תרגול 7 - רשת נוירונים רדודה (מימוש שער XOR

מימוש שער XOR על ידי נוירון בודד (האם זה אפשרי? אם כן למה שלא ננסה לכתוב אחד כזה?)) שלב א' (בדיקת מימוש XOR על ידי נוירון בודד)

:היכנסו לאתר

https://playground.tensorflow.org/

והריצו את הסימולציה הבאה:

הוסיפו לסימולציה שלכם Feature הכולל את מכפלת X1 ב- X2 ובדקו שוב.

ענו על השאלות הבאות:

- 1. האם נוירון בודד (ללא תוספות) מסוגל לבצע סיווג נתונים המייצגים לוגיקת XOR? נמק את תשובתך.
 - 2. האם הוספת Feature הכולל את מכפלת X1 ב- X2 משנה את התוצאה הסיווג?
 - 3. האם הוספת Feature הכולל את מכפלת X1 ב- X2 משנה את תכונות היסוד של הנויירון? נמק את תשובתך.
 - 4. כיצד לפי דעתכם הוספת ה- Feature השפיע על יכולת הסיווג של הנוירון?

שלב ב' (בדיקת הסימולציה בקוד)

השתמשו במחלקה Perceptron שכתבנו במפגש הקודם כדי לבדוק האם הוספת Perceptron הכולל את מכפלת XOR ב- X2 אפשר לכתב מכונה לומדת שמסווגת לוגיקה של XOR תוך כדי שימוש בפרספטרון בודד.

לרשותכם המחלקה Perceptron כפי שלמדנו.

```
class Perceptron(object):
def __init__(self, numOfInputs, epochs=200, learningRate=0.01):
 self.epochs = epochs
 self.learningRate = learningRate
 self.weights = np.zeros(numOfInputs)
 self.bios = 1
def Activation(self, s):
 if s > 0:
  activation = 1
 else:
  activation = 0
 return activation
def predict(self, inputs):
 sum = np.dot(inputs, self.weights) + self.bios
 out = self.Activation(sum)
 return out
def train(self, inputs, labels):
 for _ in range(self.epochs):
  for i in range(len(inputs)):
    prd = self.predict(inputs[i])
    self.weights -= (prd - labels[i]) * inputs[i] * self.learningRate
    self.bios -= (prd - labels[i]) * self.learningRate
```

לאחר שהמחלקה Perceptron מוכנה ביצעו מספר אימונים עליה על פי המאפיינים הבאים:

- 1. אימון למידת לוגיקת XOR ללא הוספת
- X2 ב- X1 הכולל את מכפלת XOR יחד עם אימון למידת לוגיקת 20.

דווחו מה מתוך האימונים הצליח.

שלב ג' (מימוש רשת נוירונים רדודה לסיווג XOR)

במשימה זו נשתמש בספריה sklearn כדי לממש מכונה לומדת מבוססת על המבנה הבא:

להלן המלצה לאתחול הרשת: