Take Home Final: Due Wed., December 16

Math 270A: Techniques in Scientific Computing

1. FEM Poisson: Use the C++ FEM code on the course webpage (or write your own) to solve the following problems:

$$\Delta u + f(x, y) = 0, \quad (x, y) \in \Omega$$

$$\nabla u \cdot \mathbf{n} = g(x, y), \quad (x, y) \in \partial \Omega$$

where Ω is the given in the file 'mesh_with_holes.dat' and

a.
$$f(x,y) = 8\pi^2 \sin(2\pi x)\cos(2\pi y), g(x,y) = \nabla u \cdot \mathbf{n} \text{ where } u(x,y) = \sin(2\pi x)\cos(2\pi y).$$

b.
$$f(x,y) = -4$$
, $g(x,y) = \nabla u \cdot \mathbf{n}$ where $u(x,y) = x^2 + y^2$.

- c. f(x,y) = 0, $g(x,y) = \nabla u \cdot \mathbf{n}$ where u(x,y) = x + y. Plot your solutions with the Matlab code on the course webpage.
- 2. FEM Linear Elasticity: Write a C++ program (you can start from the Poisson code from problem 1) to solve the following problems:

$$\nabla \cdot \sigma + \mathbf{f} = \mathbf{0}, \ (x, y) \in \Omega$$

$$\mathbf{u}(x,y) = \mathbf{h}(x,y), (x,y) \in \Gamma_h$$

$$\sigma \cdot \mathbf{n} = \mathbf{g}(x, y), \quad (x, y) \in \Gamma_g$$

where
$$\sigma = 2\mu\epsilon + \lambda \text{Tr}(\epsilon)\mathbf{I}$$
, $\epsilon = \frac{1}{2} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^T \right)$ and

- a. $\Gamma_g = \partial \Omega$, $\mathbf{u}(x,y) = (x^2,y^2)$ and \mathbf{f} and \mathbf{g} are set accordingly. Use Young's modulus = 1000 and Poisson ratio = .3.
- b. $\Gamma_h = \text{left}$ boundary of $\partial\Omega$, $\Gamma_g = \text{remaining portion of }\partial\Omega$, $\mathbf{f} = -9.8$, $\mathbf{h} = \mathbf{0}$ and $\mathbf{g} = \mathbf{0}$. Use Young's modulus = 10000, 1000, 100 and Poisson ratio = .3. Plot your solutions using the Matlab code from the course webpage.