\Box

Iris Flower Data

Library Import

```
1 import pandas as pd
2 # Reading CSV File
3 df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/iris_csv.csv")
4 # printing 5 rows
5 df.head() # bref overview of data frame.
```

	sepallength	sepalwidth	petallength	petalwidth	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

- 1 from google.colab import drive
- 2 drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

Getting Information from the dataset

```
1 df.shape # dataset row, col
```

It has 150 rows and 5 coloumns.

1 df.info() # dataset information.

1 df.describe()

	sepallength	sepalwidth	petallength	petalwidth
count	150.000000	150.000000	150.000000	150.000000
	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
	7.900000	4.400000	6.900000	2.500000

Checking Missing Values

```
1 df.isnull().sum()

sepallength 0
sepalwidth 0
petallength 0
petalwidth 0
class 0
dtype: int64
```

▼ Checking Duplicates

```
1 data = df.drop_duplicates(subset = "class",)
2 data
```

	sepallength	sepalwidth	petallength	petalwidth	class
0	5.1	3.5	1.4	0.2	Iris-setosa
50	7.0	3.2	4.7	1.4	Iris-versicolor
100	6.3	3.3	6.0	2.5	Iris-virginica

```
1 #how many value have in this class % \left( 1\right) =\left( 1\right) ^{2}
```

- 2 df.value_counts("class")
- 3 # dataset same number of value is good.

class
Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
dtype: int64

Data Vizualization

```
1 # importing package
2 import seaborn as sns  # seaborn used for data analysis.
3 import matplotlib.pyplot as plt
4 sns.countplot(x = 'class', data=df)
5
6 # ekan e class gulo x okhey. Ar class gulo balanced.
```

```
Axes: xlabel='class', ylabel='count'>

50
40
20
10
Iris-setosa Iris-versicolor class
```

```
1 #importing packages
2 import seaborn as sns
3 import matplotlib.pyplot as plt
4
5 sns.scatterplot(x='sepallength', y='sepalwidth',hue='class', data=df, )
6 #placing legend outside the figure
7 plt.legend(bbox_to_anchor=(1, 1), loc=2)
8 plt.show()
```


Double-click (or enter) to edit

```
1 #importing packages
2 import seaborn as sns
3 import matplotlib.pyplot as plt
4
5 sns.scatterplot(x='petalwidth', y='petallength',hue='class', data=df,)
6 #placing legend outside the figure
7 plt.legend(bbox_to_anchor=(1, 1), loc=2)
8 plt.show()
```


setosa have short petalwidth and versicolor and virginica is large petal width.

```
1 import seaborn as sns
2 import matplotlib.pyplot as plt
3
4 sns.pairplot(df.drop([], axis=1), hue='class', height=2)
```


Histograms

```
axis = 1 (is column), axis = 0 (is row).
```

```
1 import seaborn as s
2 import matplotlib.pyplot as plt
3
4 fig, axes = plt.subplots(2, 2, figsize = (10, 10))
5
6 axes[0, 0].set_title("Sepal Length")
7 axes[0, 0].hist(df['sepallength'], bins=7)
8
9 axes[0, 1].set_title("Sepal Width")
10 axes[0, 1].hist(df['sepalwidth'], bins=5)
11
12 axes[1, 0].set_title("Petal Length")
13 axes[1, 0].hist(df['petallength'], bins=6)
14
15 axes[1, 1].set_title("Petal Width")
16 axes[1, 1].hist(df['petalwidth'], bins=6)
17
```


Histograms with Distplot Plot

```
Petal length

1 import seaborn as sns
2 import matplotlib.pyplot as plt
3
4 plot = sns.FacetGrid(df, hue="class")
5 plot.map(sns.distplot, "sepallength").add_legend()
6
7 plot = sns.FacetGrid(df, hue="class")
8 plot.map(sns.distplot, "sepalwidth").add_legend()
9
10 plot = sns.FacetGrid(df, hue="class")
11 plot.map(sns.distplot, "petallength").add_legend()
12
13 plot = sns.FacetGrid(df, hue="class")
14 plot.map(sns.distplot, "petalwidth").add_legend()
15
16 plt.show()
```

distplot` is a deprecated function and will be removed in seaborn v0.14.0

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

func(*plot_args, **plot_kwargs)

/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:848: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please sehttps://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

func(*plot_args, **plot_kwargs)

/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:848: UserWarning

'distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

func(*plot_args, **plot_kwargs)

/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:848: UserWarning

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

Handling Correlation

1 data.corr(method='pearson')

2

3 # proportional (+) and inverse (-) relationship

جنpython-input-17-2036ded8b4f6>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver

Heatmaps

```
1 import seaborn as sus
2 import matplotlib.pyplot as pit
3
4 sns.heatmap(df.corr(method='pearson').drop([], axis=0). drop([], axis=0), annot=True);
5 pit.show()
6
7 # proportional (+) and inverse (-) relationship

<ipython-input-18-d2b48a1edcc0>:4: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future verse...)
1 import seaborn as sus
2 import seaborn as sus
2 import matplotlib.pyplot as pit
3
4 sns.heatmap(df.corr(method='pearson').drop([], axis=0). drop([], axis=0), annot=True);
5 pit.show()
6
7 # proportional (+) and inverse (-) relationship
```

<ipython-input-18-d2b48a1edcc0>:4: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versus.heatmap(df.corr(method='pearson').drop([], axis=0). drop([], axis=0), annot=True);
- 1.0
- 0.8

▼ Box Plots

```
1 # importing packages
 2 import seaborn as sns
 3 import matplotlib.pyplot as plt
 5 def graph(y):
       sns.boxplot(x="class", y=y, data=df)
 8 plt.figure(figsize=(10, 10))
10 # adding the subplot at the specified
11 # grid position
12 plt.subplot(221)
13 graph('sepallength')
15 plt.subplot(222)
16 graph('sepalwidth')
18 plt.subplot(223)
19 graph('petallength')
20
21 plt.subplot(224)
22 graph('petalwidth')
24 plt.show()
```

