Machine Learning

Homework 1 Ari Feiglin

1.1 Exercise

- (1) Let X, Y be independent, show that $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$.
- (2) Prove that Cov(X, Y) = 0.
- (3) Give an example of uncorrelated RVs which are not independent.
- (1) By LOTUS (the law of the unconscious statistician), since $p_{X,Y} = p_X \cdot p_Y$:

$$\mathbb{E}[XY] = \int_{\mathbb{R}^2} xy p_{X,Y}(x,y) = \int_{\mathbb{R}^2} xy p_X(x) p_Y(y) = \int_{\mathbb{R}} x p_X(x) \left(\int_{\mathbb{R}} y p_Y(y) \right) = \int_{\mathbb{R}} x p_X(x) \cdot \int_{\mathbb{R}} y p_Y(y) = \mathbb{E}[X] \, \mathbb{E}[Y]$$

(2) By definition

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y]$$

since $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$, this is zero.

(3) Let X be symmetric (i.e. its pdf p_X is even), Y = f(X) so that Y is not independent of X. Then

$$\mathbb{E}[X] = \int_{\mathbb{R}} x p_X(x) = 0$$

since xp_X is odd. Thus

$$\operatorname{Cov}(X,Y) = \mathbb{E}[XY] = \int_{\mathbb{R}^2} xy p_{x,y}(x,y) = \int_{\mathbb{R}} x f(x) p_X(x)$$

since $p_{x,y}(x,y) = 0$ if $y \neq f(x)$. So if f(x) is even, then $xf(x)p_X(x)$ is odd, so this integral becomes zero. So let us take $X \sim U(-1,1)$ and $Y = X^3$.

1.2 Exercise

What's the best choice in the Monty Hall problem?

Let $X \in \{1,2,3\}$ be the door chosen, $Y \in \{1,2,3\}$ be the door with the prize. We know that $Z \sim U\{1,2,3\}$. Now we ask what the probability of Z = X is modulo that a door was opened without the prize. If Z = X, then the door opened could be any of the two and this gives no extra information, so $\mathbb{P}(Z = X) = \frac{1}{3}$. If $Z \neq X$, then the door opened is already determined, but now $\mathbb{P}(Z \neq X) = \frac{2}{3}$. So there is a higher probability that $Z \neq X$, so the best strategy is to change choices.

1.3 Exercise

Let $x_1, \ldots, x_n \in \mathbb{R}^d$, and let $C = \sum_{i=1}^n x_i x_i^{\mathsf{T}}$.

- (1) Show that C is positive semi-definite.
- (2) Prove that C has rank at most $\min\{n, d\}$.
- (1) Let $u \in \mathbb{R}^d$ then

$$u^{\top}Cu = \sum_{i=1}^{n} u^{\top} x_i x_i^{\top} u = \sum_{i=1}^{n} (x_i u)^{\top} (x_i u) = \sum_{i=1}^{n} ||x_i u||^2 \ge 0$$

so C is positive semi-definite.

(2) We know that $\operatorname{rank}(A+B) \leq \operatorname{rank} A + \operatorname{rank} B$ so $\operatorname{rank} C \leq \sum_{i=1}^n \operatorname{rank}(x_i x_i^\top)$. Furthermore $\operatorname{rank}(AB) \leq \operatorname{rank} A$, $\operatorname{rank} B$ so $\operatorname{rank}(x_i x_i^\top) \leq 1$, thus $\operatorname{rank} C \leq n$. Furthermore $C \in \mathbb{R}^{d \times d}$ so $\operatorname{rank} C \leq d$ as required.

1.4 Exercise

Show that if a jointly normal distributions are uncorrelated, then they are independent.

Suppose $X \sim \mathcal{N}(\mu, \Sigma)$ so the pdf of X is

$$f_X(x) = \frac{1}{\sqrt{2\pi^n}} \cdot \frac{1}{\sqrt{\det \Sigma}} \exp\left(\frac{-(x-\mu)^\top \Sigma^{-1}(x-\mu)}{2}\right)$$

Let $\Sigma = \operatorname{diag}[\sigma_1, \ldots, \sigma_n]$ then

$$(x - \mu)^{\mathsf{T}} \Sigma^{-1} (x - \mu) = \sum_{i=1}^{n} \sigma_i^{-1} (x_i - \mu_i)^2$$

So since $\det \Sigma = \sigma_1 \cdots \sigma_n$,

$$f_X(x) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sqrt{\sigma_i}} \cdot \exp\left(\frac{-(x_i - \mu_i)^2}{2\sigma_i}\right)$$

Since $X_i \sim \mathcal{N}(\mu_i, \sigma_i)$ (since $Var(X_i) = \Sigma_{ii} = \sigma_i$), this is just

$$f_X(x) = \prod_{i=1}^n f_{X_i}(x_i)$$

as required.

1.5 Exercise

Let $X \sim \mathcal{N}(0, I)$ of dimension d.

- (1) For d=1, what is the probability of a sample landing within one standard deviation of the mean?
- (2) For $d \to \infty$ show that this probability tends to zero.
- (1) This is just $\mathbb{P}(-1 \le Z \le 1) = \mathbb{P}(Z \le 1) \mathbb{P}(Z \le -1) = 0.84134 0.15866$.
- (2) $\{||X|| \le 1\}$ is contained in the set that $|X_i| \le 1$ for every $i \in [d]$. The probability of each of these is $c \in (0,1)$ for the c computed in the previous subquestion. Since X_i are all independent (by the previous question/definition), we have that

$$\mathbb{P}\left(\bigwedge_{i}|X_{i}|\leq1\right)=\prod_{i=1}^{d}\mathbb{P}(|X_{i}|\leq1)=c^{d}\longrightarrow0$$

since $c^d \longrightarrow 0$ for $c \in (-1, 1)$.

1.6 Exercise

Let X be a d-dimensional random vector with covariance matrix Σ .

- (1) Let $w \in \mathbb{R}^d$, and let $y = w^\top X$. Show that $Var(y) = w^\top \Sigma w$.
- (2) Prove that Σ is positive semi-definite.
- (1) We know that

$$\operatorname{Var}(y) = \operatorname{Var}\left(\sum_{i} w_{i} X_{i}\right) = \sum_{i} w_{i}^{2} \operatorname{Var}(X_{i}) + 2 \sum_{i < j} w_{i} w_{j} \operatorname{Cov}(X_{i}, X_{j}) = \sum_{i} w_{i}^{2} \operatorname{Var}(X_{i}) + \sum_{i \neq j} w_{i} 2_{j} \operatorname{Cov}(X_{i}, X_{j})$$

and

$$w^{\top} \Sigma w = \sum_{i,j} w_i \Sigma_{ij} w_j = \sum_{i,j} w_i w_j \operatorname{Cov}(X_i, X_j) = \sum_i w_i^2 \operatorname{Var}(X_i) + \sum_{i \neq j} w_i w_j \operatorname{Cov}(X_i, X_j) = \operatorname{Var}(y)$$

as required.

(2) Let $w \in \mathbb{R}^d$ and define $y = w^\top X$, then $w^\top \Sigma w = \operatorname{Var}(y) \ge 0$, so Σ is positive semi-definite.