

THE LIBRARY OF THE FEB 2 = 1930 UNIVERSITY OF ILLINOIS

UNIVERSITY OF ILLINOIS Agricultural Experiment Station

BULLETIN No. 320

INHERITANCE OF KERNEL ARRANGE-MENT IN SWEET CORN

BY W. A. HUELSEN AND M. C. GILLIS

CONTENTS

CONTENTS
MORPHOLOGY OF KERNEL ARRANGEMENT
MATERIALS AND METHODS
Review of Previous Work
EXPERIMENTAL RESULTS
Progeny Segregations and Their Classification
F ₁ Progenies
F ₂ Progenies
Modifications in the Genetic Expression of Rowing
ANALYSIS OF THE INHERITANCE OF KERNEL ARRANGEMENT 306
Segregations in the F ₂ Progenies
Segregations in the Back-Cross Progenies
Segregations in the F ₃ Progenies
Rowing in Relation to Plant Characters
PRACTICAL ASPECTS OF THE INHERITANCE OF ROWING 333
SUMMARY AND CONCLUSIONS
LITERATURE CITED

INHERITANCE OF KERNEL ARRANGE-MENT IN SWEET CORN

By W. A. Huelsen, Assistant Chief in Olericulture, and M. C. Gillis, Associate

Ears of the Country Gentleman variety of sweet corn differ in appearance from those of other varieties by having an irregular or "zigzag" arrangement of kernels. This condition becomes fixed to a considerable degree under careful and long-continued selection. However, there is a constant recurrence of individuals which are more or less rowed. The lack of uniformity among the segregating ears, as well as the variability in the percentage of segregates, indicated at first that this might be a form of polymorphism, and suggested a careful study of the character.

MORPHOLOGY OF KERNEL ARRANGEMENT

Stewart⁸ and Weatherwax⁸ explain the peculiar arrangement in Country Gentleman Sweet Corn as being due to the crowded condition of the kernels, which in turn is the result of the development of both the upper and lower flowers of the pistillate spikelet. In rowed varieties the lower flower remains primordial and only the upper flower functions, and the familiar rowed appearance results. The phylogenetic significance of the functioning of the lower flower is still somewhat in doubt, according to Stratton⁷ and others. It is probable that reduction in the number of pistillate flowers is the more highly specialized form. It appears, therefore, that the distinguishing difference between Country Gentleman and rowed varieties is in the functioning of the lower flower.

Kempton⁴ mentions a sweet corn in which the irregular kernels are due to the indiscriminate arrangement of spikelets. Weatherwax,⁸ however, claims that he has found no variety of corn in which the spikelets are not arranged in rows on the cob, irrespective of whether one flower functions, or both.

In working with Country Gentleman sweet corn, the authors have frequently noted the occurrence of rowed individuals in open-pollinated strains selected by the ear-row method. Occasionally such ears were distinctly rowed like other varieties of sweet corn, but more often the rowed condition was confined either to the butt or to the tip, as mentioned by Stratton. Specimens in which the rowing was intermediate, or indistinct, were of frequent occurrence. Further investigation proved that rowing occurred in strains of Country Gentleman obtained from a number of widely different sources. The theory of Weatherwax would seem to account for this phenomenon. He

states, "At times, however, a set of conditions, presumably environmental, may limit the size of the grain or increase the length of the cob sufficiently that the rows are almost straight, altho each spikelet is still producing two grains." On this basis one would expect that most of the large-sized Country Gentleman ears should have the kernels in rows over all or part of the ear and, at the same time, contain two kernels in each spikelet. The authors have observed that all the distinctly rowed ears or parts of ears in Country Gentleman cultures have spikelets with only a single functional flower, which accounts for the regularity in the arrangement of the kernels. the intermediate type, where the rowing is present but more or less indistinct, paired kernels borne on a single pedicel are interspersed with single kernels in which the lower flower has remained primordial. This intermediate type of rowing differs, however, from another type which appears the same but is merely due to incomplete pollination in an otherwise distinctly rowed ear.

MATERIALS AND METHODS

Narrow Grain Evergreen is a 16- to 20-rowed sweet corn having an obscure origin. Certain commercial strains of this variety were selected from crosses between Country Gentleman and Stowell's Evergreen. The strains used by the authors, however, were the result of long-continued selection from Stowell's Evergreen. This may account for the fact that all but one of the rowed parents proved to be homozygous for kernel arrangement.

Country Gentleman, when true to type, is characterized by "shoepeg" kernels and by an irregular or zigzag kernel arrangement extending over the entire ear.

Crosses were made in 1924 between parents which had been previously inbred for two generations. The F_2 and F_3 generations were grown from ears obtained by selfing F_1 and F_2 plants in 1925 and 1926 respectively. Back crosses between the F_1 progenies and the parental strains were made in all cases, but many of them failed to fertilize owing to differences in time of maturity and a poor growing season.

The ears in each generation were harvested as mature corn and later classified for kernel arrangement. Such classification included all the ears that were filled well enough so that the type of kernel arrangement could be determined with reasonable accuracy.

Wherever the segregating progenies were separated into three or more phenotypic classes, the χ^2 method was used for calculating the closeness of fit between the observed and expected frequencies. The probability values were taken from Elderton's tables as given by Pearson.⁵

In the case of 3:1 segregations the probable errors were calculated by the formula P.E. $=\pm 0.6745 \sqrt{pqn}$, in which n is the total number of individuals, and p and q are the percentages, .75 and .25, corresponding to the ratios concerned.

Review of Previous Work

Halsted and Owen,³ in crosses between Country Gentleman and several rowed types of sweet corn, observed "a strong preponderance of straight rows" in the progenies. In some progenies they found only an occasional ear which was entirely zigzag, but many ears occurred in which the upper third was irregularly disposed while the remainder of the ear was rowed.

East and Hayes¹ stated that the zigzag, or irregular, arrangement of kernels on the ears of Country Gentleman sweet corn is a dominant character due to a single genetic factor. They drew their conclusions from the behavior of the F, and F, progenies of a single irregular ear which had been selfed. This selfed ear produced a progeny having approximately 3 normal to 1 irregular. This departure from the usual behavior of a heterozygous monohybrid, when selfed, was explained as being due to "reversed" or "fluctuating dominance." A. single progeny obtained by selfing a plant producing a normal ear gave all normal ears, which further led to the conclusion that the normal class was a homozygous recessive. In addition to the above type of irregularity there is also mentioned by East and Hayes¹ another kind of irregular kernel arrangement which they called "physiological fluctuations" which were found to be non-heritable. A confusion of these two types made it difficult to classify the segregates. The authors experienced the same difficulty in classifying their material.

Emerson,² in reporting the results of a cross between dent corn (rowed) and pop corn (irregular), states that the arrangement of grains in regular rows is perhaps the dominant character. The segregation in the F_2 generation seemed to indicate that there is a single factor concerned. However, extreme fluctuations in the F_1 progeny, reaching as far as the irregular (zigzag) type, threw doubt upon the single factor hypothesis unless such fluctuations are regarded as the "physiological fluctuations" of East and Hayes.¹

EXPERIMENTAL RESULTS

Progeny Segregations and Their Classification

Crosses between Country Gentleman and Narrow Grain Evergreen produced F₁ progenies which approached the Narrow Grain Evergreen parent in type of rowing (Fig. 1). The rowed kernel arrangement must, therefore, be incompletely dominant over the irregular type.

Table 1.—Classification of the Phenotypes in the Inheritance of Rowing in Sweet Corn

Description of	Genotypic		Ratio		Ratio for	Ratio for Groups I, II, III, IV	, III, IV
phenotypic classes	classes	Observed	Expected	Deviation	Observed	Expected	Deviation
I—Distinctly rowed	$\left\{ \begin{array}{l} Pi_1Pi_1Pi_2Pi_2 \\ Pi_1Pi_1Pi_2pi_2 \end{array} \right.$	2.7	. 63	6	2.7	က	ا د.
Rows continuous	Pi.pi.Pi2Pi2 Pi.pi.Pi2pi2	3.9	94		8. :	9 :	5: : -:
A. More nearly rowed than zigzag 1. Rows continuous	Pi ₁ Pi1pi2pi2 Pi1pi1pi2pi2	2.1	2 .	ਜ਼ਜ਼	6	:9	. 4
than rowed 1. Slightly rowed at butt or tip 2. Slight trace of rowing IV—Rowing completely	pi1pi1Pi2Pi2 pi1pi1Pi2pi2	2.1	2	1.1.	::	::	: :
absent, true zigzag (Country Gentleman) type	pi1pi1pi2pi2	6.	1	1	6.	-	1.1
		:	16	:	:	16	:

Table 2.—Genetic Composition of Parents and F1 Progeny

Cross	\mathbb{F}_1	Pedigree No. of parents	Probable genetic composi-	Description F ₁ cars
		.o ₹ ≯	•	(
1002	Pi ₁ pi ₁ pi ₂ pi ₂	207-1 X 306-1 (Narrow Grain Evergreen X	Pi.Pi.pispis X pi.pi.pispis	Intermediate
1003	PipiPipi PiPiPipi	Country Gentleman) 207-2 X 390-1 (Narrow Grain Evergreen X	$Pi_1pi_1Pi_2Pi_2 X Pi_1Pi_1pi_2pi_2$	Rowed
1004	$P_{i_1}p_{i_1}P_{i_2}p_{i_2}$ $P_{i_1}P_{i_2}p_{i_2}$ $P_{i_1}p_{i_2}P_{i_2}$	Country Gentleman) 306–2 X 207–3 (Country Gentleman X Narrow Grain Evergreen)	$\mathrm{Pi}_{1}\mathrm{pi}_{1}\mathrm{Pi}_{2}\mathrm{pi}_{2} \ge \mathrm{Pi}_{1}\mathrm{Pi}_{1}\mathrm{Pi}_{2}\mathrm{Pi}_{2}$	Rowed
1005	Pi ₁ pi ₁ Pi ₂ pi ₂ Pi ₁ pi ₁ Pi ₂ Pi ₂	208-1 X 383-1 (Narrow Grain Evergreen X	Pi,Pi,Pi,Pi, X pi,pi,Pi,pi;	Rowed
1006	$\mathrm{Pi_1pi_1Pi_2pi_2}$	Country Gentleman) 209-1 X 449-1 (Narrow Grain Evergreen X	Pi.Pi.Pi.Pis X pi.pi.pispis	Rowed
1008	$p_{i_1}p_{i_1}P_{i_2}p_{i_2}$	Country Gentleman) 449–2 X 207–4 (Country Gentleman X	$\mathrm{pi_1pi_2pi_2} \times \mathrm{Pi_1pi_1Pi_2pi_2}$	Segregated1
1010	Pi ₁ pi ₁ Pi ₂ pi ₂	Narrow Grain Evergreen) 306-3 X 228-1 (Country Gentleman X	pi pi pi pi pi \mathbf{X} Pi Pi Pi Pi Pi	Rowed
1015	$P_{i_1}P_{i_1}P_{i_2}p_{i_2}$ $P_{i_1}p_{i_1}P_{i_2}P_{i_2}$	Narrow Grain Evergreen) 449–3 X 209–2 (Country Gentleman X	$\operatorname{Pi_1pi_1Pi_2pi_2} X \operatorname{Pi_1Pi_1Pi_2Pi_2}$	Rowed
1018	$\mathrm{Pi}_{1}\mathrm{pi}_{1}\mathrm{Pi}_{2}\mathrm{pi}_{2}$	Narrow Grain Evergreen) 216-1 X 390-2 (Narrow Grain Evergreen X	Pi,Pi,Pi,Pi, X pi,pi,pi,pi	Rowed
1022	$P_{i_1p_i_1}P_{i_2p_i_2}$ $P_{i_1p_i_1}P_{i_2}P_{i_2}$	Country Gentleman) 437-1 X 140-1 (Narrow Grain Evergreen X Country Gentleman)	Pi,Pi,Pi,Pi,Pi X pi,pi,Pi,pi,	Rowed

¹Segregated as follows: 19 rowed, 42 intermediate, 19 zigzag.

There was some variation, however, in the degree of rowing among the F_1 progenies from the different crosses. The dominance of the rowed kernel arrangement, as indicated by the authors' experiments, is in accordance with the observations of Halsted³ and Emerson.²

F Progenies. Much of the parental material was found to be heterozygous. It may be noted that two or more types of F_2 segregation occurred in each cross. Crosses 1003, 1004, 1005, and 1022 (Tables 16, 17, 18, and 22) gave rise to both dihybrid and monohybrid ratios, while Cross 1015 (Table 23) produced two types of monohybrid segregations. Obviously in each of these crosses the F_1 plants which were selfed were not all of the same genetic composition. In Table 2 are listed the crosses and the F_1 factorial formulae necessary to account for the various F_2 segregations obtained. (Where there was only one type of segregation, it may be assumed that the F_1 plants were alike genetically).

Since only 19 and 18 plant were used in making each cross, at least one of the parental plants must have been heterozygous. Altho all the strains used as parents had been previously inbred for two generations, many of these by subsequent inbreeding proved to be heterozygous. In columns 3 and 4 of Table 2 are given the pedigree numbers of the parental plants used in each cross and their probable genetic composition. Where the same parental strain was used in two or more crosses, individual plants were used in each cross, as shown by the last figure of the pedigree number.

The F, open-pollinated progenies from the crosses mentioned above, with two exceptions as shown in column 5 of Table 2, were rowed and fairly uniform. Each of the F, plants from these crosses must have contained both the Pi, and Pi, factors, for the "rowed" kernel arrangement, either one or both being heterozygous, as shown in column 2. In Cross 1002, where the F, generation contained only the Pi, factor, the open-pollinated progeny was intermediate. Cross 1008 produced an F, progeny which was much more variable than the rest and seemed to give a segregation of 1 rowed: 2 intermediate: 1 zigzag. An F, segregation of this type might be obtained if the Narrow Grain Evergreen parent contained the factors Pi, pi, Pi, pi, and the Country Gentleman parent was homozygous for pi, and pi, The F, progeny would be expected to contain the following four types in approximately equal numbers: Pi, and pi, pi, pi, pi, Since the F, classification was made before the various types of rowing were well understood, it is probable that the Pi, pi, Pi, pi, type was classed as "rowed" while the Pi, pi, pi, pi, and pi, pi, Pi, pi, types, combined, made up the intermediate class. All the F, plants from which F2 progenies were grown must have been of the same genetic composition since only one type of F, segregation was obtained (see Table 25). The remaining crosses, Nos. 1002, 1006, 1010, and 1018, were between homozygous parents.

In Table 3 are listed the numbers of the imbred strains from which the parental plants were selected, together with the necessary gametic composition of each. It will be noted that, with one exception, the Narrow Grain Evergreen strains were homozygous. Narrow Grain Evergreen strain 207, together with all the Country Gentleman strains, were heterozygous, containing one or both of the factors for rowing. In column 3 is given a very brief description of the behavior of each strain during five years of inbreeding. These descriptions are very consistent with the genetic composition of the strains as determined by the crosses reported in this paper.

Table 3.—Gametic Composition of Parental Strains and There Behavior Dueing Five Years of Indezeeding

_ , , ,	Gametes produced by parental strain	Behavior of parental strain
Narrow Grain Evergreen 207 208 209 216 228 437	Pi ₁ Pi ₂ Pi ₁ Pi ₂ Pi ₁ Pi ₂ Pi ₁ Pi ₂	Segregated for kernel arrangement No segregation, all nowed No segregation, intermediate type No segregation, all rowed No segregation, all rowed No segregation, all rowed
Country Gentleman 140 306 383	pî ₁ pî ₂ - pî ₁ Pî ₂ - Pî ₁ pî ₃ pî ₁ pî ₂ - pî ₁ Pî ₂	All Country Gentleman type (possibly pi_pi_Fi_Fi_ included) Tends to row All Country Gentleman type (possibly pi_pi_Fi_Fi_ included) Pooely filled. No observations
449	piępie – piePie – Piepie	on kernel arrangement Segregated for rowing

F₂ Progenies. Twenty-two F₂ progenies from seven different crosses segregated naturally into four distinct groups: Group I, in which the kernels were distinctly rowed; Group II, in which the kernels were less distinctly rowed than in Group II, Group III, an intermediate group which was neither rowed nor zigzag; and Group IV. a zigzag group. The F₂ progenies were first classified under the above groups, which gave a ratio of 2.7:538:64:0.9 Tables 1 and 4% or approximately a 3:6:6:1 ratio. This typically dihybrid ratio led to the assumption that kernel arrangement is due to the interaction of at least two genetic factors, which were arbitrarily designated Pt₂ and Pt₃, being derived from the word "pistillate."

This method of separating the F_2 progenies into four phenotypic classes did not prove satisfactory, owing to the lack of uniformity in the individuals under Groups II and III. It was found that Group II could be further subdivided into two classes based on the continuity of the rows. Group III was also divided into two subgroups, one approaching the rowed type and the other resembling the zigzag type. Each subgroup was further separated into two classes. The F_2 material was therefore classified into eight phenotypic classes as shown in Table 1 and Figs. 2 to 9.

Groups I and IV may be readily distinguished. In Group I the rows are clearly defined and continuous from butt to tip. All the embryos face the tip of the ear. In Group IV the rows appear to be entirely absent due to the zigzag arrangement of the kernels, which have a typical "shoepeg" form in contrast with the flattened kernels in Group I.

The chief difference between Groups I and II is that the rows are less regular in Group II (see Figs. 2, 3, and 4). Subgroup III-A (Figs. 5 and 6) resembles Group II, while Subgroup III-B (Figs. 7 and 8) tends more toward the zigzag type (Fig. 9) in Group IV. When Figs. 3 and 4 are compared, however, with Figs. 5 and 6 it will be noted that the chief difference is in the slight offsetting of the kernels. Altho Subgroup III-B resembles Group IV, it cannot be included with the latter owing to the traces of rowing.

Modifications in the Genetic Expression of Rowing

East and Haves mention two kinds of irregular (zigzag) kernel arrangements in sweet corn. The first is a "physiological fluctuation" which is not inherited, while the second is "a definitely inherited character, or possibly a set of characters." The first type of irregular kernel arrangement will always be encountered in sweet corn cultures. The cause lies in the development of less than the normal number of kernels. Frequently only the butts and tips of the ears are affected in this way often to the extent of being entirely bare. Less frequently the spikelets which fail to develop kernels are scattered over the entire ear. It is obvious that any condition which prevents the development of the entire complement of kernels on the ear will impair the genetic expression of kernel arrangement. In the case of a genetically rowed type, the spaces left vacant by undeveloped kernels will tend to be filled by those remaining. This probably gives rise to the physiologically irregular type of East and Haves.¹ The genetically pure zigzag type of kernel arrangement is modified in a similar manner. The kernels likewise spread into the vacant spaces and thus lose their "shoepeg" form, but more serious still the lower flower of the spikelet often fails to develop in scattered areas, thus giving the ear a partially rowed appearance. These and other modifications which obscure the genetic expression of rowing lead to errors

in classifying the individuals in a given progeny. Such errors become cumulative within a large population of numerous progenies and are confined mainly to the rowed classes as will be shown later.

It is often impossible to properly classify inbred strains of sweet corn because their weakness leads to the indeterminate or anomalous genetic expression of rowing. Abnormalities in cob growth, such as fasciations, have a similar effect.

ANALYSIS OF THE INHERITANCE OF KERNEL ARRANGEMENT

Segregations in the F Progenies

The genotypes expected in the F₂ generation on the basis of the two-factor hypothesis and the proportionate number in each are shown in Table 1. Pi₁ Pi₂ Pi₂ and Pi₁ Pi₁ Pi₂ pi₂ could not be classified separately and are assumed to be phenotypically the same.

The twenty-two F_2 progenies mentioned above were separated into the eight classes shown and are summarized in Table 4. The agreement between the observed and expected numbers in Table 4 is not close. It will be noted that the observed frequencies in the three-rowed classes are less than the expected. On the other hand, in the four intermediate classes (Table 4) the observed number exceeds the expected. Reference to the individual F_2 progenies (Tables 16 to 22 inclusive) indicates that the observed frequencies in the classes mentioned vary nearly always in the same direction. Thus the deviations in Table 4 are really due to a series of cumulative errors which are without doubt due to the obscuring effects of non-heritable modifying factors.

The segregations in Table 4, in view of the large deviations, do not by themselves substantiate the two-factor hypothesis for the arrangement of kernels on the ear, but when taken in conjunction with Tables 16 to 22 inclusive it is evident that such an interpretation is the one most closely in accord with the facts.

In addition to the twenty-two families referred to above, sixteen F_2 progenies gave monohybrid ratios in the F_2 generation. These are summarized in Tables 5, 6, 7, and 8.

The progenies in Table 5 give a 3:1 ratio. The dominant phenotype is distinctly rowed, whereas the recessive is intermediate and more nearly rowed than zigzag. The recessive class in no way resembles the true Country Gentleman type. F₂ segregations of this type were secured by selfing individuals having a Pi₁ Pi₁ Pi₂ pi₂ genetic composition. Three selfs segregated in this way, are shown in Tables 16, 17, and 23. In the four above-mentioned tables, the data clearly fit a 3:1 expectancy.

Table 4.—Summary of P2 Segregations for Rowing From Chosses Between Narrow Grain Evergreen And Country Gentleman Sweet Corn

200	Number		Group I	I di	Group II	p II		Groul	Group III		Group IV
No.	of families	Totals	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi ₁ Pi ₁ Pi ₂ pi ₂	Pipii Pi2Pi	Pitpit Pispis	Pi Pi pispis	Piıpiı piapia	pinpi PisPis	pi pi Pi pi	pi.pi. pispis
1003. 1004.	2-1	838 203 807	124 32 151	4.2-	22 201	209 45	65 13	117 27 109	61 17 53	116 33 104	54 14 60
1006	200	287	4.10	100	38 41	828	888	888	19 21	888	4.2
1018	≈ 4	516 249	8 4	ဝေ	308	122 53	38 19	.74 34	34 18	3 88	28 16
Total. Expected. Deviation.	55 : :	3 195 3 195	59 59 5	540 599.1 -59.1	389 399.4 -10.4	778 798.8 -20.8	227 199.7 27.3	429 399.4 29.6	222 199.7 22.3	429 399.4 29.6	181 199.7 -18.7
Segregations by groups:			x³ ==	$x^{\sharp} = 19.0032$	e4	= .0082					
Total. Expected. Deviation.		3 195 3 195	54 59 -	540 599.1 —59.1	116 119 -3	1167 1198.1 -31.1		130 119 10	1307 1198.1 108.9		181 199.7 —18.7
			$\chi^2 =$	$\chi^2 = 18.2868$	Ъ	P = .0004					

TABLE 5.—SUMMARY OF THE P. PROGENIES FROM SELF-POLLINATED PI, PI, PI, PI, PLANTS

Cross No.	Number of progenies	Total	Pi.Pi. Pi.Pi.	Pi ₁ Pi ₁ Pi ₂ pi ₂	Pipin Pirpin	Pi.pi. Pi2piz	Pi ₁ Pi ₁ pi ₂ pi ₂	Pi,pi, pişpiş	pipi PigPig	pirpir Pispis	pi pi pi pis sidsid
1003	-	243	17	6,		:	64		:	:	:
	_	201	1.5	11	:	:	20	:	:	:	:
1015	-	191	14	143			48				
Total	က	635	47	33		:	162	:	:	:	:
Expected	:	635	47	476.2	:	:	158.8	:	:	::	

Deviation = 3.2 ± 7.36

Table 6.—Summary of the F₂ Progenies From Self-Pollinated Pi₁pi₁Pi₂Pi₂ F₁ Plants

Cross No.	Number of progenies	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi ₁ pi ₁ Pi ₂ Pi ₂	pi₁pi₁ Pi₂Pi₂
1004	1 1 3 1	128 369 567 54	34 93 138 13	60 185 283 26	34 91 146 15
Total Expected Deviation	6 	1118 1118 	278 279.5 -1.5	554 559.0 -5.0	$286 \\ 279.5 \\ 6.5$

 $\chi^2 = .2039$ P > $.6065^1$

 1Values of P are not given in Elderton's tables when χ^2 is less than 1. The value of P is .6065 when χ^2 = 1.0000.

Table 7.—Summary of the F₂ Progenies From Self-Pollinated Pi₁pi₁pi₂pi₂ F₁ Plants

Cross No.	Number of progenies	Total	Pi ₁ Pi ₁ pi ₂ pi ₂	Pi ₁ pi ₁ pi ₂ pi ₂	pi ₁ pi ₁ pi ₂ pi ₂
1002		299	64	154	81
Expected		299	74.8	149.5	74.8
Deviation			-10.8	4.5	6.2

 $\chi^2 = 2.2087$ P = .3377

Table 8.—Summary of the F_2 Progenies From Self-Pollinated $pi_1pi_1Pi_2pi_2$ F_1 Plants

Cross No.	Number of progenies	Total	pi ₁ pi ₁ Pi ₂ Pi ₂	pi₁pi₁ Pi₂pi₂	pi ₁ pi ₁ pi ₂ pi ₂
1008 Expected Deviation	5 	684 684	173 171.0 2.0	349 342.0 7.0	162 171.0 -9.0

 $\chi^2 = .6404$ P > .6065

The F_2 progenies shown in Table 6 segregate in a 1:2:1 ratio, only 25 percent being distinctly rowed. The recessives are intermediate but differ from those in Table 5, inasmuch as they are more nearly zigzag than rowed. They do not have the true zigzag arrangement, however. The data in Table 6 are the total of six selfs on plants having a genetic composition of Pi_1 pi_1 Pi_2 Pi_2 . The data of individual F_2 progenies are shown in Tables 17, 18, 22, and 23.

The data in the five tables mentioned above agree fairly well with the expectancy based on a 1:2:1 ratio.

In Tables 7 and 8 the F₂ recessive classes were identical, each being true zigzag. The dominant classes, however, bore no resemblance to each other, indicating that they were segregating for different factors. F₂ segregations of the type shown in Table 7 could have arisen only by selfing plants with a genetic composition of Pi₁ pi₂ pi₂. Likewise, the F₂ segregations in Table 8 were the result of selfing plants with a pi₁ pi₁ Pi₂ pi₂ factorial composition. In both Tables 7 and 8 the fit is fairly close to expectancy for 1:2:1 ratios. The data of the individual progenies are given in Table 24 (Cross 1002) and in Table 25 (Cross 1008).

The F₂ segregations in Tables 5, 6, 7, and 8 can be best explained by assuming that kernel arrangement is due to two factors. That these are by no means equal is shown by comparing the progenies in Tables 5 and 8, both of which segregate for the factor Pi₂ pi₂. The factors Pi₁ Pi₁ or Pi₁ pi₁ must be present in order to produce rowing.

The progenies in Tables 6 and 7 are segregating for the Pi₁ pi₁ factor. The expression of rowing in a genotype Pi₁ Pi₁ pi₂ pi₂ (Tables 5 and 7) is much stronger than in the pi₁ pi₁ Pi₂ Pi₂ genotype in Tables 6 and 8. Accordingly the factor Pi₁ is more necessary for the complete expression of rowing than the factor Pi₂.

Segregations in the Back-Cross Progenies

F₁ plants from four of the progenies were successfully back-crossed to the double recessive parent. Eleven progenies were obtained which without exception segregated into a 1:1;1:1 ratio, as shown in Table 9. The data for the individual families are given in Tables 26 to 29 inclusive. In the five above-mentioned tables the data clearly fit an expected 1:1:1:1 ratio.

Segregations in the F₃ Progenies

A large number of selfs were made on the F₂ progenies. The F₃ plants had greatly decreased vigor. This, combined with an unfavorable season in 1927, gave rise to low yields and caused the loss of many progenies. In addition, many of the ears were poorly filled, which fact made it difficult to classify them, especially in the rowed classes (Groups I and II).

Owing to such conditions the obscuring effect which has been mentioned previously came into play, causing a deficiency in the rowed classes shown in Table 10. By referring to the individual families in Tables 30 and 31, it will be found that the deficiencies are cumulative. In Table 32 one F₃ progeny shows a deficiency in the Pi₁ Pi₂ Pi₂ class, whereas the next two classes are slightly in excess of the expected. As these two plus deviations are small, they are of little importance.

Table 9.—Summary of the Back-Choss Progenies Obtained by Crossing F_1 Plants With the Country Gentleman Parent

					-						
Back Cross No.	Number of progenies	Total	$\stackrel{Pi_1Pi_1}{Pi_2Pi_2}$	Pi ₁ Pi ₁ Pi ₂ pi 2	Pi ₁ pi ₁ Pi ₂ Pi ₂	Pipi Pipi	Pi,Pi, pi2pi2	Pi ₁ pi ₁ pi ₂ pi ₂	pi.pi. Pi.Pi.	piıpiı Piapia	piıpiı pi2pi2
1003	-	70				9.4		10		2	2
	1 6	1 -	:	:	:	1 6	:	2 4	:	21	2 4
1004.	71	C	:	:	:	38	::	43	:	10	43
1005	9	398	:	:	:	92	:	26	:	110	96 6
1018	23	212	:	:	:	51	:	49	:	55	57
Total	1	864	:	:	:	208	:	208		234	214
Expected	:	864	:	:	:	216	:	216	:	216	216
Deviation	:	:	:	_ :	:	∞	:	∞	:	18	-2
			$\chi^2 = 2.1111$.1111	P=	.5523					

Table 10.—Summary of the F3 Progenies From Self-Pollinated Pipipipip F2 Plants

Cross No.	Number of progenies	Total	Pi,Pi, Pi,Pi,	Pi.Pi. Pi2pi2	Pi ₁ pi ₁ Pi ₂ Pi ₂	Pipi Pipi	Pi ₁ Pi ₁ pi ₂ pi ₂	Piıpiı pispis	pi,pi, Pi2Pi2	pi pi Pispis	piıpiı pizpiz
1003 1005 1018	112	105 61 66		9 7	11 9 7	19 17 11	11 8	21 9 14	11 5 6	14 10 9	624
Total. Expected. Deviation.	4 : :	232	24 4 64	21 43.5 —22.5	27 29.0 -2.0	47 58.0 -11.0	23 14.5 8.5	44 29.0 15.0	22 14.5 7.5	33 29.0 4.0	15 14.5 .5
		+	$\chi^2 = 31.0516$.0516	P =	.0001					

Table 11.—Summary of the F1 Progenies From Self-Pollinated Pi,Pi,Pi,pi, F2 Plants

Cross No.	Number of progenies	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi1Pi1 Pi2pi2	Pipi Pi²Pi₃	Pi.pi. Pi.pi.	Pi.Pi. pizpiz	Pi.pi. pizpiz	pipi PiPi	pi.pi. Pi2pi2	piıpiı piapia
1004		59	4	4	:		15	:			
1010	c	46	16.	33	:	:	13	:	:	:	:
1010	7	103		5			28	:	:	:	:
Total	4	208	15	. 2			56	'			
Expected	:	208 208	15	156	:	:	52	:	-		
Deviation	:	:	1	4	:	:	4	:	:		
					1						

Deviation 4 ± 4.21 Dev. P.E. =

.95

Table 12.—Summary of the F1 Progenies From Self-Pollinated Pi1 pi1 Pi2 Pi2 F2 Plants

	:::
pipi PisPi	44 42.2 1.8
	:::
	:::
Pi.pi. Pi.Pi.	84.5 5.4.5
Pi ₁ Pi ₁ Pi ₂ Pi ₂	41 42.2 -1.2
Total	169
Number of progenies	ო : :
Cross No.	1015. Expected. Deviation.

Table 13.—Summary of the F₃ Progenies From Self-Pollinated Pi₁pi₁pi₂pi₂ F₂ Plants

Cross No.	Number of progenies	Total	Pi ₁ Pi ₁ pi ₂ pi ₂	Pi ₁ pi ₁ pi ₂ pi ₂	pi ₁ pi ₁ pi ₂ pi ₂
1003 1004 1005 1018	2 2 2 1	81 81 130 60	19 21 33 15	48 41 72 36	14 19 25 9
Total Expected Deviation	7 	352 352 	88 88 0	197 176 21	67 88 -21

 $\chi^2 = 7.5171$

P = .0240

Table 14.—Summary of the F_3 Progenies From Self-Pollinated $pi_1pi_1Pi_2pi_2$ F_2 Plants

Cross No.	Number of progenies	Total	pi ₁ pi ₁ Pi ₂ Pi ₂	pi ₁ pi ₁ Pi ₂ pi ₂	pi ₁ pi ₁ pi ₂ pi ₂
1004 1005 1018	3 1 3	214 57 235	60 13 60	97 31 112	57 13 63
Total Expected Deviation	7	506 506	133 126.5 6.5	240 253.0 -13.0	$133 \\ 126.5 \\ 6.5$

 $\chi^2 = 1.3360$

P = .5263

Table 15.—Summary of the F₃ Progenies From Homozygous F₂ Plants

Cross No.	Number of progenies	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi ₁ Pi ₁ pi ₂ pi ₂	pi ₁ pi ₁ Pi ₂ Pi ₂
1003 1004 1010	1 2 2	46 112 63	46 112 63		
1003 1004 1005	$\begin{smallmatrix}2\\1\\1\\2\end{smallmatrix}$	85 65 70 135		85 65 70 135	
1018 1006	1	87 76		87	76

Monohybrid ratios such as were obtained in the F_2 also appeared in the F_3 generation. The summaries of these segregations are given in Tables 11, 12, 13, and 14. In Tables 11, 12, and 14 the fit is fairly close to expectancy but in Table 13 the deviations are somewhat

Fig. 1.—The F₁ Progeny From a Cross Between Country Gentleman AND NARROW GRAIN EVERGREEN SWEET CORN The kernel arrangement shows that rowing is incompletely dominant.

- RESULTS OF CROSSES BETWEEN COUNTRY GENTLEMAN AND NARROW GRAIN EVERGREEN SWEET CORN SHOWN IN FIGS. 2 TO 9
- Fig. 2.—Distinctly rowed F₂ ears. The genetic composition is either Pi₁ Pi₂ Pi₂ Pi₂ or Pi₁ Pi₂ Pi₂ pi₂. This type has been designated as Group I.
- Fig. 3.—Less distinctly rowed F₂ ears with rows continuous. These form part of Group II. As the rowing is continuous, the genetic composition assigned is Pi₁ pi₁ Pi₂ Pi₂.
- Fig. 4.—Less distinctly rowed F₂ ears with rows not continuous. This type is less distinctly rowed than that shown in Fig. 2. It falls in Group II along with Fig. 3 but differs from Fig. 3 in that the rowing is not continuous. The assigned genetic composition is Pi₁ pi₂ Pi₂ pi₂.
- Fig. 5.—Intermediate F₂ ears. This type of F₂ segregate falls into Group III-A. The kernel arrangement is intermediate but more nearly rowed than zigzag. The rowing is continuous. The assigned genetic composition is Pi₁ Pi₁ pi₂ pi₂.
- Fig. 6.—Intermediate F₂ ears. This type also falls into Group III-A, but it differs from Fig. 5 in that the rowing is not continuous. The assigned genetic composition is Pi₁ pi₂ pi₂.
- Fig. 7.—Intermediate F₂ ears. This type belongs in Group III-B. The kernel arrangement differs from the types in Figs. 5 and 6 by being more nearly zigzag than rowed. The slight amount of rowing which appears is confined to butt or tip. The genetic composition is pi₁ pi₂ Pi₂.
- Fig. 8.—Intermediate F₂ ears. This type is also classified under Group III-B. It differs from Fig. 7 in the amount of rowing, only a slight trace appearing here. The genetic composition is pi₁ pi₂ Pi₂.
- Fig. 9.—Zigzag F_2 ears. This type has a true Country Gentleman zigzag arrangement of kernels and belongs in Group IV. The genetic composition is pi_1 pi_1 pi_2 pi_2 . The ear at the right shows no trace of rowing but that at the left is somewhat doubtful.

Table 16.—Classification of the Ears in Eight F2 Progenies From Cross 1003 (Pi.pi.Pi²Pi² X Pi,Pi.pi;pi²,

${ m F_2~Progeny} \ { m No.}$	F ₁ Parent genotype	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi ₁ Pi ₁ Pi ₂ pi ₂	Piıpiı Pi2Pi2	Piıpiı Pi2pi2	Pi ₁ Pi ₁ pi ₂ pi ₂	Piıpiı pizpiz	piıpiı Pi2Pi2	pirpir Pi2pi2	piıpiı pizpiz
1003-7 1003-9	Pi ₁ pi ₁ Pi ₂ pi ₂ (do.)		ដីដ	23.20	18 21	38 43	10	17	9	19	4.0
1003–12. 1003–21.	<u></u>		212	O =#	14 15	88	တတ	13.23	6.0	12	41
1003–25. 1003–27.	(do.) (do.)	56 143	∞ 4	∞ →	9	32	17	9 26	e 4	80°	19
1003–29	(do.)		3	3	17	31	9	11	10	13	9
Total.	:	838	124	-	92	209	65	117	61	116	54
Deviation.		000	- 3	3.1	-12.8	5	12.6	12.2	8.6	11.2	1.6
			$\chi^2 = 15.6457$	6457	P =	P = .0290					
1003-1. Expected	Pi ₁ Pi ₁ Pi ₂ pi ₂	243 243	178	179 182.2	: :	:::	64 60.8	:::	::	: :	• •
		Devi	Deviation = 3.2 ± 4.55	.2 ± 4.58	20	$\frac{\text{Dev.}}{\text{P.E.}} = .$.70				

TABLE IT CLARESTER ATTER OF THE BARE IN THERE E. PROTESS FROM CHOSS 1001 (PLACESSES)

I's the game.	frit fangend	Polar		Hills Paper	藍		E E	H	E.	蓝蓝	11
Department	211111111111111111111111111111111111111	33	(1)	229	357	454 454	23	SHEET SHEET	5-22-4 5-22-4	至20g 平60g 4次	12-
			1 7	N100'0 - 1	1	,61126					
thirt 3 Capacital	1764617446	55	### P	the thin don't see the see the see the see	887	SUA BAS ASS SUA BAS SUA SUA BAS SUA SUA BAS SUA	All for the sea of the	AD BU AND SHE BUY BUY BUY BUY BUY BUY BUY	#2°3	00 04 10 00 00 44 00 00 00 00 00 00	04 04 111 04 04 41 04 04 41
			1	5000	A	9909					
Hart III	11,111,111112	33		161 160 H	40° === 10° 00° 00° 00° 00° 00°	* ** ** ** ** ** **	86 20 20	20 to 10 to	the deal to the de	60 tol. 60 tol	the the
		Day	Daviation = .9 t 4.1	1 1 6		Duv. P.H. = .06	96				

F. Progray	ff, Parent	THE PLANE			超	11			超	蓝	
1005 18 1005 18 1005 21	PripitPops (do.) (do.)	222	SCR	253	995	#2.4 #2.4	252	333	231	725	ZZT
Total Expected	** ** ** ** ** **	MOD MID	22	221	20 20 24	88 80 80 80 80 80 80 80 80 80 80 80 80 8	99 I	0.00 1.00 0.1.	50.4 1.0	28°	285
			$N^4 = 2.4023$	4022	1	7020. =					
Gapented Gapented Deviation	Pigni PiePla	22 [22 23		186 184 5	===		===	22,1	:::	* * * *
). II 4.	0880	P > .0085	1000					

TAILE 19. CLARRIPHATON OF THE BARR IN TWO F. PROGENTER PROM CHORS 1006 (PLPLPLPLP), X plainings,

1		-					Contract Contract of				
F. Progeny	Fr Parent genetype	Total	=======================================		基础	蓝		H		超	盟
10005 1 14005 5	Pirth Pistus	<u>=</u> =		21	==	1 2	23	25			+0
Todal Espected Deviation	3 = 1	2887		688 688 888 888	95°	100 100 100	S-7	25=	22-	221	725
			FI = 1%	1020	1	7000.			-		

Table 20.—Classification of the Ears in Two F2 Progenies From Cross 1010 (pilpilpizpiz X PilPilPizPiz)

F ₂ Progeny No.	F ₁ Parent genotype	Total	$\left.\begin{array}{c} Pi_1Pi_1 \\ Pi_2Pi_2 \end{array}\right $	Pi ₁ Pi ₁ Pi ₂ pi ₂	Piıpiı Pi2Pi2	Piıpiı Pi2pi2	Pi ₁ Pi ₁ pi ₂ pi ₂	Pi ₁ pi ₁ pi ₂ pi ₂	pirpir Pi ₂ Pi ₂	piıpiı Pi2pi2	piıpiı pi2pi2
1010–2	$P_{i_1pi_1Pi_2pi_2} $ (do.)	139 156	23.23	25 25	16 25	33	8	15 21	10	18 21	11
Total Expected		295 295	ا صوت	50 55.3 —5.3	41 36.9 4.1	63 73.8 -10.8	20 18.4 1.6	36.9 1.9	21 18.4 2.6	39 36.9 2.1	25 18.4 6.6
			10111	100	4	2007					

P = .5927 $\chi^2 = 5.5595$

Table 21.—Classification of the Ears in Three F2 Progenies From Cross 1018 (Pi,Pi,Pi,Pi,Pi,X pi,pi,pi,2);

F ₂ Progeny No.	F ₁ Parent genotype	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi ₁ Pi ₁ Pi ₂ pi ₂	Pi ₁ pi ₁ Pi ₂ Pi ₂	Piıpiı Pi2pi2	Pi ₁ Pi ₁ pi ₂ pi ₂	Piıpiı pi2pi2	pipit Pi2Pi2	piıpiı Pi2pi2	piıpiı pi2pi2
1018-2. 1018-9. 1018-18.	$Pi_1pi_1Pi_2pi_2$ (do.) (do.)	232 178 .106	400	41 28 20	28 20 14	56 38 28	16 15 7	31 29 14	15 10 9	31 26 12	12 22
Total. Expected	: : :	516 516	& G]	89 96.8 -7.8	62 64.5 -2.5	122 129.0 -7.0	38 32.2 5.8	74 64.5 9.5	34 32.2 1.8	69 64.5 4.5	28 32.2 -4.2

P = .7185

F ₂ Progeny No.	F ₁ Parent genotype	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi ₁ Pi ₁ Pi ₂ pi ₂	Pirpir Pi ₂ Pi ₂	Pi ₁ pi ₁ Pi ₂ pi ₂	Pi ₁ Pi ₁ pi ₂ pi ₂	Piıpiı pizpiz	piıpiı Pi2Pi2	piıpiı Pi2piz	piıpiı pizpiz
1022-1 1022-2 1022-3 1022-4	Pi ₁ pi ₁ Pi ₂ pi ₂ (do.) (do.) (do.)	62 65 59 63	- HH-H	12 13 10	8778	12 12 16 16	4555	9 10 8	र ा १८ स	10 × ×	4004
Total. Expected. Deviation.	: : :	249 249	44,	46 46.7 7	$\begin{array}{c} 30 \\ 31.1 \\ -1.1 \end{array}$	53 62.2 -9.2	19 15.6 3.4	$\frac{34}{2.9}$	18 15.6 2.4	33 31.1 1.9	16 15.6 .4
			$\chi^2 = 2.9171$	9171	P =	P = .8912					
1022-5. Expected. Deviation.	$P_{i_1}p_{i_1}P_{i_2}P_{i_2}$	54 54	13 13.5 5	: : :	26 27.0 -1.0		: : :	: : :	15 13.5 1.5		
			$\chi^2 = .2222$	2222	P > .6065	.6065					

TABLE 23.—CLASSIFICATION OF THE EARS IN FOUR F. PROGENIES FROM CROSS 1015 (Pirpi, Pirpi, X Pi, Pi, Pi, Pi, Pi,

	piıpiı pizpiz			:	:		:	:		
	<u> </u>				_	1		_	-	
1512512)	piıpiı Pizpi			:	:		:	:		
12 A F11F1	pispis Pi2Pi2			09	77.7	64	146	141.8	4.2	-
FlipliFlzp	Pi1pi1 pi2pi2			:	:		:	:		
) CIOI SS	Pi,Pi, pi2pi2	48 47.8	05	:	:		:	:		
ROM CRO	Pipi Pipi		$\frac{\text{Dev.}}{\text{P.E.}} = .05$:	:		:	:		6065
CSINSSO	Pipii PigPig	::		123	42	118	283	283.5	6. –	P > .6065
OR FREE	Pi ₁ Pi ₁ Pi ₂ pi ₂	143 143.2	Deviation = .2 ± 4.04	:	:	:	:	:	• • • • • • • • • • • • • • • • • • • •	2271
ARS IN FC	Pi,Pi, Pi,Pi,	14	iation =	22	21	3	138	141.8	-3.8	$\chi^2 = .2271$
OF THE E	Total	191 191	Dev	240			267	267	:	
TABLE 25.—CLASSIFICATION OF THE EARS IN FOUR P. FROGENIES FROM CROSS 1010 (Fliphifishight)	F ₁ Parent genotype	Pi ₁ Pi ₁ Pi ₂ pi ₂		Pipi PizPiz	(do.)	(do.)	:	:	:	
TABLE 23.—(F ₂ Progeny No.	1015–1 Expected		1015-9.	1015-12	1015–19.	Total	Expected	Deviation	

Table 24.—Classification of the Ears in Two F2 Progenies From Cross 1002 (Pi₁Pi₁pi₂pi₂ X pi₁pi₁pi₂pi₂)

F ₂ Progeny No.	F ₁ Parent genotype	Total	Pi ₁ Pi ₁ pi ₂ pi ₂	Pi ₁ pi ₁ pi ₂ pi ₂	pi ₁ pi ₁ pi ₂ pi ₂
1002–4	Pi ₁ pi ₁ pi ₂ pi ₂ (do)	156 143	39 25	75 79	42 39
Fotal Expected Deviation		299 299	64 74.8 -10.8	154 149.5 4.5	81 74.8 6.2

 $\chi^2 = 2.2087$

P = .3377

Table 25.—Classification of the Ears in Five F₂ Progenies From Cross 1008 (pi₁pi₁pi₂pi₂ X Pi₁pi₁Pi₂pi₂)

F ₂ Progeny No.	F ₁ Parent genotype	Total	pi ₁ pi ₁ Pi ₂ Pi ₂	pi ₁ pi ₁ Pi ₂ pi ₂	pi ₁ pi ₁ pi ₂ pi ₂
1008-5	pi ₁ pi ₁ Pi ₂ pi ₂	135	34	72	29
1008-9	(do.)	160	44	76	40
1008-14	(do.)	156	. 38	79	39
1008–15	(do.)	162	38	85	39
1008-16	(do.)	71	19	37	. 15
Total		684	173	349	162
Expected		684	171	342	171
Deviation			2	7	-9

 $\chi^2 = .6404$

P> .6065

Table 26.—Classification of the Ears in a Progent Obtained From a Back Cross Between an F_1 Plant of Cross 1003 and Country Gentleman

Back cross progeny No.	Total	$\begin{array}{c c} Pi_1pi_1 \\ Pi_2pi_2 \end{array}$	Pi ₁ pi ₁ pi ₂ pi ₂	pi ₁ pi ₁ Pi ₂ pi ₂	pi ₁ pi ₁ pi ₂ pi ₂
1003B	79	24	19	18	18
Expected	79	19.8	19.8	19.8	19.8
Deviation		4.2	8	-1.8	-1.8

 $\chi^2 = 1.2504$ P = .7440

Table 27.—Classification of the Ears in Two Progenies Obtained From Back Crosses Between F_1 Plants of Cross 1004 AND COUNTRY GENTLEMAN

Back cross	Total	Pi ₁ pi ₁			
progeny No.		Pi ₂ pi ₂			
1004C	85	17	20	25	23
1004D	90	21	23	26	20
Total	175	38	43	51	43
Expected	175	43.8	43.8	43.8	43.8
Deviation		-5.8	8	7.2	8

 $\chi^2 = 1.9808$

Table 28.—Classification of the Ears in Six Progenies Obtained From Back Crosses Between F_1 Plants of Cross 1005 and Country Gentleman

Back cross	Total	Pispis	Piopia	pi ₁ pi ₁	piąpią
progeny No.		Pispis	piopia	Pi ₂ pi ₂	piępią
1005A	60	15	15	1 4	16
1005B	10t2	23	29	30	20
1005C	73 51	24	20	16 19	13 16
1005E	86	18	19	26	23
1005F	26	8	5	5	8
Total Expected Deviation	398 398	95 99.5 -4 .5	97 99.5 -2.5	110 99.5 10.5	95 99.5 -3.5

 $\chi^2 = 1.4974$

P = .6874

Table 29.—Classification of the Ears in Two Progenies Obtained From Back Crosses Between F1 Plants of Cross 1018

and Country Gentleman

Back cross progeny No.	Total-	Piapia Piapia	Piapia piepie	pi.pi. Pi.pi.	pi.pi.
101SB	124 88	28 23	31 18	35 20	30 27
Total Expected Deviation	212 212	51 53.0 -2.0	49 53.0 -4.0	55 53.0 2.0	57 53.0 4.0

 $\chi^2 = .7548$

P > .6065

larger. The data show that the genetic composition of the F₂ parents can be best explained on the basis of the two-factor hypothesis. The behavior of the individual F₂ progenies is shown as follows:

For the segregation of:

Pi, Pi, Pi, pi,: Tables 32, 33, and 34

Pi, pi, Pi, Pi,: Table 35

Pi, pi, pi, pi, : Tables 30, 31, 32, and 33 pi, pi, Pi, pi, : Tables 31, 32, and 33

On the basis of the two-factor hypothesis there would be expected to be, in addition to the two parental types, two homozygous types. Pi, Pi, pi, pi, and pi, pi, Pi, Pi, both intermediate for kernel arrangement. This is confirmed by the data in Table 15. Seven progenies arising from selfed F, plants produced only ears of the Pi, Pi, pi, pi, type. One other progeny so obtained produced only ears of the pi, pi, Pi, Pi, type.

Rowing in Relation to Plant Characters

Comparisons between strains of Country Gentleman and Narrow Grain Evergreen sweet own selfed for five successive years, indicate

1929]

TABLE 30. - CLABBIFFICATION OF THE BARB IN SBVBN P. PROGRIEB FROM CROSS 1003 (Phph.Ph.Ph. X. Ph.Phph.ph.)

l's Prograsy Nas.	F _g Parent genotypo	Total	ZZ.	Pip	Pipi	11 11	Pi.Pi.	Tag Tag	ia.	Pipi Pipi	
1003 7 5	Phph Plapia (do.)	523		410	100	# 9	96	9=	20	0.0	67
Potat Expediet		105	I	9.7 10.7 10.7	======================================	185	11 0.6 4.4	121 121.1	104 04	45 48 1.0	99 998
			$\chi^{8} = 19,0921$	1,0021	P	1900.					
1003-7-2	Piphplapia (do.)	85		00 00 00 00 00 00 00 00			93	22.8		00 an 00 00 00 00	-20
Potal Expedied	00 00 00 00 00 00 00 00 00	ZZ :	60 ep 60	er to 60 en 64 en 60 en en		00 00 00 00 00 00 00 00 00	287	45 45 75 56		20 20 00 00 00 10 00 00 00 00	#8°
			* = 4×	$\chi^4 = 3.3632$	4	. 1012					
1003 7 -1 1003 7 -4	3 3	391	19	00 00 00 00 00 00			89	1 1 1	en en en en en en 10 en	60 60 00 00 00 00	00 00 00 00 00 00
TIMES / CO. S.	Stall to I to I	-0	-	1111	1111	1111	20	1111	1111	1111	

Table 31.—Classification of the Ears in Six F3 Progenies From Cross 1018 (Pi,Pi,Pi,Pi,Pi,Pi,pi,pi,pi,

F. Progeny No.	F_2 Parent genotype	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi,Pi, Pi2pi2	Pi ₁ pi ₁ Pi ₂ Pi ₂	Piıpiı Pi2pi2	Pi ₁ Pi ₁ pi ₂ pi ₂	Piıpiı pi2pi2	pirpir Pi2Pi2	piıpiı Pi2pi2	piıpiı pizpiz
1018-9-1. Expected.	$Pi_1pi_1Pi_2pi_2$	66 66 	7 12.4 —5.4	4.4.	8.2 -1.2	11 16.5 —5.5	8 4.1 3.9	14 8.2 5.8	6 4.1 1.9	9.8 5.8	44.1 1.1.
			$\chi^2 = 13.1336$.1336	P =	P = .0693					
1018-9-2. Expected.	Pi ₁ pi1pi2pi2	09		:::	:::		15 0	9809			159 16
	•		$\chi^2 = 3.6000$	0009	P =	P = .1704					
1018–2–2 1018–9–3 1018–9–4	piıpiıPi2piz (do.) (do.)	57 97 81		:::	:::	:::		:::	14 27 19	27 · 44 44	16 26 21
Total. Expected Deviation.	: : :	235			:::	:::	:::	:::	60 58.8 1.2	112 117.5 -5.5	63 4.2 4.2
			$\chi^2 =$	$\chi^2 = .5819$	P >	P > .6065					
1018-2-1	Pi ₁ Pi ₁ pi ₂ pi ₂	87		:	•		87		-	:	

Table 32.—Classification of the Ears in Six F₃ Progenies From Cross 1005 (Pi.Pi,Pi,Pi,Z pi,pi,Pi,pi₂)

F ₃ Progeny No.	F ₂ Parent genotype	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi ₁ Pi ₁ Pi ₂ pi ₂	Pi ₁ pi ₁ Pi ₂ Pi ₂	Piıpiı Pi2piz	. Pi ₁ Pi ₁ pi ₂ pi ₂	Piıpiı pi2pi2	piıpiı Pi2Pi2	piıpiı Pi2pi2	piıpiı pi2piz
1005-18-1. Expected.	PiıpiıPi2pi2	61 61 	11.4 -6.4	4.4.	9 7.6 1.4	17 15.2 1.8	8.8 2.	9 7.6 1.4	3.8 1.2	10 7.6 2.4	3.8 -1.8
		•	$\chi^2 = 6.$	= 6.3219	P =	.5041					
1005–18–3	Pi ₁ Pi ₁ Pi ₂ pi ₂	46 46	33 34.5	.5.		: :	13	' : :			
		Devi	Deviation = 1.5 ± 1.98	$.5\pm1.98$		$\frac{\text{Dev.}}{\text{P.E.}} = .76$	76				
1005-2-3	Pipipipi	61 69		::		: :	16 17	35 37			10 15
Total. Expected	· · · · · · · · · · · · · · · · · · ·	130 130		:::	: : :		33 32.5 .5	72 65.0 7.0			25 32.5 -7.5
			$\chi^2 = 2.4923$	4923	P =	.2966			,		
1005-2-1 Expected Deviation	pi.pi.Pi2pi2	57					::::		13 14.2 -1.2	31 28.5 2.5	13 14.2 -1.2
			$x^2 = .4221$	4221	P > .6065	.6065					
1005-2-2	$\mathrm{Pi}_1\mathrm{Pi}_1\mathrm{pi}_2\mathrm{pi}_2$	70					70				

Table 33.—Classification of the Ears in Nine F3 Progenies From Cross 1004 (Pipi,Pippi, X Pi,Pi,Pi,Pi,Pi,Pi,Pi

F ₃ Progeny No.	F ₂ Parent genotype	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi ₁ Pi ₁ Pi ₂ pi ₂	Pirpir Pi ₂ Pi ₂	Piıpiı Pi2pi	Pi ₁ Pi ₁ pi ₂ pi ₂	Piıpiı pi2pi2	piıpiı Pi ₂ Pi	pirpir Pizpiz	piıpiı pi2pi2
1004–15–1	Piıpiıpi2pi2 (do.)	49		: :	: :	: :	12 9	25 16	: :	::	. 12
Total	: : :	81 81 :	::::		: : :	' i i i	20.2 .8	41 40.5			19 20.2 -1.2
			χ ₂ =	.1092	P>	.6065					
1004–15–3 1004–15–4	pi ₁ pi ₁ Pi ₂ pi ₂ (do.) (do.)	63 85	:::			:::	: : :	: : :	12 24 24	31 27 39	20 15 22
Total	: : :	214 214 	:::			: : :	: : :	: : :	60 53.5 6.5	97 107.0 -10.0	57 53.5 3.5
			$\chi^2 = 1.9533$.9533	P =	.3790					
1004–10–4 Expected	Pi ₁ Pi ₁ Pi ₂ pi ₂	59 59	44	44 44.2	:::		15 14.8	::	: :	::	
		Dev	Deviation = $.2 \pm 2.24$	$.2\pm2.24$		$\frac{Dev.}{P.E.} = .09$	60				
1004-10-1. 1004-10-2.	Pi,Pi,Pi,Pi2Pi2 (do.) Pi,Pi,pi,pi	76 36 65	76 36	::	::			::	: :	::	: :
	z riz ribiziona	3					3				

Table 34.—Classification of the Ears in Four F3 Progenies From Cross 1010 (pilpipizpiz X PilPiPizPiz)

F ₃ Progeny No.	F ₂ Parent genotype	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi ₁ Pi ₁ Pi ₂ pi ₂	Piıpiı Pi2Pi2	Pi ₁ pi ₁ Pi ₂ pi ₂	Pi ₁ Pi ₁ pi ₂ pi ₂	Piıpiı pizpiz	piıpiı Pi2Pi2	pi pi Pizpiz	piıpiı pi2piz
1010-2-3	Pi ₁ Pi ₁ Pi ₂ pi ₂ (do.)	51 52	. co co	36 39	: :	: :	15 13				
Total Expected	• •	103	7.7	75 77.2		::	28 25.8	::	::	: :	: :
		Devi	ation = 2	Deviation = 2.2 ± 2.96		$\frac{\text{Dev.}}{\text{P.E.}} = .74$	74	•		-1-	
1010-2-1	$Pi_1Pi_1Pi_2Pi_2$ (do.)	45 18	45 18	::	::	: :	: :	::	::	::	

Table 35.—Classification of the Ears in Three F3 Progenies From Cross 1015 (Pipi, Pi2pi2 X Pi1Pi1Pi2Pi3)

F ₃ Progeny No.	F ₂ Parent genotype	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi ₁ Pi ₁ Pi ₂ pi ₂	Pirpi Pi ₂ Pi ₂	Piıpiı Pi2pi2	Pi ₁ Pi ₁ pi ₂ pi ₂	Piıpiı pizpiz	piıpiı Pi2Pi2	piıpiı Pi2pi2	piıpiı pizpiz
1015-19-1. 1015-19-2. 1015-19-3.	Pi ₁ pi ₁ Pi ₂ Pi ₂ (do.) (do.)	47 69 53	12 17 12		28 23		: : :		12 19 13		: : :
Total. Expected Deviation	: : :	169	41 42.2 -1.2	: : :	84 84.5 1.5				44 42.2 1.8		

Table 36.—Classification of the Ears in Three F3 Progenies From Cross 1006 (Pi,Pi,Pi,Pi,Pi,X pi,pi,pi;pi,s)

F ₃ Progeny No.	F_2 Parent genotype	Total	Pi ₁ Pi ₁ Pi ₂ Pi ₂	Pi ₁ Pi ₁ Pi ₂ pi ₂	Pipii Pipii	Pi ₁ pi ₁ Pi ₂ pi ₂	Pi ₁ Pi ₁ pi ₂ pi ₂	Piıpiı pi2pi2	piıpiı Pi2Pi2	piıpiı Pizpiz	piıpiı pizpiz
1006-1-3 1006-1-4	Pi ₁ Pi ₁ pi ₂ pi ₂ pi ₁ pi ₁ Pi ₂ Pi ₂	65 76	::	::	::		65	::	7.6	::	::
-1-00T	F1.F1.D1.D1.	₹					=				

1929]

that the latter, as a rule, produce more vigorous seedlings and larger plants altho the average number of days to maturity is about the same. Hybrids grown from crosses between selfed strains of Country Gentleman and Narrow Grain Evergreen are usually more vigorous than Country Gentleman intravarietal crosses. On the other hand, crosses between Narrow Grain Evergreen selfed strains are more vigorous than either. Repeated observations of this kind indicate that the rowed arrangement of kernels is associated with more vigorous growth and larger gross yields than the zigzag arrangement. It is not improbable, therefore, that the double recessive, zigzag kernel arrangement is associated with one or more plant characters which may segregate in a like manner.

PRACTICAL ASPECTS OF THE INHERITANCE OF ROWING

The inheritance of rowing is of particular interest to the breeder of Country Gentleman sweet corn. Since the zigzag character is a double recessive, a considerable percentage of rowed ears is bound to reappear each year in open-pollinated cultures. Most of these rowed ears will probably fall within Class III-B and a few possibly within Class III-A in cultures which have been carefully selected for a number of years. In commercial strains the range of segregation will usually be much wider.

It is very doubtful whether the breeder is justified in selecting only individuals of the pi₁ pi₂ pi₂ phenotype. If the true zigzag arrangement is unduly emphasized, there is a possibility of reducing yields thru the inbreeding effect of close selection. The presence of phenotypes of pi₁ pi₂ Pi₂ and pi₁ pi₁ Pi₂ pi₂ composition is not objectionable from the commercial viewpoint. It is barely possible that all ears falling within Groups III and IV might be shelled together advantageously thus maintaining the culture in a heterozygous condition. Altho the evidence available is inconclusive, nevertheless the slight amount of rowing thus introduced may be associated with increased plant growth and better seedling vigor.

For the breeder of rowed varieties of sweet corn, the elimination of all but slight irregularities in rowing is a relatively simple matter owing to the incomplete dominance of rowing. It is probable that in spite of continued selection such genotypes as Pi₁ Pi₂ Pi₂ pi₂ and Pi₁ pi₁ Pi₂ Pi₂ will persist, but their presence does not detract from the value of the strain.

SUMMARY AND CONCLUSIONS

- 1. The rowed kernel arrangement in sweet corn is incompletely dominant over the zigzag arrangement, as shown by F, progenies.
- 2. Dihybrid segregations into eight classes in the F₂ generation establish the presence of two factors for rowing, Pi₁ and Pi₂.
- 3. This hypothesis is supported by monohybrid segregations in the F_2 and F_3 generations, of which no single progeny included both the distinctly rowed and the zigzag types.
- 4. Back crosses to the zigzag parent segregated into 1 Pi₁ pi₂ Pi₂ pi₂: 1 Pi₁ pi₁ pi₂ pi₂: 1 pi₁ pi₂ pi₂: 1 pi₁ pi₂ pi₂: 1 pi₁ pi₂ pi₂.
- 5. Certain F₃ progenies proved homozygous for the intermediate types Pi₁ Pi₁ pi₂ pi₂ and pi₁ pi₁ Pi₂ Pi₂.

LITERATURE CITED

- East, E. M., and Hayes, H. K. Inheritance in maize. Conn. Agr. Exp. Sta. Bul. 167, 1-142. 1911.
- EMERSON, R. A. The inheritance of certain "abnormalities" in maize. Rpt. Amer. Breeders Assoc. 8, 385-399. 1912.
- HALSTED, BYRON D., AND OWEN, EARL J. Report of the botanist. 27th Ann. Rpt. N. J. State Agr. Exp. Sta. 369-514. 1906.
- Kempton, J. H. Floral abnormalities in maize. U. S. Dept. Agr. Bur. Plant Indus. Bul. 278. 1913.
- Pearson, Karl. Tables for statisticians and biometricians. Cambridge, England. 1914.
- STEWART, ALBAN. The pistillate spikelet in Zea mays. Science, n. s. 42, 694. 1915.
- STRATTON, MILDRED E. The morphology of the double kernel in Zea mays var. polysperma. Cornell Univ. Agr. Exp. Sta. Mem. 69, 1-18. 1923.
- Weatherwax, Paul. Morphology of the flowers of Zea mays. Torrey Bot. Club. Bul. 43, 127-144. 1916.
- Weatherwax, Paul. The morphological basis of some experimental work with maize. Amer. Nat. 53, 269-272. 1919.

UNIVERSITY OF ILLINOIS-URBANA Q. 630.71L6B BULLETIN. URBANA 313-323 1929

3 0112 019529160