Osnovne informacije vezane uz laboratorijske vježbe

- Ciklus se sastoji od 5 laboratorijskih vježbi.
- Upute za sve vježbe nalaze se na web stranici www.fer.hr/predmet/osnmeh a.
- Studenti su prije vježbe dužni proučiti upute za izvođenje vježbi te riješiti zadatke za pripremu.
- Ukoliko se utvrdi da student nije pripremljen za vježbu bit će uklonjen s laboratorijskih vježbi.

Osnovne informacije vezane uz laboratorijske vježbe

- Nakon završene vježbe studenti su dužni izraditi izvještaj te ga predati isključivo u papirnatom obliku.
- Ne postoje dodatni termini za nadoknade vježbi.
- Za sva pitanja vezana uz laboratorijske vježbe studenti se mogu javiti asistentu Alenu Poljuganu, C zgrada soba C4-13 ili na e-mail <u>alen.poljugan@fer.hr</u>.

Osnovne informacije vezane uz laboratorijske vježbe

Laboratorijske vježbe zamišljene su tako da omoguće:

- upoznavanje s komponentama mehatroničkog sustava
- dobivanje osnovnih znanja sinergističke integracije
- upoznavanje sa postupcima i problemima sinteze i analize mehatroničkog sustava kroz dva jednostavna primjera

Sinteza mehatroničkog sustava

Slika prikazuje proces sinteze mehatroničkog sustava.

Matematičko modeliranje.

Simulacija unutar Matlab/Simulink paketa.

Nakon simulacije slijedi testiranje na realnom modelu.

Malim preinakama simulacijske datoteke dolazi se do datoteke spremne za testiranje na stvarnom modelu.

Veza "model – računalo" osigurana je korištenjem specifičnih programskih i sklopovskih rješenja.

Razvijeni algoritam upravljanja izvodi se u procesoru osobnog računala.

Elektromehanički rotacijski modul *SRV02*

Pogled odozgo

Pogled ispod prednje ploče

Aktuator FAULHABER 2338006S

Aktuator FAULHABER 2338006S

DC servomotor (6V, 3,2W, 7200 rpm) s tahogeneratorom (1.5 mV/rpm)

Planetarni prijenosnik gibanja (*i* =14:1)

DC servomotor + tahogenerator

Pos.	Description
	Tachogenerator
1	End cap
2	Sleeve bearing
3	Housing
4	Magnet
5	Assembly housing
6	Coil
7	Commutator
8	Brush cover

Pos.	Description
	DC-Micromotor
9	Brushes
10	Commutator
11	Coil with shaft
12	Shaft
13	Housing
14	Ball bearing
15	Retaining ring
16	Leadwires

Planetarni prijenosnik

Pos.	Description
1	Motor flange
2	Housing
3	Satellite carrier
4	Sum gear
5	Washer
6	Satellite gear
7	Pin
8	Output shaft
9	Front cover
10	Spacer
11	Retaining ring
12	Ball bearing
13	Spring washer
14	Washer
15	Circlip

Enkoder

Princip rada enkodera

Na izlazu daje slijed impulsa čiji je broj proporcionalan relativnom pomaku osovine

Karakterizira ga konstanta koja definira broj impulsa po okretaju $(k_{enc}$ =4096 imp/okr)

Enkoder

Pos.	Description
1	Circlip
2	Washer
3	Spacer
4	Ball bearing
5	Housing
6	LED support
7	LED
8	Spacer ring
9	Codewheel
10	Stator disk
11	Printed circuit
12	Cover
13	Ribbon cable
14	Connector

Energetsko/signalno pojačalo UPM1503

Modul se koristi kao energetsko pojačalo za pojačavanje upravljačkog signala.

Također se koristi kao signalno pojačalo za prilagodbu razine mjerenih signala zahtjevima sustava za prikupljanje podatka.

Sustav za prikupljanje podataka (priključna pločica)

Omogućava vezu između upravljanog objekta sa sustavom za prikupljanje podataka.

Sustav za prikupljanje podataka *MultiQ PCI* (PCI pločica)

Sustav za prikupljanje podataka osigurava mjerenja i procesiranja različitih mjerenih signala sa i prema upravljanom objektu u realnom vremenu.

Sustav sadrži 16 AD, 4 DA pretvornika, 48 DI/DO i 6 enkoderskih ulaza.

Sustav se nalazi unutar osobnog računala te je priključen na njegovu PCI sabirnicu podataka.

Programsko okruženje MATLAB/Simulink

MATLAB/Simulink okruženje koristi se kao jedini razvojni programski alata.

Koristi se u svrhu sinteze i projektiranja mehatroničkog sustava.

Istodobno se koristi i kao razvojno programsko okruženje pomoću kojeg korisnik kreira upravljački algoritam.

Upravljački algoritam izvodi se u procesoru osobnog računala.

Korištenjem posebnih aplikacija omogućen je <u>rad u realnom vremenu</u> unutar Windows okruženja.

Testiranje na stvarnom modelu

WinCon okruženje pokreće se automatski nakon uspješno obavljenog procesa prevođenja u strojni kod (build/compile).

WinCon aplikacija omogućava kontrolu izvođenja razvijenog algoritma (start/stop), promjenu parametara te snimanje različitih procesnih signala.

Programsko okruženje MATLAB/Simulink

Dodatna Simulink biblioteka vezana uz sustav za prikupljanje podataka (analogni i digitalni ulazi/izlazi te enkoderski ulazi)

Kratak pregled laboratorijskih vježbi

- Lab.vj.1. upoznavanje sa sklopovskom i programskom podrškom laboratorija mehatronike
- Lab.vj.2. projektiranje regulatora brzine vrtnje rotacijskog elektromehaničkog modula SRV02 studenti prolaze proces projektiranja regulatora te izvode simulaciju
- Lab.vj.3. testiranje regulatora brzine vrtnje projektiranog na lab.vj.2. na realnom modelu
- Lab.vj.4. projektiranje regulatora pozicije rotacijskog elektromehaničkog modula SRV02 – studenti prolaze proces projektiranja regulatora te izvode simulaciju
- Lab.vj.5. testiranje regulatora pozicije projektiranog na lab.vj.4. na realnom modelu