Web-based Supplementary Materials for A Space-time Skew-t Model for Threshold Exceedances by Morris, Reich, Thibaud, and Cooley

Samuel A Morris^{1,*}, Brian J Reich¹, Emeric Thibaud², and Daniel Cooley²

¹Department of Statistics, North Carolina State University, Raleigh, North Carolina, U.S.A.

²Department of Statistics, Colorado State University, Fort Collins, Colorado, U.S.A.

*email: samorris@ncsu.edu

Web Appendix A. MCMC details

The MCMC sampling for the model in Section 4 is done using R (http://www.r-project.org). Whenever possible, we select conjugate priors (see Web Appendix B); however, for some of the parameters, no conjugate prior distributions exist. For these parameters, we use a random walk Metropolis-Hastings update step. In each Metropolis-Hastings update, we tune the algorithm during the burn-in period to give acceptance rates near 0.40.

Spatial knot locations

For each day, we update the spatial knot locations, $\mathbf{w}_1, \dots, \mathbf{w}_K$, using a Metropolis-Hastings block update. Because the spatial domain is bounded, we generate candidate knots using the transformed knots $\mathbf{w}_1^*, \dots, \mathbf{w}_K^*$ (see Section 3.3) and a random walk bivariate Gaussian candidate distribution

$$\mathbf{w}_{k}^{*(c)} \sim \mathbf{N}(\mathbf{w}_{k}^{*(r-1)}, s^{2}I_{2})$$

where $\mathbf{w}_k^{*(r-1)}$ is the location for the transformed knot at MCMC iteration r-1, s is a tuning parameter, and I_2 is an identity matrix. Let $\mathbf{Y}_t = [Y(\mathbf{s}_1), \dots, Y(\mathbf{s}_n)]$ be the vector of observed responses at each site for day t. After candidates have been generated for all K knots, the acceptance ratio is

$$R = \left\{ \frac{l[\mathbf{Y}_t | \mathbf{w}_1^{(c)}, \dots, \mathbf{w}_K^{(c)}, \dots]}{l[\mathbf{Y}_t | \mathbf{w}_1^{(r-1)}, \dots, \mathbf{w}_K^{(r-1)}, \dots]} \right\} \times \left\{ \frac{\prod_{k=1}^K \phi(\mathbf{w}_k^{(c)})}{\prod_{k=1}^K \phi(\mathbf{w}_k^{(r-1)})} \right\} \times \left\{ \frac{\prod_{k=1}^K p(\mathbf{w}_k^{*(c)})}{\prod_{k=1}^K p(\mathbf{w}_k^{*(r-1)})} \right\}$$

where l is the likelihood given in (17), and $p(\cdot)$ is the prior either taken from the time series (see Section 3.3) or assumed to be uniform over \mathcal{D} . The candidate knots are accepted with probability $\min\{R,1\}$.

Spatial random effects

If there is no temporal dependence amongst the observations, we use a Gibbs update for z_{tk} , and the posterior distribution is given in Web Appendix B. If there is temporal dependence amongst the observations, then we update z_{tk} using a Metropolis-Hastings update. Because this model uses

 $|z_{tk}|$, we generate candidate random effects using the z_{tk}^* (see Section 3.3) and a random walk Gaussian candidate distribution

$$z_{tk}^{*(c)} \sim N(z_{tk}^{*(r-1)}, s^2)$$

where $z_{tk}^{*\,(r-1)}$ is the value at MCMC iteration r-1, and s is a tuning parameter. The acceptance ratio is

$$R = \left\{ \frac{l[\mathbf{Y}_t | z_{tk}^{(c)}, \dots]}{l[\mathbf{Y}_t | z_{tk}^{(r-1)}]} \right\} \times \left\{ \frac{p[z_{tk}^{(c)}]}{p[z_{tk}^{(r-1)}]} \right\}$$

where $p[\cdot]$ is the prior taken from the time series given in Section 3.3. The candidate is accepted with probability $\min\{R, 1\}$.

Variance terms

When there is more than one site in a partition, then we update σ_{tk}^2 using a Metropolis-Hastings update. First, we generate a candidate for σ_{tk}^2 using an $\mathrm{IG}(a^*/s,b^*/s)$ candidate distribution in an independence Metropolis-Hastings update where $a^* = (n_{tk}+1)/2 + a$, $b^* = [\mathbf{Y}_{tk}^{\top} \Sigma_{tk}^{-1} \mathbf{Y}_{tk} + z_{tk}^2]/2 + b$, n_{tk} is the number of sites in partition k on day t, and \mathbf{Y}_{tk} and Σ_{tk}^{-1} are the observations and precision matrix for partition k on day t. The acceptance ratio is

$$R = \left\{ \frac{l[\mathbf{Y}_{t} | \sigma_{tk}^{2})^{(c)}, \dots]}{l[\mathbf{Y}_{t} | \sigma_{tk}^{2})^{(r-1)}]} \right\} \times \left\{ \frac{l[z_{tk} | \sigma_{tk}^{2})^{(c)}, \dots]}{l[z_{tk} | \sigma_{tk}^{2})^{(r-1)}, \dots]} \right\} \times \left\{ \frac{p[\sigma_{tk}^{2})^{(c)}}{p[\sigma_{tk}^{2})^{(r-1)}]} \right\} \times \left\{ \frac{c[\sigma_{tk}^{2})^{(r-1)}}{c[\sigma_{tk}^{2})^{(c)}]} \right\}$$

where $p[\cdot]$ is the prior either taken from the time series given in Section 3.3 or assumed to be IG(a,b), and $c[\cdot]$ is the candidate distribution. The candidate is accepted with probability $\min\{R,1\}$.

Spatial covariance parameters

We update the three spatial covariance parameters, $\log(\rho)$, $\log(\nu)$, γ , using a Metropolis-Hastings block update step. First, we generate a candidate using a random walk Gaussian candidate distribution

$$\log(\rho)^{(c)} \sim \mathbf{N}(\log(\rho)^{(r-1)}, s^2)$$

where $\log(\rho)^{(r-1)}$ is the value at MCMC iteration r-1, and s is a tuning parameter. Candidates are generated for $\log(\nu)$ and γ in a similar fashion. The acceptance ratio is

$$R = \left\{ \frac{\prod_{t=1}^{T} l[Y_t(\mathbf{s})|\rho^{(c)}, \nu^{(c)}, \gamma^{(c)}, \dots]}{\prod_{t=1}^{T} l[Y_t(\mathbf{s})|\rho^{(r-1)}, \nu^{(r-1)}, \gamma^{(r-1)}, \dots]} \right\} \times \left\{ \frac{p[\rho^{(c)}]}{p[\rho^{(r-1)]}} \right\} \times \left\{ \frac{p[\nu^{(c)}]}{p[\nu^{(r-1)}]} \right\} \times \left\{ \frac{p[\gamma^{(c)}]}{p[\nu^{(r-1)}]} \right\}.$$

All three candidates are accepted with probability $min\{R, 1\}$.

Web Appendix B. Posterior distributions

Conditional posterior of $z_{tk} \mid \dots$

If knots are independent over days, then the conditional posterior distribution of $|z_{tk}|$ is conjugate. For simplicity, drop the subscript t, let $\tilde{z}_k = |z_k|$, $\tilde{\mathbf{z}}_{k^c}$ be the vector of $[|z(\mathbf{s}_1)|, \dots, |z(\mathbf{s}_n)|]$ for $\mathbf{s} \notin P_k$, $\mathbf{X} = [\mathbf{X}(\mathbf{s}_1), \dots, \mathbf{X}(\mathbf{s}_n)]^{\top}$, let \mathbf{Y}_k and \mathbf{X}_k be the observations and covariate measurements for $\mathbf{s} \in P_k$, and let \mathbf{Y}_{k^c} and \mathbf{X}_{k^c} be the observations and covariate measurements for $\mathbf{s} \notin P_k$ and define

$$\mathbf{R} = \begin{cases} \mathbf{Y}_k - \mathbf{X}_k \boldsymbol{\beta} & \mathbf{s} \in P_k \\ \\ \mathbf{Y}_{k^c} - \mathbf{X}_{k^c} \boldsymbol{\beta} - \lambda \tilde{\mathbf{z}}_{k^c} & \mathbf{s} \notin P_k \end{cases}$$

Let

 \mathbf{R}_1 = the vector of \mathbf{R} for $\mathbf{s} \in P_k$

 \mathbf{R}_2 = the vector of \mathbf{R} for $\mathbf{s} \notin P_k$

$$\Omega = \Sigma^{-1}$$
.

Then

$$\pi(z_k|\ldots) \propto \exp\left\{-\frac{1}{2} \begin{bmatrix} \begin{pmatrix} \mathbf{R}_1 - \lambda \tilde{z}_k \mathbf{1} \\ \mathbf{R}_2 \end{pmatrix}^{\top} \begin{pmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{pmatrix} \begin{pmatrix} \mathbf{R}_1 - \lambda \tilde{z}_k \mathbf{1} \\ \mathbf{R}_2 \end{pmatrix} + \frac{\tilde{z}_k^2}{\sigma_k^2} \end{bmatrix} \right\} I(z_k > 0)$$

$$\propto \exp\left\{-\frac{1}{2} \left[\Lambda_k \tilde{z}_k^2 - 2\mu_k \tilde{z}_k\right] \right\}$$

where

$$\mu_k = \lambda (\mathbf{R}_1^{\mathsf{T}} \Omega_{11} + \mathbf{R}_2^{\mathsf{T}} \Omega_{21}) \mathbf{1}$$

$$\Lambda_k = \lambda^2 \mathbf{1}^{\mathsf{T}} \Omega_{11} \mathbf{1} + \frac{1}{\sigma_k^2}.$$

Then $\tilde{z}_k | \ldots \sim N_{(0,\infty)}(\Lambda_k^{-1}\mu_k,\Lambda_k^{-1})$

Conditional posterior of β *,* $\lambda \mid \dots$

For models that do not include a skewness parameter, we update β as follows. Let $\beta \sim N_p(0, \Lambda_0)$ where Λ_0 is a precision matrix. Then

$$\pi(\boldsymbol{\beta} \mid \ldots) \propto \exp \left\{ -\frac{1}{2} \boldsymbol{\beta}^{\top} \Lambda_0 \boldsymbol{\beta} - \frac{1}{2} \sum_{t=1}^{n_t} [\mathbf{Y}_t - \mathbf{X}_t \boldsymbol{\beta}]^{\top} \Omega [\mathbf{Y}_t - \mathbf{X}_t \boldsymbol{\beta}] \right\}$$
$$\propto \exp \left\{ -\frac{1}{2} \left[\boldsymbol{\beta}^{\top} \Lambda_{\beta} \boldsymbol{\beta} - 2 \sum_{t=1}^{n_t} (\boldsymbol{\beta}^{\top} \mathbf{X}_t^{\top} \Omega \mathbf{Y}_t) \right] \right\}$$
$$\propto N(\Lambda_{\beta}^{-1} \mu_{\beta}, \Lambda_{\beta}^{-1})$$

where

$$\mu_{\beta} = \sum_{t=1}^{n_t} \mathbf{X}_t^{\top} \Omega \mathbf{Y}_t$$
$$\Lambda_{\beta} = \Lambda_0 + \sum_{t=1}^{n_t} \mathbf{X}_t^{\top} \Omega \mathbf{X}_t.$$

For models that do include a skewness parameter, a simple augmentation of the covariate matrix \mathbf{X} and parameter vector $\boldsymbol{\beta}$ allows for a block update of both $\boldsymbol{\beta}$ and λ . Let $\mathbf{X}_t^* = [\mathbf{X}_t, |\mathbf{z}_t|]$ where $\mathbf{z}_t = [z(\mathbf{s}_1), \dots, z(\mathbf{s}_n)]^{\top}$ and let $\boldsymbol{\beta}^* = (\beta_1, \dots, \beta_p, \lambda)^{\top}$. So to incorporate the $N(0, \sigma_{\lambda}^2)$ prior on λ , let $\boldsymbol{\beta}^* \sim N_{p+1}(0, \Lambda_0^*)$ where

$$\Lambda_0^* = \left(\begin{array}{cc} \Lambda_0 & 0 \\ 0 & \sigma_{\lambda}^{-2} \end{array} \right).$$

Then the update for both β and λ is done using the conjugate prior given above with $\mathbf{X}_t = \mathbf{X}_t^*$ and $\beta = \beta^*$

Conditional posterior of $\sigma^2 \mid \dots$

In the case where L=1 and temporal dependence is negligible, then σ^2 has a conjugate posterior distribution. Let $\sigma_t^2 \stackrel{iid}{\sim} \mathrm{IG}(\alpha_0/2,\beta_0/2)$. For simplicity, drop the subscript t. Then

$$\pi(\sigma^2 \mid \ldots) \propto (\sigma^2)^{-\alpha_0/2 - 1/2 - n/2 - 1} \exp\left\{-\frac{\beta_0}{2\sigma^2} - \frac{|z|^2}{2\sigma^2} - \frac{(\mathbf{Y} - \boldsymbol{\mu})^\top \Sigma^{-1} (\mathbf{Y} - \boldsymbol{\mu})}{2\sigma^2}\right\}$$
$$\propto (\sigma^2)^{-(\alpha_0 - 1 - n)/2 - 1} \exp\left\{-\frac{1}{2\sigma^2} \left[\beta_0 + |z|^2 + (\mathbf{Y} - \boldsymbol{\mu})^\top \Sigma^{-1} (\mathbf{Y} - \boldsymbol{\mu})\right]\right\}$$
$$\propto \mathrm{IG}(\alpha^*, \beta^*)$$

where

$$\alpha^* = \frac{\alpha_0 + 1 + n}{2}$$
$$\beta^* = \frac{1}{2} \left[\beta_0 + |z|^2 + (\mathbf{Y} - \boldsymbol{\mu})^\top \Sigma^{-1} (\mathbf{Y} - \boldsymbol{\mu}) \right].$$

In the case that K>1, a random walk Metropolis Hastings step will be used to update σ_{kt}^2 .

Web Appendix C. Proof that $\lim_{h\to\infty}\pi(h)=0$

Let c be the midpoint of \mathbf{s}_1 and \mathbf{s}_2 . Define A as the circle centered at c with radius h/2 where $h = ||\mathbf{s}_1 - \mathbf{s}_2||$ is the distance between sites \mathbf{s}_1 and \mathbf{s}_2 . Consider a homogeneous spatial Poisson process over A with intensity given by

$$\mu_{PP}(A) = \lambda_{PP}|A| = \lambda_{PP}\pi \left(\frac{h}{2}\right)^2 = \lambda_{PPA}^*h^2.$$

Consider a partition of A into four regions, B_1 , B_2 , R_1 , R_2 as seen in Web Figure 1.

[Figure 1 about here.]

Let N_i be the number of knots in B_i and $L_i = l$ if $\mathbf{s}_i \in P_l$ for i = 1, 2. Then

$$P(L_1 \neq L_2) \geqslant P(N_1 > 0, N_2 > 0) \tag{1}$$

since knots in both B_1 and B_2 is sufficient, but not necessary, to ensure that \mathbf{s}_1 and \mathbf{s}_2 are in different partition sets. By definition of a Poission process, N_1 and N_2 are independent and thus

 $P(N_1 > 0, N_2 > 0) = P(N_1 > 0)^2$, and the intensity measure over B_1 is given by

$$\mu_{PP}(B_1) = \lambda_{PP}|B_1| = \lambda_{PP} \frac{h^2}{4} \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2} \right)$$
$$= \lambda_{PPB1}^* h^2. \tag{2}$$

So,

$$P(L_1 \neq L_2) >= P(N_1 > 0)^2 = [1 - P(N_1 = 0)]^2 = [1 - \exp(-\lambda_{PPB1}^* h^2)]^2$$
 (3)

which goes to 1 as h goes to infinity.

Web Appendix D. Skew-t distribution

Univariate skew-t distribution

We say that Y follows a univariate extended skew-t distribution with location $\xi \in \mathcal{R}$, scale $\omega > 0$, skew parameter $\alpha \in \mathcal{R}$, and degrees of freedom ν if has distribution function

$$f_{\text{EST}}(y) = 2f_T(z; \nu)F_T \left[\alpha z \sqrt{\frac{\nu+1}{\nu+z^2}}; \nu+1 \right]$$
 (4)

where $f_T(t;\nu)$ is a univariate Student's t with ν degrees of freedom, $F_T(t;\nu) = P(T < t)$, and $z = (y - \xi)/\omega$.

Multivariate skew-t distribution

If $\mathbf{Z} \sim \mathrm{ST}_d(0, \bar{\Omega}, \boldsymbol{\alpha}, \eta)$ is a d-dimensional skew-t distribution, and $\mathbf{Y} = \xi + \boldsymbol{\omega} \mathbf{Z}$, where $\boldsymbol{\omega} = \mathrm{diag}(\omega_1, \dots, \omega_d)$, then the density of Y at y is

$$f_y(\mathbf{y}) = \det(\boldsymbol{\omega})^{-1} f_z(\mathbf{z}) \tag{5}$$

where

$$f_z(\mathbf{z}) = 2t_d(\mathbf{z}; \bar{\mathbf{\Omega}}, \eta) T \left[\boldsymbol{\alpha}^\top \mathbf{z} \sqrt{\frac{\eta + d}{\nu + Q(\mathbf{z})}}; \eta + d \right]$$
 (6)

$$\mathbf{z} = \boldsymbol{\omega}^{-1}(\mathbf{y} - \boldsymbol{\xi}) \tag{7}$$

where $t_d(\mathbf{z}; \bar{\Omega}, \eta)$ is a d-dimensional Student's t-distribution with scale matrix $\bar{\Omega}$ and degrees of freedom η , $Q(z) = \mathbf{z}^{\top} \bar{\Omega}^{-1} \mathbf{z}$ and $T(\cdot; \eta)$ denotes the univariate Student's t distribution function with η degrees of freedom (Azzalini and Capitanio, 2014).

Extremal dependence

For a bivariate skew-t random variable $\mathbf{Y} = [Y(\mathbf{s}), Y(\mathbf{t})]^{\top}$, the $\chi(h)$ statistic (Padoan, 2011) is given by

$$\chi(h) = \bar{F}_{EST} \left\{ \frac{[x_1^{1/\eta} - \varrho(h)]\sqrt{\eta + 1}}{\sqrt{1 - \varrho(h)^2}}; 0, 1, \alpha_1, \tau_1, \eta + 1 \right\} + \bar{F}_{EST} \left\{ \frac{[x_2^{1/\eta} - \varrho(h)]\sqrt{\eta + 1}}{\sqrt{1 - \varrho(h)^2}}; 0, 1, \alpha_2, \tau_2, \eta + 1 \right\},$$
(8)

where \bar{F}_{EST} is the univariate survival extended skew-t function with zero location and unit scale,

$$\varrho(h) = \text{cor}[y(\mathbf{s}), y(\mathbf{t})], \alpha_j = \alpha_i \sqrt{1 - \varrho^2}, \tau_j = \sqrt{\eta + 1}(\alpha_j + \alpha_i \varrho), \text{ and } x_j = F_T(\bar{\alpha}_i \sqrt{\eta + 1}; 0, 1, \eta) / F_T(\bar{\alpha}_j \sqrt{\eta + 1}; \eta), \gamma = 0, \gamma = 0$$

Proof that $\lim_{h\to\infty} \chi(h) > 0$

Consider the bivariate distribution of $\mathbf{Y} = [Y(\mathbf{s}), Y(\mathbf{t})]^{\top}$, with $\varrho(h)$ given by (2). So, $\lim_{h\to\infty} \varrho(h) = 0$. Then

$$\lim_{h \to \infty} \chi(h) = \bar{F}_{EST} \left\{ \sqrt{\eta + 1}; 0, 1, \alpha_1, \tau_1, \eta + 1 \right\} + \bar{F}_{EST} \left\{ \sqrt{\eta + 1}; 0, 1, \alpha_2, \tau_2, \eta + 1 \right\}. \tag{9}$$

Because the extended skew-t distribution is not bounded above, for all $\bar{F}_{EST}(x) = 1 - F_{EST(x)} > 0$ for all $x < \infty$. Therefore, for a skew-t distribution, $\lim_{h \to \infty} \chi(h) > 0$.

Web Appendix E. Comparisons with other parameterizations

Various forms of multivariate skew-normal and skew-t distributions have been proposed in the literature. In this section, we make a connection between our parameterization in (1) of the main text and another popular version. Azzalini and Capitanio (2014) and Beranger et al. (2016) define

a skew-normal process as

$$\tilde{X}(\mathbf{s}) = \tilde{\lambda}|z| + (1 - \tilde{\lambda}^2)^{1/2}v(\mathbf{s})$$
(10)

where $\tilde{\lambda} \in (-1,1)$, $z \sim N(0,1)$, and $v(\mathbf{s})$ is a Gaussian process with mean zero, variance one, and spatial correlation function ρ . To extend this to the skew-t distribution, Azzalini and Capitanio (2003) take $\tilde{Y}(\mathbf{s}) = W\tilde{X}(\mathbf{s})$ where $W^{-2} \sim \operatorname{Gamma}(a/2,a/2)$. Returning to the proposed parameterization (with $\boldsymbol{\beta}=0$), let $W^{-2}=\frac{b}{a}\sigma^{-2}\sim\operatorname{Gamma}(a/2,a/2)$ so that (1) in the manuscript becomes

$$Y(\mathbf{s}) = W \left[\lambda \left(\frac{b}{a} \right)^{1/2} |z| + \left(\frac{b}{a} \right)^{1/2} v(\mathbf{s}) \right]. \tag{11}$$

Clearly setting $b=a(1-\tilde{\lambda}^2)>0$, and $\lambda=\tilde{\lambda}/(1-\tilde{\lambda}^2)^{1/2}\in(-\infty,\infty)$ resolves the difference in parameterizations. We note that our parameterization has three parameters (a,b,λ) compared to the two parameters of the alternative parameterization $(a,\tilde{\lambda})$. Since we have assumed that both $v(\mathbf{s})$ and z have unit scale, the additional b parameter in our parameterization is required to control the precision.

Web Appendix F. Temporal dependence

It is very challenging to derive an analytical expression the temporal extremal dependence at a single site ${\bf s}$. However, using simulated data, we have evidence to suggest that the model does exhibits temporal extremal dependence. To demonstrate that our model maintains temporal extremal dependence, we generate lag-m observations for m=1,3,5,10 from our model setting $\phi_w=\phi_z=\phi_\sigma=\varphi$, for $\varphi=0,0.02,0.04,\ldots,1$. To estimate the lag-m chi-statistic $\chi(m)$ we first estimate the lag-m F-madogram $\nu_F(m)$ (Cooley et al., 2006) using $\hat{\nu}_F(m)=\frac{1}{2n}\sum_{i=1}^n|\hat{F}(y_0)-\hat{F}(y_m)|$ where $\hat{F}(\cdot)$ represents an empirical CDF and y_m is the lag-m observation. The F-madogram is related to the χ statistic as follows

$$\chi = 2 - \frac{1 + 2\nu_F}{1 - 2\nu_F}.\tag{12}$$

Web-based Supplementary Materials for A Space-time Skew-t Model for Threshold Exceedances

9

Web Figure 2 suggests that the extremal dependence increases as $\phi \to 1$, and that the extremal dependence decreases as m increases.

[Figure 2 about here.]

Web Appendix G. Simulation study pairwise difference results

The following tables show the methods that have significantly different Brier scores when using a Wilcoxon-Nemenyi-McDonald-Thompson test. In each column, different letters signify that the methods have significantly different Brier scores. For example, there is significant evidence to suggest that method 1 and method 4 have different Brier scores at q(0.90), whereas there is not significant evidence to suggest that method 1 and method 2 have different Brier scores at q(0.90). In each table group A represents the group with the lowest Brier scores. Groups are significant with a familywise error rate of $\alpha=0.05$.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

References

Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* **65,** 367–389.

Azzalini, A. and Capitanio, A. (2014). *The Skew-Normal and Related Families*. Institute of Mathematical Statistics Monographs. Cambridge University Press.

- Beranger, B., Padoan, S. A., and Sisson, S. A. (2016). Models for extremal dependence derived from skew-symmetric families. *ArXiv e-prints* .
- Cooley, D., Naveau, P., and Poncet, P. (2006). Variograms for spatial max-stable random fields. In Bertail, P., Soulier, P., and Doukhan, P., editors, *Dependence in Probability and Statistics*, volume 187 of *Lecture Notes in Statistics*, chapter Variograms, pages 373–390. Springer New York, New York, NY.
- Padoan, S. A. (2011). Multivariate extreme models based on underlying skew- and skew-normal distributions. *Journal of Multivariate Analysis* **102**, 977–991.

Web Figure 1. Illustration of the partition of A.

Web Figure 2. Simulated lag- $m \chi$ for varying levels of φ .

Web Table 1

	Setting	Setting I – Gaussian marginal, $K = 1$ knot										
	q(0.90)	q(0)	.95)	q(0	.98)		q(0.	.99)				
Method 1	A	A	A				A					
Method 2	A	A	A				A					
Method 3	В]	В		C		A					
Method 4	A	A	A	В			A					
Method 5	В]	В	В	C		A					
Method 6		С	C			D		В				

Web Table 2

Setting 2 – Skew-t marginal, K = 1 knot

			501		2.00			, 11		citot					
		q(0	.90)			q(0	.95)			q(0	.98)		q	(0.99)	9)
Method 1		В				В				В				В	
Method 2	A				A				A				A		
Method 3	A	В			A	В			A	В			A	В	
Method 4	A	В			A	В			A	В			A	В	
Method 5			C				C				C				C
Method 6				D				D				D			С

Web Table 3

	Setting 3 – Skew-t marginal, $K = 5$ knots											
	\overline{q}	(0.90)		q(0.95))	q(0.98)) $q($	(0.99)				
Method 1		C		C		В		В				
Method 2		C		C		В		В				
Method 3]	В		В		A	A					
Method 4	A		A	L		A	A					
Method 5	A		A			A	A					
Method 6			D		D		С	C				

Web Table 4

		Setting 4 – Max-stable												
		q(0	.90)			q(0	.95)		q(0.98)			q(0.99)		
Method 1	A	В				В				В				С
Method 2		В				В				В			В	C
Method 3			C	D			C			В			В	
Method 4				D				D			C			C
Method 5			C			В	C			В			В	C
Method 6	A				A				A			A		

Web Table 5
Setting 5 – Brown Resnick

		Setting 5 - Brown Resnick												
		q(0)	(0.90)			q(0.95)			q(0.98)			q(0.99)		
Method 1				D			C			C			C	
Method 2				D			C			C			C	
Method 3	A	В			A			A	В			В		
Method 4			C			В			В			В		
Method 5	A				A			A			A	В		
Method 6		В	С		A			A			A			