1/1 WPAT - ©Thomson Derwent - image

Accession Nbr:

1998-130611 [12]

Related Acc. Nbrs:

1998-111235

Sec. Acc. CPI:

C1998-043165

Title:

New catalysts for polymerisation of alkene - contain a cyclic organochromium-cyclo:penta:di:enyl complex and a Lewis acid, preferably methylaluminoxane

Derwent Classes:

A17 E11 E12

Patent Assignee:

(STUD) STUDIENGESELLSCHAFT KOHLE MBH

Inventor(s):

DOEHRING A; GOEHRE J; JOLLY PW; JONAS K; VERHOVNIK GPJ; WEBER JC

Nbr of Patents:

5

Nbr of Countries:

21

Patent Number:

図WO9804570 A1 19980205 DW1998-12 C07F-017/00 Ger 26p *

AP: 1997WO-EP03868 19970718

DSNW: CA JP US

DSRW: AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DE19710615 A1 19980917 DW1998-43 C08F-004/69

AP: 1997DE-1010615 19970314

☑EP-915896 A1 19990519 DW1999-24 C07F-017/00 Ger

FD: Based on WO9804570

AP: 1997EP-0936643 19970718; 1997WO-EP03868 19970718

DSR: AT BE CH DE DK ES FR GB IE IT LI LU NL SE

☑JP2000516649 W 20001212 DW2001-01 C08F-004/69 20p

FD: Based on WO9804570

AP: 1997WO-EP03868 19970718; 1998JP-0508449 19970718

THIS PAGE BLANK (USTIC,

🖾 US6255418 B1 20010703 DW2001-40 C08F-004/42

FD: Based on WO9804570

AP: 1997WO-EP03868 19970718; 1999US-0230326 19990122

Priority Details:

1997DE-1010615 19970314; 1996DE-1030580 19960730

IPC s:

C07F-011/00 C07F-017/00 C08F-004/42 C08F-004/69 C08F-010/00

Abstract:

WO9804570 A

Polymerisation catalysts, containing organo-chromium compound(s) of formula (I); (where R1 = delocalised eta 5-coordinated pi -system; X = electronegative atom, halogen, amide or organic group, or CrX2 = a metallocyclic fragment; Y = N, P, As, Sb or Bi; Z = C, Si, Ge, Sn or Pb; R', R'' = H, alkyl or organic; n = 1 or more).

Also claimed is a process for the polymerisation or copolymerisation of alpha -alkenes by the action of these catalysts on alpha -alkenes or mixtures of alpha -alkenes and unsaturated alkenes with strained double bonds, especially mixtures of ethylene and strained alkenes.

Preferably compounds (I) are combined with Lewis acids, especially MAO, with a mol ratio of Al:Cr = 40-500. The delocalised pi system in (I) is cyclopentadienyl or indenyl. Preferably, R1 = eta 5-C5H4, X = CH3, Y = P and Z = C.

USE - For (co)polymerisation of alkenes.

ADVANTAGE - Combinations of (I) with Lewis acids such as methylaluminoxane (MAO) provide catalysts with high activity for the production of highly linear polyethylene with a bimodal mol. wt. distribution, atactic polypropylene or copolymers of ethylene with norbornene etc.. (Dwg.0/2)

Manual Codes:

CPI: A02-A06E2 A02-A07A A04-G01A A06-D01 A12-W11K E05-B02 E05-G E05-H E05-J E05-L03A

Update Basic:

1998-12

Update Equivalents:

1998-43; 1999-24; 2001-01; 2001-40

Update Equivalents (Monthly):

2001-07

THIS PAGE BLANK (USPTO)

(19) BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift [®] DE 197 10 615 A 1

(5) Int. Cl.⁶: C 08 F 4/69 C 08 F 10/00

PATENTAMT

(7) Aktenzeichen: ② Anmeldetag:

197 10 615.3 14. 3.97

(3) Offenlegungstag:

17. 9.98

(71) Anmelder:

Studiengesellschaft Kohle mbH, 45481 Mülheim,

(74) Vertreter:

Patentanwälte von Kreisler, Selting, Werner et col., 50667 Köln

② Erfinder:

Döhring, Arno, 45470 Mülheim, DE; Göhre, Jan, 45470 Mülheim, DE; Weber, Jan Christoph, 45470 Mülheim, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

07 42 046 A2

Chemical Abstracts: Vol. 126, 1997, Ref. 251211; Vol. 126, No. 4, 1997, Ref. 47320q;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Organochrom-Verbindungen enthaltende Katalysatoren und ihre Verwendung in der Alkenpolymerisation

Neue Donorligand-substituierte η^5 -Organyl-Chrom-Komplexe, die in Mischung mit Lewis-Säuren wie Methylaluminoxan hochaktive Polymerisationskatalysatoren für α-Alkene und deren Gemische sowie für Mischungen aus α-Alkenen und ungesättigten Alkenen mit gespannter Doppelbindung bilden.

Beschreibung

Die Erfindung betrifft eine Klasse von Organochrom-Katalysatoren, die durch Reaktion von Donorligand-substituierten η^5 -Organyl-Chrom-Komplexen mit Lewis-Säuren gebildet werden, und die eine hohe katalytische Aktivität bei der Polymerisation und Copolymerisation von Alkenen aufweisen.

Es ist bekannt, daß Übergangsmetallverbindungen mit Amido-substituierten Cyclopentadienylliganden, vor allem mit Ti (z. B. IX), in Anwesenheit von Methylaluminoxan (MAO) die Alkenpolymerisation katalysieren [K.B. Sinclair und R.B. Wilson, Chem. Ind. 857 (1994); Dow Chemicals, Eur. Pat. 416,815 (1991); Exxon Chemicals, Eur. Pat. 420,436 (1991)], jedoch wurde über entsprechende Systeme mit einem Donorligand der 15. Gruppe (N, P, As, Sb, Bi) des Periodensystems als Substituent bisher noch nicht berichtet.

Es wurde nun überraschenderweise gefunden, daß Organochrom-Verbindungen der allgemeinen Formel (I) in Gegenwart von Lewis-Säuren wie Organylverbindungen des Bors oder Aluminiums, wie z. B. Methylaluminoxan, zur Polymerisation und Copolymerisation von Alkenen eingesetzt werden können,

Ι

wobei R^1 ein delokalisiertes η^5 -koordiniertes π -System wie Cyclopentadienyl, Indenyl, Fluorenyl enthält, wobei X ein elektronegatives Atom oder Gruppe, wie Halogenid oder Amid, oder eine Organylgruppe, wie Alkyl oder Aryl, oder CrX_2 ein metallacyclisches Fragment, wie

ist:

25

wobei Y ein Donoratom der 15. Gruppe (N, P, As, Sb, Bi) des Periodensystems ist, wobei Z ein Atom der 14. Gruppe (C, Si, Ge, Sn, Pb) des Periodensystems ist; wobei R' H, Alkyl- oder Organylgruppen ist, wobei R" H, Alkyl- oder Organylgruppen, ist, und n ≥ 1 ist.

Exemplarische Beispiele sind die Verbindungen (II)–(VIII); in Tabelle 1 sind die Substituenten R¹ R', R" sowie X, Y und Z definiert (Cy steht für cyclohexyl). Die Molekülstruktur der neuen Verbindung VI wurde röntgenographisch bestimmt und in **Abb.** 1 dargestellt.

45

50

55

60

Tabelle 1
Typische Organochrom-Verbindungen

Verbindung	X	Y	Z	n	R^1	R'	R''	
Nr.								
п	Cl	N	С	2	C ₅ Me ₄	Н	Me	40
Ш	C ₂ H ₄ ^{<u>a</u>}	N	С	2	C ₅ Me ₄	Н	Me	
IV	Cl	N	С	2	Indenyl	н	Me	45
V	I	N	C	2	C ₅ Me ₄	H	Me	
VI	Cl	P	С	2	C ₅ H ₄	Н	Cyclohexyl	50
VII	Me	P	С	2	C ₅ H ₄	Н	Cyclohexyl	
VIII	- Cl	N	Si	1	C ₅ H ₄	. Me	Et	55
1						ı	1	ł

$${}^{\underline{a}}CrCH_{\underline{2}}C_{\underline{2}}H_{\underline{4}}CH_{\underline{2}} = CrX_{\underline{2}}$$

Die Organochrom-Verbindungen werden in hoher Ausbeute durch Reaktion eines Cr-Trihalogenids mit einem Metallsalz des entsprechenden Donorligand-substituierten η^5 -Organyl-Derivates erhalten, z. B.

65

wobei die resultierenden Cr-Dihalogenid-Derivate als Ausgangsverbindungen für die Herstellung weiterer Beispiele eingesetzt werden können, z. B.

$$_{15}$$
 II + $_{Li}$ \longrightarrow III + 2 LiCl

10

20

Aktivierung dieser Verbindungen mit Lewis-Säuren führt zu hochaktiven Katalysatoren für die Alkenpolymerisation und -copolymerisation. Als Alkene werden α -Alkene bevorzugt, während bei der Copolymerisation mit gespannten Alkenen Ethen bevorzugt wird. Beispiele 8–13 befassen sich mit Ethen, Beispiele 14 und 15 mit Propen und Beispiel 16 mit der Copolymerisation. Die Reaktion kann in aromatischen Lösungsmitteln (Toluol) oder gesättigten Kohlenwasserstoffen (n-Heptan), bei Raumtemperatur (20–30°C) und geringen Drücken (2 bar) durchgeführt werden. Die volle katalytische Aktivität wird überraschenderweise bereits bei einem molaren Verhältnis Al : Cr von 45–300 : 1 erreicht. Im Vergleich dazu benötigten das System auf Ti-Basis IX und die Zr-haltigen ansa-Metallocene, z. B. X [M. Aulbach und F. Küber, Chem. unser. Zeit 28, 197 (1994)], Al : Metall-Verhältnisse von ca. 10^4 : 1.

Die neuen Cr-Verbindungen, besonders bevorzugt die Verbindung VII, katalysieren in Gegenwart von MAO die Polymerisation von Ethen zu hochlinearem Polyethylen, das eine bimodale Molekulargewichtsverteilung aufweist (Tabelle 3). Des weiteren lassen sich auch homologe Alkene wie Propen polymerisieren (ataktisches Polypropylen) sowie beispielsweise Ethen mit Norbornen copolymerisieren. Im letztgenannten Fall entsteht ein nahezu rein alternierendes Copolymer (XI), das laut ¹³C-NMR 43% Norbornen und 57% Ethen enthält und am bicyclischen Ring ausschließlich exokonfiguriert ist.

ΧI

Beispiele

Beispiel 1

Darstellung von $(Me_2NC_2H_4C_5Me_4)CrCl_2$ (II)

Me₂NC₂H₄C₅Me₄Li (1.25 g, 6.3 mmol) in THF (20 ml) wurde bei Raumtemperatur unter Rühren zu einer Lösung von Cr(THF)₃Cl₃ (2.36 g, 6.3 mmol) in THF (50 ml) getropft. Die entstandene blaue Lösung wurde weitere 15 h gerührt und anschließend im Vakuum zur Trockene eingeengt. Der Rückstand wurde mit siedendem Toluol extrahiert. Aus dem Extrakt fiel das Produkt bei –70°C in Form dunkelblauer Nadeln aus. Ausbeute: 1.70 g (86% der Theorie). Analytische Daten: ber. für C₁₃H₂₂Cl₂CrN: C 49.5, H 7.0, Cr 16.5, Cl 22.5, N 4.4 %; gef. C 49.5, H 6.9, Cr 16.5, Cl 22.6, N 4.4%. MS (100°C): m/e 314 (6%, M+), 278 (10%).

10

15

25

30

40

45

50

55

60

Beispiel 2

Darstellung von $(Me_2NC_2H_4C_5Me_4)CrCH_2C_2H_4CH_2$ (III)

Zu einer Lösung von IV (1.43 g, 4.5 mmol) in THF (50 ml) wurde bei –20°C in Diethylether gelöstes 1,4-Dilithiumbutan (16.0 ml einer 0.32 molaren Lsg., 5.1 mmol), mit THF (20 ml) verdünnt, getropft. Das Reaktionsgemisch wurde 15 h bei –10°C gerührt und die entstandene grüne Lösung im Vakuum zur Trockene eingeengt. Der Rückstand wurde bei 0°C mit Pentan extrahiert. Aus dem auf 20 ml eingeengten Extrakt fiel das Produkt bei –70°C in Form dunkelgrüner Nadeln aus. Ausbeute: 1.04 g (77% der Theorie). Die Verbindung ist bei Raumtemperatur stabil. Analytische Daten.: ber. für C₁₇H₃₀CrN: C 68.0, H 10.1, Cr 17.3, N 4.7%; gef.: C 67.9, H 10.0, Cr 17.4, N 4.6%. MS (50°C): m/e 272 (21%), M*-C₂H₄), 244 (100%).

Beispiel 3

Darstellung von (1-Me₂NC₂H₄indenyl)CrCl₂ (IV)

 $1\text{-Me}_2\text{NC}_2\text{H}_4\text{indenylK}$ (3.88 g, 17.2 mmol) in THF (50 ml) wurde bei Raumtemperatur unter Rühren zu einer Lösung von Cr(THF) $_3\text{Cl}_3$ (6.45 g, 17.1 mmol) in THF (100 ml) getropft. Die entstandene grünblaue Lösung wurde weitere 17 h gerührt und anschließend im Vakuum zur Trockene eingeengt. Der Rückstand wurde mit siedendem Toluol extrahiert. Aus dem Extrakt fiel das Produkt bei -70°C in Form dunkelgrüner Nadeln aus. Ausbeute: 3.86 g (73% der Theorie). Analytische Daten: ber. für C $_{13}\text{H}_{16}\text{Cl}_2\text{CrN}$: C 50.5, H 5.3, Cr 16.8, Cl 22.9, N 4.5 %; gef. C 50.6, H 5.3, Cr 16.7, Cl 22.9, N 4.5%. MS (100°C): m/e 308 (10%, M⁺), 122 (9%).

Beispiel 4

$Darstellung \ von \ (Me_2NC_2H_4C_5Me_4)Crl_2 \quad (V)$

 $(Me_2NC_2H_4C_5Me_4)CrCl_2$ (II, 1.23 g, 3.9 mmol) in THF (100 ml) wurde bei 45°C mit KI (3.1 g, 18.7 mmol) 72 h gerührt. Die Lösung wurde eingeengt und die Verbindung aus Heptan/Toluol (1:9) umkristallisiert. Aus dem Extrakt fiel das Produkt in Form hellblauer Nadeln aus. Ausbeute: 1.52 g (83% der Theorie). Analytische Daten: ber. für $C_{13}H_{22}CrI_2N$: C 31.4, H 4.5, Cr 10.9, I 51.0, N 2.8%; gef. C 30.9, H 4.8, Cr 11.6, I 49.1, N 3.2%. MS (100°C): m/e 498 (M⁺), 371 (M⁺-1).

Beispiel 5

Darstellung von $(Cy_2PC_2H_4C_5H_4)CrCl_2$ (VI)

Zu einer Lösung von Cr(THF)₃ Cl₃ (2.6 g, 6.7 mmol) in THF (50 ml) wurden LiPCy₂C₂H₄C₅H₄ (2.8 g 6.7 mmol) in THF (20 ml) bei Raumtemperaturgegeben und 5 min gerührt. Die entstandene blaue Lösung wurde eingeengt und aus siedendem Aceton umkristallisiert. Ausbeute: Blaue Nadeln, 82% der Theorie. Analytische Daten: ber. C 55.4, H 7.3, Cl 17.2, Cr 12.6, P 7.5, gef. C 55.2, H 7.3, Cl 17.1, Cr 12.7, P 7.7, Kristallstruktur: Abb. 1

Beispiel 6

Darstellung von $(Cy_2PC_2H_4C_5H_4)CrMe_2$ (VII)

Zu einer Lösung von (Cy₂PC₂H₄C₅H₄)CrCl₂ (VI, 1.1 g, 2.6 mmol) in THF (50 ml) wurden bei –20°C Methyllithium (5.2 mmol in Diethylether) in THF (20 ml) verdünnt innerhalb von 2 h zugetropft. Anschließend wurde das Reaktionsgemisch 15 h bei –10°C gerührt. Dabei verfärbte sich die Lösung von violett nach Dunkelgrün. Nach Entfernen aller flüchtigen Bestandteile bei –10°C wurde der Rückstand bei –30°C mit Pentan extrahiert. Aus dem Extrakt fiel die Verbindung bei –30 °C in Form dunkelgrüner Nadeln aus. Ausbeute: 40% der Theorie. Analytische Daten: MS (EI, 70eV): 371 (M*), 338.

Beispiel 7

Darstellung von (Et₂NSiMe₂C₅H₄) CrCl₂ (VIII)

Eine Lösung von LiEt₂NSiMe₂C₅H₄ (3.5 g 17.2 mmol) in Toluol (50 ml) wurde bei 20°C zu einer Suspension von Cr(THF)₃Cl₃ (6.6 g 17.5 mmol) in THF (100 ml) gegeben, wobei eine tießblaue Lösung entstand. Nach 2 h Rühren wurde das Lösungsmittel abkondensiert und der ölige Rückstand mit Pentan (200 ml) extrahiert. Die Verbindung fiel in Form schwarzer Kristalle aus. Ausbeute: 3.1 g (56% der Theorie).

Analytische Daten: Kristallstruktur: die Verbindung ist dimer.

Katalytische Alkenpolymerisation

Im folgenden werden Beispiele für die Polymerisation von Ethen (8–13), von Propen (14, 15) und für die Copolymerisation von Ethen mit Norbornen (16) aufgeführt. Für die Versuche 8–10, 12, 13 wurde ein Glasautoklav, ausgestattet mit einem Glasflügelrührer, bei einer Rührerdrehzahl von 1200 U/min verwendet. Der Versuch 4 wurde bei ca. 50 bar in einem Stahlautoklaven durchgeführt, der ebenfalls einen Flügelrührer besaß. Für die Versuche 14–16 wurde ein einfacher Stahlautoklav mit Magnetrührkern eingesetzt.

Die Ethenpolymerisation

Beispiele 8–13

20

30

35

45

55

60

65

Die Reaktionsbedingungen sind in Tabelle 2 zusammengefaßt, und die physikalischen Eigenschaften des erhaltenen Polyethylens sind in Tabelle 3 aufgeführt. Bemerkenswert ist die hohe Aktivität der Cr-Katalysatoren, das geringe MAO: Cr-Verhältnis und die hohe Linearität des Polyethylens.

Die Propenpolymerisation

Beispiel 14

Katalysator, $(Me_2NC_2H_4C_5Me_4)CrCl_2$ (II), 0.0033 mmol; Cokatalysator, MAO; Al : Cr, 100 : 1; Lösungsmittel, Toluol; Temp., 23/33°C; t, 60 min; p, 9 bar; Polymer, 2.91 g; TON/h, 20.996; katalytische Aktivität [kg PP/mol Cr · h], 882.

Beispiel 15

 $Katalysator,\ (Me_2NC_2H_4C_5Me_4)CrCl_2\ (II),\ 0.0031\ mmol;\ Cokatalysator,\ MAO;\ Al:Cr,\ 100:1;\ L\"{o}sungsmittel,\ n-Heptan;\ Temp.,\ 23/35°C;\ t,\ 60\ min;\ p,\ 9\ bar;\ Polymer,\ 4.53\ g;\ TON/h\ 34.793;\ katalytische\ Aktivität\ [kg\ PP/mol\ Cr\cdot h],\ 1.461$

In beiden Fällen entsteht ein viskoses Polymer, das in Diethylether und Chloroform vollständig löslich ist. Das ¹³CNMR-Spektrum bestätigt die ataktische Konformation des Polypropylens.

Beispiel 16

Die Copolymerisation von Ethen mit Norbornen

Katalysator, (Me₂NC₂H₄C₅Me₄)CrCH₂C₂H₄CH₂ (III)

50 0.0017 mmol); Cokatalysator MAO; Al: Cr = 2000: 1; Temp., 40–80°C; τ, 12 min, p, 21 bar (C₂H₄); Polymer: 44.6 g; katalytische Aktivität [kg Polymer/mol Cr·h], 131. 177. Anhand der Signalintensitäten im ¹³C-NMR- Spektrum (1,2,4-Trichlorbenzol/CHD₂CHD₂, 395 K) zeigt sich, daß ein alternierendes Polymer gebildet wurde, das 43% Norbornen und 57% Ethen enthält. Glastemperatur: 131°C.

Tabelle 2 Die Cr-katalysierte Ethenpolymerisation

Beispiele	. 8	9	10	11	12	13
Cr-Verbindung	П	Ш	IV	V	VII	۷Ш
Lösungsmittel	Toluol	Toluol	Toluol	Toluol	Toluol	Toluol
Temp. (°C)	25-33	25-41	28-42	19-67	27-69	26-29
p (bar)	2	2	2	50-44	2	2
t (min)	18	7	13	60	7	47
Polyethylen (g)	5.2	5.8	18.8	4.4	25.6	12.2
TON/h	206.349	538.033	416.552	43.221	700.037	11.678
Aktivität	5.778	15.065	11.718	1.212	19.763	328
(kg PE/mol [Cr]·h)						

Cokatalysator MAO, Lösungsmittel Toluol, Al: Cr = 100:1

Tabelle 3 Physikalische Eigenschaften des Polyethylens

			<u> </u>		
Beispiel	Krist. (%)	T _m (°C)	Struktur	$M_{\rm w}$	M_w/M_n
8	71	127	linear	2.9 x 10 ⁵	5.0
9	66	126	linear	2.2 x 10 ⁵	3.9
10	74	_	linear	-	-

Patentansprüche

1. Polymerisationskatalysator, enthaltend mindestens eine Organochrom-Verbindung der allgemeinen Formel I

1

 R^1 ein delokalisiertes η^5 -koordiniertes π -System enthält,

X ein elektronegatives Atom, Halogen, Amid, Organylgruppen oder CrX2 ein metallacyclisches Fragment,

Y ein Donoratom der 15. Gruppe (N, P, As, Sb, Bi) des Periodensystems, Z ein Allen der 14. Gruppe (C, Si, Ge, Sn, Pb) des Periodensystems;

R' H, Alkyl- oder Organylgruppen,

R" H, Alkyl- oder Organylgruppen,

und $n \ge 1$ ist,

ausgenommen Organochromverbindungen, in denen gleichzeitig

10

15

20

25

30

40

35

45

50

55

60

R1 = Cyclopentadienyl oder = Indenyl und Y = Nund Z = C5 und R' = Hund R'' = Methyl10 $X = Cl \text{ oder } CrX_2 = CrCH_2C_2H_4CH_2$ 15 und n = 2 sind. 2. Polymerisationskatalysator nach Anspruch 1, wobei die Organochromverbindungen mit Lewis-Säuren gemischt 3. Polymerisationskatalysator nach Anspruch 2, wobei die Lewis-Säure Methylaluminoxan ist. 4. Polymerisationskatalysator nach Anspruch 1, wobei das Molverhältnis von Al: Cr im Katalysator zwischen 20 5. Polymerisationskatalysator nach Ansprüchen 1–4, wobei das delokalisierte η^5 -koordiniertes π -System Cyclopentadienyl oder Indenyl ist. 6. Polymerisationskatalysator nach Anspruch 1, wobei $R^1 = \eta^5 - C_5 H_4$, $X = CH_3$, Y = P und Z = C ist. 7. Verfahren zur Polymerisation von α-Alkenen durch Einwirken eines Polymerisationskatalysators nach einem 25 oder mehreren der Ansprüche 1-6 auf α-Alkene. 8. Verfahren zur Copolymerisation von Alkenen durch Einwirken eines Polymerisationskatalysators nach einem oder mehreren der Ansprüche 1-6 auf eine Mischung von Alkenen und ungesättigten Alkenen mit gespannter Doppelbindung. 30 9. Verfahren nach Anspruch 8, wobei der Polymerisationskatalysator auf eine Mischung von Ethylen und ein Alken mit gespannter Doppelbindung einwirkt. Hierzu 1 Seite(n) Zeichnungen 35 40 45 50 55

60

- Leerseite -

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 197 10 615 A1 C 08 F 4/69**17. September 1998

Abbildung 1

2549.CDR