Devoir à la maison n° 02

À rendre le 18 septembre

I. Construction d'un pentagone régulier.

Dans tout ce problème, on pose $z_0 = e^{\frac{2i\pi}{5}}$.

Partie I

- 1) Que vaut $S = 1 + z_0 + z_0^2 + z_0^3 + z_0^4$?
- **2)** On pose $\alpha = z_0 + z_0^4$ et $\beta = z_0^2 + z_0^3$.
 - a) Montrer que α et β sont des réels.
 - b) Déduire de la question 1. que α et β sont les deux racines de l'équation $Z^2 + Z 1 = 0$.
- 3) Donner la valeur exacte de $\cos\left(\frac{2\pi}{5}\right)$.

Partie II

Le plan complexe est muni d'un repère orthonomé direct $(O, \overrightarrow{i}, \overrightarrow{j})$. On désigne par A_0 , A_1 , A_2 , A_3 et A_4 les points du plan d'affixe 1, z_0 , z_0^2 , z_0^3 et z_0^4 .

- 1) a) Par quelle transformation simple passe-t-on de A_0 à A_1 ? Puis de A_1 à A_2 ? Généraliser ce résultat.
 - b) Quelle est l'abscisse du point H intersection de la droite (A_1A_4) avec l'axe des abscisses?
- 2) Soit $\mathscr C$ le cercle de centre Ω d'affixe $-\frac{1}{2}$ et passant par le point B d'affixe i. On désigne par M et N les points où $\mathscr C$ rencontre l'axe des abscisses, M ayant une abscisse positive.
 - a) Prouver que M a pour abscisse α et que N a pour abscisse β .
 - b) Montrer que H est le milieu du segment [OM].
 - c) Déduire de ce qui précéde la construction à la règle et au compas d'un pentagone dont on connaît le centre O et un sommet A_0 . Effectuer cette construction en prenant comme centre le point O et comme sommet le point $A_0(1,0)$.

II. Quelques inégalités.

Pour deux nombres complexes z et z' écrits sous forme algébrique z=x+iy et z'=x'+iy', on définit le produit scalaire $\langle z,z'\rangle=xx'+yy'$.

- 1) Pour $z \in \mathbb{C}$, que vaut $\langle z, z \rangle$?
- 2) Pour $(z, z') \in \mathbb{C}^2$, exprimer $\langle z, z' \rangle$ en fonction de $z\overline{z'}$.
- 3) En déduire l'inégalité de Cauchy-Schwarz :

$$|\langle z, z' \rangle| \leqslant |z||z'|.$$

Soient a et b deux complexes de même module non nul r, d'arguments α et β respectivement. On note A et B les points d'affixe a et b respectivement.

- 4) Interpréter géométriquement les conditions $ab = r^2$ puis $ab = -r^2$.
- 5) On suppose désormais que $ab \neq r^2$ et $ab \neq -r^2$.
 - a) Montrer que les complexes $z_1 = \frac{a+b}{r^2+ab}$ et $z_2 = \frac{a-b}{r^2-ab}$ sont réels.
 - b) Exprimer $z = rz_1$ en fonction des cosinus de $\frac{\alpha + \beta}{2}$ et $\frac{\alpha \beta}{2}$. Qu'en est-il de $\zeta = rz_2$?
 - c) Prouver l'inégalité $z_1^2 + z_2^2 \geqslant \frac{1}{r^2}$.
 - d) Quels sont les cas d'égalité?

— FIN —