EC315 Summary (1):

Topics in Microeconomics With Cross Section Econometrics

Lewis Britton {201724452}

EC315: Topics in Microeconomics With Cross Section Econometrics

Academic Year 2019/2020

Word Count: $\{N/A\}$

EC315: Topics in Microeconomics With Cross Section Econometrics Topic Summary

Topics:

- 1) Exam Summary
- 2) Game Theory (Externalities & Consequences)
- 3) Topics in Public Economics (Government Role & Functions)
- 4) Cross-Section Economics (Theory & Real World)

Assumptions:

- 1) No individual has a significant influence on a market.
- 2) Perfect information exists.
- 3) There are no external effects on production/consumption.
- 4) No 'public goods'.

Exam Summary

Cost Benefit Analysis Summary

- 1) Purpose
- 2) Alternatives
- 3) **Who?**
- 4) C/B Impacts
- 5) Lifetime Impacts
- 6) Monetize:
 - Social Costs: harm done to living organisms
 - o Revealed/Stated Preference: willingness to pay or willingness to accept
 - Revealed: shown in behaviour
 - Stated: questionnaires etc.
 - o <u>Time</u>:
 - Work vs Leisure: use wage rate but some skewed
 - Travel Time: how much people willing go out of way (e.g. high pay)
 - o <u>Lives</u>: Life Expectancy, Pay, Age, Risks Taken
 - o Natural Resources: AONBs, surveys, investment, regulation
 - \circ Marginal B. = Marginal C.: no external costs (Monetary C. = Real C.)
 - o [Willingness to Pay/Accept]
 - o [Stated/Revealed Preferences]
- 7) PV Discounts
 - Social Discount Rate
 - o Intergenerational: More than 50 years (3.5%)
- 8) **NPV of Alternatives**
- 9) Sensitivity Analysis
- 10) Recommend

Programme & Policy Evaluation Summary

- A) Cause \rightarrow (Intermediaries) \rightarrow Effect
 - o [Selection Bias]: E.g. grades, income, area
- 1) Omitted Variable Bias
 - o [Selection Bias]: E.g. effort, determination, stamina
- 2) Randomised Control Trial
 - [Unbiased Estimator]: $\bar{x} \rightarrow \bar{\mu}$ (LLN)
 - o [Unbiased Estimator]: Randomisation
 - o $[\sigma^2]$: "How much of result is chance?"
 - $\circ \quad [\text{t-tests}]: \underline{\text{Causal Effect}} \to (\overline{Y}^T \overline{Y}^C)$
- 3) **Regression**:
 - o [Dummies]: Causal Variable/Group
 - o [IVs]: Omitted Variables (α corr. u)
- B) Impossible:
 - o Logistical, Ethical, Lack of Need

Crime & Punishment Summary

- 1) [Supply]: $\pi_t = \pi_i c_i w p(f)$
 - \circ i = Individual
 - o π_t = Net Total Payoff of Crime
 - o π_i = Expected Payoff Per Offense (Minus Costs)
 - o $c_i = \text{Cost Incurred if Caught}$
 - o w_i = Wage Rate From Non Criminal Work
 - o p_i = Probability of Aprehension & Conviction
 - o f_i = Punishment if Conviced
- 2) Normal Distribution
 - Req. $\uparrow \pi$, $\uparrow \delta$, [$\bar{x} \rightarrow$ (Right of Mean)]
 - Req. $\downarrow \pi$, $\downarrow \delta$, [$\leftarrow \bar{x}$ (Left of Mean)]
 - o Morals, Enjoyment, Risk (Some Need <u>Huge/Small</u> Payoffs)
- 3) [Demand]: $e_i f(v_r, v_l)$; q
 - o e_i = Expenditure on Protection
 - o v_r = Risk of Victimisation
 - o $v_l = \text{Loss of Victim}$
 - \circ q = Total Crime
- 4) Derivatives

 - $\frac{\partial e_i}{\partial v_i}$ > 0: Risk ↑, Expenditure ↑ $\frac{\partial c_i}{\partial e_i}$ > 0: Expenditure ↑, Cost ↑
 - $\frac{\partial \pi_i}{\partial c_i}$ < 0: Cost ↑, Payoff ↓
- 5) [Supply/Demand]:

0

- \circ ss = Supply of Crime
- \circ dd = Initial Demand
- \circ $\pi\pi$ = Demand After Gov. (*T*)
- MC of Catching Last Criminal > MB [$\leftarrow \pi^*, q^*$]
- MC of Catching Last Criminal $< MB [\pi^*, q^* \rightarrow]$

Calculations Summary

1)
$$\pi_A = x_A p_A (x_A + x_B) - x_A$$

1)
$$\pi_A = x_A p_A (x_A + x_B) - x_A$$

2) $J = \pi_A + \pi_B$; $\frac{\partial J}{\partial x_A} = \frac{\partial \pi_A}{\partial x_A} + \frac{\partial \pi_B}{\partial x_B}$
3) [Externalities]: $\frac{\partial \pi_A}{\partial x_B}$

3) [Externalities]:
$$\frac{\partial \pi_A}{\partial x_B}$$

$$\circ$$
 > 0: Positive: "You Do \uparrow , My $\pi \uparrow$ "

○ < 0: Negative: "You Do ↑, My
$$\pi$$
 ↓ "

4) [Strategic Nature]:
$$\frac{\partial \pi_A}{\partial x_A}$$

$$\circ~>0$$
: Complements: "You Do \uparrow , I Do \uparrow "

$$\circ$$
 < 0: Substitutes: "You Do 1, I Do \downarrow "

$$0 \quad \frac{40}{(1-\delta)} \ge 50 + \frac{30\delta}{(1-\delta)}$$

$$\circ \quad 40 \ge 50 - 50\delta + 30\delta$$

$$\circ \left[\delta \ge \frac{1}{2}\right]$$
: Cooperation Possible

$$\bigcirc \quad \frac{40}{(1-\delta)} \ge \frac{50}{(1-\delta^2)} + \frac{30\delta}{(1-\delta^2)}$$

$$0 \quad 40 + 40\delta \ge 50 + 20\delta$$

$$\circ \quad \left[\delta \ge \frac{1}{2}\right] : Cooperation Easy$$

Game Theory

 Welfare Economics – Generalising equilibriums. Competitive markets provide an incentive for firms to produce what customers want. Markets rock if there is fair play. Theorem 1 – Every competitive economy is Pareto Efficient. Theorem 2 – Every Pareto Efficient allocation of resources can be achieved in competitive markets (w/ appropriate redistribution between parties). Pareto Efficiency – No additional person can be made better off without making someone else worse off. There should be no government intervention. Redistribution can take place meaning there is redistribution between parties within the economy rather than externally.
<u>Prisoner's Dilemma</u> – Pursuing your own interests leads to inefficient markets because, using the prison example, if both people choose to confess, they get full long time each. If they both lie, they get full short time. If one lies and one confesses, the one who confesses gets reduction but the liar gets full time. This is risk. Both could deny for 2 years of the other lies (gets 10 years). But then they both risk getting 8 years. If they both deny they both get the full short time (3 years). Denying is best for them both but confessing could , but only could, be best for a single one of them.
Rationality – Players will choose the option with the best payoff for themselves. But back to the Joey and Phoebe, if you are choosing the best for yourself, surely the opponent must be doing the same so can you forecast? Or will they think the same and one-up you? Output Common Knowledge of Rationality – Where players don't just know they possible outcomes of their decisions, they know the possible outcomes of the other's decisions. But recall the prisoner's dilemma.
Game Theory – our actions have external consequences. They effect the environment and all things around us (smoking example). ○ Non-Cooperative Game – in it for your own gain and only that. ○ Information Game – Everyone knows they are playing. ○ Stage Game – May be repeated (e.g. rearranging cost agreements). ○ Simultaneous Game (Type 1) – when players do not know the move of the opponent and move at the same time. ○ Sequential Game (Type 2) – when players know the move of the other player and can make their decision based on the opponent's move.
<u>Imperfect/Perfect Information</u> – not being able to see the others' choice. Your outcome will always depend on their choice but your decision won't. Or , you have information about their decision to look at as they have make it (historic forecasting).

<u>Strategic Uncertainty</u> – (when simultaneous) players must base decisions on what
they think the other player will play as they do not know. But then they must consider
what they think the opponent's move will be but then, the opponent will surely think
they will be thinking this and so make a different move and make the same prediction
about their opponent in practice usually it comes back round to them making the
first decision that you predicted they would make (Joey and Phoebe e.g.) Can lead to
Strategic Payoff where the strategic nature of their thinking pays off and they've well
forecasted the other's choice.
<u>Dominant Strategy</u> – When there is one clear winner in the strategy you use. It takes
the lead the majority or all of the time when put into the matrix. This is found through
Best Response Analysis which is found by going through each option of B and
selecting the best strategy for A to choose (repeat for all columns of B). Then
repeating for B (for all rows of A). The double underlined is the dominant strategy.
<u>Dominated Strategy</u> – When the strategy a player chooses is dominated than another
strategy which would make you better-off than the one you're choosing.
Nash Equilibrium – When there is a clear equilibrium between the players' Dominant
Strategies. Means you can't Unilaterally Deviate and make themselves more
profitable (no incentive to deviate).
When there is no dominant strategy: Unilateral Deviation

- When there is no dominant strategy: <u>Unilateral Deviation</u>
- o <u>Mixed Strategies</u> Players randomise strategies on unpredictable patterns (e.g. with muscular workouts).
- o <u>Pure Strategies</u> when the player knows for sure what option they will choose

1: Simultaneous Move Game

- ☐ Sole entrant: big payoff
- ☐ Both attempt entry: perhaps not enough market space
- ☐ There's a <u>First Mover Advantage</u>

1.1 Pure & Mixed Strategies

- □ Note: <u>Chicken Game</u>: two players heading towards each other;
 - 1) They collide and both marginally lose out
 - 2) One swerves and loses out bigger (Chicken)
- ☐ (from Tutorial 1) there may be two <u>Nash Equilibria</u>.

		Player B	
		E (q)	N (1-q)
Player A	E (p)	-50,100	<u>150,0</u>
	N (1-p)	<u>0,100</u>	0,0

- o The Nash Equilibria are underlined. There are two.
- Pure strategies are shown through probability as seen by entering probabilities p & q above.
- o For Player A:

$$(EV = Expected Value)$$

$$\begin{split} EV_A (E) &= -50q + 150(1-q) \\ EV_A (N) &= 0q + 0(1-q) \\ -50q + 150 - 150q &= 0 \\ q &= \frac{3}{4} \end{split} \qquad \begin{aligned} EV_B (E) &= -100p + 100(1-p) \\ EV_B (N) &= 0p + 0(1-p) \\ -100p + 100(1-p) &= 0 \\ p &= \frac{1}{2} \end{aligned}$$

These are the probabilities of placing in the respective quartiles:

	E 3/4	N 1/4
E ½	3/8	1/8
N ½	3/8	1/8

• You are trying to find the option that would make you both indifferent between choosing options.

2: Sequential Move Game

- ☐ Uses Backward Induction
 - o Games are analysed from the end through to start
- ☐ Transforms from Normal Form to Extensive Form
- ☐ Transforms Nash Equilibrium to Sub-Game Perfect Nash Equilibrium
- □ Not subject to <u>Strategic Uncertainty</u> (imperfect information)
 - Can observe movements
 - o Hence, Perfect Information
 - o E.g. supermarket price setting
- ☐ If the first or last mover has a <u>Dominant Strategy</u>, they'll use it

2.1: Game Tree

		(arm,arm')	(arm, refrain')	(refrain,arm')	(refrain, refrain')
Α	arm	-1, -1	-1, -1	1, -2	1, -2
	refrain	-2, 1	0, 0	-2, 1	0, 0

- \square In <u>Simultaneous</u>: <u>Strategy</u> = <u>Action</u>
 - o Not the case in Sequential
 - o Action: a simple move
 - o Strategy: plan based on the move of the first player
- ☐ A's Strategies:
 - o Arm;
 - o Refrain
- ☐ **B**'s Strategies:
 - o (Arm, Arm');
 - o (Arm, Refrain')
 - o (Refrain, Arm')
 - o (Refrain, Refrain')
- ☐ <u>Information Set</u>: don't know which two nodes you are at:
- □ Subgame: the mini-looking games which Beta is player under Alpha

2.2: Choosing an Option

□ Example:

□ Normal:

		Beta		
		export	not export	
Alpha	FDI	25,-5	40, <u>10</u>	
Aiplia	export	<u>30,30</u>	<u>60</u> ,10	

☐ Extensive:

- ☐ In the <u>Normal Form</u>, (export, export) is the <u>Dominant Strategy</u>
 - o But **Beta** has more options

 \circ (export, export') (E,E')

o (export, not export') (E,N')

o (not export, export') (N,E')

 \circ (not export, not export') (N,N')

- ☐ If Alpha plays FDI, will Beta ever export?
 - o (N,E') allows <u>Incredible Treats</u> to be made "off the equilibrium path"

2.3: Backward Induction

- ☐ A process used to avoid <u>Incredible Threats</u>
- 1) Start at the last stage of the game
- 2) Break down into two of Alpha's options
- 3) Select these two Subgame Nash Equilibria for Beta on each Alpha arm
 - O Not Export and Export' are the best for Beta here (N,E')
- 4) Alpha now has a choice
 - o FDI would be followed by Beta's Not Export (40,10) [> (25,-5)]
 - Export would be followed by Beta's Export' (30,30) [< (60,10)]
 - Alpha plays FDI
- 5) Nash Equilibrium is made clear
 - {FDI,(N,E')}

- ☐ If Alpha assumes Beta is <u>Rational</u>, they expect Beta to play (40,10) on FDI and (30,30) on Export
- ☐ Credible Threats:
 - o Only on FDI as they could lower their payoff to punish Alpha
 - 0 (25,-5)

2.4: Order Advantages

- ☐ **Commitment** (first mover) vs. **Flexibility** (follower)
 - o Commitment has greater value in Simultaneous
 - o Flexibility has greater value in Sequential
- ☐ Recall that in <u>Simultaneous Games</u> there's a <u>First Mover Advantage</u>
- ☐ First Mover Advantage (Simultaneous):

0

- o **B** maximises on both moves and **A** maximises on its one move
- o A lowers B's payoff by choosing a more profitable option for them
- ☐ Second Mover Advantage (Sequential):

С

- o **M** goes for overall highest payoff (6) by choosing move A
- P has the option to choose one which greater benefits them and lowers M's expected payoff

2.5: Manipulating Games

- ☐ Take actions to manipulate a game? That is, guaranteeing an outcome
- ☐ Threats & Promises
 - o "If you attack, I'll fight..."
 - o "If you enter, I'll enter too making it less profitable for you..."
 - o "If you work hard, I'll work hard..."
 - o Lacks Credibility as you could be **bluffing**
- □ Credibility
 - o "If you're late, ill set off a bomb..." (<u>Incredible</u>: bluffing? not factual)
 - o "If you're late, the timed bomb will go off" (<u>Credible</u>: more believable fact)
 - Changes first mover's thinking

2.6: Price Matching Guarantees

☐ Standard Subgame Perfect Nash Equilibrium:

☐ Offering a <u>Price Match Guarantee</u>:

- o Commitment to maintain high prices
- By committing to match low prices, A changes payoffs such that it's not beneficial for B to undercut – as bigger payoff can't be seen
- o Both firms end up paying high prices
- o (Pricing) Prisoner's Dilemma

3: Prisoner's Dilemma

- ☐ Cooperate or Defect
- ☐ Mutual Gain: Cooperate
- ☐ Individual Incentive: Defect
- ☐ Pareto Inefficient Equilibrium
- Recall: someone has a <u>Dominant Strategy</u> where there's harm done to each other and they could be better off (<u>Pareto Efficient</u>). Self-interest doesn't pay off. But:
 - o Games can be repeated (e.g. price re-setting)
 - E.g. lower price than opponent now (get more custom volume), makes opponent less-off (also poor for aggregate prices)
 - Firms may form a passive collusion where they both think opponents will set low so they both set high
- ☐ Both players have <u>Dominant Strategy</u> to <u>Defect</u> but they could have a better result when the both <u>Cooperate</u>
 - Hence, when choosing best interest, harm is done to the opponent when choosing to <u>Defect</u> for own interest, the opponent may choose to <u>Cooperate</u> so have a worse outcome

		DOD	
		deny	confess
Alice	deny	3,3	10,2
Alice	confess	2,10	8,8

Example (1): (8,8) is <u>Pareto Inefficient</u> equilibrium as it is reached by both aiming for low by confessing. Could be made better off by both acting for mutual gain (3,3)

Example (2): Pricing – non-brand loyal market, flow freely between

Example (3): Team Work – (work vs shirk) shirk leads to more payoff as still full marks but no work done but if the other does all the work, they will get full marks but payoff will reduce due to workload

Example (4): Clean vs Dope – (risk based) best self-interest response is to dope as highest possible payoff but the equilibrium they both do it is less than the payoff if they both don't

Example (5): Market Share – studying marketing is a waste of time. Market is a pie, we compete over our share. Ads try to (1) inform & (2) predatory (winning market share). Start: 50/50, engage in ads to win market share. I spend money, I get some in return but you won't gain much more market share. The opponents do this to keep up. Each keep catching back up to 50% each but both are still wasting millions on marketing. Market share isn't changing proportionately but you're still spending money

3.1: Externalities

☐ Negative Externalities: (own interest – doing too much) Cooperation						reduces amount	
	of work you do for the better (e.g. not over-fishing)						
	 Don't see costs from defecting – too much harmful activity is done 						
	<u>Positiv</u>	<u>re Externalities</u> : (own	interest – d	oing too	little) Coo	peration s	ays you should
		re work (e.g. not doing					
	0	Don't see costs benef	fits form co	operating	g – too litt	le of a goo	od activity is done
	Exam	ple: Marginal Benefit	vs. Margin	al Cost –	(1) extrac	ting fish f	rom the ocean
	makes	it harder in the future	(e.g. do les	s fishing	to allow r	epopulation	on). (2) But you
	want n	nore to sell now. (3) S	elf-interest	makes it	harder for	r others	•
3.2: R	ationali	se Cooperation Reso	lutions				
	Dagalu	tions to Duisonou's Di	lamma				
		tions to <u>Prisoner's Di</u> up (verbal agreement)		igh price	s (incentis	ze of decer	ation howaver
		ant him to set high price				c or decep	mon nowever –
	•	ten: punishment of op	•			(lacking	credibility as you
		o it" rather than it "wi		*	•	" – can fix	x credibility by
		Mafia as they have mo				C 4 (4'11	1 1 19.99
		d : offer a reward that volves giving money					
	as It III	volves giving money	- lowers ye	our payor.	1. May 110	t even ben	eve you)
3.3: B	ehaviou	ral Resolution					
П	Doople	e are influenced by the	o 'cooial no	rm': if no	onla conf	liot with th	nis there's a cost
	o copic	Denote this cost of $\underline{\Gamma}$		-	opic com	net with th	ns, there s a cost
	O	Denote this cost of <u>I</u>	ociceting a	s n			
	0	Recall:			cooperate	ob defect	
	O	Recair.	Alice	cooperate	C,C	L,H]
	0	H > C > D > L	7 11100	defect	H,L	D,D	J
	O	H > C > D > L				ob	
	0	So:	Alice	cooperate	cooperate C,C	defect L,H-k	
	O	50.	Alice	defect	H-k,L	D,D	
	\circ If k large enough relative to $H - C$, behaviour in defecting contrasts with					ontrasts with	
		'social norm' so cos	t				
	<u>Extern</u>	al Norms of Behaviou					
	0	Think back to litter e		-		•	en though it's the
		most beneficial for ye	ou. It confl	icts with	the social	norm	

☐ <u>Internal Norms of Behaviour</u>:

O Doing nice things for people who are nice to you (gain utility)

o Being bad to people but they are good to you (loss of utility). - you defect but if you care enough, you'll maybe rationalise <u>Cooperation</u> and change mind

3.4: Price Matching Guarantee Resolution

- You may be undercut for opponent to gain market share from you at lower prices
- If you're offered. PMG, you will simply match prices and keep customers "he's selling at that price, can you just sell me at that too"
- ☐ Opponent now doesn't gain, just sells at lower price as no market gain
- ☐ Equilibrium of both pricing high out of <u>Prisoner's Dilemma</u>

3.5: Dynamic Punishment Resolution

- ☐ When <u>Defecting</u>, a player may believe they will be 'punished' in the future
- Can we achieve <u>Cooperation</u> through fear of <u>Punishment</u>?
 - o Credible: backed with fact
 - **Incredible:** maybe won't happen
- ☐ Finite Period (T Periods): <u>Defect</u> in last period as no more time for **retaliation**
 - o Final period: mutual <u>Dominant Strategy</u> to <u>Defect</u> as no future punishment
 - o So: best to defect this period as well as you both will next
- **Infinite Period:** the game will continue [probability p=1] so **retaliation**
 - o Always an opportunity to punish as there's always another period
- ☐ **Impatient:** future worth less than present so Defect (not caring for punishment)
- **Patient:** care more for future gain by waiting and Cooperating

3.5.1: Discounting

Stream of Payoffs:

- \circ £1 from £1 today to £1(1+r) tomorrow; £1 from £1 tomorrow to £ $\frac{1}{(1+r)}$ today
- $\circ \quad \mathbf{PV}: \frac{1}{(1+r)}, \frac{1}{(1+r)^2}, \dots, \frac{1}{(1+r)^N}; \mathbf{r} = \text{Discount Rate}; \mathbf{\delta} = \text{Discount Factor} = \frac{1}{(1+r)}$
- **Hence**: £X in period t is worth $X \frac{1}{(1+r)^t}$ today
- \circ **Hence**: £X in period t is worth £X δ^t today
- o δ Close to 1: **Patient**; δ Close to 0: **Impatient**
- o **CFs**: $X_0, X_1, X_2, ..., X_N$; **PVs**: $X_0 + \delta X_1 + \delta^2 X_2, ..., \delta^N X_N$
- $\circ \quad \textbf{Infinite: } 1 + \delta + \delta^2 + \delta^3 = \frac{1}{(1-\delta)}$
- o **E.g.** Payoff of 7 in perpetuity:
- Payoff of 10 today and 2 in perpetuity:
- o $7 + 7\delta + 7\delta^2 + \cdots = 7\frac{1}{(1-\delta)};$ $10 + 2\delta + 2\delta^2 + \cdots = 10 + 2\delta\frac{1}{(1-\delta)}$

Note:

		В		
		high	low	
Α	high	600,600	170,1000	
	low	1000,170	400,400	

3.5.2: Trigger Strategies - Grim Trigger

П	Start by	Coo	perating
	Dial t O y	\sim 00	peranna

- ☐ If opponent <u>Cooperated</u>, <u>Cooperate</u>
- ☐ If opponent <u>Defected</u>, <u>Defect</u> in perpetuity

1) <u>Cooperate</u>:

- Opponent gets 600 forever \rightarrow 600 + 600 δ +600 δ ² + \cdots = $\frac{600}{(1-\delta)}$
- 2) Defect:
 - Get 1000 now but 400 after \rightarrow 1000 + 400 δ + 400 δ + \cdots = **1000** + $\frac{400\delta}{(1-\delta)}$
- 3) Answer:

$$\bigcirc \quad \text{Hence: Grim Trigger at } \delta \ge \frac{2}{3} \text{ so } \underline{\text{Cooperate}}$$

3.5.3: Trigger Strategies - Tit-For-Tat

- ☐ Start by Cooperating
- ☐ Play as the opponent played in the last round
- ☐ Cooperation followed by Cooperation
- ☐ <u>Defection</u> followed by <u>Defection</u>
- 1) <u>Defect</u> in Perpetuity:
 - Same as Grim $\delta \ge \frac{2}{3}$
- 2) Defect Once:
 - \circ Get 400 now but loses 430 after \rightarrow

$$0 \quad 400 \le 430\delta \Longrightarrow \delta \ge \frac{40}{43} (\Longrightarrow r \le 0.075 = 7.5\%)$$

3) Answer:

If **Grim** Works: Cooperation is **possible** If TFT Works: Cooperation is easy

4: Games With Continuous Strategies

- ☐ This is applying maths to what we already know
- □ Nash Equilibriums & Sub-Game Perfect Nash Equilibriums remain the same
- ☐ This is applying the following more generally
- ☐ Matrix strategy: can choose any option for the expected opponent's options
 - o Recall:
 - o <u>Simultaneous</u>: Best Responses & Mutually Consistent Best Responses
 - o Sequential: Backward Induction
- ☐ Take a long time to analyse a <u>Continuous Strategy</u> using <u>Discrete Sets</u> (matrix)

4.1: Quantity Competition

- ☐ In a Competitive Market
- \Box Firm *i* supplies q_i
 - Where Total (Aggregate) Quantity: Q
- □ Inverse Demand Function: p(Q) = a bQ
- \square Payoff is Profit (π_i) : $q_i p(Q) C_i(q_i)$
- \Box Hence: $\pi_i(q_i, ..., q_i, ..., q_n) = q_i p(Q) C_i(q_i)$
- □ Oligopoly if several firms compete
- $\ \square$ Recall that A could choose any option from 1 to N_{Matrix} in response to B
 - o " q_A could be anything from 1 to N_{Matrix} "
- ☐ This can be reflected in chart form but can prove difficult in high Ns:

B H L M H S 3 7 3 3 3 4 4 4 4 4 4 4 5 5 4 4 4

- o Hence, we see a <u>Payoff Function</u> which is maximised at a point
- \circ "Find the level of q_1 maximiseing firm 1's payoff for given q_2 "

4.2: Continuous Strategies

- ☐ Too hard to account for all the options (in this case quantities to produce)
- ☐ Recall Basic Maths:
 - o Function: the level
 - o Derivative: the slope of the function
 - \circ Partial Derivative: fix a variable (extract from equation {Hyp. = 0})

Recall Rules of Differentiation:

0

- Working towards Payoff Function
- Just like in the matrixes, fix the opponents option each time to find your best
- Hence, $y = f(x_1, x_2)$
- \circ Fix x_2 (the other's strategy) to observe how x_1 varies with y
- Therefore, **partial derivative:** $\frac{\delta_y}{\delta_{xz}}$ for fixed x_2
- Thus, <u>Best Response</u> at $\{\frac{\delta_y}{\delta_{x1}}|_{x_2} = 0\}$ (peak of function)
- Note that, if you take the derivative on the **incline** of the function, you can be made better off by doing more. Take the derivative on the decline, better off by doing less

- Recall: the function f(x):
 - f'(x) positive @ incline
 - f'(x) negative @ decline
 - f'(x) = 0 @ stationery point (max/min)

• Constant:
$$ch(x) \rightarrow ch'(x)$$

• Sum:
$$g(x) \pm h(x) \rightarrow g'(x) \pm h'(x)$$

• **Product:**
$$g(x)h(x) \rightarrow g(x)h'(x) + g'(x)h(x)$$

• Chain:
$$g(h(x)) \rightarrow g'(h(x))h'(x)$$

■ Chain:
$$g(h(x))$$
 $\rightarrow g'(h(x))h'(x)$
■ Quotient: $\frac{g(x)}{h(x)}$ $\rightarrow \frac{g'(x)h(x)-g(x)h'(x)}{h(x)^2}$

Log:
$$\ln x \rightarrow \frac{1}{2}$$

In Practice:

• Power:
$$\sqrt{x} = x^{\frac{1}{2}}$$

Power:
$$\sqrt{x} = x^{\frac{1}{2}}$$
 $\rightarrow \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$

• Constant:
$$3x^2$$

$$\rightarrow 3 \cdot 2x$$

$$\blacksquare$$
 Sum: $r^2 + r$

$$\rightarrow 2x + 3x^2$$

• **Product:**
$$x^2(2x+3)^9$$

■ Power:
$$\sqrt{x} = x^{\frac{1}{2}}$$
 $\rightarrow \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$

■ Constant: $3x^2$ $\rightarrow 3 \cdot 2x$

■ Sum: $x^2 + x^3$ $\rightarrow 2x + 3x^2$

■ Product: $x^2(2x + 3)^9$ $\rightarrow x^2 \cdot 9(2x + 3)^8 \cdot 2 + (2x + 3)^9 \cdot 2x$

■ Chain: $x^2(2x + 3)^9$ $\rightarrow 9(2x + 3)^8 \cdot 2$

■ Quotient: $\frac{x}{1+x}$ $\rightarrow \frac{(1+x)\cdot 1-x\cdot 1}{(1+x)^2}$

• Chain:
$$v^2(2v \pm 3)^9$$

$$\rightarrow 9(2x+3)^{\circ}$$

• Quotient:
$$\frac{x}{1+}$$

$$\rightarrow \frac{(1+x)\cdot 1-x\cdot (1+x)^2}{(1+x)^2}$$

4.3: Cournot Derivation of Payoff & Reaction (Simultaneous)

- 1) Fix **Firm 2**'s action and find my <u>Best Response</u> through <u>Payoff Function</u>
 - o Find Payoff Function
 - o Partially Derive & $\{=0\}$ for Best Response with fixed q_2
 - o Find best q_1 for Reaction Function; Sub for q_1^*
- 2) Fix Firm 1's action and find their <u>Best Response</u> through <u>Payoff Function</u>
 - o Find Payoff Function
 - o Partially Derive & $\{=0\}$ for <u>Best Response</u> with fixed q_1
 - o Find best q_2 for Reaction Function; Sub for q_2^*
- 3) Find meeting point of Nash Equilibrium where both firm's Reaction Functions meet
- 4) (Optional) Substitute to find the optimal π for each firm
- \Box Players: 2 firms of i = 1, 2
- \Box **Strategies**: each firm chooses quantity of q_i
 - o For Quantity $Q = q_1 + q_2$
- ☐ **Payoff**: given supply choices,
 - o Marginal Cost of c
 - \circ Price $P(q_1+q_2)$
- ☐ Working Example for **Firm 1**:
 - o For $\pi_1(q_1, q_2)$:
 - o $\pi_1 = q_1(a b(q_1 + q_2)) cq_1$ (Payoff Function of Firm 1)
 - $\circ \pi_1 = q_1(a bq_1 bq_2) cq_1$
 - $\circ \quad \pi_1 = aq_1 bq_1^2 bq_1q_2 cq_1$
 - 0 -----
 - $\circ \quad \frac{\delta_{\pi_1}}{\delta_{q_1}} = a 2bq_1 bq_2 c \qquad (Fixed \mathbf{q_2})$
 - $\circ \quad [a-2bq_1-bq_2-c=0]$
 - $\circ \quad [2bq_1 = a c bq_2]$
 - o $[q_1 = \frac{a-c-bq_2}{2b}] \dots [q_1 = \frac{a-c}{2b} \frac{1}{2}q_2]$ (Reaction Function of Firm 1)
 - Recall: q_1 is not (-) as $q_2 \le \frac{a-c}{b}$
 - O Note that Reaction Function: $q_1^* = \widehat{q}_1(q_2) = \begin{cases} \frac{a-c}{2b} \frac{1}{2}q_2 & \text{if } q_2 \leq \frac{a-c}{b} \\ 0 & \text{if } q_2 > \frac{a-c}{b} \end{cases}$
 - o Hence, <u>Reaction Function</u>:
 - Output quantity should decline as the opponent's increases
 - o When it reaches 0, leave market
 - Obviously no negative

\square Repeat for **Firm 2**:

o
$$\pi_2 = q_2(a - b(q_1 + q_2)) - cq_2$$
 (Payoff Function of Firm 2)

$$\frac{\delta_{\pi^2}}{\delta_{\alpha^2}} = a - 2bq_2 - bq_1 - c \qquad \text{(Fixed } \boldsymbol{q}_1$$

control Find 2.

$$\sigma_2 = q_2(a - b(q_1 + q_2)) - cq_2 \qquad (\underline{Payoff Function} \text{ of Firm 2})$$

$$\sigma_2 = \frac{\delta_{\pi 2}}{\delta_{q_2}} = a - 2bq_2 - bq_1 - c \qquad (\underline{Fixed } q_1)$$

$$\sigma_2 = \frac{a - c - bq_1}{2b} \text{ or } [q_2 = \frac{a - c}{2b} - \frac{1}{2}q_1] \qquad (\underline{Reaction Function} \text{ of Firm 2})$$

O Note that Reaction Function:
$$\widehat{q}_2(q_1) = \begin{cases} \frac{a-c}{2b} - \frac{1}{2}q_1 & \text{if } q_2 \leq \frac{a-c}{b} \\ 0 & \text{if } q_1 > \frac{a-c}{b} \end{cases}$$

■ Nash Equilibrium:

- "The Cournot Equilibrium"
- o Flip Firm 2's Reaction Function and overlay

O Seek:
$$q_1^*$$
, q_2^* from $q_1^* = \hat{q}_1(q_2^*) \& q_2^* = \hat{q}_2(q_1^*)$

- o "For Firm 1's q which maximises its π given Firm 2's q"
- o "For Firm 2's q which maximises its π given Firm 1's q"

Achieved through Substitution

o From:
$$q_1 = \frac{a-c}{2h} - \frac{1}{2}q_2$$

o From:
$$\mathbf{q}_1 = \frac{a-c}{2b} - \frac{1}{2}\mathbf{q}_2$$

o $q_1 = \frac{a-c}{2b} - \frac{1}{2}(\frac{a-c}{2b} - \frac{1}{2}q_1)$
o $q_1 = \frac{a-c}{2b} - \frac{a-c}{4b} + \frac{1}{4}q_1$
o $q_1 = \frac{4b(a-c)-2b(a-c)}{8b^2} + \frac{1}{4}q_1$

$$\circ \quad q_1 = \frac{2b(a-c)}{8b^2} + \frac{1}{4}q_1$$

$$q_{1} = \frac{a-c}{4b} + \frac{1}{4}q_{1}$$

$$q_{1} = \frac{a-c}{4b} + \frac{1}{4}q_{1}$$

$$q_{1} = \frac{a-c}{4b}$$

$$q_{1} = \frac{4}{3}\frac{a-c}{4b}$$

$$q_{1} = \frac{4(a-c)}{12b}$$

$$q_{1} = \frac{a-c}{3b}$$

$$\circ \quad \frac{3}{4}q_1 = \frac{a-a}{4b}$$

$$\circ \quad q_1 = \frac{4(a-c)}{12b}$$

$$\circ \quad q_1^* = \frac{a-c}{3b}$$

• Sub for Firm 2...Sub for π 's...

☐ Cournot Equilibrium **

• Hence:
$$Q^* = q_1^* + q_2^*$$

$$o So: p^* = a - bQ^*$$

o Thus:
$$p^* = q^* = q^*$$

☐ Verify that:

o Industry Output Between Monopoly and PC:

$$Q^M < Q^* + Q^C$$

Price is Between Monopoly and PC:

$$p^M = p^* + p^C$$

Industry Profit Between Monopoly and PC: $\pi^{M} > \pi_{1}^{*} + \pi_{2}^{*} > 0$

$$\pi^{M} > \pi_{1}^{*} + \pi_{2}^{*} > 0$$

4.4: Stackelberg Leader & Follower (Sequential)

- The leader implements the first player's <u>Reaction Function</u> intro their <u>Payoff Function</u>
- ☐ First mover advantage as leader gets higher payoff
- ☐ Recall from <u>Sequential Games</u>: <u>Backward Induction</u>

□ **Linear Demand**:
$$P(Q) = a - bQ$$

$$\Box$$
 Constant Marginal Costs: $C_i(q_i) = cq_i$

☐ Backward Induction:

Stage 2: Firm 2 maximises profits given q_1

Firm 2 uses <u>Best Response</u> to whatever Firm 1 produces

Firm 1 anticipates reaction of Firm 2 to any decision made Stage 1:

Firm 1 maximises profits given response of Firm 2

Firm 1 chooses point on Firm 2's Reaction Function which

maximises profits

☐ Stage 2:

- o Given q_1 what's the best for Firm 2 (follower) to do? As Previously...
- Recall: $\pi_2 = q_2(a b(q_1 + q_2)) cq_2$ (Payoff Function)
- Optimise and $\{=0\}$: $\frac{\delta_{\pi 2}}{\delta_{a2}} = a 2bq_2 bq_1 c = 0$
- React: $q_2^* = \hat{q}_2(q_2) = \frac{a-c}{2b} \frac{1}{2}q_1$ (Reaction Function)

☐ Stage 1:

- \circ Firm 1 (Leader) will choose q_1 to max. profits taking into account the reaction of the follower
- o Recall: $\pi_1(q_1, q_2) = q_1(a b(q_1 + q_2)) cq_1$ (Payoff)
- It Knows: if they choose q_1 Firm 2 will respond with $q_2^* = \hat{q}_2(q_1^*)$ account
- O So Firm 1 Maximises: $\frac{\delta_{\pi 1(q_1,q_2)}}{\delta_{q_1}} = \frac{a-c}{2} bq_1 = 0$
- Therefore: $q_1^L = \frac{a-c}{2b}$ (Reaction)
- o So Firm 2 (Follower): $q_2^F = \frac{a-c}{2b} \frac{1}{2} q_1^L$ $q_2^F = \frac{a-c}{4b}$ (Reaction)

☐ Stackelberg Equilibrium **

o Idea Is: rather than equilibrium, there is an advantage

$$Q^S = \frac{3(a-c)}{4b}; \quad \pi_1^L = \frac{(a-c)^2}{8b}; \quad \pi_2^F = \frac{(a-c)^2}{16b}$$

- ☐ Stackelberg vs. Cournot:
 - O Cournot: $q_1^* = q_1^* = \frac{a-c}{3b}$; $Q^* = \frac{2(a-c)}{3b}$; $p^* = \frac{a+2c}{3}$; $\pi_1^* = \pi_2^* = \frac{(a-c)^2}{9b}$
 - O Stackelberg: $q_1^L = \frac{a-c}{2b} > q_1^*;$ $q_2^F = \frac{a-c}{4b} < q_2^*$ $Q_2^S = \frac{3(a-c)}{4b} > Q^*;$ $Q_2^S = \frac{a+3c}{4} < p^*$ $q_1^L = \frac{(a-c)^2}{8b} > \pi_1^*;$ $q_2^F = \frac{(a-c)^2}{4b} < \pi_2^*;$
 - o Hence, First Mover (Firm 1) Advantage!

5: Applications of Prisoner's Dilemma

5.1: Recalling The Cournot Game

- ☐ An example of a continuous game
- ☐ Rather than using <u>Reaction Functions</u>, find <u>Isoprofit Curves</u>
- ☐ This is like indifference curves for firms
- \Box Call Firms: i & j
- \square Strategies: x_i, x_j
- \square Payoff: $u(x_i, x_i)$

5.1.1: Typical Reaction Function

- - o From Isoprofit contours
 - o Equilibrium at intersection: $q_i^* = q_j^* = \frac{a-c}{3b}$

5.1.2: Maximising Joint Profit

- $\Box J(q_i, q_j) = (q_i + q_j)(a b(q_i + q_j)) cq_i cq_j$ $\circ \frac{\partial J}{\partial q_i} = a 2b(q_i + q_j) c = 0 \to \tilde{q}_i(q_j) = \frac{a c}{2b} q_i$
 - $\circ \quad \frac{\partial J}{\partial q_i} = a 2b(q_i + q_j) c = 0 \to \tilde{q}_j(q_i) = \frac{a c}{2b} q_j$
- \Box Hence: assuming $q_i = q_j = \tilde{q}$;
 - $\circ \quad \tilde{q} = \frac{a c}{4b}$
 - Makes sense as: $2\left(\frac{a-c}{4b}\right) = \frac{a-c}{2b}$ Monopoly Output

5.1.3: Will Firms Agree?

- ☐ Will firms agree to produce at half the monopoly output?
- \square **No**: if firms expect you to produce more than \tilde{q} ;
 - o Best possible: $\hat{q}_i(\tilde{q}) \rightarrow$ must expand output in excess of Cournot Output
 - o Defecting firm: Bonanza Payoff
 - o Cooperating firm: Sucker Payoff
- ☐ Hence: <u>Prisoner's Dilemma</u>
 - o $\pi^B > \frac{1}{2}\pi^M > \pi^* > \pi^S$

5.2: Externalities & Strategic Nature

5.2.1: Externalities

☐ Negative:

- O You do more, you lower my payoff (Cournot Game)
- $\circ \quad \frac{\partial ui}{\partial xi} < 0 \text{ (Slope of } \underline{\text{Payoff Function}})$

☐ Positive:

- o You do more, you lower my payoff
- $\circ \quad \frac{\partial ui}{\partial xi} > 0 \text{ (Slope of } \underline{\text{Payoff Function}})$

5.2.2: Strategic Nature

☐ Strategic Substitutes:

- Opponent does more of their action: you optimally do less (<u>Reaction Function</u> downward)
- $\circ \left(\frac{\partial \frac{\partial ui}{\partial xi}}{\partial xj}\right) < 0 \text{ "with a higher } x_j \text{ the optimum is with a lower } x_i\text{"}$

☐ Strategic Compliments:

- Opponent does more of their action: you optimally do more (<u>Reaction</u> <u>Function</u> upward)

5.3: Nash Equilibrium in Games

- ☐ When non-cooperative, players optimise self-interest
- $\Box \quad \text{Marginal Payoff} = 0: \frac{\partial ui}{\partial xi} = 0 \& \frac{\partial uj}{\partial xi} = 0$
 - Note that hat implies function
- \square Nash Equilibrium at: $\hat{x}_i(x_j)$ and $\hat{x}_j(x_i)$ Equilibrium
 - Thus Nash Equilibrium actions: x_i^* and x_j^*

5.4: Social Planner

- □ What happens when they 'internalise' the externality?
- □ Social Planner maximises joint payoff
 - $\circ \quad J = u_i(x_i, x_i) + u_i(x_i, x_i)$
 - Chooses $x_i \& x_i$ to maximise
 - $\bullet \quad \frac{\partial J}{\partial xi} = \frac{\partial ui}{\partial xi} + \frac{\partial uj}{\partial xj} = 0 \to \tilde{x}_i(x_j)$
 - $\frac{\partial J}{\partial xi} = \frac{\partial ui}{\partial xi} + \frac{\partial uj}{\partial xi} = 0 \rightarrow \tilde{x}_i(x_j) \rightarrow \text{these are both } \underline{\text{Social Optimums}}$

5.5: Nash Equilibrium vs. Optimum

☐ w/ Positive Externalities

$$\circ \ \{\frac{\partial uj}{\partial xi} > 0\}$$

o So for Social Planner $\{\frac{\partial ui}{\partial xi} \text{ must be } < \text{NE} \}$ o So: $\tilde{x}_i(x_j) > \hat{x}_i(x_j)$

o So:
$$\tilde{x}_i(x_j) > \hat{x}_i(x_j)$$

□ w/ Negative Externalities

$$\circ \ \{ \frac{\partial uj}{\partial xi} < 0 \}$$

o So for Social Planner $\{\frac{\partial ui}{\partial xi} \text{ must be } > \text{NE}\}$ o So: $\tilde{x}_i(x_j) < \hat{x}_i(x_j)$

$$\circ \quad \text{So: } \tilde{x}_i(x_i) < \hat{x}_i(x_i)$$

