Last name _	
First name	

LARSON—MATH 601—CLASSROOM WORKSHEET 08 Vector Spaces.

Concepts & Notation

- (Sec. 2.1) vector, vector space, linear combination.
- (Sec. 2.2) subspace

Vector Spaces

A vector space V over a field \mathbb{F} consists of:

- 1. a field \mathbb{F} of *scalars*,
- 2. a set V of vectors,
- 3. a vector addition "+" that is closed (so if $\alpha, \beta \in V$ then $\alpha + \beta \in V$), where:
 - (a) addition is commutative,
 - (b) addition is associative,
 - (c) there is an additive identity "0",
 - (d) and there are additive inverses " $-\alpha$ " for each $\alpha \in V$.,
- 4. a scalar multiplication (so $c\alpha \in V$ for each $c \in \mathbb{F}$ and $\alpha \in V$), where:
 - (a) $1\alpha = \alpha$,
 - (b) $(c_1c_2)\alpha = c_1(c_2\alpha),$
 - (c) $c(\alpha_1 + \alpha_2) = c\alpha_1 + c\alpha_2$, and
 - (d) $(c_1 + c_2)\alpha = c_1\alpha + c_2\alpha$.
- 1. What is the prototypical example of a *vector space*?
- 2. What is a vector?

3. Check all the vector space axions for the following example.

The space of a functions from a set S to a field \mathbb{F} is a vector space. Let $V = \{f : S \to \mathbb{F} | \text{ f is a function} \}$, with an "addition" f + g (for $f, g \in V$) defined by the rule (f + g)(s) = f(s) + g(s) and a "scalar multiplication" cf (for $c \in \mathbb{F}$, $f \in V$) defined by (cf)(s) = cf(s).

What needs to be checked in the following examples?

- 4. Any field \mathbb{F} can be viewed as a vector space over itself.
- 5. Let \mathbb{R}^n be the set of tuples (a_1, a_2, \dots, a_n) $(a_i \in \mathbb{R})$. Then \mathbb{R}^n is a vector space over \mathbb{R} .
- 6. The complex numbers \mathbb{C} over \mathbb{R} (with scalar multiplication by real numbers specifically—and **not** by complex numbers generally).
- 7. What is a **linear combination** of vectors $\alpha_1, \alpha_2, \ldots, \alpha_n$ in a vector space V over a field \mathbb{F} ?
- 8. If V is a vector space over a field \mathbb{F} and $W \subseteq V$. When is W a subspace of V?