Fall 2015 Notes – Atiyah and McDonald, Munkres, Lucier

Carlos Salinas

September 3, 2015

Contents

C	ontents	1
	Commutative Algebra: Atiyah and McDonald 1.1 Rings and ring homomorphisms	2
2	Topology: Munkres	3

1 Commutative Algebra: Atiyah and McDonald

1.1 Rings and ring homomorphisms

A ring A is a set with two binary operations (addition and multiplication) such that

- (1) A is an abelian group with respect to addition (so that A has a zero element, denoted by 0, and every $x \in A$ has an (additive) inverse, -x).
- (2) Multiplication is associative ((xy)z = x(yz)) and distributive over addition ((x(x+z) = xy + xz, (y+z)x = yx + zx)). We shall consider only rigs which are *commutative*:
- (3) xy = yx for all $x, y \in A$, and have an *identity element* (denoted by 1):
- (4) $\exists 1 \in A$ such that x1 = 1x = x for all $x \in A$. The identity element is then unique.

A ring homomorphism is a mapping f of a ring A into a ring B such that

- (i) f(x+y)=f(x)+f(y) (so that f is a homomorphism of abelian groups, and therefore also $f(x-y)=f(x)-f(y), \ f(-x)=-f(x), \ f(0)=0),$
- (ii) f(xy) = f(x)f(y),
- (iii) f(1) = 1.

2 Topology: Munkres