Improving Word Representations via Global Context and Multiple Word Prototypes

Eric H. Huang

2012

a new architecture

- incorporating both local and global document context
- accounts for homonymy and polysemy by learning multiple embeddings per word

Minimizing the ranking loss

$$C_{s,d} = \sum_{\omega \in V} \max(0, 1 - g(s,d) + g(s^{\omega},d))$$

s: a word sequence

d: document in which s occurs

g(): scoring function

sw: s with the last word replaced by word w

Neural Network Architecture

- two scoring components
- 1. local context
- 2. other global context

Local and global context

Score of local context

$$a_1 = f(W_1[x_1; x_2; ...; x_m] + b_1)$$

 $score_1 = W_2a_1 + b_2$

 x_i : embedding of word i in the sequence Embedding matrix $L \in R^{n \times |V|}$ f: element-wise activation function W_1 , W_2 : the first and second layer weights of

b₁, b₂: biases of each layer

the neural network

Explanation

$$a_{1} \in R^{h \times 1}$$

$$W_{1} \in R^{h \times (mn)}$$

$$W_{2} \in R^{1 \times h}$$

Score of the global context -1

$$c = rac{\displaystyle\sum_{i=1}^k \omega(t_i)d_i}{\displaystyle\sum_{i=1}^k \omega(t_i)}$$

d_i: word embedding in document w(t_i): weight function that captures the importance of word t_i in the document.

Score of the global context-2

$$a_1^{(g)} = f(W_1^{(g)}[c;x_m] + b_1^{(g)})$$

 $score_g = W_2^{(g)}a_1^{(g)} + b_2^{(g)}$

x_m: the last word in the word sequence c: weighted average of all word vectors in the document

Explanation

$$a_1^{(g)} \in R^{h^{(g)} \times 1}$$

$$W_1^{(g)} \in R^{h^{(g)} \times (2n)}$$

$$W_2^{(g)} \in R^{1 \times h^{(g)}}$$

Final score

$$score = score_l + score_g$$

Now we has the score of a sequence-document pair —— g(s, d)

For corrupt examples, just randomly choosing a word from dictionary.

Multi-Prototype Neural Language Model

- use our learned single-prototype embeddings to represent each con- text window, which can then be used by clustering to perform word sense discrimination
- fixed-sized context windows of all occurrences of a word (5 words before and after the word occurrence)

Clustering

- Each context is represented by a weighted average of the context words' vectors (use idfweighting as the weighting function)
- use spherical k-means to cluster these context representations and each word occurrence in the corpus is re-labeled to its associated cluster

Similarity between a pair of words

$$AvgSimC(\omega,\omega') =$$

$$\frac{1}{K^{2}} \sum_{i=1}^{k} \sum_{j=1}^{k} p(c,\omega,i) p(c',\omega',j) d(\mu_{i}(\omega),\mu_{j}(\omega'))$$

p(c,w,i): the likelihood of word w in the cluster i given context c

 $\mu_i(\omega)$: the vector representing the i-th cluster centroid of w

Experiments

- 50- dimensional embeddings
- 10-word windows of text as the local context
- 100 hidden units
- no weight regularization for both neural networks
- fix the number of prototypes to be 10.

With global context

Center	C&W	Our Model
Word		
markets	firms, industries,	market, firms,
	stores	businesses
American	Australian,	U.S., Canadian,
	Indian, Italian	African
illegal	alleged, overseas,	harmful, prohib-
	banned	ited, convicted

With multi-prototype

Center Word	Nearest Neighbors	
bank_1	corporation, insurance, company	
bank_2	shore, coast, direction	
star_1	movie, film, radio	
star_2	galaxy, planet, moon	
cell_1	telephone, smart, phone	
cell_2	pathology, molecular, physiology	
left_1	close, leave, live	
left_2	top, round, right	

Spearman's correlation on new dataset

Model	$\rho \times 100$
C&W-S	57.0
Our Model-S	58.6
Our Model-M AvgSim	62.8
Our Model-M AvgSimC	65.7

A&O