#### F-Measures

Prepared By: Dr.Mydhili K Nair, Professor, ISE Dept, RIT

**For: Machine Learning Elective Class** 

**Target Audience: Sem 6 Students** 

Term: Feb to June 2019

## Performance Measures

### Classification:

- Simple Accuracy
- Precision
- Recall

- F-beta measure
- ROC (and AUC)

## Regression:

- Sum of Squares Error
- RMS Error

- Mean Absolute Error

## Accuracy as a Performance Measure

- What is 95% accuracy?
  - Classification: 95 / 100 shoes correctly classified
  - Regression:Predict 95/100 house prices correctly



\$600,000

\$400,000 X \$599,999 X

## Limitations of Simple Accuracy

$$Accuracy = \frac{No.Samples\ Predicted\ Correctly}{Total\ No.\ of\ Samples}$$

What is wrong with this?



like def classifier(shoe): return False

$$Accuracy = \frac{9,990}{10,000} = 99.9\%$$

## Limitation with Accuracy

Is this tumor cancerous?



most are negative examples

Class Imbalance Problem



Accuracy = 
$$\frac{1,000 + 8,000}{10,000} = 90\%$$

(Predicted)

## **Confusion Matrix**

Diagnosia



10,000 Patients

(Actual)

|           | (i redicted) | Diagnosis              |                        |
|-----------|--------------|------------------------|------------------------|
|           |              | Diagnosed<br>sick      | Diagnosed<br>Healthy   |
| רמוופוווט | Sick         | 1000<br>True positives | 200<br>False Negatives |
|           | Healthy      | 800<br>False Positives | 8000<br>True Negatives |



Accuracy = 
$$\frac{100 + 700}{1000}$$
 = 80%

## **Confusion Matrix**



1,000 e-mails

(Actual)

|        | (Predicted) | Folder                |                        |
|--------|-------------|-----------------------|------------------------|
|        |             | Spam<br>Folder        | Inbox                  |
| E-mall | Spam        | 100<br>True positives | 170<br>False Negatives |
|        | Not spam    | 30<br>False Positives | 700<br>True Negatives  |



Diagnosed Sick

Diagnosed Healthy

Sick

Error Rate is very high. (1-Accuracy Rate) i.e. Off-diagonal values

False Negative





Healthy

False Positive







 Simple Accuracy is excellent when we have a Balanced Data Set

• It fails when the Dataset is "Imbalanced".

## Precision and Recall as Performance Measure

## **EVALUATION METRICS**



|               | p'<br>(Predicted) | n'<br>(Predicted) |   |
|---------------|-------------------|-------------------|---|
| p<br>(Actual) | True Positive     | False Negative    | X |
| n<br>(Actual) | False Positive    | True Negative     |   |



|               | p'<br>(Predicted) | n'<br>(Predicted) |
|---------------|-------------------|-------------------|
| p<br>(Actual) | True Positive     | False Negative    |
| n<br>(Actual) | False Positive    | True Negative     |



Medical Model False positives ok

False negatives **NOT** ok

Find all the sick people
Ok if not all are sick

Spam Detector
False positives **NOT** ok
False negatives ok

You don't necessarily need to find all spam But they better all be spam

**High Recall Model** 

**High Precision Model** 



## Precision

| ler |
|-----|
|     |

|          | Spam<br>Folder | Inbox |
|----------|----------------|-------|
| Spam     | 100            | 170   |
| Not spam | 30 🗶           | 700   |

Precision: Out of the all the e-mails, sent to the spam inbox, how many were actually spam?

Precision = 
$$\frac{100}{100 + 30}$$
 = 76.9%



E-mail

## Recall

Recall =

Folder

|          | Spam<br>Folder | Inbox |
|----------|----------------|-------|
| Spam     | 100            | 170   |
| Not spam | 30 🔀           | 700   |

Recall: Out of the all the spam e-mails, how many were correctly sent to the spam folder?

Recall = 
$$\frac{100}{100 + 170} = 37\%$$

True positives

True positives + False Negatives



## Precision

Diagnosis

|         | Diagnosed<br>sick | Diagnosed<br>Healthy |  |
|---------|-------------------|----------------------|--|
| Sick    | 1000              | 200 🐼                |  |
| Healthy | 800               | 8000                 |  |

Precision: Out of the patients we diagnosed with an illness, how many did we classify correctly?

Precision = 
$$\frac{1,000}{1,000 + 800}$$
 = 55.7%

Patients



**Patients** 

## Recall

Recall =

Diagnosis

|            | Diagnosed<br>Sick | Diagnosed<br>Healthy |  |
|------------|-------------------|----------------------|--|
| Sick       | 1000              | 200 🗶                |  |
| Is Healthy | 800               | 8000                 |  |

Recall: Out of the sick patients, how many did we correctly diagnose as sick?

Recall = 
$$\frac{1,000}{1,000 + 200}$$
 = 83.3%

True positives

True positives + False Negatives

## Precision and Recall



Medical Model

Precision: 55.7%

**Recall: 83.3%** 



Spam Detector

Precision: 76.9%

Recall: 37%

## F-Measures as Performance Measure

- Used on imbalanced datasets
- Harmonic Mean of Precision & Recall
- Used because simple mean fails

# Measuring Machine Learning Models:

F1 Score







Recall

- F<sub>1</sub>: evenly weighted
- F<sub>2</sub>: weights Recall more
- F<sub>0.5</sub>: weights Precision more

## **Credit Card Fraud**



Model: All transactions are good.

Precision = 100% Recall = 
$$\frac{0}{472}$$
 = 0%

Average = 50%

## Credit Card Fraud



Model: All transactions are fraudulent.

Precision = 
$$\frac{472}{284,807}$$
 = .016% Recall =  $\frac{472}{472}$  = 100%

Average = 50.008%

## Harmonic mean



Arithmetic Mean(Precision, Recall)

F1 Score = Harmonic Mean(Precision, Recall)

## F1 Score



F1 Score = 
$$\frac{2 \times 55.7 \times 83.3}{55.7 + 83.3} = 66.76\%$$

## F1 Score



Spam Detector Model

F1 Score = 
$$\frac{2 \times 76.9 \times 37}{76.9 + 37}$$
 = 49.96%

## F1 Score



Average 
$$= 80.35$$

F1 Score = 
$$\frac{2 \times 75 \times 85.7}{75 + 85.7} = 80\%$$

## $F_{\beta}$ Score





Precision

F<sub>0.5</sub> Score

F<sub>1</sub> Score

F<sub>2</sub> Score



System 1

- Precision: 70%

Recall: 60%

System 2

- Precision: 80%

- Recall: 50%

Comparing Systems

 $\beta \times \frac{1}{Precision} + (1 - \beta) \times \frac{1}{Recall}$ 

- Greater  $\beta$ , Greater importance to Precision

## Comparing Systems

#### System 1

- Precision: 70%
- Recall: 60%

- Precision: 80%
  - Recall: 50%

$$F_{\beta} = \frac{1}{\beta \times \frac{1}{Precision} + (1 - \beta) \times \frac{1}{Recall}}$$

$$\beta = 0.95$$

 $\beta = 0.5$ 

0.6942



$$\beta = 0.5$$
 F-Measure

$$F_{\beta} = \frac{1}{0.5 \times \frac{1}{0.7} + (1 - 0.5) \times \frac{1}{0.7}} = 0.6461$$

$$F_{\beta} = \frac{1}{0.5 \times \frac{1}{0.8} + (1 - 0.5) \times \frac{1}{0.5}} = 0.615$$

#### F1 Score on imbalanced data





Model 1 predicts well on multiple class classification on imbalanced given data, and F1 score is the metric to quantify its performance.

| QUIZ                                                                                                 | ln 1                                    | each of the f                          | following                           | scenarios w                  | hich<br>L                                                      |
|------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|-------------------------------------|------------------------------|----------------------------------------------------------------|
| #1: $FPR$ must be red $Precision$ must be high $F_{\mathfrak{g}}$ where $\mathfrak{g}$ must be high. | uced - choic<br>So F <sub>2</sub> choic | e of Fi, Fo.                           | c ·                                 |                              | MAZU                                                           |
| 1. Cancer De                                                                                         | tection:                                | If someon<br>do some ext<br>has cancer | e is false<br>na tests.<br>ic not d | If someone a<br>liagnosed th | sho achually<br>ey way die.                                    |
| 2. Convicting                                                                                        | to Prison:                              | People are<br>by USL<br>convictions    | innocent                            | - until prov<br>ant to avoid | en quilty<br>false                                             |
| Z. Comviency                                                                                         |                                         | convictions to not run                 | aw we wo                            | Recall must be               | t be reduced -<br>high<br>st be low. <b>So F<sub>0.5</sub></b> |
|                                                                                                      |                                         |                                        |                                     |                              |                                                                |