Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

October/November 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages.

Solve the equation $3x + 2 = \frac{2}{x - 1}$.	[3

(a)	Find the equation of the tangent to the curve at P .	[2]
		•••
		•••
		•••
		•••
		•••
		•••
		•••
(b)	Find the equation of the curve.	[4]
		. ,
		•••
		••••
		••••

Find the y-coordinate	of P.		[5]

ind the possible values of the constant p .	[6]

The diagram shows a sector OAB of a circle with centre O. The length of the arc AB is 8 cm. It is given that the perimeter of the sector is 20 cm.

)	Find the perimeter of the shaded segment.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••

(b)	Find the area of the shaded segment.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
		••••••
		•••••
		••••••

6	(a)	Show	that	the	equation

$\frac{1}{\sin\theta + \cos\theta} + \frac{1}{\sin\theta - \cos\theta} = 1$
may be expressed in the form $a \sin^2 \theta + b \sin \theta + c = 0$, where a , b and c are constants to be found.

) H	Hence solve the equati	$ \frac{1}{\sin\theta + \cos\theta} $	$+\frac{1}{\sin\theta-\cos\theta}=$	= 1 for $0^{\circ} \le \theta \le 360^{\circ}$.	[3
••					
••					
•••					
••					
•••					
•••					
••					
••					
••					
•••					
•••					
•••					
••					
•••					
•••					
•••					

A tool for putting fence posts into the ground is called a 'post-rammer'. The distances in millimetres

1)	Verify that the 9th impact is the first in which the post sinks less than 10 mm into the ground

•••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••	••••••	••••
	•••••	•••••		•••••	•••••		•••••	•••••	••••
•••••		•••••			•••••				••••
		•••••			•••••				
		•••••							
		•••••			•••••				
									• • • •
		•••••							
Find the gre									
Find the gre		depth in t	the groun	d which co	ould theore	etically be	achieved	1.	
Find the gre	atest total o	depth in t	the groun	d which co	ould theore	etically be	achieved	1.	
Find the gre	atest total o	depth in t	the groun	d which co	ould theore	etically be	achieved	1.	
Find the gre	atest total o	depth in t	the groun	d which co	ould theore	etically be	achieved	1.	
Find the gre	atest total o	depth in t	the groun	d which co	ould theore	etically be	achieved	1.	
Find the gre	atest total o	depth in t	the groun	d which co	ould theore	etically be	achieved	1.	
Find the gre	atest total o	depth in t	the groun	d which co	ould theore	etically be	achieved	1.	
Find the gre	atest total o	depth in t	the groun	d which co	ould theore	etically be	achieved	1.	
Find the gre	atest total o	depth in t	the groun	d which co	ould theore	etically be	achieved	1.	
Find the gre	atest total o	depth in t	the groun	d which co	ould theore	etically be	achieved	1.	

8	The function f is defined by $f(x) = 2$	$-\frac{3}{4x-p}$	for $x >$	$\frac{p}{4}$, where p is	a constant.
---	---	-------------------	-----------	---------------	----------------	-------------

neither.										
			•••••							
•••••			•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
			•••••							
•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	• • • • • • • • • • • • • • • • • • • •				
•••••		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
			•••••		•••••					
•••••			•••••		•••••	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	
••••••		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
			•••••		•••••					
•••••			•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		
•••••			•••••		•••••	•••••				
			•••••		•••••	•••••		•••••		
•••••		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
			•••••		•••••	•••••				

	Express $f^{-1}(x)$ in the form $\frac{p}{a} - \frac{b}{cx - d}$, where a, b, c and d are integers.
•	
	Hence state the value of p for which $f^{-1}(x) \equiv f(x)$.

9	Functions	f and g	are both	defined t	for $x \in \mathbb{R}$	and are	given	by

$$f(x) = x^{2} - 4x + 9,$$

$$g(x) = 2x^{2} + 4x + 12.$$

(a)	Express $f(x)$ in the form $(x - a)^2 + b$.	[1]
		•••••
		•••••
(b)	Express $g(x)$ in the form $2[(x+c)^2+d]$.	[2]
		•••••

	Express $g(x)$ in the form $kf(x + h)$, where k and h are integers.	[1]
٠		•••••
•		
,		•••••
,		
1	Describe fully the two transformations that have been combined to transform the graph of	of $y = f(x)$
	Describe fully the two transformations that have been combined to transform the graph to the graph of $y = g(x)$.	of $y = f(x)$
		[4]
	to the graph of $y = g(x)$.	[4]
	to the graph of $y = g(x)$.	[4]
	to the graph of $y = g(x)$.	[4]
	to the graph of $y = g(x)$.	[4]
	to the graph of $y = g(x)$.	[4]
	to the graph of $y = g(x)$.	[4]
	to the graph of $y = g(x)$.	[4]
	to the graph of $y = g(x)$.	[4]
	to the graph of $y = g(x)$.	[4]

Curves with equations $y = 2x^{\frac{1}{2}} + 1$ and $y = \frac{1}{2}x^2 - x + 1$ intersect at A(0, 1) and B(4, 5), as shown in the diagram.

(a)	Find the area of the region between the two curves.	[5]
		••••
		••••
		••••
		••••
		•••••

The acute angle between the two tangents at B is denoted by α° , and the scales on the axes are the same.

Find α .	
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••

The diagram shows the circle with equation $x^2 + y^2 = 20$. Tangents touching the circle at points *B* and *C* pass through the point *A* (0, 10).

By letting the equation of a tangent be $y = mx + 10$, find the two possible values of m. [4]

Find the coordinates of B and C .	[3
	•••••
	•••••
point D is where the circle crosses the positive x -axis.	ra
point D is where the circle crosses the positive x -axis. Find angle BDC in degrees.	[3
	[3
	[3
	[3
Find angle BDC in degrees.	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.