전개장치가 탑재된 편광 광학 캔위성을 이용한 물성 차이 식별

김준섭¹*, 백세인¹, 김영한¹ 연세대학교¹

Identification of Differences in Physical Properties Using a Deployable Polarized-Optics Device in CanSat

JunSeop Kim¹*, Seln Baek¹, YoungHan Kim¹

Key Words : CanSat(캔위성), Polarization(편광), Deployable Device(전개장치)

서 론

캔위성은 "Can Satellite"의 줄임말로, 음료수 캔 크기의 작은 인공위성을 의미한다. CanSat은 실제 위성과 유사한 방식으로 설계되지만 훨씬 간단한 구조를가지고 있어, 교육목적으로 사용된다. 작은 캔 크기의구조물 안에 다양한 센서와 통신 장비를 탑재하여 지구 대기에서의 여러 데이터를 수집할 수 있다.

편광을 활용한 소형 위성은 최근 환경 및 대기 관측의 정밀성을 높이기 위한 접근 방식 중 하나로 거론되고 있다. 편광판을 통해 수집된 데이터는 대기 중 미세먼지, 수면 반사광 등 중요한 환경 정보를 제공할수 있으며, 이를 통해 환경 모니터링 및 다양한 과학적 분석의 정확도를 향상시킬 수 있다. 본 연구에서는 편광판을 활용하여 수역과 물성의 차이를 식별하는 임무를 설계했으며, 이를 위해 필요한 요소들을 효율적으로 통합한 CanSat을 제안한다.

본 론

구조계 설계 및 제작

Fig. 1. CAD Design

Fig. 2. Assembly

회전하는 편광장치와 전개장치를 탑재한 캔위성을 설계 및 제작하였다. 크게 상부, 중부, 하부로 공간이 분할되며, 상부에는 전자회로, 중부에는 전개장치, 하 부에는 모터, 배터리. 카메라, 편광장치를 탑재하여 무 게중심이 하부에 집중되도록 설계하였다. Autodesk Fusion을 사용해 모델링 후 SLA 방식으로 3D 출력하 였다. 이후 전자부품 및 낙하산을 조립하고 전개장치 에 천막을 부착하여 조립을 완료하였으며, 총 무게는 876g, 길이는 186mm로, 대회 규정을 만족하였다.

소프트웨어 설계 및 제작

임무 특성상 GPS와 영상의 동기화가 중요했다. 그리고 통신이 불안정할 때를 대비해서 위성이 발사되고 스스로 모든 것을 해결할 수 있는 구조를 설계하였다. 또한 추후 임무에서 확장이 가능하도록 Application 구조를 사용하였다.

핵심 모듈인 Softwarebus.py을 통해 각 Application 들은 서로 통신할 수 있다.

Fig. 3. System diagram

IMU 센서를 통해 얻은 barometer 값으로 고도를 계산하여 상공 100m를 넘어가는 순간 카메라와 모터를 작동시킨다. 그리고 각 모듈은 위성에 따로 0.03초 단위로 log 파일을 남기고, Telemetry.py 모듈은 Local 통신을 통해 각 모듈 데이터를 받아 Serial 통신으로 1초 단위로 지상국에 보낸다. main.py는 시스템이 부팅되었을 때 각 App들을 시작하고, 오류가 났을 때 종료, 재시작하는 역할을 한다.

통신계 설계 및 제작

안테나는 Maxtena의 MEA-915-01-SMA 와 Siretta의 OSCAR3A Yagi Antenna를 사용하였고, 통신 모듈은 Digi의 Xbee-Pro 900HP(S3B)를 이용하였다. 지상에서 통신테스트를 진행한 결과, 방해 요소가 전무한상공에서 9600bps의 통신속도로 약 1500m까지 통신이 원활함을 확인하였고, 실제 캔위성 발사 상황에서도 양호한 통신상태를 보였다. 지상국은 Serial Studio를 이용하여 구현하였으며, 다음과 같다.

Fig. 4. Ground Station

비행 데이터 분석

다음과 같이 성공적으로 GPS 데이터를 얻을 수 있었고 통신도 끊임없이 원활히 작동하였다.

Fig. 5. Received Data from Cansat

Fig. 6. Visualization of GPS trajectory data

Orthophoto 취득

Fig. 7. Georeferencing Process

Fig. 8. Obtained Orthophoto

캔위성으로 취득한 데이터를 바탕으로 QGIS를 활용해 Georeferencing을 수행해 정사영상을 취득하였다.

결 론

편광된 이미지와 편광되지 않은 이미지를 각각 Orthophoto로 만들어 포토샵의 Difference 기능을 활용해 분석하였을 때 수역이 식별될 뿐만 아니라 빛 반사를 선별할 수 있었다.

Fig. 9. Identification of water body

또한 다음 사진에서 재질에 따른 밝기 변화의 차이에 의해 편광 촬영에서 더욱 높은 대비를 얻을 수 있었다. 이러한 성질은 향후 신속한 소형 비행체 식별에 이용할 수 있을 것으로 기대한다.

Fig. 10. Detection of physical properties

후 기

본 연구는 과학기술정보통신부가 주최하고 KAIST 인공위성연구소에서 주관하는 "2024 캔위성 체험·경 연대회"의 지원으로 수행되었으며, 이에 감사드립니다.

참고문헌

- 1) Yan, L., Li, Y., "General review of optical polarization remote sensing" International Journal of Remote Sensing, Vol. 41, No. 13, 2020, pp. 4853-4864.
- 2) Jensen, J.R., "Remote Sensing of the Environment: An Earth Resource Perspective" Pearson, 2007
- 3) Park, H., Park, J., and Lee, H., "Soft Landing of Cansat using Skycrane Structure," Proceeding of the 2023 KSAS Fall Conference, 2023, pp. 802-803.
- 4) De Zoysa, M. D., Park, S., and Lee, D., "Implementation of a CanSat Trilateration Model Through the Development of a Directional Antenna Rotation Mechanism," Proceedings of the 2023 KSAS Fall Conference, 2023, pp. 806~807.