Using OpenStreetMap Data

Ani Ghosh
Environmental Science and Policy
anighosh@ucdavis.edu

OSM vs Google Map

Understanding OSM data

OSM data model

Nodes, ways and relations are tagged with a key/value pair

OpenStreetMap objects

Nodes

Points with (X,Y) and attributes

Ways

Ordered set of nodes. Polygons are closed ways, not a separate entity. Can have attributes.

Relations

Groups of objects with a functional or geographic relationship

OSM object and GIS objects

OSM tags

Links features on the ground to OSM basic structures: attributes

Multiple tagging allowed with key=value pair

Key	Value	Element	Comment	Photo			
Accommodation							
building	apartments	4	A building arranged into individual dwellings, often on separate floors. May also have retail outlets on the ground floor.				
building	farm	••	A residential building on a farm (farmhouse). For other buildings see below building=farm_auxiliary, building=barn, If in your country farmhouse looks same as general residential house then you can tag as building=house as well. See also landuse=farmyard				

Key = "building", value = "library"; case insensitive?

Go to http://wiki.openstreetmap.org/wiki/Map_Features

OSM file formats

- OSM XML xml-format provided by the API
- PBF Format highly compressed, optimized binary format similar to the API
- o5m for high-speed processing, uses PBF coding, has same structure as XML format
- Overpass JSON JSON variant of OSM XML
- Level0L more human readable OSM XML without <> and lowered redundancy

Source: http://wiki.openstreetmap.org/wiki/OSM_file_formats

OSM file formats

```
▼<osm version="0.6" generator="CGImap 0.6.0 (31756 thorn-03.openstreetmap.org)" copyright="OpenStreetMap and contributors" attribution="http://www.openstreetmap.org/copyright"
license="http://opendatacommons.org/licenses/odbl/1-0/">
 ▼<relation id="18189" visible="true" version="9" changeset="29524501" timestamp="2015-03-16T18:42:58Z" user="MattSidor" uid="1490939">
    <member type="way" ref="25055432" role="outer"/>
    <member type="way" ref="25055441" role="inner"/>
    <tag k="addr:city" v="Davis"/>
    <tag k="addr:housenumber" v="100"/>
    <tag k="addr:postcode" v="95616"/>
    <tag k="addr:state" v="CA"/>
                                                                                                               Shields Library
    <tag k="addr:street" v="West Quad Avenue"/>
    <tag k="building" v="university"/>
    <tag k="name" v="Peter J. Shields Library"/>
    <tag k="type" v="multipolygon"/>
  </relation>
```

```
▼<node id="568127838" visible="true" version="3" changeset="19203936" timestamp="2013-12-01T02:55:30Z" user="jraller" uid="46789" lat="38.5397258" lon="-121.7499180">
   <tag k="artwork type" v="sculpture"/>
   <tag k="name" v="Bookhead"/>
```

<tag k="start date" v="1989"/> <tag k="tourism" v="artwork"/> </node> </osm>

</osm>

Bookhead in front of Shields Library

```
▼<way id="10746426" visible="true" version="12" changeset="36541198" timestamp="2016-01-13T00:18:32Z" user="jraller" uid="46789">
   <nd ref="95716931"/>
   <nd ref="559373141"/>
   <nd ref="3942688440"/>
   <tag k="access" v="private"/>
   <tag k="highway" v="residential"/>
   <tag k="name" v="Peter J Shields Avenue"/>
   <tag k="tiger:cfcc" v="A41"/>
   <tag k="tiger:county" v="Yolo, CA"/>
   <tag k="tiger:name base" v="Peter J Shields"/>
   <tag k="tiger:name type" v="Ave"/>
 </wav>
</osm>
```

Shields Avenue

Export OSM data: osm website

Go to http://www.openstreetmap.org and use Export tab

Export OSM data: osm website

This will download an '.osm' file with 'everything' in it

If you need large (world) areas, use Planet OSM

Planet OSM

The files found here are regularly-updated, complete copies of the OpenStreetMap.org database, and those published before the 12 September 2012 are distributed under a Creative Commons Attribution-ShareAlike 2.0 license, those published after are Open Data Commons Open Database License 1.0 licensed. For more information.

see the project wiki.

Complete OSM Data

Latest Weekly Planet XML File

62 GB, created 4 days ago. md5: 70d54f5210093232325c953e77bcbf41.

Latest Weekly Changesets

2.0 GB, created 4 days ago. md5: 7470fb0977c48347ac54d7178bbcf7c1.

Latest Weekly Planet PBF File

38 GB, created 4 days ago. md5: eb62463b69eb92ba6d66c7d0d77dcdc7

Using The Data

You are granted permission to use OpenStreetMap data by the OpenStreetMap License, which also describes your obligations.

You can process the file or extracts with a variety of tools. Osmosis is a general-purpose command-line tool for converting the data among different formats and databases, and Osm2pgsql is a tool for importing the data into a Postgis database.

Extracts & Mirrors

The complete planet is very large, so you may prefer to use one of several periodic extracts (individual countries or states) from third parties. GeoFabrik.de and BBBike.org are two providers of extracts with up-to-date worldwide coverage.

If you need large (regions/countries) areas, use Geofabrics

OpenStreetMap Data Extracts

Welcome to Geofabrik's free download server. This server has data extracts from the OpenStreetMap project which are normally updated every day. Select your continent and then your country of interest from the list below. (If you have been directed to this page from elsewhere and are not familiar with OpenStreetMap, we highly recommend that you read up on OSM before you use the data.) This download service is offered for free by Geofabrik GmbH.

Willkommen auf dem Geofabrik-Downloadserver. Hier gibt es Daten-Auszüge aus dem <u>OpenStreetMap-Projekt</u>, die normalerweise täglich aktualisiert werden. Wählen Sie aus dem Verzeichnis unten den Kontient und ggf. das Land, für die Sie Daten benötigen. (Wenn Sie von anderswo auf dieser Seite gelandet sind und von OpenStreetMap nichts wissen, dann ist es empfehlenswert, sich mit dem Projekt vertraut zu machen, bevor Sie mit den Daten arbeiten.) Diese Downloads werden von der Geofabrik GmbH kostenlos angeboten.

Click on the region name to see the overview page for that region, or select one of the file extenstion links for quick access.

Sub-Region	Quick Links			
	.osm.pbf	.shp.zip	.osm.bz2	
Africa	[.osm.pbf]	×	[.osm.bz2]	
Antarctica	[.osm.pbf]	[.shp.zip]	[.osm.bz2]	
Asia	[.osm.pbf]	×	[.osm.bz2]	
Australia and Oceania	[.osm.pbf]	×	[.osm.bz2]	
Central America	[.osm.pbf]	×	[.osm.bz2]	
Europe	[.osm.pbf]	×	[.osm.bz2]	
North America	[.osm.pbf]	×	[.osm.bz2]	
South America	[.osm.pbf]	×	[.osm.bz2]	

Technical details about this download service.

If you need cities, use Metro Extracts

For more custom controls, use Overpass turbo

More freedom? Query OSM data using R

Few packages available: <u>osmdata</u>, <u>osmplotr</u>, <u>osmar</u>

gdal can be used to read the xml & pbf files

osmdata is the most complete package available now

Allows downloading (using overpass API) and exporting to other spatial formats

OSM data in R: get OSM data

Getting started:

- > install.packages(c('osmdata','sf'),
 + dependencies = TRUE)
 # will install lot of packages
- > library(osmdata)

- # supply the bounding box or specify the names
- > bb <- getbb('Davis')</pre>
- > q0 <- opq(bb)

Bicycle parkings in Davis from OSM

```
# Construct an Overapss query object
> q1 <- add osm feature(q0, key = 'amenity', value =
+ 'bicycle parking')
# Return the result of the query as sf object
> osmd <- osmdata sf(q1)</pre>
# or combine by pipe
> osmd <- opq(bbox = 'Davis') %>%
 add osm feature(key = 'amenity', value = 'bicycle parking') %>%
 osmdata sf()
```

Inspect osmdata object for parkings

> osmd

Plot the parkings

osm tagging

```
# plot the polygons; we will use the mapview
# package, should be installed now with osmdata
> library(mapview)
> mapview(bikepark)
# this will create an interactive map window
```

browse the map to check the accuracy of the

Now let's find the dog parks

Use the key/value pairs from OSM map features
to download and plot the dog parks in Davis

Are all the dog parks in Davis mapped?

Read '.osm' files

```
# You have exported the '.osm' file from the OSM
# website. We can read that file in R with
# sf/gdal routines
```

- > testdata <- sf::st_read('map.osm', layer =
- + 'multipolygons', quiet = TRUE)
- > mapview(testdata)