Soutenance du mémoire de M2

Morphismes de Belyi simplement ramifiés Application à la réduction des arbres en genre 0

Gabriel Soranzo
Dirigé par Leonardo Zapponi
Sorbonne Université

- 1)Objets d'étude
- 2)Théorème de Belyi
- 3) Critères d'admissibilités de sommets
- 4) Application à la réduction des arbres

1) Objets d'études

Définition

Soit k un corps parfait. Soit \mathcal{C} un courbe algébrique non-singulière projective sur k. Un morphisme fini séparable modérément ramifié $\varphi \colon \mathcal{C} \to \mathbb{P}^1_k$ ayant au plus 3 valeurs critiques, toutes k-rationnelles, sera appelé un **morphisme de Belyi (dessin d'enfant)**. Les points dans les fibres critiques sont appelés des **sommets**. Les ordres d'annulation de ces points sont appelés **valences**.

1) Objets d'études

Définition

Soit k un corps parfait. Soit \mathcal{C} un courbe algébrique nonsingulière projective sur k. Un morphisme de Belyi $\varphi \colon \mathcal{C} \to \mathbb{P}^1_k$ sera appelé un **morphisme de Belyi totalement ramifié (arbre)** lorsqu'une de ses fibres critiques est totalement ramifiée.

1) Objets d'études

Définition

Soit k un corps parfait. Soit $\mathcal C$ un courbe algébrique nonsingulière projective sur k. Un morphisme de Belyi $\phi\colon \mathcal C\to \mathbb P^1_k$ sera appelé un **morphisme de Belyi simplement ramifié** (**arbre pondéré**) lorsqu'une de ses fibres critiques présente un unique point ramifié.

2) Le théorème de Belyi

Théorème de Belyi

Soit \mathcal{C} une courbe non-singulière complète définie sur \mathbb{C} . La courbe \mathcal{C} est alors définie sur $\overline{\mathbb{Q}}$ si et seulement s'il existe un morphisme non constant $\mathcal{C} \to \mathbb{P}^1_{\mathbb{C}}$ avec au plus 3 valeurs critiques (c.a.d. un morphisme de Belyi défini sur \mathcal{C}).

3) Critères d'admissibilité de sommets: critère 1

Critère n°1

Soit (λ_i) une famille de nombres complexes distincts.

Soit (a_i) une famille d'entiers relatifs tels que $\sum_i a_i = 0$.

Posons $\varphi = \prod_i (t - \lambda_i)^{a_i}$.

Le morphisme φ est un morphisme de Belyi simplement ramifié si et seulement s'il existe $\alpha \in \mathbb{C}^*$ tel que

$$\sum_{i} \frac{a_i}{t - \lambda_i} = \frac{\alpha}{\prod_{i} t - \lambda_i}$$

3) Critères d'admissibilité de sommets: critère 1

Lemme:

k algébriquement clos de caractéristique nulle

 ${\mathcal C}$ courbe projective non singulière

 $\varphi: \mathcal{C} \to \mathbb{P}^1_k$ morphisme assimilé à $f \in k(\mathcal{C}) \setminus k$

 $\omega = df/f$ la dérivée logarithmique de f

- a) Les pôles de ω sont simples et sont les points de div(f)
- b) Les points d'annulation de ω sont les points de ramification de φ qui ne sont pas dans div(f)

3) Critères d'admissibilité de sommets: admissibilité des sommets rationnels

Soit (λ_i) une famille de rationnels distincts.

Soit V le déterminant de Vandermonde des λ_i :

$$V = V(\lambda_1, ..., \lambda_n) = \prod_{k>j} \lambda_k - \lambda_j$$

Soit pour tout *i*,

$$V_i = \prod_{j \neq i} \lambda_i - \lambda_j$$

On a donc pour tout i, V divisible par V_i , et l'on peut alors poser

$$a_i = \frac{V}{V_i} = (-1)^{n-i} V(\lambda_1, \dots, \widehat{\lambda_i}, \dots, \lambda_n)$$

Proposition:

Les a_i sont de somme nulle et l'on a

$$\sum_{i} \frac{a_i}{t - \lambda_i} = \frac{V}{\prod_{i} t - \lambda_i}$$

3) Critères d'admissibilité de sommets: critère 2

Critère 2

Soit (λ_i) une famille de nombres complexes distincts. Les λ_i constituent les sommets d'un arbre pondéré si et seulement si

$$\left(\frac{1}{\prod_{j\neq i}\lambda_i-\lambda_j}\right)\in\mathbb{P}^1_{\mathbb{Q}}(\mathbb{Q})$$

3) Critères d'admissibilité de sommets: reformulation du critère 1

Reformulation du critère 1

Soit (λ_i) une famille de nombres complexes distincts.

Soit (a_i) une famille d'entiers relatifs.

Posons
$$\varphi = \prod_i (t - \lambda_i)^{a_i}$$

Le morphisme φ est un morphisme de Belyi simplement ramifié si et seulement si

$$\forall j \in \{0, ..., n-2\}, \sum_{i} a_{i} \lambda_{i}^{j} = 0$$

C'est-à-dire que le système à n-1 équations ci-dessous est vérifié:

$$(\mathcal{Z}) \begin{cases} a_1 & + & a_2 & + & \dots & + & a_n & = & 0 \\ a_1 \lambda_1 & + & a_2 \lambda_2 & + & \dots & + & a_n \lambda_n & = & 0 \\ a_1 \lambda_1^2 & + & a_2 \lambda_2^2 & + & \dots & + & a_n \lambda_n^2 & = & 0 \\ \vdots & & \vdots & & \ddots & & \vdots & = & 0 \\ a_1 \lambda_1^{n-2} & + & a_2 \lambda_2^{n-2} & + & \dots & + & a_n \lambda_n^{n-2} & = & 0 \end{cases}$$

4) Application à la réduction des arbres en genre 0

K est un corps local \mathcal{O}_K est l'anneau des entiers de K $\mathfrak{m}=(\pi)$ son idéal maximal v une de ses valuations $k=\mathcal{O}_K/\mathfrak{m}$ son corps résiduel

4) Application à la réduction des arbres en genre 0: réduction des points et des morphismes

$$P=[a:b]\in \mathbb{P}^1_K(K)$$
 donné Comme $K=Frac(\mathcal{O}_K)$ alors on peut supposer que $a,b\in \mathcal{O}_K$ et sont premiers entre eux Comme \mathcal{O}_K est principal alors $au+bv=1$ donc $\left(\overline{a},\overline{b}\right)\neq (0,0)$ dans k^2 donc $\overline{P}=\left(\overline{a},\overline{b}\right)\in \mathbb{P}^1_k(k)$: c'est la **réduction de** P

 $\varphi \colon \mathbb{P}^1_K \to \mathbb{P}^1_K$ donné est associé à $f \in K(t) \setminus K$

En simplifiant la fraction rationnelle f on peut supposer que f = P/Q avec $P, Q \in \mathcal{O}_K[t]$ premiers entre eux.

La **réduction de** φ est alors $\overline{\varphi} \colon \mathbb{P}^1_k \to \mathbb{P}^1_k$ associé à $\overline{f} = \frac{\overline{P}}{\overline{Q}} \in k(t)$ qui sera bien défini si $\overline{Q} \neq 0$ et $\overline{P} \neq \lambda \overline{Q}$.

On dira qu'un morphisme de Belyi $\varphi \colon \mathbb{P}^1_K \to \mathbb{P}^1_K$ se réduit bien lorsque les sommets et les valeurs critiques de φ se réduisent (donc $\overline{\varphi}$ est non constant) et que $\overline{\varphi}$ est un morphisme de Belyi.

4) Application à la réduction des arbres en genre 0: équivalences et modèles

Equivalence des morphismes de Belyi $\varphi, \psi \colon \mathbb{P}^1_K \to \mathbb{P}^1_K$ ie $\varphi = \alpha \circ \psi \circ \beta$ avec α, β automorphismes de \mathbb{P}^1_K ie homographies.

Remarque: la bonne réduction n'est pas compatible avec l'équivalence

Exemple de réduction dans \mathbb{Q}_2 : $\varphi(t)=t$ se réduit bien mais $2\varphi(t)=2t$ ne se réduit pas bien

Remarque 2: la bonne réduction est compatible avec l'équivalence sur \mathcal{O}_K ie α et β sont des homographies de $\mathbb{P}^1_{\mathcal{O}_K}$

Dessin d'enfant: classe d'équivalence de morphismes de Belyi

Modèle d'un dessin d'enfant: représentant de la classe ie morphisme de Belyi

Arbre: classe d'équivalence de morphismes de Belyi totalement ramifié

Arbre pondéré: classe d'équivalence de morphismes de Belyi simplement ramifié

Bonne réduction d'un dessin d'enfant: un de ses modèle φ a une bonne réduction

4) Application à la réduction des arbres: Critère de bonne réduction des modèles affines centrés

Critère de bonne réduction des modèles affines centrés

Soit φ un modèle d'arbre affine centré de valeurs critiques $0, \lambda$ et ∞ et tel que:

- 1) La racine nulle est modérément ramifiée
- 2) Les racines non nulles ont une réduction non nulle
- 3) La valeur critique λ est entière et ne se réduit pas sur 0
- 4) Le polynôme associé à φ est un élément polynôme primitif de $\mathcal{O}_K[t]$ Alors le morphisme φ a une bonne réduction

4) Application à la réduction des arbres: modèle minimal

Définition

Un modèle affine centré ϕ associé à un polynôme P est appelé un modèle minimal lorsque

- $P \in \mathcal{O}_K[t]$ et est primitif
- Les racines de P sont entières et l'une des racine est dans \mathcal{O}_K^*

Proposition 1

Tout arbre admet des modèles minimaux

Proposition 2

Soit un arbre $\mathcal A$ ayant le morphisme φ comme modèle affine centré.

Supposons que φ est centré en un sommet modérément ramifié.

L'arbre ${\mathcal A}$ se réduit bien si et seulement si le morphisme φ se réduit bien.

4) Application à la réduction des arbres: exemple d'étude

Etude de bonne réduction de l'arbre $\mathcal{D}_{a,b}$:

$$\frac{(a+b+1)!}{a!\,b!} \int_0^a t^a (t-1)^b$$

X	1	2	3	4	5
1	2°.3°	2s.3rv	2s.5°	2 ^s .3 ^r .5 ^r ^υ	$2^{s}.3^{rv}.7^{v}$
2	2 ^v .3 ^s	2 ^{rv} .3 ^s .5 ^v	2 ^{rv} .3 ^s .5 ^{rv}	3ి.5 ^{٣ల} .7 ^ల	2 ^{rv} .3 ^s .7 ^{rv}
3	2°.5°	2s.3v.5rv	$2^{s}.5^{rv}.7^{v}$	2 ^s .5 ^{rv} .7 ^{rv}	$2^{s}.3^{rv}.7^{rv}$
4	2°.3°.5°	3 ^{rv} .5 ^s .7 ^v	$2^{v}.5^{s}.7^{rv}$	2 ^{rv} .3 ^{rv} .5 ^s .7 ^{rv}	2 ^{rv} .3 ^{rv} .5 ^s .7 ^{rv}
5	$2^{s}.3^{s}.7^{v}$	$2^{s}.3^{s}.7^{rv}$	$2^{s}.3^{s}.7^{rv}$	$2^s.3^s.5^v.7^{rv}$	$2^{s}.3^{s}.7^{rv}.11^{v}$
6	2 ^v .7 ^s	$2^{rv}.3^{v}.7^{s}$	2 ^{rv} .3 ^{rv} .5 ^v .7 ^s	$2^{rv}.3^{rv}.5^{rv}.7^{s}.11^{v}$	$2^{rv}.3^{rv}.7^{s}.11^{rv}$
7	2°.3°	2 ^s .3 ^{rv} .5 ^v	$2^{s}.3^{rv}.5^{rv}.11^{v}$	$2^{s}.3^{rv}.5^{rv}.11^{rv}$	$2^{s}.3^{rv}.11^{rv}.13^{v}$
8	2º.3°.5°	$3^{s}.5^{rv}.11^{v}$	$2^{rv}.3^{s}.5^{rv}.11^{rv}$	3 ^s .5 ^{rv} .11 ^{rv} .13 ^v	$2^{r}.3^{s}.7^{v}.11^{rv}.13^{rv}$
9	$2^{s}.5^{s}.11^{v}$	$2^{s}.3^{v}.5^{s}.11^{rv}$	$2^{s}.5^{s}.11^{rv}.13^{v}$	$2^{s}.5^{s}.7^{v}.11^{rv}.13^{rv}$	$2^{s}.3^{r}.5^{s}.7^{rv}.11^{rv}.13^{rv}$