שיעור 3 שיעור איעור מטריצות וייצוג מערכת באמצעות כפל מטריצות וייצוג מערכת באמצעות אייצוג מערכת אי

3.1 מושג של מטריצה

מטריצה זאת טבלה של מספרים. הצורה הכללית של מטריצה:

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix}$$

.(עמודות ו- n מטריצה מסדר $m \times n$ מטריצה מסדר A

. עמודות ו- n שורות ו- m שורות בעלת השדה \mathbb{R} מטריצה מטרים ממשיים אומרים כי A מטריצה מטרים מספרים מספרים ממשיים אומרים כי $A\in\mathbb{R}^{m\times n}$

האיבר בשורה j מסומן

 A_{ij}

האינדקס העני "j" מסמן את משורה, והאינדקס השני "i" מסמן את העמודה. מפתח לזכור האינדקסים:

 $A_{\mathsf{w}\,\mathsf{v}}$

כאשר ה- "ש" מסמן את השורה וה-"ע" מסממן את העמודה.

דוגמה 3.1

$$A = \begin{pmatrix} 1 & 5 & 23 & 45 & 2 \\ 12 & 34 & 67 & 87 & 55 \\ 22 & 33 & 66 & 89 & 19 \end{pmatrix} \in \mathbb{R}^{3 \times 5} .$$

האיבר בשורה 3 בעמודה 4 הוא 89. נסמן

$$A_{34} = 89$$

האיבר בשורה 1 בעמודה 5 הוא 2. נסמן

$$A_{15} = 2$$

האיבר בשורה 2 בעמודה 3 הוא 67. נסמן

$$A_{23} = 67$$

. אם m=n למטריצה קוראים מטריצה m=n

3.2 מטריצות ריבועיות מיוחדות

$$\begin{pmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{pmatrix}$$

מטריצה אלכסונית:

$$egin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} \\ 0 & A_{22} & A_{23} & \cdots & A_{2n} \\ 0 & 0 & A_{33} & \cdots & A_{3n} \\ dots & dots & dots & \ddots & dots \\ 0 & 0 & 0 & \cdots & A_{nn} \end{pmatrix}$$
 מטריצה משולשית עליונה

$$egin{pmatrix} A_{11} & 0 & 0 & \cdots & 0 \ A_{21} & A_{22} & 0 & \cdots & 0 \ A_{31} & A_{32} & A_{33} & \cdots & 0 \ dots & dots & dots & dots & dots \ A_{n1} & A_{n2} & A_{n3} & \cdots & A_{nn} \end{pmatrix}$$
 מטריצה משולשית תחתונה

$$\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

מטריצת האפס

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

מטריצה היחידה

דוגמה 3.2

. מטריצה אלכסונית
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \ \, \textbf{(1)}$$

מטריצה אלכטונית.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 (2

מטריצה אלכסונית.
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (3

לא מטריצה אלכסונית.
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (4

3.3 חיבור מטריצות וכפל מטריצות בסקלר

הגדרה 3.1 חיבור מטריצות

A+B מטריצות מטריצה מסדר m imes n מסדר A,B לכל

$$A + B = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} + \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{m1} & B_{m2} & \cdots & B_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1n} + B_{1n} \\ A_{21} + B_{21} & A_{22} + B_{22} & \cdots & A_{2n} + B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} + B_{m1} & A_{m2} + B_{m2} & \cdots & A_{mn} + A_{mn} \end{pmatrix}$$

ניתן ע"י A+B במילים אחרות, האיבר ה- ij של

$$(A+B)_{ij} = A_{ij} + B_{ij} .$$

אפשר לחבר מטריצות של אותו גודל בלבד!

לא מוגדר!
$$\left(\begin{array}{cc} 1 & 2 & 5 \\ 3 & 4 & 0 \end{array}\right) + \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$$
 לא מוגדר!

הגדרה 3.2 כפל מטריצה בסקלר

m imes n מסדר A לכל מטריצות

$$\alpha \cdot A = \alpha \cdot \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} = \begin{pmatrix} \alpha A_{11} & \alpha A_{12} & \cdots & \alpha A_{1n} \\ \alpha A_{21} & \alpha A_{22} & \cdots & \alpha A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha A_{m1} & \alpha A_{m2} & \cdots & \alpha A_{mn} \end{pmatrix}$$

ניתן ע"י $lpha \cdot A$ ניתן ע"י מטריצה $lpha \cdot ij$ - במילים אחרות, האיבר

$$(\alpha \cdot A)_{ij} = \alpha \cdot A_{ij} .$$

דוגמה 3.3 חיבור מטריצות

$$\begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 0 \end{pmatrix} + \begin{pmatrix} 6 & 8 & 9 \\ 11 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 1+6 & 2+8 & 5+9 \\ 3+11 & 4+5 & 0+4 \end{pmatrix} = \begin{pmatrix} 7 & 10 & 14 \\ 14 & 9 & 4 \end{pmatrix}$$

דוגמה 3.4 כפל מטריצה בסקלר

$$7 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 7 \cdot 1 & 7 \cdot 2 \\ 7 \cdot 3 & 7 \cdot 4 \end{pmatrix} = \begin{pmatrix} 7 & 14 \\ 21 & 28 \end{pmatrix}$$

משפט 3.1 תכונות של חיבור מטריצות וכפל מטריצות

יהיו $lpha,eta\in\mathbb{R}$ -ו $A,B,C\in\mathbb{F}^{m imes n}$ יהיו

1) חוק החילוף של חיבור מטריצות:

$$A + B = B + A$$
.

2) חוק הקיבוץ של חיבור מטריצות:

$$(A + B) + C = A + (B + C)$$
.

$$A + 0 = A .$$

$$\alpha(A+B) = \alpha A + \alpha B .$$

$$(\alpha + \beta)A = \alpha A + \beta A .$$

$$\alpha \cdot (\beta \cdot A) = (\alpha \cdot \beta) \cdot A \ .$$

הוכחה מיידית מההגדרות.

3.4 מטריצה משוחלפת

הגדרה 3.3 מטריצה משוחלפת

:(מטריצה ו- ח שורות שורות אמטריצה (מטריצה איצה א ו- ו- מטריצה אמטריצה א ו- בהינתן מטריצה א ו- ו- ו

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix}$$

המטריצה המשוחלפת של M מסומנת ב- A^t והיא מטריצה בעלת שורות ו- M עמודות המתקבלת מהמטריצה M ע"י להחליף שורות עם עמודות:

$$A^{t} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{m1} \\ A_{12} & A_{22} & \cdots & A_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{mn} \end{pmatrix}$$

ניתן ע"י A ניתן ע"י של המטריצה המשוחלפת היבר ה- במילים אחורת, האיבר ה-

$$A_{ij}^t = A_{ji}$$
.

דוגמה 3.5 מטריצה משוחלפת

$$A^t$$
 נתונה $A = egin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ נתונה מצאו את מצאו את מצאו

פתרון:

.1

$$A^t = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

משפט 3.2 תכונות של מטריצה משוחלפת

. מתקיים: $\alpha \in \mathbb{R}$ מטריצה כך שהסכומים והמכפלות מוגדרים ויהי A,B

$$\left(A^t\right)^t = A$$

$$(A+B)^t = A^t + B^t (2$$

$$(\alpha A)^t = \alpha A^t$$

$$(A \cdot B)^t = B^t \cdot A^t$$

שימו לב, הסדר השתנה.

הוכחה: תרגיל בית.

3.5 כפל מטריצה בווקטור

<u>הגדרה 3.4 מכפלה</u> של מטריצה בוקטור

ווקטור
$$X=egin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}\in \mathbb{F}^n$$
 ווקטור $m\times n$ אורי מסדר $A=egin{pmatrix} A_{11}&A_{12}&\cdots&A_{1n}\\A_{21}&A_{22}&\cdots&A_{2n}\\\vdots&\vdots&\ddots&\vdots\\A_{m1}&A_{m2}&\cdots&A_{mn} \end{pmatrix}\in \mathbb{F}^{m\times n}$ ווקטור

מסדר n. המכפלה של המטריצה A עם הווקטור X, שמסומנת $A\cdot X$, נותנת ווקטור מסדר m שמוגדר

$$A \cdot X = \begin{pmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n \\ \vdots \\ A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n A_{1j}x_j \\ \sum_{j=1}^n A_{2j}x_j \\ \vdots \\ \sum_{j=1}^n A_{mj}x_j \end{pmatrix}.$$

ניתן ע"י $A\cdot X$ ניתן ע"י במילים אחרות, האיבר ה-

$$(A \cdot X)_i = \sum_{i=1}^n A_{ij} x_j .$$

כללים של כפל מטריצה בווקטור:

- \mathbb{F}^m -ב מחזירה ווקטור ב $X\in\mathbb{F}^n$ עם ווקטור א $A\in\mathbb{F}^{m imes n}$ מטטריצה לשל כפל על
- אפשר להכפיל מטריצה עם ווקטור רק אם מספר העמודות של המטריצה שווה למספר השורות של (2 הווקטור.

דוגמה 3.6 כפל מטריצה בווקטור

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = \begin{pmatrix} 7 \cdot 1 + 8 \cdot 2 + 9 \cdot 3 \\ 7 \cdot 4 + 8 \cdot 5 + 9 \cdot 3 \end{pmatrix} = \begin{pmatrix} 50 \\ 122 \end{pmatrix}$$

דוגמה 3.7

$$\begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \\ 10 & 11 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \cdot 3 + 2 \cdot 6 \\ 1 \cdot 3 + 2 \cdot 6 \\ 4 \cdot 3 + 5 \cdot 6 \\ 7 \cdot 3 + 8 \cdot 6 \\ 10 \cdot 3 + 11 \cdot 6 \end{pmatrix} = \begin{pmatrix} 15 \\ 42 \\ 79 \\ 96 \end{pmatrix}$$

3.6 כפל מטריצות

הגדרה 3.5 מכפלה של שתי מטריצות

$$B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{k1} & B_{k2} & \cdots & B_{kn} \end{pmatrix} \in \mathbf{P}^{m \times k} \text{ מטריצה מסדר } A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ A_{21} & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mk} \end{pmatrix} \in \mathbb{F}^{m \times k}$$

ומוגדרת $A\cdot B$ מטריצה מסדר $k\times n$ המכפלה של השתי מטריצות $\mathbb{F}^{k\times n}$

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ A_{21} & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mk} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{k1} & B_{k2} & \cdots & B_{kn} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11}B_{11} + \dots + A_{1k}B_{k1} & A_{11}B_{12} + \dots + A_{1k}B_{k2} & \dots & A_{11}B_{1n} + \dots + A_{1k}B_{kn} \\ A_{21}B_{11} + \dots + A_{2k}B_{k1} & A_{21}B_{12} + \dots + A_{2k}B_{k2} & \dots & A_{21}B_{1n} + \dots + A_{2k}B_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1}B_{11} + \dots + A_{mk}B_{k1} & A_{m1}B_{12} + \dots + A_{mk}B_{k2} & \dots & A_{m1}B_{1n} + \dots + A_{mk}B_{kn} \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{p=1}^{k} A_{1p} B_{p1} & \sum_{p=1}^{k} A_{1p} B_{p2} & \cdots & \sum_{p=1}^{k} A_{1p} B_{pn} \\ \sum_{p=1}^{k} A_{2p} B_{p1} & \sum_{p=1}^{k} A_{2p} B_{p2} & \cdots & \sum_{p=1}^{k} A_{2p} B_{pn} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{p=1}^{k} A_{mp} B_{p1} & \sum_{p=1}^{k} A_{mp} B_{p2} & \cdots & \sum_{p=1}^{k} A_{mp} B_{pn} \end{pmatrix}$$

במילים אחרות, האיבר ה- ij של המכפלה $A\cdot B$ ניתנת ע"י הנוסחה:

$$(A \cdot B)_{ij} = \sum_{p=1}^{k} A_{ip} B_{pj} .$$

כללים של כפל מטריצות:

- ניתן להכפיל מטריצה B במטריצה B רק כאשר A מטריצה מסדר במטריצה B ניתן להכפיל מטריצה B במטריצה שווה למספר שווה של A שווה למספר אומרת מספר עמודות של A
 - m imes n אז $A \cdot B$ אז $A \cdot B$ אז $B \cdot n$ מסדר וווא א מסדר $B \cdot m imes k$ אם $A \cdot B$

דוגמה 3.8

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 8 \cdot 4 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

דוגמה 3.9

$$\begin{pmatrix} 2 & 3 & 1 \\ -1 & 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 5 \\ 8 & 7 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 \cdot 2 + 3 \cdot 8 + 1 \cdot 1 & 2 \cdot 5 + 3 \cdot 7 + 1 \cdot 1 \\ -1 \cdot 2 + 0 \cdot 8 + 4 \cdot 1 & -1 \cdot 5 + 0 \cdot 7 + 4 \cdot 1 \end{pmatrix} = \begin{pmatrix} 29 & 32 \\ 2 & -1 \end{pmatrix}$$

דוגמה 3.10

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 7 & 8 \end{array}\right) \cdot \left(\begin{array}{cccc} 11 & 12 & 13 & 14 \\ 5 & 6 & 7 & 8 \\ 21 & 22 & 23 & 24 \end{array}\right)$$

$$= \begin{pmatrix} 1 \cdot 11 + 2 \cdot 5 + 3 \cdot 21 & 1 \cdot 12 + 2 \cdot 6 + 3 \cdot 22 & 1 \cdot 13 + 2 \cdot 7 + 3 \cdot 23 & 1 \cdot 14 + 2 \cdot 8 + 3 \cdot 24 \\ 0 \cdot 11 + 7 \cdot 5 + 8 \cdot 21 & 0 \cdot 12 + 7 \cdot 6 + 8 \cdot 22 & 0 \cdot 13 + 7 \cdot 7 + 8 \cdot 23 & 0 \cdot 14 + 7 \cdot 8 + 8 \cdot 24 \end{pmatrix}$$

$$= \left(\begin{array}{cccc} 84 & 90 & 96 & 102 \\ 203 & 218 & 233 & 248 \end{array}\right)$$

הגדרה 3.6 מטריצה היחידה

 $n \times n$ למטריצה ריבועית מסדר

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

קוראים מטריצת היחידה.

דוגמה 3.11

 $:I\in\mathbb{R}^{2 imes2}$ המטריצה

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 $:I\in\mathbb{R}^{3 imes 3}$ המטריצה

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $:I\in\mathbb{R}^{4 imes 4}$ המטריצה

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

משפט 3.3 כפל מטריצה במטריצה היחידה

עהי
$$I\in\mathbb{F}^{n imes n}$$
 ו- $A\in\mathbb{F}^{m imes n}$ אז (1

$$A \cdot I = A$$
.

אז
$$I \in \mathbb{F}^{m imes m}$$
 ו- $A \in \mathbb{F}^{m imes n}$ אז (2

$$I \cdot A = A$$
.

הוכחה: תרגיל בית!

דוגמה 3.12

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 0 & 1 \cdot 2 + 0 \cdot 7 & 1 \cdot 3 + 0 \cdot 8 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot 2 + 1 \cdot 7 & 0 \cdot 3 + 1 \cdot 8 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix}$$

דוגמה 3.13

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 & 1 \cdot 0 + 2 \cdot 1 + 3 \cdot 0 & 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 1 \\ 0 \cdot 1 + 7 \cdot 0 + 8 \cdot 0 & 0 \cdot 0 + 7 \cdot 1 + 8 \cdot 0 & 0 \cdot 0 + 7 \cdot 0 + 8 \cdot 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \end{pmatrix}$$

משפט 3.4 תכונות של כפל מטריצות

תהיינה A,B,C מטריצות כך שהסכומים והמכפלות מוגדרים ויהי

א) חוק הקיבוץ:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

ב) חוק הפילוג:

$$A\cdot (B+C) = A\cdot B + A\cdot C$$

ג) חוק הפילוג:

$$(B+C)\cdot A = B\cdot A + C\cdot A$$

$$\alpha(A \cdot B) = (\alpha \cdot A) \cdot B = A \cdot (\alpha \cdot B)$$
 (7

אז m imes m מטריצת היחידה מסדר וו $I_{m imes m}$ אס מטריצת מטריצת מטריצת היחידה מסדר ווואס וווא אס $I_{n imes n}$

$$I_{m \times m} \cdot A = A = A \cdot I_{n \times n}$$
.

הוכחה: תרגיל בית!

כלל 3.1 כפל מטריצות לא קומוטטיבית

נתונות $B \cdot A \cdot B$ - באופן כללי, $A \cdot B$ באופן כללי, $B \in \mathbb{F}^{k \times n}$ - ב $A \in \mathbb{F}^{m \times k}$ נתונות

$$A \cdot B \neq B \cdot A$$

באופן כללי.

דוגמה 3.14

אם $A \cdot A$ מוגדר, אבל $B \cdot A$ לא מוגדר, אז $A \cdot B$ אז $A \cdot B$ אם $A \cdot B$ אם $A \cdot B$ אם אוגדר.

דוגמה 3.15

$$B = \begin{pmatrix} -1 & 4 \\ -2 & 3 \end{pmatrix}$$
 $A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}$

$$A \cdot B = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} -1 & 4 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} -4 & 11 \\ -13 & 27 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} -1 & 4 \\ -2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 10 & 19 \\ 5 & 13 \end{pmatrix}$$

 $A \cdot B \neq B \cdot A$ א"ז

דוגמה 3.16 כפל מטריצה אינה קומוטטיבית

(קומוטטיביות) או-
$$B$$
 ו- A ו- A ו- A ו- A ו- B ו- A ו- A ו- A ו- A מתחלפות A ו- A ו

פתרון:

$$A \cdot B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 5 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 11 \\ 11 & 27 \end{pmatrix}$$

אבל

$$B \cdot A = \begin{pmatrix} 1 & 5 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 16 & 22 \\ 11 & 16 \end{pmatrix}$$

. לכן $A \cdot B \neq B \cdot A$ לכן $A \cdot B \neq B \cdot A$

כלל 3.2 מטריצות דומות

 $A \neq 0$ ו- A,B,C נתונות מטריצות

אז $B \neq C$ אז אז $B \neq C$ אז אז אז לא בהכרח שווה ל- $B \neq A$ אז אז אז אם

דוגמה 3.17

 $A \neq C$ אבל $A \neq 0$ -ו AB = AC כך ש- $A, B, C \in \mathbb{R}^{2 imes 2}$ תנו דוגמה של

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$A \cdot C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

 $AB \neq C$ אבל $A \neq 0$ ו- AB = AC הרי

כלל 3.3 מכפלה מטריצות המתאפסת

A,B נתונות מטריצות

.אס איז A אז אז א בהכרח מטריצה האפס ו- B לא בהכרח מטריצה האפס

 $A\cdot B=0$ כך ש- B
eq 0 ו- A
eq 0 כך ש-

דוגמה 3.18

 $A\cdot B=0$ אבל A,B
eq 0 כך ש- $A,B\in\mathbb{R}^{2 imes 2}$ תנו דוגמה של

פתרון:

$$.B=\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight)$$
 , $A=\left(egin{array}{cc} 0 & 1 \ 0 & 0 \end{array}
ight)$ (1 דוגמה 1

$$A \cdot B = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) .$$

,
$$A=\left(egin{array}{cc} 0 & a \ 0 & 0 \end{array}
ight), a\in \mathbb{R}
eq 0$$
 (2 דוגמה

$$.B = \left(\begin{array}{cc} b & 0 \\ 0 & 0 \end{array}\right) b \in \mathbb{R} \neq 0$$

$$A \cdot B = \left(\begin{array}{cc} 0 & a \\ 0 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} b & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) .$$

הגדרה 3.7 העלאה מטריצה בחזקה

תהי $k \in \mathbb{N}$ ויהי $A \in \mathbb{R}^{n \times n}$

$$A^k = \overbrace{A \cdot A \cdot \cdots A}^{\text{evaro}}$$

אם $A \neq 0$, ונגדיר

$$A^0 = I_{n \times n}$$
.