Transformer là gì?

- Transformer là một mô hình học sâu được giới thiệu năm 2017, được dùng chủ yếu ở lĩnh vực xử lý ngôn ngữ tự nhiên (NLP).
- Có thể coi là SOTA State Of The Art

Figure 1: The Transformer - model architecture.

Ngày xửa ngày xưa (RNN)

- Các bài toán Seq2Seq sử dụng kiến trúc mạng RNN, LSTM, GRU...
- Nhận input là một sequence và trả lại output cũng là một sequence.
 Ví dụ bài toán Q&A, input là câu hỏi "how are you?" và output là câu trả lời "I am good". Phương pháp truyền thống sử dụng RNNs cho cả encoder (phần mã hóa input) và decoder (phần giải mã input và đưa ra output tương ứng)

Ngày xửa ngày xưa (RNN)

Ngày xửa ngày xưa (RNN)

Có gì sai?

Không thể tính toán song song, train chậm và không tận dụng sức mạnh của GPU

Có gì sai?

 Bị giảm thông tin, mỗi liên hệ qua các bước do triệt tieu/bùng nổ Gradient.Đặc biệt với các câu dài.

Có gì sai?

 LSTM có thể khắc phục đôi chút do có cổng cho thông tin đi qua giúp duy trì thông tin khi qua các step nhưng lại dẫn tới train chậm hơn nữa do LSTM khá phức tạp

Output Probabilities Softmax Add & Norm Feed sublayer 3 Forward Add & Norm Add & Norm sublayer 2 Feed Attention sublayer 2 Nx Forward Add & Norm N× Add & Norm sublayer 1 Multi-Head Multi-Head sublayer 1 Attention Attention Positional Positional Encoding Encoding Input Output Embedding Embedding Inputs Outputs (shifted right) Encoder Decoder

Và đó là sứ mệnh của Transformer

Kiến trúc

Mổ xẻ ông Encoder

Encoder

Positional Encoding

- Tất cả các vector từ phi vào mạng cùng
 1 lúc, song song
- Cần một cơ chế để "note" lại vị trí các từ trong câu
- Vector PE tham gia cuộc chơi (size = word embedding)

Positional Encoding

- Có thể dùng idex but...
- Tác giả dùng hàm sin, cosin

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

$$p_{i,j} = \begin{cases} \sin\left(\frac{i}{10000^{\frac{j}{d_{emb_dim}}}}\right) & \text{if } j \text{ is even} \\ \cos\left(\frac{i}{10000^{\frac{j}{d_{emb_dim}}}}\right) & \text{if } j \text{ is odd} \end{cases}$$

Positional Encoding

- Có thể dùng index but...
- Tác giả dùng hàm sin, cosin

- Tạo ra quan hệ giữa các từ trong câu
- Khi được mã hoá (encode) nó sẽ mang thêm thông tin của các từ liên quan

nput	
------	--

Queries

Keys

Values

Score

Divide by 8 ($\sqrt{d_k}$)

Softmax

Softmax

X Value

Sum

Thinking

$$q_1 \cdot k_1 = 112$$

14

0.88

V₁

Machines

$$q_1 \cdot k_2 = 96$$

12

0.12

V₂

Multi-head

Multi-head

Multi-head

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

The residual

Và ông Decoder

Và ông Decoder

Masked Attention

Masked Attention

Masked Attention

Encode-Decode Attention

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax DECODER **ENCODER ENCODER** DECODER **EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS** étudiant suis INPUT

Linear + Softmax

