P1 Chapter 2: Quadratics

Functions

Function Machines

A function is something which **provides a rule on how to map inputs to outputs**.

We saw at GCSE that functions were a formal way of describing a 'number machine':

Function Maps

You'll cover functions extensively in future chapters, but for now, you need to understand the following concepts:

The domain of a function could potentially be **any** real number. If so, we'd write:

We might be interested in what inputs x give an output of 0. These are known as the **roots** of the function.

The **roots/zeroes** of a function are the values of x for which f(x) = 0.

If $f(x) = x^2 - 3x$ and g(x) = x + 5, $x \in \mathbb{R}$

- a) Find f(-4)
- b) Find the values of x for which f(x) = g(x)
- c) Find the roots of f(x).
- d) Find the roots of g(x).

Fro Note: The domain is usually stated for you.

If
$$f(x) = x^2 - 3x$$
 and $g(x) = x + 5$, $x \in \mathbb{R}$

- a) Find f(-4)
- b) Find the values of x for which f(x) = g(x)
- c) Find the roots of f(x).
- d) Find the roots of g(x).

Fro Note: The domain is usually stated for you.

- $f(-4) = (-4)^2 3(-4)$ = 28
- Conceptually, we're looking for the inputs of the functions which give the same outputs. We can just equate the output expressions.

$$x^{2} - 3x = x + 5$$

$$x^{2} - 4x - 5 = 0$$

$$(x - 5)(x + 1) = 0$$

$$x = 5 \text{ or } x = -1$$

The roots are the inputs which give an output of 0. So set output expression to 0.

$$x^{2}-3x = 0$$

$$x(x-3) = 0$$

$$x = 0 \text{ or } x = 3$$

$$x + 5 = 0$$
$$x = -5$$

Determine the minimum value of the function $f(x) = x^2 - 6x + 2$, and state the value of x for which this minimum occurs.

This means we want to minimise the **output** of the function.

You might try a (clumsy) approach of trying a few values of x and try to see what makes the output as small as possible...

But the best way to find the minimum/maximum value of a quadratic is to **complete the square**:

Determine the minimum value of the function $f(x) = x^2 - 6x + 2$, and state the value of x for which this minimum occurs.

This means we want to minimise the **output** of the function.

You might try a (clumsy) approach of trying a few values of x and try to see what makes the output as small as possible...

$$f(1) = 1 - 6 + 2 = -3$$

 $f(2) = 4 - 12 + 2 = -6$
 $f(3) = 9 - 18 + 2 = -7$
 $f(4) = 16 - 24 + 2 = -6$
This looks like the minimum as the value starts going up after.

But the best way to find the minimum/maximum value of a quadratic is to **complete the square**:

$$f(x) = (x-3)^{2} - 7$$

$$f(1) = (-2)^{2} - 7 = -3$$

$$f(2) = (-1)^{2} - 7 = -6$$

$$f(3) = 0^{2} - 7 = -7$$

$$f(4) = 1^{2} - 7 = -6$$

Since anything squared is at least 0, the smallest we can make the bracket is 0, which occurs when x = 3.

If $f(x) = (x + a)^2 + b$, the minimum value of f(x) is b, which occurs when x = -a.

Quickfire Questions

f(x)	Completed square	Min/max value of $f(x)$	x for which this min/max occurs
$x^2 + 4x + 9$?	?	?
$x^2 - 10x + 21$?	?	
$10 - x^2$?	?	?
$8 - x^2 + 6x$?	?	

Quickfire Questions

f(x)	Completed square	Min/max value of $f(x)$	x for which this min/max occurs
$x^2 + 4x + 9$	$(x+2)^2 + 5$	5	-2
$x^2 - 10x + 21$	$(x-5)^2-4$	-4	5
$10 - x^2$	Already completed	10	0
$8 - x^2 + 6x$	$17 - (x - 3)^2$	17	3

Test Your Understanding

Find the minimum value of $f(x) = 2x^2 + 12x - 5$ and state the value of x for which this occurs.

יי

Find the roots of the function $f(x) = 2x^2 + 3x + 1$

?

Find the roots of the function $f(x) = x^4 - x^2 - 6$

7

Test Your Understanding

Find the minimum value of $f(x) = 2x^2 + 12x - 5$ and state the value of x for which this occurs.

$$f(x) = 2(x^{2} + 6x) - 5$$

$$= 2((x + 3)^{2} - 9) - 5$$

$$= 2(x + 3)^{2} - 18 - 5$$

$$= 2(x + 3)^{2} - 23$$

Minimum value is -23. x at which this occurs is -3.

Find the roots of the function $f(x) = 2x^2 + 3x + 1$

$$2x^{2} + 3x + 1 = 0$$

$$(2x + 1)(x + 1) = 0$$

$$x = -\frac{1}{2} \text{ or } x = -1$$

Find the roots of the function $f(x) = x^4 - x^2 - 6$

$$x^{4} - x^{2} - 6 = 0$$

$$(x^{2} + 2)(x^{2} - 3) = 0$$

$$x^{2} = -2 \text{ or } x^{2} = 3$$

$$x = \pm \sqrt{3}$$

Exercise 2.3

Pearson Pure Mathematics Year 1/AS Page 8

Homework Exercise

1 Using the functions f(x) = 5x + 3, $g(x) = x^2 - 2$ and $h(x) = \sqrt{x+1}$, find the values of:

e
$$g(\sqrt{2})$$

$$g f(4) + g(2)$$

g
$$f(4) + g(2)$$
 h $f(0) + g(0) + h(0)$

$$i \frac{g(4)}{h(3)}$$

2 The function f(x) is defined by $f(x) = x^2 - 2x$, $x \in \mathbb{R}$. Given that f(a) = 8, find two possible values for a.

3 Find all of the roots of the following functions:

$$a f(x) = 10 - 15x$$

a
$$f(x) = 10 - 15x$$
 b $g(x) = (x + 9)(x - 2)$

d
$$j(x) = 144 - x^2$$

e
$$k(x) = x(x + 5)(x + 7)$$

Problem-solving

Substitute x = a into the function and set the resulting expression equal to 8.

$$h(x) = x^2 + 6x - 40$$

$$f m(x) = x^3 + 5x^2 - 24x$$

4 The functions p and q are given by $p(x) = x^2 - 3x$ and q(x) = 2x - 6, $x \in \mathbb{R}$. Find the two values of x for which p(x) = q(x).

5 The functions f and g are given by $f(x) = 2x^3 + 30x$ and $g(x) = 17x^2$, $x \in \mathbb{R}$. Find the three values of x for which f(x) = g(x).

6 The function f is defined as $f(x) = x^2 - 2x + 2$, $x \in \mathbb{R}$.

a Write f(x) in the form $(x + p)^2 + q$, where p and q are constants to be found. (2 marks)

b Hence, or otherwise, explain why f(x) > 0 for all values of x, and find the minimum value of f(x). (1 mark)

Homework Exercise

7 Find all roots of the following functions:

a
$$f(x) = x^6 + 9x^3 + 8$$

b
$$g(x) = x^4 - 12x^2 + 32$$

$$h(x) = 27x^6 + 26x^3 - 1$$

d
$$j(x) = 32x^{10} - 33x^5 + 1$$

e
$$k(x) = x - 7\sqrt{x} + 10$$

$$\mathbf{f} \quad \mathbf{m}(x) = 2x^{\frac{2}{3}} + 2x^{\frac{1}{3}} - 12$$

8 The function f is defined as $f(x) = 3^{2x} - 28(3^x) + 27$, $x \in \mathbb{R}$.

a Write f(x) in the form $(3^x - a)(3^x - b)$, where a and b are real constants.

(2 marks)

b Hence find the two roots of f(x).

(2 marks)

Hint The function in part **b** has four roots.

Problem-solving

Consider f(x) as a function of a function.

Homework Answers

```
1 a 8 b 7 c 3 d 10.5 e 0
f 0 g 25 h 2 i 7
2 a = 4 \text{ or } a = -2
             b 2 and -9 c -10 and 4
   d 12 and -12 e 0, -5 and -7 f 0, 3 and -8
4 x = 3 and x = 2
5 x = 0, x = 2.5 and 6
6 a (x-1)^2+1
     p = -1, q = 1
   b Squared terms are always ≥0, so the minimum
    value is 0 + 1 = 1
               b 2, -2, 2\sqrt{2} and -2\sqrt{2}
7 a −2 and −1
   c -1 and \frac{1}{3}
                        d \frac{1}{2} and 1
   e 4 and 25 f 8 and -27
8 a (3^x - 27)(3^x - 1) b 0 and 3
```