Module Algebre1 - Première année informatique

Chapitre 1 : Notions de logique • Table de vérité, quantificateurs, types de raisonnements.

Chapitre 2 : Ensembles et applications • Définitions et exemples • Applications : injection, surjection, bijection, image directe, image réciproque, restriction et prolongement.

Chapitre 3 : Relations binaires sur un ensemble ● Définitions de base : relation réflexive, symétrique, antisymétrique, transitive ● Relation d'ordre- Définition. Ordre total et partiel ● Relation d'équivalence : classe d'équivalence.

Chapitre 4 : Structures algébriques ● Loi de composition interne. Partie stable. Propriétés d'une loi de composition interne ● Groupes-Définitions. Sous-groupe-Exemples-Homomorphisme de groupes- isomorphisme de groupes. Donner des exemples de groupes finis Z/nZ (n= 1, 2, 3,...) et le groupe de permutations S3 ● Anneaux-Définition- Sous anneaux. Règles de calculs dans un anneau. Eléments inversibles, diviseurs de zéro-Homomorphisme d'anneaux-Idéaux ● Corps-Définitions-Traiter le cas d'un corps fini à travers l'exemple Z/pZ ou p est premier, IR et C

Chapitre 5 : **Anneaux des polynômes ●** Polynôme. Degré ● Construction de l'anneau des polynômes ● Arithmétique des polynômes-Divisibilité-Division euclidienne-Pgcd et ppcm de deux polynômes-Polynômes premiers entre eux-Décomposition en produit de facteurs irréductibles ● Racines d'un polynôme-Racines et degré -Multiplicité des racines.

Mode d'évaluation :

Examen (60%),

Contrôle conti nu – interrogations, devoirs, participations et présences- (40%)

Références

- M. Mignotte et J. Nervi, Algèbre : licences sciences 1ère année, Ellipses, Paris, 2004.
- J. Franchini et J. C. Jacquens, Algèbre : cours, exercices corrigés, travaux dirigés, Ellipes, Paris, 1996.
- C. Degrave et D. Degrave, Algèbre 1ère année: cours, méthodes, exercices résolus, Bréal, 2003.
- S. Balac et F. Sturm, Algèbre et analyse : cours de mathématiques de première année avec exercices corrigés, Presses Polytechniques et Universitaires, 2003.

الفصل الأول: مدخل للمنطق الرياضي

المنطق الرياضي او المنطق الرمزي هو أحد حقول الرياضيات المتصل بأساسيات الرياضيات، علوم الحاسوب النظرية والذكاء الاصطناعي .

ويمتد علم المنطق الحديث ليشمل آفاقًا أرحب بكثير مما شمله المنطق التقليدي لأرسطو الذي يعتمد على الاستقراء المطلق. ومن علماء المنطق الحديث البارزين عالما الرياضيات البريطانيان **جورج بُول** وأ**لفرد نُورْث وايتهد،** و البريطاني **راسل**. وعلى عكس المناطقة التقليديين، فقد استخدم هؤلاء المناطقة مناهج حسابية وأساليب تستخدم الرموز .

ويستخدم علم المنطق اليوم بصفة أساسية الختبار مدى سلامة القضايا .كما أن له استخدامات مهمة أيضًا في مجال العمل مع أجهزة مثل الحواسيب، والدوائر الكهربائية .

1- القضية

تعریف1:

القضية: (Proposition) نسمي قضية كل جملة خبرية لها معنى قد تكون صحيحة و قد تكون خاطئة نرمز للصحيحة بـ1 او V و للخاطئة بـ0 او F نرمز للقضايا بالأحرف ..., P, Q, R,...

امثلة:

- جيجل مدينة ساحلية قضية صحيحة.
 - 3 عدد زوجي قضية خاطئة.
- السماء صافية ليست قضية لأننا لا يمكن الحكم عليها.

. P و نقرا نفي المية (Négation d'une proposition) نفي قضية يرمز لها \overline{P} أو P أو P و نقرا نفي P او ليس

اذا كانت P صحيحة كان نفيها خاطئة و العكس بالعكس

نفي القضية الخاطئة: 10 >25 هي القضية الصحيحة: 10 ≤25.

جدول الحقيقة: (Tableau de vérité) جدول الحقيقة للقضية P و نفيها يعطى بـ:

Р	$ar{P}$
1	0
0	1

2- الروابط المنطقية: (Connecteurs logiques)

- الوصل: (Conjonction) وصل قضيتين Q ،P (او اكثر) هو القضية التي يرمز لها P∧Q والتي تكون خاطئة اذا كانت احداهما على الاقل خاطئة.

القضية 3<2 و 5 عدد موجب، قضية خاطئة.

- الفصل: (Disjonction) فصل قضيتين Q ، P (او اكثر) هو القضية التي يرمز لها P∨Q والتي تكون صحيحة اذا كانت احداهما على الاقل صحيحة.

القضية 1<2 أو 3- عدد موجب، قضية صحيحة.

 $Q \Rightarrow P$ و تسمى القضية $\overline{P} \lor Q$ و الاستلزام المنطقي القضية الاستلزام (Implication) الاستلزام العكسى (Implication) الاستلزام العكسى (Implication inverse) الاستلزام العكسى

القضية 1<2 ⇒2 عدد فردي، قضية صحيحة.

- تكافؤ: (Equivalence) نسمي تكافؤ القضيتين P و Q و يرمز له $P \Leftrightarrow Q$ القضية (Equivalence) نسمي تكافؤ القضية $2 \geq 2^{-2}$ قضية خاطئة.

ملاحظة: اذا كانت القضيتان Q,P متكافئتين فإنهما صحيحتين او خاطئتين في أن واحد.

ويعطى جدول الحقيقة لهذه القضايا بـ:

Р	Q	P	$\overline{\mathbb{Q}}$	P∧Q	P∨Q	P⇒Q	Q⇒P	P⇔Q
1	1	0	0	1	1	1	1	1
1	0	0	1	0	1	0	1	0
0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	1

نظرية 1: اذا كانت R,Q,P ثلاث قضايا فان

- $P \lor P \Leftrightarrow P \lor P \lor P \lor \overline{P} \Leftrightarrow P -1$
- $P \lor Q \Leftrightarrow Q \lor P \lor P \land Q \Leftrightarrow Q \land P -2$
- $P \vee (Q \vee R) \Longleftrightarrow (P \vee Q) \vee R \ \ \, \ni P \wedge (Q \wedge R) \Longleftrightarrow (P \wedge Q) \wedge R \quad \text{-3}$
- - -5 $\overline{P} \lor \overline{Q} \Rightarrow \overline{P} \lor \overline{Q}$ و $\overline{P} \land \overline{Q} \Rightarrow \overline{P} \Leftrightarrow \overline{P} \lor \overline{Q}$ نفي الوصل هو فصل النفي و نفي الفصل هو وصل النفي .

البرهان: نستخدم جدول الحقيقة و نكتفى بإثبات 4 و 5

 $: P \land (Q \land R) \Leftrightarrow (P \land Q) \land R$ اثبات أن

							\~
P	Q	R	$P \wedge Q$	$P \wedge R$	$Q \vee R$	$P \wedge (Q \vee R)$	$(P \wedge Q) \vee (P \wedge R)$
1	1	1	1	1	1	1	1
1	1	0	1	0	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	0	0	0	0
0	1	1	0	0	1	0	0
0	1	0	0	0	1	0	0
0	0	1	0	0	1	0	0
0	0	0	0	0	0	0	0

 $(\overline{P \lor Q}) \Leftrightarrow \overline{P} \land \overline{Q}$ و $(\overline{P \land Q}) \Leftrightarrow \overline{P} \lor \overline{Q}$ اثبات أن

P	Q	~P	~Q	$P \wedge Q$	~(P∧Q)	~P ∨ ~Q	$P \vee Q$	~(P ∨ Q)	~P ^~Q
1	1	0	0	1	0	0	1	0	0
1	0	0	1	0	1	1	1	0	0
0	1	1	0	0	1	1	1	0	0
0	0	1	1	0	1	1	0	1	1

- عكس نقيض الاستلزام (Implication contraposé): عكس نقيض الاستلزام $\overline{Q} \Rightarrow \overline{P}$ و هو مكافئ للاستلزام $P \Rightarrow Q$ الاستلزام $P \Rightarrow Q$

3- الدالة العبارية (او لجملة المفتوحة) و المكممات (Prédicat et quantificateurs):

الجملة المفتوحة (او الدالة العبارية) (Prédicat)

تعريف2: الجملة المفتوحة هي كل عبارة رياضياتية تتوقف صحتها على متغير او عدة متغيرات تنتمي لمجموعة معلومة E

مثال: n زوجي: x∈R, y∈R :x+y=10 · n∈N زوجي

P(x) المكمم الكلي quantificateur universel : يرمز له ب $\forall x \in E; P(x)$ " تقرا مهما يكن x من E لدينا

 $\forall x \in \mathbb{R}, \forall y \in \mathbb{R} : x+y=10$ و $n \in \mathbb{N}$ زوجی 2n

المكمم الوجودي quantificateur existentiel : يرمزله ب $x \in E$ و العبارة " $x \in E$ " تقرا يوجد على القل x من E يحقق (P(x).

 $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : x+y=10$ و $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x+y=10$ و $\exists n \in \mathbb{N}$

طالب من جامعة جيجل حصل على المرتبة الاولى نكتب " x حصل على المرتبة الاولى: Ex∈E" حيث E مجموعة طلبة جامعة جيجل. ملاحظة:

 $\exists x \in \mathsf{E} : \overline{P(x)}$ نفي القضية $\forall x \in \mathsf{E} : P(x)$ هي القضية

 $\forall x \in E : \overline{P(x)}$ في القضية $\exists x \in E : P(x)$ نفى القضية

 $\forall x \in \mathsf{E}, \exists y \in \mathsf{E} : \overline{P(x,y)}$ في القضية $\exists x \in \mathsf{E}, \forall y \in \mathsf{E} : P(x,y)$ نفي القضية

 $\exists x \in \mathsf{E}, \, \forall y \in \mathsf{E} : \overline{P(x,y)}$ هي القضية $\forall x \in \mathsf{E}, \, \exists y \in \mathsf{E} : P(x,y)$ نفى

 $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R} : x + y \neq 10$ هي القضية $\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R} : x + y = 10$ نفى

المتثالية العددية $(u_n)_{n \in N}$ متقارية نحو | تكتب

$$\forall \varepsilon > 0, \exists n_0 \in N, \forall n \in N, n > n_0 \Longrightarrow |u_n - l| < \varepsilon$$

نفيها

 $\exists \varepsilon > 0, \forall n \in \mathbb{N}, \exists n_0 \in \mathbb{N}: n_0 > n \land |u_{n_0} - l| \geq \varepsilon$ المتثالية العددية $(u_n)_{n \in \mathbb{N}}$ عير متقاربة نحو | تكتب:

4. طرق الإستدلال : توجد ستة طرق للاستدلال هي:

 $P \Rightarrow Q$ صحيحة ونثبت صحة الاستازام Q صحيحة نفرض أن P صحيحة ونثبت صحة الاستازام Q محيحة $P \Rightarrow Q$

 $\forall x \in \Re; x^2 + x + 1 \ge \frac{3}{4}$ مثال : بر هن المنز اجحة

لدينا $(x + \frac{1}{2})^2 \ge 0$ لدينا

 $x^2 + x + 1 = (x + \frac{1}{2})^2 + \frac{3}{4} \ge \frac{3}{4}$ صحیحة $(x + \frac{1}{2})^2 \ge 0 \Rightarrow (x + \frac{1}{2})^2 + \frac{3}{4} \ge \frac{3}{4}$

الإستدلال بالخلف: اذا اردنا اثبات صحة قضية نفرض انها خاطئة و نحاول ان نجد تناقض او عبارة خاطئة.

 a^3 عدد فردي بين كذلك أنّ a عدد فردي عدد فردي اذا كان a^3 عدد فردي اذا كان a^3 عدد فردي بين كذلك أنّ a عدد فردي بين كذلك أنّ a^3 عدد فردي اذا كان a^3 عدد فردي أن ع

الإستدلال بفصل الحالات اذا كانت لدينا: P o Q o P و Q o Q o Q صحيحة اثبات ان P o Q o P صحيحة.

 $\forall x > 0; x + \frac{1}{\sqrt{x}} > 1$ مثال : بر هن المتراجحة

بما ان x > 0 لدینا حالتین:

 $x + \frac{1}{\sqrt{x}} > 1$ الحالة الأولى: x > 1 فأن x > 0 فأن الحالة الأولى:

 $x + \frac{1}{\sqrt{x}} > 1$ و بالنالي $1 \le x \le 1$ فان $0 < x \le 1$ و بالنالي الحالة الثانية:

الإستدلال بعكس النقيض : نعلم ان الإستاز أم المنطقي $\overrightarrow{P} \Rightarrow Q$ يكافئ عكس نقيضه $\overline{Q} \Rightarrow \overline{P}$ فلاثبات صحة $\overline{Q} \Rightarrow \overline{P}$ نكتفي باثبات صحة $\overline{Q} \Rightarrow \overline{P}$.

 $\forall x \in \Re; x^2 > 4 \rightarrow [x > 2 \lor x < -2]$ مثال : بر هن أن

 $\forall x \in \Re; -2 \le x \le 2 \rightarrow x^2 \le 4$ نبين عوض ذلك

 $-2 \le x \le 2 \longrightarrow |x| \le 2 \longrightarrow |x|^2 \le 4 \longrightarrow x^2 \le 4$

الاستدلال بالمثال المضاد

 $\exists x \in E \colon \overline{P(x)}$ خاطئة يكفي اثبات صحة $\forall x \in E, P(x) \colon$ إثبات أن القضية

مثال: لاثبات ان القضية "كل عدد صحيح موجب هو مجموع ثلاث مربعات "خاطئة

من اجل العدد 7 فأن الاعداد الوحيدة التي بآمكانها تشكل العدد 7 هي 0 ،2،1 لكن مجموع مربعاتها لا تساوي 7

الإستدلال بالتراجع: لاثبات صحة القضية P(n) [$\forall n \geq n_0$] حيث P(n) عداد طبيعية نتبع ما يلى:

1- اثبات صحة [P(n₀)].

[P(n+1)] صحیحة و نثبت صحة [P(n)] : $n \ge n_0$ نفر ض أنه من أجل -2

 $1+3+5+....+(2n+1)=(n+1)^2$: مثال: لنثبت صحة الخاصية التالية: من أجل كل عدد طبيعي

n = 0 لينا: $(0+1)^2$ محققة من أجل n = 0 لينا: 1.

2. نفرض أن الخاصية صحيحة من أجل $0 \ge n$ أي: (n+1)=(n+1)=(n+1)+3+5+...

ولنبر هن صحة الخاصية من أجل $(n+1)^2$ أي: $(n+2)^2$ أي: $(n+3+5+...+(2n+3)^2+...+$

$$1+3+5+.....+(2n+3) = [1+3+5+....+(2n+1)]+(2n+3)$$

= $(n+1)^2+(2n+3)=n^2+4n+4=(n+2)^2$

ململة التعارين

العمر من 01: 1) لكف جدول الحقيقة للقضايا التالية :

$$(1) \quad \left(P \vee \overline{P} \right) \ , (2) \quad \left(P \wedge \overline{P} \right) \ , (3) \quad \left[P \wedge \left(P \vee Q \right) \right] \ , (4) \quad \left[P \vee \left(P \wedge Q \right) \right]$$

ماذا شنتنج؟

 $[(p \Rightarrow q)\Rightarrow r] \Leftrightarrow [p\Rightarrow (q\Rightarrow r)]$ المتفقة أن الاستازام المنطقى غير تجميعي أي $[p\Rightarrow q]\Rightarrow r$

الصرين 02:

اكتب بدلالة المكممات القضايا التالية:

- جفيع الطلبة ملزهون باجرء القحص الطبي.
- 2) طالب من جامعة جيجل تفوق في المسابقة الدولية

النمرين 03:

وضح حسب فيم x الحقيقة إن كانت العبارات التالية فضايا مبينا الصحيحة منها من الخاطئة;

(1)
$$\sin^2(rgx) \ge 0$$
 (2) $\frac{1}{1-x^2} \ge 1$

2) هل القضايا التالية صحيحة ؟

(3)
$$5-1=0 \lor \frac{1}{2} \in Q$$
 (4) $x \in \phi \Rightarrow x \in E$

اكتب نفى القضيتين(3)و. (4) . عكس النقيض القضية (4)و القضية (3) على شكل استازام منطقى.

التعرين 04):

يرهن بون استعمل جبول الحقيقة العنظات التالية:

(i)
$$(P \lor Q) \Leftrightarrow (\overline{P} \Rightarrow Q)$$
 (2) $P \Leftrightarrow (Q \Rightarrow P) \land (\overline{Q} \Rightarrow P)$

<u>المرين</u> 05:

يرهن مستخدما مختلف طرق البراهين العنتقات التالية:

 $\frac{x+1}{x+2} < \frac{x+3}{x+4}$ الذا كان x عدد حقيقي موجب فان (1

2) مجموع عند ناطق مع عند صم هو عند صم

 n^2 paire \Leftrightarrow n paire $: n \in \mathbb{N}$ هن لجل کل (3)

 $\forall x \in \Re: x^2 - 9 > 0 \Rightarrow x^2 - x - 2 > 0$ (4

5) ليكن x عند حقيقي هوجب بر هن الاستلزام التالي: [5 = x = 0] يكن x دعققي هوجب بر هن الاستلزام التالي:

 $h > -1 \Rightarrow \forall n \in N : (1+h)^* \ge 1 + nh$ بر هن متر لجمة بر نولی: (8) بر هن متر اجمة بر نولی

التمرين 06:

يرهن مستخدما مختلف طرق البراهين العنظات التالية:

الستقمان x+1 و x-x و y-x+1 متوازيان في الستوى.

 $v_n = u_n + (-1)^n$ ذا كانت المنتالية $(v_n)_{n \in N}$ قبل المنتالية $(v_n)_{n \in N}$ اذا كانت المنتالية $(v_n)_{n \in N}$

 $\forall n \in \mathbb{N}. \exists k \in \mathbb{N}: n^2 = 4k \text{ ou } n^2 = 4k+1$ (3)

التمرين 07:

ير هن أن (2)
$$(u_n)_{n \in \mathbb{N}}$$
 لتكن المتثالية العددية $(u_n)_{n \in \mathbb{N}}$

(1)
$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n > n_0 \Longrightarrow |u_n - 1| \le \varepsilon$$

(2)
$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \Longrightarrow |u_n - 1| < \varepsilon$$

التمرين <u>08</u>: (يترك للطالب) أعط نفي القضايا الثالية: المرين من المرين التراكية التركيم المركزة الثالية:

(1)
$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x : |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

$$(2) \quad \exists \, \varepsilon > 0, \forall n \in \mathbb{N}, \exists (p,q) \in \mathbb{N}^2 : p \geq q \geq n \land \left| u_p - u_q \right| \geq \varepsilon$$

التمرين 09:

لدينا ثلاثة طلبة أحمد ، على ، سالم و ثلاثة علامات 06،10 و 16.

لتكن القضايا الأربع التالية:

علامة احمد
$$\Rightarrow$$
 20 علامة على 10

$$_{10}(P_2)$$
 علامة احمد سالم $\stackrel{\leftarrow}{\leftarrow}$ علامة على 6

$$(P_3)$$
 16 علامة على 10 علامة أحمد ليست 10 علامة على

$$(P_4)$$
 علامة على (P_4) علامة على (P_4) علامة على (P_4)

املاً الجدولُ التالي باعتبار صحة القضية من خطئها:

(P_4)	(P_3)	(P_2)	(P_1)	الإحتمال المقترح
				علامة احمد 6،علامة على 10 و علامة سالم 16
				علامة احمد 6،علامة على 16 و علامة سالم 10
				علامة احمد 10،علامة على 6 و علامة سالم 16
				علامة احمد 10،علامة على 16 و علامة سالم 6
				علامة احمد 16،علامة على 10 و علامة سالم 6
				علامة احمد 16،علامة على 6 و علامة سالم 10

اذا كانت القضايا الاربعة صحيحة عين علامة كل طالب.