Machine Calibration (*TG-51*)

TG-51: Overview

The Report

- The Task Group 51 dosimetry protocol was first published in 1999
- It is used for photon beams from ⁶⁰Co to 50 MV
- It is used for electron beams with energies between 4 and 50 MeV
- The TG51 formulism uses different equations and setups compared to the old TG21 formalism

Machine Calibration

Difference Between TG21 and TG51

- The TG21 report describes both the theory and application of machine calibration
- The TG51 report is more of a "howto" guide for machine calibration
- TG51 is based on an Absorbed dose to water Standard (at a reference energy ⁶⁰Co):
 - More robust standard than AIR-KERMA
 - Closer to absorbed dose in tissue

Machine Calibration

Difference Between TG21 and TG51

 $\mathbf{N_X}$: EXPOSURE CALIBRATION FACTOR: (Roentgen/ Charge)

Exposure at the chamber-center with the chamber removed

 $\mathbf{N}_{\mathbf{gas}}$: CAVITY GAS CALIBRATION FACTOR: (*Gray/Charge*)

Absorbed dose to the gas in the chamber at chamber-center $[N_{gas} \ related \ to \ N_X \ through \ calculational \ algorithm]$

 $N_{D,w}$: ABSORBED DOSE (water) CALIBRATION FACTOR: (Gy/Charge) Absorbed dose to water at chamber-center, with chamber removed and replaced by water.

Machine Calibration

Difference Between TG21 and TG51

- Conversion to absorbed dose
 - Photon: Single factor; k_O
 - Electron: 3 Factors;
- Chamber specific corrections in "classes" few k₀ values
- Calibration in water (annually)

Machine Calibration

Why use absorbed dose to water calibration factors?

- The standard would be easier to conceptualize
- Primary standards can be developed for absorbed dose in accelerators, which is impossible with exposure or air-kerma protocols
- Absorbed dose has less uncertainty
- Does not require the large look up tables of massenergy absorption coefficients and stopping power ratios

Equipment for TG51

- NIST traceable Ion Chamber and Electrometer
 - Cylindrical Chambers are the primary standard
 - Parallel plate chambers may be used for electron beams >6MeV
 - Parallel plate chambers are required for electron beams <6MeV
 - An electrometer with a variable voltage
- Equipment to allow for two independent checks of the ion chamber (e.g. check sources or an independent dosimetry system)

Equipment for TG51

- A water phantom (*liquid*) of sufficient dimensions to provide full scatter
- A lead foil for photon beam energy's greater than 10 MV
 - The lead foil is used to remove electron contamination
- A calibrated device to measure local pressure
- A device to measure the temperature of the water

Clinical Reference Geometry for Electrons

- All dosimetry measurements must be performed in a liquid water phantom
- Plastics (even water equivalent plastics) are not allowed for the annual QA check
- They can be used for more frequent QA checks with the correct transfer factor
- The reference dosimetry is performed with a field size $\geq 10 \text{ cm x } 10 \text{ cm for}$ R_{50} < 8.5 cm and \ge 20 cm x 20 cm for $R_{50} > 8.5 \text{ cm}$
- SSD setup between 90 and 110 cm

Clinical Reference Geometry for Electrons

- The depth for electron calibrations is located at a calculated reference depth
 - $-d_{ref} = 0.6 R_{50} 0.1 cm$
 - $-R_{50}$ is the depth at which the absorbed dose falls to 50% o the maximum dose)
- For Example:
 - $-R_{50} = 7.7$ -cm
 - $-d_{ref} = (0.6 \times 7.7) 0.1$
 - $-d_{ref} = 4.5 cm$

THOMPSON CANCER SURVIVAL CENTER

Clinical Reference Geometry for Photons

- All dosimetry measurements are performed in a water phantom
- The reference depth for calibration purposes is at 10-cm
- The reference dosimetry is performed at either SSD or SAD
- A 10 cm x 10 cm field size is defined on the surface for an SSD setup and defined at the depth of the detector for an SAD setup

$$D_{Q,Water} = M \cdot k_Q \cdot_{D,W} N^{Co}$$

- D_{Q,Water} is the absorbed dose to water at the point of measurement of the ion chamber placed under reference conditions for a clinical beam with beam quality Q
- Q is specified by the %dd(10)_x (percentage depth dose at 10 cm depth in a water phantom with an SSD of 100 cm and field size of 10x10)
- For photon energies > 10 MeV, %dd(10)_x must be obtained using a 1-mm lead foil placed 30 to 50 cm from the phantom surface

THE UNIVERSITY of TENNESSEE

TG51: Absorbed Dose from Photons

$$D_{Q,Water} = \frac{M}{M} \cdot k_Q \cdot_{D,W} N^{Co}$$

$$M = M_{raw} P_{ion} P_{TP} P_{elec} P_{pol}$$

- *M* is the charge collected in a measuring chamber in coulombs corrected for recombination effects, temperature and pressure variations, electrometer inaccuracies, and polarity effects
- M_{raw} is the uncorrected reading of the charge collected by the ion chamber

$$D_{Q,Water} = M \cdot k_Q \cdot_{D,W} N^{Co}$$

$$M = M_{raw}P_{ion}P_{TP}P_{elec}P_{pol}$$

- P_{ion} corrects for ionization recombination losses that occur at the time of calibration
- *P*_{ion} is measured with the following by applying two different bias voltages to the detector:

$$P_{ion}(V_H) = \frac{1 - (V_H / V_L)^2}{M_{Raw}^H / M_{Raw}^L - (V_H / V_L)^2}$$

THE UNIVERSITY of TENNESSEE

TG51: Absorbed Dose from Photons

$$D_{Q,Water} = M \cdot k_Q \cdot_{D,W} N^{Co}$$

$$M = M_{raw} P_{ion} P_{TP} P_{elec} P_{pol} \qquad P_{TP} = \frac{273.2 + T}{273.2 + 22.0} \times \frac{760}{P}$$

- P_{TP} corrects for temperature and pressure variations at the time of calibration
- P_{elec} corrects for the inaccuracy of the electrometer if it is calibrated separately from the ion chamber
- P_{elec} is given by the accredited laboratory that performs the calibration

$$D_{Q,Water} = M \cdot \frac{k_Q}{k_Q} \cdot_{D,W} N^{Co}$$

- k_Q is the quality conversion factor which converts the calibration factor for a ⁶⁰Co beam to that for a photon beam of quality Q
- k_Q has been measured or calculated as a function of Q for many ion chambers (Figure 4 in TG51)
- Values of k_Q have not been determined for parallel-plate chambers because there is insufficient information about wall correction factors

THE UNIVERSITY of TENNESSEE

TG51: Absorbed Dose from Photons

$$D_{Q,Water} = M \cdot \frac{k_Q}{k_Q} \cdot_{D,W} N^{Co}$$

$$K_{Q} = \frac{\frac{L}{\rho} \int_{\text{air}}^{\text{water}} \bullet P_{\text{repl}} \bullet P_{\text{wall}} \bullet P_{\text{cel}} \mid_{\text{evaluated at the energy Q}} \frac{L}{\rho} \int_{\text{air}}^{\text{water}} \bullet P_{\text{repl}} \bullet P_{\text{wall}} \bullet P_{\text{cel}} \mid_{\text{evaluated at cobalt energy}} \frac{L}{\rho} \left[\frac{1}{\rho} \right]_{\text{air}}^{\text{water}} \left[\frac{1}{\rho} \left[\frac{1}{\rho} \right]_{\text{air}}^{\text{water}} \left[\frac{1}{\rho} \left[\frac{1}{\rho} \right]_{\text{evaluated at cobalt energy}}^{\text{water}} \right]$$

 P_{repl} and P_{wall} same as for TG-21

P_{cel} corrects for the influence of the Al center electrode

P_{repl} is weakly dependent on chamber diameter

P_{wall} is strongly dependent on thimble materials, less dependent on exact dimensions

$$D_{Q,Water} = M \cdot \frac{k_Q}{k_Q} \cdot_{D,W} N^{Co}$$

- • Similar chambers have similar P_{wall} and $P_{\text{cel,}}$ so few k_Q needed
- TG-51 does not list values for my Chamber ???
 - Choose chamber in Protocol that has
 - Same wall material
 - Same center electrode material
 - Approximately same wall thickness
 - Similar length and diameter -- weak depend

THE UNIVERSITY of TENNESSEE

TG51: Absorbed Dose from Photons

$$D_{Q,Water} = M \cdot k_Q \cdot_{D,W} N^{Co}$$

- D,WN^{Co} is the absorbed-dose calibration factor obtained in reference conditions for a ⁶⁰Co beam
- _{D,W}N^{Co} is returned on the calibration report for the specific ion chamber
- It is dependant on the chambers characteristics (*volume*, *build-up cap*, *wall material*, *etc...*)

$$D_{Q,Water} = M \cdot k_Q \cdot_{D,W} N^{Co}$$

- Although D,WN^{Co} is supplied by an accredited laboratory, it is the physicist's responsibility to ensure that the calibration factor is still correct and that there are no problems with the ion chamber
 - Inspect Chamber For Damage (Visual and Radiographic)
 - Ratio of full and half bias readings less than 1.01

TG51: Absorbed Dose from Electrons

$$D_{Q,Water} = M \cdot k_Q \cdot_{D,W} N^{Co}$$

- Calculation of absorbed dose in water is very similar for electrons
- M and $^{D,W}N_{Co}$ remain the same
- The difference between the equations lies in the quality conversion factor k_{Qe} and the specification of beam quality Q
- The beam quality for electrons is specified by R_{50} , which is the depth at which the absorbed-dose falls to 50% of the maximum dose with a field size \geq 10 cm x 10 cm for R_{50} <8.5 cm and \geq 20 cm x 20 cm for R_{50} >8.5 cm

$$D_{Q,Water} = M \cdot \frac{k_Q}{k_Q} \cdot_{D,W} N^{Co}$$

• R_{50} is determined directly from the measured value of I_{50} , the depth at which the ionization falls to 50% of its maximum value, using the equations:

$$\begin{split} R_{50} &= 1.029 \cdot I_{50} - 0.06 \, cm \quad (for \ 2 \, cm \le I_{50} \le 10 \, cm) \\ R_{50} &= 1.059 \cdot I_{50} - 0.37 \, cm \quad (for \ I_{50} > 10 \, cm) \end{split}$$

TG51: Absorbed Dose from Electrons

$$D_{Q,Water} = M \cdot \frac{k_Q}{k_Q} \cdot_{D,W} N^{Co}$$

- k_{Qe} is the quality conversion factor that converts the calibration factor for a 60 Co beam to that for an electron beam of any beam quality
- Q and is determined by: $k_{Qe} = \frac{PQ_{gr}}{k_{R50}} k_{ecal}$
 - $-P_{gr}^{Q}$ corrects for gradient effects and is required for only cylindrical chambers
 - $-P_{gr}^{Q}$ is determined by the ratio of uncorrected ionization currents measured at two depths

$$D_{Q,Water} = M \cdot \frac{k_Q}{k_Q} \cdot_{D,W} N^{Co}$$

- k_{Oe} is the quality conversion factor that converts the calibration factor for a 60Co beam to that for an electron beam of any beam quality
- Q and is determined by: $k_{Oe} = \frac{PQ_{gr}}{R_{SO}} k_{ecal}$

$$P_{gr}^{Q} = \frac{M(d_{ref} + 0.5r_{cav})}{M_{raw}(d_{ref})}$$

- $P_{\rm gr}^{\rm Q} = \frac{M(d_{\rm ref} + 0.5r_{\rm cav})}{M_{\rm raw}(d_{\rm ref})} \qquad \begin{array}{l} -NOTE: \ M(d_{\rm ref} + 0.5r_{\rm cav}) \ and \ M(d_{\rm ref}) \\ are \ the \ reading \ at \ the \ depth, \\ (d_{\rm ref} + 0.5r_{\rm cav} \ and \ d_{\rm ref}) \end{array}$
 - NOT the reading times the depth.

THE UNIVERSITY of TENNESSEE

$$D_{Q,Water} = M \cdot \frac{k_Q}{k_Q} \cdot_{D,W} N^{Co}$$

• k_{Qe} is the quality conversion factor that converts the calibration factor for a 60Co beam to that for an electron beam of any beam quality

TG51: Absorbed Dose from Electrons

- Q and is determined by: $k_{Qe} = P_{gr}^Q k'_{R50} k_{ecal}$
 - $-k'_{R50}$ is the electron quality conversion factor that converts $_{D,W}N^{Qecal}$ into $_{D,W}N^Q$, an electron beam absorbed dose calibration factor for a specific beam quality Q (Energy Dependent Factor)
 - $-k'_{R50}$ is a function of the electron beam quality specified by R_{50}
 - Values for many models of ion chambers are presented in Figures 5-8 of TG51

$$D_{Q,Water} = M \cdot \frac{k_Q}{k_Q} \cdot_{D,W} N^{Co}$$

$$k_{ecal} = \frac{\frac{L}{\rho}_{air}^{water} \cdot P_{repl} \cdot P_{cel}|_{\text{evaluated at energy R}_{50} = 7.5}}{\frac{L}{\rho}_{air}^{water} \cdot P_{repl} \cdot P_{wall} \cdot P_{cel}|_{\text{evaluated at Cobalt 60}}}$$

$$k'_{R_{50}} = \frac{\frac{L}{\rho} \int_{air}^{water} {}^{\bullet} P_{repl} {}^{\bullet} P_{cel} |_{evaluated at the energy R_{50}}$$

$$\frac{L}{\rho} \int_{air}^{water} {}^{\bullet} P_{repl} {}^{\bullet} P_{cel} |_{evaluated at energy R_{50} = 7.5}$$

THE UNIVERSITY of TENNESSEE

TG51: Absorbed Dose from Electrons

Fig. 5. Calculated values of $k'_{R_{50}}$ at $d_{\rm ref}$ as a function of R_{50} for several common cylindrical ion chambers. These values can be used with Eq. (6) (with a measured value of $P^Q_{\rm gr}$ and a $k_{\rm scal}$ value from Table III) to determine the absorbed dose to water at the reference depth of $d_{\rm ref} = 0.6R_{50} - 0.1$ cm.

Fig. 7. Calculated values of $k'_{R_{50}}$ at $d_{\rm ref}$ for high-energy electron beams, as a function of R_{50} for cylindrical ion chambers. These values can be used with Eq. (6) (with a measured value of $P_{\rm pr}^Q$ and a $k_{\rm scal}$ value from Table III) to determine the absorbed dose to water at the reference depth of $d_{ref} = 0.6R_{50} - 0.1$ cm.

TG51: Absorbed Dose from Electrons

Fig. 8. Calculated values of $k_{R_{50}}'$ at $d_{\rm ref}$ for high-energy electron beams, as a function of R_{50} for plane-parallel chambers. Note that the values for the five well-guarded chambers lie on the same line in the figure. These values can be used with Eq. (6) (with $P_{\rm gr}^Q=1.0$ and a $k_{\rm scal}$ value from Table II) to determine the absorbed dose to water at the reference depth of $d_{\text{ref}} = 0.6R_{50} - 0.1$ cm.

Fig. 6. Calculated values of $k'_{R_{50}}$ at $d_{\rm ref}$ as a function of R_{50} for several common plane-parallel chambers. Note that the values for the five well-guarded chambers lie on the same line in the figure. These values can be used with Eq. (6) (with $P_{\rm gf}^Q=0.0$) to determine the absorbed dose to water at the reference depth of $d_{\rm ref}=0.6R_{50}-0.1$ cm.

THE UNIVERSITY of TENNESSEE

TG51: Absorbed Dose from Electrons

$$D_{Q,Water} = M \cdot \frac{k_Q}{k_Q} \cdot_{D,W} N^{Co}$$

- k_{Qe} is the quality conversion factor that converts the calibration factor for a 60 Co beam to that for an electron beam of any beam quality
- Q and is determined by: $k_{Qe} = P_{gr}^Q k_{R50}^* k_{ecal}^*$
 - $-k_{ecal}$ is the photon electron conversion factor that converts $_{D,W}N^{Co}$ into $_{D,W}N^{Qecal}$, which is an electron beam absorbed dose calibration factor for a specific beam quality Q_{ecal}
 - $-k_{ecal}$ is fixed for a given chamber model and the values for most chambers can be found in Table III of TG51
 - Energy independent (actually a fixed energy)

Table III. Values of the photon-electron conversion factor, $k_{\rm ecal}$, for commercial cylindrical chambers, calculated as described in Ref. 52 and adopting a beam quality $Q_{\rm ecal}$ of R_{50} = 7.5 cm.

		Wall			Al electrode
Chamber	$k_{\rm ecul}$	Material	Thickness g/cm ²	Cavity radius r_{cav} (cm)	diameter (mm)
Farmer-like					
Exradin A12	0.906	C-552	0.088	0.305	
NE2505/3,3A	0.903	Graphite	0.065	0.315	1.0
NE2561 ^a	0.904	Graphite	0.090	0.370°	1.0
NE2571	0.903	Graphite	0.065	0.315	1.0
NE2577	0.903	Graphite	0.065	0.315	1.0
NE2581	0.885	A-150	0.041	0.315	
Capintec PR-06C/G	0.900	C-552	0.050	0.320	
PTW N23331	0.896	Graphite	0.012	0.395°	1.0
		PMMA	0.048		
PTW N30001 ^b	0.897	Graphite	0.012	0.305	1.0
		PMMA	0.033		
PTW N30002	0.900	Graphite	0.079	0.305	
PTW N30004	0.905	Graphite	0.079	0.305	1.0
PTW N31003 ^c	0.898	Graphite	0.012	0.275	1.0 ^f
		PMMA	0.066		
Other cylindrical					
Exradin A1d	0.915	C-552	0.176	0.200	
Capintec PR-05/PR-05P	0.916	C-552	0.210	0.200	
Wellhofer IC-10/IC-5	0.904	C-552	0.070	0.300	

Questions

