09/10(一)浙江工业大学高等数学 A(I)考试试卷

学院:		班级	:		姓名:		学号:				
任i	课教师	:									
	题 号	_	=	===	四	五.	六	七	八	总分	
:	得 分										
	填空题(
1,	$\lim_{x\to 0} (1-$	$(2x)^{x} = $				o					
2,	设 $y = x$	z ^x ,则 y	y' =				o				
3、	3、曲线 $\begin{cases} x = \cos t + \cos^2 t, \\ y = 1 + \sin t \end{cases}$ 上对应于 $t = \frac{\pi}{4}$ 的点处的切线斜率为。										
5、6、7、	$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 +$	$an(x+y)$ 的一个 $sin^3 x$)	y),则 原函数 ^注 cos ² xd	$\frac{dy}{dx} = _{-}$ $dy e^{-3x},$	则∫	$f(2x+\frac{1}{2})$	-1) $dx =$			o	
 1, 2, (0 时,与 $-e^x$; $f(x)$ 在 $\frac{f(x)}{x}$	5 <i>x</i> 等价 (B) 1 x = 0 如 存在, 贝	的无穷 $n\frac{1+x^2}{1-x}$ 连续, $df'(0)$	小量是 -; (C 下列命 存在;	() c) √1+ 题错误的 (B) 若 l	的是($\lim_{x\to 0} \frac{f(x)}{x}$	$\frac{1}{x} + f(-\frac{1}{x})$	<u>x)</u> 存在	,则 $f(0) = 0$	
(C) 若lir	$\lim_{x \to 0} \frac{f(x)}{x}$	存在,见	$\bigcup f(0)$	$=0$; (Γ	O) 若lin	$\int_{0}^{1} \frac{f(x)}{x}$	-f(-x)) - 存在,	则 ƒ′(0) 存在	

3、函数
$$f(x) = \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} - e)}$$
 在 $[-\pi, \pi]$ 上的第一类间断点是 $x = ($)

(A) 0; (B) 1; (C)
$$-\frac{\pi}{2}$$
; (D) $\frac{\pi}{2}$ 。
4、在下列等式中,正确的结果是(
(A) $\int f'(x)dx = f(x)$; (B) $\int df(x) = f(x)$;

(C)
$$\frac{d}{dx} \int f(x)dx = f(x)$$
; (D) $d \int f(x)dx = f(x)$.

三、试解下列各题(本题满分12分,每小题6分):

$$1, \lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$$

2、设
$$f(x) = \begin{cases} x^k \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 $k > 1$, 讨论 $f(x)$ 在 $x = 0$ 处的连续性和可导性。

四、试解下列各题(本题满分18分,每小题6分):

1、求:
$$\int \frac{1+x^2}{(1+x)^2} dx$$

$$2, \ \ \Re \colon \ \int_0^{\pi} 2x \sqrt{\cos^2 x - \cos^4 x} dx$$

3、设
$$f(x) = \int_{1}^{x^2} \frac{\sin t}{t} dt$$
,求: $\int_{0}^{1} x f(x) dx$

五、试解下列各题(本题满分12分,每小题6分):

求微分方程 $x \ln x dy + y dx = 0$ 满足条件 $y \Big|_{x=e} = 2$ 的特解。

文 求微分方程 $y'' - 4y' + 3y = 2e^{2x}$ 的通解。

六、 (8分) 已知函数 $f(x) = \int_0^x e^{\frac{-1}{2}t^2} dt$, $-\infty < x < +\infty$, (1) 讨论函数 f(x) 的奇偶性、单调性; (2) 求函数 f(x) 的拐点。

(10 分) 设函数 f(x) 在[0,1] 上可导,大于零,满足 $xf'(x) = f(x) + \frac{3}{2}ax^2$,若曲 线 y = f(x) 与 x = 1, y = 0 所围成图形 S 的面积为 2,(1)求函数 f(x);(2)问 a 为何值时图形 S 绕 x 轴旋转一周所得旋转体的体积最小。

八、 (4分) 设函数 f(x) 满足: (1) $f(0) \times f(1) < 0$; (2) $|f'(x)| \le M$, $x \in [0,1]$; 证明: $f(0) + f(1) \le M$ 。