Automatic Metadata Extraction The High Energy Physics Use Case

Joseph Boyd

École Polytechnique Fédérale de Lausanne

joseph.boyd@epfl.ch

August 20, 2015

Motivation

Aims

- Introduction
- 2 Theory
- Automatic Metadata Extraction
- 4 Data, Methods, and Implementation
- Key Results
- Conclusions

Why CRFs?

Mathematical Formulation

Solution Approach

- Introduction
- 2 Theory
- 3 Automatic Metadata Extraction
- 4 Data, Methods, and Implementation
- 6 Key Results
- 6 Conclusions

Metadata Extraction

GROBID

GROBID - CRF Cascade

Figure: Cascade of models used by Grobid

- Introduction
- 2 Theory
- 3 Automatic Metadata Extraction
- 4 Data, Methods, and Implementation
- 6 Key Results
- Conclusions

Identification of beauty and charm quark jets at LHCb

The LHCb collaboration[†]

Abstract

Identification of iets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark iets is measured using data recorded by LHCb from proton-proton collisions at $\sqrt{s} = 7 \text{ TeV}$ in 2011 and at $\sqrt{s} = 8 \text{ TeV}$ in 2012. The efficiency for identifying a b(c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum $p_T > 20 \text{ GeV}$ and pseudorapidity 2.2 < n < 4.2. The dependence of the performance on the p_T and η of the jet is also measured.

Submitted to JINST

© CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

(a) Collaboration field in header section

LHCb collaboration

R. Aaii³⁸, B. Adeva³⁷, M. Adinolfi⁴⁶, A. Affolder⁵², Z. Aialtouni⁵, S. Akar⁶, J. Albrecht⁹ F. Alessio³⁸, M. Alexander⁵¹, S. Ali⁴¹, G. Alkhazov³⁰, P. Alvarez Cartelle⁵³, A.A. Alves Jr⁵⁵ S. Amato², S. Amerio²², Y. Amhis⁷, L. An³, L. Anderlini¹⁷, J. Anderson⁴⁰, M. Andreotti¹⁶, J.E. Andrews⁵⁸, R.B. Appleby⁵⁴, O. Aquines Gutierrez¹⁰, F. Archilli³⁸, P. d'Argent¹¹ A. Artamonov³⁵, M. Artuso⁵⁹, E. Aslanides⁶, G. Auriemma^{25,n}, M. Baalouch⁵, S. Bachmann¹¹

J.J. Back⁴⁸, A. Badalov³⁶, C. Baesso⁶⁰, W. Baldini^{16,38}, R.J. Barlow⁵⁴, C. Barschel³⁸ S. Barsuk⁷, W. Barter³⁸, V. Batozskava²⁸, V. Battista³⁹, A. Bav³⁹, L. Beaucourt⁴, J. Beddow⁵¹

F. Bedeschi²³, I. Bediaga¹, L.J. Bel⁴¹, I. Belyaev³¹, E. Ben-Haim⁸, G. Bencivenni¹⁸, S. Benson³⁸ J. Benton⁴⁶, A. Berezhnoy³², R. Bernet⁴⁰, A. Bertolin²², M.-O. Bettler³⁸, M. van Beuzekom⁴¹

A. Bien¹¹, S. Bifani⁴⁵, T. Bird⁵⁴, A. Birnkraut⁹, A. Bizzeti^{17,i}, T. Blake⁴⁸, F. Blanc³⁹ J. Blouw¹⁰, S. Blusk⁵⁹, V. Bocci²⁵, A. Bondar³⁴, N. Bondar^{30,38}, W. Bonivento¹⁵, S. Borghi⁵⁴

M. Borsato⁷, T.J.V. Bowcock⁵², E. Bowen⁴⁰, C. Bozzi¹⁶, S. Braun¹¹, D. Brett⁵⁴, M. Britsch¹⁰ T. Britton⁵⁹, J. Brodzicka⁵⁴, N.H. Brook⁴⁶, A. Bursche⁴⁰, J. Buytaert³⁸, S. Cadeddu¹⁵

R. Calabrese^{16,f}, M. Calvi^{20,k}, M. Calvo Gomez^{36,p}, P. Campana¹⁸, D. Campora Perez³⁸ Joseph Boyd (EPFL)

³⁴ Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia Automatic Metadata Extraction

encode different attribute dimensions of an input data space. A good glyph design can enable users to conduct visual search more efficiently during interactive visualization, and facilitate effective learning, memorizing and using the visual encoding scheme. A less effective visual design may suffer from various shortcomings such as being perceptually confusing, semantically ambiguous, difficult to learn and remember, or unable to accommodate low-resolution display devices.

- · Eamonn Maguire is with Oxford e-Research Centre and Department of Computer Science, University of Oxford, UK, E-mail: eamonn.maguire@st-annes.ox.ac.uk.
- · Philippe Rocca-Serra, Susanna-Assunta Sansone and Min Chen are with Oxford e-Research Centre, University of Oxford, UK, E-mail: {philippe, rocca-serra, susanna-assunta.sansone, min.chen \@ oerc.ox.ac.uk.
- · Jim Davies is with Department of Computer Science, University of Oxford, UK. E-mail: jim.davies@cs.ox.ac.uk.

Manuscript received 31 March 2012; accepted 1 August 2012; posted online 14 October 2012: mailed on 5 October 2012.

For information on obtaining reprints of this article, please send e-mail to: tvcg@computer.org.

(b) Discontinuous header data.

- ¹⁸ Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy
- ¹⁹ Sezione INFN di Genova, Genova, Italy
- ²⁰Sezione INFN di Milano Bicocca, Milano, Italia ²¹Sezione INFN di Milano, Milano, Italu
- ²²Sezione INFN di Padova, Padova, Italy ²³Sezione INFN di Pisa, Pisa, Italy
- ²⁴Sezione INFN di Roma Tor Vergata, Roma, Italy
- ²⁵Sezione INFN di Roma La Sapienza, Roma, Italy
- ²⁶Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland ²⁷ AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków Poland
- ²⁸National Center for Nuclear Research (NCBJ), Warsaw, Poland
- ²⁹ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
- ³⁰ Petersburg Nuclear Physics Institute (PNPI), Gatching, Russia ³¹Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
- ³²Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia ³³Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia

Model	HEP	CORA
Header	157 papers	2506 papers
Segmentation	169 papers	125 papers

Table: Number of training instances for each model from each dataset.

- Introduction
- 2 Theory
- Automatic Metadata Extraction
- 4 Data, Methods, and Implementation
- 6 Key Results
- 6 Conclusions

Figure: Baseline confusion segmentation

Figure: Classes confusion segmentation

15 / 16

- Introduction
- 2 Theory
- 3 Automatic Metadata Extraction
- 4 Data, Methods, and Implementation
- 6 Key Results
- 6 Conclusions

16 / 16