Linux 系统概论

天津医科大学 生物医学工程与技术学院

> 2017-2018 学年下学期(春) 2016 级生信班

第三章 文件系统 (集体备课)

伊现富(Yi Xianfu)

天津医科大学(TIJMU) 生物医学工程与技术学院

2015年4月28日

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 又件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

指导思想 | 章节结构

顺序	授课内容	教材章节	学时	日期
1	Linux 基础	第 1、2 章	2	5.12
2	用户和组	第 3 章	2	5.19
3	文件系统	第 4 章	2	5.26
4	Linux 命令	第6章	2	6.02
5	高级 Linux 命令	第 8、9 章	2	6.09
6	软件安装	第 19 章	2	6.16
7	vi/Vim 编辑器	第7章	2	6.23
8	shell 脚本编程	第 13、14 章	2	6.30
9	Perl 语言简介	第 17 章	2	7.07

指导思想 | 学时分配

内容

- 引言与导入
- 文件系统基础
- 文件系统导航
- 文件类型
- 文件和目录权限
- 挂载文件系统
- 总结与答疑

学时(分钟)

- 5
- 20
- 25
- 20
- 20
- 5
- 5

指导思想 | 授课策略

内容特点

- 知识新颖
- 内容抽象
- 命令繁杂
- 缩写泛滥
- 学以致用

对应策略

- 温故知新(熟悉 ⇒ 陌生)
- 类比举例(死记 ⇒ 理解)
- 详略得当(讲授 ⇒ 自学)
- 全称助记(表象 ⇒ 本质)
- 学练结合(理论 ⇒ 实践)

教学提纲

- 引言
- - 文件系统和分区
- - 文件操作
 - 文件系统管理

- 命令详解
- - 类型简介
 - 链接
- - 权限简介
- - 总结
 - 思考题

计算机的**文件系统(File system)**是一种存储和组织计算机数据的方法,它使得对其访问和查找变得容易,文件系统使用**文件**和**树形目录**的抽象逻辑概念代替了硬盘和光盘等物理设备使用数据块的概念,用户使用文件系统来保存数据不必关心数据实际保存在硬盘(或者光盘)的地址为多少的数据块上,只需要记住这个文件的所属目录和文件名。在写入新数据之前,用户不必关心硬盘上的那个块地址有没有被使用,硬盘上的存储空间管理(分配和释放)功能由文件系统自动完成,用户只需要记住数据被写入到了哪个文件中。

严格地说,文件系统是一套实现了数据的存储、分级组织、访问和获取等操作的抽象数据类型(Abstract data type)。

文件系统通常使用硬盘和光盘这样的存储设备,并维护文件在设备中的物理位置。但是,实际上文件系统也可能仅仅是一种访问数据的界面而已,实际的数据是通过网络协议(如 NFS、SMB、9P等)提供的或者存储在内存中,甚至可能根本没有对应的文件(如 proc 文件系统)

操作系统 vs. 文件系统

- 终端用户 ⇔ 操作系统 ⇔ 计算机硬件
- 终端用户 ← 文件系统 ← 硬盘等存储设备

- 在 Windows 中, 把硬盘/U 盘格式化为 FAT32 或 NTFS 格式。
- 16G 的 U 盘却装不下 4G 的电影!原因何在?

引入

- 在 Windows 中, 把硬盘/U 盘格式化为 FAT32 或 NTFS 格式。
- 16G 的 U 盘却装不下 4G 的电影!原因何在?
- 面向磁盘的文件系统(本地的文件系统):位于硬盘、移动硬盘、 光盘、U 盘或其他设备上的实际可访问的文件系统。
 - FAT、NTFS: Windows
 - EXT4、Btrfs、XFS: Linux
 - ISO9660: CD-ROM
 - UFS: Unix
- ② 面向网络的文件系统(基于网络的文件系统):可以远程访问的文件系统。如:NFS、Samba。
- 专用的或虚拟的文件系统:没有实际驻留在磁盘上的文件系统。如:TMPFS、PROXFS。

引入

- 在 Windows 中, 把硬盘/U 盘格式化为 FAT32 或 NTFS 格式。
- 16G 的 U 盘却装不下 4G 的电影!原因何在?
- 面向磁盘的文件系统(本地的文件系统):位于硬盘、移动硬盘、 光盘、U 盘或其他设备上的实际可访问的文件系统。
 - FAT、NTFS: Windows
 - EXT4、Btrfs、XFS: Linux
 - ISO9660 : CD-ROM
 - UFS: Unix
- ② 面向网络的文件系统(基于网络的文件系统):可以远程访问的文件系统。如:NFS、Samba。
- ⑤ 专用的或虚拟的文件系统:没有实际驻留在磁盘上的文件系统。如:TMPFS、PROXFS。

引入

- 在 Windows 中, 把硬盘/U 盘格式化为 FAT32 或 NTFS 格式。
- 16G 的 U 盘却装不下 4G 的电影!原因何在?
- 面向磁盘的文件系统(本地的文件系统):位于硬盘、移动硬盘、 光盘、U 盘或其他设备上的实际可访问的文件系统。
 - FAT、NTFS: Windows
 - EXT4、Btrfs、XFS:Linux
 - ISO9660 : CD-ROM
 - UFS: Unix
- 面向网络的文件系统(基于网络的文件系统):可以远程访问的文件系统。如:NFS、Samba。
- 专用的或虚拟的文件系统:没有实际驻留在磁盘上的文件系统。 如:TMPFS、PROXFS。

引入

- 在 Windows 中, 把硬盘/U 盘格式化为 FAT32 或 NTFS 格式。
- 16G 的 U 盘却装不下 4G 的电影!原因何在?
- 面向磁盘的文件系统(本地的文件系统):位于硬盘、移动硬盘、 光盘、U 盘或其他设备上的实际可访问的文件系统。
 - FAT、NTFS: Windows
 - EXT4、Btrfs、XFS:Linux
 - ISO9660: CD-ROM
 - UFS: Unix
- 面向网络的文件系统(基于网络的文件系统):可以远程访问的文件系统。如:NFS、Samba。
- **◎ 专用的或虚拟的文件系统:没有实际驻留在磁盘上的文件系统。**如:TMPFS、PROXFS。

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

文件系统 | 基础 | 文件系统和分区

文件系统和分区

- 分区是信息的容器,包含整个硬盘或硬盘的一部分
- 文件系统是多个文件的逻辑集合, 位于分区或磁盘上
- 一个分区通常只包含一个文件系统

类比 Windows

- 一块硬盘
- C/D/E 多个分区
- FAT32、NTFS 不同文件系统

文件系统 | 基础 | 文件系统和分区

文件系统和分区

- 分区是信息的容器,包含整个硬盘或硬盘的一部分
- 文件系统是多个文件的逻辑集合, 位于分区或磁盘上
- 一个分区通常只包含一个文件系统

Mount points (/)

类比 Windows

- 一块硬盘
- C/D/E 多个分区
- FAT32、NTFS 不同文件系统

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 又件奕型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

● Everything is a file. (一切皆文件。

● 使用自顶而下的分层结构来组织文件

每个文件和目录都是从根目录(/)(Root Directory)开始的

- Everything is a file. (一切皆文件。)
- 使用自顶而下的分层结构来组织文件
- 每个文件和目录都是从根目录(/)(Root Directory)开始的
- 文件和目录名的大小写是有区别的
- 定位文件: (根) 目录 ⇒ 于目录 ⇒ ...⇒ 文件

- Everything is a file. (一切皆文件。)
- 使用自顶而下的分层结构来组织文件
- 每个文件和目录都是从根目录(/) (Root Directory) 开始的
- 文件和目录名的大小写是有区别的
- 定位文件: (根) 目录 ⇒ 子目录 ⇒ …⇒ 文件

- Everything is a file. (一切皆文件。)
- 使用自顶而下的分层结构来组织文件
- 每个文件和目录都是从根目录(/) (Root Directory) 开始的
- 文件和目录名的大小写是有区别的
- 定位文件: (根) 目录 ⇒ 子目录 ⇒ …⇒ 文件

- Everything is a file. (一切皆文件。)
- 使用自顶而下的分层结构来组织文件
- 每个文件和目录都是从根目录(/) (Root Directory)开始的
- 文件和目录名的大小写是有区别的
- 定位文件: (根) 目录 ⇒ 子目录 ⇒ …⇒ 文件

- Everything is a file. (一切皆文件。)
- 使用自顶而下的分层结构来组织文件
- 每个文件和目录都是从根目录(/) (Root Directory) 开始的
- 文件和目录名的大小写是有区别的
- 定位文件: (根) 目录 ⇒ 子目录 ⇒ …⇒ 文件

文件系统 | 基础 | 目录结构 | 基本目录

全称/助证

bin: binary; dev: device; lib: library; mnt: mount; proc: process; etc: etcetera => Extended Tool Chest, Editable Text Configuration; opt: optional; sbin: system binary; srv: service; tmp: temporary; usr: user => User System/Software Resources; var: variable.

文件系统 | 基础 | 目录结构 | 基本目录

全称/助证

bin: binary; dev: device; lib: library; mnt: mount; proc: process; etc: etcetera => Extended Tool Chest, Editable Text Configuration; opt: optional; sbin: system binary; srv: service; tmp: temporary; usr: user => User System/Software Resources; var: variable.

文件系统 | 基础 | 目录结构 | <mark>基本目录</mark> | 详解(1/2)

目录	内容
1	根目录
/bin	基本程序
/boot	启动系统时所需的文件
/dev	设备文件
/etc	配置文件
/home	用户的 home 目录
/lib	基本共享库,内核模块
/lost+found	由 fsck 恢复的受损文件
/media	可移动介质的挂载点
/mnt	不能挂载在其他位置上的固定介质的挂载点

文件系统 | 基础 | 目录结构 | 基本目录 | 详解 (2/2)

I录		
/proc proc 文件 /root 根用户(超级用户)的 home 目录 /sbin 由超级用户运行的基本系统管理程序 /srv 本地系统所提供服务的数据 /tmp 临时文件	目录	内容
/root 根用户(超级用户)的 home 目录 /sbin 由超级用户运行的基本系统管理程序 /srv 本地系统所提供服务的数据 /tmp 临时文件	/opt	
/sbin 由超级用户运行的基本系统管理程序 /srv 本地系统所提供服务的数据 /tmp 临时文件	/proc	
/srv 本地系统所提供服务的数据 /tmp 临时文件	/root	根用户(超级用户)的 home 目录
/tmp 临时文件	/sbin	由超级用户运行的基本系统管理程序
	/srv	本地系统所提供服务的数据
/usr 静态数据使用的辅助文件系统	/tmp	临时文件
	/usr	静态数据使用的辅助文件系统
/var 可变数据使用的辅助文件系统	/var	可变数据使用的辅助文件系统

文件系统 | 基础 | 目录结构 | 基本目录 | /usr

目录	内容
/usr/bin	非基本程序(大多数用户程序)
/usr/games	游戏等娱乐和教育程序
/usr/include	C 程序的头文件
/usr/lib	非基本共享库
/usr/local	本地安装程序
/usr/sbin	由超级用户运行的非基本系统管理程序
/usr/share	共享系统数据
/usr/src	源代码(只用于参考)

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

文件系统 | 基础 | 路径

绝对 vs. 相对 (和现实生活中的定位方式相类比)

- 绝对路径(Absolute Path):文件在文件系统中的精确位置,总是 起始于 root(/)
- 相对路径(Relative Path):相对于用户当前位置的一个文件或目录的位置

相对路径

- .: 当前目录
- . . : 上一层目录
- ~:当前用户的家目录(Home Directory)
- -:上一个工作目录

文件系统 | 基础 | 路径

绝对 vs. 相对(和现实生活中的定位方式相类比)

- 绝对路径(Absolute Path):文件在文件系统中的精确位置,总是 起始于 root(/)
- 相对路径(Relative Path):相对于用户当前位置的一个文件或目录的位置

相对路径

- .:当前目录
- ..:上一层目录
- ~:当前用户的家目录(Home Directory)
- -:上一个工作目录

文件系统 | 基础 | 路径 | 绝对 vs. 相对

Yixf (TIJMU) 2015年4月28日 23/66

文件系统 | 基础 | 路径 | 绝对 vs. 相对

绝对 vs. 相对(比较两者的优缺点)

- 绝对路径:/var/log/mail;精确 vs. 冗长
- 相对路径:../../var/log/mail; (多数时候) 简短 vs. 隐患

Yixf (TIJMU) 文件系统 2015 年 4 月 28 日 23/66

◆ロト→部ト→車ト→車

文件系统 | 基础 | 路径 | 绝对 vs. 相对

绝对 vs. 相对(比较两者的优缺点)

- 绝对路径:/var/log/mail;精确 vs. 冗长
- 相对路径:../../var/log/mail; (多数时候) 简短 vs. 隐患

◆ロト→部ト→車ト→車

和 Windows 进行比较

- 一切都源于根目录 (/)
- 文件名除了/之外, 所有的字符都合法
- 有些字符最好不用,如空格符、制表符、退格符和@#\$&()-等字符
- 避免使用. 作为普通文件名的第一个字符(隐藏文件)
- 大小写敏感, Linux 是区分大小写的操作系统
- real file、Real file、REAL FILE 是三个不同的文件名
- 按惯例文件名都是小写的

和 Windows 进行比较

- 一切都源于根目录 (/)
- 文件名除了/之外, 所有的字符都合法
- 有些字符最好不用,如空格符、制表符、退格符和@#\$&()-等字符
- 避免使用. 作为普通文件名的第一个字符(隐藏文件)
- 大小写敏感, Linux 是区分大小写的操作系统
- real file、Real file、REAL FILE 是三个不同的文件名
- 按惯例文件名都是小写的

和 Windows 进行比较

- 一切都源于根目录 (/)
- 文件名除了/之外, 所有的字符都合法
- 有些字符最好不用, 如空格符、制表符、退格符和@#\$&()-等字符
- 避免使用, 作为普通文件名的第一个字符(隐藏文件)
- 大小写敏感, Linux 是区分大小写的操作系统
- real_file、Real_file、REAL_FILE 是三个不同的文件名
- 按惯例文件名都是小写的

和 Windows 进行比较

- 一切都源于根目录 (/)
- 文件名除了/之外, 所有的字符都合法
- 有些字符最好不用, 如空格符、制表符、退格符和@#\$&()-等字符
- 避免使用,作为普通文件名的第一个字符(隐藏文件)
- 大小写敏感, Linux 是区分大小写的操作系统
- real_file、Real_file、REAL_FILE 是三个不同的文件名
- 按惯例文件名都是小写的

和 Windows 进行比较

- 一切都源于根目录 (/)
- 文件名除了/之外, 所有的字符都合法
- 有些字符最好不用,如空格符、制表符、退格符和@#\$&()-等字符
- 避免使用. 作为普通文件名的第一个字符(隐藏文件)
- 大小写敏感, Linux 是区分大小写的操作系统
- real_file、Real_file、REAL_FILE 是三个不同的文件名
- 按惯例文件名都是小写的

和 Windows 进行比较

- 一切都源于根目录 (/)
- 文件名除了/之外, 所有的字符都合法
- 有些字符最好不用,如空格符、制表符、退格符和@#\$&()-等字符
- 避免使用. 作为普通文件名的第一个字符(隐藏文件)
- 大小写敏感, Linux 是区分大小写的操作系统
- real_file、Real_file、REAL_FILE 是三个不同的文件名
- 按惯例文件名都是小写的

和 Windows 进行比较

- 一切都源于根目录 (/)
- 文件名除了/之外, 所有的字符都合法
- 有些字符最好不用,如空格符、制表符、退格符和@#\$&()-等字符
- 避免使用. 作为普通文件名的第一个字符(隐藏文件)
- 大小写敏感, Linux 是区分大小写的操作系统
- real_file、Real_file、REAL_FILE 是三个不同的文件名
- 按惯例文件名都是小写的

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- り 又什尖空 。 米刑符人
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

引入

- 文件系统不同,但其中的操作大同小异
- 学生总结 Windows 中的常见操作,老师给出 Linux 中对应的命令
- 给出命令的全称辅助记忆,详细讲解个别重要的命令

目录

- 定位, pwd
- 切换, cd
- 列出, Is
- 创建, mkdir
- 删除, rmdir
- 树图, tree

文件

- 查看, cat
- 识别, file
- 创建, touch
- 复制, cp
- 移动, mv
- 重命名, mv
- 删除, rn

答理

- 查找, find
- 空间, df
- 大小, du

引入

- 文件系统不同,但其中的操作大同小异
- 学生总结 Windows 中的常见操作,老师给出 Linux 中对应的命令
- 给出命令的全称辅助记忆,详细讲解个别重要的命令

目录

- 定位, pwd
- 切换, cd
- 列出, ls
- 创建, mkdir
- 删除, rmdir
- 树图, tree

文件

- 查看, cat
- 识别, file
- 创建, touch
- 复制, cp
- 移动, mv
- 重命名, mv
- 删除, rn

管理

- 查找, find
- 空间, df
- 大小, du

引入

- 文件系统不同,但其中的操作大同小异
- 学生总结 Windows 中的常见操作,老师给出 Linux 中对应的命令
- 给出命令的全称辅助记忆,详细讲解个别重要的命令

目录

- 定位, pwd
- 切换, cd
- 列出, Is
- 创建, mkdir
- 删除, rmdir
- 树图, tree

文件

- 查看, cat
- 识别, file
- 创建, touch
- 复制, cp
- 移动, mv
- 重命名, mv
- 删除, rm

管理

- 查找, find
- 空间, df
- 大小, du

引入

- 文件系统不同,但其中的操作大同小异
- 学生总结 Windows 中的常见操作,老师给出 Linux 中对应的命令
- 给出命令的全称辅助记忆, 详细讲解个别重要的命令

目录

- 定位, pwd
- 切换, cd
- 列出, Is
- 创建, mkdir
- 删除, rmdir
- 树图, tree

文件

- 查看, cat
- 识别,file
- 创建, touch
- 复制, cp
- 移动, mv
- 重命名, mv
- 删除, rm

管理

- 查找, find
- 空间, df
- 大小, du

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

文件系统 | 导航 | 目录

命令	助记	说明
pwd	Print Work Directory	显示用户的当前目录
ls	LiSt	列出指定目录的内容
cd	Change Directory	转到指定的目录
mkdir	MaKe DIRectory	创建指定的目录
rmdir	ReMove DIRectory	删除空目录
tree	_	以树状图列出目录的内容结构

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

文件系统 | 导航 | 文件

命令	助记	说明
file	_	识别文件类型(二进制、文本等)
cat	conCATenate	显示一个文件
touch	_	创建一个空文件或者修改一个现有文 件的属性
ср	CoPy	把一个文件/目录复制到指定位置
mv	MoVe	移动文件/目录的位置或重命名一个文 件/目录
rm	ReMove	删除文件
head	_	显示文件的开始部分
tail	_	显示文件的结尾部分
more	_	从头到尾浏览一个文件
less	_	从开头或结尾开始浏览整个文件

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

文件系统 | 导航 | 管理

命令	助记	说明
which	_	如果文件位于用户的 PATH 内,则显示文件位置
whereis	_	显示文件的位置
find	_	查找文件/目录
df	Disk Free	显示磁盘空间的使用情况
du	Disk Usage	显示目录空间占用情况

教学提纲

- 1 指导思想
- 2 引言
- 3 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

• 命令详解

- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 4 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

选项(给出全称辅助记忆)

- -p:Preserve,保持目录和文件的属性
- -R:Recursive, 递归
- -u:Update, 增量备份

cp 妙用:备份目录

cp -Rpu 待备份目录 目标目录

选项(给出全称辅助记忆)

- -p: Preserve, 保持目录和文件的属性
- -R:Recursive, 递归
- -u:Update, 增量备份

cp 妙用:备份目录

cp -Rpu 待备份目录 目标目录

cd

- o cd:返回家目录
- cd ~:返回家目录
- cd ..:返回上一层目录

which vs. whereis

- which:只在用户的 PATH 所指定的文件中查找
- whereis:在系统的所有目录中定位要查找的命令

find

find /usr/share -name lostfile -print

cd

- cd:返回家目录
- cd ~:返回家目录
- cd ..:返回上一层目录

which vs. whereis

- which:只在用户的 PATH 所指定的文件中查找
- whereis:在系统的所有目录中定位要查找的命令

finc

find /usr/share -name lostfile -print

cd

- cd:返回家目录
- cd ~:返回家目录
- cd ..:返回上一层目录

which vs. whereis

- which:只在用户的 PATH 所指定的文件中查找
- whereis:在系统的所有目录中定位要查找的命令

find

find /usr/share -name lostfile -print

- 1s:列出用户有权访问的任何目录的内容
- ls -i(Inode):显示文件的 inode 信息(埋伏笔:inode)
- ls -a (All) :显示所有的文件和目录,包括隐藏的文件和目录
- 在文件名的前面加一个. (英文句号) 可以隐藏该文件或目录
- 1s -1 (Long) :显示目录内容的相关扩展信息(埋伏笔:文件类型、链接、权限)

- 1s:列出用户有权访问的任何目录的内容
- ls -i (Inode) :显示文件的 inode 信息 (埋伏笔:inode)
- ls -a (All) :显示所有的文件和目录,包括隐藏的文件和目录
- 在文件名的前面加一个. (英文句号) 可以隐藏该文件或目录
- ls -l (Long):显示目录内容的相关扩展信息(埋伏笔:文件类型、链接、权限)

- 1s:列出用户有权访问的任何目录的内容
- ls -i (Inode) :显示文件的 inode 信息(埋伏笔:inode)
- ls -a (All) :显示所有的文件和目录,包括隐藏的文件和目录
- 在文件名的前面加一个. (英文句号) 可以隐藏该文件或目录
- ls -1 (Long) :显示目录内容的相关扩展信息(埋伏笔:文件类型、链接、权限)

- 1s:列出用户有权访问的任何目录的内容
- ls -i (Inode) :显示文件的 inode 信息(埋伏笔:inode)
- ls -a (All) :显示所有的文件和目录,包括隐藏的文件和目录
- 在文件名的前面加一个. (英文句号) 可以隐藏该文件或目录
- 1s -1 (Long) :显示目录内容的相关扩展信息(埋伏笔:文件类型、链接、权限)

- 1s:列出用户有权访问的任何目录的内容
- ls -i (Inode) :显示文件的 inode 信息(埋伏笔:inode)
- ls -a (All) :显示所有的文件和目录,包括隐藏的文件和目录
- 在文件名的前面加一个. (英文句号) 可以隐藏该文件或目录
- ls -l (Long):显示目录内容的相关扩展信息(埋伏笔:文件类型、链接、权限)

文件系统 | 导航 | 命令详解 | cat

cat vs. more vs. less

友好性:cat < more < less

- 默认显示文件的前/后 10 行
- n x:指定查看文件的前/后 x 行
- tail -f (Follow) :监视文件内容的变化

文件系统 | 导航 | 命令详解 | cat

cat vs. more vs. less

Yixf (TIJMU)

友好性:cat < more < less

head vs. tail

- 默认显示文件的前/后 10 行
- -n x:指定查看文件的前/后 x 行
- tail -f (Follow) : 监视文件内容的变化

- rmdir:只能删除空目录
- rm:不能删除目录
- -f (Force) : 强行删除文件
- -r (Recursive) :进入到目录中递归删除文件
- -fr:删除目录及其子目录, 道慎使用
- 切勿尝试(为什么?) : rm -rf /, rm -rf *

- rmdir:只能删除空目录
- rm:不能删除目录
- -f (Force) : 强行删除文件
- -r (Recursive) :进入到目录中递归删除文件
- -fr:删除目录及其子目录, 谨慎使用
- 切勿尝试(为什么?) : rm -rf /, rm -rf *

- rmdir:只能删除空目录
- rm:不能删除目录
- -f (Force):强行删除文件
- -r (Recursive) :进入到目录中递归删除文件
- -fr:删除目录及其子目录, 谨慎使用
- 切勿尝试(为什么?) : rm -rf /, rm -rf *

- rmdir:只能删除空目录
- rm:不能删除目录
- -f (Force):强行删除文件
- -r (Recursive) :进入到目录中递归删除文件
- -fr:删除目录及其子目录, 谨慎使用
- 切勿尝试(为什么?) : rm -rf /, rm -rf *

文件系统 | 导航 | 命令详解 | rm

- rmdir:只能删除空目录
- rm:不能删除目录
- -f (Force) : 强行删除文件
- -r (Recursive) :进入到目录中递归删除文件
- -fr:删除目录及其子目录, 谨慎使用
- 切勿尝试(为什么?) : rm -rf /, rm -rf *

文件系统 | 导航 | 命令详解 | rm

- rmdir:只能删除空目录
- rm:不能删除目录
- -f (Force) : 强行删除文件
- -r (Recursive) :进入到目录中递归删除文件
- -fr:删除目录及其子目录, 谨慎使用
- 切勿尝试(为什么?) : rm -rf /, rm -rf *

文件系统 | 导航 | 命令详解 | df

```
文件系统
                                      用% 挂载点
/dev/xvda2
                  97G
                       7.3G
                               89G
                                       8% /
devtmpfs
                                       1% /dev
                520M
                        92K
                              520M
tmpfs
                 520M
                       140K
                              520M
                                       1% /dev/shm
oot@bt:~# df -h
                          Used Avail Use% Mounted on
Filesystem
                    Size
/dev/sdal
                     19G
                         14G
                               4.1G
                                     78% /
                    291M 240K 291M 1% /dev
none
                    298M
                         12K
                               298M 1% /dev/shm
none
                    298M
                          84K
                               298M 1% /var/run
none
                    298M
                            0
                               298M
                                      0% /var/lock
none
none
                    298M
                               298M
                                      0% /lib/init/rw
```

参数

- df -h, du -h (Human-readable) : K, M, G
- du -s (Summarize) :目录的总大小

教学提纲

- 1 指导思想
- 2 引言
- 3 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- **在** 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

文件系统 | 文件类型 | 简介

文件类型	说明
-	普通文件(文本文件、二进制可执行文件、硬链接)
d	目录文件
1	符号链接文件
b	块设备文件(块输入/输出设备文件)
С	字符设备文件(原始输入/输出设备文件)
р	命令管道(一种进程间通信的机制)
S	套接字(用于进程间通信)

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

- 在 Linux 中,每一个文件都有一个相关联的数字:inode

类比: 身份证号 vs. 姓名 vs. 曾用名/笔名/外号

- 在 Linux 中,每一个文件都有一个相关联的数字:inode
- Linux 使用 inode 而不是文件名来引用文件
- 在一个分区中, inode 是唯一的
- 不同分区内的文件可以有相同的 inode

类比: 身份证号 vs. 姓名 vs. 曾用名/笔名/外号

- 在 Linux 中,每一个文件都有一个相关联的数字:inode
- Linux 使用 inode 而不是文件名来引用文件
- 在一个分区中, inode 是唯一的
- 不同分区内的文件可以有相同的 inode

类比: 身份证号 vs. 姓名 vs. 曾用名/笔名/外号

- 在 Linux 中,每一个文件都有一个相关联的数字:inode
- Linux 使用 inode 而不是文件名来引用文件
- 在一个分区中, inode 是唯一的
- 不同分区内的文件可以有相同的 inode

硬链接(Hard Link) (孙悟空的分身)

- 硬链接与原文件具有相同的 inode, 两者本质上没有区别
- 对硬链接的修改会反映到原文件上, 反之亦然
- 如果删除硬链接,原文件照样正常使用,反之亦然
- 不能跨越文件系统,"等同于"不占空间的复制 + 同步更新

硬链接(Hard Link)(孙悟空的分身)

- 硬链接与原文件具有相同的 inode, 两者本质上没有区别
- 对硬链接的修改会反映到原文件上, 反之亦然
- 如果删除硬链接,原文件照样正常使用,反之亦然
- 不能跨越文件系统, "等同于"不占空间的复制 + 同步更新
- 只能对文件建立硬链接,而不能对目录建立硬链接

硬链接(Hard Link)(孙悟空的分身)

- 硬链接与原文件具有相同的 inode, 两者本质上没有区别
- 对硬链接的修改会反映到原文件上,反之亦然
- 如果删除硬链接,原文件照样正常使用,反之亦然
- 不能跨越文件系统, "等同于"不占空间的复制 + 同步更新
- 只能对文件建立硬链接,而不能对目录建立硬链接

硬链接(Hard Link)(孙悟空的分身)

- 硬链接与原文件具有相同的 inode, 两者本质上没有区别
- 对硬链接的修改会反映到原文件上, 反之亦然
- 如果删除硬链接,原文件照样正常使用,反之亦然
- 不能跨越文件系统, "等同于"不占空间的复制 + 同步更新
- 只能对文件建立硬链接,而不能对目录建立硬链接

 Yixf (TIJMU)
 文件系统
 2015 年 4 月 28 日
 45/66

硬链接(Hard Link)(孙悟空的分身)

- 硬链接与原文件具有相同的 inode, 两者本质上没有区别
- 对硬链接的修改会反映到原文件上, 反之亦然
- 如果删除硬链接,原文件照样正常使用,反之亦然
- 不能跨越文件系统, "等同于"不占空间的复制 + 同步更新
- 只能对文件建立硬链接,而不能对目录建立硬链接

硬链接(Hard Link)(孙悟空的分身)

- 硬链接与原文件具有相同的 inode, 两者本质上没有区别
- 对硬链接的修改会反映到原文件上, 反之亦然
- 如果删除硬链接,原文件照样正常使用,反之亦然
- 不能跨越文件系统, "等同于"不占空间的复制 + 同步更新
- 只能对文件建立硬链接,而不能对目录建立硬链接

硬链接(Hard Link) (孙悟空的分身)

- 硬链接与原文件具有相同的 inode, 两者本质上没有区别
- 对硬链接的修改会反映到原文件上, 反之亦然
- 如果删除硬链接,原文件照样正常使用,反之亦然
- 不能跨越文件系统, "等同于"不占空间的复制 + 同步更新
- 只能对文件建立硬链接,而不能对目录建立硬链接

- 能够跨越文件系统,相当于Windows 中的快捷方式
- 软链接具有唯一的 inode,内部保存的是原文件的路径地址
- 如果打开并修改软链接,原文件也会随之改变
- 如果删除软链接,原又件开不会受到影响

硬链接(Hard Link)(孙悟空的分身)

- 硬链接与原文件具有相同的 inode,两者本质上没有区别
- 对硬链接的修改会反映到原文件上, 反之亦然
- 如果删除硬链接,原文件照样正常使用,反之亦然
- 不能跨越文件系统, "等同于"不占空间的复制 + 同步更新
- 只能对文件建立硬链接,而不能对目录建立硬链接

- 能够跨越文件系统,相当于Windows 中的快捷方式
- 软链接具有唯一的 inode, 内部保存的是原文件的路径地址
- 如果打开并修改软链接,原文件也会随之改变
- 如果删除软链接,原文件并不会受到影响
- 如果删除原文件, 软链接将失效

硬链接(Hard Link)(孙悟空的分身)

- 硬链接与原文件具有相同的 inode, 两者本质上没有区别
- 对硬链接的修改会反映到原文件上, 反之亦然
- 如果删除硬链接,原文件照样正常使用,反之亦然
- 不能跨越文件系统, "等同于"不占空间的复制 + 同步更新
- 只能对文件建立硬链接, 而不能对目录建立硬链接

- 能够跨越文件系统,相当于Windows 中的快捷方式
- 软链接具有唯一的 inode,内部保存的是原文件的路径地址
- 如果打开并修改软链接,原文件也会随之改变
- 如果删除软链接,原文件并不会受到影响
- 如果删除原文件,软链接将失效

硬链接(Hard Link)(孙悟空的分身)

- 硬链接与原文件具有相同的 inode, 两者本质上没有区别
- 对硬链接的修改会反映到原文件上, 反之亦然
- 如果删除硬链接,原文件照样正常使用,反之亦然
- 不能跨越文件系统, "等同于"不占空间的复制 + 同步更新
- 只能对文件建立硬链接, 而不能对目录建立硬链接

- 能够跨越文件系统,相当于Windows 中的快捷方式
- 软链接具有唯一的 inode,内部保存的是原文件的路径地址
- 如果打开并修改软链接,原文件也会随之改变
- 如果删除软链接,原文件并不会受到影响
- 如果删除原文件, 软链接将失效

硬链接(Hard Link)(孙悟空的分身)

- 硬链接与原文件具有相同的 inode, 两者本质上没有区别
- 对硬链接的修改会反映到原文件上,反之亦然
- 如果删除硬链接,原文件照样正常使用,反之亦然
- 不能跨越文件系统, "等同于"不占空间的复制 + 同步更新
- 只能对文件建立硬链接, 而不能对目录建立硬链接

软链接(Soft Link,符号链接,Symbolic Link)

- 能够跨越文件系统,相当于Windows 中的快捷方式
- 软链接具有唯一的 inode, 内部保存的是原文件的路径地址
- 如果打开并修改软链接,原文件也会随之改变
- 如果删除软链接,原文件并不会受到影响
- 如果删除原文件, 软链接将失效

Yixf (TIJMU) 文件系统 2015 年 4 月 28 日 45/66

Make a file:

Hard link:

\$ 1n name_A name_B

name_A -----
Location of file on disk

Symbolic link:

(Hard link,

文件系统 | 文件类型 | 链接 | 比较

项目	硬链接	软链接		
语法	In source hardlink	In -s source softlink		
本质	与原文件没区别	保存原文件的路径		
inode	与原文件相同	与原文件不同,唯一		
类比	不占空间的复制 + 同步更新	快捷方式		
文件系统	不能跨越	能跨越		
删除原文件	不受影响	失效		
使用对象	文件	文件和目录		
修改链接	原文件随之	改变		
删除链接	原文件不受影响			

Yixf (TIJMU) 文件系统 2015 年 4 月 28 日 47/66

文件系统 | 文件类型 | 链接 | 用途

- 为命令、程序或文件取别名
- 创建不占存储空间的文件副本
- 为文件创建方便的快捷方式
- 对文件进行分组

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

教学提纲

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

文件系统 | 权限 | 简介

文件系统 | 权限 | 简介

字符位置	含义	助记
2~4	文件所有者	user
5 ~ 7	文件所属组	group
8 ~ 10	其他任何人	others

文件系统 | 权限 | 简介 | 基本类型

字符	助记	权限	对文件	对目录
r	Read	读	查看文件内容【cat】	读取/列出目录或子 目录内容【ls】
W	Write	写	修改文件内容(添加文本或删除文件)【vim】	在目录中创建、修改、 删除文件或子目录 【touch】
Х	eXecute	执行	执行/运行文件【sh】	进入目录搜索【cd】
-	-	-	无	无

注意:目录必须具有 x 权限, 否则无法进入并查看其内容!

Yixf (TIJMU) 文件系统 2015 年 4 月 28 日 53/66

教学提纲

- 1 指导思想
- 2 引言
- 3 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

文件系统 | 权限 | 修改

修改权限

chmod (CHange MODe)

- - 用户: u, g, o, a
 - 操作:+,-,=
 - 权限: r. w. x. -
- - 0, 1, 2, 4
 - 3 = 1 + 2
 - 5 = 1 + 4
 - 6 = 2 + 4
 - 7 = 1 + 2 + 4

文件系统 | 权限 | 修改

修改权限

chmod (CHange MODe)

两种方式(板书)

- 符号模式:容易理解
 - 用户:u, g, o, a
 - 操作:+,-,=
 - 权限:r, w, x, -
- ② 绝对模式:更加高效
 - 0, 1, 2, 4
 - 3 = 1 + 2
 - 5 = 1 + 4
 - 6 = 2 + 4
 - 7 = 1 + 2 + 4

文件系统 | 权限 | 修改 | 符号模式

用户

- u:User, 用户
- g:Group,组
- o:Other, 其他人
- a:All,所有人

操作

- +:添加
- -:删除
- = : 指定

权限

- r:Read, 读
- w:Write,写
- x:eXecute, 执行
- - : 无

实例

- chmod u-x testfile
- chmod g=r-x testfile
- o chmod o+wx testfile
- chmod uo+x,g-w testfile
- o chmod u-x,g=r-x,o+wx testfile

文件系统 | 权限 | 修改 | 符号模式

用户

- u:User, 用户
- g:Group,组
- o:Other, 其他人
- a:All,所有人

操作

- +:添加
- -:删除
- =:指定

权限

- r:Read, 读
- w:Write, 写
- x:eXecute, 执行
- -: 无

实例

- chmod u-x testfile
- chmod g=r-x testfile
- o chmod o+wx testfile
- chmod uo+x,g-w testfile
- chmod u-x, g=r-x, o+wx testfile

文件系统 | 权限 | 修改 | 符号模式

用户

- u:User, 用户
- g:Group,组
- o:Other, 其他人
- a:All,所有人

操作

- +:添加
- -:删除
- =:指定

权限

- r:Read, 读
- w:Write, 写
- x:eXecute, 执行
- -:无

实例

- o chmod u-x testfile
- chmod g=r-x testfile
- chmod o+wx testfile
- chmod uo+x,g-w testfile
- chmod u-x,g=r-x,o+wx testfile

文件系统 | 权限 | 修改 | 符号模式

用户

- u:User, 用户
- g:Group,组
- o:Other, 其他人
- a:All,所有人

操作

- +:添加
- -:删除
- =:指定

权限

- r:Read, 读
- w:Write,写
- x:eXecute, 执行
- -:无

实例 (一一解释具体含义)

- chmod u-x testfile
- chmod g=r-x testfile
- chmod o+wx testfile
- chmod uo+x,g-w testfile
- chmod u-x,g=r-x,o+wx testfile

56/66

文件系统 | 权限 | 修改 | 绝对模式

数字	符号	权限
0		无权限
1	X	可执行
2	-w-	可写
3	-wx	可写、可执行(2+1)
4	r	可读
5	r-x	可读、可执行(4+1)
6	rw-	可读、可写(4+2)
7	rwx	可读、可写、可执行(4+2+1)

实例

- chmod 740 testfile
- chmod 755 testfile

文件系统 | 权限 | 修改 | 绝对模式

数字	符号	权限
0		无权限
1	X	可执行
2	-w-	可写
3	-wx	可写、可执行(2+1)
4	r	可读
5	r-x	可读、可执行(4+1)
6	rw-	可读、可写(4+2)
7	rwx	可读、可写、可执行(4+2+1)

实例(一一解释具体含义)

- chmod 740 testfile
- chmod 755 testfile

←□▶←□▶←□▶ ←□▶ □ ♥○

- 1 指导思想
- 2 引言
- 3 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

文件系统 | 挂载 | mount

```
root@AY130424102830Z ~ ]# df -h
                  Size Used Avail Use% Mounted on
Filesystem
/dev/xvda1
                   20G 5.8G 13G 32% /
tmpfs
                    498M @ 498M 0% /dev/shm
              9.9G 151M 9.2G 2% /www
/dev/xvdb1
[root@AY130424102830Z ~]# mount
/dev/xvda1 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw)
xenfs on /proc/xen type xenfs (rw)
none on /proc/sys/fs/binfmt misc type binfmt misc (rw)
/dev/xvdb1 on /www type ext3 (rw)
```

法(回顾文件系统的类型)

- mount -t FILE.SYSTEM.TYPE DEVICE DIRECTORY
- mount -t iso9660 /dev/cdrom /mnt/cdrom
- umount DEVICE.TO.UNMOUNT
- umount /dev/cdrom

59/66

文件系统 | 挂载 | mount

```
root@AY130424102830Z ~ |# df -h
                  Size Used Avail Use% Mounted on
Filesystem
/dev/xvda1
                   20G 5.8G 13G 32% /
                  498M 0 498M 0% /dev/shm
tmpfs
/dev/xvdb1 9.9G 151M 9.2G 2% /www
[root@AY130424102830Z ~]# mount
/dev/xvda1 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw)
xenfs on /proc/xen type xenfs (rw)
none on /proc/sys/fs/binfmt misc type binfmt misc (rw)
/dev/xvdb1 on /www type ext3 (rw)
```

语法(回顾文件系统的类型)

- mount -t FILE.SYSTEM.TYPE DEVICE DIRECTORY
- mount -t iso9660 /dev/cdrom /mnt/cdrom
- umount DEVICE.TO.UNMOUNT
- umount /dev/cdrom

Yixf (TIJMU) 文件系统 2015 年 4 月 28 日 59/66

- 1 指导思想
- 2 引言
- 3 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 文件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

文件系统 | 总结

知识点

- Linux 的文件系统:目录结构,主要的基本目录
- Linux 中的路径:绝对路径和相对路径
- 文件系统导航的常见命令
- Linux 中的文件类型:常见类型, 硬链接和软链接
- Linux 中的权限:文件和目录的权限,符号模式和绝对模式
- 文件系统的挂载与卸载

技能

- 在命令行中进行文件系统的导航
- 在命令行中创建硬链接和软链接
- 在命令行中修改文件的权限
- 在命令行中挂载、卸载文件系统

- 1 指导思想
- 2 引言
- ③ 文件系统基础
 - 文件系统和分区
 - 目录结构
 - 路径
- 4 文件系统导航
 - 目录操作
 - 文件操作
 - 文件系统管理

- 命令详解
- 5 又件类型
 - 类型简介
 - 链接
- 6 文件和目录权限
 - 权限简介
 - 修改权限
- 7 挂载文件系统
- 8 回顾与总结
 - 总结
 - 思考题

文件系统 | 思考题

- 列举 Linux 中的基本目录并解释其功能。
- ② 举例说明绝对路径和相对路径的区别。
- ③ 列举几个进行文件系统导航的命令。
- ⑤ 比较 Linux 中的硬链接和软链接。
- **◎ Linux** 中的权限包括几种,针对哪些用户?
- 文件和目录的 rwx 权限有何异同?
- ◎ 举例说明如何使用符号模式修改权限?
- 举例说明如何使用绝对模式修改权限?

下节预告

总结日常使用 Windows 过程中的基本操作:目录操作、文件操作、系统管理、压缩解压、关机重启、······

Powered by

66/66