Calcolo Numerico ed Elementi di	Prof. L. Dedè	Firma leggibile dello studente	
Analisi	Prof. A. Manzoni		
CdL Ingegneria Aerospaziale	Prof. S. Micheletti		
Appello			
10 settembre 2018			
Cognome:	Nome:	Matricola:	

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 3h.

SPAZIO RISERVATO AL DOCENTE

RTE I
TE II
ALE

Parte I - Pre Test

1. (1 punto) Determinare il più grande numero x_{max} rappresentabile nell'insieme $\mathbb{F}(2,3,-1,3)$; riportare il risultato in base decimale.

10 punti

$$x_{max} = 7$$

2. (2 punti) Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$ dove $\mathbf{b} = (1, 1)^T$ e $A = \begin{bmatrix} 4 & 6 \\ 7 & 1 \end{bmatrix}$. Assegnato $\mathbf{x}^{(0)} = (1, 1)^T$ si riporti la prima iterata $\mathbf{x}^{(1)}$ del metodo di Gauss-Seidel.

$$\mathbf{x}^{(1)} = (-1,25 \quad 9,75)^T$$

3. (1 punto) Si consideri il metodo di Richardson stazionario, con parametro $\alpha \in \mathbb{R}$ per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$ con $A = \begin{bmatrix} 10 & -3 \\ -3 & 4 \end{bmatrix}$ simmetrica e definita positiva. Si determini il valore del parametro $\alpha_{opt} \in \mathbb{R}$ che garantisce la più rapida convergenza del metodo.

$$\alpha_{opt} = 0.1429$$

4. (2 punti) Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$, con $A = \begin{bmatrix} 4 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 7 \end{bmatrix}$ e $\mathbf{b} = (6,6,6)^T$, e il metodo del gradiente per l'approssimazione della soluzione $\mathbf{x} \in \mathbb{R}^3$. Si calcolino e si riportino: il valore del parametro dinamico ottimale α_0 associato all'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$ usato per determinare l'iterata $\mathbf{x}^{(1)}$ e l'iterata $\mathbf{x}^{(1)} \in \mathbb{R}^3$.

$$\alpha_0 = 0.126\,866$$
 $\mathbf{x}^{(1)} = (1,432\,836, 1,4328, -0.0896)^T$

5. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 8 & -7 \\ 2 & 3 \end{bmatrix}$ e il metodo delle potenze (dirette) per approssimare l'autovalore di modulo massimo. Assegnato il vettore iniziale $\mathbf{x}^{(0)} = (1\ 0)^T$, si riportino i valori approssimati $\lambda^{(0)}$ e $\lambda^{(1)}$ dell'autovalore ottenuti rispettivamente all'iterata iniziale e dopo l'applicazione di un'iterazione del metodo.

$$\lambda^{(0)} = 8$$
 $\lambda^{(1)} = \frac{111}{17} = 6,529412$

6. (1 punto) Quale tra gli autolavori della matrice $A = \begin{bmatrix} 10 & 0 & 0 \\ -6 & -23 & 0 \\ -3 & 7 & -9 \end{bmatrix}$ può essere determinato applicando il metodo delle potenze inverse? Se ne riporti il valore.

$$\lambda_3(A) = -9$$

7. (1 punto) Si consideri la funzione $f(x) = 1 - e^{(5-x)}$ e il metodo di bisezione per l'approssimazione dello zero $\alpha = 5$ nell'intervallo [4,8]. Si riporti il valore dell'iterata iniziale $x^{(0)}$ del metodo.

$$x^{(0)} = 6$$

Parte I - Esercizi

	orti la condizione necesa za pivoting della matric			
` - /	anci il teorema di stabil enerico $A\mathbf{x} = \mathbf{b}$ in prese lizzata.	_		
		na con completezzo i	l <i>metodo</i> della <i>fatto</i>	$rizzazione \ LU \ { m con}$
(3 punti) Si illus	stri schematicamente, m	ia con completezza, l		

Si comm	enti dettagli	atamente il	costo com	putazionale a	tteso dall'ap	plicazion	e del metodo.
(1 punto) Si riporti l	a definizion	e di numer	o di condizio	namento K_2	(A) della	matrice $A \in \mathbb{R}^{n}$
	do full(ga						do opportuname lizionamento K_2
di tale ii.	aurice.		$K_2(A)$:	= 4.2674 ·	109		
fattorizza al punto la secono y_2 del ve	azione LU co (d); laddove la componen	on pivoting processarios te $\hat{\mathbf{x}}_2$ della prio $\mathbf{y} \in \mathbb{R}^{12}$	per righe pe si utilizzi op soluzione n associato a	er risolvere il poportunamen umerica $\hat{\mathbf{x}} \in$ al sistema tri	sistema lineate il comando \mathbb{R}^{12} cosi otte	re con la 1 o \ di Ma nuta, la s	ente il metodo di matrice A assegnitlab $^{\mathbb{B}}$. Si riporti econda compone norma euclidea
$\hat{x}_2 = _$	1.51427		$y_2 = _{_}$	0.141120		$\ \mathbf{r}\ = _$	$1.69518 \cdot 10^{-9}$
Durante	l'applicazior		do della fat osta data.	torizzazione	LU viene effe	ettivamen	te utilizzato il pi

) (2 punti) Si stimi l'errore r ottenuta al punto (e) applic motivi il risultato ottenuto.			
monvi ii risuntato ottenuto.	$e_{rel} <$	2.88453	
SERCIZIO 2. Si consideri i	una funzione f	: $[a,b] \to \mathbb{R}$, definita nell	'intervallo $[a,b] \subseteq \mathbb{R}$, dotata
llo zero $\alpha \in [a,b]$.			
) (2 punti) Si riporti l'algoritm	no del metodo	li Newton per la ricerca d	ello zero α di $f(x)$.
) (4 punti) Si implementi il r	notodo di Nov	ton nella funzione Matla	b® nouton mutilizzando il
criterio d'arresto basato sulla			
function	[xvect,N] =	newton(x0,nmax,tol,fu	n,dfun)
Si considerino come <i>input</i> : il	valore dell'iter	ata iniziale x0: il numero m	nassimo di iterazioni consen-
tite nmax; la tolleranza sul ci		•	
la sua funzione derivata dfun		-	e xvect contenente tutte le
iterate del metodo; il numero			
Si utilizzi la funzione Matlab $\alpha \in \mathbb{R}$ della funzione			nte per approssimare lo zero
		$\frac{\pi}{7}\bigg)\log\left(x-\pi/7+1\right).$	
-	$/\pi$	2\	9
Si considerino l'iterata inizia	$ext{le } x^{(0)} = \left(\frac{\pi}{2} + \right)$	$\left(\frac{2}{3}\right)$, la tolleranza tol= 1	0^{-3} e il numero massimo di

Versione n. 1 – Soluzioni – Pag. 5

$N = \underline{\hspace{1cm}}$	10	$x^{(N)} = \underline{}$	$0,\!449302$	$r^{(N)} = 1$	$2,525323\cdot10^{-7}$
$x^{(1)} = _$	10 0,741 574	$x^{(2)} = $	0,586002	_	
(c) <i>(2 punti)</i> l'ordine di	Si consideri la fur i convergenza p atte delle proprietà di	nzione $f(x)$ di eso dal metodo	cui al punto (b) di Newton per la	per cui lo zero ricerca di α ? Si	è $\alpha = \pi/7$. Qual è giustifichi la rispostane il risultato teorico
		$p = _$	1		
(d) (2 punti)	Si consideri ora la	seguente funzio	one di iterazione		
	ϕ ($(x) = (1 - \theta) x$	$+\frac{\pi}{7} \left[\theta + \log\left(x - \frac{\pi}{2}\right)\right]$	$-\pi/7+1)]$	
dipendent	e da un parametro	$\theta \in \mathbb{R}$. Si verif	ichi che $\alpha = \pi/7$	'è punto fisso di	$\phi(x)$ per ogni $\theta \in \mathbb{R}$
	inino i valori di θ e o per ogni $x^{(0)}$ "suf				odo delle iterazioni d ione la risposta.

 $\theta \in \underline{\left(\frac{\pi}{7}, \frac{\pi}{7} + 2\right)}$

Versione n. 1 – Soluzioni – Pag. 6

 $x^{(N)}$ dello zero, il residuo corrispondente $r^{(N)} = |f(x^{(N)})|$ e i valori delle iterate $x^{(1)}$ e $x^{(2)}$ (si utilizzino almeno 4 cifre decimali e il formato esponenziale per riportare i risultati).

Parte II - Pre Test

1. (1 punto) Si consideri la funzione $f(x) = 1 - 4^{2x}$. Si riporti il valore approssimato di $f'(\overline{x})$ in $\overline{x} = 0$ ottenuto mediate le differenze finite in avanti, ovvero $\delta_+ f(\overline{x})$, usando il passo $h = \frac{1}{2}$.

$$\delta_c f(\overline{x}) = -6$$

2. (1 punto) Si consideri l'approssimazione dell'integrale $\int_0^8 x^{1/5} dx$ mediante il metodo di Simpson. Si riporti il valore dell'integrale approssimato I_s .

$$I_s = 9,058\,331$$

3. (2 punti) Data la funzione $f(x) = x + 3 |\sin(x)|$ nell'intervallo $[a,b] = [0,5\pi]$, si applichi la formula dei trapezi composita per l'approssimazione dell'integrale $\int_a^b f(x) dx$ su M = 10 sottointervalli equispaziati di [a,b]. Si riporti il valore dell'integrale approssimato $I_t^H(f)$.

$$I_t^H(f) = 146,932$$

4. (2 punti) Si consideri la formula del punto medio composita per l'approssimazione dell'integrale $\int_0^3 e^x dx$. Senza applicare esplicitamente la formula, si stimi il numero M di sottointervalli equispaziati di [0,3] tali per cui l'errore di quadratura è inferiore alla tolleranza $tol = 10^{-5}$.

$$M \ge 1504$$

5. (1 punto) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = 7 \sin(t) - 3 y(t) & t \in (0, +\infty), \\ y(0) = 1. \end{cases}$$

Utilizzando il metodo di Eulero in avanti (Eulero esplicito) con passo h = 1/4 e $u_0 = y_0 = 1$, si riporti il valore calcolato di u_1 , ovvero l'approssimazione di $y(t_1)$.

$$u_1 = \frac{1}{4}$$

6. (1 punto) Si consideri il seguente problema differenziale di diffusione:

$$\begin{cases} -u''(x) = 2 & x \in (0,1), \\ u(0) = u(1) = 0. \end{cases}$$

Utilizzando il metodo delle differenze finite centrate con passo di discretizzazione h = 1/2 si calcoli u_1 , ovvero l'approssimazione di u(1/2).

$$u_1 = 0.25$$

	$\begin{cases} -u''(x) + 2u(x) = x & x \in (0,1), \\ u(0) = 0, & u(1) = 8. \end{cases}$			
Si approssimi il problema utilizzando il metodo delle differenze finite centrate con pas discretizzazione $h=1/2$ ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti $\{x_j\}_{j=0}^{N+1}$ per $N=1$. Si risolva il problema e si riporti il valore della soluzione numerica ovvero l'approssimazione di $u(x_1)$.				
	$u_1 = 3,25$			
	Parte II - Esercizi			
spressione de	ia $f:[a,b]\to\mathbb{R}$ una funzione continua. Si definisca e si fornisca con precisione le polinomio interpolante composito lineare $\Pi^1_H f$ considerando $N+1$ nodi equispazi llo $[a,b]$, ovvero $x_0=a,x_1,\ldots,x_N=b$, con passo $H=(b-a)/N$. Si interpreti grafic	ati		
Si riporti il	risultato (teorema) di convergenza dell'interpolazione composita lineare.			

 ${\bf 7.}~(2~punti)$ Si consideri il seguente problema differenziale di diffusione–reazione:

guito al punto (a) se ne fornisca un		o interpolante	composito di gra

$$f(x) = 5 \log(x+1) + \frac{5}{4} \sin(2\pi x + \sqrt{3})$$
 definita in $[a,b] = [0,10]$,

mediante il polinomio interpolante composito lineare $\Pi_H^1 f$ su nodi equispaziati con passi di ampiezza H = 0.1, 0.05, 0.025, 0.0125. Si riportino, al variare di H, i valori delle approssimanti corrispondenti $\Pi_H^1 f$ valutate in $\overline{x} = 10/\pi$.

(d) (2 punti) In seguito al punto (c), si calcolino e si riportino gli errori $E_H(f) = \max_{x \in [a,b]} |f(x)|$ $\Pi^1_H f(x)$ associati alle corrispondenti approssimanti $\Pi^1_H f$ (al fine del calcolo dell'errore in Matlab® si valutino f(x) e $\Pi_H^1 f(x)$ in 1000 punti con il comando linspace(0, 10, 1000)).

per
$$H = 0.1$$
 $E_H(f) = \underline{\qquad} 6,210\,519 \cdot 10^{-2}$
per $H = 0.05$ $E_H(f) = \underline{\qquad} 15,516\,793 \cdot 10^{-3}$
per $H = 0.025$ $E_H(f) = \underline{\qquad} 39,656\,099 \cdot 10^{-4}$
per $H = 0.0125$ $E_H(f) = \underline{\qquad} 9,858\,695 \cdot 10^{-4}$

Ċ	$2 \ punti$) Si considerino ora le coppie di dati $\{(x_i,y_i)\}_{i=0}^n$ con $\{x_i\}_{i=0}^n$ nodi distinti e $n \gg 1$. efinisca il polinomio $p_m(x) \in \mathbb{P}_m$ approssimante tali dati nel senso dei minimi quadrati, d $n \geq 0$.
2	i riporti e si descriva dettaglia tamente il problema di minimizzazione associato a $p_m(x)$.

 $p_1(x) = \underline{\qquad \qquad 1,0375 \, x + 2,9464 \qquad \qquad } p_2(x) = \underline{\qquad \qquad -0,0954 \, x^2 + 1,9918 \, x + 1,4354 }$

Esercizio	2.	Si	consideri	il	problema	di	Cauchy:
					0 - 0 -0 -001		

$$\begin{cases} y'(t) = f(t,y) & t \in (0,t_f], \\ y(0) = y_0, & 10 \text{ pun} \end{cases}$$
 (1)

con $t_f > 0$ e il dato iniziale y_0 assegnati.

(a) (2 punti) Si considerino il problema di Cauchy (1) e la sua approssimazione mediante il metodo di Crank-Nicolson. Si riporti l'algoritmo del metodo (non in stretto linguaggio Matlab®) definendo con precisione tutta la notazione utilizzata.

(b) (1 punto) Posti per il problema di Cauchy (1) $f(t,y) = \lambda y$, con $\lambda \in \mathbb{R}$ e $\lambda < 0$, e $t_f = +\infty$, si discuta l'assoluta stabilità del metodo di Crank-Nicolson. Si motivi la risposta fornita.

(c) (3 punti) Si consideri il problema di Cauchy (1) con $f(t,y) = [6 (\cos(t) \tanh(t) + \sin(t)) - \tanh(t) y]$, $t_f = 10$ e $y_0 = 0$. Si utilizzino opportuni comandi Matlab[®] per approssimare tale problema mediante il metodo di Crank–Nicolson con diversi passi temporali $h_1=0.5,\,h_2=0.25,\,h_3=0.125$ e $h_4 = 0.0625$. Si riportino i valori della soluzione approssimata $u_{N_{h,i}}$ corrispondente all'istante finale t_f per ciascuno dei precedenti valori di h_i (si riportino almeno 4 cifre decimali).

$$u_{N_{h,1}} = \underline{\qquad -3,176\,627} \qquad \qquad u_{N_{h,2}} = \underline{\qquad -3,242\,453}$$
 $u_{N_{h,3}} = \underline{\qquad -3,258\,721} \qquad \qquad u_{N_{h,4}} = \underline{\qquad -3,262\,776}$

li risultat		ente l'ordine di	convergenza del metodo di Cra
li risultat otivi la ris	i per stimare graficam	ente l'ordine di	convergenza del metodo di Cra
			orocedura seguita e il corrispond
	ti l'approssimazione as $0 \mid 1$	ssociata alla seg $/4 -1/4$	
ivandolo,	se tale metodo di Rur	nge–Kutta è esp	olicito o implicito.
	e ne ripor	e ne riporti l'approssimazione as 0 1 2/3 1	onsideri ora un metodo di Runge–Kutta per ape ne riporti l'approssimazione associata alla seg $\begin{array}{c ccccccccccccccccccccccccccccccccccc$