Técnicas de Muestreo I

Patricia Isabel Romero Mares

Departamento de Probabilidad y Estadística IIMAS UNAM

noviembre 2015

Muestreo con probabilidad proporcional al tamaño

Muestreo con probabilidad proporcional al tamaño

Cuando las unidades muestrales varían considerablemente de tamaño y la variable bajo estudio está relacionada con el tamaño de la unidad, el m.a.s. podría no ser un diseño adecuado.

Lo adecuado es considerar esta información de tamaño asignando las probabilidades de selección de forma proporcional al tamaño de la unidad.

Muestreo con probabilidad proporcional al tamaño (ppt ó pps)

Muestreo con probabilidad proporcional al tamaño

Hay dos formas:

Con reemplazo. La probabilidad de selección de una unidad específica en cualquier extracción es la misma \Rightarrow cálculo de varianza sencillo.

Sin reemplazo. La probabilidad de selección de una unidad específica varía de acuerdo al número de extracción \Rightarrow cálculo de varianza difícil o imposible.

Algoritmo

N= tamaño de la población n= tamaño de la muestra X_i medida de tamaño de la $U_i,\ i=1,\dots,N$ (es conocida)

Algoritmo.

1. Se forman los acumulados sucesivos.

$$U_1$$
 X_1
 U_2 $X_1 + X_2$
 U_3 $X_1 + X_2 + X_3$

$$U_N \quad X_1 + X_2 + X_3 + \ldots + X_N = X$$

Algoritmo

2. Se selecciona un número aleatorio R tal que

$$1 \le R \le \sum_{i=1}^{N} X_i = X$$

3. Se selecciona la U_i si

$$X_1 + X_2 + \ldots + X_{i-1} < R \le X_1 + X_2 + \ldots + X_i$$

4. Se repiten los pasos 2 y 3 hasta completar *n* unidades en muestra.

Ejemplo de selección ppt

Una comunidad tiene 10 huertos de diferentes tamaños. Se desea tomar una muestra ppt con reemplazo de tamaño 4.

Tamaño	Acumulado	Rango
150	150	1-150
50	200	151-200
80	280	201-280
100	380	281-380
200	580	381-580
160	740	581-740
40	780	741-780
220	1000	781-1000
60	1060	1001-1060
140	1200	1061-1200
	150 50 80 100 200 160 40 220 60	150 150 50 200 80 280 100 380 200 580 160 740 40 780 220 1000 60 1060

Ejemplo de selección ppt

Se seleccionan 4 números aleatorios R tales que

$$1 \le R \le 1200$$

Para R = 600 se selecciona U_6

R=2 se selecciona U_1

R = 796 se selecciona U_8

R = 901 se selecciona U_8

Muestra= $\{U_1, U_6, U_8, U_8\}$

- Y_i valor de la característica de interés en $U_i, i = 1, \dots, N$
- X_i valor de la medida de tamaño en $U_i, i = 1,...,N$ (conocida)
- P_i probabilidad de extracción de U_i , i = 1, ..., N

$$P_i = \frac{X_i}{X}$$
, donde $X = \sum_{i=1}^{N} X_i$

Sea

$$Z_i = \frac{Y_i}{P_i} = \frac{Y_i}{\frac{X_i}{X}} = \frac{Y_i}{X_i} X \quad i = 1, \dots, N$$

Entonces,

$$\hat{Y} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{P_i} = \frac{1}{n} \sum_{i=1}^{n} z_i = \bar{z}$$

A cada elemento de la población se le asocia el valor

$$Z_i = \frac{Y_i}{P_i} = \frac{Y_i}{X_i} X$$

Al tomar la muestra, los valores obtenidos serán:

$$z_i = \frac{y_i}{P_i}$$

 $\{z_1, z_2, \dots, z_n\}$ v.a.i.i.d.

La probabilidad de elegir en la primera extracción la U_i , es decir, que el valor de z_1 sea Z_i es:

$$P(z_1 = Z_i) = \frac{X_i}{X}, i = 1,...,N$$

La probabilidad de elegir en la j-ésima extracción la U_i es:

$$P(z_j = Z_i) = \frac{X_i}{X}, i = 1, \dots, N$$

Entonces,

$$E(z_j) = \sum_{i=1}^{N} Z_i P(z_j = Z_i)$$

$$= \sum_{i=1}^{N} Z_i \frac{X_i}{X} = \sum_{i=1}^{N} \frac{Y_i}{X_i} X \frac{X_i}{X}$$

$$= \sum_{i=1}^{N} Y_i = Y$$

Cualquier z_j es un estimador insesgado de Y, de hecho, un estimador de razón:

$$z_j = \frac{Y_j}{X_j} X$$

$$V(z_{j}) = E[z_{j} - E(z_{j})]^{2}$$

$$= \sum_{i=1}^{N} (Z_{i} - Y)^{2} P(z_{j} = Z_{i})$$

$$= \sum_{i=1}^{N} (Z_{i} - Y)^{2} \frac{X_{i}}{X}$$

$$= \sum_{i=1}^{N} \left(\frac{Y_{i}}{X_{i}}X - Y\right)^{2} \frac{X_{i}}{X} \left\{\frac{X^{2}}{X^{2}}\right\}$$

$$V(z_{j}) = \sum_{i=1}^{N} \left(\frac{Y_{i}}{X_{i}} - \frac{Y}{X}\right)^{2} X_{i}X = S_{z}^{2}$$

Entonces,

$$V(\hat{Y}) = V(\bar{z}) = \frac{1}{n^2} \sum_{i=1}^n V(z_i) \text{ {son independientes}}$$

$$= \frac{1}{n^2} n V(z_j) = \frac{1}{n} V(z_j) = \frac{1}{n} S_z^2$$

$$V(\hat{Y}) = \frac{X}{n} \sum_{i=1}^N \left(\frac{Y_i}{X_i} - \frac{Y}{X}\right)^2 X_i$$

Note que si se tiene una proporcionalidad perfecta entre Y_i y X_i entonces

$$\frac{Y_i}{X_i} = k, i = 1, \dots, N$$

$$\frac{Y}{X} = k$$

entonces,

$$\left(\frac{Y_i}{X_i} - \frac{Y}{X}\right) = 0 \Rightarrow V\left(\hat{Y}\right) = 0$$

y $\hat{Y} = Y$, ya que

$$E(\bar{z}) = \frac{1}{n} \sum_{i=1}^{n} E(z_i) = \frac{1}{n} nY = Y$$

El estimador de la varianza del estimador del total es:

$$\hat{V}\left(\hat{Y}\right) = \hat{V}\left(\bar{z}\right) = \frac{1}{n}\hat{S}_{z}^{2} = \frac{1}{n}\sum_{i=1}^{n}\frac{\left(z_{i} - \bar{z}\right)^{2}}{n-1}$$

$$\hat{V}(\hat{Y}) = \frac{1}{n} \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{y_i}{P_i} - \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{P_i} \right)^2 \\
= \frac{1}{n(n-1)} \sum_{i=1}^{n} \left(X \frac{y_i}{X_i} - \frac{X}{n} \sum_{i=1}^{n} \frac{y_i}{X_i} \right)^2 \\
\hat{V}(\hat{Y}) = \frac{X^2}{n(n-1)} \sum_{i=1}^{n} \left(\frac{y_i}{X_i} - \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{X_i} \right)^2$$

Estimador de la media poblacional

$$\hat{\bar{Y}} = \frac{\hat{Y}}{N}$$

$$V\left(\hat{\bar{Y}}\right) = \frac{1}{N^2}V\left(\hat{Y}\right) = \frac{1}{N^2}\frac{S_z^2}{n}$$

$$\hat{V}\left(\hat{\bar{Y}}\right) = \frac{1}{N^2}\hat{V}\left(\hat{Y}\right) = \frac{1}{N^2}\frac{\hat{S}_z^2}{n}$$

Tamaño de muestra

Considerando que \hat{Y} tiene distribución normal, el tamaño de muestra para una precisión δ y confianza $1-\alpha$ usando muestreo ppt con reemplazo es:

$$n = \frac{z_{\alpha/2}^2 S_z^2}{\delta^2}$$

ppt sin reemplazo

Existe un algoritmo de selección ppt sin reemplazo, llamado ppt sistemático.

Algoritmo

1. Forme los totales acumulados sucesivos

$$U_1$$
 X_1
 U_2 $X_1 + X_2$
 U_3 $X_1 + X_2 + X_3$

$$U_N \quad X_1 + X_2 + X_3 + \ldots + X_N = X$$

2. Seleccione un número aleatorio R tal que

$$1 \le R \le k \text{ con } k = \sum_{i=1}^{N} X_i/n = X/n$$

3. Selecione las unidades cuyos índices satisfagan

$$X_1 + X_2 + \dots + X_{i-1} < R + jk \le X_1 + X_2 + \dots + X_i$$
 para $j = 0, 1, 2, \dots, (n-1).$

El algoritmo asegura que ninguna unidad será seleccionada más de una vez si

$$X_i \le k = \frac{X}{n}, \quad i = 1, \dots, N$$

Se utiliza este algoritmo para seleccionar muestras ppt sin reemplazo, pero se utilizan los estimadores del ppt con reemplazo.