Short Description VaR / Expected Shortfall (CVaR) Toolkit (CLI) Mario Innocente

I) Overview

Interactive command-line toolkit to compute Value at Risk (VaR) and Expected Shortfall (ES/CVaR). It ingests user data as losses or returns, normalizes to a loss distribution, and reports VaR/ES using multiple methods. NumPy is required; pandas is optional for clipboard/CSV intake. No SciPy needed.

II) Capabilities

- Historical Simulation (empirical quantile and tail mean).
- Parametric Normal (closed-form formulas).
- Parametric Student-t via Monte Carlo (rescaled to empirical σ).
- Demo portfolio (multivariate Normal) using Cholesky to model correlations.

Note: Cholesky-based portfolio MC is available in the demo mode; pasted multi-column data is treated as a single series unless extended.

III) Data Intake & Normalization

Modes: Losses, Returns, Mixed, or Demo.

Sources: paste multi-line text; or Clipboard/CSV if pandas is installed.

Normalization: returns R are mapped to losses L = -R; negative losses are made positive via |L|; NaNs are dropped.

IV) Methods (quick reference)

Historical: $VaR\alpha = empirical quantile of L at \alpha$; $ES\alpha = mean(L | L \ge VaR\alpha)$.

Normal (analytical): estimate μ = mean(R), σ = stdev(R); VaR α = $-(\mu - z\alpha\sigma)$, ES α = $(\phi(z\alpha)/(1-\alpha))\cdot\sigma - \mu$, where $z\alpha = \Phi^{-1}(\alpha)$.

Student-t (MC): draw T ~ t(df), rescale to match empirical σ , convert to losses, then compute empirical VaR/ES on simulations.

Portfolio MC (demo): simulate R ~ $N(\mu, \Sigma)$ via Cholesky(Σ); given weights w, portfolio return Rp = R·w, losses L = -Rp.

V) Key Functions

 $historical_var_es(losses, alpha) \rightarrow (var, es)$

normal_var_es_from_returns(returns, alpha) → (var, es, mu, sig)

student_t_var_es_mc_from_returns(returns, df, alpha, n_sims, seed) \rightarrow (var, es, mu, sig)

mc_portfolio_var_es_from_cov(mu_vec, cov_mat, weights, horizon_days, alpha, n_sims, seed) \rightarrow (var, es)

normalize_to_losses_interactive() \rightarrow prompts, parses, and returns (L, source_kind)

demo_portfolio_returns(T, seed) \rightarrow synthetic 3-asset returns with target $\mu/\sigma/correlation$

VI) Quick Usage

Follow prompts to set α and paste a column of returns or choose the demo portfolio.

VII) Validation & Sanity Checks

- ES \geq VaR at the same α for the loss definition used here.
- For Normal returns, analytical VaR/ES should match empirical estimates for large samples.
- Portfolio MC requires Σ to be positive-definite (a small jitter is added for numerical stability).

VIII) Assumptions & Limitations

- Historical assumes stationarity; no volatility clustering modeled.
- Normal can understate tails; Student-t improves fit but still i.i.d.
- Linear Gaussian portfolio demo; no non-linear instruments or path-dependent P&L.

IX) Performance Notes

- MC is compute-intensive; tune n_sims for the accuracy/speed trade-off (100k-300k is a good balance).
- Clipboard/CSV intake depends on pandas; otherwise paste numeric text tables.