Tugas Responsi Pertemuan 3 Kalkulus 2

Kelompok 7:

Nabil Naufal	G1401211008
Muhammad Rizky Fajar	G1401211009
Salsabila Dwi Rahmi	G1401211026
Adisti Suci Rahmah	G1401211027
Farrel Gilbran	G1401211057
Vita Rizkyana Anggraeni	G1401211065
Kamilah Nurul Azizah	G1401211073
Septiranny Rizqika Putri	G1401211083
Hanifa Rahmacindia Nasution	G1401211094

Latihan Soal Tugas Kelompok

$$1. \ \alpha_n = \frac{n}{3n-1}$$

· Kekonvergenan

$$\lim_{n\to\infty} \frac{n}{3n-1} = \frac{1}{3} \to \text{Konvergen we } \frac{1}{3}$$

· Kemonofonan

$$a_{n} - a_{n+1} = \frac{n}{3n-1} - \frac{n+1}{3(n+1)-1}$$

$$= \frac{n}{3n-1} - \frac{n+1}{3n+2}$$

$$= \frac{(n(3n+2)) - (n+1(3n-1))}{(3n-1)(3n+2)}$$

$$= \frac{(3n^{2}+2n) - (3n^{2}+3n-n-1)}{9n^{2}+6n-3n-2}$$

$$= \frac{1}{9n^{2}+3n-2} > 0$$
Turun

2.
$$a_n = \frac{n^3 + 3n^2 + 3n}{(n+1)^3}$$

· Kekonvergen an

$$\lim_{n\to\infty} \frac{n^3 + 3n^2 + 3n}{(n+1)^3}$$

$$\lim_{n \to \infty} \frac{3n^2 + 6n + 3}{3(n+1)^2}$$

$$\lim_{n \to \infty} \frac{3n^2 + 6n + 3}{3(n^2 + 2n + 1)}$$

$$\lim_{n\to\infty} \frac{3n^2 + 6n + 3}{3n^2 + 6n + 3} = 1$$

Konvergen ke 11

$$\frac{-1}{n} \leq \frac{\cos(n\pi)}{n} \leq \frac{1}{n}$$

$$\lim_{n\to\infty} \frac{1}{n} = 0$$

Kemonotonan

$$\frac{n^{3}+3n^{2}+3n}{(n+1)^{3}} - \frac{(n+1)^{3}+3(n+1)^{2}+3(n+1)}{(n+1+1)^{3}}$$

$$= n^{3}+3n^{2}+3n - (n+1)^{3}+3(n+1)^{2}+3(n+1)$$

$$= \frac{n^3 + 3n^2 + 3n}{(n+1)^3} - \frac{(n+1)^3 + 3(n+1)^2 + 3(n+1)}{(n+2)^3}$$

$$= \frac{\left(\left(n^{3} + 3n^{3} + 3n \right) \left(n + 2 \right)^{3} \right) - \left(\left(n + 1 \right)^{3} + 3 \left(n + 1 \right)^{2} + 3 \left(n + 1 \right) \right) \left(n + 1 \right)^{3}}{\left(n + 1 \right)^{3} \left(n + 2 \right)^{3}}$$

$$= \frac{-3n^2 - 9n - 7}{(n^2 + 3n + 2)^3} < 0$$
 (Naik)

* Kemonotonan

$$\frac{\cos n\pi}{n} - \frac{\cos (n+1)\pi}{n+1}$$

$$= \frac{\left(\cos n\pi (n+1)\right) - \left(\cos (n+1)\pi \cdot (n)\right)}{n (n+1)}$$

$$\lim_{n\to\infty}\frac{1}{e^n}=a$$

$$\lim_{n\to\infty}\frac{1}{n}=0$$

Konvergen he o

5.
$$a_n = \frac{1}{n^3}$$

· Kekonvergenan!

$$\lim_{n\to\infty}\frac{1}{n^3}=0$$

Konvergen ke o

6.
$$\frac{1}{2^2}$$
, $\frac{1}{2^3}$, $\frac{1}{2^4}$, ...

Un = a. r n-1

$$=\frac{1}{2^2}\left(\frac{1}{2}\right)^{n-1}$$

$$=\frac{1}{2^2}\cdot\frac{1}{2^{n-1}}$$

$$=\frac{1}{7^{2+n-1}}$$

· Kenonvergenan

$$\lim_{n\to\infty}\frac{1}{2^{n+1}}=0$$

Kemonofonan)

$$a_n - a_{n+1} = (\hat{e}^n \sin n) - (\hat{e}^{(n+1)} \sin (n+1))$$

$$= \frac{e \sin(n) - \sin (n+1)}{e^{n+1}} > 0$$

(Turun)

·Kemonofonan

$$\frac{\alpha_n}{\alpha_{n+1}} = \frac{\overline{n^3}}{\frac{1}{(n+1)^3}}$$

$$= \frac{(n+1)^3}{n^3}$$

7. sin 1, 2 sin 1/2, 3 sin 1/3, ...

· Rumus Exsplisit

$$\frac{1}{9}\left[1-\left(\frac{1}{10}\right)^n\right]$$

· Keuonvergenant

$$\lim_{n\to\infty} \frac{3}{6} \left(1 - \left(\frac{10}{10}\right)_{\nu}\right)$$

$$=\frac{1}{9}(1-0)=\frac{1}{9}$$