Homeswork 8

This is as far as I got by the end of teh day friday, but I plan to do more over the weekend. Maybe I'll do the thing where I email you (the professor) what I've done more to show I've put in the effort.

- 1. Let J be a matrix which is in Jordan normal form. Suppose that J has the following blocks on its diagonal: $J_{5,\sqrt{2}}$ (a 5 x 5 block with 2 on the diagonal), 3 copies of $J_{4,7}$, 2 copies of $J_{2,7}$, 4 copies of $J_{1,7}$, two copies of $J_{3,\pi}$, and one copy of $J_{2,\pi}$.
 - (a) What is the characteristic polynomial of J?
 - (b) What is the minimal polynomial of J?
 - (c) For each eigenvalue λ of J, what is the dimension of the generalized eigenspace corresponding to λ ?
 - (d) For each eigenvalue λ of J, find the dimension of $Ker(J-\lambda I)^k$ for every k.

$$P_J(x) = (x - \sqrt{2})^5 (x - 7)^{20} (x - \pi)^8$$

 $m_J(x) = (x - \sqrt{2})^5 (x - 7)^4 (x - \pi)^3$

dimension of general eigenspace of $\lambda=\sqrt{2}$ is 5. dimension of general eigenspace of $\lambda=7$ is 20. dimension of general eigenspace of $\lambda=\pi$ is 8.

$$Ker(J - \sqrt{2}I)^5 = 5$$

 $Ker(J - \sqrt{2}I)^4 = 4$
 $Ker(J - \sqrt{2}I)^3 = 3$
 $Ker(J - \sqrt{2}I)^2 = 2$
 $Ker(J - \sqrt{2}I)^1 = 1$
 $Ker(J - 7I)^{20} = 20$
 $Ker(J - 7I)^4 = 20$
 $Ker(J - 7I)^3 = 17$
 $Ker(J - 7I)^2 = 14$
 $Ker(J - 7I)^1 = 9$

$$Ker(J - \pi I)^8 = 8$$

 $Ker(J - \pi I)^3 = 8$
 $Ker(J - \pi I)^2 = 6$
 $Ker(J - \pi I)^1 = 3$

1. Let W be the space of all continuous functions $R \to R$, and let $V \subset W$ be the subspace spanned by the functions x, x^2, x^3, e^x, e^{-x} . Let $T: V \to V$ be linear transformation that sends a function to its derivative (so T(f) = f'). Find the Jordan normal form of T.

Well, I really wish I did this question before the test today. Goofed that one up. Turning to inspirtion from the internet.

So

$$T(x) = 1$$
 $T(x^2) = 2x$ $T(x^3) = 3$ $T(e^x) = e^x$ $T(e^{-x}) = -e^{-x}$

This is what our coordinat maps will look like.

$$\left(egin{array}{c} rac{d}{dx}x \ rac{d}{dx}x^2 \ rac{d}{dx}x^3 \ rac{d}{dx}e^x \ rac{d}{dx}e^{-x} \end{array}
ight)$$

$$T(x) = egin{pmatrix} 1 \ 0 \ 0 \ 0 \ 0 \ 0 \end{pmatrix}, T(x^2) = egin{pmatrix} 0 \ 2 \ 0 \ 0 \ 0 \ 0 \end{pmatrix}, T(x^3) = egin{pmatrix} 0 \ 0 \ 3 \ 0 \ 0 \end{pmatrix}, T(e^x) = egin{pmatrix} 0 \ 0 \ 0 \ 0 \ 1 \ 0 \end{pmatrix}, T(e^{-x}) = egin{pmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \end{pmatrix},$$

Put those bad boys together... This is close I think but maybe not quit there. I don't fully understand it.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix},$$

1. Let V be the space of all continuous functions $f:[0,1]\to R$. Define the following inner product on $V:< f,g>=\int_0^1 f(t)g(t)dt$. Let f(x)=0 be the constant function that is equal to 0, let $g(x)=x^2$, $h(x)=x^3-1$. Find the lengths of the sides and the angles of the triangle formed by f, g,h.

3/31/23, 4:22 PM hw8_20230331

- 1. Let W be the space of all continuous functions $R \to V \subset W$ be the subspace spanned by the functions x, x^2, x^3, e^x, e^{-x} . Let $U \subset W$ be the subspace spanned by x, x^2, x^3 . Find the orthogonal projection of e^x to U.
- 1. Let $V=M_3(R)$ be the space of 3×3 matrices. Define an inner product on V by setting hA, Bi=trace(ATB). Let $U\subset V$ be the subspace of antisymmetric matrices (a matrix A is antisymmetric if $A^T=-A$. Find:
 - (a) The closest point in \boldsymbol{U} to the identity matrix.
 - (b) The distance between the identity matrix and the space U.