- 1- Vous pesez 50 kg. Si vous courez à une vitesse de 20 km/h, combien d'énergie cinétique avez-vous en joule et en Calorie ?
- 2- Prouver que la force de pesanteur F=mg est conservative par une analyse simple à l'aide du dessin ci-dessous qui montre le déplacement d'un corps du point A (à la hauteur ZA) au point B (ZB) à travers 2 chemins (noir et bleu).

- 3- Démontrer la relation F = $-\frac{dE_p(z)}{dz}$. Travaillons en 1D pour simplicité.
- 4- Vous soulevez votre sac de 10 kg d'un mètre du sol, combien d'énergie devez-vous fournir en joule et en calorie?
- 5- Prouver que, pour un corps isolé de masse M se déplaçant sous une seule force conservatrice F, son énergie mécanique est conservée. Pour simplicité, travaillons dans un espace 1D en x.
- 6- Quelle est l'élévation de température de 100g de graphite si on lui donne 200 Cal de chaleur ?

La chaleur massique des solides dépend de la nature du corps. Le tableau suivant donne les chaleurs massiques de quelques corps dans les conditions normales de température et de pression : P = 1 atm. et t = 0 ° C.

Corps	c	Corps	c
	$[kcal \ . \ kg^{-1} \ . \ K^{-1}]$		$[kcal . kg^{-1} . K^{-1}]$
Eau	1	Cuivre	0,095
Glace	0, 5	Fer	0,0113
Diamant	0, 147	Plomb	0,031
Graphite	0, 202	Argent	0,056
Mercure	0,033	Platine	0,032

- 7- Utilisant les données du tableau ci-dessus, déterminer la quantité de chaleur qu'il faut pour faire bouillir 3 litres d'eau glaçante à presque 0 C.
- 8- Dans l'exercice ci-dessus, si vous avez une bouilloire électrique de puissance 1500 W, combien de temps qu'il faut pour faire bouillir les 3 litres d'eau glaçante?
- 9- S'il faut fournir un travail mécanique avec un alternateur pour produire l'électricité consommée ci-dessus, quelle est la quantité minimale de travail qu'il faut fournir (sans compter les pertes d'énergie pendant la production)?
- 10-Si ce travail est fourni par l'énergie potentielle d'un corps de masse de 10kg dans un champ de pesanteur (g=10 m.s⁻²), quelle est la variation de la hauteur du corps ?
- 11-Supposons que cette chaleur est donné à une barre de cuivre de longueur d'100 m et de section 1 cm² qui était à 0°C, quelle l'élévation de température ? La masse volumique de cuivre : 8,96 g·cm⁻³ (supposée constante)
- 12-Un/e étudiant/e épuisé/e par le calcul intégral de compression de ressorts souhaite prendre un bain.
 - L'eau courante arrive à température de 10°C dans le chauffe-eau électrique ; elle a une capacité calorifique constante de $c_{eau} = 4.2 \text{ KJ/Kg}^{-1}.\text{K}^{-1}$ et une masse volumique constante ρ_{eau} liquide = 1000 Kg.m⁻³.
 - a- Combien faut-il d'énergie pour chauffer l'eau à 40°C afin de remplir une baignoire de 270L.
 - b- Combien de temps le réchauffage prendra-t-il si la puissance de chauffage est de 2 KW?