Space Complexity

Dr Kamal Bentahar

School of Engineering, Environment and Computing Coventry University

12/12/2016

Space complexity

Space complexity

The **space complexity** of a TM that always halts is the maximum number of tape cells f(n) that a TM \mathcal{M} scans on any input of length n. We say that \mathcal{M} runs in space f(n) if its complexity is f(n)

Space Complexity

 $NSPACE(f(n)) = \{L | L \text{ is a language decided by an } O(f(n)) \text{ space nondeterministic TM} \}$

 $SPACE(f(n)) = \{L \mid L \text{ is a language decided by an } O(f(n)) \text{ space deterministic TM} \}$

Savitch's Theorem

Savitch's Theorem

For any function $f: \mathbb{N} \to \mathbb{R}^+$, where $f(n) \ge n$,

$$NSPACE(f(n)) \subset SPACE(f^2(n))$$

A nondeterministic TM that uses f(n) space can be converted to a deterministic TM that uses only $f^2(n)$!

PSPASE vs NPSPACE

PSPACE

PSPACE is the class of languages that are decidable in polynomial space on a deterministic TM

$$PSPACE = SPACE(1) \cup SPACE(n) \cup SPACE(n^2) \cup \cdots$$

By Savitch's theorem we have that

$$PSPACE = NSPACE$$

The Extended Chomsky Hierarchy

