TD5. Chaînes de Markov (IV).

Exercice 1. On répartit 2N boules, N noires et N blanches, dans 2 urnes à raison de N boules par urne. Puis à chaque instant on choisit un boule au hasard dans chacune des urnes et on les échange. On désigne par X_n le nombre de boules noires dans l'urne 1 après n échanges.

- 1. Préciser l'espace d'états M de la chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ et calculer sa matrice de transition P.
- 2. Montrer que cette chaîne est irréductible. Est-elle fortement irréductible (c'est-à-dire: existe-t-il un entier n_0 tel que $P^{n_0}(i,j) > 0$ pour tout $i,j \in M$)?
- 3. On rappelle que $\binom{N}{k} = \frac{N!}{k!(N-k)!}, \forall k \leq N, k, N \in \mathbb{N}$. Montrer que la probabilité définie par $\pi(k) = c\binom{N}{k}^2, \ \forall k \in M$ (où c est une constante que l'on précisera) est une probabilité stationnaire réversible. Y-a-t-'il d'autres probabilités stationnaires pour cette chaîne?
- 4. Que peut-on dire sur le comportement de

$$\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{X_k=i},$$

pour tout $i \in M$, quand $n \to \infty$?

5. Quel est le temps moyen de retour à l'état N? Confronter avec le temps moyen de retour à l'état N/2 ((N+1)/2 si N impair)

Exercice 2. (Château de cartes). On considère la suite de v.a. définie par

$$X_{t+1} = \left\{ \begin{array}{l} X_t + 1 & \text{avec probabilité } p \in \,]0,1[\\ 0 & \text{avec probabilité } 1 - p \end{array}; \right.$$

indépendamment de ce qui précède.

- 1. Vérifier que $(X_n)_{n\geq 1}$ est une chaîne de Markov, et donner sa matrice de transition.
- 2. Calculer la probabilité invariante par la chaîne (on pourra en chercher la fonction génératrice).
- 3. Calculer la correspondant matrice P^* de la chaîne retournée dans le temps.
- 4. Montrer que, $\forall y$, $\lim_{t\to\infty} \mathbb{P}_y(X_t=x) = \pi(x)$, où π est la probabilité invariante.
- 5. Soit $\tau_k = \inf\{n \ge 1: X_n = k\}$ pour $k = 0, 1, 2, \dots$ Calculer $\mathbb{E}_k(\tau_k)$.
- 6. Calculer, en partant de 0 $(X_0 = 0)$ l'espérance du temps passé au-dessus de k avant de tomber sur 0 la première fois

$$\mathbb{E}_0 \left(\sum_{n=0}^{\tau_0 - 1} 1_{[X_n \ge k]} \right)$$

Exercice 3. (MÉTHODE MONTE-CARLO) Soit M un espace fini et $\pi = \{\pi(x), x \in M\}$ une probabilité sur M telle que $\pi(x) > 0$ pour tout $x \in M$. On se donne une matrice de transition \mathcal{P} sur M, irréductible et telle que $\mathcal{P}(x, y) > 0 \iff \mathcal{P}(y, x) > 0$. Soit $h: [0, \infty] \to [0, 1]$ une fonction vérifiant.

$$h(u) = u h\left(\frac{1}{u}\right).$$

Par exemple $h(u)=\inf{(u,1)}$ ou bien $h(u)=\frac{u}{1+u}$. Pour $x\neq y$ posons

$$R(x,y) = \begin{cases} h\left(\frac{\pi(y)\mathcal{P}(y,x)}{\pi(x)\mathcal{P}(x,y)}\right) & \text{si } \mathcal{P}(y,x) > 0\\ 0 & \text{sinon.} \end{cases}$$
 (1)

On construit alors une probabilité de transition Q définie par

$$\begin{cases}
Q(x,y) = \mathcal{P}(x,y)R(x,y) & \text{si } x \neq y \\
Q(x,x) = 1 - \sum_{y \neq x} Q(x,y)
\end{cases}$$
(2)

- 1. Montrer que Q est une matrice de transition bien définie et que π est réversible pour Q.
- 2. Montrer que Q est une matrice de transition irréductible.
- 3. Montrer que si h(u) < 1 alors Q est apériodique. En déduire que dans ce cas $Q^n(x, y) \to \pi(y)$ quand $n \to \infty$, $\forall x \in M$.

Exercice 4. On considère la chaîne de Markov à valeurs dans $E=\{1,\,2,\,3,\,4\}$ de matrice de transition

$$\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)$$

- 1. Montrer que la chaîne est irréductible et calculer sa probabilité invariante.
- 2. Soit $N_n(i)$ le nombre de fois où la chaîne passe par l'état i au cours des n premières étapes. Quel est le comportement asymptotique de $N_n(i)$ quand n tend vers l'infini ?