AI1103-Assignment 4

Name: Revanth badavathu Roll No.: CS20BTECH11007

Download latex-tikz codes from

https://github.com/cs20btech11007/Challenging-Problem-3/blob/main/Challenging%20Problem %203.tex

and python codes from

https://github.com/cs20btech11007/Challenging-Problem-3/blob/main/Challenging%20Problem %203.py

UGC/MATH 2019, Q.50

Let X_1, X_2, X_3, X_4, X_5 be *i.i.d.* random variables having a continuous distribution function. Then

$$Pr(X_1 > X_2 > X_3 > X_4 > X_5 | X_1 = max(X_1, X_2, X_3, X_4, X_5)$$

equals _____.

- 3) $\frac{1}{4!}$
- 4) $\frac{1}{5!}$

SOLUTION

 X_1, X_2, X_3, X_4 and X_5 are identical and independently distributed random variables, they can be represented by a single random variable X. Let

$$\{X_1, X_2, X_3, X_4, X_5\} \in X$$

Required probability,

$$\Pr(X_1 > X_2 > X_3 > X_4 > X_5 | x_1 = \max(X_1, X_2, X_3, X_4, X_5))$$
(1)

by applying conditional probability,

 \Rightarrow the probability of getting X_1 maximum among X_1, X_2, X_3, X_4, X_5 is

$$\Pr(X_1) = \frac{1}{5}.\tag{0.0.2}$$

 \Rightarrow the probability of getting X_2 2nd maximum among X_2, X_3, X_4, X_5 is

$$\Pr(X_2 > X_3 > X_4 > X_5) = \frac{1}{4}.$$
 (0.0.3)

 \Rightarrow the probability of getting X_3 3rd maximum among X_3, X_4, X_5 is

$$\Pr(X_3 > X_4 > X_5) = \frac{1}{3}.$$
 (0.0.4)

 \Rightarrow the probability of getting X_4 4rd maximum among X_4, X_5 is

$$\Pr(X_4 > X_5) = \frac{1}{2}.$$
 (0.0.5)

 \Rightarrow the probability of getting X_5 least $Pr(X_5) = 1$.

we know that X_1, X_2, X_3, X_4, X_5 are independently distributed.

$$\Pr(X_1 > X_2 > X_3 > X_4 > X_5) \cap X_1)).$$

$$\Rightarrow \Pr(X_1) \times \Pr(X_2 > X_3 > X_4 > X_5) \Pr(X_4 > X_5) \times \Pr(X_5)$$
.

$$\Pr(X_1 > X_2 > X_3 > X_4 > X_5) \cap X_1) = \frac{1}{5!}$$

:. Required probability is,

$$= \frac{\frac{1}{5!}}{\frac{1}{5}}$$
 (0.0.6)
$$= \frac{1}{1}$$
 (0.0.7)

$$\Pr\left(X_{1} > X_{2} > X_{3} > X_{4} > X_{5} | X_{1}\right) = \left(\frac{\Pr\left(X_{1} > X_{2} > X_{3} > X_{4} > X_{5}\right) \cap X_{1}\right)}{\Pr\left(X_{1}\right)}\right)$$
(0.0.1)