The L^2 geometry of the moduli space of vortices on the two-sphere in the dissolving limit

Martin Speight (Leeds) Rene García Lara (Universidad Autonoma de Yucatan)

22/8/22

Rene \longrightarrow

▶ Hermitian line bundle L over $\Sigma = (S^2, g_{\Sigma})$, degree n

$$E(\phi,A) = \frac{1}{2} \|\mathbf{d}_A \phi\|_{L^2}^2 + \frac{1}{2} \|F_A\|_{L^2}^2 + \frac{1}{8} \|\tau - |\phi|^2 \|_{L^2}^2$$

▶ Hermitian line bundle L over $\Sigma = (S^2, g_{\Sigma})$, degree n

$$E(\phi, A) = \frac{1}{2} \|\mathbf{d}_A \phi\|_{L^2}^2 + \frac{1}{2} \|F_A\|_{L^2}^2 + \frac{1}{8} \|\tau - |\phi|^2 \|_{L^2}^2$$

▶ Bogomolny bound: $E \ge \tau \pi n$, equality \Leftrightarrow

$$\overline{\partial}_A \phi = 0$$
 (V1)
* $F_A = \frac{1}{2} (\tau - |\phi|^2)$ (V2)

▶ Hermitian line bundle L over $\Sigma = (S^2, g_{\Sigma})$, degree n

$$E(\phi, A) = \frac{1}{2} \|\mathbf{d}_A \phi\|_{L^2}^2 + \frac{1}{2} \|F_A\|_{L^2}^2 + \frac{1}{8} \|\tau - |\phi|^2 \|_{L^2}^2$$

▶ Bogomolny bound: $E \ge \tau \pi n$, equality \Leftrightarrow

$$\overline{\partial}_A \phi = 0$$
 (V1)
* $F_A = \frac{1}{2} (\tau - |\phi|^2)$ (V2)

▶ Bradlow bound: $\int_{\Sigma} (V2)$:

$$2\pi n = \frac{1}{2}\tau |\Sigma| - \frac{1}{2}||\phi||_{L^{2}}^{2}$$
$$||\phi||_{L^{2}}^{2} = \tau |\Sigma| - 4\pi n =: \varepsilon > 0$$

▶ Hermitian line bundle L over $\Sigma = (S^2, g_{\Sigma})$, degree n

$$E(\phi, A) = \frac{1}{2} \|\mathbf{d}_A \phi\|_{L^2}^2 + \frac{1}{2} \|F_A\|_{L^2}^2 + \frac{1}{8} \|\tau - |\phi|^2 \|_{L^2}^2$$

▶ Bogomolny bound: $E \ge \tau \pi n$, equality \Leftrightarrow

$$\overline{\partial}_A \phi = 0$$
 (V1)
* $F_A = \frac{1}{2} (\tau - |\phi|^2)$ (V2)

▶ Bradlow bound: $\int_{\Sigma} (V2)$:

$$2\pi n = \frac{1}{2}\tau |\Sigma| - \frac{1}{2}||\phi||_{L^{2}}^{2}$$
$$||\phi||_{L^{2}}^{2} = \tau |\Sigma| - 4\pi n =: \varepsilon > 0$$

$$\overline{\partial}_A \phi = 0$$
 (V1), $*F_A = \frac{1}{2}(\tau - |\phi|^2)$ (V2)
 $M_n = \{\text{solns } (\phi, A) \text{ of } (V1), (V2)\}/\text{gauge group}$

$$\overline{\partial}_A \phi = 0$$
 (V1), $*F_A = \frac{1}{2}(\tau - |\phi|^2)$ (V2)
 $M_n = \{\text{solns } (\phi, A) \text{ of } (V1), (V2)\}/\text{gauge group}$

$$\begin{array}{|c|c|c|c|}\hline \varepsilon < 0 & \varepsilon = 0 & \varepsilon > 0 \\ M_n = \emptyset & M_n = \{pt\} & M_n \equiv \mathbb{C}P^n \end{array}$$

$$\overline{\partial}_A \phi = 0$$
 (V1), $*F_A = \frac{1}{2}(\tau - |\phi|^2)$ (V2)
 $M_n = \{\text{solns } (\phi, A) \text{ of } (V1), (V2)\}/\text{gauge group}$

$$\begin{array}{|c|c|c|c|}\hline \varepsilon < 0 & \varepsilon = 0 & \varepsilon > 0 \\ M_n = \emptyset & M_n = \{pt\} & M_n \equiv \mathbb{C}P^n \\ \end{array}$$

ightharpoonup arepsilon = 0: $\phi = 0$, $A = \widehat{A}$, const curv

$$\overline{\partial}_A \phi = 0$$
 (V1), $*F_A = \frac{1}{2}(\tau - |\phi|^2)$ (V2)
 $M_n = \{\text{solns } (\phi, A) \text{ of } (V1), (V2)\}/\text{gauge group}$

$$\begin{array}{|c|c|c|c|}\hline \varepsilon < 0 & \varepsilon = 0 & \varepsilon > 0 \\ M_n = \emptyset & M_n = \{pt\} & M_n \equiv \mathbb{C}P^n \\ \end{array}$$

- ightharpoonup arepsilon = 0: $\phi = 0$, $A = \widehat{A}$, const curv
- $\varepsilon > 0$: $[(\phi, A)]$ uniquely determined by **divisor** (ϕ)

Any curve of solutions $(\phi(t), A(t))$ of (V1), (V2) defines a tangent vector to M_n at $[(\phi(0), A(0))]$, v say

- Any curve of solutions $(\phi(t), A(t))$ of (V1), (V2) defines a tangent vector to M_n at $[(\phi(0), A(0))]$, v say
- ▶ Length of v? Project $(\dot{\phi}(0), \dot{A}(0))$ $L^2 \perp$ gauge orbit through $(\phi(0), A(0))$

$$g_{L^2}(v,v) = \|P(\dot{\phi}(0),\dot{A}(0))\|_{L^2}^2$$

- Any curve of solutions $(\phi(t), A(t))$ of (V1), (V2) defines a tangent vector to M_n at $[(\phi(0), A(0))]$, v say
- ▶ Length of v? Project $(\dot{\phi}(0), \dot{A}(0))$ $L^2 \perp$ gauge orbit through $(\phi(0), A(0))$

$$g_{L^2}(v,v) = \|P(\dot{\phi}(0),\dot{A}(0))\|_{L^2}^2$$

Controls low energy vortex dynamics (Manton, Stuart)

- Any curve of solutions $(\phi(t), A(t))$ of (V1), (V2) defines a tangent vector to M_n at $[(\phi(0), A(0))]$, v say
- ▶ Length of v? Project $(\dot{\phi}(0), \dot{A}(0))$ $L^2 \perp$ gauge orbit through $(\phi(0), A(0))$

$$g_{L^2}(v,v) = \|P(\dot{\phi}(0),\dot{A}(0))\|_{L^2}^2$$

- Controls low energy vortex dynamics (Manton, Stuart)
- ▶ Kähler. $[\omega_{L^2}]$ known explicitly (Baptista)

$$|M_n| = \frac{\pi^n \varepsilon^n}{n!}$$

- Any curve of solutions $(\phi(t), A(t))$ of (V1), (V2) defines a tangent vector to M_n at $[(\phi(0), A(0))]$, v say
- ▶ Length of v? Project $(\dot{\phi}(0), \dot{A}(0))$ $L^2 \perp$ gauge orbit through $(\phi(0), A(0))$

$$g_{L^2}(v,v) = \|P(\dot{\phi}(0),\dot{A}(0))\|_{L^2}^2$$

- Controls low energy vortex dynamics (Manton, Stuart)
- ▶ Kähler. $[\omega_{L^2}]$ known explicitly (Baptista)

$$|M_n| = \frac{\pi^n \varepsilon^n}{n!}$$

▶ Rescale: $g_{\varepsilon} := \varepsilon^{-1} g_{L^2}$

- Any curve of solutions $(\phi(t), A(t))$ of (V1), (V2) defines a tangent vector to M_n at $[(\phi(0), A(0))]$, v say
- ▶ Length of v? Project $(\dot{\phi}(0), \dot{A}(0))$ $L^2 \perp$ gauge orbit through $(\phi(0), A(0))$

$$g_{L^2}(v,v) = \|P(\dot{\phi}(0),\dot{A}(0))\|_{L^2}^2$$

- Controls low energy vortex dynamics (Manton, Stuart)
- ightharpoonup Kähler. $[\omega_{L^2}]$ known explicitly (Baptista)

$$|M_n| = \frac{\pi^n \varepsilon^n}{n!}$$

- ▶ Rescale: $g_{\varepsilon} := \varepsilon^{-1} g_{L^2}$
- ightharpoonup Baptista-Manton conjecture: $\lim_{\epsilon \to 0} g_{\epsilon} = \text{Fubini-Study metric}$

▶ Equip L with hol structure $\overline{\partial}_L = \overline{\partial}_{\widehat{\mathcal{A}}}$

$$H^0(L) = \{ \phi \in \Gamma(L) : \overline{\partial}_{\widehat{A}} \phi = 0 \} \equiv \mathbb{C}^{n+1}$$

▶ Equip L with hol structure $\overline{\partial}_L = \overline{\partial}_{\widehat{\mathcal{A}}}$

$$H^0(L) = \{ \phi \in \Gamma(L) : \overline{\partial}_{\widehat{A}} \phi = 0 \} \equiv \mathbb{C}^{n+1}$$

 $ightharpoonup S=\{\widehat{\phi}\in H^0(L):\|\widehat{\phi}\|_{L^2}=1\}$, unit sphere

$$\pi: S \to (\mathbb{P}(H^0(L)), g_{FS}), \qquad \widehat{\phi} \mapsto \{c\widehat{\phi}\}$$

 g_{FS} defined s.t. π a Riem sub

▶ Equip L with hol structure $\overline{\partial}_L = \overline{\partial}_{\widehat{\mathcal{A}}}$

$$H^0(L) = \{ \phi \in \Gamma(L) : \overline{\partial}_{\widehat{A}} \phi = 0 \} \equiv \mathbb{C}^{n+1}$$

• $S=\{\widehat{\phi}\in H^0(L): \|\widehat{\phi}\|_{L^2}=1\}$, unit sphere

$$\pi: S \to (\mathbb{P}(H^0(L)), g_{FS}), \qquad \widehat{\phi} \mapsto \{c\widehat{\phi}\}$$

 g_{FS} defined s.t. π a Riem sub

• $f: M_n \to \mathbb{P}(H^0(L)), [(\phi, A)] \mapsto \{\psi \in H^0(L) : (\psi) = (\phi)\}$

▶ Equip L with hol structure $\overline{\partial}_L = \overline{\partial}_{\widehat{\mathcal{A}}}$

$$H^0(L) = \{ \phi \in \Gamma(L) : \overline{\partial}_{\widehat{A}} \phi = 0 \} \equiv \mathbb{C}^{n+1}$$

 $lacksquare S=\{\widehat{\phi}\in H^0(L): \|\widehat{\phi}\|_{L^2}=1\}$, unit sphere

$$\pi: S \to (\mathbb{P}(H^0(L)), g_{FS}), \qquad \widehat{\phi} \mapsto \{c\widehat{\phi}\}\$$

 g_{FS} defined s.t. π a Riem sub

- $f: M_n \to \mathbb{P}(H^0(L)), [(\phi, A)] \mapsto \{\psi \in H^0(L) : (\psi) = (\phi)\}$
- ▶ "The" Fubini-Study metric: $g_0 := f^*g_{FS}$

▶ Equip L with hol structure $\overline{\partial}_L = \overline{\partial}_{\widehat{\mathcal{A}}}$

$$H^0(L) = \{ \phi \in \Gamma(L) : \overline{\partial}_{\widehat{A}} \phi = 0 \} \equiv \mathbb{C}^{n+1}$$

 $lacksquare S=\{\widehat{\phi}\in H^0(L): \|\widehat{\phi}\|_{L^2}=1\}$, unit sphere

$$\pi: S \to (\mathbb{P}(H^0(L)), g_{FS}), \qquad \widehat{\phi} \mapsto \{c\widehat{\phi}\}\$$

 g_{FS} defined s.t. π a Riem sub

- $f: M_n \to \mathbb{P}(H^0(L)), [(\phi, A)] \mapsto \{\psi \in H^0(L) : (\psi) = (\phi)\}$
- ▶ "The" Fubini-Study metric: $g_0 := f^*g_{FS}$
- $lackbox{\sf Baptista-Manton}$ conjecture: $\lim_{arepsilon o 0}g_{arepsilon}=g_0$
- Surprising? Massive gain in symmetry

The theorem

Theorem (JMS, RGL 2022) In the limit $\varepsilon \searrow 0$, g_{ε} converges in C^0 topology to g_0 .

The theorem

Theorem (JMS, RGL 2022) In the limit $\varepsilon \searrow 0$, g_{ε} converges in C^0 topology to g_0 .

More precisely:

There exists C>0 such that, for all $v\in TM_n$ and all $\varepsilon\in(0,1)$

$$|g_{\varepsilon}(v,v)-g_0(v,v)|\leq C\varepsilon g_0(v,v)$$

• Given divisor D, exists $\widehat{\phi} \in S \subset H^0(L)$ with $(\widehat{\phi}) = D$ Unique up to $\widehat{\phi} \mapsto e^{ic}\widehat{\phi}$

- ▶ Given divisor D, exists $\widehat{\phi} \in S \subset H^0(L)$ with $(\widehat{\phi}) = D$ Unique up to $\widehat{\phi} \mapsto e^{ic}\widehat{\phi}$
- Pseudovortex: $(\sqrt{\varepsilon}\widehat{\phi}, \widehat{A})$ Satisfies (V1) vacuously. Satisfies $\int_{\Sigma} (V2)$

- ▶ Given divisor D, exists $\widehat{\phi} \in S \subset H^0(L)$ with $(\widehat{\phi}) = D$ Unique up to $\widehat{\phi} \mapsto e^{ic}\widehat{\phi}$
- Pseudovortex: $(\sqrt{\varepsilon}\widehat{\phi}, \widehat{A})$ Satisfies (V1) vacuously. Satisfies $\int_{\Sigma} (V2)$
- ▶ Deform this to obtain true vortex with $(\phi) = D$:

$$(\phi, A) = (\sqrt{\varepsilon}\widehat{\phi}e^{u/2}, \widehat{A} - \frac{1}{2} * du)$$

for some smooth $u: \Sigma \to \mathbb{R}$.

- ▶ Given divisor D, exists $\widehat{\phi} \in S \subset H^0(L)$ with $(\widehat{\phi}) = D$ Unique up to $\widehat{\phi} \mapsto e^{ic}\widehat{\phi}$
- Pseudovortex: $(\sqrt{\varepsilon}\widehat{\phi}, \widehat{A})$ Satisfies (V1) vacuously. Satisfies $\int_{\Sigma} (V2)$
- ▶ Deform this to obtain true vortex with $(\phi) = D$:

$$(\phi, A) = (\sqrt{\varepsilon}\widehat{\phi}e^{u/2}, \widehat{A} - \frac{1}{2} * du)$$

for some smooth $u: \Sigma \to \mathbb{R}$.

- Satisfies (V1) automatically
- Satisfies (V2) iff

$$\Delta u - \frac{\varepsilon}{|\Sigma|} + \varepsilon |\widehat{\phi}|^2 e^u = 0.$$

- ▶ Given divisor D, exists $\widehat{\phi} \in S \subset H^0(L)$ with $(\widehat{\phi}) = D$ Unique up to $\widehat{\phi} \mapsto e^{ic}\widehat{\phi}$
- Pseudovortex: $(\sqrt{\varepsilon}\phi, A)$ Satisfies (V1) vacuously. Satisfies $\int_{\Sigma} (V2)$
- ▶ Deform this to obtain true vortex with $(\phi) = D$:

$$(\phi, A) = (\sqrt{\varepsilon}\widehat{\phi}e^{u/2}, \widehat{A} - \frac{1}{2} * du)$$

for some smooth $u: \Sigma \to \mathbb{R}$.

- ► Satisfies (V1) automatically
- Satisfies (V2) iff

$$\Delta u - \frac{\varepsilon}{|\Sigma|} + \varepsilon |\widehat{\phi}|^2 e^u = 0.$$

► Energy estimate, elliptic estimate, Sobolev ⇒

$$||u||_{C^0} \leq C\varepsilon$$
.

Vortices are uniformly well approximated by pseudovortices (for small ε)

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

▶ SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

► SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$||u||_{H^2} \leq C||\Delta u||_{L^2}$$

▶ Decompose $u = u_0 + \overline{u}$ where $\overline{u} = |\Sigma|^{-1} \int_{\Sigma} u$

$$\Delta u_0 - \frac{\varepsilon}{|\Sigma|} + \varepsilon |\widehat{\phi}|^2 e^{\overline{u}} e^{u_0} = 0.$$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

▶ SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

▶ Decompose $u = u_0 + \overline{u}$ where $\overline{u} = |\Sigma|^{-1} \int_{\Sigma} u$

$$\int_{\Sigma} \left(\Delta u_0 - \frac{\varepsilon}{|\Sigma|} + \varepsilon |\widehat{\phi}|^2 e^{\overline{u}} e^{u_0} \right) = 0.$$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

▶ SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

▶ Decompose $u = u_0 + \overline{u}$ where $\overline{u} = |\Sigma|^{-1} \int_{\Sigma} u$

$$0-\varepsilon+\varepsilon\int_{\Sigma}|\widehat{\phi}|^2e^{\overline{u}}e^{u_0}=0.$$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

▶ SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

 $lackbox{ Decompose } u=u_0+\overline{u} ext{ where } \overline{u}=|\Sigma|^{-1}\int_{\Sigma}u$

$$\overline{u} = \ln \left(\int_{\Sigma} |\widehat{\phi}|^2 e^{u_0} \right).$$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

▶ SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

▶ Decompose $u = u_0 + \overline{u}$ where $\overline{u} = |\Sigma|^{-1} \int_{\Sigma} u$

$$\overline{u} = \ln \left(\int_{\Sigma} |\widehat{\phi}|^2 \mathrm{e}^{u_0} \right).$$

- ▶ Monotonicity, $\|\widehat{\phi}\|_{L^2} = 1$: $\|\overline{u}\|_{C^0} \le \|u_0\|_{C^0}$
- ▶ To bound $||u||_{C^0}$ it suffices to bound

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

▶ SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

▶ Decompose $u = u_0 + \overline{u}$ where $\overline{u} = |\Sigma|^{-1} \int_{\Sigma} u$

$$\overline{u} = \ln \left(\int_{\Sigma} |\widehat{\phi}|^2 e^{u_0} \right).$$

- ▶ Monotonicity, $\|\widehat{\phi}\|_{L^2} = 1$: $\|\overline{u}\|_{C^0} \le \|u_0\|_{C^0}$
- ▶ To bound $||u||_{C^0}$ it suffices to bound $||u_0||_{C^0}$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

► SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

▶ Decompose $u = u_0 + \overline{u}$ where $\overline{u} = |\Sigma|^{-1} \int_{\Sigma} u$

$$\overline{u} = \ln \left(\int_{\Sigma} |\widehat{\phi}|^2 e^{u_0} \right).$$

- ▶ Monotonicity, $\|\widehat{\phi}\|_{L^2} = 1$: $\|\overline{u}\|_{C^0} \le \|u_0\|_{C^0}$
- ▶ To bound $||u||_{C^0}$ it suffices to bound $||u_0||_{H^2}$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

► SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

$$\overline{u} = \ln \left(\int_{\Sigma} |\widehat{\phi}|^2 e^{u_0} \right).$$

- ▶ Monotonicity, $\|\widehat{\phi}\|_{L^2} = 1$: $\|\overline{u}\|_{C^0} \le \|u_0\|_{C^0}$
- ▶ To bound $||u||_{C^0}$ it suffices to bound $||\Delta u_0||_{H^2}$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

▶ SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

$$\overline{u} = \ln \left(\int_{\Sigma} |\widehat{\phi}|^2 e^{u_0} \right).$$

- Monotonicity, $\|\widehat{\phi}\|_{L^2} = 1$: $\|\overline{u}\|_{C^0} \leq \|u_0\|_{C^0}$
- ▶ To bound $||u||_{C^0}$ it suffices to bound $||\Delta u||_{L^2}$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

▶ SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

$$\overline{u} = \ln \left(\int_{\Sigma} |\widehat{\phi}|^2 e^{u_0} \right).$$

- Monotonicity, $\|\widehat{\phi}\|_{L^2} = 1$: $\|\overline{u}\|_{C^0} \le \|u_0\|_{C^0}$
- ▶ To bound $||u||_{C^0}$ it suffices to bound $||F_A F_{\widehat{A}}||_{L^2}$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

► SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

$$\overline{u} = \ln \left(\int_{\Sigma} |\widehat{\phi}|^2 \mathrm{e}^{u_0} \right).$$

- Monotonicity, $\|\widehat{\phi}\|_{L^2} = 1$: $\|\overline{u}\|_{C^0} \le \|u_0\|_{C^0}$
- ▶ To bound $||u||_{C^0}$ it suffices to bound $||F_A||_{L^2}$

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

► SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

$$\overline{u} = \ln \left(\int_{\Sigma} |\widehat{\phi}|^2 e^{u_0} \right).$$

- lacksquare Monotonicity, $\|\widehat{\phi}\|_{L^2}=1$: $\|\overline{u}\|_{C^0}\leq \|u_0\|_{C^0}$
- ► To bound $||u||_{C^0}$ it suffices to bound

► Sobolev: $||u||_{C^0} \le C||u||_{H^2}$

$$||u||_{H^2}^2 = \int_{\Sigma} u^2 + |\mathrm{d}u|^2 + |\nabla \mathrm{d}u|^2$$

► SEE: for all smooth u with $\int_{\Sigma} u = 0$,

$$\|u\|_{H^2} \leq C \|\Delta u\|_{L^2}$$

$$\overline{u} = \ln \left(\int_{\Sigma} |\widehat{\phi}|^2 \mathrm{e}^{u_0} \right).$$

- lacksquare Monotonicity, $\|\widehat{\phi}\|_{L^2}=1$: $\|\overline{u}\|_{C^0}\leq \|u_0\|_{C^0}$
- ► To bound $||u||_{C^0}$ it suffices to bound $E = \tau \pi n$

▶ So... $||u||_{C^0} \le C$

- ▶ So... $||u||_{C^0} \le C$
- ► But

$$\Delta u_0 - \frac{\varepsilon}{|\Sigma|} + \varepsilon |\widehat{\phi}|^2 e^u = 0$$

- ▶ So... $||u||_{C^0} \le C$
- ► But

$$\Delta u_0 - \frac{\varepsilon}{|\Sigma|} + \varepsilon |\widehat{\phi}|^2 e^u = 0$$

$$\Rightarrow \qquad \|\Delta u_0\|_{L^2} \le C\varepsilon$$

- ► So... $||u||_{C^0} \le C$
- ► But

$$\Delta u_0 - \frac{\varepsilon}{|\Sigma|} + \varepsilon |\widehat{\phi}|^2 e^u = 0$$

$$\Rightarrow \qquad \|\Delta u_0\|_{L^2} \le C\varepsilon$$

$$\Rightarrow \qquad \|u\|_{C^0} \le C\varepsilon$$

- ► So... $||u||_{C^0} \le C$
- But

$$\Delta u_0 - \frac{\varepsilon}{|\Sigma|} + \varepsilon |\widehat{\phi}|^2 e^u = 0$$

$$\Rightarrow \qquad \|\Delta u_0\|_{L^2} \le C\varepsilon$$

$$\Rightarrow \qquad \|u\|_{C^0} \le C\varepsilon$$

ightharpoonup Vortices are uniformly well approximated by pseudovortices (for small ε)

- ► So... $||u||_{C^0} \le C$
- But

$$\Delta u_0 - \frac{\varepsilon}{|\Sigma|} + \varepsilon |\widehat{\phi}|^2 e^u = 0$$

$$\Rightarrow \qquad \|\Delta u_0\|_{L^2} \le C\varepsilon$$

$$\Rightarrow \qquad \|u\|_{C^0} \le C\varepsilon$$

- ightharpoonup Vortices are uniformly well approximated by pseudovortices (for small ε)
- ▶ Now we need to estimate the *metric*

$$(\phi(t), A(t)) = (\sqrt{\varepsilon}\widehat{\phi}(t)e^{u(t)/2}, \widehat{A} - \frac{1}{2} * du(t))$$

$$(\phi(t), A(t)) = (\sqrt{\varepsilon}\widehat{\phi}(t)e^{u(t)/2}, \widehat{A} - \frac{1}{2} * du(t))$$

$$||\widehat{\phi}(t)||_{L^2}^2 \equiv 1 \Rightarrow \langle \widehat{\phi}, \dot{\widehat{\phi}} \rangle_{L^2} = 0$$

$$(\phi(t), A(t)) = (\sqrt{\varepsilon}\widehat{\phi}(t)e^{u(t)/2}, \widehat{A} - \frac{1}{2} * du(t))$$

- $\blacktriangleright \|\widehat{\phi}(t)\|_{L^2}^2 \equiv 1 \Rightarrow \langle \widehat{\phi}, \dot{\widehat{\phi}} \rangle_{L^2} = 0$
- WLOG $\langle i\widehat{\phi}, \widehat{\phi} \rangle_{L^2} = 0$

$$(\phi(t), A(t)) = (\sqrt{\varepsilon}\widehat{\phi}(t)e^{u(t)/2}, \widehat{A} - \frac{1}{2} * du(t))$$

- $||\widehat{\phi}(t)||_{L^2}^2 \equiv 1 \Rightarrow \langle \widehat{\phi}, \widehat{\widehat{\phi}} \rangle_{L^2} = 0$
- WLOG $\langle i\widehat{\phi}, \widehat{\phi} \rangle_{L^2} = 0$
- ▶ Then $g_0(v,v) = \| \dot{\widehat{\phi}}(0) \|_{L^2}^2$

$$(\phi(t), A(t)) = (\sqrt{\varepsilon}\widehat{\phi}(t)e^{u(t)/2}, \widehat{A} - \frac{1}{2} * du(t))$$

- $\blacktriangleright \|\widehat{\phi}(t)\|_{L^2}^2 \equiv 1 \Rightarrow \langle \widehat{\phi}, \dot{\widehat{\phi}} \rangle_{L^2} = 0$
- $\qquad \qquad \mathsf{WLOG} \ \langle i\widehat{\phi}, \dot{\widehat{\phi}} \rangle_{L^2} = 0$
- ► Then $g_0(v,v) = \|\widehat{\phi}(0)\|_{L^2}^2$
- \blacktriangleright $(\dot{\phi}, \dot{A})$ controlled by \dot{u}

$$\Delta u - \frac{\varepsilon}{|\Sigma|} + \varepsilon |\widehat{\phi}|^2 e^u = 0.$$

$$(\phi(t), A(t)) = (\sqrt{\varepsilon}\widehat{\phi}(t)e^{u(t)/2}, \widehat{A} - \frac{1}{2} * du(t))$$

- $||\widehat{\phi}(t)||_{L^2}^2 \equiv 1 \Rightarrow \langle \widehat{\phi}, \widehat{\phi} \rangle_{L^2} = 0$
- WLOG $\langle i\widehat{\phi}, \dot{\widehat{\phi}}\rangle_{L^2} = 0$
- ► Then $g_0(v,v) = \| \hat{\phi}(0) \|_{L^2}^2$
- \blacktriangleright $(\dot{\phi}, \dot{A})$ controlled by \dot{u}

$$\Delta \dot{u} + \varepsilon |\widehat{\phi}|^2 e^u \dot{u} = -2\varepsilon e^u h(\widehat{\phi}, \dot{\widehat{\phi}})$$

$$(\phi(t), A(t)) = (\sqrt{\varepsilon}\widehat{\phi}(t)e^{u(t)/2}, \widehat{A} - \frac{1}{2} * du(t))$$

- $||\widehat{\phi}(t)||_{L^2}^2 \equiv 1 \Rightarrow \langle \widehat{\phi}, \widehat{\phi} \rangle_{L^2} = 0$
- WLOG $\langle i\widehat{\phi}, \dot{\widehat{\phi}}\rangle_{L^2} = 0$
- ► Then $g_0(v,v) = \| \hat{\phi}(0) \|_{L^2}^2$
- \blacktriangleright $(\dot{\phi}, \dot{A})$ controlled by \dot{u}

$$\Delta \dot{u} + \varepsilon |\widehat{\phi}|^2 e^u \dot{u} = -2\varepsilon e^u h(\widehat{\phi}, \dot{\widehat{\phi}})$$

► Take a curve of vortex solutions

$$(\phi(t), A(t)) = (\sqrt{\varepsilon}\widehat{\phi}(t)e^{u(t)/2}, \widehat{A} - \frac{1}{2} * du(t))$$

- $||\widehat{\phi}(t)||_{L^2}^2 \equiv 1 \Rightarrow \langle \widehat{\phi}, \widehat{\widehat{\phi}} \rangle_{L^2} = 0$
- WLOG $\langle i\widehat{\phi}, \widehat{\phi} \rangle_{L^2} = 0$
- ► Then $g_0(v,v) = \| \hat{\phi}(0) \|_{L^2}^2$
- \blacktriangleright $(\dot{\phi}, \dot{A})$ controlled by \dot{u}

$$\Delta \dot{u} + \varepsilon |\widehat{\phi}|^2 e^u \dot{u} = -2\varepsilon e^u h(\widehat{\phi}, \widehat{\phi})$$

► "SEE for $\Delta + \varepsilon |\widehat{\phi}|^2 e^{u}$ " $\Rightarrow \|\dot{u}\|_{H^2} \leq C\varepsilon \|\widehat{\phi}\|_{L^2}$

$$(\phi(t), A(t)) = (\sqrt{\varepsilon}\widehat{\phi}(t)e^{u(t)/2}, \widehat{A} - \frac{1}{2} * du(t))$$

- $||\widehat{\phi}(t)||_{L^2}^2 \equiv 1 \Rightarrow \langle \widehat{\phi}, \widehat{\widehat{\phi}} \rangle_{L^2} = 0$
- WLOG $\langle i\widehat{\phi}, \dot{\widehat{\phi}}\rangle_{L^2} = 0$
- ► Then $g_0(v,v) = \|\hat{\phi}(0)\|_{L^2}^2$
- \blacktriangleright $(\dot{\phi}, \dot{A})$ controlled by \dot{u}

$$\Delta \dot{u} + \varepsilon |\widehat{\phi}|^2 e^u \dot{u} = -2\varepsilon e^u h(\widehat{\phi}, \widehat{\phi})$$

- ▶ "SEE for $\Delta + \varepsilon |\widehat{\phi}|^2 e^{u}$ " $\Rightarrow \|\dot{u}\|_{H^2} \leq C\varepsilon \|\widehat{\phi}\|_{L^2}$
- ▶ Suffices to get bound on $|g_{\varepsilon} g_0|$.

Convergence of spec Δ

$$\Delta = -g^{ij} \left(\frac{\partial^2}{\partial x_i \partial x_j} + \Gamma^k_{ij} \frac{\partial}{\partial x_k} \right)$$

Convergence of spec Δ

$$\Delta = -g^{ij} \left(\frac{\partial^2}{\partial x_i \partial x_j} + \Gamma^k_{ij} \frac{\partial}{\partial x_k} \right)$$

▶ Spectrum of Δ on (M, g)

$$0 = \lambda_0(g) < \lambda_1(g) \le \lambda_2(g) \le \lambda_3(g) \le \cdots$$

Convergence of spec Δ

$$\Delta = -g^{ij} \left(\frac{\partial^2}{\partial x_i \partial x_j} + \Gamma^k_{ij} \frac{\partial}{\partial x_k} \right)$$

▶ Spectrum of Δ on (M, g)

$$0 = \lambda_0(g) < \lambda_1(g) \le \lambda_2(g) \le \lambda_3(g) \le \cdots$$

▶ Corollary (JMS,RGL): There exists $C, \varepsilon_* > 0$ such that, for all $k \in \mathbb{Z}^+$ and all $\varepsilon \in (0, \varepsilon_*)$,

$$\left|\frac{\lambda_k(g_{\varepsilon})}{\lambda_k(g_0)}-1\right|\leq C\varepsilon$$

- ▶ Spectrum of M_n converges uniformly to spectrum of FS!
- Surprising this follows from only C⁰ convergence!

Open questions

▶ Urakawa-Bando (1983): for any finite dimensional subspace $V \subset C^{\infty}(M)$

$$\Lambda_g(V) := \sup \left\{ \frac{\|\mathrm{d} f\|_{L^2}^2}{\|f\|_{L^2}^2} : f \in V \setminus \{0\} \right\}.$$

Then

$$\lambda_k(g) = \inf\{\Lambda_g(V) : \dim V = k+1\}$$

Open questions

▶ Urakawa-Bando (1983): for any finite dimensional subspace $V \subset C^\infty(M)$

$$\Lambda_g(V) := \sup \left\{ \frac{\|\mathrm{d} f\|_{L^2}^2}{\|f\|_{L^2}^2} : f \in V \setminus \{0\} \right\}.$$

Then

$$\lambda_k(g) = \inf\{\Lambda_g(V) : \dim V = k+1\}$$

Corollary easily follows

Open questions

- ▶ Convergence of geodesics? Need $g_{\varepsilon} \rightarrow g_0$ in C^1
- ▶ Convergence of curvature? Need $g_{\varepsilon} \rightarrow g_0$ in C^2
- n-dependence of the bounds?
- ▶ Leading correction to g_0 ?
- ► Higher genus? Much more subtle (Manton, Romao)