Circuiti Elettronici Digitali

angeloperotti 7

February 2025

0.1 Introduzione

- esame scritto
 - domande di teoria e esercizi di analisi e progetto
- \bullet orale
 - facoltativo
 - solo se allo scritto voto e' ¿15
 - + -3
- laboratorio
 - valutazione pratica dei circuiti visti a lezione e loro caratterizzazione
 - uso del linguaggio e simulatore spice, standard industriale
- materiale
 - dispense disponibili su moodle
 - testi di riferimento: Microelectronic Circuit Design, 5ed McGraw Hill
- Obiettivi del corso:
 - comprendere come costruire circuiti digitali a partire dai dispositivi
 - dimensionare correttamente i circuiti
 - confrontare le presentazioni di diverse famiglie logiche
 - macroargomenti
 - * Dispositivi
 - \cdot semiconduttori
 - \cdot giunzione PN
 - · Diodi
 - \cdot transistore MOS
 - * Circuiti combinatori
 - \cdot inverter
 - \cdot logica CMOS
 - · Logiche a rapporto
 - \cdot altre logiche
 - \cdot porte complesse
 - * Circuiti Sequenziali
 - · Latch, flip flop
 - \cdot Memorie
 - \cdot Logica dinamica
 - \cdot altre logiche
 - * Laboratorio
 - · analisi di circuiti
 - \cdot prestazioni
 - \cdot progetto
- aspetti progettuali di interesse
 - ...
 - controllo della precisione delle operazioni
 - dimensione fisica del sistema
 - consumo di potenza
 - prestazioni

Chapter 1

ripassos del turbo razzo

1.0.1 Carica elettrica e campo elettrico

• Protoni ed Elettroni sono dotati di carica elettrica

$$a = 1.60218 \cdot 10^{-19} C$$

• Campo elettrico e forza elettrica

$$E = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{r^2} \quad F = QE$$

- Potenziale/Tensione
 - Lavoro necessario per spostare una carica unitaria da un punto di riferimento (massa) al punto P
 - misurato in Volt
 - equivale all'energia potenziale della carica unitaria
 - il campo elettrico e' conservativo, il potenziale non dipende dal percorso di C

$$V = -\int_C E \cdot ds \quad E = -\nabla V$$

- -spesso intendiamo la differenza di potenziale tra due punti ${\cal P}_1$ e ${\cal P}_2$
 - * e' definita come la differenza dei potenziali
 - \ast il lavoro per andare da P_2 a massa e' il negativo del potenziale di P_2 a cui aggiungiamo il lavoro per andare da massa a P_1
 - * $V_{P_1-P_2} = V_{P_1} V_{P_2}$
- Corrente
 - La quantita' di carica che attraversa una superficie nell'unita' di tempo
 - normalmente si tratta di elettroni
 - piu' ce ne sono piu' alta sara' la corrente
 - piu' vanno veloci piu' sara' la corrente
- campo uniforme

$$V = -\int_C E \cdot dx \quad E = -\frac{dV}{dx}$$

1.0.2 Circuito elettrico

- sistema costituito da
 - Sorgenti di tensione/corrente
 - Utilizzatori
 - Connessioni
 - * le connessioni sono fili
 - · li consideriamo conduttori ideali

- · il campo elettrico nel filo e' nullo
- \cdot la differenza di potenziale tra due punti qualsiasi del filo e' zero
- · la corrente e' la stessa lungo tutto il filo, ma non e' vincolata F = qE
- * circuito aperto
 - · filo rotto, non passa corrente $\longrightarrow I=0$
 - · la differenza di potenziale tra i due estremi del circuito aperto non e' vincolata
- * Resistenza
 - \cdot caratteriestica lineare

$$\cdot I = G \cdot v$$

$$V : V = R \cdot I \longrightarrow R = \frac{1}{G}$$

- \cdot R = resistenza, misurata in Ohm
- \cdot G = conduttanza, misurata in Siemens
- · potenza dissipata (legge di Joule) [W]

$$p = V \cdot I = R \cdot I^2 = \frac{V^2}{R}$$

- * generatore di tensione costante
 - · caratteristica verticale
 - $\cdot v = V$
 - · corrente I non vincolata, determinata dal resto del circuito

circuito: un esempio equazioni strutturali: $v_G = v_R \quad i_G = i_R$

- generatore di tensione variabile
 - l'analisi del comportamento nel tempo e' piu' complessa e necessita di
- leggi di Kirchhoff

* Legge 1 KCL

- · La somma delle correnti dei conduttori che si congiungono al nodo è nulla.
- · Corrente entrante positiva, corrente uscente negativa.

$$\cdot i_1 - i_2 - i_3 - i_4 = 0$$

 \cdot Somma entranti = somma uscenti.

legge 2 KVL

- la somma delle tensioni lungo una maglia e' nulla
- tensione concorde e' positiva, tensione discorde negativa
- $v_1 v_2 v_3 = 0$

esempio: resistenze in serie

esempio: partitore di tensione esempio: cortocircuito generatore di corrente costante

- caratteristica orizzontale
- i=I
- tensione v non vincolata, determinata dal resto del circuito

esempio: resistenze in parallelo esempio:resistenze in serie e parallelo teorema dii thevenin

- una rete elettrica contenente resistenze, generatori di tensione e corrente puo' essere sostituita da un singolo generatore di tensione in serie ad una resistenza di valore
- $\bullet \ V_T =$ tensione a circuito aperto tra a e b
- \bullet $R_T=$ resistenza equivalente azzerando tutti i generatori di tensione e corrente

esempio: teo thevenin