

Lecture #4c

Pointers and Functions

Questions?

Ask at https://app.sli.do/event/bRPtUxgykAQjjF5XBpLedo

OR

Scan and ask your questions here! (May be obscured in some slides)

2. Calling Functions (1/3)

- In C, there are many libraries offering functions for you to use.
- Eg: scanf() and printf() requires to include <stdio.h>
- C provides many libraries, for example, the math library
- To use math functions, you need to
 - Include <math.h> AND
 - Compile your program with —Im option (i.e. gcc —Im …) in sunfire
- See table (next slide) for some math functions

2. Calling Functions (2/3)

Function	Arguments	Result
abs(x)	int	int
ceil(x)	double	double
cos(x)	double (radians)	double
exp(x)	double	double
fabs(x)	double	double
floor(x)	double	double
log(x)	double	double
log10(x)	double	double
ceil(x)	double	double
pow(x, y)	double, double	double
sin(x)	double (radians)	double
sqrt(x)	double	double
tan(x)	double (radians)	double

Function prototype:

double pow(double x, double y)

function return type

2. Calling Functions (3/3)

To link to Math library

```
MathFunctions.c
                                   $ gcc(-lm)MathFunctions.c
#include <stdio.h>
                                   $ a.out
#include <math.h>
                                   Enter x and y: 3 4
int main(void) {
                                   pow(3,4) = 81.000000
  int x, y;
                                   Enter value: 65.4
  float val;
                                   sqrt(65.400002) = 8.087027
  printf("Enter x and y: ");
  scanf("%d %d", &x, &y);
  printf("pow(%d, %d) = %f\n", x, y, pow(x,y));
  printf("Enter value: ");
  scanf("%f", &val);
  printf("sqrt(%f) = %f\n", val, sqrt(val));
  return 0;
```

3. User-Defined Functions (1/6)

We can define and use our own functions

Example: Compute the volume of a flat washer. Dimensions of a flat washer are usually given as an inner diameter, an outer diameter, and a thickness.

rim area = $\pi (d_2/2)^2 - \pi (d_1/2)^2$

3. User-Defined Functions (2/6)

```
Washer.c
#include <stdio.h>
                                 Enter ...: 8.2 10.5 2.2
#include <math.h>
                                 Volume of washer = 74.32
#define PI 3.14159
int main(void) {
    double d1, // inner diameter
           d2, // outer diameter
           thickness, outer area, inner area, rim area, volume;
    // read input data
   printf("Enter inner diameter, outer diameter, thickness: ");
    scanf("%lf %lf %lf", &d1, &d2, &thickness);
    // compute volume of a washer
    outer area = PI * pow(d2/2, 2);
    inner area = PI * pow(d1/2, 2);
    rim area = outer area - inner area;
    volume = rim area * thickness;
   printf("Volume of washer = %.2f\n", volume);
    return 0;
```


3. User-Defined Functions (3/6)

 Note that area of circle is computed twice. For code reusability, it is better to define a function to compute area of a circle.

```
double circle_area(double diameter) {
  return PI * pow(diameter/2, 2);
}
```

 We can then call/invoke this function whenever we need it.

```
circle_area(d2) → to compute area of circle with diameter d2
circle_area(d1) → to compute area of circle with diameter d1
```


3. User-Defined Functions (4/6)

```
WasherV2.c
#include <stdio.h>
#include <math.h>
#define PI 3.14159
                                  Function prototype
double circle area(double);
int main(void) {
    // code similar to Washer.c; omitted here
    // compute volume of a washer
    rim area = circle area(d2) - circle area(d1);
    volume = rim area * thickness;
   printf("Volume of washer = %.2f\n", volume);
    return 0;
// This function returns the area of a circle
double circle area(double diameter) {
                                              Function definition
    return PI * pow(diameter/2, 2);
```

3. User-Defined Functions (5/6)

- It is a good practice to put function prototypes at the top of the program, <u>before</u> the main() function, to inform the compiler of the functions that your program may use and their return types and parameter types.
- A function prototype includes only the function's return type, the function's name, and the data types of the parameters (names of parameters are optional).
- Function definitions to follow <u>after</u> the main() function.
- Without function prototypes, you will get error/warning messages from the compiler.

3. User-Defined Functions (6/6)

- Let's remove (or comment off) the function prototype for circle_area() in WashersV2.c
- Messages from compiler:

```
WashersV2.c: In function 'main':
WashersV2.c:19:2: warning: implicit declaration of function
'circle_area' [-Wimplicit-function-declaration]
   rim_area = circle_area(d2) - circle_area(d1);
   ^
WasherV2.c: At top level:
WashersV2.c:27:8: error: conflicting types for 'circle-area':
:
```

Without function prototype, compiler assumes the default (implicit) return type of int for circle_area() when the function is used in line 19, which conflicts with the function header of circle_area() when the compiler encounters the function definition later in line 27.

End of File

