

FORMALE SYSTEME

ÜBUNG 4

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 11. November 2021

REGULÄRE AUSDRÜCKE

Die Menge der **regulärer Ausdrücke** über einem Alphabet Σ ist induktiv wie folgt definiert:

- ▶ Ø ist ein regulärer Ausdruck
- ightharpoonup arepsilon ist ein regulärer Ausdruck
- ightharpoonup a ist ein regulärer Ausdruck für jedes a $\in \Sigma$
- ▶ Wenn α und β reguläre Ausdrücke sind, dann sind auch $(\alpha\beta)$, $(\alpha \mid \beta)$ und $(\alpha)^*$ reguläre Ausdrücke

Die **Sprache eines regulären Ausdrucks** α wird mit $\mathbf{L}(\alpha)$ bezeichnet und rekursiv definiert:

$$ightharpoonup$$
 L(\emptyset) = \emptyset

$$\blacktriangleright \ \mathsf{L}((\alpha\beta)) = \mathsf{L}(\alpha) \circ \mathsf{L}(\beta)$$

▶
$$L(\varepsilon) = \{\varepsilon\}$$

$$\blacktriangleright \ \mathsf{L}((\alpha \mid \beta)) = \mathsf{L}(\alpha) \cup \mathsf{L}(\beta)$$

▶
$$L(a) = \{a\} \quad \forall a \in \Sigma$$

$$L((\alpha)^*) = L(\alpha)^*$$

Gegeben sind das Alphabet $\Sigma = \{a, b, c\}$ und die Sprache

 $L = \{ w \in \Sigma^* \mid \text{ es gibt } u, v \in \Sigma^* \text{ mit } w = ubabcv \text{ und}$ es gibt $u, v \in \Sigma^* \text{ mit } w = ucccv \text{ und}$ es gibt kein $u \in \Sigma^* \text{ mit } w = au \}.$

Geben Sie für L einen regulären Ausdruck r mit L = L(r) an.

Beweisen Sie die folgenden Gleichungen für reguläre Ausdrücke r, s und t.

Erinnerung: $r \equiv s$ bedeutet L(r) = L(s)

- a) $r \mid s \equiv s \mid r$
- b) $(r | s) | t \equiv r | (s | t)$
- c) $(rs)t \equiv r(st)$
- d) $r(s \mid t) \equiv rs \mid rt$
- e) $\emptyset^* \equiv \varepsilon$
- f) $(r^*)^* \equiv r^*$
- g) $r^* \equiv rr^* \mid \varepsilon$
- h) $(\varepsilon \mid r)^* \equiv r^*$

DIE ERSETZUNGSMETHODE

Gegeben: NFA $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$

Gesucht: regulärer Ausdruck α mit $L(\alpha) = L(\mathcal{M})$

Idee:

Für jeden Zustand $q \in Q$, berechne einen regulären Ausdruck α_q für die Sprache $\mathbf{L}(\alpha_q) = \mathbf{L}(\mathcal{M}_q)$ mit $\mathcal{M}_q = \langle Q, \Sigma, \delta, \{q\}, F \rangle$

Für
$$Q_0=\{q_1,q_2,\ldots,q_n\}$$
 gilt dann
$$\mathbf{L}(\mathcal{M})=\bigcup_{q\in Q_0}\mathbf{L}(\alpha_q)=\mathbf{L}(\alpha_{q_1}\mid \alpha_{q_2}\mid \cdots \mid \alpha_{q_n})$$

- (1) **Vereinfache den Automaten** (entferne offensichtlich unnötige Zustände)
- (2) Bestimme das Gleichungssystem

Intuition: Beschreibe α_q in Abhängigkeit von Folgezuständen

- ho Für jeden Zustand $q \in Q \setminus F$: $\alpha_q \equiv \sum_{\mathtt{a} \in \Sigma} \sum_{p \in \delta(q,\mathtt{a})} \mathtt{a} \alpha_p$
- ightharpoonup Für jeden Zustand $q \in F$: $\alpha_q \equiv \varepsilon \mid \sum_{\mathbf{a} \in \Sigma} \sum_{p \in \delta(q,\mathbf{a})} \mathbf{a} \alpha_p$
- (3) Löse das Gleichungssystem durch Einsetzen und

Regel von Arden: Aus $\alpha \equiv \beta \alpha \mid \gamma \text{ mit } \varepsilon \notin \mathbf{L}(\beta) \text{ folgt } \alpha \equiv \beta^* \gamma.$

(4) Gib den Ausdruck für die Sprache des NFA an

Für
$$Q_0 = \{q_1, q_2, \dots, q_n\}$$
 gilt dann
$$\mathbf{L}(\mathcal{M}) = \bigcup_{q \in Q_0} \mathbf{L}(\alpha_q) = \mathbf{L}(\alpha_{q_1} \mid \alpha_{q_2} \mid \dots \mid \alpha_{q_n})$$

DYNAMISCHE ERMITTLUNG

Gegeben: NFA $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$

Gesucht: regulärer Ausdruck α mit $L(\alpha) = L(\mathcal{M})$

Ansatz:

Für jedes Paar von Zuständen $q,p \in Q$, berechne einen regulären Ausdruck $\alpha_{q,p}$ für die Sprache $\mathbf{L}(\alpha_{q,p}) = \mathbf{L}(\mathcal{M}_{q,p})$ mit $\mathcal{M}_{q,p} = \langle Q, \Sigma, \delta, \{q\}, \{p\} \rangle$

Dann gilt:

$$\mathbf{L}(\mathcal{M}) = \bigcup_{q \in Q_0} \bigcup_{p \in F} \mathbf{L}(\alpha_{q,p}) = \mathbf{L}\left(\sum_{q \in Q_0} \sum_{p \in F} \alpha_{q,p}\right)$$

- ▶ $\mathbf{L}^{k}[i,j]$... Sprache mit Start in q_i , Ende in q_j und nutzt nur Zwischenzustände q_1,\ldots,q_k
- $\alpha^{k}[i,j]$ zugehöriger regulärer Ausdruck

Idee: lasse immer mehr Zwischenzustände von q nach p zu

- ▶ k = n: nutze alle Zustände Ergebnis ablesbar
- ▶ k = 0: nutze keine Zwischenzustände $\alpha^0[i,j]$ direkt ablesbar:

Sei $\{a_1, \ldots, a_m\} = \{a \in \Sigma \mid q_i \stackrel{a}{\to} q_j\}$ die Menge der Beschriftungen von direkten Übergängen von q_i zu q_i .

- ightharpoonup Falls $i \neq j$, dann ist $\alpha^0[i,j] = \mathbf{a_1} \mid \ldots \mid \mathbf{a_m}$
- ightharpoonup Falls i=j, dann ist $\alpha^0[i,j]=\mathbf{a_1}\mid\ldots\mid\mathbf{a_m}\mid\varepsilon$

Update-Formel:

$$\alpha^{k+1}[i,j] = \alpha^{k}[i,j] \mid (\alpha^{k}[i,k+1](\alpha^{k}[k+1,k+1])^{*}\alpha^{k}[k+1,j])$$

vgl. VL "Algorithmen & Datenstrukturen", Prozess-Problem im Aho-Hopcroft-Ullman-Algorithmus

Geben Sie zu jedem der regulären Ausdrücke r_i einen NFA \mathcal{M}_i mit $L(\mathcal{M}_i) = L(r_i)$ an.

- a) $r_1 = (ab)^*$
- b) $r_2 = a(b | c)a^* | a^*$

Wenden Sie dabei jeweils den *kompositionellen Ansatz* sowie den *expliziten Ansatz* zur Konstruktion von NFAs aus der Vorlesung an.

Entwickeln Sie für die Sprache L über dem Alphabet $\Sigma = \{a, b, c\}$ einen regulären Ausdruck r mit L = L(r). Für alle Wörter $w \in L$ gilt:

- ▶ w enthält aaa.
- ▶ w endet mit c.
- ▶ Die Anzahl der *b* in *w* ist gerade.

ÄQUIVALENZ VON ZUSTÄNDEN & QUOTIENTENAUTOMAT

DFA
$$\mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle \leadsto \mathsf{DFA} \, \mathcal{M}_q = \langle Q, \Sigma, \delta, q, F \rangle$$

Zwei Zustände $p, q \in Q$ sind \mathcal{M} -äquivalent ($p \sim_{\mathcal{M}} q$), falls

$$L(\mathcal{M}_p) = L(\mathcal{M}_q)$$

Die Äquivalenzklasse eines Zustands $q \in Q$ ist

$$[q]_{\sim} = \{ p \in Q \mid q \sim p \}$$

Für eine Menge $P \subseteq Q$ schreiben wir $P/_{\sim}$ für den Quotienten von P und \sim :

$$P/_{\sim} = \{ [p]_{\sim} \mid p \in P \}$$

- ightharpoonup \sim ist eine Äquivalenzrelation (reflexiv, symmetrisch, transitiv)
- ► Äquivalenzklassen sind disjunkt und partitionieren Q

Quotientenautomat

Idee: Verschmelzen von äquivalenten Zuständen

Für einen DFA $\mathcal{M}=\langle Q,\Sigma,\delta,q_0,F\rangle$ mit totaler Übergangsfunktion ist der Quotientenautomat $\mathcal{M}/_{\sim}$ gegeben durch

$$\mathcal{M}/_{\!\!\sim} = \langle Q/_{\!\!\sim}, \Sigma, \delta_{\sim}, [q_0]_{\sim_{\mathcal{M}}}, F/_{\!\!\sim} \rangle$$

wobei gilt:

- $\blacktriangleright Q/_{\sim} = \{ [q]_{\sim} \mid q \in Q \}$
- $\blacktriangleright F/_{\sim} = \{ [q]_{\sim} \mid q \in F \}$

Berechnen Sie für folgenden DFA

$$\mathcal{M} = (\{q_0,q_1,q_2,q_3,q_4,q_5\},\{a,b\},\delta,q_0,\{q_1,q_2,q_4\}) \text{ mit } \delta\text{:}$$

die Äquivalenzrelation $\sim_{\mathcal{M}}$, und geben Sie den Quotientenautomaten $\mathcal{M}/_{\sim}$ an.