

Validating OpenMM

Peter Eastman OpenMM Workshop, March 27, 2013

What is Validation?

- Make sure OpenMM works correctly...
 - Does not crash
 - Produces correct results
- Must validate all features across...
 - Operating systems (Linux/Mac/Windows, 32/64 bit, different OS versions)
 - GPUs (Nvidia/AMD, different generations and models)
 - OpenCL implementations (Nvidia/AMD/Apple)

Unit Tests

- Validate specific features
- Most are very simple
 - Example: Simulate a single harmonic bond with a verlet integrator, compare to the analytical result
- Some use more complicated systems
 - Example: Simulate a box of water at constant temperature and pressure, check the average box volume and kinetic energy

Unit Tests, cont.

Unit tests are included with the source code

```
$ make test
Running tests...
Test project /Users/peastman/workspace/openmm/bin
       Start
               1: TestReferenceAndersenThermostat
  1/160 Test
            #1: TestReferenceAndersenThermostat ...........
                                                                            0.28 sec
                                                                  Passed
             2: TestReferenceBrownianIntegrator
       Start.
  2/160 Test
              #2: TestReferenceBrownianIntegrator ......
                                                                  Passed
                                                                            0.15 sec
             3: TestReferenceCMAPTorsionForce
       Start
              #3: TestReferenceCMAPTorsionForce ..........
  3/160 Test
                                                                  Passed
                                                                            0.02 sec
       Start.
             4: TestReferenceCMMotionRemover
  4/160 Test
              #4: TestReferenceCMMotionRemover ......
                                                                            0.01 sec
                                                                  Passed
               5: TestReferenceCustomAngleForce
       Start.
  5/160 Test
              #5: TestReferenceCustomAngleForce ......
                                                                  Passed
                                                                            0.02 sec
```

Simk

System Tests

- Test realistic systems
 - Proteins, DNA, RNA
 - Implicit and explicit solvent
 - From 75 to 173,181 atoms
- Three types of tests
 - Consistency across platforms
 - Force/Energy consistency
 - Integrator accuracy

Platform Consistency Tests

 Check that forces computed with Reference/CUDA/OpenCL agree

Force	Average Relative Difference
Harmonic Bond	2.88-10-6
Harmonic Angle	2.25·10 ⁻⁵
Periodic Torsion	8.23·10 ⁻⁷
RB Torsion	4.82-10-6

Force/Energy Consistency Tests

- Verify that F=-∇E
 - Compute force and energy
 - Take a tiny step, evaluate energy again
 - Did it change by the right amount?

Force	Max Relative Difference
Harmonic Bond	3.40-10-5
Harmonic Angle	4.96-10 ⁻⁵
Periodic Torsion	5.07·10 ⁻⁵
RB Torsion	6.32-10 ⁻⁵

Integrator Tests

- Deterministic integrators
 - Is energy conserved?
- Stochastic integrators
 - Is the average kinetic energy correct for the temperature?

Comparison to Other Programs

 Compare forces to Gromacs (conventional force fields) and Tinker (AMOEBA)

Force	Average Relative Difference
Harmonic Bond	1.66-10 ⁻⁴
Harmonic Angle	6.35·10 ⁻⁵
Periodic Torsion	3.70-10 ⁻⁵
Nonbonded, no cutoff	6.13·10 ⁻⁷

