Linear System Theory Solution to Homework 7

1. (a) Since $\mathbf{u}(t) = \mathbf{0}$ for $t_a < t \le t_f$, we have

$$\mathbf{x}(t_f) = e^{\mathbf{A}(t_f - t_a)} \mathbf{x}(t_a)$$

To achieve $\mathbf{x}(t_f) = \mathbf{x}_{des}$ we then should make

$$\mathbf{x}(t_a) = e^{\mathbf{A}(t_a - t_f)} \mathbf{x}_{des}$$

So \mathbf{u}^* is the minimum energy input that moves the state from $\mathbf{0}$ to $\mathbf{x}(t_a) = e^{\mathbf{A}(t_a - t_f)} \mathbf{x}_{des}$. Therefore

$$\mathbf{u}(t) = \mathbf{B}^{T} e^{\mathbf{A}^{T}(t_{a}-t)} \mathbf{W}_{r}^{-1}(0, t_{a}) \mathbf{x}(t_{a})$$

$$= \mathbf{B}^{T} e^{\mathbf{A}^{T}(t_{a}-t)} \left(\int_{0}^{t_{a}} e^{\mathbf{A}\tau} \mathbf{B} \mathbf{B}^{T} e^{\mathbf{A}^{T}\tau} d\tau \right)^{-1} \mathbf{x}(t_{a})$$

$$= \mathbf{B}^{T} e^{\mathbf{A}^{T}(t_{a}-t)} \left(\int_{0}^{t_{a}} e^{\mathbf{A}\tau} \mathbf{B} \mathbf{B}^{T} e^{\mathbf{A}^{T}\tau} d\tau \right)^{-1} e^{\mathbf{A}(t_{a}-t_{f})} \mathbf{x}_{des}$$

(b) The minimum control energy required is

$$E_{t_{a}} = \mathbf{x}^{T}(t_{a})\mathbf{W}_{r}^{-1}(0, t_{a})\mathbf{x}(t_{a})$$

$$= \mathbf{x}^{T}(t_{a})\left(\int_{0}^{t_{a}} e^{\mathbf{A}\tau}\mathbf{B}\mathbf{B}^{T}e^{\mathbf{A}^{T}\tau}d\tau\right)^{-1}\mathbf{x}(t_{a})$$

$$= \mathbf{x}_{des}^{T}e^{\mathbf{A}^{T}(t_{a}-t_{f})}\left(\int_{0}^{t_{a}} e^{\mathbf{A}\tau}\mathbf{B}\mathbf{B}^{T}e^{\mathbf{A}^{T}\tau}d\tau\right)^{-1}e^{\mathbf{A}(t_{a}-t_{f})}\mathbf{x}_{des}$$

$$= \mathbf{x}_{des}^{T}\left[e^{\mathbf{A}(t_{f}-t_{a})}\left(\int_{0}^{t_{a}} e^{\mathbf{A}\tau}\mathbf{B}\mathbf{B}^{T}e^{\mathbf{A}^{T}\tau}d\tau\right)e^{\mathbf{A}^{T}(t_{f}-t_{a})}\right]^{-1}\mathbf{x}_{des}$$

$$= \mathbf{x}_{des}^{T}\left[\int_{0}^{t_{a}} e^{\mathbf{A}(t_{f}-t_{a}+\tau)}\mathbf{B}\mathbf{B}^{T}e^{\mathbf{A}^{T}(t_{f}-t_{a}+\tau)}d\tau\right]^{-1}\mathbf{x}_{des}$$

$$= \mathbf{x}_{des}^{T}\left[\int_{t_{f}-t_{a}}^{t_{f}} e^{\mathbf{A}t}\mathbf{B}\mathbf{B}^{T}e^{\mathbf{A}^{T}t}dt\right]^{-1}\mathbf{x}_{des}, \quad (t = t_{f} - t_{a} + \tau)$$

As t_a increases, the interval of integration (in the last equation) increases while the matrix function inside the integral remains the same and positive semi-definite; hence the matrix inside the parenthesis becomes more positive definite and the inverse of it becomes less positive definite. We thus conclude that E_{t_a} decreases as t_a increase. Note also that as $t_a \to 0$, the minimum energy $\to \infty$.

2. The following equality holds for all $\mathbf{K} \in \mathbb{R}^{m \times n}$ and all λ :

$$\left[\begin{array}{cc} \lambda \mathbf{I} - \mathbf{A} + \mathbf{B} \mathbf{K} & \mathbf{B} \end{array}\right] = \left[\begin{array}{cc} \lambda \mathbf{I} - \mathbf{A} & \mathbf{B} \end{array}\right] \left[\begin{array}{cc} \mathbf{I} & \mathbf{0} \\ \mathbf{K} & \mathbf{I} \end{array}\right]$$

Since the matrix $\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{K} & \mathbf{I} \end{bmatrix}$ is invertible, it follows that $\begin{bmatrix} \lambda \mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K} & \mathbf{B} \end{bmatrix}$ and $\begin{bmatrix} \lambda \mathbf{I} - \mathbf{A} & \mathbf{B} \end{bmatrix}$ have the same rank for all λ . The assertion follows from PBH rank test for controllability.

- 3. (a) The controllability matrix is $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, which has rank 1; hence the system is not controllable.
 - (b) With the state feedback the closed-loop system becomes

$$\dot{\mathbf{x}} = \begin{bmatrix} -2 - k_1 & 3 - k_2 \\ -k_1 & 1 - k_2 \end{bmatrix} \mathbf{x}$$

Then the closed-loop characteristic equation is

$$(\lambda + 2 + k_1)(\lambda - 1 + k_2) + k_1(3 - k_2) = (\lambda + 2)(\lambda - 1 + k_1 + k_2) = 0$$

Hence the closed-loop eigenvalues are -2 and $1 - k_1 - k - 2$. For $\lambda = -1$ to be one of the closed-loop eigenvalues, the condition is $k_1 + k_2 = 2$.

(c) Given that $k_1 + k_2 = 2$,

$$\|\mathbf{K}\|^2 = k_1^2 + k_2^2 = (2 - k_2)^2 + k_2^2 = 2k_2^2 - 4k_2 + 4k_2^2 +$$

Hence the minimum value of $\|\mathbf{K}\|^2$ is 2 when $k_2 = 1$ and $k_1 = 1$, i.e. $\mathbf{K} = \begin{bmatrix} 1 & 1 \end{bmatrix}$.

4. Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$. The discrete-time system satisfies

$$\mathbf{A}_d = e^{\mathbf{A}h}, \quad \mathbf{B}_d = \int_0^h e^{\mathbf{A}\tau} d\tau \mathbf{B}$$

Let **w** be a left eigenvector of **A** associated with the eigenvalue λ , i.e. $\mathbf{w}^T \mathbf{A} = \lambda \mathbf{w}^T$. Then for any $t \in \mathbb{R}$,

$$\mathbf{w}^T e^{\mathbf{A}t} = \mathbf{w}^T \left(\mathbf{I} + \mathbf{A}t + \frac{\mathbf{A}^2 t^2}{2} + \cdots \right) = \mathbf{w}^T \left(1 + \lambda t + \frac{\lambda^2 t^2}{2} + \cdots \right) = e^{\lambda t} \mathbf{w}^T$$

In particular, $\mathbf{w}^T e^{\mathbf{A}h} = e^{\lambda h} \mathbf{w}^T$. This implies that if (λ, \mathbf{w}) is a pair of eigenvalue and left eigenvector of \mathbf{A} , then $(e^{\lambda h}, \mathbf{w})$ is a pair of eigenvalue and left eigenvector of \mathbf{A}_d .

Let $\lambda_1, \dots, \lambda_n$ be distinct eigenvalues of **A** associated with linearly independent left eigenvectors $\mathbf{w}_1, \dots, \mathbf{w}_n$. Then any left eigenvector of **A** must be aligned with one of \mathbf{w}_i , i.e. if **w** is a left eigenvector, then $\mathbf{w} = \alpha \mathbf{w}_i$ for some $i = 1, \dots, n$ and $\alpha \in \mathbb{R}$.

Because (\mathbf{A}, \mathbf{B}) is controllable, each left eigenvector \mathbf{w} of \mathbf{A} satisfies $\mathbf{w}^T \mathbf{B} \neq \mathbf{0}$. This is equivalent to $\mathbf{w}_i^T \mathbf{B} \neq \mathbf{0}$ for $i = 1, \dots, n$. Then

$$\mathbf{w}_i^T \mathbf{B}_d = \mathbf{w}_i^T \int_0^h e^{\mathbf{A}\tau} d\tau \mathbf{B} = \int_0^h e^{\lambda_i \tau} d\tau \mathbf{w}_i^T \mathbf{B} \neq 0$$

If \mathbf{A}_d has distinct eigenvalues, then we conclude that for any left eigenvector \mathbf{w} of \mathbf{A}_d , $\mathbf{w}^T \mathbf{B}_d \neq \mathbf{0}$. Therefore $(\mathbf{A}_d, \mathbf{B}_d)$ is controllable.

However, the problem gets more complicated if the eigenvalues of \mathbf{A}_d are not distinct. For example, if $\lambda_i - \lambda_l = j\frac{2\pi q}{h}$, $q \in \mathbb{Z}$, then $e^{\lambda_i h} = e^{\lambda_l h}$. Consequently, any $\mathbf{w} \in \text{span}\{\mathbf{w}_i, \mathbf{w}_l\}$ is a left eigenvector of \mathbf{A}_d . Note that $\mathbf{w}_i^T \mathbf{B}_d \neq \mathbf{0}$ and $\mathbf{w}_l^T \mathbf{B}_d \neq \mathbf{0}$ does not guarantee that $\mathbf{w}^T \mathbf{B}_d \neq \mathbf{0}$ for all $\mathbf{w} \in \text{span}\{\mathbf{w}_i, \mathbf{w}_l\}$.

For example, let $\mathbf{A} = \operatorname{diag}(\lambda_1, \lambda_1 + j\frac{2\pi}{h}, \bar{\lambda}_1, \bar{\lambda}_1 - j\frac{2\pi}{h})$ and $\mathbf{B} = [1, 1, 1, 1]^T$. By PBH test, (\mathbf{A}, \mathbf{B}) is controllable, but the discretized system is not. This is because $\mathbf{A}_d = \operatorname{diag}(e^{\lambda_1 h}, e^{\lambda_1 h}, e^{\bar{\lambda}_1 h}, e^{\bar{\lambda}_1 h})$ and $[s\mathbf{I} - \mathbf{A}_d \ \mathbf{B}_d]$ loses rank for $s = e^{\lambda_1 h}$.

5. (a) Note that $(\mathbf{A}, \mathbf{b}_2)$ is uncontrollable, and $\lambda = -1$ is the uncontrollable mode by \mathbf{b}_2 . Hence the multiple eigenvalues that can be assigned by \mathbf{b}_2 are $\lambda = -1, -1$. Let $\mathbf{k}_1 = [k_{11}, k_{12}]$. Since

$$\mathbf{A} - \mathbf{b}_2 \mathbf{k}_1 = \left[\begin{array}{cc} -2 - k_{11} & 1 - k_{12} \\ 0 & -1 \end{array} \right]$$

The eigenvalues of $\mathbf{A} - \mathbf{b}_2 \mathbf{k}_1$ are $\lambda = -2 - k_{11}, -1$. Let $k_{11} = -1$, and choose k_{12} arbitrarily, say $k_{12} = 0$. In other words, if you choose $\mathbf{k}_1 = [-1, 0]$, then $\mathbf{A} - \mathbf{b}_2 \mathbf{k}_1$ has multiple eigenvalues at -1, -1.

(b) The statement is false. Let $\mathbf{k}_2 = [0, 1]$. Then

$$\mathbf{A} - \mathbf{b}_1 \mathbf{k}_2 = \left[\begin{array}{cc} -2 & 0 \\ 0 & 0 \end{array} \right]$$

and $(\mathbf{A} - \mathbf{b}_1 \mathbf{k}_2, \mathbf{b}_2)$ is uncontrollable.