

transformer

stats403_deep_learning spring_2025 lecture_7

7.1 attention and self-attention

drawback of RNN encoder-decoder

machine translation: bottleneck

• idea: map all hidden states to all output state by learning an alignment with weights

transformer

- a transformer maps a sequence of input vectors $(x_1, ..., x_n)$ to a sequence of output vectors $(y_1, ..., y_n)$
- the most important layer in a transformer is the self-attention layer

an example of (causal masked) self-attention which attends to all the inputs up to the current one

- attention: compare an item of interest to a collection of other items in a way that reveals their relevance in the current context
- self-attention: the comparison is done within a given sequence

• the result of comparison is used to compute the output

- example (a simple self-attention):
 - the simplest form of comparison is a dot product, e.g., $score(x_i, x_j) = \langle x_i, x_j \rangle = x_i \cdot x_j$
 - for example, to compute the output y_3 in the above example, we need to compute $score(x_3, x_1)$, $score(x_3, x_2)$, $score(x_3, x_3)$

- example (a simple self-attention):
 - the output y_3 then depends on a weighted average of x_1, x_2 and $x_3,$ $y_3 = \alpha_{31}x_1 + \alpha_{32}x_2 + \alpha_{33}x_3$
 - the weights α_{ij} are determined by these scores
 - it is naturally to normalize the scores using softmax, so that the weights are

$$\alpha_{ij} = \operatorname{softmax}\left(\operatorname{score}(\boldsymbol{x}_i, \boldsymbol{x}_j)\right) = \frac{\exp(\operatorname{score}(\boldsymbol{x}_i, \boldsymbol{x}_j))}{\sum_{k=1}^{i} \exp(\operatorname{score}(\boldsymbol{x}_i, \boldsymbol{x}_k))}, \quad \text{for all } j \leq i$$

- an example of using the simple self-attention
- each output y_i (more precisely, the hidden h_i) in the decoder has a context c_i which depends differently on previous input vectors

- the self-attention regime in transformers is more complicated
- each input vector x_i is transformed into three vectors of different roles:
 - q_i (query): current input used in comparison
 - k_i (key): previous input used in comparison
 - v_i (value): input for taking weighted average
- they can be simply calculated by applying linear transformations:
 - $q_i = W_Q x_i$, $k_i = W_K x_i$, $v_i = W_V x_i$

Freud's Structure of the Human Psyche

ld:

Instincts

Ego:

Reality

Superego:

Morality

• if we make a simple analogy to the previous example, the scores are given by

$$score(x_i, x_j) = \langle q_i, k_j \rangle = q_i \cdot k_j, \quad i \leq j$$

• the output is then

$$\mathbf{y}_i = \sum_{j \le i} \alpha_{ij} \mathbf{v}_j = \sum_{j \le i} \operatorname{softmax}(\mathbf{q}_i \cdot \mathbf{k}_j) \mathbf{v}_j$$

• nevertheless, numerically it is often beneficial to normalize the dot product, so that

$$\operatorname{score}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \frac{\langle \boldsymbol{q}_i, \boldsymbol{k}_j \rangle}{\sqrt{d_k}} = \frac{\boldsymbol{q}_i \cdot \boldsymbol{k}_j}{\sqrt{d_k}}, \quad i \leq j$$

where d_k is the dimensionality of the key vector

• numerically, it is more efficient to implement the above in matrix forms by combining the input vectors into a matrix $X \in \mathbb{R}^{N \times d}$

• then we transform it using three matrices $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$

• we get three output matrices of size $N \times d$:

$$Q = XW_O$$
, $K = XW_K$, $V = XW_V$

• in the matrix form, the weighted average of "values" can be written as

$$selfAttention(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = softmax \left(\frac{\mathbf{Q}\mathbf{K}^{T}}{\sqrt{d_k}}\right) \mathbf{V}$$

- however, we need to implement QK^T so that it is "causal" (that is, we calculate a score $q_i \cdot k_i$ only when $i \leq j$)
- we need to get rid of (mask out) the upper-triangular entries of QK^{T}

Ν

• we need to get rid of (mask out) the upper-triangular entries of QK^{T}

q1•k1	-∞	-∞	-∞	-∞
q2•k1	q2•k2	-∞	-∞	-∞
q3•k1	q3•k2	q3•k3	-∞	-∞
q4•k1	q4•k2	q4•k3	q4•k4	-∞
q5•k1	q5•k2	q5•k3	q5•k4	q5•k5

٨

an example of attention weights

multi-head attention

multi-head attention

Scaled Dot-Product Attention

image credit: Vaswani, A. et al (2017). Attention is all you need.

another example

• https://storage.googleapis.com/nips-workshop-visualization/index.html

7.2 transformer

- transformers process input data in parallel, which means they don't inherently understand the order or position of elements in a sequence
- positional embedding refers to the technique used to inject information about the position of words or tokens in a sequence into the model
- create a matrix where each row corresponds to a position in the sequence; these embeddings are then added element-wise to the input embeddings

• one popular choice

• one popular choice

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.\,t), & ext{if } i = 2k \ \cos(\omega_k.\,t), & ext{if } i = 2k+1 \end{cases}$$

- it is also possible to encode relative positions of pairs of input
- it is also possible to encode positions for query and key

$$ext{RoPE}(q)[2i] = q[2i] \cdot \cos(heta_i) - q[2i+1] \cdot \sin(heta_i)$$

$$ext{RoPE}(q)[2i+1] = q[2i] \cdot \sin(heta_i) + q[2i+1] \cdot \cos(heta_i)$$

$$\theta_i = p/10000^{2i/d}$$
 (like classic sinusoidal freq)

non-causal attention is also possible

• <u>AnnotatedTransformer.ipynb - Colab</u>

advantage of transformers

- parallelization and efficiency
- long-range dependencies
- reduced vanishing gradient problem
- interpretability
- •

example: BERT (Bidirectional Encoder Repr. fr. Transformers)

example: BERT (Bidirectional Encoder Repr. fr. Transformers)

It uses only the encoder part of the transformer.

Not "causal": bi-directional.

example: GPT (Generative Pretrained Transformer)

decoder-only

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

example: DeepSeek

decoder-only

7.3 vision transformer

a history

2017.6 | Transformer

Solely based on attention mechanism, the Transformer is proposed and shows great performance on NLP tasks.

2020.5 | GPT-3

A huge transformer with 170B parameters, takes a big step towards general NLP model.

2020.7 | iGPT

The transformer model for NLP can also be used for image pretraining.

End of 2020 | IPT/SETR/CLIP

Applications of transformer model on low-level vision, segmentation and multimodality tasks, respectively.

2018.10 | BERT

Pre-training transformer models begin to be dominated in the field of NLP.

2020.5 | DETR

A simple yet effective framework for high-level vision by viewing object detection as a direct set prediction problem.

2020.10 | ViT

Pure transformer architectures work well for visual recognition.

2021 | ViT Variants

Variants of ViT models, e.g., DeiT, PVT, TNT, and Swin.

vision transformer

advantages of vision transformers

- global context understanding
- scalability
- parameter efficiency
- •

How does vision transformer work?

(a) Loss landscape visualizations

(b) Hessian max eigenvalue spectra

How does vision transformer work?

swin (shifted windows) transformer

swin (shifted windows) transformer

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Thank you!

Reference

- Ch 10, 11 & 16, Jurafsky, D., & Martin, J. H. (2023). Speech and language processing (draft). https://web.stanford.edu/~jurafsky/slp3/
- Goldberg, Y. (2016). A primer on neural network models for natural language processing. *Journal of Artificial Intelligence Research*, 57, 345-420.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
- Huang, C. Z. A., Dinculescu, M., Vaswani, A., & Eck, D. (2018). Visualizing music transformer. In NeurIPS Workshop on Interpretability and Robustness in Audio, Speech, and Language.
- Kenton, J. D. M. W. C., & Toutanova, L. K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In *Proceedings of NAACL-HLT* (pp. 4171-4186).
- Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., ... & Tao, D. (2022). A survey on vision transformer. *IEEE transactions on pattern analysis and machine* intelligence, 45(1), 87-110.
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR* 2021.
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision* (pp. 10012-10022).
- Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. (2022). Swin-UNet: Unet-like pure transformer for medical image segmentation. In ECCV 2022.

