Examen partiel du jeudi 13 mars 2025

Durée : 2h. Aucun document et aucun appareil électronique n'est autorisé.

Questions de cours

- 1) Rappeler la définition de la branche principale Log du logarithme, expliquer pourquoi c'est une fonction holomorphe, et rappeler pourquoi sa dérivée est donnée par la formule Log'(z) = 1/z.
- 2) Énoncer le théorème permettant de calculer la somme et le produit de deux séries entières.

Exercice: une fonction trigonométrique

On définit la fonction cosinus hyperbolique ch (resp. la fonction sinus hyperbolique sh) par la formule $\operatorname{ch}(z) := \frac{e^z + e^{-z}}{2}$ (resp. $\operatorname{sh}(z) := \frac{e^z - e^{-z}}{2}$).

- 1) Montrer que ch et sh sont holomorphes sur tout le plan complexe, puis calculer leur dérivée.
- Soit $u: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $u(x,y) = \operatorname{ch}(x) \cos(y)$.
- 2) Montrer que u est harmonique sur \mathbb{R}^2 .
- 3) Déterminer toutes les fonctions $v: \mathbb{R}^2 \to \mathbb{R}$ telles que $f: x+iy \mapsto u(x,y)+iv(x,y)$ soit holomorphe sur \mathbb{C} . On commencera par écrire les équations que doit satisfaire v.
- 4) Calculer la dérivée de f, puis sa dérivée seconde.
- 5) Montrer que pour tout $z \in \mathbb{C}$, $\operatorname{ch}(iz) = \cos(z)$ et $\operatorname{sh}(iz) = i\sin(z)$, puis appliquer la formule d'addition $\operatorname{ch}(a+b) = \operatorname{ch}(a)\operatorname{ch}(b) + \operatorname{sh}(a)\operatorname{sh}(b)$ (valable pour tous $a,b \in \mathbb{C}$) pour déterminer la partie réelle et la partie imaginaire de $\operatorname{ch}(x+iy)$, si $x,y \in \mathbb{R}$. Qu'en déduit-on à propos de f?

Problème: Développement binomial

Une fonction puissance

Soit $\alpha \in \mathbb{C}$. Posons $f_{\alpha}(z) := e^{\alpha \operatorname{Log}(z)}$. Le but du problème est de calculer un développement en série entière de f_{α} au voisinage de tout point z_0 de $\Omega := \mathbb{C} \setminus \mathbb{R}_-$.

- 1) Justifier que f_{α} est bien définie et holomorphe sur Ω .
- 2) Posons $g(z) := f_{\alpha}(z_0 + z)$. Montrer que g est holomorphe sur un disque ouvert D centré en 0.
- 3) Montrer que $g'(z) = \frac{\alpha}{z_0 + z} g(z)$ pour tout $z \in D$.

Digression : partie principale de la racine m-ième

- 4) Montrer que si m est un entier, alors $f_m(z) = z^m$ pour tout $z \in \Omega$.
- 5) Soit $m \in \mathbb{N}^*$. Montrer que $f_{1/m}(1) = 1$, et que $f_{1/m}(z)^m = z$ pour tout $z \in \Omega$.

Le but de la question suivante est de montrer que $f_{1/m}$ est l'unique fonction satisfaisant ces conditions.

- 6a) Soit $h: \Omega \to \mathbb{C}$ une fonction holomorphe vérifiant $h(z)^m = 1$ pour tout $z \in \Omega$. Montrer que h est constante. On pourra dériver cette relation; alternativement, on pourra montrer que h est à valeurs dans un ensemble discret.
- 6b) Soit $g: \Omega \to \mathbb{C}$ vérifiant $g(z)^m = z$ et g(1) = 1. Appliquer ce qui précède à $h = \frac{g}{f_{1/m}}$ (dont on justifiera l'existence) pour montrer que $g = f_{1/m}$ sur Ω .

Le fonction $f_{1/m}$ est appelée partie principale de la racine m-ième, et est notée $z \mapsto \sqrt[m]{z}$ (ou seulement $z \mapsto \sqrt{z}$ si m = 2).

Séries entières solutions d'une équation différentielle

On cherche une solution h de l'équation différentielle

$$(E) \quad h'(z) = \frac{\alpha}{z_0 + z} h(z)$$

sous la forme d'une série entière. Précisément, soit $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$, et soit $h:z\mapsto\sum_{n\geqslant 0}a_nz^n$, dont on suppose non nul le rayon de convergence R.

- 7) Rappeler comment se calcule la dérivée de h sur le disque ouvert D(0,R).
- 8) En déduire le développement en série entière de $z \mapsto (z_0 + z)h'(z) \alpha h(z)$.
- 9) En déduire que h est solution de (E) sur D(0,R) si et seulement si $a_{k+1} = \frac{\alpha k}{(k+1)z_0} a_k$ pour tout $k \ge 0$.
- 10) Montrer que ceci implique : $\forall k \geqslant 0$, $a_k = \frac{1}{z_0^k} {\alpha \choose k} a_0$, où ${\alpha \choose k} := \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$ (avec ${\alpha \choose 0} := 1$).

Fixons maintenant $a_0 \in \mathbb{C}$ et posons $a_k := \frac{1}{z_0^k} {\alpha \choose k} a_0 \ (= \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!z_0^k} a_0)$.

- 11) Calculer le rayon de convergence de $\sum_{k\geq 0} a_k z^k$ à l'aide du critère de d'Alembert.
- 12) En déduire que $h(z) = \sum_{k \ge 0} a_n z^n$ définit une solution de (E) sur un disque ouvert centré en 0. Que vaut h(0)?

Retour au problème initial

Pour $a_0 \in \mathbb{C}$, on pose $h(z) = a_0 \sum_{k \ge 0} {\alpha \choose k} \left(\frac{z}{z_0}\right)^k$ comme ci-dessus.

- 13) Justifier que g ne s'annule jamais, puis calculer la dérivée de h/g.
- 14) En déduire que si on pose $a_0 := g(0)$, on a g = h sur un disque ouvert centré en 0.
- 15) Conclure que f_{α} est développable en série entière en z_0 , et expliciter le développement de $f_{\alpha}(z_0 + z)$ en série entière de z. En particulier, montrer que pour $z_0 = 1$, on obtient :

$$\forall z \in D(0,1), \ f_{\alpha}(1+z) = \sum_{k \geqslant 0} {\alpha \choose k} z^k.$$

16) Calculer les quatre premiers coefficients des développements en série entière de $\sqrt{1+z}$ et de $\sqrt[3]{1+z}$ au voisinage de z=0.