Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC 140 - SISTEMAS OPERACIONAIS I

Aula 13 - Gerenciamento de Memória

Profa, Sarita Mazzini Bruschi

Slides de autoria de Luciana A. F. Martimiano baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

Gerenciamento de Memória Memória Virtual (MV)

- □ Programas maiores que a memória eram divididos em pedaços menores chamados
 - Programador define áreas de overlay;
 - Vantagem: expansão da memória principal;
 - Desvantagem: custo muito alto;

Gerenciamento de Memória Memória Virtual (MV)

- □ Sistema operacional é responsável por dividir o programa em overlays;
- Sistema operacional realiza o chaveamento desses pedaços entre a memória principal e o
- Década de 60: ATLAS → primeiro sistema com MV (Universidade Manchester - Reino Unido);
- 1972: sistema comercial: IBM System/370;

SO deve considerar características da

arquitetura;

Gerenciamento de Memória Memória Virtual (MV)

- □ Com MV existe a sensação de se ter mais memória principal do que realmente se
- O hardware muitas vezes implementa funções da gerência de memória virtual:

Gerenciamento de Memória Memória Virtual

- □ Espaço de Endereçamento Virtual de um processo é formado por todos os endereços virtuais que esse processo pode gerar;
- □ Espaço de Endereçamento Físico de um processo é formado por todos os endereços físicos/reais aceitos pela memória principal (RAM);

Gerenciamento de Memória Memória Virtual

- Um processo em Memória Virtual faz referência a endereços virtuais e não a endereço reais de memória RAM;
- □ No momento da execução de uma instrução, o endereço virtual é traduzido para um endereço real, pois a CPU manipula apenas endereços reais da memória RAM → MAPEAMENTO;

Gerenciamento de Memória Mapeamento MV MMU: Realiza mapeamento dos endereços lógicos (usados pelos processos) para endereços físicos; Endereço Lógico MMU Endereço Físico Memória Principal

Gerenciamento de Memória Memória Virtual

■ Técnicas de MV:

- Paginação:
 - Blocos de tamanho fixo chamados de **páginas**;
 - SO mantém uma lista de todas as páginas;
 - Endereços Virtuais formam o espaço de endereçamento virtual;
 - O espaço de endereçamento virtual é dividido em páginas virtuais;
 - Mapeamento entre endereços reais e virtuais realizado pela MMU;
- Segmentação:
 - Blocos de tamanho arbitrário chamados segmentos;

8

Gerenciamento de Memória Memória Virtual - Paginação

- Memória Principal e Memória Secundária são organizadas em páginas de mesmo tamanho;
- Página é a unidade básica para transferência de informação;
- <u>Tabela de páginas</u>: responsável por armazenar informações sobre as páginas virtuais:
 - argumento de entrada → número da página virtual;
 - argumento de saída (resultado) → número da página real (ou moldura de página - page frame);

9

Gerenciamento de Memória Memória Virtual

■ Exemplo:

- Páginas de 4Kb
 - □ 4096 bytes/endereços (0-4095);
- 64Kb de espaço virtual;
- 32Kb de espaço real;
- Temos:
 - □16 páginas virtuais;
 - 8 páginas reais;

Gerenciamento de Memória Memória Virtual

Espaço Virtual X Tamanho da Página

Espaço de Endereçamento Virtual	Tamanho da página	Número de páginas	Número de entradas nas tabela de páginas
2 ³² endereços	512 bytes	2 ²³	2 ²³
2 ³² endereços	4 kbytes	2 ²⁰	2 ²⁰
2 ⁶⁴ endereços	4 kbytes	2 ⁵²	2 ⁵²
2 ⁶⁴ endereços	64 kbytes	2 ⁴⁸	2 ⁴⁸

11

Gerenciamento de Memória Memória Virtual - Paginação Problemas: Fragmentação interna; Definição do tamanho das páginas; Geralmente a MMU que define e não o SO; Páginas maiores: leitura mais eficiente, tabela menor, mas maior fragmentação interna; Páginas menores: leitura menos eficiente, tabela maior, mas menor fragmentação interna; Tamanhos possíveis entre 512 bytes a 64 KB; Mapa de bits ou uma lista encadeada com as páginas livres;

Gerenciamento de Memória Memória Virtual - Paginação

- A Tabela de páginas pode ser armazenada de três diferentes maneiras:
 - Em um conjunto de registradores, se a memória for pequena;
 - Vantagem: rápido
 - Desvantagem: precisa carregar toda a tabela nos registradores a cada chaveamento de contexto
 - Na própria memória RAM → MMU gerencia utilizando dois registradores:
 - Registrador Base da tabela de páginas (PTBR page table base register): indica o endereço físico de memória onde a tabela está alocada;
 - Registrador Limite da tabela de páginas (PTLR page table limit register): indica o número de entradas da tabela (número de páginas);
 - Dois acessos à memória

Gerenciamento de Memória Memória Virtual - Paginação

- Em uma memória cache na MMU chamada Memória Associativa:
 - Também conhecida como TLB (Translation Lookaside Buffer - buffer de tradução dinâmica);
 - Hardware especial para mapear endereços virtuais para endereços reais sem ter que passar pela tabela de páginas na memória principal;
 - Melhora o desempenho;

18

Gerenciamento de Memória Memória Virtual - Paginação Estrutura de uma tabela de páginas (normalmente 32 bits) Número da Moldura de Página Identifica a página real; Campo mais importante;

Gerenciamento de Memória Memória Associativa (TLB)

Bit R	Página Virtual	Bit M	<i>Bit</i> s de Proteção	Página Física		
1	140	1	RW	31		
1	20	0	RX	38		
1	130	1	RW	29		
1	129	1	RW	62		
1	19	0	R X	50		
1	21	0	R X	45		
1	860	1	RW	14		
1	861	1	RW	75		
Até 32/64 entradas						

Gerenciamento de Memória Alocação de Páginas

- Quantas páginas reais serão alocadas a um processo?
- Duas estratégias:
 - Alocação fixa ou estática: cada processo tem um número máximo de páginas reais, definido quando o processo é criado;
 - O limite pode ser igual para todos os processos;
 - <u>Vantagem</u>: simplicidade;
 - <u>Desvantagens</u>: (i) número muito pequeno de páginas reais pode causar muita paginação (troca de páginas da memória principal); (ii) número muito grande de páginas reais causa desperdício de memória principal;

Gerenciamento de Memória Alocação de Páginas

- Alocação variável ou dinâmica: número máximo de páginas reais alocadas ao processo varia durante sua execução;
 - □ <u>Vantagem</u>: (i) processos com elevada taxa de paginação podem ter seu limite de páginas reais ampliado; (ii) processos com baixa taxa de paginação podem ter seu limite de páginas reais reduzido;
 - Desvantagem: monitoramento constante;

Gerenciamento de Memória Busca de Página

- Política de busca de página: determina quando uma página deve ser carregada para a memória
- Três estratégias:

 - <u>Paginação simples</u>:
 Todas as páginas virtuais do processo são carregadas para a memória principal;
 - Assim, sempre todas as páginas são válidas
 - Paginação por demanda (Demand Paging):
 - Apenas as páginas referenciadas são carregadas na memória principal;
 - Quais páginas virtuais foram carregadas → Bit de controle (bit de residência);
 - Página inválida:
 - Paginação antecipada (Antecipatory Paging)
 - Carrega para a memória principal, além da página referenciada, outras páginas que podem ou não ser necessárias para o processo

Gerenciamento de Memória Busca de Página

- □ Página inválida: MMU gera uma interrupção de proteção e aciona o sistema operacional;
 - Se a página está fora do espaço de endereçamento do processo, o processo é
 - Se a página ainda não foi carregada na memória principal, ocorre uma falta de página (page fault);

Gerenciamento de Memória Busca de Página

□ Falta de Página:

- Processo é suspenso e seu descritor é inserido em uma fila especial - fila dos processos esperando uma página virtual;
- Uma página real livre deve ser alocada;
- A página virtual acessada deve ser localizada no disco;
- Operação de leitura de disco, indicando o endereço da página virtual no disco e o endereço da página real alocada;

Gerenciamento de Memória Busca de Página

- □ Após a leitura do disco:
 - Tabela de páginas do processo é corrigida para indicar que a página virtual agora está válida e está na página real alocada;
 - Pager: carrega páginas especificas de um processo do disco para a memória principal;
 - O descritor do processo é retirado da fila especial e colocado na fila do processador;

31