$$\label{eq:Theintegral} \text{The integral } \vec{E} = \int \! d\vec{E} \ \text{means } \vec{E} \ = \ \hat{x} \! \int \! dE_x \ + \ \hat{y} \! \int \! dE_y \ + \ \hat{z} \! \int \! dE_x \ .$$

Often, from symmetry, one can see that one or more of the three component integrals vanishes.

An infinite line of charge with linear charge density λ is along the x-axis and extends to \pm ∞ . At the point A shown, what can you say about the x- and y- components of \vec{E} ?

A: $E_x = 0$, $E_y < 0$

B: $E_x < 0$, $E_y = 0$

C: $E_x = 0$, $E_y = +\infty$

D: $E_x = 0$, $E_y > 0$

E: $E_x > 0$, $E_y > 0$

Answer: $E_x = 0$, $E_y > 0$

EII - 2.

A circular ring of radius R, uniformly charged with total charge +Q, is in the xy plane centered on the origin. The electric field $d\vec{E}$ at position z = h on the z-axis, due to a small piece of the ring with charge dQ, is shown. What is the magnitude of the field dE?

B:
$$\frac{k dQ}{h^2}$$

C:
$$\frac{k dQ}{R^2 + h^2}$$

C:
$$\frac{k \ dQ}{R^2 + h^2}$$
 D: $\frac{k \ dQ}{\sqrt{R^2 + h^2}}$

E: None of these.

What is dE_z , the z-component of $d\vec{E}$?

A: dE sinθ

B: $dE \cos\theta$

C: $dE \tan\theta$

D: None of these.

What is $\cos\theta$?

A:
$$\frac{h}{R^2 + h^2}$$

B:
$$\frac{h}{\sqrt{R^2 + h^2}}$$

C:
$$\frac{h}{R}$$

D:
$$\cos^{-1}\left(\frac{h}{\sqrt{R^2+h^2}}\right)$$

E: None of these!

$$\label{eq:Answers: dE} \text{Answers: } dE = \frac{k \; dQ}{R^2 + h^2} \,, \ dE_x = dE \; cos\theta, \; cos \, \theta = \frac{h}{\sqrt{R^2 + h^2}}$$

EII - 3.

A circular ring uniformly charged with positive charge Q is in the xy plane centered on the origin as shown. On the z-axis,

 $\dot{E} = E_z \hat{z}$. Which graph accurately represents the electric field E_z on the z-axis?

E: None of these is an accurate representation of E_z

Answer: B

EII - 4. The magnitude of the E-field on the z-axis due to ring of charge is given by

$$E = \frac{k h Q}{\left(h^2 + R^2\right)^{3/2}}$$

What is the E-field magnitude on the z axis in the far away limit $(h \gg R)$?

- A) $\frac{k h Q}{R^3}$ B) $\frac{k Q}{h^2}$ C) $\frac{k Q}{h R}$ D) $\frac{k Q}{R^2}$

- E) None of these

Answer: $E = \frac{kQ}{h^2}$ In the limit, h >> R, the ring should act like a point charge with charge Q.

EII - 5.

What the magnitude of the vector $(\hat{i} - \hat{j}) = (\hat{x} - \hat{y})$?

- A) 1
- B) 2
- C) 0
- D) Some other number.
- E) No answer, because $(\hat{x} \hat{y})$ is not a vector.

Answer: Some other number. The magnitude of the vector is $\sqrt{2}$.

EII - 6.

There are **no charges** inside the regions shown. Which of the following are possible electric field line configurations?

A: (a) only B: (b) only

C: (c) only

D: None are possible

E: Some other answer (all, a and

b only, etc.)

Answer: Configurations (a) and (b) are possible, so the answer is E) Some other answer.

EII - 7.

Consider the four electric field line patterns shown. Assume that that are $\underline{\mathbf{no}}$ charges in the regions shown. Which, if any, of the patterns represent possible electrostatic fields?

A: All are possible. B: II only C: II and III only

D: None are possible. E: Some other combination.

Answer: II only

EII - 8.

From the figure, what can you say about the net charge on the bar?

A: $Q_{bar} = 0$

B: $Q_{bar} > 0$ (that is, the bar has a net positive charge)

C: $Q_{bar} < 0$ (the bar has a net negative charge)

D: Not enough information in the figure to answer the question.

From the figure, what can you say about the magnitude of the charge on the bar $\left|Q_{bar}\right|$, compared to the magnitude of the charge Q of the positive point charge?

A:
$$|Q_{bar}| > Q$$

$$B: \left| \mathbf{Q}_{\mathrm{bar}} \right| = \mathbf{Q}$$

C:
$$|Q_{bar}| < Q$$

Answers: The net charge on the bar is negative. $|Q_{\text{bar}}| < Q$

EII - 9. A dipole is placed in an external field as shown. In which situation(s) is the **net force** on the dipole zero?

- A) 1 only
- B) 2 only
- C) 1 and 2

- D) 3 and 4
- E) 2 and 4

Answer: 3 and 4