Chapitre 35

Intégrales sur un segment

Sommaire.

1	Inté	egrale d'une fonction continue sur un segment		
	1.1	Ensemble $\mathcal{CM}(I,\mathbb{K})$		
	1.2	Intégrale d'une fonction continue par morceaux entre deux bornes		
		Relation de Chasles		
	1.4	Linéarité		
	1.5	Intégrales et inégalités		
		Quelques exercices de cours		
	1.7	Outils de calcul intégral		
2 Sommes de Riemann				
	2.1	Convergence des sommes de Riemann		
	2.2	Comparaison de la méthode des rectangle avec celle des trapèzes		
	2.3	Complément : continuité uniforme d'une fonction		

Les propositions marquées de \star sont au programme de colles.

Intégrale d'une fonction continue sur un segment 1

1.1 Ensemble $\mathcal{CM}(I,\mathbb{K})$

Définition 1: Fonction continue par morceaux sur un intervalle.

Soit I un intervalle et $f: I \to \mathbb{K}$. On dit que f est **continue par morceaux** sur I si pour tout segment $[a, b] \subset I$, $f_{|[a,b]}$ est continue par morceaux sur [a,b].

On note $\mathcal{CM}(I,\mathbb{K})$ l'ensemble des fonctions continues par morceaux sur I.

Exemple 2: $x \mapsto \lfloor \frac{1}{x} \rfloor$

La fonction $x \mapsto \lfloor \frac{1}{x} \rfloor$ est continue par morceaux sur \mathbb{R}_+^* . Expliquer.

Solution:

Soit $[a,b] \subset \mathbb{R}_+^*$. Notons $S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a,b[$. Cet ensemble est fini : pour $n \in \mathbb{N}^*$, $a < \frac{1}{n} < b \iff \frac{1}{b} < n < \frac{1}{a} \iff \lfloor \frac{1}{b} \rfloor + 1 \le n \le \lfloor \frac{1}{a} \rfloor$.

S contient donc au plus $\lfloor \frac{1}{a} \rfloor - \lfloor \frac{1}{b} \rfloor$ points.

Notons n = |S| puis $S = \{a_1, ..., a_n\}$, avec $a_1 < a_2 < ... < a_n$.

Posons $\sigma = (a_0, a_1, ..., a_n, a_{n+1})$ avec $a_0 := a$ et $a_{n+1} := b$.

Soit $i \in [0,]$, $f_{|a_i,a_{i+1}|}$ est constante, elle y est donc continue et prolongeable par continuité aux bords. Ainsi, $f \in \mathcal{CM}(\mathbb{R}_+^*, \mathbb{R}).$

Remarque: En posant f(0) := 0, ça ne marche plus car $f_{|[0,b]}$ n'est pas cpm sur [0,b].

1.2Intégrale d'une fonction continue par morceaux entre deux bornes

Définition 3

Soit $f \in \mathcal{CM}(I,\mathbb{R})$ et $a,b \in I$. On note $\int_a^b f(x) dx$, ou plus simplement $\int_a^b f$ le réel défini par :

$$\int_{a}^{b} f(x) dx := \int_{[a,b]} f \text{ si } a < b, \quad \int_{a}^{a} f(x) dx := 0, \quad \text{et} \quad \int_{a}^{b} f(x) dx := -\int_{[b,a]} f \text{ si } a > b.$$

Proposition 4

Soit $f \in \mathcal{CM}(I, \mathbb{C})$.

Les fonctions $x \mapsto \text{Re}(f(x))$ et $x \mapsto \text{Im}(f(x))$ sont continues par morceaux sur I.

Pour $a, b \in I$, on pose :

$$\int_a^b f(x) dx := \int_a^b \operatorname{Re}(f(x)) dx + i \int_a^b \operatorname{Im}(f(x)) dx.$$

Ainsi, la partie réelle de l'intégrale est l'intégrale de la partie réelle, idem pour la partie imaginaire.

Preuve:

Pour prouver la continuité par morceaux de Re(f) et Im(f) à partir de celle de f, on introduit une subdivision adaptée à $f \sigma = (a_0, ..., a_n)$ et on prouve qu'elle est adaptée à sa partie réelle et à sa partie imaginaire. On peut

$$\forall x \in I \operatorname{Re}(f(x)) = \frac{1}{2}(f(x) + \overline{f(x)}) \text{ et } \operatorname{Im}(f(x)) = \frac{1}{2i}(f(x) - \overline{f(x)}).$$

En effet, ces relations donnent que pour $i \in [0, n-1]$, les restrictions de Re(f) et Im(f) à $]a_i, a_{i+1}[$ y sont continues, et prolongeables par continuité sur les bords.

Relation de Chasles.

Proposition 5: Relation de Chasles

Soient $f \in \mathcal{CM}(I, \mathbb{K})$ et $a, b, c \in I$.

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

La relation a été établie dans le cours de construction pour une fonction à valeurs réelles dans le cas où a < c < b.

• cas a < b < c:

$$\int_{a}^{c} f + \int_{c}^{b} f = \int_{[a,c]} f - \int_{[b,c]} f = \int_{[a,b]} f + \int_{[b,c]} f - \int_{[b,c]} f = \int_{[a,b]} f = \int_{a}^{b} f.$$

D'une part $\int_a^b f = -\int_{[b,a]} f$, d'autre part : $\int_a^c f + \int_c^b f = -\int_c^a f = -\int_b^a f$.

Les autres cas sont similaires.

1.4 Linéarité.

Proposition 6: Linéarité de l'intégrale.

Soient $f, g \in \mathcal{CM}(I, \mathbb{K})$, et $a, b \in I$. Pour tous scalaires $\lambda, \mu \in \mathbb{K}$,

$$\int_{a}^{b} (\lambda f + \mu g) = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g.$$

Preuve:

On l'a prouvé pour a < b et f, g à valeurs réelles. Il faut le vérifier dans les autres cas.

Intégrales et inégalités.

Proposition 7: Positivité

Soit $f \in \mathcal{CM}([a,b],\mathbb{R})$ où le segment [a,b] est tel que $|a \leq b|$

Si f est positive sur [a, b], alors l'intégrale $\int_a^b f(x) dx$ est un nombre positif.

Si f est négative sur [a, b], alors cette intégrale est un nombre négatif.

Preuve:

On l'a déjà prouvé.

Proposition 8: Intégrale nulle d'une fonction positive et continue

Soit $f : [a, b] \to \mathbb{R}$, avec |a < b|, continue et positive sur [a, b].

Si $\int_a^b f(x) dx = 0$, alors f est nulle sur [a, b].

Par contraposée, si $\exists c \in [a,b] \ f(c) > 0,$ alors $\int_a^b f > 0.$

Preuve:

Il y a aussi la preuve suivante dans L'Exercice 79 de la banque CCINP :

On suppose f continue et positive sur [a,b] et $\int_a^b f = 0$.

Posons $F: x \mapsto \int_a^x f(t) dt$ définie sur [a,b], f étant continue sur [a,b], F est une primitive de f sur [a,b] d'après le TFA (prouvé plus loin).

Donc $\forall x \in [a, b], F'(x) = f(x) \ge 0$, ainsi F est croissante sur [a, b].

Or, $F(b) = \int_a^b f = 0$, de plus, $F(a) = \int_a^a f = 0$.

Par croissance, $\forall x \in [a, b], \ F(a) \leq F(x) \leq F(b) \ \text{donc} \ F(x) = 0.$

Donc F est constante sur [a, b], on a a < b donc $\forall x \in [a, b], F'(x) = f(x) = 0$.

Remarque: Pourquoi continue et pas continue par morceaux

Soit
$$f: \begin{cases} [0,1] \to \mathbb{R} \\ x \mapsto \begin{cases} 0 \text{ si } x \neq \frac{1}{2} \\ 1 \text{ si } x = \frac{1}{2} \end{cases}$$
, son intégrale est nulle, mais f ne l'est pas.

Proposition 9: Croissance

Soient $f, g \in \mathcal{CM}([a, b], \mathbb{R})$ avec $a \leq b$

$$f \le g \implies \int_a^b f(x) dx \le \int_a^b g(x) dx$$

Preuve:

On a:

$$\int_a^b g - \int_a^b f = \int_a^b (g - f)$$

Comme g - f est continue par morceaux et positive, on a $\int_a^b (g - f) \ge 0$ donc $\int_a^b f \le \int_a^b g$.

Proposition 10: Inégalité de la moyenne

Soit $f \in \mathcal{CM}([a,b],\mathbb{R})$ avec $|a \leq b|$

Si f est minorée par un réel m et majorée par M sur [a, b], alors :

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$
, Lorsque $a < b$, on a $m \le \frac{1}{b-a} \int_a^b f(x) dx \le M$.

Preuve:

On a $\forall x \in [a, b], m \le f(x) \le M$.

La fonction $f, x \mapsto m, x \mapsto M$ sont continues par morceaux.

Par croissance:

$$\int_{a}^{b} m dt \le \int_{a}^{b} f(t) dt \le \int_{a}^{b} M dt$$

Donc

$$m(b-a) \le \int_a^b f(t) dt \le M(b-a)$$

Proposition 11: Inégalité triangulaire

Soit $f \in \mathcal{CM}([a,b],\mathbb{K})$, avec $|a \leq b|$

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

Preuve:

 \odot Cas réel: Soit $f \in \mathcal{CM}([a,b],\mathbb{R})$.

On a $f \leq |f|$ et $-f \leq |f|$, or f, -f et |f| sont cpm sur [a, b].

Par croissance de l'intégrale $(a \le b)$: $\int_a^b f \le \int_a^b |f|$ et $-\int_a^b f \le \int_a^b |f|$. Donc $\max(\int_a^b f, -\int_a^b f) \le \int_a^b |f|$ et alors $\left|\int_a^b f\right| \le \int_a^b |f|$.

Cas complexe: admis.

1.6 Quelques exercices de cours.

Exemple 12

Pour $a \in \mathbb{R}_+^*$, on pose $I_a = \int_a^{a^2} \ln^3(x) dx$. Existence et signe de I_a .

Solution:

Existence: \ln^3 est continue (par morceaux) sur \mathbb{R}_+^* .

1er cas: Supposons $a \ge 1$, alors $a \le a^2$ et $\forall x \in [a,a^2] \ln^3(x) \ge 0$, par positivité, $\int_a^{a^2} \ln^3 \ge 0$. 2eme cas: Supposons $a \in]0,1[$, alors $a^2 \le a$ et $\forall x \in [a^2,a] \ln^3(x) \le 0$, par positivité, $\int_{a^2}^a \ln^3 \le 0$ donc

 $\int_a^{a^2} \ln^3 \ge 0.$ $Ainsi, \forall a \in \mathbb{R}_+^*, \ I_a \ge 0$

Exemple 13

Soit $f:[a,b] \to \mathbb{R}$ avec a < b continue telle que $\int_a^b f(t) dt = 0$. Justifier que f s'annule au moins une fois sur [a, b].

Solution:

1er cas: Supposons que f change de signe sur [a,b], alors d'après le TVI, f s'annule sur [a,b] puisque f est

2eme cas: Supposons que f ne change pas de signe sur [a, b]. On a que a < b, que f est continue et monotone sur [a, b], et d'intégrale nulle. Par théorème, $\forall x \in [a, b], f(x) = 0$.

Exemple 14: Un exercice : suite définie par une intégrale.

Soit, pour $n \in \mathbb{N}$, $I_n := \int_1^e (\ln(x))^n dx$.

- 1. Prouver que (I_n) est convergente.
- 2. Prouver que la limite vaut 0 à l'aide d'une IPP.
- 3. Donner un équivalent de I_n .

Solution:

1. Monotonie: Soit $n \in \mathbb{N}$.

$$I_{n+1} - I_n = \int_1^e \underbrace{(\ln(x))^n}_{\geq 0} \underbrace{(\ln(x) - 1)}_{\leq 0} dx$$

La fonction $x \mapsto (\ln(x))^n(\ln(x) - 1)$ est continue sur [1, e] on a $1 \le e$ et la fonction est négative.

Par positivité de l'intégrale, $I_{n+1} - I_n \le 0$ et donc (I_n) est décroissante.

Convergence: Par positivité, on a $\forall n \in \mathbb{N}, I_n \geq 0$, donc I_n est décroissante et minorée par 0 donc elle converge d'après le TLM.

2. Une IPP pour trouver une relation de récurrence. Pour $n \in \mathbb{N}^*$:

$$I_n = \int_1^e (\ln(x))^n dx$$

$$= [x(\ln(x))^n]_1^e - \int_1^e x n \frac{1}{x} (\ln(x))^{n-1} dx$$

$$= e - nI_{n-1}$$

On a $\forall n \in \mathbb{N}^*$ $I_n = \frac{1}{n+1}(e - I_{n+1})$. Notons $l = \lim I_n$, qui existe d'après 1. Alors $I_n = \frac{1}{n+1}(e - I_{n+1}) \to 0$ car $e - I_{n+1} \to e - l$. 3. On a $nI_n = \frac{n}{n+1}(e - I_{n+1}) \to e \text{ donc } I_n \sim \frac{e}{n}$.

Exemple 15: Lemme de Riemann-Lebesgue 🛨

Soit $f \in \mathcal{C}^1([a,b],\mathbb{C})$. Montrer que

$$I_n = \int_a^b f(t)e^{int}dt \to 0.$$

Remarque: Le lemme est vrai pour f continue sur [a, b], mais difficile à démontrer.

Solution:

Idée : IPP. Soit $n \in \mathbb{N}$. f et $\frac{1}{in}e^{int}$ sont de classe \mathcal{C}^1 sur [a,b] donc :

$$\int_{a}^{b} f(t)e^{int}dt = \left[f(t) \cdot \frac{1}{in}e^{int}\right]_{a}^{b} - \int_{a}^{b} f'(t) \cdot \frac{1}{in}e^{int}dt$$

Alors

$$|I_n| \le \left| \left[f(t) \frac{1}{in} e^{int} \right]_a^b \right| + \left| \int_a^b f'(t) \frac{1}{in} e^{int} \right|$$

D'une part : $\left| \left[f(t) \frac{1}{in} e^{int} \right]_a^b \right| = \frac{1}{n} \left| f(b) e^{inb} - f(a) e^{ina} \right| \le \frac{1}{n} (|f(b)| + |f(a)|).$

D'autre part : $\left| \int_a^b f'(t) \frac{1}{in} e^{int} dt \right| \leq \frac{1}{n} \int_a^b \left| f'(t) \right| dt$.

Par majoration, $|I_n| = O(\frac{1}{n})$ donc $I_n \to 0$.

Théorème 16: Théorème fondamental de l'analyse 🛨

Soit I un intervalle et $f: I \to \mathbb{K}$ une fonction continue sur I. Soit $a \in I$. La fonction

$$E: \begin{cases} I \to \mathbb{K} \\ x \mapsto F(x) = \int_a^x f(t) dt \end{cases}$$

est de classe \mathcal{C}^1 sur I et de dérivée F'=f.

Preuve:

Soit $x_0 \in I$. Montrons que $\frac{F(x)-F(x_0)}{x-x_0} \to f(x_0)$ Soit $x \in I \setminus \{x_0\}$, on note min = min (x_0, x) et max = max (x_0, x) .

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \left| \frac{1}{x - x_0} \left(\int_a^x f(t) dt - \int_a^{x_0} f(t) dt \right) - f(x_0) \right|$$

$$= \left| \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - \frac{1}{x - x_0} \int_{x_0}^x f(x_0) dt \right|$$

$$= \frac{1}{|x - x_0|} \left| \int_{x_0}^x (f(t) - f(x_0)) dt \right|$$

$$\leq \frac{1}{|x - x_0|} \int_{\min}^{\max} |f(t) - f(x_0)| dt$$

Soit $\varepsilon > 0$. Par continuité de f en $x_0, \exists \eta > 0 \ \forall x \in I \cap]x_0 - \eta, x_0 + \eta[, |f(t) - f(x_0)| \le \varepsilon$. Supposons que $|x - x_0| \le \eta$. Alors $[\min, \max] \subset I \cap]x_0 - \eta, x_0 + \eta[$.

Par croissance:

$$\int_{\min}^{\max} \left| f(t) - f(x_0) \right| dt \le \int_{\min}^{\max} \varepsilon dt = \varepsilon(\max - \min) = \varepsilon |x - x_0|.$$

 $\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| \le \frac{1}{|x - x_0|} \varepsilon |x - x_0| = \varepsilon$

Corrolaire 17

Toute fonction continue sur un intervalle y admet des primitives.

Sur un intervalle, deux primitives d'une même fonction diffèrent d'une constante.

Preuve:

Le TFA donne bien une primitive sous ces hypothèses.

Soit $f \in \mathcal{C}(I, \mathbb{K})$, F et G deux primitives de f.

Alors F - G est dérivable sur I et (F - G)' = f - f = 0 donc F - G est constante sur I d'après AF.

Proposition 18

Soit $f \in \mathcal{C}(I, \mathbb{K})$ et F une primitive de f sur I. Alors, pour tous $a, b \in I$,

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

Preuve:

On a f continue sur [a,b]. Le TFA donne $\widetilde{F}: x \mapsto \int_a^x f(t) dt$ primitive de f sur [a,b]. La fonction F en est une autre, sur le même intervalle : $\exists C \in \mathbb{K} \ \forall x \in [a,b] \ \widetilde{F}(x) = F(x) + C$.

Alors:

$$\int_a^b f(t)dt = \widetilde{F}(b)\widetilde{F}(b) - \widetilde{F}(a) = F(b) + C - F(a) - C = F(b) - F(a).$$

Proposition 19

Soit $f \in C^1(I, \mathbb{K})$. Alors pour tous $a, b \in I$,

$$\int_{a}^{b} f'(t)dt = f(b) - f(a)$$

Preuve:

Découle du résultat précédent car f est une primitive de f' sur [a,b] sous ces hypothèses.

Exemple 20: ★

Soit la fonction

$$F: x \mapsto \int_{x}^{x^{2}} \frac{1}{\ln(t)} \mathrm{d}t$$

1. Donner le domaine de définition de F.

2. Montrer que F est dérivable sur D et calculer sa dérivée. Donner les variations de F.

3. (*) Calculer les limites intéressantes.

Solution:

1. $f := \frac{1}{\ln}$ est définie sur $]0,1[\cup]1,+\infty[$ et non prolongeable. Pour $x \in]0,1[$, $0 < x^2 < x < 1$ donc $[x^2,x] \subset]0,1[$ donc f est continue sur $[x^2,x]$.

Pour $x \in]1, +\infty[$, $x^2 > x$ donc $[x, x^2] \subset]1, +\infty[$ donc f est continue sur $[x, x^2]$.

Ainsi, $D =]0, 1[\cup]1, +\infty[$

 $\boxed{2.} \odot \text{Sur } [0,1[$. Notons L une primitive de f sur]0,1[, elle existe par TFA et continuité de f.

Alors $F(x) = \int_x^{x^2} f = L(x^2) - L(x)$ et F et dérivable comme composée et différence. Donc $\forall x \in]0,1[,\ F'(x)=2xf(x^2)-f(x)=\frac{1}{\ln(x)}(x-1)>0$.

 \odot Sur $]1, +\infty[$, on a $F'(x) = \frac{x-1}{\ln(x)} > 0$.

3. Limite en $+\infty$: Soit x > 1. $\forall t \in [x, x^2]$ $\frac{1}{\ln(t)} \ge \frac{1}{\ln(x^2)}$ alors par croissance de l'intégrale $(x < x^2)$:

$$\int_{x}^{x^{2}} \frac{1}{\ln t} dt \ge \int_{x}^{x^{2}} \frac{1}{\ln x^{2}} dt \text{ donc } F(x) \ge \frac{x(x-1)}{2\ln(x)} \to +\infty$$

Par minoration, $F(x) \to +\infty$ en $+\infty$.

Limite en 0_+ : On encadre pour $x \in]0,1[:\frac{1}{\ln(x)} \le \frac{1}{\ln(t)} \le \frac{1}{\ln(x^2)}$ alors $(x^2 < x)$:

$$\int_{x}^{x^2} \frac{1}{\ln(x)} dt \ge \int_{x}^{x^2} \frac{1}{\ln t} dt \ge \int_{x}^{x^2} \frac{1}{\ln(x^2)} dt$$

Donc $\frac{x(x-1)}{2\ln(x)} \le F(x) \le \frac{x(x-1)}{\ln(x)}$ Par encadrement, $F(x) \to 0$ en 0_+ .

Limite en 1_+ : Pour x > 1, $F(x) = L(x^2) - L(x)$ et $L'(x) = \frac{1}{\ln(x)} \sim_1 \frac{1}{x-1}$ donc $L'(x) =_1 \frac{1}{x-1} + o(\frac{1}{x-1})$.

Posons $R(x) = L'(x) - \frac{1}{x-1}$ continue sur $]1, +\infty[$. On a :

$$F(x) = \int_{x}^{x^{2}} L(t)dt = \int_{x}^{x^{2}} \left(\frac{1}{t-1} + R(t)\right) dt = \int_{x}^{x^{2}} \frac{1}{t-1} dt + \int_{x}^{x^{2}} R(t)dt$$
$$\int_{x}^{x^{2}} \frac{1}{t-1} dt = \ln(x^{2} - 1) - \ln(x - 1) = \ln(x + 1) \xrightarrow[x \to 1_{+}]{} \ln(2)$$

Montrons que $\int_x^{x^2} R(t) dt \to 0$. On a $(t-1)R(t) \to 0$ quand $t \to 1_+$. Soit $\varepsilon > 0, \exists \eta > 0 \ \forall t \in]1, 1 + \eta[-\varepsilon \le (t-1)R(t) \le \varepsilon \ \mathrm{donc} \ -\frac{\varepsilon}{t-1} \le R(t) \le \frac{\varepsilon}{t-1}$.

Supposons $x \in]1, \sqrt{1+\eta}[$ alors $[x, x^2] \subset]1, 1+\eta[$.

Alors $\forall t \in [x, x^2], -\frac{\varepsilon}{t-1} \le R(t) \le \frac{\varepsilon}{t-1}$.

Alors $\forall t \in [x, x_-], \quad t-1 = x(t) - t-1$ On intégre : $-\varepsilon \le -\varepsilon \ln(x+1) \le \int_x^{x^2} R(t) dt \le \varepsilon \ln(x+1) \le \varepsilon$. On a bien $\int_x^{x^2} R(t) dt =_1 o(1)$ donc $F(x) =_1 \ln(x+1) + o(1)$ donc $F(x) \xrightarrow[x \to 1_+]{} \ln 2$

Limite en 1_: Soit $x \in]0,1[$. On a $F(x) = \int_x^{x^2} t \frac{1}{t \ln t} dt$. On a $0 < x^2 < x < 1$. Soit $t \in [x^2,x]$. On a $\frac{x}{t \ln t} \le t \frac{1}{t \ln t} \le \frac{x^2}{t \ln t}$. On intégre : $\int_x^{x^2} \frac{x^2}{t \ln t} dt \le \int_x^{x^2} \frac{1}{\ln t} dt \le \int_x^{x^2} \frac{x}{t \ln t} dt$. Or, $\int_x^{x^2} \frac{1}{t \ln t} dt = [\ln |\ln t|]_x^{x^2} = \ln |\ln(x^2)| - \ln |\ln(x)| = \ln(-2\ln(x)) - \ln(\ln(-x)) = \ln(2)$. Finalement, $x^2 \ln(2) \le F(x) \le x \ln(2)$ et par théorème des gendarmes, $F(x) \xrightarrow[x \to 1_-]{} \ln(2)$.

Outils de calcul intégral.

Théorème 21: Intégration par parties.

Soient $u, v \in \mathcal{C}^1(I, \mathbb{K})$ et $a, b \in I$. Alors,

$$\int_a^b u'v = [uv]_a^b - \int_a^b uv'.$$

Preuve:

On a uv dérivable comme produit de fonctions dérivables sur I.

Alors (uv)' = u'v + uv'. Or u, v étant de classe C^1 , u'v et uv' sont continues sur I.

$$\int_{a}^{b} (uv)'(t)dt = \int_{a}^{b} (u'(t)v(t) + u(t)v'(t))dt$$
$$[uv]_{a}^{b} = \int_{a}^{b} u'v + \int_{a}^{b} uv'$$

Exemple 22: Suites dont le terme général est une intégrale.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues sur [a,b] et $(I_n)_{n\in\mathbb{N}}$:

$$\forall n \in \mathbb{N} \ I_n := \int_a^b f_n(x) \mathrm{d}x$$

On peut obtenir une relation de récurrence sur la suite (I_n) avec une IPP dans certains cas.

Théorème 23: Formule du changement de variable

Soit $\varphi \in \mathcal{DM}^1(I, J)$, $f \in \mathcal{CM}(J, \mathbb{K})$ et $a, b \in I$. Alors,

$$\int_{\varphi(a)}^{\varphi(b)} f(t) dt = \int_{a}^{b} f(\varphi(x)) \varphi'(x) dx$$

Exemple 24

En posant $t = \tan \frac{x}{2}$, montrer que:

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\mathrm{d}x}{4 + \sin x} = \frac{\pi}{\sqrt{15}}$$

Solution:

On pose le changement de variable :

t	$\mathrm{d}t$	$\frac{2}{1+t^2}\mathrm{d}t$	t = -1	t = 1
$\tan \frac{x}{2}$	$\frac{1}{2}(1+\tan^2(\frac{x}{2}))\mathrm{d}x$	$\mathrm{d}x$	$x = -\frac{\pi}{2}$	$x = \frac{\pi}{2}$

Alors:

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\mathrm{d}x}{4 + \sin x} = \int_{-1}^{1} \frac{1}{4 + \frac{2t}{1 + t^2}} \cdot \frac{2}{1 + t^2} \mathrm{d}t$$
$$= \int_{-1}^{1} \frac{2}{4t^2 + 2t + 4} \mathrm{d}t = \int_{-1}^{1} \frac{1}{2t^2 + t + 2} \mathrm{d}t$$

Pas de racine réelles. On a $2t^2+t+2=2(t^2+\frac{1}{2}+1)=2((t+\frac{1}{4})^2-(\frac{\sqrt{15}}{4})^2)$.

Cours: $\frac{1}{x^2+a^2} = \frac{d}{dx}(\frac{1}{a}\arctan(\frac{1}{a})).$

$$\frac{1}{2} \int_{-1}^{1} \frac{1}{(t+\frac{1}{4})^2 + (\frac{\sqrt{15}}{4})^2} \mathrm{d}t = \frac{4}{2\sqrt{15}} \left[\arctan(\frac{4}{\sqrt{15}(t+\frac{1}{4})}) \right]_{-1}^{1} = \frac{2}{\sqrt{15}} \left[\arctan(\frac{5}{\sqrt{15}}) + \arctan(\frac{3}{\sqrt{15}}) \right]_{-1}^{1} = \frac{2}{\sqrt{15}} \left[\arctan(\frac{5}{\sqrt{15}}) + \arctan(\frac{5}{\sqrt{15}}) \right]_{-1}^{1} = \frac{2}{\sqrt{15}} \left[\arctan(\frac{5}{\sqrt{15}}) +$$

Or
$$\frac{5}{\sqrt{15}} \cdot \frac{3}{\sqrt{15}} = \frac{15}{\sqrt{15}^2} = 1$$
 et $\arctan(x) + \arctan(\frac{1}{x}) = \begin{cases} \frac{\pi}{2} & (x > 0) \\ -\frac{\pi}{2} & (x < 0) \end{cases}$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{4 + \sin x} dx = \frac{2}{\sqrt{15}} \frac{\pi}{2} = \frac{\pi}{\sqrt{15}}$$

Corrolaire 25: Intégrale d'une fonction paire/impaire.

Soit $f \in \mathcal{CM}([-a, a], \mathbb{K})$.

Si f est paire : $\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt$. Si f est impaire : $\int_{-a}^{a} f(t) dt = 0$.

Corrolaire 26

Soit $f \in \mathcal{CM}(\mathbb{R}, \mathbb{K})$ une fonction T-périodique avec $T \in \mathbb{R}_+^*$

$$\forall a \in \mathbb{R}, \ \int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt.$$

Théorème 27: Formule de Taylor avec reste intégral

Soit $f \in \mathcal{C}^{n+1}([a,b],\mathbb{K})$ et $x \in [a,b]$. Alors,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

Preuve:

Par récurrence :

Cas de base: Soit $f \in C^1(I, \mathbb{K})$ et $a, x \in I$. Alors :

$$f(x) - \sum_{k=0}^{0} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(x) - f(a)$$

 Et

$$\int_{a}^{x} \frac{(x-t)^{0}}{0!} f'(t) dt = \int_{a}^{x} f'(t) dt = f(x) - f(a)$$

Le résultat est vrai.

Hérédité: Soit $n \in \mathbb{N}$. Supposons le résultat vrai pour cet entier. Soit $f \in \mathcal{C}^{n+2}(I,\mathbb{K})$ et $x, a \in I$.

Or $\mathcal{C}^{n+2}(I,\mathbb{K}) \subset \mathcal{C}^{n+1}(I,\mathbb{K})$, par hypothèse : $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + R_n(x)$. Avec IPP, fonctions de classes \mathcal{C}^1 , f^{n+1} et $-\frac{(x-t)^{n+1}}{(n+1)!}$:

$$R_n(x) = \int_a^x \frac{(x-a)^n}{n!} f^{(n+1)}(t) dt = \left[-\frac{(x-t)^{n+1}}{(n+1)!} f^{n+1}(t) \right]_a^x - \int_a^x -\frac{(x-t)^{n+1}}{(n+1)!} f^{n+2}(t) dt$$
$$= -\frac{(x-a)^{n+1}}{(n+1)!} f^{n+1}(a) + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{n+2}(t) dt$$

Bilan : $f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$ L'identité est vraie au rang n+1 donc vraie pour tout n par récurrence.

Exemple 28: Comparer une fonction et son polynôme de Taylor

Montrer l'inégalité :

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad \cos x \ge 1 - \frac{x^2}{2!}.$$

Solution:

On a cos de classe \mathcal{C}^{∞} donc \mathcal{C}^3 sur $\left[0,\frac{\pi}{2}\right]$ donc d'après Taylor avec Reste intégral :

$$\cos(x) = x - \frac{x^2}{2!} + \int_0^x \frac{(x-t)^2}{2!} \cos^{(3)}(t) dt$$

Donc $\cos(x) - x + \frac{x^2}{2!} = \int_0^x \frac{(x-t)^2}{2!} \sin(t) dt$. Cette intégrale est positive car continue, positive et $0 \le x$. On en déduit bien l'inégalité.

Proposition 29: Inégalité de Taylor-Lagrange

Soit I un intervalle, $a \in I$, $n \in \mathbb{N}$ et $f \in \mathcal{C}^{n+1}(I, \mathbb{K})$.

On suppose que la fonction $|f^{(n+1)}|$ est majorée par une constante M_{n+1} sur I. Alors

$$\forall x \in I, \ \left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k \right| \le M_{n+1} \frac{|x-a|^{n+1}}{(n+1)!}$$

Preuve:

D'après Taylor avec reste intégral, $\min := \min(a, x)$ et $\max := \max(a, x)$:

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} \right| = \left| \int_{a}^{x} \frac{(x - t)^{n}}{n!} f^{(n+1)}(t) dt \right| \le \int_{\min}^{\max} \frac{|x - t|^{n}}{n!} |f^{n+1}(t)| dt$$

Par croissance de l'intégrale, $\int_{\min}^{\max} \frac{|x-t|^n}{n!} |f^{n+1}(t)| dt \le \int_{\min}^{\max} \frac{|x-t|^n}{n!} M_{n+1} dt = \frac{M_{n+1}}{(n+1)!} |x-a|^{n+1}$

Exemple 30

Prouver que

$$\forall x \in [0, 1], \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k = \ln(1+x).$$

Solution:

Soit $x \in [0,1]$ et $\forall k \in \mathbb{N}^*$, $u_k = \frac{x^k}{k}$ décroissante vers 0.

La série $\sum (-1)^k u_k$ converge (thm des séries alternées.).

Notons $f: x \mapsto \ln(1+x)$. Posons $n \in \mathbb{N}^*$ et T_n son polynome de Taylor à l'ordre n en 0.

$$T_n = \sum_{k=1}^n \frac{f^{(k)}(0)}{k!} X^k = \sum_{k=1}^n \frac{(-1)^k}{k} X^k$$

On majore $|f - T_n|$ avec Taylor-Lagrange. On a $f^{(n+1)}(x) = \frac{(-1)^n (n)!}{(1+x)^{n+1}}$ majorée par n! sur [0,1].

Donc l'inégalité donne :

$$|f(x) - T_n(x)| \le n! \frac{|x|^{n+1}}{(n+1!)} \le \frac{1}{n+1}$$

Par encadrement, $T_n(x) \xrightarrow[n \to +\infty]{} f(x)$

$\mathbf{2}$ Sommes de Riemann

2.1Convergence des sommes de Riemann

Définition 31

Soit un segment [a, b] avec a < b. Pour $n \in \mathbb{N}^*$ et $k \in [0, n]$, on note $a_k = a + k \frac{b-a}{n}$. La famille $(a_0, ..., a_n)$ est appelée subdivision régulière de [a, b] à n segments. Chaque segment de la subdivision est de longueur $\frac{b-a}{n}$, et ce nombre est appelé pas de la subdivision.

Soit $f \in \mathcal{CM}([a,b],\mathbb{K})$. On appelle nème somme de Riemann de f le nombre

$$R_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a_k)$$

Théorème 32: Convergence des sommes de Riemann

Soit $f \in \mathcal{CM}([a, b], \mathbb{K})$.

Pour $n \in \mathbb{N}^*$ et $k \in [0, n]$, on note $a_k = a + k \frac{b-a}{n}$ et $R_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a_k)$. Alors,

$$R_n(f) \xrightarrow[n \to +\infty]{} \int_a^b f(t) dt$$

Preuve:

On écrira la preuve dans le cas f lipschitzienne en proposition 36.

Corrolaire 33: Cas particulier important

Soit $f \in \mathcal{CM}([0,1], \mathbb{K})$.

$$\frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \xrightarrow[n \to +\infty]{} \int_0^1 f(t) dt$$

Preuve:

C'est le théorème avec a = 0 et b = 1.

Exemple 34

Calculer:

$$\lim \frac{1}{n} \sum_{k=1}^{n} \frac{\sqrt{k}}{\sqrt{n}} \quad \text{et} \quad \lim \sum_{k=0}^{n-1} \frac{1}{n+k}$$

Solution:

Posons $f: x \mapsto \sqrt{x}$, on a $\frac{1}{n} \sum_{k=1}^{n} \frac{\sqrt{k}}{\sqrt{n}}$.

On a f continue, c'est une somme de Riemann, par convergence des sommes de Riemann:

$$\frac{1}{n} \sum_{k=1}^{n} \frac{\sqrt{k}}{\sqrt{n}} \to \int_{0}^{1} \sqrt{t} dt = \left[\frac{2}{3} x^{3/2} \right]_{0}^{1} = \frac{2}{3}.$$

Posons $g: x \mapsto \frac{1}{1+x}$. On a g continue, c'est une somme de Riemann, par converge :

$$\sum_{k=0}^{n-1} \frac{1}{n+k} \to \int_0^1 \frac{1}{1+t} dt = [\ln|1+t|]_0^1 = \ln 2$$

8

Exemple 35: Inégalité de Jensen pour les intégrales

CENTRALE 2024

Soit $f:[a,b]\to\mathbb{R}$ une fonction CPM à valeurs dans I et φ une fonction convexe et continue sur I. Démontrer l'inégalité de Jensen pour les intégrales :

$$\varphi\left(\frac{1}{b-a}\int_{a}^{b}f(t)\mathrm{d}t\right) \leq \frac{1}{b-a}\int_{a}^{b}\varphi(f(t))\mathrm{d}t$$

Solution:

On sait (CV des sommes de Riemann):

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(a_k)$$

On a φ convexe sur I, on pose $\lambda_i = \frac{1}{n}$ et $x_i = f(a_i)$ pour $i \in [1, n]$.

D'après l'inégalité de Jensen :

$$\varphi\left(\frac{1}{n}\sum_{i=1}^{n}f(a_i)\right) \leq \frac{1}{n}\sum_{i=1}^{n}\varphi(f(a_i))$$

Donc, puisque φ est \mathcal{CM} sur [a,b]

$$\frac{1}{n} \sum_{i=1}^{n} \varphi \circ f(a_i) \xrightarrow[n \to +\infty]{} \frac{1}{b-1} \int_{a}^{b} \varphi \circ f(t) dt$$

D'après le théorème sur les sommes de \mathbb{R} .

De même, $\frac{1}{n} \sum_{i=1}^{n} f(a_i) \xrightarrow[n \to +\infty]{} \frac{1}{b-a} \int_a^b f(t) dt$.

On a bien $\varphi\left(\frac{1}{n}\sum_{i=1}^n f(a_i)\right) \to \varphi\left(\frac{1}{b-a}\int_a^b f(t)dt\right)$ lorsque $I = \mathbb{R}$.

Par stabilité des inégalités larges :

$$\varphi\left(\frac{1}{b-a}\int_a^b f(t)dt\right) \le \frac{1}{b-a}\int_a^b \varphi \circ f(t)dt$$

2.2Comparaison de la méthode des rectangle avec celle des trapèzes.

Proposition 36: Erreur d'approximation avec la méthode des rectangles. *

Soit $f:[a,b]\to\mathbb{K}$ une fonction M-lipschitzienne, avec $M\in\mathbb{R}_+^*$.

Notons $R_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n})$, pour tout $n \in \mathbb{N}^*$. Ce nombre est une valeur approchée de l'intégrale de f entre a et b.

Voici une majoration de l'erreur : $\left| R_n(f) - \int_a^b f(t) dt \right| \le \frac{M(b-a)^2}{2n}$.

On a donc $\left| R_n(f) - \int_a^b f(t) dt \right| = O(\frac{1}{n}).$

Preuve:

On a:

$$\left| R_n(f) - \int_a^b f \right| = \left| \frac{b - a}{n} \sum_{k=0}^{n-1} f(a_k) - \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} f \right|
= \left| \sum_{k=0}^{n-1} \left(\frac{b - a}{n} f(a_k) - \int_{a_k}^{a_{k+1}} f(t) dt \right) \right|
= \left| \sum_{k=0}^{n-1} \left(\int_{a_k}^{a_{k+1}} f(a_k) dt - \int_{a_k}^{a_{k+1}} f(t) dt \right) \right|
= \left| \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} (f(a_k) - f(t)) dt \right|
\le \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} \left| f(a_k) - f(t) \right| dt$$

Pour k fixé, $\forall t \in [a_k, a_{k+1}], |f(a_k) - f(t)| \le M(t - a_k).$

Par croissance de l'intégrale :

$$\int_{a_k}^{a_{k+1}} \left| f(a_k) - f(t) \right| dt \le M \int_{a_k}^{a_{k+1}} (t - a_k) dt \le \frac{1}{2} M (a_{k+1} - a_k)^2 \le \frac{M}{2} (\frac{b - a}{2})^2$$

On somme:

$$\left| R_n(f) - \int_a^b f \right| \le \sum_{k=0}^{n-1} \frac{M}{2} \frac{(b-a)^2}{n^2} \le \frac{M(b-a)^2}{2n} = O(\frac{1}{n})$$

Proposition 37: Erreur d'approximation avec la méthode des trapèzes

Soit $f \in \mathcal{C}^2([a,b],\mathbb{K})$. Pour $n \in \mathbb{N}^*$, on définit $T_n(f)$ comme :

$$T_n(f) := R_n(f) + \frac{b-a}{n} \cdot \frac{f(b) - f(a)}{2}$$

Alors:

$$\left| T_n(f) - \int_a^b f(t) dt \right| = O\left(\frac{1}{n^2}\right)$$

Complément : continuité uniforme d'une fonction.

Définition 38: Uniforme continuité

Soit une fonction $f: I \to \mathbb{K}$. On dit que f est uniformément continue sur I si:

$$\forall \varepsilon > 0, \ \exists \eta > 0 \ \forall (x,y) \in I^2, \ |x-y| \le \eta \Longrightarrow |f(x) - f(y)| \le \varepsilon.$$

Proposition 39

Toute fonction lipschitzienne sur un intervalle I y est uniformément continue.

Preuve:

Soit $f: I \to \mathbb{K}$ on suppose qu'il existe K > 0 telle que $\forall x, y \in I^2, \ |f(x) - f(y)| \le K|x - y|$. Soit $\varepsilon > 0$, on pose $\eta = \frac{\varepsilon}{K}$. Soit $(x, y) \in I^2 \mid |x - y| \le \eta$ alors $f|(x) - f(y)| \le K|x - y| \le K\eta = \varepsilon$.

Théorème 40: de Heine 🖈

Toute fonction continue sur un segment y est uniformément continue.

Preuve:

Par l'absurde, soit $f: I \to \mathbb{K}$ continue sur [a, b] mais non uniformément continue.

$$\exists \varepsilon > 0, \ \forall \eta > 0 \ \exists (x,y) \in I^2, \ |x-y| \le \eta \ \text{et} \ |f(x) - f(y)| > \varepsilon$$

Soit un tel ε . Pour $n \in \mathbb{N}^*$, $\exists (x_n, y_n) \in I^2 | x_n - y_n | \leq \frac{1}{n}$ et $|f(x) - f(y)| > \varepsilon$. D'après le théorème de Bolzano-Weierstrass, puisque (x_n) et (y_n) sont bornées, on peut extraire deux suites convergences: $\exists \varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante $| x_{\varphi(n)}|$ converge vers $l \in \mathbb{R}$.

Pour $n \in \mathbb{N}$, $|y_{\varphi(n)} - l| = |y_{\varphi(n)} - x_{\varphi(n)} + x_{\varphi(n)} - l| \le |y_{\varphi(n)} - x_{\varphi(n)}| + |x_{\varphi(n)} - l|$ donc $y_{\varphi(n)} \to l$. On a $\forall n \in \mathbb{N}^*$, $|f(x_{\varphi(n)}) - f(y_{\varphi(n)})| > \varepsilon$ et f continue en $l \in [a, b]$ donc $f(x_{\varphi(n)}) \to f(l)$.

De même pour $f(y_{\varphi(n)}) \to f(l)$. Par passage à la limite, $|f(l) - f(l)| \ge \varepsilon$ et $\varepsilon \le 0$, absurde.