MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> January 18, 2024 Lecture 7D3

Rekha Santhanam Lecture 7D3

Echelon Form: Recap

Recall: If A is $n \times n$, then PA = LU, where P is a product of permutation matrices, L is lower triangular, U is upper triangular, and all of size $n \times n$.

Q: What happens when A is not a square matrix?

Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
. By elimination, we see:

$$A \to \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -2 & -2 \end{pmatrix} \to \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} = U.$$

Thus
$$A = LU$$
, where $L = E_{21}(2)E_{31}(3)E_{32}(-1) = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{pmatrix}$.

Echelon Form

If A is $m \times n$, we can find P, L and U as before. In this case, L and P will be $m \times m$ and U will be $m \times n$, PA = LU.

U has the following properties:

- 1. Pivots are the 1st nonzero entries in their rows.
- 2. Entries below pivots are zero, by elimination.
- 3. Each pivot lies to the right of the pivot in the row above.
- 4. Zero rows are at the bottom of the matrix.

U is called an echelon form of A.

What are all possible 2×2 echelon forms: Let \bullet = pivot entry.

$$\begin{pmatrix} \bullet & * \\ 0 & \bullet \end{pmatrix}, \begin{pmatrix} \bullet & * \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \bullet \\ 0 & 0 \end{pmatrix}, \text{ and } \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Row Reduced Form

To obtain the row reduced form R of a matrix A:

- 1) Get the echelon form U. 2) Make the pivots 1.
- 3) Make the entries above the pivots 0.

Ex: Find all possible 2×2 row reduced forms.

Eg. Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
. Then $U = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Divide by pivots: $R_2/2$ gives $\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

By
$$R_1 = R_1 - 3R_2$$
, Row reduced form of A: $R = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

U and *R* are used to solve Ax = 0 and Ax = b.

Null Space: Solution of Ax = 0

Let A be $m \times n$. Q: For which $x \in \mathbb{R}^n$, is Ax = 0?

The Null Space of A, denoted by N(A),

is the set of all vectors x in \mathbb{R}^n such that Ax = 0.

Example 1:
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
. Are the following in $N(A)$?
$$x = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
? $y = \begin{pmatrix} -5 \\ 0 \\ 0 \\ 1 \end{pmatrix}$? $z = \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \end{pmatrix}$?

Note: x is in $N(A) \Leftrightarrow A_{1*} \cdot x = 0$, $A_{2*} \cdot x = 0$, and $A_{3*} \cdot x = 0$, i.e., x is perpendicular to every row of A.

Rekha Santhanam

Lecture 7D3

Linear Combinations in N(A)

Example 1 (contd.): If
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
, then $x = \begin{pmatrix} -2 & 1 & 0 & 0 \end{pmatrix}^T$ and $y = \begin{pmatrix} -2 & 0 & -1 & 1 \end{pmatrix}^T$ are in $N(A)$.

Q: What about $x + y = \begin{pmatrix} -4 & 1 & -1 & 1 \end{pmatrix}^T$, $-3 \cdot x = \begin{pmatrix} 6 & -3 & 0 & 0 \end{pmatrix}^T$?

Remark: Let A be an $m \times n$ matrix, u, v be real numbers.

- The null space of A, N(A) contains vectors from \mathbb{R}^n ,
- If x, y are in N(A), i.e., Ax = 0 and Ay = 0, then A(ux + vy) = u(Ax) + v(Ay) = 0, i.e., ux + vy is in N(A).

i.e., a linear combination of vectors in N(A) is also in N(A).

Thus N(A) is closed under linear combinations

Rekha Santhanam Lecture 7D3

Finding N(A)

Key Point: Ax = 0 has the same solutions as Ux = 0,

which has the same solutions as Rx = 0, i.e.,

$$N(A) = N(U) = N(R).$$

Reason: If A is $m \times n$, and Q is an invertible $m \times m$ matrix, then N(A) = N(QA). (Verify this)!

Example 2:

For
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
, we have $Rx = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix}$.

$$R x = 0$$
 gives $t + 2u + 2w = 0$ and $v + w = 0$.

i.e.,
$$t = -2u - 2w$$
 and $v = -w$.

Null Space: Solution of Ax = 0

$$Rx = 0$$
 gives $t = -2u - 2w$ and $v = -w$,
 t and v are *dependent* on the values of u and w .
 u and w are *free* and *independent*, i.e., we can choose any value for these two variables.

Special solutions:

$$u = 1$$
 and $w = 0$, gives $x = \begin{pmatrix} -2 & 1 & 0 & 0 \end{pmatrix}^T$.
 $u = 0$ and $w = 1$, gives $x = \begin{pmatrix} -2 & 0 & -1 & 1 \end{pmatrix}^T$.

The null space contains:

$$x = \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} -2u - 2w \\ u \\ -w \\ w \end{pmatrix} = u \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + w \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \end{pmatrix},$$

i.e., all possible linear combinations of the special solutions.

Rank of A

Ax = 0 always has a solution: the trivial one, i.e., x = 0.

Main Q1: When does Ax = 0 have a non-zero solution?

A: When there is at least one free variable,

i.e., not every column of R contains a pivot.

To keep track of this, we define:

rank(A) = number of columns containing pivots in R.

If A is $m \times n$ and rank(A) = r, then

- $rank(A) \leq min\{m, n\}$.
- no. of dependent variables = r.
- no. of free variables = n-r.
- Ax = 0 has only the 0 solution $\Leftrightarrow r = n$.
- $m < n \Rightarrow Ax = 0$ has non-zero solutions.

True/False: If $m \ge n$, then Ax = 0 has only the 0 solution.

Rank of A

rank(A) = number of columns containing pivots in R.

= number of dependent variables in the system Ax = 0.

Example:
$$R = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 when $A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$.

The no.of columns containing pivots in R is 2, $\Rightarrow rank(A) = 2$.

R contains a 2 × 2 identity matrix, namely the rows and columns corresponding to the pivots.

This is the row reduced form of the corresponding submatrix $\begin{pmatrix} 1 & 3 \\ 2 & 8 \end{pmatrix}$ of A, which is invertible, since it has 2 pivots.

Thus, $rank(A) = r \Rightarrow A$ has an $r \times r$ invertible submatrix.

State the converse. The converse is also true. Why?

Summary: Finding N(A) = N(U) = N(R)

Let A be $m \times n$. To solve Ax = 0, find R and solve Rx = 0.

- Find free (independent) and pivot (dependent) variables: pivot variables: columns in R with pivots ($\leftrightarrow t$ and v). free variables: columns in R without pivots ($\leftrightarrow u$ and w).
- 2 No free variables, i.e., $rank(A) = n \Rightarrow N(A) = 0$.
- (a) If rank(A) < n, obtain a special solution: Set one free variable = 1, the other free variables = 0. Solve Rx = 0 to obtain values of pivot variables.
 - (b) Find special solutions for each free variable. N(A) = space of linear combinations of special solutions.
- This information is stored in a compact form in:

Null Space Matrix: Special solutions as columns.

Rekha Santhanam Lecture 7D3