Exemplar Problems Determinants

3

$$\begin{vmatrix}
0 & xy^2 & xz^2 \\
x^2y & 0 & yz^2 \\
x^2z & zy^2 & 0
\end{vmatrix}$$

Solution:

Given,
$$\begin{vmatrix} 0 & xy^2 & xz^2 \\ x^2y & 0 & yz^2 \\ x^2z & zy^2 & 0 \end{vmatrix}$$

[Taking x^2 , y^2 and z^2 common from C_1 , C_2 and C_3 , respectively]

$$= x^2 y^2 z^2 \begin{vmatrix} 0 & x & x \\ y & 0 & y \\ z & z & 0 \end{vmatrix}$$

[Applying $C_2 \rightarrow C_2 - C_3$]

$$= x^{2}y^{2}z^{2}\begin{vmatrix} 0 & 0 & x \\ y & -y & y \\ z & z & 0 \end{vmatrix} = x^{2}y^{2}z^{2} (x(yz + yz))$$