水厂监控系统无线 GPRS 应用解决方案

在市政给排水系统中,很多必须无人值守的设备或监测点,不适合搭建有线通讯网络。若 采用光纤或电台的方式实现无线通讯,不仅设备投入耗资巨大,而且不适应移动的需要。

随着新一代 GPRS 移动通讯业务的产生和全面投入,无线移动数据通讯的应用也越来越广泛。高速的数据传输和永远在线特点,配合按流量收费的资费方式,使 GPRS 通讯在工业控制、环境保护、道路交通、商务金融、移动办公、零售服务等行业中的应用具有无可比拟的性价比优势。采用 GPRS 无线通讯网络的移动 IP 通讯,既可独立作为数传通道,也可作为已经架设光纤、数传电台等方式的辅助手段。

保持现有设备系统中的各终端由工业 PLC 执行实时控制,循环检测各设备运行状态并向上位机发送设备运行状态信息。以 GPRS 通讯方式来代替将上位机与 PLC 之间的通讯。

GPRS 技术概述:

GPRS 是通用分组无线业务(General Packet Radio Service)的英文简称 是在现有 GSM 系统上发展出来的一种新的承载业务,目的是为 GSM 用户提供分组形式的数据业务。

GPRS 采用与 GSM 同样的无线调制标准、同样的频带、同样的突发结构、同样的跳频规则以及同样的 TDMA 帧结构。这种新的分组数据信道与当前的电路交换的话音业务信道极其相似,因此现有的基站子系统(BSS)从一开始就可提供全面的 GPRS 覆盖。GPRS 允许用户在端到端分组转移模式下发送和接收数据,而不需要利用电路交换模式的网络资源。从而提供了一种高效、低成本的无线分组数据业务。特别适用于间断的、突发性的和频繁的、少量的数据传输,也适用于偶尔的大数据量传输。

GPRS 网络特性:

1. 分组交换

分组交换的基本过程是把数据先分成若干个小的数据包,可通过不同的路由,以存储转发的接力方式传送到目的端,而组装成完整的数据。分组交换基本上不是实时系统,延时也不固定,但可以使不同的数据传输"共用"传输带宽:有数据时占用带宽,无数据时不占用,从而分享资源。同时分组交换可以提供灵活的差错控制和流量控制,主要是在端到端的高层进行,以减少中间网络低层环节不必要的开销;也可以在网络部分环节上增加控制,提高安全性。另外通过设置服务等级 QoS 等手段,可以有效的控制和分配延时、带宽等性能,所以分组交换非常适用于数据应用。

2. 频谱效率

在 GSM 无线系统中,无线信道资源非常宝贵。如采用电路交换,通信需要建立端到端的连接,在通信过程中要独占信道,每条 GSM 信道只能提供 9.6kb/s 或 14.4kb/s 传输速率。如果多个组合在一起(最多 8 个时隙),虽可提供更高的速率,但只能被一个用户独占,在成本效率上显然缺乏可行性。而采用分组交换的 GPRS 则可灵活运用无线信道,每一个用户可以有多个无线信道,而同一信道又可以由几个用户共享,从而极大地提高了无线资源的利用率。在理论上,GPRS 可以将最多 8 个时隙组合在一起,给用户提供高达 171.2kb/s的带宽,从 14.4k~171k,足足比以前超出了 10 倍的传输速度,保证了更大数据的传输,更快的因特网接入。由于 GPRS 用户的数据通信费是以数据量为基础,而不考虑通信时长,所以 GPRS 用于 IP 业务的接入将更为用户所接受。GPRS 最大的特点就是"永远在线"。人

们可以随时获得即时的更新结果,只要移动设备打开,会处于一直接收数据的待机状态,这使它成为理想的数据传输方法。从无线系统本身的特点来看,GPRS 使 GSM 系统实现无线数据业务的能力产生了本质的飞跃。

3. Internet识别

典型的互联网连接是:用户通过拨号接入某一 ISP,通过 ISP 的网络访问互联网。因此用户需要付拨号电话费和网络使用费两部分费用,而 GSM 做无线接入时付无线网络电话费。如果通过 GPRS 接入互联网则有很大的不同,因为 GPRS 是无线分组数据系统,只要用户一打开 GPRS 终端,就已经附着到 GPRS 网络上,GPRS 通过允许现存的 Internet 和新的 GPRS 网络的互通首次完全实现了移动 Internet 功能。也就是用户通过 GPRS 系统的网关 GGSN 连接到互联网,GGSN 还提供相应的动态地址分配、路由、名称解析、安全和计费等互联网功能。目前任何一种在固定 Internet 上的业务(如文件传输协议(FTP)、网页浏览、交谈、信函、遥信)通过利用 GPRS 将同样能在移动网络上实现。所以,移动业务运营商同时也是互联网业务的提供商。

GPRS 网络数据包的收发:

终端设备通过串行方式接到 GPRS Modem 上,GPRS Modem 与 GSM 基站通信,但与电路交换或数据呼叫不同,GPRS 数据分组是从基站发送到 SGSN 节点,而不是通过移动交换中心 MSC 连接到语音网络上。SGSN 与网关支持节点 GGSN 进行通信,GGSN 对分组数据进行相应的处理,再发送到目的网络,如 Internet 或 X.25 网络,(参见图示)来自 Internet、标识有移动台地址的 IP 包,由 GGSN 接收,再转发到 SGSN,继而传送到移动台上。

GPRS网络结构图

缩写	注解
GGSN	GPRS 支持节点网关
SGSN	GPRS 服务支持节点
PCU	分组控制单元
PDN	分组数据网络
BTS	基站收发信系统
BSC	基站控制器
BSS	基站子系统

MSC	移动交换中心
MS	移动站
HLR	本地位置寄存器
VLR	访问位置寄存器

ETPro++ GPRS IP Modem 内置西门子公司的 MC35 模块,以及 IP 模块。产品工作时,用户上位系统向 ETPro++发送工作指令和数据时,数据经由 IP 模块进行 TCP/IP 协议转换,打成 IP 数据包,再由 MC35 模块以 GPRS 数据包的形式发送到 SGSN。

IP 模块的存在,使用户可在缺少 TCP/IP 协议栈功能的设备(如单片机)下进行 PPP、FTP、TelNet、Direct Socket、SerialNet、E-Mail 等方式的数据传输,充分发挥 GPRS 模块的数据通讯功能

由于 GPRS 网络工作方式是以 IP 地址寻址为基础的 ,所以目标服务器端并非接入 ETPro++ 与终端设备进行连接,只需要简单接入 Internet ,并具备公网分配的 IP 地址即可。同时,因为 GPRS 终端产品本身由网络提供商动态地分配 IP 地址,在未进入连接待机状态时,其本身是不具备 IP 地址的(在连接中,模块的 IP 地址为移动骨干网内局域网 IP,无法被公网服务器解析,动态分配的制度使获取此 IP 地址无意义)。因此在服务器与终端尚未建立连接前,目标服务器难以(可将短信转换为命令内容)对终端设备及 ETPro++进行控制。必须先将 ETPro++产品进行相应初始化,并由设备终端主动向服务器发送数据,进行连接。当连接通道建立以后,服务器和终端设备可以双工地进行数据传输。

在 SerialNet、Direct Socket 等实时数据传输工作模式下,每个连接都是以端口为单位,挂接了 ETPro++的终端设备,都可以单独占用服务器提供的一个端口服务。把一个服务器作为中心点,能一对多地进行数据中转和控制。

水厂监控中应用解决方案:

以一般市政水厂监控为例,监控的参数有:流量、水池液位、供水压力、余氯、浊度、提升泵供水泵加药泵污水泵的电流及状态。可以对检测参数在相应画面和报表中显示出来,并根据需要对数据进行诸如最大值、最小值、平均值、累加值、定时值等的计算处理,并分类进行存储,接受各种形式的查询功能。根据预先设置的报警限值,在实测值超限时发出报警信息,以便及时采取措施。

典型市政水厂工艺流程

在泵站处加装工业PLC,采集所有子系统数据并进行整合处理。PCL串口挂接ETPro++,负责数据的统一收发。中心点服务器处挂接ETPro++,以确保在其它传输方式失效情况下的GPRS传输,而不依赖于有线网络。

1. 系统电控方案图

2. 网络拓扑结构

- 1. TCP/IP 端口资源为 0~65535
- 2. ◆ 表示虚拟透明传输通道
- 3. ◆ → 表示有线串口通道 (RS232/RS485/TTL)
- 4. ——— 表示 *LAN* 网络连接

3.服务器

服务器及备用服务器由工控机和网关组成 LAN 局域网 接入 Internet 以作为 PLC 的上位机,采用组态软件充当人机界面。根据工艺要求预置几套工艺流程,用户可根据实际需要加以选择设备运行状况、仪表检测参数可显示在显示器上,显示方式多样,有指示灯状态显示、虚拟仪表数码显示、光棒图模拟显示、动态曲线跟踪、历史曲线查询、形象动画显示等。人机界面友好,操作方便,关键控制点密码保护,系统安全可靠。计算机参与设备管理,累计设备运行时间,计算电能消耗。并可根据事先设定的监控范围、对流量、液位、PH 值等指标进行监控,一旦超出设定范围,计算机立即启动声光报警,并将这一时刻的有关数据、工况记录下来,以供分析、决策。计算机所测数据可按一定时间间隔记录在硬盘上,用户可根据需要随时将有关数据打印出来。

一旦现场其它传输方式失效,可由设备终端的 ETPro++对服务器端的 ETPro++内置卡号发起呼叫,进行远程唤醒。服务器端 ETPro++根据预设的 IP Registration 程序,将自身 IP 地址发给客户端并进行端口侦听,接受远程客户端的 Socket 连接。此时,服务器端数据流会变为流向串口,可采用串口转 RJ45 的模块来保持软件应用层配置不变。

4. 可编程控制器PLC

可编程控制器 PLC 接受上微机程控指令,执行实时控制,循环检测各设备运行状态,及时向上微机发送设备运行状态信息。各仪表间采用模拟隔离,以减少相互干涉,提高系统精度。 PLC 通过串口和泵站相联。

所需二次开发

1. 软件底层通讯收发、中转部件

以西门子PLC所采用的组态软件为例,用户原有的人机界面、处理程序无需太大改动。可以用简单的 Socket编程并加上相应转发控制功能,来代替原有的有线Modem拔号通讯部件。

2. 模块在线数据监测程序及远程复位

在电路交换数据环境中,连接是端到端的,所以用户能够知道连接是否完成,以及数据传递的情况,但在GPRS环境中,附属于GPRS承载体的终端是"永远在线"的,它在任何时候都准备透明地(相对于用户而言)传送或接收数据,这样一来,检查数据包是否发送成功的任务就落到了用户头上。鉴于可能出现的无线网络堵塞、模块断电等突发情况,用户可根据需要设置相应的传递确认机制。例如,挂接ETPro++的终端定时向中心点发送"呼叫",中心点收到后返回给该终端"回复",以确定模块传输是否正常。ETPro++提供强制复位管脚,用户可提取该管脚,在模块不能正常工作时进行远程复位。

同时,需要预设在其它通讯方式失效情况下,实时切换到GPRS通讯的切换条件。

3. 模块的初始化

客户端的模块所需要的初始化信息包括:远程服务器IP地址及端口号(用于连接远程服务器),定时休眠时间/定时上线时间(用于定时更新服务器最新侦听的套接字),服务器端模块内置号码(用于远程唤醒服务器端模块),缓冲触发条件(保证数据包格式统一)。

服务器端模块所需要的初始化信息主要是: IP Registration (用于在被唤醒时报告自身IP地址及相关信息)。