Strace

Engenharia de Sistemas da Computação Computação Paralela Distribuída

Mestrado em Engenharia Informática Universidade do Minho

Duarte Nuno Ferreira Duarte pg27715

Índice

ST	RACE	1
ÍN	DICE	2
a.	Tempo	5
b.	Operações de IO	5
C.	Bandas utilizadas	5
3.	CONCLUSÃO	8
4.	OBTENÇÃO DOS RESULTADOS	9
l.	CLEANFORME.SH	ERROR! BOOKMARK NOT DEFINED.

Introdução

Com a realização deste trabalho pretende-se analisar o padrão de execução das aplicações ao nível dos traços que elas deixam no sistema. Monitorizar as chamadas aos sistema por parte do programa a executar.

1. Strace

Para a realização da análise foi usada a versão do search6 que é a 4.5.19. Como descrito no enunciado deste trabalho foi criado um *job* para executar o seguinte comando:

```
strace -T -ttt -o strace.out /opt/iozone/bin/iozone -R -a -i0 -i1 -i2 -i5 -g 256M
```

De seguida foi utilizado um script auxiliar para que os ficheiros fossem processados para se obter uma leitura mais fácil. Para isso foi utilizado o *refazStFd.py* desenvolvido pelo professor da Unidade Curricular. Por fim o ficheiro resultante da passagem pelo script é analisado pelo strace_analyzer de forma a serem obtidos resultados sobre a execução do strace. Estes dois últimos processos foram chamados da seguinte forma:

```
/share/apps/IOAPPS/refazStFd.py < strace.out > tmpfile
/share/apps/IOAPPS/strace_analyzer_ng_0.09.pl tmpfile > statistics.txt
```

2. Resultados obtidos

a. Tempo

A execução deste comando demorou aproximadamente 172 segundos e deste tempo 161 segundos foram de IO o que corresponde a uma percentagem de 93.5%.

b. Operações de IO

Foram obtidos resultados relativamente as chamadas de sistema, esses resultados encontram-se apresentados de seguida. Como era expectável para este comando chamadas de *read* e *write* obtiveram as contagens mais altas.

IO Command	Count
Command	Count
access	1
lseek	95254
stat	352
unlink	234
open	941
close	1175
creat	117
fstat	6
fsync	1404
read	126931
write	96692

c. Bandas utilizadas

Foram compilados os resultados relativos à utilização da banda por parte das chamadas de leitura e escrita. Estes resultados são relativos a muitas linhas nos resultados obtidos pelo que os gráficos têm valores relativos a muitas medições de tempo.

i. Banda da utilização do write

O gráfico acima ilustra a utilização da banda por parte da escrita ao longo do tempo de execução. Na tabela seguinte é possível observar o tamanho dos blocos para as chamas ao sistema no que diz respeito à escrita.

	- Fi	le size	5	for w	vrite()	syscall
I(Si	ze Range	e ==:			Number of syscalls
(1)	0KB	<	<	1KB	1673
(2)	1KB	<	<	8KB	24528
(3)	8KB	<	<	32KB	18396
(4)	32KB	<	<	128KB	27639
(5)	128KB	<	<	256KB	12285
(6)	256KB	<	<	512KB	6141
(7)	512KB	<	<	1000KB	3069
(8)	1000KB	<	<	10MB	2868
(9)	10MB	<	<	100MB	93
(10)	100MB	<	<	1GB	0
(11)	1GB	<	<	10GB	0
(12)	10GB	<	<	100GB	0
(13)	100GB	<	<	1TB	0
(14)	1TB	<	<	10TB	0

Os resultados obtidos produziram umas estatísticas em relação à chamada do write. Essas estatísticas estão apresentadas na tabela seguinte:

```
-- WRITE SUMMARY --
Total number of Bytes written = 14,796,931,660 (14,796.93166 MB)
Number of Write syscalls = 96,692

Average (mean) Bytes per syscall = 153,031.60199396 (bytes) (0.15303160199396 MB)
Standard Deviation: 723,070.151693487 (bytes) (0.723070151693487 MB)
Mean Absolute Deviation: 690,307.763137929 (bytes) (0.690307763137929 MB)
Median Bytes per syscall = 65,536 (bytes) (0.065536 MB)
Median Absolute Deviation: 143,793.095974848 (bytes) (0.143793095974848 MB)

Time for slowest write syscall (secs) = 0.014625
Line location in file: 323294

Smallest write syscall size: 1 (Bytes)
Largest write syscall size: 16777216 (Bytes)
```

Foram escritos cerca de 15GB em aproximadamente 97 mil chamadas de escrita. A média de bytes foi de 153 KB por chamada ao sistema. A mediana encontra-se nos 66 KB por chamada.

O gráfico acima ilustra a utilização da banda por parte da leitura ao longo do tempo de execução. Na tabela seguinte é possível observar o tamanho dos blocos para as chamas ao sistema no que diz respeito à leitura.

File sizes for read() syscalls						
IC	Si	ze Range	e			Number of syscalls
(1)	 0KB	<	<	1KB	3
(2)	1KB	<	<	8KB	32724
(3)	8KB	<	<	32KB	24564
(4)	32KB	<	<	128KB	36896
(5)	128KB	<	<	256KB	16404
(6)	256KB	<	<	512KB	8210
(7)	512KB	<	<	1000KB	4112
(8)	1000KB	<	<	10MB	3884
(9)	10MB	<	<	100MB	134
(10)	100MB	<	<	1GB	0
(11)	1GB	<	<	10GB	0
(12)	10GB	<	<	100GB	0
(13)	100GB	<	<	1TB	0
(14)	1TB	<	<	10TB	0

Os resultados obtidos produziram umas estatísticas em relação à chamada do read. Essas estatísticas estão apresentadas na tabela seguinte:

```
-- READ SUMMARY --
Total number of Bytes read = 20,131,020,718 (20,131.020718 MB)
Number of Read syscalls = 126,931

Average (mean) Bytes per syscall = 158,598.141651764 (bytes) (0.158598141651764 MB)
Standard Deviation: 749,136.288122469 (bytes) (0.749136288122469 MB)
Mean Absolute Deviation: 716,227.68995956 (bytes) (0.71622768995956 MB)
Median Bytes per syscall = 65,536 (bytes) (0.065536 MB)
Median Absolute Deviation: 148,001.871520747 (bytes) (0.148001871520747 MB)

Time for slowest read syscall (secs) = 0.006392
Line location in file: 323388

Smallest read syscall size: 832 (Bytes)
Largest read syscall size: 16777216 (Bytes)
```

Foram lidos cerca de 20GB em aproximadamente 27 mil chamadas de leitura. A média de bytes foi de 159 KB por chamada ao sistema. A mediana encontra-se nos 65 KB por chamada.

iii. Open

3. Conclusão

Esta ferramenta abordada nesta semana mostrou que pode vir a ser bastante útil, é uma ferramenta muito pesada mas que mostra as chamadas todas aos sistema por parte da aplicação que monitoriza. É uma ferramenta que tem potencial e pode vir a ser utilizada no futuro no teste de outras aplicações.

4. Obtenção dos resultados

a. Scripts utilizados

```
i. cpi.pbs
```

```
#!/bin/bash
#PBS -l walltime=05:00:00
#PBS-j oe
#PBS -N a
#PBS -lnodes=2:ppn=20
cat $PBS_NODEFILE

strace -T -ttt -o strace.out
/opt/iozone/bin/iozone -R -a -i0 -i1
-i2 -i5 -g 256M
```

Este cpi limita-se a ser utilizado com o qsub de forma a "angariar" um nodo de execução e executar o strace.