COMS 4236: Computational Complexity (Fall 2018) Problem Set #3

 $Wenbo\ Gao\ \hbox{--}\ {\tt wg2313@columbia.edu}$

December 9, 2018

Problem 1

Problem. Problem 11.5.18 on page 275 of CC: Show that, if $NP \subseteq BPP$, then RP = NP. (That is, if SAT can be solved by randomized machine, then it can be solved by randomized machines with no false positives, presumably by computing a satisfying truth as in Example 10.3.)

Problem 2

Problem. Let $0 < \epsilon_1 < \epsilon_2 < 1$ denote two constants. Let $D(\cdot, \cdot)$ be a deterministic polynomial-time computable Boolean function, and let L be a language (the setting so far is exactly the same as the definition of BPP.) D and L satisfy the following property: Given any $x \in \{0,1\}^n$, if y is sampled uniformly at random from $\{0,1\}^m$ for some m polynomial in n, then

$$x \in L \Rightarrow \Pr_{y \in \{0,1\}^m}[D(x,y) = 1] \ge \epsilon_2 \text{ and } x \notin L \Rightarrow \Pr_{y \in \{0,1\}^m}[D(x,y) = 1] \le \epsilon_1.$$

Show that $L \in BPP$. (Note that ϵ_2 can be smaller than 1/2. Use the Chernoff bound.)

Problem 3

Problem. Similar to P/poly, one can define P/log n, where the advice string is of length only $O(\log n)$ for input size n. Show that, if SAT \in P/log n, then P = NP. (Hint: Self-reducibility.)

Problem 4

Problem. Show that, if PSPACE \subseteq P/poly, then PSPACE $= \Sigma_2^P$. (Hint: Use self-reducibility to "implicitly" build a winning strategy for the existential player in the TQBF game.)