Iterative 3

王胤雅

25114020018

yinyawang25@m.fudan.edu.cn

2025年10月22日

ROBEM I In the Householder implementation of the Arnoldi algorithm, show the following points of detail:

- (a) Q_{j+1} is unitary and its inverse is Q_{j+1}^T .
- (b) $Q_{j+1}^T = P_1 P_2 \cdots P_{j+1}$.
- (c) $Q_{i+1}^T e_i = v_i \text{ for } i < j.$
- (d) $Q_{j+1}AV_m = V_{m+1}[e_1, e_2, \dots, e_{j+1}]\bar{H}_m$, where e_i is the *i*-th column of the $n \times n$ identity matrix.
- (e) The vectors v_1, v_2, \ldots, v_j are orthonormal.
- (f) The vectors v_1, \ldots, v_j are equal to the Arnoldi vectors produced by the Gram-Schmidt version, except possibly for a scaling factor.

SOUTION. 1. 因为每个 P_k 都是 Householder 反射矩阵,满足

$$P_k^T P_k = I,$$

即 P_k 是正交矩阵。正交矩阵的乘积仍为正交矩阵,因此

$$Q_{j+1} = P_{j+1}P_j \cdots P_1$$

也是正交矩阵。对于实矩阵而言, $\overline{H} = H$,故

$$Q_{j+1}^{-1} = Q_{j+1}^T.$$

2. 每个 P_k 都满足 $P_k^T = P_k$, 因此

$$Q_{j+1}^T = (P_{j+1} \cdots P_1)^T = P_1 P_2 \cdots P_{j+1}.$$

3. 由于 $P_k e_i = e_i, \forall k > i$ 。那么 j > i 时有

$$Q_{j+1}^T e_i = P_1 P_2 \cdots P_{j+1} e_i = P_1 \cdots P_i e_i = v_i.$$

1

因此命题对所有 i < j 成立。

4. 标准 Arnoldi 关系为

$$AV_m = V_{m+1}\bar{H}_m,$$

其中 $V_m \in \mathbb{R}^{n \times m}$ 为 Arnoldi 正交基, $V_{m+1} \in \mathbb{R}^{n \times (m+1)}$,而 \bar{H}_m 为 $(m+1) \times m$ 上 Hessenberg 矩阵。由于在 (c) 中已知 $v_i = Q_{j+1}^T e_i$,可得

$$V_{m+1} = Q_{j+1}^T[e_1, e_2, \dots, e_{m+1}].$$

两边左乘 Q_{i+1} ,得到

$$Q_{j+1}AV_m = [e_1, e_2, \dots, e_{m+1}]\bar{H}_m.$$

5. 由 (c) 有 $v_i = Q_{i+1}^T e_i$ 。由于 Q_{i+1}^T 是正交矩阵,它保持内积不变,因此

$$\langle v_i, v_\ell \rangle = \langle Q_{j+1}^T e_i, Q_{j+1}^T e_\ell \rangle = \langle e_i, e_\ell \rangle = \delta_{i\ell}.$$

于是 $\{v_1,\ldots,v_j\}$ 构成一组正交归一向量。

6. Gram-Schmidt 版和 Householder 版 Arnoldi 都在同一 Krylov 子空间

$$\mathcal{K}_m(A,b) = \operatorname{span}\{b, Ab, \dots, A^{m-1}b\}$$

中构造正交基,且都满足 Arnoldi 关系 $AV_m = V_{m+1}\bar{H}_m$ 。由于在 (e) 中已证明 Householder 构造的 $\{v_i\}$ 也是单位正交的,所以两者在数值上最多相差 ± 1 的符号因子。故结论成立。

ROBEM II To derive the basic version of GMRES, we use the standard formula

$$\tilde{x} = x_0 + V \left(W^T A V \right)^{-1} W^T r_0, \tag{1}$$

where $V = V_m$ and $W = AV_m$.

SOUTION. GMRES 要求选择 y 使得残差的二范数最小,即求解

$$y = \arg_{z \in \mathbb{R}^m} \min ||r_0 - AVz||_2,$$

其中 $W \equiv AV$ 。

$$\min_{z \in \mathbb{R}^m} ||r_0 - Wz||_2.$$

对平方范数对 z 求导并令梯度为零,

$$W^T W y = W^T r_0,$$

即

$$(AV)^T (AV) y = (AV)^T r_0.$$

由于 A 为非奇异矩阵,则 W^TW 可逆,则正规方程的解为

$$y = (W^T W)^{-1} W^T r_0 = ((AV)^T (AV))^{-1} (AV)^T r_0.$$

将 y 代回近似解的表达式 $\tilde{x} = x_0 + Vy$,得到

$$\tilde{x} = x_0 + V(W^T W)^{-1} W^T r_0 = x_0 + V((AV)^T (AV))^{-1} (AV)^T r_0$$

\mathbb{R}^{O} BEM III Let a matrix A have the form

$$A = \begin{pmatrix} I & Y \\ 0 & I \end{pmatrix}.$$

Assume that (full) GMRES is used to solve a linear system with the coefficient matrix A. What is the maximum number of steps that GMRES would require to converge?

SOLTION.

 $Lemma\ 1.$ 设 $A \in \mathbb{C}^{n \times n}$, 初始猜测为 x_0 , 初始残量 $r_0 = b - Ax_0$, 假设 $r_0 \neq 0$ 。令

$$\mathcal{K}_k(A, r_0) = \text{span}\{r_0, Ar_0, \dots, A^{k-1}r_0\}, \qquad \mathcal{P}_k = \{p \in \mathbb{C}[t] : \deg p \le k\}.$$

则 GMRES 在第 k 步的残量满足

$$||r_k|| = \min_{x \in x_0 + \mathcal{K}_k} ||b - Ax|| = \min_{p \in \mathcal{P}_k, \ p(0) = 1} ||p(A)r_0||.$$

证明. 任意 $x \in x_0 + \mathcal{K}_k$ 可表示为

$$x = x_0 + \sum_{j=0}^{k-1} \gamma_j A^j r_0 = x_0 + q(A)r_0,$$

其中 $q(t) = \sum_{j=0}^{k-1} \gamma_j t^j$ 且 $\deg q \leq k-1$ 。此时残量为

$$r = b - Ax = r_0 - Aq(A)r_0.$$

令

$$p(t) := 1 - tq(t),$$

则显然 p(0) = 1、 $\deg p \le k$,且

$$r = p(A)r_0.$$

因此每个 $x \in x_0 + \mathcal{K}_k$ 都产生某个满足 p(0) = 1、 $\deg p \leq k$ 的多项式 p,使得残量等于 $p(A)r_0$ 。 反之,任取 $p \in \mathcal{P}_k$, P_k 为次数小于 k 的所有多项式,且 p(0) = 1,那么

$$p(t) = \sum_{j=0}^{k} a_j t^j, \qquad a_0 = p(0) = 1.$$

则

$$p(t) = 1 + \sum_{j=1}^{k} a_j t^j = 1 - t \left(-\sum_{j=1}^{k} a_j t^{j-1} \right).$$

令 $q(t):=-\sum_{j=1}^k a_j t^{j-1}$,则 $\deg q \leq k-1$ 且 p(t)=1-tq(t)。那么 $q(A)r_0=-\sum_{j=1}^k a_j A^j r_0 \in \mathcal{K}_k$ 故

$$x = x_0 + q(A)r_0 \in x_0 + \mathcal{K}_k,$$

可得对应的残量

$$b - Ax = p(A)r_0.$$

这说明集合 $\{x \in x_0 + \mathcal{K}_k\}$ 与集合 $\{p \in \mathcal{P}_k : p(0) = 1\}$ 通过残量映射——对应,且对应残量范数相等。从而,

$$\min_{x \in x_0 + \mathcal{K}_k} ||b - Ax|| = \min_{\substack{p \in \mathcal{P}_k \\ p(0) = 1}} ||p(A)r_0||.$$

GMRES 第 k 步定义为在 $x_0 + K_k$ 中选择使残量范数最小的 x_k , 因此

$$||r_k|| = \min_{x \in x_0 + \mathcal{K}_k} ||b - Ax|| = \min_{p \in \mathcal{P}_k, \ p(0) = 1} ||p(A)r_0||.$$

由 GMRES 的定义及 lemma 1, 在第 k 步我们在 $x_0 + \mathcal{K}_k(A, r_0)$ 中寻找使残量范数最小的 x_k , 即

$$||r_k|| = \min_{x \in x_0 + \mathcal{K}_k} ||b - Ax|| = \min_{\substack{p \in \mathcal{P}_k \\ p(0) = 1}} ||p(A)r_0||.$$

设 $\mu_{A,r_0}(t)$ 为关于向量 r_0 的 A 最小多项式,且 $\deg(\mu_{A,r_0})=d$ 。则

$$\mu_{A,r_0}(A)r_0 = 0.$$

若 $\mu_{A,r_0}(0) \neq 1$, 考虑

$$\mu_{A,r_0}(t) = c(1 + \beta_1 t + \beta_2 t^2 + \dots + \beta_d t^d)$$

其中 $c \neq 0$ 。令

$$\tilde{\mu}(t) := 1 + \beta_1 t + \beta_2 t^2 + \dots + \beta_d t^d,$$

则 $\tilde{\mu}(0) = 1$ 且.

$$\tilde{\mu}(A)r_0 = c^{-1}\mu_{A,r_0}(A)r_0 = 0.$$

故存在次数不超过 d 且常数项为 1 的多项式, 即 $\tilde{\mu}$ 使 $\tilde{\mu}(A)r_0=0$ 。若 $\mu_{A,r_0}(0)=0$,设 $\mu_{A,r_0}(t)=\sum_{k=1}^d\alpha_kt^k$,那么 $A(\sum_{k=m}^{d-m}\alpha_kA^k)r_0=0$, $m=\min\{k:0\leq k\leq d,a_k\neq 0\}$ 由于 A 非奇异,那么 $\tilde{\mu}(A)r_0=(\sum_{k=m}^{d-m}\alpha_kA^k)r_0$ 。故存在次数不超过 d 且常数项为 1 的多项式, 即 $\tilde{\mu}$ 使 $\tilde{\mu}(A)r_0=0$ 。总 之, $\exists p\in\mathcal{P}_d$ 满足 p(0)=1 且 $p(A)r_0=0$ 。将该多项式代入第 k 步的变分表示,取 k=d 可得

$$\min_{\substack{p \in \mathcal{P}_d \\ p(0)=1}} ||p(A)r_0|| \le ||p(A)r_0|| = 0.$$

因此 GMRES 在第 d 步或之前可得到零残量,即 $\|r_d\|=0$ 。换言之,full GMRES 在至多 d 步内精确收敛。而 $(A-I)^2=0$,那么 μ_{A,r_0} 的次数小于等于 2。若 $Y\neq 0$,则最大迭代次数为 2。 \square

ROBEM IV Consider a matrix of the form

$$A = I + \alpha B \tag{2}$$

where B is skew-symmetric (real), i.e., such that $B^T = -B$.

1. Show that $\frac{(Ax,x)}{(x,x)} = 1$ for all nonzero x.

2. Consider the Arnoldi process for A. Show that the resulting Hessenberg matrix will have the following tridiagonal form

$$H_m = \begin{pmatrix} 1 & -\eta_2 & & & & \\ \eta_2 & 1 & -\eta_3 & & & & \\ & \eta_3 & 1 & \ddots & & \\ & & \ddots & \ddots & -\eta_m \\ & & & \eta_m & 1 \end{pmatrix}.$$

3. Using the result of the previous question, explain why the CG algorithm applied as is to a linear system with the matrix A, which is nonsymmetric, will still yield residual vectors that are orthogonal to each other.

SOUTION. 1. 对任意非零向量 x,

$$(Ax, x) = x^{T}(I + \alpha B)x = x^{T}x + \alpha x^{T}Bx.$$

由于 B 为实反对称矩阵,得

$$x^{T}Bx = (x^{T}Bx)^{T} = x^{T}B^{T}x = x^{T}(-B)x = -x^{T}Bx,$$

因此 $x^T B x = 0$ 。于是 $(Ax, x) = x^T x$,故

$$\frac{(Ax,x)}{(x,x)} = \frac{x^Tx}{x^Tx} = 1.$$

2. 设 v_1, \ldots, v_m 为标准 Arnoldi 得到的正交标准基,则对每个 j 有

$$Av_j = \sum_{i=1}^{j+1} h_{i,j} v_i, \qquad h_{i,j} = (Av_j, v_i) = v_i^T Av_j,$$

并且 $h_{j+1,j} = ||w||$ 。

又 $A = I + \alpha B$ 故

$$h_{i,j} = v_i^T A v_j = v_i^T (I + \alpha B) v_j = v_i^T v_j + \alpha v_i^T B v_j.$$

由于 v_i 与 v_j 正交, 当 $i \neq j$ 时 $v_i^T v_j = 0$, 于是对 $i \neq j$ 有

$$h_{i,j} = \alpha v_i^T B v_j.$$

利用 $B^T = -B$,得到

$$h_{j,i} = \alpha v_j^T B v_i = \alpha (v_i^T B v_j)^T = -\alpha v_i^T B v_j = -h_{i,j}.$$

即任意一对非对角元互为相反数。

又由于 Arnoldi 构造出的矩阵 H_m 满足 i > j+1 时 $h_{i,j} = 0$,故考虑任意 $i \le j-2$ 的情形。由于 j > i+1, $h_{j,i} = 0$,而又 $h_{i,j} = -h_{j,i}$,从而得 $h_{i,j} = 0$ 。故 H_m 为三对角矩阵。令对于 $j \ge 2$,

$$\eta_j := h_{j,j-1},$$

由上面的反号关系可得对应的上超对角元 $h_{j-1,j} = -\eta_j$ 。另外第 1 问知

$$h_{j,j} = (v_j, Av_j) = 1.$$

综上得到,

$$H_{m} = \begin{pmatrix} 1 & -\eta_{2} & & & \\ \eta_{2} & 1 & -\eta_{3} & & & \\ & \eta_{3} & 1 & \ddots & & \\ & & \ddots & \ddots & -\eta_{m} \\ & & & \eta_{m} & 1 \end{pmatrix},$$

3. 由于每一步的残量 r_k 都属于 Krylov 子空间 $\mathcal{K}_{k+1}(A, r_0) = \text{span}\{v_1, \dots, v_{k+1}\}$,存在坐标向量 $z_k \in \mathbb{R}^{k+1}$ 使得

$$r_k = V_{k+1} z_k.$$

同理,每个搜索方向 p_k 也写成坐标 y_k :

$$p_k = V_{k+1} y_k.$$

CG 的残量更新为

$$r_{k+1} = r_k - \alpha_k A p_k.$$

将两边左乘 V_{k+1}^T 并利用 Arnoldi 投影 $V_{k+1}^TAV_{k+1}=\begin{pmatrix} H_{k+1} & *\\ 0 & * \end{pmatrix}$ 的前 k+1 块,简写为 H_{k+1} ,得坐标关系

$$z_{k+1} = z_k - \alpha_k H_{k+1} y_k.$$

此外由 p_k 的定义和正交性的性质,易得

$$y_k = z_k + \beta_{k-1} y_{k-1}. (2)$$

我们要证明对任意 $i \neq j$ 有 $z_i^T z_j = 0$ 。用归纳法:

- z₀ 自然成立。
- 假设对所有 $\ell \leq k$, $\exists k \geq 0$ 都成立 $z_i^T z_j = 0, i \neq j, i, j \leq k$, 并且 $y_i^T H_{i+1} y_j = 0$ 对 $i \neq j$ 下面证明 z_{k+1} 与任意 $z_j, j \leq k$ 正交。

$$z_{k+1}^T z_j = (z_k - \alpha_k H_{k+1} y_k)^T z_j = z_k^T z_j - \alpha_k y_k^T H_{k+1}^T z_j.$$

由归纳假设第一部分 $z_k^T z_j = 0, j \le k-1$, 所以只需看第二项。

$$y_k^T H_{k+1}^T z_i = y_k^T (2I - H_{k+1}) z_i = 2 y_k^T z_i - y_k^T H_{k+1} z_i.$$

由归纳假设中的"搜索方向互 A-共轭"在坐标下表现为 $y_k^T H_{k+1} y_j = 0$, $j \leq k-1$, 并且 $y_k^T z_j = y_k^T (V_{j+1}^T V_{k+1}) z_j$

$$y_k^T H_{k+1}^T z_i = 0,$$

即 $z_{k+1}^T z_j = 0$ 对所有 $j \le k-1$ 成立。

剩下的 j = k 情形:

$$z_{k+1}^T z_k = z_k^T z_k - \alpha_k y_k^T H_{k+1}^T z_k.$$

但类似地利用 $H_{k+1}^T=2I-H_{k+1}$ 并利用 $\alpha_k=\frac{z_k^Tz_k}{y_k^TH_{k+1}y_k}$

$$z_{k+1}^T z_k = z_k^T z_k - \alpha_k (2y_k^T z_k - y_k^T H_{k+1} z_k)$$

= $z_k^T z_k - 2\alpha_k y_k^T z_k + \alpha_k y_k^T H_{k+1} z_k.$

但 $y_k^T z_k = z_k^T z_k$ 代入并用 $\alpha_k = \frac{z_k^T z_k}{y_k^T H_{k+1} y_k}$ 得

$$z_{k+1}^T z_k = z_k^T z_k - 2 \frac{z_k^T z_k}{y_k^T H_{k+1} y_k} z_k^T z_k + \frac{z_k^T z_k}{y_k^T H_{k+1} y_k} y_k^T H_{k+1} z_k = 0.$$

因此 z_{k+1} 与 $z_j, j \leq k$ 正交。

由归纳得到对任意 $i \neq j$ 都有坐标向量 $z_i^T z_j = 0$ 。因为 V_{m+1} 正交归一,原残量的内积等于 坐标内积,即

$$r_i^T r_j = z_i^T z_j = 0, \qquad i \neq j.$$

因此标准 CG 在 $A = I + \alpha B, B^T = -B$ 上产生的残量序列两两正交。