Throughout, G is a connected, reductive algebraic group over $k = \bar{\mathbf{F}}_q$ with a Frobenius map $F: G \to G$. We fix an F-stable Borel pair (B,T) and write U = [B,B]. We fix $\delta \geq 1$ so that F^{δ} acts trivially on W, and a section $w \mapsto \dot{w}: W \to N_{GF^{\delta}}(T^{F^{\delta}})$. With these choices, $X_w \subseteq G/B$ and $\tilde{X}_w \subseteq G/U$ are F^{δ} -stable for all $w \in W$.

5.1.

Recall that in our running example where $G = \operatorname{SL}_2$ and F is standard, we can write $W = \{e, s\}$ with $e = \operatorname{id}$, and take $\delta = 1$. Last time, we computed the graded $\bar{\mathbf{Q}}_{\ell}[F]$ -modules formed by the compactly-supported ℓ -adic cohomologies of X_e and X_s :

$$\mathrm{H}_c^*(X_e) \simeq \bar{\mathbf{Q}}_\ell^{\oplus (q+1)}, \qquad \mathrm{H}_c^*(X_s) \simeq \bar{\mathbf{Q}}_\ell^{\oplus q}[-1] \oplus \bar{\mathbf{Q}}_\ell[-2](-1).$$

Above [-m] means "shift up by degree m" and (-m) means "twist the Frobenius action by a factor of q^m ".

One more property of ℓ -adic cohomology that I could have added to the list from last time:

(10) $H^0(X)$ is the vector space of $\bar{\mathbf{Q}}_{\ell}$ -valued functions on the set of connected components of X.

This gives another way to identify $H_c^*(X_e) = H_c^0(X_e)$, and by Poincaré duality, $H_c^2(X_s) \simeq H^0(X_s)^{\vee}[-2](-1)$. But it does more: It enables us to identify the G^F -actions on these vector spaces. It remains for us to identify the G^F -action on $H_c^1(X_s)$.

5.2.

As mentioned last time, it is easier in general to work with the virtual character $R_{w,\theta}$ than with the individual representations $\mathrm{H}^i_c(\tilde{X}_w)[\theta]$. For any k-scheme of finite type X and automorphism $g:X\to X$, the *Lefschetz number* of g on $\mathrm{H}^*_c(X)$ is defined to be

$$\mathcal{L}_X(g) = \sum_i (-1)^i \operatorname{tr}(g \mid \operatorname{H}_c^i(X)).$$

The Lefschetz fixed-point formula tells us that if f is a Frobenius map, then $\mathcal{L}_X(f) = |X^f|$. At the same time,

$$\mathcal{L}_{X_w} = R_{w,1},$$

$$\mathcal{L}_{\tilde{X}_w} = \sum_{\alpha} R_{w,\theta}$$

as functions on G^F .

The next result that we present, combining Exercise 4.7.4 and Theorem 4.4.12 in Geck, is a bridge between these two uses of Lefschetz number. Recall that $g: X \to X$ commutes with a Frobenius map $F: X \to X$ corresponding to some \mathbf{F}_q -rational structure $X = X_1 \otimes k$ if and only if g descends to X_1 , meaning $g = g_1 \otimes \mathrm{id}$. Note that since X is of finite type, g is cut out by finitely many polynomials in finitely many variables. Thus, g is always defined over some finite subfield of k; in other words, given g, we can always find some Frobenius that commutes with g.

Theorem 5.1. Suppose that X is a smooth affine k-variety with Frobenius f, and $g: X \to X$ is an automorphism of finite order that commutes with f. Then:

- (1) gf^m is a Frobenius map on X for all $m \ge 1$.
- (2) The formal series

$$\mathcal{L}_X(g,t) := -\sum_{m \ge 1} |X^{gf^m}| t^m$$

satisfies $\mathcal{L}_X(g) = \lim_{t \to \infty} \mathcal{L}_X(g, t)$.

Proof of (2) from (1). Since f and g commute, we can triangularize them simultaneously. Suppose that $(\lambda_{i,j})_j$, resp. $(\mu_{i,j})_j$, is the list of eigenvalues of f, resp. g, on $H^i_c(X)$. Since gf^m is a Frobenius map, the Lefschetz formula gives

$$|X^{gf^m}| = \sum_{i} (-1)^i \sum_{j} \mu_{i,j} \lambda_{i,j}^m,$$

from which

$$-\mathcal{L}_X(g,t) = \sum_{m,i,j} (-1)^i \mu_{i,j} \lambda_{i,j}^m t^m = \sum_{i,j} (-1)^i \mu_{i,j} \frac{\mu_{i,j} t}{1 - \mu_{i,j} t}.$$

Now observe that $\frac{\mu_{i,j}t}{1-\mu_{i,j}t} \to -1$ as $t \to \infty$.

Remark 5.2. The Weil zeta series of X with respect to f is defined by

$$Z_X(t) = \exp\left(\sum_{m>1} |X^{f^m}| \frac{t^m}{m}\right),$$

where exp is a formal exponential. We see that

$$\mathcal{L}_X(\mathrm{id},t) = -t\frac{d}{dt}\log Z_X(t).$$

In this sense, $\mathcal{L}(t, | g, X)$ is a mild generalization of the zeta series.

Corollary 5.3. Keeping the hypotheses of Theorem 5.1, suppose that X is the union of disjoint subvarieties X' and X'' that are f-stable and g-stable. Then

$$\mathcal{L}_X = \mathcal{L}_{X'} + \mathcal{L}_{X''}$$

as functions of g.

One can show that the Deligne–Lusztig varieties X_w and \tilde{X}_w are always affine varieties: for instance, using Geck Lemma 4.3.14. If $g \in G^F$, then the action of g on G/B and G/U commutes with that of F, and hence, its action on X_w and \tilde{X}_w commutes with that of F^δ . So we can apply Theorem 5.1 and its corollary to the case where $X = X_w$, \tilde{X}_w , or some unions of these, and $f = F^\delta$ and $g \in G^F$.

Returning to the setup with $G = SL_2$ and F standard, we deduce that

$$\mathcal{L}_{G/B} = \mathcal{L}_{X_e} + \mathcal{L}_{X_s} = R_{e,1} + R_{s,1}.$$

We also know the cohomology of G/B, since it is \mathbf{P}^1 :

$$\mathrm{H}_c^*(G/B) \simeq \mathrm{H}^*(G/B) \simeq \bar{\mathbf{Q}}_\ell \oplus \bar{\mathbf{Q}}_\ell[-2](-1),$$

Since $H^0(G/B)$ carries the trivial representation of G^F , the same is true of its Poincaré dual $H^2(G/B)$. Therefore $\mathcal{L}_{G/B}(g) = 2$ for all g.

From Mackey, we saw that the G^F -equivariant endomorphisms of $\mathbf{R}_{e,1} = \mathrm{H}_c^*(X_e) = \mathrm{H}_c^0(X_e)$ form a 2-dimensional algebra, which forces $\mathbf{R}_{e,1}$ to be a sum of two irreducible representations of G^F . But $\mathbf{R}_{e,1}$ is also the space of functions on X_e , which contains the trivial representation. So we must have

$$R_{e,1} = 1 + \rho$$
 for some irreducible ρ .

This is the Steinberg character mentioned previously. Finally,

$$R_{s,1} = \mathcal{L}_{G/B} - R_{e,1} = 2 - (1 + \rho) = 1 - \rho.$$

Since $\mathbf{R}_{s,1} = \mathrm{H}^1_c(X_s) \oplus \mathrm{H}^2_c(X_s)$, and $\mathrm{H}^2_c(X_s)$ also carries the trivial character, we deduce that $\mathrm{H}^1_c(X_s)$ carries the Steinberg character.

5.3.

Before we can describe $\mathbf{R}_{s,\theta} = \mathrm{H}_c^*(X_s)[\theta]$ and $R_{s,\theta}$ for other θ , we should describe T^{sF} more explicitly. Taking T to be the diagonal torus given by

$$T(k) = \{t_a \mid a \in k^{\times}\}, \text{ where } t_a = \begin{pmatrix} a \\ a^{-1} \end{pmatrix},$$

we see that $s \cdot t_a = t_{a^{-1}}$. Therefore,

5.4.

$$T^{sF} = \{t_a \in T \mid a^q = a^{-1}\} = \{t_a \in T \mid a^{q+1} = 1\}.$$

In particular, T^{sF} is cyclic of order q + 1.

Note that the condition $a^{q+1}=1$ forces $a\in \mathbf{F}_q^{\times}$. Moreover, $a\in \mathbf{F}_q^{\times}$ only happens for $a=\pm 1$. These computations show that in general, the embedding of T into G does *not* restrict to an embedding of T^{sF} into $G^F=\mathrm{SL}_2(\mathbf{F}_q)$. Nonetheless:

Proposition 5.4. Let G be any connected, smooth reductive algebraic group over k with Frobenius F. For any F-stable maximal torus $T \subseteq G$ and element $w \in W = N_G(T)/T$, we can find some $g \in G(k)$ such that $S := gTg^{-1}$ is F-stable and $S^F = gT^{wF}g^{-1}$. In particular, we get an embedding

$$T^{wF} \xrightarrow{\sim} S^F \to G^F$$
.

Proof. Lift w to an element $\dot{w} \in N_G(T)(k) \subseteq G(k)$. By Lang's theorem, we can find $g \in G(k)$ such that $\dot{w} = g^{-1}F(g)$. We see that

$$F(gTg^{-1}) = F(g)TF(g)^{-1} = g\dot{w}T\dot{w}^{-1}g^{-1} = gTg^{-1},$$

proving that gTg^{-1} is F-stable. Moreover, for all $t \in T(k)$, we see that $F(gtg^{-1}) = gtg^{-1} \iff \dot{w}F(t)\dot{w}^{-1} = t$. Thus $(gTg^{-1})^F = gT^{wF}g^{-1}$. \square

To conclude our discussion of fixed-point formulas, we present two main results by Deligne–Lusztig, and explain their application to the discrete series of $SL_2(\mathbf{F}_q)$. They are sufficiently difficult that Geck omits their proofs, despite stating them as Theorems 4.5.3 and 4.5.4.

To motivate the first result, recall that any invertible matrix g over a field has a *Jordan decomposition* $g = g_s g_u = g_u g_s$, where g_s is diagonalizable (or *semisimple*) and g_u is unipotent. If the field characteristic is p > 0 and the (multiplicative) order of g is finite, then the order of g_s is coprime to p, while the order of g_u is a power of p.

Theorem 5.5 (Deligne–Lusztig). Suppose that X is a smooth affine k-variety with Frobenius f, and $g: X \to X$ is an automorphism of finite order that commutes with f. Suppose that $g = g_s g_u = g_u g_s$, where $g_s: X \to X$, resp. $g_u: X \to X$, has order coprime to p, resp. a power of p. Then

$$\mathcal{L}_X(g) = \mathcal{L}_{Xgs}(g_u).$$

In the SL_2 example, this theorem implies that for any $t \in T^{sF}$, we have $\mathcal{L}_{\tilde{X}_s}(t) = \mathcal{L}_{\tilde{X}_s^t}(1)$. But T^{sF} acts freely on \tilde{X}_s , so the right-hand side vanishes whenever $t \neq 1$! By character theory, we deduce that as a representation of T^{sF} , the vector space $\operatorname{H}_c^*(\tilde{X}_s)$ is a \oplus -power of the regular representation of T^{sF} . Since T^{sF} is abelian, every character occurs in the latter with the same multiplicity. Therefore

$$\dim R_{s,\theta} = \dim R_{s,1} = 1 - q$$
 for all θ .

To actually determine how these characters decompose beyond the $\theta = 1$ case, we need the firepower of the following theorem. It is a geometric generalization of the Mackey-type formula we saw earlier. For the transporter scheme $N_G(S, S') \subseteq G$ that we use below, see Milne Chapter 1, Section i.

Theorem 5.6 (Deligne–Lusztig). Suppose that w', S' also satisfy the hypotheses on w, S in the setup of Proposition 5.4. Fix characters θ and θ' of T^{wF} and $T^{w'F}$, respectively. Then

$$(R_{w,\theta}, R_{w',\theta'})_{GF} = \frac{|N_G((S,\theta), (S',\theta'))^F|}{|S^F|},$$

where $N_G((S, \theta), (S', \theta'))$ is the subvariety of elements $n \in N_G(S, S')$ such that $\theta^n = \theta'$.

Corollary 5.7. *In the setup above,*

$$(R_{w,\theta}, R_{w,\theta})_{G^F} = \frac{|\{w \in W^F \mid \theta^w = \theta\}|}{|S^F|}.$$

In the SL_2 example, we have

$$(R_{s,\theta}, R_{s,\theta})_{GF} = \begin{cases} 2 & \theta^2 = 1, \\ 1 & \text{else.} \end{cases}$$

In particular, $-R_{s,\theta}$ is an actual, irreducible representation of G^F whenever θ is a character of T^{sF} such that $\theta^2 \neq 1$. For q odd, there are q-1 choices of such θ , which form $\frac{1}{2}(q-1)$ conjugate pairs under s. Each pair contributes one new irreducible. The remaining two irreducibles of G^F are the summands of $\mathbf{R}_{s,\theta}$ for θ the order-2 character of T^{sF} . Taken together, these are all the *discrete series representations* of $\mathrm{SL}_2(\mathbf{F}_q)$.