

Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)

Linux Cluster in Theorie und Praxis

MD Simulation

Axel Hübl

10. Februar 2012

0 Gliederung

1 Modell

2 Implementierung

3 Benchmarks

4 Anwendung:
 Kollision zweier Sternhaufen

1 Modell

Simulation kurzreichweitiger Kräfte

Wechselwirkungen mit Cut-Off z.B. Gravitationskraft

 $F \sim x^{-2}$

(Ann.: N Teilchen gleicher Massen)

Zellbasierte räumliche Aufteilung

Zellbasierte räumliche Aufteilung

Zentrum für Informationsdienste und Hochleistungsrechnen

Zellbasierte räumliche Aufteilung

Axel Hübl

Folie 6 / 19

Zellbasierte räumliche Aufteilung

Parallelisiert mit MPI

1D Domain Decomposition

			7/-	Į.			
		8					
	40,56						
					1		

У

Parallelisiert mit MPI

1D Domain Decomposition

Parallelisiert mit MPI

1D Domain Decomposition

У

Parallelisiert mit MPI

1D Domain Decomposition

У

Parallelisiert mit MPI

Gebiete in einer lokalen Domain (je Rank)

3 Benchmarks

LCTP Cluster:

4 Nodes mit Atom 330 CPUs 1,6 GHz (Core/HT 2/4)

L1: 24 KiB, L2: 512 KiB

2 GiB RAM / Node

HZDR: Hypnos

4 Nodes mit je 2 AMD Dual-Core Opteron 2,6 GHz

L1: 64 KiB, L2: 512 KiB, L3: 6 MiB

16 GiB RAM / Node

Strong- & Weak-Scaling

Domaininformationen siehe Appendix

3 Benchmarks

Folie 14 / 19

Zentrum für Informationsdienste und Hochleistungsrechnen

3 Benchmarks

4 Kollision von zwei Sternhaufen

Simulation: Video

- 1 Million Zeitschritte, repräsentieren 12,7 Millionen Jahre
- Simulationszeit ca. 15min mit Phenom II X4
 (3,6 GHz; L1: 64 KiB, L2: 512 KiB, L3: 6 MiB; 8GiB RAM)
- ca. 1000 Teilchen, zufällig verteilt nach Dichtefunktion
- Angelehnt an Sternhaufen Hyaden (Stier),
 ca. 15 LJ Durchmesser und je 350 Sterne

A Appendix

Konfigurationen Benchmarks

Strong Scaling Zotac

- 384x384 globale Zellen
- 30 Timesteps, 10 Partikel / Zelle
- ICC 12.1 mit -O2, OpenMPI 1.4.4, Ethernet

Strong Scaling Hypnos

- 5760x192 globale Zellen
- 200 Timesteps, 10 Partikel / Zelle
- ICC 12.0 mit -O2, OpenMPI 1.4.4, IB

A Appendix

Konfigurationen Benchmarks

Weak Scaling Zotac

- 384x96 lokale Zellen
- 30 Timesteps, 10 Partikel / Zelle
- ICC 12.1 mit -O2, OpenMPI 1.4.4, Ethernet

Weak Scaling Hypnos

- 5760x96 lokale Zellen
- 200 Timesteps, 10 Partikel / Zelle
- ICC 12.0 mit -O2, OpenMPI 1.4.4, IB

B Referenzen

Rapaport. The Art of Molecular Dynamics Simulation Cambridge University Press, 2. Auflage, 2004

Perryman. The Hyades: distance, structure, dynamics, and age

Astronomy & Astrophysics 331: 81-120, 1998

MPI Forum. MPI: A Message-Passing Interface Standard University of Tennessee, Version 2.2, 2009

