- CO3: Evaluate double and triple integrals and study their applications CO4: Learn the use of change of variables in solving multiple integrals CO5: Find the gradient of a scalar field and divergence, curl of a vector field CO6: Know various integral theorems related to line, surface and volume integrals Printed Pages: 2 University Roll No.
 - Mid Term Examination, Odd Semester 2022-23 B. Tech. (H) CS and B Tech EC (VLSI), I Year, I Semester Subject Code: BMAS 1104, Subject Name: Engineering Calculus

Time: 2 Hours

Maximum Marks: 15

Instruction for students:

Attempt ALL sections.

Section - A

Al	tempt All Questions		1 X 3	= 3 N	Marks
No.	Detail of Question	Marks	CO	BL	KL
1	What is the point of maximum value of function $f(x,y) = 1 - x^2 - y^2$?	1	2	Е	С
2	Find the n^{th} derivative of the function $y = cos^2 x$.	1	1	A	F
3	Find the relation between the functions u, v and w if $u = (x - y)(y + z)$, $v = (x + y)(y - z)$ and $w = y(x - z)$.	1	2	U	С

Section - B

Attempt All Questions

2 X 3 = 6 Marks

No.	Detail of Question	Marks	CO	BL	KL
4	If $u = \sin^{-1}\left(\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}\right)$, prove that: $\frac{\partial u}{\partial x} = -\frac{y}{x}\frac{\partial u}{\partial y}$.	2	2	R	М

5	If $u = f(x^2 + 2yz, y^2 + 2zx)$, prove that $(y^2 - zx)\frac{\partial u}{\partial x} + (x^2 - yz)\frac{\partial u}{\partial y} + (z^2 - xy)\frac{\partial u}{\partial z} = 0$	2	2	An	P
6	If $x = \sqrt{vw}$, $y = \sqrt{wu}$ and $z = \sqrt{uv}$, then calculate the Jacobian	2	2	Е	С
	$\frac{\partial(x,y,z)}{\partial(u,v,w)}.$	4			

Section - C

Attempt All Questions

 $3 \times 2 = 6 \text{ Marks}$

No.	Detail of Question	Marks	CO	BL	KL
	If $y = e^{a \sin^{-1} x}$, then prove that	1 % 2 d d			
7	$(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-(n^2+a^2)y_n=0.$	3	1	A	С
	Also find $y_n(0)$.				100
8	Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$ OR,	3	2	Е	P
	Expand $f(x, y) = e^x tan^{-1}y$ in powers of $(x - 1)$ and $(y - 1)$.				

CO - Course Outcome, BL - Abbreviation for Bloom's Taxonomy Level (R-Remember, U-Understand, A-Apply, An-Analyze, E-Evaluate, C-Create), KL - Abbreviation for Knowledge Level (F-Factual, C-Conceptual, P-Procedural, M-Metacognitive).