

Design and Implementation of End to End Secured Campus Area Network

By

Harsh Panchal – 1813033

Kaushal Patil – 1813038

Shubh Dedhia –1813040

Rohit Shah – 1813042

Project Guide Dr. Kiran Ajetrao

Table of Contents

- Introduction
- Motivation
- Literature Survey
- Data Center Survey
- Problem statement
- Objectives
- Flowchart

- Methodology
- Network Topology
- Results & Analysis
- Conclusion
- Future Scope
- References

Introduction

The main goal of this project is to make secured campus network design to protect against common internal attacks such as ARP Spoofing, DHCP Snooping, VLAN Hopping, and DOS attacks. As Network security is a growing concern in today's digital phenomenon it is imperative to have an system in place to protect the data and system from common attacks, approve or block unauthorized access and monitor traffic using network monitoring tool.

Motivation

- The core motivation behind developing this project is to maximize security on campus in the era of ever increasing data and various threats and attacks associated to it.
- As college data is very crucial when it comes to any level of the campus network so to prevent any privacy breach of any entity a secured network is very much necessary.
- With the Pandemic, Things going virtual and studying/working from home has become the new normal, the security aspect must go hand in hand to ensure smooth functioning of life on virtual campus.

Publisher	Year	Author	Title	Summary	Gaps Identified	Problem Solved
IEEE	2019	Mugdha Sharma, Chirag Pupreja, Akash Arora	Design and Implementation of University Network	This paper presents the design of campus area network using Bus topology	There are various topologies for designing a network which were quite expensive.	In the current network we have used bus topology as it is a cost effective

Publisher	Year	Author	Title	Summary	Gaps Identified	Problems Solved
IEEE	2017	G.Michael	Design And Implementation Of A Secure Campus Network	This paper represented the current network security of the campus network, analyzes security threats to campus network and represented the ways to solve it.	There were various network attacks due to which campus area was not secured.	By making hierarchical network design, the network could resist most of network attacks and hence security was improved

Publisher	Year	Author	Title	Summary	Gaps Identified	Problems Solved
IEEE	2013	M. N. B. Ali, M. L. Rahman and S. A. Hossain	Network architecture and security issues in campus networks	This paper represents the hireachical campus network design and dhcp snooping attack is discussed and mitigated	As several techniques for mitigating attacks are discussed but in this only dhcp attacks is mitigated	As per data center survey most common attacks are ARP Spoofing, DHCP Snooping, VLAN Hopping so we prevented these attacks

Publisher	Year	Author	Title	Summary	Gaps Identified	Problems Solved
Researchgate	2011	Lalita Kumari, Swapan Debbar ma, Radhey Shyam	Security Problems in Campus Network and Its Solutions	This paper represents the current security status of the campus network and to analyze security threats to campus network	As campus area network is vast and complex there are many network security issues which needs to be resolved	Using Firewall technology, VLAN, encryption technology we can improve security of network

Publisher	Year	Author	Title	Summary	Gaps Identified	Problems Solved
IEEE	2014	X. Li and T. Jiang	Design and Implementat ion of the Campus Network Monitoring System	This paper represents technical analysis of network monitoring as to ensure network stability and monitor the traffic in network	As there are various network parameters which are useful for network such as Bandwidth, Throughput, Jitter,	Using PRTG Network Monitoring we measured network parameters such as throughput, Bandwidth, Jitter, Port Range

Data Center Survey

Existing College Network	Our College Network
Fortigate Firewall	ASA Firewall
Layer 2 Device – 2960 Switch	Layer 2 Device – 2960
(Cisco Nexus 9000)	Switch
Core Switch (L3 Switch)	L3 Switch is not used
Router is not used	2911 Router
Bus Topology is used	Bus Topology is used
Static Routing is used	OSPF Routing is used
Intervlan Communication is	Intervlan Communication is used
blocked for segregation of	
college networks	
Network performance	Network performance parameters (Bandwidth,
parameters (Bandwidth,	Throughput, Jitter)
Port Bandwidth, Latency)	
Fortigate Firewall is used to	PRTG, Solar Winds Network monitoring tool
monitor network performance	will be used
parameters	

Problem Statement

To maintain campus integrity, the campus network needs to have secure network design to protect from different types of attacks.

Objectives

- To create design of Secured Campus Area Network.
- Creation of VLANs, OSPFs, ACLs for internal security of network.
- For security of the network, we will identify the threats which are more likely to occur in a campus area network and prevent them.
- Measure network performance parameters of Campus Network.

Flowchart (Overview of campus network)

- Step 1: Gathering Network Requirements (No. of networks, network devices, subnets)
- Step 2: Subnetting (Addressing Tables)
- Step 3: VLANs Configuration (For Departments & Hostels)
- Step 4: InterVLAN Configuration (For Departments & Hostels)
- Step 5: Routing Configuration
- Step 6: ACLs Configuration
- Step 7: Common Attacks prevented
- Step 8: Network Performance Parameters Measured by integrating GNS3 with PRTG

Step 1: Gathering Network Requirements

From Flowchart (Overview of campus network) we can see different sections created such as Data-center, Network-admins, Reception, Library, Departments

Step 2: Subnetting (Addressing Tables)

Example of Addressing table of Data-center

Hostname	IP address	Subnet Mask	Default gateway
Servers	82.0.0.2	255.0.0.0	82.0.0.1
Server-PC	82.0.0.3	255.0.0.0	82.0.0.1
ISP Router	82.10.0.1	255.0.0.0	82.10.0.1

In data-center there is one server which consists of 4 servers. i.e. DNS, HTTP, SMTP, FTP. It also has a PC to access the servers. All the data of the entire campus is stored in server room.

Step 3: VLANs Configuration (For Departments & Hostel)

- Created 4 VLANs for each department
- VLAN 10 Dept Head 32.10.0.0, VLAN 20 Professors 32.20.0.0, VLAN 30 Students 32.30.0.0, VLAN 40 Lab 32.40.0.0
- Similarly 2 VLANs are created in each hostel i.e. VLAN 50 Students and VLAN 60 warden

	-1≻en -1#sh vlan brief		
VLAN	Name	Status	Ports
1	default	active	Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gig0/1, Gig0/2
10	Dept.Head	active	Fa0/2
20	Professors	active	Fa0/3
30	Students	active	
40	Lab	active	

Step 4: InterVLAN Configuration (For Departments & Hostel)

- Router-on-stick method is used for intervlan Routing.
- By this method dept. head, professors, students and lab can communicate with each other.
- Similarly in hostel, warden and students can communicate with each other

Step 5: Routing Configuration

OSPF Routing Method is used on R1, R2 and R3 Routers to communicate between each other

```
Physical Config CLI Attributes

| IOS Command Line Into Shutdown | Prouter ospf 40 | Compand Line Into Shutdown | Prouter ospf 40 | Compand Line Into Shutdown | Prouter ospf 40 | Compand Line Into Shutdown | Prouter Ospf 40 | Compand Line Into Shutdown | Prouter Line Into Shut
```


Step 6: ACLs Configuration

ACLs are used to filter traffic based on the set of rules

```
R1
                         Attributes
 Physical
           Config CLI
   speed auto
  interface GigabitEthernet0/1
   ip address 10.0.0.1 255.0.0.0
   ip access-group 10 out
   duplex auto
   speed auto
  interface GigabitEthernet0/2
   no ip address
   duplex auto
   speed auto
   shutdown
  interface Serial0/3/0
   ip address 20.0.0.1 255.0.0.0
   clock rate 2000000
```


Step 7: Common Attacks prevented

- 1. DHCP Snooping
- 2. VLAN Hopping
- 3. ARP Spoofing (ARP Poisoning)

Step 8: Network Performance Parameters Measured by integrating GNS3 with PRTG

- 1. Ping
- 2. Throughput
- 3. Jitter
- 4. Port Range
- 5. Ping jitter

Network Topology

Results & Analysis of InterVLAN Communication

From Computer Department: Dept. Head can communicate with professors, students, lab of Computer Department and can also communicate with other department's Dept. head, professors, students and lab


```
C:\>ping 32.30.0.2
Pinging 32.30.0.2 with 32 bytes of data:
Reply from 32.30.0.2: bytes=32 time<1ms TTL=127
Reply from 32.30.0.2: bytes=32 time<1ms TTL=127
Reply from 32.30.0.2: bytes=32 time=35ms TTL=127
Reply from 32.30.0.2: bytes=32 time<1ms TTL=127
Ping statistics for 32.30.0.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = 35ms, Average = 8ms
C:\>ping 32.40.0.2
Pinging 32.40.0.2 with 32 bytes of data:
Reply from 32.40.0.2: bytes=32 time<1ms TTL=127
Reply from 32.40.0.2: bytes=32 time=1ms TTL=127
Reply from 32.40.0.2: bytes=32 time<1ms TTL=127
Reply from 32.40.0.2: bytes=32 time=3ms TTL=127
Ping statistics for 32.40.0.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 3ms, Average = 1ms
```


Results & Analysis of InterVLAN Communication

```
Dept. Head-COMP
                                          Attributes
  Physical
            Config
                    Desktop
                             Programming
   Command Prompt
   C:\>ping 32.40.0.4
   Pinging 32.40.0.4 with 32 bytes of data:
   Reply from 32.40.0.4: bytes=32 time<1ms TTL=127
   Reply from 32.40.0.4: bytes=32 time=1ms TTL=127
   Reply from 32.40.0.4: bytes=32 time<1ms TTL=127
   Reply from 32.40.0.4: bytes=32 time<1ms TTL=127
   Ping statistics for 32.40.0.4:
       Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
   Approximate round trip times in milli-seconds:
       Minimum = Oms, Maximum = 1ms, Average = Oms
```

```
C:\>ping 32.10.0.3
Pinging 32.10.0.3 with 32 bytes of data:
Reply from 32.10.0.3: bytes=32 time<1ms TTL=128
Ping statistics for 32.10.0.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 32.20.0.3
Pinging 32.20.0.3 with 32 bytes of data:
Reply from 32.20.0.3: bytes=32 time<1ms TTL=127
Ping statistics for 32.20.0.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
```


Results & Analysis of InterVLAN Communication


```
C:\>ping 32.40.0.3

Pinging 32.40.0.3 with 32 bytes of data:

Reply from 32.40.0.3: bytes=32 time=1ms TTL=127
Reply from 32.40.0.3: bytes=32 time<1ms TTL=127
Reply from 32.40.0.3: bytes=32 time<1ms TTL=127
Reply from 32.40.0.3: bytes=32 time<1ms TTL=127
Ping statistics for 32.40.0.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),</pre>
```


Results & Analysis of Intervlan Communication

From Hostel-A: Warden from Hostel-A can communicate with students of Hostel-A and also warden, students of Hostel-B

```
    PC21

  Physical
            Config
                    Desktop
                              Programming
                                          Attributes
  Command Prompt
       Minimum = 0ms, Maximum = 1ms, Average = 0ms
   C:\>ping 30.20.0.2
   Pinging 30.20.0.2 with 32 bytes of data:
   Reply from 30.20.0.2: bytes=32 time<1ms TTL=127
   Reply from 30.20.0.2: bytes=32 time<1ms TTL=127
   Reply from 30.20.0.2: bytes=32 time<1ms TTL=127
   Reply from 30.20.0.2: bytes=32 time=1ms TTL=127
   Ping statistics for 30.20.0.2:
       Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
   Approximate round trip times in milli-seconds:
       Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

```
C:\>ping 30.10.0.3
Pinging 30.10.0.3 with 32 bytes of data:
Reply from 30.10.0.3: bytes=32 time<1ms TTL=128
Reply from 30.10.0.3: bytes=32 time=1ms TTL=128
Reply from 30.10.0.3: bytes=32 time<1ms TTL=128
Reply from 30.10.0.3: bytes=32 time<1ms TTL=128
Ping statistics for 30.10.0.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = 1ms, Average = Oms
C:\>ping 30.20.0.3
Pinging 30.20.0.3 with 32 bytes of data:
Reply from 30.20.0.3: bytes=32 time<1ms TTL=127
Ping statistics for 30.20.0.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss)
```


Results & Analysis of OSPF & Access-Lists

Router 1, Router 2 and Router 3 can communicate with each other as we configured ospf on these routers

As network admin has only access to data-center they can communicate with each other but rest of end devices can't communicate with data center

Results & Analysis of DHCP Snooping

The threat Server tries to snoop the information exchanged between the datacenter by creating DHCP Serverpool

Results of DHCP Snooping attack

This is Threat Server's IP Address

Our PC has dynamically accessed Threat Server IP Address

Results & Analysis of Protection against DHCP Snooping

From this image we can see attack is prevented as our pc is unable access ip address

```
Datacenter>
Datacenter=>en
Datacenter=fip dhcp snooping

^
% Invalid input detected at '^' marker.

Datacenter=conf t
Enter configuration commands, one per line. End with CNTL/Z.
Datacenter(config)=fip dhcp snooping
Datacenter(config)=fip dhcp snooping vlan l
Datacenter(config)=fip dhcp snooping vlan l
Datacenter(config)=fip dhcp snooping trust
Datacenter(config-if)=fip dhcp snooping trust
```

By using these commands we can prevent DHCP Snooping attack

Results & Analysis of Protection against DHCP Snooping

Datacenter#						
Datacenter#sh ip dhcp snoo	ping					
Switch DHCP snooping is enabled						
DHCP snooping is configure	d on follow	ing VLANs:				
1						
Insertion of option 82 is	enabled					
Option 82 on untrusted por	t is not al	lowed				
Verification of hwaddr fie	ld is enabl	ed				
Interface	Trusted	Rate limit (pps)				
FastEthernet0/5	no	unlimited				
FastEthernet0/2	no	unlimited				
FastEthernet0/4	no	unlimited				
FastEthernet0/1	yes	unlimited				
Datacenter#						

- Fast ethernet 0/1 is set as trusted port and traffic from that port will have authorization
- From binding table we can see ip address of our PC

Datacenter# Datacenter#sh ip dh	ncp snooping bind	ing		
MacAddress Interface	IpAddress	Lease(sec)	Type	VLAN
00:05:5E:9C:79:89 FastEthernet0/2	82.0.0.6	86400	dhcp-snooping	1

Results & Analysis of VLAN Hopping

- We created 3 vlans vlan 10 for Servers, vlan 20 for data center and vlan 30 for unused ports
- We used switchport nonegotiate command to disable dtp server

Results & Analysis of Protection against VLAN Hopping

By using these commands we can prevent VLAN Hopping attack

We can see traffic from outside network is unable to communicate with Datacenter

Results & Analysis of ARP Spoofing

The threat actor tries to snoop the information exchanged between the network admins and the datacenter.

Result of ARP Spoofing Attack

Results & Analysis of Protection against ARP spoofing

```
ip arp inspection vlan 10
ip arp inspection validate src-mac dst-mac ip
!
spanning-tree mode pvst
spanning-tree extend system-id
!
interface FastEthernet0/1
switchport access vlan 10
switchport mode access
!
interface FastEthernet0/2
switchport access vlan 10
switchport access vlan 10
switchport mode access
!
interface FastEthernet0/3
interface FastEthernet0/3
ip arp inspection trust
```

- Fast ethernet port 0/3 is a trusted port. Traffic from that port will have authorization
- VLAN 10 has also undergone dynamic arp inspection VLAN
- Similarly the source and destination mac address are inspected

Results of Network Performance Parameters on PRTG

These are network performance parameters showcased on PRTG Dashboard

Conclusion

- We created design of Campus Area Network using Cisco Packet Tracer.
- We learned and implemented VLANS, InterVLAN Routing (Router on Stick Method), OSPF Routing, Access-Control Lists.
- We learned about different servers such as (DNS, HTTP, SMTP, FTP, DHCP).
- We have done data center survey to do comparative analysis with our design of campus network.
- We learned and prevented common attacks such as (ARP Spoofing, DHCP Snooping, VLAN Hopping).
- We measured network performance parameters by integrating GNS3 with PRTG.

Future Scope

- Implementing Firewall to prevent external security attacks.
- In-depth working on network performance parameters.
- Managing network traffic to enhance network performance in our project.
- Also we can create intrusion detection system to protect the campus network.

References

- 1. Ali, Md. Nadir, "Design and Implementation of a Secure Campus Network", Journal of Surface Engineered Materials and Advanced Technology, 2015
- 2. G.Michael, "Design and Implementation of a Secure Campus Network" 2017 International Journal of Pure and Applied Mathematics(IJPAM), Volume 116 No. 8 2017, 303-307
- 3. M. N. B. Ali, M. L. Rahman and S. A. Hossain, "Network architecture and security issues in campus networks," 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), 2013, pp. 1-9, doi: 10.1109/ICCCNT.2013.6726595.
- 4. Kumari, Lalita & Debbarma, Swapan & Shyam, Radhey, "Security Problems in Campus Network and Its Solutions", International Journal of Advanced Engineering & Applications (IJAEA), 2011, Volume-1. pp 98-101.
- 5. X. Li and T. Jiang, "Design and implementation of the campus network monitoring system," 2014 IEEE Workshop on Electronics, Computer and Applications, 2014, pp. 117-119, doi: 10.1109/IWECA.2014.6845571.

References

- 6. Bull, Ronny & Matthews, Jeanna & Trumbull, Kaitlin, "VLAN hopping, ARP poisoning and Man-In-The-Middle Attacks in Virtualized Environments", 2016
- 7. H. Ning and X. Bing, "The research and analysis of security of campus network," 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, 2011, pp. 25-27, doi: 10.1109/ITAIC.2011.6030268.
- 8. Nuhu, Abdulhafiz, "Mitigating DHCP starvation attack using snooping technique" FUDMA Journal of Sciences, 2020, 4. 560.
- 9. Security Management Technology Based on Big Data," 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA), 2019, pp. 571-575, doi: 10.1109/ICSGEA.2019.00133.
- 10. Doss, Srinath & S.Panimalar, S.Panimalar & Simla, A.Jerrin & J.Deepa, J.Deepa, (2015). "Detection and Prevention of ARP spoofing using Centralized Server", International Journal of Computer Applications. 113. 26-30. 10.5120/19935-1931.

THANK YOU