Contents

1	DIS	0B		2
	1.1	Intro .		2
		1.1.1	Some CS70 advice	2
	1.2	Propos	itional Logic	2
	1.3	Proofs		2
		1.3.1	Direct proof	3
		1.3.2	Contraposition	3
		1.3.3	Contradiction	3
		1.3.4	Cases	3
2	DIS	1A		4
2.1		Inducti	ion	4
		2.1.1	(Weak) Induction	4
		2.1.2	Strengthening the Hypothesis	4
		2.1.3	Strong Induction	4
		2.1.4	Weak vs Strong	4

1 DIS 0B

1.1 Intro

- My OH is Monday 1-2 and Tuesday 3-4 in Cory 212.
- Email is first.last@
- 3rd year cs + math major
- hobbies?

1.1.1 Some CS70 advice

- Goal: enhance problem solving techniques/approach
- Don't fall behind on content, catching up will not be fun
- problems, problems, more problems
- Ask lots of questions (imperative for strong foundation)
- Don't stress, we're in this ride together

1.2 Propositional Logic

Relevant notation:

- \wedge = and
- \(\text{\text{or}} = \text{or} \)
- ¬ = not
- \implies = implies
- \exists = there exists
- \forall = forall
- \mathbb{N} = natural numbers $\{0, 1, \ldots\}$
- a|b = a divides b

 $P \Longrightarrow Q$ is an example of an implication. We can read this as "If P, then Q." An implication is false only when P is true and Q is false. If P is false, the implication is vacuously true.

Definition 1.1 (Contrapositive)

If $P \implies Q$ is an implication, then the implication $\neg Q \implies \neg P$ is known as the **contrapositve**.

An important identity is that $P \implies Q \equiv \neg Q \implies \neg P$.

1.3 Proofs

Induction will be in its own section.

Different methods.

1.3.1 Direct proof

Want to show $P \implies Q$ by assuming P and logically concluding Q.

1.3.2 Contraposition

Want to show $P \implies Q$ by equivalently proving $\neg Q \implies \neg P$.

1.3.3 Contradiction

Want to show *P*. We do this by assuming $\neg P$ and concluding $R \wedge \neg R$.

Why? Idea is that if we can show the implication $\neg P \implies (R \land \neg R)$ is True, this is the same as showing $\neg P \implies F$ is True. The contraposition gives $T \implies P$.

1.3.4 Cases

Break up a problem into multiple cases i.e. odd vs even.

2 DIS 1A

2.1 Induction

Goal of induction is to show $\forall nP(n)$.

2.1.1 (Weak) Induction

- Prove P(0) is true (or relevant base cases), then $\forall n \in \mathbb{N} (P(n) \implies P(n+1))$.
- Induction dominoes analogy!
- Sometimes you might have multiple base cases (Problem about 4x + 5y in Notes 3)

2.1.2 Strengthening the Hypothesis

Sometimes proving $P(n) \implies P(n+1)$ is not straightforward with induction. In such a scenario, we can try to introduce a (stronger) statement Q(n). We want to construct Q such that $Q(n) \implies P(n)$. Inducting on Q proves P.

2.1.3 Strong Induction

- Prove P(0) is true (or relevant base cases), then $\forall n ((P(0) \land P(1) \land \cdots \land P(n)) \implies P(n+1))$.
- Dominoes analogy, but emphasis on the difference between weak and strong induction (assuming middle domino works vs everything from start to middle).

2.1.4 Weak vs Strong

A common point of confusion is when one should use strong induction in lieu of weak induction. Strong induction **always** works whenever weak induction works. However, there may be scenarios in which the induction hypothesis to prove n = k + 1 requires more information than just n = k. A scenario like this requires strong induction.