

INF 638 Cryptography & Cryptosystems

Class 1: Motivation & Definitions

Dr. Bertrand Cambou

Professor of Practice NAU, Cybersecurity
School of Informatics, Computing, and Cyber-Systems
Bertrand.cambou@nau.edu

Cybersecurity

☐ INF 638: Cryptography & Cryptosystems

☐ INF 639: *Use of nanotechnologies*

Grading INF633B-CS599 Spring 2018

Assignment			Grade Weight %
Attendance (no miss: 100%) miss 1 week:		75%	15%
	miss 2 weeks:	50%	
	miss 3 weeks:	25%	
	miss 4 weeks:	0%	
In class assignments	participate, very active:	100%	15%
	Do not participate:	0%	
Homework assignments	High quality work; >90%:	100%	15%
	Quality work; >70%:	75%	
	Poor quality; <70%	0-50%	
Research project #1:	Demonstrate understa	anding of the basic concepts	15%
Research project #2:	Demonstrate understa	anding of the advanced concepts	15%
Research project #3:	Demonstrate ability to	implement and generalize	15%
Final report:	Ability to offer synthet	tic view	10%

INF 638: Cryptography & Cryptosystems

•	1- Motivation & Definitions	
*	2- Elements of Number theory	M
*	3- Early Cryptographic methods	
*	4- Symmetrical Cryptography: DES	
*	5- Symmetrical Cryptography: AES	M
*	6- Quantum Cryptography: Key distribution	
*	7- Elements of Asymmetrical Cryptography	
*	8- Asymmetrical Cryptography: RSA	M
*	9- ECC Key Distribution	M
*	10- PKI & Digital Signatures	
*	11- Hash Functions	

♦ 12- Smartcards

Motivation & Definitions

- 1-1 Motivation for the course
- 1-2 Definitions in cryptography
- 1-3 Symmetrical cryptography
- 1-4 Asymmetrical cryptography
- 1-5 Stream ciphers and block ciphers

Cybersecurity at NAU

- >Start date: August 2015 as part of the Electrical Engineering Department
- ➤ Start up funds: Dr. Cheng approved a fund of \$800,000 in November 2015
- ➤ ABOR: Arizona board of Regent approved a \$1,00,000 tri-university research program from May 2016 to Dec 2018: "Use of nanotechnologies for end-to-end cybersecurity solutions"
- ➤ <u>Graduate class INF633</u> "topics in cybersecurity use of nanotechnology for cryptography". Start teaching fall 2016.
- The cybersecurity lab opening as part of the newly created school of Informatics, Computing, and Cyber Systems in August 2016. Equipment delivered from Dec 2016 to Oct 2017

Cybersecurity at NAU

- ➤ The US Air Force funded a \$500,000 research program from April 2017 to Jan 2018: "Benchmarking of ternary computing for information Insurance"
- ➤ Graduate class INF 633 "topic in cybersecurity" separated into two classes:
 - ➤INF633/CS599: Elements of cryptography → INF 638 (fall)
 - ➤INF633/EE599: Nanoelectronics for cybersecurity → INF 639 (spring)
- **▶ BRIDG inc.** approved a \$50,000 research program: *study CBRAM for cybersecurity*
- ➤ National Science Fundation: approval of a research program in Aug 2018: \$750,000 over 3 years
- >Active publications: 15 technical papers, 25 disclosures, 3 patent granted
- ➤ 5 industrial partners signed NDA & licensing agreements

Why is it so difficult to block cyberattacks?

Learning from past breaches will not prevent future breaches

- As much as one million new malware born everyday
- "Worms" can be dormant years before activation

Most cybersecurity solutions fix past breaches, not new ones

- Assume that breaches are due to lack of training, or policy breaches
- Antivirus, firewall, machine learning are all based on past breaches

Quantum computers will challenge cryptography

- Modern cryptography based on mathematics is vulnerable to QC

Why nanomaterials?

Micro-electronic components are now using nanomaterials

 $1\mu m~(10^{-6}m)$ geometry in the early 90's \Rightarrow 10nm $(10^{-6}m)$ now \Rightarrow 1nm expected in 2027 1nm represents about 10 atomic layers of silicon

Each component is subject to manufacturing variations that make them:

Unique Unclonable

It is possible to extract electronic "fingerprints" from the nanostructures

These "fingerprints" are called Physical Unclonable Functions (PUF)

It is also possible to develop a new class of cryptography based on PUFs

Several orders of magnitude more protective than traditional cryptography

Opportunity to be quantum computer resistant

Nanomaterials to protect life saving assets

- 2- Secure access control
- 3- Secure cryptography

Unsecure

Radio communication

Life saving asset

Crypto-protection With Nanomaterials

Traditional environment HW/SW

Server

Crypto-processing With Nanomaterials

Traditional environment HW/SW

Motivation & Definitions

- 1-1 Motivation of the course
- 1-2 Definitions in cryptography
- 1-3 Symmetrical cryptography
- 1-4 Asymmetrical cryptography
- **❖** 1-5 Stream ciphers and block ciphers

Some Definitions -1

- > Cryptography: From the Greek Kryptos (hidden, covered) & -graphy (writing). The art (or science) of protecting secret information and restrict communication to a selected audience
- > Cryptographers: The people who create methods to effectively hide secret information.
- **Encryption**: Conversion of a plain message into a protected message also called a *cipher*.
- **Decryption**: Conversion of a cypher into a plain message.
- > Cryptoanalyst: Individuals able to decrypt cyphers (also a hacker, or code breakers).
- > Cryptology: the study of cryptography and cryptoanalysis.
- > Identification: unique Information describing a subject/object, can be used to identify it.
- > Authentication: Secret information confirming that the subject/object, is the right one.
- > Access control: Granting access based on secure authentication.

Some Definitions - 2

- > Cryptographic key: Secret stream of data (or combination) used in the encryption/decryption process.
- >Symmetrical cryptography: Same key used to encrypt and decrypt messages.
- > Asymmetrical cryptography: The key to decrypt is different than the key to encrypt.
- > Public key cryptography: Asymmetrical cryptography using public-private keys.
- > Cryptographic primitive: Data stream involved in encryption such as finger print, physically unclonable function, True Random number generator.
- **Biometry:** Generation of cryptographic primitive describing human unique characteristic (finger print, iris, heart beat, DNA, vein, brain signals ..)
- > Physical Unclonable Functions: Secret data stream (cryptographic primitive) based on unique characteristics of objects or micro-components.

Some Definitions -3

- ➤ Quantum cryptography: When the laws of physics are used rather than mathematical algorithms. Existing methods restricted to key exchange.
- > Post quantum computing cryptography: Cryptography capable to resist attacks conducted by quantum computers (or future quantum computers).
- > Side channel analysis/attack: Method to extract secret information while cryptography is performed
- > Hash Function: Function which take an input (plain text) and return it to a fixed size (smaller size) alphanumeric string, the hash value.
- > Sumchecks: Digest function that can flag the alteration of a message
- ➤ Message digest: Hash value that is non keyed → message integrity code, or keyed → message authentication code.

Some acronyms – 1

- > DES: Data Encryption System Symmetrical algorithm.
- > AES: Advanced Encryption System Symmetrical algorithm.
- > RSA: Rivest Shamir Adelman Asymmetrical algorithm.
- > ECC: Elliptic Curve Cryptography Asymmetrical algorithm.
- > DH: Diffie Hellman Asymmetrical algorithm.
- **Entropy:** Level of chaos Measure the level of randomness.
- > PUF: Physically Unclonable Function Cryptographic primitive.
- > MIC: Message Integrity Code Non-keyed message digest.
- ► MAC: Message Authentication Code Keyed message digest.
- > SHS/SHA: Secure Hash Standard/Secure Hash Algorithm.
- > PKI: Public Key Infrastructure Deployment of asymmetrical cryptography.

Some acronyms -2

- > CA: Certificate Authority manage digital certificate and key distribution.
- > DSA: Digital Signature Algorithm.
- > PRNG, TRNG, RNG: Pseudo, True Random Number Generator
- > PGP: Pretty Good Privacy.
- > S/MIME: Secure/Multipurpose Internet Mail Extension.
- > SSL/TLS: Secure Socket Layer/Transport Layer Security.
- > Ipsec/VPN: Internet Protocol Security/Virtual Private Network.
- >SA/IKE: Security Association/Internet Key Exchange.
- > DPA/SPA: Differential Power Analysis/Single Power Analysis.
- > EMI: Electromagnetic interference

Motivation & Definitions

- **♦** 1-1 Motivation of the course
- 1-2 Definitions in cryptography
- 1-3 Symmetrical cryptography
- 1-4 Asymmetrical cryptography
- **❖** 1-5 Stream ciphers and block ciphers

Symmetrical Cryptography

- Same key to encrypt and to decrypt
- ➤ Symmetrical Cryptography exist since the Romans
- Encryption and decryption methods is fast and effective
- Encryption/decryption methods can be secret, or open
- ➤ Does not really handle well multiple users (each communication need a private key)
- Limitation highlighted by famous code breakers (Alan Turing and the enigma)
- ➤ Still very important technology: DES, AES,......

Symmetrical Cryptography

Motivation & Definitions

- 1- Motivation
- 2- Definitions
- 3- Symmetrical cryptography
- 4- Asymmetrical cryptography
- 5- Other ciphers

Asymmetrical Cryptography

- ➤ Different keys to encrypt and to decrypt
- >Asymmetrical Cryptography invented the mid 80's
- > Key exchange is very complex
- Encryption and decryption methods are complicated
- Encryption/decryption methods are totally open
- ➤ Perfect to handle multiple users (web, finance, telecommunication,....)
- Questionable with quantum cryptography
- ➤ Most important schemes: RSA, and ECC.

Motivation & Definitions

- **♦ 1-1** Motivation of the course
- 1-2 Definitions in cryptography
- 1-3 Symmetrical cryptography
- 1-4 Asymmetrical cryptography
- 1-5 Stream ciphers and block ciphers

Stream cipher: continuous encryption

> All elements of the plain text encrypted with the same algorithm:

$$P = \{P_1; P_2; ...; P_i; ...; P_k;\}$$
 $C_i = E(P_i, Ks);$

- > Data stream "P" is converted in a sequential way to a cipher "C"
- > Caesar cipher, and one time pad are examples of stream cipher
- ➤ One time pad: the key is as long as the plain text

Stream cipher: continuous encryption

Stream - plain

$$\{P_1; P_2; ...; P_j; ...; P_k;\}$$

Stream - cipher

$$\{C_1; C_2; ...; C_j; ...; C_k;\}$$

Ks

Encrypt
C=E (P, Ks)

C: stream cipher

E: stream cipher encryption

Ks: symmetrical key

Block cipher

- The encryption is done block by block, not bit by bit
- > No direct link between one single entry bit to one single output bit
- \triangleright The plain text **P** is grouped into blocks having the same length "k"
- The encryption key is also a data stream of length *n*:

$$Ks = \{Ks_1 ; Ks_2 ; ... ; Ks_j ; ... ; Ks_n\}$$

 \triangleright The subgroups of k bits, or blocks are encrypted together:

$$\{C_{i1} ; C_{i2} ; ... ; C_{ij} ; ... ; C_{ik}\} = E(\{P_{i1} ; P_{i2} ; ... ; P_{ij} ; ... ; P_{ik}\}, Ks)$$

- Three cases: n=k; n>k; or n< k
- ➤ Can be symmetrical or asymmetrical
- Examples of block ciphers includes DES, AES, and RSA.

Block cipher

Block cipher

```
k \ elements Plain P: p_{11};...; p_{1j};...; p_{1k};...; p_{i1};...; p_{ij};...; p_{ik};...; p_{m1};...; p_{mj};...; p_{mk} Key K: [k_{s1};...; k_{sj};...; k_{sn}] [k_{s1};...; k_{sj};...; k_{sn}] [k_{s1};...; k_{sj};...; k_{sn}] CipherC: c_{11};...; c_{1j};...; c_{1k};...; c_{i1};...; c_{ij};...; c_{ik};...; c_{m1};...; c_{mj};...; c_{mk}
```

- \triangleright The data stream of **P** is grouped into blocks having the length "k"
- \triangleright The subgroups of k bits, or blocks are encrypted together:

$$\{C_{i1}; ...; C_{ij}; ...; C_{ik}\} = E(\{P_{i1}; ...; P_{ij}; ...; P_{ik}\}, Ks)$$

QUESTIONS?

Dr. Bertrand Cambou

Professor of Practice NAU, Cybersecurity
School of Informatics, Computing, and Cyber-Systems
Bertrand.cambou@nau.edu