Universiteit van Stellenbosch

Toegepaste Wiskunde 314

Tutoriaal 8: Donderdag 29 April 2004

MEMORANDUM

- (1) Die RSA-gebruikersmodulusse in Tabel 4-4 het almal 'n lengte van 16 desimale syfers. Dus is die priemfaktore van elk van hierdie modulusse waarskynlik 8 desimale syfers lank. Eksperimentering in Mathematica lewer byvoorbeeld die volgende priemgetalle van hierdie lengtes: $p = \text{Prime}[2000000] = 32\,452\,843$ en $q = \text{Prime}[5000000] = 86\,028\,121$. Die produk, $n = 2\,791\,857\,104\,398\,003$, van hierdie twee prieme het wel die verlangde lengte, en $\phi(n) = 2\,791\,856\,985\,917\,040$. Die getal $d = 5\,561$ is byvoorbeeld relatief priem tot $\phi(n)$, in welke geval $e \equiv d^{-1} \equiv 2\,750\,689\,520\,920\,601\,(\text{mod }\phi(n))$ wel ook die verlangde lengte van 16 desimale het.
- (2) Die kriptoteks is $y^{(0)} = 745722170417676$ en $y^{(1)} = 401146017567004$.
- (3) Neem n = 762 029 en B = 13, soos voorgestel, en kies byvoorbeeld a = 320. Dan word die volgende resultate met behulp van Pollard se Algoritme verkry:

q	$\lfloor \ln n / \ln q \rfloor$	a
2	19	542 294
3	12	$293\ 252$
5	8	$522\ 059$
7	6	139 515
11	5	64 460
13	5	384 989

Met hierdie afvoer word die nie-triviale faktor $ggd(384\ 988, n) = 883$ van n verkry. Die **Mathematica**-opdrag FactorInteger [762029] lewer {{863, 1}, {883, 1}} as afvoer, wat die korrektheid van die faktorisering bevestig, aangesien $n = 863 \times 883$.

- (4) (a) Vir Persoon A: p = 15485863, q = 179424673 en d = 6617
 - (b) Vir Persoon B: p = 86~028~121, q = 104~395~301 en d = 1~043
 - (c) Vir Persoon C: p = 49~979~687, q = 141~650~939 en d = 3~821
 - (d) Vir Persoon D: p = 32452843, q = 160481183 en d = 2389
 - (e) Vir Persoon E: p = 67 867 967, q = 122 949 823 en d = 5 915
- (5) Die boodskap AANVAL is aan Persoon C gerig.
- (6) Persoon A vorm die volgende kenteks, deur sy/haar eie sleutelgetalle te gebruik:

 $k_{E,x^{(0)}} \equiv 33\ 532\ 075\ 550\ 261\ (\text{mod}\ 2\ 778\ 545\ 904\ 897\ 799)$

 $k_{E.x^{(1)}} \ \equiv \ 2\ 047\ 816\ 057\ 907\ 577\ (\mathrm{mod}\ 2\ 778\ 545\ 904\ 897\ 799)$

Daarná vorm A die volgende kriptotekste, deur van Persoon E se publieke sleutelgetalle gebruik:

```
\begin{array}{lll} y^{(0)} & \equiv & 624\ 759\ 770\ 901\ 116\ (\mathrm{mod}\ 8\ 344\ 354\ 530\ 019\ 841) \\ y^{(1)} & \equiv & 1\ 170\ 993\ 872\ 230\ 238\ (\mathrm{mod}\ 8\ 344\ 354\ 530\ 019\ 841) \end{array}
```

- (7) (a) Die boodskap is eg; die ooreenstemmende skoonteks is TRUE.
 - (b) Die boodskap is deur Persoon C vervals; die ooreenstemmende skoonteks is LIAR.