ACH0021 – Tratamento e Análise de Dados/Informações

Lista de Exercícios 2

Observação 1: Os exercícios desta lista devem ser resolvidos <u>SEM</u> o uso de ferramentas computacionais Observação 2: Alguns dos exercícios foram adaptados do livro de M. N. Magalhães & A. C. P. de Lima, *Noções de Probabilidade e Estatística*, Edusp (2008).

- 1) Dados os subconjuntos $A, B \in C$ de Ω (suponha $A, B \in C$ não-vazios), mostre que
- a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- c) $(A \cup B)^c = A^c \cap B^c$.
- d) $(A \cap B)^c = A^c \cup B^c$.
- e) $A \setminus B = A \cap B^c$.
- 1a) Mostrar-se-á, inicialmente, que $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$. Se $x \in A \cap (B \cup C)$ (x arbitrário), então x pertence a A e x pertence a x

Reciprocamente, considere $x \in (A \cap B) \cup (A \cap C)$ (x arbitrário). Desta forma, x pertence a A e B ou x pertence a A e C, e isto implica x pertencer a A e também pertencer a B ou C; em suma, $x \in A \cap (B \cup C)$, donde segue $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$.

De $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$ e $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$, tem-se $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

1b) Mostrar-se-á, inicialmente, que $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$. Se $x \in A \cup (B \cap C)$ (x arbitrário), então x pertence a A ou x pertence a x pertence a x ou x pertence a x ou x pertence a x pertence a x ou x pertence a x pertence a x ou x pertence a x

Reciprocamente, considere $x \in (A \cup B) \cap (A \cup C)$ (x arbitrário). Desta forma, x pertence a A ou B e x pertence a A ou C, e isto implica x pertencer a A ou pertencer a B e C; em suma, $x \in A \cup (B \cap C)$, donde segue $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$.

De $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$ e $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$, tem-se $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

1c) Mostrar-se-á, inicialmente, que $(A \cup B)^c \subset A^c \cap B^c$. Se um x arbitrário pertence a $(A \cup B)^c$, então ele não pertence a $A \cup B$; em suma, x não pertence a A e nem a B, o que implica x pertencer a A^c e B^c . Logo, $x \in A^c \cap B^c$, completando a primeira parte da prova.

Reciprocamente, se um x arbitrário pertence a $A^c \cap B^c$, ele pertence a $A^c \in B^c$. Consequentemente, x não pertence a A e nem a B, ou seja, x não pertence a $A \cup B$; logo, $x \in (A \cup B)^c$, donde segue $A^c \cap B^c \subset (A \cup B)^c$. De $(A \cup B)^c \subset A^c \cap B^c$ e $A^c \cap B^c \subset (A \cup B)^c$, chega-se a $(A \cup B)^c = A^c \cap B^c$.

1d) Mostrar-se-á, inicialmente, que $(A \cap B)^c \subset A^c \cup B^c$. Se um x arbitrário pertence a $(A \cap B)^c$, então ele não pertence a $A \cap B$; em suma, x não pertence a A e B simultaneamente, o que implica x pertencer a A^c ou B^c . Logo, $x \in A^c \cup B^c$, completando a primeira parte da prova.

Reciprocamente, se um x arbitrário pertence a $A^c \cup B^c$, ele pertence a A^c ou B^c . Consequentemente, x não pertence a A ou não pertence a B, ou seja, x não pode pertencee aos dois ao mesmo tempo. Em suma, $x \notin A \cap B$; logo, $x \in (A \cap B)^c$, donde segue $A^c \cup B^c \subset (A \cap B)^c$.

De $(A \cap B)^c \subset A^c \cup B^c$ e $A^c \cup B^c \subset (A \cap B)^c$, chega-se a $(A \cap B)^c = A^c \cup B^c$.

1e) Mostrar-se-á, inicialmente, que $A \setminus B \subset A \cap B^c$. Se x (arbitrário) pertencer a $A \setminus B$, então ele pertence a A, mas não pertence a B, isto é, x pertence a A e também pertence a B^c . Desta forma, $x \in A \cap B^c$.

Reciprocamente, se x pertencer a $A \cap B^c$, então ele pertence a A e a B^c . Logo, x pertence a A mas não pode pertencer a B, o que implica $x \in A \setminus B$. Tem-se, então, $A \cap B^c \subset A \setminus B$.

De $A \setminus B \subset A \cap B^c$ e $A \cap B^c \subset A \setminus B$, chega-se a $A \setminus B = A \cap B^c$.

- 2) Sendo A e B dois eventos em um mesmo espaço amostral, "traduzir" as situações abaixo para a linguagem da teoria dos conjuntos:
- a) os dois eventos ocorrem.
- b) pelo menos um dos eventos ocorre.
- c) a ocorrência de A implica a ocorrência de B.
- d) a ocorrência de A implica B não ocorrer.
- e) o evento A ocorre, mas B não ocorre.
- f) nenhum dos dois eventos ocorre.
- g) exatamente um dos eventos ocorre.
- 2a) $A \cap B$ 2b) $A \cup B$ 2c) $A \subset B$ 2d) $A \subset B^c$ 2e) $A \setminus B$ 2f) $(A \cup B)^c = A^c \cap B^c$ 2g) $(A \setminus B) \cup (B \setminus A)$

Nota: Notar que $(A \setminus B) \cap (B \setminus A) = \emptyset$ no exercício (2g).

- 3) Uma universidade tem 15 mil alunos dos quais 6 mil são considerados esportistas. Sabe-se, ainda, que 750 alunos são do curso de biologia diurno, 1050 da biologia noturno, 150 são esportistas e da biologia diurno e 300 são esportistas e da biologia noturno. Um aluno é escolhido, ao acaso, e pergunta-se a probabilidade de:
- a) ser esportista.
- b) ser esportista e aluno da biologia noturno.
- c) não ser da biologia.
- d) ser esportista ou aluno da biologia.
- e) não ser esportista e nem aluno da biologia.
- 3) Admita a equiprobabilidade no sorteio dos alunos e considere a seguinte notação:
- E: Conjunto dos alunos considerados esportistas.
- B_d : Conjunto dos alunos de biologia diurno.
- B_n : Conjunto dos alunos de biologia noturno.
- Ω : Conjunto amostral.

Admite-se, também, que o curso de biologia seja oferecido somente nos dois períodos supracitados e que um aluno não faz o mesmo curso nos dois períodos $(B_d \cap B_n = \emptyset)$. Das informações acima, tem-se

$$P(E) = \frac{6000}{15000} = 0,40$$
 $P(B_d) = \frac{750}{15000} = 0,05$ $P(B_n) = \frac{1050}{15000} = 0,07$ $P(E \cap B_d) = \frac{150}{15000} = 0,01$ $P(E \cap B_n) = \frac{300}{15000} = 0,02$

- 3a) Probabilidade de ser esportista: P(E) = 0.40.
- 3b) Probabilidade de ser esportista e aluno da biologia noturno: $P(E \cap B_n) = 0,02$.
- 3c) Probabilidade de não ser da biologia (não ser da biologia diurno ou biologia noturno): $P((B_d \cup B_n)^c)$. Como para quaisquer eventos A e B sabe-se que

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Leftrightarrow P(A \cap B) = P(A) + P(B) - P(A \cup B),$$

então

$$P((B_d \cup B_n)^c) = P(B_d^c \cap B_n^c) = P(B_d^c) + P(B_n^c) - P(B_d^c \cup B_n^c)$$

$$= \underbrace{P(B_d^c)}_{1-P(B_d)} + \underbrace{P(B_n^c)}_{1-P(B_n)} - \underbrace{P(\underbrace{B_d \cap B_n})^c}_{P(\Omega)=1}$$

$$= 1 - P(B_d) - P(B_n) = 1 - 0,05 - 0,07 = 0,88.$$

3d) Probabilidade de ser esportista ou aluno da biologia (diurno ou noturno): $P(E \cup B_d \cup B_n)$. A regra de adição de probabilidades implica

$$P(E \cup B_d \cup B_n) = P(E \cup (B_d \cup B_n)) = P(E) + \underbrace{P(B_d \cup B_n)}_{1-P((B_d \cup B_n)^c)} - P(\underbrace{E \cap (B_d \cup B_n)}_{(E \cap B_d) \cup (E \cap B_n)})$$

$$= P(E) + 1 - \underbrace{P((B_d \cup B_n)^c)}_{\text{Exercício (3c)}} - \underbrace{P(E \cap B_d) + P(E \cap B_n) - P(\underbrace{(E \cap B_d) \cap (E \cap B_n)}_{\varnothing, \text{ pois } B_d \cap B_n = \varnothing})}$$

$$= 0.40 + 1 - 0.88 - 0.01 - 0.02 = 0.49.$$

3e) Probabilidade de não ser esportista e nem aluno da biologia (diurno ou noturno): $P(E^c \cap (B_d \cup B_n)^c)$.

$$P(E^{c} \cap (B_{d} \cup B_{n})^{c}) = P((E \cup B_{d} \cup B_{n})^{c}) = 1 - \underbrace{P(E \cup B_{d} \cup B_{n})}_{\text{Exercício (3d)}}$$
$$= 1 - 0,49 = 0,51.$$

- 4) Sejam A e B dois eventos em um dado espaço amostral de sorte que $P(A)=0,30,\ P(B)=p,$ $P(A\cup B)=0,60$ e $P(A\cap B)=0,20.$ Determine o valor de p.
- 4) Da regra de adição de probabilidades, tem-se

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

0.60 = 0.30 + p - 0.20,

donde p = 0, 50.

- 5) Dois processadores, A e B, são colocados em teste por várias horas. A probabilidade de que um erro de cálculo ocorra no processador A é de p_a , no processador B, p_b , e, em ambos, p. Determinar a probabilidade de:
- a) pelo menos um dos processadores apresentar erro.
- b) nenhum dos processadores apresentar erro.
- c) apenas o processador A apresentar erro.
- d) apenas o processador B apresentar erro.
- 5) Definição dos eventos:
- A: Ocorrência de erro no processador A; probabilidade de ocorrer erro no processador A: $P(A) = p_a$.
- B: Ocorrência de erro no processador B; probabilidade de ocorrer erro no processador B: $P(B) = p_b$.

A ocorrência de erro nos processadores $A \in B$ é o evento $A \cap B$, que tem probabilidade $P(A \cap B) = p_{ab}$.

5a) A probabilidade de pelo menos um dos processadores apresentar erro é $P(A \cup B)$. Pela regra de adição de probabilidades, tem-se

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = p_a + p_b - p_{ab}$$
.

5b) A probabilidade de nenhum dos processadores apresentar erro é $P((A \cup B)^c)$, sendo que

$$P((A \cup B)^c) = 1 - \underbrace{P(A \cup B)}_{\text{Exercício (5a)}} = 1 - p_a - p_b + p_{ab}.$$

5c) A probabilidade de apenas o processador A apresentar erro é $P(A \setminus B)$, sendo que $P(A \setminus B) = P(A \cap B^c)$. Como os subconjuntos $B \in B^c$ formam uma partição, é imediato que $A = (A \cap B) \cup (A \cap B^c)$ (naturalmente, $(A \cap B) \cap (A \cap B^c) = \emptyset$), donde $P(A) = P(A \cap B) + P(A \cap B^c)$ e, por conseguinte,

$$P(A \setminus B) = P(A \cap B^c) = P(A) - P(A \cap B) = p_a - p_{ab}.$$

5d) Pelos argumentos análogos apresentados no exercício (5c), a probabilidade de somente o processador B apresentar erro é

$$P(B \setminus A) = P(B \cap A^c) = P(B) - P(B \cap A) = p_b - p_{ab}.$$

- 6) Se $P(A \cup B) = p_{ab}$, $P(A) = p_a$ e P(B) = x, determine x se:
- a) A e B forem mutualmente exclusivos.
- b) A e B forem independentes (admita $P(A) \neq 1$).
- 6a) Para $A \cap B = \emptyset$ (eventos mutualmente exclusivos), a regra da adição de probabilidades implica

$$P(A \cup B) = P(A) + P(B) - P(\underbrace{A \cap B}_{\varnothing}) \quad \Rightarrow \quad p_{ab} = p_a + x - 0,$$

donde se tem $x = p_{ab} - p_a$.

6b) Para $P(A \cap B) = P(A)P(B)$ (quando os eventos A e B forem independentes), a regra da adição de probabilidades implica

$$P(A \cup B) = P(A) + P(B) - \underbrace{P(A \cap B)}_{P(A)P(B)} \quad \Rightarrow \quad p_{ab} = p_a + x - p_a x$$

donde se tem $x = \frac{p_{ab} - p_a}{1 - p_a}$ (para $p_a \neq 1$).

- 7) Mostrar que se os eventos A e B forem independentes, então A^c e B^c também o são.
- 7) Admite-se, por hipótese, que $P(A \cap B) = P(A)P(B)$, que é a condição de independência entre os eventos A e B. Logo, invocando a regra de adição de probabilidades, tem-se

$$P(A^{c} \cap B^{c}) = P((A \cup B)^{c}) = 1 - P(A \cup B) = 1 - \left[P(A) + P(B) - P(A \cap B)\right]$$

$$= \underbrace{1 - P(A) - P(B)}_{P(A^{c})} \left[\underbrace{1 - P(A)}_{P(A^{c})}\right] = P(A^{c}) \left[\underbrace{1 - P(B)}_{P(B^{c})}\right] = P(A^{c}) P(B^{c}),$$

conforme requisitado.

- 8) Sejam A, B, C e D pertencentes a um mesmo espaço amostral. Supondo P(D) > 0, mostre que:
- a) $P(A^c|D) = 1 P(A|D)$.
- b) $P(A \cup B|D) = P(A|D) + P(B|D) P(A \cap B|D)$.
- c) $P(A \cup A^c | D) = 1$.
- d) $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(A \cap C) P(B \cap C) + P(A \cap B \cap C).$
- 8a) De $A \cup A^c = \Omega$ (onde Ω indica o espaço amostral), pode-se escrever $(A \cup A^c) \cap D = \widehat{\Omega \cap D}$, donde $D = (A \cap D) \cup (A^c \cap D)$. Como, naturalmente, $(A \cap D) \cap (A^c \cap D) = \emptyset$, então

$$P(D) = P(A \cap D) + P(A^c \cap D);$$

a divisão desta equação por P(D) > 0 implica

$$1 = \frac{P(A \cap D)}{P(D)} + \frac{P(A^c \cap D)}{P(D)} \quad \Leftrightarrow \quad P(A^c | D) = 1 - P(A | D).$$

8b) De $(A \cup B) \cap D = (A \cap D) \cup (B \cap D)$, a regra de adição de probabilidades implica

$$P((A \cup B) \cap D) = P(A \cap D) + P(B \cap D) - P((A \cap B) \cap D);$$

a divisão desta equação por P(D) > 0 conduz ao resultado desejado.

8c) De $A \cup A^c = \Omega$ (onde Ω é o espaço amostral), pode-se escrever $(A \cup A^c) \cap D = \overbrace{\Omega \cap D}^D$, donde se tem $P((A \cup A^c) \cap D) = P(D).$

A divisão por P(D) > 0 desta equação implica $P(A \cup A^c | D) = 1$.

8d) A recorrência sucessiva à regra de adição de probabildiades implica

$$\begin{split} P(A \cup B \cup C) &= P((A \cup B) \cup C) \\ &= \underbrace{P(A \cup B)}_{P(A) + P(B) - P(A \cap B)} + P(C) - P(\underbrace{(A \cup B) \cap C})_{(A \cap C) \cup (B \cap C)} \\ &= P(A) + P(B) + P(C) - P(A \cap B) - \underbrace{P((A \cap C) \cup (B \cap C))}_{P(A \cap C) + P(B \cap C) - P(A \cap B \cap C)} \\ &= P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C) \,. \end{split}$$

- 9) Se $P(A) \neq 0$, P(B|A) = a/2, e o evento B sempre é observado quando o evento A ocorre, determine o valor de a.
- 9) Se o evento B é sempre observado quando A ocorre, então $A \subset B$, donde segue $A \cap B = A$. Logo,

$$P(\underbrace{A \cap B}_{A}) = P(B|A)P(A) \quad \Rightarrow \quad P(A) = \frac{a}{2}P(A),$$

que implica a=2, visto que $P(A)\neq 0$.

- 10) Uma classe de estatística teve a seguinte distribuição das notas finais: 12 do sexo masculino (M) e 18 do feminino foram reprovados, 24 do sexo masculino e 42 do feminino foram aprovados (A). Calcule:
- a) $P(A \cup M^c)$
- b) $P(A^c \cap M^c)$
- c) P(A|M)
- d) $P(M^c|A)$
- e) P(M|A)
- 10) Dos dados fornecidos, pode-se montar a seguinte tabela de distribuição de notas.

S	Sexo\Desempenho	Aprovação (A)	Reprovação (A^c)
	Masculino (M)	24	12
	Feminino (M^c)	42	18

10a) Do total de 96 pessoas, o número total de pessoas aprovadas (homens e mulheres) junto com as mulheres $(A \cup M^c)$ é, segundo a tabela,

- 24 + 42 + 18 (respectivamente, homens aprovados, mulheres aprovadas e mulheres reprovadas); logo, $P(A \cup M^c) = 84/96 = 7/8$.
- 10b) O número de pessoas do sexo feminino e que foram reprovadas (conjunto $A^c \cap M^c$) é 18; logo, $P(A^c \cap M^c) = 18/96 = 3/16$.
- 10c) Do total de 24 + 12 = 36 homens, 24 obtiveram aprovação; logo, P(A|M) = 24/36 = 2/3.
- 10d) Do total de 24 + 42 = 66 pessoas aprovadas, 42 são mulheres; logo, $P(M^c|A) = 42/66 = 7/11$.
- 10e) Do total de 24 + 42 = 66 pessoas aprovadas, 24 são homens; logo, P(M|A) = 24/66 = 4/11 (o complementar de $P(M^c|A)$, calculado no exercício (10d)).
- 11) Peças produzidas por uma máquina são tais que 2%, 8% e 90% delas são, respectivamente, defeituosas, recuperáveis e perfeitas. De um lote, foram sorteadas, para análise, duas peças (com reposição). Determine a probabilidade de:
- a) as duas serem defeituosas.
- b) pelo menos uma ser perfeita.
- c) uma ser recuperável e a outra, perfeita.

- 11) Definição dos eventos:
- D: Sorteio de uma peça defeituosa.
- R: Sorteio de uma peça recuperável.
- P: Sorteio de uma peça perfeita.

Seja o par $(A, B) \subset \Omega \times \Omega$ (Ω denota o espaço amostral para um sorteio individual) o evento onde A e B são, respectivamente, os resultados do primeiro e segundo sorteios. Assumindo os sorteios independentes, tem-se P((A, B)) = P(A)P(B).

- 11a) O evento (D, D), das duas peças escolhidas serem defeituosas, realiza-se com probabilidade $P((D, D)) = P(D)P(D) = 0,02 \cdot 0,02 = 0,0004$.
- 11b) O evento em questão ocorre com probabilidade complementar ao evento (P^c, P^c) , onde não há sorteio de peça perfeita nas duas tentativas. Como $P((P^c, P^c)) = (1 0, 90)(1 0, 90) = 0, 01$, a probabilidade de obter pelo menos uma peça perfeita é $1 P((P^c, P^c)) = 0, 99$.
- 11c) O evento em questão realiza-se através de dois eventos disjuntos, (R, P) e (P, R). Logo, a probabilidade requisitada é $P((R, P)) + P((P, R)) = 0.08 \cdot 0.90 + 0.90 \cdot 0.08 = 0.144$.
 - 12) Numa cidade, estima-se que cerca de 30% dos habitantes tenham algum tipo de alergia. Sabe-se que 60% dos alérgicos praticam esportes, enquanto que esta porcentagem entre os não-alérgicos é de 30%. Escolhendo-se um indivíduo, de forma aleatória nesta cidade, determine a probabilidade dele:
 - a) praticar esporte.
 - b) ser alérgico, dado que não pratica esportes.
- 12) Definição dos eventos:
- A: Alérgicos.
- E: Praticantes de esporte.

Sabe-se, do enunciado da quest ao, que P(A) = 0.30 (logo, $P(A^c) = 1 - P(A) = 0.70$), P(E|A) = 0.60 e $P(E|A^c) = 0.30$.

12a) Como os subconjuntos A e A^c formam uma partição, tem-se $E = (E \cap A) \cup (E \cap A^c)$ (com $(E \cap A) \cap (E \cap A^c) = \emptyset$), donde se tem

$$P(E) = P(E \cap A) + P(E \cap A^c) = P(E|A)P(A) + P(E|A^c)P(A^c) = 0,60 \cdot 0,30 + 0,30 \cdot 0,70 = 0,39,$$

que é a probabilidade da pessoa praticar esporte.

12b) Do exercício (11a), é imediato que a probabilidade da pessoa não praticar esportes é $P(E^c) = 1 - P(E) = 0,61 \neq 0$. Logo,

$$P(A|E^c) = \frac{P(A \cap E^c)}{P(E^c)} = \frac{P(E^c|A)P(A)}{P(E^c)} = \frac{\left[1 - P(E|A)\right]P(A)}{P(E^c)} = \frac{(1 - 0,60)0,30}{0,61} = \frac{12}{61} \approx 0,20.$$

13) As preferências de homens e mulheres por cada gênero de filme alugado em uma locadora de vídeos estão apresentadas na tabela abaixo.

Sexo\Filme	Comédia	Romance	Policial
Homens	150	90	200
Mulheres	100	200	60

Sorteando-se, ao acaso, uma dessas locações, determine a probabilidade de:

- a) uma mulher ter alugado um filme policial.
- b) uma mulher ter alugado um filme, sabendo-se que o gênero era policial.
- c) o filme ser policial, dado que foi alugado por uma mulher.
- d) o filme não ser policial, dado que foi alugado por um homem.

- 13a) De um total de 150 + 100 + 90 + 200 + 200 + 60 = 800 locações, 60 filmes correspondem à situação mencionada, implicando a probabilidade de $\frac{60}{800} = \frac{3}{40}$.
- 13b) De um total de 200 + 60 = 260 locações de filmes policiais, as mulheres alugaram 60 deles, implicando a probabilidade de $\frac{60}{260} = \frac{3}{13}$.
- 13c) De um total de 100+200+60=360 locações por mulheres, 60 filmes correspondem à situação mencionada, implicando a probabilidade de $\frac{60}{360}=\frac{1}{6}$.
- 13d) De um total de 150+90+200=440 locações de filmes por homens, 150+90=240 correspondem à situação mencionada, implicando a probabilidade de $\frac{240}{440}=\frac{6}{11}$.
 - 14) Em um bairro existem três empresas de TV a cabo e 30 mil residências. A empresa TA tem 3150 assinantes, a TB tem 2775 e a empresa TC tem 3900 assinantes, sendo que algumas residências em condomínios subscrevem aos serviços de mais de uma empresa. Assim, há 630 residências que são assinantes de TA e TB, 180 de TA e TC, 270 de TB e TC e 45 que são assinantes das três empresas. Se uma residência desse bairro é sorteada ao acaso, determinar a probabilidade de:
 - a) ser assinante somente da TA.
 - b) assinar pelo menos uma delas.
 - c) não ter TV a cabo.
- 14) Definição dos eventos:
- A: Assinatura com a empresa TA.
- B: Assinatura com a empresa TB.
- C: Assinatura com a empresa TC.

Assumindo equiprobabilidade no sorteio das residências, tem-se

$$P(A) = \frac{3150}{30000} = 0,1050 \,, \qquad P(B) = \frac{2775}{30000} = 0,0925 \,, \qquad P(C) = \frac{3900}{30000} = 0,1300 \,,$$

$$P(A \cap B) = \frac{630}{30000} = 0,0210 \,, \qquad P(A \cap C) = \frac{180}{30000} = 0,0060 \,, \qquad P(B \cap C) = \frac{270}{30000} = 0,0090$$

$$e \ P(A \cap B \cap C) = \frac{45}{30000} = 0,0015 \,.$$

14a) A probabilidade de ser assinante somente da TA é dada por

$$\begin{split} P(A \cap B^c \cap C^c) &= P(A \cap (B \cup C)^c) = P(A) - P(A \cap (B \cup C)) = P(A) - P((A \cap B) \cup (A \cap C)) \\ &= P(A) - \left[P(A \cap B) + P(A \cap C) - P(A \cap B \cap C) \right] \\ &= 0,1050 - \left[0,0210 + 0,0060 - 0,0015 \right] = 0,0795 \,, \end{split}$$

onde usou-se o fato de $(B \cup C)$ e $(B \cup C)^c$ constituírem uma partição (vide primeira linha) e a regra da adição de probabilidades.

14b) A probabilidade de assinar pelo menos uma das TV a cabo é dada por

$$P(A \cup B \cup C) = P((A \cup B) \cup C) = P(A \cup B) + P(C) - P((A \cup B) \cap C)$$

$$= P(A) + P(B) - P(A \cap B) + P(C) - P((A \cap C) \cup (B \cap C))$$

$$= P(A) + P(B) - P(A \cap B) + P(C) - [P(A \cap C) + P(B \cap C) - P(A \cap B \cap C)]$$

$$= P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

$$= 0, 1050 + 0, 0925 + 0, 1300 - 0, 0210 - 0, 0060 - 0, 0090 + 0, 0015 = 0, 2930,$$

onde a regra de adição de probabilidades foi invocada sucessivas vezes.

14c) A probabilidade de não ter TV a cabo é dada por

$$P(A^c \cap B^c \cap C^c) = P((A \cup B \cup C)^c) = 1 - \underbrace{P(A \cup B \cup C)}_{\text{Exercício (14b)}} = 1 - 0,2930 = 0,7070.$$

- 15) Das pacientes de uma clínica de ginecologia com idade acima de 40 anos, 70% são ou foram casadas e 30% são solteiras. Sendo solteira, a probabilidade de ter apresentado um distúrbio hormonal no último ano é de 20%, enquanto que para as demais essa probabilidade aumenta para 40%. Determinar:
- a) a probabilidade de uma paciente escolhida ao acaso ter apresentado um distúrbio hormonal (no último ano).
- b) se a paciente sorteada teve distúrbio hormonal (no último ano), a probabilidade de ser solteira.
- c) se duas pacientes são escolhidas ao acaso e com reposição, a probabilidade de pelo menos uma ter manifestado distúrbio (no último ano).
- 15) Definição dos eventos:
- S: Solteira (denotar-se-á por S^c aquelas que são ou foram casadas).
- D: Ocorrência de distúrbio hormonal no último ano.

Sabe-se que
$$P(S) = 0.30$$
, $P(S^c) = 0.70$, $P(D|S) = 0.20$ e $P(D|S^c) = 0.40$.

15a) Notando que os subconjuntos S e S^c formam uma partição, pode-se representar o evento D por $D = (D \cap S) \cup (D \cap S^c)$ (com $(D \cap S) \cap (D \cap S^c) = \emptyset$). Desta forma, a probabilidade de uma paciente escolhida ao acaso ter apresentado um distúrbio hormonal (no último ano) é dada por

$$P(D) = P(D \cap S) + P(D \cap S^c) = P(D|S)P(S) + P(D|S^c)P(S^c) = 0, 20 \cdot 0, 30 + 0, 40 \cdot 0, 70 = 0, 34.$$

15b) Sabendo-se, pelo exercício (15a), que $P(D) \neq 0$, a probabilidade da paciente ser solteira, dado que teve distúrbio hormonal (no último ano), é dada por

$$P(S|D) = \frac{P(S \cap D)}{P(D)} = \frac{P(D|S)P(S)}{\underbrace{P(D)}} = \frac{0,20 \cdot 0,30}{0,34} = \frac{3}{17} \approx 0,18.$$

15c) Do exercício (15a), a probabilidade da paciente escolhida não ter apresentado distúrbio no último ano é $P(D^c)=1-P(D)$. Como o sorteio das duas pacientes (com reposição) é independente, a probabilidade de nenhuma das duas ter manifestado o problema é $P(D^c)P(D^c)$, o que implica a probabilidade de pelo menos uma delas ter apresentado distúrbio hormonal no último ano ser a probabilidade complementar $1-P(D^c)P(D^c)=1-\left[1-P(D)\right]^2=1-\left(1-0,34\right)^2=0,5644$.

- 16) Numa região, a probabilidade de chuva em um dia qualquer de primavera é de 0,2. Um meteorologista acerta suas previsões em 80% dos dias em que chove e em 90% dos dias em que não chove.
- a) Determinar a probabilidade deste meteorologista acertar a previsão.
- b) Havendo acerto na previsão feita, determinar a probabilidade de ter sido um dia de chuva.
- 16) Definição dos eventos:
- A: Acerto da previsão pelo meteorologista.
- C: Ocorrência de chuva (em um dia qualquer de primavera).

A partir das informações fornecidas, sabe-se que P(C)=0,2 (logo, $P(C^c)=1-P(C)=0,8$), P(A|C)=0,8 e $P(A|C^c)=0,9$.

16a) Notando que os subconjuntos C e C^c formam uma partição, pode-se escrever $A = (A \cap C) \cup (A \cap C^c)$, e a probabilidade deste meteorologista acertar a previsão é dada por

$$P(A) = P(A \cap C) + P(A \cap C^c) = P(A|C)P(C) + P(A|C^c)P(C^c) = 0, 8 \cdot 0, 2 + 0, 9 \cdot 0, 8 = 0, 88.$$

16b) Do exercício (16a), sabe-se que $P(A) \neq 0$. Havendo acerto na previsão feita, a probabilidade de tersido um dia de chuva é dada por

$$P(C|A) = \frac{P(C \cap A)}{P(A)} = \frac{P(A|C)P(C)}{P(A)} = \frac{0, 8 \cdot 0, 2}{0, 88} = \frac{2}{11} \approx 0, 18.$$

- 17) Um médico desconfia que um paciente tem tumor no abdômen, já que isto ocorreu em 80% dos casos similares que tratou. Se o paciente de fato tiver o tumor, o exame ultra-som o detectará com probabilidade 0,9. Entretanto, se ele não tiver o tumor, o exame pode, erroneamente, indicar que tem com probabilidade 0,1. Se o exame detectou um tumor, determinar a probabilidade do paciente tê-lo de fato.
- 17) Definição dos eventos:
- T: Ocorrência de tumor.
- U: Indicação de tumor pelo exame ultra-som.

A partir das informações fornecidas, sabe-se que P(T)=0.8 (logo, $P(T^c)=1-P(T)=0.2$), P(U|T)=0.9 e $P(U|T^c)=0.1$. Notando que os subconjuntos T e T^c formam uma partição, pode-se escrever $U=(U\cap T)\cup (U\cap T^c)$, e a probabilidade do exame detectar tumor é dada por

$$P(U) = P(U \cap T) + P(U \cap T^c) = P(U|T)P(T) + P(U|T^c)P(T^c) = 0, 9 \cdot 0, 8 + 0, 1 \cdot 0, 2 = 0, 74 \neq 0.$$

Desta forma, havendo indicação de tumor pelo ultra-som, a probabilidade do paciente tê-lo de fato é dada por

$$P(T|U) = \frac{P(T \cap U)}{P(U)} = \frac{P(U|T)P(T)}{P(U)} = \frac{0.9 \cdot 0.8}{0.74} = \frac{36}{37} \approx 0.97.$$

- 18) Acredita-se que numa certa população, 30% de seus habitantes sofrem de algum tipo de alergia e são classificados como alérgicos para fins de saúde pública. Sendo alérgico, a probabilidade de ter reação a um certo antibiótico é de 0,5. Para os não alérgicos, esta probabilidade é de 0,1. Uma pessoa dessa população teve reação ao ingerir o antibiótico; determinar a probabilidade dela ser do grupo não alérgico.
- 18) Definição dos eventos:
- A: Pessoa com alergia.
- R: Reação ao antibiótico.

A partir das informações fornecidas, sabe-se que P(A) = 0,30 (logo, $P(A^c) = 1 - P(A) = 0,70$), P(R|A) = 0,50 e $P(R|A^c) = 0,1$. Notando que os subconjuntos A e A^c formam uma partição, pode-se escrever $R = (R \cap A) \cup (R \cap A^c)$, e a probabilidade da pessoa apresentar reação ao antibiótico é dada por

$$\begin{array}{ll} P(R) & = & P(R \cap A) + P(R \cap A^c) = P(R|A)P(A) + P(R|A^c)P(A^c) \\ & = & 0, 50 \cdot 0, 30 + 0, 1 \cdot 0, 70 = 0, 22 \neq 0 \,. \end{array}$$

Desta forma, havendo reação ao antibiótico, a probabilidade desta pessoa não ser do grupo alérgico é dada por

$$P(A^c|R) = 1 - P(A|R) = 1 - \frac{P(A \cap R)}{P(R)} = 1 - \frac{P(R|A)P(A)}{P(R)} = 1 - \frac{0,50 \cdot 0,30}{0,22} = \frac{7}{22} \approx 0,32.$$

- 19) Uma companhia que fura poços artesianos trabalha numa região escolhendo, aleatoriamente, o ponto de furo. Não encontrando água na primeira tentativa, sorteia outro local e, caso também não tenha sucesso, faz uma terceira tentativa. Não encontrando novamente, um quarto e último furo é aberto em outro local escolhido ao acaso. Admite-se que a probabilidade de encontrar água em qualquer ponto dessa região seja p. Determinar a probabilidade de:
- a) encontrar água na terceira tentativa.
- b) encontrar água em até três tentativas.
- c) encontrar água.
- 19) A árvore de probabilidades da situação descrita pode ser representada abaixo, onde o evento "encontrar água" é denotado por A. Assume-se que a probabilidade de encontrar água em cada furo, p, seja independente.

Denote por $X_1X_2\cdots$ a sequência ordenada dos eventos (X_i sendo o evento do i-ésimo furo, sendo igual a A^c ou A; notar que as únicas sequências possíveis são A, A^cA , A^cA^cA , $A^cA^cA^cA$ e $A^cA^cA^cA^cA^c$)

19a) A única sequência de eventos que permite encontrar água na terceira tentativa seria não encontrá-la nas duas primeiras tentativas e obter sucesso na terceira. Desta forma, a probabilidade requisitada é dada por

$$\underbrace{(1-p)}_{A^c \text{ (1$^{\underline{a}}$ tentativa)}} \cdot \underbrace{(1-p)}_{A^c \text{ (2$^{\underline{a}}$ tentativa)}} \cdot \underbrace{p}_{A \text{ (3$^{\underline{a}}$ tentativa)}} = (1-p)^2 p.$$

- 19b) Para encontrar água em até três tentativas, existem três (e somente três) possibilidades:
- (i) Encontrar água na primeira tentativa probabilidade P(A).
- (ii) Não encontrar água na primeira tentativa e encontrá-la na segunda probabilidade $P(A^cA)$.
- (iii) Não encontrar água nas duas primeiras tentativas e encontrá-la na terceira probabilidade $P(A^cA^cA)$.

A probabilidade requisitada é dada por

$$P(A) + P(A^{c}A) + P(A^{c}A^{c}A) = \underbrace{p}_{A \text{ (1$^{\underline{a}$ tentativa)}}} + \underbrace{(1-p)}_{A^{c} \text{ (1$^{\underline{a}$ tentativa)}}} \cdot \underbrace{p}_{A \text{ (2$^{\underline{a}$ tentativa)}}} + \underbrace{(1-p)^{2} p}_{\text{exercício (1a)}}$$

$$= p[1 + (1-p) + (1-p)^{2}],$$

onde a aditividade das probabilidades dos três eventos decorre desses serem mutualmente exclusivos.

- 19c) Para encontrar água, existem quatro (e somente quatro) possibilidades:
- (i) Encontrar água na primeira tentativa probabilidade P(A).
- (ii) Não encontrar água na primeira tentativa e encontrá-la na segunda probabilidade $P(A^cA)$.
- (iii) Não encontrar água nas duas primeiras tentativas e encontrá-la na terceira probabilidade $P(A^cA^cA)$.
- (iv) Não encontrar água nas três primeiras tentativas e encontrá-la na quarta (e última) probabilidade $P(A^cA^cA^cA)$.

A probabilidade requisitada é dada por

$$\underbrace{P(A) + P(A^cA) + P(A^cA^cA)}_{\text{exercício (1b)}} + P(A^cA^cA^cA) = \underbrace{p\left[1 + (1-p) + (1-p)^2\right]}_{\text{exercício (1b)}} + \underbrace{\left(1-p\right)}_{A^c \text{ (1a tentativa)}} \cdot \underbrace{\left(1-p\right)}_{A^c \text{ (2a tentativa)}} \cdot \underbrace{\left(1-p\right)}_{A^c \text{ (3a tentativa)}} \cdot \underbrace{p}_{A \text{ (4a tentativa)}} = p\left[1 + (1-p) + (1-p)^2 + (1-p)^3\right],$$

onde a aditividade da probabilidade dos quatro eventos decorre desses serem mutualmente exclusivos.

Nota: O exercício (1c) admite uma solução alternativa, onde a probabilidade de encontrar água é vista como a probabilidade complementar de não encontrar água (esta última, pela independência dos eventos associados a cada furo, é $(1-p)^4$), sendo, portanto, $1-(1-p)^4$ (este resultado coincide, naturalmente, com o valor $p[1+(1-p)+(1-p)^2+(1-p)^3]$ obtido anteriormente).

- 20) Uma urna contém a>0 bolas amarelas e $b\geq 2$ bolas brancas. Retira-se, aleatoriamente, uma bola da urna e registra-se a cor sorteada. A bola é devolvida à urna e a operação anterior é repetida.
- a) Determinar a probabilidade de obter duas bolas brancas.
- b) Determinar a probabilidade de obter a bola branca no segundo sorteio.
- c) Refazer os exercícios (2a) e (2b) admitindo que, após o primeiro sorteio, a primeira bola não seja devolvida à urna.
- 20) A árvore de probabilidades referente aos eventos é dada abaixo. Denota-se por A_i (B_i) o evento "sorteio da bola amarela (branca) no i-ésimo sorteio.

Caso o segundo sorteio ocorra com reposição da primeira bola, e assumindo que o sorteio de cada uma das a+b bolas seja equiprovável, tem-se

$$P(A_1) = P(A_2|A_1) = P(A_2|B_1) = \frac{a}{a+b}$$
 e $P(B_1) = P(B_2|A_1) = P(B_2|B_1) = \frac{b}{a+b}$.

Notar a independência entre o primeiro e segundo sorteio.

20a) A probabilidade de se obter duas bolas brancas é descrita por

$$P(B_2 \cap B_1) = P(B_2|B_1)P(B_1) = \frac{b}{a+b} \cdot \frac{b}{a+b} = \left(\frac{b}{a+b}\right)^2.$$

20b) Notando que os conjuntos A_1 e B_1 formam uma partição para o primeiro sorteio, a probabilidade de se obter a bola branca no segundo sorteio é dada por

$$P(B_2) = P(B_2 \cap A_1) + P(B_2 \cap B_1) = P(B_2|A_1)P(A_1) + P(B_2|B_1)P(B_1)$$
$$= \frac{b}{a+b} \cdot \frac{a}{a+b} + \frac{b}{a+b} \cdot \frac{b}{a+b} = \frac{b}{a+b}.$$

Nota: Uma vez que os sorteios são independentes (com reposição da primeira bola), poder-se-ia obter diretamente $P(B_2)$ como sendo a probabilidade de sortear a bola branca $\frac{b}{a+b}$.

20c) Caso não haja reposição da primeira bola, tem-se

$$P(A_1) = \frac{a}{a+b},$$
 $P(A_2|A_1) = \frac{a-1}{a+b-1},$ $P(A_2|B_1) = \frac{a}{a+b-1},$ $P(B_1) = \frac{b}{a+b},$ $P(B_2|A_1) = \frac{b}{a+b-1}$ e $P(B_2|B_1) = \frac{b-1}{a+b-1}.$

Neste novo cenário, a probabilidade de se obter duas bolas brancas é descrita por

$$P(B_2 \cap B_1) = P(B_2|B_1)P(B_1) = \frac{b-1}{a+b-1} \cdot \frac{b}{a+b} = \frac{b(b-1)}{(a+b)(a+b-1)},$$

e, notando que os conjuntos A_1 e B_1 formam uma partição para o primeiro sorteio, a probabilidade de se obter a bola branca no segundo sorteio é dada por

$$P(B_2) = P(B_2 \cap A_1) + P(B_2 \cap B_1) = P(B_2|A_1)P(A_1) + P(B_2|B_1)P(B_1)$$
$$= \frac{b}{a+b-1} \cdot \frac{a}{a+b} + \frac{b-1}{a+b-1} \cdot \frac{b}{a+b} = \frac{b}{a+b}.$$

- 21) Em um curso hipotético de TADI, suponha que a probabilidade de um(a) aluno(a) obter nota igual ou acima de 5,0 seja de 80% caso o ele(a) esteja muito motivado(a) e 2% se não estiver. Suponha que a motivação do(a) aluno(a) seja diretamente ligada ao seu desempenho na prova anterior. Determinar a probabilidade do(a) aluno(a) ser aprovado no curso sem a necessidade das provas substitutiva e de recuperação se:
- a) ele(a) começou o curso desmotivado(a).
- b) ele(a) começou o curso motivado(a).
- 21) Denotando por M o estado "motivado" do aluno (e, por M^c , o estado "desmotivado"), segue abaixo a árvore de probabilidades referente ao desempenho do aluno nas duas provas.

- 21a) A probabilidade do aluno obter notas acima de 5,0 nas duas provas, dado que ele começa o curso desmotivado, é de $0.02 \cdot 0.80 = 0.016$. Por outro lado, a probabilidade deste obter notas abaixo de 5,0 nos dois exames é de $0.98 \cdot 0.98 = 0.9604$ (com a mesma condição inicial), o que implica a probabilidade de aprovação ser majorada por 1-0.9604 = 0.0396. Desta forma, a probabilidade do aluno ser aprovado no curso sem a necessidade de provas substitutiva e de recuperação encontra-se na faixa entre 1.60% e 3.96%.
- 21b) A probabilidade do aluno obter notas acima de 5,0 nas duas provas, dado que ele começa o curso motivado, é de $0,80 \cdot 0,80 = 0,64$. Por outro lado, a probabilidade deste obter notas abaixo de 5,0 nos dois exames é de $0,20 \cdot 0,98 = 0,196$ (com a mesma condição inicial), o que implica a probabilidade de aprovação ser majorada por 1-0,196 = 0,804. Desta forma, a probabilidade do aluno ser aprovado no curso sem a necessidade de provas substitutiva e de recuperação encontra-se na faixa entre 64,0% e 80,4%.

- 22) Suponha que o tempo de um dia D (em dias) seja determinado pelos dois dias anteriores de sorte que:
- \bullet Chuva nos dias D-2 e D-1 implica chuva no dia D com probabilidade 0,6.
- Chuva no dia D-2 e ausência de chuva no dia D-1 implica chuva no dia D com probabilidade 0.3.
- \bullet Ausência de chuva no dia D-2 e chuva no dia D-1 implica chuva no dia D com probabilidade 0,4.
- Ausência de chuva nos dias D-2 e D-1 implica chuva no dia D com probabilidade 0,1.
- a) Admitindo que choveu ontem e não há chuva hoje, determinar a probabilidade de chover daqui a três dias.
- b) Determinar o cenário mais provável (previsão do tempo de amanhã e depois) se não houver chuva daqui a três dias (assumindo a condição inicial do item anterior).
- 22) As regras descritas podem ser esquematizadas na árvore de probabilidades abaixo.

22a) Denotando por X_i (X_i podendo ser C_i ou C_i^c) o tempo do *i*-ésimo dia (onde i = -1 indica "ontem", i = 0 significa "hoje", e assim por diante), a probabilidade de chover daqui a três dias, $P(C_3)$, é dada por

$$P(C_3) = P(C_{-1}C_0^cC_1C_2C_3) + P(C_{-1}C_0^cC_1C_2^cC_3) + P(C_{-1}C_0^cC_1^cC_2C_3) + P(C_{-1}C_0^cC_1^cC_2^cC_3)$$

$$= 0, 3 \cdot 0, 4 \cdot 0, 6 + 0, 3 \cdot 0, 6 \cdot 0, 3 + 0, 7 \cdot 0, 1 \cdot 0, 4 + 0, 7 \cdot 0, 9 \cdot 0, 1$$

$$= 0.217.$$

onde a aditividade das probabilidades (na primeira linha) segue da disjunção entre os eventos.

22b) Com a mesma notação anterior, existem as seguintes possibilidades para não chover daqui a três dias (assumindo as mesmas condições iniciais do exercício (16a)):

 $\begin{array}{lll} \text{Cenário } C_{-1}C_0^cC_1C_2C_3^c & \Rightarrow & \text{Probabilidade de ocorrência: } 0,3\cdot 0,4\cdot 0,4=0,048 \\ \text{Cenário } C_{-1}C_0^cC_1C_2^cC_3^c & \Rightarrow & \text{Probabilidade de ocorrência: } 0,3\cdot 0,6\cdot 0,7=0,126 \\ \text{Cenário } C_{-1}C_0^cC_1^cC_2C_3^c & \Rightarrow & \text{Probabilidade de ocorrência: } 0,7\cdot 0,1\cdot 0,6=0,042 \\ \text{Cenário } C_{-1}C_0^cC_1^cC_2^cC_3^c & \Rightarrow & \text{Probabilidade de ocorrência: } 0,7\cdot 0,9\cdot 0,9=0,567 \\ \end{array}$

O cenário mais provável para não haver chuva daqui a três dias é não chover amanhã e nem depois (o que ocorre com probabilidade 56,7%).

13