HW1

謝沛恩

9/16/24

Table of contents

Summary Staistic	1
Columns introduction	3
Continuous variables	4
Categorical variables	5

Summary Staistic

先觀察資料欄位

library(palmerpenguins)

Warning: package 'palmerpenguins' was built under R version 4.2.3

summary(penguins_raw)

${\tt studyName}$	Sample Number	Species	Region	
Length:344	Min. : 1.00	Length:344	Length:344	
Class :character	1st Qu.: 29.00	Class :character	Class :character	
Mode :character	Median : 58.00	Mode :character	Mode :character	
	Mean : 63.15			
	3rd Qu.: 95.25			

Max. :152.00

Island Individual ID Clutch Completion Stage Length:344 Length:344 Length:344 Length:344 Class : character Class : character Class :character Class : character Mode :character Mode :character Mode :character Mode :character

Culmen Length (mm) Culmen Depth (mm) Flipper Length (mm) Date Egg :2007-11-09 Min. :32.10 Min. :13.10 Min. :172.0 Min. 1st Qu.:39.23 1st Qu.:2007-11-28 1st Qu.:15.60 1st Qu.:190.0 Median :2008-11-09 Median :44.45 Median :17.30 Median :197.0 :2008-11-27 Mean :43.92 Mean :17.15 Mean :200.9 3rd Qu.:2009-11-16 3rd Qu.:48.50 3rd Qu.:18.70 3rd Qu.:213.0 Max. :2009-12-01 Max. :59.60 Max. :21.50 Max. :231.0 NA's NA's :2 :2 NA's :2 Body Mass (g) Sex Delta 15 N (o/oo) Delta 13 C (o/oo) Min. :2700 Length:344 Min. : 7.632 Min. :-27.02 1st Qu.:3550 1st Qu.: 8.300 Class :character 1st Qu.:-26.32 Median:4050 Mode :character Median : 8.652 Median :-25.83 Mean :4202 Mean : 8.733 Mean :-25.69 3rd Qu.: 9.172 3rd Qu.:4750 3rd Qu.:-25.06 Max. :6300 Max. :10.025 Max. :-23.79 NA's :2 NA's NA's :14 :13 Comments

Length: 344

Class :character
Mode :character

sum(is.na(penguins_raw))

[1] 336

Columns introduction

總共有17個變數,344筆資料

colnames(penguins_raw)

[1] "studyName" "Sample Number" "Species"
[4] "Region" "Island" "Stage"
[7] "Individual ID" "Clutch Completion" "Date Egg"

[10] "Culmen Length (mm)" "Culmen Depth (mm)" "Flipper Length (mm)" [13] "Body Mass (g)" "Sex" "Delta 15 N (o/oo)"

[16] "Delta 13 C (o/oo)" "Comments"

連續變數(數值):

Culmen Length (mm): 企鵝鳥喙長度 Culmen Depth (mm): 企鵝鳥喙寬度 Flipper Length (mm): 企鵝腳蹼長度

Body Mass (g):企鵝體重

Delta 15 N (o/oo) - The ratio of isotope $\delta 15 \ N$

Delta 13 C (o/oo) - The ratio of isotope δ 13 C

類別變數(分類):

studyName:研究名稱 Sample Number:編號

Species:物種,有Chinstrap、Adélie、Gentoo三種

Region:地區

Island:島嶼·有Dream、Torgersen、Biscoe三個

Stage:狀態階段

Individual ID: 各企鵝的個人ID

Clutch Completion: 卵窩完整與否(是/否)

Sex:性別·男女 Comments:評論

時間變數: Data egg:生蛋日期

Continuous variables

```
continuous_vars <- c('Culmen Length (mm)', 'Culmen Depth (mm)',</pre>
                       'Flipper Length (mm)', 'Body Mass (g)',
                       'Delta 15 N (o/oo)', 'Delta 13 C (o/oo)')
  # Step 1: Summary
  summary_stats <- lapply(penguins_raw[continuous_vars], summary)</pre>
  print("Summary statistics for continuous variables:")
[1] "Summary statistics for continuous variables:"
  print(summary_stats)
$`Culmen Length (mm)`
  Min. 1st Qu. Median
                        Mean 3rd Qu.
                                          Max.
                                                  NA's
 32.10 39.23 44.45
                         43.92 48.50
                                         59.60
                                                     2
$`Culmen Depth (mm)`
  Min. 1st Qu. Median
                                                  NA's
                        Mean 3rd Qu.
                                         Max.
 13.10
         15.60 17.30
                        17.15 18.70
                                                    2
                                         21.50
$`Flipper Length (mm)`
  Min. 1st Qu. Median Mean 3rd Qu.
                                          Max.
                                                 NA's
 172.0 190.0 197.0 200.9 213.0
                                         231.0
                                                     2
$`Body Mass (g)`
  Min. 1st Qu. Median
                                                  NA's
                          Mean 3rd Qu.
                                          Max.
  2700
          3550
                  4050
                          4202
                                  4750
                                          6300
                                                     2
$`Delta 15 N (o/oo)`
  Min. 1st Qu. Median
                        Mean 3rd Qu.
                                          Max.
                                                 NA's
 7.632
         8.300 8.652
                         8.733 9.172 10.025
                                                    14
$`Delta 13 C (o/oo)`
  Min. 1st Qu. Median
                        Mean 3rd Qu.
                                          Max.
                                                 NA's
-27.02 -26.32 -25.83 -25.69 -25.06 -23.79
                                                   13
```

從此可看出連續變數基本的敘述統計,像是平均數、最大最小值、缺失值個數等。 Step 2:繪製每個連續變數的 boxplot,並根據 Species 分組

Categorical variables

次數分配表

透過次數分配表,可看出各類別的次數與比例。

```
categorical_columns1 <- c("studyName", 'Species', "Island", 'Region', 'Stage',</pre>
                             "Sex", 'Clutch Completion')
  for (col in categorical_columns1) {
    print(paste("Category Distribution for", col, ":"))
    value_counts <- table(penguins_raw[[col]])</pre>
    percentage <- (value_counts / nrow(penguins_raw)) * 100</pre>
    result <- data.frame(Count = value_counts, `Percentage (%)` = percentage)
    print(result)
    cat("\n")
  }
[1] "Category Distribution for studyName :"
  Count.Var1 Count.Freq Percentage.....Var1 Percentage.....Freq
1
    PAL0708
                    110
                                    PAL0708
    PAL0809
                    114
                                    PAL0809
                                                        33.13953
3
    PAL0910
                    120
                                    PAL0910
                                                        34.88372
[1] "Category Distribution for Species:"
                                 Count. Var1 Count. Freq
        Adelie Penguin (Pygoscelis adeliae)
                                                    152
2 Chinstrap penguin (Pygoscelis antarctica)
                                                     68
          Gentoo penguin (Pygoscelis papua)
                                                    124
                        Percentage.....Freq
        Adelie Penguin (Pygoscelis adeliae)
                                                        44.18605
2 Chinstrap penguin (Pygoscelis antarctica)
                                                        19.76744
          Gentoo penguin (Pygoscelis papua)
                                                        36.04651
[1] "Category Distribution for Island:"
 Count.Var1 Count.Freq Percentage.....Var1 Percentage.....Freq
     Biscoe
                    168
1
                                     Biscoe
                                                        48.83721
                    124
2
      Dream
                                      Dream
                                                        36.04651
3 Torgersen
                     52
                                  Torgersen
                                                        15.11628
```

```
Count.Var1 Count.Freq Percentage.....Var1 Percentage.....Freq
1
     Anvers
                    344
                                      Anvers
                                                              100
[1] "Category Distribution for Stage:"
          Count.Var1 Count.Freq Percentage.....Var1 Percentage.....Freq
1 Adult, 1 Egg Stage
                            344 Adult, 1 Egg Stage
                                                                      100
[1] "Category Distribution for Sex :"
 Count.Var1 Count.Freq Percentage.....Var1 Percentage.....Freq
1
     FEMALE
                    165
                                      FEMALE
                                                        47.96512
2
                                                        48.83721
        MALE
                    168
                                        MALE
[1] "Category Distribution for Clutch Completion:"
 {\tt Count.Var1\ Count.Freq\ Percentage.....Var1\ Percentage.....Freq}
1
          No
                     36
                                          No
                                                        10.46512
2
         Yes
                    308
                                                        89.53488
                                         Yes
```

table(penguins_raw\$`Individual ID`)#

N14A1	N13A2	N13A1	N12A2	N12A1	N11A2	N11A1	N10A2	N1OA1	N100A2	N100A1
2	3	3	2	2	2	2	1	1	1	1
N19A2	N19A1	N18A2	N18A1	N17A2	N17A1	N16A2	N16A1	N15A2	N15A1	N14A2
2	2	3	3	2	2	1	1	2	2	2
N24A1	N23A2	N23A1	N22A2	N22A1	N21A2	N21A1	N20A2	N20A1	N1A2	N1A1
3	3	3	3	3	3	3	2	2	2	2
N29A2	N29A1	N28A2	N28A1	N27A2	N27A1	N26A2	N26A1	N25A2	N25A1	N24A2
3	3	3	3	2	2	1	1	2	2	3
N34A1	N33A2	N33A1	N32A2	N32A1	N31A2	N31A1	N30A2	N30A1	N2A2	N2A1
3	1	1	3	3	1	1	2	2	2	2
N39A2	N39A1	N38A2	N38A1	N37A2	N37A1	N36A2	N36A1	N35A2	N35A1	N34A2
3	3	3	3	2	2	3	3	3	3	3
N44A1	N43A2	N43A1	N42A2	N42A1	N41A2	N41A1	N40A2	N40A1	N3A2	N3A1
2	1	1	2	2	2	2	2	2	1	1
N49A2	N49A1	N48A2	N48A1	N47A2	N47A1	N46A2	N46A1	N45A2	N45A1	N44A2
2	2	1	1	2	2	2	2	1	1	2
N55A1	N54A2	N54A1	N53A2	N53A1	N51A2	N51A1	N50A2	N50A1	N4A2	N4A1
2	1	1	2	2	2	2	2	2	2	2
N61A2	N61A1	N60A2	N60A1	N5A2	N5A1	N58A2	N58A1	N56A2	N56A1	N55A2
3	3	2	2	2	2	2	2	2	2	2
N67A1	N66A2	N66A1	N65A2	N65A1	N64A2	N64A1	N63A2	N63A1	N62A2	N62A1
3	2	2	1	1	2	2	2	2	2	2

```
N68A1 N68A2
                       N69A1
                              N69A2
                                        N6A1
                                               N6A2
                                                      N70A1
                                                             N70A2
                                                                     N71A1
    3
                    1
                           3
                                   3
                                           3
                                                   3
                                                           1
                                                                          2
                                              N75A1
N72A1
       N72A2
               N73A1
                       N73A2
                              N74A1
                                      N74A2
                                                      N75A2
                                                              N76A1
                                                                     N76A2
                                                                             N77A1
            3
                    2
                                           1
N77A2
       N78A1
               N78A2
                       N79A1
                              N79A2
                                        N7A1
                                               N7A2
                                                      N80A1
                                                              N80A2
                                                                     N81A1
N82A1
       N82A2
               N83A1
                       N83A2
                               N84A1
                                      N84A2
                                              N85A1
                                                      N85A2
                                                              N86A1
                                                                     N86A2
                           1
                                   1
                                           1
                                                   2
                                                                  1
N87A2
       N88A1
               N88A2
                       N89A1
                              N89A2
                                       N8A1
                                               N8A2
                                                      N90A1
                                                              N90A2
                                                                     N92A1
                           1
                                           3
                                                   3
                                                           1
       N93A2
               N94A1
                       N94A2
                                      N95A2
                                                                     N98A2
N93A1
                               N95A1
                                              N96A1
                                                      N96A2
                                                              N98A1
                                                                             N99A1
                           1
                                   1
                                           1
                                                   1
                                                           1
                                                                  1
                                                                          1
N99A2
         N9A1
                N9A2
```

table(penguins_raw\$Comments)#

```
Adult not sampled.

Adult not sampled. Nest never observed with full clutch.

Nest never observed with full clutch.

Nest never observed with full clutch. Not enough blood for isotopes.

No blood sample obtained for sexing.

No blood sample obtained.

No delta15N data received from lab.

Not enough blood for isotopes.

Sexing primers did not amplify.

Sexing primers did not amplify. Not enough blood for isotopes.
```

繪畫Species、studyName、Island、Sex、Clutch Completion的長條圖, 並以Species做分類。

```
library(ggplot2)
```

Warning: package 'ggplot2' was built under R version 4.2.3

```
#Species bar chart
ggplot(penguins_raw, aes(x = Species)) +
  geom_bar(fill = c("lightblue", "lightgreen", "lightpink")) +
  labs(title = "Penguin Species Distribution", x = "Species", y = "Count") +
  theme_minimal()
```

Penguin Species Distribution

Adelie Penguin (Pygosce**Oshianskriiapse**) penguin (Pygoscelis **Qantaloctipa**) nguin (Pygoscelis papua) **Species**

Warning: The `guide` argument in `scale_*()` cannot be `FALSE`. This was deprecated in ggplot2 3.3.4.

i Please use "none" instead.

