Bike Demand Forecasting

Bike-sharing system are meant to rent the bicycle and return to the different place for the bike sharing purpose in Washington DC.

The dataset contains rental data spanning for 2 years. The aim is to predict the total count of bikes rented during each hour covered by the test set, using only information available prior to the rental period.

Data Fields

dteday: date

season: season (1:winter, 2:spring, 3:summer, 4:fall)

yr : year (0: 2011, 1:2012) mnth : month (1 to 12)

hr: hour (0 to 23)

holiday: weather day is holiday or not (extracted from [Web Link])

weekday: day of the week

workingday: if day is neither weekend nor holiday is 1, otherwise is 0.

temp: Normalized temperature in Celsius. The values are derived via (t-t min)/(t max-t min), t min=-8, t max=+39 (only in hourly scale)

atemp: Normalized feeling temperature in Celsius. The values are derived via (t-t min)/(t max-t min), t min=-16, t max=+50 (only in hourly scale)

hum: Normalized humidity. The values are divided to 100 (max)

windspeed: Normalized wind speed. The values are divided to 67 (max)

casual: count of casual users

registered: count of registered users

count: count of total rental bikes including both casual and registere

Approach

Python is used for data proceesing and Visualization.

A LSTM, Bi- directional LSTM and a encoder- decoder model have been developed and compared the results.

Data Preprocessing

below are some of the distribution of independent variables with respect to the target variable(count).

Year Wise Distribution:

A bar plot which shows year wise counts for each hour in a day. From the below plot the following observations have been made.

- 1) More cycles are rented in the second half of the day.
- 2) 2012 more cycles are rented compared to 2011.
- 3) More cycles are rented on Working day than Weekend.

Month and Hour wise Distribution:

The below bar plots shows month and Hour wise counts of bike rents for each year 2011 and 2012. From the below plot the following observations have been made.

- 1) More bikes are rented in September Month
- 2) More bikes are rented in the duration of 5 to 6pm

Non-Working/Working day Vs Hour:

From the below fig, we can interpret that the cycles are rented mostly on working days during 5 PM to 6 PM and during non-working days, it is around 1 PM to 5 PM.

Model Development & Comparison:

As part of model development, Standardization of features have been done and trained 3 deep learning models(LSTM, bi-directional LSTM, Encoder- decoder model) each with 30 epocs for forecasting the demand of bikes and the performance is recorded.

1) LSTM:

The below LSTM architecture is trained with 30 epocs and the loss of 0.075 and validation loss of 0.137 is observed.

Layer (type)	Output	Shape	Param #
lstm_27 (LSTM)	(None,	128)	72192
dropout_22 (Dropout)	(None,	128)	0
dense_24 (Dense)	(None,	1)	129
Total params: 72,321 Trainable params: 72,321 Non-trainable params: 0			

The model convergence during training is plotted below.

2) Bi- directional LSTM:

A Bi- directional LSTM model is trained and the loss of 0.062 and validation loss of 0.122 is observed.

Model: "sequential_28"			
Layer (type)	Output	Shape	Param #
bidirectional_14 (Bidirectio	(None,	256)	144384
dropout_23 (Dropout)	(None,	256)	0
dense_25 (Dense)	(None,	1)	257
Total params: 144,641 Trainable params: 144,641 Non-trainable params: 0			

2)Encoder Decoder Model:

A **Encoder Decoder** model has been trained and the loss of 0.037 and validation loss of 0.105 is observed.

Layer (type)	Output	Shape	Param #
lstm_29 (LSTM)	(None,	200)	170400
repeat_vector_1 (RepeatVecto	(None,	7, 200)	0
lstm_30 (LSTM)	(None,	7, 200)	320800
<pre>time_distributed_2 (TimeDist</pre>	(None,	7, 100)	20100
time_distributed_3 (TimeDist	(None,	7, 1)	101
Total params: 511,401 Trainable params: 511,401 Non-trainable params: 0			

Model Prediction:

Below images represent the Model Predictions vs Actual Values.

