#### Bài 6. Tích vô hướng của hai vectơ

## A. Lý thuyết

#### 1. Định nghĩa

## 1.1. Tích vô hướng của hai vectơ có cùng điểm đầu

- Góc giữa hai vector  $\overrightarrow{OA}$ ,  $\overrightarrow{OB}$  là góc giữa hai tia OA, OB và được kí hiệu là  $\left(\overrightarrow{OA},\overrightarrow{OB}\right)$
- $\text{ Tích vô hướng của hai vecto } \overrightarrow{OA} \text{ và } \overrightarrow{OB} \text{ là một số thực, kí hiệu là } \overrightarrow{OA} \text{ .} \overrightarrow{OB} \text{ , được} \\ \text{xác định bởi công thức: } \overrightarrow{OA}.\overrightarrow{OB} = \left| \overrightarrow{OA} \right|. \left| \overrightarrow{OB} \right|. \cos \left( \overrightarrow{OA}, \overrightarrow{OB} \right).$

Ví dụ: Cho tam giác ABC đều cạnh 2a có đường cao AH. Tính tích vô hướng của  $\overrightarrow{AB}.\overrightarrow{AC}$ .

### Hướng dẫn giải:



Vì tam giác ABC đều nên BAC =  $60^{\circ}$ 

$$\Rightarrow$$
  $(\overrightarrow{AB}, \overrightarrow{AC}) = BAC = 60^{\circ}$ 

Ta có:

$$\overrightarrow{AB}.\overrightarrow{AC} = |\overrightarrow{AB}|.|\overrightarrow{AC}|.\cos(\overrightarrow{AB},\overrightarrow{AC})$$

$$\Rightarrow \overrightarrow{AB}.\overrightarrow{AC} = AB.AC.\cos BAC = AB.AC.\cos 60^{\circ} = 2a.2a.\frac{1}{2} = 2a^{2}.$$

#### 1.2. Tích vô hướng của hai vectơ tùy ý

#### Định nghĩa:

Cho hai vector  $\vec{a}$ ,  $\vec{b}$  khác  $\vec{0}$ . Lấy một điểm O và vẽ vector  $\overrightarrow{OA} = \vec{a}$ ,  $\overrightarrow{OB} = \vec{b}$  (Hình vẽ).



+ Góc giữa hai vecto  $\vec{a}$ ,  $\vec{b}$ , kí hiệu  $(\vec{a}, \vec{b})$ , là góc giữa hai vecto  $\overrightarrow{OA}$ ,  $\overrightarrow{OB}$ .

+ Tích vô hướng của hai vecto  $\vec{a}$  và  $\vec{b}$ , kí hiệu  $\vec{a}$ . $\vec{b}$  là tích vô hướng của hai vecto  $\overrightarrow{OA}$  và  $\overrightarrow{OB}$ . Như vậy, tích vô hướng của hai vecto  $\vec{a}$  và  $\vec{b}$  là một số thực được xác định bởi công thức:  $\vec{a}$ . $\vec{b} = |\vec{a}|.|\vec{b}|.\cos(\vec{a},\vec{b})$ .

**Quy ước:** Tích vô hướng của một vecto bất kì với vecto  $\vec{0}$  là số 0.

### Chú ý:

$$+)\left(\vec{a},\vec{b}\right)=\left(\vec{b},\vec{a}\right)$$

+) Nếu  $(\vec{a}, \vec{b}) = 90^{\circ}$  thì ta nói hai vecto  $\vec{a}$ ,  $\vec{b}$  vuông góc với nhau, kí hiệu  $\vec{a} \perp \vec{b}$  hoặc  $\vec{b} \perp \vec{a}$ . Khi đó  $\vec{a} \cdot \vec{b} = |\vec{a}| . |\vec{b}| . \cos 90^{\circ} = 0$ .

- +) Tích vô hướng của hai vectơ cùng hướng bằng tích hai độ dài của chúng.
- +) Tích vô hướng của hai vectơ ngược hướng bằng số đối của tích hai độ dài của chúng.

**Ví dụ:** Cho tam giác vuông cân ABC có AB = AC = a. Tính các tích vô hướng  $\overrightarrow{AB}.\overrightarrow{AC}, \overrightarrow{AC}.\overrightarrow{CB}$ .

### Hướng dẫn giải:



+ Vì tam giác ABC vuông cân, mà AB = AC

⇒ Tam giác ABC vuông cân tại A.

 $\Rightarrow$  AB  $\perp$  AC

$$\Rightarrow \overrightarrow{AB}.\overrightarrow{AC} = |\overrightarrow{AB}|.|\overrightarrow{AC}|.\cos 90^{\circ} = |\overrightarrow{AB}|.|\overrightarrow{AC}|.0 = 0$$

+ Ta có: BC = 
$$\sqrt{AB^2 + AC^2}$$
 =  $\sqrt{a^2 + a^2}$  =  $a\sqrt{2}$ .

$$\Rightarrow \overrightarrow{AC}.\overrightarrow{CB} = \left| \overrightarrow{AC} \right|.\left| \overrightarrow{CB} \right|.\cos\left( \overrightarrow{AC}, \overrightarrow{CB} \right) = a. \ a\sqrt{2}.\cos 135^{\circ} = a. \ a\sqrt{2}.\left( \frac{-\sqrt{2}}{2} \right) = -a^{2}.$$

#### 2. Tính chất

Với hai vectơ bất kì a, b và số thực k tùy ý, ta có:

+)  $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$  (tính chất giao hoán);

+)  $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$  (tính chất phân phối);

+) 
$$(\vec{ka})\vec{b} = \vec{k}(\vec{a}.\vec{b}) = \vec{a}.(\vec{kb});$$

+) 
$$\vec{a}^2 \ge 0$$
,  $\vec{a}^2 = 0 \Leftrightarrow \vec{a} = \vec{0}$ .

Trong đó, kí hiệu  $\vec{a} \cdot \vec{a} = \vec{a}^2$  và biểu thức này được gọi là bình phương vô hướng của vecto  $\vec{a}$ .

**Ví dụ:** Cho 4 điểm A, B, C, D bất kì. Chứng minh:  $\overrightarrow{AB}.\overrightarrow{CD} + \overrightarrow{BC}.\overrightarrow{AD} + \overrightarrow{CA}.\overrightarrow{BD} = 0$ 

Hướng dẫn giải:

Ta có:

$$\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB}.\left(\overrightarrow{CA} + \overrightarrow{AD}\right) = \overrightarrow{AB}.\overrightarrow{CA} + \overrightarrow{AB}.\overrightarrow{AD}$$
 (tính chất phân phối)

$$\overrightarrow{BC}.\overrightarrow{AD} = (\overrightarrow{BA} + \overrightarrow{AC}).\overrightarrow{AD} = \overrightarrow{BA}.\overrightarrow{AD} + \overrightarrow{AC}.\overrightarrow{AD} = -\overrightarrow{AB}.\overrightarrow{AD} + \overrightarrow{AC}.\overrightarrow{AD}$$
 (tính chất phân phối)

$$\overrightarrow{CA}.\overrightarrow{BD} = \overrightarrow{CA}.(\overrightarrow{BA} + \overrightarrow{AD}) = \overrightarrow{CA}.\overrightarrow{BA} + \overrightarrow{CA}.\overrightarrow{AD} = -\overrightarrow{CA}.\overrightarrow{AB} - \overrightarrow{AC}.\overrightarrow{AD}$$
 (tính chất phân phối)

$$\Rightarrow \overrightarrow{AB}.\overrightarrow{CD} + \overrightarrow{BC}.\overrightarrow{AD} + \overrightarrow{CA}.\overrightarrow{BD}$$

$$=\overrightarrow{AB}.\overrightarrow{CA} + \overrightarrow{AB}.\overrightarrow{AD} - \overrightarrow{AB}.\overrightarrow{AD} + \overrightarrow{AC}.\overrightarrow{AD} - \overrightarrow{CA}.\overrightarrow{AB} - \overrightarrow{AC}.\overrightarrow{AD}$$

$$= \left(\overrightarrow{AB}.\overrightarrow{CA} - \overrightarrow{CA}.\overrightarrow{AB}\right) + \left(\overrightarrow{AB}.\overrightarrow{AD} - \overrightarrow{AB}.\overrightarrow{AD}\right) + \left(\overrightarrow{AC}.\overrightarrow{AD} - \overrightarrow{AC}.\overrightarrow{AD}\right) \text{ (tính chất giao hoán và kết hợp)}$$

=0

$$\Leftrightarrow \overrightarrow{AB}.\overrightarrow{CD} + \overrightarrow{BC}.\overrightarrow{AD} + \overrightarrow{CA}.\overrightarrow{BD} = 0$$
 (dpcm).

## 3. Một số ứng dụng

### 3.1. Tính độ dài của đoạn thẳng

### Nhận xét:

Với hai điểm A, B phân biệt, ta có:  $\overrightarrow{AB}^2 = \left| \overrightarrow{AB} \right|^2$ .

Do đó độ dài đoạn thẳng AB được tính như sau:  $AB = \sqrt{\overrightarrow{AB}^2}$ 

### 3.2. Chứng minh hai đường thẳng vuông góc

#### Nhận xét:

+ Cho hai vecto bất kì  $\vec{a}$  và  $\vec{b}$  khác vecto  $\vec{0}$ . Ta có:  $\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b}$ .

Hai đường thẳng AB và CD vuông góc với nhau khi và chỉ khi  $\overrightarrow{AB}.\overrightarrow{CD} = 0$ .

+ Hai đường thẳng a và b vuông góc khi và chỉ khi  $\vec{u}.\vec{v}=0$ , trong đó  $\vec{u}\neq 0$ ,  $\vec{v}\neq 0$ , giá của vecto  $\vec{u}$  song song hoặc trùng với đường thẳng a và giá của vecto  $\vec{v}$  song song hoặc trùng với đường thẳng b.

**Ví dụ:** Cho hai vecto  $\vec{a}$  và  $\vec{b}$  vuông góc với nhau và  $|\vec{a}| = 1$ ,  $|\vec{b}| = \sqrt{2}$ . Chứng minh hai vecto  $2\vec{a} - \vec{b}$  và  $\vec{a} + \vec{b}$  vuông góc với nhau.

#### Hướng dẫn giải:

Vì  $\vec{a}$  và  $\vec{b}$  vuông góc với nhau  $\iff \vec{a} \cdot \vec{b} = 0$ 

Ta có:

$$(2\vec{a} - \vec{b})(\vec{a} + \vec{b}) = 2\vec{a}^2 + 2\vec{a}.\vec{b} - \vec{a}.\vec{b} - \vec{b}^2 = 2\vec{a}^2 + \vec{a}.\vec{b} - \vec{b}^2 = 2|\vec{a}|^2 + \vec{a}.\vec{b} - |\vec{b}|^2$$

$$= 2.1^2 + 0 - (\sqrt{2})^2 = 0$$

Vì tích của hai vecto  $2\vec{a} - \vec{b}$  và  $\vec{a} + \vec{b}$  bằng 0 nên chúng vuông góc với nhau.

#### B. Bài tập tự luyện

#### B.1 Bài tập tự luận

**Bài 1.** Cho đoạn thẳng AB có trung điểm O, điểm M tùy ý khác O, A, B và không thuộc AB, biết  $4OM^2 = AB^2$ . Sử dụng các kiến thức về vecto, chứng minh MA  $\perp$  MB.

## Hướng dẫn giải:



Ta có:

$$4OM^2 = AB^2 \iff (2OM)^2 = AB^2$$

$$\Leftrightarrow \left(2\overrightarrow{OM}\right)^2 = \overrightarrow{AB}^2$$

$$\iff \left(\overrightarrow{MA} + \overrightarrow{MB}\right)^2 = \left(\overrightarrow{AM} + \overrightarrow{MB}\right)^2$$

$$\Leftrightarrow \overrightarrow{MA}^2 + 2\overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MB}^2 = \overrightarrow{AM}^2 + 2\overrightarrow{AM}.\overrightarrow{MB} + \overrightarrow{MB}^2$$

$$\Leftrightarrow \left| \overrightarrow{MA} \right|^2 + 2\overrightarrow{MA}.\overrightarrow{MB} + \left| \overrightarrow{MB} \right|^2 = \left| \overrightarrow{AM} \right|^2 + 2\overrightarrow{AM}.\overrightarrow{MB} + \left| \overrightarrow{MB} \right|^2$$

$$\Leftrightarrow MA^2 + 2\overrightarrow{MA}.\overrightarrow{MB} + MB^2 = AM^2 + 2\overrightarrow{AM}.\overrightarrow{MB} + MB^2$$

$$\Leftrightarrow$$
 MA<sup>2</sup> + 2 $\overrightarrow{MA}$ . $\overrightarrow{MB}$  + MB<sup>2</sup> = AM<sup>2</sup> - 2 $\overrightarrow{MA}$ . $\overrightarrow{MB}$  + MB<sup>2</sup>

$$\Leftrightarrow 4\overrightarrow{MA}.\overrightarrow{MB} = 0$$

$$\Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB} = 0$$

$$\Rightarrow \overrightarrow{MA} \perp \overrightarrow{MB} \Rightarrow MA \perp MB \text{ (dpcm)}.$$

Bài 2. Cho tam giác ABC bất kì có I là trung điểm của AB. Chứng minh đẳng thức:

$$CA^2 + CB^2 = 2CI^2 + \frac{AB^2}{2}$$
.

## Hướng dẫn giải:



Ta có:

$$VP = 2CI^2 + \frac{AB^2}{2}$$

$$\Leftrightarrow$$
 2VP = 4CI<sup>2</sup> + AB<sup>2</sup>

$$\Leftrightarrow$$
 2VP=  $(2CI)^2 + AB^2$ 

$$\Leftrightarrow 2VP = (2\overrightarrow{CI})^2 + \overrightarrow{AB}^2$$

$$\Leftrightarrow 2VP = \left(\overrightarrow{CA} + \overrightarrow{CB}\right)^2 + \left(\overrightarrow{AC} + \overrightarrow{CB}\right)^2$$

$$\Leftrightarrow 2VP = \overrightarrow{CA}^2 + 2\overrightarrow{CA}.\overrightarrow{CB} + \overrightarrow{CB}^2 + \overrightarrow{AC}^2 + 2\overrightarrow{AC}.\overrightarrow{CB} + \overrightarrow{CB}^2$$

$$\Leftrightarrow 2VP = \overrightarrow{CA}^2 + 2\overrightarrow{CA}.\overrightarrow{CB} + \overrightarrow{CB}^2 + \overrightarrow{AC}^2 - 2\overrightarrow{CA}.\overrightarrow{CB} + \overrightarrow{CB}^2$$

$$\Leftrightarrow 2VP = 2\overrightarrow{CA}^2 + 2\overrightarrow{CB}^2$$

$$\Leftrightarrow$$
 2VP = 2CA<sup>2</sup> + 2CB<sup>2</sup> = VT

$$\Rightarrow CA^2 + CB^2 = 2CI^2 + \frac{AB^2}{2} (\text{dpcm}).$$

**Bài 3.** Cho tam giác ABC, biết AB = a, AC = 2a,  $A = 60^{\circ}$ . Sử dụng các kiến thức về vecto, tính độ dài cạnh BC.

#### Hướng dẫn giải:



Áp dụng quy tắc hiệu hai vectơ ta có:

$$\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$$

$$\Rightarrow \overrightarrow{BC}^2 = (\overrightarrow{AC} - \overrightarrow{AB})^2 = \overrightarrow{AC}^2 - 2\overrightarrow{AC}.\overrightarrow{AB} + \overrightarrow{AB}^2$$

Ta có:

$$\overrightarrow{AC}^2 = \left| \overrightarrow{AC} \right|^2 = AC^2 = (2a)^2 = 4a^2$$

$$\overrightarrow{AB}^2 = \left| \overrightarrow{AB} \right|^2 = AB^2 = a^2$$

$$\overrightarrow{AC}.\overrightarrow{AB} = |\overrightarrow{AC}|.|\overrightarrow{AB}|.\cos(\overrightarrow{AC},\overrightarrow{AB}) = AC.AB.\cos BAC = 2a.a.\cos 60^{\circ} = 2.a.a.\frac{1}{2} = a^{2}$$

$$\Rightarrow \overrightarrow{BC}^2 = 4a^2 - 2a^2 + a^2 = 3a^2$$

$$\Rightarrow BC^2 = \left|\overrightarrow{BC}\right|^2 = \overrightarrow{BC}^2 = 3a^2$$

$$\Rightarrow$$
 BC =  $\sqrt{3a^2}$  =  $a\sqrt{3}$ .

## B.2 Bài tập trắc nghiệm

**Câu 1.** Cho  $\vec{a}$  và  $\vec{b}$  khác vecto  $\vec{0}$ . Xác định góc  $\alpha$  giữa hai vecto  $\vec{a}$  và  $\vec{b}$  khi  $\vec{a}.\vec{b} = -|\vec{a}|.|\vec{b}|.$ 

A. 
$$\alpha = 180^{\circ}$$
;

B. 
$$\alpha = 0^{\circ}$$
;

C. 
$$\alpha = 90^{\circ}$$
;

D. 
$$\alpha = 45^{\circ}$$
.

#### Hướng dẫn giải

## Đáp án đúng là: A

Ta có: 
$$\vec{a}.\vec{b} = |\vec{a}|.|\vec{b}|.\cos(\vec{a},\vec{b}).$$

Mà theo giả thiết  $\vec{a}.\vec{b} = -|\vec{a}|.|\vec{b}|$ , suy ra  $\cos(\vec{a},\vec{b}) = -1 \Rightarrow (\vec{a},\vec{b}) = 180^{\circ}$ .

Câu 2. Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng AB.AC.

A. 
$$\overrightarrow{AB}.\overrightarrow{AC} = 2a^2$$
;

B. 
$$\overrightarrow{AB}.\overrightarrow{AC} = -\frac{a^2\sqrt{3}}{2}$$
;

C. 
$$\overrightarrow{AB}.\overrightarrow{AC} = -\frac{a^2}{2}$$
;

D. 
$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{a^2}{2}$$
.

### Hướng dẫn giải

#### Đáp án đúng là: D

Xác định được góc  $\left(\overrightarrow{AB},\overrightarrow{AC}\right)$  là góc A nên  $\left(\overrightarrow{AB},\overrightarrow{AC}\right)$  = 60° (do tam giác ABC đều)

Do đó 
$$\overrightarrow{AB}.\overrightarrow{AC} = AB.AC.\cos(\overrightarrow{AB},\overrightarrow{AC}) = a.a.\cos 60^{\circ} = \frac{a^2}{2}$$
.

**Câu 3.** Cho tam giác ABC có BC = a, CA = b, AB = c. Gọi M là trung điểm cạnh BC Tính  $\overrightarrow{AM}.\overrightarrow{BC}$ .

A. 
$$\overrightarrow{AM}.\overrightarrow{BC} = \frac{b^2 - c^2}{2};$$

B. 
$$\overrightarrow{AM}.\overrightarrow{BC} = \frac{c^2 + b^2}{2}$$
;

C. 
$$\overrightarrow{AM}.\overrightarrow{BC} = \frac{c^2 + b^2 + a^2}{3}$$
;

D. 
$$\overrightarrow{AM}.\overrightarrow{BC} = \frac{c^2 + b^2 - a^2}{2}$$
.

# Hướng dẫn giải

## Đáp án đúng là: A

Vì M là trung điểm của BC suy ra  $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AM}$ .

Khi đó 
$$\overrightarrow{AM}.\overrightarrow{BC} = \frac{1}{2} \left( \overrightarrow{AB} + \overrightarrow{AC} \right).\overrightarrow{BC} = \frac{1}{2} \left( \overrightarrow{AB} + \overrightarrow{AC} \right). \left( \overrightarrow{BA} + \overrightarrow{AC} \right)$$

$$=\frac{1}{2}\Big(\overrightarrow{AC}+\overrightarrow{AB}\Big).\Big(\overrightarrow{AC}-\overrightarrow{AB}\Big)=\frac{1}{2}\Big(\overrightarrow{AC}^2-\overrightarrow{AB}^2\Big)=\frac{1}{2}\Big(AC^2-AB^2\Big)=\frac{b^2-c^2}{2}.$$