Dimensionality Reduction

Machine Learning 10-601B
Seyoung Kim

Text document retrieval/labelling

 Represent each document by a high-dimensional vector in the space of words

Image retrieval/labelling

Dimensionality Bottlenecks

- Data dimension
 - Input variables X: High
 - 1-5M lexicon token in text documents
 - 1024² pixels of a projected image on a IR camera sensor
 - N² expansion factor to account for all pairwise correlations
 - 1,000,000 genetic variants in a human's genome
- Information dimension: Low
 - Number of free parameters describing probability densities
 - Unsupervised learning p(X)
 - Supervised learning p(Y|X): the prediction of Y depends on "information dimension" of X

Intuition: how does your brain store these pictures?

Brain Representation

Brain Representation

- Every pixel?
- Or perceptually meaningful structure?
 - Up-down pose
 - Left-right pose
 - Lighting direction

So, your brain successfully reduced the high-dimensional inputs to an intrinsically 3-dimensional manifold!

Principal Component Analysis

- Areas of variance in data are where items can be best discriminated and key underlying phenomena are observed 差异最大的方向
- If two items or dimensions are highly correlated or dependent
 - They are likely to represent highly related phenomena 合并差异小的方向
 - We want to combine related variables, and focus on uncorrelated or independent ones, especially those along which the observations have high variance
- We look for the phenomena underlying the observed covariance/codependence in a set of variables
- These phenomena are called "principal components"

An example:

Principal Component Analysis

- The new variables/dimensions
 - Are uncorrelated with one another
 - Orthogonal in original dimension space
 - Capture as much of the original variance in the data as possible
 - Are called Principal Components
 - Are linear combinations of the original ones
- Orthogonal directions of greatest variance in data
- Projections along PC1
 discriminate the data most along
 any one axis

Principal Component Analysis

- First principal component is the direction of greatest variability (covariance) in the data
- Second is the next orthogonal (uncorrelated) direction of greatest variability
 - So first remove all the variability along the first component, and then find the next direction of greatest variability
- And so on ...

Eigen/diagonal Decomposition

• Let $\mathbf{S} \in \mathbb{R}^{m imes m}$ be a square matrix

Theorem: Exists an eigen decomposition

$$\mathbf{S} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1}$$
 diagonal distinct eigen-

(cf. matrix diagonalization theorem)

- Columns of *U* are eigenvectors of *S* U是S的特征向量组成的矩阵
- Diagonal elements of Λ are eigenvalues of S λ 是S的特征值组成的矩阵

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \ \lambda_i \geq \lambda_{i+1}$$

Eigenvalues & Eigenvectors

 For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal

$$Sv_1 = \lambda_1 v_1$$
, $Sv_2 = \lambda_2 v_2$, and $\lambda_1 \neq \lambda_2 \Rightarrow v_1 \cdot v_2 = 0$

All eigenvalues of a real symmetric matrix are real.

if
$$|S - \lambda I| = 0$$
 and $S = S^T \Rightarrow \lambda \in \Re$

 All eigenvalues of a positive semidefinite matrix are nonnegative

$$\forall w \in \Re^n, w^T S w \ge 0$$
, then if $S v = \lambda v \Rightarrow \lambda \ge 0$

- Projection of vector x onto an axis (dimension) u is u^Tx
- Assume X is a normalized nxp data matrix for n samples and p features.
 Direction of greatest variability is that in which the average square of the projection is greatest:

Maximize
$$(1/n) \mathbf{u}^T \mathbf{X}^T \mathbf{X} \mathbf{u}$$

s.t $\mathbf{u}^T \mathbf{u} = 1$

- Projection of vector x onto an axis (dimension) u is u^Tx
- Assume X is a normalized nxp data matrix for n samples and p features.
 Direction of greatest variability is that in which the average square of the projection is greatest:

Maximize
$$(1/n) \mathbf{u}^T \mathbf{X}^T \mathbf{X} \mathbf{u}$$

s.t $\mathbf{u}^T \mathbf{u} = 1$

Construct Langrangian $(1/n) \mathbf{u}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{u} + \lambda (1 - \mathbf{u}^{\mathsf{T}} \mathbf{u})$

Vector of partial derivatives set to zero

$$1/n X^T X u - \lambda u = 0$$

- Projection of vector x onto an axis (dimension) u is u^Tx
- Assume X is a normalized nxp data matrix for n samples and p features.
 Direction of greatest variability is that in which the average square of the projection is greatest:

Maximize
$$(1/n) \mathbf{u}^T \mathbf{X}^T \mathbf{X} \mathbf{u}$$

s.t $\mathbf{u}^T \mathbf{u} = 1$

Construct Langrangian (1/n) $\mathbf{u}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{u} + \lambda(1-\mathbf{u}^{\mathsf{T}}\mathbf{u})$

Vector of partial derivatives set to zero

$$1/n X^{T}Xu - \lambda u = 0$$

or equivalently $\mathbf{S}\mathbf{u} - \lambda \mathbf{u} = 0$ (S = $\mathbf{1/n} \ \mathbf{X}^T \mathbf{X}$: covariance matrix)

As $\mathbf{u} \neq \mathbf{0}$ then \mathbf{u} must be an eigenvector of S with eigenvalue λ

- Projection of vector x onto an axis (dimension) u is u^Tx
- Assume X is a normalized nxp data matrix for n samples and p features.
 Direction of greatest variability is that in which the average square of the projection is greatest:

Maximize
$$(1/n) \mathbf{u}^T \mathbf{X}^T \mathbf{X} \mathbf{u}$$

s.t $\mathbf{u}^T \mathbf{u} = 1$

Construct Langrangian $(1/n) \mathbf{u}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{u} - \lambda \mathbf{u}^{\mathsf{T}} \mathbf{u}$

Vector of partial derivatives set to zero

$$1/n X^{T}Xu - \lambda u = 0$$

or equivalently $\mathbf{S}\mathbf{u} - \lambda \mathbf{u} = 0$ (S = 1/n $\mathbf{X}^T\mathbf{X}$: covariance matrix)

As $\mathbf{u} \neq \mathbf{0}$ then \mathbf{u} must be an eigenvector of S with eigenvalue λ

- $-\lambda$ is the principal eigenvalue of the covariance matrix S
- The eigenvalue denotes the amount of variability captured along that dimension

PCs, Variance and Least-Squares

- The first PC retains the greatest amount of variation in the sample
- The kth PC retains the kth greatest fraction of the variation in the sample
- The kth largest eigenvalue of the covariance matrix C is the variance in the sample along the kth PC
- The least-squares view: PCs are a series of linear least squares fits to a sample, each orthogonal to all previous ones (Bishop 12.1.2)

How Many PCs?

- For p original dimensions, sample covariance matrix is pxp, and has up to p eigenvectors. So p PCs.
- Where does dimensionality reduction come from?
 Can *ignore* the components of lesser significance.

You do lose some information, but if the eigenvalues are small, you don't lose much

- p dimensions in original data
- Calculate p eigenvectors and eigenvalues
- choose only the first q eigenvectors, based on their eigenvalues
- final data set has only q dimensions

Applying PCA to Images

• 361 x 261 pixels, 83781 dimensional data

Reconstructing the Images from 4 PCs

• The principal components are also images

Reconstructing the Images from 4 PCs

Summary:

Principle

- Linear projection method to reduce the number of parameters
- Transfer a set of correlated variables into a new set of uncorrelated variables
- Map the data into a space of lower dimensionality
- Form of unsupervised learning

Properties

- It can be viewed as a rotation of the existing axes to new positions in the space defined by original variables
- New axes are orthogonal and represent the directions with maximum variability