Теория вероятностей. Лекция одиннадцатая Функции распределения и плотность

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

20.11.2018

Переход от дискретного случая к общему

- борелевские множества и мера Лебега
- случайные величины и измеримые отображения
- функции распределения
- абсолютно случайные величины и не только
- математическое ожидание как интеграл
- совместные функции распределения
- условное математическое ожидание как интеграл

Мы нашли подходящую σ -алгебру на \mathbb{R} , теперь мы умеем работать хотя бы с геометрической вероятностью. Мы дали определение случайной величине без каких-либо требований на мощность ее значений и нашли какой σ -алгебре она соответствует. Теперь надо научиться работать с такими объектами...

Повтор: два определения борелевских множеств

Определение. [очень умное, пользоваться им мы почти не будем] Для топологического пространства (Ω, τ) , где τ - совокупность всех открытых подмножеств множества Ω , под σ -алгеброй борелевских множеств понимается $\sigma(\tau)$,

$$\mathcal{B}_{\Omega} \stackrel{\triangle}{=} \sigma(\tau).$$

Определение. [рабочее]

Минимальную σ -алгебру, содержащую все n-мерные параллелепипеды $\{[a,b]\times\ldots\times[c,d]\subset\mathbb{R}^n\}$, называют борелевской σ -алгеброй над \mathbb{R}^n , а ее элементы — борелевскими множествами множества \mathbb{R}^n ,

$$\mathcal{B}_{\mathbb{R}^n} \stackrel{\triangle}{=} \sigma\{[a,b] \times \ldots \times [c,d] \subset \mathbb{R}^n\}.$$

Повтор: эквивалентные определения случайных величин

Итак, задано некоторое вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. Определение. Случайной (скалярной) величиной ξ называется такая функция $\xi: \Omega \to \mathbb{R}$, что для любого борелевского множества $B \in \mathcal{B}$ выполнено

$$\xi^{-1}(B) = \{\omega \mid \xi(\omega) \in B\} \in \mathcal{F}.$$

Определение. Случайной (скалярной) величиной ξ называется такая функция $\xi:\Omega\to\mathbb{R}$, что для всех $a,b\in\mathbb{R}$ (a< b) выполнено

$$\xi^{-1}\big((a,b]\big)=\big\{\omega\,\big|\,a<\xi(\omega)\leq b\big\}\in\mathcal{F}.$$

Определение. Случайной (скалярной) величиной ξ называется такая функция $\xi:\Omega\to\mathbb{R}$, что для всех $b\in\mathbb{R}$ выполнено

$$\xi^{-1}((-\infty,b]) = \{\omega \mid \xi(\omega) \le b\} \in \mathcal{F}.$$

Векторные случайные величины

Аналогично имеются три эквивалентных [с-но] определения для векторного случая:

Определение 1.1. Векторной случайной величиной $\vec{\xi} = (\xi_1, \dots, \xi_m)$ называется такая функция $\vec{\xi} : \Omega \to \mathbb{R}^m$, что для любого борелевского множества $B \in \mathcal{B}$ выполнено

$$\vec{\xi}^{-1}(B) = \{\omega \mid \vec{\xi}(\omega) \in B\} \in \mathcal{F}.$$

Определение 1.2. Векторной случайной величиной $\vec{\xi} = (\xi_1, \dots, \xi_m)$ называется такая функция $\vec{\xi} : \Omega \to \mathbb{R}^m$, что для любого открытого множества $G \subset \mathbb{R}^m$ выполнено

$$\vec{\xi}^{-1}(G) = \{\omega \mid \vec{\xi}(\omega) \in G\} \in \mathcal{F}.$$

Определение 1.3. Векторной случайной величиной $\vec{\xi} = (\xi_1, \dots, \xi_m)$ называется такая функция $\vec{\xi} : \Omega \to \mathbb{R}^m$, что для всех $b_1, b_2, \dots, b_m \in \mathbb{R}$ выполнено

$$\vec{\xi}^{-1}((-\infty,b_1]\times\cdots\times(-\infty,b_m])=\{\omega\,|\,\forall i\in\{1,\ldots,m\}\,\,\xi_i(\omega)\leq b_i\}\in\mathcal{F}.$$

О случайных величинах [без д-ва]

Факты полезные для расшаривания сознания. Сильно позже они будут полезны и для доказательств...

Теорема Лузина. Пусть $\xi:\mathbb{R}\to\mathbb{R}$ — ограниченная случайная величина. Тогда для любого $\varepsilon>0$ можно найти такое множество A, что $\mathbb{P}(A)>1-\varepsilon$, и ξ непрерывна на A.

Теорема Егорова. Пусть случайные величины $\xi_n:\Omega\to\mathbb{R}$ таковы, что для всякого $\omega\in\Omega$ имеется предел $\xi(\omega)=\lim_{n\to\infty}\xi_n(\omega)$. Тогда для любого $\varepsilon>0$ можно найти такое множество A со свойством $\mathbb{P}(A)>1-\varepsilon$, что ξ_n сходится к ξ равномерно на A.

Эти теоремы можно существенно обобщить, наделяя Ω достаточно хорошей топологией, но излишняя общность нам здесь уж точно не требуется...

Как создавать случайные величины [с-но]

Теорема 1. Пусть Ω снабжено топологией τ , и $\sigma(\tau) \subset \mathcal{F}$. Тогда всякое непрерывное отображение $f: \Omega \to \mathbb{R}$ является случайной величиной.

Теорема 2. Суперпозиция случайных величин измерима.

Следствие. Для любых скалярных случайных величин $\xi_1, \xi_2, \dots, \xi_m$ и непрерывной функции $s: \mathbb{R}^m \to \mathbb{R}^n$ суперпозиция $s(\xi_1, \xi_2, \dots, \xi_m)$ также является n-мерной случайной величиной.

Следствие. Для случайных величин ξ_1, ξ_2 случайными величинами также являются $\min(\xi_1, \xi_2), \ \xi_1 + \xi_2, \ \xi_1 \xi_2, \ |\xi_1|, \ -\xi_1.$

Следствие. Для ограниченных в совокупности случайных величин $\xi_1, \xi_2, \dots, \xi_n, \dots$ случайными величинами также являются $\inf(\xi_1, \xi_2, \dots), \sup(\xi_1, \xi_2, \dots), \liminf_{n \to \infty} \xi_n = \varliminf_{n \to \infty} \xi_n.$ Следствие. Пусть для случайных величин $\xi_1, \xi_2, \dots, \xi_n, \dots$ их предел

Следствие. Пусть для случайных величин $\xi_1, \xi_2, ..., \xi_n, ...$ их предел $\xi(\omega) = \lim_{n \to \infty} \xi_n(\omega)$ существует и конечен для всякого $\omega \in \Omega$. Тогда ξ — случайная величина.

Общее определение измеримости

Даны измеримые пространства $(\Omega,\mathcal{F}),\ (\Omega',\mathcal{G}).$ Пусть имеется некоторое отображение $f:\Omega\to\Omega'.$ Тогда имеются и всевозможные его прообразы

$$f^{-1}(G) = \{\omega \mid f(\omega) \in G\} \ \forall G \in \mathcal{G},$$

и порожденная ими σ -алгебра

$$\sigma(f) = \sigma\{f^{-1}(G) \mid G \in \mathcal{G}\}.$$

Определение 2. Говорят, что отображение f из (Ω, \mathcal{F}) в (Ω', \mathcal{G}) — измеримо, если $\sigma(f) \subset \mathcal{F}$.

Подумать: Отображение $f:\Omega\to\mathbb{R}$ — борелевское (случайная величина) тогда и только тогда, когда f — измеримое отображение из (Ω,\mathcal{F}) в (\mathbb{R},\mathcal{B}) .

Подумать: предыдущий слайд верен с минимальными и очевидными уточнениями и для произвольных измеримых отображений между топологическими пространствами.

Замечания к тому же определению

Определение 2. Говорят, что отображение f из (Ω, \mathcal{F}) в (Ω', \mathcal{G}) — измеримо, если $\sigma(f) \subset \mathcal{F}$.

Терминологическое замечание 1. Обычно по умолчанию в разных книжках под измеримыми отображениями в \mathbb{R}^n понимают или борелевские, или лебеговские отображения. У нас — борелевские. **Терминологическое замечание 2**. Поскольку для числовых отображений алгебра образа — алгебра или лебеговских, или борелевских множеств — обычно уже задана, зачастую, для краткости, определяют \mathcal{H} -измеримые отображения $f:\Omega \to \mathbb{R}$ как измеримые

Теорема 3. [1,5 балла] Пусть задана случайная величина $f:\Omega \to \mathbb{R}$. Случайная величина $g:\Omega \to \mathbb{R}$ является $\sigma(f)$ -измеримой тогда и только тогда, когда для некоторой измеримой $h:\mathbb{R} \to \mathbb{R}$ выполнено $g(\omega)=h(f(\omega))$ для всех $\omega \in \Omega$.

отображения из (Ω, \mathcal{H}) в $(\mathbb{R}, \mathcal{B})$, где \mathcal{H} — подалгебра алгебры \mathcal{F} .

Концепция "почти всюду"

Пусть даны измеримое пространство (Ω, \mathcal{F}) с некоторой мерой μ и измеримое пространство (Ω', \mathcal{G}) .

Определение 3. Говорят, что отображения $f,g:\Omega\to\Omega'$ равны "почти всюду" (" μ -почти всюду", "почти наверняка", "с вероятностью 1"), если

$$\mu\{\omega\in\Omega\,|\,f(\omega)\neq g(\omega)\}=0.$$

Аналогично говорят о функции, определенной "почти всюду" (" μ -почти всюду", "почти наверняка", "на множестве полной меры"), о сходимости "почти всюду" и т.д.

Отметим, что когда мы будем говорить о случайных величинах, мы также будем их различать с точностью до множества нулевой меры; в частности, теперь мы можем не беспокоиться о дополнительном требовании к дискретным случайным величинам: $\mathbb{P}(H_i) > 0$.

Образ меры

Дадим конструкцию-определение еще раз.

Пусть имеются измеримое пространство (Ω, \mathcal{F}) с некоторой мерой μ и измеримое пространство $(\tilde{\Omega}, \tilde{\mathcal{F}})$. Пусть $\xi : \Omega \to \tilde{\Omega}$ измеримо. Введем индуцированную меру (образ меры, push-forward) $\tilde{\mu} = \mu \circ \xi^{-1} = \xi \# \mu$:

$$\tilde{\mu}(\tilde{A}) = \mu(\xi^{-1}(\tilde{A})) \qquad \forall \tilde{A} \in \tilde{\mathcal{F}}.$$

Таким образом, измеримые отображения, и только они, могут перенести меру с одного измеримого пространства на другое. Замечание. Можно сделать еще хитрее. Если мы потребуем $\tilde{\mathcal{F}} \stackrel{\triangle}{=} \sigma(\xi)$, то сразу гарантируем измеримость ξ , а значит и перенос меры на $\tilde{\Omega}$.

С другой стороны, в силу теоремы Каратеодори, для случайных величин нам не требуется восстанавливать меру на всех борелевских подмножествах множества. Можно взять любое семейство, их генерирующее.

Функция распределения

Пусть с нами снова вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. Определение 4. Функцией распределения (скалярной) случайной величины ξ называют отображение $F_{\xi}: \mathbb{R} \to [0,1]$, заданное по правилу:

$$F_{\xi}(x) = \mathbb{P}\{\omega \mid \xi(\omega) \leq x\}.$$

Терминологическое замечание 3. Общее определение полностью повторяет то же определение для дискретных случайных величин. Как там уже было отмечено, в разных книжках используют разный знак в определении: иногда "≤", иногда "<". Выбор знака определяет и формулировки, впрочем пока переделать их несложно...

Функция распределения задает всю вероятность...

Теперь при любых $x,y \in \mathbb{R}$, (x > y)

$$\mathbb{P}\{\omega | \xi(\omega) \le x\} = F_{\xi}(x),
\mathbb{P}\{\omega | \xi(\omega) > x\} = 1 - F_{\xi}(x),
\mathbb{P}\{\omega | \xi(\omega) < x\} = F_{\xi}(x - 0),
\mathbb{P}\{\omega | \xi(\omega) = x\} = F_{\xi}(x) - F_{\xi}(x - 0),
\mathbb{P}\{\omega | \xi(\omega) \ge x\} = 1 - F_{\xi}(x - 0),
\mathbb{P}\{\omega | y \le \xi(\omega) \le x\} = F_{\xi}(x) - F_{\xi}(y - 0),
\mathbb{P}\{\omega | y < \xi(\omega) \le x\} = F_{\xi}(x) - F_{\xi}(y),
\mathbb{P}\{\omega | y \le \xi(\omega) < x\} = F_{\xi}(x - 0) - F_{\xi}(y - 0),
\mathbb{P}\{\omega | y < \xi(\omega) < x\} = F_{\xi}(x - 0) - F_{\xi}(y).$$

Свойства функции распределения [с-но]

Для всякой скалярной случайной величины ξ

- **①** F_{ξ} не убывает;

- $oldsymbol{0}$ для любого $y \in \mathbb{R}$ существуют односторонние пределы

$$F_{\xi}(y+0) = \lim_{x \to y+0} F_{\xi}(x), \quad F_{\xi}(y-0) = \lim_{x \to y-0} F_{\xi}(x);$$

- ullet функция F_{ξ} непрерывна справа: для любого $y \in \mathbb{R}$ $F_{\xi}(y+0) = F_{\xi}(y)$;
- \bullet F_{ξ} имеет не более чем счетное число точек разрыва.

Свойства сии доказаны где угодно (в любом учебнике выше уровня ПТУ) и сводятся к стандартному матану первого семестра.

Теорема Колмогорова

Теорема 4. Для всякой функции $F: \mathbb{R} \to \mathbb{R}$, удовлетворяющей свойствам 1,2,3,5, найдутся такие измеримое пространство Ω и случайная величина $\xi:\Omega\to\mathbb{R}$, что $F=F_{\xi}$. Эскиз доказательства. Принимается $\Omega = \mathbb{R}, \mathcal{F} = \mathcal{B}$. Для всякого непустого интервала (a,b] принимается $\mathbb{P}((a,b]) = F(b) - F(a)$. Остается доказать, что это отображение имеет счетно-аддитивное продолжение на \mathcal{B} , то есть задает вероятность. В силу теоремы Каратеодори для этого достаточно доказать, что оно имеет счетно-аддитивное продолжение на алгебре ${\cal A}$ всевозможных не более чем конечных объединений промежутков вида (a,b], поскольку аддитивное продолжение оно заведомо имеет, то нужно лишь показать его счетно-адитивность, то есть доказать

$$\mathbb{P}(\cup_{i\in\mathbb{N}}(a_i,b_i]) = \sum_{i\in\mathbb{N}} \mathbb{P}((a_i,b_i])$$

в случае, если $\cup_{i \in \mathbb{N}} (a_i, b_i] = (a, b]$, и все промежутки $(a_i, b_i]$ попарно не пересекаются.

Теорема Колмогорова. Собственно доказательство

Для доказательства "≥" достаточно перейти к пределу в очевидном

$$\mathbb{P}((a,b]) = \mathbb{P}(\cup_{i \in \mathbb{N}} (a_i,b_i]) \ge \sum_{i=1}^n \mathbb{P}((a_i,b_i]).$$

Для доказательства " \leq " заметим, что можно найти конечные $a^{\varepsilon} > a$ и $b_i^{\varepsilon} > b_i$ так, что $\mathbb{P}((a^{\varepsilon},b]) \geq \mathbb{P}((a,b]) - \varepsilon$, $\mathbb{P}((a_i,b_i^{\varepsilon})) \leq \mathbb{P}((a_i,b_i]) + \varepsilon 2^{-i}$. Теперь $(a^{\varepsilon},b] \subset \cup_{i \in \mathbb{N}} (a_i,b_i^{\varepsilon})$, из этого открытого покрытия найдется конечное подпокрытие $(a^{\varepsilon},b] \subset \cup_{k=1}^n (a_{i_k},b_{i_k}^{\varepsilon})$. Тогда

$$\mathbb{P}((a,b]) - \varepsilon \leq \mathbb{P}((a^{\varepsilon},b]) \leq \sum_{k=1}^{n} \mathbb{P}((a_{i_{k}},b_{i_{k}}^{\varepsilon})) < \varepsilon + \sum_{k=1}^{n} \mathbb{P}((a_{i_{k}},b_{i_{k}})).$$

Переходя к пределу при $n\uparrow\infty,\varepsilon\downarrow0$, получаем требуемое. Подумать: где использовалась монотонность? А понятие "компакт"? Подумать: а где использовались свойства 2,3?

Важный класс:

абсолютно непрерывные случайные величины

Определение 4. Действительная случайная величина ξ называется абсолютно непрерывной, если найдется такая измеримая борелевская функция $f_{\xi}: \mathbb{R} \to \mathbb{R}$ (называемая плотностью), что

$$F_{\xi}(b) - F_{\xi}(a) = \int_{a}^{b} f_{\xi}(x) dx \qquad \forall a, b \in \mathbb{R} (a < b).$$

Легко проверить, что при этом

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(t) dt, \quad \int_{-\infty}^{+\infty} f_{\xi}(t) dt = 1 \quad \forall x \in \mathbb{R}.$$

Терминологическое замечание 4. Как интегрировать борелевскую функцию мы пока не обсуждаем, при работе с плотностями фактически лишь предполагая, что все привычные свойства интегралов выполнены, тем более, что все рассматриваемые нами плотности можно считать кусочно-непрерывными.

Вопросы о плотности

Подумать: верно ли, что всякая абсолютно непрерывная случайная величина ξ имеет непрерывную функцию распределения? Подумать: верно ли, что плотность всегда неотрицательна? Подумать: верно ли, что плотность однозначно восстанавливается по функции распределения абсолютно непрерывной случайной величины? Подумать: верно ли, что

$$F'_{\xi}(x) = f_{\xi}(x) \quad \forall x \in \mathbb{R}?$$

Подумать: верно ли, что если случайная величина ξ имеет непрерывную функцию распределения, то она абсолютно непрерывна?

Пример плотности

 $\xi \in U[0,1]$: ξ равномерно распределена на отрезке [0,1], если

$$F_{\xi}(x) = F_{U[0,1]}(x) \stackrel{\triangle}{=} \left\{ \begin{array}{ll} 0, & \text{если } x < 0; \\ x, & \text{если } x \in [0,1]; \\ 1, & \text{если } x > 1. \end{array} \right.$$

Подумать: можно ли было принять $x \le 0, x \in (0,1), x \ge 1$? Теперь,

$$f_{\xi}(x) = f_{U[0,1]}(x) \stackrel{\triangle}{=} \left\{ egin{array}{ll} 0, & ext{если } x < 0; \\ 1, & ext{если } x \in [0,1]; \\ 0, & ext{если } x > 1. \end{array}
ight.$$

Подумать: можно ли было взять другую функцию в качестве f_{ξ} ? Подумать: найдите $F'_{\xi}(0)$.

Свойства плотности [пока без д-ва]

Для всякой абсолютно непрерывной случайной величины ξ

- lacktriangledown плотность f_{ξ} определена и единственна с точностью до множества меры "ноль";
- ② плотность f_{ξ} неотрицательна с точностью до множества меры "ноль";
- $lacksymbol{0}$ если плотность f_{ξ} непрерывна в точке $x \in \mathbb{R}$, то $F'_{\xi}(x) = f_{\xi}(x)$;
- ullet [0,4 балла] плотность f_{ξ} всегда можно выбрать так, чтобы она была непрерывной всюду, кроме, быть может, множества любой наперед заданной положительной меры Лебега.

Формула замены переменных: доказательство

Для абсолютно непрерывной сл.в. ξ и строго возрастающей дифференцируемой функции $g:\mathbb{R}\to\mathbb{R}$ рассмотрим сл.в. $\eta=g(\xi)$. Она также абсолютно непрерывна: действительно, для всех $b'\in\mathbb{R}$ примем $b=g^{-1}(b')$, теперь, поскольку g^{-1} не убывает, имеем

$$\begin{split} F_{\eta}(b') &= F_{g(\xi)}(g(b)) = \mathbb{P}\{\omega | g(\xi(\omega)) \leq g(b)\} \\ &= \mathbb{P}\{\omega | \xi(\omega) \leq b\} = F_{\xi}(b) \\ &= \int_{-\infty}^{b} f_{\xi}(y) \, dy = \int_{-\infty}^{g^{-1}(b')} f_{\xi}(g^{-1}(x)) \, dg^{-1}(x) \\ &= \int_{-\infty}^{b'} \frac{f_{\xi}(g^{-1}(x))}{g'(g^{-1}(x))} \, dx. \end{split}$$

Итак, в случае строго монотонных функций g получены формулы:

$$f_{\eta}(x) = \frac{f_{\xi}(g^{-1}(x))}{|g'(g^{-1}(x))|}, \ f_{g(\xi)}(g(y)) = \frac{f_{\xi}(y)}{|g'(y)|}.$$

Формула замены переменных: примеры и вопросы

Итак, для строго монотонных функций g плотность преобразуется по правилу:

$$f_{\eta}(x) = \frac{f_{\xi}(g^{-1}(x))}{|g'(g^{-1}(x))|}, \ f_{g(\xi)}(g(y)) = \frac{f_{\xi}(y)}{|g'(y)|}.$$

В частности,

$$f_{a\xi+b}(x) = \frac{f_{\xi}(\frac{x-b}{a})}{|a|}, \quad f_{\xi^2}(x^2) = \frac{f_{\xi}(x)}{|2x|} + \frac{f_{\xi}(-x)}{|2x|} \quad \forall a, b, x \in \mathbb{R}, a \neq 0.$$

Подумать: откуда взялся модуль?

Подумать: где именно применялась строгая монотонность?

Подумать: привести пример монотонной функции g, для которой $g(\xi)$ заведомо не имеет плотности.

Подумать: можно ли потребовать строгую монотонность лишь на отрезке?

Скалярные характеристики случайных величин

Определения следующих характеристик в общем случае те же, что и в дискретном случае:

Медианой случайной величины ξ называют любое число μ , для которого $\mathbb{P}(\xi \le \mu) \ge 1/2$ и $\mathbb{P}(\xi \ge \mu) \ge 1/2$.

Квантилью порядка $p, p \in (0,1)$, случайной величины ξ называют любое число x, для которого $\mathbb{P}(\xi \le x) \ge p$ и $\mathbb{P}(\xi \ge x) \ge 1 - p$.

Подумать: верно ли, что в случае абсолютно непрерывной случайной величины всякая квантиль порядка p восстанавливается однозначно равенством: $F_{\mathcal{E}}(x_p) = p$.

Пример. Для равномерного на [0,1] распределения имеем: $\mu = \frac{1}{2}$.

Мода и энтропия в абсолютно непрерывном случае

Модой распределения с плотностью f_{ξ} называют любую точку глобального максимума плотности f_{ξ} , иногда вводят понятие локальной моды. Распределение называется унимодальным, если мода, даже с учетом локальных, одна.

Дифференциальной энтропией распределения с плотностью f_{ξ} называют значение выражения

$$-\int_{-\infty}^{+\infty} f_{\xi}(x) \log (f_{\xi}(x)) dx.$$

Пример. У равномерного на [0,1] распределения любая точка на интервале (0,1) — мода, а дифференциальная энтропия равна нулю. Предупреждение: свойства и того, и другого понятия схожи с их аналогами для дискретных случайных величин, но смешивать их не нужно. Например, эта энтропия может быть отрицательной, принимать значение $\pm \infty$, а может и не существовать.

Матожидание в абсолютно непрерывном случае

Математическое ожидание абсолютно непрерывной случайной величины ξ можно считать по формуле:

$$\mathbb{E}\xi \stackrel{\triangle}{=} \int_{-\infty}^{+\infty} x f_{\xi}(x) \, dx,$$

если этот интеграл корректен и сходится, в противном случае — математическое ожидание $\mathbb{E}\xi$ не существует.

Если значения случайной величины ξ лежат в отрезке [a,b], то

$$\mathbb{E}\xi = \int_a^b x f_{\xi}(x) \, dx,$$

при этом математическое ожидание заведомо существует.

Подумать: даже если ξ ограничена, интеграл в $\mathbb{E}\xi$ может оказаться несобственным (почему?), тем не менее он заведомо сходится. Все отмеченные ранее свойства матожидания остаются верными.

Дисперсия в абсолютно непрерывном случае

Дисперсию абсолютно непрерывной случайной величины ξ можно считать по любой из формул:

$$\mathbb{D}\xi \stackrel{\triangle}{=} \mathbb{E}\xi^2 - (\mathbb{E}\xi)^2 = \int_{-\infty}^{+\infty} (x - \mathbb{E}\xi)^2 f_{\xi}(x) dx$$
$$= \int_{-\infty}^{+\infty} x^2 f_{\xi}(x) dx - \left(\int_{-\infty}^{+\infty} x f_{\xi}(x) dx\right)^2.$$

<u>Подумать</u>: чтобы все указанные формулы давали одно и то же, достаточно проверить

$$\mathbb{E}\xi^2 = \int_{-\infty}^{+\infty} x^2 f_{\xi}(x) \, dx.$$

Подумать: [1 балл] хотя бы для гладких $g: \mathbb{R} \to \mathbb{R}$ докажите

$$\mathbb{E}g(\xi) = \int_{-\infty}^{+\infty} g(x) f_{\xi}(x) dx.$$

Переход от дискретного случая к общему

- борелевские множества и мера Лебега
- случайные величины и измеримые отображения
- функции распределения
- абсолютно случайные величины и не только
- математическое ожидание как интеграл
- совместные функции распределения
- условное математическое ожидание как интеграл

Мы нашли подходящие определения для множеств и отображений, написали часть нужных нам формул для еще одного хорошего случая (абсолютно непрерывные случайные величины), но и в этом случае нам требуется уметь задавать интеграл не только от непрерывных функций. Продолжаем учиться работать с такими объектами...