Sivergence	4	90 1 m	E	(contd.)
()				

03.12.20

Flux of É through a surface 'S' $\phi_{E} = \int_{S} \overline{E} \cdot d\vec{x}$

For a closed nurface, the flux is a measure of total change inside.

Ex: Point charge located at centre of a sphere

of radius s. $=\frac{1}{\sqrt{x^2}} \left(\frac{x^2}{\sqrt{x^2}}\right)^2 \cdot \left(\frac{x^2}{\sqrt{x^2}}\right)^2$

= $\frac{v}{\epsilon_0}$ \approx independent of 'r'

=> Flux through any surface enclosing

the charge is v/ϵ_0 .

A For a collection of changes,

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$

· For any closed reverence, JE. da - Benc. => &a~pp; (aw. ve con crite

\$\varepsilon \varepsilon \va if we have a val. et. dersity 'g's charge per Benc- - 9962 unit val. =>) (\(\overline{\overline}\) \(\overline{\overline}\) \(\overline{\ov => \frac{2}{\text{E}} = \frac{8}{2}
\text{diff. Form.} Electric field outside a uniformly changed replace of radius of and total charge of,

 $|\vec{E}| = |\vec{E}| dx$ $= |\vec{E}$

For a claned path 争られる Help Stares, Hrosem; $\oint \vec{E} \cdot d\vec{i} = \int (\vec{3} \times \vec{E}) \cdot d\vec{a} = 0$ => \frac{1}{2} \times \frac{1}{2} = 0 = 3 \times \text{True} Per electrostatic Rieldr.