MAT1830 - Discrete Mathematics for Computer Science Tutorial Sheet #4 Solutions

- 1. (a) "Dwayne, the first two terms of the sequence are positive and each term past there is obtained by adding the previous two. It's obvious that we'll never get a negative term. Why not? Well suppose we've just gotten our first negative term then the two previous terms were positive and they added to give a negative that can't happen." (A more formal argument could use strong induction.)
 - (b) Let P(n) be the statement "3 divides $n^3 7n + 6$ ".

Base step. $0^3 - 7(0) + 6 = 6$ and 3 divides 6, so P(0) is true.

Induction step. Assume P(k) is true for some integer $k \ge 0$. So 3 divides $k^3 - 7k + 6$. Equivalently, $k^3 - 7k + 6 = 3a$ for some integer a.

We need to prove that P(k+1) is true, that is, that 3 divides $(k+1)^3 - 7(k+1) + 6$. Now,

$$(k+1)^3 - 7(k+1) + 6 = k^3 + 3k^2 + 3k + 1 - 7k - 7 + 6$$

$$= (k^3 - 7k + 6) + (3k^2 + 3k - 6)$$

$$= 3a + 3(k^2 + k - 2)$$
 (by $P(k)$)
$$= 3(a + k^2 + k - 2).$$

So 3 divides $(k+1)^3 - 7(k+1) + 6$ (note that $a + k^2 + k - 2$ is an integer). So P(k+1) is true.

So we have proved by induction that P(n) is true for all integers $n \geq 0$.

- 2. (a) Are the following true or false?
 - i. true
 - ii. false
 - iii. true
 - iv. true
 - v. false
 - vi. true
 - vii. true (the empty set is a subset of everything)
 - (b) $\{\{\}, \{-1\}, \{0\}, \{1\}, \{-1, 0\}, \{-1, 1\}, \{0, 1\}, \{-1, 0, 1\}\}$
 - (c) $2^{10} = 1024$ elements
 - i. yes
 - ii. yes
 - iii. no
 - iv. no
 - v. yes

- 3. (a) $\{-1,0,1,2\}$
 - (b) {1}
 - (c) $\{(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)\}$
 - (d) No. For example, when $X = \{1, 2\}$, $Y = \{1, 2\}$ and $Z = \{1\}$, we have $(X \cup Y) \cap Z = \{1\}$ and $X \cup (Y \cap Z) = \{1, 2\}$.
 - (e) Yes. Let Y and Z be any sets. Now

$$X \in (\mathcal{P}(Y) \cap \mathcal{P}(Z)) \equiv (X \in \mathcal{P}(Y)) \land (X \in \mathcal{P}(Z))$$

$$\equiv (X \subseteq Y) \land (X \subseteq Z)$$

$$\equiv X \subseteq (Y \cap Z) \qquad \text{(see * below)}$$

$$\equiv X \in \mathcal{P}(Y \cap Z).$$

So $\mathcal{P}(Y) \cap \mathcal{P}(Z) = \mathcal{P}(Y \cap Z)$ is true for any sets Y and Z.

*To see that $(X \subseteq Y) \land (X \subseteq Z) \equiv X \subseteq (Y \cap Z)$, notice that

$$(X \subseteq Y) \land (X \subseteq Z) \equiv \text{(every element of } X \text{ is in } Y) \land \text{(every element of } X \text{ is in } Z)$$

 $\equiv \text{every element of } X \text{ is in } Y \cap Z$
 $\equiv X \subseteq (Y \cap Z).$

4. (a) Here's an argument by strong induction. You could also make an argument by regular induction similar to the stamp example in Lecture 9.

Let P(n) be the statement "\$n can be made from \$7 notes and \$4 notes".

Base steps. \$18 can be made from two \$7 notes and one \$4 note. So P(18) is true.

\$19 can be made from one \$7 note and three \$4 notes. So P(19) is true.

\$20 can be made from five \$4 notes. So P(20) is true.

21 can be made from three 7 notes. So P(21) is true.

Induction step. For some integer $k \geq 21$, assume that $P(18), P(19), \ldots, P(k)$ are true. We need to show that P(k+1) is true, that is, that k+1 duckbucks can be made from \$4 and \$7 notes.

We know that P(k-3) is true and so k-3 duckbucks can be made from \$4 and \$7 notes (note that $k-3 \ge 18$ because $k \ge 21$). Simply adding a \$4 note to this makes k+1 duckbucks. So P(k+1) is true.

So we have proved by strong induction that P(n) is true for each integer $n \ge 18$.

(b) "Dwayne, just keep adding \$4 notes until the amount left to pay is \$18 or \$19 or \$20 or \$21. Then use this cheat sheet." (The cheat sheet is made from the base steps for (b).)