Carnot Principle and Carnot Cycle

Raj Pala,

rpala@iitk.ac.in

Department of Chemical Engineering,
Associate faculty of the Materials Science Programme,
Indian Institute of Technology, Kanpur.

Previous Lecture: Reversible and Irreversible Processes

- All real processes are irreversible!
- Some characteristic features of irreversible processes were elaborated
- Reversible processes are asymptotes to reality and provide bounds (in COP, η) for real processes

Motivation for Sadi Carnot: Steam and heat engines

Carnot principles

1. The efficiency of an irreversible heat engine is always less than the efficiency of a reversible one operating between the same two reservoirs.

2. The efficiencies of all reversible heat engines operating between the

same two reservoirs are the same.

Figs: TD-Cengel & Boles

Logical Argument of Carnot-Principle 1

To be proved: The efficiency of an irreversible heat engine is always less than the efficiency of a reversible one operating between the same two reservoirs. "Thought experimental device": Violates Kelvin-Planck 2nd TD law Statement

(a) A reversible and an irreversible heat engine operating between the same two reservoirs (the reversible heat engine is then reversed to run as a refrigerator)

(b) The equivalent combined system

Figs: TD-Cengel & Boles

Logical Argument of Carnot-Principle 2

To be proved: The efficiencies of all reversible heat engines operating between the same two reservoirs are the same.

Figs: TD-Cengel & Boles

Representing cyclical TD processes: Carnot Cycle

Beyond piston-cylinder: Carnot vapor power cycle

What's next?

• Thermodynamic temperature scale