Code options

The objective of this document is to outline the different options that we can use when running the code. We can perform time-stepping simulations or use the Newton or the Continuation solvers.

- Time-stepping simulations:
 - delta t (float): time step for the simulation.
 - NTS (integer): total number of iterations.
 - save_every (integer): Files (output and restart files) will be saved every save_every iterations.
 - solver (string): for these simulations it should be either *convective_explicit* or *convective_implicit* for explicit or implicit treatment of the Coriolis term.
 - time_step (string): time stepping scheme for the simulation. It may be pc, cn, fbe or bdf2 for Predictor-Corrector, Crank-Nicolson, Forward-Backward Euler or BDF2.
 - restart (string): it can be *yes*, *y*, *no*, *n*. With this we will indicate the code to begin the simulation by reading the fields from binary files.
 - restart_filename (string): file name for restart file containing fields. If no name is specified the code defaults to *Restart.b* as filename.
 - dim_filename (string): file name for restart file containing dimensions. If no name is specified the code defaults to Dim.b as filename.
 - dealiasing (string): it can be yes, y, no, n. With this we will indicate the code to use dealiasing techniques for the transformations to real space and back.
 - directory (string): indicate the directory where the simulation will be executed. If doing a restart from binary files, these have to be in that directory.
 - KK (integer): number of Chebyshev modes.
 - LL (integer): number of Legendre modes.
 - MM (integer): number of Fourier modes.
 - mres (integer): ϕ will span an angle range between 0 and $2\pi/\text{mres}$.
 - Rin and Rout (floats): inner and outer radii. Default values are set to 7/13 and 20/13, respectively.
 - Pr (float): Prandtl number.
 - Ek (float): Ekman number.
 - Ra (float): Rayleigh number.
 - IER (float): implicit to explicit ratio. Only available in Predictor-Corrector and Crank-Nicolson time-stepping schemes. For more details see R. Hollerbach A spectral solution of the magneto-convection equations in spherical geometry in Int. J. Numer. Meth. Fluids 2000.
 - init (string): initial condition. Can be set to *Christensen* for the U.R. Christensen *et al. A numerical dynamo benchmark*, in Physics of the Earth and Planetary Interiors 128 (2001) initial condition. Otherwise, it can be set to *symmetric*, for an M-fold symmetry initial condition. Should this last option be chosen, two other parameters are to be set:
 - * sym (integer): M-fold symmetry of choice.
 - * init_amp (float): amplitude of the initial condition. The resulting initial condition will be init_amp $\cdot \cos(\text{sym} \cdot \phi)$

An example of a command line to begin a simulation from a symmetric initial condition would be:

./MainMHD -delta_t 1.0e-4 -NTS 5000 -save_every 5000 -KK 30 -LL 40 -MM 10 -mres 4 -Pr 1. -Ek 1.0e-3 -Ra 65. -time_step bdf2 -directory 'my_directory' -restart no -init symmetric -sym 4 -init_amp 4 -dealiasing yes -solver convective_explicit

• Newton Solver:

All the options stated for the time stepping simulations are valid except for: NTS, save_every, init, init_amp and sym. The restart option must be set to *yes* and filenames should be specified unless they go by the default names indicated above.

- delta t (float): time step for the simulation. Should be set delta $t \approx 10^2$.

- solver (string): for these simulations it should be either newton_convective_explicit or newton_convective_implicit for explicit or implicit treatment of the Coriolis term.
- time_step (string): time stepping scheme for these simulations may be *cn* or *fbe* for Crank-Nicolson or Forward-Backward Euler. The latter is the default one.
- max_newt (integer): maximum amount of Newton iterations allowed. Usual values: 10-15.
- max_gmres (integer): maximum amount of GMRES iterations allowed in each Newton step. Usual values: 500-1000.
- restart_gmres (integer): in case GMRES restart is desired by the user. Otherwise we recommend to set it equal to max_gmres for no restart.
- newt_eps (float): tolerance for the Newton method. Usual values: 1×10^{-7}
- newt_delta (float): stagnation criterion to evaluate how much the Newton solution is changing. Usual values: 1×10^{-16} .
- tol_gmres (float): GMRES tolerance. Usual values: 1×10^{-10} .
- M wave (integer): symmetry of the rotating wave to be found.

An example of a command line would be:

./MainMHD -delta_t 200. -KK 30 -LL 40 -MM 10 -mres 4 -Pr 1. -Ek 1.0e-3 -Ra 145. -IER 0.8 -directory 'my_directory' -restart yes -restart_filename Restart_Ra_140.b -dim_filename Dim_Ra_140.b -dealiasing yes -max_newt 15 -max_gmres 1000 -restart_gmres 1000 -newt_eps 1.0e-7 -newt_delta 1.0e-16 -tol gmres 1.0e-10 -M wave 4 -time step fbe -solver newton convective implicit

• Continuation Solver

All the options stated for the Newton Solver are valid and mandatory. The following are more options that need to be specified for the continuation solver to work:

- Ek final (float): final for continuation in Ekman.
- Ra_final (float): final for continuation in Rayleigh.
- delta_param (float): to indicate how much the parameter will change in each continuation step. Rayleigh changes in linear scale and Ekman in logarithmic scale. Usual values for Rayleigh are 1 to 5 and in Ekman around 1×10^{-2} .
- adapt_param (string): it can be yes, y, no, n. The variation in the parameter will be adapted according to the optimal amount of Newton steps set by the user (Nopt). Default is no.
- Nopt (integer): if adapt_param is set to yes, the variation in the parameter will be corrected according to equation (16) from K. Borońska & L. S. Tuckeman Extreme multiplicity in cylindrical Rayleigh-Bénard convection. II. Bifurcation diagram and symmetry classification, in Physical Review E (2010). Usual values for Nopt are 3 to 5.
- grid_refine (string): it can be yes, y, no, n. It will indicate the code to perform grid refinement when the spectral resolution is below a threshold. Default is no.
- gr_threshold (float): in case grid_refine is set to yes the grid will be refined if the ratio between the last mode and the mode with maximum absolute value is below this threshold. Usual values are 1×10^{-7} .

Note: one can only set Ek final or Ra final, not both.

An example of a command line would be:

./MainMHD -delta_t 200. -KK 30 -LL 40 -MM 10 -mres 4 -Pr 1. -Ek 1.0e-2 -Ra 65 -Ek_final 1.0e-3 -directory 'my_directory' -restart yes -restart_filename Restart_20000.b -dim_filename Dim_20000.b -dealiasing yes -max_newt 15 -max_gmres 1000 -restart_gmres 1000 -newt_eps 1.0e-7 -newt_delta 1.0e-16 -tol_gmres 1.0e-10 -M_wave 4 -adapt_param y -Nopt 5 -gamma 100. -delta_param 1. -time_step fbe -solver continuation_convective_implicit