Phase-2 DAQ Training Workshop Preparing CBC for data taking [Chip calibration]

Preparting the for data taking [citip calibration]

Sarah Seif El Nasr-Storey

Before we start .. a few words on documentation!

- This talk is based on a (really) long list of talks/publications/resources available on the CBC2/ CBC3
 - Mark Raymond's list of user manuals, progress talks, publications
 - a good starting point when looking for information
 - the Ph2_ACF git repository
 - how things are actually done, default settings, documentation
 - previous edition of this workshop
 - Kirika's talk from this morning's session

Digital read-out of a silicon tracking detector

- Generic operation of a silicon tracking detector (sensor + read-out chip)
 - e-h pairs generated in the silicon by a particle crossing a particular channel
 - e-h collected by sensor, and generated current (I_{in}) transmitted to a channel of the read-out chip
 - each channel of the readout chip can make a decision on whether the signal is of interest or not
 - generates a binary signal based on the characteristics of the input signal (V_{in})

Analogue Front-end of CBC

• Preamplifier + Shaper : integrates signal from sensor channel ($I_{in} \rightarrow V_{in}$) and prelim. filtering.

Analogue Front-end of CBC

- Preamplifier + Shaper : integrates signal from sensor channel ($I_{in} \rightarrow V_{in}$) and prelim. filtering.
- Post-amplifier : produces final signal for the comparator $(V_{in} \rightarrow V_{out})$

CBC pulse shape

- Amplifier designed to have:
 - peaking time of less than 20 ns
 - return to DC baseline within 50 ns

Analogue Front-end of CBC

- Preamplifier + Shaper : integrates signal from sensor channel ($I_{in} \rightarrow V_{in}$) and prelim. filtering.
- Post-amplifier: produces final signal for the comparator ($V_{in} \rightarrow V_{out}$)
- Comparator: produces digital signal to feed logic circuitry of chip

I2C registers to control Amplification stage of CBC

CMS

• V_{cth} : controls the comparator threshold.

I2C registers to control Amplification stage of CBC

- V_{cth} : controls the comparator threshold.
- V_{plus} : controls the DC baseline of the post amplifier output signal (V_{out}).

I2C registers to control Amplification stage of CBC

CMS

- V_{cth} : controls the comparator threshold.
- V_{plus} : controls the DC baseline of the post amplifier output signal (V_{out}).
- V_{offset} : fine tuning of the DC baseline of the post amplifier output signal (V_{out}).

N.B.: there are (many) more settings you can control on the analogue front-end, but these should not require changing from default values so will not be covered here.

For a complete description of the analogue front-end please refer to the CBC2/CBC3 manuals and Mark Raymond's talks (links at the end of the presentation).

CMS

- V_{cth} : controls the comparator threshold.
- V_{plus} : controls the DC baseline of the post amplifier output signal (V_{out}).
- V_{offset} : fine tuning of the DC baseline of the post amplifier output signal (V_{out}).

Time

Collecting Electrons: Increasing Vcth \rightarrow Reduces threshold $V_{\text{plus}} + V_{\text{offset}}$

 V_{cth}

- V_{cth} : controls the comparator threshold.
- V_{plus} : controls the DC baseline of the post amplifier output signal (V_{out}).
- V_{offset} : fine tuning of the DC baseline of the post amplifier output signal (V_{out}).

I2C registers to control Amplification stage of CBC

- V_{cth}: controls the comparator threshold [Global]
- V_{plus} : controls the DC baseline of the post amplifier output signal (V_{out}) [Global]
- V_{offset} : fine tuning of the DC baseline of the post amplifier output signal (V_{out}). [Per channel]

- V_{plus} and V_{offset} are generated in the same way on the CBCs so same adjustment range on both
- V_{plus} should be chosen to accommodate expected dynamic range of signal
- Voffset should be not be too close to zero

CBC Chip Calibration: Differences

Differences in Analogue Front-end of CBC2/CBC3

- V_{offset}: 8 bit DAC on CBC2 → 10 bit DAC on CBC3
 - access to finer grain tuning on CBC3
- New post-amp feedback bias scheme to address common mode noise observed in CBC2
 - second voltage (V_{plus2}) to generate the feedback control voltage for post-amp network [should always be identical to V_{plus}]
- Choice of n-on-p sensors made for outer tracker (i.e. collecting electrons not holes) therefore
 - only electron mode available in the CBC3

Basics of the Digital logic circuitry on the CBCs

- CBC decides whether "hit" (signal in sensor channel) or stub has occurred by examining the outputs of the (binary) comparator stages :
 - all logic synchronized with 40 MHz external clock
 - hit detection logic to identify hits in sensor channels
 - stub detection logic to correlate hits between the two sensor layers on a 2S module and generate stubs (track primitive for L1)

Checklist: prepare CBC for data taking

• Configuring the CBC for data taking requires:

- Uniform sensitivity across the 254 channels of each CBC (i.e. uniform pedestals)
 - might require masking out noisy channels from the hit detection logic
- Selecting the hit detection mode most appropriate to your test
- Selecting appropriate data latency for your particular set-up (will be dependent on cable lengths, external trigger system)
- Selecting appropriate stub latency

Preparing CBC for data taking: Uniform pedestals.

- Minimize the variation in the pedestal values across the CBC's 254 channels
- Binary read-out! So the analogue performance must be *inferred* from a channel's S-curve :
 - occupancy [hit count/number of triggers] per channel as a function of V_{cth}
 - pedestal defined as V_{cth} corresponding to 50% occupancy [mean of the differentiated scurve]
 - noise defined as the width of the S-curve in V_{cth} units [width of the differentiated s-curve]

Offset tuning procedure for CBC2: Things to remember

- CBC2 does not like being operated in high occupancy conditions:
 - perform tuning in groups of 32 channels (i.e. in test pulse groups)
 - all other channels set to maximum threshold

- Discontinuities present in measured V_{cth} at certain DAC settings
 - identified as kinks/steps in Vcth DAC scan [0x20 , 0x40 , 0x80]
 - avoid those values when choosing target V_{cth} value in scan : e.g. 0x78, 0x84

Offset tuning procedure for CBC2

• Goal: bring all channels' pedestals into alignment

Measured S-curves [$\sigma_{\text{Veth}} = 10 \text{ V}_{\text{cth}}$ units (~10 mV) to $\sigma_{\text{Veth}} = 0.22 \text{ V}_{\text{cth}}$ units (~0.5 mV)]

- Tuning procedure designed to avoid discontinuities in Vcth
- Two-step tuning procedure to tune all pedestals to a target V_{cth} value on all channels in a test group
 - V_{plus} scan: for a fixed value of V_{offset} , locate V_{plus} value for which occupancy ~50%
 - V_{offset} scan: for the found value of V_{plus} , tune each channel's V_{offset} to ensure occupancy is 50%.

Offset tuning procedure for CBC3: Things to remember

- V_{cth} now generated by a 10-bit resistor ladder DAC
 - nicely linear and monotonous

- Improved performance when acquiring S-curves on all 254 channels simultaneously
 - some distortion still present possible it will improve when chips are bump-bonded
 - bare chips/wire bonded chips still require tuning to be performed on test groups

Offset tuning procedure for CBC3

- Two-step tuning procedure to tune all pedestals to a target V_{plus} value on all channels in a test group :
 - V_{plus} [4 bit DAC, 281 750 mV] set to the (default) mid-range value of 500 mV.
 - V_{cth} scan: measure S-curves on channels in test group for a fixed value of V_{offset} [e.g. midrange 0x80]. Set V_{cth} on all channels to average midpoint of all S-curves.
 - V_{offset} scan: tune each channel's V_{offset} so that occupancy is 50% [should be close to midrange value of 0x80]

Checklist: prepare CBC for data taking

• Configuring the CBC for data taking requires:

- ☑Uniform sensitivity across the 254 channels of each CBC (i.e. uniform pedestals)
 - might require masking out noisy channels from the hit detection logic
- Selecting the hit detection mode most appropriate to your test
- Selecting appropriate data latency for your particular set-up (will be dependent on cable lengths, external trigger system)
- Selecting appropriate stub latency

Preparing CBC for data taking: Fixed Pulse Width Hit Detection

- Available on both the CBC2 and the CBC3 [Single Hit Detect Mode in User manual for CBC2 (default)]
 - output from comparator latched for one clock cycle (25 ns)
 - hits in consecutive clock cycles can be identified provided the signal on the channel goes below V_{cth} for each hit (i.e. comparator output returns to zero)

Preparing CBC for data taking: 40 MHz Sampled Hit Detection

- CMS
- Available on both the CBC2 and the CBC3 [Variable Hit Detect Mode in User manual for CBC2]
 - comparator output sampled using the CBCs internal 40 MHz clock
 - only comparator outputs that are high on the rising edge of the clock are identified
 - output returns to zero on the first rising clock edge following the comparators return to zero
 - hits in consecutive clock cycles are captured even if comparator output never goes below zero

- Only implemented on the CBC3
 - combines the results from the Fixed Pulse and 40 MHz sampled outputs
 - catch everything mode detect piled-up pulses without introducing inefficiency due to smaller signals.

Preparing CBC for data taking: HIP suppression Hit Detection

- Only implemented on the CBC3
 - designed to suppress the detection of highly ionizing particles
 - can be applied to either the 40 MHz sampled output or the Logical OR output of each channel
 - · checks the length of the pulse again a pre-programmed number of clock cycles
 - · forces the output to return to zero if that number of clock cycles is exceeded

Checklist for preparing CBC for data taking

• Configuring the CBC for data taking requires:

- ☑Uniform sensitivity across the 254 channels of each CBC (i.e. uniform pedestals)
 - might require masking out noisy channels from the hit detection logic
- Selecting the hit detection mode most appropriate to your test
- Selecting appropriate data latency for your particular set-up (will be dependent on cable lengths, external trigger system)
- Selecting appropriate stub latency

Preparing CBC for data taking: trigger latency.

• Expect a delay between detecting signal on the CBC and the trigger (e.g. L1A) arriving

Preparing CBC for data taking: trigger latency.

- CMS
- Expect a delay between detecting signal on the CBC and the trigger (e.g. L1A) arriving
 - internally, the trigger latency is controlled by the pipeline control logic of the chip
 - Write Counter in pipeline starts counting from 0 when the CBC is initialized
 - Trigger Counter only begins counting N_{trigger} clock cycles after initialization of the Write counter
 - this defines a position in RAM to read data from when an external trigger is received

error bit set if this deviates from the configured value

Trigger Latency Tuning Procedure: CBC2

- Identifying the trigger latency ($N_{trigger}$ clock cycles delay) in the set-up used for test beams of the CBC2 in the CERN North Area:
 - N_{trigger} is scanned using the trigger latency control register in the CBC
 - the TDC phase measures the time of arrival of the trigger signal at the back end (BE) with respect to the 40 MHz clock edge using a 3 bit counter (0-7) counting at 320 MHz
 - N_{trigger} chosen to maximize hit detection efficiency.

Checklist for preparing CBC for data taking

• Configuring the CBC for data taking requires:

- ☑Uniform sensitivity across the 254 channels of each CBC (i.e. uniform pedestals)
 - might require masking out noisy channels from the hit detection logic
- Selecting the hit detection mode most appropriate to your test
- ✓ Selecting appropriate data latency for your particular set-up (will be dependent on cable lengths, external trigger system)
- Selecting appropriate stub latency

Preparing CBC for data taking: stub latency.

- Stub finding logic in the CBCs:
 - initial stage that rejects wide clusters on both sensor layers
 - for valid cluster on bottom (seed) sensor logic looks for hits in a coincidence window on the top (correlation) sensor
 - if a hit is found in the correlation layer then a valid stub is found in the central strip of the seed layer

- CBC2: simple OR of all valid stubs is output at 40 MHz.
- CBC3: the stub gathering logic outputs on 5 dedicated SLVS lines all the stub information at 320 MHz
 - a maximum of 3 stubs can be output on a given clock edge (bunch crossing)
 - stub data packet consists of : sync bit + error bits + hit OR + stub bend(s) + address(es)

Preparing CBC for data taking: stub latency.

- CMS
- Expect a delay between (hit/triggered) data and stub data arriving at the back-end of the DAQ system
 - delay is defined in the back-end FPGA as the stub latency N_{stub}
 - firmware needs to know this value in order to perform data matching between the triggered and stub data
 - ullet N_{stub} chosen to maximize number of stubs found in data

Checklist for preparing CBC for data taking

• Configuring the CBC for data taking requires:

- ☑Uniform sensitivity across the 254 channels of each CBC (i.e. uniform pedestals)
 - might require masking out noisy channels from the hit detection logic
- Selecting the hit detection mode most appropriate to your test
- ✓ Selecting appropriate data latency for your particular set-up (will be dependent on cable lengths, external trigger system)

Details on Firmware and Middleware implementation
after the break!