МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИѻѻ

ПРОФИЛЬ ИННОВАЦИОННЫЕ ІТ-

<u>ПРОЕКТЫ</u>

НАПРАВЛЕНИЕ <u>ПРИКЛАДНАЯ</u> <u>ИНФОРМАТИКА</u>

ГРУППА МПИ-20-4-2

Отчёт по лабораторной работе №3

ПО КУРСУ: «Нейронные сети и машинное обучение»

СТУДЕНТКА Денисова Е.А. ПРЕПОДАВАТЕЛЬ Курочкин И. И. В ходе данной лабораторной работы были реализованы и протестированы на шести различных датасетах три метода кластеризации с евклидовой и манхеттенской метриками.

Для тестирования методов использовались датасеты:

- 1. Сгенерированный датасет с линейно разделимыми множествами, расстояние между группами во много раз превышает диаметр группы;
- 2. Сгенерированный датасет с линейно разделимыми множествами, группы расположены близко или касаются друг друга;
- 3. Сгенерированный датасет с линейно неразделимыми множествами, средняя площадь пересечения классов 10-20%;
- 4. Сгенерированный датасет с линейно неразделимыми множествами, средняя площадь пересечения классов 50-70%;
- 5. Эталонный датасет «Breast cancer Wiskonsin»;
- 6. Эталонный датасет «Wine».

Визуализация сгенерированного датасета с линейно разделимыми множествами, расстояние между группами во много раз превышает диаметр группы. Количество примеров в данном датасете – 1000.

Визуализация сгенерированного датасета с линейно разделимыми множествами, группы расположены близко или касаются друг друга. Количество примеров в данном датасете также равно 1000.

Визуализация сгенерированного датасета с линейно разделимыми множествами, средняя площадь пересечения классов 10-20%. Количество примеров в данном датасете равно 1000.

Визуализация сгенерированного датасета с линейно разделимыми множествами, средняя площадь пересечения классов 50-70%. Количество примеров в данном датасете равно 1000.

Датасет «Breast cancer Wiskonsin» содержит 30 признаков, 569 образцов, 2 класса. Перед применением к датасету методов кластеризации данные в нем проходят препроцессинг с помощью функции sklearn scale(). Данная функция стандартизирует набор данных, центрируя и масштабируя их по среднему значению к единичной дисперсии.

Датасет «Wine» содержит 13 признаков, 178 образцов и 3 класса. Перед применением к датасету методов кластеризации данные в нем также проходят препроцессинг с помощью функции sklearn scale().

Для демонстрации качества разделения данных вычисляются 4 метрики: полнота, однородность, индекс Rand, скорректированная взаимная информация. Все оценки вычисляются с помощью фактических и проставленных меток.

Полнота — это показатель полноты маркировки кластеров с учетом фактической маркировки. Значение метрики уменьшается, если эталонный кластер разделить на части.

Однородность — это показатель однородности маркировки кластеров с учетом фактической маркировки. Результат кластеризации является однородным, если все его кластеры содержат только те точки данных, которые являются членами одного класса. Значение данной метрики качества уменьшается при объединении в один кластер двух фактических.

Индекс Rand — оценивает, насколько много из тех пар элементов, которые находились в одном классе, и тех пар элементов, которые находились в разных классах, сохранили данное состояние после кластеризации. В данной лабораторной работе вычисляется индекс Rand с поправкой на случайность.

Скорректированная взаимная информация — это скорректированная оценка взаимной информации для учета случайности. Взаимная информация — это функция, которая измеряет согласованность двух наборов меток, игнорируя перестановки.

Первым рассматриваемым методом будет алгоритм k-means с евклидовой и манхеттенской метриками.

Сначала проверяется работа k-means с евклидовой метрикой. Первый датасет для проверки является сгенерированным датасетом, он представляет собой линейно разделимые множества с расстоянием между группами, во много раз большим, чем диаметр группы. Результат работы k-means с евклидовой метрикой для данного датасета. Крестиками обозначены центры кластеров, точки окрашены в цвета кластеров.

Значения метрик для k-means с евклидовой метрикой для линейно разделимого датасета.

Completeness: 1.000 Homogeneity: 1.000

Adjusted Rand index: 1.000

Adjusted Mutual information: 1.000

Далее k-means с евклидовой метрикой был протестирован на сгенерированном датасете, который состоит из линейно разделимых множеств, группы расположены близко. Визуализация работы k-means:

Значения метрик:

Completeness: 0.941 Homogeneity: 0.941

Adjusted Rand index: 0.967

Adjusted Mutual information: 0.941

Следующим датасетом для проверки является сгенерированный датасет с линейно неразделимыми множествами, группы пересекаются на 10-20%. Визуализация работы k-means:

Результат работы k-means:

Completeness: 0.848 Homogeneity: 0.848

Adjusted Rand index: 0.901

Adjusted Mutual information: 0.848

Далее алгоритм k-means был протестирован на линейно неразделимом датасете, со средней площадью пересечения классов 50-70%. Результат работы k-means:

Значения метрик:

Completeness: 0.590 Homogeneity: 0.590

Adjusted Rand index: 0.668

Adjusted Mutual information: 0.589

Далее алгоритм был протестирован на 2 эталонных датасетах. В качестве первого датасета был взят датасет «Breast cancer Wiskonsin». Значения метрик для данного датасета:

Dataset Breast cancer Wisconsin

Completeness: 0.573 Homogeneity: 0.551

Adjusted Rand index: 0.677

Adjusted Mutual information: 0.561

В качестве эксперимента была предпринята попытка применить метод кластеризации к данному датасету, не подготавливая данные. В данном случае значения метрик показывают худшее качество кластеризации:

Dataset Breast cancer Wisconsin

Completeness: 0.517 Homogeneity: 0.422

Adjusted Rand index: 0.491

Adjusted Mutual information: 0.464

В качестве второго эталонного датасета был взят датасет «Wine». Значения метрик для данного датасета:

Dataset Wine

Completeness: 0.844 Homogeneity: 0.850

Adjusted Rand index: 0.864

Adjusted Mutual information: 0.846

В данном случае также была предпринята попытка не проводить препроцессинг данных. Значения метрик значительно хуже:

Dataset Wine

Completeness: 0.451 Homogeneity: 0.399

Adjusted Rand index: 0.352

Adjusted Mutual information: 0.417

Результаты качества разделения для k-means с евклидовой метрикой для различных датасетов:

	Completeness	Homogeneity	Adjusted Rand	Adjusted Mutual
			index	information
Большое	1.000	1.000	1.000	1.000
расстояние между				
группами				
Группы	0.941	0.941	0.967	0.941
расположены				
близко				

Группы	0.848	0.848	0.901	0.848
пересекаются на				
10-20%				
Группы	0.590	0.590	0.668	0.589
пересекаются на				
50-70%				
«Breast cancer	0.573	0.551	0.677	0.561
Wiskonsin»				
«Wine»	0.844	0.850	0.864	0.846

В таблице можно увидеть, что алгоритм работает тем лучше, чем лучше разделяются и чем дальше расположены классы. В случае, если классы пересекаются слишком сильно, значения метрик примерно равны 0.5-0.6. Также в ходе проверки работы алгоритма было установлено, что без препроцессинга данных качество кластеризации значительно хуже.

Далее была протестирована работа k-means с манхеттенской метрикой.

Результат работы k-means с манхеттенской метрикой на сгенерированном линейно разделимом датасете с расстоянием между группами во много раз большим, чем диаметр групп.

Значения метрик:

Completeness: 1.000 Homogeneity: 1.000

Adjusted Rand index: 1.000

Adjusted Mutual information: 1.000

Результат работы k-means с манхеттенской метрикой на сгенерированном линейно разделимом датасете, в котором группы расположены близко или касаются друг друга.

Значения метрик:

Completeness: 0.955 Homogeneity: 0.955

Adjusted Rand index: 0.976

Adjusted Mutual information: 0.955

Результат работы k-means с манхеттенской метрикой на сгенерированном линейно неразделимом датасете, где средняя площадь пересечения классов 10-20%:

Значения метрик:

Completeness: 0.820 Homogeneity: 0.820

Adjusted Rand index: 0.881

Adjusted Mutual information: 0.819

Результат работы k-means с манхеттенской метрикой на сгенерированном линейно неразделимом датасете, где средняя площадь пересечения классов 50-70%:

Значения метрик:

Completeness: 0.615 Homogeneity: 0.615

Adjusted Rand index: 0.694

Adjusted Mutual information: 0.614

Результат работы k-means с манхеттенской метрикой на эталонном датасете «Breast cancer Wiskonsin», значения метрик:

Dataset Breast cancer Wisconsin

Completeness: 0.598 Homogeneity: 0.541

Adjusted Rand index: 0.640

Adjusted Mutual information: 0.568

Результат работы k-means с манхеттенской метрикой на эталонном датасете «Wine», значения метрик:

Dataset Wine

Completeness: 0.650 Homogeneity: 0.396

Adjusted Rand index: 0.380

Adjusted Mutual information: 0.489

Результаты качества разделения для k-means с манхеттенской метрикой для различных датасетов:

	Completeness	Homogeneity	Adjusted Rand	Adjusted Mutual
			index	information
Большое	1.000	1.000	1.000	1.000
расстояние между				
группами				
Группы	0.955	0.955	0.976	0.955
расположены				
близко				
Группы	0.820	0.820	0.881	0.819
пересекаются на				
10-20%				

Группы	0.615	0.615	0.694	0.614
пересекаются на				
50-70%				
«Breast cancer	0.598	0.541	0.640	0.568
Wiskonsin»				
«Wine»	0.650	0.396	0.380	0.489

В таблице можно увидеть, что k-means с манхеттенской метрикой показывает примерно те же значения метрик, что и k-means с евклидовой метрикой, кроме датасета «Wine». Это может быть объяснено тем, что алгоритм k-means рассчитан на работу с евклидовой метрикой, а случае, если взять какую-либо иную метрику, алгоритм может не сойтись.

После этого была продемонстрирована работа иерархического агломеративного метода с евклидовой метрикой. В качестве данного метода был выбран метод Уорда. В данном методе в качестве расстояния между кластерами берется прирост суммы квадратов расстояний объектов до центра кластера, получаемого в результате их объединения. На каждом шаге алгоритма объединяются такие два кластера, которые приводят к минимальному увеличению дисперсии.

Результат работы метода Уорда на сгенерированном линейно разделимом датасете с расстоянием между группами во много раз большим, чем диаметр групп.

Значения метрик:

Completeness: 1.000 Homogeneity: 1.000

Adjusted Rand index: 1.000

Adjusted Mutual information: 1.000

Результат работы метода Уорда на сгенерированном линейно разделимом датасете с группами, расположенными близко.

Значения метрик:

Completeness: 0.958 Homogeneity: 0.958

Adjusted Rand index: 0.976

Adjusted Mutual information: 0.958

Результат работы метода Уорда на сгенерированном линейно неразделимом датасете с группами, пересекающимися на 10-20%.

Значения метрик:

Completeness: 0.841 Homogeneity: 0.841

Adjusted Rand index: 0.895

Adjusted Mutual information: 0.841

Результат работы метода Уорда на сгенерированном линейно неразделимом датасете с группами, пересекающимися на 50-70%.

Значения метрик:

Completeness: 0.560 Homogeneity: 0.557

Adjusted Rand index: 0.625

Adjusted Mutual information: 0.558

Результат работы метода Уорда с евклидовой метрикой на эталонном датасете «Breast cancer Wiskonsin», значения метрик:

Dataset Breast cancer Wisconsin

Completeness: 0.468 Homogeneity: 0.446

Adjusted Rand index: 0.575

Adjusted Mutual information: 0.456

Результат работы метода Уорда с евклидовой метрикой на эталонном датасете «Wine», значения метрик:

Dataset Wine

Completeness: 0.783 Homogeneity: 0.790

Adjusted Rand index: 0.790

Adjusted Mutual information: 0.784

Результаты качества разделения для метода Уорда с евклидовой метрикой для различных датасетов:

	Completeness	Homogeneity	Adjusted Rand	Adjusted Mutual
			index	information
Большое	1.000	1.000	1.000	1.000
расстояние между				
группами				
Группы	0.958	0.958	0.976	0.958
расположены				
близко				
Группы	0.841	0.841	0.895	0.841
пересекаются на				
10-20%				
Группы	0.560	0.557	0.625	0.558
пересекаются на				
50-70%				
«Breast cancer	0.468	0.446	0.575	0.456
Wiskonsin»				
«Wine»	0.783	0.790	0.790	0.784

Исходя из таблицы, видно, что на разделимых датасетах метод Уорда работает примерно так же, как и предыдущие методы, но на датасетах, классы в которых пересекаются в значительной степени, он работает немного хуже. Также из всех иерархических агломеративных методов метод Уорда наиболее подходит и часто применяется для задач с близко расположенными кластерами. Для демонстрации разницы показателей кластеризации для датасета, в котором средняя площадь пересечения классов 50-70%, были применены другие иерархические агломеративные методы: метод полной связи и метод средней связи.

Значения метрик для метода полной связи:

Completeness: 0.405 Homogeneity: 0.397

Adjusted Rand index: 0.396

Adjusted Mutual information: 0.400

Значения метрик для метода средней связи:

Completeness: 0.577 Homogeneity: 0.332

Adjusted Rand index: 0.359

Adjusted Mutual information: 0.420

В обоих случаях можно наблюдать, что качество кластеризации хуже, чем при применении метода Уорда.

Далее была продемонстрирована работа иерархического агломеративного метода с манхеттенской метрикой. В качестве данного метода был выбран метод средней связи, поскольку метод Уорда работает только с евклидовой метрикой. Данный метод сводит к минимуму среднее расстояние между всеми образцами пар кластеров.

Результат работы метода средней связи на сгенерированном линейно разделимом датасете с расстоянием между группами во много раз большим, чем диаметр групп.

Значения метрик:

Completeness: 1.000 Homogeneity: 1.000

Adjusted Rand index: 1.000

Adjusted Mutual information: 1.000

Результат работы метода средней связи на сгенерированном линейно разделимом датасете с группами, расположенными близко.

Значения метрик:

Completeness: 0.928 Homogeneity: 0.927

Adjusted Rand index: 0.953

Adjusted Mutual information: 0.927

Результат работы метода средней связи на сгенерированном линейно неразделимом датасете с группами, пересекающимися на 10-20%.

Значения метрик:

Completeness: 0.833 Homogeneity: 0.833

Adjusted Rand index: 0.889

Adjusted Mutual information: 0.833

Результат работы метода средней связи на сгенерированном линейно неразделимом датасете с группами, пересекающимися на 50-70%.

Значения метрик:

Completeness: 0.443 Homogeneity: 0.393

Adjusted Rand index: 0.381

Adjusted Mutual information: 0.416

Результат работы метода средней связи с манхеттенской метрикой на эталонном датасете «Wine», значения метрик:

Dataset Wine

Completeness: 0.843 Homogeneity: 0.491

Adjusted Rand index: 0.473

Adjusted Mutual information: 0.615

Результаты качества разделения для метода средней связи с манхеттенской метрикой для различных датасетов:

	Completeness	Homogeneity	Adjusted Rand	Adjusted Mutual
			index	information
Большое	1.000	1.000	1.000	1.000
расстояние между				
группами				
Группы	0.928	0.927	0.953	0.927
расположены				
близко				
Группы	0.833	0.833	0.889	0.833
пересекаются на				
10-20%				
Группы	0.443	0.393	0.381	0.416
пересекаются на				
50-70%				
«Wine»	0.843	0.491	0.473	0.615

Из данной таблицы видно, что метод средней связи с манхеттенской метрикой на линейно разделимых датасетах или датасетах со слабо пересекающимися группами показал себя примерно так же, как и метод Уорда с евклидовой метрикой, а на датасетах, группы в которых пересекаются в более значительной степени, качество кластеризации с помощью данного метода хуже, чем при кластеризации методом Уорда.

После этого была продемонстрирована работа неиерархического метода с евклидовой метрикой. В качестве данного метода был выбран метод DBSCAN. Данный алгоритм кластеризации основан на плотности — если дан набор точек в пространстве, алгоритм группирует вместе точки, которые тесно расположены, и помечает как выбросы точки, находящиеся в областях с малой плотностью. При применении данного метода из

библиотеки sklearn не нужно указывать количество кластеров в качестве входного параметра, но необходимо указать два других входных параметра: ϵ и минимальное число точек. Эпсилон (ϵ) — это максимальное расстояние между двумя точками, чтобы они считались соседними. Минимальное число точек — это минимальное число точек, которые должны образовывать область. В используемом методе из библиотеки sklearn по умолчанию минимальное количество точек равно 5.

Результат работы метода DBSCAN на сгенерированном линейно разделимом датасете с расстоянием между группами во много раз большим, чем диаметр групп ($\epsilon = 0.5$).

Значения метрик:

Completeness: 1.000 Homogeneity: 1.000

Adjusted Rand index: 1.000

Adjusted Mutual information: 1.000

Результат работы метода DBSCAN на сгенерированном линейно разделимом датасете с группами, расположенными близко ($\epsilon=0.2$).

Значения метрик:

Completeness: 0.822 Homogeneity: 0.927

Adjusted Rand index: 0.912

Adjusted Mutual information: 0.871

Результат работы DBSCAN на сгенерированном линейно неразделимом датасете с группами, пересекающимися на 10-20% ($\epsilon=0.15$).

Значения метрик:

Completeness: 0.448 Homogeneity: 0.501

Adjusted Rand index: 0.402

Adjusted Mutual information: 0.469

Результат работы DBSCAN на сгенерированном линейно неразделимом датасете с группами, пересекающимися на 50-70% (ϵ = 0.15).

Значения метрик:

Completeness: 0.256 Homogeneity: 0.451

Adjusted Rand index: 0.267

Adjusted Mutual information: 0.316

Результаты качества разделения для метода DBSCAN с евклидовой метрикой для различных датасетов:

	Completeness	Homogeneity	Adjusted Rand	Adjusted Mutual
			index	information
Большое	1.000	1.000	1.000	1.000
расстояние между				
группами				
Группы	0.822	0.927	0.912	0.871
расположены				
близко				
Группы	0.448	0.501	0.402	0.469
пересекаются на				
10-20%				

Группы	0.256	0.451	0.267	0.316
пересекаются на				
50-70%				

Данный алгоритм показал результат хуже, чем ранее рассмотренные методы. Также согласно данной таблице, качество разделения при использовании данного алгоритма достаточно высокое, когда группы в датасете линейно разделимы, а в случае, когда группы пересекаются, качество разделения резко снижается, поскольку алгоритм основан на плотности. Также в случае, когда группы пересекаются, необходимо достаточно долго эмпирически подбирать значение эпсилон и минимальное число точек для достижения приемлемого результата.

Далее была продемонстрирована работа DBSCAN с манхеттенской метрикой.

Результат работы метода DBSCAN с манхеттенской метрикой на сгенерированном линейно разделимом датасете с расстоянием между группами во много раз большим, чем диаметр групп ($\epsilon=0.5$).

Значения метрик:

Completeness: 1.000 Homogeneity: 1.000

Adjusted Rand index: 1.000

Adjusted Mutual information: 1.000

Результат работы метода DBSCAN с манхеттенской метрикой на сгенерированном линейно разделимом датасете с группами, расположенными близко ($\epsilon=0.2$).

Значения метрик:

Completeness: 0.757 Homogeneity: 0.907

Adjusted Rand index: 0.861

Adjusted Mutual information: 0.825

Результат работы DBSCAN с манхеттенской метрикой на сгенерированном линейно неразделимом датасете с группами, пересекающимися на 10-20% (ϵ = 0.2).

Значения метрик:

Completeness: 0.588 Homogeneity: 0.808

Adjusted Rand index: 0.716

Adjusted Mutual information: 0.678

Результат работы DBSCAN с манхеттенской метрикой на сгенерированном линейно неразделимом датасете с группами, пересекающимися на 50-70% ($\epsilon=0.2$).

Значения метрик:

Completeness: 0.222 Homogeneity: 0.306

Adjusted Rand index: 0.154

Adjusted Mutual information: 0.248

Результаты качества разделения для метода DBSCAN с манхеттенской метрикой для различных датасетов:

	Completeness	Homogeneity	Adjusted Rand	Adjusted Mutual
			index	information
Большое	1.000	1.000	1.000	1.000
расстояние между				
группами				
Группы	0.757	0.907	0.861	0.825
расположены				
близко				

Группы	0.588	0.808	0.716	0.678
пересекаются на				
10-20%				
Группы	0.222	0.306	0.238	0.248
пересекаются на				
50-70%				

Данный алгоритм может быть использован с любой функцией расстояния, поэтому DBSCAN с манхеттенской метрикой показал примерно такие же результаты, что и DBSCAN с евклидовой метрикой: на линейно разделимых датасетах хорошие показатели метрик, если датасет линейно неразделим, показатели падают.