Hybrid Evolutionary Algorithm: A Case Study on Graph Coloring

<u>吕志鹏</u> 教授,博士生导师

人工智能与优化研究所 所长

华中科技大学 计算机科学与技术学院

Graph Coloring

* Given an undirected graph G=(V,E), the graph coloring problem (GCP) consists of assigning a color c_i ($1 \le c_i \le k$) to each vertex such that adjacent vertices receive different colors and the number of colors used k is minimized.

Optimization or Decision?

- * GCP—Optimization Problem (优化问题, NP Hard):
 - * To find the smallest number of colors k.
- * k-Coloring—Decision Problem (判定问题,NP Complete):
 - * Given a **k**, we are asked whether there exists a coloring such that all the adjacent coloring constraints are satisfied.
- * The **Optimization** version of GCP can be solved by tackling a series of the **Decision** version of GCP problem with a gradually decreasing *k*. (优化问题与判定问题的转换)

* Thus, these two versions are equivalent to each other.

Solution Procedure

- * We starts from an initial k and solve the k-coloring problem. As soon as the k-coloring problem is solved, we decrease k by setting k to k-1 and solve again the k-coloring problem. (通过求解一系列越来越难的判定问题,最终求解原始的优化问题)
- * This process is repeated until no legal k-coloring can be found.
- * Smaller $k \rightarrow$ harder k-coloring problem. Thus, the solution approach just described solves thus a series of k-coloring problems of increasing difficulty.
- * We only consider the K-coloring problem in this presentation.

ILP Formulation

$$x_{v,c} = \begin{cases} 1 & \text{if vertex } v \text{ is coloured with colour } c \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{c=1}^k x_{v,c} = 1 \quad \forall \text{ vertices } v \in V$$

$$x_{u,c} + x_{v,c} \leq 1 \quad \forall \text{ colours } c \in K \quad \forall \text{ edges } \{u,v\} \in E$$

- * Given **k** colors, $x_{v,c}$ is the decision variables.
- * The first constraint requires that each vertex receives only one color.
- * The second constraint denotes that adjacent vertices should receive different colors.

Assignment Representation

- * A solution of k-coloring problem can be represented as a series of colors that each vertex receives:
- * $S = \{c_1, c_2, ..., c_n\}$ where c_v denotes the color of vertex v. It is required that for any $(u, v) \in E$, $c_u \neq c_v$.
- This representation is natural, but not intuitive and essential.

Grouping Representation

* The feasible solution of k-coloring problem can also be presented as a set of independent sets, where an independent set is a set of non-adjacent vertices.

- * $S = I_1 \cup I_2 \cup \cdots \cup I_k$, where
 - 1. $I_j \cap I_l = \emptyset$ for any j and l
 - 2. $I_1 \cup I_2 \cup \cdots \cup I_k = V$
 - 3. I_i is an independent set for any j.
- * Thus, the *k*-coloring problem becomes to partition the *N* vertices into *k* independent sets.

Applications

- * Mobile radio frequency assignment
- * Timetabling: Education, transportation, sports
- Register allocation
- * Crew scheduling
- Printed circuit testing
- Air traffic flow management
- Satellite range scheduling
- Routing and wavelength assignment in WDM networks

Local Search TabuCol

Search Space

- * In this paper, we adapt the **k-fixed penalty strategy** which is also used by many coloring algorithms. (固定k惩罚策略)
- * For a given graph G = (V; E), the number k of colors is fixed and the search space contains all possible (legal and illegal) k-colorings.
- * A k-coloring is represented by $S = \{V1, ..., Vk\}$ such that Vi is the set of vertices receiving color i.
- * Thus, if for all *Vi are independent sets*, then *S* is a legal *k*-coloring. Otherwise, *S* is an illegal (or conflicting) *k*-coloring.

Evaluation Function

The optimization objective is then to minimize the number of conflicting edges (referred to confict number hereafter) and find a legal k-coloring in the search space. (目标函数)

* Given a k-coloring S = {V1,...,Vk}, the evaluation function f counts the conflict number induced by S such that

$$f(S) = \sum_{\{u,v\} \in E} \delta_{uv}$$

where

$$\delta_{uv} = \begin{cases} 1, & \text{if } u \in V_i, v \in V_j \text{ and } i = j, \\ 0, & \text{otherwise.} \end{cases}$$

Initial Coloring

- * The initial solution of our algorithm is randomly generated, i.e., each vertex in the graph is randomly assigned a color from 1 to k.
- * Other greedy constructive heuristics are possible, like DSATUR, RLF, DANGER, etc.
- * However, we observe that strong local search algorithms are not sensitive to the initial solutions.

Neighborhood Moves

- * A neighborhood of a given k-coloring is obtained by moving a conflicting vertex u from its original color class Vi to another color class Vj (denoted by <u, i, j>), called "critical one-move" neighborhood. A vertex is conflicting means that at least one of its adjacent vertices has the same color. (只考虑冲突节点的移动)
- * Therefore, for a k-coloring S with cost f(S), the size of this neighborhood is bounded by $O(f(S) \times k)$.

An Example

* Conflicting pairs: (1,3), (1,4), (7,8), (5,6)

* Critical One-Move: Only considers vertices 1, 3, 4, 7, 8, 5, 6. Totally 7*2=14 moves.

Neighborhood Evaluation

- * In order to evaluate the neighborhood efficiently, we employ an incremental evaluation technique. (增量评估技术)
- * The effect of each move on the objective function can be quickly calculated by a special data structure.
- * Each time a move is carried out, only the move values affected by this move are updated accordingly.

Adjacent-Color Table

Vertex	Red V1	Green V2	Blue V ₃
1	<u>2</u>	1	0
2	1	<u>o</u>	1
3	<u>1</u>	1	0
4	<u>1</u>	2	0
5	0	2	<u>1</u>
6	0	0	<u>1</u>
7	1	<u>1</u>	1
8	2	<u>1</u>	1
9	0	2	<u>0</u>

- * This matrix M[u][i] (N*k) measures the number of adjacent vertices if vertex **u** receives color **i**.
- * Thus, the incremental move value of a move <u, i, j> can be quickly calculated as: $\Delta(u,i,j) = M[u][j] M[u][i]$

Updating of Adjacent-Color Table

Vertex	Red V1	Green V2	Blue V ₃
1	2	<u>1</u>	0
2	1-1=0	<u>0+1=1</u>	1
3	<u>1-1=0</u>	1+1=2	0
4	<u>1-1=0</u>	2+1=3	0
5	0	2	<u>1</u>
6	0	0	<u>1</u>
7	1	<u>1</u>	1
8	2	<u>1</u>	1
9	0	2	<u>0</u>

- * Move (1, v1, v2):
- * Only its adjacent vertices 2, 3 and 4 are affected, and only the v1 and v2 columns need to be updated.
- All old color (v1) columns decrease by 1.
- * All new color (v2) columns increase by 1.

Simple Local Search

- 4. Generate initial solution S, Calculate f(S)
- 2. Initialize the adjacent-color table M.
- 3. While {there exist improving moves}
- 3.1 Construct the neighborhood of S, denoted by N(S)
- 3.2 Calculate the Δ values of all critical one-moves
- 3.3 Find the best move with the least Δ value
- Perform the best move: $f' = f + \Delta_{best}$
- 3.5 Update the adjacent-color table M
 End

Tabu Search Escaping from Local Optimum

- * Tabu Search incorporates a tabu list as a "recency-based" memory structure to assure that solutions visited within a certain span of iterations, called tabu tenure, will not be revisited.
- * TS then restricts consideration to moves not forbidden by the tabu list, and selects a move that produces the best move value to perform.

Tabu Search提出者

Fred Glover

冯•诺伊曼理论奖得者

优化算法领域国际学术最高奖项 美国工程院院士 多个著名算法提出者:禁忌算法、 Path Relinking等 全球80多个机构和公司高级顾问

Tabu Search

* 1. What?

* 2. Tenure?

* 3. How to judge if a move is forbidden?

Attributes or Solution?

- * It should be noted that we generally forbid attributes of solutions, but not the solutions themselves, since it is too expensive to forbid solutions. (禁忌解的属性,而非解本身)
- * For the tabu list, once move <u, i, j> is performed, vertex u is forbidden to move back to color class Vi for the next tt iterations.

Tabu Tenure

* For the tabu list, once move <u, i, j> is performed, vertex u is forbidden to move back to color class Vi for the next tt iterations. (禁忌步长和禁忌内容)

* Here, the tabu tenure tt is dynamically determined by

$$tt = f(S) + r(10)$$

where r(10) takes a random number in $\{1,...,10\}$.

TabuTenure Table

Vertex	Red V1	Green V2	Blue V ₃
1	9	0	0
2	0	10	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0
9	0	0	0

- * At the begining of the search, the TabuTenure table is initialized to be zero.
- * once move <*u*, *i*, *j*> is performed, the value of Table[u][i]=TabuTenure.
- * Once the search progresses, the non-zero value of the table is decreased by one at each time.
- * In the following search, we can decide if a move <*u*, *i*, *j*> is tabu by checking if Table[u][j]>0.

Fast Implementation of TabuTenure Table

Vertex	Red V1	Green V2	Blue V3
1	1+10	0	0
2	0	2+15	0
3	0	0	0
4	0	0	3+12
5	0	0	0
6	0	0	0
7	0	4+10	0
8	0	0	0
9	0	0	5+12

- * The above Table[u][i] records the relative tabu tenure length. Why not record the absolute tabu tenure length?
- * Once move <*u*, *i*, *j*> is performed, the value of Table[u][i] = TabuTenure+Iter.
- In the following search, we can decide if a move <u, i, j> is tabu by checking if Table[u][j]>Iter.
- * In this way, the tabu tenure table can be updated in O(1).

Aspiration

- * If one move can override the best found solution found so far, it is accepted even if it is in tabu status.
- * This is because only the **attributes** but not **solutions** themselves are stored in the tabu table.

TS Algorithm

Generate initial solution S, Calculate f(S) 2. Initialize the adjacent-color table M. 3. While {stop condition is not met} Construct the neighborhood of S, denoted by N(S) 3.1 Calculate the Δ values of all critical one-moves 3.2 Find the best tabu and non-tabu moves with the least Δ value 3.3 If {the aspiration condition is satisfied} 3.4 perform the best tabu move, else perform the best non-tabu move Update f and the adjacent-color table M 3.5

End

TS Algorithm

- * Data Structures: Sol[N], f, BestSol[N], Best_f, TabuTenure[N][K], Adjacent_Color_Table[N][K]
- * Subfunctions:
 - Initialization(): Initialize the values of the data structures.
 - * FindMove(u,vi,vj,delt): find the best non-tabu or tabu move.
 - * MakeMove(u,vi,vj,delt): update the correponding values.
- * TabuSearch()

```
* { int u, vi, vj, iter = 0;

* Initialization();

* while( iter < MaxIter) {

* FindMove(u,vi,vj,delt);

* MakeMove(u,vi,vj,delt); }

* }</pre>
```

Find Move

29

FindMove(u,vi,vj,delt) * for(i=1:N) if(Adjacent_Color_Table[i][Sol[i]] > 0) { for (k = 1: K)if(k != Sol[i]) { calculate delt value of the move <i, Sol[i], k> if (Table[i][k] < iter) update the tabu best move; else update the non-tabu best move; }}} if(the tabu best move satisfies the tabu aspiration criterion) <u, vi, vj, delt> = the tabu best move;

<u, vi, vj,delt> = the non-tabu best move;

else

Make Move

```
* MakeMove(u,vi,vj, delt)

* {

* Sol[u] = vj;

* f = f + delt;

* Table[u][vi] = iter + f + rand()%10;

* Update the Adjacent_Color_Table;

* }
```

Tips

- * For both tabu and non-tabu moves, if there are multiple best moves, a random one is selected.
- * Aspiration criterion: it holds if both the following two conditions satisfy:
- * 1. the best tabu move is better than the previous best known solution; (最好的禁忌动作能改进历史最优解)
- * 2. the best tabu move is better than the best non-tabu move in the current neighborhood. (最好的禁忌动作优于最好的非禁忌动作)

Hybrid Evolutionary Algorithm

Main Scheme

Hybrid Evolutionary Algorithm (LS+EA)

Hybrid Evolutionary Algorithm

The hybrid coloring algorithm

```
Data: graph G = (V, E), integer k

Result: the best configuration found

begin

P=InitPopulation(|P|)

while not Stop-Condition () do

(s1,s2)=ChooseParents(P)

s=Crossover(s1,s2)

s=LocalSearch(s, L)

P=UpdatePopulation(P,s)

end
```

Crossover Operator (1)

Table 2. The crossover algorithm: an example.

parent	s_1	>
parent	s_2	
offsprin	ng a	9

АВС	DEFG	HIJ
CDEG	A <u>F</u> I	внЈ

 $V_1 := \{D, E, F, G\}$ remove D,E,F and G

АВС		ніј
С	ΑI	ВНЈ
DEFG		

parent
$$s_1$$

parent $s_2 \rightarrow$
offspring s

А <u>В</u> С		<u>H</u> I <u>J</u>
C	ΑI	внј
DEFG		

 $V_2 := \{B, H, J\}$ remove B,H and J

A C		I
С	ΛI	
DEFG	BHJ	

parent $s_1 \rightarrow$ parent s_2 offspring s

A C		I
<u>C</u>	<u>A</u> I	
DEFG	ВНЈ	

 $V_3 := \{A, C\}$ remove A and C

		Ī
	I	
DEFG	внј	A C

Crossover Operator (2)

- * A legal k-coloring is a collection of k independent sets.
- * With this point of view, if we could maximize the size of the independent sets by a crossover operator as far as possible, it will in turn help to push those left vertices into independent sets.
- * In other words, the more vertices are transmitted from parent individuals to the offspring within *k* steps, the less vertices are left unassigned.
- * In this way, the obtained offspring individual has more possibility to become a legal coloring.

Crossover Operator (3)

The GPX crossover algorithm

remove the vertices of V_l from s_1 and s_2

Assign randomly the vertices of $V - (V_1 \cup \cdots \cup V_k)$

end

HEA Algorithm Scheme

Algorithm 1 Pseudcode of the Hybrid Evolutionary Algorithm for k-Coloring

```
1: Input: Graph G
 2: Output: The best solution S^* found so far
 3: \{S_1, \ldots, S_p\} \leftarrow \text{Initial Population}
 4: for i = \{1, \dots, p\} do
 5: S_i \leftarrow \text{Tabu Search}(S_i)
 6: end for
 7: S^* = arg min\{f(S_i), i = 1, ..., p\}
 8: repeat
       Randomly choose two parent solutions \{S_{i1}, S_{i2}\}
 9:
       S_0 \leftarrow \text{Crossover\_Operator}(S_{i1}, S_{i2})
10:
      S_0 \leftarrow \text{Tabu Search}(S_0)
11:
     if f(S_0) < f(S^*) then
12:
          S^* = S_0
13:
14:
     end if
15:
       \{S_1,\ldots,S_p\}\leftarrow \text{Pool Updating}(S_0,S_1,\ldots,S_p)
16: until Stop condition met
```

图着色的高级玩法

更新冲突节点

- * Move (1, v1, v2): what are the new conflicting vertices?
- Vertices 3 and 4 becomes un-conflicting, while vertex 2 becomes conflicting
- Use an array to store the conflicting vertices and update the array after each move
- * Use Array to implement it with O(1) time complexity

更新冲突节点

```
    * Con[N]: 冲突节点数组,只有前Num有效
    * Pos[N]: 记录任意一个节点在Conf数组中的位置
    * 加节点V: Conf[Num]=V; Pos[V]=Num++;
    * 删节点V: Conf[Pos[V]]=Conf[Num];
    * Pos[Conf[Num]]=Pos[V];
    * Num---;
```

Num: 冲突节点数

- * 邻域大小: m*(k-1), m为冲突节点数, k为颜色数 (冲突节点维护技术: N->m)
- * 邻域动作时只选择禁忌最好的或者非禁忌最好的
- * 上述动作后,冲突节点减少2个,增加1个,原来14个邻域动作,现在变为12个
- * 哪些邻域动作发生了变化? 哪些动作的delt值发生了变化?

- * 1. 减少的邻域动作: 节点3,4到绿色、蓝色;
- * 2. 增加的领域动作: 节点2到红色、蓝色;
- * 3. delt值发生变化的领域动作:无。
- * 如果节点7与节点1相连,那么节点7移到红色的仇人数-1,移到绿色+1。即节点1的 邻居节点如果仍为冲突节点,它到红色的仇人数-1,移到绿色+1。
- * 既然大多数动作的delt值没有发生变化,那么最优的delt值也有可能未发生变化

- * 1. 减少的邻域动作直接删除
- * 2. 增加的领域动作重新计算并加入
- * 3. delt值发生变化的领域动作(即移动节点的邻居),分三种情况
- * a) 如果该节点在老颜色中,移到新颜色delt值+2,移到其它颜色delt值+1。
- * b) 如果该节点在新颜色中,移到老颜色delt值-2,移到其它颜色delt值-1。
- * c)如果该节点在其它颜色中,移到老颜色delt值-1,移到新颜色delt值+1,其它不变

- * 桶排序技术(增、删、移动与之前的数据实现冲突节点维护一致):
- * 辅助数据结构: Pos[N][k][k][2]

id	Delt值	邻域动作数	邻域动作(及delt值)
1	<=-4	0	
2	-3	0	
3	-2	4	
4	-1	1	
5	0	10	
6	1	12	••••••
7	2	12	••••••
8	3	25	
9	>=4	30	

- * 每次从动作数非O的第一个桶中随机选一个动作
- * 桶更新策略:
 - 1. 删掉的邻域动作要从桶中删掉;
 - 2. 增加的邻域动作要加到桶中;
 - 3. delt值发生变化的动作要在桶中移动到对应的桶

该策略可以节约多少时间:

邻域动作大小: m*(k-1)

更新的邻域动作数:(增、删冲突节点数)*(k-1)+移动节点的邻居节点仍为冲突节点数*2

- * 可以更懒吗?
- * 惰性更新桶的策略:
 - 1. 应该删除的邻域动作不用管
 - 2. 新增加的邻域动作直接加到桶中;
 - 3. delt值发生变化的动作只在桶中加新的动作,旧动作不动

师徒混合进化算法

Fig. 2: Diagram of HEAD

师徒混合进化算法

Algorithm 2: *HEAD* - second version of *HEAD* with two extra elite solutions

```
Input: k, the number of colors; Iter_{TC}, the number of TabuCol
          iterations; Iter_{cucle} = 10, the number of generations into one
          cycle.
   Output: the best k-coloring found: best
1 p_1, p_2, elite_1, elite_2, best \leftarrow init() /* initialize with
   random k-colorings */
2 generation, cycle \leftarrow 0
3 do
      c_1 \leftarrow GPX(p_1, p_2)
      c_2 \leftarrow GPX(p_2, p_1)
       p_1 \leftarrow TabuCol(c_1, Iter_{TC})
6
       p_2 \leftarrow TabuCol(c_2, Iter_{TC})
7
        elite_1 \leftarrow saveBest(p_1, p_2, elite_1) / \star best k-coloring of
8
       the current cycle */
        best \leftarrow saveBest(elite_1, best)
9
        if generation\%Iter_{cucle} = 0 then
10
            p_1 \leftarrow elite_2 /* best k-coloring of the
11
            previous cycle */
           elite_2 \leftarrow elite_1
12
            elite_1 \leftarrow init()
13
            cycle + +
14
       generation + +
15
while nbConflicts(best) > 0 and p_1 \neq p_2
```

高级局部搜索算法

- * 局部搜索算法500.5能算到48种颜色吗?
- * 500.5能算够非常稳定地算到47种颜色吗?
- * 局部搜索算法500.5能算到47种颜色吗?
- * 禁忌算法的局限和新实现: 格局检测
- * 节点是否可以回到老颜色应该取决于老颜色中它的"格局"是否发生了变化
- * 仅"格局检测"是不够的,还需要加权和平滑技术的配合使用

图和树的重点

- *图的基本理论: 度、握手定理
- *图的割边割点
- *二分图 (偶图) 的判断和应用
- * 图同构判断
- * Euler图、 Hamilton图的判断
- * 最短通路求解
- *图着色的模型
- * 树的基本性质(如节点数、内点数、叶子数的关系)
- *二叉树及应用应用(表达式树,前缀码)
- * 最小生成树

Thank You!