Project 1 FYS3150

Anders P. Åsbø, Eivind Støland

CONTENTS

I. Introduction	1	equation was then solved using both a general, and specialzed Thomas algorithm, as well as LU-decomposition.
II. Formalism	1	, <u>,</u>
III. Implementation	1	II. FORMALISM
IV. Analysis	1	III. IMPLEMENTATION
V. Conclusion	1	
A. Source code	1	IV. ANALYSIS
		V. CONCLUSION

I. INTRODUCTION

One of the most versitile tools in modern science is numerical integration, thus it is simportant to understand its limits. In this paper we have performed numerial integration of a second order differential equation. This was

Appendix A: Source code

done by discretizing the differential equation, and formulating it as a matrix-vector equation. The matrix-vector

All code for this report was written in C++, and the complete set of files can be found at $https://github.com/FunkMarvel/FYS3150_Project_1.git$