Lehrgebiet Theoretische Informatik

Reidl-Ries-Rossmanith-Sanchez-Tönnis

WS 2012/13 Übungsblatt 5 12.11.2012

Übung zur Vorlesung Berechenbarkeit und Komplexität

Aufgabe T10

Es sei $L(M) = \{ w \mid M \text{ akzeptiert } w \}$. Sind die folgenden Sprachen rekursiv, rekursiv aufzählbar oder keins von beidem. Beweisen Sie ihre Aussage.

- 1. $L_1 = \{ \langle M \rangle \mid L(M) = \emptyset \}$
- 2. $L_2 = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$
- 3. $L_3 = \{ \langle M \rangle \mid |L(M)| \text{ ist endlich } \}$
- 4. $L_4 = \{ \langle M \rangle \langle M' \rangle \mid L(M) \cap L(M') = \emptyset \}$

Aufgabe T11

Es seien $f, g: \mathbb{Z}^n \to \mathbb{Z}$ Polynome mit mehreren Variablen.

$$L_{f \leq g} = \{ f, g \mid f \leq g \text{ hat eine ganzzahlige Lösung } \}$$

Ist $L_{f \leq g}$ entscheidbar? Beweisen sie ihre Aussage.

Hinweis: Eine Beispielinstanz wäre etwa $x + (x + 7) \cdot y \le z^7 - xy + 13$.

Aufgabe H10 (5 Punkte)

Ist das Problem aus Aufgabe T11 rekursiv aufzählbar? Beweisen Sie ihre Aussage.

Aufgabe H11 (5 Punkte)

Es seien $f, g: \{0, 1\}^* \cup \{\bot\} \rightarrow \{0, 1\}^* \cup \{\bot\}$ partielle Funktionen für die $f(\bot) = \bot$ und $g(\bot) = \bot$ gilt. Beweisen oder widerlegen sie:

Es gibt genau dann eine Turingmaschine, die $f \circ g$ berechnet, wenn es Turingmaschinen M und M' gibt, die f und g berechnen.

Aufgabe H12 (8 Punkte)

Ist die Sprache $L=\{\langle M\rangle\langle M'\rangle\mid L(M)\subseteq L(M')\}$ rekursiv aufzählbar? Beweisen Sie ihre Aussage.