Variables in System Dynamics an introduction

Rico A.R. Picone

Department of Mechanical Engineering Saint Martin's University

September 6, 2021

Variables represent quantities

Power flow variables

For instance,

$$\underbrace{\mathcal{P}(t)}_{\text{power}} = \underbrace{i(t)}_{\text{current voltage}} \underbrace{v(t)}_{\text{local current voltage}}. \tag{1}$$

Through- and across-variables

Electronic power flow variables

$$\mathcal{P}(t) = \underbrace{i(t)}_{ ext{power}} \underbrace{v(t)}_{ ext{across}}.$$

(2)

Mechanical translational power flow variables

$$\underbrace{\mathcal{P}(t)}_{\text{power}} = \underbrace{f(t)}_{\text{through across}} \underbrace{v(t)}_{\text{c}}.$$
(3)

Mechanical rotational power flow variables

$$\underbrace{\mathcal{P}(t)}_{\text{power}} = \underbrace{T(t)}_{\text{through across}} \underbrace{\Omega(t)}_{\text{c}}.$$
(4)

$$T \longrightarrow \begin{array}{c} \Omega_1 & B & \Omega_2 \\ \hline \end{array} \longrightarrow \begin{array}{c} T & T & T \\ \hline \end{array}$$

$$T \longrightarrow \begin{array}{c} M & B \\ \hline M & \hline M & \hline M \\ \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M \\ M & \hline M & \hline M \\ \hline M & \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M & \hline M \\ M & \hline M & \hline M \\ \hline M & \hline M & \hline M & \hline M \\ \hline M & \hline M & \hline M & \hline M \\ M & \hline M & \hline M & \hline M & \hline M \\ \hline M & \hline M \\ M & \hline M & \hline$$

Fluid power flow variables

Thermal power flow variables

$$\underbrace{\mathcal{P}(t)}_{\text{power}} = \underbrace{q(t)}_{\text{through}}.$$
 (6)

Also,

$$\underbrace{P(t)}_{\text{across}}$$
 (7)

$$-+$$
 T_R
 q_R
 T_R

		generalized	mechanical translation	mechanical rotation	electrical	fluid	thermal
variables	across	ν	velocity \boldsymbol{v}	angular vel. Ω	${\sf voltage}\ v$	pressure P	temp. T
	through	\mathcal{F}	force f	torque T	current i	vol. fr. $\it Q$	heat fr. q
A-type	capacitor	capacitor	mass	mom. inertia	capacitor	capacitor	capacitor
	capacitance	C	m	J	C	C	C
	elem. eq.	$\frac{d\mathcal{V}_C}{dt} = \frac{1}{C}\mathcal{F}_C$	$\frac{dv_m}{dt} = \frac{1}{m}f_m$	$\frac{d\Omega_J}{dt} = \frac{1}{J} T_J$	$\frac{dv_C}{dt} = \frac{1}{C}i_C$	$\frac{dP_C}{dt} = \frac{1}{C}Q_C$	$\frac{dT_C}{dt} = \frac{1}{C}q_C$
	impedance	$\frac{1}{Cs}$	$\frac{1}{ms}$	$\frac{1}{Js}$	$\frac{1}{Cs}$	$\frac{1}{Cs}$	$\frac{1}{Cs}$
T-type	inductor	inductor	spring	rot. spring	inductor	inertance	
	inductance	L	1/k	1/k	L	I	
	elem. eq.	$rac{d{\cal F}_L}{dt}=rac{1}{L}{\cal V}_L$	$\frac{df_k}{dt} = kv_k$	$\frac{dT_k}{dt} = k\Omega_k$	$\frac{di_L}{dt} = \frac{1}{L}v_L$	$\frac{dQ_I}{dt} = \frac{1}{I}P_I$	
	impedance	Ls	s/k	s/k	Ls	Is	
D-type	resistor	resistor	damper	rot. damper	resistor	resistor	resistor
	resistance	R	1/B	1/B	R	R	R
	elem. eq.	$V_R = \mathcal{F}_R R$	$v_B = f_B/B$	$\Omega_B = T_B/B$	$v_R = i_R R$	$P_R = Q_R R$	$T_R = q_R R$
	impedance	R	1/B	1/B	R	R	R