Students Marks Predication

```
In [255...
           #Import libraries
           import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
In [256...
           path = r"E:\Data Science & AI\Dataset files\student_info.csv"
           df = pd.read_csv(path)
          df.head()
In [257...
Out[257...
              study_hours student_marks
           0
                     6.83
                                   78.50
           1
                     6.56
                                   76.74
           2
                                   78.68
                     NaN
           3
                     5.67
                                   71.82
                     8.67
                                   84.19
In [258...
          df.tail()
Out[258...
                study_hours student_marks
           195
                       7.53
                                     81.67
                                     84.68
           196
                       8.56
           197
                       8.94
                                     86.75
           198
                       6.60
                                     78.05
           199
                       8.35
                                     83.50
In [259...
          df.shape
Out[259...
           (200, 2)
In [260...
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 2 columns):
          # Column
                              Non-Null Count Dtype
             study_hours
                             195 non-null
                                               float64
              student_marks 200 non-null
                                               float64
         dtypes: float64(2)
         memory usage: 3.2 KB
```

df.describe()

Out[261...

	stuay_nours	student_marks	
count	195.000000	200.00000	
mean	6.995949	77.93375	
std	1.253060	4.92570	
min	5.010000	68.57000	
25%	5.775000	73.38500	
50%	7.120000	77.71000	
75%	8.085000	82.32000	
max	8.990000	86.99000	

```
In [262... plt.scatter(x =df.study_hours, y = df.student_marks)
    plt.xlabel("Students Study Hours")
    plt.ylabel("Students marks")
    plt.title("Scatter Plot of Students Study Hours vs Students marks")
    plt.show()
```



```
In [263... ## Prepare the data for Machine Learning algorithms
# Data Cleaning

df.isnull().sum()
```

```
Out[263... study_hours
           student_marks
           dtype: int64
          df.mean()
In [264...
Out[264...
           study_hours
                              6.995949
           student_marks
                             77.933750
           dtype: float64
In [265...
          df2 = df.fillna(df.mean())
In [266...
          df2.isnull().sum()
Out[266...
          study_hours
                             0
           student_marks
                             0
           dtype: int64
In [267...
          df2.head()
Out[267...
              study_hours student_marks
           0
                 6.830000
                                   78.50
           1
                 6.560000
                                   76.74
           2
                 6.995949
                                   78.68
           3
                 5.670000
                                   71.82
           4
                 8.670000
                                   84.19
In [268...
          # split dataset
           X = df2.drop("student_marks", axis = "columns")
           y = df2.drop("study_hours", axis = "columns")
           print("shape of X = ", X.shape)
           print("shape of y = ", y.shape)
         shape of X = (200, 1)
         shape of y = (200, 1)
In [269...
          from sklearn.model_selection import train_test_split
           X_train, X_test,y_train,y_test = train_test_split(X,y, test_size = 0.2, random_s
           print("shape of X_train = ", X_train.shape)
           print("shape of y_train = ", y_train.shape)
           print("shape of X_test = ", X_test.shape)
           print("shape of y_test = ", y_test.shape)
         shape of X_{train} = (160, 1)
         shape of y_{train} = (160, 1)
         shape of X_{test} = (40, 1)
         shape of y_{test} = (40, 1)
In [270...
          # Select a model and train it
           \# y = m * x + c
           from sklearn.linear_model import LinearRegression
           lr = LinearRegression()
```

```
In [271...
         lr.fit(X_train,y_train)
          LinearRegression 
Out[271...
          LinearRegression()
In [272...
         lr.coef_
Out[272... array([[3.93571802]])
In [273... lr.intercept_
Out[273... array([50.44735504])
In [274... m = 3.93
          c = 50.44
          y = m * 4 + c
Out[274... 66.16
In [275...
         lr.predict([[4]])[0][0].round(2)
Out[275... 66.19
         y_pred = lr.predict(X_test)
In [276...
          y_pred
```

```
Out[276... array([[83.11381458],
                  [78.9025963],
                  [84.57003024],
                  [85.82946001],
                  [84.72745896],
                  [80.75238377],
                  [72.84159055],
                  [71.66087515],
                  [73.23516235],
                  [71.66087515],
                  [73.47130543],
                  [76.38373677],
                  [73.23516235],
                  [73.58937697],
                  [82.95638585],
                  [70.40144538],
                  [73.23516235],
                  [78.74516758],
                  [75.55723598],
                  [82.68088559],
                  [76.65923703],
                  [70.48015974],
                  [74.77009238],
                  [77.98143645],
                  [85.59331693],
                  [82.56281405],
                  [76.42309395],
                  [85.0423164],
                  [78.39095296],
                  [81.38209865],
                  [81.73631327],
                  [83.15317176],
                  [82.20859943],
                  [81.10659839],
                  [73.58937697],
                  [71.1492318],
                  [71.89701823],
                  [81.53952737],
                  [72.60544747],
                  [71.93637541]])
In [277...
          pd.DataFrame(np.c_[X_test, y_test, y_pred], columns = ["study_hours", "student_m"
```

Out[277...

	study_hours	student_marks_original	student_marks_predicted
0	8.300000	82.02	83.113815
1	7.230000	77.55	78.902596
2	8.670000	84.19	84.570030
3	8.990000	85.46	85.829460
4	8.710000	84.03	84.727459
5	7.700000	80.81	80.752384
6	5.690000	73.61	72.841591
7	5.390000	70.90	71.660875
8	5.790000	73.14	73.235162
9	5.390000	73.02	71.660875
10	5.850000	75.02	73.471305
11	6.590000	75.37	76.383737
12	5.790000	74.44	73.235162
13	5.880000	73.40	73.589377
14	8.260000	81.70	82.956386
15	5.070000	69.27	70.401445
16	5.790000	73.64	73.235162
17	7.190000	77.63	78.745168
18	6.380000	77.01	75.557236
19	8.190000	83.08	82.680886
20	6.660000	76.63	76.659237
21	5.090000	72.22	70.480160
22	6.180000	72.96	74.770092
23	6.995949	76.14	77.981436
24	8.930000	85.96	85.593317
25	8.160000	83.36	82.562814
26	6.600000	78.05	76.423094
27	8.790000	84.60	85.042316
28	7.100000	76.76	78.390953
29	7.860000	81.24	81.382099
30	7.950000	80.86	81.736313
31	8.310000	82.69	83.153172
32	8.070000	82.30	82.208599

	33	7.790000	79.17	81.106598					
	34	5.880000	73.34	73.589377					
	35	5.260000	71.86	71.149232					
	36	5.450000	70.06	71.897018					
	37	7.900000	80.76	81.539527					
	38	5.630000	72.87	72.605447					
	39	5.460000	71.10	71.936375					
In [278	## Fine-tune your model								
	<pre>lr.score(X_test,y_test)</pre>								
Out[278	0.9514124242154464								
In [279	plt.scatter(X_train,y_train)								
Out[279	<pre><matplotlib.collections.pathcollection 0x1a7377d3a00="" at=""></matplotlib.collections.pathcollection></pre>								
In [280	<pre>plt.scatter(X_test, y_test) plt.plot(X_train, lr.predict(X_train), color = "r")</pre>								
Out[280	[<matplotlib.lines.line2d 0x1a737952aa0="" at="">]</matplotlib.lines.line2d>								
In [281	## Present your solution # Save ML Model								
	<pre>import joblib joblib.dump(lr, "student_mark_predictor.pkl")</pre>								
Out[281	['student_mark_predictor.pkl']								
In [282	<pre>model = joblib.load("student_mark_predictor.pkl")</pre>								
In [283	model.predict([[5]])[0][0]								
Out[283	70.12594512018406								
In []:									
In []:									
In []:									
In []:									
In []:									
In []:									

 $study_hours \quad student_marks_original \quad student_marks_predicted$