Algebra 2R na 05.03

Wiktor Kuchta

1/1D

Weźmy $z \in \mathbb{C} \setminus \mathbb{R}$. Skoro z nie leży na prostej rzeczywistej, to arg $z \neq \arg z^2$. To oznacza, że z i z^2 traktowane w naturalny sposób jako wektory w przestrzeni liniowej \mathbb{R}^2 nad \mathbb{R} są liniowo niezależne i rozpinają całą przestrzeń. Ten naturalny izomorfizm między \mathbb{C} i \mathbb{R}^2 zachowuje mnożenie przez skalary rzeczywiste, więc wracając do \mathbb{C} otrzymujemy, że każdą liczbę zespoloną da się zapisać w postaci $xz + yz^2$ dla pewnych $x, y \in \mathbb{R}$.

Wszystkie liczby powyższej postaci $xz + yz^2$ są generowane przez z nad \mathbb{R} , tzn. należą do $\mathbb{R}[z]$. Z zamkniętości ciała \mathbb{C} na dodawanie i mnożenie mamy też $\mathbb{R}[z] \subseteq \mathbb{C}$, więc otrzymujemy $\mathbb{R}[z] = \mathbb{C}$.

1/3

Załóżmy, że $K\subset L$ jest rozszerzeniem ciał oraz $f_1,\ldots,f_m\in K[X_1,\ldots,X_n]$ są stopnia 1, czyli mają postać

$$f_i = a_{i1}X_1 + \ldots + a_{in}X_n - b_i$$
, gdzie $a_{ij}, b_i \in K$.

(a)D

Problem rozwiązania układu $f_1 = \ldots = f_m = 0$ możemy przedstawić jako

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}.$$

Korzystając z algorytmu eliminacji Gaussa macierz rozszerzoną $\lfloor A \rfloor b \rfloor$ możemy sprowadzić do postaci schodkowej, która opisuje układ równań równoważny początkowemu. Z postaci schodkowej można bezpośrednio odczytać, czy układ jest niesprzeczny (nie ma wiersza postaci $[0 \ldots 0 \mid b]$, gdzie $b \neq 0$) i jakie ma wtedy zmienne swobodne (być może ich nie ma).

Jeśli układ ma rozwiązanie w L, to ten układ jest niesprzeczny. Możemy otrzymać inne rozwiązanie przypisując zmiennym swobodnym elementy z K. Współczynniki macierzy także są w K, a korzystając z nich i wartości zmiennych swobodnych się oblicza wartości pozostałych zmiennych, które więc też będą w K.

(b)

Dla układu sprzecznego oczywiście nie ma rozwiązania ogólnego.

Dla układu niesprzecznego to też nie musi być prawda, np. rozważmy równanie $X_1-X_2=0$. Weźmy pewne jego rozwiązanie (x,x). Wtedy X_1-x jest wielomianem, który się zeruje w (x,x), ale nie jest w ideale (X_1-X_2) , więc to rozwiązanie nie jest ogólne.

1/5aD

Z definicji rozwiązania ogólnego wiemy, że (1,1) jest rozwiązaniem ogólnym $X_1^2-X_2^3$ nad $\mathbb Q$ wtedy i tylko wtedy, gdy

$${g \in \mathbb{Q}[X_1, X_2] : g(1, 1) = 0} = \mathbb{Q}[X_1, X_2](X_1^2 - X_2^3).$$

Ta równość nie zachodzi, bo X_1-X_2 należy do lewego zbioru, ale nie do prawego.