Graph Algorithms Intro

- Problems on Graphs
- Cycle Checking
- Connected Components
- Hamiltonian Path and Circuit
- Euler Path and Circuit

COMP2521 20T2 \Diamond Graph Algorithms [0/26]

Cycle Checking

A graph has a cycle if

- it has a path of length > 2
- with start vertex src = end vertex dest 趋点 = 換点
- and without using any edge more than once

This graph has 3 distinct cycles: 0-1-2-0, 2-3-0-2, 0-1-2-3-0

("distinct" means the *set* of vertices on the path, not the order)

COMP2521 20T2 \diamondsuit Graph Algorithms [2/26]

Consider this graph:

This graph has many cycles e.g. 0-4-3-0, 2-4-5-2, 0-1-2-5-4-6-3-0,

COMP2521 20T2 \Diamond Graph Algorithms [3/26]

First attempt at checking for a cycle

```
hasCycle(G):
   Input graph G
   Output true if G has a cycle, false otherwise
   choose any vertex v \in G
   return dfsCycleCheck(G,v)
dfsCycleCheck(G,v):
                         1-7W
  mark v as visited
   for each (v,w) E edges(G) do
      if w has been visited then // found cycle
         return true
      else if dfsCycleCheck(G,w) then
                                 return the
         return true
   end for
   return false // no cycle at v
```

COMP2521 20T2 \diamondsuit Graph Algorithms [4/26] V = V = V = 0, V = V = 0

The above algorithm has two bugs...

- only one connected component is checked
- the loop **for each (v,w) E edges (G) do** should exclude the neighbour of v from which you just came, so as to prevent a single edge w-v being classified as a cycle.

If we start from vertex 5 in the following graph, we don't find the cycle:

Connected Component #1

Connected Component #2

Bug

COMP2521 20T2 \diamondsuit Graph Algorithms [5/26]

Version of cycle checking (in C) for one connected component:

 $V=1 \quad \text{W=1} \quad \text{W=$

Wrapper to ensure that all connected components are checked:

```
Vertex *visited;
bool hasCycle(Graph g, Vertex s) {
   bool result = false;
   visited = calloc(g->nV, sizeof(int));
   for (int v = 0; v < g->nV; v++) {
      for (int i = 0; i < g->nV; i++)
            visited[i] = -1;
      if dfsCycleCheck(g, v, v)) {
        result = true;
            break;
      }
   }
  free(visited);
   return result;
}
```

COMP2521 20T2 \diamondsuit Graph Algorithms [7/26]

Consider these problems:

- how many connected subgraphs are there?
- are two vertices in the same connected subgraph?

Both of the above can be solved if we can

- build componentOf[] array, one element for each vertex v
- indicating which connected component *v* is in


```
nComponents(g) = 3
component0f[1] = 0
component0f[5] = 2

sameComponent(3,4) = true
sameComponent(3,5) = false
sameComponent(0,6) = false
```

Algorithm to assign vertices to connected components:

DFS scan of one connected component

Consider an application where connectivity is critical

- we frequently ask questions of the kind above
- but we cannot afford to run **components()** each time

Add a new fields to the **GraphRep** structure:

COMP2521 20T2 \Diamond Graph Algorithms [11/26]

With this structure, the above tasks become trivial:

```
// How many connected subgraphs are there?
int nConnected(Graph g) {
   return g->nC;
}
// Are two vertices in the same connected subgraph?
bool inSameComponent(Graph g, Vertex v, Vertex w) {
   return (g->cc[v] == g->cc[w]);
}
```

But ... introduces overheads ... maintaining cc[], nC

COMP2521 20T2 \diamondsuit Graph Algorithms [12/26]

Consider maintenance of such a graph representation:

- initially, **nC** = **nV** (because no edges)
- adding an edge may reduce nC
 (adding edge between v and w in different components)
- removing an edge may increase nC
 (removing edge between v and w in same component)
- cc[] can simplify path checking (ensure v, w are in same component before starting search)

Additional cost amortised by lower cost for nConnected() and inSameComponent()

Is it simpler to run components () after each edge change?

COMP2521 20T2 \Diamond Graph Algorithms [13/26]

Hamiltonian path problem:

- find a simple path connecting two vertices *v,w* in graph *G*
- such that the path includes each vertex exactly once

If v = w, then we have a Hamiltonian circuit

Simple to state, but difficult to solve (*NP*-complete)

Many real-world applications require you to visit all vertices of a graph:

- Travelling salesman
- Bus routes to every stop.

• ...

Named after Irish mathematician/physicist/astronomer Sir William Hamilton (1805-1865)

COMP2521 20T2 \Diamond Graph Algorithms [14/26]

Graph and some possible Hamiltonian paths:

COMP2521 20T2 \Diamond Graph Algorithms [15/26]

Approach:

- generate all possible simple paths (using e.g. DFS)
- keep a counter of vertices visited in current path
- stop when find a path containing Vvertices

Can be expressed via a recursive DFS algorithm

- similar to simple path finding approach, except
 - keeps track of path length; succeeds if length = v
 - resets "visited" marker after unsuccessful path

COMP2521 20T2 \Diamond Graph Algorithms [16/26]

Algorithm for finding Hamiltonian path:

```
hamiltonR(G,v,dest,d):
   Input G graph
              current vertex considered
         dest destination vertex
             distance "remaining" until path found
                          可到起点并 lover all vetx
   if v=dest then
      if d=0 then return true else return false
   else
      visited[v]=true
      for each (v,w) E edges(G) where not visited[w] do
         if hamiltonR(G,w,dest,d-1) then
            return true
         end if
      end for
   end if
   visited[v]=false
                              // reset visited mark
   return false
```

Analysis: worst case requires (V-1)! paths to be examined

Consider a graph with isolated vertex and the rest fully-connected

Checking hasHamiltonianPath(g, x, 0) for any x

- requires us to consider every possible path
- e.g 1-2-3-4, 1-2-4-3, 1-3-2-4, 1-3-4-2, 1-4-2-3, ...
- starting from any x, there are 3! paths \Rightarrow 4! total paths
- there is no path of length 5 in these (V-1)! possibilities

There is no known simpler algorithm for this task \Rightarrow *NP*-hard.

Note, however, that the above case could be solved in constant time if we had a fast check for 0 and x being in the same connected component

Euler Path and Circuit

Euler path problem:

- find a path connecting two vertices v,w in graph G
- such that the path includes each edge exactly once
 (note: the path does not have to be simple ⇒ can visit vertices more than
 once)

If v = w, the we have an Euler circuit

Euler Path: 4-3-1-5-2-1

Euler Circuit: 1-2-5-4-3-1

Many real-world applications require you to visit all edges of a graph:

- Postman
- Garbage pickup

• ...

COMP2521 20T2 \diamondsuit Graph Algorithms [20/26]

❖ ... Euler Path and Circuit

Problem named after Swiss mathematician, physicist, astronomer, logician and engineer Leonhard Euler (1707 - 1783)

Based on a circuitous route via bridges in Konigsberg

COMP2521 20T2 \diamondsuit Graph Algorithms [21/26]

... Euler Path and Circuit

One possible "brute-force" approach:

- check for each path if it's an Euler path
- would result in factorial time performance

Can develop a better algorithm by exploiting:

Theorem. A graph has an Euler circuit if and only if it is connected and all vertices have even degree

W

Theorem. A graph has a non-circuitous Euler path if and only if it is connected and exactly two vertices have odd degree

COMP2521 20T2 \Diamond Graph Algorithms [23/26]

❖ ... Euler Path and Circuit

Graphs with an Euler path are often called Eulerian Graphs

Has neither Eulerian path or circuit

Has no Eulerian circuit, but does have path

 $\mathsf{COMP2521}\,\mathsf{20T2} \diamondsuit \mathsf{Graph}\,\mathsf{Algorithms}\, [\mathsf{24/26}]$

... Euler Path and Circuit

Assume the existence of degree (g, v)

Algorithm to check whether a graph has an Euler path:

```
hasEulerPath(G,src,dest):
   Input graph G, vertices src,dest
   Output true if G has Euler path from src to dest
          false otherwise
                                M
   if src≠dest then
      if degree(G,src) is even \( \text{degree(G,dest)} \) is even then
         return false
      end if
   end if
   for all vertices v E G do
      if v≠src ∧ v≠dest ∧ degree(G,v) is odd then
         return false [m]
      end if
   end for
   return true
```


... Euler Path and Circuit

Analysis of **hasEulerPath** algorithm:

- assume that connectivity is already checked
- assume that degree() is available via O(1) lookup
- single loop over all vertices $\Rightarrow O(V)$

If degree requires iteration over vertices

- cost to compute degree of a single vertex is O(V)
- overall cost is $O(V^2)$

⇒ problem tractable, even for large graphs (unlike Hamiltonian path problem)

For the keen, a linear-time (in the number of edges, *E*) algorithm to compute an Euler path is described in [Sedgewick] Ch.17.7.

Directed/Weighted Graphs

- Generalising Graphs
- Directed Graphs (Digraphs)
- Digraph Representation
- Weighted Graphs
- Weighted Graph Representation
- Weighted Graph Implementation

COMP2521 20T2 \Diamond Directed/Weighted Graphs [0/19]

>

Generalising Graphs

Discussion so far has considered graphs as

• V = set of vertices, E = set of edges

Real-world applications require more "precision"

- some edges are directional (e.g. one-way streets)
- some edges have a cost (e.g. distance, traffic)

We need to consider directed graphs and weighted graphs

COMP2521 20T2 \Diamond Directed/Weighted Graphs [1/19]

Directed Graphs (Digraphs)

Directed graphs are ...

- graphs with V vertices, E edges (v,w)
- edge (v,w) has source v and destination w
- unlike undirected graphs, $v \rightarrow w \neq w \rightarrow v$

Example digraph:

COMP2521 20T2 \Diamond Directed/Weighted Graphs [2/19]

... Directed Graphs (Digraphs)

Some properties of ...

- edges 1-2-3 form a cycle, edges 1-3-4 do not form a cycle
- vertex 5 has a self-referencing edge (5,5)
- vertices 0 and 1 reference each other, i.e. (0,1) and (1,0)
- there are no paths from 5 to any other nodes
- paths from 0→5: 0-1-2-3-4-5, 0-1-4-5, 0-1-2-3-1-4-5

... Directed Graphs (Digraphs)

Terminology for digraphs ...

Directed path: sequence of $n \ge 2$ vertices $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_n$

• where $(v_i, v_{i+1}) \in edges(G)$ for all v_i, v_{i+1} in sequence

If $v_1 = v_n$, we have a directed cycle

Degree of vertex: number of incident edges

V->

- outdegree: deg(v) = number of edges of the form $(v, _)$
- indegree: $deg^{-1}(v)$ = number of edges of the form (v, v)

COMP2521 20T2 \Diamond Directed/Weighted Graphs [4/19]

... Directed Graphs (Digraphs)

More terminology for digraphs ...

Reachability:

• wis reachable from v if 3 directed path v,...,w

Strong connectivity:

every vertex is reachable from every other vertex

Directed acyclic graph (DAG):

contains no directed cycles

COMP2521 20T2 \Diamond Directed/Weighted Graphs [5/19]

Digraph Representation

Similar set of choices as for undirectional graphs:

- array of edges (directed)
- vertex-indexed adjacency matrix (non-symmetric)
- vertex-indexed adjacency lists

V vertices identified by 0.. V-1

digraph adj matrix

adj lists

... Digraph Representation

Example digraph and adjacency matrix representation:

	а	b	С	d		f	g
а	1	0	0	1	0	0	0
b	1	0	1		0	0	0
С	0	1	0	1	0	0	1
d	0	1	0	0	0	1	1
е	0	0	0	1	0	0	0
f	1	0	0		0	0	1
g	0	0	0	0	0	0	1

Undirectional ⇒ symmetric matrix

Directional ⇒ non-symmetric matrix

Maximum #edges in a digraph with V vertices: V²

COMP2521 20T2 \Diamond Directed/Weighted Graphs [7/19]

... Digraph Representation

Costs of representations: (where degree deg(v) = #edges leaving v)

	array of edges		adjacency list	
space usage	E	V2 III	V+E	
insert edge	E	1	1	
exists edge (v,w)?	E	1	deg(v)	//_
get edges leaving v	Ε	V	deg(v)	

Overall, adjacency list representation is best

- real graphs tend to be sparse (large number of vertices, small average degree deg(v))
- algorithms frequently iterate over edges from *v*

<< ^ >>

Weighted Graphs

Graphs so far have considered

- edge = an association between two vertices/nodes
- may be a precedence in the association (directed)

Some applications require us to consider

- a cost or weight of an association
- modelled by assigning values to edges (e.g. positive reals)

COMP2521 20T2 \Diamond Directed/Weighted Graphs [9/19]

... Weighted Graphs

Weighted graphs are ...

- graphs with V vertices, E edges (s,t)
- each edge (s,t,w) connects vertices s and t and has weight w

Weights can be used in both directed and undirected graphs.

Example weighted graphs:

COMP2521 20T2 \Diamond Directed/Weighted Graphs [10/19]

... Weighted Graphs

Example: major airline flight routes in Australia

Representation: edge = direct flight; weight = approx flying time (hours)

COMP2521 20T2 \Diamond Directed/Weighted Graphs [11/19]

... Weighted Graphs

Weights lead to minimisation-type questions, e.g.

- 1. Cheapest way to connect all vertices?
- a.k.a. minimum spanning tree problem
- assumes: edges are weighted and undirected
- 2. Cheapest way to get from A to B?
 - a.k.a shortest path problem
 - assumes: edge weights positive, directed or undirected

COMP2521 20T2 \Diamond Directed/Weighted Graphs [12/19]

❖ Weighted Graph Representation

Weights can easily be added to:

- adjacency matrix representation (0/1 → int or float)
- adjacency lists representation (add int/float to list node)

The edge list representation changes to list of (s,t,w) triples

All representations can also work with directed edges

Weight values are determined by domain being modelled

• in some contexts weight could be zero or negative

COMP2521 20T2 \Diamond Directed/Weighted Graphs [13/19]

... Weighted Graph Representation

Adjacency matrix representation with weights:

Weighted Digraph

	0	1	2	3	4			
0	#	0.2	0.4	*	*			
1	*	0.3	0.6	*	*			
2	*	0.5	*	0.1	*			
3	0.5	*	*	*	0.9			
4	*	*	0.1	*	*			

Adjacency Matrix

Note: need distinguished value to indicate "no edge".

COMP2521 20T2 \Diamond Directed/Weighted Graphs [14/19]

... Weighted Graph Representation

Adjacency lists representation with weights:

Weighted Digraph

Adjacency Lists

Note: if undirected, each edge appears twice with same weight

COMP2521 20T2 \Diamond Directed/Weighted Graphs [15/19]

<< ^ >>

... Weighted Graph Representation

Edge array / edge list representation with weights:

Note: not very efficient for use in processing algorithms, but does give a possible representation for min spanning trees or shortest paths

COMP2521 20T2 \Diamond Directed/Weighted Graphs [16/19]

Weighted Graph Implementation

Changes to preious grpah data structures to include weights:

WGraph.h

Note: here, we assume all weights are positive, but not required

COMP2521 20T2 \Diamond Directed/Weighted Graphs [17/19]

... Weighted Graph Implementation

WGraph.c (assuming adjacency matrix representation)

COMP2521 20T2 \Diamond Directed/Weighted Graphs [18/19]

... Weighted Graph Implementation

More WGraph.c

```
void insertEdge(Graph g, Edge e) {
   assert(valid graph, valid edge)
   // edge e not already in graph
   if (g->edges[e.v][e.w] == 0)(g->nE++;
   // may change weight of existing edge
   g->edges[e.v][e.w] = e.weight;
   g->edges[e.w][e.v] = e.weight;
}

void removeEdge(Graph g, Edge e) {
   assert(valid graph, valid edge)
   // edge e not in graph
   if (g->edges[e.v][e.w] == 0) {return;
   g->edges[e.v][e.w] = 0;
   g->edges[e.w][e.v] = 0;
   g->nE--;
}
```

COMP2521 20T2 \Diamond Directed/Weighted Graphs [19/19]