Algebraische Topologie 1

Prof. Banagl

9. November 2021

1 Mengentheoretische Topologie

1.1 Metrische Räume

Bsp. 1. Euklidische Distanz im \mathbb{R}^n .

Def. 2 (Metrik, metrischer Raum). Eine Menge X mit einer Funktion $d: X \times X \to \mathbb{R}$, welche die Eigenschaften

- 1. Positive Definitheit,
- 2. Symmetrie und die
- 3. Dreiecksungleichung

erfüllt, heißt metrischer Raum mit der Metrik d.

Def. 3 (Stetigkeit). Seien (X, d_X) , (Y, d_Y) metrische Räume. Eine Abbildung $f: (X, d_X) \to (Y, d_Y)$ heißt stetig im Punkt $x \in X$, wenn $\forall \epsilon > 0 \exists \delta > 0$:

$$d_X(x,y) < \delta \implies d_Y(x,y) < \epsilon$$

f heißt stetig, wenn f stetig in jedem Punkt ist.

Def. 4 (Ball). $x \in X$, $\epsilon > 0$. $B_{\epsilon}(x) := \{y \in X : d(x, y) < \epsilon\}$.

Def. 5 (offene Menge). Sei $U \subset X$ eine Teilmenge. U heißt offen in X, wenn $\forall x \in U \exists \epsilon > 0 \colon B_{\epsilon}(x) \subset U$. Eine Teilmenge $C \subset X$ heißt abgeschlossen, wenn das Komplement offen ist.

Lemma 1. $f:(X,d_X)\to (Y,d_Y)$ ist stetig $\Leftrightarrow \forall V\subset Y$ offen ist $f^{-1}(V)$ auch offen in X.

Es genügt daher, über ein System von offenen Mengen in X zu verfügen, um den Begriff Stetigkeit formulieren zu können.

1.2 Topologische Räume

Def. 6 (topologischer Raum). Ein topologischer Raum (X, \mathcal{T}) besteht aus einer Menge X zusammen mit einer Familie \mathcal{T} von Teilmengen von X, sodass:

1. $\emptyset, X \in \mathfrak{T}$

- 2. $U_i \in \mathcal{T}, i \in I \implies \bigcup_{i \in I} U_i \in \mathcal{T}$
- $3. \ U,V \in \mathfrak{T} \implies U \cap V \in \mathfrak{T}.$

Def. 7 (Abgeschlossenheit). Sei (X, \mathfrak{T}) ein topologischer Raum. Dann heißt $C \subset X$ abgeschlossen, wenn $X \setminus C \in \mathfrak{T}$ ist.

Def. 8 (Stetigkeit). Eine Abbildung $f:(X, \mathfrak{T}_X) \to (Y, \mathfrak{T}_Y)$ heißt stetig, wenn $\forall V \in \mathfrak{T}_Y \colon f^{-1}(V) \in \mathfrak{T}_X$.

Def. 9 (Homöomorphismus). Eine Bijektion $f: X \to Y$ heißt Homöomorphismus wenn f und f^{-1} stetig sind.

Wenn ein Homö
omorphismus wie oben existiert, schreiben wir $X\cong Y$ und sage
nXist homöomorph zu Y.

Def. 10 (offene/abgeschlossene Abbildung). Eine stetige Abbildung $f: X \to Y$ heißt offen, wenn

$$\forall U \! \underset{\text{offen}}{\subset} X \colon f(U) \! \underset{\text{offen}}{\subset} Y$$

bzw. abgeschlossen, wenn

$$\forall A \subset X : f(A) \subset Y$$
.

Ein Homöomorphismus ist offen und damit eine Bijektion auf den offenen Mengen.

Def. 11 (Basis). Sei X ein topologischer Raum. Eine Menge \mathcal{B} von offenen Teilmengen von X heißt Basis für die Topologie auf X, wenn

$$\forall U \underset{\text{offen}}{\subset} X \colon \exists B_i \in \mathcal{B}, i \in I, U = \bigcup_{i \in I} B_i$$

Bsp. 12. Sei (X,d) ein metrischer Raum. Dann ist $\mathcal{B} = \{B_{1/n}(x) : x \in X, n = 1, 2, \dots\}$ eine Basis für die metrische Topologie auf X.

Def. 13 (Subbasis). Eine Menge \mathcal{S} von offenen Teilmengen von X heißt Subbasis für die Topologie auf X, wenn

$$\mathcal{B} = \left\{ \bigcap_{i}^{\text{endl}} S_i \colon S_i \in \mathcal{S} \right\}$$

eine Basis ist.

1.3 Unterräume

Sei X ein topologischer Raum und $A \subset X$ eine Teilmenge. Wir topologisieren A:

Def. 14.

$$V \subset A$$
 offen $:\Leftrightarrow V = U \cap A$ mit $U \subset X$ offen

Def. 15 (Inneres, Abschluss). Sei X ein topologischer Raum und $A \subset X$ eine Teilmenge. Das Innere von A in X

$$\operatorname{int}(A) \coloneqq A^\circ \coloneqq \bigcup \left\{ U \subset A \colon U \underset{\operatorname{offen}}{\subset} X \right\} \subset A$$

ist offen in X und die größte offene Teilmenge, die in A enthalten ist. Der Abschluss von A in X

$$\operatorname{cl}(A) := \overline{A} := \bigcup \left\{ C \supset A \colon C \underset{\operatorname{abg.}}{\subset} X \right\} \subset A$$

ist abgeschlossen in X und die kleinste abgeschlossene Teilmenge, die A enthält.

Def. 16 (dicht). $A \subset X$ heißt dicht in X wenn $\overline{A} = X$.

1.4 Zusammenhängende Räume

 $\mathbf{Def.}$ 17 (Zusammenhang). Ein topologischer Raum X heißt zusammenhängend, wenn sich X nicht in der Form

$$X = A \cup B, \quad A, B \neq \emptyset, \quad A, B \underset{\text{offen}}{\subset} X, \quad A \cap B = \emptyset$$

schreiben lässt.

Proposition 2. X zusammenhängend \Leftrightarrow Jede stetige, diskretwertige Abbildung auf X ist konstant.

Beweis. \implies Sei $d: X \to D$ stetig. Sei $X \neq \emptyset: x \in X, y \coloneqq d(x) \in D$.

Sei nun $A \coloneqq d^{-1}(\underbrace{\{y\}}_{\text{offen}})$. Dann gilt $A \neq \emptyset$ wegen $x \in A$.

Sei $B := d^{-1}(\underbrace{D \setminus \{y\}}_{\text{offen}})$. Dann gilt $A \cap B = \emptyset$ und $X = A \cup B$.

Sowohl A als auch B sind offen, weil d stetig ist. Ist X nun zusammenhängend folgt $B = \emptyset$, also X = A und damit d konstant.

$$d(x) := \begin{cases} 0 & , x \in A \\ 1 & , x \in B \end{cases}$$

Dann ist d stetig, diskretwertig, aber nicht konstant.

Proposition 3. Ist X zusammenhängend und $f: X \to Y$ stetig, dann ist f(X) zusammenhängend. Beweis. Wir verwenden Proposition 1. Sei $d: f(X) \to D$ eine diskretwertige, stetige Abbildung. Betrachte das folgende kommutative Diagramm mit stetigen Abbildungen

$$\begin{array}{ccc}
f(X) & \xrightarrow{d} & D \\
f \uparrow & & \\
X & & \end{array}$$

Da X zusammenhängend ist, muss $d \circ f$ konstant sein. Also ist bereits d konstant, da $f: X \to f(X)$ surjektiv ist.

Def. 18 (Zusammenhangskomponenten). Seien $x, y \in X$. Die Relation

$$x \sim y : \Leftrightarrow \exists$$
 zusammenhängendes $A \subset X : x, y \in A$

ist eine Äquivalenz
relation auf X, die Äquivalenzklassen heißen Zusammenhangskomponenten.

Def. 19. X heißt wegzusammenhängend, wenn $\forall x, y \in X$:

$$\exists \text{ Weg } \gamma \colon [0,1] \xrightarrow{\text{stetig}} X \colon \gamma(0) = x, \gamma(1) = y.$$

Proposition 4. X wegzusammenhängend $\implies X$ zusammenhängend.

Beweis. Angenommen

$$X = A \cup B, \quad A, B \neq \emptyset, \quad A, B \underset{\text{offen}}{\subset} X, \quad A \cap B = \emptyset$$

Wähle $a \in A, b \in B$. Angenommen, es existiere ein Weg $\gamma \colon [0,1] \to X, \gamma(0) = a, \gamma(1) = b$. Dann folgt

$$[0,1] = \underbrace{\gamma^{-1}(A)}_{\text{offen}} \cup \underbrace{\gamma^{-1}(B)}_{\text{offen}}$$

Außerdem sind $\gamma^{-1}(A)$ und $\gamma^{-1}(B)$ nichtleer und disjunkt. Insbesondere wäre damit [0,1] nicht zusammenhängend, Widerspruch.

Die Umkehrung gilt nicht.

Bsp. 20.

$$S := \left\{ (x, \sin\left(\frac{1}{x}\right) : 0 < x \le 1 \right\} \subset \mathbb{R}^2$$

S ist wegzusammenhängend, also ist S auch zusammenhängend. Also ist auch \overline{S} zusammenhängend, $\overline{S} = S \cup (\{0\} \times [-1,1])$ Aber \overline{S} ist nicht wegzusammenhängend.

Def. 21. Seien $x, y \in X$. Dann ist die Relation

$$x \sim y : \Leftrightarrow \exists \text{ Weg } \gamma \colon [0,1] \to X, \ \gamma(0) = x, \gamma(1) = y.$$

eine Äquivalenz
relation, die Äquivalenzklassen heißen Wegekomponenten von
 $\boldsymbol{X}.$

1.5 Kompaktheit

Def. 22. Ein topologischer Raum X heißt kompakt, wenn jede offene Überdeckung von X eine endliche Teilüberdeckung besitzt,

$$X = \bigcup_{\alpha} U_{\alpha} \implies \exists \alpha_1, \dots, \alpha_n \colon X = U_{\alpha_1} \cup \dots \cup U_{\alpha_n}.$$

Proposition 5. Sei $f: X \to Y$ stetig. Ist X kompakt, dann ist auch f(X) kompakt.

Beweis. Sei

$$f(X) \subset \bigcup_{\alpha} V_{\alpha},$$

d.h. $V_{\alpha} \subset Y$ ist eine Überdeckung. Es gilt

$$X = \bigcup_{\alpha} f^{-1}(V_{\alpha})$$

Da X kompakt ist existiert also eine endliche Teilüberdeckung $f^{-1}(V_{\alpha_1}), \ldots, f^{-1}(V_{\alpha_n})$ Insbesondere erhalten wir dann $f(X) \subset V_{\alpha_1} \cup \cdots \cup V_{\alpha_n}$.

Proposition 6. Ist X kompakt und $A \subset X$ abgeschlossen, dann ist A kompakt.

Beweis. Sei $A \subset \bigcup_{\alpha} U_{\alpha}$ eine offene Überdeckung von A. Dann ist

$$(X \setminus A) \cup \bigcup_{\alpha} U_{\alpha}$$

eine offene Überdeckung von X. Da X kompakt ist, wählen wir eine endliche Teilüberdeckung

$$X = (X \setminus A) \cup U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}.$$

Dann ist aber $A \subset U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$ und wir haben eine endliche Teilüberdeckung von A gefunden. \square

 $\bf Def.~23$ (Hausdorffraum). Ein topologischer Raum Xheißt Hausdorffraum, wenn

$$\forall x \neq y \in X \exists U, V \subset X$$

mit $x \in U, y \in V$ derart, dass $U \cap V = \emptyset$.

In nicht-hausdorffschen Räumen existieren keine eindeutigen Grenzwerte.

Bsp. 24. Metrische Räume sind Hausdorffsch.

Proposition 7. Sei X ein Hausdorffraum und $A \subset X$, A kompakt. Dann ist A abgeschlossen in X. Beweis. Wir zeigen $X \setminus A$ ist offen. Sei $x \in X \setminus A$. $\forall y \in A$ existieren $U_y, V_Y \subset X$ mit $y \in U_y, x \in V_y$ und $U_y \cap V_y = \emptyset$. Dann gilt

$$A \subset \bigcup_{y \in A} U_y$$
 ist eine offene Überdeckung.

Aus der Kompaktheit von A folgt $A \subset U_{y_1} \cup \cdots \cup U_{y_n}$. $V \coloneqq V_{y_1} \cap \cdots \cap V_{y_n}$ ist offen und es gilt $x \in V, V \subset X \setminus A$.

Proposition 8. Sei $f: X \to Y$ eine stetige Bijektion, X kompakt, Y Hausdorffsch. Dann ist f ein Homöomorphismus.

Beweis. Wir zeigen: f ist eine abgeschlossene Abbildung. Sei $A \subset X$ abgeschlossen. Aufgrund der Kompaktheit von X ist nach Proposition 6 A kompakt. Nach Proposition 5 ist also auch f(A) kompakt. Nach Proposition 7 ist damit $f(A) \subset Y$ abgeschlossen.

Proposition 9. Eine stetige Abbildung $f: X \to \mathbb{R}$ auf einem kompakten Raum X nimmt auf X eine Maximum und ein Minimum an.

Beweis. Nach Proposition 5 ist $f(x) \subset \mathbb{R}$ kompakt. Insbesondere ist f(X) abgeschlossen und beschränkt. Dann ist $M := \sup f(X) \in \mathbb{R}$. Weil f(X) abgeschlossen ist, gilt $M \in f(x)$, insb. $\exists x_M \in X : M = f(x_M)$.

Def. 25 (Durchmesser). Sei (X,d) ein metrischer Raum. Für eine Menge $A \subset X$ heißt

$$\operatorname{diam}(A) := \sup\{d(x, y) | x, y \in A\}$$

Durchmesser von A.

Proposition 10. Wenn X kompakt ist, dann ist $diam(X) < \infty$.

Beweis. Fixiere $x_0 \in X$. Die Funktion $f: X \to \mathbb{R}$ mit $f(x) := f(x, x_0) \in \mathbb{R}$ ist stetig. Nach Proposition 9 nimmt f ihr Maximum M auf X an, also $\operatorname{diam}(X) \leq 2M$.

Lemma 11 (Lebesgue-Lemma). Sei (X,d) ein kompakter metrischer Raum und $X = \bigcup_{\alpha} U_{\alpha}$ eine offene Überdeckung von X. Dann $\exists \delta > 0$ (eine "Lebesgue-Zahl" für $\{U_{\alpha}\}$), sodass $\forall A \subset X$:

$$\operatorname{diam}(A) < \delta \implies \exists \alpha \colon A \subset U_{\alpha}.$$

Beweis. $\forall x \in X \exists B_{2\epsilon(x)}(x)$ und ein Index $\alpha = \alpha(x)$, sodass

$$B_{2\epsilon(x)}(x) \subset U_{\alpha(x)}$$
.

Wir erhalten durch $X = \bigcup_{x \in X} B_{\epsilon(x)}(x)$ eine offene Überdeckung, aus der aufgrund der Kompaktheit von X eine endliche Teilüberdeckung $X = B_{\epsilon(x_1)}(x_1) \cup \cdots \cup B_{\epsilon(x_n)}(x_n)$ ausgewählt werden kann. Sei schließlich $\delta \coloneqq \min\{\epsilon(x_1), \ldots, \epsilon(x_n)\} > 0$.

Sei $A \subset X$ mit diam $(A) < \delta$. Wähle dann $a_0 \in A$. Dann $\exists x_i : a_0 \in B_{\epsilon(x_i)}(x_i)$. Dann ist $\forall a \in A : d(a, a_0) < \delta$. Es folgt

$$d(a, x_i) \le d(a, a_0) + d(a_0, x_i) < \delta + \epsilon(x_i) \le 2\epsilon(x_i)$$

Insbesondere ist also $A \subset B_{2\epsilon(x_i)} \subset U$.

1.6 Lokal kompakte Räume

Def. 26 (lokal kompakt). Ein topologischer Raum heißt lokal kompakt, wenn jeder Punkt eine kompakte Umgebung besitzt.

Eigenschaften des Raums Y

Def. 27 (Ein-Punkt-Kompaktifizierung). Sei X ein lokal kompakter Hausdorffraum. Sei $\infty \notin X$. Betrachte dann $Y := X \cup \{\infty\}$. Wir topologisieren die Menge Y wie folgt. Die offenen Mengen in Y sind:

- 1. $U \subset X$, und
- 2. $Y \setminus K$ mit $K \subset X, K$ kompakt.

Man überprüft mithilfe der Hausdorffeigenschaft, dass dies tatsächlich eine Topologie auf Y ist. $Y = X \cup \{\infty\}$ heißt Ein-Punkt-Kompaktifizierung von X.

Es gilt

- $X \subset Y$,
- \bullet Y Hausdorffsch (da X lokal kompakt ist), und
- Y ist kompakt.
- Ist X nicht kompakt, dann $\overline{X} = Y$

Bsp. 28. $X = \mathbb{R}^1 : \mathbb{R}^1 \cup \{\infty\} = \text{Kreis.}$

Def. 29. Wir definieren $D^n : \cong \{x \in \mathbb{R}^n : ||x|| \le 1\}$ und $S^{n-1} : \cong \{x \in \mathbb{R}^n : ||x|| = 1\}$.

1.7 Parakompaktheit

Def. 30 (lokal endlich). Eine Familie von Teilmengen von X heißt lokal endlich, wenn jeder Punkt $x \in X$ eine offene Umgebung U besitzt, die nur endlich viele Mengen der Familie nichtleer schneidet.

Def. 31. Ein Hausdorffraum X heißt parakompakt, wenn jede offene Überdeckung von X eine lokal endliche Verfeinerung besitzt.

Metrische Räume sind parakompakt, das ist aber sehr schwer zu zeigen. Parakompaktheit impliziert auch Normalität, d.h. zwei abgeschlossene Mengen lassen sich durch offene Umgebungen trennen.

Def. 32 (Träger). Sei $f: X \to \mathbb{R}$ eine stetige Abbildung. Dann ist

$$supp(f) := Cl\{x \in X : f(x) \neq 0\}$$

Def. 33. Sei $U = \{U_{\alpha}\}$ eine offene Überdeckung von X. Eine Partition der Eins bezüglich U besteht aus einer lokal endlichen Verfeinerung $\{V_{\beta}\}$ von U und stetigen Funktionen $\{f_{\beta}\colon X\to [0,1]\}$ sodass:

- $\operatorname{supp}(f_{\beta}) \subset V_{\beta}$, und
- $\forall x \in X : \sum_{\beta} f_{\beta}(x) = 1.$

Proposition 12. Sei X parakompakt und U eine offene Überdeckung von X. Dann besitzt X, U eine Zerlegung der Eins.

1.8 Produkttopologie

Def. 34. Seien X, Y top. Räume. Dann heißt $X \times Y$ kartesisches Produkt von X und Y als Menge. Wir topologisieren $X \times Y$ wie folgt:

$$\mathcal{B} = \{U \times V | U \underset{\text{offen}}{\subset} X, V \underset{\text{offen}}{\subset} Y\}$$

ist eine Subbasis für eine Topologie auf $X \times Y$, die Produkttopologie.

 $\textbf{Bem 35. } \ \, \textbf{\mathbb{B} ist sogar eine Basis, denn } (U \times V) \cap (U' \times V') = (\underbrace{U \cap U'}_{\text{offen in } X}) \times (\underbrace{V \cap V'}_{\text{offen in } X}) \in \mathbb{B}.$

Dann sind die Faktorprojektionen

$$\begin{array}{c} X \times Y & \stackrel{\pi_1}{\longrightarrow} X \\ \downarrow^{\pi_2} & \\ Y \end{array}$$

mit $\pi_1(x,y) = x$ und $\pi_2(x,y) = y$ stetig:

$$U \subset X \implies \pi^{-1}(U) = U \times Y \in \mathcal{B}.$$

Die Produkttopologie ist die kleinste Topologie auf $X \times Y$, sodass π_1 und π_2 stetig sind, denn: Seien $U \subset X, V \subset Y$ gegeben, dann ist offen

offen in
$$X \times Y$$
 wegen Stetigkeit von π_1
$$\cap \pi_2^{-1}(V) = (U \times Y) \cap (X \times V) = U \times V$$

Proposition 13. Sind X und Y kompakt, so auch $X \times Y$.

Beweis. Doppelter Kompaktheitsschluss für zunächst $x \times Y$ und dann X.

1.9 Quotientenräume

Def. 36. Sei X ein topologischer Raum, Y eine Menge und $f: X \to Y$ eine surjektive Abbildung. Wir topologisieren Y:

$$V \subset Y : \iff f^{-1}(V) \subset X.$$

Bsp. 37. $X := S^1 \times [0,1], Y := (S^1 \times [0,1)) \cup \{p\}$. Betrachte die Abbildung

$$f \colon X \to Y$$

$$f|_{S^1 \times [0,1)} = \mathrm{id}$$

$$f(S^1 \times \{1\}) = \{p\}.$$

Y erhält die Quotiententopologie (sieht aus wie ein Kegel auf der S^1 und ist homöomorph zur D^2 .

Bem 38. Auf X wird eine Äquivalenzrelation \sim erklärt durch

$$x \sim x' : \iff f(x) = f(x') \in Y.$$

Äquivalenzklassen [x]. Die Menge der Äquivalenzklassen X/\sim nennen wir Y. Betrachte die Surjektion

$$X \xrightarrow[\text{Quot.}]{\text{kanon.}} X/\sim = Y$$
$$x \mapsto [x]$$

Wir können also alternativ auch beginnen mit einem top. Raum X zusammen mit einer Äquivalenzrelation \sim auf X und erhalten die Quotiententopologie auf X/\sim mit Hilfe der kanonischen Surjektion $\pi\colon X\to X/\sim$.

Bsp. 39.

$$D^{2} \xrightarrow{i} S^{2}$$

$$\downarrow^{f} \qquad \downarrow^{g}$$

$$D^{2}/\sim -\frac{k}{s} S^{2}/\sim$$

Dabei bezeichne i die Inklusion von D^2 als nördliche Hemisphäre von S^2 und \sim die antipodale Verklebung von Punkten. Außerdem sind f,g und i stetig. Auch k ist stetig: Sei nämlich $V \subset S^2/\sim$ offen. Dann ist aufgrund der Quotiententopologie $g^{-1}(V)$ offen in S^2 , genauso wie $i^{-1}(g^{-1}(V)) = f^{-1}(k^{-1}(V))$. Nach Definition der Quotiententopologie gilt $k^{-1}(V) \subset D^2/\sim k$ ist surjektiv und injektiv und damit eine Bijektion. Ist D^2 kompakt, so auch der Quotientenraum $D^2/\sim S^2/\sim$ ist außerdem hausdorffsch. Insbesondere ist k nach Proposition 8 ein Homöomorphismus. Es gilt $\mathbb{RP}^2 := D^2/\sim S^2/\sim$.

Abbildung 1: Visuaisierung von $\mathbb{R}P^2$

1.10 Spezialfälle der Quotientenkonstruktion

Kollabieren von Unterräumen: Sei X ein topologischer Raum und $A \subset X$ ein Unterraum. Dann bezeichnet X/A den Quotientenraum X/\sim bzgl. der Äquivalenzrelation \sim mit Klassen A und $\{x\}$ für $x\in X\setminus A$.

Bsp. 40.

eine Visualisierung:

Abbildung 2: D^3/S^2 -Visualisierung

Def. 41 (Kegel auf X).

$$cone(X) := \frac{X \times [0, 1]}{X \times \{1\}}$$

Anheften von Räumen mittels Abbildungen: Sei X ein topologischer Raum, $A \subset X$ ein Unterraum, $f \colon A \to Y$ eine stetige Abbildung. Dann ist $X \cup Y := (X \sqcup Y)/(a \sim f(a))$.

Bsp. 42. Sei $f: X \to Y$ stetig und I = [0, 1]. Sei $A = X \times \{1\} \subset X \times I$. Betrachte dann $f: A = X \times \{1\} \xrightarrow{f} Y$.

Def. 43. cyl := $(X \times I) \cup Y$ heißt der Abbildungszylinder von f. Idee: Man hat für $t \in [0,1)$ Kopien von X und für t = 1 identifiziert man X mit seinem Bild in Y.

Bem 44.

$$X = X \times \{0\} \xrightarrow{i} \operatorname{cyl}(f) = (X \times I) \underset{f}{\cup} Y$$

für r(x,t)=f(x) und r(y)=y. Dies ist wohldefiniert, denn $(x,t)\sim y$ für $x\in X, t\in [0,1], y\in Y$ genau dann, wenn t=1 und f(x)=y.

Def. 45. Sei $A \subset X$. Eine stetige Abbildung $r: X \to A$ heißt Retraktion, wenn $r|_A = \mathrm{id}_A$. Wir nennen A dann Retrakt von X.

Def. 46. cone $(f) \coloneqq \frac{\operatorname{cyl}(f)}{X \times \{0\}}$ heißt der Abbildungskegel auf $f \colon X \to Y.$

Bsp. 47. $T^2 := S^1 \times S^1$ ist der 2-Torus. Allgemein $T^n := S^1 \times \cdots \times S^1$.

2 Homotopien

Def. 48 (Homotopie). Seien X, Y topologische Räume und $f, g: X \to Y$ stetige Abbildungen. Eine Homotopie zwischen f und g ist eine stetige Abbildung $F: X \times I \to Y$, sodass F(x,0) = f(x) und $F(x,1) = g(x) \forall x \in X$. (alternativ auch $F_t(x) := F(x,t)$, $F_0 = f$, $F_1 = g$) Wir schreiben: $f \simeq g$ für die Äquivalenzrelation "f ist homotop zu g"

Def. 49 (Homotopie
äquivalenz). Eine stetige Abbildung $f\colon X\to Y$ heißt Homotopie
äquivalenz, wenn $\exists g\colon Y\xrightarrow{\text{stetig}} X$, sodass $g\circ f\simeq \operatorname{id}_X, f\circ g\simeq \operatorname{id}_Y.$ g heißt dann Homotopie-
invers zu f. Wir schreiben $X\simeq Y$ für die Äquivalenz
relation "X ist homotopie
äquivalent zu Y".

Def. 50. Ein topologischer Raum X heißt zusammenziehbar, wenn X homotopieäquivalent zu einem Punkt ist, $X \simeq \{x\}$. $X \xrightarrow{f} \{x\} \xrightarrow{g} X$ mit $f \circ g = \mathrm{id}_{\{x\}}$ und $\mathrm{const}_x = g \circ f \simeq \mathrm{id}_X$. Also ist $X \simeq \{x\}$ genau dann, wenn id $_X$ homotop zur konstanten Abbildung const_x .

Bsp. 51. $X = \mathbb{R}^n$. Sei $F : \mathbb{R}^n \times I \to \mathbb{R}^n$ gegeben durch $F(x,t) : t \cdot x$. F ist stetig, F(x,0) = 0 und $F(x,1) = x \forall x \in \mathbb{R}^n$. \mathbb{R}^n ist also zusammenziehbar.

Bsp. 52. Behauptung: $S^{n-1} \simeq \mathbb{R}^n \setminus \{0\}$

Beweis. $S^{n-1} \stackrel{i}{\hookrightarrow} \mathbb{R}^n \xrightarrow[\text{stetig}]{r} \to \mathbb{R}^n$ mit $r(x) = \frac{x}{\|x\|}$. Es gilt $r \circ i = \mathrm{id}_{S^{n-1}}$. Zu zeigen bleibt $i \circ r \simeq \mathrm{id}_{\mathbb{R}^n \setminus \{0\}}$. Wir betrachten die Homotopie

$$F: (\mathbb{R}^n \setminus \{0\}) \times I \to \mathbb{R}^n \setminus \{0\}$$
$$(x,t) \mapsto tx + (1-t)\frac{x}{\|x\|}$$

Dabei gilt

$$F(x,0) = \frac{x}{\|x\|} = ir(x)$$

$$F(x,1) = id_X$$

Def. 53 (starker Deformationsretrakt). Sei $A \subset X$ ein Unterraum. A ist ein starker Deformationsretrakt von X, wenn eine Homotopie $F: X \times I \to X$ mit $F_0 = \mathrm{id}_X, F_1(X) \subset A, F(a,t) = a \forall t \in I, \forall a \in A$. Gilt diese letzte Bedingung nur für t = 1, so spricht man von einem "gewöhnlichen"Deformationsretrakt.

Bsp. 54. 1. $S^{n-1} \subset \mathbb{R}^n \setminus \{0\}$ ist ein starker Deformationsretrakt.

2. $f: X \to Y$. $Y \subset \text{cyl}(f)$ ist ein starker Deformationsretrakt.

Das zeigt, dass bis auf Homotopieäquivalenz jede stetige Abbildung eine Inklusion ist.

Def. 55. Sei $A \subset X$. Eine Homotopie $F: X \to Y$ ist relativ zu A ("rel A"), wenn $F(a,t) = F(a,0) \forall a \in A \forall t$. Eine Homotopie rel X heißt konstante Homotopie.

Def. 56 (Konkatenation von Homotopien). Gegeben seien $F, G: X \times I \to Y$ mit $F(x, 1) = G(x, 0) \forall x$. Dann ist die Abbildung $F * G: X \times I \to Y$ mit

$$(F * G)(x,t) := \begin{cases} F(x,2t), & t \le \frac{1}{2} \\ G(x,2t-1), & t \ge \frac{1}{2} \end{cases}$$

stetig.

Es bezeichne C konstante Homotopien.

Proposition 14. $F * C \simeq F \operatorname{rel} X \times \partial I$

Beweis.

$$F * C(x,t) = \begin{cases} F(x,2t), & t \le \frac{1}{2} \\ C(x,2t-1) = F(x,1), & t \ge \frac{1}{2} \end{cases}$$

Dann ist

$$H(x,t,s) := \begin{cases} F(x,st + (1-s)2t), & t \le \frac{1}{2} \\ F(x,st + (1-s)), & t \ge \frac{1}{2} \end{cases}$$

eine Homotopie Es gilt

$$H(x, t, 0) = (F * C)(x, t)$$

 $H(x, t, 1) = F(x, t).$

H ist rel $x \times \partial I$:

$$H(x,0,s) \stackrel{t \le \frac{1}{2}}{=} F(x,0)$$

$$H(x,1,s) \stackrel{t \ge \frac{1}{2}}{=} F(x,\underbrace{s + (1-s)}_{=1})$$

Beide Ausdrücke sind unabhängig von s, was zu zeigen war.

Def. 57. Sei $F: X \times I \to Y$ eine Homotopie.

$$F^{-1} \colon X \times I \to Y$$
$$(x,t) \mapsto F(x,1-t)$$

Proposition 15.

$$F * F^{-1} \simeq C \operatorname{rel} X \times \partial I$$

Beweis.

$$(F * F^{-1})(x,t) = \begin{cases} F(x,2t), & t \le \frac{1}{2} \\ \underbrace{F^{-1}(x,2t-1)}_{=F(x,1-(2t-1)=F(x,2-2t)}, & t \ge \frac{1}{2} \end{cases}$$

Außerdem gilt C(x,t) = F(x,0) Wir definieren

$$H(x,t,s) := \begin{cases} F(x,(1-s)2t), & t \le \frac{1}{2} \\ F(x,(1-s)(2-2t)), & t \ge \frac{1}{2} \end{cases}.$$

Dann gilt

$$H(x,t,0) = (F * F^{-1})(x,t)$$

$$H(x,t,1) = F(x,0) = C(x,t).$$

H ist rel $x \times \partial I$:

$$H(x,0,s) \stackrel{t \le \frac{1}{2}}{=} F(x,0)$$

$$H(x,1,s) \stackrel{t \ge \frac{1}{2}}{=} F(x,0)$$

Beide Ausdrücke sind unabhängig von s, was zu zeigen war.

Bem 58. In obigen Propositionen ist der Zusatz "rel $X \times \partial I$ "von zentraler Bedeutung, denn: Sei $G: X \times I \to Y$ eine beliebige Homotopie. Wir betrachten

$$H(x,t,s) = G(x,t \cdot s)$$

$$H(x,t,0) = G(x,0) = C$$

$$H(x,t,1) = G$$

$$\implies G \simeq C.$$

Analog zeigt man

Proposition 16.

$$F * (G * H) \simeq (F * G) * H \operatorname{rel} X \times \partial I$$

Proposition 17. *Ist* $F_1 \simeq F_2 \operatorname{rel} X \times \partial I$ *und* $G_1 \simeq G_2 \operatorname{rel} X \times \partial I$, *so gilt* $F_1 * G_1 \simeq F_2 * G_2 \operatorname{rel} X \times \partial I$.

Wichtiger Spezialfall: X = Punkt.

Idee der algebraischen Topologie <u>Frage:</u> Wie kann man zwei topologische Räume voneinander unterscheiden?

Bsp:

- $\mathbb{R}^1 \neq S^1 : \mathbb{R}^1$ ist im Gegensatz zur S^1 nicht kompakt, Kompaktheit ist aber eine topologische Eigenschaft.
- $\mathbb{R}^1 \ncong \mathbb{R}^2 : \mathbb{R}^1 \setminus \{x_0\}$ ist im Gegensatz zu $\mathbb{R}^2 \setminus \{x_0\}$ nicht wegzusammenhängend.

Idee:

$$X \mapsto G(X)$$

Dabei handelt es sich bei X um einen topologischen Raum und bei G(X) um ein algebraisches Objekt, z.B. Gruppen, Ringe, Moduln, . . . sodass

- 1. $X \cong Y \implies G(X) \cong G(Y)$
- 2. G(X) soll berechenbar sein.

Zu 1.:
$$f(: X \to Y) \mapsto G(f): G(x) \to G(y)$$
, sodass $G(\mathrm{id}_X) = \mathrm{id}_{G(X)}, G(g \circ f) = G(f) \circ G(f)$.

2.1 Homotopiegruppen

Sei X ein topologischer Raum, $A \subset X$ ein Teilraum, man schreibt dies dann auch als Paar (X, A). Wir erinnern uns, dass Homotopie eine Äquivalenzrelation auf der Mengen der stetigen Abbildungen definiert. Seien X, Y topologische Räume, dann definieren wir

$$[X,Y] := \{\text{Homotopieklassen } [f] \text{ stetiger Abbildungen } f: X \to Y \}$$

seien ferner $A \subset X$ und $B \subset Y$ Unterräume. Wir definieren

$$[(X,A),(Y,B)] := \text{Homotopieklassen stetiger Abb. } f:X \to Y \text{mit } f(A) \subset B$$

sodass die Homotopien $F:X \times I \to Y$ erfüllen $F_t(A) \subset B, \ \forall t \in I$

Def. 59 (Punktierter Raum). Sei X ein topologischer Raum, $x_0 \in X$, dann heißt das Paar (X, x_0) ein punktierter Raum. Eine Abbildung $f:(X, x_0) \to (Y, y_0)$ zwischen punktierten Räumen heißt punktiert, falls $f(x_0) = y_0$. Mann nennt dann den ausgezeichneten Punkt x_0 auch Basispunkt. Ferner definieren wir

$$[X,Y]_* := [(X,x_0),(Y,y_0)]$$

dies sind Homotopieklassen punktierter Abbildungen $(X, x_0) \to (Y, y_0)$, sodass die Homotopien die Basispunkte fixieren.

Sei nun (X, x_0) ein punktierter Raum.

Def. 60. Die reduzierte Suspension ist der punktierte Raum

$$SX := \frac{X \times I}{(X \times \partial I) \cup (\{x_0\} \times I)}$$

und der Basispunkt ist gesetzt als $A := (X \times \partial I) \cup (\{x_0\} \times I)$ (die eine Äquivalenzklasse all dieser Punkte).

Wir beobachten nun folgende Gleichheit

$$[SX, Y]_* = [(X \times I, ((X \times \partial I) \cup (\{x_0\} \times I)), (Y, y_0)]$$

denn die stetigen Abbildungen $X \times I \to Y$, die $(X \times \partial I) \cup \{x_0\} \times I$ fixieren, faktorisieren über die reduzierte Suspension und umgekehrt vorverketten wir mit $X \to SX$.

- Seien nun $[f], [g] \in [SX, Y]_*$. Wegen $f(x, 1) = y_0 = g(x, 0)$ ist f * g wohldefiniert und f * g faktorisiert über die reduzierte Suspension und definiert deshalb eine Klasse $[f] \cdot [g] := [f * g] \in [SX, Y]_*$.
- Die Operation · auf $[SX,Y]_*$ ist wohldefiniert, denn $f \simeq f'$ und $g \simeq g'$ (mit Homotopien mit den gewünschten Eigenschaften), so gilt $f * g \simeq f' * g'$.
- \bullet Die Assoziativität von Homotopien liefert uns die Assoziativität von $\cdot.$
- Außerdem sei c_{y_0} die konstante Homotopie, dann gilt

$$[f] \cdot [c_{y_0}] = [f * c_{y_0}] = [f]$$

und analog für $[c_{y_0}] \cdot [f]$.

Wir erhalten also den folgenden Satz

Satz 18. $[SX,Y]_*$ wird durch die Verknüpfung · zu einer Gruppe.

Def. 61. Sei $X = S^{n-1}$ für $n \ge 1$, dann ist $SX = S^n$ und wir definieren

$$\pi_n(Y, y_0) := [SX, Y]_* = [S^n, Y]_*$$

und nennen $\pi_n(Y, y_0)$ die *n*-te *Homotopiegruppe* des punktierten Raumes (Y, y_0) . Man setzt $\pi_0(Y, y_0)$ als die Menge der Wegzusammenhangskomponenten von Y, aber dies ist i.A. keine Gruppe.

Funktorialität

Def. 62. Eine Kategorie \mathcal{C} besteht aus einer Klasse von Objekten ob (\mathcal{C}) und aus Mengen von Morphismen $\mathrm{Hom}_{\mathcal{C}}(X,Y)$ für je zwei Objekte X,Y, s.d. folgendes gilt

(i) Für alle $X, Y, Z \in ob(\mathcal{C})$ haben wir ein assoziatives Verknüpfungsgesetz

$$\circ : \operatorname{Hom}_{\mathfrak{C}}(X,Y) \times \operatorname{Hom}_{\mathfrak{C}}(Y,Z) \to \operatorname{Hom}_{\mathfrak{C}}(X,Z), \quad (f,g) \mapsto g \circ f$$

(ii) Für alle Objekte X in \mathcal{C} gibt es $\mathrm{id}_X \in \mathrm{Hom}_{\mathcal{C}}(X,X)$ mit $f \circ \mathrm{id}_X = f$ und $\mathrm{id}_X \circ g = g$ für alle geeigneten Morphismen f,g.

Def. 63. Seien \mathcal{C}, \mathcal{D} Kategorien. Ein Funktor F ist eine Zuordnungsvorschrift

$$\operatorname{ob}(\mathfrak{C}) \to \operatorname{ob}(\mathfrak{D}), \qquad \qquad X \mapsto F(X)$$

 $\operatorname{Hom}_{\mathfrak{C}}(X,Y) \to \operatorname{Hom}_{\mathfrak{D}}(FX,FY), \qquad \qquad f \mapsto F(f), \ \forall X,Y \in \operatorname{ob}(\mathfrak{C})$

mit $F(\mathrm{id}_X) = \mathrm{id}_{FX}$ für alle Objekte X in C und F(fg) = F(f)F(g) für alle möglichen Morphismen f, g.

Gegeben eine punktierte Abbildung punktierter Räume $\phi:(Y,y_0)\to(Z,z_0)$, so induziert ϕ eine Abbildung

$$\phi_*: [SX, Y]_* \to [SX, Z]_*, \quad [f] \mapsto [\phi \circ f]$$

und man überzeugt sich leicht, dass ϕ_* wohldefiniert ist. Außerdem ist ϕ_* ein Gruppenhomomorphismus, denn:

$$\phi_*(f) \cdot \phi_*(g) = [\phi \circ f] \cdot [\phi \circ g] = [(\phi \circ f) * (\phi \circ g)] = [\phi \circ (f * g)] = \phi_*([f][g])$$

Haben wir ein kommutatives Diagramm

$$(Y, y_0) \xrightarrow{\phi} (Z, z_0)$$

$$\downarrow^{\psi \circ \phi} \qquad \downarrow^{\psi}$$

$$(V, v_0)$$

so gilt

$$\psi_*(\phi_*([f])) = \psi_*([\phi \circ f]) = [\psi \circ (\phi \circ f))] = [(\psi \circ \phi) \circ f] = (\psi \circ \phi)_*([f])$$

und auch $(id_Y)_* = id_{[SX,Y]_*}$. Sei PtTopSpaces die Kategorie punktierter topologischer Räume und Grp die Kategorie der Gruppen, so erhalten wir einen kovarianten Funktor

$$\begin{split} [SX,-]_*: \mathsf{PtTopSpaces} &\to \mathsf{Grp} \\ (Y,y_0) &\mapsto [SX,Y]_* \\ [(Y,y_0) \xrightarrow{\phi} (Z,z_0)] &\mapsto \phi_* \end{split}$$

dieser ist homotopie
invariant, das heißt: seien $\phi, \psi: (Y, y_0) \to (Z, z_0)$ mit $\phi \simeq \psi$, dann gilt $\psi_* = \phi_*$.

Def. 64. Für n = 1 heißt $\pi_1(X, x_0) = [(S^1, *), (X, x_0)]_*$ die Fundamentalgruppe von (X, x_0) . Ist $\pi_1(X, x_0) = 0$, so heißt (X, x_0) einfach zusammenhängend.

Frage: Ist die Fundamentalgruppe abhängig vom Basispunkt?

Proposition 19 (Unabhängigkeit von π_1 für wegzusammenhängende Räume). Sei X ein topologischer Raum, $x_0, x_1 \in X$ und sei $p : [0,1] \to X$ ein Weg von x_1 nach x_0 . Dann haben wir einen Isomorphismus (von Gruppen)

$$h_p: \pi_1(X, x_0) \to \pi_1(X, x_1), \quad [\gamma] \mapsto [p * \gamma * p^{-1}]$$

Beweis. Man überlegt sich direkt, dass h_p wohldefiniert ist. Außerdem gilt

$$h_p([\gamma])h_p([\gamma']) = [p*\gamma*p^{-1}*p*\gamma'*p^{-1}] = [p*\gamma*\gamma'*p^{-1}] = h_p([\gamma][\gamma'])$$

offenbar ist $h_{p^{-1}}$ der inverse Gruppenhomomorphismus, was die Aussage zeigt.