第9讲 非线性电阻电路的小信号分析方法

> 非线性电阻电路的小信号分析方法

- 电路元件的小信号模型
- ▶ 用MOSFET构成放大器

本讲练习题需要用到计算器, 也许要要用点纸笔,请提前准备好

复习

非线性电阻电路的特点

- ①齐次性和叠加性不适用于 非线性电路。
- ②非线性电阻能产生与输入信号不同的频率(变频作用)。

• 解析法

- 能求精确解→?
- 方程的列写和求解麻烦
- 分段线性法
 - 线性电路求解容易
 - 精度差,线性电路数量多
- 图形解法
 - 简单,物理意义明确
 - 对含1个非线性电阻电路 的求解比较方便,精度差

非线性电阻 $u = f(i) = 50 i + 0.5 i^3$

$$i=2.01$$
A
$$u = 50 \times (2+0.01) + 0.5 \times (2+0.01)^3$$

$$\approx [50 \times 2 + 0.5 \times 2^3] + [50 \times 0.01 + 0.5 \times 3 \times 2^2 \times 0.01]$$

$$= f(2) + 56 \times 0.01$$

$$(50+0.5 \times 3 \times 2^2) \times 0.01$$

在i=2工作点附近进行台 劳展开并忽略高阶项

非线性电阻特点:③非线性电阻激励的工作范围充分小时,在工作点附近的扰动及其响应之间的关系,可看做线性电阻

1 非线性电阻电路的小信号分析方法

Principles of Electric Circuits Lecture 9 Tsinghua University 2018

已知 $U_{
m TH}$ =0.025V, $I_{
m S}$ =10⁻¹²A, U_0 =0.7V,则在二极管直流偏置为 I_0 =____A

- В 57.85
- 1.446
- 0.026

已知 U_{TH} =0.025V, I_{S} =10⁻¹²A, U_{0} =0.7V,则在二极管直流偏置 附近的小信号关系为 $\Delta i(t)$ =___* $\Delta u(t)$

- B 57.85
- c 1.446
- 0.026

现在关注更为一般的非线性电阻电路

所有支路量均可求解出来

假设激励在 U_S 基础上,有小扰动 $\Delta u_S(t)$,求解支路量

所有支路量都有扰动项

负载的扰动项之间是线性关系!

Principles of Electric Circuits Lecture 9 Tsinghua University 2018

写KVL
$$U_S + \Delta u_S(t) = R_S [I_0 + \Delta i(t)] + U_0 + \Delta u(t)$$

观察上式和左图, 如何求扰动项比较好?

此处可以有弹幕

写KVL
$$U_S + \Delta u_S(t) = R_S [I_0 + \Delta i(t)] + U_0 + \Delta u(t)$$

小信号扰动下非线性电阻电路求解

- 1. 工作点非线性电阻电路
- 2. 小信号线性电阻电路

3. 合成

是叠加定理的应用吗?

B 不是

支路量表示方法小结

Principles of Electric Circuits Lecture 9 Tsinghua University 2018

小信号线性电阻电路如何获取? 小信号电路和原电路有何区别与联系?

- (1) 拓扑一样
- (2) 元件特性可能发生改变

用小信号法求解非线性电阻电路

- 1. 求解直流偏置激励作用下的非线性电阻电路 (求工作点)。
- 2. 画线性小信号电路, 求解得到小信号响应。
 - 拓扑结构相同,元件换为小信号模型(小信号下的线性电压电流关系)
- 3. 将两部分激励作用下电路的响应合成为电路的 全响应。

2 电路元件的小信号模型

非线性电阻

线性电阻

静态电阻 R_S 和动态电阻 R_d

静态电阻

$$R_{\rm S} = \frac{u}{i} = \lg \alpha , G_{\rm S}$$

动态电阻

$$R_{\rm d} = \frac{\mathrm{d}u}{\mathrm{d}i} = \mathrm{tg}\beta$$
, $G_{\rm d}$

- (a) R_S 反映了某一点上u与i的关系,而 R_d 反映了在某一点u的变化与i的变化的关系,即u 对i的变化率。
- (b) 静态电阻与动态电阻都与工作点有关。当Q点位置不同时, R_S 与 R_A 均变化。
- (c) 对 "S"型、"N"型非 线性电阻,下倾段 R_d 为负, 因此,其动态电阻具有负电 阻的性质。

某非线性电阻的
$$u$$
- i 关系为 $u=i^3-5i+5$

其工作点 I_0 =1A时,动态电阻 R_d =___ Ω

- (A) 1
- B 2
- \bigcirc -1
- \bigcirc -2

独立电压源 (直流偏置)

独立电流源 (直流偏置)

已知MOSFET工作于电流源区,K=0.5mA/ V^2 , $U_T=1V$,当 $U_{GS}=1.3$ V时,其对应的线性受控源关系为 $\Delta i_{DS}=$ ___* Δu_{GS} (注意单位)

$$i_{\rm DS} = \frac{K \left(u_{\rm GS} - U_{\rm T}\right)^2}{2}$$

- A 0.15
- **B** 0.045
- 0.00015
- 0.000845

例 已知 $u(t)=7+U_{\rm m}\sin\omega t$ V, $\omega=100{\rm rad/s}$, $E_{\rm m}<<7{\rm V}$, $R_1=2\Omega$ 。

$$r_2$$
: $u_2 = i_2 + 2 i_2^3$

$$r_3: u_3=2i_3+i_3^3$$

求电压 u_2 和电流 i_1 、 i_2 、 i_3 。

第1步: 直流电压单独作用, 求解静态工作电压, 电流。

第2步: 求两个非线性电阻的小信号模型

$$R_{2d} = \frac{du_2}{di_2}\Big|_{I_2=1A} = 1 + 6i_2^2\Big|_{I_2=1A} = 7\Omega$$

$$R_{3d} = \frac{\mathrm{d}u_3}{\mathrm{d}i_3}\Big|_{I_3=1A} = 2 + 3i_3^2\Big|_{I_3=1A} = 5\Omega$$

画出小信号工作等效电路, 求 Δu , Δi 。

 $r_2: u_2=i_2+2i_2^3$

 $r_3: u_3=2i_3+i_3^3$

 $I_2 = I_3 = 1A$ $I_1 = 2A$

Principles of Electric Circuits Lecture 9 Tsinghua University 2018

$$\Delta i_1 = U_{\rm m} \sin \omega t / (2 + 5//7) = 0.2033 \ U_{\rm m} \sin \omega t$$

$$\Delta i_2 = \Delta i_1 \times 5/12 = 0.0847 \ U_{\rm m} \sin \omega t$$

$$\Delta i_3 = \Delta i_1 \times 7/12 = 0.1186 U_{\rm m} \sin \omega t$$

$$\Delta u_2 = 7 \times \Delta i_2 = 0.593 \ U_{\rm m} \sin \omega t$$

直流偏置:

$$I_2$$
= I_3 =1A I_1 =2A U_2 = U_3 =3V 小信号响应:

$$\Delta i_1 = 0.2033 \ U_{\rm m} \sin \omega t$$

$$\Delta i_2 = 0.0847 U_{\rm m} \sin \omega t$$

$$\Delta i_3 = 0.1186 U_{\rm m} \sin \omega t$$

$$\Delta u_2 = 0.593 U_{\rm m} \sin \omega t$$

第3步: 合成

$$i_1$$
=2+ 0.2033 $U_{\rm m} {\sin \omega t}$ A
 i_2 =1+ 0.0847 $U_{\rm m} {\sin \omega t}$ A
 i_3 =1+ 0.1186 $U_{\rm m} {\sin \omega t}$ A
 u_2 =3+ 0.5932 $U_{\rm m} {\sin \omega t}$ V

Principles of Electric Circuits Lecture 9 Tsinghua University 2018

3 用MOSFET构成放大器

设MOSFET工作在饱和区

前述工作点+小扰动信号的分析方法 可以用来分析和设计工作点+小待放大信号的电路

3 用MOSFET构成放大器

全信号 直流信号 小待放大信号
$$u_{\rm IN} = u_{\rm GS} = U_{\rm GS} + \Delta u_{\rm GS}$$

$$u_{\rm OUT} = u_{\rm DS} = U_{\rm DS} + \Delta u_{\rm DS}$$

(1) 求直流工作点 (解析法)

$$U_{\text{OUT}} = U_{\text{DS}} = U_{\text{S}} - I_{\text{DS}} R_{\text{L}}$$

$$U_{\text{OUT}} = U_{\text{S}} - \frac{K(U_{\text{GS}} - U_{\text{T}})^2}{2} R_{\text{L}}$$

$$U_{\rm S} = 10 \,\rm V$$
, $U_{\rm GS} = 2.5 \,\rm V$, $K = 0.5 \,\rm mA/V^2$, $U_{\rm T} = 1 \,\rm V$, $R_{\rm L} = 10 \,\rm k\Omega$

$$U_{\text{OUT}} = U_{\text{DS}} = 10 - \frac{0.5 \times (2.5 - 1)^2}{2} \times 10 = 4.375 \text{V}$$

恒流区工作条件:

$$0 < (U_{\rm GS} - U_{\rm T}) < U_{\rm DS}$$

单选题 1分

$$U_{\rm S} = 10 \text{V}, \quad K = 0.5 \text{mA/V}^2,$$
 $U_{\rm T} = 1 \text{V}, \quad R_{\rm L} = 10 \text{k}\Omega$

不考虑电阻区, U_{GS} 在什么范围内确保MOSFET工作在电流源区? "红包"

- (A) $2.81V > U_{GS} > -1.21V$
- \bigcirc 2.81V> $U_{\rm GS}$ > 0
- 2.81V> $U_{\rm GS}$ > 1V
- \bigcirc 2.81V> $U_{\rm GS}$

$$\Delta i_{\text{DS}} = \frac{d\left(\frac{K\left(u_{\text{GS}} - U_{\text{T}}\right)^{2}}{2}\right)}{du_{\text{GS}}}\Big|_{u_{\text{GS}} = U_{\text{GS}}} \Delta u_{\text{GS}}$$

$$\Delta i_{\rm DS} = K \left(U_{\rm GS} - U_{\rm T} \right) \Delta u_{\rm GS}$$

非线性受控源

$$\Delta i_{\rm DS} = K \left(U_{\rm GS} - U_{\rm T} \right) \Delta u_{\rm GS}$$

$$\Delta u_{\rm DS} = -\Delta i_{\rm DS} R_{\rm L} = -K (U_{\rm GS} - U_{\rm T}) R_{\rm L} \Delta u_{\rm GS}$$

已知: $U_{\text{GS}} = 2.5\text{V}$, $K = 0.5\text{mA/V}^2$, $U_{\text{T}} = 1\text{V}$, $R_{\text{L}} = 10\text{k}\Omega$

$$\frac{\Delta u_{\text{OUT}}}{\Delta u_{\text{IN}}} = \frac{\Delta u_{\text{DS}}}{\Delta u_{\text{GS}}} = -K(U_{\text{GS}} - U_{\text{T}})R_{\text{L}} = -0.5 * (2.5 - 1) * 10 = -7.5$$

放大倍数 $K(U_{GS}-U_{T})R_{L}$

小信号电压 放大了7.5倍

共源极MOSFET放大器

第3步: 合成

$$u_{\text{OUT}} = U_{\text{OUT}} + \Delta u_{\text{OUT}}$$

$$U_{\text{OUT}} = U_{\text{S}} - \frac{K(U_{\text{GS}} - U_{\text{T}})^2}{2} R_{\text{L}}$$

$$\Delta u_{\text{OUT}} = -K \left(U_{\text{GS}} - U_{\text{T}} \right) R_{\text{L}} \Delta u_{\text{IN}}$$

$$U_{\rm S} = 10 \, \rm V$$
, $U_{\rm GS} = 2.5 \, \rm V$, $K = 0.5 \, \rm mA/V^2$, $U_{\rm T} = 1 \, \rm V$, $R_{\rm L} = 10 \, \rm k\Omega$

$$u_{\text{OUT}} = 4.375 - 7.5 \Delta u_{\text{IN}}$$

 $U_{\rm S} = 10 \, \rm V$, $U_{\rm GS} = 2.5 \, \rm V$, $K = 0.5 \, \rm mA/V^2$, $U_{\rm T} = 1 \, \rm V$, $R_{\rm L} = 10 \, \rm k\Omega$

$$u_{\text{OUT}} = 4.375 - 7.5 \Delta u_{\text{IN}}$$

一直说的是对小信号放大,不是小信号会怎么样?

此处可以有弹幕

Principles of Electric Circuits Lecture 9 Tsinghua University 2018

共源极MOSFET小信号放大电路的输入输出电阻

输出电阻 R_0 =

- \bigcirc B ∞
- $R_{\rm L}$
- 」 其他

共源极MOSFET小信号放大电路的输入输出电阻

Principles of Electric Circuits Lecture 9 Tsinghua University 2018