

漢大學 嵌入式接口技术一通信

2

硬件-通信(相互通道)

■ 硬件:

通信(相互通道)、输入(前向通道)、输出(后向通道)

■ 部件:

2020/6/8

传感器、执行器、人机界面、相互通信、电源

UART

- I2C
- SPI
- ■1-WIRE(单总线)

UART (Universal Asynchronous Receiver/ Transmitter)是一种通用的异步串行通信接口 ,用于在计算机和外部设备之间传输数据。UART 可以通过两根线(TXD和RXD)进行通信,通常用 于串口通信、调试和数据传输等应用。

I2C(Inter-Integrated Circuit)是一种串行通信协议,用于在芯片之间进行数据传输。12C总线由两根线(SDAMSCL)组成,可以连接多个设备,具有简单、可靠、高效的特点,广泛应用于嵌入式系统、传感器、存储器等领域。

SPI (Serial Peripheral Interface)是一种同步的串行通信协议,用于在芯片之间进行数据传输。SPI总线由4根线(MOSI、MISO、SCLK和CS) 组成,可以连接多个设备,具有高速、可靠、灵活的特点,广泛应用于嵌入式系统、存储器、传

1-WIRE(单总线)是一种串行通信协议,用于在芯片之间进行数据传输。1-WIRE总线只需要一根线(DO)即可实现数据的传输和控制,具有简单 低功耗、低成本等特点,广泛应用于温度传感 器、EEPROM等领域。

1串行通信协议基础知识

串行通信的特点

在串行通信中,只用一根通信线在一个方向上 传输信息,这根线上既要传送**数据信息**又要传送**联** 络信息,这是串行通信的首要特点。

为了能够识别在一根线上串行传送的信息流中 ,哪一部分是联络信息,哪一部分是数据信息,就 需要通信双方事先作出一系列的通信约定, 这就是 协议。因此, 串行通信的第二个特点是它的信息格 式必须事先用协议约定。

6

June 8, 2020

感器等领域。

1串行通信协议基础知识(续)

1串行通信协议基础知识(续)

1) 数据通信方式

串行通信中,数据通常是在两个站(如终端和微机)之间 进行传送,按照同一时刻数据流的方向可分成三种基本传送模 式: 全双工、双工和单工传送。

- ●单工通信:数据仅能从设备A到设备B进行单一方向的传输。
- ●半双工通信(Half duplex):数据可以从设备A到设备B进行 传输,也可以从设备B到设备A进行传输,但不能在同一时刻 进行双向传输。
- ●全双工通信(Full duplex):数据可以在同一时刻从设备A传 输到设备B, 或从设备B传输到设备A, 即可以同时双向传输。

发 收 В 信号地 (a) 单工 收 信号地 (b) 半双工 收B 发收 信号地 (c) 全双工

数据通信的三种传送模式

2) 串行通信方式

根据同步方式的不同,串行通信可分为异步 通信方式和同步通信方式。

(1) 异步通信方式

异步通信方式的特点是每发送一个字符前先 发送起始位,发送完字符后再发送结束位,以此 作为双方同步的依据。这种方式对硬件要求较宽 松, 电路简单, 但传输效率不高。

8

A JE A JE

9

June 8. 2020

June 8, 2020

同步串行通信方式中一次连续传输一块数据,

开始前使用同步信号作为同步的依据。由于连续传 输一个数据块, 故收发双方时钟必须相当一致, 否

则时钟漂移会造成接收方数据辨认错误。这种方式

下往往是发送方在发送数据的同时也通过一根专门

的时钟信号线同时发送时钟信息,接收方使用发送

方的时钟来接收数据。同步串行通信方式传输效率

高, 但对硬件要求高, 电路结构复杂。

(2) 同步串行通信方式

1串行通信协议基础知识(续)

1串行通信协议基础知识(续)

3) 串行通信协议

常采用的通信协议有两类: 异步协议和同步协议

(1) 起止式异步协议 起止式异步协议一帧数据的格式如下图所示

1串行通信协议基础知识(续)

由上述工作过程可以看到, 异步通信是按字符传输时, 传送字符是用起始位来通知接收方,以此来重新收发同步。 异 步协议一般用在数据速率较低的场合(小于 19,2kbps)。 在高速传送时,一般要采用同步协议。

异步通信时数据是按字符帧传送的,每帧数据包含有1个起 始位("0")、5-8个数据位、1个奇偶校验位(不一定需要) 和1-2个停止位("1"),每帧数据的传送靠起始位同步。一 帧数据位时间是固定的,而相邻两帧的数据间隔时间是不固定 的。在异步通信的数据传送中,传输线上允许空字符。异步通 信对字符的格式、波特率、校验位有确定的要求。

10

June 8, 2020

12

June 8, 2020

1串行通信协议基础知识(续)

• 字符的格式

1串行通信协议基础知识(续)

每个字符传送时,必须前面加一起始位 ,后面加上1、1.5或2位停止位。例如ASCII 码传送时,一帧数据的组成是:前面1个起 始位,接着7位ASCII编码,再接着一位奇偶 校验位,最后一位停止位,共10位。

■ (2) 同步协议

有面向字符和面向比特两种

- ①为了提高通信效率可以采用同步通信方式。同步传输采用 字符块的方式,减少每一个字符的控制和错误检测数据位, 因而可以具有较高的传输速率。
- ②与异步方式不同的是,同步通信方式不仅在字符的本身之 间是同步的,而且在字符与字符之间的时序仍然是同步的,
- 即同步方式是将许多的字符聚集成一字符块后, 在每块信息 (常称之为信息帧)之前要加上1~2个同步字符,字符块之后 再加入适当的错误检测数据才传送出去。在同步通信时必须 连续传输, 不允许有间隙, 在传输线上没有字符传输时, 要 发送专用的"空闲"字符或同步字符

4) 信息的校验方式

串行数据在传输途中,由干扰引起误码是在所难免的。如何发现 传输中的错误叫检错;发现错误后,如何消除错误叫纠错。

(1) 奇偶校验

在一个有8位的字节(byte)中,其中必有奇数个或偶数个的 "1"状态位。对于偶校验就是要使字符加上校验位有偶数个"1": 奇校验就是要 使字符加上校验位有奇数个"1"。例如数据 "00010011", 共有奇数个 "1", 所以当接收器要接收偶数个"1" 时(即偶校验时),则校验位就置为"1"(000100111-偶校验),反 之,接收器要接收奇数个"1"时(即奇校验时),则校验位就置为 "0"(00100110-奇校验)。

(2) 循环冗余码校验CRC (Cyclic Redundancy Check) 高级的通信协议(如同步串行通信协议)中一般采用循环冗余码CRC 检错、纠错。

5) 波特率

在串行通信中,是用每秒传送的位数即波特率(bps, bit/s)来表 示。因此, 1bps=1位/秒。 工业现场的国际标准一般定为9600bps

13

June 8, 2020

14

15

June 8, 2020

A jé x if

June 8, 2020

1串行通信协议基础知识(续)

6) 信号的调制与解调

进行长距离传输时,需要在发送端将数字信号转换成适 合通信链路传输的模拟信号,这一过程称为"调制",在接收 端将通信链路上传输的模拟信号还原成原来的数字信号,这一 过程称为"解调。

调制器(Modulator): 将数字信号转换为模拟信号送到通 信链路上。

解调器(Demodulator):将通信链路上的收到的模拟信号 转换成数字信号。调制器和解调器合二为一就是调制解调器 MODEM

MODEM是进行数据通信所需要的设备,因此把它叫做数据

通信设备(DCE: Data Communication Equipment)或数据装置 (Data Set)。

1串行通信协议基础知识(续)

调制的类型有:

振幅键控ASK(Amplitude Shift Keying:调幅) 频移键控FSK(Frequency Shift Keving: 调频) 相位键控PSK(Phase Shift Keying: 调相)

1串行通信协议基础知识(续)

FSK 调制基本原理示意图:

16

June 8, 2020

17

1串行通信协议基础知识(续)

1串行通信协议基础知识(续)

串行接口基本功能如下图所示

异步串行通信接口基本结构(发送和接收缓冲器数量) 异步串行通信接口也称为异步接收发送器,UART

■异步串行通信常见的错误

⑴ 奇偶校验错

接收到的字符奇偶状态和约定不符。

(2) 帧出错

一个字符从起始位到停止位的总数有误。

(3) 溢出错

接收的字符未读取,后续字符又到达,产生溢出错误

21

June 8, 2020

June 8, 2020

June 8, 2020

19

1串行通信协议基础知识(续)

1串行通信协议基础知识(续)

1串行通信协议基础知识(续)

RS-232C串行接口标准

RS-232C对电气特性、逻辑电平和各信号线功能都作了规定。

电半规定

数据发送TXD和数据接收RXD线上的信号电平规定为: 逻辑1 (MARK: 传号) = $-3 \sim -15$ V, 典型值为-12V; 逻辑0 (SPACE: 空号) = $+3 \sim +15$ V, 典型值为+12V。对于RTS、CTS、DTR和DCD等控制和状态信号电平规定为: 信号有效 (接通,0N状态) = $+3 \sim +15$ V, 典型值为+12V;

信号有效(按通,UN/AS)——3~—15V,典型值为—12V; 信号无效(断开,OFF状态)=—3~—15V,典型值为—12V。

电平转换

TTL/CMOS标准电平到RS232C要进行电平转换,通常使用MC1488/MC1489或MAX232等专用IC进行电平转换。后面提供的两个图为EIA-RS-232C与TTL电路之间进行电平转换典型电路。

传输距离及通信速率

1969年,EIA颁布的RS-232C标准规定: DTE和DCE之间最大传输 距离为15m, 传输数据速率不能高于20Kbps。

图 EIA-RS-232C与TTL电路电平转换 MC1488需外接±15v电源,易损坏

图 EIA-RS-232C与TTL电路电平转换

MAX232根据电源不同,分为5V和3.3V 根据外接电容分为3种:电解电容、瓷片电容、无电容

23

20

June 8, 2020

June 8, 2020

24

June 8, 2020

1串行通信协议基础知识(续)

1串行通信协议基础知识(续)

接口信号功能

1) 连接器

最常用的RS-232C连接器是DB-9型连接器,如下图所示。

2) RS-232C接口信号

信号定义:

June 8, 2020

(1)请求发送RTS(Request To Send):表示DTE请求DCE发送数据。 (2)清除(允许)发送CTS(Clear To Send):此信号表示DCE准备好接 收DTE发来的数据。是对请求发送信号的响应信号。

RTS/CTS这对联络信号用于半双工系统中发送方式和接收方式 间的切换。在全双工系统中发送方式和接收方式间的切换, 因配置 双通道,故不需要RTS/CTS联络信号,应该使其接高电平。

(3)数据装置准备好DSR(Data Set Ready):此信号有效(ON 状 态)时表明MODEM处于可以使用的状态。

(4)数据终端准备好DTR(Data Terminal Ready):此信号有效 (ON状态) 时表明数据终端可以使用。

(5) 载波检测DCD (Data Carrier Detection): 此信号用来表示 DCE已接通通信信道,即本地MODEM检测到通信链路另一端(远 地)的DCE送来的载波信号,通知DTE准备接收数据。

(6) 振铃指示RI (Ringing): 当MODEM检测到线路上有振铃呼 叫信号时, 使该信号有效(ON状态), 通知DTE已被呼叫, 是否 接听呼叫由DTE决定。

(7) 发送数据TxD(Transimitted Data): 通过TxD线计算机将串 行数据发送到DCE。

(8)接收数据RxD(Received Data):通过RxD线计算机接收从DCE 送来的串行数据

(9) SG: 信号地。

信号线的连接

A JE A JE

26

1) 远距离连接

远距离连接需要加调制解调器MODEM,如下图所示。

27

June 8, 2020

25

June 8, 2020

1串行通信协议基础知识(续)

1串行通信协议基础知识(续)

2) 近距离连接

近距离连接不用MODEM,如下图所示。

1串行通信协议基础知识(续)

之处, 主要有以下四点:

由于RS-232-C接口标准出现较早, 难免有不足

(1)接口的信号电平值较高,易损坏接口电路的 芯片,又因为与TTL电平不兼容故需使用电平转换 电路方能与TTL电路连接。

(2) 传输速率较低,波特率为20Kbps。

(3) 接口使用一根信号线和一根信号返回线而构 成共地的传输形式,这种共地传输容易产生共模 干扰, 所以抗噪声干扰性能弱。

传输距离有限,最大传输距离标准值为50 英尺,实际上也只能用在15米左右。

针对RS-232-C的不足,于是就不断出现了一些新的 接口标准, RS-485就是其中之一, 它具有以下特点:

1) RS-485的电气特性:

逻辑"1"以两线间的电压差为+2~+6v表示; 逻辑"0"以两线间的电压差为-2~-6v表示。

接口信号电平比RS-232-C降低了,就不易损坏接口电路 的芯片, 且该电平与TTL电平兼容,可方便与TTL电路连 接。

28 29 June 8, 2020 June 8, 2020 June 8, 2020

1串行通信协议基础知识(续)

2) RS-485接口中,收发器采用平衡发送和差分接收,即在发 送端,驱动器将TTL电平信号转换成差分信号输出:在接收端 ,接收器将差分信号变成TTL电平,因此具有抑制共模干扰的 能力。接收器能够检测低达200mV的电压,具有高的灵敏度, 故数据传输距离可达千米以上。

3) RS-485最大的通信距离约为1219M,最大传输速率为10Mbps,传输速率与传输距离成反比,在100Kbps的传输速率下,才可以达到最大的通信距离,如果需传输更长的距离 ,需要加485中继器。 RS-485总线一般最大支持32个节点,如果使用新型的485芯片,可以达到128个或者256个节点, 最大的可以支持到512个节点。实际并不会使用,不利于维 护。工程上需分组处理。

因RS-485接口具有良好的抗噪声干扰性,长的传输距离和多 站能力等优点使其成为首选的串行接口。 因为RS485接口组成的 半双工网络,一般只需两根连线,所以RS485接口均可直接采用屏 蔽双绞线传输。 RS485接口连接器采用DB-9的9芯插头座, 与智能 终端RS485接口采用DB-9(孔),与键盘连接的键盘接口 RS485采 用DB-9(针)。

除RS485外,类似的还有RS422/423协议,目前比较少用。

RS485应用注意事项:

极性、最远端端匹配电阻(各110欧)、T型线长度(<3.4M)、线路保护

31

32

June 8, 2020

RS485保护电路

June 8, 2020

RS485 T型接线与匹配电阻

串行通信协议应用注意事项

- 1、接收与死机(超时处理、重新初始化、接收缓冲区防溢出)
- 2、停止位(又叫数据保护时间)位数与可靠通信(有效 通信速率、保障接收方的数据处理时间)
- 3、波特率精度(± 2.5%、外置振荡器、配置选择与通信精度)与 可靠通信
- 4、通信协议、帧格式、收发切换时间及校验
- 5、帧间隔(字符帧、通信协议帧)
- 6、波特率与通信距离

课后学习Modbus通讯协议,写出提高串行通信可靠性的 注意事项及分析。 (需提交)

34

35

36

硬件-通信(相互通道)

2 I2C 总线

IN UNIVERSITY

2 I2C 总线(续)

UART

- T2C
- SPT
- 1-WIRE(单总线)

■ I2C (Inter-Integrated Circuit) 总线是一种由PHILIPS公司(现更名为NXP)针对MCU需要而研制的两线式串行总线,用于连接 MCU及其外围设备。

I2C总线最主要的优点是其简单性和有效性。

由于接口直接在组件之上, 因此I2C总线占用的空间非常小, 减 少了电路板的空间和芯片管脚的数量,降低了互联成本。

总线的长度可高达25英尺(约7.6m),并且能够以100Kbps的最大 传输速率支持40个组件。

另一个优点是,它支持多主控(multi-mastering),其中任何能够 进 行发送和接收的设备都可以成为主总线。一个主控能够控制信 号传输和时钟频率。当然,在任何时间点上只能有一个主控。

I2C总线系统组成

I2C总线是由数据线SDA (Serial DAta line) 和时 钟SCL (Serial Clock Line)构成的串行总 线,可发送和接收数据

在CPU与被控IC之间、IC与IC之间进行双向 传送,最高传送速率400kbps

各种从设备均并联在这条总线上,但就像电话 机一样只有拨通各自的号码才能工作, 因此每 个设备都有唯一的地址

在信息的传输过程中, I2C总线上并接的每一设备 既是主设备(或从设备)又是发送器(或接收器), 这取决于它所要完成的功能

37

June 8. 2020

38

39

2020/6/8

A jé a dj

June 8, 2020

总线(续) 2 I2C 总线(续)

I2C总线是多主系统:系统可以有多个I2C节点设备组成

任何一个设备都可以为主I2C;

但是任一时刻只能有一个主I2C设备,I2C具有总线仲裁功能。

主I2C设备发出时钟信号、地址信号和控制信号。 系统要求:

- 1) 各个节点设备必须具有I2C接口功能;
- 2) 各个节点设备必须共地
- 3) 两根信号线必须OC并接上拉电阻。

图 多I2C设备接口示意图

I2C总线的状态和信号

1) 空闲状态

SCL和SDA均处于高电平状态,即为总线空闲状态

2) 占有总线和释放总线

器件若想使用总线应当先占有它, 占有总线的主控器 向SCL线发出时钟信号。数据传送完成后应当及时释放 总线,即解除对总线的控制(或占有),使其恢复成空闲状 态。

3) 开始/启动信号(S)

启动信号由主控器产生;在SCL信号为高时, SDA 产生一个由高变低的电平变化,产生启动信号。

2 I2C 总线(续)

4) 结束/停止信号(P)

当SCL线高电平时,主控器在SDA线上产生一个由低电平向高电平 跳变,产生停止信号。启动信号和停止信号的产生见下图。

5) 应答/响应信号(A/ACK)

应答信号是对字节数据传输的确认。占1位,数据接收者接收 1字节数据后,应向数据发出者发送一个应答信号。对应于SCL第9个应答时钟脉冲,若SDA线仍保持高电平,则为非应答信号 (ACK/NACK)。 低电平为应答,继续发送;高电平结束发送。

6) 控制位信号

占1位, I2C主机发出的读写控制信号, 高为读、低为写(对 I2C 主机而言)。控制位(方向位)在寻址字节中。

图 启动信号和停止信号的产生

42

41

June 8, 2020

June 8, 2020

2 I2C 总线(续)

I2C 总线(续)

7) 地址信号

为从机地址,占7位,如下表所示,称之为"寻址字节",各字段含义如下:

D7	D6	D5	D4	D3	D2	D1	D0
DA3	DA2	DA1	DA0	A2	A1	A0	R/W

器件地址(DA3---DA0):是I2C总线接口器件固有的地址编码,由器件生产厂家给定。如I2C总线EEPROM AT24C××器件的地址为1010等。

引脚地址(A2、A1、A0):由I2C总线接口器件的地址引脚A2、A1、A0的高低来确定,接电源者为1,接地者为0。 读写控制位/方向位(R/W):1表示主机读,0表示主机 写。 7位地址和读写控制位组成1个字节(寻址字节)。

8) 等待状态

2 I2C 总线(续)

在I2C总线中,赋予接收数据的器件有使系统进行等待状态的权力, 但等待状态只能在一个数据字节完整接收之后进行。

例如, 当进行主机发送从机接收的数据传送操作时, 若 从机在接收到 一个数据字节后,由于中断处理等原因而不能 按时接收下一个字节,从机 可以通过把SCL下拉为低电平,强行使主机进入等待状态。在等待状态下 主机不能发送数 据,直到从机认为自己能继续接收数据时,再释放SCL 线,使系统退出等待状态,主机才可以继续进行后续的数据传送。

I2C总线基本操作

串行数据SDA和串行时钟SCL线在连接到总线的器件 间传递信息。

每个器件都有一个唯一的地址标识,无论是MCU、 LCD 驱动器、存储器或键盘接口。

都可以作为一个发送器或接收器,由器件的功能决定 。很明显, LCD驱动器只是一个接收器, 而存储器则 既可以接 收又可以发送数据。

器件除了能看作发送器和接收器外,在执行数据传输 时它 也可以被看作是主机或从机。

主机是初始化总线的数据传输并产生允许传输时钟信 号的器件,此时任何被寻址的器件都被认为是从机。

43

June 8, 2020

44

45

June 8. 2020

June 8, 2020

2 I2C 总线(续)

术 语

发送器

接收器

主机,

从机

仲裁

同步

多主机

2 I2C 总线(续)

2 I2C 总线(续)

启动和停止条件

在SCL 线是高电平时, SDA 线从高电平向低 电平切换,这个情况表示启动条件

当SCL是高电平时, SDA 线由低电平向高电平切 换,表示停止条件

启动和停止条件一般由主机产生。总线在起始 条件后被认为处于忙的状态, 在停止条件的某 段时间后, 总线被认为再次处于空闲状态 如果产生重复启动条件而不产生停止条件,总线 会一直处于忙状态

47

I2C总线数据传输格式

(1) 一般格式:

S 从I2C地址(7位)_ R/W 传输数据 A P

(2) 写操作格式:

| A | 数据1 | A | 数据2 | A | | 数据n | A/A | P | S 从I2C地址

红色起始信号S、地址信号、控制信号W、各个数据、 结束 信号P, 均为主I2C设备发送、从I2C设备接收; 黑色的 应答信号 A/A由从I2C设备发送、主I2C设备接收。

(3) 主控制器读操作格式:

S 从I2C地址R A 数据1 A 数据2 A

红色的信号均为主I2C设备发送、从I2C设备接收;黑色的信号均为从I2C设备发送、主I2C设备接收。

46

述

发送数据到总线的器件

从总线接收数据的器件

被主机寻址的器件

初始化发送产生时钟信号和终止发送的器件

同时有多于一个主机尝试控制总线但不破坏报文

两个或多个器件同步时钟信号的过程

是一个在有多个主机同时尝试控制总线但只允许

其中 一个控制总线并使报文不被破坏的过程

June 8, 2020

June 8, 2020

I2C 总线(续)

2 I2C 总线(续)

I2C应用注意事项

(4) 主控制器读/写操作格式:

A 数据1 A 数据2

由于在一次传输过程中要改变数据的传输方向,因 此起始信号和寻址字节都要重复一次,而中间可以不要 结束信号。

在一次传输中,可以有多次启动信号。

标准模式I2C 总线规范的扩展

标准模式I2C总线规范在80年代初期已经存在。它规定数据传输 速率可高达100kbit/s,而且7位寻址。这个概念在普及中迅 速成长。今天它已经作为一个标准被全世界接受,而且Philips Semiconductors和其他供应商提供了几百种不同的兼容IC。

为了符合更高速度的要求以及制造更多可使用的从机 地址给数量 不断增长的新器件,标准模式I2C总线规范不断升级。到今天它 提供了以下的扩展:

快速模式位速率高达400kbit/s

高速模式(Hs模式)位速率高达3.4Mbit/s

10位寻址允许使用高达1024个额外的从机地址

1、ACK与死机(标准为永久等待,实际要加超时判错)

2、帧间隔与正常通信(保护时间)

3、不是所有芯片都支持广播地址

4、7位与10位地址

5、SCL、SDA 一定要开路输出(注意配置端口)

6、时钟速率与通信距离、EMC

7、结束与复位

8、方向切换时间

9、主协议的软件模拟

51

June 8, 2020

49

June 8, 2020

50

硬件-通信(相互通道)

- UART
- T2C
- SPT
- 1-WIRE(单总线)

串行外设接口总线

- SPI (Serial Peripheral Inte rface———串行外设接口) 总线是 Motorola 公司推出的一种同步串行外设接口,它用于MCU与各种外围设备 以串行方式进行通信(8位数据同时同步地被发送和接收),系统可配置为 主或从操作模式。
- 外围设备包括LCD、OLED 显示驱动器或A/D 转换器、FLASH存储器、RF等。
- SPI系统可直接与各个厂家生产的多种标准外围器件直接接口,它只需4条 线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机 输入数据线MOSI 和低电平有效的从机选择线CS(SS)。
- SPI 有较高的数据传送速度, 主机方式最高速率可达5Mb/s , 目前不少外 围器件都带有SPI 接口。在大多数应用场合中,使用1个MCU作为主机,控 制数据向1 个或多个从外围器件的传送。从器件只能在主机发命令时,才 能接收或向主机传送数据。

SPI 总线系统的组成

52

53

SPI 总线时序

- 当SPI 工作时,在移位寄存器中的数据逐位从输出引脚(MOSI)输出(高位在前),同时从输入引脚(MISO)接收的数据逐位移到移位寄存器(高位在前)。发送一字节后,从另一个外围器件接收的字节数据进入移位寄存器中。主SPI的时钟信号(SCK)使传输同步。
- SPI 总线有以下主要特性:全双工、3 线同步传输;主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等。 其典型时序图如图所示

用GPIO口线模拟SPI 操作

■对于没有SPI接口的MCU来说,可使用软件来模拟SPI的操作,包括串行时钟、数据输入和输出。

SPI 注意事项

■对于不同的串行接口外围芯片,它们的时钟时 序是不同的。

56 57

硬件-通信(相互通道)

- UART
- I2C
- SPI
- ■1-WIRE(单总线)

1-WIRE

- Dallas 1-Wire串行接口
- ■复位与初始化

1-WIRE

59

60

2020/6/8

2020/6/8

58

2020/6/8

1-WIRE

- 处理流程
- 通过1-Wire 端口访问协议如下:
- 1、初始化
- 2、ROM 功能命令
- 3、PIO 功能命令
- 4、数据

■ 初始化

■ 1-Wire总线上的所有数据传输均从初始化过程开始。初始化序列由主机发 送的复位脉冲和从机发送的应答脉冲组成。应答脉冲用于通知总线主机从 器件已挂接在总线上,并已准备就绪。

■ 1-Wire ROM 功能命令

- 一旦总线主机检测到一个在线应答脉冲,就会发出所支持的7条ROM功能命 令中的一个。所有ROM功能命令的长度都是8位
- Read ROM 读取的8位家族码、唯一的48位序列码和8位CRC 码。该命令只适 用于总线上只有一个从器件的情况。如果总线上连接了多个从器件,那么 当所有从器件都试图在同一时刻发送数据时就会发生数据冲突(漏极开路产 生"线与"结果),最后导致从机读取的家族码和48 位序列码与CRC码不匹
- Match ROM 64 位ROM 码,总线主机利用该命令可以访问多点总线上某个特 定的器件。只有其内部ROM 码与主机发出的64 位ROM 码(包括外部地址) 正确匹配的器件才会响应随后的存储功能命令,而与64 位ROM 码不匹配的 其它从器件均等待下一个复位脉冲。 62

Search ROM [F0h]

■ 当系统启动初始化时,总线主机可能不知道1-Wire 总线上挂接从器件的数 量, 也不知道各个器件的ID码。利用总线的"线与"特性, 总线主机可用 排除法来确定所有从器件的ID码。为得到ID码的各个位,总线主机从注册 码的最低有效位开始发送三个时隙。在第一个时隙中,参与查询的从器件 输出自身器件ID码的真值。在第二个时隙中,参与查询的从器件输出其ID 码的反码。第三个时隙中,由主机写入所选位的原码。所有与主机写入位 不匹配的从器件都将不再参与搜索。如果主机读取到的从器件的原码和补 码均为0,那么,总线主机将认为至少存在两个以上的从器件。选择将1或0 写入从器件,总线主机的ROM码树就出现了分支。完成最低有效位到最高有 效位的整个循环后,总线主机就得到了一个从器件的ID码。其余从器件的 ID码可由另外的操作检测出来。更详细的有关Search ROM命令的介绍,请 参阅应用笔记187: 1-Wire 搜索算法,其中包括一个设计实例。由于当 一个或多个地址输入与GND端相连时, DS2413的ROM CRC命令无效, 因此建 议创建1-Wire器件清单时进行两次搜索。

63

2020/6/8

61

■ Skip ROM [CCh]

- 在单点总线系统中, 总线主机可使用该命令直接访问 PIO而不需要提供从器件的64 位ROM 码,从而节省时 间。如果总线上挂接有多个从器件,并且在Skip ROM 命令后紧跟着发出一个Read 命令,那么总线上的多 个从器件就会同时传输数据,从而发生冲突(漏极开 路下拉产生"线与"结果)。
- Resume [A5h]
- 为了最大程度提高多点网络中的数据吞吐量,可以使用Resume 命令。执行 该操作时首先检查RC 位的状态,如果RC 标志为1,则直接传送PIO控制功 能命令,类似于Skip ROM 命令。将RC 位置位的唯一方法是执行Match ROM 、Search ROM 或Overdrive Match ROM 命令,一旦RC 位为1,便可用 Resume Command 功能反复访问该器件。为了防止总线上的多个器件同时响 应该Resume Command 功能, 当访问总线上的其它器件时将会清除RC 位。

Overdrive Skip ROM [3Ch]

- 在单点总线中,总线主机可通过Overdrive Skip ROM 命令在不知道从器件 64 位ROM 码的情况下访问PIO,从而节省时间。与普通Skip ROM 命令不同 的是, Overdrive Skip ROM 命令可将DS2413设置为高速模式 (OD = 1)。 执行了此命令后, 所有通信将运行在高速模式下, 直到主机发送一个最短 持续时间为480 μs 的复位脉冲把总线上的所有从器件重新设置为标准速度 (OD = 0) 为止。
- 对于多点总线, Overdrive Skip ROM命令将会把所有支持高速模式的从器 件设置为高速模式。随后,为了寻址到支持高速模式的特定器件,必须在 高速模式下发出一个复位脉冲, 然后发出Match ROM或Search ROM 命令序 列,这将加快搜索过程。如果总线上有多个支持高速模式的从器件,并且 在Overdrive Skip ROM命令后跟随着一个Read命令,那么当多个从器件同 时发送信号时,总线上就会发生数据冲突(漏极开路下拉产生一个"线与 "结果)。

64

65

■ 主机发出Overdrive Match ROM 命令之后、再以高速模式的速率发送64 位ROM 码,这使其可在多点总线上寻址到一个特定的DS2413,并同时将其设置为高速模式。只有内部ROM码与主机发出的64位ROM码匹配的DS2413才会响应随后的PIO功能命令。已经被前面的Overdrive Skip命令或 Overdrive Match命令设为高速模式的从机将一直保持高速模式。所有支持高速模式的从机在持续时间最小为480μs 的复位脉冲后回到标准速率。Overdrive Match ROM命令适用于单点或多点总线。

67

2020/6/8 65 2020/6/8