Atomic Example:

For a given 1.

we can take the de civarue of the total every:

$$\frac{dU}{dr} = -\frac{L^{2}}{mR^{3}} + \frac{L}{4\pi e} \cdot \frac{e^{2}}{R^{2}} = 0$$

$$= -\frac{1}{R} \left(2u_{k} + u_{p} \right) = 0 \implies u_{k} = \frac{1}{2} u_{p}$$

$$R_n = \frac{4\pi\epsilon_0}{me^2} \left(n \ln^2 - \frac{me^4}{32(\pi \epsilon_0 \ln n)^2}\right)$$

For n=1 grand state:

 $R_{i}=5.3\times10^{-11}$ m $\Rightarrow 0.53$ Å = a. \sim Bohrs Radius' $U_{i}=-2.18\times10^{-18}$ $\Rightarrow -13.6$ eV (Ionization Energy)

Ionic Cryotals

face-centered cubic-Struture:

I.ke the ten 3D structure

& (-) B

2

The dear d= 2.81 Å
where would be the crystal biddy everyon "Engy reguml to separate the crystal serve who inclosions i and
separate the crystal
2N ins on Nondeales 2N into included in
$U_{\text{total}} = \frac{1}{2} \frac{5}{2!} \phi_i = \frac{1}{8\pi 2} \cdot \frac{5}{17} \frac{3}{17} = \frac{1}{7} $ at infinite down glot!
Average Energy per Molecule
$\frac{U_{\text{rot}}}{IV} \sim \frac{-e^2}{4\pi 2} \sum_{j=2 \vec{r}_i - \vec{r}_j }^{\pm 1}$
4π2° j=21''
$= -\frac{l^2}{2} = \frac{2l}{2l} = \frac{l}{2l}$
= - 2 2 IFI-FIR "Madely Constart" determed by the leggtent sometime.
"Madely Constart" deremmed by
The Crytal south
For the crystal to be stable: M=0.
U
Nacl M=1,748
Und 1113 115 18 T/ 1 10 - 0 05 N/ 10 11
1.43 ×10 5/nolecule = 8.95 eV/mlerk
Exponently => - 8 eV/mlub
Chapter 3: Laplan's Equation
- Morror
p => \$: \$ (F) = \frac{1}{474.} \left(\frac{p(F)}{1-F'}\) aV'
724 = - f (po:310 agrando)
+ bondon condition & - then a con easily able for the potential
(4, 2d at boundary)
If we have no free drages => Porson Eg + Laplace's Eq.
() - 4

when the solvens on homen functions

10=D

Saplace in I-D

7: 20 = 0