Detecção de Tumores Mamários por CNNs em Termografias

Nome: Arthur Santos de Oliveira

RA: 156297

Introdução

- Importância da Detecção Precoce de Doenças Mamárias
 - Crucial para o sucesso do tratamento
 - Melhoria nas taxas de sobrevivência
- Mamografias e análise manual
- Termografia Infravermelha Médica
 - Vantagens: livre de radiação, não invasiva, indolor
 - Não exclui a necessidade de mamografias e análise de especialistas

Proposta

- Distinção entre mamas saudáveis e doentes a partir de imagens de termografia
 - Comparativo de diferentes modelos de CNNs: ResNet50, EfficentNet e VGG19
 - Comparativo entre diferentes pré-processamentos
- Uso de uma base de dados com imagens termográficas e diagnósticos
 - DMR-IR (Database for Mastology Research Infrared)
 - o Imagens com resolução de 480 x 640 pixels
 - o 3 classificações: "healthy", "sick" e "unknown"

Análise de uma termografia

- Multiplicação das células cancerosas e necessidade de maior suprimento sanguíneo
- Aumento do fluxo sanguíneo e elevação da temperatura na área do tumor
- Representação de áreas tumorais mais brilhantes e quentes nas imagens térmicas

Metodologia experimental

- Utilizado apenas as imagens frontais e com classificação "healthy" ou "sick"
 - Totalizando 100 imagens em escala de cinza de cada classe
- O conjunto de dados foi submetido a diferentes pré-processamentos para verificar o impacto na classificação
 - Sem pré-processamentos
 - Crop
 - Filtro laplaciano
 - Mixup
 - Mixup com crop
 - Mixup com filtro laplaciano

Metodologia experimental

- Diagrama do processo
 - Distintos pré-processamentos
 - Validação cruzada
 - Distintos modelos
 - Comparativo de resultados
 - Entendimento obtido com o Mapeamento de Ativação de Classe (CAM)

Transformações e KFold

- Normalização para facilitar o treinamento:
 - Desvio padrão: [0.485, 0.456, 0.406]
 - Média: [0.229, 0.224, 0.225]
- Redimensionamento das imagens
 - 224 x 224 pixels
- Uso de 10 folds para validação cruzada
 - Cada dado disponível utilizado tanto para treinamento quanto para validação

Filtro Laplaciano

- Uso do filtro laplaciano
 - Regiões com maior fluxo sanguíneo tendem a ficar claras
 - Destacar regiões com grande diferença de temperatura

Crop

- Axilas são regiões mais quentes
- Pelo CAM foi possível ver que essa região impactava na classificação
 - Possível solução: cortar essa região

Scheduler de Taxa de Aprendizado

- Scheduler de Taxa de Aprendizado
 - Taxa de Aprendizado: controla a magnitude dos passos na minimização da função de perda
 - Scheduler: ajusta dinamicamente a taxa ao longo do treinamento
- Convergência Inicial Rápida: alta taxa de aprendizado nas etapas iniciais.
- Refinamento nas Etapas Finais: redução da taxa para evitar oscilações e refinar o ajuste.

Avaliação do resultados

- Métricas Coletadas de cada modelo com cada pré-processamento:
 - Curva de aprendizagem
 - Gráfico de acurácia
 - Matriz de confusão
- Curva de aprendizagem: média das acurácias e perdas por época nos 10 folds
 - Valores somados em cada época i e divididos para gerar a curva de aprendizagem média.
- Gráfico de acurácia: médias de acurácia em cada fold.
- Matriz de confusão: valores de cada fold somados

Gráfico de acurácia ResNet50

Gráfico de acurácia EfficentNet

Gráfico de acurácia VGG19

Matriz de confusão ResNet50 sem pré-processamento

Matriz de confusão EfficentNet sem pré-processamento

Matriz de confusão VGG19 sem pré-processamento

Curva de aprendizagem ResNet50 sem pré-processamento

Curva de aprendizagem EfficentNet sem pré-processamento

Curva de aprendizagem VGG19 sem pré-processamento

Conclusão e Trabalhos futuros

- ResNet50
 - Acurácia alta sem pré-processamento: 92,50%
- EfficentNet
 - Teve os menores desempenhos
- VGG19
 - Alta acurácia (92%) e com o crop teve um desvio padrão de apenas 3,32%
- Para futuros trabalhos é interessante explorar mais o CAM
- Realizar uma segmentação mais precisa das mamas

Obrigado!

oliveira.arthur@unifesp.br

https://github.com/Arthur-so/resnet18--breast-cancer-detection

