

CI 2 – SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

Chapitre 2 – Modélisation des Systèmes Linéaires Continus Invariants Transformée de Laplace

EXERCICES D'APPLICATION

D'après ressources de Jean-Pierre Pupier et Florestan Mathurin.

Exercice 1

On souhaite résoudre l'équation différentielle suivante :

$$\frac{de(t)}{dt} + e(t) = \frac{d^3s(t)}{dt^3} + \frac{d^2s(t)}{dt^2} + \frac{ds(t)}{dt}$$

e(t) est l'entrée du système, s(t) la sortie.

On se place dans les conditions de Heaviside, c'est-à-dire qu'on considère que s(t), e(t) et leurs dérivées successives sont nulles en t=0.

Question 1

En utilisant les résultats sur la transformée de Laplace, donner l'équation différentielle dans le domaine de Laplace.

En utilisant la propriété de la transformée de Laplace de la dérivée, $\mathcal{L}\left[\frac{df(t)}{dt}\right] = pF(p) - f(0^+)$. Étant dans les conditions de Heaviside, on a donc :

$$pE(p) + E(p) = p^3S(p) + p^2S(p) + pS(p)$$

Pour la suite on considère que le système est soumis à une entrée e(t) indicielle.

Question 2

Donner l'allure graphique d'une entrée indicielle. Donner sa forme dans le domaine temporel puis dans le domaine de Laplace. En déduire S(p).

Pour
$$t \in \mathbb{R}_*^+$$
, on a $e(t) = 1$, sinon $e(t) = 0$.
Dans le domaine de Laplace, $E(p) = \frac{1}{p}$.
En conséquence,

$$S(p) = \frac{1+p}{p^3 + p^2 + p}$$

Correction

Question 3

Déterminer les valeurs finales et initiales de s(t).

D'après le théorème de la valeur initiale,

$$\lim_{t \to 0} s(t) = \lim_{p \to +\infty} p S(p) = \lim_{p \to +\infty} p \cdot \frac{1+p}{p^3 + p^2 + p} = \lim_{p \to +\infty} \frac{1+p}{p^2 + p + 1} = 0$$

En effet,
$$\frac{1+p}{p^2+p+1}$$
 $\sim p$ $\sim p$ $\sim p$ ~ 1 $\sim p$ $\sim p$ ~ 0 D'après le théorème de la valeur finale,

$$\lim_{t \to +\infty} s(t) = \lim_{p \to 0} pS(p) = \lim_{p \to 0} p \cdot \frac{1+p}{p^3 + p^2 + p} = \lim_{p \to 0} \frac{1+p}{p^2 + p + 1} = 1$$

Question 4

Déterminer les valeurs initiales et finales de la fonction dérivée $\frac{ds(t)}{dt}$.

D'après les propriétés de la dérivée, on a $\mathcal{L}\left[\frac{ds(t)}{dt}\right] = pS(p)$. En conséquence, d'après le théorème de la valeur initiale:

$$\lim_{t \to 0} \frac{ds(t)}{dt} = \lim_{p \to +\infty} p\left(pS(p)\right) = \lim_{p \to +\infty} p\frac{1+p}{p^2+p+1} = 1$$

D'après le théorème de la valeur finale :

$$\lim_{t \to +\infty} \frac{ds(t)}{dt} = \lim_{p \to 0} p \frac{1+p}{p^2 + p + 1} = 1$$

Question 5

Décomposer S(p) en éléments simples puis en somme algébrique de plusieurs transformées de Laplace élémentaires.

On a:

$$S(p) = \frac{1+p}{p^3 + p^2 + p} = \underbrace{\frac{1}{p} \cdot \frac{1+p}{p^2 + p + 1}}_{S_1(p)} = \underbrace{\frac{\alpha}{p} + \frac{\beta + \gamma p}{p^2 + p + 1}}_{S_2(p)}$$

On multiplie $S_1(p)$ et $S_2(p)$ par p et on pose p = 0:

$$\frac{1+p}{p^2+p+1} = \alpha + \frac{\beta + \gamma p}{p^2+p+1} p \Longleftrightarrow \alpha = 1$$

2

Et donc $\alpha = 1$.

Posons p = 1 et p = -1:

$$\begin{cases} S_1(1) = S_2(1) \\ S_1(-1) = S_2(-1) \end{cases} \iff \begin{cases} \frac{2}{3} = 1 + \frac{\beta + \gamma}{3} \\ 0 = -1 + \beta - \gamma \end{cases} \iff \begin{cases} 2 = 3 + 2\beta - 1 \\ \gamma = \beta - 1 \end{cases} \iff \begin{cases} \gamma = -1 \\ \beta = 0 \end{cases}$$

Au final:

$$S(p) = \frac{1}{p} - \frac{p}{p^2 + p + 1}$$

Question 6

En déduire s(t) en utilisant la transformée de Laplace inverse.

Dans un premier temps, transformant S(p) afin d'identifier des formes connues :

$$S(p) = \frac{1}{p} - \frac{p}{p^2 + p + 1} = \frac{1}{p} - \frac{p}{\left(p + \frac{1}{2}\right)^2 + \frac{3}{4}} = \frac{1}{p} - \frac{p + \frac{1}{2} - \frac{1}{2}}{\left(p + \frac{1}{2}\right)^2 + \frac{3}{4}} = \frac{1}{p} - \frac{p + \frac{1}{2} - \frac{1}{2}}{\left(p + \frac{1}{2}\right)^2 + \frac{3}{4}}$$

$$S(p) = \frac{1}{p} - \frac{p + \frac{1}{2}}{\left(p + \frac{1}{2}\right)^2 + \frac{3}{4}} + \frac{\frac{1}{2}}{\left(p + \frac{1}{2}\right)^2 + \frac{3}{4}} = \frac{1}{p} - \frac{p + \frac{1}{2}}{\left(p + \frac{1}{2}\right)^2 + \frac{3}{4}} + \frac{\frac{1}{2} \cdot \sqrt{\frac{3}{4}} \cdot \sqrt{\frac{3}{4}}}{\left(p + \frac{1}{2}\right)^2 + \frac{3}{4}}$$

$$S(p) = \frac{1}{p} - \frac{p + \frac{1}{2}}{\left(p + \frac{1}{2}\right)^2 + \frac{3}{4}} + \frac{\sqrt{3}}{4} \frac{\sqrt{\frac{3}{4}}}{\left(p + \frac{1}{2}\right)^2 + \frac{3}{4}}$$

En utilisant le tableau des transformées inverses et le théorème de l'amortissement on a, pour tout t > 0:

$$s(t) = 1 - e^{-\frac{1}{2}t} \cos\left(\sqrt{\frac{3}{4}}t\right) + \frac{\sqrt{3}}{4}e^{-\frac{1}{2}t} \sin\left(\sqrt{\frac{3}{4}}t\right)$$

Question 7

Donner l'allure de la s(t).

Exercice 2 – Application du théorème du retard – Application de la propriété de la périodicité – Modélisation des signaux

Modéliser les signaux ci-contre.

On pourrait définir le premier signal ainsi : $\forall t \in [0,2], f_1(t) = 4 - 2t$, sinon $f_1(t) = 0$.

Une seconde façon serait d'utiliser la fonction de Heaviside définit par : $\forall t > 0$ u(t) = 1, sinon u(t) = 0. On aurait alors $\forall t \in]-\infty,2]$, $f_2(t) = (4-2t) \cdot u(t)$, sinon $f_2(t) = 0$.

Enfin, dans un troisième temps on peut rechercher une fonction qui serait définie sur \mathbb{R} . Pour cela, définissons d'abord une fonction g telle que $g(t) = (-4+2t) \cdot u(t-2)$.

On peut donc définir f ainsi : $\forall t \in \mathbb{R}$, $f(t) = (4-2t) \cdot u(t) + (-4+2t) \cdot u(t-2)$.

Dans le domaine de Laplace, on a donc :

$$F(p) = \frac{4}{p} - \frac{2}{p^2} + e^{-2p} \left(-\frac{4}{p} + \frac{2}{p^2} \right)$$

Enfin, si le signal est 2-périodique, on obtient :

$$F(p) = \frac{\frac{4}{p} - \frac{2}{p^2} + e^{-2p} \left(-\frac{4}{p} + \frac{2}{p^2} \right)}{1 - e^{-2p}}$$

Correctio

Exercice 3 - Système mécanique

Soit le système mécanique ci-contre constitué d'un ressort de raideur k et d'un amortisseur de coefficient d'amortissement f. On peut déplacer l'extrémité du ressort A d'une quantité x. Á l'instant t=0 le système est en équilibre, le point A est positionné en x_0 et le point B est positionné en y_0 .

On notera x(t) et y(t) les variations des positions des points A et B autour de x_0 et y_0 .

Question 1

Donner l'équation différentielle faisant intervenir x(t) et y(t). K désigne la raideur du ressort, f désigne le coefficient visqueux de l'amortisseur. La pièce liant ressort et amortisseur au point B est considérée comme ayant une masse quasiment nulle.

En appliquant le théorème de la résultante dynamique en projection sur l'axe \overrightarrow{x} au système ressort – amortisseur, on obtient :

$$k(x(t)-y(t))-f\frac{dy(t)}{dt}=M\frac{dy^2(t)}{dt^2}$$

Dans notre cas, la masse du système isolée est nulle. On a donc :

$$k(x(t)-y(t)) = f\frac{dy(t)}{dt}$$

Question 2

Réécrire cette équation en passant du domaine temporel au domaine de Laplace.

Dans le domaine de Laplace, on a donc directement :

$$k(X(p)-Y(p))=fpY(p)$$

Question 3

Déterminer la fonction $H(p) = \frac{Y(p)}{X(p)}$. H sera appelée fonction de transfert du système.

Il vient directement:

$$H(p) = \frac{Y(p)}{X(p)} = \frac{K}{K + f p}$$

Question 4

Donner la réponse du système à un échelon unitaire puis mettre S(p) sous la forme $S(p) = \frac{1}{p} \cdot \frac{1}{A + \tau p}$. On précisera l'expression de τ .

L'entrée du système correspond à la position de A et la sortie à la position de B. Si on sollicite le système par un échelon de position, on a donc $X(p) = \frac{1}{p}$:

$$Y(p) = H(p) \cdot X(p) = \frac{k}{k+fp} \cdot \frac{1}{p} = \frac{1}{1+\frac{f}{k}p} \cdot \frac{1}{p}$$

5

On pose alors $\tau = \frac{f}{k}$

Question 5

Mettre Y(p) sous la forme $\frac{\alpha}{p} + \frac{\beta}{1 + \tau p}$.

Posons:

$$Y_1(p) = \frac{1}{1+\tau p} \cdot \frac{1}{p}$$
 et $Y_2(p) = \frac{\alpha}{p} + \frac{\beta}{1+\tau p}$ avec $Y_1(p) = Y_2(p)$

On multiplie Y_1 et Y_2 par p et on pose p = 0. On obtient alors $\alpha = 1$.

On multiplie ensuite Y_1 et Y_2 par $1 + \tau p$ et on pose $p = -\frac{1}{\tau}$. On obtient alors $\beta = -\tau$.

On obtient donc:

$$Y(p) = \frac{1}{p} - \frac{\tau}{1 + \tau p}$$

Question 6

En déduire la réponse y(t) à un échelon unitaire.

On modifie Y(p) pour la mettre sous une forme connue :

$$Y(p) = \frac{1}{p} - \frac{1}{\frac{1}{\tau} + p}$$

Dans le domaine temporel, on a donc :

$$y(t) = u(t) \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$

Question 7

Tracer graphiquement l'allure générale de y(t).

Correction

Question 8

Recommencer le même travail en étudiant la réponse du système à une entrée sinusoïdale $e(t) = \sin(\omega \cdot t) \cdot u(t)$ avec $\omega = 1 \, r \, a \, d \, / s$ et $T = \frac{f}{K} = 1$. On fera donc l'hypothèse que le système est particulier, c'est-à-dire que T = 1.

orrection

En appliquant $x(t) = \sin(t)$, on a:

$$Y(p) = \frac{1}{1+p} \cdot \frac{1}{p^2+1} = \frac{1}{2} \cdot \left[\frac{1}{1+p} - \frac{p-1}{p^2+1} \right] = \frac{1}{2} \cdot \left[\frac{1}{1+p} - \frac{p}{p^2+1} + \frac{1}{p^2+1} \right]$$

On a donc dans le domaine temporel:

$$y(t) = \frac{1}{2} \left[e^{-t} - \cos t + \sin t \right]$$

Remarque:

$$\sin t - \cos t = \sin t - \cos t \cdot \frac{\tan 4}{\pi} = \sin t - \cos t \cdot \frac{\sin \pi 4}{\cos \pi 4} = \sqrt{2} \left(\sin t \cos \frac{\pi}{4} - \cos t \sin \frac{\pi}{4} \right) = \sqrt{2} \sin \left(t - \frac{\pi}{4} \right)$$

Au final:

$$y(t) = \frac{1}{2} \left[e^{-t} + \sqrt{2} \sin \left(t - \frac{\pi}{4} \right) \right]$$

Exercice 4 - Transformée de Laplace

Connaissant les transformées de Laplace des fonctions $\cos(\omega t) \cdot u(t)$, donner la transformée de Laplace de $e^{-at} \cdot \cos(\omega t) \cdot u(t)$.

Exercice 5 - Transformée de Laplace inverse

Calculer les transformées de Laplace inverses des fonctions suivantes :

$$F_{1}(p) = \frac{K_{1}}{(p+a)\cdot(p+b)} \qquad F_{2}(p) = \frac{K_{2}}{p\cdot(1+\tau p)} \qquad F_{3}(p) = \frac{K_{3}\cdot p}{(p+a)(p+b)}$$

$$F_{4}(p) = \frac{K_{4}p^{2}}{(p-1)^{2}\cdot(p+1)} \qquad F_{5}(p) = \frac{3p+1}{(p-1)\cdot(p^{2}+1)}$$

Exercice 6 - Circuit RLC

On donne le schéma électrique ci-contre. On suppose que les conditions initiales sont nulles.

Question 1

Déterminer l'équation différentielle liant $u_c(t)$ et e(t).

Question 2

e(t) étant un échelon d'amplitude E_0 , résoudre l'équation en utilisant la transformée de Laplace.

Exercice 7 - Transformées de Laplace inverse

On donne les fonctions suivantes :

$$F_1(p) = \frac{3}{p \cdot (p+1) \cdot (p+2)}$$
 $F_2(p) = \frac{2p+1}{p^2 + 2p + 10}$

7

Question 1

En utilisant la transformées de Laplace inverse, donner les fonctions causales du temps.

Exercice 8

Soit la fonction de transfert suivante :

$$H(p) = \frac{p^2 + 1}{p^2(p+1)}$$

. On fait subir au système représenté par cette fonction de transfert une entrée échelon unitaire.

Question 1

Calculer S(p) la réponse du système.

Question 2

Décomposer là en éléments simples sous la forme : $\frac{A}{p^3} + \frac{B}{p^2} + \frac{C}{p} + \frac{D}{p+1}$.

Question 3

Déterminer s(t).

Question 4

Réaliser un tracé représentatif de la fonction s(t).

Équation différentielle

Il s'agit de résoudre l'équation différentielle suivante :

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = e(t) \quad \text{avec} \quad y(0) = 2 \quad \frac{dy(0)}{dt} = 2$$

Par ailleurs, $e(t) = 6 \cdot u(t)$.

Question 1

Écrire cette équation à l'aide de la transformée de Laplace.

Question 2

Décomposer
$$Y(p)$$
 sous la forme $\frac{A}{p} + \frac{B}{p+\alpha} + \frac{C}{p+\beta}$.

Question 3

Donner une représentation graphique de y(t).