

FAN8200/FAN8200D/FAN8200MTC FAN8200MP

Low Voltage/Low Saturation Stepping Motor Driver

Features

- 3.3V and 5V MPU interface
- Dual H-bridge drivers for bipolar stepping motor drives
- Built-in vertical-PNP power transistors
- Wide supply voltage range ($V_{CC} = 2.5V \sim 7.0V$)
- Low saturation voltage (0.4V@ 0.4A)
- Built-in chip enable function for each bridge
- Built-in shoot-through current protection
- Built-in thermal shutdown(TSD) function

Description

The FAN8200/FAN8200D/FAN8200MTC/FAN8200MP is a monolithic intergrated circuit designed for two-phase stepping motor drive systems. It has dual H-bridge drivers with vertical-PNP power transistors. Each of the bridges has an independant enable pin, therefore it can be used for other applications as well as stepping motor drive systems.

Typical Application

- · General low voltage stepping motor driver
- Floppy disk driver
- Camera stepping motor driver
- · PC camera or security equipment motion controller
- Two channel DC motor driver for a digital still camera (DSC)
- MPU interfaced general power driver (buffer)

Ordering Information

Device	Package	Operating Temp.			
FAN8200	14-DIP-300	-20 ~ +75°C			
FAN8200D	14-SOP-225	-20 ~ +75°C			
FAN8200DTF	14-SOP-225	-20 ~ +75°C			
FAN8200MTC	14-TSSOP	-20 ~ +75°C			
FAN8200MTCX	14-TSSOP	-20 ~ +75°C			
FAN8200MPX	14-MLP	-30 ~ +80°C			

Pin Assignments

Pin Definitions

Pin Number	Pin Name	I/O	Pin Function Description
1	Vcc	-	Logic part supply voltage
2	CE1	I	Chip enable 1
3	OUT1	0	Output 1
4	VS1	-	Power supply 1
5	OUT2	0	Output 2
6	IN1	I	Input 1
7	SGND	-	Signal ground
8	PGND	-	Power ground
9	IN2	I	Input 2
10	OUT4	0	Output 4
11	VS2	-	Power supply 2
12	OUT3	0	Output 3
13	CE2	I	Chip enable 2
14	PGND	-	Power ground

Internal Block Diagram

Absolute Maximum Ratings (Ta = 25°C)

Parameter	Symbol	Value	Unit
Supply voltage	VCC(MAX)	9.0	V
Power supply voltage	VS(MAX)	9.0	V
Output voltage	VOUT(MAX)	Vs + VcF	V
Input voltage	VIN(MAX)	7.0	V
Peak output current per channel	IO(PEAK)	1	А
Continuous output current per channel	Ю	0.65 (FAN8200) 0.4 (FAN8200D) 0.55 (FAN8200MTC) 0.35 (FAN8200MP)	А
Power dissipation	PD ^{note}	1.0 (FAN8200) 0.6 (FAN8200D) 0.87 (FAN8200MTC) 0.8 (FAN8200MP)	W
Junction temperture	TJ	150	°C
Storage temperature	TSTG	-40 ~ 125	°C
Operating temperature	TA	-20 ~ 75(FAN8200) -20 ~ 75(FAN8200D) -20 ~ 75(FAN8200MTC) -30 ~ 80(FAN8200MP)	°C

Notes:

- 1. When mounted on 76.2mm \times 114mm \times 1.57mm PCB (glass epoxy material).
- 2. Power dissipation reduces 8.0mW/°C for FAN8200, 4.8mW/°C for FAN8200D, 6.9mW/°C for FAN8200MTC and 6.4mW/°C FAN8200MP for Ta \geq 25°C.
- 3. Should not exceed Pp and SOA(Safe Operating Area).

Power Dissipation Curve

Power Dissipation Curve (Continued)

Recommended Operating Conditions (Ta = 25°C)

Parameter	Symbol Min.		Тур.	Max	Unit
Logic circuit supply voltage	Vcc	2.5	-	7.0	V
Power supply voltage	Vs	2.5	-	7.0	V

Function Descriptions

CE1	IN1	OUT1	OUT2	CE2	IN2	OUT3	OUT4
Low	Х	Z	Z	Low	Х	Z	Z
High	Low	High	Low	High	Low	High	Low
High	High	Low	High	High	High	Low	High

X: don't care
Z: high-impedance

Electrical Characteristics

(Ta=25°C, VCC=5V, VS1=3V, VS2=3V, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply current 1	ICC1	CE1, 2=0V	-	0.1	10	uA
Supply current 2	ICC2	CE1=3V, CE2=0V or CE1=0V, CE2=3V	-	12	18	mA
Saturation voltage 1 (upper + lower total)	VSAT1	CE1=3V, IN1=3V or 0V, I _{OUT} =0.2A	-	0.2	0.3	V
Saturation voltage 2 (upper + lower total)	VSAT2	CE1=3V, IN1=3V or 0V, IOUT=0.4A	-	0.4	0.6	V
Input high level voltage	VINH	-	1.8	-	Vcc	V
Input low level voltage	VINL	-	-0.3	-	0.7	V
Input current	liN	IN=3V, Each pin	-	100	200	uA
Chip enable current	ICE	CE=3V, Each pin	-	100	200	uA
Clamp diode leakge current	ILEAK	Vcc=7V, Vs=7V	-	-	30	uA
Clamp diode voltage	VCF	I _{OUT} =0.4A	-	-	1.7	V

Typical Performance Characteristics

VSAT vs. IOUT Characteristics Graph

Test Circuits

Typical Application Circuit

Application Example - Full Step Bipolar Drive

Circuit Schematics

Application Example - Large Current Buffer

Circuit Schematics

Application Example - 2-Ch. dc Motor Driver for a Digital Still Camera(DSC)

Circuit Schematics

Mechanical Dimensions (Unit: mm)

Package Dimensions

14-DIP-300

Mechanical Dimensions (Unit: mm) (Continued)

Package Dimensions

14-SOP-225

Mechanical Dimensions (Unit: mm) (Continued)

Package dimensions

14-TSSOP

Mechanical Dimensions (Unit: mm) (Continued)

Package dimensions

14-MLP

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com