Fundamentals of Electric Circuits Chapter 14

Frequency Response

- This chapter will introduce the idea of the transfer function:
 - a means of describing the relationship between the input and output of a circuit.
- Bode plots and their utility
 - in describing the frequency response of a circuit will also be introduced.
- The concept of resonance as applied to LRC circuits will be covered as well
- Finally, frequency filters will be discussed.

The frequency response of a circuit is the variation in its behavior with change in signal frequency.

- Frequency response is the variation in a circuit's behavior with change in signal frequency.
- This is significant for applications involving filters.
- Filters play critical roles in blocking or passing specific frequencies or ranges of frequencies.
- Without them, it would be impossible to have multiple channels of data in radio communications.

14.2

Transfer Function

- One useful way to analyze the frequency response of a circuit is the concept of the transfer function $H(\omega)$.
- It is the frequency dependent ratio of a forced function $Y(\omega)$ to the forcing function

$$\frac{\mathsf{X}(\boldsymbol{\omega})}{H(\boldsymbol{\omega})} = \frac{Y(\boldsymbol{\omega})}{X(\boldsymbol{\omega})}$$

 $\mathbf{X}(\omega)$ and $\mathbf{Y}(\omega)$ denote the input and output phasors of a network

Transfer Function

 There are four possible input/output combinations:

$$\mathbf{H}(\omega) = \text{Voltage gain} = \frac{\mathbf{V}_o(\omega)}{\mathbf{V}_i(\omega)}$$
 (14.2a)

$$\mathbf{H}(\boldsymbol{\omega}) = \text{Current gain} = \frac{\mathbf{I}_o(\boldsymbol{\omega})}{\mathbf{I}_i(\boldsymbol{\omega})}$$
 (14.2b)

$$\mathbf{H}(\omega) = \text{Transfer Impedance} = \frac{\mathbf{V}_o(\omega)}{\mathbf{I}_i(\omega)}$$
 (14.2c)

$$\mathbf{H}(\omega) = \text{Transfer Admittance} = \frac{\mathbf{I}_o(\omega)}{\mathbf{V}_i(\omega)}$$
 (14.2d)

Zeros and Poles

- To obtain $H(\omega)$, we first convert to frequency domain equivalent components in the circuit.
- $H(\omega)$ can be expressed as the ratio of numerator $N(\omega)$ and denominator $D(\omega)$ polynomials.

$$H(\omega) = \frac{N(\omega)}{D(\omega)}$$

- Zeros
 - where the transfer function goes to zero.
- Poles
 - where it goes to infinity.
- They can be related to the roots of $N(\omega)$ and $D(\omega)$

Example 14.1

For the RC circuit, obtain the transfer function V_O/V_S and its frequency response. Let $v_s = V_m \cos \omega t$.

0.707

Convert to the frequency domain

$$\mathbf{H}(\omega) = rac{\mathbf{V}_o}{\mathbf{V}_s} = rac{1/j\omega C}{R+1/j\omega C} = rac{1}{1+j\omega RC}$$

obtain the magnitude and phase of $\mathbf{H}(\omega)$

$$H=rac{1}{\sqrt{1+\left(\omega/\omega_0
ight)^2}}$$

$$\phi = - an^{-1}rac{\omega}{\omega_0}$$

where $\omega_0=1/RC$

Plot H and ϕ for $0 < \omega < \infty$

TABLE 14.1

For Example 14.1.

ω/ω_0	\boldsymbol{H}	$\boldsymbol{\phi}$	ω/ω_0	\boldsymbol{H}	$\boldsymbol{\phi}$
0	1	0	10	0.1	-84°
1	0.71	-45°	20	0.05	-87°
2	0.45	-63°	100	0.01	-89°
3	0.32	-72°	00	0	-90°

R

Low-pass Filters

Practice Problem 14.1

For the RC circuit, obtain the transfer function V_O/V_S and its frequency response. Let $v_s = V_m \cos \omega t$.

$$H(\omega) = \frac{V_O}{V_S} = \frac{j\omega L}{R + j\omega L}$$
$$= \frac{1}{1 + \frac{R}{j\omega L}}$$
$$= \frac{1}{1 - j\frac{R/L}{\omega}}$$

Example 14.2

For the circuit, calculate the gain $I_o(\omega)/I_i(\omega)$ and its poles and zeros.

By current division

$$\mathbf{I}_o(\omega) = rac{4 + j2\omega}{4 + j2\omega + 1/j0.5\omega} \mathbf{I}_i(\omega)$$

$$rac{\mathbf{I}_o(\omega)}{\mathbf{I}_i(\omega)} = rac{j0.5\omega(4+j2\omega)}{1+j2\omega+(j\omega)^2} = rac{s(s+2)}{s^2+2s+1} leftharpoonup s = j\omega$$

The zeros

$$s(s+2) = 0 \Rightarrow z_1 = 0, z_2 = -2$$

The poles

$$s^2 + 2s + 1 = (s+1)^2 = 0 \Rightarrow p = -1$$
 repeated pole (or double pole)

14.3

†The Decibel Scale

- Bode plots
- These plots are based on logarithmic scales.
- The transfer function
 - as an expression of gain.
- Gain expressed in log form
 - typically expressed in bels
 - or more commonly decibels (1/10 of a bel)

reason why logarithms are greatly used

$$G_{dB} = 10 \log_{10} 2 \approx 3 dB$$

$$G_{dB} = 10 \log_{10} 0.5 \approx -3 \text{ dB}$$

The logarithm of the reciprocal of a quantity is simply negative the logarithm of that quantity.

$$1. \log P_1 P_2 = \log P_1 + \log P_2$$

$$2. \log P_1/P_2 = \log P_1 - \log P_2$$

$$3.\log P^n = n \log P$$

$$4.\log 1 = 0$$

power gain G

$$G_{dB} = 10\log_{10} \frac{P_2}{P_1}$$

The gain G can be expressed in terms of voltage or current ratio

If P₁ is the input power, P₂ is the output (load) power, R₁ is the input resistance, R₂ is the load resistance.

$$G_{dB} = 10 \log_{10} \frac{P_2}{P_1} = 10 \log_{10} \frac{V_2^2 / R_2}{V_1^2 / R_1}$$
$$= 10 \log_{10} (\frac{V_2}{V_1})^2 + 10 \log_{10} \frac{R_1}{R_2}$$

$$G_{dB} = 20 \log_{10} \frac{V_2}{V_1} - 10 \log_{10} \frac{R_2}{R_1}$$

For the case when $R_2 = R_1$

when comparing voltage levels

$$G_{dB} = 20 \log_{10} \frac{V_2}{V_1}$$

when comparing current levels

$$G_{dB} = 20 \log_{10} \frac{I_2}{I_1}$$

14.4 Bode Plots

Bode plots are semilog plots of the magnitude (in decibels) and phase (in degrees) of a transfer function versus frequency.

- One problem with the transfer function is that it needs to cover a large range in frequency.
- Plotting the frequency response on a semilog plot makes the task easier
 - where the x axis is plotted in log form
- ⇒ Bode plots
- Bode plots either show
 - magnitude (in decibels)
 - phase (in degrees)as a function of frequency.

$$\mathbf{H} = H/\underline{\phi} = He^{j\phi}$$

$$\ln \mathbf{H} = \ln H + \ln e^{j\phi} = \ln H + j\phi$$

$$H_{dB} = 20 \log_{10} H$$

Standard Form

• The transfer function:

$$H(\omega) = \frac{K(j\omega)^{\pm 1}(1+j\omega/z_1)\left[1+j2\zeta_1\omega/\omega_k+(j\omega/\omega_k)^2\right]\cdots}{(1+j\omega/p_1)\left[1+j2\zeta_2\omega/\omega_n+(j\omega/\omega_n)^2\right]\cdots}$$

- This standard form may include the following seven factors in various combinations:
 - A gain K
 - A pole $(j\omega)^{-1}$ or a zero $(j\omega)$
 - A simple pole $1/(1+j\omega/p_1)$ or a simple zero $(1+j\omega/z_1)$
 - A quadratic pole $1/[1+j2\zeta_2\omega/\omega_n+(j\omega/\omega_n)^2]$ or zero $[1+j2\zeta_1\omega/\omega_n+(j\omega/\omega_k)^2]$

- In a bode plot, each of these factors is plotted separately and then added graphically.
- Gain, K: the magnitude is 20log₁₀K and the phase is 0°.
 Both are constant with frequency.

$$H(\omega) = \frac{K(j\omega)^{\pm 1}(1+j\omega/z_1)\left[1+j2\zeta_1\omega/\omega_k+(j\omega/\omega_k)^2\right]\cdots}{(1+j\omega/p_1)\left[1+j2\zeta_2\omega/\omega_n+(j\omega/\omega_n)^2\right]\cdots}$$

- Pole/zero at the origin:
 - For the zero $(j\omega)$, the slope in magnitude is 20 dB/decade and the phase is 90°.
 - For the pole $(j\omega)^{-1}$ the slope in magnitude is -20 dB/decade and the phase is -90°

$$H(\omega) = \frac{K(j\omega)^{\pm 1}(1+j\omega/z_1)\left[1+j2\zeta_1\omega/\omega_k+(j\omega/\omega_k)^2\right]\cdots}{(1+j\omega/p_1)\left[1+j2\zeta_2\omega/\omega_n+(j\omega/\omega_n)^2\right]\cdots}$$

- Simple zero
 - the magnitude is $20\log_{10}|1+j\omega/z_1|$
 - the phase is $\tan^{-1} \omega/z_1$ $H_{dB} = 20 \log_{10} \left| 1 + \frac{j\omega}{z_1} \right| \Rightarrow 20 \log_{10} \frac{\omega}{z_1}$ where:
- The pole is similar, except the corner frequency is at $\omega=p_1$, the magnitude has a negative slope
- approximated as a flat line and sloped line that intersect at ω=z₁ (corner or break frequency)

$$H(\omega) = \frac{K(j\omega)^{\pm 1}(1+j\omega/z_1)\left[1+j2\zeta_1\omega/\omega_k+(j\omega/\omega_k)^2\right]\cdots}{(1+j\omega/p_1)\left[1+j2\zeta_2\omega/\omega_n+(j\omega/\omega_n)^2\right]\cdots}$$

The phase can be plotted as a series straight lines

$$\phi = \tan^{-1} \left(\frac{\omega}{z_1} \right) = \begin{cases} 0, & \omega = 0 \\ 45^{\circ}, & \omega = z_1 \\ 90^{\circ}, & \omega \to \infty \end{cases}$$

$$H(\omega) = \frac{K(j\omega)^{\pm 1}(1+j\omega/z_1)\left[1+j2\zeta_1\omega/\omega_k+(j\omega/\omega_k)^2\right]\cdots}{(1+j\omega/p_1)\left[1+j2\zeta_2\omega/\omega_n+(j\omega/\omega_n)^2\right]\cdots}$$

- The phase can be plotted as a series straight lines
- From $\omega=0$ to $\omega \leq z_1/10$, we let $\lambda=0$

• At
$$\omega = z_1$$
 we let $\phi = 45^\circ$
• For $\omega \ge 10z_1$, we let $\phi = 90^\circ$ $\phi = \tan^{-1}\left(\frac{\omega}{z_1}\right) = \begin{cases} 0, & \omega = 0 \\ 45^\circ, & \omega = z_1 \\ 90^\circ, & \omega \to \infty \end{cases}$

Bode Plots Quadratic pole/zero

- Quadratic pole:
 - The magnitude of the quadratic pole $1/[1+j2\zeta_2\omega/\omega_n+(j\omega/\omega_n)^2]$
 - $-20\log_{10} \left[1 + j2\zeta_2 \omega / \omega_n + (j\omega / \omega_n)^2 \right]$

$$H_{dB} \quad \underset{\text{as } \omega \to 0}{\Longrightarrow} \quad \Rightarrow -40 \log_{10} \frac{\omega}{\omega_n}$$

- The magnitude plot will be two lines:
 - slope zero for ω<ω_n
 - slope -40dB/decade, with ω_n as the corner frequency

Quadratic zero, the plots are inverted.

Bode Plots Quadratic pole/zero

The phase can be expressed as:

$$\phi = -\tan^{-1} \frac{2\zeta_2 \omega / \omega_n}{1 - \omega^2 / {\omega_n}^2} = \begin{cases} 0 & \omega = 0\\ -90^\circ & \omega = \omega_n\\ -180^\circ & \omega \to \infty \end{cases}$$

– This will be a straight line with slope of -90°/decade starting at $\omega_n/10$ and ending at $10 \omega_n$.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

TABLE 14.3 Summary of Bode straight-line magnitude and phase plots. **Factor** Magnitude **Phase** $20 \log_{10} K$ K90*N*° 20N dB/decade $(j\omega)^N$ ω ω -20N dB/decade -90N° 90N° 20N dB/decade $\left(1+\frac{j\omega}{z}\right)^N$ z10zω

Example 14.3

Construct the Bode plots for the transfer function

$$\mathbf{H}(\omega) = \frac{200 j\omega}{(j\omega + 2)(j\omega + 10)}$$

Converting $H(\omega)$ in the standard form

$$\mathbf{H}(\omega) = \frac{10j\omega}{(1+j\omega/2)(1+j\omega/10)}$$

$$= \frac{10|j\omega|}{|1+j\omega/2||1+j\omega/10|} / \frac{90^{\circ} - \tan^{-1}\omega/2 - \tan^{-1}\omega/10}{|1+j\omega/2||1+j\omega/10|}$$

$$H_{\text{dB}} = 20 \log_{10} 10 + 20 \log_{10} |j\omega| - 20 \log_{10} \left|1 + \frac{j\omega}{2}\right| - 20 \log_{10} \left|1 + \frac{j\omega}{10}\right|$$

$$\phi = 90^{\circ} - \tan^{-1}\frac{\omega}{2} - \tan^{-1}\frac{\omega}{10}$$

two corner frequencies at ω =2, 10 rad/s

Example 14.4

Construct the Bode plots for the transfer function

$$\mathbf{H}(\omega) = \frac{j\omega + 10}{j\omega(j\omega + 5)^2}$$

Converting $H(\omega)$ in the standard form

$$\mathbf{H}(\omega) = \frac{0.4(1 + j\omega/10)}{j\omega(1 + j\omega/5)^2}$$

$$H_{\text{dB}} = 20 \log_{10} 0.4 + 20 \log_{10} \left| 1 + \frac{j\omega}{10} \right| - 20 \log_{10} |j\omega| - 40 \log_{10} \left| 1 + \frac{j\omega}{5} \right|$$

$$\phi = 0^{\circ} + \tan^{-1} \frac{\omega}{10} - 90^{\circ} - 2 \tan^{-1} \frac{\omega}{5}$$

two corner frequencies at ω =5, 10 rad/s

14.7 Passive Filters

- A filter is a circuit that is designed to
 - pass signals with desired frequencies
 - reject or attenuate others.
- Passive filter consists only of passive elements:
 - R, L, and C.
- They are very important circuits in that many technological advances would not have been possible without the development of filters.

Passive Filters

- Low-pass Filter
 - passes only low frequencies and blocks high frequencies.
- High-pass Filter
 - does the opposite of lowpass
- Band-pass Filter
 - only allows a range of frequencies to pass through.
- Band-stop Filter
 - does the opposite of bandpass

TABLE 14.5

Summary of the characteristics of ideal filters.

Type of Filter	H(0)	$H(\infty)$	$H(\omega_c)$ or $H(\omega_0)$	
Lowpass	1	0	$1/\sqrt{2}$	
Highpass	0	1	$1/\sqrt{2}$ $1/\sqrt{2}$	
Bandpass	0	0	1	
Bandstop	1	1	0	

 $[\]omega_c$ is the cutoff frequency for lowpass and highpass filters; ω_0 is the center frequency for bandpass and bandstop filters.

14.7.1 Low-Pass Filter

$$H(\omega) = \frac{V_o}{V_i} = \frac{1/j\omega C}{R + 1/j\omega C} \implies H(\omega) = \frac{1}{1 + j\omega RC}$$

$$H(\omega_c) = \frac{1}{\sqrt{1 + \omega_c^2 R^2 C^2}} = \frac{1}{\sqrt{2}} \implies \omega_c = \frac{1}{RC}$$

 when the output of a RC circuit is taken off the capacitor.

ωc

- The half power frequency
- cutoff frequency
- or 3dB frequency.
- The filter is designed to pass from DC up to ωc

14.7.2 High-Pass Filter

$$H(\omega) = \frac{V_o}{V_i} = \frac{R}{R + 1/j\omega C} \implies H(\omega) = \frac{j\omega RC}{1 + j\omega RC}$$

$$\Rightarrow \omega_c = \frac{1}{RC}$$

- when the output taken off the resistor.

ωc

- The half power frequency
- cutoff frequency
- or 3dB frequency.

The cutoff frequency will be the same as the lowpass filter.

 $v_i(t)$

• The difference being that the frequencies passed go from ω_{C} to infinity.

14.7.3 Band-Pass Filter

$$H(\omega) = \frac{V_o}{V_i} = \frac{R}{R + j(\omega L - 1/\omega C)} \Rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$$

- Band-pass filter
 - The RLC series resonant circuit
 - when the output is taken off the resistor.
- **w**0
 - The center frequency
- The filter will pass frequencies from ω_1 to ω_2 .

- $\omega_1 < \omega < \omega_2$ centered on ω_0
- It can also be made by feeding the output from a low-pass to a highpass filter.

14.7.4 Band-Stop Filter

$$H(\omega) = \frac{V_o}{V_i} = \frac{j(\omega L - 1/\omega C)}{R + j(\omega L - 1/\omega C)} \Rightarrow \omega_0 = \frac{1}{\sqrt{LC}} \quad v_i(t)$$

- Band-Stop (Band-Reject) filter
 - The RLC series resonant circuit
 - the output is taken off the taken off the LC series combination.
- The range of blocked frequencies
 - the same as the range of passed frequencies for the band-pass filter.

- The filter will reject frequencies from ω_1 to ω_2 .
 - rejects a band of frequencies
 - $\omega_1 < \omega < \omega_2$ centered on ω_0

R

Example 14.10

Determine what type of filter. Calculate the corner or cutoff frequency. Take $R = 2 k\Omega$, L = 2 H, and $C = 2 \mu F$.

The transfer function

The transfer function
$$\mathbf{H}(s) = \frac{\mathbf{V}_o}{\mathbf{V}_i} = \frac{R \parallel 1/sC}{sL + R \parallel 1/sC}, \quad s = j\omega \qquad R \parallel \frac{1}{sC} = \frac{R/sC}{R + 1/sC} = \frac{R}{1 + sRC}$$

$$\Rightarrow \quad \mathbf{H}(s) = \frac{R/(1 + sRC)}{sL + R/(1 + sRC)} = \frac{R}{s^2RLC + sL + R}, \quad s = j\omega$$

$$\mathbf{H}(\omega) = \frac{R}{-\omega^2 R L C + j\omega L + R}$$

$$\mathbf{H}(\omega) = \frac{R}{-\omega^2 R L C + i\omega L + R}$$
 $\mathbf{H}(0) = 1 \& \mathbf{H}(\infty) = 0 \Rightarrow \text{ second-order low-pass filter}$

$$H = \frac{R}{\sqrt{(R - \omega^2 R L C)^2 + \omega^2 L^2}}$$

The corner frequency is the same as the half-power frequency, that is, where H is reduced by a factor of $1/\sqrt{2}$.

dc value of H (ω) is 1

$$\Rightarrow H^2 = \frac{1}{2} = \frac{R^2}{(R - \omega_c^2 R L C)^2 + \omega_c^2 L^2}$$

$$\Rightarrow 2 = (1 - \omega_c^2 LC)^2 + \left(\frac{\omega_c L}{R}\right)^2$$

$$2 = (1 - \omega_c^2 4 \times 10^{-6})^2 + (\omega_c 10^{-3})^2$$

$$2 = (1 - 4\omega_c^2)^2 + \omega_c^2$$

$$16\omega_c^4 - 7\omega_c^2 - 1 = 0$$

$$\omega_c^2 = 0.5509 \text{ and } -0.1134$$

$$\omega_c = 0.742 \text{ krad/s} = 742 \text{ rad/s}$$