Прізвище: Брегін

Ім'я: Максим **Група:** КН-406

Bapiaнт: 4 GitHub:

Кафедра: САПР

Дисципліна: Теорія прийняття рішень

Перевірив: Кривий Р.З.

3BIT

до лабораторної роботи №5 на тему: "Теорія ігор. Матричні ігри"

Мета:

Визначити основні поняття теорії ігор, властивості змішаних стратегій. Вивчити метод вирішення матричних ігор у змішаних стратегіях за допомогою введення до подвійних завдань лінійного програмування.

Теоретичні відомості:

Нехай у кожного з двох гравців A і B скінченне число можливих дій — чистих стратегій: гравець A володіє m чистими стратегіями A_1, A_2, \ldots, A_m , а гравець B-n чистими стратегіями B_1, B_2, \ldots, B_n . Щоб гра була повністю визначена, необхідно вказати правило, яке кожній парі чистих стратегій $(A_i; B_j)$ ставить у відповідність число a_{ij} — виграш гравця A за рахунок гравця B або програш гравця B. При $a_{ij} < 0$ гравець A платить гравцю B суму $|a_{ij}|$. В грі, яка складається тільки з особистих ходів, вибір пари чистих стратегій $(A_i; B_j)$ єдиним чином визначає її результат. Якщо ж в грі використовуються і випадкові ходи, то її результат обумовлюється середнім значенням виграшу (математичним сподіванням).

Якщо відомі значення a_{ij} виграшу для кожної пари $(A_i; B_j)$ стратегій, то можна записати матрицю гри (платіжну матрицю):

A_i	B_j	α_{i}		
B_1		B_n		
A_1	a_{11}		a_{in}	α_1
A_m	a_{ml}		a_m	α_n
β_j	β_1		β_n	

Платіжна матриця — це табличний запис функції виграшу. Описані ігри називають матричними. Окрема партія в такій грі реалізується наступним чином. Гравець A вибирає один із рядків платіжної матриці (одну з своїх чистих стратегій). Елемент матриці, який стоїть на перетині вибраного рядка і стовпця, визначає виграш гравця A (програш гравця B).

Метою гравців ϵ вибір найбільш вигідних стратегій, при яких гравець A вибира ϵ максимальний виграш, а B — мінімальний програш. В теорії ігор виходять з припущення, що

кожен гравець вважає свого супротивника розумним і намагається не дати йому досягти найкращого результату.

Індивідуальне завдання

У грі беруть участь два гравці: А і В. У розпорядженні кожного гравця є кінцеве безліч варіантів вибору - стратегій. Нехай - безліч стратегій гравця А, - безліч стратегій гравця В. З кожною парою стратегій пов'язаний платіж, який один з гравців виплачує іншому. Тобто, коли гравець А вибирає стратегію (свою і-ю стратегію), а гравець В - стратегію, то результатом такого вибору стає платіж. Оскільки стратегій кінцеве число, то платежі утворюють матрицю розмірності п х m, звану матрицею платежів (або матрицею гри). Рядки цієї матриці відповідають стратегіям гравця A, а стовпці - стратегіям гравця В.

Порядок виконаних робіт:

- 1) Вихідні дані беруть із варіантів індивідуальних завдань.
- 2) При вирішенні матричної гри потрібно вийти на наступні етапи:
 - 1. Знайти сідлову точку і перевірити, чи має гра вирішення в чистих стратегій.
 - 2. У випадку відсутності чистої стратегії, знайти рішення в оптимальних змішаних стратегіях
 - 3. Спростити платіжну матрицю (перевірити матрицю на домінуючі рядки і стовбці).
 - 4. Визначити оптимальні плани за допомогою одного з методів лінійного програмування.
 - 5. Знайдіть рішення гри.

	5	12	11	13	12
2.	5	8	12	13	11
	8	12	5	13	8
	12	10	13	8	12
	5	11	6	10	7

Хід та результати розв'язку

1. **Перевіряємо, чи платіжна матриця має сідлову точку.** Якщо так, то виписуємо рішення гри у чистих стратегіях. Для зручності обрахунків напів ручний метод я проводив в Екселі, за допомогою засобів роботи з матрицями та функцією пошуку рішень — використовуючи симплекс метод.

Буфе	робмена 🖼		Шрифт	P			Выравниван	ие	
A1		- : >	· ·	f _x					
	Α	В	С	D	Е	F	G	Н	1
1									
2				Пла	тіжна матр	иця			
3		Гравці	B1	B2	В3	B4	B5	Min A	
4		A1	5	12	11	13	12	5	
5		A2	5	8	12	13	11	5	
6		A3	8	12	5	13	8	5	
7		A4	12	10	13	8	12	8	
8		A5	5	11	6	10	7	5	
9		Max B	12	12	13	13	12		12
10								8	

Знаходимо гарантований виграш, який визначається нижньою ціною гри $a = max(a_i) = 8$ та верхньою ціною гри $b = min(b_i) = 12$. Що свідчить про відсутність сідлової точки, оскільки $a \neq b$, тоді ціна гри знаходиться в межах $8 \leq y \leq 12$. Отже, знаходимо рішення гри у змішаних стратегіях.

2. <u>Перевіряємо платіжну матрицю на домінуючі рядки та домінуючі стовпці.</u> Іноді на підставі простого розгляду матриці гри можна сказати, що деякі чисті стратегії можуть увійти до оптимальної змішаної стратегії лише з нульовою ймовірністю.

Стратегія A1 домінує над стратегією A5 (всі елементи рядка 1 більші або рівні значенням рядка 5), отже, виключаємо п'ятий рядок. Імовірність $p_5 = 0$. (рис. 2)

Стратегія A1 домінує над стратегією A5 (всі елементи рядка 1 більші або рівні значенням рядка 5), отже, виключаємо п'ятий рядок. Імовірність $q_5 = 0$. (рис. 2)

11							
12			Платіжна	матриця			
13	Гравці	B1	B2	В3	B4	Min A	
14	A1	5	12	11	13	5	
15	A2	5	8	12	13	5	
16	A3	8	12	5	13	5	
17	A4	12	10	13	8	8	
18	Max B	12	12	13	13		12
19						8	
20							

Рис.2

У платіжній матриці відсутні домінуючі рядки. Ми звели гру 5 х 5 до гри 4 х 4.

3. Знаходимо рішення гри у змішаних стратегіях. Математичні моделі пари двоїстих завдань лінійного програмування можна записати так:

знайти мінімум функції F(x) при обмеженнях (для гравця №2):

$$\{5x_1 + 12x_2 + 11x_3 + 13x_4 \ge 15x_1 + 8x_2 + 12x_3 + 13x_4 \ge 18x_1 + 12x_2 + 5x_3 + 13x_4 \ge 112x_1 + 10x_2 + 11x_3 + 11x_4 \ge 112x_1 + 11x_2 + 11x_3 + 11x_4 \ge 112x_1 + 11x_4 + 11x_4$$

$$F(x) = x_1 + x_2 + x_3 + x_4 \rightarrow min$$

знайти максимум функції F(y) при обмеженнях (для гравця №1):

$$\{5y_1 + 5y_2 + 8y_3 + 12y_4 \le 112y_1 + 8y_2 + 12y_3 + 10y_4 \le 111y_1 + 12y_2 + 5y_3 + 13y_4 \le 113y_1 + 13y_2 + 13y_2 + 13y_4 \le 113y_1 + 13y_2 + 13y_2 + 13y_2 + 13y_3 + 13y_4 \le 113y_1 + 13y_2$$

$$F(y) = y_1 + y_2 + y_3 + y_4 \rightarrow max$$

За допомогою пошуку рішень середовища Exel розв'язуєм ці дві системи рівнянь (рис. 3-4):

5	12	11	13	1,159151	
5	8	12	13	1	
8	12	5	13	1	
12	10	13	8	1	
X1	X2	Х3	X4	F(X)	
0	0,046419	0,026525	0,023873	0,096817	

Рис.3

5	5	8 12		0,937666	
12	8	12	10	1	
11	12	5	13	1	
13	13	13	8	1	
Y1	Y2	Y3	Y4	F(X)	
0	0,014589	0,030504	0,051724	0,096817	

Рис.4

Знаходимо ціну гри та використовуємо формули змішаних стратегій, перевіряємо чи їх сума рівна 1. (рис. 8):

L	M	N	O	Р	Q	R	S
5	12	11	13	1,159151		V =	10,32877
5	8	12	13	1		p1 =	0
8	12	5	13	1		p2 =	0,479452
12	10	13	8	1		p3 =	0,273973
X1	X2	Х3	X4	F(X)		p4 =	0,246575
0	0,046419	0,026525	0,023873	0,096817			1
5	5	8	12	0,937666		V =	10,32877
12	8	12	10	1		q1 =	0
11	12	5	13	1		q2 =	0,150685
13	13	13	8	1		q3 =	0,315068
Y1	Y2	Y3	Y4	F(X)		q4 =	0,534247
0	0,014589	0,030504	0,051724	0,096817			1

Рис.9

Отже, V = 10,33; P = (0; 0,479452; 0,273973; 0,246575); Q = (0; 0,150685; 0,315068; 0,534247)

Висновок

На даній лабораторній роботі я ознайомився з теорією матричних ігор, розв'язав одну із задачу індивідуальним завданням в Excel. Був застосований симплекс-метод розв'язування для двох гравців і було знайдено змішані стратегії та ціну гри для кожного з учасників.