Matthew Mendoza - Assignment 05 part 2

CSC 174 section 2 Spring 2023

- Matthew Mendoza Assignment 05 part 2
 - TL;DR All Solutions
 - Q1
 - Q2
 - Q3
 - Assignment 5 Part 2 Work and steps shown
 - Question 1
 - Question 1 My Solution
 - Question 1 Step 1: Set up initial largea's
 - Question 1 Step 2 : Follow the production for each Relation (does the values match?)
 - Question 1 Step 3 : Check rows
 - Question 2
 - Question 2 My Solution
 - Approach 1
 - Approach 1: Attribute Large A
 - Approach 1: Attribute Large B
 - Approach 1: Result
 - Approach 2
 - Approach 2 Step 1: Initial Set-up
 - Approach 2 Step 2 : Follow the functional dependencies
 - Approach 2 Step 3 : Check rows
 - Question 3
 - Question 3 My Solution
 - Question 3 step 1
 - Question 3 step 2
 - Question 3 Result

TL;DR - All Solutions

Does this decomposition have the lossless join property?

Yes, because the functional dependencies are preserved in the decomposition. We have a row that are all a's

Lossless join decomposition – avoid data corruption: No gain/no loss

Relations	С	D	Е	F	W
$R_1\left(C,D ight)$	a_{11}	a_{12}	b_{13}	b_{14}	b_{15}
$R_2\left(E,F,W,C ight)$	a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

Q2

$$R_3(A, D, W)$$
 is lossless

	Α	В	С	D	Е	F	W
$R_3(A, D, W)$	a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}	a_{37}

Q3

$$D = \{R_1(y, c, z, e, f, w), R_2(f, x)\}$$

Assignment 5 Part 2 - Work and steps shown

Question 1

Given R(C, D, E, F, W), and the following functional dependencies:

$$F \, o \, E$$

$$C \, o \, D$$

We decompose R into two relations $R_1(C,D)$ and $R_2(E,F,W,C)$ Does this decomposition have the lossless join property?

Question 1 - My Solution

Does this decomposition have the lossless join property?

Yes, because the functional dependencies are preserved in the decomposition. We have a row that are all a's

Lossless join decomposition - avoid data corruption : No gain/no loss

Relations	С	D	E	F	W
$R_1\left(C,D ight)$	a_{11}	a_{12}	b_{13}	b_{14}	b_{15}
$R_2\left(E,F,W,C ight)$	a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

Question 1 - Step 1 : Set up initial a's

Relations	С	D	Е	F	W
R_1	b_{11}	b_{12}	b_{13}	b_{14}	b_{15}
R_2	b_{21}	b_{22}	b_{23}	b_{24}	b_{25}

Cross-out and change corresponding relational attributes to a

 $R_1(C, D)$

 $R_2(E, F, W, C)$

Relations	С	D	E	F	W
$R_1\left(C,\ D ight)$	<i></i> b ₁₁ a	$-b_{12}$ а	b_{13}	b_{14}	b_{15}
$R_2\left(E,F,W,C ight)$	<i></i> b ₂₁ <i></i> a	b_{22}	<i></i> b ₂₃ <i></i> a	<i></i> b ₂₄ <i></i> a	<i></i> b ₂₅ <i></i> a

Relations	С	D	E	F	W
$R_1(C,D)$	a_{11}	a_{12}	b_{13}	b_{14}	b_{15}
$R_2\left(E,F,W,C ight)$	a_{21}	b_{22}	a_{23}	a_{24}	a_{25}

Question 1 - Step 2 : Follow the production for each Relation (does the values match?)

$$F\, o\, E$$

$$F\,
ightarrow\, W$$

$$C \, o \, D$$

Relations	С	D	E	F	W
$R_1(C,D)$	a_{11}	a_{12}	b_{13}	b_{14}	b_{15}
$R_2\left(E,F,W,C ight)$	a_{21}	b_{22}	a_{23}	a_{24}	a_{25}

 $R_1(C, D)$:

F
ightarrow E : $b_{14} == b_{13}$? True , so no change

F
ightarrow W : $b_{14} == b_{15}$? True , so no change

C
ightarrow D : $a_{11} == a_{12}$? True, so no change

 $R_2(E, F, W, C)$:

F
ightarrow E : $a_{24} == a_{23}$? True, so no change

F
ightarrow W : $a_{24} == a_{25}$? True , so no change

C
ightarrow D : $a_{21} == b_{22}$? FALSE , so change b_{22} to a_{22}

Relations	С	D	E	F	W
$R_1\left(C,D ight)$	a_{11}	a_{12}	b_{13}	b_{14}	b_{15}
$R_2\left(E,F,W,C ight)$	a_{21}	<i></i> b ₂₂ a	a_{23}	a_{24}	a_{25}

Relations	С	D	Е	F	W
$R_1\left(C,D ight)$	a_{11}	a_{12}	b_{13}	b_{14}	b_{15}
$R_2\left(E,F,W,C ight)$	a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

Question 1 - Step 3 : Check rows

Does this decomposition have the lossless join property?

Yes, because the functional dependencies are preserved in the decomposition. We have a row that are all a's

Lossless join decomposition – avoid data corruption : No gain/no loss

Relations	С	D	Е	F	W
$R_1\left(C,\ D ight)$	a_{11}	a_{12}	b_{13}	b_{14}	b_{15}
$R_2\left(E,F,W,C\right)$	a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

Question 2

Given R(A, B, C, D, E, F, W) and the following functional dependencies:

$$fd_1:A
ightarrow \{B,\,C\}$$

$$fd_2:\,D\,
ightarrow\,\left\{E,\,F
ight\}$$

Decompose R into 3rd normal form with both dependency preservation with property and loss-less property.

Lossless join decomposition – avoid data corruption: No gain/no loss

Dependency preserving – improve performance : No joins needed to check a dependency

Question 2 - My Solution

 $R_3(A, D, W)$ is lossless

	Α	В	С	D	Е	F	W
$R_3(A, D, W)$	a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}	a_{37}

Approach 1

R(A, B, C, D, E, F, W)

 $fd_1:A
ightarrow \{B,\,C\}$

 $fd_2:\,D\,
ightarrow\,\{E,\,F\}$

$K := \{A, B, C, D, E, F, W\}$

Approach 1 : Attribute A

 $K - A = \{B, C, D, E, F, W\}$

 ${B, C, D, E, F, W}^+ = W \neq R$

Approach 1 : Attribute B

$$K - B = \{A, C, D, E, F, W\}$$

$\{K-B\}^+$		
	$=\left\{ A,\ C,\ D,\ G,\ F,\ W\right\} ^{+}$	Remove B
	$=\{A,\ B,\ C,\ D,\ G,\ F,\ W\}=R$	

$AC : \left\{K-C ight\}^+$		
	$= \left\{ A, \ D, \ G, \ F, \ W \right\}^+$	Remove C

$AC : \left\{K-C ight\}^+$		
	$=\{A,\ B,\ C,\ D,\ E,\ F,\ W\}=R$	

$$AD: \{K - D\}^+$$

$$= \{A, G, F, W\}^+$$

$$= \{A, B, C, E, F, W\} \neq R \times$$

$AE:\left\{ K-E ight\} ^{+}$		
	$= \left\{ A, \ D, \ F, \ W \right\}^+$	Remove E
	$=\{A,\ B,\ C,\ D,\ E,\ F,\ W\}=R$	

$AF:\left\{ K-F ight\} ^{+}$		
	$= \left\{ A, \ D, \ F, \ U \right\}^+$	Remove F
	$=\{A,\ B,\ C,\ D,\ E,\ F,\ U\}=R$	

$AW : \left\{K-W ight\}^+$	
	$=\left\{ A,\ D,\ W\right\} ^{+}$
	$=\{A,\ B,\ C,\ D,\ E,\ F,\ W\} eq R$

Final Key : $\{A,\ D,\ W\}$

Approach 1: Result

Final Key : $\{A, D, W\}$

- 1. Minimal cover : E := F
- 2. $R_1(A, B, C) R_2(D, E, F)$
- 3. $R_3(A, D, W)$
- 4. No redundancy

Approach 2

Approach 2 - Step 1: Initial Set-up

R is not in 3rd normal form because it's not one-to-one : $A \rightarrow \{B, C\}$

Armstrong Axiom : $AD \rightarrow \{BE, BF, CE, CF\}$

 $R_1\left(A,\ B,\ C\right)$ attributes that depend on candidate key A

$$R_2(D, E, F)$$

 $R_3(A, D, W)$

	Α	В	С	D	Е	F	W
$R_3(A,D,W)$	b_{31}	b_{32}	b_{33}	b_{34}	b_{35}	b_{36}	b_{37}

Make R_3 attributes change to a_{ij} from b_{ij}

	Α	В	С	D	Е	F	W
$R_3\left(A,\ D,\ W ight)$	<i>b</i> ₃₁ a	b_{32}	b_{33}	<i>b</i> ₃₄ a	b_{35}	b_{36}	<i></i> b ₃₇ <i></i> a

	Α	В	С	D	Е	F	W
$R_3(A,D,W)$	a_{31}	b_{32}	b_{33}	a_{34}	b_{35}	b_{36}	a_{37}

Approach 2 - Step 2 : Follow the functional dependencies

 $fd_1:A
ightarrow \{B,\,C\}$

- ullet $A
 ightarrow \ \{B\}$: $a_{31} == b_{32}$? False , change b_{32} to a_{32}
- ullet $A
 ightarrow \ \{C\}$: $a_{31} == b_{33}$? False , change b_{33} to a_{33}

	Α	В	С	D	Е	F	W
$R_3\left(A,\ D,\ W ight)$	a_{31}	$-b_{32}$ — а	$-b_{33}$ — а	a_{34}	b_{35}	b_{36}	a_{37}

 $fd_2:\,D\,
ightarrow\,\left\{E,\,F
ight\}$

- ullet $D \,
 ightarrow \, \{E\}$: $a_{34} \,==\, b_{35}$? False , change b_{35} to a_{35}
- ullet $D
 ightarrow \ \{F\}$: $a_{34} == b_{36}$? False , change b_{36} to a_{36}

	Α	В	С	D	E	F	W
$R_3\left(A,\ D,\ w ight)$	a_{31}	a_{32}	a_{33}	a_{34}	$-b_{35}$ — а	$-b_{36}$ a	a_{37}

Approach 2 - Step 3 : Check rows

$$R_3\left(A,\,D,\,W
ight)$$
 is lossless

	Α	В	С	D	E	F	W
$R_3(A, D, W)$	a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}	a_{37}

Question 3

Given R(x, y, c, z, e, f, w). There are two keys: (x, y) and z. Given the following functional dependency:

$$F = \{\{x,y\} \rightarrow \{c,\,z,\,e,\,f,\,w\},\,z\,\rightarrow\,\{x,\,y,\,c,\,e,\,f,\,w\},\,f\,\rightarrow\,x\}.$$

Decompose R into BCNF .

Question 3 - My Solution

Keys:
$$(x, y)$$
, z

$$FD_1 = \{x,\ y\} o \{c,\ z,\ e,\ f,\ w\}$$

$$FD_2 = z \rightarrow \{x, y, c, e, f, w\}$$

$$FD_3 = f \rightarrow x$$

Question 3 - step 1

$$D := R$$

Question 3 - step 2

$$R_1:R-\{x\}=\{y,\;c,\;z,\;e,\;f,\;w\}$$

$$R_2: \{f\} \cup \{x\} = \{f, x\}$$

•
$$FD_3 = f \rightarrow x$$

Question 3 - Result

$$D = \{R_1(y, c, z, e, f, w), R_2(f, x)\}$$