# Лекция №6

# Области на Скот

Областите на Скот (ОС) са абстрактната математическа среда, в която се развива т. нар. Теория на неподвижните точки — математически подход, чрез който се дефинира денотационна семантика или семантика с неподвижни точки (fixpoint semantics) на някои видове програми — рекурсивни, логически и пр. Всичко, което правихме дотук в глава Оператори, беше всъщност работа в една конкретна област на Скот (Твърдение 2.1).

## 2.1 Определение и най-важни примери

## 2.1.1 Пълни наредби

Да напомним, че бинарната релация  $\leq$  в множеството A е частична наредба на A, ако тя е рефлексивна, транзитивна и антисиметрична.

Ще казваме, че частичната наредба  $\leq$  <u>е пълна (complete)</u>, ако всяка монотонно растяща редица

$$a_0 \leqslant a_1 \leqslant a_2 \ldots$$

от елементи на A (или всяка верига в A) има точна горна граница  $\lim_{n} a_n$ , която принадлежи на A.

В конкретните ОС, които по-нататък ще ни интересуват, ще използваме специфични означения за точната горна граница — например  $\bigcup_n f_n$ , както беше в предишната глава, или  $\bigcup_n f_n$ , както ще е в раздел 3.5, където ще разглеждаме една друга важна ОС. За общата теория на областите на Скот предпочитаме, обаче, по-неутралното  $\underline{lub}$  (от least upper bound).

**Определение 2.1.** Област на Скот (Scott domain) наричаме наредена тройка  $\mathbf{A} = (A, \leq, a_0)$ , за която са изпълнени условията:

- 1) A е непразно множество;
- 2)  $\leq$  е пълна частична наредба на A;
- 3)  $a_0 \in A$  е най-малкият елемент на A (относно наредбата  $\leq$ ), с други думи,  $a_0 \leq a$  за всяко  $a \in A$ .

Множеството A ще наричаме <u>nocumen</u> или <u>домейн</u> на структурата A. В англоезичната литература областите на Скот се наричат още <u>cpo</u> — от <u>complete partial order</u>.

Горните аксиоми на ОС са минималните изисквания, които са необходими, за да може в структурата  $(A, \leqslant, a_0)$  да се докаже теорема на Кнастер-Тарски.

# $\mathbf{2.1.2}$ Областта на Скот $(\mathcal{F}_n,\ \subseteq,\ \emptyset^{(n)})$ и други примери

Ето няколко примера за структури, които са (или не са) области на Скот.

#### Примери:

1) Нека M е произволно множество, а  $\mathscr{P}(M) = \{A \mid A \subseteq M\}$ . Тогава наредената тройка  $(\mathscr{P}(M), \subseteq, \emptyset)$  е област на Скот.

**Доказателство.** Добре известно е, че релацията  $\subseteq$  е частична наредба в  $\mathscr{P}(M)$ . Това, че тя е пълна, следва от факта, че за всяка фамилия  $\{A_i|\ i\in I\}$  от подмножества на M, обединението

$$\bigcup_{i \in I} A_i$$

се явява точна горна граница на тази фамилия. В частност, това ще е вярно и за всяка  $peduua\ A_0,A_1,\dots$  в  $\mathscr{P}(M)$ . Да отбележим, че тук не е необходимо редицата да е монотонно растяща, за да притежава точна горна граница.

<u>2)</u> Структурата ( $\mathbb{N}$ ,  $\leq$ , 0) *не* е област на Скот (тук  $\leq$  е обичайното неравенство в  $\mathbb{N}$ ).

**Доказателство.** Релацията  $\leq$  е наредба на  $\mathbb{N}$  (дори е тотална наредба), но очевидно не всяка монотонно растяща редица има граница. Пример за такава редица е, да кажем, редицата  $0, 1, 2, \ldots$ 

<u>3)</u> Област на Скот е разширената структура ( $\mathbb{N} \cup \{\infty\}, \leq, 0$ ), където  $0 \leq \infty, 1 \leq \infty, \ldots, \text{ т.е. } \infty$  е най-големият елемент на  $\mathbb{N} \cup \{\infty\}$ .

**Доказателство.** Множеството  $\mathbb{N} \cup \{\infty\}$  изглежда така:  $0 \le 1 \le \cdots \le \infty$ . Сега ако растящата редица  $a_0 \le a_1 \le \ldots$  е ограничена, то тя очевидно

има вида  $a_0 \leq a_1 \leq \ldots a_n = a_{n+1} = \ldots$  и значи нейната граница е  $a_n$ . Ако тази редица е неограничена, то нейната граница ще е  $\infty$ .

<u>4)</u> Структурата ( $\{a,b\}^*$ ,  $\leqslant$ ,  $\varepsilon$ ), където  $\leqslant$  е релацията "префикс", а  $\varepsilon$  е празният низ, ne е област на Скот.

**Доказателство.** Редицата  $a \sqsubseteq aa \sqsubseteq aaa\dots$  очевидно няма точна горна граница.

За една друга структура —  $(\mathcal{F}_n, \subseteq, \emptyset^{(n)})$  — на практика вече знаем, че е област на Скот. И тъй като този факт ще е от особена важност, ще го формулираме като отделно твърдение, което ще цитираме многократно по-нататък.

**Твърдение 2.1.** За всяко  $n \ge 1$  структурата  $\mathcal{F}_n = (\mathcal{F}_n, \subseteq, \emptyset^{(n)})$  е област на Скот.

**Доказателство.** Имаме, че за всяка  $f \in \mathcal{F}_n$ 

$$\emptyset^{(n)} \subseteq f$$
,

т.е. празната функция  $\emptyset^{(n)}$  е най-малкият елемент на  $\mathcal{F}_n$ . Освен това вече видяхме, че релацията  $\subseteq$  е частична наредба ( $Tв \ensuremath{\sigma} p \ensuremath{\partial} e n \ensuremath{u} = 1.1$ ), която при това е пълна ( $Ts \ensuremath{\sigma} p \ensuremath{\partial} e n \ensuremath{u} = 1.4$ ).

Следователно  $\mathcal{F}_{\boldsymbol{n}} = (\mathcal{F}_n, \subseteq, \emptyset^{(n)})$  е област на Скот.

Да отбележим, че ако се ограничим до множеството на всички *крайни п*местни функции  $\mathcal{F}_n^{fin} \subseteq \mathcal{F}_n$ , структурата с носител  $\mathcal{F}_n^{fin}$  вече не е област на Скот.

Задача 2.1. Докажете, че за всяко  $n \ge 1$  структурата  $\mathcal{F}_n^{fin} = (\mathcal{F}_n^{fin}, \subseteq, \emptyset^{(n)})$  не е област на Скот.

**Решение.** Проблемът е в това, че границата на монотонно растяща редица от крайни функции може да е безкрайна, или другояче казано, свойството

$$P(f) \iff f$$
 е крайна

не е непрекъснато в  $\mathcal{F}_n^{fin}$  — нещо, което вече установихме в  $3a\partial a$ ча 1.6. Това означава, че частичната наредба  $\subseteq$  в множеството на *крайните* n-местни функции не е пълна.

Накрая да отбележим и очевидния факт, че ако разглеждаме частични функции в npouseonho множеество D, наредени с релацията  $\subseteq$ , отново имаме област на Скот.

**Задача 2.2.** Да фиксираме  $n \ge 1$ . Нека D е произволно множество, а  $F_n = \{f \mid f : D^n \longrightarrow D\}$ . За  $f, g \in F_n$  да положим  $f \subseteq g \iff G_f \subseteq G_g$ . Нека още  $\emptyset^{(n)}$  е никъде недефинираната функция в D. Докажете, че наредената тройка  $(F_n, \subseteq, \emptyset^{(n)})$  е област на Скот.

### ${f 2.1.3}$ Плоската наредба и плоската ОС $(D_\perp,\sqsubseteq,\perp)$

Сега ще въведем една много семпла бинарна релация в произволно множество D — тъй наречената  $\underline{nnocka\ naped6a\ (flat\ order)}$ . Макар и да е съвсем проста, тя стои в основата на едната от двете най-важни за теоретичната информатика области на Скот — тази, която е модел за call-by-name.

Да фиксираме произволно непразно множество D и да изберем един обект  $\bot$ , такъв че  $\bot \not\in D$ . Предназначението на  $\bot$  е да бъде нещо като  $\underline{ume\ na\ nede \ f(5)} = \bot$ . Ако ви се струва, че това е едно и също, изчакайте до следващата глава  $\ddot{\smile}$ .

Нека  $D_{\perp} = D \cup \{\perp\}$ . В  $D_{\perp}$  дефинираме следната бинарна релация:

$$a \sqsubseteq b \stackrel{\text{geo}}{\Longleftrightarrow} a = \bot \lor a = b.$$
 (2.1)

Ясно е, че  $\bot \sqsubseteq a$  за всяко  $a \in D_\bot$ , т.е.  $\bot$  е най-малкият елемент на  $D_\bot$ . Образно казано, той е на дъното на  $D_\bot$ , затова понякога се нарича bottom елемент. Ясно е още, че  $a \sqsubseteq a$  за всяко  $a \in D_\bot$ , и това всъщност са всички връзки между елементите на  $D_\bot$ .

Ето как изглежда графично релацията  $\sqsubseteq$  в множеството  $\mathbb{N}_{\perp}$  (без примките  $n \sqsubseteq n$ ):



**Твърдение 2.2.** За всяко множество D структурата  $\boldsymbol{D}_{\perp} = (\overline{D_{\perp}, \sqsubseteq, \perp})$  е област на Скот.

**Доказателство.** Вече забелязахме, че  $\bot$  е най-малкият елемент на  $D_\bot$ . Да проверим условията от дефиницията за частична наредба:

- <u>рефлексивност</u>: При a = b дясната част на (2.1) е винаги вярна и следователно  $a \sqsubseteq a$  за всяко  $a \in D_{\perp}$  (което вече отбелязахме по-горе).
- <u>транзитивност</u>: За произволни  $a,b,c \in D_{\perp}$  нека  $a \sqsubseteq b \& b \sqsubseteq c$ . Трябва да видим, че  $a \sqsubseteq c$ . Ако  $a = \bot$ , то очевидно  $a \sqsubseteq c$ . Ако  $a \neq \bot$ , то съгласно (2.1) трябва a = b, и понеже  $b \sqsubseteq c$ , значи отново  $a \sqsubseteq c$ .

• антисиметричност: За произволни a и b от  $D_{\perp}$  нека  $a \sqsubseteq b \& b \sqsubseteq a$ . Трябва да покажем, че a = b. От  $a \sqsubseteq b$  имаме според (2.1) два случая: a = b или  $a = \bot$ . Ако е налице първият случай — чудесно; ако пък  $a = \bot$ , то от  $b \sqsubseteq a$  ще имаме, че и  $b = \bot$ , и значи отново a = b.

Остана да видим, че  $\sqsubseteq$  е пълна. Да вземем една монотонно растяща редица в  $D_{\perp}$  :

$$a_0 \sqsubseteq a_1 \sqsubseteq \dots$$

Как изглежда тя? Ако първият ѝ член  $a_0$  не е  $\perp$ , то тогава

$$a_0 = a_1 = a_2 = \dots$$

и значи границата на тази редица е  $a_0$ .

Ако  $a_0 = \bot$ , отново имаме два случая: първият е всички елементи на редицата да са  $\bot$ , който е ясен, а вторият — да съществува  $n: a_n \neq \bot$ . Ако n е първото естествено число, за което това се случва, то редицата ще изглежда така:

$$\underbrace{\perp,\ldots\perp}_{n\text{ пъти}},a_n,a_n,\ldots$$

и очевидно нейната граница е  $a_n$ .

**Определение 2.2.** Наредбата  $\sqsubseteq$  на  $D_{\perp}$  ще наричаме *плоска наредба*, а наредената тройка  $(D_{\perp}, \sqsubseteq, \perp) - \textit{плоска област на Скот.}$ 

Да отбележим отново, че всяка монотонно растяща редица (верига)  $a_0 \sqsubseteq a_1 \sqsubseteq \dots$  в областта  $(D_\perp, \sqsubseteq, \perp)$  изглежда по един от следните три начина:

- ↓, ⊥, ⊥, ...
- $\bullet \ \underbrace{\bot, \ldots \bot}_{n \ge 1}, a, \ a, \ldots$
- *a*, *a*, *a*, . . .

Точната горна граница на редицата  $a_0 \sqsubseteq a_1 \sqsubseteq \dots$  ще означаваме с

$$\bigsqcup_{n} a_n$$

или само с  $\bigsqcup a_n$ . За нас най-голям интерес ще представлява плоската област с носител  $\mathbb{N}_{\perp}$ .

#### 2.2 Конструкции на области на Скот

По-горе отбелязахме, че плоската ОС ( $\mathbb{N}_{\perp}$ ,  $\sqsubseteq$ ,  $\perp$ ) ще ни трябва за моделиране на семантиката с отложени пресмятания на рекурсивните програми в  $\mathbb{N}$ . Всъщност истината е, че за да моделираме тези пресмятания, ще ни е нужна една по-друга област — тази на *тоталните функции* в  $\mathbb{N}_{\perp}$ , и по-общо — на тоталните функции в  $\mathbb{N}_{\perp}^n$ . Целта на този раздел е да покажем, че тези функции също образуват област на Скот. Този факт ще получим като частен случай на две много общи конструкции, чрез които по дадени ОС ще получаваме нова ОС. Първата конструкция е декартово произведение.

#### 2.2.1 Декартово произведение на ОС

Нека са дадени k на брой области на Скот

$$A_1 = (A_1, \leq_1, \perp_1), \ldots, A_k = (A_k, \leq_k, \perp_k).$$

В декартовото произведение  $A = A_1 \times \cdots \times A_k$  определяме нова релация  $\leq$ , породена от локалните наредби във всяка от дадените области. Поконкретно, за произволни  $(a_1, \ldots, a_k) \in A$  и  $(b_1, \ldots, b_k) \in A$  полагаме:

$$(a_1, \dots, a_k) \leqslant (b_1, \dots, b_k) \stackrel{\text{de}\Phi}{\iff} a_1 \leqslant_1 b_1 \& \dots \& a_k \leqslant_k b_k.$$
 (2.2)

**Твърдение 2.3.** Така въведената релация  $\leqslant$  е частична наредба в  $A = A_1 \times \cdots \times A_k$  с най-малък елемент  $\bot = (\bot_1, \ldots, \bot_k)$ .

Тази наредба ще наричаме <u>покомпонентна наредба.</u> Да се убедим, че тя е пълна:

**Твърдение 2.4.** Нека  $A_1 = (A_1, \leqslant_1, \perp_1), \ldots, A_k = (A_k, \leqslant_k, \perp_k)$  са области на Скот. Тогава е вярно, че:

- 1) Редицата  $\{(a_1^n,\ldots,a_k^n)\}_n$  е монотонно растяща в  $A_1\times\cdots\times A_k$  тогава и само тогава, когато всяка от редиците  $\{a_i^n\}_n$  е монотонно растяща в  $A_i$ , за  $i=1,\ldots,k$ .
- 2) Ако редицата  $\{(a_1^n,\ldots,a_k^n)\}_n$  е монотонно растяща в  $A_1\times\cdots\times A_k$ , то тя има точна горна граница  $(b_1,\ldots,b_k)$ , където  $b_i,1\leq i\leq k$  е точната горна граница на редицата  $\{a_i^n\}_n$  в  $A_i$ .

**Доказателство.** 1) За произволно n имаме по определение:

$$(a_1^n, \dots, a_k^n) \leqslant (a_1^{n+1}, \dots, a_k^{n+1}) \iff a_1^n \leqslant_1 a_1^{n+1} \& \dots \& a_k^n \leqslant_k a_k^{n+1}.$$

Следователно редицата от k-орките е растяща в  $A_1 \times \cdots \times A_k$  точно когато локално по всяка компонента са растящи редиците  $\{a_i^n\}_n$ .

2) Нека  $\{(a_1^n,\ldots,a_k^n)\}_n$  е монотонно растяща в  $A_1\times\cdots\times A_k$ . Току-що видяхме, че тогава и всяка от редиците  $\{a_i^n\}_n$  ще е монотонно растяща в  $A_i$ . Но  $(A_i,\leqslant_i,\perp_i)$  е област на Скот. Следователно там  $\{a_i^n\}_n$  има точна горна граница, да я означим с  $b_i$ :

$$b_i = \lim_n b_i a_i^n$$
.

Изглежда логично k-орката  $(b_1, \ldots, b_k)$  да е точната горна граница на редицата  $\{(a_1^n, \ldots, a_k^n)\}_n$ . Това наистина е така и в доказателството няма нищо неочаквано, но да го проведем все пак.

Да фиксираме някакво n. Имаме, че  $a_i^n \leqslant_i b_i$  за всяко  $i=1,\ldots\,k$ , което означава, че

$$(a_1^n, \dots, a_k^n) \leqslant (b_1, \dots, b_k).$$

Понеже това е за всяко n, значи  $(b_1, \ldots, b_k)$  мажорира всеки член на редицата  $\{(a_1^n, \ldots, a_k^n)\}_n$ , т.е.  $(b_1, \ldots, b_k)$  е горна граница на тази редица. Сега ако  $(c_1, \ldots, c_k)$  е друга нейна горна граница, то за произволно n ще е изпълнено:

$$(a_1^n, \dots, a_k^n) \leqslant (c_1, \dots, c_k).$$

В частност, при фиксирано i ще имаме  $a_i^n \leqslant_i c_i$ , и това е за всяко n, т.е.  $c_i$  е горна граница за редицата  $\{a_i^n\}_n$ . Но  $b_i$  е нейната точна горна граница и значи

$$b_i \leqslant_i c_i$$
.

И тъй като това е вярно за всяко  $i=1,\ldots,k$ , то  $(b_1,\ldots,b_k)\leqslant (c_1,\ldots,c_k)$ .

Точната горна граница на редицата  $\{(a_1^n, \dots, a_k^n)\}_n$  ще означаваме с  $\lim_{n \to \infty} (a_1^n, \dots, a_k^n)$ . От доказаното по-горе можем да запишем:

Твърдения 2.3 и 2.4 ни дават общо, че декартово произведение на ОС е ОС:

**Твърдение 2.5.** Нека  $A_1 = (A_1, \leq_1, \perp_1), \ldots, A_k = (A_k, \leq_k, \perp_k)$  са ОС. Тогава декартовото им произведение  $A = (A_1 \times \cdots \times A_k, \leq, (\perp_1, \ldots, \perp_k))$  също е област на Скот.

От това твърдение получаваме, че две важни за нашите разглеждания структури са области на Скот.

**Следствие 2.1.** Структурата 
$$\mathbb{N}^n_{\perp} = (\underbrace{\mathbb{N}_{\perp} \times \cdots \times \mathbb{N}_{\perp}}_{n \text{ пъти}}, \sqsubseteq, \underbrace{(\perp, \ldots, \perp)}_{n \text{ пъти}})$$
 е област на Скот.

По-нататък декартовото произведение  $\underbrace{\mathbb{N}_{\perp} \times \cdots \times \mathbb{N}_{\perp}}_{n \text{ пъти}}$  ще съкращаваме до  $\mathbb{N}^n_{\perp}$ . Да обърнем внимание, че това е означение за  $(\mathbb{N}_{\perp})^n$ , а ne за

до  $\mathbb{N}^n_{\perp}$ . Да обърнем внимание, че това е означение за  $(\mathbb{N}_{\perp})^n$ , а *не* за  $(\mathbb{N}^n)_{\perp} \stackrel{\text{деф}}{=} \mathbb{N}^n \cup \{\bot\}$  (последното множество няма да представлява никакъв интерес за нас).

Разбира се, наредбата  $\sqsubseteq$  в новата ОС  $\mathbf{N}_{\perp}^{n} = (\mathbb{N}_{\perp}^{n}, \sqsubseteq, (\bot, ..., \bot))$  е релация между n-торки в  $\mathbb{N}_{\perp}^{n}$ , макар че ние ще я означаваме със същия символ, с който бележехме плоската наредба в първоначалната ОС  $(\mathbb{N}_{\perp}, \sqsubseteq, \bot)$ . Областта на Скот  $\mathbb{N}_{\perp}^{n}$  ще изучим подробно, когато стигнем до денотационната семантика с предаване на параметрите по име в раздел 3.5.

Ето как изглежда тази наредба при n=2, т.е. за областта на Скот



Вече видяхме (Tвърdенuе 2.1), че за произволно n структурата ( $\mathcal{F}_n$ ,  $\subseteq$ ,  $\emptyset^{(n)}$ ) е ОС. Сега отново прилагаме доказаното по-горе Tвърdенuе 2.5 и получаваме още една важна за нас ОС:

**Следствие 2.2.** За произволни положителни 
$$n_1, \ldots, n_k$$
, структурата  $\mathcal{F} = (\mathcal{F}_{n_1} \times \cdots \times \mathcal{F}_{n_k}, \subseteq, (\emptyset^{(n_1)}, \ldots, \emptyset^{(n_k)}))$  е област на Скот.

Точно в тази ОС в следващата глава ще дефинираме денотационната семантика с предаване на параметрите *по стойност*.

# 2.2.2 Функционални пространства над ОС

Нека M е произволно множество, а  $\mathbf{A} = (A, \leqslant, a_0)$  е някаква ОС. Ще ни интересуват momanhume изображения от M към A. Нека  $\mathcal{F}$  е съв-

купността от всички такива изображения:

$$\mathcal{F} = \{ f \mid f : M \longrightarrow A \}.$$

В  $\mathcal{F}$  въвеждаме бинарна релация  $\leq$ , породена от наредбата в A, по следния естествен начин: за произволни  $f,g\in\mathcal{F}$  полагаме

$$f \leqslant g \stackrel{\text{\pied}}{\iff} \forall x \in M \ f(x) \leqslant g(x).$$
 (2.4)

Както ще се убедим след малко, тази релация също е частична наредба. Ще я наричаме <u>поточкова наредба</u>. Нещо повече, тази наредба ще се окаже пълна. Ясно кой ще е най-малкият елемент на  $\mathcal{F}$  — това ще е функцията, която винаги връща най-малкия елемент на A. Тази функция ще означаваме с  $\Omega$ :

$$\Omega(x) \stackrel{\text{деф}}{=} a_0$$

за всяко  $x \in M$ .

Наистина, да вземем произволна  $f \in \mathcal{F}$ . Имаме, че за всяко  $x \in M$ :

$$\Omega(x) = a_0 \leqslant f(x),$$

и следователно  $\Omega \leq f$ , т.е. действително  $\Omega$  е най-малката функция в  $\mathcal{F}$ . Вече сме готови да покажем, че:

**Твърдение 2.6.** При означенията от по-горе, структурата  $\mathcal{F} = (\mathcal{F}, \leqslant, \Omega)$  е област на Скот.

Доказателство. Аксиомите за частична наредба се проверяват непосредствено. Да видим, например, защо ≤ е транзитивна:

Наистина, нека за  $f, g, h \in \mathcal{F}$  е вярно, че

$$f \leqslant g$$
 и  $g \leqslant h$ .

За да видим, че и  $f \le h$ , да вземем произволно  $x \in M$ . От определение (2.4) имаме, че

$$f(x) \leqslant g(x)$$
 и  $g(x) \leqslant h(x)$ .

Но f(x), g(x) и h(x) са елементи на носителя A на ОС  $\mathbf{A} = (A, \leq, a_0)$ . Тогава от транзитивността на  $\leq$  ще имаме  $f(x) \leq h(x)$ . Но  $x \in M$  беше произволно и значи

$$\forall x \in M \ f(x) \leqslant h(x),$$

което съгласно (2.4) означава точно  $f \leq h$ .

За да се убедим, че новата наредба  $\leq$  е пълна, да вземем една монотонно растяща редица в  $\mathcal{F}$ :

$$f_0 \leqslant f_1 \leqslant \dots$$

Тогава от определението на релацията  $\leq$  ще имаме, че за кое да е  $x \in M$ :

$$f_0(x) \leqslant f_1(x) \leqslant \dots,$$

с други думи, тази редица е монотонно растяща в A. Но там релацията  $\leq$  е пълна, следователно тя има т. г. граница

$$\lim_{n} f_n(x)$$
.

Звучи логично точната горна границата на редицата  $\{f_n\}_n$  да е функцията f, която се дефинира с равенството

$$f(x) \stackrel{\text{dep}}{=} lub_n f_n(x)$$
 (2.5)

за всяко  $x \in M$ .

За да се убедим, че това е така, да проверим най-напред, че

$$\forall n \ f_n \leqslant f$$
,

т.е. че f е горна граница на редицата  $\{f_n\}_n$ . За целта да фиксираме произволно  $n \in \mathbb{N}$ . Неравенството  $f_n \leqslant f$  е еквивалентно на

$$\forall x \in M \ f_n(x) \leqslant f(x),$$

което е вярно, защото по дефиниция f(x) мажорира  $f_n(x)$  за всяко  $x \in M$ .

Нека сега g е друга горна граница на редицата  $\{f_n\}_n$ , т.е.

$$\forall n \ f_n \leqslant q.$$

Тогава съгласно определение (2.4):

$$\forall n \ \forall x \in M \ f_n(x) \leq g(x).$$

Последното е еквивалентно на

$$\forall x \in M \ \forall n \ f_n(x) \leq g(x).$$

Сега да фиксираме  $x \in M$ . Имаме  $\forall n \ f_n(x) \leqslant g(x)$ , което означава, че g(x) е горна граница на редицата  $\{f_n(x)\}_n$ . Но f(x) е точната горна граница на тази редица и значи  $f(x) \leqslant g(x)$ . Това неравенство е изпълнено за всяко  $x \in M$ , което ни дава финално  $f \leqslant g$ , т.е. f е най-малката сред горните граници на  $\{f_n\}_n$ .

Да запишем още веднъж как се дефинира точната горна граница  $\lim_n f_n$  на една монотонно растяща редица  $f_0 \leqslant f_1 \leqslant \ldots$ :

$$(\underset{n}{lub} f_n)(x) = \underset{n}{lub} f_n(x)$$
 (2.6)

Тук първата точна горна граница е в областта на Скот  ${\cal F}$ , а втората — в областта  ${\cal A}$ .

Да приложим току-що доказаното за случая, когато множеството M е  $\mathbb{N}^n_{\perp}$ , а областта на Скот A е  $(\mathbb{N}_{\perp}, \sqsubseteq, \perp)$ . Новополучената функционална ОС ще е с домейн — множеството от всички тотални n-местни функции в  $\mathbb{N}_{\perp}$ . Това множество ще означаваме с  $\mathcal{F}_n^{\perp}$ , по подобие на множество на n-местните частични функции в  $\mathbb{N}$ , което означавахме с  $\mathcal{F}_n$ . С други думи,

$$\mathcal{F}_n^{\perp} = \{ f \mid f \colon \ \mathbb{N}_{\perp}^n \longrightarrow \mathbb{N}_{\perp} \}.$$

Нека още

$$\Omega^{(n)}(x_1,\ldots,x_n) \stackrel{\text{деф}}{=} \bot$$

за всяко  $(x_1,\ldots,x_n)\in\mathbb{N}^n$  .

Сега от Твърдение 2.6 получаваме важното

**Следствие 2.3.** Структурата 
$${\cal F}_{\pmb n}^\perp = ({\cal F}_n^\perp,\;\sqsubseteq,\;\Omega^{(n)})$$
 е област на Скот.

Комбинираме този факт с доказаното по-горе за декартови произведения на ОС ( $Tozpdenue\ 2.5$ ) и получаваме по-общо, че

**Следствие 2.4.** За произволни положителни  $n_1, \ldots, n_k$ , структурата

$$\mathcal{F}^{\perp} = (\mathcal{F}_{n_1}^{\perp} \times \cdots \times \mathcal{F}_{n_k}^{\perp}, \sqsubseteq, (\Omega^{(n_1)}, \dots, \Omega^{(n_k)}))$$

е област на Скот.

Точно в тази ОС ще дефинираме денотационната семантика с предаване на параметрите  $no\ ume.$