Real Analysis

Measure Theory, Integration, & Hilbert Spaces¹

-TW-

2024年4月14日

1参考书籍:

 $\label{eq:Real Analysis -- Measure Theory, Integration, & Hilbert Spaces} \mbox{$-$Elias M. Stein} \\ \mbox{\langleReal Analysis -- Modern Techniques and Their Applications}$\mbox{$\rangle$ $-- Gerald B. Folland}$

序

天道几何,万品流形先自守; 变分无限,孤心测度有同伦。

> 2024 年 4 月 14 日 长夜伴浪破晓梦,梦晓破浪伴夜长

目录

第一章	Measure Theory	1
1.1	Preliminaries	1
1.2	The Exterior Measure	4
1.3	Measurable sets and the Lebesgue measure	9
	1.3.1 Measurable sets	9
	1.3.2 Lebesgue measure	13
1.4	σ – algebras and Borel sets	17
	1.4.1 σ – algebra	17
	1.4.2 Borel sets	18
1.5	Non – measurable sets	19
第二章	Measurable Functions	22
2.1	Measurable Functions	22
2.2	Measurable functions are nearly simple	27
第三章	Integration Theory	33
3.1	The Lebesgue integral	33
	3.1.1 Simple functions	33
	3.1.2 Non – negative measurable functions	39
	3.1.3 General case	49
	3.1.4 The Dominated Convergence Theorem	53
	3.1.5 <i>Complex – Valued Functions</i>	55

第一章 Measure Theory

1.1 Preliminaries

定义 1.1.1. A (closed) rectangle R in \mathbb{R}^d is given by of d one-dimensional closed and bounded intervals

$$R = [a_1, b_1] \times [a_2, b_2] \times \dots \times [a_d, b_d]$$
 (1.1)

where $a_j \le b_j$ are real numbers, $j = 1, 2, \dots, d$. In other word, we have

$$R = \{(x_1, \dots, x_d) \in \mathbb{R}^d \mid a_i \le x_i \le b_i, \ \forall j = 1 \sim d\}$$
 (1.2)

The **volume** of *R* is

$$|R| = (b_1 - a_1) \cdots (b_d - a_d)$$
 (1.3)

An open rectangle is the product of open intervals, and the interior of the rectangle R is

$$(a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_d, b_d) \tag{1.4}$$

Also, a <u>cube</u> is a rectangle for which $b_1 - a_1 = \cdots = b_d - a_d$.

定义 1.1.2. A union of rectangles is said to be **almost disjoint** if the interiors of them are disjoint.

引理 **1.1.1.** If a rectangle is the almost disjoint union of finitely many rectangles , say $R = \bigcup_{k=1}^{N} R_k$, then

$$|R| = \sum_{k=1}^{N} |R_k| \tag{1.5}$$

注. 本质上即指的是对于方体的任意的垂直划分可转化为"十字形"划分.

引理 **1.1.2.** If R, R_1, \cdots, R_N are rectangles , and $R \subset \bigcup\limits_{k=1}^{U} R_k$, then

$$|R| \le \sum_{k=1}^{N} |R_k| \tag{1.6}$$

注. 此即对 Lemma 1.1.1 的 slight modification,即各方体之间不一定再为 almost disjoint.

Now we can give a description of the strcture of open sets in terms of cubes. Begin with the case of \mathbb{R} .

定理 **1.1.3.** Every open subset O of \mathbb{R} can be written uniquely as countable union of disjoint open intervals.

证明. For each $x \in O$, let I_x be the largest open interval containing x and contained in O.

Step 1 : Construct I_x :

O is open $\Rightarrow x$ is contained in some small open interval contained in O.

Let

$$a_x = \inf\{a < x \mid (a, x) \subset O\} \tag{1.7}$$

$$b_x = \sup\{b > x \mid (x, b) \subset O\}$$
 (1.8)

Let $I_x = (a_x, b_x)$, then $O = \bigcup_{x \in O} I_x$.

Step 2 : Suppose $I_x \cap I_y \neq \emptyset$.

 $I_x \cup I_y$ is an open interval s. t. $\begin{cases} x \in I_x \cup I_y \\ I_x \cup I_y \subset O \end{cases}$

Since I_x is maximal, $I_x \cup I_y \subset I_x$. Similarly, $I_x \cup I_y \subset I_y$.

$$\Rightarrow I_x = I_y$$

 \Rightarrow if $I_x \neq I_y$, then $I_x \cap I_y = \emptyset$.

 $\Rightarrow Z = \{I_x\}_{x \in O}$ is a disjoint famliy of sets.

Step 3: Since every I_x contains at least a $a_x \in \mathbb{Q}$, construct a map f

$$f: Z \longrightarrow \mathbb{Q} \tag{1.9}$$

$$I_{x} \longmapsto a_{x}$$
 (1.10)

f is an injective. $\Rightarrow \{I_x\}_{x \in O}$ is countable. $\Rightarrow O = \bigcup_{j=1}^{\infty} (a_j, b_j)$.

定理 **1.1.4.** Every open set O of \mathbb{R}^d , $d \ge 1$, can be written as a countable union of almost disjoint closed cubes.

证明. Let

$$Q_k := grid \ of \ 2^{-k} \mathbb{Z}^d, \ k \ge 0 \tag{1.11}$$

$$A(O, k) := \{ Q \in Q_k \mid Q \subset O \} \tag{1.12}$$

$$\overline{A}(O, k) := \{ Q \in Q_k \mid Q \cap O \neq \emptyset \}$$
(1.13)

Since $\forall Q \in \underline{A}(O, k), \exists q \in Q^{\circ}, \text{ s. t. } q \in \mathbb{Q}^{d},$

According to the Axiom of Choice , \exists the map $f_k : \underline{A}(O, k) \longrightarrow \mathbb{Q}^d$, which is an injection.

Hence A(O, k) is countable.

Let

$$\underline{A}(O) := \bigcup_{k=1}^{\infty} (\underline{A}(O, k) \setminus \underline{A}(O, k-1)) \cup \underline{A}(O, 0)$$
 (1.14)

Then $\underline{A}(O)$ is also countable. Similarly define $\overline{A}(O)$.

 $\forall x \in O$, let $\delta_x := \inf\{|y - x| \mid y \notin O\}$. Since O is open, $\Rightarrow \delta_x > 0$.

$$\exists N_x \in \mathbb{N}, \text{ s. t. } 2^{-k} \sqrt{d} \le \frac{\delta_x}{2} < \delta_x, \forall k \ge N_x$$
 (1.15)

$$\Rightarrow \forall Q \in \overline{A}(O, N_x), \text{ s. t. } |s - t| \le 2^{-N_x} \sqrt{d} < \delta_x, \forall s, t \in Q$$
 (1.16)

$$\Rightarrow Since \ O \subset \overline{A}(O), \ \exists Q_x \in \overline{A}(O, N_x) \subset \overline{A}(O), \ \text{s.t.} \ x \in Q_x$$
 (1.17)

$$\Rightarrow x \in Q_x \subset O \tag{1.18}$$

$$\Rightarrow x \in Q_x \in \underline{A}(O, N_x) \subset \underline{A}(O) \tag{1.19}$$

$$\Rightarrow O \subset \underline{A}(O) \tag{1.20}$$

Obviously $A(O) \subset O$, so

$$O = \underline{A}(O) = \bigcup_{k=1}^{\infty} (\underline{A}(O, k) \setminus \underline{A}(O, k-1)) \cup \underline{A}(O, 0)$$
 (1.21)

which is a countable union of almost disjoint closed cubes.

1.2 The Exterior Measure

Definition The exterior measure attempts to describe the volume of a set *E* by approximating it from the outside.

Loosely speaking, the exterior measure m_* assigns to any subset of \mathbb{R}^d a first notion of size.

定义 1.2.1. If E is a subset of \mathbb{R}^d , the exterior measure of E is

$$m_*(E) := \inf \left\{ \sum_{j=1}^{\infty} |Q_j| \mid E \subset \bigcup_{j=1}^{\infty} Q_j, \ Q_j \text{ is a closed cube} \right\}$$
 (1.22)

- 注. Well definition: $\forall E \subset \mathbb{R}^d$, $E \subset \bigcup_{n=1}^{\infty} Q_n$, $Q_n = [-n, n]^d \subset \mathbb{R}^d$, which means m_* can be defined on every subset of \mathbb{R}^d .
- It is immediate from the definition that: For every $\epsilon > 0$, there exists a covering $E \subset \bigcup_{j=1}^{\infty} Q_j$, s.t.

$$\sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \epsilon \tag{1.23}$$

• It is important to note that it would **not suffice** to allow **finite sums** in the definition of $m_*(E)$. If one considered only coverings of E by finite unions of cubes , the quantity is **in general larger** than $m_*(E)$.

(In fact, it is defined as the **outer Jordan content** $J_*(E)$.)

- 例 1.2.1. Consider the set $\mathbb{Q} \cap [0, 1]$.
 - For the outer Jordan content , since it's obvious that $J_*(\overline{E}) = J_*(E), \ \forall E \subset \mathbb{R}^d,$ $J_*(\mathbb{Q} \cap [0,1]) = J_*(\overline{\mathbb{Q} \cap [0,1]}) = J_*([0,1]) = 1$
 - For the exterior measure, since $\mathbb{Q} \cap [0, 1]$ is countable, let $\mathbb{Q} \cap [0, 1] = \{x_1, x_2, \cdots\}$. Since for all $\epsilon > 0$,

$$\mathbb{Q} \cap [0,1] \subset \bigcup_{j=1}^{\infty} \left[x_j - \frac{\epsilon}{2^j}, x_j + \frac{\epsilon}{2^j} \right]$$
 (1.24)

Hence $m_*(\mathbb{Q} \cap [0, 1]) \le \epsilon$. For ϵ is arbitrary, $m_*(\mathbb{Q} \cap [0, 1]) = 0$.

Examples Let's check that whether the exterior measure matches our intuitive idea of volume.

Example 1. The exterior measure of a point is zero.

证明. It's clear that a point is a cube with $a_j = b_j$, $\forall j = 1 \sim d$ and which covers itself.

Example 2. The exterior measure of a closed cube is equal to its volume.

证明.

- Let $Q \subset \mathbb{R}^d$ be a closed cube. Since $Q \subset Q$, $m_*(Q) \leq |Q|$.
- Suppose $Q \subset \bigcup_{j=1}^{\infty} Q_j$ by closed cubes. For fixed $\epsilon > 0$, $\forall j \in \mathbb{N}$, choose an open cube S_j ,

s. t.
$$\begin{cases} S_j \supset Q_j \\ \left| S_j \right| = (1 + \epsilon) \left| Q_j \right| \end{cases}$$
 (1.25)

Then $Q \subset \bigcup_{j=1}^{\infty} S_j$. Since Q is compact, $\exists S_1, \dots, S_n \in \{S_j\}_{j=1}^{\infty}$, s. t. $Q \subset \bigcup_{j=1}^n S_j$.

Therefore, according to Lemma 1.1.2

$$|Q| \le \sum_{j=1}^{n} \left| S_{j} \right| = (1 + \epsilon) \sum_{j=1}^{n} \left| Q_{j} \right| \le (1 + \epsilon) \sum_{j=1}^{\infty} \left| Q_{j} \right|$$

$$(1.26)$$

For $\epsilon > 0$ is arbitrary, we get

$$|Q| \le \sum_{j=1}^{\infty} |Q_j| \tag{1.27}$$

$$|Q| \le \inf \sum_{j=1}^{\infty} |Q_j| = m_*(Q)$$
 (1.28)

Example 3. If Q is an open cube, then $m_*(Q) = |Q|$.

证明.

- Since $Q \subset \overline{Q}$, $m_*(Q) \leq |\overline{Q}| = |Q|$.
- We note that for all closed cubes Q_0 contained in Q, then $m_*(Q_0) = |Q_0| \le m_*(Q)$. For fixed $\epsilon > 0$ which is suffice small, choose a closed cube Q_0 contained in Q with a volume $|Q_0| = (1 - \epsilon)|Q|$, then we have

$$|Q_0| = (1 - \epsilon)|Q| \le m_*(Q)$$
 (1.29)

For ϵ is arbitrary, $|Q| \leq m_*(Q)$.

Example 4. The exterior measure of a rectangle R is equal to its volume.

Example 5. $m_*(\mathbb{R}^d) = \infty$.

证明. Since any covering of \mathbb{R}^d is also a covering of any cube $Q \subset \mathbb{R}^d$, $m_*(\mathbb{R}^d) \geq m_*(Q)$

$$\forall N > 0, \ \exists Q \subset \mathbb{R}^d, \ \text{s. t. } |Q| > N \text{ , so } m_*(\mathbb{R}^d) = \infty.$$

Properties

Observation 1. (Monotonicity)

If $E_1 \subset E_2$, then $m_*(E_1) \leq m_*(E_2)$.

Observation 2. (Countable sub – additivity)

If
$$E \subset \bigcup_{j=1}^{\infty} E_j$$
, then $m_*(E) \leq \sum_{j=1}^{\infty} m_*(E_j)$.

证明. For a fixed $\epsilon > 0$, for all E_j , there exists a covering $\{Q_{j_k}\}_{k=1}^{\infty}$, $E \subset \bigcup_{k=1}^{\infty} Q_{j_k}$, s.t.

$$\sum_{k=1}^{\infty} m_*(Q_{j_k}) \le m_*(E_j) + \frac{\epsilon}{2^j}$$
 (1.30)

Since $E \subset \bigcup_{j=1}^{\infty} E_j \subset \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} Q_{j_k}$, $\bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} Q_{j_k}$ covers E, then

$$m_*(E) \le \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} m_*(Q_{j_k}) \le \sum_{j=1}^{\infty} m_*(E_j) + \epsilon$$
 (1.31)

Since
$$\epsilon$$
 is arbitrary, $m_*(E) \leq \sum_{j=1}^{\infty} m_*(E_j)$

Observation 3. If $E \subset \mathbb{R}^d$, then $m_*(E) = \inf\{m_*(O) \mid E \subset O, O \text{ is an open set}\}.$

证明.

• By monotonicity , $m_*(E) \le m_*(O)$, for all O covers E. Then take the infimum.

• For a fixed $\epsilon > 0$, \exists covering $E \subset \bigcup_{i=1}^{\infty} Q_i$, s. t.

$$\sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \frac{\epsilon}{2} \tag{1.32}$$

For all Q_j , choose an open set \widetilde{Q}_j containing Q_j with a volume $\left|\widetilde{Q}_j\right| \leq \left|Q_j\right| + \frac{\varepsilon}{2^{j+1}}$. Let $O = \bigcup_{j=1}^{\infty} \widetilde{Q}_j$, then by Observation 2,

$$m_*(O) \le \sum_{j=1}^{\infty} m_*(\widetilde{Q}_j) = \sum_{j=1}^{\infty} \left| \widetilde{Q}_j \right| \le \sum_{j=1}^{\infty} \left| Q_j \right| + \frac{\epsilon}{2} \le m_*(E) + \epsilon \tag{1.33}$$

Since ϵ is arbitrary, $m_*(O) \le m_*(E)$, so inf $m_*(O) \le m_*(E)$.

Observation 4. If $E = E_1 \cup E_2$, and $d(E_1, E_2) > 0$, then

$$m_*(E) = m_*(E_1) + m_*(E_2)$$
 (1.34)

证明. For a fixed $\epsilon > 0$, \exists a covering $E \subset \bigcup_{j=1}^{\infty} Q_j$, s.t.

$$\sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \epsilon \tag{1.35}$$

Subdevide the cubes Q_j and assume that $diam(Q_j) <= \frac{d(E_1, E_2)}{3}$. Then each Q_j can intersect at most one of the two sets E_1 or E_2 . Devide $\{Q_j\}_{j=1}^{\infty}$ into two subsets $\{Q_j\}_{j\in J_1}$, $\{Q_j\}_{j\in J_2}$, s. t.

$$E_1 \subset \bigcup_{j \in J_1} Q_j, \ E_2 \subset \bigcup_{j \in J_2} Q_j \tag{1.36}$$

 J_1 and J_2 are both countable. $J_1 \cap J_2 = \emptyset$. Then

$$m_*(E_1) \le \sum_{j \in J_1} m_*(Q_j), \ m_*(E_2) \le \sum_{j \in J_2} m_*(Q_j)$$
 (1.37)

Therefore

$$m_*(E_1) + m_*(E_2) \le \sum_{j \in J_1} m_*(Q_j) + \sum_{j \in J_2} m_*(Q_j) \le \sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \epsilon$$
 (1.38)

Since ϵ is arbitrary, $m_*(E_1) + m_*(E_2) \le m_*(E)$.

Observation 5. If a set E is the countable union of almost disjoint cubes $E = \bigcup_{j=1}^{\infty} Q_j$, then

$$m_*(E) = \sum_{j=1}^{\infty} |Q_j|$$
 (1.39)

证明. For a fixed $\epsilon > 0$, for all Q_j , choose a closed cube \widetilde{Q}_j strictly contained in Q_j with its volume $\left|\widetilde{Q}_j\right| \geq \left|Q_j\right| - \frac{\epsilon}{2^j}$. Then for every $N \in \mathbb{N}$, the cubes $\widetilde{Q}_1, \cdots, \widetilde{Q}_N$ are disjoint with a finite distance from one another. By Observation 4,

$$m_*(\bigcup_{j=1}^N \widetilde{Q}_j) = \sum_{i=1}^N \left| \widetilde{Q}_j \right| \ge \sum_{j=1}^N \left| Q_j \right| - \epsilon$$
 (1.40)

Since $\bigcup_{j=1}^{\infty} \widetilde{Q}_j \subset E$, we conclude that for every N

$$m_*(E) \ge \sum_{j=1}^N |Q_j| - \epsilon$$
 (1.41)

Let $N \to \infty$, we deduce

$$m_*(E) \ge \sum_{j=1}^{\infty} |Q_j| - \epsilon$$
 (1.42)

Since
$$\epsilon$$
 is arbitrary, $\sum_{j=1}^{\infty} |Q_j| \leq m_*(E)$.

1.3 Measurable sets and the Lebesgue measure

1.3.1 *Measurable sets*

Definition

定义 **1.3.1.** A subset E of \mathbb{R}^d is (Lebesgue) measurable, if for any $\epsilon > 0$ there exists an open set O with $E \subset O$ and $m_*(O \setminus E) \le \epsilon$.

If *E* is measurable, we define its (*Lebesgue*) measurable m(E) by $m(E) = m_*(E)$.

 $\dot{\mathbf{L}}$. • 可用映射的观点来理解外测度 m_* 与测度 m 的关系 (Folland). 即

$$m_*: \mathcal{P}(\mathbb{R}^d) \longrightarrow \overline{\mathbb{R}}_+ = [0, +\infty]$$
 (1.43)

$$m: \mathcal{M} \longrightarrow \overline{\mathbb{R}}_+ = [0, +\infty]$$
 (1.44)

$$m = m_* \Big|_{M} \tag{1.45}$$

其中 $\mathcal{M} \subset \mathcal{P}(\mathbb{R}^d)$ 为 \mathbb{R}^d 中所有 (*Lebesgue*) *measurable sets* 构成的集合.

类比于抽象代数中各代数结构的性质,比如群 (group) 对加法 / 乘法封闭,我们下面探讨集合族 M 对于可数个集合的运算 (countable unions, countable intersections, complement)
 是否封闭.即通过此引出代数结构σ – algebra.

Properties 下面开始探讨 (Lebesgue) measure 的部分性质.

Property 1. Every open set in \mathbb{R}^d is measurable.

Property 2. If $m_*(E) = 0$, then *E* is measurable.

证明. By Observation 3 in §1.2, for a fixed $\epsilon > 0$, $\exists E \subset O$ open, s. t.

$$m_*(O) \le m_*(E) + \epsilon = \epsilon$$
 (1.46)

Since $O \setminus E \subset O$, then $m_*(O \setminus E) \leq m_*(O) \leq \epsilon$.

Property 3. Let $\{E_j\}_{j=1}^{\infty}$ be a family of measurable sets, then $\bigcup_{j=1}^{\infty} E_j$ is measurable.

注. 即说明集合族 M 对 countable unions 封闭.

证明. Since E_j is measurable, for a fixed $\epsilon > 0$, $\exists E_j \subset O_j$ open, s. t.

$$m_*(O_j \backslash E_j) \le \frac{\epsilon}{2^j}$$
 (1.47)

Let $O = \bigcup_{j=1}^{\infty} O_j \subset_{open} \mathbb{R}^d$, then

$$O \setminus \bigcup_{j=1}^{\infty} E_j = \left(\bigcup_{j=1}^{\infty} O_j\right) \cap \left(\bigcap_{j=1}^{\infty} E_j^c\right)$$
(1.48)

$$= \bigcup_{j=1}^{\infty} \left(O_j \cap \left(\bigcap_{k=1}^{\infty} E_k^c \right) \right) \subset \bigcup_{j=1}^{\infty} \left(O_j \cap E_j^c \right) = \bigcup_{j=1}^{\infty} \left(O_j \backslash E_j \right)$$
 (1.49)

Therefore

$$m_* \left(O \setminus \bigcup_{j=1}^{\infty} E_j \right) \le m_* \left(\bigcup_{j=1}^{\infty} \left(O_j \setminus E_j \right) \right) \le \sum_{j=1}^{\infty} m_* \left(O_j \setminus E_j \right) \le \epsilon$$
 (1.50)

So
$$\bigcup_{j=1}^{\infty} E_j$$
 is measurable.

Property 4. Closed sets are measurable.

为了证明该性质, 先证明如下的分离定理.

引理 **1.3.1.** If F is closed, K is compact, and $K \cap F = \emptyset$, then d(F, K) > 0.

证明. 反证法.Suppose d(F, K) = 0, then for any fixed $n \in \mathbb{N}$, $\exists x_n \in F, y_n \in K$, s. t.

$$|x_n - y_n| \le \frac{1}{n} \tag{1.51}$$

Since K is compact, $\{y_n\}_{n=1}^{\infty}$ is bounded. Then there exists a subsequence $\{y_{n_k}\}_{k=1}^{\infty}$, s. t.

$$y_{n_k} \to y_0 \in K$$
, as $k \to \infty$ (1.52)

Since $\left|x_{n_k} - y_{n_k}\right| \le \frac{1}{n_k}$, then

$$|x_{n_k} - y_0| \le |x_{n_k} - y_{n_k}| + |y_{n_k} - y_0| \to 0, \text{ as } k \to \infty$$
 (1.53)

So
$$x_{n_k} \to y_0 \in F$$
, $y_0 \in F \cap K \neq \emptyset$ 矛盾.

下面证明 Property 4.

证明.

• Suppose *F* is bounded, then *F* is compact.

By Observation 3 in §1.2, for a fixed $\epsilon > 0$, $\exists F \subset O$ open, s. t.

$$m_*(O) \le m_*(F) + \epsilon \tag{1.54}$$

Since F is closed, $O \setminus F = O \cap F^c$ is open. By Thm1.1.4, $\exists \{Q_j\}_{j=1}^{\infty}$, s.t.

$$O\backslash F = \bigcup_{i=1}^{\infty} Q_i \tag{1.55}$$

For a fixed $N \in \mathbb{N}$, let $K = \bigcup_{j=1}^{N} Q_j$, then K is compact. By Lemma 1.3.1, d(K, F) > 0. Since $K \cup F \subset O$, by Observation 4 in §1.2,

$$m_*(K) + m_*(F) = m_*(K \cup F) \le m_*(O)$$
 (1.56)

So for each fixed $N \in \mathbb{N}$,

$$\sum_{j=1}^{N} |Q_{j}| = m_{*}(K) \le m_{*}(O) - m_{*}(F) \le \varepsilon$$
 (1.57)

Let $N \to \infty$, we get

$$m_*(O \backslash F) = \sum_{j=1}^{\infty} |Q_j| \le \epsilon$$
 (1.58)

Therefore, F is measurable.

• For the general situation, since $\mathbb{R}^d = \bigcup_{j=1}^{\infty} B_j$, then

$$F = F \cap \mathbb{R}^d = \bigcup_{j=1}^{\infty} \left(F \cap B_j \right)$$
 (1.59)

Since B_k is compact and F is closed, then $F \cap B_j$ is compact.

Due to the previous proof, $F \cap B_i$ is measurable. By Property 3 in §1.3.1,

$$F = \bigcup_{j=1}^{\infty} (F \cap B_j) \text{ is measurable.}$$
 (1.60)

Property 5. If E is measurable, then E^c is measurable.

注. 即说明集合族 M 对集合的补运算 complement 封闭.

证明. Since E is measurable, then for all fixed $n \in \mathbb{N}$, $\exists E \subset O_n$ open, s. t. $m_*(O_n \setminus E) \leq \frac{1}{n}$. Let $S = \bigcup_{j=1}^{\infty} O_j^c \subset E^c$. Since O_j^c is closed, O_j^c is measurable. Then S is measurable.

$$E^{c}\backslash S = E^{c} \cap \left(\bigcap_{j=1}^{\infty} O_{j}\right) = \bigcap_{j=1}^{\infty} \left(E^{c} \cap O_{j}\right) \subset E^{c} \cap O_{n} = O_{n}\backslash E, \ \forall n \in \mathbb{N}$$

$$(1.61)$$

Then, $m_*(E^c \setminus S) \le m_*(O_n \setminus E) \le \frac{1}{n}$, $\forall n \in \mathbb{N}$. So $E^c \setminus S$ is measurable.

Therefore, $E^c = (E^c \setminus S) \cup S$ is measurable.

Property 6. If $\{E_j\}_{j=1}^{\infty}$ is a family of measurable sets, then $\bigcap_{j=1}^{\infty} E_j$ is measurable.

注. 即说明集合族 M 对 countable intersections 封闭.

证明. Since

$$\bigcap_{j=1}^{\infty} E_j = \left(\bigcup_{j=1}^{\infty} E_j^c\right)^c \tag{1.62}$$

Then, E_j^c is measurable and so $\bigcap_{j=1}^{\infty} E_j$ is measurable.

综上,本节介绍了 (*Lebesgue*) measurable sets 的性质,并且证明了 *Lebesgue* measurable sets 构成的集合族 M 对 countable unions, countable intersections, complement 运算封闭. 从而 $(M, \cup, \cap, complement)$ 构成代数结构,即为后续介绍的 σ – algebra.

1.3.2 Lebesgue measure

下面着重来介绍一下 Lebesgue measure 的 properties.

可数可加性 首先便是可数可加性 countable additivity.

定理 **1.3.2.** If E_1, E_2, \cdots are disjoint measurable sets, then

$$m(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} m(E_j)$$
(1.63)

证明. Since $m(\bigcup_{j=1}^{\infty} E_j) \leq \sum_{j=1}^{\infty} m(E_j)$ always holds, we then proof the reverse inequality.

• Suppose that E_i is bounded.

Since E_j^c is measurable, for any fixed $\epsilon > 0$, there exists an closed subset $F_j \subset E_j$, s. t.

$$m(E_j \backslash F_j) \le \frac{\epsilon}{2^j}$$
 (1.64)

Since E_j is bounded, F_j is compact.

Let $K = \bigcup_{j=1}^{N} F_j$ be a disjoint union of compact sets for some fixed N, then

$$K \subset \bigcup_{j=1}^{\infty} E_j \tag{1.65}$$

$$m(K) = \sum_{j=1}^{N} m(F_j) \le m(\bigcup_{j=1}^{\infty} E_j)$$
 (1.66)

Since

$$m(E_j) \le m(E_j \backslash F_j) + m(F_j) \le m(F_j) + \frac{\epsilon}{2^j}$$
 (1.67)

Therefore

$$\sum_{j=1}^{N} m(E_j) - \epsilon \le \sum_{j=1}^{N} m(F_j) \le m(\bigcup_{j=1}^{\infty} E_j)$$
(1.68)

Let $N \to \infty$, for ϵ is arbitrary, we get

$$\sum_{j=1}^{\infty} m(E_j) \le m(\bigcup_{j=1}^{\infty} E_j)$$
(1.69)

• In the general case, we choose the sequence of cubes $\{Q_k\}_{k=1}^{\infty}$, $Q_k = [-k, k]^d \subset \mathbb{R}^d$. Let $S_1 = Q_1$, $S_k = Q_k - Q_{k-1}$, $\forall k \geq 2$. Then $\{S_k\}_{k=1}^{\infty}$ are disjoint and bounded. Since $\{S_k\}_{k=1}^{\infty}$ covers \mathbb{R}^d ,

$$E_j = \bigcup_{k=1}^{\infty} (E_j \cap S_k) \tag{1.70}$$

$$\bigcup_{j=1}^{\infty} E_j = \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} (E_j \cap S_k)$$
(1.71)

Since $E_j \cap S_k$ is bounded and disjoint, by the previous case,

$$m(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} m(E_j \cap S_k) = \sum_{j=1}^{\infty} m(E_j)$$
 (1.72)

单调连续性 下面我们可以给出单调可测集合列的连续性.continuity from below/above

定理 1.3.3. Let E_1, E_2, \cdots be measurable sets in \mathbb{R}^d .

- (i) If $E_k \nearrow E$, then $m(E) = \lim_{n \to \infty} m(E_n)$.
- (ii) If $E_k \setminus E$ and $m(E_1) < \infty$, then $m(E) = \lim_{n \to \infty} m(E_n)$.

注. • 事实上即可写为

$$m(\lim_{n\to\infty} E_n) = \lim_{n\to\infty} m(E_n)$$
 (1.73)

即单调可测集合列可交换极限与测度顺序.

• (ii) 中条件 $m(E_1)$ finite 不可省略,下面给出一个反例.

例 1.3.1. If
$$E_n=(n,+\infty)$$
, then $m(E_n)=\infty$ and $E=\bigcap_{j=1}^{\infty}E_j=\emptyset$. So

$$m(E) = m(\lim_{n \to \infty} E_j) = 0, \ \lim_{n \to \infty} m(E_j) = \infty$$
 (1.74)

证明.

(i) Let $S_1 = E_1$, $S_k = E_k - E_{k-1}$, $\forall k \ge 2$. Then $\{S_k\}_{k=1}^{\infty}$ are disjoint and measurable. Since $E = \bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} S_k$, by Thm1.3.2,

$$m(E) = \sum_{k=1}^{\infty} m(S_k) = \lim_{N \to \infty} \sum_{k=1}^{N} m(S_k) = \lim_{N \to \infty} m(\bigcup_{k=1}^{N} S_k) = \lim_{N \to \infty} m(E_N)$$
 (1.75)

(ii) Let $S_1 = E_1$, $S_k = E_k - E_{k+1}$, $\forall k \ge 2$. Then $\{S_k\}_{k=1}^{\infty}$ are disjoint and measurable. Since $E_1 = E \cup \left(\bigcup_{k=1}^{\infty} S_k\right)$, then

$$m(E_1) = m(E) + \sum_{k=1}^{\infty} m(S_k) = m(E) + \lim_{N \to \infty} m(\bigcup_{k=1}^{N} S_k) = m(E) + \lim_{N \to \infty} m(E_1 - E_N)$$
 (1.76)

For $E_1 = (E_1 - E_N) \sqcup E_N$ is a disjoint union,

$$m(E_1 - E_N) = m(E_1) - m(E_N)$$
(1.77)

Thus

$$m(E_1) = m(E) + \lim_{N \to \infty} m(E_1 - E_N) = m(E) + m(E_1) - \lim_{N \to \infty} m(E_N)$$
 (1.78)

$$m(E) = \lim_{N \to \infty} m(E_N) \tag{1.79}$$

Geometric insight of measurable sets 最后我们来给出 (Lebesgue) measurable sets 的几何性质 (与开集、闭集、紧集等之间的关系).

定理 **1.3.4.** Suppose $E \subset \mathbb{R}^d$ is measurable, then $\forall \epsilon > 0$:

- (i) \exists open $O \supset E$ with $m(O \setminus E) \le \epsilon$.
- (ii) \exists closed $F \subset E$ with $m(E \backslash F) \leq \epsilon$.
- (iii) If $m(E) < \infty$, \exists compact $K \subset E$ with $m(E \setminus K) \le \epsilon$.
- (iv) If $m(E) < \infty$, $\exists F = \bigcup_{j=1}^{N} Q_j$, $\{Q_j\}_{j=1}^{\infty}$ are closed cubes, s. t. $m(E \triangle F) \le \epsilon$.

证明.

- (i) It's just the definition of measurability.
- (ii) Since E_j^c is measurable, \exists open $O_j \supset E_j^c$, s. t.

$$m(O_j \backslash E_j^c) \le \epsilon$$
 (1.80)

Since $O_j^c \subset E_j$ is closed and $E_j \setminus O_j^c = O_j \setminus E_j^c$, let $F = O_j^c$ closed, then

$$m(E_i \backslash F) = m(O_i \backslash E_i^c) \le \epsilon$$
 (1.81)

(iii) By (ii), \exists closed $F \subset E$, s. t. $m(E \setminus F) \leq \frac{\epsilon}{2}$.

Let B_n denote the closed ball centered at the origin of radius n, then B_n is compact.

$$F = \bigcup_{j=1}^{\infty} (F \cap B_k) \tag{1.82}$$

Let $K_n = \bigcup_{k=1}^n (F \cap B_k)$, then K_n is compact and $K_n \nearrow F \Rightarrow E \setminus K_n \nearrow E \setminus F$.

Since $m(E \setminus K_1) \le m(E)$ is finite, by Thm1.3.3(ii)

$$\lim_{n \to \infty} m(E \backslash K_n) = m(E \backslash F) \tag{1.83}$$

As for $\epsilon > 0$, $\exists N \in \mathbb{N}$, s. t. for all $n \geq N$

$$|m(E \backslash K_n) - m(E \backslash F)| \le \frac{\epsilon}{2} \tag{1.84}$$

$$m(E \backslash K_n) \le m(E \backslash F) + \frac{\epsilon}{2} \le \epsilon$$
 (1.85)

Therefore, $m(E \setminus K_N) \le \epsilon$, where $K_N \subset E$ is compact.

(iv) \exists open $O \supset E$, s. t. $m(O \setminus E) \le \frac{\epsilon}{2}$. By Thm1.1.4, $\exists \{Q_j\}_{j=1}^{\infty}$, s. t.

$$E \subset O = \bigcup_{j=1}^{\infty} Q_j \tag{1.86}$$

So

$$m(O) = \sum_{j=1}^{\infty} |Q_j| \le m(O \setminus E) + m(E) \le \frac{\epsilon}{2} + m(E)$$
 (1.87)

Since m(E) is finite, $\sum_{j=1}^{\infty} |Q_j|$ converges. Then $\exists N \in \mathbb{N}$, s. t.

$$\sum_{j=N+1}^{\infty} \left| Q_j \right| \le \frac{\epsilon}{2} \tag{1.88}$$

Let $F = \bigcup_{j=1}^{N} Q_j$. Since $E \triangle F = (E \backslash F) \sqcup (F \cap E)$, then

$$m(E\triangle F) = m(E\backslash F) + m(F\backslash E) \tag{1.89}$$

$$\leq m(\bigcup_{j=N+1}^{\infty} Q_j) + m(\bigcup_{j=1}^{\infty} Q_j \backslash E)$$
 (1.90)

$$= \sum_{j=N+1}^{\infty} |Q_j| + \sum_{j=1}^{\infty} |Q_j| - m(E)$$
 (1.91)

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \tag{1.92}$$

1.4 σ – algebras and Borel sets

1.4.1 σ – algebra

首先给出 \mathbb{R}^d 中 algebra 的定义.

定义 **1.4.1.** Let $\mathcal{A} \subset \mathcal{P}(\mathbb{R}^d)$. \mathcal{A} is called an *algebra* if

- (1) If $A_1, \dots, A_n \in \mathcal{A}$, then $\bigcup_{i=1}^n A_i \in \mathcal{A}$.
- (2) If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$.

注. 容易证明, 若 \mathcal{A} 为 \mathbb{R}^d 中 algebra, 则其对 finite intersections 也封闭, 同时 \emptyset , $\mathbb{R}^d \in \mathcal{A}$.

下面给出 \mathbb{R}^d 中 σ – algebra 的定义.(将 algebra 中的 finite 条件加强为 countable)

定义 **1.4.2.** Let $\mathcal{M} \subset \mathcal{P}(\mathbb{R}^d)$. \mathcal{M} is a σ – *algebra* if

- (1) If $A_1, A_2, \dots \in \mathcal{M}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{M}$.
- (2) If $A \in \mathcal{M}$, then $A^c \in \mathcal{M}$.

注. 容易证明 M 对 countable intersections 同样封闭, \emptyset , $\mathbb{R}^d \in M$.

例 1.4.1. All Lebesgue measurable sets forms a σ – algebra \mathcal{M} .

类比线性空间、拓扑空间中 (拓扑) 基的概念,下面给出生成 σ – algebra 的概念.

定义 1.4.3. Let $\mathcal{A} \subset \mathcal{P}(\mathbb{R}^d)$, then the σ – algebra generated by \mathcal{A} is the smallest σ – algebra containing \mathcal{A} .

注. 即为 the intersection of all σ – *algebras* containing \mathcal{A} ,这也说明了对于任一给定的集族 \mathcal{A} ,其生成的 σ – *algebra* 必存在且唯一.

1.4.2 Borel sets

下面给出 Borel σ – algebra 及 Borel sets 的定义.

定义 **1.4.4.** The <u>Borel σ – algebra</u> is the σ – algebra generated by all open sets in \mathbb{R}^d , denoted by $\mathcal{B}_{\mathbb{R}^d}$.

Elements of this σ – algebra are called <u>Borel sets</u>.

注. 事实上, *Borel σ-algebra* 为 Lebesgue countable sets 的一个真子集, 后续会利用 Cantor 集证明.

为了方便研究 Borel σ – algebra 的结构,我们把其中较为复杂 (非平凡) 的元素单独拎出来并称为 G_δ , F_σ .

定义 **1.4.5.** 1. The countable intersections of open sets are called G_{δ} sets.

2. The countable unions of closed sets are called F_{σ} sets.

下面我们可给出 $\mathcal{B}_{\mathbb{R}^d}$ 与 Lebesgue 可测集 \mathcal{L} 之间的关系.(\mathcal{L} 只比 $\mathcal{B}_{\mathbb{R}^d}$ 多了一些零测集)

定理 **1.4.1.** $E \subset \mathbb{R}^d$ is \mathcal{L} – measurable

- (i) if and only if $E = G_{\delta} \setminus N_1$, for some G_{δ} , $m(N_1) = 0$.
- (ii) if and only if $E = F_{\sigma} \backslash N_2$, for some F_{σ} , $m(N_2) = 0$.

证明. Clearly E is measurable whenever it satisfies either (i) or (ii).

(i) Since *E* is measurable, \exists open sets $O_n \supset E$, s. t.

$$m(O_n \backslash E) \le \frac{1}{n} \tag{1.93}$$

Let $O = \bigcap_{j=1}^{\infty} O_j$, then

$$m(O \backslash E) \le \frac{1}{n}, \ \forall n \in \mathbb{N}$$
 (1.94)

Let $n \to \infty$, we get $m(O \setminus E) = 0$. Let $G_{\delta} = O$, $N_1 = O \setminus E$. Then $E = G_{\delta} \setminus N_1$.

(ii) Similarly, we can easily proof it by Thm1.3.4(ii).

1.5 Non – measurable sets

在这一节我们将介绍 \mathbb{R} 上一个经典的不可测集 $Vitali\ set$,并说明 \mathbb{R} 上每个正测度集都有不可测子集.

Vitali set Let $x, y \in [0, 1]$. Write $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$.

- ⇒ 容易验证 ~ 为 an equivalence relation.
- \Rightarrow ~ partions [0,1]. 记 [0,1] 上等价类为 ε_a ,则

$$[0,1] = \bigsqcup_{a} \varepsilon_{a}, \ \{\varepsilon_{a}\}_{a} \ are \ disjoint$$
 (1.95)

- \Rightarrow By the Axiom of Choice, we can choose exactly one element x_a from each ε_a .
- \Rightarrow Let $\mathcal{N} = \{x_a\}_a$. Then \mathcal{N} is the Vitali set.

定理 1.5.1. N is not measurable.

证明. Assume that \mathcal{N} is measurable. Let $\{r_k\}_{k=1}^{\infty}$ be an enumeration of $\mathbb{Q} \cap [-1, 1]$. Define

$$\mathcal{N}_k := N + r_k = \{x_a + r_k\}_a \tag{1.96}$$

Then we shall proof that $\{\mathcal{N}_k\}_{k=1}^{\infty}$ are disjoint, and $[0,1] \subset \bigcup_{k=1}^{\infty} \mathcal{N}_k \subset [-1,2]$.

• If $\mathcal{N}_k \cap \mathcal{N}_m \neq \emptyset$, then $\exists x_a, x_\beta \in \mathcal{N}, \ r_k, r_m \in \mathbb{Q} \cap [-1, 1], \text{ s. t.}$

$$x_a + r_k = x_\beta + r_m \tag{1.97}$$

Then $x_a - x_\beta = r_m - r_k \in \mathbb{Q} \Rightarrow x_a \sim x_\beta \Rightarrow x_a, x_\beta \in \varepsilon_a \text{ or } x_a, x_\beta \in \varepsilon_\beta \Rightarrow x_a = x_\beta \text{ and } r_k = r_m.$ Therefore, $\mathcal{N}_k = \mathcal{N}_m$.

• Since $r_k \in [-1, 1]$, $\mathcal{N}_k \in [-1, 2]$, $\forall k$. Therefore,

$$\bigcup_{k=1}^{\infty} \mathcal{N}_k \subset [-1, 2] \tag{1.98}$$

• $\forall x \in [0, 1]$. Since $\{\varepsilon_a\}_a$ partions [0, 1], there exists a_0 , s. t.

$$x \in \varepsilon_{a_0}, \ x \sim x_{a_0}$$
 (1.99)

which means $x - x_{a_0} \in \mathbb{Q} \cap [-1, 1]$. Then $\exists k_0 \in \mathbb{N}$, s. t.

$$x - x_{a_0} = r_{k_0} \implies x \in \mathcal{N}_{k_0} \tag{1.100}$$

Therefore,

$$[0,1] \subset \bigcup_{k=1}^{\infty} \mathcal{N}_k \tag{1.101}$$

Since $\{\mathcal{N}_k\}_{k=1}^{\infty}$ are disjoint, we get

$$m([0,1]) \le \sum_{k=1}^{\infty} m(\mathcal{N}_k) \le m([-1,2])$$
 (1.102)

Since \mathcal{N}_k is a translate of \mathcal{N} , we have $m(\mathcal{N}) = m(\mathcal{N}_k)$ for each k. Then

$$1 \le \sum_{k=1}^{\infty} m(\mathcal{N}) \le 3 \implies \text{Neither } m(\mathcal{N}) = 0 \text{ nor } m(\mathcal{N}) > 0 \text{ is possible.}$$
 (1.103)

Therefore, it's a contradiction. N is non-measurable.

正测度集必有不可测子集 下面要证明一个结论,即 \mathbb{R} 上任一正测度集必有不可测子集. 这 实际上为书 Exercises of Chapter 1 的第 32 题 (b).

命题 **1.5.1.** Let N denote the non-measurable subset of [0, 1] constructed in Thm1.5.1.

- (a) If E is a measurable subset of N, then m(E) = 0.
- (b) If $G \subset \mathbb{R}$ with $m_*(G) > 0$, then there exists a subset of G is non-measurable.

证明.

(a) Note $\mathcal{N} = \{x_a\}_{a \in \mathcal{A}}$, then $E = \{x_\beta\}_{\beta \in \mathcal{B} \subset \mathcal{A}}$. Similarly, we can proof

$$\bigcup_{k=1}^{\infty} E_k \subset [-1, 2] \tag{1.104}$$

Since $\{E_k\}_{k=1}^{\infty}$ are disjoint, and E_k is a translate of E, we get

$$\sum_{k=1}^{\infty} m(E) \le 3 \implies m(E) = 0$$
 (1.105)

(b) Let $\mathbb{Q} = \{r_k\}_{k=1}^{\infty}$, $\mathcal{N}_k = \mathcal{N} + r_k$, then

$$\mathbb{R} = \bigsqcup_{k=1}^{\infty} \mathcal{N}_K \tag{1.106}$$

¹参考书籍:《Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces》— Elias M. Stein

Suppose G is measurable. Then

$$G = G \cap \mathbb{R} = \bigsqcup_{k=1}^{\infty} (G \cap \mathcal{N}_k)$$
 (1.107)

If $G \cap \mathcal{N}_k$ is measurable, then $G \cap \mathcal{N}_k \subset \mathcal{N}_k$ is a subset of a non-measurable set \mathcal{N}_k . By the previous (a), we get

$$m(G \cap \mathcal{N}_k) = 0 \tag{1.108}$$

Therefore, there exists $k_0 \in \mathbb{N}$, s. t. $G \cap \mathcal{N}_{k_0} \subset G$ is a non-measurable subset of G. (otherwise m(G) = 0 contradicts)

第二章 Measurable Functions

2.1 *Measurable Functions*

定义 下面给出 \mathbb{R}^d 上可测函数的定义.(注意值域为扩充实数系 $\overline{\mathbb{R}}$)

定义 **2.1.1.** A function defined on a measurable subset $E \subset \mathbb{R}^d$ is <u>measurable</u> if for all $a \in \mathbb{R}$,

$$f^{-1}([-\infty, a)) = \{x \in E \mid f(x) < a\}$$
 (2.1)

is measurable.

 $\dot{\mathbf{L}}$. • $f^{-1}([-\infty, a))$ 常简记作 $\{f < a\}$.

- 下面给出几条等价定义.
 - (1) $\{f < a\}$ is measurable. $\Leftrightarrow \{f \le a\}$ is measurable.
 - (2) $\Leftrightarrow \{f > a\}$ is measurable $\Leftrightarrow \{f \ge a\}$ is measurable.
 - (3) If f is finite-valued, then

$$f$$
 is measurable \Leftrightarrow $\{a < f < b\}$ is measurable, $\forall a, b \in \mathbb{R}$ (2.2)

证明.

(1) Since the collection of measurable sets is closed under countable intersections and unions,

$$\{f \le a\} = \bigcap_{n=1}^{\infty} \{f < a + \frac{1}{n}\}\$$
 (2.3)

$$\{f < a\} = \bigcup_{n=1}^{\infty} \{f \le a - \frac{1}{n}\}$$
 (2.4)

Therefore, $\{f < a\}$ is measurable. $\Leftrightarrow \{f \le a\}$ is measurable.

(2) Since the collection of measurable sets is closed under complements, easily proof by (1).

(3) Since f is finite-valued,

$$\{f < a\} = \bigcup_{n=1}^{\infty} \{-n < f < a\}$$
 (2.5)

$$\{a < f < b\} = \{f > a\} \cap \{f < b\}$$
 (2.6)

Therefore, by (2), f is measurable $\Leftrightarrow \{a < f < b\}$ is measurable.

Property 下面给出可测函数的一些性质.

Property 1. Let $-\infty < f(x) < +\infty$ (finite-valued), then

$$f$$
 is measurable $\Leftrightarrow f^{-1}(O)$ is measurable \forall open set O (2.7)

$$\Leftrightarrow f^{-1}(F)$$
 is measurable \forall closed set F (2.8)

证明. $\forall O \subset_{open} \mathbb{R}$, there exists $\{(a_n, b_n)\}_{n=1}^{\infty}$, s. t.

$$O = \bigcup_{n=1}^{\infty} (a_n, b_n)$$
 (2.9)

Then

$$f^{-1}(O) = f^{-1}(\bigcup_{n=1}^{\infty} (a_n, b_n)) = \bigcup_{n=1}^{\infty} f^{-1}((a_n, b_n))$$
 (2.10)

Since f is finite-valued and measurable, then $f^{-1}(a_n, b_n)$ is measurable.

Therefore, $f^{-1}(O)$ is measurable.

Property 2. {continuous functions} \subset {measurable functions}

- (a) (a) If f is continuous on \mathbb{R}^d , then f is measurable.
- (b) If f is measurable, finite-valued and Φ is continuous on \mathbb{R} , then $\Phi \circ f$ is measurable.

证明.

(a) Since f is continuous, $\forall O \subset \mathbb{R}, f^{-1}(O) \subset \mathbb{R}^d$. By Property 1, f is measurable.

(b) $\forall O \subset_{open} \mathbb{R}$. Since Φ is continuous, then $\Phi^{-1}(O)$ is open. Since f is finite-valued and measurable, then $(\Phi \circ f)^{-1}(O) = f^{-1}(\Phi^{-1}(O))$ is open. Therefore, by Property 1, $\Phi \circ f$ is measurable.

Property 3. Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions. Then

$$\sup_{n} f_{n}(x), \inf_{n} f_{n}(x), \limsup_{n \to \infty} f_{n}(x), \liminf_{n \to \infty} f_{n}(x)$$
(2.11)

are measurable.

注. 类比数列的上下极限, 此处

$$\lim \sup_{n \to \infty} f_n(x) := \lim_{k \to \infty} \sup_{n \ge k} \{ f_n(x) \} = \inf_k \sup_{n \ge k} \{ f_n(x) \}$$
 (2.12)

$$\liminf_{n \to \infty} f_n(x) := \lim_{k \to \infty} \inf_{n \ge k} \{ f_n(x) \} = \sup_{k} \inf_{n \ge k} \{ f_n(x) \} \tag{2.13}$$

证明. Since

$$\{x \mid \sup_{n} f_{n}(x) > a\} = \bigcup_{n=1}^{\infty} \{x \mid f_{n}(x) > a\}$$
 (2.14)

$$\{x \mid \inf_{n} f_{n}(x) < a\} = \bigcup_{n=1}^{\infty} \{x \mid f_{n}(x) < a\}$$
 (2.15)

Then $\sup f_n(x)$, $\inf_n f_n(x)$ is measurable.

Since $\sup_{n\geq k} f_n(x)$, $\inf_{n\geq k} f_n(x)$ are measurable, by the previous conclusion, then

$$\lim_{n\to\infty} \sup f_n(x) = \inf_k \sup_{n\geq k} \{f_n(x)\}$$
 (2.16)

$$\liminf_{n \to \infty} f_n(x) = \sup_{k} \inf_{n \ge k} \{ f_n(x) \}$$
(2.17)

are measurable.

Property 4. If $\{f_n\}_{n=1}^{\infty}$ is a collection of measurable functions and

$$\lim_{n \to \infty} f_n(x) = f(x) \tag{2.18}$$

then f is measurable.

注. • 与数列上下极限相同,

$$\lim_{n \to \infty} f_n(x) = f(x) \iff \limsup_{n \to \infty} f_n(x) = \liminf_{n \to \infty} f_n(x) = f(x)$$
 (2.19)

• 此 Property 即说明**可测函数列对极限运算封闭**. 注意到连续函数列对极限运算并不 具备封闭性.(下面给出经典范例)

例 2.1.1.

$$\lim_{n \to \infty} x^n = \begin{cases} 0, & 0 \le x < 1\\ 1, & x = 1 \end{cases}$$
 (2.20)

证明. Since $\{f_n\}_{n=1}^{\infty}$ are measurable, $f(x) = \limsup_{n \to \infty} f_n(x) = \limsup_{n \to \infty} f_n(x)$, then according to Property 3, f is measurable.

Property 5. If f and g are measurable, then

- (i) f^k , $k \in \mathbb{N}$ are measurable.
- (ii) f + g and fg are measurable if both f and g are finite-valued.

证明.

(i) Since

$${f^k > a} = {f > a^{\frac{1}{k}}}, \ \forall k \text{ is odd}$$
 (2.21)

$$\{f^k > a\} = \{f > a^{\frac{1}{k}}\} \cup \{f < -a^{\frac{1}{k}}\}, \ \forall k \text{ is even and } a > 0$$
 (2.22)

Therefore, f^k , $k \in \mathbb{N}$ are measurable.

(ii) Since1

$$\{f + g > a\} = \bigcup_{r \in \mathbb{O}} \{f > a - r\} \cap \{g > r\}$$
 (2.23)

¹即必 $\exists r \in \mathbb{Q}$, s. t. $\{f + g > a\}$ ⊃ $\{f > a - r\}$ ∩ $\{g > r\}$. (另一侧包含关系 \subset 显然易证) (反证. $\forall r \in \mathbb{Q}$ 上式不成立,则对于 $r = 0 \in \mathbb{Q}$, $\exists x_0$, s. t. $f(x_0) > a$, $g(x_0) > 0$, 且 $f(x_0) + g(x_0) \le a$, 矛盾.)

then f + g is measurable.

By the previous results in (i) and (ii), since

$$fg = \frac{1}{4}[(f+g)^2 - (f-g)^2]$$
 (2.24)

Therefore, fg is also measurable.

下面给出数学分析中曾介绍过的几乎处处的定义.

定义 **2.1.2.** A property or statement is said to hold <u>almost everywhere (a.e.)</u> if it is true except on a set of measure zero.

例 2.1.2.

$$f(x) = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$
 (2.25)

We say f is continuous a.e. on [0, 1] since $D(f) = \{1\}$ has measure zero.

下面说明几乎处处相等可保持函数可测性.

命题 **2.1.1.** If f is measurble and f = g a.e., then g is measurable.

证明. Since f is measurable and

$$g = (g - f) + f (2.26)$$

then we shall proof that g - f is measurable.

Let $A := \{x \mid g(x) - f(x) \neq 0\}$, then m(A) = 0. We get

$$\forall a \ge 0, (g-f)^{-1}((-\infty, a]) = (\mathbb{R}^d \backslash A) \cup N, \text{ where } N \subset A$$
 (2.27)

Since m(A) = 0, then N is measurable and m(N) = 0. So $(g - f)^{-1}((-\infty, \alpha])$ is measurable.

Therefore, g - f is measurable. Then g is measurable.

2.2 Measurable functions are nearly simple

本节来介绍一个非常重要的定理. 即可测函数可由简单函数逼近.

特征函数 下面先来介绍特征函数的定义.

定义 2.2.1. If $E \subset \mathbb{R}$, the characteristic / indicator function $\chi_E/\mathbb{1}_E$ of E is defined by

$$\chi_{E}(x) = \begin{cases} 1, & \text{if } x \in E \\ 0, & \text{if } x \notin E \end{cases}$$
 (2.28)

下面给出可测集与其对应特征函数的关系.

命题 **2.2.1.** χ_E is measurable $\Leftrightarrow E$ is measurable

证明. Since

$$\chi_E^{-1}((-\infty, a]) = \begin{cases} \emptyset, & a < 0 \\ E^c, & 0 \le a < 1 \end{cases}$$

$$\mathbb{R}^d, & a \ge 1$$

$$(2.29)$$

Then *E* is measurable $\Rightarrow \chi_E$ is measurable.

 χ_E is measurable $\Rightarrow \chi_E^{-1}((-\infty, a]) = E^c$ is measurable. $\Rightarrow E$ is measurable.

下面给出特征函数的基本性质.

命题 **2.2.2.** [Property].

(1) If $A \cap B = \emptyset$, then

$$\chi_{A \cup B} = \max \left\{ \chi_A, \chi_B \right\} = \chi_A + \chi_B \tag{2.30}$$

(2) $\chi_{A \cap B} = \min \{ \chi_A, \chi_B \} = \chi_A \cdot \chi_B$.

Simple functions 对特征函数做线性组合,即可得到简单函数.

定义 2.2.2. A simple function on \mathbb{R}^d is a finite linear combination

$$f(x) = \sum_{i=1}^{n} a_{i} \chi_{E_{i}}(x)$$
 (2.31)

where each E_j is measurable and $m(E_j) < \infty$.

注. 此处定义中并未要求 $\{E_j\}_{j=1}^n$ disjoint. 而事实上这便引出了下面介绍的标准形式.

下面的命题说明了每个简单函数都可写为标准形式 ($\{E_j\}_{j=1}^n$ disjoint).

命题 **2.2.3.** Every simple function f has a **standard representation**

$$f = \sum_{k=1}^{N} a_k \chi_{E_k}, \text{ where } \{E_j\}_{k=1}^{N} \text{ are disjoint}$$
 (2.32)

证明. Suppose $f = \sum_{k=1}^{N} b_k \chi_{E_k}$, $\{E_j\}_{k=1}^{N}$ may not be disjoint.

Since $\{E_j\}_{k=1}^N$ is finite, the number of elements of range f is also finite. Suppose

range
$$f = \{a_1, \cdots, a_M\}$$
 (2.33)

Then let $F_k = f^{-1}(\{a_k\})$, then $\{F_k\}_{k=1}^M$ are disjoint. Therefore, we get the standard representation

$$f = \sum_{k=1}^{M} a_k \chi_{F_k} \tag{2.34}$$

简单函数逼近可测函数 下面给出一个定理,说明任一可测函数可由简单函数列逼近.

定理 **2.2.1.** Suppose $f: \mathbb{R}^d \longrightarrow [-\infty, \infty]$ is measurable.

Then there exists a sequence $\{\varphi_n\}$ of simple functions, s. t.

$$0 \le |\varphi_1| \le |\varphi_2| \le \dots \le |f| \tag{2.35}$$

$$\lim_{k \to \infty} \varphi_k(x) = f(x), \text{ for all } x$$
 (2.36)

and $\varphi_k \to f$ uniformly on any set on which f is bounded.

证明. 下面从两方面分类讨论,即非负函数 & 变号函数, f 有界 & 无界.

(1) 非负函数 $f: \mathbb{R}^d \longrightarrow [0, \infty]$.

1° f is bounded. Assume $|f(x)| \le M$.

Let²

$$E_n^k = f^{-1}((\frac{k}{2^n}, \frac{k+1}{2^n}]), k = 0, \dots, N_n$$
 (2.37)

$$\varphi_n(x) = \frac{k}{2^n}, \quad \text{if } x \in E_n^k \tag{2.38}$$

Then

$$\varphi_n(x) = \sum_{k=0}^{N_n} \frac{k}{2^n} \chi_{E_n^k}(x)$$
 (2.39)

Therefore³

$$|\varphi_n(x) - f(x)| \le \frac{1}{2^n} \to 0 \text{ (independent of } x)$$
 (2.40)

 $\Rightarrow \varphi_n \to f$ uniformly.

图 2.1: 对 f 值域进行分划

 $^{{}^{2}}E_{n}^{k}$ 表示第 n 次对值域进行分划后产生的第 k 个值域区间,其中 $\frac{N_{n}+1}{2^{n}} \geq M$. ${}^{3}|\varphi_{n}(x)-f(x)|$ 小于等于第 n 次分划后两个相邻值域区间的步长值,即 $\frac{1}{2^{n}}$.

 2° f is unbounded. (idea: truncation,将 f 截断为一列有界函数列,并逐点收敛于 f)
Let

$$f_k(x) = \begin{cases} f(x), & \text{if } f(x) \le k \\ k, & \text{if } f(x) > k \end{cases}$$
 (2.41)

Then $f_k(x) \to f(x)$, $\forall x \in \mathbb{R}^d$.

Since f_k is bounded, by the previous result in 1°,

For each k, \exists a sequence of simple functions $\{\psi_{kn}\}_{n=1}^{\infty}$, s. t.

$$\psi_{kn}(x) \to f_k(x), \ \forall x$$
 (2.42)

So we get

$$\psi_{11} \quad \psi_{12} \quad \psi_{13} \quad \cdots \quad \rightarrow \quad f_1 \\
\psi_{21} \quad \psi_{22} \quad \psi_{23} \quad \cdots \quad \rightarrow \quad f_2 \\
\psi_{31} \quad \psi_{32} \quad \psi_{33} \quad \cdots \quad \rightarrow \quad f_3 \\
\cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \\
f$$

$$(2.43)$$

From the previous results in 1°, we get

$$|\psi_{kn}(x) - f_k(x)| \le \frac{1}{2^n}$$
 (2.44)

Let n = k, then $|\psi_{kk}(x) - f_k(x)| \le \frac{1}{2^k}$. Let $\varphi_k = \psi_{kk}$, then

$$|\varphi_k(x) - f(x)| \le |\varphi_k(x) - f_k(x)| + |f_k(x) - f(x)|$$
 (2.45)

Since $f_k(x) \to f(x)$, we get $\varphi_k(x) \to f(x)$, $\forall x$, where $\{\varphi_k = \psi_{kk}\}_{k=1}^{\infty}$ are simple functions.

(2) 变号函数 $f: \mathbb{R}^d \longrightarrow [-\infty, \infty]$.

We denote that

$$f^{+}(x) := \max\{f(x), 0\}$$
 (2.46)

$$f^{-}(x) := \max\{-f(x), 0\}$$
 (2.47)

By the previous results in (1), there exist sequences of simple functions $\{\varphi_k\}_{k=1}^{\infty}, \{\psi_k\}_{k=1}^{\infty}, s.t.$

$$\varphi_k \to f^+ \text{ and } \psi_k \to f^- \text{ pointwisely}$$
 (2.48)

We can observe that $f = f^+ - f^-$ and $|f| = f^+ - f^-$.

Let $\phi_k(x) = \varphi_k(x) - \psi_k(x)$, then ϕ_k is a simple function with $\phi_k \to f$ pointwisely.

阶梯函数逼近可测函数 在证明了可测函数可由简单函数逼近后,我们更进一步,来说明可测函数可由更加简单的**阶梯函数**来逼近.

先给出阶梯函数的定义.

定义 2.2.3. A step function is a finite sum

$$f = \sum_{k=1}^{N} a_k \chi_{R_k}, \text{ where } R_k \text{ is a rectangle}$$
 (2.49)

下面的定理说明了 measurable functions are almost step functions.

定理 **2.2.2.** Suppose f is measurable on \mathbb{R}^d . Then there exists a sequence of step functions $\{\psi_k\}_{k=1}^{\infty}$, s. t.

$$\lim_{k \to \infty} \psi_k(x) = f(x), \ a.e. \ x$$
 (2.50)

注. 首先介绍函数列收敛点集的几种不同的等价表述:

$$\{x \mid \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, |f_n(x) - f(x)| < \epsilon\}$$
 (2.51)

$$\Leftrightarrow \{x \mid \forall n \in \mathbb{N}, \exists N \in \mathbb{N}, \forall k \ge N, |f_k(x) - f(x)| < \frac{1}{n}\}$$
 (2.52)

$$\Leftrightarrow \bigcap_{n=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{k=N}^{\infty} \{x \mid |f_k(x) - f(x)| < \frac{1}{n}\}$$
(2.53)

从而可以得到函数列发散点集 (Negation):

$$\{x \mid \exists n \in \mathbb{N}, \forall N \in \mathbb{N}, \exists k \ge N, |f_k(x) - f(x)| \ge \frac{1}{n}\}$$
 (2.54)

$$\Leftrightarrow \bigcup_{n=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{k=N}^{\infty} \{x \mid |f_k(x) - f(x)| \ge \frac{1}{n}\}$$
 (2.55)

$$\Leftrightarrow \bigcap_{N=1}^{\infty} \bigcup_{k=N}^{\infty} \{x \mid f_k(x) \neq f(x)\}$$
 (2.56)

证明. (证明思路: 先用阶梯函数逼近简单函数,再用简单函数逼近可测函数.)

It suffices to show that χ_E can be approximated by step functions, for any measurable set E.

According to Thm1.3.4 (iv)

Let $f = \chi_E$, then $\forall \epsilon > 0$, \exists cubes $\bigcup_{i=1}^N Q_i$, s. t.

$$m(E \triangle \bigcup_{j=1}^{N} Q_j) \le \epsilon$$
 (2.57)

By considering the grid formed by extending the sides of these cubes, there exists almost disjoint rectangles $\{\widetilde{R}_j\}_{j=1}^M$, s. t.

$$\bigcup_{j=1}^{N} Q_j = \bigcup_{j=1}^{M} \widetilde{R}_j \tag{2.58}$$

By taking ranctangles R_j contained in \widetilde{R}_j , we can find a collection of disjoint rectangles $\{R_j\}_{j=1}^M$, s. t.

$$m(E \triangle \bigsqcup_{j=1}^{M} R_j) \le 2\epsilon \tag{2.59}$$

For every $k \in \mathbb{N}$, there exists disjoint rectangles $\{R_j\}_{j=1}^M$, s. t.

$$m(E \triangle \bigsqcup_{j=1}^{M} R_j) \le \frac{1}{2^{k+1}} \tag{2.60}$$

There also exists a step function ψ_k

$$\psi_k(x) := \chi_{\bigcup_{j=1}^M R_j}(x) = \sum_{i=1}^M \chi_{R_j}(x)$$
 (2.61)

Let

$$E_k := \{x \mid f_k(x) \neq f(x)\} \tag{2.62}$$

Since $E_k \subset E \triangle \bigsqcup_{j=1}^M R_j$, then $m(E_k) \leq \frac{1}{2^k}$. Let⁴

$$F_j = \bigcup_{j=k+1}^{\infty} E_j, \quad F = \bigcap_{k=1}^{\infty} F_k \tag{2.63}$$

Then $\psi_k(x) \to f(x)$, $\forall x \in F^c$. Since

$$m(F) \le m(F_k), \ \forall k \in \mathbb{N}$$
 (2.64)

$$m(F_k) = m(\bigcup_{j=k+1}^{\infty} E_j) \le \sum_{j=k+1}^{\infty} m(E_j) \le \frac{1}{2^k}$$
 (2.65)

Therefore,
$$m(F) = 0$$
. $\lim_{k \to \infty} \psi_k(x) = f(x)$, a.e. x .

 $^{^4}$ 根据<mark>注</mark>中式 (2.56), F 即为函数列 $\{\psi_k\}_{k=1}^{\infty}$ 的发散点集,从而 $\psi_k(x) \to f(x)$ 在 F^c 上收敛.

第三章 Integration Theory

3.1 The Lebesgue integral

Lebesgue Integral 的构造可以分为三步,分别为构造下列函数的积分:

- 1. Simple functions
- 2. Non-negative measurable functions

$$\int f := \sup \{ \int \varphi \mid \varphi \text{ simple, } 0 \le \varphi \le f \}$$
 (3.1)

3. General case

$$f = f^{+} - f^{-} \tag{3.2}$$

$$\int f := \int f^+ - \int f^- \tag{3.3}$$

3.1.1 Simple functions

定义 下面先给出非负简单函数在标准形式下的积分定义.

定义 3.1.1. If φ is a non-negative simple function with standard representation

$$\varphi(x) = \sum_{k=1}^{M} a_k \chi_{E_k}(x) \tag{3.4}$$

We define the **Lebesgue integral** of φ by

$$\int_{\mathbb{R}^d} \varphi(x) dx = \sum_{k=1}^M a_k m(E_k)$$
(3.5)

If *E* is a measurable subset of \mathbb{R}^d with finite measure, then

$$\varphi(x)\chi_{E}(x) = \sum_{k=1}^{M} a_{k}\chi_{E_{k}}(x)\chi_{E}(x) = \sum_{k=1}^{M} a_{k}\chi_{E_{k}\cap E}(x)$$
(3.6)

is also a simple function, and define

$$\int_{E} \varphi(x)dx = \int_{\mathbb{R}^{d}} \varphi(x)\chi_{E}(x)dx \tag{3.7}$$

- **注.** 此处仅对**标准形式**定义了积分. 事实上,此处定义的积分与简单函数的表达形式无关(即**Property 1.**).
- 关于记号, 当测度非常明确时, 大多数情况下可简写, 如

$$\int_{E} \varphi(x) dx \Rightarrow \int_{E} \varphi \tag{3.8}$$

$$\int_{\mathbb{R}^d} \varphi(x) dx \Rightarrow \int \varphi \tag{3.9}$$

当为了强调我们选择了何种测度 μ 时,还可用以下的记号:

$$\int_{E} \varphi(x) d\mu(x) \tag{3.10}$$

Property 下面给出简单函数积分的性质.

Property 1. Independence of the representation.

If $\varphi = \sum_{k=1}^{N} a_k \chi_{E_k}$ is any representation of φ , then

$$\int \varphi = \sum_{k=1}^{N} a_k m(E_k)$$
 (3.11)

在证明这个性质之前, 先来证明一条引理.(书¹Exercises Of Chapter 2 的第 1 题)

引理 **3.1.1.** Given a collection of sets $\{F_k\}_{k=1}^n$, there exists another collection $\{\widetilde{F}_j\}_{j=1}^N$ with $N=2^n-1$, so that

(i).
$$\bigcup_{k=1}^{n} F_k = \bigcup_{j=1}^{N} \widetilde{F}_j$$
 (3.12)

(ii).
$$\{\widetilde{F}_j\}_{j=1}^N$$
 are disjoint (3.13)

$$(iii). F_k = \bigcup_{\widetilde{F}_j \subset F_k} \widetilde{F}_j (3.14)$$

证明. Consider the collection

$$\mathcal{F} := \{ \bigcup_{k=1}^{n} G_k - \bigcap_{k=1}^{n} F_k^c \mid G_k \text{ denotes } F_k \text{ or } F_k^c \}$$
 (3.15)

1参考书籍:《Real Analysis – – Measure Theroy, Integration, & Hilbert Spaces》— Elias M. Stein

下面来证明原命题.

证明. According to Lemma 3.1.1, there exists another decomposition of $\bigcup_{k=1}^{N} E_k$, i.e.

$$\bigcup_{j=1}^{M} \widetilde{E}_{j} = \bigcup_{k=1}^{N} E_{k} \tag{3.16}$$

where $\{\widetilde{E}_j\}_{j=1}^M$ are disjoint, and for each $1 \le k \le M$,

$$E_k = \bigcup_{\widetilde{E}_j \subset E_k} \widetilde{E}_j \tag{3.17}$$

Let

$$\widetilde{a}_j := \sum_{\widetilde{E}_i \subset E_k} a_k \tag{3.18}$$

Then clearly

$$\varphi = \sum_{j=1}^{M} \widetilde{a}_{j} \chi_{\widetilde{E}_{j}}$$
 (3.19)

Since $\{\widetilde{E}_j\}_{j=1}^M$ are disjoint, we get

$$\int \varphi = \sum_{j=1}^{M} \widetilde{a}_{j} m(\widetilde{E}_{j}) = \sum_{j=1}^{M} \sum_{\widetilde{E}_{j} \subset E_{k}} a_{k} m(\widetilde{E}_{j}) = \sum_{k=1}^{N} a_{k} m(E_{k})$$
(3.20)

Property 2. Linearity.

If φ and ψ are non-negative simple, and $a, b \ge 0$, then

$$\int (a\varphi + b\psi) = a \int \varphi + b \int \psi$$
 (3.21)

证明. 下面分为两步来证明.

(a) $\forall c \geq 0, \int c\varphi = c \int \varphi$. Suppose $\varphi = \sum_{k=1}^{M} a_k \chi_{E_k}$, where $\{E_k\}_{k=1}^{M}$ are disjoint. Then

$$c\varphi = \sum_{k=1}^{M} ca_k \chi_{E_j} \tag{3.22}$$

is also a non-negative simple function. Therefore,

$$\int c\varphi = \sum_{k=1}^{M} ca_k m(E_k) = c \sum_{k=1}^{M} a_k m(E_k) = c \int \varphi$$
 (3.23)

(b)
$$\int (\varphi + \psi) = \int \varphi + \int \psi$$
.

Suppose

$$\varphi = \sum_{k=1}^{M} a_k \chi_{E_k}, \ \psi = \sum_{j=1}^{N} b_j \chi_{F_j}$$
 (3.24)

where both $\{E_k\}_{k=1}^M$ and $\{F_j\}_{j=1}^N$ are disjoint and $\mathbb{R}^d = \bigcup_{k=1}^M E_k = \bigcup_{j=1}^N F_j$. Since

$$E_k = E_k \cap \mathbb{R}^d = E_k \cap \bigsqcup_{j=1}^N F_j = \bigsqcup_{j=1}^N (E_k \cap F_j)$$
(3.25)

Then

$$\varphi = \sum_{k=1}^{M} a_k \chi_{E_k} = \sum_{k=1}^{M} a_k \chi_{\bigsqcup_{j=1}^{N} (E_k \cap F_j)} = \sum_{k=1}^{M} \sum_{j=1}^{N} a_k \chi_{E_k \cap F_j}$$
(3.26)

Similarly

$$\psi = \sum_{j=1}^{N} b_j \chi_{F_j} = \sum_{j=1}^{N} b_k \chi_{\bigsqcup_{k=1}^{M} (E_k \cap F_j)} = \sum_{j=1}^{N} \sum_{k=1}^{M} b_k \chi_{E_k \cap F_j}$$
(3.27)

Therefore

$$\varphi + \psi = \sum_{j,k} (a_k + b_j) \chi_{E_k \cap F_j}$$
(3.28)

$$\int (\varphi + \psi) = \sum_{j,k} (a_k + b_j) m(E_k \cap F_j)$$
(3.29)

$$= \sum_{j,k} a_k m(E_k \cap F_j) + \sum_{j,k} b_j m(E_k \cap F_j)$$
(3.30)

$$= \int \varphi + \int \psi \tag{3.31}$$

Property 3. Monotonicity.

If $\varphi \leq \psi$ are non-negative and simple, then

$$\int \varphi \le \int \psi \tag{3.32}$$

证明. Suppose

$$\varphi = \sum_{k=1}^{M} a_k \chi_{E_k}, \ \psi = \sum_{i=1}^{N} b_j \chi_{F_j}$$
 (3.33)

where both $\{E_k\}_{k=1}^M$ and $\{F_j\}_{j=1}^N$ are disjoint. Similar to the proof in Property 2, we get

$$\psi - \varphi = \sum_{j,k} (b_j - a_k) \chi_{E_k \cap F_j}$$
(3.34)

Since $\varphi(x) \leq \psi(x)$, $\forall x \in \mathbb{R}^d$, then $\psi - \varphi$ is non-negative and simple. Therefore,

$$\int (\psi - \varphi) = \sum_{j,k} (b_j - a_k) m(E_k \cap F_j) \ge 0 \implies \int \varphi \le \int \psi$$
 (3.35)

Property 4. Additivity.

If $\{E_k\}_{k=1}^{\infty}$ are disjoint subsets of \mathbb{R}^d with finite measure, then

$$\int_{\bigcup_{k=1}^{\infty} E_k} \varphi = \sum_{k=1}^{\infty} \int_{E_k} \varphi \tag{3.36}$$

注. 首先回顾 abstract measure 的定义.

定义 3.1.2. Let X be a set and let M be a σ – algebra on X.

A **measure** on \mathcal{M} is a function $\mu : \mathcal{M} \longrightarrow [0, \infty]$, s. t.

- (i) $\mu(\emptyset) = 0$.
- (ii) If $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ are disjoint, then

$$\mu(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \mu(E_j)$$
(3.37)

回到我们积分的性质上来. 下面我们将说明,对于任一给定的非负简单函数 φ ,将 φ 在任一可测集 A 上的积分看作 Lebesgue σ – algebra \mathcal{L} 上的映射,则该映射为定义在 \mathcal{L} 上的测度.(从而 Property 4. 作为测度的必要条件自然成立)

命题 3.1.1. For any fixed non-negative and simple function φ , the map

$$\mu: \mathcal{L} \longrightarrow [0, \infty]$$
 (3.38)

$$A \longmapsto \int_{A} \varphi \tag{3.39}$$

is a measure on \mathcal{L} .

证明. Suppose $\{A_j\}_{j=1}^{\infty} \subset \mathcal{L}$ are disjoint, and

$$\varphi = \sum_{k=1}^{M} a_k \chi_{E_k}, \text{ where } \{E_k\}_{k=1}^{M} \text{ are disjoint}$$
 (3.40)

Let $A = \bigcup_{j=1}^{\infty} A_j$, then

$$\int_{\bigcup_{j=1}^{\infty} A_j} \varphi = \int_A \varphi = \int \varphi \chi_A = \int \left(\sum_{k=1}^M a_k \chi_{E_k \cap A}\right)$$
 (3.41)

$$=\sum_{k=1}^{M}a_{k}m(E_{k}\cap A)$$
(3.42)

$$=\sum_{k=1}^{M}a_{k}m(E_{k}\cap(\bigcup_{j=1}^{\infty}A_{j}))$$
(3.43)

$$=\sum_{k=1}^{M}a_{k}m(\bigsqcup_{j=1}^{\infty}(E_{k}\cap A_{j}))$$
(3.44)

$$= \sum_{k=1}^{M} a_k \sum_{j=1}^{\infty} m(E_k \cap A_j)$$
 (3.45)

$$= \sum_{k=1}^{M} \sum_{j=1}^{\infty} a_k m(E_k \cap A_j)$$
 (3.46)

Since positive series always converges in $[0, \infty]$, then

$$\int_{A} \varphi = \sum_{k=1}^{M} \sum_{j=1}^{\infty} a_{k} m(E_{k} \cap A_{j}) = \sum_{j=1}^{\infty} \sum_{k=1}^{M} a_{k} m(E_{k} \cap A_{j}) = \sum_{j=1}^{\infty} \int_{A_{j}} \varphi$$
 (3.47)

Therefore, the integral on any non-negative simple function is accually a measure on \mathcal{L} . \Box

3.1.2 Non – negative measurable functions

为了讨论的方便, 先给出非负可测函数的一个记号.

$$\mathcal{M}^+ := \{all\ non - negative\ measurable\ functions\}$$
 (3.48)

定义 下面给出非负可测函数的积分的定义.

定义 3.1.3. For $f \in \mathcal{M}^+$, we define

$$\int f(x)dx := \sup \{ \int \varphi(x)dx \mid 0 \le \varphi \le f, \ \varphi \ simple \}$$
 (3.49)

注. 此处对 Non-negative measurable function 积分的定义兼容定义 3.1.1 中对 Non-negative simple function 积分的定义,具体表现为: ∀*ϕ*₀ non-negative and simple,

$$\sup \left\{ \int \varphi(x) dx \mid 0 \le \varphi \le \varphi_0, \ \varphi \ simple \right\} = \int \varphi_0(x) dx \tag{3.50}$$

性质 下面来验证定义 3.1.3 中定义的积分满足几条基本性质.

Property 1. Monotonicity.

Let $f, g \in \mathcal{M}^+$. Then

$$\int f \le \int g \quad \text{if} \quad f \le g \tag{3.51}$$

证明. Let

$$A = \{ \varphi \text{ simple } | \ 0 \le \varphi \le f \}$$
 (3.52)

$$B = \{ \psi \text{ simple } | 0 \le \psi \le g \}$$
 (3.53)

Then for all $\varphi \in A$, $0 \le \varphi \le f \le g \Rightarrow \varphi \in B \Rightarrow A \subset B$. Since

$$\int f = \sup_{\varphi \in A} \{ \int \varphi \}, \quad \int g = \sup_{\psi \in B} \{ \int \psi \}$$
 (3.54)

Therefore

$$\int f \le \int g \tag{3.55}$$

Property 2. 齐次性.

Let $f \in \mathcal{M}^+$. If $c \ge 0$, then

$$\int cf = c \int f \tag{3.56}$$

证明. Assume c > 0. Then

$$\int cf = \sup \{ \int \varphi \mid 0 \le \varphi \le cf, \ \varphi \ simple \}$$
 (3.57)

$$= \sup \left\{ \int \varphi \mid 0 \le \frac{\varphi}{c} \le f, \ \varphi \ simple \right\}$$
 (3.58)

$$\stackrel{\psi = \frac{\varphi}{c}}{=} \sup \left\{ \int c\psi \mid 0 \le \psi \le f, \ \psi \ simple \right\}$$
 (3.59)

$$= c \sup \{ \int \psi \mid 0 \le \psi \le f, \ \psi \ simple \}$$
 (3.60)

$$=c\int f \tag{3.61}$$

单调收敛定理 下面我们正式迈入实分析的"大门",介绍第一个收敛定理.

定理 3.1.2. The Monotone Convergence Theorem.

If $\{f_n\}_{n=1}^{\infty} \subset \mathcal{M}^+, f_j \leq f_{j+1}$ for all j, and $\lim_{n \to \infty} f_n = f$, then

$$\int f = \lim_{n \to \infty} \int f_n \tag{3.62}$$

注. • 此即为"单调收敛定理",这个定理说明了对于单调递增的非负可测函数列, 其积分与极限可交换次序. 具体表现为

$$\int f = \int \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int f_n \tag{3.63}$$

• 该定理还说明了,我们可以给出非负可测函数的另一个更自然的等价定义,即用非负简单函数列的积分逼近非负可测函数的积分.

定义 **3.1.4.** For $f \in \mathcal{M}^+$, we can also define

$$\int f := \lim_{n \to \infty} \int \varphi_n \tag{3.64}$$

where $\varphi_n \to f$ and $0 \le \varphi_1 \le \varphi_2 \le \cdots \le f$ by Thm 2.2.1.

并且该定理说明了该积分定义的唯一性及 well-defined.

在证明定理前, 先来证明一个引理 (将定理 1.3.3 (i) 拓展到一般的抽象测度上).

引理 **3.1.3.** Let X be a set, \mathcal{M} be a σ – algebra on X, $\mu : \mathcal{M} \longrightarrow [0, \infty]$ be a measure on \mathcal{M} . If $\{E_n\}_{n=1}^{\infty} \subset \mathcal{M}$, $E_n \nearrow E$, then

$$\lim_{n \to \infty} \mu(E_n) = \mu(E) \tag{3.65}$$

证明. 证明过程与 Thm 1.3.3 完全一致 (仅用到了测度的可数可加性).

Let $S_1 = E_1$, $S_k = E_k - E_{k-1}$, $\forall k \ge 2$. Then $\{S_k\}_{n=1}^{\infty} \subset \mathcal{M}$ are disjoint.

Since $E = \bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} S_k$, then

$$\mu(E) = \mu(\bigsqcup_{k=1}^{\infty} S_k) = \sum_{k=1}^{\infty} \mu(S_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(S_k) = \lim_{n \to \infty} \mu(\bigsqcup_{k=1}^{n} S_k) = \lim_{n \to \infty} \mu(E_n)$$
 (3.66)

下面证明原定理.

证明.

• $\lim_{n\to\infty} \int f_n \leq \int f$.

Since $f_n \leq f$, $\forall n$, then

$$\int f_n \le \int f, \ \forall n \tag{3.67}$$

Since $\{\int f_n\}_{n=1}^{\infty}$ always converges in $[0, \infty]$, then let $n \to \infty$, we get

$$\lim_{n \to \infty} \int f_n \le \int f \tag{3.68}$$

• $\lim_{n\to\infty} \int f_n \ge \int f$.

Fix 0 < a < 1, for any $0 \le \varphi \le f$ simple, let

$$E_n = \{ x \mid f_n(x) \ge a\varphi(x) \} \tag{3.69}$$

Then since $\forall x \in E_n$, we have $f_{n+1}(x) \ge f_n(x) \ge a\varphi(x) \Rightarrow x \in E_{n+1} \Rightarrow E_n \subset E_{n+1}$.

Then $E_n \nearrow$. Since

$$\int_{\mathbb{R}^d} f_n \ge \int_{E_n} f_n \ge \int_{E_n} a\varphi, \ \forall n$$
 (3.70)

Let $n \to \infty$, we get

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} f_n \ge \lim_{n \to \infty} \int_{E_-} a\varphi \tag{3.71}$$

Then we have to calculate $\lim_{n\to\infty}\int_{E_n} a\varphi$:

- Since $\alpha\varphi$ is non-negative and simple, by Prop 3.1.1, the map

$$\mu: \mathcal{L} \longrightarrow [0, \infty]$$
 (3.72)

$$E \longmapsto \int_{E} a\varphi \tag{3.73}$$

is a measure on the collection of Lebesgue measurable sets £. (将积分视作测度)

Since $\{E_n\}_{n=1}^{\infty} \subset \mathcal{L}$ and $E_n \nearrow$, by Lemma 3.1.3, we get

$$\lim_{n \to \infty} \mu(E_n) = \mu(\bigcup_{n=1}^{\infty} E_n)$$
(3.74)

i.e.

$$\lim_{n \to \infty} \int_{E_n} a\varphi = \int_{\bigcup_{n=1}^{\infty} E_n} a\varphi \tag{3.75}$$

For all $x \in \mathbb{R}^d$, since $a\varphi(x) < f(x)$ and $f_n \to f$, there exists $N_x \in \mathbb{N}$, s. t.

$$f_n(x) \ge a\varphi(x), \ \forall n \ge N_x$$
 (3.76)

which indicates $x \in E_{N_x}$ for some N_x . Therefore

$$\bigcup_{n=1}^{\infty} E_n = \mathbb{R}^d \implies \lim_{n \to \infty} \int_{E_n} a\varphi = \int_{\bigcup_{n=1}^{\infty} E_n} a\varphi = \int_{\mathbb{R}^d} a\varphi$$
 (3.77)

Therefore, we get

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} f_n \ge \lim_{n \to \infty} \int_{E_-} a\varphi = \int_{\mathbb{R}^d} a\varphi \tag{3.78}$$

Let $a \rightarrow 1$, then

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} f_n \ge \int_{\mathbb{R}^d} \varphi \tag{3.79}$$

Since φ is arbitratry, taking the supremum over φ , we get

$$\lim_{n \to \infty} \int_{\mathbb{D}^d} f_n \ge \sup \left\{ \int_{\mathbb{D}^d} \varphi \mid 0 \le \varphi \le f, \ \varphi \ simple \right\} = \int f \tag{3.80}$$

函数项级数的可数可加性 接下来我们将给出**单调收敛定理**在**函数项级数**上的表达形式,它 说明了对于**非负可测函数项级数**,其**积分与求和可交换次序**.

在此之前, 先来证明有限项的情况.

(此也可视作非负可测函数积分的Property 线性性的一部分.)

命题 3.1.2. Linearity.

If $f, g \in \mathcal{M}^+$, then

$$\int (f+g) = \int f + \int g \tag{3.81}$$

证明. By Thm 2.2.1 and Thm 3.1.2, there exists sequences of non-negative and simple functions $\{\varphi_n\}_{n=1}^{\infty}$ and $\{\psi_n\}_{n=1}^{\infty}$, $\varphi_n \to f$ and $\psi_n \to g$, s. t.

$$\int f = \lim_{n \to \infty} \int \varphi_n, \quad \int g = \lim_{n \to \infty} \int \psi_n \tag{3.82}$$

Since $\varphi_n + \psi_n$ is still non-negative and simple, then

By the Linearity of integral on non-negative and simple functions, (**Property 2.** in §3.1.1)

$$\int (\varphi_n + \psi_n) = \int \varphi_n + \int \psi_n \tag{3.83}$$

Let $n \to \infty$, by Thm 3.1.2, we get (极限与积分交换次序)

$$\int (f+g) = \int f + \int g \tag{3.84}$$

根据 Prop 3.1.2,由归纳法,容易得到其对任意有限项函数项级数都成立.

下面给出函数项级数上的单调收敛定理.

定理 3.1.4. Monotone Convergence Theorem (MCT, series version).

If
$$\{f_n\}_{n=1}^{\infty} \subset \mathcal{M}^+$$
 and $f = \sum_{n=1}^{\infty} f_n$, then

$$\int f = \sum_{n=1}^{\infty} \int f_n \tag{3.85}$$

注. 该定理说明了对于非负可测函数项级数,其积分与求和可交换次序.

证明. Let $F_n = \sum_{k=1}^n f_k$, then $F_n \nearrow \sum_{k=1}^\infty f_k = f$. By MCT (Thm 3.1.2),

$$\lim_{n \to \infty} \int F_n = \int f \tag{3.86}$$

i.e.

$$\lim_{n \to \infty} \int \sum_{k=1}^{n} f_k = \int f \tag{3.87}$$

By the **Linearity** of integral on non-negative functions (Prop 3.1.2),

$$\lim_{n \to \infty} \int \sum_{k=1}^{n} f_k = \lim_{n \to \infty} \sum_{k=1}^{n} \int f_k = \sum_{k=1}^{\infty} \int f_k = \int f$$
 (3.88)

积分的唯一性 在实分析中,我们并不关心零测集上的各种性质,进而常常忽略函数在零测集上的情况. 在给出**单调收敛定理**的更一般版本前,我们先来给出**几乎处处**意义下,函数**积分的唯一性**.

下面的命题说明了,若两个非负可测函数几乎处处相等,则其积分相等.

命题 3.1.3. Uniqueness.

If $f \in \mathcal{M}^+$, then

$$\int f = 0 \iff f = 0 \text{ a.e.}$$
 (3.89)

注. 根据该命题,对于任意非负可测函数 f, q

$$\int f = \int g \iff \int (f - g) = 0 \iff f - g = 0 \text{ a.e.} \iff f = g \text{ a.e.}$$
 (3.90)

证明.

• 充分性 "←": If *f* = 0 a.e.

 $\forall 0 \le \varphi \le f \text{ simple}, \ \varphi = 0 \text{ a.e.} \ . \ \text{Let } E = \{x \mid \varphi(x) = 0\}, \text{ then } m(E^c) = 0.$

$$\int \varphi = \int_{E} \varphi + \int_{E^{c}} \varphi = 0 + 0 = 0 \tag{3.91}$$

Taking the supremum of φ , we get

$$\int f = \sup \{ \int \varphi \mid 0 \le \varphi \le f, \ \varphi \ simple \} = 0$$
 (3.92)

• 必要性 " \Rightarrow " : If $\int f = 0$, let

$$E_n := \{ x \mid f(x) > \frac{1}{n} \} \tag{3.93}$$

Then

$$\bigcup_{n=1}^{\infty} E_n = \{ x \mid f(x) > 0 \} = \{ f \neq 0 \}$$
 (3.94)

Suppose $m(\bigcup_{n=1}^{\infty} E_n) > 0$, then there exists $N \in \mathbb{N}$, s. t. $m(E_N) > 0$. Then

$$\int f \ge \int_{E_N} f > \frac{1}{N} m(E_N) > 0 \tag{3.95}$$

which is a contradiction to $\int f = 0$.

Therefore, $m(\bigcup_{n=1}^{\infty} E_n) = m(\{f \neq 0\}) = 0, f = 0$ a.e.

"几乎处处"版 MCT 根据积分的唯一性 (命题 3.1.3),下面说明在"几乎处处收敛"条件下,单调收敛定理成立 (积分与极限仍可交换次序).

推论 3.1.5. a.e. MCT.

If $\{f_n\}_{n=1}^{\infty} \subset \mathcal{M}^+, f \in \mathcal{M}^+, f_n \nearrow f$ a.e. , then

$$\int f = \lim_{n \to \infty} \int f_n \tag{3.96}$$

证明. Let $f_n \nearrow f$ on E, then $m(E^c) = 0$ and $f_n - f_n \chi_E = 0$ a.e.

By Prop 3.1.3, we get

$$\int f_n = \int f_n \chi_E \tag{3.97}$$

Since $f_n\chi_E \nearrow f\chi_E$, then by **MCT** (Thm 3.1.2, 单调收敛定理)

$$\lim_{n \to \infty} \int f_n = \lim_{n \to \infty} \int f_n \chi_E = \int f \chi_E = \int_E f$$
 (3.98)

Since $m(E^c) = 0$, then

$$\int f = \int_{E} f = \lim_{n \to \infty} \int f_n \tag{3.99}$$

 $(\forall 0 \le \varphi \le f \text{ simple, } \int \varphi = \int_E \varphi + \int_{E_c} \varphi = \int_E \varphi. \text{ Taking the supremum of } \varphi \Rightarrow \int f = \sup \{ \int \varphi \} = \int_E f)$

Fatou's Lemma 我们首先来考虑一个问题,若我们将单调收敛定理 (MCT) 中的"单调"条件去掉,结论是否仍然成立 (积分与极限是否仍可交换次序)?即

Suppose
$$f_n \to f$$
 a.e., do we have $\int f_n \to \int f$?

事实上答案为 absolutely no. 下面给出一个反例.

例 3.1.1. Consider $f_n = n\chi_{(0,\frac{1}{n})}$. Then $f_n \to 0$ a.e. on [0, 1]. However,

$$\int f_n = n \cdot \frac{1}{n} = 1, \ \forall n \in \mathbb{N} \neq 0$$
 (3.100)

事实上,将"单调收敛"条件整个去除,我们将得到如下的更一般的 Fatou's Lemma.

定理 3.1.6. Fatou's Lemma.

If $\{f_n\}_{n=1}^{\infty} \subset \mathcal{M}^+$, then

$$\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n \tag{3.101}$$

注. • 回顾函数列下极限的定义.

$$\liminf_{n \to \infty} f_n = \lim_{n \to \infty} \left(\inf_{k \ge n} f_k \right) \tag{3.102}$$

即对定义域上每一点 x,取数列 $\{f_n(x)\}_{n=1}^{\infty}$ 的下极限,再将所有的 x 所对应的下极限拼成一个函数,即定义为函数列 $\{f_n\}_{n=1}^{\infty}$ 的下极限.

(上式右侧作用在固定的 x 上, 即为数列 $\{f_n(x)\}_{n=1}^{\infty}$ 下极限的定义.)

• Fatou's Lemma 告诉我们,对于任意一列非负可测函数列,其函数列的下极限的积分,要小于每个函数积分后得到的积分数列的下极限.

证明. Since

$$\liminf_{n \to \infty} f_n = \lim_{n \to \infty} (\inf_{k \ge n} f_k)$$
(3.103)

Let $g_n = \inf_{k \ge n} f_k$, then $g_n \nearrow \lim_{n \to \infty} g_n$. By **MCT** (Thm 3.1.2, 单调收敛定理),

$$\int \lim_{n \to \infty} g_n = \lim_{n \to \infty} \int g_n \tag{3.104}$$

i.e.

$$\int \liminf_{n \to \infty} f_k = \lim_{n \to \infty} \left(\int \inf_{k \ge n} f_k \right) \tag{3.105}$$

For each n, since $\inf_{k \ge n} f_k \le f_j$, $\forall j \ge n$, then

$$\int \inf_{k \ge n} f_k \le \int f_j, \ \forall j \ge n \tag{3.106}$$

Taking the infimum of $\{\int f_j\}_{j=n}^{\infty}$, then

$$\int \inf_{k \ge n} f_k \le \inf_{j \ge n} \int f_j, \ \forall n \in \mathbb{N}$$
 (3.107)

For *n* is arbitrary, let $n \to \infty$, we get

$$\lim_{n \to \infty} \left(\int \inf_{k \ge n} f_k \right) \le \lim_{n \to \infty} \left(\inf_{k \ge n} \int f_k \right) = \liminf_{n \to \infty} \int f_n \tag{3.108}$$

Therefore

$$\int \liminf_{n \to \infty} f_k = \lim_{n \to \infty} \left(\int \inf_{k \ge n} f_k \right) \le \liminf_{n \to \infty} \int f_n$$
 (3.109)

3.1.3 General case

可积函数 跟 Riemann 积分类似,对于 Lebesgue 积分,我们也有可积函数的概念.

下面先让我们回到非负可测函数,定义非负可测函数中可积的概念.

定义 3.1.5. For $f \in \mathcal{M}^+$, if

$$\int f < \infty \tag{3.110}$$

Then we say f is **Lebesgue integrable** or simply **integrable**.

下面扩展到一般的可测函数,给出其 Lebesgue 积分及可积的定义.

定义 **3.1.6.** For any f measurable on \mathbb{R}^d

$$f^+(x) := \max\{f(x), 0\}, f^-(x) := \max\{-f(x), 0\}$$
 (3.111)

If at least one of $\int f^+$ and $\int f^-$ is finite, we define the **integral of** f

$$\int f := \int f^+ - \int f^- \tag{3.112}$$

We say that f is (Lebesgue) integrable if |f| is integrable.

注. • 注意到

$$f = f^+ - f^- \tag{3.113}$$

$$|f| = f^+ + f^- \tag{3.114}$$

• 根据定义,对于任意可测函数f,

$$f \text{ integrable } \Leftrightarrow |f| \text{ integrable } \Leftrightarrow \int |f| = \int f^+ + \int f^- < \infty$$
 (3.115)

$$\Leftrightarrow f^+ \text{ and } f^- \text{ integrable}$$
 (3.116)

即f可积 $\Leftrightarrow \int f^+ \pi \int f^-$ 均有界.

性质 下面我们将说明,定义在任一集合 X 上的**实可积函数**构成的空间 \mathcal{L}^1 为**线性空间**,以 $\mathcal{D}_{f} \in \mathcal{L}^1$ 时的一些性质.

在此之前, 先给出上述定义的一般的可测函数的积分的基本性质.

命题 **3.1.4.** Suppose $f, g \in \mathcal{L}$, then

- 1. **Linearity**: $\int (af + bg) = a \int f + b \int g$.
- 2. Finite Additivity:

$$\int_{\bigsqcup_{j=1}^{n} A_{j}} f = \sum_{j=1}^{n} \int_{A_{j}} f$$
 (3.117)

where $\{A_j\}_{j=1}^n$ are disjoint.

- 3. **Monotonicity**: If $f \le g$, then $\int f \le \int g$.
- 4. Triangle inequality: $\left| \int f \right| \le \int |f|$.

证明.

2. : We shall show that $\int_{\bigcup_{j=1}^n A_j} f^+ = \sum_{j=1}^n \int_{A_j} f^+$ and $\int_{\bigcup_{j=1}^n A_j} f^- = \sum_{j=1}^n \int_{A_j} f^-$. By **Thm 2.2.1**, there exists simple $\varphi_n \nearrow f^+$, then by **MCT (Thm 3.1.2**, 单调收敛定理),

$$\int_{\bigsqcup_{j=1}^{n} A_j} f^+ = \lim_{n \to \infty} \int_{\bigsqcup_{j=1}^{n} A_j} \varphi_n \tag{3.118}$$

Since φ_n are simple, by the **countable additivity** (简单函数的可数可加性), we have

$$\int_{\bigsqcup_{j=1}^{n} A_{j}} f^{+} = \lim_{n \to \infty} \int_{\bigsqcup_{j=1}^{n} A_{j}} \varphi_{n} = \lim_{n \to \infty} \sum_{j=1}^{n} \int_{A_{j}} \varphi_{n} = \sum_{j=1}^{n} \lim_{n \to \infty} \int_{A_{j}} \varphi_{n}$$
(3.119)

$$\stackrel{\text{MCT}}{=} \sum_{i=1}^{n} \int_{A_j} f^+ \tag{3.120}$$

4. 根据实数域上的三角不等式, we have

$$\left| \int f \right| = \left| \int f^+ - \int f^- \right| \le \left| \int f^+ \right| + \left| \int f^- \right| = \int f^+ + \int f^- = \int |f| \tag{3.121}$$

现在我们便可以来说明,定义在任一集合 X 上的**实可积函数**构成的空间 \mathcal{L}^1 为**线性空间**.

命题 **3.1.5.** The set of integrable real-valued functions on X is a real vector space.

证明. $\forall f, g \in \mathcal{L}^1$, if $a \in \mathbb{R}$,

$$\int |f+g| \le \int (|f|+|g|) = \int |f| + \int |g| < \infty$$

$$\int |af| = |a| \int |f| < \infty$$
(3.122)

Therefore, f + g, $af \in \mathcal{L}^1$. $\Rightarrow \mathcal{L}^1$ is a real vector space.

对于可积函数,我们往往是在整个 \mathbb{R}^d 空间上讨论其可积性,类比 **Riemann** 可积函数,合理地猜测其在 \mathbb{R}^d 平面上 "较远" 的地方的积分值应当较小. 这就是下面我们要给出的 \mathcal{L}^1 可积函数的性质.

命题 **3.1.6.** Suppose $f \in \mathcal{L}^1(\mathbb{R}^d)$. Then $\forall \epsilon > 0$

(i) \exists a set of finite measure B such that

$$\int_{\mathbb{R}^c} |f| < \epsilon$$

(ii) [Absolutely Continuity].

 $\exists \delta > 0$ such that

$$\int_{E} |f| < \epsilon, \ \forall m(E) < \delta$$

- 注. (i) 和 (ii) 共同说明了,若 $f \in \mathcal{L}^1(\mathbb{R}^d)$,则 f 的积分主要集中在一个**有限测度**区域内,且在很小的区域内 f 的积分值趋于零.
- (ii) 本质为测度的绝对连续性 (正测度关于正测度的绝对连续性). 此处令正测度

$$\mu: \mathcal{L} \longrightarrow [0, \infty]$$
 (3.124)

$$E \longmapsto \mu(E) = \int_{E} |f| \tag{3.125}$$

则命题 (ii) 可表示为: $\forall \epsilon > 0$, $\exists \delta > 0$, s.t.

$$\mu(E) < \epsilon$$
, $\forall m(E) < \delta$

证明.

(i):对定义域做截断.

Suppose $f \ge 0$. Let $B_n = B(0, n)$, $f_n = f\chi_{B_n}$, then $f_n \nearrow f$.

By MCT (Thm 3.1.2, 单调收敛定理),

$$\lim_{n \to \infty} \int f_n = \int f \tag{3.126}$$

Then $\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ s. t.}$

$$\left| \int f - \int f_N \right| = \int f - \int f_N = \int f(1 - \chi_{B_N}) = \int f\chi_{B_N^c} = \int_{B_N^c} f < \epsilon$$
 (3.127)

Therefore, let $B = B_N = B(0, N)$, the desired result follows.

(ii):同样是做截断. 不过此处是对f 的取值做截断.

Let $B_n = \{x \in \mathbb{R}^d \mid f(x) \le n\}, f_n = f\chi_{B_n}$. Then $f_n \nearrow f, f_n \le n$.

同 (i), By MCT (Thm 3.1.2, 单调收敛定理),

$$\lim_{n \to \infty} \int f_n = \int f \tag{3.128}$$

 $\forall \epsilon > 0, \exists N \in \mathbb{N}, \text{ s. t.}$

$$\left| \int f - \int f_N \right| = \int (f - f_N) < \frac{\epsilon}{2} \tag{3.129}$$

Pick $\delta > 0$, s. t. $N\delta < \frac{\epsilon}{2}$. Then for all $m(E) < \delta$,

$$\int_{E} f = \int_{E} (f - f_{N}) + \int_{E} f_{N} \le \int_{E} (f - f_{N}) + N \cdot m(E)$$
 (3.130)

$$<\frac{\epsilon}{2} + N\delta$$
 (3.131)

$$<\epsilon$$
 (3.132)

图 3.1: Prop 3.1.6 (i)

图 3.2: Prop 3.1.6 (ii)

3.1.4 *The Dominated Convergence Theorem*

下面我们来介绍实分析中最最有用的定理——

控制收敛定理 (The Dominated Convergence Theorem).

在 Riemann 积分中,对于函数列交换极限与积分的次序的条件太过于奇怪与繁琐,而在 Lebesgue 积分中,控制收敛定理则很完美地解决了这一问题. 它对于交换极限与积分的次序的条件十分简洁. 下面便来介绍这一定理.

定理 3.1.7. The Dominated Convergence Theorem (DCT).

Suppose $\{f_n\}_{n=1}^{\infty} \subset \mathcal{M}^+, f_n \to f \text{ a.e.. If } |f_n| \leq g, \text{ where } g \in \mathcal{L}^1(\mathbb{R}^d), \text{ then }$

$$\int |f_n - f| \to 0, \ n \to \infty \tag{3.133}$$

and consequently

$$\int f_n \to \int f, \ n \to \infty \tag{3.134}$$

证明. 分别对 $g + f_n$ 和 $g - f_n$ 利用 Fatou's Lemma (Thm 3.1.6) 即可得证.

• Since $g + f_n \ge 0$, then by **Fatou's Lemma (Thm 3.1.6)**,

$$\int \liminf_{n \to \infty} (g + f_n) \le \liminf_{n \to \infty} \int (g + f_n)$$
 (3.135)

Since $f_n \to f$, we have

$$\int g + \int f \le \int g + \liminf_{n \to \infty} \int f_n \tag{3.136}$$

$$\int f \le \liminf_{n \to \infty} \int f_n \tag{3.137}$$

• Since $g - f_n \ge 0$, then by **Fatou's Lemma (Thm 3.1.6)**,

$$\int \liminf_{n \to \infty} (g - f_n) \le \liminf_{n \to \infty} \int (g - f_n)$$
 (3.138)

$$\int g - \int f \le \int g + \liminf_{n \to \infty} \left(- \int f_n \right) \tag{3.139}$$

$$= \int g - \limsup_{n \to \infty} \int f_n \tag{3.140}$$

Then

$$\int f \ge \limsup_{n \to \infty} \int f_n \tag{3.141}$$

Therefore

$$\limsup_{n \to \infty} \int f_n \le \int f \le \liminf_{n \to \infty} \int f_n \tag{3.142}$$

which means $\lim_{n\to\infty} \int f_n$ exists, and

$$\lim_{n \to \infty} \int f_n = \int f \tag{3.143}$$

3.1.5 Complex – Valued Functions

下面我们将实值函数上的 Lebesgue 积分推广至复值函数.

先来规定一些记号:

• Let $f : \mathbb{R}^d \to \mathbb{C}$, write f(x) = u(x) + iv(x).

下面给出复值函数可测以及可积的定义.

定义 **3.1.7.** Suppose $f: \mathbb{R}^d \to \mathbb{C}$, f = u + iv, then we say

- f is **measurable** if u and v are both measurable.
- f is Lebesgue integrable if |f| is Lebesgue integrable.

注. 事实上,根据此处定义,f 可积 \Leftrightarrow u and v 都可积. 证明.

• f is integrable $\Rightarrow \int \sqrt{u^2 + v^2} < \infty \Rightarrow \int |u|, \int |v| \le \int \sqrt{u^2 + v^2} < \infty \Rightarrow u$ and $v \exists m$.

• u and v 可积 $\Rightarrow \int |u|, \int |v| < \infty \Rightarrow \int \sqrt{u^2 + v^2} \le \int |u| + \int |v| < \infty \Rightarrow f$ 可积.

下面对命题 3.1.5 的结论进行推广,即由复值可积函数构成的空间为线性空间.

命题 **3.1.7.** $\mathcal{L}^1(\mathbb{R}^d, \mathbb{C})$ is a vector space.

证明. Trivial.