dq-TRANSFORMATIE

I. DRIEFASIGE RUIMTEVECTOR

Vectorvoorstelling in het complexe vlak van een <u>driefasige</u>, <u>symmetrische en gebalanceerde</u> <u>grootheid</u> met ogenblikkelijke fasewaarden x_{a} , x_{b} en x_{c} op het tijdstip t:

$$\overline{X} = \frac{2}{3} \left(X_a + a \cdot X_b + a^2 \cdot X_c \right) \tag{1}$$

met a per definitie gelijk aan:

$$a \equiv e^{j2\pi/3} \tag{2}$$

Vermenigvuldiging met de a-operator roteert de reële vector x_b (vector op de reële as) over een hoek van +120° in het complexe vlak. Het kwadraat van de a-operator stemt overeen met een hoekverdraaiing van +240°.

Het verloop in de tijd van elk van de ogenblikkelijke fasewaarden x_a , x_b en x_c van een driefasige, symmetrische en gebalanceerde grootheid wordt beschreven door een cosinus-functie. De drie fasen hebben dezelfde amplitude en dezelfde frequentie. Fase a is de referentie. De fase b ijlt in de tijd 120° na op de fase a en de fase c ijlt in de tijd 240° na op de fase a (wat ook neerkomt op 120° voorijlen). Ruimtelijk kan het tijdsverloop worden voorgesteld door pulserende vectoren langs assen die onderling 120° verdraaid zijn. De resultante volgens vgl. (1) levert dan ruimtelijk een roterende vector op met een constante grootte (lengte) en met een hoeksnelheid ω gelijk aan 2π .f met f de frequentie van de tijdsignalen.

De factor 2/3 in vgl. (1) leidt ertoe dat de grootte (lengte) van de ruimtelijke vector gelijk is aan de amplitude van de tijdsignalen.

II. TWEEFASIGE RUIMTEVECTOR

De driefasige ruimtevector cf. vgl. (1) kan op elk moment ontbonden worden in twee lood-rechte componenten langs de vaste reële en imaginaire as van het complexe vlak. De reële as wordt ook de directe as genoemd (subscript d) en de imaginaire as de kwadratuur-as (subscript q). Zodoende kan men schrijven dat:

$$\overline{x} = x_d^s + jx_q^s
= \text{Re}\left(\frac{2}{3}(x_a + ax_b + a^2x_c)\right) + j\text{Im}\left(\frac{2}{3}(x_a + ax_b + a^2x_c)\right)
= \frac{2}{3}(x_a - x_b/2 - x_c/2) + j(x_b - x_c)/\sqrt{3}$$
(3)

Vermits de driefasige grootheid gebalanceerd is, betekent dit dat $x_a + x_b + x_c = 0$ en men kan vgl. (3) verder uitwerken tot:

$$\overline{X} = X_d^s + jX_q^s = X_a + j(X_b - X_c) / \sqrt{3}$$
(4)

Vgl. (4) kunnen we ook in matrix-gedaante schrijven:

$$\begin{bmatrix} x_{d}^{s} \\ x_{q}^{s} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{3} & -1/\sqrt{3} \end{bmatrix} \cdot \begin{bmatrix} x_{a} \\ x_{b} \\ x_{c} \end{bmatrix}$$

$$\begin{bmatrix} x_{dq}^{s} \\ x_{dq} \end{bmatrix} = T \begin{bmatrix} x_{abc} \end{bmatrix}$$
(5)

III. INVERSE TRANSFORMATIE: VAN (d,q) NAAR (a,b,c)

Als de complexe componenten gegeven zijn, kan uit vgl. (4) en het feit dat $x_a + x_b + x_c = 0$ de ogenblikkelijke waarden x_a , x_b en x_c van de driefasige, symmetrische en gebalanceerde grootheid worden bepaald:

$$x_{a} = x_{d}^{s}
 x_{b} = \frac{-x_{d}^{s} + \sqrt{3}x_{q}^{s}}{2}
 x_{c} = \frac{-x_{d}^{s} - \sqrt{3}x_{q}^{s}}{2}$$
(6)

In matrix-gedaante:

$$\begin{bmatrix} x_a \\ x_b \\ x_c \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/2 & \sqrt{3}/2 \\ -1/2 & -\sqrt{3}/2 \end{bmatrix} \cdot \begin{bmatrix} x_d^s \\ x_q^s \end{bmatrix}$$

$$\begin{bmatrix} x_{abc} \end{bmatrix} = \mathsf{T}^{-1} \begin{bmatrix} x_{dq}^s \end{bmatrix}$$
(7)

IV. TRANSFORMATIE STATIONAIR NAAR ROTEREND (d,q)-REFERENTIESTELSEL

We beschouwen een complexe vector x in een vast of stationair (d,q)-referentiestelsel. Op een zeker tijdstip t is de verdraaiingshoek van het roterend referentiestelsel t.o.v. het stationair referentiestelsel gelijk aan \mathcal{S} . We wensen de coördinaten van de complexe vector uit te drukken in het roterend referentiestelsel.

In het stationair referentiestelsel is gegeven dat:

$$\overline{X} = X_{da}^{S} = X_{d}^{S} + jX_{a}^{S} \tag{6}$$

In het roterend referentiestelsel wordt dit:

$$\overline{X} = X_{dq}^{\omega} = X_{d}^{\omega} + jX_{q}^{\omega}
= \left(X_{d}^{s}\cos\vartheta + X_{q}^{s}\sin\vartheta\right) + j\left(-X_{d}^{s}\sin\vartheta + X_{q}^{s}\cos\vartheta\right)
= X_{d}^{s}\left(\cos\vartheta - j\sin\vartheta\right) + X_{q}^{s}\left(\sin\vartheta + j\cos\vartheta\right)
= X_{d}^{s}e^{-j\vartheta} + X_{q}^{s}\left(\cos\left(\pi/2 - \vartheta\right) + j\sin\left(\pi/2 - \vartheta\right)\right)
= X_{d}^{s}e^{-j\vartheta} + X_{q}^{s}e^{j(\pi/2 - \vartheta)}
= X_{d}^{s}e^{-j\vartheta} + X_{q}^{s}e^{j\pi/2}e^{-j\vartheta}
= X_{d}^{s}e^{-j\vartheta} + jX_{q}^{s}e^{-j\vartheta}
= \left(X_{d}^{s} + jX_{q}^{s}\right)e^{-j\vartheta} = X_{dq}^{s}e^{-j\vartheta}$$
(7)

Bijgevolg: het volstaat om de gegeven vector in het stationair referentiestelsel te vermenigvuldigen met het complex getal $e^{-j\theta}$ om zijn coördinaten in het roterend referentiestelsel te bekomen.

V. TRANSFORMATIE ROTEREND NAAR STATIONAIR (d,q)-REFERENTIESTELSEL

We beschouwen een complexe vector x in een draaiend (d,q)-referentiestelsel. Op een zeker tijdstip t is de verdraaiingshoek van het roterend referentiestelsel t.o.v. het stationair referentiestelsel gelijk aan \mathcal{S} . We wensen de coördinaten van de complexe vector uit te drukken in het stationair referentiestelsel.

In het roterend referentiestelsel is gegeven dat:

$$\overline{X} = X_{dq}^{\omega} = X_{d}^{\omega} + jX_{q}^{\omega} \tag{8}$$

In het stationair referentiestelsel wordt dit:

$$\overline{X} = X_{dq}^{s} = X_{d}^{s} + jX_{q}^{s}
= \left(X_{d}^{\omega}\cos\vartheta - X_{q}^{\omega}\sin\vartheta\right) + j\left(X_{d}^{\omega}\sin\vartheta + X_{q}^{\omega}\cos\vartheta\right)
= X_{d}^{\omega}\left(\cos\vartheta + j\sin\vartheta\right) - X_{q}^{\omega}\left(\sin\vartheta - j\cos\vartheta\right)
= X_{d}^{\omega}\left(\cos\vartheta + j\sin\vartheta\right) - X_{q}^{\omega}\left(\cos\left(\pi/2 - \vartheta\right) - j\sin\left(\pi/2 - \vartheta\right)\right)
= X_{d}^{\omega}e^{j\vartheta} - X_{q}^{\omega}e^{-j(\pi/2 - \vartheta)}
= X_{d}^{\omega}e^{j\vartheta} - X_{q}^{\omega}e^{-j\pi/2}e^{j\vartheta}
= X_{d}^{\omega}e^{j\vartheta} + jX_{q}^{\omega}e^{j\vartheta}
= \left(X_{d}^{\omega} + jX_{q}^{\omega}\right)e^{j\vartheta} = X_{dq}^{\omega}e^{j\vartheta}$$
(9)

Bijgevolg: het volstaat om de gegeven vector in het roterend referentiestelsel te vermenigvuldigen met het complex getal $e^{j\theta}$ om zijn coördinaten in het stationair referentiestelsel te bekomen.

NOOT

De hoek ϑ is de hoekpositie tussen de beide referentiestelsels op een zeker tijdstip t. Als het roterend referentiestelsel roteert met een hoeksnelheid ω dan volgt de hoekpositie ϑ op tijdstip t algemeen beschouwd uit:

$$\omega(t) = \frac{d\vartheta(t)}{dt} \Rightarrow \vartheta(t) = \int_{0}^{t} \omega(t) dt$$
 (10)