

Photonics

Lasers - Part A

Stimulated emission
Gain and amplification

Lasers

Fotonica

The LASER

- 1917: Einstein postulates the concept of photons and stimulated emission
- **1954**: First microwave laser (maser) by Charles Townes and Arthur Schawlow (Nobelprize in 1964)
- **1960**: First optical laser (ruby laser) by Theodore Maiman
- **1962:** First semiconductor laser (3 independent teams in US and USSR)
- Today: From "a solution looking for a problem" in 1960 to an irreplaceable tool in telecom and ICT, industry, medical world, measurement instruments, fundamental science

Laser cavity

Laser-oscillator = amplification+ feedback

- What is a laser oscillation?
- A harmonic (sinusoidal at optical frequencies) solution to Maxwell's equation (without external light source) taking into account the boundary conditions imposed by the laser cavity

This chapter

- Gain (amplification and attenuation)
 - Units of gain and loss
- Resonance in laser resonators
 - linear resonators mode structure
- Properties of laser light
- Examples of lasers

Fotonica

Gain (amplification and attenuation)

Emission and absorption (2 levels)

- Transition between atomic or molecular levels: emission or absorption of a photon
- Absorption:
 - Photon hits system
 - System in higher energy state
- Spontaneous emission
 - System falls back to ground state
 - Emission of photon
- Stimulated emission
 - Photon hits system
 - System falls back to ground state
 - Emission of identical photon

Einstein relations

- Absorption:
 - Proportional to N_1 (density of atoms in levels 1)
 - Proportional to photon energy density

$$\frac{dN_2}{dt}\Big|_{abs} = -\frac{dN_1}{dt}\Big|_{abs} = N_1 P_{abs} = B_{21} \rho(\nu_0) N_1$$

As defined (10.41)

- Spontaneous emission:
 - Proportional to N₂ (density of atoms in levels 2)

$$\left. \frac{dN_2}{dt} \right|_{sp} = -\frac{dN_1}{dt} \bigg|_{sp} = -N_2 P_{sp} = -A_{21} N_2$$
As defined (10.29)

- Stimulated emission
 - Proportional to N₂
 - Proportional to photon energy dens.

$$\left. \frac{dN_2}{dt} \right|_{st} = -\frac{dN_1}{dt} \bigg|_{st} = -N_2 P_{st} = -B_{21} \rho(\nu_0) N_2$$
As defined (10.36)

Solutions at thermal equilibrium

- Einstein relations $g_1B_{12}=g_2B_{21}$ $A_{21}\frac{c^3}{8\pi h v^3}=B_{12}$ (including degeneracy of levels 1 and 2)
- Boltzmann distribution $\frac{N_1}{N_2} = \frac{g_1}{g_2} exp\left(\frac{E_2 E_1}{kT}\right) = \frac{g_1}{g_2} exp\left(\frac{h\nu}{kT}\right)$

Degeneracy

- At thermal equilibrium at room temperature
 - $\blacksquare k_B T \ll \hbar \omega$ at optical frequencies
 - $N_2 \ll N_1$: higher energy levels much less occupied
 - Absorption >> stimulated emission
- Amplification by stimulated emission?
 - Bring system out of thermal equilibrium negative T

Absorption or amplification of a field

Monochromatic EM field, intensity I(x) [W/m²]

$$I(x) = \rho_{\nu}(x)v_g = N_{ph}(x) \ h\nu \ v_g$$
 $v_g = \frac{c}{n}$

- Energy density ρ_{ν} [J/m³]
- Photon density N_{ph} [1/m³] (all have freq v)
- Group velocity v_g (n = group index)

Absorption:

$$\left. \frac{dN_{ph}}{dt} \right|_{ahs} = \frac{dN_1}{dt} \bigg|_{ahs} = -B_{21}\rho_{\nu}N_1$$

Stimulated emission:

$$\left. \frac{dN_{ph}}{dt} \right|_{st} = -\frac{dN_1}{dt} \bigg|_{st} = B_{21} \rho_{\nu} N_2$$

• Total:
$$\frac{dN_{ph}}{dt} = \frac{dN_{ph}}{dt}\Big|_{st} + \frac{dN_{ph}}{dt}\Big|_{abs} = B_{21}\rho_{\nu}(N_2 - N_1) = B_{21}\frac{N_{ph}}{h\nu}(N_2 - N_1)$$
 $B_{12} = B_{21}$

• N_{ph} increases with time if $N_2 > N_1$, decreases if $N_2 < N_1$

9

Absorption or amplification of a field

$$\frac{dN_{ph}}{dt} = B_{21}\rho_{\nu}(N_2 - N_1) \qquad \rho_{\nu}(x) = \frac{I(x)}{v_g} \qquad N_{ph}(x) = \frac{\rho_{\nu}(x)}{h\nu} = I(x)\frac{1}{h\nu \cdot v_g}$$

Change coordinate from t to x

$$\frac{dI}{dx} = \frac{dt}{dx}\frac{dI}{dt} = \frac{1}{v_a}\frac{dI}{dt} = hv\frac{dN_{ph}}{dt}$$

$$\frac{dI}{dx} = h\nu\rho_{\nu}(x)B_{21}(N_2 - N_1) = I(x)\frac{h\nu}{\nu_g}B_{21}(N_2 - N_1)$$

- Solution: $I(x) = I_0 e^{gx}$ where: $g \equiv \frac{h\nu}{\nu_g} B_{21} (N_2 N_1)$
- g = gain= per unit distance [1/m]
- g > 0 intensity grows with x, g < 0 intensity decreases with x

Lasers Fotonica

Amplification and attenuation in uniform material

- Assume N_1 and N_2 are constant through the material. True if:
 - Intensity of the light is low

and / or

■ For absorption:

$$\left. \frac{dN_2}{dt} \right|_{sp} \gg \frac{dN_2}{dt} \bigg|_{abs}$$
 then N_2 will stay $\ll N_1$

amplification

$$G = \frac{I(L)}{I_0} = \frac{A \cdot I(L)}{A \cdot I_0} = \frac{P(L)}{P_0} = e^{gL}$$

The decibel (dB)

Amplification or gain

$$G = \frac{P_{out}}{P_{in}}$$

The dB unit is used to quantify power ratios, the amplification or gain can be expressed as:

$$G_{dB} \equiv 10 \cdot log \frac{P_{out}}{P_{in}}$$

Power amplification in dB units

$$G = 10 \cdot log\left(\frac{I(L)}{I_0}\right) = 10 \cdot log(e^{gL}) = \frac{10}{ln10} \cdot gL = 4.343 \cdot g \cdot L$$

Negative number for amplification in dB – intensity goes down (absorption)

Absorption and gain - effective cross-section

 Gain and loss properties are also often expressed as effective cross-sections for practical calculations for specific optical transitions and linewidth of the light source.

• Gain
$$I(x) = I_0 e^{gx}$$

• The effective gain cross-section σ_{eff} is defined as

$$g=(N_2-N_1)\sigma_{eff}$$
 or when $N_2\gg N_1$ $g=N_2\sigma_{eff}$ Units: $[\mathbf{m}^{-1}]=[\mathbf{m}^{-3}]$ $[\mathbf{m}^2]$

For absorption

$$\alpha = (N_1 - N_2)\sigma_{eff}$$
 or when $N_1 \gg N_2$ $\alpha = N_1\sigma_{eff}$

• Remember N_1 and N_2 are concentrations

Lasers

How to achieve population inversion

Fotonica (Proposition of the Proposition of the Pro

Population inversion

• Gain g:

$$g = (N_2 - N_1)\sigma_{eff}$$

Thermal equilibrium

$$\frac{N_1}{N_2} = \frac{g_1}{g_2} exp\left(\frac{E_2 - E_1}{kT}\right) = \frac{g_1}{g_2} exp\left(\frac{h\nu}{kT}\right)$$

- $N_1 > N_2$
- \blacksquare *g* < 0: net absorption
- Population inversion
 - $N_1 < N_2$
 - \blacksquare g > 0: net gain
 - No thermal equilibrium

Lasers

Pump

Pump: bring system in population inversion through external energy source

- Pump mechanisms
 - Optical excitation
 - Gas discharge
 - Electron bombardment
 - Chemical energy
 - Current injection over a junction
 - Semiconductor lasers
 - Energy bands instead of energy levels

Pumping in a two-level system

- Pump with photons with energy
- Stationary regime
- absorption = emission

$$(N_2 - N_1)\sigma_{eff} N_{ph} \frac{c}{n} - \frac{N_2}{\tau_2} = 0$$

and so

$$N_2 = \frac{N_1}{1 + \frac{n}{N_{ph}\tau_2\sigma_{eff}c}}$$

■ $N_2 < N_1$ Population inversion not possible

$$h\nu = E_2 - E_1$$

Pumping in a three level system

- Pumping to a higher energy level E₃
 - Short life time: little occupied
 - Spontaneous decay to E₂
 - No population inversion between E_3 en E_1 : efficient pumping
- E_2 : long lifetime
 - Little spontaneous emission
 - Population inversion between E₂ and E₁
- Drawback: need larger pump power to reduce N₁ below N₂
 - Pop. inversion requires low N₁
 - Possible absorption from N₁ to N₂

Pumping in a 4-level system

- Pumping from E₀ to E₃
 - Short lifetime: little occupied
 - \blacksquare Spontaneous decay to E_2
 - No population inversion between E_3 en E_0 : efficient pumping
- E_2 : long lifetime
 - Little spontaneous emission
 - Population inversion between E_2 en E_1
- E_1 : short life time
 - \blacksquare Fast decay to E_0
- drawback: high pump energy (E_3-E_0) : Energy difference $(E_3-E_0)-(E_2-E_1)$ is lost

Example 13.2

Photonics

Lasers - Part B

Laser rate equations

Starting up a laser

- 1. Optical gain medium is pumped to population inversion
- 2. A fraction of the pumped particles give rise to spontaneous emission
- 3. The spontaneously emitting photons that propagate along the laser axis get amplified by stimulated emission
- 4. The mirrors result in a beam of light bouncing back and forth in the cavity
- 5. For certain wavelengths (frequencies), the spontaneous emission contributions (and their amplification) interfere constructively
- 6. This leads to stable laser operation with a loop gain of 1

Rate equations (1)

- Rate equations:
 - Dynamics of the average particle density
 - No information about phase or frequency
- Pump rate R_p : from E_1 to E_2 over E_3
- Rate equations #photons, #systems in E₁ and E₂

$$\frac{dN_1}{dt} = \frac{N_2}{\tau_2} + N_{ph}v_g\sigma(N_2 - N_1) - R_p$$

$$\frac{dN_2}{dt} = R_p - \frac{N_2}{\tau_2} - N_{ph}v_g\sigma(N_2 - N_1)$$

$$\frac{dN_{ph}}{dt} = N_{ph}v_g\sigma(N_2 - N_1) + \beta \frac{N_2}{\tau_2} - \frac{N_{ph}}{\tau_p}$$

- lacksquare eta: the fraction of spontaneous emission that couples into the laser mode
- \mathbf{I}_{p} : average lifetime of a photon in the cavity

Rate equations (2)

- $g = (N_2 N_1)\sigma$ Gain
- Given: total particle density: $N_1 + N_2 = N$ reduction to two equations:

$$\frac{dN_2}{dt} = \frac{R_p}{dt} - \frac{N_2}{\tau_2} - v_g g N_{ph}$$

$$\frac{dN_{ph}}{dt} = v_g g N_{ph} + \beta \frac{N_2}{\tau_2} - \frac{N_{ph}}{\tau_p}$$

- Neglect spontaneous emission: $\frac{dN_{ph}}{dt} = N_{ph} \left(v_g g \frac{1}{\tau_n} \right)$
- When $N_{ph} \ll N$, g can be considered constant

$$N_{ph}(t) = exp\left(\left(v_g g - \frac{1}{\tau_p}\right)t\right) \quad \text{using } \frac{dN_{ph}}{dt}v_g = \frac{dN_{ph}}{dx} \qquad N_{ph}(x) = exp\left(\left(g - \frac{1}{v_g \tau_p}\right)x\right)$$

$$N_{ph}(x) = exp\left(\left(\frac{g}{v_g \tau_p}\right)x\right)$$

 $loop \ gain = exp\left(\left(\frac{g}{g} - \frac{1}{v_a \tau_n}\right) 2L\right)$ Passing through the cavity (length *L*):

28

Stationary rate equations

Stationary regime: d/dt = 0

$$0 = \frac{N_2}{\tau_2} + v_g g N_{ph} - R_p$$

$$0 = v_g g N_{ph} + \beta \frac{N_2}{\tau_2} - \frac{N_{ph}}{\tau_p}$$

$$g = (2N_2 - N)\sigma$$

- Three regimes as a function of R
 - Low R: no population inversion
 - Transparency: population inversion starts
 - Oscillation threshold: loop gain = 1

Stationary rate equations

 How do the following quantities evolve when ramping up the pump rate (i.e. pump power, current etc)?

Lasers

Stationary rate equations

- R < oscillation threshold and transparency
 - No population inversion or gain < cavity loss</p>
 - No amplification
 - $N_{ph} \sim 0$

$$N_2 = R_p \tau_2$$

$$N_2 - N_1 < 0$$

$$g < 0$$

$$N_{ph} \sim 0$$

Stationary rate equations

- R = oscillation threshold
 - Population inversion
 - gain= cavity loss
 - loop gain < 1

$$N_{2thr} - N_{1thr} = \frac{1}{\sigma v_g \tau_p}$$
$$g = \frac{1}{v_g \tau_p} = \frac{n}{c \tau_p}$$
$$N_{ph} \sim 0$$

Stationary rate equations

- R > oscillation threshold
 - Population inversion
 - Loop gain= 1
 - \blacksquare N₂ en N₁ locked to threshold value

$$N_1 = N_{1thr}$$
 $N_2 = N_{2thr}$ $g = \frac{1}{v_g \tau_p}$

$$N_{ph} = -\frac{R_p - R_{thr}}{\sigma v_g (N_{2thr} - N_{1th})} = \tau_p (R_p - R_{thr})$$

$$\frac{dN_2}{dt} = \frac{R_p}{\tau_2} - \frac{N_2}{\tau_2} - v_g g N_{ph} = 0$$

Optical power linearly dependent on pump rate (above threshold) Note only part of N_{ph} is output

Stationary rate equations

• Three level system

Stationary rate equations

• Four level system

Exercise: Basic laser

Example 13.3

- Consider a cavity with plane mirrors with (power) reflectance R_1 and R_2 , transmittance T_1 and T_2 and length L.
- The material has a refractive index n.
- The laser is well above the threshold so that spontaneous emission is negligible in the resonance condition.
- The cavity material has losses a [1/m] (due to scattering for example) next to the absorption and stimulated emission process.
- Derive an expression for the needed material gain g by stimulated emission for lasing as a function of the cavity parameters.
- → Calculate the gain at threshold (in 1/cm) for the following parameters

Semiconductor laser with

L = 0.3 mm,

$$R_1 = R_2 = 0.3$$
,
 $\alpha = 30$ [dB/cm],
 $n = 3.5$
He-Ne laser with
L = 30 cm,
 $R_1 = 1$, $R_2 = 0.99$,
 $\alpha = 0$, $n = 1$

Photonics

Lasers - Part C

Laser cavities
Passive Fabry-Perot resonator
Resonator with optical amplifier

Laser resonator

- Up to this point only considered energy in the laser
- The resonator also determines the output frequency of the laser (together with the gain medium) and the quality of the beam of light
- Most simple two-mirror resonator:

Fabry-Pérot resonator

Only frequencies of the standing waves are allowed: <u>Longitudinal Modes</u>

Resonance analysis with plane waves

(see also Chapter 6)

- 1D cavity = Fabry-Perot-etalon
 - walls = semi-transparent mirrors
 - Length L, refractive index n
 - Phase change $\phi = n \cdot L \cdot k_0$ $k_0 = \frac{2\pi}{\lambda_0}$

Electric field amplitude of transmission:

$$t(\phi) = t_1 t_2 e^{-j\phi} + t_1 t_2 r_1 r_2 e^{-j3\phi} + t_1 t_2 r_1^2 r_2^2 e^{-j5\phi} + \cdots \qquad \phi = \frac{2\pi \cdot n \cdot L}{\lambda_0}$$

$$\phi = \frac{2\pi \cdot n \cdot L}{\lambda_0}$$

$$t(\phi) = \frac{t_1 t_2 e^{-j\phi}}{1 - r_1 r_2 e^{-j2\phi}}$$

Lasers

Transmission spectrum FP resonator

Power transmission:

Power transmission:
$$T = |t|^2 = \frac{t_1 t_2 \left(\frac{|t_1 t_2|}{1 - r_1 r_2}\right)^2}{1 + \frac{4r_1 r_2}{(1 - r_1 r_2)^2} sin^2 \phi} = \frac{T_{max}}{1 + F sin^2 \phi}$$

$$F \equiv \frac{4r_1 r_2}{(1 - r_1 r_2)^2}$$

$$T_{max} \equiv t_1 t_2 \left(\frac{|t_1 t_2|}{1 - r_1 r_2}\right)^2$$

$$\phi = \frac{2\pi \cdot n \cdot L}{\lambda_0}$$

• $T_{max} = 1$ if $r_1 = r_2$: symmetrical structure

and
$$t_1^2 t_2^2 = (1 - r_1^2)(1 - r_2^2)$$
: lossless mirrors

and
$$sin\phi=0$$
 $\phi=m\cdot\pi$ $m\in\mathbb{N}$
$$\frac{2\pi nL}{\lambda}=m\cdot\pi \ \Rightarrow \ \lambda=\frac{2nL}{m}$$
 Standing wave condition

Transmission spectrum FP etalon

Power transmission: symmetric loss-less Fabry-Perot

$$T = \frac{1}{1 + F \sin^2 \phi} \qquad F = \frac{4r^2}{(1 - r^2)^2}$$

• Maxima for $2\phi = 2 \cdot m \cdot \pi$, with m integer

or
$$L = m \frac{\lambda}{2n}$$

distance between transmission maxima

or
$$\Delta \lambda \approx \frac{\lambda^2}{2nL}$$
 $\Delta \nu = \frac{c}{2nL}$

Mode spacing = 1/round trip time in the cavity

$$T_{roundtrip} = \frac{1}{\Delta \nu} = \frac{2nL}{c}$$

Finesse and quality factor of a cavity

Finesse of a FP cavity

$$finesse \equiv \frac{distance\ between\ maxima}{3dB\ width\ of\ a\ peak} = \frac{\Delta \nu}{\Delta \nu_{3dB}}$$

• Q - factor of a cavity: 2π x the number of roundtrips the light has to make for the energy stored in the resonator to drop by a factor of 1/e (no other loss inside the cavity) (Chapter 6)

$$Q = \frac{2\pi}{\ln\left(\frac{1}{r_1^2 r_2^2}\right)}$$

 Related to photon lifetime (Example 13.3)

$$\tau_p = \frac{Q}{2\pi} T_{roundtrip} = \frac{Q}{2\pi} \frac{2nL}{c}$$

Alternative quality factor of a resonator

• Q - factor of a cavity: $2\pi x$ the number of light field oscillations the light field makes before the energy stored in the resonator has dropped by a factor of 1/e (only taking into account losses due to the mirror)

Fabry-Perot etalon with gain

With optical gain in the etalon

$$t = \frac{t_1 t_2 exp\left(\frac{g(v)L}{2}\right) exp(-j\phi)}{1 - r_1 r_2 exp(g(v)L) exp(-j2\phi)}$$

becomes infinite for: $r_1 r_2 exp(g(v)L) exp(-j2\phi) = 1$

Equation for loop gain

$$r_1 r_2 exp(\mathbf{g}(R, \nu)L) = 1$$

Equation for phase

$$\phi = \frac{2\pi nL}{\lambda} = m \cdot \pi \quad m \in \mathbb{N}$$

- Gain curve narrow compared to Δλ
 - Only 1 lasing frequency
- Gain curve broad compared to Δλ
 - Multiple longitudinal modes

Fabry-Perot laser - threshold spectrum

steady state electric field A described by the complex amplitude E of the envelope:

$$A = Ee^{i\omega t} \qquad \omega = 2\pi \frac{c}{\lambda}$$

Single transverse mode – plane wave

Optical amplifier gain g and adds spontaneous emission SE

• Relations between amplitudes:

$$E_{2} = E_{1} exp\left(\frac{g}{2}L + i\frac{2\pi n}{\lambda}L\right) + SE$$

$$E_{5} = E_{2} \cdot r_{2}$$

$$E_{6} = E_{5} exp\left(\frac{g}{2}L + i\frac{2\pi n}{\lambda}L\right)$$

$$E_{1} = E_{6} \cdot r_{1}$$

optical amplifier between two mirrors, gain ${\bf g}$, index ${\bf n}$

• Electric field gain is ½ the power gain

Solution (calculate E₃ from E₂)

$$E_{2} = \frac{SE}{r_{1}r_{2}exp\left(gL + i\frac{2\pi n}{\lambda}2L\right) - 1}$$

FP laser cavity output spectra

Low gain

 \blacksquare g(λ) = constant

- Gain close to threshold
- \blacksquare g(λ) variable

Gain close to threshold

 $= g(\lambda) = constant$

- Gain at threshold (gain + SE = 1)
- \blacksquare g(λ) variable

50

Mode spacing Example 13.5 - GaAs laser

- Example: GaAs semiconductor laser
 - Length L=0.3 mm
 The mode spacing becomes 140 GHz or 0.4 nm
 - Very broad gain curve (can be 50 nm)
 - Multiple longitudinal modes

Example 13.5 - GaAs laser spectrum

Mode spacing Example 13.5 – He-Ne laser

- Example: He-Ne laser
 - wavelength: l=633 nm
 - Length L= 30 cm
 The mode spacing becomes 500 MHz or 0.0007 nm
 - Gain curve: Doppler broadening ~ 1.5 GHz
 - Few longitudinal modes

Example 13.5 He-Ne laser spectrum

Longitudinal mode selection

- Laser with broad gain spectrum: multiple longitudinal modes
- Monomode spectrum can obtained
 - Using an additional spectral filter (short FP etalon) inside
 - Sharp filter high finesse
 - Side mode suppression

Photonics

Lasers

Cavity design using mirrors Transverse modes

<u>Fotonica</u> Lasers

Cavity with finite dimensions

- 1-dimensional laser: plane waves in the cavity
 - => No diffraction losses in the cavity
- Real optical cavities 3D: finite dimensions
 - Plane mirrors:
 - Diffraction loss
 - Lasing only possible when gain compensates loss
 - Spherically curved mirror
 - Light converging inside cavity
 - Deduce radius of curvature with ray optics

Spherical mirrors

Paraxial approximation:

$$\begin{bmatrix} x' \\ n\alpha' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -P & 1 \end{bmatrix} \begin{bmatrix} x \\ n\alpha \end{bmatrix} \qquad P = \frac{2n}{R}$$

$$P = \frac{2n}{R}$$

- Expansion of the sign convention
 - concave mirror: R>0
 - take into account the propagation direction
- Focal length f=n/P $f = \frac{R}{2}$

Lasers

Cavity system matrix

- Spherical mirror $\Rightarrow \begin{bmatrix} 1 & 0 \\ -P & 1 \end{bmatrix}$, P = 2/R

Matrix formalism for 1 roundtrip (length 2L)

$$\mathbf{M} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -P_2 & 1 \end{bmatrix} \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -P_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 - P_1 L & L(2 - P_1 L) \\ P_1 P_2 L - P_1 P_2 & 1 - P_1 L - 2P_2 L + P_1 P_2 L^2 \end{bmatrix}$$

with
$$P_i = \frac{1}{f_i} = \frac{2}{R_i}$$

Cavity system matrix

Transformation for two consecutive periods

$$\begin{bmatrix} x_{n+1} \\ \alpha_{n+1} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x_n \\ \alpha_n \end{bmatrix} \text{ and } \begin{bmatrix} x_{n+2} \\ \alpha_{n+2} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x_{n+1} \\ \alpha_{n+1} \end{bmatrix}$$

• Eliminate α_i : x_{n+2} - $(A+D)x_{n+1}$ + $(AD-BC)x_n$ =0 and (AD-BC)=1 det(\mathbf{M})=n/n'

with

$$A + D = 2 \left[1 - P_1 L - P_2 L + \frac{P_1 P_2 L^2}{2} \right] = 2 \left[2 \left(1 - \frac{P_1 L}{2} \right) \left(1 - \frac{P_2 L}{2} \right) - 1 \right]$$

Cavity system matrix

• Recursive relation for x_i : $x_{n+2} - (A + D) x_{n+1} + x_n = 0$

• Proposed solution:
$$x_n = \lambda \cdot x_{n-1} = \lambda^n \cdot x_0 = e^{\pm jn\theta} x_0$$

• Equation becomes:
$$\cos \theta = \frac{1}{2}(A + D)$$

$$A + D = 2\left[2\left(1 - \frac{P_1 L}{2}\right)\left(1 - \frac{P_2 L}{2}\right) - 1\right]$$

• Solution is non-divergent if q is real: -1 < cos q < 1

or:
$$0 \le \left(1 - \frac{P_1 L}{2}\right) \left(1 - \frac{P_2 L}{2}\right) \le 1$$
 Stability condition

Cavity stability

Stability condition:

$$0 \le \left(1 - \frac{P_1 L}{2}\right) \left(1 - \frac{P_2 L}{2}\right) \le 1$$

For a symmetrical cavity: $R_1=R_2=R$

$$f = \frac{R}{2}$$
 $P = \frac{2}{R}$

$$f = \frac{R}{2}$$
 $P = \frac{2}{R}$ $0 \le \left(1 - \frac{L}{R_1}\right)\left(1 - \frac{L}{R_2}\right) \le 1$

R < 0 --- unstable

--- metastable

-- metastable

R = L/2 concentrical metastable

Exercise: Laser stability: problem

• Suppose we have a symmetrical cavity with spherical mirrors. When a lens (focal length f) is now placed in the middle of this cavity, which condition does f have to fulfill for the cavity to remain stable?

• Tip: set-up the matrix M' for half the roundtrip. The full roundtrip is then M'⋅M'. Derive the stability criterium for the A' and D' in M'. It may also help to use a symbolic calculation tool.

63

Gaussian beam in a cavity

- Gaussian beam: spherical phase front https://en.wikipedia.org/wiki/Gaussian beam
- Resonance: beam must be the same after one round trip

$$q_2 = q_1$$
 $q_2 = \frac{Aq_1 + B}{Cq_1 + D}$ $\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda_0}{\pi \cdot n \cdot w^2(z)}$

Curvature spherical phase front = mirror curvature

$$R_1 = z_1 + \frac{b_0^2}{z_1}$$
 and $R_2 = z_2 + \frac{b_0^2}{z_2}$

rayleigh range \mathbf{b}_0

• If
$$R_1 = R_2 = R$$
:
 $z_1 = z_2 = \frac{L}{2}$
 $b_0^2 = \frac{L}{2} \left(R - \frac{L}{2} \right)$
 $w_0 = \sqrt{\frac{2}{k}} \sqrt{\frac{L}{2} \left(R - \frac{L}{2} \right)}$

beam waist

Gaussian beam in a cavity

•
$$z_1 = z_2 = \frac{L}{2}$$
 , $b_0^2 = \frac{L}{2} \left(R - \frac{L}{2} \right)$ and $w_0 = \sqrt{\frac{2}{k} \sqrt{\frac{L}{2} \left(R - \frac{L}{2} \right)}}$

- Only real solution when $R \ge \frac{L}{2}$ (same condition as for ray theory)
 - If R > L, then $b_0 > L/2$:
 - Beam is parallel in the laser and diffracts outside the mirrors
 - If R = L, then $b_0 = L/2$:
 - Rayleigh range of the Gaussian beam equals the cavity length
 - When R < L, then $b_0 < L/2$:
 - beam already diffracts within the laser cavity, on the outside you see a diverging beam

Transversal modes

• Wave equation $\frac{\partial^2 A}{dx^2} - 2jk \frac{\partial A}{dz} = 0$

General solution (2D-cavity):

$$\begin{split} \Psi(x,z) &= \sqrt{\frac{w_0}{w(z)}} H_m \left(\frac{\sqrt{2}x}{w(z)} \right) \\ &= -\frac{x^2}{w^2(z)} e^{-jkz} e^{j\left(m + \frac{1}{2}\right) \arctan \frac{z}{b_0} - j\frac{kx^2}{2R(z)}} \end{split}$$

with $H_{\rm m}$ Hermite-polynomials

- General solution (3D-cavity):
 - product of 2 2D-solutions
 - 2 transversal mode numbers

WebTop simulation – Lasers

https://sourceforge.net/projects/webtop-optics/

Laser modes

- Lasermode =
 Harmonic solution of Maxwell's equations that satisfy the resonance condition (an EM field that is the same after one roundtrip)
- Discrete solutions: characterized by three mode numbers
 - 1 mode number due to $2k_0nL = 2m\pi$ "Longitudinal mode number"
 - 2 mode numbers due to the different Gauss-Hermite-solutions "Transversal mode numbers"

Different transversal mode numbers

Lateral mode filter

- Applications that require strong spatial coherence:
 - high radiance
 - Diffraction limited beam
 - => Suppress all transversal modes except TEM₀₀

- Higher transversal modes:
 - Wider than TEM₀₀
 - Suppress by small lateral dimension in cavity Loss_{HO} > Loss_{TEM00}
 - \blacksquare TEM₀₀ will lase first

Photonics

Lasers

Proporties of laser beams Pulsed lasers

Properties of laser beams

- Monochromatic
 - Light constrained to very small frequency interval
 - Because of line shape and cavity
- Coherent
- Directional
 - Diffraction limited beam (minimal divergence for give beam width)
- Intense
 - Very high radiance
 - Very high intensity by focusing beam
 - Dangerous for the eye

Coherence

Coherence means: fixed phase relation between fields

- Case 1: Perfect monochromatic source
 - pure sinusoidal
 - perfect coherent
 - <u>fixed phase phase-relation in time and space</u>
- Case 2: incoherent source

Fotonica

Coherence

$$E(x, y, t) = A\sin(k \cdot y - \omega \cdot t + \phi)$$

Beams can be coherent or only partially coherent (indeed, even incoherent) in both space and time.

Source: prof R. Trebino Optics course

Pulsed lasers

- 2 types of lasers
 - Continuous Wave (CW):constant output power
 - continuous pump
 - Pulsed lasers: light in short pulses (ns, ps, fs)
 - continuous or pulsed pump
- What are pulsed lasers good for?
 - high peak powers
 - ultra fast optics (ps, fs)
 - broad band spectrum
 - Non-linear optics
 - Optical clocks
 - Tele/data-communication
 - (Bio)-imaging

Q-switching

W. Koechner, Solid-State Laser Engineering 5th ed.

- Optical switch in the laser cavity
- Initially closed
- Upper lasing level occupation keeps on increasing due to pumping
- Switch opens large optical gain short pulse can form

(several to tens of nanoseconds typ. Energy can be J

Modelocking

- Laser spectrum has equally spaced laser modes
 - e.g. in a linear cavity

$$\Delta v = \frac{c_0}{2nL}$$
 $T = \frac{1}{\Delta v}$

If the phases of all the modes are equal -> pulse train output

Modelocked lasers

The phase locking can be achieved with modulators or saturable absorbers inside the cavity

- The wider the laser spectrum, the shorter the pulses
- The pulse train can be very regular (stable) -> clocks
 - These clocks are now the most stable in the world $(10^{-20} \text{ stability})$

Applications of pulsed lasers

Laser machining
 The laser pulse heats the material with ns or even fs

Material evaporates

Laser drilling, cutting

Industrial and medical (e.g. Femtosecond laser cateract surgery)

Many examples at e.g. http://www.laser-community.com/en/

- Telecommunication
 - Directly modulated lasers (on-off keying)
 - Free space optical communication systems
- Rapid prototyping 3D laser printing

Applications of pulsed lasers

- Imaging
 - Use of pico-second or femtosecond lasers pulses in microscopy

http://www.utoledo.edu/corelabs/amic/mutli_photon.html

Photonics

Lasers - Part F

Laser types

Lasertypes

- Laser variety due to:
 - choice of gain material
 - cavity design for high Q-factors
 - tailored to applications
 - Gain state of matter
 - gas, liquid, solid
 - Wavelength: deep UV to IR and THz
 - Mechanisms for pumping
 - optical: flash-lamps, pump-lasers
 - electrical
 - length scale: from nm to > 1m

Gaslasers (1)

- Lasing levels: Atomic or Molecular electron transitions
- Pumping: electric plasma discharge causes excitation
 - high voltage!
- Typical gases
 - He-Ne (632.8nm)
 - research, alignement
 - Argon (488nm, 512nm)
 - popular pump lasers
 - $CO_2(10.6\mu m)$
 - material processing

Gaslasers (2)

- Well defined lasing wavelength
 - not tunable
- low material gain
 - Long cavities and high Q (L = 30 cm 3 m)
 - need for excellent mirrors (>99%)

83

He-Ne laser

mostly red emission (632.8 nm), some green or IR

- low-pressure gas mixture: 90% He + 10% Ne
- pump gas: Helium
 - excitation through electron scattering
 - energy transfer to neon
- Laser gas: Neon
 - several sharp atomic transitions
 - pick lasing linewith cavity
- low output power 1 10 mW
- low efficiency

Ion laser

- Gas: Argon, Krypton, Copper vapour
- Ionized gas in magnetic field contained plasma
 - Argon: sharply defined lasing lines $\lambda = 350 520 \text{ nm}$
 - Krypton: sharp defined lines in the visible
- Wavelength selection
 - prism in cavity
 - mirror reflex coating
- high output: >20 Watt
 - low efficiency
 - (Ar*: 400V at 50A for 2.5W 350nm)
 - (lots of) water cooling necessary
- Largely replaced by solid state lasers but still in use for specific applications

Fotonica

Argon ion laser 25 Watt visible – 7 W UV

www.Coherent.com

Molecular lasers

- Molecular transitions for lasing
 - CO₂, N₂, excimer: ArF KrF
- CO₂-laser
 - Pump gas: Nitrogen-Helium mix
 - Laser gas: CO₂ (vibrational and rotational transitions)
 - λ = 10.6 μm (Far IR)
 - Optics for IR: Ge, GaAs, ZnSe, diamond
 - High efficiency: up to 30%
 - Output: upto over 20kWatt
 - lacktriangledown material processing, **EUV source**
 - Important industrial laser
- Nitrogen-laser
 - Laser gas: N₂
 - $\lambda = 337.1 \text{ nm}$

20kW CO₂ laser system for EUV source

http://www.laser-community.com/en/euv-lithography-laser-trumpf/

Excimeerlasers

- short wavelengths (deep-UV)
 - l = 125 500 nm
 - high resolution (DUV) lithography
 - Medical (LASIK eye correction)
 - 100W 1kW maximum power
 - high photon-energy:→ photo chemistry
- Excimeer = <u>exc</u>ited d<u>imeer</u>
 - molecule with halogen (F, Cl,...) and noble gas (Ar, Kr, Xe,...)
 - meta-stable molecule
 - only one atom excited
- only pulsed operation tens of ns

ArF system for 193nm

Dye-laser (liquid)

- Organic (Dyes)
 - Strong light absorption and efficient emission
 - broad spectrum: $D \approx 50 \text{ nm} \rightarrow \text{tunable}$
 - available in VIS and IR
- Cavity
 - optical pumped (by eg. argon laser)
 - wavelength tuning with tuning element e.g. prism

- closed cycle fluid pump
- allows for cooling

Doped solid state lasers

- Gain medium
 - Crystalline / glass isolator (host material)
 - Doping with **metal ions**
 - Optical pumping
 - Using flashlamps
 - Using laser diodes (diode pumped solid state lasers)
- Ruby-laser
 - first laser (Maiman, 1960)
 - Al_2O_3 met $0.05\%_{vol}$ Cr^{3+}
 - Three-level system→ hard pump
 - L=10cm en \varnothing =1cm
 - flashlight pumped
 - $\lambda = 694.3 \text{ nm}$

Overview of ions and host materials

lon	host	λ	τ upper	Effective emission σ	Broadening
Nd ³⁺	YAG	1064nm	230 µs	2.8 · 10 ⁻¹⁹ cm ²	homogeneous
	glass	1050- 1060nm	300 µs	$\pm 4 \cdot 10^{-20} \text{ cm}^2$	inhomogeneous
	YVO ₄	1064nm	100 µs	1.56 · 10 ⁻¹⁸ cm ²	homogeneous
Yt ³⁺	YAG	1030nm	950 µs	2.1 · 10 ⁻²⁰ cm ²	homogeneous
Er ³⁺	glass	1520- 1560nm	8 ms	5 · 10 ⁻²¹ cm ²	inhomogeneous
Ti ³⁺	Al_2O_3	700- 1000nm	3.2 µs	$4 \cdot 10^{-19} \text{ cm}^2$ (peak λ)	homogeneous
Tm ³⁺	YAG	1870- 2160nm	10 ms	2 · 10 ⁻²¹ cm ²	inhomogeneous

Thermal and optical properties of the host material are important Ion and host determine wavelength/tuning range, lifetime and cross-section

Nd:YAG levels

- Absorption and lasing wavelengths in nm.
- Diode pumping or flashlamp/arc lamp pumping
 4F_{5/2}

Absorption lines for diode laser pumping

 $http://www.photonics.ld-didactic.com/Educational\%20 Kits/P5853.html \\ https://www.rp-photonics.com/yag_lasers.html$

Neodymium-YAG-laser

- Gain medium
 - Yttrium-Aluminum garnet (Y₃Al₅O₁₂) doped with Nd³⁺
 - four-level-system
 - $\lambda = 1.06$ um -1.3 um
- Optically pumped
 - Pulsed or continuous
 - Flash lamps laser diode arrays (808nm)
 - Elliptical reflector with lamp and laser in focus
 - high power (>100 Watt)
 - efficiency : few %
 - material processing

National Ignition Facility

192 laser beams
Nd:glass laser system
Frequency tripling to 350 nm

https://lasers.llnl.gov/about/what-is-nif

https://lasers.llnl.gov/content/assets/images/media/photo-gallery

Diode pumped solid state laser

- CCOHERENT.

 COMERCIAL

 COMERCIAL
- Pump laser diodes efficient (e.g. 60%)
 - Low beam quality, bandwidth (1-2 nm)
 - Can be fibre coupled using multimode fibre (large core 50 200 µm)
- Efficient absorption in laser material
- High quantum efficiency

Er:glass levels - basis of EDFA

https://www.rp-photonics.com/erbium_doped_gain_media.html

Erbium doped fibre amplifier

Yt:YAG levels

- Very high quantum efficiency,
- Low heat load
- Quasi three level laser
 - Lower laser level populated at room temperature
- Yt: glass material much used in high power fibre lasers

Tm:YAG laser

http://cdn.intechopen.com/pdfs/8446/InTech-2_m_laser_sources_and_their_possible_applications.pdf Output at 2 micron

Quantum efficiency can be close to 2!
Decay from highest level to upper lasing level is by emission of a photon that is absorbed by ions in the ground state to the upper lasing level!

Medical applications

Tunable solid-state-lasers

- gain medium
 - broad gain for tuneability
- Wavelength selection with
 - intra-cavity filter and mirror coating
- Titanium-sapphire-laser
 - Sapphire doped with Ti³⁺ ions
 - Optically pumped with gas or diode laser
 - **unable** tunable between λ =0.7μm and λ =0.95 μm
 - Modelocked operation: extremely short pulses downto 5 fs.

Fiber lasers

- Doping of the fiber core using rare earths (Ytterbium, Erbium, Thulium,...) to address different wavelength ranges
- Cavity can be a ring-type cavity, can have external mirrors,...
- Has started to replace many other type of lasers upto 100 kW

Semiconductor laser diodes

Pump mechanism: electron hole recombination

Cavity= reflection cleaved facets, distributed Bragg reflection, integrated circuits

- very small ($\mu m \rightarrow mm$)
- broad gain media → tuneable
- available in wide λ range
 UV to FIR
- Cheap (mass production)
- disadvantages:
 - beam quality
 - line width
 - lasing wavelength variation
 - limited power <100W

High power 2D diode laser array

A high-power (1.45-kW CW) semiconductor laser diode array using a microchannel cooler (electrical-optical eff. 60%) 1cm x 2.5cm

- High power CW or long pulsed operation (e.g. 0.5 ms), low beam quality
- Each stripe is a linear array of laser diodes
- These arrays are stacked
- Solid state laser pumping
- Heating e.g. soldering

Fotonica