	20-P-MOM-DY-25
	A m = 2kg ball, that is attached to a cord, travels
	around on top of a frictionless disk with a hole in the
	middle. The ball travels in a path that can be described as
	a circle with radius r= 2m with a constant speed v= 2 m/s.
	If the cord begins at cost and then is realled downward
	through a hole with constant velocity v = 0.2% determine
	If the cord begins at rest and then is pulled downward through a hole with constant velocity $v_e = 0.2\%$, determine the velocity of the ball at time $t = 4s$. Determine the
	work done by the cord.
	$r = 2$: $-v_r t = 1.2 m$
	$H_1 = H_2$
	$m_{V_1} = m_{V_2}$ (2)(2) = V_2 (1-2) $V_2 = 3.37 \frac{m_2}{3}$
	$m_{V_1} - m_{V_2} = (21(2) = V_2(1-1) + V_2 - 3.33 = 3.33$
	V= 3.339 W/s
	T , 51, -T
	T, + Z U ₁₋₂ - Tz
	$\frac{1}{2}mv^2 + w = \frac{1}{2}mV_1$ $V_1 = \sqrt{2}^2$; $+ 6.2^2 = 2.01 \frac{1}{16}$
	z mvi + w = zm vf
	- 7 AU T
	W= 7.109 J
	Vr
	Ve €
18	