In [103]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [104]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\Salesworkload1.csv")
a
```

Out[104]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	Hours
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	
7653	06.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	6322.323	
7654	06.2017	9.0	Sweden	29650.0	Gothenburg	16.0	Customer Services	4270.479	
7655	06.2017	9.0	Sweden	29650.0	Gothenburg	11.0	Delivery	0	
7656	06.2017	9.0	Sweden	29650.0	Gothenburg	17.0	others	2224.929	
7657	06.2017	9.0	Sweden	29650.0	Gothenburg	18.0	all	39652.2	

7658 rows × 14 columns

In [105]:

a=a.head(10)

Out[105]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0
5	10.2016	1.0	United Kingdom	88253.0	London (I)	6.0	Meat	8270.316	0.0
6	10.2016	1.0	United Kingdom	88253.0	London (I)	13.0	Food	16468.251	0.0
7	10.2016	1.0	United Kingdom	88253.0	London (I)	7.0	Clothing	4698.471	0.0
8	10.2016	1.0	United Kingdom	88253.0	London (I)	8.0	Household	1183.272	0.0
9	10.2016	1.0	United Kingdom	88253.0	London (I)	9.0	Hardware	2029.815	0.0
4 (•

In [106]:

```
# to find
a.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 14 columns):
    Column
                    Non-Null Count
#
                                    Dtype
    -----
                    -----
                                    ----
- - -
 0
    MonthYear
                    10 non-null
                                    object
 1
    Time index
                    10 non-null
                                    float64
 2
    Country
                   10 non-null
                                    object
 3
    StoreID
                   10 non-null
                                    float64
 4
    City
                    10 non-null
                                    object
 5
    Dept_ID
                   10 non-null
                                    float64
 6
    Dept. Name
                   10 non-null
                                    object
 7
                    10 non-null
                                    object
    HoursOwn
 8
    HoursLease
                   10 non-null
                                    float64
                   10 non-null
 9
                                    float64
    Sales units
 10 Turnover
                   10 non-null
                                    float64
 11
    Customer
                    0 non-null
                                    float64
```

10 non-null

dtypes: float64(7), object(7)

13 Opening hours 10 non-null

memory usage: 1.2+ KB

12 Area (m2)

In [107]:

```
# to display summary of statastic
a.describe()
```

object

object

Out[107]:

	Time index	StoreID	Dept_ID	HoursLease	Sales units	Turnover	Customer
count	10.0	10.0	10.000000	10.0	1.000000e+01	1.000000e+01	0.0
mean	1.0	88253.0	5.800000	0.0	6.543725e+05	1.978511e+06	NaN
std	0.0	0.0	3.614784	0.0	9.914003e+05	2.861420e+06	NaN
min	1.0	88253.0	1.000000	0.0	5.491500e+04	2.904000e+05	NaN
25%	1.0	88253.0	3.250000	0.0	1.034225e+05	4.033612e+05	NaN
50%	1.0	88253.0	5.500000	0.0	2.615525e+05	5.770455e+05	NaN
75%	1.0	88253.0	7.750000	0.0	4.284400e+05	1.518067e+06	NaN
max	1.0	88253.0	13.000000	0.0	3.107935e+06	8.714679e+06	NaN

In [108]:

```
# to display colum heading
a.columns
```

Out[108]:

In [109]:

sns.pairplot(a)

Out[109]:

<seaborn.axisgrid.PairGrid at 0x243edd3e100>

In [110]:

```
sns.displot(a["Time index"])
```

Out[110]:

<seaborn.axisgrid.FacetGrid at 0x243ecdf7ee0>

In [111]:

Out[111]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0
5	10.2016	1.0	United Kingdom	88253.0	London (I)	6.0	Meat	8270.316	0.0
6	10.2016	1.0	United Kingdom	88253.0	London (I)	13.0	Food	16468.251	0.0
7	10.2016	1.0	United Kingdom	88253.0	London (I)	7.0	Clothing	4698.471	0.0
8	10.2016	1.0	United Kingdom	88253.0	London (I)	8.0	Household	1183.272	0.0
9	10.2016	1.0	United Kingdom	88253.0	London (I)	9.0	Hardware	2029.815	0.0
4 (>

In [112]:

```
sns.heatmap(b.corr())
```

Out[112]:

<AxesSubplot:>

In [114]:

```
x=a[['MonthYear', 'Time index','StoreID', 'Dept_ID']]
y=a['Time index']
```

In [115]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [116]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[116]:

LinearRegression()

In [117]:

```
lr.intercept_
```

Out[117]:

1.0

In [118]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[118]:

	Co-efficient
MonthYear	0.0
Time index	0.0
StoreID	0.0
Dept_ID	0.0

In [119]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[119]:

<matplotlib.collections.PathCollection at 0x243f0b16c40>

In [120]:

```
lr.score(x_test,y_test)
```

Out[120]:

1.0

In [121]:

```
lr.score(x_train,y_train)
```

Out[121]:

1.0

```
In [122]:
from sklearn.linear_model import Ridge,Lasso
In [123]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[123]:
Ridge(alpha=10)
In [124]:
rr.score(x_test,y_test)
Out[124]:
1.0
In [125]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinat
e_descent.py:530: ConvergenceWarning: Objective did not converge. You migh
t want to increase the number of iterations. Duality gap: 0.0, tolerance:
0.0
  model = cd_fast.enet_coordinate_descent(
Out[125]:
Lasso(alpha=10)
In [126]:
la.score(x_test,y_test)
Out[126]:
1.0
In [127]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinat
e_descent.py:530: ConvergenceWarning: Objective did not converge. You migh
t want to increase the number of iterations. Duality gap: 0.0, tolerance:
  model = cd_fast.enet_coordinate_descent(
Out[127]:
ElasticNet()
```

```
In [128]:
en.coef_
Out[128]:
array([0., 0., 0., 0.])
In [129]:
en.intercept_
Out[129]:
1.0
In [130]:
prediction=en.predict(x_test)
prediction
Out[130]:
array([1., 1., 1.])
In [131]:
en.score(x_test,y_test)
Out[131]:
1.0
EVALUATION METRICS
In [132]:
from sklearn import metrics
In [133]:
print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,prediction))
Mean Absolute Error: 0.0
In [134]:
print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))
Mean Squared Error 0.0
In [135]:
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

Root Mean Squared Error 0.0

In []:		