*IMPORTING ALL LIBRARIES

import pandas as pd import numpy as np

from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression

import matplotlib.pyplot as plt import seaborn as sns

from mlxtend.plotting import plot_confusion_matrix

 $from \ sklearn.metrics \ import \ accuracy_score, \ confusion_matrix \ , recall_score, \ precision_score, f1_score, \ classification_report$

PROBLEM STATEMENT To Predict Diabetes using Logistic Regression Classifier and to Plot Logistic Regression Classifier

IMPORTING OF DATA

data = pd.read_csv("diabetes.xls") data

₹		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
	0	6	148	72	35	0	33.6	0.627	50	1	ılı
	1	1	85	66	29	0	26.6	0.351	31	0	+/
	2	8	183	64	0	0	23.3	0.672	32	1	
	3	1	89	66	23	94	28.1	0.167	21	0	
	4	0	137	40	35	168	43.1	2.288	33	1	
	763	10	101	76	48	180	32.9	0.171	63	0	
	764	2	122	70	27	0	36.8	0.340	27	0	
	765	5	121	72	23	112	26.2	0.245	30	0	
	766	1	126	60	0	0	30.1	0.349	47	1	
	767	1	93	70	31	0	30.4	0.315	23	0	
7	'68 rd	ows × 9 columns	3								

Next steps:

Generate code with data

View recommended plots

data.head()

₹		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
	0	6	148	72	35	0	33.6	0.627	50	1	ıl.
	1	1	85	66	29	0	26.6	0.351	31	0	
	2	8	183	64	0	0	23.3	0.672	32	1	
	3	1	89	66	23	94	28.1	0.167	21	0	
	4	0	137	40	35	168	43.1	2.288	33	1	

Next steps: Generate code with data View recommended plots

data.tail()

→		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
	763	10	101	76	48	180	32.9	0.171	63	0	ıl.
	764	2	122	70	27	0	36.8	0.340	27	0	
	765	5	121	72	23	112	26.2	0.245	30	0	
	766	1	126	60	0	0	30.1	0.349	47	1	
	767	1	93	70	31	0	30.4	0.315	23	0	

*FINDING COLUMNS *

```
data.columns
```

split data to training and testing data

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=43)
x_train.shape,x_test.shape,y_train.shape,y_test.shape
\rightarrow ((537, 8), (231, 8), (537,), (231,))
m = LogisticRegression(random_state=42, max_iter=1000)
m.fit(x_train,y_train)
\overline{\pm}
                       LogisticRegression
     LogisticRegression(max iter=1000, random state=42)
m.intercept_
    array([-7.95981967])
m.coef
    array([[ 1.19254495e-01, 3.26733172e-02, -1.62791027e-02,
             -2.20458814e-04, -1.10686670e-03, 8.78589210e-02,
              1.42089430e+00, 1.27159131e-02]])
m.predict_proba(x_train)[0:5]
    array([[0.65066383, 0.34933617],
             [0.36881305, 0.63118695],
            [0.81425856, 0.18574144],
            [0.88689068, 0.11310932],
            [0.9538669 , 0.0461331 ]])
m.predict(x_train)[0:5]
\rightarrow array([0, 1, 0, 0, 0])
y_pred = m.predict(x_test)
y_pred
    array([0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
            1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
            1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0,
            0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,
            0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
            0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0,
```

+ Code

+ Text

MODEL EVALUATION

Creating model evaluation function

"Model evaluation On Training Data"

```
→ Confussion Matrix =
    [[306 42]
     [ 83 106]]
    Accuracy Score =0.7672253258845437
    precision value =1.0
    Recall Value =0.5608465608465608
    F1 Value =0.629080118694362
    Clasification Report =
                  precision
                               recall f1-score
                                                  support
               0
                       0.79
                                  0.88
                                            0.83
                                                       348
                       0.72
               1
                                  0.56
                                            0.63
                                                       189
                                            0.77
                                                       537
        accuracy
       macro avg
                       0.75
                                 0.72
                                            0.73
                                                       537
    weighted avg
                       0.76
                                 0.77
                                            0.76
                                                       537
```

"Model evaluation On Testing Data"

```
model_eval(m,x_test,y_test)
    Confussion Matrix =
     [[142 10]
     [ 35 44]]
     Accuracy Score =0.8051948051948052
     precision value =1.0
     Recall Value =0.5569620253164557
     F1 Value =0.6616541353383458
     Clasification Report =
                   precision
                                 recall f1-score
                                                    support
                0
                        0.80
                                   0.93
                                             0.86
                                                         152
                1
                        0.81
                                   0.56
                                             0.66
                                                         79
         accuracy
                                             0.81
                                                         231
        macro avg
                        0.81
                                   0.75
                                             0.76
                                                         231
     weighted avg
                        0.81
                                                         231
                                   0.81
                                             0.79
```

PLOTTING OF CONFUSION MATRIX

'Model Evaluation Success '

```
y_pred = m.predict(x)
con_mat=confusion_matrix(y,y_pred)
plot_confusion_matrix(con_mat)
```

^{&#}x27;Model Evaluation Success '

(<Figure size 640x480 with 1 Axes>,
 <Axes: xlabel='predicted label', ylabel='true label'>)

PROJECT_02

Importing the libraries

import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
import numpy as np

PROBLEM STATEMENT

Consider advertising.csv Dataset. Predict sales based on the money spent on TV, Radio, and Newspaper for marketing. In this case, there are three independent variables, i.e., money spent on TV, Radio, and Newspaper for marketing, and one dependent variable, i.e., sales, that is the value to be predicted. Find R squared, Mean Absolute Error, Mean Square Error, Root Mean Square Error

IMPORTING OF DATA

data_ad = pd.read_csv("Advertising.csv")
data_ad

		Unnamed: 0	TV	Radio	Newspaper	Sales
	0	1	230.1	37.8	69.2	22.1
	1	2	44.5	39.3	45.1	10.4
	2	3	17.2	45.9	69.3	9.3
	3	4	151.5	41.3	58.5	18.5
	4	5	180.8	10.8	58.4	12.9
	195	196	38.2	3.7	13.8	7.6
	196	197	94.2	4.9	8.1	9.7
	197	198	177.0	9.3	6.4	12.8
	198	199	283.6	42.0	66.2	25.5
	199	200	232.1	8.6	8.7	13.4

200 rows × 5 columns

Next steps: Generate code with data_ad

View recommended plots

data_ad.head()

→		Unnamed:	0	TV	Radio	Newspaper	Sales	
	0		1	230.1	37.8	69.2	22.1	ılı
	1		2	44.5	39.3	45.1	10.4	
	2		3	17.2	45.9	69.3	9.3	
	3		4	151.5	41.3	58.5	18.5	
	4		5	180.8	10.8	58.4	12.9	

Next steps:

Generate code with data_ad

View recommended plots

data_ad.tail()

→		Unnamed: 0	TV	Radio	Newspaper	Sales	
	195	196	38.2	3.7	13.8	7.6	th
	196	197	94.2	4.9	8.1	9.7	
	197	198	177.0	9.3	6.4	12.8	
	198	199	283.6	42.0	66.2	25.5	
	199	200	232.1	8.6	8.7	13.4	

Droping of the unnamed column

data_ad = data_ad.drop(columns=['Unnamed: 0'])

Spliting of the dataset

X_ad = data.drop('Outcome', axis=1)
y_ad = data['Outcome']

Creating an Linear Regression model

linreg = LinearRegression()

Fitting the Linear Regression model

linreg.fit(X_ad, y_ad)

LinearRegression
LinearRegression()

linreg.intercept_

linreg.coef_

```
array([ 0.02059187, 0.00592027, -0.00233188, 0.00015452, -0.00018053, 0.01324403, 0.14723744, 0.00262139])
```

31 11 144 155

7/17/24, 3:20 PM

```
linreg.predict(X_ad)[0:5]
```

```
Frag([ 0.65175729, 0.00573265, 0.73642449, -0.0219232, 0.83318937])
```

*Prediction on the same dataset

*Calculation of evaluation metrics

```
r2 = r2_score(y_ad, y_pred_ad)

mae = mean_absolute_error(y_ad, y_pred_ad)

mse = mean_squared_error(y_ad, y_pred_ad)

rmse = np.sqrt(mse)

print(f'R squared: {r2}')

print(f'Mean Absolute Error: {mae}')

print(f'Mean Square Error: {rmse}')

→ R squared: 0.303253095650892

Mean Absolute Error: 0.3322003297974105

Mean Square Error: 0.15829143131303658

Root Mean Square Error: 0.39785855691820504
```

Start coding or generate with AI.