III. - Kolaborativní filtrování

Makarov Danil, Olexandr Burakov

Popis projektu

Cílem našeho projektu bylo vytvořit full-stack aplikaci, která slouží jako příklad demonstrace algoritmu kolaborativního filtrování. Jako bonus jsme se rozhodli přidat také systém doporučování filmů, nejen předpověď hodnocení pro film.

Způsob řešení

Byly použity následující algoritmy:

- User-based Collaborative Filtering
- Spearmanův algoritmus pro výpočet korelace

Implementace

Frontend naší aplikace je napsán v **ReactJS** s využitím **RTKQ** (Redux Toolkit Query se používá k vytváření API na frontendu). Backend naší aplikace je napsán v **Flask** (Python).

Pro ukládání dat jsme použili **SQLite**. Je dostatečně lehká a pro naše účely jsme nepotřebovali širší databáze. Celkem máme 4 modely: **Komentáře**, **Film**, **Hodnocení**, **Uživatel**. Existuje také další pomocný model **Serializace**. Používá se pro pohodlné vrácení dat na frontend.

Modely databáze

Struktura backendu je docela typická pro lehké backendové aplikace. Máme zde:

- Kontrolery: Funkce, které jsou volány na endpointech.
- Složka exts: Obsahuje konfiguraci pro databázi SQLite.
- Models: Jak bylo řečeno, obsahuje modely pro databázi.
- Recsys: Složka, která obsahuje hlavní soubory pro naše algoritmy výběru filmů.
- Routes: Inicializace endpoints.

Nyní bychom rádi hovořili podrobněji o třídách **SpearmanMechanism** a **RecMechanism**.

Třída **SpearmanMechanism** je určena pro výpočet **Spearmanova koeficientu** hodnocení mezi dvěma uživateli na základě jejich hodnocení filmů. Třída má následující **atributy**:

- target_user: Primární uživatel.
- another_user: Sekundární uživatel.
- common_rated_movies: Seznam filmů, které oba uživatelé hodnotili.
- target_user_rated_movie_ranks: Slovník s ranky pro cílového uživatele vzhledem k společně hodnoceným filmům s druhým uživatelem.
- another_user_rated_movie_ranks: Slovník s ranky pro druhého uživatele vzhledem k společně hodnoceným filmům s cílovým uživatelem.
- squared_common_rated_movies_rank_diffs_sum: Součet čtverců rozdílů hodnocení u filmů, které hodnotili oba uživatelé.
- spearman_correlation_coefficient: Spearmanův koeficient hodnocení mezi dvěma uživateli na základě jejich hodnocení filmů.

Metody:

- __init__: Inicializace třídy s dvěma uživatelskými objekty.
- get_spearman_correlation_coefficient: Getter pro Spearmanův koeficient korelace (byl vypočítán dříve).
- <u>_get_rated_movie_ranks</u>: Tato metoda vypočítá a vrátí hodnocení filmů, které uživatelé společně hodnotili.
- <u>_get_common_rated_movies</u>: Získává společné filmy, které hodnotil cílový uživatel a další uživatel.
- _get_common_rated_movie_ranks_squared_diffs_sum: Vypočítává součet čtverců rozdílů v hodnocení společných filmů mezi dvěma uživateli.
- _calculate_spearman_correlation_coefficient: Tato metoda vypočítává
 Spearmanův koeficient hodnocení na základě součtu čtverců rozdílů
 hodnocení a počtu společně hodnocených filmů.

Třída **RecMechanism** je určena pro doporučování filmů cílovému uživateli na základě Spearmanova koeficientu a výpočet předpokládaného hodnocení pro konkrétní film. Hlavní metody třídy jsou:

- <u>__init__</u>: Inicializuje třídu s cílovým uživatelem a seznamem všech ostatních uživatelů. Vypočítá Spearmanovy koeficienty hodnocení mezi cílovým uživatelem a všemi ostatními uživateli.
- **get_spearman_correlation_coefficients**: Vrací slovník Spearmanových koeficientů hodnocení, který byl dříve vypočítán.

- **get_recommendations**: Vrací seznam doporučených filmů pro cílového uživatele. Tento seznam se vypočítává na základě Spearmanových koeficientů hodnocení.
- get_predicted_rating_for_movie: Vrací předpovězené hodnocení pro konkrétní film pro cílového uživatele. Předpovězené hodnocení se vypočítává na základě Spearmanových koeficientů hodnocení mezi cílovým uživatelem a nejbližšími sousedy.

Soukromé metody třídy jsou:

- _calculate_spearman_correlation_coefficients: Vypočítá Spearmanovy koeficienty hodnocení mezi cílovým uživatelem a všemi ostatními uživateli.
- _calculate_recommended_movies: Vypočítá doporučené filmy pro cílového uživatele na základě Spearmanových koeficientů.
- _calculate_predicted_rating_for_movie: Vypočítá předpovězené hodnocení pro konkrétní film pro cílového uživatele na základě Spearmanových koeficientů hodnocení mezi cílovým uživatelem a nejbližšími sousedy.

Výpočet Spearmanova koeficientu:

- Pro výpočet **Spearmanova koeficientu** mezi dvěma uživateli se porovnávají jejich hodnocení filmů.
- Nejprve se vybere množina filmů, kterou oba uživatelé hodnotili.
- Poté se pro společně prohlížené filmy tohoto uživatele vybere specifické pořadí pro určení ranků každému filmu. Filmy jsou seřazeny vzestupně podle udělených hodnocení.
- Dále je každému z těchto společně hodnocených filmů přiřazen rank pro následný výpočet korelace - speciální váhová jednotka filmu závislá na jeho hodnocení.
- Následně se spočítá součet čtverců rozdílů mezi ranky těchto filmů pro oba uživatele.
- Spearmanův koeficient se vypočítá na základě tohoto součtu a počtu filmů.

Předpověď hodnocení filmu:

- Pro předpověď hodnocení filmu pro cílového uživatele se používají vypočítané Spearmanovy koeficienty mezi cílovým uživatelem a ostatními uživateli.
- Nejbližších MAX_NEIGHBORS uživatelů s nejvyššími Spearmanovými koeficienty se vybere.
- Pro tyto uživatele se spočítá vážený průměr jejich hodnocení daného filmu na základě jejich Spearmanových koeficientů.

- Poté program využívá předchozí výpočty a matematickou formuli pro kolaborativní filtraci a vypočítává předpokládané hodnocení pro daného uživatele pro konkrétní film.
- Výsledkem je předpovězené hodnocení filmu pro cílového uživatele.

Doporučení filmů:

- Pro doporučení filmů pro cílového uživatele se opět využívají vypočítané Spearmanovy koeficienty.
- Uživatelé se seřadí podle jejich Spearmanových koeficientů sestupně.
- Postupně se program prochází těmito uživateli a jejich hodnoceními filmů.
- Pokud film nebyl cílovým uživatelem hodnocen a jeho hodnocení přesáhne minimální hranici hodnocení MIN_RATING a koeficientu korelace MIN_CORRELATION, je přidán do seznamu doporučených filmů.
- Seznam doporučených filmů je omezen na maximální počet doporučení MAX_RECOMMENDATIONS.

Spuštění aplikace

Pro spuštění projektu potřebujete NodeJS verzi 19 a Python verzi 3.11, pipenv (pip install pipenv instalovat globálně). Budete potřebovat otevřít 2 okna terminálu - pro spuštění frontendu a backendu. Pro spuštění frontendu je třeba přejít do složky frontend, nainstalovat závislosti pomocí npm install a spustit projekt pomocí npm start. Pro spuštění backendu musíte přejít do složky backend a zadat pipenv shell, pip install -r requirements.txt a python3 run.py. Frontend běží na localhost:3000, backend běží na localhost:5000.

Uživatel pro testování má email: 1@gmail.com a heslo: 111.

Vstupy a výstupy

Spearmanův koeficient

Vstup: objekt pro aktuálního uživatele a objekt pro druhého uživatele, se kterým chceme vypočítat korelaci. Objekt uživatele obsahuje pole s hodnocenými filmy (tj. id filmu a hodnocení jako číslo od 1 do 5 pro daného uživatele).

Výstup: je Spearmanův koeficient.

Předpověď hodnocení filmu

Vstup: objekt pro cílového uživatele, Spearmanovy koeficienty pro cílového uživatele a všechny ostatní uživatele, id uvažovaného filmu.

Výstup: předpovídané hodnocení jako float číslo od 1 do 5.

Předpověď hodnocení filmu UI

Doporučení filmů

Vstup: objekt pro cílového uživatele, Spearmanovy koeficienty pro cílového uživatele a všechny ostatní uživately.

Výstup: pole objektů obsahujících id filmu, category, title, similar_user_id ID podobného uživatele, který hodnotil film, similar_user_rating hodnocení filmu podobného uživatele, similar_user_correlation Spearmanův koeficient korelace mezi uživatelem a podobným uživatelem.

<

Title: **Life Is Beautiful**Category: Romance
Similar user rating: 5
Similar user id: 14
Similar user correlation: 1

Title: **The Green Mile**Category: Fantasy
Similar user rating: 4.9
Similar user id: 14
Similar user correlation: 1

Title Cate Sim Sim Sim

▼ General

Request URL: http://localhost:3000/user/2/recommendations

Request Method: GET

Status Code: 200 OK

Remote Address: 127.0.0.1:3000

Referrer Policy: strict-origin-when-cross-origin

http://localhost:3000/movies/movie/3 Is Beautiful", category: "Romance", simi category: "Romance" id: 25 similar_user_correlation: 1 similar_user_id: 14 similar_user_rating: 5 title: "Life Is Beautiful" ▶1: {id: 26, title: "The Green Mile", category: "Fantasy", similar ▶ 2: {id: 28, title: "Interstellar", category: "Sci-Fi", similar_us ▶ 3: {id: 15, title: "Star Wars: Episode V - The Empire Strikes Bad ▶ 4: {id: 21, title: "It's a Wonderful Life", category: "Fantasy", ▶5: {id: 10, title: "The Good, the Bad and the Ugly", category: "V ▶ 6: {id: 17, title: "Goodfellas", category: "Crime", similar_user ▶7: {id: 19, title: "Se7en", category: "Crime", similar_user_id: ▶8: {id: 5, title: "12 Angry Men", category: "Crime", similar_user ▶9: {id: 13, title: "Inception", category: "Sci-Fi", similar_user_ ▶ 10: {id: 31, title: "Spirited Away", category: "Animation", simil ▶ 11: {id: 9, title: "The Lord of the Rings: The Fellowship of the ▶ 12: {id: 33, title: "The Pianist", category: "Biography", similar ▶ 13: {id: 30, title: "Back to the Future", category: "Sci-Fi", sim ▶ 14: {id: 18, title: "One Flew Over the Cuckoo's Nest", category: ▶ 15: {id: 37, title: "Gladiator", category: "Action", similar_user ▶ 16: {id: 12, title: "Fight Club", category: "Drama", similar_user ▶ 17: {id: 29, title: "Terminator 2: Judgment Day", category: "Acti

Experimentální sekce

Výpočet Spearmanova koeficientu závisí na počtu společně hodnocených filmů mezi dvěma uživateli. Průměrná rychlost výpočtu je přibližně 18 milisekund pro 20-30 různých filmů.

Výpočet doporučení filmů pro našeho uživatele trvá přibližně 42 milisekund, když v databázi existuje kolem 50 uživatelů a každý uživatel hodnotil přibližně 20-30 různých filmů.

Výpočet doporučení filmů pro našeho uživatele trvá přibližně 74 milisekund, když v databázi existuje kolem 50 uživatelů a každý uživatel hodnotil přibližně 20-30 různých filmů.

Такé máme parametry, které umožňují upravit chování algoritmu. V souboru rec_mechanism.py máme následující proměnné:

- MIN_CORRELATION: Parameter je zodvodedny za vraceni filmu, které mají korelaci vyšší než tato hodnota.
- MIN_RATING: Vrací filmy, které mají hodnocení vyšší než tato hodnota.
- MAX_RECOMMENDATIONS: Maximální počet doporučených filmů.
- MAX_NEIGHBORS: Vybere tolik nejlepších uživatelů na základě korelace pro výpočet předpovědi hodnocení filmu.

Závěr

V této semestrální práci jsme implementovali systém doporučování filmů a předpověď hodnocení filmů. Měli jsme však potíže s měřením a testováním, protože jsme ručně přidávali filmy, uživatele a jejich hodnocení filmů. Vytvoření takového testeru je samostatný velký blok. Samozřejmě pro přesnější měření bychom potřebovali tisíce uživatelů. Celkově se naše předpoklady o přesnosti doporučení filmů shodovaly. Algoritmus pracuje dostatečně přesně při dostatečném počtu potřebných pro vypočet dat a může se lišit o tisíciny (0,001). Pro srovnání výsledků je možně vyzkoušet použít jiné algoritmy pro výpočet korelace.