Assignment 4: Database Design Project

PART B

1. ER diagram

2. Database schema

Step 1: Map Strong Entities

Country (iso code, country location)

Step 2: Map Weak Entities

State (state location, iso code*)

Manufacturer_Vaccination (<u>iso_code*</u>, <u>date</u>, <u>vaccine</u>, total_vaccinations)

AgeGroup_Vaccination (<u>iso_code*</u>, <u>date</u>, <u>age_group</u>, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

Country_Vaccination_Event(<u>iso_code*</u>, <u>date</u>, total_vaccinations, total_vaccinations_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, total_boosters, total_boosters_per_hundred, daily_people_vaccinated, daily_people_vaccinated_per_hundred)

Country_Source(<u>iso_code*, date*,</u> source_url)

State_Vaccination_Event(<u>iso_code*, state_location*</u>, <u>date</u>, total_vaccinations, total_vaccinations_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, total_boosters, total_boosters_per_hundred, total_distributed, total_distributed_per_hundred, share_doses_used)

Step 3: Map 1:1 Relationships

Country (<u>iso_code</u>, last_observation_date, source_name, source_website)

Step 4: Map 1:N Relationships

N/A

Step 5: Map M:N Relationships

N/A

Step 6: Multi-valued Attributes

Country_Vaccine(iso code*, vaccine)

Step 7: Map Higher-Degree Relationships

N/A

Final Schema

Country (<u>iso_code</u>, last_observation_date, source_name, source_website)

State (state location, iso code*)

Manufacturer_Vaccination (<u>iso_code*</u>, <u>date</u>, <u>vaccine</u>, total_vaccinations)

AgeGroup_Vaccination (<u>iso_code*</u>, <u>date</u>, <u>age_group</u>, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

Country_Vaccination_Event(<u>iso_code*</u>, <u>date</u>, total_vaccinations, total_vaccinations_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, total_boosters, total_boosters_per_hundred, daily_people_vaccinated, daily_people_vaccinated,

Country_Source(iso_code*, date*, source_url)

Country_Vaccine(iso code*, vaccine)

State_Vaccination_Event(<u>iso_code*</u>, <u>state_location*</u>, <u>date</u>, total_vaccinations, total_vaccinations_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, people_vaccinated, people_vaccinated_per_hundred, people_fully_vaccinated, people_fully_vaccinated_per_hundred, total_boosters, total_boosters_per_hundred, total_distributed, total_distributed_per_hundred, share_doses_used)

3. 3NF normalisation

Step 1: Check for 1NF

To be in 1NF, all attributes must contain atomic values. From the given schema, all attributes appear atomic, so the schema fulfills 1NF.

Step 2: Check for 2NF

To be in 2NF, the schema must be in 1NF and all non-key attributes must be fully dependent on the entire primary key. The dataset fulfills this requirement.

Step 3: Check for 3NF

Transitive Dependencies: There are attributes in State_Vaccination_Event and Country_Vaccination_Event that might depend on other non-primary key attributes through calculations rather than the composite keys themselves.

- State_Vaccination_Event
- total_vaccinations_per_hundred and people_vaccinated_per_hundred are dependent on total_vaccinations and people_vaccinated, respectively. These attributes are derived and calculated based on the total population of the state.
- daily_vaccinations_per_million is based on daily_vaccinations in relation to the state's population.

- **total_distributed_per_hundred** is calculated based on the total_distributed in relation to the state's population.
- share_doses_used depends on both total_vaccinations and total_distributed.
- 2. Country Vaccination Event
- **total_vaccinations_per_hundred** depends on total_vaccinations and the total population of the country.
- daily_vaccinations_per_million depends on daily_vaccinations and the total population of the country.
- **people_vaccinated_per_hundred** depends on people_vaccinated and the total population of the country.
- **people_fully_vaccinated_per_hundred** depends on people_fully_vaccinated and the total population of the country.
- total_boosters_per_hundred depends on total_boosters and the total population of the country.
- daily_people_vaccinated_per_hundred depends on daily_people_vaccinated and the total population of the country.

Decompose into 3NF normalization

Separate the raw metrics of State_Vaccination_Event

State_Vaccination_Metrics (<u>iso_code*</u>, <u>state_location*</u>, <u>date</u>, total_vaccinations, daily_vaccinations_raw, daily_vaccinations, people_vaccinated, people_fully_vaccinated, total_distributed, total_boosters)

Separate the calculated metrics of State_Vaccination_Event

State_Calculated_Metrics (<u>iso_code*</u>, <u>state_location*</u>, <u>date</u>, total_vaccinations_per_hundred, daily_vaccinations_per_million, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_distributed_per_hundred, share_doses_used, total_boosters_per_hundred)

Separate the raw metrics of Country_Vaccination_Event

Country_Vaccination_Metrics (<u>iso_code*</u>, <u>date</u>, total_vaccinations, daily_vaccinations_raw, daily_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, daily_people_vaccinated)

Separate the calculated metrics of Country_Vaccination_Event

Country_Calculated_Metrics (<u>iso_code</u>*, <u>date</u>, total_vaccinations_per_hundred, daily_vaccinations_per_million, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily people vaccinated per hundred)

After the 3NF normalization, the dataset gains:

Preserved Data Integrity: By keeping non-key attributes dependent only on the primary key, aligning with 3NF.

Enhanced Maintainability and Flexibility: By supporting recalculation of calculated metrics without altering raw metrics.

Schema

Country(<u>iso_code</u>, country_location, last_observation_date, source_name, source_website)

Country_Source(<u>iso_code*, date*,</u> source_url)

Country Vaccine(iso code*, vaccine)

State (state location, iso code*)

Manufacturer Vaccination (iso code*, date, vaccine, total vaccinations)

AgeGroup_Vaccination (<u>iso_code*</u>, <u>date</u>, <u>age_group</u>, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

State_Vaccination_Metrics (<u>iso_code*</u>, <u>state_location*</u>, <u>date</u>, total_vaccinations, daily_vaccinations_raw, daily_vaccinations, people_vaccinated, people_fully_vaccinated, total_distributed, total_boosters)

State_Calculated_Metrics (<u>iso_code*</u>, <u>state_location*</u>, <u>date</u>, total_vaccinations_per_hundred, daily_vaccinations_per_million, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_distributed_per_hundred, share_doses_used, total_boosters_per_hundred)

Country_Vaccination_Metrics (<u>iso_code*</u>, <u>date</u>, total_vaccinations, daily_vaccinations_raw, daily_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, daily_people_vaccinated)

Country_Calculated_Metrics (<u>iso_code</u>*, <u>date</u>, total_vaccinations_per_hundred, daily_vaccinations_per_million, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily people vaccinated per hundred)