1 Emitting

C++ code, C++ lambda recursion. In line all lambdas vs bind to value (untyped λ -calculus).

2 IR as λ -calculus

OCaml ZINC

2.1 ADT

MogensenScott encoding Dana Scott.

Church encoding

Boehm-Berarducci encoding

Function as data (or rather parameters).

$$D = \{c_i\}_{i=1}^N, c_i \text{ has arity } A_i$$
(1)
(2)

 x_k is the constructor value for field $k \in \{1 \dots A_i\}$. c_i is constructor $i \in N$, effectively.

$$c_n: x_1 \to x_2 \cdots \to x_{A_i} \to D$$

Such that all constructors can be modelled as.

$$\lambda x_1 \dots x_{A_i} \cdot \lambda c_1 \dots c_N \cdot c_i x_1 \dots x_{A_i}$$

The "data" is extracted by: Given a set of functions $\{f_1 \dots f_N\}$ which each can handle union case $1 \dots N$.

Listing 1: Maybe in Haskell

Since we use untyped lambda calculus, we can model every parameter as *any* type. Furthermore, the code in Figure 1 can be expressed in scott encoding.

```
newtype MaybeAlgebra =
    MaybeAlgebra{ unMaybe :: forall a b. ((a -> b) -> b -> b) }

just :: a -> MaybeAlgebra
just a = \onjust onnothing -> onjust a

nothing :: MaybeAlgebra
nothing = \onjust onnothing -> onnothing

...
(just 5) (\x -> x) (12)
```

Listing 2: Maybe in Haskell as catamorphism