```
import pandas as pd
In [1]:
                    import numpy as np
                    import matplotlib as mpl
                    import matplotlib.pyplot as plt
                    %matplotlib inline
                    can=pd.read excel('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV0101EN-SkillsNetwork-DV
In [2]:
                              sheet_name='Canada by Citizenship',
                              skiprows=range(20),
                              skipfooter=2)
                    can.head(2)
In [3]:
                                    Type Coverage
                                                                           OdName AREA AreaName REG RegName DEV
                                                                                                                                                                                 DevName 1980 ... 2004 2005 2006 2007 2008 2009 2010 2011 2012 20
Out[3]:
                                                                                                                                                 Southern
                                                                                                                                                                                Developing
                    0 Immigrants Foreigners Afghanistan
                                                                                                  935
                                                                                                                       Asia 5501
                                                                                                                                                                                                          16 ... 2978 3436 3009 2652 2111 1746 1758
                                                                                                                                                                                                                                                                                                             2203 2635
                                                                                                                                                         Asia
                                                                                                                                                                                      regions
                                                                                                                                                 Southern
                                                                                                                                                                                 Developed
                    1 Immigrants Foreigners
                                                                              Albania
                                                                                                  908
                                                                                                                   Europe
                                                                                                                                    925
                                                                                                                                                                                                            1 ... 1450 1223
                                                                                                                                                                                                                                                  856
                                                                                                                                                                                                                                                              702
                                                                                                                                                                                                                                                                           560
                                                                                                                                                                                                                                                                                     716
                                                                                                                                                                                                                                                                                                   561
                                                                                                                                                                                                                                                                                                               539
                                                                                                                                                                                                                                                                                                                           620
                                                                                                                                                    Europe
                                                                                                                                                                                      regions
                  2 rows × 43 columns
                    can.drop(['Type', 'Coverage', 'AREA', 'REG', 'DEV'], axis=1, inplace=True)
In [4]:
                    can.rename(columns={'OdName':'Country','AreaName':'Continent','RegName':'Region'}, inplace=True)
                    can['Total']=can.sum(axis=1)
                    C:\Users\ahmed\AppData\Local\Temp\ipykernel_8864\4146139127.py:3: FutureWarning: Dropping of nuisance columns in DataFrame redu
                    ctions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns befo
                    re calling the reduction.
                         can['Total']=can.sum(axis=1)
                    can.set_index('Country', inplace=True)
In [6]:
                    can.columns=list(map(str, can.columns))
In [7]:
                    years = list(map(str, range(1980, 2014)))
In [9]:
                    years
                    ['1980',
Out[9]:
                        '1981',
                       '1982'
                       '1983'
                       '1984'
                       '1985',
```

```
'1986',
           '1987'
            '1988'
           1989
           '1990',
           '1991'
           1992
            '1993'
           1994
           '1995'
           '1996',
           '1997',
           '1998'
           '1999',
            '2000'
            '2001',
            '2002',
           '2003',
            '2004'
            '2005'
            '2006'
            '2007',
            '2008'
           '2009'
            '2010',
           '2011',
            '2012',
           '2013']
          can.sort_values(['Total'], ascending=False, axis=0,inplace=True)
In [10]:
          Top5=can.head()
          Top5=Top5[years].transpose()
          Top5.head()
                  India China United Kingdom of Great Britain and Northern Ireland
                                                                            Philippines Pakistan
Out[10]:
          Country
                   8880
                         5123
                                                                                  6051
                                                                                           978
             1980
                                                                      22045
                   8670
                         6682
                                                                      24796
                                                                                  5921
                                                                                           972
             1981
             1982
                   8147
                         3308
                                                                      20620
                                                                                  5249
                                                                                           1201
                                                                                  4562
             1983
                   7338
                         1863
                                                                      10015
                                                                                            900
```

10170

3801

668

1984 5704

In [12]:

In [14]:

1527

ax= Top5.plot(kind='area', alpha=0.35, figsize=(20,10))

mpl.style.use(['ggplot'])

```
ax.set_title('Immigration Trend of Top 5 Countries')
ax.set_ylabel('Number of Immigrants')
ax.set_xlabel('Years')
```

Out[14]: Text(0.5, 0, 'Years')

In [19]:	df_conti df_conti				y('Con	itinent	', axi	.s=0).s	sum()											
Out[19]:		1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	 2005	2006	2007	2008	2009	2010	2011	2012	1
	Continent																			
	Africa	3951	4363	3819	2671	2639	2650	3782	7494	7552	9894	 27523	29188	28284	29890	34534	40892	35441	38083	38
	Asia	31025	34314	30214	24696	27274	23850	28739	43203	47454	60256	 159253	149054	133459	139894	141434	163845	146894	152218	15!
	Europe	39760	44802	42720	24638	22287	20844	24370	46698	54726	60893	 35955	33053	33495	34692	35078	33425	26778	29177	28

```
Latin
 America
          13081 15215 16769 15427 13678 15171 21179 28471 21924 25060 ... 24747
                                                                                        24676
                                                                                                26011
                                                                                                       26547
                                                                                                               26867
                                                                                                                       28818
                                                                                                                              27856
                                                                                                                                      27173
  and the
Caribbean
Northern
           9378 10030
                        9074 7100
                                     6661
                                           6543
                                                  7074
                                                         7705
                                                                6469
                                                                      6790 ...
                                                                                 8394
                                                                                         9613
                                                                                                 9463
                                                                                                       10190
                                                                                                                8995
                                                                                                                        8142
                                                                                                                                       7892
                                                                                                                               7677
 America
```

5 rows × 35 columns

```
color_list = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue', 'lightgreen', 'pink']
In [23]:
         explode_list= [0.1,0,0,0,0.1,0.1]
         df_continents['Total'].plot(kind='pie',
                           figsize=(20,10),
                           autopct='%1.1f%%',
                            startangle=90,
                            pctdistance=1.12,
                           labels=None,
                            shadow=True,
                           colors=color_list,
                           explode=explode_list)
         plt.axis('equal')
         plt.title('Immigration to Canada by Continent [1980 - 2013]', y=1.12)
         plt.legend(labels=df_continents.index, loc='upper left')
         plt.show()
```


Total

In [24]:	df_top15= df_top15	df_top15=can.sort_values(['Total'],ascending= False ,axis=0).head(15) df_top15																		
Out[24]:		Continent	Region	DevName	1980	1981	1982	1983	1984	1985	1986	 2005	2006	2007	2008	2009	2010	2011	2012	1
	Country																			
	India	Asia	Southern Asia	Developing regions	8880	8670	8147	7338	5704	4211	7150	 36210	33848	28742	28261	29456	34235	27509	30933	3:
	China	Asia	Eastern Asia	Developing regions	5123	6682	3308	1863	1527	1816	1960	 42584	33518	27642	30037	29622	30391	28502	33024	34
	United Kingdom	Europe	Northern Europe	Developed regions	22045	24796	20620	10015	10170	9564	9470	 7258	7140	8216	8979	8876	8724	6204	6195	į

	of Great itain and Northern Ireland																			
Ph	ilippines	Asia	South- Eastern Asia	Developing regions	6051	5921	5249	4562	3801	3150	4166	 18139	18400	19837	24887	28573	38617	36765	34315	29
	Pakistan	Asia	Southern Asia	Developing regions	978	972	1201	900	668	514	691	 14314	13127	10124	8994	7217	6811	7468	11227	1;
	United States of America	Northern America	Northern America	Developed regions	9378	10030	9074	7100	6661	6543	7074	 8394	9613	9463	10190	8995	8142	7676	7891	{
	Iran (Islamic Republic of)	Asia	Southern Asia	Developing regions	1172	1429	1822	1592	1977	1648	1794	 5837	7480	6974	6475	6580	7477	7479	7534	1:
5	Sri Lanka	Asia	Southern Asia	Developing regions	185	371	290	197	1086	845	1838	 4930	4714	4123	4756	4547	4422	3309	3338	1
	Republic of Korea	Asia	Eastern Asia	Developing regions	1011	1456	1572	1081	847	962	1208	 5832	6215	5920	7294	5874	5537	4588	5316	4
	Poland	Europe	Eastern Europe	Developed regions	863	2930	5881	4546	3588	2819	4808	 1405	1263	1235	1267	1013	795	720	779	
	Lebanon	Asia	Western Asia	Developing regions	1409	1119	1159	789	1253	1683	2576	 3709	3802	3467	3566	3077	3432	3072	1614	1
	France	Europe	Western Europe	Developed regions	1729	2027	2219	1490	1169	1177	1298	 4429	4002	4290	4532	5051	4646	4080	6280	į
	Jamaica	Latin America and the Caribbean	Caribbean	Developing regions	3198	2634	2661	2455	2508	2938	4649	 1945	1722	2141	2334	2456	2321	2059	2182	:
,	Viet Nam	Asia	South- Eastern Asia	Developing regions	1191	1829	2162	3404	7583	5907	2741	 1852	3153	2574	1784	2171	1942	1723	1731	:
	Romania	Europe	Eastern	Developed	375	438	583	543	524	604	656	 5048	4468	3834	2837	2076	1922	1776	1588	<i>:</i>

15 rows × 38 columns

Europe

```
In [25]:
         df_tot = pd.DataFrame(can[years].sum(axis=0))
         df_tot.index = map(int, df_tot.index)
         df_tot.reset_index(inplace = True)
         df_tot.columns = ['year', 'total']
```

regions

```
df_tot.head()
Out[25]:
            vear
                   total
          0 1980
                  99137
          1 1981 110563
          2 1982 104271
          3 1983
                  75550
          4 1984
                 73417
In [26]: x = df_tot['year']
          y = df_tot['total']
          fit= np.polyfit(x,y,deg=1)
          fit
         array([ 5.56709228e+03, -1.09261952e+07])
Out[26]:
          'No. Immigrants = \{0:.0f\} * Year + \{1:.0f\}'.format(fit[0], fit[1])
In [29]:
          'No. Immigrants = 5567 * Year + -10926195'
Out[29]:
In [30]:
          df_tot.plot(kind='scatter', x='year', y='total', figsize=(10, 6), color='darkblue')
          plt.title('Total Immigration to Canada from 1980 - 2013')
          plt.xlabel('Year')
          plt.ylabel('Number of Immigrants')
          plt.plot(x, fit[0] * x + fit[1], color='red')
          plt.annotate('y=\{0:.0f\} x + \{1:.0f\}'.format(fit[0],fit[1]),xy=(2000,150000))
         Text(2000, 150000, 'y=5567 x + -10926195')
Out[30]:
```

Total Immigration to Canada from 1980 - 2013

Kingdom

of Great

Britain

and

```
In [33]:
          5567*2015-10926195
         291310
Out[33]:
          df_can_t = can[years].transpose()
In [35]:
          # cast the Years (the index) to type int
          df_can_t.index = map(int, df_can_t.index)
          # let's label the index. This will automatically be the column name when we reset the index
          df_can_t.index.name = 'Year'
          # reset index to bring the Year in as a column
          df_can_t.reset_index(inplace=True)
          # view the changes
          df_can_t.head()
Out[35]: Country Year India China
                                           Philippines Pakistan
                                    United
                                                               United
                                                                          Iran
                                                                                 Sri Republic ... Kiribati Vanuatu
                                                                                                                   Sao Tuvalu American
                                                                                                                                          San
```

(Islamic Lanka of Korea

Tome

Principe

and

Samoa Marino C

States

America

of

Republic

of)

			Ireland												
0 19	980 8880	5123	22045	6051	978	9378	1172	185	1011	0	0	0	0	0	1
1 19	981 8670	6682	24796	5921	972	10030	1429	371	1456	0	0	0	1	1	0
2 19	982 8147	3308	20620	5249	1201	9074	1822	290	1572	0	0	0	0	0	0
3 19	983 7338	1863	10015	4562	900	7100	1592	197	1081	1	0	0	0	0	0
4 19	984 5704	1527	10170	3801	668	6661	1977	1086	847	0	0	0	1	0	0

5 rows × 196 columns

Northern

```
norm_brazil = (df_can_t['Brazil'] - df_can_t['Brazil'].min()) / (df_can_t['Brazil'].max() - df_can_t['Brazil'].min())
In [36]:
         # normalize Argentina data
         norm_argentina = (df_can_t['Argentina'] - df_can_t['Argentina'].min()) / (df_can_t['Argentina'].max() - df_can_t['Argentina'].m.
In [37]: # Brazil
         ax0 = df_can_t.plot(kind='scatter',
                             x='Year',
                             y='Brazil',
                             figsize=(14, 8),
                             alpha=0.5, # transparency
                             color='green',
                             s=norm_brazil * 2000 + 10, # pass in weights
                             xlim=(1975, 2015)
         # Argentina
         ax1 = df_can_t.plot(kind='scatter',
                             x='Year',
                             y='Argentina',
                             alpha=0.5,
                             color="blue",
                             s=norm_argentina * 2000 + 10,
                             ax=ax0
         ax0.set_ylabel('Number of Immigrants')
         ax0.set_title('Immigration from Brazil and Argentina from 1980 to 2013')
         ax0.legend(['Brazil', 'Argentina'], loc='upper left', fontsize='x-large')
```

Immigration from Brazil and Argentina from 1980 to 2013


```
In [38]: from PIL import Image
In [40]: df_dsn = can.loc[['Denmark', 'Norway', 'Sweden'], :]
# let's take a look at our dataframe
df_dsn
```

Out[40]

]:		Continent	Region	DevName	1980	1981	1982	1983	1984	1985	1986	•••	2005	2006	2007	2008	2009	2010	2011	2012	2013	Total
	Country																					
	Denmark	Europe	Northern Europe	Developed regions	272	293	299	106	93	73	93		62	101	97	108	81	92	93	94	81	3901
	Norway	Europe	Northern Europe	Developed regions	116	77	106	51	31	54	56		57	53	73	66	75	46	49	53	59	2327
	Sweden	Europe	Northern	Developed	281	308	222	176	128	158	187		205	139	193	165	167	159	134	140	140	5866

Europe regions

```
3 rows × 38 columns
```

```
total_values = df_dsn['Total'].sum()
In [41]:
         category proportions = df dsn['Total'] / total values
         # print out proportions
         pd.DataFrame({"Category Proportion": category_proportions})
Out[41]:
                  Category Proportion
          Country
                           0.322557
          Denmark
           Norway
                           0.192409
          Sweden
                           0.485034
         width = 40 # width of chart
In [42]:
         height = 10 # height of chart
         total_num_tiles = width * height # total number of tiles
         print(f'Total number of tiles is {total_num_tiles}.')
         Total number of tiles is 400.
         tiles_per_category = (category_proportions * total_num_tiles).round().astype(int)
In [43]:
         # print out number of tiles per category
         pd.DataFrame({"Number of tiles": tiles_per_category})
Out[43]:
                  Number of tiles
          Country
          Denmark
                           129
                            77
           Norway
          Sweden
                           194
```

```
In [44]: # initialize the waffle chart as an empty matrix
    waffle_chart = np.zeros((height, width), dtype = np.uint)
# define indices to loop through waffle chart
```

```
category index = 0
tile index = 0
# populate the waffle chart
for col in range(width):
   for row in range(height):
       tile index += 1
      # if the number of tiles populated for the current category is equal to its corresponding allocated tiles...
      if tile_index > sum(tiles_per_category[0:category_index]):
          # ...proceed to the next category
          category index += 1
      # set the class value to an integer, which increases with class
      waffle chart[row, col] = category index
print ('Waffle chart populated!')
Waffle chart populated!
waffle_chart
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3,
```

```
In [45]:
Out[45]:
         [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3,
         [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3,
         [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3,
         [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3,
         [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3,
         [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3,
         [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3,
         [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3,
         dtype=uint32)
```

```
In [49]: import matplotlib.patches as mpatches
```

```
In [46]: # instantiate a new figure object
fig = plt.figure()
```

```
# use matshow to display the waffle chart
colormap = plt.cm.coolwarm
plt.matshow(waffle_chart, cmap=colormap)
plt.colorbar()
plt.show()
```

C:\Users\ahmed\AppData\Local\Temp\ipykernel_8864\103890981.py:7: MatplotlibDeprecationWarning: Auto-removal of grids by pcolor
() and pcolormesh() is deprecated since 3.5 and will be removed two minor releases later; please call grid(False) first.
 plt.colorbar()

<Figure size 432x288 with 0 Axes>


```
In [50]: # instantiate a new figure object
         fig = plt.figure()
         # use matshow to display the waffle chart
         colormap = plt.cm.coolwarm
         plt.matshow(waffle_chart, cmap=colormap)
         plt.colorbar()
         # get the axis
         ax = plt.gca()
         # set minor ticks
         ax.set_xticks(np.arange(-.5, (width), 1), minor=True)
         ax.set_yticks(np.arange(-.5, (height), 1), minor=True)
         # add gridlines based on minor ticks
         ax.grid(which='minor', color='w', linestyle='-', linewidth=2)
         plt.xticks([])
         plt.yticks([])
         plt.show()
```

```
C:\Users\ahmed\AppData\Local\Temp\ipykernel_8864\1261046109.py:7: MatplotlibDeprecationWarning: Auto-removal of grids by pcolor
() and pcolormesh() is deprecated since 3.5 and will be removed two minor releases later; please call grid(False) first.
   plt.colorbar()
<Figure size 432x288 with 0 Axes>
```



```
# instantiate a new figure object
In [51]:
         fig = plt.figure()
         # use matshow to display the waffle chart
         colormap = plt.cm.coolwarm
         plt.matshow(waffle_chart, cmap=colormap)
         plt.colorbar()
         # get the axis
         ax = plt.gca()
         # set minor ticks
         ax.set_xticks(np.arange(-.5, (width), 1), minor=True)
         ax.set_yticks(np.arange(-.5, (height), 1), minor=True)
         # add gridlines based on minor ticks
         ax.grid(which='minor', color='w', linestyle='-', linewidth=2)
         plt.xticks([])
         plt.yticks([])
         # compute cumulative sum of individual categories to match color schemes between chart and legend
         values_cumsum = np.cumsum(df_dsn['Total'])
         total_values = values_cumsum[len(values_cumsum) - 1]
         # create legend
         legend_handles = []
```

C:\Users\ahmed\AppData\Local\Temp\ipykernel_8864\2463873726.py:7: MatplotlibDeprecationWarning: Auto-removal of grids by pcolor
() and pcolormesh() is deprecated since 3.5 and will be removed two minor releases later; please call grid(False) first.
 plt.colorbar()

<Figure size 432x288 with 0 Axes>


```
In [53]: def create_waffle_chart(categories, values, height, width, colormap, value_sign=''):
    # compute the proportion of each category with respect to the total
    total_values = sum(values)
    category_proportions = [(float(value) / total_values) for value in values]

# compute the total number of tiles
    total_num_tiles = width * height # total number of tiles
    print ('Total number of tiles is', total_num_tiles)

# compute the number of tiles for each catagory
    tiles_per_category = [round(proportion * total_num_tiles) for proportion in category_proportions]

# print out number of tiles per category
    for i, tiles in enumerate(tiles_per_category):
```

```
print (df_dsn.index.values[i] + ': ' + str(tiles))
# initialize the waffle chart as an empty matrix
waffle_chart = np.zeros((height, width))
# define indices to loop through waffle chart
category index = 0
tile_index = 0
# populate the waffle chart
for col in range(width):
   for row in range(height):
        tile index += 1
        # if the number of tiles populated for the current category
       # is equal to its corresponding allocated tiles...
        if tile_index > sum(tiles_per_category[0:category_index]):
            # ...proceed to the next category
            category_index += 1
       # set the class value to an integer, which increases with class
        waffle_chart[row, col] = category_index
# instantiate a new figure object
fig = plt.figure()
# use matshow to display the waffle chart
colormap = plt.cm.coolwarm
plt.matshow(waffle_chart, cmap=colormap)
plt.colorbar()
# get the axis
ax = plt.gca()
# set minor ticks
ax.set_xticks(np.arange(-.5, (width), 1), minor=True)
ax.set_yticks(np.arange(-.5, (height), 1), minor=True)
# add dridlines based on minor ticks
ax.grid(which='minor', color='w', linestyle='-', linewidth=2)
plt.xticks([])
plt.yticks([])
# compute cumulative sum of individual categories to match color schemes between chart and legend
values_cumsum = np.cumsum(values)
total_values = values_cumsum[len(values_cumsum) - 1]
```

```
# create legend
             legend handles = []
             for i, category in enumerate(categories):
                 if value sign == '%':
                     label_str = category + ' (' + str(values[i]) + value_sign + ')'
                 else:
                     label_str = category + ' (' + value_sign + str(values[i]) + ')'
                 color val = colormap(float(values cumsum[i])/total values)
                 legend handles.append(mpatches.Patch(color=color val, label=label str))
             # add legend to chart
             plt.legend(
                 handles=legend_handles,
                 loc='lower center',
                 ncol=len(categories),
                 bbox_to_anchor=(0., -0.2, 0.95, .1)
             plt.show()
         width = 40 # width of chart
In [54]:
         height = 10 # height of chart
         categories = df_dsn.index.values # categories
         values = df dsn['Total'] # correponding values of categories
         colormap = plt.cm.coolwarm # color map class
        create_waffle_chart(categories, values, height, width, colormap)
In [55]:
         Total number of tiles is 400
         Denmark: 129
         Norway: 77
         Sweden: 194
         C:\Users\ahmed\AppData\Local\Temp\ipykernel_8864\3286913405.py:45: MatplotlibDeprecationWarning: Auto-removal of grids by pcolo
         r() and pcolormesh() is deprecated since 3.5 and will be removed two minor releases later; please call grid(False) first.
           plt.colorbar()
         <Figure size 432x288 with 0 Axes>
```



```
import urllib

# open the file and read it into a variable alice_novel
alice_novel = urllib.request.urlopen('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwood

In [67]: import seaborn as sns
    print('Seaborn installed and imported!')

Seaborn installed and imported!

In [68]: # we can use the sum() method to get the total population per year
    df_tot = pd.DataFrame(can[years].sum(axis=0))

# change the years to type float (useful for regression later on)
    df_tot.index = map(float, df_tot.index)
```

	<pre># reset the index to put in back in as a column in the df_tot dataframe df_tot.reset_index(inplace=True)</pre>
	<pre># rename columns df_tot.columns = ['year', 'total']</pre>
	<pre># view the final dataframe df_tot.head()</pre>
Out[68]:	year total

0 1980.0 99137
1 1981.0 110563
2 1982.0 104271

```
3 1983.0 755504 1984.0 73417
```

```
In [69]: sns.regplot(x='year', y='total', data=df_tot)
```

Out[69]: <AxesSubplot:xlabel='year', ylabel='total'>

In []: