Knowledge, action, and the frame problem

Reasoning about Actions

Francesco Petri, Charlotte Primiceri and Flavio Maiorana

May 29, 2024

Table of Contents

- ► Scherl and Levesque's Approach Introduction Knowledge as a fluent Defining a successor state axiom for K
- Regression
- Example: The Gardening Robot Axiomatization Golog

Outline

Situation calculus provides a framework for reasoning about actions.

This work presents an expansion to handle the *knowledge* possessed or acquired by the agent, and allow it to shape the agent's decisions.

- Knowledge is represented by one additional fluent
- Uniform axiomatization with the rest of sitcalc
- Ordinary actions and knowledge-producing ones are strictly separated
- Easy expansion of regression as defined in [Reiter2001]
- Desirable properties are direct consequences of the axiomatization (e.g. knowledge persistence / memory)

The K fluent

Defines an accessibility relation between situations.

(Informal) definition

 $\mathrm{K}(s',s)$ is true if an agent in situation s could mistake the current situation for the other s', given its current knowledge.

Knowledge

Definition of knowledge

A fluent is known to be true (false) in a situation s if and only if it is true (false) in all situations accessible from s.

Shorthand notation: $\mathbf{Knows}(\phi, s) \stackrel{\text{def}}{=} \forall s' \ \mathrm{K}(s', s) \rightarrow \phi(s')$

Actions that have an effect on the agent's knowledge

SENSE actions

Learn the truth value of a formula. Example: check if a door is open or closed.

$$\mathsf{Knows}(\mathsf{P}, \mathsf{DO}(\mathsf{SENSE}_\mathsf{P}, s)) \lor \mathsf{Knows}(\neg \mathsf{P}, \mathsf{DO}(\mathsf{SENSE}_\mathsf{P}, s))$$

READ actions

Learn the value of a term. Example: read a number on a sheet of paper.

$$\exists x \, \mathsf{Knows}(\tau = x, \mathsf{DO}(\mathsf{READ}_{\tau}, s))$$

Knowledge effects

In order to complete the specification of the K fluent, we need to define its successor state axiom, determining how ordinary actions and knowledge-producing actions affect it.

Consider this case study with three accessible situations. The agent is in S1.

$$\mathsf{Knows}(\mathrm{P},S1) \land \neg \mathsf{Knows}(\mathrm{Q},S1)$$

Ordinary actions

Assume the agent performs a DROP action.

Informal idea

The agent cannot distinguish the current situation s from all the other s' accessible from it. Therefore, after executing the action, the agent may believe to be in any situation resulting from any s' after executing DROP.

Axiomatization

$$K(s'', DO(DROP, s)) \equiv \exists s' (Poss(DROP, s') \land K(s', s) \land s'' = DO(DROP, s'))$$

Ordinary actions

The only knowledge gained is that the DROP action has been performed, as well as anything that can be derived from the action effects.

For example, if DROP makes P false:

$$P(do(a, s)) \equiv a \neq drop \land P(s)$$

then

$$\mathsf{Knows}(\neg P, DO(DROP, S1))$$

but no extra knowledge is gained about Q.

Consider an action SENSE_Q that provides information on whether Q is true or false. We define a **sensing result function** to represent the signal received by the agent in response:

Sensing result function

$$\operatorname{SR}(\operatorname{SENSE}_{\mathbf{Q}},s) = r \equiv (r = \operatorname{``YES"} \wedge \mathbf{Q}(s)) \vee (r = \operatorname{``NO"} \wedge \neg \mathbf{Q}(s))$$

When the agent executes SENSEQ, what are the accessible situations afterwards?

Informal definition

Initially, the agent cannot distinguish the current situation s from all the other s' accessible from it. Therefore, after executing \mathtt{SENSE}_Q , the agent may believe to be in any situation that:

- ullet results from any s' after executing the action,
- AND would yield the same sensing result as the one that has been observed.

Axiomatization

$$K(s'', DO(SENSE_Q, s)) \equiv \exists s' (POSS(SENSE_Q, s') \land K(s', s) \land s'' = DO(SENSE_Q, s') \land SR(SENSE_Q, s) = SR(SENSE_Q, s'))$$

After executing $\mathrm{SENSE}_{\mathbf{Q}}$, only situations with the same truth value for \mathbf{Q} are accessible.

Thus, in addition to knowing that SENSE_Q has been performed, the agent now knows the truth value of Q as well, by definition.

 $\mathsf{Knows}(\mathrm{Q}, \mathrm{DO}(\mathrm{SENSE}_{\mathrm{Q}}, S1))$

Sensing results in general

The concept of sensing result extends to all types of action, allowing for a uniform axiomatization.

Ordinary actions

$$SR(DROP, s) = r \equiv r = "OK"$$

SENSE-type knowledge-producing actions

$$\operatorname{SR}(\operatorname{SENSE}_{\mathbf{Q}}, s) = r \equiv (r = \operatorname{"YES"} \wedge \mathbf{Q}(s)) \vee (r = \operatorname{"NO"} \wedge \neg \mathbf{Q}(s))$$

READ-type knowledge-producing actions

$$SR(SENSE_{\tau}, s) = r \equiv r = \tau(s)$$

The successor state axiom for K

Putting it all together, the definitive form is as follows:

Successor state axiom for the K fluent

$$K(s'', do(a, s)) \equiv \exists s' (Poss(a, s') \land K(s', s) \land s'' = do(a, s') \land sr(a, s) = sr(a, s'))$$

What about...

...mixing ordinary and knowledge effects?

We assume that ordinary and knowledge actions are disjoint: each action is going to be axiomatized as either affecting *only* the K fluent or as not affecting it at all. This does not cause loss of generality.

...knowledge of arbitrary formulae?

They already work within this system.

 $\mathsf{Example} \colon \operatorname{\mathbf{Knows}}(\forall x (\operatorname{man}(x) \to \operatorname{mortal}(x)) \wedge \operatorname{man}(Socrates))$

Table of Contents

 Scherl and Levesque's Approach Introduction
 Knowledge as a fluent
 Defining a successor state axiom for K

► Regression

Example: The Gardening Robot Axiomatization Golog

15/26 Regression

Table of Contents

 Scherl and Levesque's Approach Introduction
 Knowledge as a fluent
 Defining a successor state axiom for K

Regression

► Example: The Gardening Robot Axiomatization Golog

The Problem

- A robot has to manage **n plants** in a garden.
- The robot performs an action on one plant at a time and only if it's near the plant.
- A plant can be watered only if it is dry and the temperature is known.
- The robot has access to a watering can that is full and has unlimited capacity.
- The robot can hold only one object at a time.

(Non)Fluents

Fluents

- NEAR(x,s) oRobot is near object x in situation s
- $\operatorname{HOLDING}(x,s) \to \operatorname{Robot}$ is holding object x in situation s
- $\mathrm{Moist}(p,s) o \mathsf{Plant}\; \mathsf{p}\; \mathsf{is}\; \mathsf{moist}\; \mathsf{in}\; \mathsf{situation}\; \mathsf{s}$
- lacktriangle $ext{TEMPERATURE}(p) o ext{Temperature value of the spot near plant p}$
- HealthyPlants $(s) o \mathsf{Number}$ of healthy plants

Non-Fluents

- WATERINGCAN $(x) \rightarrow \mathsf{Object} \times \mathsf{is}$ a watering can
- THERMOMETER $(x) \rightarrow \mathsf{Object} \times \mathsf{is}$ a thermometer
- Moisturemeter $(x) \rightarrow \mathsf{Object} \times \mathsf{is} \mathsf{a} \mathsf{moisturemeter}$

Actions

Normal

- GOTO $(x) \rightarrow$ Go to object x
- WATER $(p) \rightarrow$ Water plant p
- PICKUP $(x) \rightarrow \mathsf{Pick}$ up object x
- PUTDOWN $(x) \rightarrow \text{Put down object } x$

Knowledge

- CHECKMOISTURE $(p) o \mathsf{Check}$ moisture of plant p
- CHECKTEMPERATURE $(p) o \mathsf{Check}$ the temperature of the spot near plant p

Effects

Sensing Result Axioms

- $SR(GOTO(x), s) = r \equiv r = "OK"$
- SR(CHECKMOISTURE $(p), s) = r \equiv (r = "YES" \land Moist(p, s)) \lor (r = "NO" \land \neg Moist(p, s))$
- $SR(CHECKTEMPERATURE(p), s) = r \equiv r = TEMPERATURE(p, s)$

Knowledge Action Effects

- Kwhether(MOIST(p, s), DO(CHECKMOISTURE(p), s))
- Kref(Temperature(p), do(checktemperature(p), s))

Preconditions

- Poss (water(p), s) \equiv Near(p, s) \wedge Holding(x, s) \wedge WateringCan(x) \wedge ¬Moist(x, p) \wedge Kref(temperature(p), s)
- Poss (pickup(x), s) \equiv Near(x, s) $\land \neg \exists y$. Holding(y, s)
- Poss (putdown(x), s) \equiv Holding(x, s)
- Poss (checkmoisture(p), s) \equiv Near(p, s) \wedge Holding(x, s) \wedge Moisturemeter(x)

Successor State Axioms

In general $F(x, DO(\alpha, s)) \equiv \Phi_F^+(x, a, s) \vee (F(x, s) \wedge \neg \Phi_F^-(x, a, s))$

- Near $(x, do(\alpha, s)) \equiv \alpha = goto(x) \lor (Near(x, s) \land \neg \exists y. \alpha = goto(y))$
- Holding $(x, do(\alpha, s)) \equiv pickup(x) \lor (Holding(x, s) \land \neg \exists r. \alpha = putdown(x))$
- Moist $(p, \text{do}(\alpha, s)) \equiv (\text{Moist}(p, s) \land \neg \exists r. \alpha = \text{Water}(p)) \lor (\alpha = \text{Checkhumidity}(p) \land \text{sr}(\alpha(p), s) = h)$
- Temperature $(p, do(\alpha, s)) \equiv Temperature(p, s)$
- HEALTHYPLANTS $(p, DO(\alpha, s)) = n \equiv$ (HEALTHYPLANTS $(p, s) = n 1 \land \alpha = \text{WATER}(p)$)

Initial Situation

- WateringCan(c)
- Thermometer(t)
- Moisturemeter(m)
- PLANT (p_1) :
- PLANT (p_n)
- Near(c)

Encoding

1: while $\neg \mathbf{Knows}(\mathsf{HEALTHYPLANTS}(s) = n)$ do $\mathsf{GOTO}(\mathsf{p})$ Ok

2: end while

Example Run

Knowledge, action, and the frame problem

Thank you for listening!
Any questions?