Term Structure Models with Differences in Belief

PAUL WHELAN

paul.whelan07@imperial.ac.uk

EMPIRICAL FACTS

- Expected Excess Returns on Nominal Bonds are Highly Predictable
 - Fama and Bliss (1987), Campbell and Schiller (1991)
 - Cochrane-Piazzesi (2002), Le and Singleton (2013)
- But . . .
- Macro-Economic Determinants
 - growth/inflation shocks explain a small fraction of yield shocks
 - very little covariance between bond returns and macro-factors
 - weak link between monetary policy and bond markets

AVERAGE YIELD CURVES

REAL-NOMINAL PCS

REAL-NOMINAL PCs: UK

REAL-NOMINAL PCs:

U.S Treasuries	Level	Slope	Curvature
% of $cov(y_t^{\$})$ explained	94.69	4.22	1.03
% of $cov(y_t^r)$ explained	95.14	4.41	0.43
% Nom factor explained by real factor	78	72	3
U.K Treasuries			
% of $cov(y_t^{\$})$ explained	95.56	3.64	0.79
% of $cov(y_t^r)$ explained	98.26	1.47	0.26
% Nom factor explained by real factor	83	39	27

EXCESS RETURNS

TERM STRUCTURE OF SHARPE RATIOS

Models for the Real SDF

- 1. Time-Varying Prices of Risk: Campbell Cochrane (1999)
 - surplus drives predictable excess returns
 - bond risk premium determined by surplus covariance with short rate:
 - intertemporal demand dominates: $cov(Surp_t, r_t) > 0 \rightarrow RP < 0$
 - lacktriangledown precautionary savings dominates: $cov(Surp_t, r_t) < 0 \rightarrow RP > 0$
- 2. Time-Varying Quantities of Risk: Bansal Yaron (2004)
 - expected consumption volatility drives predictable excess returns
 - calibrated to equity implies
 - downward sloping (negative) real yields.
 - negative sharpe ratios

This Paper ...

- · studies a model where beliefs are driving
 - agent specific risk aversion (prices of risk)
 - agent specific consumption volatility (quantities of risk)
- · study theoretical and empirical explanations for the
 - 1. The Short Term Real Rate:
 - 2. The Cross-Section of Real Yields:
 - 3. Expected Returns on Real Bonds:

Theoretical Framework

CONSUMPTION GROWTH FORECASTS

Consider two agents with subjective conditional probability measures dQ_t^a and dQ_t^b :

· In equilibrium ex-ante marginal utilities must balance

$$E^{a}(u_{a}'(C_{T})|\mathcal{F}_{t}) = E^{a}(u_{b}'(C_{T})|\mathcal{F}_{t})$$

· Implication: models for consumption growth matter for equilibrium risk sharing

WHICH MODEL?

- No consensus on the correct model for consumption growth
 - Beeler and Campbell (2009) argue consumption has autocorrelations consistent with random walk
 - Bansal, Kiku, Yaron (2009) argue VAR estimates imply predictability of more than 15% at one-to-five year horizons.
- consumption asset pricing finds a wide range of estimates for autocorrelations:
 - 0.43 [NIPA]
 - 0.74 [Parker and Julliard (2005)]
 - 0.12 [Jagannathan and Wang (2007)]
 - -0.14 [Savov (2011)].

WHICH MODEL?

Consider an economy where agents learn about growth rates (\mathbf{g}_t) by observing realised consumption

$$dC/C = \mathbf{g_t^i} dt + \sigma_C dW_t^C,$$

Assume agents agree on the long run growth rate (θ) but hold dogmatic beliefs on the persistence $(\kappa_{\mathbf{g}})$ of growth shocks:

$$dg_t^i = -\kappa_{\mathbf{g}}^{\mathbf{i}}(g_t^i - \theta)dt + \sigma_{\mathbf{g}}dW_t^{\mathbf{g}}$$

Standard linear filtering problem generates important implications for equilibrium risk sharing.

Assume the true objective $\kappa_g^o=0.5$, one agents who believes the economy is dominated by permanent shocks $\kappa_g^a=0.2$, and one who believes the economy is dominated by transitory shocks $\kappa_g^a=0.8$

EQUILIBRIUM

Individual Problem:

$$\begin{aligned} \max_{\{c^i\}} E_0^i \int_0^\infty \varrho_t u(c_t^i) dt, \\ s.t. \ E_0^i \int_0^\infty \mathcal{M}_t^i \left[c_t^i - e_t^i \right] dt \leq 0 \quad \text{and} \quad \sum_i c_t^i = C_t \end{aligned}$$

Representative Problem:

$$U^*(C(t),\lambda) := \max_{c_a(t)+c_b(t)=C(t)} \{u_a(c_a(t)) + \lambda_t u_b(c_b(t))\}$$

• Solution:

$$c_a(t) = rac{C_t}{1 + \eta_t^{1/\gamma}} \;\;, \;\;\; c_b(t) = C_t rac{\eta_t^{t/\gamma}}{1 + \eta_t^{1/\gamma}} \ \mathcal{M}_t^* = \underbrace{\varrho_t C_t^{-\gamma}}_{ ext{Homogeneous CRRA SDF}} \underbrace{\left(1 + \eta_t^{1/\gamma}
ight)^{\gamma}}_{ ext{Belief Distortion}}$$

where $\eta_t = \frac{d\mathcal{P}_t^a}{d\mathcal{P}_t^b}$

EFFECTIVE RISK AVERSION

• The local curvature of the investor's utility is time varying:

$$\gamma^{ extstyle extstyle \sigma}(t) = -c_t rac{U_{cc}}{U_c} = \gamma \left[1 + \left(rac{\omega_t^{\,b}}{\omega_t^{\,eta}}
ight)^2
ight]$$

- Effective risk aversion is state dependent as a function of *past* consumption choices
- The entire history of belief dispersion is important for equilibrium prices today

STOCHASTIC CONSUMPTION

$$d\omega_{\text{a}} = \underbrace{\frac{\gamma - 1}{2\gamma}\omega_{\text{a}}(\eta_{t})\omega_{\text{b}}(\eta_{t})\psi_{t}^{2}}_{\text{Speculative Demand}} \left[\underbrace{\frac{(\gamma - 1) + 2\gamma\omega_{\text{b}}(\eta_{t})}{\gamma(\gamma - 1)}}_{\text{Speculative Demand}} \right] dt + \underbrace{\frac{1}{\gamma}\omega_{\text{a}}(\eta_{t})\omega_{\text{b}}(\eta_{t})\psi_{t}}_{\text{Stochastic Vol}} d\hat{W}_{t}^{C}$$

- $\omega_i(t) = c_t^i/C_t$ investor's i's total consumption share is stochastic
- shocks to beliefs about growth rates change the investment opportunity set
- speculative demand enters the drift of individual consumption streams.
 - $\gamma > 1$ the wealth effect dominates
 - $\gamma < 1$ the substitution effect dominates
- large risk tolerance generates large volatile consumption streams to due speculation

THE REAL SHORT RATE

• From the drift of $d\mathcal{M}_t^*$: risk free rate

$$\textit{r}_{\textit{f}} = \rho + \gamma \beta' \underbrace{\left(\omega_{\textit{a}}(t) \hat{g}^{\textit{a}}_{t} + \omega_{\textit{b}}(t) \hat{g}^{\textit{b}}_{t}\right)}_{\text{Consensus Aggregation Bias}} - \underbrace{\frac{1}{2} \gamma (\gamma + 1) \sigma_{\textit{C}}^{2}}_{\text{Precautionary Savings}} + \underbrace{\frac{\gamma - 1}{2 \gamma} \omega_{\textit{a}}(t) \omega_{\textit{b}}(t) \psi_{t}^{2}}_{\text{Speculative Demand}},$$

- Implications
 - 1. Aggregation bias: the short rate is skewed towards the belief of the agent who has been relatively more successful.
 - 2. Inter-temporal component: depends on whether γ is greater or smaller than 1.

SHORT RATE SENSITIVITIES

- For $\gamma > 1$ the wealth effect dominates: interest rates rise to clear the market.
- ullet When $\gamma < 1$ the substitution effect dominates: interest rates fall to clear the market

THE TERM STRUCTURE OF BOND PRICES

Real zero-coupon bonds are given by

$$P(t,T) = E_t^i \left[e^{-\delta(T-t)} \left(\frac{C_T}{C_t} \right)^{-\gamma} \left(\frac{1 + \eta_T^{1/\gamma}}{1 + \eta_t^{1/\gamma}} \right)^{\gamma} \right]$$

Requires computing the forward density for $y_T = \ln C_T$ and $z_T = \ln \eta_T$

Define the extend state $X_t = (y_t, z_t, g_t, \psi_t, g_t^2, \psi_t^2, \psi_t g_t)$

obtain prices via inversion via inversion of the CF

$$P(t,T) = e^{-\delta(T-t)} (1 + e^{\frac{1}{\gamma}z_t})^{-\gamma} \int_0^{\infty} \left[(1 + e^{\frac{1}{\gamma}Z_T})^{\gamma} \frac{1}{\pi} \int_0^{\infty} e^{-iu_2z_t} \phi_{y,z}(\tau;u) du_2 \right] dz_T$$

where

$$\phi_{y,z}(\tau;u) = e^{\alpha(\tau,u)+\beta(\tau,u)'X_t}$$

and $\beta(\tau)$ is a set of matrix valued RDEs.

Calibrated Parameters

δ	γ	$\sigma_{\mathcal{C}}$	θ	$\sigma_{\sf g}$	$ ho_{\sf cg}$	$\kappa_{\sf g}^{\sf a}$	$\kappa_{\sf g}^{\sf b}$
0	(0.5 : 3.0)	3%	3%	1.5%	0.80	0.20	0.80

- Agent A: Growth rate shocks have a half life of $T_{1/2}\sim 3.5$ years
- Agent B: Growth rate shocks have a half life of $T_{1/2} \sim$ 0.90 years
- $ho_{\it cg} > 0
 ightarrow$ homogeneous real bonds have negative sharpe ratios

TERM STRUCTURES: EQUAL WEALTH SHARES

RISK PREMIA

· The bond risk premium under the measure of each agent is

$$\mu_i^P(t,T) - \mu_i^Q(t,T) = -E_t^i \left[\frac{dP_t}{P_t} \frac{d\mathcal{M}_t^i}{\mathcal{M}_t^i} \right] = \kappa_t(t) \sigma_{P,D}(t,T)$$

The risk premium from the perspective of an unbiased econometrician is

$$\frac{\mu_{e}^{P}(t,T) - \left(\omega_{t}^{s}\mu_{s}^{Q}(t,T) + \omega_{t}^{b}\mu_{b}^{Q}(t,T)\right)}{\sigma_{P,D}(t,T)} = \gamma\sigma_{C} + \frac{1}{\sigma_{C}}\left[g_{t} - \left(\omega_{t}^{s}g_{t}^{s} + \omega_{t}^{b}g_{t}^{b}\right)\right]$$

· Bond sensitivities to shocks are

$$\left[\sigma_{P,D}(t,T)\;,\;\sigma_{P,s}(t,T)\right] = \frac{1}{P(t,T)} \left[\frac{\partial P(t,T)}{\partial x}\right] \cdot \begin{bmatrix} \sigma_{g,D} & \sigma_{g,s} \\ -\psi_t & 0 \\ \sigma_{\psi,D} & \sigma_{\psi,s} \end{bmatrix}$$

RISK PREMIA: EQUAL WEALTH SHARES

• both panels : symmetric economy ($\omega^a = \omega^b = 0.5$)

RISK PREMIA: OPTIMISM VS PESSIMISM

- left panel : optimistic economy ($\omega^a=0.75~\&~\omega^b=0.25$)
- right panel : pessimistic economy ($\omega^a=0.25~\&~\omega^b=0.75$)

Belief Risk

- When agents are myopic the term structure is bounded by homogeneous solutions.
- If the short rate is pro-cyclical $(
 ho_{c,g}^i>0)$ term structures will be downward sloping.
- When $\gamma
 eq 1$ and $\omega_a pprox \omega_b pprox 0.5$ the real term structure is upward sloping

TESTABLE IMPLICATIONS

- H₀₁ : Short Term Real Rate.
 - disagreement enters the the real short rate. The sign of its effect depends on $\gamma\geqslant 1$
- *H*₀₂ : The Cross-Section of Real Yields.
 - disagreement is a state variable affecting the level and slope of the term structure. To the extent that past beliefs proxy for contemporaneous wealth fluctuations, distance lags of disagreement should affect today's cross-section of yields.
- H₀₃: Expected Returns on Real Bonds
 - from the perspective of an econometrician, disagreement drives positive (negative) variation in expected returns if the economy is on average pessimistic (optimistic).
 - risk compensation on intermediate to long term bonds depends on future belief risk.

Subjective Expectations

BlueChip Financial Forecasts:

- Large data source of subjective expectations
- Available at monthly frequency and out to 5-quarters
- GDP forecast to proxy for consumption growth expectations

DISPERSION VARIABLES

Green line plots a policy uncertainty factor studied by Baker, Bloom, and Davis (2012) Blue line plots the IQR of 1-quarter GDP forecasts.

STRUCTURAL ALTERNATIVES

1. Prices of Risk: Wachter (2006)

- Proxy for consumption surplus s_t as weighted average of monthly consumption growth rates:

$$s_t = \sum_{j=1}^{120} \phi^j \Delta c_{t-j}$$

where weight is chosen to match the quarterly autocorrelation of the \mbox{P}/\mbox{D} ratio.

- 2. Quantities of Risk: Bansal and Shaliastovich (2012)
 - Fit a VAR(1) to inflation and growth expectations:

$$\begin{split} &g_{t+1}^e = \underset{(0.08)}{0.63} + \underset{(0.02)}{0.86} g_t^e - \underset{(0.01)}{0.08} \pi_t^e + \epsilon_{g,t+1} \\ &\pi_{t+1}^e = \underset{(0.12)}{0.93} - \underset{(0.03)}{0.20} g_t^e + \underset{(0.02)}{0.87} \pi_t^e + \epsilon_{\pi,t+1} \end{split}$$

- Project square root of the sum of squared residuals over the next 12 months on the date t cross-section of yields.
- Square the fitted values which forms the uncertainty measures for date t.

STRUCTURAL ALTERNATIVES

 $\mathcal{H}_{01}: \mathtt{SHORT} \ \mathtt{TERM} \ \mathtt{RATE}$

	E(g)	$\psi(g)$	$\sigma^2(g)$	Surp	Lag y ^{3m}	\overline{R}^2
real y ^{3m}	-0.23	-0.28				0.06
	(-1.22)	(-2.32)				
real y^{3m}	-0.39	-0.31	-0.04	0.31		0.12
	(-2.01)	(-2.42)	(-0.34)	(3.20)		
real y^{3m}	0.00	-0.11	-0.06	0.02	0.88	0.78
	(0.00)	(-2.13)	(-1.21)	(0.26)	(19.52)	

Sample = 1990.1 - 2010.1

 H_{02} : The Cross Section of Yields

	$E_t(g_t)$	ψ_{t}^{g}	$\psi_{t-6}^{\it g}$	$\sigma_t^2(g)$	Surp _t	\overline{R}^2
Real Slope _t	0.76 (2.64)	0.50 (4.95)				0.31
Real Slope _t	0.81 (3.56)	0.41 (5.29)	0.28 (4.07)			0.38
Real Slope _t	1.02 (3.94)	0.40 (5.29)	0.21 (2.62)	-0.01 (-0.10)	$-0.20 \ (-1.87)$	0.39

Sample Period: 2000.1 - 2010.1

REAL COCHRANE-PIAZZESI (2002)

- Adapt CP in order to compare real and nominal return predictability.
- Project 3-month excess returns on 3-month forward rate spreads.
- Common factors are then formed from real and nominal forward rates by factorizing the first stage regression as

$$\frac{1}{3} \sum_{n=1}^{3} r x_{t+0.25}^{n} = \overline{\alpha} + \gamma' (f_t^{[5\ 7\ 10]} - y_t^{(0.25)}) + \overline{\epsilon}_{t+0.25}$$

$$CP_t = \gamma' (f_t^{[5\ 7\ 10]} - y_t^{(0.25)})$$

REAL COCHRANE-PIAZZESI (2002)

REAL COCHRANE-PIAZZESI (2002)

	const	$CP_t^{\$}$	\overline{R}^2	const	CP_t^r	\overline{R}^2
$hprx_t^{(5)}$	0.06	0.71	0.16	0.02	0.81	0.08
	(0.16)	(4.47)		(0.03)	(2.44)	
$hprx_t^{(7)}$	0.00	0.98	0.17	-0.01	0.98	0.09
	(0.00)	(4.47)		(-0.01)	(2.63)	
$hprx_t^{(10)}$	-0.03	1.22	0.15	0.00	1.15	0.09
	(-0.05)	(3.98)		(0.00)	(2.76)	

$$hprx_t^{(n)} = E_t[p_{t+3}^{(n-3)}] - p_t^{(n)} - r_t^{3m} = const + \beta CP_t + \varepsilon_{t,t+3}^{(n)}.$$

$H_{03}:$ Expected Returns

	$\psi(g)$	$Lag\ \psi(g)$	$\sigma^2(g)$	Surp	\overline{R}^2
CP Nom	0.34				0.12
	(2.82)				
CP Real					0.10
	2.28				
CP Nom	0.21	0.43			0.30
	(2.07)	(3.87)			
CP Real	0.23	0.26			0.15
	(1.69)	(2.19)			
CP Nom	0.12	0.29	-0.08	-0.39	0.40
	(0.87)	(3.89)	(-0.38)	(-3.83)	
CP Real	0.30	0.32	-0.19	0.24	0.23
	(3.35)	(4.28)	(-0.99)	(1.76)	
	CP Real CP Nom CP Real CP Nom	CP Nom 0.34 (2.82) CP Real 0.32 2.28 CP Nom 0.21 (2.07) CP Real 0.23 (1.69) CP Nom 0.12 (0.87) CP Real 0.30	CP Nom 0.34 (2.82) CP Real 0.32 2.28 CP Nom 0.21 0.43 (2.07) (3.87) CP Real 0.23 0.26 (1.69) (2.19) CP Nom 0.12 0.29 (0.87) (3.89) CP Real 0.30 0.32	CP Nom 0.34 (2.82) CP Real 0.32 2.28 CP Nom 0.21 0.43 (2.07) (3.87) CP Real 0.23 0.26 (1.69) (2.19) CP Nom 0.12 0.29 -0.08 (0.87) (3.89) (-0.38) CP Real 0.30 0.32 -0.19	CP Nom 0.34 (2.82) CP Real 0.32 2.28 CP Nom 0.21 0.43 (2.07) (3.87) CP Real 0.23 0.26 (1.69) (2.19) CP Nom 0.12 0.29 -0.08 -0.39 (0.87) (3.89) (-0.38) (-3.83) CP Real 0.30 0.32 -0.19 0.24

Sample Period : 2000.1 - 2010.1

H_{03} : Expected Returns

 $\textit{hprx}_{t,t+12}^{(\textit{n})} = \textit{const} + \beta \textit{RiskFactors}_t + \textit{error}_{t+12}^{(\textit{n})}$

	$\psi(g)$	$Lag\; \psi(g)$	$\sigma^2(g)$	Surp	\overline{R}^2
n = 2	0.42				0.18
n = 5	(3.97) 0.36 (3.88)				0.12
n = 2	0.32	0.24			0.22
n = 5	(3.66) 0.25 (3.15)	(2.81) 0.24 (2.62)			0.17
n = 2	0.29	0.26	0.12	0.05	0.23
n = 5	(3.48) 0.25 (2.90)	(2.99) 0.24 (2.38)	(0.90) -0.01 (-0.04)	(0.32) -0.01 (-0.05)	0.16

Sample Period: 1990.1 - 2010.1

Conclusions

Existence of time-varying bond risk premia is one of the most interesting and challenging topic in fixed income. The weak empirical link between observable macro variables and bond returns has been a long standing puzzle. In this study, we learn that:

- disagreement is important for explaining time-varying in the real discount factor.
- 2. regressions on dispersion measures consistent with models in which agents speculate on growth rate forecasts.
- 3. dispersion in beliefs explains a steep yield curve through:
 - Low short term interest rates
 - Large positive bond risk premia
- 4. fluctuations in relative wealth (past disagreement) important for the cross-section of yields today
- positive real sharpe ratios and cov(DiB, hprx) consistent with average pessimism