Math 212, Lecture Notes Several Complex Variables Professor: Maciej Zworski, Fall 2021

Scribe: Vishal Raman

Contents

	Lecture 1: 8/26/2021 1.1 Review of 1D Complex Analysis	3
2	Lecture 2: 8/31/2021	4
3	Lecture 3: 9/2/2021	6

§1 Lecture 1: 8/26/2021

§1.1 Review of 1D Complex Analysis

Definition 1.1 (Holomorphic). Let $D \subset \mathbb{C}$ be an open connected domain and take $u \in C^1(D)$. The function u is **holomorphic** if $\partial_{\overline{z}}u = 0$ where $\partial_{\overline{z}} = (\partial_x + i\partial_y)$.

We also have the equivalent conditions that

$$u \in \operatorname{Hol}(D) \Leftrightarrow \partial_{\overline{z}} = 0 \Leftrightarrow \lim_{h \to 0} \frac{u(z+h) - u(z)}{h}$$
 exists and is continuous.

Fact 1.2 (Green's Theorem). For $\Omega \subset \mathbb{C}$, $\partial \Omega \in C^1$, we have

$$\int_{\partial\Omega} u \, dz = \iint_{\Omega} \partial_{\overline{z}} u \, d\overline{z} \wedge dz.$$

Theorem 1.3 (Cauchy-Pompieu Formula)

Let $u \in C^1(\overline{\Omega})$. For all $\zeta \in \Omega$,

$$u(\zeta) = \frac{1}{2\pi i} \left(\int_{\partial \Omega} \frac{u(z)}{z - \zeta} \, dz + \iint_{\Omega} \frac{\partial_{\overline{z}} u(z)}{z - \zeta} \, dz \wedge d\overline{z} \right)$$

Proof. Let $\Omega_{\varepsilon} = \Omega \setminus \overline{D(\zeta, \epsilon)}$, where $0 < \epsilon << 1$. Applying Green's Theorem to $w(z) = \frac{u(z)}{z-\zeta} \in C^1(\overline{\Omega_{\varepsilon}})$ and noting that $\partial_{\overline{z}}w = \frac{\partial_{\overline{z}}u(z)}{z-\zeta}$, we have

$$\iint_{\Omega_{\varepsilon}} \frac{\partial_{\overline{z}} u(z)}{z-\zeta} d\overline{z} \wedge dz = \int_{\partial \Omega} \frac{u(z)}{z-\zeta} \, dz - \int_{\partial D(\zeta,\epsilon)} \frac{u(z)}{z-\zeta} \, dz.$$

The left-hand side converges to $\iint_{\Omega} \frac{\partial_{\overline{z}}u(z)}{z-\zeta} d\overline{z} \wedge dz$ by the dominated convergence theorem. Parameterizing the disc via polar coordinates, we can write

$$\int_{\partial D(\zeta,\epsilon)} \frac{u(z)}{z-\zeta} dz = \int_0^{2\pi} u(\zeta + \epsilon e^{i\theta}) d\theta \to 2\pi i u(\zeta).$$

The desired formula follows from rearranging the terms upon taking the limit as $\epsilon \to 0$.

Remark 1.4. We also have a partial converse: let $\varphi \in C_c^k(\mathbb{C})$ with $k \geq 1$ and $u(z) = \iint \frac{\varphi(z)}{z-\zeta} dz \wedge d\overline{z}$. Then $u \in C^k(\mathbb{C})$ and $\partial_{\overline{z}} u = \varphi$.

Some other notable corollaries that follow from Cauchy's Theorem:

- $u \in \operatorname{Hol}(D) \Rightarrow u \in C^{\infty}(D)$.
- For all $K \in \Omega \in D$, k, there exists C such that for all $u \in \text{Hol}(D)$, we have

$$\sup_{K} |u^{(j)}(z)| \le C ||u||_{L^{1}(\Omega)}.$$

• $u_i \in \text{Hol}(D), u_i \to u$ uniformly on bounded sets, then $u \in \text{Hol}(D)$.

§2 Lecture 2: 8/31/2021

We introduce the notation $u \in \mathcal{O}(D)$ to mean that u is holomorphic. We continue with corollaries following from Cauchy's Theorem:

• Let $\{u_j\} \subset \mathcal{O}(D)$. If for all $K \subseteq D$, there exists C such that $|u_j| \leq C$, then there exists $u \in \mathcal{O}(D)$ and a subsequence u_{j_k} such that $u_{j_k} \to u$ uniformly on compact sets.

Proof. Recall the Arzela-Ascoli Theorem:

Theorem 2.1 (Arzela-Ascoli)

Suppose $K \in \mathbb{C}$, $\{w_j\} \subset C(K)$ and there exists C such that $|w_j| \leq C$ and equicontinuous: for all $\epsilon > 0$, there exists δ such that for all $z, \zeta \in K$,

$$||z - \zeta|| < \delta \Rightarrow ||w_j(z) - w_j(\zeta)|| < \epsilon.$$

Then, there exists j_k and $w \in C(K)$ such that $w_{j_k} \to w$ in C(K).

Let $D = \bigcup K_j$, $K_j \subset K_{j+1} \subseteq D$. For example, we could take

$$K_j = \{z \in D : d(zm\mathbb{C} \setminus D) \ge 1/j, |z| \le j\}.$$

Then, $|u_j| \leq C_{K_j}$ on K_j so it follows that $|u_j'| \leq C_k'$ on any K_j .

By Arzela-Ascoli, we have a subsequence $\{u_k^{j+1}\}\subset\{u_k^j\}$ such that $u_{n_k^j}\to u^j$ uniformly on K_j . Then, since $u^{j+1}|_{K_j}=u^j$, and $u^j\to u$ uniformly on compact sets.

• Maximum Principle: $u \in \mathcal{O}(D(z_0, r))$ and $|u(z)| \leq |u(z_0)|, z \in D(z_0, r)$, then u is identically a constant.

Proof. Suppose $u(z_0) \neq 0$ (otherwise the problem is trivial).

$$u(z_0) = \frac{1}{2\pi i} \int_{\partial D(z_0, \rho), \rho < r} \frac{u(z)}{z - z_0} dz$$
$$= \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + \rho e^{i\theta}) dz$$

It follows that we have

$$0 = \int_0^{2\pi} \left(1 - \frac{u(z_0 + \rho e^{i\theta})}{u(z_0)} \right)$$

Taking real parts, it follows that

$$1 = \frac{\text{Re}\{u(z_0 + \rho e^{i\theta})\}\overline{u(z_0)}}{|u(z_0)|^2},$$

which implies the result.

• Maximum Principle for Bounded Domain: $\overline{D} \in \mathbb{C}$, $u \in \mathcal{O}(D) \cap C(\overline{D})$ then $\max_{\overline{D}} |u|$ is attained on the boundary.

Proof. Suppose $\operatorname{argmax} |u| = z_0$ with $z_0 \in D$. It follows that u is constant in $D(z_0, r)$. We will show later that this implies that u is constant on D.

- Let $u \in \mathcal{O}(D(0,r))$ then $u(z) = \sum \frac{u^{(n)}(0)}{n!} z^n$ with the series converging uniformly in $\overline{D(0,\rho)}$ for $\rho < r$.
- $u \in \mathcal{O}(D(0,r)), u \not\equiv 0$, then there exists $n, v \in \mathcal{O}(D(0,r))$ with $u(z) = z^n v(z), v(0) \neq 0$.
- If $\sum a_n z^n$ converges in $|z| \leq r$, it is holomorphic on the disc.
- If $u \in \mathcal{O}(D)$ and there exists $z_0 \in D$ such that $u^{(n)}(z_0) = 0$ for all n, then $u \equiv 0$.
- Liouville's Theorem: SUppose $u \in \mathcal{O}(\mathbb{C})$ and $|u(z)| \leq C + C|z|^n$ for all $z \in \mathbb{C}$. Then u is a polynomial of degree at most n.
- Suppose $u \in \mathcal{O}(\mathbb{C})$, $u \in L^p(\mathbb{C}, d\mu)$ for $p \in [1, \infty)$. Then $u \equiv 0$.

§3 Lecture 3: 9/2/2021

We now move to complex variables in \mathbb{C}^n .

Definition 3.1. f is complex differentiable at $z_0 \in D$ if there exists $D \in \mathbb{C}$ such that

$$\frac{|f(z+h) - f(z) - Dh|}{|h|} \xrightarrow{h \to 0} 0.$$

Then, f is holomorphic in D if it is complex differentiable at all points in D, denoted $f \in \mathcal{O}(D)$.

An alternative definition is as follows:

Definition 3.2. $f \in C^1(D)$ is holomorphic if $\partial_{\overline{z}_j} f = \frac{1}{2} (\partial_{x_j} + i \partial_{y_j}) f = 0$ for all j.