資管碩一 R10725026 黃奕滔

1. (a).

========						
	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.0339	0.018	110.528	0.000	1.998	2.070
f0	-0.0055	0.025	-0.224	0.823	-0.054	0.043
f1	0.0440	0.028	1.571	0.117	-0.011	0.099
f2	0.3140	0.035	9.028	0.000	0.246	0.382
f3	0.0186	0.042	0.447	0.655	-0.063	0.100
f4	-0.0035	0.038	-0.091	0.928	-0.078	0.072
f5	-0.0740	0.030	-2.483	0.013	-0.133	-0.015
f6	-0.0710	0.026	-2.742	0.006	-0.122	-0.020
f7	0.0235	0.028	0.853	0.394	-0.031	0.078
f8	0.0410	0.019	2.170	0.030	0.004	0.078
f9	1.953e-17	1.48e-17	1.323	0.186	-9.46e-18	4.85e-17
f10	-0.0446	0.021	-2.119	0.035	-0.086	-0.003
f11	-0.0292	0.020	-1.438	0.151	-0.069	0.011
f12	-0.0006	0.022	-0.027	0.979	-0.044	0.043
f13	0.0336	0.024	1.412	0.159	-0.013	0.080
f14	-0.1832	0.021	-8.898	0.000	-0.224	-0.143
f15	-0.1061	0.019	-5.565	0.000	-0.144	-0.069
f16	-0.0358	0.020	-1.756	0.080	-0.076	0.004
f17	0.0633	0.019	3.409	0.001	0.027	0.100
f18	-0.1904	0.021	-9.194	0.000	-0.231	-0.150
f19	0.0278	0.026	1.051	0.294	-0.024	0.080
f20	0.0126	0.020	0.644	0.520	-0.026	0.051
f21	-0.0357	0.028	-1.263	0.207	-0.091	0.020
f22	0.0747	0.021	3.533	0.000	0.033	0.116
f23	-0.0088	0.020	-0.442	0.659	-0.048	0.030
f24	0.0193	0.024	0.800	0.424	-0.028	0.067
f25	-0.0679	0.020	-3.406	0.001	-0.107	-0.029
f26	-0.0360	0.022	-1.625	0.105	-0.080	0.008
f27	-0.0062	0.019	-0.324 	0.746	-0.044	0.031
Omnibus:		39.	 669 Durbin		2.004	
Prob(Omnibu	ıs):	0.	000 Jarque	-Bera (JB)):	147.525
Skew:		0.	090 Prob(J	B):		9.23e-33
Kurtosis:		5.	383 Cond.	No.		1.39e+16

R-squared:	0.495
Adj. R-squared:	0.472
F-statistic:	21.52
Prob (F-statistic):	1.16e-70

(b). Before adapting linear regression, we should check whether there truly exist linear relationships between features and labels. Maybe there are some interactions among the features or higher degree polynomial terms.

(c). Sorted p-values and significant features

```
furnace_pvalues = furnace_result.pvalues
   print(furnace_pvalues.sort_values())
 ✓ 0.4s
Intercept
            0.000000e+00
f18
            6.355895e-19
f2
            2.430368e-18
f14
            6.896905e-18
f15
            3.971326e-08
f22
            4.429125e-04
            6.967770e-04
f17
            7.041639e-04
f25
f6
            6.295708e-03
f5
            1.331207e-02
f8
            3.036614e-02
f10
            3.450386e-02
f16
            7.959189e-02
f26
            1.046465e-01
f1
            1.167404e-01
f11
            1.509174e-01
f13
            1.585856e-01
f9
            1.863555e-01
f21
            2.071131e-01
```

(d).

(1). Normality test

```
Normality check H_0: the residual is normal H_1: the residual is not normal \operatorname{check\_norm}[\operatorname{furnace\_result.resid\_pearson}]
```

```
Shapiro: statistics=0.935, p=0.000
```

P-value of the Shapiro Normality test < 0.05, we have 95% confident to reject null hypothesis. Thus, residual distribution isn't normal.

(2). Independence (aka check multicollinearity)

Through checking VIF (Variance Inflation Factor), there's no strong multicollinearity features (VIF > 10) that must be removed.

(3). Homogeneity of Variance (aka Homoscedasticity)

 H_0 : Homoscedasticity H_1 : Hetroscedasticity

B-P test reject null hypothesis, while G-Q test doesn't. We can't surely infer whether Homogeneity of Variance exist or not.

(1). Distribution plot is posed by column number order.

census	_des														
✓ 0.2s															
	age	fnlwgt	education- num	capital-gain	capital-loss	hours-per- week	class	education	marital- status	native- country	occupation	race	relationship	sex	workclass
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437456	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347429	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
na_cnt	0.000000	0.000000e+00	0.000000	0.000000	0.000000	0.000000	0.0	0.0	0.0	583.0	1843.0	0.0	0.0	0.0	1836.0
outlier_cnt	121.000000	NaN	347.000000	NaN	219.000000	NaN	NaN	NaN	NaN	NaN	215.0	1470.0	440.0	NaN	NaN

(2). Using z-score : If |z-score| > threshold, the value is outlier. (thres. is set to 3)

```
def detect_outlier(data_1):
    threshold=3
    mean_1 = np.mean(data_1)
    std_1 =np.std(data_1)
    outliers = []

    for y in data_1:
        z_score= (y - mean_1)/std_1
        if np.abs(z_score) > threshold:
            outliers.append(y)
    return outliers
```


Take most-frequent value to replace nan (impute the missing values)

```
imputer = SimpleImputer(strategy='most_frequent')
# imputer = KNNImputer()
imputer.fit(census_data)
imputed_census = imputer.transform(census_data)
```

(3). We use the pandas.get_dummies() method to transform the categorical columns into dummy one. Because the category columns in the dataset is mostly binary, we can use drop_first=True option to make appropriate dummies.

Ex.

co "r ce	census_dummies = pd.get_dummies(data=Imputed_census,															Python	
	age	fnlwgt	education- num	capital- gain	capital- loss	hours- per- week	workclass_ Local-gov	workclass_ Never- worked	workclass_ Private	workclass_ Self-emp- inc	workclass_ Self-emp- not-inc	workclass_ State-gov	workclass_ Without- pay	education_ 11th	education_ 12th	education_ 1st-4th	educatic 5th-6
0	39.0	77516.0	13.0	2174.0	0.0	40.0											
1	50.0	83311.0															
2	38.0	215646.0	9.0	0.0	0.0	40.0											
3	53.0	234721.0				40.0											
4	28.0	338409.0	13.0	0.0	0.0	40.0											
32556		257302.0	12.0	0.0	0.0	38.0											
32557	40.0	154374.0				40.0											
32558	58.0	151910.0	9.0	0.0	0.0	40.0											
32559		201490.0				20.0											
32560 32561 rd		287927.0	9.0	15024.0	0.0	40.0											

(4). We can use the sklean.model_selection.train_test_split() method. With chosen random_state option, we can perform randomly split. Meanwhile, set the proportion of train/test dataset by test_size option.

(5). Fit the logistic regression model with Xy_train and evaluate model accuracy with score method using Xy_test.

3.

(1). There's a package named mlxtend with a method called TransactionEncoder(), which can help us transform the transaction data into Boolean table form.

(2).

(3). As I see it, row 93000 is the most interpretable row in the first five rules. It's reasonable that people awarded of the important of health to consume balanced amount of vegetables, fruits, protein and fat. Due to the aforementioned reason, when someone buys fruit, juice, hopefully will also buy vegetables to fulfill daily demand of nutrients.

(4). Relationship between confidence and support:

10 of the rules connections:

Ref.

linear regression 回歸模型 and 檢測

 $\frac{https://towardsdatascience.com/verifying-the-assumptions-of-linear-regression-in-python-and-r-f4cd2907d4c0}{python-and-r-f4cd2907d4c0}\\$

outlier detection

 $\frac{https://medium.com/datadriveninvestor/finding-outliers-in-dataset-using-python-efc3fce6ce32}{}$

impute data (Compensate missing value)

 $\underline{https://towardsdatascience.com/6-different-ways-to-compensate-for-missing-values-\\ \underline{data-imputation-with-examples-6022d9ca0779}$

association rules

http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori/https://artsdatascience.wordpress.com/2019/12/10/python-%E5%AF%A6%E6%88%B0%E7%AF%87%EF%BC%9Aapriori-algorithm/https://pbpython.com/market-basket-analysis.html

(association rules visualization)

https://intelligentonlinetools.com/blog/2018/02/10/how-to-create-data-visualization-for-association-rules-in-data-mining/