Теория групп. Лекция 3

Штепин Вадим Владимирович

19 сентября 2019 г.

Теорема о гомоморфизмах и изоморфизмах

Замечание Если $\phi:G_1\to G_2$ — гомоморфизм, то $Im(\phi)\leq G_2,\ Ker(\phi)\triangleleft G_1$

Опр. Сюръективный гомоморфизм называется эпиморфизмом

Опр. Инъективный гомоморфизм называется мономорфизмом

Опр. Гомоморфизм $\phi:G \to G$ называется эндоморфизм

Примеры:

- 1. $G \to \{e\} \subset G_2$ —тривиальный гомоморфизм
- 2. $\phi: Z \to Z_n, \, \phi(x)$ класс вычетов по модулю n, которому принадлежит x
- 3. $GL_n(\mathbb{F}) \to \mathbb{F}^*, \ \phi(A) = det(A)$. Очевидно, $ker(\phi) = SL_n(\mathbb{F}) \triangleleft GL_n(F)$
- 4. $\epsilon: S_N \to \{\pm 1\}$ четность подстановки. $Ker(\phi) = A_n \triangleleft S_n$
- 5. $Aff(\mathbb{R}^2)$ группа аффинных преобразований в плоскости. $\phi: \binom{x}{y} \to A \binom{x}{y} + \binom{\alpha}{\beta}$. Групповая операция композиция. $T: Aff(\mathbb{R}^2) \to GL_n(\mathbb{R}), T(\phi)$ матрица A (матрица преобразования).

Упражнение. Проверить, что это гомоморфизм.

 $Ker(T) = \{\phi \mid T(\phi) = E\}$ — группа параллельных переносов на плоскости (или группа сдвигов).

Вывод: Группа сдвигов — нормальная в группе афинных преобразований.

1 Определение факторгруппы

Теорема Пусть $H \triangleleft G$. Тогда множество смежных классов G/H — группа относительно операции умножения подмножеств.

Доказательство

1. Определенность операции. $(aH)(bH)=a(Hb)H=a(bH)H=(ab)H\in G/H$, так как $H \triangleleft G$

- 2. Ассоциативность. Мы показали, как умножаются смежные классы по H, порожденные элементами G. Тогда очевидно, что ((aH)(bH))(cH) = ((ab)H)(cH) = (ab)cH = a(bc)H = (aH)((bH)(cH))
- 3. Нейтральный элемент это eH=H, так как (eH)(aH)=(aH)(eH)=(aH)
- 4. Обратный элемент. $(aH)^{-1} = a^{-1}H$, так как $(a^{-1}H)(aH) = (a^{-1}a)H = H = (aH)(a^{-1}H)$.

Опр. Построеннная группа называется факторгруппой G по H и обозначается G/H.

Утв. Пусть G — группа и $H \triangleleft G$ Тогда $p: G \to G/H$, определяемое равенством p(a) = aH является сюръективным гомоморфизмом G на G/H и Ker(p) = H.

Доказательство

 $\forall a,b \in G: \ p(a)p(b) = aHbH = abH = p(ab)$ — гомоморфизм. $\forall aH \in G/H \ \exists a \in G \ p(a) = aH$ — сюръективность. $Ker(p) = \{a \in G \mid p(a) = H\} = \{a \in G \mid aH = H\} = H.$

<u>Опр.</u> Построенный сюръективный гомоморфизм — **канонический эпиморфизм** (каноническая сюръекция) группы на факторгруппу

Теорема (основная теорема о гомоморфизме)

Пусть G, K — группы, $\phi: G \to K$ — гомоморфизм, $H = Ker(\phi) \triangleleft G$. Тогда $Im(\phi) \simeq G/H$, причем существует изоморфизм $\psi: Im(\phi) \to G/H$, при котором $\psi \circ \phi = p$ (канонический эпиморфизм, построенный выше).

Доказательство

1. Построение $\psi: Im(\phi) \to G/H$.

Пусть $k \in Im(\phi)$. Тогда $\exists a \in G \ \phi(a) = k$. Определим $\psi(k) = \phi^{-1}(k) = \{a \in G \mid \phi(a) = k\}$ — полный прообраз. Покажем, что $\phi^{-1}(k) = aH$.

$$\phi(aH) = \phi(a)\phi(H) = \phi(a) * e_2 = k \Rightarrow aH \subset \phi^{-1}(k).$$

Обратно, пусть $b \in \phi^{-1}(k)$ — произвольный элемент. Тогда $\phi(b) = k$, но $\phi(a) = k$. Значит, $\phi(a^{-1}b) = e_2$ — нейтральный элемент $K \Rightarrow a^{-1}b \in H \Rightarrow b \in aH \Rightarrow \phi^{-1}(k) \subset aH$

2. ψ — гомоморфизм $Im(\phi)$ в G/H.

Пусть $k_1,k_2\in Im(\phi)$ и $\phi(a_1)=k_1,\phi(a_2)=k_2\Rightarrow \psi(k_1)=a_1H,\psi(k_2)=a_2H.$ Тогда $\phi(a_1a_2)=k_1k_2\Rightarrow \psi(k_1k_2)=a_1a_2H=\psi(k_1)\psi(k_2).$

3. ψ — инъективно

Пусть $k_1 \neq k_2$ и $\psi(k_1) = \psi(k_2)$. Тогда $\psi(k_1) = a_1 H = a_2 H = \psi(k_2)$, где a_1, a_2 —прообразы k_1, k_2 . Значит, $\phi(a_1 H) = \phi(a_2 H) \Rightarrow \phi(a_1) = \phi(a_2) \Rightarrow k_1 = k_2$

4. ψ — сюръективно.

Пусть $aH \in G/H$. Тогда $\phi(a) = k \in Im(\phi) \Rightarrow \psi(k) = aH$ Делаем вывод, что ψ — изоморфизм.

5. Условие $\psi \circ \phi = p$

Пусть $a \in G$. $\phi(a) = k \Rightarrow \psi(k) = \phi^{-1}(k) = aH$. Значит, $(\psi \circ \phi)(a) = \psi(k) = aH = p(a)$

Для запоминания теоремы полезно следующее четверостишье:

Гомоморфный образ группы

В честь победы коммунизма

Изоморфен факторгруппе

По ядру гомоморфизма

Пример: Построить факторгруппу $GL_n(\mathbb{R})/SL_n(\mathbb{R})$ и найти, какой известной группе она изоморфна. $H = SL_n(\mathbb{R}): AH = BH, A, B$ — матрицы $\Leftrightarrow A^{-1}B \in H \Leftrightarrow det(A) = det(B)$. Класс смежности состоит из матриц с одинаковым определителем и параметризуется ненулевым числом d.

Пусть $\phi: GL_n(\mathbb{R}) \to \mathbb{R}^*, \ \phi(A) = det(A)$, причем ϕ сюръективен, так т.к. $\forall d \in \mathbb{R}^* \ \exists A \in GL_n(\mathbb{R}), \ det(A) = d$

По основной теореме о гомоморфизме $Ker(\phi) = SL_n(\mathbb{R})$ и $GL_n(\mathbb{R})/SL_n(\mathbb{R}) \simeq Im(\phi) = \mathbb{R}^*$.

Теорема (первая теорема об изоморфизме)

Пусть G—группа, $H \triangleleft G, K \leq G$. Тогда:

- 1. HK = KH < G
- 2. $(H \cap K) \triangleleft K$
- 3. $HK/H \simeq K/(H \cap K)$

Доказательство

- 1. Было доказано
- 2. Очевидно, что $(H \cap K) \leq K$. Пусть $a \in H \cap K, x \in K$. Проверим, что $a^x = x^{-1}ax \in H \cap K$. Поскольку H нормальная, то $a^x \in H$. Поскольку $x \in K$, то $x^{-1} \in K$ и $a^x \in K$. Значит, $a^x = x^{-1}ax \in H \cap K \Rightarrow H \cap K \triangleleft K$
- 3. Рассмотрим $\phi: HK \to HK/H$ (очевидно, $H \triangleleft HK$, т.к. $H \triangleleft G$)

$$\phi(HK) = \phi(H)\phi(K) = e\phi(K) = \phi(K) \Rightarrow \phi \upharpoonright_K : K \to HK/H$$
 — сюръективно.

$$Ker(\phi \upharpoonright_K) = \{a \in K \mid aH = H\} = \{a \in K \mid a \in H\} = H \cap K$$

По основной теореме о гомоморфизме:

$$Im(\phi) = HK/H \simeq K/(k \cap H) = K/Ker(\phi)$$

Теорема (вторая теорема об изоморфизме; теорема о соответствии)

Пусть Sub(G) — множество подгрупп G. Inter(H,G) — множество подгрупп, занимающих промежуточное положение между H и G. $Inter(H,G)=\{K\leq G\mid H\leq K\leq G\}$. Пусть $H\vartriangleleft G$ и $H\leq K\leq G$. Тогда

- 1. $K/H \leq G/H$
- 2. Отображение $\phi: Inter(H,G) \to Sub(G/H) \ \phi(K) = K/H$ осуществляет взаимнооднозначное соответствие между Inter(H,G) и Sub(G/H), причем ϕ сохраняет включение (но не обязательно является гомоморфизмом)

3. Отображение ϕ сохраняет отношение нормальности: $K \triangleleft G \Leftrightarrow (K/H) \triangleleft (G/H)$ Причем, если верно одно из этих эквивалентных условий, то имеет место изоморфизм $G/K \simeq (G/H)/(K/H)$

Доказательство

- 1. $\forall k_1, k_2 \in K$ $k_1H * k_2H = k_1k_2H \in K/H$ замкнуто относительно композиции $\forall k \in K \ (kH)^{-1} = k^{-1}H \in K/H$ замкнуто относительно взятия обратного
- 2. $K_1 \leq K_2 \Leftrightarrow K_1/H \leq K_2/H$ сохраняет включение (доказывается аналогично пункту 1) Проверим, что $\phi(K_1) = \phi(K_2) \Leftrightarrow K_1 = K_2$. Пусть $\phi(K_1) = \phi(K_2)$. Тогда, поскольку ϕ сохраняет включение, верно $K_1 \leq K_2$ и $K_2 \leq K_1$, значит $K_2 = K_1$ инъективность. Проверим сюръективность. Пусть $S \leq G/H, p:G \to G/H$ канонический эпиморфизм. Тогда $p^{-1}(S)$ искомый прообраз S при отображении ϕ . Проверим, что $p^{-1}(S)$ подгруппа.

$$\forall a, b \in p^{-1}(S) \Rightarrow p(a), p(b) \in S \Rightarrow p(ab) \in S \Rightarrow ab \in p^{-1}(S).$$

$$\forall a \in p^{-1}(S) \Rightarrow p(a^{-1}) \in S \Rightarrow a^{-1} \in p^{-1}(S).$$

 $p^{-1}(eH)=H-eH$ нейтральный в факторгруппе G/H. Поскольку $S\leq G/H$, то $eH\in S$ и $H\leq p^{-1}(S)\Rightarrow H\leq p^{-1}(S)\leq G\Rightarrow p^{-1}(S)\in Inter(H,G)$

Причем, $\phi(p^{-1}(S)) = S$, так как $p^{-1}(S)$ — подгруппа элементов, которым сопоставляются смежные классы из S. Тогда, факторизуя $p^{-1}(S)$ по H мы получаем S.

3. Последний пункт будет доказан на следующей лекции