Optimized Edit distance problem Report

Problem:

The problems faced in the standard edit distance algorithm was of time and space complexity issues.

for example the edit distance between words (fondam, albanian) made a 6*8 matrix of the memory. +2 initialization arrays.

Which held place in memory. Specially if words or sequences grow large.

Proposed Solution:

An algorithm which is space efficient compared to the standard.

Notice that each cell in the matrix **ONLY** need 3 surrounding cells to obtain the minimum result wanted using the minimum function

$$E(i, j) = min([E(i-1, j) + D], [E(i, j-1) + I], [E(i-1, j-1) + R if i, j characters are not same])$$

So if we managed to do a linear computation of for each cell

A one dimensional array the holds the previous needed characters.

This array's length is determined by the length of the smaller phrase+2.

For example in this edit distance between BOLT and ALT

	В		О	L		Т
Α		0	;	3	6	9
L		1	4	1	7	10
Т		2	į	5	8	11

if we presented the matrix linearly.

If we look at cell 4 or cell 8

we need just three cells for each computation

so working with a **one Dimensional array** of length = string length+1 holding the last 5 (for this example) entries of the sequence

 $Minimum\ function\ (\ array[0] + diff, array[0] + 1,\ arr[length-1] + 1\)$

and swapping array elements after each iteration.

Problems faced in the proposed solution:

- 1- The initialization arrays [the first column and first row in the standard matrix].
- 2- The traceback of the shortest edit. (Next Phase)

Solution of the first problem was by also using 2 one dimensional arrays.

The initialization arrays: Array A & Array B:

_arrA[4]	0	1	1	0
 arrB[4]	0	1	1	0

Both of length 4. used to solve the initialization problem and compute the minimum and feed them to the main array in time and place when and where needed.

Cost of standard vs Cost of enhanced:

If we take (Alt, Bolt) example (3,4)

we find that as the **standard matrix** held 4x5 matrix = **20**

enhanced

the enhanced costs is 4x2 + 5 = 13

almost insignificant when comparing three letters with a four letters words. But when the difference is compared with a longer example.

(10,10):

standard : 11x11 = 121

enhanced: 4x2 + 12 = 20