SPRAWOZDANIE Z LABORATORIUM LOGIKI UKŁADÓW CYFROWYCH				
Numer ćwiczenia 207 Temat ćwiczenia Automaty Moora i Mealy			y	
Numer grupy 5 Termin zajęć 17.11.2016, 7:30				
Skład grupy		Prowadzący	Ocena	
Sebastian Korniewicz, 226183		Marin÷ Antoni Storna		
Bartosz F	Rodziew	icz, 226105	Mgr inż. Antoni Sterna	

1. Cel ćwiczenia

Celem ćwiczenia jest zapoznanie studentów z dwoma podstawowymi kategoriami automatów oraz metodami transformacji automatu Moore'a w automat Mealy i odwrotnie.

2. Przebieg ćwiczenia

- 1. Detektor sekwencji 0111
 - a) Po wykryciu sekwencji 0111, cały czas ma stan 1 na wyjściu
 - a. Automat Moora:

Tabelka przejść i wyjść:

Stan (t)	q_0	q_1	q_2	q ₃	q_4
Wyjście	y 0	y ₁	y ₂	y ₃	y ₄
Stan (t+1), gdy x ₀	q ₁	q ₁	q ₁	q ₁	Q ₄
Stan (t+1), gdy x ₁	q_0	q_2	q ₃	q ₄	q ₄

b. Automat Mealy'ego:

Tabelka przejść i wyjść:

Stan (t)	q ₀	q ₁	q ₂	q ₃	q ₄
Stan (t+1) i wyjście, gdy x ₀	q ₁ , y ₀	q ₄ , y ₁			
Stan (t+1) i wyjście, gdy x ₁	q ₀ , y ₀	q ₂ , y ₀	q ₃ , y ₀	q ₄ , y ₁	q ₄ , y ₁

Brak możliwości minimalizacji.

c. Schemat (wersja Moor'a i Mealy'ego wygląda identycznie):

- b) Stan 1 tylko w momencie końca wykrytej sekwencji
 - a. Automat Moor'a:

Tabelka przejść i wyjść:

Stan (t)	q 0	q ₁	q ₂	q ₃	Q ₄
Wyjście	y 0	y ₁	y ₂	y ₃	y ₄
Stan (t+1), gdy x ₀	q_1	q_1	q ₁	q ₁	q ₁
Stan (t+1), gdy x ₁	q 0	q ₂	q ₃	q ₄	q 0

Schemat Moora:

b. Automat Mealy'ego:

Tabelka przejść i wyjść:

Stan (t)	q_0	q_1	q_2	q ₃	q ₄
Stan (t+1) i wyjście, gdy x ₀	q ₁ , y ₀				
Stan (t+1) i wyjście, gdy x ₁	q ₀ , y ₀	q ₂ , y ₀	q ₃ , y ₀	q ₄ , y ₁	q ₀ , y ₀

Co można zminimalizować do:

Stan (t)	q_0	q ₁	q ₂	q ₃
Stan (t+1) i wyjście, gdy x ₀	q ₁ , y ₀			
Stan (t+1) i wyjście, gdy x ₁	q ₀ , y ₀	q ₂ , y ₀	q ₃ , y ₀	q ₀ , y ₁

Schemat Mealy'ego:

- 2. Automat pokazujący na wyjściu resztę z dzielenia przez 4 wprowadzonej liczby
 - a) Automat Moora:

Tabelka przejść i wyjść:

Stan (t)	\mathbf{q}_0	q_1	q ₂	q ₃
Wyjście	y 0	y ₁	y ₂	y 3
Stan (t+1), gdy x_0	\mathbf{q}_0	q_2	\mathbf{q}_0	q_2
Stan (t+1), gdy x ₁	q ₁	q ₃	q_1	q ₃

Schemat Moora:

b) Automat Mealy'ego:

Tabelka przejść i wyjść:

Stan (t)	\mathbf{q}_0	q_1	q ₂	q ₃
Stan (t+1) i wyjście, gdy x ₀	q ₀ , y ₀	q ₂ , y ₂	q ₀ , y ₀	q ₀ , y ₂
Stan (t+1) i wyjście, gdy x ₁	q ₁ , y ₁	q ₃ , y ₃	q ₁ , y ₁	q ₃ , y ₃

Co można uprościć do:

Stan (t)	q_0	q_1
Stan (t+1) i wyjście, gdy x ₀	q ₀ , y ₀	q ₀ , y ₂
Stan (t+1) i wyjście, gdy x ₁	q ₁ , y ₁	q ₁ , y ₃

Schemat Mealy'ego:

3. Synteza strukturalna automatu pokazującego resztę z dzielenia przez 4 (wersja Moora) Kodowanie sygnałów

	Χ
X 0	0
X 1	1

	Q_1	Q_0
q_0	0	0
q_1	0	1
q ₂	1	0
q ₃	1	1

	Y ₁	Υ ₀
y 0	0	0
y ₁	0	1
y ₂	1	0
y 3	1	1

Równania wyjścia:

$$Y_0 = Q_0$$
$$Y_1 = Q_1$$

Synteza przerzutników:

	t		t+1		Ī			
Χ	Q_1	Q_0	Q_1	Q_0	J_1	K_1	J_0	K ₀
0	0	0	0	0	0	-	0	-
0	0	1	1	0	1	1	1	1
0	1	0	0	0	•	1	0	-
0	1	1	1	0	-	0	-	1
1	0	0	0	1	0	1	1	-
1	0	1	1	1	1	1	1	0
1	1	0	0	1	-	1	1	-
1	1	1	1	1	-	0	-	0

Minimalizacja metodą Karnaugh:

		J_1			
	$Q_1 Q_0$	00	01	11	10
Χ					
0		0	1	-	-
1		0	1	-	-

K_1							
	$Q_1 Q_0$	00	01	11	10		
Χ							
0		:	-	0	1	••	
1			-	0	1		

$$J_1 = Q_0 \\ K_1 = \overline{Q_0}$$

	J_0			
$Q_1 Q_0$	00	01	11	10
X				
0	0	-	-	0
1	1	-	-	1

K_0							
	$Q_1 Q_0$	00	01	11	10		
Χ							
0		1	1	1	1		
1		-	0	0	-		

$$J_0 = X$$

$$K_0 = \bar{X}$$

Z tych równań dostajemy taki oto schemat:

3. Wnioski

• Układ, dla którego wykonana została synteza, został podłączony na zajęciach i działał.