CROISSANCE LINÉAIRE

I Les suites arithmétiques

Définition n°1. Suite numérique

Une **suite** numérique (ou simplement suite) est une application $u: \mathbb{N} \to \mathbb{R}$.

■ Pour $n \in \mathbb{N}$, u(n) est souvent noté :

 u_n et on l'appelle le **terme d'indice** n de la suite.

- La suite est notée u, ou plus souvent $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) .
- Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier nature n_0 plus grand que 0, on note alors $(u_n)_{n \ge n}$.

Remarque n°1.

Afin d'éviter certaines « lourdeurs », les définitions suivantes seront écrites pour le cas où $u_0 = 0$. Nous les adapterons selon les besoins des activités.

Exemple n°1.

Notation fonctionnelle

Notation classique

La suite $(u(n))_{n\geqslant 1}$ définie par : La suite $(u_n)_{n\geqslant 1}$ définie par : Pour $n\geqslant 1$, u(n) est le $n^{\text{ième}}$ Pour $n\geqslant 1$, u_n est le $n^{\text{ième}}$ nombre nombre premier.

combre premier.

$$u(1)=2$$
 , $u(2)=3$,
 $u(3)=5$, $u(4)=7$,
 $u(5)=11$...

premier.

$$u_1=2$$
 , $u_2=3$, $u_3=5$, $u_4=7$, $u_5=11$...

Définition n°2. Suite arithmétique

Une suite arithmétique est une suite telle que :

Il existe un nombre réel *r* tel que :

- Pour tout entier naturel n, on peut écrire u(n+1) = u(n)+r
- r est appelé la raison de la suite.
- l'indice n est appelé le rang du terme u(n)

Remarque n°2.

Autrement dit : « pour obtenir le terme suivant (u(n+1)), il suffit d'ajouter r au terme actuel (u(n)).

Remarque n°3. Attention à l'écriture

En notation classique, cela donne « $u_{n+1} = u_n + r$ » qui ne veut pas dire la même chose que « $u_n+1 = u_n+r$ ».

 u_{n+1} est bien le terme suivant alors que u_n+1 est le terme actuel augmenté de 1.

Il faudra donc apporter un soin particulier à l'écriture quand vous utiliserez la notation classique.

Exemple n°2.

Soit la suite arithmétique v de terme initial v(0) = 4.5 et de raison r = 1.5 . Les quatre premiers de v sont :

$$v(0) = 4.5$$
, $v(1) = 6$, $v(2) = 7.5$ et $v(3) = 9$.

Remarque n°4. Attention aux rangs

Le quatrième terme est ici v(3) et pas v(4)

Propriété n°1. Exprimer u(n) en fonction de n

Une suite (u(n)) est arithmétique de raison r si et seulement si : Pour tout entier naturel n, on a $u(n) = u(0) + r \times n$

Remarque n°5.

Si le terme initial est u(1) alors $u(n) = u(1) + r \times (n-1)$

Exemple n°3.

Dans l'exemple n°2, pour tout $n \in \mathbb{N}$: v(n) = 4,5+1,5n.

II Et la croissance linéaire dans tout ça?

Propriété n°2. Pour la croissance

Soit u une suite arithmétique de raison $r \in \mathbb{R}$:

- u est strictement croissante si et seulement si r > 0
- u est strictement décroissante si et seulement si r < 0 et
- u est constante si et seulement si r = 0.

Exemple n°4.

La suite arithmétique w de raison r = -2 est strictement décroissante.

Remarque n°6.

Pour représenter la suite (u(n)) on utilise un nuage de points qui ont pour coordonnées (n, u(n)).

Propriété n°3. Pour le côté linéaire

Si u une suite arithmétique de raison $r \in \mathbb{R}$ alors les points de sa représentation graphique sont alignés sur une droite de coefficient directeur r.

Exemple n°5.

Remarque n°7.

Les pointillés symbolisent la droite sur laquelle sont alignés les points du nuage mais ne font pas partie de la représentation graphique de la suite.

Méthode n°1. Trouver l'équation réduite de la droite en pointillés

• Si le terme initial est u(0) alors $u(n) = u(0) + r \times n$ et l'équation réduite la droite est : y = u(0) + r x

Par exemple, pour la suite arithmétique (v(n)) de terme initial v(0)=4,5 et de raison r=1,5, on a v=4,5+1,5x

• Si le terme initial est u(1) alors $u(n) = u(1) + (n-1) \times r$ et l'équation réduite la droite est : y = u(1) - r + rx

Par exemple, pour la suite arithmétique (s(n)) de terme initial s(1)=6 et de raison r'=1,5, on a y=6-1,5+1,5x c'est à dire y=4,5+1,5x.

Remarque n°8.

- Quand on étudie un phénomène discret à croissance linéaire, on utilise les suites arithmétiques.
- Quand on étudie un phénomène continu à croissance linéaire, on utilise les fonctions affines.