

第六章 集合代数

集合 没有精确的数学定义

把一些事物汇集到一起组成一个整体

理解:一些离散个体组成的全体

组成集合的个体称为它的元素或成员

常用数集

N, Z, Q, R, C 分别表示

自然数、整数、有理数、实数和复数集合; 0 是自然数.

集合的表示

列元素法 $A = \{a, b, c, d\}$,元素之间用逗号隔开 谓词表示法 $B = \{x \mid P(x)\}$, B 由使得 P(x) 为真的 x 构成

元素与集合的关系: 隶属关系 属于∈,不属于 ∉

实例

 $A = \{x \mid x \in \mathbb{R} \land x^2 - 1 = 0 \}$ (谓词表示法), $A = \{-1,1\}$ (列元素法) $1 \in A$, $2 \notin A$

注意:对于任何集合 A 和元素 x (可以是集合), $x \in A$ 和 $x \notin A$ 两者成立其一,且仅成立其一.

例

$$A = \{ a, \{b,c\}, d, \{\{d\}\}\} \}$$

 $\{b,c\} \in A$
 $b \notin A$
 $d \in A$

 $\{\{d\}\}\in A$

 $\{d\} \notin A$

定义设A, B为集合,如果 B中的每个元素都是 A中的元素,则称B是 A的子集合,简称子集。这时也称B被 A包含,或 A包含 B,记作 $B \subseteq A$ 。如果B 不被 A包含,则记作 $B \nsubseteq A$ 。

包含的符号化表示为: $B \subseteq A \Leftrightarrow \forall x (x \in B \to x \in A)$ 。 显然对任何集合A,都有 $A \subseteq A$ 。

定义 设A, B为集合,如果 $A \subseteq B$ 且 $B \subseteq A$, 则称A 与 B相等,记作A = B。

如果A 与 B不相等,则记作 $A \neq B$ 。

相等的符号化表示为: $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$

定义 设A,B为集合,如果 $B \subseteq A$ 且 $B \neq A$,则称B 是 A 的真子集,记作 $B \subset A$ 。

如果B 不是A 的真子集,则记作 $B \not\subset A$ 。

真子集的符号化表示为: $B \subset A \Leftrightarrow B \subseteq A \land B \neq A$

集合之间的关系

包含(子集) $A \subseteq B \Leftrightarrow \forall x (x \in A \to x \in B)$

不包含 $A \subseteq B \Leftrightarrow \exists x (x \in A \land x \notin B)$

相等 $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$

不相等 $A \neq B$

真包含(真子集) $A \subset B \Leftrightarrow A \subseteq B \land A \neq B$

不真包含 $A \not\subset B$

注意: ∈和 ⊆是不同层次的问题

例 $A=\{a,\{a\}\}$ 和 $B=\{a\}$

 $B=\{a\}$ 看做一个集合,那么 $B\subseteq A$

 $B=\{a\}$ 看做集合A里的一个元素, $B\in A$

空集 Ø 不含任何元素的集合

定理 空集是任何集合的子集 推论 空集是惟一的.

全集E(相对性)

在给定问题中,如果所涉及的集合都是某个集合的子集,则称这个集合为全集,记为E。

含有n个元素的集合简称为n元集,它的含有m($m \le n$)个元素的子集称作它的m元子集。

定义 设A为集合,把A的全体<u>子集</u>构成的集合称作A的幂集,即作P(A)。

$$P(A) = \{ x \mid x \subseteq A \}$$

说明:如果 |A| = n,则 $|P(A)| = 2^n$

实例

$$P(\emptyset) = {\emptyset},$$

 $P({\emptyset}) = {\emptyset}, {\emptyset}}$
 $P({1,{2,3}}) = {\emptyset}, {1}, {{2,3}}, {1,{2,3}}}$

作业

习题 6 (P104)

8 (4,5)

定义 设为 A, B集合, A与B的并集 $A \cup B$,交集 $A \cap B$, A对B的相对补集A - B分别定义如下:

并
$$A \cup B = \{ x \mid x \in A \lor x \in B \}$$
交 $A \cap B = \{ x \mid x \in A \land x \in B \}$

相对补
$$A-B = \{x \mid x \in A \land x \notin B\}$$

说明:
$$A_1 \cup A_2 \cup \dots A_n = \{x \mid x \in A_1 \lor x \in A_2 \lor \dots \lor x \in A_n\}$$

$$A_1 \cap A_2 \cap \dots A_n = \{x \mid x \in A_1 \land x \in A_2 \land \dots \land x \in A_n\}$$

第六章 集合代数

定义 设为A,B集合,A与B的对称差集A⊕B定义 如下:

$$A \oplus B = (A - B) \cup (B - A)$$
$$= (A \cup B) - (A \cap B)$$

定义 给定全集E后, $A \subseteq E$, A的绝对补集~A定义 如下:

$$\sim A = E - A = \{x \mid x \in E \land x \notin A \}$$

定义 设A为集合,A的元素的元素构成的集合称作的A广义并,记作 $\cup A$,符号化表示为:

$$\cup A = \{ x \mid \exists z (z \in A \land x \in z) \}.$$

若
$$A = \{A_1, A_2, ..., A_n\}$$
,则 $\cup A = A_1 \cup A_2 \cup ... A_n$

例6.2 设
$$A = \{\{a,b,c\},\{a,c,d\},\{a,e,f\}\}\}$$
, $B = \{\{a\}\}$,

$$C=\{a,\{c,d\}\}\}, \ \ \mathcal{R}\cup A, \ \cup B, \ \cup C.$$

解:
$$\bigcup A = \{a,b,c\} \cup \{a,c,d\} \cup \{a,e,f\} = \{a,b,c,d,e,f\}$$

$$\cup B = \{a\}$$

$$\cup C = a \cup \{c,d\}$$

$$\bigcup \emptyset = \emptyset$$

定义 设 A为非空集合, A的元素的公共元素构成的集合称作的 A广义交,记作 $\bigcirc A$,符号化表示为:

若
$$A = \{A_1, A_2, ..., A_n\}$$
,则 $\cap A = A_1 \cap A_2 \cap ... A_n$

例6.2 设
$$A = \{\{a,b,c\},\{a,c,d\},\{a,e,f\}\}\}$$
, $B = \{\{a\}\}$,

$$C=\{a,\{c,d\}\}, \ \Re \cap A, \cap B, \cap C.$$

解:
$$\triangle A = \{a,b,c\} \cap \{a,c,d\} \cap \{a,e,f\} = \{a\}$$

$$\cap B = \{a\}$$

$$\cap C = a \cap \{c,d\}$$

Ø不可以进行广义交

集合运算优先顺序

- 一类运算:广义并、广义交、幂集、绝对补
- 二类运算:并、交、相对补、对称差
- 一类运算优先于二类运算
- 一类运算之间由右向左顺序进行
- 二类运算之间由括号决定先后顺序

例 6.3 设 $A = \{\{a\}, \{a,b\}\}$, 计算 $\cup \cup A$, $\cap \cap A$, $\cap \cup A \cup (\cup \cup A - \cup \cap A)$

解:
$$A = \{\{a\}, \{a,b\}\}\}$$

$$\cup A = \{a,b\},\$$

$$\bigcup \bigcup A = a \bigcup b$$

$$\cap \cup A = a \cap b$$

$$\cap A = \{a\}$$

$$\cap \cap A = a$$

$$\bigcup \bigcap A = a$$

$$\cap \cup A \cup (\cup \cup A - \cup \cap A)$$

$$=(a \cap b) \cup ((a \cup b) - a)$$

$$=(a \cap b) \cup (b-a)$$

$$=b$$

练习

F: -年级大学生的集合 S: -年级大学生的集合

R: 计算机系学生的集合 M: 数学系学生的集合

T: 选修离散数学的学生的集合

L: 爱好文学学生的集合 P: 爱好体育运动学生的集合

练习 分别对条件(1)到(5),确定 X集合与下述那些集合相等。

$$S_1 = \{1, 2, ..., 8, 9\}, S_2 = \{2, 4, 6, 8\}, S_3 = \{1, 3, 5, 7, 9\},$$

 $S_4 = \{3, 4, 5\}, S_5 = \{3, 5\}$

- (1) 若 $X \cap S_3 = \emptyset$, 则 $X = S_2$
- (2) 若 $X \subseteq S_4$, $X \cap S_2 = \emptyset$, 则 $X = S_5$
- (3) 若 $X \subseteq S_1$, $X \subseteq S_3$, 则 $X = S_1$, S_2 , S_4
- (4) 若 $X-S_3=\emptyset$, 则 $X = S_3, S_5$
- (5) 若 $X\subseteq S_3$, $X \nsubseteq S_1$, 则 $X \leftrightharpoons S_1$, …, S_5 都不等

作业

习题 6 (P104)

9 (2,5)

集合 A 的基数:集合A中的元素数,记作 card A 。

有穷集 A: card A=|A|=n, n为自然数.

有穷集的实例:

$$A = \{ a,b,c \}, \text{ card } A = |A| = 3;$$

$$B = \{ x \mid x^2 + 1 = 0, x \in R \}, \text{ card } B = |B| = 0 \}$$

无穷集的实例:

N, Z, Q, R, C等

集合之间的关系和初级运算可以用文氏图(Venn diagram) 给予形象的描述,使用文氏图可以很方便地解决有穷集的计 数问题。

例 6.4 24名科技人员,每人至少会1门外语.

英语: 13; 法语: 9; 德语: 10; 日语: 5

英日: 2; 英德: 4; 英法: 4; 法德: 4

会日语的不会法语、德语

求: 只会1种语言人数,会3种语言人数

解:令A,B,C,D分别表示会 英、法、德、日语的集合, 设同时会三种语言的有x人, 只会英法德语一种语言的分 别为y₁,y₂,y₃人。

$$x+2(4-x)+y_1+2=13$$

$$x+2(4-x)+y_2=10$$

$$x+2(4-x)+y_3=9$$

$$x+3(4-x)+y_1+y_2+y_3=19$$

$$x=1, y_1=4, y_2=3, y_3=2$$

即同时会三种语言的有2人,

只会英、法、德语一种语言的分别为4、3、2人。

例6.5 求1到1000之间(包含1和1000在内)既不能被5和6整除,也不能被8整除的数有多少个?

解: 设
$$S=\{x|x\in Z\land 1\le x\le 1000\}$$
 $A=\{x|x\in S\land x$ 可被5整除}
 $B=\{x|x\in S\land x$ 可被6整除}
 $C=\{x|x\in S\land x$ 可被8整除}
 $[x]$ 表示小于或等于 x 的最大整数
 $lcm(x_1,x_2,...,x_n)$ 表示 $x_1,x_2,...,x_n$ 的最小公倍数
则有 $|A|=[1000/5]=200$
 $|B|=[1000/6]=166$
 $|C|=[1000/8]=125$

第六章 集合代数

$$|A \cap B| = \lfloor 1000/lcm(5,6) \rfloor = \lfloor 1000/30 \rfloor = 33$$

 $|A \cap C| = \lfloor 1000/lcm(5,8) \rfloor = \lfloor 1000/40 \rfloor = 25,$
 $|B \cap C| = \lfloor 1000/lcm(6,8) \rfloor = \lfloor 1000/24 \rfloor = 41,$
 $|A \cap B \cap C| = \lfloor 1000/lcm(5,6,8) \rfloor = \lfloor 1000/120 \rfloor = 8$

将这些数字依次填入文氏图,由

图可知,不能被5,6,8整除的数有

1000-(200+100+33+67)=600

定理(包含排斥原理) 设S为有穷集, $P_1, P_2, ...,$ P_m 是 m 种性质, S中任何元素 x 或者具有性质 P_i , 或者不具有性质 P_i ,两种情况必居其一。 A_i 是 S 中具有性质 P_i 的元素构成的子集, i=1, 2, ..., m.则 S 中不具有性质 $P_1, P_2, ..., P_m$ 的元素数 为: $|\overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_m}|$ $= |S| - \sum_{i=1}^{m} |A_i| + \sum_{1 \le i < j \le m} |A_i \cap A_j| - \sum_{1 \le i < j < k \le m} |A_i \cap A_j \cap A_k| + \dots$ $+(-1)^{m} | A_{1} \cap A_{2} \cap ... \cap A_{m} |$

推论 S中至少具有一条性质的元素数为

$$|A_1 \cup A_2 \cup ... \cup A_m|$$

$$= \sum_{i=1}^m |A_i| - \sum_{1 \le i < j \le m} |A_i \cap A_j| + \sum_{1 \le i < j < k \le m} |A_i \cap A_j \cap A_k| + \dots$$

$$+(-1)^{m-1} | A_1 \cap A_2 \cap ... \cap A_m |$$

第六章 集合代数

例6.5 求1到1000之间(包含1和1000在内)既不能被5和6整除,也不能被8整除的数有多少个?

解: $S = \{x \mid x \in \mathbb{Z}, 1 \le x \le 1000 \}$, 如下定义S的 3个子集A, B, C: $A = \{x \mid x \in S, 5 \mid x \}$, $B = \{x \mid x \in S, 6 \mid x \}$, $C = \{x \mid x \in S, 8 \mid x \}$

对上述子集计数:

$$|S|=1000,$$
 $|A|=\lfloor 1000/5 \rfloor = 200,$
 $|A \cap B|=\lfloor 1000/30 \rfloor = 33,$
 $|B|=\lfloor 1000/6 \rfloor = 166,$
 $|A \cap C|=\lfloor 1000/40 \rfloor = 25,$
 $|C|=\lfloor 1000/8 \rfloor = 125,$
 $|B \cap C|=\lfloor 1000/24 \rfloor = 41,$
 $|A \cap B \cap C|=\lfloor 1000/120 \rfloor = 8,$
代入公式

N = 1000 - (200 + 166 + 125) + (33 + 25 + 41) - 8 = 600

测验5 一个学校有507,292,312,和344个学生分别选 了微积分、离散数学、数据结构和程序设计,且有 14人选了微积分和数据结构,213人选了微积分和程 序设计,211人选了离散数学和数据结构,43人选了 离散数学和程序设计,没有学生同时选微积分和离 散数学,也没有学生同时选数据结构和程序设计。 分别求只选了微积分、离散数学、数据结构和程序 设计的学生人数。

作业

习题 6 (P104)

16

20

6.4 集合恒等式

集合运算的主要算律

	J	\cap	⊕
交换	$A \cup B = B \cup A$	$A \cap B = B \cap A$	$A \oplus B = B \oplus A$
结合	$(A \cup B) \cup C =$	$(A \cap B) \cap C =$	$(A \oplus B) \oplus C =$
	$A \cup (B \cup C)$	$A\cap (B\cap C)$	$A \oplus (B \oplus C)$
幂等	$A \cup A = A$	$A \cap A = A$	无

	し与へ	○与⊕	
分配	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$	
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
吸收	$A \cup (A \cap B) = A$		
	$A \cap (A \cup B) = A$		

吸收律的前提: ∪、○可交换

	_	~
德摩根律	$A - (B \cup C) = (A - B) \cap (A - C)$	$\sim (B \cup C) = \sim B \cap \sim C$
	$A - (B \cap C) = (A - B) \cup (A - C)$	$\sim (B \cap C) = \sim B \cup \sim C$
	$(B \cup C) - A = (B - A) \cup (C - A)$	
	$(B \cap C) - A = (B - A) \cap (C - A)$	
双重否定	~~A=A	

	Ø	\boldsymbol{E}
补元律	$A \cap \sim A = \emptyset$	$A \cup \sim A = E$
零律	$A \cap \emptyset = \emptyset$	$A \cup E = E$
同一律	$A \cup \emptyset = A$	$A \cap E = A$
否定	~Ø=E	~E=Ø

集合包含或相等的证明方法

证明 *X*⊆*Y*

- 命题演算法
- 包含传递法
- 等价条件法
- 反证法
- 并交运算法

证明 *X=Y*

- 命题演算法
- 等式代入法
- 反证法
- 运算法

以上的 X, Y代表集合公式

命题演算法证 X⊆Y

任取
$$x$$
, $x \in X \Rightarrow \dots \Rightarrow x \in Y$

例 证明 $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$

(1)任取x

$$x \in P(A) \Rightarrow x \subseteq A \Rightarrow x \subseteq B \Rightarrow x \in P(B)$$

(2)任取x

$$x \in A \Rightarrow \{x\} \subseteq A \Rightarrow \{x\} \in P(A) \Rightarrow \{x\} \in P(B)$$

 $\Rightarrow \{x\} \subseteq B \Rightarrow x \in B$

包含传递法证 X⊆Y

找到集合T满足 $X \subseteq T$ 且 $T \subseteq Y$,从而有 $X \subseteq Y$

例
$$A-B \subseteq A \cup B$$

证 $A-B \subseteq A$
 $A \subseteq A \cup B$
所以 $A-B \subseteq A \cup B$

利用包含的等价条件证 X CY

$$A \subseteq B \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A \Leftrightarrow A - B = \phi$$

例
$$A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$$

证 $A \subseteq C \Rightarrow A \cup C = C$
 $B \subseteq C \Rightarrow B \cup C = C$
 $(A \cup B) \cup C = A \cup (B \cup C) = A \cup C = C$
 $(A \cup B) \cup C = C \Leftrightarrow A \cup B \subseteq C$
命题得证

第六章 集合代数 ■ ■ 4

反证法证 $X\subseteq Y$

欲证 $X \subseteq Y$,假设命题不成立,必存在 x 使得 $x \in X$ 且 $x \notin Y$,然后推出矛盾.

例 证明 $A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$

证 假设 $A \cup B \subseteq C$ 不成立,则 $\exists x (x \in A \cup B \land x \notin C)$ 因此 $x \in A$ 或 $x \in B$,且 $x \notin C$ 若 $x \in A$,则与 $A \subseteq C$ 矛盾; 假设不成立。

利用已知包含式并交运算

由已知包含式通过运算产生新的包含式 $X \subseteq Y \Rightarrow X \cap Z \subseteq Y \cap Z, X \cup Z \subseteq Y \cup Z$

例 证明 $A \cap C \subseteq B \cap C \land A - C \subseteq B - C \Rightarrow A \subseteq B$

证 $A \cap C \subseteq B \cap C$, $A - C \subseteq B - C$ 上式两边求并,得

$$(A \cap C) \cup (A - C) \subseteq (B \cap C) \cup (B - C)$$

- $\Rightarrow (A \cap C) \cup (A \cap \sim C) \subseteq (B \cap C) \cup (B \cap \sim C)$
- $\Rightarrow A \cap (C \cup \sim C) \subseteq B \cap (C \cup \sim C)$
- $\Rightarrow A \cap E \subseteq B \cap E$
- $\Rightarrow A \subseteq B$

命题演算法证明X=Y

```
任取x,
       x \in X \Rightarrow \dots \Rightarrow x \in Y
       x \in Y \Rightarrow \dots \Rightarrow x \in X
       或者
       x \in X \Leftrightarrow \dots \Leftrightarrow x \in Y
例 证明 A \cup (A \cap B) = A (吸收律)
证 任取x,
       x \in A \cup (A \cap B) \Leftrightarrow x \in A \lor x \in A \cap B
        \Leftrightarrow x \in A \lor (x \in A \land x \in B) \Leftrightarrow x \in A
```

等式替换证明X=Y

不断进行代入化简,最终得到两边相等

```
例 证明A \cup (A \cap B) = A (吸收律)
证 (假设交换律、分配律、同一律、零律成立)
  A \cup (A \cap B)
                      同一律
  =(A\cap E)\cup (A\cap B)
                      分配律
  =A\cap (E\cup B)
                      交換律
  =A\cap (B\cup E)
                      零律
  =A\cap E
                      同一律
  =A
```

反证法证明X=Y

假设 X=Y 不成立,则存在 x 使得 $x \in X$ 且 $x \notin Y$,或者存在 x 使得 $x \in Y$ 且 $x \notin X$,然后推出矛盾.

例证明以下等价条件

$$A \subseteq B \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A \Leftrightarrow A - B = \emptyset$$

$$(1) \qquad (2) \qquad (3) \qquad (4)$$

证明顺序:

$$(1) \Rightarrow (2), (2) \Rightarrow (3), (3) \Rightarrow (4), (4) \Rightarrow (1)$$

 $(1) \Rightarrow (2)$ $A \subseteq B \Rightarrow A \cup B = B$ 显然 $B \subseteq A \cup B$,下面证明 $A \cup B \subseteq B$. 任取x,

 $x \in A \cup B \Leftrightarrow x \in A \lor x \in B \Rightarrow x \in B \lor x \in B \Leftrightarrow x \in B$ 因此有 $A \cup B \subseteq B$. 综合上述(2)得证.

 $(2) \Rightarrow (3) A \cup B = B \Rightarrow A \cap B = A$ $A = A \cap (A \cup B) \Rightarrow A = A \cap B$ $(将 A \cup B) = A \cap B$

 $(3) \Rightarrow (4) A \cap B = A \Rightarrow A - B = \emptyset$ 假设 $A - B \neq \emptyset$, 即 $\exists x \in A - B$,那 $\Delta x \in A \perp B = A \perp$

从而与 $A \cap B = A$ 矛盾.

 $(4) \Rightarrow (1) A-B=\emptyset \Rightarrow A\subseteq B$ 假设 $A\subseteq B$ 不成立,那么 $\exists x (x \in A \land x \notin B) \Rightarrow x \in A-B \Rightarrow A-B \neq \emptyset$ 与条件 (4) 矛盾.

集合运算法证明X=Y

由已知等式通过运算产生新的等式

$$X=Y\Leftrightarrow X\cap Z=Y\cap Z, X\cup Z=Y\cup Z,$$

$$X-Z=Y-Z$$
, $X\oplus Z=Y\oplus Z$

例 证明 $A \cap C = B \cap C \land A \cup C = B \cup C \Rightarrow A = B$ 证 由 $A \cap C = B \cap C$ 和 $A \cup C = B \cup C$ 得到 $(A \cup C) - (A \cap C) = (B \cup C) - (B \cap C)$ 从而有 $A \oplus C = B \oplus C$ 因此

A=B

作业

习题 6 (P104)

28 (3)