Assignment 2

1.1 Use induction to prove $F_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt{5}}$; where $F_i = F_{i-2} + F_{i-1}$, and ϕ is the golden ratio $\frac{1+\sqrt{5}}{2}$.

To prove by induction, write out the expressions f_n and f_{n+1} (note: f_{n+1} is the same as f_n , but with (n+1) substituted everywhere in place of n). Next, if applicable, re-write the expression f_{n+1} in terms of f_n then perform algebraic manipulations on the expression until you reach some variation of $f_{n+1} = f_{n+1}$. Lastly, show that the expression f_c also holds for some constant f_c . The algebra is called "the inductive step", and the calculation for on the constant is called "the base case".

In this problem, the expression to prove is $F_i=\frac{\phi^i-\hat{\phi}^i}{\sqrt{5}}$, where $\phi=\frac{1+\sqrt{5}}{\sqrt{5}}$. Start by demonstrating the expression holds for constants c=0, c=1 (e.g., the "base case").

$$F_0 = \frac{\phi^0 - \hat{\phi}^0}{\sqrt{5}} = \frac{1 - 1}{\sqrt{5}} \tag{1.1}$$

$$=0 (1.2)$$

After showing the expression holds for some base cases F_0 and F_1 , the next step is algebra. Setup the expression F_{n+1} in terms of F_n , then solve (see below).

$$F_{i} = \frac{\phi^{i} - \hat{\phi}^{i}}{\sqrt{5}} = F_{i-1} + F_{i-2} \qquad F_{i+1} = \frac{\phi^{i+1} - \hat{\phi}^{i+1}}{\sqrt{5}} = F_{i} + F_{i-1}$$

$$F_{i+1} = \frac{\phi^{i+1} - \hat{\phi}^{i+1}}{\sqrt{5}} = F_i + F_{i-1}$$
 (1.1)