Stochastik für Informatik SoSe 2023 Lineare Modelle

Hanno Gottschalk

July 11, 2023

Regression mit mehreren Einflussgrößen Endemische Pflanzen auf Galapagos Galapagos - Fortsetzung Galapagos: Visualisierung Galapagos: Modellierung Galapagos: Fit Galapagos: Diagnostics	5 6 7
Die Modell-Matrix Matrixschreibweise	. 12 . 13
Kleinste Quadrate Schätzer Kleinste Quadrate Ansatz für lin. Modelle	
Kleinste Quadrate fit als Projektion Projektion als Minimierung Beispiele für Projektionen Anwendung auf Lineare Modelle Anw. auf Lin. Mod. – Beweis	. 20 . 21
Streuzerlegung für lineare Modelle Gesamte, Erklärte und Reststreuung Streuzerlegungssatz für lin. Modelle. Beweis Streuzerlegung	. 25
Lineare Modelle mit nicht linearen Funktionen Bremsweg revisited	29

Lineare Modell - Spezialfälle.	 32
•	

Inhaltsverzeichnis der Vorlesung

- Regression mit zwei Einflussgrößen
- Die Modell-Matrix
- Kleinste Quadrate Schätzer
- Geometrische Interpretation des LSF
- Streuzerlegung
- Lineare Modelle mit nicht linearen Funktionen

Hanno Gottschalk

Stochastik für Info – 2 / 32

Regression mit mehreren Einflussgrößen

3/32

Endemische Pflanzen auf Galapagos

- Zielgröße: Artenvielfalt einheimischer Pflanzen
- Einflußgröße: Fläche nächstgelegener Insel
- Einflußgröße: Höchster Berg auf Insel

Hanno Gottschalk

Stochastik für Info – 4 / 32

Galapagos - Fortsetzung

- *i*: Stat. Einheit die Insel (30 Inseln)
- Y: Zielgröße Anzahl beobachteter einheimischer Species
- X₁ Einflußgröße Höchste Erhebung [m]
- X₂ Einflußgröße Größe Nachbarinsel [km²]

M. P. Johnson and P. H. Raven (1973) "Species number and endemism: The Galapagos Archipelago revisited" Science, 179, 893-895 - aus R-package

Hanno Gottschalk

Stochastik für Info - 5 / 32

Hanno Gottschalk

Stochastik für Info - 6 / 32

Galapagos: Modellierung

Wir wählen einen linearen Ansatz für beide Einflußfaktoren:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \text{stat. Schwankungen}$$
 (1)

Residuen:

$$\epsilon_i = \epsilon_i(\alpha, \beta_1, \beta_2) = y_i - (\alpha + \beta_1 x_{i,1} + \beta_2 x_{i,2}) \tag{2}$$

Bestimme α, β_1, β_2 so dass

$$Q(\alpha, \beta_1, \beta_2) = \sum_{i=1}^{n} [\epsilon_i(\alpha, \beta_1, \beta_2)]^2 \longrightarrow \min$$
(3)

Die so gefundenen Parameter $\hat{\alpha},\hat{\beta}_1,\hat{\beta}_2$ definieren eine Ebene im 3D Streuplot

Hanno Gottschalk

Stochastik für Info - 7 / 32

- $\hat{lpha}=1.4328$ (Intercept) $eta_1=0.2765/[m]$ (Elevation/Höhe) $\hat{eta}_2=-0.06889/[km]$ (Adjacent/Größe)

Hanno Gottschalk

Stochastik für Info - 8 / 32

Hanno Gottschalk

Stochastik für Info - 9 / 32

Die Modell-Matrix

10/32

Matrixschreibweise Wir schreiben alle Gleichungen auf einmal hin...

$$y_{1} = \alpha + x_{1,1}\beta_{1} + x_{1,2}\beta_{2} + \epsilon_{1}$$

$$y_{2} = \alpha + x_{2,1}\beta_{1} + x_{2,2}\beta_{2} + \epsilon_{2}$$

$$\cdots \vdots \qquad \cdots$$

$$y_{n} = \alpha + x_{n,1}\beta_{1} + x_{n,2}\beta_{2} + \epsilon_{n}$$
(4)

In Matrixschreibweise

$$\underline{y} = \alpha \underline{1} + \underline{\underline{M}} \underline{\beta} + \underline{\epsilon}, \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$
 (5)

$$\underline{\underline{M}} = \left(\begin{array}{cc} x_{1,1} & x_{1,2} \\ \vdots & \vdots \\ x_{n,1} & x_{n,2} \end{array} \right), \ \ \underline{y} = \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right), \ \ \underline{\epsilon} = \left(\begin{array}{c} \epsilon_1 \\ \vdots \\ \epsilon_n \end{array} \right), \ \ \underline{1} = \left(\begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right).$$

Hanno Gottschalk

Stochastik für Info - 11 / 32

Matrixschreibweise II

$$\underline{\underline{M}} = \begin{pmatrix} x_{1,1} & x_{1,2} \\ \vdots & \vdots \\ x_{n,1} & x_{n,2} \end{pmatrix}$$

Die Matrix entspricht gerade den Regressorspalten in der Urliste

Hanno Gottschalk

Stochastik für Info - 12 / 32

Matrixschreibweise III

$$\underline{y} = \alpha \underline{1} + \underline{\underline{M}} \underline{\beta} + \underline{\epsilon}, \quad \underline{\beta} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}, \quad \underline{\underline{M}} = \begin{pmatrix} x_{1,1} & x_{1,2} \\ \vdots & \vdots \\ x_{n,1} & x_{n,2} \end{pmatrix}$$

 \Leftrightarrow

$$\underline{y} = \underline{\underline{M}} \underline{\beta} + \underline{\epsilon}, \quad \underline{\beta} = \begin{pmatrix} \alpha \\ \beta_1 \\ \beta_2 \end{pmatrix}, \quad \underline{\underline{M}} = \begin{pmatrix} 1 & x_{1,1} & x_{1,2} \\ \vdots & \vdots & \vdots \\ 1 & x_{n,1} & x_{n,2} \end{pmatrix}$$
 (6)

Hanno Gottschalk

Stochastik für Info - 13 / 32

Matrixschreibweise bei d Regressoren Gegeben sei das statistische Modell

$$Y = \alpha + \beta_1 X_1 + \dots + \beta_n X_d + \text{stat. Schwankungen}$$
 (7)

wobei n Beobachtungen für Y vorliegen $-y_1, \ldots, y_n$ – und entsprechend nBeobachtungen für jeden Regressor $X_i - x_{1,j}, \dots, x_{n,j} - j = 1, \dots, d$.

Dann lautet die Matrixschreibweise für dieses Modell

$$\underline{y} = \underline{\underline{M}} \, \underline{\beta} + \underline{\epsilon}, \quad \underline{\beta} = \begin{pmatrix} \alpha \\ \beta_1 \\ \vdots \\ \beta_d \end{pmatrix}, \quad \underline{\underline{M}} = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,d} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,d} \end{pmatrix}$$
(8)

Def.: (8) definiert das Modell der multivariaten linearen Regression. Dies ist ein Spezialfall eines linearen Modells.

Hanno Gottschalk

Stochastik für Info – 14 / 32

Kleinste Quadrate Schätzer

15 / 32

Kleinste Quadrate Ansatz für lin. Modelle

Def. gegeben sei ein statistisches Modell

$$\underline{y} = \underline{\underline{M}}\,\underline{\beta} + \underline{\epsilon}$$

mit einer Modell-Matrix aus Observationen \underline{M} mit Rang d+1 (falls $n \geq d+1$: voller Rang) und der beobachteten Response y.

Der kleinste Quadrate Schätzer $\hat{\beta}$ ist eindeutig gegeben als Lösung des Problems

$$Q(\underline{\beta}) = \underline{\epsilon'}\underline{\epsilon} = (\underline{y} - \underline{\underline{M}}\underline{\beta})'(\underline{y} - \underline{\underline{M}}\underline{\beta}) \longrightarrow \min$$
(9)

Hanno Gottschalk

Stochastik für Info - 16 / 32

Berechnung von $\hat{\beta}$

Wir suchen zunächst die Extrema von $Q(\beta)$:

$$\underline{\nabla}Q(\underline{\beta}) = -\underline{M}'(\underline{y} - \underline{M}\underline{\beta}) - \left[(\underline{y} - \underline{M}\underline{\beta})'\underline{M}\right]'$$

$$= -\left[\underline{M}'\underline{y} - \underline{M}'\underline{M}\underline{\beta}\right] - \left[\underline{M}'\underline{y} - \underline{M}'\underline{M}\underline{\beta}\right]$$

$$\stackrel{!}{=} 0$$
(10)

 \Leftrightarrow

$$\underline{M'y} - \underline{M'}\underline{M}\,\underline{\beta} \stackrel{!}{=} 0 \tag{11}$$

 \Rightarrow Falls \underline{M} vollen Rang hat, liegt das einzige Extremum bei

$$\underline{\hat{\beta}} = \left(\underline{\underline{M}'\underline{M}}\right)^{-1} \underline{\underline{M}'\underline{y}} \tag{12}$$

Es ist ein Minimum, da $\underline{\nabla}^2 Q(\underline{\beta}) = \underline{\underline{M}'}\underline{\underline{M}}$ positiv definit ist.

Hanno Gottschalk

Stochastik für Info - 17 / 32

Kleinste Quadrate fit als Projektion

18/32

Projektion als Minimierung

Haben lineare Modelle mit mitteln der lin. Algebra aufgestellt. Begriffsbildungen in der lin. Algebra haben oft eine *geometrische Interpretation*. Nach dieser suchen wir hier für die lin. Modelle.

Gegeben sei ein Punkt $\underline{y} \in \mathbb{R}^n$ und ein q-dimensionaler linearer Unterraum $M \subset \mathbb{R}^n$.

Wiederholung: $M \subseteq \mathbb{R}^n$ linearer Unterraum $\Leftrightarrow \forall u, v \in M, a, b \in \mathbb{R}$ gilt $au + bv \in M$.

Es sei $\Pi_M \underline{y}$ die Projektion von \underline{y} auf M der Vektor in M mit dem kleinsten euklidischen Abstand zu \underline{y}

 $\Pi_{M}\underline{y} := \{\underline{u} \in M : |\underline{y} - \underline{u}|^2 = \sum_{i=1}^{n} (y_i - u_i)^2 \le |\underline{y} - \underline{v}|^2 \forall \underline{v} \in M\}$

Hanno Gottschalk

Stochastik für Info – 19 / 32

Hanno Gottschalk

Stochastik für Info - 20 / 32

Anwendung auf Lineare Modelle

Def.: Gegeben sei die $n \times q$, $n \geq q$ Modell-Matrix $\underline{\underline{M}}$ eines linearen Modells mit maximalem Rang q. Dann ist der *Vorhersageraum* $\overline{\underline{M}}$ des Modelles gegeben als Bildraum der mit $\underline{\underline{M}}$ assoziierten lin. Abbildung von \mathbb{R}^q nach \mathbb{R}^n .

$$M = Bild(\underline{M}) = \{ \underline{M} \, \beta : \beta \in \mathbb{R}^q \}$$
 (13)

Satz: Es sei \underline{y} der Vektor der beobachteten Zielgrößen eines lin. Modells $\underline{y} = \underline{\underline{M}}\,\underline{\beta} + \underline{\epsilon}$ mit Vorhersageraum $M \subseteq \mathbb{R}^n$. Dann gilt:

$$\Pi_M \underline{y} = \underline{M} \, \hat{\beta} \tag{14}$$

Hanno Gottschalk

Stochastik für Info - 21 / 32

Anw. auf Lin. Mod. - Beweis

Beweis:

Nach Def. minimiert $\hat{\underline{\beta}}$ die Residuenquadrate $|\underline{y} - \underline{\underline{M}}\,\underline{\beta}|^2$.

 $\text{Da } M = \{\underline{M}\,\underline{\beta} : \underline{\beta} \in \mathbb{R}^q \} \text{ minimiert } \underline{u} = \underline{\underline{M}}\,\hat{\underline{\beta}} \text{ die quadrierte Euklidische Norm } |\underline{u} - \underline{y}|^2 \text{ für } \underline{u} \in M.$

 $\Rightarrow \underline{u} = \Pi_M \underline{y}$ per Definition von $\Pi_M \underline{y}$

ged.

Hanno Gottschalk

Stochastik für Info - 22 / 32

Streuzerlegung für lineare Modelle

23 / 32

Gesamte, Erklärte und Reststreuung

Def: Gegeben sei das multivariate Regressionsmodell $\underline{y} = \underline{\underline{M}}\,\hat{\underline{\beta}} + \underline{\epsilon}$. Die *Gesamtstreuung* SQT ist gegeben als

$$SQT = \sum_{j=1}^{n} (y_i - \bar{y})^2$$
 (15)

Die Erklärte Streuung SQE ist gegeben als

$$SQE = \sum_{j=1}^{n} (u_i - \bar{y})^2 \text{ mit } \underline{u} = \underline{\underline{M}} \hat{\beta}$$
 (16)

Die Reststreuung oder Residualstreuung SQR ist gegeben als

$$SQR = \sum_{j=1}^{n} (u_i - y_i)^2 \text{ mit } \underline{u} = \underline{\underline{M}} \hat{\beta}$$
 (17)

Hanno Gottschalk

Stochastik für Info – 24 / 32

Streuzerlegungssatz für lin. Modelle

Satz: Es sei $\underline{y} = \underline{M} \, \underline{\beta} + \underline{\epsilon}$ ein multivariates Regressionsmodell mit Intercept, also $\underline{\underline{M}}$ habe eine Spalte \underline{j} mit allen Einträgen gleich 1. Dann gilt:

$$SQT = SQE + SQR (18)$$

Bemerkung: Wie der folgende Beweis zeigt, genügt auch die Forderung

$$\underline{1} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \in M = \text{Bild}\underline{\underline{M}} \tag{19}$$

Hanno Gottschalk

Stochastik für Info - 25 / 32

Beweis Streuzerlegung

Beobachtung: Für $y \in \mathbb{R}^n$ und $\underline{v} \in M$ gilt (LinA)

$$\Pi_M(\underline{y} - \underline{v}) = \Pi_M \underline{y} - \Pi_M \underline{v} = \Pi_M \underline{y} - v$$

Nach Pytagoras:

$$SQT = |y - \bar{y}\underline{1}|^2 = |\Pi_M(y - \bar{y}\underline{1})|^2 + |y - \bar{y}\underline{1} - \Pi_M(y - \bar{y}\underline{1})|^2$$

Mit der Beobachtung und $\underline{1} \in M = \operatorname{Bild}(\underline{M})$:

$$= |\Pi_M \underline{y} - \overline{y}\underline{1}|^2 + |\underline{y} - \overline{y}\underline{1} - \Pi_M \underline{y} + \overline{y}\underline{1}|^2 = |\Pi_M \underline{y} - \overline{y}\underline{1}|^2 + |\underline{y} - \Pi_M \underline{y}|^2$$

Mit dem Projektionssatz:

$$= |\underline{M}\,\hat{\beta} - \underline{y}\underline{1}|^2 + |y - \underline{M}\,\hat{\beta}|^2 = SQE + SQR$$

qed.

Hanno Gottschalk

Stochastik für Info – 26 / 32

Lineare Modelle mit nicht linearen Funktionen

27 / 32

Bremsweg revisited

Ein angemesseneres Modell für die Abhängigkeit des Bremswegs von der Geschwindigkeit

$$Y = \alpha + \beta_1 X + \beta_2 X^2 + \text{stat. Schw.}$$

Hier übernimmt X^2 die Rolle von X_2

 \Rightarrow Lediglich die Modelmatrix $\underline{\underline{M}}$ muss anders aufgestellt werden, Lösungsweg für $\underline{\hat{\beta}}$ bleibt gleich

$$\underline{y} = \underline{\underline{M}} \, \underline{\beta} + \underline{\epsilon}, \qquad \underline{\underline{M}} = \begin{pmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{pmatrix}, \quad \underline{\beta} = \begin{pmatrix} \alpha \\ \beta_1 \\ \beta_2 \end{pmatrix}$$
 (20)

Hanno Gottschalk

Stochastik für Info – 28 / 32

Diagnostische Plots Bremsweg revisited

- Trends für quadratischen Fit ok √
- Streuung nimmt zu mit steigendem Bremsweg (nicht ganz befriedigend)

Hanno Gottschalk

Stochastik für Info - 29 / 32

Definition: Lineares Modell

Def.: In einer Stichprobe vom Umfang n seien für die Response Y die Werte y_1,\ldots,y_n sowie die Regressoren $\underline{X}=(X_1,\ldots,X_d)'$ die Werte

$$\underline{X}_1=(x_{1,1},\ldots,x_{1,d}),\ldots,\underline{X}_n=(x_{n,1},\ldots x_{n,d})$$
 gemessen. Es seien $g_1,\ldots,g_q:\mathbb{R}^d\to\mathbb{R}$ Funktionen.

Gegeben sei darüber hinaus der Ansatz

$$Y = \beta_1 g_1(\underline{X}) + \dots + \beta_q g_q(\underline{X}) + \text{stat. Schwankungen}$$
 (21)

Dann kann man dieses lineare Modell in Matrixschreibweise aufstellen wie folgt:

$$\underline{y} = \underline{\underline{M}} \, \underline{\beta} + \underline{\epsilon}, \quad \underline{\beta} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_q \end{pmatrix}, \quad \underline{\underline{M}} = \begin{pmatrix} g_1(\underline{X}_1) & \cdots & g_q(\underline{X}_1) \\ \vdots & \cdots & \vdots \\ g_1(\underline{X}_n) & \cdots & g_q(\underline{X}_n) \end{pmatrix}$$
(22)

Hanno Gottschalk

Stochastik für Info - 30 / 32

Lineare Modelle - Bemerkungen

Im linearen Modell is NICHT die Abhängigkeit von den REGRESSOERN notwendiger Weise linear, sondern die Abhängigkeit von den Koeffizienten!!!

$$Y = \alpha + \beta_1 X + \beta_2 \exp(X) + \text{stat. Schw.}$$
 IST lin. Modell!

$$Y = \alpha + \beta_1 X + \exp(\beta_2 X) + \text{ stat. Schw.}$$
 IST KEIN lin. Modell!

Im engeren Sinne zählt noch die Normalverteilungsannahme für die stat. Schwankungen zum linearen Modell.

Hanno Gottschalk

Stochastik für Info - 31 / 32

Lineare Modell - Spezialfälle

Galapagos: Multivariate lin. Reg: q=d+1, $g_1(\underline{X})=1$, $g_j(\underline{X})=X_{j-1}$, $j=1,\ldots,d+1$.

Bremsweg: Polynomiale Regression vom Grad q-1 mit nur einem Merkmal: d=1 , $g_1(X)=1,g_2(X)=X,\dots,q_q(X)=X^{q-1}$

Die Modellmatrix ändert sich, der Löser bleibt immer derselbe!!!

$$\underline{\hat{\beta}} = \left(\underline{M'}\underline{M}\right)^{-1} \underline{M'}\underline{y}$$

Hanno Gottschalk

Stochastik für Info - 32 / 32