Circuitos Seqüenciais

- Nos circuitos combinacionais, uma dada saída do circuito é função única e exclusiva das suas entradas atuais.
- Nos circuitos seqüenciais, elas são também função da história passada do circuito. Isso ocorre em função do circuito seqüencial apresentar elementos com capacidade de armazenamento de informação.

Circuitos Seqüenciais

- Na parte combinacional: recebe sinais externos e saídas dos elementos de memória
- No elemento de memória: armazena entradas anteriores, onde o elemento de memória é o flip-flop.

Latch

- O latch é um dispositivo de armazenamento temporário que tem dois estados estáveis (biestável).
- Os latches são similares aos flip-flops porque são dispositivos biestáveis e que podem permanecer em um dos dois estados estáveis usando uma configuração de realimentação, na qual as saídas são ligadas as entradas opostas.
- A principal diferença entre os latches e flip-flops é o método usado para a mudança de estado.

Latch R-S

 Duas portas NOR interligadas de modo cruzado podem ser usadas como um latch com portas NOR.

SET e CLEAR (RESET) s\u00e3o ativadas em n\u00edvel ALTO.

Set	Reset	Saída
0	0	Não muda
1	0	Q = 1
0	1	Q = 0
1	1	Inválida*

^{*}Produz Q = \overline{Q} = 0.

Set	Reset	Saída
0	0	Não muda
1	0	Q = 1
0	1	Q = 0
1	1	Inválida*

*Produz Q = \overline{Q} = 0.

Latch R-S Síncrono

(a) Latch R-S síncrono. (b) Símbolo. (c) Tabela de combinações.

Entr	adas		Saí	das	
"Enable"	R	S	Q	ō	
0	Х	X	Não	muda	→ Bloqueio - "Latch"
1	0	0	Não	muda	→ Indeterminado
1	0	1	1	0	
1	1	0	0	1	
1	1	1	1	1	
			(c)		

Latch D

- A entrada comum das portas que implementam o circuito direcionador é denominada entrada de habilitação (ENABLE).
- Se EN = 1, a saída Q será igual à entrada D (transparente).
- Se EN = 0, a saída Q não será modificada (guarda o último valor – memória).

Latch D

Exemplo do comportamento de um latch D para as formas de onda dadas:

E se pudéssemos habilitar a mudança no estado apenas em curtos instantes de tempo, como por exemplo nas transições de $0\rightarrow1$ (ou $1\rightarrow0$) no sinal de controle?

Circuito detector de Transição

Dispositivos acionados por borda

Exemplo de implementação de um Flip-Flop (FF) RS:

FF acionado na borda de subida do sinal CLK

Nomenclatura adotada aqui (existem outras): Latch → acionado por nível; FF → acionado por borda.

Flip-Flop Mestre-Escravo

Outro exemplo de implementação de um Flip-Flop (FF) RS:

2 latches ligados em série: o primeiro é denominado mestre e o segundo escravo. Embora os latches sejam sensíveis ao nível, o conjunto é sensível à borda.

Flip-Flop RS Mestre-Escravo:

Flip-Flop D

o (a) Flip-Flop D. (b) Tabela de combinações. (c) Símbolo.

"Clock"	D	O.				
+	1	1				
+	0	0				
1	χ	Não muda				
0	χ	Não muda				
(b)						

Elementos Sequenciais com SET/PRESET e RESET/CLEAR

Definição de termos

- Relógio: sinal elétrico periódico que provoca a mudança de estado do elemento de memória; (transição de subida ou descida, nível alto ou baixo)
- Atraso de propagação: tempo máximo depois do evento de relógio (transição de subida ou descida) até a mudança do valor na saída do flip-flop (T_{PHL} e T_{PLH})
- Tempo de setup: tempo mínimo antes do evento de relógio (transição de subida ou descida) em que a entrada precisa estar estável (Tsu)
- Tempo de hold: tempo mínimo depois do evento de relógio (transição de subida ou descida) durante o qual a entrada precisa continuar estável (Th)

Atrasos de Propagação

Tempo de Setup e Hold

Existe uma "janela" de tempo em torno da subida ou descida do relógio durante a qual a entrada precisa permanecer estável e inalterada para que seja corretamente reconhecida.

Especificações de Tempo Típicas

- Positive edge-triggered D flip-flop
 - Tempos de Setup e Hold
 - Largura de clock mínima
 - Retardos de propagação (0 para 1, 1 para 0, máximo e típico)

Todas as medidas são feitas a partir do evento de clock, isto é, a partir da borda de subida do clock

Falha de Sincronização

- Ocorre quando a entrada do flip-flop muda próximo à borda do clock
 - FF pode entrar num estado metaestável nem 0 nem 1
 - FF pode permanecer neste estado indefinidamente

probabilidade baixa, mas não nula, de que a saída do FF fique presa em um estágio intermediário gráficos no osciloscópio demonstrando falha de sincronização e eventual decaimento ao estado permanente

METAESTABILIDADE