Outline

- Three steps for finding similar items
 - 1. Shingling: documents -> sets
 - 2. Min-hashing: sets -> signatures
 - 3. Locality-sensitive-hashing: signatures -> similarity
- Locality-Sensitive-Hashing (LSH)
- Characteristics of LSH
- Two Applications
 - Finding similar fingerprints
 - Finding similar news articles

Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from similar documents

Motivation for Locality Sensitive Hashing

- Used k-shingles to create sets that summarize documents
- Used Minhashing to generate signatures that represent sets of shingles, reflect their similarity
- Suppose we need to find near-duplicate documents among a million 10⁶ documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of signatures
 - ? 106 choose 2
 - Recall: for large n, $\binom{n}{2}$ is approximately $n^2/2$

 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 6 days

Locality Sensitive Hashing

- Or Near-neighbor search
- Minhashing is one example of a family of functions (the minhash functions) that can be combined (by the banding technique) to distinguish strongly between pairs at a low distance from pairs at a high distance
- Steepness of the S-curve reflects how effectively we can avoid false positives and false negatives among the candidate pairs
- Section 3.6: more general theory of Locality Sensitive Functions

Locality Sensitive Hashing Overview

- Hash items several times
 - In a way that similar items are more likely to be hashed to the same bucket than dissimilar items
- Candidate Pair: Any pair that hashes to the same bucket for any of the hashings
- Check only the candidate pairs for similarity
- False positives: dissimilar pairs that hash to the same bucket
- False negatives: truly similar pairs do not hash to the same bucket for at least one of the hash functions

LSH: First Cut

2	1	4	1
1	2	1	2
2	1	2	1

- Goal: Find documents with Jaccard similarity at least s for some similarity threshold s (e.g. s=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y are a candidate pair: a pair of elements whose similarity must be evaluated

For Min-Hash matrix:

- Hash columns of signature matrix M to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair

Candidates from Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Pick a similarity threshold s (0 < s < 1)
- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 M (i, x) = M (i, y) for at least frac. s values of i
 - We expect documents x and y to have the same (Jaccard) similarity as their signatures

LSH for Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- <u>Candidate pairs</u> are those that hash to the same bucket

Partition M into b Bands

2	1	4	1
1	2	1	2
2	1	2	1

Signature matrix *M*

Partition Signatures M into Bands

- Divide matrix M into b bands of r rows
 - Signatures are still too big, so we check band by band
 - So, check "similar signatures" becomes check "similar bands"
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
 - Use a separate bucket array for each band so columns with the same vector in different bands don't hash to same bucket
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Example of Bands

Assume the following case:

- Suppose 100,000 columns of M
 - Correspond to signatures for 100,000 documents
- Signatures of 100 integers (rows)
 - Correspond to 100 hash functions used in minhashing
- 4 bytes per integer
- Therefore, signatures take 40Mb (4 x 100 x 100,000)
- Choose b = 20 bands of r = 5 rows of integers/band
- **Goal:** Find pairs of documents that are at least s = 0.8 or 80% similar

Recall: Minhashing Example

Input matrix

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix *M*

2	1	2	1
2	1	4	1
1	2	1	2

Analysis of Banding Technique

- Use b bands of r rows each
- Pair of documents have Jaccard similarity t
 - Probability that minhash signatures for the documents agree in any one particular row of the signature matrix is t
- Columns C₁ and C₂ in signature matrix have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band are equal = t^r
 - Prob. that not all r rows are equal (some row in band is unequal) = $1 t^r$
- Prob. that no band has rows that are all equal = $(1 t^r)^b$
- Prob. that at least 1 band has rows that are all equal (which is the probability of being a candidate pair) = $1 (1 t^r)^b$

- Find pairs of ≥ s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.8$

 - We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $t^r = (0.8)^5 = 0.328$
- Probability C_1 , C_2 are **not** similar in all of the 20 bands: $(1 t^r)^b = (1-0.328)^{20} = 0.00035$
 - i.e., about .035% of the 80%-similar column pairs are false negatives (truly similar pairs that we miss)
 - We would find 99.965% pairs of truly similar documents

C₁, C₂ are 30% Similar

- 2 1 4 1
 1 2 1 2
 2 1 2 1
- Find pairs of ≥ s=0.3 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since $sim(C_1, C_2) < s$ we want C_1, C_2 to hash to **NO** common buckets (all bands should be different)
 - Should NOT be a candidate pair!
- Probability C₁, C₂ identical in one particular band:

$$t^r = (0.3)^5 = 0.00243$$

- Will identify C1, C2 as candidate pair if they are identical in at least one band
- Probability C₁, C₂ identical in at least 1 of 20 bands:

$$1 - (1 - t^r)^b = 1 - (1 - 0.00243)^{20} = 0.0474$$

- Approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are false positives (dissimilar documents that must be examined as candidate pairs but will have similarity below

Other False Positives and False Negatives

For b=20, r=5, we may compute ALL the false positives and false negatives as follows:

For false negatives: (using the procedure on slide#15 to compute "?" below):

- How many true 100%-similar pairs we may miss: 0.0% (obvious)
- How many true 90%-similar pairs we may miss: ?.?%
- How many true 80%-similar pairs we may miss: 0.035% (see slide#15)
- How many true 70%-similar pairs we may miss: ?.?%
- How many true 60%-similar pairs we may miss: ?.?%
- How many true 50%-similar pairs we may miss: ?.?%

For false positives: (using the procedure on slide#16 to compute "?" below):

- How many 40%-similar pairs we may mistakenly taken as positive: ?.?%
- How many 30%-similar pairs we may mistakenly taken: 4.74% (see slide#16)
- How many 20%-similar pairs we may mistakenly taken: ?.?%
- How many 10%-similar pairs we may mistakenly taken: ?.?%
- How many 0%-similar pairs we may mistakenly taken: 0.0% (obvious)

LSH Involves a Tradeoff

• Pick:

- The number of Min-Hashes (rows of **M**)
- The number of bands **b**, and
- The number of rows r per band to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Example of Tradeoffs

- Previous example: 20 bands of 5 rows each
 - Probability of false negatives when C1, C2 are 80% similar: 0.00035
 - Probability of false positives when C1, C2 are 30% similar: 0.0474
- What if we use 15 rows of 5 bands each (smaller signature matrix)?
 - Probability of false negatives higher when C1, C2 are 80% similar:

•
$$(1 - t^r)^b = (1 - 0.8^{15})^5 = (1 - 0.035)^5 = 0.837$$

Probability of false positives lower when C1, C2 are 30% similar:

• 1 -
$$(1 - t^r)^b = 1 - (1 - 0.3^{15})^5 = 7.174^{-8}$$

Analysis of LSH – What We Want

What 1 Band (b=1) of 1 Row (r=1) Gives You

Compare two values in similarity matrix

$$1-(1-t^r)^b = 1 - (1-t^1)^1 = t$$

What b Bands of r Rows Gives You: $1 - (1 - t^r)^b$

- Form of an S-curve, regardless of values of b and r
- Threshold s is where rise of curve is steepest: approximately $(1/b)^{1/r}$

Similarity $t=sim(C_1, C_2)$ of two sets—

r=5, b=20, for t=0.9: 1- $(1-t^r)^b$ =0.99999; for t=0.1: 0.0000199

22

Example: b = 20; r = 5

- Similarity t of two columns
- Prob. that at least 1 band is identical (so a candidate pair):

t	1-(1-t ^r)b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

- Not an ideal step function
- Probability rises by more than 0.6 going from similarity t = 0.4 to t = 0.6
- Slope in middle > 3.0
- \bullet 0.6/(0.6-0.4)=3.0

Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions (r=5, b=10)

Picking b and r

- Threshold s defines how similar documents have to be for them to be regarded as a similar pair (e.g., s = 0.8)
- Length n for minhash signatures
- Pick number of bands b and number of rows r such that br = n

and threshold s is approximately $(1/b)^{1/r}$

- To avoid false negatives (green area):
 - Select b and r to produce a threshold lower than s
- To avoid false positives (blue area):
 - Select b and r to produce a higher threshold than s

90.9 0.8 0.7		
20 0.8		
_ 0.7	-	$\frac{1}{2}$
۰.6		
Sharing		
- = 0.4		$\frac{1}{2}$
وه م		
∵ 0.2		
0.1		
Prob	Similarity 0.8 0.9	1

E	X	ar	n	p	le
:	n	=	1	0	0

b	r	(1/b) ^{1/r}
50	2	0.1414
20	5	0.5493
10	10	0.7943
5	20	0.9227

Example

- (1/b)^{1/r} represents the threshold of the S curve for function
- 1 $(1 t^r)^b$, the probability of being a candidate pair
- If **s=0.6** (similarity of documents to be a candidate pair) what values should you choose for b and r to reduce the number of **false negatives**?
- To avoid false negatives: Select b and r to produce a threshold lower than s
- To avoid false positives: Select b and r to produce a higher threshold than s
- Could choose (b=20, r=5) or (b=50, r=2): both give threshold lower than s
- Better answer probably b=20, r=5
- Because b=50, r=20 will have a higher rate of false positives: TRADEOFFS

E	Xã	ar	n	pl	e
:	n	=	1	0	0

b	r	(1/b) ^{1/r}
50	2	0.1414
20	5	0.5493
10	10	0.7943
5	20	0.9227

LSH Summary

- Tune M, b, r to identify almost all candidate pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Then check in main memory that candidate pairs really do have similar signatures
- Optional: In another 2nd pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - ② We used similarity preserving hashing to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - \square We used hashing to find **candidate pairs** of similarity $\ge s$

Combining the techniques (1)

- Pick a value of k and construct from each document the set of k-shingles
 - Optionally hash the k-shingles to shorter bucket numbers
- 2. Sort the document-shingle pairs to order them by shingle
 - Which sets contain which elements (shingles)
- 3. Pick a length *n* for minhash signatures corresponding to *n* minhash functions and **compute the minhash signatures** for all the documents

Combining the techniques (2)

- 4. Choose threshold s that defines how similar documents have to be for them to be regarded as a "similar pair"
 - Pick number of bands b and number of rows r such that br = n
 - Adjust b and r to limit false positives or negatives
- 5. Construct candidate pairs with LSH technique
- 6. **Examine candidate pair signatures** and determine whether fraction of components where they agree is at least s
- 7. **Optionally,** if signatures are sufficiently similar, **compare documents** to check they are truly similar

CHARACTERISTICS OF LSH

Locality Sensitive Hashing

- Or Near-neighbor search
- Minhashing is one example of a family of functions (the minhash functions) that can be combined (by the banding technique) to distinguish strongly between pairs at a low distance from pairs at a high distance
- Steepness of the S-curve reflects how effectively we can avoid false positives and false negatives among the candidate pairs
- Section 3.6: more general theory of Locality Sensitive Functions

Figure 3.7: The S-curve

Families of Functions for LSH

- Families of functions (including minhash functions) that can serve to produce candidate pairs efficiently
 - Space of sets and Jaccard distance OR other space and/or distance measure
- Three conditions for family of functions:
- 1. More likely to make close pairs be candidate pairs than distant pairs
- 2. Statistically independent
- **3. Efficient** in two ways
 - 1. Be able to identify candidate pairs in time much less than time to look at all pairs
 - 2. Combinable to build functions better at avoiding false positives and negatives (e.g., banding technique takes single minhash functions, combines them to produce S-curve shape we want)

Locality-Sensitive Functions

Figure 3.9: Behavior of a (d_1, d_2, p_1, p_2) -sensitive function

LS Families of Hash Functions

- Suppose we have a space S of points with a distance measure d
- A family H of hash functions is said to be (d₁,d₂,p₁,p₂)-sensitive if for any x and y in S:
 - 1. If $d(x,y) \le d_1$, then prob. over all h in H, that h(x) = h(y) is at least p_1
 - 2. If $d(x,y) \ge d_2$, then prob. over all h in H, that h(x) = h(y) is at most p_2
- Note: we say nothing about what happens when the distance between items is between d1 and d2
 - But can make d1 and d2 as close as we wish
 - Can drive p1 and p2 apart while keeping d1 and d2 fixed

Locality Sensitive Hashing for Other Distance Measures

- We focused on minhashing, a locality sensitive hashing family that uses Jaccard distance
 - Based on sets representing documents and their Jaccard similarity
- Book covers LSH families for other distance measures:
 - Euclidean distance: based on the locations of points in a Euclidean space with some number of real-valued dimensions
 - Cosine distance: angle between vectors from the origin to the points in question
 - Edit distance: number of inserts and deletes to change one string into another
 - Hamming Distance: number of positions in which bit vectors differ

LSH and Shingling Application Examples

- Matching fingerprints
- Identifying similar news articles

LSH for Fingerprints

- Typical representation is not an image, but set of locations in which minutiae are located
 - Place where something unusual happens: two ridges merging or a ridge ending
- Place a grid over a fingerprint
 - Normalize for size and orientation so that identical prints will overlap
- Represent fingerprint by set of grid points where minutiae are located
 - Possibly, treat minutiae near a grid boundary as if also present in adjacent grid points

Discretizing Minutiae

Place a minutia in several adjacent grid squares if it lies close to the border of the squares

Applying LSH to Fingerprints

- Make a bit vector for each fingerprint's set of grid points with minutiae
 - Similar to set representing a document: 1 if the shingle is in the document, 0 otherwise
- We could minhash the bit vectors to obtain signatures
 - But since there probably aren't too many grid points, we can work from the bit-vectors directly

Matching Fingerprints with LSH: Many-to-many problem

- Many-to-many version of fingerprint matching: take an entire database of fingerprints and identify if there are any pairs that represent the same individual
 - Analogous to finding similar documents among millions of documents
- Define a locality-sensitive family of hash functions:
 - Each function f in the family F is defined by 3 grid squares
 - Function f says "yes" for two fingerprints if both have minutiae in all three grid squares, otherwise, f says "no"
 - "Yes" means the two fingerprints are candidate pairs
- Sort of "bucketization"
 - Each set of three points creates one bucket
 - Function f sends fingerprints to its bucket that have minutiae in all three grid points of f
- Compare all fingerprints in each of the buckets

Matching Fingerprints with LSH: Many-to-One Problem

- Many-to-one version: A fingerprint has been found at a crime scene, and we want to compare it with all fingerprints in a large database to see if there is a match
- Could use many functions f from family F
- Precompute their buckets of fingerprints to which they answer "yes" on the large database
- For a new fingerprint:
 - Determine which buckets it belongs to
 - Compare it with all fingerprints found in any of those buckets

Example 3.22

- 1024 functions chosen randomly from F
 - Each function f says "yes" for two fingerprints if both have minutiae in all three grid squares, otherwise, f says "no"
- Suppose typical fingerprints have minutiae in 20% of the grid points
- Suppose fingerprints from the same finger agree in at least 80% of their points
- Probability two random fingerprints each have 1 in all three points = (0.2)⁶ = .000064
 - 2 fingerprints, 3 points each, all independent events

First image has 1 in a point \

Example: Continued

Second image of same finger also has 1

• Probability two fingerprints from the same finger each have 1's in three given points = $((0.2)(0.8))^3 = .004096$ (Analogy: t)

• Prob. for at least one of 1024 sets of three points = $1-(1-.004096)^{1024} = .985$ (Analogy:

• But for random fingerprints:

•
$$1-(1-.000064)^{1024} = ..063$$

6.3% false

1.5% false negatives

 $1 - (1 - t^r)^b$

6.3% false positives

Choosing the number of functions from F

- Want to use many functions from F, but not too many
- Want a good probability of matching fingerprints from the same finger while not having too many false positives
- Previous example: only 1.5% chance we fail to identify a print on the gun (false negative), but have to look at 6.3% of entire database (due to false positives)
- Increasing number of functions from F increases number of false positives
 - Only a small benefit in reducing false negatives below 1.5%
- Can use constructions/combinations of functions
 - Several examples in the chapter

Finding Same/Similar News Articles

- Want to organize large repository of online news articles
 - Group together web pages derived from same basic text
- Scenario: the same article, say from the Associated Press, appears on the Web site of many newspapers, but looks quite different
- Each newspaper surrounds the text of the article with:
 - Its own logo and text
 - ? Ads
 - Perhaps links to other articles
- A newspaper may also "crop" the article (delete parts)

Variation on Shingling

- Looks like earlier problem: find documents whose shingles have high Jaccard similarity
- But: Shingling treats all parts of document equally
- For this application, we want to ignore certain parts of the documents (e.g., ads, links to other articles, etc.)
- There is a difference between text that appears in prose and text in ads or headlines/links
 - Prose contains greater frequency of stop_words
 - E.g., common words like "and" or "the"
 - Common to use list of several hundred most frequent words

New Shingling Technique

- News articles have a lot of stop words, while ads do not
 - Buy Sudzo" vs. "I recommend that you buy Sudzo for your laundry."
- Define a shingle to be a stop word plus the next two following words
 - Shingles are: "I recommend that", "that you buy", "you buy Sudzo", "for your laundry", "your laundry <nextword>"
- Then compare the similarity of the sets of shingles that represent each document
 - Don't use minhashing or LSH in this example

Why it Works

- By requiring each shingle to have a stop word: bias the mapping from documents to shingles so it picked more shingles from the article than from the ads
- Pages with the same article, but different ads, have higher
 Jaccard similarity than those with the same ads, but
 different articles