Annual income Classification

whether a person makes over 50K a year

Hassan Teymoori: 1947458

Table of Contents

01 Classification Task 02 Application

What is the Classification task in this project

Possible application in the real world.

Dataset

Dataset description and structure

04 Data Exploration

Explain the observations and challenges

Use 105 Learning Pipeline 06 Conclusion

Feature analysis and methods

What is the outcome and future work

O1 The Classification Task

What is the task?

The Classification Task

The classification task is, given a new person information, to predict an individual s' earning is **more or less** than 50,000 \$ USD.

50,000\$

Possible Applications 🖃

What would be the possible app?

The recent coronavirus outbreak has seen a tremendous amount of people who signed up for the stimulus checks of \$1200 in America after losing their jobs.

The recent coronavirus outbreak has seen a tremendous amount of people who signed up for the stimulus checks of \$1200 in America after losing their jobs.

Requirement: their annual incomes < \$75,000

The recent coronavirus outbreak has seen a tremendous amount of people who signed up for the stimulus checks of \$1200 in America after losing their jobs.

Requirement: their annual incomes < \$75,000

Problem: a big amount of people who have not done their taxes.

The recent coronavirus outbreak has seen a tremendous amount of people who signed up for the stimulus checks of \$1200 in America after losing their jobs.

Requirement: their annual incomes < \$75,000

Problem: a big amount of people who have not done their taxes.

Understanding the potential annual income of unfiled taxes individuals for government to make strategic steps in taking care of them.

The recent coronavirus outbreak has seen a tremendous amount of people who signed up for the stimulus checks of \$1200 in America after losing their jobs.

Requirement: their annual incomes < \$75,000

Problem: a big amount of people who have not done their taxes.

Understanding the potential annual income of unfiled taxes individuals for government to make strategic steps in taking care of them.

The **government** would benefit from a ML model that can help predict an individual's income base on their demographic features.

Structure of the dataset

The version in the Kaggle website contains of **32K** rows

The version in the Kaggle website contains of **32K** rows

The version in the UCI website contains of **Almost 50K** rows.

The version in the Kaggle website contains of **32K** rows

The version in the UCI website contains of **Almost 50K** rows.

I assumed the version in the Kaggle is only the **training dataset** and the one in the UCI is the combination of the training set and test set.

The version in the Kaggle website contains of **32K** rows

The version in the UCI website contains of **Almost 50K** rows.

I assumed the version in the Kaggle is only the **training dataset** and the one in the UCI is the combination of the training set and test set.

I have used the second one.

Contains **48,842** records.

The dataset has **15** columns (one is the target variable).

There are **8 categorical** columns

Target column is also categorical

There are **6 numerical** columns

Contains 48,842 records.

The dataset has **15** columns (one is the target variable).

There are **8 categorical** columns

Target column is also categorical

There are 6 numerical columns

```
-- age: integer (nullable = true)
-- workclass: string (nullable = true)
-- fnlwgt: integer (nullable = true)
-- education: string (nullable = true)
-- education_num: integer (nullable = true)
-- marital_status: string (nullable = true)
-- occupation: string (nullable = true)
-- relationship: string (nullable = true)
-- race: string (nullable = true)
-- sex: string (nullable = true)
|-- capital_gain: integer (nullable = true)
-- capital_loss: integer (nullable = true)
-- hours_per_week: integer (nullable = true)
-- native_country: string (nullable = true)
-- income: string (nullable = true)
```

Categorical Features

workclass	education	marital_status	occupation	relationship	race	sex	native_country
State-gov	Bachelors	Never-married	Adm-clerical	Not-in-family	White	Male	United-States
Self-emp-not-inc	Bachelors	Married-civ-spouse	Exec-managerial	Husband	White	Male	United-States
Private	HS-grad	Divorced	Handlers-cleaners	Not-in-family	White	Male	United-States
Private	11th	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	United-States
Private	Bachelors	Married-civ-spouse	Prof-specialty	Wife	Black	Female	Cuba

Numerical Features

age	fnlwgt	education_num	capital_gain	capital_loss	hours_per_week
39	77516	13	2174	0	40
50	83311	13	0	0	13
38	215646	9	0	0	40
53	234721	7	0	0	40
28	338409	13	0	0	40

Target Variable

income
<=50K
<=50K
> 50K
<=50K
> 50K

Observations and challenges

Countries

United State 🔾

Most of the data are take from US

Mexico O

Rest of world •

Unbalanced Dataset

my dataset is not highly unbalanced but making it to be balanced is a good way to make sure the outcome is reliable.

with and without balancing approaches and compared the result

The Solutions?

The Solutions?

Or

Over-sampling

The Solutions?

Or

Over-sampling

Or

Give weight to samples

Missing Values

Missing Values encoded as a question mark in 3 categorical columns

	Missing Values	Ratio %
workclass	2809	5.8
occupation	2809	5.8
native_country	857	1.8

Mi	İSS	sir	g
٧	alı	ue	S

	Missing Values	Ratio %
workclass	2809	5.8
occupation	2809	5.8
native_country	857	1.8


```
age = 0
`workclass` = 2809
fnlwgt = 0
`education` = 0
`education_num` = 0
`marital_status` = 0
`occupation` = 2809
`relationship` = 0
race = 0
sex = 0
`capital_gain` = 0
`capital_loss` = 0
`hours_per_week` = 0
`native_country` = 857
income = 0
```


Missing Values

Remove the missing values

The Solutions?

Replace Them

Data Exploration: Summary

Missing Data

balanced dataset.

Categorical features needed to be encoded;

Different scales of feature values;

Several outliers on the age variable;

Clear Skewed problem on the age, fnlwgt variable;

05

Learning Pipeline

Methods and results

Learning Pipeline

The first step is to tackle with the data exploration observations.

Another important note is that:

- I do not have testing set.

Learning Pipeline

Balancing the Dataset.

- Down-sampling (under sampling)
- Over-sampling
- Give weight to samples

Providing The test set

- Split The dataset into two portions
 - > Training set 80%
 - > Test set 20%

Categorical Features

Transform to numerical features:

- String indexer
- One-Hot-Encoder
- Vector Assembler

Learning Pipeline

Method that I used

- Logistic Regression
- Decision Tree
- > Random Forest
- > SVM
- Gradient Boosted Decision Tree

Learning Pipeline: Methods

	Single Model training	HP-tuning and Cross validation	with standard scaling	Without Down Sampling	
Logistic Regression	√	✓	V	-	1
Decision Tree	X	✓	no need	V	
Random Forest	Χ	✓	no need	-	
SVM	X	√	V	√	
G-B Decision Tree	X	✓	no need	-	G

Learning Pipeline: Logistic Regression


```
_____***** Best Model: Logistic Regression *****
```

Best model according to k-fold cross validation has:

lambda : 0.0
maxIter : 50
fitIntercept : True
alpha : 0.0

Command took 0.03 seconds -- by teymoori.1947458@studenti.uniromal.it at 06/07/2021, 11:01:48 on final-bdc

	Single Model Without HP- tuning (Not Scaled)	Best Model Resulting Cross Validation and HP-tuning (Not Scaled)	
Area under ROC	0.900	0.901	
Area under PR	0.893	0.911	
Accuracy	81.4 %	82.3 %	
Precision	81.6 %	82.4 %	
Recall	81.4 %	82.3 %	
F1-Score	0.814	0.822	

	Single Model Without HP-tuning (Not Scaled)	Best Model Resulting Cross Validation and HP-tuning (Not Scaled)	Same pipeline in Second Column with Scaled data
Area under ROC	0.900	0.901	0.900
Area under PR	0.893	0.911	0.897
Accuracy	81.4 %	82.3 %	80.6 %
Precision	81.6 %	82.4 %	80.8 %
Recall	81.4 %	82.3 %	80.6 %
F1-Score	0.814	0.822	0.806

I expected by applying the scaling the result would be better.

Why Not?

Without Scaling

lambda : 0.0
maxIter : 50
fitIntercept : True
alpha : 0.0

With Scaling

lambda : 0.0 maxIter : 25 fitIntercept : True alpha : 0.1

Accuracy: 82.3 %

Accuracy: 80.6 %

My bad: I should have tried other hyper-parameters: (MaxIter > 25)

Check generalization (overfitting)

Best Model

Training Set

areaUnderROC: 0.907

Test Set

areaUnderROC: 0.901

My model is not overfitted and it would be able to generalize well to the new data as like my test set

Learning Pipeline: Decision Tree

Best model according to k-fold cross validation has:

maxDepth : 24

minInfoGain : 0.0 impurity : entropy

Learning Pipeline: Decision Tree

Metrics used for evaluation	Best Model Resulting Cross Validation and HP-tuning		
Area under ROC	0.839		
Area under PR	0.856		
Accuracy	78.7 %		
Precision	78.8 %		
Recall	78.7 %		
F1-Score	0.787		

Learning Pipeline: Decision Tree

Check generalization (overfitting)

Best Model

Training Set

areaUnderROC: 0.817 Test Set

areaUnderROC: 0.839

My model is not overfitted and it would be able to generalize well to the new data as like my test set

Important

Features

Workclass

Education

Marital Status

Age

Education_Num

Final weight

Occupation

Which all of these are expected to be important when talking about one's income

****	Best Model:	SVM	****

Best model according to k-fold cross validation has:

: 0.01 regParam

maxIter : 50

Metrics used for evaluation	Best Model Resulting Cross Validation and HP-tuning		
Area under ROC	0.893		
Area under PR	0.901		
Accuracy	80.7 %		
Precision	81.2 %		
Recall	80.7 %		
F1-Score	0.806		

(3)	}

Metrics used for evaluation	Best Model Resulting Cross Validation and HP-tuning	Same pipeline in Second Column with Scaled data
Area under ROC	0.893	0.894
Area under PR	0.901	0.889
Accuracy	80.7 %	80.4 %
Precision	81.2 %	80.9 %
Recall	80.7 %	80.4 %
F1-Score	0.806	0.803

I expected by applying the scaling the result would be better.

Why Not?

Without Scaling

With Scaling

regParam : 0.01 maxIter : 50

. 3

Area under PR: 0.901

regParam_std : 0.01 maxIter_std : 100

Area under PR: 0.889

Why Not?

This time I have tried even many more values for Hypermeters with Scaling data

This time I have tried even many more values for Hypermeters with Scaling data

There's no reason to believe that the new scaling is any better.

It's true that the rescaled features will all vary in comparable units.

However, it is also possible that the original scaling happened to encode the data such that some important features had more prominence in the model.

Why Not?

This time I have tried even many more values for Hypermeters with Scaling data

There's no reason to believe that the new scaling is any better.

It's true that the rescaled features will all vary in comparable units.

However, it is also possible that the original scaling happened to encode the data such that some important features had more prominence in the model.

A feature in my dataset (fnlwgt) is happened to encode the data such that they become more important than others.

This time I have tried even many more values for Hypermeters with Scaling data

There's no reason to believe that the new scaling is any better.

It's true that the rescaled features will all vary in comparable units.

However, it is also possible that the original scaling happened to encode the data such that some important features had more prominence in the model.

A feature in my dataset (fnlwgt) is happened to encode the data such that they become more important than others.

The new scale results they all appear on similar scales and are all treated as equally important.

Check generalization (overfitting)

Best Model

Training Set

areaUnderROC: 0.896

Test Set

areaUnderROC: 0.893

My model is not overfitted and it would be able to generalize well to the new data as like my test set

Learning Pipeline: Random Forest

I could not apply param_grid at one shot:

Failed all the time both on databricks and Google Colab

Create small Grids with different hyperparameters
And run every small Grid separately!

Even if fails, I won't lose everything. Some of the small grids were able to finish their job.

Successful grids will be documented separately.

Documented Result. Complete summary of each small grid is in the notebook

**** Best Model: Random Forest

according to k-fold cross validation has:

maxDepth : 12
impurity : gini
numTrees : 100

**** Best Model: Random Forest

according to k-fold cross validation has:

maxDepth : 10
impurity : gini
numTrees : 120

**** Best Model: Random Forest

according to k-fold cross validation has:

maxDepth
impurity
cup: gini
numTrees
in 100

***** Best Model: Random Forest

according to k-fold cross validation has:

maxDepth : 15
impurity : gini

: 120

numTrees

Learning Pipeline: Random Forest

Metrics used for Bes	Best Model Resulting Cross Validation and HP-tuning		
Area under ROC	0.919		
Area under PR	0.915		
Accuracy	83.6 %		
Precision	83.41 %		
Recall	83.6 %		
F1-Score	0.835		

Learning Pipeline: Random Forest

Check generalization (overfitting)

Best Model

Training Set

areaUnderROC: 0.912 Test Set

areaUnderROC: 0.919

My model is not overfitted and it would be able to generalize well to the new data as like my test set

Learning Pipeline: Gradient Boosted Decision Tree

The same approach of small grids. Even with small grid Failed many times after hours of running!

I could not train too many models to find the best one. This is all I have for Gradient Boosted Decision Tree

_____***** Best Model: Gradient Boosted DT *****

according to k-fold cross validation has:

maxDepth : ! maxIter : 5

Learning Pipeline: Gradient Boosted Decision Tree

Metrics used for evaluation	Best Model Resulting Cross Validation and HP-tuning		
Area under ROC	0.915		
Area under PR	0.921		
Accuracy	82.7 %		
Precision	82.9 %		
Recall	82.7 %		
F1-Score	0.826		

Learning Pipeline: Gradient Boosted Decision Tree

Check generalization (overfitting) Best Model

Training Set

areaUnderROC: 0.903

Test Set

areaUnderROC: 0.915

My model is not overfitted and it would be able to generalize well to the new data as like my test set

Note: Without down-sampling

Same Pipeline has been applied to Decision Tree & SVM

The result and comparison between all models are summarized in the next slide

Comparison: with/ without Down-sampling

	AUC	AU-PR	Accuracy	PR	Recall	F1 Score
DT : Down-sampled data	0.839	0.856	78.7%	78.8%	78.7%	0.787
DT: No change on dataset	0.810	0.618	83.9%	83.2%	83.9%	0.834
SVM : Down-sampled data	0.893	0.901	80.7%	81.2%	80.7%	0.806
SVM: No change on dataset	0.897	0.751	84.5%	83.8%	84.5%	0.836

Best Model?

What is the best model?

Decision Tree

Metrics used for Best N evaluation		Resulting Cross Validation and HP-tuning	
Area under ROC	0.839		
Area under PR	0.856		
Accuracy	78.7 %		
Metrics use evaluati		Best Model Resulting Cro and HP-tunir	
Area under	ROC	0.893	

SVM

Logistic Regression

Logistic Regression					
		Single Model Without HP- tuning (Not Scaled)	Best Model Resulting Cross Validation and HP-tuning (Not Scaled)		
	Area under ROC	0.900	0.901		
	Area under PR	0.893	0.911		
	Accuracy	81.4 %	82.3 %		
	Precision	81.6 %	82.4 %		
	Recall	81.4 %	82.3 %		
	F1-Score	0.814	0.822		

GBDT

001				
Metrics used for evaluation	Best Model Resulting Cross Validation and HP-tuning			
Area under ROC	0.915			
Area under PR	0.921			
Accuracy	82.7 %			
Precision	82.9 %			
Recall	82.7 %			
F1-Score	0.826			

Random Forest

Metrics used for evaluation	Best Model Resulting Cross Validation and HP-tuning
Area under ROC	0.919
Area under PR	0.915
Accuracy	83.6 %
Precision	83.41 %
Recall	83.6 %
F1-Score	0.835

Best Method: Random Forest

Max-Depth: 15

Impurity: gini

NumTrees: 120

06

Conclusion

Outcome and future work

Conclusion

- Different methods have been compared
- The best model was using Random Forest with:
 - Max-depth 15
 - Trees 120
 - Impurity gini
- The results of gbtr are also good, but training takes much more time
- There could be a way to improve the performance. (future work)

Future Work

- Handling Skewed data using different approaches like: Log Transform
- > Apply other methods: like **Naïve bayes** and compare the result.
- Other strategy to balance the dataset like: SMOTE

Thanks!

teymoori.1947458@studenti.uniroma1.it Big data computing Project 2020/21

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** and illustrations by **Storyset**.

Resources

The main resources are the course repositories, part of the codes are taken from the material notebooks.

- https://github.com/gtolomei/big-data-computing
- https://towardsdatascience.com/top-3-methods-for-handling-skewed-data-1334e0debf45
- https://github.com/gtolomei/big-data-computing/blob/master/notebooks/Classification.ipynb
- https://github.com/gtolomei/big-data-computing/blob/master/slides/10_Logistic_Regression.pdf
- https://medium.com/@junwan01/oversampling-and-undersampling-with-pyspark-5dbc25cdf253
- https://stackoverflow.com/questions/50363463/linearsvc-missing-in-apache-spark-2-1-non-linear-kernels-in-spark-2-2
- https://stackoverflow.com/a/38781980
- https://stackoverflow.com/a/63910523
- https://spark.apache.org/docs/3.0.0-preview/mllib-decision-tree.html
- And Many more....