

第三章 行列式

第一节方阵的行列式

主要内容

一、低阶方阵的行列式的定义与计算

二、n阶行列式的定义(一)

一 (一)、一阶方阵的行列式

一阶方阵
$$A = (a)$$
 定义 $|A| = a$.

(二)、二阶方阵的行列式

用消元法解二元线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, & (1) \\ a_{11}x_1 + a_{12}x_2 = b_1, & (2) \end{cases}$$

$$(a_{21}x_1 + a_{22}x_2 = b_2. (2)$$

(1)
$$\times a_{22}$$
: $a_{11}a_{22}x_1 + a_{12}a_{22}x_2 = b_1a_{22}$,

$$(2) \times a_{12}: \quad a_{12}a_{21}x_1 + a_{12}a_{22}x_2 = b_2a_{12},$$

两式相减消去 x_2 , 得 $(a_{11}a_{22}-a_{12}a_{21})$ $x_1=b_1a_{22}-a_{12}b_2$;

类似地,消去 x_1 ,得 $(a_{11}a_{22}-a_{12}a_{21})x_2=a_{11}b_2-b_1a_{21}$

当 $a_{11}a_{22}-a_{12}a_{21}\neq 0$ 时,方程组的解为

$$x_{1} = \frac{b_{1}a_{22} - a_{12}b_{2}}{a_{11}a_{22} - a_{12}a_{21}}, \quad x_{2} = \frac{a_{11}b_{2} - b_{1}a_{21}}{a_{11}a_{22} - a_{12}a_{21}}. \quad (3)$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

二阶行列式的定义

由四个数排成二行二列(横排称行、竖排称列)的数表

$$a_{11} a_{12} a_{21} a_{22}$$
 (4)

表达式 $a_{11}a_{22} - a_{12}a_{21}$ 称为数表(4)所确定的二阶

行列式,并记作
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

二阶行列式的计算

一 对角线法则

对于二元线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$
若记
$$D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix},$$
 系数行列式
$$a_{21} = a_{21} = a_{22}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \end{cases} x_1 = \frac{b_1a_{22} - a_{12}b_2}{a_{11}a_{22} - a_{12}a_{21}},$$

$$D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, D_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}, x_1 = \frac{D_1}{D},$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \end{cases} x_2 = \frac{a_{11}b_2 - b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}}.$$

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, D_2 = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}, x_2 = \frac{D_2}{D},$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

即 当系数行列式 D≠0时, 二元线性方程组的解为

$$x_1 = rac{D_1}{D} = rac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, \qquad x_2 = rac{D_2}{D} = rac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}.$$

注意 分母都为原方程组的系数行列式.

小结

二阶行列式的计算 ——对角线法则

二元线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

当系数行列式 D≠0时, 解为

$$x_1 = \frac{D_1}{D}$$
 $x_2 = \frac{D_2}{D}$.

问题 三元线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, & \text{的解是否有类似的表示形式?} \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

一(三)、三阶方阵的行列式

定义

设有9个数排成3行3列的数表

(6) 式称为数表(5) 所确定的三阶行列式.

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

三阶行列式的计算

对角线法则

说明 对角线法则只适用于二阶与三阶行列式.

利用三阶行列式求解三元线性方程组

如果三元线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

的系数行列式
$$D=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \neq 0,$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

$$D_1 = \begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \end{bmatrix},$$

若记

或
$$\begin{pmatrix} b_1 \\ b_2 \\ b_1 \end{pmatrix}$$
 $D = a_{21}$ a_{22} a_{23} a_{31} a_{32} a_{33}

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

得
$$D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, & a_{11} & a_{12} & a_{13} \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, & D = a_{21} & a_{22} & a_{23} \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; & a_{31} & a_{32} & a_{33} \end{cases}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

得
$$D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases} \Rightarrow D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}.$$

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \qquad D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix},$$

$$D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \ a_{21} & a_{22} & b_2 \ a_{31} & a_{32} & b_3 \end{vmatrix}$$
, $D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \ a_{21} & b_2 & a_{23} \ a_{31} & b_3 & a_{33} \end{vmatrix}$

则三元线性方程组的解为:

$$x_1 = \frac{D_1}{D}, \qquad x_2 = \frac{D_2}{D}, \qquad x_3 = \frac{D_3}{D}.$$

例1 求解方程
$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & x \\ 4 & 9 & x^2 \end{vmatrix} = 0.$$

解 方程左端

$$D = 3x^{2} + 4x + 18 - 9x - 2x^{2} - 12$$
$$= x^{2} - 5x + 6,$$

由
$$x^2 - 5x + 6 = 0$$
 解得

$$x = 2 \text{ ig } x = 3.$$

小结

二阶和三阶行列式是由解二元和三元线性方程组引入的.

二阶与三阶行列式的计算——对角线法则

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31},$$

二、n 阶行列式的定义

形式上 由 n^2 个数组成的n行n列的正方形数表

用记号
$$D = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
 表示

称为一个n阶行列式。

问题: n阶行列式的值如何定义?

二阶, 三阶行列式的特点

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + \underbrace{a_{12}a_{23}a_{31}}_{-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}}_{-a_{13}a_{22}a_{31}} + \underbrace{a_{13}a_{21}a_{32}}_{-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}}_{-a_{13}a_{22}a_{31}}$$

二阶行列式为2!单项式的和,每项都是位于不同行、不同列,

三阶行列式包括3!单项式的和,每一项都是位于不同行、不同列

三阶行列式的特点

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31},$$

三阶行列式包括3!单项式的和

每个单项式的一般形式可记为: $\pm a_{1i_1}a_{2i_2}a_{3i_3}$ 其中 $i_1i_2i_3$ 取遍1, 2, 3的所有全排列 即 123, 231, 312, 321, 213, 132。

二(一)、排列与逆序

问题: $把1, 2, 3, \dots n$ 排成一列, 共有几种不同的排法?

定义 把n个数1, 2, 3, … n 排成一列,组成的有序数组

$$i_1i_2i_3\cdots\cdots i_{n-1}i_n$$

称 为一个 n 级排列.

123 ·····n 为一个 n 级自然排列

例如 3124 为一个 4 级排列 共有 4! =24个 1234 为一个 4 级自然排列

排列的逆序数

我们规定各元素之间有一个自然次序, n 个不同的自然数, 规定由小到大为自然次序.

定义 在一个排列 $(i_1 i_2 \cdots i_t \cdots i_s \cdots i_n)$ 中,若数 $i_t > i_s$ 则称这两个数组成一个逆序.

例如 排列32514中,

定义 一个排列中所有逆序的总数称为此排列的逆序数.

记为
$$\tau(i_1i_2\cdots i_t\cdots i_s\cdots i_n)$$

例如 排列32514中,

故此排列的逆序数为 5. 即 $\tau(32514) = 5$

定义 一个排列中所有逆序的总数称为此排列的逆序数.

记为
$$\tau(i_1i_2\cdots i_t\cdots i_s\cdots i_n)$$

排列的奇偶性

逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列.

例2 计算下列排列的逆序数,并讨论它们的奇偶性.

(1) 217986354

$$\tau = 0 + 1 + 0 + 0 + 1 + 3 + 4 + 4 + 5$$
$$= 18$$

此排列为偶排列.

(2)
$$n(n-1)(n-2)\cdots 321$$

小结

排列: 把n个数1, 2, 3, … n 排成一列,组成的有序数组 $i_1 i_2 i_3 \cdots i_{n-1} i_n$ 称 为一个 n 级排列.

逆序: 在一个排列 $(i_1i_2\cdots i_t\cdots i_s\cdots i_n)$ 中,若数 $i_t>i_s$,则称这两个数组成一个逆序.

逆序数:一个排列中所有逆序的总数称为此排列的逆序数.

对一个排列

$$i_1i_2\cdots i_t\cdots i_s\cdots i_n$$

如果仅交换两个数 i_t 和 i_s 的位置,其他数位置不变

得到另一个排列

$$i_1 i_2 \cdots i_s \cdots i_t \cdots i_n$$

这样的变换称为一个对换

排列的性质

定理1: 一次对换改变排列的奇偶性。

例如 3124 → 3421

3124 为偶排列 3421为奇排列

证明思路: 先证相邻对换,再证一般对换。

定理2: 任意一个n阶排列 k_1,k_2,\dots,k_n 都可经一系列对换变成自然排列, 变成自然序排列,且对换的次数 \mathbf{s} 与 $\tau(k_1,k_2,\dots,k_n)$ 同奇偶。

定理3: $n \ge 2$ 时,n个数的所有排列中,奇偶排列各占一半,即 $\frac{n!}{2}$.

n阶行列式

三阶行列式的特点

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

特点

- (1) 三阶行列式共有6项,即3!项.
- (2) 每项都是位于不同行不同列的三个元素的乘积.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31},$$

三阶行列式包括3!单项式的和

每个单项式的一般形式可记为: $\pm a_{1i_1}a_{2i_2}a_{3i_3}$

其中 $i_1i_2i_3$ 取遍1、2、3的所有排列。

(3) 每项的正负号都取决于位于不同行不同列的三个元素的下标排列.

例如 列标排列的逆序数为 $a_{13}a_{21}a_{32}$ $\tau(312) = 1 + 1 = 2$, 偶排列 + 正号 $a_{11}a_{23}a_{32}$ 列标排列的逆序数为 $\tau(132) = 1 + 0 = 1$, 奇排列 - 负号, $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \sum_{3!} (-1)^{\tau(p_1 p_2 p_3)} a_{1p_1} a_{2p_2} a_{3p_3}$

二(二)、n 阶行列式的定义(一)

由 n^2 个数组成的n阶行列式等于所有取自不同行不同列的n个元素的乘积的代数和 $\sum_{n!} (-1)^{\tau(p_1p_2\cdots p_n)} a_{1p_1} a_{2p_2} \cdots a_{np_n}.$

记作

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

简记作 $det(a_{ij})$. 数 a_{ij} 称为行列式 $det(a_{ij})$ 的元素.

其中 $p_1p_2\cdots p_n$ 为自然数 $1,2,\dots,n$ 的一个排列, τ 为这个排列的逆序数.

n 阶行列式的定义说明:

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{n!} (-1)^{\tau(p_1 p_2 \cdots p_n)} a_{1p_1} a_{2p_2} \cdots a_{np_n}.$$

- 1、n 阶行列式是n! 项的代数和;
- 2、 n 阶行列式的每项都是位于不同行、不同列 n个元素的乘积;
- 3、 一阶行列式 a = a
- 4、 $a_{1p_1}a_{2p_2}\cdots a_{np_n}$ 的符号为 $(-1)^{\tau(p_1,p_2,\cdots,p_n)}$.

符号定理:

令 $a_{i_1j_1}a_{i_2j_2}\cdots a_{i_nj_n}$ 是n阶行列式中的任一项,则项 $a_{i_1j_1}a_{i_2j_2}\cdots a_{i_nj_n}$ 的符号等于

$$(-1)^{\tau(i_1i_2\cdots i_n)+\tau(j_1j_2\cdots j_n)}$$

证明: 由行列式定义可知,确定项 $a_{i_1j_1}a_{i_2j_2}\cdots a_{i_nj_n}(1)$ 的符号,

需要把各元素的次序进行调动,使其行标成自然排列。

为此,我们先来研究若交换项(1)中某两个元素的位置时,其行标和列标排列逆序数的奇偶性如何变化。

对换任意两元素,相当于项(1)的元素<mark>行标</mark>排列及 列标排列同时经过一次对换。

$$a_{i_1j_1}a_{i_2j_2}\cdots a_{i_nj_n} \longrightarrow a_{i_nj_n}a_{i_2j_2}\cdots a_{i_1j_1}$$

设对换前行标排列的逆序数为s,列标排列的逆序数为t。

设经过一次对换后行标排列的逆序数为s'列标排列的逆序数为t'

由定理知,对换改变排列逆序数的奇偶性

所以,
$$s'-s$$
 是奇数 $t'-t$ 也是奇数

所以 (s'-s)+(t'-t) 是偶数,即 (s'+t')-(s+t) 是偶数,所以 s'+t' 与 s+t 同时为奇数或同时为偶数。

即,交换项(1)中任意两个元素的位置后,其行标和列标 所构成的排列的逆序数之和的奇偶性不变。

另一方面,经过若干次对换项(1)中元素的次序,总可以把项(1)变为

$$a_{1k_1}a_{2k_2}\cdots a_{nk_n}$$
,

所以
$$(-1)^{s+t} = (-1)^{s'+t'} = (-1)^{\tau(12\cdots n)+\tau(k_1k_2\cdots k_n)}$$
$$= (-1)^{\tau(k_1k_2\cdots k_n)}$$

$$(-1)^{\tau(i_1i_2\cdots i_n)+\tau(j_1j_2\cdots j_n)}a_{i_1j_1}a_{i_2j_2}\cdots a_{i_nj_n}$$

$$= (-1)^{\tau(k_1k_2\cdots k_n)}a_{1k_1}a_{2k_2}\cdots a_{nk_n},$$

得证。

n 阶行列式的定义等价形式

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum (-1)^{\tau(p_1 p_2 \cdots p_n)} a_{1p_1} a_{2p_2} \cdots a_{np_n}.$$

等价形式1
$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum (-1)^{\tau(q_1q_2\cdots q_n)+\tau(p_1p_2\cdots p_n)} a_{q_1p_1} a_{q_2p_2} \cdots a_{q_np_n}.$$

$$= \sum (-1)^{\tau(q_1q_2\cdots q_n)+\tau(p_1p_2\cdots p_n)} a_{q_1p_1} a_{q_2p_2} \cdots a_{q_np_n}.$$

等价形式2
$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum (-1)^{\tau(q_1q_2\cdots q_n)} a_{q_11} a_{q_22} \cdots a_{q_nn}.$$

例3: 若 $a_{13}a_{2i}a_{32}a_{4k}$ 为四阶行列式的项,试确定i与k,使该项带正号.

解 由 $a_{13}a_{2i}a_{32}a_{4k}$ i,k 可取 1,4

若i = 1, k = 4 符号为 $(-1)^{\tau(3124)}$

 $\tau(3124)=2$ 符号为正 即 i=1,k=4

练习 试确定i与k, 使项 $a_{i2}a_{31}a_{43}a_{k4}$ 带负号

THE THE PARTY OF T

例4

已知
$$f(x) = \begin{vmatrix} x & 1 & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 2x & 1 \end{vmatrix}$$
 求 x^3 的系数.

分析

f(*x*)是由4阶行列式的值给出的关于*x*的多项式,由行列式的定义:每一项都是不同行不同列的4个数的乘积:

$$(-1)^{\tau(j_1,j_2,j_3,j_4)}a_{1j_1}a_{2j_2}a_{3j_3}a_{4j_4},$$

要求 x^3 系数,先找出含 x^3 的项,

已知
$$f(x) = \begin{vmatrix} x & 1 & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 2x & 1 \end{vmatrix}$$
 求 x^3 的系数.

含 x^3 的项有两项,即

$$f(x) = \begin{vmatrix} x & 1 & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 2x & 1 \end{vmatrix} + (-1)^{\tau(1234)} a_{11}a_{22}a_{34}a_{43}$$

$$(-1)^{\tau(1234)} a_{11} a_{22} a_{33} a_{44}$$

$$+ (-1)^{\tau(1243)} a_{11} a_{22} a_{34} a_{43}$$

$$= x^3 - 2x^3 = -x^3$$

故 x^3 的系数为-1.

例6 计算上三角行列式

解 分析

展开式中项的一般形式是 $(-1)^{\tau}a_{1p_1}a_{2p_2}\cdots a_{np_n}$.

$$p_n = n$$
, $p_{n-1} = n-1$, $p_{n-3} = n-3$, $p_2 = 2$, $p_1 = 1$,

所以不为零的项只有 $a_{11}a_{22}\cdots a_{nn}$.

例7
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 4 & 2 & 1 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 8 \end{vmatrix} = ?$$

$$D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 4 & 2 & 1 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 8 \end{vmatrix} = a_{11}a_{22}a_{33}a_{44} = 1 \cdot 4 \cdot 5 \cdot 8 = 160.$$

同理可得下三角行列式

特别地,对角行列式

练习 计算行列式

$$\begin{array}{c|c} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{array} = (-1)^{\frac{n(n-1)}{2}} \lambda_1 \lambda_2 \cdots \lambda_n.$$

n 阶行列式的定义等价形式

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum (-1)^{\tau(p_1 p_2 \cdots p_n)} a_{1p_1} a_{2p_2} \cdots a_{np_n}.$$

等价形式1

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= \sum (-1)^{\tau(q_1q_2\cdots q_n)+\tau(p_1p_2\cdots p_n)} a_{q_1p_1} a_{q_2p_2} \cdots a_{q_np_n}.$$

等价形式2

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum (-1)^{\tau(q_1 q_2 \cdots q_n)} a_{q_1 1} a_{q_2 2} \cdots a_{q_n n}.$$