0.05	9.88
	stddev	4.86	5076	3901	0.02	28.72	0.00	1.96
		·						
0.11	1	15.31	98977	65982.1	1.50	140.54	0.0705	16.42
0.11	2	17.88	103924	70978.8	1.46	144.4	0.0663	15.03
0.11	3	20.94	99984	67180.2	1.49	149.08	0.0694	15.24
0.11	-							

PATENT

Express Mail No.: EV 351031291 US

□mol.	Column	Comonomer	Average	Average	Average	Actual	Yield	Activity
Zr		Incorporation	Mw	Mn	PDI	Quench		(g/µmol*hr)
						Time		
0.11	5	16.72	91384	61852.6	1.48	138	0.0636	15.08
0.11	6	25.33	95370	62787.2	1.52	115.52	0.0794	22.49
	average	19.55	94439	63601	1.49	127.40	0.07	17.90
	stddev	5.01	2712	2267	0.03	11.29	0.01	4.01
0.13	1	22.45	77789	50666.4	1.54	106.95	0.0802	20.77
0.13	2	31.48	75689	49686	1.52	94.69	0.0862	25.21
0.13	3	8.86	118278	78050.5	1.52	286.24	0.0471	4.56
0.13	4	14.25	92011	61865.6	1.49	120.66	0.0734	16.85
0.13	5	15.55	80492	53593.6	1.50	101.95	0.0692	18.80
0.13	6	18.66	83305	54841.5	1.52	107.34	0.0792	20.43
	average	16.15	85269	56767	1.50	109.98	0.07	18.69
	stddev	2.27	6005	4459	0.02	9.63	0.01	1.80
0.16	1	18.61	81009	53462.1	1.52	91.49	0.0817	20.09
0.16	2	17.71	72314	45790.3	1.58	92.88	0.0890	21.56
0.16	3							
0.16	4	7.06	72262	46419.1	1.56	89.18	0.0783	19.75
0.16	5	6.82	67200	42625.8	1.58	92.8	0.0845	20.49
0.16	6	5.49	68634	44327.6	1.55	87.07	0.0833	21.53
	average	6.46	69365	44457	1.56	89.68	0.08	20.59
	stddev	0.85	2609	1900	0.01	2.90	0.00	0.89

EXAMPLE 8:

[00371] The reaction of triethylaluminum and two equivalents of 4,5,6,7-tertrafluoroindole was allowed to take place for three hours at room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with the aluminum complex in a ratio of 1:3. Ethylene-octene copolymerizations were then performed at 100°C. The solution was then aged for 24 hours, and the polymerization study was repeated.

Express Mail No.: EV 351031291 US

EXAMPLE 9:

The reaction of triethylaluminum and two equivalents of 2-methylindole was 1003721

allowed to take place for three hours at room temperature. (1,3-MeBuCp)₂Zr-Me₂ was

reacted with the aluminum complex in a ratio of 1:3. Ethylene-octene copolymerizations

were then performed at 100°C. The solution was then aged for 24 hours, and the

polymerization study was repeated.

EXAMPLE 10:

[00373] The reaction of triethylaluminum and two equivalents of indole was allowed to

take place for three hours at room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with the

Ethylene-octene copolymerizations were then aluminum complex in a ratio of 1:3.

performed at 100°C. The solution was then aged for 24 hours, and the polymerization study

was repeated.

EXAMPLE 11:

The reaction of triethylaluminum and two equivalents of 5-bromoindole was [00374]

allowed to take place for three hours at room temperature. (1,3-MeBuCp)₂Zr-Me₂ was

reacted with the aluminum complex in a ratio of 1:3. Ethylene-octene copolymerizations

were then performed at 100°C. The solution was then aged for 24 hours, and the

polymerization study was repeated

EXAMPLE 12:

The reaction of triethylaluminum and two equivalents of 5-chloroindole was

allowed to take place for three hours at room temperature. (1,3-MeBuCp)₂Zr-Me₂ was

reacted with the aluminum complex in a ratio of 1:3. Ethylene-octene copolymerizations

were then performed at 100°C. The solution was then aged for 24 hours, and the

polymerization study was repeated.

For Examples 8-12, Table 9 shows the results of the polymerization after Day 1 1003761

and Table 10 shows the results of the polymerization after Day 2.

74

PATENT

Table 9. Day 1. [00377]

Aluminum	Catalyst	Comonomer	Average	Average	Average	Actual	Yield	Activity
"Activator"	Micro-	Incorporation	Mw	Mn	PDI	Quench		(g.Pol /μmol.
	moles					Time		Cat.hr)
tetrafluoroi	0.0125					2400	0.000	0.0000
ndolyl-Al-					•			
	0.0286					2403	0.000	0.0000
	0.0446					2400	0.000	0.0000
	0.0607					2401	0.001	0.0148
	0.0768					2401	0.000	0.0078
	0.0929					2402	0.002	0.0242
	0.11					2401	0.003	0.0382
	0.125					2400	0.005	0.0588
(2-	0.0125					2401	0.000	0.0000
Meindolyl)	0.0.20					2.0.	0.000	0.000
2AlEt2								
	0.0286					2400	0.000	0.0000
	0.0446					2402	0.000	0.0000
	0.0607					2401	0.000	0.0000
	0.0768			4		2400	0.000	0.0000
	0.0929					2401	0.000	0.0000
•	0.11					2401	0.000	0.0000
	0.125	•				2400	0.000	0.0000
indolyl-Al-	0.0125					2401	0.000	0.0000
mdoryr 7ti	0.0286					850	0.000	0.0000
	0.0446					2400	0.001	0.0168
	0.0607					2400	0.000	0.0000
	0.0768					2400	0.000	0.0000
	0.0929					2401	0.000	0.0000
	0.11					2401	0.000	0.0000
	0.125					2400	0.000	0.0000
	0.0155					2.122	0.000	2 222
5-	0.0125					2400.	0.000	0.0000
bromoindol								

PATENT

Aluminum	Catalyst	Comonomer	Average	Average	Average	Actual	Yield	Activity
"Activator"	Micro-	Incorporation	Mw	Mn	PDI	Quench		(g.Pol /μmol.
	moles					Time		Cat.hr)
yl-Al			 		`	·		
	0.0286					2401	0.000	0.0000
	0.0446	·				2401	0.000	0.0000
	0.0607					2401	0.000	0.0000
	0.0768					2401	0.002	0.0332
	0.0929					2401	0.014	0.2260
	0.11	3.36	95067	60294	1.58	2400	0.035	0.4717
	0.125	3.84	97849	60789	1.61	1420	0.044	0.8967
								-
5-	5					1890	0.000	0.0000
choroindol								
yl-Al								
	5					2401	0.000	0.0000
	5					1471	0.000	0.0000
	5					2401	0.003	0.0008
	5					2401	0.008	0.0024
	5	4.21	85418	47556	1.80	2400	0.032	0.0094
	5	3.88	86901	50515	1.72	1144	0.039	0.0247
	5	4.00	82552	· 48173	1.71	940	0.043	ó.0330

PATENT

Table 10. Day 2. [00378]

	Comonomer	Average	Average	Average	Actual	Yield	Catalyst	Activity
"Activator"	Incorporation	Mw	Mn	PDI	Quench	-	Micromoles	(g.Pol./ μmol.
					Time			Cat.hr)
Tetrafluoro					2401	0	0.013	0.0000
-indolyl-Al								
					2401	0.0015	0.029	0.0787
					2401	0.0121	0.045	0.4063
	8.78	135684	59452	2.28	2401	0.0289	0.061	0.7136
	10.57	142433	89444	1.59	231	0.0475	0.077	9.6506
	3.90	121712	78227	1.56	155	0.0537	0.093	13.4109
	4.72	106841	67425	1.58	109	0.0672	0.109	20.3101
	4.73	93558	57790	1.62	102	0.0745	0.125	21.0065
2-			1		2401	0	0.013	0.0000
Meindolyl-								
Al								
					2400	. 0	0.029	0.0000
					2400	0	0.045	0.0000
					2400	0	0.061	0.0000
	•				2402	0	0.077	0.0000
	`				2401	0	0.093	0.0000
					2400	, 0	0.109	0.0000
					2401	0	0.125	0.0000
indolyl-Al					2401	0	0.013	0.0000
					2401	0	0.029	0.0000
					2401	0	0.045	0.0000
					2400	0.0021	0.061	0.0519
					2400	0.0022	0.077	0.0430
					2401	0.0058	0.093	0.0937
					2401	0.0061	0.109	0.0840
					2400	0.0087	0.125	0.1044
5-					2401	0	0.013	0.0000
bromoindol								

PATENT

Express Mail No.: EV 351031291 US

Aluminum	Comonomer	Average	Average	Average	Actual	Yield	Catalyst	Activity
"Activator"	Incorporation	Mw	Mn	PDI	Quench		Micromoles	(g.Pol./ μmol.
					Time '			Cat.hr)
yl-Al	•				 · · · · · · · · · · · · · · · · · ·			
					2401	0	0.029	0.0000
					. 2401	0.0036	0.045	0.1209
					2401	0.008	0.061	0.1975
	3.32	173216	80724	2.15	2401	0.0154	0.077	0.3007
	3.05	163787	78365	2.09	2401	0.0226	0.093	0.3649
	3.47	135806	65253	2.08	2401	0.0303	0.109	0.4171
	3.52	139184	68634	2.03	2400	0.0346	0.125	0.4152
5-					1533	0	0.013	0.0000
chloroindol	•			•				
yl-Al								
•					2401	0.0042	0.029	0.2204
					1097	0.0096	0.045	0.7058
	15.07	145258	72788	2.00	971	0.039	0.061	2.3819
	3.60	158883	75427	2.11	516	0.0395	0.077	3.5867
	3.16	142940	67343	2.12	396	0.0454	0.093	4.4398
	3.18	130638	61686	2.12	285	0.0492	0.109	5.6971
	3.14	130193	60937	2.14	262	0.0534	0.125	5.8751

EXAMPLE 13:

[00379] The reaction of triethylaluminum and three equivalents of 4,5,6,7-tetrafluoroindole was allowed to take place overnight room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with the aluminum complex in a ratio of 1:3. Ethylene-octene copolymerizations were then performed at 100°C. Polymerizations were then carried out, Table 11.

EXAMPLE 14:

[00380] The reaction of triethylaluminum and three equivalents of indole was allowed to take place overnight room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with each aluminum complex in a ratio of 1:3. Ethylene-octene copolymerizations were then performed at 100°C. Polymerizations were then carried out.

EXAMPLE 15:

[00381] The reaction of triethylaluminum and three equivalents of 5-bromoindole was

allowed to take place overnight room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with

each aluminum complex in a ratio of 1:3. Ethylene-octene copolymerizations were then

performed at 100°C. Polymerizations were then carried out.

EXAMPLE 16:

[00382] The reaction of triethylaluminum and three equivalents of 5-chloroindole was

allowed to take place overnight room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with

each aluminum complex in a ratio of 1:3. Ethylene-octene copolymerizations were then

performed at 100°C. Polymerizations were then carried out.

EXAMPLE 17:

[00383] The reaction of triethylaluminum and three equivalents of 3-methylindole was

allowed to take place overnight room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with

each aluminum complex in a ratio of 1:3. Ethylene-octene copolymerizations were then

performed at 100°C. Polymerizations were then carried out.

[00384] For Examples 13-17, Table 11 shows the results of the polymerization after Day 1

and Table 12 shows the results of the polymerization after Day 2.

79

PATENT

[00385] Table 11.

Aluminum	Comonomer	Average	Average	Average	Actual	Yield	Catalyst	Activity
"Activator"	Incorporation	Mw	Mn	PDI	Quench		Micromoles	(g.Pol./ μ mol.
					Time			Cat.hr)
Tetrafluoro			···		2400.35	0	0.013	0.000
-indolyl-Al								
					2400.79	0.0031	0.029	0.163
	3.94	174462	103575	1.6844	2400.18	0.0197	0.045	0.662
	3.68	159600	101757	1.5684	1066.9	0.0457	0.061	2.540
	3.71	134641	89973	1.4965	270.52	0.0592	0.077	10.260
	4.26	112771	75710	1.4895	188.09	0.0641	0.093	13.212
	4.09	99824	66081	1.5106	164.08	0.0741	0.109	14.925
	3.9	89,127	58198	1.5314	129.13	0.0811	0.125	18.088
indolyl-Al					2400.24	0	0.013	0.000
					2400.67	0	0.029	0.000
					2401.55	0	0.045	0.000
					2400.33	0	0.061	0.000
					2400.35	0.0008	0.077	0.016
					2400.67	0.0014	0.093	0.023
					2401.36	0.002	0.109	0.028
					2400.52	0.0025	0.125	0.030
5-		`			2400.8	0	0.013	0.000
bromoindol								
yl-Al								
					2400.78	0.0036	0.029	0.189
	3.78	104300	58848	1.77 .	2400.18	0.0281	0.045	0.944
	2.89	110725	65414	1.69	1466.38	0.0427	0.061	1.727
	3.04	110209	65311	1.68	971.21	0.0448	0.077	2.163
					690.67	0.0045	0.093	0.253
	3.26	90126	54994	1.63	592.03	0.0462	0.109	2.579
	3.05	84229	51483	1.63	518.4	0.0487	0.125	2.706
5-					2241.81	0	0.013	0.000
chloroindol								

PATENT

Express Mail No.: EV 351031291 US

Aluminum	Comonomer	Average	Average	Average	Actual	Yield	Catalyst	Activity
"Activator"	Incorporation	Mw	Mn	PDI	Quench		Micromoles	s·(g.Pol./ μmol.
				,	Time			Cat.hr)
yl-Al								
		9			2401.09	0.0008	0.029	0.042
		•			1414.06	0.0045	0.045	0.257
	2.85	100366	64405	1.55	2400.8	0.0318	0.061	0.785
	2.91	106266	69026	1.53	1596.36	0.0399	0.077	1.172
	3.08	98444	64280	1.53	1193.77	0.042	0.093	1.364
	3.14	85063	55874	1.52	881.81	0.044	0.109	1.649
	3.19	88189	57926	1.52	734.19	0.0451	0.125	1.769
3-	·				2400.7	0	0.013	0.0000
Meindolyl2								
AlEt(H-3-							•	
Methyindo								
yl)				*				
	•				2400.6	0.0001	0.03	0.0052
		÷			2400.83	0.0007	0.04	0.0235
					2400.54	0.0004	0.06	0.0099
,					2400.54	0.0019	0.08	0.0371
					2400.14	0.002	0.09	0.0323
					2400.27	0.0029	0.11	0.0399
					2400.35	0.0037	0.13	0.0444

EXAMPLE 18:

[00386] The reaction of triethylaluminum and four equivalents of 4,5,6,7-tetrafluoroindole was allowed to take place overnight room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with each aluminum complex in a ratio of 1:3. Ethylene octene copolymerizations were then performed at 100°C. Polymerizations were then carried out.

EXAMPLE 19:

[00387] The reaction of triethylaluminum and four equivalents of indole was allowed to take place overnight room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with each

aluminum complex in a ratio of 1:3. Ethylene octene copolymerizations were then

performed at 100°C. Polymerizations were then carried out.

EXAMPLE 20:

The reaction of triethylaluminum and four equivalents of 5-bromoindole was [00388]

allowed to take place overnight room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with

each aluminum complex in a ratio of 1:3. Ethylene octene copolymerizations were then

performed at 100°C. Polymerizations were then carried out.

EXAMPLE 21:

[00389] The reaction of triethylaluminum and four equivalents of 5-chloroindole was

allowed to take place overnight room temperature. (1,3-MeBuCp)₂Zr-Me₂ was reacted with

each aluminum complex in a ratio of 1:3. Ethylene octene copolymerizations were then

performed at 100°C. Polymerizations were then carried out.

[00390]

Í

For Examples 18-21, Table 12 shows the results of the polymerization.

82

Table 12. [00391]

Aluminum	Comonomer	Average	Average	Average	Actual	Yield	Catalyst	Activity
"Activator"	Incorporation	Mw	Mn	PDI	Quench		Micromoles	(g.Pol./ μmol.
	,				Time			Cat.hr)
Tetrafluoro					2400.9	0	0.013	0.000
-indolyl-Al								
					2401.1	0.0015	0.029	0.079
					2400.5	0.0111	0.045	0.373
	4.07	185606	110905	1.67	2400.0	0.0413	0.061	1.020
	4.33	141236	84795	1.67	354.2	0.0542	0.077	7.174
	3.82	115109	72882	1.58	147.5	0.0627	0.093	16.481
	4.14	102135	68055	1.50	136.1	0.0718	0.109	17.438
	4.33	103285	66836	1.55	109.5	0.081	0.125	21.296
indolyl-Al				,	2400.2	0	0.013	0.000
					2401.1	0	0.029	0.000
					2400.7	0	0.045	0.000
	,				2400.0	0	0.061	0.000
					2400.8	0	0.077	0.000
					2401.3	0	0.093	0.000
					2400.8	0	0.109	0.000
					2400.2	0	0.125	0.000
5-					2401.0	0	0.013	0.000
bromoindol								
yl-Al								
					2401.2	0	0.029	0.000
					2400.2	0.0012	0.045	0.040
					2400.8	0.0141	0.061	0.348
	2.64	98688	63321	1.56	2400.7	0.0274	0.077	0.535
	2.84	99622	66442	1.50	1421.8	0.0408	0.093	1.113
	3.22	86623	57763	1.50	1022.1	0.0444	0.109	1.436
	2.96	89849	59196	1.52	821.0	0.044	0.125	1.543
5- chloroindol					1921.0	-0.0006	0.013	0.000

PATENT

Express Mail No.: EV 351031291 US

Aluminum	Comonomer	Average	Average	Average	Actual	Yield	Catalyst	Activity
"Activator"	Incorporation	Mw	Mn	PDI	Quench		Micromoles	g.Pol./ μmol.
			,		Time			Cat.hr)
yl-Al								
					2401.1	-0.0007	0.029	0.000
					1642.1	0.0002	0.045	0.010
					2401.9	0.0144	0.061	0.355
	2.73	87550	57859	1.51	2401.1	0.0303	0.077	0.592
	3.64	91305	61573	1.48	1488.3	0.0388	0.093	1.011
	3.12	81885	54488	1.50	1022.7	0.0416	0.109	1.344
	3.24	82966	55954	1.48	792.4	0.0411	0.125	1.494

[00392] In the following non-limiting examples 22-25: carbazole was purchased from Aldrich and used as received; anhydrous toluene and pentane were purchased from Aldrich and dried overnight over a sodium potassium alloy; and (1,3-MeBuCp)₂Zr-Me₂, 20 wt% solution in toluene was purchased from Norquay Single-Site Catalysts and used as received.

EXAMPLE 22:

[00393] Carbazole (0.5 grams) was combined with triethylaluminum (0.114 grams) in toluene (40 mls). Ethane evolution from the solution was observed. The solution was left overnight at 100 C with a slow nitrogen purge. Yellow crystals grew from the solution.

[00394] Single crystals of [NC₁₂H₈]₄Al(H) were subjected to X-rays by Victor Day at Crystalytics, located in Lincoln, Nebraska. The X-ray structure determination revealed a neutral four-coordinate aluminum center. An ORTEP of the structure is displayed in Figure 2a and a ball and stick perspective drawing of the solid-state structure is shown in Figure 2b. Atomic Coordinates for Nonhydrogen Atoms are listed in Table 13, and Anisotropic Thermal Parameters are listed in Table 14. Atomic Coordinates for Hydrogen Atoms are listed in Table 15. Selected bond lengths and bond angles are listed in Tables 16 and 17, respectively. Torsion angles are listed in Table 18.

Table 13. Atomic Coordinates for Nonhydrogen Atoms in Crystalline [00395] $[NC_{12}H_8]_3A1[HNC_{12}H_8] \cdot C_6H_5CH_3^a$

Atom	Fraction Coord	linates	Equivalent Isot	Equivalent Isotropic Thermal Parameter,			
Type ^b	10^4 x	10 ⁴ y	10^4 z	U, $Å^2 \times 10^{3c}$			
A1	2734(2)	2086(1)	1059(1)	51(1)			
N_1	2047(4)	1431(3)	777(2)	51(2)			
N ₂	3378(4)	2628(3)	638(2)	53(2)			
N3	3366(4)	1651(3)	1540(2)	58(2)			
N4	1951(4)	2797(3)	1352(2)	45(2)			
C_1	2304(5)	988(4)	403(3)	45(2)			
C_2	3016(5)	1055(4)	79(2)	49(2) ^d			
C ₃	3142(5)	558(4)	-280(3)	60(2) ^d			
C ₄	2581(5)	0(4)	-307(3)	64(2) ^d			
C ₅	1897(5)	-83(4)	14(3)	64(2) ^d			
C_6	1765(5)	413(4)	374(3)	48(2)			
C ₇	1121(5)	478(4)	752(3)	49(2)			
C ₈	432(5)	83(4)	902(3)	65(2) ^d			
C ₉	-79(5)	283(4)	1287(3)	62(2) ^d			
C ₁₀	95(5)	893(4)	1523(3)	60(2) ^d			
C ₁₁	787(5)	1306(4)	1381(3)	59(2) ^d			
C ₁₂	1304(5)	1110(4)	986(3)	45(2)			
C ₂₁	3167(5)	2794(3)	152(3)	48(2)			
C_{22}	2396(5)	2646(4)	-96(3)	57(2) ^d			
C_{23}	2328(5)	2898(4)	-571(3)	67(2) ^d			
C ₂₄	3022(5)	3257(4)	-780(3)	65(2) ^d			
C ₂₅	3784(5)	3379(4)	-547(3)	62(2) ^d			
C ₂₆	3861(6)	3152(4)	-65(3)	53(2)			
C ₂₇	4528(5)	3232(4)	294(3)	54(2)			
C_{28}	5352(5)	3523(4)	297(3)	64(2) ^d			
C ₂₉	5848(5)	3533(4)	709(3)	69(3) ^d			
C ₃₀	5530(5)	3250(4)	1136(3)	65(2) ^d			
C ₃₁	4712(5)	2943(3)	1149(3)	55(2) ^d			
C_{32}	4221(5)	2918(4)	731(3)	53(2)			

Atom	Fraction Coord	nates	Equivalent Isotropic Thermal Parameter			
Type ^b	10^4 x	10 ⁴ y	10 ⁴ z	U, Å ² x 10 ^{3c}		
C ₄₁	4131(5)	1265(40	1436(3)	52(2)		
C ₄₂	4681(5)	1289(4)	1027(3)	67(3) ^d		
C ₄₃	5410(5)	870(4)	1009(3)	66(2) ^d		
C ₄₄	5588(5)	424(4)	1400(3)	70(2) ^d		
C ₄₅	5061(5)	386(4)	1797(3)	75(3) ^d		
C ₄₆	4319(5)	793(4)	1818(3)	59(2)		
C ₄₇	3645(6)	880(4)	2167(3)	56(2)		
C ₄₈	3459(5)	554(4)	2608(3)	65(2) ^d		
C ₄₉	2728(5)	756(4)	2862(3)	79(3) ^d		
C ₅₀	2182(5)	1279(4)	2711(3)	75(3) ^d		
C ₅₁	2362(5)	1612(4)	2265(3)	68(2) ^d		
C ₅₂	3092(5)	1406(4)	1994(3)	57(2)		
C ₆₁	2450(5)	3371(4)	1571(3)	48(2)		
C ₆₂	3028(5)	3339(4)	1954(3)	55(2)		
C ₆₃	3393(5)	3954(5)	2103(3)	62(2)		
C ₆₄	3181(6)	4569(4)	1887(3)	68(3)		
C ₆₅	2607(5)	4595(4)	1506(3)	59(2)		
C ₆₆	2244(5)	3978(4)	1342(3)	48(2)		
C ₆₇	1583(5)	3849(4)	969(3)	46(2)		
C ₆₈	1134(6)	4262(4)	655(3)	59(2)		
C ₆₉	481(6)	3984(4)	361(3)	66(3)		
C ₇₀	293(5)	3280(4)	388(3)	58(2)		
C ₇₁	740(5)	2864(4)	708(3)	52(2)		
C ₇₂	1402(5)	3146(4)	988(3)	43(2)		
	Tolue	ne Solvent Molecule o	f Crystallization			
C _{IS}	4404(10)	3102(8)	3155(4)	104(4)		
C_{2S}	4363(8)	2515(6)	2896(5)	99(4)		
C_{3S}	5001(11)	2388(6)	2554(5)	101(4)		
C_{4S}	5656(9)	2844(10)	2482(5)	127(5)		
C_{5S}	5712(11)	3456(11)	2746(7)	151(8)		

PATENT

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

Atom	Fraction Coord	inates	Equivalent Isotropic Thermal Parameter,			
Type ^b	10 ⁴ x	10 ⁴ y	10^4 z	$U, \text{Å}^2 \times 10^{3c}$		
C _{6S}	5062(13)	3546(7)	3081(6)	134(7)		
C_{7S}	3634(9)	3235(6)	3518(4)	172(5)		

a The numbers in parentheses are the estimated standard deviations in the last significant digit.

b Atoms are labeled in agreement with Figure 2A.

c This is one-third of the trace of the orthogonalized Uij tensor.

d This atom was included in the structural model with an isotropic thermal parameter and this is its final refined value.

PATENT

Table 14. Anisotropic Thermal Parameters for Nonhydrogen Atoms in [00396] Crystalline [NC₁₂H₈]₃A1[HNC₁₂H₈] · C₆H₅CH₃^{a,b}

Atom			opic Thermal Pa	(10°)		
Туре с	U _{II}	U ₂₂	U ₃₃	U ₂₃ .	U ₁₃	U ₁₂
Al	59(2)	41(1)	53(2)	0(1)	4(1)	5(1)
N_1	67(5)	32(4)	53(4)	-5(4)	10(4)	-3(4)
N_2	63(5)	44(4)	52(5)	5(4)	4(4)	-1(4)
N_3	55(5)	53(4)	65(5)	9(4)	-4(4)	16(4)
N ₄	52(5)	34(4)	47(5)	1(4)	-3(4)	0(4)
C_1	50(5)	27(4)	57(6)	5(4)	0(4)	5(4)
C_6	64(6)	26(5)	55(6)	6(4)	9(5)	8(4)
C ₇	55(6)	41(5)	52(6)	13(5)	12(5)	0(4)
C ₁₂	58(6)	25(5)	52(6)	3(4)	3(5)	5(4)
C_{21}	62(6)	28(5)	55(6)	4(4)	10(5)	6(4)
C_{26}	65(6)	34(5)	60(7)	-3(5)	15(5)	4(4)
C ₂₇	54(6)	39(5)	70(7)	-2(5)	6(5)	0(4)
C_{32}	67(7)	27(5)	64(7)	2(5)	4(5)	6(4)
C ₄₁	62(6)	34(5)	58(6)	3(5)	-18(5)	2(4)
C ₄₆	60(6)	56(6)	61(7)	-3(5)	-3(5)	-7(5)
C ₄₇	76(7)	42(6)	51(6)	5(5)	-14(5)	-14(5)
C ₅₂	71(7)	52(6)	49(6)	4(5)	5(5)	-9(5)
C ₆₁	66(6)	29(5)	49(6)	7(4)	1(5)	2(4)
C_{62}	61(6)	53(6)	50(6)	7(5)	-4(5)	0(5)
C ₆₃	64(6)	52(6)	69(7)	-12(6)	-6(5)	-12(5)
C ₆₄	88(7)	35(6)	82(7)	-7(6)	1(6)	-6(5)
C ₆₅	69(7)	51(6)	56(6)	9(5)	-3(5)	-5(5)
C ₆₆	58(6)	35(5)	51(6)	-2(5)	12(5)	-7(5)
C ₆₇	51(6)	32(5)	54(6)	7(5)	10(5)	5(4)
C ₆₈	74(7)	43(6)	60(6)	15(5)	9(5)	-4(5)
C_{69}	73(7)	62(7)	62(7)	12(5)	-7(5)	22(5)
C ₇₀	62(6)	50(6)	62(6)	9(5)	. 2(5)	10(5)
C ₇₁	61(6)	42(5)	53(6)	1(5)	0(5)	0(5)
C ₇₂	55(6)	33(5)	41(5)	2(4)	9(4)	9(4)

PATENT

Express Mail No.: EV 351031291 US

Atom		Anisotropic Thermal Parameters ($Å^2 \times 10^3$)					
Type ^c	U ₁₁	U ₂₂	· U ₃₃	U ₂₃	U ₁₃	U ₁₂	
	,	Toluene Solv	ent Molecule of	f Crystallizatio	n		
C _{1S}	168(14)	65(9)	79(9)	-11(8)	-34(8)	34(9)	
C_{2S}	121(11)	60(9)	116(11)	13(8)	-46(9)	6(7)	
C_{3S}	125(12)	72(9)	106(11)	-17(8)	-57(9)	10(9)	
C_{4S}	106(12)	138(13)	137(13)	39(12)	-52(9)	15(11)	
C _{5S}	131(16)	116(15)	210(20)	56(15)	-114(14)	-20(14)	
C_{6S}	200(20)	42(8)	162(17)	31(10)	-125(14)	-35(12)	
C _{7S}	257(17)	140(11)	119(11)	18(10)	-38(12)	35(11)	

a The numbers in parentheses are the estimated standard deviations in the last significant digit.

b The form of the anisotropic thermal parameter is: $\exp[-2_{\Pi}^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*)].$

c Atoms are labeled in agreement with Figure 2A.

[00397]
 Table 15. Atomic
 Coordinates
 Hydrogen Crystalline for Atoms in $[NC_{12}H_{8}]_{3}A1[HNC_{12}H_{8}] \cdot C_{6}H_{5}CH_{3}{}^{a}$

Atom		Fracti	onal Coordinates	
Гуре ^в	10 ⁴ x	10 ⁴ y	10 ⁴ z	
	H _{4N} ^c	1550(30)	2540(30)	1554(18)
	H_2	3406	1432	105
	H_3	3609	604	-504
	H_4	2672	-332	-552
	H_5	1521	-469	-8
	H_8	306	-333	738
	H ₉	-552	3	1392
	H_{10}	-265	1031	1787
	H_{11}	909	1718	1549
	H ₂₂	1939	2387	48
	H ₂₃	1806	2823	-751
	H ₂₄	2954	3423	-1101
	H ₂₅	4253	3610	-703
	H_{28}	5579	3719	9
	H ₂₉	6415	3734	704
	H_{30}	5877	3268	1421
	H ₃₁	4494	2752	1441
	H_{42}	4553	1589	766
	H ₄₃	5790	881	737
	H ₄₄	6093	142	1384
	H_{45}	5200	85	2055
	H_{48}	3830	203	2728
	H_{49}	2592	526	3155
	H ₅₀	1694	1413	2902
	H ₅₁	1993	1969	2152
	H ₆₂	3168	2919	2108
	H ₆₃	3803	3952	2362
	H ₆₄	3437	4979	2004
	H ₆₅	2460	5017	1357
	H ₆₈	1267	4735	637

PATENT

Express Mail No.: EV 351031291 US

tom		Fractional Coordinates					
ype ^b	10 ⁴ x	10 ⁴ y	10 ⁴ z				
	H ₆₉	165	4268	144			
	H ₇₀	-145	3090	184			
	H ₇₁	597	2393	736			
	Tol	uene Solvent Molecule	e of Crystallization				
	H_{2S}	3903	2197	2949			
	H_{3S}	4981	1980	2368			
	H_{4S}	6091	2748	2246			
	H_{5S}	6165	3781	2696			
(H_{6S}	5076	. 3948	3273			
	H_{7Sa}	3242	2838	3523			
	H_{7Sb}	3305	3640	3416			
	H _{7Sc}	3873	3309	3843			

- a The carbazolyl amine proton (H_{4N}) was located from a difference Fourier syntheses and refined as an independent isotropic atom. The remaining hydrogen atoms were included in the structural model as fixed atoms (using idealized sp² or sp³ –hybridized geometry and C-H bond lengths of 0.95-0.98 Å) "riding" on their respective carbons. The isotropic thermal parameter of H_{4N} refined to a final U_{iso} value of 0.06(2) Å2. The isotropic thermal parameters of all remaining hydrogen atoms were fixed at values 1.2 (nonmethyl) or 1.5 (methyl) times the equivalent isotropic thermal parameter of the carbon atom to which they are covalently bonded.
- b Hydrogen atoms bonded to carbon are labeled with the same numerical and literal subscript(s) as their carbon atoms and carry an additional literal subscript (a, b or c) where necessary to distinguish between hydrogens bonded to the same carbon.
- c The numbers in parentheses are the estimated standard deviations in the last significant digit.

Table 16. Bond Lengths in Crystalline $[NC_{12}H_8]_3A1[HNC_{12}H_8] \cdot C_6H_5CH_3^a$ [00398]

		·	
Type ^b	Length, Á	Type ^b	Length, Å
A1-N ₁	1.831(6)	N ₁ -C ₁	1.406(8)
A1-N ₂	1.856(6)	N_1-C_{12}	1.419(8)
A1-N ₃	1.852(6)	N_2 - C_{21}	1.418(8)
		N_2 - C_{32}	1.429(8)
A1-N ₄	2.006(6)	N_3 - C_{41}	1.418(8)
		N_3 - C_{52}	1.407(8)
N ₄ -C ₆₁	1.485(8)		
N ₄ -C ₇₂	1.476(8)	N_4 - H_{4N}	0.97(2)
6.6	1.412(0)	0.0	1.411/10)
C_1 - C_2	1.413(9)	C_{41} - C_{42}	1.411(10)
C_1 - C_6	1.397(9)	C ₄₁ -C ₄₆	1.432(9)
C ₂ -C ₃	1.403(8)	C ₄₂ -C ₄₃	1.384(9)
C ₃ -C ₄	1.390(9)	C ₄₃ -C ₄₄	1.413(9)
C_4 - C_5	1.380(9)	C ₄₄ -C ₄₅	1.363(9)
C ₅ -C ₆	1.407(9)	C ₄₅ -C ₄₆	1.386(9)
C ₆ -C ₇	1.439(9)	C ₄₆ -C ₄₇	1.420(10)
C ₇ -C ₈ C ₇ -C ₁₂	1.369(9) 1.423(9)	C_{47} - C_{48}	1.406(9) 1.414.(9)
		C_{47} - C_{52}	
C ₈ -C ₉	1.379(8) 1.388(8)	C ₄₈ -C ₄₉ ·	1.376(9)
C_9 - C_{10} C_{10} - C_{11}		C ₄₉ -C ₅₀	1.386(9) 1.421(9)
	1.386(8)	C_{50} - C_{51}	
C_{11} - C_{12}	1.401(9) 1.392(9)	C_{51} - C_{52}	1.401(9) 1.380(9)
C_{21} - C_{22}	1.392(9)	C_{61} - C_{62} C_{61} - C_{66}	1.382(8)
C_{21} - C_{26}			1.390(9)
C_{22} - C_{23}	1.407(9)	C ₆₂ -C ₆₃	
C_{23} - C_{24}	1.395(9)	C ₆₃ -C ₆₄	1.382.(9)
C_{24} - C_{25}	1.351(9)	C ₆₄ -C ₆₅	1.372(9)
C ₂₅ -C ₂₆	1.409(9)	C ₆₅ -C ₆₆	1.404(9)
C_{26} - C_{27}	1.432(10)	C_{66} - C_{67}	1.463(9)

PATENT

Express Mail No.: EV 351031291 US

Type ^b	Length, Å	Type ^b	Length, Å	
C ₂₇ -C ₂₈	1.381(9)	C ₆₇ -C ₆₈	1.372(9)	
C_{27} - C_{32}	1.432(9)	C ₆₇ -C ₇₂	1.405(8)	
C_{28} - C_{29}	1.367(9)	C ₆₈ -C ₆₉	1.396(9)	
C_{29} - C_{30}	1.391(9)	C ₆₉ -C ₇₀	1.411(9)	
C_{30} - C_{31}	1.385(9)	C ₇₀ -C ₇₁	1.384(9)	
C_{31} - C_{32}	1.379(9)	C_{71} - C_{72}	1.386(9)	
	Toluene Solve	nt Molecule of Crystallizat	ion	
C_{1S} - C_{2S}	1.356(13)	C_{4S} - C_{5S}	1.405(17)	
C_{1S} - C_{6S}	1.344(16)	C _{5S} -C _{6S}	1.368(18)	
C_{2S} - C_{3S}	1.379(13)			
C_{3S} - C_{4S}	1.355(14)	C_{1S} - C_{7S}	1.567(15)	

a The numbers in parentheses are the estimated standard deviations in the last significant digit.

b Atoms are labeled in agreement with Figure 2A.

Table 17. Bond Angles in Crystalline [NC₁₂H₈]₃A1[HNC₁₂H₈] · C₆H₅CH₃^a [00399]

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)
N ₁ A1N ₂	115.9(3)	C ₁ N ₁ A1	125.9(5)
N_1A1N_3	106.3(3)	$C_{12}N_1A1$	126.5(5)
N_1A1N_4	108.5(3)	$C_1N_1C_{12}$	104.4(6)
N_3A1N_2	116.0(3)	$C_{21}N_2A1$	127.2(6)
N_2A1N_4	99.9(3)	$C_{32}N_2A1$	126.2(6)
N_3A1N_4	109.8(3)	$C_{21}N_2C_{32}$	106.4(6)
		$C_{41}N_3A1$	121.8(6)
$C_{61}N_4A1$	112.6(4)	$C_{52}N_3A1$	130.0(6)
$C_{72}N_4A1$	112.6(4)	$C_{52}N_3C_{41}$	104.1(6)
$C_{72}N_4C_{61}$	102.6(6)		
		$C_{61}N_4H_{4N}$	119(4)
$A1N_4H_{4N}$	105(4)	$C_{72}N_4H_{4N}$	106(4)
			· ·
$N_1C_1C_2$	128.5(7)	$C_{42}C_{41}N_3$	129.4(8)
$C_6C_1N_1$	112.0(6)	$N_3C_{41}C_{46}$	111.1(7)
$C_6C_1C_2$	119.4(7)	$C_{42}C_{41}C_{46}$	119.6(8)
$C_3C_2C_1$	119.3(7)	$C_{43}C_{42}C_{41}$	119.1(8)
$C_4C_3C_2$	120.0(7)	$C_{42}C_{43}C_{44}$	119.6(8)
$C_5C_4C_3$	121.6(8)	$C_{45}C_{44}C_{43}$	122.5(8)
$C_4C_5C_6$	118.8(7)	$C_{44}C_{45}C_{46}$	118.9(8)
$C_1C_6C_5$	120.9(7)	$C_{45}C_{46}C_{41}$	120.3(8)
$C_1C_6C_7$	106.8(7)	$C_{47}C_{46}C_{41}$	106.1(7)
$C_5C_6C_7$	132.3(8)	$C_{45}C_{46}C_{47}$	133.5(9)
$C_8C_7C_6$	133.8(8)	$C_{48}C_{47}C_{46}$	133.0(9)
$C_{12}C_{7}C_{6}$	105.8(6)	$C_{52}C_{47}C_{46}$	106.9(7)
$C_8C_7C_{12}$	120.3(7)	$C_{48}C_{47}C_{52}$	120.2(9)
$C_7C_8C_9$	120.5(8)	$C_{49}C_{48}C_{47}$	118.5(8)
$C_8C_9C_{10}$	120.0(8)	$C_{48}C_{49}C_{50}$	123.1(8)
$C_9C_{10}C_{11}$	121.0(8)	$C_{49}C_{50}C_{51}$	119.0(8)
$C_{10}C_{11}C_{12}$	119.4(8)	$C_{52}C_{51}C_{50}$	119.0(8)

PATENT

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
N ₁ C ₁₂ C ₇	110.9(6)	N ₃ C ₅₂ C ₄₇	111.8(7)	
$C_{11}C_{12}N_1$	130.2(7)	$C_{51}C_{52}N_3$	127.9(8)	
$C_{11}C_{12}C_{7}$	118.8(7)	$C_{51}C_{52}C_{47}$	120.3(8)	
$C_{22}C_{21}N_2$	127.7(7)	$C_{62}C_{61}N_4$	127.2(7)	
$C_{26}C_{21}N_2$	110.4(7)	$C_{66}C_{61}N_4$	110.3(7)	
$C_{22}C_{21}C_{26}$	121.9(8)	$C_{62}C_{61}C_{66}$	122.4(7)	
$C_{21}C_{22}C_{23}$	116.8(7)	$C_{61}C_{62}C_{63}$	116.3(7)	
$C_{24}C_{23}C_{22}$	120.4(8)	$C_{64}C_{63}C_{62}$	122.2(8)	
$C_{25}C_{24}C_{23}$	123.1(8)	$C_{65}C_{64}C_{63}$	120.9(8)	
$C_{24}C_{25}C_{26}$	117.7(8)	$C_{64}C_{65}C_{66}$	117.9(8)	
$C_{21}C_{26}C_{25}$	120.0(8)	$C_{61}C_{66}C_{65}$	120.2(8)	
$C_{21}C_{26}C_{27}$	107.0(7)	$C_{61}C_{66}C_{67}$	109.3(7)	
$C_{25}C_{26}C_{27}$	132.9(8)	$C_{65}C_{66}C_{67}$	130.3(8)	
$C_{28}C_{27}C_{26}$	134.1(9)	$C_{68}C_{67}C_{66}$	133.5(8)	
$C_{26}C_{27}C_{32}$	107.8(7)	$C_{72}C_{67}C_{66}$	106.2(7)	
$C_{28}C_{27}C_{32}$	118.1(8)	$C_{68}C_{67}C_{72}$	120.2(8)	
$C_{29}C_{28}C_{27}$	120.9(8)	$C_{67}C_{68}C_{69}$	119.7(8)	
$C_{28}C_{29}C_{30}$	120.6(8)	$_{-}$ C ₆₈ C ₆₉ C ₇₀	119.7(8)	
$C_{31}C_{30}C_{29}$	120.5(8)	$C_{71}C_{70}C_{69}$	120.6(8)	
$C_{32}C_{31}C_{30}$	118.9(8)	$C_{70}C_{71}C_{72}$	118.8(7)	
$N_2C_{32}C_{27}$	108.3(7)	$C_{67}C_{72}N_4$	111.5(7)	
$C_{31}C_{32}N_2$	130.8(8)	$C_{71}C_{72}N_4$	127.5(7)	
$C_{31}C_{32}C_{27}$	120.8(8)	$C_{71}C_{72}C_{67}$	120.9(7)	
	Toluene Solven	t Molecule of Crystallization	on	
$C_{6S}C_{1S}C_{2S}$	120(1)	$C_{4S}C_{3S}C_{2S}$	120(1)	
$C_{2S}C_{1S}C_{7S}$	116(2)	$C_{3S}C_{4S}C_{5S}$	122(2)	
$C_{6S}C_{1S}C_{7S}$	123(2)	$C_{6S}C_{5S}C_{4S}$	115(2)	
$C_{1S}C_{2S}C_{3S}$	119(1)	$C_{1S}C_{6S}C_{5S}$	124(2)	

PATENT

Attorney Docket No.: 2003U02 (UNIV/0016)

Express Mail No.: EV 351031291 US

Type^b Angle, (deg) Type^b Angle, (deg)

a The numbers in parentheses are the estimated standard deviations in the last significant digit.

b Atoms are labeled in agreement with Figure 2A.

Table 18. Torsion Angles in Crystalline [NC $_{12}H_8$] $_3A1$ [HNC $_{12}H_8$] $^{+}$ C $_6H_5CH_3^{a}$ [00400]

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
N ₃ -A1-N ₁ -C ₁	-85.3(6)	C_{29} - C_{30} - C_{31} - C_{32}	0.4(11)	
N_2 -A1- N_1 - C_1	45.3(6)	C_{30} - C_{31} - C_{32} - N_2	178.8(7)	
N_4 -A1- N_1 - C_1	156.6(5)	C_{30} - C_{31} - C_{32} - C_{27}	-3.0(10)	
N_3 -A1- N_1 - C_{12}	71.3(6)	C_{21} - N_2 - C_{32} - C_{31}	176.1(7)	
N ₂ -A1-N ₁ -C ₁₂	-158.2(5)	$A1-N_2-C_{32}-C_{31}$	-8.2(11)	
N ₄ -A1-N ₁ -C ₁₂	-46.8(6)	C_{21} - N_2 - C_{32} - C_{27}	-2.3(7)	
N_1 -A1- N_2 - C_{21}	27.4(6)	A1-N ₂ -C ₃₂ -C ₂₇	173.4(5)	
N_3 -A1- N_2 - C_{21}	153.2(5)	C_{28} - C_{27} - C_{32} - C_{31}	4.0(11)	
N_4 -A1- N_2 - C_{21}	-88.9(6)	C_{26} - C_{27} - C_{32} - C_{31}	-177.1(6)	
N_1 -A1- N_2 - C_{32}	-147.5(5)	C_{28} - C_{27} - C_{32} - N_2	-177.5(6)	
N ₃ -A1-N ₂ -C ₃₂	-21.7(6)	C_{26} - C_{27} - C_{32} - N_2	1.5(8)	
N ₄ -A1-N ₂ -C ₃₂	96.2(6)	C_{52} - N_3 - C_{41} - C_{42}	179.5(7)	
N_1 -A1- N_3 - C_{52}	-73.3(7)	A1-N ₃ -C ₄ 1-C ₄₂	20.1(10)	
N ₂ -A1-N ₃ -C ₅₂	156.2(6)	C_{52} - N_3 - C_{41} - C_{46}	0.2(8)	
N ₄ -A1-N ₃ -C ₅₂	43.9(7)	A1-N ₃ -C ₄₁ -C ₄₆	-159.3(5)	
N ₁ -A1-N ₃ -C ₄₁	80.3(6)	N ₃ -C ₄₁ -C ₄₂ -C ₄₃	178.5(7)	
N ₂ -A1-N ₃ -C ₄₁	-50.2(6)	C_{46} - C_{41} - C_{42} - C_{43}	-2.1(11)	
N ₄ -A1-N ₃ -C ₄₁	-162.5(5)	C_{41} - C_{42} - C_{43} - C_{44}	0.3(11)	
N ₁ -A1-N ₄ -C ₇₂	-61.9(6)	C_{42} - C_{43} - C_{44} - C_{45}	0.5(11)	
N ₃ -A1-N ₄ -C ₇₂	-177.7(5)	C ₄₃ -C ₄₄ -C ₄₅ -C ₄₆	0.7(12)	
N ₂ -A1-N ₄ -C ₇₂	59.9(5)	C_{44} - C_{45} - C_{46} - C_{47}	-179.9(8)	
N ₁ -A1-N ₄ -C ₆₁	-177.3(5)	C_{44} - C_{45} - C_{46} - C_{41}	-2.5(11)	
N ₃ -A1-N ₄ -C ₆₁	66.8(5)	C_{42} - C_{41} - C_{46} - C_{45}	3.3(11)	
N ₂ -A1-N ₄ -C ₆₁	-55.6(5)	N_3 - C_{41} - C_{46} - C_{45}	-177.3(7)	
C_{12} -N1- C_1 - C_6	-0.6(8)	C_{42} - C_{41} - C_{46} - C_{47}	-178.7(7)	
$A1-N_1-C_1-C_6$	160.1(5)	N ₃ -C ₄₁ -C ₄₆ -C ₄₇	0.8(8)	
C_{12} - N_1 - C_1 - C_2	-179.2(7)	C_{45} - C_{46} - C_{47} - C_{48}	-4.4(16)	
$A1-N_1-C_1-C_2$	-18.5(10)	C_{41} - C_{46} - C_{47} - C_{48}	177.9(7)	
$C_6-C_1-C_2-C_3$	3.2(10)	C_{45} - C_{46} - C_{47} - C_{52}	176.3(8)	
N_1 - C_1 - C_2 - C_3	-178.2(6)	C_{41} - C_{46} - C_{47} - C_{52}	-1.4(8)	
$C_1 - C_2 - C_3 - C_4$	-1.6(10)	C_{52} - C_{47} - C_{48} - C_{49}	0.5(11)	

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)
C ₂ -C ₃ -C ₄ -C ₅	-0.2(11)	C ₄₆ -C ₄₇ -C ₄₈ -C ₄₉	-178.7(8)
C_3 - C_4 - C_5 - C_6	0.3(11)	C_{47} - C_{48} - C_{49} - C_{50}	-2.0(12)
N_1 - C_1 - C_6 - C_5	178.1(6)	C_{48} - C_{49} - C_{50} - C_{51}	2.1(12)
C_2 - C_1 - C_6 - C_5	-3.1(10)	C_{49} - C_{50} - C_{51} - C_{52}	-0.6(11)
N_1 - C_1 - C_6 - C_7	-0.3(8)	C_{50} - C_{51} - C_{52} - N_3	177.6(7)
C_2 - C_1 - C_6 - C_7	178.5(6)	C_{50} - C_{51} - C_{52} - C_{47}	-0.8(11)
C_4 - C_5 - C_6 - C_1	1.3(10)	C_{41} - N_3 - C_{52} - C_{51}	-179.7(7)
C ₄ -C ₅ -C ₆ -C ₇	179.3(7)	$A1-N_3-C_{52}-C_{51}$	-22.6(12)
C ₁ -C ₆ -C ₇ -C ₈	-180.0(8)	C_{41} - N_3 - C_{52} - C_{47}	-1.1(8)
C ₅ -C ₆ -C ₇ -C ₈	1.8(14)	A1-N ₃ -C ₅₂ -C ₄₇	156.0(5)
C ₁ -C ₆ -C ₇ -C ₁₂	1.0(8)	C_{48} - C_{47} - C_{52} - C_{51}	0.9(11)
C ₅ -C ₆ -C ₇ -C ₁₂	-177.1(7)	C_{46} - C_{47} - C_{52} - C_{51}	-179.7(7)
C_{12} - C_7 - C_8 - C_9	-1.5(11)	C_{48} - C_{47} - C_{52} - N_3	-177.8(6)
C ₆ -C ₇ -C ₈ -C ₉	179.6(7)	C_{46} - C_{47} - C_{52} - N_3	1.6(9)
C ₇ -C ₈ -C ₉ -C ₁₀	0.8(11)	C_{72} - N_4 - C_{61} - C_{62}	175.8(7)
C_8 - C_9 - C_{10} - C_{11}	-0.7(11)	$A1-N_4-C_{61}-C_{62}$	-62.9(9)
C_9 - C_{10} - C_{11} - C_{12}	1.4(11)	C_{72} - N_4 - C_{61} - C_{66}	-2.7(7)
C_{10} - C_{11} - C_{12} - N_1	-178.7(7)	A1-N ₄ -C ₆₁ -C ₆₆	118.6(5)
C_{10} - C_{11} - C_{12} - C_{7}	-2.1(10)	C_{66} - C_{61} - C_{62} - C_{63}	0.3(11)
$C_1-N_1-C_{12}-C_{11}$	178.1(7)	N_4 - C_{61} - C_{62} - C_{63}	-178.0(6)
A1-N ₁ -C ₁₂ -C ₁₁	17.6(11)	C_{61} - C_{62} - C_{63} - C_{64}	1.2(11)
$C_1-N_1-C_{12}-C_7$	1.2(8)	C_{62} - C_{63} - C_{64} - C_{65}	-1.3(12)
A1-N ₁ -C ₁₂ -C ₇	-159.3(5)	C_{63} - C_{64} - C_{65} - C_{66}	-0.1(12)
C_8 - C_7 - C_{12} - C_{11}	2.2(11)	C_{62} - C_{61} - C_{66} - C_{65}	-1.7(11)
C_6 - C_7 - C_{12} - C_{11}	-178.7(6)	N_4 - C_{61} - C_{66} - C_{65}	176.9(6)
C_8 - C_7 - C_{12} - N_1	179.4(6)	C_{62} - C_{61} - C_{66} - C_{67}	-177.1(7)
C ₆ -C ₇ -C ₁₂ -N ₁	-1.4(8)	N ₄ -C ₆₁ -C ₆₆ -C ₆₇	1:5(8)
C_{32} - N_2 - C_{21} - C_{22}	-177.2(7)	C_{64} - C_{65} - C_{66} - C_{61}	1.5(11)
A1-N ₂ -C ₂₁ -C ₂₂	7.2(10)	C_{64} - C_{65} - C_{66} - C_{67}	175.8(8)
C_{32} - N_2 - C_{21} - C_{26}	2.3(7)	C ₆₁ -C ₆₆ -C ₆₇ -C ₆₈	177.3(8)
A1-N ₂ -C ₂₁ -C ₂₆	-173.4(5)	C ₆₅ -C ₆₆ -C ₆₇ -C ₆₈	2.5(14)
C_{26} - C_{21} - C_{22} - C_{23}	-2.6(10)	C_{61} - C_{66} - C_{67} - C_{72}	0.5(8)
N_2 - C_{21} - C_{22} - C_{23}	176.8(6)	C65-C66-C ₆₇ -C ₇₂	-174.3(7)
C_{21} - C_{22} - C_{23} - C_{24}	2.1(10)	C72-C67-C ₆₈ -C ₆₉	1.5(11)

PATENT

Express Mail No.: EV 351031291 US

Type ^b	Angle, (deg)	Type ^b	Angle, (deg)	
C ₂₂ -C ₂₃ -C ₂₄ -C ₂₅	0.4(11)	C66-C67-C ₆₈ -C ₆₉	-175.0(8)	
C_{23} - C_{24} - C_{25} - C_{26}	-2.4(11)	C67-C68-C ₆₉ -C ₇₀	-0.4(12)	
C_{22} - C_{21} - C_{26} - C_{25}	0.7(11)	C68-C69-C ₇₀ -C ₇₁	1.0(11)	
N ₂ -C ₂₁ -C ₂₆ -C ₂₅	-178.8(6)	C_{69} - C_{70} - C_{71} - C_{72}	-2.6(11)	
C_{22} - C_{21} - C_{26} - C_{27}	178.1(6)	C-70-C71-C72-C67	3.7(11)	
N ₂ -C ₂₁ -C ₂₆ -C ₂₇	-1.4(8)	C_{70} - C_{71} - C_{72} - N_4	179.5(6)	
C_{24} - C_{25} - C_{26} - C_{21}	1.9(10)	C_{68} - C_{67} - C_{72} - C_{71}	-3.2(11)	
C_{24} - C_{25} - C_{26} - C_{27}	-174.8(7)	C_{66} - C_{67} - C_{72} - C_{71}	174.2(6)	
C_{21} - C_{26} - C_{27} - C_{28}	178.6(8)	C ₆₈ -C ₆₇ -C ₇₂ -N ₄	-179.6(6)	
C_{25} - C_{26} - C_{27} - C_{28}	-4.4(15)	C ₆₆ -C ₆₇ -C ₇₂ -N ₄	-2.3(8)	
C_{21} - C_{26} - C_{27} - C_{32}	-0.1(8)	C_{61} - N_4 - C_{72} - C_{71}	-173.1(7)	
C_{25} - C_{26} - C_{27} - C_{32}	176.9(7)	A1-N ₄ -C ₇₂ -C ₇₁	65.6(8)	
C_{26} - C_{27} - C_{28} - C_{29}	179.0(8)	C_{61} - N_4 - C_{72} - C_{67}	3.0(7)	
C_{32} - C_{27} - C_{28} - C_{29}	-2.4(11)	A1-N ₄ -C ₇₂ -C ₆₇	-118.3(5)	
C_{27} - C_{28} - C_{29} - C_{30}	-0.1(12)	C_{28} - C_{29} - C_{30} - C_{31}	1.2(11)	

a The numbers in parentheses are the estimated standard deviations in the last significant digit.

Polymerizations

Polymerizations were performed in a glass-lined 20-milliliter autoclave reactor equipped with a mechanical stirrer, an external heater for temperature control, a septum inlet and a regulated supply of dry nitrogen and ethylene in an inert atmosphere (Nitrogen) glove box. The reactor was dried and degassed thoroughly at 115 °C. The diluent and comonomer were added at room temperature and atmospheric pressure. The reactor was then brought to process pressure and charged with ethylene while stirring at 800 RPM. The activator and catalyst were added via syringe with the reactor at process conditions. The polymerization was continued while maintaining the reaction vessel within 3 °C of the target process temperature and 5 psig of target process pressure (by automatic addition of ethylene on demand) until a fixed uptake of ethylene was noted (corresponding to ca. 0.15 g polymer) or until a maximum reaction time of 20 minutes had passed. The reaction was stopped by

b Atoms are labeled in agreement with Figure 2A.

pressurizing the reactor to 30 psig above the target process pressure with a gas mixture composed of 5 mol% Oxygen in Argon. The polymer was recovered by vacuum centrifugation of the reaction mixture. Bulk polymerization activity was calculated by dividing the yield of polymer by the total weight of the catalyst charge by the time in hours and by the absolute monomer pressure in atmospheres. The specific polymerization activity was calculated by dividing the yield of polymer by the total number of \Box moles of transition metal contained in the catalyst charge by the time in hours.

EXAMPLE 23:

[00402] Me₂Si(4-Ph,2-MeInd)₂ZrMe₂ was reacted with [NC₁₂H₈]₄Al(H) in a ratio of 1:3 and left at room temperature for one day. Table 19 depicts the ethylene-octene copolymerization data.

EXAMPLE 24:

[00403] $Me_2Si(Ind)_2Zr(CH_3)_2$ was reacted with $[NC_{12}H_8]_4Al(H)$ in a ratio of 1:3 and left at room temperature for one day. Table 19 depicts the ethylene-octene copolymerization data.

EXAMPLE 25:

[00404] (1,3-MeBuCp)₂Zr-Me₂ was reacted with [NC₁₂H₈]₄Al(H) in a ratio of 1:3 and left at room temperature for one day. Table 19 depicts the ethylene-octene copolymerization data.

PATENT

[00405] Polymerizations Me₂Si(4-Ph,2-MeInd)₂ZrMe₂, Table 19. EO via $Me_{2}Si(Ind)_{2}Zr(CH_{3})_{2}\ \&\ (1,3-MeBuCp)_{2}Zr-Me_{2}\ /\ [NC_{12}H_{8}]_{4}Al(H).$

Catalyst	Comonomer	Average	Average	Average	Actual	Yield	Catalyst	Activity
	Incorporation	Mw	Mn	PDI	Quench		Micromoles	(g.Pol./μmol.
					Time			Cat.hr)
EX23: Me ₂ Si(4-					2400.6	0	0.0125	0
Ph,2-								
$MeInd)_2ZrMe_2$								
					2400.15	0.004	0.0286	0.209
•	21.7	431054	276319	1.56	851.4	0.059	0.0446	5.58
	21.7	403912	256802	1.57	365.84	0.082	0.0607	13.37
	23.2	382385	244384	1.56	327.84	0.089	0.0768	12.8
	24.2	355829	222995	1.60	278.66	0.096	0.0929	13.4
	24.1	330292	209431	1.58	257	0.103	0.1089	13.2
	23.8	330891	210577	1.57	223.4	0.099	0.125	12.8
EX 24:					2400.89	0	0.0125	0
$Me_2Si(Ind)_2Zr-$								
$(CH_3)_2$								
					2401.1	0.0023	0.0286	0.120
					2400.99	0.013	0.0446	0.456
	8.65	107014	73534	1.46	2401.17	0.040	0.0607	1.00
	9.03	107128	73413	1.46	1560.1	0.043	0.0768	1.29
	8.58	104397	71743	1.46	1205.22	0.046	0.0929	1.50
	9.08	100773	68211	1.48	945.07	0.046	0.1089	1.62
	7.43	100686	68432	1.47	942.13	0.050	0.125	1.55
EX 25: (1,3-					2400.3	0	0.0125	0
MeBuCp)₂Zr-								
Me_2								
					2400.46	0.010	0.0286	0.545
	2.96	194149	132623	1.46	211.42	0.035	0.0446	13.4
	2.54	197887	134989	1.47	235.44	0.055	0.0607	14.0
	3.13	153515	104255	1.47	155.61	0.063	0.0768	19.0
	2.68	138614	93225	1.49	144.78	0.068	0.0929	18.2
	3.31	132623	88875	1.49	109.44	0.075	0.1089	22.8

PATENT

Express Mail No.: EV 351031291 US

Catalyst	Comonomer	Average	Average	Average	Actual	Yield	Catalyst	Activity
	Incorporation	Mw	Mn	PDI	Quench		Micromoles	(g.Pol./μmol.
					Time			Cat.hr)
	3.05	125087	83298	1.50	105.12	0.076	0.125	20.9

Unless otherwise indicated, all numbers expressing quantities of ingredients, properties, reaction conditions, and so forth, used in the specification and claims are to be understood as approximations based on the desired properties sought to be obtained by the present invention, and the error of meausurement, etc., and should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and values setting forth the broad scope of the invention are approximations, the numerical values set forth are reported as precisely as possible.

[00407] All priority documents are herein fully incorporated by reference for all jurisdictions in which such incorporation is permitted. Further, all documents cited herein, including testing procedures, are herein fully incorporated by reference for all jurisdictions in which such incorporation is permitted.

[00408] While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.