2021 Spring VLSI DSP Homework Assignment #1

Due date: 2021/3/30

Q1. Least Square Problem

Create an arbitrary matrix $\mathbf{A}_{6\times 4}$ and an arbitrary vector $\mathbf{x}_{4\times 1}$. The matrix \mathbf{A} should have full column rank, which is 4, and with entries $|a_{i,j}| \leq 10$. The vector \mathbf{x} has it all its entry value $|x_i| \leq 4$. Let $\mathbf{n}_{6\times 1}$ be an arbitrary noise vector with all its entry value of ± 1 . Suppose $\mathbf{A}_{6\times 4}$ is the channel matrix, $\mathbf{x}_{4\times 1}$ is the original signal, and $\mathbf{b}_{6\times 1}$ is the observed output with additive noise $\mathbf{n}_{6\times 1}$

We therefore encounter a LS problem to solve $\mathbf{x}_{4\times 1}$ subject to $\mathbf{A}_{6\times 4} \cdot \mathbf{x}_{4\times 1} = \mathbf{b}_{6\times 1}$.

- a) Calculate vector $\mathbf{b}_{6\times 1}$ first use the \mathbf{A} , \mathbf{x} , \mathbf{n} you create. Then calculate the least square estimate $\hat{\mathbf{x}}_{4\times 1}$ using the pseudo inverse matrix scheme $\hat{\mathbf{x}} = (\mathbf{A}^t \cdot \mathbf{A})^{-1} \cdot \mathbf{A}^t \cdot \mathbf{b}$ and determine its norm 2 value of error vector $(\mathbf{x}_{4\times 1} \hat{\mathbf{x}}_{4\times 1})$.
- b) Repeat problem a) by using the MatLab QR function, i.e. [Q,R]=qr[A]. Note that the returned Q is a 6×6 unitary matrix and R is a 6×4 upper triangular matrix with the last two rows nullified. Calculate $\tilde{\mathbf{b}}_{6\times l} = \mathbf{Q}^t \cdot \mathbf{b}$ first and set $\hat{\mathbf{b}}_{4\times l}$ as the upper part of $\tilde{\mathbf{b}}_{6\times l}$. Then obtain the LS estimate as $\hat{\mathbf{x}}_{4\times l} = \mathbf{R}_{4\times l}^{-1} \cdot \hat{\mathbf{b}}_{4\times l}$
- c) Repeat problem b) except now using the Givens rotations to perform the QR factorization
- d) Compare the LS solutions obtained from the three approaches. Are they identical? Are the norm 2 values of the three error vectors the same?

Q2. LMS filter design

For a least mean square (LMS) adaptive filter, assume the filter is of the form finite impulse response (FIR) and 15-tap long (i.e., with 15 coefficients $b_0^{\sim}b_{14}$ for $x(n)^{\sim}x(n-14)$). Given an input signal consisting of 2 frequency components

$$s(n) = sin(2\pi*n/12) + cos(2\pi*n/4)$$

develop an adaptive low pass filter design

Set the target as a low pass filter to remove the high frequency component $\cos(2 \pi^* n/4)$ and use $\sin(2\pi^* n/12)$ as the desired (or training) signal for LMS adaptation. Assume the step

size μ is 2^{-2} .

- write a Matlab code to simulate the LMS based adaptive filtering. Calculate the RMS (root mean square) value of the latest 16 prediction errors
 (i.e., r = sqrt((e²(n) + e²(n-1) ++ e²(n-15))/16) and the adaptation is considered being converged if this value is less than 10% of RMS (root mean square) value of the desired signal, which equals 0.1/sqrt(2).
- Show the plot of "r" versus "n" and indicate when the filter converges, i.e. how many training samples are required
- Show the plot of filter coefficients $b_i(n)$, for $i = 0^14$, versus "n" and see if the values of filter coefficients remain mostly unchanged after convergence
- Apply a 64-point FFT to the impulse response of the converged filter and verify the filter is indeed a low pass one. Note that the input vector to the 64-point FFT is (b₀, b₁,, b₁₄, 0,0,.....,0) with 49 trailing zeros.
- Change the step size μ to 2⁻⁴ and see how the behavior of the adaptive filter changes.
- Conduct simulation with a sufficiently large number of samples to see how small the value of "r" can be (the convergence bias)