

Mechanics of Materials II: Thin-Walled Pressure Vessels and Torsion

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Mechanics of Materials II: Thin-Walled Pressure Vessels and Torsion

- ✓ Thin-Walled Pressure Vessels Internal Pressure
- ✓ Torsional Shearing Stress and Strain
- ✓ Elastic Torsion Formula
- ✓ Elastic Torsion of Straight, Cylindrical Shafts
- ✓ Inelastic Torsion of Straight, Cylindrical Shafts
- Statically Indeterminate Torsion Members

Module 23 Learning Outcome

 Solve a statically indeterminate torsion problem

Statically Indeterminate Torsion

A simple model of the torsion bar of a tracked vehicle is shown below.

Statically Indeterminate Torsion

Worksheet:

Determine the maximum shear stress in each section.

Static Equilibrium Equations

Statically Indeterminate Torsion

Worksheet: Determine the maximum shear stress in each section.

Static Equilibrium Equations

Draw the FBD

1 Equilibrium Equation

2 Unknowns:

Steel

Write the equilibrium equation to start to solve the problem

$$\sum M_z = 0$$

$$T_{MONEL} + T_{STEEL} = 8 \text{ ft} \cdot k = 96 \text{ in} \cdot k$$

EQN [1]

1 Equation, 2 Unknowns: T_{MONEL} , T_{STEEL}

Let's use the elastoplastic assumption and assume the steel and monel shafts are on the linear elastic region

Worksheet: Determine the maximum shear stress in each section.

Equilibrium Equation

$$T_{MONEL} + T_{STEEL} = 96 in \cdot k$$
 EQN [1]

Deformation Equation

$$\phi_{C/A} - \phi_{D/C} = 0$$

Assume the steel being used has a torsional yield strength of 18 ksi, and assume the monel being used has a torsional yield strength of 25 ksi.

Idealized Elastoplastic Material

Angle of Twist, φ

$$\phi = \frac{TL}{GJ}$$

Let's use the elastoplastic assumption and assume the steel and monel shafts are on the linear elastic region

Worksheet: Determine the maximum shear stress in each section.

Equilibrium Equation

$$T_{MONEL} + T_{STEEL} = 96 in \cdot k$$
 EQN [1]

Assuming linear elastic region

$$2.13 T_{MONEL} = T_{STEEL}$$
 EQN [2]

Solving simultaneously

$$T_{MONEL} = 30.7 in \cdot k$$

$$T_{STEEL} = 65.3 in \cdot k$$

Idealized Elastoplastic Material

Calculate Stresses

Elastic Torsion Formula

$$\tau = \frac{T \, \mu}{J}$$

Let's use the elastoplastic assumption and assume the steel and monel shafts are on the linear elastic region

Worksheet: Determine the maximum shear stress in each section.

Equilibrium Equation

$$T_{MONEL} + T_{STEEL} = 96 in \cdot k$$
 EQN [1]

Assuming linear elastic region

$$2.13 T_{MONEL} = T_{STEEL}$$
 EQN [2]

Solving simultaneously

$$T_{MONEL} = 30.7 in \cdot k$$

$$T_{STEEL} = 65.3 in \cdot k$$

Idealized Elastoplastic Material

Calculate Stresses

$$\tau_{MONEL} = 2.44 \ ksi$$

ANS

$$\tau_{STEEL} = 1.54 \ ksi$$

Check Stresses for linearly elastic assumption

Assume the steel being used has a torsional yield strength of 18 ksi, and assume the monel being used has a torsional yield strength of 25 ksi.