

Visualization of Scalar Fields

Scientific Visualization – Summer Semester 2021

Jun.-Prof. Dr. Michael Krone

Contents

- Basic strategies
- Function plots and height fields
- Isolines
- Color coding
- Volume visualization (overview)
- Classification
- Segmentation
- Volumetric illumination

Focus: Second step of visualization pipeline

Visualization of Scalar Fields – Basic Strategies

Visualization of 1D, 2D, or 3D scalar fields

- 1D scalar field: $\Omega \subset \mathbb{R} \to \mathbb{R}$
- 2D scalar field: $\Omega \subset \mathbb{R}^2 \to \mathbb{R}$
- 3D scalar field: $\Omega \subset \mathbb{R}^3 \to \mathbb{R}$ \to Volume visualization

Visualization of Scalar Fields – Basic Strategies

- Mapping to geometry
 - Function plots
 - Height fields
 - Isolines and isosurfaces
- Color coding
- Specific techniques for 3D data
 - Indirect volume visualization
 - Direct volume visualization
 - Slicing
- Visualization method depends heavily on dimensionality of domain

Function Plots & Height Fields

- Function plot for a 1D scalar field
 - Points $\{(s, f(s)) | s \in \mathbb{R}\}$
 - 1D manifold: line
 - Error bars possible

Function Plots & Height Fields

- Function plot for a 2D scalar field
 - Points $\{(s, t, f(s, t)) | (s, t) \in \mathbb{R}^2\}$
 - 2D manifold: surface
- Surface representations
 - Wireframe
 - Hidden lines
 - Shaded surface

Terrain Rendering

Function Plots

Isolines / Contours

- Visualization of 2D scalar fields
- Given a scalar function and a scalar (iso)value
- Isoline consists of points $\{(x,y)|f(x,y)=c\}$
- If f() is differentiable and $grad(f) \neq 0$, then isolines are curves
- Contour lines

 Given a scalar function $f:\Omega\to\mathbb{R}$ and a scalar (iso)value $c \in \mathbb{R}$

 Isoline consists of points $\{(x,y)|f(x,y)=c\}$

Contour lines

 $f:\Omega\to\mathbb{R}$

 $c \in \mathbb{R}$

Isolines: Pixel-by-Pixel Contouring

- Straightforward approach: scan all pixels for equivalence with isovalue
- Input
 - $f:(1,...,x_{max})\times(1,...,y_{max})\to\mathbb{R}$
 - Isovalues c_1, \dots, c_n and isocolors w_1, \dots, w_n
- Algorithm:

```
for all (x,y) \in (1,...,x_{max}) \times (1,...,y_{max}) do for all k \in \{1,...,n\} do if |f(x,y)-c_k| < \epsilon then draw(x,y,w,k)
```

• **Problem:** Isoline can be missed if the gradient of f() is too large (despite range ε), or can be too wide if the gradient is too small

Contours

- Contours: $\{x \in \mathbb{R}^n | f(x) = c\}$
 - Closed (including boundaries), orientable, non-intersecting manifolds
- Isolines (n=2), Isosurfaces (n=3)
- Fast approach for cartesian/rectilinear grids using lookup table:
 - Cell-based approach (contour segments for each cell separately)
 - Lookup table provides part of contour (connectivity) for each cell
 - Marching Squares (n=2), Marching Cubes (n=3)
 - Also applicable to curvilinear/structured grids (quadrilaterals, hexahedra)
 - Using local coordinates
 - Other variants for unstructured grids

- Marching Squares
 - Scalar values are given at each node $f \leftrightarrow f_{ij}$
 - Take into account the interpolation within cells
 - Isolines cannot be missed
 - Cells are processed independently of each other

Which cells will be intersected?

- +
 - ____
- Initially mark all nodes by + or , depending on the conditions $f_{ij} \ge c_{ij} f_{ij} < c_{ij}$
- No isoline segments inside cells that have same sign at all nodes
 - So we only have to determine the cells with different signs
 - Use look-up table for respective case, depending on marked nodes
 - Find exact position of intersection on edge by linear interpolation

Isolines: Degenerate Cases

Contour levels:

--- 4? --- 6-ε --- 8-ε --- 8+ε

- 2 types of degeneracies
 - Isolated points (c=6)
 - Two possible solutions
 - Flat regions (c=8)
 - **Solution:** perturbation
 - If node value = c use c-ε

Isolines – Efficient Implementation

- Construct a binary number (4 bits = 16 cases) from signs at 4 nodes
 - Use a precomputed lookup table (array of 16 cases telling how to connect edge intersections)
- Symmetries: rotation, reflection, change + ↔ -
 - Only 4 different cases (classes) of combinations of signs
- Based on information from lookup table, compute exact intersections between isoline and cell edges using linear interpolation

- We can distinguish the ambiguous cases by a decider
- Asymptotic decider
 - Consider the bilinear interpolant within a cell
 - The true isolines within a cell are hyperbolas

Interpolate the function bilinearly

$$f(x,y) = f_{i,j}(1-x)(1-y) + f_{i+1,j}x(1-y) + f_{i,j+1}(1-x)y + f_{i+1,j+1}xy$$

$$f(x,y) = Axy + Bx + Cy + D$$

If A=0, contour equation is:

$$c = Bx + Cy + D$$

- → contours are straight lines
- If A≠0, contour equation is:

$$c = A(x + \frac{C}{A})(y + \frac{B}{A}) + D - \frac{BC}{A}$$

 \rightarrow contours are hyperbola except for special level $c = D - \frac{BC}{A}$

Contour equation for this special level:

$$0 = A\left(x + \frac{C}{A}\right)\left(y + \frac{B}{A}\right)$$

- \rightarrow contours are axis-aligned straight lines $x = -\frac{C}{A}$ and $y = -\frac{B}{A}$
- $D \frac{BC}{A}$ is value at intersection of asymptotes (saddle point)
- Example
 - Contour equation:

$$c = -10(x - 0.3)(y - 0.5) + 4.5$$

- Special level c = 4.5
- Saddle point at (0.3, 0.5)

• If $D - \frac{BC}{A} > c$ we choose the left case, otherwise we choose the right one

• Explicit transformation of f() to

$$f(x,y) = A(x + \frac{C}{A})(y + \frac{B}{A}) + D - \frac{BC}{A}$$

can be avoided

- **Idea:** investigate order of intersection points either along x or y axis
 - Build pairs of first two and last two intersections

Color Coding

Color Coding

- Easy to apply to 1D and 2D scalar fields
 - Map color to each pixel on 1D or 2D image
- **Example:** Transfer function (recapitulation of last chapter)
 - Linear transfer function for color coding
 - Specify colors for f_{min} and $f_{max} \rightarrow (R_{min}, G_{min}, B_{min})$ and $(R_{max}, G_{max}, B_{max})$
 - Linearly interpolate between them:

$$f \to \frac{f_{max} - f}{f_{max} - f_{min}}(R_{min}, G_{min}, B_{min}) + \frac{f - f_{min}}{f_{max} - f_{min}}(R_{max}, G_{max}, B_{max})$$

Color Coding

- Example
 - Special color table to visualize the brain tissue
 - Special color table to visualize the bone structure

Brain

Tissue

Scalar volume data

$$\Omega \subset \mathbb{R}^3 \to \mathbb{R}$$

• **Example:** Medical Imaging (CT, MRI, confocal microscopy, ultrasound, etc.)

Representation of scalar 3D data set

$$\Omega \subset \mathbb{R}^3 \to \mathbb{R}$$

- Cell-based:
 - Values are constant within a region around a grid point
- Node-based (dual grid):
 - Values between grid points are obtained by interpolation

- Challenges
 - Essential information "hidden" in the interior
 - Occlusion?
 - Often data sets cannot be described by geometric (surface) representation
 - → fire, clouds, gaseous phenomena,...

- Volume rendering approaches
 - Techniques for 2D scalar fields
 - Transform 3D data set to 2D
 - Then apply 2D methods
 - Indirect volume rendering techniques (e.g. isosurfaces, surface fitting)
 - Convert/reduce volume data to an intermediate representation (surface representation), which can be rendered with traditional techniques
 - Direct Volume Rendering
 - Consider the data as a semi-transparent gel with physical properties and directly get a 3D representation of it

- Slicing:
 Display the volume data, mapped to colors, on a slice plane
- **Isosurfacing:**Generate opaque/semi-opaque surfaces
- Transparency effects:
 Volume material attenuates reflected or emitted light

- 2D approach: Orthogonal slicing
 - Interactively resample the data on slices perpendicular to x-,y-,z-axis
 - Use visualization techniques for 2D scalar fields
 - Color coding
 - Isolines
 - Height fields

CT data set

- Alternative: Oblique slicing (MPR, multiplanar reformation)
 - Resample the data on arbitrarily oriented slices
 - Resampling on CPU or on graphics hardware (trilinear interpolation)
 - Exploit 3D texture mapping functionality
 - Store volume in 3D texture
 - Compute sectional polygon (clip plane with volume bounding box)
 - Render textured polygon

- Goals and issues:
 - Empowers user to select "structures"
 - Extract important features of the data set
 - Classification is non-trivial
 - Histogram can be a useful hint
- Usually needed for volume visualization
- Standard approach: Transfer function
 - Color table for volume visualization
 - Maps raw voxel value to presentable entities: color, intensity, opacity, etc.
 - Often requires interactive manipulation of transfer function

- Most widely used approach for transfer functions:
 - Assign to each scalar value a different color value and opacity
 - Assignment via transfer function T

 $T: scalarvalue \rightarrow colorvalue$

- Common choice for color representation: RGBA
- Alpha value is very important, describes opacity
 - A=0.0: fully transparent; A=1.0: opaque
- Can be stored inside a color lookup table (LUT)
- On-the-fly update of LUT

Heuristic approach, based on measurements of many data sets

- Hounsfield units (HU) for CT data sets
 - Describes x-ray attenuation, i.e., density of material
 - 12-bit CT-measurements
 - Range of values from -1024 to +3071 HU
 - Typical values:
 - Air: -1024
 - Fat: -100 to -20
 - Water: 0
 - Soft tissue such as muscle: +20 to +80
 - Bone: > +500
 - For visualization, 12 bits are often reduced to 8 bits by windowing (loss of dynamic range)

Sir Godfrey N. Hounsfield (1919 – 2004)

→ 1979 Nobel Prize for Medicine (together with A. M. Cormack for developing X-ray CT)

- Pre-shading
 - Assign color values to original function values
 - Interpolate between color values
- Post-shading
 - Interpolate between scalar values
 - Assign color values to interpolated scalar values

- Regions of "change" (boundaries) are often most important
- Feature extraction High value of opacity in regions of change
 - Homogeneous regions less interesting transparent
- Surface "strength" depends on gradient
- Gradient of the scalar field is taken into account

- Scalar value and gradient of the scalar field in a transfer function to emphasize isosurfaces [Levoy 1988]
- Achieves "isosurfaces" of constant width
- 2D transfer function

- Multidimensional transfer functions [Kindlmann & Durkin 98], [Kniss, Kindlmann, Hansen 01]
- Problem: How to identify boundary regions/surfaces
- Approach: 2D/3D transfer functions, depending on
 - Scalar value and magnitude of the gradient
 - Possibly also second derivative along the gradient direction

Multidimensional transfer functions

- Multidimensional transfer functions
- Extraction of two boundaries
- Triangle function in histogram

Segmentation

- Different features with same value
 - Example CT: different organs have similar X-ray absorption
 - Classification cannot be distinguished
- Label voxels indicating a type
- Segmentation = pre-processing
- Semi-automatic process

Segmentation

Anatomic atlas

- Illumination:
 - Simulate reflection of light
 - Simulate effect on color
- We want to make use of the human visual system's ability to efficiently deal with illuminated objects (shape perception)

- Phong illumination model
 - Ambient light + diffuse light + specular light

$$k_a = 0.1$$

 $k_d = 0.5$
 $k_s = 0.4$

- What is the normal vector in a scalar field?
- Use the gradient!
- Gradient is perpendicular to isosurface (direction of largest change)

Central differences

- Numerical computation of the gradient:
 - Central difference
 - Intermediate difference (forward/backward difference)
 - Sobel operator (3×3 kernel for each partial derivative)

Intermediate differences

Central differences

Computation:

$$G_{x} = V_{x+1,y,z} - V_{x-1,y,z}$$

$$G_{y} = V_{x,y+1,z} - V_{x,y-1,z}$$

$$G_{z} = V_{x,y,z+1} - V_{x,y,z-1}$$

- Convolution kernel: [-1 0 1]
- High-pass filter
- Not isotropic; length is 1 to sqrt(3)
- Needs normalization

- Intermediate difference (forward / backward)
 - Convolution kernel: [-1 1]
 - Very cheap
 - Noisy data → lower quality
 - Also not isotropic
- Sobel operator
 - Nearly isotropic
 - Rather expensive (multiple multiplications and summations)

partial derivative along the <i>x</i> -axis	ext slice	this z-slice			prev. slice			
	0 1	$\begin{bmatrix} -2 \end{bmatrix}$	3]	0	$\begin{bmatrix} -3 \end{bmatrix}$	1]		$\begin{bmatrix} -1 \end{bmatrix}$
(other axes by rotation)	0 3		6	0	-6	3	0	-3
	() 11	l—í	31	()	1-3	11	()	1-1

Focus: Second step of visualization pipeline

NEXT CHAPTER:

Direct Volume Visualization

