Geometría Algebraica I (18GAL01/MAT-610) Quiz 2 (Primavera 2025) SOLUCIONES

Nombre	/Id:	Nota:	/10

1. (4 points) Sea $k \to A$ una extensión entera donde k es un cuerpo y A es un dominio entero. Pruebe que A es un cuerpo. Sugerencia: Use la ecuación mónica de un elemento de $A \setminus \{0\}$ para construirle un inverso multiplicativo.

Solution: Sea $0 \neq x \in A$. Como A/k es entera, se tiene una ecuación

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0,$$

con $a_i \in k$. Esto se puede reescribir como

$$xy = -a_0$$

para algún $y \in A$. Como A es un dominio entero y $x \neq 0$, se sigue que $a_0 \neq 0$. Entonces, como k es un cuerpo, se puede dividir por a_0 y concluir que $-y/a_0$ es un inverso multiplicativo de x y así A es un cuerpo.

2. (6 points) Sea $f: \operatorname{Spec} B \to \operatorname{Spec} A$ el espectro de un homomorfismo $\phi: A \to B$ entre álgebras de tipo finito sobre un cuerpo k. Muestre que f envía puntos cerrados en puntos cerrados. Sugerencia: Use el teorema de ceros de Hilbert (versión fuerte) y el ejercicio anterior para mostrar que la contracción de un ideal maximal es maximal.

Solution: Sea $\mathfrak{n} \subset B$ un ideal maximal. Hay que probar que $f(\mathfrak{n}) = \phi^{-1}(\mathfrak{n}) \in \operatorname{Spec} A$ es maximal. Se tienen las siguientes extensiones

$$k \xrightarrow{\subset} A/f(\mathfrak{n}) \xrightarrow{\subset} B/\mathfrak{n}.$$

Por el teorema de ceros de Hilbert, $k \to B/\mathfrak{n}$ es una extensión finita de cuerpos (y así entera). En particular, $k \to A/f(\mathfrak{n})$ es una extensión entera. El ejercicio anterior implica que $A/f(\mathfrak{n})$ es un cuerpo, o sea que $f(\mathfrak{n})$ es maximal.