

Electrostática e Campo eléctrico

Modelo e propriedades da carga eléctrica

Propriedades eléctricas dos materiais

Condutores e isolantes

Interacção entre cargas eléctricas

Lei de Coulomb

Força eléctrica.

Cacilda Moura-DFUM

Capítulo 1(1_4)

A palavra electricidade tem origem no âmbar.

O âmbar é uma resina fóssil muito usado em objectos ornamentais.

Sabe-se que as árvores (principalmente os pinheiros) cuja resina se transformou em âmbar viveram há milhões de anos em regiões de clima temperado. Nas zonas cujo clima era tropical, o âmbar foi formado por plantas leguminosas.

[...]

O âmbar verdadeiro tem sido chamado às vezes de *karabe*, uma palavra da derivação oriental significando "o que atrai a palha", em alusão ao poder que o âmbar possui de adquirir uma carga eléctrica pela fricção. Esta propriedade, observada primeiramente por *Thales de Mileto*, sugeriu a palavra "electricidade", do grego *elektron* nome aplicado, entretanto, ao âmbar.

Carregar dois materiais diferentes utilizando um pano de lã

http://www.regentsprep.org/Regents/physics/phys03/aeleclab/chargstp.htm

Que tipo de informação podemos obter com este tipo de experiências? Que experiências se devem fazer?

Estas experiências permitem obter informação sobre o sinal da carga de cada barra?

Cargas de sinal contrário atraem-se,

Cargas do mesmo sinal repelem-se.

Bejamim Franklin (1706-1790) descreve a carga eléctrica como uma espécie de fluido sem massa Cada objecto tem determinada quantidade de electricidade que pode ser transferida para outro quando entrarem em contacto (um fica com excesso e outro com deficiência)

Rutherford (1871-1937) mostra como a matéria está organizada e identifica a carga dos seus constituintes

Cacilda Moura-DFUM Capítulo 1(1_4)

Os átomos têm **electrões** (com carga negativa) e **núcleos**.

Os núcleos são constituídos por protões (com carga positiva) e neutrões (carga nula).

Do átomo aos quarks

Quão pequenos são os mais pequenos constituintes da matéria?

A carga eléctrica é uma propriedade fundamental das partículas elementares da matéria (protões, electrões, neutrões)

	Massa (kg)	Carga (C)
protão	1.6726×10 ⁻²⁷	1.602×10 ⁻¹⁹
neutrão	1.6749×10 ⁻²⁷	0
electrão	9.1093×10 ⁻³¹	- 1.602×10 ⁻¹⁹

A unidade fundamental de carga é: $e = 1.60 \times 10^{-19} \text{ C}$

Cacilda Moura-DFUM Capítulo 1(1_4)

Qual a carga do balão?

Lei da conservação da carga:

A carga não "aparece" nem "desaparece": pode ser transferida.

Cacilda Moura-DFUM Capítulo 1(1_4)

Há materiais que conduzem a corrente eléctrica e outros são isoladores, porquê?

Atom

Nos materiais condutores (como os metais), os electrões "livres" podem mover-se facilmente

Cacilda Moura-DFUM Capítulo 1(1_4)

Num isolador, os electrões não se podem mover livremente

Cacilda Moura-DFUM Capítulo 1(1_4)

Num semicondutor os electrões encontram-se fracamente ligados.

A densidade de electrões livres determina a condutividade de um semicondutor

Estados ocupados

- Num sólido os electrões distribuem-se em bandas de energia
- Os electrões vão ocupando os estados de mais baixa energia e vão preenchendo a banda
- A última banda a ser preenchida é a banda de valência.

Eletrização

1- Electrização por Atrito

Acontece quando se friccionam dois corpos. Os corpos assim eletrizados têm cargas de sinais opostos. (Já vista no início desta série de slides)

2- Electrização por Contacto

Quando dois corpos condutores entram em contacto, estando um neutro e o outro carregado, observa-se que ambos ficam carregados com cargas de mesmo sinal.

3- Electrização por Indução

A indução ocorre quando se tem um corpo que está inicialmente electrizado e é colocado próximo de um corpo neutro. Com isso, a configuração das cargas do corpo neutro modifica-se de forma que as cargas de sinal contrário às do primeiro tendem a aproximar-se do mesmo. Porém, as de sinal igual tendem a ficar o mais afastadas possível. Ou seja, na indução ocorre a separação entre algumas cargas positivas e negativas do corpo neutro ou corpo induzido.

• Realinhamento de carga na superfície de um isolador: polarização.

Cacilda Moura-DFUM Capítulo 1(1_4)

Quando uma pessoa anda (sobre um tapete), o corpo vai adquirindo carga eléctrica devido à fricção com o chão. Quando se coloca a mão na maçaneta da porta, vai existir um fluxo de cargas eléctricas entre a maçaneta e a mão, e sente-se um choque.

Como determinar a força de interacção entre partículas carregadas?

Charles Coulomb, utilizando uma balança de torsão determinou experimentalmente a intensidade da força eléctrica entre partículas carregadas.

E no caso de existirem várias cargas? Qual a força a que cada carga está sujeita?

Princípio da sobreposição

A força entre qualquer par de cargas é dada pela lei de Coulomb.

A força resultante sobre qualquer das cargas é igual à **soma vectorial** das forças devidas às cargas individuais.

$$\vec{F}_0 = \vec{F}_{10} + \vec{F}_{20} + \vec{F}_{30} = k \sum_{i=1}^{n} \frac{q_0 q_1}{r_{0i}^2} \hat{r}_{0i}$$

Cacilda Moura-DFUM Capítulo 1(1_4)

Considere três cargas pontuais localizadas nos vértices de um triângulo de lado a=0.10m. As cargas são $q_1=q_3=5.0\mu C$ e $q_2=-2.0\mu C$. Calcular a força resultante que actua na carga q_3 .

Cacilda Moura-DFUM Capítulo 1(1_4)

Richard Feynman

Ainda assim, tão perfeito é o balanço [entre cargas positivas e negativas no corpo humano] que mesmo que, se se colocar perto de alguém, não sentirá qualquer força. Se estivesse a um braço de distância de alguém e se ambos tivessem 1% de electrões a mais do que de protões, a força de repulsão seria incrível. Quão grande? Suficiente para levantar o Empire State Building?

Não!

Suficiente para levantar o Monte Everest?

Não!

A repulsão seria suficiente para levantar um "peso" equivalente à massa da Terra.

Cacilda Moura-DFUM Capítulo 1(1_4)

- Existem dois tipos de carga eléctrica: positiva e negativa
 Cargas de sinal contrário atraem-se
 Cargas do mesmo sinal repelem-se
- A carga é conservada
- A carga é quantizada
- A Lei de Coulomb descreve a força electrostática entre cargas eléctricas pontuais em repouso.
- O princípio da sobreposição permite determinar a força eléctrica resultante que actua numa carga devido um sistema de cargas pontuais.