

Ponto de Controle 2

Apresentação

- Atualizações quanto ao PC1;
- Alterações no projeto;
- Próximos passos;

Principais alterações

- Software: troca do machine learning pelo software configurável;
- Eletrônica: central de controle, módulo do foguete e base;
- Energia: adoção de mais uma bateria;
- Estrutura: divisão entre duas estruturas separadas;

Software

Product Design

- **Product Design** é o processo que os designers usam combinando as necessidades do usuário com os objetivos do negócio
- User Centered Design são os processos de design com foco nos usuários os quais os usuários influenciam na construção do produto

Product Design

- Entrevistas

- Entrevista semi-estruturada
- Entrevista não estruturada

- Brainwriting

- Brainwriting Pool
- Nominal Group Technique(NGT)

- Storyboard

- Storytelling
- Storyboard

Wireframe

Protótipo de média fidelidade

Diagrama de sequência

Banco de dados

Diagrama de arquitetura

Evolução

- Início da configuração da infraestrutura de desenvolvimento
- Evolução do alinhamento com eletrônica

Próximos passos

- Desenvolver interface de acordo com os protótipos
- Desenvolver APIs de acordo com a arquitetura proposta
- Documentar comunicação entre software e eletrônica

Eletrônica

Proposta de Solução

- Central de controle
- Módulo do foguete
- Base de Abastecimento

Controle Principal

Diagrama Central de controle

Telemetria

Taxas de Transmissão -Lora

Largura de Banda Disponíveis

- 125 KHz
- 250 KHz
- 500 KHz

CR pode variar de 7 a 8

SF pode variar de 7 a 12

$$Rb = SF \times \frac{BW}{2^{SF}} \times CR$$

Rb = Taxa de bits/s,

BW=Largura de banda,

SF=Fator de espalhamento,

CR=Taxa de código.

$$CR = \frac{4}{4+n}$$

(ZHO, 2019)

Sensoriamento

Módulo micro SD Card

Interno no foguete

Módulo GPS GY-NEO6MV2

Base de lançamento

HX711

Célula de carga - 50 kg

Calibração

Diagrama do algoritmo de calibração da balança

Esquemáticos

Diagrama esquemático do circuito interno do foguete Diagrama esquemático da base de lançamento

Projeto de PCI

Placas de circuito impresso 000 . OO SU V

PCI do circuito interno do foguete

Integração

- Acionamento das válvulas internas e das válvulas externas ao foguete
- Fluxo de dados e comunicação entre Hardware e Software
- Integração para disposição dos componentes na RGS

Próximos passos

- Estudo sobre antenas;
- Detalhamento da integração com as outras áreas do projeto;
- Futuras melhorias e continuações para o trabalho;
- Confecção do manual de uso e manutenção;

Energia

Consumo

Ignição

- Fio de Níquel Cromo (Ni-Cr)
 - 0,8mm² 300°C
 - R = 2,23 Ohm
 - Lei de Ohm I = 5,38 A P = 64,56 W

Componentes	Tensão	Corrente	Potência	Tempo de Utilização
	Mal	eta		
Tela	12V	1A	12W	2h30m
Jetson Nano Developer Kit	5V	2A	10W	2h30m
Teclado e botões	5V	250mA	1,25W	2h30m
Módulo LORA - maleta	5V	500mA	2,5W	2h30m
	Bas	se	40 20	
Módulo LORA - base	5V	500mA	2,5W	2h5m
Ignitor (Ni-Cr)	12V	5,38A	64,56W	15m
Atuadores (3x)	12V	3.9A	46,8W	15m

Maleta

- 30W x 2h30m = 75Wh
- I = 75/12 = 5,83Ah

Base

- 2,5W x 2h30m = 6,25Wh
- \circ 111,36W x 15m = 27,84Wh
- o I = 34,09/12 = 3,33Ah

Baterias

Maleta

- o Dell
- Bateria de 9 células de íons de Lítio
- o 12 V
- 8 Ah
- o 508,02 g

Base

- UniPower
- Bateria Lítio Ferro Fosfato
- o 12 V
- 10 Ah
- 1,5 kg
- Corrente máxima de descarga 35A por 10s

Carregador

Limites:

- Tensão máx. de saída: 14,6V
- Corrente máx. de saída: 10A

- Corrente ideal de carregamento: 1A
- Tempo médio de carregamento: 3h
- Limitador de tensão

Curva de carga da bateria de Lítio íon

Carregador

- Transformador (220V 30V)
- Retificador de onda completa (CA-CC)
- Circuito de carregamento

- Simulação
 - o 13,6 V
 - o 1A

Condutores

- NBR 5410/2004
 - Fios de cobre
 - o 40 °C, FCT: 0.91

Circuito	Corrente corrigida	Seção por capacidade de condução	Seção Mínima	Seção Final
Rede -circuito	8,76 A	0,5 mm²	2,5 mm ²	2,5 mm²
Circuito - bateria	2,0 A	0,5 mm²	2,5 mm²	2,5 mm²
Maleta	8,88 A	0,5 mm²	0,75 mm ²	0,75 mm²
Base	10,42 A	0,75 mm²	0,75 mm ²	0,75 mm²

Sistema de Alimentação

Sistema de controle - Maleta Tela Placa de controle Teclado e botões Cabo HDMI Cabo USB Rede Carregador elétrica Single (220V) **Board** Regulador Bateria Computer de tensão (12V) (5V) Cabo USB Módulo LORA

Sistema de Alimentação

Sistema da base de lançamento

Próximos passos

- Conectores do carregador;
- Detalhamento da integração com as outras áreas do projeto;
- Confecção do manual de uso e manutenção;

Estrutura

Solução estrutural e requisitos

- Estrutura física compacta e portátil
- Material leve e resistente,
- Sistema de transmissão de torque do atuador para a válvula esfera

Mudanças

Antes-PC1

Depois-PC2

Material das maletas

Densidade	$0,695 \ g/cm^3$
Módulo de elasticidade	3776~MPa
Módulo de ruptura	36,1~MPa
Resistência a tração	1,01~MPa

Propriedades do MDF

Propriedade	EPDM	SBR	IR
Dureza Shore A	40-90	30-95	15-100
Tensão de Rotura (MPa)	7-18	7-21	15-25
Resistência elétrica (ohms/cm ²)	2×10^{16}	10^{15}	10^{15}
Limites de temperatura (°C)	-55 a 130	-45 a 85	-50 a 80
Preço (R\$/m²)	140,00	80,00	100,00

Propriedades material de revestimento

Maleta 01 - GCS

Peso: 4,5 Kg 350 mm comprimento 152 mm largura 302 mm altura

Maleta 02 - Suporte

Peso: 8,5 Kg 446 mm comprimento 280 mm largura 350 mm altura

Simulação de Impacto

Maleta 01 Máxima 3,3956 MPa Mínima -14,927 MPa

Maleta 02 Máxima 3,3523 MPa Mínima -12,223 MPa

Abastecimento

Componentes

Measurements:

Specifications:

Attachment Type: Threaded
Ball Material: Stainless Steel
Body Material: Stainless Steel
Handle Material: Stainless Steel

Maximum Working Pressure: 68 bar

Thread Size: ½ in

Thread Standard: BSPP

Threaded Connection: ½ in BSPP

DN	d	L	L1	Н	H1	W	S	Torque (N-m)	Weight (kg)
15	9	56.5	29	40.6	26.1	94.7	5	1.2	0.2

Componentes

WEIGHT: 520g (APPROX)

JC/LC-578VA-4720

12.0V

Diagrama eletromecânico

Próximos passos

- Validar sistema integrado;
- Plano de construção detalhado;
- Confecção do manual de uso e manutenção;
- Simulação do torque sobre a válvula no sistema hidráulico;

Obrigado!

