GRUNDLAGEN DER ANALYSIS.

T. Zahlenfolgen. Grenzwerte

I. 1. Definition und Darstellungen von Folgen

Det. Ordnet man jeder Lahl nEN genau eine Zahl an ER zu, so entsteht durch

(en) = 91,92,93,..., er,...
eine Zahlenfolge oder keert: Folge.

a1, a2, a3, ... heisen Glieder der Folge;

an ist das n-te Folgengered.

Eine Gordneenpsvorschrift in torm einer

Cleicheung an=f(n); nEN

heifst Brildengsgeselz der Folge

Die Derstelleng einer Zahlenfolge in der

Form $X_{n} = \varphi(X_{n-1}, X_{n-2}, \dots, X_{n-k})$

mit den Antængs Beoling ungen

heipt vekeersive Darstelleeng.

Beispiel:

(1) an = a (an) = a, a, a, ... (konstante Folge)

(an) = 1, 1, 1, 1, 1, 5, ... (2) an = 1

(3) $a_n = \frac{(-1)^n n}{n+1} (a_n) = -\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots$

(4) an = a (an) = 1,4,9,76,25, ...

(5)
$$a_{n+1} = \sqrt{2a_n}$$
; $a_1 = 1$; $n = 1, 2, 3, ...$
 $a_2 = \sqrt{2a_1} = \sqrt{2} = 2$
 $a_3 = \sqrt{2a_2} = \sqrt{2\sqrt{2}} = \sqrt{2 \cdot 2 \cdot 3} = \sqrt{2^{1/2}} = 2^{\frac{1}{2}}$
 $a_4 = \sqrt{2a_3} = \sqrt{2\sqrt{2} \cdot 2} = \sqrt{2} \cdot 2^{\frac{1}{2}} = \sqrt{2^{\frac{1}{2}}} = 2^{\frac{1}{2}}$
 $a_4 = \sqrt{2a_3} = \sqrt{2\sqrt{2} \cdot 2} = \sqrt{2} \cdot 2^{\frac{1}{2}} = 2^{\frac{1}{2}}$
 $a_4 = 1, \sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2}}, ...$

Grenzwert: $a = 2$

(6) $a_{n+1} = \frac{a_n}{2} + \frac{3}{2a_n}; a_0 = 2$
 $a_0 = 2$
 $a_1 = \frac{a_0}{2} + \frac{3}{2 \cdot 2} = \frac{2}{2} + \frac{3}{2 \cdot 2} = 1, 75$
 $a_2 = 1, 732142857$
 $a_3 = 1, 732050808$
 $a_4 = 1, 732050808$
 $a_4 = 1, 732050808$
 $a_5 = \sqrt{3}$

Graphische Darstellungen von Fahlenfolgen

 $a_n = \sqrt{3}$
 $a_4 = \sqrt{3}$
 $a_5 = \sqrt{3}$
 $a_7 = \sqrt{3}$

	2. Der	- Grenz	wert	einer	rolpe		
						$e\left(\frac{1}{n}\right)$	2
1	$0 < a_{\cdot \cdot}$	x ≤ 1	Lin	0110. 4	1. $\in A/$		
<u></u>	Un+1	< Q _n					
			701	0,01	• 0100 =	700	
o					0,01		
141	Lie co	m. Tute	rua Cl	4.000	r alle	Chiedes	
an	mit	$n \ge 16$	01				
70ge						E-Umge	
						alle Bis	
						. To ret	
						aller Gl	
	von	Viell ke	einer	als 0,6	01,dh	Lie Bed	ingung
			an/ =	< 0, 01	est fr	i alle n	7101
		ut.					
Bener	heeng	: Dre	Folge	$\left(\begin{array}{c} 1 \\ 2 \end{array}\right)$	hat de	n Grenza	vert
	Nell	. (Nul	lfolge				
Def.	9 €	- R. hei	1st 6	ventue	rt ode	Lines	der
	Folpe	(an).	wenn	zu jec	lem (Be	eliebig k	leinem)
	6 > 0	eine n	aturli	che Za	be no (8	eliebig k E) existie	rt,
					für alle		
						, no mo	
	gult.	Man.					
			7 = 61	n an			
				~			

Bener	een3:
	1) Existient der Grenzwert g, so heigt die
	Folge (an) konvergent, anderentalls
	livergent.
	2) Der Grenzwert 9 der Folge (an) kann
	Flied der tolpe sein.
	(as beinzufügen ben Weglassen endlich Weler
	Olieder einer tolpe (an) hat keinen Einfluss
	auf den Grenzwert.
	4) Um nach zweisen, dass BER kein Grenzwert
	der tolpe (an) nit, braucht men nur eine
	Umgebeeng UE (6) von Bantugeben, außer-
	(an) liegen.
Bein	
	$(a_n) = (1 + (-1)^n) = 0, 2, 0, 2, \dots,$
	Besitzt keinen Grenzwert, La sowohl
	Besitzt keinen Grenzwert, da sowohl in $U_{\mathcal{E}}(0)$ als œuch in $U_{\mathcal{E}}(2)$, $O\subset\mathcal{E}\subset\mathcal{I}$,
	unendlich viele Olieder liegen.
	2) (0) - (1) 10 + 4 to 1 + do 1 . Green 2- 0 of
	2) (an)= (in) heet nicht den Grenzwert
	$9 = \frac{4}{2}$.
	Beweis: $\left \frac{1}{h} - \frac{1}{2} \right < \varepsilon$
	1- Fall $\frac{1}{h} - \frac{1}{2} \ge 0$ für $n = 1, 2,$
	uninteressent, da 1, 2 <=> n = 2

2. Fall
$$\frac{1}{h} - \frac{1}{\lambda} < 0$$
, $\frac{1}{\lambda}h$. $n > 2$

$$-\left(\frac{1}{h} - \frac{1}{\lambda}\right) < \varepsilon$$

$$\frac{1}{h} - \frac{1}{\lambda} > -\varepsilon$$

$$\frac{1}{h} > \frac{1}{\lambda} - \varepsilon$$

$$5ei \quad 0 < \varepsilon < \frac{1}{\lambda} \Rightarrow \frac{1}{\lambda} - \varepsilon > 0$$

$$\Rightarrow \quad h < -\frac{1}{\lambda} - \varepsilon$$
Obere Schranke für n' .

$$\Rightarrow \text{ near encleich viele Warbe enfillen}$$

$$\text{ due Ungleichung, also into } g = \frac{1}{\lambda}$$

$$\text{ micht Grentwort von } (\alpha) = {1 \choose h}.$$

$$\text{Beispiel:} (1) \quad (\alpha_n) = {1 \choose h^2} = 1, \frac{1}{4}, \frac{1}{3}, \dots$$

$$\text{lim } \alpha_n = 0$$

$$\frac{1}{h^2 + 0} = \frac{1}{h^2} < \varepsilon$$

$$\Rightarrow \quad 1 < \varepsilon \cdot n^2 \Rightarrow n > \frac{1}{\sqrt{\varepsilon}};$$

$$(\varepsilon > 0) \quad (u > 0) \quad (u > 0)$$

$$(2) \quad (\alpha_n) = {1 - \frac{1}{h}} = 0, \frac{1}{\lambda}, \frac{1}{\lambda}, \frac{1}{\lambda}, \dots$$

$$g = \lim_{n \to \infty} (1 - \frac{1}{n}) = 0$$

$$\frac{1}{h^2 + 0} = 1$$

$$\frac{1}{h^2 + 0}$$

Satt & git:

(1)
$$\lim_{n\to\infty} \frac{1}{n} = 0$$
, $\alpha \in \mathbb{O}^+ \setminus \log \frac{1}{n}$

(2) $\lim_{n\to\infty} \frac{n}{n} = 1$
 $\lim_{n\to\infty} \frac{n}{n} = 1$

(3) $\lim_{n\to\infty} \frac{n}{n} = 1$, $p \in \mathbb{R}^+ \setminus \log \frac{1}{n}$

(4) $\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e^{-n} = 2, 1828$

I. 3. Bestimmeng von Grentwerter

Seien $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, $c \in \mathbb{R}$.

 $\lim_{n\to\infty} qit$:

(1) $\lim_{n\to\infty} \left(a_n t b_n\right) = \lim_{n\to\infty} a_n t \lim_{n\to\infty} b_n = a + b$

(2) $\lim_{n\to\infty} \left(c \cdot a_n\right) = c \cdot \lim_{n\to\infty} a_n = c \cdot a$
 $\lim_{n\to\infty} \left(c \cdot a_n\right) = c \cdot \lim_{n\to\infty} a_n = c \cdot a$

(3) $\lim_{n\to\infty} \left(a_n \cdot b_n\right) = \left(\lim_{n\to\infty} a_n\right) \cdot \left(\lim_{n\to\infty} b_n\right) = a \cdot b$
 $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \lim_{n\to\infty} a_n = \frac{a}{b}$

(4) $\lim_{n\to\infty} \left(\frac{a_n}{a_n}\right) = \lim_{n\to\infty} a_n = \frac{a}{b}$

(5) $\lim_{n\to\infty} \left(a_n\right)^n = \left(\lim_{n\to\infty} a_n\right)^n = a^n$, $a_n \in \mathbb{R}$, a_n

Beispoil

(1)
$$a_{n} = \frac{2n - \sqrt{n^{3}}}{5\sqrt{n} - n + 2\sqrt{n^{3}}} = \frac{2n - n^{\frac{1}{2}}}{2}$$
 $5\sqrt{n} - n + 2\sqrt{n^{3}} = \frac{1}{2} - n + 2n^{\frac{1}{2}}$
 $9 = \lim_{n \to \infty} \frac{n^{3/2} \left[2n^{-1/2} - 1\right]}{n^{3/2} \left[5n^{-1} - n^{\frac{1}{2}} + 2\right]} = \frac{1}{2} = \frac{1}{2}$
 $\lim_{n \to \infty} \left[5n^{-1} - n^{\frac{1}{2}} + 2\right] = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $\lim_{n \to \infty} \left[5n^{-1} - n^{\frac{1}{2}} + 2\right] = \frac{1}{2} =$

 $= \lim_{n \to \infty} \frac{n^4 (4 - 7n^{-\frac{7}{2}} + 3n^3)}{n^4 (8n^2 + 9)} = \frac{4}{9}$ (8) $\lim_{n\to\infty} \frac{3n^2-5}{4+n^4} = \lim_{n\to\infty} \frac{n^4(3n^{-2}-5n^{-4})}{n^4(4n^4+1)} = 0$ Definition line Folge (an) = 91, 92, 93, ... reeller Zahlen heist nach den besekränkt wenn alle an kleiner oder gleich einer festen Earl M sind (an & M), nach unter beschränkt, wenn alle en grøßer oder gleich einer festen Zahl in sond (an >, in), Beschränkt, wenn (an) auch oben und nach unten blochränkt ut, monoton wachsend, wenn a, = a, = a, , , d.h an = an+1 gilt, monoton fallend, wenn a1 >, a2 >, a3 >, ..., dh. en >, an+1 gilt. Satz a) Eine nach den besehränkte monoton wachsende Folge 1st konvergent. 6) Eine nach unter beschränkte monston La Uende Folge ist konvergent. Beispiel a) Die konstante Folge a, a, a, ... ist konvergent gigen a (monotion und beschränkt) 6) Die Folge 2,-4,8,-16, ist alternierend (ab-weehlendes Vorzichen) und Lenbeschränkt => divergent. c) Die Folge 9, 3, 1, $\frac{1}{3}$, $\frac{1}{9}$,... ist streng mono-ton fellend und beschrähkt (9 und 0)

	=	> 1.	iones	ent					
•	Ben	ner	keens	Diese	Folge	ist ei	ne goo	metrise	he
-	Foly	æ	: an=	= 9, an	-1; h	ii + 9 =	- 1 Cen	$d q_1 =$	9.
	Die	91	cometr	:sehe	holge i	st für	19/41	' Lower	rgent
Ź	rege	n i	Viell 1	unde	fur 19	1>1 0	wergen	₹ .	
	I	4	Une	ndlic	he Za	hlenre	ihen	_	
	-	2	0. (pe ree	105 70	40 2	١
	<i>,</i> 20					n:		aun. O	
				a,					
				$Q_1 + Q_2$	$=$ $S_7 + C$? _{2.}			
				91+92					
							+ 0		
						an = Si			
			heiße	n for	-tial-	aler Tei	Grennen	und	
			Gilder	r eine	respe.	eun	Aus dru	- 5 a.	7
						+ 1, 1			
						e Rlihe			
_	Bei	Sm	el (Geome	trisch	e Folp	e & Rei	the)	
	Be	tra	.Chten	, wir	eene g	remetr	isehe t	olpe m	rt
	Q1	= 1	Bilde	y = x	e Zah	\times	X , , , , ,	mit:	/
	evi	re	Folge	der	Partia	S3 = 1 l grenn	ren.		
			Geome	etvisel	e Sieu	nne			

$$\Rightarrow \sum_{n=0}^{\infty} x^{n} = \frac{1}{1-x} \operatorname{Air} (x < 1)$$

$$\frac{2}{2} \left(-\frac{1}{2}\right)^{n} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \frac{1}{16}$$

$$=\frac{1}{1-(-\frac{1}{2})}=\frac{2}{3}$$

$$(2)$$
 $\times = \frac{1}{3}$

Benerkeenz Frir /x/>/ ist Lie Reihe Livergent.

Anschaulicher Besspiel dahir, Lass Lie Addition renerallich vieler Zahlen eine endliche Zahl

$$1 + 1 \cdot 10^{-1} + 1 \cdot 10^{-2} + 1 \cdot 10^{-3} + 1 \cdot 10^{-9} + \dots + =$$

$$= 1, 1111 - \dots = 1, 1 = \frac{10}{9}$$

$$= 1, 1111 - ... = 1, 1 = \frac{10}{9}$$

Weiberes Bessprel einer Livergensen Reihe:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \Rightarrow \infty$$
 Reihe

Benerheeng Die Addition ist kommutativ und also-Ziater, daher est die semme endlich vieler Zahlen cenabhangig von der Reihenfolpe der Lummanden, Bru unabhångig devon & Klammern gesetzt wer-den oder nicht. Für unendliche Reihen golt Sies i. A. nicht.

Busprel Die Reshe $\sum_{n=1}^{\infty} (1-1) =$ $= (1-1) + (1-1) + \dots$ Bestitzt wegen $S_1 = S_2 = \dots = 0$ = 0Sen Grenzwert Null. $= (-1)^{n-1} = (-1)^{n-1} + (-1)^{n-$ Sat 2 Seven $\geq a_n = a$ rend $\geq B_n = b$ konver- n = 1gente Reshen und Seven $\alpha, \beta \in \mathbb{R}$. Dann $\sum_{n=1}^{\infty} (\alpha - \alpha_n + \beta - \beta_n) = \alpha \cdot \sum_{n=1}^{\infty} \alpha_n + \beta \sum_{n=1}^{\infty} \beta_n = \alpha_n$ $= 2 - 2 + 13 \cdot 6$ $= 3^{n+1} - 2^{n+1}$ Espect $= 3^{n+1} - 2^{n+1}$ $= 3^{n+1} - 2^{n+1} - 3^{n+1} - 2^{n+1}$ $= 6^{n} - 6^{n} = 6^{n}$ Beispiel:

$$= 3 \cdot \left(\frac{3}{6}\right)^{n} - 2 \cdot \left(\frac{2}{6}\right)^{n} = 3 \cdot \left(\frac{1}{2}\right)^{n} - 2 \cdot \left(\frac{1}{5}\right)^{n}$$

$$\stackrel{\otimes}{=} \left(\frac{1}{2}\right)^{n} = \frac{1}{1 - \frac{1}{2}} = 2 \Rightarrow$$

$$\stackrel{\otimes}{=} \left(\frac{1}{2}\right)^{n} = 2 - 1 = 1$$

$$\stackrel{\otimes}{=} \left(\frac{1}{3}\right)^{n} = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2} \Rightarrow \stackrel{\otimes}{=} \left(\frac{1}{3}\right)^{n} = \frac{3}{2} - 1 = \frac{1}{2}$$

$$\stackrel{\otimes}{=} \left(\frac{1}{3}\right)^{n} = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2} \Rightarrow \stackrel{\otimes}{=} \left(\frac{1}{3}\right)^{n} = \frac{3}{2} - 1 = \frac{1}{2}$$

$$\stackrel{\otimes}{=} \frac{3^{n+1} - 2^{n+1}}{6^{n}} = \frac{3 \cdot 1}{2^{n}} \Rightarrow \frac{3 \cdot 1}{2^{n}} = \frac{2}{2^{n}} \Rightarrow \frac{3 \cdot 1}{2^{n}} \Rightarrow \frac{3 \cdot 1} \Rightarrow \frac{3 \cdot 1}{2^{n}} \Rightarrow \frac{3$$