Final Examination

Date: , 2019

Duration: 120 minutes

SUBJECT: Analog Electronics	
Dean of School of Electrical Engineering	Lecturer
Signature:	Signature:
Full name: Mai Linh	Full name: Tran Van Su

INTRODUCTIONS:

- 1. Notes and Lecture notes can be used. All communication devices such as cell phones and laptops are prohibited.
- 2. Answer all questions

Question 1 (20 marks)

For Figure 1, given $R_{i1} = 1$ [$M\Omega$], $r_{o1} = 1$ [$k\Omega$], $R_{i2} = 1$ [$k\Omega$], $r_{o2} = 500$ [Ω], $R_f = 10$ [$k\Omega$], $R_1 = 1$ [$k\Omega$].

- a. What is the feedback topology? (2 marks)
- b. Find the feedback factor β (2 marks)
- c. Determine the open loop gain $A = \frac{v_0}{v_{i1}}$ (Assume $R_f \gg r_{o2}$) (4 marks)
- d. Find the closed loop gain $A_{v_f} = \frac{v_0}{v_s}$ (4 marks)
- e. What is the input impedance R_{if} (2 marks)
- f. What is the output impedance R_{of} (2 marks)
- g. If $\frac{dA}{A}$ is 0.1, what is $\frac{dA_{v_f}}{A_{v_f}}$ (2 marks)
- h. Why do we call this circuit negative feedback (2 marks)

Figure 1

Question 2 (20 marks)

For Figure 2, we assume that the amplifier is designed optimum with $v_{Opeak} = 21.8 \, [V], R_L = 500 \, [\Omega]$

- a. What is the signal power (P_{AC}) in the R_L (4 marks)
- b. What is the value of V_{CC} (3 marks)
- c. Determine I with $V_{CEsat} = 0.2 [V]$ (3 marks)
- d. What is the power efficiency of the circuit (3 marks)
- e. Determine *R* (3 marks)

f. When $v_o = 10$ [V], calculate i_{E1}

(4 marks)

Figure 2

Question 3 (15 marks)

For Figure 3, given that C=10 [nF], $R_1=R_2=R_3=R_5=1$ $[k\Omega]$ and

$$\frac{V_0}{I} = \frac{s/C}{s^2 + \frac{s}{RC} + \frac{1}{LC}}$$

- a. Determine L to obtain the resonant frequency of 100 [KHz]. (4 marks)
- b. Calculate C_4 of the antoniou circuit. (4 marks)
- c. Determine *R* to obtain the bandwidth of 20 [KHz]. (4 marks)
- d. Find $\left| \frac{V_0}{I} \right|$ at resonant frequency. (3 marks)

Question 4 (15 marks)

For Figure 4, given $R = 4 [k\Omega]$, C = 10 [nF], $C_1 = 0.1 [\mu F]$. The circuit is a low pass filter.

- a. Determine 3dB cutoff frequency of the circuit (5 marks)
- b. Determine T_C to obtain 1 $[k\Omega]$ equivalent resistance of the switched capacitor circuit. (5 marks)
- c. Plot bode plot of the circuit. (5 marks)

Figure 4

Question 5 (15 marks)

For Figure 5, given $R_1=R_2=1$ [$k\Omega$], $R_3=3$ [$k\Omega$] and $R_4=1$ [$k\Omega$]. Find C_1 and C_2 to obtain the oscillating frequency of 10 [KHz].

Figure 5

Question 6 (15 marks)

For Figure 6, given $R = 10 [k\Omega]$ and $C = 0.1 [\mu F]$.

- a. If $R_1=1$ [$k\Omega$], $R_2=3$ [$k\Omega$], calculate the oscillating frequency. (8 marks)
- b. If oscillating frequency f=1.2~[kHz] and $R_2=4~[k\Omega]$, determine R_1 . (7 marks)

Figure 6

The End