Data Visualization

2017-06-02

Agenda

- Review
- Visual encoding using color (continued)
 - Neural color signals and HSL color encoding
 - High detail versus low detail
 - Perceptual uniformity
- Visualizing distributions
- Visualizing high dimensional data
- Interactive applications
 - Event loops
 - Examples of increasing complexity in Python
 - Model-View-Controller framework
- Presentations

Review: Purposes of Visualization

- Supporting exploratory data analysis (exploratory)
- Explaining or supporting presentation (explanatory)

Review: Attribute Domains & Visual Encodings

- Nominal (=, ≠)
 - Types and categories (mathematical set)
- Ordinal (=, ≠, ≤)
 - Has an order (mathematical set with order relation)
- Quantitative
 - Interval (=, ≠, ≤, +, -)
 - Has a meaningful difference between values (mathematical group)
 - E.g: Dates, location, geometric points, temperature (C and F)
 - Ratio (=, ≠, ≤, +, -, x, ÷)
 - Has a meaningful one and zero point and ratio between values (mathematical *field*)
 - E.g: Distance, mass, temperature (K), time, counts
- Topological
 - Connectivity, inclusion

Review: Graphical Integrity

- Proportionality
 - The physical measurements of the representation of the data should be proportional to the data itself
- Matching dimensions
 - Beware of pitfalls of using area, volume, and perspective
- Providing context
 - Anchor the audience

Review: Maximizing Impact

- Erase redundant data
 - Representing the same data multiple times
 - Within reason
- Erase metadata
 - Pixels giving context to the data
 - Within reason
- Avoid chartjunk
 - Not necessary to understand the data
 - Distract the viewer
- Use pre-attentive stimuli when possible

Visual Encoding Using

Color

Neural Color Signals

Neural Color Signals

Luminance and Chrominance

Luminance

Neural Color Signals to HSL Encoding

Luminance

Neural Color Signals to HSL Encoding

Luminance

HSL Encoding

Hue:

Nominal

Saturation (and opposing processes):

Quantitative

Luminance/Value:

Quantitative

Examples

Elevation Example

Elevation Example

Example: Encoding multiple dimensions

High vs Low Frequency Data

(an example)

HSL Encoding

Hue:

Nominal

Saturation (and opposing processes):

Quantitative

Luminance/Value:

Quantitative

Original

HSL Encoding: High vs Low Frequency

Hue:

Nominal

Saturation (and opposing processes):

Low Frequency (Non-Detailed) Quantitative

Luminance/Value:

High Frequency (Detailed) Quantitative

Graphical Integrity - Perceptual Uniformity

Remember...

- Proportionality
 - The physical measurements of the representation of the data should be proportional to the data itself

...what would that mean for color?

The Just-Noticeable Difference

Perceptually uniform: A change of the same amount in a color value should produce a change of about the same visual importance.

Just noticeable difference (JND): the amount a stimulus has to change for someone to notice it.

The Just-Noticeable Difference

Perceptually uniform: A change of the same amount in a color value should produce a change of about the same visual importance.

Just noticeable difference (JND): the amount a stimulus has to change for someone to notice it.

Colormaps in Matplotlib

Considerations:

- Colorblindness
- Perceptual uniformity
- Print compatibility

http://matplotlib.org/examples/color/colormaps_reference.html

http://matplotlib.org/users/dflt_style_changes.html

Color Takeaways

- Never use the jet colormap!
- Use a colormap that is
 - perceptually uniform
 - colorblindness-insensitive
- When making your own color maps:
 - Hue: Nominal
 - Saturation: Low frequency quantitative
 - Luminance: High frequency quantitative
 - Segmentation for context

Visualizing Distributions

Histograms

Kernel Density Estimate Plots

Kernel Density Estimate Plots

Box Plots

Violin Plots

Notebook Example

Visualizing Distributions Take-Aways

- Histogram vs KDE plot trade-offs
 - Beware of artifacts from parameter choices
- Comparing distributions options
 - Box plots
 - Violin plots
 - Overlapping histograms/KDE plots

Visualizing High Dimensional Data

Senate Data from 2008

Available online

Name	Motion 1	Motion 2	Motion 3	Motion 4	
Alexander	Yea	Yea	Yea	Nay	
Biden	Yea	Nay	Nay	Yea	
Bond	Yea	Abstain	Nay	Nay	
Boxer	Yea	Yea	Yea	Abstain	

Senate Data from 2008

Available online

Name	Motion 1	Motion 2	Motion 3	Motion 4	
Alexander	1	1	1	-1	
Biden	1	-1	-1	1	
Bond	1	0	-1	-1	
Boxer	1	1	1	0	

Back to the Notebook for a Moment

So, who was that outlier?

Interactive Applications

Interactive Applications

Data Scientist's Workflow:

More Efficient Data Scientist's Workflow:

A non-Notebook example

Event Loops

Non-interactive programs

Event Loops

Non-interactive programs

Interactive programs:

So ... who WAS that outlier?

Somewhat Generalizing [model-view-controller]

http://www.essenceandartifact.com/2012/12/the-essence-of-mvc.html

That can get messy...

Code that handles

- Data modification
- Handling input events
- Displaying to the user, drawing
- Animating

All living together! Not so happily!

Model:

store and modify data

View

present visualization of data to the user, present user interface

Controller

respond to user inputs and events, update the view and model

Interactivity Take-Aways

- Interactivity
 - Rapid evaluation can save time
 - Use MVC structure to keep code simple