SIMULACIÓN Y CONTROL DE UN ROBOT CON RUEDAS CON CONFIGURACIÓN ACKERMANN

Patricio De Mariano Aguilera 4ºGIERM

<u>ÍNDICE</u>

- 1. Introducción
- 2. Modelo y entorno de simulación
- 3. Desarrollo de módulos
- 4. Lanzador y control de versiones
- 5. Análisis de resultados
- 6. Comparación de resultados

<u>INTRODUCCIÓN</u>

Configuración de Ackermann

Control Pure Pursuit

MODELO Y ENTORNO DE SIMULACIÓN

F1TENTH Simulator

- Modelo realista
- Multitud de mapas
- Modularidad y facilidad de implementación
- Acceso a parámetros estructurales y de diseño
- Capacidad sensorial
- Compatibilidad
- Eficiencia computacional

DESARROLLO DE MÓDULOS

Paquete de simulaci ón

- Entorno virtual y Docker
- Simulador modificado basado en fltenth_simulator
- Nodo de comunicación con el simulador
- Lanzador con parámetros de mapa y visualización
- 2 mapas: levine (laboratorio) y spielberg (circuito F1)
- Configuraciones de RViz (base, trayectoria y controladores)
- Tópicos principales:
 - o LIDAR simulado: /scan
 - Odometría del vehículo: /ego_racecar/odom
 - Comandos de control Ackermann: /drive
 - Información espacial del entorno: /map, /tf, /tf_static

▼ M LaserScan	V
→ ✓ Status: Ol	k
▶ Topic	/scan
Selectable	✓
Style	Flat Squares
Size (m)	0.1
Alpha	1
Decay Time	0
Position Trans	sfor XYZ
Color Transfo	rmer AxisColor
Axis	x
Autocompute	Valu ✓
Use Fixed Fra	ime 🗸
RobotMode	✓
▼ ^ \ Odometry	✓
→ ✓ Status: Ol	k
▶ Topic	/ego_racecar/odon
Position Toler	rance 0.1
Angle Tolerar	nce 0.1
Keep	100
▶ Shape	Axes
Covariance	✓
▶ J TF	✓

DESARROLLO DE MÓDULOS

Paquete de generación de trayectoria

- Trazo manual adaptado al mapa simulado
- Publicación de trayectoria en /planned_trajectory
- Visualización directa en RViz
- Entrada para el controlador

Paquete de invecci ón de errores

- Ruido en la odometría (nodo)
- Error sistemático en la dirección (nodo)
- Latencia (control)
- Configuración sencilla

DESARROLLO DE MÓDULOS

Paquete de control por Pure Pursuit

- Control Pure Pursuit básico
- Visualización del punto de lookahead y la línea de guía en RViz
- Velocidad adaptativa en función de la cercanía al objetivo
- Detección y evasión reactiva de obstáculos
- Parámetros de evaluación del control
- Lectura de argumentos para configuraciones de ruido, bias y latencia

LANZADOR Y CONTROL DE VERSIONES

Control de versiones manual + GitHub

- https://github.com/PatricioDMA/Proyecto_CPR_pdma.git
- Documentos informativos
- Versiones de controlador y espacio de trabajo

Lanzador maestro

- Unificar lanzamiento de nodos
- Argumentos = Configuración de ruido
- Agilidad para pruebas

Configuración sin errores

Configuración sin errores

- Trayectoria completada en 31.40 segundos
- Error de seguimiento (RMSE): 0.092 metros
- Número de obstáculos encontrados: 1
- Fallo de finalización: No

<u>Demo</u>

Configuración con ruido en la odometría

Configuración con ruido en la odometría

- Trayectoria completada en 31.40 segundos
- Error de seguimiento (RMSE): 0.110 met
- Número de obstáculos encontrados: 1
- Fallo de finalización: No

<u>Demo</u>

Configuración con sesgo de dirección

Configuración con sesgo de dirección

- Trayectoria completada en 31.90 segundos
- Error de seguimiento (RMSE): 0.308 metros
- Número de obstáculos encontrados: 7
- Fallo de finalización: No

Demo

Configuración con latencia

Configuración con sesgo de dirección

- Trayectoria completada en 31.40 segundos
- Error de seguimiento (RMSE): 0.084 metros
- Número de obstáculos encontrados: 1
- Fallo de finalización: No

Demo

Configuración del peor caso : Error en odometría, sesgo de dirección y latencia

Configuración con sesgo de dirección

- Trayectoria completada en 33.60 segundos
- Error de seguimiento (RMSE): 0.315 metros
- Número de obstáculos encontrados: 7
- Fallo de finalización: No

Demo

COMPARACIÓN DE RESULTADOS

4 Configuraciones

• Sin error

- Sesgo direccional
- Ruido en odometría
- Latencia

COMPARACIÓN DE RESULTADOS

2 Configuraciones

- Sin error (Caso ideal)
- Con todos los errores posible (peor caso realista)

