三. 多元线性回归

1. 选取数据

安徽省2004-2016年农村居民人均可支配收入(元/人,自变量,用 \$x_1\$ 表示)

人均消费支出 (元/人,响应变量,用 \$y\$ 示)

消费价格指数 (以2003基准为100, 自变量, 用 \$x_2\$ 表示)

年份	农村居民家庭人均		
	可支配收入	消费价格指数	消费支出
2004	2499	105	1814
2005	2641	107	2196
2006	2969	108	2421
2007	3556	113	2754
2008	4203	121	3284
2009	4504	120	3655
2010	5285	124	4013
2011	6232	131	4957
2012	7161	134	5556
2013	8850	138	7200
2014	9916	140	7981
2015	10821	142	8975
2016	11720	144	10287

```
data=xlsread('data.xlsx');
```

2. ols估计

```
[n,m]=size(data);
Y=data(:,end);
X=data(:,1:(end-1));
X=[ones(n,1),X];
beta=inv(X'*X)*(X'*Y);
```

beta为计算出的系数的最小二乘估计,包括常数项

3. 假设检验

对方程整体进行显著性检验(F检验),同时计算可决系数。p为存放方程整体检验和每个自变量显著性检验的检验p值的向量,F为方程整体显著性检验的检验统计量,R为回归方程的可决系数,表示方程的拟合情况,一般对于时间序列数据来说,大于0.9即可

```
p=zeros(m,1);
tss=(Y-mean(Y))'*(Y-mean(Y));
rss=Y'*Y-beta'*X'*Y;
R=(tss-rss)/tss;
F=((tss-rss)/(m-1))/(rss/(n-m));
p(1)=1-fcdf(F,m-1,n-m);
```

每个自变量的显著性检验(t检验), t为存放方程每个自变量t检验统计量的向量

```
C=diag(inv(X'*X));
sigma=sqrt(rss/(n-m));
t=zeros(m-1,1);
for i=1:(m-1)
    t(i)=beta(i+1)/(sqrt(C(i+1))*sigma);
    p(i+1)=2*(1-tcdf(abs(t(i)),n-m));
end
```

如果方程整体和每个自变量均通过显著性检验(p值小于给定的显著性水平),估计的经验回归方程如下:

$$y = 3370 + 1.0164x_1 - 37.1176x_2$$
 $R^2 = 0.9962$ $(15.66*)$ $(-2.48*)$ $F = 1307.59$

回归系数下方括号内为该系数对应的t检验统计量,表示在给定的显著性水平下(一般是0.05)显著

4. 预测

已知安徽省2017-2018年农村居民的人均可支配收入和消费价格指数,预测其人均消费支出,同时与真实的人均消费支出比较

```
X1=[10821,142;11720,144];Y1=[8975;10287];
plot3(X(:,2),X(:,3),X*beta,'b');hold on;
plot3(X1(:,1),X1(:,2),[ones(2,1),X1]*beta,'g');hold on;
plot3([X(:,2);X1(:,1)],[X(:,3);X1(:,2)],[Y;Y1],'ro');grid on
legend('训练集: 2004-2016年','预测集: 2017-2018年','真实值');
ylabel('消费价格指数');
xlabel('人均可支配收入');
zlabel('人均消费支出');
```

