W205 Final Project: Data Driven

Heather Feinstein Cynthia Hu Collin Reinking Charlotte Swavola

Goals

Empowering taxi drivers with street smarts from data

- How do I optimize my time driving for downtime, but maximize my fares per ride?
- Should I drive back to the area of high demand or wait for a pickup in my current location?
- Is there a strategy to maximise gratuities (tips)?
- Are fewer long-distance trip or more frequent short trips more profitable?
- How should I plan my week to maximize earnings?

Our Roadmap

Phase I: Monthly Dashboard

- Web-based dashboard
- Monthly updated analysis and weekly updated forecast
- Mainly descriptive analysis and simple ML forecast

Phase II: Daily or Near-Real-time Application

- Daily or Near-Real-time update
- Advanced ML Fare forecast with improved accuracy
- Integrate both traffic and weather data

Product - Dashboard I

Where are people going from this location?

Your Fare (and weather) Forecast August 2017

Chicago Hotspots

Product - Dashboard II (Tableau)

\$\$ per Mile

Challenges and Limitations

Challenges:

Correlating consumer demand to pick up data - only one side of the story

Integrating and enabling real-time traffic data and map

Inferring driver down time from available data

Understanding what questions are most critical to drivers

Differentiating ourselves in a crowded marketplace

Dirty data

Limitations:

Historical analysis space requirements

Limit data timeline- more current data offers more relevant information, as external factors (e.g. introducing UberPool) may skew "demand" trends from year to year

Real-time processing at scale means 6-hour delay

Self fulfilling prophecy- need external data for future forecasting

Storage Requirement

- Challenge: Gathering and transforming the data needs the power of hive, but forecasting and visualization need maneuverable finesse.
- Solutions:
 - Base tables- Hive
 - Data partially filtered from request
 - Table transformations and aggregation- SparkSQL
 - Forecasting- Python code within hive structure
 - Visualization- Tableau! Exciting, informative dashboard, where each graphic answers a question

Architecture

Implementation

- 1. Set up EC2 Instance with 200+GB EBS volume attached
- 2. Run load_data.sh to load data and put them into HDFS
- 3. Run hive_trip_ddl.sql to create base Hive tables
- 4. Run trip_transforming.sql to transform datasets
- 5. Run trip_aggregation.sql to aggregate datasets for visualization and forecast
- 6. Set up python correctly and run trip_forecast.py in PySpark
- 7. Connect tableau to the Hive Server in EC2 instance
- 8. Create and refresh charts in tableau

Refer to Implementation Instructions Document

Appendix

Data sets used

1. Chicago Taxi Trip Data https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew

Time Period: 2013 - Current

Frequency: Data are updated monthly

Data Retrieve: Download as CSV, JSON, RDF, TSV or XML; Access through SODA API

2. Chicago Daily Weather Data

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/locations/CITY:US170006/detail

Data Dictionary - Taxi Trip I

Column Name	Description	Туре
Trip ID	A unique identifier for the trip.	Plain Text
Taxi ID	A unique identifier for the taxi.	Plain Text
Trip Start Timestamp	When the trip started, rounded to the nearest 15 minutes.	Date & Time
Trip End Timestamp	When the trip ended, rounded to the nearest 15 minutes.	Date & Time
Trip Seconds	Time of the trip in seconds.	Number
Trip Miles	Distance of the trip in miles.	Number
	The Census Tract where the trip began. For privacy, this Census Tract	
Pickup Census Tract	is not shown for some trips.	Plain Text
0	The Census Tract where the trip ended. For privacy, this Census Tract	
Dropoff Census Tract	is not shown for some trips.	Plain Text
Pickup Community Area	The Community Area where the trip began.	Number
Dropoff Community Area	The Community Area where the trip ended.	Number
Fare	The fare for the trip.	Money
Tips	The tip for the trip. Cash tips generally will not be recorded.	Money

Data Dictionary - Taxi Trip II

Column Name	Description	Туре
Tolls	The tolls for the trip.	Money
Extras	Extra charges for the trip.	Money
Trip Total	Total cost of the trip, the total of the previous columns.	Money
Payment Type	Type of payment for the trip.	Plain Text
Company	The taxi company.	Plain Text
	The latitude of the center of the pickup census tract or the	
Pickup Centroid Latitude	community area if the census tract has been hidden for privacy.	Number
	The longitude of the center of the pickup census tract or the	W. 1 M
Pickup Centroid Longitude	community area if the census tract has been hidden for privacy.	Number
	The location of the center of the pickup census tract or the	
Pickup Centroid Location	community area if the census tract has been hidden for privacy.	Point
	The latitude of the center of the dropoff census tract or the	
Dropoff Centroid Latitude	community area if the census tract has been hidden for privacy.	Number
	The longitude of the center of the dropoff census tract or the	
Dropoff Centroid Longitude	community area if the census tract has been hidden for privacy.	Number
	The location of the center of the dropoff census tract or the	
Dropoff Centroid Location	community area if the census tract has been hidden for privacy.	Point

Data Dictionary - Weather

Data Type	Description	Start	End	Coverage ²
TAVG	Average Temperature.	10/30/1958	8/10/2017	100%
TMAX	Maximum temperature	1893-01-01	8/10/2017	100%
TMIN	Minimum temperature	1893-01-01	8/10/2017	100%
TOBS	Temperature at the time of observation	1/1/1901	8/10/2017	100%
PRCP	Precipitation	1870-10-15	8/10/2017	100%
SNOW	Snowfall	1893-01-01	8/10/2017	100%
SNWD	Snow depth	1893-01-01	8/10/2017	100%

Submission Files

