Esame di Ricerca Operativa del 21/07/14

	(C	cognome)		(Nome)		(Corso di laurea	n)
Esercizio :	1. Com	npletare la	0	considerando il problema	1 0	ione lineare:	
			$\begin{cases} y_1 - 2 & y_2 \\ -y_1 - y_2 \\ y \ge 0 \end{cases}$	$-7 y_2 + 4 y_3 + 15 y_4 + + y_3 + 3 y_4 + y_5 + 2 y_6 = + y_4 + 3 y_5 - y_6 = 8$	= 7		
	Base	Soluzion	ne di base			issibile Degenere /no) (si/no)	
_	$\{1, 2\}$	x =					
	$\{2, 4\}$	y =					
Esercizio 2	2. Effe	ttuare du	e iterazioni dell'al	goritmo del simplesso du	ale per il problen	na dell'esercizio 1.	
		Base	x	y	Indice entrante	Rapporti	Indice uscent
1° iterazio	one	{5,6}					
2° iterazio	one						
sufficiente p	er guic e quan	dare 30 nu ti veicoli o	iovi veicoli, ma so commerciali di cia	e grande, rispettivamente lo 3 tra questi hanno la p scun tipo si dovrebbero a	oatente per guida	re i veicoli di capacit	à grande.
				COMANDI DI MATLAI	В		
(per il p	roblem	a o per il	rilassato?)				
A=				b=			
Aeq=				beq=	:		
lb=				ub=			

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(2,3)$ $(2,5)$				
(4,6) (5,7) (6,7)	(3,7)	x =		
(1,2) $(1,4)$ $(2,3)$				
(2,5) (3,7) (4,6)	(3,5)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,3) (3,5) (3,7) (4,6) (6,7)	
Archi di U	(2,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo														
visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
insieme														
Q														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$ $N_t =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 10 \ x_1 + 8 \ x_2 \\ 8 \ x_1 + 7 \ x_2 \le 45 \\ 8 \ x_1 + 18 \ x_2 \le 47 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 548 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	15	6	14	21	8	9	22
Volumi	38	134	199	465	191	120	544

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =	$v_I(P) =$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = 4x_1^3 - 3x_2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1 + x_2^2 \le 0, -x_1 - x_2 + 2 \le 0}.$$

Soluzioni del sistema LKT				Massimo		Minimo	
x	λ	μ	globale	locale	globale	locale	
(1,1)							
(4, -2)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min \ 4 \ x_1 x_2 - 2 \ x_2^2 - 3 \ x_1 - 5 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-1,1), (-5,-1), (-2,5) e (2,5). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(-\frac{2}{3},5\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min 2 y_1 - 7 y_2 + 4 y_3 + 15 y_4 + 21 y_5 + 6 y_6 \\ y_1 - 2 y_2 + y_3 + 3 y_4 + y_5 + 2 y_6 = 7 \\ -y_1 - y_2 + y_4 + 3 y_5 - y_6 = 8 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere (si/no)
		(si/no)	(S1/no)
$\{1, 2\}$	x = (3, 1)	SI	NO
{2, 4}	y = (0, -17, 0, -9, 0, 0)	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{5, 6}	$\left(\frac{39}{7}, \frac{36}{7}\right)$	$\left(0,\ 0,\ 0,\ 0,\ \frac{23}{7},\ \frac{13}{7}\right)$	3	$23, \frac{13}{3}$	6
2° iterazione	{3, 5}	$\left(4, \frac{17}{3}\right)$	$\left(0,\ 0,\ \frac{13}{3},\ 0,\ \frac{8}{3},\ 0\right)$	4	$\frac{13}{8}$, 8	3

Esercizio 3. Indichiamo con x_P , x_M ed x_G rispettivamente il numero di veicoli commerciali di capacità piccola, media e grande da acquistare.

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(2,3)$ $(2,5)$				
(4,6) $(5,7)$ $(6,7)$	(3,7)	x = (0, 6, 0, -3, 7, 0, 9, 0, -4, 3, -6)	NO	SI
(1,2) $(1,4)$ $(2,3)$				
(2,5) (3,7) (4,6)	(3,5)	$\pi = (0, 7, 11, 3, 14, 9, 16)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,3) (3,5) (3,7) (4,6) (6,7)	(1,2) (1,4) (2,3) (3,5) (3,7) (4,6)
Archi di U	(2,5)	(2,5)
x	(0, 0, 6, 0, 4, 0, 6, 0, 2, 0, 0)	(0, 0, 6, 0, 4, 0, 6, 0, 2, 0, 0)
π	(0, 9, 13, 3, 19, 9, 18)	(0, 7, 11, 3, 17, 9, 16)
Arco entrante	(1,2)	(1,3)
ϑ^+,ϑ^-	3,0	6,0
Arco uscente	(6,7)	(1,2)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	ite	r 3	ite	r 4	iter 5		ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		4	:	· ·	3	6	2	(;	į	5	7	7
nodo 2	12	1	12	1	12	1	12	1	12	1	12	1	12	1
nodo 3	11	1	7	4	7	4	7	4	7	4	7	4	7	4
nodo 4	3	1	3	1	3	1	3	1	3	1	3	1	3	1
nodo 5	$+\infty$	-1	$+\infty$	-1	20	3	18	2	18	2	18	2	18	2
nodo 6	$+\infty$	-1	14	4	14	4	14	4	14	4	14	4	14	4
nodo 7	$+\infty$	-1	$+\infty$	-1	21	3	21	3	19	6	19	6	19	6
$\begin{array}{c} \text{insieme} \\ Q \end{array}$	2, 3	, 4	2, 3	, 6	2, 5,	6, 7	5, 6	5, 7	5,	7	7		Q	Ď

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	7	(0, 7, 0, 0, 0, 0, 7, 0, 0, 0, 0)	7
1 - 2 - 3 - 7	5	(5, 7, 0, 5, 0, 0, 12, 0, 0, 0, 0)	12
1 - 2 - 5 - 7	7	(12, 7, 0, 5, 7, 0, 12, 0, 0, 7, 0)	19
1 - 4 - 6 - 7	11	(12, 7, 11, 5, 7, 0, 12, 0, 11, 7, 11)	30

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5\}$ $N_t = \{6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 10 \ x_1 + 8 \ x_2 \\ 8 \ x_1 + 7 \ x_2 \le 45 \\ 8 \ x_1 + 18 \ x_2 \le 47 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{45}{8}, 0\right)$$

 $v_S(P) = 56$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(5,0)$$

 $v_I(P) = 50$

c) Calcolare un taglio di Gomory.

$$r = 1 x_1 \le 5$$

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 548 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	15	6	14	21	8	9	22
Volumi	38	134	199	465	191	120	544

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(1, 1, 1, 0, 0, 1, 0)$$

 $v_I(P) = 44$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(1, 0, 1, \frac{191}{465}, 0, 1, 0\right)$$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = 4x_1^3 - 3x_2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1 + x_2^2 \le 0, -x_1 - x_2 + 2 \le 0}.$$

Soluzioni del s	Mass	imo	Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
(1, 1)	(5,7)		NO	NO	SI	SI	NO
(4, -2)	(-65, 257)		NO	NO	NO	NO	SI

Esercizio 10. Si consideri il seguente problema:

$$\left\{ \begin{array}{l} \min \ 4 \ x_1 \, x_2 - 2 \ x_2^2 - 3 \ x_1 - 5 \ x_2 \\ x \in P \end{array} \right.$$

dove P è il poliedro di vertici (-1,1), (-5,-1), (-2,5) e (2,5). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	*	Passo	Nuovo punto
				possibile		
$\left(-\frac{2}{3},5\right)$	(0,1)	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(-17,0)	$\frac{4}{51}$	$\frac{4}{51}$	(-2, 5)