Numerical Optimization

Constrained Optimization - Algorithms

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Barrier and Penalty Methods

Consider the problem:

$$min f(x)
s.t. x \in X$$

where $X \in \mathbb{R}^n$.

Idea:

- Approximation by an unconstrained problem
- Solve a sequence of unconstrained optimization problems

Penalty Methods

Penalize for violating a constraint

Barrier Methods

Penalize for reaching the boundary of an inequality constraint

$$\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text{s.t.} & \mathbf{x} \in X
\end{array}$$

Define a function,

$$\psi(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \in X \\ +\infty & \text{if } \mathbf{x} \notin X \end{cases}$$

Solve an *equivalent* unconstrained problem:

$$\min f(x) + \psi(x)$$

- Not a practical approach
- Replace $\psi(x)$ by a sequence of continuous non-negative functions that approach $\psi(x)$

Penalty Methods

$$\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text{s.t.} & \mathbf{x} \in X
\end{array}$$

- Let x^* be a local minimum
- Let $X = \{h_i(x) < 0, j = 1, ..., l\}$
- Define

$$P(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{l} [\max(0, h_i(\mathbf{x}))]^2$$

- Define $q(\mathbf{x},c) = f(\mathbf{x}) + cP(\mathbf{x})$
- Define a sequence $\{c^k\}$ such that $c^k \ge 0$ and $c^{k+1} > c^k$ $\forall k$
- Let $\mathbf{x}^k = \operatorname{argmin}_{\mathbf{r}} q(\mathbf{x}, c^k)$
- Ideally, $\{x^k\} \to x^*$ as $\{c^k\} \to +\infty$

min
$$f(x)$$

s.t. $h_j(x) \le 0, j = 1, ..., l$
 $e_i(x) = 0, i = 1, ..., m$

Define

$$P(x) = \frac{1}{2} \sum_{j=1}^{l} \left[\max(0, h_j(x))^2 + \frac{1}{2} \sum_{i=1}^{m} e_i^2(x) \right]$$

and

$$q(\mathbf{x},c) = f(\mathbf{x}) + cP(\mathbf{x}).$$

• Assumption: f, h_i 's and e_i 's are sufficiently smooth

Lemma

If $\mathbf{x}^k = \operatorname{argmin}_{\mathbf{x}} q(\mathbf{x}, c^k)$ and $c^{k+1} > c^k$, then

- $q(\mathbf{x}^k, c^k) \le q(\mathbf{x}^{k+1}, c^{k+1})$
- $P(x^k) \ge P(x^{k+1})$
- $f(\mathbf{x}^k) \leq f(\mathbf{x}^{k+1}).$

Proof.

$$q(\mathbf{x}^{k+1}, c^{k+1}) = f(\mathbf{x}^{k+1}) + c^{k+1}P(\mathbf{x}^{k+1})$$

$$\geq f(\mathbf{x}^{k+1}) + c^{k}P(\mathbf{x}^{k+1})$$

$$\geq f(\mathbf{x}^{k}) + c^{k}P(\mathbf{x}^{k})$$

$$= q(\mathbf{x}^{k}, c^{k})$$
Also, $f(\mathbf{x}^{k}) + c^{k}P(\mathbf{x}^{k}) \leq f(\mathbf{x}^{k+1}) + c^{k}P(\mathbf{x}^{k+1}) \dots (1)$

$$f(\mathbf{x}^{k+1}) + c^{k+1}P(\mathbf{x}^{k+1}) \leq f(\mathbf{x}^{k}) + c^{k+1}P(\mathbf{x}^{k}) \dots (2)$$

Adding (1) and (2), we get $P(x^k) \ge P(x^{k+1})$. $f(x^{k+1}) + c^k P(x^{k+1}) \ge f(x^k) + c^k P(x^k) \implies f(x^{k+1}) \ge f(x^k)$

Lemma

Let x^* be a solution to the problem,

$$\begin{array}{ll}
\min & f(\mathbf{x}) \\
s.t. & \mathbf{x} \in X.
\end{array} \qquad \dots (P1)$$

Then, for each k, $f(\mathbf{x}^k) \leq f(\mathbf{x}^*)$.

Proof.

$$f(\mathbf{x}^k) \leq f(\mathbf{x}^k) + c^k P(\mathbf{x}^k)$$

$$\leq f(\mathbf{x}^*) + c^k P(\mathbf{x}^*) = f(\mathbf{x}^*)$$

Theorem

Any limit point of the sequence, $\{x^k\}$ generated by the penalty method is a solution to the problem (P1).

min
$$f(x)$$

s.t. $h_j(x) \le 0, j = 1, ..., l$
 $e_i(x) = 0, i = 1, ..., m$

Penalty Function Method (to solve NLP)

- (1) Input: $\{c^k\}_{k=0}^{\infty}$, ϵ
- (2) Set k := 0, initialize x^k
- (3) **while** $(q(x^k, c^k) f(x^k)) > \epsilon$
 - (a) $\mathbf{x}^{k+1} = \operatorname{argmin}_{\mathbf{x}} q(\mathbf{x}, c^k)$
 - (b) k := k + 1

endwhile

Output: $x^* = x^k$

Example:

min
$$\frac{1}{2}[(x_1-3)^2+(x_2-2)^2]$$

s.t. $-x_1+x_2 \le 0$
 $x_1+x_2 \le 1$
 $-x_2 \le 0$

$$x^* = (1,0)^T$$

min
$$\frac{1}{2}[(x_1-3)^2+(x_2-2)^2]$$

s.t. $-x_1+x_2 \le 0$
 $x_1+x_2 \le 1$
 $-x_2 \le 0$

$$q(\mathbf{x},c) = \frac{1}{2}[(x_1 - 3)^2 + (x_2 - 2)^2] + \frac{c}{2}[(\max(0, -x_1 + x_2))^2 + (\max(0, x_1 + x_2 - 1))^2 + (\max(0, -x_2))^2]$$

- Let $\mathbf{x}^0 = (3,2)^T$ (Violates the constraint $x_1 + x_2 \le 1$)
- At x^0 ,

$$q(\mathbf{x},c) = \frac{1}{2}[(x_1-3)^2 + (x_2-2)^2] + \frac{c}{2}[(x_1+x_2-1)^2].$$

min
$$\frac{1}{2}[(x_1-3)^2+(x_2-2)^2]$$

s.t. $-x_1+x_2 \le 0$
 $x_1+x_2 \le 1$
 $-x_2 \le 0$

• At
$$x^0 = (3,2)^T$$
,

$$q(\mathbf{x},c) = \frac{1}{2}[(x_1-3)^2 + (x_2-2)^2] + \frac{c}{2}[(x_1+x_2-1)^2].$$

• Taking limit as
$$c \to \infty$$
, $\mathbf{x}^* = (1,0)^T$

Consider the problem,

$$\min f(x)$$

- Let (x^*, μ^*) be a KKT point $(\nabla^2 f(x^*) + \mu^* \nabla e(x^*) = 0)$
- Penalty Function: $q(\mathbf{x}, c) = f(\mathbf{x}) + cP(\mathbf{x})$
- As $c \to \infty$, $q(\mathbf{x}, c) = f(\mathbf{x})$

Consider the *perturbed* problem,

$$\min \quad f(\mathbf{x}) \\
\text{s.t.} \quad e(\mathbf{x}) = \theta$$

and the penalty function,

$$\hat{q}(\mathbf{x}, c) = f(\mathbf{x}) + c(e(\mathbf{x}) - \theta)^{2}$$

$$= f(\mathbf{x}) - 2c\theta e(\mathbf{x}) + ce(\mathbf{x})^{2} \qquad \text{(ignoring constant term)}$$

$$= \underbrace{f(\mathbf{x}) + \mu e(\mathbf{x})}_{\mathcal{L}(\mathbf{x}, \mu)} + ce(\mathbf{x})^{2}$$

 $= \hat{\mathcal{L}}(x, \mu, c)$ (Augmented Lagrangian Function)

At
$$(\mathbf{x}^*, \mu^*)$$
, $\nabla_x \mathcal{L}(\mathbf{x}^*, \mu^*) = \nabla f(\mathbf{x}^*) + \mu^* \nabla e(\mathbf{x}^*) = \mathbf{0}$.

$$\therefore \nabla_x \hat{q}(\mathbf{x}^*, c) = \nabla_x \hat{\mathcal{L}}(\mathbf{x}^*, \mu^*, c)$$

$$= \nabla_x \mathcal{L}(\mathbf{x}^*, \mu^*) + 2ce(\mathbf{x}^*) \nabla e(\mathbf{x}^*)$$

$$= \mathbf{0} \quad \forall c$$

Q. How to get an estimate of μ^* ? Let \mathbf{x}_c^* be a minimizer of $\mathcal{L}(\mathbf{x}, \mu, c)$. Therefore,

$$\nabla_{x} \mathcal{L}(\boldsymbol{x}_{c}^{*}, \mu, c) = \nabla f(\boldsymbol{x}_{c}^{*}) + \mu \nabla e(\boldsymbol{x}_{c}^{*}) + ce(\boldsymbol{x}_{c}^{*}) \nabla e(\boldsymbol{x}_{c}^{*}) = \mathbf{0}$$

$$\therefore \nabla f(\boldsymbol{x}_{c}^{*}) = -\underbrace{(\mu + ce(\boldsymbol{x}_{c}^{*}))}_{\text{estimate of } \mu^{*}} \nabla e(\boldsymbol{x}_{c}^{*})$$

Program (**EP**)

$$min f(\mathbf{x})
s.t. e(\mathbf{x}) = 0$$

Augmented Lagrangian Method (to solve EP)

- (1) Input: c, ϵ
- (2) Set k := 0, initialize \mathbf{x}^k, μ^k
- (3) while $(\hat{\mathcal{L}}(\mathbf{x}^k, \mu^k, c) f(\mathbf{x}^k)) > \epsilon$
 - (a) $\mathbf{x}^{k+1} = \operatorname{argmin}_{\mathbf{x}} \hat{\mathcal{L}}(\mathbf{x}^k, \mu^k, c)$
 - (b) $\mu^{k+1} = \mu^k + ce(x^k)$
 - (c) k := k + 1

endwhile

Output: $x^* = x^k$

min
$$f(x)$$

s.t. $h_j(x) \le 0, j = 1, ..., l$
 $e_i(x) = 0, i = 1, ..., m$

- Easy to extend the Augmented Lagrangian Method to NLP
- Rewrite the inequality constraint, $h(x) \le 0$ as an equality constraint,

$$h(x) + y^2 = 0$$

Barrier Methods

Typically applicable to inequality constrained problems

min
$$f(x)$$

s.t. $h_j(x) \le 0, j = 1, ..., l$

Let
$$X = \{x : h_i(x) \le 0, j = 1, ..., l\}$$

• Some Barrier functions (defined on the *interior* of X)

$$B(x) = -\sum_{j=1}^{l} \frac{1}{h_j(x)} \text{ or } B(x) = -\sum_{j=1}^{l} \log(-h_j(x))$$

• Approximate problem using Barrier function (for c > 0)

min
$$f(x) + \frac{1}{c}B(x)$$

s.t. $x \in \text{Interior of } X$

Cutting-Plane Methods

Primal Problem

min
$$f(\mathbf{x})$$

s.t. $h_j(\mathbf{x}) \leq 0, \ j = 1, \dots, l$
 $e_i(\mathbf{x}) = 0, \ i = 1, \dots, m$
 $\mathbf{x} \in X$

Dual Problem

$$\max_{s.t.} \theta(\lambda, \mu)$$
s.t. $\lambda \geq 0$

X is a compact set.

Dual Function:
$$z = \theta(\lambda, \mu) = \min_{x \in X} f(x) + \lambda^T h(x) + \mu^T e(x)$$

Equivalent Dual problem

$$\max_{z,\mu,\lambda} z$$
s.t. $z \leq f(x) + \lambda^T h(x) + \mu^T e(x), x \in X$
 $\lambda > 0$

Linear Program with infinite constraints

Equivalent Dual problem

$$egin{array}{l} \max & z \ ext{s.t.} & z \leq f(m{x}) + m{\lambda}^T h(m{x}) + m{\mu}^T e(m{x}), & m{x} \in X \ m{\lambda} \geq m{0} \end{array}$$

Idea: Solve an approximate dual problem.

Suppose we know $\{x^j\}_{j=0}^{k-1}$ such that

$$z \leq f(\mathbf{x}) + \boldsymbol{\lambda}^T h(\mathbf{x}) + \boldsymbol{\mu}^T e(\mathbf{x}), \ \mathbf{x} \in \{\mathbf{x}^0, \dots, \mathbf{x}^{k-1}\}$$

Approximate Dual Problem

$$\max_{z,\mu,\lambda} z$$
s.t. $z \leq f(x) + \lambda^T h(x) + \mu^T e(x), x \in \{x^0, \dots, x^{k-1}\}$
 $\lambda \geq \mathbf{0}$

Let (z^k, λ^k, μ^k) be the optimal solution to this problem.

Approximate Dual Problem

$$\max_{z,\mu,\lambda} z$$
s.t. $z \leq f(x) + \lambda^T h(x) + \mu^T e(x), x \in \{x^0, \dots, x^{k-1}\}$
 $\lambda \geq \mathbf{0}$

If $z^k \leq f(x) + \lambda^{k^T} h(x) + \mu^{k^T} e(x) \ \forall \ x \in X$, then (z^k, λ^k, μ^k) is the solution to the dual problem.

Q. How to check if $z^k \leq f(x) + \lambda^{k^T} h(x) + \mu^{k^T} e(x) \ \forall \ x \in X$? Consider the problem,

min
$$f(x) + \lambda^{k^T} h(x) + \mu^{k^T} e(x)$$

s.t. $x \in X$

and let x^k be an optimal solution to this problem.

min
$$f(x) + \lambda^{k^T} h(x) + \mu^{k^T} e(x)$$

s.t. $x \in X$

and let x^k be an optimal solution to this problem.

- If $z^k \le f(x^k) + \lambda^{k^T} h(x^k) + \mu^{k^T} e(x^k)$, then (λ^k, μ^k) is an optimal solution to the Lagrangian dual problem.
- If $z^k > f(\mathbf{x}^k) + \boldsymbol{\lambda}^{kT} h(\mathbf{x}^k) + \boldsymbol{\mu}^{kT} e(\mathbf{x}^k)$, then add the constraint, $z \leq f(\mathbf{x}^k) + \boldsymbol{\lambda}^T h(\mathbf{x}^k) + \boldsymbol{\mu}^T e(\mathbf{x}^k)$ to the approximate dual problem.

min
$$f(\mathbf{x})$$

s.t. $h_j(\mathbf{x}) \leq 0, j = 1, \dots, l$
 $e_i(\mathbf{x}) = 0, i = 1, \dots, m$
 $\mathbf{x} \in X$

Summary of steps for Cutting-Plane Method:

- Initialize with a feasible point x^0
- while stopping condition is not satisfied

$$(z^k, \boldsymbol{\lambda}^k, \boldsymbol{\mu}^k) = \operatorname{argmax}_{z,\lambda,\mu} z \\ \operatorname{s.t.} z \leq f(\boldsymbol{x}^j) + \boldsymbol{\lambda}^T h(\boldsymbol{x}^j) + \boldsymbol{\mu}^T e(\boldsymbol{x}^j), \ j = 0, \dots, k-1 \\ \boldsymbol{\lambda} \geq \boldsymbol{0}$$

$$oldsymbol{x}^k = rac{\operatorname{argmin}_x \ f(oldsymbol{x}) + oldsymbol{\lambda}^{k^T} h(oldsymbol{x}) + oldsymbol{\mu}^{k^T} e(oldsymbol{x})}{oldsymbol{x} \in X}$$

Stop if
$$z^k \le f(\mathbf{x}^k) + \boldsymbol{\lambda}^{kT} h(\mathbf{x}^k) + \boldsymbol{\mu}^{kT} e(\mathbf{x}^k)$$
. Else, $k := k + 1$.

Shirish Shevade