Model Validation

Sonal Ghanshani

R-Sqd & MSE

$$R^2 \equiv 1 - rac{SS_{
m res}}{SS_{
m tot}}.$$

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (\hat{Y_i} - Y_i)^2$$

Adj R-sqd

Adjusted
$$R^2 = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$

- The adjusted R2 statistic is another popular approach for selecting among a set of models that contain different numbers of variables.
- The usual R2 is defined as 1 RSS/TSS, where TSS =(yi –y)2 is the total sum of squares for the response. Since, RSS always decreases as more variables are added to the model, the R2 always increases as more variables are added.
- Maximizing the adjusted R2 is equivalent to minimizing RSS/(n-d-1). While RSS always decreases as the number of variables in the model increases, RSS/(n-d-1) may increase or decrease, due to the presence of d in the denominator.
- Unlike Cp, AIC, and BIC, for which asmall value indicates a model with a low test error, a large value of adjusted R2 indicates a model with a small test error. Maximizing the adjusted

Mallow's Cp

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}^2 \right)$$

- where $\hat{\sigma}$ of is an estimate of the variance of the error associated with each response measurement. Essentially, the Cp statistic adds a penalty of 2d $\hat{\sigma}$ 2 to the training RSS in order to adjust for the fact that the training error tends to underestimate the test error.
- Clearly, the penalty increases as the number of predictors,d, in the model increases; this is intended to adjust for the corresponding decrease in training RSS.
- The Cp statistic tends to take on a small value for models with a low test error, so when determining which of a set of models is best, we choose the model with the lowest Cp value.

AIC (Akaike information criterion) & BIC (Bayesian information criterion)

$$AIC = \frac{1}{n\hat{\sigma}^2} \left(RSS + 2d\hat{\sigma}^2 \right)$$

BIC =
$$\frac{1}{n} \left(RSS + \log(n) d\hat{\sigma}^2 \right)$$

- Like Cp, the BIC will tend to take on a small value for a model with a low test error, and so generally we select the model that has the lowest BIC value.
- BIC replaces the 2d $^{\circ}$ σ 2 used by Cp with a log(n)d $^{\circ}$ σ 2 term, where n is the number of observations. Since log n > 2 for any n > 7, the BIC statistic generally places a heavier penalty on models with many variables, and hence results in the selection of smaller models than Cp.

Confusion Matrix

Predicted class NTrue False Negatives Positives (TP) (FN) Actual Class False True Negatives Positives (FP) (TN)

Sensitivity, recall, hit rate, or true positive rate (TPR)

$$ext{TPR} = rac{ ext{TP}}{P} = rac{ ext{TP}}{ ext{TP} + ext{FN}}$$

Specificity or true negative rate (TNR)

$$ext{TNR} = rac{ ext{TN}}{N} = rac{ ext{TN}}{ ext{TN} + ext{FP}}$$

ROC

