

Introducción a Modelos Psicométricos

Clase 2: Herramientas estadísticas para la psicometría

Iwin Leenen y Ramsés Vázquez-Lira

Facultad de Psicología, UNAM

Programa de Licenciatura y Posgrado en Psicología Semestre 2019–1

- 1 Algunas nociones preliminares de la estadística
- 2 Estadística univariada
- 3 Estadística bivariada
- 4 Algunas nociones inferenciales

- Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de contianza

Algunas nociones preliminares de la estadística

Objetos, variables y observaciones

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

Algunas nociones preliminares de la estadística

Objetos, variables v observaciones

Objetos, variables y observaciones

En la estadística aplicada, se dispone de los datos de varios objetos o unidades experimentales.

Por ejemplo

- Hemos registrado la interacción social de 50 niños en el patio de la escuela.
- Tenemos las respuestas en un cuestionario de 60 participantes en un taller de mindfulness.
- Tenemos los resultados de 1,000 alumnos en el examen de entrada de la UNAM.

Para hacer referencia a las unidades experimentales, se suele asignarles un número. Por ejemplo, se habla del resultado del "alumno *i*" en el examen.

Algunas nociones preliminares de la estadística

Objetos, variables v observaciones

Objetos, variables y observaciones

En la estadística aplicada, se dispone de los datos de varios objetos o unidades experimentales.

Por ejemplo:

- Hemos registrado la interacción social de 50 niños en el patio de la escuela.
- Tenemos las respuestas en un cuestionario de 60 participantes en un taller de mindfulness.
- Tenemos los resultados de 1,000 alumnos en el examen de entrada de la UNAM.

Para hacer referencia a las unidades experimentales, se suele asignarles un número. Por ejemplo, se habla del resultado del "alumno *i*" en el examen.

Algunas nociones preliminares de la estadística

Objetos, variables v observaciones

Objetos, variables y observaciones

En la estadística aplicada, se dispone de los datos de varios objetos o unidades experimentales.

Por ejemplo:

- Hemos registrado la interacción social de 50 niños en el patio de la escuela.
- Tenemos las respuestas en un cuestionario de 60 participantes en un taller de mindfulness.
- Tenemos los resultados de 1,000 alumnos en el examen de entrada de la UNAM.

Para hacer referencia a las unidades experimentales, se suele asignarles un número. Por ejemplo, se habla del resultado del "alumno i" en el examen.

Algunas nociones preliminares de la estadística

Objetos, variables v observaciones

Objetos, variables y observaciones

Para poder sistematizar los datos, se definen una o más variables. Es común representar las variables por letras mayúsculas X, Y, etc.

Por ejemplo

- Para el registro de la interacción social, se define la variable X: "Número de otros niños con los que habla".
- Para evaluar el efecto del taller, se definen las variables:
 - X_{pre}: "Puntuación en la aplicación *pre*
 - X_{nost}: "Puntuación en la aplicación post
 - Y: "Diferencia entre las puntuación pre y post"
- Para el examen de opción múltiple, se definen las variables X₁ a X₁₂₀: "Puntuación en la pregunta j del examen".

Objetos, variables y observaciones

Objetos, variables y observaciones

Para poder sistematizar los datos, se definen una o más variables. Es común representar las variables por letras mayúsculas X, Y, etc.

Por ejemplo:

- Para el registro de la interacción social, se define la variable X: "Número de otros niños con los que habla".
- Para evaluar el efecto del taller, se definen las variables:
 - X_{pre}: "Puntuación en la aplicación *pre*"
 - X_{post}: "Puntuación en la aplicación post"
 - Y: "Diferencia entre las puntuación pre y post".
- Para el examen de opción múltiple, se definen las variables X₁ a X₁₂₀: "Puntuación en la pregunta j del examen".

Algunas nociones preliminares de la estadística

Objetos, variables y observaciones

Objetos, variables y observaciones

Se observan para los objetos valores en las variables.

Por ejemplo

 El niño i tuvo el valor de 8 en la variable X "Número de de otros niños con los que habla":

$$x_i = 8$$

 El alumno i contestó correctamente en la pregunta j del examen de opción múltiple.

Es decir, tiene el valor 1 en la variable X_i :

$$x_{ij} = 1$$

Objetos, variables y observaciones

Objetos, variables y observaciones

Se observan para los objetos valores en las variables.

Por ejemplo:

 El niño i tuvo el valor de 8 en la variable X "Número de de otros niños con los que habla":

$$x_i = 8$$
.

 El alumno i contestó correctamente en la pregunta j del examen de opción múltiple.

Es decir, tiene el valor 1 en la variable X_i :

$$x_{ij} = 1$$
.

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

El signo sumatorio Σ (Sigma)

¿Qué significa la siguiente expresión?

$$\sum_{k=3}^{6} \frac{k^2}{2} = ?$$

El signo sumatorio Σ (Sigma)

¿Qué significa la siguiente expresión?

$$\sum_{k=3}^{6} \frac{k^2}{2} = \underbrace{\frac{3^2}{2}}_{k=3} + \underbrace{\frac{4^2}{2}}_{k=4} + \underbrace{\frac{5^2}{2}}_{k=5} + \underbrace{\frac{6^2}{2}}_{k=6} = 43$$

- índice sumatorio: k
- término genérico: $\frac{k^2}{2}$
- límites: 3 (límite inferior) y 6 (límite superior)

Algunas nociones preliminares de la estadística

Notación con el signo sumatorio

El signo sumatorio Σ (Sigma)

Otro ejemplo:

$$\sum_{i=1}^{n} x_i = ?$$

Algunas nociones preliminares de la estadística

Notación con el signo sumatorio

El signo sumatorio Σ (Sigma)

Otro ejemplo:

$$\sum_{i=1}^{n} x_{i} = \underbrace{x_{1}}_{i=1} + \underbrace{x_{2}}_{i=2} + \underbrace{x_{3}}_{i=3} + \dots + \underbrace{x_{n}}_{i=n}$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=2}^{4} \sum_{j=3}^{5} x_{ij} = 3$$

Algunas nociones preliminares de la estadística

Notación con el signo sumatorio

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=2}^{4} \sum_{j=3}^{5} x_{ij} = \sum_{i=2}^{4} \left(\sum_{j=3}^{5} x_{ij} \right)$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=2}^{4} \sum_{j=3}^{5} x_{ij} = \sum_{i=2}^{4} \left(\sum_{j=3}^{5} x_{ij} \right)$$
$$= \sum_{j=3}^{5} x_{2j} + \sum_{j=3}^{5} x_{3j} + \sum_{j=3}^{5} x_{4j}$$
$$= \sum_{i=2}^{5} x_{2i} + \sum_{j=3}^{5} x_{3j} + \sum_{j=3}^{5} x_{4j}$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=2}^{4} \sum_{j=3}^{5} x_{ij} = \sum_{i=2}^{4} \left(\sum_{j=3}^{5} x_{ij} \right)$$

$$= \sum_{j=3}^{5} x_{2j} + \sum_{j=3}^{5} x_{3j} + \sum_{j=3}^{5} x_{4j}$$

$$= \left(x_{23} + x_{24} + x_{25} \right) + \left(x_{33} + x_{34} + x_{35} \right) + \left(x_{43} + x_{44} + x_{45} \right)$$

Algunas nociones preliminares de la estadística

Notación con el signo sumatorio

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=1}^{4} \sum_{j=i+1}^{4} (x_i - x_j)^2 = ?$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=1}^{4} \sum_{j=i+1}^{4} (x_i - x_j)^2 = \sum_{i=1}^{4} \left[\sum_{j=i+1}^{4} (x_i - x_j)^2 \right]$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=1}^{4} \sum_{j=i+1}^{4} (x_i - x_j)^2 = \sum_{i=1}^{4} \left[\sum_{j=i+1}^{4} (x_i - x_j)^2 \right]$$

$$= \sum_{j=1+1}^{4} (x_1 - x_j)^2 + \sum_{j=2+1}^{4} (x_2 - x_j)^2 + \sum_{j=3+1}^{4} (x_3 - x_j)^2 + \sum_{j=4+1}^{4} (x_4 - x_j)^2$$

$$= \sum_{j=1+1}^{4} (x_1 - x_j)^2 + \sum_{j=2+1}^{4} (x_2 - x_j)^2 + \sum_{j=3+1}^{4} (x_3 - x_j)^2 + \sum_{j=4+1}^{4} (x_4 - x_j)^2$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=1}^{4} \sum_{j=i+1}^{4} (x_i - x_j)^2 = \sum_{i=1}^{4} \left[\sum_{j=i+1}^{4} (x_i - x_j)^2 \right]$$

$$= \sum_{j=1+1}^{4} (x_1 - x_j)^2 + \sum_{j=2+1}^{4} (x_2 - x_j)^2 + \sum_{j=3+1}^{4} (x_3 - x_j)^2 + \sum_{j=4+1}^{4} (x_4 - x_j)^2$$

$$= \sum_{j=1+1}^{4} (x_1 - x_j)^2 + \sum_{j=2+1}^{4} (x_2 - x_j)^2 + \sum_{j=3+1}^{4} (x_3 - x_j)^2 + \sum_{j=4+1}^{4} (x_4 - x_j)^2$$

$$= \sum_{j=2}^{4} (x_1 - x_j)^2 + \sum_{j=3}^{4} (x_2 - x_j)^2 + \sum_{j=4}^{4} (x_3 - x_j)^2 + \sum_{j=5}^{4} (x_4 - x_j)^2$$

El signo sumatorio Σ (Sigma)

Sumas dobles

$$\sum_{i=1}^{4} \sum_{j=i+1}^{4} (x_i - x_j)^2 = \sum_{i=1}^{4} \left[\sum_{j=i+1}^{4} (x_i - x_j)^2 \right]$$

$$= \sum_{j=1+1}^{4} (x_1 - x_j)^2 + \sum_{j=2+1}^{4} (x_2 - x_j)^2 + \sum_{j=3+1}^{4} (x_3 - x_j)^2 + \sum_{j=4+1}^{4} (x_4 - x_j)^2$$

$$= \sum_{j=2}^{4} (x_1 - x_j)^2 + \sum_{j=3}^{4} (x_2 - x_j)^2 + \sum_{j=4}^{4} (x_3 - x_j)^2 + \sum_{j=5}^{4} (x_4 - x_j)^2$$

$$= \left[(x_1 - x_2)^2 + (x_1 - x_3)^2 + (x_1 - x_4)^2 \right] + \left[(x_2 - x_3)^2 + (x_2 - x_4)^2 \right]$$

$$+ \left[(x_3 - x_4)^2 \right]$$

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribuciór
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas empíricas

Datos observados de una muestra

Supongamos que hemos registrado de 50 pacientes el índice de masa corporal (IMC):

No.	IMC								
1	25	11	25	21	42	31	26	41	29
2	25	12	21	22	27	32	27	42	28
3	24	13	22	23	22	33	24	43	23
4	20	14	30	24	25	34	33	44	27
5	22	15	26	25	34	35	24	45	27
6	23	16	28	26	22	36	22	46	19
7	24	17	23	27	22	37	23	47	24
8	26	18	20	28	24	38	29	48	23
9	20	19	19	29	26	39	24	49	26
10	25	20	28	30	22	40	23	50	27

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas empíricas

Datos observados de una muestra

Supongamos que hemos registrado de 50 pacientes el índice de masa corporal (IMC):

No.	IMC								
1	25	11	25	21	42	31	26	41	29
2	25	12	21	22	27	32	27	42	28
3	24	13	22	23	22	33	24	43	23
4	20	14	30	24	25	34	33	44	27
5	22	15	26	25	34	35	24	45	27
6	23	16	28	26	22	36	22	46	19
7	24	17	23	27	22	37	23	47	24
8	26	18	20	28	24	38	29	48	23
9	20	19	19	29	26	39	24	49	26
10	25	20	28	30	22	40	23	50	27

frec(25) = 5

Distribuciones univariadas empíricas

Datos observados de una muestra

Supongamos que hemos registrado de 50 pacientes el índice de masa corporal (IMC):

No.	IMC								
1	25	11	25	21	42	31	26	41	29
2	25	12	21	22	27	32	27	42	28
3	24	13	22	23	22	33	24	43	23
4	20	14	30	24	25	34	33	44	27
5	22	15	26	25	34	35	24	45	27
6	23	16	28	26	22	36	22	46	19
7	24	17	23	27	22	37	23	47	24
8	26	18	20	28	24	38	29	48	23
9	20	19	19	29	26	39	24	49	26
10	25	20	28	30	22	40	23	50	27

$$frec(25) = 5$$

$$p(29) = \frac{2}{50} = .04$$

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas empíricas

Función de frecuencia y proporción

Se puede resumir la distribución de la variable X (IMC) en una tabla, que muestra la función de frecuencia y la función de proporción:

j	Xj	$frec(x_j)$	$p(x_j)$
1	19	2	.04
2	20	3	.06
3	21	1	.02
4	22	7	.14
5	23	6	.12
6	24	7	.14
7	25	5	.10
8	26	5	.10
9	27	5	.10
10	28	3	.06
11	29	2	.04
12	30	1	.02
13	33	1	.02
14	34	1	.02
15	42	1	.02
Total		50	1.00

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas empíricas

Función de frecuencia y proporción

Se puede representar gráficamente la función de frecuencia o proporción:

Índice de masa corporal

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x (x = 0, 1, 2, ..., 10) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es 1/3.
- Las respuestas son independientes.

Lo anterior, estadísticamente, se traduce diciendo que X tiene una distribución binomial:

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x (x = 0, 1, 2, ..., 10) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es $\frac{1}{3}$.
- Las respuestas son independientes

Lo anterior, estadísticamente, se traduce diciendo que X tiene una distribución binomial

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x ($x=0,1,2,\ldots,10$) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es 1/3.
- Las respuestas son independientes.

Lo anterior, estadísticamente, se traduce diciendo que X tiene una distribución binomial:

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x ($x=0,1,2,\ldots,10$) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es $\frac{1}{3}$.
- Las respuestas son independientes

Lo anterior, estadísticamente, se traduce diciendo que X tiene una distribución binomial:

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x ($x=0,1,2,\ldots,10$) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es ¹/₃.
- Las respuestas son independientes

Lo anterior, estadísticamente, se traduce diciendo que X tiene una distribución binomial:

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x ($x=0,1,2,\ldots,10$) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es ¹/₃.
- Las respuestas son independientes.

Lo anterior, estadísticamente, se traduce diciendo que X tiene una distribución binomial:

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$

Modelo estadístico

Supongamos que:

- Se administra un examen de física cuántica que consiste en 10 preguntas de opción múltiple con tres opciones de respuesta.
 - La puntuación X en el examen es el número de respuestas correctas.
- Una persona que no sabe nada de física cuántica lo responde.
 Elige en cada pregunta aleatoriamente una respuesta.
- ¿Cuál es la probabilidad de que esta persona obtenga un puntaje de x ($x=0,1,2,\ldots,10$) en el examen?

Para contestar esta pregunta, se especifica un modelo estadístico, donde, por ejemplo, se supone que:

- La probabilidad de elegir la respuesta correcta en cada pregunta es ¹/₃.
- Las respuestas son independientes.

Lo anterior, estadísticamente, se traduce diciendo que *X* tiene una distribución binomial:

$$X \sim \text{Binomial}\left(10, \frac{1}{3}\right)$$
.

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas teóricas para variables discretas

Función de probabilidad

Esta distribución teórica de la variable X (puntaje en el examen) se puede resumir en una tabla, mostrando la función de probabilidad de X:

j	Xj	$\pi_{\chi}(x_j)$	
1	0	.017	
2	1	.087	
3	2	.195	
4	3	.260	
5	4	.228	
6	5	.137	
7	6	.057	
8	7	.016	
9	8	.003	
10	9	.000	
11	10	.000	
Total		1.000	

Función de probabilidad

Y se puede representar gráficamente:

Clase 2: Herramientas estadísticas para la psicometría

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas teóricas para variables continuas

Modelo estadístico y función de densidad

Supongamos que:

- Se aplica un examen en la computadora y, para una pregunta concreta, se registra el tiempo X (en segundos) entre el momento en que se muestra la pregunta en la pantalla y el momento de la selección de la respuesta;
- La variable X tiene la siguiente distribución

Clase 2: Herramientas estadísticas para la psicometría

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas teóricas para variables continuas

Modelo estadístico y función de densidad

Supongamos que:

- Se aplica un examen en la computadora y, para una pregunta concreta, se registra el tiempo X (en segundos) entre el momento en que se muestra la pregunta en la pantalla y el momento de la selección de la respuesta;
- La variable *X* tiene la siguiente distribución:

Modelo estadístico y función de densidad

Supongamos que:

- Se aplica un examen en la computadora y, para una pregunta concreta, se registra el tiempo X (en segundos) entre el momento en que se muestra la pregunta en la pantalla y el momento de la selección de la respuesta;
- La variable *X* tiene la siguiente distribución:

Estadística univariada

Distribuciones univariadas

Distribuciones univariadas teóricas para variables continuas

Modelo estadístico y función de densidad

Supongamos que:

- Se aplica un examen en la computadora y, para una pregunta concreta, se registra el tiempo X (en segundos) entre el momento en que se muestra la pregunta en la pantalla y el momento de la selección de la respuesta;
- La variable X tiene la siguiente distribución:

Nota: $\varphi_{\mathbf{v}}$ se llama la función de densidad de la variable X.

Estadística univariada

Resumir la tendencia central de una distribución

Índice

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

La media aritmética y el valor esperado

 Para distribuciones empíricas (la variable X observada en una muestra), se define la media aritmética:

$$\overline{x} = \sum_{j=1}^m p(x_j) x_j,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

- Para distribuciones teóricas, se define la media poblacional o el valor esperado
 - Para variables discretas

$$\mathscr{E}(X) = \sum_{j=1}^{m} \pi_{\chi}(x_j) x_j,$$

donde la suma es entre todos los posibles valores que puede asumir la variable X.

Para variables continuas

$$\mathscr{E}(X) = \int\limits_{-\infty}^{+\infty} \varphi_X(x) \, x \, dx$$

La media aritmética y el valor esperado

 Para distribuciones empíricas (la variable X observada en una muestra), se define la media aritmética:

$$\overline{x} = \sum_{j=1}^m p(x_j)x_j,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

- Para distribuciones teóricas, se define la media poblacional o el valor esperado.
 - Para variables discretas:

$$\mathscr{E}(X) = \sum_{j=1}^{m} \pi_{X}(x_{j}) x_{j},$$

donde la suma es entre todos los posibles valores que puede asumir la variable X.

Para variables continuas

$$\mathscr{E}(X) = \int_{-\infty}^{+\infty} \varphi_X(x) \, x \, dx$$

La media aritmética y el valor esperado

 Para distribuciones empíricas (la variable X observada en una muestra), se define la media aritmética:

$$\overline{x} = \sum_{j=1}^m p(x_j) x_j,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

- Para distribuciones teóricas, se define la media poblacional o el valor esperado.
 - Para variables discretas:

$$\mathscr{E}(X) = \sum_{i=1}^{m} \pi_{X}(x_{i}) x_{j},$$

donde la suma es entre todos los posibles valores que puede asumir la variable X.

Para variables continuas:

$$\mathscr{E}(X) = \int_{-\infty}^{+\infty} \varphi_X(x) \, x \, dx.$$

Efecto de una transformación lineal en la media

• Definimos la nueva variable Y a partir de la variable X:

$$Y = aX + b$$

donde a y b son dos constantes cualesquiera.

• Entonces, la media aritmética de la variable Y se obtiene por

$$\overline{y} = a\overline{x} + b.$$

Entonces, la media poblacional de la variable Y se obtiene por:

$$\mathscr{E}(Y) = a\mathscr{E}(X) + b$$

Efecto de una transformación lineal en la media

• Definimos la nueva variable Y a partir de la variable X:

$$Y = aX + b$$

donde a y b son dos constantes cualesquiera.

• Entonces, la media aritmética de la variable *Y* se obtiene por:

$$\overline{y} = a\overline{x} + b.$$

Entonces, la media poblacional de la variable Y se obtiene por

$$\mathscr{E}(Y) = a\mathscr{E}(X) + b$$

Efecto de una transformación lineal en la media

• Definimos la nueva variable Y a partir de la variable X:

$$Y = aX + b$$

donde a y b son dos constantes cualesquiera.

• Entonces, la media aritmética de la variable Y se obtiene por:

$$\overline{y} = a\overline{x} + b.$$

• Entonces, la media poblacional de la variable *Y* se obtiene por:

$$\mathscr{E}(Y) = a\mathscr{E}(X) + b.$$

Besumir la tendencia central de una distribución

Estadísticos y parámetros de tendencia central

La media de una suma de variables

• Definimos la nueva variable Y a partir de las variable X_1 y X_2 como:

$$Y = X_1 + X_2.$$

Entonces, la media aritmética de la variable Y se obtiene por

$$\overline{y} = \overline{x}_1 + \overline{x}_2.$$

• Entonces, la media poblacional de la variable Y se obtiene por:

$$\mathscr{E}(Y) = \mathscr{E}(X_1) + \mathscr{E}(X_2)$$

Besumir la tendencia central de una distribución

Estadísticos y parámetros de tendencia central

La media de una suma de variables

• Definimos la nueva variable Y a partir de las variable X_1 y X_2 como:

$$Y = X_1 + X_2.$$

• Entonces, la media aritmética de la variable *Y* se obtiene por:

$$\overline{y} = \overline{x}_1 + \overline{x}_2.$$

Entonces, la media poblacional de la variable Y se obtiene por

$$\mathscr{E}(Y) = \mathscr{E}(X_1) + \mathscr{E}(X_2)$$

La media de una suma de variables

• Definimos la nueva variable Y a partir de las variable X_1 y X_2 como:

$$Y = X_1 + X_2.$$

• Entonces, la media aritmética de la variable *Y* se obtiene por:

$$\overline{y} = \overline{x}_1 + \overline{x}_2.$$

• Entonces, la media poblacional de la variable *Y* se obtiene por:

$$\mathscr{E}(Y) = \mathscr{E}(X_1) + \mathscr{E}(X_2).$$

Resumir la variabilidad de una distribución

Índice

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

Estadísticos y parámetros de variabilidad o dispersión

La varianza

Para distribuciones empíricas, se define la varianza muestral:

$$s_X^2 = \sum_{j=1}^m p(x_j)(x_j - \overline{x})^2,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

Para distribuciones teóricas, se define la varianza poblacional como:

$$\sigma_X^2 = \mathcal{E}\left[(X - \mu_X)^2 \right]$$

donde μ_X es $\mathcal{E}(X)$.

Para variables discretas:

$$\sigma_X^2 = \sum_{j=1}^m \pi_X(x_j) (x_j - \mu_X)^2$$

para variables continuas

$$\sigma_X^2 = \int\limits_{-\infty}^{+\infty} \varphi_X(x) (x - \mu_X)^2 dx$$

Estadísticos y parámetros de variabilidad o dispersión

La varianza

Para distribuciones empíricas, se define la varianza muestral:

$$s_X^2 = \sum_{j=1}^m p(x_j)(x_j - \overline{x})^2,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

Para distribuciones teóricas, se define la varianza poblacional como:

$$\sigma_X^2 = \mathscr{E}\left[(X - \mu_X)^2 \right],$$

donde μ_X es $\mathscr{E}(X)$.

Para variables discretas

$$\sigma_X^2 = \sum_{j=1}^m \pi_X(x_j) (x_j - \mu_X)^2$$

para variables continuas

$$\sigma_X^2 = \int\limits_{-\infty}^{+\infty} \varphi_X(x) (x - \mu_X)^2 dx$$

Estadísticos y parámetros de variabilidad o dispersión

La varianza

Para distribuciones empíricas, se define la varianza muestral:

$$s_X^2 = \sum_{j=1}^m p(x_j)(x_j - \overline{x})^2,$$

donde la suma es entre todos los distintos valores que se han observado en la muestra.

Para distribuciones teóricas, se define la varianza poblacional como:

$$\sigma_X^2 = \mathscr{E}\left[\left(X - \mu_X\right)^2\right],\,$$

donde μ_X es $\mathscr{E}(X)$.

Para variables discretas:

$$\sigma_X^2 = \sum_{j=1}^m \pi_X(x_j) (x_j - \mu_X)^2$$

para variables continuas:

$$\sigma_X^2 = \int_{-\infty}^{+\infty} \varphi_X(x) (x - \mu_X)^2 dx$$

Resumir la variabilidad de una distribución

Estadísticos y parámetros de variabilidad o dispersión

La desviación estándar

La desviación estándar es la raiz cuadrada de la varianza:

Para distribuciones empíricas:

$$s_X = \sqrt{s_X^2}$$

Para distribuciones teóricas:

$$\sigma_X = \sqrt{\sigma_X^2}$$

Estadística univariada

Resumir la variabilidad de una distribución

Estadísticos y parámetros de variabilidad

Efecto de una transformación lineal en la varianza y desviación estándar

Si la variable Y se obtiene por una transformación lineal de la variable X, es decir Y = aX + b, entonces:

• la varianza y desviación estándar muestral de la variable Y se obtiene por:

$$s_Y^2 = a^2 s_X^2$$

$$s_Y = |a| \, s_X$$

• la varianza y desviación estándar poblacional de la variable Y se obtiene por

$$\sigma_Y^2 = a^2 \, \sigma_Y^2$$

$$\sigma_Y = |a| \, \sigma_X$$

Estadísticos y parámetros de variabilidad

Efecto de una transformación lineal en la varianza y desviación estándar

Si la variable Y se obtiene por una transformación lineal de la variable X, es decir Y = aX + b, entonces:

• la varianza y desviación estándar muestral de la variable Y se obtiene por:

$$s_Y^2 = a^2 s_X^2$$

$$s_Y = |a| \, s_X$$

• la varianza y desviación estándar poblacional de la variable Y se obtiene por:

$$\sigma_Y^2 = a^2 \, \sigma_X^2$$

$$\sigma_{\mathsf{Y}} = |\mathsf{a}| \, \sigma_{\mathsf{X}}$$

Índice

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribuciór
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

Definición

Definición

Para una variable X, que asume m distintos valores $x_1, x_2, x_3, \ldots, x_m$ donde $x_1 < x_2 < x_3 < \cdots < x_m$, se define:

La función de frecuencia acumulada

$$afrec(x_j) = \sum_{k=1}^{j} frec(x_k)$$

La función de proporción acumulada:

$$F(x_j) = \sum_{k=1}^{j} p(x_k)$$

Definición

Definición

Para una variable X, que asume m distintos valores $x_1, x_2, x_3, \ldots, x_m$ donde $x_1 < x_2 < x_3 < \cdots < x_m$, se define:

La función de frecuencia acumulada:

$$afrec(x_j) = \sum_{k=1}^{j} frec(x_k)$$

La función de proporción acumulada:

$$F(x_j) = \sum_{k=1}^{j} p(x_k)$$

Definición

Definición

Para una variable X, que asume m distintos valores $x_1, x_2, x_3, \ldots, x_m$ donde $x_1 < x_2 < x_3 < \cdots < x_m$, se define:

La función de frecuencia acumulada:

$$afrec(x_j) = \sum_{k=1}^{j} frec(x_k)$$

La función de proporción acumulada:

$$F(x_j) = \sum_{k=1}^j p(x_k)$$

Distribuciones acumuladas

Función de frecuencia y proporción acumulada

Función de frecuencia y proporción acumulada

j	Xj	$frec(x_j)$	$p(x_j)$	
1	19	2	.04	
2	20	3	.06	
3	21	1	.02	
4	22	7	.14	
5	23	6	.12	
6	24	7	.14	
7	25	5	.10	
8	26	5	.10	
9	27	5	.10	
10	28	3	.06	
11	29	2	.04	
12	30	1	.02	
13	33	1	.02	
14	34	1	.02	
15	42	1	.02	
Total		50	1.00	

Distribuciones acumuladas

Función de frecuencia y proporción acumulada

Función de frecuencia y proporción acumulada

j	Xj	$frec(x_j)$	$p(x_j)$	$afrec(x_j)$	
1	19	2	.04	2	
2	20	3	.06	5	
3	21	1	.02	6	
4	22	7	.14	13	
5	23	6	.12	19	
6	24	7	.14	26	
7	25	5	.10	31	
8	26	5	.10	36	
9	27	5	.10	41	
10	28	3	.06	44	
11	29	2	.04	46	
12	30	1	.02	47	
13	33	1	.02	48	
14	34	1	.02	49	
15	42	1	.02	50	
Total		50	1.00		

Función de frecuencia y proporción acumulada

j	Xj	$frec(x_j)$	$p(x_j)$	$afrec(x_j)$	$F(x_j)$
1	19	2	.04	2	.04
2	20	3	.06	5	.10
3	21	1	.02	6	.12
4	22	7	.14	13	.26
5	23	6	.12	19	.38
6	24	7	.14	26	.52
7	25	5	.10	31	.62
8	26	5	.10	36	.72
9	27	5	.10	41	.82
10	28	3	.06	44	.88
11	29	2	.04	46	.92
12	30	1	.02	47	.94
13	33	1	.02	48	.96
14	34	1	.02	49	.98
15	42	1	.02	50	1.00
Total		50	1.00		

Representación gráfica de la función de proporción acumulada

Distribuciones acumuladas

Representación gráfica de la función de proporción acumulada

Distribuciones acumuladas

Representación gráfica de la función de proporción acumulada

Estadística univariada

Distribuciones acumuladas

Función de distribución

Definición

Definición

Para una variable X discreta, que asume m distintos valores $x_1, x_2, x_3, \ldots, x_m$ donde $x_1 < x_2 < x_3 < \cdots < x_m$, se define la función de distribución como:

$$\Phi_X(x_j) = \sum_{k=1}^j \pi_X(x_k)$$

Definición

Para una variable X continua, se define la función de distribución como:

$$\Phi_X(x) = \int_{-\infty}^x \varphi_X(u) du$$

lo cual corresponde con el área debajo de $arphi_{X}$ a la izquierda de x

Clase 2: Herramientas estadísticas para la psicometría

Estadística univariada

Distribuciones acumuladas

Función de distribución

Definición

Definición

Para una variable X discreta, que asume m distintos valores $x_1, x_2, x_3, \ldots, x_m$ donde $x_1 < x_2 < x_3 < \cdots < x_m$, se define la función de distribución como:

$$\Phi_X(x_j) = \sum_{k=1}^j \pi_X(x_k)$$

Definición

Para una variable X continua, se define la función de distribución como:

$$\Phi_X(x) = \int_{-\infty}^x \varphi_X(u) du,$$

lo cual corresponde con el área debajo de φ_{x} a la izquierda de x.

Estadística univariada

Distribuciones acumuladas

Función de distribución

Definición

La distribución normal acumulada

Clase 2: Herramientas estadísticas para la psicometría

Estadística univariada

Distribuciones acumuladas

Función de distribución

Definición

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

- Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribuciór
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

- Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

Estimación de parámetros

- 1 Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza

Intervalos de confianza

- Algunas nociones preliminares de la estadística
 - Objetos, variables y observaciones
 - Notación con el signo sumatorio
- 2 Estadística univariada
 - Distribuciones univariadas
 - Resumir la tendencia central de una distribución
 - Resumir la variabilidad de una distribución
 - Distribuciones acumuladas
 - Cuantiles
- 3 Estadística bivariada
 - Distribuciones bivariadas
 - Variables independientes
 - Resumir la covariación lineal de una distribución bivariada
- 4 Algunas nociones inferenciales
 - Estimación de parámetros
 - Intervalos de confianza