

School of Computer Science and Applied Mathematics

Numerical Methods Lab 3

08 March 2018

Instructions

- Read all the instructions carefully.
- MATLAB has a help file for every function if you get stuck.
- There are also numerous sources available on the internet, Google is your friend!

SECTION 1 -

Some Useful MATLAB Built-in Commands

Command	Result
zeros(m,n)	Creates an $m \times n$ matrix consisting of all zeros.
ones(m,n)	Creates an $m \times n$ matrix consisting of all ones.
eye(m,n)	Creates an $m \times n$ Identity matrix.
<pre>X = diag(v,k)</pre>	Creates a diagonal matrix with elements of v on the k th diagonal. $k=0$ is the main diagonal.
v = diag(X)	Returns a vector of the main diagonal of matrix X .
transpose(X)	Returns the transpose of matrix X .
trace(X)	Returns the sum of the elements on the main diagonal of X .
inv(X)	Returns the inverse of the square matrix X .
det(X)	Returns the determinant of the square matrix X .
[V, D] = eig(X)	Returns the eigenvalues and eigenvectors of matrix X .
fliplr(X)	Returns X with rows preserved and columns flipped in the left/right direction.
flipud(X)	Returns X with columns preserved and rows flipped in the up/down direction.
tril(X,k)	Extracts the lower triangular part of the matrix X , consisting of the elements on and below the k th diagonal.
triu(X,k)	Extracts the upper triangular part of the matrix X , consisting of the elements on and above the k th diagonal.
linspace(a,b,n)	Returns a vector of \emph{n} equally spaced points between (and including) \emph{a} and \emph{b} .

The due date for the lab submission is the 12th of March 2018 at 12pm.

2.1

Exercise 1

Program the Bisection method to find the roots of equations. Your function should take as inputs, some function f (you will need to look up how function handles work), a tolerance value tol, as well as some initial bracket I_0 = (ainitial, binitial) respectively. Your function should return as output the root c. Use the stopping criteria $\frac{|c_n-c_{n-1}|}{|c_n|} < tol$ for the convergence of the sequence c_n 's. The first line of your function must look like the following:

```
function root = bisectionSearch(f, tol, I_0)
```

2.2

Exercise 2

Program the False position method to find the roots of equations. Your function should take as inputs, some function f (you will need to look up how function handles work), a tolerance value tol, as well as some initial bracket $I_0 = (ainitial, binitial)$ respectively. Use a similar sopping criteria as in Exercise 1. Your function should return as output the root c. The first line of your function must look like the following:

```
function root = RegularfalsiSearch(f, tol, I_0)
```

2.3 _____

Exercise 3

Program the Newton root finding method for a scaler equation. Your function should take as inputs, two function handles f and fprime (you will need to look up how function handles work). It must also take in an initial guess x_0 and a tolerance value tol. Your function should return as output the root x. Use the stopping criteria $\frac{|x_n-x_{n-1}|}{|x_n|} < tol$. The first line of your function must look like the following:

```
function x = Newtonmethodscaler(f, fprime, x0, tol)
```

2.4 _____

Exercise 4

Do plot the error given by $\frac{|c_n-c_{n-1}|}{|c_n|}$ against the number of iterations for the bisection and the regular falsi Method. On the same graph, plot the error $\frac{|x_n-x_{n-1}|}{|x_n|}$ against the number of iterations for the Newton's method.

What do you see?

2.5 ____

Exercise 5

Program the Newton root finding method for systems. Your function should take in as inputs, two function handles (anonymous functions) - F (system of equations as a column vector) and its Jacobian J (a matrix). It must also take in an initial guess x_0 and an tolerance value tol. The output of your function must be the roots of the system as a column vector x. The first line of your function should look like:

function x = Newtonmethodsystem(F, J, x0, tol)