PRACTICE PROBLEMS CHAPTER 6

1.

- (a) $\det(A \lambda I) = \lambda^2 1 \Rightarrow \lambda_1 = -1, \lambda_2 = 1$ (i) $A - \lambda_1 I = A + I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \rightarrow \text{RREF} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \text{ e-vector associated to } \lambda_1 = -1 \text{ is } \mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix},$ $A - \lambda_2 I = A - I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \rightarrow \text{RREF} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \Rightarrow \text{ e-vector associated to } \lambda_2 = 1 \text{ is } \mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$
 - (b) $\det(A \lambda I) = \lambda^2 + 1 \Rightarrow \lambda_1 = i$ $A - \lambda_1 I = A - iI = \begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} \rightarrow \text{RREF} \begin{bmatrix} 1 & i \\ 0 & 0 \end{bmatrix} \Rightarrow \text{e-vector associated to } \lambda_1 = i \text{ is } \mathbf{x}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix},$

The e-vector associate to $\lambda_2 = -i$ is the complex conjugate of \mathbf{x}_1 : $\mathbf{x}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$

- (c) $\det(A \lambda I) = (1 \lambda)^2 \Rightarrow \lambda_1 = \lambda_2 = 1, \quad \lambda_1 = 1 \text{ (AM = 2)}$ $A - \lambda_1 I = A - I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow \text{ two free variables and possible e-vectors are } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \quad (GM = 2)$
- (d) $\det(A-\lambda I)=(1-\lambda)^2 \Rightarrow \lambda_1=\lambda_2=1, \lambda_1=1 \text{ (AM = 2)}$ $A - \lambda_1 I = A - I = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow$ e-vector associated to $\lambda_1 = 1$ is $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. (GM =1)
- (a) The matrix is diagonalizable (distinct e-vectors): $X = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ (ii)
 - (b) The matrix is diagonalizable (distinct e-vectors): $X = \begin{bmatrix} -i & i \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$
 - (c) The matrix is diagonalizable (AM = GM = 2): $X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - (d) Since the matrix has one linearly independent eigenvector (GM = 1) associated to the repeated eigenvalue $\lambda = 1$ (AM = 2), we have GM < AM and the matrix is defective (non diagonalizable).
- 2. (a) $\det(A-\lambda I)=(1-\lambda)(-\lambda)(3-\lambda) \Rightarrow$ the eigenvalues of A are $\lambda_1=1, \lambda_2=0, \lambda_3=3$.
- The eigenvalues of A^2 are 1, 0, 9 and the eigenvalues of A^n are 1, 0 3ⁿ. $A \lambda_1 I = A I = \begin{bmatrix} 0 & 2 & 1 \\ 0 & -1 & 6 \\ 0 & 0 & 2 \end{bmatrix} \rightarrow \text{RREF} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{ e-vector associated to } \lambda_1 = 1 \text{ is } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},$ $A \lambda_2 I = A 0\mathbf{I} = A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 6 \\ 0 & 0 & 3 \end{bmatrix} \rightarrow \text{RREF} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{ e-vector associated to } \lambda_2 = 0 \text{ is } \mathbf{x}_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix},$
 - $A \lambda_3 I = A 3I = \begin{bmatrix} -2 & 2 & 1 \\ 0 & -3 & 6 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow RREF \begin{vmatrix} 1 & 0 & -\frac{5}{2} \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{vmatrix} \Rightarrow \text{ e-vector associated to } \lambda_2 = 3 \text{ is } \mathbf{x}_3 = \begin{bmatrix} 5 \\ 4 \\ 2 \end{bmatrix}$

The eigenspaces for the matrix A have basis $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 5 \\ 4 \\ 2 \end{bmatrix}$

These are also the basis for the eigenspaces for the matrix A^2 and A^n .

(c) Since $A = XDX^{-1} = \begin{bmatrix} 1 & -2 & 5 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{vmatrix} 1 & 2 & -\frac{13}{2} \\ 0 & 1 & -2 \\ 0 & 0 & \frac{1}{2} \end{vmatrix}$

we have
$$A^n = XD^n X^{-1} = \begin{bmatrix} 1 & -2 & 5 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3^n \end{bmatrix} \begin{bmatrix} 1 & 2 & -\frac{13}{2} \\ 0 & 1 & -2 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 2 & -\frac{13}{2} + \frac{5(3^n)}{2} \\ 0 & 0 & 2(3^n) \\ 0 & 0 & 3^n \end{bmatrix}$$

(d) Substituting n = 7 in the formula from part (c) gives

$$A^{7} = \begin{bmatrix} 1 & 2 & -\frac{13}{2} + \frac{5(3^{7})}{2} \\ 0 & 0 & 2(3^{7}) \\ 0 & 0 & 3^{7} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5461 \\ 0 & 0 & 4374 \\ 0 & 0 & 2187 \end{bmatrix}$$

3.

- (a) The eigenvalues of A are $\lambda_1 = 2$ and $\lambda_2 = 3$.
- **(b)** The eigenvalues of $A^2 + \alpha A + \beta I$ are $2^2 + 2\alpha + \beta$ and $3^2 + 3\alpha + \beta$
- **4.** The characteristic equation of the matrix is given by $\lambda^2 2\lambda + 9k 35 = 0$ From the quadratic formula we have that this equation has two distinct solutions if and only if $b^2 4ac = 4 4(9k 35) > 0$. Solving the inequality gives k < 4.
- 5. $\operatorname{tr}(A) = \lambda_1 + \lambda_2 = 5$, $\det(A) = \lambda_1 \lambda_2 = -14$ $\Rightarrow \lambda_1 = -2$, $\lambda_2 = 7$
- 6. (a) Putting the vectors into a matrix: $\begin{bmatrix} 1 & 3 & | & 19 \\ -1 & 2 & | & 6 \\ -2 & -1 & | & -13 \end{bmatrix}$ RREF $\begin{bmatrix} 1 & 0 & | & 4 \\ 0 & 1 & | & 5 \\ 0 & 0 & | & 0 \end{bmatrix}$. Thus $\mathbf{v} = 4\mathbf{x_1} + 5\mathbf{x_2}$

(b)
$$A\mathbf{v} = A(4 \mathbf{x}_1 + 5 \mathbf{x}_2) = 4 (A\mathbf{x}_1) + 5 (A\mathbf{x}_2) = 4 (\lambda_1 \mathbf{x}_1) + 5 (\lambda_2 \mathbf{x}_2) = (4)(-2)\begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} + (5)(3)\begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 37 \\ 38 \\ 1 \end{bmatrix}$$

7. (a) $\det(A-\lambda I)=(3-\lambda)^3$, thus the matrix has a repeated eigenvalue $\lambda=3$ of Algebraic Multiplicity three

$$A - \lambda_1 I = A - 3I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 The matrix is already in RREF and a basis of eigenspace is $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$,

Since GM = 1 < AM = 3, the matrix is defective and not diagonalizable.

(b) $\det(A-\lambda I)=(4-\lambda)(1-\lambda)^2$. The matrix has the eigenvalue $\lambda_1=1$ with AM =2 and $\lambda_2=4$ with AM = 1. In order to determine whether the matrix is diagonalizable we need to determine the Geometric Multiplicity of the repeated eigenvalue $\lambda_1=1$.

$$A - \lambda_1 I = A - I = \begin{bmatrix} 3 & -3 & 0 \\ 0 & 0 & 0 \\ -4 & 4 & 0 \end{bmatrix} \Rightarrow RREF \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 Basis of eigenspace associated to $\lambda_1 = 1$ is
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$
 Thus GM = AM = 2 and the matrix is diagonalizable.

The eigenvalue $\lambda = 4$ has associated eigenvector [-3, 0, 4]^T and a possible diagonalization is:

$$X = \begin{bmatrix} 1 & 0 & -3 \\ 1 & 0 & 0 \\ 0 & 1 & 4 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

8. In Problem 7 part (b) we found that the matrix *A* is diagonalizable as

$$A = XDX^{-1} = \begin{bmatrix} 1 & 0 & -3 \\ 1 & 0 & 0 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 4/3 & -4/3 & 1 \\ -1/3 & 1/3 & 0 \end{bmatrix}$$

The matrix B is given by
$$B = X \sqrt{D} X^{-1} = \begin{bmatrix} 1 & 0 & -3 \\ 1 & 0 & 0 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 4/3 & -4/3 & 1 \\ -1/3 & 1/3 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ -4/3 & 4/3 & 1 \end{bmatrix}$$

9. If $\lambda_1 = 3 + 2i$ is an eigenvalue, then the complex conjugate $\lambda_2 = 3 - 2i$ is also an eigenvalue. If the matrix is singular, then $\lambda_3 = 0$ is an eigenvalue. The sum of the eigenvalues equals the trace of the matrix which is given by $a_{11} + a_{22} + a_{33} + a_{44} = 4$, thus $(3 + 2i) + (3 - 2i) + 0 + \lambda_4 = 4$ which gives $\lambda_4 = -2$.

10.

- (a) If $\lambda = 0$ then $\det(A \lambda I) = \det(A) = 0$ and the matrix is singular which contradicts the assumption, thus $\lambda \neq 0$.
- (b) If $A\mathbf{x} = \lambda \mathbf{x}$ then $A^{-1}A\mathbf{x} = \lambda A^{-1}\mathbf{x}$ which gives $\mathbf{x} = \lambda A^{-1}\mathbf{x}$ or $A^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$ thus $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with \mathbf{x} the corresponding eigenvector.
- 11. The matrix has the eigenvalue $\lambda = a$ with algebraic multiplicity 3. The basis of the corresponding eigenspace consists of two linearly independent eigenvectors: [1, 0, 0]^T and [0, 1, 0]^T. Since there are only two linearly independent eigenvectors, we have GM = 2 < AM = 3 and the matrix is defective.
- 12. If A is diagonalizable, then $A = XDX^{-1}$ where D is a diagonal matrix. If B is similar to A, then there exists a nonsingular matrix S such that $B = S^{-1} A S$. It follows that

$$B = S^{-1}(XDX^{-1})S$$

=(S^{-1}X)D(S^{-1}X)^{-1}

Therefore B is diagonalizable with diagonalizing matrix $S^{-1}X$.

13.

- (a) The rank of A is given by the number of nonzero singular values, thus the rank is 3.
- (b) An orthonormal basis for $R(A^T)$ is given by \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , where \mathbf{v}_i is the *i*th column of V.
- (c) An orthonormal basis is given by \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 where \mathbf{u}_i is the *i*th column of U
- (d) The rank-1 matrix B that is the closest matrix of rank-1 to A is given by

(f)
$$C = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T = B + 10 \begin{bmatrix} -2/5 \\ -2/5 \\ -2/5 \\ 3/5 \\ 2/5 \end{bmatrix} \begin{bmatrix} \frac{1}{2} - \frac{1}{2} - \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 18 & 22 & 22 & 18 \\ 18 & 22 & 22 & 18 \\ 18 & 22 & 22 & 18 \\ 23 & 17 & 17 & 23 \\ 32 & 28 & 28 & 32 \end{bmatrix}$$