6 Le raisonnement par récurrence

I - Principe du raisonnement par récurrence

Le raisonnement par récurrence est un principe de démonstration, visant à établir une propriété portant sur tous les entiers naturels.

Théorème 6.1 - Principe de récurrence

Soit \mathcal{P}_n une propriété définie sur N. Si les conditions suivantes sont vérifiées :

- 1. **Initialisation**: " \mathcal{P}_0 est vraie",
- 2. **Hérédité :** "Pour tout $n \in \mathbb{N}$, si \mathscr{P}_n est vraie alors \mathscr{P}_{n+1} est également vraie",

alors la propriété \mathcal{P}_n est vraie pour tout entier naturel $n \in \mathbb{N}$.

Métaphoriquement, on peut se représenter le principe du raisonnement par récurrence comme une ligne infinie de dominos qu'il s'agirait de faire tomber. Si l'on est capable de faire tomber le premier domino (*i.e.*, si l'hypothèse d'**initialisation** est vérifiée) et que la chute d'un domino fait tomber le suivant (*i.e.*, que l'étape d'**hérédité** est vérifiée) alors tous les dominos vont tomber.

Illustrons désormais ce nouveau mode de raisonnement sur un exemple, afin d'en fixer les règles de rédaction (passages surlignés), auxquelles il est **très vivement** recommandé de se conformer!

Exemple 6.2 – Soit (u_n) une suite définie par $u_0 = 4$ et $u_{n+1} = 2u_n - 3$ pour tout $n \ge 0$. On souhaite montrer que pour tout entier naturel n, $u_n \ge 3$.

Notons \mathscr{P}_n la propriété " $u_n \ge 3$ ".

- 1. **Initialisation :** Pour n = 0, $u_0 = 4 \ge 3$. Ainsi \mathcal{P}_0 est vraie.
- 2. **Hérédité :** Soit $n \in \mathbb{N}$. Supposons \mathscr{P}_n vraie et montrons que \mathscr{P}_{n+1} l'est aussi. Par définition de la suite (u_n) , on a $u_{n+1} = 2u_n 3$. Or par hypothèse de récurrence, $u_n \ge 3$, donc

$$u_{n+1} = 2u_n - 3 \ge 2 \times 3 - 3 = 3.$$

Donc $u_{n+1} \ge 3$. Finalement \mathcal{P}_{n+1} est vraie et la propriété \mathcal{P} est héréditaire.

3. **Conclusion :** Comme elle est héréditaire et vraie en n = 0, alors par principe de récurrence, la propriété \mathscr{P} est vraie pour tout $n \in \mathbb{N}$, *i.e.*,

$$\forall n \in \mathbb{N}, \quad u_n \ge 3.$$

Exemple 6.3 – Soit (u_n) une suite définie par $u_0 = 3$ et $u_{n+1} = 2u_n - 1$ pour tout $n \in \mathbb{N}$. Démontrer que, pour tout $n \in \mathbb{N}$, $u_n = 2^{n+1} + 1$.

Notons \mathcal{P}_n la propriété " $u_n = 2^{n+1} + 1$ ".

- 1. **Initialisation**: $u_0 = 3$ et $2^{0+1} + 1 = 2^1 + 1 = 2 + 1 = 3$. Ainsi \mathcal{P}_0 est vraie.
- 2. **Hérédité :** Soit $n \in \mathbb{N}$. Supposons \mathcal{P}_n vraie et montrons que \mathcal{P}_{n+1} l'est aussi. Par définition de la suite (u_n) , on a $u_{n+1} = 2u_n 1$. Or par hypothèse de récurrence, $u_n = 2^{n+1} + 1$,

donc

$$u_{n+1} = 2u_n - 1$$

$$= 2(2^{n+1} + 1) - 1$$

$$= 2 \times 2^{n+1} + 2 - 1$$

$$= 2^{n+2} + 1.$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété \mathcal{P} est héréditaire.

3. **Conclusion :** Comme elle est héréditaire et vraie en n = 0, alors par principe de récurrence, la propriété \mathscr{P} est vraie pour tout $n \in \mathbb{N}$, *i.e.*,

$$\forall n \in \mathbb{N}, \quad u_n = 2^{n+1} + 1.$$

II – Propriété vraie pour $n \ge n_0$

Certaines propriétés dépendant d'un entier naturel n ne sont vraies qu'à partir d'un certain rang $n_0 \in \mathbb{N}$. Le cas échéant, l'étape d'initialisation ne porte plus sur \mathcal{P}_0 (ce qui n'aurait a priori aucun sens), mais sur \mathcal{P}_{n_0} , le premier rang à partir duquel la propriété \mathcal{P} est vraie. Le principe du raisonnement reste ensuite le même.

Exemple 6.4 – Soit (u_n) une suite définie par $u_1 = \frac{1}{2}$ et $u_{n+1} = u_n + \frac{1}{(n+1)(n+2)}$ pour tout $n \in \mathbb{N}^*$.

Démontrer que, pour tout $n \in \mathbb{N}^*$, $u_n = 1 - \frac{1}{n+1}$.

Notons \mathcal{P}_n la propriété $u_n = 1 - \frac{1}{n+1}$ ".

- 1. **Initialisation :** Pour n=1, $u_1=\frac{1}{2}$ et $1-\frac{1}{1+1}=1-\frac{1}{2}=\frac{1}{2}$. Ainsi \mathcal{P}_1 est vraie.
- 2. **Hérédité :** Soit $n \in \mathbb{N}^*$. Supposons \mathcal{P}_n vraie et montrons que \mathcal{P}_{n+1} l'est aussi.

Par définition de la suite (u_n) , on a $u_{n+1} = u_n + \frac{1}{(n+1)(n+2)}$. Or par hypothèse de récurrence,

$$u_n = 1 - \frac{1}{n+1}$$
, donc

$$u_{n+1} = u_n + \frac{1}{(n+1)(n+2)}$$

$$= 1 - \frac{1}{n+1} + \frac{1}{(n+1)(n+2)}$$

$$= 1 - \frac{n+2}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)}$$

$$= 1 - \frac{n+2-1}{(n+1)(n+2)}$$

$$= 1 - \frac{n+1}{(n+1)(n+2)}$$

$$= 1 - \frac{1}{n+2}.$$

Donc $u_{n+1} = 1 - \frac{1}{(n+2)}$. Finalement \mathcal{P}_{n+1} est vraie et la propriété \mathcal{P} est héréditaire.

3. **Conclusion :** Comme elle est héréditaire et vraie en n = 1, alors par principe de récurrence,

la propriété $\mathcal P$ est vraie pour tout $n\in \mathbf N^*$, i.e.,

$$\forall n \in \mathbf{N}^*, \quad u_n = 1 - \frac{1}{n+1}.$$

Exemple 6.5 – Démontrer que pour tout $n \ge 6$, $(n+2)^2 \le 2^n$.

Notons \mathcal{P}_n la propriété $2^n \ge (n+2)^2$.

- 1. **Initialisation**: Pour n = 6, $2^6 = 64$ et $(6+2)^2 = 64$. Ainsi \mathcal{P}_6 est vraie.
- 2. **Hérédité :** Soit $n \ge 6$. Supposons \mathscr{P}_n vraie et montrons que \mathscr{P}_{n+1} l'est aussi. Par hypothèse de récurrence, on sait que $2^n \ge (n+2)^2$. Alors

$$2^{n+1} = 2 \times 2^n \ge 2 \times (n+2)^2$$

$$\ge 2 \times (n^2 + 4n + 4)$$

$$\ge 2n^2 + 8n + 8$$

$$\ge n^2 + 6n + 9$$

$$= (n+3)^2$$

$$= ((n+1) + 2)^2.$$

Finalement, \mathcal{P}_{n+1} est vraie et la propriété \mathcal{P} est héréditaire.

3. **Conclusion :** Comme elle est héréditaire et vraie en n = 6, alors par principe de récurrence, la propriété \mathscr{P} est vraie pour tout $n \ge 6$, *i.e.*,

$$\forall n \ge 6, \quad 2^n \ge (n+2)^2.$$

III – Récurrences impliquant le signe Σ

Proposition 6.6

Soit (u_n) une suite. Pour tout $n \in \mathbb{N}$, on a

$$\sum_{k=0}^{n+1} u_k = \sum_{k=0}^{n} u_k + u_{n+1}.$$

Remarque 6.7 -

Évidemment, on a également

$$\sum_{k=1}^{n+1} u_k = \sum_{k=1}^{n} u_k + u_{n+1}, \qquad \sum_{k=2}^{n+1} u_k = \sum_{k=2}^{n} u_k + u_{n+1}, \qquad \text{etc}$$

• Cette propriété permet de démontrer un très grand nombre de formules portant sur le signe Σ , à l'aide d'un raisonnement par récurrence.

Exemple 6.8 – Démontrer que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

Notons \mathscr{P}_n la propriété " $\sum_{k=0}^n k = \frac{n(n+1)}{2}$ ".

- 1. **Initialisation :** Pour n = 0, $\sum_{k=0}^{0} k = 0$ et $\frac{0(0+1)}{2} = 0$. Ainsi \mathcal{P}_0 est vraie.
- 2. **Hérédité**: Soit $n \ge 0$. Supposons \mathcal{P}_n vraie et montrons que \mathcal{P}_{n+1} l'est aussi.

Par hypothèse de récurrence, on sait que $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$. Alors

$$\sum_{k=0}^{n+1} k = \sum_{k=0}^{n} k + (n+1) \quad \text{d'après la Proposition ci-dessus}$$

$$= \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}.$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété \mathcal{P} est héréditaire.

3. **Conclusion :** Comme elle est héréditaire et vraie en n = 0, alors par principe de récurrence, la propriété \mathscr{P} est vraie pour tout $n \in \mathbb{N}$, *i.e.*,

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

Exemple 6.9 – Démontrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Notons \mathscr{P}_n la propriété " $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$ ".

- 1. **Initialisation :** Pour n = 1, $\sum_{k=1}^{1} k^2 = 1$ et $\frac{1(1+1)(2\times 1+1)}{6} = \frac{1\times 2\times 3}{6} = \frac{6}{6} = 1$. Ainsi \mathscr{P}_1 est vraie.
- 2. **Hérédité :** Soit $n \ge 1$. Supposons \mathscr{P}_n vraie et montrons que \mathscr{P}_{n+1} l'est aussi. Par hypothèse de récurrence, on sait que $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$. Alors,

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{6(n+1)^2}{6}$$

$$= \frac{(n+1)(n(2n+1)+6(n+1))}{6}$$

$$= \frac{(n+1)(2n^2+7n+6)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}$$

$$= \frac{(n+1)(n+2)(2(n+1)+1)}{6}.$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété \mathcal{P} est héréditaire.

3. **Conclusion :** Comme elle est héréditaire et vraie en n = 1, alors par principe de récurrence, la propriété \mathcal{P} est vraie pour tout $n \in \mathbb{N}^*$, *i.e.*,

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}.$$