Corrigé de la FTD N°10

Exercice 2

1.a.
$$A \in \mathcal{D} \Leftrightarrow y_A = \frac{2}{3}x_A - 5 \Leftrightarrow y_A = \frac{2}{3} \times (-3) - 5 = -7 \text{ et } A(-3, -7)$$

1.b.
$$B \in \mathcal{Q} \Leftrightarrow y_B = \frac{2}{3}x_B - 5 \Leftrightarrow 1 = \frac{2}{3} \times x_B - 5 \Leftrightarrow x_B = 6 \times \frac{3}{2} = 9$$
 et $B(9,1)$

1.c. A vous de voir

2.a.
$$\frac{2}{3}x_M - 5 = \frac{2}{3} \times 90 - 5 = 60 - 5 = 55 = y_M \text{ donc } M \in \mathcal{D}$$

2.b.
$$\frac{2}{3}x_N - 5 = \frac{2}{3} \times (-21) - 5 = -14 - 5 = -19 \neq y_N \text{ donc } N \notin \mathcal{D}$$

Exercice 3

$$\mathcal{Q}_1: x = 4$$
 $\mathcal{Q}_2: y = \frac{1}{2}x + 3$ $\mathcal{Q}_3: y = -3x - 4$ $\mathcal{Q}_4: y = \frac{1}{2}x$ $\mathcal{Q}_6: y = -3$

Exercice 4 : juste les réponses

1. $x_A \neq x_B$ donc (AB) admet une équation réduite y = mx + p où $m = \frac{y_B - y_A}{x_B - x_A} = \frac{6}{-2} = -3$.

$$A \in (AB) \Leftrightarrow y_A = mx_A + p \Leftrightarrow p = y_A - mx_A \Leftrightarrow p = -2 + 3 \times 5 = 13 \text{ et } \boxed{(AB) : y = -3x + 13}$$

2. $x_C \neq x_D$ donc (CD) admet une équation réduite y = mx + p où $m = \frac{y_C - y_D}{x_C - x_D} = \frac{12}{-16} = -\frac{3}{4}$.

$$C \in (CD) \Leftrightarrow y_C = mx_C + p \Leftrightarrow p = y_C - mx_C \Leftrightarrow p = -7 + \frac{3}{4} \times 11 = -\frac{5}{4} \text{ et } (CD) : y = -\frac{3}{4}x + \frac{5}{4}$$

3.
$$x_E = x_F = 1,1$$
 donc $(EF): x = 1,1$

Exercice 5 : juste les réponses

1.b.
$$\Delta : y = -\frac{3}{4}x - \frac{5}{4}$$

2.b.
$$\Delta'$$
 : $y = \frac{5}{3}x - 1$

Exercice 6 : juste les réponses

- **a.** $\mathcal{D}//\mathcal{D}'$ et disjointes
- **b.** $\mathcal{D}//\mathcal{D}'$ et disjointes
- **c.** \mathscr{D} et \mathscr{D}' sont sécantes en $I\left(-\frac{1}{11}, \frac{62}{55}\right)$

- **d.** $\mathcal{D}//\mathcal{D}'$ et disjointes
- **e.** $\mathcal{D}//\mathcal{D}'$ et disjointes

Exercice 7

- 1. \mathcal{D} n'est pas parallèle à (Ox) donc \mathcal{D}' admet une équation réduite : y = mx + p.
 - $\mathcal{D}//\mathcal{D}'$ donc m=4.
 - $A \in \mathcal{D}' \Leftrightarrow y_A = mx_A + p \Leftrightarrow p = y_A mx_A \Leftrightarrow p = -1 4 \times 2 = -9$. On en déduit que \mathcal{D}' : y = 4x 9
- **2.** On démontre de mêmeque $\Delta': y = -\frac{4}{3}x + \frac{2}{3}$

Exercice 8

1. $2 \neq 5$ donc \mathcal{D} et \mathcal{D}' sont sécantes en un point I.

$$\mathbf{2.} \ I(x,y) \in \mathcal{D} \cap \mathcal{D}' \Leftrightarrow \begin{cases} y = 2x - \frac{1}{2} \Leftrightarrow \begin{cases} 5x + 2 = 2x - \frac{1}{2} \Leftrightarrow \begin{cases} 3x = -\frac{5}{2} \\ y = 5x + 2 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{5}{6} \\ y = 5x + 2 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{5}{6} \\ y = 5(-\frac{5}{6}) + 2 = -\frac{13}{6} \end{cases} \text{ et } \boxed{I\left(-\frac{5}{6}, -\frac{13}{6}\right)}$$

3. L'axe
$$(Ox)$$
 des abscisses admet $y = 0$ pour équation et $A(x,y) \in \mathcal{Q} \cap (Ox) \Leftrightarrow \begin{cases} y = 2x - \frac{1}{2} \Leftrightarrow \begin{cases} 2x - \frac{1}{2} = 0 \Leftrightarrow \begin{cases} x = \frac{1}{4} \\ y = 0 \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{4} \\ y = 0 \end{cases}$

Par conséquent $A(\frac{1}{4}, 0)$.

4. L'axe
$$(Oy)$$
 des ordonnées admet $x = 0$ pour équation et $B(x,y) \in (Oy) \cap \mathcal{D}' \Leftrightarrow \begin{cases} x = 0 \\ y = 5x + 2 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 2 \end{cases}$ Par conséquent $B(0,2)$.

Exercice 9

2.
$$x_A \neq x_B$$
 donc (AB) admet une équation réduite $y = ax + b$ où $a = \frac{y_B - y_A}{x_B - x_A} = \frac{-2}{6} = -\frac{1}{3}$.

$$A \in (AB) \Leftrightarrow y_A = ax_A + b \Leftrightarrow b = y_A - ax_A \Leftrightarrow b = 3 + \frac{1}{3} \times (-2) = \frac{7}{3} \text{ et } (AB) : y = -\frac{1}{3}x + \frac{7}{3}$$

3.
$$\mathcal{D}$$
 admet pour équation réduite : $y = 2x + p$ or $O \in \mathcal{D}$ donc $p = 0$ et \mathcal{D} : $y = 2x$.

3.
$$\mathscr{Q}$$
 admet pour équation réduite : $y = 2x + p$ or $O \in \mathscr{Q}$ donc $p = 0$ et \mathscr{Q} : $y = 2x$.
4. $I(x,y) \in \mathscr{Q} \cap (AB) \Leftrightarrow \begin{cases} y = 2x \\ y = -\frac{1}{3}x + \frac{7}{3} \Leftrightarrow \begin{cases} y = 2x \\ -\frac{1}{3}x + \frac{7}{3} = 2x \end{cases} \Leftrightarrow \begin{cases} y = 2x \\ \frac{7}{3}x = \frac{7}{3} \Leftrightarrow \begin{cases} x = 1 \\ y = 2x = 2 \end{cases}$

On en déduit que I(1,2)

5.a.
$$E(x,y) \in \mathcal{D} \cap (Oy) \Leftrightarrow \begin{cases} y = -\frac{1}{3}x + \frac{7}{3} \Leftrightarrow \begin{cases} y = \frac{7}{3} \end{cases}$$
. On en déduit que $E(0,2)$.

5.b.
$$F(x,y) \in (AB) \cap (Ox) \Leftrightarrow \begin{cases} y = -\frac{1}{3}x + \frac{7}{3} \Leftrightarrow \begin{cases} -\frac{1}{3}x + \frac{7}{3} = 0 \\ y = 0 \end{cases} \Leftrightarrow \begin{cases} x = -3 \times \left(-\frac{7}{3}\right) = 7 \\ y = 0 \end{cases}$$
. On en déduit que $F(7,0)$.

6.
$$(AB)$$
 admet une équation réduite et $\Delta // (AB)$ donc Δ admet une équation réduite $y = mx + p$ où $m = -\frac{1}{3}$.

$$C \in \left(AB\right) \Leftrightarrow y_C = mx_C + p \Leftrightarrow p = y_C - mx_C \Leftrightarrow p = -2 + \frac{1}{3} \times \left(-1\right) = -\frac{7}{3}.$$

 Δ admet une équation réduite : $y = -\frac{1}{3}x - \frac{7}{3}$.

Exercice 10

1.
$$\begin{cases} x_I = \frac{x_A + x_B}{2} = -1 \\ y_I = \frac{y_A + y_B}{2} = 1 \end{cases} \text{ et } \begin{cases} x_J = \frac{x_A + x_C}{2} = \frac{3}{2} \\ y_J = \frac{y_A + y_C}{2} = -\frac{1}{2} \end{cases}$$

•
$$M(x,y) \in (CI) \Leftrightarrow \overrightarrow{CM}(x-2,y+5) \text{ et } \overrightarrow{CI}(-3,6) \text{ sont colinéaires } \Leftrightarrow \begin{vmatrix} x-2 & -3 \\ y+5 & 6 \end{vmatrix} = 0 \Leftrightarrow 6(x-2)+3(y+5)=0$$

 $\Leftrightarrow 2(x-2)+(y+5)=0 \Leftrightarrow 2x+y+1=0 \Leftrightarrow \boxed{y=-2x-1}.$

•
$$M(x,y) \in (BJ) \Leftrightarrow \overrightarrow{BM}(x+3,y+2) \text{ et } \overrightarrow{BJ}\left(\frac{9}{2},\frac{3}{2}\right) \text{ sont colinéaires } \Leftrightarrow \begin{vmatrix} x+3 & \frac{9}{2} \\ y+2 & \frac{3}{2} \end{vmatrix} = 0 \Leftrightarrow \frac{3}{2}(x+3) - \frac{9}{2}(y+2) = 0 \Leftrightarrow (x+3) - 3(y+2) = 0 \Leftrightarrow x-3y-3 = 0 \Leftrightarrow y = \frac{1}{3}x-1.$$

3.
$$\begin{cases} y = -2x - 1 \\ y = \frac{1}{3}x - 1 \end{cases} \Leftrightarrow \begin{cases} y = -2x - 1 \\ -2x - 1 = \frac{1}{3}x - 1 \end{cases} \Leftrightarrow \begin{cases} y = -2x - 1 \\ -\frac{7}{3}x = 0 \end{cases} \Leftrightarrow \begin{cases} y = -2 \times 0 - 1 = -1 \\ x = 0 \end{cases}$$
. On en déduit que les droites (CI) et (BJ)

Exercice 11 : corrigé succinct

1. $x_A + 3y_A - 11 = -1 + 3 \times 4 - 11 = 0$ donc $A \in \mathcal{Q}_1$. $\vec{u} \left(1, -\frac{1}{3} \right)$ est un vecteur directeur de \mathcal{Q}_1 .

2.a.
$$\Delta : y = -\frac{1}{3}x$$
.

2.b.
$$D \in \Delta \iff y_D = -\frac{1}{3}x_D \iff y_D = -\frac{1}{3} \times (-3) = 1 \iff y_D = 1 \text{ soit } D(-3,1).$$

2.c.
$$B(x,y) \in \mathcal{Q}_1 \cap \mathcal{Q}_2 \Leftrightarrow \begin{cases} y = -\frac{1}{3}x + \frac{11}{3} \\ y = \frac{3}{2}x - \frac{11}{2} \end{cases} \Leftrightarrow \begin{cases} y = -\frac{1}{3}x + \frac{11}{3} \\ -\frac{1}{3}x + \frac{11}{3} = \frac{3}{2}x - \frac{11}{2} \end{cases} \Leftrightarrow \begin{cases} y = -\frac{1}{3}x + \frac{11}{3} \\ -\frac{11}{6}x = -\frac{55}{6} \end{cases} \Leftrightarrow \begin{cases} y = -\frac{1}{3}x + \frac{11}{3} = \frac{1}{3}x + \frac{11}{3}x + \frac{1$$

Les droites \mathcal{Q}_1 et \mathcal{Q}_2 sont sécantes en B(5,2)

3.
$$\overrightarrow{AB}(6,-2)$$
 et $\overrightarrow{DC}(6,-2)$ donc $\overrightarrow{AB} = \overrightarrow{DC}$ et \overrightarrow{ABCD} est un parallélogramme.

4.a.
$$\mathcal{Q}_3: y = 3x - 10$$
.

4.c.
$$FC = \sqrt{40}$$
, $FD = \sqrt{80}$, $CD = \sqrt{40}$ $FD^2 = CD^2 + CF^2 = 80$ donc FCD est rectangle en F

4.c.
$$FC = \sqrt{40}$$
, $FD = \sqrt{80}$, $CD = \sqrt{40}$ $FD^2 = CD^2 + CF^2 = 80$ donc FCD est rectangle en F .
5.a. $\overrightarrow{AB}(6,-2)$ et $\overrightarrow{AD}(-2,-3)$ donc $\overrightarrow{AE} = 2\overrightarrow{AB} - \overrightarrow{AD}$ \Leftrightarrow
$$\begin{cases} x_E = -1 + 2 \times 6 - (-2) = 13 \\ y_E = 4 + 2 \times (-2) - (-3) = 3 \end{cases}$$
 d'où $E(13,3)$.

5.b. $\overrightarrow{DB}(8,1)$ et $\overrightarrow{DE}(16,2)$ donc $\overrightarrow{DE} = 2\overrightarrow{DB}$ et B est le milieu de [DB]. En particulier les points D, B et E sont alignés.

Exercice 2 : programmation en Python : colinéarité et alignement

1.

```
def alignement(a1,a2,b1,b2,c1,c2):
    u1=b1-a1#coordonnées du vecteur AB
    u2=b2-a2
    v1=c1-a1#coordonnées du vecteur AC
    v2=c2-a2
    if determinant(u1,u2,v1,v2)==0:
        print ('les points A, B et C sont alignés')
    else:
        print ('les points A, B et C ne sont pas alignés')
```

2.