Date I hereby certify that, on the date indicated above, this paper or fee was deposited with the U.S. Postal Service & that it was addressed for delivery to the Assistant Commissioner for Patents, Washington, DC 20231 by "Express Mail Post Office to Addressee" service.

PLEASE CHARGE ANY DEFICIENCY UP TO \$300.00 OR CREDIT ANY EXCESS IN THE FEES DUE WITH THIS DOCUMENT TO OUR **DEPOSIT ACCOUNT NO. 04-0100**

B.W. LEE Name (Print)

Customer No.:

PATENT TRADEMARK OFFICE

Docket No.: 6920/0I190

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Akihiro SHIMIZU; Mitsuyoshi SHIBUYA

Serial No.:

09/766,305

Art Unit:

N/A

Confirmation No.: 9634

Filed:

January 19, 2001

Examiner:

N/A

For:

QUALIFICATION AUTHENTICATION METHOD USING VARIABLE

AUTHENTICATION INFORMATION

CLAIM FOR PRIORITY

Hon. Commissioner of Patents and Trademarks Washington, DC 20231

Sir:

Applicant hereby claims priority under 35 U.S.C. Section 119 based on Japan application No. 2001-002300 filed January 10, 2001.

A certified copy of the priority document is submitted herewith.

Dated: July 23, 2001

Respectfully submitted,

S. Peter Ludwig Reg. No. 25,351

Attorney for Applicant(s)

DARBY & DARBY P.C. 805 Third Avenue New York, New York 10022 212-527-7700

4

SU: 09/766,305

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2001年 1月10日

出 願 Application Number:

特願2001-002300

出 願 人 Applicant (s):

エヌ・ティ・ティ・アドバンステクノロジ株式会社

清水 明宏

2001年 3 月 2日.

特許庁長官 Commissioner, Patent Office

【書類名】

特許願

【整理番号】

GAT00845

【あて先】

特許庁長官殿

【国際特許分類】

H04K 01/00

【発明者】

【住所又は居所】

高知県高知市知寄町二丁目3番地16号

【氏名】

清水 明宏

【発明者】

【住所又は居所】

東京都新宿区西新宿二丁目1番1号 エヌ・ティ・ティ

・アドバンステクノロジ株式会社内

【氏名】

渋谷 充喜

【特許出願人】

【代表出願人】

【識別番号】

000102739

【住所又は居所】

東京都新宿区西新宿二丁目1番1号

【氏名又は名称】

エヌ・ティ・ティ・アドバンステクノロジ株式会社

【代表者】

田▲崎▼ 公郎

【特許出願人】

【識別番号】

598125855

【住所又は居所】

高知県高知市知寄町二丁目3番地16号

【氏名又は名称】

清水 明宏

【手数料の表示】

【予納台帳番号】

057727

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

可変認証情報を用いる資格認証方法

【特許請求の範囲】

【請求項1】 被認証者が認証者に対して、被認証者が秘密に保持している パスワードを教えることなく、自分を認証させることのできる方法で、かつ被認 証者から認証者への認証依頼の度に送付する認証情報を可変とする可変認証情報 を用いる資格認証方法において、

初期登録フェーズでは、

被認証者が、自己のユーザーIDとパスワードと乱数を基に、入力情報を算出することが計算量的に困難であるような一方向性を有する出力情報を生成する一方向性関数を用いて初回の認証データを生成する工程と、

被認証者が認証者に対して、自己のユーザーIDと初回の認証データを送信する 工程と、

認証者が被認証者から受信した初回の認証データを初回認証時に用いる認証パラメータとして登録する工程を有し、

認証フェーズでは、

被認証者が、自己のユーザーIDとパスワードと乱数を基に、前記一方向性関数を用いて今回の認証データ用中間データと今回の認証データと次回の認証データと認証確認用中間パラメータを生成し、今回の認証データ用中間データに今回の認証データと認証確認用中間パラメータで排他的論理和演算を行うと共に、次回の認証データに今回の認証データで排他的論理和演算することにより、今回認証用の排他的論理和及び次回認証用の排他的論理和を生成する工程と、

被認証者が認証者に対して、自己のユーザーID、今回認証用の排他的論理和及び次回認証用の排他的論理和を送信する工程と、

認証者が、被認証者から受信した次回認証用の排他的論理和と前回登録された 認証パラメータとの排他的論理和により次回認証用仮パラメータを生成し、次回 認証用仮パラメータから前記一方向性関数を用いて認証確認用中間パラメータを 生成する工程と、被認証者から受信した今回認証用の排他的論理和と前回登録さ れた認証パラメータと生成された認証確認用中間パラメータとの排他的論理和を 入力情報として、前記一方向性関数を用いて被認証者の正当性確認パラメータを 生成し、この正当性確認パラメータと前回登録された認証パラメータを比較し、 一致した場合は認証が成立したものとし、一致しない場合は認証が不成立と判断 する工程と、

認証が成立した場合は、前回登録された認証パラメータの替わりに前記の次回 認証用仮パラメータを次回認証用の認証パラメータとして登録する工程を有し、 以上の工程を順次続けて被認証者の認証を行うことを特徴とする可変認証情報を 用いる資格認証方法。

【請求項2】 一方向性関数EとしてDES, FEALなどの秘密鍵暗号方式に用いる関数を用いることを特徴とする請求項第1項記載の可変認証情報を用いる資格認証方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、認証者が被認証者を認証する資格認証方法に関する。可変認証情報を用いる認証方法とは、被認証者から認証者への認証依頼毎にパスワード等の認証情報を変更して認証を行う方法である。

[0002]

【従来の技術】

従来のパスワード等の認証情報を用いて通信相手やユーザの資格を認証する方法には、公開鍵暗号方法を応用したものと共通鍵暗号方法を応用したものの二つに大別することができるが、インタネット関連の通信プロトコルなどへの組み込みにおいては、公開鍵暗号方法より格段の高速処理が可能な共通鍵系の暗号方法を応用した方法、特に、パスワード認証方法がよく用いられる。基本的なパスワード認証の手順は以下の通りである。まず、被認証者(装置を含む)が認証者(サーバ等の装置を含む)にパスワードを登録する。認証時に、被認証者が認証者にパスワードを送信する。認証者は、受信したパスワードと登録されているパスワードを比較する。

[0003]

しかし、この方法には、次のような問題点がある。

- (a) 認証側にあるパスワードファイルの盗見によりパスワードが盗まれる。
- (b) 通信中、回線盗聴によってパスワードが盗まれる。
- (c) 被認証者は認証者に、自分の秘密情報であるパスワードを公開する必要がある。

[0004]

最初の問題(a) を解決する方法として、例えば、被認証者が認証者に、パスワードに一方向性関数を施したデータを登録しておき、認証時に、認証者が受信したパスワードに同じ一方向性関数を施し、結果を比較するという方法(参考文献: A.Evans,W.Kantrowitz and E.Weiss: "A user authentication scheme notrequiring secrecy in the computer," Commun. ACM, 17, 8, pp.437-442(1974)及びR.Morris and K.Thompson:"Password security: A case history," UNIXProgrammer's Manual, Seventh Edition, 2B(1979)) がある。

[0005]

一方向性関数とは、入力の総当たり以外に、出力から入力を得る効率的な手段が存在しない関数であり、総当たりの計算量を充分大きくしておけば、無資格者が入力データを算出して被認証者になりすますことを防止できる。一般に、一方向性関数は、DESやFEALなどの共通鍵暗号方法によって得ることができる。共通鍵暗号方法は、共通秘密鍵を用いて入力される平文を処理して暗号文を出力として得るもので、平文と暗号文が与えられても共通秘密鍵が算出できない。特にFEALでは、平文や共通秘密鍵の入力が1ビット変化しただけでも、その入力変化の痕跡をまったくとどめない出力を得ることができるという特徴を有している。

[0006]

以上説明した通り、一方向性関数を用いた方法によって、基本的なパスワード 認証方法の問題(a)は解決できる。しかし、これを回線盗聴が簡単なインタネットに適用する場合、問題(b)を解決することはできない。また、問題(c)に関しては、この基本的なパスワード認証方法は、銀行の顧客認証などには適用できても、同一レベルのユーザ同士の資格認証には適していない。 [0007]

このような問題を解決する方法として、パスワード等の認証情報を可変にする 資格認証方法がある。例えば、Lamport の方法(L.Lamport:"Password authenti cation with insecure communication," Commun. ACM, 24,11, pp.770-772(1981)) (S/KEY型パスワード認証方式)及びこの出願の発明者が提案した動的パス ワード認証方法であるCINON法(Chained One-way Data Verification Method)(A .Shimizu, "ADynamic Password Authentication Method Using a One-way Funct ion"Systtems and Computers in Japan, Vol. 22, No.7, 1991, pp.32-40)(「 資格認証方法」 特公平8-2051/特許第2098267号)、及びその改 良系である「ユーザ認証機能を有する情報送受信制御方法」(特願平8-240 190)や「可変認証情報を用いる資格認証方法」(特願平11-207325))がある。

[0008]

Lamport の方法は、パスワードに一方向性関数を複数回適用しておいて、適用一回前のデータを次々と認証者側に示すことで、複数回の認証を可能にする方法である。この方法では、最初に設定した最大認証回数から認証を実行する毎に1を減算し、認証回数を使い尽くした時点で、パスワードを再設定する必要がある。最大認証回数を増やすために一方向性関数の適用回数を増加させると処理量が増大する。銀行の顧客認証では最大認証回数として数100~1000等が用いられる。更に、認証者側に比較して処理能力の小さい、被認証者側の処理負担が大きいという問題点がある。

[0009]

CINON法は、被認証者(ユーザ)が認証者(ホスト)に対して、前回に正当性の検証を終え登録されている認証データのもとのデータ、次々回に認証に用いる認証データ、前回送信済みで次回の認証に用いる認証データの正当性検証データの3つのデータを認証フェーズ毎に送信することで、認証情報を安全に更新しながら次々と連鎖的に認証を行うことのできる方法である。このように、CINON法では、被認証者が認証者の認証を得るためには、前回生成した2つの乱数N(k-1),N(k)を使用する必要がある。そのため、ユーザが出先の端末か

ら認証者の認証を得る場合には、ユーザはそれらの乱数を記憶した例えばICカードの様な記憶媒体を携帯し、出先の端末で使用しなければならない。また、端末は、乱数を発生する機能及びICカードを読み書きする機能を必要とする。一方、インタネットにおいては、テレビセットやワードプロセッサ、更に携帯端末などにインタネット接続機能を付加したインタネット家電と呼ばれる製品が市場投入されようとしている。

[0010]

このようなインタネット家電が普及してくることに伴い、認証処理を有する情報の送受信に対する需要が増大してくるものと思われるが、インタネット家電は、コストを最重視しているため、上述の乱数を発生したり、それらをICカード等の記憶媒体へ読み書きする機構を有していない場合がほとんどである。また、処理プログラムの格納領域も限られるため、このような認証処理をできるだけ簡易で小さいプログラムサイズで実現することが望まれる。

[0011]

この問題を解決するために、本出願の発明者が提案した「ユーザ認証機能を有する情報送受信制御方法」(特願平8-240190)におけるユーザ認証方式は、インターネット等のセキュリティが十分でないネットワーク上の被認証者と認証者間の情報送受信において、被認証者側にICカード等の記憶媒体の読み書きを行う機構を必要とせず、かつユーザ認証処理を小さいプログラムサイズで行うことができる安全な情報送受信制御方法と装置及びその方法を記録した記録媒体を提供することを目的としたもので、認証手順において、CINON法の改良として、各種認証データの値を一度きりのものにするために被認証ユーザと認証サーバとの間で同期をとらなくてはならないパラメータとして、認証データ生成時に用いていた乱数に代えて、認証回数を用いるようにしたことを主要な特徴とする。被認証ユーザが行わなければならない処理が上記「資格認証方法」よりもやシンプルになている。この発明においては、認証データの生成に用いる一方向性関数にDESやFEALなどの共通鍵暗号方法を用いる。しかるに、安全性は用いる一方向性関数、つまり共通鍵暗号方法の強度に依存し、乱数から認証回数に変更した影響はない。

[0012]

更に、本出願の発明者が提案した「可変認証情報を用いる資格認証方法」(特 願平11-207325)におけるユーザ認証方式は、被認証者は、認証フェー ズ毎に乱数を生成し、乱数、ユーザID、パスワードを基に今回の認証データと 次回の認証データを一方向性関数を用いて算出し、これをさらに排他的論理和を 用いて被認証者以外は解読できないように暗号化し、これら今回認証用の排他的 論理和及び次回認証用の排他的論理和を被認証者自身のユーザ I Dと合わせて認 証者(サーバ等の装置を含む)に送信し、また、認証者は、被認証者から前述の 3つの情報を受信し、今回の認証データを基に一方向性関数を用いて算出した正 当性確認パラメータと前回の認証フェーズにおいて登録した認証パラメータと比 較し、一致したら今回の認証が成立したと判断し、次回の認証データを次回の認 証パラメータとして登録するものであり、セキュリティが十分でないネットワー ク上の被認証者を認証者に認証させるための可変認証情報を用いる資格認証方法 において、認証フェーズ毎に被認証者側および認証者側で実行する処理量(計算 量)を極めて少なくすることにより、被認証側にも認証側にも簡易で小さいプロ グラムサイズで実現可能とし、かつ、通信路上の盗聴に強い安全な認証を行える 方法を提供することが可能となった。

[0013]

上記4方式における認証方法は全て可変認証情報を用いる資格認証方法である。かかる資格認証方法の重要な特徴は、インターネット等の通信路を通して被認証者から認証者に渡される認証用データは認証フェーズ毎に異なる(毎回異なる)ため、ある認証フェーズでそれが盗聴されたとしても、次の認証フェーズ(次回認証時)には別の認証データを被認証者から認証者に送らなければ認証されないので、盗聴した無資格者が正当な被認証者になりすますことができないという点である。

[0014]

【発明が解決しようとする課題】

Lamportの方法には、被認証ユーザ側での処理(計算)量が非常に大きいという問題と、被認証者が、定期的にパスワードを更新する必要があるという問題が

あった。

[0015]

CINON法では、Lamportの方法の欠点であるパスワードの更新の必要性をなくす ことができたが、被認証者および認証者における処理(計算)量が大きいという 問題は依然残った。

「ユーザ認証機能を有する情報送受信制御方式」におけるユーザ認証方法は、CI NON法の欠点である、被認証者における処理(計算量)を削減することができたが、被認証者と認証者の相互間の手順がやや複雑であり、認証サーバ側でユーザ対応に管理しなければならないデータが多く、実運用時には準正常系、異常系の処理手順を入念に検討しておく必要があるという問題があった。

[0016]

又、「可変認証情報を用いる資格認証方法」におけるユーザ認証方式は、「ユーザ認証機能を有する情報送受信制御方式」における管理データが多く、準正常系、異常系の処理手順が難しいという問題点を改善することができたが、今回の認証データと次回の認証データが独立していた為、ユーザIDと今回の認証データが不変であればそれだけで認証が成立してしまうという問題点があった。さらに、悪意の第3者によって次回の認証データのみを改ざんされても認証は成立し改ざん後のデータが次回認証データとして処理されてしまう為、正当なユーザのその後の認証を妨害される恐れがあった。

[0017]

本発明の目的は、セキュリティが十分でないネットワーク上の被認証者を認証者に認証させるための可変認証情報を用いる資格認証方法において、認証フェーズ毎に被認証者側および認証者側で実行する処理量(計算量)を極めて少なくすることにより、被認証側にも認証側にも簡易で小さいプログラムサイズで実現可能とし、かつ、通信路上の盗聴や通信経路での情報の不正操作に強い安全な認証を行える方法を提供することにある。

[0018]

【課題を解決するための手段】

上記課題を解決するために、本発明による可変認証情報を用いる資格認証方法

は、被認証者が認証者に対して、被認証者が秘密に保持しているパスワードを教えることなく、自分を認証させることのできる方法で、かつ被認証者から認証者への認証依頼の度に送付する認証情報を可変とする可変認証情報を用いる資格認証方法において、

初期登録フェーズでは、

被認証者が、自己のユーザーIDとパスワードと乱数を基に、入力情報を算出することが計算量的に困難であるような一方向性を有する出力情報を生成する一方向性関数を用いて初回の認証データを生成する工程と、

被認証者が認証者に対して、自己のユーザーIDと初回の認証データを送信する 工程と、

認証者が被認証者から受信した初回の認証データを初回認証時に用いる認証パラメータとして登録する工程を有し、

認証フェーズでは、

被認証者が、自己のユーザーIDとパスワードと乱数を基に、前記一方向性関数を用いて今回の認証データ用中間データと今回の認証データと次回の認証データと認証確認用中間パラメータを生成し、今回の認証データ用中間データに今回の認証データと認証確認用中間パラメータで排他的論理和演算を行うと共に、次回の認証データに今回の認証データで排他的論理和演算することにより、今回認証用の排他的論理和及び次回認証用の排他的論理和を生成する工程と、

被認証者が認証者に対して、自己のユーザーID、今回認証用の排他的論理和及び次回認証用の排他的論理和を送信する工程と、

認証者が、被認証者から受信した次回認証用の排他的論理和と前回登録された認証パラメータとの排他的論理和により次回認証用仮パラメータを生成し、次回認証用仮パラメータから前記一方向性関数を用いて認証確認用中間パラメータを生成する工程と、被認証者から受信した今回認証用の排他的論理和と前回登録された認証パラメータと生成された認証確認用中間パラメータとの排他的論理和を入力情報として、前記一方向性関数を用いて被認証者の正当性確認パラメータを生成し、この正当性確認パラメータと前回登録された認証パラメータを比較し、一致した場合は認証が成立したものとし、一致しない場合は認証が不成立と判断

する工程と、

認証が成立した場合は、前回登録された認証パラメータの替わりに前記の次回 認証用仮パラメータを次回認証用の認証パラメータとして登録する工程を有し、 以上の工程を順次続けて被認証者の認証を行うことを特徴とする。

[0019]

すなわち、本発明は、被認証者(装置を含む)は、認証フェーズ毎に乱数を生成し、乱数、ユーザID、パスワードを基に今回の認証データと次回の認証データと認証確認用中間パラメータを一方向性関数を用いて算出し、これらの各データをさらに排他的論理和を用いて関連付け、かつ被認証者以外は解読できない形で暗号化し、これら今回認証用の排他的論理和及び次回認証用の排他的論理和を被認証者自身のユーザIDと合わせて認証者(サーバ等の装置を含む)に送信し、また、認証者は、被認証者から前述の3つの情報を受信し、これらの情報と前回の認証フェーズにおいて登録した認証パラメータを基に一方向性関数を用いて算出した正当性確認パラメータと前回の認証フェーズにおいて登録した認証パラメータと比較し、一致したら今回の認証が成立したと判断し、復元した次回の認証データを次回の認証パラメータとして登録するものである。

[0020]

これにより、本発明は、(1)前記の従来技術において1回の認証処理実行時に、被認証者と認証者との間で行われる認証関連情報の授受が、被認証者からみて1往復半(計3回の送受信)以上必要であったのが、被認証者が認証者に対して1回の送信のみですむようになった、(2)前記の従来技術において認証者が被認証者毎に管理している認証関連データが4以上あったのに対して、本方式ではわずか1のデータのみですむようになった、(3)認証フェーズ毎に被認証者側および認証者側で排他的論理和演算以外の暗号化又は複合処理が認証側で2回、被認証者側で5回と少なくなった、ことにより被認証者および認証者が実行する処理量(計算量)を極めて少なくすることができる、(4)通信経路での情報が不正操作によって、今回認証用の排他的論理和や次回認証用の排他的論理和が変更されても、認証プロセスにおいてこれらの排他的論理和が相互に関連づけられ、一方向性関数による複雑な演算もなされている為、認証ができなくなり、認

証ができない場合は認証パラメータが不変なので、より安全な認証を実現できる ようになったという主要な効果を有する。

[0021]

また、一方向性関数EとしてDES,FEALなどの秘密鍵暗号方式に用いる関数を用いるのが好適である。認証情報の解読が不可能であり、さらに、FEALは高速暗号処理を実現している。

[0022]

【発明の実施の形態】

本発明による可変認証情報を用いる資格認証方法の説明に先だって、まず一方向性関数について説明する。一方向性関数とは、入力データのしらみ漬し以外に、出力データから入力データを逆算する有効な方法のない関数をいう。DES、FEALなどの秘密鍵暗号アルゴリズムを用いて、このような性質を実現できる。特に、FEALは、16ビットのパーソナルコンピュータ上のソフトウェアで200Kbps、LSIとして96Mbps (クロック10MHz) の暗号化処理速度を実現しているすぐれた秘密鍵暗号方式である。

[0023]

秘密鍵暗号アルゴリズムをC=E (P_A , S_B) で表す。E は一方向性関数(秘密鍵暗号化処理関数、第 2 パラメータが秘密鍵)で、C は暗号文、 P_A は平文、 S_B は秘密鍵である。 P_A を平文、 S_B を入力情報、C を出力情報とすると、平文 P_A と出力情報 C が分かっていても入力情報 S_B を逆算できない。

[0024]

続いて本発明の資格認証方法の実施例を説明する。本発明の認証方法のデータの流れを図1ないし図3に示す。図1は初期登録フェーズ、図2は初回認証フェーズ、図3はk回目認証フェーズのデータの流れを示す。データは上から下に又は矢印に沿って流れる。図及び以下の説明において、一方向演算C = E (P_A , S_B) を $C \leftarrow E$ (P_A , S_B) のように表す。また、排他的論理和演算子を@で表す。

[0025]

図4は本発明の資格認証方法を実現する機能ブロックの実施例を示す。図4に

おいて、1 は認証制御機構、2 は被認証制御機構、3 は公開簿、4 は秘密情報入力機構、5 は乱数生成機構、6 は一方向性情報生成機構、7 は乱数記録機構、8 は情報送信機構、9 は情報受信機構、1 のは情報記録機構、1 1 は情報比較機構、1 2 は演算機構である。本実施例では、認証者 U_A を認証サーバ、被認証者 U_B を被認証ユーザとし、その認証手順を示す。被認証ユーザ U_B は P_A として公開された自己のユーザ I D = A を持ち、自分のみで秘密に管理するパスーワード S を持つものとし、 S_B としてパスーワード S と乱数との排他的論理和を用いるものとする。

[0026]

本実施例における認証方法は、大きく分けて、初期登録フェーズとその後の認証フェーズの2つのフェーズから成り立つ。認証フェーズは第1回目、第2回目、第3回目…と順次繰り返される。認証サーバ U_A の認証制御は認証制御機構1が行う。また、被認証ユーザ U_B の被認証制御は被認証制御機構2が行う。また、上記ユーザ1D Aは公開簿3に登録されている。

[0027]

[初期登録フェーズ]

まず、初期登録フェーズについて説明する。

①被認証ユーザU_R側(演算処理)

パスワードSは秘密情報入力機構4によって取り込まれる。自分のユーザI Dとして P_A =Aを用いる。 $N_{(0)}$ を乱数生成機構5によって任意に設定し、乱数記録機構7によって記録しておく。一方向性情報生成機構6によって以下のデータを算出する。一方向性関数として秘密鍵暗号化処理関数Eを用いる。

まず、初回の認証用中間データ $E_{(0)}$ \leftarrow E $(A, S@N_{(0)})$ を生成し、更に、初回の認証データ $E^2_{(0)}$ \leftarrow E $(A, E_{(0)})$ を生成する。

②被認証ユーザU_R側(送信処理)

以上の準備をした上で、情報送信機構8によって認証サーバU_Aに以下のデータを送信し、登録を依頼する。この場合、盗聴の恐れのないセキュアルート(安全なルート)により送信する。

ユーザID A, 初回の認証データ $E^{2}_{(0)}$

③認証サーバリ 側 (受信、登録処理)

情報受信機構 9 でユーザ 1 D A および初回の(次回の)認証データ $E^2_{(0)}$ を受信し、受信したデータ $E^2_{(0)}$ を情報記録機構 1 O で初回の認証パラメータ(認証パラメータ初期値) Z として記憶(登録)する。

[0028]

[認証フェーズ]

次に、認証フェーズについて説明する。

まず、初回(k=1)の認証手順について説明する。①被認証ユーザ U_B 側(演算処理)

乱数生成機構 5 により N_1 を任意に設定し、乱数記録機構 7 に記憶させる。

次に、一方向性情報生成機構6によって以下のデータを算出する。

次回の認証データ用中間データ E₍₁₎←E(A, S@N₍₁₎)を生成し、

更に、次回の認証データ $E^2_{(1)}$ ← $E(A, E_{(1)})$ を生成し、

更に、認証確認用中間パラメータ $E^3_{(1)}$ ← $E(A, E^2_{(1)})$ を生成する。

次に、初期登録フェーズで乱数記録機構7に記憶させた $N_{(0)}$ を使って、

今回の認証データ用中間データ $E_{(0)} \leftarrow E(A, S@N_{(0)})$ を生成し、

更に、今回の認証データ $E^2_{(0)}$ \leftarrow E $(A, E_{(0)})$ を生成する。

次に、演算機構12によって以下のデータを算出する。

今回認証用の排他的論理和 $F_{(0)} = E_{(0)} @ E^{2}_{(0)} @ E^{3}_{(1)}$ を算出し、

更に、次回認証用の排他的論理和 $G_{(1)} = E_{(1)}^2 @ E_{(0)}^2$ を算出する。

②被認証ユーザU_R側(送信処理)

情報送信機構 8 によって認証サーバ U_A に以下のデータを送信する。

ユーザ I D A ,今回認証用の排他的論理和 F $_{(0)}$,次回認証用の排他的論理和 G $_{(1)}$

この時、送信データは被認証者以外は解読できないように暗号化されているので、インターネットのような盗聴の恐れのあるルート (一般ルート) を用いてもよい。

③認証サーバリム側(受信、認証処理)

ユーザ ID A, 今回認証用の排他的論理和 $F_{(0)}$, 次回認証用の排他的論理和

G₍₁₎を受信し、

まず、次回認証用仮パラメータZ'を、演算機構12にて以下の演算により生成する。

[0029]

 $Z' \leftarrow G_{(1)} @ Z$

ここで、 $Z = E^2_{(0)}$ は初期登録フェーズで情報記録機構10に登録された認証パラメータである。

次に、認証確認用中間パラメータWを、演算機構12にて以下の演算により生成する。

[0030]

 $W \leftarrow E (A, Z')$

次に、正当性確認用中間パラメータXを、演算機構12にて以下の演算により生成する。

[0031]

 $X = F_{(0)} @ Z @ W$

この排他的論理和演算処理において、 $F_{(0)}=E_{(0)}@E^2_{(0)}@E^3_{(1)}$ が正当な被認証ユーザ U_B から受信したものであれば、演算結果は $X=E_{(0)}$ になるはずである。

[0032]

次に、正当性確認パラメータYを一方向性情報生成機構6にて以下の演算により生成する。

 $Y \leftarrow E (A, X)$

もし、正当性確認パラメータ Y と初期登録フェーズで記憶(登録)された認証 パラメータ $Z = E^2_{(0)}$ が一致すれば、今回の認証が成立したことになり、一致しなければ認証は不成立となる。

④認証サーバU_A側(登録処理)

認証が成立した場合、 $Z' = E^2_{(1)}$ を、次回すなわち第2回目の認証で用いる認証パラメータZとして情報記録機構10に記憶(登録)する。

認証が不成立の場合には、認証パラメータ乙は不変である。

[0033]

一般に、第14回目(14は正整数)の認証手順は以下の通りである。

①被認証ユーザU_R側(演算処理)

乱数生成機構 5 により N_(k)を任意に設定し、乱数記録機構 7 に記憶させる。一方向性情報生成機構 6 によって以下のデータを算出する。

次回の認証データ用中間データ $E_{(k)} \leftarrow E(A, S@N_{(k)})$ を生成し、

更に、次回の認証データ $E^2_{(k)}$ \leftarrow E $(A, E_{(k)})$ を生成し、

更に、認証確認用中間パラメータ $E^3_{(k)}$ \leftarrow $E^{(A)}$ $E^2_{(k)}$ を生成する。

次に、前回の認証フェーズで乱数記録機構 7 に記憶させた $N_{(k-1)}$ を使って、

今回の認証データ用中間データ $E_{(k-1)} \leftarrow E$ (A, S@N_(k-1)) を生成し、

更に、今回の認証データ $E^2_{(k-1)} \leftarrow E(A, E_{(k-1)})$ を生成する。

次に、演算機構12によって以下のデータを算出する。

今回認証用の排他論理和 $F_{(k-1)} = E_{(k-1)} @ E^2_{(k-1)} @ E^3_{(k)}$ を算出し、 更に、 次回認証用の排他論理和 $G_k = E^2_{(k)} @ E^2_{(k-1)}$ を算出する。

②被認証ユーザU_R側(送信処理)

情報送信機構8によって認証サーバ U_A に以下のデータを送信する。

ユーザ ID A,今回認証用の排他論理和 $F_{(k-1)}$,次回認証用の排他論理和 $G_{(k-1)}$ k)

この時、送信データは被認証者以外は解読できないように暗号化されているので、インターネットのような盗聴の恐れのあるルート(一般ルート)を用いてもよい。

③認証サーバU_A側(受信、認証処理)

ユーザID A, 今回認証用の排他論理和 $F_{(k-1)}$, 次回認証用の排他論理和 $G_{(k)}$ を受信し、

まず、次回認証用仮パラメータZ'を、演算機構12にて以下の演算により生成する。

[0034]

 $Z' \leftarrow G_{(k)} @ Z$

ここで、 $Z = E^{2}$ (0)は初期登録フェーズで情報記録機構10に登録された認証パ

ラメータである。

次に、認証確認用中間パラメータWを、演算機構12にて以下の演算により生成する。

[0035]

 $W \leftarrow E (A, Z')$

次に、正当性確認用中間パラメータXを演算機構12にて以下の演算により生成する。

 $X = F_{(k-1)} @ Z @ W$

この排他的論理和演算処理において、 $F_{(k-1)}$ が正当な被認証ユーザ U_B から受信したものであれば、演算結果は $X=E_{(k-1)}$ になるはずである。

[0036]

次に、正当性確認パラメータYを一方向性情報生成機構6にて以下の演算により生成する。

 $Y \leftarrow E (A, X)$

もし、正当性確認パラメータYと前回の認証フェーズで登録された認証パラメータ $Z=E^2_{(k-1)}$ が一致すれば、今回の認証が成立したことになり、一致しなければ認証は不成立となる。

④認証サーバU₄側:

認証が成立した場合には、 $Z' = E^2_{(k)}$ を、ユーザ ID = Aの被認証ユーザが次回の認証で用いる新たな認証パラメータZとして情報記録機構 IO に記憶(登録)する。

認証が不成立の場合には、認証パラメータ乙は不変である。

以上の認証フェーズをk=1, 2, 3, …と順次続けて、被認証者のパスワードの認証を行う。

[0037]

本実施例による資格認証方法の効果は、次のようである。

[0038]

第 k 回目の認証フェーズで、被認証ユーザ $\mathbf{U}_{\mathbf{B}}$ が認証サーバ $\mathbf{U}_{\mathbf{A}}$ に送信する今回認証用の排他論理和 $\mathbf{F}_{(\mathbf{k}-1)}$ および次回認証用の排他論理和 $\mathbf{G}_{(\mathbf{k})}$ は、一方向性関

数を用いて生成した $E^2_{(k-1)}$ と $E^3_{(k)}$ との排他的論理和演算により一種の暗号化並びに関連付けが施されているため、第 3 者に不正に盗聴されても $E^2_{(k-1)}$ がわからない場合実データを解読することはできない。また通信経路での情報の不正操作によって今回認証用の排他論理和 $F_{(k-1)}$ を変更された場合認証が成り立たなくなることはもちろんのこと、 $F_{(k-1)}$ に、 $G_{(k)}$ から算出する $E^3_{(k)}$ との排他的論理和演算が施されている為、次回認証用の排他論理和 $G_{(k)}$ を不正な値に変更されてしまった場合に $E^3_{(k)}$ にあたる値が変わってしまうことから、 $F_{(k-1)}$ から正常な正当性確認用中間パラメータ X 及び正当性確認パラメータ Y が算出できなくなり、認証自体が成り立たなくなることによって部分的な改ざんもできなくなっている。また、認証ができない場合はサーバの認証パラメータが不変となるため、より安全な認証を実現できるようになった。

[0039]

第 k 回目の認証フェーズで、認証サーバ U_A が被認証ユーザ U_B から受信した次回認証用の排他論理和 $G_{(\mathbf{k})}$ は、認証パラメータ $Z=E^2_{(\mathbf{k}-1)}$ との排他的論理和演算により一種の暗号化が施されているが、 $E^2_{(\mathbf{k}-1)}$ は、前回認証フェーズ($\mathbf{k}=1$ の場合は初期登録フェーズ)において認証サーバ U_A に既に登録されているものであるため、 $E^2_{(\mathbf{k}-1)}$ と再度排他的論理和演算することによって極めて簡単に、次回認証用パラメータ $Z=E^2_{(\mathbf{k})}$ を復号することができる。

[0040]

更に今回認証用の排他論理和 $F_{(k-1)}$ は、認証パラメータ $Z = E^2_{(k-1)}$ 並びに認証確認用中間パラメータ $W = E^3_{(k)}$ との排他的論理和演算により一種の暗号化が施されているが、認証確認用中間パラメータWは上記次回認証用パラメータから前記一方向性関数を用いて生成することができるため、正当性認証用中間パラメータ $X = E_{(k-1)}$ を容易に復号することができる。排他的論理和演算は演算処理負荷が最もシンプルな一方向性関数の一つであり、かつ、2 度演算すると元のデータを復元できるという特徴を持つ。

[0041]

認証サーバ側において、被認証ユーザ毎に記憶(管理)しておかなければならないデータは、上記の認証パラメータ $Z=E^2_{(k-1)}$ のわずか1つだけであり、認

証フェーズ毎に認証サーバ内で実行しなくてはならない排他的論理和演算以外の復号処理(一方向性関数の使用)はわずか2回(正当性認証パラメータY,認証確認用中間パラメータWの生成)であり、処理負荷を極めて軽くすることができる。

[0042]

被認証ユーザ側において、認証フェーズ毎に実行しなくてはならない排他的論理和演算以外の暗号化処理(一方向性関数の使用)は 5 回(今回の認証用中間データ $E_{(k-1)}$,今回の認証データ $E_{(k-1)}$,次回の認証用中間データ $E_{(k)}$,次回の認証データ $E_{(k)}^2$ の認証データ $E_{(k)}^2$ の認証データ $E_{(k)}^3$ の認証が $E_{(k)}^3$ の認正で $E_{(k)}^3$ の $E_{(k)}^3$ の

[0043]

被認証ユーザと認証サーバの相互間で行われる情報授受の回数は、認証フェーズ毎に、被認証ユーザから認証サーバへの送信が1回のみであるため、通信セッション(コネクション)の状態が不安定なネットワークにおいても確実に認証処理を行うことができる。

[0044]

【実施例2】

実施例1では、第k回目の認証フェーズで、被認証ユーザ U_B 側で、乱数生成機構5により $N_{(k)}$ を任意に設定し、乱数記録機構7に記憶させることになっているが、本実施例では、 $N_{(k)}$ に代えて、 $E_{(k)}$ および $E^2_{(k)}$ を記憶しておく。これにより、認証フェーズ毎に被認証ユーザ U_B 側で実行しなくてはならない排他的論理和演算以外の暗号化処理をわずか3回に削減することができる。

[0045]

【実施例3】

実施例1では、第k回目の認証フェーズで、被認証ユーザ U_B 側で、乱数生成機構5により $N_{(k)}$ を任意に設定し、乱数記録機構7に記憶させることになっているが、本実施例では認証サーバ側に認証回数を保存しておき,最初に被認証ユーザよりユーザIDを認証サーバに送信し,認証回数を返信してもらうこととする。

[0046]

その認証回数を $N_{(k-1)}$ そして認証回数+1を $N_{(k)}$ の代わりに用いることによって乱数記録機構 7の無い構成においても処理できるようになる

なお,この場合認証サーバでは認証完了時に認証パラメータ $E^2_{(k)}$ に加え,認証回数を1アップしたものを保存するのみでよい。

[0047]

以上の実施例では、認証サーバU_Aと被認証ユーザU_Bとの間の資格認証方法について説明したが、インターネット利用者同士の資格認証にも本発明を適用できる。その他、本発明の趣旨を逸脱しない範囲で種々の変更が可能なことはいうまでもない。

[0048]

【発明の効果】

以上説明したように、本発明による可変認証情報を用いる資格認証方法は、被認証側が認証側に対して送信するデータは一方向性関数を用いて算出し、これをさらに排他的論理和を用いて被認証者以外は解読できないように暗号化しているので、自分の秘密情報を相手に示すことなく、さらに使い捨てでない資格認証方式を実現できる。また、不正行為者が通信中の認証情報を自分に都合のいいものに改ざんした場合その情報では認証自体ができなくなる為、安全性はより確保された形となる。

[0049]

また、実施例で示した認証手順では、認証される側の一方向性情報生成処理は、一回の認証につき3~5回で済む。これはLamportの方式の数100~1000回に比べて著しく小さい。また、CINON法においても1回の認証処理実行時に、被認証者と認証者との間で行われる認証関連情報の授受が、被認証者からみて1往復半(計3回の送受信)必要であったのが、本発明では被認証者から認証者に対する1回の送信のみですむようになった。

[0050]

さらに、従来技術において認証者が被認証者毎に管理している認証関連情報が 4種類あったのに対して、本方式ではわずか1の情報のみですむようになった。

[0051]

このように、本発明は、特に、認証フェーズ毎に被認証者側および認証者側で 実行する処理量(計算量)を極めて少なくすることができる。したがって、セキ ュリティが十分でないネットワーク上の被認証者を認証者に認証させるための認 証方法として、被認証側にも認証側にも簡易で小さいプログラムサイズで実現可 能な処理しかさせず、かつ、通信路上の盗聴や通信経路での情報の不正操作に強 い安全な認証を行える方法を提供することができる。

[0052]

本発明の可変認証情報を用いる資格認証方法は、ネットワーク、通信、コンピュータシステムにおけるあらゆる状況の資格認証に適用することができる。例えば、認証される側の処理量が少なく済むため、ICカードの認証システムに適用することができる。これを応用して、ICカード電話機などのシステムに適用できる。また、ネットワーク上の同一レベルのユーザ同士の相互認証に適用できる。データベースの情報へのアクセス資格の認証へ適用できる。さらに、利害関係の異なるユーザグループが同一のLAN上に共存しているような場合の、それぞれのグループの情報へのアクセス資格の認証への適用も可能である。この場合には、かなりの高速性が要求されるので、一方向性変換処理を実現する秘密鍵暗号はLSIを用いることが必要である。

【図面の簡単な説明】

【図1】

本発明における資格認証方法(初期登録フェーズ)の実施例を示す図である。

【図2】

本発明における資格認証方法(初回認証フェーズ)の実施例を示す図である。

【図3】

本発明における資格認証方法(k回目認証フェーズ)の実施例を示す図である。

【図4】

本発明における機能ブロックの実施例を示す図である。

【符号の説明】

1 認証制御機構

- 2 被認証制御機構
- 3 公開簿
- 4 秘密情報入力機構
- 5 乱数生成機構
- 6 一方向性情報生成機構
- 7 乱数記録機構
- 8 情報送信機構
- 9 情報受信機構
- 10 情報記録機構
- 11 情報比較機構
- 12 演算機構
- A ユーザID
- C 出力情報
- E 一方向性関数(秘密鍵暗号化処理関数、第2パラメータが秘密鍵)
- E²_(k-1) 今回認証用データ
- E²_(k) 次回認証用データ
- E³_(k) 認証確認用中間パラメータ
- F_(k-1) 今回認証用の排他論理和
- G_(k) 次回認証用の排他論理和
- N_(k) 乱数
- P_A 平文
- S パスワード
- S_R 入力情報(秘密鍵)
- U_A 認証者(装置を含む)
- U_R 被認証者(装置を含む)
- W 認証確認用中間パラメータ
- X 正当性確認用中間パラメータ
- Υ 正当性確認パラメータ
- Ζ 認証パラメータ

Z' 次回認証用仮パラメータ

【書類名】

図面

【図1】

[登録フェーズ]

【図2】

[初回認証フェーズ]

【図3】

[k回目認証フェーズ]

【図4】

【書類名】

要約書

【要約】

【課題】 可変認証情報を用いる資格認証方法において、認証フェーズ毎に被認証者側および認証者側で実行する処理量を極めて少なくすることにより、簡易で小さいプログラムサイズで実現可能とし、かつ、通信路上の盗聴や通信経路での情報の不正操作に強い安全な認証を行える方法を提供する。

【解決手段】 被認証者は、乱数、ユーザID、パスワードを基に今回の認証データと次回の認証データを一方向性関数を用いて算出し、これをさらに排他的論理和を用いて今回と次回の両パラメータを関連づけした形でかつ被認証者以外は解読できないように暗号化し、これらを被認証者自身のユーザIDと合わせて認証者に送信し、また、認証者は、被認証者から前述の3つの情報を受信し、今回の認証データを基に一方向性関数を用いて算出した正当性確認パラメータと前回の認証フェーズにおいて登録した認証パラメータと比較し、一致したら今回の認証が成立したと判断し、次回の認証データを次回の認証パラメータとして登録する。

【選択図】 図3

出願人履歴情報

識別番号

[000102739]

1. 変更年月日

1999年 8月13日

[変更理由]

住所変更

住 所

東京都新宿区西新宿二丁目1番1号

氏 名

エヌ・ティ・ティ・アドバンステクノロジ株式会社

出願人履歴情報

識別番号

[598125855]

1. 変更年月日

1998年 9月14日

[変更理由]

新規登録

住 所

高知県高知市知寄町二丁目3番地16号

氏 名

清水 明宏