

# Language Model in NLP

### What is language model in NLP?



- It is a model which knows our language.
- A model of the probability of a sequence of words.
- It estimates the relative likelihood of different phases and are useful in many NLP applications.
- The goal of probabilistic language model is to calculate the probability of a sentence of sequence of words.

$$P(w)=P(w_1, w_2, w_3, w_4, ..., w_n)$$

• It can be used to find the probability of the next word in the sentence.

$$P(w_s)=P(w_s|w1, w_{2}, w_{3}, w_{4}, ..., w_{s-1})$$

## Language Model







Example: keyboard of Mobile phone

# Advantages of LM



✓ It can predict what words are likely to come next in a text.

Ex: Suggest completions for an email o text message.

✓ Capable to compute more probable alterations to a text

Ex: Suggest spelling or Grammar corrections

✓ With a pair of models, we can compute the most probable translation of sentences.

✓ With some example questions/answer pairs as training data, we can compute the most likely answer to a question.

### Corpus



 corpus is a collection of texts, on which we can perform various natural language processing (NLP) functions.

• In simplest terms, a corpus is a folder of text files on your computer, and corpus readers process all these text files at once, though each file can be called on individually.

#### Feature, Document and Corpus



#### **Feature**

Every unique word in the corpus is considered as a feature.

#### **Document**

A document is a single text data point (a text file, book, blog, article, webpage).

#### **Tokenization**

It is the process of breaking text into pieces (called tokens).

#### Corpus

It a collection of all the documents present in our dataset.

#### **Example:**

Dog hates a cat. It loves to go out and play. Cat loves to play with a ball.

Corpus = "Dog hates a cat. It loves to go out and play. Cat loves to play with a ball."

Documents = [ 1. dog hates a cat.

- 2. it loves to go out and play.
- 3. cat loves to play with a ball. ]

Features= ['and', 'ball', 'cat', 'dog', 'go', 'hates', 'it', 'loves', 'out', 'play', 'to', 'with']

## Types of Language Model



- The bag-of-words model
- N-gram word models
- Other n-gram models
- Smoothing n-gram models
- Word representations
- Parts-of-speech (POS) tagging
- Grammar based Language modelling
- Statistical language modelling



- n-gram : sequence of n words
- 1-gram (Unigram)(having no history word)
- 2-gram (Bigram) (having one history word)
- 3-gram(Trigram) (having three history word)
- N-gram (having n-1 history word)

Example: I am the king

[I] [am] [the] [king]

[I am] [am the] [the king]

[I am the] [am the king]



$$P(w) = \frac{count(w)}{N}$$

Bayes Rule

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Bigram Probability

$$P(w_i|w_{i-1}) = \frac{count(w_{i-1},w_i)}{count(w_{i-1})}$$

• Trigram Probability  $P(w_i|w_{i-2},w_{i-1}) = \frac{count(w_{i-2},w_{i-1},w_i)}{count(w_{i-2},w_{i-1})}$ 

$$=\frac{count(w_{i-2,}w_{i-1},w_i)}{count(w_{i-2}w_{i-1})}$$

#### Corpus

The girl bought a chocolate

The boy ate the chocolate

The girl bought a toy

The girl played with the toy

#### Vocabulary/Feature

{the, girl, bought, a, chocolate, boy, ate, toy, played, with}

N=No of features = 10

#### **Example: For Unigram**

P(the)=0.6

P(girl)=0.3

P(bought)=0.2

P(a) = 0.2

P(chocolate)=0.2

P(boy)=0.1

P(ate)=0.1

P(toy)=0.2

P(played)=0.1

P(with)=0.1





- Input : The
- Output: The girl
- P(girl|the) =  $\frac{count(the,girl)}{count(the)} = \frac{3}{6} = 0.5$
- P(boy|the)=  $\frac{count(the,boy)}{count(the)} = \frac{1}{6} = 0.166$
- Probabilities for our vocabulary for input: The .....

the = 0 girl = 0.5 bought=0 a=0 chocolate =0.166 boy=0.166 ate=0.166 toy=0 played=0 with=0



- Input : The girl
- Output: The girl bought
- P(bought|the,girl) =  $\frac{count(the,girl,bought)}{count(the,girl)} = \frac{2}{3} = 0.67$
- P(played|the,girl) =  $\frac{count(the,girl,played)}{count(the,girl)} = \frac{1}{3} = 0.33$
- Probabilities for our vocabulary for input: The girl ......

```
The = 0
Girl = 0
Bought=0.67
A=0
Chocolate =0
Boy=0
Ate=0
Toy=0
Played=0.33
With=0
```



- Input : The boy
- Output: The boy ate

```
• P(ate|the,boy) = \frac{count(the,boy,ate)}{count(the boy)} = \frac{1}{1} = 1
```

Probabilities for our vocabulary for input: The boy

```
the = 0
girl = 0
bought=0
a=0
chocolate =0
boy=0
ate=1
toy=0
played=0
with=0
```



#### **Disadvantages of N-Grams**

- 1. It has too many features.
- 2. Due to too many features, the feature set becomes too dense and is computationally expensive.
- **3.** Choose the optimal value of N is not that easy task.



# THANK YOU