

Plano de Ensino

Curso: Mestrado Profissional em Computação Aplicada

Componente Curricular: Redes Neurais Artificiais

Período de Execução: 2022-1

Professor (es): Francisco de Assis Boldt

Período Letivo: N/A

Carga Horária: 45 h | Aulas Previstas: 45 | Teoria: 30 | Prática: 15

OBJETIVOS

Geral:

Compreender o conceito de Redes Neurais Artificiais, suas aplicações e limitações.

Específicos:

Conhecer a evolução histórica das redes neurais artificiais (RNA) na ciência e na indústria; Identificar situações onde as RNA são bem aplicadas e onde existem outras técnicas com melhor resultado; Implementar RNA; Avaliar adequadamente o desempenho das RNA.

EMENTA

Introdução. Topologia de Redes. Paradigmas de Aprendizagem. Perceptrons de camada única. Perceptrons de múltiplas camadas. Redes de Função de Base Radial. Redes com Realimentação: Hopfield. Mapa de Kohonen.

PRÉ-REQUISITOS OU CO-REQUISITOS (SE HOUVER)

CONTEÚDOS PROGRAMÁTICOS	CARGA HORÁRIA
Apresentação da Disciplina	3
Introdução às Redes Neurais	6
Aprendizado de Máquina com Redes Neurais Rasas	6
Treinamento de Redes Neurais Profundas	6
Redes Neurais Profundas Generalistas	3
Redes de Função de Base Radial	3
Máquinas de Boltzmann Restritas	3
Redes Neurais Recorrentes	3
Redes Neurais Convolucionais	3
Aprendizado de Reforço Profundo	3
Tópicos Avançados em Aprendizado Profundo	6
TOTAL	45

ESTRATÉGIAS DE APRENDIZAGEM

Aulas teóricas e práticas acompanhadas de tutoriais de programação. Conceitos são explicados de acordo com a evolução dos tutoriais.

RECURSOS DIDÁTICOS

Aulas expositivas com projetor; Ambiente virtual de aprendizagem - AVA; Youtube; GitHub.

ATIVIDADES A DISTÂNCIA						
Tipo (s)	Metodologias de Utilização	Atividade (s)	Carga Horária			
Avaliação	Ambiente Virtual de Aprendizagem	Tarefas de programação	9			
AVALIAÇÃO DA APRENDIZAGEM						
Instrumentos e valores: Estratégias de Recuperação Paralela		ão Paralela				

10 atividades de programação valendo 10 pontos cada.

Estratégias de Recuperação Paralela Extensão do prazo para entrega dos exercícios e dos trabalhos.

AÇÕES PEDAGÓGICAS ADEQUADAS ÀS NECESSIDADES ESPECÍFICAS

BIBLIOGRAFIA BÁSICA (Título. Periódicos, etc.)

Autor	Título	Ed	Local	Editora	Ano
Aggarwal,	Neural Networks and Deep Learning	1	Cham	Springer	2018
Charu C.					
Chollet,	Deep Learning with Python	1	Shelter	Manning	2018
François			Island		
Géron,	Hands-On Machine Learning with	2	Cobostonal	O'Dailly	2010
Aurélien	Scikit-Learn, Keras & TensorFlow	2	Sebastopol	O Rellly	2019

BIBLIOGRAFIA COMPLEMENTAR (Título. Periódicos, etc.)

Autor	Título	Ed	Local	Editora	Ano
Braga, A. de P.;	Redes Neurais Artificiais - Teoria e Prática	2	Rio de	LTC	2011
de Carvalho, A.			Janeiro		
P. de L. F.;					
Ludermir, T. B.					
BISHOP, C. M.	Neural Networks for Pattern Recognition	1	Oxford	Clarendon	1995
				Press	
HAYKIN, S.	Redes Neurais, Princípios e Prática	2	Porto	Bookman	2002
			Alegre		
HAYKIN, S.	Neural Networks: A Comprehensive	1	New York	Prentice Hall	1992
	Foundation				
Bengio Y.	Learning deep architectures for AI.	1	Berkeley	Now	2009
				Publishers	