Suppose, X_1, \ldots, X_d are i.i.d. samples from the distribution Uniform $(\{1, 2, \ldots, t+\})$ 2} \ {i}). Also, assume the function f is defined such that $f(i) = D_i(t)$. Now, we shall replace the sum in the above equation by an expectation over the i.i.d. random variables X_1, \ldots, X_d .

random variables
$$X_1, \dots, X_d$$
.
$$1 + P'_i(t) \le 1 + \frac{(t+1)^d}{2^d(t+1)^d} \mathbb{E}\left[\left(\prod_{i=1}^d f(X_i)\right) \times \frac{1}{t+2-d}\right]$$

 $1 + P_i'(t) \le 1 + \frac{(t+1)^d}{2^d(t+1)^d} \mathbb{E} \left[\left(\prod_{j=1}^d f(X_j) \right) \times \frac{1}{t+2-d} \right]$

$$1 + P_i'(t) \le 1 + \frac{(t+1)^d}{2^d(t+1)^d} \mathbb{E}\left[\left(\prod_{j=1}^d f(X_j)\right) \times \frac{1}{t+2-d}\right]$$

$$=1+\frac{1}{2^{d}(t+2-d)}\left(\mathbb{E}\left[f(X_{1})\right]\right)^{d}$$

 $= 1 + \frac{1}{2^d(t+2-d)} \left(\frac{2(t+1) - D_i(t)}{t+1} \right)^{\alpha}$

 $\leq 1 + \frac{1}{t+2-d} = \frac{t+3-d}{t+2-d}$.