Estudiante: CABALLERO BURGOA, Carlos Eduardo

Carrera: Ingeniería Electromecánica

Correo: cijkb.j@gmail.com

1. Ejercicio 1

1.1. Calculo de la velocidad

1.1.1. Datos provistos

i	x_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
1	2.20	-0.0237	0.0006
2	2.10	-0.1237	0.0153
3	2.35	0.1263	0.0159
4	2.30	0.0762	0.0058
5	2.18	-0.0437	0.0019
6	2.12	-0.1037	0.0108
7	2.28	0.0562	0.0032
8	2.26	0.0362	0.0013
n = 8	$\sum x_i = 17.79$		$\sum (x_i - \bar{x})^2 = 0.0548$

\bar{x}	2.2237
σ_x	0.0313
e_x	0.0313

Velocidad		
v	$(2.22 \pm 0.03)[m/s], 1.4\%$	

1.1.2. Memoria de calculo

Datos cargados (archivo ip_1.csv)

2.20

2.10

2.35

2.30

2.18

2.12

2.28

2.26

Comandos del programa (archivo pp_1.m)

```
% leer datos desde fichero
x = importdata('ip_1.csv')
% tamano de la muestra
n = length(x)
% sumatoria
S = sum(x)
% promedio
m = mean(x)
% calculo de las discrepancias
d = x - m
% calculo de las discrepancias al cuadrado
d2 = d.*d
\% sumatoria de las discrepancias al cuadrado
S2 = sum(d2)
% calculo del error
s = sqrt(S2 / (n * (n - 1)))
% calculo del error (no hay datos de la precision del instrumento)
% calculo del error porcentual
E = (e / m) * 100
```

Salida del programa (archivo op_1.txt)

```
> pp_1
    2.2000
    2.1000
   2.3500
    2.3000
    2.1800
    2.1200
    2.2800
    2.2600
n = 8
S = 17.7900
m = 2.2237
d =
   -0.0237
   -0.1237
   0.1263
   0.0762
   -0.0437
   -0.1037
    0.0562
    0.0362
d2 =
```

0.0006

0.0153

0.0159

0.0058

0.0019

0.0108

0.0013

S2 = 0.0548

s = 0.0313

e = 0.0313

E = 1.4066

1.2. Calculo de la energía cinética

Medidas directas		
Velocidad (v)	$2.22 \pm 0.03 [m/s]; 1.4\%$	
Masa (m)	$4.25 \pm 0.01 [kg]; 0.40\%$	

Dadas las ecuación para el calculo de la energía cinética:

$$E = \frac{1}{2}mv^2 \tag{1}$$

Calculando el valor representativo:

$$E = \frac{1}{2}(4.25)(2.22)^2 = 10.4729$$

Las derivadas parciales son:

$$\frac{\partial E}{\partial v} = mv \tag{2}$$

$$\frac{\partial E}{\partial m} = \frac{1}{2}v^2 \tag{3}$$

Siendo el error de la medición:

$$e_V = \sqrt{(mv)^2 e_v^2 + \left(\frac{1}{2}v^2\right)^2 e_m^2}$$
 (4)

Calculando el error representativo:

$$e_V = \sqrt{((4.25)(2.22))^2 \cdot 0.03^2 + ((0.5)(2.22)^2)^2 \cdot 0.01^2} = 0.2841$$

Energía cinética		
Energía (E)	$(10.47 \pm 0.28)[J], 2.71\%$	

1.2.1. Memoria de calculo

1.2.2. Comandos del programa (archivo pp_2.m)

```
% valores de entrada
v = 2.22
ev = 0.03
m = 4.25
em = 0.01

% calculando el valor representativo
E = 0.5 * m * v^2

% calculando las derivadas parciales
d1 = m * v
d2 = 0.5 * (v^2)

% calculando el criterio pitagorico
e = sqrt( ((d1^2)*(ev^2)) + ((d2^2)*(em^2)) )
% calculo del error porcentual
EP = (e / E) * 100
```

1.2.3. Salida del programa (archivo op_2.txt)

```
» pp_2
v = 2.2200
ev = 0.0300
m = 4.2500
em = 0.0100
E = 10.4729
d1 = 9.4350
d2 = 2.4642
e = 0.2841
EP = 2.7129
```

2. Ejercicio 2

2.0.1. Datos provistos

i	$L_i[m]$	$T_i[s]$
1	1.42	0.52
2	1.56	0.62
3	1.68	0.72
4	1.79	0.82
5	1.92	0.92
6	2.02	1.02

Se obtiene el siguiente gráfico:

Aplicando linealización por logaritmos: La función tiene la forma general:

$$y = ax^b (5)$$

Aplicando logaritmos a ambos lados de la ecuación, obtenemos:

$$\log y = \log a + b \log x$$

Haciendo los siguientes cambios de variables:

$$Y' = \log y$$
$$A = \log a$$
$$B = b$$
$$X' = \log x$$

Se obtiene:

$$Y' = A + BX'$$

i	$\log(L_i)$	$\log(T_i)$
1	0.3507	-0.6539
2	0.4447	-0.4780
3	0.5188	-0.3285
4	0.5822	-0.1985
5	0.6523	-0.0834
6	0.7031	0.0198

La gráfica de los datos con el cambio de variable logarítmica pueden verse en la figura 1.

Figura 1: Gráfica linealizada por el método de logaritmos

La ecuación de la recta es:

$$Y = -1.32 + 1.91x \tag{6}$$

A partir de los parámetros de recta A y B, calculamos los parámetros a y b, de la curva potencial original:

$$a = antilog(A) = antilog(1.91) = 81.2831$$
$$b = B = -1.32$$

La ecuación de la curva resultante es:

$$y = 81.2831x^{-1.32} \tag{7}$$

2.0.2. Memoria de calculo

Datos cargados (archivo ip_3.csv)

```
1.42,0.52
1.56,0.62
1.68,0.72
1.79,0.82
1.92,0.92
2.02,1.02
```

Comandos del programa (archivo pp_4.m)

```
% leer datos previamente formateados
table = readtable('ip_3.csv')
% cambio de variable
X = log(table.Var1)
Y = log(table.Var2)
% calcular la ecuacion de la recta
p = polyfit(X, Y, 1)
v = polyval(p, X)
% personalizar grafica
title('Cambio de variable logaritmico')
xlabel('log(L)')
ylabel('log(T)')
% texto y grafica de ecuacion
caption = sprintf('y = (\%.2f) + (\%.2f) x', p(2), p(1))
dim = [.18.350.3]
a = annotation('textbox',dim,'String',caption,'FitBoxToText','on')
a.Color = 'red'
a.FontSize = 10
% graficar puntos y lineas
hold on
plot(X, Y, 'o')
plot(X, v, 'LineWidth', 2)
hold off
```

Salida del programa (archivo op_4.txt)

```
> pp_4
table =
  6x2 table
    Var1
            Var2
            ----
    ----
          0.52
    1.42
    1.56
          0.62
          0.72
    1.68
    1.79
          0.82
    1.92
          0.92
          1.02
    2.02
X =
    0.3507
    0.4447
    0.5188
    0.5822
    0.6523
    0.7031
   -0.6539
   -0.4780
   -0.3285
   -0.1985
   -0.0834
   0.0198
p = 1.9130 -1.3239
v =
   -0.6531
   -0.4732
   -0.3314
   -0.2101
   -0.0760
    0.0212
caption = 'y = (-1.32) + (1.91) x'
dim = 0.1800   0.3500   0   0.3000
```

3. Ejercicio 3

3.0.1. Datos provistos

i	$V_i[m]$	$P_i[s]$
1	2.00	15.27
2	4.00	7.64
3	5.50	5.57
4	6.30	4.91
5	8.00	3.90
6	12.20	2.50

Se obtiene el siguiente gráfico:

