Octava ayudantía Autómatas finitos

Teresa Becerril Torres terebece1508@ciencias.unam.mx

de febrero de 2023

Autómata Finito Determinsta - AFD

Un AFD es una 5-tupla $A = (Q, \Sigma, \delta, q_0, F)$ donde:

- $Q = \{q_0, q_1, ..., q_n\}$ es un conjunto finito de estados.
- $\Sigma = \{a_1, a_2, ..., a_m\}$ es un conjunto finito de símbolos.
- $\delta\,:\,Q\times\Sigma\to Q$ es la función de transición.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es un conjunto de estados finales.

Sea el AFD $A=(Q,\Sigma,\delta,q_0,F)$ donde $Q=\{q_0,q_1,q_2\}$, $\Sigma=\{0,1\},\ F=\{q_2\}$ y la función δ está dada de la siguiente forma:

$$\delta(q_0, 0) = q_1$$
 $\delta(q_1, 0) = q_1$ $\delta(q_2, 0) = q_2$ $\delta(q_0, 1) = q_2$ $\delta(q_1, 1) = q_1$ $\delta(q_2, 1) = q_2$

Tabla de estados:

	0	1
$ ightarrow \mathbf{q_0}$	q_1	q_2
$*\mathbf{q_1}$	q_1	q_1
${\bf q_2}$	q_2	q_2

Extensión de la función de transición:

Aplicar a la cadena 011 la función $\hat{\delta}$:

$$\hat{\delta}(q_0, \varepsilon) = q_0$$

$$\hat{\delta}(q_0, 0) = \delta(\hat{\delta}(q_0, \varepsilon), 0) = \delta(q_0, 0) = q_1$$

$$\hat{\delta}(q_0, 01) = \delta(\hat{\delta}(q_0, 0), 1) = \delta(q_1, 1) = q_1$$
$$\hat{\delta}(q_0, 011) = \delta(\hat{\delta}(q_0, 01), 1) = \delta(q_1, 1) = q_1$$

Lenguaje generado por el autómata:

El autómata genera el lenguaje que contiene todas las cadenas que inician con 0.

$$L(A) = \{ w \in \Sigma^* \, | \, w = 0(0+1)^* \}$$

Ya que $\hat{\delta}(q_0, 0(0+1)^*) = q_1 \in F$.

Demostrar que el autómata en efecto acepta el lenguaje L:

 $\Rightarrow]A$ genera w, entonces $w=0(0+1)^*$ (Inducción en pasos del autómata).

Base:

En un paso, aplica la transición $\delta(q_0,0)$ por lo que w=0 y $w=0\cdot \varepsilon$. Por lo tanto $w\in L$.

Hipótesis de Inducción:

Supongamos que A acepta a x e y en n y m pasos respectivamente, $\hat{\delta}(q_0,x)$, $\hat{\delta}(q_0,y)\in F$ y $x=0(0+1)^*$ e $y=0(0+1)^*$.

Paso inductivo:

Por demostrar que se cumple para $w=x\cdot y$ en n+m pasos y $w=0(0+1)^*$.

Sea $w=x\cdot y$ tal que $\hat{\delta}(q_0,x)$, $\hat{\delta}(q_0,y)\in F$, por H.I. A acepta a x e y en n y m pasos respectivamente, por lo que A acepta a w en n+m pasos y $w=0(0+1)^*$ por cerradura de Kleene. Por lo tanto $w\in L$.

 \Leftarrow] Si $w=0(0+1)^*$, entonces es aceptado por A (Inducción sobre w).

Base:

Sea w=0, A tiene una transición $\delta(q_0,0)=q_1\in F$. Por lo tanto w es aceptada por A.

Hipótesis de inducción:

Supongamos que $x=0(0+1)^*$, $x\in L$ y $\hat{\delta}(q_0,x)\in F$.

Paso inductivo:

Por demostrar que se cumple para $w=x\cdot a$ con $x\in L$ y $a\in \Sigma.$

Tenemos $w=x\cdot a$ por hipóteis de inducción x es aceptado por A, es decir, $\hat{\delta}(q_0,x)=q1$ y $x=0(0+1)^*$, por definición de concatenación tenemos que $w=0(0+1)^*\cdot a$, entonces $\hat{\delta}(q_0,w)=\delta(\hat{\delta}(q_0,w),a)=\delta(q_1,a)=q_1$ ya que a puede ser 0 o 1. Por lo tanto, w es aceptado por A.

Sea el AFD $A=(Q,\Sigma,\delta,q_0,F)$ donde $Q=\{q_0,q_1,q_2,q_3,q_4,q_5\}$, $\Sigma=\{a,b,c\}$, $F=\{q_2,q_5\}$ y la función δ está dada de la siguiente forma:

$$\begin{array}{llll} \delta(q_0,a) = q_1 & \delta(q_2,a) = q_2 & \delta(q_4,a) = q_4 \\ \delta(q_0,b) = q_3 & \delta(q_2,b) = q_2 & \delta(q_4,b) = q_3 \\ \delta(q_0,c) = q_3 & \delta(q_2,c) = q_2 & \delta(q_4,c) = q_5 \\ \delta(q_1,a) = q_4 & \delta(q_3,a) = q_4 & \delta(q_5,a) = q_4 \\ \delta(q_1,b) = q_5 & \delta(q_3,b) = q_3 & \delta(q_5,b) = q_3 \\ \delta(q_1,c) = q_2 & \delta(q_3,c) = q_3 & \delta(q_5,c) = q_3 \end{array}$$

Tabla de estados:

	a	b	С
$ ightarrow \mathbf{q_0}$	q_1	q_3	q_3
${\bf q_1}$	q_4	q_5	q_2
$*\mathbf{q_2}$	q_2	q_2	q_2
$\mathbf{q_3}$	q_4	q_3	q_3
${\bf q_4}$	q_4	q_5	q_3
$*\mathbf{q_5}$	q_4	q_3	q_3

Extensión de la función de transición:

Aplicar a la cadena abcbaab la función $\hat{\delta}$:

$$\hat{\delta}(q_0, \varepsilon) = q_0$$

$$\hat{\delta}(q_0, a) = \delta(\hat{\delta}(q_0, \varepsilon), a) = \delta(q_0, a) = q_1$$

$$\hat{\delta}(q_0, ab) = \delta(\hat{\delta}(q_0, a), b) = \delta(q_1, b) = q_5$$

$$\hat{\delta}(q_0, abc) = \delta(\hat{\delta}(q_0, ab), c) = \delta(q_5, c) = q_3$$

$$\hat{\delta}(q_0, abca) = \delta(\hat{\delta}(q_0, abc), a) = \delta(q_3, a) = q_4$$

$$\hat{\delta}(q_0, abcab) = \delta(\hat{\delta}(q_0, abca), b) = \delta(q_4, b) = q_5$$

Lenguaje generado por el autómata:

El autómata genera el lenguaje que contiene todas las cadenas que inician con ac o terminan con ab.

$$L(A) = \{ w \in \Sigma^* \mid w = ac(a+b+c)^* + (a+b+c)^*ab \}$$

Demostrar que el autómata en efecto acepta el lenguaje L:

 \Rightarrow] A genera w, entonces $w=ac(a+b+c)^*+(a+b+c)^*ab$ (Inducción en pasos del autómata).

Base:

Sea $\hat{\delta}(q_0,w) \in F$, es decir, el autómata genera w en dos pasos:

- $\hat{\delta}(q_0,ac)=q_2$ y $q_2\in F$ entonces w=ac y $w=ac\cdot \varepsilon.$ Por lotanto $w\in L.$
- $\hat{\delta}(q_0,ab)=q_5$ y $q_5\in F$ entonces w=ac y $w=\varepsilon\cdot ac$. Por lotanto $w\in L$.

Hipótesis de Inducción:

Supongamos que A acepta a x e y en n y m pasos respectivamente, $\hat{\delta}(q_0,x)$, $\hat{\delta}(q_0,y) \in F$ y $x,y \in L$.

Paso inductivo:

Por demostrar que se cumple para $w = x \cdot y$ en n+m pasos y $w = ac(a+b+c)^* + (a+b+c)^*ab$.

Por H.I. A acepta a x e y en n y m pasos respectivamente, como $\hat{\delta}(q_0,x\cdot y)=\delta(\hat{\delta}(q_0,x),y)$, tenemos dos casos:

• Si $\hat{\delta}(q_0,x)=q_2$ entonces $\delta(\hat{\delta}(q_0,x),y)=\delta(q_2,y)=q_2$, por lo que A acepta a w en n+m pasos y $w=ac(a+b+c)^*$ por cerradura de Kleene. Por lo tanto $w\in L$.

• Si $\hat{\delta}(q_0,x)=q_5$ entonces $\delta(\hat{\delta}(q_0,x),y)=\delta(q_5,y)=q_5$, por lo que A acepta a w en n+m pasos y $w=(a+b+c)^*ab$ por cerradura de Kleene. Por lo tanto $w\in L$.

∴ Si A genera w, entonces $w = ac(a+b+c)^* + (a+b+c)^*ab$ \Leftarrow Si $w = ac(a+b+c)^* + (a+b+c)^*ab$, entonces es aceptado por A (Inducción sobre w).

Base:

Sea w=2, tenemos dos casos:

- Sea w=ac se tiene que $\hat{\delta}(q_0,w)=q_2$ y $q_2\in F$. Por lo tanto w es aceptada por A.
- Si w = ac se tiene que $\hat{\delta}(q_0, w) = q_2$ y $q_2 \in F$. Por lo tanto w es aceptada por A.

Hipótesis de inducción:

Supongamos que $x=ac(a+b+c)^*+(a+b+c)^*ab,\ x\in L$ y $\hat{\delta}(q_0,x)\in F.$

Paso inductivo:

Por demostrar que se cumple para $w = x \cdot \alpha$ con $x \in L$ y $\alpha \in \Sigma$.

Por H.I. sabemos que x es aceptado por A, por lo que $\hat{\delta}(q_0,x\cdot\alpha)=\delta(\hat{\delta}(q_0,x),\alpha)$ tenemos dos casos:

• Si $\hat{\delta}(q_0,x)=q_2$, entonces $\hat{\delta}(q_0,x\cdot\alpha)=\delta(q_2,\alpha)=q_2$, sabemos que $q_2\in F$ y $x=ac(a+b+c)^*$ por lo que $w=x\cdot\alpha=ac(a+b+c)^*\cdot\alpha$ por cerradura de Kleene $w=ac(a+b+c)^*$ ya que α puede ser a, b o c. Por lo tanto, w es aceptado por A.

- Si $\hat{\delta}(q_0,x)=q_5$, entonces $\hat{\delta}(q_0,x\cdot\alpha)=\delta(q_5,\alpha)\not\in F$ y $w\neq (a+b+c)^*ab$ por lo que:
 - $\circ \ \hat{\delta}(q_0,x) = q_4 \text{ si } \alpha = b \text{, entonces } \hat{\delta}(q_0,x\cdot\alpha) = \delta(q_4,\alpha) = q_5, \\ \text{sabemos que } q_5 \in F \text{ y } x = (a+b+c)^*ab \text{ por lo que} \\ w = x\cdot\alpha = (a+b+c)^*a\cdot\alpha \text{ por cerradura de Kleene} \\ w = (a+b+c)^*ab. \text{ Por lo tanto, } w \text{ es aceptado por } A.$
 - o $\hat{\delta}(q_0,x)=q_4$ si $\alpha=a$ y $\hat{\delta}(q_0,x)=q_3$ si $\alpha=c$, en estos dos estados se guardan las cadenas que terminan en a o c.

... Si $w = ac(a+b+c)^* + (a+b+c)^*ab$, entonces es aceptado por A.

Sea el AFD $A=(Q,\Sigma,\delta,q_0,F)$ donde $Q=\{q_0,q_1,q_2,q_3,q_4,q_5\}$, $\Sigma=\{a,b\}$, $F=\{q_4\}$ y la función δ está dada de la siguiente forma:

$$\delta(q_0, a) = q_1$$
 $\delta(q_2, a) = q_5$ $\delta(q_4, a) = q_4$ $\delta(q_0, b) = q_5$ $\delta(q_2, b) = q_3$ $\delta(q_4, b) = q_4$ $\delta(q_1, a) = q_2$ $\delta(q_3, a) = q_4$ $\delta(q_5, a) = q_5$ $\delta(q_5, a) = q_5$ $\delta(q_5, b) = q_5$

Tabla de estados:

	a	b
$ ightarrow \mathbf{q_0}$	q_1	q_5
${\bf q_1}$	q_2	q_5
${\bf q_2}$	q_5	q_3
$\mathbf{q_3}$	q_4	q_5
$*\mathbf{q_4}$	q_4	q_4
${\bf q_5}$	q_5	q_5

Extensión de la función de transición:

Aplicar a la cadena aabab la función $\hat{\delta}$:

$$\hat{\delta}(q_0, \varepsilon) = q_0$$

$$\hat{\delta}(q_0, a) = \delta(\hat{\delta}(q_0, \varepsilon), a) = \delta(q_0, a) = q_1$$

$$\hat{\delta}(q_0, aa) = \delta(\hat{\delta}(q_0, a), a) = \delta(q_1, a) = q_2$$

$$\hat{\delta}(q_0, aab) = \delta(\hat{\delta}(q_0, aa), b) = \delta(q_2, b) = q_3$$

$$\hat{\delta}(q_0, aaba) = \delta(\hat{\delta}(q_0, aab), a) = \delta(q_3, a) = q_4$$

$$\hat{\delta}(q_0, aabab) = \delta(\hat{\delta}(q_0, aaba), b) = \delta(q_4, b) = q_4$$

Lenguaje generado por el autómata:

El autómata genera el lenguaje que contiene todas las cadenas que inician con aaba.

$$L(A) = \{ w \in \Sigma^* \, | \, w = aaba(a+b)^* \}$$

Demostrar que el autómata en efecto acepta el lenguaje L:

 \Rightarrow] A genera w, entonces $w = aaba(a+b)^*$ (Inducción en pasos del autómata).

Base:

Sea $\hat{\delta}(q_0,w)\in F$, es decir, el autómata genera w en cuatro pasos, tenemos que $\hat{\delta}(q_0,w)=q_4$ y $q_4\in F$ entonces w=aaba y $w=aaba\cdot \varepsilon$. Por lo tanto $w\in L$.

Hipótesis de Inducción:

Supongamos que A acepta a x e y en n y m pasos respectivamente, $\hat{\delta}(q_0, x)$, $\hat{\delta}(q_0, y) \in F$ y $x, y \in L$.

Paso inductivo:

Por demostrar que se cumple para $w=x\cdot y$ en n+m pasos y $w=aaba(a+b)^*.$

Por H.I. A acepta a x e y en n y m pasos respectivamente, como $\hat{\delta}(q_0,x\cdot y)=\delta(\hat{\delta}(q_0,x),y)=\delta(q_4,y)=q_4$, entonces A acepta acepta a w en n+m pasos y $w=x\cdot y=aaba(a+b)^*\cdot aaba(a+b)^*=aaba(a+b)^*$ por cerradura de Kleene. Por lo tanto $w\in L$.

 \therefore Si A genera w, entonces $w = aaba(a+b)^*$

 \Leftarrow] Si $w = aaba(a+b)^*$, entonces es aceptado por A (Inducción sobre w).

Base:

Sea w=4, tenemos que w=aaba se tiene que $\delta(q_0,w)=q_4$ y $q_4\in F$. Por lo tanto w es aceptada por A.

Hipótesis de Inducción:

Supongamos que $x=aaba(a+b)^*$, $x\in L$ y $\hat{\delta}(q_0,x)\in F$.

Paso inductivo:

Por demostrar que se cumple para $w=x\cdot\alpha$ con $x\in L$ y $\alpha\in\Sigma.$

Por H.I. sabemos que x es aceptado por A, por lo que $\hat{\delta}(q_0,x\cdot\alpha)=\delta(\hat{\delta}(q_0,x),\alpha)=\delta(q_4,\alpha)=q_4$, sabemos que $q_2\in F$ y $x=aaba(a+b)^*$ por lo que $w=x\cdot\alpha=aaba(a+b)^*\cdot\alpha$ por cerradura de Kleene $w=aaba(a+b)^*$ ya que α puede ser a o b. Por lo tanto, w es aceptado por A.

 \therefore Si $w = aaba(a+b)^*$, entonces es aceptado por A.

