Functional Analysis

Alef Sterk a.e.sterk@rug.nl

Lecture 8 Tuesday 27 February 2024

Topics:

- §4.4: Compact operators
- §4.5: Fredholm and Volterra operators
- Appendix A: Arzelà-Ascoli theorem

Bounded operators

Definition: $T \in L(X, Y)$ is bounded if there exists c > 0 such that

$$||Tx|| \le c||x|| \quad \forall x \in X$$

Exercise: show that T is bounded if and only if

V is a bounded set \Rightarrow T(V) is a bounded set

Compact operators

Definition: $T \in L(X, Y)$ is compact if V is a bounded set \Rightarrow T(V) is relatively compact (i.e. $\overline{T(V)}$ is compact)

Relation with boundedness

Lemma: T compact \Rightarrow T bounded

Proof: take
$$V = \{x \in X : ||x|| = 1\}$$

T(V) is relatively compact and hence bounded

There exists c > 0 such that $||Tx|| \le c$ for all $x \in V$

If
$$z \neq 0$$
, then $x = z/\|z\| \in V$ so $\|Tx\| \leq c$ and thus $\|Tz\| \leq c\|z\|$

Sequential characterization

Lemma: the following statements are equivalent:

- 1. $T \in L(X, Y)$ is compact
- 2. (x_n) bounded seq. \Rightarrow (Tx_n) has a convergent subseq.

Sequential characterization

Proof $(1 \Rightarrow 2)$:

If (x_n) is bounded, then $V = \{x_n : n \in \mathbb{N}\}$ is bounded

Since T is compact, $\overline{T(V)}$ is compact

The sequence (Tx_n) lies in T(V) and thus in $\overline{T(V)}$

Conclusion: (Tx_n) has a convergent subsequence

Sequential characterization

Proof $(2 \Rightarrow 1)$: let $V \subset X$ be bounded

Take any sequence (y_n) in T(V)

Then $y_n = Tx_n$ for some sequence (x_n) in V

Since (x_n) is bounded, $(y_n) = (Tx_n)$ has a convergent subsequence

Conclusion: T(V) is relatively compact

Finite-dimensional range

Lemma: if $T \in B(X, Y)$ and dim ran $T < \infty$, then T is compact

Proof: assume (x_n) is a bounded sequence in X

Since T is bounded, (Tx_n) is a bounded sequence in Y

Since dim ran $T < \infty$ we can apply Bolzano–Weierstrass!

So (Tx_n) has a convergent subsequence

Finite-dimensional range

Example: consider $\mathcal{C}([-\pi,\pi],\mathbb{K})$ with the sup-norm and

$$Tf(x) = \int_{-\pi}^{\pi} \sin(x - y) f(y) dy$$

$$= \int_{-\pi}^{\pi} \left[\sin(x) \cos(y) - \cos(x) \sin(y) \right] f(y) dy$$

$$= \sin(x) \int_{-\pi}^{\pi} \cos(y) f(y) dy - \cos(x) \int_{-\pi}^{\pi} \sin(y) f(y) dy$$

Note: T is bounded and dim ran T=2

Conclusion: T is compact

The space of compact operators

Definition:

$$K(X,Y) = \{ T \in L(X,Y) : T \text{ is compact} \}$$

Lemma:

- 1. K(X, Y) is a linear subspace of B(X, Y)
- 2. if $T \in B(X, Y)$ and $S \in B(Y, Z)$, then

T or S compact $\Rightarrow ST$ compact

Proof: see lecture notes

Theorem: X NLS and Y Banach \Rightarrow K(X, Y) closed in B(X, Y)

Proof: assume $T \in \overline{K(X,Y)}$

Then $T_n \to T$ for some sequence (T_n) in K(X, Y)

Let (x_i) be a bounded sequence (so $||x_i|| \le C$ for all i)

Take subseq. (x_i^1) of (x_i) such that $(T_1x_i^1)$ converges

Take subseq. (x_i^2) of (x_i^1) such that $(T_2x_i^2)$ converges

Take subseq. (x_i^3) of (x_i^2) such that $(T_3x_i^3)$ converges :

11 / 25

Proof (ctd):

$$x_1^1, \quad x_2^1, \quad x_3^1, \quad \dots$$
 converges under T_1
 $x_1^2, \quad x_2^2, \quad x_3^2, \quad \dots$ converges under T_1, T_2
 $x_1^3, \quad x_2^3, \quad x_3^3, \quad \dots$ converges under T_1, T_2, T_3
 $\vdots \quad \vdots \quad \vdots$
 $z_i := x_i^i \quad \Rightarrow \quad \begin{cases} (z_i) \text{ is a subsequence of } (x_i) \\ (T_n z_i) \text{ converges for all fixed } n \in \mathbb{N} \end{cases}$

Claim: (Tz_i) is Cauchy in Y

Proof (ctd): for all $i, j, n \in \mathbb{N}$ we have

$$||Tz_{i} - Tz_{j}|| = ||(T - T_{n})(z_{i} - z_{j}) + T_{n}(z_{i} - z_{j})||$$

$$\leq ||(T - T_{n})(z_{i} - z_{j})|| + ||T_{n}(z_{i} - z_{j})||$$

$$\leq ||T - T_{n}|| ||z_{i} - z_{j}|| + ||T_{n}(z_{i} - z_{j})||$$

$$\leq ||T - T_{n}||(||z_{i}|| + ||z_{j}||) + ||T_{n}(z_{i} - z_{j})||$$

$$\leq 2C||T - T_{n}|| + ||T_{n}z_{i} - T_{n}z_{j}||$$

Proof (ctd): for all $i, j, n \in \mathbb{N}$

$$||Tz_i - Tz_i|| \le 2C||T - T_n|| + ||T_nz_i - T_nz_i||$$

Let $\varepsilon > 0$ and

- 1. fix $n_0 \in \mathbb{N}$ such that $||T T_{n_0}|| < \varepsilon/4C$
- 2. pick $N \in \mathbb{N}$ such that

$$i, j > N$$
 \Rightarrow $||T_{n_0}z_i - T_{n_0}z_j|| < \varepsilon/2$
 \Rightarrow $||Tz_i - Tz_j|| < \varepsilon$

Example: consider the operators

$$T: \ell^1 \to \ell^1, \qquad (x_1, x_2, x_3, \dots) \mapsto (x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \dots)$$

$$T_n: \ell^1 \to \ell^1, \qquad (x_1, x_2, x_3, \dots) \mapsto (x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \dots, \frac{1}{n}x_n, 0, 0, \dots)$$

Note that:

- each T_n is compact [indeed: bounded and dim ran $T_n = n < \infty$]
- $||T_n T|| \le \frac{1}{n+1} \to 0$ as $n \to \infty$

Since ℓ^1 is a Banach space we conclude that T is compact

Integral operators

Theorem: let $G:[a,b]\times[a,b]\to\mathbb{K}$ be continuous

Operators $T: \mathcal{C}([a,b],\mathbb{K}) \to \mathcal{C}([a,b],\mathbb{K})$ of the form

$$Tf(x) = \int_a^b G(x, y) f(y) dy$$
 "Fredholm operator"

or

$$Tf(x) = \int_{a}^{x} G(x, y)f(y) dy$$
 "Volterra operator"

are compact

Equicontinuity

Definition: a set $V \subset \mathcal{C}([a,b],\mathbb{K})$ is called equicontinuous if:

for all $\varepsilon > 0$ there exists $\delta > 0$ s.t.

$$|x - y| < \delta \quad \Rightarrow \quad |f(x) - f(y)| < \varepsilon \qquad \forall x, y \in [a, b] \quad \forall f \in V$$

Moral:

- each $f \in V$ is uniformly continuous on [a, b]
- for a given ε the same δ works for all $f \in V$

Equicontinuity

Example: consider on [0,1] the set

$$V = \left\{ f(x) = c_0 + c_1 x + c_2 x^2 : |c_1| \le 1, |c_2| \le 1 \right\}$$

For all $f \in V$ we have

$$|f(x) - f(y)| = |c_1(x - y) + c_2(x^2 - y^2)|$$

$$= |c_1 + c_2(x + y)| \cdot |x - y|$$

$$\leq (|c_1| + 2|c_2|)|x - y|$$

$$\leq 3|x - y|$$

If $\varepsilon > 0$ is given, then $\delta := \varepsilon/3$ works for all $f \in V$

Theorem: if $V \subset \mathcal{C}([a,b],\mathbb{K})$, then

V relatively compact $\Leftrightarrow V$ bounded and equicontinuous

Proof (\Leftarrow): let (f_n) be a sequence in V

To show: (f_n) has a convergent subsequence

There exists C > 0 such that

$$|f_n(x)| \le ||f_n||_{\infty} \le C$$
 $\forall x \in [a, b] \ \forall n \in \mathbb{N}$

Let $E = \{x_1, x_2, x_3, \dots\}$ be countable and dense in [a, b]

Proof (ctd):

Note: $(f_n(x))$ is a bounded sequence in \mathbb{K} for each fixed $x \in E$

Repeated application of Bolzano-Weierstrass:

- take subsequence (f_n^1) of (f_n) such that $(f_n^1(x_1))$ converges
- take subsequence (f_n^2) of (f_n^1) such that $(f_n^2(x_2))$ converges
- take subsequence (f_n^3) of (f_n^2) such that $(f_n^3(x_3))$ converges
- ...

Proof (ctd): we have that

$$f_1^1$$
, f_2^1 , f_3^1 , ... converges at x_1
 f_1^2 , f_2^2 , f_3^2 , ... converges at x_1, x_2
 f_1^3 , f_2^3 , f_3^3 , ... converges at x_1, x_2, x_3
 \vdots \vdots \vdots

Diagonalization trick:

$$g_n := f_n^n \quad \Rightarrow \quad egin{cases} (g_n) \text{ is a subsequence of } (f_n) \ g_n(x_i) \text{ converges for all fixed } i \in \mathbb{N} \end{cases}$$

Claim: (g_n) is a Cauchy sequence in $\mathcal{C}([a,b],\mathbb{K})$

Proof (ctd): let $\varepsilon > 0$ be arbitrary

Since V is equicontinuous there exists $\delta > 0$ such that

$$|x-y| < \delta \implies |h(x) - h(y)| < \varepsilon/3$$
 for all $h \in V$

$$E = \{x_1, x_2, \dots\}$$
 dense in $[a, b] \Rightarrow [a, b] \subset \bigcup_{i=1}^{\infty} (x_i - \delta, x_i + \delta)$

$$[a,b]$$
 compact \Rightarrow $[a,b] \subset \bigcup_{i=1}^r (x_i - \delta, x_i + \delta)$ for some $r \in \mathbb{N}$

Proof (ctd): there exists $N \in \mathbb{N}$ such that

$$n, m \ge N \quad \Rightarrow \quad |g_n(x_i) - g_m(x_i)| < \varepsilon/3 \quad \text{for all} \quad i = 1, \dots, r$$

$$x \in [a, b] \quad \Rightarrow \quad |x - x_i| < \delta \quad \text{for some} \quad i = 1, \dots, r$$

$$m, n \ge N \quad \Rightarrow \quad \begin{cases} |g_n(x) - g_n(x_i)| < \varepsilon/3 \\ |g_n(x_i) - g_m(x_i)| < \varepsilon/3 \\ |g_m(x) - g_m(x_i)| < \varepsilon/3 \end{cases}$$

$$\Rightarrow \quad |g_n(x) - g_m(x)| < \varepsilon \quad \forall x \in [a, b]$$

$$\Rightarrow \quad |g_n - g_m||_{\infty} \le \varepsilon$$

Integral operators

Consider the Fredholm operator

$$Tf(x) = \int_{a}^{b} G(x, y) f(y) \, dy$$

Claim: if $V \subset \mathcal{C}([a,b],\mathbb{K})$ is bounded, then T(V) is

- 1. bounded [see lecture notes]
- 2. equicontinuous [see next slide]

Therefore T(V) is relatively compact and so T is compact

Integral operators

Proof: for any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\sqrt{(x-x')^2+(y-y')^2}<\delta \quad \Rightarrow \quad |G(x,y)-G(x',y')|<\varepsilon$$

If $|x - x'| < \delta$, then

$$|Tf(x) - Tf(x')| \leq \int_{a}^{b} |G(x, y) - G(x', y)| |f(y)| dy$$

$$< \varepsilon(b - a) ||f||_{\infty}$$

$$< \varepsilon(b - a)C \qquad \forall f \in V$$