

KURS RÓWNANIA RÓŻNICZKOWE

Lekcja 4 Niektóre równania nieliniowe rzędu pierwszego.

Równanie różniczkowe rodziny linii.

ZADANIE DOMOWE

Część 1: TEST

Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).

Pytanie 1

Równanie różniczkowe Bernoulliego ma postać:

a)
$$p(x) \cdot y' + q(x) \cdot y = r(x) \cdot y^n$$

b)
$$p(x)+q(x)\cdot y=r(x)\cdot y$$

c)
$$p(x) \cdot y + q(x) \cdot y = r(x) \cdot y^n$$

d)
$$p(x) \cdot y' + q(x) \cdot y = r(x)$$

Pytanie 2

W równaniu różniczkowym Bernoulliego stosujemy podstawienie:

a)
$$z = y^{1-n}$$

b)
$$z = \frac{y}{x}$$

c)
$$z = y^n$$

d)
$$z = y$$

Pytanie 3

Równanie różniczkowe Riccatiego ma postać:

a).
$$p(x) \cdot y' + q(x) \cdot y = r(x) \cdot y^n$$

b).
$$y' = p(x) \cdot y^2 + q(x) \cdot y + r(x)$$

c).
$$y^n = p(x) \cdot y^2 + q(x) \cdot y + r(x)$$

d).
$$p(x) \cdot y' + q(x) \cdot y = r(x)$$

Pytanie 4

Aby rozwiązać równanie różniczkowe Riccatiego musimy mieć podane:

- a) całkę nieoznaczoną
- b) całkę oznaczoną
- c) punkt
- d) całkę szczególną

Pytanie 5

W równaniu różniczkowym Riccatiego stosujemy podstawienie:

a)
$$z = y^{1-n}$$

$$b) \quad r = y_{sz}(x) - \frac{1}{u}$$

c)
$$y = y_{sz}(x) + \frac{1}{u}$$

d)
$$y = y_{sz}(x) - \frac{1}{u}$$

Pytanie 6

Równanie różniczkowe Clairauta ma postać:

a)
$$y = xy' + f(y')$$

b)
$$y = xy' + f(x')$$

c)
$$y = xy + f(y)$$

d)
$$x = xy' + f(y')$$

Pytanie 7

Rozwiązanie równania Clairauta jest to:

- a) grupa rozwiązań składająca się z jednoparametrowej rodziny linii
- b) grupa rozwiązań składająca się z jednoparametrowej rodziny linii i obwiedni tej rodziny linii
- c) grupa rozwiązań składająca się z jednoparametrowej rodziny punktów i obwiedni rodziny linii
- d) grupa rozwiązań składająca się z rodziny punktów

Pytanie 8

Równania różniczkowe zupełne mają postać:

a)
$$P(x, y)dx + Q(x, y)dy = 0$$

b)
$$y' = p(x) \cdot y^2 + q(x) \cdot y + r(x)$$

c)
$$ydx + xdy = 0$$

d)
$$p(x) \cdot y' + q(x) \cdot y = r(x)$$

Pytanie 9

Równanie będzie równanie różniczkowym zupełnym, jeśli będzie spełniony warunek:

a)
$$\frac{\partial Q}{\partial y} = \frac{\partial P}{\partial x}$$

$$b) \quad ydx + xdy = 0$$

c)
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

d)
$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial y}$$

Pytanie 10

Jeśli nie spełniony jest warunek $\frac{\partial Q}{\partial y} = \frac{\partial P}{\partial x}$ w równaniu P(x,y)dx + Q(x,y)dy = 0 wówczas:

- a) sprowadzamy równanie do równania zupełnego szukając czynnika całkującego,
- b) równanie nie ma rozwiązania
- c) podstawiamy za x = 0 oraz za y = 0

Pytanie 11

Które z poniższych równań jest równaniem ogólnym jednoparametrowej rodziny linii?

a)
$$F(x,C)=0$$

b)
$$F(y,C)=0$$

c)
$$F(x, y, C) = 0$$

d)
$$F(x,y)=0$$

Część 2: ZADANIA

Zadanie 1

Rozwiąż równanie:

a)
$$xy'-2y=x\sqrt{y}$$

b)
$$xy' - 4y = x^4 \sqrt{y}$$

c)
$$y' + 2ytgx = 4y^2tgx$$
 z warunkiem początkowym $y\left(\frac{\pi}{4}\right) = 1$

Zadanie 2

Rozwiąż równanie:

a)
$$y' = \frac{4}{x^2} - \frac{y}{x} - y^2$$
, gdy $y = \frac{2}{x}$

b)
$$y' = \frac{y^2}{2} + \frac{1}{2x^2}$$
, gdy $y = -\frac{1}{x}$

c)
$$y' = -y^2 - \frac{y}{x} + \frac{4}{x^2}$$
, gdy $y = \frac{2}{x}$

Zadanie 3

Rozwiąż:

a)
$$y = xy' + (y')^3$$

b)
$$y = xy' - 2\sqrt{(y')^2 + 1}$$

c)
$$4y - 4xy' - \frac{2}{y'} = 0$$

Zadanie 4

Rozwiąż równania:

a)
$$-(x^2+y)dx = (x-2y)dy$$

b)
$$2xy^2 - y + (x + y + y^2)y' = 0$$

c)
$$(x^2 - y)dx + xdy = 0$$

d)
$$(1-yx^2)+x^2(y-x)y'=0$$

e)
$$y^2 + (xy-1)y' = 0$$

Zadanie 5

Znaleźć równania różniczkowe rodziny krzywych:

a)
$$y = ax^3$$

b)
$$y = ax + a - 1$$

c)
$$y^2 = 2ax - a^2$$

Zadanie 6

Znaleźć rodziny ortogonalne do krzywych danej rodziny:

a)
$$y^2 = 2x - 2c$$

b)
$$x^2 + y^2 - 2ax = 0$$

c)
$$y = ce^{-x}$$

KONIEC