#Authors: Achanta Sai Krishna, Kuralanbu, Vimal Dharshan

#Objective: To find the optimal k value

#Input: Dataset

#Output: Accuracy and Confusion Matrix
import pandas as pd #data analysis toolkit

import matplotlib.pyplot as plt #for plotting graphs

import numpy as np #high level computations

%matplotlib inline

from sklearn.preprocessing import StandardScaler #standardization of values

from sklearn.preprocessing import MinMaxScaler #normalization of values

from sklearn.model_selection import train_test_split #to split data

from sklearn.neighbors import KNeighborsClassifier #KNN classifier

from sklearn.metrics import confusion_matrix,accuracy_score #to get confusion matrix and a from sklearn.model_selection import cross_val_score #to perform evaluation and cross-valid

data_set = pd.read_csv("/content/framingham (1).csv") #dataset_input

data_set=data_set.fillna(data_set.mean()) #mean for missing data

data_set = np.round(data_set, decimals=2) #rounding all values in dataset to 2 decimal pla
data_set.head() #first 5 values in dataset

•		Sex	age	Chest Pain Type	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
	0	1	39	4	0	0	0	0	0
	1	0	46	2	0	0	0	0	0
C.	avad a	110000	ofullyl		1	20	0	0	0
36	aveu s	ucces	Stully!	_	1	30	0	0	1

data set.tail() #It prints the last 5 values in dataset

	Sex	age	Chest Pain Type	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalent
4235	0	48	2	1	20	0	0	
4236	0	44	1	1	15	0	0	
4237	0	52	2	0	0	0	0	
4238	1	40	3	0	0	0	0	

no of rows and columns in the data set
data_set.shape

(4240, 16)

#checking for missing values
data_set.isnull().sum #False means no missing data

	<pre><bound method="" ndframeadd_numeric_operations.<locals="">.sum of</bound></pre>								Sex	age
	hest Pain Type currentSmoker cigsPerDay BPMeds \									
0				False	False			Fals		
1	1 False False 2 False False 3 False False			False		alse		Fals		
				False	False		False	False		
3				False	F	alse	False	Fals	e	
	False			False		alse		Fals		
	 4235 False False			 False			False Fals			
	False			False		alse		Fals		
	False			False		alse		Fals		
4238	False			False		alse		Fals		
4239	False	False		False	F	alse	False	Fals	е	
	preval	entStrok	e pr	evalentHyp	diabetes	totChol	sysBP	diaBP	BMI	\
0		Fals	е	False	False	False	False	False	False	
1		Fals	e	False		False				
2		Fals		False		False				
3		Fals		False		False			False	
4		Fals		False		False				
• • •			•	• • •	• • •					
4235		Fals	е	False	False	False	False	False	False	
4236		Fals	е	False	False	False	False	False	False	
4237		Fals	е	False	False	False	False	False	False	
4238		Fals	е	False	False	False	False	False	False	
4239		Fals	Δ	False	False	False	False	False	False	
Saved suc	cessfully	!		× t						
Ø	Га	ıse r	атре	гатхе						
1	Fa	lse F	alse	False						
2			alse							
3			alse							
4				False						
				• • •						
4235			alse	False						
4236			alse	False						
4237			alse	False						
4238			alse	False						
4239			alse	False						

[4240 rows x 16 columns]>

#Statistical measure about the dataset
data_set.describe()

	Sex	age	Chest Pain Type	currentSmoker	cigsPerDay	BPMeds
count	4240.000000	4240.000000	4240.000000	4240.000000	4240.000000	4240.000000
mean	0.429245	49.580189	1.930425	0.494104	8.944340	0.029245
std	0.495027	8.572942	1.053026	0.500024	11.904777	0.168513
min	0.000000	32.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	42.000000	1.000000	0.000000	0.000000	0.000000
50%	0.000000	49.000000	2.000000	0.000000	0.000000	0.000000
75%	1.000000	56.000000	3.000000	1.000000	20.000000	0.000000
max	1.000000	70.000000	4.000000	1.000000	70.000000	1.000000

#counting the no of people's having Heart Disease ('1') and not having Heart Disease
data_set['target'].value_counts()

0 3596

1 644 Name: target, dtype: int64

dset_modified = data_set.drop('target',axis=1) #dataset without class feature

data_set_feat = pd.DataFrame(dset_modified,columns=data_set.columns[:-1]) #dataset without

data_set_feat = np.round(data_set_feat, decimals=2) #rounding all values to 2 decimal plac

#Computation of accuracy rates for various neighbor values
Accurate_rates = []

for i in range(1,40):

k_nearest_neighbour = KNeighborsClassifier(n_neighbors=i)
final_score=cross_val_score(k_nearest_neighbour,data_set_feat,data_set['target'], cv=5)
Accurate_rates.append(final_score.mean())

#plot
plt.figure(figsize=(10,6))

plt.plot(range(1,40),Accurate_rates,color='blue',linestyle='dashed',marker='o',markerfacec
plt.title('Accuracy Rate vs. K Value')
plt.xlabel('K')

pre-xraber(k)

plt.ylabel('Accuracy Rate')

Text(0, 0.5, 'Accuracy Rate')


```
max_index = Accurate_rates.index(max(Accurate_rates)) #Best case identifier
k_nearest_neighbour = KNeighborsClassifier(n_neighbors=max_index)
k_nearest_neighbour.fit(one_train,two_train)
prediction = k_nearest_neighbour.predict(one_test)
print('For K=',max_index)
print('Confusion matrix:')
print('\n')
print(confusion_matrix(two_test,prediction)) #Confusion Matrix
print('\n')
                                    cy_score(two_test,prediction),2)*100,'%')
 Saved successfully!
     For K= 20
     Confusion matrix:
     [[1066
               1]
               1]]
      [ 204
     Accuracy rate: 84.0 %
t = 100 #Random K value
k nearest neighbour = KNeighborsClassifier(n neighbors=t)
k_nearest_neighbour.fit(one_train,two_train)
prediction = k nearest neighbour.predict(one test)
```

```
print('For K=' ,t)
print('Confusion Matrix:')
print('\n')
print(confusion_matrix(two_test,prediction)) #Confusion Matrix
print('\n')
print('Accuracy rate: ',round(accuracy_score(two_test,prediction),2)*100,'%')
#Accuracy rate
```

For K= 100 Confusion Matrix:

[[1067 0] [205 0]]

Accuracy rate: 84.0 %

scaled = MinMaxScaler() #function Minmax scaler for normalising values

scaled.fit(data_set.drop('target',axis=1)) #dropping class-feature

MinMaxScaler()

 ${\tt dset_modified = scaled.transform(data_set.drop('target',axis=1)) \# dropping \ class-feature}$

data_set_feat = pd.DataFrame(dset_modified,columns=data_set.columns[:-1]) #dropping class-

data_set_feat = np.round(data_set_feat, decimals=2) #rounding all values to 2 decimals
data_set_feat.head() #dataset_after_normalization

	٠.	_	_	
(n	ρ	ς	т

oke pr	prevalentStroke	BPMeds	cigsPerDay)ker	•	sfully!	ucces	Saved s	
0.0	0.0	0.0	0.00	0.0	1.00	0.18	1.0	0	L
0.0	0.0	0.0	0.00	0.0	0.50	0.37	0.0	1	
0.0	0.0	0.0	0.29	1.0	0.25	0.42	1.0	2	
0.0	0.0	0.0	0.43	1.0	0.75	0.76	0.0	3	

#test_train split with test_size 30% and train_size 70%
one_train, one_test, two_train, two_test = train_test_split(data_set_feat,data_set['target'])

#Computation of accuracy rates for various neighbour values

```
Accurate_rates = []
for i in range(1,40):
  k_nearest_neighbour = KNeighborsClassifier(n_neighbors=i)
  final_score=cross_val_score(k_nearest_neighbour,data_set_feat,data_set['target'],cv=5)
  Accurate_rates.append(final_score.mean())
plt.figure(figsize=(10,6))
plt.plot(range(1,40),Accurate_rates,color='blue',linestyle='dashed',marker='o',markerfacec
plt.title('Accuracy Rate vs. K value')
plt.xlabel('K')
```

Text(0, 0.5, 'Accuracy Rate')

plt.ylabel('Accuracy Rate')

Colab paid products - Cancel contracts here

×

Saved successfully!