MIPS Reference Data

1

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	The state of the s									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NAME MNEMO	NIC				/ FUNCT				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					(1)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	č				(2)	0 / 21.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e e									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					(2)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	And immediate	andı	1		(3)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Branch On Equal	beq	I	PC=PC+4+BranchAddr	(4)	4 _{hex}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Branch On Not Equal	bne	Ι		(4)					
	Jump	j	J	PC=JumpAddr	(5)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)					
	Jump Register	jr	R	PC=R[rs]		$0 / 08_{hex}$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Load Byte Unsigned	lbu	I		(2)	24 _{hex}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		lhu	I		(2)	25 _{hex}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23_{hex}				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Or Immediate	ori	I		(3)					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		$0/2a_{hex}$				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		sltiu	Ι		(2,6)					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		0 / 02 _{hex}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Store Byte	sb	Ι		(2)					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt];		38 _{hex}				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Store Halfword	sh	I		(2)	29 _{hex}				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hex}$				
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.)	Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)					
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.)	Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}				
DACIO INCEDIOTION FORMATO	 (1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } 									

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5
I	opcode	rs	rt		immediate	2
	31 26	25 21	20 16	15		
J	opcode			address		
	21 26	26				

ARITHMETIC CORE INSTRUCTION SET

		\mathcal{O}_{j}	FMT/FT
	FOR-	-	/ FUNCT
NAME, MNEMONIC	MAT	OPERATION	(Hex)
Branch On FP True bclt	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False bc1f	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0//-1b
FP Add Single add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double add:		${F[ft],F[ft+1]}$	11/11//0
FP Compare Single c.x.s*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//v
Double		{F[ft],F[ft+1]})?1:0	11/11/ //
		==, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
FP Divide Single div.s	FK	F[fd] = F[fs] / F[ft]	11/10//3
Double div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} / {F[ft],F[ft+1]}$	11/11//3
FP Multiply Single mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply		{F[fd],F[fd+1]} = {F[fs],F[fs+1]} *	11/10//2
Double mul.d	FR	{F[ft],F[ft+1]}	11/11//2
FP Subtract Single sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract		$\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\} -$	
Double sub.d	FR	{F[ft],F[ft+1]}	11/11//1
Load FP Single lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	Ι	F[rt]=M[R[rs]+SignExtImm]; (2)	35//
Double ldc1	1	F[rt+1]=M[R[rs]+SignExtImm+4]	33//
Move From Hi mfhi	R	R[rd] = Hi	0 ///10
Move From Lo mflo	R	R[rd] = Lo	0 ///12
Move From Control mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith. sra	R	R[rd] = R[rt] >>> shamt	0//-3
Store FP Single swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP sdc1	I	$M[R[rs]+SignExtImm] = F[rt]; \qquad (2)$	3d//
Double	1	M[R[rs]+SignExtImm+4] = F[rt+1]	Ju///

(2) OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

11311	ISTER NAME, NOMBER, USE, CALL CONVENTION									
NI/	ME	NUMBER	USE	PRESERVEDACROSS						
1117	NAME NUMBER		USE	A CALL?						
\$2	zero	0	The Constant Value 0	N.A.						
5	\$at	1	Assembler Temporary	No						
\$v()-\$v1	2-3	Values for Function Results and Expression Evaluation	No						
\$a()-\$a3	4-7	Arguments	No						
\$t()-\$t7	8-15	Temporaries	No						
\$s()-\$s7	16-23	Saved Temporaries	Yes						
\$t8	3-\$t9	24-25	Temporaries	No						
\$k()-\$k1	26-27	Reserved for OS Kernel	No						
\$	Sgp	28	Global Pointer	Yes						
\$	Ssp	29	Stack Pointer	Yes						
5	Sfp	30	Frame Pointer	Yes						
5	Sra	31	Return Address	No						

MIPS

	DES, BASI		RSION, A	SCII	SYMB	OLS		3	
MIPS	(1) MIPS	(2) MIPS		Deci-	Hexa-	ASCII	Deci-	Hexa-	ASCII
opcode	funct	funct	Binary	mal	deci-	Char-	mal	deci-	Char-
(31:26)	(5:0)	(5:0)			mal	acter		mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
		sub.f	00 0001	1	1	SOH	65	41	A
j	srl	mul.f	00 0010	2	2	STX	66	42	В
jal	sra	div.f	00 0011	3	3	ETX	67	43	C D
beq	sllv	sqrt.f	00 0100	5	5	ENQ	69	44	E E
bne blez	srlv	abs.f	00 0101	6	6	ACK	70	46	F
bgtz	srav	mov. f neg. f	00 0110	7	7	BEL	71	47	G
addi	jr	neg,	00 1000	8	8	BS	72	48	H
addiu	jalr		00 1001	9	9	HT	73	49	I
slti	movz		00 1010	10	a	LF	74	4a	J
sltiu	movn		00 1011	11	b	VT	75	4b	K
andi	syscall	round.w.f	00 1100	12	С	FF	76	4c	L
ori	break	trunc.w.f	00 1101	13	d	CR	77	4d	M
xori		ceil.w.f	00 1110	14	e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	0
(2)	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi	C	01 0001	17	11	DC1	81	51	Q
	mflo	movz.f	01 0010	18 19	12 13	DC2	82	52 53	R S
	mtlo	movn.f	01 0011	20	13	DC3	84	54	T
			01 0100 01 0101	21	15	DC4 NAK	85	55	U
			01 0101	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	w
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010	26	1a	SUB	90	5a	Z
	divu		01 1011	27	1b	ESC	91	5b	[
			01 1100	28	1c	FS	92	5c	1
			01 1101	29	1d	GS	93	5d]
			01 1110	30	1e	RS	94	5e	^
			01 1111	31	1f	US	95	5f	-
lb	add	cvt.s.f	10 0000	32	20	Space	96	60	
lh	addu	cvt.d.f	10 0001	33	21	!	97	61	a
lwl	sub		10 0010	34	22		98	62	b
lw lbu	subu		10 0011	35	23	# \$	99	63	d
lhu	and	$\operatorname{cvt.w.} f$	10 0100	37	25	» %	100	65	e
lwr	or		10 0101	38	26	&	101	66	f
TWI	nor		10 0111	39	27	,	103	67	g
sb	1101		10 1000	40	28	(104	68	h
sh			10 1001	41	29	ì	105	69	i
swl	slt		10 1010	42	2a	*	106	6a	j
SW	sltu		10 1011	43	2b	+	107	6b	k
			10 1100	44	2c	,	108	6c	1
			10 1101	45	2d	-	109	6d	m
swr			10 1110	46	2e	;	110	6e	n
cache			10 1111	47	2f	/	111	6f	0
11	tge	c.f.f	11 0000	48 49	30	0	112	70 71	p
lwc1	tgeu +1+	c.un.f	11 0001 11 0010	50	31 32	2	113	72	q
lwc2	tlt tltu	c.eq.f	11 0010	51	33	3	1114	73	r s
pref		c.ueq.f	11 0100	52	34	4	116	74	t
ldc1	teq	c.ult.f	11 0100	53	35	5	117	75	u
ldc2	tne	c.ole.f	11 0110	54	36	6	118	76	v
		c.ule.f	11 0111	55	37	7	119	77	w
sc		c.sf.f	11 1000	56	38	- 8	120	78	X
swc1		c.ngle.f	11 1001	57	39	9	121	79	У
swc2		c seaf	11 1010	58	3a	:	122	7a	7.

(1) opcode(31:26) == 0

c.seq.f

c.ngl.

c.nge.f

c.ngt.

c.le.f

c.lt./

swc2

sdc1

sdc2

11 1010

11 1011

11 1100

11 1101

11 1110

 $11\ 11111$

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

IEEE 754 Symbols Object Exponent Fraction 0 ± 0 0 ± Denorm **≠**0 1 to MAX - 1 anything ± Fl. Pt. Num. MAX 0 ±∞ NaN MAX **≠**0 S.P. MAX = 255, D.P. MAX = 2047

4

S Exponent Fraction 23 22 S Exponent Fraction 52 51

DATA ALIGNMENT

Double Word									
Word Word									
Halfv	Halfword Halfword			Hal	fword	Half	word		
Byte Byte Byte Byte				Byte	Byte	Byte	Byte		
0	1	2.	3	4	5	6	7		

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

 EF HON CONTROL REGISTERS. CAUSE AND STATUS										
В			Interrupt			Ex	ception			
D			Mask				Code			
31		15		8		6		2		
			Pending	1			U		Е	Ι
			Interrupt				M		L	Е
		15		8			4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

Number	Name	Cause of Exception	Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	AdEL	Address Error Exception	10	RI	Reserved Instruction
+	Aull	(load or instruction fetch)	10	KI	Exception
5	AdES	Address Error Exception	11	CpU	Coprocessor
,	ruls	(store)	11	СрС	Unimplemented
6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
0	IDE	Instruction Fetch	12	Ov	Exception
7	DBE	Bus Error on	13	Tr	Trap
	DBE	Load or Store	13		1
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

<u>ZE I IIEI IXE</u>	O (10 101 D	ok, Commu	110411011, 2 10	i wichiory,	
SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol
10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki
10 ⁶	Mega-	M	2 ²⁰	Mebi-	Mi
10 ⁹	Giga-	G	2 ³⁰	Gibi-	Gi
10 ¹²	Tera-	T	2 ⁴⁰	Tebi-	Ti
10 ¹⁵	Peta-	P	2 ⁵⁰	Pebi-	Pi
10 ¹⁸	Exa-	Е	2 ⁶⁰	Exbi-	Ei
10 ²¹	Zetta-	Z	2 ⁷⁰	Zebi-	Zi
10 ²⁴	Yotta-	Y	2 ⁸⁰	Yobi-	Yi

58

60

61

62 3e

3a 59

3h

3c

3d

3f

122

123

124

125

126

127

7a

7h

7c

7d

7e DEL

7f

⁽²⁾ opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f = s$ (single); if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$