APICS Mathematics Contest 1982

- 1. Show that $(\sin x + \cos x)^4 \le 4$.
- 2. If a and b are positive integers, find the probability that $(a^2 + b^2)/5$ is a positive integer.
- 3. For a positive value of c, the limit

$$L=\lim_{x
ightarrow+\infty}x^{c}e^{-2x}\int_{0}^{x}e^{2t}\sqrt{et^{2}+1}\;dt$$

exists, is finite an nonzero. Find this value of c, and the limit.

4. How many real roots does the function

$$f(x)=1+x+\frac{x^2}{2}+\ldots+\frac{x^n}{n}$$

have?

5. Show that every integer x can be expressed uniquely in the form

$$x = \sum_{k=1}^m a_k k!$$

where $0 \le a_k \le k$.

- 6. Given two disjoint finite sets A and B in the plane. Suppose that the line segment joining any two points of A contains a point of B and the line segment joining any two points of B contains a point A. Show that all the points of $A \cup B$ lie on a straight line.
- 7. Given a triangle $\triangle ABC$ and a straight line ℓ , find the point P on ℓ such that $(PA)^2 + (PB)^2 + (PC)^2$ is the smallest.
- 8. For $k \ge 0$, let S be the set of all numbers of the form

$$s = \sqrt{k \pm \sqrt{k \pm \ldots \pm \sqrt{k}}}$$

with arbitrary finite sequence of signs. Show that if $k \ge 2$, then all $s \subset S$ are real and if k = 2, S is dense in (0.2).