NOÇÕES DE PROPOSIÇÕES SIMPLES E COMPOSTAS

ARISTÓTE

Quando falamos de lógica, não podemos deixar de falar sobre Aristóteles (século IV a.C. 384 – 322 a.C.): filósofo grego e grande pensador, conhecido como o pai do pensamento lógico e o criador da lógica.

Para Aristóteles, a lógica era uma ferramenta importante presente em todas as ciências. Além disso, ele defendia a ideia de que, partindo de conhecimentos considerados verdadeiros, era possível obter novos conhecimentos. Ele formulou regras de encadeamento de raciocínios que, a partir de premissas verdadeiras, levavam a conclusões verdadeiras.

Suas obras sobre lógica foram reunidas e publicadas no século II. Uma obra muito importante em que Aristóteles estruturou todo o seu trabalho, chamada de **Organon** ("ferramenta para o correto pensar"), apresenta princípios importantes que são válidos até os dias atuais. A lógica de Aristóteles era baseada em argumentações válidas (Teoria do Silogismo).

Veja um exemplo clássico de silogismo muito conhecido:

Todo homem é mortal. Sócrates é homem. Logo, Sócrates é mortal.

Ao longo da história, a lógica de Aristóteles evoluiu graças às inúmeras contribuições dos matemáticos que notaram que a lógica apresentada por ele não era suficiente para se trabalhar com o rigor matemático. Ela poderia ser imprecisa, pois fazia uso basicamente da linguagem natural.

As contribuições dos matemáticos, portanto, foram muito importantes.

responsáveis pelo surgimento da lógica matemática a partir da introdução de uma notação matemática mais precisa.

Boole e Augustus De Morgan (1806-1871) tornaram a lógica matemática uma forte ferramenta para a programação de computadores.

Giuseppe Peano (1858-1932), por sua vez, elaborou uma notação matemática mais simples, que usamos até os dias atuais.

Outro nome importante é Bertrand Russell (1872-1920), um dos fundadores da "Filosofia Analítica", que, além de usar a lógica para esclarecer questões relacionadas aos fundamentos da matemática, também a utilizava para esclarecer questões filosóficas.

Podemos citar, também, as contribuições de Friedrich Ludwig G. Frege (1848-1925) e de Gottfried Wilhelm Von Leibniz (1646-1716).

LINGUAGEM NATURAL E LINGUAGEM SIMBÓLICA

A linguagem, segundo o dicionário Aurélio, pode ser compreendida como sendo um sistema de símbolos ou sinais que permite a transmissão da informação. Dessa forma, temos a linguagem escrita formada por um conjunto de símbolos, que são as letras do alfabeto, os sinais de pontuação, acentos etc. Ela é dotada de regras para juntar esses símbolos e assim formar palavras e frases, sentenças ou enunciados.

É comum chamar a linguagem escrita de **linguagem natural** já que esta faz parte do nosso cotidiano. Aprenderemos, porém, a transformar essa linguagem natural ou corrente em uma linguagem simbólica. Isso ocorre quando conhecemos os símbolos lógicos.

Proposições

Definição

Proposições são sentenças ou enunciados declarativos que exprimem um pensamento de sentido completo. Logo, não consideramos como proposição as sentenças exclamativas (Feliz Natal!), interrogativas (Qual é o seu nome?) ou imperativas (Estude, agora!).

Exemplo

- Carlos é estudioso.
 - b. O número 49 é um quadrado perfeito.
 - c. Fomos ao teatro ontem.
 - d. 2 < 5.

Note que, nesses exemplos, estamos declarando algo que pode ser considerado verdadeiro ou falso.

Classificação das proposições

As proposições podem ser classificadas em simples ou compostas. Clique nas barras para ver as informações.

PROPOSIÇÕES SIMPLES (OU ATÔMICAS)

As proposições simples são formadas apenas por sujeito e predicado. Em geral, usamos as letras minúsculas do alfabeto latino **p**, **q**, **r**, **s** etc. para designá-las.

Exemplos

- p: João é inteligente.
- **q**: Fomos ao teatro ontem.
- r: O quadrado é um polígono regular.

PROPOSIÇÕES COMPOSTAS (OU MOLECULARES)

As proposições compostas são formadas por duas ou mais proposições simples. Em geral, são designadas por letras maiúsculas do alfabeto latino **P, Q, R, S** etc.

Exemplos

- P: Maria é bonita e Pedro é estudioso.
- Q: Maria é professora ou médica.
- R: O número 5 é ímpar e o número 25 é um guadrado perfeito.

Valor lógico de uma proposição

Uma proposição pode ser verdadeira ou falsa. Usamos (F) quando a proposição é falsa ou (V) quando ela é verdadeira.

Exemplos

Sejam p e q duas proposições.

- p: O número 5 é ímpar.
- q: O número 15 é um quadrado perfeito

Com relação ao valor lógico dessas proposições, podemos usar a seguinte notação:

- V(p) = V significa que o valor lógico da proposição p é verdadeiro.
- V(q) = F significa que o valor lógico da proposição q é falso.

PRINCÍPIOS IMPORTANTES DA LÓGICA MATEMÁTICA

A lógica matemática é regida por três princípios:

Princípio do 3° excluído

Uma proposição pode ser caracterizada em lógica como "verdadeira" ou "falsa". Ou seja, não é possível uma terceira caracterização lógica.

Princípio da não contradição

Uma proposição não pode ser simultaneamente verdadeira e falsa.

Princípio da identidade

Esse princípio diz que uma proposição ou enunciado é igual a si mesmo.

CONECTIVOS OU JUNTORES

Podemos realizar operações sobre as proposições utilizando elementos conhecidos na lógica como conectivos ou juntores.

Os **conectivos** são símbolos lógicos com os quais efetuamos as operações lógicas obedecendo regras do cálculo proposicional.
Eles são importantes, pois novas proposições podem ser formadas a partir de outras proposições com sua utilização.
Além disso, com os conectivos, passamos uma proposição da linguagem natura para a linguagem simbólica.

Vejamos alguns exemplos:

Vamos considerar duas proposições simples p e q.

- p: Maria é alta.
- q: Maria é elegante.

Usando os conectivos, podemos formar outras proposições a partir das proposições p e q.

- P: Maria é alta **e** elegante.
- **Q**: Maria é alta **ou** elegante.
- R: Se Maria é alta, então é elegante.
- **T**: Maria é alta **se**, **e somente se** é elegante.

Veja que, na linguagem natural, as palavras utilizadas são, por exemplo: **e, ou, se, então, se e somente se**.

Representamos essas palavras através de símbolos lógicos com os quais efetuamos as chamadas operações lógicas. Agora, vamos conhecer os conectivos lógicos e as operações realizadas sobre as proposições

Conjunção

Linguagem corrente: "e", "mas", "além disso", "também".

Notação: ∧

- Essa notação é usada entre duas proposições: p ∧ q
- Como se ler: p e q

Exemplo

Sejam as proposições:

- p: Paulo é trabalhador.
- q: Paulo é estudioso.

Usando o conectivo "e", podemos formar outra proposição:

p ∧ q: Paulo é trabalhador e Paulo é estudioso.

Podemos dizer simplesmente: Paulo é trabalhador e estudioso.

Disjunção

Linguagem corrente: "ou".

- Notação: ∨
- Essa notação é usada entre duas proposições: p v q.
- Como se ler: p ou q

Exemplo

Sejam as proposições:

- p: Paulo ganhou um carro.
- q: Paulo ganhou um apartamento.

Usando o conectivo "ou", podemos formar outra proposição:

p ∨ q: Paulo ganhou um carro ou Paulo ganhou um apartamento.

Podemos dizer simplesmente: Paulo ganhou um carro ou ganhou um apartamento.

Com relação à disjunção, ela pode ser:

- Disjunção inclusiva, cujo símbolo é V
- Disjunção **exclusiva**, cujo símbolo é ⊻

Veja, a seguir, exemplos desses tipos de disjunção:

Disjunção inclusiva

• P: Ana é professora ou médica.

Nesse caso, Ana pode ser professora e também médica, sem problema algum.

Disjunção exclusiva

• P: Ou Ana é paulista, ou é gaúcha.

Nesse caso, Ana não pode ser paulista e gaúcha ao mesmo tempo. Ou seja, se Ana é paulista, então excluímos a possibilidade de Ana ser gaúcha e vice-versa.

Condicional

Linguagem corrente: "Se... então"

- Notação: →
- Essa notação é usada da seguinte forma: **Se** p **então** q.

Exemplo

- p: Paulo é aprovado em cálculo.
- q: Paulo ganha um prêmio.

Usando o conectivo "se... então", podemos formar outra proposição:

p → q: Se Paulo é aprovado em cálculo, então ganha um prêmio.

Podemos dizer simplesmente: **Se** Paulo é aprovado em cálculo, **então** ganha um prêmio.

Veja a relação entre p e q na proposição condicional a seguir :

- p é condição suficiente para q.
- q é condição necessária para p.

Bicondicional

Linguagem corrente: "... Se e somente se...".

- Notação: ↔
- Essa notação é usada da seguinte forma: p se e somente se q.

Exemplo

- p: Carlos é trabalhador.
- q: Carlos é estudioso.

Usando o conectivo "se e somente se", podemos formar outra proposição:

• $p \leftrightarrow q$: Carlos é trabalhador se, e somente se Carlos é estudioso.

Observação sobre a bicondicional

- p é condição necessária e suficiente para q.
- q é condição necessária e suficiente para p.

Negação

Linguagem corrente: "não", "é falso que", "não é o caso que", "não é verdade que".

• Notação: ~ (til) ou ¬ (chamada de cantoneira)

Essa notação é usada na frente da letra que usamos para designar a proposição, para negá-la:

- ~p
- Como se ler: não p.

Exemplo

- p: Maria é uma aluna inteligente.
- ~p: Maria **não** é uma aluna inteligente.
- q: Marcos é engenheiro.
- ~q: Não é verdade que Marcos é engenheiro.
- ~g: **É falso que** Marcos é engenheiro.

Quando negamos a negação da proposição p, obtemos a própria proposição p, isto \acute{e} : $\sim p$ ou $\sim (\sim p)$ \acute{e} o mesmo que escrever p.

Temos mais dois conectivos não muito usuais:

NAND (1)

Ele é a combinação de dois conectivos: "não" e "e".

Exemplo

Sejam as proposições p e q:

- p: Maria vai ao clube.
- q: Maria vai estudar lógica.
- p ↑ q: Não é verdade que (Maria vai ao clube e vai estudar lógica).

NOR (|)

NOR é a combinação de dois conectivos: "não" e "ou".

Exemplo

Sejam as proposições p e q:

- p: Maria vai ao clube.
- q: Maria vai estudar lógica.
- p ↓ q: Não é verdade que (Maria vai ao clube ou vai estudar lógica).

CONVERSÃO DE LINGUAGEM

Agora que conhecemos os conectivos e as operações sobre as proposições, podemos escrever uma proposição composta da linguagem natural para a linguagem simbólica.

Vamos considerar a seguinte proposição composta:

"O aluno aprende rápido e o professor possui muito conhecimento."

Escrever essa proposição composta na linguagem simbólica é muito simples. Veja o procedimento:

Veja exemplos de algumas situações:

Exemplo 1:

O aluno não aprende rápido **ou** o professor possui muito conhecimento.

- ~p: O aluno não aprende rápido.
- q: O professor possui muito conhecimento.

Solução:

Portanto, a linguagem simbólica é ~p v q.

Exemplo 2:

(MPU - ESAF - Adaptado) Considere as seguintes proposições:

- p: Não vejo Paulo.
- q: Não vou ao cinema.
- r: Fico triste.

Passe para a linguagem simbólica a seguinte proposição:

Quando não vejo Paulo, não vou ao cinema ou fico triste.

Solução:

- Quando não vejo paulo, não vou ao cinema ou fico triste.
- Atenção: Nessa proposição, temos uma condicional.
- Se não vejo Paulo, então não vou ao cinema ou fico triste.
- Linguagem simbólica: p → (q ∨ r)

Exemplo 3:

Dadas as proposições simples:

- p: Carla comprou um carro.
- g: Carla comprou um apartamento.

Passe para a linguagem simbólica as seguintes proposições:

- a. Carla comprou um carro, mas não comprou um apartamento.
- b. Não é verdade que Carla comprou um carro ou comprou um apartamento.
- c. Carla nem comprou um carro e nem comprou um apartamento.
- d. É falso que Carla não comprou o carro ou não comprou o apartamento.

Solução:

- a. Carla comprou um carro, mas não comprou um apartamento.
 - o p: Carla comprou um carro.
 - o q: Carla comprou um apartamento.
 - ∘ ~q: Não comprou um apartamento.
 - o Linguagem simbólica: p ∧ ~q
- b. Não é verdade que Carla comprou um carro ou comprou um apartamento.
 - o p: Carla comprou um carro.
 - o q: Carla comprou um apartamento.
 - o "Não é verdade que" é uma negação (~).
 - o Linguagem simbólica: ~(p ∨ q)
- c. Carla nem comprou um carro e nem comprou um apartamento.
 - o p: Carla comprou um carro.
 - ∘ ~p: Carla não comprou um carro.
 - o q: Carla comprou um apartamento.
 - ~q: Nem comprou um apartamento.
 - o Linguagem simbólica: ~p ∧ ~q
- d. É falso que Carla não comprou o carro ou não comprou o apartamento.
 - o p: Carla comprou um carro.
 - ~p: Carla não comprou um carro.
 - o q: Carla comprou um apartamento.
 - ∘ ~q: não comprou um apartamento.
 - o "É falso que" é uma negação (~).
 - o Linguagem simbólica: ~(~p ∨ ~q)

Exemplo 4:

Dadas as proposições p: "O estudante aprende rápido" e q: "O professor possui muito conhecimento", passe para a linguagem corrente as proposições:

- a. ~p∧q
- b. $p \vee \sim q$
- c. $\sim p \rightarrow q$
- d. ~~p
- e. $\sim p \leftrightarrow \sim q$

Solução:

a. **~p∧q**

- o p: O estudante aprende rápido.
- o ~p: O estudante não aprende rápido.
- o q: O professor possui muito conhecimento.
- Conectivo: ∧ (e)
- ~p Λ q: O estudante não aprende rápido e o professor possui muito conhecimento.

b. **p∨~q**

- o p: O estudante aprende rápido.
- o q: O professor possui muito conhecimento.
- o ~q: O professor não possui muito conhecimento.
- Conectivo: ∨ (ou).
- p v ~q: O estudante aprende rápido ou o professor não possui muito conhecimento.

C. $\sim p \rightarrow q$

- p: O estudante aprende rápido.
- ~p: O estudante não aprende rápido.
- o q: O professor possui muito conhecimento.
- Conectivo: → (se ... então).
- ~p → q: Se o estudante não aprende rápido então o professor possui muito conhecimento.

d. ~~**p**

- p: O estudante aprende rápido.
- ~p: O estudante não aprende rápido.
- ~~p: Não é verdade que o estudante não aprende rápido.
- Quando negamos a negação da proposição p, obtemos a própria proposição p, isto é: ~~p é o próprio p.

e. ~p ↔ ~q

- p: O estudante aprende rápido.
- ~p: O estudante não aprende rápido.
- o q: O professor possui muito conhecimento.
- o ~q: O professor não possui muito conhecimento.
- Conectivo: ↔ (se e somente se).
- ~p ↔ ~q: O estudante não aprende rápido se, e somente se o professor não possui muito conhecimento.