CMPE 310 Systems Design and Programming

L: Chapter 11 – BASIC I/O Interface

L9 Objectives

- * Utilize basic I/O instructions
- * I/O port decoding
- * Diagram how I/O devices are connected to the x86/88

Isolated versus Memory-mapped I/O

- In the Isolated scheme, IN, OUT, INS and OUTS are required.
- * In the Memory-mapped scheme, any instruction that references memory can be used

 **Disadvantage:

Disadvantage: A portion of the memory space is used for I/O devices. Advantage: IORC and IOWC not required. I/O Overlapped spaces Any data transfer instruction. Disadvantage: 1M X 8 Hardware using M/IO and Separate spaces W/R needed to develop signals IORC and IOWC. I/O Requires IN, OUT, INS and 64K X 8 64K X 8 00000

- * 8-bit port addresses used to access system board device, e.g. timer and keyboard interface.
- * 16-bit port addresses used to access serial and parallel ports, hard drives, etc.

Basic I/O instructions

- * IN and OUT transfer data between an I/O device and the microprocessor's accumulator (AL, AX or EAX).
 - * The I/O address is stored in:
 - * Register DX as a 16-bit I/O address (variable addressing).
 - * The byte (p8) immediately following the opcode (fixed address).

* IN AL, 19H ;8-bits are saved to AL from I/O port 19H.

* IN EAX, DX ;32-bits are saved to EAX.

* OUT DX, EAX ;32-bits are written to port DX from EAX.

* OUT 19H, AX ;16-bits are written to I/O port 19H.

- * Only 16-bits (A₀ to A₁₅) are decoded.
 - st Address connections above A₁₅ are undefined for I/O instructions.
 - * Decoded at 0000H-03FFH on the ISA bus.
- INS and OUTS transfer data strings to I/O devices using ES:DI and DS:SI, respectively.

Handshaking

- * I/O devices are typically slower than the microprocessor.
- * Handshaking is used to synchronize I/O with the microprocessor.
 - A device indicates that it is ready for a command or data (through some I/O pin or port).
 - * The processor issues a command to the device, and the device indicates it is busy (not ready).
 - The I/O device finishes its task and indicates a ready condition, and the cycle continues.
- * There are two basic mechanisms for the processor to service a device.
 - * **Polling: Processor initiated.** Device indicates it is ready by setting some status bit and the processor periodically checks it.
 - Interrupts: Device initiated. The act of setting a status bit causes an interrupt, and the processor calls an ISR to service the device.

Interfacing circuitry

The terminal characteristics of the processor must be matched to those of the I/O devices.

- * Input Devices:
 - * They are either:
 - * TTL (0.0V-0.8V low and 2.0-5.0V high) or compatible.
 - * Switch-based; usually either open or connected.
 - * These must be conditioned before they can be used properly.
 - For example, to make a simple (single-pole, single-throw) toggle switch TTL compatible:

* The value of R can vary between 1K and $10 \text{ K}\Omega$.

Interfacing circuitry

Input Devices:

- * Mechanical switches physically bounce when they are closed (causing them to momentarily open after being closed).
 - * This can cause a problem if they are used as a clocking signal.
- * Two asynchronous flip-flop solutions are given below:

* The basic idea is that these flip-flops store the values even if the D/\overline{D} nodes both float.

CMPE 310

5

Interfacing circuitry

Output Devices:

- Interfacing an output device requires matching the voltage and current relationships of the devices and processor.
- * Remember that the standard output levels of TTL compatible devices are 0.0 to 0.4V for logic 0 and 2.4V to 5.0V for logic 1.
- * The current levels are 0.0 to 2.0mA (logic 0) and 0.0 to -400uA (logic 1).

For example:

I/O port decoding

- * For memory-mapped I/O, decoding is identical to memory decoding.
- * For isolated I/O, IORC and IOWC are developed using M/IO and W/R pins of the microprocessor.
 - * The text gives examples of 8-bit decoding and 16-bit decoding, which is a straightforward application of devices we've used for memory decoding.
- * The I/O banks on the 8086 through the 80386SX are also set up like the memory.

I/O port decoding

- * Output devices can be 16-bit in which case BHE is not needed.
- * Input devices can be 8-bit or 16-bit.
 - * Note that instead of latches, high impedance buffers (74ALS244) are used in these cases.
- ▶ 32-bit ports are becoming more popular because of PCI bus primarily.
 - * The EISA and VESA local bus are also 32-bit buses.
- * For the 64-bit data buses of the Pentium, the I/O ports can appear in any of the 8 banks.
 - However, only 32-bit transfers are supported, as there are no 64-bit transfer instructions.

Example

- * Write an assembly language instruction that send a byte (36H) of data to a fixed port address of 43H.
- * Transfer content of BL to port 378H

Next Time

- * IO Interface
 - * 82C55 Programmable Peripheral Interface

STOP