Recapitular: Fsica Cuntica

Dirk Hornung

February 2, 2016

Contents

1	\mathbf{Los}	Los postulados de la mecnica cuntica														2											
	1.1]	Esta	do	s	Pτ	ıro	os																			2
	1.2	(Obse	rv	ab	le	\mathbf{S}																				2
	1.3																										2
_	Osc : 2.1														_												9

Chapter 1

Los postulados de la mecnica cuntica

1.1 Estados Puros

Definition 1. A la mecnica cuantica un estado es un vector ψ (vector estado o ket) normalizado ($\langle \psi | \psi \rangle = 1$) en un espacio Hilbert \mathcal{H} comlejo, completo, unitario y separable.

1.2 Observables

Definition 2. Cada observable $\bf A$ de un systema fsico se representa en la mecnica cuantica mediante un operador **hermtico** \tilde{A} .

1.3

Chapter 2

Oscilador Armnico Cuntico

2.1 Problemas

1. Ecuentra las expressiones del los observables x y p en trminos de los operadores a y a^{\dagger} que permiten escribir l'hamiltoniano armnico unidimensional como $H=\hbar\omega(a^{\dagger}a+1/2)$. Conviene que utilizas argumentos d'hermitinidad y dimensional.

Solucion:

Los operadores escalera estan definida por

$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right)$$
$$a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right)$$

As aadiendo y sustraiendo los operadores escalar danos

$$a + a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}}(\hat{x} + \hat{x}) \qquad \Rightarrow \hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(a + a^{\dagger})$$

$$a - a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}}\left(\frac{i}{m\omega}\hat{p} + \frac{i}{m\omega}\hat{p}\right) \quad \Rightarrow \quad \hat{p} = \sqrt{\frac{\hbar m\omega}{2}}(-i)(a - a^{\dagger})$$