

Scanned with CamScanner

سوالہ اولی) توقع دھنے کے الماس از مل های زیر را ی توالی ہوں اس ما رازنوسی برد ج

Min $Z = |Tx_1 - Tx_1|$ 5.t $\sum x_1 + x_1 < \sum x_1 - x_1 < \sum x_1 - x_1 < \sum x_1$ Max 17x,- 4x+1

5.t Ex,+x+5

7x,-x+5-10

21,2+50

حراب :

 L_{α}

11x, - 1x, = max ? - 1x, + 1x, , 1x, - 1x, e

مررى دهاع:

1 yx 9-, x1 = W

: المساح الماري من من من الماري تواني والماري الماري الما

Min $Z = \omega$ 5.t $Ex_1 + xy \le E$ $fx_1 - xy \le 0$ $w = max - fx_1 + fx_2 - fx_1 - fx_2$ $fx_1 - xy \le 0$ $fx_1 - xy \le 0$

اما ایر در مسلم مالسعیم سازی تا به هس صورت به ر منط در مید نبراسر مساوی به عدل اما نه ر اسم و منط در مید نبراسر مساوی به عدل اما نه در این مالت ، عدل عالمی اسم و اندان به در این مالت ، عدل عالمی مسانی مدل امالی عمل منی اند .

ع روس د**رس** :

المسرح

W= 11x1-4x1 = max 8-1x1+4x4, 1x1+4x+8

در العيورت دارىم :

Max Z = W5.t $\Sigma x_1 + x_2 < \delta \Sigma$ $\forall x_1 - x_2 < \delta \Sigma$ $\forall x_1 - x_2 < \delta \Sigma$ $\forall x_1 - x_2 < \delta \Sigma$ $\forall x_1 + x_2 < \delta \Sigma$ $\forall x_2 < \delta \Sigma$ $\forall x_1 + x_2 < \delta \Sigma$ $\forall x_2 < \delta \Sigma$ $\forall x_3 < \delta \Sigma$ $\forall x_4 < \delta \Sigma$ \forall

اله قعد ٢٥ م وسلم دروسفير بالسرى ، به صورت حظى نوست عي سود.

سوال دد مسل مسل ساری رس را در نظر ملیرند :

Min Z = ax, + 1x+ x+ 6.t 3,+ Ex+ + xx46, 12, +2+2+ 16, br x1, x1, x4 %,

عبول مراس عمرات زراسا:

1	х,	×y	Xμ	i Sı	ex	RHS
Z	٣ -	-1	0	Ö	-1	م
Sı	1	Ь	9	,)	· 1	Σ
×μ	۲	C	1	, ©	-5 (*

العن) آی د اح می کابیست ادرید. ب) مقادیم بهط د را ه د ی د ط د می دانیست آدرید

عراب:

الف) روس المل: عاترس على را از طوس مدل داده الله و برست ى آدرام وسيس داران في سراً.

$$\mathcal{B} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \implies \mathcal{B}^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

· Puis Turn Cor B-1 de

$$C^{\Omega} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \implies C^{\Omega} B_{\alpha} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} b \\ c \end{bmatrix} = \overline{\alpha}_{x_{t}} = \overline{B}^{-1} \alpha_{x_{t}} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \Sigma \\ 1 \end{bmatrix} = \begin{bmatrix} \mu \\ 1 \end{bmatrix} = \begin{pmatrix} b \\ C = 1 \end{pmatrix}$$

$$\overline{b} = B^{-1}b \rightarrow b = B\overline{b} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\alpha = \overline{z} = C_{BV}T_{B}^{-1}b = [0, 1][T_{V}] = Y$$

سوال سوال مدل على المرود و المراس المره از عبدل عفاسي الله به مدر السسا . عبدل بعمل رابس أورب.

 $2 + \alpha x_{\mu} + b s_{1} = 1_{00}$ $= x_{1} + x_{2} + x_{3} + s_{1} = y_{0}$ $1 - x_{1} - y_{3} + y_{5} = y_{0}$

السّا عددل مساطر ما معادلات ورس راسيل ع معم :

	Z	х,	χ_{γ}	Xμ	S,	SY	RHS
Z		0	•	0	6	0	\.,,
×γ	9	- (٣	(0	, ۲
5 7	٥	17	0	- 4	7-	\	١.

عالی محروات موجود درجودل را برست ی روسی :

$$\alpha = \overline{C}_{xy} = C_{yy} \overline{S}^{-1} \alpha_{xy} - C_{xy}$$

$$b = \overline{C}_{S_1} = C_{yy} \overline{S}^{-1} \alpha_{sy} - C_{sy}$$

ا - 8 بربراس با ستر جمای زیم متفرهای لعبود. بس .

$$\mathcal{B}^{-1} = \begin{bmatrix} 1 & 0 \\ -\Sigma & 1 \end{bmatrix}$$

تمنیرهای بای ای ایر در و مستند. س):

: رساء ص

$$\alpha = \bar{c}_{\lambda_{\psi}} = \begin{bmatrix} \alpha & \alpha \end{bmatrix} \begin{bmatrix} 1 & \alpha \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & \alpha \\ 3 & -1 \end{bmatrix} = \gamma$$

با مانیاری مقادیر ۲ = ۵ ، مدل محسن برست ی اند.

Max $Z = -\lambda_1 + t \lambda_1$ S.t $\forall \lambda_1 + \xi \lambda_2 = 1$ $t \lambda_1 - \lambda_2 + \xi 1$ $\lambda_1, \lambda_2, \delta$ حواب: ابتاً مسلح را بحمس استارارد ی رسم :

Max
$$Z = -x_1 + tx_y$$

s.t $tx_1 + \xi x_2 = 1t$
 $tx_1 - x_2 + \xi = 1t$
 x_1, x_2, ξ_1

	Z		Xy		
Z	١	0		0	2-= -x,+/xy=-2+/(-)=-8
ス、	0	1.		(0)	Σ
SY	0	Co		1	Σ

$$\mathcal{B} = \begin{bmatrix} x^{k} & 1 \\ \mu & 0 \end{bmatrix} \implies \mathcal{B}_{-l} = \begin{bmatrix} -\frac{\mu}{r} & 1 \\ \frac{\mu}{r} & 0 \end{bmatrix}$$

$$\bar{c}_{x_{v}} = c_{gv} + c_{u} + c_{u$$

$$\bar{\alpha}_{x_{t}} = \beta^{-1} \alpha_{x_{t}} = \begin{bmatrix} \frac{1}{\tau} & 0 \\ -\frac{\tau}{\tau} & 1 \end{bmatrix} \begin{bmatrix} \xi \\ -\frac{\eta}{\tau} \end{bmatrix}$$

	Z	х,	XY	SY	RHS
Z	١	o ,	- 1:	0	⇒ D
х,	0	l	(<u>\(\frac{\fin}}}}}{\frac}}}}}}}}{\frac{\fir}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}{\frac{\frac{\frac{\firin}}{\firint{\frac{\fir}{\fir}}}}}}}}{\frac{\frac{\frac{\firi}</u>	9	$\Sigma \rightarrow$
84	0	0	- 1/	1	と
			4		

	Z	х,	χ_{γ}	Sy	RHS
Z	7 \	<u>\$</u>	9	. 0	て
XY	۰	7 E	, \	o	٣
SY	9	N E	0	\	10

$$x_1^* = 0$$
 $x_2^* = 1$

سوال نجم) نسان دهد عود نماز له روس سیدلس رای توان بری حل معادله م مجدل برمارد. حالت عای زیر رابراسی لینه:

الف) بدر حواب

ب سیمار حواب

عراب مصرم مرد.

مراب

مالة و ل بال حل دستان ، بعسانه مواند عن س و حالمه على سمت مع ما و دستان ما و د السام و د ا

عرف دابرابر با من Min کے من الب عنوال عند حرامل کی توسیح و معادلی ما داری عنوال عقد حرامل کی توسیح .

ا ر مورک الله سے نام ما مقدار عالمی منعم در حدول عمامی و حود دارد.

ر دو هالت بوجود می ایم:

ا) ادر دستاه معادلات امن سرط را داست باسدن ه (زیر م اثناه علمان مستم ای دستاه عواب ندارد.

ا) ادر زید ها منصر آزاد باسند ، هنی موانند مقادم معفی بلیرند ، بایر حبول را دررسی اسم .

بری مال غرمن است نه با متدار محالت صفر در یا در حود دارد.

ai -r +0

بری مال فرون الله به با مدیب الله أورضی (مثلاً ۲-) در سطر نه و حدد دارد. در الله مالی فرون الله ما می تواند مقدر صفی هم ملسند، نه را از باید خارج مرده و بهد دا دارد در الله ما می تواند مقدر صفی هم ملسند، نه را از باید خارج مرده و بهد دا دارد کالنام .

دلى أبر هدى عنامير من معنى معنى منامير من بناري.

ب نرمن کس م = نه دریایی رهود دارد و صنیب تما متصرمای عنریایه من عنر مصنعی مر

سطر مربرط به نه برابر با منفراست . (مانت رعود قیدراند مرفاز ۱)

ai 0.... o

﴿ رَاسِنُورِ لَ مَنْ مَنَا ظُرِيا فِهُ وَاللَّهُ بِرُدهُ وَيُواسِمُ أَنْ رَا حَزَفَ لُسِمٍ .

س سسفار جوب على ماهس س

ع) الرور حرول عيس فاز العصرى نه ها از بانع خارج شه باسند، حرب تعين معند به فرد دارسي

Scanned with CamScanner

سوال سسم) حددل باین فاز س در روس دوفازی برای علی سی مسلم منعم سازی استاندارد را در نظر بلیریم و فرفن این در این عبول ، هیچ منفیر مسزعی دریایی بست. در اینفیورت با در دلیل به بلیریم و فروس که مرب کاهس مزین مناظر با منفیر های معین می برابریا می مقداری است ۶ بادس که در این حبول منرب کاهس مزین مناظر با منفیر های معین می برابریا می مقداری است ۶

حواب :

ابع هوت در خاز که روس دوفازی به صورت زیراس :

Min w = a, + a+ + -- + an

عال منزيب ملى از منفير هاى مستوعى ، مثلاً نه را در جدول بامانى برستاى اوربع:

$$\overline{C}_{\alpha_{\hat{i}}} = C_{\alpha_{\hat{i}}}^{T} B^{-1} \alpha_{\alpha_{\hat{i}}} - C_{\alpha_{\hat{i}}} = 0 - C_{\alpha_{\hat{i}}} = 0 - 1 = -1$$

س منرس هعه ی منفرهای معنوعی برابراسی با ۱-.

سراله معتمی جدل سیلس زیر در برای مسلم سنم سازی رای کدردستاها از نزع به مستدر متفدهای ۱۳ می معلم میلیس در تعاملیرید.

	2,	XY	y y	XE	xa	RHS
Z	0	۵ .	0	b	٥	ŧ
	> 	- Y	0	1	0	С
	9	- 1	1	۲	9	9
1	0	0	. 0	۴	1	e

مرص الله مهم و مهم و مهم و مراه و مراه .

الك) كار أح راسالله.

ب) اكما عبدل بعين است ع حبدل اكانس راسرساس .

. C, d, e کر ه و ه ه ه ه میر کسید در میرا

عند اسا ۸ کی عبر کا در ک

۱) ما فرفع ۲=۵ و ۱-۱ ساحراب سنسی ما ۲۰۰۰ = ۲ برست ادرید.

السامقدهاي باي اي الاساع اسم دروس ياديسم.

	ľ			_	, _	
	X,	XY	χ _ψ	XE	za	RHS
Z	0	a	o	6	0	P
x_{l}	١	-۲	9		• •	С
24	9	-1	1	۲	9	J
ታ _ል	٥	٥	0	4	· \	C

السا) سون مای زمر سفیم سلی ، کی راسان ک دهند س :

$$\mathcal{C}^{-1} = \begin{bmatrix} \circ & 1 & \circ \\ 1 & 1 & \circ \\ 0 & 1 & 1 \end{bmatrix} \quad \Rightarrow \quad \mathcal{C} = \begin{bmatrix} -7 & 1 & \circ \\ 1 & \circ & \circ \\ -7 & \circ & 1 \end{bmatrix}$$

ر منرب مسلے دست مسال مستران عبران ای منزی منزی میران کرد رست اللہ بسید، سی حبرل کسی است کرد رسا

$$\overline{b} = B^{-1}b \rightarrow b = B\overline{b} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} C \\ d \\ e \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -1 & 0 \\ -1 & 0 \end{bmatrix}$$

$$\bar{\alpha}_{\chi_{1}} = \bar{\beta}^{-1} \alpha_{\chi_{1}} \rightarrow \alpha_{\chi_{1}} = \bar{\beta} \bar{\alpha}_{\chi_{1}} = \begin{bmatrix} -Y & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ -Y & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -Y & 1 & 0 \\ -Y &$$

عرب بهد ر عد مفسرهای اسرد قسمای اول در در رسوا هستند، س :

$$\alpha_{x_{y}} = \begin{bmatrix} 1 \\ \vdots \end{bmatrix} \qquad , \qquad \alpha_{x_{y}} = \begin{bmatrix} 0 \\ 1 \\ \vdots \end{bmatrix} \qquad , \qquad \alpha_{x_{y}} = \begin{bmatrix} 0 \\ 1 \\ \vdots \end{bmatrix}$$

سری برست اوردل می کا زمین مای لعبود (سری ری مر می) استفاده ی استفاده ی استفاده ی استفاده ی استفاده ی استفاده ای استفاد

$$\begin{array}{l}
C \\
x_{\psi} = C_{\varphi} \nabla^{\varphi} \overline{\Delta}_{\chi_{\psi}} - C_{\chi_{\psi}} \rightarrow 0 = [x \ y \ z] \begin{bmatrix} 1 \\ y \\ z \end{bmatrix} = 0 \Rightarrow y = 0$$

$$\begin{array}{l}
C \\
x_{\varphi} = C_{\varphi} \nabla^{\varphi} \overline{\Delta}_{\chi_{\varphi}} \rightarrow 0 = [x \ y \ z] \begin{bmatrix} 1 \\ y \\ z \end{bmatrix} = 0 \Rightarrow x + Yy + Yz = 0$$

$$\begin{array}{l}
C \\
x_{\varphi} = C_{\varphi} \nabla^{\varphi} \overline{\Delta}_{\chi_{\varphi}} \rightarrow 0 = [x \ y \ z] \begin{bmatrix} 1 \\ y \\ z \end{bmatrix} = 0 \Rightarrow x + Yy + Yz = 0$$

$$\begin{array}{l}
C \\
x_{\varphi} = C_{\varphi} \nabla^{\varphi} \overline{\Delta}_{\chi_{\varphi}} \rightarrow 0 = [x \ y \ z] \begin{bmatrix} 1 \\ y \\ z \end{bmatrix} = 0 \Rightarrow x + Yy + Yz = 0$$

$$\begin{array}{l}
C \\
z = 0
\end{array}$$

$$C_{x_{t}} = C_{g_{t}} \xrightarrow{C_{a_{x_{t}}}} - C_{x_{t}} \rightarrow C_{x_{t}} = \begin{bmatrix} b & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} - \alpha = -Yb - \alpha$$

$$C_{x_{t}} = C_{g_{t}} \xrightarrow{C_{x_{t}}} C_{x_{t}} = \begin{bmatrix} b & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} - \alpha = -Yb - \alpha$$

$$C_{x_{t}} = C_{g_{t}} \xrightarrow{C_{x_{t}}} C_{x_{t}} = \begin{bmatrix} b & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} - \alpha = b$$

منرس منفسرهای لسود در عبدل اولیم درابر با منفراسی.

C 24 = C 25 = C 20 = 0

س حدمل اولام مه معروب زمر است:

	_•	2.	2	_			
	ス・	λų	X 4	λę	x a	RHS	
2	-Ь	a+16	0	0	9	٥	
Xt	_ ۲	٣	\	o	0	- 40+9	
スを	١	- Y	0	1	0	С	
20	_ \mathcal{K} .	٦ ,	9	6	١	-4c+e	

ع) الر ه ره اثناه على متواند واد يا به سترد و اعاجون ازمون بست مآبل ايام ست ، مسل خواب بسل الله الله من مرد الله على الله من مرد و دارم .

۲) آمر ۴ هم ماسی متفرسد برای درد به پایع انتاب ی سود و حون مسلم بسیان است، ۲۸ کون کارد کوناند هر متدار دلخواهی ملیرد.

فرون لن ٢٠ عقار ما را لليرد، طبق تقريب ماهس هدين ، تابع هدي ماه راحد ماهس عايد. بس :

-100 = - N - 40 -> 40 = 197 -> W = 78

 $\chi_1 = C$, $\chi_V = \nabla E$, $\chi_{W} = A$, $\chi_$

سؤال ادل) درهان مسله زور را منوسسه.

Max
$$Z = \Sigma x_1 - x_1 + \gamma x_1$$

s.t $x_1 + x_1 \times \alpha$ \rightarrow y_1
 $y_2 + x_1 \times \gamma$ \rightarrow y_4
 $y_4 + x_1 \times \gamma$ \rightarrow y_4
 $y_5 + y_6 = \Sigma$
 $y_6 + y_6 = \Sigma$
 $y_6 + y_6 = \Sigma$
 $y_6 = \Sigma$
 $y_6 = \Sigma$

Silw min dun	Silw max June
متفیرنامین	میر پ
منفیر آزاد	مید =
مند خ	مند =
مید خ	مندر نامش
میر =	مندر نامنعی

Min w= &y, +vy, +vy, +vy, s 3, +v, +v, +v, +v, v, c 1, +v, = -1 2, +v, = -1 2, +v, = -1 3, 0, 0, v, c 2, v, c 2,