Lab Assignment 8

Wednesday, May 5, 2021

The electric field due to a point charge can be expressed as the negative gradient of the electric potential. Mathematically, it can be written as

$$\vec{E} = -\vec{\nabla}\phi\tag{1}$$

where,

 \vec{E} is the electric field,

 ϕ electric potential due to the point charge, and

 $\vec{\nabla}$ is the gradient operator ($\vec{\nabla} = \hat{i} \frac{d}{dx}$ in one dimentional case).

The potential due to a point charge is given by

$$\phi(x) = \frac{1}{4\pi\epsilon_0} \frac{q}{x} \tag{2}$$

where,

 $\vec{\epsilon_0}$ is the permittivity of free space, q is the point charge, and

x is the distance from the charge.

Question:

Develop a code to perform numerical differentiation using forward, backward and centered difference methods. Your code should have the following components.

• Firstly, generate the values of $\phi(x)$ in the range $1 \le x \le 5$ and store them in an array. Use a step-size of h = 0.1.

You may take, for the ease of calculations, $\epsilon_0 = 1$, and q = 1 in their appropriate units.

Write three user defined functions that differentiates the eq.(1) using forward, backward and centered
calculations.

The functions should be of the form

double difference_method(double y1, double y2, double step);

- Use these functions in main(), and store the results in a file, along with the analytical result.
- Make a graph of the data obtained through forward, backward and centered calculations (with lines) along with the analytical data (with points).

• What do you infer from this exercise?

Note: Please send all the files attached to a folder and upload it. The uploaded folder (folder-name format: Rollno.-name) should contain the source code, the output file (graph in jpg/jpeg/png format) and the also observations in a seperate file. Please upload only the necessary files and refrain from uploading multiple files.