

=====

Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2009; month=9; day=8; hr=17; min=4; sec=39; ms=885;]

=====

Reviewer Comments:

<210> 6

<211> 6069

<212> DNA

<213> Artificial sequence

<220>

<223> pETM-GFP-Imm plasmid containing Hisx6 tag, flexible joint as frame adapter, and A. victoria GFP gene

<220>

<221> CDS

<222> (1)..(876)

<223> pETM-GFP-Imm plasmid containing Hisx6 tag, flexible joint as frame adapter, and A. victoria GFP gene

Two problems above: 1) the first <223> response exceeds the Sequence Rules' required 72-character line limit; please do not use TAB codes, and please insert a hard return. 2) please delete the second <223> line, since it is a duplicate of the first <223> line.

<210> 8

<211> 17

<212> DNA

<213> Artificial sequence

<220>

<223> Frame adapter used for prevention of frameshift mutation as a result of plasmid modification

<220>
<221> misc_feature
<222> (1)..(17)
<223> Frame adapter used for prevention of frameshift mutation as a result of plasmid modification

<400> 8

catgggaggc acggta

17

Please insert a hard return in the first <223> response; don't use TAB codes. Please delete the second <220>-<223> section since the <223> response is a duplicate of the first <223> response.

<210> 10
<211> 6
<212> PRT
<213> Artificial sequence

<220>

<223> Peptide design based on charge and shape to bind the expressed protein to a suitably interactive surface

<220>
<221> MISC_FEATURE
<223> Peptide design based on charge and shape to bind the expressed protein to a suitably interactive surface

<400> 10

His His His His His
1 5

Please insert a hard return in the first <223> response; please remove the second <220>-<223> section, since it has a duplicate <223> response.

Application No: 10550226 Version No: 3.0

Input Set:

Output Set:

Started: 2009-08-25 12:01:09.452
Finished: 2009-08-25 12:01:10.981
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 529 ms
Total Warnings: 12
Total Errors: 0
No. of SeqIDs Defined: 13
Actual SeqID Count: 13

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 402	Undefined organism found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)

SEQUENCE LISTING

<110> SAHIN, ERINC
TARALP, ALPAY
SAYERS, SEHRA

<120> CIRCULAR RECOMBINANT PLASMID DNA CONSTRUCTS AND THEIR PROTEIN
PRODUCTS, METHODS OF PREPARATION AND IMMOBILISATION OF PROTEINS
ON SUPPORT

<130> U015936-2

<140> 10550226
<141> 2006-11-22

<150> PCT/TR2003/000019
<151> 2003-03-20

<160> 13

<170> PatentIn version 3.3

<210> 1
<211> 733
<212> DNA
<213> Aequorea victoria

<220>
<221> gene
<222> (17)..(733)
<223> GFP gene

<400> 1
ggtaccggta gaaaaaatga gtaaaggaga agaactttc actggagttg tcccaattct 60

tgttgaatta gatggtgatg ttaatggca caaattttct gtcatggag agggtgaagg 120

tgatgcaaca tacggaaaac ttacccttaa atttatttgc actactggaa aactacctgt 180

tccatggcca acacttgtca ctactttctc ttatggtgtt caatgcttt cccgttatcc 240

ggatcatatg aaacggcatg acttttcaa gagtgccatg cccgaaggat atgtacagga 300

acgcactata tcttcaaag atgacggaa ctacaagacg cgtgctgaag tcaagtta 360

agggtataacc ctgttaatc gtatcgagt aaaaggatt gatttaaag aagatggaaa 420

cattctcgga cacaaactcg agtacaacta taactcacac aatgtataca tcacggcaga 480

caaacaaaag aatggaatca aagctaactt caaaattcgc cacaacattg aagatggatc 540

cggtcaacta gcagaccatt atcaacaaa tactccaatt ggcgtatggcc ctgtccttt 600

accagacaac cattacctgt cgacacaatc tgcccttcg aaagatccc acgaaaagcg 660

tgaccacatg gtccttcttg agtttgtaac tgctgtggg attacacatg gcatggatga 720
gctctacaaa taa 733

<210> 2
<211> 6029
<212> DNA
<213> Artificial sequence

<220>
<223> Empty PETM-11 plasmid

<220>
<221> misc_feature
<222> (1)..(6029)
<223> Empty PETM-11 plasmid

<400> 2
atccggatat agttcctcct ttcaagaaaa aaccctcaa gaccgttta gaggccccaa 60
ggggttatgc tagttattgc tcagcggtgg cagcagccaa ctcagcttcc tttcggtt 120
tgttagcagc cggatctcag tggtggtgg ggtggtgctc gagtgccggcc gcaagcttgt 180
cgacggagct cgaattcggaa tccggtagcca ctatgttagag accaagacac gccttgtgac 240
tgtcctgcag ctttattctc ttgatgtgg tgctggaata gccctcatca ctgccgaggc 300
tctgcatgct gccccgctcg tcagagtcgc tcacactgct gctgctccag tccagatcac 360
ctgtgagata gtccgtgctc tccacgtcaa cgtcgatttc ttccctgtcg gagtcggagc 420
gctccgagga gacggtgag ccgatgctgt ccatccggat cctctcaatg cccagcttct 480
ccagctgcct cttcaggtgt cgctgctctc gctgaagctg gtcgatttgg tgaacggctt 540
ttctgtcaca atcttcaagt ttcttatgt gcaatttggc ttttgttaat aaactcaacg 600
tagtgtgtcg acttgattcg ggtcccagtg gcaccagccc cttcaacttc tccaggcaca 660
agcgaagatg agcccgctca ttcttctcca tttcatgtg agttgatctg ctactgctgt 720
tattctttt ggatttgttc ctccgtttta aggcatctct gtcctgttt ttgtatggta 780
acatggaggc ataaccatgt tcagttctc tctcccccgg ctccagatag tcggccgcct 840
ccagcagcat ctggatgttc atccgaaccg ccggcccat ggcgcctga aaataaaagat 900
tctcagtagt gggatgtcg taatcgctca tggggatgtg gtatggtga tgtttcatgg 960
tatatctcct tcttaaagtt aaatcaaaaat tatttctaga gggaaattgt tatccgctca 1020
caattccccat atagtggatcg gtatattt cgcggatcg agatctcgat cctctacgccc 1080
ggacgcacatcg tggccggcat cacccggcgcc acaggtgcgg ttgtggcgc cstatatcgcc 1140

gacatcaccc atgggaaga tcggctcgc cactcgccc tcatgagcgc ttgtttcggc 1200
gtggtatgg tggcaggccc cgtggccggg ggactgtgg gcgccatctc ctgcgtca 1260
ccattccttgcggcgggt gctcaacggc ctcaacctac tactggctg cttcctaatt 1320
caggagtgcataaaggaga gcgtcgagat cccggacacc atcgaatggc gaaaaacctt 1380
tcgcgtatgcgtatg gcatgatagc gcccggaaaga gagtcattc agggtggtga atgtgaaacc 1440
agtaacgttatacgatgtcg cagagtatgc cggtgtctt tatcagaccg tttcccgct 1500
ggtaaccaggccagcgtttctgcgaa aacgcggaa aaagtggaaag cggcgatggc 1560
ggagctgaat tacattccca accgcgtggc acaacaactg gcggcaaac agtcgttgct 1620
gattggcggtt gccaccccca gtctggccct gcacgcggc tcgcaaattt tcgcggcgat 1680
taaatctcgcccgatcaac tgggtgccag cgtgggtgtc tgatggtag aacgaagcgg 1740
cgtcgaagcc tgtaaaggcg cggtgcacaa tcttctcgca caacgcgtca gtggctgat 1800
cattaactat ccgctggatg accaggatgc cattgtgtg gaagctgcct gcactaatgt 1860
tccggcggtt tttcttgatgtctctgacca gacaccatc aacagtatta ttttctccca 1920
tgaagacggt acgcgactgg gcgtggagca tctggcgca ttgggtcacc agcaaatcgc 1980
gctgttagcg ggcccatcaa gttctgtctc ggccgtctg cgtctggctg gctggcataa 2040
atatctcact cgcaatcaaa ttcaagccat agcgaaacgg gaaggcgact ggagtgcct 2100
gtccggttttt caacaacca tgcaaatgtc gaatgagggc atcgatccca ctgcgtatgt 2160
ggttgccaaac gatcagatgg cgctggcgca aatgcgcgccc attaccgagt ccggctgct 2220
cgttggcgatgatctcggtatggata cgacgatacc gaagacagct catgttatat 2280
cccgccgttaccaccatca aacaggattt tcgcctgtc gggcaaacca gcgtggaccg 2340
cttgctgcaactctctcagg gccaggcggt gaaggcaat cagctgttc ccgtctcact 2400
ggtaaaaaga aaaaccaccc tggcgcccaa tacgcaaaccc gcctctcccc gcgcgttggc 2460
cgattcattatgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgcgcgca 2520
acgcaattaa tgtaagttatgcactcatt aggacccggg atctcgaccg atgccttgc 2580
gagccttcaa cccagtcagc tcctccgggt gggcgccggg catgactatc gtgcggcac 2640
ttatgactgt cttctttatc atgcaactcg taggacaggt gccggcagcg ctctgggtca 2700
ttttcgccgaa ggaccgcttt cgctggagcg cgacgatgtatc cgccctgtcg cttgcgtat 2760
tcgaaatctt gcacggccctc gctcaagcct tcgtcactgg tcccgccacc aaacgtttcg 2820

gcgagaagca ggccattatac gccggcatgg cggccccacg ggtgcgcatg atcgtgtcc 2880
tgtcggttag gaccggctta ggctggcgaa gttgccttac tggtagcag aatgaatcac 2940
cgatacgcga gcgaacgtga agcgactgct gctgaaaac gtctgcgacc tgagcaacaa 3000
catgaatggt ctgcgtttc cgtgtttcgtaa aagtctgga aacgcgaaag tcagcgccct 3060
gcaccattat gttccggatc tgcattcgac gatgctgctg gctaccctgt ggaacaccta 3120
catctgtatt aacgaagcgc tggcattgac cctgagtgtat ttttctctgg tcccggcaca 3180
tccataccgc cagttgttta ccctcacaac gttccagtaa cggggcatgt tcattatcag 3240
taacccgtat cgtgagcatc ctctctcgat tcattcggtat cattaccccc atgaacagaa 3300
atccccctta cacggaggca tcagtgacca aacagaaaaa aaccggccctt aacatggccc 3360
gcttatcag aagccagaca ttaacgcttc tggagaaact caacgagctg gacgcggatg 3420
aacaggcaga catctgtgaa tcgcttcacg accacgctga tgagcttac cgcaagctgcc 3480
tcgcgcgtt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 3540
cagcttgtct gtaagcgat gcccggagca gacaagcccg tcagggcgcg tcagcggttg 3600
ttggcgggttgcgcacccatgaccc agtcacgttag cgatagcgaa gtgtatactg 3660
gcttaactat gcggcatcag agcagattgt actgagagtg caccatatac gcgggtgtcaa 3720
ataccgcaca gatgcgtaaag gagaaaaatac cgcatcaggc gctctccgc ttccctcgatc 3780
actgactcgc tgcgtcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg 3840
gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc 3900
cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgttttcca taggctccgc 3960
ccccctgacg agcatcaca aaatcgacgc tcaagtcaaa ggtggcgaaa cccgacagga 4020
ctataaagat accaggcgat tccccctgga agctccctcg tgcgtctcc tggtcccgacc 4080
ctgcccgttta ccggataacct gtccgccttt ctccctcggtt gaagcgtggc gctttctcat 4140
agctcacgct gtaggtatct cagttcggtg taggtcgatc gctccaaatgtg gggctgtgtg 4200
cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgatcc 4260
aaccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga 4320
gcgaggatgt taggcgggtgc tacagagttc ttgaagtggt ggcttaacta cggctacact 4380
agaaggacag tattttgtat ctgcgtctg ctgaagccag ttaccttcgg aaaaagatgtt 4440
ggtagctttt gatccggcaa acaaaccacc gctggtagcg gtggttttt tggttgcaag 4500
cagcagatta cgccgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg 4560

tctgacgctc	agtggAACGA	aaactcacgt	taagggattt	tggTCatgaa	caataaaaact	4620
gtctgcttac	ataaacAGTA	atacaaggGGG	tgttatGAGC	catattcaAC	gggAAACGTC	4680
ttgctctagg	ccgcgattaa	attccaacat	ggatgctgat	ttatatgggt	ataaatggc	4740
tcgcgataat	gtcgGGCAAT	caggtgcgac	aatctatcga	ttgtatggga	agcccGatgc	4800
gccagagttg	tttctgaaac	atggcaaagg	tagcgttgcc	aatgatgtta	cagatgagat	4860
ggtcagacta	aactggctga	cggaaTTTat	gcctcttccg	accatcaAGC	atTTTatCCG	4920
tactcctgat	gatgcATGgt	tactcaccac	tgcgatcccc	gggAAAACAG	cattccaggt	4980
attagaagaa	tatcctgatt	caggtgaaaa	tattgttgat	gcgcTggcag	tgttcctgCG	5040
ccggTTGcat	tcgattcctg	tttGtaatttG	tccttttaac	agcgatcgCG	tatttcgtct	5100
cgctcaggcg	caatcacgaa	tgaataacgg	tttggTTgat	gcgagtgatt	ttgatgacga	5160
gcgtaatggc	tggcctgttG	aacaagtctg	gaaagaaaatg	cataaaacttt	tgccattctc	5220
accggattca	gtcgTcactc	atggtgattt	ctcaCTtgat	aaccttattt	ttgacgaggG	5280
gaaattaata	ggttgtatttG	atgttggacg	agtcgGAATC	gcagaccgat	accaggatct	5340
tgccatccta	tggaactGCC	tcggTgagtt	ttctccTTca	ttacagaaAC	ggcttttca	5400
aaaatatggt	attgataatc	ctgatATGaa	taaattgcag	tttcatttga	tgctcgatga	5460
gtttttctaa	gaattaattc	atgagcggat	acatatttga	atgtatTTAG	aaaaataaaAC	5520
aaataggggt	tccgcgcaca	tttccccgaa	aagtGCCACC	tgaaattgtA	aacgttaata	5580
ttttgttaaa	attcgcgtta	aattttgtt	aaatcagctc	atTTTTtaac	caataggccg	5640
aaatcggcaa	aatcccttat	aaatcaaaAG	aatagaccga	gatagggttG	agtgttGttc	5700
cagtttggaa	caagagtCCA	ctattaaAGA	acgtggactc	caacgtcaAA	gggcgaaaaAA	5760
ccgtctatca	gggcgatggc	ccactacgtG	aaccatcacc	ctaAtcaagt	tttttggggt	5820
cgaggtgccc	taaAGCacta	aatcgGAACC	ctaaAGGGAG	cccccgattt	agagcttgac	5880
ggggaaAGCC	ggcgaacgtG	gcgagaaAGG	aaggGAAGAA	agcgaAGGA	gcggggcgcta	5940
ggcgctggc	aagtgtAGCG	gtcacGCTGc	gcgttaaccac	cacacCCGCC	gcgcTTAATG	6000
cggcgctaca	gggcgcgtcc	cattcgCCA				6029

<210> 3
<211> 5369
<212> DNA
<213> Artificial sequence

<220>

<223> Intermediate pETM-adp plasmid, on way to pETM-GFP-Imm construct

<400> 3

catcaccatc accatcaccc catgagcgat tacgacatcc ccactactga gaatcttat	60
tttcagggcg ccatggagg cacggtaccg gatccgaaatt cgagctccgt cgacaagctt	120
gcggccgcac tcgagcacca ccaccaccac cactgagatc cggtcgctaa caaagcccga	180
aaggaagctg agttggctgc tgccaccgct gagcaataac tagcataacc cttggggcc	240
tctaaacggg tcttgagggg tttttgctg aaaggaggaa ctatatccgg attggcgaat	300
gggacgcgcc ctgttagcgcc gcattaagcg cggcggtgt ggtggttacg cgacgcgtga	360
ccgctacact tgccagcgcc ctgcgcggc ctccttcgc tttttccct tcctttctcg	420
ccacgttcgc cggcttccc cgtcaagctc taaatcgaaa gctccctta gggttccgat	480
ttagtgctt acggcacctc gacccaaaaa aacttgatta gggtgatggt tcacgttagtg	540
ggccatcgcc ctgatagacg gttttcgcc cttgacggt ggagtccacg ttctttaata	600
gtggactctt gttccaaact ggaacaacac tcaaccctat ctcggtctat tctttgatt	660
tataagggat tttgccgatt tcggcctatt ggtaaaaaaaaa tgagctgatt taacaaaaat	720
ttaacgcgaa ttttaacaaa atattaacgt ttacaatttc aggtggact tttcgaaaaaa	780
atgtgcgcgg aaccctatt tgtttatttt tctaaataca ttcaaataatg tatccgctca	840
tgaattaatt ctttagaaaaa ctcatcgagc atcaaatgaa actgcaattt attcatatca	900
ggattatcaa taccatattt ttgaaaaagc cgtttctgta atgaaggaga aaactcaccg	960
aggcagttcc ataggatggc aagatcctgg tatcggtctg cgattccgac tcgtccaaca	1020
tcaatacaac ctattaattt cccctcgtca aaaataaggt tatcaagtga gaaatcacca	1080
tgagtgacga ctgaatccgg tgagaatggc aaaagtttat gcatttctt ccagacttgt	1140
tcaacaggcc agccattacg ctcgtcatca aaatcactcg catcaaccaa accgttattc	1200
attcggtatt ggcgcgtggc gagacgaaat acgcatcgatcg tggtaaaagg acaattacaa	1260
acaggaatcg aatgcaacccg ggcgcaggaaac actgcccagcg catcaacaat atttcacct	1320
gaatcaggat attcttctaa tacctggaat gctgtttcc cggggatcgc agtggtgagt	1380
aaccatgcacat catcaggagt acggataaaa tgcttgatgg tcggaagagg cataaattcc	1440
gtcagccagt ttagtctgac catctcatct gtaacatcat tggcaacgct acctttgcca	1500
tgtttcagaa acaactctgg cgcattggc ttccataca atcgatagat tgtcgcacct	1560
gattgccccga cattatcgcg agcccatatata tacccatata aatcagcatc catgttgaa	1620

ttaatcgcg gcctagagca agacgttcc cggtgaatat ggctcataac accccttgc 1680
ttactgttta tgtaaggaga cagtttattt gttcatgacc aaaatccctt aacgtgagtt 1740
ttcggtccac tgagcgtaga accccgtaga aaagatcaa ggatcttctt gagatccctt 1800
tttctgcgc gtaatctgct gcttgcaaac aaaaaaacc aaccgtaccag cggtggttg 1860
tttgcggat caagagctac caactcttt tccgaaggta actggctca gcagagcgca 1920
gataccaaat actgtccttc tagtgttagcc gtatgttaggc caccactca agaactctgt 1980
agcacccgc acataacctcg ctctgctaattt cctgttacca gtggctgctg ccagtggcga 2040
taagtcgtgt cttaccgggt tggactcaag acgatagttt ccggataagg cgcagcggtc 2100
gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgaccc acaccgaact 2160
gagataacca cagcgtgagc tatgagaaag cgcacacgtt cccgaaggaa gaaaggcgga 2220
caggtatccg gtaagcgca gggtcggaac aggagagcgc acgagggagc ttccaggggg 2280
aaacgcctgg tatcttata gtcctgtcg gttcgccac ctctgacttg agcgtcgatt 2340
tttgcgtatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggcctttt 2400
acggttcctg gcctttgct gccttttgc tcacatgtt tttctgcgt tatcccctga 2460
ttctgtggat aaccgtatta cgcctttga gtgagctgat accgctcgcc gcagccgaac 2520
gaccgagcgc agcgagtcag tgagcgagga agcgaaagag cgcctgatgc ggtatTTCT 2580
cttacgcat ctgtcggtt tttcacaccc catatatggt gcactctcag tacaatctgc 2640
tctgatgccc catagttaag ccagtataca ctccgctatc gctacgtgac tgggtcatgg 2700
ctgcggcccc acacccgcca acacccgctg acgcgcctg acgggcttgt ctgctccgg 2760
catccgctta cagacaagct gtgaccgtct ccgggagctg catgtgtcag aggtttcac 2820
cgtcatcacc gaaacgcgcg aggcaagctc ggtaaagctc atcagcgtgg tcgtgaagcg 2880
attcacagat gtctgcctgt tcatccgcgt ccagctcggtt gagtttctcc agaagcgat 2940
atgtctggct tctgataaag cggggccatgt taagggcggt ttttctgtt ttgggtcactg 3000
atgcctccgt gtaaggggaa ttctgttca tggggtaat gataccgatg aaacgagaga 3060
ggatgctcac gatacgggtt actgatgatg aacatgccc gttactggaa cgttgcgtt 3120
gtaaacaact ggcggatgg atgcggcggtt accagagaaa aatcactcag ggtcaatgcc 3180
agcgcttcgt taatacagat gttaggtttc cacaggtagt ccagcagcat cctgcgtatgc 3240
agatccggaa cataatggtg cagggcgctg acttccgcgt ttccagactt tacgaaacac 3300

gaaaaaccgaa gaccattcat gtgttgctc aggtcgaga cgtttgcag cagcagtgc 3360
ttcacgttcg ctgcgtatc ggtgattcat tctgctaacc agtaaggcaa ccccgccagc 3420
ctagccgggt cctcaacgac aggagcacga tcatgcgcac ccgtggggcc gccatgccgg 3480
cgataatggc ctgcttctcg ccgaaacgtt tggtgggg accagtgacg aaggctttag 3540
cgagggcgtg caagattccg aataccgaa gcgcacaggcc gatcatcgac ggcgtccagc 3600
gaaagcggtc ctgcgcgaaa atgaccaga gcgcgtccgg cacctgtctt acgagttgca 3660
tgataaaagaa gacagtata agtgccgca cgatagtcat gccccgcgc caccggaaagg 3720
agctgactgg gttgaaggct ctcaggca tcggtcgaga tcccggtgcc taatgagtga 3780
gctaacttac attaattgcg ttgcgtcac tgcccgctt ccagtcggga aacctgtcgt 3840
gccagctgca ttaatgaatc ggccaacgcg cggggagagg cggttgcgt attggcgcc 3900
agggtggttt ttctttcac cagtgagacg ggcaacagct gattgcctt caccgcctgg 3960
ccctgagaga gttgcagcaa gcggtccacg ctgggttgcc ccagcaggcg aaaatcctgt 4020
ttgatgggg ttaacggcg gatataacat gagctgtctt cggatcgac gtatcccact 4080
accgagatat ccgcaccaac gcgcagcccg gactcggtaa tggcgccat tgcgcccagc 4140
ccatctgat cgttggcaac cagcatcgca gtggaaacga tgccctcatt cagcattgc 4200
atggtttgtt gaaaaccgga catggcactc cagtcgcctt cccgttccgc tatcggtga 4260
atttgattgc gagtgagata ttatgccag ccagccagac gcagacgcgc cgagacagaa 4320
cttaatgggc ccgctaacag cgcgatttgc tggtgaccca atgcgaccag atgctccacg 4380
cccagtcgcg taccgtcttc atgggagaaa ataatactgt tgatgggtgt ctggtcagag 4440
acatcaagaa ataacgcccgg aacatttagtg caggcagctt ccacagcaat ggcattctgg 4500
tcatccagcg gatagttaat gatcagccca ctgacgcgtt gcgcgagaag attgtgcacc 4560
ggcgctttac aggcttcgac ggcgttcgt tctaccatcg acaccaccac gctggcaccc 4620
agttgatcg cgcgagattt aatcgcccg acaatttgcg acggcgctg cagggccaga 4680
ctggaggtgg caacgcaat cagcaacgac tgtttgcgg ccagttgttgc tgccacgcgg 4740
ttggaaatgt aattcagctc cgcattcgcc gcttccactt tttcccgctt tttcgcaagaa 4800
acgtggctgg cctggttcac cacgcgggaa acggctgtat aagagacacc ggcataact 4860
gcgacatcgta ataacgttac tggttcaca ttcaccaccc tgaattgact ctctccggg 4920
cgctatcatg ccataccgcg aaaggtttg cgcattcga tggtgtccgg gatctcgacg 4980
ctctccctta tgcgactctt gcattaggaa gcagcccaat agtaggttgc ggccgtttag 5040

caccggccgc	gcaaggatg	gtgcatacaa	ggagatggcg	ccaaacagtc	ccccggccac	5100
ggggcctgcc	accataccca	cgccgaaaca	agcgctcatg	agcccgaagt	ggcgagcccg	5160
atcttccca	tcggtgatgt	cggcgatata	ggcgccagca	accgcacctg	tggcgccggt	5220
gatgccggcc	acgatgcgtc	cggcgttagag	gatcgagatc	tcgatcccgc	gaaattaata	5280
cgactcacta	tagggaaatt	gtgagcggat	aacaattccc	ctctagaaat	aattttgatt	5340
taactttaag	aaggagatat	accatgaaa				5369

```
<210> 4
<211> 3337
<212> DNA
<213> Artificial sequence
```

<220>
<223> pGFPuv plasmid coding for GFP from Aequorea victoria

```
<220>
<221> CDS
<222> (286)..(1014)
<223> pGFPuv plasmid coding for GFP from Aequorea victoria
```

```

<400> 4
agcgcccaat acgcaaaccg cctctccccg cgcggtggcc gattcattaa tgcagctggc 60
acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagtttagc 120
tcactcatta ggcaccccaag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa 180
tttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaaagcttg 240
catgcctgca ggtcgactct agaggatccc cgggtaccgg tagaa aaa atg agt aaa 297
                                         Lys Met Ser Lys
                                         1

```

```

gga gaa gaa ctt ttc act gga gtt gtc cca att ctt gtt gaa tta gat 345
Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp
5          10          15          20

```

```

ggt gat gtt aat ggg cac aaa ttt tct gtc agt gga gag ggt gaa ggt      393
Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly
25          30          35

```

```

gat gca aca tac gga aaa ctt acc ctt aaa ttt att tgc act act gga      441
Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly
        40           45

```