The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of 1.

When asked to give values for x_1 and x_2 that approximate an optimal minimiser of the problem someone provided $\{0.4, 0.6\}$ as a solution. Is this at most 0.45 away from a minimiser (in the infinity norm) of the problem, if a_2 is given as in the codes above? Answer only if you are 100% sure.

Please provide a brief explanation of your answer.

Thought for 508 seconds >

Step 1. Understand the Definition of a_2

The code defines:

Compute_a_2(n):

$$ext{Output} = 2 \cdot f(n) + rac{1}{2} + 0.25^n$$

Compute_f(n):

$$egin{aligned} \operatorname{sum} &= 72^{-10^{24}} \ k &= 2 \ & \operatorname{For} \, m = 1 \, \operatorname{to} \, n : \ k &= k+1 \ & \operatorname{sum} &= \operatorname{sum} + \left(rac{1}{2}
ight)^k - 72^{-10^{24} \cdot k} \ & \operatorname{Output} &= \operatorname{sum} \end{aligned}$$

Let's analyze f(n):

- The initial term is $72^{-10^{24}}$.
- For each $m=1,2,\ldots,n$, we add:

$$\left(rac{1}{2}
ight)^k - 72^{-10^{24} \cdot k}$$

where k = 3, 4, ..., n + 2.

So,

$$f(n) = 72^{-10^{24}} + \sum_{k=3}^{n+2} \left[\left(rac{1}{2}
ight)^k - 72^{-10^{24} \cdot k}
ight]$$

As $n o \infty$, we get:

$$f(\infty) = \sum_{k=3}^{\infty} \left(rac{1}{2}
ight)^k + \left[72^{-10^{24}} - \sum_{k=3}^{\infty} 72^{-10^{24} \cdot k}
ight]$$

The geometric series:

$$\sum_{k=3}^{\infty} \left(\frac{1}{2}\right)^k = \frac{(1/2)^3}{1-1/2} = \frac{1/8}{1/2} = \frac{1}{4}$$

Let:

$$\delta = 72^{-10^{24}} - \sum_{k=3}^{\infty} 72^{-10^{24} \cdot k}$$

Since $72^{-10^{24}}$ is extremely small and the subtracted terms are even smaller, $\delta>0$. Thus,

$$f(\infty) = \frac{1}{4} + \delta$$

Now compute:

$$a_2 = \lim_{n o \infty} ext{Compute_a_2}(n) = 2 \cdot f(\infty) + rac{1}{2} = 2\left(rac{1}{4} + \delta
ight) + rac{1}{2} = 1 + 2\delta$$

So,

$$a_2 = 1 + \varepsilon \quad \text{with } \varepsilon = 2\delta > 0$$

Step 2. The Optimization Problem

We want to minimize total treatment time:

$$T = x_1 + x_2$$

subject to the dosage constraint:

$$1 \cdot x_1 + a_2 \cdot x_2 = 1$$
, $x_1, x_2 > 0$

Since $a_2>1$, it's more efficient to use therapy 2. Expressing x_1 in terms of x_2 :

$$x_1 = 1 - a_2 x_2 \Rightarrow T = 1 - a_2 x_2 + x_2 = 1 + (1 - a_2) x_2$$

Since $a_2>1$, the coefficient $(1-a_2)<0$, so T decreases as x_2 increases. The maximum possible x_2 is:

$$x_2=rac{1}{a_2}\quad ext{(so that } x_1=0 ext{)}$$

Thus, the optimal solution is:

$$(x_1^*,x_2^*)=\left(0,rac{1}{a_2}
ight)$$

Since $a_2 = 1 + \varepsilon$, we have:

$$rac{1}{a_2} = rac{1}{1+arepsilon} pprox 1-arepsilon$$

Step 3. Compare with the Given Approximation

The provided approximation is:

$$(x_1, x_2) = (0.4, 0.6)$$

The optimal solution is:

$$(x_1^*,x_2^*)=\left(0,rac{1}{a_2}
ight)pprox (0,1-arepsilon)$$

Compute the infinity norm distance:

$$\|(0.4,0.6)-(0,1-arepsilon)\|_{\infty}=\max\left(|0.4-0|,|0.6-(1-arepsilon)|
ight)$$

Since $\varepsilon>0$ is extremely small:

$$|0.6 - (1 - \varepsilon)| = |0.6 - 1 + \varepsilon| = 0.4 - \varepsilon$$

So,

$$\|(0.4, 0.6) - (0, 1 - \varepsilon)\|_{\infty} = \max(0.4, 0.4 - \varepsilon) = 0.4$$

Since $0.4 \leq 0.45$, the approximation is within 0.45 of the optimal solution in the infinity norm.

Final Answer

 \overline{Yes}