

Introduktion

- Hvilke anlægsaktiver skal virksomheden anskaffe ("the capital budgeting decision")?
- Beslutningskriterier:
 - Kapitalværdi ("net present value")
 - Tilbagebetalingstidspunkt ("pay-back rule")
 - Intern rente ("*internal rate of return*")
 - Profitabilitetsindeks
- Kriterierne har fordele og ulemper og kan være indbyrdes modstridende
- Alle kriterier trækker på vores indsigter om betalingsrækker

Investeringsteori i sammenhæng

Kapitalværdimetoden

Kapitalværdimetoden:

- Beregn nutidsværdien af alle indtægter og omkostninger relateret til investeringen idet virksomhedens kapitalomkostning bruges som diskonteringsrente
- 2. Investeringen skal gennemføres hvis og kun hvis summen af disse nutidsværdier ("*net present value*") er positiv

Kapitalværdimetoden

- Hvad er intuitionen bag kapitalværdimetoden som beslutningskriterium?
- Simpelt eksempel:
 - Investering på 90 kr. nu og betaling på 110 kr. om et år
 - Kapitalomkostning 10%
 - → nettonutidsværdi: -90 kr. + 100 kr. = 10 kr.
- Kapitalomkostningen på 10% betyder at den bedste alternative investering giver dette afkast
 - → man skulle alternativt have investeret 100 kr. for at opnå en betaling på 110 kr. om et år
- Investeringen giver mulighed for at opnå betalingen på 110 kr. om et år for kun 90 kr. → den skaber værdi på 10 kr.
- Indsigt: En investerings kapitalværdi udtrykker den værdi den skaber for virksomhedens ejere (*shareholder value*)

Kapitalværdimetoden - mekanik

- Tre komponenter (antagelse r = 0.15)
 - Straksomkostning på 300

$$\rightarrow PV = -300$$

- 5-årig annuitet med betalinger på 80 $\rightarrow PV \approx 268,2$

Scrap-værdi på 30 efter 5 år

 $\rightarrow PV \approx 14.9$

 $\rightarrow NPV \approx -16.9 \rightarrow \text{investeringen skal ikke gennemføres}$

Kapitalværdimetoden

Kapitalværdimetoden med to gensidigt udelukkende investeringer

- 1. Beregn nutidsværdien af alle indtægter og omkostninger relateret til Investering 1 idet virksomhedens kapitalomkostning bruges som diskonteringsrente
- 2. Beregn nutidsværdien af alle indtægter og omkostninger relateret til Investering 2 idet virksomhedens kapitalomkostning bruges som diskonteringsrente
- 3. Gennemfør investeringen med den højeste nettonutidsværdi forudsat at denne er positiv
- Kapitalværdimetoden er det kriterium der maksimerer shareholder value

Summespørgsmål (2 min.)

- Betragt to investeringer:
 - 1. Projekt 1: investering på 1.000, betaling på 5.000 om 1 år
 - 2. Projekt 2: investering på 100.000, betaling på 115.000 om 1 år
- Ved kapitalomkostning på 10% er NPV af projekterne
 - Projekt 1: 3.545
 - Projekt 2: 4.545
- Er det korrekt at vælge projekt 2 selvom projekt 1 giver en meget højere forrentning?

Svar

- Ja under de givne forudsætninger.
- Virksomheden har langt mere kapital bundet i projekt 2, men beregningen tager netop højde for den alternative forrentning af denne kapital igennem kapitalomkostningen.
- Men projekt 2 er tydeligvis mere følsomt overfor ændringer i forudsætningerne.

Kapitalværdimetoden - forbehold

- Kapitalværdimetoden er det teoretisk set mest korrekte beslutningskriterium
- Betalingsrækken hvordan bestemmer man i praksis de fremtidige betalinger der følger af en investering?
 - Stor usikkerhed → fx om fremtidige afsætningsforhold
 - Følsomhedsberegninger kan være nyttige → fx hvad er NPV hvis omkostningerne bliver 10% højere end planlagt?
- Diskonteringsrenten hvilken diskonteringsrente skal virksomheden benytte?
 - Diskonteringsrenten skal afspejle virksomhedens kapitalomkostning
 - Fx 80% lånefinansiering til 5% og egenkapitalomkostning på 10% → kapitalomkostning=6% (=vægtet gns.)
 - Stor usikkerhed og meget afgørende for rentabilitet
- Risiko indgår kun igennem kapitalomkostningen

Tilbagebetalingsmetoden

• **Tilbagebetalingsmetoden**: en investering skal gennemføres hvis summen af indtægterne over et bestemt antal år overstiger omkostningen

- Et eksempel:
 - Virksomheden kræver en tilbagebetalingsperiode på maksimalt
 5 år
 - Investeringen kræver en øjeblikkelig omkostning på 1.250 og genererer herefter årlige indtægter på 500
 - Tilbagebetalingstiden er 2,5 år \rightarrow investeringen bør gennemføres

12

Summespørgsmål (2 min.)

 Giv eksempler på at tilbagebetalingsmetoden kan afvise projekter med NPV>0

 Giv eksempler på at tilbagebetalingsmetoden kan acceptere projekter med NPV<0

Svar

• En virksomhed kræver en tilbagebetalingsperiode på maksimalt 3 år

- Antag kapitalomkostning på 10%:
 - Investering på 100 og betaling på 1.000.000 om 4 år =>
 afvises
 - 2. Investering på 100 og betaling på 101 om 3 år => **accepteres**

Tilbagebetalingsmetoden

- Fordele ved tilbagebetalingsmetoden
 - Simpel og gennemskuelig
 - Let at implementere
 - Tager højde for den større usikkerhed om betalinger længere ude i fremtiden
 - Fanger (delvist) projektets lividitetsvirkning
- Svagheder ved tilbagebetalingsmetoden
 - Tager ikke højde for betalinger efter tilbagebetalingsperioden
 - → visse langsigtede projekter med NPV>0 afvises
 - Tager ikke højde for kapitalomkostningen
 - → visse kortsigtede projekter med NPV<0 accepteres
- Opsummering: bruges i praksis, men har intet teoretisk fundament (→ brug varsomt i opgaverne!)

Tilbagebetalingsmetoden

 Variant af tilbagebetalingsmetoden: en investering skal gennemføres hvis summen af nutidsværdien af indtægterne over et bestemt antal år overstiger omkostningerne

• Et eksempel:

- Virksomheden kræver en tilbagebetalingsperiode på 3 år
- Virksomheden anvender diskonteringsrenten 12,5%
- Investeringen kræver en øjeblikkelig omkostning på 300 og genererer herefter årlige indtægter på 100
- Nutidsværdien af de første fire betalinger er $300 \rightarrow tilbagebetalingstiden$ er 4 år \rightarrow investeringen bør ikke gennemføres

Vurdering

- Tager højde for kapitalomkostningen men har ellers samme ulemper som den rene tilbagebetalingsmetode
- · Mindre korrekt end kapitalværdimetoden og ikke meget simplere

Intern rente

- Den interne rente af et investeringsprojekt er den diskonteringsrente, som giver projektet en nettonutidsværdi (NPV) på præcist nul
- Den interne rentefods metode: en investering skal gennemføres hvis den interne rente er større end virksomhedens kapitalomkostning
- Nettonutidsværdien af investeringsprojekter hvor omkostninger kommer før indtægter (dvs. konventionel tidsprofil) er aftagende i diskonteringsrenten
- → Den interne rente er den højeste diskonteringsrente som gør et projekt acceptabelt

Intern rente - eksempel

Discount Rate

Summespørgsmål (2 min.)

Betragt en investering med en øjeblikkelig omkostning på 1.000 og en følgende uendelig række af årlige indtægter på 100

- 1. Hvad er investeringens nutidsværdi ved en diskonteringsrente på 5%, 10%, 20%
- 2. Hvad er investeringens interne rente?

Svar

- NPV ved 5%=100/0,05-1.000=1.000
- NPV ved 10%=100/0,1-1.000=0
- NPV ved 20%=100/0,2-1.000=-500
- Investeringens interne rente er 10%

Intern rente vs. kapitalværdi

- I de fleste tilfælde giver kapitalværdimetoden og den interne rentefods metode samme svar på om en investering skal gennemføres
- \rightarrow NPV > 0 \Leftrightarrow intern rente > diskonteringsrente

- To mulige undtagelser:
 - Ikke-konventionelle tidsprofiler af betalinger
 - Investeringsalternativer som udelukker hinanden

Ikke-konventionelle tidsprofiler

- Fx investeringens betalinger har en tidsprofil så omkostningerne kommer efter indtægterne
- Fx stor omkostning i starten og i slutningen af investeringens levetid (opbygning og oprydning)
 - → investeringens nutidsværdi først stigende og så aftagende i diskonteringsrenten
 - → muligt at to forskellige diskonteringsrenter giver nutidsværdi på nul (to interne renter)
 - → den interne rentefods metode giver ikke en unik anbefaling

Ikke-konventionelle tidsprofiler

Discount Rate	NPV (€ millions)
0%	-5.00
10	-1.28
20	0.56
30	1.21
40	1.12
50	0.56
60	-0.31
70	-1.37

Ikke-konventionelle tidsprofiler

Discount Rate

To investeringsalternativer

- To alternative investeringsmuligheder hvoraf kun et kan gennemføres → fx udleje bygning til erhverv eller beboelse
- Kapitalværdimetoden siger at vi skal vælge investeringen med den højeste nutidsværdi
- Har denne investering også nødvendigvis den højeste interne rente af de to?
- Betragt to alternative investeringer A og B med samme initiale omkostning:
 - A indtægterne er relativt små men kommer kort tid efter omkostningen
 - B indtægterne er relativt store men kommer lang tid efter omkostningen
- \rightarrow hvis diskonteringsrenten er tilstrækkelig høj $NPV_A > NPV_B$
- \rightarrow hvis diskonteringsrenten er tilstrækkelig lav $NPV_A < NPV_B$

To investering salternativer

Year	Project A	Project B
0	–€100	–€100
1	50	20
2	40	30
3	30	50
4	30	65

Discount Rate	NPV of Project A	NPV of Project B
0%	€50.0	€65.0
5%	34.5	42.9
10%	21.5	24.9
13%	14.8	15.7
15%	10.6	10.1
20%	1.3	-2.2
25%	-6.8	-12.6
30%	-13.7	-21.3
100	00.70/	10.00/
IRR	20.7%	19.0%

To investeringsalternativer

Forrentning ved geninvestering af cash flows

- Betragt et projekt med følgende betalinger
 - t = 0:-100
 - t = 1:70
 - t = 2:70
- \rightarrow intern rente på omkring 25% da denne rente giver NPV = 0

$$(-100) + \frac{70}{1,25} + \frac{70}{1,25^2} = 0$$

- \rightarrow fremtidsværdi ved t = 2 er også nul ved rente på 25%: $(-100) \cdot 1,25^2 + 70 \cdot 1,25 + 70 = 0$
- Det forudsættes implicit at cash-flow genereret ved t = 1 kan geninvesteres til den interne rente på 25% indtil t = 2
- Den korrekte forudsætning er typisk at dette cash-flow kan geninvesteres til kapitalomkostningen → investeringens rentabilitet overvurderes hvis kapitalomkostningen er mindre end den interne rente

Den modificerede interne rente

- For at tage højde for dette problem beregnes den modificerede interne rente i to skridt
 - 1. Beregn terminalværdien af positive cash-flows idet der diskonteres med kapitalomkostningen
 - 2. Den modificerede interne rente er den diskonteringsfaktor der gør nutidsværdien af denne termimalværdi lig med investeringsomkostningen
- I vores eksempel fra før under antagelse af kapitalomkostning på 10%:
 - 1. Terminalværdi: $70 \cdot 1,10 + 70 = 147$
 - 2. Modificeret intern rente: $(-100) + 147/(1 + MIRR)^2 = 0$
 - $\rightarrow MIRR = 21\%$

Summespørgsmål (2 min.)

 Under hvilke omstændigheder er den interne rente og den modificerede interne sammenfaldende?

Svar

De to er identiske når

- 1. Alle cash-flows falder i sidste periode → her gør den interne rente ingen antagelser om geninvestering
- Den interne rente er identisk med kapitalomkostningen → her er antagelsen om geninvestering ved den interne rente ækvivalent med antagelsen om geninvestering ved kapitalomkostningen

Intern rentefods metode - opsummering

Fordele

- Intuitiv fordi vi er vant til at tænke i afkast
- Er for det meste ækvivalent med den teoretisk korrekte kapitalværdimetode
- Kan beregnes uden kendskab til diskonteringsrenten

Ulemper

- Giver ikke altid en unik anbefaling
- Kan give forkerte anbefalinger om valget mellem to investeringsprojekter
- Antager at frigjort cash kan genivesteres til den interne rente

 → rentabiliteten overvurderes hvis frigjort cash kun forrentes
 med en lavere kapitalomkostning

Profitabilitetsindeks

• En investerings profitabilitetsindeks er givet ved:

- En investering på 100 kr. generer senere indtægter med en nutidsværdi på $110 \rightarrow index=1,1$
- Idet nettonutidsværdien jo tager højde for kapitalomkostningen udtrykker indekset den skabte værdi per krone investeret

Summespørgsmål (2 min.)

Kan der baseret på profitabilitetsindekset opstilles et kriterium for investeringsbeslutninger som er ækvivalent med kapitalværdimetoden når

- Valget står mellem at foretage eller ikke foretage en enkelt investering?
- 2. Valget står mellem to forskellige investeringer der udelukker hinanden?

Svar

- 1. Enkelt investering: foretag investering når profitabilitetsindeks>1
- 2. Flere alternative investeringer ikke muligt da højt indeks kan falde sammen med lav nettonutidsværdi hvis investeringen er lille

Opsummering af investeringskriterier

- Kapitalværdimetoden er det teoretisk mest korrekte kriterium for investeringsbeslutninger
 - $NPV > 0 \rightarrow$ foretag investering
 - $NPV < 0 \rightarrow$ foretag ikke investering
- Tilbagebetalingsmetode: ikke ækvivalent med kapitalværdimetoden, men simpel og transparent
- Intern rentefods metode: ækvivalent med kapitalværdimetoden undtaget ved
 - Ukonventionelle tidsprofiler af betalinger
 - Alternative investeringer som udelukker hinanden
- Profitabilitetsindex: ækvivalent med kapitalværdimetoden undtaget ved alternative investeringer

Investeringsbeslutninger i praksis

- Hvordan foretager virksomheder investeringsbeslutninger i praksis?
- Resultater baseret på surveys blandt store virksomheder i mange lande
- Virksomheder benytter typisk flere metoder på samme tid → komplementerer hinanden
- Mest anvendte: kapitalværdimetode og intern rente

Genafskaffelse

- Indtil videre har vi betragtet investeringer som isolerede enkeltstående begivenheder - hvad er kapitalværdien af en investering i en maskine der har en levetid på fx 7 år?
- Når vi betragter to alternative investeringer med forskellig levetid må vi lave antagelse om genafskaffelse for at lave en korrekt sammenligning
- Genanskaffelse er ikke mulig → beregn kapitalværdien af en enkelt investering for hvert alternativ og sammenlign
- Genanskaffelse er altid mulig → beregn kapitalværdien af en uendelig række af investeringer for hvert alternativ og sammenlign

Genafskaffelse - eksempel

- To gensidigt udelukkende investeringsprojekter
 - Projekt A: levetid 5 år og kapitalværdi på 100
 - Projekt B: levetid 3 år og kapitalværdi på 80
- Genanskaffelse er ikke mulig: Projekt A bedre end Projekt B
- Genanskaffelse er altid mulig: hvilket projekt har højest nutidsværdi med uendelig række af investeringer?
 - For at bruge perpetuitetsformlen må vi finde C → den årlige betaling som investeringsrækken skaber
 - Brug annuitetsformlen til at omdanne kapitalværdi til en ækvivalent årlig betaling
 - Antag kapitalomkostning på 10%
- Årlig ækvivalent betaling er større for Projekt B (≈ 40) end for Projekt A (≈ 26)
- → vi kan direkte slutte at Projekt B er bedre end Projekt A da vi anvender samme diskonteringsrente for de to projekter

Summespørgsmål (2 min.)

- Betragt en investering med en initial omkostning på 100 der genererer positive betalinger på 50 i hvert af de følgende 3 år. Antag at kapitalomkostningen er 10%
- Hvad er kapitalværdi af en enkeltstående investering?
- Hvad er kapitalværdien af en uendelig række af sådanne investeringer?

Svar

- Kapitalværdi af enkeltstående investering: 24,34 (nutidsværdi af enkelt negativ betaling og en række på tre positive betalinger)
- Ækvivalent årlig betaling: 9,78 (brug annuitetsformel til at finde årlig betaling over 3 år der er ækvivalent med kapitalværdien)
- Kapitalværdi af uendelig række af investeringer: 97,8 (brug perpetuitetsformel til at bestemme nutidsværdi af uendelig række af betalinger på 9,78)

Optimal levetid

- Vi bør i princippet altid beregne en investerings optimale levetid
- Den optimale levetid er ikke altid identisk med en investerings maksimale levetid
 - Ex: En gammel cykel der godt kan køre, men som er dyr i reparationer
- Den optimale levetid afhænger af antagelsen om genanskaffelse
- Genanskaffelse er ikke mulig
- → den optimale levetid er den der maksimerer kapitalværdien af en enkelt investering
- Genanskaffelse er altid mulig
- → den optimale levetid er den der maksimerer kapitalværdien af en uendelig række af investeringer

Summespørgsmål (2 min.)

- Betragt en investering med en initial omkostning på 100 der genererer nettobetalinger på
 - 70 i år 1,
 - 50 i år 2,
 - 30 i år 3,
 - 10 i år 4
 - -10 i år 5
- Hvordan beregner vi investeringens optimale levetid under forskellige antagelser om genafskaffelse

Svar

- Genanskaffelse ikke mulig
 - Optimal levetid er 4 år da den negative betaling i år bidrager negativt til kapitalværdien
- Genanskaffelse altid mulig
 - Beregn den ækvivalente årlige betaling af kapitalværdien ved levetid på 1 år, 2 år, 3 år osv.
 - Den optimale er den der maksimerer denne årlige betaling

Opsummering

- Hvordan foretager vi investeringsbeslutninger?
 - 4 forskellige kriterier
 - Kapitalværdi ("net present value")
 - Tilbagebetalingstidspunkt ("pay-back rule")
 - Intern rente ("*internal rate of return*")
 - Profitabilitetsindeks
 - Kapitalværdimetoden dominerer
- Alternativer med forskellig levetid: Betydningen af antagelser om genanskaffelse
- En investerings optimale levetid