Partiel S2 Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge ni au crayon à papier.

Exercice 1 (5 points)

- Convertissez les nombres présents sur le document réponse dans le format IEEE754 simple précision. Vous exprimerez le résultat final sous forme binaire en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le document réponse. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Exercice 2 (4,5 points)

On souhaite réaliser une mémoire RAM d'une capacité de 8 Mib (que l'on notera *M*) à l'aide de plusieurs mémoires RAM d'une capacité de 8 Kio (que l'on notera *m*). La mémoire *M* possède un bus de donnée de 32 bits et la mémoire *m* un bus de donnée de 8 bits. Répondez aux questions sur le document réponse.

Exercice 3 (5,5 points)

On souhaite réaliser la séquence du tableau présent sur le document réponse à l'aide de bascules D.

- 1. Remplissez le tableau présent sur le document réponse.
- 2. Donnez les expressions les plus simplifiées des entrées D pour chaque bascule <u>en justifiant par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes (les bulles sont obligatoires)</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (par exemple : D0 = 1, $D1 = \overline{Q0}$). Ne pas utiliser l'opérateur OU EXCLUSIF.
- 3. Simplifiez *D1* et *D2* à l'aide d'un OU EXCLUSIF.

Exercice 4 (3 points)

On souhaite réaliser la séquence du tableau présent sur le document réponse à l'aide de bascules JK.

- 1. Remplissez le tableau présent sur le document réponse.
- 2. Donnez les expressions les plus simplifiées des entrées *J* et *K* de chaque bascule.

Partiel S2 1/4

Exercice 5 (2 points)

Que réalisent les deux montages ci-dessous ? Vous préciserez les trois caractéristiques suivantes :

- Compteur ou décompteur ;
- Synchrone ou Asynchrone;
- Valeur du modulo.

Figure 1

Figure 2

Partiel S2 2/4

Nom:	Prénom :		Classe :
	DOCUMENT RÉPONSE	À RENDRE	

Exercice 1

1.

Nombre	S	E	M
632			
3,34375			

2.

Représentation IEEE 754	Représentation associée
334400000000000 ₁₆	
7FFFFFFFFFFFF ₁₆	
000002000000000016	

Exercice 2

Question	Réponse
Quelle est la profondeur de la mémoire <i>m</i> ?	
Quelle est la profondeur de la mémoire <i>M</i> ?	
Donnez le nombre de fils du bus d'adresse de la mémoire <i>m</i> .	
Donnez le nombre de fils du bus d'adresse de la mémoire M .	
Combien de mémoires doit-on assembler en série ?	
Combien de mémoires doit-on assembler en parallèle ?	
Combien de bits d'adresse vont servir à déterminer les entrées <i>CS</i> des mémoires ?	
Quel est le nombre total de mémoires m que contient la mémoire M ?	
Quand la mémoire M est active, combien de mémoires m sont actives simultanément ?	

Partiel S2 3/4

Exercice 3

1.

Q2	Q1	Q0	D2	D1	D0
1	1	1			
1	1	0			
1	0	1			
1	0	0			
0	1	0			
0	0	1			
0	0	0			

2.

		Q1 Q0				
	D1	00	01	11	10	
Q2	0					
	1					

Q1 Q0

D1 =

D2 =

3. Avec le OU EXCLUSIF				
D1 =	D2 =			

Exercice 4

Q1	Q0	J1	K1	Ј0	K0
1	0				
1	1				
0	1				
0	0				

$$K0 = K1 =$$

Exercice 5

Figure 1:

Figure 2:			

Partiel S2 4/4