Lecture 003

Resampling

Edward Rubin 21 January 2020

Admin

Admin

Class today

Review

- Regression and loss
- Classification
- KNN
- The bias-variance tradeoff

Resampling methods

- Cross validation 🚸
- The bootstrap 👢

Admin

Upcoming

Readings

Today: ISL Ch. 5 (changed—sorry)

Next: ISL Ch. 3-4

Problem set due today (Tuesday) before midnight (PST)

Regression and loss

For **regression settings**, the loss is our prediction's distance from truth, i.e.,

$$error = \log = | |=|error|$$

Depending upon our ultimate goal, we choose loss/objective functions.

$$ext{L1 loss} = \begin{vmatrix} - \hat{} \end{vmatrix} \qquad ext{MAE} = \frac{1}{-} \begin{vmatrix} - \hat{} \end{vmatrix}$$
 $ext{L2 loss} = \begin{pmatrix} - \hat{} \end{pmatrix}^2 \qquad ext{MSE} = \frac{1}{-} \begin{pmatrix} - \hat{} \end{pmatrix}^2$

Whatever we're using, we care about **test performance** (*e.g.*, test MSE), rather than training performance.

Classification

For classification problems, we often use the test error rate.

$$\frac{1}{2}$$
 (\neq $\hat{}$)

The Bayes classifier

- 1. predicts class when $Pr_0 = | = 0$ exceeds all other classes.
- 2. produces the **Bayes decision boundary**—the decision boundary with the lowest test error rate.
- 3. is unknown: we must predict $Pr_0 = | 0 = 0$.

KNN

K-nearest neighbors (KNN) is a non-parametric method for estimating

$$Pr_0 = | 0$$

that makes a prediction using the most-common class among an observation's "nearest" K neighbors.

- **Low values of K** (*e.g.*, 1) are exteremly flexible but tend to overfit (increase variance).
- **Large values of K** (*e.g.*, N) are very inflexible—essentially making the same prediction for each observation.

The optimal value of K will trade off between overfitting and accuracy.

The bias-variance tradeoff

Finding the optimal level of flexibility highlights the bias-variance tradeoff.

Bias The error that comes from inaccurately estimating .

- More flexible models are better equipped to recover complex relationships (), reducing bias. (Real life is seldom linear.)
- Simpler (less flexible) models typically increase bias.

Variance The amount would change with a different **training sample**

- If new **training sets** drastically change $\hat{\ }$, then we have a lot of uncertainty about (and, in general, $\hat{\ } \not\approx$).
- More flexible models generally add variance to .

The bias-variance tradeoff

The expected value[†] of the **test MSE** can be written

The tradeoff in terms of model flexibility

- Increasing flexibility from total inflexibility generally **reduces bias more** than it increases variance (reducing test MSE).
- At some point, the marginal benefits of flexibility **equal** marginal costs.
- Past this point (optimal flexibility), we **increase variance more** than we reduce bias (increasing test MSE).

U-shaped test MSE with respect to model flexibility (KNN here). Increases in variance eventually overcome reductions in (squared) bias.

Intro

Resampling methods help understand uncertainty in statistical modeling.

- Ex. Linear regression: How precise is your 1?
- Ex. With KNN: Which K minimizes (out-of-sample) test MSE?

The process behind the magic of resampling methods:

- 1. Repeatedly draw samples from the training data.
- 2. **Fit your model**(s) on each random sample.
- 3. **Compare** model performance (or estimates) **across samples**.
- 4. Infer the variability/uncertainty in your model from (3).

Warning₁ Resampling methods can be computationally intensive. Warning₂ Certain methods don't work in certain settings.

Today

Let's distinguish between two important modeling tasks:

- Model selection Choosing and tuning a model
- Model assessment Evaluating a model's accuracy

We're going to focus on two common resampling methods:

- 1. **Cross validation** used to estimate test error, evaluating performance or selecting a model's flexibility
- 2. **Bootstrap** used to assess accuracy—parameter estimates or methods

Hold out

Recall: We want to find the model that minimizes out-of-sample test error.

If we have a large test dataset, we can use it (once).

- Q, What if we don't have a test set?
- Q₂ What if we need to select and train a model?
- Q₃ How can we avoid overfitting our training[†] data during model selection?

A_{1,2,3} **Hold-out methods** (*e.g.*, cross validation) use training data to estimate test performance—**holding out** a mini "test" sample of the training data that we use to estimate the test error.

Option 1: The validation set approach

To estimate the **test error**, we can *hold out* a subset of our **training data** and then **validate** (evaluate) our model on this held out **validation set**.

- The validation error rate estimates the test error rate
- The model only "sees" the non-validation subset of the training data.

Option 1: The validation set approach

To estimate the **test error**, we can *hold out* a subset of our **training data** and then **validate** (evaluate) our model on this held out **validation set**.

- The validation error rate estimates the test error rate
- The model only "sees" the non-validation subset of the training data.

Initial training set

Option 1: The validation set approach

To estimate the **test error**, we can *hold out* a subset of our **training data** and then **validate** (evaluate) our model on this held out **validation set**.

- The validation error rate estimates the test error rate
- The model only "sees" the non-validation subset of the training data.

Validation (sub)set

Training set: Model training

Option 1: The validation set approach

To estimate the **test error**, we can *hold out* a subset of our **training data** and then validate (evaluate) our model on this held out validation set.

- The validation error rate estimates the test error rate
- The model only "sees" the non-validation subset of the training data.

Option 1: The validation set approach

Example We could use the validation-set approach to help select the degree of a polynomial for a linear-regression model (Kaggle).

The goal of the validation set is to **estimate out-of-sample (test) error.**

Q So what?

- Estimates come with **uncertainty**—varying from sample to sample.
- Variability (standard errors) is larger with smaller samples.

Problem This estimated error is often based upon a fairly small sample (<30% of our training data). So its variance can be large.

Validation MSE for 10 different validation samples

True test MSE compared to validation-set estimates

Option 1: The validation set approach

Put differently: The validation-set approach has (≥) two major drawbacks:

- 1. **High variability** Which observations are included in the validation set can greatly affect the validation MSE.
- 2. **Inefficiency in training our model** We're essentially throwing away the validation data when training the model—"wasting" observations.
- $(2) \Longrightarrow \text{validation MSE may overestimate test MSE.}$

Even if the validation-set approach provides an unbiased estimator for test error, it is likely a pretty noisy estimator.

Option 2: Leave-one-out cross validation

Cross validation solves the validation-set method's main problems.

- Use more (= all) of the data for training (lower variability; less bias).
- Still maintains separation between training and validation subsets.

Leave-one-out cross validation (LOOCV) is perhaps the cross-validation method most similar to the validation-set approach.

- Your validation set is exactly one observation.
- New You repeat the validation exercise for every observation.
- New Estimate MSE as the mean across all observations.

Option 2: Leave-one-out cross validation

Each observation takes a turn as the **validation set**, while the other n-1 observations get to **train the model**.

Observation 1's turn for validation produces MSE₁.

Option 2: Leave-one-out cross validation

Each observation takes a turn as the **validation set**, while the other n-1 observations get to **train the model**.

Observation 2's turn for validation produces MSE₂.

Option 2: Leave-one-out cross validation

Each observation takes a turn as the **validation set**, while the other n-1 observations get to **train the model**.

Observation 3's turn for validation produces MSE₃.

Option 2: Leave-one-out cross validation

Each observation takes a turn as the **validation set**, while the other n-1 observations get to **train the model**.

Observation 4's turn for validation produces MSE₄.

Option 2: Leave-one-out cross validation

Each observation takes a turn as the **validation set**, while the other n-1 observations get to **train the model**.

Observation 5's turn for validation produces MSE₅.

Option 2: Leave-one-out cross validation

Each observation takes a turn as the **validation set**, while the other n-1 observations get to **train the model**.

Observation n's turn for validation produces MSE_n.

Option 2: Leave-one-out cross validation

Because **LOOCV uses n-1 observations** to train the model,[†] MSE_i (validation MSE from observation i) is approximately unbiased for test MSE.

Problem MSE_i is a terribly noisy estimator for test MSE (albeit ≈unbiased). **Solution** Take the mean!

$$\mathrm{CV}_{(\)}=rac{1}{-}$$
 MSE

- 1. LOOCV **reduces bias** by using n-1 (almost all) observations for training.
- 2. LOOCV **resolves variance**: it makes all possible comparison (no dependence upon which validation-test split you make).

True test MSE and LOOCV MSE compared to validation-set estimates

Option 3: k-fold cross validation

Leave-one-out cross validation is a special case of a broader strategy: **k-fold cross validation**.

- 1. **Divide** the training data into equally sized groups (folds).
- 2. **Iterate** over the folds, treating each as a validation set once (training the model on the other -1 folds).
- 3. **Average** the folds' MSEs to estimate test MSE.

Benefits?

- 1. Less computationally demanding (fit model = 5 or 10 times; not).
- 2. **Greater accuracy** (in general) due to bias-variance tradeoff!
 - \circ Somewhat higher bias, relative to LOOCV: -1 vs. (-1)/ .
 - Lower variance due to high-degree of correlation in LOOCV MSE_i.

Option 3: k-fold cross validation

With -fold cross validation, we estimate test MSE as

$$\mathrm{CV}_{()} = rac{1}{-} \ \ \mathrm{MSE}$$

Our = 5 folds.

Option 3: k-fold cross validation

With -fold cross validation, we estimate test MSE as

$$\mathrm{CV}_{(\)}=rac{1}{-}\mathop{\mathrm{MSE}}_{=1}$$

Each fold takes a turn at **validation**. The other -1 folds **train**.

Option 3: k-fold cross validation

With -fold cross validation, we estimate test MSE as

$$\mathrm{CV}_{(\)}=rac{1}{-} \ \ \mathrm{MSE}$$

For = 5, fold number 1 as the **validation set** produces $MSE_{k=1}$.

Option 3: k-fold cross validation

With -fold cross validation, we estimate test MSE as

$$\mathrm{CV}_{(\)}=rac{1}{-} \ \ \mathrm{MSE}$$

For = 5, fold number 2 as the **validation set** produces $MSE_{k=2}$.

Option 3: k-fold cross validation

With -fold cross validation, we estimate test MSE as

$$\mathrm{CV}_{(\)}=rac{1}{-} \ \ \mathrm{MSE}$$

For = 5, fold number 3 as the **validation set** produces $MSE_{k=3}$.

Option 3: k-fold cross validation

With -fold cross validation, we estimate test MSE as

$$\mathrm{CV}_{(\)}=rac{1}{-}$$
 MSE

For = 5, fold number 4 as the **validation set** produces $MSE_{k=4}$.

Option 3: k-fold cross validation

With -fold cross validation, we estimate test MSE as

$$\mathrm{CV}_{(\)}=rac{1}{-} \ \ \mathrm{MSE}$$

For = 5, fold number 5 as the **validation set** produces $MSE_{k=5}$.

Option 3: k-fold cross validation

With -fold cross validation, we estimate test MSE as

$$\mathrm{CV}_{(\)}=rac{1}{-}\mathop{\mathrm{MSE}}_{=1}$$

Test MSE vs. estimates: LOOCV, 5-fold CV (20x), and validation set (10x)

Note: Each of these methods extends to classification settings, e.g., LOOCV

$$\operatorname{CV}_{(\)} = rac{1}{-} \quad (\quad
eq \hat{\ })$$

Intro

The **bootstrap** is a resampling method often used to quantify the uncertainty (variability) underlying an estimator or learning method.

Calculating the standard error of an estimate often involves assumptions and theory (recall the standard-error estimator for OLS).

However, there are times this derivation is difficult or impossible, e.g.,

$$\operatorname{Var} \frac{\hat{1}}{1 - \hat{2}}$$

This is where the bootstrap helps.

Defined

Previous resampling methods

- Split data into **subsets**: validation and training (+ =).
- Repeat estimation on each subset.
- Estimate the true test error (to help tune flexibility).

Bootstrap

- Randomly samples from training data **with replacement** to generate "samples", each of size .
- Repeat estimation on each subset.
- Estimate the variance estimate using variability across samples.

Intuition

Idea: Bootstrapping builds a distribution for the estimate using the variability embedded in the training sample.

Sources

These notes draw upon

- An Introduction to Statistical Learning (ISL)
 James, Witten, Hastie, and Tibshirani
- Python Data Science Handbook Jake VanderPlas

Table of contents

Admin

- Today
- Upcoming

Review

- Regression and loss
- Classification
- KNN
- The bias-variance tradeoff

Examples

- Validation-set simulation
- LOOCV MSE
- k-fold CV

Resampling

- Intro
- Hold-out methods
 - Validation sets
 - o LOOCV
 - k-fold cross validation
- The bootstrap

Other

• Sources/references