

: 1 of 62

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

2.4 GHz DSSS low power radio transceiver

MODEL NUMBER: STD-502-R

FCC ID: V9X-STD502R

REPORT NUMBER: 33IE0022-SH-A

ISSUE DATE: May 22, 2013

Prepared for

CIRCUIT DESIGN, INC. 7557-1 HOTAKA, AZUMINO, NAGANO, 399-8303, JAPAN

Prepared by

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number: +81 463 50 6400 Facsimile number: +81 463 50 6401 JAB Accreditation No. : RTL02610

	l		The testing in which	"Non-accreditation"	' is displayed is	outside the	accreditation	scopes in	UL Japan
--	---	--	----------------------	---------------------	-------------------	-------------	---------------	-----------	----------

There is no testing item of "Non-accreditation".

REPORT NO: 33IE0022-SH-A DATE: May 22, 2013 FCC ID: V9X-STD502R

Revision History

Rev.	Issue Date	Revisions	Revised By
	05/22/13	Initial Issue	K. Adachi

TABLE OF CONTENTS

1.	. AT 1	ESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CAI	IBRATION AND UNCERTAINTY	5
	4.1.	MEASURING INSTRUMENT CALIBRATION	5
	4.2.	SAMPLE CALCULATION	5
	4.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	JIPMENT UNDER TEST	6
	5.1.	DESCRIPTION OF EUT	6
	5.2.	MAXIMUM OUTPUT POWER	6
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6
	5.4.	SOFTWARE AND FIRMWARE	6
	5.5.	WORST-CASE CONFIGURATION AND MODE	7
	5.6.	DESCRIPTION OF TEST SETUP	8
6.	TES	ST AND MEASUREMENT EQUIPMENT	9
7.	. AN	TENNA PORT TEST RESULTS	11
	7.1.	6 dB BANDWIDTH	11
	7.2.	99% BANDWIDTH	14
	7.3.	OUTPUT POWER	17
	7.4.	AVERAGE POWER	18
	7.5.	POWER SPECTRAL DENSITY	19
	7.6.	CONDUCTED SPURIOUS EMISSIONS	22
8.	RAI	DIATED TEST RESULTS	26
	8.1.	LIMITS AND PROCEDURE	26
	8.2.	TRANSMITTER	
	8.2. 8.2.		
	8.2.	·	
	8.3.	AC POWER LINE CONDUCTED EMISSIONS	
9.	. M A	XIMUM PERMISSIBLE EXPOSURE	55
1(D. S	ETUP PHOTOS	57

REPORT NO: 33IE0022-SH-A DATE: May 22, 2013 FCC ID: V9X-STD502R

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: CIRCUIT DESIGN, INC.

7557-1, HOTAKA, AZUMINO, NAGANO, 399-8303, JAPAN

EUT DESCRIPTION: 2.4 GHz DSSS low power radio transceiver

MODEL: STD-502-R

SERIAL NUMBER: S0000003 (for Conducted emissions and Radiated test),

S0000002 (for Bandwidth and Power spectral density)

S000001 (for Output power, Average power and Conducted Spurious emissions),

DATE TESTED: April 17 to May 13, 2013

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart C

Pass

UL Japan Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Japan, Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Japan, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Japan, Inc. will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by any government agency.

Approved & Released For UL Japan, Inc. By:

Tested By:

Toyokazu Imamura Leader of WiSE Japan, UL Verification Service Kenichi Adachi Engineer of WiSE Japan, UL Verification Service

K adadri

Page 4 of 62

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

DATE: May 22, 2013

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN.

UL Japan is accredited by JAB, Laboratory Code RTL02610. The full scope of accreditation can be viewed at

http://www.jab.or.jp/cgi-bin/jab exam proof j.cgi?page=2&authorization number=RTL02610

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY	
Power Line Conducted Emission	150kHz-30MHz	+/- 3.6 dB
	30MHz-300MHz	+/- 5.1 dB
	300MHz-1000MHz	+/- 5.2 dB
Radiated Emission	1000MHz-15GHz	+/- 4.9 dB
	15GHz-18GHz	+/- 5.6 dB
	18GHz-26.5GHz	+/- 4.3 dB

Uncertainty figures are valid to a confidence level of 95% using a coverage factor k=2.

REPORT NO: 33IE0022-SH-A DATE: May 22, 2013 FCC ID: V9X-STD502R

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Radio Module.

The radio module is manufactured by CIRSUIT DESIGN, INC.

GENERAL INFORMATION

Power Requirements	DC 3.3V to DC 5.5V (Typical 5.0V)
List of frequencies generated or used by the EUT	16MHz, 26MHz

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402.5 - 2478.5	19.2kbps	5.73	3.74

(narrow band mode)

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

This EUT uses the antenna below.

Sleeve antenna : 2dBi
 Loop PCB antenna : 1.89dBi
 Coaxial antenna : 1.67dBi

5.4. SOFTWARE AND FIRMWARE

The test utility Firmware used during testing was STD-502, rev.2.0.

All test was conducted with the evaluation board, TB-STD-502-R, manufactured by Circuit Design.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

All final tests in the Transmitting Mode were made at 19.2kbps.

The fundamental and spurious was measured in three different orientations X, Y and Z to find worst-case orientation, and final testing for radiated emissions was performed with EUT in following orientation.

DATE: May 22, 2013

		Sleeve antenna						
	Mod	dule	Ante	enna				
	Horizontal	Vertical	Horizontal	Vertical				
Carrier	Х	Υ	X	Y				
30M-1GHz	Х	Z	X	Y				
1G-15GHz	Υ	Χ	X	X				
15-26GHz	X	Χ	X	X				

		Loop PCB antenna					
	Mod	dule	Ante	enna			
	Horizontal Vertical		Horizontal	Vertical			
Carrier	Z	Z	Х	Y			
30M-1GHz	X	Z	X	Х			
1G-15GHz	Υ	Х	Υ	Y			
15-26GHz	Х	Х	Х	Х			

	Coaxial antenna					
	Mod	dule	Ante	enna		
	Horizontal Vertical		Horizontal	Vertical		
Carrier	Υ	Z	Х	Y		
30M-1GHz	Х	Z	Х	X		
1G-15GHz	Υ	Χ	Х	X		
15-26GHz	Х	Χ	Х	X		

The worst-case channel is determined as the channel with the highest output power, power line conducted emissions were performed with the EUT set to the channel with highest output power,

and used highest output power antenna.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number FCC ID						
D: Jig	CIRCUIT DESIGN, INC.	TB-STD-502-R	N/A	N/A		

DATE: May 22, 2013

I/O CABLES

	I/O CABLE LIST									
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks				
1	DC	1	DC	Un-shielded	2	N/A				

TEST SETUP

The EUT is a stand alone unit. Test jig exercised the radio unit.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SPM-06	Power Meter	Anritsu	ML2495A	850009	AT	2013/04/09 * 12
SPSS-03	Power sensor	Anritsu	MA2411B	917063	AT	2013/04/09 * 12
SSA-03	Spectrum Analyzer	Agilent	E4448A	MY48250152	AT	2013/01/08 * 12
SAT10-10	Attenuator	Weinschel Corp.	54A-10	37584	AT	2013/04/09 * 12
SCC-G13	Coaxial Cable	Suhner	SUCOFLEX 102	31599/2	AT	2013/03/16 * 12
SOS-09	Humidity Indicator	A&D	AD-5681	4061484	AT	2013/03/07 * 12
SAEC- 03(NSA)	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	RE	2012/09/21 * 12
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	1440491	RE	2012/07/18 * 12
SCC-G03	Coaxial Cable	Suhner	SUCOFLEX 104A	46499/4A	RE	2013/04/11 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2012/05/22 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2012/08/17 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2013/02/27 * 12
SSA-02	Spectrum Analyzer	Agilent	E4448A	MY48250106	RE	2013/03/28 * 12
SJM-11	Measure	PROMART	SEN1935	-	RE	-
COTS- SEMI-1	EMI Software	TSJ	TEPTO- DV(RE,CE,RFI,M F)	-	RE, CE	-
SAT20-01	Attenuator(abov e1GHz)	Agilent	8493C-020	74889	RE	2012/12/18 * 12
SFL-02	Highpass Filter	MICRO- TRONICS	HPM50111	51	RE	2012/12/18 * 12
SAEC- 02(NSA)	Semi-Anechoic Chamber	TDK	SAEC-02(NSA)	2	RE	2012/09/21 * 12
SHA-02	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-726	RE	2012/08/17 * 12
SCC-G02	Coaxial Cable	Suhner	SUCOFLEX 104A	46498/4A	RE	2013/04/09 * 12
SAF-05	Pre Amplifier	TOYO Corporation	TPA0118-36	1440490	RE	2013/03/19 * 12
SCC-G22	Coaxial Cable	Suhner	SUCOFLEX 104	296199/4	RE	2012/05/22 * 12
SSA-01	Spectrum Analyzer	Agilent	N9010A-526	MY48031482	RE	2013/04/09 * 12
SOS-03	Humidity Indicator	A&D	AD-5681	4063325	RE	2013/02/27 * 12
SJM-02	Measure	KOMELON	KMC-36	-	RE, CE	-
SHA-05	Horn Antenna	ETS LINDGREN	3160-09	LM4210	RE	2013/03/14 * 12
SAF-09	Pre Amplifier	TOYO Corporation	HAP18-26W	18	RE	2013/03/19 * 12
SCC-G18	Coaxial Cable	Suhner	SUCOFLEX 104A	46292/4A	RE	2013/03/16 * 12

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SBA-02	Biconical Antenna	Schwarzbeck	BBA9106	91032665	RE	2012/11/18 * 12
SAT6-02	Attenuator	JFW	50HF-006N	-	RE	2013/02/12 * 12
SLA-02	Logperiodic Antenna	Schwarzbeck	UHALP9108A	UHALP 9108-A 0893	RE	2012/11/18 * 12
KAT3-11	Attenuator	JFW IND. INC.	50HF-003N	-	RE	2012/08/07 * 12
SAF-02	Pre Amplifier	SONOMA	310N	290212	RE	2013/02/12 * 12
SCC- B1/B3/B5/B 7/B8/B13/S RSE-02	Coaxial Cable&RF Selector	Fujikura/Fujik ura/Suhner/S uhner/Suhne r/Suhner/TO YO	8D2W/12DSFA/14 1PE/141PE/141P E/141PE/NS4906	-/0901- 270(RF Selector)	RE	2013/04/03 * 12
SCC- B2/B4/B6/B 7/B8/B13/S RSE-02	Coaxial Cable&RF Selector	Fujikura/Fujik ura/Suhner/S uhner/Suhne r/Suhner/TO YO	8D2W/12DSFA/14 1PE/141PE/141P E/141PE/NS4906	-/0901- 270(RF Selector)	RE	2013/04/03 * 12
STR-02	Test Receiver	Rohde & Schwarz	ESCI	100575	RE, CE	2012/09/03 * 12
SCC- B12/B13/S RSE-02	Coaxial Cable&RF Selector	Suhner/Suhn er/TOYO	RG223U/141PE/N S4906	-/0901- 270(RF Selector)	CE	2013/04/03 * 12
SLS-03	LISN	Rohde & Schwarz	ENV216	100513	CE	2013/02/22 * 12
SAT3-06	Attenuator	JFW	50HF-003N	-	CE	2013/02/12 * 12
SOS-04	Humidity Indicator	A&D	AD-5681	4061512	CE	2013/03/07 * 12

DATE: May 22, 2013

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test Item:

CE: Conducted emission, RE: Radiated emission,

AT: Antenna terminal conducted tests

REPORT NO: 33IE0022-SH-A DATE: May 22, 2013 FCC ID: V9X-STD502R

7. ANTENNA PORT TEST RESULTS

7.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit		
	(MHz)	(MHz)	(MHz)		
Low	2402.5	0.51	0.5		
Middle	2440.5	0.51	0.5		
High	2478.5	0.51	0.5		

6 dB BANDWIDTH

REPORT NO: 33IE0022-SH-A FCC ID: V9X-STD502R

7.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

DATE: May 22, 2013

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402.5	0.59287
Middle	2440.5	0.59245
High	2478.5	0.59286

99% BANDWIDTH

REPORT NO: 33IE0022-SH-A DATE: May 22, 2013 FCC ID: V9X-STD502R

7.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.26dB to 11.28 dB (including 9.98 dB attenuator and 1.28 dB to 1.30 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Output Power	factor (cable	Output Power	Limit	Margin
	(MHz)	Reading (dBm)	,ATT) (dB)	Result (dBm)	(dBm)	(dB)
Low	2402.5	-5.53	11.26	5.73	30.00	24.27
Middle	2440.5	-6.29	11.27	4.98	30.00	25.02
High	2478.5	-7.14	11.28	4.14	30.00	25.86

Sample calculation: Output Power Reading [dBm] + factor [dB]

7.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.26dB to 11.28 dB (including 9.98 dB attenuator and 1.28 dB to 1.30 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: May 22, 2013

Channel	Frequency	Output Power	factor (cable	Output Power
	(MHz)	Reading (dBm)	,ATT) (dB)	Result (dBm)
Low	2402.5	-5.72	11.26	5.54
Middle	2440.5	-6.55	11.27	4.72
High	2478.5	-7.32	11.28	3.96

Sample calculation: Output Power Reading [dBm] + factor [dB]

7.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: May 22, 2013

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Method PKPSD in accordance with FCC document "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under Section 15.247", April 9, 2013.

RESULTS

Channel	Frequency	PPSD	Limit	Margin		
	(MHz)	(MHz) (dBm)		(dB)		
Low	2402.5	-0.05	8	-8.05		
Middle	2440.5	-0.73	8	-8.73		
High	2478.5	-1.45	8	-9.45		

POWER SPECTRAL DENSITY

7.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

DATE: May 22, 2013

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

DATE: May 22, 2013

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TRANSMITTER

8.2.1. Sleeve antenna

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

REPORT NO: 33IE0022-SH-A DATE: May 22, 2013 FCC ID: V9X-STD502R

HARMONICS AND SPURIOUS EMISSIONS

Radiated Emission

No.3 Semi Anechoic Chamber (1G - 15GHz), No.2 Semi Anechoic Chamber (15G - 26GHz, 30M - 1GHz) Test place Date April 19, 2013, April 19, 2013, April 22, 2013, April 23, 2013 23deg.C / 27%RH, 23deg.C / 28%RH Temperature / Humidity 25deg.C / 36%RH, 25deg.C / 36%RH, Akio Hayashi, Tatsuya Arai, Kenichi Adachi, Kenichi Adachi Engineer

 $\begin{array}{ccc} \text{Mode} & & \text{Tx,} & 2402.5 & \text{MHz} \\ & \text{with Sleeve antenna} & & \end{array}$

(* PK : Peak, AV : Average, QP : Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	159.999	QP	23.8	15.4	9.0	31.8	16.4	43.5	27.1	206	59	
Hori.	527.999	QP	38.5	18.1	8.6	31.7	33.5	46.0	12.5	189	95	
Hori.	591.999	QP	37.0	19.0	8.9	31.6	33.3	46.0	12.7	162	271	
Hori.	623.999	QP	37.9	19.4	9.0	31.6	34.7	46.0	11.3	145	124	
Hori.	4805.000	PK	52.2	31.1	7.6	41.2	49.7	73.9	24.2	118	79	
Hori.	7207.500	PK	47.9	36.6	9.1	41.4	52.2	73.9	21.7	104	356	
Hori.	24025.000	PK	51.6	39.8	-1.9	46.5	43.0	73.9	30.9	100	0	noise floor level
Hori.	4805.000	AV	44.5	31.1	7.6	41.2	42.0	53.9	11.9	118	79	
Hori.	7207.500	AV	36.9	36.6	9.1	41.4	41.2	53.9	12.7	104	356	
Hori.	24025.000	AV	38.5	39.8	-1.9	46.5	29.9	53.9	24.0	100	0	noise floor level
Vert.	63.999	QP	27.7	7.7	7.0	31.9	10.5	40.0	29.5	100	309	
Vert.	463.999	QP	41.4	17.3	8.3	31.6	35.4	46.0	10.6	130	109	
Vert.	495.999	QP	40.0	17.7	8.4	31.6	34.5	46.0	11.5	118	112	
Vert.	527.999	QP	39.0	18.1	8.6	31.7	34.0	46.0	12.0	100	63	
Vert.	559.999	QP	39.8	18.5	8.8	31.7	35.4	46.0	10.6	100	122	
Vert.	591.999	QP	40.2	19.0	8.9	31.6	36.5	46.0	9.5	100	141	
Vert.	4805.000	PK	51.3	31.1	7.6	41.2	48.8	73.9	25.1	110	128	
Vert.	7207.500	PK	48.5	36.6	9.1	41.4	52.8	73.9	21.1	100	359	
Vert.	24025.000	PK	51.6	39.8	-1.9	46.5	43.0	73.9	30.9	100	0	noise floor level
Vert.	4805.000	AV	43.1	31.1	7.6	41.2	40.6	53.9	13.3	110	128	
Vert.	7207.500	AV	37.0	36.6	9.1	41.4	41.3	53.9	12.6	100	359	
Vert.	24025.000	AV	38.6	39.8	-1.9	46.5	30.0	53.9	23.9	100	0	noise floor level

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

20dBc Data Sheet (RBW 100kHz, VBW 300kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2402.500	PK	95.3	27.4	25.0	41.4	106.3	-	-	100	277	Carrier
Hori.	2400.000	PK	50.1	27.4	25.0	41.4	61.1	86.3	25.2	100	277	
Vert.	2402.500	PK	92.1	27.4	25.0	41.4	103.1	-	-	103	314	Carrier
Vert.	2400.000	PK	47.2	27.4	25.0	41.4	58.2	83.1	24.9	103	314	

Result = Reading + Ant.Fac. + Loss(Cable+Attenuator+Filter) - Gain(Amplifier)

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Radiated Emission

DATE: May 22, 2013

Test place No.3 Semi Anechoic Chamber (1G - 15GHz), No.2 Semi Anechoic Chamber (15G - 26GHz, 30M - 1GHz) April 23, 2013 April 19, 2013, April 19, 2013, April 22, 2013, 25deg.C / 36%RH, 25deg.C / 36%RH, 23deg.C / 27%RH, 23deg.C / 28%RH Temperature / Humidity Kenichi Adachi, Kenichi Adachi Akio Hayashi, Tatsuya Arai, Engineer

Mode Tx, 2440.5 MHz with Sleeve antenna

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
_	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	159.999	QP	23.7	15.4	9.0	31.8	16.3	43.5	27.2	203	63	
Hori.	527.999	QP	38.3	18.1	8.6	31.7	33.3	46.0	12.7	186	97	
Hori.	591.999	QP	36.8	19.0	8.9	31.6	33.1	46.0	12.9	161	274	
Hori.	623.999	QP	37.7	19.4	9.0	31.6	34.5	46.0	11.5	147	121	
Hori.	4881.000	PK	53.1	31.3	7.7	41.1	51.0	73.9	22.9	100	135	
Hori.	7321.500	PK	48.2	36.6	9.2	41.4	52.6	73.9	21.3	100	359	
Hori.	24405.000	PK	52.0	39.7	-1.8	46.7	43.2	73.9	30.7	100	0	noise floor level
Hori.	4881.000	AV	46.2	31.3	7.7	41.1	44.1	53.9	9.8	100	135	
Hori.	7321.500	AV	36.1	36.6	9.2	41.4	40.5	53.9	13.4	100	359	
Hori.	24405.000	AV	39.1	39.7	-1.8	46.7	30.3	53.9	23.6	100	0	noise floor level
Vert.	63.999	QP	27.8	7.7	7.0	31.9	10.6	40.0	29.4	100	312	
Vert.	463.999	QP	41.2	17.3	8.3	31.6	35.2	46.0	10.8	127	110	
Vert.	495.999	QP	40.1	17.7	8.4	31.6	34.6	46.0	11.4	120	114	
Vert.	527.999	QP	38.9	18.1	8.6	31.7	33.9	46.0	12.1	100	65	
Vert.	559.999	QP	39.6	18.5	8.8	31.7	35.2	46.0	10.8	100	118	
Vert.	591.999	QP	40.0	19.0	8.9	31.6	36.3	46.0	9.7	100	138	
Vert.	4881.000	PK	52.3	31.3	7.7	41.1	50.2	73.9	23.7	100	134	
Vert.	7321.500	PK	47.3	36.6	9.2	41.4	51.7	73.9	22.2	100	357	
Vert.	24405.000	PK	52.1	39.7	-1.8	46.7	43.3	73.9	30.6	100	0	noise floor level
Vert.	4881.000	AV	45.0	31.3	7.7	41.1	42.9	53.9	11.0	100	134	
Vert.	7321.500	AV	36.2	36.6	9.2	41.4	40.6	53.9	13.3	100	357	
Vert.	24405.000	AV	39.2	39.7	-1.8	46.7	30.4	53.9	23.5	100	0	noise floor level

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Radiated Emission

DATE: May 22, 2013

No.3 Semi Anechoic Chamber (1G - 15GHz), No.2 Semi Anechoic Chamber (15G - 26GHz, 30M - 1GHz) Test place Date April 19, 2013, April 19, 2013, April 22, 2013, April 23, 2013 25deg.C / 36%RH, 25deg.C / 36%RH, 23deg.C / 27%RH, 23deg.C / 28%RH Temperature / Humidity Engineer Akio Hayashi, Tatsuya Arai, Kenichi Adachi, Kenichi Adachi

 $\begin{array}{ccc} \text{Mode} & & \text{Tx,} & 2478.5 & \text{MHz} \\ & & \text{with Sleeve antenna} & & \end{array}$

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	. ,	QP	23.5	15.4	9.0	31.8	16.1	43.5	27.4	204	61	
Hori.	527.999	ÔР	38.6	18.1	8.6	31.7	33.6	46.0	12.4	188	93	
Hori.	591.999	OР	37.1	19.0	8.9	31.6	33.4	46.0	12.6	164	273	
Hori.	623.999	QΡ	37.8	19.4	9.0	31.6	34.6	46.0	11.4	144	118	
Hori.	4957.000	PK	50.7	31.6	7.7	41.0	49.0	73.9	24.9	100	135	
Hori.	7435.500	PK	47.0	36.7	9.2	41.5	51.4	73.9	22.5	100	357	
Hori.	24785.000	PK	53.0	39.7	-1.6	46.7	44.4	73.9	29.5	100	0	noise floor level
Hori.	4957.000	AV	41.8	31.6	7.7	41.0	40.1	53.9	13.8	100	135	
Hori.	7435.500	AV	35.7	36.7	9.2	41.5	40.1	53.9	13.8	100	357	
Hori.	24785.000	AV	39.5	39.7	-1.6	46.7	30.9	53.9	23.0	100	0	noise floor level
Vert.	63.999	QP	27.6	7.7	7.0	31.9	10.4	40.0	29.6	100	299	
Vert.	463.999	QP	41.3	17.3	8.3	31.6	35.3	46.0	10.7	126	111	
Vert.	495.999	QP	40.2	17.7	8.4	31.6	34.7	46.0	11.3	116	110	
Vert.	527.999	QP	39.2	18.1	8.6	31.7	34.2	46.0	11.8	100	59	
Vert.	559.999	QP	39.7	18.5	8.8	31.7	35.3	46.0	10.7	100	120	
Vert.	591.999	QP	40.1	19.0	8.9	31.6	36.4	46.0	9.6	100	139	
Vert.	4957.000	PK	50.7	31.6	7.7	41.0	49.0	73.9	24.9	109	132	
Vert.	7435.500	PK	46.9	36.7	9.2	41.5	51.3	73.9	22.6	100	358	
Vert.	I	PK	53.1	39.7	-1.6	46.7	44.5	73.9	29.4	100	0	noise floor level
Vert.	4957.000	AV	42.3	31.6	7.7	41.0	40.6	53.9	13.3	109	132	
Vert.	7435.500	AV	35.7	36.7	9.2	41.5	40.1	53.9	13.8	100	358	
Vert.	24785.000	AV	39.6	39.7	-1.6	46.7	31.0	53.9	22.9	100	0	noise floor level

 $Result = Reading + Ant.Fac. + Loss\left(Cable + Attenuator + Filter-Distance\ factor(above\ 15GHz)\right) - Gain(Amprifier)$

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

8.2.2. Loop PCB antenna

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

REPORT NO: 33IE0022-SH-A DATE: May 22, 2013 FCC ID: V9X-STD502R

HARMONICS AND SPURIOUS EMISSIONS

Radiated Emission

Test place No.3 Semi Anechoic Chamber (1G - 15GHz), No.2 Semi Anechoic Chamber (15G - 26GHz, 30M - 1GHz)

DateApril 19, 2013,April 22, 2013,April 23, 2013Temperature / Humidity25deg.C / 36%RH,23deg.C / 27%RH,23deg.C / 28%RHEngineerTatsuya Arai,Kenichi Adachi,Kenichi Adachi

Mode Tx, 2402.5 MHz with Loop PCB antenna

(* PK: Peak, AV: Average, QP: Quasi-Peak)

	(* PK: Peak, AV: Average, QP: Quasi-Peak) Polarity Frequency Detector Reading Ant.Fac. Loss Gain Result Limit Margin Height Angle Remark													
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark		
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]			
Hori.	144.000	QP	30.4	14.9	8.8	31.8	22.3	43.5	21.2	235	52			
Hori.	431.999	QP	35.2	17.0	8.2	31.6	28.8	46.0	17.2	100	343			
Hori.	463.999	QP	35.0	17.3	8.3	31.6	29.0	46.0	17.0	100	302			
Hori.	495.999	QP	34.2	17.7	8.4	31.6	28.7	46.0	17.3	202	332			
Hori.	559.999	QP	35.1	18.5	8.8	31.7	30.7	46.0	15.3	178	350			
Hori.	4805.000	PK	52.8	31.1	7.6	41.2	50.3	73.9	23.6	100	130			
Hori.	7207.500	PK	48.5	36.6	9.1	41.4	52.8	73.9	21.1	100	263			
Hori.	24025.000	PK	51.6	39.8	-1.9	46.5	43.0	73.9	30.9	100	0	noise floor level		
Hori.	4805.000	AV	44.6	31.1	7.6	41.2	42.1	53.9	11.8	100	130			
Hori.	7207.500	AV	36.7	36.6	9.1	41.4	41.0	53.9	12.9	100	263			
Hori.	24025.000	AV	38.6	39.8	-1.9	46.5	30.0	53.9	23.9	100	0	noise floor level		
Vert.	63.999	QP	35.0	7.7	7.0	31.9	17.8	40.0	22.2	100	22			
Vert.	527.999	QP	38.0	18.1	8.6	31.7	33.0	46.0	13.0	104	209			
Vert.	559.999	QP	36.7	18.5	8.8	31.7	32.3	46.0	13.7	105	152			
Vert.	591.999	QP	36.0	19.0	8.9	31.6	32.3	46.0	13.7	100	155			
Vert.	623.999	QP	35.4	19.4	9.0	31.6	32.2	46.0	13.8	100	170			
Vert.	4805.000	PK	51.0	31.1	7.6	41.2	48.5	73.9	25.4	100	136			
Vert.	7207.500	PK	47.2	36.6	9.1	41.4	51.5	73.9	22.4	100	358			
Vert.	24025.000	PK	51.5	39.8	-1.9	46.5	42.9	73.9	31.0	100	0	noise floor level		
Vert.	4805.000	AV	42.8	31.1	7.6	41.2	40.3	53.9	13.6	100	136			
Vert.	7207.500	AV	36.4	36.6	9.1	41.4	40.7	53.9	13.2	100	358			
Vert.	24025.000	AV	38.5	39.8	-1.9	46.5	29.9	53.9	24.0	100	0	noise floor level		

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)

20dBc Data Sheet (RBW 100kHz, VBW 300kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2402.500	PK	93.0	27.4	25.0	41.4	104.0	-	-	103	85	Carrier
Hori.	2400.000	PK	47.8	27.4	25.0	41.4	58.8	84.0	25.2	103	85	
Vert.	2402.500	PK	93.2	27.4	25.0	41.4	104.2	-	-	100	201	Carrier
Vert.	2400.000	PK	48.3	27.4	25.0	41.4	59.3	84.2	24.9	100	201	

Result = Reading + Ant.Fac. + Loss(Cable + Attenuator + Filter) - Gain(Amplifier)

Distance factor : $15\text{GHz} - 40\text{GHz} : 20\log(3.0\text{m}/1.0\text{m}) = 9.5\text{dB}$

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

DATE: May 22, 2013

Test place No.3 Semi Anechoic Chamber (1G - 15GHz), No.2 Semi Anechoic Chamber (15G - 26GHz, 30M - 1GHz)

DateApril 19, 2013,April 22, 2013,April 23, 2013Temperature / Humidity25deg.C / 36%RH,23deg.C / 27%RH,23deg.C / 28%RHEngineerTatsuya Arai,Kenichi Adachi,Kenichi Adachi

Mode Tx, 2440.5 MHz with Loop PCB antenna

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
'	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	144.001	QP	30.2	14.9	8.8	31.8	22.1	43.5	21.4	231	54	
Hori.	431.999	QP	35.0	17.0	8.2	31.6	28.6	46.0	17.4	100	347	
Hori.	463.999	QP	34.9	17.3	8.3	31.6	28.9	46.0	17.1	100	299	
Hori.	495.999	QP	34.3	17.7	8.4	31.6	28.8	46.0	17.2	201	328	
Hori.	559.999	QP	35.0	18.5	8.8	31.7	30.6	46.0	15.4	173	354	
Hori.	4881.000	PK	51.7	31.3	7.7	41.1	49.6	73.9	24.3	100	129	
Hori.	7321.500	PK	47.3	36.6	9.2	41.4	51.7	73.9	22.2	100	355	
Hori.	24405.000	PK	51.9	39.7	-1.8	46.7	43.1	73.9	30.8	100	0	noise floor level
Hori.	4881.000	AV	44.1	31.3	7.7	41.1	42.0	53.9	11.9	100	129	
Hori.	7321.500	AV	35.9	36.6	9.2	41.4	40.3	53.9	13.6	100	355	
Hori.	24405.000	AV	39.1	39.7	-1.8	46.7	30.3	53.9	23.6	100	0	noise floor level
Vert.	63.999	QP	34.8	7.7	7.0	31.9	17.6	40.0	22.4	100	25	
Vert.	527.999	QP	37.8	18.1	8.6	31.7	32.8	46.0	13.2	103	203	
Vert.	559.999	QP	36.6	18.5	8.8	31.7	32.2	46.0	13.8	106	151	
Vert.	591.999	QP	35.8	19.0	8.9	31.6	32.1	46.0	13.9	100	159	
Vert.	623.999	QP	35.2	19.4	9.0	31.6	32.0	46.0	14.0	100	168	
Vert.	4881.000	PK	51.8	31.3	7.7	41.1	49.7	73.9	24.2	100	138	
Vert.	7321.500	PK	47.6	36.6	9.2	41.4	52.0	73.9	21.9	100	358	
Vert.	24405.000	PK	52.0	39.7	-1.8	46.7	43.2	73.9	30.7	100	0	noise floor level
Vert.	4881.000	AV	43.2	31.3	7.7	41.1	41.1	53.9	12.8	100	138	
Vert.	7321.500	AV	35.9	36.6	9.2	41.4	40.3	53.9	13.6	100	358	
Vert.	24405.000	AV	39.1	39.7	-1.8	46.7	30.3	53.9	23.6	100	0	noise floor level

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

DATE: May 22, 2013

No.3 Semi Anechoic Chamber (1G - 15GHz), No.2 Semi Anechoic Chamber (15G - 26GHz, 30M - 1GHz)

April 19, 2013, April 22, 2013, April 23, 2013 Date Temperature / Humidity 25deg.C / 36%RH, 23deg.C / 27%RH, 23deg.C / 28%RH Kenichi Adachi, Kenichi Adachi Tatsuya Arai, Engineer

Mode 2478.5 MHz with Loop PCB antenna

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	144.001	QP	30.3	14.9	8.8	31.8	22.2	43.5	21.3	229	55	
Hori.	431.999	QP	35.3	17.0	8.2	31.6	28.9	46.0	17.1	100	346	
Hori.	463.999	QP	34.8	17.3	8.3	31.6	28.8	46.0	17.2	100	301	
Hori.	495.999	QP	34.0	17.7	8.4	31.6	28.5	46.0	17.5	199	333	
Hori.	559.999	QP	35.2	18.5	8.8	31.7	30.8	46.0	15.2	169	353	
Hori.	4957.000	PK	50.8	31.6	7.7	41.0	49.1	73.9	24.8	100	124	
Hori.	7435.500	PK	47.0	36.7	9.2	41.5	51.4	73.9	22.5	100	358	
Hori.	24785.000	PK	52.9	39.7	-1.6	46.7	44.3	73.9	29.6	100	0	noise floor level
Hori.	4957.000	AV	42.5	31.6	7.7	41.0	40.8	53.9	13.1	100	124	
Hori.	7435.500	AV	35.4	36.7	9.2	41.5	39.8	53.9	14.1	100	358	
Hori.	24785.000	AV	39.4	39.7	-1.6	46.7	30.8	53.9	23.1	100	0	noise floor level
Vert.	63.999	QP	35.1	7.7	7.0	31.9	17.9	40.0	22.1	100	24	
Vert.	527.999	QP	37.9	18.1	8.6	31.7	32.9	46.0	13.1	106	202	
Vert.	559.999	QP	36.8	18.5	8.8	31.7	32.4	46.0	13.6	104	151	
Vert.	591.999	QP	35.9	19.0	8.9	31.6	32.2	46.0	13.8	100	153	
Vert.	623.999	QP	35.5	19.4	9.0	31.6	32.3	46.0	13.7	100	173	
Vert.	4957.000	PK	51.0	31.6	7.7	41.0	49.3	73.9	24.6	100	137	
Vert.	7435.500	PK	48.0	36.7	9.2	41.5	52.4	73.9	21.5	100	358	
Vert.	24785.000	PK	53.0	39.7	-1.6	46.7	44.4	73.9	29.5	100	0	noise floor level
Vert.	4957.000	AV	42.6	31.6	7.7	41.0	40.9	53.9	13.0	100	137	
Vert.	7435.500	AV	35.5	36.7	9.2	41.5	39.9	53.9	14.0	100	358	
Vert.	24785.000	AV	39.5	39.7	-1.6	46.7	30.9	53.9	23.0	100	0	noise floor level

Result = Reading + Ant.Fac. + Loss (Cable+ Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier) Distance factor : 15GHz - 40GHz : 20log(3.0m/1.0m)= 9.5dB

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

8.2.3. Coaxial antenna
RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

REPORT NO: 33IE0022-SH-A DATE: May 22, 2013 FCC ID: V9X-STD502R

HARMONICS AND SPURIOUS EMISSIONS

Radiated Emission

Test place No.3 Semi Anechoic Chamber (1G - 15GHz), No.2 Semi Anechoic Chamber (15G - 26GHz, 30M - 1GHz)

DateApril 19, 2013,April 22, 2013,April 23, 2013Temperature / Humidity25deg.C / 36%RH,23deg.C / 27%RH,23deg.C / 28%RHEngineerTatsuya Arai,Kenichi Adachi,Kenichi Adachi

Mode Tx, 2402.5 MHz with Coaxial antenna

(* PK : Peak, AV : Average, QP : Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
1 0.1	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	144,001	QΡ	28.5	14.9	8.8	31.8	20.4	43.5	23.1	227	219	
Hori.		OP	34.4	17.0	8.2	31.6	28.0	46.0	18.0	100	353	
Hori.		OP	36.3	18.5	8.8	31.7	31.9	46.0	14.1	176	170	
Hori.	1	OP	33.8	19.0	8.9	31.6	30.1	46.0	15.9	159	180	
Hori.	623.999	OP	33.1	19.4	9.0	31.6	29.9	46.0	16.1	153	177	
Hori.	687.999	QP QP	33.0	20.4	9.3	31.6	31.1	46.0	14.9	132	184	
Hori.		PK	54.6	31.1	7.6	41.2	52.1	73.9	21.8	100	133	
Hori.	7207.500		48.8	36.6	9.1	41.4	53.1	73.9	20.8	100	357	
Hori.	1	PK	51.6	39.8	-1.9	46.5	43.0	73.9	30.9	100		noise floor level
	4805.000						45.0 45.7				-	
Hori.	1		48.2	31.1	7.6	41.2		53.9	8.2	100	133	
Hori.		AV	36.5	36.6	9.1	41.4	40.8	53.9	13.1	100	357	
Hori.		AV	38.6	39.8	-1.9	46.5	30.0	53.9	23.9	100	0	noise floor level
Vert.		QP	33.9	7.7	7.0	31.9	16.7	40.0	23.3	100	4	
Vert.	1	QP	36.2	17.3	8.3	31.6	30.2	46.0	15.8	118	223	
Vert.	495.999	QP	36.7	17.7	8.4	31.6	31.2	46.0	14.8	112	63	
Vert.	527.999	QP	37.3	18.1	8.6	31.7	32.3	46.0	13.7	100	46	
Vert.	559.999	QP	35.5	18.5	8.8	31.7	31.1	46.0	14.9	100	157	
Vert.	591.999	QP	34.5	19.0	8.9	31.6	30.8	46.0	15.2	100	167	
Vert.	4805.000	PK	53.2	31.1	7.6	41.2	50.7	73.9	23.2	100	133	
Vert.	7207.500	PK	48.1	36.6	9.1	41.4	52.4	73.9	21.5	100	358	
Vert.	24025.000	PK	51.7	39.8	-1.9	46.5	43.1	73.9	30.8	100	0	noise floor level
Vert.	4805.000	AV	46.0	31.1	7.6	41.2	43.5	53.9	10.4	100	133	
Vert.	7207.500	AV	36.7	36.6	9.1	41.4	41.0	53.9	12.9	100	358	
Vert.	24025.000	AV	38.7	39.8	-1.9	46.5	30.1	53.9	23.8	100	0	noise floor level

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

20dBc Data Sheet (RBW 100kHz, VBW 300kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2402.500	PK	90.7	27.4	25.0	41.4	101.7	-	-	100	208	Carrier
Hori.	2400.000	PK	45.5	27.4	25.0	41.4	56.5	81.7	25.2	100	208	
Vert.	2402.500	PK	90.2	27.4	25.0	41.4	101.2	-	-	117	233	Carrier
Vert.	2400.000	PK	45.3	27.4	25.0	41.4	56.3	81.2	24.9	117	233	

Result = Reading + Ant.Fac. + Loss(Cable+Attenuator+Filter) - Gain(Amplifier)

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

DATE: May 22, 2013

Test place No.3 Semi Anechoic Chamber (1G - 15GHz), No.2 Semi Anechoic Chamber (15G - 26GHz, 30M - 1GHz)

DateApril 19, 2013,April 22, 2013,April 23, 2013Temperature / Humidity25deg.C / 36%RH,23deg.C / 27%RH,23deg.C / 28%RHEngineerTatsuya Arai,Kenichi Adachi,Kenichi Adachi

Mode Tx, 2440.5 MHz with Coaxial antenna

(* PK : Peak, AV : Average, QP : Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	144.000	QP	28.3	14.9	8.8	31.8	20.2	43.5	23.3	225	224	
Hori.	431.999	QP	34.2	17.0	8.2	31.6	27.8	46.0	18.2	100	355	
Hori.	559.999	QP	36.2	18.5	8.8	31.7	31.8	46.0	14.2	174	172	
Hori.	591.999	QP	33.7	19.0	8.9	31.6	30.0	46.0	16.0	162	182	
Hori.	623.999	QP	33.0	19.4	9.0	31.6	29.8	46.0	16.2	154	175	
Hori.	687.999	QP	32.6	20.4	9.3	31.6	30.7	46.0	15.3	151	179	
Hori.	4881.000	PK	52.8	31.3	7.7	41.1	50.7	73.9	23.2	100	130	
Hori.	7321.500	PK	47.1	36.6	9.2	41.4	51.5	73.9	22.4	100	357	
Hori.	24405.000	PK	52.1	39.7	-1.8	46.7	43.3	73.9	30.6	100	0	noise floor level
Hori.	4881.000	AV	45.1	31.3	7.7	41.1	43.0	53.9	10.9	100	130	
Hori.	7321.500	AV	35.9	36.6	9.2	41.4	40.3	53.9	13.6	100	357	
Hori.	24405.000	AV	39.2	39.7	-1.8	46.7	30.4	53.9	23.5	100	0	noise floor level
Vert.	63.999	QP	33.8	7.7	7.0	31.9	16.6	40.0	23.4	100	358	
Vert.	463.999	QP	36.0	17.3	8.3	31.6	30.0	46.0	16.0	116	226	
Vert.	495.999	QP	36.6	17.7	8.4	31.6	31.1	46.0	14.9	111	65	
Vert.	527.999	QP	37.2	18.1	8.6	31.7	32.2	46.0	13.8	100	44	
Vert.	559.999	QP	35.3	18.5	8.8	31.7	30.9	46.0	15.1	100	159	
Vert.	591.999	QP	34.3	19.0	8.9	31.6	30.6	46.0	15.4	100	165	
Vert.	4881.000	PK	51.2	31.3	7.7	41.1	49.1	73.9	24.8	100	135	
Vert.	7321.500	PK	47.3	36.6	9.2	41.4	51.7	73.9	22.2	100	358	
Vert.		PK	52.0	39.7	-1.8	46.7	43.2	73.9	30.7	100	0	noise floor level
Vert.	4881.000	AV	42.5	31.3	7.7	41.1	40.4	53.9	13.5	100	135	
Vert.	7321.500	AV	36.0	36.6	9.2	41.4	40.4	53.9	13.5	100	358	
Vert.	24405.000	AV	39.1	39.7	-1.8	46.7	30.3	53.9	23.6	100	0	noise floor level

Result = Reading + Ant.Fac. + Loss (Cable+ Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amprifier)
Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

DATE: May 22, 2013

Test place No.3 Semi Anechoic Chamber (1G - 15GHz), No.2 Semi Anechoic Chamber (15G - 26GHz, 30M - 1GHz)

DateApril 19, 2013,April 22, 2013,April 23, 2013Temperature / Humidity25deg.C / 36%RH,23deg.C / 27%RH,23deg.C / 28%RHEngineerTatsuya Arai,Kenichi Adachi,Kenichi Adachi

 $\begin{array}{ccc} \text{Mode} & & \text{Tx,} & 2478.5 & \text{MHz} \\ & & \text{with Coaxial antenna} \end{array}$

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Tromon m	Detector	Readino	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
Polatity	Frequency	Detector								U		Kelliaik
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	144.001	QP	28.4	14.9	8.8	31.8	20.3	43.5	23.2	229	222	
Hori.	431.999	QP	34.2	17.0	8.2	31.6	27.8	46.0	18.2	100	351	
Hori.	559.999	QP	36.1	18.5	8.8	31.7	31.7	46.0	14.3	172	168	
Hori.	591.999	QP	33.6	19.0	8.9	31.6	29.9	46.0	16.1	157	178	
Hori.	623.999	QP	33.0	19.4	9.0	31.6	29.8	46.0	16.2	153	173	
Hori.	687.999	QP	32.7	20.4	9.3	31.6	30.8	46.0	15.2	136	186	
Hori.	4957.000	PK	48.1	31.6	7.7	41.0	46.4	73.9	27.5	100	85	
Hori.	7435.500	PK	46.5	36.7	9.2	41.5	50.9	73.9	23.0	100	359	
Hori.	24785.000	PK	53.0	39.7	-1.6	46.7	44.4	73.9	29.5	100	0	noise floor level
Hori.	4957.000	AV	37.3	31.6	7.7	41.0	35.6	53.9	18.3	100	85	
Hori.	7435.500	AV	35.5	36.7	9.2	41.5	39.9	53.9	14.0	100	359	
Hori.	24785.000	AV	39.4	39.7	-1.6	46.7	30.8	53.9	23.1	100	0	noise floor level
Vert.	63.999	QP	33.8	7.7	7.0	31.9	16.6	40.0	23.4	100	6	
Vert.	463.999	QP	36.1	17.3	8.3	31.6	30.1	46.0	15.9	115	231	
Vert.	495.999	QP	36.5	17.7	8.4	31.6	31.0	46.0	15.0	110	59	
Vert.	527.999	QP	37.1	18.1	8.6	31.7	32.1	46.0	13.9	100	45	
Vert.	559.999	QP	35.4	18.5	8.8	31.7	31.0	46.0	15.0	100	162	
Vert.	591.999	QP	34.4	19.0	8.9	31.6	30.7	46.0	15.3	100	169	
Vert.	4957.000	PK	48.2	31.6	7.7	41.0	46.5	73.9	27.4	100	134	
Vert.	7435.500	PK	46.1	36.7	9.2	41.5	50.5	73.9	23.4	100	358	
Vert.	24785.000	PK	52.9	39.7	-1.6	46.7	44.3	73.9	29.6	100	0	noise floor level
Vert.	4957.000	AV	38.2	31.6	7.7	41.0	36.5	53.9	17.4	100	134	
Vert.	7435.500	AV	35.4	36.7	9.2	41.5	39.8	53.9	14.1	100	358	
Vert.	24785.000	AV	39.4	39.7	-1.6	46.7	30.8	53.9	23.1	100	0	noise floor level

 $Result = Reading + Ant.Fac. + Loss (Cable+ Attenuator+ Filter- Distance factor (above 15 GHz)) - Gain (Amprifier) \\ Distance factor : 15 GHz - 40 GHz : 20 log (3.0 m/1.0 m) = 9.5 dB$

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

8.3. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted I	imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

DATE: May 22, 2013

TEST PROCEDURE

ANSI C63.4

Decreases with the logarithm of the frequency.

REPORT NO: 33IE0022-SH-A FCC ID: V9X-STD502R

RESULTS

Sleeve antenna

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Shonan EMC Lab. No.2 Shielded Room Date : 2013/04/24

DATE: May 22, 2013

Mode Order No.

Circuit Design, Inc. 2.4 GHz DSSS low power radio transceiv STD-502-R S0000003 : Transmitting 2402.5MHz : 33IE0022-SH : DC 5V (DC supply: AC120V/60Hz) : 24deg.C. / 42%RH Company Kind of EUT Model No. Power Temp./Humi.

Serial No. Remarks (Sleeve antenna)

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV **Engineer** : Kenichi Adachi

<< QP/AV DATA >>

I	Eroa	Rea		C Eas	Res		Lin			rg in		
No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15000	21.0	-5.6	12.6	33.6	7.0	66.0	56.0	32.4	49.0		
2	0.28136		-5.9	12.6	30.0	6.7	60.7	50.7	30.7	44.0		
3	0.50001	12.9	-9.6	12.6	25.5	3.0	56.0	46.0				
4	1.83475	0.8	-13.2	12.8	13.6	-0.4	56.0	46.0				
5	7.66503	-9.3	-14.0	13.2	3.9	-0.8	60.0	50.0		50.8		
6	19.66351	5.9	3.0	14.2	20.1	17.2	60.0	50.0	39.9	32.8		
7	0.15000	20.8	-5.7	12.6	33.4	6.9	66.0	56.0				
8	0.28136	17.5	-6.3	12.6	30.1	6.3	60.7	50.7	30.6			
9	0.50001	12.8	-9.9	12.6	25.4	2.7	56.0	46.0				
10	1.83475	1.1	-13.1	12.8	13.9	-0.3	56.0	46.0		46.3		
11	7.66503	-9.7	-14.0	13.2	3.5	-0.8	60.0	50.0				
12	19.66351	1.9	-1.0	14.2	16.1	13.2	60.0	50.0	43.9	36.8	L1	
-												
-												
-			ļ									
-												
-												
- 1												
-												
-												
- 1												
- 1												
- 1												
- 1												
- 1												
- 1												
- 1												
- 1												
- 1												
- 1												
- 1												
- 1												
- 1												
-												
- 1												
-												
- [
- 1												
-												
- [I		J	l	l							
	I											
	l											
	l											
-	I		J		l							
- 1			J								1	
- 1			J								1	
- 1											l	
- 1		•									l	1

Calculation: Result[dBuV] = Reading[dBuV] + C.Fac(LISN + Cable + ATT)[dB]LISN:SLS-03

LINE 1 RESULTS

Sleeve antenna

DATE: May 22, 2013

LINE 2 RESULTS

Sleeve antenna

REPORT NO: 33IE0022-SH-A FCC ID: V9X-STD502R

RESULTS

Loop PCB antenna

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Shonan EMC Lab. No.2 Shielded Room Date: 2013/04/24

DATE: May 22, 2013

: Circuit Design, Inc.

2.4 GHz DSSS low power radio transceiv Order No.

STD-502-R Power
S0000003 Temp./Hu

(Loop antenna) Company Kind of EUT Model No. Serial No. Remarks : Transmitting 2402.5MHz : 33IE0022-SH : DC 5V (DC supply: AC120V/60Hz) : 24deg.C. / 42%RH Temp./Humi.

Limit1: FCC 15C (15.207) QP Limit2: FCC 15C (15.207) AV Engineer : Kenichi Adachi

<< QP/AV DATA >>

Г	1	41 / /// 2//		dia a		Res	ulia I	Lir	-11	Mar	rgin		
	No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Phase	Comment
		[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]	111400	- Commont
r	1	0.15000	21.1	-5.5	12.6	33.7	7.1	66.0	56.0	32.3	48.9	N	
	2	0.28145	17.5	-5.8	12.6	30.1	6.8	60.7	50.7	30.6	43.9	Ň	
	3	0.50001	12.9	-9.5	12.6	25.5	3.1	56.0	46.0	30.5	42.9	Ň	
	4	1.83488	0.9	-13.9	12.8	13.7	-1.1	56.0	46.0	42.3	47.1	Ň	
	5	7.66511	-9.2	-13.9	13.2	4.0	-0.7	60.0	50.0			Ň	
١	6	19.66338	9.9	7.1	14.2	24.1	21.3	60.0	50.0			N	
ı	7	0.15000	20.9	-5.6	12.6	33.5	7.0	66.0	56.0				
	8	0.28145	17.6	-6.2	12.6	30.2	6.4	60.7	50.7	30.5	44.3	L1	
	9	0.50001	12.9	-9.7	12.6	25.5	2.9	56.0	46.0	30.5	43.1	L1	
	10	1.83488	1.2	-13.0	12.8	14.0	-0.2	56.0	46.0	42.0	46.2	L1	
	11	7.66511	-9.6	-13.9	13.2	3.6	-0.7	60.0	50.0			L1	
	12	19.66338	5.8	3.0	14.2	20.0	17.2	60.0	50.0	40.0	32.8	L1	
	- 1												
	- 1												
	- 1												
	- 1												
	- 1												
	- 1												
	- 1												
	- 1												
	- 1												
	- 1												
	- 1												
	- 1												
	- 1											1	
	- 1												
	- 1												
	- 1												
		ļ											
	- 1												
	- 1												
	- 1				-	-	-						
	- 1												
		ļ			-		-						
	- 1												
	- 1	ļ											
	1												
		ļ			1	- 1	1						
	ı										1	1	
	- 1	ļ									1	1	
	- 1								1		1	1	1

Calculation:Result[dBuV]=Reading[dBuV]+C.Fac(LISN+Cable+ATT)[dB]

LISN:SLS-03

LINE 1 RESULTS

Loop PCB antenna

DATE: May 22, 2013

LINE 2 RESULTS

Loop PCB antenna

RESULTS

Coaxial antenna

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Shonan EMC Lab. No.2 Shielded Room Date: 2013/04/24

DATE: May 22, 2013

Circuit Design, Inc.
2.4 GHz DSSS low power radio transceiv
STD-502-R
S0000003
(Coaxial antenna)

Mode
Order No.
Power
Temp./Hu Company Kind of EUT Model No. Serial No. Remarks

: Transmitting 2402.5MHz : 33IE0022-SH : DC 5V (DC supply: AC120V/60Hz) : 24deg.C. / 42%RH Temp./Humi.

Limit1: FCC 15C (15.207) QP Limit2: FCC 15C (15.207) AV : Kenichi Adachi Engineer

<< QP/AV DATA >>

Γ	T		Rea	dina		Res	ults	Lir	nit	Mai	gin		
1	No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Phase	Comment
1		[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]	1	
Т	1	0.15000		-5.7	12.6	33.5	6.9	66.0	56.0	32.5		N	
	2	0.28168		-6.0	12.6	29.9	6.6	60.7	50.7	30.8			
	3	0.50001	12.8	-9.7	12.6	25.4	2.9	56.0	46.0	30.6			
	4	1.83528		-13.3	12.8	13.6	-0.5	56.0	46.0	42.4			
	5	7.66489		-14.1	13.2	3.8	-0.9	60.0	50.0	56.2			
	6	19.663 49		2.9	14.2	20.0	17.1	60.0	50.0	40.0			
	7	0.15000		-5.8	12.6	33.4	6.8	66.0	56.0	32.6			
	8	0.28168		-6.4	12.6	30.0	6.2	60.7	50.7	30.7	44.5		
	9 10	0.50001 1.83528	12.7 1.0	-9.9 -13.1	12.6 12.8	25.3 13.8	2.7 -0.3	56.0 56.0	46.0 46.0	30.7 42.2	43.3 46.3		
	11	7.66489		-13.1	13.2	3.6	-0.3	60.0	50.0	56.4			
	12	19.66349		-0.9	14.2	16.2	13.3	60.0	50.0	43.8			
	'-	13.000 43	2.0	0.3	14.2	10.2	10.0	00.0	30.0	40.0	00.7	-'	
	1											l	
	- 1											l	
	ı											l	
	- 1												
												l	
	-											l	
	-											l	
	- 1											l	
	- 1											ŀ	
	1											l	
	1											ł	
	1											İ	
	İ												
	1											l	
	ı											l	
	- [
	- 1											l	
	-											l	
1	-												
1													
	-												
1													
	- 1											l	
	1											l	
	- 1											l	
1	- 1											l	
1	ı											l	
	- 1											l	
	- 1											l	
1	- 1												
1												l	

Calculation:Result[dBuV]=Reading[dBuV]+C.Fac(LISN+Cable+ATT)[dB] LISN:SLS-03

LINE 1 RESULTS

Coaxial antenna

DATE: May 22, 2013

LINE 2 RESULTS

Coaxial antenna

