

FCC PART 90 TYPE APPROVAL EMI MEASUREMENT AND TEST REPORT

For

Quantum Electronics, LLC

1379 Shotgun Road, Sunrise, Florida 33326, USA.

FCC ID: XMHQP-250U

Report Type: **Product Type:** Walkie Talkie Original Report Alvin Huand **Test Engineer:** Alvin Huang **Report Number:** RSZ09082604 **Report Date:** 2009-09-22 Merry Zhao merry, when **Reviewed By:** EMC Engineer Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	6
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
FCC §1.1307(b) & §2.1093 - RF EXPOSURE	
APPLICABLE STANDARD	
FCC §2.1046 & §90.205- RF OUTPUT POWER	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
Test Data	15
FCC §2.1049, §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	22
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PACE DATA	
TEST DATA	
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARDTEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE TEST AND DETAILS.	
TEST DATA	
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	33
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST RESULTS SUMMARY TEST DATA	
FCC §2.1055 & §90.213- FREQUENCY STABILITY	36

APPLICABLE STANDARD	36
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	36
TEST DATA	36
FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR	39
APPLICABLE STANDARD	39
TEST EQUIPMENT LIST AND DETAILS	39
TEST PROCEDURE	39
TEST DATA	39

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Quantun Electronics*, *LLC's* product, model number: *QP-250(U)(FCC ID: XMHQP-250U)* or the "EUT" as referred to in this report is a *Walkie Talkie* that operates in the frequency band 450~470 MHz and with two channel spacing of 12.5 kHz (narrow-band)/25 kHz (wide-band). The EUT is measured approximately 4.7 cm L x 3.1 cm W x 15.5 cm H, powered by 3.7 VDC battery.

* All measurement and test data in this report was gathered from production sample serial number: 0908040 (Assigned by BACL, Shenzhen). The EUT was received on 2009-08-26.

Objective

This Type approval report is prepared on behalf of *Quantun Electronics*, *LLC* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 – Private Land Mobile Radio Service

Applicable Standards: TIA 603-C and ANSI 63.4-2003.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 21, 2007. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/standards/scopes/2007070.htm.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).

Equipment Modifications

No modifications were made to the unit tested.

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307(b); §2.1093	RF Exposure	Compliant*
§2.1046; §90.205	RF Output Power	Compliant
§2.1047; §90.207	Modulation Characteristic	Compliant
\$2.1049, \$90.209; \$90.210	Occupied Bandwidth & Emission Mask	Compliant
§2.1051; §90.210	Spurious Emission at Antenna Terminal	Compliant
§ 2.1053; § 90.210	Spurious Radiated Emissions	Compliant**
§ 2.1055; § 90.213	Frequency Stability	Compliant
§ 90.214	Transient Frequency Behavior	Compliant

Note: * Please refer to the SAR report released by BACL, Report Number: R0909097-SAR. **Within measurement uncertainty

FCC §1.1307(b) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §1.1307(b) and §2.1093, protable device operates Part 90 should be subjected to rountine environmental evaluation for RF exposure prior or equipment authorization or use.

Result: Compliance.

Please refer to SAR Report Number: R0909097-SAR.

FCC §2.1046 & §90.205- RF OUTPUT POWER

Applicable Standard

CFR47 §2.1046 and §90.205.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2009-08-14	2010-08-14
Sunol Sciences	Bilog Antenna	JB1	A040904-2	2009-08-14	2010-08-14
Rohde&Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-05-09	2010-05-09
НР	Signal Generator	HP8657A	2849U00982	2008-10-16	2009-10-16

^{*} Statement of Tractability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

Conducted RF Output Power:

TIA-603-C section 2.2.1

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer setting:

RBW	Video B/W
100 kHz	300 kHz

Radiated Power Output (ERP)

TIA-603-C section 2.2.17

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT, during the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the ERP were measured by the substitution.

Absolute level=substituted level+Antenna gain-Cable Loss

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56%
ATM Pressure:	100.1 kPa

The testing was performed by Alvin Huang on 2009-09-05.

Test Mode: Transmitting

Test Result: Compliance.

Please refer to following table and plots

Antenna Port Conducted Output Power:

Channel Spacing (kHz)	Frequency Channel	Frequency (MHz)	Output Power (dBm)	Output Power (Watt)	Rated Power (Watt)
25	Low	450.125	32.10	1.622	2.0
25	Middle	460.125	31.99	1.581	2.0
25	High	469.125	31.76	1.500	2.0
12.5	Low	450.050	31.97	1.574	2.0
12.5	Middle	460.050	31.95	1.567	2.0
12.5	High	469.050	31.87	1.538	2.0

Effective Radiated Power (ERP)

Indic	cated	Table	Test Antenna			Substituted			Absolute	Output	
Freq. (MHz)	S.A. Amp. (dBµV)	Angle Degree	Height (m)	Polar (H/V)	Freq. (MHz)		Polar (H/V)	Antenna Gain Cord.	Cable Loss (dB)	Level (dBm)	Power (Watt)
				12.	.5 kHz C	hannel S	Spacin	g			
450.050	107.46	360	1.3	V	450.050	31.0	V	0	0.7	30.3	1.07
450.050	98.56	27	1.2	Н	450.050	19.1	Н	0	0.7	18.4	0.07
460.050	107.51	10	1.3	V	460.050	31.1	V	0	0.7	30.4	1.10
460.050	98.02	360	1.5	Н	460.050	18.6	Н	0	0.7	17.9	0.06
469.050	107.86	90	1.6	V	469.050	31.1	V	0	0.7	30.4	1.10
469.050	98.67	79	1.8	Н	469.050	19.0	Н	0	0.7	18.3	0.07
				25	kHz Ch	annel S	pacing				
450.125	107.23	263	1.2	V	450.125	30.8	V	0	0.7	30.1	1.02
450.125	98.35	102	1.3	Н	450.125	18.8	Н	0	0.7	18.1	0.06
460.125	107.39	50	1.5	V	460.125	31	V	0	0.7	30.3	1.07
460.125	98.67	87	1.6	Н	460.125	19	Н	0	0.7	18.3	0.07
469.125	108.12	156	1.2	V	469.125	31.2	V	0	0.7	30.5	1.12
469.125	99.02	32	1.3	Н	469.125	19.4	Н	0	0.7	18.7	0.07

Antenna Port Conducted Output Power:

Low Channe, 12.5 kHz Channel Spacing

Date: 5.SEP.2009 12:12:34

Middle Channel, 12.5 kHz Channel Spacing

Date: 5.SEP.2009 12:12:53

High Channel, 12.5 kHz Channel Spacing

Date: 5.SEP.2009 12:14:12

Low Channel, 25 kHz Channel Spacing

Date: 5.SEP.2009 12:10:19

Middle Channel, 25 kHz Channel Spacing

Date: 5.SEP.2009 12:09:58

High Channel, 25 kHz Channel Spacing

Date: 5.SEP.2009 12:11:23

FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

§2.1047 & §90.207:

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
HP	Modulation Analyzer	8901B	3438A05208	2009-04-11	2010-04-11
NANYAN	Audio Generator	NY2201	019829	2008-12-23	2009-12-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

Test Method: TIA/EIA-603 2.2.3

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56%
ATM Pressure:	100.1 kPa

The testing was performed by Alvin Huang on 2009-09-17.

Test Mode: Transmitting

MODULATION LIMITING

Carrier Frequency: 460.05 MHz, Channel Separation=12.5 kHz

Audio Input	Freq	FCC Limit		
Level [mV]	@ 300 Hz	@ 1kHz	@ 3 kHz	[kHz]
1.0	/	/	/	/
4.0	/	0.211	0.253	2.5
8.0	/	0.334	0.402	2.5
12.0	0.315	0.445	0.506	2.5
16.0	0.379	0.564	0.678	2.5
20.0	0.415	0.697	0.825	2.5
24.0	0.519	0.825	0.953	2.5
28.0	0.505	0.937	1.234	2.5
32.0	0.657	1.021	1.323	2.5
36.0	0.685	1.085	1.357	2.5

Carrier Frequency: 460.125 MHz, Channel Separation=25.0 kHz

Audio Input	Freq	FCC Limit		
Level [mV]	@ 300 Hz	@ 1kHz	@ 3 kHz	[kHz]
1.0	/	0.226	0.297	5.0
4.0	/	0.412	0.495	5.0
8.0	0.316	0.795	0.885	5.0
12.0	0.378	1.075	1.185	5.0
16.0	0.442	1.433	1.572	5.0
20.0	0.556	1.756	1.844	5.0
24.0	0.678	2.102	2.195	5.0
28.0	0.758	2.415	2.515	5.0
32.0	0.845	2.775	2.933	5.0
36.0	0.952	3.001	3.125	5.0

Audio Frequency Response

Carrier Frequency: 460.05 MHz, Channel Separation=12.5 kHz

Audio Frequency (Hz)	Response Attenuation (dB)
100	-36.5
200	-35.5
300	-23.4
500	-7.8
700	-3.9
1000	1.1
1500	4.5
2000	4
2500	2.1
3000	-3
3500	-6
4000	-14
5000	-22.1

Carrier Frequency: 460.1255 MHz, Channel Separation=25.0 kHz

Audio Frequency (Hz)	Response Attenuation (dB)
100	-40.2
200	-35.2
300	-31.5
500	-9.1
700	-5.3
1000	-0.8
1500	4.5
2000	3.5
2500	2
3000	-1.2
3500	-6.6
4000	-11
5000	-22.2

Audio Frequency Low Pass Filter Response

Carrier Frequency: 460.05 MHz, Channel Separation=12.5 kHz

Audio Frequency (kHz)	Response Attenuation (dB)	FCC Limit (dB)
3.0	-1.3	0.0
3.5	-6.5	-4.0
4.0	-9.7	-7.5
5.0	-15.9	-13.3
7.0	-24.7	-22.1
10.0	-35.8	-31.4
15.0	-44.6	-42.0
20.0	-53.2	-50.0
30.0	-56.1	-50.0
50.0	-58.9	-50.0
70.0	-60.0	-50.0

Carrier Frequency: 460.125 MHz, Channel Separation=25.0 kHz

Audio Frequency (kHz)	Response Attenuation (dB)	FCC Limit (dB)
3.0	-1.9	0.0
3.5	-5.5	-4.0
4.0	-8.8	-7.5
5.0	-15.1	-13.3
7.0	-25.6	-22.1
10.0	-34.4	-31.4
15.0	-49.5	-42.0
20.0	-57.6	-50.0
30.0	-61.5	-50.0
50.0	-63.1	-50.0
70.0	-67.7	-50.0

FCC §2.1049, §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Applicable Standard

CFR47 §2.1049, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 KHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626kHz but no more than 12.5kHz, at least 7.27 (f_d –2.88kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5kHz at least:

50+10logP=50+10log(1.574)=51.97dB

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- 1) For any frequency removed from the center of the assigned channel by more than 50 percent up to and including 100 percent of the authorized bandwidth, at least 25 dB.
- 2) On any frequency removed from the center of the assigned channel by more than 100 percent up to and including 250 percent, at least 35 dB.
- 3) On any frequency removed from the center of the assigned channel by more than 250 percent at least:

43+10logP=43+10log(1.622)=45.10dB

The resolution bandwidth was 300Hz or greater for measuring up to 250kHz from the edge of the authorized frequency segment, and 30kHz or greater for measuring more than 250kHz from the authorized frequency segment.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date	
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2008-11-07	2009-11-06	
НР	Modulation Analyzer	8901B	3438A05208	2009-04-11	2010-04-11	
NANYAN	Audio Generator	NY2201	019829	2008-12-23	2009-12-23	

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Report #: RSZ09082604 Page 22 of 42 FCC Part 90 Test Report

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 300 Hz and the spectrum was recorded in the frequency band ± 50 KHz from the carrier frequency.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56%
ATM Pressure:	100.1 kPa

The testing was performed by Alvin Huang on 2009-09-08 and 2009-09-12.

Emission Designator

According to CFR47 § 2.201 & § 2.202, Bn=2M + 2DK

1) 460.05 MHz, Channel spacing =12.5 kHz

$$Bn=2M + 2DK$$

Where
$$M = 3000$$
, $D = 2.5$ kHz, $K = 1$

Bn =
$$2*(3000) + 2*(2500) = 11 \text{ kHz}$$

Emission Designator: 11K0F3E

2) 460.125 MHz, Channel spacing =25 kHz

$$Bn=2M + 2DK$$

Where
$$M = 3000$$
, $D = 5.0$ kHz, $K = 1$

Bn =
$$2*(3000) + 2*(2500) = 11 \text{ kHz}$$

Emission Designator: 11K0F3E

Bn =
$$2*(3000) + 2*(5000) = 16 \text{ kHz}$$

Emission Designator: 16K0F3E

Please refer to the emission mask hereinafter plots.

Emission Mask D, 12.5 kHz Channel Spacing (Middle Channel)

Date: 12.SEP.2009 12:25:36

Emission Mask B, 25.0 kHz Channel Spacing (Middle Channel)

Date: 8.SEP.2009 23:28:37

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- 1) For any frequency removed from the center of the assigned channel by more than 50 percent up to and including 100 percent of the authorized bandwidth, at least 25 dB.
- 2) On any frequency removed from the center of the assigned channel by more than 100 percent up to and including 250 percent, at least 35 dB.
- 3) On any frequency removed from the center of the assigned channel by more than 250 percent at least:

The resolution bandwidth was 300 Hz or greater for measuring up to 250 kHz from the edge of the authorized frequency segment, and 30 kHz or greater for measuring more than 250 kHz from the authorized frequency segment.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-08-28	2010-08-27
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2008-11-07	2009-11-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The RF output of the Walkie Talkie was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at $100 \, \text{kHz}$. Sufficient scans were taken to show any out of band emissions up to 10^{th} harmonic.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56%
ATM Pressure:	100.1 kPa

The testing was performed by Alvin Huang on 2009-09-22.

Please refer to the following plots.

Test Mode: Transmitting

12.5 kHz Channel Spacing, Low Channel

30 MHz - 1 GHz

1 - 5 GHz

12.5 kHz Channel Spacing, Middle Channel

30 MHz - 1 GHz

12.5 kHz Channel Spacing, High Channel

30 MHz - 1 GHz

25.0 kHz Channel Spacing, Low Channel

30 MHz - 1 GHz

$25.0~\mathrm{kHz},$ Channel Spacing, Middle Channel

30 MHz - 1 GHz

25.0 kHz Channel Spacing, High Channel

30 MHz - 1 GHz

1-5~GHz

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

CFR47 §2.1053 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052604	2008-09-25	2009-09-25
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2009-03-11	2010-03-11
Sunol Sciences	Bilog Antenna	JB1	A040904-2	2009-04-12	2010-04-12
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-08-28	2010-08-27
HP	Signal Generator	HP8657A	2849U00982	2008-10-16	2009-10-16
A.H. System	Horn Antenna	SAS-200/571	135	2009-05-17	2010-05-17
HP	Synthesized Sweeper	8341B	2624A00116	2008-11-07	2009-11-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

Spurious attenuation limit in dB =50+10 Log₁₀ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Test Results Summary

1.6 dB at 900.10 MHz in the Vertical polarization (Low Channel, 12.5 kHz)
1.3 dB at 920.10 MHz in the Vertical polarization (Middle Channel, 12.5 kHz)
1.2 dB at 938.10 MHz in the Vertical polarization (High Channel, 12.5 kHz)
8.3 dB at 900.250 MHz in the Vertical polarization (Low Channel, 25 kHz)
8.1 dB at 920.250 MHz in the Vertical polarization (Middle Channel, 25 kHz)
8.4 dB at 938.250 MHz in the Vertical polarization (High Channel, 25 kHz)

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56%
ATM Pressure:	100.1 kPa

The testing was performed by Alvin Huang on 2009-09-10.

Test Mode: Transmitting

Indi	cated	Table	Test A	ntenna		,	Substitu	ıted		Absolute	FCC I	Part 90
Freq. (MHz)	S.A. Amp. (dBµV/m)	Angle (Degree)	Height (m)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Ant. Polar (H/V)	Ant. Gain Cord. (dB)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
		Lov	v Chann	el, f=4	50.05 MI	Hz (12.	5 kHz (Channel Spa	cing)			
900.10	51.51	90	1.0	V	900.10	-20.8	V	0	0.8	-21.6	-20	1.6*
1800.20	68.34	142	1.1	V	1800.20	-34.2	V	6.1	1.2	-29.3	-20	9.3
900.10	42.56	50	1.6	Н	900.10	-28.6	Н	0	0.8	-29.4	-20	9.4
1350.15	70.24	183	1.1	V	1350.15	-36.3	V	6.2	1.0	-31.1	-20	11.1
2250.25	60.03	164	1.2	V	2250.25	-37.9	V	7.2	1.4	-32.1	-20	12.1
2250.25	60.04	106	1.6	Н	2250.25	-42.1	Н	7.1	1.4	-36.4	-20	16.4
1350.15	60.12	360	1.5	Н	1350.15	-42.3	Н	6.2	1.0	-37.1	-20	17.1
1800.20	51.24	258	1.5	Н	1800.20	-49.0	Н	6.1	1.2	-44.1	-20	24.1
		Midd	lle Chan	nel, f=	460.05 M	IHz (12	2.5 kHz	Channel Sp	oacing)			
920.10	51.17	360	1.2	V	920.10	-20.5	V	0	0.8	-21.3	-20	1.3*
920.10	45.36	10	1.5	Н	920.10	-28.5	Н	0	0.8	-29.3	-20	9.3
1840.20	68.24	254	1.1	V	1840.20	-34.3	V	6.1	1.2	-29.4	-20	9.4
2300.25	62.18	21	1.0	V	2300.25	-35.2	V	7.2	1.4	-29.4	-20	9.4
1380.15	70.67	156	1.3	V	1380.15	-36.6	V	6.2	1.0	-31.4	-20	11.4
2300.25	61.01	156	1.2	Н	2300.25	-41	Н	7.2	1.4	-35.2	-20	15.2
1840.20	55.13	90	1.3	Н	1840.20	-45	Н	6.1	1.2	-40.1	-20	20.1
1380.15	56.42	8	1.5	Н	1380.15	-46.1	Н	6.2	1.0	-40.9	-20	20.9
		High	ı Chann	el, f= 4	169.05 M	Hz (12	.5 kHz	Channel Spa	acing)			
938.10	52.10	286	1.3	V	938.10	-20.4	V	0	0.8	-21.2	-20	1.2*
1407.15	70.58	16	1.2	V	1407.15	-35.0	V	6.4	1.1	-29.7	-20	9.7
1876.20	68.00	360	1.1	V	1876.20	-35.2	V	6.1	1.2	-30.3	-20	10.3
938.10	43.15	10	1.5	Н	938.10	-31.1	Н	0	0.8	-31.9	-20	11.9
2345.25	60.05	67	1.2	V	2345.25	-41.1	V	7.2	1.4	-35.3	-20	15.3
1407.15	61.35	248	1.6	Н	1407.15	-41.0	Н	6.4	1.1	-35.7	-20	15.7
2345.25	60.11	105	1.6	Н	2345.25	-42.2	Н	7.2	1.4	-36.4	-20	16.4
1876.20	56.16	354	1.5	Н	1876.20	-43.5	Н	6.1	1.2	-38.6	-20	18.6

Indi	cated	Table	Test A	ntenna	Substituted					Absolute	FCC I	Part 90
Freq. (MHz)	S.A. Amp. (dBµV/m)	Angle (Degree)	Height (m)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Ant. Polar (H/V)	Ant. Gain Cord. (dB)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
		Lov	w Chanr	nel, f=4	50.125 N	1Hz (25	5 kHz (Channel Spa	cing)			
900.250	51.86	270	1.0	V	900.250	-20.5	V	0	0.8	-21.3	-13	8.3
1350.375	72.56	160	1.2	V	1350.375	-35.0	V	6.2	1	-29.8	-13	16.8
900.250	44.03	360	2.0	Н	900.250	-30.2	Н	0	0.8	-31.0	-13	18.0
1800.500	67.59	360	1.0	V	1800.500	-36.0	V	6.1	1.2	-31.1	-13	18.1
2250.625	61.23	156	1.0	V	2250.625	-36.8	V	7.1	1.4	-31.1	-13	18.1
2250.625	55.79	98	2.0	Н	2250.625	-38.5	Н	7.1	1.4	-32.8	-13	19.8
1350.375	63.88	139	1.9	Н	1350.375	-38.7	Н	6.2	1	-33.5	-13	20.5
1800.500	60.77	360	1.6	Н	1800.500	-39.4	Н	6.1	1.2	-34.5	-13	21.5
		Mid	dle Cha	nnel, f	=460.25 N	MHz(2	5 kHz	Channel Spa	acing)			
920.250	52.10	0	1.3	V	920.250	-20.3	V	0	0.8	-21.1	-13	8.1
2300.625	64.16	178	1.0	V	2300.625	-33.2	V	7.2	1.4	-27.4	-13	14.4
1840.500	69.36	78	1.0	V	1840.500	-33.2	V	6.1	1.2	-28.3	-13	15.3
920.250	43.81	167	1.9	Н	920.250	-30.1	Н	0	0.8	-30.9	-13	17.9
1380.375	70.35	360	1.2	V	1380.375	-36.3	V	6.2	1.0	-31.1	-13	18.1
1840.500	58.67	360	1.8	Н	1840.500	-41.4	Н	6.1	1.2	-36.5	-13	23.5
2300.625	59.67	356	2.0	Н	2300.625	-42.4	Н	7.2	1.4	-36.6	-13	23.6
1380.375	54.66	97	2.0	Н	1380.375	-48.2	Н	6.2	1.0	-43.0	-13	30.0
		Hig	sh Chan	nel, f=	469.25 M	IHz (25	5 kHz C	Channel Spa	cing)			
938.250	51.97	157	1.3	V	938.250	-20.6	V	0	0.8	-21.4	-13	8.4
1876.500	68.11	83	1.0	V	1876.500	-35.2	V	6.1	1.2	-30.3	-13	17.3
2345.625	61.22	10	1.5	V	2345.625	-36.2	V	7.2	1.4	-30.4	-13	17.4
938.250	44.09	97	1.3	Н	938.250	-30.0	Н	0	0.8	-30.8	-13	17.8
1407.375	68.10	49	1.2	V	1407.375	-37.6	V	6.4	1.1	-32.3	-13	19.3
1407.375	62.50	360	1.5	Н	1407.375	-39.8	Н	6.4	1.1	-34.5	-13	21.5
2345.625	58.99	15	1.4	Н	2345.625	-43.5	Н	7.2	1.4	-37.7	-13	24.7
1876.500	54.50	0	1.6	Н	1876.500	-45.2	Н	6.1	1.2	-40.3	-13	27.3

Note: *Within measurement uncertainty

FCC §2.1055 & §90.213- FREQUENCY STABILITY

Applicable Standard

CFR47 §2.1055& §90.213

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
WUHUAN	Temperature & Humidity Chamber	HTP205	20021115	2009-05-09	2010-05-09
Hewlett-Packard	Frequency Counter	5342A	2317A08289	2009-04-22	2010-04-22

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to an f Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

The frequency stability shall be measured with variation of primary supply voltage as follows:

(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	56%	
ATM Pressure:	100.1 kPa	

The testing was performed by Alvin Huang on 2009-09-13.

Test Mode: Transmitting

For 12.5 kHz Channel Spacing

1) Frequency Stability versus Input Temperature

Reference Frequency: 460.05 MHz, Limit: 2.5 ppm				
Test Environment		Frequency Measure with Time Elapsed		
Temperature (°C)	Power Supplied (Vdc)	Measured Frequency (MHz) Frequency Error (ppm)		
50	3.7	460.05089	1.934572	
40	3.7	460.05082	1.782415	
30	3.7	460.05079	1.717205	
20	3.7	460.05076	1.651994	
10	3.7	460.05065	1.412890	
0	3.7	460.05056	1.217259	
-10	3.7	460.05045	0.978155	
-20	3.7	460.05055	1.195522	
-30	3.7	460.05049	1.065102	

2) Frequency Stability versus Input Voltage

Reference Frequency: 460.05 MHz, Limit: 2.5 ppm					
Test Environment Frequency Measure with Time Elapsed					
Temperature (°C)	Power Supplied (Vdc)	Measured Frequency (MHz)	Frequency Error (ppm)		
20	3.2	460.05073	1.586784		

For 25 kHz Channel Spacing

1) Frequency Stability versus Input Temperature

Reference Frequency: 460.125 MHz, Limit: 5.0 ppm				
Test Environment		Frequency Measure with Time Elapsed		
Temperature (°C)	Power Supplied (Vdc)	Measured Frequency Error (MHz) (ppm)		
50	3.7	460.12585	1.847324	
40	3.7	460.12577	1.673458	
30	3.7	460.12575	1.629992	
20	3.7	460.12556	1.217061	
10	3.7	460.12555	1.195327	
0	3.7	460.12552	1.130128	
-10	3.7	460.12555	1.195327	
-20	3.7	460.12540	0.869329	
-30	3.7	460.12544	0.956262	

2) Frequency Stability versus Input Voltage

Reference Frequency: 460.125 MHz, Limit: 5.0 ppm				
Test Environment Frequency Measure with Time Elapsed				
Temperature (°C)	Power Supplied (Vdc)	Massurad		
20	3.2	460.12550	1.086661	

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

CFR47 §90.214

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
TEKTRONIX	Digital Phosphor Oscilloscope	TDS 7104	B020518	2009-04-11	2010-04-11
HP	Modulation Analyzer	8901B	3438A05208	2009-04-11	2010-04-11
HP	Signal Generator	HP8657A	2849U00982	2008-10-16	2009-10-16

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

TIA/EIA-603 2.2.19

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	56%	
ATM Pressure:	100.1 kPa	

The testing was performed by Alvin Huang on 2009-09-13.

Test Mode: Transmitting

For 12.5 kHz Channel Spacing:

Operation Frequency (MHz)	Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
		<10	+/-12.5 kHz	
460.05	12.5	<25	+/-6.25 kHz	Pass
		<10	+/-12.5 kHz	

For 25 kHz Channel Spacing:

Operation Frequency (MHz)	Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
		<10	+/-25.0 kHz	
460.125	25	<25	+/-12.5 kHz	Pass
		<10	+/-25.0kHz	

Please refer to the following plots.

Turn on (12.5 kHz Channel Spacing)

Turn off (12.5 kHz Cahnnel Spacing)

Turn on (25 kHz Channel Spacing)

Turn off (25 kHz Channel Spacing)

***** End of Report *****