Traveling Salesman Problem: Implementation of an Optimization Algorithm based on Operational Research Techniques for Complexity Analysis

MICAEL ANDRÉ CUNHA DIAS, CARLOS FERNANDO TEIXEIRA LEITE SÉRGIO LUÍS LOPES FÉLIX

8200393@estg.ipp.pt, 8200377@estg.ipp.pt, 8200615@estg.ipp.pt

Instituto Politécnico do Porto, Escola Superior de Tecnologia e Gestão, Rua do Curral, Casa do Curral–Margaride, 4610-156 Felgueiras, Portugal.

Abstract. Este estudo apresenta uma análise do problema do Caixeiro Viajante (TSP) e do algoritmo K-Nearest Neighbors (K-NN). O TSP é um desafio clássico de otimização, onde o objetivo é encontrar a rota mais curta que visita todas as cidades uma vez e retorna à cidade inicial. O algoritmo K-NN é uma técnica de aprendizado de máquina que classifica novos pontos de dados com base na maioria dos K vizinhos mais próximos.

Keywords: Traveling Salesman Problem (TSP), NP-hard (Non-deterministic Polynomial-time hard), Nearest Neighbor Algorithm (K-NN)

1 Introdução

O presente trabalho prático tem como objetivo a resolução do desafiante problema do Traveling Salesman Problem (TSP), no âmbito da disciplina de Análise Algorítmica e Optimização (AAO). Neste trabalho, foi proposta a implementação de um algoritmo para solucionar o problema do caixeiro viajante, em busca de encontrar a solução ótima para cada instância de rede apresentada.

O TSP é conhecido por ser um problema NP-hard (Non-deterministic Polynomial-time hard). Não existe um algoritmo conhecido que possa resolvê-lo para todas as entradas possíveis em tempo polinomial. À medida que o número de cidades aumenta, o número de passeios possíveis cresce exponencialmente, tornando uma busca exaustiva pela solução ótima computacionalmente inviável para instâncias de problema grandes.

Este problema tem sido estudado há décadas e várias soluções têm sido teorizadas. A solução mais simples é tentar todas as possibilidades, mas este é também o método mais demorado e dispendioso. Muitas soluções utilizam heurísticas, que fornecem resultados probabilísticos. No entanto, os resultados são aproximados e nem sempre ótimos.

Uma forma de abordar esse problema é usar Algoritmos de Aproximação. Esses algoritmos fornecem soluções que são próximas do ótimo, mas não necessariamente

ótimas. Em vez de focar em encontrar a rota mais eficaz, o TSP muitas vezes preocupa-se em encontrar a solução menos custosa.

O algoritmo Nearest Neighbour Algorithm (K-NN) é uma aproximação simples e intuitiva para o TSP. Começa por uma cidade arbitrária e seleciona repetidamente a cidade não visitada mais próxima até que todas as cidades tenham sido visitadas. A ordem de complexidade do algoritmo é $O(N^2)$, onde N é o número de cidades na instância do problema.

2 Materials and methods

No decorrer do desenvolvimento deste projeto criou-se uma bateria de testes com 32 cidades de Portugal, na qual utilizou-se um script para a criação das redes de forma aleatória, calculando assim a distância entre elas através da fórmula da distância euclidiana, criando assim as redes exponencialmente, ou seja, 4 nós, 8 nós, 16 nós, 32 nós.

Após a criação das redes foi efetuado uma validação da solução ótima com base no algoritmo escolhido para a solução do problema. Ao comparar as rotas encontradas pelo K-NN com as rotas ótimas, é possível avaliar a qualidade da solução obtida. Pode-se calcular a diferença entre os custos das rotas encontradas e as rotas ótimas conhecidas, bem como analisar visualmente as rotas geradas para identificar eventuais desvios significativos.

2.1 Network com 4 nós

	Valongo	Porto	Leiria	Maia
Valongo	-	50	815	55
Porto	50	-	785	50
Leiria	815	785	-	830
Maia	55	50	830	-

Temos um percurso que inicia em Valongo, passa por Porto, Maia e Leiria, e retorna a Valongo. o custo de percorrer de Valongo a Porto é de 50. Em seguida, o custo de ir de Porto a Maia também é de 50. Após isso, o custo de viajar de Maia a Leiria é de 830. Por fim, o custo de retorno de Leiria a Valongo é de 815. Somando todos esses custos, temos:50 + 50 + 830 + 815 = 1745

Network com 8 nós

	Montijo	Odivelas	Guimaraes	Gondomar	Seixal	Leiria	Aveiro	Maia
Montijo	-	105	1550	1365	65	585	1085	1415
Odivelas	105	-	1520	1335	90	555	1050	1380
Guimaraes	1550	1520	-	195	1595	965	470	180
Gondomar	1365	1335	195	-	1410	785	285	65
Seixal	65	90	1595	1410	-	630	1130	1455
Leiria	585	555	965	785	630	-	500	830
Aveiro	1085	1050	470	285	1130	500	-	330
Maia	1415	1380	180	65	1455	830	330	-

Para esta network foi desenvolvido um percurso que começa no Montijo e passa pelo Seixal, Odivelas, Leiria, Aveiro, Gondomar, Maia e Guimarães, antes de retornar ao Montijo. O custo total dessa rota é de 329 unidades monetárias.

Network com 16 nós

(continua na próxima página)

Network com 16 nós

	Matosin	T . • . • .	F	X7-1	3.6.1.	A3 3 -	G.: -1	1	9-4/1-1	Rio	G (D	Amador	T 1-1	F	
	hos	Leiria	Funchal	Valongo	Maia	Almada	Seixal	Évora	Setúbal	Tinto	Cacém	Barreiro	a	Lisboa	Faro	Amora
Matosin hos	-	800	5980	80	40	1405	1425	1490	1480	55	1365	1410	1365	1380	2340	1440
Leiria	800	-	5360	815	830	615	630	760	680	800	585	615	580	590	1565	645
Funchal	5980	5360	-	6035	6020	4840	4845	5230	4875	6010	4825	4865	4845	4865	4760	4830
Valongo	80	815	6035	-	55	1425	1445	1480	1495	30	1390	1430	1390	1400	2335	1455
Maia	40	830	6020	55	-	1440	1455	1510	1510	40	1400	1445	1400	1415	2365	1470
Almada	1405	615	4840	1425	1440	-	30	545	145	1415	85	40	55	25	1070	40
Seixal	1425	630	4845	1445	1455	30	-	520	110	1430	115	20	90	50	1035	15
Évora	1490	760	5230	1480	1510	545	520	-	430	1475	620	510	585	540	865	525
Setúbal	1480	680	4875	1495	1510	145	110	430	-	1485	225	110	200	155	935	110
Rio Tinto	55	800	6010	30	40	1415	1430	1475	1485	-	1375	1415	1375	1390	2330	1445
Cacém	1365	585	4825	1390	1400	85	115	620	225	1375	-	120	30	80	1145	120
Barreiro	1410	615	4865	1430	1445	40	20	510	110	1415	120	-	90	45	1040	35
Amador a	1365	580	4845	1390	1400	55	90	585	200	1375	30	90	-	50	1125	95
Lisboa	1380	590	4865	1400	1415	25	50	540	155	1390	80	45	50	-	1085	60
Faro	2340	1565	4760	2335	2365	1070	1035	865	935	2330	1145	1040	1125	1085	-	1030
Amora	1440	645	4830	1455	1470	40	15	525	110	1445	120	35	95	60	1030	-

Foi desenvolvido um percurso que parte de Matosinhos e passa por Maia, Rio Tinto, Valongo, Leiria, Amadora, Cacém, Lisboa, Almada, Seixal, Amora, Barreiro, Setúbal, Évora, Faro e Funchal, antes de retornar a Matosinhos. O custo total dessa rota é de 1386 unidades monetárias, que é a soma dos custos de cada trecho ao longo do caminho.

Somando os custos temos: 40 + 40 + 30 + 815 + 580 + 30 + 80 + 25 + 30 + 15 + 35 + 110 + 430 + 865 + 4760 + 5980 = 1386

Foi gerado um gráfico com 32 nós, embora não tenhamos criado uma tabela para acompanh ar os custos entre cidades.

Implementação do Algoritmo

O código apresentado é uma implementação do algoritmo do K-NN para resolver o TSP. Como entrada recebe uma rede (grafo) que representa os nós e as arestas do problema.

O código começa por selecionar o primeiro nó como o nó inicial. Em seguida, enquanto ainda existirem nós restantes para visitar, o código percorre cada um dos nós restantes e calcula a distância entre o nó atual e os nós restantes. O nó mais próximo é selecionado e adicionado ao caminho percorrido até ao momento. O custo total do caminho é atualizado com a distância mínima encontrada. Esse processo é repetido até que todos os nós tenham sido visitados.

No final, o nó inicial é adicionado novamente ao caminho, e a distância da última aresta é adicionada ao custo total. O algoritmo retorna o caminho percorrido, o custo total desse caminho e o número de comparações realizadas durante a execução do algoritmo.

```
def solve_tsp(network):
nodes = list(network.nodes) # n
 start_node = nodes[0] # 1
 path = [start_node] # 1
 total cost = 0 # 1
 remaining nodes = nodes[1:] # n
 comparisons = 0 # 1
 while remaining nodes: # n
   current node = path[-1] #1
   nearest_node = None # 1
   min distance = float('inf') # 1
   comparisons += 1
   for node in remaining_nodes: # n
     distance = network[current_node][node]['weight'] # 1
     comparisons += 1
     if distance < min_distance: #1
       comparisons +=
       min_distance = distance # 1
       nearest_node = node # 1
   path.append(nearest_node) # n
   total_cost += min_distance # 1
   remaining_nodes.remove(nearest_node) # n
   comparisons += 1
 path.append(start_node) # n
 total_cost += network[path[-2]][path[-1]]['weight'] # 1
 return path, total cost, comparisons
```

3 Experimental Results

Na presente seção é possível visualizar a tabela com a informação referente a cada rede, cada rede possui um número de vértices e o total de comparações feita, além disso inclui o tempo de execução de cada rede como o caminho da própria e o custo associado à travessia.

É importante observar que o tempo de execução de um programa pode variar de computador para computador. O algoritmo executou numa com um processador Intel Core i5, devemos considerar que esse processador possui suas especificidades e desempenho próprio.

Vértices	Compar ações	Tempo (em segundos)	Caminho	Custo
4	16	0.000036	Valongo -> Porto -> Maia -> Leiria -> Valongo	1745
8	56	0.000101	Montijo -> Seixal -> Odivelas -> Leiria -> Aveiro -> Gondomar -> Maia -> Guimarães -> Montijo	3290
16	190	0.000130	Matosinhos -> Maia -> Rio Tinto -> Valongo -> Leiria -> Amadora -> Cacém -> Lisboa -> Almada -> Seixal -> Amora -> Barreiro -> Setúbal -> Evora -> Faro -> Funchal -> Matosinhos	13865
			Amora -> Seixal -> Barreiro -> Almada -> Lisboa -> Odivelas -> Amadora -> Queluz -> Cacém -> Póvoa de Santa Iria -> Alverca -> Montijo -> Setúbal -> Évora -> Leiria -> Coimbra -> Aveiro -> Vila Nova de Gaia -> Porto -> Rio Tinto -> Ermesinde -> Valongo -> Gondomar -> Maia -> Matosinhos -> Póvoa de Varzim -> Braga -> Guimarães ->	
32	638	0.000598	Viseu -> Portimão -> Faro -> Funchal -> Amora	15465

A complexidade de tempo da função $solve_tsp$ é dominada pelo loop while sobre os nós restantes e pelo loop interno for que perforce em O(n). O número de comparações foi calculado contando as ocorrências da instruções como for, while, if. A complexidade de tempo permanece $O(n^2)$ para todos os tamanhos de rede, pois a complexidade algorítmica da função não muda com base no tamanho da rede. No entanto, o número de comparações aumenta quadraticamente com o tamanho da rede, seguindo a fórmula n+1.

Network Size (n)	Time Complexity (Big O)	Comparisons		
4	O(n^2)	16		
8	O(n^2)	64		
16	O(n^2)	256		
32	O(n^2)	1024		

4 Discussion

Levando em consideração a implementação do algoritmo Nearest Neighbour Algorithm (K-NN) para resolver o Problema do Caixeiro Viajante (TSP) em redes com 4, 8, 16 e 32 nós, é importante destacar algumas considerações na procura pela solução para a resolução do problema.

Este algoritmo permite encontrar uma solução num tempo relativamente curto, no entanto, por se tratar de uma heurística, não há garantia de que a solução encontrada seja a melhor possível, o que indica a possibilidade de haver margem para melhorias.

Ressalta-se que o algoritmo K-NN possui uma complexidade assintótica de $O(n^2)$, o que significa que o desempenho piora significativamente à medida que o número de nós aumenta. Em geral, o trabalho apresenta uma implementação satisfatória do algoritmo K-NN para solucionar o TSP em redes com 4, 8, 16 e 32 nós.

5 Conclusion

Em suma, este trabalho teve como objetivo resolver o problema do Traveling Salesman Problem (TSP), no âmbito da disciplina de Análise Algorítmica e Otimização. O TSP é conhecido por ser NP-hard, o que significa que não há um algoritmo conhecido que possa resolvê-lo em tempo polinomial para todas as instâncias possíveis. Para abordar esse problema, utilizou-se o algoritmo Nearest Neighbour Algorithm (K-NN), que é uma solução aproximada para o TSP.

O K-NN é uma abordagem fácil de implementar que começa numa cidade arbitrária e, repetidamente, seleciona a cidade não visitada mais próxima até que todas as cidades tenham sido visitadas. Embora não garanta a solução ótima, o algoritmo é eficiente e produz soluções próximas ao ótimo.

Foram realizados testes com redes de diferentes tamanhos, variando de 4 a 32 nós, para avaliar a qualidade das soluções encontradas pelo K-NN. Os resultados experimentais demonstraram que o K-NN foi capaz de encontrar soluções próximas ao ótimo para as diferentes instâncias de rede testadas.

References

- 1. What is the traveling salesman problem (TSP)?: Definition from TechTarget, WhatIs.com. https://www.techtarget.com/whatis/definition/traveling-salesman-problem (Accessed: 21 June 2023).
- 2. Yenigün, Okan. "Traveling Salesman Problem: Nearest Neighbor Algorithm Solution", https://blog.devgenius.io/traveling-salesman-problem-nearest-neighbor-algorithm-solution-e78399d0ab0c (Accessed 21 June 2023)