

Generalized Inner-Outer Factorizations in non commutative Hardy Algebras

Leonid Helmer

Abstract

Let $H^\infty(E)$ be a non commutative Hardy algebra, associated with a W^* -correspondence E . In this paper we construct factorizations of inner-outer type of the elements of $H^\infty(E)$ represented via the induced representation, and of the elements of its commutant. These factorizations generalize the classical inner-outer factorization of elements of $H^\infty(\mathbb{D})$. Our results also generalize some results that were obtained by several authors in some special cases.

1 Introduction

In this work we describe the general version of the inner-outer factorization in non commutative Hardy algebras. Recall that the Hardy algebra $H^\infty(\mathbb{D})$ is identified with the algebra $H^\infty := H^\infty(\mathbb{T}) := L^\infty(\mathbb{T}) \cap H^2(\mathbb{T})$, where $H^2 = H^2(\mathbb{T})$ is the Hardy Hilbert space, and we consider H^∞ as the algebra of multiplication operators M_ϕ acting on the Hilbert space H^2 by $f \mapsto \phi f$. Then the function $\Theta \in H^\infty$ is called inner if the operator M_Θ is isometric and the function $g \in H^\infty$ is called outer if the operator M_g has a dense range in H^2 . The classical theorem says that every $f \in H^\infty$ admits a unique inner-outer factorization $f = f_i f_o$, where f_i is an inner function, called also the inner part of f , and f_o is an outer, called the outer part of f . Analogous factorizations hold in the Hardy spaces H^p , $p \geq 1$. In particular, every $f \in H^2$ admits an inner-outer factorization $f = \Theta g$, with $f_i \in H^\infty$ and $f_o \in H^2$. Further, any z -invariant subspace of the form $\mathcal{M}_f = \vee \{z^n f : n = 0, 1, \dots\}$ has the representation $\mathcal{M}_f = f_i H^2$. The classical Beurling' theorem says that every z -invariant subspace \mathcal{M} has a representation $\mathcal{M} = \Theta H^2$ for a suitable inner function Θ , [2]. A full treatment of the classical theory both from the function theoretic and the operator theoretic point of view can be found in [12] and [13].

Before we introduce the non commutative Hardy algebras note that the classical algebra $H^\infty(\mathbb{D})$ can be viewed as the ultraweak closure of the operator algebra generated by the unilateral shift on the Hilbert space $l^2 = l^2(\mathbb{Z}_+)$. In [16] this was generalized by G. Popescu to the ultraweakly closed non commutative operator algebras generated by d shifts, $d \geq 1$, denoted \mathcal{F}^∞ . In [1], [17], [18], [19] Arias and Popescu developed the theory of inner-outer factorization in \mathcal{F}^∞ . In [3] Davidson and Pitts developed analogous theory, with some differences, in the context of the free semigroup algebra \mathcal{L}_d , which, in fact, coincides with \mathcal{F}^∞ . In [4] Kribs and Power considered the case of free semigroupoids algebras \mathcal{L}_G , and developed the theory of inner-outer factorization in these algebras.

In this work we develop our version of the inner-outer factorization in non commutative Hardy algebras $H^\infty(E)$ associated with a given W^* -correspondence E . These algebras

were introduced in 2004 by P. Muhly and B. Solel in [10] (see also [9]), and generalize the classical Hardy algebra H^∞ , the algebra \mathcal{F}^∞ of Popescu, free semigroups algebras, free semigroupoids algebras and some others.

Let E be a W^* -correspondence over a W^* -algebra M , ([6], [14]), that is a right Hilbert W^* -module E over M , which is made into a M - M - bimodule by some $*$ -homomorphism $\phi : M \rightarrow \mathcal{L}(M)$, where $\mathcal{L}(M)$ is the algebra of all the adjointable operators on E . This W^* -correspondence defines another W^* -correspondence $\mathcal{F}(E)$ over the same algebra M , which is defined to be the direct sum $M \oplus E \oplus E^{\otimes 2} \oplus \dots$ of the internal tensor powers of E . $\mathcal{F}(E)$ is called the full Fock space and in fact is a W^* -correspondence with the left action of M denoted by ϕ_∞ , which is a natural extension of ϕ to a representation of M in the algebra of adjointable operators on $\mathcal{F}(E)$. Note that the space $\mathcal{L}(E)$, for any W^* -correspondence E , is a W^* -algebra. The non commutative Hardy algebra of a correspondence E is by definition the weak*-closure in $\mathcal{L}(\mathcal{F}(E))$ of the algebra spanned by the operators of the form T_ξ , $\xi \in E$, where $T_\xi(\eta) := \xi \otimes \eta$ and $\phi_\infty(a)$, $a \in M$. In fact Muhly and Solel defined this Hardy algebra as the weak* closure of the noncommutative tensor algebra $\mathcal{T}_+(E)$. The algebra $\mathcal{T}_+(E)$ was defined first in [9] as the norm closed (nonselfadjoint) algebra spanned by the same set of generators, and it generalizes the noncommutative disc algebra \mathcal{A}_n of Popescu, which in its turn is a noncommutative generalization of the classical disc algebra.

In this work we view the algebra $H^\infty(E)$ as acting on a Hilbert space via an induced representation ρ and write it $\rho(H^\infty(E))$. Thus we consider the questions of inner-outer factorization for the case of the Hardy algebra $\rho(H^\infty(E))$. A key tool that we will need and use here is the general version of Wold decomposition proved first in [8]. We start with the inner-outer factorization of a vector of the underlying Hilbert space, and then we obtain the inner-outer factorization of an element of the commutant of the algebra $\rho(H^\infty(E))$. Here we use that fact that, as in the abstract theory of shifts, an inner operator is a partial isometry in the commutant of the algebra, generated by a shift. Further, we translate the Beurling theorem of Muhly and Solel in [8] to our language. It follows from the concept of duality for W^* -correspondences, developed in [10], every algebra $\rho(H^\infty(E))$ can be thought of as the commutant of the Hardy algebra of another correspondence, called the dual of E . Using this concept we construct factorization of an element of $\rho(H^\infty(E))$ which holds in our setup.

2 Preliminaries and Setting

We start by recalling the notion of a W^* -correspondence. For a general theory of Hilbert C^* - and W^* -modules we use [5], [6] and the original paper [14]. Here we only note that by a Hilbert W^* -module we always mean a self dual module over a W^* -algebra (see [6, Ch. 3]).

Let $\phi : M \rightarrow \mathcal{L}(E)$ be a normal $*$ -homomorphism. In what follows we always assume that ϕ is unital. Then we obtain on E the structure of a bimodule over M . We shall call it a

W^* -correspondence over the W^* -algebra M . More generally, let N and M be W^* -algebras and let E be a Hilbert M -module. Assume that we are given a left action of N on E , that is, we are given normal $*$ -homomorphism $\phi : N \rightarrow \mathcal{L}(E)$. This homomorphism can be regarded as a “generalized homomorphism” from N to M . Such an N - M -bimodule E will be called a correspondence from N to M . Every W^* -correspondence E has the structure of a dual Banach space [14]. This topology is usually called the σ -topology, [10].

Every Hilbert space H , where the inner product is taken to be linear in the second variable, is a W^* -module and a W^* -correspondence over \mathbb{C} in a natural way.

Let E and F be W^* -correspondences over W^* -algebras M and N respectively. The left action of M on E will be denoted as usual by ϕ and the left action of N on F by ψ , thus, $\psi : N \rightarrow \mathcal{L}(F)$ is a normal $*$ -homomorphism.

Definition 2.1. An isomorphism of E and F is a pair (σ, Φ) where

- 1) $\sigma : M \rightarrow N$ is an isomorphism of W^* -algebras;
- 2) $\Phi : E \rightarrow F$ is a vector space isomorphism preserving the σ -topology, and which is also
 - (a) a bimodule map, $\Phi(\phi(a)xb) = \psi(\sigma(a))\Phi(x)\sigma(b)$, $x \in E$ $a, b \in M$, and
 - (b) Φ “preserves” the inner product, $\langle \Phi(x), \Phi(y) \rangle = \sigma(\langle x, y \rangle)$, $x, y \in E$.

Let E be a W^* -correspondence over a W^* -algebra M with a left action defined as usual by a normal $*$ -homomorphism ϕ . For each $n \geq 0$, let $E^{\otimes n}$ be the self-dual internal tensor power (balanced over ϕ , [10]). So, $E^{\otimes n}$ itself turns out to be a W^* -correspondence in a natural way, with the left action $\xi \mapsto \phi_n(a)\xi = (\phi(a)\xi_1) \otimes \dots \otimes \xi_n$, $\xi = \xi_1 \otimes \dots \otimes \xi_n \in E^{\otimes n}$, and with an M -valued inner product as in the internal tensor product construction. For example, on $E^{\otimes 2} = E \otimes_{\phi} E$, we define

$$\langle \xi_1 \otimes \xi_2, \eta_1 \otimes \eta_2 \rangle = \langle \xi_2, \phi(\langle \xi_1, \eta_1 \rangle) \eta_2 \rangle.$$

We form the full Fock space $\mathcal{F}(E) = \sum_{n \geq 0}^{\oplus} E^{\otimes n}$, where $E^{\otimes 0} = M$ and the direct sum taken in the ultraweak sense (see [14]). This is a W^* -correspondence with left action given by $\phi_{\infty} : M \rightarrow \mathcal{L}(\mathcal{F}(E))$, where $\phi_{\infty}(a) = \sum_{n \geq 0} \phi_n(a)$. The M -valued inner product on $\mathcal{F}(E)$ is defined in an obvious way.

For each $\xi \in E$ and each $\eta \in \mathcal{F}(E)$, let $T_{\xi} : \eta \mapsto \xi \otimes \eta$ be a creation operator on $\mathcal{F}(E)$. Clearly, $T_{\xi} \in \mathcal{L}(\mathcal{F}(E))$.

Definition 2.2. Given a W^* -correspondence E over a W^* -algebra M .

- 1) The norm closed subalgebra in $\mathcal{L}(\mathcal{F}(E))$, generated by all creation operators T_{ξ} , $\xi \in E$, and all operators $\phi_{\infty}(a)$, $a \in M$, is called the tensor algebra of E . It is denoted by $\mathcal{T}_+(E)$.
- 2) The Hardy algebra $H^{\infty}(E)$ is the ultra-weak closure of $\mathcal{T}_+(E)$.

When $M = E = \mathbb{C}$ then $\mathcal{F}(E) = l^2(\mathbb{Z}_+)$. The algebra $\mathcal{T}_+(\mathbb{C})$ is the algebra of analytic Toeplitz operators with continuous symbols, so it can be identified with the disc algebra

$A(\mathbb{D})$. The algebra $H^\infty(\mathbb{C})$, in this case, is $H^\infty(\mathbb{D})$. If $M = \mathbb{C}$ and we take $E = \mathbb{C}^n$, an n -dimensional Hilbert space, then $\mathcal{T}_+(\mathbb{C}^n)$ is the non commutative disc algebra \mathcal{A}_n , studied by Popescu and others, and $H^\infty(\mathbb{C}^n) = \mathcal{F}_n^\infty$, the Hardy algebra of Popescu. This algebra can be identified with the free semigroup algebra \mathcal{L}_n studied by Davidson and Pitts.

Let $\pi : M \rightarrow B(H)$ be a normal representation of a W^* -algebra M on a Hilbert space H and let E be a W^* -correspondence over M . As it can be easily verified, the W^* -internal tensor product $E \otimes_\pi H$ is a Hilbert space. The representation $\pi^E : \mathcal{L}(E) \rightarrow B(E \otimes_\pi H)$ defined by

$$\pi^E : S \mapsto S \otimes I_H, \quad \forall S \in \mathcal{L}(E).$$

is called the induced representation (in the sense of Rieffel). If π is a faithful normal representation then π^E maps $\mathcal{L}(E)$ into $B(E \otimes_\pi H)$ homeomorphically with respect to the ultraweak topologies, [10, Lemma 2.1].

The image of $H^\infty(E)$ under an induced representation is defined as follows. Let $\pi : M \rightarrow B(H)$ be a faithful normal representation. For a W^* -correspondence E over M let $\pi^{\mathcal{F}(E)}$ be the induced representation of $\mathcal{L}(\mathcal{F}(E))$ in $B(\mathcal{F}(E) \otimes_\pi H)$. Then the induced representation of the Hardy algebra $H^\infty(E)$ is the restriction

$$\rho := \pi^{\mathcal{F}(E)}|_{H^\infty(E)} : H^\infty(E) \rightarrow B(\mathcal{F}(E) \otimes_\pi H). \quad (1)$$

This restriction is an ultraweakly continuous representation of $H^\infty(E)$ and the image $\rho(H^\infty(E))$ is an ultraweakly closed subalgebra of $B(\mathcal{F}(E) \otimes_\pi H)$. We shall refer to ρ as the representation induced by π . Later, when we discuss several representations of $H^\infty(E)$ that are induced by different representations π, σ etc. of M , we shall write ρ_π, ρ_σ etc.

So, $\rho(H^\infty(E))$ acts on $\mathcal{F}(E) \otimes_\pi H$ and ρ is defined by

$$\rho : X \mapsto X \otimes I_H, \quad \forall X \in H^\infty(E).$$

Note that the notion of the induced representation generalizes the notion of pure isometry (i.e. an isometry without a unitary part) in the theory of a single operator.

We will frequently use the following result of Rieffel [20, Theorem 6.23]. The formulation here is in a form convenient for us ([8, p. 853]).

Theorem 2.3. . Let E be a W^* -correspondence over the algebra M and $\pi : M \rightarrow B(H)$ be a normal faithful representation of M on the Hilbert space H . Then the operator R in $B(E \otimes_\pi H)$ commutes with $\pi^E(\mathcal{L}(E))$ if and only if R is of the form $I_E \otimes X$, where $X \in \pi(M)'$, i.e., $\pi^E(\mathcal{L}(E))' = I_E \otimes \pi(M)'$.

2.1 Covariant representations.

Definition 2.4. Let E be a W^* -correspondence over a W^* -algebra M .

(1) By a covariant representation of E , or of the pair (E, M) , on a Hilbert space H , we mean a pair (T, σ) , where $\sigma : M \rightarrow B(H)$ is a nondegenerate normal $*$ -homomorphism,

and T is a bimodule (with respect to σ) map $T : E \rightarrow B(H)$, that is a linear map such that $T(\xi a) = T(\xi)\sigma(a)$ and $T(\phi(a)\xi) = \sigma(a)T(\xi)$, $\xi \in E$ and $a \in M$. We require also that T will be continuous with respect to the σ -topology on E and the ultraweak topology on $B(H)$.

(2) The representation (T, σ) is called (completely) bounded, (completely) contractive, if so is the map T . For a completely contractive covariant representation we write also c.c.c.r.

The operator space structure on E to which this definition refers is the one which comes from the embedding of E into its so-called linking algebra $\mathfrak{L}(E)$, see [9].

In this work we will consider only isometric covariant representations. A covariant representation (V, σ) is said to be isometric if $V(\xi)^*V(\eta) = \sigma(\langle \xi, \eta \rangle)$, for every $\xi, \eta \in E$. Every isometric covariant representation (V, π) of E is completely contractive, see [9, Corollary 2.13].

As an important example let $\rho = \pi^{\mathcal{F}(E)}|_{H^\infty(E)}$ be an induced representation of the Hardy algebra $H^\infty(E)$. For the representation σ set

$$\sigma = \pi^{\mathcal{F}(E)} \circ \phi_\infty,$$

and set

$$V(\xi) = \pi^{\mathcal{F}(E)}(T_\xi), \quad \xi \in E.$$

Definition 2.5. The pair (V, σ) is called the covariant representation induced by π , or simply the induced covariant representation (associated with ρ).

It is easy to check that (V, σ) in the above definition is isometric, hence, is completely contractive.

Let (T, σ) be a c.c.c.r. of (E, M) on the Hilbert space H as above. With each such representation we associate the operator $\tilde{T} : E \otimes_\sigma H \rightarrow H$, that on the elementary tensors is defined by

$$\tilde{T}(\xi \otimes h) := T(\xi)(h).$$

\tilde{T} is well defined since $T(\xi a) = T(\xi)\sigma(a)$. In [9] Muhly and Solel show that the properties of \tilde{T} reflect the properties of the covariant representation (T, σ) . They proved that (α) \tilde{T} is bounded iff T is completely bounded, and in this case $\|T\|_{cb} = \|\tilde{T}\|$; (β) \tilde{T} is contractive iff T is completely contractive; and (γ) \tilde{T} is an isometry iff (T, σ) is an isometric representation. A simple calculation gives us the intertwining relation

$$\tilde{T}\sigma^E \circ \phi(a) = \tilde{T}(\phi(a) \otimes I_H) = \sigma(a)\tilde{T}, \quad \forall a \in A. \tag{2}$$

In the following theorem we collect two basic facts concerning the theory of representations of W^* -correspondences and of their tensor algebras.

Theorem 2.6. ([10, Lemma 2.5 and Theorem 2.9]) Let E be any W^* -correspondence over an algebra M . Then

- 1) There is a bijective correspondence $(T, \sigma) \leftrightarrow \tilde{T}$ between all c.c.c.r. (T, σ) of E on a Hilbert space H and contractive operators $\tilde{T} : E \otimes_{\sigma} H \rightarrow H$ that satisfy the relation (2). Let $\tilde{T} : E \otimes_{\sigma} H \rightarrow H$ be a contraction that satisfies the relation (2). Then the associated covariant representation is the pair (T, σ) , where T is defined by $T(\xi)h := \tilde{T}(\xi \otimes h)$, $h \in H$ and $\xi \in E$.
- 2) Let E be a W^* -correspondence over the algebra M and let (T, σ) be a c.c.c.r. of (E, M) on a Hilbert space H . Then for every such representation there exists a completely contractive representation $\rho : \mathcal{T}_+(E) \rightarrow B(H)$ such that $\rho(T_\xi) = T(\xi)$ for every $\xi \in E$ and $\rho(\phi_\infty(a)) = \sigma(a)$ for every $a \in M$. Moreover, the correspondence $(T, \sigma) \leftrightarrow \rho$ is a bijection between the set of all c.c.c.r. of E and all completely contractive representations of $\mathcal{T}_+(E)$ whose restrictions to $\phi_\infty(M)$ are continuous with respect to the ultraweak topology on $\mathcal{L}(\mathcal{F}(E))$.

Restricting our attention to isometric covariant representation, we have the following.

Lemma 2.7. ([8, Lemma 2.1].) Let (V, σ) be any isometric covariant representation of the W^* -correspondence E on a Hilbert space H . Then the associated isometry $\tilde{V} : E \otimes_{\sigma} H \rightarrow H$ is an isometry that satisfy the relation $\tilde{V}\sigma^E \circ \phi(a) = \sigma(a)\tilde{V}$, $\forall a \in M$, and with range equal to the closed linear span of $\{V(\xi)h : \xi \in E, a \in M\}$. Conversely, given an isometry $\tilde{V} : E \otimes_{\sigma} H \rightarrow H$ that satisfies the above intertwining relation, then the associated covariant representation is the pair (V, σ) , where V is defined by $V(\xi)h := \tilde{V}(\xi \otimes h)$, $h \in H$ and $\xi \in E$.

The representation ρ of $\mathcal{T}_+(E)$ that corresponds to the covariant representation (T, σ) is called the integrated form of (T, σ) and denoted by $\sigma \times T$. In its turn, the representation (T, σ) is called the desintegrated form of ρ . Preceding results show that, given a normal representation σ of M , the set of all completely contractive representations of $\mathcal{T}_+(E)$ whose restrictions to $\phi_\infty(M)$ is given by σ can be parameterized by the contractions $\tilde{T} \in B(E \otimes_{\sigma} H, H)$, that satisfy the relation (2).

In this notations, the induced representation ρ_π is an integrated form of the (V, σ) , the covariant induced representation of E from Definition 2.5.

In [10] it was shown that, if the representation (T, σ) of (E, M) is such that $\|\tilde{T}\| < 1$, then the integrated form $\sigma \times T$ extends from $\mathcal{T}_+(E)$ to an ultraweakly continuous representation of $H^\infty(E)$. For a general (T, σ) , the question when such an extention is possible is more delicate, see about this [11].

Let (V, σ) be an isometric covariant representation of a general W^* -correspondence E on a Hilbert space G . For every $n \geq 1$ write $(V^{\otimes n}, \sigma)$ for the isometric covariant representation of $E^{\otimes n}$ on the same space G defined by the formula $V^{\otimes n}(\xi_1 \otimes \dots \otimes \xi_n) = V(\xi_1) \cdots V(\xi_n)$, $n \geq 1$. The associated isometric operator $\tilde{V}_n : E^{\otimes n} \otimes_{\sigma} G \rightarrow G$ (which is called the generalized power of \tilde{V}), satisfies the identity $\tilde{V}_n \sigma^{E^{\otimes n}} \circ \phi_n = \tilde{V}_n(\phi_n \otimes I_G) = \sigma \tilde{V}_n$. In this notation $\tilde{V} = \tilde{V}_1$.

For each $k \geq 0$ write G_k for $\bigvee \{V(\xi_1) \cdots V(\xi_k)g : \xi_i \in E, g \in G\}$ (with $G_0 = G$). Clearly, $G_k = \overline{\tilde{V}_k(E^{\otimes k} \otimes_{\sigma} G_0)}$. Write R_k the projection of G_0 onto G_k and let $P_k = R_k - R_{k+1}$ and $R_{\infty} = \wedge_k R_k$. Thus, $R_k = \sum_{l \geq k} P_l + R_{\infty}$ is a projection of G_0 onto G_k and $R_0 = I_{G_0}$. According to [8], the formula $L(x) = \tilde{V}_1(I_1 \otimes x)\tilde{V}_1^*$ defines a normal endomorphism of the commutant $\sigma(M)'$ and its n -th iterate is $L^n(x) = \tilde{V}_n(I_n \otimes x)\tilde{V}_n^*$. Here $I_n = I_{E^{\otimes n}}$. Simple calculation shows that $L^n(P_m) = P_{n+m}$ and $R_n = \tilde{V}_n\tilde{V}_n^* = L^n(I)$.

An isometric covariant representation (V, σ) is called fully coisometric if $R_1 = L(I_{G_0}) = I_{G_0}$. Muhly and Solel proved the following Wold decomposition theorem ([8, Theorem 2.9]):

Theorem 2.8. *Let (V, σ) be an isometric covariant representation of W^* -correspondence E on a Hilbert space G_0 . Then (V, σ) decomposes into a direct sum $(V_1, \sigma_1) \oplus (V_2, \sigma_2)$ on $G_0 = H_1 \oplus H_2$, where $(V_1, \sigma_1) = (V, \sigma)|_{H_1}$ is an induced representation and $(V_2, \sigma_2) = (V, \sigma)|_{H_2}$ is fully coisometric. Further, this decomposition is unique in the sense that if $K \subseteq G_0$ reduces (V, σ) and the restriction $(V, \sigma)|_K$ is induced (resp. fully coisometric) then $K \subseteq H_1$ (resp. $K \subseteq H_2$).*

From this theorem it follows immediately that (V, σ) is an induced representation if and only if $R_{\infty} = \wedge_k R_k = 0$.

With (V, σ) we may associate the “shift” \mathfrak{L} , that acts on the lattice of $\sigma(M)$ -invariant subspaces of G , and is defined as a geometric counterpart of the endomorphism L . In a more details, let $\mathcal{M} \in \text{Lat}(\sigma(M))$, then we set

$$\mathfrak{L}(\mathcal{M}) := \bigvee \{V(\xi)k : \xi \in E, k \in \mathcal{M}\}. \quad (3)$$

The s -power $\mathfrak{L}^s(\mathcal{M})$ is defined in the obvious way (with $\mathfrak{L}^0(\mathcal{M}) = \mathcal{M}$).

The subspace $\mathcal{M} \in \text{Lat}(\sigma(M))$, as well as its projection $P_{\mathcal{M}} \in \sigma(M)'$, is called wandering with respect to (V, σ) , if the subspaces $\mathfrak{L}^s(\mathcal{M})$, $s = 0, 1, \dots$, are mutually orthogonal. Write σ' for the restriction $\sigma|_{\mathcal{M}}$, where \mathcal{M} is wandering. Then the Hilbert space $E^{\otimes s} \otimes_{\sigma'} \mathcal{M}$ is isometrically isomorphic (under the generalised power \tilde{V}_s) to $\mathfrak{L}^s(\mathcal{M})$. Hence, we obtain an isometric isomorphism

$$\mathcal{F}(E) \otimes_{\sigma'} \mathcal{M} \cong \sum_{s \geq 0}^{\oplus} \mathfrak{L}^s(\mathcal{M}).$$

In these notations we have $G_k = \mathfrak{L}^k(G_0) \cong E^{\otimes k} \otimes_{\sigma} G_0 \cong \sum_{l \geq k}^{\oplus} E^{\otimes l} \otimes_{\pi} H$, with H as the wandering subspace and $\sigma' = \pi$.

3 Generalized inner-outer factorization

In this section we describe a general version of the theory of inner-outer factorization for an arbitrary element $g \in \mathcal{F}(E) \otimes_{\pi} H$ and arbitrary elements of commutant $\rho(H^{\infty}(E))'$, and then we deduce some natural version of factorization of elements of $\rho(H^{\infty}(E))$, where

$\rho = \rho_\pi$ denotes the representation of $H^\infty(E)$ on $\mathcal{F}(E) \otimes_\pi H$, induced by the faithful normal representation π . Although most of our constructions are correct in the general case we assume in the following that the space H of the representation π is separable (see Remark 3.14).

Before we start let S be a unilateral shift acting on the Hilbert space H and let $\mathcal{M} \subset H$ be an S -invariant subspace. Write $\mathcal{M}_0 := \mathcal{M} \ominus S(\mathcal{M})$ and $H_0 := H \ominus S(H)$ for the wandering subspaces of $S|_{\mathcal{M}}$ and of S correspondingly. Then one of the main points in the proofs of the classical theorems of Beurling, Halmos and Lax on invariant subspaces of S is that $\dim \mathcal{M}_0 \leq \dim H_0$.

In our situation let us consider $G = \mathcal{F}(E) \otimes_\pi H$ as the left $H^\infty(E)$ -module with the action defined by $X \cdot g := \rho_\pi(X)g$, for any $X \in H^\infty(E)$ and $g \in G$. Thus, in this language every $\rho_\pi(H^\infty(E))$ -invariant subspace $\mathcal{M} \subseteq G$ defines an $H^\infty(E)$ -submodule in G . Note that in this case $\text{End}(G)$ - the set of all the endomorphisms of this module is nothing but $\rho_\pi(H^\infty(E))'$. The covariant representation (V, σ) , associated with the induced representation ρ_π , defines the generalized shift \mathfrak{L} . Hence, we need to compare the wandering subspaces $G \ominus \mathcal{L}(G)$ and $\mathcal{M}_0 := \mathcal{M} \ominus \mathcal{L}(\mathcal{M})$. More precisely, we need to compare the representations of M on H and on the \mathcal{M}_0 . This is done in the following proposition

Proposition 3.1. [8, Proposition 4.1] *Let \mathcal{M} be a $\rho_\pi(H^\infty(E))$ -invariant subspace of $\mathcal{F}(E) \otimes_\pi H$ and let (V, σ) be the associated covariant representation of (E, M) . If $\mathcal{M}_0 = \mathcal{M} \ominus \mathfrak{L}(M)$ is the \mathfrak{L} -wandering subspace in $\mathcal{F}(E) \otimes_\pi H$, then the restriction $\sigma|_{\mathcal{M}_0}$ is unitarily equivalent to a subrepresentation of π if and only if there is a partial isometry in $\rho_\pi(H^\infty(E))'$ with final space \mathcal{M}*

As the induced covariant representation (V, σ) is a natural generalization of a pure isometry, that is of a shift operator, a partial isometry in $\rho_\pi(H^\infty(E))'$ was called an inner operator, [8]. In our work we shall generalize this definition, and shall use this term for a suitable isometric operator which intertwines representations of M .

In fact we use the modules's language only to emphasize the analogy with the classical theory of shifts. Instead of this we shall constantly use the language of generalized shift \mathfrak{L} , associated with the induced covariant representation (V, σ) .

3.1 Inner-outer factorization of elements of $\mathcal{F}(E) \otimes_\pi H$

We turn to the inner-outer factorization of a vector in $\mathcal{F}(E) \otimes_\pi H$. To this end we prove a Beurling type theorem for a cyclic (V, σ) -invariant subspace generated by this vector, i.e. for subspaces of the form $\mathcal{M}_g = \overline{\rho(H^\infty(E))g}$, where $g \in G_0 := \mathcal{F}(E) \otimes_\pi H$ is arbitrary.

Write P_g for the projection $P_{\mathcal{M}_g}$ onto \mathcal{M}_g . Clearly, \mathcal{M}_g is a $\rho(H^\infty(E))$ -invariant subspace, $P_g \in \sigma(M)$ and the restriction $(V, \sigma)|_{\mathcal{M}_g}$ is an induced isometric covariant representation, as follows from [8, Proposition 2.11]. In particular, $\mathcal{M}_g \in \text{Lat}(\sigma(M))$ and the subspace $\mathfrak{L}(\mathcal{M}_g)$ is well defined. Set

$$\mathcal{N}_g := \mathcal{M}_g \ominus \mathfrak{L}(\mathcal{M}_g). \quad (4)$$

By Q_g we denote the orthogonal projection of G_0 on \mathcal{N}_g . Then $Q_g = P_g - L(P_g)$ is the wandering projection associated with the restricted representation $(V, \sigma)|\mathcal{M}_g$. Since $L^k(Q_g) \perp L^s(Q_g)$, $k \neq s$, and since $(V, \sigma)|\mathcal{M}_g$ is induced we obtain the decomposition $\mathcal{M}_g = \sum_{k \geq 0}^\oplus L^k(Q_g)\mathcal{M}_g$. Equivalently, $\mathfrak{L}^k(\mathcal{N}_g) \perp \mathfrak{L}^s(\mathcal{N}_g)$, $k \neq s$, and

$$\mathcal{M}_g = \mathcal{N}_g \oplus \mathfrak{L}(\mathcal{N}_g) \oplus \dots.$$

We set $g_0 := Q_g g \in \mathcal{N}_g$.

Lemma 3.2. $\mathcal{N}_g = \overline{\sigma(M)g_0}$.

Proof.

Since $\sigma(a)g_0 \in \mathcal{N}_g$ for each $a \in M$, then $\overline{\sigma(M)g_0} \subset \mathcal{N}_g$. Let $z \in \mathcal{N}_g \ominus \overline{\sigma(M)g_0}$. Then $z \perp \sigma(a)g_0$ for each $a \in M$ and in particular $z \perp g_0$. Write $g = g_0 + (g - g_0)$. Since $g - g_0 \in \mathfrak{L}(\mathcal{M}_g)$, we get $z \perp g - g_0$. For each $k \geq 1$, $V^{\otimes k}(\xi)g \in \mathfrak{L}^k(\mathcal{M}_g) \subset \mathcal{M}_g \ominus \mathcal{N}_g$. So, $z \perp V^{\otimes k}(\xi)g$ for each $k \geq 1$, $\xi \in E^{\otimes k}$. It follows that $z \perp \mathcal{M}_g$ and then $z = 0$, $\forall z \in \mathcal{N}_g \ominus \overline{\sigma(M)g_0}$, i.e. $\mathcal{N}_g = \overline{\sigma(M)g_0}$. \square

Remark 3.3. It is easy to see that every element of the form $\xi \otimes h \in E^{\otimes k} \otimes_\pi H$, for every $k \geq 1$ and every $\xi \in E^{\otimes k}$, is a wandering vector.

For each $a \in M$ we set

$$\tau(a) = \langle \sigma(a)g_0, g_0 \rangle = \langle (\phi_\infty(a) \otimes I)g_0, g_0 \rangle. \quad (5)$$

This defines a positive ultraweakly continuous linear functional τ on M . Since π is assumed to be faithful, we can view τ as defined on $\pi(M) \subset B(H)$.

Hence, there is a sequence $\{h_i\} \subset H$ with $\sum_i \|h_i\|^2 \leq \infty$, such that

$$\tau(a) = \sum_i \langle \pi(a)h_i, h_i \rangle = \langle \sigma(a)g_0, g_0 \rangle. \quad (6)$$

This sequence $\{h_i\}$ can be viewed as an element of the space $H^{(\infty)} = H \oplus H \oplus \dots$ and we write $h_\tau = \{h_i\}$ for it to indicate that it is defined by the functional τ . For each $a \in M$ we define an operator (ampliation of π) $\hat{\pi}(a) = \text{diag}(\pi(a)) \in B(H^{(\infty)})$, acting on $H^{(\infty)}$ by: $\hat{\pi}(a)k = \{\pi(a)k_i\}$ where $k = \{k_i\} \in H^{(\infty)}$. Then, for h_τ we have

$$\tau(a) = \langle \hat{\pi}(a)h_\tau, h_\tau \rangle = \sum_i \langle \pi(a)h_i, h_i \rangle = \langle \sigma(a)g_0, g_0 \rangle.$$

Set

$$K_\tau := \overline{\hat{\pi}(M)h_\tau} \subseteq H^{(\infty)}, \quad (7)$$

and define the operator $w_0 : H^{(\infty)} \rightarrow \mathcal{N}_g$, by

$$\hat{\pi}(a)h_\tau \mapsto (\phi_\infty(a) \otimes I)g_0 = \sigma(a)g_0, \quad (8)$$

and $w_0 = 0$ on $H^{(\infty)} \ominus K_\tau$. Since $\langle \hat{\pi}(a)h_\tau, h_\tau \rangle = \langle \sigma(a)g_0, g_0 \rangle$, w_0 is a well defined partial isometry from $H^{(\infty)}$ onto \mathcal{N}_g . Taking $a = 1 \in M$, we get $w_0h_\tau = g_0$, and we see that

$$w_0(\hat{\pi}(a)h_\tau) = \sigma(a)g_0 = \sigma(a)w_0(h_\tau).$$

Since the sets $\{\hat{\pi}(a)h_\tau : a \in M\}$ and $\{\sigma(a)g_0 : a \in M\}$ are dense in K_τ and \mathcal{N}_g respectively we obtain that w_0 intertwines $\hat{\pi}$ and σ :

$$w_0\hat{\pi}(a) = \sigma(a)w_0, \quad \forall a \in M. \quad (9)$$

We conclude:

Proposition 3.4. *The operator w_0 is a partial isometry intertwining $\hat{\pi}$ and σ , with initial subspace K_τ , and with \mathcal{N}_g as final subspace.*

Now let us consider the space $G_0^{(\infty)} = G_0 \oplus G_0 \oplus \dots$ and identify it with the space $\mathcal{F}(E) \otimes_{\hat{\pi}} H^{(\infty)}$. As usual we identify $M \otimes_{\hat{\pi}} H^{(\infty)}$ with $H^{(\infty)}$ and set $\hat{\mathfrak{L}}(H^{(\infty)}) := \mathfrak{L}(H) \oplus \mathfrak{L}(H) \oplus \dots = \mathfrak{L}(H)^{(\infty)}$. Hence, for $G_0^{(\infty)}$ we can write the decomposition

$$G_0^{(\infty)} = H^{(\infty)} \oplus \hat{\mathfrak{L}}(H^{(\infty)}) \oplus \hat{\mathfrak{L}}^2(H^{(\infty)}) \oplus \dots \quad (10)$$

Write $\hat{\rho}$ for the induced representation $\rho_{\hat{\pi}}$ of $H^\infty(E)$ on $\mathcal{F}(E) \otimes_{\hat{\pi}} H^{(\infty)}$, $X \mapsto X \otimes I_{H^{(\infty)}}$, $X \in H^\infty(E)$. Thus, $\hat{\rho}$ is an ampliation of the induced representation ρ on $\mathcal{F}(E) \otimes_\pi H$. Then the associated isometric covariant representation of E on $\mathcal{F}(E) \otimes_{\hat{\pi}} H^{(\infty)}$ is the pair $(\hat{V}, \hat{\sigma})$ where $\hat{V}(\xi) = T_\xi \otimes I_{H^{(\infty)}}$ and $\hat{\sigma}(a) = \phi_\infty(a) \otimes I_{H^{(\infty)}}$. We call it an ampliation of (V, σ) . Similarly we define the covariant representations $(\hat{V}^{\otimes k}, \hat{\sigma})$ and the associated operators $(\hat{V}_k)^\sim$, $k \geq 1$.

For each $k \geq 0$ we identify $\hat{\mathfrak{L}}^k(K_\tau)$ with $E^{\otimes k} \otimes_{\hat{\pi}} K_\tau$ and $\mathfrak{L}^k(\mathcal{N}_g)$ with $E^{\otimes k} \otimes_\sigma \mathcal{N}_g$. So, $\sum_{k \geq 0} \hat{\mathfrak{L}}^k(K_\tau) = \sum_{k \geq 0} E^{\otimes k} \otimes_{\hat{\pi}} K_\tau = \mathcal{F}(E) \otimes_{\hat{\pi}} K_\tau$ and $\mathcal{M}_g = \sum_{k \geq 0} E^{\otimes k} \otimes_\sigma \mathcal{N}_g = \mathcal{F}(E) \otimes_\sigma \mathcal{N}_g$.

Write σ' for the restriction $\sigma|_{\mathcal{N}_g}$. Consider the restriction $\rho_\pi(H^\infty(E))|_{\mathcal{M}_g}$ and the induced representation $\sigma'^{\mathcal{F}(E)}(H^\infty(E))$ of $H^\infty(E)$ on \mathcal{M}_g . Then for every $k \geq 0$ and $\xi \otimes z \in E^{\otimes k} \otimes_\sigma \mathcal{N}_g$ we have

$$\rho_\pi(\phi_\infty(a))(\xi \otimes z) = (\phi_k(a) \otimes I_H)(\xi \otimes z) = (\phi(a)\xi) \otimes z = (\phi_k(a) \otimes I_{\mathcal{N}_g})(\xi \otimes z),$$

and

$$\rho_\pi(T_\theta)(\xi \otimes z) = (T_\theta \otimes I_H)(\xi \otimes z) = \theta \otimes \xi \otimes z = (T_\theta \otimes I_{\mathcal{N}_g})(\xi \otimes z).$$

Thus, the representation $\rho_\pi(H^\infty(E))|_{\mathcal{M}_g}$ is equal to the representation $\rho_{\sigma'}(H^\infty(E)) = \sigma'^{\mathcal{F}(E)}(H^\infty(E))$.

Using the fact that $\{\hat{\pi}(M)h_\tau\}$ is dense in K_τ and $\{\sigma(M)g_0\}$ is dense in \mathcal{N}_g we define for every $k \geq 0$ the operator:

$$w_k : E^{\otimes k} \otimes_{\hat{\pi}} K_\tau \rightarrow E^{\otimes k} \otimes_{\sigma} \mathcal{N}_g,$$

by $\xi \otimes \hat{\pi}(a)h_\tau \mapsto \xi \otimes \sigma(a)g_0$, $\xi \in E^{\otimes k}$, $a \in M$. Since $\{\xi \otimes \hat{\pi}(a)h_\tau\}$ and $\{\xi \otimes \sigma(a)g_0\}$ span $E^{\otimes k} \otimes_{\hat{\pi}} K_\tau$ and $E^{\otimes k} \otimes_{\sigma} \mathcal{N}_g$ respectively, the operator w_k is well defined.

For $k = 0$ we have already showed that w_0 is an isometry from K_τ onto \mathcal{N}_g that intertwines the representations $\hat{\pi}$ and σ .

Proposition 3.5. *The operator $w_k : E^{\otimes k} \otimes_{\hat{\pi}} K_\tau \rightarrow E^{\otimes k} \otimes_{\sigma} \mathcal{N}_g$ is a well defined isometry that intertwines the representation $\hat{\sigma}(\cdot)|_{E^{\otimes k} \otimes_{\hat{\pi}} K_\tau}$ and $\sigma(\cdot)|_{E^{\otimes k} \otimes_{\sigma} H}$*

Proof. Let $\xi_i \otimes \hat{\pi}(a_i)h_\tau$, $i = 1, 2$, be in $E^{\otimes k} \otimes_{\hat{\pi}} K_\tau$, and $w_k(\xi_i \otimes \hat{\pi}(a_i)h_\tau) = \xi_i \otimes \sigma(a_i)g_0$. Denoting $c = \langle \xi_1, \xi_2 \rangle$ we obtain

$$\langle \xi_1 \otimes \hat{\pi}(a_1)h_\tau, \xi_2 \otimes \hat{\pi}(a_2)h_\tau \rangle = \langle \hat{\pi}(a_2)^* \hat{\pi}(c)^* \hat{\pi}(a_1)h_\tau, h_\tau \rangle = \langle \hat{\pi}(a_2^* c^* a_1)h_\tau, h_\tau \rangle.$$

Similarly,

$$\langle \xi_1 \otimes \sigma(a_1)g_0, \xi_2 \otimes \sigma(a_2)g_0 \rangle = \langle \sigma(a_2^* c^* a_1)g_0, g_0 \rangle,$$

so, w_k is an isometry.

Let $\xi \otimes k \in E^{\otimes k} \otimes_{\hat{\pi}} K_\tau$. Then $w_k(\xi \otimes k) = \xi \otimes z \in E^{\otimes k} \otimes_{\sigma} \mathcal{N}_g$, and

$$w_k((\phi_k(a) \otimes I_{K_\tau})(\xi \otimes k)) = w_k((\phi(a)\xi) \otimes k) = (\phi(a)\xi) \otimes z.$$

But

$$(\phi(a)\xi) \otimes z = (\phi_k(a) \otimes I_{\mathcal{N}_g})(\xi \otimes z) = (\phi_k(a) \otimes I_{\mathcal{N}_g})w_k(\xi \otimes k).$$

This proves the intertwining

$$w_k((\phi_k(a) \otimes I_{K_\tau})(\xi \otimes k)) = (\phi_k(a) \otimes I_{\mathcal{N}_g})w_k(\xi \otimes k).$$

□

From the definition of the generalized powers we see that each w_k is associated with w_0 by the identity $V^{\otimes k}(\xi)w_0 = w_k \hat{V}^{\otimes k}(\xi)$, $\xi \in E^{\otimes k}$.

Now we set

$$W = \sum_k w_k : \mathcal{F}(E) \otimes_{\hat{\pi}} K_\tau \rightarrow \mathcal{F}(E) \otimes_{\sigma} H. \quad (11)$$

It follows from the Propositions 3.4 and 3.5 that W is a well defined isometry and its image is \mathcal{M}_g .

Remark 3.6. It is obvious from the definition of w_k that $w_k(E^{\otimes k} \otimes_{\hat{\pi}} K_\tau) = E^{\otimes k} \otimes_{\hat{\sigma}} w_0(K_\tau)$. Fix $x \in \mathcal{F}(E) \otimes_{\hat{\pi}} K_\tau$ of the form $x = \xi \otimes k$, $\xi \in \mathcal{F}(E)$, and $k \in K_\tau$. Then we can write $Wx = W(\xi \otimes k) = \xi \otimes w_0k$. Hence, $W = I_{\mathcal{F}(E)} \otimes w_0$.

Proposition 3.7. *The operator W is an isometry from $\tilde{K} := \mathcal{F}(E) \otimes_{\hat{\pi}} K_\tau \subset G^{(\infty)}$ into $\mathcal{F}(E) \otimes_{\pi} H$ with \mathcal{M}_g as a final subspace. Further, W intertwines the representations $\hat{\rho}|_{\tilde{K}}$ and $\rho|_{\mathcal{M}_g}$ of the algebra $H^\infty(E)$:*

$$W\hat{\rho}(X)|_{\tilde{K}} = \rho(X)W. \quad (12)$$

for every $X \in H^\infty(E)$.

Proof. Its remains to show only the intertwining property. To show it, it is enough to show that (12) holds for the generators $\{T_\xi, \phi_\infty(a) : \xi \in E, a \in M\}$ of the Hardy algebra.

Since $W|_{E^{\otimes k} \otimes_{\hat{\pi}} K_\tau} = w_k$, the equality $W\hat{\rho}(\phi_\infty(a)) = \rho(\phi_\infty(a))W$, $a \in M$, follows form Proposition 3.5.

Now let $X = T_\xi$. Then $\hat{\rho}(T_\xi) = T_\xi \otimes I_{H^{(\infty)}}$ and $\rho(T_\xi) = T_\xi \otimes I_H$. Fix $\eta \otimes k \in \mathcal{F}(E) \otimes_{\hat{\pi}} K_\tau$, then using the previous remark we obtain

$$W(T_\xi \otimes I_{H^{(\infty)}})(\eta \otimes k) = W(\xi \otimes \eta \otimes k) = \xi \otimes \eta \otimes w_0 k = (T_\xi \otimes I_{\mathcal{N}_g})(\eta \otimes w_0 k) = (T_\xi \otimes I_H)W(\eta \otimes k).$$

□

We obtained an isometry $W : \tilde{K} = \mathcal{F}(E) \otimes_{\hat{\pi}} K_\tau \rightarrow \mathcal{F}(E) \otimes_{\pi} H$ with final subspace $\mathcal{M}_g = \mathcal{F}(E) \otimes_{\sigma} \mathcal{N}_g$ that intertwines the induced representations $\hat{\rho}$ and ρ of Hardy algebra $H^\infty(E)$. In the paper [8], partial isometries that lies in $\pi^{\mathcal{F}(E)}(\mathcal{T}_+(E))'$ are called inner operators. In our case the isometry W acts between different spaces, but intertwining $\hat{\rho}$ and ρ . So, it is natural to call such operators *inner* operators.

We present here the general definition

Definition 3.8. Given two normal representations π and μ of M on Hilbert spaces H and K respectively.

- 1) An isometry $W : \mathcal{F}(E) \otimes_{\mu} K \rightarrow \mathcal{F}(E) \otimes_{\pi} H$ will be called an inner operator if
 - (a) $K \subseteq H^{(\infty)}$ is a $\hat{\pi}(M)$ - invariant subspace of $H^{(\infty)}$, where $\hat{\pi}$ be the ampliation of π on $H^{(\infty)}$ and $\mu = \hat{\pi}|_K$. In other words, K is an M -submodule of $H^{(\infty)}$ with respect to $\hat{\pi}$.
 - (b) $W\rho_\mu(X) = \rho_\pi(X)W$, $X \in H^\infty(E)$.
- 2) A vector $y \in \mathcal{F}(E) \otimes_{\mu} K$ will be called outer if $\overline{\rho_\mu(H^\infty(E))y} = \mathcal{F}(E) \otimes_{\mu} K$.

This definition and Proposition 3.7 gives us the following Beurling type theorem for cyclic subspaces \mathcal{M}_g that are considered as $\rho(H^\infty(E))$ -modules.

Theorem 3.9. *Let $g \in G_0 = \mathcal{F}(E) \otimes_{\pi} H$ and let $\mathcal{M}_g = \overline{\rho((H^\infty(E))g)}$ be a cyclic $\rho_\pi(H^\infty(E))$ -submodule in G_0 . Then there is a subspace $\mathcal{K} \subseteq H^{(\infty)}$ which is $\hat{\pi}(M)$ -invariant and an inner operator $W : \mathcal{F}(E) \otimes_{\mu} \mathcal{K} \rightarrow G_0$ (where we write μ for $\hat{\pi}|_{\mathcal{K}}$) such that*

1)

$$\mathcal{M}_g = W(\mathcal{F}(E) \otimes_{\mu} \mathcal{K}). \quad (13)$$

2) The vector $y := W^*g$ is outer in $\mathcal{F}(E) \otimes_{\mu} \mathcal{K}$.

The outer vector $y = W^*g$ will be called the outer part of g . Thus, the outer part of an arbitrary $g \in G$ is an outer vector in the sense of Definition 3.8.

Definition 3.10. In the notation of the previous theorem, the equality

$$g = Wy, \quad (14)$$

will be called the inner-outer factorization of $g \in G_0$.

The first part of the following theorem was already proved:

Theorem 3.11. *Let $\pi : M \rightarrow B(H)$ be a faithful normal representation of W^* -algebra M on Hilbert space H . If $g \in \mathcal{F}(E) \otimes_{\pi} H$ then there is a M -submodule $\mathcal{K} \subset H^{(\infty)}$ with respect to the infinite amplification $\hat{\pi}$ of π , an inner operator $W : \mathcal{F}(E) \otimes_{\mu} \mathcal{K} \rightarrow \mathcal{F}(E) \otimes_{\pi} H$, where $\mu = \hat{\pi}|_{\mathcal{K}}$, and an outer vector $y \in \mathcal{F}(E) \otimes_{\mu} \mathcal{K}$ such that $g = Wy$ is an inner-outer factorization of g .*

This factorization is unique in the following sense. Let $i = 1, 2$ and let \mathcal{K}_i are two M -submodules in $H^{(\infty)}$ with respect to $\hat{\pi}$ and let $\mu_i = \hat{\pi}|_{\mathcal{K}_i}$ be two normal representations of M on \mathcal{K}_i . Suppose further that $W_i : \mathcal{F}(E) \otimes_{\mu_i} \mathcal{K}_i \rightarrow \mathcal{F}(E) \otimes_{\pi} H$ are inner operators and $y_i \in \mathcal{F}(E) \otimes_{\mu_i} \mathcal{K}_i$ are outer vectors such that $g = W_1y_1 = W_2y_2$. Then there is a unitary $U : \mathcal{F}(E) \otimes_{\mu_1} \mathcal{K}_1 \rightarrow \mathcal{F}(E) \otimes_{\mu_2} \mathcal{K}_2$ such that $Uy_1 = y_2$ and the equality $U\rho_{\mu_1}(X) = \rho_{\mu_2}(X)U$ holds for every $X \in H^{\infty}(E)$.

Proof. It remains to prove the uniqueness part. Let

$$W_i : \mathcal{F}(E) \otimes_{\mu_i} \mathcal{K}_i \rightarrow \mathcal{F}(E) \otimes_{\pi} H,$$

where $\mu_i, \mathcal{K}_i, y_i, i = 1, 2$, are as in the statement of the theorem. Then $W_iy_i = g$ and

$$W_i\rho_{\mu_i}(X) = \rho_{\pi}(X)W_i, \quad X \in H^{\infty}(E), \quad i = 1, 2. \quad (15)$$

Since $y_i = W_i^*g$ are outer in $\mathcal{F}(E) \otimes_{\mu_i} \mathcal{K}_i$, $i = 1, 2$, and since W_i have a common final subspace $\mathcal{M}_g \subset \mathcal{F}(E) \otimes_{\pi} H$, we get

$$\overline{W_1\mu_1^{\mathcal{F}(E)}(H^{\infty}(E))y_1} = \mathcal{M}_g = \overline{W_2\mu_2^{\mathcal{F}(E)}(H^{\infty}(E))y_2}.$$

Set $U := W_2^*W_1 : \mathcal{F}(E) \otimes_{\mu_1} \mathcal{K}_1 \rightarrow \mathcal{F}(E) \otimes_{\mu_2} \mathcal{K}_2$. Then U is a unitary operator and $Uy_1 = y_2$. Finally, from the intertwining relation (15) we obtain

$$W_1\rho_{\mu_1}(X)W_1^* = W_2\rho_{\mu_2}(X)W_2^*.$$

Hence,

$$U\rho_{\mu_1}(X) = \rho_{\mu_2}(X)U,$$

as we wanted. \square

Remark 3.12. Note that, in fact, the unitary U appearing in the proof can be thought of as a partial isometry in $\rho_{\hat{\pi}}(H^{\infty}(E))'$.

3.2 Inner-Outer factorization of elements of the algebra $\rho_\pi(H^\infty(E))'$

We shall now apply Theorem 3.11 to get an inner-outer factorization of an element of the commutant $\rho_\pi(H^\infty(E))'$.

First we consider the simple case when π is a cyclic representation of the algebra M , i.e. we assume that there is $h \in H$ such that $\pi(M)h = H$.

Fix $S \in \rho_\pi(H^\infty(E))'$ and set $g := S(1 \otimes h) \in \mathcal{F}(E) \otimes_\pi H$, where $1 \otimes h \in M \otimes_\pi H$ and h is a π -cyclic vector in H .

Now form the subspace $\mathcal{M}_g = \overline{\rho_\pi(H^\infty(E))g} = \overline{\rho_\pi(H^\infty(E))S(1 \otimes h)}$. Since S is in the commutant of $\rho_\pi(H^\infty(E))$ and h is π -cyclic we obtain

$$\overline{\rho_\pi(H^\infty(E))S(1 \otimes h)} = \overline{S\rho_\pi(H^\infty(E))(1 \otimes h)} = \overline{S(\mathcal{F}(E) \otimes_\pi H)}.$$

Thus,

$$\mathcal{M}_g = \overline{S(\mathcal{F}(E) \otimes_\pi H)}.$$

By Theorem 3.11 there are a $\hat{\pi}$ -invariant Hilbert subspace $\mathcal{K} \subseteq H^{(\infty)}$, an outer element $y \in \mathcal{F}(E) \otimes_\tau \mathcal{K}$, with $\tau = \hat{\pi}|_{\mathcal{K}}$, and an inner operator $W : \mathcal{F}(E) \otimes_\tau \mathcal{K} \rightarrow \mathcal{F}(E) \otimes_\pi H$ such that $Wy = g$ and \mathcal{M}_g is the final subspace of W .

We set

$$Y := W^*S : \mathcal{F}(E) \otimes_\pi H \rightarrow \mathcal{F}(E) \otimes_\tau \mathcal{K}. \quad (16)$$

Proposition 3.13. 1) $\overline{Y(\mathcal{F}(E) \otimes_\pi H)} = \mathcal{F}(E) \otimes_\tau \mathcal{K}$;

2) $Y\rho_\pi(X) = \rho_\tau(X)Y$, $\forall X \in H^\infty(E)$.

Proof. 1) Since $S(\mathcal{F}(E) \otimes_\pi H)$ is dense in \mathcal{M}_g and since W is an isometry with \mathcal{M}_g as its final subspace, we obtain that $W^*S(\mathcal{F}(E) \otimes_\pi H)$ is dense in $\mathcal{F}(E) \otimes_\tau \mathcal{K}$.

2) Since $\rho_\pi(X)W = W\rho_\tau(X)$ and S is in commutant of $\rho_\pi(H^\infty(E))$, we have

$$Y\rho_\pi(X) = W^*S\rho_\pi(X) = W^*\rho_\pi(X)S = \rho_\tau(X)W^*S = \rho_\tau(X)Y,$$

$X \in H^\infty(E)$. \square

The operator Y will be called the outer part of S and the equality $S = WY$ we call the inner-outer factorization of the operator $S \in \rho_\pi(H^\infty(E))'$. The definition of the operator Y a priory depends on the choice of the cyclic vector h . Let $h' \in H$ be another cyclic vector, $\overline{\pi(M)h'} = H$, and set $g' := S(a \otimes h')$ and $\mathcal{M}_{g'} = \overline{\rho_\pi(H^\infty(E))S(1 \otimes h')}$. Then

$$\mathcal{M}_{g'} = \overline{S\rho_\pi(H^\infty(E))(1 \otimes h')} = \mathcal{M}_g.$$

Now, by Theorem 3.11, there are $\hat{\pi}$ -invariant Hilbert subspace $\mathcal{K}' \subseteq H^{(\infty)}$, representation $\tau' = \hat{\pi}|_{\mathcal{K}'}$, the outer vector $y' \in \mathcal{F}(E) \otimes_{\tau'} \mathcal{K}'$ and an inner operator W' such that $W'y' = g'$. Then the corresponding outer part is $Y' = W'^*S$. The operators W and W' have a common final subspace \mathcal{M}_g and we define $U := W^*W'$. Hence, the operator $U : \mathcal{F}(E) \otimes_{\tau'} \mathcal{K}' \rightarrow \mathcal{F}(E) \otimes_\tau \mathcal{K}$ is unitary such that $W' = WU$ and $U\rho_{\tau'}(X) = \rho_\tau(X)U$. The last intertwining

relation follows as in the proof of Theorem 3.11. Further, we have $Y = W^*S$, $Y' = W'^*S$ and then $S = WY = W'Y' = WUY'$. Thus, $Y = UY'$. This shows that the definition of Y does not depend on the choice of the cyclic element $h \in H$ up to the unitary operator U .

Any operator $Z : \mathcal{F}(E) \otimes_{\pi} H \rightarrow \mathcal{F}(E) \otimes_{\tau} \mathcal{K}$ with dense range that intertwines the representations ρ_{τ} and ρ_{π} of $H^{\infty}(E)$, will be called an *outer* operator. Before we give the general definition we consider the general case of noncyclic representation π .

So let $\pi : M \rightarrow B(H)$ be, as usual, a faithful normal representation and let $S \in \rho_{\pi}(H^{\infty}(E))'$

Set $\mathcal{M} := \overline{\mathcal{S}(\mathcal{F}(E) \otimes_{\pi} H)}$ and let $P_{\mathcal{N}} := P_{\mathcal{M}} - L(P_{\mathcal{M}})$ be a wandering projection with range \mathcal{N} . Then in terms of the shift \mathfrak{L} we get the Wold decomposition $\mathcal{M} = \mathcal{N} \oplus \mathfrak{L}(\mathcal{N}) \oplus \mathfrak{L}^2(\mathcal{N}) \oplus \dots$ that we can identify with

$$\mathcal{M} = \mathcal{N} \oplus (E \otimes_{\sigma} \mathcal{N}) \oplus (E^{\otimes 2} \otimes_{\sigma} \mathcal{N}) \oplus \dots \quad (17)$$

Consider the restriction of $\sigma(M)|_{\mathcal{N}}$. Then \mathcal{N} can be written as a direct sum $\sum_i^{\oplus} \mathcal{N}_i$ of $\sigma(M)|_{\mathcal{N}}$ -cyclic subspaces \mathcal{N}_i with cyclic vectors $g_i \in \mathcal{N}$, such that $\mathcal{N}_i = \overline{\sigma(M)g_i}$. Thus,

$$\mathcal{N} = \sum_i^{\oplus} \overline{\sigma(M)g_i}.$$

The representation (V, σ) is an isometric representation and the generalized powers $\tilde{V}_k : E^{\otimes k} \otimes_{\sigma} (\mathcal{F}(E) \otimes_{\pi} H) \rightarrow \mathcal{F}(E) \otimes_{\pi} H$ are isometric operators. It follows that if either $k \neq l$ or $i \neq j$ one has $E^{\otimes k} \otimes_{\sigma} (\sigma(M)g_i) \perp E^{\otimes l} \otimes_{\sigma} (\sigma(M)g_j)$.

Then the Wold decomposition (17) can be written as

$$\mathcal{M} = \sum_i^{\oplus} \overline{\sigma(M)g_i} \oplus (E \otimes_{\sigma} \sum_i^{\oplus} \overline{\sigma(M)g_i}) \oplus \dots \oplus (E^{\otimes k} \otimes_{\sigma} \sum_i^{\oplus} \overline{\sigma(M)g_i}) \oplus \dots$$

Rearranging terms we can write

$$\mathcal{M} = \mathcal{M}_{g_1} \oplus \mathcal{M}_{g_2} \oplus \dots \oplus \mathcal{M}_{g_m} \oplus \dots,$$

where $\mathcal{M}_{g_i} = \sum_k^{\oplus} E^{\otimes k} \otimes_{\sigma} \mathcal{N}_i = \overline{\rho_{\pi}(H^{\infty}(E))g_i}$ with \mathcal{N}_i as a wandering subspace in \mathcal{M}_{g_i} (and thus the cyclic vectors g_i are wandering). From now on we shall write $\mathcal{M}_i = \mathcal{M}_{g_i}$ and then $\mathcal{M} = \sum_i^{\oplus} \mathcal{M}_i$.

Since all \mathcal{M}_i are pairwise orthogonal we may apply Theorem 3.11 for every i . So, for every i there is a $\hat{\pi}(M)$ -invariant Hilbert subspace $\mathcal{K}_i \subseteq H^{(\infty)}$, a normal representation $\tau_i = \hat{\pi}|_{\mathcal{K}_i}$ of M on \mathcal{K}_i , an outer element $y_i \in \mathcal{F}(E) \otimes_{\tau_i} \mathcal{K}_i$ and an inner operator $W_i : \mathcal{F}(E) \otimes_{\tau_i} \mathcal{K}_i \rightarrow \mathcal{F}(E) \otimes_{\pi} H$ such that $g_i = W_i y_i$, the final subspace of W_i is \mathcal{M}_i and $W_i \rho_{\tau_i}(X) = \rho_{\pi}(X) W_i$, $X \in H^{\infty}(E)$. Further, for every i we set $Y_i := W_i^* S$. The representation $\sigma(M)|_{\mathcal{N}}$ is cyclic when restricted to \mathcal{N}_i , hence by Theorem 3.13 the operator Y_i has a dense range in $\mathcal{F}(E) \otimes_{\tau_i} \mathcal{K}_i$, intertwines the representations ρ_{π} and ρ_{τ_i} of $H^{\infty}(E)$, and it does not depend on the choice of the cyclic element up to some unitary operator U_i .

Remark 3.14. Each \mathcal{K}_i is a $\hat{\pi}(M)$ -invariant subspace of $H^{(\infty)}$. If we write n for the cardinality of the set of the cyclic vectors $\{g_i\}$, then, since H is separable, $n \leq \aleph_0$. Thus, identifying $H^{(\infty)}$ with $(H^{(\infty)})^{(n)}$ we can, and will, assume that $\{\mathcal{K}_i\}$ are pairwise orthogonal subspaces in $H^{(\infty)}$ and we write $\mathcal{K} = \sum_i^{\oplus} \mathcal{K}_i$. In this case the representation $\tau = \sum_i \tau_i$ is subrepresentation of $\hat{\pi}$ obtained by restricting $\hat{\pi}$ to the $\hat{\pi}(M)$ -invariant subspace $\mathcal{K} \subseteq H^{(\infty)}$

In view of this remark, the operator $W := \sum_i W_i$ acts from the subspace $\mathcal{F}(E) \otimes_{\tau} \mathcal{K} \subseteq \mathcal{F}(E) \otimes_{\hat{\pi}} H^{(\infty)}$ into $\mathcal{F}(E) \otimes_{\pi} H$ and is an inner operator. We also write $Y := \sum_i Y_i : \mathcal{F}(E) \otimes_{\pi} H \rightarrow \mathcal{F}(E) \otimes_{\tau} \mathcal{K}$, and it follows that $S = WY$.

Definition 3.15. In the above notations, each operator $Y : \mathcal{F}(E) \otimes_{\pi} H \rightarrow \mathcal{F}(E) \otimes_{\tau} \mathcal{K}$ that has a dense range and such that $Y\rho_{\pi}(X) = \rho_{\tau}(X)Y$, for every $X \in H^{\infty}(E)$, will be called an outer operator.

If $S \in \rho_{\pi}(H^{\infty}(E))'$ then every factorization of S is of the form

$$S = WY, \quad (18)$$

where Y is an outer operator with a dense range in $\mathcal{F}(E) \otimes_{\tau} \mathcal{K}$, and W is an inner operator from $\mathcal{F}(E) \otimes_{\tau} \mathcal{K}$ into $\mathcal{F}(E) \otimes_{\pi} H$ will be called an inner-outer factorization of S . The operator Y in such factorization will be called the outer part of S . We write also Y_S for Y .

The outer part $Y_S = W^*S$ of $S \in \rho_{\pi}(H^{\infty}(E))'$ is indeed an outer operator since

$$\rho_{\tau}(X)Y_S = \rho_{\tau}(X)W^*S = W^*\rho_{\pi}(X)S = W^*S\rho_{\pi}(X) = Y_S\rho_{\pi}(X).$$

We proved the existence part of the following theorem

Theorem 3.16. Let $S \in \rho_{\pi}(H^{\infty}(E))'$. Then there exist a $\hat{\pi}$ -invariant subspace $\mathcal{K} \subseteq H^{(\infty)}$, a normal representation $\tau = \hat{\pi}|_{\mathcal{K}}$ of M on \mathcal{K} , an inner operator $W : \mathcal{F}(E) \otimes_{\tau} \mathcal{K} \rightarrow \mathcal{F}(E) \otimes_{\pi} H$ and an outer operator $Y : \mathcal{F}(E) \otimes_{\pi} H \rightarrow \mathcal{F}(E) \otimes_{\tau} \mathcal{K}$ such that $S = WY$.

This factorization is unique in the following sense. If there is other $\hat{\pi}$ -invariant subspace $\mathcal{K}' \subseteq H^{(\infty)}$, a normal representation $\tau' = \hat{\pi}|_{\mathcal{K}'}$ of M on \mathcal{K}' , and if $S = W'Y'$, where $W' : \mathcal{F}(E) \otimes_{\tau'} \mathcal{K}' \rightarrow \mathcal{F}(E) \otimes_{\pi} H$ is an inner operator with final subspace $\mathcal{M} = \overline{S(\mathcal{F}(E) \otimes_{\pi} H)}$, and $Y' : \mathcal{F}(E) \otimes_{\pi} H \rightarrow \mathcal{F}(E) \otimes_{\tau'} \mathcal{K}'$, is an outer operator, then there exist a unitary operator $U : \mathcal{F}(E) \otimes_{\tau} \mathcal{K} \rightarrow \mathcal{F}(E) \otimes_{\tau'} \mathcal{K}'$ such that $W' = UW$ and $Y' = U^*Y$, and $U\rho_{\tau}(X) = \rho_{\tau'}(X)U$, $X \in H^{\infty}(E)$.

Proof. The existence is proved above. For the uniqueness set $U = W^*W'$. Since W and W' have a common final subspace, the operator U is unitary and $W' = UW$. From $W'Y' = S = WY$ we easily obtain that $Y' = U^*Y$. The intertwining property for U follows from the definition of U and from the intertwining properties of W and W' . As in inner-outer factorization of vector, the unitary U can be thought of as a partial isometry in $\rho_{\hat{\pi}}(H^{\infty}(E))'$. \square

Let $V \in \rho_\pi(H^\infty(E))'$ be a partial isometry and let $V = WY$ be its inner-outer factorization. In this case the outer part of Y is also a partial isometry with $\ker Y = \ker V$.

In the paper [8] Muhly and Solel proved Beurling Theorem for $\mathcal{T}_+(E)$ -invariant subspaces. They considered the C^* -correspondence E and assumed that $\mathcal{T}_+(E)$ is represented by some isometric representation. In their proof they used an additional assumption of quasi-invariance of the representation π , [8, page 868]. J. Meyer in his Ph.D. Thesis [7] pointed out that if π is a faithful normal representation of a W^* -algebra M , E is a W^* -correspondence over M and ρ is the induced representation ρ_π of $H^\infty(E)$, then the quasi-invariance assumption is fulfilled. Hence, the theorem can be formulated as follows:

Theorem 3.17. *For every $\rho(H^\infty(E))$ -invariant subspace \mathcal{M} there exist a family of partial isometries $\{V_i\}_i \subset \rho(H^\infty(E))'$ such that ranges of V_i are pairwise orthogonal and $\mathcal{M} = \sum_i V_i(\mathcal{F}(E) \otimes_\pi H)$.*

Since H assumed to be separable, the family $(V_i)_i$ is at most countable. Now we apply Theorem 3.16 for each V_i to obtain an inner-outer decomposition $V_i = W_i Y_i$, where $W_i : \mathcal{F}(E) \otimes_{\tau_i} \mathcal{K}_i \rightarrow \mathcal{F}(E) \otimes_\pi H$ is the inner operator corresponding to V_i . Set as above $\mathcal{K} = \sum_i^\oplus \mathcal{K}_i$ and $\tau = \sum_i^\oplus \tau_i$. Then $\mathcal{F}(E) \otimes_\tau \mathcal{K} = \sum_i \mathcal{F}(E) \otimes_{\tau_i} \mathcal{K}_i$ and write $W = \sum_i W_i$. Then the Beurling theorem of Muhly and Solel can be reformulated in the following way.

Theorem 3.18. *Let $\pi : M \rightarrow B(H)$ be a faithful normal representation and let $\rho_\pi : X \mapsto X \otimes I_H$ be the representation induced by π of the Hardy algebra $H^\infty(E)$. Further, let $\mathcal{M} \subseteq \mathcal{F}(E) \otimes_\pi H$ be a $\rho_\pi(H^\infty(E))$ -invariant subspace. Then there exists a sequence of inner operators $W_i : \mathcal{F}(E) \otimes_{\tau_i} \mathcal{K}_i \rightarrow \mathcal{F}(E) \otimes_\pi H$ with pairwise orthogonal ranges $\{\mathcal{M}_i\}$ such that*

$$\mathcal{M} = W(\mathcal{F}(E) \otimes_\tau \mathcal{K}), \quad (19)$$

where $\mathcal{F}(E) \otimes_\tau \mathcal{K} = \sum_i^\oplus \mathcal{F}(E) \otimes_{\tau_i} \mathcal{K}_i$ and $W = \sum_i W_i$.

Remark 3.19. 1) The initial projections $V_i^* V_i$ also lie in the commutant $\rho_\pi(H^\infty(E))'$. Since $V_i = W_i Y_i$, then these projections are $Y_i^* Y_i$.

2) Every $\rho_\pi(H^\infty(E))$ -invariant subspace in $\mathcal{F}(E) \otimes_\pi H$ is a direct sum of a cyclic subspaces \mathcal{M}_{g_i} for some $g_i \in \mathcal{F}(E) \otimes_\pi H$, $i \in \mathbb{N}$.

3.3 Factorization of elements of $\rho_\pi(H^\infty(E))$

In this subsection we use the concept of duality of W^* -correspondences to produce a natural factorization of an arbitrary element of $\rho_\pi(H^\infty(E))$. This concept was developed in [10, Section 3].

Let $\pi : M \rightarrow B(H)$ be a normal representation of M on a Hilbert space H . We put

$$E^\pi := \{\eta : H \rightarrow E \otimes_\pi H : \eta\pi(a) = (\phi(a) \otimes I_H)\eta, a \in M\}. \quad (20)$$

On the set E^π we define the structure of a W^* -correspondence over the von Neumann algebra $\pi(M)'$ putting $\langle \eta, \zeta \rangle := \eta^* \zeta$ for the $\pi(M)'$ -valued inner product, $\eta, \zeta \in E^\pi$. It is

easy to check that $\langle \eta, \zeta \rangle \in \pi(M)'$. For the bimodule operations: $b \cdot \eta = (I \otimes b)\eta$, and $\eta \cdot c = \eta c$, where $b, c \in \pi(M)'$.

Definition 3.20. The W^* -correspondence E^π is called the π -dual of E .

Let $\iota : \pi(M)' \rightarrow B(H)$ be the identity representation. Then we can form $E^{\pi, \iota} := (E^\pi)^\iota$. So, $E^{\pi, \iota} = \{S : H \rightarrow E^\pi \otimes_\iota H : S\iota(b) = \iota^{E^\pi} \circ \phi_{E^\pi}(b)S, b \in \pi(M)'\}$. This is a W^* -correspondence over $\pi(M)'' = \pi(M)$.

In [10] it was proved that for every faithful normal representation π of a W^* -algebra M , every W^* -correspondence E over M is isomorphic to $E^{\pi, \iota}$. We give a short description of this isomorphism.

For $\xi \in E$ let $L_\xi : H \rightarrow E \otimes_\pi H$ be defined by $L_\xi = \xi \otimes h$, $h \in H$. Then L_ξ is a bounded linear map since $\|L_\xi h\|^2 \leq \|\xi\|^2 \|h\|^2$ and $L_\xi^*(\zeta \otimes h) = \pi(\langle \xi, \zeta \rangle)h$. For each $\xi \in E$ we define the map $\hat{\xi} : H \rightarrow E^\pi \otimes_\iota H$ by means of its adjoint:

$$\hat{\xi}^*(\eta \otimes h) = L_\xi^*(\eta(h)),$$

$$\eta \otimes h \in E^\pi \otimes_\iota H.$$

Theorem 3.21. ([10, Theorem 3.6]) If the representation π of M on H is faithful, then the map $\xi \mapsto \hat{\xi}$ just defined, is an isomorphism of the W^* -correspondences E and $E^{\pi, \iota}$.

For every $k \geq 0$, let $U_k : E^{\otimes k} \otimes_\pi H \rightarrow (E^\pi)^{\otimes k} \otimes_\iota H$ be the map defined in terms of its adjoint by $U_k^*(\eta_1 \otimes \dots \otimes \eta_n \otimes h) = (I_{E^{\otimes k-1}} \otimes \eta_1) \dots (I_E \otimes \eta_{k-1}) \eta_k(h)$. It is proved in [10] that U_k is a Hilbert space isomorphism from $E^{\otimes k} \otimes_\pi H$ onto $(E^\pi)^{\otimes k} \otimes_\iota H$.

By Theorem 3.21, for every $k \geq 1$ the W^* -correspondence $E^{\otimes k}$ over M is isomorphic to the W^* -correspondence $(E^{\otimes k})^{\pi, \iota} \cong (E^{\pi, \iota})^{\otimes k}$. If $\xi \in E^{\otimes k}$ then the corresponding element $\hat{\xi} \in (E^{\otimes k})^{\pi, \iota}$ is defined now by the formula

$$\hat{\xi}^*(\eta_1 \otimes \dots \otimes \eta_k \otimes h) = L_\xi^* U_k^*(\eta_1 \otimes \dots \otimes \eta_k \otimes h),$$

where $L_\xi : h \mapsto \xi \otimes h$ is a bounded linear map from H to $E^{\otimes k} \otimes_\pi H$. Thus, we obtain

$$\hat{\xi} = U_k L_\xi, \quad \text{for } \xi \in E^{\otimes k}. \tag{21}$$

For the dual correspondence (π -dual to E) we can form the (dual) Fock space $\mathcal{F}(E^\pi)$, which is a W^* -correspondence over $\pi(M)'$, and the Hilbert space $\mathcal{F}(E^\pi) \otimes_\iota H$. Let us define $U := \sum_{k \geq 0}^+ U_k$. It follows that the map $U := \sum_{k \geq 0}^+ U_k$ is a Hilbert space isomorphism from $\mathcal{F}(E) \otimes_\pi H$ onto $\mathcal{F}(E^\pi) \otimes_\iota H$, and its adjoint acts on decomposable tensors by $U^*(\eta_1 \otimes \dots \otimes \eta_n \otimes h) = (I_{E^{\otimes n-1}} \otimes \eta_1) \dots (I_E \otimes \eta_{n-1}) \eta_n h$.

Definition 3.22. The map $U_\pi = U : \mathcal{F}(E) \otimes_\pi H \rightarrow \mathcal{F}(E^\pi) \otimes_\iota H$ will be called the Fourier transform determined by π .

Let $\pi : M \rightarrow B(H)$ be a faithful normal representation. Then there exists a natural isometric representation of $(E^\pi, \pi(M)')$ on $\mathcal{F}(E) \otimes_\pi H$ induced by π . Let $\nu : \pi(M)' \rightarrow B(\mathcal{F}(E) \otimes_\pi H)$ be a *-representation defined by $\nu(b) = I_{\mathcal{F}(E)} \otimes b$. Then ν is a faithful normal representation of the von Neumann algebra $\pi(M)'$ and by Theorem 2.3, $\pi^{\mathcal{F}(E)}(\mathcal{L}(\mathcal{F}(E)))' = \nu(\pi(M)') = \{I_{\mathcal{F}(E)} \otimes b : b \in \pi(M)'\}$. Given $\eta \in E^\pi$, for each $n \geq 0$ the operators $L_{\eta,n} : E^{\otimes n} \otimes_\pi H \rightarrow E^{\otimes n+1} \otimes_\pi H$ are defined by $L_{\eta,n}(\xi \otimes h) = \xi \otimes \eta h$, where we have identified $E^{\otimes n+1} \otimes_\pi H$ with $E^{\otimes n} \otimes_{\pi \circ \phi}(E \otimes_\pi H)$. Since $\|L_{\eta,n}\| \leq \|\eta\|$, we may define the operator $\Psi(\eta) : \mathcal{F}(E) \otimes_\pi H \rightarrow \mathcal{F}(E) \otimes_\pi H$ by $\Psi(\eta) = \sum_{k \geq 0} L_{\eta,k}$. Thus we may think of $\Psi(\eta)$ as $I_{\mathcal{F}(E)} \otimes \eta$ on $\mathcal{F}(E) \otimes_\pi H$. It is easy to see that Ψ is a bimodule map. For the inner product, let $\eta_1, \eta_2 \in E^\pi$ and $\xi \otimes h, \zeta \otimes k \in E^{\otimes n} \otimes_\pi H$, then a simple calculation shows that

$$\langle \Psi(\eta_1)(\xi \otimes h), \Psi(\eta_2)(\zeta \otimes k) \rangle = \langle \xi \otimes h, \nu(\eta_1^* \eta_2)(\zeta \otimes k) \rangle,$$

so, (Ψ, ν) is an isometric representation of $(E^\pi, \pi(M)')$ on the Hilbert space $\mathcal{F}(E) \otimes_\pi H$. Combining the integrated form $\nu \times \Psi$ of (Ψ, ν) with the definition of the Fourier transform $U = U_\pi$ we obtain

$$U^* \iota^{\mathcal{F}(E^\pi)}(T_\eta) U = \Psi(\eta), \quad (22)$$

where $\eta \in E^\pi$ and T_η is the corresponding creation operator in $H^\infty(E^\pi)$, and

$$U^* \iota^{\mathcal{F}(E^\pi)}(\phi_{E^\pi, \infty}(b)) U = \nu(b), \quad (23)$$

where $b \in \pi(M)'$ and $\phi_{E^\pi, \infty}$ is the left action of $\pi(M)'$ on $\mathcal{F}(E^\pi)$. This equality can be rewritten as

$$U(I_{\mathcal{F}(E)} \otimes b) = (\phi_{E^\pi, \infty}(b) \otimes I_H) U. \quad (24)$$

Thus, the Fourier transform $U = U_\pi$ intertwines the actions of $\pi(M)'$ on $\mathcal{F}(E) \otimes_\pi H$ and on $\mathcal{F}(E^\pi) \otimes_\iota H$ respectively.

The following theorem identifies the commutant of the Hardy algebra represented by an induced representation.

Theorem 3.23. ([10], Theorem 3.9) *Let E be a W^* -correspondence over M , and let $\pi : M \rightarrow B(H)$ be a faithful normal representation of M on a Hilbert space H . Write ρ_π for the representation $\pi^{\mathcal{F}(E)}$ of $H^\infty(E)$ on $\mathcal{F}(E) \otimes_\pi H$ induced by π , and write ρ^π for the representation of $H^\infty(E^\pi)$ on $\mathcal{F}(E) \otimes_\pi H$ defined by*

$$\rho^\pi(X) = U^* \iota^{\mathcal{F}(E^\pi)}(X) U, \quad (25)$$

with $X \in H^\infty(E^\pi)$. Then ρ^π is an ultraweakly continuous, completely isometric representation of $H^\infty(E^\pi)$ that extends the representation $\nu \times \Psi$ of $\mathcal{T}_+(E^\pi)$, and $\rho^\pi(H^\infty(E^\pi))$ is the commutant of $\rho_\pi(H^\infty(E))$, i.e. $\rho^\pi(H^\infty(E^\pi)) = \rho_\pi(H^\infty(E))'$.

Corollary 3.24. ([10], Corollary 3.10) *In the preceding notation, $\rho_\pi(H^\infty(E))'' = \rho_\pi(H^\infty(E))$.*

Now we turn to the factorization of elements of $\rho_\pi(H^\infty(E))$. It will be obtained as a corollary of Theorem 3.16.

Let $X \otimes I_H \in \rho_\pi(H^\infty(E))$ and set

$$\mathcal{M} := \overline{(X \otimes I_H)(\mathcal{F}(E) \otimes_\pi H)}.$$

Then \mathcal{M} is $\rho_\pi(H^\infty(E))'$ -invariant. Now let U_π be a Fourier transform defined by π . Then the subspace

$$\tilde{\mathcal{M}} := U_\pi \mathcal{M} \subseteq \mathcal{F}(E^\pi \otimes_\iota H)$$

is $\rho_\iota(H^\infty(E^\pi))$ -invariant, where by ρ_ι we denote the induced representation $\iota^{\mathcal{F}(E^\pi)}$ of $H^\infty(E^\pi)$ on $\mathcal{F}(E^\pi) \otimes_\iota H$. Set $\tilde{X} = U_\pi(X \otimes I_H)U_\pi^*$. Then \tilde{X} is in the commutant of $\rho_\iota(H^\infty(E^\pi))$ (see Theorem 3.23) and

$$\tilde{\mathcal{M}} = \overline{U_\pi(X \otimes I_H)U_\pi^*(\mathcal{F}(E^\pi) \otimes_\iota H)} = \overline{\tilde{X}(\mathcal{F}(E^\pi) \otimes_\iota H)}.$$

Write $\hat{\iota}$ for the ampliation of ι on the space $H^{(\infty)}$. By Theorem 3.16 there is a $\hat{\iota}(\pi(M))'$ -invariant subspace \mathcal{L} in $H^{(\infty)}$, an inner operator

$$\tilde{W} : \mathcal{F}(E^\pi) \otimes_{\hat{\iota}} \mathcal{L} \rightarrow \mathcal{F}(E^\pi) \otimes_\iota H,$$

where $\hat{\iota} = \hat{\iota}|_{\mathcal{L}}$, with a final subspace $\tilde{\mathcal{M}}$, and an outer operator $\tilde{Y} = \tilde{W}^* \tilde{X}$, $\overline{\tilde{Y}(\mathcal{F}(E^\pi) \otimes_\iota H)} = \mathcal{F}(E^\pi) \otimes_{\hat{\iota}} \mathcal{L}$, such that $\tilde{X} = \tilde{W}\tilde{Y}$ is the inner-outer factorization of \tilde{X} .

Hence, $\tilde{X} = U_\pi(X \otimes I_H)U_\pi^* = \tilde{W}\tilde{Y}$, and

$$X \otimes I_H = U_\pi^* \tilde{W} \tilde{Y} U_\pi. \quad (26)$$

Theorem 3.25. *For every $X \in H^\infty(E)$ the operator $\rho_\pi(X) = X \otimes I_H$ can be factorized as*

$$X \otimes I_H = \mathcal{W} \mathcal{Y}, \quad (27)$$

where \mathcal{W} and \mathcal{Y} satisfy

1) \mathcal{W} is a partial isometry from $\mathcal{F}(E^\pi) \otimes_{\hat{\iota}} H^{(\infty)}$ into $\mathcal{F}(E) \otimes_\pi H$ with intertwining relation

$$\mathcal{W} \rho_{\hat{\iota}}(S) = \rho^\pi(S) \mathcal{W}, \quad S \in H^\infty(E^\pi).$$

2) \mathcal{Y} acts from $\mathcal{F}(E) \otimes_\pi H$ into $\mathcal{F}(E^\pi) \otimes_{\hat{\iota}} H^{(\infty)}$ and satisfies the intertwining relation

$$\mathcal{Y} \rho^\pi(S) = \rho_{\hat{\iota}}(S) \mathcal{Y}, \quad S \in H^\infty(E^\pi).$$

3) the initial subspace of \mathcal{W} is the closure of the range of \mathcal{Y} .
This factorization is unique up to a multiplication by unitary.

Proof. In (26) set

$$\mathcal{W} = U_\pi^* \tilde{W} \text{ and } \mathcal{Y} = \tilde{Y} U_\pi.$$

We have seen that \mathcal{W} is a partial isometry from $\mathcal{F}(E) \otimes_{\hat{\tau}} \mathcal{L}$ into $\mathcal{F}(E) \otimes_\pi H$ with the final subspace \mathcal{M} , and that \mathcal{Y} is the operator from $\mathcal{F}(E) \otimes_\pi H$ and has a closed range in $\mathcal{F}(E) \otimes_{\hat{\tau}} \mathcal{L}$.

Since \tilde{W} is inner, then $\tilde{W}\rho_{\hat{\tau}}(S) = \rho_\iota(S)\tilde{W}$ for every $S \in H^\infty(E^\pi)$. Now, $U_\pi^*\rho_\iota(S) = \rho^\pi(S)U_\pi^*$, where $\rho^\pi(S) = U_\pi(\iota^{\mathcal{F}(E^\pi)}(S)U_\pi^*)$ is the representation of $H^\infty(E^\pi)$ on $\mathcal{F}(E) \otimes_\pi H$ defined in (25). Thus,

$$\mathcal{W}\rho_{\hat{\tau}}(S) = \rho^\pi(S)\mathcal{W}.$$

Similarly we can show that

$$\mathcal{Y}\rho^\pi(S) = \rho_\iota(S)\mathcal{Y}, \quad \forall S \in H^\infty(E^\pi).$$

The uniqueness up to multiplication by unitary follows from the uniqueness of the inner-outer factorization $\tilde{X} = \tilde{W}\tilde{Y}$. \square

Bibliography

- [1] A. Arias, G. Popescu, Factorization and reflexivity on Fock space, Integral equations Operator Theory, 23 (1995), 268-286.
- [2] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta. Math. 81 (1949), 239-255.
- [3] K.R. Davidson, D.R. Pitts, Invariant subspaces and hyper-reflexivity for free semigroup algebras, Proc. London Math. Soc.,(3) 78,(1999), 401-430.
- [4] D. W. Kribs, S. C. Power, "Free semigroupoid algebras", J. Ramanujan Math. Soc. 19 no. 2,(2004), 117-159.
- [5] E.C. Lance, Hilbert C^* - modules : A toolkit for operator algebraist, London, Math.Soc., Lecture Note Series 210, Cambridge Univ. Press, (1995).
- [6] V. Manuilov, E. Troitsky, Hilbert C^* -modules, Translations of Mathematical Monographs, Vol.226, Amer. Math. Soc., Providence, 2005.
- [7] J. R. Meyer, Noncommutative Hardy Algebras, Multipliers, and Quotients, Ph.D. Thesis, University of Iowa (2010).
- [8] P. Muhly, B.Solel, Tensor algebras, Induced Representations and the Wold Decomposition, Canad. J. Math. 51(4), (1999) 850-880.
- [9] P. Muhly, B.Solel, Tensor algebras over C^* -correspondence: Representations, Dilations, and C^* -Envelopes, J.Func.An, 158, (1998) 398-477.
- [10] P. Muhly, B.Solel, Hardy algebras, W^* -correspondences and interpolation theory, Math.Ann.330, (2004) 353-415.

- [11] P. Muhly, B.Solel, Representations of the Hardy algebras: Absolutely continuity, Intertwiners and Superharmonic operators, *Integr. Equ. Oper. Theory* 70 (2011), 151-203.
- [12] N.Nikolskii, Operators, Functions, and Systems: an Easy reading. Vol. I&II, Parts A, B, C. Matheamical Surveys and Monographs, 92, AMS (2002).
- [13] B. Sz.-Nagy, C. Foiaş, Harmonic Analysis of Operators on Hilbert Spaces, North-Holland Akad. Kiado (1970).
- [14] W.L. Paschke, Inner product Modules over B^* -algebras, *Transactions of the Amer. Math. Soc.*, Vol. 182, (1973), 443-468.
- [15] M. Pimsner, A class of C^* -algebras generalizing both Cuntz-Krieger algebras and crossed products by \mathbb{Z} , in "Free Probability Theory", (D. Voiculescu, Ed.), Fields Instit.Comm., Vol. 12, Amer.Math.Soc., Providence, RI, (1997), pp.189-212.
- [16] G. Popescu, Von Neumann inequality for $(B(H)^n)_1$, *Math. Scand.* 68 (1991), 292-304.
- [17] G. Popescu, Multy-analytic operators and some factorization theorems, *Indiana Univ. Math. J.* 38 (1989), 693-710.
- [18] G. Popescu, Multy-analytic operators, *J. Operator Theory*, 22 (1989), 51-71.
- [19] G. Popescu, Multy-analytic operators on Fock spaces, *Math. Ann.* 303 (1995), 31-46.
- [20] M. Rieffel, Induced representations of C^* -algebras, *Adv. Math.* 13 (1974), 176-257.
- [21] S. Sakai, A characterization of W^* -algebras, *Pacific J. Math.*,6(1956) 763-773.

Department of Mathematics, Technion, Haifa, Israel,
email: lhelmer@tx.technion.ac.il