Q. 3.17. Given the half life of radioactive K^{40} is 18.3×10^8 years, calculate the number of β-particle emitted per second per kg. (Bang. U. 1994)

Ans. Given half life
$$T = 18.3 \times 10^8 \text{ years} = 18.3 \times 10^8 \times 365 \times 24 \times 60 \times 60$$

= $5.77 \times 10^{16} \text{ sec.}$
Radioactive constant $\lambda = \frac{0.6931}{T} = \frac{0.6931}{5.77 \times 10^{16}} = 1.2 \times 10^{-17} \text{ sec}^{-1}$

If N_0 is the initial number of nuclei and N the number remaining after a time t, then Number of atoms decaying during this period

$$\Delta N = N_0 - N = N_0 - N_0 e^{-\lambda t}$$

But λt being a very small quantity $e^{-\lambda t} = 1 - \lambda t$

$$\Delta N = N_0 - N_0 (1 - \lambda t) = N_0 \lambda t$$

$$N_0 = \text{number of atoms in 1 kg of } K^{40} = \frac{6.023 \times 10^{26}}{40}$$

$$= 1.5 \times 10^{25}$$

$$\Delta N = 1.5 \times 10^{25} \times 1.2 \times 10^{-17} = 1.8 \times 10^{8}$$

.. Number of β -particles emitted per second = 1.8×10^8 .

Q. 3.18. Natural carbon is 18% of human body weight. The activity of ¹⁴C in a person weighing 70 kg is 0.1 micro-curie. What fraction of carbon in the body is 14C? Given one currie is 3.7×10^{10} nuclei disintegration per second and half life of 14 C = 5730 years.

Ans. Activity
$$R = \frac{dN}{dt} = -\lambda N$$

Half life $T = \frac{0.6931}{\lambda} = 5730 \times 365 \times 24 \times 60 \times 60 \text{ sec.}$
 $\therefore \lambda = \frac{R}{N} = \frac{0.6931}{T} = \frac{0.6931}{5730 \times 365 \times 24 \times 60 \times 60} \text{ s}^{-1}$

If the body contains m gm of 14 C, then

٠.

or

$$N = \frac{6.025 \times 10^{23}}{14} \times m$$

$$R = 0.1 \text{ micro curie}$$

$$= 0.1 \times 10^{-6} \times 3.7 \times 10^{10} = 3.7 \times 10^{3} \text{ disint/sec}$$

$$\frac{R}{N} = \frac{3.7 \times 10^{3} \times 14}{6.025 \times 10^{23} \times m} = \frac{0.6931}{5730 \times 365 \times 24 \times 60 \times 60}$$

$$m = 2.242 \times 10^{-8} \text{ gm}$$

Percentage of ¹⁴C in natural carbon

$$= \frac{2.242 \times 10^{-8} \times 100}{70 \times 1000 \times \frac{18}{100}}$$

 $= 1.78 \times 10^{-10} \%$

Q. 3.19. Calculate the mass of Pb²¹⁴ (RaB) having a radioactivity of 1 curie. Half life of $Pb^{214} = 26.8 \text{ minutes.}$

Ans. One curie = 3.7×10^{10} disintegrations/sec. Let a mass m gm of Pb^{214} (RaB) has an activity of one curie, then No. of atoms in m gm of Pb²¹⁴

$$N = \frac{6.025 \times 10^{23} \times m}{214}$$

Since one gm atom (214 gm) of Pb²¹⁴ have 6.025×10^{23} atoms (Avogadro's number) $T = 26.8 \text{ minutes} = 26.8 \times 60 \text{ sec.}$ Half-life of Pb214

Radioactive constant

$$\lambda = \frac{0.6931}{T} = \frac{0.6931}{26.8 \times 60}$$

Now activity

$$R = -\frac{dN}{dt} = \lambda N$$

OT

$$3.7 \times 10^{10} = \frac{0.6931 \times 6.025 \times 10^{23} \times m}{26.8 \times 60 \times 214}$$

or

$$m = 3.048 \times 10^{-3} \text{ gm}.$$

Q. 3.20. One gm of Ra²²⁶ has an activity of one curie. Calculate the mean life and half (P.U. 1996; Luck. U. 1995) life of radium.

Ans. Number of atoms of Ra²²⁶ breaking per second

R = 1 Curie = 3.7×10^{10} [1 Curie = 3.7×10^{10} disintegrations per second]

Number of atoms of Ra²²⁶ present in one gm

$$N = \frac{6.025 \times 10^{23}}{226}$$

as the number of atoms in one gram atom (226 gm) = 6.025×10^{23} (Avogadro's number)

Radioactive constant

constant
$$\lambda = \frac{R}{N} = \frac{3.7 \times 10^{10} \times 226}{6.025 \times 10^{23}}$$

= 1.38 × 10⁻¹¹ sec⁻¹
Average life = $\frac{1}{\lambda} = \frac{1}{1.38 \times 10^{-11}} = 7.25 \times 10^{10}$ sec = 2298 years.

Half life =
$$\frac{0.6931}{\lambda} = \frac{0.6931}{1.38 \times 10^{-11}} = 5 \times 10^{10} \text{ sec} = 1585 \text{ years.}$$

Q. 3.21. Half life of radon is 3.8 days. After how many days will $\frac{1}{10}$ th of a radon sample remain behind?

Ans. Half life of radon T = 3.8 days.

$$\therefore \text{ Radioactive constant } \lambda = \frac{0.6931}{T} = \frac{0.6931}{3.8} = 0.1824 \text{ days}^{-1}$$

Let t be the time in which $\frac{1}{10}$ of the radon sample remains behind then

$$\frac{N}{N_0} = \frac{1}{10} = e^{-\lambda t}$$

or

$$10=e^{\lambda t}$$

or

$$\log_e 10 = \lambda t$$
 or $t = \frac{\log_e 10}{\lambda} = \frac{2.3026 \times \log_{10} 10}{0.1824}$
= 12.62 days.

Q. 3.22. Calculate the activity of 1 gm of $\rm Bi^{209}$ with a half life of 2.7×10^7 years, in curies. (Luck. U. 1995)

Ans. Half life of B^{209} , $T = 2.7 \times 10^7$ years $= 2.7 \times 10^7 \times 365 \times 24 \times 60 \times 60 = 8.5 \times 10^{14} \text{ sec.}$

$$\lambda = \frac{0.6931}{T} = \frac{0.6931}{8.5 \times 10^{14}} = 8.15 \times 10^{-16} \text{ sec}^{-1}$$

If No is the original number of atoms and N remaining after a time I, then

$$\Delta N = N_0 - N = N_0 - N_0 e^{-\lambda t}$$

But

$$\lambda = 8.15 \times 10^{-16} \text{ s}^{-1}$$
 and $t = 1 \text{ sec}$, therefore, λt is very small.

Hence

$$e^{-\lambda t} = 1 - \lambda t$$

or

$$\Delta N = N_0 - N = N_0 - N_0 (1 - \lambda t) = N_0 \lambda t$$

Now
$$N_0$$
 = number Bi²⁰⁹ atoms in 1 gm = $\frac{6.023 \times 10^{23}}{209}$ = 2.88 × 10²¹ where 6.023 × 10²³ is

Faraday's number representing the number of atoms in one gram atom i.e., 209 gm of Bi²⁰⁹.

$$\Delta N = 2.88 \times 10^{21} \times 8.15 \times 10^{-16} \times 1 = 23.472 \times 10^{5}$$

or Number of disintegrations per second = 23.472 × 105

But one Curie = 3.7×10^{10} disintegrations per second

Activity in Curies =
$$\frac{23.472 \times 10^5}{3.7 \times 10^{10}}$$
 = 63.6 × 10⁻⁶ = 63.6 micro-curie.

Q. 3.23. Calculate the activity of K^{40} in 100 kg mass, assuming that 0.35% of the total weight is potassium. The abundance of K^{40} is 0.012%, its half life is 1.31 \times 10° years.

(Bang. U. 1994)

Ans. Total mass of potassium in 100 kg mass = $100 \times \frac{0.35}{100} = 0.35$ kg.

Mass of K⁴⁰ in the total mass =
$$\frac{0.35 \times 0.012}{100}$$
 = 4.2 × 10⁻⁵ kg.

Number of atoms in one kg. atom of a substance = 6.023×10^{26} atoms

$$\therefore \text{ Total number of } \mathbf{K}^{40} \text{ atoms } N_0 = \frac{6.023 \times 10^{26}}{40} \times 4.2 \times 10^{-5}$$
$$= 6.32425 \times 10^{20}$$

Half life of

$$K^{40} = 1.31 \times 10^9 \text{ years} = 1.31 \times 10^9 \times 365 \times 24 \times 60 \times 60$$

= $4.13 \times 10^{16} \text{ sec.}$

:. Radioactive constant
$$\lambda = \frac{0.6931}{4.13 \times 10^{16}} = 1.678 \times 10^{-17}$$

If N_0 is the original number of atoms and N that remaining after a time t, then

$$\Delta N = N_0 - N = N_0 - N_0 e^{-\lambda t}$$

As λ is a very small quantity $e^{-\lambda t} = 1 - \lambda t$

$$\Delta N = N_0 - N = N_0 - N_0 (1 - \lambda t) = N_0 \lambda t$$
= 6.32425 × 10²⁰ × 1.678 × 10⁻¹⁷ = 1.061 × 10⁴ disintegrations/sec
= $\frac{1.061 \times 10^4}{3.7 \times 10^{10}} = 0.287 \times 10^{-6}$ curie = 0.287 micro-curie