Game Theory: In-class Quiz 3, 2023 Fall, for TA

1. Consider the following extensive-form game.

- (a) What is the number of pure strategies that player 1 has?
- ⇒ 8 (TuU, TuD, TdU, TdD, BuU, BuD, BdU, BdD)
- (b) Represent this game in a normal form. Find all of the pure strategy Nash equilibria.

	$P1 \setminus P2$	\mid L,l	$_{\rm L,r}$	$_{\mathrm{R,l}}$	$_{\mathrm{R,r}}$
\Rightarrow	T,u,U	0,2	0,2	1,2	1,2
	$_{\mathrm{T,u,D}}$	0,2	0,2	1,2	1,2
	$_{\mathrm{T,d,U}}$	1,1	1,1	1,2	1,2
	$_{\mathrm{T,d,D}}$	1,1	1,1	1,2	1,2
	$_{\mathrm{B,u,U}}$	4,2	3,1	4,2	3,1
	$_{\mathrm{B,u,D}}$	0,1	3,1	0,1	3,1
	$_{\mathrm{B,d,U}}$	4,2	3,1	4,2	3,1
	$_{\mathrm{B,d,D}}$	0,1	3,1	0,1	3,1

 $\{(B,u,U),(L,l)\}, \{(B,u,U),(R,l)\}, \{(B,u,D),(L,r)\}, \{(B,u,D),(R,r)\}, \{(B,d,U),(L,l)\}, \{(B,d,U),(R,l)\}, \{(B,d,D),(L,r)\}, \{(B,d,D),(R,r)\} \ are \ Nash equilibria.$

- (c) Describe the subgame perfect equilibrium of this game.
- \Rightarrow {(B,d,U), (R,l)} is the subgame perfect equilibrium.

2. Warner Brothers (P1) and Disney (P2) try to determine release dates for Wonder Woman 2 and Black Panther 2. There are three possible release months: February(F), December(D), and May(M).

(a) Suppose Disney does not observe Warner Brothers' release decision, as described in the game tree above. Draw a payoff matrix of a normal form game, and find all of the pure strategy Nash equilibria. (There might be one, more than one, or none.)

	P1 \ P2	F	D	M	_
\Rightarrow	F D	-50,-50 200,100	100,200	100,300 200,300	$\{D, M\}$ and $\{M, D\}$ are Nash equilibria
		300,100		50,50	

- (b) Suppose P2 observes P1's release decision, as described in the game tree above. Describe the subgame perfect equilibrium of this game.
- \Rightarrow {M, (M,M,D)} is a SPE. [{M, D} is an INCORRECT answer.]
- **3.** Consider a partnership between two players. When player 1 (P1) exerts effort of x and player 2 (P2) exerts effort of y, each player receives $2x + 2y + \frac{1}{2}xy$. They have an identical cost of effort: When exerting e, $C(e) = \frac{1}{2}e^2$. P1 exerts effort first. After observing P1's effort, P2 exerts her effort. Describe two players' effort levels in a subgame perfect equilibrium.

Sol: Given x, P2 chooses y to maximize her payoff, $2x + 2y + \frac{xy}{2} - \frac{y^2}{2}$. FOC: $2 + \frac{x}{2} - y = 0 \Rightarrow y = 2 + \frac{x}{2}$.

Knowing $y(x) = 2 + \frac{x}{2}$, P1 maximizes $2x + 2y(x) + \frac{xy(x)}{2} - \frac{x^2}{2} = 2x + 4 + x + x + \frac{x^2}{4} - \frac{x^2}{2} = 4x + 4 - \frac{x^2}{4}$. FOC: $4 = \frac{x}{2}$. x = 8. y = 4.