Politechnika Częstochowska Katedra Inteligentnych Systemów Informatycznych

Programowanie Niskopoziomowe

Laboratorium 2

Wybrane instrukcje arytmetyki binarnej w języku Asembler

dr inż. Bartosz Kowalczyk

Częstochowa, 11 marca 2023

Spis treści

1	nstrukcje ADD oraz SUB	3
2	nstrukcje SHL oraz SHR	4
3	nstrukcje SAL oraz SAR	5
4	nstrukcje MUL oraz DIV	6
5	nstrukcje IMUL oraz IDIV	7

1 Instrukcje ADD oraz SUB

Korzystając z instrukcji ADD oraz SUB oblicz wartość podanych wyrażeń:

- 1. y = a + b + 2c
- 2. y = a (b + c)
- 3. y = (a+b) (c+d)
- 4. y = 4a + 2b c
- 5. y = 50 + a
- 6. y = -40 + a
- 7. y = (120 + a) (-90 + b)
- 8. y = 5 + 4a 3b
- 9. y = -7 + a 3b
- 10. y = 65536 + 2a

- 1. **Platforma x86.** Argumenty oraz wartość zwracana są typu 32-bit całkowitego ze znakiem (int).
- 2. **Platforma x64.** Argumenty oraz wartość zwracana są typu 64-bit całkowitego ze znakiem (__int64).
- 3. **Platforma x64.** Argumenty są typu 32-bit całkowitego ze znakiem (int). Wartość zwracana jest typu 64-bit całkowitego ze znakiem (__int64).

2 Instrukcje SHL oraz SHR

Korzystając z instrukcji SHL oraz SHR oblicz wartość podanych wyrażeń:

- 1. y = 32a + 16b
- 2. $y = \frac{a}{4} + \frac{b}{8}$
- $3. \ \ y = \frac{128a + 64b}{32}$
- 4. $y = \frac{1024a}{512}$
- 5. $y = 2^{16}a + 2^8b$
- 6. $y = 4^4a + 8^2b$
- 7. $y = \frac{16^4 a}{8^4}$
- 8. $y = \frac{8^8 a}{16^2}$
- 9. $y = \frac{2^5a}{2^2} + \frac{4^8b}{2^7}$
- 10. $y = \frac{16^2a + 8^4b}{4^8}$

- 1. **Platforma x86.** Argumenty oraz wartość zwracana są typu 32-bit całkowitego bez znaku (unsigned int).
- 2. **Platforma x64.** Argumenty oraz wartość zwracana są typu 64-bit całkowitego bez znaku (unsigned __int64).
- 3. **Platforma x64.** Argumenty są typu 32-bit całkowitego bez znaku (unsigned int). Wartość zwracana jest typu 64-bit całkowitego bez znaku (unsigned __int64).

3 Instrukcje SAL oraz SAR

Korzystając z instrukcji SAL oraz SAR oblicz wartość podanych wyrażeń:

- 1. y = 16a 32b
- 2. $y = \frac{a}{4} + \frac{b}{8}$
- $3. \ \ y = \frac{128a + 64b}{32}$
- 4. $y = \frac{1024a}{512}$
- 5. $y = 2^{16}a 2^8b$
- 6. $y = 4^4a + 8^2b$
- 7. $y = \frac{16^4 a}{8^4}$
- 8. $y = \frac{8^8 a}{16^2}$
- 9. $y = \frac{2^5 a}{2^2} \frac{4^8 b}{2^7}$

10.
$$y = \frac{16^2a - 8^4b}{4^8}$$

- 1. **Platforma x86.** Argumenty oraz wartość zwracana są typu 32-bit całkowitego ze znakiem (int).
- 2. **Platforma x64.** Argumenty oraz wartość zwracana są typu 64-bit całkowitego ze znakiem (__int64).
- 3. **Platforma x64.** Argumenty są typu 32-bit całkowitego ze znakiem (int). Wartość zwracana jest typu 64-bit całkowitego ze znakiem (__int64).

4 Instrukcje MUL oraz DIV

Korzystając z instrukcji MUL oraz DIV oblicz wartość podanych wyrażeń:

1.
$$y = 15ax + b$$

2.
$$y = 21a - 10b$$

3.
$$y = \frac{9a}{bx + 1}$$
, gdzie $bx + 1 \neq 0$

4.
$$y = \frac{13a + b}{10c - d}$$
, gdzie $10c - d \neq 0$

5.
$$y = a\%b$$

6.
$$y = 9a - b\%c$$
, gdzie $c \neq 0$

7.
$$y = (3a + b)\%(c - d)$$
, gdzie $c - d \neq 0$

8.
$$y = a + 15b\%4 - c$$

9.
$$y = \frac{128a - 64b}{32c + 16d}$$
, gdzie $32c + 16d \neq 0$

10.
$$y = \frac{256a + 10b}{64c - 20d}$$
, gdzie $64c - 20d \neq 0$

- 1. **Platforma x86.** Argumenty oraz wartość zwracana są typu 32-bit całkowitego bez znaku (unsigned int).
- 2. **Platforma x64.** Argumenty oraz wartość zwracana są typu 64-bit całkowitego bez znaku (unsigned __int64).
- 3. **Platforma x64.** Argumenty są typu 32-bit całkowitego bez znaku (unsigned int). Wartość zwracana jest typu 64-bit całkowitego bez znaku (unsigned __int64).

5 Instrukcje IMUL oraz IDIV

Korzystając z instrukcji IMUL oraz IDIV oblicz wartość podanych wyrażeń:

1.
$$y = 15ax + b$$

2.
$$y = 21a - 10b$$

3.
$$y = \frac{9a}{bx+1}$$
, gdzie $bx + 1 \neq 0$

4.
$$y = \frac{13a + b}{10c - d}$$
, gdzie $10c - d \neq 0$

5.
$$y = a\%b$$

6.
$$y = 9a - b\%c$$
, gdzie $c \neq 0$

7.
$$y = (3a + b)\%(c - d)$$
, gdzie $c - d \neq 0$

8.
$$y = a + 15b\%4 - c$$

9.
$$y = \frac{128a - 64b}{32c + 16d}$$
, gdzie $32c + 16d \neq 0$

10.
$$y = \frac{256a + 10b}{64c - 20d}$$
, gdzie $64c - 20d \neq 0$

- 1. **Platforma x86.** Argumenty oraz wartość zwracana są typu 32-bit całkowitego ze znakiem (int).
- 2. **Platforma x64.** Argumenty oraz wartość zwracana są typu 64-bit całkowitego ze znakiem (__int64).
- 3. **Platforma x64.** Argumenty są typu 32-bit całkowitego ze znakiem (int). Wartość zwracana jest typu 64-bit całkowitego ze znakiem (__int64).