My Amazing Thesis

A. Author

 $The sis \ submitted \ for \ the \ degree \ of \\ Doctor \ of \ Philosophy$

Particle Physics Group, School of Physics and Astronomy, University of Birmingham.

September 4, 2012

ABSTRACT

X was measured, we showed that $Y \neq Z$ and that $M_{\rm H} = 126~{\rm GeV}/c^2$.

DECLARATION OF AUTHORS CONTRIBUTION

I did this, and that, and some of the other.

ACKNOWLEDGEMENTS

I would like to thank bla, and bla \dots

 $Motto\ or\ dedication$

Contents

1	INT	RODUCTION	1
	1.1	HOW TO CITE	1
		1.1.1 TABLES SUB-SECTION	1
		1.1.1.1 ACRONYMS SUB-SUB-SECTION	
	1.2	NEW CONTENT	3
		YSICS QUANTUM CHROMODYNAMICS	5 5
Α	FIR:	ST APPENDIX	11

List of Tables

List of Figures

2.1	QCD Running Coupling	6
2.2	Four figure example	7

DEFINITIONS OF ACRONYMS

LHC Large Hadron Collider
Superconducting collider occupying the 27 km ring at CERN.

 $\begin{picture}(60,0)\put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100}$

CHAPTER 1

INTRODUCTION

1.1 HOW TO CITE

The Higgs discovery is cited [1]. [1, 2] The strong interaction is given in (2.1) from Section 2.1.

1.1.1 TABLES SUB-SECTION

Table 1.1 is an example of a table.

Table 1.1: Table of latencies in the Level 1 systems measured in bunch-crossings of 25 ns. This is a massively parallelised operation, which is factored into the total latencies being shorter than the sum of their individual components.

	Latency Contribution (BC)	C)
Muon Trigger	54.0	
Calorimeter Trigger	56.1	
Cables to PPM	20.6	
Preprocessor for CPM $(e/\gamma, \tau/h)$	15.0	
Preprocessor for JEM (jets, $E_{\rm T}$)	17.0	
Electron/photon hunting	14.0	
Tau/hadron hunting	14.0	
Jet hunting	18.0	
$E_{\mathrm{T}}^{\mathrm{miss}}$ calculation	18.5	
Scalar $E_{\rm T}$ calculation	18.5	
CTP	4.0	
TTC	3.1	
Fibres to front-end electronics	16.0	
Receivers for front-end electronics	3.0	
Total Latency for L1A to reach all ROD	82.2	
Digital Pipeline Length	100	

1.1.1.1 ACRONYMS SUB-SUB-SECTION

Acronyms are defined in acronym.tex. Use an acronym with \ac{}, such as the Large Hadron Collider (LHC). Future use will then just show LHC. Other uses are:

```
\acresetall
    resets all acronyms to not used.
    Useful after the abstract to redefine all acronyms
    in the introduction.
\acf{label}
    written out form with acronym in parentheses,
    irrespective of previous use
\acs{label}
    acronym form, irrespective of previous use
\acl{label}
    written out form without following acronym
\acp{label}
    plural form of acronym by adding an s.
    \acfp. \acsp, \aclp work as well.
```

1.2 NEW CONTENT

Use \cbstart and \cbend to highlight changes to the document with a red bar.

CHAPTER 2

PHYSICS

2.1 QUANTUM CHROMODYNAMICS

Gluons, being themselves coloured, self interact. As a consequence, the Quantum Chromodynamics (QCD) potential between two quarks is given by

$$V(r) = kr - \frac{\alpha_s}{r}. (2.1)$$

Here k is the spring constant from Hooke's law and α_s is the coupling strength of the strong interaction. Potential energy in the colour field increases linearly with separation of quarks until it is energetically favourable to pair-produce a $q\bar{q}$ pair. α_s is plotted in the region $2 < Q^2 < 200$ GeV in Figure 2.1.

Multi-figure example in Figure 2.2

Figure 2.1: Strength of α_s as a function of energy scale. Data from various experiments are presented along with the central average and $\pm 1\sigma$ limits. Taken from [2].

Figure 2.2: Example of four figures.

REFERENCES

- [1] G. Aad *et al.*, "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," *Phys. Lett. B*, 2012.
- [2] W. M. Yao et al., "Particle Data Group," Phys. Rev. D, vol. 86, 2012.

API	ΡFΙ	ИD	IX	Δ
AFI	1	MI J	$I \wedge$	$\overline{}$

FIRST APPENDIX

Tables of datapoints...