Homework: 13 Frequency Domain Filtering using Fast Discrete Fourier Transform (FDFT)

Md. Al-Amin Babu ID: 2110676134

October 16, 2025

Abstract

This experiment demonstrates the transformation of digital images from the spatial domain to the frequency domain using the **Fast Discrete Fourier Transform (FDFT)** and investigates the effects of applying **ideal low-pass**, **high-pass**, **and band-pass filters**. Five different images, each having three contrast levels (low, normal, and high), are analyzed to observe how frequency distribution and filtering behaviors vary with contrast.

Objective

- To understand how the Fast Discrete Fourier Transform (FDFT) converts images into frequency representation.
- To analyze the frequency spectrum characteristics for low-, normal-, and high-contrast images.
- To apply and compare **low-pass**, **high-pass**, and **band-pass** filters in the frequency domain and study their effects on image features.

Code Implementation

The full Python implementation used for FDFT computation and frequency-domain filtering can be accessed at:

GitHub Code Link: FDFT.py

Theoretical Background

An image can be expressed as a two-dimensional function f(x, y). The 2D Discrete Fourier Transform (DFT) decomposes this image into its sinusoidal frequency components:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$

The magnitude |F(u,v)| represents frequency strength and the phase $\arg(F(u,v))$ encodes spatial positioning. By shifting the zero-frequency (DC) component to the center using fftshift(), we obtain an intuitive visualization where:

- Center = low-frequency content (smooth brightness variations)
- Periphery = high-frequency content (edges and textures)

Filtering Principle: Applying a mask H(u, v) to the spectrum corresponds to frequency-domain filtering:

$$G(u, v) = F(u, v) \cdot H(u, v)$$

and the filtered spatial image is recovered via the inverse transform:

$$g(x,y) = \mathcal{F}^{-1}\{G(u,v)\}\$$

Methodology

- 1. **Image Acquisition:** Five base images were used each with three versions (low-, normal-, and high-contrast), totaling fifteen images.
- 2. **Preprocessing:** Each image was converted to grayscale to simplify computation.
- 3. Fourier Transformation: The 2D FFT and its shifted form were computed to move the DC component to the center. Logarithmic magnitude $\log(1+|F|)$ was used for display.
- 4. Ideal Masks Construction:
 - Low-Pass Filter (LPF): Circular mask allowing low frequencies (center).
 - **High-Pass Filter (HPF):** Complement of LPF allowing high frequencies (edges).
 - Band-Pass Filter (BPF): Ring-shaped mask passing mid-range frequencies.
- 5. **Filtering and Reconstruction:** Multiplying the DFT with each mask and applying the inverse FFT yielded filtered images.
- 6. **Visualization:** For each image, a 4×3 subplot was generated showing the original, its DFT, masks, filtered spectra, and corresponding reconstructed images.

Discussion of Results

Frequency Patterns in Different Contrast Levels

- Low-Contrast Images: Spectral energy is concentrated at the center, implying dominance of low-frequency components. Edge information (high-frequency) is weaker.
- Normal-Contrast Images: Moderate spread of energy across frequencies; both low and high components are visible.
- **High-Contrast Images:** Broader spectral spread, indicating enhanced high-frequency components due to stronger edges and textures.

Thus, higher contrast amplifies high-frequency details, while lower contrast compresses energy toward low frequencies.

Behavior of Frequency-Domain Filters

- Low-Pass Filter (LPF): Preserves smooth, large-scale variations while removing edges. Output images appear blurred and softened.
- **High-Pass Filter (HPF):** Retains edges and fine textures while suppressing smooth regions. The reconstructed images highlight boundaries but lose overall brightness.
- Band-Pass Filter (BPF): Retains intermediate details, often enhancing texture patterns or repetitive features while discarding both coarse and very fine information.

Interpretation

Low-contrast images show minimal change after LPF since their content is already dominated by low frequencies. High-contrast images produce stronger, sharper responses in HPF and BPF outputs. This confirms that increasing contrast shifts energy from the DC center toward outer high-frequency regions.

Implementation Notes

- Frequency spectra were visualized using $\log(1+|F|)$ to reduce dynamic range and reveal low-magnitude regions.
- Circular ideal masks were normalized to the range [0, 1] to prevent scaling effects.
- Radii were defined as fractions of the minimum image dimension for consistency across different resolutions.
- Although ideal (binary) filters provide clear frequency separation, they can cause ringing artifacts; Gaussian filters could smooth transitions.

Results: Filtered Output Figures

Below are the visual outputs for each of the 15 images (five base images with three contrast variants each). Each figure is presented inside a box with its label placed below the image.

Conclusion

This experiment confirms that the Fast Discrete Fourier Transform (FDFT) effectively separates image information into distinct frequency components. Contrast variation directly influences spectral energy distribution:

- Low contrast \Rightarrow energy concentrated near the center (low frequencies).
- High contrast \Rightarrow broader spread of energy (strong high-frequency edges).

The low-pass, high-pass, and band-pass filters exhibit complementary behaviors—respectively isolating coarse brightness, edge details, and texture-level features. The outcomes illustrate the strong relationship between spatial contrast and its frequency-domain representation.