Modified Multi-Sense Skip-Gram using weighted context and X-means 가중된 문맥과 X-means방법을 이용한 수정된 다중 의미 스킵 그램

Hyunwoo Jeong, Eun Ryung Lee

Department Statistics, Sungkyunkwan University

May, 2021

Introduction

Proposed Methodology

Simulation

Word Sense Disambiguation

Word Sense Disambiguation, WSD

"There is a nuclear **plant** near the forest."

"All **plants** need light and water"

- In NLP, the main method is to assign only one vector per word, assuming a single meaning (Skip-gram).
- It is difficult to understand the meaning of two sentences properly if you judge multi-sense words in one meaning.
- This problems can be solved by a Multi-Sense Skip-Gram (MSSG) method that assigns vectors to each meaning of a Multi-sense word.

Multi-Sense Skip-Gram(MSSG) (Neelakantan, 2014) (1)

Figure 1: MSSG model's idea

Multi-Sense Skip-Gram(MSSG) (Neelakantan, 2014) (2)

- Generating context vector
 - $ightharpoonup v_{context}(C_t) = 1/(2R_m) \times \sum_{c \in C_t} v_g(c)$
 - Using embedding vector of Skip-Gram as global vector
- ② Determine sense of w_t : By conducting K-means clustering
- Update Senses vector
 - $\mu(w,k) = v_s(w,k)$
 - Update sense vector using Skip-Gram's negative sampling method

Multi-Sense Skip-Gram(MSSG) (Neelakantan, 2014) (3)

Definition

- T: number of context target word w appears
- \triangleright w_t : target word of t-th context
- C_t: t-th context words set for w
- $ightharpoonup R_m$: window size
- $v_g(c) \in R^d$: global embedding vector for c
- $\blacktriangleright \mu(w, k)$: k-th cluster center for word w
- \triangleright s_t : sense for w_t
- \triangleright $v_s(w, k)$: k-th sense vector for word w

Problems

Problems

- Biased meaning of sense vectors
 - "Nuclear power plants can be harmful to trees."
 - ► "Plant habitats are large near power facilities."
- 2 Fixed number of senses for target word
 - By using K-means clustering

Solution

- We propose a weighted context vector method with different importance to the location of the context words.
- We use X-means clustering to divided contexts by meaning and estimate the number of meanings.

1 Introduction

Proposed Methodology

Simulation

Weighted context vector

Weighted context vector

$$v_{\text{w,cont}}(C_t) = \sum_{|k|=1,2,\dots,R} \mathsf{d}_k \times v_g(c_{t+k}) \tag{1}$$

$$C_t = \{c_{t-R_m}, \ldots, c_{t-1}, c_{t+1}, \ldots, c_{t+R_m}\}$$

$$d_k > 0$$
, $\sum_{|k|=1,2,...,R} d_k = 1$

▶ d_k : monotone decreasing with |k| values $k = \pm 1, 2, ..., R$

In this study, we consider weight d_k that linearly decrease with |k| values.

Weighted context vector for 2 sentences

"Nuclear power plants can be harmful to trees."

$$\Rightarrow v_{w,cont(C_1)} = \frac{4 \times v_g(nuclear)}{24} + \frac{5 \times v_g(power)}{24} + \frac{5 \times v_g(can)}{24} + \cdots + \frac{1 \times v_g(trees)}{24}$$

Plant habitats are large near power facilities."

$$\Rightarrow v_{w,cont}(c_1) = \frac{6 \times v_g(habitat)}{24} + \frac{5 \times v_g(are)}{24} + \dots + \frac{2 \times v_g(power)}{24} + \frac{1 \times v_g(facilities)}{24}$$

X-means clustering (Dan, Moore 2000)

X-means clustering

- The X-means clustering method performs clustering based on the K-means clustering.
- ► Also, optimizes the number of clusters based on the BIC measure assuming the distribution of the data as normal

X-means clustering algorithm

- **①** For a given initial number of cluster K_0 (mainly $K_0 = 2$), perform K-means clustering.
- ② As a result of step1, for K_0 clusters S_1, \ldots, S_{K_0} , the following processes are carried out.
 - ightharpoonup A For cluster S_k , perform 2-means clustering.
 - ▶ B. For $S_k^{(1)}$, $S_k^{(2)}$ the result of 2-1, assume a normal dist. and compute BIC
 - ▶ a. If BIC(S_k) > BIC($S_k^{(1)}$, $S_k^{(2)}$), determine ($S_k^{(1)}$, $S_k^{(2)}$) and perform A \sim C
 - ▶ b. If BIC(S_k) < BIC($S_k^{(1)}, S_k^{(2)}$), determine S_k
 - ightharpoonup C. Complete split for cluster S_k and re-number the final clusters of S_k

Introduction

2 Proposed Methodology

Simulation

Data description

Data description

- Corpus: 584 abstracts in Journal of Statistical Software(JSS)
- ▶ 5,353 vocabulary and 45,106 word tokens
- target word 'plant' occures 72 times / 32 'tree' and 40 'facility'

Preprocessing

- Lemmatization, stopword processing by spacy library
- Exclude words with length 1 ('a', 'R', etc.)

Global Vector Extraction

- ► By using Skip-Gram method
- ightharpoonup embedding vector size: 300 \sim 500 by 100
- ▶ Window: $1 \sim 9$ by 2

Simulation Result (1)

Analysis for context vector methods

▶ By performing 2-means clustering, we express the 10 words closest(similar) and similarity value.

Method	Sense	5 Nearest Neighbor Words
$v_g(plant)$	-	gas (0.50) nuclear (0.45) grf (0.44) operational (0.43)
Unweighted	tree	seed(0.74) trigger(0.72) growth(0.68) fertilization(0.66)
	facility	power(0.70) nuclear(0.60) gas(0.57) energy(0.53)
Weighted	tree	seed(0.76) trigger(0.72) growth(0.72) fertilization(0.67)
	facility	power (0.79) nuclear (0.61) gas (0.57) energy (0.53)

Table 1: 4 Nearest neighbor words for each context vector

Simulation Result (2)

Analysis cluster number estimation and classification accuracy

- (Left) cluster number estimation for X-means clustering
- (Right) classification accuracy for context vector method
- embedding size: 300, window: 5, iteration: 1000

	Cluster number							Proposed		Ordinary	
R _m	2	3	4	5	6	7	clustering	mean	median	mean	median
1	665	249	62	19	4	1	X-means	87.7	88.9	85.8	87.5
3	645	260	71	20	3	1	2-means	88.2	88.9	88.0	88.9
5	999	1	0	0	0	0	3-means	74.3	73.6	73.6	75.0
7	1000	0	0	0	0	0	4-means	63.4	63.9	64.1	62.5
9	1000	0	0	0	0	0	5-means	55.6	55.6	55.8	56.9

Simulation result (3)

- Compare classification accuracy for MSSG and Modified MSSG
- ▶ iteration: 100

Method	d	$R_m = 1$	3	5	7	9
MSSG	300	79.8	87.8	90.1	88.1	89.5
Modified MSSG	300	78.3	79.3	80.8	74.3	59.8
MSSG	400	81.3	85.8	88.2	87.1	88.0
Modified MSSG	400	78.0	75.5	89.1	89.1	89.0
MSSG	500	79.8	88.6	87.1	87.5	89.4
Modified MSSG	500	74.0	84.7	88.4	89.2	88.7

Conclusion

- At well-specified parameters (R_m, d) , Modified MSSG accurately estimate the number of senses of the target word.
- Also, Modified MSSG perform similarly or rather well as the embedding performance of MSSG using the true number of clusters.
- ► Therefore, we demonstrate significant improvements by providing improved semantic accuracy of embiedding vectors and efficiency for estimating sense numbers.

Appendix

Skip-Gram (Mikolov, 2013)

Figure 2: Structure of Skip-gram

Appendix

▶ given a pair of words (w_t, c) , the probability that word c is observed in the context of target word w_t is

$$P(D = 1 | v(w_t), v(c)) = \frac{e^{v(c)^T v(w_t)}}{\sum e^{v(w_t)^T v(c)}}$$

the probability of not observing word c in the context of target word w_t is

$$P(D = 0|v(w_t), v(c)) = 1 - P(D = 1|v(w_t), v(c))$$

Appendix

Negative sampling

word embeddings are learned by maximizing the objective function:

$$\begin{split} J(\theta) &= \sum_{(w_t, c_t) \in D^+} \sum_{c \in C_t} log P(D = 1 | v(w_t), v(c)) \\ &+ \sum_{(w_t, c_t') \in D^-} \sum_{c' \in C_t} log P(D = 0 | v(w_t), v(c')) \end{split}$$

ightharpoonup where c'_t t is randomly sampled noisy context words for word w_t .

The End