ΣΥΝΑΡΤΗΣΕΙΣ ΒΙΒΛΙΟΘΗΚΗΣ

1

ΕΙΣΑΓΩΓΗ

- Στο κεφάλαιο αυτό, γίνεται κατηγοριοποίηση και πλήρης ανάλυση των συναρτήσεων βιβλιοθήκης, εκτός από εκείνες που αφορούν αρχεία.
- Τονίζεται ιδιαίτερα
 - αν κάποια συνάρτηση βιβλιοθήκης δεν εμφανίζεται σε κάποιο περιβάλλον (MS-Windows, Unix),
 - αν κάποια συνάρτηση διαφέρει συντακτικά από το ένα περιβάλλον στο άλλο (σπάνια).

ΠΑΡΕΧΟΜΕΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

- Οι συναρτήσεις/κλήσεις C++ που υπάρχουν στη βιβλιοθήκη της, ονομάζονται συχνά παρεχόμενες συναρτήσεις (reserved functions). Ομαδοποιούνται ως ακολούθως:
 - ♦ Διαχείρισης buffer (buffer manipulation)
 - ♦ Διαχείρισης χαρακτήρα (character classification)
 - ♦ Διαχείρισης δεδομένων (data conversion)
 - ♦ Διαχείρισης αρχείων (files and input/output)
 - ♦ Μαθηματικές συναρτήσεις (math-functions)
 - ♦ Διαχείριση μνήμης (memory control/ allocation)
 - ♦ Ελέγχου διαδικασίας (process control)
 - ♦ Διάταξης και έρευνας (sorting and searching)
 - ♦ Διαχείρισης string (string manipulation)

 - ♦ Διαχείρισης λίστας παραμέτρων (functions of arguments lists)
 - ♦ Άλλες συναρτήσεις (miscellaneous)

_

ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΧΕΙΡΙΣΗΣ ΧΑΡΑΚΤΗΡΑ 1/5

- Οι συναρτήσεις διαχείρισης ή προσδιορισμού χαρακτήρα (character classification) ελέγχουν αν ένας χαρακτήρας (1 byte) ανήκει στη μια ή στην άλλη κατηγορία Αλφάβητου ASCII. (π.χ. αν είναι μικρό γράμμα, αν είναι ψηφίο, κλπ.)
- ❖ Ορισμένες από αυτές τις συναρτήσεις είναι και **macros** και μετατρέπουν «μικρούς» σε «μεγάλους» χαρακτήρες και αντίστροφα.
- ❖ Στη συνέχεια δίνονται οι σημαντικότερες από αυτές τις κλάσεις.

ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΧΕΙΡΙΣΗΣ ΧΑΡΑΚΤΗΡΑ 2/5

❖ Συνάρτηση isalnum

- ♦ Επιστρέφει μηδέν αν ο χαρακτήρας δεν είναι ούτε γράμμα, ούτε ψηφίο (αλφαριθμητικός) δηλαδή από 'A'-'Z' ή 'a'-'z' ή '0'-'9'.
- ♦ Συντακτικός τύπος:

ret=isalnum(chr);

όπου αν **chr** είναι αλφαριθμητικός (ASCII) τότε το **ret** έχει μη μηδενική τιμή (τύπου int)

- Η ενσωμάτωση του σταθερού αρχείου <ctype.h> είναι αναγκαία, ενώ υπάρχει και σαν macro σε κάθε περιβάλλον.
- ♦ Προσοχή, θεωρείται αναγκαίο το αλφάβητο ASCII.

5

ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΧΕΙΡΙΣΗΣ ΧΑΡΑΚΤΗΡΑ 3/5

❖ Συνάρτηση isalpha

- ♦ Ελέγχει αν ένας χαρακτήρας είναι μικρό ή και κεφαλαίο λατινικό γράμμα.
- ♦ Τα υπόλοιπα ισχύουν όπως στη συνάρτηση isalnum.

❖ Συνάρτηση isascii

- ♦ Είναι η οδηγός (pilot) συνάρτηση όλης της κατηγορίας **isy**.
- ♦ Ελέγχει αν ο χαρακτήρας είναι ASCII ή όχι (π.χ. το EOF δεν είναι ASCII).
- ♦ Όλες οι συναρτήσεις της κατηγορίας αυτής λειτουργούν με χαρακτήρες ASCII ή με τον EOF (οριζόμενο στο <stdio.h>).
- ♦ Τα υπόλοιπα ισχύουν όπως στη συνάρτηση isalnum.

❖ Συνάρτηση iscntrl

- Ελέγχει αν ο χαρακτήρας είναι ειδικός χαρακτήρας ελέγχου (control character), δηλ. αν είναι 0x00-0x1f ή 0x7f.
- ♦ Τα υπόλοιπα ισχύουν όπως στις άλλες συναρτήσεις της ίδιας κατηγορίας.

ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΧΕΙΡΙΣΗΣ ΧΑΡΑΚΤΗΡΑ 4/5

❖ Συνάρτηση isdigit

- ♦ Ελέγχει αν ο χαρακτήρας είναι ψηφίο ('0'–'9').
- ♦ Τα υπόλοιπα ισχύουν όπως στις άλλες συναρτήσεις της κατηγορίας isy.

❖ Συνάρτηση isgraph

- Ελέγχει αν ο χαρακτήρας είναι εκτυπούμενος εκτός του χαρακτήρα space (0x21-0x7e).
- ♦ Τα υπόλοιπα ισχύουν όπως στη συνάρτηση isalnum.

❖ Συνάρτηση islower

- ♦ Ελέγχει αν ο χαρακτήρας είναι μικρό λατινικό γράμμα ('a'-'z').
- ♦ Τα υπόλοιπα ισχύουν όπως στις άλλες συναρτήσεις της κατηγορίας αυτής.

❖ Συνάρτηση isprint

- ♦ Ελέγχει αν ο χαρακτήρας είναι εκτυπούμενος (0x20-0x7e).
- ♦ Τα υπόλοιπα ισχύουν όπως στις άλλες συναρτήσεις της κατηγορίας αυτής.

7

ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΧΕΙΡΙΣΗΣ ΧΑΡΑΚΤΗΡΑ 5/5

❖ Συνάρτηση isspace

- ♦ Ελέγχει για λευκούς χαρακτήρες (whitespace characters): 0x09-0x0d ή 0x20.
- ♦ Τα υπόλοιπα ισχύουν όπως στις άλλες συναρτήσεις της κατηγορίας αυτής.

❖ Συνάρτηση ispunct

- Ελέγχει αν ο χαρακτήρας είναι σημείο στίξης (punctuation character), δηλ. δεν είναι χαρακτήρας αλφαριθμητικός ή ελέγχου ή λευκός.
- ♦ Τα υπόλοιπα ισχύουν όπως στις άλλες συναρτήσεις της κατηγορίας αυτής.

❖ Συνάρτηση isupper

- ♦ Ελέγχει αν ο χαρακτήρας είναι κεφαλαίο λατινικό γράμμα ('A'–'Z').
- ♦ Τα υπόλοιπα ισχύουν όπως στις άλλες συναρτήσεις της κατηγορίας αυτής.

❖ Συνάρτηση isxdigit

- ♦ Ελέγχει για δεκαδεξαδικό ψηφίο, δηλ. από 'A'-'F' ή 'a'-'f' ή '0'-'9'.
- ♦ Τα υπόλοιπα ισχύουν όπως στις άλλες συναρτήσεις της κατηγορίας αυτής.

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 1/18

- Οι συναρτήσει μετατροπής δεδομένων (data conversion) μετατρέπουν string σε αριθμητική τιμή (int, long, float, κλπ.) και αντίστροφα.
- ❖ Προϋποθέτουν την ενσωμάτωση του σταθερού αρχείου <stdlib.h>.
- Περιλαμβάνουν και ειδικές κλήσεις πολυ-χαρακτήρων σε άλλους ειδικούς χαρακτήρες, αλλά και από μικρά σε κεφαλαία και αντίστροφα.

q

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 2/18

- ❖ Συνάρτηση atof
 - ♦ Μετατρέπει string σε πραγματικό διπλής ακρίβειας (double).
 - ♦ Συντακτικός τύπος:

ret=atof(string);

όπου string (τύπου char*) μετατρέπεται στην τιμή ret (τύπου double).

- ♦ Σε περίπτωση λάθους η επιστρεφόμενη τιμή είναι μηδέν.
- ♦ Σε περίπτωση υπερχείλισης (overflow) η τιμή ret είναι απροσδιόριστη.
- Το string μπορεί να περιέχει τιμή σε εκθετική μορφή (με d ή D ή e ή E), λευκούς χαρακτήρες πριν ή μετά την τιμή, την τελεία και ένα τουλάχιστον στοιχείο πριν ή μετά από αυτή.
- ♦ Τα πρόσημα + ή έχουν νόημα πριν την τιμή ή μετά τον εκθετικό χαρακτήρα.
- ♦ Προσοχή, η τελική τιμή μπορεί να έχει στρογγυλοποιηθεί, ιδιαίτερα σε εκθετικές μορφές.

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 3/18

❖ Συνάρτηση **atof** (συνέχεια)

```
♦ Παράδειγμα: έστω οι εντολές
```

τότε ανάλογα με το περιβάλλον και το υλικό, η έξοδος θα είναι:

```
x1=13.13 x2=-7.891265e+210
```

Η συνάρτηση atof υπάρχει, εκτός του <stdlib.h> και στο σταθερό αρχείο <math.h>.

11

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 4/18

❖ Συνάρτηση atoi

- ♦ Μετατρέπει string σε ακέραιο (τύπου int).
- ♦ Συντακτικός τύπος:

ret=atoi(string);

όπου η τιμή string μετατρέπεται στην τιμή ret (τύπου int).

- Σε περίπτωση λάθους η τιμή ret είναι μηδέν (εκτός και αν το string αντιστοιχούσε στο μηδέν).
- ♦ Σε περίπτωση υπερχείλισης (overflow) η τιμή ret είναι απροσδιόριστη.
- Το string μπορεί να περιέχει λευκούς χαρακτήρες πρόσημο και οπωσδήποτε ένα τουλάχιστον ψηφίο.

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 5/18

❖ Συνάρτηση **atoi** (συνέχεια)

13

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 6/18

- ❖ Συνάρτηση atol
 - ♦ Μετατρέπει string σε ακέραιο τύπου long.
 - ♦ Συντακτικός τύπος:

ret=atol(string);

όπου string μετατρέπεται στην τιμή ret (τύπου long).

- ♦ Σε περίπτωση λάθους το ret είναι 0.
- ♦ Σε περίπτωση υπερχείλισης (overflow) η τιμή ret είναι απροσδιόριστη.
- ♦ Τα υπόλοιπα ισχύουν όπως στη συνάρτηση atoi.
- ♦ Παράδειγμα: έστω οι εντολές

```
.......

char *str="100121";

printf("%ld", atol(str));

......

τότε στην οθόνη θα εμφανισθεί η τιμή: 100121
```

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 7/18

❖ Συνάρτηση ecvt

- ♦ Μετατρέπει μια πραγματική δεκαδική τιμή σε string, το οποίο τελειώνει με τον κενό χαρακτήρα '\0'.
- ♦ Συντακτικός τύπος:

```
ret=ecvt(value, digits, &intpart, &sign);
```

όπου η τιμή value (τύπου double) μετατρέπεται σε string.

- Παίρνοντας digits (τύπου int) το πολύ ψηφία από το value και η υποδιαστολή υπάρχει μετά το intpart (τύπου int) ψηφίο.
- ♦ Εάν το sign (τύπου int) είναι μηδέν, η τιμή value είναι θετική, αλλιώς αρνητική.
- ♦ Το **ret** είναι τύπου char*, δηλ. string, όπου καταχωρείται σαν συμβολοσειρά η τιμή **value**.
- Αν ισχύει digits μεγαλύτερο του πλήθους ψηφίων του value, τότε το string γεμίζει από δεξιά με μηδενικά.
 Προσοχή, σε αντίθετη περίπτωση γίνεται στρογγυλοποίηση του τελευταίου ψηφίου μέσα στο string.

15

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 8/18

- ❖ Συνάρτηση ecvt (συνέχεια)
 - ♦ Σε περίπτωση χρήσης συναρτήσεων, η συνάρτηση ecvt απαιτεί τη ενσωμάτωση του σταθερού αρχείου <stdlib.h>.

```
char *ret;
int digits, intpart, sign;
digits=7;
ret=ecvt(1234.5678, digits, &intpart, &sign);
........
TÓTE
```

- ◆μέσα στο string ret υπάρχει «1234568»
- ◆το intpart ισούται με 4 (δηλ. το ακέραιο μέρος σταματά στα 4 πρώτα ψηφία)
- ◆το sign είναι μηδέν (η τιμή είναι θετική)

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 9/18

❖ Συνάρτηση ecvt (συνέχεια)

- ♦ Δεν προσφέρει έτοιμη τη μετατροπή πραγματικής τιμής σε string.
- Ο χρήστης πρέπει αλγοριθμικά να σχηματίσει ένα δεύτερο string που να περιλαμβάνει και την τελεία (decimal point) και το αρνητικό πρόσημα, αν υπάρχει.
- Προσοχή, στις περιπτώσεις που η τελεία των δεκαδικών είναι αριστερά των ψηφίων, δηλ. όταν το ακέραιο μέρος της τιμής είναι μηδέν, η συνάρτηση ecvt είναι ακόμη πιο πολύπλοκη.
 - Τότε η τιμή του intpart είναι μηδέν ή αρνητική.
- Με τις συναρτήσεις sprintf και sscanf η μετατροπή της τιμής σε συμβολοσειρά γίνεται με αυτόματο τρόπο.
 - ♦Βλ. Κεφάλαιο 5.

17

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 10/18

❖ Συνάρτηση fcvt

- Μετατρέπει μια πραγματική τιμή σε string, το οποίο τελειώνει με τον κενό χαρακτήρα '\0'.
- ♦ Συντακτικός τύπος:

ret=fcvt(value, nafter, &intpart, &sign);

όπου τα πάντα ισχύουν όπως στη συνάρτηση **ecvt** με τη μόνη διαφορά ότι το **nafter** (τύπου int) δηλώνει το μέγιστο επιθυμητό πλήθος ψηφίων μετά την υποδιαστολή.

♦ Σε περίπτωση χρήσης συναρτήσεων, απαιτείται τη ενσωμάτωση του σταθερού αρχείου <stdlib.h>.

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 11/18

- ❖ Συνάρτηση fcvt (συνέχεια)
 - ♦ Παράδειγμα: έστω οι εντολές

```
char *ret;
int nafter, intpart, sign;
nafter=9;
ret=fcvt(123.123456789, nafter, &intpart, &sign);
.......
```

зтот

- ♦μέσα στο string ret υπάρχει «123123456789»
- ◆το intpart ισούται με 3 (δηλ. η τελεία των δεκαδικών (υποδιαστολή) υπάρχει μετά τον τρίτο χαρακτήρα)
- ◆το sign είναι μηδέν
- ♦η τιμή είναι θετική

19

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 12/18

- ❖ Συνάρτηση gcvt
 - Μετατρέπει μια πραγματική τιμή σε string, το οποίο τελειώνει με τον κενό χαρακτήρα '\0'.
 - Η gcvt σε αντίθεση με τις συναρτήσεις ecvt και fcvt δίνει το τελικό string σε πλήρη-τελική μορφή.
 - ♦ Συντακτικός τύπος:

ret=gcvt(value, digits, buf);

όπου

- ♦η τιμή value (τύπου double) μετατρέπεται σε τελική μορφή στο string που καταχωρείται στο buffer buf
- ◆το μέγιστο πλήθος ψηφίων που καταχωρείται ισούται με την τιμή του digits (τύπου int)
- Η καταχώρηση γίνεται στο FORTRAN format: xxx...x.yyy...y και αν αυτή δεν είναι δυνατή, ακολουθείται το FORTRAN E format, δηλ. η εκθετική μορφή καταχώρησης.

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 13/18

- ❖ Συνάρτηση gcvt (συνέχεια)
 - Το ret είναι δείκτης (τύπου char) που δείχνει στο παραγόμενο string. Στην πράξη όμως δεν χρησιμοποιείται.
 - ♦ Σε περίπτωση χρήσης συναρτήσεων, απαιτείται τη ενσωμάτωση του σταθερού αρχείου <stdlib.h>.
 - ♦ Παράδειγμα: έστω οι εντολές

```
char buf[40];
int digits=8;
gcvt(-1.12345e4, digits, buf);
.......
```

τότε το buf έχει το περιεχόμενο «-11234.5», δηλ. αν και η τιμή ήταν σε εκθετική μορφή η μετατροπή έγινε κανονικά σε F-δεκαδική μορφή.

21

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 14/18

- ❖ Συναρτήσεις strtod και strtol
 - Μετατρέπουν ένα string σε πραγματικό αριθμό διπλής ακρίβειας ή σε ακέραιο τύπου long αντίστοιχα.

dvalue=strtod(str, &until);

όπου

- ◆το περιεχόμενο του string **str** μετατρέπεται στον αριθμό dvalue (τύπου double)
- ◆το string **until** (τύπου char*) δείχνει το υπόλοιπο του **str** που δεν έλαβε μέρος στο μετασχηματισμό.
- ◆το until μπορεί να αρχίζει με ένα οποιονδήποτε χαρακτήρα που δεν έχει θέση και νόημα σε πραγματική τιμή (πχ. με τον κενό χαρακτήρα '\0', ένα γράμμα, κλπ.)

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 15/18

- ❖ Συναρτήσεις strtod και strtol (συνέχεια)
 - ♦ Συντακτικός τύπος της strtol:

Ivalue=strtol(str, &until, base);

όπου

- ◆το Ivalue που προκύπτει είναι τύπου long
- ◆η μετατροπή σταματά αν διαβαστεί χαρακτήρας-ψηφίο μεγαλύτερο από το base (τύπου int)
- ♦η τιμή Ivalue είναι εκφρασμένη με βάση αρίθμησης την τιμή του base:
 - αν το base είναι από 2 έως 36 τότε χρησιμοποιείται ως βάση αρίθμησης,
 - αν το base είναι μηδέν, ο πρώτος χαρακτήρας του string str είναι μηδέν και ο δεύτερος 1 έως 7, τότε το Ivalue προκύπτει με βάση το 8-δικό σύστημα,
 - αν το base είναι μηδέν, ο πρώτος χαρακτήρας του string str είναι μηδέν και ο δεύτερος 'x' ή 'X' τότε το Ivalue προκύπτει με βάση το 16-δικό σύστημα,
 - αν το base είναι μηδέν, ο πρώτος χαρακτήρας του string str είναι από 1 έως 9 τότε το Ivalue προκύπτει κανονικά με βάση το 10-δικό σύστημα.

23

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 16/18

- ❖ Συναρτήσεις strtod και strtol (συνέχεια)
 - Οι δύο συναρτήσεις αναμένουν str με περιεχόμενο σε F-μορφή ή σε ακέραια μορφή (δεκαδική ή οκταδική ή δεκαεξαδική).
 - ♦ Και οι δύο απαιτούν την ενσωμάτωση του σταθερού αρχείου <stdlib.h>.

```
char *str,*until,*stralso,*until1,*until2;
double dvalue;
long lvalue, lval2;
int base=0;
str="1234.56789STOP";
stralso="10110134";
dvalue=strtod(str, &until);
lvalue=strtol(stralso, &until1, base);
lval2=strtol(stralso, &until2, 2);
```

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 17/18

- ❖ Συναρτήσεις strtod και strtol (συνέχεια)
 - ♦ Παράδειγμα (συνέχεια):

TÓT

- ◆το dvalue θα ισούται με 1234.56789
- ◆το string until θα έχει την τιμή STOP
- ◆το Ivalue θα έχει την τιμή 10110134
- ◆το string until1 θα είναι κενό
- ◆το Ival2 θα έχει την τιμή 45
- ◆το until2 θα έχει την τιμή 34
- ♦ Σε περίπτωση λάθους και οι δύο συναρτήσεις θέτουν το errno ίσο με τη συμβολική τιμή ERANGE.

25

ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΤΑΤΡΟΠΗΣ ΔΕΔΟΜΕΝΩΝ 18/18

- ❖ Συνάρτηση (Macro) tolower
 - Μετατρέπει έναν κεφαλαίο χαρακτήρα σε μικρό χαρακτήρα, διαφορετικά ο χαρακτήρας μένει αμετάβλητος.
 - Αν γνωρίζουμε ότι ο χαρακτήρας είναι ήδη κεφαλαίος, τότε μπορεί να χρησιμοποιηθεί ισοδύναμα και η Macro _tolower.
 - Προσοχή, αν ο χαρακτήρας δεν είναι κεφαλαίος, τότε το αποτέλεσμα της συνάρτησης μένει απροσδιόριστο.
- Συνάρτηση (Macro) toupper
 - ♦ Προκαλεί ακριβώς τα αντίθετα από την tolower.
 - Αν γνωρίζουμε ότι ο χαρακτήρας είναι ήδη μικρός μπορεί να χρησιμοποιηθεί η Macro _toupper.

ΣΥΝΑΡΤΗΣΕΙΣ ΕΛΕΓΧΟΥ ΚΑΤΑΛΟΓΟΥ 1/5

- Οι συναρτήσεις ελέγχου καταλόγου (directory control) αφορούν το status του παρόντος καταλόγου εργασίας, την αλλαγή του ή την δημιουργία/ διαγραφή του.
- Απαιτούν την ενσωμάτωση του σταθερού αρχείου <direct.h> σε DOS/LAN περιβάλλον ή κάποιου άλλου αντίστοιχου αρχείου σε περιβάλλον UNIX (ή και καμία ενσωμάτωση).
- Ορισμένες από αυτές υπάρχουν μόνο σε επίπεδο MS-Visual C++ και μάλιστα σαν macros.
- ❖ Στη συνέχεια αναλύονται οι σημαντικότερες από αυτές.

27

ΣΥΝΑΡΤΗΣΕΙΣ ΕΛΕΓΧΟΥ ΚΑΤΑΛΟΓΟΥ 2/5

- ❖ Συνάρτηση chdir
 - ♦ Τη συναντάμε σε κάθε περιβάλλον
 - ♦ Αλλάζει τον τρέχοντα κατάλογο εργασίας σε κάποιον άλλο
 - ♦ Έχει αναλυθεί πλήρως στο κεφ. 5
 - ♦ Υπάρχει σαν **_chdir** σε MS-Visual C++

ΣΥΝΑΡΤΗΣΕΙΣ ΕΛΕΓΧΟΥ ΚΑΤΑΛΟΓΟΥ 3/5

❖ Συνάρτηση getcwd

- ♦ Τη συναντάμε σε κάθε περιβάλλον
- ♦ Δείχνει το πλήρες όνομα του παρόντος καταλόγου εργασίας
- ♦ Συντακτικός τύπος:

ret=getcwd(buf, nbytes);

όπου

- ◆το όνομα του παρόντος καταλόγου αποθηκεύεται στο string **buf** (το οποίο συνιστάται να είναι μήτρα χαρακτήρων)
- ◆το ret είναι string και ταυτίζεται με το **buf**, εκτός αν έχει σημειωθεί λάθος, οπότε έχει την τιμή NULL
- ◆το μέγιστο πλήθος των bytes που αποθηκεύονται στο **buf** δίνονται από την τιμή **nbytes** (τύπου int)

20

ΣΥΝΑΡΤΗΣΕΙΣ ΕΛΕΓΧΟΥ ΚΑΤΑΛΟΓΟΥ 4/5

- ❖ Συνάρτηση getcwd (συνέχεια)
 - ♦ Παράδειγμα: έστω οι εντολές

```
char buf[41];
char *pointd;
pointd=getcwd(buf, 40);
.......
```

зтот

- ◆Το πλήρες όνομα του παρόντος καταλόγου εργασίας θα υπάρχει στο string **pointd** το οποίο θα έχει το πολύ 40 bytes.
- ◆Σε περίπτωση λάθους τίθεται μια από τις ακόλουθες συμβολικές τιμές στο **errno**:
 - ΕΝΟΜΕΜ : δεν υπάρχει διαθέσιμη μνήμη
 - ERANGE : το όνομα του καταλόγου είναι μεγαλύτερο από **nbytes** bytes.

ΣΥΝΑΡΤΗΣΕΙΣ ΕΛΕΓΧΟΥ ΚΑΤΑΛΟΓΟΥ 5/5

- ❖ Συναρτήσεις mkdir και rmdir
 - ♦ Υπάρχουν αποκλειστικά σε περιβάλλον Microsoft.
 - Χρησιμοποιούνται για τη δημιουργία νέου καταλόγου ή για τη διαγραφή υπάρχοντος καταλόγου αντίστοιχα.

31

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1/14

- ❖ Η C++ διαθέτει μια ικανοποιητική ποικιλία μαθηματικών τύπων, και θεωρείται σχεδόν ισοδύναμη με την κλασσική FORTRAN.
- Πολλές από τις μαθηματικές συναρτήσεις απαιτούν τον εφοδιασμό του κώδικα με βοηθητικό σε floating point στη διάρκεια του compilation.
- ❖ Όλες οι μαθηματικές συναρτήσεις απαιτούν την ενσωμάτωση του σταθερού αρχείου <math.h>.

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 2/14

❖ Συνάρτηση acos

- ♦ Επιστρέφει το τόξο συνημιτόνου ενός πραγματικού τύπου double
- ♦ Συντακτικός τύπος:

y=acos(x);

όπου

- ◆y τύπου double παίρνει τιμές στο διάστημα από μηδέν έως και π
- ★x μεταξύ των τιμών -1 και 1
- ◆σε περίπτωση λάθους τίθεται το **errno** ίσο με τη συμβολική τιμή **EDOM**, τυπώνεται **DOMAIN** error στο stderr και επιστρέφεται η τιμή μηδέν
- ◆τα **x** και **y** μπορούν να είναι απλοί τύποι float αντί για double

33

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 3/14

❖ Συνάρτηση acos (συνέχεια)

 Παράδειγμα: έστω η εντολή y=acos(-1.0);
 τότε το γ ισούται με 3,141593.

Αν δοθεί όμως η εντολή y=acos(5);

τότε το errno θα τεθεί ίσο με EDOM και θα τυπωθεί στο stderr (πχ. οθόνη):

acos:DOMAIN error

Στην περίπτωση αυτή το y θα ισούται με μηδέν και το errno θα πρέπει να τεθεί ίσο με μηδέν στη συνέχεια της διαδικασίας

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4/14

❖ Συνάρτηση asin

- ♦ Επιστρέφει το τόξο ημιτόνου ενός πραγματικού τύπου double
- ♦ Συντακτικός τύπος:

y=asin(x);

όπου

- ◆y τύπου double στο διάστημα –π/2 έως π/2
- ◆x μεταξύ των τιμών -1 και 1
- ◆τα υπόλοιπα ισχύουν όπως στη συνάρτηση **acos**.

35

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 5/14

❖ Συνάρτηση atan

- ♦ Επιστρέφει το τόξο εφαπτομένης χ
- ♦ Συντακτικός τύπος:

y=atan(x);

όπου

- ♦ y στο διάστημα −π/2 έως π/2
- ♦x τύπου double
- ◆τα υπόλοιπα ισχύουν όπως στη συνάρτηση acos.

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 6/14

❖ Συναρτήσεις cos και cosh

- Επιστρέφουν το συνημίτονο και το υπερβολικό συνημίτονο κάποιας τιμής τύπου double, αντίστοιχα
- ♦ Συντακτικοί τύποι:

y=cos(x); y=cosh(x);

όπου

- ♦y τύπου double
- ◆εάν το **x** είναι μεγάλο μπορεί να χαθεί ένα μέρος ακρίβειας
 - Στην περίπτωση της συνάρτησης cos αν χαθεί λίγη ακρίβεια δημιουργείται ένα PLOSS error και το errno τίθεται ίσο με ERANGE.
 Αν χαθεί αρκετή ακρίβεια τυπώνεται στο stderr ένα TLOSS error.
 - Στην περίπτωση της συνάρτησης cosh αν το y είναι πολύ μεγάλο, επιστρέφεται η τιμή HUGE και το errno τίθεται ίσο με ERANGE.

37

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 7/14

Συνάρτηση exp

- ♦ Επιστρέφει την τιμή e^x ενός αριθμού x τύπου double
- ♦ Συντακτικός τύπος:

y=exp(x);

όπου

- ♦y τύπου double
- ◆Στην περίπτωση overflow του y επιστρέφεται η τιμή HUGE και το errno τίθεται ίσο με ERANGE.
- ◆Σε περίπτωση underflow του y επιστρέφεται απλά η τιμή μηδέν.

❖ Συνάρτηση fabs

- ♦ Επιστρέφει την απόλυτη τιμή του x τύπου double
- ♦ Συντακτικός τύπος:

y=fabs(x);

όπου y επίσης τύπου double

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 8/14

- ❖ Συναρτήσεις log και log10
 - Υπολογίζουν φυσικό και δεκαδικό λογάριθμο, αντίστοιχα, μιας δεδομένης τιμής την τιμή e^x ενός αριθμού x τύπου double
 - ♦ Συντακτικοί τύποι:

```
z=log(x);
z10=log10(x);
```

όπου

- ◆z, z10 και x τύπου double
- ♦Σε περίπτωση λάθους,
 - αν το x είναι αρνητικό, οι συναρτήσείς τυπώνουν στο stderr ένα DOMAIN error και επιστρέφουν το αρνητικό HUGE
 - αν το x είναι μηδέν, τυπώνουν ένα **SIGN** error

σε κάθε περίπτωση το errno τίθεται ίσο με **EDOM**.

39

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 9/14

- ❖ Συναρτήσεις log και log10 (συνέχεια)
 - ♦ Παράδειγμα: έστω οι εντολές

```
double y1,y2,x=1000.0;
y1=log(x);
y2=log10(x);
```

τότε το y1 είναι 6.907755 και το y2, 3.0

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 10/14

❖ Συνάρτηση modf

- ♦ Διαχωρίζει μια δεκαδική τιμή σε δύο άλλες, όπου η πρώτη έχει μόνο το δεκαδικό μέρος και η δεύτερη μόνο το ακέραιο
- ♦ Συντακτικός τύπος:

z=modf(x,&n);

όπου

- ◆x, z, n τύπου double
- ♦Ζ το δεκαδικό μέρος του χ
- ♦n το ακέραιο μέρος του χ
- ◆τα **z** και η έχουν το ίδιο πρόσημο με το x
- ♦ Παράδειγμα: έστω οι εντολές

```
double z,x,n;
x=-3123.1234;
z=modf(x,&n);
```

τότε το z είναι -0.1234 και το n είναι -3123.0

41

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 11/14

❖ Συνάρτηση pow

- ♦ Επιστρέφει την τιμή x^y
- ♦ Συντακτικός τύπος:

z=pow(x,y);

όπου

- ♦x, y, z τύπου double
- **♦z** η επιστρεφόμενη τιμή x^y
- ♦Αν το x είναι μηδέν και y αρνητικό τίθεται errno ίσο με ERANGE και επιστρέφεται η τιμή HUGE
- ◆Αν το x είναι αρνητικό και το y μη ακέραιο τυπώνεται **DOMAIN** error στο stderr, τίθεται **errno** ίσο με **EDOM** και επιστρέφεται η τιμή μηδέν
- ◆Σε περίπτωση overflow τίθεται το **errno** ίσο με **ERANGE** και επιστρέφεται η τιμή (+ ή -) **HUGE**

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 12/14

❖ Συνάρτηση **pow** (συνέχεια)

```
    ♦ Παράδειγμα: έστω οι εντολές double x,y,z;
    x=2.0;
    y=2.0;
    z=pow(x,y);
    τότε το z ισούται με 4.0
```

❖ Συναρτήσεις sin και sinh

- Επιστρέφουν το ημίτονο και το υπερβολικό ημίτονο κάποιας τιμής τύπου double, αντίστοιχα
- ♦ Συντακτικοί τύποι:

```
y1=sin(x);
y2=sinh(x);
```

όπου y1, y2, x τύπου double

43

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 13/14

❖ Συνάρτηση sqrt

- ♦ Υπολογίχει την τετραγωνική ρίζα δεδομένης τιμής τύπου double
- ♦ Συντακτικός τύπος:

z=sqrt(x);

όπου

- ◆z τύπου double και ίσο με την τετραγωνική ρίζα του x
- ◆Αν το x είναι αρνητικό τότε δημιουργείται **DOMAIN** error στο stderr, τίθεται **errno** ίσο με **EDOM** και επιστρέφεται η τιμή μηδέν
- ♦ Παράδειγμα: έστω οι εντολές

```
double z,x;
x=25.0;
z=sqrt(x);
τότε το z ισούται με 5.0
```

ΜΑΘΗΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 14/14

❖ Συναρτήσεις tan και tanh

- Υπολογίζουν την εφαπτομένη και την υπερβολική εφαπτομένη κάποιας τιμής τύπου double, αντίστοιχα
- ♦ Συντακτικοί τύποι:

z1=tan(x); z2=tanh(x);

όπου z**1**, **z2**, **x** τύπου double