CS & IT

Discrete maths
GRAPH THEORY

Lecture No. 1

By- SATISH YADAV SIR

TOPICS TO BE COVERED

01 Definition of Graph

...

02 Handshaking Lemma

. . .

03 Types of Graphs

...

04 No of Graphs

. . . .

05 Simple Graphs theorem

@ Satishsir P

G=([....], [.....])

Sjoint/point -> vertex/vertices.

Line/branch -> edge/edges.

> set of edges.

 e_{1} e_{2} e_{2} e_{1} e_{2} e_{2} e_{1} e_{1} e_{2} e_{2} e_{2} e_{1} e_{2} e_{1} e_{2} e_{1} e_{2} e_{2} e_{1} e_{2} e_{3} e_{2} e_{1} e_{3}

Graph G = (Y, E)

set of vertices

each edge must be associated with (mordon) pair of vertices.

d √ 1.

end vertices:

morder pair of vertices are called endvertices

Self-loop/loop > when end vertices are same edge -> 100p.

11 edges.

in cident point:

meeting point of vertex a edge va

$$d(v_4) = 3$$
 $d(v_1) = 1$.
 $d(v_3) = 3$ $d(v_5) = 4$.

Pendant verten:

dequee 1 verten

null graph .:

Set of isolated vertices

solated verten:

dequee Overten

$$d(v_1) = 2$$

$$d(v_3) = 2$$

$$d(v_2) = 3$$

$$d(v_5) = 1$$

$$pendant$$

$$vertex$$

$$d(v_4) = 0$$

$$(solated vertex)$$

$$d(v_1) = 1$$
 $d(v_2) = 3$
 $d(v_5) = 4$ $d(v_4) = 3$
 $d(v_3) = 3$

2

V4 O

dequee edge

$$2 = 2(1)$$

 $2+2 = 2(1+1)$
 $2+2+2=2(1+1+1)$
 $2+2+2=2(1+1+1)$
 $2d(vi) = 2e$

Thm1:
Sum of degrees of all vertices
is equals to twice the no-ofedges.

\(\d(\vi) = 2e.

no of odd degree vertices
will always be even.

Odd degvee vertex = 0

odd ... odd degree verten # odd degree vertex = 2.

odd...

1		lledges	1000.	_
	Simple	X	X	
	multigraph		X .	
	Pseudograph			

Thm3: In Simple Graph manimum degree < n-I.

$$n = Total vertices$$

$$= 4 (vertices)$$

$$n \cdot (n-1) = 2e.$$

 $e = \frac{n(n-1)}{2}$

Total vertices = n Degree & each vertex is n-1.

Total no of graphs n=4.

max no of edges = 6.

26

$$n = Total vertices$$

Total no of quaphs = $2^{\frac{n(n-1)}{2}}$

n > Total vertices.

how many graphs are possible with 4 vertices & 1 edge.

