Aula 09

Processos de Furação, Alargamento e Rosquameto

Formas de obtenção de furos

Processo de usinagem onde movimento de corte é principal rotativo, e o movimento de avanço é na direção do eixo

Furadeira a arco egípicia de 1.000 A.C.

- → 1800 primeiras publicações sobre furação de metais
- → 1884 Morse Twist Drill and Machine Company
- → 1891 Primeiros testes de furação

Broca helicoidal

Processo de furação com brocas helicoidais

Simulação do processo de furação (www.deform.de)

Furação com brocas helicoidais

- Processo de maior importância 20 a 25% do total de aplicações dos processos de usinagem
- A broca helicoidal é a ferramenta mais fabricada e mais difundida para usinagem
- Existem aproximadamente 150 formas de afiações e uma série de perfis específicos
- Utilização em furos curtos ou profundos
- Utilização na furação em cheios ou com pré-furo

Particularidades do processo

 A velocidade de corte vai de um valor máximo na periferia da broca até o valor zero no seu centro

$$r \to 0 \Rightarrow v_c \to 0$$
; $r \to r \Rightarrow v_c \to v_c \max$

- Dificuldade no transporte dos cavacos para fora da região do corte
- Distribuição não adequada de calor na região do corte
- Desgaste acentuado nas quinas com canto vivo
- Atrito das guias nas paredes do furo

Fatores que contribuem para qualidade de furos com de brocas helicoidais

Cinemática do processo

Cinemática do processo Distrbuição entre rotação e avanço

Constituntes de brocas

Broca helicoidal

 α = ângulo de incidência

 β = ângulo de cunha

 γ = ângulo de saída

 σ = ângulo de ponta

 Ψ = ângulo do gume transversal

 ε = ângulo de quina

rε = raio de quina

Geometria das brocas helicoidais

Geometria da cunha de corte

- O gume transversal é parte integrante do gume principal, e tem como função estrudar material na direção do gume principal
- Gume principal é o gume cortante e aponta no sentido de corte
- A forma e o ângulo de hélice da broca definem o ângulo de saída g, que não é constante ao longo do gume principal
- γ tem valor máximo na quina da broca e diminui no sentido de centro da broca, tornando-se negativo na passagem para o gume transversal.

Geometria da cunha de corte

- γ (e consequentemente δ) são variados de acordo com as características do material a ser usinado
- Guia reduz atrito com as paredes e direciona a broca
- Haste: fixação na máquina
- Canal: retirada de cavaco
- Canal interno: alimentação do fluido lubri-refrigerante

Grupos principais de brocas helicoidais

Tipo	Aplicação	Representação
N	Materiais de peça normais Ex. aços δ entre 18 e 30°	8
Н	Materiais de peça duros Ex. Aços liga, ferro-fundido δ entre 18 e 30°	8
W	Materiais de peça duros Ex. Alumínio, bronze δ entre 18 e 30°	5 <u> </u>

Afiações de brocas helicoidais

Afiações de brocas helicoidais

Afiações especiais de brocas helicoidais

Forças em brocas helicoidais

Requisitos para materiais de brocas

- Tenacidade
- Resistência a compressão
- Resistência a abrasão
- Resistência térmica
- Resistência ao choque e a fadiga

Formas construtivas de brocas em função do material

• Broca com soldada

Broca Integral

Broca com incerto

Aço ferramenta

- Muito pouco empregado em aplicações industriais
- Brocas para hobby
- Brocas de baixo custo para aplicações simples
- Brocas para materiais de fácil usinagem, tais como alumínio, plásticos e madeira

Aço-rápido

- Largamente empregado na fabricação de brocas (fácil reprocessamento e bons requisitos técnicos)
- As ferramentas são temperadas, sofrem tratamento superficial (nitretação) e frequentemente são revestidas
- Ferramentas não integrais

Metal duro

- Homogeneidade, elevadas dureza, resistência à compressão e ao desgaste à quente
- As velocidades de corte podem ser até 3 vezes maiores que as utilizadas com ferramentas de aço rápido
- Qualidade do furo 3 classes IT melhores que os obtidos na usinagem com aço rápido
- Aplicação de ferramentas de metal duro exige máquinas com características de velocidade, potência, refrigeração e rigidez adequadas
- Brocas podem ser maciças (maior aceitação) ou com insertos intercambiáveis – com ou sem revestimento

Desgaste em Broca Helicoidais

- Desgaste de flanco (Vb) baixa qualidade, imprecisões e aumento do atrito
- Desgaste nas guias não gera aumento no momento
- Desgaste do gume transversal arredondamento e possível lascamento das zonas de transição
- Desgaste de cratera remoção de material por abrasão e difusão
- Gume postiço adesão do material da peça encruado na ferramenta
- Fratura fim catastrófico

Desgaste em Broca Helicoidais

Exemplos de desgaste em brocas

(a) lascamento de gume (b) desgase abrasivo

Exemplo da volução de desgaste abrasivo em brocas helicoidais

Critério de fim de vida em furação

Definição: perda do controle sobre os cavacos ou iminência de uma quebra rápida

Fatores considerados

- Textura superficial
- Exatidão dimensional e geométrica
- Estado da ferramenta
- Formação do cavaco
- Vida restante da ferramenta

Critério de fim de vida em furação

Critérios de fim de vida utilizados na prática

- Tempo de máquina
- Tempo efetivo de corte
- Volume de metal removido
- Número de peças usinadas
- Velocidade de corte equivalente
- Comprimento usinado equivalente
- Velocidade de corte relativa

Fatores que influenciam a qualidade e precisão do furo

- Erros geométricos
- Erros dimensionais
- Posicionamento
- Circularidade
- Forma
- Presença de rebarbas
- Processo
- Peça
- Ferramenta
- Máquina
- Parâmetros
- Rigidez.

Fatores que influenciam a qualidade e precisão do furo

- Máquinas onde são utilizadas buchas precisão da broca em relação ao diâmetro e circularidade, não é tão crítica
- Máquinas de comando numérico / máquinas de precisão a precisão da broca é crítica
- Brocas padrão podem necessitar de uma nova retificação para operações de precisão
- Retificação inadequada, desbalanceamento das forças, deflexão na broca, erros nos furos

Erros comuns na geometria do furo

Variações do processo de furação

Rebaixamento

- A usinagem não é feita em material maciço
- Rebaixamento de alargamento de um furo cilíndrico
- Rebaixamento plano, de uma superfície cônica ou de uma superfície perfilada
- Rebaixamento combinado de uma superfície cilíndrica e uma superfície de topo

Ferramentas de rebaixamento

Rebaixador com ponta ou escareador

Rebaixador com guia

Rebaixador escalonado

Tipos de Furadeiras

Fixação de ferramentas na furação

Brocas com haste cilindricas

→Mandril

• Os de três castanhas são os mais utilizados

Aperto manual ou com chave

Fixação de ferramentas na furação

Exemplos de pinças

Processo de Furação Profunda

Furação profunda

Relações profundidade/diâmetro (L/D)

- Relações I/D > 20 até 150: com freqüência I/D<20 já é considerado furação profunda
- 3< L/D <5: uso de brocas helicoidais convencionais com furação contínua
- L/D >5: uso de brocas helicoidais convencionais, com furação em ciclos
- L/D >>5: processos específicos, empregando brocas de canais retos, brocas canhão, brocas de gume único, brocas BTA e *Ejektor*.

Generalidades do processo de furação profunda

Com brocas helicoidais especiais - interrupção frequente do processo para retirada de cavacos

Ciclos de furação

Generalidades do processo de furação profunda

- Ferramentas especiais assimetria na posição dos gumes
- Fluido de corte alimentação interna transporte de cavacos
- Cunha em metal duro altas velocidades de corte
- A furação profunda é aplicada com vantagem nas seguintes operações:
 - → Usinagem de materiais com alta porcentagem de elementos de liga
 - → Usinagem de materiais com resistência à tração acima de 1200 N/mm²
 - → Remoção de elevado volume de material na unidade de tempo
 - → Exigências elevadas de tolerância de qualidade superficial e geométrica do furo.

Requisitos para a furação profunda

Máquinas-ferramentas:

- maior rigidez e estabilidade dinâmica
- dispositivos de fixação que permitem maior rigidez na ferramenta

Fluido:

alta pressão para extração de cavaco e refrigeração do gume

Brocas:

• brocas específicas para grandes relações L/D.

Fatores limitantes nos processos de furação profunda

- Usinabilidade do material da peça
- Estabilidade da ferramenta e da máquina
- Precisão da máquina-ferramenta
- Composição do fluido de corte
- Material da ferramenta

Ferramentas utilizadas na furação profunda

Broca de canais retos

Características

Alta resistência a torção

Princípio de funcionamento da furação com brocas de canais retos

Broca canhão (gume único)

Caracterísitcas

- Auto-guiada
- Alimentação de fluido a alta pressão pela haste
- Transporte de cavaco pela ranhura V
- Necessidade de bucha guia

Broca canhão (gume único)

Aplicações da broca canhão

- Furação em cheio
- Furação escalonada
- Trepanação
- Alargamento
- Furação profunda de materiais com dureza até 50 HRC

Constituintes das brocas canhão

Furação com broca BTA

Características

- Alternativa para brocas convencionais, melhorando qualidade superficial e reduzindo esforços
- Requer dispositivo complexo para alimentação do fluido

Princípio de funcionamento da furação com broca BTA

Furação com broca EJEKTOR

Características

- Furação profunda em máquinas-ferramentas simples
- Alimentação de fluido por haste tubular duplo concêntrica
- Peculiaridades do processo ejektor
- Tubeiras especiais: depressão para expulsão de fluido e sucção de cavaco
- Divisão do gume: redução do atrito, dos esforços laterais, do calor desenvolvido e do desgaste das guias.

Constituintes das brocas EJEKTOR

Princípio de funcionamento da furação com broca EJEKTOR

Processos de Alargamento

Alargamento

Definição: Processo de usinagem em geral utilizado para produzir furos com alta definição geométrica, dimensional e qualidade superficial.

v_C alargamento ~ 65 a 75 % da v_C usada para furação

Generalidades

Alargamento com ferramentas de múltiplos gumes e com ferramentas de gume único

Para evitar o aparecimento de vibrações se trabalha com divisão não regular dos gumes (número impar de dentes)

Tipos de alagadores

Alargador de múltiplos gumes

Alargador de gume único

Quanto ao tipo de operação

De desbaste

Usados para aumentar diâmetros de furos em bruto

De acabamento

Usados para a obtenção de furos calibrados, com exigências quanto ao acabamento e precisão

Quanto ao tipo de dentes

Quanto à fixação

Haste cilindrica

Haste cônica

Quanto ao uso

• Alargadores manuais \Rightarrow os manuais tem chanfro na entrada maior e

de menor inclinação

Alargadores máquina

Alargador máquina

Alargador manual

Classificação dos alargadores Quanto à geometria do furo

- Alargadores paralelos
 Alargadores cônicos

corte M-M

Geometria dos alargadores

γ₀ - Ângulo de saída ortogonal

 χ_r - Ângulo de direção do gume

 γ_p - Ângulo de saída passivo do gume secundário

γ_f - Ângulo de saída lateral (ângulo de hélice)

a₀- Ângulo de incidência ortogonal

a'p - Ângulo de incidência passivo do gume secundário

Escolha do tipo de alargador

Fatores de influência

- Aplicação manual ou mecânica;
- Características do furo como profundidade, furo passante ou cego, interrompido, estado do pré-furo, espessura da parede da peça, dimensões e grau de acabamento ou precisão,
- Resistência e usinabilidade do material
- Quantidade de sobre-metal a ser removido

Recomendações para aplicação

Recomendações para aplicação

Processos de Rosqueamento

Rosqueamento

Definição: processo de usiangem cujo a função é produzir rocas internas e externas

• É um dos processos mais complexos de usinagem

Velocidade de corte

- Em tornos paralelos com ferramentas de aço rápido $v_{\rm C}$ < 1/2 $v_{\rm C}$ de torneamento
- Ferramentas de materiais cerâmicos v_C ~ 1500 m/min
- Ferramentas de metal duro

Problemas da fabricação de roscas

Existem diversas classes de ajuste e precisão

• Pelo menos cinco medidas que devem ajustar entre si:

Problemas da fabricação de roscas

Existem vários de roscas

- Rosca métrica normal (DIN 13-1), fina (DIN 13-2...10)
- Rosca métrica cônica (DIN 158-1)
- Rosca Whitworth (não recomendada)
- Rosca GAS (DIN ISO 228-1)
- Rosca ISO trapezoidal (DIN 103-1)
- Rosca de dente de serra (DIN 513)
- Roscas UNF (EUA+Inglaterra)
- Roscas Edson
- Roscas especiais

Formas de Fabricação

Usinagem

- Torneamento com ferramenta simples ou múltipla
- Cabeçotes automáticos com pentes, tangenciais radiais ou circulares
- Turbilhonamento
- Com machos e cossinetes
- Fresagem com fresas simples e múltiplas
- Retificação com rebolos de perfil simples ou múltiplo

Conformação

Laminação entre rolos ou entre placas planas

Tipos de rosqueamento por usinagem

- → Torneamento com ferramenta simples ou múltipla de filetar
- → O perfil da rosca é executado apenas com um gume em vários passes
- → São utilizadas ferramentas de aço rápido e de metal duro
- → O uso de insertos indexáveis exige altas v_C's
- → Altas v_C's e altos avanços ⇒ recuos rápidos
- → Processo crítico na execução de roscas próximas a ressaltos e colares
- → Máquinas de comando manual ferramentas de HSS e peças com rebaixos longos para a saída da ferramenta
- → Ferramentas de metal duro e cerâmicas exigem sistemas automáticos tornos CNC (altas v_C's e retornos rápidos)

Ferramentas de roscar com insertos de metal duro

Recomendações para rosqueamento de aços e FoFo

Velocidade de corte

Material da peça	Velocidade de corte [m/min]
Aço ABNT 1140	65
Aço ABNT 1040	60
Aço ABNT 4120	55
Aços Inoxidáveis	25 - 30
Ferro-fundido	50 - 70
Bronze	80 - 120
Alumínio	90 - 180

Torneamento de rosca com pentes

Generalidades

- Vários gumes em ação simultaneamente
- Cada gume realiza um corte mais profundo que o anterior a rosca é executada em um só passe
- Os pentes podem ser radiais, tangenciais ou circulares (fabricados em aço rápido)
- Para rosca externa direita pente de rosca esquerda e vice versa
- Para roscas internas pentes circulares

Pentes de rosqueamento

Para rosca direita Para rosca esquerda

Rosqueamento com cabeçotes automáticos

Generalidades

Tipos de cabeçotes

- Estacionários / Giratórios
- Tipos de pentes acoplados aos cabeçotes
- Radiais / Tangenciais / Circulares
- → Atingindo-se o comprimento da rosca os pentes abrem e aferramenta retorna
- →Menor desgaste da ferramenta, menor tempo gasto e melhor acabamento
- →Os pentes são ajustáveis
- facilidade para a reafiação
 - tolerância dimensional das roscas

Rosqueamento com cabeçotes automáticos

Cabeçotes automáticos de roscar:

- a com pentes radiais;
- b com pentes tangenciais;
- c com pentes circulares.

Exemplo de pente de roscar radiais e tangenciais

Turbilhonamento de roscas (tornofresamento)

- 1 Peça
- 2 Ferramenta
- 3 Suporte de fixação da ferramenta

Rosqueamento com machos e cossinetes

Generalidades

- Processo especial de furação e alargamento
- Machos para furos passantes têm entrada cônica
- Parte rosqueada é dividida em pentes e rebaixos
- Rebaixos condução de cavacos e fluido

Rosqueamento com macho de roscar

Rosqueamento com macho de roscar Generalidades

- Ferramentas manuais fornecidas em jogos (pré-corte e acabamento, eventualmente corte intermediário)
- Material quase que exclusivamente aço-rápido
- Em furos cegos a velocidade é limitada pela profundidade do furo e pela rapidez de inversão da rotação da máquina
- Velocidades excessivas \Rightarrow maior desgaste, acabamento ruim, rebarbas, fora da dimensão, alta $F_C \Rightarrow$ quebra
- Roscas curtas velocidades grandes são utilizáveis
- Roscas profundas baixas velocidades
- Diâmetros pequenos elevados torques ⇒ quebra

Exemplo de macho de roscar

Cossinetes

- Ferramentas multicortantes utilizadas no corte de roscas externas
- Trabalhos de manutenção, reparos, máquinas de roscar com exigências limitadas de precisão e acabamento
- Inversão da rotação para a retirada da peça (pode causar danos nos filetes da rosca e desgastar a ferramenta)

Cossinetes

- Pequeno diâmetro uso em máquinas com espaço limitado
- Metais de resistência média roscas de até 24 mm
- Metais leves roscas de até 30mm
- O sobrematerial para acabamento n\u00e3o deve ser pequeno
- O sobrematerial de mais desgaste excessivo, trancamento e quebra