Lecture Note 13 선형계획법의 응용 – 자료포락분석(Data Envelopment Analysis)

Dohyung Bang

Fall, 2021

Syllabus

Week	Date	Торіс	Note
1	9/6(월)	R Basic - R 기초 문법 학습	
2	9/13(월)	R Basic – Data Manipulation I	과제#1
3	9/20(월) (추석)	<추석> (보충영상) R Basic - Data Manipulation II	
4	9/27(월)	Descriptive Analytics I - 데이터 요약하기/상관관계/차이검증	과제#2
5	10/4(월) (대체공휴일)	<대체공휴일> (보충영상) Descriptive Analytics II - 데이터 시각화	과제#2
6	10/11(월) (대체공휴일)	<대체공휴일> (보충영상) Supplementary Topic I - 외부 데이터 수집 (정적 컨텐츠 수집)	과제#4 과제#3
7	10/18(월)	Predictive Analytics I – Linear regression	
8	10/25(월)	Predictive Analytics II – Logistic Regression	시험 대체 수업
9	11/1(월)	Predictive Analytics III – Clustering & Latent Class Analysis	과제#4
10	11/8(월)	Predictive Analytics IV – Tree-based Model and Bagging (Random Forest)	
11	11/15(월)	Predictive Analytics V – Association Rules	
12	11/22(월)	Prescriptive Analytics I – Linear Programming	과제#5
13	11/29(월)	Prescriptive Analytics II – Data Envelopment Analysis (DEA)	
14	12/6(월)	Prescriptive Analytics III – Integer Programming	과제#6
15	12/13(월)	Prescriptive Analytics IV – Simulation	Quiz
16	12/20(월)	Final Presentation	

Lecture 13-1

"효율성"의 개념과 DEA의 기본가정

자료포락분석(Data Envelopment Analysis)

➤ 개념 비교

- 효과성(Effectiveness) : 목표 성과 대비 실제로 얻은 성과의 비율
- 생산성(Productivity): 투입대비 산출의 비(Ratio). 절대효율성(Absolute Efficiency)
- 효율성(Efficiency) : 생산성과 구분해 DEA에서 말하는 효율성은 상대 효율성(Relative Efficiency)

➤ 선형 회귀와 선형 계획 Approach의 차이

- 회귀분석 : 통계적 추정(Estimation) / 모수적(Parametric)
- DEA : 비통계적 / 비모수적(Non-parametric)
 - 1 Output N Input 만 고려되는 회귀분석과 달리 M Output - N Input을 고려할 수 있음

One input – One output case

경영학적 관점에서 DEA 구조

- DEA는 기본적으로 생산의 차원문제에 접근함.
- 산출극대화를 위한 투입최소화의 문제를 어떻게 해결할 것인가?

DEA분석방법: 투입-산출구조 파악

■ 기업의 산출 목표가 정해진 후, 조직의 생산성 분석을 위해서는 구체적으로 투입자원이 무엇이며 어떠한 유형들이 있는가에 대한 이해가 선행되어야 함. 자산(asset)과 비용(cost) 중에 산출과의 관련성이 높은 투입요소의 발견이 중요함.

- 유형자산 중 산출에 기여하는 투입요소 발견
- 조정임차료, 기초투자자산
- 무형자원의 전략적 중요성
- 상업적 성공으로의 연결이 중요
- 자체 브랜드, 기업브랜드, 기술

- 당기에 수익에 기여하고 소멸되는 투입요소 발견
- 매출원가, 인건비, 판매관리비 등

DEA 기본 가정

▶ 효율성의 표현

$$Efficiency = \frac{Weighted sum of "Outputs"}{Weighted sum of "Inputs"}$$

▶ 기본 가정

- 의사결정단위 별로 상이한 가중치를 이용할 수 있음
- 의사결정단위 각각은 투입물의 단위 당 비용과 산출물의 단위 당 가치를 달리 평가할 수 있음
- 투입물과 산출물의 가중치를 달리하여 자신의 효율성을 측정
- 자신에게 가장 우호적인 가중치가 부여되었는데도 불구하고 비효율적인 단위로 평가되었다면
 그 의사결정 단위는 다른 어떤 가중치를 적용해도 비효율적일 수 밖에 없음을 의미

> 제약조건

- ✓ 모든 다른 DMU의 효율성 ≤ 1
- ✓ 모든 가중치 > 0

Lecture 13-2

선형계획법을 이용한 효율성 표현

자료포락분석에서 다루는 주요 개념

의사결정단위 (DMU: Decision Making Unit)

- 효율성은 절대적 개념이 아니라, 상대적 개념으로 우리가 분석하고자 하는 분석 단위 내에서의 효율성을 측정하는데, 이때 분석단위들을 "의사결정단위"라 함
- 일반적으로 DEA에서 DMU들은 동질적인 사업단위라는 가정이 성립해야 함

투입 요소 (Input)

- 효율성을 도달하는 데 필요로 하는 투입 요소
- 주로 인적자원 / 물적자원 / 매출원가 / 운영비용 / 고정자산 등이 고려

산출 요소 (Output)

- 투입요소의 투입 결과로 얻어지는 산출 요소
- 주로 매출액 / 매출수량 / 그 외 성과 지표 등이 고려됨

<u>벤</u>치마크 (Benchmark)

• 효율성은 상대적 개념이므로 상대적으로 효율성을 달성한 그룹들이 벤치마크가 되고, 비효율적 DMU들은 가장 가까운 효율적 DMU를 찾는데, 가장 가까운 DMU가 경영 상 벤치마크가 될 수 있음

규모효율성(Scale Efficiency)

- 투입 대비 산출의 생산 Process가 항상 비례적인 것은 아니며, 사업 단위가 큰 그룹과 사업 단위가 작은 그룹 간 효율성이 다를 수 있음
- 가령, 객실 수 15개로 오직 Room만 파는 모텔 / 객실 수 300개, F&B, 연회, 골프 등 다양한
 사업을 운영하는 호텔 간 효율성 비교를 하면 사업단위가 작은 쪽이 유리함

선형 계획모형을 이용한 효율성 구하기

• 예를 들어, 3개의 투입과 2개의 산출이 있다고 가정해보자.

구분	투입#1	투입#2	투입#3	산출#1	산출#2
DMU#1	30	40	30	40	0
DMU#2	40	40	20	20	5
DMU#3	1	98	1	10	25

- 효율성은 모든 DMU의 입장에서 자신의 효율성에 대한 선형계획모형을 푸는 방법임. 즉, DMU의 개수만큼 선형계획모형을 반복하는 것
- DMU#1의 효율성 극대화 문제

= DMU#1의 시스템이 어떠한 가중치를 사용해도 다른 시스템보다 같거나 크지 않으면, 비효율적이라정의

$$\begin{aligned} \textit{Max} & E_1 = \frac{v_1*40 + v_2*0}{u_1*30 + u_2*40 + u_3*30} = v_1*40 + v_2*0 \\ & \\ \textit{Subject to} & (v_1*40 + v_2*0) - (u_1*30 + u_2*40 + u_3*30) \leq 0 : 산출의 가치가 투입의 가치를 넘을 수 없다. \\ & u_1*30 + u_2*40 + u_3*30 = 1 : 산출의 가치를 1로 고정 \\ & (v_1*40 + v_2*0) - (u_1*40 + u_2*40 + u_3*20) \leq 0 : \texttt{DMU#2의 투입 가치를 넘을 수 없다.} \\ & (v_1*40 + v_2*0) - (u_1*1 + u_2*98 + u_3*1) \leq 0 : \texttt{DMU#3의 투입 가치를 넘을 수 없다.} \end{aligned}$$

Lecture 13-3

규모경제성 (Return to Scale)

DEA 기본 가정

▶ DMU1의 효율성

구분	투입	변수	산출변수		
의사결정단위	노동력 X11	R&D X12	특허건수 Y11	매출액 Y12	
DMU 1	100	70	50	100	
DMU 2	100	80	60	80	
DMU 3	100	100	60	100	

- 투입 가중치 : V1, V2 / 산출 가중치 U1, U2

$$\begin{array}{ll} \textit{Max} & E_1 = \frac{U_1 Y_{11} + U_2 Y_{12}}{V_1 X_{11} + V_2 X_{12}} \\ \textit{s.t} & V_1 X_{11} + V_2 X_{12} = 1 \\ & \frac{U_1 Y_{11} + U_2 Y_{12}}{V_1 X_{11} + V_2 X_{12}} \leq 1 \\ & \frac{U_1 Y_{21} + U_2 Y_{22}}{V_1 X_{21} + V_2 X_{22}} \leq 1 \\ & \frac{U_1 Y_{31} + U_2 Y_{32}}{V_1 X_{31} + V_2 X_{32}} \leq 1 \end{array}$$

생산변경선(Production Frontier Line)

• 1투입 - 1산출 모형 예시

생산변경선(Production Frontier Line)

생산변경선(Production Frontier Line)

• 투입이 2개인 경우, 특정 산출양을 창출하는데 들어가는 투입의 배합을 함수로 표현함

비규모경제성(NIRS) 및 비규모불경제성(NDRS)

<u>비규모경제성(NIRS)</u>

• 전통적인 제조업/물류산업에서 주로 발생

IT 및 플랫폼 산업에서 주로 발생