

MC404AE - Organização Básica de Computadores e Ling. Montagem

Representação de Informações no Computador

Como representar informações em um computador

- Números inteiros?
- Texto?
- Registros?
- Vetores?

Como representar informações em um computador?

- Informações são representadas através de dígitos binários, ou BITs (BInary digiTs).
- Dígitos 0 e 1
- Quantos estados (ou números) distintos podemos representar com 3 dígitos da base binária?

Quantos estados (ou números) distintos podemos representar com 3 dígitos da base binária?

- 8 estados se utilizarmos notação posicional
- 4 estados se utilizarmos notação não posicional

```
1: 001, 010, 100 (um bit 1 e dois bits 0)
2: 110, 101, 011 (um bit 0 e dois bits 1)
3: 000 (três bits 0)
4: 111 (três bits 1)
```

Notação posicional: valor do dígito depende da sua posição.

Exemplo: Número decimal 132

Valor do dígito 2 = 2

Valor do dígito 3 = 30

Valor do dígito 1 = 100

Notação posicional: valor do dígito depende da sua posição.

Exemplo: Número decimal 132

Valor do dígito 2 = 2

Valor do dígito 3 = 30

Valor do dígito 1 = 100

"Informações no computador são representadas através de números, codificados na base binária com notação posicional"

A quantidade de dígitos distintos define a base numérica. Exemplos

- Base 2, ou binária => 2 dígitos distintos: 0 e 1
- Base 8, ou octal => 8 dígitos distintos: 0, 1, ..., 7
- Base 10, ou decimal => 10 dígitos distintos: 0, ..., 9
- ...

Quais são os dígitos utilizados na base 16?

A quantidade de dígitos distintos define a base numérica. Exemplos

- Base 2, ou binária => 2 dígitos distintos: 0 e 1
- Base 8, ou octal => 8 dígitos distintos: 0, 1, ..., 7
- Base 10, ou decimal => 10 dígitos distintos: 0, ..., 9
- ...

Quais são os dígitos utilizados na base 16?

• Dígitos da base hexadecimal: 0, 1, ..., 9, A, B, C, D, E, F

Qual é a base dos números abaixo?

- FE03
- 8230
- 9210
- 1001

Qual é a base dos números abaixo?

- FE03
- 8230
- 9210
- 1001

Para distinguir temos que anotar o número com a base.

- FE03₁₆
- 1001₁₀
- 1001₂

Qual é a base dos números abaixo?

- FE03
- 8230
- 9210
- 1001

Em linguagens de programação esta notação é geralmente realizado com prefixos

Para distinguir temos que anotar o número com a base.

- FE03₁₆
- 1001₁₀
- 1001

- **0**xFE03₁₆

• 01001₁₀ Exemplo em C • 0b1001₂

Qual é o valor de cada dígito nos números abaixo?

- 9210₁₀
- 1001₂

Qual é o valor de cada dígito nos números abaixo?

- 9210₁₀
- 1001₂

O valor de um dígito d em um número na base t é dado por:

• d*tposição

Onde a posição é dada pela seguinte convenção:

Dígitos 0 0 0 0 9 2 1 0

Posição 7 6 5 4 3 2 1 0

Qual é o valor de cada número abaixo em decimal?

- 1001₂
- FF₁₆

Qual é o valor de cada número abaixo em decimal?

- 1001₂
- FF₁₆

O valor de um número na base t com n dígitos é o somatório dos valores dos dígitos:

$$N_{10} = \sum_{i=0}^{n-1} d_i * t^i$$

onde **d**, é o dígito na posição **i**

Qual é o valor de cada número abaixo em decimal?

- $1001_3 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 9^{10}$
- $FF_{16} = F*16^1 + F*16^0 = 15x16 + 15x1 = 255_{10}$

O valor de um número na base t com n dígitos é o somatório dos valores dos dígitos:

$$N_{10} = \sum_{i=0}^{n-1} d_i * t^i$$

onde **d**, é o dígito na posição **i**

Como fazemos para converter um número na representação decimal para a representação binária?

• **Por exemplo:** o número 26₁₀

26

Como fazemos para converter um número na representação decimal para a representação binária?

• **Por exemplo:** o número 26₁₀

Como fazemos para converter um número na representação decimal para a representação binária?

Por exemplo: o número
 26₁₆

E na base hexadecimal?

Tipo de conversão	Procedimento			
Decimal => Binário	Divisões sucessivas por 2 até se obter zero no quociente. Leitura dos dígitos binários no resto de baixo para cima			
Binário => Decimal	Soma de potências de 2 cujo expoente é a posição do bit e cujo coeficiente é o próprio bit.			
Hexadecimal => Binário	Expandir cada dígito hexa em quatro dígitos binários segundo seu valor			
Binário => Hexadecimal	Compactar cada quatro dígitos binários em um único dígito hexa segundo seu valor.			
Decimal => Hexadecimal	Divisões sucessivas por 16 até se obter zero no quociente. Converter restos p/ dígitos hexadecimais. Leitura dos dígitos de baixo para cima			
Hexadecimal => Decimal	Soma de potências de 16 cujo expoente é a posição do dígito e cujo coeficiente é o valor do próprio dígito hexa.			

Bases numéricas - Exercícios

Qual o valor em binário dos seguintes números

- 151₈
- 139₁₀

Qual o valor em hexadecimal dos seguintes números

- 101001₂
- 16₁₀
- 240₁₀
- 20₈

Bases numéricas - Exercícios

Qual o valor em binário dos seguintes números

- $151_6 = 1000011_2$
- 139₁₀ = 10001011₂

Qual o valor em hexadecimal dos seguintes números

- 101001₂ = 29₁₆
- 16₁₀ = 10₁₆
- $240_{10} = F0_{16}$
- 20₈ = 10₁₆

Números com Sinal

Números Sem Sinal

Na representação sem sinal, todos os bits são utilizados como dígitos do número.

- Registradores com 3 bits podem representar 8 números distintos: 0 a 7
 - $\circ \quad 000_2 = 0_{10}$
 - $001_2 = 1_{10}$
 - $010_2 = 2_{10}$
 - o 011₂ = 3₁₀
 - o 100₂ = 4₁₀
 - o 101₂ = 5₁₀
 - $0 110_2 = 6_{10}$
 - o 111₂ = 7₁₀

Números Com Sina

Três tipos de codificação mais conhecidas

- Sinal e magnitude
- Complemento de 1
- Complemento de 2

Na representação "**sinal e magnitude**" o bit mais à esquerda (o mais significativo) representa o sinal do número e os outros bits representam a magnitude.

Qual é o valor dos números abaixo na representação "sinal e magnitude" e sem sinal?

- 0001 0101
- 1000 1010₂

Na representação "**sinal e magnitude**" o bit mais à esquerda (o mais significativo) representa o sinal do número e os outros bits representam a magnitude.

Qual é o valor dos números abaixo na representação "sinal e magnitude" e sem sinal?

- 0001 0101₂
- 1000 1010₂

Na representação "**sinal e magnitude**" o bit mais à esquerda (o mais significativo) representa o sinal do número e os outros bits representam a magnitude.

Qual é o valor dos números abaixo na representação **"sinal e magnitude"** e sem sinal?

- 0001 0101₂
- 1000 1010₂

E estes números?

- 0000 0000
- 1000 0000₂

Número binário	Sem sinal	Sinal e Mag.
000	0	0
001	1	1
010	2	2
011	3	3
100	4	-0
101	5	-1
110	6	-2
111	7	-3

Na representação "complemento de 1" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

- Primeiro bit 0 => o número é positivo e o valor pode ser obtido da mesma maneira que na representação sem sinal
- Primeiro bit 1 => o número é negativo. Para descobrir a magnitude, basta inverter todos os bits e computar o valor na representação sem sinal.

Qual é o valor de 10010₂ ?

Na representação "complemento de 1" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

- Primeiro bit 0 => o número é positivo e o valor pode ser obtido da mesma maneira que na representação sem sinal
- Primeiro bit 1 => o número é negativo. Para descobrir a magnitude, basta inverter todos os bits e computar o valor na representação sem sinal.

Qual é o valor de 10010, ?

Portanto:; 10010₂ = -13

Na representação "complemento de 1" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número binário	Sem sinal	Sinal e Mag.	Complemento de 1
000	0	0	0
001	1	1	1
010	2	2	2
011	3	3	3
100	4	-0	???
101	5	-1	???
110	6	-2	???
111	7	-3	???

Na representação "complemento de 1" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número binário	Sem sinal	Sinal e Mag.	Complemento de 1
000	0	0	0
001	1	1	1
010	2	2	2
011	3	3	3
100	4	-0	-3
101	5	-1	-2
110	6	-2	-1
111	7	-3	-0

Na representação "complemento de 2" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

- Primeiro bit 0 => o número é positivo e o valor pode ser obtido da mesma maneira que na representação sem sinal
- Primeiro bit 1 => o número é negativo. Para descobrir a magnitude, devemos inverter todos os bits, somar 1, e então computar o valor na representação sem sinal.

Qual é o valor de 10010,?

Na representação "complemento de 2" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

- Primeiro bit 0 => o número é positivo e o valor pode ser obtido da mesma maneira que na representação sem sinal
- Primeiro bit 1 => o número é negativo. Para descobrir a magnitude, devemos inverter todos os bits, somar 1, e então computar o valor na representação sem sinal.

Qual é o valor de 10010₂?

Magnitude(10010_2) = $01101_2 + 1_2 = 14$ Portanto: $10010_2 = -14$

Na representação "complemento de 2" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número binário	Sem sinal	Sinal e Mag.	Comp. de 1	Comp. de 2
000	0	0	0	0
001	1	1	1	1
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	???
101	5	-1	-2	???
110	6	-2	-1	???
111	7	-3	-0	???

Na representação "complemento de 2" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

Número binário	Sem sinal	Sinal e Mag.	Comp. de 1	Comp. de 2
000	0	0	0	0
001	1	1	1	1
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-1	-2	-3
110	6	-2	-1	-2
111	7	-3	-0	-1

Na representação "complemento de 2" o bit mais à esquerda também indica o sinal, entretanto a magnitude é representada de maneira diferente.

A representação Complemento de 2 é a mais utilizada		
000		0
001		1
010		2
011		3
100		-4
101		-3
110		-2
111		-1

Representação de Números

Número binário	Sem sinal	Sinal e Mag.	Comp. de 1	Comp. de 2
000	0	0	0	0
001	1	1	1	1
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-1	-2	-3
110	6	-2	-1	-2
111	7	-3	-0	-1
Maior	7	3	3	3
Menor	0	-3	-3	-4

Representação de Números

Número binário	Sem sinal	Sinal e Mag.	Comp. de 1	Comp. de 2
000	0	0	0	0
001	1	1	1	1
010	2	2	2	2
011	3	3	3	3
100	4	-0	-3	-4
101	5	-1	-2	-3
110	6	-2	-1	-2
111	7	-3	-0	-1
Maior	7	3	3	3
Menor	0	-3	-3	-4
Maior	2 ⁿ - 1	2 ⁿ⁻¹ -1	2 ⁿ⁻¹ -1	2 ⁿ⁻¹ -1
Menor	0	-(2 ⁿ⁻¹ -1)	-(2 ⁿ⁻¹ -1)	-(2 ⁿ⁻¹)

Números no Computador

"Informações no computador são representadas através de números, codificados na base binária com notação posicional"

Quantos bits o computador usa para codificar cada número?

Números no Computador

"Informações no computador são representadas através de números, codificados na base binária com notação posicional"

Quantos bits o computador usa para codificar cada número?

- Computadores modernos codificam números com palavras de 8, 16, 32, 64 ou mais bits.
- Geralmente é uma potência de 2.

Uma arquitetura de 32 bits é uma arquitetura que é capaz de armazenar e realizar operações aritméticas em números com até 32 bits.

Números de 32 bits em Complemento de 2:

```
0000 0000 0000 0000 0000 0000 0000 _2 = 0_{10}
0000 0000 0000 0000 0000 0000 0000 _2 = +1_{10}
0000 0000 0000 0000 0000 0000 0010_2 = +2_{10}
                                                                                            maxint
1000 0000 0000 0000 0000 0000 0000_2^2 = -2,147,483,648_{10}^{10}
1000 0000 0000 0000 0000 0000 0000 _2^2 = -2,147,483,648_{10}^{10}
1000 0000 0000 0000 0000 0000 0000 _2^2 = -2,147,483,647_{10}^{10}
```

Aritmética Binária: Soma e Subtração

```
Como no ensino fundamental: (vai-um/vem-um)

0111 (7) 0111 (7) 0110 (6)

+ 0110 (6) - 0110 (6) - 0101 (5)

1101 (13) 0001 (1) 0001 (1)
```

Aritmética Binária: Soma e Subtração

Como no ensino fundamental: (vai-um/vem-um)

Subtração em complemento de 2 pode ser feita com uma soma (A – B = A + (-B)).

• Ex:
$$7 - 6 = 7 + (-6)$$

Aritmética Binária: Overflow

Overflow: quando o resultado é maior (menor) do que a palavra do computador pode representar.

Exemplo: Ocorre overflow na operação abaixo?

```
0111 (7)
+ 0001 (1)
1000
```

Aritmética Binária: Overflow

Overflow: quando o resultado é maior (menor) do que a palavra do computador pode representar.

Exemplo: Ocorre overflow na operação abaixo?

```
Na representação sem sinal não ocorre overflow. Note que 7 + 1 = 8

+ 0001 (1)

Na representação Complemento de 2 ocorre overflow. Note que 7 + 1 = -8
```

Aritmética Binária: Detecção de Overflow

- Não ocorre overflow quando adicionamos um número positivo a um número negativo
- Não ocorre overflow quando os sinais dos números são os mesmos na subtração
- Ocorre overflow quando os valores afetam o sinal:
 - Somar dois números positivos resulta em um número negativo
 - Somar dois números negativos resulta em um número positivo
 - Subtrair um número negativo de um positivo resulta em um negativo
 - O Subtrair um número positivo de um negativo resulta em um positivo

Aritmética Binária: Detecção de Overflow

Exercício: Compute o resultado da operação abaixo e verifique se houve overflow

4 + 5 em uma representação com números sinalizados de 8 bits
(4)
+ (5)

Aritmética Binária: Detecção de Overflow

Exercício: Compute o resultado da operação abaixo e verifique se houve overflow

4 + 5 em uma representação com números sinalizados de 4 bits
(4)
+ (5)

Representação de Caracteres

Representação de Caracteres

Cada caractere é associado a um número distinto. Existem diversos padrões.

Exemplo: Padrão ASCII American Standard Code for
Information -- Usa 7 bits,
(128 caracteres distintos)

64	@
65	Α
66	В
67	С
68	D
69	E
70	F
71	G
72	Н
73	1

96	
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i

48	0
49	1
50	2
51	3
52	4
53	5
54	6
55	7
56	8
57	9

Cada caractere é associado a um número distinto.

- ASCII usa 7 bits
- Um texto é armazenado como uma cadeia de caracteres!
 - Posições consecutivas da memória!

Cada caractere é associado a um número distinto.

- ASCII usa 7 bits
- Um texto é armazenado como uma cadeia de caracteres!
 - Posições consecutivas da memória!

Tabela ASCII

DECHEXASCII	DECHEXASCII	DECHEXASCII	DECHEXASCII
0 00 NUL	32 20	64 40 @	96 60 '
1 01 SOH	33 21 !	65 41 A	97 61 a
2 02 STX	34 22 "	66 42 B	98 62 b
3 03 ETX	35 23 #	67 43 C	99 c
4 04 EOT	36 \$	68 44 D	100 64 d
5 05 ENQ	37 25 %	69 45 E	101 65 e
6 06 ACK	38 26 &	70 46 F	102 66 f
7 07 BEL	39 27 '	71 47 G	103 67 g
8 08 BS	40 (72 48 H	104 68 h
9 09 HT	41)	73 49 1	105 69 i
10 OA LF	42 2A*	74 4A J	106 6A
11 OB VT	43 +	75 4B K	107 6B k
12 OC FF	44 2C ,	76 4C L	108 6C I
13 OD CR	45 2D	77 4D M	109 6D m
14 OE SO	46 2E	78 4E N	110 6E n
15 OF SI	47 2F /	79 4F 0	111 6F o
16 10 DLE	48 30 0	80 50 P	112 70 p
17 11 DC1	49 31 1	81 51 Q	113 71 9
18 12 DC2	50 32 2	82 52 R	114 72 r
19 13 DC3	51 33 3	83 53 S	115 73 s
20 14 DC4	52 4	84 T	116 74 t
21 15 NAK	53 35 5	85 55 U	117 75 u
22 16 SYN	54 36 6	86 56 V	118 76 v
23 17 ETB	55 37 7	87	119 77 w
24 18 CAN	56 38 8	88 58 X	120 78 x
25 19 EM	57 39 9	89 59 Y	121 79 Y
26 1A SUB	58: 3A:	90 Z	122 7A z
27 1B ESC	59;	91 5B	123 7B
28 1C FS	60 <	92\	124 7C
29 1D GS	61 3D =	93 5D	125 7D
30 1E RS	62 3E >	94^	126 7E ~
31 1F US	63 3F ?	95 5F	127 7F DEL

Representação de Caracteres

Representação de Cadeias de Caracteres (strings) na memória do computador:

"Maçãs Assadas"

Caracteres na memória do computador

A grande maioria das memórias de computadores atuais possuem palavras (unidades de armazenamento endereçáveis) de 1 byte (8 bits).

 No endereço 0 cabe um dado de 1 byte, no endereço 1 cabe um dado de 1 byte e assim por diante.

Caracteres na memória do computador

A grande maioria das memórias de computadores atuais possuem palavras (unidades de armazenamento endereçáveis) de 1 byte (8 bits).

 No endereço 0 cabe um dado de 1 byte, no endereço 1 cabe um dado de 1 byte e assim por diante.

Quando armazenamos números de 7 bits em 1 byte nós desperdiçamos bits da memória. Por outro lado, esta abordagem facilita a leitura dos dados pois cada palavra de memória possui um único caractere e cada caractere está armazenado em uma única palavra de memória.

Números na memória do computador

- Como fazemos para armazenar um número de 32 bits em uma memória endereçada a byte?
- Exemplo: Número de 32 bits (4 bytes)
 - \circ 1025₁₀ = 00000000 00000000 00000100 00000001₂

00	
01	
02	
03	

Números na memória do computador

 Como fazemos para armazenar um número de 32 bits em uma memória endereçada a byte?

Depende do Endianness

- Exemplo: Número de 32 bits (4 bytes)
 - \circ 1025₁₀ = 00000000 00000000 00000100 00000001₂

_	
00	
01	
02	
03	

Números na memória do computador

 Como fazemos para armazenar um número de 32 bits em uma memória endereçada a byte?

Depende do Endianness

Exemplo: Número de 32 bits (4 bytes)

 \circ 1025₁₀ = 00000000 00000000 00000100 **00000001**₂

Big-Endian: Byte menos significativo é armazenado no **maior** endereço

Números na memória do computador

 Como fazemos para armazenar um número de 32 bits em uma memória endereçada a byte?

Depende do Endianness

- Exemplo: Número de 32 bits (4 bytes)
 - \circ 1025₁₀ = 00000000 00000000 00000100 **00000001**₂ \sim

00 01

0.3

Big-Endian

	<u> </u>
00	00000000
01	00000000
02	00000100
03	00000001

Little-Endian

00000001
00000100
00000000
00000000

Little-Endian: Byte menos significativo é armazenado no **menor** endereço

Números na memória do computador

 Como fazemos para armazenar um número de 32 bits em uma memória endereçada a byte?

Depende do Endianness

- Exemplo: Número de 32 bits (4 bytes)
 - \circ 1025₁₀ = 00000000 00000000 00000100 **00000001**₂

Big-Endian

00 00000000 01 00000000 02 00000100 03 00000001

Little-Endian

00	00000001	
01	00000100	
02	00000000	
03	00000000	

Network Endian?

Vetores na memória

Como fazemos para armazenar um vetor de dados em uma memória endereçada a byte?

Resposta:

 Os elementos do vetor são armazenados de forma consecutiva na memória.

Vetores na memória

Os elementos de um vetor são armazenados de forma consecutiva na memória.

Supondo que cada elemento ocupe TAM bytes, e o vetor se inicie no endereço BASE, então o i-ésimo elemento é armazenado nos bytes associados aos endereços

BASE +
$$i * TAM a BASE + (i+1) * TAM - 1$$
.

- O primeiro elemento (i=0) será armazenado nos bytes associados aos endereços BASE a BASE+(TAM-1)
- O décimo elemento (i=9) será armazenado nos bytes associados aos endereços 9xBASE a 9xBASE+(TAM-1)

Vetores na memória

int
$$v[3] = \{9, 8, 1\};$$

 Supondo que o vetor v seja alocado no endereço 0

Registros na memória

Como fazemos para armazenar registros (structs) em uma memória endereçada a byte?

Resposta:

 Os campos dos registros são armazenados de forma consecutiva na memória.

Registros na memória

```
struct id {
   int cpf;
   char nome[256];
   short idade;
} fulano;
```

 Supondo que o registro fulano seja armazenado no (a partir do) endereço zero de memória.

Matrizes na memória

Como fazemos para armazenar uma matriz de dados em uma memória endereçada a byte?

Depende da linguagem de programação:

- Em 'C': As linhas da matriz são armazenadas de forma consecutiva na memória (uma linha por vez)
 - Organização conhecida como "row-major order"
- Em Fortran: As colunas da matriz são armazenadas de forma consecutiva na memória
 - o Organização conhecida como "column-major order"