Post x86

- 1978
- 16-bit
- 1MB (64KB) memory

1 MB in 64KB segments.

- 5 Mhz
- 2 stages
- Data width16 bits
- Address width 20 bits
- 40 pins
- 3 um process
- 29,000 transistors / 33 mm²

- 1982
- 16-bit
- 1MB (64KB) memory
- 25 Mhz
- 2 stages
- Data width16 bits
- Address width 20 bits
- 68 pins
- 3 um process
- 55,000 transistors / 60 mm²

- 1982
- 16-bit
- **16**MB (64KB) memory
- 25 Mhz
- 3 stages
- Data width16 bits
- Address width
 24 bits
- 68 pins
- 1.5 um process
- 134,000 transistors / 49 mm²

Additional processor modes

- Introduced in 80286
- Problem insufficient memory
 - 20-bit address ⇒ 1MB
 - O 384KB reserved for BIOS & device memory
 - 640KB for operating system and applications
 - Memory is now cheaper
 - Applications have become larger
 - O But 8086/80186 cannot use more memory
- Also, all applications share memory
 - No protection

Real mode

BIOS & Devices

DOS & User progs

Real mode segmentation 4 hex digits

1MB ranges from

- 00000₁₆ **to**
- FFFFF₁₆

Segment address is 5 hex digits

But 16-bits are 4 digits

Use these as 4 high-order digits
Assume a low-order 0 digit

Protected mode

- Can now access 16MB
- Still via only four 64KB segments at a time
- More expensive to change segments
- Privilege levels four "rings"
 - Ring 0 for OS, can access all memory
 - Ring 3 for applications (restricted to its own memory)
 - Other rings not used
- Some instructions designated as privileged
 - Can only be executed from ring 0

In 80286

- Protected mode not widely used
- Too much trouble
- Still only four 64KB segments

- 1985
- 32-bit (finally ©)
- 4GB (4GB) memory
- 33 Mhz
- 3 stages
- Data width
 32 bits
 (386SX: 16 bit)
- Address width
 32 bits
 (386SX: 24 bits)
- 132 pins
- 1.5 um process
- 275,000 transistors / 104 mm²

Demand paging / virtual memory

The 80386 permitted segmented memory ... but we'll skip that.

(per process)

memory

80386 has 32-bit registers

EAX	A	H	AL	
EBX		BX		
ECX	ECX			
EDX	D	H	DL	
ESP		S	P	
EBP		В	P	
EDI		D	I	
ESI		SI		

- 1989
- 32-bit
- 4GB (4GB) memory
- 100 Mhz
- 5 stages
- Data width32 bits
- Address width 32 bits
- 168 pins
- 1 um process
- 1,180,235 transistors / 173 mm²

Pentium (P5)

- 1993
- 32-bit
- 4GB (4GB) memory
- 200 Mhz
- 5 stages
- Data width32 bits
- Address width 32 bits
- 273 pins
- 350 nm process
- 3,100,000 transistors / 294 mm²

Pentium description

The advanced Dynamic Execution engine is a deep, out-of-order, speculative execution engine.

- deep
- out-of-order
- speculative execution

ILP — superscalar, multiple functional units (later)

branch prediction

Pentium Pro (P6)

- 1995
- 32-bit
- 4GB (4GB) memory
- 450 Mhz
- 14 stages
- Data width64 bits
- Address width 32 bits
- 387 pins
- 350 nm process
- 5,500,000 transistors / 307 mm²

Pentium 4

- 2000
- 32-bit
- 64GB (4GB) memory
- 2 Ghz
- 20 stages
- Data width64 bits
- Address width
 36 bits
- 423 pins
- 180 nm process
- 42,000,000 transistors / 217 mm²

Core 2 Duo

- 2006
- 64-bit
- 16-EB* GB memory
- 3 Ghz
- 12 stages / 2 cores
- Data width64 bits
- Address width
 64* bits
 not really
- 423 pins
- 65 nm process
- 291,000,000 transistors / 143 mm²

How big is a 64-bit address space?

- $2^{60} \sim 10^{18}$
- Quintillion
- \bullet 2⁶⁴ = 18,446,744,073,709,551,616
- 128GB DIMM (2³⁷ bytes for about \$960)
- $2^{64} / 2^{37} = 2^{27} = 134$ million 128GB DIMMs = \$129 billion

2 x 128GB DDR4 -- \$1,922.95 (free shipping)

 \bullet 2° 10° one 1 second

 2^{10} 10³ kilo thousand 17 minutes

 \bullet 2° 10° one 1 second

• 2^{10} 10³ kilo thousand 17 minutes

 \bullet 2²⁰ 10⁶ mega million 12 days

 2^0 10° one 1 second
 2^{10} 10³ kilo thousand 17 minutes
 2^{20} 106 mega million 12 days
 2^{30} 109 giga billion 32 years

	20	10°	one		1 second
	2 ¹⁰	10 ³	kilo tho	usand	17 minutes
	2 ²⁰	10 ⁶	mega	million	12 days
•	2 ³⁰	10 ⁹	giga billi	on	32 years
	2 ⁴⁰	10 ¹²	tera trilli	ion	317 centuries

Christ's birth 0.006 x 2⁴⁰
 Stonehenge 0.013 x 2⁴⁰
 Last Neanderthal 1.26 x 2⁴⁰

•	20	10 ⁰	one		1 second
•	2 ¹⁰	10 ³	kilo tho	usand	17 minutes
•	2 ²⁰	10 ⁶	mega	million	12 days
•	2 ³⁰	10 ⁹	giga billi	on	32 years
•	2 ⁴⁰	10 ¹²	tera trilli	on	317 centuries
•	2 ⁵⁰	10 ¹⁵	petaqua	drillion	31,700 millenia

- Humans appeared 0.006 x 2⁵⁰
- Dinosaurs extinct 2.1 x 2⁵⁰
- National debt $$25 \times 2^{50}$

	20	10° one	1 second
	2 ¹⁰	10 ³ kilo thousa	nd 17 minutes
•	2 ²⁰	10 ⁶ mega m	llion 12 days
•	2 ³⁰	10 ⁹ gigabillion	32 years
•	2 ⁴⁰	10 ¹² tera trillion	317 centuries
•	2 ⁵⁰	10 ¹⁵ petaquadri	lion 31,700 millenia
	2 ⁶⁰	10 ¹⁸ exa quintill	on 31,700,000 millenia

Age of earth 0.158 x 2⁶⁰
 Big bang 0.435 x 2⁶⁰

	20	10° one	1 second
	2 ¹⁰	10 ³ kilo thousand	17 minutes
•	2 ²⁰	10 ⁶ mega million	12 days
•	2 ³⁰	10 ⁹ giga billion	32 years
	2 ⁴⁰	10 ¹² tera trillion	317 centuries
	2 ⁵⁰	10 ¹⁵ petaquadrillion	31,700 millenia
•	2 ⁶⁰	10 ¹⁸ exa quintillion	31,700,000 millenia
	2 ⁶⁴	16x10 ¹⁸	507,000,000 millenia

			Monikers	0.2.405	
64-bit	4-bit 32-bit 16-bit 8 high bits of lower 16 bits 8-bit		Description		
RAX	EAX	AX	АН	AL	Accumulator
RBX	EBX	BX	ВН	BL	Base
RCX	ECX	СХ	СН	CL	Counter
RDX	EDX	DX	DH	DL	Data (commonly extends the A register
RSI	ESI	SI	N/A	SIL	Source index for string operations
RDI	EDI	DI	N/A	DIL	Destination index for string operations
RSP	ESP	SP	N/A	SPL	Stack Pointer
RBP	EBP	BP	N/A	BPL	Base Pointer (meant for stack frames)
R8	R8D	R8W	N/A	R8B	General purpose
R9	R9D	R9W	N/A	R9B	General purpose
R10	R10D	R10W	N/A	R10B	General purpose
R11	R11D	R11W	N/A	R11B	General purpose
R12	R12D	R12W	N/A	R12B	General purpose
R13	R13D	R13W	N/A	R13B	General purpose
R14	R14D	R14W	N/A	R14B	General purpose
R15	R15D	R15W	N/A	R15B	General purpose

Symmetric multiprocessing (SMP)

Symmetric multiprocessing (SMP)

Multiple cores

Multiple cores — advantages

- Need to do something with extra transistors
- Parallel speedup
 - O Limited single-threaded (application) improvement
- Reduced cost and overhead vs SMP

CISC vs RISC

- Lots of function
- Complicated decode
- Slow

AAA DAT COM

CISC - 1960 ... 1990 Microcoding

RISC - 1990 Hardwired

- Lean hardware
- Simple decode
- Fast

- Many ways to access data (address modes)
- Machine Instructions
- complicated and fancy
- variable size
- variable execution time

- Only simple load and stores from memory
- Machine Instructions
 - only basic operations
 - fixed size
 - fixed execution times

RISC core

- RISC more efficient
 - Load/store architecture
 - Easier to pipeline
 - Can extract more ILP
- Problem
 - Must maintain backwards compatibility
- Solution
 - micro operations (uops)
 - O Translate x86 ISA into uops
 - Similar to microcode but hardcoded

Out of order

References

- https://www.pcgamer.com/a-brief-history-of-cpus-31-awesome-years-of-x86/
- https://www.tomshardware.com/picturestory/710-history-of-intel-cpus.html
- https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
- https://en.wikipedia.org/wiki/Comparison_of_Intel_processors
- https://en.wikipedia.org/wiki/CPU_socket
- http://www.theinfolist.com/php/SummaryGet.php?FindGo=Transistor%20Count#Microprocessors
- https://www.slideshare.net/am_sharifian/intel-hyper-threading-technology