Anticipated expenses

I will need a desktop (\sim \$1,000) for code development and small scale simulations. For high performance computing needs, I will apply for a cluster allocation through the Extreme Science and Engineering Discovery Environment (XSEDE), which has no cost. The only software that I will need, Python and Pylith (Aagaard et al., 2013), are free and open source. Additional expenses will include travel for conferences (\sim \$3,000) and publication fees (\sim \$2,000). In total, I do not expect my research expenses to significantly exceed \$6,000.

References

- Aagaard, B. T., Knepley, M. G., and Williams, C. A. (2013). A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. *Journal of Geophysical Research: Solid Earth*, 118(6):3059–3079.
- Barbot, S., Fialko, Y., and Bock, Y. (2009). Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters. *Journal of Geophysical Research: Solid Earth*, 114:1–26.
- Brune, J. N., Henyey, T. L., and Roy, R. F. (1969). Heat flow, stress, and rate of slip along the San Andreas Fault, California. *Journal of Geophysical Research*, 74(15):3821–3827.
- Byerlee, J. (1978). Friction of rocks. Pure and Applied Geophysics, 116:615–626.
- Carpenter, B. M., Marone, C., and Saffer, D. M. (2011). Weakness of the San Andreas Fault revealed by samples from the active fault zone. *Nature Geoscience*, 4(4):251–254.
- Du, Y., Aydin, A., and Segall, P. (1992). Comparison of various inversion techniques as applied to the determination of a geophysical deformation model for the 1983 Borah Peak earthquake. *Bulletin of the Seismological Society of America*, 82(4):1840–1866.
- Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page, M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, R. J., and Zeng, Y. (2014). Uniform California Earthquake Rupture Forecast, version 3 (UCERF3) -The time-independent model. Bulletin of the Seismological Society of America, 104(3):1122–1180.
- Fukuda, J. and Johnson, K. M. (2008). A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing. *Bulletin of the Seismological Society of America*, 98(3):1128–1146.
- Johanson, I. A., Fielding, E. J., Rolandone, F., and Bürgmann, R. (2006). Coseismic and postseismic slip of the 2004 Parkfield earthquake from space-geodetic data. *Bulletin of the Seismological Society of America*, 96(4 B):269–282.

- Johnson, K. M., Bürgmann, R., and Larson, K. (2006). Factional properties on the San Andreas fault near Parkfield, California, inferred from models of afterslip following the 2004 earthquake. *Bulletin of the Seismological Society of America*, 96(4 B):321–338.
- Johnson, K. M., Fukuda, J., and Segall, P. (2012). Challenging the rate-state asperity model: Afterslip following the 2011 M9 Tohoku-oki, Japan, earthquake. *Geophysical Research Letters*, 39(20):1–5.
- Kanamori, H. and Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. *Bulletin of the Seismological Society of America*, 65(5):1073–1095.
- Langbein, J., Murray, J. R., and Snyder, H. A. (2006). Coseismic and initial postseismic deformation from the 2004 Parkfield, California, earthquake, observed by global positioning system, electronic distance meter, creepmeters, and borehole strainmeters. *Bulletin of the Seismological Society of America*, 96(4 B):304–320.
- Lawson, C. L. and Hanson, R. J. (1995). Solving least squares problems. *SIAM classics in applied mathematics*, 15:337.
- Minson, S. E., Simons, M., and Beck, J. L. (2013). Bayesian inversion for finite fault earthquake source models I-theory and algorithm. *Geophysical Journal International*, 194(3):1701–1726.
- Murray, J. and Langbein, J. (2006). Slip on the San Andreas fault at Parkfield, California, over two earthquake cycles, and the implications for seismic hazard. *Bulletin of the Seismological Society of America*, 96(4 B):283–303.
- Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half space. Bulletin of the Seismological Society of America, 82(2):1018–1040.
- Page, M. T., Custódio, S., Archuleta, R. J., and Carlson, J. M. (2009). Constraining earth-quake source inversions with GPS data: 1. Resolution-based removal of artifacts. *Journal of Geophysical Research: Solid Earth*, 114:1–13.
- Shearer, P. M., Prieto, G. a., and Hauksson, E. (2006). Comprehensive analysis of earthquake source spectra in southern California. *Journal of Geophysical Research*, 111:1–21.
- Simpson, R. W., Barall, M., Langbein, J., Murray, J. R., and Rymer, M. J. (2006). San Andreas fault geometry in the Parkfield, California, region. *Bulletin of the Seismological Society of America*, 96(4 B):28–37.
- Sun, J., Johnson, K. M., Cao, Z., Shen, Z., Bürgmann, R., and Xu, X. (2011). Mechanical constraints on inversion of coseismic geodetic data for fault slip and geometry: Example from InSAR observation of the 6 October 2008 M w 6.3 Dangxiong-Yangyi (Tibet) earthquake. *Journal of Geophysical Research: Solid Earth*, 116(1):1–20.
- Wallace, R. E. (1951). Geometry of Shearing Stress and Relation to Faulting. *The Journal of Geology*, 59(2):118–130.

- Yabuki, T. and Matsuura, M. (1992). Geodetic Data Inversion Using a Bayesian Information Criterion for Spatial-Distribution of Fault Slip. *Geophysical Journal International*, 109(2):363–375.
- Zoback, M. D., Zoback, M. L., Mount, V. S., Suppe, J., Eaton, J. P., Healy, J. H., Oppenheimer, D., Reasenberg, P., Jones, L., Raleigh, C. B., Wong, G., Scotti, O., and Wentworth, C. (1987). New Evidence on the State of Stress of the San Andreas Fault System Linked. 238(4830):1105–1111.