Examen LM 201

11 décembre 2009

Exercice 1

Calculer

$$\int_0^{\frac{\pi}{2}} (\cos(x))^4 dx$$

Exercice 2

Calculer

$$\int_0^1 \frac{x^2 + 3x}{x^3 + x^2 + x + 1} dx$$

Exercice 3

Pour ces deux questions, si la réponse est oui, faîtes une preuve, si la réponse est non, donnez un contre-exemple.

a)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $u_n\xrightarrow[n\to+\infty]{}+\infty$. Est-il vrai que (u_n) est croissante à partir d'un certain rang (i.e. existe-t-il $N\in\mathbb{N}$ tel que pour tout $n\geq N$ on ait $u_{n+1}\geq u_n$?)

b)

Soit une fonction continue $f: \mathbb{R} \to \mathbb{R}$ telle que $\lim_{x \to +\infty} (f(x+1) - f(x)) = 0$. f admet-elle une limite en $+\infty$?

Exercice 4

 $\mathbf{a})$

Soit (E) l'équation différentielle

$$y''(x) - 3y'(x) + 2y(x) = 10\cos(x)$$

Trouver l'unique solution de (E) , f , telle que f(0) = 1 et f'(0) = -3.

b)

Soit g une solution de (E) différente de f. Montrer que $\lim_{x\to +\infty} |g(x)| = +\infty$.

Exercice 5

Soit $(u_n)_{n\in\mathbb{N}}$ la suite telle que pour tout $n\in\mathbb{N}$ $u_{n+2}=5u_{n+1}-6u_n$ et $u_0=u_1=1.$

Montrer que pour tout $n \in \mathbb{N}$ $u_n \neq 0$ et déterminer si la suite $\frac{u_{n+1}}{u_n}$ admet une limite en $+\infty$ (et si oui la calculer).

Exercice 6

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue. Soit g la fonction définie par g(x) = xf(x). Montrer que g est dérivable en 0 et calculer sa dérivée en 0.

Exercice 7

Calculer le DL à l'ordre 3 en 0 de

$$\sqrt{1-\sin(x)}$$