END TERM EXAMINATION

SIXTH SI	emester [B.Tech (IT)] May-June 2018	
Moer Code: IT-306	Subject: Algorithm Analys	sis and Design
Me: 3 Hours Me: Attempt five quest	Max	ximum Marks: 75
	ions in all including Q no.1 which tone question from each unit.	ch is compulsory.
, Dotto	to one question from each unit.	
(b) Explain the differe	<u>UNIT-I</u> en matrix multiplication technique. ent asymptotic notations. nial time verification. recursive version of FIND-SET with pa	(5) (5) (5) th compression.
(e) What is quick sor	t? Show its functioning with data?	(5) (5)
	UNIT-II	
recurrence relation	is constant for sufficiently small n an	d solve the following (6)
(ii) $T(n) = 16T(n/n)$	4)+n ² by recursion tree	
(iii) $T(n) = T(\sqrt{n}) +$ (b) Write an algorithm elements.	I hm MEDIAN to get median element fro	om sequence S of n (6.5)
	andomized select algorithm which return t the time complexity of algorithm.	ns smallest number (12.5)
write the pseudo (b) Write Dijkstra' al	<u>UNIT-II</u> ements 3,6,4,1,3,4,1,3,6 sort them usin code and its complexity. gorithm for solving single source shortes oof of correctness of the algorithm.	(6)
subsequence betw	nts of dynamic programming. Find the een elephant and eaten by using dy te the recursive pseudocode with memo	namic programming
8 fibonacci numbe use Huffman codir (b)Compare greedy a	olgorithm with dynamic programming napsack problem n =3,m =20, (p1,p2	Also discuss why we (7.5) g? Find the optimal
Explain the difference sorting problem using	e between DFS and BFS with example. DFS algorithm with an example	Solve topological (12.5)
	UNIT-IV	
(b) Compute the prefix f	unction π of pattern =ababababbaca. From time analysis	(6) Write the pseudocode (6.5)
Briefly explain the cond	cepts of P, NP and NP complete probler tail.	n. Discuss any two NF

V 12010/50-