Homework 4, Fall 2022

I have neither given nor received unauthorized assistance on this assignment.

Homework 4 has questions 1 through 4 with a total of 20 points. Edit this file and append you answers using LaT_EX. Be sure to fill in your name. Upload the converted pdf of your work to Canvas. This assignment is due *Saturday 17 September at 11:59* PM.

Link to your Overleaf work: XXX

- 1. Show that the union of sets (each a subset of the reals) that are bounded above is bounded above. Specifically, show that if A and B are both bounded above, $A \cup B$ is bounded above.
- 5 2. Using induction, we can show that for any positive integer n, if $A_1, A_2, ..., A_n$ are bounded above, then $\bigcup_{k=1}^n A_k$ is bounded above. Find an example of sets $A_1, A_2, A_3, ...$ such that $\bigcup_{k=1}^{\infty} A_k$ is not bounded above, but each set $A_1, A_2, A_3, ...$ is bounded above.
- $\boxed{5}$ 3. Let *A* and *B* be subsets of **R** and let *A* and *B* be bounded above. Show that $\operatorname{lub}(A \cup B) = \max(\operatorname{lub}(A), \operatorname{lub}(B))$.
- 5 4. Show that $(\exists x \in [0,1]) (\forall r \in \mathbf{R}_{<0}) ((x-r, x+r) \not\subset [0,1])$.