- 1. Calculeu l'esforç de tracció σ a què estan sotmesos els elements del següents apartats quan han de suportar una càrrega de 780 kq.
 - (a) Barra de secció rectangular amb dimensions $10 \times 15 \, mm$.
 - (b) Tub de diàmetre $D = 45 \, mm$ i gruix $e = 1, 5 \, mm$.
 - (c) Tub de secció rectangular de dimensions $200 \times 80 \, mm$ i gruix $e = 1, 5 \, mm$.
 - (d) Barra de diàmetre $D = 6 \, mm$.
 - (e) Barra de secció hexagonal de 20 mm de costat.
- 2. Un cable d'acer de diàmetre D = 3 mm està suportant una caixa de massa 160 kg.
 - (a) Quin és el valor de l'esforç σ a què està sotmès el cable?
 - (b) Descriviu el comportament del cable suposant que el seu límit elàstic val $\sigma_e = 295 \, MPa$ i el seu esforç de trencament $\sigma_r = 395 \, MPa$. Què succeiria si l'esforç aplicat hagués resultat ser $\sigma = 300 \, MPa$? I si hagués resultat ser $\sigma = 400 \, MPa$?
- 3. Una peça de bronze d'una llargària $L=0,8\,m$ ha experimentat una dilatació lineal $\Delta L=0,6\,mm$ com a conseqüència de l'augment de temperatura. Calculeu el valor de l'allargament unitari.
- 4. La resistència al trencament del titani és de $\sigma_r = 75 \, MPa$. Quina força axial cal per provocar la ruptura d'un eix de $10 \, mm^2$ de secció?
- 5. Una barra de llautó de secció $A=10\,mm^2$ està suportant unn esforç de tracció $\sigma=70\,MPa$. Calculeu la força aplicada.
- 6. Com s'anomena el fenomen que es dona quan una barra es corba per efecte d'un esforç de compressió?
- 7. Una barra quadrada massissa de $5\,mm$ de gruix pot suportar una força axial de tracció màxima de $9,5\,kN$ sense trencar-se. Quina és la resistència a la ruptura del material?
- 8. L'alumini té una densitat $\rho = 2700 \, kg/m^3$. Quin és el pes d'una barra de secció circular de 140 mm de diàmetre i 1,3 m de llargària?
- 9. La tensió de ruptura d'un fil de niló és $\sigma_r = 67 \, MPa$. Si s'utilitza per penjar sòlids amb una massa de $45 \, kg$, quina és la secció mínima que ha de tenir perquè no es trenqui?

10. L'estructura de la figura es construeix amb un perfil d'alumini. Quins seran la massa i el pes de l'estructura? Podeu suposar coneguda la densitat de l'alumini, $\rho_{Al}=2710\,kg/m^3$

11. Una peça de perfil angular de llargària $L=0,5\,m$ com el de la figura està sotmès a un esforç de tracció $\sigma=992\,kN$.

Suposant que es vol tenir un coeficient de seguretat n=3 responeu:

- (a) Si la peça és d'acer amb límit elàstic $\sigma_e = 350 \, MPa$ i densitat $\rho = 7850 \, kg/m^3$, quin gruix ha de tenir el perfil?
- (b) Quina secció ha de tenir la peça si volem utilitzar un aliatge lleuger que té $\sigma_e = 97\,MPa$ i $\rho = 2800\,kg/m^3$?
- (c) Calculeu la massa en cada cas.
- (d) Quin dels dos materials triaríeu? Perquè?
- 12. En un assaig de tracció s'han obtingut els resultats següents:
 - llargària calibrada de la proveta: $L = 100 \, mm$
 - Diàmetre nominal de la proveta: $D = 20 \, mm$
 - Força aplicada: $F = 23 \, kN$
 - Allargament observat: $\Delta L = 66,556 \cdot 10^{-3} \, mm$

Es demana:

- (a) Calculeu el valor de l'esforç normal.
- (b) Raoneu si es tracta d'un material rígid.
- (c) Calculeu el mòdul de Young.
- 13. En un laboratori de control de qualitat fa servir un assaig amb un duròmetre sobre una proveta de gruix $e = 12 \, mm$. Utilitzen una esfera de carbur de diàmetre $D_1 = 10 \, mm$, a la qual apliquen una càrrega $F = 29 \, 418 \, N$ durant un temps $T = 15 \, s$. Posteriorment, al microscopi observen que la marca deixada té un diàmetre $D_2 = 2,75 \, mm$. Calculeu la seva duresa Brinell.
- 14. Quin valor aproximat de duresa tindrà un acer que té un esforç de trencament $\sigma_r = 615 \, MPa$? I una mostra de coure que té $\sigma_r = 220 \, MPa$?
- 15. La figura següent representa la proveta d'un material per sotmetre a un assaig Charpy. Determineu la resiliència K del material si el pèndol ha pujat fins a una alçada màxima $h' = 120 \, mm$ partint d'una alçada inicial $h = 250 \, mm$. (La resiliència K, es calcula com

$$K = \frac{E}{A}$$

on E és l'energia usada per trencar la proveta i A l'àrea de la secció on impacta el martell de l' $assaig\ Charpy$.)

- $L_1 = 100 \, mm$
- $L_2 = 15 \, mm$
- $L_3 = 5 \, mm$
- $L_1 = 10 \, mm$
- 16. Expliqueu el significat tecnològic de les afirmacions següents:
 - El material per fabricar l'eix de transmissió ha de tenir una resistència a la fatiga de $600\,MPa$ per $5\cdot 10^6$ cicles.
 - La palanca ha de suportar esforços màxims de $150\,MPa$, ens cal fer-la d'un material que tingui una vida a la fatiga de 10^8 cicles per a aquests esforços.
 - \bullet La peça no s'hauria trencat mai si no s'hagués sotmès a esforços superiors a $300\,MPa.$
- 17. Quin creieu que seria l'assaig no destructiu més adequat per detectar defectes en una peça d'alumini molt gruixuda? Justifiqueu la resposta tenint en compte que l'alumini no és ferromagnètic.
- 18. En el gràfic es representen dues corbes S-N per a dos materials diferents, A i B. Es demana:
 - (a) Quin és el límit de fatiga de cadascun dels materials?
 - (b) Quina és la resistència a la fatiga del material A per 10 000 cicles?
 - (c) Quina és la resistència a la fatiga del material B per a 100 milions de cicles?

- (d) Quina és la vida a la fatiga del material B per a un esforç de $600\,N/mm^2$?
- (e) Què li passarà al material A si li apliquem esforços de $400\ N/mm^2$ durant mil milions de cicles?

- 19. Un material sòlid està a $285\,K$ i experimenta un increment de temperatura de $30\,K$. Es demana:
 - (a) Quin és l'increment de temperatura expressat en $^{\circ}C$?
 - (b) Quina és la temperatura final del material expressada en $^{\circ}C$?
- 20. Com justificaríeu el fet que el poliestirè (PS) tingui un valor de conductivitat tèrmica de $0, 13 W/m^{\circ}C$ i, en canvi, el poliestirè expandit (EPS) el tingui de $0, 037 W/m^{\circ}C$?
- 21. L'acer de les vies del ferrocarril té un coeficient de dilatació tèrmica de $18,7\cdot 10^{-6}\,^{\circ}C^{-1}$. Si a la temperatura de $20^{\circ}C$ un carril té una llargària de $140\,m$, calculeu la diferència de llargàries que es produeix entre un dia d'hivern $(4^{\circ}C)$ i un altre d'estiu $(28\,^{\circ}C)$.
- 22. Quina potència tèrmica de refrigeració caldrà per mantenir la temperatura interior $T_i = 20^{\circ}C$ de la sala d'estar d'un habitatge que disposa d'una paret de façana de $3 \times 2, 5\,m$ i un gruix $e_p = 14\,cm$ feta de maó massís $(\lambda = 0, 87\,W/m^{\circ}C)$ en la qual hi ha ua porta de vidre amb un gruix $e_v = 5\,mm$, una amplària $L_1 = 70\,cm$ i una alçària $L_2 = 2\,m$, si

la temperatura exterior és de $T_e=28^\circ C$. Quines mesures es podrien prendre per tal de millorar l'eficiència energètica d'aquest habitatge?

