16/17 浙江工业大学高等数学 AII 考试试卷

学院	£:_		到	∃级:_		姓名	:	当	学号:	
任课教师(请务必填上):										
	题丨	号	_	=		四	五	六	总 分	
	得:	分								
、填空选择题(本题满分 30 分,每小题 3 分) 1、动点 $M(x, y, z)$ 到 xOy 平面的距离与到点 $(1, -1, 2)$ 的距离相等,则动点 $M(x, y, z)$ 的轨迹方程是。 $(x-1)^2 + (y+1)^2 = 4z - 4$										
				•				则 n,m \square	应满足条件 <i>n</i>	+m=0
3、已知 $z = \sqrt{xy} + \frac{x}{y}$,则 $\frac{\partial z}{\partial y} = \underline{\qquad}$ 。 $\frac{1}{2}\sqrt{\frac{x}{y}} - \frac{x}{y^2}$										
4、曲面 $e^z - z + xy = 3$ 在点(2,1,0)处的切平面方程是。 $x + 2y - 4 = 0$										
5、交换积分次序 $\int_0^2 dx \int_{\frac{x}{2}}^{3-x} f(x,y) dy = _{\circ} \int_0^1 dy \int_0^{2y} f(x,y) dx + \int_1^3 dy \int_0^{3-y} f(x,y) dx$										
6、设 L 为 $x = a \cos t$, $y = a \sin t$,则 $\int_{L} (x^2 + y^2) ds = 2\pi a^3$										
7、将	函数 f	(x)	$=\frac{1}{r}$ 展 \exists	干成(x-	3) 的幂	级数,则]该幂级	数收敛区	[间是。(0	, 6)
8、若 $z = f(x, y)$ 在点 (x_0, y_0) 处可微,则下列结论错误的是 <u>C</u> 。 A、 $f(x, y)$ 在点 (x_0, y_0) 处连续; B、 $f_x(x_0, y_0)$, $f_y(x_0, y_0)$ 存在;										
C 、 $f_x(x,y), f_y(x,y)$ 在点 (x_0, y_0) 处连续; D 、曲面 $z = f(x,y)$ 在点 $(x_0, y_0, f(x_0, y_0))$ 处有切平面。										
9、设 Ω : $x^2 + y^2 + z^2 \le R^2$; Σ : $x^2 + y^2 + z^2 = R^2$ 的外侧,则下列等式正确的是 <u>C</u> 。										
A、	$\iiint_{\Omega} (x^2 + x^2)$	² + 3	$y^2 + z^2$	$dv = \iiint_{\Omega}$	$R^2 dv =$	$\frac{4\pi}{3}R^5;$				
	Σ			Σ		$y=\pi R^4$;				
C,	$\iint (x^2$	+ y ²	$(z^2+z^2)d$	$S = \iint R$	$d^2dS = 4$	πR^4 ;	D,	$\iiint (x^2 +$	$-y^2+z^2)dv$	=0.

10、下列级数中绝对收敛的级数是D。
A、
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$
; B、 $\sum_{n=1}^{\infty} (-1)^n \sqrt{n}$; C、 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$; D、 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ 。

- 二、试解下列各题(本题满分24分,每小题6分):
- 1、已知 $z = x^y$, $(x > 0, x \neq 1)$, 求: dz $dz = vx^{y-1}dx + x^y \ln x dy$ 6分
- 2、设 $z = f(xy, e^{xy})$, 其中 f(u, v) 一阶偏导数连续, 求: $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = yf_1' + ye^{xy}f_2' \qquad \mathbf{3} \, \mathbf{\%} \qquad \frac{\partial z}{\partial y} = xf_1' + xe^{xy}f_2' \qquad \mathbf{6} \, \mathbf{\%}$$

 $\begin{cases} x = \cos t \\ y = \sin t \text{ }$ 是等距螺线(即曲线上任一点的切线与 z 轴夹角是常数)。 $z = t \end{cases}$

曲线任一点处的切向量 $T = (-\sin t, \cos t, 1)$

该向量与z 轴夹角余弦 $\cos \theta = \frac{T \cdot k}{|T|} = \frac{1}{\sqrt{2}}$ 从而得夹角是常数

即螺旋线是等距螺线

6分

4、求一过点 $M(2,1,\frac{1}{3})$ 的平面,使该平面在第一卦限与三个坐标面围成的体积最小。

设平面方程为
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 则体积 $V = \frac{1}{6}abc$ 2分

由平面过点 $M(2,1,\frac{1}{3})$ 得条件 $\frac{2}{a} + \frac{1}{b} + \frac{1}{3c} = 1$

$$L(a,b,c) = \frac{1}{6}abc + \lambda(\frac{2}{a} + \frac{1}{b} + \frac{1}{3c} - 1)$$
 4 \(\frac{1}{2}\)

解得
$$a = 6, b = 3, c = 1$$
 平面方程为 $\frac{x}{6} + \frac{y}{3} + \frac{z}{1} = 6$ 分

三、试解下列各题(本题满分24分,每小题6分):

1、设
$$D$$
: $x^2 + y^2 \le 1$, 求 $\iint_D (x^3y + x^2 + y^2) dx dy$

$$\iint_{D} (x^{3}y + x^{2} + y^{2}) dxdy = \iint_{D} x^{3}y dxdy + \iint_{D} (x^{2} + y^{2}) dxdy$$

$$=\int_0^{2\pi} d\theta \int_0^1 \rho^3 d\rho = \frac{\pi}{2}$$
 6 \(\phi\)

2、求
$$\iint_{\Omega} z \sqrt{x^2 + y^2} dx dy dz$$
, Ω : 由曲面 $z = \sqrt{x^2 + y^2}$ 与平面 $z = 2$ 所围成。

$$\iiint\limits_{\Omega} z\sqrt{x^2 + y^2} dx dy dz = \int_0^{2\pi} d\theta \int_0^2 \rho^2 d\rho \int_\rho^2 z dz \qquad 3 \, \mathcal{H}$$

$$=\frac{64}{15}\pi$$

3、求
$$\int_L (x^2 - y) dx - (x + \sin^2 y) dy$$
,其中 L 沿 $y = \sqrt{2x - x^2}$ 从点 $(0,0)$ 到 $(1,1)$ 。

$$\frac{\partial P}{\partial v} = -1 = \frac{\partial Q}{\partial x}$$
 积分与路径无关

6分

$$\int_{L} (x^{2} - y)dx - (x + \sin^{2} y)dy = \int_{0}^{1} x^{2} dx - \int_{0}^{1} (1 + \sin^{2} y)dy \qquad 4$$

$$=\frac{1}{4}\sin 2-\frac{7}{6}$$

4、求
$$\iint_{\Sigma} (z^2 + x) dy dz$$
, 期中 Σ 是曲面 $z = x^2 + y^2$ 在 $0 \le z \le 1$ 之间部分的下侧。

补上平面 $\sum_{i} z = 1$. 由高斯公式有

$$\iint_{\Sigma} (z^2 + x) dy dz = \iiint_{\Omega} dx dy dz - \iint_{\Sigma_1} (z^2 + x) dy dz$$
 3 \(\frac{1}{2}\)

$$= \int_0^{2\pi} d\theta \int_0^1 \rho d\rho \int_{\rho^2}^1 dz = \frac{\pi}{2}$$
 6 \(\frac{\pi}{2}\)

四、(8分) 求过点(2,1,3) 且与直线
$$\frac{x+1}{3} = \frac{y-1}{2} = \frac{z}{-1}$$
 垂直相交的直线方程。

过点(2,1,3)且与所给直线L垂直相交的平面方程是 3x+2y-z=5 **3分**

该平面与直线
$$L$$
 的交点 $(\frac{2}{7}, \frac{13}{7}, -\frac{3}{7})$

所求直线方程是
$$\frac{x-2}{2} = \frac{y-1}{-1} = \frac{z-3}{4}$$

五、 (9分) 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$ 的收敛域(含端点)及和函数。

收敛半径R=1 端点 $x=\pm 1$ 级数不收敛,故收敛域为(-1,1) 3分

记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
 则 $S'(x) = \sum_{n=0}^{\infty} x^{2n} = \frac{1}{1-x^2}$ 6分

从而
$$S(x) = \int_0^x S'(x)dx + S(0) = \int_0^x \frac{1}{1-x^2} dx = \frac{1}{2} \ln \frac{1+x}{1-x}$$
 9分

六、(5分)讨论偏导数存在与方向导数存在之间的关系(证明或举例)。

方向导数存在未必偏导数存在,讨论见 P104

偏导数存在只能得到沿坐标轴方向的方向导数存在,而沿其它方向的方向导数不一

定存在,如
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
 在(0, 0) 处。

此题可综合考虑酌情给分。