

# Øving 5: Høst 2014

Oppgaver fra White 7. utgave

# Oppgave 3.19 (3.17 i 6.utgave)

**P3.17** Incompressible steady flow in the inlet between parallel plates in Fig. P3.17 is uniform,  $u = U_0 = 8$  cm/s, while downstream the flow develops into the parabolic laminar profile  $u = az(z_0 - z)$ , where a is a constant. If  $z_0 = 4$  cm and the fluid is SAE 30 oil at 20°C, what is the value of  $u_{\rm max}$  in cm/s?



P3.17

# Oppgave 3.38 (3.36 i 6. utgave)

**P3.36** The jet pump in Fig. P3.36 injects water at  $U_1 = 40$  m/s through a 3-in-pipe and entrains a secondary flow of water  $U_2 = 3$  m/s in the annular region around the small pipe. The two flows become fully mixed downstream, where  $U_3$  is approximately constant. For steady incompressible flow, compute  $U_3$  in m/s.



# Oppgave 2 vedlagt.



En vanntank har en åpning med tverrsnitt  $A_{\sigma}$  i bunnen (z=0). Vannets høyde H i tanken blir holdt konstant ved at vann fylles på kontinuerlig ovenfra, slik at strømningen blir stasjonær. Nedenfor utløpet, for z < 0, danner vannet en fri stråle med tverrsnitt A = A(z) som er en funksjon av z. Tyngdens akselerasjon er g, atmosfæretrykket er  $p_a$ .

- a) Forklar hvorfor trykket inne i den frie stråle må være lik atmosfæretrykket, og finn hastigheten V(z) av den frie stråle.
- b) Finn tverrsnittet A(z) av den frie stråle uttrykt ved Ao, H og z.
- c) Hvor lang tid T trenger en fluidpartikkel på å tilbakelegge en strekning L av den frie stråle, fra z = 0 til z = -L?

#### Oppgave 4 vedlagt.

Side 4 av 4



En rund trestav AB av lengde L=5m og diameter D=10 cm er festet til bunnen med en vertikal tråd BC. Staven blir stående i delvis neddykket tilstand, som vist på figuren.

- a) Finn spenningen S i tråden.
- b) Finn treets tetthet  $\rho_{ue}$ .

Spesifikk tyngde for vann er  $\gamma_{vana} = 9790 \text{ Pa/m}$ .