Summary of the things that I learned

Arnoud van der Leer

CHAPTER 1

Week 08

1. Univalent Categories

A univalent category is a category in which the univalence axiom holds. I.e., a category \mathcal{C} in which, for all $A, B \in \mathcal{C}_0$, the canonical map $(A =_{\mathcal{C}} B) \to (A \cong B)$ is an equivalence.

2. Categories

An *n*-category is a category with 0-cells (objects), 1-cells (morphisms), 2-cells (morphisms between morphisms), up to *n*-cells and various compositions: $A \to B \to C$. $A \xrightarrow{f,g,h} B$, $f \Rightarrow g \Rightarrow h$. $A \xrightarrow{f,g} B \xrightarrow{f',g'} C$, $\alpha: f \Rightarrow g$, and identities $\alpha': f' \Rightarrow g'$ gives $\alpha' * \alpha: f' \circ f \Rightarrow g' \circ g$. These all need to work together 'nicely'. An ω -category is the same, but all the way up.

A topological space gives a (weak) ω -category. 0-cells are points, 1-cells are paths, 2-cells are homotopies etc. Composition is by glueing. It is a 'groupoid', in the sense that all homotopies of dimension ≥ 1 are invertible. However, glueing is not associative, so it is a 'weak' ω -category.

A category with only one object \star is equivalent to a monoid (with elements being the set $\mathcal{C}(\star,\star)$). A 2-category with only one 0-cell is the same thing as a monoidal category (objects: the 1-cells. Morphisms: the 2-cells). A monoidal category with just one object gives 2 monoid structures on its set of morphisms. These are the same, and commutative.

A **monoid** is a set with a multiplication and a unit. A **monad** on a category \mathcal{C} is a functor $T: \mathcal{C} \to \mathcal{C}$, together with natural transformations $\mu: T \circ T \to T$ (satisfying associativity) and $\eta: 1_{\mathcal{A}} \to T$ (acting as a two-sided unit).

A **presheaf** on a category \mathcal{A} is a functor $\mathcal{A}^{opp} \to \mathbf{Set}$.

Given a category \mathcal{E} and an object $E \in \mathcal{E}_0$, the **slice category** \mathcal{E}/E with objects being the maps $D \xrightarrow{p} E$ and morphisms being commutative triangles.

A **multicategory**, not necessarily the same as an n-category, is a category in which arrows go from multiple objects to one, instead of from one object to one. I.e. it is a category with a class C_0 of objects, for all n, and all $a, a_1, \ldots, a_n \in C_0$, a class $C(a_1, \ldots, a_n; a)$ of 'morphisms', and a composition

$$C(a_1, \ldots, a_n; a) \times C(a_{1,1}, \ldots, a_{1,k_1}; a_1) \times \cdots \times C(a_{n,1}, \ldots, a_{n,k_n}; a_n) \to C(a_{1,1}, \ldots, a_{n,k_n}; a),$$

written $(\theta, \theta_1, \ldots, \theta_n) \mapsto \theta(\theta_1, \ldots, \theta_n)$ and for each $a \in C_0$ an identity $1_a \in C(a; a)$.
It must satisfy associativity

$$\theta \circ (\theta_1 \circ (\theta_{1,1}, \dots, \theta_{1,k_1}), \dots, \theta_n \circ (\theta_{n,1}, \dots, \theta_{n,k_n})) = (\theta \circ (\theta_1, \dots, \theta_n)) \circ (\theta_{1,1}, \dots, \theta_{n,k_n})$$
 and identity

$$\theta \circ (1_{a_1}, \dots, 1_{a_n}) = \theta = 1_a \circ \theta.$$

1. WEEK 08

4

A map of multicategories is a function $f_0: C_0 \to C_0'$ and maps $C(a_1, \ldots, a_n; a) \to C(f_0(a_1), \ldots, f_0(a_n); f_0(a))$, preserving composition and identities.

For C a multicategory, a C-algebra is a map from C into the multicategory **Set** (with objects \mathbf{Set}_0 and maps $\mathbf{Set}(a_1, \ldots, a_n; a) = \mathbf{Set}(a_1 \times \cdots \times a_n; a)$). I.e., for each $a \in C_0$, a set X(a), and for each map $\theta : a_1, \ldots, a_n \to a$, a function $X(\theta) : X(a_1) \times X(a_n) \to X(a)$. An example is, for a multicategory C, to take X(a) = C(a) (maps from the empty sequence into a).

Of course, there is a concept of **free multicategory**: Given a set X, and for all $n \in \mathbb{N}$, and $x, x_1, \ldots, x_n \in X$, a set $X(x_1, \ldots, x_n; x)$, we get a multicategory X' with $X'_0 = X_0$, and $X'(x_1, \ldots, x_n; x)$ given by formal compositions of elements of the $X(y_1, \ldots, y_m; y)$.

A **bicategory** consists of a class \mathcal{B}_0 of 0-cells, or objects; For each $A, B \in \mathcal{B}_0$, a category $\mathcal{B}(A, B)$ of 1-cells (objects) and 2-cells (morphisms); for each $A, B, C \in \mathcal{B}_0$, a functor $\mathcal{B}(B, C) \times \mathcal{B}(A, B) \to \mathcal{B}(A, C)$ written $(g, f) \mapsto g \circ f$ on 1-cells and $(\delta, \gamma) \mapsto \delta * \gamma$ on 2-cells; For each $A \in \mathcal{B}_0$ an object $1_A \in \mathcal{B}(A, A)$; isomorphisms representing associativity and identity axioms (e.g. $f \circ 1_A \cong f \in \mathcal{B}(A, B)$), natural in their arguments, satisfying pentagon and triangle axioms.

The collection of categories Cat forms a bicategory. In analogy, we define a monad in a bicategory to be an object A, together with a 1-cell $t:A\to A$ and 2-cells $\mu:t\circ t\to t$ and $\eta:1_A\to t$ satisfying a couple of commutativity axioms (those of 1.1.3 in [Lei03]).

3. Operads

3.1. Definitions. An **operad** is a multicategory with only one object. More explicitly, an operad has a set P(k) for every $k \in \mathbb{N}$, whose elements can be thought of as k-ary operations. It also has, for all $n, k_1, \ldots, k_n \in \mathbb{N}$, a *composition* function

$$P(n) \times P(k_1) \times \cdots \times P(k_n) \to P(k_1 + \cdots + k_n)$$

and an element $1 = 1_P \in P(1)$ called the **identity**, satisfying

$$\theta \circ (1, 1, \dots, 1) = \theta = \theta \circ 1$$

for all θ , and

$$\theta \circ (\theta_1 \circ (\theta_{1,1}, \dots, \theta_{1,k_1}), \dots, \theta_n \circ (\theta_{n,1}, \dots, \theta_{n,k_n})) = (\theta \circ (\theta_1, \dots, \theta_n)) \circ (\theta_{1,1}, \dots, \theta_{n,k_n})$$

for all $\theta \in P(n)$, $\theta_1 \in P(k_1)$, ..., $\theta_n \in P(k_n)$ and all $\theta_{1,1} \dots \theta_{n,k_n}$.

A morphism of operads is a family

$$f_n: (P(n) \to Q(n))_{n \in \mathbb{N}}$$

of functions, preserving composition and identities.

A P-algebra for P an operad, is a set X and, for each n, and $\theta \in P(n)$, a function $\overline{\theta}: X^n \to X$, satisfying the evident axioms (identity is the identity function, the function of a composition is the composition of the functions?).

3.2. Examples. For any vector space V, there is an operad with $P(k) = V^{\otimes k} \to V$.

The terminal operad 1 has $P(n) = \{\star_1\}$ for all n. An algebra for 1 is a set X together with a function $X^n \to X$, denoted as $(x_1, \ldots, x_n) \mapsto (x_1 \cdot \cdots \cdot x_n)$, satisfying

$$((x_{1,1} \cdot \dots \cdot x_{1,k_1}) \cdot \dots \cdot (x_{n,1} \cdot \dots \cdot x_{n,k_n})) = (x_{1,1} \cdot \dots \cdot x_{n,k_n})$$

and

$$x = (x)$$
.

The category of 1-algebras is the category of monoids.

There exist various sub-operads of 1. For example, the smallest one has $P(1) = \{\star\}$ and $P(n) = \emptyset$ for $n \neq 1$.

Or the operad with $P(0) = \emptyset$ and $P(n) = \{\star_n\}$ for n > 0, which has semigroups as its algebras (sets with associative binary operations).

The suboperad with $P(n) = \{\star_n\}$ exactly when $n \leq 1$ has as its algebras the pointed sets.

The **operad of curves** has $P(n) = \{\text{smooth maps } \mathbb{R} \to \mathbb{R}^n\}.$

Given a monad on **Set**, we get a natural operad structure $T(n)_{n \in \mathbb{N}}$, with T(n) the set of words in n variables and composition given by 'substitution'.

Given a monoid M (a category with one object), there is a operad given by $P(n) = M^n$ and composition

$$(\alpha_1,\ldots,\alpha_n)\circ((\alpha_{1,1},\ldots,\alpha_{1,k_1}),\ldots,(\alpha_{n,1},\ldots,\alpha_{n,k_n})).$$

The Little 2-disks operad D has

 $D(n) = \{\text{set of non-overlapping disks contained within the unit disk}\},$

with composition being geometric "substitution". I.e.: scale and move a unit disk and its contained disks to match one of the smaller disks, and replace the smaller disk with the transformed contents of our original unit disk. See also: this image that explains a lot

Given sets X(n) for all $n \in \mathbb{N}$, the **free operad** X' on these is defined exactly by $X(n) \subseteq X'(n)$, $1 \in X'(1)$ and for all $m, n_1, \ldots, n_m \in \mathbb{N}$ and $f \in X(m)$ and $f_i \in X'(n_i)$, we have $f \circ (f_1, \ldots, f_m) \in X'(n_1 + \cdots + n_m)$.

4. T-operads

4.1. Definitions. A category is **cartesian** if it has all pullbacks. A functor is cartesian if it preserves pullbacks. A natural transformation $\alpha: S \to T$ is cartesian if for all $f: A \to B$, the naturality diagram

$$SA \xrightarrow{Sf} SB$$

$$\downarrow^{\alpha_A} \qquad \downarrow^{\alpha_B}$$

$$TA \xrightarrow{Tf} TB$$

is a pullback. A monad (T, μ, η) on a category \mathcal{E} is cartesian if the category \mathcal{E} , the functor T and the natural transformations μ and η are cartesian.

We can represent (the morphism structure of) an ordinary category using diagrams $C_0 \stackrel{\text{domain}}{\longleftrightarrow} C_1 \stackrel{\text{codomain}}{\longleftrightarrow} C_0$, $C_1 \times_{C_0} C_1 \stackrel{\text{composition}}{\longleftrightarrow} C_1$ and $C_0 \stackrel{\text{id}}{\longleftrightarrow} C_1$ together with some axioms. For a multicategory, we need to slightly modify this, using a functor $T: \mathbf{Set} \to \mathbf{Set}$, $A \mapsto \bigsqcup A^n$, to $TC_0 \stackrel{d}{\longleftrightarrow} C_1 \stackrel{c}{\hookrightarrow} C_0$ and $C_1 \times_{TC_0} TC_1 \stackrel{\circ}{\to} C_1$. Given a cartesian monad (T, μ, η) on a category \mathcal{E} , we can define a bicategory

Given a cartesian monad (T, μ, η) on a category \mathcal{E} , we can define a bicategory $\mathcal{E}_{(T)}$, with the class of 0-cells being \mathcal{E}_0 , the 1-cells $E \to E'$ being diagrams $TE \overset{d}{\leftarrow} M \overset{c}{\to} E'$, 2-cells $(M, d, c) \to (N, q, p)$ are maps $M \to N$ such that the diagram with E, E', M, N commutes. The composite of 1-cells $TE \overset{d}{\leftarrow} M \overset{c}{\to} E'$ and $TE \overset{d'}{\longleftrightarrow} M \overset{d'}{\to} E'$

1. WEEK 08

 $M' \xrightarrow{c'} E''$ is given by

$$TE \stackrel{\mu_E}{\longleftarrow} T^2E \stackrel{Td}{\longleftarrow} TM \leftarrow TM \times_{TE'} M' \rightarrow M' \stackrel{c'}{\longrightarrow} E''$$

in which the coproduct in the middle is formed using Tc and d. We can define a T-multicategory to be a monad on $\mathcal{E}_{(T)}$. Equivalently, we can define it as an object $C_0 \in \mathcal{E}$, together with a diagram $t: TC_0 \stackrel{d}{\leftarrow} C_1 \stackrel{c}{\rightarrow} C_0$ and maps $C_1 \circ C_1 :=$ $TC_1 \times_{TC_0} C_1 \xrightarrow{\circ} C_1$ and $C_0 \xrightarrow{id} C_1$ satisfying associativity and identity axioms.

A T-operad is a T-multicategory such that C_0 is the terminal object of \mathcal{E} . Equivalently, it is an object over T1, (so we have a morphism $P \to T1$), together with maps $P \times_{T_1} TP \to P$ and $1 \xrightarrow{id} P$, both over T1, satisfying associativity and identity axioms.

4.2. Examples. For T the identity monad on Set, a T-operad is exactly a monoid (or an operad with only unary functions) (since there is always a unique map to $\{1\}$).

If \mathcal{E} is **Set**, the terminal object 1 will always be $\{1\}$.

For the free monoid monad $TA = \coprod A^n$, the T-operads are precisely the operads that we defined before.

For the monad TA = 1 + A, we can view TA as a subset of the free monoid on A, and this gives an operad with 0-ary and 1-ary functions. The 1-ary arrows form a monoid, and the 0-ary arrows are a set, with an action of the monoid.

5. Cartesian Operads

5.1. Theory. Using Towards a doctrine of operads.

NLab uses notation: Fin for what we would call a standard skeleton of finite sets (i.e. the category of finite sets $\{0,\ldots,n-1\}$ and maps between them). A^B denotes all morphisms/functors $B \to A$. I.e., the class of functors $\mathbf{Fin} \to \mathbf{Set}$ is denoted **Set^{Fin}**.

Take
$$I = \mathbf{Fin}(1, -) : \mathbf{Set}^{\mathbf{Fin}} = \mathbf{Fin} \to \mathbf{Set}$$

Take $I = \mathbf{Fin}(1, -) : \mathbf{Set}^{\mathbf{Fin}} = \mathbf{Fin} \to \mathbf{Set}$. Let $[\mathbf{Set}^{\mathbf{Fin}}, \mathbf{Set}^{\mathbf{Fin}}]$ be the category of finite-product-preserving, cocontinuous endofunctors on $\mathbf{Set}^{\mathbf{Fin}}$. The map $Ev_I : [\mathbf{Set}^{\mathbf{Fin}}, \mathbf{Set}^{\mathbf{Fin}}] \to \mathbf{Set}^{\mathbf{Fin}}$, given by $F \mapsto F(I)$ is an equivalence. [Set $^{\mathbf{Fin}}$, Set $^{\mathbf{Fin}}$] has a monoidal product \odot given by endofunctor composition, and we can transfer this to $\mathbf{Set^{Fin}}$.

Concretely, we have $F \odot G = \int_{-\infty}^{n \in \mathbf{Fin}} F(n) G^n$.

5.2. Cartesian operads. A cartesian operad is a monoid in this monoidal category (**Set**^{Fin}, \odot , I). I.e., it is a triple (M, μ, η) , with $M \in$ **Set**^{Fin}, $\mu : M \odot M \rightarrow$ M and $\eta: I \to M$.

More concretely, this is a functor $M: \mathbf{Fin} \to \mathbf{Set}$, together with maps

$$m_{n,k}: M(n) \times M(k)^n \to M(k),$$

natural in k and dinatural in n, and an element $e \in M(1)$.

Dinaturality in n means the following. Fix $k \in \mathbf{Fin}$. We have the functors $\mathbf{Fin}^{\mathrm{op}} \times \mathbf{Fin} \to \mathbf{Set}$ given by

$$F:(n,n')\mapsto M(n')\times M(k)^n$$
 and $G:(n,n')\mapsto M(k)$.

For all $n \in \mathbf{Fin}_0$, we have a morphism

•:
$$F(n,n) = M(n) \times M(k)^n \to M(k) = G(n,n)$$
.

Naturality means that for all $a: n \to n'$,

$$G(n, a) \circ \bullet \circ F(a, n) = F(a, n') \circ \bullet \circ G(n', a).$$

i.e., for all $f \in M(n), g_1, ..., g_{n'} \in M(k)$,

$$f \bullet (g_{a(1)}, \dots, g_{a(n)}) = M(a)(f) \bullet (g_1, \dots, g_{n'}).$$

Now, if we have, in **Fin**, a decomposition $k = k_1 + \cdots + k_n$, and we have inclusion maps $i_j : k_j \hookrightarrow k$, then we have

$$M(n) \times M(k_1) \times \cdots \times M(k_n) \xrightarrow{1 \times M(i_1) \times \cdots \times M(i_n)} M(n) \times M(k)^n \xrightarrow{m_{n,k}} M(k),$$
 which gives an operad structure.

5.3. Clones. In other parts of mathematics, a cartesian operad is called a **clone**. An abstract clone consists of sets M(n) for all $n \in \mathbb{N}$, for all $n, k \in \mathbb{N}$ a function $\bullet : M(n) \times M(k)^n \to M(k)$ and for each $1 \le i \le n \in \mathbb{N}$, an element $\pi_{i,n} \in M(n)$ such that for $f \in M(i), g_1, \ldots, g_i \in M(j)$ and $h_1, \ldots, h_j \in M(k)$,

$$f \bullet (g_1 \bullet (h_1, \dots, h_j), \dots, g_i \bullet (h_1 \dots, h_j)) = (f \bullet (g_1, \dots, g_i)) \bullet (h_1, \dots, h_j),$$

for $f_1, \dots, f_n \in M(k),$

$$\pi_{i,n} \bullet (f_1,\ldots,f_n) = f_i,$$

and for $f \in M(n)$,

$$f \bullet (\pi_{1,n}, \dots, \pi_{n,n}) = f.$$

(It is claimed that this automatically gives naturality)

Naturality means for all $a \in \mathbf{Fin}(n, n')$, for all $f \in M(n), g_1, \ldots, g_{n'} \in M(k)$,

$$f \bullet (g_{a(1)}, \dots, g_{a(n)}) = (f \bullet (\pi_{a(1), n'}, \dots, \pi_{a(n), n'})) \bullet (g_1, \dots, g_{n'}).$$

However, by associativity and since $\pi_{i,n} \bullet (f_1, \ldots, f_n)$, we have

$$(f \bullet (\pi_{a(1),n'}, \dots, \pi_{a(n),n'})) \bullet (g_1, \dots, g_{n'})$$

$$= (f \bullet (\pi_{a(1),n'} \bullet (g_1, \dots, g_{n'}), \dots, \pi_{a(n),n'} \bullet (g_1, \dots, g_{n'})))$$

$$= f \bullet (g_{a(1)}, \dots, g_{a(n)}).$$

Naturality in k is as follows. Fix $n \in \mathbf{Fin}_0$. We have functors $F, G : \mathbf{Fin} \to \mathbf{Set}$, given by

$$F: k \mapsto M(n) \times M(k)^n$$
 and $G: k \mapsto M(k)$.

For $a: k \to k'$, we must have

$$G(a) \circ \bullet = \bullet \circ F(a).$$

That is, for all $f \in M(n), g_1, \ldots, g_n \in M(k)$,

$$M(a)(f \bullet (g_1, \ldots, g_n)) = f \bullet (M(a)(g_1), \ldots, M(a)(g_n)).$$

Now, M(a) is given by

$$M(a)(f) = f \bullet (\pi_{a(1),k'}, \dots, \pi_{a(k),k'}).$$

Therefore, we have

$$M(a)(f \bullet (g_1, ..., g_n))$$
= $(f \bullet (g_1, ..., g_n)) \bullet (\pi_{a(1),k'}, ..., \pi_{a(k),k'})$
= $f \bullet (g_1 \bullet (\pi_{a(1),k'}, ..., \pi_{a(k),k'}), ..., g_n \bullet (\pi_{a(1),k'}, ..., \pi_{a(k),k'}))$
= $f \bullet (M(a)(g_1), ..., M(a)(g_n)).$

8 1. WEEK 08

So the associativity and projection axioms ensure naturality.

Week 09

1. Adjunctions

For three sets X, Y, Z, we have a bijection

$$\mathbf{Set}(X \times Y, Z) \cong \mathbf{Set}(X, Y \to Z)$$

that is natural in X and Z. This is an example of a general notion:

For functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$, F is a **left adjoint** for G if there is an isomorphism $\mathcal{C}(FX,Y) \cong \mathcal{D}(X,GY)$ that is dinatural in X and Y.

1.1. Examples. A special case is for $G: \mathcal{C} \to \mathbf{Set}$ the forgetful functor: if we have a left adjoint $F: \mathbf{Set} \to \mathcal{C}$ to G, we call F(X) the **free** \mathcal{C} of X (for example: free group, free monoid, free category, etc.). That means that $\mathcal{C}(F(X),Y) \cong \mathbf{Set}(X,G(Y))$, or in other words:

Adjunctions can be composed: If F and G both forget part of the structure of an object, then we can construct the free object 'piecewise' using the composition of the left adjoints.

Let $G: \mathbf{Group} \to \mathbf{Set}$ be the forgetful functor and $F: \mathbf{Set} \to \mathbf{Group}$ be the free group functor. For any set S, we have an inclusion $i: S \hookrightarrow FS$. Now, given any group Y and any morphism of sets from S to Y (formally: $f \in \mathbf{Set}(S,GY)$). Then the fact that $\mathbf{Set}(FS,Y) \cong \mathbf{Set}(S,GY)$ is expressed in the fact that f factors uniquely as $g \circ i$.

$$S \xrightarrow{i} F(S)$$

$$\downarrow f \qquad \qquad \downarrow \exists ! g$$

$$Y$$

In topology, the forgetful functor from topological spaces to sets has a left adjoint that turns a set S into a space F(S) with the discrete topology, since it has the smallest topology on S that still can factor all morphisms $S \to [0,1]$ for example.

In algebra, the inclusion functor from the category of monoids (sets with an associative operation and a unit) to the category of semigroups (sets with an associative operation) has a left adjoint that sends the semigroup S to the monoid $S \sqcup \{\star\}$ and gives it operations such that \star is the unit.

In algebra, the inclusion functor from the category of rings to the category of rings (rings but without an identity) has a left adjoint that sends the ring R to $R \times \mathbb{Z}$ and defines (r, x)(s, y) = (rs + xs + ry, xy).

For $\mathbf{Dom_m}$ the category of integral domains with injective morphisms. Then the forgetful functor $\mathbf{Fields} \to \mathbf{Dom_m}$ has a left adjoint that sends a domain to its field of fractions.

9

10 2. WEEK 09

For $\rho: R \to S$ a morphism of rings, we can view every S-module as an R-module: we have a functor S- $\mathbf{Mod} \to R$ - \mathbf{Mod} . This has a left adjoint, $M \mapsto M \otimes_R S$.

2. Operads and cartesian operads

- **2.1.** Recap operads and cartesian operads. In this section, we will represent a cartesian operad C by a clone:
 - For all $n \in \mathbb{N}$, a set C(n);
 - For all $1 \le i \le n$ projections $\pi_{n,i} \in P(n)$;
 - For all m, n, a function $\rho_{m,n} : C(m) \times C(n)^m \to C(n)$.

such that

• For $f \in C(l)$, $g_1, \ldots, g_l \in C(m)$ and $h_1, \ldots, h_m \in C(n)$,

$$\rho(f, (\rho(g_1, (h_1, \dots, h_m)), \dots, \rho(g_l, (h_1, \dots, h_m)))) = \rho(\rho(f, (g_1, \dots, g_l)), (h_1, \dots, h_l)).$$

- for $f_1, ..., f_n \in M(n)$ and $1 \le i \le n, \rho(\pi_{i,n}, (f_1, ..., f_n)) = f_i$;
- For $f \in M(n)$, $\rho(f, (\pi_{1,n}, \dots, \pi_{n,n})) = f$.

and a morphism of cartesian operads $\varphi:C\to C'$ by componentwise functions $\varphi_n:C(n)\to C'(n)$ such that

- For all $1 \leq i \leq n$, $\varphi_n(\pi_{n,i}) = \pi'_{n,i}$;
- For all $m, n, f \in C(m), g_1, \ldots, g_m \in C(n)$

$$\rho(\varphi(f), (\varphi(q_1), \dots, \varphi(q_m))) = \varphi(\rho(f, (q_1, \dots, q_m))).$$

We will represent an operad P by

- For all $n \in \mathbb{N}$, a set P(n);
- An element $e \in P(1)$;
- For all $m, n_1, \ldots, n_m \in \mathbb{N}$, a function

$$\gamma_{m,n_1,\ldots,n_m}: C(m)\times C(n_1)\times\cdots\times C(n_m)\to C(n_1+\cdots+n_m)$$

(we will usually just call this γ).

such that

• For all $f \in P(n)$,

$$\gamma(f, (1, ..., 1)) = f = \gamma(1, f);$$

• For all $f \in P(l)$, $g_1 \in P(m_1)$, ..., $g_l \in P(m_l)$ and all $h_{1,1} \in P(n_{1,1})$, ..., $h_{l,m_l} \in P(n_{l,m_l})$,

$$f \circ (g_1 \circ (h_{1,1}, \dots, h_{1,m_1}), \dots, g_l \circ (h_{l,1}, \dots, h_{l,m_l})) = (f \circ (g_1, \dots, g_l)) \circ (h_{1,1}, \dots, h_{l,m_l}).$$

and a morphism of operads $\psi: P \to P'$ by componentwise functions $\psi_n: P(n) \to P'(n)$ such that

- $\psi_1(e) = e'$:
- For all $f \in P(m), g_1 \in P(n_1), \ldots, g_m \in P(n_m),$

$$\gamma(\psi(f),(\psi(g_1),\ldots,\psi(g_m)))\psi(\gamma(f,(g_1,\ldots,g_m))).$$

2.2. Free operad? Now, for all $1 \le i \le m$, we have an injection $j_i: C(n_i) \to C(n_1 + \dots + n_m)$. Intuitively, it maps terms in a context with n_i variables to terms in a context with $n_1 + \dots + n_m$ variables, by mapping variable $1 \le k \le n_1$ to variable $n_1 + \dots + n_{i-1} + k$. This gives a morphism

$$\gamma: C(m) \times C(n_1) \times \cdots \times C(n_m) \xrightarrow{id \times j_1 \times \cdots \times j_m} C(m) \times C(n_1 + \cdots + n_m)^m \xrightarrow{\rho} C(n_1 + \cdots + n_m),$$

which gives an operad structure on the same sets. This gives a functor from cartesian operads to operads.

Then, the question arises whether this functor has a left adjoint.

Still open

Bibliography

 $[{\rm Lei}03]$ Tom Leinster. Higher operads, higher categories, 2003.