MATH2010 Advanced Calculus I, 2023-2024 Term 2

Solution to HOMEWORK 1

$\mathbf{Q}\mathbf{1}$

Solution. By triangle inequality, we have

$$\left\|\mathbf{b}\right\| + \left\|\mathbf{a} - \mathbf{b}\right\| \ge \left\|\mathbf{b} + \mathbf{a} - \mathbf{b}\right\| = \left\|\mathbf{a}\right\| \Longrightarrow \left\|\mathbf{a}\right\| - \left\|\mathbf{b}\right\| \le \left\|\mathbf{a} - \mathbf{b}\right\|.$$

Also, by triangle inequality, we have

$$\|a\|+\|b-a\|\geq \|a+b-a\|=\|b\|\Longrightarrow -\|b-a\|\leq \|a\|-\|b\|\Longrightarrow -\|a-b\|\leq \|a\|-\|b\|.$$

Therefore, we have

$$-\|\mathbf{a} - \mathbf{b}\| \le \|\mathbf{a}\| - \|\mathbf{b}\| \le \|\mathbf{a} - \mathbf{b}\|.$$

 $\mathbf{Q2}$

Solution.

(i) We have $\overrightarrow{OP} = \frac{1}{2}(\overrightarrow{OR} + \overrightarrow{OS}) = \frac{1}{2}(2 - 4, -1 + 3) = (-1, 1)$

(ii) We have $\overrightarrow{AB} = (2-1, 0-(-1)) = (1, 1)$ and $\overrightarrow{CD} = (-2-(-1), 2-3) = (-1, -1)$. Therefore, $\overrightarrow{AB} + \overrightarrow{CD} = (1-1, 1-1) = (0, 0)$.

(iii) For unit vectors in \mathbb{R}^2 , the vectors are $\left(\cos\frac{2\pi}{3},\sin\frac{2\pi}{3}\right) = \left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$ and $\left(\cos\frac{-2\pi}{3},\sin\frac{-2\pi}{3}\right) = \left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$. For unit vectors in \mathbb{R}^3 , let $\mathbf{u} = (a,b,c)$. We have

$$\cos\frac{2\pi}{3} = \frac{\mathbf{u}\cdot(1,0,0)}{\|\mathbf{u}\|\|(1,0,0)\|} \Longrightarrow -\frac{1}{2} = \frac{a}{1} \Longrightarrow a = -\frac{1}{2}.$$

Now, we have $a^2+b^2+c^2=1 \Longrightarrow b^2+c^2=\frac{3}{4} \Longrightarrow c=\pm\sqrt{\frac{3}{4}-b^2}.$

Therefore, the vectors are $\left(-\frac{1}{2}, b, \pm \sqrt{\frac{3}{4} - b^2}\right)$ where $b \in \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right]$.

Q3

Solution. Note that the indicated diagonal is $\mathbf{u} + \mathbf{v}$. Denote the angle between \mathbf{u} and the diagonal as θ_1 and the angle between \mathbf{v} and the diagonal as θ_2 .

We have

$$\cos \theta_1 = \frac{\mathbf{u} \cdot (\mathbf{u} + \mathbf{v})}{\|\mathbf{u}\| \|\mathbf{u} + \mathbf{v}\|} = \frac{\|\mathbf{u}\|^2 + \mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{u} + \mathbf{v}\|}$$

and

$$\cos \theta_2 = \frac{\mathbf{v} \cdot (\mathbf{u} + \mathbf{v})}{\|\mathbf{v}\| \|\mathbf{u} + \mathbf{v}\|} = \frac{\|\mathbf{v}\|^2 + \mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\| \|\mathbf{u} + \mathbf{v}\|}$$

If $\|\mathbf{u}\| = \|\mathbf{v}\|$, we have

$$\cos \theta_1 = \frac{\|\mathbf{u}\|^2 + \mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{u} + \mathbf{v}\|} = \frac{\|\mathbf{v}\|^2 + \mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\| \|\mathbf{u} + \mathbf{v}\|} = \cos \theta_2.$$

Therefore, the indicated diagonal makes equal angles with \mathbf{u} and \mathbf{v} .

 $\mathbf{Q4}$

Solution.

1. We have

$$\|\mathrm{Proj}_{\mathbf{v}}\mathbf{u}\| = \left\|\frac{\mathbf{u}\cdot\mathbf{v}}{\|\mathbf{v}\|^2}\mathbf{v}\right\| = |\mathbf{u}\cdot\mathbf{v}|\frac{\|\mathbf{v}\|}{\|\mathbf{v}\|^2} = \frac{|\mathbf{u}\cdot\mathbf{v}|}{\|\mathbf{v}\|}.$$

Now, by Cauchy-Schwarz inequality, we have $|\mathbf{u} \cdot \mathbf{v}| \leq ||\mathbf{u}|| ||\mathbf{v}||$. Therefore, we have

$$\|\operatorname{Proj}_{\mathbf{v}}\mathbf{u}\| = \frac{|\mathbf{u} \cdot \mathbf{v}|}{\|\mathbf{v}\|} \le \frac{\|\mathbf{u}\| \|\mathbf{v}\|}{\|\mathbf{v}\|} = \|\mathbf{u}\|.$$

2. The equality in Part 1 holds if and only if the equality in the Cauchy-Schwarz inequality holds, i.e. $\mathbf{u} = r\mathbf{v}$ for some $r \in \mathbb{R}$.

 Q_5

Solution. We have

$$\begin{split} \left(\mathbf{u} - \operatorname{Proj}_{\mathbf{v}} \mathbf{u}\right) \cdot \operatorname{Proj}_{\mathbf{v}} \mathbf{u} &= \left(\mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}\right) \cdot \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}\right) \\ &= \mathbf{u} \cdot \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}\right) - \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}\right) \cdot \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}\right) \\ &= \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} (\mathbf{u} \cdot \mathbf{v}) - \frac{(\mathbf{u} \cdot \mathbf{v})^{2}}{\|\mathbf{v}\|^{4}} (\|\mathbf{v}\|^{2}) \\ &= \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} (\mathbf{u} \cdot \mathbf{v}) - \frac{(\mathbf{u} \cdot \mathbf{v})^{2}}{\|\mathbf{v}\|^{4}} (\|\mathbf{v}\|^{2}) \\ &= \frac{(\mathbf{u} \cdot \mathbf{v})^{2}}{\|\mathbf{v}\|^{2}} - \frac{(\mathbf{u} \cdot \mathbf{v})^{2}}{\|\mathbf{v}\|^{2}} \\ &= 0. \end{split}$$

Q6

Solution. Note that if vectors \mathbf{u} and \mathbf{v} determine a parallelogram, then the length of the two diagonals are $\|\mathbf{u} + \mathbf{v}\|$ and $\|\mathbf{u} - \mathbf{v}\|$.

Therefore, the two diagonals are equal in length if and only if

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u} - \mathbf{v}\|^2$$

$$\iff (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$$

$$\iff \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2(\mathbf{u} \cdot \mathbf{v}) = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2(\mathbf{u} \cdot \mathbf{v})$$

$$\iff \mathbf{u} \cdot \mathbf{v} = 0,$$

which holds if and only if \mathbf{u} is perpendicular to \mathbf{v} , i.e. the parallelogram is a rectangle.