Image Processing and Computer Vision Joachim Weickert, Summer Term 2019	MI
Lecture 7:	1 2
Image Transformations IV:	3 4
The Discrete Wavelet Transform	5 6
The Biserete Wavelet Transform	7 8
	9 10
Contents	11 12
1 M	13 14
1. Motivation	15 16
2. The One-Dimensional Haar Wavelet	17 18
3. Fast Wavelet Transformation (FWT)	19 20
4. Multi-Dimensional Wavelet Transformations	21 22
5. Application to Data Compression	23 24
	25 26
	27 28
	29 30
© 2000–2019 Joachim Weickert	31 32

	Motivation (1)	IVI	A
	Motivation	1	2
		3	4
	Pros and Cons of Previous Methods	5	6
•	representation in the spatial domain:	7	8
	optimal spatial localisation	9	10
	• no direct access to frequencies or scales	11	12
	Fourier transform and discrete cosine transform:	13	14
		15	16
	 optimal resolution with respect to the frequencies 	17	18
	 no direct access to the localisation of structures 	19	20
•	Laplacian pyramid is a compromise:	21	22
	splits image into frequency bands	23	24
	• good localisation at fine scales, bad localisation at coarse scales	25	26
	However, it is redundant: requires more space than the original image.	27	28
		29	30

Is there a more compact representation with localisation both in space and frequency?

Motivation (2)

Signal Representation in Another Basis Example:

Represent the signal $\mathbf{f} = (6, 4, 5, 1)^{\mathsf{T}}$ in the following orthonormal basis of \mathbb{R}^4 with respect to the Euclidean inner product $\langle f,g \rangle = f^{\top}g$:

$$egin{array}{lll} m{b}_1 &:=& rac{1}{2} \left(1,\, 1,\, 1,\, 1
ight)^{ op}, \ m{b}_2 &:=& rac{1}{2} \left(1,\, 1,\, -1,\, -1
ight)^{ op}, \ m{b}_3 &:=& rac{1}{\sqrt{2}} \left(1,\, -1,\, 0,\, 0
ight)^{ op}, \ m{b}_4 &:=& rac{1}{\sqrt{2}} \left(0,\, 0,\, 1,\, -1
ight)^{ op}. \end{array}$$

Motivation (3)

In the representation $f = \sum_{i=1}^{4} \alpha_i b_i$ the coefficients α_i are given by

$$\alpha_1 = \mathbf{f}^{\top} \mathbf{b}_1 = \frac{1}{2} \left(6 \cdot 1 + 4 \cdot 1 + 5 \cdot 1 + 1 \cdot 1 \right) = 8,$$

$$\alpha_2 = \mathbf{f}^{\top} \mathbf{b}_2 = \frac{1}{2} \left(6 \cdot 1 + 4 \cdot 1 - 5 \cdot 1 - 1 \cdot 1 \right) = 2,$$

$$\alpha_3 = \mathbf{f}^{\top} \mathbf{b}_3 = \frac{1}{\sqrt{2}} \left(6 \cdot 1 - 4 \cdot 1 + 5 \cdot 0 + 1 \cdot 0 \right) = \frac{2}{\sqrt{2}},$$

$$\alpha_4 = \mathbf{f}^{\top} \mathbf{b}_4 = \frac{1}{\sqrt{2}} \left(6 \cdot 0 + 4 \cdot 0 + 5 \cdot 1 - 1 \cdot 1 \right) = \frac{4}{\sqrt{2}}.$$

These coefficients have the following interpretations:

rescaled average grey value α_1 :

 $|\alpha_2|$: contribution to low frequencies (without localisation)

 $|\alpha_3|$: high frequency contribution in the left half of the signal high frequency contribution in the right half of the signal $|\alpha_4|$:

3

5 6

7 8

9 10

12 1113 14

15 16

17 18

19 20

21 22

23 24

25 | 26

27 28

29|30

The 1-D Haar Wavelet (1)

The 1-D Haar Wavelet

General Idea Behind a Wavelet Basis

- ◆ A localised, wave-like function with mean 0 *(mother wavelet, Mutterwavelet)* is scaled and shifted.
- Besides these functions, one additional basis function with non-vanishing mean is needed to represent the average grey value (scaling function, Skalierungsfunktion).

The 1-D Haar Wavelet (2)

Alfréd Haar (1885–1933) was a Hungarian mathematician who studied in Göttingen. In his Ph.D. thesis that was supervised by David Hilbert he introduced the first wavelet concepts. He made a number of significant contributions to the field of calculus. **Left:** Photo of Alfréd Haar. Source: http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Haar.html. **Right:** Photo of Alfréd Haar (left) together with the mathematicians Hermann Minkowski (front) and David Hilbert (right). Source: http://www.goettingen.de/pics/medien//big_image_12125684243613.jpeg.

15 16 17 18

19 20

21 22

23 24

25 26

27 28

29|30

The 1-D Haar Wavelet (3)

The Continuous Haar Wavelet

- ◆ simplest wavelet (Alfréd Haar, 1910)
- uses the mother wavelet

$$\Psi(x) \; := \; \left\{ \begin{array}{rl} 1 & \quad \text{for } 0 \leq x \leq \frac{1}{2}\text{,} \\ -1 & \quad \text{for } \frac{1}{2} < x \leq 1\text{,} \\ 0 & \quad \text{else.} \end{array} \right.$$

consider scaled and shifted versions:

$$\Psi_{j,k}(x) \; := \; \frac{1}{2^{j/2}} \, \Psi \left(\frac{x}{2^j} - k \right) \; = \; \frac{1}{2^{j/2}} \, \Psi \left(\frac{x - k \, 2^j}{2^j} \right).$$

 $\Psi_{j,k}$ has range $\left[-\frac{1}{2^{j/2}},\,\frac{1}{2^{j/2}}\right]$, width 2^j , and starts at $k\,2^j$.

The *scale* level is specified by j, the *shift* by k.

Finer scales correspond to smaller scale levels j.

The 1-D Haar Wavelet (4)

Haar wavelet $\Psi_{j,k}$. Author: M. Mainberger.

M I ∰A

1 | 2

3 4

5 | 6

7 8

9 10

11 12

13 14 15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

M I

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

.1 22

23 2425 26

25 20

27 | 2829 | 30

The 1-D Haar Wavelet (5)

$$\|\Psi_{j,k}\| \ := \ \sqrt{\langle \Psi_{j,k}, \Psi_{j,k} \rangle} \ = \ 1,$$

in the space of quadratically (Lebesgue) integrable functions

$$L^{2}(\mathbb{R}) := \left\{ f : \mathbb{R} \to \mathbb{R} \mid \int_{-\infty}^{\infty} |f(x)|^{2} dx < \infty \right\}$$

with the inner product

$$\langle f, g \rangle := \int_{-\infty}^{\infty} f(x) g(x) dx.$$

If j and k are integer numbers, the Haar wavelets $\{\Psi_{j,k}\}$ are even orthonormal:

$$\langle \Psi_{j,k}\,,\Psi_{n,m} \rangle \;=\; \left\{ egin{array}{ll} 1 & \quad \mbox{for } (j,k)=(n,m), \\ 0 & \quad \mbox{else}. \end{array} \right.$$

The 1-D Haar Wavelet (6)

As scaling function one chooses a box function:

$$\Phi(x) \; := \; \left\{ \begin{array}{ll} 1 & \quad \text{for } 0 \leq x \leq 1, \\ 0 & \quad \text{else}. \end{array} \right.$$

It may also be scaled and shifted:

$$\Phi_{j,k}(x) := \frac{1}{2^{j/2}} \Phi\left(\frac{x}{2^j} - k\right) = \frac{1}{2^{j/2}} \Phi\left(\frac{x - k 2^j}{2^j}\right).$$

 $\Phi_{j,k}$ has range $\left[0,\frac{1}{2^{j/2}}\right]$, width 2^j , and starts at $k\,2^j$.

5

7

9 10

11|12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 | 32

3

5 6

7 8

10

11|12

13 14

15 16

17 18

19|20

21 22

23|24

25 26

27 28

29|30

The 1-D Haar Wavelet (7)

Scaling function $\Phi_{j,k}$. Author: M. Mainberger.

The 1-D Haar Wavelet (8)

Scaling function and Haar wavelets on the interval $[0,8]=[0,2^n]$ with n=3. From top to bottom: Scaling function $\Phi_{3,0}$, wavelets $\Psi_{3,0}$, $\Psi_{2,0}$, $\Psi_{2,1}$, $\Psi_{1,0}$, $\Psi_{1,1}$, $\Psi_{1,2}$, $\Psi_{1,3}$. These eight orthonormal functions allow to represent every discrete signal with eight components. Author: T. Schneevoigt.

M I

5 6

7 | 89 | 10

11 12

15 16

13

17 18

19 20

21 22

23 24

25 26

27 28

29 30

The 1-D Haar Wavelet (9)

5

7 | 8

9 | 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 | 32

3

5 | 6

7 | 8

9 | 10

11|12

13 14

15 16

19 20

23 24

25 | 26

29 30

27|28

21|22

17 18

The Discrete Haar Wavelet

- The previous model was continuous. This helped us to describe scaling and shifting in a more intuitive way. However, discrete signals require discrete models.
- lacktriangle For a discrete signal of length $N=2^n$ one considers the N functions

$\Phi_{n,0}$,	scaling function
$\Psi_{n,0}$,	lowest frequency, unlocalised
$\Psi_{n-1,0}$, $\Psi_{n-1,1}$	second lowest frequency, at 2 locations
1.	
$\Psi_{1,0}$, $\Psi_{1,1}$, , $\Psi_{1,2^{n-1}-1}$	highest frequency, at 2^{n-1} locations.

The example on the previous slide illustrates the case n=3 and $N=2^n=8$.

- Sampling at N equidistant grid points $\{\frac{1}{2}, \frac{3}{2}, ..., N \frac{1}{2}\}$ creates an orthonormal basis of \mathbb{R}^N .
- Thus, we can identify the piecewise constant functions $\Psi_{j,k}(x)$ and $\Phi_{j,k}(x)$ with the basis vectors $\Psi_{j,k}$ and $\Phi_{j,k}$.

The 1-D Haar Wavelet (10)

Example

• The example on Page 3 was a discrete Haar wavelet transform with n=2: We used the basis vectors

$$\begin{split} & \boldsymbol{\Phi}_{2,0} \ = \ \tfrac{1}{2} \left(1, 1, 1, 1 \right)^{\top}, \\ & \boldsymbol{\Psi}_{2,0} \ = \ \tfrac{1}{2} \left(1, 1, -1, -1 \right)^{\top}, \\ & \boldsymbol{\Psi}_{1,0} \ = \ \tfrac{1}{\sqrt{2}} \left(1, -1, 0, 0 \right)^{\top}, \qquad \boldsymbol{\Psi}_{1,1} \ = \ \tfrac{1}{\sqrt{2}} \left(0, 0, 1, -1 \right)^{\top}. \end{split}$$

• The discrete Haar wavelet transform of the signal $\mathbf{f} = (6, 4, 5, 1)^{\top}$ maps the coefficients in the canonical basis to the coefficients in the wavelet basis:

$$\mathbf{f} = 6\mathbf{e}_1 + 4\mathbf{e}_2 + 5\mathbf{e}_3 + 1\mathbf{e}_4
= 8\mathbf{\Phi}_{2,0} + 2\mathbf{\Psi}_{2,0} + \frac{2}{\sqrt{2}}\mathbf{\Psi}_{1,0} + \frac{4}{\sqrt{2}}\mathbf{\Psi}_{1,1}$$

where e_i is 1 in its i-th component and 0 elsewhere.

• In practice, the basis vectors $\Phi_{2,0}$, $\Psi_{2,0}$, $\Psi_{1,0}$, and $\Psi_{1,1}$ are known. Thus, we only have to store the four coefficients 8, 2, $\frac{2}{\sqrt{2}}$, and $\frac{4}{\sqrt{2}}$.

The 1-D Haar Wavelet (11)

Widely Used Conventions for the Coefficients

- lacktriangledown $c_{j,k}:=m{f}^ opm{\Phi}_{j,k}\colon$ coefficient of the scaling vector $m{\Phi}_{j,k}$ (c like \emph{coarse})
- $lacktriangledown d_{j,k} := m{f}^ op m{\Psi}_{j,k}$: coefficient for the wavelet vector $m{\Psi}_{j,k}$ (d like $m{detail}$
- ◆ The coefficients are stored and transmitted in a coarse-to-fine manner:

$$c_{n,0} \mid d_{n,0} \mid d_{n-1,0} \mid d_{n-1,1} \mid \dots \mid d_{1,0} \mid \dots \mid d_{1,2^{n-1}-1}$$

This allows to refine the reconstruction during data transmission.

◆ These coefficients carry the full information of the Haar wavelet transformation. There is no need to transmit the basis vectors.

The Fast Wavelet Transform (1)

The Fast Wavelet Transform

Important Practical Aspect

- naive implementation of the discrete wavelet transform: requires $\mathcal{O}(N^2)$ operations for a signal of length N.
- Are there algorithms with lower complexity?

M	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32

5

7 | 8

9 | 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

The Fast Wavelet Transform (2)

The Fast Wavelet Transform (FWT)

$$= \frac{1}{2^{\frac{j}{2}}}$$

$$= \frac{1}{\sqrt{2}}$$

$$(k+1)2^{j}$$

$$(k+1)2^{j}$$

$$(2k+1)2^{j-1}$$

$$(2k+1)2^{j-1}$$

$$(2k+1)2^{j-1}$$

$$(2k+1)2^{j-1}$$

$$(2k+1)2^{j}$$

Basic idea behind the Fast Wavelet Transform: The scaling functions and wavelets at the coarser scale j can be expressed by scaling functions at the finer scale j-1. **Top:** Visualisation of the formula $\Phi_{j,k}=\frac{1}{\sqrt{2}}\left(\Phi_{j-1,\,2k}+\Phi_{j-1,\,2k+1}\right)$. **Bottom:** Visualisation of $\Psi_{j,k}=\frac{1}{\sqrt{2}}\left(\Phi_{j-1,\,2k}-\Phi_{j-1,\,2k+1}\right)$. Author: M. Mainberger.

The Fast Wavelet Transform (3)

• The definitions of the Haar wavelets and the scaling functions allow to express the vectors with coarser scale j by vectors with finer scale j-1:

$$\Phi_{j,k} = \frac{1}{\sqrt{2}} \left(\Phi_{j-1,2k} + \Phi_{j-1,2k+1} \right) \qquad (k = 0, ..., 2^{n-j} - 1),$$

$$\Psi_{j,k} = \frac{1}{\sqrt{2}} \left(\Phi_{j-1,2k} - \Phi_{j-1,2k+1} \right) \qquad (k = 0, ..., 2^{n-j} - 1).$$

Moreover, at the finest scale j=0 we have

$$f_k = \mathbf{f}^{\top} \mathbf{\Phi}_{0,k} \qquad (k = 0, ..., 2^n - 1),$$

since $\Phi_{0,k}$ is identical to the canonical basis vector e_k .

Because of

$$c_{j,k} = \mathbf{f}^{\top} \mathbf{\Phi}_{j,k},$$

 $d_{j,k} = \mathbf{f}^{\top} \mathbf{\Psi}_{j,k},$

these relations for the basis vectors carry over to the coefficients.

M I

5

7 | 8

9 | 10

11|12

13 14

15 16

17 18

19 20

23 24

25 26

29|30

31 | 32

27 28

21 22

1 2

3 4

5 6

7 8

13 14

15 16

17 18

19 20

21 22

21 22

23 24

25 26

27 28

29 30

The Fast Wavelet Transform (4)

lacktriangle Thus, for the scales j=1,...,n we compute

$$c_{j,k} = \frac{1}{\sqrt{2}} \left(c_{j-1, 2k} + c_{j-1, 2k+1} \right) \qquad (k = 0, ..., 2^{n-j} - 1),$$

$$d_{j,k} = \frac{1}{\sqrt{2}} \left(c_{j-1, 2k} - c_{j-1, 2k+1} \right) \qquad (k = 0, ..., 2^{n-j} - 1).$$

starting from the finest scale j=0 with the initialisation

$$c_{0,k} = f_k (k = 0, ..., 2^n - 1).$$

- ◆ This fine-to-coarse algorithm is called *Fast Wavelet Transform (FWT)*.
- For a signal of length $N=2^n$, one can show that computing the N coefficients $\{c_{n,0},\,d_{n,0},...,\,d_{1,2^{n-1}-1}\}$ requires only $\mathcal{O}(N)$ operations.
- Let us now see that the FWT resembles the Laplacian pyramid decomposition from Lecture 6.

The Fast Wavelet Transform (5)

Pyramid-like interpretation of the FWT of the signal $(6,4,5,1)^{\top}$. The left part resembles the Gaussian pyramid and gives the scaling coefficient $c_{2,0}=8$. The right part resembles the Laplacian pyramid and yields the wavelet coefficients $d_{1,0}=\frac{2}{\sqrt{2}},\ d_{1,1}=\frac{4}{\sqrt{2}},\ d_{2,0}=2$. Author: M. Mainberger.

I I	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
	Ι Λ
	I A
M	1 A 2
M 1 3	4
	1 A 2 4 6
M 1 3	4 6 8
M 1 3	4 6
M 1 3	4 6 8
M 1 3	4 6 8 10
M 1 3	4 6 8 10 12
M 1 3	4 6 8 10 12 14
M 1 3	4 6 8 10 12 14 16 18 20
M 1 3 5 7 9 11 13 15 17	4 6 8 10 12 14 16 18 20 22
M 1 3 5 7 9 11 13 15 17	4 6 8 10 12 14 16 18 20
M 1 3 5 7 9 11 13 15 17 19 21	4 6 8 10 12 14 16 18 20 22
1 3 5 7 9 11 13 15 17 19 21 23	4 6 8 10 12 14 16 18 20 22 24

The Fast Wavelet Transform (6)

The Inverse Fast Wavelet Transformation

$$= \frac{1}{2^{\frac{1}{2}}} \underbrace{ (k + \frac{1}{2})2^{j+1}}_{k2^{j+1}} = \frac{1}{\sqrt{2}} \underbrace{ \begin{bmatrix} \frac{1}{2^{\frac{j+1}{2}}} \\ \frac{1}{2^{\frac{j+1}{2}}} \end{bmatrix}}_{k2^{j+1}} \underbrace{ (k + 1)2^{j+1}}_{(k + 1)2^{j+1}} + \underbrace{ \begin{bmatrix} \frac{1}{2^{\frac{j+1}{2}}} \\ \frac{1}{2^{\frac{j+1}{2}}} \end{bmatrix}}_{k2^{j+1}} \underbrace{ (k + 1)2^{j+1}}_{(k + \frac{1}{2})2^{j+1}}$$

$$\underbrace{ \begin{pmatrix} (k+\frac{1}{2})2^{j+1} \\ k2^{j+1} \end{pmatrix}^{\frac{1}{2^{\frac{j}{2}}}}}_{(k+1)2^{j+1}} = \underbrace{ \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{2^{\frac{j+1}{2}}} \\ k2^{j+1} \\ k2^{j+1} \end{pmatrix}^{\frac{1}{2^{j+1}}}}_{(k+1)2^{j+1}} - \underbrace{ \begin{pmatrix} \frac{1}{2^{\frac{j+1}{2}}} \\ k2^{j+1} \\ (k+\frac{1}{2})2^{j+1} \end{pmatrix}^{\frac{1}{2^{j+1}}}}_{(k+\frac{1}{2})2^{j+1}}$$

Basic idea behind the Inverse Fast Wavelet Transform: The scaling functions at the finer scale j can be expressed by scaling functions and wavelets at the coarser scale j+1. **Top:** Visualisation of the formula $\Phi_{j,2k}=\frac{1}{\sqrt{2}}\left(\Phi_{j+1,k}+\Psi_{j+1,k}\right)$. **Bottom:** Visualisation of $\Phi_{j,2k+1}=\frac{1}{\sqrt{2}}\left(\Phi_{j+1,k}-\Psi_{j+1,k}\right)$. Author: M. Mainberger.

The Fast Wavelet Transform (7)

Because of

$$\Phi_{j,2k} = \frac{1}{\sqrt{2}} \left(\Phi_{j+1,k} + \Psi_{j+1,k} \right) \qquad (k = 0, ..., 2^{n-j-1} - 1),$$

$$\Phi_{j,2k+1} = \frac{1}{\sqrt{2}} \left(\Phi_{j+1,k} - \Psi_{j+1,k} \right) \qquad (k = 0, ..., 2^{n-j-1} - 1)$$

the inverse transformation is as simple as the forward transformation:

lacktriangle Proceed in a coarse-to-fine manner from $j=n\!-\!1$ to j=0 and compute

$$c_{j,2k} = \frac{1}{\sqrt{2}} \left(c_{j+1,k} + d_{j+1,k} \right) \qquad (k = 0, ..., 2^{n-j-1} - 1),$$

$$c_{j,2k+1} = \frac{1}{\sqrt{2}} \left(c_{j+1,k} - d_{j+1,k} \right) \qquad (k = 0, ..., 2^{n-j-1} - 1).$$

- lacktriangle Then the reconstructed signal ${m f}$ is given by $f_k=c_{0,k}$ for $k=0,...,2^n-1$.
- resembles the reconstruction of the Gaussian pyramid and the original signal from the Laplacian pyramid

M I

- 1 2
- 2 4
- 5 6
- 7 8 9 10
- 11 12
- 13 14
- 15 16
- 17 18
- 19 20
- 21 22
- 23 24
- 25 26
- 27 28
- 29 30
- 31 32

M I ■ ^

- 1 2
- 3 4
- 5 6
- 7 8
- 9 10
- 11 12
- 13 14 15 16
- 17 18
- 10 20
- 19 20
- 21 22
- 23 24
- 25 26
- 27 28
- 29 30
- 31 32

The Fast Wavelet Transform (8)

Reconstruction of the original signal $(6,4,5,1)^{\top}$ starting from the scaling coefficient $c_{2,0}=8$ and the wavelet coefficients $d_{2,0}=2$, $d_{1,0}=\frac{2}{\sqrt{2}}$, $d_{1,1}=\frac{4}{\sqrt{2}}$. Author: M. Mainberger.

The Fast Wavelet Transform (9)

Wavelets versus Pyramids and Fourier Representations

- ♦ The pyramid-like algorithm behind the FWT implies the following: The discrete wavelet coefficients can be computed in optimal complexity: $\mathcal{O}(N)$. (in contrast to FFT: $\mathcal{O}(N\log_2 N)$)
- Pyramids and the discrete wavelet transform are not shift invariant!
- Unlike pyramids, discrete wavelet representations have no redundancy:
 A signal of length N is represented by N coefficients.

13	14	
15	16	
15 17	18	
19	20	
21	22	
21232527	222426	
25	26	
27	28	
29	30	
31	32	
M	1	
IF THE	A	
1	2	
3	4	
3 5	4 6	
3 5 7	1 A 2 4 6 8	
3 5 7 9	246810	
3 5 7 9	0	
1 3 5 7 9 11	10	
11	10 12	
11 13	10 12 14	

5

Two-Dimensional Wavelet Transform (1)

The Two-Dimensional Wavelet Transform

Frequently Used (So-Called Nonstandard Decomposition)

- ◆ Start with computing the wavelet decomposition on a *single* level, first in *x* direction then in *y* direction.
- ◆ Perform the next decomposition only in the quadrant that contains the low-frequent parts (scaling coefficients) from both directions.
- Proceed until a single pixel is reached.

Distribution of the coefficients within the first two decomposition steps. Author: M. Mainberger.

Two-Dimensional Wavelet Transform (2)

original, 256×256 pixels

decomposition step 2

decomposition step 3

Two-dimensional nonstandard wavelet decomposition. Author: J. Weickert.

15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32

3

5 | 6

7 | 8

9 10

11|12

13 14

17 18

15 16

19 20

23 24

25 26

21 22

27 28

29 30

3

5

7 | 8

9 | 10

11 12

Two-Dimensional Wavelet Transform (3)

Illustration of the 64 basis vectors of the 2-D nonstandard wavelet decomposition for 8×8 images. Author: T. Schneevoigt.

Application to Data Compression (1)

Application to Data Compression

- Images are often piecewise smooth.
- ◆ Wavelets are well localised, in particular the high-frequent ones.
- ◆ Thus, the wavelet coefficients inside each segment have small magnitude.
- ◆ They can be cancelled without severe visual degradations.
- Only a few wavelet coefficients are large in magnitude.
 They represent important structures such as edges and should be kept.
- Cancelling small wavelet coefficients is a powerful compression strategy.
 It has entered modern compression standards such as JPEG 2000.
- ◆ However, never cancel the scaling coefficient: It determines the average grey value.

	13	14
	15	16
	17	18
	15 17 19 21 23 25	16 18 20 22
	21	22
	23	24
	25	26
	27	28
S.	29	30
	27 29 31	30 32
	M	1 2 4 6 8 10 12
	1	2
	3	4
	5	6
	3 5 7 9	8
	9	10
	11	12
	13 15	14
	15	14 16
	17	18
	19	20
	21	22
	23	24
	25	26
	25 27	26 28

3

5

7 | 8

10

11|12

Application to Data Compression (2)

original, 256×256 pixels

90.34 % removed

96.68 % removed

Removal of the Haar wavelet coefficients that are smallest in magnitude. Author: J. Weickert.

Summary

Summary

- Wavelets provide a signal representation that is localised in space and frequency.
- ◆ The Haar wavelet is the simplest wavelet.
- ◆ The fast wavelet transform (FWT) is similar to the Laplacian pyramid. It has linear complexity.
- ◆ In higher dimensions one often uses the so-called nonstandard decomposition.
- ◆ Data compression constitutes the most important wavelet application.
- ◆ In general, wavelets are neither shift invariant nor invariant under rotations.

3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
M	
M	A
1	2
2	1

6

9 10

11|12

7 | 8

13 14

15 16

19|20

23 24

25 26

27 28

29 30

21 22

References

References

 R. C. Gonzalez, R. E. Woods: Digital Image Processing. Prentice Hall, Upper Saddle River, International Edition, 2017.

(Chapter 7 deals with wavelets.)

◆ E. J. Stollnitz, T. D. DeRose, D. H. Salesin: *Wavelets for Computer Graphics*. Morgan Kaufmann, San Francisco, 1996.

(contains a well-readable introduction to Haar wavelets)

- ◆ W. Bäni: *Wavelets*. Oldenbourg, München, Zweite Auflage, 2005. (fairly simple introduction to wavelet concepts; in German)
- ◆ S. Mallat: A Wavelet Tour of Signal Processing. Academic Press, San Diego, Third Edition, 2009. (one of the most comprehensive books on wavelets)
- ◆ A. Haar: Zur Theorie der orthogonalen Funktionensysteme. *Mathematische Annalen*, Vol. 69, pp. 331–371, 1910.

(introduced the Haar wavelet)

The End

This concludes our desert ride. The skills we have learned during this expedition will be highly useful in the subsequent lectures. Photo by Hendrik Dacquin (https://de.wikipedia.org/wiki/Oase).

21 22

23 24

27 28

25 | 26