Feuille d'exercices 4

Calcul matriciel

Exercice 1. On considère les matrices suivantes.

$$\begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

- (1) Pour chacune des matrices ci-dessus, trouver m et n tels la matrice représente une application linéaire de \mathbb{R}^n dans \mathbb{R}^m dans les bases usuelles. Écrire ces applications en termes des coordonnées.
- (2) Ecrire la transposée de chacune de ces matrices.
- (3) Etant données deux matrices A, B appartenant à l'ensemble ci-dessus, calculer les produits AB, A^TB , AB^T , A^TB^T qui sont définis.

Exercice 2. On considère les application linéaires $f_i : \mathbb{R}^n \to \mathbb{R}^m$ suivantes :

$$f_1(x, y, z) = x + 2y - 3z,$$
 $f_2(x) = (x, -x, 2x)$
 $f_3(x, y) = (x + y, x - y),$ $f_4(x, y, z) = (x + 2y + 3z, x + y + z, x - y - z)$
 $f_5(x, y, z) = (x - 2y, 3y),$ $f_6(x, y, z, t) = (x + y - 2z + t, x + y + t).$

Pour chacune:

- (1) écrire la matrice A_i de f_i dans les bases canoniques de \mathbb{R}^n et \mathbb{R}^m ;
- (2) calculer $Ker(A_i)$
- (3) L'application f_i est-elle injective? Est-elle surjective?

Exercice 3. Rappelons que $\mathbb{R}[X]_{\leq d}$ désigne l'espace vectoriel réel des polynômes de degré au plus d. Soit

$$\partial : \mathbb{R}[X]_{\leq d} \to \mathbb{R}[X]_{\leq d}$$

l'application linéaire définie par $\partial(P)=P'$, où P' est la dérivée de P. Soit M la matrice de ∂ dans la base $\mathcal{B}=(1,X,X^2,\ldots,X^d)$ de $\mathbb{R}[X]_{\leq d}$.

- (1) Écrire M pour d=3.
- (2) Montrer que pour tout $d \ge 1$, M^{d+1} est la matrice nulle.

Exercice 4. Soit $\mathcal{B} = ((1,0,0),(0,1,0),(0,0,1)$ la base canonique de \mathbb{R}^3 . Soit $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la matrice dans la base canonique est

$$\mathbf{M}_{\mathcal{B}}^{\mathcal{B}}(\varphi) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}.$$

Pour chacune des familles suivantes :

$$\mathcal{B}_1 = ((1,0,0), (1,1,0), (1,1,1)),$$

$$\mathcal{B}_2 = ((1,-1,0), (0,1,-1), (1,1,1)),$$

$$\mathcal{B}_3 = ((2,2,3), (1,1,1), (1,0,1))$$

- (1) Vérifier que \mathcal{B}_i est une base de \mathbb{R}^3 ;
- (2) Écrire les matrices de passage $P_{\mathcal{B}}^{\mathcal{B}_i}$ et $P_{\mathcal{B}_i}^{\mathcal{B}}$.
- (3) Écrire la matrice $M_{\mathcal{B}_i}^{\mathcal{B}_i}(\varphi)$.

Exercice 5. Soit $\mathcal{B} = (u, v)$ une base fixée de \mathbb{R}^2 .

Donner la représentation matricielle des applications linéaires suivantes dans la base canonique \mathcal{B}_{can} de \mathbb{R}^2 .

- (1) la symétrie dans \mathbb{R}^2 par rapport à l'axe défini par le vecteur u parallèlement au vecteur v.
- (2) la projection dans \mathbb{R}^2 sur l'axe défini par le vecteur u parallèlement au vecteur v.

Exercice 6. Soit

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right) \ .$$

Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit φ l'endomorphisme de \mathbb{R}^3 tel que $A = \mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\varphi)$.

(1) Démontrer que $\varphi \circ \varphi(e_1) = \varphi(e_2) = 0$ et que $\varphi \circ \varphi(e_3) = \varphi(e_3)$.

- (2) En déduire A^2 . Vérifier en effectuant le produit matriciel.
- (3) Démontrer que $A^3 = A^2$ sans effectuer le produit matriciel, puis vérifier en l'effectuant.
- (4) Donner une base de $Ker(\varphi)$ et une base de $Im(\varphi)$

Exercice 7. Soit

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit φ l'endomorphisme de \mathbb{R}^3 tel que $A = \mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\varphi)$.

- (1) Pour i = 1, 2, 3, déterminer $\varphi \circ \varphi(e_i)$, puis $\varphi \circ \varphi \circ \varphi(e_i)$.
- (2) En déduire A^2 et A^3 .
- (3) Pour $k \in \mathbb{N}^*$, donner une expression de $(I_3 + A)^k$ en fonction de k. Vérifier votre expression pour k = 3 en effectuant le produit matriciel.
- (4) Reprendre la question précédente pour $(I_3 A)^k$, puis pour $(3I_3 2A)^k$.

Exercice 8. Soit

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right) .$$

Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit φ l'endomorphisme de \mathbb{R}^3 tel que $A = \mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(\varphi)$.

- (1) Pour i = 1, 2, 3, déterminer $\varphi \circ \varphi(e_i)$ et déduire que $\varphi \circ \varphi = 3\varphi$.
- (2) Pour $k \in \mathbb{N}^*$, démontrer par récurrence que $\varphi^{\circ k} = 3^{k-1} \varphi$.
- (3) Pour tout $k \in \mathbb{N}^*$, déduire l'expression de A^k en fonction de k.
- (4) Pour tout $k \in \mathbb{N}^*$, donner une expression de $(I_3 + A)^k$ en fonction de k. Vérifier votre expression pour k = 1 et k = 2 en effectuant le produit matriciel.
- (5) Reprendre la question précédente pour $(I_3 A)^k$, puis pour $(3I_3 2A)^k$.

Exercice 9. Déterminer le rang des matrices suivantes.

$$\begin{pmatrix}
2 & -3 & -4 \\
3 & 1 & 5 \\
-1 & 0 & -1 \\
0 & 2 & 4
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 1 & -2 \\
1 & -1 & 7 \\
-2 & 0 & -10 \\
1 & 3 & -1
\end{pmatrix}
\qquad
\begin{pmatrix}
1 & 1 & 2 & 1 \\
-1 & 2 & 1 & -1 \\
2 & 1 & 3 & 2 \\
0 & -1 & 0 & -1
\end{pmatrix}$$

Exercice 10. En utilisant la notion de rang d'une matrice, dire si les familles suivantes sont des bases de \mathbb{R}^3 .

- (1) $\mathcal{F} = ((1,1,3),(1,2,1),(1,2,2))$
- (2) $\mathcal{F} = ((5,1,0), (-1,4,1), (2,0,1))$
- (3) $\mathcal{F} = ((0,1,2),(2,1,4),(2,4,10))$

Exercice 11 (Vrai ou faux). Soit A une matrice à coefficients dans \mathbb{R} . Parmi les affirmations suivantes, lesquelles sont vraies? Motivez vos réponses.

- (1) $\operatorname{rang}(A) = r$ si et seulement si la famille des vecteurs colonnes de A est de rang r.
- (2) $\operatorname{rang}(A) = r$ si et seulement si la famille des vecteurs lignes de A est de rang r.
- (3) Si rang(A) = r, alors toute matrice formée de r colonnes parmi les colonnes de A est de rang r.
- (4) Si une matrice formée de r colonnes parmi les colonnes de A est de rang r, alors A est de rang $\geq r$.
- (5) La matrice nulle est la seule matrice de rang 0.
- (6) Si A possède deux lignes non nulles et qui ne sont pas proportionnelles, alors $\operatorname{rang}(A) \geq 2$.

Exercice 12. Soit $f: \mathbb{R}^5 \to \mathbb{R}^3$ une application linéaire et soit A la matrice de f dans les bases canoniques de \mathbb{R}^5 et \mathbb{R}^3 .

- (1) Quelle est la valeur maximale de rang(A)?
- (2) Si f(1,1,1,1,1) = (1,3,0), quelle est la valeur minimale de rang(A)?
- (3) Si f(2,2,1,1,1) = f(1,1,2,2,1), montrer que dim Ker(f) > 0.

(4) Si f(1,0,0,0,0) = (1,0,2) et rang(A) = 1, calculer la somme entre la deuxième ligne de A et le vecteur (1,1,1,2,2).

Exercice 13. Vérifier que les matrices suivantes sont inversibles et calculer leurs inverses.

$$\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{pmatrix} \qquad
\begin{pmatrix}
0 & 2 & 2 \\
-1 & 3 & -1 \\
3 & -3 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
2 & -1 & 1 \\
1 & 4 & -3 \\
1 & 1 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 2 & 0 \\
3 & -1 & 1 \\
0 & 1 & 2
\end{pmatrix}$$

Exercice 14. Soit \mathcal{M}_n l'espace des matrices de taille $n \times n$ à coefficients dans \mathbb{R} . On rappelle qu'une matrice $A \in \mathcal{M}_n$ est symétrique si A est égale à sa transposée A^T . On note \mathcal{S}_n le sous-ensemble de \mathcal{M}_n des matrices symétriques.

On dit qu'une matrice $A \in \mathcal{M}_n$ est antisymétrique si $-A = A^T$. On note \mathcal{A}_n le sous-ensemble de \mathcal{M}_n des matrices antisymétriques.

- (1) Démontrer que S_n et A_n sont des sous-espaces vectoriels de \mathcal{M}_n .
- (2) Soit $A \in \mathcal{M}_n$. Démontrer que $A + A^T \in \mathcal{S}_n$ et $A A^T \in \mathcal{A}_n$.
- (3) Démontrer que $\mathcal{M}_n = \mathcal{S}_n \oplus \mathcal{A}_n$.
- (4) Soient $A, B \in \mathcal{S}_n$. Démontrer que $AB \in \mathcal{S}_n$ si et seulement si AB = BA.
- (5) Soient $A, B \in \mathcal{A}_n$. Démontrer que $AB \in \mathcal{A}_n$ si et seulement si AB = -BA.
- (6) Soit $A \in \mathcal{M}_n$ une matrice inversible. Démontrer que A^T est inversible et que son inverse est $(A^{-1})^T$.
- (7) Soit $A \in \mathcal{S}_n$ une matrice inversible. Démontrer que $A^{-1} \in \mathcal{S}_n$.
- (8) Soit $A \in \mathcal{A}_n$ une matrice inversible. Démontrer que $A^{-1} \in \mathcal{A}_n$.
- (9) Démontrer qu'aucune matrice de A_3 n'est inversible.

Exercice 15. Soit \mathcal{M}_n l'espace des matrices de taille $n \times n$ à coefficients dans \mathbb{R} . On appelle *trace* d'une matrice carrée la somme de ses éléments diagonaux. On note $\operatorname{tr}(A)$ la trace de $A \in \mathcal{M}_n$.

- (1) Soient $A, B \in \mathcal{M}_n$. Démontrer que tr(AB) = tr(BA).
- (2) En déduire que si $A = P^{-1}BP$, où $P \in \mathcal{M}_n$ est inversible, alors $\operatorname{tr}(A) = \operatorname{tr}(B)$.
- (3) Soit $A \in \mathcal{M}_n$ non nulle. Démontrer que les traces des matrices AA^T et A^TA sont strictement positives.