

Multivariate Calculus

LECTURE #3 (Partial Derivatives in 2&3-Vriables)

Topics to be Covered

- Unit 3.1: Concept of Partial Derivatives-Example
- Unit 3.2: Partial Derivatives at a Point(a, b)-Example
- Unit 3.3: Partial Derivatives with different rules-Example
- Unit 3.4: Partial Derivatives as Rate of Change and Slopes-Example
- Unit 3.5: Estimating Partial Derivatives From Tabular Data Example
- Unit 3.6: Implicit Partial Differentiation-Example
- Unit 3.7: Partial Derivatives and Continuity-Example
- Unit 3.8: Mixed 2nd Order P.D's-Example
- Unit 3.9: Higher Order P.D's-Example
- Unit 3.10: Partial Derivatives Occur in P.D.E-Example

Concept of Partial Derivatives

PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

$$f_x(a, b) = \lim_{h \to 0} \frac{f(a + h, b) - f(a, b)}{h}$$
 $f_y(a, b) = \lim_{h \to 0} \frac{f(a, b + h) - f(a, b)}{h}$

If f is a function of two variables, its partial derivatives are the functions and f, defined by

$$f_x(x, y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}$$

$$f_y(x, y) = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h}$$

Notations for Partial Derivatives If z = f(x, y), we write

$$f_{\mathbf{x}}(\mathbf{x}, \mathbf{y}) = f_{\mathbf{x}} = \frac{\partial f}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}, \mathbf{y}) = \frac{\partial z}{\partial \mathbf{x}} = f_{1} = D_{1} f = D_{\mathbf{x}} f'$$

$$f_y(x, y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x, y) = \frac{\partial z}{\partial y} = f_2 = D_2 f = D_y f'$$

Rule for Finding Partial Derivatives of z = f(x, y)

- 1. To find f_x , regard y as a constant and differentiate f(x, y) with respect to x.
- 2. To find f_y , regard x as a constant and differentiate f(x, y) with respect to y.

Geometrical Interpretations of Partial Derivatives

To give a geometric interpretation of partial derivatives, we recall that the equation z = f(x, y) represents a surface S (the graph of f). If f(a, b) = c, then the point P(a, b, c) lies on S. By fixing y = b, we are restricting our attention to the curve C_1 in which the vertical plane y = b intersects S. (In other words, C_1 is the trace of S in the plane y = b.) Likewise, the vertical plane x = a intersects S in a curve C_2 . Both of the curves C_1 and C_2 pass through the point P. (See Figure 1.)

Notice that the curve C_1 is the graph of the function g(x) = f(x, b), so the slope of its tangent T_1 at P is $g'(a) = f_x(a, b)$. The curve C_2 is the graph of the function G(y) = f(a, y), so the slope of its tangent T_2 at P is $G'(b) = f_y(a, b)$.

Thus the partial derivatives $f_x(a, b)$ and $f_y(a, b)$ can be interpreted geometrically as the slopes of the tangent lines at P(a, b, c) to the traces C_1 and C_2 of S in the planes y = b and x = a.

FIGURE 1

The partial derivatives of f at (a, b) are the slopes of the tangents to C_1 and C_2 .

Partial Derivatives at a point (a, b)/(x0, y0)-Example

Example 1 Find $f_x(1,3)$ and $f_y(1,3)$ for the function $f(x,y) = 2x^3y^2 + 2y + 4x$.

Example 3

If
$$f(x, y) = x^3 + x^2y^3 - 2y^2$$
, find $f_x(2, 1)$ and $f_y(2, 1)$.

Solution. Since

$$f_x(x,3) = \frac{d}{dx}[f(x,3)] = \frac{d}{dx}[18x^3 + 4x + 6] = 54x^2 + 4$$

we have $f_x(1,3) = 54 + 4 = 58$. Also, since

$$f_y(1, y) = \frac{d}{dy}[f(1, y)] = \frac{d}{dy}[2y^2 + 2y + 4] = 4y + 2$$

we have $f_y(1,3) = 4(3) + 2 = 14$.

Example 2 Find $f_x(x, y)$ and $f_y(x, y)$ for $f(x, y) = 2x^3y^2 + 2y + 4x$, and use those partial derivatives to compute $f_x(1, 3)$ and $f_y(1, 3)$.

Solution. Keeping y fixed and differentiating with respect to x yields

$$f_x(x, y) = \frac{d}{dx}[2x^3y^2 + 2y + 4x] = 6x^2y^2 + 4$$

and keeping x fixed and differentiating with respect to y yields

$$f_y(x, y) = \frac{d}{dy}[2x^3y^2 + 2y + 4x] = 4x^3y + 2$$

Thus,

$$f_x(1,3) = 6(1^2)(3^2) + 4 = 58$$
 and $f_y(1,3) = 4(1^3)3 + 2 = 14$

SOLUTION Holding y constant and differentiating with respect to x, we get

$$f_{\mathbf{x}}(\mathbf{x},\mathbf{y}) = 3\mathbf{x}^2 + 2\mathbf{x}\mathbf{y}^3$$

and so

$$f_x(2, 1) = 3 \cdot 2^2 + 2 \cdot 2 \cdot 1^3 = 16$$

Holding x constant and differentiating with respect to y, we get

$$f_y(x, y) = 3x^2y^2 - 4y$$

$$f_y(2, 1) = 3 \cdot 2^2 \cdot 1^2 - 4 \cdot 1 = 8$$

Partial Derivatives at a point (a, b)/(x0, y0)-Example

Example 4 Find the values of $\partial f/\partial x$ and $\partial f/\partial y$ at the point (4, -5) if

$$f(x, y) = x^2 + 3xy + y - 1.$$

Solution To find $\partial f/\partial x$, we treat y as a constant and differentiate with respect to x:

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(x^2 + 3xy + y - 1) = 2x + 3 \cdot 1 \cdot y + 0 - 0 = 2x + 3y.$$

The value of $\partial f/\partial x$ at (4, -5) is 2(4) + 3(-5) = -7.

To find $\partial f/\partial y$, we treat x as a constant and differentiate with respect to y:

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(x^2 + 3xy + y - 1) = 0 + 3 \cdot x \cdot 1 + 1 - 0 = 3x + 1.$$

The value of $\partial f/\partial y$ at (4, -5) is 3(4) + 1 = 13.

Partial Derivatives with Different Rules-Example

Example 1 Find $\partial f/\partial y$ as a function if $f(x, y) = y \sin xy$.

Solution We treat x as a constant and f as a product of y and $\sin xy$:

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (y \sin xy) = y \frac{\partial}{\partial y} \sin xy + (\sin xy) \frac{\partial}{\partial y} (y)$$
$$= (y \cos xy) \frac{\partial}{\partial y} (xy) + \sin xy = xy \cos xy + \sin xy.$$

Example 2

Find $\partial z/\partial x$ and $\partial z/\partial y$ if $z = x^4 \sin(xy^3)$.

Solution.

$$\frac{\partial z}{\partial x} = \frac{\partial}{\partial x} [x^4 \sin(xy^3)] = x^4 \frac{\partial}{\partial x} [\sin(xy^3)] + \sin(xy^3) \cdot \frac{\partial}{\partial x} (x^4)$$

$$= x^4 \cos(xy^3) \cdot y^3 + \sin(xy^3) \cdot 4x^3 = x^4 y^3 \cos(xy^3) + 4x^3 \sin(xy^3)$$

$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} [x^4 \sin(xy^3)] = x^4 \frac{\partial}{\partial y} [\sin(xy^3)] + \sin(xy^3) \cdot \frac{\partial}{\partial y} (x^4)$$

$$= x^4 \cos(xy^3) \cdot 3xy^2 + \sin(xy^3) \cdot 0 = 3x^5 y^2 \cos(xy^3) \blacktriangleleft$$

Example 3

Find f_x and f_y as functions if

$$f(x,y) = \frac{2y}{y + \cos x}.$$

Solution We treat f as a quotient. With y held constant, we get

$$f_x = \frac{\partial}{\partial x} \left(\frac{2y}{y + \cos x} \right) = \frac{(y + \cos x) \frac{\partial}{\partial x} (2y) - 2y \frac{\partial}{\partial x} (y + \cos x)}{(y + \cos x)^2}$$
$$= \frac{(y + \cos x)(0) - 2y(-\sin x)}{(y + \cos x)^2} = \frac{2y \sin x}{(y + \cos x)^2}.$$

With x held constant, we get

$$f_y = \frac{\partial}{\partial y} \left(\frac{2y}{y + \cos x} \right) = \frac{(y + \cos x) \frac{\partial}{\partial y} (2y) - 2y \frac{\partial}{\partial y} (y + \cos x)}{(y + \cos x)^2}$$
$$= \frac{(y + \cos x)(2) - 2y(1)}{(y + \cos x)^2} = \frac{2\cos x}{(y + \cos x)^2}.$$

EXAMPLE 8

Find $\partial z/\partial x$ if the equation

EXAMPLE 8

If
$$f(x, y) = \sin\left(\frac{x}{1+y}\right)$$
, calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

 $vz - \ln z = x + v$

defines z as a function of the two independent variables x and y and the partial derivative exists.

We differentiate both sides of the equation with respect to x, holding y constant Solution and treating z as a differentiable function of x:

$$\frac{\partial}{\partial x}(yz) - \frac{\partial}{\partial x}\ln z = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial x}$$

$$y\frac{\partial z}{\partial x} - \frac{1}{z}\frac{\partial z}{\partial x} = 1 + 0$$

$$\frac{\partial}{\partial x}(yz) = y\frac{\partial z}{\partial x}.$$

$$\left(y - \frac{1}{z}\right)\frac{\partial z}{\partial x} = 1$$

$$\frac{\partial z}{\partial x} = \frac{z}{yz - 1}.$$
With y constant,
$$\frac{\partial}{\partial x}(yz) = y\frac{\partial z}{\partial x}.$$

SOLUTION Using the Chain Rule for functions of one variable, we have

$$\frac{\partial f}{\partial x} = \cos\left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial x} \left(\frac{x}{1+y}\right) = \cos\left(\frac{x}{1+y}\right) \cdot \frac{1}{1+y}$$

$$\frac{\partial f}{\partial y} = \cos\left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial y} \left(\frac{x}{1+y}\right) = -\cos\left(\frac{x}{1+y}\right) \cdot \frac{x}{(1+y)^2}$$

▲ Figure 13.3.1

Partial Derivatives as Rate of Change and Slopes-Example

PARTIAL DERIVATIVES VIEWED AS RATES OF CHANGE AND SLOPES

Recall that the wind chill temperature index is given by the formula

EXAMPLE 1

$$W = 35.74 + 0.6215T + (0.4275T - 35.75)v^{0.16}$$

Compute the partial derivative of W with respect to v at the point (T, v) = (25, 10) and interpret this partial derivative as a rate of change.

Solution. Holding T fixed and differentiating with respect to v yields

$$\frac{\partial W}{\partial v}(T,v) = 0 + 0 + (0.4275T - 35.75)(0.16)v^{0.16-1} = (0.4275T - 35.75)(0.16)v^{-0.84}$$

Since W is in degrees Fahrenheit and v is in miles per hour, a rate of change of W with respect to v will have units $^{\circ}F/(\text{mi/h})$ (which may also be written as $^{\circ}F\cdot\text{h/mi}$). Substituting

T = 25 and v = 10 gives

$$\frac{\partial W}{\partial v}$$
(25, 10) = (-4.01)10^{-0.84} \approx -0.58 $\frac{{}^{\circ}F}{\text{mi/h}}$

as the instantaneous rate of change of W with respect to v at (T, v) = (25, 10). We conclude that if the air temperature is a constant 25°F and the wind speed changes by a small amount from an initial speed of 10 mi/h, then the ratio of the change in the wind chill index to the change in wind speed should be about -0.58°F/(mi/h).

Partial Derivatives as Rate of Change and Slopes-Example

EXAMPLE 2

Suppose that $D = \sqrt{x^2 + y^2}$ is the length of the diagonal of a rectangle whose sides have lengths x and y that are allowed to vary. Find a formula for the rate of change of D with respect to x if x varies with y held constant, and use this formula to find the rate of change of D with respect to x at the point where x = 3 and y = 4.

Differentiating both sides of the equation $D^2 = x^2 + y^2$ with respect to x Solution. yields

$$2D\frac{\partial D}{\partial x} = 2x$$
 and thus $D\frac{\partial D}{\partial x} = x$

Since D = 5 when x = 3 and y = 4, it follows that

$$5 \frac{\partial D}{\partial x}\Big|_{x=3,y=4} = 3 \text{ or } \frac{\partial D}{\partial x}\Big|_{x=3,y=4} = \frac{3}{5}$$

Thus, D is increasing at a rate of $\frac{3}{5}$ unit per unit increase in x at the point (3, 4).

EXAMPLE 3

Let
$$f(x, y) = x^2y + 5y^3$$
.

- (a) Find the slope of the surface z = f(x, y) in the x-direction at the point (1, -2).
- (b) Find the slope of the surface z = f(x, y) in the y-direction at the point (1, -2).

Differentiating f with respect to x with y held fixed yields

$$f_x(x, y) = 2xy$$

Thus, the slope in the x-direction is $f_x(1, -2) = -4$; that is, z is decreasing at the rate of 4 units per unit increase in x.

Differentiating f with respect to y with x held fixed yields

$$f_y(x, y) = x^2 + 15y^2$$

Thus, the slope in the y-direction is $f_y(1, -2) = 61$; that is, z is increasing at the rate of 61 units per unit increase in y. ◀

Partial Derivatives as Rate of Change and Slopes-Example

EXAMPLE 4

The plane x = 1 intersects the paraboloid $z = x^2 + y^2$ in a parabola. Find the slope of the tangent to the parabola at (1, 2, 5) (Figure 14.18).

Solution The slope is the value of the partial derivative $\partial z/\partial y$ at (1, 2):

$$\frac{\partial z}{\partial y}\Big|_{(1,2)} = \frac{\partial}{\partial y}(x^2 + y^2)\Big|_{(1,2)} = 2y\Big|_{(1,2)} = 2(2) = 4.$$

As a check, we can treat the parabola as the graph of the single-variable function $z = (1)^2 + y^2 = 1 + y^2$ in the plane x = 1 and ask for the slope at y = 2. The slope, calculated now as an ordinary derivative, is

$$\frac{dz}{dy}\Big|_{y=2} = \frac{d}{dy}(1+y^2)\Big|_{y=2} = 2y\Big|_{y=2} = 4.$$

FIGURE 14.18 The tangent to the curve of intersection of the plane x = 1 and surface $z = x^2 + y^2$ at the point (1, 2, 5) (Example 5).

Estimating Partial Derivatives From Tabular Data - Example

ESTIMATING PARTIAL DERIVATIVES FROM TABULAR DATA

Example

Use the values of the wind chill index function W(T, v) displayed in Table 13.3.1 to estimate the partial derivative of W with respect to v at (T, v) = (25, 10). Compare this estimate with the value of the partial derivative obtained in Example 4.

Solution. Since

$$\frac{\partial W}{\partial v}(25, 10) = \lim_{\Delta v \to 0} \frac{W(25, 10 + \Delta v) - W(25, 10)}{\Delta v} = \lim_{\Delta v \to 0} \frac{W(25, 10 + \Delta v) - 15}{\Delta v}$$

we can approximate the partial derivative by

$$\frac{\partial W}{\partial v}(25, 10) \approx \frac{W(25, 10 + \Delta v) - 15}{\Delta v}$$

With $\Delta v = 5$ this approximation is

$$\frac{\partial W}{\partial v}(25, 10) \approx \frac{W(25, 10 + 5) - 15}{5} = \frac{W(25, 15) - 15}{5} = \frac{13 - 15}{5} = -\frac{2}{5} \frac{^{\circ}F}{\text{mi/h}}$$

Table 13.3.1 TEMPERATURE T (°F)

WIND SPEED v (mi/h)

	20	25	30	35
5	13	19	25	31
10	9	15	21	27
15	6	13	19	25
20	4	11	17	24

and with $\Delta v = -5$ this approximation is

$$\frac{\partial W}{\partial v}(25, 10) \approx \frac{W(25, 10 - 5) - 15}{-5} = \frac{W(25, 5) - 15}{-5} = \frac{19 - 15}{-5} = \frac{4}{5} \frac{^{\circ}F}{mi/h}$$

We will take the average, $-\frac{3}{5} = -0.6^{\circ} F/(mi/h)$, of these two approximations as our estimate of $(\partial W/\partial v)(25, 10)$. This is close to the value

$$\frac{\partial W}{\partial v}(25, 10) = (-4.01)10^{-0.84} \approx -0.58 \frac{{}^{\circ}F}{\text{mi/h}}$$

EXAMPLE 1

Find the slope of the sphere $x^2 + y^2 + z^2 = 1$ in the y-direction at the points $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ and $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ (Figure 13.3.2).

▲ Figure 13.3.2

Solution. The point $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ lies on the upper hemisphere $z = \sqrt{1 - x^2 - y^2}$, and the point $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ lies on the lower hemisphere $z = -\sqrt{1 - x^2 - y^2}$. We could find the slopes by differentiating each expression for z separately with respect to y and then evaluating the derivatives at $x = \frac{2}{3}$ and $y = \frac{1}{3}$. However, it is more efficient to differentiate the given equation $x^2 + y^2 + z^2 = 1$

implicitly with respect to y, since this will give us both slopes with one differentiation. To perform the implicit differentiation, we view z as a function of x and y and differentiate both sides with respect to y, taking x to be fixed. The computations are as follows:

$$\frac{\partial}{\partial y}[x^2 + y^2 + z^2] = \frac{\partial}{\partial y}[1]$$

$$0 + 2y + 2z\frac{\partial z}{\partial y} = 0$$

$$\frac{\partial z}{\partial y} = -\frac{y}{z}$$

Substituting the y- and z-coordinates of the points $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ and $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ in this expression, we find that the slope at the point $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ is $-\frac{1}{2}$ and the slope at $(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$ is $\frac{1}{2}$.

Implicit Partial Differentiation-Example

EXAMPLE 2

Find $\partial z/\partial x$ and $\partial z/\partial y$ if z is defined implicitly as a function of x and y by the equation

$$x^3 + y^3 + z^3 + 6xyz = 1$$

SOLUTION To find $\partial z/\partial x$, we differentiate implicitly with respect to x, being careful to treat y as a constant:

$$3x^2 + 3z^2 \frac{\partial z}{\partial x} + 6yz + 6xy \frac{\partial z}{\partial x} = 0$$

Solving this equation for $\partial z/\partial x$, we obtain

$$\frac{\partial z}{\partial x} = -\frac{x^2 + 2yz}{z^2 + 2xy}$$

Similarly, implicit differentiation with respect to y gives

$$\frac{\partial z}{\partial y} = -\frac{y^2 + 2xz}{z^2 + 2xy}$$

Partial Derivatives and Continuity-Example

PARTIAL DERIVATIVES AND CONTINUITY

Let

EXAMPLE 1
$$f(x, y) = \begin{cases} -\frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

- (a) Show that $f_x(x, y)$ and $f_y(x, y)$ exist at all points (x, y).
- (b) Explain why f is not continuous at (0,0).

Solution (a). Figure 13.3.3 shows the graph of f. Note that f is similar to the function considered in Example 1 of Section 13.2, except that here we have assigned f a value of 0 at (0,0). Except at this point, the partial derivatives of f are

$$f_x(x,y) = -\frac{(x^2 + y^2)y - xy(2x)}{(x^2 + y^2)^2} = \frac{x^2y - y^3}{(x^2 + y^2)^2}$$
(4)

$$f_{y}(x,y) = -\frac{(x^{2} + y^{2})x - xy(2y)}{(x^{2} + y^{2})^{2}} = \frac{xy^{2} - x^{3}}{(x^{2} + y^{2})^{2}}$$
(5)

$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = 0$$

$$f_y(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0 - 0}{\Delta y} = 0$$

This shows that f has partial derivatives at (0,0) and the values of both partial derivatives are 0 at that point.

Solution (b).

$$\lim_{(x,y)\to(0,0)} -\frac{xy}{x^2+y^2}$$

does not exist. Thus, f is not continuous at (0,0).

Partial Derivatives and Continuity-Example

Let

EXAMPLE 2

$$f(x,y) = \begin{cases} 0, & xy \neq 0 \\ 1, & xy = 0 \end{cases}$$

(Figure 14.20).

- (a) Find the limit of f as (x, y) approaches (0, 0) along the line y = x.
- (b) Prove that f is not continuous at the origin.
- (c) Show that both partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ exist at the origin.

Solution

(a) Since f(x, y) is constantly zero along the line y = x (except at the origin), we have

$$\lim_{(x, y)\to(0,0)} f(x, y) \bigg|_{y=x} = \lim_{(x, y)\to(0,0)} 0 = 0.$$

- (b) Since f(0, 0) = 1, the limit in part (a) proves that f is not continuous at (0, 0).
- (c) To find $\partial f/\partial x$ at (0, 0), we hold y fixed at y = 0. Then f(x, y) = 1 for all x, and the graph of f is the line L_1 in Figure 14.20. The slope of this line at any x is $\partial f/\partial x = 0$. In particular, $\partial f/\partial x = 0$ at (0, 0). Similarly, $\partial f/\partial y$ is the slope of line L_2 at any y, so $\partial f/\partial y = 0$ at (0, 0).

FIGURE 14.20 The graph of

$$f(x,y) = \begin{cases} 0, & xy \neq 0 \\ 1, & xy = 0 \end{cases}$$

consists of the lines L_1 and L_2 and the four open quadrants of the xy-plane. The function has partial derivatives at the origin but is not continuous there

Mixed Second-Order Partial Derivatives **EXAMPLE 2**

Find the second-order partial derivatives of $f(x, y) = x^2y^3 + x^4y$.

If $f(x, y) = x \cos y + ye^x$, find the second-order derivative **Solution**.

We have

EXAMPLE 1

$$\frac{\partial^2 f}{\partial x^2}$$
,

$$\frac{\partial^2 f}{\partial y \partial x}$$
,

$$\frac{1}{x}$$
, $\frac{\partial}{\partial x}$

$$\frac{\partial^2 f}{\partial x^2}$$
, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial y^2}$, and $\frac{\partial^2 f}{\partial x \partial y}$.

The first step is to calculate both first partial derivatives.

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (x \cos y + ye^x)$$
$$= \cos y + ye^x$$

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (x \cos y + y e^x) \qquad \qquad \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (x \cos y + y e^x)$$

$$= -x \sin y + e^x$$

Now we find both partial derivatives of each first partial:

EXAMPLE 3

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = -\sin y + e^{x}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = -\sin y + e^x \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = -\sin y + e^x$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = y e^x.$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = y e^x.$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = -x \cos y.$$

$$f_{xx} = \frac{\partial}{\partial x} (3x^2 + 2xy^3) = 6x + 2y^3 \qquad f_{xy} = \frac{\partial}{\partial y} (3x^2 + 2xy^3) = 6xy^2$$

SOLUTION

Therefore

$$f_{xx} = \frac{\partial}{\partial x} (3x^2 + 2xy^3) = 6x + 2y^3$$

$$f_{xy} = \frac{\partial}{\partial y} (3x^2 + 2xy^3) = 6xy$$

$$f_{yx} = \frac{\partial}{\partial x} (3x^2y^2 - 4y) = 6xy^2$$

$$f_{yx} = \frac{\partial}{\partial x} (3x^2y^2 - 4y) = 6xy^2$$
 $f_{yy} = \frac{\partial}{\partial y} (3x^2y^2 - 4y) = 6x^2y - 4$

$$\frac{\partial f}{\partial x} = 2xy^3 + 4x^3y$$
 and $\frac{\partial f}{\partial y} = 3x^2y^2 + x^4$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} (2xy^3 + 4x^3y) = 2y^3 + 12x^2y$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} (3x^2y^2 + x^4) = 6x^2y$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} (3x^2y^2 + x^4) = 6xy^2 + 4x^3$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} (2xy^3 + 4x^3y) = 6xy^2 + 4x^3$$

Find the second partial derivatives of

$$f(x, y) = x^3 + x^2 y^3 - 2y^2$$

$$f_x(x, y) = 3x^2 + 2xy^3$$
 $f_y(x, y) = 3x^2y^2 - 4y$

Clairaut's Theorem-Example

Clairaut's Theorem Suppose f is defined on a disk D that contains the point (a, b). If the functions f_{xy} and f_{yx} are both continuous on D, then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

THEOREM 2—The Mixed Derivative Theorem If f(x, y) and its partial derivatives f_x , f_y , f_{xy} , and f_{yx} are defined throughout an open region containing a point (a, b) and are all continuous at (a, b), then

$$f_{xy}(a,b) = f_{yx}(a,b).$$

Calculate f_{xxyz} if $f(x, y, z) = \sin(3x + yz)$.

SOLUTION

$$f_x = 3\cos(3x + yz)$$

$$f_{xx} = -9\sin(3x + yz)$$

$$f_{xxy} = -9z\cos(3x + yz)$$

$$f_{xxyz} = -9\cos(3x + yz) + 9yz\sin(3x + yz)$$

Higher Order P.D's-Example

HIGHER-ORDER PARTIAL DERIVATIVES

$$\frac{\partial^3 f}{\partial x^3} = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x^2} \right) = f_{xxx} \qquad \qquad \frac{\partial^4 f}{\partial y^4} = \frac{\partial}{\partial y} \left(\frac{\partial^3 f}{\partial y^3} \right) = f_{yyyy}$$

$$\frac{\partial^3 f}{\partial y^2 \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial y \partial x} \right) = f_{xyy} \qquad \frac{\partial^4 f}{\partial y^2 \partial x^2} = \frac{\partial}{\partial y} \left(\frac{\partial^3 f}{\partial y \partial x^2} \right) = f_{xxyy}$$

Let
$$f(x, y) = y^2 e^x + y$$
. Find f_{xyy} .

EXAMPLE 1

Solution.

$$f_{xyy} = \frac{\partial^3 f}{\partial y^2 \partial x} = \frac{\partial^2}{\partial y^2} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2}{\partial y^2} (y^2 e^x) = \frac{\partial}{\partial y} (2y e^x) = 2e^x$$

Find
$$f_{yxyz}$$
 if $f(x, y, z) = 1 - 2xy^2z + x^2y$.

Solution We first differentiate with respect to the variable y, then x, then y again, and finally with respect to z:

$$f_{y} = -4xyz + x^{2}$$

$$f_{yx} = -4yz + 2x$$

$$f_{yxy} = -4z$$

$$f_{yxyz} = -4$$

Partial Derivatives in Three Variables-Example

PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN TWO VARIABLES

For a function f(x, y, z) of three variables, there are three partial derivatives:

$$f_x(x, y, z), \quad f_y(x, y, z), \quad f_z(x, y, z)$$

$$w = f(x, y, z)$$
 $\frac{\partial w}{\partial x}$, $\frac{\partial w}{\partial y}$, and $\frac{\partial w}{\partial z}$

EXAMPLE 1 If
$$f(x, y, z) = x^3y^2z^4 + 2xy + z$$
, then
$$f_x(x, y, z) = 3x^2y^2z^4 + 2y$$

$$f_y(x, y, z) = 2x^3yz^4 + 2x$$

$$f_z(x, y, z) = 4x^3y^2z^3 + 1$$

$$f_z(-1, 1, 2) = 4(-1)^3(1)^2(2)^3 + 1 = -31$$

EXAMPLE 2 If
$$f(\rho, \theta, \phi) = \rho^2 \cos \phi \sin \theta$$
, then
$$f_{\rho}(\rho, \theta, \phi) = 2\rho \cos \phi \sin \theta$$
$$f_{\theta}(\rho, \theta, \phi) = \rho^2 \cos \phi \cos \theta$$
$$f_{\theta}(\rho, \theta, \phi) = \rho^2 \sin \phi \sin \theta \blacktriangleleft$$

Partial Derivatives Occur in P.D.E-Example

Partial Differential Equations

Partial derivatives occur in partial differential equations that express certain physical laws. For instance, the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

is called Laplace's equation after Pierre Laplace (1749–1827). Solutions of this equation are called harmonic functions; they play a role in problems of heat conduction, fluid flow, and electric potential.

Show that the function $u(x, y) = e^x \sin y$ is a solution of Laplace's equation. **SOLUTION** We first compute the needed second-order partial derivatives:

$$u_x = e^x \sin y \qquad u_y = e^x \cos y$$

$$u_{xx} = e^x \sin y \qquad u_{yy} = -e^x \sin y$$

$$u_{xx} + u_{yy} = e^x \sin y - e^x \sin y = 0$$

Therefore *u* satisfies Laplace's equation.

So

Partial Derivatives Occur in P.D.E-Example

The wave equation

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$
 FIGURE 8

describes the motion of a waveform, which could be an ocean wave, a sound wave, a light wave, or a wave traveling along a vibrating string. For instance, if u(x, t) represents the displacement of a vibrating violin string at time t and at a distance x from one end of the string (as in Figure 8), then u(x, t) satisfies the wave equation. Here the constant a depends on the density of the string and on the tension in the string.

EXAMPLE 1 Verify that the function $u(x, t) = \sin(x - at)$ satisfies the wave equation..

$$u_x = \cos(x - at)$$
 $u_t = -a\cos(x - at)$ $u_{xx} = -\sin(x - at)$ $u_{tx} = -a^2\sin(x - at) = a^2u_{xx}$ So u satisfies the wave equation.

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \tag{6}$$

EXAMPLE 2

Show that the function $u(x, t) = \sin(x - ct)$ is a solution of Equation (6).

Solution. We have

$$\frac{\partial u}{\partial x} = \cos(x - ct), \qquad \frac{\partial^2 u}{\partial x^2} = -\sin(x - ct)$$

$$\frac{\partial u}{\partial t} = -c\cos(x - ct), \quad \frac{\partial^2 u}{\partial t^2} = -c^2\sin(x - ct)$$

Thus, u(x, t) satisfies (6).

Thank you

