вариант	ф.	номер	група	поток	курс	специалност
1						
Име:						

Контролна работа по "Логическо програмиране" спец. "Информатика" 1.VI.2013 г.

Задача 1. Структурата \mathcal{A} е с носител \mathbb{N} и е за език с единствен предикатен символ p, който се интерпретира така: $\langle x,y,z\rangle\in p^{\mathcal{A}}\longleftrightarrow x+y+1=z.$

а) Да се докаже, че множеството $\{\langle x,y\rangle:x\leqq y\}$ е определимо. 6) Да се докаже, че в $\mathcal A$ съществува единствен автоморфизъм. Кой е той?

Задача 2. Да се докаже, че е изпълнимо множеството от следните формули:

 $\exists x \exists y (p(x, y) \& \neg p(y, x))$ $\forall x \exists y (\neg p(x, y) \& \neg p(y, x))$ $\exists x \exists y (p(x, y) \& p(y, x))$

вариант	d	þ.	номер	група	поток	курс	специалност
1							
Име:							

Контролна работа по "Логическо програмиране" спец. "Информатика" 1.VI.2013 г.

Задача 1. Структурата \mathcal{A} е с носител \mathbb{N} и е за език с единствен предикатен символ p, който се интерпретира така: $\langle x,y,z\rangle\in p^{\mathcal{A}}\longleftrightarrow x+y+1=z.$

а) Да се докаже, че множеството $\{\langle x,y\rangle:x\leqq y\}$ е определимо. б) Да се докаже, че в $\mathcal A$ съществува единствен автоморфизъм. Кой е той?

Задача 2. Да се докаже, че е изпълнимо множеството от следните формули:

 $\exists x \exists y (p(x, y) \& \neg p(y, x))$ $\forall x \exists y (\neg p(x, y) \& \neg p(y, x))$ $\exists x \exists y (p(x, y) \& p(y, x))$

вариант	ф.	номер	група	поток	курс	специалност
1						
Име:						

Контролна работа по "Логическо програмиране" спец. "Информатика" 1.VI.2013 г.

Задача 1. Структурата \mathcal{A} е с носител \mathbb{N} и е за език с единствен предикатен символ p, който се интерпретира така: $\langle x,y,z\rangle\in p^{\mathcal{A}}\longleftrightarrow x+y+1=z.$

а) Да се докаже, че множеството $\{\langle x,y\rangle:x\leqq y\}$ е определимо. б) Да се докаже, че в $\mathcal A$ съществува единствен автоморфизъм. Кой е той?

Задача 2. Да се докаже, че е изпълнимо множеството от следните формули:

 $\exists x \exists y (p(x, y) \& \neg p(y, x))$ $\forall x \exists y (\neg p(x, y) \& \neg p(y, x))$ $\exists x \exists y (p(x, y) \& p(y, x))$

вариант	ф.	номер	група	поток	курс	специалност
2						
Име:						

Контролна работа по "Логическо програмиране" спец. "Информатика" 1.VI.2013 г.

Задача 1. Структурата \mathcal{A} е с носител $\mathbb{N}\setminus\{0\}$ и е за език с единствен предикатен символ p, който се интерпретира така: $\langle x,y,z\rangle\in p^{\mathcal{A}}\longleftrightarrow x+y=z.$

а) Да се докаже, че множеството $\{\langle x,y\rangle:x\leqq y\}$ е определимо. б) Да се докаже, че в $\mathcal A$ съществува единствен автоморфизъм. Кой е той?

Задача 2. Да се докаже, че е изпълнимо множеството от следните формули:

 $\exists x \exists y (p(x,y) \& \neg p(y,x))$ $\exists x \exists y (\neg p(x,y) \& \neg p(y,x))$ $\forall x \exists y (p(x,y) \& p(y,x))$

вариант	ф.	номер	група	поток	курс	специалност
2						
Име:						

Контролна работа по "Логическо програмиране" спец. "Информатика" 1.VI.2013 г.

Задача 1. Структурата \mathcal{A} е с носител $\mathbb{N}\setminus\{0\}$ и е за език с единствен предикатен символ p, който се интерпретира така: $\langle x,y,z\rangle\in p^{\mathcal{A}}\longleftrightarrow x+y=z.$

а) Да се докаже, че множеството $\{\langle x,y\rangle:x\leqq y\}$ е определимо. б) Да се докаже, че в $\mathcal A$ съществува единствен автоморфизъм. Кой е той?

Задача 2. Да се докаже, че е изпълнимо множеството от следните формули:

 $\exists x \exists y (p(x,y) \& \neg p(y,x))$ $\exists x \exists y (\neg p(x,y) \& \neg p(y,x))$ $\forall x \exists y (p(x,y) \& p(y,x))$

Ε	вариант	ф.	номер	група	поток	курс	специалност
	2						
	Име:						

Контролна работа по "Логическо програмиране" спец. "Информатика" 1.VI.2013 г.

Задача 1. Структурата \mathcal{A} е с носител $\mathbb{N}\setminus\{0\}$ и е за език с единствен предикатен символ p, който се интерпретира така: $\langle x,y,z\rangle\in p^{\mathcal{A}}\longleftrightarrow x+y=z.$

а) Да се докаже, че множеството $\{\langle x,y\rangle:x\leqq y\}$ е определимо. б) Да се докаже, че в $\mathcal A$ съществува единствен автоморфизъм. Кой е той?

Задача 2. Да се докаже, че е изпълнимо множеството от следните формули:

 $\exists x \exists y (p(x, y) \& \neg p(y, x))$ $\exists x \exists y (\neg p(x, y) \& \neg p(y, x))$

 $\forall x \exists y (p(x,y) \& p(y,x))$