1146. Maximum Sum

Time limit: 0.5 second Memory limit: 64 MB

Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the *maximal sub-rectangle*. A sub-rectangle is any contiguous sub-array of size 1×1 or greater located within the whole array.

As an example, the maximal sub-rectangle of the array:

$$\begin{array}{c|ccccc}
0 & -2 & -7 & 0 \\
9 & 2 & -6 & 2 \\
-4 & 1 & -4 & 1 \\
-1 & 8 & 0 & -2
\end{array}$$

is in the lower-left-hand corner and has the sum of 15.

Input

The input consists of an $N \times N$ array of integers. The input begins with a single positive integer N on a line by itself indicating the size of the square two dimensional array. This is followed by N^2 integers separated by whitespace (newlines and spaces). These N^2 integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N may be as large as 100. The numbers in the array will be in the range [-127, 127].

Output

The output is the sum of the maximal sub-rectangle.

Sample

input	output
4 0 -2 -7 0	15
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2	

1 of 1 30/05/18, 23:23