Hilbert's Nullstellensatz

Yvan Ngumeteh

Emma Ahrens

7. Mai 2018

Satz 1 (Hilbert's Nullstellensatz für Hyperebenen). Sei k algebraisch abgeschlossen, $f \in k[X_1, \ldots, X_n]$ nicht konstant und $\emptyset \neq H_f \subseteq k^n$ die korrespondierende Hyperebene. Wir können f schreiben als $f = f_1^{n_1} \cdots f_r^{n_r}$ mit f_1, \ldots, f_r irreduzibel und paarweise teilerfremd. Dann ist

$$H_f = H_{f_1} \cup \cdots \cup H_{f_r} und \mathbf{I}(H_f) = (f_1 \cdots f_r).$$

Insbesondere gilt, falls f irreduzibel ist, dass $\mathbf{I}(H_f) = (f)$.

Definition 2 (Algebraische Elemente). Sei A eine k-Algebra. Dann heißt die Menge $a_1, \ldots, a_m \in A$ algebraisch unabhängig, falls kein Polynom $0 \neq F \in k[X_1, \ldots, X_m]$ existiert mit $F(a_1, \ldots, a_m) = 0$.

Im Folgenden sind A und B kommmutative Ringe mit Eins und $A \subseteq B$.

Definition 3 (Ganze Elemente). Wir nennen $b \in B$ ganz über A, wenn es Elemente $a_1, \ldots, a_n \in A$ gibt mit

$$b^{n} + a_{n-1}b^{n-1} + \dots + a_{1}b + a_{0} = 0$$

für ein $n \in \mathbb{N}$. Außerdem heißt B ganz über A, wenn jedes Element aus B ganz über A ist.

Lemma 4. Sei $b \in B$. Dann ist äquivalent:

- 1. b ist ganz über A
- 2. Der von b erzeugte Teilring $A[b] \subseteq B$ ist ein endlich erzeugter A-Modul.
- 3. Es existiert ein Teilring $C \subseteq B$ mit $A[b] \subseteq C$ und C ist ein endlich erzeugter A-Modul.

Korollar 5. Seien A, B kommutative Ringe mit $A \subseteq B$.

- 1. Falls $B = A[b_1, \ldots, b_n]$, wobei jedes $b_i \in B$ ganz über $A[b_1, \ldots, b_{i-1}]$ ist, dann ist B endlich erzeugter A-Modul und ganz über A.
- 2. Die Menge $\bar{A}_B := \{b \in B \mid b \text{ ganz ""uber } A\}$ ist ein Teilring von B und heißt ganzer Abschluss von A in B.
- 3. Sei $C \subseteq B$ ein Teilring mit $A \subseteq C$. Falls C ganz ist über A und B ganz ist über C, dann ist auch B ganz über A.
- 4. Falls B ein Körper ist und ganz über A, dann ist A auch ein Körper.

Lemma 6. Sei $M \subseteq \mathbb{N}_0^n$ und $N(\alpha) = \sum_{i=0}^{n-1} \alpha_{n-i} r^i$ für ein $r \in \mathbb{N}$, das größer ist als jede Komponente jedes Elements aus M. Dann gilt für $\alpha, \alpha' \in M_n$ und $\alpha \neq \alpha'$, dass $N(\alpha) \neq N(\alpha')$.

Eine k-Algebra ist im Folgenden immer eine kommutative, assoziative k-Algebra mit Eins.

Satz 7 (Noetherscher Normalisierungssatz). Sei A eine endlich erzeugte k-Algebra. Dann existieren algebraisch unabhängige Elemente $a_1, \ldots, a_d \in A$, so dass A ganz ist über dem Teilring $k[a_1, \ldots, a_d]$.

Lemma 8. Sei A ein Körper, $R = k[a_1, \ldots, a_n]$ ein Ring mit $a_1, \ldots, a_n \in A$ algebraisch unabhängig in k und A ganz über R. Dann ist R ein Körper und d = 0.

Satz 9 (Schwache Form von Hilbert's Nullstellensatz). Sei k algebraisch abgeschlossen. Dann sind die maximalen Ideale in $k[X_1, \ldots, X_n]$ genau die Ideale der Form $(X_1 - v_1, \ldots, X_n - v_n)$ mit $v_i \in k$. Allgemeiner gilt, falls A eine beliebige k-Algebra ist, dass $A/I \cong k$ für jedes maximale Ideal I in A.

Korollar 10 (Umformulierung der schwachen Form von Hilbert's Nullstellensatz). Sei k algebraisch abgeschlossen und I ein Ideal aus dem Polynomring $R := k[X_1, \ldots, X_n]$ mit $I \neq R$. Dann ist die Varietät V(I) nicht leer.