PCA

Edgar Ortiz Mota

2022-03-28

Análisis de componetes principales

Introducción

El análisis de componentes principales (ACP) es un método que sirve para reducir las dimenciones de las variables originales, para mejorar nuestro modelo.

Matriz de trabajo

- 1.- Se trabajo con la matriz diamantes, extraida del paquete datos que ya se encuentra precargado en R.
- 2.- Se selecciona la matriz (diamantes)

```
x= datos::diamantes
```

Exploración de la matriz

1.- Dimención de la matriz, la matriz cuenta con 53940 observaciones y 10 variables.

```
dim(x)
```

```
## [1] 53940 10
```

2.- Tipo de variables.

```
str(x)
```

```
## tibble [53,940 x 10] (S3: tbl_df/tbl/data.frame)
  $ precio
                 : int [1:53940] 326 326 327 334 335 336 336 337 337 338 ...
                 : num [1:53940] 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
##
   $ quilate
##
   $ corte
                 : Ord.factor w/ 5 levels "Regular"<"Bueno"<..: 5 4 2 4 2 3 3 3 1 3 ...
                 : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<...: 2 2 2 6 7 7 6 5 2 5 ...
##
  $ color
##
  $ claridad
                 : Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<...: 2 3 5 4 2 6 7 3 4 5 ...
##
   $ profundidad: num [1:53940] 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
##
  $ tabla
                 : num [1:53940] 55 61 65 58 58 57 57 55 61 61 ...
## $ x
                 : num [1:53940] 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
                 : num [1:53940] 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
## $ y
                 : num [1:53940] 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...
```

3.-Nombre de las variables.

```
colnames(x)
```

```
## [1] "precio" "quilate" "corte" "color" "claridad"
## [6] "profundidad" "tabla" "x" "y" "z"
```

4.- En busca de datos perdidos.

```
anyNA(x)
```

[1] FALSE

Tratamiento de la matriz

Se creara una nueva matriz donde solo tenga datos cuantitativos.

1.- Se seleccionaron los datos cuantitativos, para ello se seleccionaron manualmente.

```
x=diamantes [,c(1,2,6,7,8,9,10)]
```

PCA paso a paso

1.1.- Primero se transforma la matriz en un data frame

```
x= as.data.frame(x)
2.-Definimos n (individuos) y p (variables)
```

```
n < -dim(x)[1]
p < -dim(x)[2]
```

3.- Se genera el grafico scaterplot

```
\#pairs(x,col="blue", pch=19,
      #main="Variables originales")
```

Grafico

```
#pairs(x, main = "Datos diamantes", pch = 21, bg = "green3",
\#lower.panel=NULL, labels=c("LS", "AS", "LP", "AP"), font.labels=2, cex.labels=4.5)
```

4.- Obtención de la media por columna y la matriz de covarianza muestral.

```
mu= colMeans(x)
mu
##
         precio
                      quilate profundidad
                                                   tabla
## 3932.7997219
                    0.7979397
                                61.7494049
                                              57.4571839
                                                             5.7311572
                                                                           5.7345260
##
##
      3.5387338
s = cov(x)
s
```

```
##
                                                               tabla
                                  quilate profundidad
                      precio
                                                                                X
## precio
                1.591563e+07 1.742765e+03 -60.85371214 1133.3180641 3958.0214908
                1.742765e+03 2.246867e-01
## quilate
                                             0.01916653
                                                           0.1923645
                                                                        0.5184841
## profundidad -6.085371e+01 1.916653e-02
                                             2.05240384
                                                          -0.9468399
                                                                       -0.0406413
## tabla
                1.133318e+03 1.923645e-01
                                           -0.94683994
                                                           4.9929481
                                                                        0.4896429
                3.958021e+03 5.184841e-01
## x
                                           -0.04064130
                                                           0.4896429
                                                                        1.2583472
## y
                3.943271e+03 5.152478e-01
                                           -0.04800857
                                                           0.4689723
                                                                        1.2487893
## z
                2.424713e+03 3.189168e-01
                                            0.09596797
                                                           0.2379960
                                                                        0.7684875
##
                           у
               3943.27081043 2.424713e+03
## precio
## quilate
                  0.51524782 3.189168e-01
## profundidad -0.04800857 9.596797e-02
## tabla
                  0.46897228 2.379960e-01
## x
                  1.24878933 7.684875e-01
```

```
## v
                  1.30447161 7.673196e-01
## z
                  0.76731958 4.980109e-01
5.- Obtencion de los valores y vectores propios desde la matriz de covarianza muestral.
es = eigen(s)
es
## eigen() decomposition
## $values
## [1] 1.591563e+07 5.213080e+00 1.782627e+00 6.728544e-01 3.796773e-02
## [6] 1.579564e-02 6.076678e-03
##
## $vectors
##
                 [,1]
                                [,2]
                                              [,3]
                                                            [,4]
        9.999999e-01 -9.340588e-05
                                     4.969435e-05 0.0003884624 -1.965194e-05
## [1,]
         1.095002e-04 1.268053e-02 -3.095226e-02 -0.1881334278 1.693347e-01
## [3,] -3.823523e-06 -2.855246e-01 -9.546313e-01 0.0616683380 -3.426591e-02
## [4,]
        7.120789e-05 9.562977e-01 -2.805972e-01 0.0817901805 -6.533849e-03
## [5,]
         2.486877e-04 4.450580e-02 -3.885860e-02 -0.6063073272 4.761949e-01
## [6,]
         2.477609e-04 4.173598e-02 -3.277768e-02 -0.6626667125 -7.420649e-01
         1.523479e-04 9.328059e-03 -8.001227e-02 -0.3838975099 4.389613e-01
## [7,]
##
                 [,6]
                                [,7]
        1.540157e-05 -0.0000282091
## [1,]
## [2,] -2.727369e-01 0.9275922119
## [3,] -4.147808e-02 -0.0213840864
## [4,]
        3.927639e-03 -0.0034998183
## [5,] -5.189888e-01 -0.3644031583
## [6,]
        8.266921e-02 0.0237073198
## [7,]
        8.047951e-01 0.0758383874
5.1.- Separación de la matriz de valores propios.
eigen.val<-es$values
eigen.val
## [1] 1.591563e+07 5.213080e+00 1.782627e+00 6.728544e-01 3.796773e-02
## [6] 1.579564e-02 6.076678e-03
5.2.- Separación de la matriz de vectores propios.
eigen.vec<-es$vectors
eigen.vec
##
                 [,1]
                                [,2]
                                              [,3]
                                                            [,4]
                                                                           [,5]
## [1,]
        9.999999e-01 -9.340588e-05 4.969435e-05 0.0003884624 -1.965194e-05
## [2,]
         1.095002e-04 1.268053e-02 -3.095226e-02 -0.1881334278 1.693347e-01
## [3,] -3.823523e-06 -2.855246e-01 -9.546313e-01 0.0616683380 -3.426591e-02
## [4,]
         7.120789e-05 9.562977e-01 -2.805972e-01 0.0817901805 -6.533849e-03
## [5,]
         2.486877e-04 4.450580e-02 -3.885860e-02 -0.6063073272 4.761949e-01
         2.477609e-04 4.173598e-02 -3.277768e-02 -0.6626667125 -7.420649e-01
## [6,]
## [7,]
         1.523479e-04 9.328059e-03 -8.001227e-02 -0.3838975099 4.389613e-01
                 [,6]
                                [,7]
##
        1.540157e-05 -0.0000282091
## [1,]
## [2,] -2.727369e-01 0.9275922119
## [3,] -4.147808e-02 -0.0213840864
## [4,]
        3.927639e-03 -0.0034998183
## [5,] -5.189888e-01 -0.3644031583
```

```
## [6,] 8.266921e-02 0.0237073198
## [7,] 8.047951e-01 0.0758383874
6.- Calcular la proporcion de la variabilidad.
6.1.- Para la matriz de valores propios.
pro.var<-eigen.val/sum(eigen.val)</pre>
pro.var
## [1] 9.999995e-01 3.275445e-07 1.120047e-07 4.227630e-08 2.385561e-09
## [6] 9.924600e-10 3.818054e-10
6.2.- Acumulada
pro.var.acum<-cumsum(eigen.val)/sum(eigen.val)</pre>
pro.var.acum
## [1] 0.9999995 0.9999998 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
7.- Obtención de la matriz de correlaciones.
R<-cor(x)
R
##
                 precio
                           quilate profundidad
                                                  tabla
                                                                 X
## precio
               1.0000000 0.92159130 -0.01064740
                                              0.1271339
                                                        0.88443516
## quilate
               0.9215913 1.00000000 0.02822431 0.1816175
                                                        0.97509423
## profundidad -0.0106474 0.02822431 1.00000000 -0.2957785 -0.02528925
              0.1271339 0.18161755 -0.29577852 1.0000000
## tabla
                                                        0.19534428
## x
              0.8844352 0.97509423 -0.02528925
                                              0.1953443
                                                         1.00000000
## y
              0.8654209 0.95172220 -0.02934067 0.1837601
                                                        0.97470148
              0.8612494 0.95338738 0.09492388 0.1509287
## z
                                                         0.97077180
##
                       У
              0.86542090 0.86124944
## precio
              0.95172220 0.95338738
## quilate
## profundidad -0.02934067 0.09492388
## tabla
              0.18376015 0.15092869
## x
              0.97470148 0.97077180
## y
              1.00000000 0.95200572
              0.95200572 1.00000000
8.- Obtención de los valores y vectores propios a partir de la matriz de correlaciones.
eR<-eigen(R)
еR
## eigen() decomposition
## [1] 4.76391480 1.28586808 0.69081126 0.17375333 0.04030722 0.03294659 0.01239871
##
## $vectors
##
                [,1]
                            [,2]
                                        [,3]
                                                   [,4]
                                                               [,5]
0.84977817 -0.05377206
## [2,] -0.4524454941 0.034696011 0.005494814
                                             0.06835945 0.13399948
## [3,] 0.0009161301 0.730679714 -0.672829294
                                             0.04724800 -0.08873829
## [4,] -0.0995160875 -0.675067376 -0.728069469 0.05954060 -0.01037614
## [5,] -0.4532125054 -0.003512550 0.039508824 -0.24299509 0.08898016
```

```
## [,6] [,7]

## [1,] 0.27330947 0.082814286

## [2,] -0.76815114 -0.425880295

## [3,] -0.01445027 0.055600264

## [4,] 0.02526831 0.002049255

## [5,] -0.19846061 0.828658219

## [6,] 0.21526655 -0.208857094

## [7,] 0.49867040 -0.279957944
```

- 9.-Separación de la matriz de valores propios a partir de las correlaciones.
- 9.1.- Separación de la matriz de valores propios.

```
eigen.val.R<-eR$values
eigen.val.R
```

- ## [1] 4.76391480 1.28586808 0.69081126 0.17375333 0.04030722 0.03294659 0.01239871
- 9.2.- Separación de la matriz de vectores propios.

```
eigen.vec.R<-eR$vectors
eigen.vec.R
```

```
##
                           [,2]
                                                  [,4]
                                                             [,5]
               [,1]
                                       [,3]
## [1,] -0.4255192667
                    0.035257945
                                0.105449477
                                            0.84977817 -0.05377206
## [2,] -0.4524454941 0.034696011
                                0.005494814
                                            0.06835945 0.13399948
## [3,]
       0.0009161301 0.730679714 -0.672829294
                                            0.04724800 -0.08873829
## [4,] -0.0995160875 -0.675067376 -0.728069469
                                            0.05954060 -0.01037614
## [5,] -0.4532125054 -0.003512550 0.039508824 -0.24299509 0.08898016
## [6,] -0.4472649035 -0.002157912 0.054188788 -0.32846061 -0.77405793
##
             [,6]
## [1,] 0.27330947 0.082814286
## [2,] -0.76815114 -0.425880295
## [3,] -0.01445027 0.055600264
       0.02526831 0.002049255
## [4,]
## [5,] -0.19846061 0.828658219
       0.21526655 -0.208857094
## [6,]
## [7,]
       0.49867040 -0.279957944
```

- 10.- Cálculo de la proporcion de la variablilidad.
- 10.1.- Para la la matriz de valores propios.

```
pro.var.R<-eigen.val.R/sum(eigen.val.R)
pro.var.R</pre>
```

```
## [1] 0.680559258 0.183695440 0.098687323 0.024821905 0.005758174 0.004706656 ## [7] 0.001771245
```

10.2.- Acumulada. En este punto se seleccionan en número de componentes, siguiendo el criterio del 80% de la varianza explicada. Para este ejemplo se van a seleccionar 2 factores (0.8642% de varianza explicada).

```
pro.var.acum.R<-cumsum(eigen.val.R)/sum(eigen.val.R)
pro.var.acum.R</pre>
```

- ## [1] 0.6805593 0.8642547 0.9629420 0.9877639 0.9935221 0.9982288 1.0000000
- 11.- Calcular la media de los valores propios.

```
mean(eigen.val.R)
## [1] 1
Obtención de coeficientes
12.- Centrar los datos con respecto a la media.
12.1.- Construcción de matriz de 1
ones<-matrix(rep(1,n),nrow=n, ncol=1)</pre>
12.2 Construcción de la matriz diagonal de covarianzas
X.cen<-as.matrix(x-ones%*%mu)</pre>
13.- Contrucción de la matriz diagonal de covarianzas.
Dx<-diag(diag(s))</pre>
Dx
##
           [,1]
                     [,2]
                             [,3]
                                      [,4]
                                              [,5]
                                                       [,6]
## [2,]
              0\ 0.0000000\ 2.052404\ 0.000000\ 0.000000\ 0.000000\ 0.0000000
## [3,]
## [4,]
              0.0000000 0.000000 4.992948 0.000000 0.000000 0.0000000
## [5,]
              0 0.0000000 0.000000 0.000000 1.258347 0.000000 0.0000000
## [6,]
              0 0.0000000 0.000000 0.000000 0.000000 1.304472 0.0000000
              ## [7,]
14.- Construción de la matriz centrada
Y = X.cen<-as.matrix(x)-ones%*%mu
15.- Construcción de los coeficientes o scores eigen.vec.R de autovectores.
Se muestrann las primeras 10 observaciones.
scores <-Y % * % eigen. vec. R
scores[1:10.]
##
                                         [,4]
                                                           [,6]
            [,1]
                      [,2]
                               [,3]
                                                 [,5]
                                                                    [,7]
   [1,] 1537.350 -125.8002 -378.5030 -3063.816 194.4472 -985.9718 -299.2707
  [2,] 1536.904 -131.1036 -381.7329 -3063.442 194.5637 -985.8584 -299.3313
## [3,] 1535.894 -135.8880 -382.5696 -3062.604 194.5647 -985.4397 -299.3255
## [4,] 1533.307 -126.8673 -380.4333 -3056.999 193.8635 -983.6647 -298.4786
## [5,] 1532.703 -126.1638 -380.9260 -3056.217 193.7245 -983.3619 -298.2969
## [6,] 1532.884 -125.8430 -379.7827 -3055.144 193.8195 -983.1920 -298.3885
## [7,] 1532.875 -126.2093 -379.4444 -3055.173 193.8432 -983.1875 -298.4094
## [8,] 1532.499 -125.1108 -377.6042 -3054.551 193.7946 -982.9402 -298.3060
## [9,] 1532.179 -126.8266 -384.1501 -3053.876 193.6565 -982.8554 -298.1843
```

17.- Vizualización de los scores

16.- Nombarmos las columnas.

[10,] 1531.609 -130.9658 -380.1857 -3053.383 193.8522 -982.5250 -298.3434

```
scores[1:10,]
##
                        PC2
                                   PC3
                                             PC4
##
    [1,] 1537.350 -125.8002 -378.5030 -3063.816 194.4472 -985.9718 -299.2707
##
   [2,] 1536.904 -131.1036 -381.7329 -3063.442 194.5637 -985.8584 -299.3313
   [3,] 1535.894 -135.8880 -382.5696 -3062.604 194.5647 -985.4397 -299.3255
    [4,] 1533.307 -126.8673 -380.4333 -3056.999 193.8635 -983.6647 -298.4786
##
  [5,] 1532.703 -126.1638 -380.9260 -3056.217 193.7245 -983.3619 -298.2969
  [6,] 1532.884 -125.8430 -379.7827 -3055.144 193.8195 -983.1920 -298.3885
##
  [7,] 1532.875 -126.2093 -379.4444 -3055.173 193.8432 -983.1875 -298.4094
   [8,] 1532.499 -125.1108 -377.6042 -3054.551 193.7946 -982.9402 -298.3060
## [9,] 1532.179 -126.8266 -384.1501 -3053.876 193.6565 -982.8554 -298.1843
## [10,] 1531.609 -130.9658 -380.1857 -3053.383 193.8522 -982.5250 -298.3434
18.- Generación del grafico de los scores.
#pairs(scores, main="scores", col="blue", pch=19)
##Acp via sintetizada
apply(x, 2, var)
         precio
                     quilate profundidad
                                                  tabla
## 1.591563e+07 2.246867e-01 2.052404e+00 4.992948e+00 1.258347e+00 1.304472e+00
##
              z
## 4.980109e-01
2.- Aplicar la funcion preomp para reducir la dimensionalidad y centrado por la media y escala por la
desciacion estandar (dividir entre sd).
acp= prcomp(x, center=TRUE, scale=TRUE)
acp
## Standard deviations (1, .., p=7):
## [1] 2.1826394 1.1339612 0.8311506 0.4168373 0.2007666 0.1815120 0.1113495
##
## Rotation (n \times k) = (7 \times 7):
##
                         PC1
                                       PC2
                                                    PC3
                                                                 PC4
## precio
                0.4255192667 0.035257945 0.105449477 0.84977817 -0.05377206
## quilate
                0.4524454941 0.034696011 0.005494814 0.06835945 0.13399948
## profundidad -0.0009161301 0.730679714 -0.672829294
                                                         0.04724800 -0.08873829
                0.0995160875 - 0.675067376 - 0.728069469 0.05954060 - 0.01037614
## tabla
## x
                0.4532125054 \ -0.003512550 \ \ 0.039508824 \ -0.24299509 \ \ 0.08898016
                0.4472649035 - 0.002157912 \ 0.054188788 - 0.32846061 - 0.77405793
## y
## z
                0.4459536619 0.089035176 -0.039603439 -0.31700727 0.60339656
                       PC6
##
## precio
                0.27330947 -0.082814286
## quilate
               -0.76815114 0.425880295
## profundidad -0.01445027 -0.055600264
## tabla
                0.02526831 -0.002049255
## x
               -0.19846061 -0.828658219
## y
                0.21526655 0.208857094
                0.49867040 0.279957944
## z
3.- Generacion del grafico screeplot.
plot(acp, type= "1")
```


4.- Resumen de la matriz acp

summary(acp)

```
## Importance of components:
```

```
## Standard deviation 2.1826 1.1340 0.83115 0.41684 0.20077 0.18151 0.11135 ## Proportion of Variance 0.6806 0.1837 0.09869 0.02482 0.00576 0.00471 0.00177 ## Cumulative Proportion 0.6806 0.8642 0.96294 0.98776 0.99352 0.99823 1.00000
```

Construcción de los CP con las variables originales

combinación lineal de las variables originales

```
z1 = 0.4255192667(var1) + 0.4524454941(var2) - 0.0009161301(var3) + 0.0995160875(var4) + 0.4532125054(var5) \\ + 0.4472649035(var6) + 0.4459536619(var7)
```

El primer componente distingue entre

precio quilate profundidad tabla x y

```
z2 = 0.035257945(var1) + 0.034696011(var2) + 0.730679714(var3) - 0.675067376(var4) - 0.003512550(var5) - 0.002157912(var6) + 0.089035176(var7)
```

El segundo componente distingue

precio quilate profundidad tabla x y

Nota: los graficos en el punto 3 y 18 no se pudieron apreciar en este archivo, es por eso que se agrego como si fuera comentario con el uso del #