Data Structures and Algorithms

(ESO207)

Lecture 28:

- Heap: an important tree data structure
- Implementing some special binary tree using an array!
- Binary heap

Heap

Definition: a tree data structure where:

value stored in a node < value stored in each of its children.

Operations on a heap

Query Operations

Find-min: report the smallest key stored in the heap.

Update Operations

- CreateHeap(H) : Create an empty heap H.
- Insert(x,H): Insert a <u>new key</u> with value x into the heap H.
- Extract-min(H): delete the <u>smallest</u> key from H.
- Decrease-key(p, Δ , H): decrease the value of the key p by amount Δ .
- Merge(H1,H2): Merge two heaps H1 and H2.

Can we implement a binary tree using an array?

A complete binary of 12 nodes.

The label of the **leftmost node** at level $i = 2^i - 1$

The label of a **node v** at level *i*

The label of the **left** child of v is= $2^{i+1} - 1 + 2(k-1)$

The label of the **right** child of v is= $2^{i+1} + 2k - 2$

Let **v** be a node with label **j**.

```
Label of left child(v) = 2j+1

Label of right child(v) = 2j+2

Label of parent(v) = 1(j-1)/2
```

A complete binary tree and array

Question: What is the relation between a complete binary trees and an array?

Answer: A complete binary tree can be **implemented** by an array.

Binary heap

Binary heap

a complete binary tree satisfying heap property at each node.

Implementation of a Binary heap

n

then we keep

- H[]: an array of size n used for storing the binary heap.
- size : a variable for the total number of keys currently in the heap.

Find_min(H)

Report **H**[0].

Think hard on designing efficient algorithm for this operation.

The challenge is:

how to preserve the complete binary tree structure as well as the heap property?

We are done.

The no. of operations performed = O(no. of levels in binary heap)

 $= O(\log n)$...show it as an **homework exercise**.

14 21 29 71 41 52


```
Insert(x,H)
      i \leftarrow \text{size}(H);
      H(size) \leftarrow x;
      size(H) \leftarrow size(H) + 1;
                                               and H(i) < H([(i-1)/2]))
      While(
                       i > 0
             H(i) \leftrightarrow H(\lfloor (i-1)/2 \rfloor);
             i \leftarrow \lfloor (i-1)/2 \rfloor;
```

Time complexity: O(log n)

The remaining operations on Binary heap

- Decrease-key(p, Δ , H): decrease the value of the key p by amount Δ .
 - Similar to Insert(x,H).
 - $O(\log n)$ time
 - Do it as an exercise
- Merge(H1,H2): Merge two heaps H1 and H2.
 - O(n) time where n = total number of elements in H_1 and H_2 (This is because of the array implementation)

Other heaps

Fibonacci heap: a link based data structure.

	Binary heap	Fibonacci heap
Find-min(H)	O (1)	O (1)
Insert(x,H)	$O(\log n)$	O (1)
Extract-min(H)	$O(\log n)$	$O(\log n)$
Decrease-key(p , Δ , H)	$O(\log n)$	O (1)
Merge(H ₁ ,H ₂)	$\mathbf{O}(n)$	O (1)

Fibonacci Heaps are not part of this course. You can read about them by yourselves.

Building a Binary heap

Building a Binary heap

Problem: Given **n** elements $\{x_0, ..., x_{n-1}\}$, build a binary **heap H** storing them.

Trivial solution:

(Building the Binary heap incrementally)

```
CreateHeap(H);

For(i = 0 to n - 1)

Insert(x_i, H);
```


Building a Binary heap incrementally

Time complexity

Theorem: Time complexity of building a binary heap **incrementally** is $O(n \log n)$.

Building a Binary heap incrementally

The time complexity for inserting a leaf node = $O(\log n)$ # leaf nodes = $\lfloor n/2 \rfloor$,

 \rightarrow Theorem: Time complexity of building a binary heap incrementally is $O(n \log n)$.

Building a Binary heap incrementally

for each of the $\lfloor n/2 \rfloor$ leaves.