深度学习与计算机视觉作业

——表情识别

一、数据集分析

本实验使用的 CK+视频表情数据集,包含了 Surprise、Sad、Happy、Fear、Disgust、Contempt、Angry 七类表情数据,各类别的数据分布如下图 1。

图 1 七类表情数据

该数据集共有327个视频片段,采样自118个实验对象,每个视频片段含义5张图片,每一帧图像的尺寸为720×480或者640×490,通道数目为1或者3,值域为[0,255],同一视频片段中的5帧图像具有相同的尺寸和通道数目。先从数据集中随机选取78个片段作为验证集,余下的作为训练集。

二、数据预处理

- 2.1 统一将原始图像的扩展为 3 通道的 RGB 图像
- 2.2 将去掉验证集的数据集作为训练集,首先将训练集的是所有图像扩展为 RGB 的 3 通道 图像,将原始图像整张输入,但是在输入后再原始图像上随机剪切 256×256 大小的子图输入网络。同时也将验证集对图像调整到 256×256。如图 2

图 2 a、c 为截取前, b、d 为截取后

三、模型框架

3.1 模型设计

- 1) 分别采用了 VGG19 来完成表情的识别与分类;
- 2) VGG19 的每一个小块是有一个卷积层,一个 BatchNorm 层,一个 ReLU 层和一个平均 池化层来构成的;
 - 3) 在全连接层之前加入了 dropout 策略,增加了模型鲁棒性;
 - 4)去掉了传统 VGG19 中的多个全连接层,直接在一个全连接层后直接分为7类去识别。

3.2 损失函数

我们选择了交叉熵损失函数,公式如下:

$$J(heta) = -rac{1}{m}\sum_{i=1}^m [y^i log(h_ heta(x^i)) + (1-y^i)log(1-h_ heta(x^i))]$$

3.3 参数设置

Batchsize为32, learning_rate为0.01, epoch为60。

四、实验结果及分析

利用验证集对训练好的模型进行测试,结果如下表。

4.1 混淆矩阵

测试的到的 image-level 混淆矩阵如表 1 所示。

	Angry	Contempt	Disgust	Fear	Нарру	Sad	Surprise
Angry	18	1	18	0	7	5	0
Contempt	0	23	0	0	0	0	2
Disgust	10	0	60	0	0	2	5
Fear	2	0	0	10	15	0	4
Нарру	0	0	0	6	68	0	0
Sad	9	8	2	3	2	19	2
Surprise	0	0	7	0	0	8	74

表 1 Image-level confusion matrix

video-level 的混淆矩阵如表 2 所示:

	Angry	Contempt	Disgust	Fear	Нарру	Sad	Surprise
Angry	4	0	4	0	1	1	0
Contempt	0	4	0	0	0	0	0
Disgust	2	0	13	0	1	0	0
Fear	0	0	0	1	2	0	0
Нарру	0	2	0	0	15	1	0
Sad	1	0	2	0	0	4	2
Surprise	0	0	0	0	0	2	16

表 2 Video-level confusion matrix

4.2 准确率

根据 image-level 的混淆矩阵, 计算得到的 AP 和 CAP 如表 3、表 4:

Image AP	Mean CAP	Image cAP							
		Angry	Contempt	Disgust	Fear	Нарру	Sad	Surprise	
	0.6667	0. 7571	0.5000	0.8000	0.7222	1.0000	0. 7778	0. 5714	0. 9285

表 3 Image_AP

Video AP	Mean CAP	Video cAP							
		Angry	Contempt	Disgust	Fear	Нарру	Sad	Surprise	
0. 6974	0. 6592	0. 4615	0. 7888	0. 6896	0. 5263	0. 7391	0. 5588	0.8505	

表 4 Video_AP

4.3 结果分析

- 1) Dropout 能有效得降低过拟合,提高准确率。Dropout 的方法相当于训练的时候随机失活掉一些连接,而在测试的时候把这些连接补充回来,这就相当于集成多个不错的模型来做综合的预测。
- 2)可能由于某些参数不是很适合或着训练轮数太少,准确率没有达到用网上下载到的已经训好的83%以上的准确率。