

Complex Numbers

Advanced

7 + 3i
Real Imaginary

A Complex Number

A Complex Number is a combination of a **Real Number** and an **Imaginary Number**

Real Numbers are numbers like:

1 12.38 -0.8625 3/4 $\sqrt{2}$ 1998

Nearly any number you can think of is a Real Number!

<u>Imaginary Numbers</u> when **squared** give a **negative** result.

Normally this doesn't happen, because:

- when we <u>square</u> a positive number we get a positive result, and
- when we square a negative number we also get a positive result (because a negative times a negative gives a positive), for example $-2 \times -2 = +4$

But just imagine such numbers exist, because we will need them.

The "unit" imaginary number (like 1 for Real Numbers) is i, which is the square root of -1

Because when we square i we get -1

$$i^2 = -1$$

Examples of Imaginary Numbers:

3i 1.04i
$$-2.8i$$
 3i/4 $(\sqrt{2})i$ 1998i

And we keep that little "i" there to remind us we need to multiply by $\sqrt{-1}$

Complex Numbers

A Complex Number is a combination of a Real Number and an Imaginary Number:

Examples:

1 + i 39 + 3i
$$0.8 - 2.2i -2 + \pi i \sqrt{2 + i/2}$$

Can a Number be a Combination of Two Numbers?

Can we make up a number from two other numbers? Sure we can!

We do it with $\frac{1}{1}$ fractions all the time. The fraction $\frac{3}{8}$ is a number made up of a 3 and an 8. We know it means "3 of 8 equal parts".

Well, a Complex Number is just **two numbers added together** (a Real and an Imaginary Number).

Either Part Can Be Zero

So, a Complex Number has a real part and an imaginary part.

But either part can be **0**, so all Real Numbers and Imaginary Numbers are also Complex Numbers.

Complex Number	Real Part	Imaginary Part
3 + 2 <mark>i</mark>	3	2
5	5	0
-6i	0	-6

Complicated?

Complex does **not** mean complicated.

It means the two types of numbers, real and imaginary, together form a **complex**, just like a building complex (buildings joined together).

A Visual Explanation

You know how the number line goes **left-right**?

Well let's have the imaginary numbers go **up-down**:

And we get the **Complex Plane**

And a complex number can now be shown as a point:

The complex number 3 + 4i

Adding

To add two complex numbers we add each part separately:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

Example: add the complex numbers 3 + 2i and 1 + 7i

- add the real numbers, and
- add the imaginary numbers:

$$(3 + 2i) + (1 + 7i)$$

= $3 + 1 + (2 + 7)i$
= $(4 + 9i)$

Let's try one visually:

Example: add the complex numbers 3 + 5i and 4 - 3i

$$(3 + 5i) + (4 - 3i)$$

= $3 + 4 + (5 - 3)i$
= $7 + 2i$

Multiplying

To multiply complex numbers:

Each part of the first complex number gets multiplied by each part of the second complex number

Just use "FOIL", which stands for "Firsts, Outers, Inners, Lasts" (see Binomial Multiplication for more details):

$$(a+bi)(c+di) = ac + adi + bci + bdi^2$$

Like this:

Example:
$$(3 + 2i)(1 + 7i)$$

$$(3 + 2i)(1 + 7i) = 3 \times 1 + 3 \times 7i + 2i \times 1 + 2i \times 7i$$

$$= 3 + 21i + 2i + 14i^{2}$$

$$= 3 + 21i + 2i - 14 \qquad \text{(because } i^{2} = -1\text{)}$$

$$= -11 + 23i$$

And this:

Example:
$$(1 + i)^2$$

 $(1 + i)^2 = (1 + i)(1 + i) = 1 \times 1 + 1 \times i + 1 \times i + i^2$
 $= 1 + 2i - 1$ (because $i^2 = -1$)
 $= 0 + 2i$

But There is a Quicker Way!

Use this rule:

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

Example:
$$(3 + 2i)(1 + 7i) = (3 \times 1 - 2 \times 7) + (3 \times 7 + 2 \times 1)i = -11 + 23i$$

Why Does That Rule Work?

It is just the "FOIL" method after a little work:

$$(a+bi)(c+di) = ac + adi + bci + bdi^2$$
 FOIL method
 $= ac + adi + bci - bd$ (because $i^2 = -1$)
 $= (ac - bd) + (ad + bc)i$ (gathering like terms)

And there we have the (ac - bd) + (ad + bc)i pattern.

This rule is certainly faster, but if you forget it, just remember the FOIL method.

Let us try i²

Just for fun, let's use the method to calculate i^2

Example: i²

i can also be written with a real and imaginary part as 0 + i

$$i^{2} = (0 + i)^{2} = (0 + i)(0 + i)$$

= $(0 \times 0 - 1 \times 1) + (0 \times 1 + 1 \times 0)i$
= $-1 + 0i$
= -1

And that agrees nicely with the definition that $i^2 = -1$

So it all works wonderfully!

Learn more at Complex Number Multiplication.

Conjugates

We will need to Inow about conjugates in a minute!

A <u>conjugate</u> is where we **change the sign in the middle** like this:

A conjugate is often written with a bar over it:

Example:

$$\overline{5-3i} = 5+3i$$

Dividing

The conjugate is used to help complex division.

The trick is to multiply both top and bottom by the conjugate of the bottom.

Example: Do this Division:

$$\frac{2+3\mathbf{i}}{4-5\mathbf{i}}$$

Multiply top and bottom by the conjugate of 4-5i:

$$\frac{2+3\mathbf{i}}{4-5\mathbf{i}} \times \frac{4+5\mathbf{i}}{4+5\mathbf{i}} = \frac{8+10\mathbf{i}+12\mathbf{i}+15\mathbf{i}^2}{16+20\mathbf{i}-20\mathbf{i}-25\mathbf{i}^2}$$

Now remember that $i^2 = -1$, so:

$$= \frac{8 + 10\mathbf{i} + 12\mathbf{i} - 15}{16 + 20\mathbf{i} - 20\mathbf{i} + 25}$$

Add Like Terms (and notice how on the bottom 20i - 20i cancels out!):

$$=\frac{-7+22i}{41}$$

We should then put the answer back into a + bi form:

$$= \frac{-7}{41} + \frac{22}{41}i$$

DONE!

Yes, there is a bit of calculation to do. But it can be done.

Multiplying By the Conjugate

There is a faster way though.

In the previous example, what happened on the bottom was interesting:

$$(4-5i)(4+5i) = 16 + 20i - 20i - 25i^2$$

The middle terms cancel out!

And since $i^2 = -1$ we ended up with this:

$$(4 - 5i)(4 + 5i) = 4^2 + 5^2$$

Which is really quite a simple result

In fact we can write a general rule like this:

$$(a + bi)(a - bi) = a^2 + b^2$$

So that can save us time when do division, like this:

Example: Let's try this again

$$\frac{2 + 3i}{4 - 5i}$$

Multiply top and bottom by the conjugate of 4-5i:

$$\frac{2+3i}{4-5i} \times \frac{4+5i}{4+5i} = \frac{8+10i+12i+15i^2}{16+25}$$

$$= \frac{-7 + 22\mathbf{i}}{41}$$

And then back into a + bi form:

$$= \frac{-7}{41} + \frac{22}{41}i$$

DONE!

The Mandelbrot Set

The beautiful Mandelbrot Set (pictured here) is based on Complex Numbers.

It is a plot of what happens when we take the simple equation $\mathbf{z}^2 + \mathbf{c}$ (both complex numbers) and feed the result back into \mathbf{z} time and time again.

The color shows how fast $\mathbf{z}^2+\mathbf{c}$ grows, and black means it stays within a certain range.

And here is the center of the previous one zoomed in even further:

Question 1 Question 2 Question 3 Question 4 Question 5
Question 6 Question 7 Question 8 Question 9
Question 10

Challenging Questions: 1 2

Copyright © 2016 MathsIsFun.com