

Dipartimento di Ingegneria Meccanica e Industriale

Laboratorio di Misure Industriali

Pesatura Dinamica

Referente: Davide Botturi

Studenti: Giovanni Alghisi
Francesco Campregher
Marco Milanesi
Edoardo Mirandola
Abdelghani Msaad

Gruppo H Anno Accademico 2021-2022

Obiettivi

Caratterizzazione cella di carico Misura della massa

Caratterizzazione sistema di acqusizione

Creazione modello **Machine Learning**

- 01 Obiettivi del Progetto
- 02 Strumentazione
- 03 Acquisizione
- 04 Analisi Dati ed Estrazione Features
- 05 Stima della Massa
- 06 Conclusioni
- 07 Sviluppi Futuri

Set-up di Misura

Sensori

Cella di carico HBM PW22C3

Carico massimo	10 Kg
Vmin	1 g
Sensitività (Cn)	$(1,9 \pm 0,1) \text{ mV/V}$
Effetto temperatura	± 0,01475 % Cn
Deviazione lineare	± 0,0166% Cn

Fotocellule SICK GL6

Distanza rilevamento	5 m
Frequenza commutazione	1 kHz
Tempo di risposta	<625 μs

Sensori - Bilancia

Termoresistenze PT100

°C	0	1	2	3	4	5	6	7	8	9
0	100,00	100,39	100,78	101,17	101,56	101,95	102,34	102,73	103,12	103,51
10	103,90	104,29	104,68	105,07	105,46	105,85	106,24	106,63	107,02	107,40
20	107,79	108,18	108,57	108,96	109,35	109,73	110,12	110,51	110,90	111,28
30	111,67	112,06	112,45	112,83	113,22	113,61	113,99	114,38	114,77	115,15
40	115,54	115,93	116,31	116,70	117,08	117,47	117,85	118,24	118,62	119,01

Bilancia

Fondoscala	3 kg
Risoluzione	0.01 g

NiDaq e Schede Acquizione

Per lettura cella di carico

Analogico NI 9215

Lettura segnali analogici e fornisce l'alimentaione alle fotocellule

Analogico NI 9219

Sviluppato per sensori RTD (rilevatore di temperatura a resistenza)

Fasi del Progetto

01

Obiettivi del Progetto

- 02 Strumentazione
- 03 Acquisizione
- 04 Analisi Dati ed Estrazione Features
- 05 Stima della Massa
- 06 Conclusioni
- O7 Sviluppi futuri

Sistema di Acquisizione Tramite LabVIEW

Le Fasi di Acquisizione

Acquisizioni

1) Statiche

- ✓ Taratura cella di carico
- ✓ Taratura sistema di acquisizione
 - \longrightarrow Conversione V/V a g

2) Dinamiche

✓ Creazione del dataset

Algoritmi di Machine Learning

Protocollo Acquisizioni Statiche

Protocollo di Misura

- 20 campioni di massa $10 \div 1500 \ g$
- 5 cicli di carico e scarico

Problematiche Riscontrate

- Condizioni ambientali non controllabili
- Non idealità del protocollo rispetto l'isteresi

Applicazione Monotona dei Carichi

Protocollo corretto

- Considera al meglio l'isteresi del sensore
- Richiesti campioni con ridotta incertezza

Protocollo non corretto

- Evita l'accumulo dell'errore di misura
- Non caratterizza al meglio l'isteresi

Acquisizioni e Taratura

Per ovviare al problema del rumore elettrico

↑ Statica cella

100 campioni di tensione per massa

) 2 Statica Sistema di Acquisizione

Media dei campioni acquisiti su 30s

Taratura della Cella di Carico

$$y = m \cdot x + q$$
 $C.I._{(95\%)} = \pm 2\sigma$

Coefficiente	Valore	Std Err
q[g]	-4877.52	0.30
$m[g \cdot V/V]$	5191550	28 · 10

Coefficiente	Valore
$\sigma\left[g ight]$	2.7
R^2	0.99

Taratura del Sistema di Acquisizione

$$y = m \cdot x + q$$
 $C.I._{(95\%)} = \pm 2\sigma$

Coefficiente	Valore	Std Err
q[g]	-4878,38	0.29
$m[g \cdot V/V]$	5191420	28 · 10

Coefficiente	Valore
$\sigma\left[g ight]$	0.38
R^2	0.99

Protocollo Acquisizioni Dinamiche

- 4 velocità differenti
- 20 campioni di massa $10 \div 1500 \ g$
- 35 acquisizioni in moto per campione
- 1 acquisizione statica all'inizio e 1 alla fine

Problemi riscontrati

Influenza non trascurabile delle condizioni ambientali

- 01 Obiettivi del Progetto
- 02 Strumentazione
- 03 Acquisizione
- 04 Analisi Dati ed Estrazione Features
- 05 Stima della Massa
- 06 Conclusioni
- O7 Sviluppi futuri

Analisi dati ed estrazione Features

Calcolo Features

Segnale completo

Per valutare la natura del disturbo ed eventualmente filtrare il segnale

Media tra FC1 e FC2

Rimuovere picco di over

Rimuovere picco di overshoot e il transitorio di salita/discesa sul nastro

Diverso Orientamento

Massa, velocità e geometria costanti

Diverso transitorio di salita e discesa

Diversa Distribuzione Massa

Massa, velocità e geometria costanti

Diversa sovra-elongazione e sottoelongazione

Diverse Velocità

Dataset

Label	1	Fe	ature	es
Massa reale [mV/V]	Velocità [m/min]	x_1		x_n
0.940722	80	0.935596		0.946579
0.940729	80	0.942221		0.930874
÷	÷	i	÷	i
1.229057	45	1.218411		1.230474

Label

Media ponderata $M_{iniziale}$ e M_{finale}

(Temperatura, Distensioni/Estensione Cella)

Features

- ✓ Medie intervalli
- **✓** Stima velocità
- ✓ Velocità «reale»

Creazione di 5 datasets con 10,15, 20, 25,30 intervalli

- Obiettivi del Progetto
- 02 Strumentazione
- 03 Acquisizione
- 04 Analisi Dati ed Estrazione Features
- 05 Stima della Massa
- 06 Conclusioni
- 07 Sviluppi Futuri

Regressione Lineare

- Regressore lineare implementato tramite scikit-learn
- Suddivisione del dataset in dati di training e di test

70 % Training

30 %

Test

- Il regressore è stato costruito in 2 modalità:
 - 1. Dataset
 - 2. Dataset + PCA

Vantaggi Algoritmi PCA

Visualizzazione dei dati e riduzione della dimensionalità

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n$$
 \longrightarrow $y = \beta_0 + \beta_1 x_1$

Minore tempo per il training e il test dell'algoritmo di Machine Learning

Riduzione del rumore e del rischio di over fitting

Stima della Massa

Regressione a partire dal segnale in V/V affinchè sia più robusta

FIG1 - Relazione tra valore reale e predetto

Regressore Lineare

Il regressore lineare sarà quindi del tipo

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

Dove:

- y: massa predetta in V/V
- β_0 : intercetta
- $\beta_1, \beta_2, \dots, \beta_n$: coefficienti identificati dall'algoritmo
- x_1, x_2, \dots, x_n : features del dataset

Post Processing

A partire dalla taratura del sistema di acquisizione:

1

$$m \left[\frac{V}{V} \right] \qquad y = m \cdot x + q \qquad m \left[g \right]$$

2

Per quantificare la bontà del regressore lineare sono stati scelti 2 parametri: 1) R^2 2) RMSE

Identificazione del Peso

Risultati Ottenuti

Datasets

N Features	R^2	RMSE[g]
11	1.0	4.6
16	1.0	4.5
21	1.0	4.5
26	1.0	4.5
31	1.0	4.7

TAB1 - Confronto modelli ottenuti tramite regressore lineare

21 features + PCA

Numero di componenti PCA	R^2	RMSE[g]
5	1.0	6.8
10	1.0	5.6
15	1.0	4.5

TAB2 - Confronto modelli ottenuti in seguito a PCA con n componenti applicato al dataset con 21 features

Applicazione PCA

PC	Varianza campionaria	Varianza Cumulativa
PC 1	0.9027	0.9027
PC 2	0.0972	0.9999
PC 3	0.0001	1.000
PC 4	0.0000	1.000
PC 5	0.0000	1.000

Applicazione di PCA con 5 componenti al dataset con 21 features

- Obiettivi del Progetto
- 02 Strumentazione
- 03 Acquisizione
- 04 Analisi Dati ed Estrazione Features
- 05 Stima della Massa
- 06 Conclusioni
- 07 Sviluppi Futuri

Conclusioni

Analisi Variazione Dati

Analisi riduzione del segnale

N Features	R^2	RMSE[g]
21	1.00	4.5
11	1.00	6.5
6	1.00	25

TAB1 - Confronto modelli ottenuti riducendo il segnale

Influenza velocità sulla dev.std.

	RMSE[g]		
N Features	Senza velocità	Con velocità	
11	4.6	4.3	
21	4.5	4.2	
31	4.7	4.5	

TAB2 - Confronto modelli ottenuti con e senza utilizzo velocità

Conclusioni

Dipendenza dalla Temperatura

Relazione temperatura ambiente e LC

Regressione lineare massa-temperatura

Conclusioni

Dipendenza dalle Vibrazioni

- Obiettivi del Progetto
- 02 Strumentazione
- 03 Acquisizione
- 04 Analisi Dati ed Estrazione Features
- 05 Stima della Massa
- 06 Conclusioni
- 07 Sviluppi Futuri

Sviluppi Futuri

Raccordo in teflon tra i nastri

Controllo delle variabili ambientali (temperatura, vibrazioni)

Caratterizzazione cella di carico rispetto alla temperatura

Features aggiuntive (geometria del pezzo, variabili ambientali)

Dipartimento di Ingegneria Meccanica e Industriale

Laboratorio di Misure Industriali

Pesatura Dinamica

Referente: Davide Botturi

Studenti: Giovanni Alghisi
Francesco Campregher
Marco Milanesi
Edoardo Mirandola
Abdelghani Msaad

Vi ringraziamo per l'attenzione