

M545D(V4.0)

数字式两相步进驱动器 使用说明书

版权所有 翻版必究【使用前请仔细阅读本手册,以免损坏驱动器】

深圳市雷赛智能控制股份有限公司 Leadshine Technology Co., Ltd.

深圳市雷赛智能控制股份有限公司

地 址:深圳市南山区学苑大道 1001 号南山智园 A3 栋 10-11 楼

邮 编: 518000

电 话: 联系店铺客服或 400-885-5501

发货时间: 8:30 - 17:45 工作日

Email: phelixhuang@leadshine.com

雷赛智能旗舰店(天猫): https://leadshine.tmall.com

雷赛智能商城: http://leisaishop.com

目 录

一、产品简介	2
1. 概述	2
2. 特点	2
3. 应用领域	2
二、电气、机械和环境指标	2
1. 电气指标	2
2. 使用环境及参数	3
3. 机械安装图	3
4. 散热方式	4
三、驱动器接口和接线介绍	4
1. 接口描述	4
2. 控制信号接口电路	5
3. 控制信号时序图	5
4. 报警信号接口电路	6
5. 接线要求	7
四、电流、细分拨码开关设定	7
1. 电流设定	7
2. 每转脉冲设定	8
五、供电电源选择	
六、电机选配	8
1. 电机选配	
2. 电机接线	9
3. 输入电压和输出电流的选用	
七、典型接线案例	
九、常见问题	11
1. 应用中常见问题和处理方法	11
2 田户党国问题解签	12

数字式两相步进驱动器

一、产品简介

1. 概述

M545D(V4.0)是雷赛公司新推出的高性能数字式两相步进驱动器,采用数字 PID 技术,用户可以设置常用的 8 档电流以及 16 档细分,能够满足大多数场合的应用需要。低中高速运行都很平稳,噪音小。多种功能可通过外部拨码选择,极大地方便了客户的应用。

2. 特点

- ●数字 PID 技术
- ●超低振动噪声
- ●内置高细分,拨码可选
- ●上电自动整定,不可关闭
- 光隔离差分信号输入
- ●待机电流自动减半, SW4 选择
- 信号支持 5V 或者 24V, 通过一个滑动开关选择
- 脉冲响应频率最高可达 200KHz
- 3 位拨码,可设定 8 档电流
- 4位拨码,可调16档细分
- 具有过压、短路等保护功能
- 外置报警输出,最大输出电流 100mA,耐压 30Vdc

3. 应用领域

适合各种中小型自动化设备和仪器,例如:雕刻机、打标机、切割机、激光照排、绘图仪、数控机床、自动装配设备等。

二、电气、机械和环境指标

1. 电气指标

说明	M545D(V4.0)			
JC 97	最小值	典型值	最大值	单位
输出电流(峰值)	1.0	-	4.5	A
输入电源电压	20	24 / 36 / 48	50	VDC
控制信号输入电流	7	10	16	mA
步进脉冲频率	0	-	200	KHz
绝缘电阻	100			ΜΩ

2. 使用环境及参数

冷却方	冷却方式 自然冷却或强制风冷			
场合		不能放在其它发热的设备旁,要避免粉尘、油雾、腐蚀性气体,		
	場合	湿度太大及强振动场所,禁止有可燃气体和导电灰尘;		
使用环境	温度	0—40℃		
	湿度	40—90%RH		
	振动	动 10~55Hz/0.15mm		
保存温度		-20°C∼65°C		
重量		230 克		

3. 机械安装图

图 1 安装尺寸图(单位:毫米)

※推荐采用侧面安装,散热效果更佳,安装设计时,需要考虑接线端子大小和散热所需空间!

雷夏智能 Leadshine 4. 散热方式

- 1)驱动器的可靠工作温度通常在60℃以内, 电机工作温度为80℃以内;
- 2)建议使用时选择自动半流方式,马达停止时电流自动减一半,以减少电机和驱动器的发热;
- 3)安装驱动器时请采用竖着侧面安装,使散热齿形成较强的空气对流;必要时机内靠近驱动器处安装风扇,强制散热,保证驱动器在可靠工作温度范围内工作。

三、驱动器接口和接线介绍

1. 接口描述

1)控制信号接口

	名称	功能		
	PUL+	脉冲信号: 下降沿有效,信号通过一位滑动开关选择 5Vdc 或者 24Vdc。出		
	PUL-	厂设置在 24v 位置。		
	DIR+	方向信号: 高/低电平信号,为保证电机可靠换向,方向信号应先于脉冲信号至少 5μs 建立。电机的初始运行方向与电机的接线有关,互换任一相绕		
	DIR-	组(如 A+、A-交换)可以改变电机初始运行的方向,信号通过一位滑动开关选择 5Vdc 或者 24Vdc。出厂设置在 24v 位置。		
	ENA+	支持 5~24V 默认悬空不接,如果一定要使用 ENA 信号。请注意控制信号时序。(开环驱		
	ENA-	动器的使能信号不可清除报警)		
	ALM+	报警信号:此信号用于驱动器故障信号输出,为光电隔离 OC 输出,最高承		
ALM- 受电压 30VDC,最大饱和电流 100mA。		受电压 30VDC,最大饱和电流 100mA。		

2)强电接口

名称	功能
GND	电源输入负极
+Vdc	电源输入正极,电源电压范围为 20~50Vdc,推荐 36Vdc
A+, A-	电机 A 相线圈。
B+、B-	电机B相线圈。

3) 滑动开关

M545D(V4.0)有一个滑动开关,用来设置 5V 或者 24V 信号。

图示	信号	输入/输	名称
	5V	输入	脉冲、方向信号输入电平 5V
5V 24V	24	输入	脉冲、方向信号输入电平 24V(默

4) 状态指示

绿色 LED 为电源指示灯,当驱动器接通电源时,该 LED 常亮;当驱动器切断电源时,该 LED 熄灭。红色 LED 为故障指示灯,当出现故障时,该指示灯以3秒钟为周期循环闪烁;当故障被用户清除时,红色 LED 常灭。具体关系如下表所示;

状态	故障说明
红灯闪1次	过流或相间短路故障,用万用表检查电机是否短路
红灯闪2次	过压故障(电压>62Vdc),检查电源电压是否过高
红灯常亮	驱动器硬件被烧,可能是把电源接线接到电机接线处
绿灯闪烁	开关电源被保护,建议更换雷赛步进专业的开关电源

2. 控制信号接口电路

M545D (V4. 0) 驱动器采用差分式接口电路可适用差分信号,单端共阴及共阳等接口,内置高速光电耦合器,允许接收长线驱动器,集电极开路和 PNP 输出电路的信号。在环境恶劣的场合,我们推荐用长线驱动器电路,抗干扰能力强。现在以集电极开路和 PNP 输出为例,接口电路示意图如下:

图 2 输入接口电路

说明: 当控制信号是 5V 时,不用接 R 电阻,需要将滑动开关拨到 5V 信号选择位置; 当控制性是 24V 时,不用接 R 电阻,需要将滑动开关拨到 24V 信号选择的位置; 当控制信号是 12V 时, R 为 1K Ω,同时需要将滑动开关拨到 5V 信号选择位置;

雷赛智能 Leadshine

3. 控制信号时序图

为了避免一些误动作和偏差,PUL、DIR 和 ENA 应满足一定要求,如下图所示:

注释:

图 3 控制信号时序图

- 1) t1: ENA(使能信号)应提前 DIR 至少 500ms。一般情况下建议 ENA+和 ENA-悬空即可。
- 2) t2: DIR 至少提前 PUL 下降沿 5μs 确定其状态高或低。
- 3) t3: 脉冲宽度至少不小于 2.5 µs。
- 4) t4: 低电平宽度不小于 2.5 µs。
- 5) PUL 信号的占空比建议为 50%, 如果不是 50%, 最大输入频率将达不到 200KHz。

4. 报警信号接口电路

M545D(V4.0)报警信号如下图所示:

图 4-1 ALM 输出信号与漏极 PLC 相连

图 4-2 ALM 输出信号与源极 PLC 相连

图 4-3 ALM 输出信号与继电器相连

- 1)为了防止驱动器受干扰,建议控制信号采用屏蔽电缆线,并且屏蔽层与地线短接,除特殊要求外,控制信号电缆的屏蔽线单端接地:屏蔽线的上位机一端接地,屏蔽线的驱动器一端悬空。同一机器内只允许在同一点接地,如果不是真实接地线,可能干扰严重,此时屏蔽层不接。
- 2)脉冲和方向信号线与电机线不允许并排包扎在一起,最好分开至少 10cm 以上,否则电机 噪声容易干扰脉冲方向信号引起电机定位不准,系统不稳定等故障。
- 3)如果一个电源供多台驱动器,应在电源处采取并联连接,不允许先到一台再到另一台链状 式连接。
- 4)严禁带电拔插驱动器强电端子,带电的电机停止时仍有大电流流过线圈,拔插强电端子将导致巨大的瞬间感生电动势将烧坏驱动器。
- 5)严禁将导线头加锡后接入接线端子,否则可能因接触电阻变大而过热损坏端子。

四、电流、细分拨码开关设定

M545D(V4.0)驱动器采用八位拨码开关设定细分精度、动态电流、待机电流和细分。

1. 电流设定

1)工作(动态)电流设定

峰值电流	RMS 电流	SW1	SW2	SW3
1.00A	0.71A	on	on	on
1.46A	1.04A	off	on	on
1.91A	1.36A	on	off	on
2.37A	1.69A	off	off	on
2.84A	2.03A	on	on	off
3.31A	2.36A	off	on	off
3.76A	2.69A	on	off	off
4.50A	3.20A	off	off	off

说明: RMS 电流表示电流有效值,通常设置为与电机相电流相近的值;

2) 待机(静态)电流设定

SW4 设置待机电流:

SW4=off: (出厂默认)驱动器停止接收脉冲约 0.4 秒后,电流为动态电流的 50%(在某些应用场合可以降低驱动器和电机的发热); SW4=on:电流为动态电流的 50%。

2. 每转脉冲设定

雷赛智能 Leadshine

步数/转	SW5	SW6	SW7	SW8
200	on	on	on	on
400	off	on	on	on
800	on	off	on	on
_1600	off	off	on	on
3200	on	on	off	on
6400	off	on	off	on
12800	on	off	off	on
25600	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
25000	off	off	off	off

说明: 细分也叫每转脉冲数,建议设置为 1600-6400;

五、供电电源选择

电源电压在 DC20V-50V 之间都可以正常工作, M545D(V4.0)驱动器最好采用开关电源供电, 也可以采用变压器降压+桥式整流+电容滤波。建议用户使用 24V-48V 直流供电, 避免电网波动超过驱动器电压工作范围。

请注意:

- 1)接线时要注意电源正负极切勿反接;
- 2)世面上有些开关电源过压过流点低,容易报警,最好使用雷赛专用步进伺服开关电源;
- 3)为降低成本, 两三个驱动器可共用一个电源, 但应保证电源功率足够大。
- 4) 当电机转速低于 300rpm 时,同一个驱动器,电机的出力主要受 RMS 电流影响,电流越大,出力越大;当电机转速高于 300rpm 时,电机的出力主要受供电电源的影响,电压最大,出力越大。

六、电机选配

M545D(V4.0)可以用来驱动 4、6、8 线的两相、四相混合式步进电机,步距角为 1.8 度和 0.9 度。选择电机时主要由电机的扭矩和额定电流决定。扭矩大小主要由电机尺寸决定。尺寸大的电机扭矩较大;而电流大小主要与电感有关,小电感电机高速性能好,但电流较大。

1. 电机选配

1) 确定负载转矩, 传动比工作转速范围

T 电机=C(J ε +T 负载)

J: 负载的转动惯量

- ε: 负载的最大角加速度
- C: 安全系数,推荐值 1.2-1.4
- T 负载: 最大负载转矩,包括有效负载、摩擦力、传动效率等阻力转矩

2) 电机输出转矩由哪些因素决定

对于给定的步进电机和线圈接法,输出扭矩有以下特点:

- ●电机实际电流越大,输出转矩越大,但电机铜损(P=I²R)越多,电机发热偏多;
- ●驱动器供电电压越高,电机高速扭矩越大;
- ●由步进电机的矩频特性图可知, 高速比中低速扭矩小。

图 4 矩频特性图

2. 电机接线

对于 6、8 线步进电机,不同线圈的接法电机性能有相当大的差别,如下图所述:

3. 输入电压和输出电流的选用

1) 供电电压的设定

一般来说,供电电压越高,电机高速时力矩越大。越能避免高速时掉步。但另一方面, 电压太高会导致过压保护,电机发热较多,甚至可能损坏驱动器。在高电压下工作时,电机 低速运动的振动会大一些。

2) 输出电流的设定值

对于同一电机,电流设定值越大时,电机输出力矩越大,但电流大时电机和驱动器的发热也比较严重。具体发热量的大小不仅与电流设定值有关,也与运动类型及停留时间有关。以下的设定方式采用步进电机额定电流值作为参考,但实际应用中的最佳值应在此基础上调整。原则上如温度很低(<40℃)则可视需要适当加大电流设定值以增加电机输出功率(力矩和高速响应)。

- ●四线电机:输出电流设成等于或略小于电机额定电流值;
- ●六线电机高力矩模式:输出电流设成电机单极性接法额定电流的50%;
- ●六线电机高速模式:输出电流设成电机单极性接法额定电流的100%;
- ●八线电机串联接法:输出电流可设成电机单极性接法额定电流的70%;
- ●八线电机并联接法:输出电流可设成电机单极性接法额定电流的140%。

△注意: 电流设定后请运转电机 15-30 分钟, 如电机温升太高(>70℃), 则应降低电流设定值。所以, 一般情况是把电流设成电机长期工作时出现温热但不过热时的数值。

七、典型接线案例

M545D(V4.0)配 57 系列电机串联,并联接法(若电机转向与期望转向不同时,仅交换 A+、A一的位置即可),M545D(V4.0)驱动器能驱动四线、六线或八线的两相/四相电机。下图是M545D(V4.0)配 57CM22D 步进电机的典型接法:

注意:

- 1)电机的接线以电机资料说明为准。
- 2)相是相对的,但不同相的绕组不能接在驱动器同一相的端子上(A+、A-为一相,B+、B-为另一相)。

3)M545D(V4.0)驱动器只能驱动两相混合式步进电机,不能驱动三相和五相步进电机。

图 6 M545D (V4. 0) 配 57 电机典型接法

- 4)判断步进电机串联或并联接法正确与否的方法: 在不接入驱动器的条件下用手直接转动电机的轴,如果能轻松均匀地转动则说明接线正确,如果遇到阻力较大和不均匀并伴有一定的声音说明接线错误。
- 5)由于驱动器不具备电源正负极反接保护功能,因此,上电前请再次确认电源正负极接线正确。正负极接反将导致烧坏驱动器中的保险管!

九、常见问题

1. 应用中常见问题和处理方法

现象 可能问题		解决措施		
	电源灯不亮	正常供电		
	电流设定太小	根据电机额定电流,选择合适电流档		
	驱动器已保护	排除故障后,重新上电		
电机不转	使能信号为低	此信号拉高或不接		
	控制信号问题	检查控制信号的幅值和宽度是否满足要求; 或者驱动器项上滑拨为 24V, 而实际控制信号为 5V		
	细分设置太小	把细分设置大一点,这样启动速度不至于太大		
	电机线接错	任意交换电机同一相的两根线(例如 A+、A-交换接线 位置)		
	电机线有断路	检查并接对		
电机转向错误	电机只转一个方向	可能方向信号太弱,或接线极性错,或信号电压太高烧 坏方向限流电阻; 可能脉冲模式不匹配,信号是脉冲/方向,驱动器必须设 置为此模式;若信号是 CW/CCW(双脉冲模式),驱动器 则必须也是此模式,否则电机只朝一个方向运转。		
	电机线接错	检查接线		
报警指示灯亮	电压过高或过低	检查电源电压		
	电机或驱动器损坏	更换电机或驱动器		
	信号受干扰	排除干扰		
	屏蔽地未接或未接好	可靠接地		
位置不准	细分错误	设对细分		
	电流偏小	适当加大电流		
	控制信号问题	检查控制信号是否满足时序要求		
	加速时间太短	适当增大加速时间		
电机加速时堵 转	电机扭矩太小	选大扭矩电机		
17	电压偏低或电流太小	适当提高电压或设置更大的电流		

2. 用户常见问题解答

1)何为步进电机和步进驱动器?

步进电机是一种专门用于速度和位置精确控制的特种电机,它旋转是以固定的角度(称为"步距角")一步一步运行的,故称步进电机。其特点是没有累积误差,接收到控制器发来的每一个脉冲信号,在驱动器的推动下电机运转一个固定的角度,所以广泛应用于各种开环控制。

步进驱动器是一种能使步进电机运行的功率放大器,能把控制器发来的脉冲信号转化为步进电机的功率信号,电机的转速与脉冲频率成正比,所以控制脉冲频率可以精确调速,控制脉冲数就可以精确定位。

2) 何为驱动器的细分? 步进电机的转速与脉冲频率的关系是什么?

步进电机由于自身特有结构决定,出厂时都注明"电机固有步距角"(如 0.9°/1.8°, 表示半步工作每走一步转过的角度为 0.9°, 整步时为 1.8°)。但在很多精密控制和场合, 整步的角度太大,影响控制精度,同时振动太大,所以要求分很多步走完一个电机固有步距角, 这就是所谓的细分驱动,能够实现此功能的电子装置称为细分驱动器。

$$V = \frac{P^*\theta e}{360^* m}$$

V: 电机转速(r/s)

P: 脉冲频率(Hz)

θe: 电机固有步距角 m: 细分数(整步为 1, 半步为 2)

3) 细分驱动器有何优点?

- ●因减少每一步所走过的步距角,提高了步距均匀度,因此可以提高控制精度。
- ●可以大大地减少电机振动, 低频振荡是步进电机的固有特性, 用细分是消除它的最好方法。
- ●可以有效地减少转矩脉动,提高输出转矩。
- 以上这些优点普遍被用户认可,并给他们带来实惠,所以建议细分设置为1600-6400.

4) 步进电机的功率是多少?

步进电机的特点是低速打力矩,不同转速下的输出功率是不同的。因此我们在选型时主要是参考保持力矩这个参数,很少会去关注步进电机的功率,如果一定要计算步进电机的功率,需要结合矩频曲线图,并参考以下这个公式,选出最大功率点,具体公式如下:

P=2 π nT/60; 其中 P 为功率,单位为 W,n 为转速,单位是 rpm, T 为力矩,单位为 N.m. 例 如: 雷 赛 步 进 电 机 57CM13D 在 120rpm 时 力 矩 是 1N.m ,此 时 的 电 机 功 率 P=6.28*1*120/60=12.4W. 但是这并不表示可以选一个 15W 左右的开关电源带该电机和驱动器,步进电机转化功率较交流伺服和无刷电机来说低很多。