Wissenschaftliche Methodik I

Varianzanalyse I

Beispieldatensätze zu dieser VL (enthalten im Workspace "ANOVA_1.Rdata"):

- · points.csv
- d1.csv und d2.csv
- bZIP.csv und bZIP_2.csv
- Repmes.csv

Verwendete Pakete:

nortest

Verschiedenheit von Mittelwerten

• Nullhypothese: H_0 : $\mu_1 = \mu_2$

• Alternativhypothese: $H_1: \mu_1 \neq \mu_2$

T-Statistik:

- Metrische Daten: t-Test
- Zumindest Stichproben-Mittelwerte sind annähernd normalverteilt
- Varianzhomogenität

Multiples Testen:

- Gene Array: Vergleich zweier Zellkulturen
 - 24.000 Gene
 - Für Irrtumswahrscheinlichkeit 5%:
 - Error = (1 0.95) * 24.000 = 1200 Falsch-Positive
- 2 Vergleiche unter 2 Bedingungen

• Error =
$$(1 - 0.95^2) * 24.000 = 2340$$

• 4 Vergleiche unter 4 Bedingungen:

• Error =
$$(1 - 0.95^4) * 24.000 \approx 4452$$

19%

Kumulation des α -Fehlers:

		Kumulierter	n * (n-1)/2
Gruppen	Vergleiche —	α-Fehler	
3	3	0.143	
4	6	0.264	Ab 6 Gruppen ist das
5	10	0.401	Ergebnis purer Zufall!
6	15	0.537	Ergebnis purer Zulan:
7	21	0.659	
8	28	0.762	
9	36	0.842	
10	45	0.901	
11	55	0.940	
12	66	0.966	
13	78	0.982	
14	91	0.991	
15	105	0.995	

Kumulation des α -Fehlers:

Erreichte Punkte in "Pflanzliche Systeme"

Bonferroni-Korrektur:

Das α-Fehler-Niveau wird für jeden einzelnen Test soweit herabgesetzt, dass der kumulierte Fehler nur noch 0.05 beträgt:

$$\alpha_{adj} = \frac{\alpha}{N_{Tests}}$$

Beispiel: 5 Gruppen \Rightarrow 10 Tests \Rightarrow α_{adi} = 0.05 / 10 = 0.005

Nachteil:

⇒ sehr niedriges Alpha-Niveau bei den einzelnen Tests

⇒ geringe Auflösung ("Power"), d.h. großer β-Fehler

Alternative: Berechnung einer Varianzanalyse

Theorie der ANOVA:

- Wie groß ist die gesamte Streuung im Datensatz?
 - Summe der Abweichungsquadrate (SS) aller Einzelwerte vom Gesamtmittelwert
- Welcher Teil der Streuung ist erklärbar? among group variation
 - Welcher Teil der Streuung geht auf den Gruppeneffekt zurück?
 - SS der Gruppenmittelwerte vom Gesamtmittelwert!
- Welcher Teil der Streuung ist zufällig? <u>within group variation</u>
 - Wie groß ist die Streuung innerhalb der Gruppen?
 - SS der Einzelwerte vom Gruppenmittelwert!

Theorie der ANOVA: F-Statistik

• Verhältnis among / within group variation:

```
F_{\text{Stichprobe}} = \frac{S_2^2}{S_1^2} = \frac{\frac{1}{n_2-1} \sum_{i=1}^{n_2} (X_{2i} - \bar{X}_2)^2}{\frac{1}{n_1-1} \sum_{i=1}^{n_1} (X_{1i} - \bar{X}_1)^2}. Es gibt keinen signifikanten Effekt des Jahrgangs F_{\text{Summary}} = \frac{1}{n_1-1} \sum_{i=1}^{n_1} (X_{1i} - \bar{X}_1)^2 + \frac{1}{n_1-1} \sum_{i
```

Einfaktorielle ANOVA:

- Einfluss <u>einer</u> unabhängigen Variablen (Faktor) mit <u>k</u> verschiedenen Ausprägungen (level) auf eine abhängige Variable
 - Nullhypothese: $H_0: \mu_1 = \mu_2 = ... = \mu_k = \mu_{total}$
 - Alternativhypothese: H_1 : $\mu_x \neq \mu_{total}$

Einfaktorielle ANOVA:

"in Abhängigkeit von"

ANOVA: Voraussetzungen

Nicht so leicht zu messen! *Aber:* wenn die Werte normal verteilt sind, sind es die Residuen auch!

Normalverteilung

- Nicht notwendig die Werte, aber die Residuen innerhalb jeder Gruppe, müssen normal verteilt sein
- Andernfalls wäre der Gruppenmittelwert kein guter Schätzer für die Gruppeneigenschaft!

```
Bei n < 50: Shapiro-Wilk Test: shapiro.test(subset(dat$col, dat$group=="group1"))
Bei 50 < n < 100: Kolmogorov-Smirnov mit Lilliefors-Korrektur:
library("nortest")
lillie.test(subset(dat$col, dat$group=="group1"))
```

ANOVA: Voraussetzungen

Normalverteilung

- Nicht notwendig die Werte, aber die Residuen innerhalb jeder Gruppe, müssen normal verteilt sein
- Andernfalls wäre der Gruppenmittelwert kein guter Schätzer für die Gruppeneigenschaft!

```
Normierung von Daten durch Logarithmieren:
```

```
> Log = log10(data$value)
> data2 = data.frame(data, Log)
```

ANOVA: Voraussetzungen

Normalverteilung

- Varianzhomogenität
 - Weniger problematisch bei gleichen Probenumfängen
 - Größerer β-Fehler, wenn geringe Varianz in "kleiner" Gruppe

ANOVA: Voraussetzungen

Normalverteilung

- Varianzhomogenität
 - Weniger problematisch bei gleichen Probenumfängen
 - Größerer β-Fehler, wenn geringe Varianz in "kleiner" Gruppe
 - Größerer α-Fehler, wenn große Varianz in "kleiner" Gruppe

Alternative zur ANOVA: non-parametrische Tests

 Wenn keine Normalverteilung besteht und nicht durch Normierung erzeugt werden kann,

Male: 1+2+6+8+9 = 26

 Wenn Varianzen stark inhomogen oder Gruppen sehr unterschiedlich groß sind:

Femal	le:	3+4+5	5+7+1	.0 = 29

factor	variable	rank
male	12,6	1
male	12,7	2
female	13,5	3
female	13,9	4
female	15,2	5
male	17	6
female	27	7
male	28	8
male	42	9
f emale	45	10

- Rangsummen-Tests
 - Mann-Whitney U Test bzw. Wilcoxon W Test für 2 Gruppen
 - Kruskal-Wallis für > 2 Gruppen

Alternative zur ANOVA: non-parametrische Tests

> wilcox.test(y~t3, data=d2)

Wilcoxon rank sum test with continuity correction

data: y by t3

W = 1111, p-value = 0.1685

alternative hypothesis: true location shift is not equal to $\boldsymbol{\theta}$

Alternative zur ANOVA: non-parametrische Tests

```
> wilcox.test(y~t3, data=d2)
```

Wilcoxon rank sum test with continuity correction

data: y by t3

W = 1111, p-value = 0.1685

alternative hypothesis: true location shift is not equal to 0

> kruskal.test(y~t3, data = d2)

Kruskal-Wallis rank sum test

data: y by t3 Kruskal-Wallis chi-squared = 1.9075, df = 1, p-value = 0.1672

Varianzanalyse: Ergebnis

- H_o: alle Mittelwerte sind gleich
- H₁: Mittelwerte sind nicht alle gleich
- Die ANOVA sagt nicht, welche Mittelwerte verschieden sind!
 - Geplante Kontraste
 - a priori Hypothesen nötig: Experimentdesign!
 - Post Hoc Tests
 - Keine a priori Hypothesen; multiple Tests

Geplante Kontraste: Beispiel

qPCR für 4 bZIP Transkriptionsfaktoren

- X_i: mittlere ΔC_i Werte aus 10 Wiederholungen
- Vermutung: X₃ und X₄ unterscheiden sich

$$\widehat{C} = w_1 X_1 + w_2 X_2 + w_3 X_3 + w_4 X_4$$

$$\widehat{C} = 0^* \overline{X}_1 + 0^* \overline{X}_2 + 1^* \overline{X}_3 + (-1)^* \overline{X}_4$$

$$t = \frac{\hat{C}}{\sqrt{MS_w \left[\sum_{i=1}^k \frac{w_i^2}{n_i}\right]}}$$

$$\sum w_i = 0$$

t-Statistik:

$$\dot{r} = \frac{\hat{C}}{\sqrt{MS_w \left[\sum_{i=1}^k \frac{w_i^2}{n_i}\right]}}$$

Beispiel bZIP: Durchführung in R

1) Analyse der Faktor-Stufen:

```
> levels(bZIP$bzip)
[1] "a" "b" "c" "d"

> levels(bZIP_2$bzip)
NULL

> levels(as.factor(bZIP_2$bzip))
[1] "1" "2" "3" "4"
```

2) Analyse der Kontrast-Tabelle des Datensatzes

```
> contrasts(bZIP$bzip)
b c d
a 0 0 0
b 1 0 0
c 0 1-0
d 0 0 1
... "c" mit Mittelwert
...und "d" mit Mittelwert
```

Beispiel bZIP: Durchführung in R

3) Ändern der Kontrast-Tabelle: nur "c" mit "d" vergleichen

4) Durchführung der ANOVA:

```
> model <- aov(dCT ~ bzip, data= bZIP
```

Beispiel bZIP: Durchführung in R

5) "gesplittete" Anzeige:

...den 1. Vergleich anzeigen

```
> summary.aov(model, split=list(bzip=list("c vs.d"=1)))

Df Sum Sq Mean Sq F value Pr(>F)

bzip 3 282.6 94.20 11.50 1.96e-05 ***

bzip: c vs.d 1 224.4 224.45 27.39 7.35e-06 ***

Residuals 36 295.0 8.19
```

6) Zurücksetzen der Kontrast-Tabelle:

```
> contrasts(bZIP$bzip) <-
> contrasts(bZIP$bzip)
   2 3 4
a 0 0 0
b 1 0 0
c 0 1 0
d 0 0 1
```

Geplante Kontraste: Beispiel 2

Geplanter Kontrast: X₄ unterscheidet sich vom Mittelwert der anderen

$$\widehat{C} = 1 \overline{X}_1 + 1 \overline{X}_2 + 1 \overline{X}_3 + (-3) \overline{X}_4$$

$$\sum w_i = 0$$

Parallele Vergleiche von Faktorstufen:

$$\widehat{C}_{a} = 1*\overline{X}_{1} + -1*\overline{X}_{2} + 0*\overline{X}_{3} + 0*\overline{X}_{4}$$

$$\widehat{C}_{a} = 0*\overline{X}_{1} + 0*\overline{X}_{2} + 1*\overline{X}_{3} + -1*\overline{X}_{4}$$

$$\sum w_{1i} * w_{2i} = 0$$

Beachte: Geplante Kontraste müssen orthogonal sein, d.h. unabhängig.

1/2 & 3/4:
$$\sum W_{1i} * W_{2i} = (+1)(0) + (-1)(0) + (0)(+1) + (0)(-1) = 0$$

1/2 & 2/3:
$$\sum W_{1i} * W_{2i} = (+1)(0) + (-1)(+1) + (0)(-1) + (0)(0) = -1$$

Varianzanalyse: Post Hoc Tests

- H_1 : $\mu_v \neq \mu_{total}$ » mindestens zwei μ verschieden!
- Anzahl möglicher Vergleiche: C = k(k 1) / 2 _____multiples Testen!
- Post Hoc Tests berücksichtigen "error inflation"
- Tests mit Annahme von Varianz-Homogenität:

ANOVA mit Messwiederholung

- Stichproben sind abhängig:
 - z.B. dieselbe Person vor / nach Behandlung
 - z.B. dieselbe Stadt in verschiedenen Jahren
- Da die Proben nicht unabhängig sind, als zufällige Auswahl aus der Grundgesamtheit gelten!
- Vorteil: Individualeffekte können aus der Berechnung der Gruppenvarianzen ausgeschlossen werden!
- Die Rest-Varianz nimmt ab aber auch DF!

ANOVA mit Messwiederholung

- Beispiel: Konzentrationstest (Werte von 0 bis 100)
 - · dieselben Personen morgens, mittags und abends getestet
- Untersucht wird der Effekt der Tageszeit

Als repeated measure ANOVA:

Friedman Test für verbundene Datensätze

Aufmerksamkeit als repeated measure ANOVA:

```
> summary(aov(alert~daytime+Error(person/daytime), data=repmes))
Error: person
                                                    Achtung! Der Friedman-Test kann nicht mit
           Df Sum Sq Mean Sq F value Pr(>F)
                                                    Wiederholungen von "daytime" innerhalb
Residuals 9 1388
                        154.3
                                                    von "person" umgehen: wenn mehrmals
                                                    gemessen wurde, müssen Mittelwerte
Error: person:daytime
                                                    verwendet werden!
           Df Sum Sq Mean Sq F value
                                          Pr(>F)
daytime
           2 42.47 21.233
                               15.79 0.000109
Residuals 18 24.20
                        1.344
```

Als Rangsummen-Test nach Friedman:

```
> friedman.test(alert~ daytime | person, data = repmes)
    Friedman rank sum test

data: alert and daytime and person
Friedman chi-squared = 12, df = 2, p-value = 0.002479
```