5 de mayo del 2004 Total: 30 puntos Tiempo: 2 h. 20 min.

SEGUNDO EXAMEN PARCIAL

1. Sobre \mathbb{Z} se define la relación \mathcal{R} de la siguiente manera:

$$a\mathcal{R}b \Leftrightarrow [a=b \lor a+b=5]$$

- (a) Demuestre que \mathcal{R} es una relación de equivalencia. (3 puntos)
- (b) Determine la clase de equivalencia de -3 y el conjunto cociente. (1 punto)
- 2. Sea $A = \{a, b, c, d, e, f\}$, sea \mathcal{R} una relación definida sobre A, cuyo gráfico H viene dado por $H = \{(a, a), (a, b), (b, a), (b, b), (c, e), (d, d), (c, c), (e, c), (e, e), (f, f)\}$. Si se sabe que \mathcal{R} es una relación de equivalencia sobre A, determine la clase de equivalencia de a y determine el conjunto cociente de la relación \mathcal{R} sobre A.

(2 puntos)

- 3. Sea \mathcal{R} una relación definida sobre A, se dice que \mathcal{R} es **irreflexiva**, si para toda $x \in A$, se cumple $a\mathcal{R}a$. (2 puntos)
 - (a) Dé un ejemplo de una relación, sobre $A = \{a, b, c\}$, que no sea reflexiva y no sea irreflexiva.
 - (b) Dé un ejemplo de una relación, sobre $A = \{a, b, c\}$, que sea reflexiva e irreflexiva.
- 4. Sea $A = \{0, 2, 3, 4\}$, sea \mathcal{R} una relación sobre A, definida por

$$a\mathcal{R}b \Leftrightarrow (a-b)^2 \in A$$

y sea S otra relación sobre A, definida por

$$aSb \Leftrightarrow [a = b \lor b = a + 1]$$

- (a) Determine los gráficos de \mathcal{R} , de \mathcal{S} y de $\mathcal{S} \circ \mathcal{R}$
- (b) Construya los grafos de \mathcal{R} , \mathcal{S} y de $\mathcal{S} \circ \mathcal{R}$
- (c) Determine la matriz de $\mathcal{R}\cup\mathcal{S}^{-1}$

(6 puntos)

5. Sea \mathcal{R} una relación definida sobre A, con $A \neq \emptyset$, de las siguientes proposiciones, demuestre las que sean verdaderas y de un contraejemplo para las proposiciones falsas:

- (a) Si \mathcal{R} es transitiva, entonces $\mathcal{R} \cup \mathcal{R}^{-1}$ es transitiva.
- (b) Si \mathcal{R} es transitiva, entonces $\mathcal{R} \cap \mathcal{R}^{-1}$ es transitiva.

(3 puntos)

- 6. Sea \mathcal{R} una relación definida sobre un conjunto A, con $A \neq \emptyset$:
 - (a) Pruebe que si \mathcal{R} es transitiva, entonces $\mathcal{R} \cap \mathcal{R}^{-1}$ es transitiva.
 - (b) Con un contraejemplo, verifique que la siguiente proposición es falsa: Si \mathcal{R} es transitiva, entonces $\mathcal{R} \cup \mathcal{R}^{-1}$ es transitiva

(3 puntos)

7. Si
$$f(x) = -3x + 1$$
 y $g(x) = 2x + 3$, calcule $(f \circ f \circ g)^{-1}(x)$. (2 puntos)

- 8. Considere la función $f: \mathbb{R} \{3\} \longrightarrow \mathbb{R} \{1\}$ definida por $f(x) = \frac{x-4}{x-3}$.
 - (a) Pruebe que f es una función biyectiva. (4 puntos)
 - (b) Determine el criterio de $f^{-1}(x)$. (1 punto)
- 9. Sean A y B conjuntos no vacíos, suponga que f es una función de A en B y sea $D \subseteq A$. Si f es sobreyectiva, pruebe que $B f(D) \subseteq f(A D)$. (2 puntos)
- 10. Sean A, B y C conjuntos no vacíos, suponga que f es una función de A en B y g una función de B en C.

Pruebe que si $g \circ f$ es inyectiva y f es sobreyectiva, entonces g es inyectiva.

(2 puntos)

11. Sea $A = \{2, 3, 5\}$ y $B = \{1, 2, 3, 4\}$, considere la función

$$f: A \times B \to \{0, 1, 2, 3, 4, 5, 6\}$$

definida por

$$f((a,b)) = \begin{cases} 2a & \text{si } a < b \\ b & \text{si } a > b \\ 2b & \text{si } a = b \end{cases}$$

- (a) Determine si f es inyectiva y si es sobreyectiva.
- (b) Determine $f(\{(2,3),(3,2)\}), f^{-1}(\{0\}), f^{-1}(\{1,3,5\})$
- (c) Si $C = \{(a, b) \in A \times B \ / \ a + b = 6\}$, calcule f(C)

(5 puntos)

NOTA: Este es un examen de desarrollo, por tanto deben aparecer todos los pasos que sean necesarios para obtener su respuesta.