Q14) Finding an optimal edit sequence to change UMSM lo SUMOMISE by following the space optimal DP technique i.e., Half "(i.j) function as discussed.

We will assume A[] = UMSM and use index i for this, and B[] for SUMOMISE, and use index j for this.

construction Edil-(4,8) for A[1...4] and B[1...8]

using the recurrence relation as discussed:

	_ U M	SM	
- S U M	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 - 4 2 - 3 - 3 - 2, 3	F. 00
O M I S	3 4 3 5 - 9 - 7	3 2 3 4 4 4	of 2 wh
E	8 7 6 Table 1	5 5	the sma len

From this table we find out that the smallest From Edit Sequence from

A→B is 5. here exist-two parts i.e.,

2 Edil sequence from A-7B, which we found out from the table-1. Both gives

smallest Edil-Sequence of length 5.

one of them being -UMSM

\$ insert-S

S UMSM

1 no change

SU MSM

& no change

SUM SM

J replace 8 with 0

SUMO M

no change

SUMOMISE

1 insert E

SUMOMIS

T unsurts

SUMOMI

1 insert I

SUMOM

.

Now we will show this exact-changes with the help of half () function call and show what-length of \$13 matches to some optimal Edit Sequence of A.

Defining half (4,8) = length of the first-part of Bto which A[1...4/2] is changed to some optimal Edit Sequence of $A[1...4] \rightarrow B[1...8]$

of half () as discused.

half (4,8) -

1			AA	S	M	
1	_	U	101			The and the second
	00	00	0	0		we got the value
	00		1	0		half 4 (4,8) = 3 whi
	00		2	0	0	means 13[13]
M	00	00	3			part to which A is changed to.
0	00	00	4	3	3	
М	00	00	5	3	3	$0 \text{ um} \longrightarrow s$
	00		6	. 3	3	
5	00	00	7	6	3	
	00		8	6	3	

Now we will calculate Edit (i,j) and half "(i,j) recursively on the above two sequences to get the entire mapping.

Sofreing far 1:

Edit (2,3)

half 2 (2,3)

M 3 2 1

Edit () and half () for $U \rightarrow SU$

Edit (1/2)=1length of smallest Edit Seq. for $U \rightarrow SU$

half¹ (1,2)
$$\begin{array}{c|cccc}
 & - & U \\
 & - & 0 & 0 \\
 & & & 1 & 0 \\
 & & & & & 2 & 1
\end{array}$$

count it.

half (1,2) = 1 i.e., A[0] maps to B[1] $- \rightarrow S \quad (operation 1: insert)$ $U \rightarrow U \quad (no change)$ Solving for 2

Edit (2,5)

Edit (2,5) = 4, length of omallest-Edit-Sequence from BM → OMISE half 2 (2,5)

half²(2,5) = 1 i.e., A[1] maps to B[1] $S \rightarrow 0$ (operation 2: replacement) $M \rightarrow MISE$

Edit() and half() for M -> MISE

Edit (1,4)

Edit (1,4) = 3, length of the smallestedit-sequence from M -> MISE half (1,4)

here m/2 = 0, ie A[] will not have any substring to map to.

So from Edit_Distance (1,4) we can find out the changes which are as follows:

operation
3,4,5:

Three insertions

M insert I

MI

insert S

MIS

insert S

MISE

Thus we got 5 operations of changing UMSM -> SUMOMISE, which was also given by Table-1 and the mapping of each such change is also shown by the operation numbers.