Poincaré inequality on convex domains: the optimal constant

James Alcala

University of California Riverside Department of Mathematics

CIRM - Whitney Problems Workshop October 23, 2015

Outline

- Weighted Korn inequality.
- 2 What type of decompositions are we interested in?
- **3** Decomposition \Rightarrow Korn.
- **4** A certain covering of $\Omega \Rightarrow$ Decomposition.
- 5 Find an appropriate covering for John domains.
- 6 Another application: Solvability of divergence problem.
- **7** Current work: Generalized Korn inequality.

Korn inequality

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, with $n \geq 2$, and 1 .

Sobolev space $W^{1,p}(\Omega) := \{u \in L^p(\Omega) : \frac{\partial u}{\partial x_j} \in L^p(\Omega) \text{ for all } 1 \leq j \leq n\}$ We denote by $D(\mathbf{u})$ the differential matrix of \mathbf{u} , by $\varepsilon(\mathbf{u})$ the symmetric part of $D(\mathbf{u})$

$$\varepsilon_{ij}(\mathbf{u}) = \frac{1}{2} \left(\frac{\partial \mathbf{u}_i}{\partial x_j} + \frac{\partial \mathbf{u}_j}{\partial x_i} \right)$$

and by $\eta(\mathbf{u})$ the skew-symmetric part of $D(\mathbf{u})$

$$\eta_{ij}(\mathbf{u}) = \frac{1}{2} \left(\frac{\partial \mathbf{u}_i}{\partial x_j} - \frac{\partial \mathbf{u}_j}{\partial x_i} \right)$$

Korn inequality

The classical Korn inequality states (Korn 1906, 1909):

$$||D\mathbf{u}||_{L^p(\Omega)} \leq C||\varepsilon(\mathbf{u})||_{L^p(\Omega)},$$

for any $\mathbf{u} \in W^{1,p}(\Omega)^n$, with $\int_{\Omega} \frac{\partial \mathbf{u}_i}{\partial x_j} - \frac{\partial \mathbf{u}_j}{\partial x_i} = 0$.

Equivalently,

$$\inf_{\varepsilon(\mathbf{w})=0} \|D\mathbf{v} - D\mathbf{w}\|_{L^p(\Omega)} \le C \|\varepsilon(\mathbf{v})\|_{L^p(\Omega)}$$

for all $\mathbf{v} \in W^{1,p}(\Omega)^n$.

Note: $\varepsilon(\mathbf{w}) = 0$ iff $\mathbf{w}(x) = Ax + b$, where $A \in \mathbb{R}^n$ is skew-symmetric and $b \in \mathbb{R}^n$.

Note: This inequality is basic on linear elasticity equations. \mathbf{u} plays the role of the displacement of an elastic body, $\varepsilon(\mathbf{u})$ is called the linearized strain tensor and \mathbf{w} with $\varepsilon(\mathbf{w})=0$ is the infinitesimal rigid motions.

Weighted Korn inequality

Let $\omega: \Omega \to \mathbb{R}_{>0}$ be a weight, with $\int_{\Omega} \omega^{\rho} < \infty$. Example: $\omega(x) = \rho(x)^{\beta}$ where ρ is the distance to $\partial\Omega$ and $\beta \geq 0$.

We consider $L^p(\Omega,\omega)$ equipped with the norm

$$\|u\|_{L^p(\Omega,\omega)}:=\left(\int_{\Omega}|u(x)|^p\omega^p(x)\,\mathrm{d}x\right)^{1/p}$$

Weighted Korn inequality:

$$||D\mathbf{u}||_{L^p(\Omega,\omega)} \leq C||\varepsilon(\mathbf{u})||_{L^p(\Omega,\omega)},$$

for any $\mathbf{u} \in W^{1,p}(\Omega,\omega)^n$, with $\int_\Omega \eta_{ij}(\mathbf{u})\omega^p = 0$ for $1 \leq i < j \leq n$.

Decomposition of integrable functions

Covering of Ω : Collection of subdomains $\{\Omega_t\}_{t\in\Gamma}$ s.t. $\Omega=\bigcup_{t\in\Gamma}\Omega_t$ with $\sum_t \chi_{\Omega_t} \leq N\chi_{\Omega}$ a.e..

Take $1 < q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$.

Given $g \in L^q(\Omega, \omega^{-1}) \subset L^1(\Omega)$ with $\int_\Omega g = 0$, a $\underline{\mathcal{P}_0}$ -orthogonal decomposition subordinate to $\{\Omega_t\}_{t \in \Gamma}$ is a collection of functions $\{g_t\}_{t \in \Gamma}$ s.t.

- **2** $supp(g_t) \subset \Omega_t$
- $\int_{\Omega_t} g_t = 0$

Continuity property:

$$\sum_{t\in\Gamma}\|g_t\|_{L^q(\Omega_t,\omega^{-1})}^q\leq C_0^q\|g\|_{L^q(\Omega,\omega^{-1})}^q,$$

\mathcal{P}_0 -decomposition + Cont. + Local weighted Korn \Rightarrow Weighted Korn inequality

$$V_0(\Omega, \omega^{-1}) := \{ g \in L^q(\Omega, \omega^{-1}) : \int_{\Omega} g = 0 \}.$$

Theorem

 $\{\Omega_t\}_{t\in\Gamma}$ is a covering of Ω s.t. weighted Korn ineq. is valid in Ω_t with uniform constant C_1 . Moreover, for any g in V_0 there is a \mathcal{P}_0 -decomposition with $\sum_{t\in\Gamma}\|g_t\|_{L^q(\Omega_t,\omega^{-1})}^q \leq C_0^q\|g\|_{L^q(\Omega,\omega^{-1})}^q$. Then.

$$||D\mathbf{u}||_{L^p(\Omega,\omega)} \leq C||\varepsilon(\mathbf{u})||_{L^p(\Omega,\omega)}$$

for any $\mathbf{u} \in W^{1,p}(\Omega,\omega)^n$, with $\int_{\Omega} \eta_{ij}(\mathbf{u}) \omega^p = 0$ for $1 \le i < j \le n$. In addition,

$$C = 1 + 2n^{2/p}N^{1/p} C_0 C_1$$

$$L^q(\Omega,\omega^{-1})=\{g+\omega^p\psi:g\in V_0\text{ and }\psi\text{ is constant}\}.$$
 Moreover, $\|g\|_{L^q(\Omega,\omega^{-1})}\leq 2\|g+\omega^p\psi\|_{L^q(\Omega,\omega^{-1})}$

$\mathcal{P}_0\text{-decomposition} + \mathsf{Cont.} + \mathsf{Local}$ weighted Korn \Rightarrow Weighted Korn inequality

Proof: Let us take the sup over $\|g + \omega^p \psi\|_{L^q(\Omega, \omega^{-1})} \leq 1$.

$$\begin{split} \int_{\Omega} \eta_{ij}(\mathbf{u})(g+\omega^{p}\psi) &= \int_{\Omega} \eta_{ij}(\mathbf{u})g = \int_{\Omega} \eta_{ij}(\mathbf{u}) \sum_{t \in \Gamma} g_{t} \\ &= \sum_{t \in \Gamma} \int_{\Omega_{t}} \eta_{ij}(\mathbf{u})g_{t} = \sum_{t \in \Gamma} \int_{\Omega_{t}} (\eta_{ij}(\mathbf{u}) - \alpha)g_{t} \\ &\leq \sum_{t \in \Gamma} \inf_{\alpha \in \mathcal{P}_{0}} \|(\eta_{ij}(\mathbf{u}) - \alpha)\|_{L^{p}(\Omega_{t},\omega)} \|g_{t}\|_{L^{q}(\Omega_{t},\omega^{-1})} \\ &\leq \sum_{t \in \Gamma} C_{1} \|\varepsilon(\mathbf{u})\|_{L^{p}(\Omega_{t},\omega)} \|g_{t}\|_{L^{q}(\Omega_{t},\omega^{-1})} \\ &\leq C_{1} \left(\sum_{t \in \Gamma} \int_{\Omega_{t}} |\varepsilon(\mathbf{u})|^{p} \omega^{p}\right)^{1/p} \left(\sum_{t \in \Gamma} \|g_{t}\|_{L^{q}(\Omega_{t},\omega^{-1})}^{q}\right)^{1/q} \\ &\leq C_{1} \mathcal{N}^{1/p} C_{0} \|\varepsilon(\mathbf{u})\|_{L^{p}(\Omega,\omega)} \|g\|_{L^{q}(\Omega,\omega^{-1})} \\ &\leq 2C_{1} \mathcal{N}^{1/p} C_{0} \|\varepsilon(\mathbf{u})\|_{L^{p}(\Omega,\omega)}. \end{split}$$

A rooted tree (or simply a tree) is a connected graph $G = (\Gamma, E)$ in which any vertex t is connected to a distinguished vertex a (the root) by exactly one path.

It is possible to define an order " \leq " in Γ by $s \leq t$ if and only if the the path connecting t with the root a passes through s.

The parent of a vertex $t \in \Gamma$ is the adjacent vertex t_p that satisfies $t_p \leq t$.

Given $\Omega = \bigcup_{t \in \Gamma} \Omega_t$, we are interested in finding an appropriate tree structure on Γ "consistent" with the geometry of Ω .

A covering $\{\Omega_t\}_{t\in\Gamma}$ of Ω is a tree covering if Γ is the set of vertices of a tree, with root a, that verifies that for any $t\in\Gamma$, with $t\neq a$, there exists a open cube $B_t\subseteq\Omega_t\cap\Omega_{t_p}$ such that the collection $\{B_t\}_{t\neq a}$ is pairwise disjoint.

Example 1:

Example 2: φ is a Hölder- α function (L'14), $|\varphi(x) = \varphi(y)| \le C|x-y|^{\alpha}$.

Given a tree covering $\{\Omega_t\}_{t\in\Gamma}$ of Ω we define a Hardy type operator in the following way:

$$Tg(x) := \sum_{a \neq t \in \Gamma} \frac{\chi_t(x)}{|W_t|} \int_{W_t} |g|,$$

where $W_t = \bigcup_{s \succeq t} \Omega_s$ (the shadow of Ω_t) and χ_t is the characteristic function of B_t for all $t \neq a$.

Theorem (L'15)

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with tree covering $\{\Omega_t\}_{t \in \Gamma}$. Given $g \in L^1(\Omega)$, with $\int_\Omega g = 0$, there exists a \mathcal{P}_0 -decomposition $\{g_t\}_{t \in \Gamma}$ of g such that

$$|g_t(x)| \leq |g(x)| + \frac{|W_t|}{|B_t|} Tg(x).$$

Now, if $\frac{|W_t|}{|B_t|} \leq M$ for all $t \neq a$, then

$$\sum_{t \in \Gamma} \|g_t\|_{L^q(\Omega_t, \omega^{-1})}^q = \sum_{t \in \Gamma} \int_{\Omega_t} |g_t|^q \omega^{-q} \\
\leq 2^{q-1} N \left(\|g\|_{L^q(\Omega, \omega^{-1})}^q + M^q \|Tg\|_{L^q(\Omega, \omega^{-1})}^q \right)$$

Lemma ('15)

 $T: L^q(\Omega) \to L^q(\Omega)$ is continuous for $1 < q \le \infty$.

Proof: T is an average of f or zero, thus $||T||_{L^{\infty} \to L^{\infty}} \le 1$.

T is weak (1,1) continuous with norm lesser than or equal to N: Given $\lambda > 0$, we define the subset of minimal vertices $\Gamma_0 \subset \Gamma$ as

$$\Gamma_0 := \left\{ t \in \Gamma \, : \, \frac{1}{|W_t|} \int_{W_t} |f| > \lambda \text{ and } \frac{1}{|W_s|} \int_{W_s} |f| \leq \lambda \text{ for all } s \prec t \right\}.$$

Thus,
$$|\{x \in \Omega : Tf(x) > \lambda\}| \le \sum_{t \in \Gamma_0} |W_t|$$

 $< \frac{1}{\lambda} \sum_{t \in \Gamma} \int_{W_t} |f| \le \frac{N}{\lambda} ||f||_{L^1(\Omega)}.$

By Marcinkiewicz interpolation, $\|T\|_{L^q \to L^q} \le 2\left(\frac{qN}{q-1}\right)^{1/q}$.

 Ω is called a John domain with parameter $\beta>1$ if there exists a point $x_0\in\Omega$ such that every $y\in\Omega$ has a rectifiable curve parameterized by arc length $\gamma:[0,I]\to\Omega$ such that $\gamma(0)=y$, $\gamma(I)=x_0$ and

$$\operatorname{dist}(\gamma(t),\partial\Omega)\geq rac{1}{eta}t$$

for all $t \in [0, I]$. Introduced by F. John '61. Named after him by Martio and Sarvas '79.

Examples: Convex, star-shaped domains with respect to a ball, Lipschitz, Kock snowflake.

A Whitney decomposition of Ω is a collection $\{Q_t\}_{t\in\Gamma}$ of closed dyadic cubes whose interiors are pairwise disjoint, which verifies

- 2 diam $(Q_t) \le \rho(Q_t, \partial\Omega) \le 4 \text{diam}(Q_t)$,
- $\frac{1}{4} \operatorname{diam}(Q_s) \leq \operatorname{diam}(Q_t) \leq 4 \operatorname{diam}(Q_s), \text{ if } Q_s \cap Q_t \neq \emptyset.$

A domain Ω satisfies the Boman chain condition if for any cube Q_t in a Whitney decomp. there is a chain $Q_{t,0}, Q_{t,1}, \cdots, Q_{t,\kappa}$ s.t. $Q_{t,0} = Q_t, Q_{t,\kappa} = Q_a$ (a distinguished cube) and

$$Q_{t,i} \subset \lambda Q_{t,j}$$
,

for all $1 \le i \le j \le \kappa$. The length of the chain depends on Q_t (Boman '82).

Buckley, Koskela and Lu '96: Boman chain condition characterizes John domains.

Boman tree condition: Given a bounded John domain $\Omega \subset \mathbb{R}^n$, there exists a Whitney decomposition $\{Q_t\}_{t\in\Gamma}$ where Γ has a tree structure that satisfies

$$Q_s \subseteq KQ_t$$

for any $s, t \in \Gamma$, with $s \succeq t$. We use some ideas from Vasil'eva '13.

Then, there exists a tree covering $\{\Omega_t\}_{t\in\Gamma}$ of Ω such that

$$|W_t| = |\bigcup_{s \succeq t} \Omega_s| \leq K^n |\Omega_t| \leq K^n c_n |B_t|.$$

Moreover, using that $\beta \geq 0$, we have $T: L^q(\Omega, \rho^{-\beta}) \to L^q(\Omega, \rho^{-\beta})$ is continuous with norm $\|T\| \leq C_{n,q,\beta} K^{\beta}$.

Thus, for any $g \in L^q(\Omega, \rho^{-\beta})$, with $\int_\Omega g = 0$, there exists a \mathcal{P}_0 -decomposition $\{g_t\}_{t \in \Gamma}$ of g such that

$$|g_t(x)| \leq |g(x)| + \frac{|W_t|}{|B_t|} Tg(x) \leq |g(x)| + c_n K^n Tg(x)$$

Which implies

$$\sum_{t\in\Gamma}\|g_t\|_{L^q(\Omega_t,\rho^{-\beta})}^q\leq C_{n,q,\beta}K^{q(n+\beta)}\|g\|_{L^q(\Omega,\rho^{-\beta})}^q$$

Main Theorem on John domains

Theorem

Let $\Omega \subset \mathbb{R}^n$ be a bounded John domain with $n \geq 2$, $1 and <math>\beta \in \mathbb{R}_{\geq 0}$. Then, there exists a constant C depending only on n, p and β such that

$$\left(\int_{\Omega} |D\mathbf{u}|^{p} \rho^{p\beta} \, \mathrm{d}x\right)^{1/p} \leq C \, K^{n+\beta} \left(\int_{\Omega} |\varepsilon(\mathbf{u})|^{p} \rho^{p\beta} \, \mathrm{d}x\right)^{1/p}$$

for all vector field $\mathbf{u} \in W^{1,p}(\Omega, \rho^\beta)^n$ that satisfies that $\int_\Omega \eta_{ij}(\mathbf{u}) \, \rho^{\beta p} = 0$, for $1 \leq i < j \leq n$. The function $\rho(x)$ is the distance to the boundary of Ω . The constant K appears in the Boman tree condition.

\mathcal{P}_0 -decomposition + Cont. + Local weighted solutions \Rightarrow Weighted solutions of $\operatorname{div} \mathbf{u} = \mathbf{g}$

$$W^{1,q}(\Omega) := \left\{ v \in L^q(\Omega) : rac{\partial v}{\partial x_i} \in L^q(\Omega) ext{ for all } i
ight\}.$$

$$W^{1,q}_0(\Omega) := \overline{C^\infty_0(\Omega)} \subset W^{1,q}(\Omega).$$

Given $g \in L_0^q(\Omega) = \{g \in L^p(\Omega) : \int_{\Omega} g = 0\}$ there exists $\mathbf{u} \in W_0^{1,q}(\Omega)^n$ such that

$$\operatorname{div} \mathbf{u} = \mathbf{g}$$

$$||D\mathbf{u}||_{L^q(\Omega)} \leq C ||g||_{L^q(\Omega)},$$

where C depends only on Ω and q.

Note: The existence of a solution of $\operatorname{div} \mathbf{u} = g$ is basic on the variational analysis of the Stokes equations.

\mathcal{P}_0 -decomposition + Cont. + Local weighted solutions \Rightarrow Weighted solutions of $\operatorname{div} \mathbf{u} = \mathbf{g}$

Theorem

Let $\Omega \subset \mathbb{R}^n$ be a bounded John domain with $n \geq 2$, $1 < q < \infty$ and $\beta \geq 0$. Given $g \in L^q(\Omega, \rho^{-\beta})$, with $\int_\Omega g = 0$, there exists a solution $\mathbf{u} \in W^{1,q}_0(\Omega, \rho^{-\beta})^n$ of $\operatorname{div} \mathbf{u} = g$ that satisfies

$$\|D\mathbf{u}\|_{L^q(\Omega,\rho^{-\beta})} \leq C_{n,q,\beta} K^{n+\beta} \|g\|_{L^q(\Omega,\rho^{-\beta})},$$

where $\rho(x)$ is the distance to $\partial\Omega$ and K appears in the Boman tree condition.

\mathcal{P}_0 -decomposition + Cont. + Local weighted solutions \Rightarrow Weighted solutions of $\operatorname{div} \mathbf{u} = \mathbf{g}$

Proof: Given $g \in L^q(\Omega, \rho^{-\beta}) \subset L^1(\Omega)$, with $\int g = 0$, we take a \mathcal{P}_0 -decomposition of g (i.e. $g = \sum_t g_t$, $\operatorname{supp}(g_t) \subset \Omega_t$ and $\int_{\Omega_t} g_t = 0$) and

$$\sum_{t\in\Gamma}\|g_t\|_{L^q(\Omega_t,\rho^{-\beta})}^q\leq C_0^q\|g\|_{L^q(\Omega,\rho^{-\beta})}^q.$$

Next, we take a solution $\mathbf{u}_t \in W_0^{1,q}(\Omega_t, \rho^{-\beta})^n$ of $\operatorname{div} \mathbf{u}_t = g_t$ in Ω_t with

$$||D\mathbf{u}_t||_{L^q(\Omega_t,\rho^{-\beta})}^q \le C_1^q ||g_t||_{L^q(\Omega_t,\rho^{-\beta})}^q,$$

where C_1 is independent of t.

Then, $\mathbf{u}_t \in W_0^{1,q}(\Omega, \rho^{-\beta})^n$ by extending by zero. Thus, $\mathbf{u} = \sum_{t \in \Gamma} \mathbf{u}_t$ is a solution of $\operatorname{div} \mathbf{u} = g$ with

$$\|D\mathbf{u}\|_{L^q(\Omega,\rho^{-\beta})}^q \le C \sum_{t \in \Gamma} \|D\mathbf{u}_t\|_{L^q(\Omega_t,\rho^{-\beta})}^q \le C \sum_{t \in \Gamma} \|g_t\|_{L^q(\Omega_t,\rho^{-\beta})}^q \le C \|g\|_{L^q(\Omega,\rho^{-\beta})}^q$$

Question: Upper bounds of the constants on star-shaped domains

A domain $\Omega \subset \mathbb{R}^n$ with diameter R is a star-shaped domain with respect to a ball $B := B(x_0, \rho)$ if the segment that connects any two arbitrary points $x \in B$ and $y \in \Omega$ is included in Ω .

The estimate of the constant C_{Ω} in the problem $\operatorname{div} \mathbf{u} = g$, where $\mathbf{u} \in W_0^{1,2}(\Omega)^n$, with

$$||D\mathbf{u}||_{L^2(\Omega)} \leq C_{\Omega} ||g||_{L^2(\Omega)}.$$

Bogovski '79: Solvability on star-shaped domains.

Can we estimate the constant in terms of the ratio $\frac{R}{\rho}$?

Question: Upper bounds of the constants on star-shaped domains

Galdi's book '94:
$$C_{\Omega} \leq C_n \left(\frac{R}{\rho}\right)^{n+1}$$
.

Durán '12:
$$C_{\Omega} \leq C_n \frac{R}{\rho} \left(\frac{|\Omega|}{|B|} \right)^{\frac{n-2}{2(n-1)}} \left(\log \frac{|\Omega|}{|B|} \right)^{\frac{n}{2(n-1)}}.$$

In particular, if
$$n = 2$$
: $C_{\Omega} \leq C_n \frac{R}{\rho} \log \frac{|\Omega|}{|B|}$.

Costabel-Dauge '15: For n=2, $C_{\Omega}=C_{n}\frac{R}{\rho}$, which is optimal.

Question: Upper bounds of the constants on star-shaped domains

Question: Given a star-shaped domain $\Omega \subset \mathbb{R}^n$ as in the previous definition, is there a Whitney decomposition $\Omega = \bigcup_{t \in \Gamma} \Omega_t$, where Γ is a rooted tree, and a real number m > 1 such that

$$\frac{\left|\bigcup_{s\succeq t}\Omega_{s}\right|}{\left|\Omega_{t}\right|}\leq C_{n}\left(\frac{R}{\rho}\right)^{m}$$

for all $t \in \Gamma$?

If we have a positive answer to this question, then

$$C_{\Omega} \leq C_n \left(\frac{R}{\rho}\right)^m$$
.

What is the infimum the those m's?

Current work: Generalized Korn inequality

Given $\Omega \subset \mathbb{R}^n$ with $n \geq 3$, generalized Korn inequality states:

$$\inf_{I(\mathbf{w})=0} \|D\mathbf{v} - D\mathbf{w}\|_{L^p(\Omega)} \le C\|I(\mathbf{v})\|_{L^p(\Omega)}$$

for all $\mathbf{v} \in W^{1,p}(\Omega)^n$, where the operator I is the trace free part of ε . Indeed,

$$I(\mathbf{u}) := \varepsilon(\mathbf{u}) - \frac{\operatorname{div} \mathbf{u}}{n} I_n$$

 $I(\mathbf{w}) = 0$ if and only if

$$\mathbf{w}(x) = a + Ax + \lambda x + \left\{ \langle b, x \rangle x - \frac{1}{2} |x|^2 b \right\},\,$$

where $a, b \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times n}$ is skew-symmetric.

Note: We have to consider V-orthogonal decomposition for another vector space V different from \mathcal{P}_0 .

Thanks for your attention!