

Nivel de transporte

Nivel de transporte - Operación de TCP

Profesor

Juan Ignacio Iturbe A.

Resultados de aprendizaje unidad 2

"Analizar críticamente el funcionamiento y la seguridad de los principales protocolos de los niveles de aplicación y transporte articulando problemáticas asociadas y soluciones propuestas"

Analizaremos el establecimiento y cierre de la conexión TCP

Revisaremos el esquema de asignación de créditos TCP

Utilizaremos simulaciones de software y en tiempo real para revisar su funcionamiento

TCP

- Todos los segmentos de transporte en TCP son de la misma forma.
- Sólo difieren en cuanto a que banderas de la cuarta línea del encabezamiento están encendidas.
- Se especifican cuatro tipos de segmentos:
 - un segmento de datos
 - un segmento de aceptación con la bandera ACK
 - un segmento SYN usado para establecer una conexión
 - un segmento FIN usado para terminar una conexión.

Segmento TCP

- Cuando se envía un segmento, el Número de Aceptación y la Ventana se refieren a los datos que se están recibiendo.
- El Número de Secuencias se refiere a los datos que van en el segmento.
- Banderas (Flags):
 - URG: indica al receptor que los datos son "urgentes", éste determinará qué hacer con ellos.
 - ACK: indica que el segmento lleva un Acknowledge.
 - PSH: función de "empuje".
 - RST: "reset" la conexión.
 - SYN: sincroniza los números de secuencia.
 - FIN: indica que no hay más datos desde el emisor.

Características del

Transporte de Datos

- Temporizado
 - timeout con datos entregados para transmisión
 - Si los datos no se entregan dentro del timeout, se notifica al usuario de falla de servicio y la conexión termina abruptamente
- Ordenado
- Flujo controlado
- Error controlado
 - Simple checksum
 - Entrega datos libre de errores dentro de las probabilidades soportadas por checksum

- Utiliza una confirmación en tres etapas.
- Una vez establecida una conexión se puede indicar una opción de tiempo fuera,
 - es decir si no se entregan datos al destino en un intervalo de tiempo, llamado tiempo fuera, la conexión se cierra.
- Se puede abrir conexiones de dos modos, pasivo o activo.

Establecimiento

- En el modo pasivo se puede especificar o no la identificación del otro corresponsal.
 - El protocolo de transporte espera pasivamente la llegada de una solicitud de conexión del algún otro sistema.
- En el modo activo se designa otro sistema con el cual se desea específicamente establecer una conexión.
 - El protocolo de transporte inicia entonces la confirmación en tres etapas.

Establecimiento de la conexión TCP

Establecimiento y finalización de la conexión TCP

CTL = Qué bits de control en el encabezado TCP están establecidos en 1

A envía la solicitud de SYN a B.

Establecimiento de la conexión TCP

CTL = Qué bits de control en el encabezado TCP están establecidos en 1

B envía la respuesta de ACK y la solicitud de SYN a A.

Establecimiento de la conexión TCP

CTL = Qué bits de control en el encabezado TCP están establecidos en 1

A envía la respuesta de ACK a B.

A envía la solicitud de FIN a B.

B envía la respuesta de ACK a A.

B envía FIN a A.

A envía la respuesta de ACK a B.

Asignación de créditos de TCP INGENIERÍA INFORMÁTICA

Figura 17.2. Ejemplo del mecanismo de asignación de créditos de TCP.

DEPARTAMENTO DE

Dificultades

- Segmentos pueden llegar fuera de orden
 - Número de secuencia en encabezado TCP
- Segmentos pueden perderse
 - Números de secuencia y asentimientos
 - TCP retransmite segmentos perdidos
 - Salva copia en buffer de segmento hasta que sea asentido

Veamos un establecimiento de la conexión TCP.

- Realizar una conexión TCP en wireshark.
- Filtrar el tráfico asociado.

