

Espaces vectoriels

Fiche amendée par David Chataur et Arnaud Bodin.

1 Définition, sous-espaces

Exercice 1

Montrer que les ensembles ci-dessous sont des espaces vectoriels (sur \mathbb{R}):

- $E_1 = \{f : [0,1] \to \mathbb{R}\}$: l'ensemble des fonctions à valeurs réelles définies sur l'intervalle [0,1], muni de l'addition f + g des fonctions et de la multiplication par un nombre réel $\lambda \cdot f$.
- $E_2 = \{(u_n) : \mathbb{N} \to \mathbb{R}\}$: l'ensemble des suites réelles muni de l'addition des suites définie par $(u_n) + (v_n) = (u_n + v_n)$ et de la multiplication par un nombre réel $\lambda \cdot (u_n) = (\lambda \times u_n)$.
- $E_3 = \{P \in \mathbb{R}[x] \mid \deg P \leqslant n\}$: l'ensemble des polynômes à coefficients réels de degré inférieur ou égal à n muni de l'addition P + Q des polynômes et de la multiplication par un nombre réel $\lambda \cdot P$.

Indication ▼ Correction ▼ Vidéo ■ [006868]

Exercice 2

Déterminer lesquels des ensembles E_1 , E_2 , E_3 et E_4 sont des sous-espaces vectoriels de \mathbb{R}^3 .

 $E_{1} = \{(x, y, z) \in \mathbb{R}^{3} \mid 3x - 7y = z\}$ $E_{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} - z^{2} = 0\}$ $E_{3} = \{(x, y, z) \in \mathbb{R}^{3} \mid x + y - z = x + y + z = 0\}$ $E_{4} = \{(x, y, z) \in \mathbb{R}^{3} \mid z(x^{2} + y^{2}) = 0\}$ Indication \bigvee Correction \bigvee Vidéo

[000886]

Exercice 3

- 1. Décrire les sous-espaces vectoriels de \mathbb{R} ; puis de \mathbb{R}^2 et \mathbb{R}^3 .
- 2. Dans \mathbb{R}^3 donner un exemple de deux sous-espaces dont l'union n'est pas un sous-espace vectoriel.

Indication ▼ Correction ▼ Vidéo ■ [006869]

Exercice 4

Parmi les ensembles suivants reconnaître ceux qui sont des sous-espaces vectoriels.

$$\begin{split} E_1 &= \left\{ (x,y,z) \in \mathbb{R}^3 \mid x+y+a=0 \text{ et } x+3az=0 \right\} \\ E_2 &= \left\{ f \in \mathscr{F}(\mathbb{R},\mathbb{R}) \mid f(1)=0 \right\} \\ E_3 &= \left\{ f \in \mathscr{F}(\mathbb{R},\mathbb{R}) \mid f(0)=1 \right\} \\ E_4 &= \left\{ (x,y) \in \mathbb{R}^2 \mid x+\alpha y+1 \geqslant 0 \right\} \\ \text{Indication } \blacktriangledown \quad \text{Correction } \blacktriangledown \quad \text{Vid\'eo} \quad \blacksquare \end{split}$$

[000888]

Exercice 5

Soit *E* un espace vectoriel.

1. Soient F et G deux sous-espaces de E. Montrer que

 $F \cup G$ est un sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$.

2. Soit H un troisième sous-espace vectoriel de E. Prouver que

$$G \subset F \Longrightarrow F \cap (G+H) = G + (F \cap H).$$

Indication ▼ Correction ▼ Vidéo ■ [000893]

2 Systèmes de vecteurs

Exercice 6

- 1. Soient $v_1 = (2, 1, 4)$, $v_2 = (1, -1, 2)$ et $v_3 = (3, 3, 6)$ des vecteurs de \mathbb{R}^3 , trouver trois réels non tous nuls α, β, γ tels que $\alpha v_1 + \beta v_2 + \gamma v_3 = 0$.
- 2. On considère deux plans vectoriels

$$P_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0\}$$

$$P_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = 0\}$$

trouver un vecteur directeur de la droite $D = P_1 \cap P_2$ ainsi qu'une équation paramétrée.

Indication ▼ Correction ▼ Vidéo ■ [006870]

Exercice 7

Soient dans \mathbb{R}^4 les vecteurs $v_1 = (1, 2, 3, 4)$ et $v_2 = (1, -2, 3, -4)$. Peut-on déterminer x et y pour que $(x, 1, y, 1) \in \text{Vect}\{v_1, v_2\}$? Et pour que $(x, 1, 1, y) \in \text{Vect}\{v_1, v_2\}$?

Indication ▼ Correction ▼ Vidéo ■ [000900]

Exercice 8

Soit *E* le sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs $v_1 = (2,3,-1)$ et $v_2 = (1,-1,-2)$ et *F* celui engendré par $w_1 = (3,7,0)$ et $w_2 = (5,0,-7)$. Montrer que *E* et *F* sont égaux.

Indication ▼ Correction ▼ Vidéo ■ [000908]

Exercice 9

Soit $\alpha \in \mathbb{R}$ et $f_{\alpha} : \mathbb{R} \to \mathbb{R}$, $x \mapsto e^{\alpha x}$. Montrer que la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est libre.

Indication ▼ Correction ▼ Vidéo ■ [000917]

3 Somme directe

Exercice 10

Par des considérations géométriques répondez aux questions suivantes :

- 1. Deux droites vectorielles de \mathbb{R}^3 sont-elles supplémentaires ?
- 2. Deux plans vectoriels de \mathbb{R}^3 sont-ils supplémentaires ?
- 3. A quelle condition un plan vectoriel et une droite vectorielle de \mathbb{R}^3 sont-ils supplémentaires ?

Indication ▼ Correction ▼ Vidéo ■ [006871]

Exercice 11

On considère les vecteurs $v_1 = (1,0,0,1)$, $v_2 = (0,0,1,0)$, $v_3 = (0,1,0,0)$, $v_4 = (0,0,0,1)$, $v_5 = (0,1,0,1)$ dans \mathbb{R}^4 .

- 1. Vect $\{v_1, v_2\}$ et Vect $\{v_3\}$ sont-ils supplémentaires dans \mathbb{R}^4 ?
- 2. Vect $\{v_1, v_2\}$ et Vect $\{v_4, v_5\}$ sont-ils supplémentaires dans \mathbb{R}^4 ?
- 3. Vect $\{v_1, v_3, v_4\}$ et Vect $\{v_2, v_5\}$ sont-ils supplémentaires dans \mathbb{R}^4 ?
- 4. Vect $\{v_1, v_4\}$ et Vect $\{v_3, v_5\}$ sont-ils supplémentaires dans \mathbb{R}^4 ?

Indication ▼

Correction ▼

Vidéo

[000920]

Exercice 12

Soient $v_1 = (0, 1, -2, 1), v_2 = (1, 0, 2, -1), v_3 = (3, 2, 2, -1), v_4 = (0, 0, 1, 0)$ et $v_5 = (0, 0, 0, 1)$ des vecteurs de \mathbb{R}^4 . Les propositions suivantes sont-elles vraies ou fausses ? Justifier votre réponse.

- 1. $Vect\{v_1, v_2, v_3\} = Vect\{(1, 1, 0, 0), (-1, 1, -4, 2)\}.$
- 2. $(1,1,0,0) \in \text{Vect}\{v_1,v_2\} \cap \text{Vect}\{v_2,v_3,v_4\}.$
- 3. $\dim(\text{Vect}\{v_1, v_2\} \cap \text{Vect}\{v_2, v_3, v_4\}) = 1$ (c'est-à-dire c'est une droite vectorielle).
- 4. $Vect{v_1, v_2} + Vect{v_2, v_3, v_4} = \mathbb{R}^4$.
- 5. Vect $\{v_4, v_5\}$ est un sous-espace vectoriel supplémentaire de Vect $\{v_1, v_2, v_3\}$ dans \mathbb{R}^4 .

Indication ▼

Correction ▼

Vidéo

[000919]

Exercice 13

Soit $E = \Delta^1(\mathbb{R}, \mathbb{R})$ l'espace des fonctions dérivables et $F = \{ f \in E \mid f(0) = f'(0) = 0 \}$. Montrer que F est un sous-espace vectoriel de E et déterminer un supplémentaire de F dans E.

Indication \blacktriangledown

Correction \blacktriangledown

Vidéo 📕

[000923]

Exercice 14

Soit

$$E = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_n \text{ converge } \}.$$

Montrer que l'ensemble des suites constantes et l'ensemble des suites convergeant vers 0 sont des sous-espaces supplémentaires dans E.

Indication \blacktriangledown

Correction ▼

Vidéo 📕

[000926]

Indication pour l'exercice 1 A

On vérifiera sur ces exemples la définition donnée en cours.

Indication pour l'exercice 2 A

- 1. E_1 est un sous-espace vectoriel.
- 2. E_2 n'est pas un sous-espace vectoriel.
- 3. E_3 est un sous-espace vectoriel.
- 4. E_4 n'est pas un sous-espace vectoriel.

Indication pour l'exercice 3 \(\text{\(\)}

- 1. Discuter suivant la dimension des sous-espaces.
- 2. Penser aux droites vectorielles.

Indication pour l'exercice 4 A

- 1. E_1 est un sous-espace vectoriel de \mathbb{R}^3 si et seulement si a = 0.
- 2. E_2 est un sous-espace vectoriel.
- 3. E_3 n'est pas un espace vectoriel.
- 4. E_4 n'est pas un espace vectoriel.

Indication pour l'exercice 5 \(\text{\(\)}

- 1. Pour le sens \Rightarrow : raisonner par l'absurde et prendre un vecteur de $F \setminus G$ et un de $G \setminus F$. Regarder la somme de ces deux vecteurs.
- 2. Raisonner par double inclusion, revenir aux vecteurs.

Indication pour l'exercice 6 ▲

- 1. On pensera à poser un système.
- 2. Trouver un vecteur non-nul commun aux deux plans.

Indication pour l'exercice 7 ▲

On ne peut pas pour le premier, mais on peut pour le second.

Indication pour l'exercice 8 ▲

Montrer la double inclusion. Utiliser le fait que de manière générale pour $E = \text{Vect}(v_1, \dots, v_n)$ alors :

$$E \subset F \iff \forall i = 1, \dots, n \quad v_i \in F.$$

Indication pour l'exercice 9 A

Supposer qu'il existe des réels $\lambda_1, \ldots, \lambda_n$ et des indices $\alpha_1 > \alpha_2 > \cdots > \alpha_n$ (tout cela en nombre fini!) tels que

$$\lambda_1 f_{\alpha_1} + \cdots + \lambda_n f_{\alpha_n} = 0.$$

Ici le 0 est la fonction constante égale à 0. Regarder quel terme est dominant et factoriser.

Indication pour l'exercice 10 ▲

- 1. Jamais.
- 2. Jamais.
- 3. Considérer un vecteur directeur de la droite.

Indication pour l'exercice 11 ▲

- 1. Non.
- 2. Oui.
- 3. Non.
- 4. Non.

Indication pour l'exercice 12 ▲

- 1. Vrai.
- 2. Vrai.
- 3. Faux.
- 4. Faux.
- 5. Vrai.

Indication pour l'exercice 13 ▲

Soit

$$G = \left\{ x \mapsto ax + b \mid (a, b) \in \mathbb{R}^2 \right\}.$$

Montrer que G est un supplémentaire de F dans E.

Indication pour l'exercice 14 ▲

Pour une suite (u_n) qui converge vers ℓ regarder la suite $(u_n - \ell)$.

Correction de l'exercice 1 A

Pour qu'un ensemble E, muni d'une addition $x + y \in E$ (pour tout $x, y \in E$) et d'une multiplication par un scalaire $\lambda \cdot x \in E$ (pour tout $\lambda \in K$, $x \in E$), soit un K-espace vectoriel il faut qu'il vérifie les huit points suivants.

- 1. x + (y + z) = (x + y) + z (pour tout $x, y, z \in E$)
- 2. il existe un vecteur nul $0 \in E$ tel que x + 0 = x (pour tout $x \in E$)
- 3. il existe un opposé -x tel que x + (-x) = 0 (pour tout $x \in E$)
- 4. x+y=y+x (pour tout $x,y \in E$) Ces quatre premières propriétés font de (E,+) un groupe abélien.
- 5. $1 \cdot x = x$ (pour tout $x \in E$)
- 6. $\lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$ (pour tout $\lambda \in K$ =, pour tout $x, y \in E$)
- 7. $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$ (pour tout $\lambda, \mu \in K$, pour tout $x \in E$)
- 8. $(\lambda \times \mu) \cdot x = \lambda \cdot (\mu \cdot x)$ (pour tout $\lambda, \mu \in K$, pour tout $x \in E$)

Il faut donc vérifier ces huit points pour chacun des ensembles (ici $K = \mathbb{R}$). Commençons par E_1 .

- 1. f + (g+h) = (f+g) + h; en effet on bien pour tout $t \in [0,1]$: f(t) + (g(t) + h(t)) = (f(t) + g(t)) + h(t) d'où l'égalité des fonctions f + (g+h) et (f+g) + h. Ceci est vrai pour tout $f, g, h \in E_1$.
- 2. le vecteur nul est ici la fonction constante égale à 0, que l'on note encore 0, on a bien f + 0 = f (c'est-à-dire pour tout $x \in [0,1]$, (f+0)(t) = f(t), ceci pour toute fonction f).
- 3. il existe un opposé -f définie par -f(t) = -(f(t)) tel que f + (-f) = 0
- 4. f+g=g+f (car f(t)+g(t)=g(t)+f(t) pour tout $t \in [0,1]$).
- 5. $1 \cdot f = f$; en effet pour tout $t \in [0,1]$, $(1 \cdot f)(t) = 1 \times f(t) = f(t)$. Et une fois que l'on compris que $\lambda \cdot f$ vérifie par définition $(\lambda \cdot f)(t) = \lambda \times f(t)$ les autres points se vérifient sans peine.
- 6. $\lambda \cdot (f+g) = \lambda \cdot f + \lambda \cdot g$
- 7. $(\lambda + \mu) \cdot f = \lambda \cdot f + \mu \cdot f$
- 8. $(\lambda \times \mu) \cdot f = \lambda \cdot (\mu \cdot f)$; en effet pour tout $t \in [0,1]$, $(\lambda \times \mu) f(t) = \lambda (\mu f(t))$

Voici les huit points à vérifier pour E_2 en notant u la suite $(u_n)_{n\in\mathbb{N}}$

- 1. u + (v + w) = (u + v) + w
- 2. le vecteur nul est la suite dont tous les termes sont nuls.
- 3. La suite -u est définie par $(-u_n)_{n\in\mathbb{N}}$
- 4. u + v = v + u
- 5. $1 \cdot u = u$
- 6. $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$: montrons celui-ci en définition u+v est la suite $(u_n+v_n)_{n\in\mathbb{N}}$ et par définition de la multiplication par un scalaire $\lambda \cdot (u+v)$ est la suite $(\lambda \times (u_n+v_n))_{n\in\mathbb{N}}$ qui est bien la suite $(\lambda u_n + \lambda v_n)_{n\in\mathbb{N}}$ qui est exactement la suite $(\lambda \cdot u + \lambda \cdot v)$.
- 7. $(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot v$
- 8. $(\lambda \times \mu) \cdot u = \lambda \cdot (\mu \cdot u)$

Voici ce qu'il faut vérifier pour E_3 , après avoir remarqué que la somme de deux polynômes de degré $\leq n$ est encore un polynôme de degré $\leq n$ (même chose pour $\lambda \cdot P$), on vérifie :

- 1. P + (Q + R) = (P + Q) + R
- 2. il existe un vecteur nul $0 \in E_3$: c'est le polynôme nul
- 3. il existe un opposé -P tel que P + (-P) = 0
- 4. P + Q = Q + P
- 5. $1 \cdot P = P$
- 6. $\lambda \cdot (P+Q) = \lambda \cdot P + \lambda \cdot Q$
- 7. $(\lambda + \mu) \cdot P = \lambda \cdot P + \mu \cdot P$
- 8. $(\lambda \times \mu) \cdot P = \lambda \cdot (\mu \cdot P)$

Correction de l'exercice 2

- 1. (a) $(0,0,0) \in E_1$.
 - (b) Soient (x, y, z) et (x', y', z') deux éléments de E_1 . On a donc 3x 7y = z et 3x' 7y' = z'. Donc 3(x+x') 7(y+y') = (z+z'), d'où (x+x', y+y', z+z') appartient à E_1 .
 - (c) Soit $\lambda \in \mathbb{R}$ et $(x, y, z) \in E_1$. Alors la relation 3x 7y = z implique que $3(\lambda x) 7(\lambda y) = \lambda z$ donc que $\lambda(x, y, z) = (\lambda x, \lambda y, \lambda z)$ appartient à E_1 .
- 2. $E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 z^2 = 0\}$ c'est-à-dire $E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x = z \text{ ou } x = -z\}$. Donc (1, 0, -1) et (1, 0, 1) appartiennent à E_2 mais (1, 0, -1) + (1, 0, 1) = (2, 0, 0) n'appartient pas à E_2 qui n'est en conséquence pas un sous-espace vectoriel de \mathbb{R}^3 .
- 3. E_3 est un sous-espace vectoriel de \mathbb{R}^3 . En effet :
 - (a) $(0,0,0) \in E_3$.
 - (b) Soient (x, y, z) et (x', y', z') deux éléments de E_3 . On a donc x + y z = x + y + z = 0 et x' + y' z' = x' + y' + z' = 0. Donc (x + x') + (y + y') (z + z') = (x + x') + (y + y') + (z + z') = 0 et (x, y, z) + (x', y', z') = (x + x', y + y', z + z') appartient à E_3 .
 - (c) Soit $\lambda \in \mathbb{R}$ et $(x, y, z) \in E_3$. Alors la relation x + y z = x + y + z = 0 implique que $\lambda x + \lambda y \lambda z = \lambda x + \lambda y + \lambda z = 0$ donc que $\lambda (x, y, z) = (\lambda x, \lambda y, \lambda z)$ appartient à E_3 .
- 4. Les vecteurs (1,0,0) et (0,0,1) appartiennent à E_4 mais leur somme (1,0,0)+(0,0,1)=(1,0,1) ne lui appartient pas donc E_4 n'est pas un sous-espace vectoriel de \mathbb{R}^3 .

Correction de l'exercice 3 A

- L'espace vectoriel R a deux sous-espaces : celui formé du vecteur nul {0} et R lui-même.
 L'espace vectoriel R² a trois types de sous-espaces: {0}, une infinité de sous-espaces de dimension 1 (ce sont les droites vectorielles) et R² lui-même.
 - Enfin, l'espace \mathbb{R}^3 a quatre types de sous-espaces: le vecteur nul, les droites vectorielles, les plans vectoriels et lui-même.
- 2. On considère deux droites vectorielles de \mathbb{R}^3 dont des vecteurs directeurs u et v ne sont pas colinéaires alors le vecteur u + v n'appartient à aucune de ces deux droites, l'union de celles-ci n'est pas un espace vectoriel.

Correction de l'exercice 4 A

- 1. E_1 : non si $a \neq 0$ car alors $0 \notin E_1$; oui, si a = 0 car alors E_1 est l'intersection des sous-espaces vectoriels $\{(x,y,z) \in \mathbb{R}^3 \mid x+y=0\}$ et $\{(x,y,z) \in \mathbb{R}^3 \mid x=0\}$.
- 2. E_2 est un sous-espace vectoriel de $\mathscr{F}(\mathbb{R},\mathbb{R})$.
- 3. E_3 : non, car la fonction nulle n'appartient pas à E_3 .
- 4. E_4 : non, en fait E_4 n'est même pas un sous-groupe de $(\mathbb{R}^2,+)$ car $(2,0) \in E_4$ mais $-(2,0) = (-2,0) \notin E_4$.

Correction de l'exercice 5

- 1. Sens \Leftarrow . Si $F \subset G$ alors $F \cup G = G$ donc $F \cup G$ est un sous-espace vectoriel. De même si $G \subset F$.
 - Sens \Rightarrow . On suppose que $F \cup G$ est un sous-espace vectoriel. Par l'absurde supposons que F n'est pas inclus dans G et que G n'est pas inclus dans F. Alors il existe $x \in F \setminus G$ et $y \in G \setminus F$. Mais alors $x \in F \cup G$, $y \in F \cup G$ donc $x + y \in F \cup G$ (car $F \cup G$ est un sous-espace vectoriel). Comme $x + y \in F \cup G$ alors $x + y \in F$ ou $x + y \in G$.
 - Si $x + y \in F$ alors, comme $x \in F$, $(x + y) + (-x) \in F$ donc $y \in F$, ce qui est absurde.
 - Si $x + y \in G$ alors, comme $y \in G$, $(x + y) + (-y) \in G$ donc $x \in G$, ce qui est absurde.

Dans les deux cas nous obtenons une contradiction. Donc F est inclus dans G ou G est inclus dans F.

- 2. Supposons $G \subset F$.
 - Inclusion \supset . Soit $x \in G + (F \cap H)$. Alors il existe $a \in G$, $b \in F \cap H$ tels que x = a + b. Comme $G \subset F$ alors $a \in F$, de plus $b \in F$ donc $x = a + b \in F$. D'autre part $a \in G$, $b \in H$, donc $x = a + b \in G + H$. Donc $x \in F \cap (G + H)$.
 - Inclusion \subset . Soit $x \in F \cap (G+H)$. $x \in G+H$ alors il existe $a \in G$, $b \in H$ tel que x = a+b. Maintenant b = x-a avec $x \in F$ et $a \in G \subset F$, donc $b \in F$, donc $b \in F \cap H$. Donc $x = a+b \in G+(F\cap H)$.

Correction de l'exercice 6 ▲

1.

$$\alpha v_1 + \beta v_2 + \gamma v_3 = 0$$

$$\iff \alpha(2, 1, 4) + \beta(1, -1, 2) + \gamma(3, 3, 6) = (0, 0, 0)$$

$$\iff \left(2\alpha + \beta + 3\gamma, \alpha - \beta + 3\gamma, 4\alpha + 2\beta + 6\gamma\right) = (0, 0, 0)$$

$$\iff \begin{cases} 2\alpha + \beta + 3\gamma &= 0\\ \alpha - \beta + 3\gamma &= 0\\ 4\alpha + 2\beta + 6\gamma &= 0 \end{cases}$$

$$\iff \cdots \qquad \text{(on résout le système)}$$

$$\iff \alpha = -2t, \beta = t, \gamma = t \quad t \in \mathbb{R}$$

Si l'on prend t=1 par exemple alors $\alpha=-2$, $\beta=1$, $\gamma=1$ donne bien $-2v_1+v_2+v_3=0$.

Cette solution n'est pas unique, les autres coefficients qui conviennent sont les $(\alpha = -2t, \beta = t, \gamma = t)$ pour tout $t \in \mathbb{R}$.

2. Il s'agit donc de trouver un vecteur v = (x, y, z) dans P_1 et P_2 et donc qui doit vérifier x - y + z = 0 et x - y = 0:

$$v = (x, y, z) \in P_1 \cap P_2$$

$$\iff x - y + z = 0 \text{ et } x - y = 0$$

$$\iff \begin{cases} x - y - z = 0 \\ x - y = 0 \end{cases}$$

$$\iff \cdots \qquad \text{(on résout le système)}$$

$$\iff (x = t, y = t, z = 0) \quad t \in \mathbb{R}$$

Donc, si l'on fixe par exemple t = 1, alors v = (1, 1, 0) est un vecteur directeur de la droite vectorielle D, une équation paramétrique étant $D = \{(t, t, 0) \mid t \in \mathbb{R}\}.$

Correction de l'exercice 7 ▲

1.

$$(x,1,y,1) \in \text{Vect}\{\nu_1,\nu_2\}$$

$$\iff \exists \lambda, \mu \in \mathbb{R} \qquad (x,1,y,1) = \lambda(1,2,3,4) + \mu(1,-2,3,-4)$$

$$\iff \exists \lambda, \mu \in \mathbb{R} \qquad (x,1,y,1) = (\lambda,2\lambda,3\lambda,4\lambda) + (\mu,-2\mu,3\mu,-4\mu)$$

$$\iff \exists \lambda, \mu \in \mathbb{R} \qquad (x,1,y,1) = (\lambda+\mu,2\lambda-2\mu,3\lambda+3\mu,4\lambda-4\mu)$$

$$\iff \exists \lambda, \mu \in \mathbb{R} \qquad 1 = 2(\lambda-\mu) \text{ et } 1 = 4(\lambda-\mu)$$

$$\iff \exists \lambda, \mu \in \mathbb{R} \qquad \lambda-\mu = \frac{1}{2} \text{ et } \lambda-\mu = \frac{1}{4}$$

Ce qui est impossible (quelque soient x, y). Donc on ne peut pas trouver de tels x, y.

2. On fait le même raisonnement :

$$(x,1,1,y) \in \text{Vect}\{v_1,v_2\}$$

$$iff \exists \lambda, \mu \in \mathbb{R} \qquad (x,1,1,y) = (\lambda + \mu, 2\lambda - 2\mu, 3\lambda + 3\mu, 4\lambda - 4\mu)$$

$$\iff \exists \lambda, \mu \in \mathbb{R} \qquad \begin{cases} x = \lambda + \mu \\ 1 = 2\lambda - 2\mu \\ 1 = 3\lambda + 3\mu \\ y = 4\lambda - 4\mu \end{cases}$$

$$\iff \exists \lambda, \mu \in \mathbb{R} \qquad \begin{cases} \lambda = \frac{5}{12} \\ \mu = -\frac{1}{12} \\ x = \frac{1}{3} \\ y = 2 \end{cases}$$

Donc le seul vecteur (x, 1, 1, y) qui convienne est $(\frac{1}{3}, 1, 1, 2)$.

Montrons d'abord que $E \subset F$. On va d'abord montrer que $v_1 \in F$ et $v_2 \in F$.

Tout d'abord $v_1 \in F \iff v_1 \in \text{Vect}\{w_1, w_2\} \iff \exists \lambda, \mu \quad v_1 = \lambda w_1 + \mu w_2.$

Il s'agit donc de trouver ces λ, μ . Cela se fait en résolvant un système (ici on peut même le faire de tête) on trouve la relation 7(2,3,-1)=3(3,7,0)-(5,0,-7) ce qui donne la relation $v_1=\frac{3}{7}w_1-\frac{1}{7}w_2$ et donc $v_1\in F$. De même $7v_2=-w_1+2w_2$ donc $v_2\in F$.

Maintenant v_1 et v_2 sont dans l'espace vectoriel F, donc toute combinaison linéaire de v_1 et v_2 aussi, c'est-à-dire : pour tout λ, μ , on a $\lambda v_1 + \mu v_2 \in F$. Ce qui implique $E \subset F$.

Il reste à montrer $F \subset E$. Il s'agit donc d'écrire w_1 (puis w_2) en fonction de v_1 et v_2 . On trouve $w_1 = 2v_1 - v_2$ et $w_2 = v_1 + 3v_2$. Encore une fois cela entraîne $w_1 \in E$ et $w_2 \in E$ donc $\text{Vect}\{w_1, w_2\} \subset E$ d'où $F \subset E$. Par double inclusion on a montré E = F.

Correction de l'exercice 9 A

À partir de la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ nous considérons une combinaison linéaire (qui ne correspond qu'à un nombre *fini* de termes).

Soient $\alpha_1 > \alpha_2 > \ldots > \alpha_n$ des réels distincts que nous avons ordonnés, considérons la famille (finie) : $(f_{\alpha_i})_{i=1,\ldots,n}$. Supposons qu'il existe des réels $\lambda_1,\ldots,\lambda_n$ tels que $\sum_{i=1}^n \lambda_i f_{\alpha_i} = 0$. Cela signifie que, quelque soit $x \in \mathbb{R}$, alors $\sum_{i=1}^n \lambda_i f_{\alpha_i}(x) = 0$, autrement dit pour tout $x \in \mathbb{R}$:

$$\lambda_1 e^{\alpha_1 x} + \lambda_2 e^{\alpha_2 x} + \dots + \lambda_n e^{\alpha_n x} = 0.$$

Le terme qui domine est $e^{\alpha_1 x}$ (car $\alpha_1 > \alpha_2 > \cdots$). Factorisons par $e^{\alpha_1 x}$:

$$e^{\alpha_1 x} \Big(\lambda_1 + \lambda_2 e^{(\alpha_2 - \alpha_1)x} + \dots + \lambda_n e^{(\alpha_n - \alpha_1)x} \Big) = 0.$$

Mais $e^{\alpha_1 x} \neq 0$ donc :

$$\lambda_1 + \lambda_2 e^{(\alpha_2 - \alpha_1)x} + \dots + \lambda_n e^{(\alpha_n - \alpha_1)x} = 0.$$

Lorsque $x \to +\infty$ alors $e^{(\alpha_i - \alpha_1)x} \to 0$ (pour tout $i \ge 2$, car $\alpha_i - \alpha_1 < 0$). Donc pour $i \ge 2$, $\lambda_i e^{(\alpha_i - \alpha_1)x} \to 0$ et en passant à la limite dans l'égalité ci-dessus on trouve :

$$\lambda_1 = 0$$
.

Le premier coefficients est donc nul. On repart de la combinaison linéaire qui est maintenant $\lambda_2 f_2 + \cdots + \lambda_n f_n = 0$ et en appliquant le raisonnement ci-dessus on prouve par récurrence $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$. Donc la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est une famille libre.

Correction de l'exercice 10 ▲

- 1. Si les deux droites vectorielles sont distinctes alors elles engendrent un plan vectoriel et donc pas \mathbb{R}^3 tout entier. Si elles sont confondues c'est pire : elles n'engendrent qu'une droite. Dans tout les cas elles n'engendrent pas \mathbb{R}^3 et ne sont donc pas supplémentaires.
- 2. Si P et P' sont deux plans vectoriels alors $P \cap P'$ est une droite vectorielle si $P \neq P'$ ou le plan P tout entier si P = P'. Attention, tous les plans vectoriels ont une équation du type ax + by + cz = 0 et doivent passer par l'origine, il n'existe donc pas deux plans parallèles par exemple. Donc l'intersection $P \cap P'$ n'est jamais réduite au vecteur nul. Ainsi P et P' ne sont pas supplémentaires.
- 3. Soit D une droite et P un plan, u un vecteur directeur de D. Si le vecteur u appartient au plan P alors $D \subset P$ et les espaces ne sont pas supplémentaires (ils n'engendrent pas tout \mathbb{R}^3). Si $u \notin P$ alors d'une part $D \cap P$ est juste le vecteur nul d'autre part D et P engendrent tout \mathbb{R}^3 ; D et P sont supplémentaires.

Détaillons un exemple : si P est le plan d'équation z = 0 alors il est engendré par les deux vecteurs v = (1,0,0) et w = (0,1,0). Soit D une droite de vecteur directeur u = (a,b,c).

Alors $u \notin P \iff u \notin \operatorname{Vect}\{v,w\} \iff c \neq 0$. Dans ce cas on bien que d'une part que $D = \operatorname{Vect}\{u\}$ intersecté avec P est réduit au vecteur nul. Ainsi $D \cap P = \{(0,0,0)\}$. Et d'autre part tout vecteur $(x,y,z) \in \mathbb{R}^3$ appartient à $D + P = \operatorname{Vect}\{u,v,w\}$. Il suffit de remarquer que $(x,y,z) - \frac{z}{c}(a,b,c) = (x - \frac{za}{c}, y - \frac{zb}{c}, 0) = (x - \frac{za}{c})(1,0,0) + (y - \frac{zb}{c})(0,1,0)$. Et ainsi $(x,y,z) = \frac{z}{c}u + (x - \frac{za}{c})v + (y - \frac{zb}{c})w$. Donc $D + P = \mathbb{R}^3$.

Bilan on a bien $D \oplus P = \mathbb{R}^3$: D et P sont en somme directe.

Correction de l'exercice 11 ▲

1. Non. Tout d'abord par définition $\text{Vect}\{v_1, v_2\} + \text{Vect}\{v_3\} = \text{Vect}\{v_1, v_2, v_3\}$, Nous allons trouver un vecteur de \mathbb{R}^4 qui n'est pas dans $\text{Vect}\{v_1, v_2\} + \text{Vect}\{v_3\}$. Il faut tâtonner un peu pour le choix, par exemple faisons le calcul avec u = (0, 0, 0, 1).

 $u \in \text{Vect}\{v_1, v_2, v_3\}$ si et seulement si il existe des réels α, β, γ tels que $u = \alpha v_1 + \beta v_2 + \gamma v_3$. Si l'on écrit les vecteurs verticalement, on cherche donc α, β, γ tels que :

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Ce qui est équivalent à trouver α, β, γ vérifiant le système linéaire :

$$\begin{cases} 0 = \alpha \cdot 1 + \beta \cdot 0 + \gamma \cdot 0 \\ 0 = \alpha \cdot 0 + \beta \cdot 0 + \gamma \cdot 1 \\ 0 = \alpha \cdot 0 + \beta \cdot 1 + \gamma \cdot 0 \\ 1 = \alpha \cdot 1 + \beta \cdot 0 + \gamma \cdot 0 \end{cases}$$
qui équivaut à
$$\begin{cases} 0 = \alpha \\ 0 = \gamma \\ 0 = \beta \\ 1 = \alpha \end{cases}$$

Il n'y a clairement aucune solution à ce système (les trois premières lignes impliquent $\alpha = \beta = \gamma = 0$ et cela rentre alors en contradiction avec la quatrième).

Un autre type de raisonnement, beaucoup plus rapide, est de dire que ces deux espaces ne peuvent engendrés tout \mathbb{R}^4 car il n'y pas assez de vecteurs en effet 3 vecteurs ne peuvent engendrer l'espace \mathbb{R}^4 de dimension 4.

- 2. Oui. Notons $F = \text{Vect}\{v_1, v_2\}$ et $G = \text{Vect}\{v_4, v_5\}$. Pour montrer $F \oplus G = \mathbb{R}^4$ il faut montrer $F \cap G = \{(0,0,0,0)\}$ et $F + G = \mathbb{R}^4$.
 - (a) Montrons $F \cap G = \{(0,0,0,0\}\}$. Soit $u \in F \cap G$, d'une part $u \in F = \text{Vect}\{v_1,v_2\}$ donc il existe $\alpha, \beta \in \mathbb{R}$ tels que $u = \alpha v_1 + \beta v_2$. D'autre part $u \in G = \text{Vect}\{v_4,v_5\}$ donc il existe $\gamma, \delta \in \mathbb{R}$ tels que $u = \gamma v_4 + \delta v_5$. On a écrit u de deux façons donc on a l'égalité $\alpha v_1 + \beta v_2 = \gamma v_4 + \delta v_5$. En écrivant les vecteurs comme des vecteurs colonnes cela donne

$$lphaegin{pmatrix}1\\0\\0\\1\end{pmatrix}+etaegin{pmatrix}0\\0\\1\\0\end{pmatrix}=\gammaegin{pmatrix}0\\0\\0\\1\end{pmatrix}+\deltaegin{pmatrix}0\\1\\0\\1\end{pmatrix}$$

Donc $(\alpha, \beta, \gamma, \delta)$ est solution du système linéaire suivant :

$$egin{cases} lpha=0\ 0=\delta\ eta=0\ lpha=\gamma+\delta \end{cases}$$

Cela implique $\alpha = \beta = \gamma = \delta = 0$ et donc u = (0,0,0,0). Ainsi le seul vecteur de $F \cap G$ est le vecteur nul.

(b) Montrons $F+G=\mathbb{R}^4$. $F+G=\mathrm{Vect}\{v_1,v_2\}+\mathrm{Vect}\{v_4,v_5\}=\mathrm{Vect}\{v_1,v_2,v_4,v_5\}$. Il faut donc montrer que n'importe quel vecteur $u=(x_0,y_0,z_0,t_0)$ de \mathbb{R}^4 s'écrit comme une combinaison linéaire de v_1,v_2,v_4,v_5 . Fixons u et cherchons $\alpha,\beta,\gamma,\delta\in\mathbb{R}$ tels que $\alpha v_1+\beta v_2+\gamma v_4+\delta v_5=u$. Après avoir considéré les vecteurs comme des vecteurs colonnes cela revient à résoudre le système linéaire .

$$\begin{cases} \alpha = x_0 \\ \delta = y_0 \\ \beta = z_0 \\ \alpha + \gamma + \delta = t_0 \end{cases}$$

Nous étant donné un vecteur $u=(x_0,y_0,z_0,t_0)$ on a calculé qu'en choisissant $\alpha=x_0,\ \beta=z_0,$ $\gamma=t_0-x_0-y_0,\ \delta=y_0$ on obtient bien $\alpha v_1+\beta v_2+\gamma v_4+\delta v_5=u$. Ainsi tout vecteur est engendré par F+G.

Ainsi $F \cap G = \{(0,0,0,0)\}$ et $F + G = \mathbb{R}^4$ donc $F \oplus G = \mathbb{R}^4$.

- 3. Non. Ces deux espaces ne sont pas supplémentaires car il y a trop de vecteurs ! Il engendrent tout, mais l'intersection n'est pas triviale. En effet on remarque assez vite que $v_5 = v_3 + v_4$ est dans l'intersection. On peut aussi obtenir ce résultat en résolvant un système.
- 4. Non. Il y a bien quatre vecteurs mais il existe des relations entre eux.

On peut montrer $\text{Vect}\{v_1, v_4\}$ et $\text{Vect}\{v_3, v_5\}$ ne sont pas supplémentaires de deux façons. Première méthode : leur intersection est non nulle, par exemple $v_4 = v_5 - v_3$ est dans l'intersection. Deuxième méthode : les deux espaces n'engendrent pas tout, en effet il est facile de voir que $(0,0,1,0) \notin \text{Vect}\{v_1,v_4\} + \text{Vect}\{v_3,v_5\} = \text{Vect}\{v_1,v_4,v_3,v_5\}$.

Correction de l'exercice 12 A

Faisons d'abord une remarque qui va simplifier les calculs :

$$v_3 = 2v_1 + 3v_2$$
.

Donc en fait nous avons $\text{Vect}\{v_1, v_2, v_3\} = \text{Vect}\{v_1, v_2\}$ et c'est un espace de dimension 2, c'est-à-dire un plan vectoriel. Par la même relation on trouve que $\text{Vect}\{v_1, v_2, v_3\} = \text{Vect}\{v_2, v_3\}$.

- 1. Vrai. Vect $\{(1,1,0,0),(-1,1,-4,2)\}$ est inclus dans Vect $\{v_1,v_2,v_3\}$, car $(1,1,0,0)=v_1+v_2$ et $(-1,1,-4,2)=v_1-v_2$. Comme ils sont de même dimension ils sont égaux (autrement dit : comme un plan est inclus dans un autre alors ils sont égaux).
- 2. Vrai. On a $(1,1,0,0) = v_1 + v_2$ donc $(1,1,0,0) \in \text{Vect}\{v_1,v_2\}$, or $\text{Vect}\{v_1,v_2\} = \text{Vect}\{v_2,v_3\} \subset \text{Vect}\{v_2,v_3,v_4\}$. Donc $(1,1,0,0) \in \text{Vect}\{v_1,v_2\} \cap \text{Vect}\{v_2,v_3,v_4\}$.
- 3. Faux. Toujours la même relation nous donne que $\text{Vect}\{v_1, v_2\} \cap \text{Vect}\{v_2, v_3, v_4\} = \text{Vect}\{v_1, v_2\}$ donc est de dimension 2. C'est donc un plan vectoriel et pas une droite.
- 4. Faux. Encore une fois la relation donne que $\text{Vect}\{v_1, v_2\} + \text{Vect}\{v_2, v_3, v_4\} = \text{Vect}\{v_1, v_2, v_4\}$, or 3 vecteurs ne peuvent engendrer \mathbb{R}^4 qui est de dimension 4.
- 5. Vrai. Faire le calcul : l'intersection est $\{0\}$ et la somme est \mathbb{R}^4 .

Correction de l'exercice 13 A

Analysons d'abord les fonctions de E qui ne sont pas dans F: ce sont les fonctions h qui vérifient $h(0) \neq 0$ ou $h'(0) \neq 0$. Par exemple les fonctions constantes $x \mapsto b$, $(b \in \mathbb{R}^*)$ ou les homothéties $x \mapsto ax$, $(a \in \mathbb{R}^*)$ n'appartiennent pas à F.

Cela nous donne l'idée de poser

$$G = \left\{ x \mapsto ax + b \mid (a, b) \in \mathbb{R}^2 \right\}.$$

Montrons que G est un supplémentaire de F dans E.

Soit $f \in F \cap G$, alors f(x) = ax + b (car $f \in G$) et f(0) = b et f'(0) = a; mais $f \in F$ donc f(0) = 0 donc b = 0 et f'(0) = 0 donc a = 0. Maintenant f est la fonction nulle : $F \cap G = \{0\}$.

Soit $h \in E$, alors remarquons que pour f(x) = h(x) - h(0) - h'(0)x la fonction f vérifie f(0) = 0 et f'(0) = 0 donc $f \in F$. Si nous écrivons l'égalité différemment nous obtenons

$$h(x) = f(x) + h(0) + h'(0)x.$$

Posons g(x) = h(0) + h'(0)x, alors la fonction $g \in G$ et

$$h = f + g$$
,

ce qui prouve que toute fonction de E s'écrit comme somme d'une fonction de F et d'une fonction de G : E=F+G.

En conclusion nous avons montré que $E = F \oplus G$.

Correction de l'exercice 14 ▲

On note F l'espace vectoriel des suites constantes et G l'espace vectoriel des suites convergeant vers 0.

- 1. $F \cap G = \{0\}$. En effet une suite constante qui converge vers 0 est la suite nulle.
- 2. F + G = E. Soit (u_n) un élément de E. Notons ℓ la limite de (u_n) . Soit (v_n) la suite définie par $v_n = u_n \ell$, alors (v_n) converge vers 0. Donc $(v_n) \in G$. Notons (w_n) la suite constante égale à ℓ . Alors nous avons $u_n = \ell + u_n \ell$, ou encore $u_n = w_n + v_n$, ceci pour tout $n \in \mathbb{N}$. En terme de suite cela donne $(u_n) = (w_n) + (v_n)$. Ce qui donne la décomposition cherchée.

Bilan : F et G sont en somme directe dans E : $E = F \oplus G$.