CS3061 Artificial Intelligence

Submit to Blackboard by Monday, March 5th (23:59)

Recall from lecture¹ that Sam is either fit or unfit

$$S = \{ \text{fit, unfit} \}$$

and has to decide whether to exercise or relax

$$A = \{\text{exercise, relax}\}$$

on the basis of the following (probability, reward)-matrices (p(s, a, s'), r(s, a, s')) for row s, column s' in table with corner a

exercise			relax	fit	unfit
fit	.99, 8	.01, 8	fit	.7, 10	.3, 10
unfit			unfit	0, 5	1, 5

The γ -discounted value of (s, a) is

$$\lim_{n\to\infty}q_n(s,a)$$

where

$$q_0(s,a) := p(s,a,\mathrm{fit})r(s,a,\mathrm{fit}) + p(s,a,\mathrm{unfit})r(s,a,\mathrm{unfit})$$

$$V_n(s) := max(q_n(s,\mathrm{exercise}),q_n(s,\mathrm{relax}))$$

$$q_{n+1}(s,a) := q_0(s,a) + \gamma(p(s,a,\mathrm{fit})V_n(\mathrm{fit}) + p(s,a,\mathrm{unfit})V_n(\mathrm{unfit})).$$

In particular, $\gamma = 0.9$ leads to the following $q_n(s, a)$ for n = 0, 1, 2

	exercise	relax	π
fit	8, 16.955, 23.812	10, 17.65, 23.685	relax, relax, exercise
unfit	0, 5.4, 10.017	5, 9.5, 13.55	relax, relax, relax

Your task is to write a program that given

a positive integer n, a γ -setting G (0 < G < 1), and a state s returns the values

$$q_n(s, \text{exercise})$$
 and $q_n(s, \text{relax})$

for $\gamma = G$. You may use any of the following programming languages

but be prepared to demonstrate your program on Tue, March 6 (noon-1, LG 12, O'Reilly) or Wed, March 7 (10-11, LB04; on your machine).

¹It may help to read Poole & Mackworth, 9.5 Decision Processes.