2. El radio de la circunferencia circunscrita a un triángulo rectángulo es $\frac{13}{2}$ y el radio de su circunferencia inscrita es 2. Calcule los lados a, b y c.

SOLUCIÓN: Llamamos $\hat{A} = 90^{\circ}$, \hat{B} y \hat{C} a los ángulos opuestos a la hipotenusa a, y los catetos b y c, respectivamente. El ángulo recto \hat{A} , opuesto a la hipotenusa a, es un ángulo inscrito en la circunferencia circunscrita al triángulo, y por ello abarca sobre ella un arco de $2 \cdot 90^{\circ} = 180^{\circ}$, lo cual es tanto como decir que la hipotenusa del triángulo es un diámetro de dicha circunferencia, y por ello, $a = 2 \cdot \frac{13}{2} = 13$.

Relacionamos ahora los lados del triángulo con el radio r de la circunferencia inscrita. Desde cualquier punto exterior a una circunferencia pueden trazarse dos tangentes a ésta y la distancia de dicho punto a los dos puntos de tangencia es la misma. Se tiene entonces, según la notación del gráfico:

$$\begin{cases} CM = CN = b - r \\ BM = BP = c - r \end{cases} \Rightarrow a = CB = CM + MB = b - r + c - r = b + c - 2r$$

y, como son a = 13 y r = 2, resulta b + c = 17.

academiadeimos.es

academiadeimos.es

Si a esta última igualdad le añadimos la que resulta de aplicar el teorema de Pitágoras en nuestro triángulo rectángulo, obtenemos el sistema de segundo grado:

$$\begin{cases} b + c = 17 \\ b^2 + c^2 = 13^2 \end{cases}$$

Sin ninguna dificultad se obtienen sus soluciones, que son $b=12,\ c=5$ y, lógicamente, la simétrica $b=5,\ c=12$. En resumen, el triángulo rectángulo que se pide es el de lados 5, 12 y 13.