

Chapter No:6 Function of combinational logic

TOPICS

- 1.Half and Full Adders
- 2.Parallel Binary Adders
 - 3. Comparators
 - 4.Decoders
 - 5. Encoders
 - 6. Code Converters
 - 7. Multiplexers (Data Selectors)
 - 8.Demultiplexers

ENCODERS

Basic logic diagram of a decimal-to-BCD encoder. A 0-digit input is not needed because the BCD outputs are all LOW when there are no HIGH inputs.

The Decimal-to-BCD Priority Encoder This type of encoder performs the same basic encoding function as previously discussed. A priority encoder also offers additional flexibility in that it can be used in applications that require priority detection. The priority function means that the encoder will produce a BCD output corresponding to the *highest-order decimal digit* input that is active and will ignore any other lower-order active inputs. For instance, if the 6 and the 3 inputs are both active, the BCD output is 0110 (which represents decimal 6).

THE 74HC147 DECIMAL-TO-BCD ENCODER

Logic symbol for the 74LS148 8-line-to-3-line encoder.

The 74LS148 can be expanded to a 16-1ine-to-4-line encoder by connecting the EO of the higher-order encoder to the EI of the lower-order encoder and negative-ORing the corresponding binary outputs as shown in Figure. The EO is used as the fourth and MSB. This particular configuration produces active-HIGH outputs for the 4-bit binary number.

A 16-line-to-4 line encoder using 74LS148s and external logic.

An Application

A classic application example is a keyboard encoder.

MULTIPLEXERS (DATA SELECTORS)

A multiplexer (MUX) is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination. The basic multiplexer has several data-input lines and a single output line. It also has data-select inputs, which permit digital data on any one of the inputs to be switched to the output line. Multiplexers are also known as data selectors.

Logic symbol for a 1-of-4 data selector/multiplexer.

DATA-SEL	ECT INPUTS	
S ₁	S ₀	INPUT SELECTED
0	0	D_0
0	1	D_1
1	0	D_2
1	I	D_3

MULTIPLEXERS (DATA SELECTORS)

A multiplexer (MUX) is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination. The basic multiplexer has several data-input lines and a single output line. It also has data-select inputs, which permit digital data on any one of the inputs to be switched to the output line. Multiplexers are also known as data selectors.

Basic Two-Input Multiplexer

$$Z = I_0 \overline{S} + I_1 S$$

With S = 0, this expression becomes

$$Z = I_0 \cdot 1 + I_1 \cdot 0$$
 [gate 2 enabled]
= I_0

With S = 1, the expression becomes

$$Z = I_0 \cdot 0 + I_1 \cdot 1 = I_1$$

(gate 1 enabled)

Logic symbol for a 1-of-4 data selector/multiplexer.

Figure -2

$$Y = D_0 \overline{S}_1 \overline{S}_0 + D_1 \overline{S}_1 S_0 + D_2 S_1 \overline{S}_0 + D_3 S_1 S_0$$

DATA-SELECT INPUTS		
S ₁	5 ₀	INPUT SELECTED
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

Example:

The data-input and data-select waveforms in Figure are applied to the multiplexer in Figure -2. Determine the output waveform in relation to the inputs.

THE 74LS151 8-INPUT DATA SELECTOR/MULTIPLEXER

The 74LS151 has eight data inputs (D_0-D_7) and, therefore, three data-select or address input lines (S_0-S_2) . Three bits are required to select any one of the eight data inputs $(2^3 = 8)$. A LOW on the \overline{Enable} input allows the selected input data to pass through to the output.

Use 74LS151s and any other logic necessary to multiplex 16 data lines onto a single data-output line.

An implementation of this system is shown in Figure 6–51. Four bits are required to select one of 16 data inputs ($2^4 = 16$). In this application the *Enable* input is used as the most significant data-select bit. When the MSB in the data-select code is LOW, the left 74LS151 is enabled, and one of the data inputs (D_0 through D_7) is selected by the other three data-select bits. When the data-select MSB is HIGH, the right 74LS151 is enabled, and one of the data inputs (D_8 through D_{15}) is selected. The selected input data are then passed through to the negative-OR gate and onto the single output line.

Determine the codes on the select inputs required to select each of the following data inputs: D_0 , D_4 , D_8 , and D_{13} .