Howard Math 157: Calculus II Spring 2024 Instructor: Sam Hopkins (Sam. hopkins Dhoward.edu) (call me "Sam") 1/8 Logistics: Classes: MWRF 10:10-11 am ASB-B#100 R 9-10 am Annex III -#220 Office HRI: or by appointment-email me! Samuelfhopkins, com/classes/157. html Text: Calculus, Early Transcendentals by Stewart, 9e Grading: 35% (in-person) quizzes 45% three (in-person) midterms 20% (in-person) final exam There will be Il in-person quitzes taken on Thursdays (about 20 mins, we will go over answers in class). Your lowest 2 scores will be dropped (so 4/11 count). The 3 midterms will happen in-class, also on Thursdays. The final will take place during finals week. Missis an in-person class, all assessments must be taken in-person! Beyond that, I will assign, additional practice problems from the book. and lexpect you to SHOW UP TO CLASS + PARTICIPATEI

which wears ASK QUESTIONS!

Overview of the course:	<u></u>
	العطب ا
In Calculus I we learned two important and related operations on functions f(x): TR -> IR:	
· differentiation and · integration	
The derivative f'(a) of f(x) at a point x=a	
The derivative f'(a) of f(x) at a point x = a is the slope of the tangent to y = f(x) at (a, f(a)).	
stope s'(a). 1 It is also the "instantaneous rate of change"	
of the function $f(x)$ at $x = \alpha$.	فتتتا
The integral (bosses)	نشتنتا
The integral $\int_a^b f(x) dx$ is the area under the curve	ستستا
The X=a to X=5:	شت
area (41) = $\int_a^b f(x) dx$	شنة
——,	
Both the derivative and integral are formally defined as limits:	
o the derivative is the limit second line	+
approximating the tangent: VPQ	نت ا
$f'(a) = \lim_{x \to a} f(x) - f(a)$	€
• the integral is the limit of	ţ-
Riemann sums (= rectangles)	<u>(</u> -
approximating area under curve:	(-
$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) dx$	(
The Fundamental Theorem of Calculus sass that	E -
differentiation and integration are inverse operations:	(
Clo	(==
$\int_a^b f(x) dx = F(b) - F(a),$	F-
where $F'(x) = f(x)$	L.
	•
	(

工工

ب ناب In Calculus II ne will continue to study derivatives & integrals. Some of the things we will learn are:

· Applications of integration.

In Calc I we learned many applications of derivatives (minimums & maximums, concavity, etc.)
In Calc II we will learn more things we can compute using integrals (beyond area under curve) like

· volumes (3D version of area)

· Tengths (1D version of area)

Also, FTC says that integral represents net change, so we will study some physical applications of integrals like to work (in the sense of force).

Using rules for integration:
Using rules for differentiation like product and chain rules;
We know how to take the derivative of "any" function,
e.g. d/dx (x sin (ext + 5x - 6))

But... integrating a "random" function like this ran be really hand or not even possible. We will learn more techniques for computing integrals, when possible. [Recall that we already learned one technique: u-substitution.]

· Polar coordinates: We are used to working with

(X, y) aka. "Cartesian coordinates"

4 • (x,y) vs.

Polar coordinates (r, 0) are a different system where we can also do (alculus.

· Taylor serves: How do we evaluate a function f(x) at a particular value, e.g. compute f(1.5)? If f(x) is a polynomial like f(x) = 6x2-2x+3 We can use arithmetic: f(1.5) = 6(1.5) = 2(1.5) + 3 = ... If it is a rational function like $f(x) = \frac{x+1}{x^2-a}$ we can use division similarly: $f(1.5) = \frac{1.5 + 1}{(1.5)^2 - 2}$ But what about something like f(x1 = sin(x) or f(x) = ex? How to compute what does your calculator even do? Even though ex is not a polynomial, it has a representation as a kind of "infinite" poly nomial: $e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \frac{x^{5}}{120} + \cdots$ This is called a taylor series, and it lets us compute things like e" (at least approximately). We will learn how to deal with these kind of infinite sums called series (specifically, your series) and related mathematical constructions called sequences. We will also learn Taylor's theorem, telling us that the coefficients of the Taylor series

(un be computed from the derivative of the function (which is whose calculus cores in!). É

1-

1

Area between curves (\$6.1 of textbook) The integral computes the area under a curve. What if we have two curves, y=f(x) and y=g(x), and we want to know the area between the curves? Specifically, suppose that $f(x) \ge g(x)$ for all X in some closed interval . g.(x) from x=a to x=b. Then, as with the integral, we can define the area between the curves on [a, b] by approximating it with a large number of thin rectangles: Let $0x = \frac{b-a}{n}$ (for some $n \ge 1$) and let x = q + i. Ax for i=0,1,...,n So that [a, b] is divided into n sub-intervals [xo, x,], [x, xz], ..., [xn, xn] For each sub-interval, choose a Xi* E [Xi-1, Xi], and consider the thin rectangles of width DX and height = f(xi*)-g(xi*) + difference in hts area between $\approx \sum_{i=1}^{L} (f(x_i^*) - g(x_i^*)) \Delta x$ from X=a to X=b and is $= \lim_{n\to\infty} \sum_{i=1}^{n} (f(x_i^*) - g(x_i^*)) \Delta x$ $\int_{a}^{b} \int_{a}^{b} f(x) - g(x) dx$ Som area between two curves can be computed as integral of difference function

Note: If we let g(x)=0 be the function corresponding to the x-axis y=0, then we recover

He area under the curve as Sa FCN de from.

E.g. Let's compute the area bounded by the curves y=x and y=x2 Since the problem does not tell us the bounds of integration, let us sket on the curves; Letting $f(x) = x^i$ and $g(x) = x^2$, ⁷ リ=× we can find where the curves intersect by setting f(x)=g(x) \Rightarrow $x = x_5 \Rightarrow x_5 - x = 0$ => x (x -1) = 0 => x=0 or x=1 Also, choosing $x = \frac{1}{2}$, we see that between x = 0 and x = 1, $f(x) = \frac{1}{2} \geq g(x) = \frac{1}{4}$, so the curve 4=fix) is above y=g(x) on [0,1]. Thus, the area bounded by the curves is $\int_{a}^{b} f(x) - g(x) dx = \int_{0}^{1} x - x^{2} dx = \frac{x^{2}}{2} - \frac{x^{3}}{2} \int_{0}^{1}$ $= \left(\frac{1^2}{2} + \frac{1^3}{3}\right) - \left(\frac{0^2}{2} - \frac{0^3}{3}\right) = \frac{1}{2} - \frac{1}{3} = \left[\frac{1}{6}\right].$ If on the interval [a, b], sometimes f(x) > g(x) and sometimes g(x) >f(x), then to correctly find area between them, we need to take absolute value of difference: area between = Sb/f(x)-g(x)/dx. In practice, we break up this integral into the parts where $f(x) \ge g(x)$ and where $g(x) \ge f(x)$

=

Ė

f-.

 $\Rightarrow \int_{\alpha}^{c} f(x) - g(x) dx + \int_{c}^{b} g(x) - f(x) dx$

**	
(1)	
(2)	
(3)	
_	5.9: (originate the area between y=f(x)= cos(x)
(2)	E.g. (onepute the area between $y=f(x)=\cos(x)$ and $y=g(x)=\sin(x)$ for $x=0$ to $x=\frac{\pi}{2}$.
?	$\Lambda = \frac{1}{12} \left(\frac{1}{12} \right) = \frac{1}{12} \left($
A	Again, good idea to 1 y=corcx1 y=sincx1
(1)	sketch curves to see what's going on .
A	See what s going on .
(1)	σ τ/4 π/2
4	$(OS(0)=1>0=sin(0), but sin(\pi/2)=1>0=cos(\pi/2),$
_	So which curve is on top changes from $x=0$ to $x=\pi/2$ In fact, have $\cos(\pi/4) = \sin(\pi/4)$ (by symmetry, on isosceles right triangle) Thus area between and $y = \sin(x) = \int_0^{\pi/4} \cos(x) dx + \int_0^{\pi/2} \sin(x) - \cos(x) dx$ from $x=0$ to $x=\pi/2$ $= \sin(x) + \cos(x) \int_0^{\pi/4} + -\cos(x) - \sin(x) dx$
(1)	in fact, have cos(11/4) = sin(11/4) (by symmetry, or
2	Thus isosceles right triangle)
4	area between (11/4)
4	$y = cos(x)$ and $y = \pi/2$ $\int_0^{\pi/2} cos(x) = sin(x) dx + \int_0^{\pi/2} sin(x) dx$
4	from x=0 to x=1/2 = sin(x) + cos(x)] = -cos(x) -sin(x)] = 1/4
2	
4	$= (\sin(\pi/4) + \cos(\pi/4) - \sin(0) - \cos(0)) + (-\cos(\pi/2) - \sin(\pi/2) + \cos(\pi/4) + \sin(\pi/4))$
A	$= (\sin(\pi/4) + \cos(\pi/4) - \sin(0) - \cos(0)) + (-\cos(\pi/2) - \sin(\pi/2) + \cos(\pi/4) + \sin(\pi/4))$ $= (\sqrt{12} + \sqrt{12} - 0 - 1) + (-0 - 1 + \sqrt{12} + \sqrt{12}) = 2\sqrt{2} - 2$
A	
Q	Fig. Sometimes it is easier to integrate with y variable
4	Let's find area between $y = x - 1$ and $y^2 = x + 1$. We sketch: $2 - \frac{1}{y^2} = x + 1$ $x = y^2 - 1 = g(y)$ the curves: $\frac{1}{y^2} = x - 1$ and $x = y + 1 = f(y)$ they intersect $\frac{1}{y^2} = \frac{1}{y^2} = $
	$11 = \frac{1}{2} =$
Q	We sketch $\frac{1}{ y } = x - 1 \text{and } x = y + 1 = f(y)$
4	they intersect () set equal y2-1=y=1
4	af y = -1 -1.72 $= 3 + 2 - 2 = 0$ $= 3 + 2 - 2 = 0$ $= 3 + 2 - 2 = 0$ $= 3 + 2 - 2 = 0$ $= 3 + 2 - 2 = 0$ $= 3 + 2 - 2 = 0$ $= 3 + 2 - 2 = 0$ $= 3 + 2 - 2 = 0$
4	and $y = 2$ = $2 - 1 - 1 = 0$
4	
4	Thon since y=x-1 is to what if I am I
<u>U</u>	Then, since y=x-1 is to right of y=x+1 for y=-1 to y=2:
<u>پ</u>	area $(2f(y)-g(y)dy = (2(y+1)-(y^2-1)dy)$
のかのかか	area = $\int_{-1}^{2} f(y) - g(y) dy = \int_{-1}^{2} (y+1) - (y^{2}-1) dy$ curves = $\int_{-1}^{2} -y^{2} + y + 2 dy = \frac{-y^{3}}{3} + \frac{y^{2}}{2} + 2y \int_{-1}^{2} = (\frac{-8}{3} + 2 + 4) - (\frac{1}{3} + \frac{1}{2} - 2)$
	curves (2-42+4+2 dy= -42+2y) = (-8+2+4)-(-+-2)
<u>_</u>	= 3-(3 /) 3 2 3 4 4 5 5 7
4 (L)	= 4.5
£4.	

Volumes (\$6.2) Volumes are the 3-dimensional version of areas. Let's start by considering a circular cylinder: The cross-section (= intersection wy 12-plane) of this cylinder at any x-coordinate is a circle latradiusr) WR thus define the volume of the cylinder to be = area of x length of cylinder = Tr2 = l We can also consider cylinders whose cross-sections are other shapes, e.g., rectangles or trangles; trangular cylinder rectangular prism l'Toblerane' bar) (or rectangular cylinder) The important thing is that the cylinder has a certain length and across the whole leighth cross-sections are save. Thus, for any cylinder we derine Volume of cylinder = area of cross-section x length. 12.9. Volume of volume of width rectangular prism = x height x length. Q: what it the cross-section of our solid is not constant?

<u>E</u>

<u>-</u>

<u>_</u>

=

t=

تشديخ

مسام مسام

4____

1/12

hetis draw a picture of our solid:

y

A(x)

4

4

A

A

a a

هسد

الكيد

(

Suppose the solid extends between x=a and x=b, and let A(x) for $a \le x \le b$ be ther area of the cross-section obtained by intersecting with plane P_x perpendicular to x-axis at that point. We can approximate the volume by dividing the solid into several short cylinders;

Sliced into

5 cylinders

xo=a x1 x2 x3 x4 b= x5

As w integral, we break up the internal $[a_1b]$ into n sub-intervals $[x_{i-1},x_i]$ i=1,...,n, $x_i=x_{i-1}+\Delta x$.

Then the volume x $\sum_{i=1}^{n}$ area of cross-section x Δx of the solid is x $\sum_{i=1}^{n}$ $A(x_i^*)$ A x $\sum_{i=1}^{n}$ $A(x_i^*)$ A x

and is exactly = $\lim_{n\to\infty} \sum_{i=1}^{n} A(x_i^*) \Delta x$ $= \int_{a}^{b} A(x_i) dx$

. This lets us compute volume as an integral !

An important class of solids are the solids of revolution obtained by rotating a region in X,y-plane about x-axis;

Fig. Find the volume of the cone obtained by rotating the area below y = x (and above x-axis) from x = 0 to x = 1 about the x-axis.

Sketch: 9,

et any x with 0 \(\times \in 1 \)

the cross-section of come
is a circle of
radius f(x) = t

نت یک

Since in this case A(x) = of radius f(x)

 $=\pi(f(x))^2=\pi x^2$

We can use the integral formula for volume to get volume = $\int_0^1 \pi x^2 dx = \frac{\pi}{3} \times \frac{37}{3} = \left| \frac{\pi}{3} \right|$

We see that in general the volume of a solid of revolution obtained by rotating the area below the curve y=f(x) from x=a to x=b about the x-axis is

 $=\int_{a}^{b}\pi \left(f(x)\right)^{2}dx$

since every cross-section is a circle of radius = fix1

E.g. Find the volume of a sphere of radius rusing an integral.

To do this, we have to realize the sphere as a solid of revolution:

We see that a sphere is obtained by rotating a <u>semi-circle</u> of radius r about x -axis, and semi-circle = are a below curve of radius $r = y = \sqrt{r^2 - x^2}$ from x = -r to x = r

/ Think

-1

-

-

--

-(1)

-

-

-4

-

4

4

-

4

4

44

44

اگر اگ

()

Since x2+y2=r2 by pythagorean 7hm.

Thus, according to the formula for volume or a solled of revolution, we have:

Volume of =
$$\int_{-r}^{r} \pi (\sqrt{r^2 - x^2})^2 dx$$

= $\pi \int_{-r}^{r} (r^2 - x^2) dx$
= $\pi (r^2 x - \frac{x^3}{3})^{-r}$
= $\pi ((r^3 - \frac{r^3}{3}) - (-r^3 - \frac{r^3}{3}))$
= $\pi (2r^3 - \frac{2}{3}r^3) = \frac{4}{3}\pi r^3$

 $= \pi \left[\frac{1}{3} x^3 - \frac{1}{5} x^5 \right]_0^1 = \pi \left(\frac{1}{3} - \frac{1}{5} \right) = \pi \left(\frac{1}{3} -$

استا استا

لتستشك

-

-

-

t -

تندم

f==

- 1 Sometimes we want to rotate a cross yaxis instead of x-axis. Ť How can we compute the volume Ť of the solid obtained by rotating the region between y-axis and curve y-y2=X about the y-axis? We just do same thing we've been doing, but with respect to y! Volume of = SaA(y) dy >> Aug) = area of y 4 +1 $=\int_{0}^{1}\pi(y-y^{2})^{2}dy$ since y-cross-section is circle of radius £(y)=y-y2 $=\int_0^1 \pi(y^2-2y^3+y^4) dy$ $= \pi \left(\frac{1}{3} y^3 - \frac{2}{4} y^4 + \frac{1}{5} y^5 \right) = \pi \left(\frac{1}{3} - \frac{1}{2} + \frac{1}{5} \right) = \pi$ -4 4 -4 What about the following solid of revolution problem? 4 Compute the volume of solid E.g. -4 obtained by rotating region 4 below y=x-x2 (and above x-axis) -4 about the y-axi's -10 To do this following the method above, we would have --to realize this region as the region between two curves -4 -4 · X = f(y) and X = g(y) and integrate wirt. y. _-(To find fly) and gly) we need to "mirent" y=x-x2 4 using the quadratic fromula x = -b ± 162-4ac 4 => $f(y) = \frac{1+\sqrt{1-4y}}{2}$ and $g(y) = \frac{1-\sqrt{1-4y}}{2}$.) 1 But... there is a better approach using integration w.r.t. X

-4

-