CS725: Ensemble Models: Boosting and Bagging

Ensemble model or learner: One which combines models for improved predictions compared to each model in the ensemble Boosting is a very popular ensembling technique of slightly better than chance Main idea behind boosting: Can we combine weak learners to improve

Box Land Come up with a 8 trong learner Perceptum learner, etc.

	Many forms of boosting = Adaboost, gradient boosting, XG boost, e	2
Jem	plate of a boosting algorithm:	
	O Initialize equal weights (that sum to 1) for all the training points	
	1) Train a weak learner on the weighted training data	
	(2) Compute a Weighted error based on the break leaven to the	ļ

3) Compute an importance estimate corresponding to the weak learner so as to add more wit to misclassified enough;

Recompute weights for all the training examples using the importance estimate in 3)

(5) Repeat steps (2) to (4) until stopping criterion is met

ADABOOST (Freund & Schapire, 1995) Dy (i) is normalized to be a prob Given $\{x_i, y_i\}_{i=1}^n$, $y_i \in \{-1, 1\}$, initial weights $\mathcal{D}_1(i) = \frac{1}{n} + i$ distribution for round $t=1,..., \bigcirc \longrightarrow hyperparameter$ Step 1: Train a weak learner on the trainset weighted by $P_{t}(i)$ Call it $h_{t}(x_{i}) = \{-1, 1\}$ Step 2: Compute the weighted error with using h, (xi) $\mathcal{E}_{t} = \mathcal{E}_{i=1} \mathcal{P}(i) \mathcal{I} \left[h_{t}(x_{i}) \neq y_{i} \right]$ Step 3: Compute an importance estimate of associated with the weak learner hy (n) of = 2 pod (1-Et)

For rounds t=1...TRecompute the weights of the training examples $D_{t+1}(x_i) \propto \begin{cases} D_t(x_i) \exp(-\alpha_t) & \text{if } h_t(x_i) = y_i \\ D_t(x_i) \exp(\alpha_t) & \text{if } h_t(x_i) \neq y_i \end{cases}$ appreighting $P_{t+1}(x_i) =$ downweighting examples that $D_{t}(x_{i}) \exp(-d_{t}y_{i}h_{t}(x_{i}))$ misclassified h_t(x) gets correct $\sum_{j=1}^{\infty} \mathcal{D}(x_j) \exp(-\alpha_t y_j h_t(x_j))$ Examples

Final classifier after boosting; $H(x) = Sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$ for a test instance x

Ensemble classifier weighted by importance estimates of

Adaboost minimizes the following exponential loss; $1 = \frac{1}{boost} \sum_{boost} \frac{1}{h} \sum_{i} \exp(-y_i H(x_i))$ If I want to add a new weak predictor h to the final classifier i.e., $H \in H + Ah$ the optimal of which minimizes L_{boost} is $A_t = \frac{1}{2} \log \left(\frac{1 - E_t}{E_t} \right)$

Bagging (Bootstrap Aggregating)

Consider D_1, D_2, \ldots, D_m independent datasets sampled i.i.d. from an underlying distribution P.

Say we train a predictor to classify an x based on $D_i \Rightarrow h(x; D_i)$

An average predictor would just be $\frac{1}{m} \sum_{i=1}^{m} h(x; \mathcal{D}_{i})$

What can we say about the following for the average predictor 2 Bias: $\mathbb{E}_{\mathcal{D}_{1},...,\mathcal{D}_{m}} \left[\frac{1}{m} \sum_{i} h(x_{i}, \mathcal{D}_{i}) \right]$ $= \int_{M} \left[\int_{i} \mathbb{E}_{D_{i}} \left[h(x; D_{i}) \right] \right]$

 $= \mathbb{E}_{\mathbb{D}} \left[h(x; \mathbb{D}) \right]$ Unchanged

VARIANCE 2 $V_{aY} \left[\frac{1}{m} \sum_{i=1}^{m} \hat{h}(x_i D_i) \right]$ $= \frac{1}{m^2} \sum_{i=1}^{m} Var[h(x_i D_i)]$ $= \frac{1}{m} \operatorname{Var} \left[h(x; D) \right]$

REDUCES by a factor of m!

Catch is that we typically do not have access to independent datasets D_1, \ldots, D_m . Bootstrap Aggregating \Rightarrow BAGGING Solution: Bootstrap! Sample at random with replacement m times from a training set D of size n

X8 X7 X7 X1 X2 X4 X2 X5 train a model h,

BOOTSTRAP SAMPLE

For test pt x Train a model hz

The bootstrap samples are not independent of each other. But the overall variance of the bagged classifier veduces.

Key print i In an ensemble, we want decorrelated predictions for the ensemble to generalize well

Very popular bagging technique is the RANDOM FOREST classifier

Random forests => Decision trees + Bagging + an additional tweak

D Bootstrap from the original dataset D, |D|= n, and train

DTs one for each bootstrap sample

2) Tweak is each DT only uses a subset of features at each split of size $k \approx 10$ Where d is the size of the original feature space

Consider a bootstrap sample. Any training instance that is not part of the bootstrap sample is called an OOB (out-of-bag) sample.
of the bootstrap sample is called an OOB (out-of-bag) sample.
OOB samples can be used as a bagged estimate of a test error withou
using an explicit test set. OOB error estimate
ow ? (1) For every ith training instance, predict labels from every bootsto

- How? Therevery it training instance, predict labels from every bootstrage model for which this instance was OOB
 - (2) Compute the mean (or maj vote) across these Predictions & compute its error
 - 3) Average errors across all the training instances