

Ayudantía 4: Repaso I1

Hector Núñez, Paula Grune, Manuel Irarrázaval

1. Interpretaciones

Considere las siguientes estructuras:

- $A_1 = \langle \mathbb{N}, <_{A_1} \rangle$
- $\bullet A_2 = \langle \mathbb{Z}, <_{A_2} \rangle$
- $A_3 = \langle \mathbb{Q}, <_{A_3} \rangle$
- $A_4 = \langle \mathbb{Q} \cap [0,1], <_{A_4} \rangle$

Construya cuatro fórmulas en lógica de predicados $\{\phi_i\}_{i=1}^4$, de tal forma que para cada $i \in \{1, 2, 3, 4\}$ se tenga que ϕ_i es verdad para la estructura A_i , pero falsa para el resto de las estructuras definidas.

2. Modelamiento de Lógica de Predicados

Sea \leq y = símbolos de predicado binario y P un símbolo de predicado unario. Considere la interpretación $\mathcal I$ definida como:

 $\mathcal{I}(\mathrm{dom}) := \mathbb{N}$

 $\mathcal{I}(=) := n = m$ si y solo si n es igual a m.

 $\mathcal{I}(\leq) := n \leq m$ si y solo si n es menor o igual que m.

 $\mathcal{I}(P) := P(n)$ si y solo si n es primo

Escriba la siguiente expresión en lógica de predicados sobre la interpretación \mathcal{I} :

"Para todo par de números primos distintos de 2 y 3, hay un número natural entre ellos que no es primo"

3. Satisfacibilidad

Sean p_1, \ldots, p_n variables proposicionales. Construya un conjunto de fórmulas proposicionales $\Sigma = \{\alpha_1, \ldots, \alpha_m\}$ tal que $\alpha_i \not\equiv \alpha_j$ para todo i y j con $i \not= j$, $m = 2^{2^{n-1}}$ y Σ es satisfacible. (hint: Para una formula con n variables preposicionales existen 2^{2^n} posibles tablas de verdad)