

第二章 数据的表示和运算

现代计算机的结构

数据如何在计算机中表示?

运算器如何实现数据的算数、逻辑运算?

知识总览

十进制、二进制、八进制、十六进制

- ★ 其他进制 ——>十进制
- ★ 二进制、八进制、十六进制之间的相互转换
- ★ 十进制——>其他进制

真值和机器数

进位计数制

关注公众号【研途小时】获取后续课程完整更新 !

最古老的计数方法

罗马数字的几种 符号与对应权重

基本字符	I	V	X	L	С	D	M
相应的阿拉伯数字表示为	1	5	10	50	100	500	1000

基于"加法"思 想的计数方法

I-1、II-2、III-3、IIII-4 (IV)、V-5
X-10、XI-11、XII-12、XIII-13
MDCLXVI-1666、MDCCCLXXXVIII-1888

十进制计数法

古印度人发明的阿拉伯数字: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

符号反映权重

十进制:

975.36

置也反映权重

 $9 \times 100 + 7 \times 10 + 5 \times 1 + 3 \times 0.1 + 6 \times 0.01$

基于"乘法"思 想的计数方法

$$9 \times 10^2 + 7 \times 10^1 + 5 \times 10^0 + 3 \times 10^{-1} + 3 \times 10^{-2}$$

八进制发明者? (误)

"进位计数制"

十进制: $K_n K_{n-1} \dots K_2 K_1 K_0 K_{-1} K_{-2} \dots K_{-m}$

 $= K_n \times 10^n + K_{n-1} \times 10^{n-1} + \dots + K_2 \times 10^2 + K_1 \times 10^1 + K_0 \times 10^0$

 $+K_{-1} \times 10^{-1} + K_{-2} \times 10^{-2} + ... + K_{-m} \times 10^{-m}$

有0~9, 共十种符号。

关注公众号【研途小时】获取后续课程完整更新

推广: r进制计数法

r 进制:
$$K_{n} K_{n-1} \dots K_{2} K_{1} K_{0} K_{-1} K_{-2} \dots K_{-m}$$

$$= K_{n} \times r^{n} + K_{n-1} \times r^{n-1} + \dots + K_{2} \times r^{2} + K_{1} \times r^{1} + K_{0} \times r^{0}$$

$$+ K_{-1} \times r^{-1} + K_{-2} \times r^{-2} + \dots + K_{-m} \times r^{-m}$$

基数: 每个数码位所用到的不同符号的个数,r进制的基数为r

- ①可使用两个稳定状态的物理器件表示
- ②0,1正好对应逻辑值假、真。方便实现逻辑运算
- ③可很方便地使用逻辑门电路实现算术运算

二进制: 0,1

八进制: 0,1,2,3,4,5,6,7

十进制: 0,1,2,3,4,5,6,7,8,9

十六进制: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

二进制: $101.1 \rightarrow 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} = 5.5$

八进制: $5.4 \rightarrow 5 \times 8^0 + 4 \times 8^{-1} = 5.5$

十进制: $5.5 \rightarrow 5 \times 10^{0} + 5 \times 10^{-1} = 5.5$

十六进制: $5.8 \rightarrow 5 \times 16^{0} + 8 \times 16^{-1} = 5.5$

任意进制 > 十进制

r 进制:
$$K_n K_{n-1} \dots K_2 K_1 K_0 K_{-1} K_{-2} \dots K_{-m}$$
 位权
$$= K_n \times r^n + K_{n-1} \times r^{n-1} + \dots + K_2 \times r^2 + K_1 \times r^1 + K_0 \times r^0 + K_{-1} \times r^{-1} + K_{-2} \times r^{-2} + \dots + K_{-m} \times r^{-m}$$

二进制: 10010010.110 $1*2^7 + 1*2^4 + 1*2^1 + 1*2^{-1} + 1*2^{-2} = 146.75$

八进制: 251.5 2 * 82 + 5 * 81 + 1 * 80 + 5 * 8-1 = 169.625

2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2-1	2-2	2 -3
4096	2048	1024	512	256	128	64	32	16	8	4	2	1	0.5	0.25	0.125

二进制←→八进制、十六进制

如: 1111000010.01101

二进制 —> 八进制

3位一组, 每组转换成对应的八进制符号

1 7 0 2 . 3 2 八进制

二进制 -> 十六进制

4位一组, 每组转换成对应的十六进制符号

0011 1100 0010 . 0110 1000

3 C 2 . 6 8 十六进制

八进制—> 二进制 每位八进制对应的3位二进制

 $(251.5)_8 \rightarrow (010\ 101\ 001.\ 101)_2$

十六进制—> 二进制 每位十六进制对应的4位二进制

 $(AE86.1)_{16} \rightarrow (1010\ 1110\ 0110.\ 0001)_2$

各种进制的常见书写方式

二进制—— (1010001010010)2

1010001010010B

八进制—— (1652)8

十六进制—— (1652)16

1652H

0x1652

十进制—— (1652)10

1652D

十六进制

adj. hexadecimal;

十进制

n. decimalism

十讲制→任意讲制

十进制 —> 任意进制

r 进制:
$$K_n K_{n-1} \dots K_2 K_1 K_0 K_{-1} K_{-2} \dots K_{-m}$$

= $K_n \times r^n + K_{n-1} \times r^{n-1} + \dots + K_2 \times r^2 + K_1 \times r^1 + K_0 \times r^0 + K_{-1} \times r^{-1} + K_{-2} \times r^{-2} + \dots + K_{-m} \times r^{-m}$

如: 75.3 整数部分=75

任一数码位 $K_i < r$

如: 十进制
$$\longrightarrow$$
 二进制 $r = 2$

$$75 \div 2 = 37 \dots 1 \quad K_0 \qquad 4 \div 2 = 2 \dots 0 \quad K_4$$

$$37 \div 2 = 18 \dots 1 \quad K_1 \qquad 2 \div 2 = 1 \dots 0 \quad K_5$$

$$18 \div 2 = 9 \dots 0 \quad K_2 \qquad 1 \div 2 = 0 \dots 1 \quad K_6$$

$$9 \div 2 = 4 \dots 1 \quad K_3 \qquad 75D = 1001011B$$

$$(75)_{10} = (1001011)_{2}^{(\text{研途/hf})} \text{ 获取后续课}$$

王道考研/CSKAOYAN.COM

十进制→任意进制

十进制 -> 任意进制

r 进制:
$$K_n K_{n-1} \dots K_2 K_1 K_0 K_{-1} K_{-2} \dots K_{-m}$$

= $K_n \times r^n + K_{n-1} \times r^{n-1} + \dots + K_2 \times r^2 + K_1 \times r^1 + K_0 \times r^0 + K_{-1} \times r^{-1} + K_{-2} \times r^{-2} + \dots + K_{-m} \times r^{-m}$

如: 75.3 小数部分=0.3

$$(K_{-1} \times r^{-1} + K_{-2} \times r^{-2} + ... + K_{-m} \times r^{-m}) \times r = K_{-1} \times r^{0} + K_{-2} \times r^{-1} + ... + K_{-m} \times r^{-(m-1)}$$
 整数 小数

••••

十进制→二进制 (拼凑法)

十进制: 260.75、533.125

2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2-1	2 -2	2 -3
4096	2048	1024	512	256	128	64	32	16	8	4	2	1	0.5	0.25	0.125

真值和机器数

15 **→** 1111

8 **→** 1000

 $+15 \rightarrow 0 1111$

 $-8 \rightarrow 11000$

真值 机器数

真值: 符合人类习惯的数字

机器数:数字实际存到机器里的形式,正负号需要被"数字化"

▶ 原码、反码、补码、移码

知识回顾与重要考点

r进制数

基数=r,每个数码位可能出现r种字符。逢r进1

$$\begin{split} &K_{\rm n}\,K_{\rm n-1}\,\ldots\,K_{\rm 2}\,K_{\rm 1}\,K_{\rm 0}\,.\,K_{-1}K_{-2}\,\ldots\,K_{-m}\\ &=K_{\rm n}\,\times r^n+\,K_{\rm n-1}\times r^{n-1}+\cdots+K_{\rm 2}\times r^2+\,K_{\rm 1}\times r^1+K_{\rm 0}\times r^0\\ &+K_{-1}\times r^{-1}+K_{-2}\times r^{-2}+\,\ldots+K_{-m}\times r^{-m} \end{split}$$

r进制数—>十进制

r进制数的数值=各数码位与位权的乘积之和

- 二进制<一>八进制
- 每3个二进制位对应一个八进制位

进位计数值

二进制<一>十六进制

每4个二进制位对应一个十六进制位

注意"补位"

注意:有的十进制小数无法用二进制精确表示,如:0.3

十进制—>r进制

整数部分:除基取余法,先取得的"余"是整数的低位

小数部分:乘基取整法,先取得的"整"是小数的高位

真值:实际的带正负号的数值(人类习惯的样子)

真值和机器数

机器数:把正负号数字化的数(存到机器里的样子)

2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2-1	2 -2	2 -3
4096	2048	1024	512	256	128	64	32	16	8	4	2	1	0.5	0.25	0.125

中国古代的二进制系统

算命 十元一次 你算什么东西?

