

A personal package for counter-rotation analysis and fun sides.
-By Marcos Bugueño

2 repositorios, uno de mayor prioridad.

2 repositorios, uno de mayor prioridad.

CR-Analyzer

Reorganización de las funciones, obtener modularidad, creacion de catalogos personales. Posibilidad de generalización a otras simulaciones.

portafolio_hcai2023

Ejemplos, codigos, notas de clase entre otros.

portafolio_hcai2023

c_scripts

Códigos de ejemplo! Armar un make basico! python_scripts

Códigos de ejemplo! Sandboxing! Uso de los conceptos. written_notes

>Markdowns, que he realizado como notas de clase.
>Escritura muy resumida de las ideas que he notado.

Consiste de notas varias, códigos de ejemplo, para ser utilizados como índices a futuro.

portafolio_hcai2023

c_scripts

- >usando_make
- -arrays.c
- -basic_intro.c
- -condicionales.c
- -libreria_marcorito.h -pointers.c
- -prime_detector.c
- -probando_punto_h.c
- -probando_reemplazos.c

python_scripts

- >documentation_test
- >notebook
- >supermercado
- -clases.py
- -herencia.py
- -iterators.py
- -main.py
- -snake.py

written_notes

Class5.md Class6.md Class7.md

Class1302.md

Consiste de notas varias, códigos de ejemplo, para ser utilizados como índices a futuro.

Estructura y concepto de Contra-rotación

Lo intuitivo es esperar que una galaxies gire o rote con una dada direccion, especialmente en espirales, en donde tenemos: Trailing arms y leading arms.

Estructura y concepto de Contra-rotación

Lo intuitivo es esperar que una galaxies gire o rote con una dada direccion, especialmente en espirales, en donde tenemos: Trailing arms y leading arms.

Sin embargo, es extraño esperar que toda galaxia espiral carezca de una componente que no siga la regla.

>¿El fenómeno entrega información sobre el pasado de una galaxia?

CR-Analyze circularity.py

spherical_coords_from_vector(vector)

vector = [x,y,z]

returns(r, theta, phi)

inertia_tensor(Masas, Coordenadas, CentralPos)

 $\begin{aligned} \text{masas} &= [\text{m}_1, \text{m}_2, ..., \text{m}_N] \\ \text{Coordenadas} &= [[\text{x}_1, \text{y}_1, \text{z}_1], ..., [\text{x}_N, \text{y}_N, \text{z}_N]] \\ \text{CentralPos} &= [\text{x}, \text{y}, \text{z}] \end{aligned}$

returns(I)

star_particles_rotated_once_euler_ method

> subhaloID = int snapNum = int basepath = str radius_limit = float minmetal = float maxmetal = float snap_header = {}

returns(stars=DataFrame, M=3x3array)

circularities_euler_method

subhaloID = int
snapNum = int
basepath = str
radius_limit = float
minmetal = float
maxmetal = float
radius_limit_rotation = float
minmetal_rotation = float
maxmetal_rotation = float

returns(stars=DataFrame)

matrix_from_spherical(r, theta, phi)

r = float theta = float(rad) phi = float(rad)

returns(M)

diagonalization_of_inertia(I)

I = 3x3 Array

returns(rotation_matrix)

star_particles_rotated_once

subhaloID = int snapNum = int basepath = str radius_limit = float minmetal = float maxmetal = float snap_header = {}

returns(stars=DataFrame, S,S1=3x3array)

circularities diagmethod

subhaloID = int

snapNum = int
basepath = str
radius_limit = float
minmetal = float
radius_limit_rotation = float
radius_limit_rotation = float
minmetal_rotation = float
maxmetal_rotation = float
returns(stars=DataFrame)

CR-Analyze particle_follower.py

load counterrotating particles

subhaloid = int

returns(stars_CR=DataFrame)

filter_particles_by_ID

subhalo_df = DataFrame star_data = {}

returns(filtered_star_data_df)

generate_time_tables

subhaloid = int start_snap = int end snap = int

returns(0) guarda en csv generate_time_tables_full

subhaloid = int start_snap = int end_snap = int

returns(0) guarda en csv

load stellar particles

snapshot = int

returns(star_data={})

generate_time_table

generate_time_table_full

 $\begin{aligned} & \text{subhalo_df} = \text{DataFrame} \\ & \text{subhalopos_arr} = \\ & [[x_0, y_0, z_0], ..., [x_{99}, y_{99}, z_{99}]] \\ & \text{snapshot} = \text{int} \\ & \underline{\qquad \qquad } \end{aligned}$

returns(subhalo_df)

Método actual.

Counterrotation-Analyzer(Metodo ideal) SOBRESIMPLIFICACION Estas particulas Tabla! rotadas para edge-on Particulas contrarotantes de galaxia {algo} en snap Tabla! {algo} Entregame... Una pelicula de las contrarotantes de la **GIF/AVI!** galaxia {algo} El origen de las particulas Tabla! contrarotantes

Counterrotation-Analyzer(Metodo ideal) SOBRESIMPLIFICACION Estas particulas Tabla! rotadas para edge-on Particulas contrarotantes de galaxia {algo} en snap Tabla! {algo} Entregame... Una pelicula de las contrarotantes de la **GIF/AVI!** galaxia {algo} El origen de las particulas Tabla! contrarotantes

Counterrotation-Analyzer(Metodo ideal) SOBRESIMPLIFICACION

CR_Analyze

rotator.py

circularity.py

statistician.py

moviemaker.py

>Rota la tabla de acuerdo a una matriz(tabla, matriz) Genera: tabla >Calculo de matriz de rotacion(coordinates,vel ocities) Genera: matriz 3x3 >Calcula las
circularidades de l
partículas en una
tabla(tabla)
Genera: tabla con
circularidades
>Clasifica
contra-rotante o
no(tabla con
circularidades)
Genera: tabla

>Busca los orígenes(tabla de partículas, tabla de orígenes estelares) >Calcula el R_half(masa, es_contrarotante) >Realiza la distribución de R_half(tabla de R_half)

- >Revisa las galaxias en el tiempo y sus partículas filtradas o no por algun parametro, genera una tabla por snap.
- >Genera gifs y avis a partir de las tablas por snap.

CR_Analyze

rotator.py 🕂

circularity.py

statistician.py

moviemaker.py

spherical coords from vector(vector)

circularities_euler_method

calculate_r_half(tables)

generate_time_table_full

matrix_from_spherical(r, theta, phi)

generate_cr_table

distribution_of_r_half(table)

generate_time_tables_full

table_rotate(tabla,matriz)

distribution of metallicity(table)

generate_time_table

star_particles_rotated_once_euler_ method(tabla)

detect_origin(particle_table)

generate_time_tables

.

star_particles_rotated_n_euler____ method(tabla)

CR true{1}
false{0}

>tabla de distribuciones

record

>tablas por snap >gif/avi de la galaxia

>tabla rotada >matriz de rotacion

IMPORTANTE QUE LAS FUNCIONES HAGAN PREGUNTAS!

>tabla rotada >matriz de rotacion

TENGO ESTE CATALOGO? NO? GENERALO!

Tetect_origin(particle_table)

Template by Slidesgo "Realistic Galaxy Consulting Toolkit Infographics"

Gracias!

CR-Analyzer

IDEAS ALEATORIAS

Peliculas en 3d

Angulo de caida de progenitores

Evolucion de la masa de la componente CR Calculo alternativo del birthprogenitor

0000

Importa el ambiente

Mas alla de las galaxias centrales?

R200 para galaxias satelite?