版本 : *PRE.001* 出版日期 : 2005/8/15

文件名称 : CNSP-DD313-PRE.001.doc

总页数 : 12

三通道大功率 LED 恒流驱动器

DD313

三通道大功率 LED 恒流驱动器

产品概述

DD313是专为大功率LED应用所设计的恒流驱动芯片。内建三个恒流输出通道,可透过三个外挂电阻分别设定输出电流值。并特别设计三个使能端,可个别独立控制三输出通道的开关时间,切换频率最高达一兆赫(1MHz)。电流输出反应极快,支持高色阶变化及高画面刷新率的应用。芯片内建过热断电及过电流保护功能,使应用系统可靠性更为提升。

特色

- 三输出通道,可个别控制电流与色阶变化
- 最大输出电流: 500mA(分别由三个外挂电阻设定)
- 最小输出电压要求: 0.8V(当 Iout = 500mA 时)
- 最大输出承受电压: 18V
- 最大输出使能端频率: 1MHz
- 芯片工作电压: 5V~18V
- 过电流保护功能
- 过热断电功能

应用

- LED 建筑/娱乐/景观照明
- LED 一般或特用照明
- LED 背光源应用

封装形式

● SOP16 或 TSSOP16 (帯散热片)

功能方块图

脚位图

脚位定义

脚位编号	脚位名称	功能
1	GND	接地端
2,12	RESERVE	保留测试端,使用者应空出此脚位
3,4,5	ENR,G,B	使能端 R,G,B
6,11,13	OUTB,G,R	恒流输出端 B,G,R(open-drain 沈入电流架构)
7,8 9,10 14,15	REXTB REXTG REXTR	外挂电阻端 B,G,R, 外挂电阻应接于 REXT 与 GND 端间以设定输出电流值
16	VCC	芯片工作电源端

最大工作范围(Ta=25°C, Tj(max) = 140°C)

特性	符号	最大工作范围	单位	
芯片工作电压	VDD	-0.3 ~ 18	V	
输入电压	VIN	-0.3 ~ VDD+0.3	V	
输出电流	lout	500	mA	
输出电压	Vout	-0.3 ~ 18	V	
使能端输入电压	VEN	-0.3 ~ 18		
输出端使能频率	FEN	1	MHz	
接地端电流	IGND	1.5	А	
消耗功率	Pd	3.0 (TSSOP16) 1.4 (SOP16)	W	
热阻值(junction-to-air)	Rth(j-a)*1	38 (TSSOP16) 81.2 (SOP16)	°C/W	
工作温度	Тор	-40 ~ 85	°C	
存放温度	Tstg	-55 ~ 150	- °C	

推荐工作参数

特性	符号	条件	最小值	一般值	最大值	单位	
芯片工作电压	VDD	_	5.0		18	V	
松山山	Vant	驱动器电流导通*2	0.8		_		
输出电压	Vout	驱动器电流关闭 ^{*3}			18	V	
输出电流	lout	OUT(R, G, B)	_	_	0.5	Α	
使能端输入电压	VIH	VDD = 5.0V ~ 18V	3.0		18	V	
	VIL	75.0V ~ 16V	-0.3		1.0	V	
输出端使能频率	FEN	Ven > 3.0V	DC		1	MHz	

^{*1} 根据 JEDEC 高导电率四层测试板模拟所得。

^{*2} 需注意功率消耗受限于封装以及环境温度。

^{*3} 最大输出端承受电压也包括任何的过冲电压(overshoot),不可超过 18V。

电气特性(Ta = 25℃ 除非另有规定)

特性		符号	测试条件	最小	一般	最大	单位
/+ \(\rangle	高电平	VEN(IH)	VDD 5.01/ 40.1/	3.0	_	18	.,
使能端输入电压	低电平	VEN(IL)	VDD = 5.0 V ~ 18 V	-0.3	_	1.0	V
输出端漏电流		loL	Vout = 18 V Ven = 0 V			1.0	uA
输出电流差异 (通	i道与通道间) *1	lol1	Vout = 1.0 V		TBD	±3	%
输出电流差异 (芯	5片与芯片间)*2	lol2	REXT = 1 Ω		TBD	TBD	%
输出电压影响输出电流变化百分比		% / Vout	REXT = 1 Ω Vout = 0.8 V ~ 3 V	_	0.1	1	% / V
芯片工作电压影响输出电流变化百分比		% / VDD	REXT = 1 Ω	_	_	2	70 7 V
过热断电温度触发	过热断电温度触发点		REXT = 1 KΩ 输出通道全开	_	100	_	°C
芯片工作电流*3		I _{DD1}	VDD = 5 V REXT = 1 Ω 输出通道全开	_	1.2	_	
		I _{DD2}	VDD = 12 V REXT = 1 Ω 输出通道全开	_	2.4	_	mA
		I _{DD3}	VDD = 18 V REXT = 1 Ω 输出通道全开		3.3		

^{*}¹ 输出电流差异(通道与通道间)定义为"任意 Iout - 平均 Iout" 与 "平均 Iout"的比率。平均 Iout = (Imax+Imin)/2。 *² 输出电流差异(芯片与芯片间)定义为任选两芯片之最大输出电流与最小输出电流的落差范围。

^{*3} IO 除外。

交流特性 (Ta = 25℃ 除非另有规定)

特	符号	测试条件	最小	一般	最大	单位	
延迟时间 (低电位到高电位)	EN-to-OUT (输出导通)	tpLH	VIH = VDD	_	110		
延迟时间 (高电位到低电位)	EN-to-OUT (输出截止)	tpHL	VIL = GND REXT = 1 Ω		280		ns
电流输出端的电位爬升时间		tor	VL = 5.0 V RL = 8 Ω	_	135		
电流输出端的电位下降时间		tof	CL = 13 pF		115		

交流特性测试电路

瞬时特性

三通道大功率 LED 恒流驱动器

Version:PRE.001

Page 5

输出电流设定

DD313 三个输出通道(RGB)的恒流输出值分别由三个外挂电阻来设定,这三个外挂电阻皆连接于接地端(GND)与外挂电阻端 (REXT R/G/B)之间。改变外挂电阻值可调整输出电流值的大小,最高可达 500mA。需注意在装置本体温度与环境温度达到平衡前,输出电流会有微幅的增减情形。输出电流值可透过下列等式概算:

$$IOUT_{(R,G,B)}(A) \simeq 0.5 (V) / REXT_{(R,G,B)}(\Omega)$$

封装体散热功率

需注意芯片的散热功率受到封装与环境温度的限制,故在设定最大输出电流值时需考虑 到实际操作条件。最大可散热功率可由以下式子来做计算:

最大接面温度
$$Tj(^{\circ}C)$$
 — 环境温度 $Ta(^{\circ}C)$ 最大散热功率 $Pd(W)$ = 热阻值($^{\circ}C$ / Watt)

散热功率(Power Dissipation = Pd(W))与操作环境温度(Ambient Temperature = Ta ($^{\circ}$ C))的关系可以参考下图:

由最大散热功率(Pd)可推导出最大可允许操作电压 Vout,请参考下式:

 $VoutR \times IoutR \times DutyR + VoutG \times IoutG \times DutyG + VoutB \times IoutB \times DutyB \le Pd(max)(W) - Vcc(V) \times Idd(A)$

典型应用

典型应用

DD313 经特别设计,即使在驱动大电流的工作之下仍可稳定地以最高 1MHz 的频率进行切换运用。使用上将使能端(ENABLE)接到 PWM 讯 号输出接口,系统即可进行精准的控制。在此应 用案例中,DM413 原是具 PWM 电流输出的三通道(红绿蓝)LED 恒流驱动器,在此则定义为一 PWM 讯号产生器。DM413 透过串行资料输入可以产生最高 14 个比特的红绿蓝 PWM 灰阶讯号,可用以控制 DD313 的三个输出通道。DD313 与 DM413 的结合提供使用者一个理想的高灰阶控制与颜色控制机制。

DM413 是一颗具脉波宽度调制(PWM)致能的 LED驱动芯片, 专为 LED照明,装饰,大屏显示等应用所设计。芯片内含移位缓存器,数据锁存器,及三通道恒流驱动器(电流值可由相对应的三个外挂电阻调控)。内建振荡器可实现 PWM 输出功能。数据输出端与时钟输出端皆可串接至下一芯片。独特的「输出端极性反转功能」可与大功率 LED之应用做搭配设计,增加了设计延展性。

封装外型尺寸

SOP16 (含外露焊盘)

SYMBOLS	MIN.	MAX.
Α	0.053	0.069
A1	0.004	0.010
D	0.386	0.394
E	0.150	0.157
Н	0.228	0.244
L	0.016	0.050
f	0	8

UNIT : INCH

A	THERMALLY		ENHAN	CED	DIMENSIONS	
	PAD	DIZE	E1		D1	
	95X	18E	0.086	REF	0.162	REF

UNIT: INCH

封装外型尺寸

TSSOP16 (含外露焊盘)

单位: mm

SYMBOLS	MIN.	NOM.	MAX.		
Α	_	_	1.20		
A1	0.00	_	0.15		
A2	0.80	1.00	1.05		
b	0.19	_	0.30		
D	4.90	5.00	5.10		
D1	1.70	_	_		
E2	1.50	_	_		
E1	4.30	4.40	4.50		
E		6.40 BSC			
е		0.65 BSC			
L1	1,00 REF				
L	0.45	0.60	0.75		
S	0,20	_	_		
0	0.	_	8*		

这里列出的产品是设计用于普通电子产品的应用,例如电器、可视化设备、通信产品等等。因此,建议这些产品不应该用于医疗设施、手术设备、航天器、核电控制系统、灾难/犯罪预防设备等类似的设备。这些产品的错误使用可能直接或间接导致威胁到人们的生命或者导致伤害或财产损失。

点晶科技将不负任何因这些产品的错误使用而导致的责任。任何人若购买了 这里所描述的任何产品,并含有上述意图或错误使用,应自负全责与赔偿。点晶 科技与它的通路商及所有管理者和员工必捍卫己方抵拒所有索赔、诉讼,及所有 因上述意图或操作而衍生的损坏、成本、及费用。