Numeric Optimization Assignment 4

103062512 徐丞裕

1.

(a) KKT conditions for (1):

•
$$\nabla \mathcal{L}(x^*, \lambda^*) = \begin{bmatrix} 0.2(x_1 - 3) \\ 2x_2 \end{bmatrix} - \begin{bmatrix} -2\lambda x_1 \\ -2\lambda x_2 \end{bmatrix} = \vec{0}$$

- $-(x_1^*)^2 (x_2^*)^2 + 1 \ge 0$ $\lambda \ge 0$
- $\lambda[-(x_1^*)^2 (x_2^*)^2 + 1] = 0$

(b) Since $x_2 + \lambda x_2 = 0$ and $\lambda \ge 0$, we have $x_2 = 0$, consider the following cases:

i.
$$\lambda = 0$$

We then have: $\begin{cases} x_1=3\\ x_2=0 \end{cases}$, however, this is contradict to $-x_1^2-x_2^2+1=-9\not\geq 0.$ ii. $-x_1^2-x_2^2+1=0$ By this, we have $\begin{cases} x_1=\pm 1\\ x_2=0 \end{cases}$, and $\begin{cases} \lambda=0.2 & x_1=1\\ \lambda=-0.4 & x_1=-1 \end{cases}.$

ii.
$$-x_1^2 - x_2^2 + 1 = 0$$

By this, we have
$$\begin{cases} x_1=\pm 1 \\ x_2=0 \end{cases}$$
 , and $\begin{cases} \lambda=0.2 & x_1=1 \\ \lambda=-0.4 & x_1=-1 \end{cases}$

To sum up, we have $\begin{cases} x_1^* = 1 \\ x_2^* = 0 \\ \lambda = 0.2 \end{cases}.$

(c) The reduced-Hessian is
$$\nabla^2_{xx}\mathcal{L}(x,\,\lambda)=\left[\begin{array}{cc}0.2+2\lambda&0\\0&2+2\lambda\end{array}\right]$$

The constraint is active at point $(x_1, x_2) = (1, 0)$, we only need to check if $w^\top \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) w \ge 0$

Since the reduced-Hessian matrix is PD for $\lambda^* = 0.2$, the second order condition holds for point $(x_1, x_2) = (1, 0)$.

2. By KKT conditions, we have:

(a)
$$\nabla \mathcal{L} = Ap^* + g - 2\mu p = 0$$

(b)
$$-p^{*\top}p^* + \Delta^2 \ge 0$$

(c)
$$\mu \ge 0$$

(d)
$$\mu(-p^{*\top}p^* + \Delta^2) = 0$$

Setting $\lambda = -2\mu$.

By (d) we have $\mu(\|p^*\| - \Delta)(\|p^*\| + \Delta) = 0$, and since $\Delta \ge 0$, we then have $\lambda(\|p^*\| - \Delta) = 0$. And by (a):

$$Ap^* + q - \lambda p^* = 0$$

$$Ap^* - \lambda p^* = -g$$

$$(A - \lambda I)p^* = -g$$

But I don't know how to derive the thrid property.

3. The source codes are in the coding folder.

The following plot shows the trace of the interior point method (t_0 is the initial point) applied on solving the problem in the last assignment:

