Formula Sheet

Laplace Transforms

Laplace Transform $F(s)$	Time Function $f(t)$	
1	Unit-impulse function $\delta(t)$	
$\frac{1}{s}$	Unit-step function $u_s(t)$	
$\frac{1}{s^2}$	Unit-ramp function <i>t</i>	
$\frac{n!}{S^{n+1}}$	t^n ($n = positive integer$)	
$\frac{1}{s+\alpha}$	$e^{-lpha t}$	
$\frac{1}{(s+\alpha)^2}$	$te^{-\alpha t}$	

Mason's Gain Formula

Given an SFG with N forward paths and K loops, the gain between the input node y_{in} and output node y_{out} is [3]

$$M = \frac{y_{\text{out}}}{y_{\text{in}}} = \sum_{k=1}^{N} \frac{M_k \Delta_k}{\Delta}$$
 (3-54)

where

 y_{in} = input-node variable

 y_{out} = output-node variable

 $M = \text{gain between } y_{in} \text{ and } y_{out}$

 $N = \text{total number of forward paths between } y_{in} \text{ and } y_{out}$

 $M_k = \text{gain of the } k \text{th forward paths between } y_{in} \text{ and } y_{out}$

$$\Delta = 1 - \sum_{i} L_{i1} + \sum_{j} L_{j2} - \sum_{k} L_{k3} + \dots$$
 (3-55)

 $L_{mr} = \text{gain product of the } m\text{th } (m=i,j,k,\ldots) \text{ possible combination of } r \text{ nontouching loops } (1 \leq r \leq K).$

or

 $\Delta = 1$ – (sum of the gains of **all individual** loops) + (sum of products of gains of all possible combinations of **two** nontouching loops) – (sum of products of gains of all possible combinations of **three** nontouching loops) + · · ·

 Δ_k = the Δ for that part of the SFG that is nontouching with the kth forward path.