Universidade de Aveiro

Departamento de Matemática

Cálculo I - Agrupamento IV

2018/2019

Soluções do Exame Final - Época de Recurso

- 1. (a) $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = \frac{\pi}{2}$. Zeros de f: x = 0 e $x = \frac{1}{2}$.
 - (b) f é estritamente decrescente em $]-\infty, \frac{1}{4}[$ e f estritamente crescente em $]\frac{1}{4}, +\infty[$. Como f é contínua, podemos concluir que $x=\frac{1}{4}$ é minimizante local de f e que arctg $\left(-\frac{1}{8}\right)$ é mínimo local de f.
 - (c) $CD_f = [\arctan(-\frac{1}{8}), \frac{\pi}{2}].$
 - (d) -1
 - (e) Sugestão: Usar o Teorema de Lagrange.
- 2. (a) $\frac{1}{2}\ln(x^2+1) + \frac{\sqrt{2}}{2}\operatorname{arctg}\left(\frac{x}{\sqrt{2}}\right) + C$, $C \in \mathbb{R}$
 - (b) $\frac{\sqrt{x^2-1}}{x} + C$, $C \in \mathbb{R}$
- 3. (a) Pelo Teorema Fundamental do Cálculo Integral, g é diferenciável em \mathbb{R} e $g'(x) = -e^{x^2}$.
 - (b) Sugestão: integrar por partes e usar a expressão de g'(x) obtida na alínea anterior.
- 4. (a) Sugestão: mostar que a função g definida por $g(x) = \arctan x x$ é estritamente decrescente.

(b)
$$A = \int_0^1 (x - \arctan x) dx = \frac{\ln 4 + 2 - \pi}{4}$$
.

- 5. (a) ---
 - (b) Divergente (Sugestão: o Critério de Comparação e a alínea anterior).
- 6. (a) Divergente (pela Condição Necessária de Convergência).
 - (b) Absolutamente convergente (Sugestão: Estudar a série dos módulos usando o Critério de Comparação).
 - (c) Divergente (Sugestão: Usar o Critério da Raiz ou Critério do Quociente).
- 7. Convergente (Sugestão: Usar o Critério do Limite, comparando com a série $\sum_{n=1}^{+\infty} (a_n 1)$).