Sujet 1 : Logique et Raisonnement

- **a.** Montrer que pour toute fonction f définie sur $\mathbb R$, si f est impaire, alors f(0)=0.
- **b.** Soit a et b deux réels. Montrer que : $a imes b = rac{a^2 + b^2}{2}$ si et seulement si a = b.
- **c.** Montrer par récurrence que pour tout entier naturel n, 3 divise 4^n-1 .

Sujet 2 : Généralités sur les Fonctions

- **a.** Soit $f:\mathbb{R} \to \mathbb{R}$ définie par $f(x)=x^2-2x+1$. Déterminer si f est paire, impaire, ou ni l'une ni
- **b.** Étudier la croissance et la décroissance de la fonction $f(x) = e^x x^2$ sur \mathbb{R} .
- **c.** Montrer que la fonction $f(x)=\sin(x)$ est bornée sur $\mathbb R$ et identifier ses extrémums.

Sujet 3 : Révisions d'Analyse

- **a.** Déterminer le domaine de définition de la fonction $f(x) = \ln(\ln(x) 1)$.
- **b.** Calculer la limite de la fonction $f(x)=\frac{2x+1}{4x+3}$ lorsque x tend vers $+\infty$. **c.** Calculer la dérivée de la fonction $f(x)=\sqrt{x^4+x^2+1}$ et étudier ses variations sur son domaine de définition.

Solutions du Sujet 1 : Logique et Raisonnement

Pour montrer que si f est impaire, alors f(0)=0, rappelons la définition d'une fonction impaire : Une fonction f est impaire si pour tout $x \in \mathbb{R}, \ f(-x) = -f(x)$.

En prenant x=0, on obtient f(-0)=-f(0), soit f(0)=-f(0).

Cela implique 2f(0) = 0, donc f(0) = 0.

Montrons que $a \times b = \frac{a^2 + b^2}{2}$ si et seulement si a = b.

Supposons d'abord que a=b. Alors $a\times b=a^2$ et $\frac{a^2+a^2}{2}=a^2$, donc l'égalité est vérifiée.

Supposons maintenant que $a imes b=rac{a^2+b^2}{2}.$ Cela revient à dire : $2ab=a^2+b^2.$ On peut réécrire cette équation comme suit : $a^2-2ab+b^2=0$, soit $(a-b)^2=0$. Cela implique a=b.

Montrons par récurrence que pour tout entier naturel n, 3 divise 4^n-1 .

Initialisation : Pour n=1, $4^1-1=3$, qui est bien divisible par 3.

Hérédité : Supposons que la propriété est vraie pour un certain entier n, c'est-à-dire que 4^n-1 est divisible par 3. Montrons qu'elle est vraie pour n+1.

 $4^{n+1}-1=4\times 4^n-1=(4\times 4^n-4)+3=4(4^n-1)+3$. Par hypothèse de récurrence, 4^n-1 est divisible par 3, donc $4(4^n-1)$ l'est aussi, et par conséquent $4^{n+1}-1$ est divisible par 3.

La propriété est donc vraie pour tout entier naturel n.

Solutions du Sujet 2 : Généralités sur les Fonctions

Soit $f(x)=x^2-2x+1$. Pour déterminer si f est paire, impaire ou ni l'une ni l'autre, calculons f(-x):

 $f(-x)=(-x)^2-2(-x)+1=x^2+2x+1$. Or, f(-x)
eq f(x) et f(-x)
eq -f(x), donc f n'est ni paire ni impaire.

b.

Étudions la croissance et la décroissance de la fonction $f(x)=e^x-x^2$ sur $\mathbb R$.

Calculons la dérivée de f(x) : $f'(x) = e^x - 2x$.

La dérivée s'annule pour $e^x=2x$. La résolution exacte de cette équation est complexe, mais on peut noter que pour x très petit $e^x>2x$ et pour x très grand, $2x>e^x$. En utilisant cette information, on peut étudier les signes de f'(x) pour déterminer les intervalles de croissance et décroissance. c.

Montrons que la fonction $f(x) = \sin(x)$ est bornée sur $\mathbb R$.

La fonction sinus est bien connue pour être bornée, avec $-1 \leq \sin(x) \leq 1$ pour tout $x \in \mathbb{R}$. Les extrema de f(x) sont donc $\max(f) = 1$ et $\min(f) = -1$.

Solutions du Sujet 3 : Révisions d'Analyse

а.

Déterminons le domaine de définition de la fonction $f(x) = \ln(\ln(x) - 1)$.

La fonction logarithme naturel $\ln(x)$ est définie pour x>0, et pour que $\ln(x)-1$ soit définie, il faut $\ln(x)>1$, soit x>e. Ainsi, le domaine de définition de f(x) est x>e.

b.

Calculons la limite de la fonction $f(x)=rac{2x+1}{4x+3}$ lorsque x tend vers $+\infty$.

Divisons le numérateur et le dénominateur par x : $f(x)=\frac{2+\frac{1}{x}}{4+\frac{3}{x}}$. Lorsque x tend vers $+\infty$, les termes $\frac{1}{x}$ et $\frac{3}{x}$ tendent vers 0, donc $\lim_{x\to +\infty}f(x)=\frac{2}{4}=\frac{1}{2}$.

c.

Calculons la dérivée de la fonction $f(x) = \sqrt{x^4 + x^2 + 1}$.

Utilisons la formule de dérivation pour une fonction composée : $f'(x)=rac{1}{2\sqrt{x^4+x^2+1}} imes (4x^3+2x).$

Simplifions : $f'(x)=\frac{2x(2x^2+1)}{2\sqrt{x^4+x^2+1}}=\frac{x(2x^2+1)}{\sqrt{x^4+x^2+1}}$. Pour l'étude des variations, on analyse le signe de cette dérivée sur le domaine de définition.