

o universitas.binaniaga | www.unb

KONSEP DASAR KETIDAKPASTIAN DALAM SISTEM PAKAR

#pertemuan10 M. Miftahudin

MODEL SISTEM PAKAR

KETIDAKPASTIAN

Ketidakpastian(Uncertainty)

- Ketidakpastian terjadi jika informasi yang tersedia kurang memadai untuk membuat suatu keputusan.
- Ketidakpastian dapat menjadi suatu permasalahan karena memungkinkan menghalangi untuk membuat suatu keputusan yang terbaik.

SUMBER KETIDAKPASTIAN

- Data: lose data, data ambigu, data subjektif, data diperoleh dari tanpa metode ilmiah.
- Pengetahuan pakar: Ketidakkonsistenan antara pakar yang berbeda, pemahaman yang dalam pada pengetahuan causal (sebab akibat), hasil statistik (pengamatan), domain terbatas.
- Representasi pengetahuan: keterbatasan model pada sistem dan mekanisme representasi pengetahuan
- Proses Inferensi: metode penalaran yang tidak valid, konklusi baru tidak ditemukan

TIPE-TIPE ERRORS

SUMBER KETIDAKPASTIAN DALAM SISTEM PAKAR

- Pengetahuan seorang pakar => inexact bisa berupa pernyataan, pengamatan, aturan atau nilai
- Fakta / kejadian yang ada
- Fakta / Jawaban yang diberikan oleh user
- Analisa permasalahan yang dilakukan oleh knowledge engineer

BENTUK DATA YANG TIDAK PASTI

- Informsi atau data yang tidak lengkap
- Tidak dapat dipercaya sepenuhnya
- Berasal dari berbagai sumber dan saling bertolak belakang
- Bahasa penyajian yang kurang tepat
- Hasil pengamatan tanpa didasari teori yang pasti

Table 3.1 Quantification of ambiguous and imprecise terms on a time-frequency scale

Ray Simpson (1944)		Milton Hakel (1968)	
Term	Mean value	Term	Mean value
Always	99	Always	100
Very often	88	Very often	87
Usually	85	Usually	79
Often	78	Often	74
Generally	78	Rather often	74
Frequently	73	Frequently	72
Rather often	65	Generally	72
About as often as not	50	About as often as not	50
Now and then	20	Now and then	34
Sometimes	20	Sometimes	29
Occasionally	20	Occasionally	28
Once in a while	15	Once in a while	22
Not often	13	Not often	16
Usually not	10	Usually not	16
Seldom	10	Seldom	9
Hardly ever	7	Hardly ever	8
Very seldom	6	Very seldom	7
Rarely	5	Rarely	5
Almost never	3	Almost never	2
Never	0	Never	0

REPRESENTASI KETIDAKPASTIAN

 Numeric: menggunakan skala dengan dua angka ekstrim misal 0 (tidak pasti) dan 1 (pasti)

Simbolik: pendekatan skala Likert, fuzzy logic

PROBABILITY

- cara mengkuantisasi ketidakpastian
- peluang terjadinya suatu peristiwa (kejadian) tertentu untuk terjadi atau tidak terjadi.

$$P(X) = \frac{Jumlah \ kejadian \ yang \ terjadi}{Jumlah \ total \ kejadian}$$

CONTOH

- Perhatikan sebuah koin (uang):
 - Ada 2 sisi: gambar (G) dan angka (A)
- Jika kita melempar koin, maka kemungkinan mendapatkan gambar atau angka adalah sama.
 - Dalam satu kali lemparan: s = f = 1, maka probabilitas mendapatkan gambar atau angka adalah $\frac{1}{2} = 0.5$
- Jika sebuah dadu kita lempar
 - Kita menentukan probabilitas mendapatkan 6 dalam satu kali lemparan.
 - Jika kita mengasumsikan munculnya 6 sebagai kesuksesan, maka s = 1, dan f = 5.
 - Karena ada 1 cara untuk mendapatkan 6, dan ada 5 cara tidak mendapatkan 6, maka probabilitas mendapatkan 6 adalah:
 - Dan probabilitas tidak mendapatkan 6 adalah: $p = \frac{1}{1+5} = 0.1666$ $q = \frac{5}{1+5} = 0.8333$
 - Kejadian disini tidak independen, artinya jika 6 terjadi maka 1 sampai 1 tidak akan terjadi.

FORMULA TEOREMA BAYES

Formula bayes:
$$P(H \mid E) = \frac{P(H \mid E) * P(H)}{P(E)}$$

 $P(H \mid E)$ = Probabilitas hipotesis H benar, jika diberikan evidence E

 $P(E \mid H)$ = Probabilitas munculnya evidence E, jika diketahui hipotesis H benar

P(H)= Probabilitas hipotesis H tanpa memandang evidence apapun

P(E)= Probabilitas evidence

CONTOH SOAL

Diketahui:

- Dokter mengetahui bahwa meningitis menyebabkan *stiff neck* adalah 50% -> P(S|M)
- Prior probability of any patient having meningitis is 1/50.000 -> P(M)
- Prior probability of any patient having stiff neck is $1/20 \rightarrow P(S)$

Ditanyakan:

• Apabila pasien menderita *stiff neck*, berapa probabilitas terkena meningitis? P(M|S)?

- Jawaban:
- P(M|S) = P(S|M) P(M) : P(S)
- $P(M|S) = 0.5 \times 1/50.000 : 1/20$
- P(M|S) = 0,0002

- Tiga anggota sebuah organisasi telah dicalonkan sebagai ketua. Peluang Ardy terpilih adalah 0,3; peluang Charles terpilih adalah 0,5; dan peluang Kinanti terpilih adalah 0,2. Seandainya Ardy terpilih, peluang terjadinya kenaikan iuran anggota adalah 0,8. Seandainya Charles dan Kinanti terpilih, peluang kenaikan iuran anggota masingmasing adalah 0,1 dan 0,4.
- Berapa peluang terjadi kenaikan iuran anggota?

e smart, be a professional, and b

o universitas.binaniaga | www.unb

THANK YOU

- Muhamad Miftahudin
- 0813 80453975
- m.miftahudin@unbin.ac.id