Chapter 47 Diagonalisation

47.1 Vecteurs propres et valeurs propres d'un endomorphisme

Exercice 47.1

Soient E un K-espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$. Montrer que si λ est valeur propre de $g \circ f$ alors λ est valeur propre de $f \circ g$.

Exercice 47.2

Soit $u : \mathbb{R}_n[X] \to \mathbb{R}_n[X], P \mapsto P(-4)X + P(6)$.

Déterminer le noyau, l'image, les valeurs propres et les espaces propres de u.

47.2 Polynôme caractéristique

47.3 Diagonalisation en dimension finie

Exercice 47.3

Soit E un \mathbb{K} -espace vectoriel de dimension 2 et $\mathcal{B} = (e_1, e_2)$ une base de E. Soit u l'endomorphisme de E dont la matrice dans la base \mathcal{B} est

$$A = \begin{pmatrix} 4 & 5 \\ -1 & -2 \end{pmatrix}.$$

Diagonaliser u et déterminer une matrice inversible P et une matrice diagonale D telles que $P^{-1}AP = D$.

Exercice 47.4

Déterminer les valeurs propres de la matrice

$$B = \begin{pmatrix} 0 & 2 & 1 \\ 16 & 4 & -6 \\ -16 & 4 & 10 \end{pmatrix}$$

et déterminer un vecteur propre pour chaque valeur propre. Déterminer ensuite une matrice P et une matrice diagonale D telle que $P^{-1}BP = D$.

Exercice 47.5

Les matrices suivantes sont-elles diagonalisables?

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Exercice 47.6

Diagonaliser la matrice

$$A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}.$$

Décrire précisément ses sous-espaces propres.

Exercice 47.7

Soit A une matrice carrée diagonalisable dont les valeurs propres appartiennent à \mathbb{R}_+ . Montrer qu'il existe une matrice B telle que $B^2 = A$.

Exercice 47.8

On considère l'endomorphisme f de \mathbb{R}^4 défini par la matrice

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ a' & b & 2 & 0 \\ a'' & b' & c & 2 \end{pmatrix}.$$

Quelles conditions les éléments a, a', \dots, c doivent-ils vérifier pour que f soit diagonalisable?

Exercice 47.9

Diagonaliser les matrices suivantes.

1.
$$A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 2 & -6 \\ -2 & 2 & -6 \end{pmatrix}$$
 5. $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 4 & 2 & 0 \end{pmatrix}$

$$\mathbf{2.} \ \ A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{3.} \ \ A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & -4 \\ 3 & 1 & 2 \end{pmatrix}$$

5.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 4 & 2 & 0 \end{pmatrix}$$

6.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
7. $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$
4. $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & -4 \\ 3 & 1 & 2 \end{pmatrix}$
8. $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix}$

8.
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix}$$

$$\mathbf{9.} \ \ A = \begin{pmatrix} 7 & -12 & -2 \\ 3 & -4 & 0 \\ -2 & 0 & -2 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$
 6. $A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$ **10.** $A = \begin{pmatrix} -2 & 8 & 6 \\ -4 & 10 & 6 \\ 4 & -8 & -4 \end{pmatrix}$

Exercice 47.10

Diagonaliser les matrices suivantes.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{3.} \begin{pmatrix} 0 & 2 & -2 & 2 \\ -2 & 0 & 2 & 2 \\ -2 & 2 & 0 & 2 \\ 2 & 2 & -2 & 0 \end{pmatrix}$$

4.
$$\begin{pmatrix} -5 & 2 & 0 & 0 \\ 0 & -11 & 5 & 0 \\ 0 & 7 & -9 & 0 \\ 0 & 3 & 1 & 2 \end{pmatrix}$$
 7.
$$\begin{pmatrix} 3 & -1 & 1 & -7 \\ 9 & -3 & -7 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 2 & -4 \end{pmatrix}$$

5.
$$\begin{pmatrix} 2 & 0 & 3 & 4 \\ 3 & 1 & 2 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 4 & -1 \end{pmatrix}$$

$$\mathbf{6.} \begin{pmatrix} 1 & -3 & 0 & 3 \\ -2 & -6 & 0 & 13 \\ 0 & -3 & 1 & 3 \\ -1 & -4 & 0 & 8 \end{pmatrix}$$

7.
$$\begin{pmatrix}
3 & -1 & 1 & -7 \\
9 & -3 & -7 & -1 \\
0 & 0 & 4 & -8 \\
0 & 0 & 2 & -4
\end{pmatrix}$$

8.
$$\begin{pmatrix} 0 & 0 & 2 & 3 \\ 0 & 0 & -2 & -3 \\ 2 & -2 & 0 & -1 \\ 3 & -3 & -1 & -3 \end{pmatrix}$$

Exercice 47.11

Soit *n* un entier naturel supérieur ou égal à 2 et soit Tr l'application linéaire qui à toute matrice de $\mathcal{M}_n(\mathbb{R})$, associe la somme de ses éléments diagonaux.

- **1.** Établir que $\mathcal{M}_n(\mathbb{R}) = \ker(\operatorname{Tr}) \oplus \operatorname{Vect}(I_n)$.
- **2.** Soit f l'application qui, à toute matrice M de $\mathcal{M}_n(\mathbb{R})$, associe

$$f(M) = M + \text{Tr}(M)I_n$$
.

Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.

Déterminer les valeurs propres de f. En déduire que f est un automorphisme diagonalisable de $\mathcal{M}_n(\mathbb{R})$.

3. Soit g l'application qui, à toute matrice M de $\mathcal{M}_n(\mathbb{R})$, associe

$$g(M) = M + \operatorname{Tr}(M)J,$$

où J désigne une matrice non nulle de $\mathcal{M}_n(\mathbb{R})$ dont la trace est nulle.

- (a) Établir que le polynôme $X^2 2X + 1$ est un polynôme annulateur de g.
- (b) g est-il diagonalisable?

47.4 Calcul des puissances de matrices

Exercice 47.12

On considère la matrice suivante de $\mathcal{M}_3(\mathbb{R})$

$$A = \begin{pmatrix} 13 & -12 & -6 \\ 6 & -5 & -3 \\ 18 & -18 & -8 \end{pmatrix}.$$

Montrer que cette matrice est diagonalisable. Expliciter une matrice D diagonale et une matrice P inversible telles que $A = PDP^{-1}$. Calculer A^k pour $k \in \mathbb{Z}$.

Exercice 47.13

Soit
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -4 & -2 \\ 4 & 12 & 5 \end{pmatrix}$$
.

- **1.** Diagonaliser A.
- **2.** Si $B \in \mathcal{M}_3(\mathbb{C})$ vérifie $B^2 = A$, montrer que B et A commutent. Déterminer l'ensemble $\{B \in \mathcal{M}_3(\mathbb{C}) \mid B^2 = A\}$.

47.5 Suites récurrentes

Exercice 47.14

On considère les suites (x_n) , (y_n) , (z_n) définies par

$$x_0 = -1$$
 $y_0 = 2$ $z_0 = 1$

et pour tout $n \in \mathbb{N}$,

$$x_{n+1} = 7x_n - 3z_n$$

$$y_{n+1} = x_n + 6y_n + 5z_n$$

$$z_{n+1} = 5x_n - z_n$$

Donner l'expression du terme général de ces trois suites en fonction de n.

Exercice 47.15

On considère les suites (x_n) , (y_n) , (z_n) définies par

$$x_0 = 4$$
 $y_0 = 5$ $z_0 = 1$

et pour tout $n \in \mathbb{N}$,

$$x_{n+1} = 4x_n + 3y_n - 7z_n$$

$$y_{n+1} = x_n + 2y_n + z_n$$

$$z_{n+1} = 2x_n + 2y_n - 3z_n$$

Donner l'expression du terme général de ces trois suites en fonction de *n*.

47.6 Équations différentielles

Exercice 47.16

Résoudre le système différentiel

$$y_1'(t) = 4y_1(t) + 5y_2(t)$$

$$y_2'(t) = -y_1(t) - 2y_2(t).$$

Déterminer les solutions vérifiant $y_1(0) = 2$ et $y_2(0) = 6$.

Exercice 47.17

Résoudre le système différentiel

$$\frac{dy_1}{dt} = -y_1 + y_2 + 2y_3$$

$$\frac{dy_2}{dt} = -6y_1 + 2y_2 + 6y_3$$

$$\frac{dy_3}{dt} = y_2 + y_3.$$

47.7 Lemme de décomposition des noyaux