Tapered and Inverse Tapered Mode Converters:

1. Tapered Mode Converters:

- Regular (planar) taper

Multi-mode

Facet coating required

No vertical matching

- 3-D taper

Difficult to fabricate

2. Inverse Tapered Mode Convereters:

Narrow waveguide tip → mode is 'squeezed out' of core and captured by overlay waveguide

Advantages:

- Broad wavelength range
- Single mode
- Easy to fabricate (if you can make the tips)
- Low facet reflections

Examples:

(lensed fiber mfd 3.5µm)

Inverted taper coupler couples both polarizations TE and TM in the photonic wire.

BUT: photonic wires are very polarization sensitive

- You want just one polarization in your wire

Solution

- polarization splitter
- polarization-diversity approach

Advantages of Horizontal Coupling:

- High coupling efficiency
- Broadband operation
- Works for both polarizations

Disadvantages of Horizontal Coupling:

- Large footprint on a 'nanophotonic' chip
- Requires post-processing
 - dicing and polishing
 - no wafer-scale testing possible

Alignment tolerances

- larger spot is larger gives better tolerances
- larger spot is harder to fabricate
- larger spot needs longer taper

Vertical Grating Couplers:

- Compatible with SMF-28
- No need for a polished Facet
- Wafer-scale testing
- Wafer-level packaging
- Flexible and cheap!

Focusing Grating Couplers:

Curved gratings: focus light in submicron waveguides

No adiabatic transition needed

- Grating in linear taper
- Grating in slab, focus on low-contrast aperture

- Grating in taper
 - focusing on taper point
- Grating in slab
 - Focusing on waveguide aperture (shallow etched)

2D Gratins and Polarization Diversity Circuits:

- Efficiency: -6.7dB (21%)
- Extinction ratio: > 18dB
- 3dB bandwidth: 60nm

Holographic Grating Couplers: (Luxtera gratings)

Grating Coupler Packaging: For many purposes, the fibers should be horizontal

Use angle-polished fiber (array)

Fiber density?

- Fiber pitch: 125 or 250μm
- Coupler pitch can be as low as 25μm
- **⇒** Waste of expensive chip

Photonic Interposer:

- Silica-based interposer chip
 - Fan-out of photonic waveguides to fiber array
 - Fan-out of electronic connection to wire bond pads
- Silicon chip can be kept small (cost, yield)
- One interposer design can serve many chip layouts

Use TIR mirror to couple to the silica waveguide:

- Difficult to fabricate!

Optical Probe: True equivalent of an electrical probe

- Allows for testing of individual components in a PIC without the need for dedicated coupling structures on the PIC
- Optical fiber with a diffraction grating (gold stripes) defined on the core of the optical fiber
- Fabricated using a nano-imprint and transfer technique

Scheerlinck et al.APL 92(3), p.031104 (2008)

