Deriving the equation of Ellipse with eccentricty, directrices and origin as its center Using Matrices

*

Meer Tabres Ali and G V V Sharma

October 17, 2022

1

Contents

1 Problem statement

2	Considerations		1
3	Plotting the Ellipse with the given parameters		
4	Solution		
	4.1	Finding the Matrix \mathbf{V}	2
	4.2	Finding the Matrix $\mathbf{u} \dots \dots \dots$	2
	4.3	Finding the Focus point ${\bf F}$	2
	4.4	Finding the value of \mathbf{f}	2
	4.5	Deriving the equation for Ellipse	2

1 Problem statement

Conclusion

The eccentricity of an ellipse, with its center at the origin, is $\frac{1}{2}$. If one of the directrices is $\mathbf{x} = 4$, then find the equation of Ellipse.

2 Considerations

As per the statement, for the given Ellipse, the input parameters are described in the following table.

Symbol	Value	Description
О	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Origin
e	0.5	Eccentricity
x	$\mathbf{x} = 4$	Directrix

^{*}Meer Tabres Ali as an intern with FWC IIT Hyderabad. *The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

3 Plotting the Ellipse with the given parameters

The plot of the Ellipse, with eccentricity $\mathbf{e} = 0.5$ and directrix $(\mathbf{x} = 4)$ is shown in figure below.

Figure 1: Ellipse with eccentricty e=0.5 and directrix x=4)

4 Solution

As per the statement, for the given Ellipse, the input parameters are,

Eccentricity of the Ellipse is,

$$e = 0.5$$

And the Directrix of the Ellipse is,

$$\mathbf{x} = 4 \tag{4.0.1}$$

On comparing above equation (4.0.1) with, $\mathbf{n}^T \mathbf{x} = \mathbf{c}$ we get,

$$\mathbf{n} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\mathbf{c} = 4$

Therefore, the directrix of the Ellipse, $\mathbf{n}^T \mathbf{x} = \mathbf{c}$ can be written as,

(where \mathbf{n} is normal vector of directix line)

$$\implies \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 4 \tag{4.0.2}$$

4.1 Finding the Matrix V

The Matrix V can be expressed as,

$$\mathbf{V} = ||\mathbf{n}||^2 \mathbf{I} - e^2 \mathbf{n} \mathbf{n}^T \tag{4.1.1}$$

On submitting $\mathbf{n} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{e} = \frac{1}{2}$ in above equation, we get,

$$\mathbf{V} = (1^2) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \left(\frac{1}{2}\right)^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix}$$

$$\implies \mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & 0 \end{pmatrix}$$

$$\implies \mathbf{V} = \begin{pmatrix} \frac{3}{4} & 0 \\ 0 & 1 \end{pmatrix} \tag{4.1.2}$$

4.2 Finding the Matrix u

As per the statement, Center of the Ellipse is origin,

$$\implies \mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{4.2.1}$$

And the center of conics is,

$$\mathbf{O} = -\mathbf{V}^{-1}\mathbf{u}$$

$$\Rightarrow \mathbf{u} = -\mathbf{VO}$$

$$\Rightarrow \mathbf{u} = -\begin{pmatrix} \frac{3}{4} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \mathbf{u} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$(4.2.3)$$

4.3 Finding the Focus point F

The Focus point \mathbf{u} of the ellipse can be expressed as,

$$\mathbf{F} = \frac{ce^2\mathbf{n} - \mathbf{u}}{\lambda_2} \tag{4.3.1}$$

On submitting c=4, $e = \frac{1}{2}$, \mathbf{n} , \mathbf{u} and $\lambda_2 = 1$,

$$\mathbf{F} = \frac{4(\frac{1}{2})^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix}}{1}$$

$$\implies \mathbf{F} = 4(\frac{1}{2})^2 \begin{pmatrix} 1\\0 \end{pmatrix} - \begin{pmatrix} 0\\0 \end{pmatrix}$$

$$\implies \mathbf{F} = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{4.3.2}$$

4.4 Finding the value of f

The expression for f is,

$$f = ||\mathbf{n}||^2 ||\mathbf{F}||^2 - c^2 e^2 \tag{4.4.1}$$

On submitting c=4, $e = \frac{1}{2}$, $\mathbf{n} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{F} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$,

 $\implies f = (1)^2 (1)^2 - (4)^2 (\frac{1}{2})^2$

$$\implies f = (1)^{2}(1)^{2} - (4)^{2} \left(\frac{1}{2}\right)^{2}$$

$$\implies f = -3 \tag{4.4.2}$$

4.5 Deriving the equation for Ellipse

The equation for Ellipse can be expressed as,

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{4.5.1}$$

On submitting the values of V, u and f,

$$\mathbf{x}^{T} \begin{pmatrix} \frac{3}{4} & 0\\ 0 & 1 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} 0 & 0 \end{pmatrix} \mathbf{x} - 3 = 0 \tag{4.5.2}$$

Or,

$$\implies \mathbf{x}^T \begin{pmatrix} \frac{3}{4} & 0\\ 0 & 1 \end{pmatrix} \mathbf{x} - 3 = 0 \tag{4.5.3}$$

The above Ellipse equation can be expressed in general form as.

$$\frac{\mathbf{x}^2}{4} + \frac{\mathbf{y}^2}{3} = 1 \tag{4.5.4}$$

$$\implies 0.75\mathbf{x}^2 + \mathbf{y}^2 - 3 = 0 \tag{4.5.5}$$

5 Conclusion

- 1. At first, the Matrix ${\bf V}$ has been calculated from the given input parameters eccentricity, and n, and then, the Matrix ${\bf u}$ has been calculated.
- 2. Focus point **F** is calculated from the given input parameters, and then the value of **f** of the Ellipse has been calculated. It is found as $\mathbf{f} = -3$.
- 3. Finally, the equation of Ellipse has been derived as,

$$\implies \mathbf{x}^T \begin{pmatrix} \frac{3}{4} & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} - 3 = 0$$

The above Ellipse equation can be expressed in general form as,

$$0.75\mathbf{x}^2 + \mathbf{v}^2 - 3 = 0$$