From Data To Understanding

- · In machine learning, maintain critical perspective
 - · Making predictions is only part of the story
 - Also try to get some understanding of the domain
- Example
 - True statement: palm size negatively correlates with life expectancy
 - o The larger your palm size, the shorter your life (on average)
 - Why?
 - 。 Women have smaller palms than men on average
 - o Women live 5 years longer than men on average
 - Sometimes you need better model of your domain!

Bayesian Networks

- Bayesian Network
 - Graphical representation of joint probability distribution

- o Node: random variable
- Arc (X, Y): variable X has direct influence on variable Y
 Call X a "parent" of Y
- Each node X has conditional probability: P(X | parents(X))
- Graph has no cycles (loops by following arcs)
 - · Called "Directed Acyclic Graph" (DAG)

Network Shows Conditional Independence

- · Conditional independence encoded in network
 - Each node (variable) is conditionally independent of its non-descendants, given its parents
 - In network above Palm Size and Life Expectancy are conditionally independent, given Gender
 - o Formally: P(PS, LE | G) = P(PS | G) P(LE | G)
- Network structure provides insight about domain

Conditional Probability Tables

- Each node has conditional probability table (CPT)
 - For node X: P(X | Parents(X))
 - · Conditional independence modularizes joint probability:

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | \text{Parents}(X_i))$$

Efficient Representation

- Each node has conditional probability table (CPT)
 - Reduces number of parameters needed in model
 - Normally, need $2 \times 3 \times 3 1 = 18 1 = 17$ parameters
 - Here, need (2-1) + (6-2) + (6-2) = 9 parameters

Bayesian Network for Naïve Bayes

- Welcome back, Naïve Bayes...
 - Now with new and improved "Bayesian Network" flavor!

• Network structure encodes assumption:

$$P(X | Y) = P(X_1, X_2, ..., X_m | Y) = \prod_{i=1}^{m} P(X_i | Y)$$

• Full joint distribution can be computed as:

$$P(X,Y) = P(Y)P(X \mid Y) = P(Y)\prod_{i=1}^{m} P(X_i \mid Y)$$

"Evidence" in Bayesian Networks

- · In many machine learning examples:
 - We observe all $X_1,\,X_2,\,...,\,X_m$ input variables and predict single output variable Y
- In general case of probabilistic inference:
 - Have a set of random variables X₁, X₂, ..., X_m
 - Some of the variables X₁, X₂, ..., X_m are observed
 - Call observed variables E₁, E₂, ..., E_k (E for "evidence")
 - Want to determine probability of some set of unobserved variables given the observed evidence
 - Call unobserved variables we care about Y₁, Y₂, ..., Y_c
 - Formally, want: $P(Y_1, Y_2, ..., Y_c | E_1, E_2, ..., E_k)$

Evaluation of Evidence

· Consider the following Bayes Net:

- Determine P(A = T | B = T, R = T)
- Sum over unseen variables:

P(A = T | B = T, R = T) =
$$\frac{P(A = T, B = T, R = T)}{P(B = T, R = T)} = \frac{\sum_{E = T, F} P(A = T, B = T, R = T, E)}{\sum_{E = T, F} P(B = T, R = T, E, A)}$$

Evaluation of Evidence

· Consider the following Bayes Net:

- Determine P(A = T | B = T, R = T)
- · Note that joint probability decomposes as: P(A, B, E, R) = P(E)P(B | E)P(R)P(A | E, R)
- Plug in values from CPTs to compute joint probabilities

Probability Tree

· Model outcomes of probabilistic events with tree

· Useful for modeling decisions

• Payoffs: yes = p(1000000) + (1 - p)(-1), no = 0

Let's Play a Game

· Which choice would you make?

· Certain equivalent is how much game is worth to you

Utility

- \$20,000

 Utility U(x) is "value" you derive from x 0.5

- · Can be monetary, but often includes intangibles
 - 。 E.g., quality of life, life expectancy, personal beliefs, etc.

Risk Premium

· A slightly different game:

- Expected monetary value (EMV) = expected dollar value of game (here = \$10,000)
- Risk premium = EMV CE = \$2,000
 - o How much you would pay (give up) to avoid risk
 - 。 This is what insurance is all about
 - 。 It's also what the show "Deal or No Deal" is based on

Non-Linear Utility of Money

· These two choices are different for most people

Utility Curves Utility Curves Utility Dollars Utility curve determines your "risk preference"

• Can be different in different parts of the curve

Exponential Utility Curves

Many people have exponential utility curves

R ≈ highest value of Y for which you would play:

How Irrational Are You?

· Which option would you choose?

- How many chose B and D?
 - $_{\circ}\,$ You are inconsistent with utility theory (the Allais Paradox)

Micromort

- A micromort is 1 in 1,000,000 chance of death
 - How much would you need to be paid to take on the risk of a micromort?
 - How much would you pay to avoid a micromort?
 - o P(die in plane crash) ≈ 1 in 1,500,000
 - $_{\circ}$ P(killed by lightning) \approx 1 in 1,400,000
 - How much would you need to be paid to take on a decimort (1 in 10 chance of death)?
 - . If you think this is morbid, companies actually do this
 - o Car manufacturers
 - 。 Insurance companies

Let's Do a Real Test

- · Game set-up
 - · I will flip a fair coin
 - If "heads", you win \$50. If "tails", you win \$0
 - How much would you be willing to pay me to play?
 - 。\$1?
 - 。\$10?
 - 。\$20 ?
 - 。\$24.99?
 - 。\$25.01 ?
 - 。\$35 ?
 - Maximal value?
 - 。Come on down!
 - 。 How did you determine that value?

Just For Fun...

- · Say we consider two batters in baseball
 - Batting averages of Player A and Player B for 2 years:

		Year 1	Year 2	Combined
	Player A	.250	.314	.310
	Player B	.253	.321	.270

- So is Player B the better player?
- Is this possible?
- In fact, it happened:

	1995	1996	Combined
Derek Jeter	12/48 = .250	183/582 = .314	195/630 = .310
David Justice	104/411 = .253	45/140 = .321	149/551 = .270

• This is known as Simpson's Paradox

So Which Medicine Should You Choose?

- · Consider medicine to treat a disease:
 - Success rates of two medicines on disease:

	Medicine A	Medicine B
Success rate	273/350 = 78%	289/350 = 83%

- Seems reasonable to choose B
- But now, let's consider your gender:

	Medicine A	Medicine B
Female success	81/87 = 93%	234/270 = 87%
Male success	192/263 = 73%	55/80 = 69%
Overall success	273/350 = 78%	289/350 = 83%

- You're either male or female...
 - 。Results from gender preferences for different treatments