【高速先生原创|高速串行系列】为什么 PCB 上的单端阻抗控制 50 欧姆

作者: 周伟 一博科技高速先生团队成员

很多刚接触阻抗的人都会有这个疑问,为什么常见的板内单端走线都是默认要求按照 50 欧姆来管控而不是 40 欧姆或者 60 欧姆?这是一个看似简单但又不好回答的问题。在写这篇文章前我们也查找了很多资料,其中最有知名度的是 Howard Johnson, PhD 关于此问题的答复,原文可以详见如下链接:

http://www.edadoc.com/cn/jswz/show_815.html,相信很多人都有看过。

为什么说不好回答呢?信号完整性问题本身就是一个权衡取舍的问题,所以在业内最著名的一句话也就是:"It depends、、、、、"这就是没有标准答案,仁者见仁智者见智的一个问题。今天高速先生也就这个问题综合各种答复来简单总结下,在此也是抛砖引玉,希望更多的人可以从各自的角度出发总结出更多相关的因素。

首先,50 欧姆是有一定历史渊源的,这得从标准线缆说起。我们都知道近代电子技术很大一部分是来源于军队,慢慢的军用转为民用,在微波应用的初期,二次世界大战期间,阻抗的选择完全依赖于使用的需要。随着技术的进步,需要给出阻抗标准,以便在经济性和方便性上取得平衡。在美国,最多使用的导管是由现有的标尺竿和水管连接成的,51.5 欧姆十分常见,但看到和用到的适配器/转换器又是 50 欧姆到 51.5 欧姆;为联合陆军和海军解决这些问题,一个名为 JAN 的组织成立了,就是后来的 DESC,由MIL 特别发展的,综合考虑后最终选择了 50 欧姆,并且特别的导管被制造出来,并由此转化为各种线缆的标准。此时欧洲标准是 60 欧姆,不久以后,在象 Hewlett-Packard 这样在业界占统治地位的公司的影响下,欧洲人也被迫改变了,所以 50 欧姆最终成为业界的一个标准沿袭下来,也就变成约定俗成了,而和各种线缆连接的 PCB,为了阻抗的匹配,最终也是按照 50 欧姆阻抗标准来要求了。

其次,从加工可实现的角度出发,50 欧姆实现起来比较方便。从前面阻抗计算公式可知,过低的阻抗需要较宽的线宽以及薄介质(或较大的介电常数),这对于目前高密板来说空间上比较难满足;过高的阻抗又需要较细的线宽及较厚的介质(或较小的介电常数),不利于 EMI 及串扰的抑制,同时对于多层板及从量产的角度来讲加工的可靠性会比较差;而 50 欧姆在常用材料的环境下普通的线宽和介质厚度(4~6mil)即符合设计要求(如下图一阻抗计算),又方便加工,慢慢的成为默认选择也就不足为奇了。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

Substrate 1 Height	H1	5.0000
Substrate 1 Dielectric	Er1	4.0000
Substrate 2 Height	H2	6.0000
Substrate 2 Dielectric	Er2	4.0000
Lower Trace Width	W1	4.5000
Upper Trace Width	W2	4.0000
Trace Thickness	T1	0.6000
Impedance	Zo	50.35

阻抗计算

第三,从损耗的角度出发,根据基本的物理学可以证明50欧姆阻抗趋肤效应损 耗最小(摘自 Howard Johnson, PhD 的回复)。通常电缆的趋肤效应损耗 L(以分贝做 单位)和总的趋肤效应电阻 R(单位长度)除以特性阻抗 Z0成正比。总的趋肤效应电 阻 R 是屏蔽层和中间导体电阻之和。屏蔽层的趋肤效应电阻在高频时,和它的直径 d2 成反比。同轴电缆内部导体的趋肤效应电阻在高频时,和他的直径 d1 成反比。总共的 串联电阻 R, 因此和(1/d2+1/d1)成正比。综合这些因素, 给定 d2 和相应的隔离 材料的介电常数 Er,可以用以下公式来使得趋肤效应损耗最小。

$$L \propto \frac{\left(1/d_2 + 1/d_1\right)}{Z_0}.$$
 (公式 1)

在任何关于电磁场和微波的基础书中,都可以找到 Z0 是 d2, d1 和 Er 的函数。

$$Z_0 = \frac{60}{\sqrt{E_R}} \ln(d_2/d_1). \tag{公式 2}$$

把公式 2 代入公式 1 中,分子分母同时乘以 d2,整理得到

$$L \propto \frac{\sqrt{E_R}}{60} \frac{1}{d_2} \frac{\left(1 + d_2/d1\right)}{\ln(d_2/d1)}.$$
 (公式 3)

从公式3分离出常数项($\sqrt{\mathbb{E}_{\mathbb{R}}}/60$)*(1/d2),有效的项((1+d2/d1)/ln(d2/d1)) 来确定最小值点。仔细查看公式 3 的最小值点仅由 d2/d1 控制,和 Er 以及固定 值 d2 无关。以 d2/d1 为参数,为 L 做图,显示 d2/d1=3.5911 时,取得最小值。 假定固态聚乙烯的介电常数为 2.25, d2/d1=3.5911 得出特性阻抗为 51.1 欧姆。 很久之前,无线电工程师为了方便使用,把这个值近似为50欧姆作为同轴电缆 最优值。这证明了在50欧姆附近, L是最小的。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

最后,从电气性能的角度看,50 欧姆的优势也是综合考虑之后的折中。单纯从 PCB 走线的性能来说,阻抗低比较好,对一个给定线宽的传输线,和平面距离越近,相应的 EMI 会减小,串扰也会因此减小,同时也不易受容性负载影响。但从全路径的角度看,还需要考虑最关键的一个因素,那就是芯片的驱动能力,早期大多数芯片驱动不了阻抗小于 50 欧姆的传输线,而更高阻抗的传输线由于实现起来不便,所以折中采用了 50 欧姆阻抗。

综上所述: 50 欧姆作为业界的默认值有其先天的优势,同时也是综合考虑后的折中方案,但并不是说就一定要用 50 欧姆阻抗了,很多时候还是取决于与之匹配的接口,如 75 欧姆仍然是远程通讯的标准,一些线缆和天线都是使用的 75 欧姆,此时就需要与之匹配的 PCB 线路阻抗。另外还有一些特殊的芯片通过改善芯片驱动能力,来降低传输线的阻抗,以此得到更好的抑制 EMI 和串扰的效果,如 Intel 的多数芯片要求阻抗控制在 37 欧姆、42 欧姆甚至更低,在此不再赘述。

小编这篇文章对解答您的疑问有帮助吗?群殴阻抗,阻抗群殴,我们的下一篇文章将带给您更多的精彩!

问题来了

在阻抗控制表里,除了要求阻抗值外,我们通常还要求公差在±10%内,此时有人就要站出来说,阻抗越匹配越好,为什么就不给我按照正负 5%来控,请问阻抗有必要控制在±5%以内吗?

高速先生欢迎您和我们一起进行交流,关注微信名(高速先生),直接将答案通过会话回复,参与互动答题即有机会获得奖品,回复关键词"奖品"查看更多。

【关于一博】

- 一博科技专注于高速 PCB 设计、PCB 制板、焊接加工、物料供应等服务。作为全球最大的高速 PCB 设计公司,我司在中国、美国、日本设立研发机构,全球研发工程师 500 余人。超大规模的高速 PCB 设计团队,引领技术前沿,贴近客户需求。
- 一博旗下 PCB 板厂成立于 2009 年,位于广东四会(广州北 50KM),采用来自日本、德国的一流加工设备,TPS 精益生产管理以及品质管控体系的引入,致力为广大客户提供高品质、高多层的制板服务。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

一博旗下 PCBA 总厂位于深圳,并在上海设立分厂,现有 12 条 SMT 产线,配备全新进口富士 XPF、NXT3、全自动锡膏印刷机、十温区回流炉等高端设备,并配有波峰焊、AOI、XRAY、BGA 返修台等配套设备,专注研发打样、中小批量的 SMT 贴片、组装等服务。

【关于高速先生】

高速先生由深圳市一博科技有限公司 R&D 技术研究部创办,用浅显易懂的方式讲述高速设计,成立至今保持每周发布两篇原创技术文章,已和大家分享了百余篇呕心沥血之作,深受业内专业人士欢迎,是中国高速电路第一自媒体品牌。

扫一扫,即可关注

