Homework 1

Liu Huihang

SA 18017026 QQ: 184050473

MAIL: huihang@mail.ustc.edu.cn

Problem 1 Let $X_1, \ldots, X_n \sim F$ and let $F_n(x)$ be the empirical distribution function, for a fixed x, find limiting distribution of $\sqrt{F_n(x)}$.

Solution

Let $T(F) = \sqrt{F}$, we know that T is Hadamard differentiable with respect to $G = \delta_x$. Then

$$\frac{\sqrt{n}(T(F_n) - T(F))}{\hat{\tau}} \rightsquigarrow N(0, 1)$$

where $\hat{\tau}^2 = \frac{1}{n} \sum_{i=1}^n \hat{L}^2(X_i)$ and

$$\left. \frac{d}{dt} T(F_t) \right|_{t=0} = \frac{d}{dt} \sqrt{F_t} = \frac{d}{dt} \sqrt{(1-t)F + t\delta_x} = -\sqrt{F}.$$

So,
$$\hat{\tau} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} F_n(X_i)}$$
.

Thus,
$$T(F_n) \rightsquigarrow N(\sqrt{F}, \frac{1}{n^2} \sum_{i=1}^n F_n(X_i))$$

Problem 2 Let x, y be two distinct real numbers, find $Cov(F_n(x), F_n(y))$, where F_n be the empirical distribution function.

Problem 3 Let $X_{(1)} \leq \cdots \leq X_{(n)}$ be order statistics from continuous population F, prove that for any $0 < \beta < 1$

$$P(F(X_{(n)}) - F(X_{(1)}) > \beta) = 1 - n\beta^{n-1} + (n-1)\beta^n.$$

Problem 4 Let $X_1, ..., X_n$ be simple samples from U(0,1), prove that sample median $\hat{\xi}_{n,1/2}$ has asymptotic distribution $N(\frac{1}{2}, \frac{1}{4n})$.