

National Security Space

Office

Barriers to Entry and Sustainability in the US Space Industry

Findings

- Problem Statement
- Problem Rationale
- Study Approach
- Data Collection
- Survey Respondent Characteristics
- Findings & Recommendations

Problem Statement

Purposes of this study:

- Respond to task from the Deputy Assistant Secretary of Defense/Strategic Capabilities
- Develop insight and understanding concerning potential barriers to entry and sustainability in the space industry
- Transition from anecdotal to empirical basis
- Report suggested remedies

Problem Rationale

DoD/IC policies and practices can create barriers, which in turn aggravate already challenging

- market conditions
 Market Conditions
 - Complexity of operational environment
 - High initial investment
 - Economies of scale
 - Learning curve
 - Low production rates
 - Switching costs are high
 - Access to qualified labor
 - Limited operational access for testing/repair/replacement/refu el
 - Gov't is significant portion of US space market

- DoD/IC Policies and Practices
 - Export restrictions
 - Access to information on emerging concepts, new projects, requirements, plans
 - Administrative restrictions and burdens
 - Access to ranges, platforms and other facilities
 - Cleared space professionals
 - Contract bundling and pricing
 - Payment delays
 - Funding uncertainties
 - Technology constraints

Aspiring entrepreneurs must negotiate both market <u>and</u> government barriers

Problem Rationale cont'd

Market Conditions

- Complexity of operational environment
- High initial investment
- Economies of scale
- Learning curve

Focus of this study

- Switching costs are high
- Access to qualified labor
- Limited operational access for testing/repair/replacement/refuel
- Gov't is approximately half of US market demand

- DoD/IC Policies and Practices
 - Export restrictions
 - Access to information on emerging concepts, new projects, requirements, plans
 - Administrative restrictions and burdens
 - Access to ranges, platforms and other facilities
 - Cleared space professionals
 - Contract bundling and pricing
 - Payment delays
 - Funding uncertainties
 - Technology constraints

Aspiring entrepreneurs must negotiate both market and government barriers

Study Approach

- Top level study tasks
 - Literature review
 - Interview a few small companies in the US Space Industry to identify potential issues for a survey
 - Survey small companies with an interest in the US space industry
 - Analyze survey information to identify issues important to small companies in the US Space Industry
 - Report findings

Data Collection

- Literature review completed
- Approximately 200 small company addressees of US Space Industry identified with e-mail addresses
- Small company survey complete
 - Intensive telephone work required to generate responses
 - 38 small company responses (typical response rate for email survey)
 - Adequate to highlight problem areas
 - Data and free-form text
- Aerospace/Economic and Marketing Analysis Center interviewed 20 companies in separate effort
 - Cross-section of Tiers, company size
 - Preliminary results

Survey Respondent

Characteristics

US Space Industry Small Company Tiers

Survey Respondent Characteristics

Small Company Business Sec

Survey Respondent Characteristics

Findings and Recommendations: **Issue Selection Criteria**

- Approximately 25% or more of survey respondents indicated the topic is a problem for entry or sustainability
 - More recent entries (<25 years)
 - Smaller companies (<500 employees)
 - Text responses corroborate, clarify
- One or more DOD/IC organizations could accept/be assigned responsibility to consider remedies proposed by respondents

Findings and Recommendations: Categories of Barriers

- Information Flow
 - Access to information
 - Cleared space professionals
- Compliance
 - Export control
 - Administrative restrictions and burdens
- Resource Impediments
 - Access to ranges, platforms, facilities
 - Contract bundling and pricing
 - Payment delays
 - Funding uncertainties
 - Technology & STEM constraints

Findings and Recommendations: Information Flow Barriers

Findings

- Aspiring entrants typically have:
 - No facility clearance
 - No cleared staff
- 43% of respondents perceived that they suffered unfairly from restricted access to DoD/IC information
 - Emerging concepts
 - New programs
 - New projects
 - Changing requirements
 - Plans for research and development

Findings and Recommendations: Information Flow Barriers

- Respondent recommendations
 - Security Clearances
 - Assist smaller companies to extend facility clearance for one year beyond the end of a contract requiring a clearance
 - Facilitate leased access to cleared/secured office space maintained at 'collaborative' locations within each state or region

Н

- Example: Acquisition Resource Center (NSA)
- Provide non-contract billets for two appropriately cleared staff for companies without a current classified contract
 - Requires access to cleared/secured facilities
 - Requires experienced corporate SSO, perhaps mentor
 - Requires annual training

М

Establish office to provide basic information about clearance processes

E: easy or no \$ M: some effort and/or some \$ H: Significant effort and/or sign

Findings and Recommendations: **Information Flow Barriers**

- Respondent Recommendations
 - Industry Conferences
 - M• DoD/IC Program Offices increase the push of information to lower tiers
 - e.g., one or more Industry Day Conferences per year for smaller companies
 - » Different levels of security classification for different programs
 - Explicitly describe technical needs of programs, emerging concepts

Note: additional USG labor, funding needed to implement

Types of responsible organizations: System Program Offices, National Security Industrial Program, agency security offices, academia, state Governors' offices.

Findings and Recommendations: Categories of Barriers

- Information Flow
 - Access to information
 - Cleared space professionals
- Compliance
 - Export control
 - Administrative restrictions and burdens
- Resource Impediments
 - Access to ranges, platforms, facilities
 - Contract bundling and pricing
 - Payment delays
 - Funding uncertainties
 - Technology & STEM constraints

Findings and Recommendations: **Compliance Barriers**

Findings

- High costs of compliance with DCAA cost accounting methods coupled with small contract value and modest profit margins tends to inhibit entry decision as well as sustainability.
- 30% of respondents perceived there were products which should not have been held to MILSPEC

Findings and Recommendations: **Compliance Barriers**

- Respondent recommendations (DCAA Related):
- M Raise contract value threshold subject to DCAA auditing
 - Currently \$650,000
- Ensure companies are aware of the availability of less expensive software packages acceptable to DCAA for small company use
- M- Create a DoD/IC organizational element responsible for assisting companies to achieve DCAA compliance through use of web-based resources, training, and advisory activities.
- Prior to an audit, DCAA provide a preliminary list of audit interests and guidelines on rate and overhead structures typical of the space industry
- Increase the frequency with which DCAA auditors continue assignments to the same companies

Findings and Recommendations: **Compliance Barriers**

- Respondent recommendations:
 - H Congress direct a review of space-related items on the USML
 - M Gov't contract program offices should encourage negotiation and technical interchange:
 - Applicability of MILSPEC among subs, primes, and DoD/IC
 - Early stages of the program after contact award

Types of responsible organizations: DCAA, DCMA, SPOs, Space Quality Improvement Council, Space Suppliers Council, DoD/IC policy offices, Cost Accounting Standards Board

Findings and Recommendations: Categories of Barriers

- Information Flow
 - Access to information
 - Cleared space professionals
- Compliance
 - Export control
 - Administrative restrictions and burdens
- Resource Impediments
 - Access to ranges, platforms, facilities
 - Contract bundling and pricing
 - Payment delays
 - Funding uncertainties
 - Technology & STEM constraints

• Findings:

- Small companies are more vulnerable
 - Fluctuations in Gov't funding
 - Delays in Gov't payments
 - Delays in prime to sub payments
- Small companies rely much more on venture capital, which requires a predictable higher return on investment than internal sources of capital, and which implies a higher cost of money for small companies
 - Not chargeable paid from fee or investment capital
- Commercial activities can earn high profit in good times, while Gov't contractors have limited profits to offset business setback

Findings:

- Small companies
 - Receive lower fees as prime from Gov't
 - Receive lower fees as sub to larger companies
 - Encounter pricing/bundling restrictions which limits

Findings

- 58% of respondents perceive that DoD/IC policies and incentives for R&D have a negative impact on developing space technology products and services
- In the Aerospace/EMAC interviews, two of the top barriers to advancement and insertion of technology are:
 - Recent risk averseness on including technology below TRL 6
 - De-emphasis on advancing technology on the part of Gov't inside programs
 - Customers are less willing to fund technology development.
 - No Gov't organization responsible for bridging from early technology development (TRL 2-3) to maturation (TRL 6-7) for insertion in space applications.

- Findings cont'd
 - 70% perceive that they had inadequate opportunities to compete for R&D portions of contracts awarded to the primes
 - 26% indicated that 2 ½ years is not enough time to bring SBIR* technologies to TRL 6.
 - The average time suggested by the above was 47 months
 - 67 % indicated that \$850,000 is not adequate to bring SBIR technologies to TRL 6.
 - The average amount suggested by the above was \$2.6M.

- Findings cont'd
 - Unmet demand for RDT&E launch services for a variety of payload weights

Note: Estimating total demand would require additional data collection.

- Respondent recommendations:
 - M- Allow a modestly higher fee range for smaller companies to offset higher cost of money
 - Require an annual report as a deliverable from primes to increase transparency
 - Pass-through business promised to subcontractors during pre-contract teaming vs actual awards to subcontractors
 - Copies to subcontractors who had teaming agreements
 - Require primes to deliver a subcontract technical management plan for flow of R&D tasks to subs

Findings and Recommendations:

Resource Impediments

Recommendations

- Respondent recommendations cont'd
 - M- Modify Small Business Innovative Research (SBIR) phase timing and funding limits to permit reaching TRL 6 for space systems:
 - Flexible (negotiated) SBIR Phase lengths exceeding 30 months
 - Flexible (negotiated) total SBIR project costs exceeding \$850,000

M

- No increase needed in SBIR funding level (R&D tax)
- Explore ways for space industry to collaborate with academia and Gov't agencies on space related scholarships and internships for STEM
 - Determine critical skills
 - Facilitate use of existing STEM programs to assist with targeted critical skills
 - Track and adjust emphasis as needs are met

Recommendations

- Respondent recommendations cont'd
 - Provide clearinghouse for information on opportunities for flight testing components, subsystems
 - Vendor neutral information exchange web site

Types of responsible organizations: Small Business Administration, OSD/ATL, SPOs, DCAA, DCASMA, academia, state Governors' offices, Service and agency space system developers.

Conclusions

DoD/IC policies and practices interact with already challenging market conditions

- Market Conditions
 - Complexity of operational environment
 - High initial investment
 - Economies of scale
 - Learning curve
 - Low production rates
 - Switching costs are high`
 - Access to qualified labor
 - Limited operational access for testing/repair/replacement/refuel
 - Gov't is significant portion of US space market

- DoD/IC Policies and Practices
 - Export restrictions
 - Access to information on emerging concepts, new projects, requirements, plans
 - Administrative restrictions and burdens
 - Access to ranges, platforms and other facilities
 - Cleared space professionals
 - Contract bundling and pricing
 - Payment delays
 - Funding uncertainties
 - Technology constraints

Conclusions CONT'D

- There are several suggestions to help level the playing field for small companies
 - Most can be remedied within current laws
 - Many can be remedied within current regulations
 - Most involve collaboration among multiple agencies
 - Some are inexpensive, some are more costly
 - Some would assist companies of any size/experience
 - Many impact the transparency of predictable productization, which impacts uncertainties of development and sales risk, which affects the availability of venture capital for small companies

Follow-up Actions

- Brief results to collaborating/coordinating organizations for comment
 - Understand full complexities of remedies
 - Refine recommendations
 - Advocate actions
- Brief to Space Industrial Base Council
- Assist organizations with collaboration and analysis

Feedback

Comments or Questions?

Contact Information

Alan Dunham

National Security Space Office

Alan.dunham.ctr@osd.mil

571-432-1426

BACKUP

Problem Rationale

- Barriers are created by US Gov't policies and practices as well as by economic ('market') conditions.
 - Gov't policies and practices should be studied to identify opportunities to influence the space industry economic environment. *
- Attracting new entrants and avoiding the unnecessary loss of existing participants is a matter not only of fairness, but of maintaining pre-eminence in space for National Defense.
 - National Space Policy goals are significantly dependent upon new approaches and technology innovation from the US private sector.
 - Over half of space R&D is internally funded by companies.**
 - R&D is a significant portion of the work of most lower tier companies in the US Space Industry.***

Lower tier companies are a significant source of technology innova-

^{*} Tasking from DASD/Strategic Capabilities, 14 Aug 07

^{**} Defense Industrial Base Assessment: US Space Industry Final Report, 31 Aug 07, page 27, Fig 3.2-

^{***} ibid, page 29, Fig 3.2-4

Goals: Importance of Lower Tier Companies

Sources of All US R&D

For <u>US Industry as a whole</u>, the Federal Government funded about <u>28%</u> of R&D in 2006.

U&C = universities and colleges

NOTES: National R&D expenditures projected at \$340 billion in 2006. Federal performing sector includes federal agencies and federally funded research and development centers. Values rounded to nearest whole number.

SOURCE: National Science Foundation, Division of Science Resources Statistics, National Patterns of R&D Resources (annual series). See appendix tables 4-3 and 4-5.

Science and Engineering Indicators 2008

Goals: Importance of Lower Tier Companies Space Industry R&D by Funding Source

Space R&D Funding by Source Tier 1-3, 2003-2006

For the US <u>Space</u> Industry, the Federal Government funded about <u>47%</u> of Industry R&D in 2006, playing a much larger role than for US industry as a whole Commerce survey of Space Industrial

Goals: Importance of Lower Tier Companies Comparison of US R&D as % of Sales

Example US Industry (1997)

Table III Largest R&D-active U.S. companies

Rank in 1997	Company	\$R&D (millions)	\$R&D/ \$sales (%)
1	General Motors	8,200.0	4.9
2	Ford Motor Company	6,327.0	4.1
3	IBM	4,307.0	5.2
4	Lucent Technologies	3,100.6	11.8
5	Hewlett-Packard	3,078.0	7.2
6	Motorola	2,748.0	8.6
7	Intel	2,347.0	9.4
8	Johnson & Johnson	2,140.0	9.5
9	Pfizer	1,928.0	15.4
10	Microsoft	1,925.0	16.9
:			
95	Imation	194.9	8.9
96	Dana	193.0	2.2
97	Thermo Electron	191.6	5.4
98	Eastman Chemical	191.0	4.1
99	Cabletron Systems	181.8	13.2
100	Whirlpool	181.0	2.1

Source: Science & Engineering Indicators-2000, Appendix

Table 2-58.

For US **Industry as a** whole, internally funded R&D averaged over 8% of sales, with <u>large</u> **companies** expending 4.1% to

Goals: Importance of Lower Tier Companies Comparison of US Space R&D as % of

Source: DOC

Survey

For US <u>Space</u> Industry, internally funded R&D is a much larger percentage of lower Tier sales Tier 1- primes, Tier 2 - major subsystems, Tier 3 - specialty sul

Goals: Importance of Lower Tier Companies **U.S. Space Industry R&D by Tier**

Space R&D Expenditures by Tier 2003-2006

Tier 2 & 3 companies <u>each</u> conduct more R&D than Tier 1 compan

Data Collection: Online Survey Process

Sample Size Needed to Identify Issues

- Assume a potential 'issue' for small company entry and sustainability in the US Space Industry is indicated by a proportion of 25%, which we call p
- Assume 'noise' indicating no issue is reflected by a proportion close to 0%
- In terms of sampling theory, the desired precision = .25-0 = .25, which we call e
- Using the normal distribution and a one-tailed statistic, Z for a 95% confidence = 1.645
- The desired sample (n) to achieve precision of .25 with 95% confidence is $n = 4(z^2)(p)(q)/e^2 = 33^*$, where q = 1-p.
- We improve this estimate for a known finite population size of small companies in the space industry, N = 400

$$n' = n /(1 + (n-1)/N) = 30.56 >>> 31*$$

• Thus, we need at least 31 survey responses to achieve the desired precision (25%) with perore, particle, probability and statistics for equate.

Engineering and the Sciences, Sixth Edition, 2004,
Thomson Brooks/Cole, Belmont, California