## Quantum Computing 2019 Set 1

## Due September 12th

Instructions: Solutions should be legibly handwritten or typset. Sets are to be returned in the mailbox outside 615 Soda Hall.

**Problem 1** (Expectation of an operator). In practice, we care about the outcome of a quantum system averaged over many trials. Consider a qubit  $|\psi\rangle\in\mathbb{C}^2$  and associate the measurement  $|0\rangle$  with +1 and a measurement of  $|1\rangle$  with -1.

1. **(2 points)** Show the expectation of this experiment is  $\langle \psi | Z | \psi \rangle$  where

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = |0\rangle\langle 0| - |1\rangle\langle 1|.$$

2. **(2 points)** This gives rise to the notation,  $\langle Z \rangle_{\psi} = \langle \psi | Z | \psi \rangle$  (or  $\langle Z \rangle$  when the state  $\psi$  is clear from context). Give an experiment with expectation  $\langle X \rangle$  where

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

**Problem 2** (CHSH Game). **(4 points)** Recall the CHSH game discussed in the first lecture. In this game, Alice and Bob receive random inputs  $x,y \in \{0,1\}$  and they win when they output  $a,b \in \{0,1\}$  such that  $a \oplus b = xy$ . In other words they play to maximize the  $Pr[a \oplus b = xy]$ . Physicists often describe the same game in different notation. As before Alice and Bob receive random inputs  $x,y \in \{0,1\}$ , but now they output  $u,v \in \{1,-1\}$ . Denote by  $u_x$  Alice's output when she receives x, and  $v_y$  Bob?s output when he receives y. Then in this notation, the goal of the players is to maximize  $S = E(u_0v_0) + E(u_0v_1) + E(u_1v_0) - E(u_1v_1)$ . Make sure that you understand why the physics formulation is equivalent to the version discussed in class. In particular, show that the maximum value of S for classical players is 2, whereas for quantum players it is at least

$$4(\cos^2 \pi/8 - \sin^2 \pi/8) = 2\sqrt{2}.$$

**Problem 3** (The GHZ game). In this problem, we explore another game, like the CHSH game, that demonstrates this "spooky action" at a distance.

The setup of the game is the similar to that of the CHSH game, except there are 3 players Alice, Bob and Charlie. The referee will send each of the players as input the string " $\mathbf{x}$ " or the string " $\mathbf{y}$ " and expects in return a bit  $\{+1,-1\}$ . However, the referee will only give out inputs consisting of zero or two  $\mathbf{y}$ 's; the 4 possible inputs are  $\{\mathbf{xxx}, \mathbf{xyy}, \mathbf{yxy}, \mathbf{yyx}\}$ . The players win if in the case that the input is  $\mathbf{xxx}$ , the product of their outputs is +1 and in the case that two of them received  $\mathbf{y}$  as input, the product of their outputs is -1. Equivalently,

input:  $\mathbf{xxx} \longrightarrow \text{output product: } +1$ input:  $\mathbf{xyy} \longrightarrow \text{output product: } -1$ input:  $\mathbf{yxy} \longrightarrow \text{output product: } -1$ input:  $\mathbf{yyx} \longrightarrow \text{output product: } -1$ 

- 1. **(2 points)** Show that if the 3 players, Alice, Bob and Charlie each employ a deterministic strategy, they cannot win with probability 1. (Hint: proof by contradiction). Give a simple deterministic strategy that wins with probability 3/4.
- 2. **(2 points)** Argue that even if Alice, Bob and Charlie share randomness, they still cannot win with probability 1.
- 3. **(2 points)** Now, we will come up with a quantum strategy that wins with probability 1. Suppose that Alice, Bob, and Charlie share one part of the tripartite cat state

$$|\gamma\rangle = \frac{|000\rangle + |111\rangle}{\sqrt{2}}.$$

On input **x**, assume each player measures their part of the cat state in the  $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$  basis (the eigenstates of the *X* operator).

Show that this measurement strategy allows the players to win with probability 1 on input xxx.

4. **(2 points)** On input **y**, assume each player measures their part of the cat state in the  $|+i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle), |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$  basis (the eigenstates of the Y = iXZ operator).

Show that this measurement strategy allows the players to win with probability 1 on input **xyy**.

5. **(2 points)** Argue by symmetry that for the input cases **yxy** and **yyx**, the players win with probability 1.

**Problem 4** (Quantum teleportation). Imagine Alice and Bob are on Earth and the Moon, respectively, and Alice wants to send to Bob her favorite qubit  $|\psi\rangle$ . Unfortunately, the only communication channel Alice and Bob have is classical; they can only send bits. However, before Bob left for the Moon, Alice and Bob came together to generate an EPR state,

$$|\Phi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

and each kept one half of the state. We will now construct a scheme in which Alice will perform measurements on  $|\psi\rangle$  and her half of the EPR pair and send the measurements to Bob who can use the measurements to recover the state  $|\psi\rangle$ .

The following is the purported scheme as a quantum circuit. Alice controls the top two wires (the original state  $|\psi\rangle$  and half of the EPR pair) and Bob controls the bottom wire. After Alice performs her measurements in the standard basis for outputs x and z, she classically transports the bits x and z to Bob who applies gates conditionally. Here, we employ the convention that  $X^1 = X$  and  $X^0 = \mathbb{I}$ .



One way to analyze the correctness of this scheme is to write  $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$  and work through the unitaries and the measurements. Instead, we can use our understanding of delayed measurements and unitary multiplication to vastly simplify this analysis.

1. **(2 points)** Conclude that for an EPR state  $|\Phi\rangle$  and any one qubit unitary U,

$$U\otimes\mathbb{I}|\Phi\rangle=\mathbb{I}\otimes U^{\top}|\Phi\rangle.$$

Show that this holds even if the unitary U is controlled on a third

qubit. I.e. show that the following two circuits are equivalent:



2. **(2 points)** Therefore, the following transformation of the circuit from (1) is valid:



Notice that this circuit is no longer a teleportation circuit as Alice and Bob apply a shared quantum gate; this circuit is purely for analysis purposes.

Now using the principle of deferred measurement, argue that it is sufficient to consider the following circuit for all x.



3. **(2 points)** By commuting gates, argue that we can further simplify to only considering the following circuit.

$$|\psi\rangle$$
  $H$   $z$  (4)  $|0\rangle$   $Z^z$   $|\psi\rangle$ 

4. **(2 points)** By expanding  $|\psi\rangle$  as  $\alpha |0\rangle + \beta |1\rangle$ , show that (4) is valid.