CIS 678 Machine Learning

Introduction to ML

Week 1 Plan

- Get to know each other (networking)
- Set up our course objective, guidelines, and evaluation procedure.
- Introduction to ML
- Set up our programming development environment(s), more specifically,
 - Google Colab(oratory) on your Google drive,
 - <u>HPC cluster account</u> (introduction)
- Basics of Math, Statistics, and Probability (Part 1)

What *is* Machine Learning?

Machine Learning (ML) is when a computer learns patterns from data and improves its performance without being explicitly programmed for every task.

What is NOT Machine Learning?

These are programs that follow **explicit instructions** or rules written by a human, without adapting or learning from data.

What is Machine Learning?

Machine Learning (ML) is when a computer learns patterns from data and improves its performance without being explicitly programmed for every task.

What is NOT Machine Learning?

These are programs that follow **explicit instructions** or rules written by a human, without adapting or learning from data.

What is NOT Machine Learning?

These are programs that follow **explicit instructions** or rules written by a human, without adapting or learning from data.

Example Applications

1. Calculator App:

- Follows strict math rules coded by a programmer.
- It doesn't "learn" how to calculate—it just executes instructions.

1. Digital Alarm Clock:

- Goes off at a set time programmed by the user.
- No learning—just performs based on what you set.

Static Website

- Displays fixed content to all users.
- Doesn't adapt or learn from user behavior

1. Microwave Oven Timer:

- Follows direct input commands (e.g., heat for 2 minutes).
- Doesn't learn what type of food you usually heat or adjust automatically.

What is NOT Machine Learning?

These are programs that follow **explicit instructions** or rules written by a human, without adapting or learning from data.

Example Applications

Calculator App:

- Follows strict math rules coded by a programmer.
- It doesn't "learn" how to calculate—it just executes instructions.

1. Digital Alarm Clock:

- Goes off at a set time programmed by the user.
- No learning—just performs based on what you set.

Static Website

- Displays fixed content to all users.
- Doesn't adapt or learn from user behavior

1. Microwave Oven Timer:

- Follows direct input commands (e.g., heat for 2 minutes).
- Doesn't learn what type of food you usually heat or adjust automatically.

What is NOT Machine Learning?

These are programs that follow **explicit instructions** or rules written by a human, without adapting or learning from data.

Example Applications

Calculator App:

- Follows strict math rules coded by a programmer.

Digital Alarm Clock:

- No learning—just performs based on what you set.

Static Website:

- Displays fixed content to all users. Doesn't adapt or learn from user behavior.

Microwave Oven Timer:

- Follows direct input commands (e.g., heat for 2

What is NOT Machine Learning?

These are programs that follow **explicit instructions** or rules written by a human, without adapting or learning from data.

Example Applications

Calculator App:

- Follows strict math rules coded by a programmer.
- It doesn't "learn" how to calculate—it just executes instructions.

1. Digital Alarm Clock:

- Goes off at a set time programmed by the user.
- No learning—just performs based on what you set.

Static Website

- Displays fixed content to all users.
- Doesn't adapt or learn from user behavior

1. Microwave Oven Timer:

- Follows direct input commands (e.g., heat for 2 minutes).
- Doesn't learn what type of food you usually heat or adjust automatically.

What is Machine Learning?

Machine Learning (ML) is when a computer learns patterns from data and improves its performance without being explicitly programmed for every task.

Example Applications

1. Email Spam Filter:

- Learns from thousands of emails labeled "spam" or "not spam."
- Over time, it gets better at predicting which emails are spam—even if it's never seen that exact message before.
- Netflix Recommendation
 - Learns fron

itched.

terns in viewing

- 8. Voice Assistants (e.
 - Learn your
 - Understand the control of privates better the more you use them.

What is Machine Learning?

Machine Learning (ML) is when a computer learns patterns from data and improves its performance without being explicitly programmed for every task.

Netflix Recommendations:

- Learns from what you and others have watched.
- Suggests new movies/shows based on patterns in viewing behavior.

What is Machine Learning?

Machine Learning (ML) is when a computer learns patterns from data and improves its performance without being explicitly programmed for every task.

m" or "not spam Filter:

m'' or "not spam Fi

- Learns from what you and others have watched
- Suggests new movies/shows based on patterns in viewing behavior.
- 3. Voice Assistants (e.g., Siri, Alexa):
 - Learn your speech patterns.
 - Understand different accents or phrases better the more you use them.

What is Machine Learning?

Machine Learning (ML) is when a computer learns patterns from data and improves its performance without being explicitly programmed for every task.

Example Applications

4. Self-Driving Cars:

• Learn to detect pedestrians, read signs, and respond to traffic using data from cameras, radar, etc.

- Learns fi
- Improve

What is Machine Learning?

Machine Learning (ML) is when a computer learns patterns from data and improves its performance without being explicitly programmed for every task.

Example Applications

4. Self-Driving Cars:

 Learn to detect pedestrians, read signs, and respond to traffic using data from cameras, radar, etc.

5. Conversational Agent (ChatGPT)

- Learns from massive text data
- Improves using human feedback.

Q. What was the average daytime temperature in Grand Rapids in <u>August 2024</u>?

Is it a ML problem?

Q. What was the average daytime temperature in Grand Rapids in <u>August 2024</u>?

Clue: This information is already known.

Is it a ML problem?

Q. What will be the average daytime temperature in Grand Rapids in <u>August 2026</u>?

Is it a ML problem?

Q. What will be the average daytime temperature in Grand Rapids in <u>August 2026</u>?

Is it a ML problem?

Clue: This information is unknown and involves uncertainty.

QA

k-NN (1D)

Distance Metric

k-NN (First ML Model)

Go To Math (Linear Algebra)

Next slides to be planed in another PPTx

- Given a set of 2D data points, can you find the closest pair using,
 - L1/Manhattan distance
 - L2 distance,
 - Cosine distance

• Find the independent pairs of vectors, if there are any.

	X	У	Z
0	-2	10	0
1	1	1	0
2	0	0	10

 You have two ML engineer friends with their years of experience and salaries are as follows

	profession	years-of-experience	salary
0	ML engineer	2	120000
1	ML engineer	5	160000

- You have two ML engineer friends with their years of experience and salaries are as follows
- What you expect the salary would be for two other ML engineers
 - With no experience
 - With 3 years of experience?

		profession	years-of-experience	salary
	0	ML engineer	2	120000
	1	ML engineer	5	160000
	2	ML engineer	0	?
	3	ML engineer	3	?

What is Machine Learning?

Machine Learning (ML) is when a computer learns patterns from data and improves its performance without being explicitly programmed for every task.

1. Self-Driving Cars:

 Learn to detect pedestrians, read signs, and respond to traffic using data from cameras, radar, etc.

1. Bank Fraud Detection:

- Learns what normal spending looks like.
- Flags suspicious activity based on learned patterns.

What is Machine Learning?

Machine Learning (ML) is when a computer learns patterns from data and improves its performance without being explicitly programmed for every task.

Email Spam Filter

- Learns from thousands of emails labeled "spam" or "not spam."
- Over time, it gets better at predicting which emails are spam—even if it's never seen that exact message before
- 2. Netflix Recommendations:
 - Learns from what you and others have watched
 - Suggests new movies/shows based on patterns in viewing behavior.
- Voice Assistants (e.g., Siri, Alexa)
 - Learn your speech patterns.
 - Understand different accents or phrases better the more you use them.

What is Machine Learning?

Machine Learning (ML) is when a computer learns patterns from data and improves its performance without being explicitly programmed for every task.

1. Email Spam Filter:

- Learns from thousands of emails labeled "spam" or "not spam."
- Over time, it gets better at predicting which emails are spam—even if it's never seen that exact message before.

Netflix Recommendations:

- o Learns from what you and others have watched.
 - Suggests new movies/shows based on patterns in viewing behavior.

3. Voice Assistants (e.g., Siri, Alexa):

- Learn your speech patterns.
- Understand different accents or phrases better the more you use them.

4. Self-Driving Cars:

Learn to detect pedestrians, read signs, and respond to traffic using data from cameras, radar, etc.

Bank Fraud Detection:

- Learns what normal spending looks like.
- Flags suspicious activity based on learned patterns.

Outline

- What is ML and what isn't
- Distance metrics
- Vector orthogonality
- Linear equation test

Outline

- What is ML and what isn't
- k -Nearest Neighbors (kNN) Model