"adding elements of sequence

Series (Chapter 11.2)

An **infinite series**, or short **series**, is given by

We define the partial sum S_n by

Relation: $\lim_{n \to \infty} \frac{1}{|x|} = \frac{1}{|x|} = \frac{1}{|x|} + \frac{1}{|x$

We say that the series is convergent if <u>limit of Sn</u> exists as a finite ht, else,

the series is <u>divergent</u>.

Any number can be expressed as a series. How?

4.12345678

Let $a \neq 0$ and $r \in \mathbb{R}$, then the geometric series is

Can we calculate the value of this series?

<u>Hint:</u> Look at $S_n - rS_n$.

general rule:

Example: Find

$$1. \sum_{n=1}^{\infty} \frac{1}{5^n}$$

$$2. \sum_{n=0}^{\infty} 2^{n+1} 3^{-n}$$

A **telescoping series** is a series, where the terms can be written as $a_n = c_n - c_{n+1}$ for some c_n .

Example: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

Result: Assume $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$, because

\Rightarrow Test for Divergence

Example:
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$

Example:
$$\sum_{n=1}^{\infty} (-1)^n$$

If $\lim_{n\to\infty} a_n = 0$, can we conclude that $\sum_{n=1}^{\infty} a_n$ converges?

Example:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Conclusion/Rule:

Limit Rules for Series: Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent. Then,

a)
$$\sum_{n=1}^{\infty} (a_n + b_n) =$$

b)
$$\sum_{n=1}^{\infty} (a_n + b_n) =$$

c)
$$\sum_{n=1}^{\infty} ca_n =$$

Example: $\sum_{n=1}^{\infty} \frac{2}{3^n} - \frac{1}{2^{n+1}}$