Introduction à l'apprentissage Automatique - TP5 Julian Hurst

	meilleur(s) hp vecteur	meilleur(s) hp algo	err. réelle estimée	err. apparente
KP Noyau gaussien	V Pix 10	$\alpha = 0.1$	0.0	0.194029850746
KP Noyau gaussien	V Pix 10	$\alpha = 0.5$	0.0	0.208955223881
KP Noyau Polynomial	V Pix 10	d = 0.1	0.507462686567	0.240777338603
KP Noyau Polynomial	V Pix 10	d = 0.5	0.20895522388	0.462686567164
KP Noyau gaussien	V Histo	$\alpha = 0.1$	0.70588235294	0.426470588235
KP Noyau gaussien	V Histo	$\alpha = 0.5$	0.0	0.485294117647
KP Noyau Polynomial	V Histo	d = 0.1	0.0	0.514705882353
KP Noyau Polynomial	V Histo	d = 0.5	0.20895522388	0.514705882353
Perceptron	V Pix 10	$\alpha = 0.0001$	0.416996047431	0.179104477612
Perceptron	V Pix 10	$\alpha = 0.1$	0.385093167702	0.477611940299
Perceptron	V Pix 10	$\alpha = 0.5$	0.240777338603	0.208955223881
Perceptron	V Histo	$\alpha = 0.0001$	0.341238471673	0.235294117647
Perceptron	V Histo	$\alpha = 0.1$	0.385375494071	0.191176470588
Perceptron	V Histo	$\alpha = 0.5$	0.248353096179	0.176470588235
SVM	V Pix 10	C = 10	0.224308300395	0.298507462687
SVM	V Pix 10	C = 15	0.231884057971	0.268656716418
SVM	V Histo	C = 10	0.205204216074	0.147058823529
SVM	V Histo	C = 15	0.197957839262	0.205882352941
KPPV	V Pix 10	$n_neighbors = 3$	0.329882677709	0.194029850746
KPPV	V Pix 10	$n_neighbors = 5$	0.285024154589	0.268656716418
KPPV	V Histo	$n_neighbors = 3$	0.337285902503	0.338235294118
KPPV	V Histo	$n_neighbors = 5$	0.335968379447	0.279411764706
AD	V Pix 10	f = None	0.23878536922	0.238805970149
AD	V Pix 10	f = 10	0.329380764163	0.208955223881
AD	V Pix 10	f = 20	0.401185770751	0.268656716418
AD	V Histo	f = None	0.292490118577	0.308823529412
AD	V Histo	f = 10	0.263504611331	0.308823529412
AD	V Histo	f = 20	0.20487483531	0.235294117647

Le meilleur algorithme que j'ai identifié est le support vector machine linéaire avec l'hyper-paramètre de pénalité C=15 car son erreur réelle dans les test (par validation croisée) réalisés ainsi que l'erreur apparente sont faibles (taux de bonne classification élevée).

4.4 Prédiction sur de nouvelles images

Sur le fichier tHisto la prédiction est :