

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

The Branner Geological Library

LELAND · STANFORD · JVNIOR · VNIVERSITY

James Esprills

The Branner Geological Library

LELAND STANFORD SIVNIOR VNIVERSITY

James Efhills

.

•

:

.

.

.

.

39.22 5974 • •

.

•

SPECIAL REPORT

ON

COAL:

Showing its Distribution, Classification and Cost Delivered over Different Routes to various points in the

STATE OF NEW YORK.

And the principal Cities on the Atlantic Coast,

BY

S. H. SWEET,

Late Deputy Engineer and Surveyor of the State of New York.

STANFORD LERKARY

TRANSMITTED TO THE LEGISLATURE MARCH 15, 1865.

NEW YORK:
D. VAN NOSTRAND, 192 BROADWAY.
1866.

54

210187

vaagel geotgat?

No. 71.

IN SENATE,

March 18, 1865.

COMMUNICATION

FROM THE STATE ENGINEER AND SURVEYOR, TRANSMIT-TING A SPECIAL REPORT ON COAL.

STATE OF NEW YORK:
Office of State Engineer and Suryeyor,
Albany, March 18, 1865.

To the Hon. Thos. G. ALVORD,

Lieut. Gov. and President of the Senate:

Sir—I have the honor herewith to transmit to the Legislature a Report on Coal, showing its distribution, classification and cost delivered over different routes to various points in this State, and the principal cities on the Atlantic coast, as prepared by S. H. Sweet, late Deputy State Engineer and Surveyor.

Yours respectfully,

W. B. TAYLOR,

State Engineer and Surveyor.

Hon. Wm. B. Taylor,
State Engineer and Sun

State Engineer and Surveyor:

DEAR SIR—During the past summer I devoted my leisure time to the investigation of the subject of Coal—its distribution, classification and cost, delivered over different routes to various points in this State and the principal cities along the Atlantic coast. The length of routes to market, and the cost of transportation were determined with great care and are believed to be reliable.

The subject of transportation in connection with an article in such great demand cannot be too carefully considered. It is evident that every available route should be opened and every facility offered for cheapening transportation from the coal mines. The coal fields are practically inexhaustible, and the labor for mining abundant. Transportation is therefore the main item in connection with this growing necessity.

The mistaken policy of the State of Pennsylvania, in selling her canals, not only placed herself at the mercy and interests of private corporations, but by this act imposed heavy burdens upon the coal consumers of this and adjoining States—they being compelled to submit to the combinations of companies who connect the cheap with expensive routes of transportation. By this method the coal consumers are deprived of the direct benefits of canal transportation. In justice, Pennsylvania should impose restrictions upon these unjust monopolies.

With the view of throwing some light upon this subject, I have grouped together such facts, from the most reliable sources, as have appeared to have an important bearing on

4 REPORT OF THE STATE ENGINEER AND SURVEYOR ON COAL.

this question, believing that thereby I might contribute something of substantial service to the public at large. I therefore submit the result of my labors to your judgment for such disposition as you may consider them entitled to.

For the cost of bituminous and anthracite coal (gold at par), see pages 30, 35, 38 and 46. The average cost of labor and materials have not increased since 1861 more than 100 per cent; hence, by doubling the cost, as shown in the tables referred to, gives the wholesale price of coal for 1864, delivered on the docks.

Upon this basis, and selecting to each place two of the cheapest routes, the following shows the average cost of coal per ton for 1864:

			•	Anthra	cite.
New York	\$7	68		\$ 6	75
Albany				. 7	10
Utica		33		6	94
Syracuse		86		6	53
Rochester	6	09		6	94
Buffalo		86 ·		7	70

Very respectfully,

Yours, etc.,

S. H. SWEET.

REPORT ON COAL.

ORIGIN, DISTRIBUTION AND CLASSIFICATION OF COAL.

To modern Geologists we are indebted for the key to the origin, distribution and classification of coal, and for systematizing and bringing directly into practical use many great and valuable discoveries that otherwise would have proved comparatively worthless.

Formerly, every Geologist formed his theory, based mainly upon his own discoveries; but more recent investigations have swept away all unsatisfactory conclusions, and brought the science into the one great channel of practical utility, by classifications into stratigraphical periods—each recognized by its own peculiar rocks, plants and animals.

Thus we find the coal measures only in the Carboniferous age in the sixth period before the age of man, or half-way between that and the Azoic, or the age destitute of organic life. The formations of that age embrace sandstone, shales, limestone, conglomerates, together with beds of coal.

In the following Physical history of the Globe, (as arranged by Geologists,) the geological time of the formation of the earth's crust is divided into six great ages, viz: the Azoic, Silurian, Devonian, Carboniferous, Reptilian and Mammalian.

The first is characterized by all absence of organic or animal life; the second by the deposit of the salt beds; the third by fishes, growth of marine plants, and the deposit of Petroleum or Rock oil; the fourth by formation of the continents from the sea, the rank growth of fresh water plants, and the deposit of the

coal beds; the fifth by Reptiles, and the sixth the age of Man and quadrupeds.

The following are the sub-divisions of Geological time, and order of succession of strata composing the earth's crust, beginning with the Azoic, or age destitute of organic life.

2d. Silurian or Age of Mollusks—Embracing the Potsdam period (of Potsdam sandstone and Calciferous sand rock); Trenton period (of Chazy limestone, Trenton, Black River and Birdse'ye limestone); Hudson period (of Utica shale, Hudson River group); Niagara period (of Oneida conglomerate, Medina sandstone, Clinton group and Niagara group); Salina period (of Saliferous or salt beds); Lower Helderberg period (of Lower Helderberg group).

3d. Devonian, or Age of Fishes and the Old Red Sandstone—Embracing the Oriskany period (of Oriskany sandstone); Corniferous period (of Canda-galli grit, Schoharie grit and Upper Helderberg limestone); Hamilton period (of Marcellus shale and Hamilton group); Chemung period (of Portage group, Chemung group and Catskill red sandstone); Catskill period (of Catskill red sandstone.

4th. Carboniferous, or Age of Coal Measures—Embracing the sub-Carboniferous period (of Mountain limestone); Carboniferous period (of Millstone grit and the coal measures); Peruvian period (of red sandstone, marls and magnesia limestone).

5th. Reptilian, or Age of Reptiles—Embracing the Triassic period (of Connecticut River sandstone with foot-prints, Bunter sandstein, Muschelkalk and Kuper); Jurassic period (of Stonesfield slate, Oxford group, Portland stone, Purbeck and Wealden); Cretaceous period (of Greensand, lower and upper chalk, with flints).

6th. Mammalian, or Age of Man and Quadrupeds—Embraces the Tertiary and Post-Tertiary periods.

Origin of Coal.

Geologists have determined the vegetable origin of coal, but until of late years differed as to the deposits of the Carboniferous strata, in which triple deposits of coal are repeated three or four times through a thickness of many thousand feet.

In the Chemung period, immediately preceding the Carboniferous, all that existed of America was a line of hills from Nova Scotia to the far west, forming a long, narrow island—the Alleganies and Rocky Mountains not then in existence. Stratified

deposits were formed by gradual abrasion, leaving low, marshy lands with sand barriers, similar to the New Jersey sand-shores enclosing marshes. As rock oil is formed by distilling marine plants in confined bodies of salt water, this undoubtedly is the period when the bulk of this substance was deposited. The earth then, more than at present, underwent slow or rapid subsidence and upheaval, causing the ocean, in repeated successions, to burst the sand barriers, covering the rank, undecayed vegetation of the salt marshes with sand, thus excluding the atmosphere, and leaving the process to nature of distilling the sea-plants by the application of internal heat, the sand forming into rock preventing the escape of vapor. (For Petroleum, see Appendix E.)

The Carboniferous age (immediately succeeding the Chemung period) is that fixed by Geologists when the continents were formed by repeated upheavals, and characterized by the rank growth of fresh water as well as marine plants, the former forming the beds of coal at this period all over the world. At this time the whole of the middle continent of America was covered by a vast inland sea. Growth and decay of fresh water plants, in succession, followed for centuries, depositing Bituminous matter in the gradual reclaiming of the continent by depressions and upheavals, which, when confined between alternate stratas of earth and rock, and subjected to internal heat, became coal.

The dislocations that followed the upheaval of the Appalachian ranges confined large bodies of water, which, in escaping, carried away the loosened strata of coal formations, which accounts for the absence of coal in a large proportion of the South.

There are several varieties of coal, all formed by chemical action on wood and vegetable matter. When exposed to moisture and air, it is converted into a powder called mould, and this, when covered, confines the gases, and being acted upon by internal heat, becomes coal; the longer the process the greater proportion of carbon in the residue. Thus:

```
Coking coal, =C20, H9, 0 considered the richest.

Splint, or Cannel Coal, =C24, H13, 0

Wood, or Brown =C33, H21, 016

=C36, H22, 022

water, =C33, H27, 024
```

The quality of coal is based upon its amount of carbon and absence of hydrogen.

The varieties of coal are arranged into two groups—Bituminous and Anthracite. The latter is hard and compact; its specific

gravity varies from 1.3 to 1.75, and contains from 80 to 90 per cent of carbon. The Lehigh and Pittston coal, of Pennsylvania, are the best specimens of this coal in this country. In some varieties of anthracite, bitumen is present, and gradually passes into bituminous coal, which varies according to the amount of bitumen.

Mineral coal is produced by long continued decomposition of wood and wood coal, by which carbonic acid, water and carburetted hydrogen are separated. When the whole of the hydrogen is removed, in the form of carburetted hydrogen, the residue must be anthracite.

Mineral coal is widely distributed over the world. It is found in France, Spain, Portugal, Belgium, Germany, Austria, Sweden, Poland, Russia, India, China, Madagascar, Van Dieman's Land, Borneo, East India Islands, New Holland, Chili, and an excellent stratum of coal in New Zealand three feet thick.

The most extensive deposits known are in the United States, where there are four great areas. One commences on the north, in Pennsylvania and south-eastern Ohio, and sweeping south over Western Virginia and Eastern Kentucky and Tennessee, to the west of the Appalachians, it continues to Alabama near Tuscaloosa. It has been estimated to cover 63,000 square miles.

A second coal area (the Illinois) lies adjoining the Mississippi, and covers a large part of Illinois, the western part of Indiana, and a small north-west part of Kentucky. It is but little smaller than the preceding.

A third area occupies a portion of Missouri west of the Mississippi. A fourth area covers the central portion of Michigan. There is also a small coal region in Rhode Island.

It is calculated by the best authorities that the United States has one square mile of coal field to every 15 square miles; Great Britain, one to 30; Belgium, one to 22½, and France, one to every 200 square miles of surface.

Multiplying these areas by observed and assumed depths, the cubic measure, in tons of coal reserves, in the great coal fields of the world, are as follows:

	Tons.
Belgium, asserted at depth 60	36,000,000,000
France, "	59,000,000,000
British Islands, average depth 35	142,500,000,000
Pennsylvania, " 25	316,400,000,000
Pennsylvania, 66 66 25 Appalachian, 66 66 25	1,337,500,000,000
Indiana, Illinois and W. Kentucky.	-,,,
Indiana, Illinois and W. Kentucky, average depth 25	1,277,000,000,000
Iowa, Missouri, Kansas, Nebraska,	_,,,,
Indian Territory and Texas, depth. 10	739,000,000,600
All productive coal fields, N. America	4,000,000,000,000

COAL FIELDS OF THE BRITISH ISLANDS.

It is contended with much seeming truth (says Brandt), that coals were in use by the ancient Britons.

According to Stowe, coal was first discovered at Newcastle-upon-Tyne in 1234, some say earlier and others in 1239. Sea coal was prohibited from being used in London and vicinity as prejudicial to health, and wood substituted by the smiths in 1273. Coal was first made an article of trade from Newcastle to London in 1831.

Notwithstanding the many complaints against its use, it was generally burned in London in 1400; but not in common use in England until 1625.

The following statement shows the quantity of coal consumed in London in the following years:

650	373,300	tons
700	739,000	"
750		"
800	1,900,000	. 66
810	2,306,000	,
820	2,730,000	**
830	3,706,000	
835	5,360,000	"
840	6,152,000	"

The workable area of the coal fields of the British Islands embraces over 5,700,000 acres, yielding annually from 80 to 86 million tons of coal.

The total quantity mined from 1854 to 1863 inclusive, was 726,751,566 tons. This quantity in bulk would make a solid column 660 feet square at the base, and 37,800 feet high, and by weight equal to 482 million cords of wood. Its evaporative efficiency would equal 1200 million cords of wood, to produce which would require the clearing of 12 millions acres of the best timbered land.

The quantity lifted from the mines in 1863 was 86,292,215 tons, which, if placed on a ten acre lot (660 feet square), would make a column 4,580 feet high, and equal in weight to 58 million cords of wood. Its evaporative efficiency would equal 146 million cords, which to produce would require the clearing of 1½ million acres of land.

The following statement shows the number of tons of coal lifted from the British mines, and estimated value at the place of production:

		Tons mined.	Val. per ton at the mines.	Total value of coal mined.
Year of	1854	64,661,401	\$1 21	\$78,240,294
66	1855	61,453,079	1 26	77.988,212
"	1856	66,645,450	1 21	80,653,092
66	1857	65,394,707	1 06	79,127,591
"	1858	65,008,649	1 21	78,660,464
"	1859	71,979,765	1 24	87,095,514
"	1860	80,042,698	1 21	96,851,663
"	1861	83,635,214	1 21	101,198,606
"	1862	81,638,388	1 21	98,782,586
"	1863	86,292,215	1 15	99,573,0 53
т	otals	726,751,566	\$1 20	\$878,171,075

The question of exhaustion of coal in the British Islands has been very much discussed of late years, and the subject of parliamentary inquiry. Upon the mere question of quantity they may be considered inexhaustable, but especial regard must be had to the quality and depth from which it must be taken. The expense of mining the inferior coal can only be borne by its conjunction with the superior quality. Inferior coal cannot be profitably raised from pits of from 1,100 to 1,400 feet in depth. It is computed by men in England of the highest respectability and talent, that at the present rate of consumption, the coal fields will be thoroughly exhausted of the lapse of from 200 to 300 years from this date. It is also demonstrated, that owing to the great depth which must be penetrated, the consequent increased temperature of the air will make it almost impossible for man to labor in those depths. In the Yorkshire coal fields the temperature in the main roads is from 50 deg. to 60 deg., and side roads 60 deg. to 65 deg., and at the workings 64 deg. to 72 deg. In the deep mines of the northern coal fields it is 66 deg. at the bottom of the shafts, and 70 deg. at the workings; and in the deepest pits the average range is from 78 deg. to 80 deg., and occasionally reaches to 89 deg. Great economy has been effected of late years in the English mines by saving and converting to coke, for locomotive engines and iron works, the pulverized coal formerly wasted at the rate of a million tons a year; and it has become so useful in this condition that large lumps are now crushed for coking to meet the increased demand.

The operation of mining is the same as in Pennsylvania, but more extensive and at greater depths. The points for sinking

shafts are indicated by test borings. The shafts are vertical, and from 10 to 15 feet in diameter. The first portion to the first strata of rock is walled to keep the earth from falling in, and the remainder (average 250 feet) is lined or cribbed with cast iron, to prevent the shaft being submerged with water from numerous springs met with in the progress of sinking. In the northern coal fields the shafts are rarely less than 150 feet deep, and many have the great depth of 1,800 feet, sunk at an expense in some cases of \$240,000. When the seam intended to be worked is reached, broad passages, from 12 to 14 feet wide, are driven from the shaft in opposite directions, to the full depth of the seam, exposing the rock above. A gallery or drip-head for collecting the water is then excavated, usually inclosing the limits of the coal pit won by that shaft. From this gallery numerous others are driven at right angles of from 24 to 36 feet apart, and communicating with each other, thus entirely exposing the coal, and presenting the form of a regularly laid out village, with its avenues and alleys. In many of the most extensive mines two shafts are sunk 45 to 60 feet apart, and connected at the bottom, one called the downcast for admitting the pure air, and the upcast for the passage of the foul air from the mines. When single shafts are used they are divided by air-tight partitions, answering the same purpose, but affording less facilities for raising the coal. The air is set in motion and maintained through the mines by keeping a fire or furnace constantly burning at the foot of the upcast, producing ordinarily a velocity of from two to two and a half feet per second at the workings. It is estimated that the minimum quantity of fresh air required for each man is from 15 to 18 cubic feet per minute.

The Hetton Colliery has three shafts, two downcast, each 12 feet in diameter and 900 feet deep, and one upcast 14 feet in diameter and 1056 feet deep. Three furnaces are kept constantly burning at the foot of the upcast, introducing 168,850 cubic feet of fresh air into the mines per minute, at a cost of eight tons of coal per day. This body of air is divided into sixteen currents, each traversing a circuit of four and a-half miles, the longest circuit being nine miles, and producing a velocity, at the workings, of three to five feet per second. Other methods are now in use to facilitate the ventilation of mines, such as the introduction of drums, 22 feet in diameter, with radial compartments that revolve on the top of towers constructed over the downcast and upcast shafts; also substituting a high-pressure steam boiler for the fur-

nace, that expels the air with great force from the shaft, by heating the air with jets of steam.

The coal measures of England are generally between the old red sandstone at the bottom, and new red sandstone at the top; and the series of rocks met with in descending are beds of sandstone, shale, clay and coal, in repeated alternations to a great depth. The lowest coal seams generally rest on the mountain limestone, and seldom extend below this into the old red sandstone. The Pit coal is obtained from depths of from 600 to 1500 feet, the miner traversing two or three miles in subterranean passages to his work. The Ten-yard coal is peculiar to the South Staffordshire mines, where it is taken from a depth of from 900 to 1000 feet, and found beneath the lower new red sandstone. The following table will show the areas and valuable characteristics and extent of the coal seams of mines of the British Islands:

Table of the principal Coal-fields of the British Islands.

		WORKABL	ons.	aring			
COAL FIELDS.	NAME OF DISTR	ICT.	Area in acres.	Number of seams.	Est'ed total thick- ness in feet.	Thickest bed in ft.	Thickness of coal bearing measures, in feet.
*	Late Color of Color	-		100	17-17	1	_
Newcastle	Northumberland & Dur Cumberland, Westmon			18	80	7	
	W. Riding		80,000	7		8	2,000
Appleby (3 basins)	do		17,000				
Sebergham (Cumb.)	do			1	3	3	
Kirk by Lonsdale	do		2,500	4	17	9	
Lancashire	Lancashire, Flintshire	& North	127 147	100	(12)	22	30.00
	Staffordshire		380,000	75	150	10	6,000
Flintshire	do	• • •	120,000	5	39	9	200
Pottery, N. Staffordshire.	do		40,000	24	38	10	
Cheadle, do	do	4. "	10,000				*****
Great Yorkshire	Yorkshire, Nottingham Derbyshire		650,000	12	32	10	
Darley & Shirley Moor	do		1,500		0.2	100	
Colebrook Dale	Shropshire & Worceste	rahira	21,000	17	40	::::	
Shrewsbury	do		16,000	3			
Brown Clee-hill	do		1,300	3	13.7		
Titterstone, do	do		5,000				
Lickey Hill	do		650	10000	1.1		
Bewdley	• do		45,000				
Dudley & Wolverhampton.	South Staffordshire		65,000	11	67	40	1,000
Nuneaton	Warwickshire & Leices		40,000	9	30	15	1,000
Ashby-de-la-Zouch	do		40,000	5	33	21	
Bristol	Somersetshire & Glouce	stershire		50	90		
Forest of Dean	do		36,000	17	37		
Newent, Gloucestershire	do	- ::	1,500	4	15	7	
South Welsh	South Welsh		600.000	30	100	9	12,000
Three Basins	Scottish Coal Fields		1,000,000	84	200	13	6,000
Mid-Lothian	do			24	94		4,400
East-Lothian	do			60	180	13	6,000
Kilmarnock & Ayrshire	20.			3	40	30	0,000
Fifeshire	27	01610110				21	50000

Table of the principal Coal-fields—Continued.

		WORKABLI	ons.	bearing t.		
COAL FIELDS.	NAME OF DISTRICT.	Area in acres.	Number of seams.	Est'ed total thick- ness in feet.	Thickest bed in ft.	Thickness of coal be measures, in feet.
Dumfries	Scottish Coal Fields	200,000 150,000 1,000,000	10 9	55 40 23	6 6	

The facilities for working the 10-yard coal is far different than obtaining coal from thin seams. The seams actually worked in England vary from 10 inches to 30 feet, and the average does not exceed $6\frac{1}{2}$ feet. As the thickness of the seam diminishes the expense rapidly increases. But little disadvantage is experienced until the seam gets below four feet, when neither ponies nor asses can be used. The labor then must be performed in a stooping position, and by boys mostly. The following paper by Mr. Cossham gives much valuable information in regard to the extent, cost and method of working thin seams in England:

Extract of the proceedings of the "South Wales Institute of Engineers," at Swansea, September, 1861:

Mr. Cossham, after a few prefatory remarks, said that the paper which he was about to read was an eminently practical and important one. Probably more than one-half of the coal which nature had implanted in the bowels of the earth, existed in thin seams under two feet thick, and when they remembered that the annual drain upon the supply reached no less than 80,000,000 tons, they would at once see the necessity of doing all in their power to produce economy in the working—to develop their resources, and to utilize, as far as they possibly could, every portion of those resources. He was fully convinced in his own mind that fully 50 per cent. of coal was at present lost from one of three causes: First, being left under ground untouched; secondly, by being only partly raised, owing to unskilful and unscientific management; and thirdly, by being wasted in its use after being brought to the surface. It was upon the first of these propositions that his paper now treated. In the Newcastle district alone there were thin seams of coal, all under three feet thick, which, if properly and economically worked and used, would supply the present consumption for 400 years, so that there need be no fear of the consumption falling short. Probably the first important question which would be asked was, what thickness of coal could be worked at a profit? Of course the answer to that would depend in a great measure upon the quality of the coal; but, in his opinion, every seam of coal at

and over eighteen inches ought to be worked. He had the superintendence of a colliery at the present time, which produced between 2,000 and 3,000 tons per week, and every seam was under three feet thick. As to the best way of working thin seams of coal, he would say that the long wall system should be adopted, and all the coal must be worked out of thin seams if they were to be worked profitably. He would also recommend the adoption of gob-roads for air-ways instead of pillars; secondly, loading the trams at the face, and thus avoiding the shifting of coal. The gob-roads should be carried to the face every 15 or 20 yards. About eight cwts. should be placed on each tram, and each tram should weigh about three cwts.,—the roads to be 21-inch gauge. As to the cost of working thin seams, he should say that seams from two feet to two feet six inches thick should be worked at 4s. 3d. per ton for labor; materials 1s. per ton, and other items, making a total of 5s. 9d. per ton. Seams of from 18 inches to two feet thick ought to be worked at 4s. 6d. per ton labor, other items making a total of 5s. 10d. or 5s. 11d. per ton. Seams from 12 inches to 18 inches should be worked at 5s. per ton labor, other items making a total of 6s. 3d. or 6s. 4d. per ton. These would be exclusive of interest upon the capital employed. Mr. Cossham then remarked that the liability to danger and fatal accidents was very much lessened in working thin seams as compared with thick. The risk and danger of working coal above five feet is much greater than in seams below that thickness. He need only refer, in proof of what he now stated, to the working of the thick seams in the south of Staffordshire. He had lately visited that district, and was struck with the fearful risk and danger attending the working of coal there, and also with the terrible waste which is going on there. Mr. Cossham here said: "I do not hesitate to say that thousands of people have been transported for less crimes than are committed against God and humanity by the reckless. careless, destruction, and wasteful way in which that wondrous field is now working, involving, as it does, the destruction of over 300 lives annually, and over 60 per cent. of coal." In South Staffordshire it was found that one life was sacrificed for every 83,000 tons of coal raised, whilst in Somersetshire the loss was only one in 110,000 or 120,000, or in some instances 150,000 tons. Mr. Cossham concluded by remarking that it must be regarded as a national loss that thin seams were not more extensively and profitably worked.

The following were the selling prices of English coals in New York market in October 1861 and 1864, per ton, delivered:

Cannel coal, in 1861			In 1864	
Liverpool coal, in 1861 English gas coal, in 1861	6	10	" 1864	
Newcastle coal, in 1861	5	75	" 1864	

Analysis and Economic Value of British Coals, by Sir H. De La Beche and Dr. L. Playfair.

		Specific gravity.	Carbon.	Hydrogen.	Nitrogen.	Salphur.	Oxygen,	Ash.	Per cent coke.	Evaporative power.	REMARKS.
			91.44		0.21					9.46	
			89.78			1.02			77.50		Elbro Vale.
-			88.66			0.33				9.94	
Welsh coals.			88.26			1.77	0.60		84.30		Duffryn.
무			85.52			0.12				6.36	Pentrefelin.
9			84.87			0.45			85.50		
=			80.70			$\frac{2.39}{2.85}$			64.80		Pouty Pool.
- 1			75.15			2.34			62.50 56.00		Rock Vein.
0.00			74.55				15.51		49.80		Dalkeith, Jewel seam.
i			76.94			0.38			53.50		Coronation seam.
Scotch.			76.09						58.45		Wallsend Elgin.
8			79.58			1.46			52.03		Fordel Splint.
00			79.85			1.42			56.60		Grangemouth.
Eng?			81.70		1.84				59.20		Broomhill. [Dean.
46	16	1.283	73.52	5.69		2.27			57.80		
Irish			80.03				in ash				Slievardagh.

The Geological Society of London ascribe the differences in the different varieties of coal to the original difference in the plants from which they are derived. The following are the recognized varieties of English bituminous coals: Caking, or Pitching coal burns with yellow flame, separates into small pieces when heated, and its color of a greyish black. Cherry coal burns with a clear yellow flame, but does not soften as the Caking coal. Splint coal is harder than Cherry coal, and taken from the Glasgow mines. Cannel, or Candle coal burns without melting, and often substituted for candles; it is hard and compact, and often manufactured into ornaments. Brown, or Lignite coal retains the resemblance of the original wood, and burns with an empyreumatic odor. Jet coal resembles Cannel, but harder, and admits of a fine polish, and often set in jewelry. The Newcastle coal consists of several varieties—the rich Caking, Cannel or Parrot, Splint and Slate coal.

Coal Exported to the United States.

The exportation of coal from England greatly increased after the repeal of the duty in 1845. The total quantity of coal exported from the British mines, in 1849, amounted to \$5,000,000. It is used as ballast to ships trading with this and other countries, which enables a brisk competition with domestic coals. (For amount of coal exported, see table, Bituminous coal.)

NOVA SCOTIA MINES.

Beyond the limits of the United States, on the northeast, commences a coal area, that of Nova Scotia and New Brunswick, which covers 10,000 square miles. There is also another at Cape Breton. In 1863 over 400,000 tons of coal were raised from Cape Breton and Nova Scotia mines, giving a value of nearly one million dollars at the pits' mouth—\$2.50 per ton.

The bituminous coal mines of Nova Scotia were opened nearly 40 years ago. The quantity of coal mined from 1827 to 1857 was doubled from 1858 to 1863 inclusive. The exports of coal shipped mainly from Cape Breton in 1863 exceeded that of 1862 by 37,000 tons. The mines of that island fell short 10,000 tons, and the Albion mines, at Pictou, 4,429 tons; but the falling off of these mines was more than made up from other mines, showing an aggregate increase of over 24,000 tons. New and extensive mines have been lately opened in Cumberland county, at an expense of \$19,600, that yielded in 1863 over 55,000 tons.

The Albion and Sydney mines were the first opened in Nova Scotia. These two mines have yielded, since 1827, over 6,000,000 tons. The Sydney mines yielded and exported 104,342 tons in 1863, and the Albion mines 193,320 tons, with the labor of 1193 men and boys, 165 horses, and 940 horse-power of engines. The Bridgeport mines were opened in 1830, and became exhausted in 1850. Little Bras d'Or mines were opened in 1833, and were exhausted in 1853.

• The following shows the number of mines and quantity of coal taken from each, taken from the Halifax Sun:

Frazer Mines, Pictou County, lies 6½ miles from navigable water, and have not been worked for else than local consumption. They were first opened with a view of obtaining coal oil, but they were abandoned, and the proprietor is now engaged in inaugurating a company to develop the mines thoroughly.

The Little Bras d'Or Collieries, owned by Collins, Goutro & Collins & C. J. Campbell, have more or less fallen short in 1863. But with increased energy and a liberal expenditure they may be rendered paying investments, when the seams are not exhausted. Gross amount of coal raised, 4,170 tons.

Roach & McGinnis have opened a mine near North Sydney, but as yet with no satisfactory results.

Union Mines, Bridgeport, opened in 1858. The coal has a fair market reputation; but the success of this colliery is seriously marred by the want of a suitable shipping place. Quantity past year, 4.197 tons.

want of a suitable shipping place. Quantity past year, 4,197 tons.

Little Glace Bay Colliery, the property of an American Company, produces coal of a very superior quality, both for gas and domestic purposes. It is called the Hub-vein coal. These enterprising capitalists

have constructed an artificial harbor with great skill and expense, and purpose to expend in the present year \$134,708. The amount of coal raised and sold during the past year was 26,728 tons.

Big Glace Bay Colliery, belongs to J. &'A. Campbell. It was opened in January, 1863—the sum expended, \$2,900—amount of coal raised, 508 tons. The drawback to the Union Mines, viz., a want of proper

shipping places, applies to this colliery also.

Schooner Pond Colliery, to the N. W. of the North head of Cow Bay, is the property of Messrs. Ross, Kaye & Symonds. Formerly it was worked by private individuals for their own use. Preparations are now being made to put it in paying order. Already \$3,572 have been laid out, and 1,378 tons of coal raised and shipped.

Block House Colliery, Cow Bay, belongs to Mr. Belloni, of New York. From the opening of this mine, under Mr. Marshall Bourinot, Belloni supplied the funds, and has now personal management of the works. This gentleman has been at very great expense in making every necessary improvement. He is now having built a wharf, extending into the harbor 1,000 feet, 75 feet wide, and reaching a depth of water of five fathoms. In 1868, \$37,000 was expended on various improvements, and amount of coal raised 15,690 tons.

Gowrie Colliery, Cow Bay, Hon. T. D. Archibald & Co., is a very valuable and well conducted property. During the past two years \$91,000 have been laid out, one of the items of expense being a wharf extend! ing into the bay 770 feet, and a breakwater 100 feet by 50 feet. The expense for 1863 was \$63,260, and total amount of coal raised and shipped 15,069 tons, of very superior quality.

Mire Bay, Young, Tracy & Slattery. Want of shipping place prevents this from becoming a profitable investment, for the coal is good.

Amount raised and shipped, 549 tons.

Kelly Cove, or New Campbell Town Colliery, owned by C. J. Campbell, promises to be a valuable property. Mr. C. is prosecuting the work with great energy, and has laid out \$34,000 last year. Amount of coal raised and shipped, 4,000 tons.

Richmond Colliery, situated 21 miles from mouth of Little River. There has been altogether expended \$24,499 upon the mine, and a large quantity of coal, some good and some containing much sulphurid of

iron, but only 1,100 tons have been shipped.

Sea Coal Bay Colliery, Richmond Co., owned by Mr. John Campbell, has made very little progress as a remunerative speculation, although more than \$12,000 have already been expended on it. 219 tons is all that has been shipped in 1863.

The whole amount of coal raised and sold from Nova Scotia, from 1827 to 1857, when the monopoly of the General Mining Association ceased, was 1,841,538 tons. The amount raised and sold in 1857, was 101,082 chaldrons. Since that time the amount has steadily increased, being in-

1858			239,618 tons.
1859			267,496 "
			304,129 "
1861			334,545 "
1862			398,631 "
1863			424,425 "
In 1863 ther	e was sold	in Nova Scotia	76,061 tons.
"	"	other Provinces	65,773 **
"	. 66	the United States	286,790 **

Two-thirds of the yield of the mines of Nova Scotia are taken to the United States.

The freight charges on coal, sea-borne, from the Sydney mines to Boston, in 1861, were \$1.50 per ton.

The following were the selling prices of coal from the mines of Nova Scotia, in October, 1861 and 1864, at the Boston market:

Making an average increase of 1864, over the prices of 1861, equal 182 per cent.

COAL FIELDS OF THE UNITED STATES.

Distribution, Quality, etc.

The railroad companies in this country, of late, are turning their attention to the use of coal instead of wood, on account of its cheapness and convenient distribution throughout the United States. Ohio contains more coal than all of Great Britain.

The following statement shows the area of coal reserves in each State:

State.	Square miles.	Square acres.
Georgia	150	96,000
Maryland		852,000
Alabama		2,136,000
Tennessee		2,752,000
Michigan		3,200,00 0
Missouri		3,840,000
Indiana		4,928,000
Ohio		7,616,000
Kentucky		8,640,000
Pennsylvania		9,879,600
Virginia		13,564,800
Illinois		28,160,000
Totals	133,132	85,204,480

The following statement (from the works of Overman) gives the character and evaporative power of the different American coals:

NAME OF COAL.	STATE WHERE FOUND.	Percentage of car- bon.	Steam of 212° eva- porated per lb.	Quantity of heat by volume.	Percentage of coke by weight.
Anthracite. Beaver Meadow	Pennsylvaniadodo de de do	88.9 90.7 89.1 87.1	10.4 10.8 9.6 10.7	94 94 94 94	
Coke. Mid-Lothian Cumberland ,	Virginia Maryland		10.3 10.3	92 92	.66 .75

NAME OF COAL.	STATE WHERE FOUND.	Percentage of car- bon.	Steam of 212° eva- porated per lb.	Quantity of heat by volume.	Percentage of coke by weight.
Bituminous. Maryland	do	73.4	11.2 11.0 10.9	85 85 85	.83
Karthans	do Virginia		9.8 10.2 8.5	85 85 85	.88
Tippecanoe Pittsburg Missouri	do	64.6 55.0	8.5	85 85	.68
Barelay mines	Pennsylvania	84			

Anthracite coal is used for locomotive fuel in its natural state, chiefly upon roads on the eastern slope of the Alleganies. The bituminous coal, lying between the summits of the Alleganies and Rocky Mountains, contains in its natural state so much pitchy matter, as to render it unfit for locomotive purposes; but when the bitumen is burnt off, no fuel equals it.

The following statement (from Vose) shows the relative properties of good coke, coal and wood:

	Weight pr cubic ft, lbs.	Degrees of heat generated.	Percentage of carbon in fuel.	Economic bulk or cubic feet to stow one ton.	Economic or stowage weight pr cubic foot.	Cubic ft of air to evaporate 1 lb. of water.	Equivalent economic bulk to evap'e same weight of water.	Weight of water evaporated per lb. of fuel in ordinary practice.	Relative value as fuel disregarding actual
Coke	63	4,300	95	80	28	22.4	13	81	100 71 29
Wood	63 80 30	4,300 4,000 2,800	95 88 20	80 44 107	51 21	32.0 16.0	13 10 60	81 6 21 21	29

This statement shows that, by bulk, 13 of coke are equal to 60 of wood; that one pound of coke evaporates $8\frac{1}{2}$ pounds of water, while one pound of wood evaporates only $2\frac{1}{2}$ pounds of water.

A cord of wood contains 100 cubic feet solid, or 128 feet as piled, and will weigh 3000 pounds. The relative evaporative efficiency of a cord of wood and a ton of coke, (2240 lbs.) $\bowtie 8\frac{1}{3}$.

=19,040, and wood, 3000 $\bowtie 2\frac{1}{3}$ =7500. Hence, if a cord of wood, cut and ready for burning, costs \$3 per cord, coke should cost, per ton, \$7,436.

Relative Value of Wood and Coal for Locomotive Purposes.

The following are the results of experience, as to the relative value of wood and coal. By experiments with the engines of the Baltimore and Ohio Railroad, it was found that 2.55 lbs. pine wood was equal to one pound Cumberland coal. On the Reading Railroad, three pounds (Pennsylvania) pine wood was equal to one pound anthracite coal.

The following statement shows the values of wood and coke for locomotive use, based upon their relative evaporative efficiency, from the proportion—as 7,500 (the evaporative efficiency of wood) is to 19,040 (evaporative efficiency of coke), so is the price of a cord of wood to the price that may be paid for a ton of coke:

Evaporative power of coke.	Cost per cord of wood ready for burning.	Price that may be paid pr ton for coke.	
Is to 19,040	So is \$2 00	To \$5 08	
19.040	2 25	5 71	
19,040	2 50	6 35	
19,040	2 75	6 98	
	3 00	7 62	
	3 25	8 25	
	. 3 50	8 77	
	3 75	9 52	
	4 00	10 16	
	4 25	10 79	
	4 50	11 43	
		12 06	
19,040	5 00	12 70	
	coke. Is to 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040	coke. ready for burning. Is to 19,040 19,040 2 25 19,040 2 50 19,040 2 75 19,040 3 00 19,040 3 25 19,040 3 50 19,040 3 75 19,040 4 00 19,040 19,040 4 25 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 19,040 4 75	

Coke is bituminous coal deprived of its bitumen by a slow process of baking the raw material in ovens so regulated with air vents as to char and not burn the coal, similar to the method of making charcoal from wood.

It is estimated to cost from 25 to 30 cents to convert a ton of coal to coke, the process reducing the weight 25 per cent. Hence, if a ton of coal cost, at the mines, \$1.50, and 25 per cent for waste, a ton of coke would be \$2.17; and, from the foregoing rule, wood should not exceed \$0.85 per cord at the place of production, to be as economical for locomotive purposes.

Pure coke is solid carbon, and superior to all kinds of fuel for generating heat, as the power of fuel depends upon its amount of carbon. It has been found that when the Pittsburg coal has been properly coked for 48 hours, it gives 75 per cent by weight and 125 per cent by bulk—fine clean coke.

From tables of specific gravity, the average weight per cubie

3

•

.

.

foot of wood is 30 pounds; bituminous coal, 60 to 80; anthracite, 85 to 95; cannel, 75 to 80, and coke, 75 to 80 pounds.

Coke is most skilfully prepared in England, where it is exclusively used on railroads. The North-Western railroad company constructed 18 ovens, arranged in pairs, with a chimney for discharging the gases 115 feet high. The ovens are 11 by 12 feet inside, of an eliptical form, each communicating with the flue and dampers to regulate the draft. It takes, generally, 50 hours for the process. The best coke will sink in water, being from one half to three-quarters of a pound heavier.

PRODUCTIVE ANTHRACITE COAL FIELDS OF PENNSYLVANIA.

The productive anthracite coal fields of Pennsylvania embrace an aggregate area of 304,720 square acres, yelding annually from seven to nine million tons of coal—one-ninth the quantity mined in the British mines.

The total quantity mined and sent to market, from 1820 to 1863 inclusive, was 114,789,535 tons. This quantity, in bulk, would make a solid column 660 feet square at the base and 6000 feet high, and by weight equal 76½ million cords of wood. Its evaporative efficiency would equal 191½ million cords of wood, which, to produce, would require the clearing of two millions acres of timbered land.

The quantity mined and sent to market in 1863 was 9,420,135 tons, which, if placed on a ten acre lot (660 feet square), would cover it 500 feet deep. Its weight would equal $6\frac{1}{3}$ million cords of wood. Its evaporative efficiency is equal to 16 million cords of wood, which, to produce, would require the clearing of 160,000 acres of timbered land.

The coal measures in Pennsylvania present the best known evidences of upheaval of mountain ranges, and the birth of the Appalachian ranges have been traced to this State. The geographical location of the anthracite coal fields is between the Blue Ridge and Susquehanna River.

The coal north of the Susquehanna was not affected by the force of receding waters from the confined inland sea of the Carboniferous age; but being subjected to external chemical influences, changed bituminous to anthracite coal by freeing it of hydrogen. The disturbance to the western part of the State of Pennsylvania was slight, consequently no exposure, which left but

bituminous coal. The Scranton coal is believed to have been deposited there by the receding waters, as above the coal lie clay, micaceous sandstone and slate, and below it, shale, conglomerate sandstone and old Devonian deposits, which, according to Prof. Rogers, extend 40,000 feet below the surface.

The coal measures along the Lackawanna, from its source to its junction with the Susquehanna, lie in careless profusion; but no coal is found on the Susquehanna from this point to its source at Otsego and other small lakes in the State of New York. From this fact, Geologists have established the theory that the great basin between the Blue Ridge and the lower portion of the Susquehanna and Lackawanna Rivers was once one vast lake, into which the waters of the Chemung, Chenango, Delaware and Susquehanna Rivers emptied. These rivers, in time, forced passages to the Atlantic, leaving prolongations and exposing the coal and transferring it from inaccessible to accessible places for mining.

The Operation and Cost of Mining.

The operation of mining is generally the same where there is no direct access to the outcrop. Shafts are sunk sometimes 200 feet, over which a structure is built called a "coal gracker." This building contains the screens, coal-breaker and shutes, through and over which the coal is passed down an inclined plane into large bins, and from these placed into cars for market.

After sinking the shaft to the coal, subterranean chambers are excavated in every direction, called *drifts*. Partitions and columns are left to sustain the roofing until the mine is worked out, when these are gradually removed. The following sketch will show the general plan pursued:

The shaded portion shows the coal removed. This is detached by blasting, then partially broken and placed into trucks of from two to three tons burthen, and drawn by mules on railroads to the foot of the shaft. They are then hoisted by steam (the same that turns the coal-breaker) to the top of the coal-cracker, and dumped into a shute, along which men are stationed to break the large lumps before going on the breaker, which still reduces it to smaller pieces between rollers. After leaving the breaker it passes into another shute, into and down revolving screens which separate the coal into egg, stove, chestnut and pea sizes; each dropped into separate shutes and conveyed down inclined planes to bins at the end of each shute. The slate is separated from the coal by boys as it passes down the shutes.

Cost of Mining.

For each load the miner gets from 70 to 75 cents. In ordinary times the coal costs from \$1 to \$1-25 placed into the cars ready to be moved to market. The most favorable location of coal for mining is the Hampshire tract, near Cumberland, Md., where it is taken from the sides of a hill, and delivered direct from the shute into the cars ready for market, the whole cost not exceeding 75 cents per ton in 1863, including all expenses connected with the The Barclay Coal Co. expressed themselves, in 1860, satisfied with the profits if they received \$1.75 per ton for their coal at Towanda, on the North Branch canal, 38 miles from Elmira. This would leave the cost of coal, including profits, at the mines (after deducting 23 cents per ton for transportation by rail 164 miles from the mines to Towanda), \$1.52. Deducting interest on capital invested, with odinary profits (50 cents per ton), and it leaves the actual cost of mining and placing same into the cars for market, at \$1.02 per ton. The average cost of mining, with profits; in England, is \$1.20.

The following statement shows the quantity of anthracite coal mined, and number of tons sent to market over the following lines, from 1820 to 1863 inclusive:

Lehigh canal	21,563,506	tons.	
Schuylkill canal	22,036,125	"	
Union canal	1,399,472	"	
Delaware and Hudson canal	11,281,690	"	
North Branch canal	7,462,296	"	
Total by canals	63,743,089	"	
Philadelphia and Reading railroad	28,846,670		
Lykens's Valley railroad	1,263,762	"	
Dauphin and Susquehanna railroad	182,625	"	
Lehigh Valley railroad	2,329,050	ĖĞ	
Shemokin railroad	1,697,598	66	
· •			. نسب

24

REPORT OF THE STATE ENGINEER AND SURVEYOR

Trevorton railroad	61 001	.66
Pennsylvania Coal Co's railroad	7,429,897	"
Delaware and Lackawanna	7,665,238	66.
Lehigh and Susquehanna		"
Total railroads and canals	114,785,535	"

The anthracite coal fields of Pennsylvania are divided into three great districts, viz: The 1st, Southern, or Schuylkill district, embracing the Lehigh and Lykens's Valley coal; the 2d, Middle district, embracing the Beaver Meadow, Shamokin and Trevorton coal; the 3d, Northern, or Wyoming and Lackawanna, embracing the Scranton, Pittston and Lackawanna coal.

The following statement shows the progress of the Coal Trade, the quantity mined and sent to market from each district, each year, from 1820 to 1863 inclusive:

YEAR.	Sehuylkill District.	Middle District.	Wyoming District.	Total.
1820		365		365
1821		1,073		1,073
822	1.480	2,240		3,720
823	1,128	5,823		6,951
824	1,567	9,541		11,108
825	6,500	28,393		34,893
826	16,767	31,280		48,047
827	31,360	32,074		63,434
828	47,284	30,232		77,516
829	79,973	25,110	7,000	112,083
830	89,984	41,750	43,000	174,734
831	81,854	40,966	54,000	176,820
	209,271	70,000	84,600	363,871
832	252,971	123,000	111,777	487,748
833		106,244		
834	226,692		43,700	376,636
835	339,508	131,250	90,000	560,758
836	432,045	148,211	103,861	684,117
837	523,152	223,902	115,387	879,444
838	433,875	213,615	78,207	738,697
839	442,608	221,025	122,300	818,402
840	425,291	225,318	148,470	864,384
841	585,542	143,037	192,270	959,973
842	588,850	272,546	252,599	1,108,418
843	735,312	267,793	285,605	1,263,598
844	955,284	377,002	365,911	1,630,850
845	1,262,197	429,453	451,836	2,013,013
846	1,429,085	517,116	518,389	2,344,005
847	1,867,772	633,507	583,067	2,882,309
848	1,890,106	670,321	685,196	3,089,238
849	1,864,206	781,656	732,910	3,217,641
850	1,955,257	690,458	827,823	3,321,136
851	2,565,426	964,224	1,156,167	4,329,530
1852	2,770,291	1,072,136	1,284,500	4,899,975
853	2,913,454	1,054,309	1,475,732	5,097,144
854	3,387,897	1,207,186	1,603,478	5,831,834
855	3,782,594	1,275,050	1,771,511	6,486,097
856	3,768,987	1,186,230	1,972,581	6,751,542
857	3,393,455	900,314	1,952,603	6,431,378
858	3,212,879	909,000	2,186,094	6,524,838
859	3,598,501	1,050,659	2,731,236	7,517,516
860	3,815,822	1,091,032	2,856,896	8,059,017
861	3,114,254	.994,705	2,918,458	7,487,672
862	3,549,844	396,227	3,130,887	7,640,905
863	4,151,882	699,558	3,766,374	9,420,135
Totals	60,889,181	19,295,929	34,604,425	114,789,535

From the foregoing statement the average annual rate of increase of the consumption of coal equals 15 per cent from 1830 to 1856, and 4½ per cent from 1856 to 1862, and from 1862 to 1863 inclusive, 25 per cent.

The following statement of the coal tonnage of the six competing lines, from 1856 (when the Lehigh Valley and South Division of the Delaware and Lackawanna railroads were opened) to 1863, both inclusive, shows the quantity of anthracite coal moved on each line to market, and the total from each district.

The Pennsylvania Coal Company began to forward coal about the middle of December last, by rail over the Eric railroad to the Hudson River, making from that period seven independent Trunk lines from the mining region to market, on the Delaware, the Hudson and further east.

Proportion of grand to- tal by the two Schuyl- kill lines.	Tons. 55 per et 65 per et 49 cc 45 c
	00444444
Total tons moved on six	Tons. 5,843,589 5,624,933 6,545,076 7,085,563 6,572,577 6,533,983
Total from Lackawanna Valley.	Tons. 1,233,263 1,320,503 1,516,176 1,911,929 2,029,045 2,189,798 2,343,640 2,713,271
Delaware, Lackswanns and Western Railroad, South Division.	Tons. 121,113 295,953 538,247 632,954 827,964 833,497 1,105,833
Delaware and Hudson canal.	Tons. 1,112,150 1,024,550 977,929 1,279,849 1,201,091 1,256,301 1,256,301 1,256,301
Total via Lehigh Valley.	Tons. 1,351,970 1,318,750 1,380,730 1,628,244 1,821,674 1,738,377 1,738,377 1,278,801 1,995,113
Lehigh Valley Railroad	Tons. 165,740 418,236 471,930 577,652 730,642 743,672 882,574 1,195,555
Lehigh canal.	Tons. 1,186,230 900,314 908,800 1,050,592 1,001,032 994,705 596,227 699,558
Total via Sobuylkill	Tons, 3,258,356 2,985,680 2,866,450 3,004,903 3,234,402 2,644,402 3,061,542 3,703,964
Philadelphia and Read- ing Railroad.	Tons. 2,088,903 1,709,692 1,542,646 1,633,150 1,878,156 1,460,832 2,980,815
Schuylkill canal.	Tons. 1,169,453 1,275,988 1,323,804 1,371,753 1,356,788 1,183,570 880,727
TEARS.	856 857 858 858 859 861 861

Of the 8,312,348 tons carried by the six lines, a railroad and canal from each region, the percentage is divided as follows:

With the development in progress in the Mohanoy Coal Basin, and with the projected direct connection from the head of the Schuylkill Valley to the South end of the Wyoming Coal Basin completed, the two Schuylkill lines will unquestionably carry 50 per cent of the anthracite supply to the great seaboard market.

DESCRIPTION OF EACH COAL BASIN, AND ROUTES FROM EACH TO MARKET; ALSO THE ACTUAL COST OF COAL OVER EACH ROUTE.

1st. Southern or Schuylkill Basin.

This basin extends from the Lehigh river to within 20 miles of the Susquehanna, 50 miles in length and maximum width 5 miles. The total length of railroads within the limits of the basin is 170 miles. The following statement embraces the workable area:

Total area Schuylkill Basin, 1863	104,040
North Mine Hill range	6,000
South Fork Dauphin Prong	
Pottsville west to forks of Basin	38,300
North Fork Lykens's Valley Prong	12,000
Tamaqua to Pottsville	25,500
East of Tamaqua, partly covered by the lands of the Lehigh Co	12,240
	Acres.

The total quantity of coal mined and sent to market from 1820 to 1863 inclusive ==60,889,181 tons, and during the year of 1863, 4,151,882 tons.

It was from this basin, in the vicinity of Mauch Chunk, the first coal was mined in the United States, in 1808; and at Mauch Chunk was constructed the first inclined plane in this country, in 1827. But 357,000 tons of coal was sent to market from 1820 to 1831 inclusive; when upon the completion of the Lehigh canal in 1831, 209,271 tons was sent to market in 1832, and 252,900 in 1833, a direct increase of 300 per cent.

Mauch Chunk was the first, and at present the most important, shipping point from the Schuylkill and Middle Basins. It is the commercial center of the Lehigh Coal Basin—the most valuable anthracite coal in the world, it being the hardest. It is the capital of Carbon county, and one of the most picturesque villages in this country, the mountains directly surrounding it rising to an eleva-

tion of over 1000 feet, resembling the wild scenery of Switzer land. Part of the town is on an elevated plateau 200 feet above the Lehigh river, from which point numerous inclined planes can be seen, with trains of coal cars traversing the slopes of mountains by gravity and stationary power.

The cars used upon the inclined planes are about one-third the size of ordinary railroad cars. In ascending, a safety car is attached, from which the engineer at the top of the plane is signaled. The road leading from Mauch Chunk to the mines at Summit Hill, the cars are drawn up an inclined plane to an elevation of 700 feet above the river, in a distance of 2330 feet, and then descends, by gravity alone, 9 miles to the foot of another plane, up which the cars are again drawn by stationary power to the very summit of Mount Pisgah, about 10 miles from the village. From this point the road is carried in a zig-zag line (the force of gravity in descending overcoming the ascending grades) to different points in the mines. The coal measures in these mines are of greater thickness than any other part of the State, and mined mostly from the surface.

SKETCH OF THE INCLINED PLANES TO MOUNT PISCAH.

Mauch Chunk has a direct water communication with New York city (via the Lehigh canal, 46 miles, and the Morris canal, 102), 148 miles; with Philadelphia (via the Lehigh canal, 46 miles; Penn. Delaware Division canal, 60 miles, and Delaware river, 17 miles), 123 miles; with Havre de Grace (via the last route, 123; Delaware river, 47; Ches. and Del. canal, $13\frac{1}{2}$; Ches. Bay, 24), $207\frac{1}{2}$ miles; with Baltimore (via last route), 248 miles. It has also direct railroad communication with New York, 121 miles; Philadelphia, 89 miles; Havre de Grace, 153 miles, and Baltimore, 180 miles. (For distances from the several mines, in detail, see cost of coal.)

Besides Mauch Chunk there are the important shipping points—Tamaqua, Port Carbon, Pottsville, Pine Grove, Millersburg and Dauphin.

Tamaqua has direct railroad communication with Buffalo, 327 miles; Philadelphia, 96 miles. Tamaqua is 20 miles by rail to Port Clinton, at which point coal is transhipped into boats, and sent by water to Philadelphia, 85 miles; New York, 198 miles; Havre de Grace, 164 miles.

Port Carbon has direct water communication with Philadelphia, 106 miles; New York, 220 miles; Havre de Grace, 180 miles; Baltimore, 234 miles. It has direct railroad communications with New York, 169½ miles; Philadelphia, 95½ miles; Baltimore 152½ miles; Elmira, 238½ miles.

Pottsville has direct water communication with Philadelphia, 104 miles; New York, 218 miles; Havre de Grace, 180 miles; Baltimore, 224 miles; Elmira, 373 miles. It has direct railroad communications with Philadelphia, 93½ miles; New York, 169½ miles; Baltimore, 152½ miles; Elmira, 236½ miles.

Pine Grove, on the Union Canal Feeder, is four miles from the mines. It has direct water communication with Havre de Grace, 115 miles; Baltimore, 169 miles; Philadelphia, 149 miles.

Millersburg is the shipping point from the Lykens Valley mines. It is 16 miles by rail from the mines, and has direct water communications with Havre de Grace, 104 miles; Baltimore, 158 miles; Philadelphia, 153 miles; Buffalo, 447 miles; Syracuse, 327 miles, and Albany via the Delaware and Hudson canal, and Pennsylvania Coal Co's railroad and Hudson river, 307 miles.

Wiconisco, at the Lykens Valley mines, has direct railroad communications with Baltimore, 128 miles; Elmira, 160 miles; Philadelphia, 166 miles.

80

The following statement shows the total quantity sent over each route from the Schuylkill Basin, from 1820 to 1863 inclusive:

			Tons.
Transported	over	Lehigh canal	9,510,052
"	66	Phile. & Reading railroad	28,846,670
66	"	Schuylkill canal	19,686,125
66	66	Union canal	
66	66	Lykens Valley railroad	1,263,762
66	66	Dauphin & Susquehanna railroad	182,625
**	66	Lehigh Valley railroad	475
	Tota	J	60,889,181

ACTUAL COST OF ANTHRACITE COAL, AND DISTANCES TO MARKET FROM SCHUYLKILL BASIN.

Gold at Par.

(For Rates of Transportation on Canals, Railroads, and cost Mining, see Appendix B.)

Miles in route Cost of Ant. coal delivered on the docks. of-Total distance Bay. Railroad Average Highest. 4 Lowest. Canal. River From Mauch Chunk Mines: No. 1. No. 2. \$3 22 \$3 65 148 1 159 2 50 3 02 3 19 131 158 4 23 3 84 1 3 37 102 5 32 4 55 4 25 3 90 171 1871 3 25 43 34 2 22 2 68 3 50 3 01 2 86 2 84 101 106 133 17 2 51 133 60 Havre de Grace via Lehigh Val., N. Penn., P. W. & B. R. R.

Baltimore via Lehigh, Del. Ches. & Del. canals...

'' Val., N. Penn. & P. W. &

B. R. R.

'' Val., E. Penn., R. & C., N.

C. R. R.

'' Val., Del. Ches. & Del. canal & B. R. R. 2 78 3 13 3 64 3 38 127 256 119 200 200 3 07 5 61 4 34 190 190 2 98 5 39 4 18 127 3 97 73 256 3 12 3 54 Albany via Lehigh & Morris canals & H. River.... 160 318 3 90 4 11 10 148 From Tamaqua Mines: From Tamaqua Mines:

New York via Schuylkill, Del. and Raritan canals.

'C Quakake, L. Val. & N. J. Cent. R. R. 164

Schuylkill, E. Penn. & 'C 163

Philadelphia via Catawissa, Phila. & Reading R. R. 20

Elmira via Catawissa, W'msport & Elmira R. R. 177

Buffalo via 'C Erie. 327 135 70 225 3 44 4 13 1 165 1 164 4 95 3 00 3 97 2 99 2 28 2 60 3 96 2 93 2 90 4 34 98 3 58 3 20 88 108 3 59 5 10 327 Buffalo via Erie. 4 97 8 36 6 66 From Pottsville & Port Carbon Mines : 2 84 2 88 3 68 4 00 108 3 08 2 25 3 41 95 3 52 70 221 1 161 3 96 2 98 3 22 3 03 5 00 67

	Miles in route of—				Cost of Ant. coal de- livered on the docks.			
	Railroad.	Canal.	River & Bay.	Total distance.	Lowest.	Highest.	Average.	
H. de Grace via Phila. & Read'g, B. & C. RR. & T. W. canals. W. canals. Baltimore via Susqueh'a & Schuylkill & N. C. RR. Phila. & R., R. & Col. N. C. RR. Schuylkill, Ches. & Del. canals. Union & Susqueh'a canals	158 153 153		107		No. 1. \$2 67 2 84 2 78 3 20 3 44	No. 2. \$3 85 4 85 4 75 3 69 3 89	\$3 26 3 84 3 66 3 44 3 66	
From Tremont Mines: II. de Grace via Union & Susquehanna canals Baltimore via	6 133 108	112 112 142		108	2 58 2 79 2 61 2 38 3 17	2 92 3 14 4 32 3 79 3 43	2 75 2 96 3 46 3 08 3 30	
From Dauphin Mines: Baltimore via Susquehanna canals	104 12 12 139	85 163		151 103 97 146 139 132	2 56 2 40 2 35 3 00 2 76 2 69	2 91 3 71 2 69 3 75 4 44 4 30	2 73 3-06 2 52 3 37 3 60 3 49	
From Lykens Valley Mines: Baltimore via Susquehanna canals	128 16 16 16 16	104 215 412 292	54 35 35	463 343	2 75 2 65 2 53 3 61 4 55 4 17	3 20 4 22 2 98 4 15 5 60 5 00	2 92 3 43 2 75 3 88 5 07 4 58	
railroad Philadelphia via Susque., Union & Schuylkill canals Pennsylvania railroad	239	182	::::	239 198 166	3 28 3 40 3 69	5 96 3 85 5 03	4 62 3 62 4 36	

The following rates are used in determining the cost of coal in the foregoing and following statements. (See Appendix B.)

Classification and Routes.		es u	sed for	columns.			
Classification and Routes.	No	. 1.		No.	2.		
Cost of mining, per ton	\$1	37	• • • • • •	\$1	50		
transhipments		10			12		
" from rail at Jersey C. to N. Y.		35			85		
" mining Cumberland		75	•••••		88		
Transportation on canals, mills per ton per mile.							
Erie canal (boats 210 tons)	. 3	21	•••••	- 5	00		
66 66 85 66	4	21 -	• . • • • •	6	00		
Chenango canal	7	Q3		11	34		
extension		25		10	56		
Cayuga & Seneca		35		5	15		
Chemung		92		12	23		
Junction		70		15	70		
North Branch				10	42		
Wyoming	. 8.	08		9	80		
W. Br. Susquehanna Division	. 8	08		9	08		
W. Br. Susquehanna Division Penn. Susquehanna	. 8	16		_	16		
Susquehanna and Tide Water	ě	66			.60		
Susquehanna and Tide Water West Branch	. 3	06	.,,,,,,,,,		06		

Classification and Routes.		s used for	columns
	o 1		No. 2.
	9 4		
	9 6		10 66
· · · · · · · · · · · · · · · · · · ·			11 62
Morris canal			11 62
Schuyl Kill canal 1			13 42
	1 0		4 00
Delaware and Raritan			14 00
	9 0		10 08
Chesapeake and Delaware			14 00
66 66 11			13 62
***************************************	B 3		8 50
	94		10 42
	9 8		10 42
	1 2		2 90
	2 2		
			5 10
	2 7		3 00
	F O		4 00
	1 0	3	2 50
Railroads:			
Barclay Coal Co's 1			14 37
	B 5		24 50
	3 7	4	14 87
Lehigh Valley	76	1	18 70
Elmira and Williamsport 18	30	0	20 50
Pennsylvania Coal Co's	9	0	13 00
Huntington and Broad Top	5 2	5	20 10
Syracuse and Binghamton	5 5	0	13 70
Baltimore and Ohio 10	0 0	0	18 60
New Jersey Central	3 3	7	18 00
Delaware and Hudson Canal Co's	4 5	7	10 00
Erie Railway	0	0	20 90
	2	8	21 26

2d. Middle District.

The western limits of this basin are at Trevorton, averaging about 8 miles from the Susquehanna river, and extends easterly 34 miles, with a maximum width of 4 miles. The total length of railroads and branches, within the limits of this basin (which embraces the Beaver Meadow mines), is 160 miles. The following statement shows the area of this basin:

Shamokin district	
Total area, Middle Basin	81,000

The total quantity of coal mined and sent to market, from 1820 to 1863 inclusive=19,295,929 tons, and during the year 1863= 699,558. The mines worked by the Lehigh Navigation Co., and the quantity mined and sent to market from each, is as follows in 1863:

	30,387 80,166
Tamaqua	

Leland Stanford, Jr.

Since the destruction of the Lehigh canal, in 1862, by a freshet, coal formerly shipped at Penn and White Haven is now transported by rail 21½ (average length from the mines) miles to Mauch Chunk, and there transhipped into boats and sent over the Lehigh, Morris, also the Lehigh and Delaware Division canals.

The Nesquehoning railroad was constructed to develope the Lehigh Coal Navigation Co's mines, and makes a connection with the Catawissa road, shortening the original distance 12 miles.

The Hazleton Railroad Co. constructed a road to the top of the mountain, from which the coal is let down an inclined plane from an elevation of 430 feet in a distance of 1,200, and sent 12 miles to Penn Haven. The loaded cars descending draw up the empty cars at the plane. Another plane was constructed by this company from the mines to the level of the Beaver meadow railroad, and the coal sent over the Lehigh Valley road? Hazleton is about 1700 feet above tide-water. There are eleven openings within two miles of the village, capable of producing 250,000 tons per annum.

Eckley is at the top of Buck Mountain and the same elevation above tide-water as Hazleton. The coal from these mines is pronounced of superior quality for locomotive purposes. The coal is brought over the Hazleton road, 14 miles, to Penn Haven. These mines are capable of producing 120,000 tons annually.

The Stockton mines are worked from three slopes, yielding in the aggregate 150,000 tons per annum. Hazle Creek is $1\frac{1}{2}$ miles from Weatherly, $15\frac{1}{2}$ from Mauch Chunk, and $7\frac{1}{2}$ from Penn Haven. $1\frac{1}{4}$ miles below Weatherly the Quakake railroad, 13 miles long, connects with the Beaver Meadow railroad.

The principal shipping, points from this district, are Ashland, Shamokin, Trevorton, besides those already enumerated.

White Haven is situated at the head of the Lehigh canal, 16 miles above Penn Haven, and 20 miles south of Wilkesbarre via the Lehigh and Susquehanna railroad, completed in 1864. Previous to 1862 there was a direct water communication via the Lehigh and Morris canal, 174 miles to New York; but since the freshet of that year, only that part of the Lehigh canal between Mauch Chunk and Easton, 46 miles, is in use,

Penn Haven lies also on the impaired portion of the Lehigh canal, and the converging point of all the branches from the

Beaver Meadow mines. The branch from Minersville mines to Penn Haven is $18\frac{1}{3}$ miles; from Hazleton mines $13\frac{1}{4}$, Jeddo 12, Eckley 12, and from Buck Mountain mines $8\frac{1}{2}$ miles; making the average length of railroad from the Beaver Meadow mines to Penn Haven $12\frac{1}{2}$ miles, and to Mauch Chunk, the point of transhipment by canal, $21\frac{1}{4}$ miles. From Mauch Chunk to New York, via Lehigh and Morris canals, it is 148 miles, and to Philadelphia, via the Lehigh and Delaware Division canals, 123 miles. The shortest railroad lines from the Beaver Meadow mines, to New York, is 142 miles to Jersey City and 131 to Elizabethport. The expense of transhipment to the city of New York from the latter point, in 1861, being 35 cents per ton, and in 1864, 75 cents.

Mahony city lies on the East Mahony railroad, and the coal is carried over the Mahony City and Broad Mount railroad, 14 miles, to Port Carbon on the Schuylkill canal, and shipped into boats. Coal is also sent to Penn Haven, 25 miles, over the Quakake, Lehigh and Mahony, and Beaver Meadow railroads, and to Mauch Chunk, 35 miles. Ashland is 13½ miles from Port Carbon, and 35 miles from Penn Haven by railroad.

Shamokin is $38\frac{1}{2}$ miles by railroad to Schuylkill Haven, where the coal is shipped into boats and sent over the Schuylkill canal, 100 miles, to Philadelphia; Shamokin has direct railroad communication with Susquehanna canals at Sunbury, 21 miles, where the coal is transhipped into boats of 85 to 100 tons burthen, and sent 130 miles to Havre de Grace, 184 to Baltimore, 256 to Philadelphia, 421 to Buffalo, 301 to Syracuse, 188 to Elmira, and 211 to Watkins, at the head of Seneca Lake.

The Trevorton mines are $13\frac{1}{2}$ miles by railroad to Port Trevorton, on the Susquehanna canals. Port Trevorton is 11 miles south of Sunbury. (See map.)

The following statement shows the quantity sent over each route to market from the Middle Coal Basin, from 1820 to 1863 inclusive:

_	_		Tons.	
Tran	sported over	Lehigh canal	12,053,454	
	- "	" Valley railroad	2,328,475	
	6,6	Reading and Schuylkill canal	2,350,000	
	66	Shamokin railroad	1,697,598	
	"	Trevorton railroad	804,321	
\	"	McCauley's Mount railroad		
jp ²	Total mine	d and sent to market from 1820	19,295,929	
		•		

ACTUAL COST OF ANTHRACITE COAL, AND DISTANCES TO MARKET FROM MIDDLE BASIN.

Gold at Par.

(For Rates of Transportation on Canals, Railroads, and cost Mining, see Appendix B.)

,	Mile	of—	Cost of Ant. coal c					
	Railroad.		River & Bay.	Total distance.	Lowest.	Highest,	Average.	
Beaver Meadow Mines: New York via Lehigh Val. & N. J. Cent. railroad. "R.R., Lehigh & Morris can'is Philadelphia via "Del. canals. "Valley & N. Penn. railroad.	22 22	148 106	1 1 17	143 171 145 113	No. 1. \$2 61 3 28 2 75 2 33	No. 2. 64 45 3 78 3 23 3 74	\$3 53 3 58 3 00 3 03	
From Ashland Mines: New York via Quakake, L. Val. & N. J. C. R.R. Lehigh & Morris. Philadelphia via M. Bd. Top R.R. & Schuylkill ca' Phila. & Read'g.	45 14	148 106	1 1 	V 10.00	2 96 3 43 2 99 2 46	4 97 4 17 3 22 3 81	3 96 3 80 3 10 3 13	
From Trevorton Mines: Buffalo via N. Cent. & Erie Buffalo Division Wyoming, N. Br., Junetion & N.Y. S. W. Br. canal, W. & Elmira & Erie Syracuse via Wyoming, N. B., June. & N.Y. S. ca'le B. & Lack., Del., L. & W., S. & B. RR. Rochester via W. Br. N. C. & Canandaigua Havre de Grace via Susquehanna canals Baltimore via Susquehanna canals Northern Central railroad Philadelphia via Susque., Union & Schuylkill Penn. railroad	14 249 14 254 191 14 14 141 141	53 119 119 119	35	330 254 244 133 187	4 15 4 45 4 34 4 406 4 42 3 56 2 64 2 85 2 77 3 65 3 87	3 26	5 95 4 86 5 79 4 43 5 46 4 87 2 84 3 05 3 63 3 85 4 58	
From Shamokin Mines: Buffalo via Shamokin, N. C. & Erie railroad Wyoming, N. Br., June. & N. Y. S. e'h Rochester via " " " " " Syraeuse via " " " " " Del. & Lack., Del., L., W., S. & Bing Havre de Grace via Susquehanna canals Baltimore via Susquehanna canals Northern Central railroad Philadelphia via Shamokin, Phila. & Reading R.R. & Schuylkill ca'l	21 21 21 246 21 21 159 185	386 293 266 130 130	54	349 322 246		4 87 4 78 6 22 3 28	6 21 4 78 4 49 4 30 4 78 3 10 3 33 3 86 4 37 3 28	

3d. Northern, or Wyoming and Lackawanna Basin.

This basin extends from eight miles west of Carbondale to Shickshinny, a distance of 55 miles, with a maximum width of five miles. The total length of railroads within the limits of this basin is 140 miles, and 30 miles of canal. Its area is equal to 119,680 acres.

The total quantity of coal mined and sent to market, from 1829 to 1863 inclusive, is 34,604,425 tons, and during the year of 1863,

3,766,374 tons. It is from this basin that the New York markets are supplied with coal. The only direct water outlet from this basin into the State of New York is the North Branch canal. Pittston is the geographical and Scranton the commercial center; the former being 95 miles by canal from the State line, and the latter 48 miles by the Delaware, Lackawanna and Western railroad.

Three veins underlie this district, cropping out on the face of hills surrounding it. Of these one has a thickness of from 20 to 28 feet. The general direction of the basin is south-west.

Carbondale is the principal mining point of the Delaware and Hudson Canal Co. The coal is carried over their road 13 miles to Honesdale, and there shipped into boats of from 115 to 120 tons burthen, and sent 108 miles to Rondout, and from thence 64 miles by the Hudson River to Albany, and 96 miles to New York.

Scranton is the next in importance, and lies on the Delaware, Lackawanna and Western railroad, 17 miles by rail from Carbondale; 30 miles to Honesdale (at the head of the Delaware and Hudson canal); 48 miles from the Junction with the Erie railroad at Great Bend; 122 miles from Elizabethport; 143 miles from Syracuse; 203 miles from Albany, via the Albany and Susquehanna railroad. The Lackawanna and Bloomsburg railroad connects here with the other roads mentioned, and continues westerly, through the central portion of the basin, 80 miles to Northumberland. The first colliery on the Lackawanna river, below the Oxford mines, is three miles from Scranton. At Lackawanna, six miles below Scranton, iron ore is found. Between Taylorville and Pittston there are three collieries.

Pittston, 93 miles from Scranton, lies at the head of the Wyoming Valley, and at the junction of the Lackawanna with the Sushanna river. From this point the North Branch and Wyoming canal passes through the remaining portion of the valley, 74 miles to Northumberland, and to tide-water at Havre de Grace 206 miles; to Elmira 113 miles. The Pennsylvania Coal Co's railroad also contributes to the commerce of the Delaware and Hudson canal from the Pittston mines. The railroad extends from Pittston, 47 miles, to Hawley on the Delaware and Hudson canal. It has an ascent and descent of 2250 feet, overcome by 22 planes operated by 23 stationary engines and gravity. The cost of transporting a ton of coal per mile over this road in 1863, was (from the report of the company) 9_{70} mills. This road cost two million dollars; gauge, 4_{11} feet; weight of rail, per yard, 15 pounds. It

has one tunnel 800 feet long. 750,000 tons of anthracite coal were transported in 1863 over the road to Hawley. The earliest settlers here were from Connecticut, and their rights being contested by the Pennsylvania land-holders, gave rise to the "Pennamite" war, ending only by the commencement of the Revolutionary war, which made the valley celebrated for Indian atrocities upon the settlers, by the tribes of the six nations.

Kingston, $7\frac{1}{4}$ miles below Pittston, is an important shipping point for coal mined in its vicinity.

Wilkesbarre is one mile below and on the opposite side of the river to Kingston, and the dividing point between the North Branch and Wyoming canals. Above the town there are three collieries, and within two miles below are the Empire, Stanton, Blackman's and Hartford collieries, and the consolidated mines. The town contains an anthracite blast furnace, and one of the largest rolling mills in the country.

Shickshinny, the south-western limits of the coal basin, is 30 miles from Scranton. There is a large furnace near the village of 2000 tons annual capacity.

Bloomsburg is 56 miles below Scranton, and 24 from Northumberland. A short distance below Rupert the Lackawanna and Bloomsburg railroad connects with the Catawissa, also the Northern Central at Northumberland. The country between Rupert and Dansville abounds in iron ore.

Northumberland suggests the villages often met on the Rhine and in the cantons of Switzerland. It is situated at the junction of north and west branches of the Susquehanna river, also the canals of the same name. The distance by railroad to Scranton is 80 miles; to Philadelphia, 167, and 223 via Scranton to New York.

The following statement shows the total quantity of coal mined and sent to market from the 3d. Wyoming & Lackawanna District, also the quantity sent over each route, from 1820 to 1863 inclusive:

		•	Tons.
Transported	over the	Delaware and Hudson canal	11,281,690
66	"	Penn. Coal Co's railroad	7,429,897
66	66	North Branch canal	7,426,296
66	66	Del. Lackawanna railroad	7,665,238
66	••	Lehigh & Susquehanna R. R	765,304
Total	mined a	nd sent to market since 1820	34,604,425

ACTUAL COST OF ANTHRACITE COAL, AND DISTANCES TO MARKET FROM WYOMING AND LACKAWANNA BASIN.

Gold at Par.

(For Rates of Transportation on Canals, Railroads, and cost Mining, see Appendix B.)

					Mile	s in i	route		Cost of Ant. coal de livered on the docks				
, ,			7	*	Railroad.	Canal.	River & Bay.	Total distance.	Lowest.	Highest.	Average.		
From	Scrant	ton Mines							No. 1.				
				& Bing				143	\$2 40	\$3 94	\$3 1		
Rochester	**	**		na & Central.			****	220	3 41	6 17	4 7		
Buffalo		**	Erie B. 1	Branch	278			278	3 95	7 40	5 6		
Itica	44	44	RR. & C	henango cana	1 63	97		160	2 64	4 06	3 3		
Albany		**	**	Erie "	63	207	****	270	3 00	4 73	3 8		
**	66	**		t Susquehann				203	3 25	5 60	4 4		
New York		**		Central RR			1	145	2 96	4 71	38		
From	Dittet	on Mines						(3)	1 1 1				
				Y. S. canals		315	35	345	3 48	4 22	3 8		
sunato via	N. BI			ension			100	473	3 85	5 25	4 5		
****										100	5 0		
	**			railroad		113	95	263	4 08				
Rochester				. Y. S. canals			35	252	3 19	3 76	3 4		
66	**			tension				380	3 55	4 78	4 1		
	**	Ju		. &. C. RR				212	3 73	4 97	4 3		
yracuse				. Y. S. canals			35	225	3 10	3 63	3 3		
				ension				287	3 25	4 35	3 8		
				ga Lake & ca'		40	40	200	122.32	12: 22	1		
				S. & Bing		113		251	3 59	5 19	4 3		
Itica via	46	**		. S. canals			35	281	3 28	3 90	3 5		
	"			sion		231		231	2 98	3 82	3 4		
ec P	nn. I	RR., Dela		idson canal	. 47	209	64	320	3 47	4 85	4 1		
ec F	om C	arbondale	, "		13	218	64	295	3 13	4 48	3 8		
ce D	el., L	. & W., I	Crie RR. &	Chenango ca'l	s 63	97		160	2 63	4 06	3 3		
				henango		197		239	3 69	4 71	4 2		
Albany via				als		356	35	391	3 63	4 45	4 0		
66	**	Chenange	extension			341		341	3 42	4 59	4 0		
**	Delay			nal		99	64	210	3 03	4 18	. 3 6		
**				on canal		108	64	185	2 69	3 81	3 2		
New York		**	"		. 13	108	96	217	2 76	4 05	3 4		
- 66		66	**	· · · · · ·	. 47	99	96	242	3 10	4 42	3 7		
	L.	& Susane	hanna & N	. J. Cent. RR			1	175	3 04	5 28	4 1		
**				& N. J. C. RR			î	157	2 95	4 90	3 9		
17	12/211							1		100			
		sbarre M			100	1		200	10	1	0.0		
New York	via L.	& Susqe		k N. J. C. RR		140	1	166	2 77	4.96	3 8		
DL 11 - 2 - 1 - 1		**		& Morris ca'l.		148	1	194	3 45	4 17			
Philadelph	a via	**		N. Penn. RR		2000	1:21	135	2 50	4 21	3 3		
"				b Del. canals.		106	17	168	2 93	3 66	3 2		
			y, Union &	Schuylkill c'l				274	4 09	4 34	4 3		
H. de Grad		"	& Susque	hanna		196		196	3 16	3 34	3 2		
Baltimore	/ia	- "	**	:		196	54	250	3 38	3 56	4 4		
"		L. & Blo	omsburg &	N. C. RR						19000			
Buffalo via				S. canals		320	35	355	3 57	4 33	3 9		
						1	1	326	4 40	8 30	6 3		
**	11. 6	Bloomson	k K	& Erie RR	. 040			040	E 30	0 00	6 0		

Selling Price of Domestic Coal, October, 1861 and 1864.

					SELLING PRICE-AVER-				
				1861	1864	1864 over 1861.			
			wholesale)		\$11 00	140			
			c (retail)		14 00	136			
Syracuse	"	"	• • • • • • • • • • • • • • • • • • • •		10 75	200			
Utica	"	66"	(retail)	4 70	11 00	134			
Albany	"	"	` "		12 00	123			
"	"	"	on docks	. 4 12	10 75	160			
New York	"	"	(retail)	4 50	9 50	110			
Philadelphi	a. "	66	"		9 00	156			
Boston	"	"	"	. 5 50	13 50	145			
	Averag	Θ				145			

Description of Bituminous Coal Fields of Pennsylvania and Maryland, and Routes to Market.

Bloosburg Mines.

Before the enlargement of the Cayuga and Seneca and Erie canals, coal from these mines was sent over the Tioga railroad, 40 miles, to Corning, and there shipped into boats of 70 to 80 tons burthen, and carried to the Erie canal markets. Since the completion of the enlargement of the above canals, all the coal from the new extensive mines of John McGee, Esq., is sent by railroad from Bloosburg, 80 miles, to Watkins (at the head of Seneca Lake), and there shipped into boats of 210 tons burthen, and carried to Buffalo, 209 miles; Rochester, 116 miles; Montezuma, 56 miles; Syracuse, 89 miles; Oswego, 127 miles; Utica, 145 miles; Albany, 255 miles, and New York, 405 miles, from Watkins.

The character of this coal is: Percentage of carbon, 73.4; steam (of 212°) evaporated, per lb., 10.9; quantity of heat by volume, 85; percentage of coke, by weight, .83.

Barclay Mines.

The only outlet from these mines into this State, is by the North Branch and Junction canals. The coal is brought over the Barclay railroad, 16 miles, to Towanda, and there shipped into boats of 85 tons burthen, and sent to Athens, 15 miles; Elmira, 38 miles; Watkins, 61 miles. At Watkins the coal is transhipped into boats of 210 tons burthen for distant ports on the Erie canal.

It would be economy to tranship if the distance to be transported from Watkins exceeded 50 miles. The total distance of these mines from Watkins, by canal, is 77 miles; Bloosburg mines, by rail, 80 miles—the point of transhipment from both mines.

These mines were not considered practically in operation previous to 1854. In relation to the facilities and working condition of these mines, Col. O. W. Childs, in his report on the Chenango canal extension, remarks, that "the Barclay Railroad Company forwarded, in 1858, 16,000 tons, and in 1859, 30,000 tons, of which only 18,482 tons came into this State by canal. Their road, machinery and mines appear to be in good working order, and although the quantity shipped in 1859 was less than double that of 1858, (a year of the early use and interrupted employ of the road, added to the delays consequent upon seeking and introducing their coal to a new and untried market,) the company being more fully prepared, now contemplate doing a much larger business another year, and with some additional motive power could, in a single season, send forward "120,000 tons."

Value of the Barclay Coal.

L. elation to the character of the coal from these mines, the following is taken from Col. Childs' report:

The board of directors, in a report to the stockholders, in 1857, remark: "The coal is semi-bituminous, and corresponds with the Cumberland and Broad Top coals. It is peculiarly well adapted for generating steam, and is in high favor with iron workers, while many give it a decided preference as a house fuel. The vein is six feet in thickness, and lies above water level, in nearly horizontal strata, but having sufficient dip to drain the mines without the expense of pumping; and in relation to facilities of transit, they say: "one cent per mile is a liberal estimate for the cost of carrying coal over the road with its favorable descending grades, consequently about 16½ cents per ton would be the cost of the coal, exclusive of its value, in the mines, and the cost of mining and placing it in the railway cars."

The general superintendent, James McFarland, Esq., in his annual report to the President of the Company, in 1858, describes this coal "as containing a large percentage of carbon, very little volatile matter and bitumen, with but little ash; it burns freely and without much smoke, and is well adapted for steam purposes and the manufacture of iron, when a strong blast and great heat are required. It contains carbon, 81 to 85 per cent; volatile matter, 11 to 15; ash 3, or thereabout. Also, that it burns out clear, leaving but little clinker. No other fuel has been used in our locomotives than coal from our own mines."

Again, in 1859, the superintendent, in stating its qualities for generating steam, says: "It ignites very readily, burns with a bright, chee ful blaze, and being free from sulphur, it does not injure the boilers, deposits no soot upon the flues, and has great heating and evaporat-

la r

• . • •: . . The state of the second •

ing power. It has been successfully used in steamboats, as well as under stationary engines; in the manufacture of salt and glass; for heating purposes in distilleries and factories; for burning lime, and in locomotive engines, rolling mills and forges, and has given good satisfaction to all our customers."

I would here remark, that I have been favored with copies of twentynine certificates, from gentlemen residing in different parts of the State, based upon tests made by them, and bearing high testimony to its good, and in most instances to its superior quality, for the several purposes above named, in which might be included general smithery, and in the

manufacture of paper, &c.

In relation to its economy and adaptation for use in locomotive engines, F. Leech, Esq., superintendent of motive power on the Susquehanna and western division of the New York and Erie railroad, in a report to the president of that road, says of its economy, after a careful test for several months, on 96 miles of that road, that it proved forty-seven and three-tenths per cent cheaper than wood, reckoning the coat of the former at \$2.70 per ton, and the latter at \$3 per cord, all delivered in the tender. And in regard to its general quality, he says: "I have no hesitation in stating that it is decidedly superior to any other we have tried; our experiments for shop use have shown it to be almost entirely clear of sulphur, and the absence of clinker or slag in the furnaces of the locomotives, indicates it to be clear of the injurious impurities which have proved objectionable in the coal used in our previous trials."

In relation to the distribution of coal from these mines, Col. Childs adds:

"The quantity of coal cleared north, the past season, at the office of the North Branch Canal Company, at Athens, previous to the 31st Oct. last, was 68,513, of which 50,031 tons was anthracite, from the Wyoming valley, and 18,482 tons was bituminous, from Tonawanda; of the latter, about one-fourth, as stated by the superintendent of the Barclay Railroad and Coal Co., stopped south of Montezuma, about one-fourth passed west, and the remaining east of Montezuma; of this latter quantity, about 8,000 tons reached Troy and Albany. A portion reached Binghamton, via the North Branch, Junction, Cayuga and Seneca, Erie and Chenango canals."

The Trevorton Mines.

These mines are situated at the outer croppings of the 2d. Middle Anthracite Coal District, in the vicinity of Trevorton, 13½ miles by the Trevorton railroad to Port Trevorton, on the Susquehanna river.

Port Trevorton has a direct water communication with the New York State canals at Elmira (via the Susquehanna, North Branch and Junction canals), 200 miles; with Havre de Grace (via the Susquehanna and Penn. canals), 119 miles; with Baltimore (via same route), 173 miles; with Philadelphia (via the Susquehanna, Union and Schuylkill canals), 197 miles.

There are also direct railroad communications from the mines to

Binghamton (via the Northern Central, Lackawanna and Bloomsburg, Delaware, Lackawanna and Western, and N. Y. and Erie railroads), 184 miles; to Elmira (via the Susquehanna, Williamsport and Elmira railroads) 142½ miles; with Baltimore (via Northern Central railroad), 141 miles, and with Philadelphia (via Northern Central, H. P. and Mount Joy, and Penn. railroads), 179 miles.

Lykens Valley Mines.

These mines lie at the extreme north-west corner, or arm, of the 1st. Southern, or Schuylkill District, and 16 miles by the Lykens Valley railroad to Millersburg, on the Susquehanna river.

Coal from these mines is shipped into boats of 85 tons burthen, at Millersburg, and sent by direct water communication to Havre de Grace (via the Susquehanna), 104 miles; to Baltimore, 158 miles; to Philadelphia (via the Susquehanna, Union and Schuylkill canals), 182 miles; to Elmira (via the Pennsylvania, North Branch and Junction canals), 215 miles.

From these mines there are direct railroad communications with Binghamton, 187 miles; Elmira, 160 miles; Baltimore, 128 miles, and Philadelphia, 166 miles.

Short Mountain Mines.

These mines lie adjoining the Lykens Valley mines, and the coal is sent to market over the same routes.

Dauphin County Mines

Also lie adjoining the Short Mountain and Lykens Valley mines, and the coal is sent to market over the same routes.

Broad Top Mines.

These mines are situated between Seaton and Hopewell, on the Broad Top railroad, 36 miles from Huntingdon. Coal is sent to Seaton by a branch about eight miles long, and at Hopewell by a branch about five miles long. The mines are seven miles long and about three miles wide. The coal is sent by the Broad Top railroad, 31 miles, to Huntingdon, and there shipped into boats.

Huntingdon has a direct water communication with Harrisburg (via the Juniata & Susquehanna), 107 miles; Havre de Grace, 183 miles; Baltimore, 237 miles; Philadelphia (via Juniata, Susquehanna, Union and Schuylkill canals), 261 miles; with Elmira (via Juniata, Susquehanna, North Branch and Junction canals), 320 miles; with New York city (via Juniata, Susquehanna, Union,

Schuylkill, Delaware and Raritan, and Bay), 374 miles; with Albany (via Juniata, Susquehanna, North Branch, Penn. Coal Co's railroad, Del. and Hudson canal and Hudson river), 412 miles.

From the mines there are direct railroad communications with Baltimore, 219 miles; Philadelphia, 241 miles; New York, 313 miles; Elmira, 268 miles:

The Cumberland Mines.

The mines are situated at and near Cumberland, at the termination of the Chesapeake and Ohio canal. It ranks among the first of bituminous coal-fields, not only in its quality, but superior advantages of transportation to the great markets of the east, and facilities for mining. It will be observed, from former statements, that this coal contains a greater percentage of carbon than the preceding coal-fields, being $74\frac{3}{10}$ per cent.

The Hampshire and Baltimore Coal Company's Mines Embraces the Hampshire and Midland mines, consisting of 2,212 acres combined; 350 acres of which is the "big vein" coal, 14 feet in thickness.

The Hampshire Mines embraces an area of 1,933 acres, 250 of which is the big vein coal, of 14 feet seams, containing only one seam The lower seams lie above the water level, cropping out on the sides of the hills, thus avoiding the additional expense of pumping, etc., and delivering the coal direct from the shute into the cars of the Baltimore and Ohio railroad, immediately on the line, ready to be moved to market. This mine was opened in 1854. The coal is sent directly to Baltimore, and there placed into vessels of from 250 to 450 tons burthen, and sent to eastern markets. is situated adjacent to the Baltimore and Ohio railroad station at Piedmont (206 miles from Baltimore), on the Virginia side of the Potomac, but just on the Maryland line (about 20 miles from the Pennsylvania line). The selling price of this coal, on board vessels at Baltimore, Jan. 1864, was \$6 per ton, and cost \$4.76 per ton, leaving a profit, after deducting sales and charges, \$1 per ton. From this mine 482 tons have been mined and delivered in one day.

The Midland Mines are situated in the George's Creek valley, six miles from Frostburg and 23 miles from Cumberland, embracing an area of 279 acres, 95 of which contains the "big vein." It is estimated to yield from 10 to 12 thousand tons of coal to the acre. The thickness worked is about nine feet. This mine has facilities for

producing from 400 to 500 tons per day. The coal lies about 350 yards from the railroad, and at a slight elevation above it, so that no tramroad is required. On this account the cost of mining did not exceed, in 1863, 75 cents per ton delivered into the cars ready for market, including all expenses connected with the mines. The coal is carried by the Cumberland and Pennsylvania railroad to Cumberland, where it either goes forward to Baltimore (201 miles by rail from the mines), or shipped on board boats by the Chesapeake and Ohio canal to Georgetown, 191 miles from Cumberland. The cost of delivering coal on board vessels at Georgetown, from this mine, was \$4.30 per ton, 46 cents less than by rail at Baltimore; and if the same price is obtained as at Baltimore, the prefits, after deducting sales, etc., would be \$1.46 per ton. The cost of delivering a ton would be divided as follows:

	Cost of mining, etc., per ton	2	75 43 15 22 60 15
	Total cost in Spring, 1864, on vessels at Georgetown	\$4	30
•	From Hampshire Mine: Cost of mining, etc	3	15
	Total cost in Spring, 1864, on vessels at Baltimore		76

The freight charges over the C. & Ohio canal, spring 1864—\$2.75 per ton=14.40 mills per ton per mile including tolls,=111 mills exclusive of tolls.

Cumberland has direct water communications with New York city (via Chesapeake, Ohio canal, 191; ocean, 530 miles), 721 miles; also (via Chesapeake and Ohio canal, 191; Chesapeake bay, 228; Ghesapeake and Delaware canal, 13½; Delaware river, 78; Delaware and Raritan canal 43; New York bay, 34 miles) 587½ miles; with Albany (via last route and Hudson river, 160 miles), 747 miles; also (via ocean route and Hudson river), 867 miles; with Baltimore (via canal, 191, and bay, 163 miles), 354 miles; with Havre de Grace (via last route), 408 miles; with Philadelphia (via Chesapeake and Ohio canal, Chesapeake bay, Chesapeake and Delaware canal and Delaware river, 42 miles), 474 miles.

Georgetown and Washington is 530; Baltimore, 490, and Philadelphia, 285 miles, by the ocean from New York city; and by inland canal routes 393, 396, 243 and 103 miles.

re Co. Ocean Co Ocean Coal Co e & Baltimore Co. Midland LIBRARD Leland Stauford, Jr. TWIVERSITY

Cumberland has direct railroad communications with New York city (via Baltimore and Ohio, 178; Philadelphia and Wilmington, 98; New Jersey, 90 miles), 366 miles; with Philadelphia, 276 miles; with Havre de Grace, 214 miles; with Baltimore, 178 miles; with Albany (via Baltimore and Ohio, 178; Philadelphia and Wilmington, 98; New Jersey, 90; transhipped to Hudson River railroad, 144), 510—223 miles shorter than the shortest water route. The shortest distance from Cumberland to Washington, by rail, is 219 miles, and from the mines, at Piedmont, to Washington or Georgetown, 252 miles.

The following is the quantity of coal mined and sent to market by rail and canal from the Hampshire and Midland mines:

1860	By car	nal	283,000	tons.	•••••	By rai	il	505,909	tons.
1861	""		94,000	66		""		242,930	"
1862	"	• • • • • • • •	119,000	"		66	• • • •	120,864	"
1863	, 66	•••••	229,000	"	*****	"		428,050	
Total	8 26 0 to	'63 inclus'e,	725,000				1	,297,753	

The average burthen of vessels engaged in the coal trade to New York, is 300 tons, and the average freight charges to New York, in fore-part of the season of 1864, was \$5 per ton= $9\frac{43}{100}$ mills per ton per mile.

BITUMINOUS COAL.

The following statement shows the quantity of Bituminous Coal mined and sent to market each year from each of the fields of Pennsylvania and Maryland, also the quantity imported of Foreign Coal:

YEAR.	Import of Foreign coul.	From Bloosburg mines.	From Barclay mines.	From Trevorton mines.	From Lykens val-	F m Short Moun-	From Broad Top.	From Cumberl'd.
1842								1,708
1843	41,163						*********	10,082
1844	87,073					2227.444	*********	14,890
1845	85,776				THE PART OF THE			24,653
1846						Legiceers.	********	29,795
1847					*******			52,940 79,571
1848					05 005			
1849		*******	*******		25,325		*********	142,449
1850	180,439							196,848
1851	214,774					20,000	********	257,697
1852	183,015				59,857	33,639	*********	334,178

upon the canals of Pennsylvania and New York for the years 1861, '62, '63, and '64; cost of mining, &c.

Appendix C shows the cost, tonnage and length of the railroads and canals of New York, Pennsylvania, New Jersey and Maryland.

Appendix D, the key to figures upon the general coal and iron maps of Pennsylvania, showing the foundry furnaces and rolling mills in Pennsylvania and the United States.

S. H. SWEET, C. E.

APPENDIX B.

COST OF TRANSPORTATION, MINING AND FREIGHT CHARGES ON COAL,

ACTUAL COST OF TRANSPORTATION ON RAILROADS AND CANALS.

The commercial value of a route depends first, upon its geographical location; and second, its capacity for the movement of freight. On canals the cost of movement depends upon the burthen of boats and the amount of lockage; on railroads, upon the grades and curves, which affect the economy of transportation.

To determine the comparative cost of transportation between railroads and canals, both should be reduced to level grades; that is, the increased expense overcoming grades and curves reduced to its equivalent of level road, and the time or detentions in passing locks, to that of uninterrupted navigation, or to a uniform speed of two miles an hour.

Thus, assuming the resistance on a level road at 20lbs- per ton, that on a 50 foot grade would be $(20 \times_{\frac{5}{2}\frac{50}{80}})$ of 2240, or 20+21.2) 41 $_{\frac{1}{10}}$ lbs. If the inclined plane was 10 miles, its equivalent of level road would equal $(\frac{41.3\times5920\times10}{20})$ 20 $_{\frac{5}{10}}$ miles. Hence, if the cost of transportation over this 10 miles was nine mills, it would equal 4 $_{\frac{5}{10}}$ mills per ton per mile upon a level road.

Upon the New York State canals the detentions for lockages average $11\frac{37}{100}$ feet lockage as equal to the time passing over one mile, at a speed of two miles an hour. The length of the Erie canal is $350\frac{1}{2}$ miles, and the cost of transportation, exclusive of tolls,= $2\frac{21}{100}$ mills per ton per mile. Then the cost upon a level would equal $\left(\frac{350\frac{1}{2} \times 2.21}{11.35} + 350\frac{1}{2}\right)$ $1\frac{9}{10}$ mills per ton per mile.

There are three classifications under the general head of "Cost

of transportation," viz: Cost of movement, which embraces the rolling stock, motive power and help; cost of transportation, which embraces the former and interest on the cost of route; and freight charges, embracing both the former and profits to the carrier.

The actual cost of transportation, instead of freight charges, should be used for comparison between routes, as the latter fluctuates on the different routes of the same length and capacity, and on different articles; affected always by monopoly.

In the following investigation the actual cost of transportation on railroads is taken as determined on each road from experience, and where not given, the average is used. Upon canals the cost upon each is determined, based upon its capacity and amount of lockage.

Railroads.

The following statement shows the actual cost of transportation for a series of years, determined from the reports of the several railroad companies sent annually to the State Engineer and Surveyor:

		CH	CHARACTERISTICS OF	TER	ISI	cs o		ROAD.					ဝိ	Cost of Transportation in Mills per Ton	LA	RAN	SPOI	TAT	TON	IN	MIL	LS	PER	Ton	PE	PER MILE.	ILE.			
NAME OF ROAD.	eail ais	.eg		feet.	- G	Ascent in Grades intotal length feet, feet, road fr gra. & curves.	in tot ron	ad f	Percent'ge total length road fr gra.	eipts.		-	eipts.		etpts.		eipts.			eipts.		eipts.	-	eipts.	-		eipts.		Tota	Total av.
	ngth m	idth gau	ord tide	obit me	ater. per	.elit.	r mile.	ater.	ater.	Bee	- 8	100	Rec	Cost	Rec	Cost	o a	- 8	Cost	Rec	Gost	Rec	Cost	· ·	- 8	Cost	Rec	Cost	.stqiso	.31
	Le i	_	L	Er	Δ¥	n RM	d			-	7007		101		-		_	1001	_	10	00	1	7001		0001	1	1004	*	$\mathbf{F}^{\mathbf{e}}$	Cos
Through Lines—Erie railway	2972 2972 1444 1302	2973 4.71 1444 4.71 1303 4.71	6.003722432318 060.046.8253.1819.510.225.512.726.212.824.211.424.711.618.9 9.520.9 9.523.314.54.711.618.9 9.520.9 9.523.314.55.4.711.618.9 9.520.9 9.523.314.55.4.711.618.9 9.520.9 9.523.314.55.4.711.618.9 9.520.9 9.520.9 9.523.314.55.4.711.618.9 9.520.9 9.520.9 9.523.314.55.4.711.618.9 9.520.9 9.520.9 9.523.314.55.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	432	81 : : :	090:::	0	80	53.1	8 3 3 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5116	9401	3.04.8	7.4.6	32.00	62.58	539	9910	4446	1.000	11.6	32228	28.13	520 923 027 238	2 8 4 8	10000	Co. 10	6.0	24.1 29.0	24.111.5 29.015.7 42.030.5
Average		1	1	1	:		:		:		32.619.6		29.7 18.4			28.015.4	4 33	=	9.6	33.119.934.9	20.6	25.	25.0 15.2 27.7 17.7	227	7.	1.		*	1	1.
Nor'n. Lines—Oswego & Syracuse Rennsl'r & Saratoga. Saratoga & Whitch'l Northern railroad Waterin, Rome, Ogd	36 251 404 1189	F. F	206 -53 410 1151	H .	100 8.6 45720.0 41717.3 29420.7	100 8.626.065.8634.1434.226.231.2 45720.034.014.7885.2243.634.744.4 41717.3 49.6450.3632.823.129.5 22420.739.046.8953.1119.511.516.0	26.065.86 34.014.78 39.046.89 40.054.33	65.86 14.78 49.64 46.89 54.33	34.14.34.256.231.222.8 85.2243.634.744.437.0 50.3632.823.129.620.6 53.1119.511.516.011.7 45.67.29.017.026.514.8	25 5 3 4 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.226.2 .634.7 .823.1 .511.5	87-100	24500	$\begin{array}{c} 34.2 \ 26.2 \ 31.2 \ 22.8 \ 33.0 \ 19.0 \ 39.6 \ 20.2 \ 28.8 \ 20.2 \ 34.9 \ 17.2 \ 36.1 \ 18.9 \ 38.8 \ 20.9 \ 35.8 \ 20.9 \ 35.8 \ 30.9 \ 30.8 \ 30.0 \ 30$	26.23.	33.019.039.6 42.134.650.8 30.021.039.6 22.615.024.1 26.416.027.8	0 2 4 0 2 4 0 2 7	98918	646000	20000	20.5 37.6 25.6 16.7	31.34	219.	8268222	20000	000004	88000	0.000	35.8 19.5 21.8 28.8	$\begin{array}{c} 19.039.620.238.8 20.034.9 17.236.118.938.8 20.935.8 20.7\\ 34.650.834.245.6 87.649.036.452.535.268.539.349.85.6\\ 21.039.627.830.525.031.119.628.318.070.043.436.524.9\\ 15.024.119.023.516.720.511.19.22.912.825.416.621.814.4\\ 16.027.822.27.317.531.219.729.221.432.826.728.819.4\\ \end{array}$
Average		1	1	1	l i		1:	:		.31.8	8	22.52	29.521.4	11.4	30.8	821.1	136.5	5.	24.73	33.1	23.8	23.933.3	320.9	933	1 60	33.821.247.1	1.1	29.4	34.5	23.1
So. Wtrn Lines—Buffalo, N.Y. & E. Buffalo & State line Cayuga & Busque.	345	6.00	892 3 416 0 644	945	518.4 415.1	179	000	48.69 40.14 72.86	51.31 59.86 27.64	1 26	56.3 23.3 54.6 45.0 26.0 19.7	56.3 23.3 40.0 22.1 54.6 45.0 54.3 30.0 26.0 19.7 23.0 18.2	40.022.1 54.330.0 23.018.2	56. 223. 340. 022. 128. 218. 632. 921. 4 54. 645. 054. 330. 032. 618. 024. 512. 7 26. 019. 723. 018. 222. 216. 125. 315. 9	22.23	28.218.6 32.618.0 22.216.1	0 24	32.921.4 24.512.7 25.315.9	41.0	32.921.428.319.0 24.512.791.716.9 25.315.927.916.2	19.0	20.3 27.8 26.1	20.312.219.513.118.7 27.814.527.814.032.9 26.116.626.020.029.7	2 19.5 5 27.8 6 26.0	814	12.219.513.118.720.7 14.527.814.032.921.0 16.626.020.029.724.1	464	24.1	30.518. 34.521. 25.818.	20.730.518.8 21.034.521.5 24.125.818.6
Average		1	:	:	:				1	. 45.6	629	29.339.1	9.1	23.4	27.6	27.617.5	527	27.516.6	.62	25.917.8	17.8	24.7	7 14.4	424	24.415.7	.72	27.12	21.9	30.2	30.219.6
Eastern Lines—Troy & Boston Long Island	35	4.71	14.9	644	314.8	22.939.0 14.897.0	0 20	20.6	20.6 79.4 50.1549.85	526.0	0 22	27.643.65	8.0	22.341.017.1 31.334.329.0	41.0	29.	140	40.213.84	4.65	44.417.2	30.2	36.6	28.913.230.919.838.8 36.622.939.016.8	230	916	00.00	8 :	22.5	39.9	39.919.2
Average							:	8			38.825.2	.23	35.82	26.837.6	37.6	23.0	039.4	4 22	22.639.9	6.6	23.7	35	32.718.0	034	34.918.3	20		:		
Total average					1				-		0 019 699 691 790 810 0	10	9 6	1	00	5	10	18	0 0 0 0 0 0 0 10 10 10 0 0 0 0 0 0 0 0	1		1	1	1	!	1	1	Ì	Ī	

COST OF TRANSPORTATION OF COAL ON RAILROADS.

But few railroad companies keep their accounts so that the cost of this class of freight can be obtained. I herewith present all the examples I have been able to obtain:

Name of road. Pennsylvania Coal Co's Carbondale Baltimore and Ohio	10.00	Name of road. Erie (bet. Binghamton & Ow. Barelay Coal Co Pennsylvania Coal Co	10.00
Average mills, 1852	10.13	Average mills, 1861	9.00

From Auditor General's Report, Renn. Railroad, for 1863.

•	CHARACT	ERISTICS	Mills P	er Ton Pi	MILE.
NAME OF BOAD.	Length.	Gauge.	Receipts.	Cost.	Profit.
Tioga	294	4.71 6.00 4.71	24.50 14.87 18.70	8.50 6.74 7.61	16.00 8.13 11.09
Elmira & Williamsport	78 47 31	4.71 4.71 4.71	20.50 13.00 20.10	18.00 9.90 5.25	2.50 3.10 14.85
North Lebanon Syracuse and Binghamton Baltimore & Ohio Ironton (Iron)	81 178	4.71 6.00 4.71 4.71	24.00 13.70 18.60 83.50	12.50 5.50 10.00 12.44	11.50 8.20 8.60 21.06
Pennsylvania railroad New Jersey Central. Skamokin Erie railway	355 § 74	4.71 4.71 4.71	28.00 18.00 29.30	14.00 6.37 13.80	14.00 11.63 15.50
Erie railway. Delaware & Hudson Canal Co's Lathigh and Luserne Hasleton.	9 <u>1</u>	6.00 4.25 4.71 4.71	20.90	9.00 4.57 7.84 3.10	11.90
Lorberry creek	,5 1	4.71	21.26	9.28	11.29

v.	•

								FR	FREIGHT TRANSPORTATION	TRANS	PORTA	.NOI.					6		
			1854	. 49				,		1855						1856	99		
NAME OF ROAD.	Repairs locomotives tenders.	Wood, water & stat'n attendance.	Епдіцешен & атошен	Fuel, cost and labor preparing same.	Cost oil and waste for loco. eng. & tender.		Repairs locomotives and tenders.	Wood, water & stat'n attendance.	Enginemen & firemen.	Fuel, cost and labor preparing same.	Cost oil and waste for loco. eng. & tenders.	.IntoT	Average grades, feet per mile.	Repairs lecometives and tenders.	Wood, water & stat'n attendance.	Enginemen & fremen.	Fuel, cost and labor preparing same.	Cost oil and waste for loco. eng. & tenders.	.IstoT
Rrie railway Rochester & Gonesce Valley. Canandaigua & Elmira. Ganandaigua & Elmira. New York Central. Watertown & Rome Oswego & Syracuse Buffalo and State Line Hudson River Hudson River Troy & Boston. Albany & W. Stockbridge Hudson & Sorten. Albany & Weston. Albany & Weston. Albany & W. Stockbridge Rausseilact & Saratoga Saratoga & Whitehall. Northern Long Island.	1.39 2.30 2.30 2.30 1.20 0.83 0.95 0.95 0.95 0.72 0.72 0.73 1.92 0.71 1.92 0.71 1.92 0.71 1.92 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93	0.04 0.18 0.19 0.09 0.09 0.09 0.12 0.12	1.50 0.70 0.70 0.70 0.70 0.70 1.30 1.30 1.80	22 22 25 27 4 4 4 20 20 20 20 4 4 4 70 4 70 4 70	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	74.7 4 4 8 8 8 8 9 9 8 8 9 8 8 8 8 9 9 8 8 8 9 9 8 8 9	2.84 2.82 2.82 2.82 2.82 2.82 2.82 2.83 2.83	0.03 0.057 0.142 0.053 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039	0 82 1.74 1.24 1.47 1.53 1.53 1.53 0.36 0.78 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06	20.22 20.24 20.24 20.25	0.18 0.65 0.65 0.52 0.27 0.12 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	3.92 8.64 6.37 77.21 77.21 77.21 7.05 8.65 8.66 110.61 6.19 9.55	18.0 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10	22.1.22 22.2.22 22.2.22 22.2.22 22.2.22 22.22 22.22 22.22 22.22 22.22 22.22 22.22 23	0.04 0.028 0.028 0.050 0.032 0.047 0.019 0.019 0.019 0.050 0	0.72 0.73 11.56 11.56 11.56 11.03 11.03 11.11 11.11 11.07 11.07 11.07 11.07 11.07	1.32.23.33.33.33.33.33.33.33.33.33.33.33.	0.15 0.58 0.58 0.58 0.29 0.29 0.39 0.39 0.32 0.34 0.34 0.34 0.34 0.35	4.01 7.922 7.922 7.922 7.922 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15
Average	1.73	0.19	1.02	2.46	0.40	5.81	2.03	0.23	1.12	3.60	0.37	7.09	1	1.90	0.16	1.05	3.30	0.33	6.70

CANALS.

From experiments in France, it was determined that when the sectional area of the canal was $6\frac{46}{100}$ times, and its width $4\frac{1}{2}$ times that of the boat, the conditions were then the same as the movement of the boat in an indefinite space of water,

The resistance to the movement of a boat in a canal is caused by the piling up of the water at the bow by being confined within the banks, and falling from this height escapes along the sides, producing by displacement a counter action and resistance, the more considerable as the interval between the sides of boat and canal is reduced.

No experiments of this nature have been made in this country with our build or model of boats; but it is deemed sufficiently accurate to use the formula obtained from the barges upon the Languedoc canal, as they partake of the general build of our boats.

Dubuat's formula $P''=P'[(1-0.183)\times(1-q)\times(\frac{c}{s}-1)]$; or $P'=P^{\frac{8.46}{c}}_{\frac{c}{s}+2}$ (where q=ratio between the resistance with and without a prow; c=sectional area of canal; s=sectional area of boat; P=resistance of a boat in an indefinite fluid, and P'=that experienced in a canal). This formula was found to nearly double the resistance actually experienced on the Languedoc canal.

D'Anbuisson made a series of experiments, and corrected the formula of Dubuat, so that the resistance from calculation agreed with the observed resistance. The formula as corrected, $P'[(1-0.26(\frac{e}{s}-1)], \text{ or with sufficient exactness, } 2.6639\frac{s^2v^2}{e+2s}=1\text{bs.},$ was found to agree with the actual force expended.

This part of the calculation embraced in the cost of transportation covers the expense of *towing*, and is upon different canals in proportion to the resistance.

The Erie canal is taken as a basis, it furnishing the most accurate and reliable record of the expense of animal power as applied to towing, which has not for several years exceeded 25 cents a mile. The resistance at a speed of two miles an hour with boats of 210 tons burthen (the average now used) upon the Erie canal is $(2.664 \times \frac{111.6^3 \times 2.93^3}{441 + (2 \times 111.6)})$ 428 lbs. Before proceeding with the investigation, the following description and dimensions of canals over which the products from the coal mines are transported are given

× 10	Siz	E OF	CAN	AL.	S	ZE 0	r Loc	KS.		THEN
NAME OF CANAL.	Len. of main canal,	Width at surface.	Width at bottom.	Depth of water.	Number of locks.	Width of chamber.	Len. of chamber.	Am't ft of lockage.	Practical.	Theoretical.
Erie canal	350½ 97 135¼	70 40 40	56 24 24	7 3.9-12 4	71 116 135	18 15 15	110 90 90	655 1015 1086	210 70 76	240 76 80
Cayuga & Seneca	21	70 42	56 26	7	11 49	18 15	110	76½ 491	210 85	240
Junetion	18	42	26	41	11	17	90	70	85	100
North Branch	105 64	42	26	41	37	17	.90	280	85	100
W. Br. Susquehanna div'n.	41	40	28	41		17	90	861	85	100
Penn. " "	.46 45	40	28 28	41		17	90	116 235	85 85	100
Susquehanna & Tide-water West Branch	76	40	28	41		17	90	1381	85	100
Delaware & Hudson	108	48	30	6	107	15	100	1028	120	130
Lehigh, New & canal	72	60	45	6	81	22	100	955	74	195
Morris canal	101	40	25	5	*23	11	95	1674	74	76
Union canal	773	43	28	41	95	17	90	395	85	100
Schuylkill navigation	1084	60	40	6	71	18	110	6184	170	186
Delaware & Raritan	43	75	47	7	18	24	110	116	270	280
Penn. Delaware division	60	44	26	6	32	11	90	1661	90	100
Chesapeake & Delaware	$13\frac{1}{2}$	66	46	91	4	24	220		250	300
Chesapeake & Ohio	191	70	58	6		15	100	600	120	142
Penn. Juniata division	127	42	26	4		15	90	516	76	80

*23 planes, 23 locks.

Cost of Movement on each Canal.

Size of Boats.—The size of boats are taken from the general dimensions of the locks, being generally six inches less in width and from 10 to 12 feet less in length than the chamber, and the draft six inches less than the depth of canal.

Expense of Towing.—The expense of animal power is made upon each canal in proportion to the force of traction or resistance, based upon the price of 25 cents a mile, as experienced upon the Erie canal. The resistance is obtained from the formula $2.6639 \times \frac{s^2 \times v^2}{c+(2\times s)} = lbs.$, in which c = area canal, s = greatest area of boat, and v = velocity at two miles an hour, or $2\frac{s^2}{100}$ feet per second.

Cost of Boat, Repairs, and Crew.—The age of the boat is assumed at 10 years, and the cost of same with repairs divided into 2300 days, the aggregate length of navigable seasons. The interest on cost of boat and furniture is at 7 per cent, and the repairs assumed at 25 per cent of the cost of boat and furniture. The expenses of crew is made up of one captain, at \$60 per

month, two hands, each \$45, and one cook, \$30 per month, making on an average about \$6 per day. This is believed to be more than the actual expense on many canals, except the Erie, Cayuga and Seneca, and other night and day canals.

Cost reduced to a level.—For a correct analysis and comparison, the cost upon a level canal is shown, allowing in all cases $11\frac{37}{100}$ feet of lockage as equal to one mile, which covers all detentions (as experienced upon the old and enlarged Erie canal) for the season. The mere question of boats passing through the locks would average about 25 feet as equal to one mile, but to fall from and recover the speed of two miles an hour, with other accidental detentions, brings it down to the above standard. The formula for a cost upon a level $= \frac{(a+b)x}{11.37}$ where a=total feet lockage, b=actual length of canal, and x=the actual cost in mills per ton per mile, including lockage.

		T.	TRACTION OR RESISTANCE.	RESISTA	ANCE.		Cost	Cost of Movement—Cents per Mile.	WENT-C	ENTS P	ER MILE.	Cost	TRAN	TON PE	COST TRANSPORTATION-MILLS FRE TON PER MILE.	fires
	.səliz	83	£911	dibiv	•sq	.beat	power		pus :	• м		-neten-	Redu	Reduced to	2	leten-
NAME OF ROUTE.	Len. route in n	Burthen of boa	Area boat to s.	Width boat to real.	Resistance in I	No. horses requ	Cost of motive-	Cost of boat an niture with in on same.	Repairs of boal	Expense of ore	Total per mile.	Cost including of tions, lockage	Speed pr bour.	Cost on a level	.(1981) alloT	Ost, including d
Brie canal	3504	210	1:3.878	1:4.00	428	2.85	25.1	6.060	0.920	14.55	_	_	67	1.90	1.00	3,21
······································	3504	82	1:6:682	1:4.83	173	1.15	10.1	2.330	0.330	14.55	_	-	67	2.75	1.00	4.21
Chenange with extension	1351	76	1: 2,553	1:2.75	234	1.56	13.6	3.340	0.440	24.12	39.600	6.03	ca 64	3.14	88	6.35
	21,	210	1:3.878	1:4.00	428	2.85	25.0	6.870	0.390	16.50	_	-	100	1.90	1.00	3.35
	21	88	1:6.682	1:4.83	173	1.16	10.1	2.610	0.384	16.50	-	-	64	2.64	1.00	4.48
Ohemung	200	82	1:2.576	1:2.89	319	2.13	16.3	5.700	0.840	36.00	-	-	c4 c	2.41	1.00	7.92
North Branch	105	85	1:2.318	1:2.54	349	2.82	20.3	3.620	0.311	13.33	_	_	4 64	38.89	5.00	9.42
Wyoming	64	85.	1:2.318	1:2.42	349	2.32	20.3	3.620	0.311	13.33	_	_	64	3.86	3.66	80.8
West Branch Susquehanna division.	41	88	1:2.318	1: 2.42	349	2000	20.3	2.300	0.341	14.63	37.571	4.42	09 0	4.00	3.66	8.08
Susquebanna and Tide-water	45	85	1:2.318	1:2.42	349	2.32	20.3	2.890	0.426	18.38	_	-	64	3.40	4.66	9.60
West Branch	16	82	1:2.318	1: 2.43	349	2.33	20.3	2.287	0.337	14.44	-	-	69	3.83	3.66	8.06
Delaware & Hudson	108	120	1:3.009	1:3.31	354	2.36	20.7	6.020	0.850	21.77	-	100	64.0	152	5.25	9.40
wording navigation	46.5	74	1:6.666	1: 5.71	125	0.83	7.3	3.746	0.490	28.47	_	-	4 64	2.50	6.00	11.41
Morris canal	102	7.4	1:3.439	1:3.81	200	1.33	11.7	3.000	0.395	21.56	_	_	64	2.90	5.81	10.81
Schuylkill	1084	170	1:3.116	1: 3.43	429	2.82	25.0	6.000	0.930	18.77	_	-	64 6	2.00	7.50	10.48
Delaware & Maritan	43	170	1.4 494	1:3.18	724	9 97	10.0	7.780	0.758	15.63	-	444	40	1 96	10.00	19 48
Penn. Delaware division	909	06	1:3.636	1:4.18	235	1.56	13.7	2.580	0.413	15.50	_		9 64	2.88	5.50	9.08
	134	300	1:2.515	1:2.80	1,071	7:14	67.0	7.420	1.033	14.00	_	2.98	64	2.59	10.00	12.98
	134	85	1:8.060	1:4.00	180	0.86	1.5	2.180	0.321	14.00	22.001	_	69	2.26	10.00	12.60

Transportation of Coal on Canals, etc.—Continued.

		T.	TRACTION OR RESISTANCE.	RESIST.	ANCE.		Cost	COST OF MOVENENT—CENTS PER MILE.	KENT-C	ENTS PE	R MILE.	Cost	FRANS	TRANSPORTAT	COST TRANSPORTATION-MILLS PER TON PER MILE.	III
	.səli	.83	1168	цэріл		.bəzi	DOWET		bas			leten- s, &c.	Reduced a level	uced to		-detel
NAME OF ROUTE.	Len. route in m	Burthen of boa	Area boat to a canal.	Width boat to w	Resistance in Ibs	No. horses requ	Cost of motive I	Cost of boat and niture with int	Repairs of boat furniture.	Expense of crev	.elim req lasoT	Cost including d	Speed pr hour.	Cost on a level	.(1881) alloT	Cost including d
hesapeake & Ohio enn. Juniata division Daion canal	191	120 76 85	1: 4.815	1:4.82	309 247 341	1.64	18.0	4.345 2.290 2.875	0.638	16.53	38.483 33.623 41.308	3.30	400	3.26	5.00	9.42
		120	1:3.527	1:3.37	353	2.34	20.6	4.105	0.566	18.28	43.227	4.04	61		4.82	8.8
Indson river (sail)	160	450		1:4.50	11	33.50	11	18.040	2.260	34.91	55.612	1.23	0	0.61		-
(canal boat)	160	120	1:6.500	7:4.50		8.60	16.5	2.200	0.220	8.55	27.140	2.26	٠0٠	1.82		2.26
checa lake	120	300		1:4.50		15.18	_	6.250	1.000	12.50	81.750	9.73	4 4	200		000
,,, ,,	120	85		1:4.50		4.73	_	2.000	0.300	12.50	34.000	4.00	4	3.13		4
cean (sail)	530	450		1:4.50		48.20		15.026	2.216	29.08	46.324	1.03	9	0.51	-	-i

#

The following statement shows the rates of toll charged upon each canal, as made up for the season from the published toll sheets, for a series of years:

Rates of Through Tolls on Anthracite Coal.

	THROU	GH RATES	FOR S	BASON.	
NAME OF CANAL.	M	ills per ton	per mi	ile.	Remarks.
•	1861	1862	1863	1864	
Erie canal. Chenango Cayuga & Seneca Chemung Junction do North Branch West Branch & Susqueh'a Penn. Eastern Division Susquehanna & Tide Water Union canal Delaware & Hudson Lehigh canal Morris canal Schuylkill Delaware & Raritan Chesapeake & Delaware Chesapeake & Delaware Chesapeake & Ohio Penn. Juniata Division	10 25 5 25 35 35 35 45 5 5 45 5 5 7 10 10	1 1 1 1 1 10 25 6 25 4 14-100 4 14-100 4 14-100 4 37-100	41/2 5 6 51/4	2 2 2 2 2 10 25 8 4 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

Freight Charges on Coal Transported on Canals in 1861 and 1864.

		Route.	RATES CH	ARGED, II	crap,e	Tolls.	
FROM—TO—	NAME OF CANAL.	of	Through	Charge.		er Ton Mile.	tage of
·		Length	1861	1864	1861	1864	Percentage crease, '64 o
Corning to Oswego	N. Y. S. canals.	160	\$1 13	\$2 50	7.06	15.62	121
do Buffalo	do	242	1 20	3 00	5.00	12.39	150
do Syracuse	do	122	93	1 60	7.62	13.11	72
do Troy	go	281	1 93	3 00	6.87	10.67	55
do Seneca Falls.	do	79	60	1 25	7.59	15.82	108
Binghamton to Utica	do	97	1 10	2 75	11,34	28.35	150
Watkins to Troy		248	2 10	3 42	8.46	13.79	63
Elmira to Albany	. go	278	1 96	3 00	7.06	10.79	53
Hawley to Rondout	Del. & Hudson .	100	1 45 1-10		14.51	35.56	145
M. Chunk to Jersey City.		148	1 72	3 72	11.62	25.13	116
Cumberland to G'getown.		191	1 62	3 25	8.50	17.01	100
Pt. Carbon to Philadel's.		108	1 45	3 42	13.42	31.66	. 136
Average			l		9.09	19.16	110
22.01.00			1		1		J

Freight Charges on Coal Sea-borne from Tide Water Ports, Oct. 10th, 1861, and Oct. 20th, 1864.

		es.	Rates or	Dist'ce.	Mills pe M	r Ton perile.
		Distance Miles.	1861	1864	1861	1864
From Philadelphia &	Reading RR., Rich-					
mond, Philadelphia		2	Sec. Sec.	200	No.	Yes
	il)	620	\$1 00	\$2 75	1,61	4.43
Portsmouth, N. H., d	0		1 10	2 85	1.86	4.83
Newburyport, Mass., d Boston, Mass., d		575	1 10	2 75	1.91	4.91
Newburyport, Mass., d Boston, Mass., d New Bedford, Mass., d			90	2 30	2.28	5.82
Newport, R. I., d		390	90	2 25	2.30	5.77
New London, Conn., d	0	375	90-	2 25	2.40	6.00
Norwich, Conn., d		390	1 00		2.56	*******
Tortugas, d			4 25		3.54	
Cuba, d New Haven, Conn., d	T	1,270	4 25 874	2 30	3.34 2.43	
New Haven, Conn., d Bridgeport, Conn., d			871	2 30	2.53	6.38
New York, d			82	2 00	2.89	7.02
Newark, N. J., d			821		2.87	
Albany, d			90		2.02	
Troy, d			1 00		2.22	
Philadelphia, Penn., d			121			******
Fortress Monroe, d Key West, d			1 00		3.61	
Key West, Providence, R. I., d			90	2 25	2.22	5.50
					2.51	5.73
Incr'se of rates, 1864 over					2.01	0.73
		96 382 172 145 200 225 170 225 230 400 450 178 87 167 130	35 47± 80 50 57± 60 60 75 70 80 80 50 45 75 55 565	\$0 75 1 40 2 50 1 50 1 80 1 80 1 90 2 65 2 50 1 60	2.91 4.94 2.19 2.90 3.96 3.02 2.66 3.52 3.33 2.00 1.77 2.80 5.17 4.49 4.16 6.50	6.25 14.60 6.54 10.34 9.00 10.56 8.44 8.26 6.62 5.55
Incr'se of rates, 1864 ove	r 1861 = 154 per cent.					
From Balt. & Ohio R.	1, 1864.				-	
Boston Boston	, 200000 2 0000, 50	770		4 124		5.35
New York		490		3 00		6.12
New Haven		585		3 75		6.41
Philadelphia		440		1 50		(3.41)
Providence		620		4 00		6.45
Portland		830 630		4 121		6.74

The following statement shows the average rates charged for towing coal boats and barges, by the Steam Towing Companies, on the Chesapeake and Delaware bays and rivers, also the Hudson river, for the years 1861 and 1864:

			MILL	PER TO	и рев М	ILE.		
	24 N	liles.	120	Miles.	270 .	Miles.	160 M	iles.
BURTHEN OF BOATS.	t	le Grace o Del. ca'l.		ladelphia nd more.	· '1	delphia to ington.	New 1	
	1861	1864	1861	1864	1863	1864	1861	1864
50 tons	3.33 2.77 2.38 2.60 2.41 2.77 2.43 3.00 2.29 2.25 2.22	5.83 4.86 4.16 4.16 4.41 4.63 5.55 6.43 6.66 7.00 7.22	3.66 3.05 2.61 2.43 2.26 2.30 2.42 2.13 2.13 2.10 2.08	10.80 9.72 8.93 8.33 8.09 7.08 6.94 6.06 5.83 7.16 6.73	11.11 9.56 8.46 7.63 7.30 7.00 5.80 4.56 4.16 3.70 3.30	14.81 12.46 11.42 10.00 9.47 9.05 7.25 5.54 5.09 4.44 4.00	1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37	1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53
134Average	2.59	5.53	2.47	7.70	6.60	8.52	1.37	1.53

Cost of Mining Coal, or Value of Coal in Mines, including Profits.

	•				Selling Price.	Deduct Freight Charges.	Cost of ing, inc	lud.
At Pittston in Hawley Rondout Syracuse Bingh ton Towanda	do do	as stated by do do do do do	O. W. Chi do do do do	lds	\$1 10 1 98 3 70 3 00 2 55 1 75	\$0 61 2 16 1 96 86 23	1 1	10 87 54 04 69
Averag	e eest	with profits .	•••••				,\$1	37
Averag	e post	in England	•••••				\$1	20

The above average cost of mining (\$1.37) was used in determining the actual cost of coal from the Schuylkill, Middle and Wyoming and Lackawanna anthracite coal fields, and also for bituminous coal, except the Cumberland coal, which was stated, in the Report of the President of the Baltimore and Hampshire Coal Company, to cost but 75 cents per ton in 1863, including all expenses connected with the mines.

Sketch of the Erie Canal, showing Cost of Transportation.

The following condensed sketch of the Erie canal, showing the gradual reduction in the cost of transportation, and the method pursued in the foregoing calculation, may be of interest to many not conversant with its general character as connected with this subject:

Erie Canal. — The construction of the Erie canal was commenced July 4th, 1817, and completed Oct. 26th, 1825, at a cost of \$7,143,789 $\frac{86}{100}$ = \$19,255 $\frac{1}{2}$ per mile. The dimensions were as follows: Width at surface, 40 feet, at bottom, 28 feet, and 4 feet depth. The locks were 90 feet in length between quoins, 15 feet wide. The average burthen of boats used was 50 tons. The length of canal before its enlargement was 362 miles from Albany to Buffalo.

The cost of transportation in 1830 (the earliest record preserved) was for tolls $2\frac{9}{10}$ cents, and for tolls and freight $5\frac{1}{2}$ cents per ton per mile, from Albany to Buffalo; and from Buffalo to Albany, the tolls were about $1\frac{1}{2}$ cents, and tolls and freight $2\frac{1}{2}$ cents per ton per mile; making an average upon the tonnage to and from tide water (which was 5 to 1)=3 cents per ton per mile, including tolls. The enlargement of the Erie canal was authorized May 11th, 1835; and accompanying the estimate of its probable cost, was one showing, that by the proposed enlargement the cost of transportation would be cheapened 50 per cent.

The cost of transportation in 1835 was, from tide water, for tolls 1_{100}^{81} cents and for tolls and freight 4_{10}^{4} cents per ton per mile; and to tide water, for tolls 9 mills, and for tolls and freight $1_{\frac{3}{4}}$ cents; making the average cost upon the tonnage to and from tide water (which was about $5_{\frac{3}{4}}$ to 1) 2_{100}^{12} cents per ton per mile, including tolls.

The enlargement was practically completed in 1859, but the construction account was not closed until April 10th, 1862. The total cost of construction, including the original canal, was \$39, 152,640, and including land damages and interest on loans, \$52,666,724. The present size of this canal is 70 feet surface, 56 feet at bottom and 7 feet depth, and $350\frac{1}{2}$ miles long. The locks are 110 feet in length between quoins, and 18 feet wide in the clear. The average burthen of boats now used is 210 tons.

The cost of transportation in 1862 averaged from tide water, for olls 4 mills, and for tolls and freight $7\frac{1}{10}$ mills per ton per mile;

and to tide water, for tolls 6 mills, and for tolls and freight 1_{01}^{3} cents per ton per mile; making an average upon the tonnage to and from tide water (which was as 8 to 1)= 1_{100}^{12} cents per ton per mile = a reduction of 50_{10}^{1} per cent from 1835.

The aggregate of the carrier's charges in 1862 averaged 5_{100}^{63} mills, and the tolls 5_{100}^{52} mills per ton per mile. The actual cost of movement, calculated upon the method adopted in this report, is as follows:

Expense of crew (1 captain at \$50 per month, 2 hands, \$45 each, 1 cook, \$30 per month)=\$5 per day, by \$\frac{1}{2}\$ days	
2,300 days = total per day, \$2.50, by 81 days, the time of passage.	21 25
Repairs of boat, 25 per cent of cost = 38 cents per day	3 23
Towing, 25 cents per mile, by 3504 miles	87 62
Total cost of passage	
Total cost of passage	00 mills.

APPENDIX C.

LENGTH, DIMENSIONS, COST OF TRANSPORTATION ON RAILROADS AND CANALS OF NEW YORK AND PENNSYLVANIA.

NEW YORK STATE RAILROADS FOR 1863.

NAME OF ROAD.	Len. of road in miles.	Length of road laid in miles.	Length of double track including sidings, in miles.	Length of branches owned by the comp'y. laid, in miles.	Length of double track on same, in miles.	Gauge.
Albany and Kenwood* Albany and Susquehanna Albany and West Stockbridge. Atlantic and Gt. Western in N. Y. Avon, Geneseo and Mt. Morris Blossburg and Corning. Brooklyn Railroad of Brooklyn Brooklyn, Bath and Coney Island. Brooklyn City. Brooklyn City and Newtown. Brooklyn City and Ridgewood Buffalo and Allegany Valley* Buffalo, Bradford and Pittsburg* Buffalo, New York and Erie Buffalo and State Line. Cayuga and Susquehanna Central Park, North and East River Chemung Coney Island and Brooklyn East and North River* Eighth Avenue. Erie Railway Erie and New York City* Forty-second St. & Grand St. Ferry Hudson Riyer Lake Ontario, Auburn and N. Y.* Lung Island New York and Harlem New York and New Haven New York and Harlem New York and New Haven Northern Oswego and Rome	3 140 12 38 48.89 15.50 14.83 5.38 6.50 30.21 9.50 25 30 100 142 22 17.36 10.50 6 10.50 6 10.50 8 8 17.33 144 73.84 74.8	35 12 38 48.89 15.50 14.83 5.38 4.50 28.31 5.25 10 12 142 88 34.61 17.36 10.50 7 17.33 144	1 44 3.07 50	91 §18.25 25 1165 2.50 2.58.13 2.12	2.75	4.71 6.00 4.71 4.71 4.71 6.00 6.00 4.83 6.00 6.00 4.71 4.71 4.71 4.71
Oswego and Syracuse Port Morris and Westchester* Rensselaer and Saratoga Rochester City and Brighton Rochester and Genesee Valley Rome, Watertown and Ogdensburgh Saratoga and Schenectady	35.91 11 25.22 10 18.45 189.63	35.91 25.22 6.60 18.45 189.63 21	2.21 2.51 90 1.25 14.78 1.57	48.52	3.43	4.71 4.71 6.00 4.71 4.71

NAME OF ROAD.	Len. of road in miles.	Length of road laid, in miles.	Length of double track including sidings, in miles.	Length of branches owned by the comp'y laid, in miles.	Length of double track on same, in miles.	Gauge.
Saratoga and Whitehall	8 4 35	40.86 8 4	3.87 8 4.37	6.66		4,71
Staten Island Syracuse, Binghamton and New York Third Avenue Third Avenue and Fordham*	81	81 8	8 8.50			6.00
Troy and Bennington	34.91 4.50	34.91			:::::	4.71
Troy and Greenbush Troy and Rutland Troy Union Utica and Black River	18.50 2.14	18.50 2.14 34.94	2.14			4.71 4.71 4.71 4.71
Utica City Van Brunt St. and Erie Basin Warwick Valley Westchester*	1.25		25			
West Shore*	4	2,698.46	1.193.43	506.09	24.18	
Excluding City roads	3,022.82	2,580.67	1,094.49	504.93	24.18	

[·] Road not in operation.

The total cost of all the railroads in the State of New York, including equipment, \$148,040,643. Cost, exclusive of city railroads, \$136,850,299. The total number of tons of freight transported in 1863=7,197,804. Total number of tons carried one mile=994,039,502.

[†] Owned by lessees of road.

[§] Branches operated by the company. ... || This includes branches leased by the company.

Deductions from the reports of several of the principal companies, showing, 1st. Average sum received per ton per mile on freight. 2d. Average cost per ton per mile transporting freight. 3d. Percentage of transportation expenses to gross earnings.

. 1862.

	Average per	Ton per Mile.	Per cent of transportation
NAME OF ROAD.	Received for transporting.	Cost of fransporting.	expense on gross earnings.
Buffalo, New York and Erie Buffalo and State Line. Erie Railway. Hudson River Long Island New York Central. New York and Harlem. New York and New Haven. Northern. Oswego and Syracuse. Rome, Watertown and Ogdensburgh. Saratoga and Whitehall Syracuse, Binghamton and New York.	2.78 1.89 2.26 3.66 2.23 3.74 4.54 2.05 3.49 8.12 3.11	Cents. 1.22 1.45 .95 1.20 2.29 1.39 2.82 3.10 1.19 1.72 1.97 1.96	66.54 51.33 61.98 51.89 62.13 59.93 60.43 54.39 64.11 44.71 49.79 64.26 38,49

1863.

Received for transporting. Cost of transporting.		AVERAGE PER	Ton PER MILE.	Per cent of
Buffalo, New York and Erie 1.95 1.31 71.28 Buffalo and State Line 2.78 1.40 62.43 Erie Railway 2.09 .95 61.51 Hudson River 2.74 1.33 48.81 New York Central 2.38 1.55 62.79 New York and Harlem 3.88 3.27 60.72 New York and New Haven 4.31 3.07 57.88 Northern 2.29 1.28 73.17 Oswego and Syracuse 3.61 1.89 48.96 Rensselaer and Saratoga 5.25 3.52 65 Rome, Watertown and Ogdensburgh 2.92 2.14 52.87 Saratoga and Whitehall 2.83 1.80 62.52	NAME OF ROAD.			transportation expense on gross earnings.
Syracuse, Binghamton and New York 1.37 .55 42.89	Buffalo and State Line. Erie Railway. Hudson River. New York Central. New York and Harlem New York and New Haven. Northern. Oswego and Syracuse Rensselaer and Saratoga. Rome, Watertown and Ogdensburgh	1.95 2.78 2.09 2.74 2.38 3.88 4.31 2.29 3.61 5.25 2.92 2.83	1.31 1.40 .95 1.33 1.55 3.27 3.07 1.28 1.89 3.52	62.43 61.51 48.81 62.79 60.72 57.88 73.17 48.96 65

Statement showing the Tons of Total Movement and Mileage on the New York Central and New York and Erie Railroads, and Freight on the same, and the Average Cost per Ton per Mile.

- 1	New York	CENTRAL RAI	LROAD.	NEW YORK AND ERIE RAILROAD				
YEAR.	Tons moved one mile.	Receipts for freight.	Per ton per mile.	Tons moved. one mile.	Receipts for freight.	Per ton per mile.		
	10.5	Total I	Cents.		100	Cents.		
1853	54,701,350	\$1,838,830 00	3.36	101,626,522	\$2,537,214 00.	2.49		
1854	81,168,080	2,479,820 00	3.05	130,808,034	3,369,590 00	2.57		
1855	99,605,836	3,189,603 00	3.20	150,673,998	3,653,002 00	2.43		
1856	145,733,678	4,328,041 00	2.97	183,458,046	4,545,782 00	2.48		
1857	145,873,776	4,559,276 00	3.13	167,100,850	4,097,610.00	2.45		
1858	142,691,178	2,700,270 00	2.59	165,895,635	3,843,311 00	2.32		
1859	157,136,000	3,337,148 00	2.13	147,127,039	3,195,870 00	2.17		
1860	199,231,392	4,095,934 00	2.06	214,084,395	3,946,410 00	1.84		
1861	237,392,974	4,664,449 00	1.96	251,350,127	4,351,464 00	1.73		
1862	296,963,492	6,607,330 96	2.22	351,092,285	6,642,914 68	1.89		
1863	312,195,796	7,498,505 95	2.38	403,670,861	8,175,097 12	2.09		

NEW, YORK STATE CANALS.

Dimensions of the New York State canals, with cost of each per mile. Sentember 30th, 1862.

		,	1	SIZE	SIZE, OF CANAL.	NAE.	No. AND	D SIZE LOCKS	OCKS.	mi l. basl		s 1800	Jo u
NAME OF CANAL.	When authorized.	When completed.	Length in miles.	90 glus no dibiW	Width on bott'm.	Depth of water.	Number of locks.	Length between quoins.	Width in clear.	Cost pr mile, cans provement and damages.	Feet of lockage.	Average burthen b	Maximum burther
Erie canal	1817	1825	363	40	28	*	83	06	15	\$19,679 87	6753	10	76
enlargement same	1835	1862	3503	20	56	4	11	110	18	824	655	210	240
Oswego canal	1825	1828	38	40	24	4	18	06	15	880	155	20	26
enlargement same	1847	1862	38	02	99	-	18	110	18	105	155	210	240
Cayuga & Seneca canal	1825	1828	21	40	24	4	10	06	15	190	834	20	26
-	1836	1862	23	20	99	-	=	110	18	282	834	210	240
Champlain canal		1822	99	20	35	9	20	100	183		1664	80	88
Glens Falls feeder		1837	12	20	35	2	12	100	18 5	21,556 32 }	132 *	80	88
" pond above Troy dam		1837	67		:		-		•			9	
Black River canal and feeder		1849	20	42	26	4	109	06	15		1,082	20	22
" improvement		1861	42				-	110	18		***********	70	26
Genesee Valley canal	1826	1861	1243	42	26	*	112	06	15		1,0453	20	12
Chenango canal	1833	1836	16	40	24	*	116	06	15		1,0154	7.1	16
Chemung canal and feeder	1829	1831	39	42	26	4.1	53	06	15		421	85	8
Oneida River improvement	1839	1850	20	80	09	44	64	120	30		61	20	16
Oneida Lake canal.	1832	1836	-	40	24	*	1	06	15		603	20	76
Baldwinsville canal and Seneca towing path	1838	1839	53	40	24	4	-	06	15			20	76
	1829	1833	00	4.2	56	4	27	06	15	38,262 00	278	20	7

Total Cost of Construction and Repairs of the New York State Canals, including Land Damages and Engineering, September 30, 1862.

NAME OF CANAL.	Total paid ; repairs.		Original con of canals.		Cost with i	and	Cost with in terest on loans.	
Erie canal	\$ 10,995,333	52	\$7,143,789	86	\$38,977,831	16	\$52,491,915	74
Oswego canal	1,244,442		565,437		3,077,429		3,612,825	
Cayuga and Seneca canal.	486,582	77	214,000	00	1,347,149	26	1,584,554	
Champiain o'l and feeder.	2,016,895	00	921,011	13	1,746,062	63	2,647,002	34
Black river do .	181,887	70	2,954,848	64	3,157,296	38	4,239,566	7
Genesee valley canal	612,336	01	5,342,753	20	5,663,183	99	9,408,896	19
Chenango canal	506,681	79	2,316,186	00	2,491,351	68	3,754,143	8
Chemung canal and feeder						51	1,623,693	
Oneida river improvement.			79,346		107,959	55	173,348	54
Oneida lake canal Seneca river towing path	79,406	49	•78,829	85	50,000	00	74,916	0
and Balwinsvillle canal.	9,662	03	14,846	00	16,585	13	16,585	13
Crooked lake canal	127,817	37	156,776	00	306,103	28	418,890	90
Totals	\$17,041,151	75	\$20,102,237	03	\$57, 993, 296	14	\$80,046,388	1

[•] This amount was paid by company, as reported by the petitioners in their application to the State to purchase the same. See Senate Document No. 16, 1837. They reported the cost of the canal at \$64,886.37, and the feeder \$13,938.48.

The following Statement shows the Net Gain and Loss upon each and all the New York State Canals, from 1817 to September 30, 1862.

NAME OF CANAL.	Total amount tolls rec'd from com- pletion of canal, to September 30, 1862.	for repairs, col- lectors, inspect-	Surplus and de- ficiences.
Erie canal Oswego canal Cayuga and Seneca canal Camplain canal and feeder Black river canal Genessee valley canal Chenango canal Chenung canal and feeder Crooked lake canal Oneida lake canal Oneida river improvement Balwinsville canal and Seneca	71,536 38 538,050 77 509,374 78 375,819 64 40,216 01 65,130 30 191,139 08	\$12,518,860 03 1,450,403 37 557,934 64 2,296,358 93 310,233 39 849,284 96 690,471 40 935,996 26 185,338 03 ,113,024 28 24,730 00	\$59,264,810 62* 571,962 36* 136,345 63* 1,831,287 67* 238,697 01* 311,234 19* 181,096 62* 560,176 62* 145,122 02* 47,893 98* 166,409 08*
towing path	1,201 49 \$80,420,481 70	\$19,943,820 74	9,983 9 \$60,476,610 9

Nozz.—The sign * is for surplus, and † for deficiencies.

Cost of Transportation. .

Statement showing the tons of total movement for nine years, the tolls paid, freight paid to carrier, and the average cost per ton per mile.

New York State Canals.

				Cost PER To	N PER MILE.
YEAR.	Tons moved one mile.	Amount of tolls.	Amount of tolls and freight.	For tolls.	For tolls and freight.
1853	700,389,933	\$3,204,718 00	\$7,393,884 00	4.57 mills.	1.05 cents.
1854		2,773,566 00	5,782,855 00	·4.15 ''	0.865
1855		2,085,077 00	5,841,420 00	8.36 **	0.948 **
1856		2,748,212 00	6,573,225 00	4.22 **	1.11 "
1857		2,045,641 00	3,876,000 00	4.21 **	0.80 **
1858		2,110,754 00	4,502,437 00	3.71 "	0.80 ' **
1859		1,723,945 00	3,665,806 00	3.16 "	0.677 **
1860	809,524,596	3,009,597 00	8,049,450 00	3.72 **	1.00 **
1861		3,908,785 00	9,369,378 00	4.53 **	1.08 ct
1862		5,188,943 00	10,780,431 00	4.62 66	0.96 **
1863		4,645,207 00	9,065,005 00	4.50 **	0:87 **

We find, from the foregoing statement, that the carrier's charge for the year 1862, upon all the canals, amounts to five mills per ton per mile, while the tolls amount to $4\frac{6}{100}$ mills.

General view of the progress of the trade of the Erie canal, with the cost of transportation, from 1824 to 1862 inclusive.

2	tide	tide	June-	at and York,	COST OF	TRANSPO	RTATION	PER TON.
YEAR.	g from	ing at	ges at June. Alexander		Albany to	Buffalo.	Buffalo t	o Albany.
	Tons going water.	Tons, arriving water.	Total lookages at June tion and Alexander' look.	No. boats arrived cleared from N. Albany and Tro	For tolls	For tolls and freight.	For tolls	For tolls and freight.
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840	35,435 56,797 52,621 70,154 86,945 119,468 114,608 128,910 133,796 122,130 142,802 142,035 120,586	753,191 696,347 611,781 640,481 602,128 689,012 774,334	6,166 10,985 15,156 13,004 14,579 12,619 14,674 16,284 120,649 22,911 22,912 25,798 25,516 21,055 24,234 26,987 30,320	8,760 13,110 23,662 21,490 223,874 26,882 25,826 31,460 31,460 31,082 32,123 31,182 32,183 31,182 31,182 31,182 31,182	\$10 22 10 22 10 22 8 76 6 57 6 57 6 57 6 57 6 57 6 57 6 57 6	\$20 00 19 80 20 00 14 80 16 00 21 00 18 60 17 80 17 80 16 60 12 20	\$5 111 5 11 3 65 3 28 3 28 3 28 3 28 3 28 3 28 3 28 3 2	\$9 07 8 89 9 26 8 15 7 68 6 29 7 13 7 50 6 76 6 94 7 50

	tide	tide	June-	X	at and York,	Cos	T OF	TRAN	SPO	RTAT	ION :	PER I	Con.
YEAR.	from tide	ing at	ges at		om N. You ad Troy.	Alba	ny to	Buff	alò.	Buffa	lo to	Alba	any.
	Tons going water.	Tons arriving water.	Total lockages at Junc- tion and Alexander's		No. boatsarrived cleared from N. Albany and Tro	For	tolls	For an freig	d	For	tolls	For an freig	d
1842	123,294 143,595	666,626 836,861	31,682		32,840 32,826	\$6		\$13 11	20 20	\$3	28. 28		
1843	176,737	1,019,094	38,313	1	38,786	6		13	00	3	28	5	56 56
1845	195,000	1,204,943	39,094		40,090	6		. 9	60	3		6	57
1846	213,295	1,362,319	43,202	3	42,936	4		8	00	2	92	5	92
1847	288,261	1,744,283	54,131	Alexander's lock.	51,634	4		7	80	2	92	7	13
1848	329,557	1,437,905	44,076	S I	43,018	4	80	7	80	2	92	5	37
1849	315,550	1,579,946	47,315	T.	46,520	4	80	7	80	2	92	5	18
1850	418,370	2,033,833	51,245	de	46,880	4	80	7	20	2	92	5	48
1851	467,961	1,977,151	54,257	2	53,316	4	40	6	20	2	19	4	71
1852	521,527	2,234,822	55,050	ex	55,166	2	92	5	20	2	19	4	90
1853	584,141	2,505,797	56,280		55,732	2	92	5	60	2	19	5	18
1854	531,831	2,223,743	50,674	P	48,825	2	92	5	00	2	19	4	81
1855	504,696	1,895,593	44,401	and	41,110	2	92	5	00	2	19	4	81
1856	573,233	2,123,469	47,096		44,628	-2	92	5	40	2	19	5	56
1857	340,170	1,517,187	31,472	tio.	35,506	2	92	4	80	2	19	4	26
1858	287,073	1,985,142	32,386	no	33,118	1	46	2	80	1	46	3	14
1859	317,459	2,121,672	29,514	Junction	29,788		70	2	40	1		2	87
1860	373,735	2,854,877	41,598		40,608	1		2	40		41	3	88
1861	340,736	2,980,144	37,786	4.1	39,526	1		2	20	1		4	26
1862	417,623	3,402,709	42,866		41,690	1		2	50	2		4	22
1863	456,800	3,274,727	40,887).	39,386	1	40	2	50	2	11	4	17

Statement of total length navigable miles of canals, feeders and rivers, with lakes, connected artificially by canals, in New York State.

	Miles.
Total length of navigable canals and feeders	886
Length Hudson river, New York to Waterford	160
Lake Champlain, Whitehall to Rouse's Point	
Oneida lake	
Cayuga lake	
Seneca lake	85
Crooked lake	- 19
	1, 2 72‡

PENNSYLVANIA RAILROADS, 1862.

NAMB.	From	To	Distance.	Gange.
Allegheny Valley. Bardlay Relived and Coal Company	Pittsburg	Kittaning. Towanda.	45	4.8
Beaver Meadow	Mauch Chunk	•	- 24	80 0
Bellefonte and Snow Shoe	Bellefonte	Saow Shoe	134	8.
Ostasauque and Fogelsville Railroad	Catasanque	Fogelsville		•
Obstant Hill	Junction North of Tamaqua	Chestant Hill	41	* ×
	Bridgeport	Downingtown	- 21 4	8.
Cleveland, Painsville and Ashtabula	Cleveland, Ohio	Wrie	954	4.10
Cleveland and Pittshurg	Cleveland	New Philadelphia	814	4.10
	Rochester	Bell Air River Line	689	
Sumberland Valley	Harrisburg.	Chambersburg	52	4.83
Delaware, Lackawanna and Western	Great Bend	Delaware River	113.	
	Dovlestown	Innetion N. Penna. Reilroad	90	
	Downingtown	Waynesburg	174	8.9
Mast Mahony	Catawissa Railroad	Mines	13	4.8
Mast Pennsylvania	Keading	Allentown	35 8-10	90 o
Mrie and North East.	Williamsport.	State Line	18‡	4.00
•	Uniontown	Connelsville	12 j-16	4.84
	Chambersburg	Hagerstown	X	4.8
Hettysburg	Hanover	Gettysburg	14	***
Harrishnry Portsmouth Mount Joy, etc.	Harrishnre	Dillerville	1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Harleton Coal Company	Penn Haven	Hasleton	15	4.8
Hempfield	Wheeling, Va	Washington	88	¥.8
Huntingdon and Broad Top Mountain	Huntingdon	Hopewell	31	4 .8
Ironton	Lehigh Valley Railroad	Ironton.	9 68.100	4.8
Jamestown and Franklin	Jamestown	Franklin		
dunction	Belmont	Gray Forty	001-16 *	*. *.
COOKE WELLE	10880 p dassor	Del. L. & W. K. B. B		ė

•	ON COMP.		10
• •			
चिक्र के		4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 2 5 6 8 8 8 8 8
••• ,	4	-106	
త్రా చెల్లకోవాడు బ్యోజ్వాన ప్రవాదం ఉన్ మూలు మూలు బ్యోజ్వాన ప్రవాదం ఉన్	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	255 66-100 47 16 779 179 288 288 28 2-10	24 8 3 9 8 4 8 3 4 4 8
Northumberland Harrisburg Minesville W hite's Haven Easton Littiestown Mines Catawissa Railroad Fool of Broad Mountain Tyrone City Mines Millersburg Mauch Chunk Catawissa Railroad Gatawissa Railroad Tomet Gan	Mine Hill. Port Carbon Dunkirk Hometown Sunbury in Penna. 103 Union Canal Fearthleben	Pitthburg Port Griffith White Haven Intersection N. Central Philadelphia Harbor of Erie Morriaville To Delaware State Line	Connego, in Penna. 514 Catawissa Railroad Columbia Auburn Tusarora Mount Carmel
Reading Reading Harleton Wilkesbarre Mauch Chunk Hanover Ohio River Port Clinton Port Clinton Fort Clinton Witonisco Witonisco Witonisco New Castle Summit Hill McGauley Mountain Palo Alto	Mount Carbon Mount Carbon Piermont. Mauch Chunk Baltimore. Cornwall.	Philadelphia Hawley Pean Haven Pean Haven Norristown Philadelphia Philadelphia Philadelphia	Pittsburg Beaver Meadow Railroad Sinking Spring Rookwille Port Carbon
Lebenon Valley Lebenon Valley Lebigh and Luserne Lebigh and Luserne Lebigh and Susquehanne Lebigh Valley Railroad and Coal Company Littlestown Littlestown Little Schuylkill Little Schuylkill Little Schuylkill Look Haven and Tyrone Leberty Greek Lykens Valley Railroad and Coal Company Machony and Broad Mountain McCauley Mountain McCauley Mountain Mill Creek and Mine Hill Marker Hill Schuylkill Haven	Minon Carbon and Pour Carbon Mount Carbon and Port Carbon New York and Erie Newtherning Valley Northern Central North Lebanon North Pennsylvania	Pall Creams of Familians Coal Company and Railroad Ream Haves and White Haven Philadelphia and White Haven Philadelphia Germantown and Norristown Philadelphia and Reading Philadelphia and Sunbury Philadelphia and Trenton Reliadelphia, Wilmington and Baltimore	Fittaburg and Conneisvine Onakake Onakake Reading and Columbia Schuykili and Susquebana Schuykili Valley Navigation Shamokin Valley and Pottaville

Penna NAME.	Pennsylvania Railroads, 1862—Continued.	-Continued.	Distance.	Gauge
Straeburg Swakara Swakara Trevorton Coal and Raliroad Company West Chestor West Chestor and Philadelphia.	Strasburg	Lemon Place Donaldson Morris Morris Morris Pennaylvania Canal Junction Penna. Railroad West Chester York	44 6 6 134 9 26 88-100 13	446444
		,		
	1			

The total length of railroads in Pennsylvania, in 1863, was 3,330 miles of main track, constructed at an expense of \$162,324,814, including equipment, etc. The city railroads of Philadelphia are equal to 148 miles in length, and cost \$4,000,000 in 1861. There was transported over the railroads in Pennsylvania in 1863, 23,932,248 tons of freight, including 14,351,174 tons of anthracite coal, 2,038,693 of bituminous, and nearly 600,000 tons of iron.

Pennsylvania Canals, 1862.

	NAME.	From	To	Dis- tance.
do d	l, Delaware Division Eastern do Juniata do Western do Susqueh'a do West Br'ch do North B'ch do Bald Eagle Side Cut. Lewisburg do Lackawanna Feeder. Allegheny Branch Johnstown Feeder Raystown Branch Erie Extension French Creek Feeder. Beaver Division Mahaning Yigation Yigation	Easton	Bristel Duncan's Island Hollidaysburg Pittsburg Northumberland Farrandsville New York State Line Bald Eagle Creek Lewisburg Lackawanna River Allegheny City Erie Junction, Erie Extension.	1. 1. 106 11. 27 30, 15 22. 8
Lehigh Upp Schuylkill I Union Cans do Feed Conestoga I Codorous Susquehann Wiconisco I Delaware as Monongahe	or Division Navigation le er Navigation do na and Tide Water reeder nd Hudson la Navigation	White's Haven Port Carbon Reading Pinegrove Lancaster York Wrightsville Millersburg Honesdale Pittsburg McKeesport	Stoddardsville Philadelphia Middletown Union Canal Safe Harbor Susquehanna Havre-de-Grace Clark's Ferry Delaware River New Geneva West Newton	12 108 82 22 18 11 45 12 25 82 18

The total length of the canals of Pennsylvania 1,047 miles.

New Jersey Railroads, 1862.

NAME.	From	То	Dis- tance.
Burlington and Mount Holly Belvidere, Delaware	Belvidere	Trenton. South Amboy Atlantic City. Elizabethport Glassboro'. Jobstown	64.21 92.37 60.23 63.30 41 22.30

New Jersey Railroads, 1862—Continued.

NAME.	From ,	To	Dis- tance.
Flemington Milstone and New Brunswick Morris and Essex Newark and Bloomfield Long Dock and Tunnel Northern Trenton B'nch, Camden & Amboy RR. New Jersey RR. & Transportation Co. Patterson and Hudson River do Ramapo Sussex Warren West Jersey Orange and Newark Trenton and New Brunswick	Millstone Newark do Piermont Trenton Jersey City Patterson do Newton New Hampton Camden Orange	New Brunswick Hacketstown Bloomfield Jersey City Bordentown New Brunswick Hudson River Ramapo Junction Morris & Essex Columbia Bridgeton Newark	6.63 52.52 6 2.88 21.27 3 8-10 14 15.12 12

New Jersey Canals, 1862.

NAME.	From	To ,	L'gth.	Lock- age.	Sise.
Delaware and Raritan do do Feeder.	Delaware River.	Canal	23	116 4	75x47x7
Morris Canal	Easton	Jersey City Delaware River	102	1,674	83x20x4

Delaware Canals.

Chesapeake and Delaware.. | Delaware City. | Chesapeake Bay.. | 18.63 | 4 | 66x10

Maryland Canals.

Chessp'ke and Ohiodo Wash'ton Br.	Georgetown	Cumberland Potomac River	191		
Alexandria	Georgetown	Alexandria	77	l l	
Maryland	Wrightsv'le,Pa.	Havre-de-Grace	45	233	

	ANTHRACITE BLAST FURNACES OF THE UNITED STATES. (Key to the figures on the General Coal and Iron Map of Pennsylvania.)	NACES OF THE UNITE	ID STATES. nsylvania.)	,
Number.	NAMB.	Locality.	Sizds.	Product.
1 4 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Berkehire Authracite Steam Iron Works Stockbridge "Water Water Steam Funna Stein Anthracite Steam Funnas	Berkshire Co., Mass	12x32, 16x41 10x 10x	1855, 4,6124 7 tons a day.
ф \$-		Litchfield Co., Conn Basex Co., New York Westport,	94x34 184x42, 16x46 18x42 18x42	8 tons a day. 1856, 9,730 1856, 4,200
13, 14	Clinton (Seam (Constitution Constitution Con	9 miles N. of Utica, N. Y Hudson, New York. Poughkeepsie	6x45 134x43,-15x46 9x30	1865, 14,424 1856, 4,928 1856, 1,700
900	d Furnace (Steam Furnace de Furnace (one charcosi).	Croton Landing Peekskill Greenwood Station Manhattanville Boonton, New Jersey	16x44 18x54 11x40 14x40	12 tons a day. 1855, 5,000 1855, 4,000 1857, 6,5744
20, 21, 22 23, 24 23, 24 26, 27, 28	Stanhope (Steam and Water Furnace Cooper (Furnace Courtain ((Eurnace	Stanhope, " Philipsburg 9 miles S. of Easton, Pa Easton.	4, 13gh.	1856, 7,041 1856–56, -10,271 1856, 4,677 1856, 19,1624
29, 30, 31, 32 23, 34, 35, 36, 37	Allentown Iron Co's Authracite Steam Furnaces	Allentown, Pa	12x16, 45x50 11, 13, 16, 18, 18	1856, 17,578 1857, 20,884
88, 89 40, 40 41, 42, 43	The Thomas """ """ """ Lehigh Valley "" """ """ Poot Authracite (Water) Furnace Mauch Chunk Anthracite "" Pioneer Authracite Steam ""	6 m. "" "" "" "" "" "" "" "" "" "" "" "" ""	13, 60 14, 45 high. 14x40 9x33 13x36	1857, 18,096 1857, 4,465 1857, 3,217 1857, 3,849
46, 47	Leesport Iron Co's Anthracite Steam Kurnave Moslem Anthracite Furnave	Leesport, Berks Co	14x45 9x34 9ix30, 14x40 ·	1856, 2,141

Anthracite Blast Furnaces of the United States-Continued.

Number.		ï	Z	NAME.			Locality.	Sizes.	Product.
	48	Reading Anthr	acite Fur	ace		ling Anthracite Furnace	Reading, Berks Co	18x49	1856, 5,9724
•	51	Heary Clay . Steam Furnaces. Keystone . Furnaces.	ee Fur	nace	aces	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Birdsboro, "	14x38 & 15x38 12x45	1856, 3,885
8.9		Phonix Iron W	Torbe	III P ULD	008		Dienimin Charter Co.	16x50	1957 11 779
	29	Montgomery A	nthracite	Furnace				15x42	1801, 11,116
		Lucinda	**	Steam	Furnac		Norristown 66	11x34	1857. 2.000
9		Swede Iron Co	33 Sc	,	,,	Swede Iron Co's "		14x42x50	
		1.1ymouth	99	"	,,		7 11 11	11x36	7
	19	Merion	*	,	:		** ** ** ** **	12x38	4
	62	Spring Mill	,	,	*		12 miles from Philadelphia	12x40	1857, 4,511
	63	Wm. Penn	,,	*	*		_	113x37	4
	65	Safe Harbor		>>	,		Safe Harbor, Lane, Co	14x45	
8		Conestogo	,	33	99		_	11x36	88
9	89 . 19	Shawnee	2	,	33		2 miles S. E. Columbia	10x33, 14x17	
		Cordelia	3	,,	,		_	104x35	
6	. 20	St. Charles	33	,,	**		Colum	14145 -	4
	11	Henry Clay	"	,	37 .			10x32	1855
7	72	Chickeswalung	,, 0	,	*		-	107x32	1855, 3,209
	73	Eagle	,,	,,	*		Marietta, Lancaster Co.	12x35	4
		Donegal	,	,,	,		_	. 12x35	1855, 4,747
-	75, 76	Marietta	,,	;	,			11x36x10x30	1857, 3,560g & 2,4693
		Cameron	,	:	*			14x35	2,575
	80	Harrisburg	,,	2	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11x40	1855, 3,805
	81	Paxon (late Ke	systone,)	Anthrae	ite Ste	Paxon (late Keystone,) Anthracite Steam Furnace		16x43	7
	82	Union Deposit	Anthracite	Steam	Furnac	96	I mile east	11x39	-
	83	New Market	.,	,,	& Wat	& Water Furnace		9x30	1856, 728
	84	Dudley	99	*	Furnac	Furnace		13½x36	1856, 3,628
85, 8		N. Lebanon	,,	:	3		_	12x35, 14x35	26
	88, 89	Cornwall	,	*	,,		5 ce south ce	12x38, 14x38	1856, 10,000 about.
		Stanhope	**	3	,,		2 " from Pinegrove	10x33	1856, 1,874
	16	Duncannon	,,	=	*		13 66	14x40	_
	. 93	Lewistown	**	,	*		Lewis	11x37	
	93	Hope	**	*	:			12x39	0
	2	Shamokin	:	:	:				000 6000

BLOOMERIES AND FORGES.

New Jersey.

ivew Jerkey.		
o.	NAMB.	Locality.
28	Patterson	Patterson.
29	Bloomingdale	Bloomingdale.
30	Charlottenburg	Passaic county.
31	Smith's	Bloomingdale.
32 33	Turner's	Passaic county.
34	Stockholm	Stockholm.
35	Herring Bone.	Passaic county.
36	Windham	e county :
37	Stony Brook	Stony Brook.
38	Decker's	"
39 40	Dixon's	Middle Brook.
41	Old Boonton	Powerville. Boonton.
42	Troy	Doonton.
43	Durham	Beaver Brook.
44	Splitrock	Beaver Lake.
45	Stickell's Meridian	Beaver Brook.
46 47	Richter's	ff December Dana
48	Beach Glen	Beaver Run.
49	Bloomary	Rockaway.
50	Denmark	66
51	Middle	ee ,
52	Washington	66
53	Valley Lower Longwood	
54 55	Upper Longwood	Valley Forge. 11 miles from Rocksway.
56	Hard Bargain.	Petersburg.
57.	Petersburg	14 miles from Rockaway.
58´	Swedeland	Milton.
59	Russia	Near Milton.
60 61	Hopewell	18 miles from Rhekaway.
62	CanistearSparta	Sussex county. Sparta Centre.
63	Eagle	Sharer Courte.
64	Morris Iron Works, 1	East of Sparts.
65	" 2	"
66	Columbia	Lubber Run.
67 68	RosevilleLockwood	٠٠ دو
69	New Andover.	Near Stanhope.
70	Shippensport	Mean Spannope.
71	Mount Olive	6 miles from Stanhope.
72	Barletsville	66 66° - 1
73 74	Welsh's	Bartleysville.
75	Budd's, No. 1	3 miles from Chester.
,	40. 2	34 "
	Pennsylvani	a.
.5 1	Bristol	Bristol.
76	Oxford	Philadelphia.
77	Norris	66 °.
78	Fairhill	A miller from Diller Astrobia
81	PencoydGreen Lane	6 miles from Philadelphia. Perkiomen Creek.
82 83	Glasgow	1 mile from Pottstown.
84	Mount Pleasant	Perkiomen Creek.
85	District No	20 miles from Reading.
86	No. 2.	Pine Creek.
87	Rockland, No. 1	Near Kutztown.
a.,		
88 89	% No. 2	12 miles from Reading.

Pennsylvania—Continued.

No.	Name.	Locality.
90	Spring	Manatawny Creek.
91	Dale	Iron Dale.
92 93	Speedwell, No. 1	2 miles from Reading.
93 94	Exeter	5 " "
95	Seidell's	4 66 66
96	Keystone	Reading.
97	Reading	, "
98	Franklin	Allegheny Creek.
9,100	Gibralta, H. 2	ec
101 102	Dorwell	6 miles south Reading. Coventry.
102	Isabella	16 miles from Pottstown.
104	Springton	7 miles from Downington.
105	Springton	2 "
.106	Hibernia	4 miles from Coatesville.
107	Greenwood	Pennington.
109	Poole	20 miles from Lancaster.
110	Windsor	20 66 66
111 112	Spring Grove	, 20
113	Sadsbury, 1	Gap Station, Lancaster county. Penningtonville.
114	2	i changeon ville.
115	Ringwood	6 miles from Penningtonville.
116	Pinegrove	16 "
117	White Rock	South of
119	Colemanville	12 miles from Lancaster.
120 121	Mentic	Colemanville.
121	Castlefin	30 miles from York.
125	Bushhill	5 " Wrightsville. Easton.
126	Maiden Creek.	5 miles from Harrisburg.
127	Mount Airy	10 " "
128	Northkill	8 " "
129	Chamming	15 miles from Reading.
130	Lebanon	Lebanon.
131	Monroe	12 miles from Lebanon.
132 133	Newmarket	12 "
135	Liberty	7 miles from Harrisburg.
136	Carlisle	41 " Carlisle.
137	Laurel	14 " "
139	Caledonia	10 "Chambersburg.
140	Mount Alto, No. 1	18 ** **
141 144	Valley	15 .6 66
144	Carrick	19 66 68
146	Warren	7 ' Hancock.
147	Ashland	Lehigh Gap.
148	Maria Forge	Poce Creek.
149	Weissport	Weissport.
150	Pennsville	Lizard Creek.
151	Tamaqua	Tamaqua. 3 miles from Ashland.
155 15 6	Oakdale	Oakdale.
157	Stonydale	Stony Brook.
158	Nescopec	Nescopec Creek.
159	Catawissa	Catawissa.
160	Pasnias	3 miles from Shamokin.
161	Berlin	Clinton.
162	Freedom	7 miles from Lewistewn.
163	Brookland	Waynesburg.
164 165	Milinda Lemnos	4 miles from Obisonia.
166	Bedford	5 " Hopewell.
167	Hepburn	12 " Williamsport.
188	Heshbon	E 66 66

Pennsylvania—Continued.

No.	NAME.	LOCALITY.
169 170 171 172 173 174 175 176 177 180 181 182 184 185 188 189 190 191 192 459.8	Washington Howard Eagle Milesburg Bellefonte Rock. Coleraine, 12 & 3 Elisabeth Bane, 1 & 2 Juniata Juniata Juniata Fron Works Stockdale Cold Spring. Tyrone Mary Ann, 1 & 2 Etna Cove Franklin Maria (Lower) (Middle) (Middle) (Upper) Martha Allegheny West Point	13 miles from Bellefonte. 12
459.2 459.4 459.6	Pennsylvania	44 44
	Maryland	•
119	Octorara.	8 miles from Port Deposit.

Rolling Mills.

Pennsylvania.

No.	Name.	LOCALITY.	•
45	Lehigh	South Easton.	-
46	Oxford Iron and Steel Works	Philadelphia.	
47	Kensington	"	
48	Iron Works		
49	Penu	66	
50	Treaty	•	
51	Fairmount	"	
52	Fountain Green	ee ,	
53	Flatrock		
54	Penceyd	Flatrock.	
55	Cheltenham	Tacony Creek.	- 1
5 5.5	Schuylkill Iron Works	12 miles from Philadelphia.	Į
56	Conshohocken	13 "	
57	Pennsylvania	13 " " .	
58	White Marsh Iron Works	Near last two.	
59	Norristown, No 1	Norristown.	
60	" Nail Factory, 2	"	
61	" No. 3	ec ·	
2,3,4	Phœnix	Phœnixville.	
66	Thorndale	Downingtown.	
67	Rokeby	Buck Run.	
68	Brandywine	Coatsville.	
69	West Brandywine	Wagontown.	

Pennsylvania—Continued.

No.	NAME.	LOCALITY.
70	Laurel	Buck Run.
71	Viaduet	Midway Station.
72	Valley Iron Works	Coatsville.
73	Hibernia	4 miles from Coatsville.
74	Pleasant Garden	Chester county.
75	Pinegrove	Lower Oxford Township.
76	Pottstown	Pottstown.
77	Pine	Manataury Creek.
78	Birdsboro'	Hay Creek.
79	Gibralta	5 miles from Reading.
80	Reading	Reading.
81	Neversink	11
82	McIlvanes	44
83	Keystone	**
85	Pottsville	Pottsville.
86	Palo Alto	**
87	Weissport	Weissport.
88	Lackawanna	Scranton.
88.5	Danville	Danville.
89	Rough and Ready	11 miles east Northumberland.
90	Montour, No. 1	Danville.
91	" No. 2	***
92	Duncannon	Sherman's Creek.
93	Fairview	Fairview.
94	Central	Harrisburg.
95	Harrisburg	"
96	Columbia	Columbia.
97	Safe Harbor	10 miles from Lancaster.
98	· Colemansville	12 "
99	Heshbon	5 "Williamsport.
100	Cresent	11 " "
101	Blossburg	New York, manager in Pennsylvania
102	Howard	Lick Run.
103	Heela	Bellefonte.
104	Milesburg	Milesburg.
105	Engle	Near Bellefonte.
106	Bellefonte	Bellefonte.
107	Portage	Hollidaysburg.
108	Juniata	Alexandria.
109	Mont Alto	9 miles south-east Chambersburg.
145	Cambria	Johnstown.
146 147	Fairchance	Uniontown.
	Brownsville	Brownsville.
148	McKeesport	McKeesport.
150	American	Birmingham.
151	Western Tack Factory	**
152	New, R. M.	**
153		Pittsburg.
154	Sligo Clinton.	fitteburg.
155	Pittsburg:	**
156	Sheffield	**
157	Eagle	**
158	Pennsylvania Forge	**
159	Kensington	**
160	Pittsburg Steel Works	**
161	Wayne	**
162	Sable	ec.
164	Juniata /	
165	Duquesne	* **
166	Lorentz	3 miles from Pittsburg
167	Etna	4 '66 66
168	Vesuvius	5
169	Kittanning	42 44 44
170	Brady's Bend	Brady's Bend.
172	Sharon	Sharon.
173	Orizaba	New Castle.
		46

New Jersey.

No.	Name.	LOCALITY.
35	Christman & Co	Jersey City.
36	66	2 miles S.W Jersey City.
87	Charlottenburg	11 miles north Rocksway.
38	Pompton	6 miles east
39	Powerville	4 miles east
40	Rockaway	Rockaway.
41	Boonton	19 miles from Newark.
42	Dover	Dover Station.
43	Trenton	South Trenton.
44	Cumberland	Bridgeton. —
	Delaware.	
111	Wilmington	Wilmington.
112	Diamond	ć i
113	Delaware	5 miles north-west Wilmington
114	Marshall	41 4 4
•	Maryland	•
115	Elk	5 miles north Elkton.
116	West Amwell	2 "
117	North East	Baltimore & Wilmington R. R.
118	Shannon	Baltimore.
119	Octorara	5 miles north Port Deposit.
120	Joppa	15 miles from Baltimore.
121	Baltimore	Baltimore.
122	Canton 1	2 miles from Baltimore.
123	66 2	2 "
124	Baltimore Forge	Baltimore.
125	Avalu	Relay House.
	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 miles about Hannania Masim
126 127	Antietam	7 miles above Harper's Ferry. 8 miles west Cumberland.

CHARCOAL FURNACES.

Maryland.

No.	Name.	LOCALITY.				
286						
287	Mount Savage	9 miles north-west Cumberland.				
288 289	Lonaconing	Lonaconing.				
82	Lagrange	30 miles north Baltimore.				
81	Principio	Baltimore Railroad.				
83	Sarah	24 miles north Baltimore.				
84	Hartford	25 miles north-west Baltimore.				
85	Locust Grove	Stemer's Run Station.				
86	Gunpowder	14 east Baltimore.				
87	Chesapeake	Baltimore.				
88	"	"				
89	Cedar Point	2 from Baltimore.				
90	/ "	2 "				
91	Maryland	Baltimore.				
92	"	**				
93	Laurel	**				
.94	Cecelia	66 `				
95	Elk Ridge	Elk Ridge Landing.				
98	Muirkirk	Prince George County. 31 west Baltimore.				

Maryland—Continued.

No.	Name.	Localily.
100	Catoctin	12 from Frederick.
101	•	12 " "
102	Antietam	7 miles above Harper's Ferry.
103	Greenspring	3 miles north from Clear Spring.
,	$oldsymbol{Pennsylvan}$	ia.
45	Lehigh	Lehigh County.
46	Maria	2 miles from Weissport.
47	Pennville	Lehigh County.
48	Hampton, No. 1	12 miles south-west Allentown.
49	Mary Ann	5 miles from last.
50	Oley	1 morth-east Reading.
51	Sally Ann	5 miles south Kutztown.
52 53	Mount Laurel	6 miles north-east Reading.
54	Maiden Creek	20 miles north
55	Hampton, No. 2	2 miles south Birdsboro'.
56	Joanna	9 miles south-west Birdsboro'.
57	Hopewell	South-east corner Berks County.
` 58	Warwick	miles west Phœnixville.
60	Mount Hope	6 miles south Lebanon.
61	Colebrook	10 miles south-west Lebanon
62	Cornwall	6 miles south Lebanon.
63 64	Mananda	I mile South Manada Gap.
66	Georgianna	1 mile above Dauphin. 16 miles from Lancaster.
67	York	1 mile below Colemansville.
68	Margaretta	45 south Wrightsville.
69	Chestnut Grove	Near Carlisle.
70.	Carlisle	66
72	Pinegrove	14 miles south-west Carlisle.
73	Big Pond	6 miles east Shippensburg.
75	Caledonia	10 miles east Chambersburg.
76 77	Mont Alto	9 miles south-east Chambersburg 8 miles north Loudon.
78	Carrick	2 " ff
79	Franklin	71 miles from Chambersburg.
80	Warren	1 north State Line.
81	Principio	Baltimore Railroad.
104	Shickshinny,	17 miles below Wilkesbarre.
105	Catawissa	5 miles east Catawissa.
106	Penn	1 K
107 108	Esther Parinas	3½ miles south miles north Shamokin.
109	Forest	Union County
110	Berlin	4 miles south Hartleton.
111	Beaver	20 miles east Lewiston.
112	Heshbon	Lycoming Creek.
113	Washington	Nittany Valley.
114	Howard	10 miles north-east Bellefonte.
115	Hecla	7 miles south-east 3 miles north-east Millersburg.
116 117	Eagle	2 miles south-east Bellefonts.
119	Centre	9 miles south-west
120	Juliana	10 " Milbereburg
121	Martha	5 from Bellefonte.
122	Monroe	4 miles south-east Pinegrove.
123	Huntingdon	4 miles north Spruce Creek.
124	Pennsylvania	10 miles north-east Spruce Creek.
125	Brookland	McVeytown-Station. Mount Vernon Station.
126 127	Matilda Greenwood	14 miles north-west Lewistown.
127	Mill Creek	4 miles south-east Huntingdon.
129:	Edward	Vineward Mills
130	Rockhill	
131	Malinda	15 m. S.W. Mount Union Station.
		• • • • • • • • • • • • • • • • • • • •

Pennsylvania—Continued.

No.	Name.	Locality.
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147	Bald Eagle Ætna Elizabeth Blair Allegheny Bennington Gaysport Hollidaysburg Frankstown Gap Juniata Springfield Robecca Bloomfield Sarah Lemnos Rough and Ready	Frankstown. McKee's Gap. Williamsburg. 5 miles south Williamsburg. 12 m. S. E. Hollidaysburg. 13 m. south 46 2 miles west Hopewell. 20 miles south Huntingdon.
39.6 39.7 40 41 42 43 44 149	Renton's	1 mile north Newark. 1 "" "" 5 " Pompton. Pompton. Sussex County.

ANTHRACITE AND CHARCOAL FURNACES, BLOOMARIES, FORGES, REFINERIES AND ROLLING MILLS IN THE UNITED STATES.

FROM J. P. LESLEY.-1858.

STATES.	Anthracite Furnaces.	Charcoal and Coke.	Abandoned Furnaces.	Bloomary Forges.	Abandon'd Bloomaries.	Refinery Forges.	Abandoned Refineries.	Rolling Mills.	Abandoned.
Maine		1						1	
New Hampshire		1				1			
Vermont		5		5				• 1	
Massachusetts	3	7				5	1	19	
Rhode Island								2	
Connecticut	1	14				6		5	
New York	14	29	6	42	1	3	2	11	5
New Jersey		6	12	48	29	2		10	1
Pennsylvania	93	150	102	1	3	110	44	91	5
Delaware			1					4	
Maryland	6	24	7					13	
Virginia		39	56			43		12	
North Carolina		3	3	36				1	
South Carolina		4	4	2				3	1
Georgia		7	1	4	*****		A	3	

Anthracite and Charcoal Furnaces, &c.—Continued.

STATES	Anthracite Furnaces.	Charcoal and Coke.	Abandoned Furnaces.	Bloomary Forges.	Abandon'd Bloomaries	Refinery Forges.	Abandoned Refineries	Rolling Mills.	Abandoned.
Alabama. Cennessee Kentucky Arkansas Missouri Illinois Indiana Dhio Michigan Wisconsin		3 41 30 7 2 2 54 7 3	1 33 17 3 26	14 50 	2	9 4 3	3 9 5	3 8 5 1 1 15 2	1
In working order, 1,159 Abandoned 386	121 Fur		272 560 272	203 Forges	35	186 Rollin	64	210	15

APPENDIX E.

PETROLEUM.

As shown in the first pages of this report, both petroleum and coal are of vegetable origin—the former from the deposit of salt water plants, and the latter from fresh water plants.

In the formation of the continents from the sea, two great periods in the growth of vegetation naturally followed; first, the rank growth of salt water plants, of the almost limitless marshes of the Chemung period; and secondly, the fresh water plants of the upheaved inland seas of the Carboniferous; petroleum being as much the offspring of the former as coal is of the latter—both the representatives of their respective periods. We find that the third sand rock of Oil creek, dipping south, passes from 500 to 600 feet below the coal measures; and in the Mahoming and Eastern Ohio oil regions, the three oil-bearing rocks are beneath the lowest coal beds. Underlying the lowest oil rocks, there is a stratum of limestone of unknown thickness.

The three oil-bearing sand rocks are porous, and filled with numerous ceils and fissures, between which channels of communication exist, as new wells often rob their neighbors, leaving them valueless. In Pennsylvania, the third sand rock lies at the several depths of from 1,000 to 1,200 feet, at Titusville; 1,100 feet on the Allegany river, near Oil city; 550 feet between Shaffer and Rouseville, on Oil creek; 650 feet on Cherry run; and 600 on Pithole, the surface being at the Frazier well 700 feet above Oil creek. The rise of stratification from the Allegany river to Lake Erie has been found to be the fraction of one degree. Humboldt estimated that the area of sand rock in the United States covered 200,000 square miles. The specific gravity of petroleum varies from .73 to .878.

Extensive deposits of petroleum are known to exist in the States of New York, Pennsylvania, Ohio, Virginia, California, Michigan and Nevada; and abroad, along the shores of the Azof and Caspian seas, Trinidad, Burmah, Persia, Island of Samos, Mexico, Canada, France and Russia.

The following statement shows the number of gallons of petroleum exported from the United States:

·

and the second of the second o

1861.	Total gallons	exported	1,194,682
1862.	do		
1863.	do	do	 28,162,191
1864.	do	do	 31,643,196

The above was sent to Great Britain, Antwerp, Marseilles, Havre, Bremen, Hamburgh, Rotterdam, South America, Spain, Cuba, Italy, Cronstadt, Mexico, Portugal, Trieste, Australia, British Provinces and British West Indies.

Western New York.

Indications of extensive oil deposits have been discovered in Ontario, Cattaraugus and Allegany counties. About thirty wells are being sunk near Bristol, Ontario county.

The strata met with in these oil regions descending are: Portage group, forming the hills 600 to 800 feet thick; Genesee slate, 150 feet; Hamilton group and Marcellus slate, together, from 600 to 800; carboniferous limestone, 50 to 150 feet, and the Onondaga salt group 800 to 1,000 feet thick.

Pennsylvania.

The poorest oil and largest flows have been found on Oil creek, between Shaffer and Rouseville. The best oil and lightest flows are found along and on the southeast side of the Allegany river, French and Sugar creeks to six and eight miles above Cooperstown, Oil creek between Shaffer and Oil lake, and the region along Pine creek to Tideirete.

The oil from Oil creek varies from forty to fifty degrees, Beaume; Allegany river, from thirty-four to thirty-nine; and French Creek from thirty to thirty-one and a half degrees. The oil is reached above Gordon's run at a depth of 120 feet; below President, 300 feet; Oil creek, below Shaffer's, about 520 feet; Cherry run, 615 feet; Pithole, 620 feet; Titusville, 420 feet, and near Franklin, 440 feet. The third sand rock, from which the largest flows are obtained, has only been reached on Oil creek, Cherry run and Pithole, below the line of Shaffer's.

The strata on Oil creek, met with in descending, are shales of different colors and hardness, with three distinct layers of sand rock, each from twenty to thirty feet thick, lying at the several depths of two hundred, three hundred and fifty and five hundred and fifty feet. One well, in descending, encountered one hundred and sixty feet slate rock, thirty feet sand rock, one hundred and twenty fact soap rock, ten to twenty-five feet second sand rock,

one hundred and thirty feet soap rock, striking the third sand rock at a total depth of four hundred and sixty feet.

It is seldom neighboring wells strike oil at the same depth, and a chance out of many of striking it at all. Oil creek has proved the most reliable. The streams and runs in the oil regions are walled in between hills, varying in abrupt height from two hundred to one thousand feet, overgrown with timber and ragged with rocks and precipices.

The existence of petroleum was known in Pennsylvania, and used for medicinal purposes as early as 1803. In 1853, Mr. Geo. H. Bissell submitted a specimen to Prof. Silliman, which was pronounced by this gentieman as of great value for lubricating purposes. In 1858, Mr. Bissell, in company with Mr. Eveleth, purchased a farm near Titusville, and organized a company, with Prof. Silliman as president, called the Pennsylvania Rock Oil Company. They at first endeavored to obtain the oil by surface vats, but meeting with little or no success, commenced the first. Artesian well and struck oil on the 28th August, 1859, at a depth of sixty-nine and a half feet, that yielded about eight barrels per day. The third well was sunk near Franklin, on French creek, near its junction with the Allegany.

In 1860 it became a business, and in 1862 more oil was produced than in any subsequent or previous year, amounting to 12,000 barrels per day. The oil territory was valued, in 1859, at \$700,000; and in 1864, at \$250,000,000.

The receipts at Philadelphia in 1863, were 600,000 barrels, and in 1864, 421,000. It is stated that the oil product of Pennsylvania for 1864 amounted to \$56,000,000, exceeding in value the products of the iron mines.

The following statement shows the number of barrels of oil received at the Pittsburg market:

	•
1859	7.637
1860	17,161
1861	94,102
1862	
1863	175,181
1864	555,259
1865, up to March 4th	

Method and Cost of Sinking Wells.

Wells are now sunk in Pennsylvania exclusively by engines. The old-method (and the one mostly pursued at present in Vir-

ginia) was with spring poles, at a cost of from \$3.50 to \$4.00 per foot, the cost averaging with the engine only from \$2.50 to \$3.00. The engines used are from eight to twelve horse power, costing \$1,800 and \$2,400, delivered on the spot. The twelve horse power engine is generally preferred, as with this power two wells are sunk and managed at the same time, being located about seventy feet apart.

The location for sinking a well is chosen from the dip of the rock, course of stream and concentration of ravines, with indications of great disturbance by upheavals and misplacements. A derrick is then built over the spot of three-inch plank, from forty to fifty feet high, ten square at the base, and from four and a half to five feet square at the top. The engine is located about thirty-five feet from the derrick, over which a shed is constructed to protect the fuel and machinery.

The first process is driving a cast iron tube to the first stratum of rock, which varies in depth from forty to one hundred feet. tube is six inches inner diameter, with one inch thickness of metal, ' cast in sections from ten to twelve feet long, connected by abutting them together and welding over the joint a wrought iron band a quarter of an inch thick by four inches in width, which makes the joint air tight when cooled. The ends of the tubes are prepared to receive this band, thus leaving no projections at the joints. The method of driving the tube is as follows: A wooden cylinder is erected opposite the engine and at the foot of the derrick, with a wheel five feet in diameter connected by a band to a similar wheel attached to the engine, by which the cylinder is made to revolve. A cable, coiled around the cylinder, passes up through a pully block at the top of the derrick, and attached to the ram ' (an oak timber seventeen feet long and sixteen inches square); the latter is raised and dropped upon the tube by tightening and suddenly loosening the cable by a man stationed with one end of the cable at the cylinder. The end of the tube is protected by a thick iron cap, that plays loosely under the blows of the hammer. The tube is cleared out by a sand pump six feet long, with a valve at the bottom, which, when filled, is drawn up.

The ram, with its guides, are now removed, and the drilling is commenced. A post is set in the ground midway between the well and engine, upon which a walking beam is fixed, one end connected by a vertical rod with a crank attached, to the engine,

and the other to the cable or drill. A screw about four feet long is attached to the cable at the end of the walking beam, for adjusting the length of cable as the well is deepened. Two men are required to keep the drill constantly revolving, changing the drill and handling the sand pump that removes the drillings every three to four feet. The drill and bar attached is about thirty-five feet long, weighing from seven hundred to eight hundred pounds. The cable from the drill to the walking beam is from one and a half to two inches diameter. The drill proper is about four feet long, and weighs from seventy to one hundred pounds, thickened and sharpened at the end to four and four and a half inches wide. After the well is down it is tubed with two-inch gas pipe. A seed bag is let down surrounding the tube, which, when saturated, swells and shuts off the water from springs met with in descending, and the surface waters.

The average cost in sinking the deepest wells is about \$6,000, and the lowest cost for a well six hundred and ten feet deep is about as follows:

One 12-horse power engine, delivered	\$2,400
Six hundred feet depth of well at \$2.75 per foot	1,677
Tools	
Derrick	200
Sheds	
•	
Total	45 000

It takes on an average six weeks to sink and tube a well of the above depth; some days only twenty inches and others from eight to twenty feet are accomplished.

All the producing wells have more or less tankage, each tank holding from three hundred to twelve hundred barrels. The Reed well has a tankage for 3,000 barrels, and the Coquette 20,000 barrels. As the tanks are filled the oil is drawn off by a faucet at the bottom into barrels.

The following statement shows the present condition of the original and largest oil-bearing farms in Oil creek:

NAME OF FARM.	No. of nores.	New wells going down.	Total number of wells down.	Number of pro- ducing wells.	Present yield of bbls. per day.
Graff & Hasson farm (near Oil city)	300	100		5	5
Clapp farm		50	60	15	200
Cornplanter tract		30		8	65
Ham. McClintock farm			55	7	100
Buchanan farm			100	25	300
John McClintock farm		45		30	200
Widow McClintock farm			40	17	300
Rynd farm			19	5	100
Blood farm		50	12	5	40
Blood farm		50	'28	18	300
Tarr farm	209	62	43	27	750
Story farm	300		35	16	450
Dalzell property	100		16	5	125
Wash. McClintock farm	207	45	18	16	500
Egbert farm	38		25	10	1000

The following statement shows the characteristics of the most important wells in the center of the oil region of Pennsylvania:

NAME OF WELL.	LOCAT	Depth of well-feet,	When oil com- menced flow'g.	Yield when str'k -bls. per day.	Now yielding-		
Brawley	A. Buchanan farm, Oil	creek		503	1861	600	
Van Slyke	Widow McClintock far			500	1861	600	50
Bushnell	Blood d			505	1861	400	
Old Phillips	Tarr d	o do		485	1861	450	50
Big Phillips	do	o do		480	1861	3,500	325
Woodford	do d	o do .			1861	1,500	50
Empire	Funk d	o do			1861	2,500	110
Noble	Farrell d	o do		470	1863	1,900	
Sherman	Sherman Flats,	do			1861	1,500	50
Jones	Tarr farm,	do	*******		1862	400	
W. McClintock	W. McClintock farm,	do	*******		1862	800	*****
Chimney	Story do	do			1863	300	
Maple Shade	Egbert do	do			1863	400	80
Jersey	do do	do		505	1864	400	235
Coquette	do do	do	*****	519	1864	600	400
Frazier	N. S. Co., Pithole run				1864	250	235
Reed	Duff tract, Cherry run			610	1864	280	280
Yankee	do		********	606		50	50
Grumminger	do	********	********	600		150	100
Ram Cat	Story farm, Oil creek.		* *******		1864	300	80
Dale & Morrow	Cochran farm, two mil			440	1861	240	40
Hoover	Hoover Island, below I	ranklin					100
Plumer & Hoover	Opposite do d		*******	427			50
Hammond	Widow McClintock, Oi	creek		510	1864	500	250
Excelsior	Smith farm, four miles			424		40	40
Economite	Tideante, Allegany ri			120		20	20
Railroad	Shaffer farm, Oil creek					*****	45
Graff & Hasson	Graff & Hasson farm, n	ear Oil city				12	12

The large flowing wells generally stop flowing in twenty-five or thirty months, when a yield of from twenty to one hundred barrels a day is obtained by pumping.

Ohio and Western Virginia.

Indications of extensive deposits of oil have been discovered on Reedy, Burning Springs, Cow, Calf, Steer, Leading, Duck, Paw Paw, Goose, Little Muskingum and Kanawha, Horse Neck, Long Moose, Fifteen, Eight, Rawson, Newell's, Bull and French creeks, and other streams in Wood, Wirt, Ritchie, Roans and Gilmer counties.

Bull run is the best developed, and thus far the most produc-The wells on Cow run have produced largely. run is now under development, and much is expected from outward indications. There are five producing wells on Horse Neck creek, a branch of Bull creek. Cow and French creeks are in great favor. The Coney & Gilfillan well yields from seventy-five to one hundred barrels; Prime well, ten to twelve barrels per day. These wells are situated on Horse Neck, Wood county. Several wells are going down on Cow run; one well yields ten barrels per The Newton well has produced 17,000 barrels, and still yielding, and the Dutton well, on Duck creek, 19,000 barrels. There are many fine producing wells on Paw Paw, Long Moose, Fifteen and Eight Mile creeks. Twenty-four wells have been put down from Bull to French creeks, and seventy more are being sunk. A well was struck on Horse Neck that yielded eight hundred barrels per day, and one on Rawson of thirty-five barrels. There are over 2,500 wells going down this spring in Western . Virginia.

The oil regions of Virginia bear a resemblance to those of Pennsylvania, while Ohio appears less disturbed and broken. The oil rocks in Virginia appear to lie at a depth of from one hundred and fifty to two hundred and fifty feet. In the region of Burning Spring and Little Kanawha, the average depth to the oil is two hundred and forty feet, and about twenty-eight degrees Beaume. Specimens from borings in Lawrence county, at Edenburg, were: 80 feet superficial drift, 200 feet sandstones and shales, 50 feet white sand rock, 45 feet shales and slate, charged with oil and gas, 75 feet white sand rock, striking the great oil rock strata at a total depth of 448 feet.

•

338.22 .S974 C.1 Special report on coal: Stanford University Libraries

3 6105 032 121 399

LOCKED STACKS

