```
%% defining CNN parameters
% defining layers
layers = [imageInputLayer([size(img,1) size(img,2) 1])
    %middle layers
    convolution2dLayer(5,3,'Padding', 2, 'Stride',3)
    reluLayer
    maxPooling2dLayer(3,'Stride',3)
    %final layers
    fullyConnectedLayer(40)
    softmaxLayer
    classificationLayer()];
% options to train the network
options = trainingOptions('sgdm', ...
     'MiniBatchSize', 40, ...
    'InitialLearnRate', 1e-4, ...
    'MaxEpochs', 25, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.875, ...
'LearnRateDropPeriod', 12, ...
    'VerboseFrequency', 5);
% training the network
convnet = trainNetwork(trainFaceData, layers, options);
```

The above picture shows my layers and options used to train my convent. I have the following layers:

- 1) Input layer
- 2) Convolution layer
 - a. Size = 5, Filters# = 3, Padding of 2 on each edge, and stride of 3
- 3) reluLayer activation layer
- 4) pooling layer
 - a. pools max from [3,3] and has stride of 3
- 5) Fully connected layer to have 40 results
- 6) Softmaxlayer to convert the probabilities from the fully connected layer to convert to labels
- 7) Classification layer

The options used are as follows:

- 1) Minibatchsize = 40
 - a. A mini-batch is a subset of the training set that is used to evaluate the gradient of the loss function and update the weights
 - b. 40 seems to be a perfect size. 40 gives me 1 image per person to run the batch test. Default of 128 is too high (it would sacrifice 3 out of 5 images to test)
- 2) MaxEpochs = 25
 - a. Accuracy starts to plateu around epoch 20
- 3) LearnRateSchedule
 - a. 'LearnRateDropFactor', 0.875
 - b. 'LearnRateDropPeriod', 12

c. Above combination gives the highest accuracy

Past tries of layers:

- I tried multiple layers of upto size 14(manual made) and alexnet. They both gave accuracy lower than 10%.
- Realized that training-options are as much important as layers
 - I have attached a picture from a test at the end of report to showcase what kind of results I was getting while using default training methods
- Changing 'MiniBatchSize' made the largest difference in acquiring higher accuracy
 - Jumped from below 35 to over 80

Tests run:

- Ran tests on images as they are and got 89% accuracy
- Ran test by reducing brightness to 90% of actual brightness and accuracy remained within same range
- Ran test by rotating the test images upto 7degs, accuracy went down to upto 75%

Thought on this method:

- This method is very useful to have detection/recognition
- It can be used for detecting (humans vs dogs vs cars etc)
- It can also be used for recognition (human 1 vs human 2 vs human 3)
- Finding what layers/options work the best is the hardest thing about this method

Accuracy from older tests

```
trainingNumFiles = 5;
       [trainDigitData,testDigitData] = splitEachLabel(digitData, ...
trainingNumFiles,'randomize');
       layers = [imageInputLayer([size(img,1) size(img,2) 1])
                  convolution2dLayer(5,2)
                  maxPooling2dLayer(2,'Stride',1)
                  convolution2dLayer(3,1)
                  reluLayer
                  convolution2dLayer(3,10)
                  reluLayer
                  maxPooling2dLayer(2, 'Stride',2)
                  fullyConnectedLayer(40)
                  softmaxLayer
                  classificationLayer()];
       options = trainingOptions('sgdm','MaxEpochs',50, ...
'InitialLearnRate', 0.0001000);
       convnet = trainNetwork(trainDigitData, layers, options);
       YTest = classify(convnet,testDigitData);
ommand Window
Initializing image normalization.
       Epoch
                      Iteration
                                   | Time Elapsed
                                                       Mini-batch
                                                                        Mini-batch
                                                                                       Base Learning
                                      (seconds)
                                                          Loss
                                                                         Accuracy
                                                                                            Rate
                                1
                                                            5.7728
                                                                                            1.00e-04
              50
                               50
                                             31.02
                                                            0.0002
                                                                            100.00%
                                                                                            1.00e-04
 accuracy =
     0.6800
```

Latest Accuracy

Data from training CNN

Epoch	Iteration	Time Elapsed (seconds)	Mini-batch Loss	Mini-batch Accuracy	Base Learning Rate
1	1	0.16	3.9113	2.50%	1.00e-04
1	5	0.60	3.7560	5.00%	1.00e-04
2	10	1.19	3.7463	0.00%	1.00e-04
3	15	1.77	3.7661	2.50%	1.00e-04
4	20	2.39	3.7277	2.50%	1.00e-04
5	25	2.95	3.6793	2.50%	1.00e-04
6 I	30	3.51	3.6343	2.50%	1.00e-04
7	35	4.08	3.5619	7.50%	1.00e-04
8	40	4.69	3.4247	10.00%	1.00e-04
9	45	5.31	3.1566	10.00%	1.00e-04
10	50	5.95	2.6958	27.50%	1.00e-04
11	55	6.52	2.0626	42.50%	1.00e-04
12	60	7.09	1.3742	57.50%	1.00e-04
13	65	7.66	0.8008	80.00%	8.75e-05
14	70	8.24	0.4239	92.50%	8.75e-05
15	75	8.84	0.2051	97.50%	8.75e-05
16	80	9.60	0.1063	100.00%	8.75e-05
17 18	85 90	10.33	0.0640	100.00%	8.75e-05
18 19		10.92 11.48	0.0427	100.00%	8.75e-05 8.75e-05
20	95 100	11.48	0.0311 0.0243	100.00% 100.00%	8.75e-05 8.75e-05
20	105	12.63	0.0243	100.00%	8.75e-05 8.75e-05
22	110	13.20	0.0201	100.00%	8.75e-05 8.75e-05
23	115	13.76	0.0174	100.00%	8.75e-05 8.75e-05
24	120	14.32	0.0141	100.00%	8.75e-05 8.75e-05
25	125	14.88	0.0130	100.00%	7.66e-05
		14.00	0.0150	100.00%	/.00c-05

```
%% variables
trainingNumFiles = 5;
rna(1)
% importing images for database & doing fft
faceDatasetPath = fullfile('orl_faces');
faceData = imageDatastore(faceDatasetPath,...
    'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% read one image to get pixel size
img = readimage(faceData,1);
% splitting the testing and training data
[trainFaceData, testFaceData] = splitEachLabel(faceData, ...
   trainingNumFiles, 'randomize');
% defining CNN parameters
% defining layers
layers = [imageInputLayer([size(img,1) size(img,2) 1])
    %middle layers
    convolution2dLayer(5,3,'Padding', 2, 'Stride',3)
     reluLayer
    maxPooling2dLayer(3,'Stride',3)
    %final layers
     fullyConnectedLayer(40)
     softmaxLayer
     classificationLayer()];
% options to train the network
options = trainingOptions('sgdm', ...
     'MiniBatchSize', 40, ...
     'InitialLearnRate', 1e-4, ...
     'MaxEpochs', 25, ...
     'LearnRateSchedule', 'piecewise', ...
     'LearnRateDropFactor', 0.875, ...
     'LearnRateDropPeriod', 12, ...
     'VerboseFrequency', 5);
% training the network
convnet = trainNetwork(trainFaceData, layers, options);
 % classifying
 YTest = classify(convnet,testFaceData);
 TTest = testFaceData.Labels;
 % Calculate the accuracy.
 accuracy = sum(YTest == TTest)/numel(TTest)
```