CS1131 (Design and Analysis of Algorithms) Quiz-1

Time - 45 Minutes	
Name Roll No	0
 Q1. Which of the following is correct. Mark ALL the correct Answers: n/2 = ω(n) n/2 = Ω(n²) Both 1 and 2 are correct None of the options are correct 	Marks 1.0
Q2. A machine needs a minimum of 100 sec to sort 1000 names by quick s needed to sort 100 names will be approximately	
Q3. Prove that $n^3 - 3n^2 - n + 1 = \Omega(n^3)$	Marks 1.0
Q4. Huffman tree is constructed for the following data :{A,B,C,H,I} with 0.07, 0.02 and 0.17} respectively. Draw the tree:	frequency {0.14, 0.06, Marks 1.5 +0.5
11100110 is decoded as	

	5	1	1	8	8
(a) Connect (4,7). Write the modified array 0 1 2 3 4	5				
0 1 2 3 4	5				
		6	7	8	9
				Ma	rks 1.

b). Use an optimal algorithm to find out how many requests can be catered if the intervals are of requests are: R1 = (1, 3), R2 = (2, 5), R3 = (4, 6), R4 = (6, 7), R5 = (5, 9), R6 = (8, 10). Show the steps. **Marks 1.0**

Q7. Write a function for a fractional knapsack, assuming that the input arrays to this function have the items already sorted by their pi/wi ratios. The function should return the total profit obtained.

Marks 2.0

double GreedyKnapsack (int p[], int w[], int size){