Week 4 Questions and Answer Key

- Day 1, questions 14-17
- Day 2, questions 18-21
- Day 3, questions 22-25
- Day 4, questions 26-29
- Day 5, Review
- 14. A relay winding has an inductance of 0.5h and a resistance of 470Ω . If the winding current i equals $t^{\frac{1}{2}} + 0.02$ amps, find the voltage vg across the winding when t = 0.01 seconds. vq = 53.9v
- 15. A series circuit consists of a 22h inductor and a 68Ω resistor. A current $i=2t^2+t$ exists in this combination. After what time t does the voltage across the combination equal 375 volts? t=1.784 seconds
- 16. A voltage $v=t^3+1,000$ volts appears across a parallel RC combination, where $R=2M\Omega$ and $C=1\mu F$. Find the resulting current ig at any time t. $ig=3\times 10^{-6}t^2+500\times 10^{-9}t^3+500\times 10^{-6}$
- 17. A transistor operates into a load resistance of $2.2K\Omega$. The shunt capacitance in the circuit equals 70pf, as measured at the collector. Over a certain interval the output voltage supplied by the transistor equals $v = 1x10^7t + 30$ volts. Find the collector signal current when $t = 10\mu s$. ic = 59.791mA
- 18. A current $i = 10t^{\frac{1}{2}} + 0.1$ amps flows through a series RL circuit, where $R = 800\Omega$ and L = 320h. Find the voltage vg across this circuit when t = 0.04 seconds. vg = -6.32Kv
- 19. A transistor collector has a load resistor of $4.7K\Omega$ with a compensation inductor L=20mh in series with the resistor. The current i through the combination equals $2.5x10^4t + 0.01$ amps. Find the voltage across the RL circuit when t=25ns. vq=-450.063v
- 20. A $27K\Omega$ resistor shunts a $33\mu f$ capacitor. The applied voltage v equals $300t^2$ volts. At what time t does the total current i equal 84mA? t = 1.999s
- 21. The voltage applied across a capacitor of $0.2\mu f$ was $v=5-3t^2$ volts. The energy stored in a capacitor is $w=\frac{Cv^2}{2}$ joules. Find a formula for $\frac{dw}{dt}$ in this capacitor. $\frac{dw}{dt}=-1.2\times 10^{-6}t(5-3t^2)$ OR $3.6\times 10^{-6}t^3-6\times 10^{-6}t$

22. The intensity I of light from a tungsten filament varies with the applied voltage according to I = Av3.7, where A is a constant and v is the applied voltage. If $v = t - 2t^2$, find a formula for $\frac{dI}{dt}$.

, find a formula for
$$\frac{dI}{dt}$$
.
$$\frac{di}{dt} = 3.7a(t-2t^2)^{2.7}(1-4t)$$

- 23. When a length l meters of a conductor moves at a speed of v meters per second in a magnetic field of uniform flux density β teslas, a voltage is induced equal to $v=-\beta lv$ volts. If v=10 meters per second, l=0.3 meter, and β varies over a certain interval according to $\beta=\frac{1}{t^2}$, find $\frac{dv}{dt}$ when t=0.5 seconds. $\frac{dv}{dt}=48v/sec$
- 24. The frequency of a certain crystal oscillator varies with temperature T according to f = fa[1+k(T-Ta)], where fa is the frequency at an initial temperature Ta and k is a constant of the crystal. If T varies with time (t minutes) according to $T = 55+0.01t^2$, how fast does f change when t = 10? $\frac{df}{dt} = fak(0.2)$
- 25. The wavelength λ meters of a radio wave traveling at a speed $c = 3 \times 10^8$ meters per second varies with the frequency according to $\lambda = \frac{c}{f}$. If $f = 1 \times 10^8 + (5 \times 10^7)t^{\frac{1}{2}}$ hertz find a formula for $\frac{d\lambda}{dt}$. $\frac{d\lambda}{dt} = \frac{-7.5 \times 10^{15}}{(1 \times 10^8 + 5 \times 10^7 t^{\frac{1}{2}})^2 t^{\frac{1}{2}}}$ seconds
- 26. The voltage v across a varying resistor r, carrying a fixed current I, is v = Ir. If r varies with time t according to $r = t^3 + 5$, find a formula for $\frac{dv}{dt}$ in this capacitor. $\frac{dv}{dt} = 3t^2I$
- 27. The mutual inductance between two windings is $M = \frac{N_2\phi_2}{l_1}$, where i_1 is the current in one of the windings and N_2 and ϕ_2 are the number of turns of the second winding and the flux linking it to the first winding. If i_1 and N_2 are constant, and if the second winding moves so that ϕ_2 varies with time t seconds according to $\phi_2 = t^3 2t$, find a formula for $\frac{dm}{dt}$. $\frac{dm}{dt} = \frac{n_2}{i_1}(3t^2 2)$
- 28. A copper wire of diameter d and length s has a resistance of $r = \frac{ks}{d^2}$, where k is a constant. Suppose a sliding wire changes the length so that $s = t^2 0.6t$, where t is in seconds. Find a formula for $\frac{dr}{dt}$. $\frac{dr}{dt} = \frac{k}{d^2}(2t 0.6)$
- 29. The force between two charged particles having fixed charges Q_1 and Q_2 varies with the distance separating them according to $f = \frac{Q_1 Q_2}{4\pi\epsilon s^2}$. If ϵ is a constant, and if s varies with time as $s = 6t^{\frac{3}{2}}$, find a formula for $\frac{df}{dt}$.

$$\frac{df}{dt} = \frac{-Q_1 Q_2}{48\pi\epsilon t^4}$$