2016 级概率与数理统计试题 (A卷)

座号_	代卷共 8 页	班	级		_ 学号			姓名_		mental disconnection and a second
(本证	卷共8页	, 八个大	、题,满分	分100分	最后一	页空白:	纸为草稿	纸)		-
题号	-	troph princip	processed strengt processed	四	五.	六	七	八	总分	核分
得分										
签名									,	
附表:										
φ(2)=	0.9772, 4	(1.64)=0).95, φ(1.	96)=0.97:	$t_{0.025}(1)$	5) = 2.13	$14, t_{0.025}$	(6) = 2.11	199,	
										25
$t_{0.05}(13)$	5) = 1.7531	$,t_{0.05}(16)=$	=1.7459,	$\chi_{0.025}(4) =$	=11.1433	$\chi_{0.975}(4)$) = 0.464	+, X _{0.025} (~	0) = 12.032	.,
$\chi^2_{0.975}$ (5) = 0.8312	$2, \chi^2_{0.05}$	4) = 9.487	$7, \chi^2_{0.95}$	(4) = 0.71	07 , $\chi^2_{0.58}$	$_{45}(4)=2.8$	428		
-, t	真空题(12	2分)	得分							
1. 设	A, B 为两	j个事件,	则事件 A	<u>∪B</u> 表示				(回答该	事件表示	的含义).
2. 若	P(A)=0.6,	$P(A \cup B)$	() = 0.84	$P(\overline{B} \mid A)$) = 0.4 则	P(B)=	8/1			
3. 设	随机变量。	X的密度	函数为 ƒ	$f(x) = \begin{cases} 2x \\ 0 \end{cases}$	x, 0 <x , 其</x 	<1, 也	Y表示对	t X 的 3	次独立重	复观察中
事件	$\{X \le \frac{1}{2}\} \; \coprod$	现的次数	(, 则 P()	$Y = 2) = _{-}$						
4. 设	随机变量	X和Y相	互独立,	都服从多	参数为2	的泊松分	分布,则	$P\{X+Y=$	0}=	
5. 已	知 <i>EX</i> = -2	$EX^2 = 5$,则 D(1	$-3X$)= _			·			
6. 设	随机变量	X满足 E	$f(X)=\mu$, D	$\rho(X) = \sigma^2, \exists$	则由切出	雪夫不管	等式可得	$P(X-\mu ^2$	>3 <i>σ</i>)≤	
7. 设	随机变量	序列 X ₁ , 2	X_2, \ldots, X_n	相互独	1立,都周	B 从参数	λ=1 的注	松分布,	则	
li	$ \underset{\longrightarrow}{\operatorname{m}} P(X_1 + \cdot $	$\cdots + X_n \ge i$	$(n+2\sqrt{n})$	=						
8. 设	随机变量	を和り相	互独立且	$\xi \sim \chi^2(n)$	$\eta \sim \chi^2$	(m),则	$E(\xi + \eta)$	=	$,D(\xi+\eta)$	=
9. 己	知一批零	件的长度	X(单位:	cm)服从	【正态分	布 N(μ,1)	,从中随	机的取出	出 16 个零	件,得到
	的平均值									
	没总体X~N									
在显	著性水平。	$\alpha = 0.05$	的拒绝均	或是s ² ≤	0.7107,	则该检验	金犯第一	类错误的]概率是_	
犯第	二类错误	的概率是								

2017 级概率与数理统计试题 (A卷)

座号		班丝	及		学号			姓名		aughtisis disabballature
(本试	卷共8页	,八个大	题,满分			一页空白纸	氏为草稿组	纸, 可撕	所下,考i	式结束后
不交此	页草稿纸	,答案与	在阜橋组	大上)		-		T	
题号		comb comb	named piced emirad	ΖЦ	拉	六	七	八	总分	核分
得分										
签名										
附表:										
	=0.994, Φ(
$t_{0.025}(8)$	= 2.3060	$t_{0.05}(9)$	=1.8331	$t_{0.025}(9)$) = 2.262	χ^2 , χ^2	$_{95}(8) = 2.7$	733 ,	$\chi^2_{0.95}(9) =$	3.325 ,
$\chi^2_{0.975}$	(8) = 2.18,	$\chi^2_{0.975}(9$	(2) = 2.700	$\chi^{2}_{0.025}$	(8) = 17.5	$35 , \chi_{0,0}^2$	$_{025}(9)=19$.023 ,	$\chi^2_{0.05}(8) =$	15.507 ,
$\chi^2_{0.05}(9$)=16.919									
-, tj	真空题(10	0分)	得分							
1. —	名射手连约	走向一目	标射击三	次,事件		肘手第 i 次	次击中目	标(i=1,2,	(3) ,则 $\overline{A_1}$	$\overline{\bigcup A_2 \bigcup A_3}$
表示的	内含义是_									
2. 设	随机变量.	X 的分布	5函数满足	$\exists F(x) =$	$a-e^{-x}$	x > 0,则	a =			
3. 如	果(X,Y)服	从二维正	态分布,	则其边线	象分布		(一定	是或不一	一定是)	正态分布.
4. 设	$X \sim N(0, 0)$	$0.5), Y \sim I$	V(0,0.5),	且 X 与	Y相互独	由立,则	$E X-Y = \underline{}$			
5. 设	随机变量	X 服从厂	1何分布,	期望为	4, 则 P	(X=1)=		· ·		
6. 设	$X_1, X_2,,$, <i>X</i> _n , 是	独立同意	分布的随	机变量	序列, 且	且有有限	的期望	$E(X_k) =$	μ与方差
D(X)	$(a) = \sigma^2 > 0$	k = 1, 2,	, 则Y	$= \frac{1}{n} \sum_{k=1}^{n} X_k^2$	依概率量	女敛到				
7. 设	随机变量	$X \sim F(n,$,n)且P(2	(X > A) = 0).3 , A>()为常数,	则 $P(X$	$>\frac{1}{A}$) = _		
8. 某	保险公司	多年统计 中,因被监	资料表明公司	月,在索贝	倍户中,	被盗索赔	户占 20%	%,以 X	表示在	值机抽查的 于 30 户的
9. 设	(X_1, X_2, \cdots)	$,X_{,}$ 为总	体 N(µ,c	52)的一人	个样本,	其中με	$R, \sigma > 0$	未知,	\bar{X} , S^2 分	別是样本均
值和	样本方差,	则µ的	置信水平	为1-α的	的置信区	间为				
10. j	及总体 $X\sim N$ $\alpha=0.01$ 下	$V(\mu, 4^2)$,	x_1, \ldots, x_1	6是总体》	的样本位	值,已知	假设Ho: ,	$\mu = 0$, H	I_1 : $\mu > 0$	0.在显著性

甲、乙、丙 3 台机床各自独立的加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为 $\frac{1}{4}$,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为 $\frac{1}{12}$,甲、丙两台机床加工的零件都是一等品的概率为 $\frac{3}{20}$.

- 1. 分别求甲、乙、丙 3 台机床各自加工的零件是一等品的概率;
- 2. 从甲、乙、丙加工的零件中各自取一个检验,求至少有一个一等品的概率.

1. 设离散型随机变量 X 的分布律为

X	-2	-1	1	3
P_k	1	1	1	C
	6	5	15	

 $\Rightarrow Y = X^2$.

- (1) 确定常数 c 的值; (2) 求 Y 的分布律; (3) 求 Y 的分布函数。
- 2. 设连续型随机变量 X 的分布函数为

$$F(x) = \begin{cases} A + Be^{-x}, & x \ge 0, \\ 0, & x < 0 \end{cases}$$

求(1)常数 A, B 的值;(2) $P\{X \le 2\}$, $P\{X > 3\}$;(3) X 的概率密度函数 f(x).

设二维随机变量(X, Y)在区域 $D=\{(x,y): x>0, y>0, 2x+y\leq 2\}$ 上服从均匀分布.

- 1. 写出(X, Y)的联合概率密度函数f(x, y);
- 2. 求X和Y的边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$,并判断X和Y是否相互独立(说明理由);
- 3. 求 Z = X + Y 的概率密度函数 $f_Z(z)$.

设二维随机变量(X, Y),已知 EX=1,EY=0,DX=4,DY=1, $\rho_{XY}=\frac{2}{3}$,令 Z=2X-3Y。

试求: 1. EZ, DZ; 2. cov(X,Z), ρ_{XZ} ; 3. 判断 X 与 Z 是否独立, 为什么?

设总体 X 和总体 Y 相互独立,且均服从正态分布 $N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_{10} 是来自总体 X 的一个样本, Y_1,Y_2,\cdots,Y_5 是来自总体 Y 的一个样本, 令 $\overline{X}=\frac{1}{10}\sum_{i=1}^{10}X_i$, $S_X^2=\frac{1}{9}\sum_{i=1}^{10}(X_i-\overline{X})^2$ 。 问 $\frac{10(\overline{X}-\mu)^2+9S_X^2}{2\sum_{i=1}^5(Y_i-\mu)^2}$ 服从什么分布?并给出证明.

设总体X的概率密度函数为

$$f(x) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}}, & x > 0, \\ 0, & \text{ $\sharp \, \dot{\mathbb{C}}$.} \end{cases}$$

其中 θ >0 为未知参数. X_1, X_2, \cdots, X_n 为来自总体 X 的一个样本, x_1, x_2, \cdots, x_n 为相应的样本观测值. 求 1. 参数 θ 的矩估计; 2. 参数 θ 的最大似然估计.

已知维尼纶纤度在正常条件下服从正态分布 $N(\mu,0.048^2)$ 。今抽取5根纤维,测得其纤度的样本均值 $\bar{x}=1.414$,样本方差 $s^2=0.00778$ 。问在显著性水平 $\alpha=0.05$ 下,这天纤度的波动是否正常?

- 1. 叙述两个事件互斥和独立的关系.
- 2. 为了防止意外,某矿内同时设有两种报警系统甲和乙,每种系统单独使用时,系统甲有效的概率为 0.92,系统乙有效的概率为 0.93. 在系统甲失灵的情况下,系统乙有效的概率为 0.85. 求:(1)发生意外时,这两个报警系统至少有一个有效的概率;(2)在系统乙失灵的情况下,系统甲有效的概率.

三、(12分) 得分

1.设随机变量 X 的分布函数如下:

$$F(x) = \begin{cases} 0, & x < -1 \\ 1/4, & -1 \le x < 2 \\ 1/2, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

求(1)随机变量X的分布律;(2)P(X>1).

- 2. 设随机变量 X 服从区间 (-1,1) 上的均匀分布,求
- (1) $P(|X| < \frac{1}{4})$; (2) 设 $Y = X^2$, 求Y的概率密度函数 $f_Y(y)$.

四、(16分) 得分

设随机变量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} 12e^{-(3x+4y)}, & x > 0, y > 0 \\ 0, & \text{其它}. \end{cases}$$

- (1) 求X和Y的边缘密度函数 $f_X(x)$ 和 $f_Y(y)$; (2) 判断X和Y是否相互独立,并给出理由;
- (3) 求函数 $Z = \min(X, Y)$ 的密度函数 $f_z(z)$;
- (4) 求函数U = 3X + 4Y的分布函数 $F_U(u)$ 和密度函数 $f_U(u)$.

五、(14分) 得分

- 1. 叙述切比雪夫不等式.
- 2. 设随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{其它.} \end{cases}$$

 $\Leftrightarrow Y=X^2$

- (1) 求 E(X), D(X), E(Y), D(Y); (2) 求X与Y的相关系数;
- (3) 判断X与Y是否相关,判断X与Y是否独立 (说明理由).

设 X_1, X_2, \dots, X_5 是来自正态总体 $N(0, \sigma^2)$ 的简单随机样本,令 $Z = \frac{\sqrt{3}(X_1 + X_2)}{\sqrt{2(X_3^2 + X_4^2 + X_5^2)}}$ 。

(1) 求Z的分布; (2) 求 Z^2 的分布. (要求写出具体过程)

1、设总体 X 的密度函数为

$$f(x) = \begin{cases} \frac{1}{2}, & \sqrt{\alpha} < x < \sqrt{\alpha} + 2\\ 0, & \text{其他} \end{cases}$$

其中, $\alpha>0$ 为未知参数。 X_1,X_2,\cdots,X_n 为取自该总体的样本, x_1,x_2,\cdots,x_n 为相应的样本观测值、求参数 α 的矩估计.

2. 设总体 X 服从以 p 为参数的两点分布,即其分布律为

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P & 1-p & p \end{array}$$

其中 $0 未知,<math>X_1, X_2, \cdots, X_n$ 为取自该总体的样本, x_1, x_2, \cdots, x_n 为相应的样本观测值。求

参数 p 及 $β = \frac{1-p}{p}$ 的最大似然估计.

- 1. 叙述假设检验的理论依据.
- 2. 某卷装卫生纸净含量按标准要求为200克/卷,已知该卷装卫生纸净含量服从正态分布 $N(\mu,\sigma^2)$ 。今抽取9卷,测得其净含量样本均值 $\overline{x}=197$ 克,样本标准差s=4.5克。问在显著性水平 $\alpha=0.05$ 下,该卷装卫生纸净含量是否符合要求?