Zizhao Wang

Contact zizhao.wang@utexas.edu, 734-747-4206 **Website** https://wangzizhao.github.io/ **Google scholar** https://tinyurl.com/zizhaowangscholar

Education

2020 - 25 PhD, Electrical and Computer Engineering, GPA: 4.00/4.00 Expected graduation: 2026/01
 2018 - 19 MS, Computer Science, GPA: 4.00/4.00 Columbia University
 2016 - 18 BS, Computer Engineering, GPA: 3.96/4.00 University of Michigan
 2014 - 18 BS, Electrical and Computer Engineering, GPA: 3.72/4.00 Shanghai Jiao Tong University

Work Experience

Google, Research Intern

2025/03 - 2025/10

- Designed an adversarial reinforcement learning post-training framework to enhance the privacy security of LLM tool-use agents again prompt injections (LLM Agents, GenAl, RL post-training, Safety).
- Built the data collection pipeline with vLLM and parallel simulation environments, speeding up LLM agent rollout collection by 8x (LLM inference, vLLM, parallel environments).
- Trained the LLM model with the GRPO algorithm in fast and memory-efficient way (distributed training, Transformers, deepspeed, LoRA, python, pyTorch), reducing the attack success rate by 21% and improving task success rate by 18% compared to the untrained model.
- Received positive feedback from Deepmind teams and contributed to Gemini training (presentation).

Microsoft Research, Research Intern

2024/06 - 2025/02

- Designed a **generative world model** to synthesize experience of novel scenarios, with object-centric representations and disentangled representations (world model, genAl, representation learning).
- Implemented a novel model architecture, training and evaluation pipeline and sped up training with distributed training (transformer models, state-space models, distributed data parallel, pyTorch).
- Enhanced the generalization of RL policies by 30%, when trained with generated out-of-distribution data (model-based RL, python, pyTorch).

Honda Research Institute, Research Intern

2024/01 - 2024/05

- Developed a motion prediction algorithm that reduced prediction error by 48%, by applying causal reasoning to vehicle interactions (world model, autonomous driving, causality).
- Sped up model training with distributed training and efficient CUDA implementations for sparse attention (transformer models, distributed data parallel, CUDA, python, pyTorch).

Research Experience

UT Austin Computer Science, Research Assistant

2021 - 25

- · Conduct following research projects on World Model and published at ICML (oral), NeurIPS, AAAI.
- Led a team of 3 phd students to build a world model that analyzes causal relationships between state factors, increasing the generalization performance by 46% on long-horizon robot manipulation tasks in simulation (causality, motion planning, robotics, simulation).
- Led a team of 4 students to develop a novel intrinsic reward algorithm based on world models, increasing long-horizon robot manipulation task by 3x in simulation (model-based RL, robotics).
- Led a team of 4 students to scale latent action world models to multi-agent scenarios, increasing prediction performance by 34% (genAl, imitation learning, robotics).

UT Austin Computer Science, Research Assistant

2021 - 22

· Conduct following research projects on Robot Navigation and published at ICRA, IROS.

- Developed a novel framework to dynamically adjust motion planners using interventions and evaluative feedback from humans, reducing navigation time by 45% (robotics, motion planning, human in the loop, navigation).
- Led a team of 5 students to develop a novel learning algorithm to generate cheap demonstration data for navigation, enabling robots to navigate in challenging environments where classical motion planners fail (genAl, imitation learning, robotics).

Skills

- · research: LLM post-training, world models, reinforcement learning (RL)
- large language model (LLM), generative AI (genAI): SFT, RL post-training (PPO, GRPO), (tool use) agents, reasoning, safety
- · decision making: model-based RL, imitation learning, planning
- development: Python, machine learning frameworks (PyTorch, TensorFlow, Transformers, TRL), distributed training (deepspeed), efficient training (PEFT, LoRA), deployment (vLLM), simulation (Mujoco)
- · deep learning: representation learning, generalization

Selected Publications

See google scholar (https://tinyurl.com/zizhaowangscholar) for a complete list of publications (Machine Learning: **NeurIPS, ICML, AAAI**; Robotics: **CoRL, ICRA, IROS**).

- Adversarial Reinforcement Learning for LLM Agent Safety, In submission
 Z Wang, D Li, V Keshava, P Wallis, A Balashankar, P Stone, L Rutishauser.
- Dyn-O: Building Structured World Models with Object-Centric Representations, NeurIPS 2025
 Z Wang, K Wang, L Zhao, P Stone, J Bian.
- SkiLD: Unsupervised Skill Discovery Guided by Local Dependencies, NeurIPS 2024
 Z Wang*, J Hu*, C Chuck*, S Chen, R Martín-Martín, A Zhang, S Niekum, P Stone.
- Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning, AAAI 2024 (oral)
 Z Wang*, C Wang, X Xiao, Y Zhu, and P Stone.
- ELDEN: Exploration via Local Dependencies, NeurIPS 2023
 Z Wang*, J Hu*, R Martín-Martín, and P Stone.
- Causal Dynamics Learning for Task-Independent State Abstraction (Oral), ICML 2022 (oral)
 Z Wang, X Xiao, Z Xu, Y Zhu, and P Stone.
- Learning to Correct Mistakes: Backjumping in Long-horizon Task and Motion Planning, *CoRL 2022* Y Sung*, **Z Wang***, and P Stone.
- From Agile Ground to Aerial Navigation: Learning from Learned Hallucination, *IROS 2021* **Z Wang**, X Xiao, A Nettekoven, K Umasankar, A Singh, S Bommakanti, U Topcu, and P Stone.
- APPLE: Adaptive Planner Parameter Learning from Evaluative Feedback, RAL 2021
 Z Wang, X Xiao, G Warnell, and P Stone.
- Maximizing BCI Human Feedback using Active Learning, IROS 2020
 Z Wang*, J Shi*, I Akinola*, and P Allen.
- Accelerated Robot Learning via Human Brain Signals, ICRA 2020.
 I Akinola*, Z Wang*, J Shi, X He, P Lapborisuth, J Xu, D Watkins-Valls, P Sajda, and P Allen.