Fysik aflevering 6

Opgave 1

Billedet viser en maskine, som anvendes til at $l\tilde{A}|gge$ betonfliser i et fortov. Maskinen $l\tilde{A}_s$ fter fliserne med en stor sugekop

a. Tildel passende $v\tilde{A}$ rdier til relevante fysiske st \tilde{A} , rrelser, og vurd \tilde{A} ©r, hvor stor masse flisen kan have, hvis sugekoppen skal kunne $l\tilde{A}$, fte den.

GÃ, r herunder rede for relevante antagelser

Jeg antager at sugekoppen kan suge med en kraft på 500 N. Da det gælder at

$$F = ma$$

sugekoppen kan holde

$$\frac{500 N}{9.82 \frac{m}{s^2}} = 50.92 \ kg$$

Opgave 2

En sky af -atomer beskydes med fotoner fra lasere. Fotonerne bremser rubidiumatomerne i deres bev \tilde{A} |gelse. Inden k \tilde{A} _lingen has hvert rubidiumatom en bev \tilde{A} |gelsesm \tilde{A} |ngde med st \tilde{A} _rrelsen @2.01 · 10 sup $\{-25\}$ @ kg@·@m/s

a. Bestem rubidiumatomernes fart inden kà lingen

Jeg finder -atomets masse, som er 84.911792 U. Omregnet til kg er det 1.40999444@ \cdot 10 sup $\{-25\}$ @ kg SÃ¥ tager jeg bare rubidiumatomets bevÃ|gelsesmÃ|ngden med dens masse da bevÃ|gelsesmÃ|ngden har enheden kg@ \cdot @m/s

$$\frac{2.01 \cdot 10^{-25} \ kg \cdot m/s}{1.40999444 \cdot 10^{-25} \ kg} = 1.426 \ m/s$$

Fotonerne fra laserne har bà lgelà ngden 780 nm og absorberes af rubidiumatomerne

b. Vurdér, hvor mange fotoner der skal ramme et rubidiumatom for, at det bremses helt op