Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Отчёт по лабораторной работе №5

По дисциплине «Математическая статистика» (четвёртый семестр) Исследование распределения случайной величины

Студент:

Дениченко Александр Разинкин Александр Соколов Анатолий

Практик:

Милованович Екатерина Воиславовна

Санкт-Петербург 2024 г.

Цель работы:

На основании анализа опытных данных

4. Проверить статистическую гипотезу о виде закона распределения генеральной совокупности.

1 Интервальный ряд

Таблица для оценивания исследования распределения случайной величины:

-0.499	1.683	2.247	1.444	-0.418	-2.977	-0.968	-0.308	-1.816	-0.446
1.627	1.555	0.310	-0.074	1.414	1.007	0.555	0.003	-2.789	0.005
-0.239	-1.050	1.991	-0.362	-0.847	0.884	0.759	-1.406	0.262	-0.206
-0.961	0.096	-0.119	-0.777	0.166	-0.405	-0.572	1.624	0.119	0.049
-0.152	0.251	-0.272	-0.250	-0.048	-2.619	1.158	0.139	0.332	0.926
0.350	0.033	0.478	0.637	-0.033	-0.319	0.570	-0.837	-0.413	-1.640
-0.795	-0.015	1.774	-1.568	0.302	-1.120	-0.917	-0.091	1.118	0.277
-0.622	-0.554	-0.470	0.700	-0.656	1.460	1.701	0.630	-0.700	-0.674
1.429	-1.163	-0.925	0.973	-0.052	0.409	-0.024	0.384	-0.350	0.203
-2.084	0.100	0.001	-0.070	0.773	1.132	-0.769	-0.609	1.816	1.307

Таблица 1: Данные

Шаг разбиения:

$$h = \frac{5.5}{10} = 0.55$$

Номер	1	2	3	4	5	6	7	8	9	10
Интервалы	[-3.0;-2.45)	[-2.45;-1.9)	[-1.9;-1.35)	[-1.35 ; -0.8)	[-0.8;-0.25)	[-0.25; 0.3)	[0.3 ; 0.85)	[0.85 ; 1.4)	[1.4 ; 1.95)	[1.95 ; 2.5]
x_i^*	-2.725	-2.175	-1.625	-1.075	-0.525	0.025	0.575	1.125	1.675	2.225
m_i	3	1	4	9	21	27	14	8	11	2
p_i^*	0.03	0.01	0.04	0.09	0.21	0.27	0.14	0.08	0.11	0.02
h_i	0.05	0.02	0.07	0.16	0.38	0.49	0.25	0.15	0.2	0.04

Таблица 2: Интервальный ряд с характеристиками

Рис. 1: Эмпирическая функция

Рис.2 Полигон частот

Рис. 3 Гистограмма распределения

2 Вычисление точечных оценок мат ожидания и дисперсии

Найдем точечные оценки математического ожидания и дисперсии. В качестве таких оценок выбирают среднее выборочное значение:

$$\overline{X} = \sum_{i=1}^{10} x_i^* p_i^*$$

и выборочную дисперсию:

$$S^{2} = \sum_{i=1}^{10} (x_{i}^{*} - \overline{X})^{2} p_{i}^{*} = \sum_{i=1}^{10} x_{i}^{*2} p_{i}^{*} - \overline{X}^{2} = m_{2} - \overline{X}^{2}$$

где

$$m_2 = \sum_{i=1}^{10} x_i^{*2} p_i^*$$

Номер	1	2	3	4	5	6	7	8	9	10	некоторые рез-ты
x_i^*	-2.725	-2.175	-1.625	-1.075	-0.525	0.025	0.575	1.125	1.675	2.225	-
p_i^*	0.03	0.01	0.04	0.09	0.21	0.27	0.14	0.08	0.11	0.02	-
$x_i^* p_i^*$	-0.082	-0.022	-0.065	-0.097	-0.11	0.007	0.081	0.09	0.184	0.045	0.011
$x_i^{*2}p_i^*$	0.223	0.047	0.106	0.104	0.058	0.0	0.046	0.101	0.309	0.099	1.053

Таблица 3: Данные для подсчёта мат ожидания и дисперсии

Оценка математического ожидания: 0.011

Оценка дисперсии: 1.042

3 Построить доверительные интервалы для мат ожидания и дисперсии

Для рассматриваемого примера будем иметь:

$$\gamma = 0,95;$$

тогда находим по таблице распределения Стьюдента для 0.05 квантиль t=2.262, поэтому в нашем примере имеем:

$$\overline{X} - t \frac{S}{\sqrt{n}} = 0.011 - 2.262 \cdot \frac{\sqrt{1.042}}{\sqrt{10}} = -0.719$$

$$\overline{X} + t \frac{S}{\sqrt{n}} = 0.011 + 2.262 \cdot \frac{\sqrt{1.042}}{\sqrt{10}} = 0.741$$

таким образом:

$$-0.734 < m < 0.756$$

Для дисперсии определим квантили распределения хи-квадрат с 9 степенями свободы:

$$\chi_{1-\alpha/2,n-1}^2 = \chi_{1-\frac{0.05}{2},9}^2 = \chi_{0.975,9}^2 = 2.7$$

 $\chi^2_{\alpha/2,n-1} = \chi^2_{0.025,9} = 19.02$

По формуле подставим:

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}\right)$$
$$\left(\frac{9 \cdot 1.042}{19.02}, \frac{9 \cdot 1.042}{2.7}\right)$$

Доверительный интервал для дисперсии:

$$0.493 < s^2 < 3.473$$

Вывод

На основании анализа опытных данных: построили интервальный ряд; полигон частот; выборочную функцию распределения; гистограмму для изучения признака. Вычислили точечные оценки мат ожидания и дисперсии. Построили доверительные интервалы для мат ожидания и дисперсии с доверительной вероятностью 0,95.