Problem 2)a)
$$A(V_{1}T_{1}NA_{1}NB_{2}NC_{1}ND_{1}) = -k_{B}T \ln Q$$

$$dA = \left(\frac{\partial A}{\partial V}\right)V_{1,N} + \left(\frac{\partial A}{\partial N}\right)V_{1,N} + \left(\frac{\partial A}{\partial N}\right)V_{1,N}$$

Plussing in to Egn 4 gives 0=-KgT (alog a A/Ni + blog & B/NB. - clog 90/Nc -dlog 80/Np) => 0 = log[(\frac{\fir}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\ $=) = \left[\left(\frac{2}{3} \frac{1}{N_A} \right)^{\alpha} \left(\frac{2}{3} \frac{1}{N_B} \right)^{\beta} \cdot \left(\frac{2}{3} \frac{1}{N_B} \right)^{-\alpha} \cdot \left(\frac{2}{N_B} \right)^{-\alpha} \right]$ node that $GA/NA = (GA/V)/(NA/V) = \frac{(GA/V)}{SA}$ $\Rightarrow \left(\left(\frac{4c}{\nu} \right) \right)^{c} \cdot \left(\left(\frac{4c}{\nu} \right)^{c} \cdot \left(\left(\frac{4c}{\nu} \right) \right)^{c} \cdot \left(\left(\frac{4c}{\nu} \right)^{c} \cdot \left(\frac{4c}{\nu} \right)^{c} \cdot \left(\left(\frac{4c}{\nu} \right) \right)^{c} \cdot \left(\left(\frac{4c}{\nu} \right)^{c} \cdot \left(\frac{4c}{\nu} \right)^{c} \cdot$ =) $P_{0}^{d}P_{c}^{c} = \frac{(P_{0}/v)^{d}(P_{c}/v)^{c}}{(P_{0}/v)^{d}(P_{0}/v)^{d}} = k(T)$ $P_{0}^{d}P_{0}^{c} = \frac{(P_{0}/v)^{d}(P_{0}/v)^{d}}{(P_{0}/v)^{d}(P_{0}/v)^{d}} = k(T)$ The right side depends only on T because each $g_{x} = Vf(n_{x},T)$ as in the problem, So all l'dependence cancels out, and no N's. Other side $P_X = P_X/K_BT$ where P_X is the partial pressure, see next
parts

d)
$$P_{X} = -\frac{\partial A_{X}}{\partial V} = + \frac{\partial A_{X}}{\partial V} = + \frac{\partial A_{X}}{\partial V} \left(\frac{\partial A_{X}}{\partial V} \right)$$

$$= \frac{\partial A_{X}}{\partial V} = + \frac{\partial A_{X}}{\partial V} \left(\frac{\partial A_{X}}{\partial V} \right)$$

$$= \frac{\partial A_{X}}{\partial V} = + \frac{\partial A_{X}}{\partial V} \left(\frac{\partial A_{X}}{\partial V} \right)$$

$$= \frac{\partial A_{X}}{\partial V} = + \frac{\partial A_{X}}{\partial V} = -\frac{\partial A_{X}}{\partial V} = -\frac$$