CASE HAND, IN

University of Toronto Department of Mathematics

FACULTY OF ARTS AND SCIENCE MAT224H1F

Linear Algebra II

Final Examination

December 2009

S. Uppal

Duration: 3 hours

Last Name:	
Given Name:	
Student Number:	

No calculators or other aids are allowed.

FOR MARKER USE ONLY		
Question	Mark	
1	/10	
2	/10	
3	/10	
4	/10	
5	/10	
6	/10	
7	/10	
TOTAL	/70	

[10] 1. Let $V = P_2(\mathbb{R})$, with the inner product

$$< p(t), q(t) > = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$$

for all $p(t), q(t) \in V$. Consider the subspace $W = \{p(t) \in V \mid p(1) + p(-1) = 0\}$ of V. Find an orthogonal basis for the orthogonal complement W^{\perp} of W in V.

EXTRA PAGE FOR QUESTION 1 - please do not remove.

[10] 2. Let T be the linear operator on \mathbb{C}^2 defined by

$$T(z_1, z_2) = (2z_1 + iz_2, (1 - i)z_1).$$

- (a) Find $T^*(3-i, 1+2i)$.
- (a) Determine if T is self-adjoint, normal, or neither.

[10] 3. Let W be a subspace of a vector space V. Prove that if $V = W \oplus W^{\perp}$ and T is the orthogonal projection onto W, then $T = T^*$.

[10] 4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator that has the matrix

$$A = \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

realtive to the standard basis of \mathbb{R}^3 . Find the spectral decomposition of T.

EXTRA PAGE FOR QUESTION 4 - please do not remove

[10] 5. Let $T: V \to V$ be a linear operator satisfying $T^2 = I_V$ (Note: I_V denotes the identity operator on V). Define

$$U_1 = \{ v \in V \mid T(v) = v \}$$
 and $U_2 = \{ v \in V \mid T(v) = -v \}$

- (a) Show that U_1 and U_2 are T-invariant..
- (b) Show that $V = U_1 \oplus U_2$. Hint: $v + T(v) \in U_1$ and $v T(v) \in U_2$.

EXTRA PAGE FOR QUESTION 5 - please do not remove

[10] **6.** Let $V = W_1 + W_2$, where W_i are subspaces of V for i = 1, 2. Prove that $V = W_1 \oplus W_2$ if and only if $w_1 + w_2 = 0$, and $w_i \in W_i$ imply that each $w_i = 0$ for i = 1, 2.

[10] 7. Let $T: \mathbb{C}^4 \to \mathbb{C}^4$ be the linear operator that has the matrix

$$A = \begin{pmatrix} 0 & 4 & 0 & i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

realtive to the standard basis of \mathbb{C}^4 . Find a basis of \mathbb{C}^4 such that the matrix of T relative to this basis is the Jordan canonical matrix J for T, and find a matrix P such that $P^{-1}AP = J$.

EXTRA PAGE FOR QUESTION 7 - please do not remove.