Recent developments concerning the Schwarz Lemma with applications to the Wu–Yau Theorem

Kyle Broder

Australian National University

&

Beijing International Center for Mathematical Research

Joint work with:

- James Stanfield (the University of Queensland).
- Kai Tang (Zhejiang University).
- Simone Diverio (Sapienza Università di Roma)

Classical Bochner Technique

Let (M,g) be a compact Riemannian manifold¹. Let $\alpha \in \Omega^1_M$.

$$\Delta_d \alpha = (dd^* + d^*d)\alpha = \nabla^* \nabla \alpha + \text{Ric}_g(\alpha^{\sharp}, \cdot).$$

If α is *harmonic*, i.e., $\Delta_d \alpha = 0$, then

$$\Delta_d |\alpha|^2 = |\nabla \alpha|^2 + \text{Ric}_g(\alpha^{\sharp}, \alpha^{\sharp}).$$

Theorem. (Bochner). If $Ric_g > 0$, then $b_1(M) = 0$.

¹connected and orientable.

Complex-Analytic Bochner Formula

Let (X, ω) be a Hermitian manifold². Let $\sigma \in H^0(\mathcal{E})$ be a *holomorphic* section of a *holomorphic vector bundle* $\mathcal{E} \to X$.

We want to compute $\Delta_{\omega}|\sigma|^2 = \operatorname{tr}_{\omega}(\sqrt{-1}\partial\bar{\partial}|\sigma|^2)$.

We maintain the convention of abusively denoting the metric by a 2–form of type (1, 1).

²Here, ω is the Hermitian metric, locally described by $\omega =_{\text{loc.}} \sqrt{-1} \sum_{i,j} g_{i\bar{j}} dz_i \wedge d\bar{z}_j$.

We maintain the convention of abusively denoting the metric by a 2-form of type (1.1)

Let $\mathcal{E} \to X$ be a complex vector bundle.

Reminder. A first-order \mathbb{C} -linear differential operator $\bar{\partial}^{\mathcal{E}}$ $H^0(\mathcal{E}) \to \Omega_X^{0,1} \otimes \mathcal{E}$ is said to be CR operator if

$$\bar{\partial}^{\mathcal{E}}(f\sigma) = \bar{\partial}f \otimes \sigma + f \; \bar{\partial}^{\mathcal{E}}\sigma.$$

If, in addition,

$$\bar{\partial}^{\mathcal{E}} \circ \bar{\partial}^{\mathcal{E}} = 0$$
,

then we call $\bar{\partial}^{\mathcal{E}}$ a holomorphic structure.

Theorem. (Koszul–Malgrange). Let \mathcal{E} be a complex vector bundle. Then \mathcal{E} is a *holomorphic vector bundle* if and only if \mathcal{E} admits a holomorphic structure $\bar{\partial}^{\mathcal{E}}$.

Connections on Holomorphic Vector Bundles

If $\bar{\partial}^{\mathcal{E}}$ is a *holomorphic structure* on \mathcal{E} , we can complete it to a *Hermitian connection* ∇ in the sense that there is a Hermitian connection ∇ such that

$$\nabla^{0,1} = \bar{\partial}^{\mathcal{E}}.$$

If $\mathcal{E} = T^{1,0}X$, this connection is called the *Chern connection*.

The *Bochner formula* for this connection reads:

$$\Delta_{\omega}|\sigma|^2 = |\nabla\sigma|^2 - \sqrt{-1}\langle\Theta^{\varepsilon}\sigma,\sigma\rangle,$$

where $\Theta^{\mathcal{E}}$ is the curvature of the Hermitian metric on \mathcal{E} .

The Schwarz Lemma

Let $f:(X,\omega_g)\to (Y,\omega_h)$ be a holomorphic map between complex manifolds.

We can identify ∂f with a section $\partial f \in H^0(\Omega_X^{1,0} \otimes f^*T^{1,0}Y)$.

Inserting this into the *Bochner formula* yields

$$\Delta_{\omega}|\partial f|^2 = |\nabla \partial f|^2 - \sqrt{-1}\langle \Theta^{\Omega_X^{1,0} \otimes f^* T^{1,0} Y} \partial f, \partial f \rangle.$$

The curvature *splits additively under tensor products*:

$$\Theta^{\Omega_X^{1,0}\otimes f^*T^{1,0}\gamma}=\Theta^{\Omega_X^{1,0}}\otimes id+id\otimes \Theta^{f^*T^{1,0}\gamma},$$

inverts additively under dualization:

$$\Theta^{\Omega_X^{1,0}\otimes f^*T^{1,0}Y}=-\Theta^{T^{1,0}X}\otimes id+id\otimes\Theta^{f^*T^{1,0}Y},$$

and commutes with pullback:

$$\Theta^{\Omega_X^{1,0} \otimes f^* T^{1,0} Y} = -\Theta^{T^{1,0} X} \otimes \mathrm{id} + \mathrm{id} \otimes f^* \Theta^{T^{1,0} Y}$$

Schwarz Lemma

The Bochner formula therefore yields

$$\Delta_{\omega_g} |\partial f|^2 = |\nabla \partial f|^2 + \operatorname{Ric}_{\omega_g} \otimes \omega_g^{\sharp} \otimes \omega_g^{\sharp} \otimes \omega_h \otimes \partial f \otimes \overline{\partial f} \\ -\operatorname{Rm}_{\omega_h} \otimes \omega_g^{\sharp} \otimes \partial f \otimes \overline{\partial f} \otimes \omega_g^{\sharp} \otimes \partial f \otimes \overline{\partial f}.$$

In local coordinates, we have

$$\Delta_{\omega_{g}} |\partial f|^{2} = |\nabla \partial f|^{2} + \underbrace{g^{i\bar{j}} R^{g}_{i\bar{j}k\bar{\ell}}}_{\text{Ricci}} g^{k\bar{q}} g^{p\bar{\ell}} h_{\alpha\bar{\beta}} f_{p}^{\alpha} \overline{f_{q}^{\beta}} - R^{h}_{\alpha\bar{\beta}\gamma\bar{\delta}} g^{i\bar{j}} f_{i}^{\alpha} \overline{f_{j}^{\beta}} g^{p\bar{q}} f_{p}^{\gamma} \overline{f_{q}^{\delta}}.$$

Here
$$f_i^{\alpha} := \frac{\partial f^{\alpha}}{\partial z_i}$$

Royden's Polarization Argument

Royden showed that if the *target metric is Kähler*³, the target curvature term can be controlled by the *holomorphic sectional curvature*.

Recall: Let ω is a Kähler metric with underlying complex structure J. The restriction of the *sectional curvature* to the J-invariant 2–planes (i.e., 2–planes of the form $\{u, Ju\}$) defines the *holomorphic sectional curvature*.

In terms of the curvature tensor,

$$HSC_{\omega}(v) := R(v, \overline{v}, v, \overline{v}).$$

³Recall: A Hermitian metric is said to be Kähler if the torsion of the Chern connection vanishes.

The Holomorphic Sectional Curvature

The *holomorphic sectional curvature* is very natural to the study of complex geometry:

(†) (Ahlfors). $HSC_{\omega} < 0 \implies X$ is Brody hyperbolic⁴

Every entire curve $\mathbb{C} \to X$ *is constant.*

(†) (Yang). $HSC_{\omega} > 0 \implies X$ is rationally connected:

Any two points lie in the image of a rational curve $\mathbb{P}^1 \to X$.

 $^{^4}$ If X is compact, this is equivalent to Kobayashi hyperbolicity.

Royden's Polarization Argument

The argument hinges upon the following polarization argument – called *Royden's trick*:

Proposition. Let $\xi_1,...,\xi_{\nu}$ be ν orthogonal tangent vectors. If $S(\xi,\overline{\eta},\zeta,\overline{\omega})$ is a *symmetric bi-Hermitian form* in the sense that

(i)
$$S(\xi, \overline{\eta}, \zeta, \overline{\omega}) = S(\zeta, \overline{\eta}, \xi, \overline{\omega}),$$

(ii)
$$S(\eta, \overline{\xi}, \omega, \overline{\zeta}) = \overline{S}(\xi, \overline{\eta}, \zeta, \overline{\omega}),$$

such that for all ξ ,

$$S(\xi, \overline{\xi}, \xi, \overline{\xi}) \leq -\kappa_0 \|\xi\|^4$$

for $\kappa_0 \geq 0$, then

$$\sum_{\alpha,\beta} S(\xi_{\alpha}, \overline{\xi}_{\alpha}, \xi_{\beta}, \overline{\xi}_{\beta}) \leq -\frac{\nu+1}{2\nu} \kappa_0 \left(\sum_{\alpha} \|\xi_{\alpha}\|^2 \right)^2.$$

Royden's Schwarz Lemma

Theorem. (Royden 1980). Let $f:(X,\omega_g) \longrightarrow (Y,\omega_h)$ be a holomorphic map between *Kähler manifolds*. Suppose $\mathrm{Ric}_{\omega_g} \geq -C_1\omega_g$ and $\mathrm{HSC}_{\omega_h} \leq -\kappa_0$ for some constants $C_1, \kappa_0 > 0$. Then

$$\Delta_{\omega_g} \mathrm{tr}_{\omega_g}(f^*\omega_h) \ = \ \Delta_{\omega_g} |\partial f|^2 \ \geq \ -2C_1 + rac{r+1}{r} \kappa_0 |\partial f|^2,$$

where $r = \text{rank}(\partial f)$.

In particular, if *X* is compact, then

$$\operatorname{tr}_{\omega_g}(f^*\omega_h) = |\partial f|^2 \leq \frac{2C_1r}{(r+1)\kappa_0}.$$

Aside: Classification of Complex Manifolds

The naive approach to understanding the landscape of complex manifolds X is to look at holomorphic functions

$$X \longrightarrow \mathbb{C}$$
.

One runs into trouble quite fast with this approach, however: If X is compact, the *maximum principle forces all such functions to be constant*.

In place of looking at holomorphic maps which take values in the *trivial* bundle \mathbb{C} , it is natural to look at holomorphic maps which *takes values* in a holomorphic line bundle \mathcal{L} :

$$X \longrightarrow \mathcal{L}$$
.

There is only one *line bundle intrinsic to a complex manifold*, the *canonical bundle*

$$K_X := \Lambda_X^{n,0},$$

 $n = \dim_{\mathbb{C}} X$.

Algebro-Geometric Classification of Complex Manifolds

Understand complex manifolds by means of the *existence/abundance* of sections of the canonical bundle $K_X = \Lambda_X^{n,0}$.

Complex-Analytic Classification of Complex Manifolds

Understand complex manifolds by means of *holomorphic curves* $\mathbb{C} \to X$ and *functions* $X \to \mathbb{C}$:

Lots of holomorphic functions $X \to \mathbb{C}$	Lots of holomorphic curves $\mathbb{C} \to X$
Stein manifolds	Oka/Special manifolds
No holomorphic functions $X \to \mathbb{C}$	No holomorphic curves $\mathbb{C} \to X$
Too large	Kobayashi/Brody hyperbolic manifolds

Curvature characterization of Complex Manifolds

Understand complex manifolds by means of *metrics with certain curvature properties*:

We don't want to simply understand these *distinct means of classification* independently, we want to understand *how they are related*:

The Wu-Yau Theorem

The following result is due to Wong (surfaces), Heier–Lu–Wong (projective threefolds), Wu–Yau (projective), Tosatti–Yang (Kähler):⁵

Theorem. Let (X, ω) be a compact Kähler manifold with $HSC_{\omega} < 0$. Then the canonical bundle K_X is ample.

In particular, we see that

$$HSC_{\omega} < 0 \implies \exists \omega_{\varphi} = \omega + \sqrt{-1}\partial\bar{\partial}\varphi \text{ such that } Ric_{\omega_{\varphi}} < 0.$$

⁵Recall: A line bundle \mathcal{L} is ample if the sections of $\mathcal{L}^{\otimes k}$ (k large) furnish a holomorphic embedding $\Phi: X \longrightarrow \mathbb{P}^{N_k}$. In particular, K_X^{-1} is ample if and only if $\mathrm{Ric}_{\omega} > 0$.

The Kobayashi Conjecture

The Wu–Yau theorem is an important step towards the more general *Kobayashi conjecture*:

Conjecture. Let X be a compact Kobayashi hyperbolic manifold. Then K_X is ample.

Remarks:

- (Demailly 1997) Kobayashi hyperbolicity⁶ is *strictly weaker* than the *existence of a metric with negative holomorphic sectional curvature*.
- Kobayashi (1970) conjectured that a compact Kähler manifold which is Kobayashi hyperbolic has ample canonical bundle.

⁶That is, every entire holomorphic curve $\mathbb{C} \to X$ is constant.

Curvature Heirarchy

The *holomorphic sectional curvature* and *Ricci curvature* occupy similar strata of the curvature heirarchy⁷:

⁷Arrows indicate dominance: i.e., $A \to B$ means that $A > 0 \implies B > 0$, and similarly for $< 0, \le 0, \ge 0$, etc.

Recall: $HBC_{\omega}(u, v) = R(u, \overline{u}, v, \overline{v}); \quad HSC_{\omega}(u) = R(u, \overline{u}, u, \overline{u});$

Examples

Example 1. (Hitchin). Let $\mathcal{F}_n := \mathbb{P}(1 \oplus H^n)$ denote the *nth Hirze-bruch surface* (a \mathbb{P}^1 -bundle over \mathbb{P}^1).

Hitchin showed that \mathcal{F}_n admits a Kähler metric ω with $HSC_{\omega} > 0$. For n > 1, however, $c_1(\mathcal{F}_n) \not> 0$, and thus, does not support a Kähler metric of positive Ricci curvature.

Example 2. Let

$$X_d := \{z_0^d + \dots + z_n^d = 0\} \subseteq \mathbb{P}^n$$

denote the degree d Fermat hypersurface.

For $d \ge n+2$, adjunction implies that K_{X_d} is ample, and thus X_d admits a Kähler(–Einstein) metric of negative Ricci curvature. But X_d admits complex lines, and thus, cannot support a metric with $HSC_\omega < 0$.

The Schwarz Lemma Revisited

To extend *Royden's* argument beyond the Kähler setting, we need to understand

$$\Delta_{\omega} |\partial f|^2 = |\nabla \partial f|^2 + g^{i\bar{j}} R^g_{i\bar{j}k\bar{\ell}} g^{k\bar{q}} g^{p\bar{\ell}} h_{\alpha\bar{\beta}} f_p^{\alpha} \overline{f_q^{\beta}} - R^h_{\alpha\bar{\beta}\gamma\bar{\delta}} g^{i\bar{j}} f_i^{\alpha} \overline{f_j^{\beta}} g^{p\bar{q}} f_p^{\gamma} \overline{f_q^{\delta}}.$$

Remarks:

- The *Monge-Ampère equation* controls the *first Chern-Ricci*

$$^{c}\mathrm{Ric}_{\omega}^{(1)}=g^{k\overline{\ell}}R_{i\overline{j}k\overline{\ell}}.$$

- But the *second Chern-Ricci curvature* appears in the Schwarz lemma

$$^{c}\mathrm{Ric}_{\omega}^{(2)}=g^{i\bar{j}}R_{i\bar{i}k\bar{\ell}}.$$

 Royden's polarization argument requires the curvature of the target metric to have the symmetry

$$R_{i\bar{j}k\bar{\ell}} = R_{k\bar{j}i\bar{\ell}}.$$

In particular, a non-Kähler metric will *not support this symmetry* in general.

Target curvature term

To understand the target curvature term

$$R^h_{\alpha\overline{\beta}\gamma\overline{\delta}}g^{i\overline{j}}f_i^{\alpha}\overline{f_j^{\beta}}g^{p\overline{q}}f_p^{\gamma}\overline{f_q^{\delta}},$$

choose a frame such that at a point $p \in X$, $g_{i\bar{j}}(p) = \delta_{ij}$ and $f_i^{\alpha} = \lambda_i \delta_i^{\alpha}$, where $\lambda_i \in \mathbb{R}$. Then

$$R^{h}_{\alpha\overline{\beta}\gamma\overline{\delta}}g^{i\overline{j}}f_{i}^{\alpha}\overline{f_{j}^{\beta}}g^{p\overline{q}}f_{p}^{\gamma}\overline{f_{q}^{\delta}} = \sum_{\alpha,\gamma}R^{h}_{\alpha\overline{\alpha}\gamma\overline{\gamma}}\lambda_{\alpha}^{2}\lambda_{\gamma}^{2}.$$

This motivated Yang–Zheng to introduce the following:

Definition. Let (X, ω) be a Hermitian manifold. The *real bisectional curvature* RBC $_{\omega}$ is the function

$$\mathrm{RBC}_{\omega}(v) := \frac{1}{|v|^2} \sum_{\alpha,\gamma} R_{\alpha \overline{\alpha} \gamma \overline{\gamma}} v_{\alpha} v_{\gamma},$$

where $v = (v_1, ..., v_n) \in \mathbb{R}^n \setminus \{0\}$.

The Real Bisectional Curvature

- (i) If the metric is *Kähler*: the *real bisectional curvature* is *comparable* to the *holomorphic sectional curvature*.
- (ii) For a general Hermitian metric: the *real bisectional curvature strictly dominates* the *holomorphic sectional curvature* and *scalar curvatures*.
- (iii) The *real bisectional curvature* is *not strong enough*, however, to control the *Ricci curvatures*.

Hermitian Schwarz Lemma

Yang–Zheng (2017) proved the following:

Theorem. Let $f:(X,\omega_g)\to (Y,\omega_h)$ be a holomorphic map between *Hermitian manifolds*. Suppose $\mathrm{Ric}_{\omega_g}^{(2)}\geq -C_1\omega_g+C_2f^*\omega_h$ for constants C_1,C_2 , where $C_2\geq 0$. If $\mathrm{RBC}_{\omega_h}\leq -\kappa_0\leq 0$, then

$$\Delta_{\omega_g} \log |\partial f|^2 \geq -C_1 + \frac{1}{r}(C_2 + \kappa_0)|\partial f|^2.$$

Hence, if *X* is compact,

$$|\partial f|^2 \le \frac{C_1 r}{(C_2 + \kappa_0)}.$$

The previous argument for the Wu–Yau theorem can be applied to show that

Corollary. (Yang–Zheng). Let X be a compact Kähler manifold with a Hermitian metric of negative real bisectional curvature. Then K_X is ample.

Gauduchon connections

Definition. The *t*–*Gauduchon connection* is defined

$${}^{t}\nabla = t^{c}\nabla + (1-t)^{l}\nabla,$$

where ${}^c\nabla$ is the Chern connection and ${}^l\nabla$ is the Lichnerowicz connection (orthogonal projection to $T^{1,0}X$ of the complexified Levi-Civita connection).

Constructing a Schwarz Lemma

Recall that we proved the *Schwarz lemma* by applying the *Bochner formula*

$$\Delta_{\omega}|\sigma|^2 = |\nabla\sigma|^2 - \sqrt{-1}\langle\Theta^{\varepsilon}\sigma,\sigma\rangle$$

to the section $\partial f \in H^0(\Omega_X^{1,0} \otimes f^*T^{1,0}Y)$.

Hence, the *first obstruction* to developing more *general Schwarz lemmas* is *generalizing the Bochner formula beyond the Chern connection*.

Novel Bochner Formula

Theorem. (B.–Stanfield). Let $(\mathcal{E},h) \longrightarrow X$ be a holomorphic vector bundle over a *Hermitian manifold* (X,ω) . Let ∇ be a *Hermitian connection* on \mathcal{E} . Then for any holomorphic section $\sigma \in H^0(\mathcal{E})$, we have

$$\Delta_{\omega}|\sigma|_h^2 \ = \ |\nabla^{1,0}\sigma|^2 + |\nabla^{0,1}\sigma|^2 + 2\text{Re}\{\nabla^{1,0}\nabla^{0,1}\sigma,\sigma\} - \{\sigma,\Theta^{\mathcal{E}}\sigma\}.$$

Incorporating Torsion

The *end application* of the *Bochner formula* will be to sections of bundles *derived from tangent bundles* (e.g., $\Omega_X^{1,0} \otimes f^*T^{1,0}Y$).

We want to extend this general Bochner formula as far as possible, however, before descending to calculations for specific choices of bundles.

We therefore introduce the following:

Definition. Let $(\mathcal{E},h) \longrightarrow X$ be a Hermitian vector bundle endowed with a Hermitian connection ∇ . We define the *CR*-torsion of ∇ to be the End(\mathcal{E})-valued (0,1)-form $A \in \Omega_X^{0,1}(\mathcal{E})$ defined by

$$A := \nabla^{0,1} - \bar{\partial}^{\varepsilon}$$
.

Theorem. (B.–Stanfield). Let $(\mathcal{E}, h) \longrightarrow X$ be a Hermitian vector bundle which is a *tensor bundle associated to* $T^{1,0}X$. If ∇ *is a Hermitian connection on* \mathcal{E} *extended from a Hermitian connection on* $T^{1,0}X$, then

$$\Delta_{\omega}|\sigma|^{2} = |\nabla^{1,0}\sigma|^{2} + |\nabla^{0,1}\sigma|^{2} - \{\sigma, \Theta_{\bar{i}i}\sigma\}$$

$$+2\operatorname{Re}\left(\{A_{\bar{i},i}\sigma,\sigma\} + \{A_{\bar{i}}(\sigma_{,i}),\sigma\} + \{A_{\overline{A_{\bar{i}}(e_{i})}}\sigma,\sigma\}\right)$$

where $\{e_i\}$ is a unitary frame for $T^{1,0}X$.

Theorem. (B.–Stanfield). Let $f: X \to Y$ be a holomorphic map between *Hermitian manifolds*. Let $\{e_i\}$ be a local unitary frame on X and $\{w_\alpha\}$ a local unitary frame on $f(X) \subseteq Y$. Choose *Hermitian connections* on $T^{1,0}X$ and $T^{1,0}Y$. Then $\partial f \in \Omega_X^{1,0} \otimes f^*T^{1,0}Y$ satisfies

$$\Delta_{\omega} |\partial f|^{2} = |\nabla \partial f|^{2} + \overline{f_{k}^{\alpha}} f_{\ell}^{\alpha} R_{i\bar{i}}^{k} \ell - \overline{f_{\ell}^{\alpha}} f_{\ell}^{\beta} \overline{f_{i}^{\gamma}} f_{i}^{\delta} \tilde{R}_{\gamma\bar{\delta}}^{\beta} \alpha
+ 2 \operatorname{Re} \left(-f_{k}^{\alpha} \overline{f_{\ell}^{\alpha}} T_{\bar{i}\ell,i}^{k} + f_{\ell}^{\alpha} \overline{f_{\ell}^{\beta}} f_{i}^{\gamma} \overline{f_{i}^{\delta}} \tilde{T}_{\bar{\delta}\alpha,\gamma}^{\beta} - \overline{f_{j}^{\beta}} f_{k,i}^{\beta} T_{\bar{i}j}^{k} + \overline{f_{j}^{\delta}} \overline{f_{j,i}^{\alpha}} \tilde{T}_{\bar{\gamma}\alpha}^{\delta} \right)
+ 2 \operatorname{Re} \left(f_{k}^{\alpha} \overline{f_{\ell}^{\alpha}} \overline{T_{\bar{i}i}^{r}} T_{\bar{r}\ell}^{k} - f_{\ell}^{\alpha} \overline{f_{\ell}^{\beta}} f_{i}^{\gamma} \overline{f_{i}^{\delta}} \tilde{T}_{\bar{\gamma}\alpha}^{\mu} \tilde{T}_{\bar{\mu}\alpha}^{\beta} \right)$$

The letters T and R are respectively the torsion and curvature of the source connection, and \tilde{T} , \tilde{R} are the torsion and curvature of the target connection.

Gauduchon-Schwarz Lemma

If we take the connections to be *Gauduchon* with the *same parameter* $t \in \mathbb{R}$, we have the following:

$$\Delta_{\omega} |\partial f|^{2} = |\nabla \partial f|^{2} + \frac{\operatorname{Re} \lambda_{i}^{2}}{2t(2t-1)} \left((t^{2} + 2t - 1)^{t} \operatorname{Ric}_{i\bar{i}}^{(2)} \right)$$

$$+ \frac{\operatorname{Re} \lambda_{i}^{2}}{2t(2t-1)} \left((t-1)(3t-1)^{t} \operatorname{Ric}_{i\bar{i}}^{(3)} + (t-1)^{2} \left({}^{t} \operatorname{Ric}_{i\bar{i}}^{(1)} - {}^{t} \operatorname{Ric}_{i\bar{i}}^{(4)} \right) \right)$$

$$+ \operatorname{Re} \lambda_{i}^{2} \left(\frac{(1-3t)(t+1)}{2t(2t-1)} T_{\bar{r}k}^{i} \overline{T_{\bar{r}k}^{j}} + \frac{2t^{2} + t + 1}{2t(1-t)} T_{\bar{k}j}^{r} \overline{T_{\bar{k}i}^{r}} + \frac{3-7t}{2t-1} T_{\bar{i}j}^{r} \overline{T_{\bar{k}k}^{r}} \right)$$

$$+ \frac{t}{2t-1} {}^{t} \operatorname{RBC}_{\omega_{h}} + \frac{(1-t)}{t} {}^{t} \widetilde{\operatorname{RBC}}_{\omega_{h}} + \frac{(1+t)}{2t-1} |\widetilde{T}_{\bar{i}k}^{r} \lambda_{i} \lambda_{k}|^{2} + \frac{7t-3}{2t-1} |\widetilde{T}_{i\bar{i}}^{r} \lambda_{i}^{2}|^{2}$$

Gauduchon-Schwarz Lemma with Kähler source

If we assume (X, ω_g) is Kähler, then in the frame where $f_i^{\alpha} = \lambda_i \delta_i^{\alpha}$ we have, for $t \in \mathbb{R} \setminus \{0, \frac{1}{2}, 1\}$,

we have, for
$$t \in \mathbb{R} \setminus \{0, \frac{1}{2}, 1\}$$
,
$$\Delta_{\omega_g} |\partial f|^2 = |\nabla \partial f|^2 + {^c} \mathrm{Ric}_{i\bar{i}}^{(2)} \lambda_i^2 + \frac{t}{2t-1} {^t} \mathrm{RBC}_{\omega_h} + \frac{(1-t)}{t} {^t} \widetilde{\mathrm{RBC}}_{\omega_h} + \frac{(1+t)}{2t-1} |\widetilde{T}_{\bar{i}k}^r \lambda_i \lambda_k|^2 + \frac{7t-3}{2t-1} |\widetilde{T}_{\bar{i}i}^r \lambda_i^2|^2.$$

Note that:

$${}^t\mathrm{RBC}_{\omega_h}(v) := rac{1}{|v|^2} \sum_{i,k} {}^tR_{iar{i}kar{k}} v_i v_k,$$

and

$${}^t\widetilde{\mathrm{RBC}}_{\omega_h}(v) := rac{1}{|v|^2} \sum_{i,k} {}^tR_{iar{k}kar{i}} v_i v_k.$$

Monotonicity Theorem for the Holomorphic Sectional Curvature

Theorem. (B.–Stanfield). Let (X, ω) be a Hermitian manifold. Let ${}^tHSC_{\omega}$ denote the t–Gauduchon holomorphic sectional curvature. Then for all $t \in \mathbb{R}$, we have

$${}^{t}\text{HSC}_{\omega} \leq {}^{c}\text{HSC}_{\omega},$$

with equality if and only if t = 1.

If we choose $t \in (-\infty, -1) \cup (1, \infty)$, then ${}^c\text{HSC}_{\omega_h} < 0$ implies that

$$\frac{t}{2t-1}{}^{t}RBC_{\omega_{h}} + \frac{(1-t)}{t}{}^{t}\widetilde{RBC}_{\omega_{h}} > 0.$$

Moreover, for this range of *t*, the *torsion coefficient functions* are *positive*.

Refined Schwarz Lemma

Theorem. (B.–Stanfield). Let $f:(X,\omega_g) \longrightarrow (Y,\omega_h)$ be a holomorphic map of rank r from an n–dimensional *Kähler manifold* (X,ω_g) into a *Hermitian manifold* (Y,ω_h) . Suppose

$$\operatorname{Ric}_{\omega_g} \geq -C_1\omega_g + C_2f^*\omega_h,$$

where $C_1 \in \mathbb{R}$ and $C_2 \geq 0$. Assume that ${}^{c}HSC_{\omega_h} \leq -\kappa_0$ for some $\kappa_0 \geq 0$. Then

$$\Delta_{\omega_g} |\partial f|^2 \geq -C_1 |\partial f|^2 + \left(\frac{C_2}{n} + \frac{\kappa_0}{r}\right) |\partial f|^4.$$

In particular, if *X* is compact, then

$$|\partial f|^2 \leq \frac{C_1 nr}{C_2 r + n\kappa_0}.$$

Refined Wu-Yau Theorem

Theorem. (B.–Stanfield 2022). Let X be a *compact Kähler manifold*. If X supports a *Hermitian metric* ω with ${}^c\mathsf{HSC}_{\omega} < 0$, then K_X *is ample*.

Further directions/applications/questions

We expect/hope these developments to have applications *outside* of the *Hermitian category*: In particular, in the Riemannian setting by *considering connections beyond the Levi-Civita connection*, one may be able to improve existing Bochner formulae in this context.

Question. Is there a *distinguished family* of (metric) connections on the tangent bundle of a Riemannian manifold?

In the *Hermitian category*, we expect to be able to get the Bochner technique to hold with only *one-sided bounds*.

Before, we required a *Ricci lower bound* $Ric_g \ge -Cg$ and a *holomorphic sectional curvature upper bound* $HSC_h \le -\kappa_0$, but some problems only grant upper bounds on the curvature without lower bounds (and vice versa).

The fact that the curvature terms *appear with coefficient functions depending on t* means that there is an *added level of flexibility*.

This should have applications to the *theory of harmonic maps*.

