Fakultät Informatik, Institut für Systemarchitektur, Professur Rechnernetze

Sport Event Analyser(SEA)

Analyse, Vorhersage und grafische Aufbereitung von Fußballspielen

Zwischenpräsentation

Gliederung

- 1. Grundlagen
- 2. Gruppenaufteilung
- 3. Kommunikationsarchitektur
- 4. Statistik
- 5. Prognose

Dresden, 07.06.2013

6. Visualisierung

1 Grundlagen

Aufgabenstellung:

- Aufzeichnungen vom RedFir-System aus dem Grundig-Stadion von Nürnberg als Grundlage für weitere Verarbeitung
- Entgegennahme der Daten und Simulation des Spiels in Echtzeit
- Analyse, Prognose und Visualisierung der Sensordaten

Bestandteil	Wert t ₁
Sender	98
Zeitstempel	1075350000000
Position (x)	27331
Position (y)	-29367
Position (z)	913
Geschw.	1015110
Beschl.	7296719
Geschw. (x)	11
Geschw. (y)	-9715
Geschw. (z)	2366
Beschl. (x)	595
Beschl. (y)	-9966
Beschl. (z)	561

2 Gruppenaufteilung

Kommunikation:

Patrick Tempel (& Philipp Geißler)

Statistik:

Alrik Geselle, Richard John, Tommy Kubica

Prognose:

Onur Ekici, Philipp Geißler

Visualisierung:

Kevin Angermann, Peter Schwede

3 Kommunikation

Verantwortlich für diesen Teil:

Patrick Tempel (& Philipp Geißler)

Ziele:

- Kommunikationsarchitektur aufsetzen
- Simulation der Datenermittlung in Echtzeit
- Stream-basierte Übertragung der Daten zum SportEventAnalyser-Service

3 Kommunikation

Architektur:

3 Kommunikation

Aktueller Stand:

- Vollständige (z.T. prototypische) Umsetzung der Kommunikationsarchitektur
- Teilweise Anbindung der Gruppen an die Architektur

Weitere Aufgaben:

- Anbindung des Web-Interfaces
- Publish-Subscribe (XEP-060) für den JS-Client
- Weitergabe der berechneten Werte an den JS-Client

4 Statistik

Verantwortlich für diesen Teil:

Alrik Geselle, Richard John, Tommy Kubica

Ziele:

• Kontinuierliche Berechnungen von Spielstatistiken (z.B. Ballbesitz, Torschüsse, Schüsse aufs Tor, Passquote, Laufstrecken,...)

Tools:

Esper – Component for Complex Event Processing (CEP)

4 Statistik

Aktueller Stand:

- Spieler
 - ✓ Laufstrecke
 - ✓ Ballkontakte
 - ✓ Torschüsse
 - √ Fehl/-Pässe
 - ✓ Heatmap
- Team
 - √ Ballbesitz

✓ Passgenauigkeit

Schwierigkeiten:

- Werte der Z-Achse kaum brauchbar
- Beschleunigunswerte nur bedingt verwendbar
- Einige Statistiken nicht aus Rohdaten berechenbar

Spielzeit: 0 min, 4 sec Team: ROT Name des Spielers am Ball: Vale Reitstetter Laufstrecke: 9.878295

Spielzeit: 0 min, 3 sec Team: ROT Name des Spielers am Ball: Vale Reitstetter Laufstrecke: 7.5596747

4 Statistik

Weitere Aufgaben:

- Eckbälle
- Schüsse neben das Tor

Weitere optionale Aufgaben:

- Unterscheidung der Spielunterbrechungen (z.B. Einwurf, Standardsituationen)
- Flanken

Verantwortlich für diesen Teil:

Onur Ekici, Philipp Geißler

Ziele:

• Echtzeitprognose von Spielereignissen

Tools:

- Weka Data Mining Software in Java
- MOA Massive On-Line Analysis

Ablaufplan:

Typ 1 (Getaktete Events):

- Pässe
 - Erfolgreicher Pass
 - Fehlpass
- Flanken
 - Erfolgreiche Flanke
 - Sonstige

Typ 2 (Getaktete Eventketten):

- Torschuss
- Ballverlust
- Außerhalb des Spielfelds

Algorithmen - Machine Learning:

K-nearest-neighbors

- Support Vector Machine Regression
- Partial Least Squares

Verantwortlich für diesen Teil:

Kevin Angermann, Peter Schwede

Anregungen:

Anregungen:

Spielvideo:

Spiel läuft in Echtzeit

Zeitleiste:

- Ereignisse (Tor, Karte, Verletzung ...) in zeitlicher Abfolge abbilden
- Zusatzinfos über Popups

Teamübersicht:

- Tabellenartige Ansicht beider Teams
- Allgemeine Informationen/Leistungsdaten zu jedem Spieler
- Selektion eines Spielers → Interaktion mit anderen Komponenten

Spielerinformationen:

- Informationen über aktuell selektieren Spieler
- Je Reiter andere personenbezogene Leistungsdaten
- Laufinfo enthält: Echtzeitdiagramm der Geschwindigkeit

Taktische Übersicht:

- Zeigt alle Spielerbewegungen in Echtzeit
- Verschiedene statistische Ansichten (Heatmap, Standards, Pässe, Schüsse)
- Aktuell selektierter Spieler hervorgehoben

Entwurf:

Fragen?

