Problem Set 8

SEM solution to 1D wave equation

Use the Spectral-Element method (SEM) to solve the 1D wave equation to find the displacement s(x,t) for $x \in [0, L=100]$ such that (strong form)

$$\rho \,\partial_t^2 s = \partial_x (\mu \,\partial_x s)$$

where ρ is the medium density and μ is the shear modulus, with the following initial & boundary conditions:

(a) Dirichlet
$$\begin{cases} s(x,0) = f(x) \\ s(L,t) = 0 \\ s(0,t) = 0 \end{cases}$$

and

(b) Neumann
$$\begin{cases} s(x,0) = f(x) \\ \partial_x s(L,t) = 0 \\ \partial_x s(0,t) = 0 \end{cases}$$

Problem:

Follow these steps to solve the problems (a) and (b):

- \bullet write the weak form of the wave equation for the test function w(x)
- \bullet discretize the mesh: $\Omega = [0,L] = \bigcup_e \Omega_e$
- on the elemental level, calculate the mass and stiffness matrices
- impose the boundary conditions for (a) and (b)
- consider the initial condition with $f(x)=\exp[-(x-50)^2*0.1]$ and media properties $\rho=1$ and $\mu=1$

Plot several time steps.

Time scheme:

You will be using the Newmark algorithm seen in class to march in time:

• Predictor:

$$\begin{array}{lcl} d_{n+1} & = & d_n + \Delta t v_n + \frac{1}{2} \Delta t^2 a_n \\ \\ v_{n+1} & = & v_n + \frac{1}{2} \Delta t a_n \\ \\ a_{n+1} & = & 0 \quad \text{(initialization at the beginning of each time step)} \end{array}$$

• Solve:

$$F_{n+1} = K d_{n+1}$$
$$\Delta a = M^{-1} F_{n+1}$$

• Corrector:

$$a_{n+1} = a_{n+1} + \Delta a$$

 $v_{n+1} = v_{n+1} + \frac{1}{2}a_{n+1}$
 $d_{n+1} = d_{n+1}$

Material:

In the directory codes/ you will find the following files:

Makefile: used for the compilation. By default it uses gfortran.

directory obj/, bin/: where you will find the ouputs of the compilation.

constants.h: a numbers of static constants, like the number of spectral elements (NSPEC=11), number of GLL points (NGLL=7), number of global points (NGLOB = (NGLL-1)*NSPEC +1), and two variables used to evaluate the GLL points & the weights.

gll_library.f90: library to compute the GLL points and the weights.

lagrange_poly.f90: library to compute the Lagrange interpolants based upon the GLL points as well as the first derivatives of these polynomials at any point $\xi \in [-1,1]$.

 ${\tt define_derivative_matrix.f90: store \ the \ derivatives \ of \ the \ Lagrange \ polynomials \ as \ a} \\ {\tt NGLL} \times {\tt NGLL} \ {\tt matrix.}$

wave.f90: the main program.

After compilation you will find the executable *xwave* in the directory bin/.

You will see that the full structure of the code is given in the file wave.f90. You are asked to input your code in lieu of ">TODO: put your code here".