Algorithms: Review

Iyad Kanj

DePaul University

Logarithms

Let a, b > 1 and x, y > 0

$$\log_a x = z \Longleftrightarrow a^z = x$$

Example: $\log_2 32 = 5$; $\log_3 81 = 4$

We will write Ig for log₂

Properties of logarithms

- $\bullet \log_a a = 1$ and $\log_a 1 = 0$
- $\log_a x^p = p \log_a x$ Example: $\lg 64 = \lg 2^6 = 6 \lg 2 = 6$
- - Example: $\lg 24 = \lg (2^3 \cdot 3) = 3 \lg 2 + \lg 3 = 3 + \lg 3$
- $\log_a(\frac{x}{y}) = \log_a x \log_a y$ Example: $\lg(\frac{1}{1024}) = 0 - \lg 2^{10} = -10$

Logarithms

Properties of logarithms

- $\log_b x = \frac{\log_a x}{\log_a b}$ Note: $\forall a, b : \log_b x$ and $\log_a x$ are within a multiplicative constant from each other
- $\lg_a x$ is an increasing unbounded function of x
- lg_a x grows "very slowly"
- $\lg_a x$ and a^x are inverses of each other: $a^{\lg_a x} = x$ and $\lg_a a^x = x$

Summations

Arithmetic Sequence:

Each term equals the preceding one plus a fixed constant

Arithmetic Summation: $a_1 + \cdots + a_n = (a_1 + a_n) \cdot \frac{n}{2}$ Examples:

$$1 + 2 + \dots + 100 = (1 + 100) \cdot \frac{100}{2} = 5050$$

$$1 + 2 + \cdots + n = n(n+1)/2$$

$$1 + 3 + 5 + \cdots + 201 = (1 + 201) \cdot 101/2 = 10201$$

Geometric Sequence:

Each term equals the preceding one multiplied by a fixed constant

Each term equals the preceding one multiplied by a fixed constant
$$a_1(1-r^n)$$
 (, , (1)

Geometric Summation:
$$a_1 + \cdots + a_n = \frac{a_1(1-r^n)}{1-r} \ (r \neq 1)$$

Special Case: $|r| < 1$ $a_1 + a_2 + \cdots = \frac{a_1}{1-r}$

Examples:
$$1 + 2 + \cdots + 1024 = 2047$$

$$1 + 2 + \dots + 1024 = 2047$$

$$1 + \frac{1}{2} + \frac{1}{4} + \dots = 2$$

$$n + \frac{n}{2} + \dots + 1 \le 2n$$

Run-Time Analysis

Searching

Given an array $A[1\dots n]$ of numbers and a number key, determine if $key \in A$

Linear Search

```
for i=1 to n do

| if A(i)=key then
| return (True);
| end
end
return (False);
```

Input Size: *n*Operation: Comparison
Best case: 1
Worst Case: *n*

Average Case: $\approx \frac{n}{2}$

Run-Time Analysis

Sorting

Given an array A[1...n] of numbers, rearrange the numbers in A so that $A(1) \le A(2) \le \cdots \le A(n)$

Insertion Sort

Input Size: nOperation: Comparison Best case: n-1Worst Case: $1+2+\cdots+n-1=\frac{n(n-1)}{2}=\frac{1}{2}n^2-\frac{1}{2}n$

Asymptotic Notations

Let $f,g:\mathbb{N} \to \mathbb{R}$ be asymptotically positive functions

Definition: f(n) is $\mathcal{O}(g(n))$ if $\exists c > 0$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq cg(n)$ $\forall n \geq n_0$

```
Examples:

n \in \mathcal{O}(n^2)

n \log n \notin \mathcal{O}(n)

2n + 5 \in \mathcal{O}(n)

\frac{1}{2}n^2 + 2n + 10 \in \mathcal{O}(n^2)

\log^{100} n \in \mathcal{O}(n^{0.0001})

n^{100} \in \mathcal{O}(2^n)
```

Asymptotic Notations

Definition:
$$f(n) \in \Omega(g(n))$$
 if $\exists c > 0$ and $n_0 \in \mathbb{N}$ such that $f(n) \geq cg(n)$ $\forall n \geq n_0$

Definition:
$$f(n) \in \Theta(g(n))$$
 iff $f(n) \in \Omega(g(n))$ and $f(n) \in \mathcal{O}(g(n))$

```
Examples: n^{100} + 2n^{90} + n^{70} + N^2 + 1 = \Theta(n^{100}) \log(n!) = \Theta(n \log n)
Stirling's Approximation: n! \approx \frac{n^n}{n^n} \sqrt{2\pi n}
```


Sort the following functions in a non-decreasing order of their asymptotic growth

(1)
$$2n^3 - 5n$$
 (6) $4 \lg n - 1$
(2) $5n - 3$ (7) $n!$
(3) $n^n - 2$ (8) $2n \lg n + 3n$
(4) $3n^2 - 3n + 1$ (9) $10n - 2$

 $(5) 2^n + n + 1 (10) 20$

Solution: (10), (6), (2)=(9), (8), (4), (1), (5), (7), (3)