Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Testul 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_4 = \frac{a_3 + a_5}{2} = \frac{5 + 11}{2} =$	3р
	= 8	2 p
2.	$a^{2} + 1 = (a+1)^{2} + 1 \Leftrightarrow a^{2} + 1 = a^{2} + 2a + 2 \Leftrightarrow 2a + 1 = 0$	3p
	$a = -\frac{1}{2}$	2 p
3.	$x^2 - x + 13 = x^2 + 2x + 1 \Leftrightarrow 3x = 12$	3 p
	x = 4, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Cifra zecilor poate fi aleasă în 2 moduri, iar pentru fiecare alegere a cifrei zecilor, cifra unităților se poate alege în câte 3 moduri, deci sunt $2 \cdot 3 = 6$ cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{6}{90} = \frac{1}{15}$	1p
5.	$m_{AB} = 1$ și $m_{OC} = \frac{a}{3}$, unde a este număr real	2p
	$OC \perp AB \Leftrightarrow m_{AB} \cdot m_{OC} = -1 \Leftrightarrow \frac{a}{3} = -1$, de unde obţinem $a = -3$	3 p
6.	$\cos\left(x+\frac{\pi}{3}\right) + \cos\left(x-\frac{\pi}{3}\right) = \cos x \cos\frac{\pi}{3} - \sin x \sin\frac{\pi}{3} + \cos x \cos\frac{\pi}{3} + \sin x \sin\frac{\pi}{3} =$	2p
	= $2\cos x \cos \frac{\pi}{3} = 2 \cdot \cos x \cdot \frac{1}{2} = \cos x$, pentru orice număr real x	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a	a)	$A(1) = \begin{pmatrix} 6 & -2 \\ 10 & -3 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 6 & -2 \\ 10 & -3 \end{vmatrix} =$	2p
	;	$=6\cdot \left(-3\right)-10\cdot \left(-2\right)=2$	3 p
b)	$A(x) \cdot A(y) = \begin{pmatrix} (1+5x)(1+5y) - 20xy & -2y(1+5x) - 2x(1-4y) \\ 10x(1+5y) + 10y(1-4x) & -20xy + (1-4x)(1-4y) \end{pmatrix} =$	3p
		$= \begin{pmatrix} 1+5x+5y+5xy & -2x-2y-2xy \\ 10x+10y+10xy & 1-4x-4y-4xy \end{pmatrix} = \begin{pmatrix} 1+5(x+y+xy) & -2(x+y+xy) \\ 10(x+y+xy) & 1-4(x+y+xy) \end{pmatrix} = A(x+y+xy),$ pentru orice numere reale x și y	2p

c)	$(A(m))^{-1} = A(n) \Leftrightarrow A(m)A(n) = I_2 \Leftrightarrow A(m+n+mn) = A(0) \Leftrightarrow m+n+mn = 0$, unde m și n sunt numere întregi, $m \neq -1$ și $n \neq -1$	3p
	$mn+m+n+1=1 \Leftrightarrow (m+1)(n+1)=1$ şi, cum m şi n sunt numere întregi, obținem $m=n=-2$ sau $m=n=0$, deci perechile sunt $(-2,-2)$ şi $(0,0)$, care convin	2 p
2.a)	$1 \circ 0 = 1 \cdot 0 + 1 + 2 \cdot a \cdot 0 =$	3 p
	=0+1+0=1, pentru orice număr real a	2p
b)	$x \circ 1 > 4 \Leftrightarrow x + x + 2a > 4 \Leftrightarrow 2x > 4 - 2a \Leftrightarrow x > 2 - a \Leftrightarrow x \in (2 - a, +\infty)$	3 p
	2-a=3, deci $a=-1$	2p
c)	Legea de compoziție " \circ " este asociativă \Leftrightarrow $(x \circ y) \circ z = x \circ (y \circ z)$, pentru orice numere reale x , y și $z \Leftrightarrow (xy + x + 2ay)z + xy + x + 2ay + 2az = x(yz + y + 2az) + x + 2a(yz + y + 2az)$	2p
	Obţinem $xz + 2az = 2axz + 4a^2z \Leftrightarrow z(x+2a)(1-2a) = 0$, pentru orice numere reale x şi z , deci $a = \frac{1}{2}$	3p

SUBIECTUL al III-lea

1.a)	$f'(x) = \frac{1 \cdot e^x - x \cdot e^x}{e^{2x}} = \frac{e^x (1-x)}{e^{2x}} = \frac{1-x}{e^x}, \ x \in \mathbb{R}$	3 p
	$e^{x}(f(x)+f'(x))=e^{x}\left(\frac{x}{e^{x}}+\frac{1-x}{e^{x}}\right)=1$, pentru orice număr real x	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{e^x} = \lim_{x \to +\infty} \frac{1}{e^x} = 0$	3 p
	Dreapta de ecuație $y=0$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2 p
c)	$f(x) = x \Leftrightarrow x = 0$	2p
	Cum $f(0)=0$ și $f'(0)=1$, tangenta la graficul funcției f în punctul de abscisă $x=0$ are ecuația $y-f(0)=f'(0)(x-0)$, deci este dreapta de ecuație $y=x$	3 p
2.a)	$\int_{0}^{\pi} f(x)dx = \int_{0}^{\pi} \sin x dx = -\cos x \bigg _{0}^{\pi} =$	3p
	$=-\cos \pi + \cos 0 = -(-1)+1=2$	2 p
b)	$\int_{0}^{\pi} xf(x)dx = \int_{0}^{\pi} x \sin x dx = -\int_{0}^{\pi} x(\cos x)' dx = -x \cos x \left \int_{0}^{\pi} + \int_{0}^{\pi} \cos x dx \right = -x \cos x$	3 p
	$= -\pi \cos \pi + \sin x \Big _{0}^{\pi} = -\pi \cdot (-1) + 0 - 0 = \pi$	2 p
c)	$\int_{0}^{1} f(x)dx - \int_{0}^{1} f^{2}(x)dx = \int_{0}^{1} (f(x) - f^{2}(x))dx = \int_{0}^{1} \sin x (1 - \sin x)dx$	2p
	Pentru orice $x \in [0,1]$, $\sin x (1-\sin x) \ge 0 \Rightarrow \int_0^1 \sin x (1-\sin x) dx \ge 0$, $\det \int_0^1 f(x) dx \ge \int_0^1 f^2(x) dx$	3 p

(30 de puncte)