

Обнаружение выбросов и новизны Anomaly Detection

Александр Дьяконов

План

Обнаружение выбросов и новизны
Терминология: Outlier Detection, Novelty Detection
Приложения
Особенности

Примеры выбросов Методы обнаружения

- Статистические тесты
 - Модельные тесты
- Итерационные методы
- Метрические методы (Proximity-Based Models), Local Outlier (LOF), Local cluster approach
 - Методы подмены задачи
 - Методы машинного обучения (OneClassSVM, Изолирующий лес, EllipticEnvelope)

История из практики

Терминология

Outlier	Detection – выб	росы	Novelty Detection – новизна					
		_	воим статистиче					
			от объектов выб	<u>-</u>				
Из дру	гого распредел	ения	этого же распределения может уже не быть					
			изменился	я параметр распределения				
В обучении	В обучении есть выбросы – их ищем			В обучении нет выбросов,				
				но они скоро появятся				
10	0		1	.0				
5		•		5				
признак 2		•	признак 2	0				
-5 -10		•		-5				
	-10 0 признак 1	10	-1	.0_10 –5 0 5 10 признак 1				

Терминология

Резюме: выбросы в ней есть, новизна – скоро появится

Причины выбросов

- ошибки в данных
- шумовые объекты
- точки других выборок

Терминология

шум – выбросы в слабом смысле, аномалии – выбросы в сильном смысле

Приложения

Это не только служебная задача для подготовки данных, но и самостоятельная

- Обнаружение подозрительных банковских операций (credit-card fraud)
- Обнаружение вторжений (intrusion detection)
- Обнаружение нестандартных игроков на бирже (инсайдеров)
- Обнаружение неполадок в механизмах по показаниям датчиков
- Медицинская диагностика (Medical diagnosis)
- Сейсмологий

2.5 вида постановки задачи обнаружения аномалий

есть выборка без разметки

самая частая ситуация

есть частичная разметка класса 1

PUC – Positive-Unlabeled Class-n часть выбросов обозначена 1, остальные объекты обучения – 0 –

при детектировании поломок

нормальные и м.б. немного выбросов

полная разметка

такого практически не бывает

Детектирование выбросов

• но всегда есть дисбаланс классов например, поломки оборудования относительно редки

Типы задач

Классификация: выброс / не выброс Скоринг: степень (не) нормальности объекта

Semi-supervised

Разметка есть, но это далеко не все типы выбросов Пример: работа вирусов, хакерские атаки

Active learning

есть возможность получать разметку конкретных объектов

Нужно ли удалять выбросы?

Практика: часто не надо об этом задумываться

- Многие статистики устойчивы к выбросам какие?
 - Многие методы достаточно робастны какие?
- В тестовой выборке тоже будут выбросы...

Более того, выбросы могут быть частью данных

каждая 370я точка из нормального распределения выходит из отрезка трёх сигм

Примеры: выбросы в матрицах

	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9
x_0	0	5	6	4	6	1	10	6	5	1
x_1	5	7	10	6	7	5	9	9	2	5
x_2	2	4	5	5	4	4	8	5	9	4
x_3	3	5	5	4	8	3	7	5	9	1
x_4	0	6	2	2	1	3	3	7	0	2
x_5	1	8	14	12	7	6	12	6	11	7

что это за матрицы?

где выбросы в этой матрице?

Примеры: выбросы в матрицах

	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9
x_0	0	5	6	4	6	1	10	6	5	1
x_1	5	7	10	6	7	5	9	9	2	5
x_2	2	4	5	5	4	4	8	5	9	4
x_3	3	5	5	4	8	3	7	5	9	1
x_4	0	6	2	2	1	3	3	7	0	2
x_5	1	8	14	12	7	6	12	6	11	7

что это за матрицы?

- матрица «user-item»
- матрица «документ-слово»
- матрица «время-показатель»
 - матрица «объект-признак»

Примеры: выбросы в сигналах

где здесь выбросы?

Примеры: выбросы в сигналах

выбросы не всегда «видно на глаз»!

Примеры: выбросы в графах

Могут быть выбросы-вершины, выбросы-рёбра

Как определить?

Примеры: выбросы в последовательностях / в текстах

AAABBCCAABBBCAAABBCABBCCABAABBCCAAABBBBCABBBCC

Функционалы качества

Здесь совсем сильно зависят от заказчика

Часто стандартные: PR AUC AUROC

Методы обнаружения

Статистические тесты

Пусть точки из некоторого распределения. Вычисляем вероятность, что точка соответствует распределению.

Модельные тесты

Пусть точки описываются некоторой моделью (например линейной регрессией). Вычисляем отклонение от модели (ошибку).

Методы обнаружения: статистические тесты

Стандартные статистические тесты: отклонение от среднего

Z-value
$$Z_i = \frac{|x_i - \mu|}{\sigma}$$

в предположении нормальности данных...

Методы обнаружения: статистические тесты

Kurtosis measure

$$\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{4}$$

Если большие значения – есть выброс

Кстати,
$$\mathbf{E}Z_i^2 = 1$$

Визуализация: ящик с усами

Часто используют для визуализации в том числе выбросов

Визуализация: ящик с усами

Важно

Почти всегда на практике аномалия – не выброс по какому-то признаку!

Важно

Экстремальные значения и выбросы – разные понятия!

1, 3, 100, 1, 101, 2, 102, 2, 2, 100, 1, 101, **50**, 1, 3, 2, 101, 1, 102, 101, 3, 102, ...

Extreme-Value Analysis

Хотя... последний этап большинства алгоритмов детектирования аномалий – нахождение экстремальных значений

Методы обнаружения: модельные тесты

Методы обнаружения: модельные тесты


```
from scipy.sparse.linalg import svds
U,L,V = svds(H.astype(float), k=2)
X = U @ np.diag(L) @ V
plt.imshow((H - X) ** 2, cmap='Purples')
```

$$X \approx U_{m \times k} L_{k \times k} V_{k \times n}$$

приближаем матрицей малого ранга

Методы обнаружения: модельные тесты

Проблема На построение модели/распределения влияют выбросы, которые мы ищем

Выход – новая группа методов:

Выбросы – точки при удалении которых модель можно лучше подстроить под данные.

- самые естественные!

Что такое «аномалия» определяется нашим знаниями о природе данных

Их можно заложить в модель!

Методы обнаружения: итерационные методы

Чтобы получить медиану надо последовательно отбрасывать крайние значения (наверняка выбросы)

Аналогичная процедура в многомерном пространстве...

25 слайд из 45

Итерационные методы

Ещё идеи:

• последовательно исключать объекты максимально понижая разброс

- + обобщение одномерного случая
- + можно получать оценку новизны
- + нет предположений о распределении
 - вычислительная трудоёмкость

Метрические методы (Proximity-Based Models)

У выбросов мало соседей

У обычных точек много соседей

Пример: расстояние до k-го соседа ~ мера нетипичности

Часто: специфические метрики (Махалонобиса)

Почему-то самые популярные...

Local Outlier (LOF)

Пусть $\rho_k(z)$ – расстояние до k-го БС будем использовать расстояние $\rho'(x,z) = \max[\rho(x,z), \rho_k(z)]$

$$r_k(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} \rho'(x, x_i)$$

обратная величина к этой называется local reachability density (LRD)

оценка «выбросовости» (relative distance score):

$$\frac{1}{k} \sum_{x_i \in N_k(x)} \frac{r_k(x)}{r_k(x_i)}$$

28 слайд из 45

Local cluster approach

Делаем кластеризацию

Оценка «выбросовости» ~ расстояние Махалонобиса до ближайшего кластера

$$\sqrt{(x-\mu)^{\mathrm{T}}\Sigma^{-1}(x-\mu)}$$

матрица ковариаций оценивается по соответствующему кластеру

Методы подмены задачи

делаем кластеризацию маленькие кластеры – выбросы

«Машинное обучение и анализ данных»

Методы машинного обучения

- sklearn.svm.OneClassSVM
- sklearn.ensemble.IsolationForest
- sklearn.covariance.EllipticEnvelope

«Машинное обучение и анализ данных»

sklearn.svm.OneClassSVM

Задача классификации с одним классом (поиска новизны, а не выбросов, т.к. подстраивается под выборку)

kernel – ядро (linear – линейное, poly – полиномиальное, rbf – радиальные базисные функции, sigmoid – сигмоидальное, своё заданное)

nu – верхняя граница на % ошибок и нижняя на % опорных векторов (0.5 по умолчанию)

degree - степень для полиномиального ядра

gamma – коэффициент для функции ядра (1/n_features по умолчанию)

coef0 - параметр в функции полиномиального или сигмоидального ядра

OneClassSVM: svm.OneClassSVM(nu=0.2, kernel="poly", degree=5)

degree=1

5

0

-5

-5

0

5

10

Изолирующий лес

Состоит из деревьев, каждое дерево строится до исчерпании выборки

- Выбирается случайный признак и случайное расщепление
- Для каждого объекта мера его нормальности среднее арифметическое глубин листьев, в которые он попал (изолировался)


```
sklearn.ensemble.IsolationForest
                                  n estimators - число деревьев
                     max samples - объём выборки для построения одного дерева
                         (если вещественное число, то процент всей выборки)
                    contamination – доля выбросов в выборке (для выбора порога)
         max features – число признаков, которые используются при построении одного дерева
               bootstrap - включение режима бутстрепа при формировании подвыборки
clf = IsolationForest(n estimators=100,
                        max samples='auto',
                        contamination='auto',
                        max features=1.0,
                        bootstrap=False,
                        n jobs=None,
                        random state=1,
                        verbose=0,
```

warm start=False)

Эллипсоидальная аппроксимация данных

По расстоянию Махалонобиса – степень новизны – не подходит для мультимодальных данных

Резюме

Для SVM нужно однородное признаковое пространство, только одно подходящее ядро
 Леса опять лучше!

Ансамбли алгоритмов

Feature Bagging

- выбираем подмножество признаков
- решаем в нём задачу детектирования выбросов
- усредняем оценки ненормальности по разным подмножествам признакового пространства

Rotated Bagging

Перед применением алгоритма – случайный поворот в признаковом пространстве

Часто перебираются разные нормировки признаков

Интересно: результат ансамбля не обязательно среднее... может быть максимум!

История из практики

Задача

~ 15 датчиков сложного оборудования (насос) за несколько лет с большой дискретизацией известно ~ 10 поломок часть поломок скрыта

Решение

IF в специальном признаковом пространстве

Итог

Не очень хорошее обнаружение скрытых поломок

41 слайд из 45

История из практики

Заказчик

Выяснение: как работает алгоритм

Итог: алгоритм хороший!

Он не выявляет качественно все поломки, но выявляет «нетипичное поведение», а это, как оказалось:

- некорректный запуск оборудования
 - слишком позднее выключение
 - работа в редких режимах

Приём

Как и для кластеризации, можно детекторы аномалий использовать как генераторы признаков

$$X = [X, IF(X)]$$

- не подглядываем в целевые значения
- интерпретация признака насколько объект типичен

Итоги

Практически очень важная задача

статистика модели итерации метрики подмена задачи ML