CIRCUITOS DIGITALES Y MICROCONTROLADORES 2022

Facultad de Ingeniería UNLP

Introducción a los Sistemas Embebidos

Ing. José Juárez

Introducción a los Sistemas Embebidos

Definición de Sistema Embebido* (Embedded System):

Es el nombre genérico que reciben los equipos electrónicos que incluyen un procesador de datos, pero que a diferencia de una PC, están diseñados para satisfacer una función específica, como en el caso de un reloj, un reproductor de MP3, un router wifi, un jostick de Play, o pueden ser componentes de un sistema de control de un electrodoméstico, de un automóvil, de un avión, etc.

Es un sistema electrónico que está contenido o "embebido" dentro de un equipo completo que incluye además, por ejemplo, partes mecánicas o electromecánicas.

*SASE: SIMPOSIO ARGENTINO DE SISTEMAS EMBEBIDOS (http://www.sase.com.ar)

Introducción a los Sistemas Embebidos

- El cerebro de un sistema embebido es típicamente un microprocesador o microcontrolador, y su diseño está optimizado para reducir su tamaño, el consumo, costo, y maximizar su confiabilidad y desempeño.
- Ejemplo: La CIAA (Computadora Industrial Abierta Argentina)

http://www.proyecto-ciaa.com.ar/

• El diseño de sistemas embebidos es un motor clave de la industria y del desarrollo tecnológico, y es un campo que en los últimos años ha crecido notablemente en la Argentina.

Componentes de un Sistema Embebido

- Componentes de Hardware:
 - Microprocesador, Microcontrolador, DSP, FPGA, ASIC, SoC, otros...
 - Memorias
 - Periféricos analógicos y digitales
 - Componentes Electrónicos Activos (diodos, transistores) y pasivos (resistencias, capacitores, inductores)
 - Interfaces Eléctricas (conectores)
 - Placa de circuito Impreso (PCB)

http://www.proyecto-ciaa.com.ar/

Componentes de un Sistema Embebido

Componentes de Software:

- 1-Capa de abstracción de hardware y manejadores de dispositivos (Drivers)
- 2-Capa de componentes intermedios como pila de protocolos
- 3-Capa de Planificación y ejecución de tareas en tiempo real (RTOS)
- 4-Capa de la aplicación específica

Aplicaciones de los Sistemas Embebidos

Veamos ejemplos actuales de algunos fabricantes:

NXP: **AUTOMATIZACIÓN** Ventilator Respirator Power Supply + **MEDICINA** 12V 10A VĎD Regulator Regulator Wireless USB **MICROCHIP** Port 5V 2A 3.3V 0.5A Interface **AUTOMOTRIZ** USART 4 Menu Memory **AUTOMOTRIZ 1** Buttons **AUTOMOTRIZ 2** Analog Transistor Buzzer 4x20 KBI-TSI **AUTOMOTRIZ 3** LCD Display GPIO-LCD MCU **XILINX** Temp. GPIO Alarm LED Sensor ADC **INDUSTRIA GPIO ROBOTICA** Differential Darlington Gauge Analog ADC **HMI** Valves @5V Resistor Optoisolator Pressure Pressure Sensor Gauge ADC Analog Pressure Sensor Analog Relay @5V ◀ Compressor Marzo 2022

Microprocesador (MPU) o Microcontrolador (MCU)

Microprocesador (MPU) o Microcontrolador (MCU)

- μP(MPU): Unidad de procesamiento de propósito general
 - gran capacidad de computo, 16, 32 y 64 bits, FPU (Floating Point Unit), reloj de GHz,
 - múltiples núcleos, con diferentes niveles de memoria cache L1,L2
 - Poseen MMU (Memory Management Unit) pero requiere memoria externa
 - sin periféricos I/O integrados o solo los necesarios,
 - Casos: Intel 8086, Intel Pentium, Sun SPARC, PowerPC, MIPS, ARM7, ARM9, ARM11, ARM-Cortex A
- μ C (MCU): Sistema de procesamiento completo destinados a aplicaciones específicas
 - moderada capacidad, 8, 16, 32bits, ALU de punto fijo, reloj <200MHz
 - con periféricos I/O integrados en el mismo chip.
 - Encapsulados entre 6 y 100 terminales,
 - Bajo consumo, bajo costo.
 - Casos: Intel 8051, Freescale HC08, Microchip PIC, Atmel AVR, Texas MPS430, Freescale HC12, Microchip PIC32, Atmel AVR32, ARM-Cortex M.
- En la actualidad esta diferencia se hace cada vez menos notoria en la gama de arquitecturas de 32bits
 - MCU 32bits, ALU con FPU, núcleos asimétricos, Arquitecura Superescalar

Mercado actual*

DMIPS = Dhrystone MIPS

• Performance:

Procesador	DMIPS (aprox.)	(DMIPS/MHz)	coremark/MHz
ATmega32A (AVR, 8 bits, 16 MHz)	5,9	0,37	0.53
ARM Cortex-M0 a 50 MHz	45	0,9	
ARM Cortex-M3 a 100 MHz	125	1,25	1,5
ARM Cortex-A8 a 1 GHz	2000	2	
Intel Atom-Z530 a 1,6 GHz	3200	2	
Intel Core i7 EE-990x (6 cores) a 3,46 GHz	159000	45	

https://www.eembc.org/coremark/scores.php

Consumo:[Watt]=[A][V]O

[mA/h]

	CPU	Flash	Pin Count	Active ⁽¹⁾	Static ⁽²⁾ Typ @ 25°C
Atmel SAM D20	32-bit ARM Cortex-M0+	16 – 256kB	32 – 64	140 μA/MHz	2 μΑ
Freescale Kinetis K20	32-bit ARM Cortex-M4	32 – 160kB	32 – 64	280 μA/MHz	1.9 μΑ
Atmel ATmegaX8PA	8-bit AVR	4 - 32kB	28 - 32	300 μA/MHz	(100 nA

140uA*50MHz=7mA 280uA*200MHz=56mA

300uA*16MHz=4,8mA

Otras tecnologías utilizadas en S.E.

ASIC: Application Specific Integrated Circuit

Diseñado específicamente para una aplicación particular (Digital, Analógico, mixto).

Provee la mejor performance pero el costo es muy elevado.

Restringido a producciones de mucho volumen

• DSP/DSC: Digital Signal Processor / Digital Signal Controller

16 o 32 bits, Unidad de Punto flotante o Punto fijo,

Instrucciones optimizadas para operaciones matemáticas,

periféricos específicos.

Utilizado para procesamiento de señales de Audio, Video, comunicaciones...

FPGA: Field Programmable Gate Array

Circuitos lógicos reconfigurables

Diseños específicos muy optimizados

Diseños propietarios (IP)

• SoC: System on Chip

Procesador (de 8, 32 o 64bits) + FPGA para diseño de periféricos

Soluciones específicas de altas prestaciones.