Name - Abhishek Singh

Addmission No. - 23MS0002

```
In [2]: # Importing the libraries to read and analyse the data
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler, MinMaxScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, roc_auc_score

In [3]: # Reading the csv file of data
    data = pd.read_csv('diabetes_dataset.csv')
In []: # Printing the data
data
```

Out[]:

	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
2	183	64	0	0	23.3	0.672	32	1
3	89	66	23	94	28.1	0.167	21	0
4	137	40	35	168	43.1	2.288	33	1
763	101	76	48	180	32.9	0.171	63	0
764	122	70	27	0	36.8	0.340	27	0
765	121	72	23	112	26.2	0.245	30	0
766	126	60	0	0	30.1	0.349	47	1
767	93	70	31	0	30.4	0.315	23	0

768 rows × 8 columns

```
In [ ]: # Size of the data (rows, columns)
data.shape
Out[ ]: (768, 8)
```

EDA (Exploratory Data Analysis)

88

76

88

19

34

29

0 27.1

37 31.2

0 35.0

```
In [ ]: data.sample(5)
Out[ ]:
              Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
         398
                  82
                                70
                                                     0 21.1
                                                                             0.389
                                                                                    25
                                                                                              0
         176
                  85
                                78
                                                     0 31.2
                                                                             0.382 42
                                                                                              0
```

0.400 24

0.192 23

0.905

52

0

0

1

In []: # Description about the data
data.describe()

Out[]:

600

112

702

108

89

168

	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

```
In [ ]: # Information about data storage type
        data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 768 entries, 0 to 767
        Data columns (total 8 columns):
             Column
                                       Non-Null Count Dtype
            -----
             Glucose
                                       768 non-null
         0
                                                       int64
            BloodPressure
                                       768 non-null
                                                       int64
         2 SkinThickness
                                       768 non-null
                                                       int64
         3 Insulin
                                       768 non-null
                                                       int64
                                       768 non-null
             BMI
                                                       float64
             DiabetesPedigreeFunction 768 non-null
                                                       float64
                                       768 non-null
                                                       int64
         6
                                       768 non-null
             Outcome
                                                       int64
        dtypes: float64(2), int64(6)
        memory usage: 48.1 KB
In [ ]: data.nunique(0).sum() # number of unique values in axis=0
Out[]: 1239
In [ ]: # Checking for duplicates values in dataset
        data.duplicated().sum()
Out[ ]: 0
In [ ]: | # Checking for null values in dataset
        data.isnull().sum() # duplicate values are not found in this dataset
Out[ ]: Glucose
                                    0
        BloodPressure
                                    0
                                    0
        SkinThickness
        Insulin
                                    0
        BMI
        DiabetesPedigreeFunction
                                    0
        Age
        Outcome
                                    0
        dtype: int64
```

```
In []: # Distribution of Target Variable (Outcome):
    sns.countplot(x='Outcome', data=data)
    plt.title('Distribution of Diabetes Outcome')
    plt.xlabel("Outcome")
    plt.ylabel("Count")
    plt.show()
```

Distribution of Diabetes Outcome

In []: # Univariate Analysis print("Univariate Analysis:") plt.figure(figsize=(12, 6)) for i, column in enumerate(data.columns, 1): plt.subplot(3, 3, i) if data[column].dtype == 'object': sns.countplot(data[column]) else: sns.histplot(data[column], kde=True) plt.title(column) plt.tight_layout() plt.show()

Univariate Analysis:


```
In [ ]: # Bivariate Analysis - Visualizing the correlation between different features
    print("Bivariate Analysis:")
    plt.figure(figsize=(12, 6))
    sns.heatmap(data.corr(), annot=True, cmap='coolwarm', fmt=".2f")
    plt.title("Correlation Matrix")
    plt.show()
```

Bivariate Analysis:


```
In [4]: # Pairwise Relationships:
    print('Pairwise Relationships by Outcome')
    sns.pairplot(data, hue='Outcome', diag_kind='kde')
    plt.show()
```


Outliers

```
In [ ]: # Checking Outliers using Boxplot.
    fig, axes = plt.subplots(2, 4, figsize=(18, 10))
    axes = axes.flatten()
    for i, col in enumerate(data.columns[:-1]):
        sns.boxplot(x='Outcome', y=col, data=data, ax=axes[i])
    plt.suptitle('Boxplot of Features by Outcome')
    plt.tight_layout()
    plt.show()
```


Removing outliers using IQR (Interquartile Range):

```
In []: # Removing outliers using IQR (Interquartile Range) based filtering
# Columns That have outliers
outliers = ['Glucose', 'BloodPressure', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age']
def remove_outliers_iqr(df, columns):
    Q1 = df[columns].quantile(0.25)
    Q3 = df[columns].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    df_cleaned = df[~((df[columns] < lower_bound) | (df[columns] > upper_bound)).any(axis=1)]
    return df_cleaned

data = remove_outliers_iqr(data, outliers)
```

```
In []: # Checking Outliers using Boxplot.
    fig, axes = plt.subplots(2, 4, figsize=(18, 10))
    axes = axes.flatten()
    for i, col in enumerate(data.columns[:-1]):
        sns.boxplot(x='Outcome', y=col, data=data, ax=axes[i])
    plt.suptitle('Boxplot of Features by Outcome')
    plt.tight_layout()
    plt.show()
```


Splitting the dataset in training data and testing data

```
In [ ]: | x = data.drop('Outcome', axis=1).values
        y = data['Outcome'].values
In [ ]: X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
In [ ]: # Standardize the features
        scaler = StandardScaler()
        X_train = scaler.fit_transform(X_train)
        X test = scaler.transform(X test)
In [ ]: | # Normalize the features
        scaler = MinMaxScaler()
        X_train = scaler.fit_transform(X_train)
        X test = scaler.transform(X test)
In [ ]: | X_train, X_test
Out[]: (array([[0.42211055, 0.
                                      , 0. , ..., 0.
                                                                  , 0.09649872,
                [0.56281407, 0.67213115, 0.38095238, ..., 0.42026826, 0.51409052,
                 0.48333333],
                [0.69849246, 0.37704918, 0.3015873, ..., 0.42771982, 0.24594364,
                 0.01666667],
                [0.50753769, 0.70491803, 0.58730159, ..., 0.67958271, 0.45175064,
                 0.28333333],
                                      , 0. , ..., 0.6318927 , 0.05422716,
                [0.70854271, 0.
                 0.13333333],
                [0.6281407 , 0.78688525, 0.
                                                , ..., 0.33532042, 0.07856533,
                          ]]),
         array([[0.49246231, 0.47540984, 0.52380952, ..., 0.50670641, 0.15029889,
                 0.36666667],
                [0.56281407, 0.6147541, 0.50793651, ..., 0.53204173, 0.02988898,
                [0.54271357, 0.52459016, 0.
                                               , ..., 0.45901639, 0.03415884,
                 0.
                          ],
                [0.47738693, 0.59016393, 0.
                                                , ..., 0.54843517, 0.17378309,
                 0.6
                [0.73366834, 0.57377049, 0.6031746, ..., 0.41728763, 0.11058924,
                 0.13333333],
                [0.3718593, 0.57377049, 0.63492063, ..., 0.52608048, 0.2677199,
                 0.3
                          ]]))
```

1. Logistic Regression

```
In [ ]: model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```

```
In [ ]: accuracy = accuracy_score(y_test, y_pred)
    print(f'Logistic Regression Accuracy: {accuracy}')
Logistic Regression Accuracy: 0.7597402597402597
```

Confusion matrix

```
In [ ]: confusion_mat = confusion_matrix(y_test, y_pred)
    print(f'Confusion Matrix:\n{confusion_mat}')

Confusion Matrix:
    [[84 15]
    [22 33]]
```

AUC

```
In [ ]: fpr, tpr, thresholds = roc_curve(y_test, y_pred)
    auc = roc_auc_score(y_test, y_pred)
    print(f'Area Under the Curve: {auc}')
```

Area Under the Curve: 0.72424242424242

2. kNN

```
In [ ]: accuracy = accuracy_score(y_test, y_pred)
print(f'kNN Accuracy: {accuracy}')

kNN Accuracy: 0.72727272727273
```

Confusion Matrix

```
In [ ]: confusion_mat = confusion_matrix(y_test, y_pred)
    print(f'Confusion Matrix:\n{confusion_mat}')

Confusion Matrix:
    [[83 16]
    [26 29]]
```

AUC

```
In [ ]: fpr, tpr, thresholds = roc_curve(y_test, y_pred)
    auc = roc_auc_score(y_test, y_pred)
    print(f'Area Under the Curve: {auc}')
```

Area Under the Curve: 0.6828282828282828

3. Decision Tree

```
In [ ]: from sklearn.tree import DecisionTreeClassifier

dt = DecisionTreeClassifier()
    dt.fit(X_train, y_train)
    y_pred = dt.predict(X_test)
```

```
In [ ]: accuracy = accuracy_score(y_test, y_pred)
    print(f'Decision Tree Accuracy: {accuracy}')

Decision Tree Accuracy: 0.7012987012987013
```

Confusion Matrix

```
In [ ]: confusion_mat = confusion_matrix(y_test, y_pred)
    print(f'Confusion Matrix:\n{confusion_mat}')

Confusion Matrix:
    [[72 27]
        [19 36]]
```

AUC

```
In [ ]: fpr, tpr, thresholds = roc_curve(y_test, y_pred)
    auc = roc_auc_score(y_test, y_pred)
    print(f'Area Under the Curve: {auc}')
```

Area Under the Curve: 0.6909090909090909

4. Naïve Bayes

I'll use the **GaussianNB** from *sklearn.naive_bayes* to perform Naïive Bayes

```
In [ ]: from sklearn.naive_bayes import GaussianNB

nb = GaussianNB()
nb.fit(X_train, y_train)
y_pred = nb.predict(X_test)
```

```
In [ ]: accuracy = accuracy_score(y_test, y_pred)
print(f'Naïve Bayes Accuracy: {accuracy}')

Naïve Bayes Accuracy: 0.7597402597402597
```

Confusion Matrix

```
In [ ]: confusion_mat = confusion_matrix(y_test, y_pred)
    print(f'Confusion Matrix:\n{confusion_mat}')

    Confusion Matrix:
    [[81 18]
        [19 36]]
```

AUC

```
In [ ]: fpr, tpr, thresholds = roc_curve(y_test, y_pred)
    auc = roc_auc_score(y_test, y_pred)
    print(f'Area Under the Curve: {auc}')
```

Area Under the Curve: 0.73636363636363

5. Support Vector Machine (SVM)

I'll use the **SVC** from *sklearn.svm* to perform SVM classification.

```
In [ ]: from sklearn.svm import SVC

svm = SVC()
svm.fit(X_train, y_train)
y_pred = svm.predict(X_test)
```

```
In [ ]: accuracy = accuracy_score(y_test, y_pred)
print(f'SVM Accuracy: {accuracy}')

SVM Accuracy: 0.77272727272727
```

Confusion Matrix

```
In [ ]: confusion_mat = confusion_matrix(y_test, y_pred)
    print(f'Confusion Matrix:\n{confusion_mat}')

Confusion Matrix:
    [[87 12]
        [23 32]]
```

AUC

```
In [ ]: fpr, tpr, thresholds = roc_curve(y_test, y_pred)
    auc = roc_auc_score(y_test, y_pred)
    print(f'Area Under the Curve: {auc}')
```

Area Under the Curve: 0.7303030303030303

Final Report after Comparing the Results

Comparison of the performance of the different classification algorithms on the diabetes dataset:

1. Logistic Regression:

Accuracy: 0.760

Confusion Matrix:

[[84 15] [22 33]]

AUC: 0.724

2. kNN:

Accuracy: 0.727

Confusion Matrix:

[[83 16] [26 29]]

AUC: 0.683

3. Decision Tree:

Accuracy: 0.701

Confusion Matrix:

[[72 27] [19 36]]

AUC: 0.691

4. Naïve Bayes:

Accuracy: 0.760

Confusion Matrix:

[[81 18] [19 36]]

AUC: 0.736

5. Support Vector Machine:

Accuracy: 0.773

Confusion Matrix:

[[87 12] [23 32]]

AUC: 0.730

From the results, we observe that **Logistic Regression**, **SVM** and **Naïve Bayes** achieved the **highest** accuracy scores of **0.760**, **0.773** and **760** respectively. However, Naïve Bayes outperformed Logistic Regression slightly in terms of AUC (0.736 vs. 0.724). KNN also performed well with an accuracy of 0.727 and an AUC of 0.683. Decision Tree had a slightly lower accuracy of 0.701 and AUC (0.691) among the evaluated algorithms.

Conclusion:

- 1. SVM emerged as the top-performing algorithm with an accuracy of 0.773 and an AUC of 0.730, making it the recommended choice for classification on this diabetes dataset.
- 2. Logistic Regression and Naïve Bayes achieved the highest accuracy scores of 0.760.
- 3. kNN demonstrated slightly lower accuracy compared to other algorithms, with a score of 0.727.
- 4. Decision Tree showed moderate accuracy with a score of 0.701.
- 5. AUC scores varied across algorithms, with Naïve Bayes having the highest AUC of 0.736.
- 6. Logistic Regression, Naïve Bayes, and Support Vector Machine demonstrated competitive performance in terms of both accuracy and AUC.
- 7. Decision Tree exhibited decent performance but had slightly lower accuracy compared to other algorithms.

Based on these results, **Support Vector Machine** and **Naïve Bayes** could be considered as the top-performing classifiers for the diabetes dataset, while Decision Tree and kNN may further optimized to improve the performance.