概述

TM2291是一种红外传感信号处理器,采用CMOS工艺制造,SOP16的封装形式,应用 于热释电红外开关的电路。本产品性能优良,超低功耗,适合电池(干电池、锂电池等) 供电,质量可靠,外围电路简单。

二、 特性说明

- CMOS数模混合专用集成电路
- 具有独立的高输入阻抗运算放大器,可与多种传感器匹配,进行信号预处理
- 双向鉴幅器可有效抑制干扰
- 内设延迟时间定时器和封锁时间定时器,结构新颖,稳定可靠,调节范围宽
- 内置参考电源
- 工作电压范围宽+3V~+5V
- 采用16脚SOP封装
- 超低功耗,静态电流1uA~3uA

三、 管脚定义:

图1 TM2291

- 1 -

TM2291

四、管脚功能定义:

符号	管脚名称	管脚号	说明
A	可重复触发 和不可重复 触发控制端	1	当A="1"时,允许重复触发;当A="0"时,不可重复触发
Vo	控制信号输 出端	2	由VS的上跳变沿触发使Vo从低电平跳变到高电平时有效触发。在输出延迟时间Tx之外和无VS上跳变时Vo为低电平状态
RR1 RC1	输出延迟时 间Tx的调节 端	3~4	输出延时时间公式: Tx≈40000R₁C1
RC2 RR2	触发封销时 间Ti的调节 端	5~6	触发封锁时间公式: Ti≈56R ₂ C ₂
VSS	工作电源负 极	7	一般接0V
VRF/ RESET	参考电压及复位输入端	8	一般接VDD,接"0"时可使定时器复位
VC	触发禁止端	9	当Vc〈V _R 时,禁止触发;当Vc〉V _R 时,允许 触发
IB	运算放大器 偏置电流设 置端	10	经RB接VSS端,RB取值为1MΩ左右
VDD	工作电源正端	11	范围为3~5V
20UT	第二级运算 放大器的输 出端	12	可并联接上10MΩ电阻和10nF电容,再接 入第二级运算放大器的反相输入端
2IN-	第二级运算 放大器的反 相输入端	13	可并联接上10MΩ电阻和10nF电容,再接入第二级运算放大器的输出端
1IN+	第一级运算 放大器的同 相输入端	14	可接上热释电接收头的S端

TM2291

1IN-	第一级运算 放大器的反 相输入端	15	可并联接上2MΩ电阻和10nF电容,再接入第一级运算放大器的输出端
10UT	第一级运算 放大器的输 出端	16	可并联接上2MΩ电阻和10nF电容,再接入第一级运算放大器的反相输入端

五、工作原理

图2 TM2291原理框图

图2为TM2291红外传感信号处理器的原理框图。外接元件由使用者根据需要选择。

由图可见TM2291是又运算放大器、电压比较器和状态控制器、延迟定时器、封锁时间定时器及参考 电压源等构成的数模混合专用集成电路。可广泛应用于多种传感器和延时控制器。

V1.1

我们先以图3所示的不可重复触发工作方式下的各点波形,来说明TM2291的工作过程。

首先,由使用者根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大,然后耦合给运算放大器OP2,再进行第二级放大,同时将电流电位抬高为 $VM(\approx 0.6 V_{RF})$ 后,送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号VS。由于 $VH\approx 0.8 V_{RF}$ 、 $VL\approx 0.4 V_{RF}$,所以,当VDD=5V时,可有效地抑制±1V的噪声干扰。提高系统的可靠性。COP3是一个条件比较器。当输入电压 $VC<VR(\approx 0.2 V_{RF})$ 时,COP3输出为低电平封住了与门U2,禁止触发信号VS向下级传递;而当VC>VR时,COP3输出为高电平,打开与门U2,此时若有触发信号VS的上跳变沿到来,则可启动延迟时间定时器,同时VO端输出为高电平,进入延时周期。当A端接"0"电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。当Tx时间结束时,VO下跳变回低电平,同时启动封锁时间定时器而进入封锁周期Ti。在Ti周期内,任何V2的变化都不能使VO为有效状态。这一功能的设置,可有效抑制负载切换过程中产生的各种干扰。

下面再以图4所示可重复触发工作方式下各点的波形,来说明TM2291在此状态下的工作过程。

在VC="0"、A="0"期间,VS不能触发Vo为有效状态。在VC="1"、A="1"时,VS可重复触发Vo为有效状态,并在Tx周期内一直保持有效状态。在Tx时间内,只要有VS的上跳变,则Vo将从VS上跳变时间算起继续延长一个Tx周期;若VS保持为"1"状态,则Vo一直保持有效状态;若VS保持为"0"状态,则在Tx周期结束后,Vo恢复为无效状态,并且在封锁时间Ti时间内,任何VS的变化都不能触发Vo为有效状态。

通过以上分析,我们已对TM2291的电路结构和工作过程有了全面的了解,可以看出该器件的结构设计新颖,功能强,可在广阔的领域得到应用。

六、应用

图5

图5所示为TM2291应用于热释电红外开关的电路原理图。其中电阻R9、R10,电容C6、C7都是可调的。

热释电红外开关是TM2291配以热释电红外传感器和少量外接元器件构成的被动式红外开关。它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,是一种高技术产品。特别适用于企业、宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。

热释电红外传感器是一种新型敏感元件,它是由高热电系数材料,配以滤光镜片和阻抗匹配用场效应管组成。它能以非接触方式检测出来人体发出的红外辐射,将其转化成电信号输出,并可有效抑制人体辐射波长以外的干扰辐射,如阳光、灯光及其反射光。

此例中TM2291的运算放大器0P1作为热释电红外传感器的前置放大。由C3耦合给运算放大器0P2进行放大,再经由电压比较器COP1和COP2构成的双向鉴幅器处理后,检出有效触发信号取启动延迟时间定时器。输出信号经晶体管T1、驱动继电器去接通负载。R3为光敏电阻,用来检测环境照度。当作为照明控制时,若环境较明亮,R3的电阻值会降低,使9脚输入为低电平而封锁触发信号,节省照明用电。若应用于其他方面。则可用遮光物将其罩住而不受环境影响。SW1是工作方式选择开关,当SW1与1端连通时,红外开关处于可重复触发工作方式;当SW1与2端连通时,红外开关则处于不可重复触发工作方式。

TM2291

七、 电气参数:

极限参数 (Vss = 0 V)

参数	符号	范围	单位
电源电压	VDD	-0.5 ∼+6.0	V
输入电压	VI1	$-0.5 \sim 6.0$	V
各引出端最大电流	I01	±10	mA
工作温度	Topt	-10∼+70	$^{\circ}$
储存温度	Tstg	−65 ~+150	$^{\circ}$

电参数 (TA=25℃, Vss=0V)

符号	全 粉	测试条件		参数值		出 (2:
付写	参数			最小	最大	单位
Vdd	工作电压范围			3	5	V
IDD	工作电流	输入 接地	VDD=3V		1	- uA
100			V _{DD} =5V		3	
Vos	输入失调电压	V _{DD} =5V			1	uV
Ios	输入失调电流	VDD=5V			50	nA
Avo	开环电压增益	$V_{DD}=5V$, $R_L=1.5M\Omega$		60		dB
CMRR	共模抑制比	$V_{DD}=5V$, $R_L=1.5M\Omega$		60		dB
VYH	运放输出高电平	V _{DD} =5V		4. 25		V
VYL	运放输出低电平	RL=500KΩ接1/2V _{DD}			0.75	V
Vrh	Vc端输入高电平	V _{RF} =V _{DD} =5V		1. 1		V
Vrl	Vc端输入低电平				1.0	V
Vон	Vo端输出高电平	VDD=5V, IOH=0.5mA		4.9		V
Vol	Vo端输出低电平	V _{DD} =5V	, Iон=0.1mA		0.1	V
VAH	A端输入高电平	VDD=5V		2.4		V
VAL	A端输入低电平	V _{DD} =5V		-	2.2	V

八、IC 封装示意图:

尺寸 标注	最 小(㎜)	最 大(mm)	尺寸 标注	最 小(mm)	最大(===)
A	9.9 10.10		C4	0. 2TYP	
A1	0.356 0.456		D	1. 05TYP	
A2	1. 27TYP		D1	0.40	0.70
A3	0. 35TYP		D2	0.22	0.42
В	5.84	6.24	R1	0. 1	5TYP
B1	3.84	4.04	R2	0. 1	5TYP
B2	5. OTYP		θ1	8° TYP	
С	1.35	1.55	θ 2	8°	TYP
C1	0.61	0.71	θ3	4°	TYP
C2	0.54	0.64	θ 4	15°	TYP
C3	0.10	0.30			

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)