Berechnungen und Logik Hausaufgabenserie 8

Henri Heyden, Nike Pulow stu240825, stu239549

$\mathbf{A1}$

 $\textbf{Vor.:} \ \ L:=\{\langle M\rangle \in \{0,1\}^*| \forall w: w \in L(M) \Leftrightarrow w=w^R\}$

Beh.: L ist unentscheidbar.

Bew.: Sei $f:\{0,1\}^* \to \{0,1\}^*, M \mapsto M \circ l,$ wobei $l \in L$ und \circ so, dass erst

M berechnet wird und dann l berechnet wird.

 $M \circ l \in L$ gilt also genau dann, wenn M und l in einem akzeptierenden Zustand enden.

Dann gilt: $w \in \text{HALT}_{\text{TM}}^{\epsilon} \Rightarrow f(w) \in L \text{ und } w \not\in \text{HALT}_{\text{TM}}^{\epsilon} \Rightarrow f(w) \not\in L.^1$

Somit sind beide Richtungen gezeigt damit f Reduktionsfunktion für die

Reduktion $HALT_{TM}^{\epsilon} \leq L$ ist.

Nach Satz "Eigenschaften der Reduktion" ist somit L nicht entscheidbar. \square

 $^{^1{\}rm Wir}$ haben hier die Äquivalenz aufgeteilt und die Zweite, also die "Rückrichtung" mittels Kontraposition gezeigt.