Presidential Forecasting with bigKRLS

Pete Mohanty, Stanford University Robert B. Shaffer, University of Texas at Austin

BARUG October 2016

Overview

- ▶ Part I: Kernel Regularized Least Squares (KRLS)
 - What is KRLS? Why use it?
 - Speed/memory tradeoffs and bigKRLS
- Part II: Political Forecasting and bigKRLS
 - Exploratory Modeling in the Two-Party Case
 - ► (The Limits of) Pooling Publicly Available Polls
 - Forecasting Voting Choices

Kernel Regularized Least Squares

Motivations

- Maximize inference and out-of-sample prediction, minimize assumptions
- estimate not just "average" but "actual" marginal effects

Statistical Properties & Applications

- ► For details on statistical properties, see Hainmueller & Hazlett 2013
- "Kernel balancing" may help observational studies approximate experiments; see, e.g., Hazlett; Hastie et al 2008

The Challenge

Speed

▶ Luke Sonnet notes speed problems with *KRLS* starting at N \approx 1,000 but has made substantial speed gains in Julia.

Size

- "Tikhonov regularization requires computation of weight matrices of dimension N × N which [...] may be unsuitable for large datasets." (Racine and Hayfield)
- ▶ Typical machines hit "cannot allocate vector" limits at N \approx 3,000 with *KRLS*

Some details

We assume that the objective function $\mathbf{y} = \mathbf{f}(\mathbf{x})$ can be approximated by

$$y = Kc$$

With K the Gaussian kernel,

$$\mathbf{K} = e^{-||x_i - x_j||^2/\sigma^2}$$

and c a vector of weights chosen based on an L_2 penalty,

$$\hat{\mathbf{c}} = \underset{\mathbf{c} \in \mathbb{R}^P}{\operatorname{argmin}} (\mathbf{y} - \mathbf{K}\mathbf{c})'(\mathbf{y} - \mathbf{K}\mathbf{c}) + \lambda \mathbf{c}' \mathbf{K}\mathbf{c}$$

Introducing bigKRLS

bigKRLS: a new version of the algorithm which minimizes memory constraints and boosts speed in **R**.

- ▶ Reduce peak memory requirements from $\approx 9PN^2$ to $\approx 5N^2$
- ▶ "big R" (bigmemory, bigalgebra & biganalytics)
- ► R -> C++ (Rcpp & RcppAramdillo)

bigKRLS Complexity

	Major Steps	Runtime	Memory
(1)	Standardize $\mathbf{X}_{\text{N*P}}$, \mathbf{y}	_	_
(2)	Calculate kernel $\mathbf{K}_{N\times N}$	$O(N^2)$	$O(N^2)$
(3)	Eigendecompose $\mathbf{KE} = \mathbf{Ev}$	$O(N^3)$	$O(N^2)$
(4)	Regularization parameter λ	$O(N^3)$	_
(5)	Estimate weights $\mathbf{\hat{c}} = \mathbf{f}(\lambda, \mathbf{y}, \mathbf{E}, \mathbf{v})$	$O(N^3)$	_
(6)	Fit values $\hat{\mathbf{y}} = \mathbf{K}\hat{\mathbf{c}}$	_	_
(7)	Estimate local derivatives,	$O(PN^3)$	$O(N^2)$
	$\hat{oldsymbol{\Delta}}_{ ext{N*P}} = [\hat{\delta}_1 \hat{\delta}_2 \hat{\delta}_{ ext{P}}]$		

Letting i,j index observations and $p=1,\,2,\,\dots P$ index x variables. Steps 4-6 are followed by uncertainty estimates.

Effect of Gender on Two-Party Preference

Trump vs. Hillary with bigKRLS

Trust the Polls? Or a Poll of Polls?

Н

House Effects, Back By Popular Demand

Simon Jackman

in HuffPost, 10/12

pollstR: the Huffington Post R API

\$ Undecided

\$ poll id

\$ pollster

\$ end date

\$ start_date

```
library(dplyr); library(tidyr);
library(pollstR); library(bigKRLS)
slug <- "2016-general-election-trump-vs-clinton"</pre>
pollstR_data <- read.csv(pollstR:::chart_data_url(slug))</pre>
glimpse(pollstR_data)
## Observations: 310
## Variables: 13
## $ Trump
                           <dbl> 43, 39, 43, 45, 44, 49, 44
## $ Clinton
                           <dbl> 48, 46, 49, 51, 50, 47, 49
## $ Other
                           <dbl> 8, NA, 4, 4, NA, 4, 2, NA,
```

\$ sample subpopulation <fctr> Registered Voters, Likely

<dbl> 1, 16, 5, 0, 6, NA, 6, 6, 1

<int> 25893, 25827, 25894, 25876

<fctr> YouGov/Economist, Morning

<fctr> 2016-10-01, 2016-09-30, 20</fctr> 2016-10-03, 2016-10-02, 20

Testing for House Effects with bigKRLS

```
y <- log(pollstR_data$Clinton/pollstR_data$Trump)

t <- grep("start", colnames(X))
time_only <- bigKRLS(y , X[,t])

P <- ncol(X)
type <- grep("asked_third_party", colnames(X))
with_features <- bigKRLS(y, X[,c(type, t:P)])</pre>
```

Not So Random Errors...

Election Forecasting and bigKRLS

- ▶ We model Presidential voting as a three-step process:
 - ► Turnout?
 - If turnout, third party or two-party?
 - ▶ If two-party, Democrat or Republican?
- Assume that third-party voters need to be modeled differently than two-party voters (fits with Perot, Gary Johnson, etc...)
- ▶ For our forecast, we need to:
 - Generate probability for each step
 - Model each individual-level probability
 - Split sample and predict probability of each outcome for each individuals
 - Simulate Many Elections

Variable Selection and Preprocessing

- Generate dependent variables using Bayesian measurement model
 - MCMCpack's method for mixed factor analysis
 - ► ANES (American National Elections Study) Jan 2016 Data (Individual Level)
 - State-Level Data on Recent Elections
- ▶ Then, model probabilities as Function of...
 - ▶ Individual Level Data: Political Preferences, Demographics...
 - ▶ State Level Data: State Demographcis (Kaggle), Geolocation
 - Survey Weights

prediction with bigKRLS

```
set.seed(1234)
train <- sample(N, 800)
test <- !(1:N %in% train)
turnout out <- bigKRLS(p turnout[train, ],
                        Xturnout[train. ])
predict turnout <- predict(turnout out,</pre>
                            Xturnout[test, ])
cor(predict_turnout$fit, p_turnout[test,])^2
```

Out-of-Sample Pseudo R^2 > 0.945 for all models

Swing State Simulations

Forecast: Hillary Wins in 62.9% of Sims

Electoral Votes that Dems Win in Competitive States

Take Aways

- bigKRLS is flexible and interpretable but very computationally intensive
- ▶ Not a panacea but able to replicate leading forecasts with small ammounts of limited data

Next Steps for the Algorithm...

- ► Parallel Processing via RcppParallel or snow (in development)
- Develop practical benchmarks for assessing asymptotics
- "big" Eigentruncation (partial_eigen in irlba or the power method...)]
- more "Shiny" features

Thank You!!

bigKRLS on GitHub:

https://github.com/rdrr1990/bigKRLS.git

Keep in Touch!

Robert: Orbshaffer (Me): Opetemohanty