Module: Analyse numériques

Chapitre 3 : Intégration Numérique

Partie 3 : Formules simples

Rectangle à gauche

La méthode simple du rectangle à gauche consiste à approximer l'intégrale I(f) par l'aire d'un rectangle dont les deux côtés sont (b-a) et f(a)

Soit f une fonction continue sur [a, b], alors la formule simple du rectangle à gauche est :

$$I_{Rg}^{s}(f) = (b - a)f(a)$$

$$I(f) = \int_{a}^{b} f(x) dx \simeq I_{Rg}^{s}(f)$$

Rectangle à gauche

La méthode simple du rectangle à gauche consiste à approximer l'intégrale I(f) par l'aire d'un rectangle dont les deux côtés sont (b-a) et f(a)

Soit f une fonction continue sur [a,b], alors la formule simple du rectangle à gauche est :

$$I_{Rg}^{s}(f) = (b - a)f(a)$$

Proposition

Si $f \in \mathcal{C}^1([\mathbf{a},b])$, alors l'erreur du rectangle à gauche est majorée par :

$$E_{Rg}^{s}(f) = \left| I(f) - I_{Rg}^{s}(f) \right| \leq \frac{(b-a)^{2}}{2} \max_{x \in [a,b]} \left| f'(x) \right|$$

$$I(f) = \int_{a}^{b} f(x) dx \simeq I_{Rg}^{s}(f)$$

Rectangle à gauche

La méthode simple du rectangle à gauche consiste à approximer l'intégrale I(f) par l'aire d'un rectangle dont les deux côtés sont (b-a) et f(a)

Soit f une fonction continue sur [a, b], alors la formule simple du rectangle à gauche est :

$$I_{Rg}^s(f) = (b-a)f(a)$$

Proposition

Si $f \in \mathcal{C}^1([a,b])$, alors l'erreur du rectangle à gauche est majorée par :

$$\textit{\textbf{E}}_{\textit{Rg}}^{\textit{s}}(\textit{f}) = \left|\textit{\textbf{I}}(\textit{f}) - \textit{\textbf{I}}_{\textit{Rg}}^{\textit{s}}(\textit{f})\right| \leq \frac{(\textit{b} - \textit{a})^2}{2} \max_{\textit{x} \in [\textit{a},\textit{b}]} \left|\textit{\textbf{f}}'(\textit{x})\right|$$

Degré de précision : Le degré de précision de la méthode du rectangle à gauche est 0.

Exercice

Soit l'intégrale suivante :

$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

- Calculer la valeur exacte de I(f).
- 4 Utiliser la méthode simple du rectangle à gauche pour calculer I(f).
- Quelle est l'erreur d'intégration pour cette méthode.

Solution:

Exercice

Soit l'intégrale suivante :

$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

- Calculer la valeur exacte de I(f).
- 2 Utiliser la méthode simple du rectangle à gauche pour calculer I(f).
- Quelle est l'erreur d'intégration pour cette méthode.

Solution:

$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

= $[\ln(1+x)]_0^1$
= $\ln(2) - \ln(1)$
= $\ln(2) \simeq 0.693$

Exercice

Soit l'intégrale suivante :

$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

- Calculer la valeur exacte de I(f).
- 2 Utiliser la méthode simple du rectangle à gauche pour calculer I(f).
- 3 Quelle est l'erreur d'intégration pour cette méthode.

Solution:

$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

$$= [\ln(1+x)]_0^1$$

$$= \ln(2) - \ln(1)$$

$$= \ln(2) \simeq 0.693$$

2.
$$I_{Rg}^{s}(f) = (1-0)f(0) = 1$$

Exercice

Soit l'intégrale suivante :

$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

- Calculer la valeur exacte de I(f).
- 2 Utiliser la méthode simple du rectangle à gauche pour calculer I(f).
- Quelle est l'erreur d'intégration pour cette méthode.

Solution:

$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

$$= [\ln(1+x)]_0^1$$

$$= \ln(2) - \ln(1)$$

$$= \ln(2) \simeq 0.693$$

- 2. $I_{R_g}^s(f) = (1-0)f(0) = 1$
- 3. $E_{Rg}^s(f) = |I(f) I_{Rg}(f)| = |\ln(2) 1| \simeq 0.307$

Rectangle à droite

La méthode simple du rectangle à droite consiste à approximer l'intégrale I(f) par l'aire d'un rectangle dont les deux côtés sont (b-a) et f(b).

Soit f une fonction continue sur [a, b], alors la formule simple du rectangle à droite est :

$$I_{Rd}^s(f) = (b-a)f(b).$$

$$I(f) = \int_{a}^{b} f(x) dx \simeq I_{Rd}^{s}(f)$$

Rectangle à droite

La méthode simple du rectangle à droite consiste à approximer l'intégrale I(f) par l'aire d'un rectangle dont les deux côtés sont (b-a) et f(b).

Soit f une fonction continue sur [a, b], alors la formule simple du rectangle à droite est :

$$I_{Rd}^s(f) = (b - a)f(b).$$

Proposition

Si $f \in \mathcal{C}^1([\mathbf{a}, \mathbf{b}])$, alors l'erreur du rectangle à droite est majorée par

$$\textbf{\textit{E}}_{Rd}^{s}(f) = \left| \textbf{\textit{I}}(f) - \textbf{\textit{I}}_{Rd}^{s}(f) \right| \leq \frac{(b-a)^{2}}{2} \max_{x \in [a,b]} \left| f'(x) \right|$$

Rectangle à droite

La méthode simple du rectangle à droite consiste à approximer l'intégrale l(f) par l'aire d'un rectangle dont les deux côtés sont (b-a) et f(b).

Soit f une fonction continue sur [a, b], alors la formule simple du rectangle à droite est :

$$I_{Rd}^s(f) = (b - a)f(b).$$

Proposition

Si $f \in \mathcal{C}^1([\mathbf{a}, \mathbf{b}])$, alors l'erreur du rectangle à droite est majorée par

$$E_{Rd}^{s}(f) = \left| I(f) - I_{Rd}^{s}(f) \right| \le \frac{(b-a)^{2}}{2} \max_{x \in [a,b]} \left| f'(x) \right|$$

Degré de précision : Le degré de précision de la méthode du rectangle à droite est 0.

Méthodes simples du rectangle à droite

Exercice

Soit l'intégrale suivante :

$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

- ① Utiliser la méthode simple du rectangle à droite pour calculer I(f).
- 2 Quelle est l'erreur d'intégration pour cette méthode.

Solution:

Méthodes simples du rectangle à droite

Exercice

Soit l'intégrale suivante :

$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

- ① Utiliser la méthode simple du rectangle à droite pour calculer I(f).
- 2 Quelle est l'erreur d'intégration pour cette méthode.

Solution:

1.
$$I_{Rd}^s(f) = (1-0)f(1) = \frac{1}{2}$$

Méthodes simples du rectangle à droite

Exercice

Soit l'intégrale suivante :

$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

- ① Utiliser la méthode simple du rectangle à droite pour calculer I(f).
- 2 Quelle est l'erreur d'intégration pour cette méthode.

Solution:

1.
$$I_{Rd}^s(f) = (1-0)f(1) = \frac{1}{2}$$

$$E_{Rd}^{s}(f) = |I(f) - I_{Rd}^{s}(f)|$$

$$= \left|\ln(2) - \frac{1}{2}\right|$$

$$\approx 0.193$$

Rectangle au milieu

La méthode simple du rectangle au milieu consiste à approximer l'intégrale l(f) par l'aire d'un rectangle dont les deux côtés sont (b-a) et $f(\frac{a+b}{2})$

Soit f une fonction continue sur [a,b], alors la formule simple du rectangle au milieu est :

$$I_{Rm}^s(f) = (b-a)f(\frac{a+b}{2})$$

$$I(f) = \int_a^b f(x) dx \simeq I_{Rm}^s(f)$$

Rectangle au milieu

La méthode simple du rectangle au milieu consiste à approximer l'intégrale l(f) par l'aire d'un rectangle dont les deux côtés sont (b-a) et $f(\frac{a+b}{2})$

Soit f une fonction continue sur $[{\bf a},\,{\bf b}],$ alors la formule simple du rectangle au milieu est :

$$I_{Rm}^s(f) = (b-a)f(\frac{a+b}{2})$$

$I(f) = \int_a^b f(x) dx \simeq I_{Rm}^s(f)$

Proposition

Si $f \in \mathcal{C}^2([\mathbf{a},b])$, alors l'erreur du rectangle au milieu est majorée par

$$E^{s}_{Rm}(f) = |I(f) - I^{s}_{Rm}(f)| \le \frac{(b-a)^{3}}{24} \max_{x \in [a,b]} |f''(x)|$$

Rectangle au milieu

La méthode simple du rectangle au milieu consiste à approximer l'intégrale l(f) par l'aire d'un rectangle dont les deux côtés sont (b-a) et $f(\frac{a+b}{2})$

Soit f une fonction continue sur [a, b], alors la formule simple du rectangle au milieu est :

$$I_{Rm}^s(f) = (b-a)f(\frac{a+b}{2})$$

Proposition

Si $f \in \mathcal{C}^2([\mathbf{a},b])$, alors l'erreur du rectangle au milieu est majorée par

$$E_{Rm}^s(f) = |I(f) - I_{Rm}^s(f)| \le \frac{(b-a)^3}{24} \max_{x \in [a,b]} |f''(x)|$$

Degré de précision : Le degré de précision de la méthode du rectangle au milieu est 1.

Méthodes simples du rectangle au milieu

Exemple:

Soit l'intégrale $I(f) = \int_0^1 \frac{1}{1+x} dx$

La valeur exacte de $I(\tilde{f})$ vaut $\ln(2) = 0.693$.

Méthodes simples du rectangle au milieu

Exemple:

Soit l'intégrale
$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

La valeur exacte de I(f) vaut ln(2) = 0.693.

La méthode du rectangle au milieu est :

$$I_{Rm}^{s}(f) = (1-0)f(\frac{0+1}{2})$$

$$= f(\frac{1}{2})$$

$$= \frac{2}{3}$$

$$\approx 0.66\overline{6}$$

Méthodes simples du rectangle au milieu

Exemple:

Soit l'intégrale
$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

La valeur exacte de I(f) vaut ln(2) = 0.693.

La méthode du rectangle au milieu est :

$$I_{Rm}^{s}(f) = (1-0)f(\frac{0+1}{2})$$

$$= f(\frac{1}{2})$$

$$= \frac{2}{3}$$

$$\approx 0.66\overline{6}$$

L'erreur est :
$$E_{Rm}^s(f) = |I(f) - I_{Rm}^s(f)| = |\ln(2) - \frac{2}{3}| \simeq 0.026$$

La méthode simple de trapèse consiste à approximer l'intégrale I(f) par l'aire d'un trapèze dont ces deux bases sont f(a) et f(b) et son hauteur est (b-a)

Soit f une fonction continue sur [a, b], alors la formule simple de trapèze est :

$$I_T^s(f) = \frac{b-a}{2} \left(f(a) + f(b) \right)$$

$$I(f) = \int_a^b f(x) dx \simeq I_T^s(f)$$

La méthode simple de trapèse consiste à approximer l'intégrale I(f) par l'aire d'un trapèze dont ces deux bases sont f(a) et f(b) et son hauteur est (b-a)

Soit f une fonction continue sur [a, b], alors la formule simple de trapèze est :

$$I_T^s(f) = \frac{b-a}{2} \left(f(a) + f(b) \right)$$

Proposition

Si $f \in \mathcal{C}^2([{ t a},b])$, alors l'erreur de trapèze est majorée par

$$E_T^s(f) = |I(f) - I_T^s(f)| \leq \frac{(b-\mathsf{a})^3}{12} \max_{x \in [\mathsf{a},b]} |f^{\prime\prime}(x)|$$

$$I(f) = \int_a^b f(x) dx \simeq I_T^s(f)$$

La méthode simple de trapèse consiste à approximer l'intégrale I(f) par l'aire d'un trapèze dont ces deux bases sont f(a) et f(b) et son hauteur est (b-a)

Soit f une fonction continue sur [a, b], alors la formule simple de trapèze est :

$$I_T^s(f) = \frac{b-a}{2} \left(f(a) + f(b) \right)$$

Proposition

Si $f \in \mathcal{C}^2([a,b])$, alors l'erreur de trapèze est majorée par

$$E_T^s(f) = |I(f) - I_T^s(f)| \le \frac{(b-a)^3}{12} \max_{x \in [a,b]} |f^{''}(x)|$$

$$I(f) = \int_a^b f(x) dx \le I_T^s(f)$$

Degré de précision : Le degré de précision de la méthode de trapèze est 1.

Exemple:

Soit l'intégrale
$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

La valeur exacte de $I(f)$ vaut $\ln(2) = 0.693$.

Exemple:

Soit l'intégrale
$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

La valeur exacte de I(f) vaut ln(2) = 0.693.

La méthode du trapèze est :

$$I_T^s(f) = \frac{1-0}{2} (f(0) + f(1))$$

$$= \frac{1}{2} (1 + \frac{1}{2})$$

$$= \frac{3}{4}$$

$$= 0.75$$

Exemple:

Soit l'intégrale
$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

La valeur exacte de I(f) vaut ln(2) = 0.693.

La méthode du trapèze est :

$$I_T^s(f) = \frac{1-0}{2} (f(0) + f(1))$$

$$= \frac{1}{2} (1 + \frac{1}{2})$$

$$= \frac{3}{4}$$

$$= 0.75$$

L'erreur est :
$$E_T^s(f) = |I(f) - I_T^s(f)| = |\ln(2) - 0.75| \approx 0.056$$

La méthode simple de Simpson est obtenue en interpolant f par un polynôme $P \in \mathbb{R}_2[X]$ aux points d'abscisse a, $\frac{a+b}{2}$ et b, puis en intégrant P sur [a,b].

Soit f une fonction continue sur [a,b], alors la formule simple de Simpson est :

$$I_5^s(f) = \frac{b-a}{6}\left(f(a)+4f(\frac{a+b}{2})+f(b)\right)$$

$$I(f) \simeq \int_a^b P(x) dx = I_S^s(f)$$

La méthode simple de Simpson est obtenue en interpolant f par un polynôme $P \in \mathbb{R}_2[X]$ aux points d'abscisse $a, \frac{a+b}{2}$ et b, puis en intégrant P sur [a, b].

Soit f une fonction continue sur [a,b], alors la formule simple de Simpson est :

$$l_5^{s}(f) = \frac{b-a}{6}\left(f(a)+4f(\frac{a+b}{2})+f(b)\right)$$

Proposition

Si $f \in \mathcal{C}^4([a,b])$, alors l'erreur de Simpson est majorée par

$$E_S^s(f) = |I(f) - I_S^s(f)| \le \frac{(b-a)^5}{2880} \max_{x \in [a,b]} |f^{(4)}(x)|$$

La méthode simple de Simpson est obtenue en interpolant f par un polynôme $P \in \mathbb{R}_2[X]$ aux points d'abscisse a, $\frac{a+b}{2}$ et b, puis en intégrant P sur [a,b].

Soit f une fonction continue sur [a,b], alors la formule simple de Simpson est :

$$I_5^{s}(f) = \frac{b-a}{6}\left(f(a)+4f(\frac{a+b}{2})+f(b)\right)$$

$I_S(T) = \frac{1}{6} \left(r(a) + 4r(\frac{1}{2}) + r(b) \right)$

Proposition

Si $f \in \mathcal{C}^4([{\color{red}a},{\color{black}b}])$, alors l'erreur de Simpson est majorée par

$$E_S^s(f) = |I(f) - I_S^s(f)| \le \frac{(b-a)^5}{2880} \max_{x \in [a,b]} |f^{(4)}(x)|$$

Degré de précision : Le degré de précision de la méthode de Simpson est 3.

Exemple:

Soit l'intégrale
$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

La valeur exacte de I(f) vaut ln(2) = 0.693.

Exemple:

Soit l'intégrale
$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

La valeur exacte de $I(\tilde{f})$ vaut $\ln(2) = 0.693$.

La méthode de Simpson est :

$$I_5^s(f) = \frac{1-0}{6} \left(f(0) + 4f(\frac{0+1}{2}) + f(1) \right)$$
$$= \frac{1}{6} \left(1 + 4 \cdot \frac{2}{3} + \frac{1}{2} \right)$$
$$= \frac{25}{36} \simeq 0.694$$

Exemple:

Soit l'intégrale
$$I(f) = \int_0^1 \frac{1}{1+x} dx$$

La valeur exacte de I(f) vaut ln(2) = 0.693.

La méthode de Simpson est :

$$I_5^s(f) = \frac{1-0}{6} \left(f(0) + 4f(\frac{0+1}{2}) + f(1) \right)$$
$$= \frac{1}{6} \left(1 + 4 \cdot \frac{2}{3} + \frac{1}{2} \right)$$
$$= \frac{25}{36} \simeq 0.694$$

L'erreur est :

$$E_S^s(f) = |I(f) - I_S^s(f)| = |\ln(2) - 0.694| \simeq$$

Récapitulation

Nom de la Méthode	Degré du	Nombre de	Degré
	polynôme	points	d'exactitude
Rectangle à gauche	0	1	0
Rectangle à droite	0	1	0
Rectangle au milieu	0	1	1
Trapèze	1	2	1
Simpson	2	3	3

Exercice

Soit la fonction $f(t)=e^{-t^2}$. Donner une valeur approchée de $I(f)=\int_{-1}^1 f(t)dt$ par la méthode du

- rectangle du milieu.
- trapèze.
- Simpson.

Rectangle du milieu.

$$I_{Rm}^{s}(f) = (1 - (-1))f(\frac{-1+1}{2}) = 2f(0)$$

= 2

Rectangle du milieu.

$$I_{Rm}^s(f) = (1 - (-1))f(\frac{-1+1}{2}) = 2f(0)$$

= 2

Trapèze.

$$I_T^s(f) = \frac{1 - (-1)}{2} (f(-1) + f(1)) = f(-1) + f(1)$$
$$= 2e^{-1} \simeq 0.735$$

Rectangle du milieu.

$$I_{Rm}^{s}(f) = (1 - (-1))f(\frac{-1+1}{2}) = 2f(0)$$

= 2

Trapèze.

$$I_T^s(f) = \frac{1 - (-1)}{2} (f(-1) + f(1)) = f(-1) + f(1)$$
$$= 2e^{-1} \simeq 0.735$$

Simpson.

$$I_5^{s}(f) = \frac{1 - (-1)}{6} (f(-1) + 4f(\frac{-1 + 1}{2}) + f(1))$$

$$= \frac{1}{3} (f(-1) + 4f(0) + f(1))$$

$$= \frac{1}{3} (e^{-1} + 4 + e^{-1}) = \frac{1}{3} (4 + 2e^{-1}) \approx 1.578$$

Rectangle du milieu.

$$I_{Rm}^s(f) = (1 - (-1))f(\frac{-1+1}{2}) = 2f(0)$$

= 2

Trapèze.

$$I_T^s(f) = \frac{1 - (-1)}{2} (f(-1) + f(1)) = f(-1) + f(1)$$
$$= 2e^{-1} \simeq 0.735$$

Simpson.

$$I_{S}^{s}(f) = \frac{1 - (-1)}{6} (f(-1) + 4f(\frac{-1 + 1}{2}) + f(1))$$

$$= \frac{1}{3} (f(-1) + 4f(0) + f(1))$$

$$= \frac{1}{3} (e^{-1} + 4 + e^{-1}) = \frac{1}{3} (4 + 2e^{-1}) \approx 1.578$$

Est-il possible d'améliorer ces résultats en utilisant d'autres méthodes ?

Rectangle du milieu.

$$I_{Rm}^s(f) = (1 - (-1))f(\frac{-1+1}{2}) = 2f(0)$$

= 2

Trapèze.

$$I_{7}^{s}(f) = \frac{1 - (-1)}{2} (f(-1) + f(1)) = f(-1) + f(1)$$
$$= 2e^{-1} \simeq 0.735$$

Simpson.

$$I_5^{s}(f) = \frac{1 - (-1)}{6} (f(-1) + 4f(\frac{-1 + 1}{2}) + f(1))$$

$$= \frac{1}{3} (f(-1) + 4f(0) + f(1))$$

$$= \frac{1}{3} (e^{-1} + 4 + e^{-1}) = \frac{1}{3} (4 + 2e^{-1}) \approx 1.578$$

Est-il possible d'améliorer ces résultats en utilisant d'autres méthodes?

Méthodes composites d'intégration

