

Lecture 2 – Current Memory Technologies

Outline

- Physics of charge-based memory
- DRAM
- Flash memory
- SRAM

Charge-based storage

2 min exercise – QD as 10 year storage?

$$m_e = 0.08m_0$$

 $E_b = 0.75 \text{ eV}$
 $L^2 = 100 \text{ nm}^2$
 $kT = 1/40 \text{ eV}$

What is the emission retention time?

Emission:
$$t_r = \frac{1}{L^2 f_0} \exp\left(\frac{E_b}{kT}\right)$$

(Tunneling: $t_T = \frac{1}{L^2 f_0^*} \exp\left(\frac{2\sqrt{2m_e E_b}}{\hbar}a\right)$)

What kind of barrier is needed?

- For emission $E_b > 1.4$ eV for $t_r > 10$ years.
- Assuming $\underline{t}_T < t_r \rightarrow a > 5$ nm for oxide barrier

$$t_T = \frac{1}{L^2 f_0^*} \exp\left(\frac{2\sqrt{2m_e E_b}}{\hbar}a\right)$$
 L = 10 nn

→ Hard to achieve 10 year retention with semiconductor barriers…but ms?

Dynamic Random Access Memory

- 1 transistor + 1 capacitor (1T1C)
- Charge stored on capacitor → memory bit
- Retention time limited by Si band gap (1.1 eV)
 ~ milliseconds

DRAM write a "1"

- 1. Drive bit line to V_{dd}
- 2. Select word line
- 3. Capacitor is charged and the state is saved.

DRAM read a bit – step 1

- 1. Precharge bit line to $V_{dd}/2$
 - Reduces read swing

DRAM read a bit – step 2

- 1. Precharge bit line to V_{dd}/2
- 2. Select the word line
 - Capacitors on whole row decharge (destructive read)
- 3. Finish by re-writing data on row

Water pond model

- (1) Fill the ditch and open the tap to fill pond.
- (2) Close the tap to store the water.
- (3) Water is lost by evaporation and must be refilled.
- (4) Opening tap to measure if there is water empties pond

DRAM implementation

- Two main types of capacitor implementations:
 - 1) Stacked (above FET)
 - May interfere with metal routing
 - Done after logic
 - Two cells can share same $BL \rightarrow 6F^2$ possible
 - 2) Trench (below FET)
 - Done prior to logic (must survive high T)
 - Hard to control depth by dry etching
 - No interference with interconnects
 - Not as scalable (8F2)

Requires at least 25 fF capacitance for read-out

→ How high capacitors are needed?

Example – Capacitor height

 Table 3.1
 Resistances and capacitances in DRAM

F (nm)	90	70	60	50	40	20	10
$R_{\rm C}(\Omega)^a$	210	527	928	1840	4380	1.15×10^{5}	1.37×10^{8}
$R_{\mathrm{FET}}\left(\Omega\right)^{b}$	2770	3560	4150	4980	6220	12 400	22 600
$R_{\mathrm{line}}\left(\Omega\right)^{c}$	144	192	228	284	374	932	2600
$C_{\text{line}} (fF)^d$	55	50	45	40	35	24	16
$C_{\text{cell}}(fF)$	25	25	25	25	25	25	25

^a Serial resistance of an idealized cell capacitor [3].

^bChannel resistance of an idealized FET in ON state [3].

^c Line resistance in 256×256 array (see Appendix).

^dLine capacitance in 256×256 array (see Appendix).

Energy usage of DRAM

Write energy:

"pump" N ~ 10^5 (25 fF) electrons through BL (C_{line}) to charge capacitor (C_{cell}) Energy for controlling the gate of FET via WL

- Average access interval $t_a \sim 1 10s$
- Retention time, $t_r \sim 50 100 \ ms$

•
$$E_{TOT} = E_{DRAM} + \frac{t_a}{t_r} E_{DRAM} = \left(1 + \frac{t_a}{t_r}\right) E_{DRAM} \sim \underline{30\text{-}60 pJ}$$

DRAM access time

$$t_{DRAM} = (R_{cap} + R_{FET,on} + R_{line})(C_{cap} + C_{line})$$

Space-Action metric: energy x volume x access

Table 3.2 Scaling and performance projections for DRAM

Parameter		Current node	Minimal node	Optimal ^a node	
Feature size <i>F</i>		28–45 nm	>10 nm ^b	45 nm	
	Practical	<10 ns	>25 ns	<10 ns	
Access time	RC limit	0.5 - 2 ns	$25 \mathrm{ns}^c$	0.5 ns	
Retention time		64 ms	64 ms	64 ms	
Write cycles		$>10^{16}$	$>10^{16}$	$>10^{16}$	
Operating voltage		$\sim 2 \text{ V}$	$\sim 2 \text{ V}$	$\sim 2 \text{ V}$	
Number of stored electrons		10^{5}	10^{5}	10^{5}	
	Cell level	10^{-14}	10^{-14}	10^{-14}	
Write energy (J bit ⁻¹)	Array level	10^{-13}	10^{-13}	10^{-13}	
6, (****)	System level	$(3-6) \times 10^{-11}$	$>10^{-11}$	$(3-6) \times 10^{-11}$	

^a Corresponds to the minimum of the Energy-Space-Time product.

→ DRAM has a scaling limit due to growing series resistance of capacitor.

^b Limited by the dimensions of the cell capacitor; "minimal" only refers to the node size and area (in this case, the timing and energy for "minimal" is greater than "current" or "optimal" nodes.

^c Expected RC delay at 16 nm.

Flash memory

USB sticks

phones

Flash memory cell

- Charges trapped in a floating gate
 memory state
- Read out by V_T shift in n-MOSFET

- Barriers by dielectrics
 → E_b ~ 3 eV → non-volatile
- Read/write performed by "bending" barriers by biasing

Different types of Flash

3D NAND Flash

Flash operation

Write by direct tunneling

- $V_{write} > 2E_b/q \sim 6-15 V$
- Barrier → triangular
- Tunneling into island
- Used by NAND

Read

- $V_{read} < 2E_b/q \sim 4-5 V$
- FET current senses charge state
- V_T shifted by charge

Write by hot electron injection

- High $V_{DS} > E_b/q \sim 3-4 \text{ V}$
- Injection above barrier
- Limits shortest L. Why?
- Faster than tunneling
- Used by NOR

Reading Flash

NOR Flash

Energy usage Flash

WRITE by Direct tunneling

- Bend barriers + pump charge onto island:
- $E_{DT} = \frac{c_1 c_2}{c_1 + c_2} V_{write}^2 + q N_{el} V_{write}$

WRITE by Hot electron injection

- Inefficient: $1e^{-}$ per 10^{5} - 10^{6} are injected ($\eta = I_{GS}/I_{DS}$)
- $E_{HEI} = \frac{1}{\eta} N_{el} * qV_{ds}$

Large V_{write} → System energy consumption limited by line charging and peripheral circuitry

Summary Flash

Table 3.4 Scaling and performance projections for Flash memory

		NAND		NO	(NOR scales worse	
Parameter		Current	Minimal	Current	Minimal	VS 4F-	
Feature size F		16-32 nm	>10 nm	45 nm	25 nm		
Access time	Write ^a Read ^b	$\sim 100 \mu s$ $\sim 10 \mu s^c$	~100 µs ~10 µs	$\sim 10 \mu s^c$ 60–120 ns ^c	~10 µs ~ NOD is	NOR is much faster	
Retention time Write cycles		10 yr $\sim 10^5$	<10 yr <10 ⁴	10 yr $\sim 10^5$	10 yr ~10 ⁵		
Operating voltage	Write Read	15–20 5	15 5	8–10 5	~8 5 NAND	cell write is	
Number of stored electrons Cell level		~ 50 4×10^{-16}	~ 10 $\sim 10^{-16}$	~ 200 2×10^{-10}	~100 more e	fficient	
Write energy (J bit ⁻¹)	Array level System level	$10^{-11} - 10^{-12} 10^{-10} - 10^{-9} $	$\sim 10^{-12}$ $10^{-10} - 10^{-9}$	$>2 \times 10^{-10}$ $\sim 10^{-9} e$	>10 ⁻¹⁰ But on s	system level equal	

Static Random Access Memory

- Fastest memory there is
- Used for registers, caches
- Takes up ~ half of chip area
- Principle: 2 CMOS inverters connected back to back
- Transistor performance matching is crucial!
- 6 transistors per cell ~140F²

SRAM as charge based memory

SRAM write

- 1. Apply "bit" to bit line BL: "1"
 - And opposite to conjugate BL

SRAM write

- 1. Apply "bit" to bit line BL: "1"
- 2. Turn on M5 and M6 via WL to save bit
 - M5 saves on right inverter
 - M6 saves on left inverter
 - M5/6 are stronger (<u>larger</u>) than M1-4

SRAM read

- 1. Precharge bit lines to $V_{dd}/2$
 - Saves time since lines are long

SRAM read

- Precharge bit lines to V_{dd}/2
- 2. Turn on M5-6 to take out charge to bit lines
- 3. Voltage difference between BL and its conjugate is amplified and sensed. Sign → "0" or "1"
 - If done fast (small voltage change) then the SRAM state recovers (non-destructive read)

Energy usage and access time

- $E_{cell} = (C_{cell} + 2C_g)V_{dd}^2 \sim 0.3-2$ fJ/write
 - Gate capacitances, Gate capacitance of Junction capacitances access transistors Wire capacitances $C_{cell} \sim 0.5$ -1 fF
- Total energy dominated by capacitances of metal WL (n) and BL (m) lines $E_{write} \approx (n+m)C_{line}V_{dd}^2 \sim 100~fJ$
- Access time:
- $t_{SRAM} = (R_{FETon} + R_{line}) * (C_{cell} + C_{line}) \sim 1 ns$

Summary

