ФИО: Медяков Даниил Олегович

Номер задачи: 9

Решение:

Для начала проверим, можем ли мы пользоваться критерием согласия χ^2 для этой задачи. Поскольку $n=800\geq 50$ и $\nu=\{74,92,83,79,80,73,77,75,76,91\}$, то есть каждая $\nu_j\geq 5$, то мы можем пользоваться критерием согласия χ^2 . Заметим, что по условию нам не задан уровень значимости, а значит возьмем $\alpha=0,05$. Мы проверяем гипотезу H_1 о равномерном распределении данных, а значит, исходя из этой гипотезы и условия, мы имеем следующие параметры:

$$\begin{cases} N = 10 \\ p_j^0 = \frac{1}{10}, j = \overline{1, 10} \\ n = 800 \\ \nu = \{74, 92, 83, 79, 80, 73, 77, 75, 76, 91\} \end{cases}$$

Теперь мы готовы вычислить статистику T_{χ^2} :

$$T_{\chi^2} = \sum_{j=1}^{N} \frac{\left(\nu_j - np_j^0\right)^2}{np_j^0} = \frac{6^2 + 12^2 + 3^2 + 1^2 + 0^2 + 7^2 + 3^2 + 5^2 + 4^2 + 11^1}{80} = 5,125.$$

При том, что наша гипотеза H_1 верна, мы получаем сходимость $T_{\chi^2} \xrightarrow[n \to \infty]{H_1,d} \chi^2(N-1)$. В тоже время t_α удовлетворяет условию на уровень значимости, то есть $\mathbb{P}(T_{\chi^2} \geq t_\alpha) = \alpha \Rightarrow \mathbb{P}(T_{\chi^2} < t_\alpha) = F_{\chi^2}(t_\alpha) = 1-\alpha$. Тогда t_α суть $(1-\alpha)$ квантиль распределения $\chi^2(N-1)$. В нашем случае:

$$t_{0,05} = \chi^2(9)_{0,95} = 16, 9.$$

Получили $T_{\chi^2}=5,125<16,9=t_{\alpha},$ то есть мы не попадаем в критическую область $\Omega_{\mathrm{kp.}}=\{x\in\Omega\mid T_{\chi^2}(x)\geq t_{\alpha}\},$ а значит гипотезу H_1 не отклоняем.