SEMAINE 17

GÉOMÉTRIE EUCLIDIENNE, ESPACES HERMITIENS

EXERCICE 1:

L'espace \mathbb{R}^3 est muni de sa structure affine euclidienne orientée canonique, on note \mathcal{S} la sphère de centre O et de rayon 1.

Si A, B, C sont trois points de S, supposés non coplanaires, la configuration constituée des trois arcs de "grands cercles" AB, BC et CA tracés sur la sphère S est appelée un **triangle** sphérique.

On notera a, b, c respectivement les longueurs des arcs BC, CA et AB ("côtés du triangle").

Les angles aux sommets A, B, C sont notés α, β, γ . Précisons : l'angle α est l'angle au point A entre les deux arcs de cercle AB et AC, c'est-à-dire entre les tangentes au point A de ces deux arcs de cercle. On les considère comme des angles non orientés de vecteurs.

On définit les vecteurs $i = \overrightarrow{OA}$, $j = \overrightarrow{OB}$ et $k = \overrightarrow{OC}$.

- 1. Rester calme.
- 2. Faire un dessin.
- 3. Démontrer la relation

$$\cos a = \cos b \cos c + \sin b \sin c \cos \alpha$$

(on pourra évaluer de deux façons le produit scalaire $(k \wedge i \mid i \wedge j)$).

4. En introduisant un triangle sphérique A'B'C' "dual" du précédent, démontrer la relation

$$\cos \alpha = -\cos \beta \, \cos \gamma + \sin \beta \, \sin \gamma \, \cos a \, .$$

5. Que peut-on dire de la somme des angles d'un triangle sphérique ?

Source: Marcel BERGER, Géométrie, Tome 2, Éditions Nathan, ISBN 209-191-731-1

- 1. Passons directement à la question 3.
- **3.** Les grands cercles de la sphère S ayant pour rayon 1, la longueur d'un arc de cercle est égale à la mesure (en radians) de l'angle au centre, donc a est aussi une mesure de l'angle non orienté de vecteurs $(\overrightarrow{OB}, \overrightarrow{OC}) = (j, k)$, ou encore, puisque les vecteurs i, j, k sont unitaires :

$$\cos a = (j|k)$$
 ; $\cos b = (k|i)$; $\cos c = (i|j)$.

La formule de Gibbs (ou "du double produit vectoriel") donne alors

$$(k \wedge i \mid i \wedge j) = \operatorname{Det}(k, i, i \wedge j) = (k \mid i \wedge (i \wedge j))$$

$$= (k \mid (i|j) \ i - (i|i) \ j)$$

$$= (i|j) \ (k|i) - (i|i) \ (k|j)$$

$$= \cos c \cos b - \cos a.$$

Notons \mathcal{P}_A le plan affine tangent à la sphère \mathcal{S} au point A, c'est-à-dire le plan passant par A et orthogonal au vecteur $i = \overrightarrow{OA}$, que nous orientons corrélativement au vecteur normal i. La tangente en A à l'arc de cercle AB est la droite d'intersection du plan \mathcal{P}_A avec le plan OAB. Le vecteur tangent orienté à cet arc de cercle admet pour vecteur directement orthogonal dans le plan \mathcal{P}_A le vecteur $\overrightarrow{OA} \wedge \overrightarrow{OB} = i \wedge j$. De même, le vecteur $i \wedge k$ est directement orthogonal, dans le même plan \mathcal{P}_A orienté, à l'arc de cercle orienté AC au point A. Les angles géométriques α et $(i \wedge j, i \wedge k)$ sont donc égaux, d'où $(k \wedge i, i \wedge j) = \pi - \alpha$ et

$$(k \wedge i|i \wedge j) = ||k \wedge i|| ||i \wedge j|| \cos(\pi - \alpha) = -\sin b \sin c \cos \alpha,$$

ce qui prouve la relation à démontrer.

4. Soient A', B', C' les points de S définis par

$$i' = \overrightarrow{OA'} = \frac{j \wedge k}{\|j \wedge k\|} = \frac{j \wedge k}{\sin a} \quad ; \quad j' = \overrightarrow{OB'} = \frac{k \wedge i}{\|k \wedge i\|} = \frac{k \wedge i}{\sin b} \quad ; \quad k' = \overrightarrow{OC'} = \frac{i \wedge j}{\|i \wedge j\|} = \frac{i \wedge j}{\sin c} \; .$$

Notons a', b', c' les mesures des angles (j',k'), (k',i') et (i',j'), c'est-à-dire aussi les longueurs des côtés (arcs de cercles tracés sur S) B'C', C'A' et A'B' du triangle sphérique A'B'C'.

Notons enfin α' une mesure de l'angle que font au point A' les deux arcs de cercles A'B' et A'C', définissons de même β' et γ' .

Notons que le triangle dual A'B'C' est toujours "direct" puisqu'un calcul classique donne

$$\operatorname{Det}(j \wedge k, k \wedge i, i \wedge j) = \left(\operatorname{Det}(i, j, k)\right)^{2}, \quad donc \quad \operatorname{Det}(i', j', k') > 0.$$

Le raisonnement de la question 3. montre l'égalité d'angles $a'=(j',k')=(k\wedge i,i\wedge j)=\pi-\alpha$. De même, $b'=\pi-\beta$ et $c'=\pi-\gamma$.

Par ailleurs.

$$(k \wedge i) \wedge (i \wedge j) = (k \wedge i \mid j) \ i - (k \wedge i \mid i) \ j = (k \wedge i \mid j) \ i = \mathrm{Det}(i,j,k) \ i \ ,$$
 donc
$$\frac{j' \wedge k'}{\|j' \wedge k'\|} = \frac{(k \wedge i) \wedge (i \wedge j)}{\sin b \ \sin c \ \sin a'} = \frac{\mathrm{Det}(i,j,k)}{\sin b \ \sin c} \ i \ , \ \mathrm{ce} \ \mathrm{qui} \ \mathrm{prouve} \ \mathrm{que} :$$

- (*) : $|\operatorname{Det}(i,j,k)| = \sin \alpha \sin b \sin c = \sin a \sin \beta \sin c = \sin a \sin b \sin \gamma$ par permutation des sommets ;
- (**) : le triangle "dual" du triangle A'B'C' est le triangle ABC si $\mathrm{Det}(i,j,k)>0$ et c'est son symétrique par rapport à O si $\mathrm{Det}(i,j,k)<0$;
- (***) : on a $\alpha' = \pi a$, $\beta' = \pi b$ et $\gamma' = \pi c$ (conséquence de la propriété (**)).

La relation du **3.** appliquée au triangle dual A'B'C' donne $\cos a' = \cos b' \cos c' + \sin b' \sin c' \cos \alpha'$, c'est-à-dire

$$\cos \alpha = -\cos \beta \cos \gamma + \sin \beta \sin \gamma \cos a$$

(relation fondamentale de la trigonométrie sphérique).

- **5.** De la relation ci-dessus, on déduit que $\cos \alpha < -\cos \beta \cos \gamma + \sin \beta \sin \gamma = \cos \left(\pi (\beta + \gamma)\right)$, d'où $\alpha > \pi (\beta + \gamma)$: la somme des angles d'un triangle sphérique est donc strictement supérieure à π .
- De la relation (*) ci-dessus, on déduit $\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}$ et la valeur commune de ces trois quotients est égale au quotient des produits mixtes $\frac{|\operatorname{Det}(i,j,k)|}{\operatorname{Det}(i',j',k')}$.

EXERCICE 2:

1. Soient x_1, \dots, x_k des points de \mathbb{R}^n muni de sa structure affine euclidienne canonique. Pour tout couple (i, j), on note $d_{ij} = d(x_i, x_j) = \|\overrightarrow{x_i x_j}\|$.

Montrer que les k points x_1, \dots, x_k sont affinement dépendants (c'est-à-dire les k-1 vecteurs $\overrightarrow{x_1x_2}, \dots, \overrightarrow{x_1x_k}$ sont linéairement dépendants) si et seulement si le déterminant d'ordre k+1:

$$\Gamma(x_1,\dots,x_k) = \begin{vmatrix} 0 & 1 & 1 & \dots & 1\\ 1 & 0 & d_{12}^2 & \dots & d_{1k}^2\\ 1 & d_{21}^2 & 0 & \dots & d_{2k}^2\\ \vdots & \vdots & \vdots & & \vdots\\ 1 & d_{k1}^2 & d_{k2}^2 & \dots & 0 \end{vmatrix}$$

est nul.

2. Montrer que n+2 points x_1, \dots, x_{n+2} de \mathbb{R}^n appartiennent à un même hyperplan affine ou à une même hypersphère si et seulement si le déterminant des $(d_{ij}^2)_{1 \leq i,j \leq n+2}$ est nul.

- 1. Quelques "rappels" sur les matrices et déterminants de Gram : si $\mathcal{V} = (v_1, \dots, v_p)$ est une famille de p vecteurs d'un espace euclidien E, la matrice $G(\mathcal{V}) = (g_{ij}) \in \mathcal{M}_p(\mathbb{R})$ avec $g_{ij} = (v_i|v_j)$ est appelée **matrice de Gram** de la famille de vecteurs \mathcal{V} . Son déterminant $\operatorname{Gram}(\mathcal{V}) = \det G(\mathcal{V})$ est le **déterminant de Gram** de cette famille de vecteurs.
 - Si $\mathcal{B} = (e_1, \dots, e_n)$ est une base orthonormale de E et si $V = M_{\mathcal{B}}(\mathcal{V}) \in \mathcal{M}_{n,p}(\mathbb{R})$ est la matrice de la famille de vecteurs \mathcal{V} relativement à la base \mathcal{B} , on a $G(\mathcal{V}) = {}^tVV$, donc le rang de la matrice de Gram $G(\mathcal{V})$ est égal au rang de la famille de vecteurs \mathcal{V} (puisqu'il est classique que $\operatorname{Ker}({}^tVV) = \operatorname{Ker} V$). En particulier, la famille \mathcal{V} est libre si et seulement si $\operatorname{Gram}(\mathcal{V}) \neq 0$.

Pour tout couple $(i, j) \in [2, k]^2$, on a, par une identité de polarisation,

$$(\overrightarrow{x_1x_i}|\overrightarrow{x_1x_j}) = \frac{1}{2} (\|\overrightarrow{x_1x_i}\|^2 + \|\overrightarrow{x_1x_j}\|^2 - \|\overrightarrow{x_1x_i} - \overrightarrow{x_1x_j}\|^2) = \frac{1}{2} (d_{i1}^2 + d_{1j}^2 - d_{ij}^2)$$

ou encore $d_{ij}^2-d_{1j}^2-d_{i1}^2=-2(\overrightarrow{x_1x_i}|\overrightarrow{x_1x_j})$. Effectuons donc des opérations élémentaires sur les lignes et colonnes du déterminant $\Gamma(x_1,\cdots,x_k)$ pour faire apparaître un déterminant de Gram.

Numérotons de 0 à k les k+1 lignes et colonnes du déterminant $\Gamma(x_1,\dots,x_k)$. Effectuons

$$C_j \leftarrow C_j - d_{1j}^2 C_0$$
 $(2 \le j \le k)$, puis $L_i \leftarrow L_i - d_{i1}^2 L_0$ $(2 \le i \le k)$.

Ainsi,

$$\Gamma(x_1,\dots,x_k) = \begin{vmatrix} 0 & 1 & 1 & 1 & \dots & 1 \\ 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & -2d_{12}^2 & d_{23}^2 - d_{13}^2 - d_{21}^2 & \dots & d_{2k}^2 - d_{1k}^2 - d_{21}^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & d_{k2}^2 - d_{12}^2 - d_{k1}^2 & d_{k3}^2 - d_{13}^2 - d_{k1}^2 & \dots & -2d_{1k}^2 \end{vmatrix}$$

$$= -(-2)^k \operatorname{Gram}(\overrightarrow{x_1 x_2}, \cdots, \overrightarrow{x_1 x_k})$$

en développant par rapport à la deuxième ligne, puis par rapport à la première colonne dans le nouveau déterminant obtenu. Le résultat en découle immédiatement.

2. Si les coordonnées d'un point x de \mathbb{R}^n sont notées $x^{(1)}, \dots, x^{(n)}$, l'équation générale d'une hypersphère ou d'un hyperplan affine est de la forme $a\|x\|^2 + \varphi(x) = 0$, où φ est une forme affine sur \mathbb{R}^n (on a un hyperplan si a = 0, une hypersphère sinon). Cette équation cartésienne peut s'écrire

$$a||x||^2 + \sum_{i=1}^n b_i x^{(i)} + c = 0$$
,

où a, c, b_1, \dots, b_n sont des constantes réelles non toutes nulles. La condition d'appartenance de n+2 points x_1, \dots, x_{n+2} à un même hyperplan ou une même hypersphère est donc que les n+2 vecteurs

$$\begin{pmatrix} \|x_1\|^2 \\ \vdots \\ \|x_{n+2}\|^2 \end{pmatrix}, \begin{pmatrix} x_1^{(1)} \\ \vdots \\ x_{n+2}^{(1)} \end{pmatrix}, \cdots, \begin{pmatrix} x_1^{(n)} \\ \vdots \\ x_{n+2}^{(n)} \end{pmatrix}, \begin{pmatrix} 1 \\ \vdots \\ x_{n+2}^{(n)} \end{pmatrix}$$

soient liés, c'est-à-dire la nullité du déterminant de la matrice

$$A = \begin{pmatrix} \|x_1\|^2 & 1 & x_1^{(1)} & \dots & x_1^{(n)} \\ \vdots & \vdots & \vdots & & \vdots \\ \|x_{n+2}\|^2 & 1 & x_{n+2}^{(1)} & \dots & x_{n+2}^{(n)} \end{pmatrix}.$$

Notons $D \in \mathcal{M}_{n+2}(\mathbb{R})$ la matrice de coefficient générique d_{ij}^2 . De la relation

$$d_{ij}^2 = \|x_i - x_j\|^2 = \|x_i\|^2 + \|x_j\|^2 - 2\sum_{k=1}^n x_i^{(k)} x_j^{(k)},$$

on déduit que $D = A^t B$, avec

$$B = \begin{pmatrix} 1 & \|x_1\|^2 & -2x_1^{(1)} & \dots & -2x_1^{(n)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \|x_{n+2}\|^2 & -2x_{n+2}^{(1)} & \dots & -2x_{n+2}^{(n)} \end{pmatrix}.$$

Or, $\det B = -(-2)^n \det A$, donc $\det D = -(-2)^n (\det A)^2$ et le déterminant de D est nul si et seulement si celui de A l'est aussi, ce qui mène à la conclusion.

EXERCICE 3:

Soit E un espace hermitien. Un endomorphisme de E est dit **normal** lorsque $uu^* = u^*u$.

- 1. Si u est normal, montrer que $\operatorname{Im} u = (\operatorname{Ker} u)^{\perp}$.
- **2.** Soit $u \in \mathcal{L}(E)$. Démontrer l'équivalence entre les assertions :
 - (i) : u est normal;
 - (ii): u est unitairement diagonalisable;
 - (iii): $\exists P \in \mathbb{C}[X] \quad P(u) = u^*$;
 - (iv): $\operatorname{tr}(uu^*) = \sum_{\lambda \in \operatorname{Sp}(u)} |\lambda|^2$.

Dans cette dernière assertion, chaque valeur propre de u est comptée avec son ordre de multiplicité.

3. Si u, v et uv sont des endomorphismes normaux, montrer que vu est normal.

1. On sait que $\operatorname{Ker} u^* = (\operatorname{Im} u)^{\perp}$, donc $\operatorname{Im} u = (\operatorname{Ker} u^*)^{\perp}$. Il suffit donc de prouver l'égalité $\operatorname{Ker} u^* = \operatorname{Ker} u$. Or, si $x \in E$, on a

$$||u^*(x)||^2 = (u^*(x)|u^*(x)) = (uu^*(x)|x) = (u^*u(x)|x)$$
$$= (u(x)|u(x)) = ||u(x)||^2,$$

ce qui entraı̂ne $\operatorname{Ker} u^* = \operatorname{Ker} u$.

2. • (ii) \Longrightarrow (i) : si u est unitairement diagonalisable, c'est-à-dire diagonalisable dans une base orthonormale \mathcal{B} de E, alors $M_{\mathcal{B}}(u)$ est une matrice diagonale et la matrice adjointe $M_{\mathcal{B}}(u^*)$ est aussi diagonale, donc les deux matrices commutent et $uu^* = u^*u$.

Prouvons la réciproque (i) \Longrightarrow (ii) par récurrence forte sur $n = \dim E$:

 \triangleright pour n = 1, c'est immédiat ;

 \triangleright soit $n \ge 2$, supposons la proposition vraie en dimension < n. Si dim E = n et si $u \in \mathcal{L}(E)$ est normal, soit λ une valeur propre de u, soit $v = u - \lambda \operatorname{id}_E$; alors v est aussi normal, donc $\operatorname{Im} v = (\operatorname{Ker} v)^{\perp}$. Le sous-espace $\operatorname{Im} v$ est stable par u et de dimension strictement inférieure à n, donc l'endomorphisme de $\operatorname{Im} v$ induit par u se diagonalise dans une base orthonormale \mathcal{B}_1 de $\operatorname{Im} v$. Si \mathcal{B}_2 est une quelconque base orthonormale de $\operatorname{Ker} v$, alors la base $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$ de E obtenue par concaténation est une base orthonormale de diagonalisation de u.

Nous disposons ainsi de l'équivalence (i) \iff (ii). Traduction matricielle : si $A \in \mathcal{M}_n(\mathbb{C})$, alors $AA^* = A^*A$ si et seulement si il existe $U \in U(n)$ unitaire et $D \in \mathcal{M}_n(\mathbb{C})$ diagonale telles que $A = UDU^*$.

• L'implication (iii) \Longrightarrow (i) est immédiate.

Réciproquement, si u est normal, il existe une base orthonormale $\mathcal B$ de E dans laquelle la matrice de u est diagonale : $M_{\mathcal B}(u) = D = \operatorname{diag}(\lambda_1, \cdots, \lambda_n)$. Dans une telle base, on a $M_{\mathcal B}(u^*) = D^* = \overline{D} = \operatorname{diag}(\overline{\lambda_1}, \cdots, \overline{\lambda_n})$. Il existe un polynôme P de $\mathbb C[X]$ tel que $P(\lambda_i) = \overline{\lambda_i}$ pour tout $i \in [\![1,n]\!]$ (considérer un polynôme d'interpolation de Lagrange), alors $P(D) = D^*$, donc $P(u) = u^*$.

Ainsi, (i) \iff (iii).

• Si u est normal, il existe une base \mathcal{B} orthonormale telle que $M_{\mathcal{B}}(u) = D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ et $M_{\mathcal{B}}(u^*) = D^* = \overline{D}$. Alors $M_{\mathcal{B}}(uu^*) = D\overline{D} = \operatorname{diag}(|\lambda_1|^2, \dots, |\lambda_n|^2)$ et $\operatorname{tr}(uu^*) = \sum_{i=1}^n |\lambda_i|^2$, donc (i) \Longrightarrow (iv).

Pour la réciproque, démontrons le lemme suivant :

Soit E un espace hermitien, soit $u \in \mathcal{L}(E)$ quelconque. Alors u est trigonalisable dans une base orthonormale de E.

Démonstration du lemme : Traduisons matriciellement. Soit $A \in \mathcal{M}_n(\mathbb{C})$, on sait que la matrice A est trigonalisable, donc $A = PT_1P^{-1}$ avec $P \in GL_n(\mathbb{C})$ et $T \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure. Le théorème d'orthonormalisation de Gram-Schmidt permet d'écrire $P = UT_2$ avec $U \in U(n)$ et T_2 triangulaire supérieure à coefficients diagonaux strictement positifs, finalement $A = UTU^{-1}$ avec U unitaire et $T = T_2T_1T_2^{-1}$ triangulaire supérieure (A est "unitairement trigonalisable").

Soit $u \in \mathcal{L}(E)$, soit une base orthonormale \mathcal{B} telle que $M_{\mathcal{B}}(u) = T = (t_{ij})$ soit triangulaire, alors $M_{\mathcal{B}}(u^*) = T^* = {}^t\overline{T}$ et

$$\operatorname{tr}(uu^*) = \operatorname{tr}(TT^*) = \sum_{i,j} |t_{ij}|^2 \ge \sum_{i=1}^n |t_{ii}|^2 = \sum_{\lambda \in \operatorname{Sp}(u)} |\lambda|^2.$$

Si l'égalité a lieu, alors T est diagonale, donc u est unitairement diagonalisable, donc normal, ce qui achève de prouver $(iv) \Longrightarrow (i)$.

3. Si u et v sont normaux, alors

$$\operatorname{tr} \left(uv(uv)^* \right) = \operatorname{tr} (uvv^*u^*) = \operatorname{tr} (vv^*u^*u) = \operatorname{tr} (v^*vuu^*) = \operatorname{tr} (vuu^*v^*) = \operatorname{tr} \left(vu(vu)^* \right) \,.$$

Notons $\lambda_1, \dots, \lambda_n$ les valeurs propres de uv (comptées avec leur multiplicité). Ce sont aussi les valeurs propres de $vu^{(\star)}$. Si uv est normal, alors $\operatorname{tr}(uv(uv)^*) = \sum_{i=1}^n |\lambda_i|^2$, donc

$$\operatorname{tr}\left(vu(vu)^*\right) = \sum_{i=1}^n |\lambda_i|^2$$
, donc vu est normal, puisque (i) \iff (iv).

(*) Le fait que, si u et v sont deux endomorphismes d'un espace vectoriel de dimension finie, alors uv et vu ont les mêmes valeurs propres, est un petit exercice classique, que l'on traite en considérant à part le cas de l'éventuelle valeur propre 0. On peut aussi l'obtenir comme conséquence de l'égalité χ_{uv} = χ_{vu} qui se retrouve en constatant que

$$\begin{pmatrix} XI_n & A \\ XB & XI_n \end{pmatrix} = \begin{pmatrix} XI_n - AB & A \\ 0 & XI_n \end{pmatrix} \begin{pmatrix} I_n & 0 \\ B & I_n \end{pmatrix} = \begin{pmatrix} I_n & 0 \\ B & I_n \end{pmatrix} \begin{pmatrix} XI_n & A \\ 0 & XI_n - BA \end{pmatrix} \;,$$

et en égalant les déterminants des deux derniers membres.

EXERCICE 4:

- 1. Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice à la fois unitaire et symétrique. Montrer qu'il existe une matrice S symétrique réelle telle que $A = \exp(iS)$. On commencera par écrire A = U + iV avec U et V matrices réelles.
- **2.** Soit $U \in \mathcal{M}_n(\mathbb{C})$ une matrice unitaire. Prouver qu'il existe une matrice réelle orthogonale Ω et une matrice symétrique réelle S telles que $U = \Omega$ exp(iS). Considérer la matrice tUU .

Source : Jean-Marie ARNAUDIÈS et Henri FRAYSSE, Algèbre bilinéaire et géométrie, Éditions Dunod, ISBN 2-04-016550-9

1. On a les relations ${}^tA=A$ et $A^*A={}^t\overline{A}A=I$. En transposant cette dernière relation, on obtient $A\overline{A}=I$.

En posant A = U + iV avec U et V matrices réelles, il vient

$$A\overline{A} = (U + iV)(U - iV) = (U^2 + V^2) + i(VU - UV) = I$$
,

donc $U^2 + V^2 = I$ et UV = VU. Par ailleurs, ${}^tA = {}^tU + i{}^tV = A$, donc les matrices U et V sont symétriques réelles. Or, **deux matrices symétriques réelles qui commutent sont simultanément orthogonalement diagonalisables** (cf. semaine 16, exercice 4, question 2). Il existe donc une matrice $P \in O(n)$ et deux matrices diagonales réelles $D_1 = \operatorname{diag}(x_1, \dots, x_n)$ et $D_2 = \operatorname{diag}(y_1, \dots, y_n)$ telles que

$$U = PD_1P^{-1} = PD_1^{t}P$$
 et $V = PD_2P^{-1} = PD_2^{t}P$.

En posant $D = D_1 + iD_2 = \operatorname{diag}(z_1, \dots, z_n)$ avec $z_k = x_k + iy_k$, on a $A = PDP^{-1} = PD^{t}P$. Les z_k $(1 \le k \le n)$ sont les valeurs propres de A et, A étant unitaire, on a $|z_k| = 1$ pour tout k, on peut donc écrire $z_k = e^{i\theta_k}$ avec θ_k réel. En posant $T = \operatorname{diag}(\theta_1, \dots, \theta_n)$, on a $D = \exp(iT)$, puis

$$A = P \exp(iT) P^{-1} = \exp(P(iT) P^{-1}) = \exp(iS)$$
,

où $S = PTP^{-1} = PT^{t}P$ est symétrique réelle.

2. Soit U unitaire, alors la matrice ${}^t\!UU$ est symétrique (évident) et unitaire :

$${}^{t}UU({}^{t}UU)^{*} = {}^{t}UUU^{*} {}^{t}U^{*} = {}^{t}U {}^{t}U^{*} = {}^{t}(U^{*}U) = I$$
.

donc il existe S symétrique réelle telle que ${}^tUU = \exp(2iS)$.

Posons $\Omega = U \exp(-iS)$.

Nous laissons le lecteur se <u>convain</u>cre du fait que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on a ${}^t\!\!\left(\exp(A)\right) = \exp({}^t\!\!A)$; $\overline{\exp(A)} = \exp(\overline{A})$ et $\left(\exp(A)\right)^* = \exp(A^*)$.

Donc

$${}^t\Omega\Omega = {}^t\big(\exp(-iS)\big) {}^tUU \exp(-iS) = \exp(-iS) \exp(2iS) \exp(-iS) = I$$

et

$$\Omega^*\Omega = (\exp(-iS))^* U^*U \exp(-iS) = \exp(iS) I \exp(-iS) = I,$$

donc $\Omega^{-1} = {}^t\Omega = \Omega^*$, soit encore $\overline{\Omega} = \Omega$: la matrice Ω est à coefficients réels, donc $\Omega \in O(n)$.

On obtient finalement $U = \Omega \exp(iS)$.

EXERCICE 5:

Soient E et F deux espaces hermitiens (ou euclidiens), soit u une application linéaire de E vers F.

- 1. Définir la notion d'adjoint (noté u^*) de l'application linéaire u. Préciser Ker u^* et Im u^* .
- 2. Montrer l'existence et l'unicité d'une application linéaire u' de F vers E telle que

$$\begin{cases} (1) &: uu'u = u \\ (2) &: u'uu' = u' \\ (3) &: \operatorname{Ker} u' = (\operatorname{Im} u)^{\perp} \\ (4) &: \operatorname{Im} u' = (\operatorname{Ker} u)^{\perp} \end{cases}$$

- 3. Montrer que, pour tout $y_0 \in F$, le vecteur $x_0 = u'(y_0)$ est "la meilleure solution approchée en norme" de l'équation $u(x) = y_0$, ce qui signifie que
 - $\forall x \in E$ $||u(x) y_0||_F \ge ||u(x_0) y_0||_F$;
 - $\forall x \in E \setminus \{x_0\}$ $\|u(x) y_0\|_F = \|u(x_0) y_0\|_F \Longrightarrow \|x\|_E > \|x_0\|_E$.
- **4.** Simplifier les expressions u^*uu' et $u'uu^*$.

En déduire une expression de u' à l'aide de u et u^* :

- **a.** lorsque u est injectif;
- **b.** lorsque u est surjectif.

1. On cherche à construire une application linéaire u^* de F vers E vérifiant

$$\forall (x,y) \in E \times F \qquad \left(u^*(y)|x\right)_E = \left(y|u(x)\right)_F \,.$$

Or, pour tout $y \in F$, l'application $f_y: x \mapsto (y|u(x))_F$ est une forme linéaire sur E, donc il existe un unique z de E tel que $\forall x \in E$ $f_y(x) = (z|x)_E$. En effet, le produit scalaire hermitien de E définit un semi-isomorphisme de E vers son dual E^* , c'est-à-dire une application semi-linéaire (linéaire dans le cas euclidien) et bijective. Notons $z = u^*(y)$, nous avons ainsi défini une application u^* de F vers E répondant à la condition imposée, et nous avons prouvé qu'une telle application est unique. Il reste à prouver qu'elle est linéaire. Si on se donne $y_1 \in F$, $y_2 \in F$, $\lambda \in K$ ($K = \mathbb{R}$ ou \mathbb{C}), alors

$$\forall x \in E \qquad \left(u^* (\lambda y_1 + y_2) | x \right)_E = \left(\lambda y_1 + y_2 | u(x) \right)_F$$

$$= \overline{\lambda} \left(y_1 | u(x) \right)_F + \left(y_2 | u(x) \right)_F$$

$$= \overline{\lambda} \left(u^* (y_1) | x \right)_E + \left(u^* (y_2) | x \right)_E$$

$$= \left(\lambda u^* (y_1) + u^* (y_2) | x \right)_E,$$

donc $u^*(\lambda y_1 + y_2) = \lambda u^*(y_1) + u^*(y_2) : u^* \in \mathcal{L}(F, E).$

Remarque : si \mathcal{B} et \mathcal{C} sont des bases orthonormales dans E et F respectivement, si on pose $A = M_{\mathcal{B},\mathcal{C}}(u)$, on a alors $M_{\mathcal{C},\mathcal{B}}(u^*) = A^* = {}^t\overline{A}$ ("transconjuguée" de A; remarquons que ce ne sont pas nécessairement des matrices carrées).

Comme pour l'adjoint d'un endomorphisme d'un espace euclidien ou hermitien, on obtient sans difficulté

$$\operatorname{Ker} u^* = (\operatorname{Im} u)^{\perp} \quad \operatorname{dans} F \quad ; \qquad \operatorname{Im} u^* = (\operatorname{Ker} u)^{\perp} \quad \operatorname{dans} E .$$

- 2. Raisonnons d'abord par conditions nécessaires : si une telle application linéaire u' existe, alors, de (1), on déduit que uu' est un projecteur q dans l'espace F et que les vecteurs de $\operatorname{Im} u$ sont invariants par ce projecteur q, donc $\operatorname{Im} u \subset \operatorname{Im} q$. De (3), on déduit que u' est nul sur $(\operatorname{Im} u)^{\perp}$ qui est un supplémentaire de $\operatorname{Im} u$ dans F. Donc q = uu' est nécessairement, dans F, le projecteur orthogonal sur $\operatorname{Im} u$. Si $y \in F$, le vecteur u'(y) doit être un antécédent par u de $q(y) \in \operatorname{Im} u$ appartenant à $(\operatorname{Ker} u)^{\perp}$ d'après (4). Or, nous savons que l'application linéaire u induit un isomorphisme ω de $(\operatorname{Ker} u)^{\perp}$ sur $\operatorname{Im} u$, donc nécessairement $u'(y) = \omega^{-1}(q(y))$. Cela prouve l'unicité de u'.
 - Réciproquement, soit q le projecteur orthogonal sur $\operatorname{Im} u$ dans F, soit ω l'isomorphisme de $(\operatorname{Ker} u)^{\perp}$ sur $\operatorname{Im} u$ induit par u. Pour tout $y \in F$, posons $u'(y) = \omega^{-1}(q(y))$. La linéarité de u' est immédiate. On vérifie ensuite uu' = q, d'où on tire facilement (1) et (2). Comme ω est un isomorphisme, on a $\operatorname{Ker} u' = \operatorname{Ker} q = (\operatorname{Im} u)^{\perp}$ et $\operatorname{Im} u' = \omega^{-1}(\operatorname{Im} u) = (\operatorname{Ker} u)^{\perp}$.
- 3. En posant $x_0 = u'(y_0)$, le vecteur $u(x_0) = uu'(y_0) = q(y_0)$ est le projeté orthogonal de y_0 sur Im u, donc

$$||u(x_0) - y_0||_F = \min_{y \in \text{Im } u} ||y - y_0||_F = \min_{x \in E} ||u(x) - y_0||_F.$$

- Si un autre vecteur x vérifie $||u(x) y_0||_F = ||u(x_0) y_0||_F$, alors u(x) est aussi le projeté orthogonal de y_0 sur $\operatorname{Im} u$, donc $u(x) = u(x_0)$, donc $x x_0 \in \operatorname{Ker} u$; mais $x_0 \in \operatorname{Im} u' = (\operatorname{Ker} u)^{\perp}$, donc la relation de Pythagore donne $||x||_E^2 = ||x x_0||_E^2 + ||x_0||_E^2 > ||x_0||_E^2$.
- L'application linéaire u' est appelée **pseudo-inverse** de u. Notons que, lorsque u est un isomorphisme, on a $u' = u^{-1}$.
- **4.** q = uu' est, dans F, le projecteur orthogonal sur $\operatorname{Im} u$ (*cf.* question **2.**), donc $\operatorname{id}_F uu'$ est, dans F, le projecteur orthogonal sur $(\operatorname{Im} u)^{\perp} = \operatorname{Ker} u^*$, d'où $u^*(\operatorname{id}_F uu') = 0$, c'est-à-dire $u^*uu' = u^*$.
 - On peut noter que u et u' jouent des rôles symétriques (examiner les conditions (1), (2), (3), (4) de la question 2. qui déterminent u' de manière unique; on a donc aussi u'' = (u')' = u), donc p = u'u est, dans E, le projecteur orthogonal sur $\operatorname{Im} u' = (\operatorname{Ker} u)^{\perp} = \operatorname{Im} u^*$; les vecteurs de $\operatorname{Im} u^*$ sont donc invariants par u'u, ce qui donne $u'uu^* = u^*$.
 - \bullet Remarquons d'abord que, sans hypothèse sur u, nous avons

$$\operatorname{Ker}(u^*u) = \operatorname{Ker} u$$
 et $\operatorname{Im}(uu^*) = \operatorname{Im} u$.

En effet, $\operatorname{Ker} u \subset \operatorname{Ker}(u^*u)$ et $u^*u(x) = 0 \Longrightarrow (u^*u(x)|x)_E = ||u(x)||_F^2 = 0 \Longrightarrow u(x) = 0_F$. Enfin,

$$\operatorname{Im}(uu^*) = u(\operatorname{Im} u^*) = u((\operatorname{Ker} u)^{\perp}) = \operatorname{Im} u$$

puisque u induit un isomorphisme de $(\operatorname{Ker} u)^{\perp}$ sur $\operatorname{Im} u$.

- Supposons u injectif. Alors u^*u est aussi injectif puisque $\operatorname{Ker}(u^*u) = \operatorname{Ker} u$, mais u^*u est un endomorphisme de l'espace de dimension finie E, donc u^*u est bijectif. De la relation $u^*uu' = u^*$, on tire $u' = (u^*u)^{-1}u^*$.
 - Si \mathcal{B} et \mathcal{C} sont des bases orthonormales de E et F respectivement, et si $M_{\mathcal{B},\mathcal{C}}(u) = A$, alors $A' = M_{\mathcal{C},\mathcal{B}}(u') = (A^*A)^{-1}A^*.$
- Supposons u surjectif. Alors uu^* est surjectif, donc est un automorphisme de l'espace F. De la relation $u'uu^* = u^*$, on tire $u' = u^*(uu^*)^{-1}$.
 - Si \mathcal{B} et \mathcal{C} sont des bases orthonormales de E et F respectivement, et si $M_{\mathcal{B},\mathcal{C}}(u) = A$, alors $A' = M_{\mathcal{C}, \mathcal{B}}(u') = A^* (AA^*)^{-1}.$

EXERCICE 6:

Soit
$$A \in \mathcal{M}_n(\mathbb{C})$$
, de valeurs propres $\lambda_1, \, \cdots, \, \lambda_n$.

1. Démontrer l'inégalité de Schur:
$$\sum_{i=1}^n |\lambda_i|^2 \leq \operatorname{tr}(A^*A) \;.$$
2. Soient x_i des persbres complexes. Prouver les res

2. Soient z_1, \dots, z_n des nombres complexes. Prouver les relations

(*)
$$\sum_{i < j} |z_i - z_j|^2 = n \sum_{i=1}^n |z_i|^2 - \left| \sum_{i=1}^n z_i \right|^2.$$

(**)
$$\max_{i,j} |z_i - z_j|^2 \le \frac{1}{n} \sum_{i,j} |z_i - z_j|^2.$$

3.En déduire l'inégalité de Mirsky :

$$\max_{i,j} |\lambda_i - \lambda_j|^2 \le 2\left(\operatorname{tr}(A^*A) - \frac{1}{n}|\operatorname{tr} A|^2\right).$$

4. Étudier les cas d'égalité dans les questions 1. et 3.

Source: Jean-Marie MONIER, Algèbre, Tome 2, Éditions Dunod, ISBN 2-10-000006-3

1. Toute matrice de $\mathcal{M}_n(\mathbb{C})$ est unitairement trigonalisable (cf. exercice 3) : on peut donc écrire $A = UTU^{-1} = UTU^*$ avec $U \in U(n)$ (groupe unitaire) et $T = (t_{ij}) \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure. Alors $A^*A = UT^*TU^* = UT^*TU^{-1}$, donc

$$\operatorname{tr}(A^*A) = \operatorname{tr}(T^*T) = \sum_{i,j} |t_{ij}|^2 \ge \sum_{i=1}^n |t_{ii}|^2 = \sum_{i=1}^n |\lambda_i|^2$$

puisque les éléments diagonaux t_{ii} de T sont les valeurs propres de A.

2. • Développons dans la joie et la bonne humeur :

$$\sum_{i < j} |z_i - z_j|^2 = \sum_{i < j} \left(|z_i|^2 + |z_j|^2 - (\overline{z_i} z_j + z_i \overline{z_j}) \right)$$

$$= (n-1) \sum_{i=1}^n |z_i|^2 - \left(\left| \sum_{i=1}^n z_i \right|^2 - \sum_{i=1}^n |z_i|^2 \right)$$

$$= n \sum_{i=1}^n |z_i|^2 - \left| \sum_{i=1}^n z_i \right|^2.$$

• Soit $(r,s) \in [1,n]^2$ un couple d'indices avec r < s; alors la somme $\sum_{i,j} |z_i - z_j|^2$ est plus grande que la somme sur les couples (i,j) tels que $\{i,j\} \cap \{r,s\} \neq \emptyset$, ce qui s'écrit

$$\sum_{i,j} |z_i - z_j|^2 \geq \sum_{k \notin \{r,s\}} \left(|z_r - z_k|^2 + |z_k - z_r|^2 + |z_s - z_k|^2 + |z_k - z_s|^2 \right) + |z_r - z_s|^2 + |z_s - z_r|^2$$

$$= 2 \sum_{k \notin \{r,s\}} \left(|z_r - z_k|^2 + |z_k - z_s|^2 \right) + 2 |z_r - z_s|^2.$$

Par ailleurs l'identité du parallélogramme $|u+v|^2+|u-v|^2=2\left(|u|^2+|v|^2\right)$ donné $2\left(|u|^2+|v|^2\right)\geq |u+v|^2$, donc

$$\sum_{i,j} |z_i - z_j|^2 \ge \sum_{k \notin \{r,s\}} |z_r - z_s|^2 + 2|z_r - z_s|^2 = n|z_r - z_s|^2.$$

L'inégalité ci-dessus étant vraie pour tout couple (r, s), cela prouve (**).

3. En utilisant (**), puis (*), puis la question 1., on obtient

$$\max_{i,j} |\lambda_i - \lambda_j|^2 \le \frac{1}{n} \sum_{i,j} |\lambda_i - \lambda_j|^2 = 2 \sum_{i=1}^n |\lambda_i|^2 - \frac{2}{n} \left| \sum_{i=1}^n \lambda_i \right|^2 \le 2 \left(\operatorname{tr}(A^*A) - \frac{1}{n} |\operatorname{tr} A|^2 \right).$$

- **4.** Il y a égalité dans **1.** (Schur) si et seulement la matrice T est diagonale, à savoir si et seulement si A est unitairement diagonalisable, c'est-à-dire normale $(AA^* = A^*A)$, cf. exercice **3**.
 - L'égalité dans 3. (Mirsky) se produit si et seulement si on a les deux conditions

(a):
$$\max_{i,j} |\lambda_i - \lambda_j|^2 = \frac{1}{n} \sum_{i,j} |\lambda_i - \lambda_j|^2;$$

(b):
$$\sum_{i=1}^{n} |\lambda_i|^2 = \text{tr}(A^*A)$$
 (Schur).

La condition (b) signifie que la matrice A est normale. En reprenant les calculs conduisant à l'inégalité (**) de la question 2., on voit que la condition (a) est réalisée si et seulement si :

- d'une part, il existe un couple (r,s) avec r < s tel que $|\lambda_i \lambda_j| = 0$ pour tout couple $(i,j) \in \left(\llbracket 1,n \rrbracket \setminus \{r,s\}\right)^2$;
- on a l'égalité $2(|u|^2+|v|^2)=|u+v|^2$ avec $\begin{cases} u=\lambda_r-\lambda_k\\v=\lambda_k-\lambda_s \end{cases}, \text{ et ceci pour tout } k\in \llbracket 1,n\rrbracket\setminus\{r,s\}... \text{ mais ceci équivaut à } u=v, \text{ soit } \lambda_k=\frac{\lambda_r+\lambda_s}{2}.$
- En conclusion, les matrices de permutation étant unitaires, l'égalité a lieu dans $\bf 3.$ si et seulement si la matrice A est unitairement semblable à une matrice diagonale de la forme diag $\left(\lambda,\mu,\frac{\lambda+\mu}{2},\cdots,\frac{\lambda+\mu}{2}\right)$ avec $(\lambda,\mu)\in\mathbb{C}^2$.