

第2-3章 程序性能与渐进分析

----精打细算:于微小处论得失

回顾

- 拷贝构造函数
 - 〈类名〉(类名 &);
- 递归函数
 - 寻找"递归规律"和"终止状态"
- •程序测试
 - 黑盒测试: 从输入输出和程序功能出发
 - 等价类划分
 - 白盒测试: 从代码出发
 - 语句覆盖、分支覆盖、从句覆盖、执行路径覆盖

程序测试示例

- 题目:一个程序读入3个整数作为三角形的3条边,请输出信息,说明这个三角形是等边三角形?还是一般三角形?
- ·如果别人写了一段程序完成上述题目,要求你来检查是否正确 ··· ··· 此时,
 - 你不了解他的实现细节,只能黑盒测试
 - 显然可能的类别应有3个:等边三角形、一般三角形、不是三角形
 - 因此你至少要设计3个测试用例:(2, 2, 2), (3, 4, 5), (1, 2, 9)

程序测试示例

- 如果你自己写程序解决了上述题目,想检查
 - 一下是否存在错误 … … 此时,
 - 你了解实现细节,可以黑盒测试或白盒测试
 - 最好先绘制流程图

```
L1: int a, b, c; cin>>a>>b>>c;
L2: if(a<=0||b<=0||c<=0||a+b<=c||a+c<=b||b+c<=a)
L3: cout<<"不是三角形 ";
L4: else if(a==b&&b==c)
L5: cout<<"等边三角形";
L6: else
L7: cout<<"一般三角形";
```


程序测试用例

L1: cin

a<=0||b<=0||c<=0||a+b<=c||a+c<=b||b+c<=a?

• 本例共7条语句、

2个分支、3条执行路径

• 以下用例可同时

满足语句覆盖

L3: 不是三角形

分支覆盖和执行路径覆盖

用例	覆盖的语句	覆盖的分支	覆盖的路径	覆盖的从句 (C1~C8)
(1,2,9)	1/2/3	L2(True)	1,2,3	FFFTFFFF
(2,2,2)	1/2/4/5	L2(Flase),L4(True)	1,2,4,5	FFFFFFTT
(3,4,5)	1/2/4/6/7	L2(Flase),L4(Flase)	1,2,4,6,7	FFFFFFF

测试过程

用例	预期结果	实际结果	是否一致	问题分析
(1,2,9)	不是三角形	【待填】	【待填】	【待填】
(2,2,2)	等边三角形	【待填】	【待填】	【待填】
(3,4,5)	一般三角形	【待填】	【待填】	【待填】

如果对应某条输入的预期结果与实际结果不一致,则说明程序有错,需要进一步分析。

所谓程序测试,就是设计上述表格>执行程序>填充结果>分析的过程

主要内容

- •空间复杂性
- 时间复杂性
 - 指标(计数对象)
 - 渐进符号(Ο、Ω、Θ、ο)
- 性能测量

提出问题:如何评价算法?

假设有4间寝室(A/B/C/D),如果要将A寝室的物品搬到B寝室,B寝室的物品搬到C寝室,C寝室的物品搬到D寝室,D寝室的物品搬到A寝室,且规定只有当某间寝室为空时才能往进搬东西,物品从一间寝室搬到另一间寝室的时间为T。请描述完成上述任务的算法,并评价其算法优劣。

方案一: 占用尽量少的额外空间

- 占用额外空间1
- •消耗时间5T

方案二:在最短时间内完成

- 占用额外空间4
- •消耗时间2T

结论

- 评价程序性能
 - 分析或测量程序的时空开销
- 选择算法
 - 十分某一具体问题,在其不同解决方案之间进行 空间和时间的权衡

影响程序性能评价的因素

- 计算机
- 编译器及其选项
- 问题规模(问题实例长度)
- 具体输入
- 代码本身(数据结构及算法)

暂不考虑

重点考虑

空间复杂性

- 程序所需空间
 - 指令空间
 - 存储编译后的指令所需的空间
 - 与目标机器、编译器及选项有关
 - 不在本课程研究范围之内
 - 数据空间
 - 存储常量、简单变量、复合变量及动态分配的空间
 - 环境栈空间
- 发生函数调用时所需的空间

数据空间: VC++中变量所占空间

类型	占用字节数
char, unsigned char	1
short	2
int, unsigned int	4
long, unsigned long	4
float	4
double, long double	8
pointer	4

完成书中 练习时可 以参照图 2-2也可以 参照左表, 注明即可。

- double a[100]: →800字节
- int maze[r][c]; →4*r*c字节

程序空间分析

- 程序空间分为固定部分和可变部分
- 其中可变部分是指随问题规模变化的空间
 - 复合变量所需的空间
 - 动态分配的空间
 - 递归栈所需的空间

$$S(P) = c + S_p$$
(实例特征)

空间复杂性分析例1:累加

```
template < class T>
                           template < class T>
                           T Rsum(T a[], int n)
T Sum(T a[], int n)
 T tsum=0;
                             if(n>0)
 for (int i=0:i<n:i++)
                               return Rsum(a, n-1)+a[n-1];
   tsum+=a[i]:
                             return 0;
  return tsum;
消耗空间与n无关
                           消耗空间(递归栈空间)与n有关
S_{Sum}(n)=0
                           S_{Rsum}(n) = (4+4+4) * (n+1)
```


空间复杂性分析例2: 阶乘

消耗空间与n无关

$$S_{Lfac}(n)=0$$

消耗空间(递归栈空间)与n有关

$$S_{Fac}(n) = (4+4) *max {n, 1}$$

小结

- 一个程序的空间开销包括
 - 生成代码指令后所占的空间
 - 简单变量、常量所占的空间
 - 复合变量所占的空间
 - 动态分配的空间
 - 递归栈空间

重点考查可变部分

主要内容

- •空间复杂性
- 时间复杂性
 - 指标(计数对象)
 - 渐进符号(Ο、Ω、Θ、ο)
- 性能测量

时空分析对比

•空间复杂性

$$S(P) = c + S_{\rho}$$
 (实例特征)

• 时间复杂性

$$T(P) = c + t_p$$
 (实例特征)

不变 可变部分

应该摒弃的指标

- 代码的实际执行时间
- 运行过程中循环的次数
- ·代码行数(LOC)

这些指标无法反映算法本质!

应该采用的指标

- •操作计数(基本操作数)
 - 程序运行中起主要作用且花费最多时间的操作
 - 排序问题中的比较操作、交换操作
 - 矩阵乘法中的数乘操作
- 执行步数
 - 程序运行中一个语法意义上的片段
 - 可能比操作计数更加准确

操作计数分析示例: 多项式求值

$$P(x) = \sum_{i=0}^{n} c_i x^i = c_0 x^0 + c_1 x^1 + \dots + c_n x^n$$

```
鲁莽算法
template<class T>
T PolyEval(T coeff[], int n, const T& x)
{
    T y=1, value=coeff[0];
    for(int i=1;i<=n;i++)
    {
        y*=x;
        value+=y*coeff[i];
    }
    return value;
```

认定加法和乘法是关键操作, 该算法的关键操作有多少次呢? 对于问题规模n来说 ··· ···

累计将循环n次

每次循环做2个乘法和1个加法

多项式求值优化

```
P(x) = \sum_{i=0}^{n} c_i x^i = c_0 x^0 + c_1 x^1 + \dots + c_n x^n
= (\dots (((c_n * x + c_{n-1}) * x + c_{n-2}) * x + c_{n-3}) * x + \dots) * x + c_0
```

因为其关键操作数更少!

H1. 四种排序算法及其操作分析

- 计数排序
- 选择排序
- 冒泡排序
- 插入排序
- •讲解:思想→示例→代码→分析
- 共识:所谓排序是指将一组无序元素按照从小到大的次序重新排列的过程,其关键操作 是元素的比较

计数排序:思想

- 先求得元素在序列中的名次,具体过程是
 - 对于每一个元素,将它与其左边的所有元素比较
 - 谁大, 谁的名次就加1
 - 直至结束
- 然后将元素调整到与其名次对应的位置上

计数排序: 示例

a 26 33 35 29 19 12 22

r 3 5 6 4 1 0 2

u | 12 | 19 | 22 | 26 | 29 | 33 | 35

计数排序: 代码和分析

```
template<class T>
                                   template < class T>
void Rank(T a[], int n,int r[]){
                                   void Rearrange(T a[], int n, int r[]){
 for(int i=1; i<n; i++)
                                     T *u=new T[n+1];
   r[i]=0;
                                     for(int i=0; i<n; i++)
 for (int i = 1; i < n; i++)
                                       u[r[i]]=a[i];
   for(int j=0; j<i; j++)
                                     for(int i=0; i<n; i++)
     if (a[j] <= a[i])
                                       a[i]=u[i];
       r[i]++;
                                     delete []u;
     else r[j]++;
```

循环n(n-1)/2次

结论: 比较次数(n-1)n/2 移动次数2n,占用了额外空间! 计数排序改进思想

a | 12 | 19 | 22 | 26 | 29 | 33 | 35

r 0 1 2 3 4 5 6

- \circ r[i] == i?
 - □ Y: 很好, a[i]就应该是第i个,它已经在正确位置上了,什么也不用做,继续考虑a[i+1]
 - □ N: a[i]的位置不对,怎么办?
 - ▶谁应该在第i位我们不知道
 - ▶但,我们知道a[i]应该在哪——r[i],将它与a[r[i]]交换,a[i] 即到达正确位置,新交换来的应该在第i位吗?继续

改进计数排序

结论: 移动次数可能增加 占用空间减少!

选择排序:思想

- 首先找出最小(大)元素,把它移动到a[0] (a[n-1]);
- 然后在余下的n-1个元素中寻找最小(大)的元素并把它移动到a[1](a[n-2]);
- 如此进行下去, 直至全部排完。

$$A_0 \le A_1 \le \cdots A_{i-1} \mid A_i, \cdots A_{\min}, \cdots, A_{n-1}$$

选择排序:示例

```
45
89
         68
             90
                  29
                       34
                           17
         68
             90 29
                           89
    45
                       34
             90 45
                           89
    29
         68
                       34
                           89
    29
             90
                  45
                       68
17
         34 |
                           89
    29
             45 |
                       68
         34
                  90
         34 45
                  68 |
17
    29
                       90
                           89
    29
             45
                  68
                       89
17
         34
                           90
```


选择排序: 示例2

Colored box denotes largest unsorted key. Gray boxes denote other unsorted keys.

选择排序: 代码和分析

```
template<class T>
                                 template<class T>
     int Max(T a[], int n)
                                 int SelectSort(T a[], int n)
       int pos = 0;
                                  for (int size=n; size>1; size--)
循环n-1次 if (a[pos] < a[i])
                                    int j=Max(a, size);
          pos = i;
                                    Swap(a[j], a[size-1]
       return pos;
                       结论: 比较次数(n-1)n/2
```


选择排序: 改进思想

一般情况 |89 45 68 90 29 34 17 次优情况 |90 29 34 45 68 89 17 最优情况 |17 29 34 45 68 89 90

改进选择排序

```
template<class T>
void SelectionSort(T a[], int n)
 bool sorted = false;
 for (int size = n; !sorted && (size > 1); size--) {
   int pos = 0;
   sorted = true;
                            最好情况: \ 只执行一次, n-1次比较
   for (int i = 1; i < size; i++) 最坏情况与原来版本一样
     if (a[pos] \le a[i]) pos = i;
     else sorted = false;
   Swap(a[pos], a[size - 1]); 数组有序, 此语句不会被执行-
                            永远执行true分支——
                            a[0]<=a[1]<=...<=a[n-1]
```


冒泡排序:思想

- 首先冒出最小(大)元素,具体过程是:
 - 对相邻元素进行比较,如果左边的元素大于右边的元素,则交换
- 然后在余下的n-1个元素中冒出最小(大) 的元素;
- 如此进行下去,直至全部排完。

$$A_0 \le A_1 \le \cdots A_{i-1} \mid A_i, \cdots A_{j-1} \stackrel{?}{\longleftrightarrow} A_j \cdots, A_{n-1}$$

冒泡排序:示例

```
89
    45
        68
                29
            90
                   34 17
    45
            90
89
        68
                29
                    17
                        34
89
   45
      68
            90
                    29 34
               17
89
  45
       68
           17
               90
                   29
                       34
    45
            68
                    29
                        34
89
       17
                90
           68
                   29 34
89
   17 45
                90
    89
            68
                    29
                        34
        45
                90
            68
17 | 89
       45
                90
                    29
                        34
    89
        45
            68
                29
                    90
                        34
    89
       45
           29
                        34
17 I
                68
                    90
    89
           45
       29
                68
                    90 34
    29
        89
            45
                68
                    90
                        34
```


.

冒泡排序: 示例2

冒泡排序: 代码和分析

```
template<class T>
                             template<class T>
     void Bubble(T a[], int n)
                             void BubbleSort(T a[], int n)
       for (int i=0; i < n-1; i+1)
                               for (int size=n; size>1; size--)
循环n-1次 if (a[i+1] < a[i])
          Swap(a[i],a[i+1]);
                                Bubble(a, size);
                   结论: 比较次数(n-1)n/2
           移动次数不确定。但应该比选择排序多
```


改进冒泡排序

```
template < class T>
template<class T>
bool Bubble(T a[], int n)
                                void BubbleSort(T a[], int n)
                                  for (int i = n; i > 1 &&
 bool swapped = false;
                                  Bubble(a, i); i--);
 for (int i = 0; i < n - 1; i++)
   if (a[i] > a[i+1]) {
                              最好情况Bubble只执行一次,n-1次
    Swap(a[i], a[i + 1]);
                              比较; 最坏情况与原来版本一样
    swapped = true;
 return swapped;
                       进行了相邻数据交换
                       如果这趟扫描没有交换呢?
                       所有a[i]<=a[i+1]——有序
```


插入排序:思想

- 从无序部分取一元素插入到有序部分的正确 位置上,类似于玩家整理手中的扑克牌
- 把L[i+1]插入到L[1···i]中的正确位置, i++
- 直至全部插完停止

$$A_0 \leq \cdots A_j < A_{j+1} \leq \cdots A_{i-1} \mid A_i \cdots A_{n-1}$$

插入排序: 示例

```
89
      45
            68
                         29
                   90
                                34
                                      17
45
      89
            68
                   90
                         29
                                34
                                      17
45
      68
             89
                         29
                   90
                                34
45
      68
                         29
                                      17
            89
                   90
                                34
45
      68
            89
                         90
                                34
                   <del>90</del>
                                      17
45
      68
            89
                   89
                         90
                                34
                                      17
      <del>68</del>-
            68
                   89
45
                         90
                                34
                                      17
             68
                   89
                         90
      45
                                34
29
      45
            68
                   89
                         90
                                34
                                      17
29
                   68
            45
                         89
      34
                                90
                                      17
17
      29
                   45
                         68
                                89
             34
                                      90
```


插入排序示例2

插入排序示例2

插入排序: 代码和分析

```
template < class T>
                                   插入数组末尾,1次比较,最
void Insert(T a[], int n, const T& x)
                                   好情况
                                   插入第一个元素之前或之后,
 int i;
                                   n次比较,最坏情况
 for (i = n-1; i >= 0 && x < a[i]; i--)
                                   平均比较次数
   a[i+1] = a[i];
                                   (1+2+...+n+n)/(n+1) = n/2 +
 a[i+1] = x;
                                   n/(n+1)
template<class T>
                              1个元素: 自然有序
void InsertionSort(T a[], int n)
                              Insert(a, 1, t): 2个有序
                              Insert(a, 2, t): 3个有序
 for (int i = 1; i < n; i++) {
   Tt = a[i];
                              Insert(a, n-1, t): 数组完全排序
                      结论: 比较次数约为n2/4
   Insert(a, i, t);
    计算机学院
```

补充:稳定(stable)排序

- 序列a₁、a₂、···、a_n进行排序
- 对任意的i < j, $a_i = a_j$, 若排序后 $a_i \setminus a_j$ 的位置 $i' \setminus j'$ 一定满足i' < j',则称该排序算法为稳定的
- 否则, 为不稳定的

稳定的

..... 26 **26** 26

不稳定的

H1小结

- 四种排序算法思想
 - 计数排序
 - 选择排序
 - 冒泡排序
 - 插入排序
- 以比较作为基本操作,如何评价算法优劣?
 - 与问题规模有关
 - 与具体输入有关(最优情况、最差情况)

H1小结(续)

for (int i=0; i<n; i++)

$$\sum_{i=0}^{n-1} 1 = (n-1) - 0 + 1 = n$$

for (int i=0; i<n; i++)

for (int j=0; j<n; j++)</pre>

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 1 = \sum_{i=0}^{n-1} n = n^2$$

for (int i=0; i<n; i++)

for(int j=0; j<i; j++)

$$\sum_{i=1}^{n-1} \sum_{j=0}^{i-1} 1 = \sum_{i=0}^{n-1} i = n(n-1-1+1)/2 = n(n-1)/2$$

主要内容

- •空间复杂性
- 时间复杂性
 - 指标(计数对象)
 - 渐进符号(O、Ω、Θ、ο)
- 性能测量

问题提出

- •操作计数和执行步数的作用?
 - 比较两个功能相同的程序的时间复杂性【横向】
 - 预测随实例规模的变化,程序运行时间的变化【纵向】
- 执行步试图比"关键操作"更精确
- "更精确"是没有必要的
 - 两个程序时间复杂性: $c_1 n^2 + c_2 n a c_3 n$
 - 总存在一个点,当n超过此值,后者更快
 - "渐进":大实例特征(趋向无穷)下,程序时间复杂性函数的"变化"情况

复杂度的渐进性质

• 如果解决问题P的程序A和程序B,其时间复杂度分别是 $T_A(n)$ 和 $T_B(n)$,则判断A、B性能优劣的标准是查看在n足够大时 $T_A(n)$ 和 $T_B(n)$ 的大小关系

H2. 大写O符号

- 函数上界
- 定义: f(n)=O(g(n)), 当且仅当存在正常数c和 n_0 , 使得对所有 $n \ge n_0$, 有 $f(n) \le cg(n)$
- f至多是g的c倍,对足够大的n, g 是f 的上界(不考虑常数因子c)
- g取简单函数——容易研究 f的上界

常用做g的简单函数

函数	名称
1	常数
logn	对数
n	线性
n logn	n个logn
n^2	平方
n^3	立方
2 ⁿ	指数
n!	阶乘

快、简单

慢、复杂

对数没有给出对数基,因为

logan=logbn/logba,仅常数不同,相差logba倍

大0符号例子

• 线性函数

f(n)=0(g(n)), 当且仅当 $存在正常数c和<math>n_{0}$, 使得对 所有 $n \ge n_{0}$, 有 $f(n) \le cg(n)$

- f(n) = 3n + 2
 - $-n \ge 2$ 时, $3n+2 \le 3n+n = 4n$,f(n) = 0(n)
 - n>0时,3n+2≤10n; n≥1,3n+2≤3n+2n=5n—结论不变,可见c和n0 并不重要
- $f(n)=3n+3: n \ge 3$ 时, $3n+3 \le 3n+n=4n$
- f(n)=100n+6: $n \ge 6$ 时, $100n+6 \le 100n+n=101n$

大0符号例子 (续) f(n)=0(g(n)), 当且仅当

• 平方函数

所有 $n \ge n_0$,有 $f(n) \le cg(n)$ $- f(n) = 10n^2 + 4n + 2$ $n \ge 2$ 时, $f(n) \le 10n^2 + 5n$ 当n≥5时,5n≤n2 ,因此n≥n0=5时,

 $f(n) \leq 10n^2 + n^2 = 11n^2$, 所以 $f(n) = 0(n^2)$

存在正常数c和n。使得对

 $- f(n) = 1000 n^2 + 100 n - 6$ 对于所有n有f(n) ≤1000n2+100n. 对于 $n \ge 100$,有 $100 n \le n^2$, 因此对于 $n \ge n_0 = 100$,有 $f(n) < 1001 n^2$, 所以f(n)=0 (n^2)

大0符号例子(续)f(n)=0(g(n)), 当且仅当存在正常数c和n₀ 使得对

• 指数函数

- $f(n)=6*2^n+n^2$ $n \ge 4$ 时, $n^2 \le 2^n$, 所以对于 $n \ge 4$, $f(n) \le 6*2^n+2^n=7*2^n$, 因此 $6*2^n+n^2=0$ (2^n)

• 常数函数

- f(n) = 9或 f(n) = 2033, f(n) = 0 (1), 证明很简单: $f(n) = 9 \le 9*1$, c = 9、 $n_0 = 0$ $f(n) = 2033 \le 2033*1$, c = 2033、 $n_0 = 0$

所有 $n \ge n_0$,有 $f(n) \le cg(n)$

大0符号例子(续)

- 松散界限
 - 当 *n*≥2时, 3*n*+3≤3*n*²→3*n*+3=0(*n*²), 不是最小上
 界
 - 当n≥2时,10 n^2 +4n+2≤10 n^4 →10 n^2 +4n+2=0(n^4)
 - 6*n*2*n*+20=0(*n*²2*n*),更小上界*n*2*n*
- 逐步用更低阶的函数替换高阶函数,直到找到最小上界

错误界限

- 3*n*+2≠0(1),反证法:
 - 假定存在 c及 n_0 ,使得对所有的 $n \ge n_0$,有3 n+2 ≤ c → n ≤ (c-2)/3, 因此取 n>max { n_0 , (c-2)/3},矛盾!
- $10n^2+4n+2\neq 0$ (n)
 - 假定存在c和 n_0 ,使得对于所有的 $n \ge n_0$,有 $10n^2+4n+2 \le cn$ 10 $n+4+2/n \le c$ 取n>max { n_0 , (c-4)/10},矛盾

错误界限 (续)

- $f(n) = 3n^2 2^n + 4n 2^n + 8n^2 \neq 0$ (2ⁿ)
 - 假定存在 c>0和 n_0 ,使得对于所有的 n≥ n_0 ,有 $f(n) \le c*2^n$ \rightarrow 3 $n^2+4n+8n^2/2^n \le c$, 左边随着 n的增长而增大,右边是常数取一个"足够大"的n,不等式不成立

多项式的阶

• 定理2-1: 如果 $f(n) = a_m n^m + \cdots + a_1 n + a_0 \perp a_m > 0$, 则f(n) = 0 (n^m)

证明:

对所有n≥1

$$f(n) \le \sum_{i=0}^{m} |a_i| n^i$$

$$\leq n^m \sum_{i=0}^m |a_i| n^{i-m}$$

$$\leq n^m \sum_{i=0}^m |a_i|$$

大0原理图示

H2小结

- 关于大0符号有如下认识
 - 时间复杂度的"级别"比"具体量"更重要!
 - 确定时间消耗是什么级别。而非具体多少
 - 是问题规模的函数
 - 根据渐进性质,考虑问题足够大的情况
 - 本质上是最差情况,这一点符合工业界需求

Ω符号

- 函数下界
- •定义: $f(n) = \Omega(g(n)), \quad \text{当且仅当存在正常数cAn}_0, \\
 使得对所有<math>n \ge n_0$, $f(n) \ge c g(n)$
- f至少是g的c倍,对足够大的n,g是f的一个下界

Ω符号例子

• 线性函数

- 对于所有的*n*, 有 f(n) = 3n + 2 > 3n → f(n) = Ω(n)
- $f(n) = 3n + 3 > 3n \rightarrow f(n) = \Omega(n)$
- -f(n)=100n+6>100n,所以 $100n+6=\Omega(n)$

• 平方函数

- 对所有 $n \ge 0$, $f(n) = 10n^2 + 4n + 2 > 10n^2$ → $f(n) = \Omega(n^2)$
- $-1000n^2+100n-6=\Omega(n^2)$

• 指数函数

 $-6*2^n+n^2>6*2^n \rightarrow 6*2^n+n^2=\Omega(2^n)$

Ω符号例子(续)

• 非最大下界

- $-3n+3=\Omega(1), 10n^2+4n+2=\Omega(n),$ $10n^2+4n+2=\Omega(1), 6*2^n+n^2=\Omega(n^{100})$
- $6*2^n+n^2=\Omega(n^{50.2})$, $6*2^n+n^2=\Omega(n^2)$, $6*2^n+n^2=\Omega(n)$ $\pi 16*2^n+n^2=\Omega(1)$
- $3n+2 \neq \Omega(n^2)$
 - 假定3*n*+2=Ω(n^2) → 存在正数c和 n_0 ,使得对所有 $n \ge n_0$,有3n+2 $\ge cn^2$ → cn^2 /(3n+2) ≤1,左边随n的增大而变得无限大,右边常数,不等式变为不成立

关于Ω的多项式定理

- 定理2-3: 如果 $f(n) = a_m n^m + \cdots + a_1 n + a_0 \perp a_m > 0$, 则 $f(n) = \Omega(n^m)$
- 例: $3n+2=\Omega(n)$, $10n^2+4n+2=\Omega(n^2)$, $100n^4+3500n^2+82n+8=\Omega(n^4)$

Ω原理图示

Θ符号

- · 同一个g既作为f的上界,又作为下界
- 定义:

```
f(n)=\Theta(g(n)),当且仅当存在正常数c_1、c_2和n_0,使得对所有n \ge n_0,有c_1g(n) \le f(n) \le c_2g(n)
```

• f介于g的 c_1 倍和 c_2 倍之间,对足够大的n, g 既是f的上界也是下界

Θ符号例子

- 从前例可知: $3n+2=\Theta(n)$, $3n+3=\Theta(n)$, $100n+6=\Theta(n)$, $10n^2+4n+2=\Theta(n^2)$, $1000n^2+100n-6=\Theta(n^2)$, $6*2^n+n^2=\Theta(2^n)$
- $\forall n \ge 16$, $\log_2 n < 10* \log_2 n + 4 \le 11* \log_2 n$ • $\Rightarrow 10* \log_2 n + 4 = \Theta (\log n)$
- $3n+2 \neq \Theta(1)$, $3n+3 \neq \Theta(1)$, $100n+6 \neq \Theta(1)$
- $3n+3 \neq \Theta(n^2)$
- $10n^2+4n+2 \neq \Theta(n)$, $10n^2+4n+2 \neq \Theta(1)$
- 6*2"+ $r^2 \neq \Theta(r^2)$, 6*2"+ $r^2 \neq \Theta(n^{100})$, 6*2"+ $r^2 \neq \Theta(n^{100})$, 6*2"+ $r^2 \neq \Theta(1)$

关于Θ的多项式定理

- **文 定理2-5:** 如果 $f(n)=a_m n^m+...+a_1 n+a_0$ 且 $a_m>0$,则 $f(n)=\Theta(n^m)$

小写o符号

• 定义:

```
f(n)=o(g(n)), 当且仅当f(n)=o(g(n)), 且 f(n) \neq \Omega(g(n))
```

- $3n+2=0(n^2)$ 且 $3n+2\neq\Omega(n^2)$ → $3n+2=o(n^2)$ 但 $3n+2\neq o(n)$
- $10n^2+4n+2=o(n^3)$,但 $10n^2+4n+2\neq o(n^2)$

主要内容

- •空间复杂性
- 时间复杂性
 - 指标(计数对象)
 - 渐进符号(Ο、Ω、Θ、ο)
- 性能测量

实际复杂性

- 利用渐进复杂性
 - 比较:两个解决相同问题的程序,其时间随问题规模变化而变化情况
- P: Θ(n), Q: Θ(n²)→n足够大, P快
- "足够大"——应考虑问题实际规模, 10⁶n实际中几乎总是比n²慢

各种函数的渐进变化表

$\log n$	n	nlog n	n^2	n^3	2 ⁿ
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4 096	65 536
5	32	160	1 024	32 768	4 294 967 296

各种函数的渐进曲线图

计算机学

实际性能测量: Insert VS Bubble

- 机器环境
 - HP P6-1095
 - CPU: 3G * 2
 - RAM: 4G
- •实验1: 逆序数列, 1组
- •实验2: 逆序数列, 多组

实验1:一组逆序数列

```
void main(void)
 int a[10000], step = 500;
 clock_t start, finish;
 for (int n = 0; n <= 10000; n += step) {
   // get time for size n
   for (int i = 0; i < n; i++)
     a[i] = n - i; // initialize
   start = clock( );
   InsertionSort(a, n);
   finish = clock();
   cout << n << ' ' << (finish - start) /
 float(CLOCKS_PER_SEC) << endl;
   if (n == 1000) step = 1000;
```


实验1:一组逆序数列

规模	Insert	Bubble
100	0	0
500	0	0
1000	0	0.016
2000	0.016	0.062
3000	0	0.110
4000	0.031	0.202
5000	0.031	0.312
6000	0.047	0.468
7000	0.062	0.640
8000	0.078	0.826
9000	0.094	1.046
10000	0.125	1.279

实验2:多组逆序数据

```
void main(void)
 int a[10000], n, i, step = 500;
  long counter;
 float seconds;
 clock_t start, finish;
 for (n = 0; n \le 10000; n += step) {
   // get time for size n
   start = clock( ); counter = 0;
   while (clock( ) - start < 100) {
     counter++;
     for (i = 0; i < n; i++)
       a[i] = n - i; // initialize
     InsertionSort(a, n);
   finish = clock();
   seconds = (finish - start) / float(CLOCKS_PER_SEC);
   cout << n << ' ' << counter << ' ' << seconds
      << ' ' << seconds / counter << endl;
   if (n == 1000) step = 1000;}
```


实验2:多组逆序数列

规模	Insert	Bubble
100	0.0000000654	0.000000950
500	0.000326347	0.00320588
1000	0.00128235	0.013625
2000	0.00495455	0.052
3000	0.011	0.109
4000	0.0206667	0.219
5000	0.03125	0.327
6000	0.047	0.453
7000	0.062	0.624
8000	0.078	0.812
9000	0.1015	1.03
10000	0.125	1.295

本节课我们学习了:

- 评判程序性能的两个标准
 - 空间复杂性
 - 时间复杂性
 - 分析法【接下来会频繁用到】
 - 实验法
- 掌握了四种比较简单的排序算法

思考

- 能否通过实验,全面对比四种排序算法的优劣?实验结果与分析结果一致吗?
- 如果你在写完某个程序后发现运行特别慢, 必须加以改进,该如何做?

.....

本章结束

