

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS

Probabilidad 1 Tarea 3

PRESENTA

Carlos Emilio Castañon Maldonado	319053315
José Camilo García Ponce	319210536
Claudio Naim De La Cruz Márquez	318151645
Moisés Abraham Lira Rivera	319029930

PROFESOR

Jaime Vázquez Alamilla

AYUDANTES

Miguel Angel Fernández Castresana Brian Pérez Gutiérrez

Probabilidad 1

Tarea 3

Respuestas

Considere un espacio de probabilidad tal que $\Omega = \{1, 2, 3, 4, 5, 6\}$ y $F = \{\emptyset, \Omega, \{2, 4, 6\}, \{1, 3, 5\}\}$

Sean $X_1, X_2 : \Omega \longrightarrow \mathbb{R}$ definidas como

$$X_1(\omega)=\omega^2$$
 y $X_2(\omega)=\left\{egin{array}{ll} 1 & si & \omega & es & par \\ 0 & si & \omega & es & impar \end{array}
ight.$ ¿Son X_1 y X_2 variables aleatorias en este espacio de probabilidad ?

Sea X_1 definida como $X_1(w) = w^2$

Tenemos:

$$X_1(1)=1$$
 $X_1(2)=4$ $X_1(3)=9$ $X_1(4)=16$ $X_1(5)=25$ $X_1(6)=36$ Por lo que:

$$X_1(\omega) = \begin{cases} 1 & si \ \omega = 1 \\ 4 & si \ \omega = 2 \\ 9 & si \ \omega = 3 \\ 16 & si \ \omega = 4 \\ 25 & si \ \omega = 5 \\ 30 & si \ \omega = 6 \end{cases}$$

A lo que tenemos que:

$$\begin{array}{l} x < 1 \quad \{\omega \in \Omega | X(\omega) \leq x\} = \varnothing \in \mathbb{F} \\ 1 \leq x < 4 \quad \{\omega \in \Omega | X(\omega) \leq x\} = \{1\} \not \in \mathbb{F} \\ 4 \leq x < 9 \quad \{\omega \in \Omega | X(\omega) \leq x\} = \{1,2\} \not \in \mathbb{F} \\ 9 \leq x < 16 \quad \{\omega \in \Omega | X(\omega) \leq x\} = \{1,2,3\} \not \in \mathbb{F} \\ 16 \leq x < 25 \quad \{\omega \in \Omega | X(\omega) \leq x\} = \{1,2,3,4\} \not \in \mathbb{F} \\ 25 \leq x < 36 \quad \{\omega \in \Omega | X(\omega) \leq x\} = \{1,2,3,4,5\} \not \in \mathbb{F} \\ 36 \leq x \quad \{\omega \in \Omega | X(\omega) \leq x\} = \{1,2,3,4,5,6\} = \Omega \in \mathbb{F} \end{array}$$

 X_1 no es variable aleatoria en (Ω, \mathbb{F}, p)

Con X_2 tenemos que:

$$X_2(\omega) = \left\{ egin{array}{ll} 1 \; si \; \omega \; es \; par \\ 0 \; si \; \omega \; es \; impar \end{array}
ight.$$
 A lo que tenemos que:

A lo que fenemos que:
$$X_2(1)=0 \qquad X_2(2)=1 \qquad X_2(3)=0 \qquad X_2(4)=1 \qquad X_2(5)=0 \qquad X_2(6)=1$$
 Por lo que:

A lo que tenemos que:

$$x < 0 \quad \{\omega \in \Omega | X(\omega) \le x\} = \varnothing \in \mathbb{F}$$

$$0 < x < 1 \quad \{\omega \in \Omega | X(\omega) < x\} = \{1, 3, 5\} \in \mathbb{F}$$

$$1 \le x \quad \{\omega \in \Omega | X(\omega) \le x\} = \{\{1, 3, 5\}, \{2, 4, 6\}\} = \Omega \in \mathbb{F}$$

 X_2 si es variable aleatoria en (Ω, \mathbb{F}, p)

2 Un experimento consiste en lanzar dos bolas dentro de cuatro cajas, de tal manera que cada bola tiene la misma probabilidad de caer en cualquier caja. Sea X el número de bolas en la primera caja.

Ayudante

3 Considere la función $F_X:\mathbb{R}\longrightarrow\mathbb{R}$ definida como

$$F_X(x) = \begin{cases} 0 & x < 0 \\ x^2 + \frac{1}{5} & 0 \le x < \frac{1}{2} \\ x & \frac{1}{2} \le x < 1 \\ 1 & 1 \le x \end{cases}$$

(a) Hacer la gráfica de F_X y verificar que es función de distribución. ¿Es X variable aleatoria discreta o continua?

Gráfica:

Observando la gráfica nos damos cuenta que es X es discreta, ya que tiene discontinuidades

Empecemos viendo si ${\cal F}_X(x)$ es función de distribución, para esto debe cumplir algunas cosas

Primero que es no decreciente

Esto es fácil de notar que es cierto, cuando observamos la gráfica

Luego ver si $F_X(x)$ es continua por derecha

Notemos que esto es cierto, para esto observemos las gráficas y los intervalos son de cerrado a abierto

Después $\lim_{x\to-\infty} F(x)=0$

Observando la gráfica nos damos cuenta que si es cierto

Y por ultimo $\lim_{x\to\infty} F(x) = 1$

Por lo tanto si es función de distribución

(b) Considere $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida como

$$f_X(x) = \begin{cases} F_X'(x) & x \in (-\infty, 0) \cup (0, \frac{1}{2}) \cup (\frac{1}{2}, 1) \cup (1, \infty) \\ 0 & x = 0 \\ 1 & x = 1, \frac{1}{2} \end{cases}$$

3

¿Es f una función de densidad?

Veamos si es o no

La primero a revisar es que si $f_X(x) \ge 0$, $\forall x$

Estos se cumple fácilmente ya que $0 \ge 0$, $2x \ge$ (con 0 < x < 1/2) y $1 \ge 0$

Ahora veamos si
$$\sum_{x=-\infty}^{\infty} f_X(x) = 1$$

Esto no es cierto debido a que $f_X(x)=1$ pero cuando cuando $x=1,\frac{1}{2}$, tenemos que son 1, por lo tanto $f_X(1)+f_X(\frac{1}{2})=1+1=2\geq 1$

Por lo tanto no es función de densidad

(c) Calcular
$$\mathbb{P}(-\frac{1}{4} \le X < \frac{3}{4})$$
, $\mathbb{P}(0 \le X < \frac{1}{2})$ y $\mathbb{P}(\frac{1}{2} \le X < 1)$

$$\begin{array}{l} \mathbb{P}(-\frac{1}{4} \leq X < \frac{3}{4}) \\ \mathbb{P}(-\frac{1}{4} \leq X < \frac{3}{4}) = \mathbb{P}(X < \frac{3}{4}) - \mathbb{P}(X \leq -\frac{1}{4}) \\ \mathbb{P}(-\frac{1}{4} \leq X < \frac{3}{4}) = \lim_{n \to \infty} F_X(\frac{3}{4} - \frac{1}{n}) - F_X(-\frac{1}{4}) \\ \mathbb{P}(-\frac{1}{4} \leq X < \frac{3}{4}) = \frac{3}{4} - 0 \\ \mathbb{P}(-\frac{1}{4} \leq X < \frac{3}{4}) = \frac{3}{4} \end{array}$$

$$\begin{array}{l} \mathbb{P}(0 \leq X < \frac{1}{2}) \\ \mathbb{P}(0 \leq X < \frac{1}{2}) = \mathbb{P}(X < \frac{1}{2}) - \mathbb{P}(X \leq 0) \\ \mathbb{P}(0 \leq X < \frac{1}{2}) = \lim_{n \to \infty} F_X(\frac{1}{2} - \frac{1}{n}) - F_X(0) \\ \mathbb{P}(0 \leq X < \frac{1}{2}) = \frac{9}{20} - \frac{1}{5} \\ \mathbb{P}(0 \leq X < \frac{1}{2}) = \frac{1}{4} \end{array}$$

$$\begin{array}{l} \mathbb{P}(\frac{1}{2} \leq X < 1) \\ \mathbb{P}(\frac{1}{2} \leq X < 1) = \mathbb{P}(X < 1) - \mathbb{P}(X \leq \frac{1}{2}) \\ \mathbb{P}(\frac{1}{2} \leq X < 1) = \lim_{n \to \infty} F_X(1 - \frac{1}{n}) - F_X(\frac{1}{2}) \\ \mathbb{P}(\frac{1}{2} \leq X < 1) = 1 - \frac{1}{2} \\ \mathbb{P}(\frac{1}{2} \leq X < 1) = \frac{1}{2} \end{array}$$

4 Se lanza una moneda justa. Si cae "sol", entonces se lanza un dado; si cae "águila", entonces se lanzan dos dados. Si Y es la variable aleatoria que cuenta el número que salió en el dado o dados, calcular $\mathbb{P}(Y=6)$

Ayudante

5 Se lanzan tres dados justos. Sea X la mínima de las caras obtenidas. Encontrar $\mathbb{P}(X=3)$

X es la mínima de las caras obtenidas

Obtengamos $F_X(x)$

 $F_X(x) = \mathbb{P}(X \le x)$, y esto es la proba de que el mínimo de las caras es menor o igual a x, es decir al menos una cara es x o menor

Por lo tanto, la proba de que al menos una cara sea x o menor es 1 menos la proba de que ninguna cara sea menor o igual a x

Como cada dado es independiente entonces veamos cual es la proba de no sacar una cara menor o igual a x, seria $\frac{6-x}{6}$

Si
$$x < 1$$
, es $\frac{6-0}{6} = \frac{6}{6} = 1$
Si $1 \le x < 2$, es $\frac{6-1}{6} = \frac{5}{6}$

Si
$$2 \le x < 3$$
, es $\frac{6-2}{6} = \frac{4}{6}$
Si $3 \le x < 4$, es $\frac{6-3}{6} = \frac{3}{6}$
Si $4 \le x < 5$, es $\frac{6-4}{6} = \frac{2}{6}$
Si $5 \le x < 6$, es $\frac{6-5}{6} = \frac{1}{6}$
Si $6 \le x$, es $\frac{6-6}{6} = \frac{0}{6} = 0$
Entonces a estas probabilidades las elevamos a la 3 ya que son 3 dados

Por lo tanto,
$$\mathbb{P}(X \leq x) = 1 - (\frac{6-x}{6})^3$$

Si $x < 1$, es $1 - (\frac{6}{6})^3 = \frac{0}{216} = 0$
Si $1 \leq x < 2$, entonces $1 - (\frac{5}{6})^3 = \frac{91}{216}$
Si $2 \leq x < 3$, entonces $1 - (\frac{4}{6})^3 = \frac{152}{216}$
Si $3 \leq x < 4$, entonces $1 - (\frac{3}{6})^3 = \frac{189}{6}$
Si $4 \leq x < 5$, entonces $1 - (\frac{2}{6})^3 = \frac{216}{6}$
Si $5 \leq x < 6$, entonces $1 - (\frac{1}{6})^3 = \frac{215}{6}$
Si $6 \leq x$, entonces $1 - (\frac{0}{6})^3 = \frac{216}{216} = 1$

Por consiguiente

$$F_X(x) = \begin{cases} 0 & x < 1 \\ \frac{91}{216} & 1 \le x < 2 \\ \frac{152}{216} & 2 \le x < 3 \\ \frac{189}{216} & 3 \le x < 4 \\ \frac{208}{216} & 4 \le x < 5 \\ \frac{215}{216} & 5 \le x < 6 \\ 1 & x \le 6 \end{cases}$$

Con todo esto ya podemos ver quien es $\mathbb{P}(X=3)$

Por la propiedad 5 de $F_X(x)$ tenemos que

$$\mathbb{P}(X=3) = F_X(3) - \lim_{n \to \infty} F_X(3 - \frac{1}{n})$$

$$\mathbb{P}(X=3) = \frac{189}{216} - \frac{152}{216}$$

$$\mathbb{P}(X=3) = \frac{37}{216}$$

 δ Suponga que se selecciona aleatoriamente un punto z del cuadrado con esquinas en (2,1), (3,1), (2,2) y (3,2). Sea A la variable aleatoria que mide el área del triángulo con vértices en (2,1), (3,1) y z

Ayudante

7 La función de densidad de una variable aleatoria X está dada por

$$f_X(x) = \begin{cases} kx + 3 & -3 \le x \le -2\\ 3 - kx & 2 \le x \le 2\\ 0 & e.o.c. \end{cases}$$

(a) Encuentre k que haga que f_X sea efectivamente una función de densidad de probabilidad

Empecemos haciendo esto

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$\int_{-\infty}^{\infty} f_X(x) dx = \int_{-\infty}^{-3} 0 dx + \int_{-3}^{-2} (kx+3) dx + \int_{-2}^{2} 0 dx + \int_{2}^{3} (3-kx) dx + \int_{3}^{\infty} 0 dx$$

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 0 + (\int_{-3}^{-2} kx \, dx + 3 \int_{-3}^{-2} dx) + 0 + (3 \int_{2}^{3} dx - \int_{2}^{3} kx \, dx) + 0$$

$$\int_{-\infty}^{\infty} f_X(x) \, dx = (k \int_{-3}^{-2} x \, dx + 3 \int_{-3}^{-2} dx) + (3 \int_{2}^{3} dx - k \int_{2}^{3} x \, dx)$$

$$\int_{-\infty}^{\infty} f_X(x) \, dx = (k [\frac{-2^2}{2} - \frac{-3^2}{2}] + 3 [-2 + 3]) + (3 [3 - 2] - k [\frac{3^2}{2} - \frac{2^2}{2}])$$

$$\int_{-\infty}^{\infty} f_X(x) \, dx = (k [-\frac{5}{2}] + 3 [1]) + (3 [1] - k [\frac{5}{2}])$$

$$\int_{-\infty}^{\infty} f_X(x) \, dx = -\frac{k5}{2} + 3 + 3 - \frac{k5}{2}$$

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 6 - 5k$$
Entonces $6 - 5k = 1$

$$5k = 5$$
, por lo tanto $k = 1$
Ahora veamos si $f_X(x) \ge 0 \forall x$
Si $-3 \le x \le -2$, $f_X(x) = x + 3$, por lo tanto si se cumple
Si $2 \le x \le 3$, $f_X(x) = 3 - x$, por lo tanto si se cumple
Si x es cualquier otra, $f_X(x) = 0$, por lo tanto si se cumple
Entonces k debe ser 1 para que $f_X(x)$ sea función de densidad

Por lo tanto $f_X(x)$ queda así

$$f_X(x) = \begin{cases} x+3 & -3 \le x \le -2\\ 3-x & 2 \le x \le 3\\ 0 & e.o.c \end{cases}$$

(b) Encuentre la función de distribución de X

La función de distribución es $F_X(x)$ y sabemos que $F_X(x) = \int_{-\infty}^x f_X(u) \, du$

Calculemos $\int_{-\infty}^{x} f_X(u) du$, por intervalos

Si
$$x < -3$$
, entonces $F_X(x) = \int_{-\infty}^x 0 \, du$

Entonces $F_X(x) = 0$

Si
$$-3 \le x \le -2$$
, entonces $F_X(x) = \int_{-\infty}^{-3} 0 \, du + \int_{-3}^{x} u + 3 \, du$

$$F_X(x) = 0 + \int_{-3}^{x} u \, du + 3 \int_{-3}^{x} du$$

$$F_X(x) = \left[\frac{x^2}{2} - \frac{-3^2}{2}\right] + 3[x+3]$$

$$F_X(x) = \frac{x^2 - 9 + 6x + 18}{2}$$

$$F_X(x) = \frac{x^2 - 9 + 6x + 18}{2}$$

$$F_X(x) = \frac{x^2 + 6x + 9}{2}$$
Entonces $F_X(x) = \frac{(x+3)^2}{2}$

Si
$$-2 < x < 2$$
, entonces $F_X(x) = \int_{-\infty}^{-3} 0 \, du + \int_{-3}^{-2} u + 3 \, du + \int_{-2}^{x} 0 \, du$

$$\begin{split} F_X(x) &= 0 + \int_{-3}^{-2} u \, du + 3 \int_{-3}^{-2} du + 0 \\ F_X(x) &= \left[\frac{-2^2}{2} - \frac{-3^2}{2} \right] + 3[-2+3] \\ F_X(x) &= \left[\frac{4}{2} - \frac{9}{2} \right] - 6 + 9 \\ F_X(x) &= -\frac{5}{2} + 3 \\ \text{Entonces } F_X(x) &= \frac{1}{2} \end{split}$$

Si
$$2 \le x \le 3$$
, entonces $F_X(x) = \int_{-\infty}^{-3} 0 \, du + \int_{-3}^{-2} u + 3 \, du + \int_{-2}^{2} 0 \, du + \int_{2}^{x} 3 - u \, du$
$$F_X(x) = 0 + \frac{1}{2} + 0 + 3 \int_{2}^{x} du - \int_{2}^{x} u \, du$$

$$F_X(x) = \frac{1}{2} + 3[x - 2] - [\frac{x^2}{2} - \frac{2^2}{2}]$$

$$F_X(x) = \frac{1}{2} + 3x - 6 - \frac{x^2}{2} + 2$$
 Entonces $F_X(x) = -\frac{x^2}{2} + 3x - \frac{7}{2}$

Si
$$3 < x$$
, entonces $F_X(x) = \int_{-\infty}^{-3} 0 \, du + \int_{-3}^{-2} u + 3 \, du + \int_{-2}^{2} 0 \, du + \int_{2}^{3} 3 - u \, du + \int_{3}^{x} 0 \, du$
$$F_X(x) = 0 + \frac{1}{2} + 0 + 3 \int_{2}^{3} du - \int_{2}^{3} u \, du + 0$$

$$F_X(x) = \frac{1}{2} + 3[3 - 2] - [\frac{3^2}{2} - \frac{2^2}{2}]$$

$$F_X(x) = \frac{1}{2} + 9 - 6 - \frac{9}{2} + 2$$
 Entonces $F_X(x) = 1$

Por lo tanto $F_X(x)$ queda así

$$F_X(x) = \begin{cases} 0 & x < -3\\ \frac{(x+3)^2}{2} & -3 \le x \le -2\\ \frac{1}{2} & -2 < x < 2\\ -\frac{x^2}{2} + 3x - \frac{7}{2} & 2 \le x \le 3\\ 1 & 3 < x \end{cases}$$

8 Pruebe que $f_X(x)=\frac{1}{2}e^{-|x|}I_{\mathbb{R}}(x)$ es función de densidad.

P.D
$$f_X(x) = \frac{1}{2}e^{-|x|}I_{\mathbb{R}}(x)$$

Procedemos a demostrar que f(x) es de densidad, con lo que procedemos a comenzar con:

$$\frac{1}{2} > 0$$
, $e^{-|x|} > 0$

$$\therefore \frac{1}{2} > 0 \quad \text{y} \quad e^{-|x|} > 0 \quad \forall x$$

A lo que tenemos que:

$$\int_{\mathbb{R}} \frac{1}{2} e^{-|x|} dx = \frac{1}{2} \int_{\mathbb{R}} e^{-|x|} dx = \frac{1}{2} \left[\int_{-\infty}^{0} e^{-(-x)} dx + \int_{0}^{\infty} e^{-(x)} dx \right]$$

Para la integral de $e^{-(x)}$ hacemos un cambio de variable , teniendo ahora que u=-x y du=-dx

Lo cual nos da nuevos limites de integración

$$u = -\infty$$

$$u = -0 = 0$$

A lo que tenemos:

$$-\int_0^{-\infty} e^u du$$

Intercambiando los limites de integración y multiplicando la integral por -1 tenemos:

$$\int_{-\infty}^{0} e^{u} du$$

 $\int_{-\infty}^{0}e^{u}\;du$ Con todo lo anterior en mente tenemos entonces que :

$$\begin{split} &= \tfrac{1}{2} \Big[\int_{-\infty}^0 e^x \ dx + \int_{-\infty}^0 e^u \ du \Big] = \tfrac{1}{2} \Big[\Big(e^x \Big|_{-\infty}^0 \Big) + \Big(e^u \Big|_{-\infty}^0 \Big) \Big] \\ &= \tfrac{1}{2} \Big[\Big(e^0 - e^{-\infty} \Big) + \Big(e^0 - e^{-\infty} \Big) \Big] = \tfrac{1}{2} \Big[\Big(1 - 0 \Big) + \Big(1 - 0 \Big) \Big] = \tfrac{1}{2} \Big[1 + 1 \Big] = \tfrac{1}{2} \Big[2 \Big] = 1 \\ &\therefore f_X(x) \text{ es función de densidad.} \end{split}$$

9 Sea X una variable aleatoria con función de densidad

$$f_X(x) = cxI_{\{1,2,3,4\}}(x)$$
 (1)

a) Determinar el valor de c para que f_X sea función de densidad de probabilidad

Teniendo que:
$$c\geq 0\qquad \sum_{K=1}^4 cx = 1\qquad \longrightarrow \qquad c\sum_{K=1}^n X = c\frac{n(n+1)}{2} = c\frac{4(4+1)}{2} = 10c$$

$$10c=1$$

$$\therefore c=\frac{1}{10}$$

b) Calcular $\mathbb{P}(2 < X \le 4)$ y $\mathbb{P}(X > 1 | X \le 3)$

Tenemos que:

$$\begin{array}{l} \mathbb{P}(2 < X \leq 4) = F_X(4) - F_X(2) \text{, por la propiedad } 4 \text{ de } F_X(x) \\ = F_X(4) - F_X(2) = \sum_{K=1}^4 f_X(x) - \sum_{K=1}^2 f_X(x) \\ = \sum_{K=1}^4 \frac{1}{10}x - \sum_{K=1}^2 \frac{1}{10}x = \frac{1}{10} \sum_{K=1}^4 x - \frac{1}{10} \sum_{K=1}^2 x \\ = \frac{1}{10} \frac{4(4+1)}{2} - \frac{1}{10} \frac{2(2+1)}{2} = 1 - \frac{3}{10} = \frac{7}{10} \\ \text{Ahora para } \mathbb{P}(X > 1 | X \leq 3) \text{ tenemos:} \\ \mathbb{P}(X > 1 | X \leq 3) = \frac{\mathbb{P}(1 < X \leq 3)}{\mathbb{P}(X \leq 3)} = \frac{F_X(3) - F_X(1)}{\sum_{K=1}^3 f_X(x)} = \frac{\sum_{K=1}^3 f_X(x) - \sum_{K=1}^1 f_X(x)}{\sum_{K=1}^3 \frac{1}{10}x} = \frac{\sum_{K=1}^3 \frac{1}{10}x - \sum_{K=1}^1 \frac{1}{10}x}{\frac{1}{10} \sum_{K=1}^3 x} = \frac{\frac{1}{10} \left(\frac{3(3+1)}{2} - \frac{1(1+1)}{2}\right)}{\frac{1}{10} \frac{3(3+1)}{2}} = \frac{\frac{1}{10} \left(\frac{3(3+1)}{2} - \frac{1(1+1)}{2}\right)}{\frac{6}{10}} = \frac{\frac{1}{6}}{\frac{6}{10}} = \frac{5}{6} \end{array}$$

10 El tiempo de vida de cierta componente de una máquina tiene una distribución de probabilidad continua en el intervalo (0,40) y su función de densidad f_X es proporcional a $(10+x)^{-2}$.

Calcular la probabilidad de que el tiempo de vida de la componente sea menor que 5

Empecemos viendo quien sera α para que $\int_{0}^{40} \alpha (10+x)^{-2} du = 1$

 $\int_0^{40} \alpha (10+x)^{-2} \, du = \alpha \int_0^{40} (10+x)^{-2} \, du = \alpha \int_0^{40} \frac{1}{(10+x)^2} \, du$ Con un cambio de variable u=x+10 y du=dx, y calculando los nuevos limites, u=10+40=50 y u=10+0=10,

tenemos
$$\alpha \int_{10}^{50} \frac{1}{(u)^2} \, du = \alpha [-\frac{1}{50} - -\frac{1}{10}] = \alpha \frac{2}{25}$$

Entonces
$$\alpha \frac{2}{25} = 1$$
, por lo tanto $\alpha = \frac{25}{2}$
Como podemos notar, tenemos que:
$$f_X(x) = \left\{ \begin{array}{ll} \frac{25}{2}(10+x)^{-2} & 0 < x < 40 \\ 0 & En \ otro \ caso \end{array} \right.$$

Lo cual nos dice que:

$$\int_0^{40} \frac{25}{2} (10+x)^{-2} dx$$

Sin embargo buscamos que sea menor a 5 por lo que:

$$\mathbb{P}(X < 5) = \int_0^5 \frac{25}{2} (10 + x)^{-2} dx$$

Usando que $a^{-n}=\frac{1}{a^n}$ con a=(10+x) y n=-2 tenemos: $\mathbb{P}(X<5)=\frac{25}{2}\int_0^5\frac{1}{(x+10)^2}\;dx$

$$\mathbb{P}(X < 5) = \frac{25}{2} \int_0^5 \frac{1}{(x+10)^2} dx$$

A lo que hacemos un cambio de variable con u=x+10 y du=dx , lo cual nos deja nuevos limites

$$u = 10 + 5 = 15$$

$$u = 10 + 0 = 10$$

A lo que tenemos:

$$\mathbb{P}(X<5) = \frac{25}{2} \int_{10}^{15} \frac{1}{u^2} \ du = \frac{25}{2} \left(-\frac{1}{u} \Big|_{10}^{15} \right) = \frac{25}{2} \left(\left(-\frac{1}{15} \right) - \left(-\frac{1}{10} \right) \right) = \frac{25}{2} \left(\frac{1}{30} \right) = \frac{5}{12} \left(\frac{1}{30} \right) = \frac{5}{1$$

a) Este es el inciso a)

• Veamos si $g_1(x)=e^{-x}I_{(0,\infty)}(x)$ es función de densidad Primero veamos que $g_1(x)\geq 0$, para toda x, esto podemos notar que es cierto, ya que la gráfica de e^{-x} nunca se vuelve negativa.

Ahora veamos si
$$\int_0^\infty e^{-x}\,dx=1$$

$$\int_0^\infty e^{-x}\,dx=-\int_0^{-\infty} e^u\,du$$
, haciendo una sustitución de $u=-x$ y $du=-dx$
$$\int_0^\infty e^{-x}\,dx=-[e^{-\infty}-e^0]$$

$$\int_0^\infty e^{-x}\,dx=-[0-1]$$

$$\int_0^\infty e^{-x}\,dx=1$$

Por lo tanto $g_1(x)$ si es función de densidad

• Veamos si $g_2(x)=2e^{-2x}I_{(0,\infty)}(x)$ es función de densidad Primero veamos que $g_2(x)\geq 0$, para toda x, esto podemos notar que es cierto, ya que la gráfica de $2e^{-2x}$ nunca se vuelve negativa.

Ahora veamos si
$$\int_0^\infty 2e^{-2x}\,dx=1$$

$$\int_0^\infty 2e^{-2x}\,dx=-\int_0^{-\infty}e^u\,du, \text{ haciendo una sustitución de }u=-2x \text{ y }du=-2dx$$

$$\int_0^\infty 2e^{-2x}\,dx=-[e^{-\infty}-e^0]$$

$$\int_0^\infty 2e^{-2x}\,dx=-[0-1]$$

$$\int_0^\infty 2e^{-2x}\,dx=1$$

Por lo tanto $q_2(x)$ si es función de densidad

• Veamos si $g(x)=(\theta+1)g_1(x)-(\theta)g_2(x)$ es función de densidad Primero veamos que $g(x)\geq 0$, para toda x, esto podemos notar que es cierto, al observar la gráfica.

Ahora veamos si
$$\int_0^\infty (\theta+1)e^{-x} - (\theta)2e^{-2x} \, dx = 1$$

$$\int_0^\infty (\theta+1)e^{-x} - (\theta)2e^{-2x} \, dx = \int_0^\infty (\theta+1)e^{-x} \, dx - \int_0^\infty (\theta)2e^{-2x} \, dx$$

$$\int_0^\infty (\theta+1)e^{-x} - (\theta)2e^{-2x} \, dx = (\theta+1)\int_0^\infty e^{-x} \, dx - (\theta)\int_0^\infty 2e^{-2x} \, dx$$

$$\int_0^\infty (\theta+1)e^{-x} - (\theta)2e^{-2x} \, dx = (\theta+1)1 - (\theta)1, \text{ arriba resolvimos esas integrales}$$

$$\int_0^\infty (\theta+1)e^{-x}-(\theta)2e^{-2x}\,dx=\theta+1-\theta=1$$
 Por lo tanto $g(x)$ si es función de densidad

b) Diga si la siguiente afirmación es falsa o verdadera, justificando su respuesta: Si $f_1(x)$ y $f_2(x)$ son funciones de densidad y si $\alpha + \beta = 1$, entonces $\alpha f_1(x) + \beta f_2(x)$ es función de densidad.

Esto no es cierto siempre, veamos un contraejemplo

Sea
$$\alpha=2$$
 y $\beta=-1$

Sean las siguientes funciones de densidad

$$g_1(x) = \begin{cases} 0 & x < -1 \\ -x & -1 \le x \le 0 \\ x & 0 < x \le 1 \\ 0 & 1 < x \end{cases}$$

Si es función de densidad ya que:
$$\forall x: g_1(x) \geq 0 \text{ y } \int_{-\infty}^{\infty} g_1(x) \, dx = 1$$

$$\int_{-\infty}^{\infty} g_1(x) \, dx = \int_{-\infty}^{-1} 0 \, dx + \int_{-1}^{0} -x \, dx + \int_{0}^{1} x \, dx + \int_{1}^{\infty} 0 \, dx$$

$$\int_{-\infty}^{\infty} g_1(x) \, dx = 0 - \int_{-1}^{0} x \, dx + \int_{0}^{1} x \, dx + 0$$

$$\int_{-\infty}^{\infty} g_1(x) \, dx = -[\frac{0^2}{2} - \frac{-1^2}{2}] + [\frac{1^2}{2} - \frac{0^2}{2}]$$

$$\int_{-\infty}^{\infty} g_1(x) \, dx = \frac{1}{2} + \frac{1}{2} = 1$$
 y la otra función

$$g_2(x) = \begin{cases} 0 & x < -1\\ x+1 & -1 \le x \le 0\\ -x+1 & 0 < x \le 1\\ 0 & 1 < x \end{cases}$$

Si es función de densidad ya que:

$$\begin{split} \forall x: g_2(x) &\geq 0 \ \forall \ \int_{-\infty}^{\infty} g_2(x) \, dx = 1 \\ \int_{-\infty}^{\infty} g_2(x) \, dx &= \int_{-\infty}^{-1} 0 \, dx + \int_{-1}^{0} x + 1 \, dx + \int_{0}^{1} -x + 1 \, dx + \int_{1}^{\infty} 0 \, dx \\ \int_{-\infty}^{\infty} g_2(x) \, dx &= 0 + \int_{-1}^{0} x \, dx + \int_{-1}^{0} 1 \, dx - \int_{0}^{1} x \, dx + \int_{0}^{1} 1 \, dx + 0 \\ \int_{-\infty}^{\infty} g_2(x) \, dx &= [\frac{0^2}{2} - \frac{-1^2}{2}] + [0 - -1] - [\frac{1^2}{2} - \frac{0^2}{2}] + [1 - 0] \\ \int_{-\infty}^{\infty} g_2(x) \, dx &= -\frac{1}{2} + 1 - \frac{1}{2} + 1 \\ \int_{-\infty}^{\infty} g_2(x) \, dx &= \frac{1}{2} + \frac{1}{2} = 1 \end{split}$$

Ahora veamos si $g_3(x)=\alpha g_1(x)+\beta g_2(x)$ es función de densidad Esto es claramente falso, ya que no cumple $\forall x:g_3(x)\geq 0$ En particular no lo cumple cuando x=0, $g_3(0)=(2)g_1(0)+(-1)g_2(0)=(2)(0)+(-1)(1)=0-1=-1$

11 Una póliza de seguro cubre las reclamaciones médicas de los empleados de una pequeña compañía. El valor, V, de las reclamaciones hechas en un año es descrita mediante V=100,000Y

donde Y es una variable aleatoria con función de densidad

$$f_Y(y) = \begin{cases} k(1-y)^4 & 0 < y < 1\\ 0 & e.o.c. \end{cases}$$

donde k es una constante. ¿Cuál es la probabilidad de que V exceda 40,000? ¿Cuál es la probabilidad de que V exceda 10,000?

Ayudante

12 Sea X una variable aleatoria continua con función de densidad

$$f_X(x) = \begin{cases} 6x(1-x) & 0 < x < 1\\ 0 & e.o.c. \end{cases}$$

Calcula $\mathbb{P}(|X - \frac{1}{2}| > \frac{1}{4})$

Ayudante

13 Sea (Ω,F,\mathbb{P}) un espacio de probabilidad, donde $\Omega=[0,2]$, $F=\mathbb{P}(\Omega)$ y $\mathbb{P}:F\longrightarrow [0,1]$ satisface

$$\mathbb{P}(\{\omega\}) = \begin{cases} \frac{1}{10} & \omega = 0\\ \frac{1}{10} & \omega = \frac{1}{2}\\ \frac{4}{10} & \omega = 1\\ \frac{3}{10} & \omega = \frac{3}{2}\\ \frac{1}{10} & \omega = 2\\ 0 & \omega \notin \{, \frac{1}{2}, 1, \frac{3}{2}, 2\} \end{cases}$$

Considérese la variable aleatoria $X:\Omega\longrightarrow\mathbb{R}$, definida como

$$X(\omega) = (\omega - 1)^2$$

Ayudante

14 La pérdida ocasionada por un incendio en un centro comercial es modelada por una variable aleatoria con función de densidad

$$f_X(x) = \begin{cases} 0.005(20 - x) & 0 < x < 20\\ 0 & e.o.c. \end{cases}$$

Encontrar la probabilidad de que la pérdida por incendio sea mayor que 8. Encontrar la probabilidad de que la pérdida sea mayor que 16

$$\begin{split} &\mathbb{P}(X>8) = 1 - \mathbb{P}(X \leq 8) \\ &\mathbb{P}(X>8) = 1 - F_X(8) \\ &\mathbb{P}(X>8) = 1 - \int_0^8 0.005(20-x) \, du \\ &\mathbb{P}(X>8) = 1 - 0.005[20 \int_0^8 du - \int_0^8 x \, du] \\ &\mathbb{P}(X>8) = 1 - 0.005[20(8-0) - (\frac{8^2}{2} - \frac{0^2}{2})] \\ &\mathbb{P}(X>8) = 1 - 0.005[160 - 32] = 1 - 0.005[128] \\ &\mathbb{P}(X>8) = 1 - \frac{16}{25} \\ &\mathbb{P}(X>8) = \frac{9}{25} \end{split}$$

$$&\mathbb{P}(X>8) = \frac{9}{25}$$

$$&\mathbb{P}(X>16) = 1 - \mathbb{P}(X \leq 16) \\ &\mathbb{P}(X>16) = 1 - F_X(16) \\ &\mathbb{P}(X>16) = 1 - \int_0^{16} 0.005(20-x) \, du \\ &\mathbb{P}(X>16) = 1 - 0.005[20 \int_0^{16} du - \int_0^{16} x \, du] \\ &\mathbb{P}(X>16) = 1 - 0.005[20(16-0) - (\frac{16^2}{2} - \frac{0^2}{2})] \\ &\mathbb{P}(X>16) = 1 - 0.005[320 - 128] = 1 - 0.005[192] \\ &\mathbb{P}(X>16) = 1 - \frac{24}{25} \\ &\mathbb{P}(X>16) = \frac{1}{25} \end{split}$$

15 Sea

$$f_X(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{2}\beta & 0 \le x < 1 \\ \frac{1}{2} & 1 \le x \le 2 \\ \frac{1}{2}(1-\beta) & 2 < x < 3 \\ 0 & 3 \le x \end{cases}$$

$0 \le \beta \le 1$. Encontrar la función de distribución de X

Hagámoslo por intervalos

Si
$$x < 0$$
, entonces $F_X(x) = \int_{-\infty}^x 0 \, du$
Entonces $F_X(x) = 0$

Si
$$0 \le x < 1$$
, entonces $F_X(x) = \int_{-\infty}^0 0 \, du + \int_0^x \frac{1}{2} \beta \, du$
$$F_X(x) = 0 + \frac{1}{2} \beta \int_0^x \, du$$

$$F_Y(x) = \frac{1}{2} \beta [x - 0]$$

$$F_X(x) = \frac{1}{2}\beta[x-0]$$

Entonces $F_X(x) = \frac{x}{2}\beta$

Si
$$1 \le x \le 2$$
, entonces $F_X(x) = \int_{-\infty}^0 0 \, du + \int_0^1 \frac{1}{2} \beta \, du + \int_1^x \frac{1}{2} \, du$ $F_X(x) = 0 + \frac{1}{2} \beta \int_0^1 \, du + \frac{1}{2} \int_1^x \, du$ $F_X(x) = \frac{1}{2} \beta [1 - 0] + \frac{1}{2} [x - 1]$ Entonces $F_X(x) = \frac{1}{2} \beta + \frac{x - 1}{2}$

Si
$$2 < x < 3$$
, entonces $F_X(x) = \int_{-\infty}^0 0 \, du + \int_0^1 \frac{1}{2} \beta \, du + \int_1^2 \frac{1}{2} \, du + \int_2^x \frac{1}{2} (1-\beta) \, du$ $F_X(x) = 0 + \frac{1}{2} \beta + \frac{1}{2} \int_1^2 \, du + \frac{1}{2} (1-\beta) \int_2^x \, du$ $F_X(x) = \frac{1}{2} \beta + \frac{1}{2} [2-1] + \frac{1}{2} (1-\beta) [x-2]$ Entonces $F_X(x) = \frac{1}{2} \beta + \frac{1}{2} + \frac{x-2}{2} (1-\beta)$

Si
$$3 \leq x$$
, entonces $F_X(x) = \int_{-\infty}^0 0 \, du + \int_0^1 \frac{1}{2} \beta \, du + \int_1^2 \frac{1}{2} \, du + \int_2^3 \frac{1}{2} (1-\beta) \, du + \int_3^x 0 \, du$
$$F_X(x) = 0 + \frac{1}{2} \beta + \frac{1}{2} + \frac{1}{2} (1-\beta) \int_2^3 \, du + 0$$

$$F_X(x) = \frac{1}{2} \beta + \frac{1}{2} + \frac{1}{2} (1-\beta) [3-2]$$

$$F_X(x) = \frac{1}{2} \beta + \frac{1}{2} + \frac{1}{2} (1-\beta)$$

$$F_X(x) = \frac{1}{2} \beta + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \beta$$

$$F_X(x) = \frac{1}{2} + \frac{1}{2}$$
 Entonces $F_X(x) = 1$

Por lo tanto $F_X(x)$ queda así

$$F_X(x) = \begin{cases} 0 & x < 0\\ \frac{x}{2}\beta & 0 \le x < 1\\ \frac{1}{2}\beta + \frac{x-1}{2} & 1 \le x \le 2\\ \frac{1}{2}\beta + \frac{1}{2} + \frac{x-2}{2}(1-\beta) & 2 < x < 3\\ 1 & 3 \le x \end{cases}$$

16 La función de densidad de una variable aleatoria X es

$$f_X(x) = ax^2 e^{-kx} I_{[0,\infty)}(x)$$
 donde $k > 0$

(a) Encontrar el valor de a

Para encontrar el valor de a, vamos a recordar las propiedades de f(x)

$$1. - f(x) \ge 0$$

$$2.-\int_{-\infty}^{\infty}f_x(x)\,dx=1$$

2. $-\int_{-\infty}^{\infty} f_x(x) dx = 1$ Para encontrar a a tenemos que usar la segunda propiedad. $\int_{-\infty}^{\infty} f_x(x) dx = 1 \Leftrightarrow \int_{0}^{\infty} ax^2 e^{-kx} =$ Despejando a a tenemos:

$$\int_{-\infty}^{\infty} f_x(x) dx = 1 \Leftrightarrow \int_{0}^{\infty} ax^2 e^{-kx} =$$

$$a = \frac{1}{\int_0^\infty x^2 e^{-kx} dx}$$

Ahora tenemos que encontrar el valor de $\int_0^\infty x^2 e^{-kx} dx$ integrando por partes

$$\int x^2 e^{-kx} dx = \frac{-xe^{-kx}}{k} - \int -\frac{-2xe^{-kx}}{k} dx$$

$$\int -\frac{-2xe^{-kx}}{k}dx = \frac{-2}{k} \int xe^{-kx}dx$$

$$\int xe^{-kx}dx$$
 teniemdo a $f=x$. $f'=1$, $g=\frac{-e^{-kx}}{k}$, $g'=e^{-kx}$

$$\int xe^{-kx}dx = \frac{xe^{-kx}}{k} - \int -\frac{e^{-kx}}{k}dx$$

 $\int xe^{-kx}dx = \frac{xe^{-kx}}{k} - \int -\frac{e^{-kx}}{k}dx$ Resolviendo $\int -\frac{e^{-kx}}{k}dx$ tenemos: Sustituyendo $u = -kx \to \frac{du}{dx} = -k \to dx = \frac{1}{k}du$ $\frac{1}{k^2} \int e^u du$ aplicando la regla para integrar funciones exponenciales tenemos: $\int e^u du = e^u$, aptoneos: entonces:

$$\frac{1}{k^2}\int e^u du = \frac{e^u}{k^2} = \frac{e^{-kx}}{k^2}$$
 entonces:

$$\frac{-xe^{-kx}}{k}-\int -rac{e^{-kx}}{k}dx=rac{-xe^{-kx}}{k}-rac{e^{-kx}}{k^2}$$
 y teniendo:

enfonces:
$$\frac{1}{k^2} \int e^u du = \frac{e^u}{k^2} = \frac{e^{-kx}}{k^2} \text{ entonces:} \\ \frac{-xe^{-kx}}{k} - \int -\frac{e^{-kx}}{k} dx = \frac{-xe^{-kx}}{k} - \frac{e^{-kx}}{k^2} \text{ y teniendo:} \\ \frac{-2}{k} \int xe^{-kx} dx = \frac{2xe^{-kx}}{k^2} + \frac{2e^{-kx}}{k^3} \text{ y reemplazando } \frac{-x^2e^{-kx}}{k} - \int -\frac{2xe^{-kx}}{k} dx = \frac{x^2e^{-kx}}{k} - \frac{2xe^{-kx}}{k^2} - \frac{2e^{-kx}}{k^3} \\ \text{Entonces:} \\ \frac{2}{k} \int xe^{-kx} dx = \frac{2xe^{-kx}}{k^2} + \frac{2xe^{-kx}}{k^3} \text{ y reemplazando } \frac{-x^2e^{-kx}}{k} - \int -\frac{2xe^{-kx}}{k} dx = \frac{x^2e^{-kx}}{k} - \frac{2xe^{-kx}}{k^2} - \frac{2e^{-kx}}{k^3} \\ \frac{2e^{-kx}}{k^3} + \frac{2e^{-kx}}{k^3} + \frac{2e^{-kx}}{k^3} - \frac{2e^{-kx}}{k^3} + \frac{2e^{-kx}}{k^3} - \frac{2e^{-kx}}{k^3} - \frac{2e^{-kx}}{k^3} + \frac{2e^{-kx}}{k^3} - \frac{2e^{-kx}}{k^3} + \frac{2e^{-kx}}{k^3} - \frac{2e^{-kx}$$

$$\int x^2 e^{-kx} dx = \frac{x^2 e^{-kx}}{k} - \frac{2x e^{-kx}}{k^2} - \frac{2e^{-kx}}{k^3}$$

Que simplificado quedaria como:
$$-\frac{(kx\cdot(kx+2)+2)e^{-kx}}{k^3}+C$$

$$\int_0^\infty x^2e^{-kx}dx \text{ donde } k>0 \text{ tenemos que } \int_0^\infty x^2e^{-kx}dx=\frac{2}{k^3} \text{, entonces } a=\frac{1}{\frac{2}{k^3}}=\frac{k^3}{2}$$

(b) Encontrar la función de distribución F_X de la variable aleatoria X

La funcion de distribucion se define como: $F(x) = \mathbb{P}[x \leq X] = \int_{-\infty}^{x} f(y) dy$

Para ello tenmos que: $f(y) = \frac{k^3}{2} y^2 e^{-ky} I[0,\infty) k > 0$

y tenemos
$$F(x) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{0} 0 dy + \int_{0}^{x} \frac{k^{3}}{2} y^{2} e^{-ky}$$

$$\begin{array}{l} \text{Y tenemos } F(x) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{0} 0 dy + \int_{0}^{x} \frac{k^{3}}{2} y^{2} e^{-ky} \\ = 0 + \frac{k^{3}}{2} \int_{0}^{x} y^{2} e^{-ky} = \frac{k^{3}}{2} \Big(-\frac{(k^{2}y^{2} + 2ky + 2)e^{-ky}}{k^{3}} \Big|_{0}^{x} \Big) = -\frac{(k^{2}y^{2} + 2ky + 2)e^{-ky}}{2} \Big|_{0}^{x} = -\frac{(k^{2}x^{2} + 2kx + 2)e^{-kx}}{2} + \frac{(k^{2}0^{2} + 2k0 + 2)e^{-k0}}{2} = -\frac{(k^{2}x^{2} + 2kx + 2)e^{-kx}}{2} + \frac{(0 + 0 + 2)e^{0}}{2} = -\frac{(k^{2}x^{2} + 2kx + 2)e^{-kx}}{2} + 1 \end{array}$$

$$-\frac{(k^2x^2+2kx+2)e^{-kx}}{2} + \frac{(2)1}{2} = -\frac{(k^2x^2+2kx+2)e^{-kx}}{2} + 1$$

Entonces quedaria como:
$$F(x) = \begin{cases} 0 & x < 0 \\ -\frac{(k^2x^2 + 2kx + 2)e^{-kx}}{2} + 1 & 0 \le x \end{cases}$$

(c) Calcular $\mathbb{P}(0 < X < \frac{1}{k})$

Para calcular la probabilidad vamos a usar: $\mathbb{P}\left[a \leq x \leq b\right] = \int_a^b f(x)dx = F(a) - F(b)$

Entonces se veria como: $\int_0^{\frac{1}{k}} f(x) dx = F(b) - F(a)$ y despejando quedaria como: $\int_0^{\frac{1}{k}} f(x) dx = F(b) - F(a)$ $\int_0^{\frac{1}{k}} \frac{k^3}{2} x^2 e^{-kx} dx =$

$$\begin{split} &= F(b) = \frac{-(k^2(\frac{1}{k})^2) + 2k(\frac{1}{k}) + 2)e^{-k\frac{1}{k}}}{2} = \frac{-(\frac{k^2}{k^2} + 2 + 2)e^{-1}}{2} \\ &\text{y a } F(a) = \frac{-(k^2(0) + 2k(0) + 2)e^0}{2} \text{, entonces:} \\ &F(b) - F(a) = \frac{-(5)e^{-1}}{2} + \frac{2}{2} = \frac{-(5)e^{-1}}{2} + 1 \approx 0.08030 \\ &\mathbb{P}\left[0 \leq x \leq \frac{1}{k}\right] \approx 0.08030 \end{split}$$