

Aluno: Daniel Cordeiro Monteiro

Orientadores: Anselmo Antunes Montenegro

Leonardo Gresta Paulino Murta

Sumário:

- O problema e a motivação
- Objetivos da solução
- Resultados obtidos
- Contribuições
- Conclusão e trabalhos futuros

- O problema e a motivação:
 - A popularização de dispositivos móveis
 - Características gerais do dispositivo alvo
 - Problemas nas técnicas existentes nesse contexto

- A popularização de dispositivos móveis:
 - Tornou-se factível a ideia de se ter jogos 3D de qualidade em um dispositivo móvel
 - A própria fatia high-end do mercado ja os tem

- Características gerais do dispositivo alvo:
 - Dois perfís são interessantes: os dispositivos mais capazes entre a fatia *low-end* e os dispositivos menos capazes na fatia *high-end*
 - Para esta faixa de dispositivos, convenciou-se a fatia middle-end

- Dispositivos avançados do segmento Low-end:
 - Em geral, apenas capazes de executar programas *J2ME* (*Java*). Em alguns casos, existe aceleração para a *JSR184* (*M3G*)
 - Quantidades limitadas de memória disponíveis. Em alguns casos, a memória pode ser de tipos mais rápidos

- Dispositivos mais fracos entre os High-end:
 - Capazes de executar código nativo, mas em geral não são criados com jogos 3D em mente. Não costumam ter aceleração ou mesmo bibliotecas gráficas incluídas
 - Muitas vezes, possuem altas resoluções de tela e quantidades generosas de memória. Porém seu tipo de memória é lento e a grande numero de pixels, alíado à falta de barramentos especiais podem prejudicar o desempenho gráfico

Exemplo de dispositivo alvo: Nokia N770

- Exemplo de dispositivo alvo: Nokia N770
 - Resolução de tela: 800x480 pixels (de 16 bits)
 - Memória RAM: 64 MB
 - Velocidade de processador: 200 Mhz
 - Aceleração gráfica: nenhuma
 - Ano de lançamento: 2005
 - Posicionamento no mercado: high-end de baixa capacidade
 - Propósito: Navegação na Internet

- Problemas nas técnicas existentes nesse contexto
 - Complexidade de cálculos necessárias para se obter os resultados desejados
 - Capacidade de memória do ambiente de execução final
 - Desproporção entre limitações e capacidades

- Complexidade de cálculos
 - Uso de unidades de ponto flutuante
 - Ausência de heurísticas de aproveitamento de coerência temporal e espacial na cena...
 - ...Por conta de soluções excessivamente generalizadas.
 - = Trade-offs invevitáveis

Complexidade de cálculos

- Capacidade de memória
 - O cenário de uso típico destes dispositivos requer uso muito cuidadoso de memória
 - Pouca memória inicial disponível para aplicações
 - Paralelamente, aplicações 3D tendem a exigir uma grande quantidade de memória

- Desproporções entre limitações e capacidades:
 - Grandes quantidades de pixels para serem preenchidas por um equipamento lento
 - Processamento 3D tradicional exige cálculos extras, proporcionais à quantidade de pixels e à quantidade de objetos a serem exibidos na tela
 - Baixa velocidade de processador inviabiliza efeitos especiais que poderiam aumentar o realismo
 - Solução: aproximações

- Desproporções entre limitações e capacidades:
 - Exemplo: 800x480x16 (uma resolução gráfica comum entre dispositivos mid-end e high-end) se traduz num fluxo de pelo menos 750 Kb
 - O uso de Z-Buffer significaria manter, consultar e atualizar uma tabela de dimensões proporcionais (preferencialmente iguais) em memória
 - Z-Buffer é ineficiente e inapropriado como solução final de visibilidade. Especialmente para dispositivos de alta resolução e baixa capacidade de processamento

 O descarte do Z-Buffer, no entanto, cria um novo problema: a visibilidade

- Revisão das soluções existentes:
 - 4 soluções avaliadas: Id Tech 1, Id Tech 2, Cube Engine e Aleph One
 - Problemas comuns: inadequação de interfaces, relação realismo x consumo de recursos desfavorável
 - Vantagens: feitas para ambientes limitados do passado. Em muitos casos, não usam Z-Buffer
 - Optou-se por construir uma solução nova, utilizando-se técnicas modernas aliadas às trazidas por estas soluções

- Objetivos da solução
 - Buscou-se estabelecer um framework e um conjunto de técnicas que tornam viáveis a construção de motores gráficos para dispositivos móveis e dispositivos embarcados de baixa capacidade

- Um framework apropriado para dispositivos de baixa capacidade:
 - Buscar organizações que o tornem flexível (portanto, uma abordagem *Data-Driven* é apropriada)
 - ...mas deve ser austero no consumo de recursos (Uma abordagem *Data Driven* tradicional não é apropriada, afinal)

- Um framework apropriado para dispositivos de baixa capacidade:
 - Solução encontrada: classes simples, e customização por regras
 - Cada ator fornece dois simbolos de entrada para uma regra:
 - <Tipo, Estado>. As regras devem ser definidas no código fonte da *Engine*
 - Opcionalmente, a posição (ou o setor) de um ator pode ser um terceiro símbolo de entrada

- Um framework apropriado para dispositivos de baixa capacidade:
 - Customização de atores usando regras

- Porque não uma abordagem Hierarquica?
 - Buscou-se reduzir a quantidade de classes e facilitando a compreensão
 - Menos classes ajudam a reduzir o tamanho do código binário final
 - Exceto no caso da possibilidade do polimorfismo em tempo de execução, o código exige recompilação (e neste caso, haveria perda de desempenho e consumo extra de memória com tabelas de bookkeeping)

- Um framework apropriado para dispositivos de baixa capacidade:
 - A simplicidade e o minimalismo foram os principais objetivos durante a construção do motor
 - Simplicidade significa mais facilidade de compreensão e manutenção
 - Significa menos possiblidades de bugs
 - Potencialmente, melhor desempenho

 Um framework apropriado para dispositivos de baixa capacidade:

- Um conjunto de técnicas que incluem padrões de projeto e a escolha por formatos de dados escaláveis:
 - Padrões de projeto: Sub-Alocador, Fábrica, Singleton
 - Formatos de dados escaláveis: XML e derivados (SVG e formatos próprios)

- O motor construído para este trabalho
 - feito em C++, no periodo entre 2005 e 2009
 - Plataformas abrangidas: Linux x86 e ARM (EZX, Maemo), Windows x86 e ARM (Mobile 3.0 e 5.0)
 - Capaz de gráficos 3D mesmo em plataformas sem qualquer API de suporte

- Algoritmos de computação gráfica:
 - Processamento aproximativo de visibilidade
 - Iluminação global aproximativa em tempo real

Processamento aproximativo de visibilidade

				00	00.				<u> </u>								
	Α	В	С	D E	F	GH	-1-	J		Distâncias							
1										0	F17						
2			_	\blacksquare						1	F16						
3				+	==	#				2	F15	E16	G16				
5							=			3	F14	E15	G15				
6										4	F13	E14	G14	C12			
8						#				5	F12	E13	G13	D14	C13	B12	
9			-		-					6	F11	E12	G12	C14	B13		
10										7	F10	E11	G11	B14			
11										8	F9	E10	G10				
13										9	F8	E9	G9				
14			\vdash	Н	\vdash	-				10	F7	E8	G8				
15										11	F6	E7	G7				
16										12	F5	E6	G6	D7	H7		
17					_					13	F4	E5	G5	D6	C7	H6	17
										14	F3	E4	G4	D5	C6	H5	16
										15	F2	E3	G3	D4	C5	H4	15
										16	E2	G2	D3	H3			
										17	D2	H2	C3	13			
										18	C2	12					

Processamento aproximativo de visibilidade

Processamento aproximativo de visibilidade

Processamento aproximativo de visibilidade

i roocoodinonto aproximativo de violbilidade																
	Α	В	С	D E	F	GH		J	Distâncias							
1									0	F17						
2			_			\blacksquare		1	1	F16						
3				\boxminus		-			2	F15	E16	G16				
5						\blacksquare	=		3	F14	E15	G15				
6									4	F13	E14	G14	C12			
8									5	F12	E13	G13	D14	C13	B12	
9						-			6	F11	E12	G12	C14	B13		
10									7	F10	E11	G11	B14			
11									8	F9	E10	G10				
13									9	F8	E9	G9				
14		_	_	Н		-			10	F7	8	G8				
15									11	F6	E7	G7				
16						-			12		Ξ6	G6	D7	H7		
17									13		E5	G5	D6	C7	H6	17
									14		E4	G4	D5	C6	H5	16
											E3	G3	D4	C5	H4	15
											G2	DЗ	_H3			
Α	A ordem com que dois setores equidistantes é percorrida não importa.											13				

A ordem com que dois setores equidistantes é percorrida não importa. Todos os setores devem ser convexos e não invasivos, para que esta propriedade resulte em uma imagem correta.

Conclusão:

- A evolução dos dispositivos móveis habilita cada vez mais realismo nas simulações interativas tridimensionais...
- ...mas sempre que se puder usar um arcabouço mais econômico, se poderá permitir mais realismo
- Portanto, mesmo que a computação móvel evolua além do previsto, as técnicas aqui ilustradas, bem como o modelo de solução apresentado serão válidos

Resultados obtidos:

- Engine capaz de ser executada em diversos dispositivos de baixa capacidade com desempenho aceitável
- Conjunto de ferramentas úteis para a criação e edição de conteúdo
- Conjunto de técnicas que pode e serão utilizadas na construção de novos motores gráficos

Contribuições:

- Levantamento de critérios de avaliação de motores gráficos em ambientes limitados
- Estrutura básica de solução apropriada ao contexto
- Engine de implementação deste trabalho (BZK)
- Algoritmos aproximativos de visibilidade e iluminação global

Limitações:

- Restrições na geometria dos níveis
- Erros de aproximação
- Escopo limitado do sistema lógico declarativo definido para o motor

Trabalhos futuros:

- Trabalho futuro: o quanto se pode ganhar com o uso de processadores especializados em gráficos e técnicas que simplificam o processo?
- Tópico de interesse: a exploração do caráter dinâmico da estrutura de cena, permitindo a obtenção sob demanda de partes da cena, via servidor remoto
- Possível extensão: se foi possível aproximar iluminação global, porque não poderia ser possível aproximar a acústica da cena?

Duvidas?

DanielMonteiro@id.uff.br