Movie recommendation using the MovieLens dataset

Felipe Urrego 02/03/2019

Introduction

• What is Machine Learning?

In simple words, we can say that it is just a problem of approximation of a function or a relationship with the purpose to obtain new information. It can be any function of any complexity. It can even do not exist, in this case, we assume that there is a kind of law of nature or a relationship that we want to approximate.

Notations

We note this function f(x) and its values y = f(x) (or $y = f(x) + \epsilon$ where ϵ is random). Conventions for x and y depend on the field of science - Machine Learning or Statistical Learning - they are a bit different.

x / Features / Independent Variables (it's not the case for the raw data, but we should treat it in order to get only independent variables, for example, with help of PCA - Principal Component Analysis). y / Label / Dependent Variable.

x can be a vector (vector of features), its length is the number of independent variables. y is usually a scalar value.

Observation is one couple $\{x,y\}$ or just one x.

There are different types of Machine Learning problems, but we now consider Supervised Learning problem, it is when we have labels as described.

• Problem formulation

We have two sets of data, one is labelled (it has x and y and called 'train/training set') and another not (it has only x and called 'test set'). Train set is $\{x_i, y_i\}_{i=0,1..n}$, where n is the number of observations (they ideally should be independent).

The objective is to get y for the test set (we say to predict or to forecast). So, we choose a Machine Learning model g and train (or fit) it on the train set (calibrate its internal parameters) so that g(x) looks similar to y for $\{x,y\}$ in the train set. We quantify "look similar" by introducing a function to minimise called Error Measure. Thus, g is our approximation of f and g(x) for x in the test set (called Prediction) is our guess of y for the test set as asked.

• Error measure

There are different error measures (also called Loss/Cost/Objective Functions), but here we use the most common one - Root Mean Square Error (RMSE), for a model g:

$$RMSE(g) = \sqrt{\frac{1}{n} \sum_{i=1..n} (y_i - g(x_i))^2}$$

Overfitting

Almost always the data we have is not a pure reflection of a law of nature but also of some noises (it is why it is hard to find $g \equiv f$) and if we consider a model too complicated for the problem, it can also fit the noise, as

Figure 1: Overfitting

on the figure below. A model that is too simple is not a good choice neither. In order to find a suitable model from a set of models, we need to test models on data that was not used in the training. For this purpose we divide the train set into two parts (80% and 20%), then we train each model on 80% data and compare its predictions over the 20% data with the real labels. It gives a RMSE per model, and a model with the smallest RMSE is the winner.

• MovieLens

In the current project, we consider the MovieLens 10M database, it consists of movies and users ratings and we want to be able to say which rating a specific user would give to a specific movie (in order to know what to propose to watch to this user). It consists of 10 million of ratings (10 M rows), for each rating we have a user ID, a time when the rating was given and a movie ID. Each movie has a title (equivalent to movie ID) with the year of production, an and a set of genres (a movie can have multiple genres).

Preprocessing

```
# List of packages we need
list_of_packages <- list("randomForest",</pre>
                          "kableExtra",
                          "tidyverse",
                          "lubridate",
                          "corrplot",
                          "ggplot2",
                          "readxl",
                          "dslabs",
                          "knitr",
                          "mlr")
# Function that loads and installs if necessary indicated packages
UsePackages = function(list_of_packages) {
  for (p in list_of_packages){
    # if (!is.element(p, installed.packages()[,1]))
       install.packages(p)
    require(p, character.only = TRUE)
  }
```

```
UsePackages(list_of_packages)

# precision
prec <- 3

# data frame to stock results
results <- tibble()
</pre>
```

Create test and validation sets

```
Create edx set (train set) and validation set (test and validation set in the same time)
# Note: this process could take a couple of minutes
if(!require(tidyverse)) install.packages("tidyverse", repos = "http://cran.us.r-project.org")
if(!require(caret)) install.packages("caret", repos = "http://cran.us.r-project.org")
# MovieLens 10M dataset:
# https://grouplens.org/datasets/movielens/10m/
# http://files.grouplens.org/datasets/movielens/ml-10m.zip
# Avoid downloading data we already have
if (file.exists("ml-10M100K/ratings.dat") & file.exists("ml-10M100K/movies.dat")){
 ratings <- read.table(text = gsub("::", "\t", readLines("ml-10M100K/ratings.dat")),</pre>
                         col.names = c("userId", "movieId", "rating", "timestamp"))
 movies <- str_split_fixed(readLines("ml-10M100K/movies.dat"), "\\::", 3)</pre>
}else{
 dl <- tempfile()</pre>
  download.file("http://files.grouplens.org/datasets/movielens/ml-10m.zip", dl)
 ratings <- read.table(text = gsub("::", "\t", readLines(unzip(dl, "ml-10M100K/ratings.dat"))),</pre>
                         col.names = c("userId", "movieId", "rating", "timestamp"))
 movies <- str_split_fixed(readLines(unzip(dl, "ml-10M100K/movies.dat")), "\\::", 3)</pre>
}
# Treat data
colnames(movies) <- c("movieId", "title", "genres")</pre>
movies <- as.data.frame(movies) %>% mutate(movieId = as.numeric(levels(movieId))[movieId],
                                             title = as.character(title),
                                             genres = as.character(genres))
movielens <- left_join(ratings, movies, by = "movieId")</pre>
# Validation set will be 10% of MovieLens data
set.seed(1)
```

test_index <- createDataPartition(y = movielens\$rating, times = 1, p = 0.1, list = FALSE)

```
edx <- movielens[-test_index,]
temp <- movielens[test_index,]

# Make sure userId and movieId in validation set are also in edx set
validation <- temp %>%
    semi_join(edx, by = "movieId") %>%
    semi_join(edx, by = "userId")

# Add rows removed from validation set back into edx set
removed <- anti_join(temp, validation)
edx <- rbind(edx, removed)

rm(dl, ratings, movies, test_index, temp, movielens, removed)

# change the format from 'data.frame' to 'tibble'. And blend the rows
edx <- as_tibble(edx)[sample(1:nrow(edx)),]
validation <- as_tibble(validation)[sample(1:nrow(validation)),]</pre>
```

Feature Selection and Feature Engineering

Feature Selection means that we remove irrelevant variables that only add noise.

Feature Engineering means that we add new variables.

Year of production and year of rating

```
# extract year from the title and remove title
edx <- edx %>%
  extract(title, "year", regex="\\(([0-9 \\-]*)\\)$") %>% mutate(year=as.integer(year))
validation <- validation %>%
  extract(title, "year", regex="\\(([0-9 \\-]*)\\)$") %>% mutate(year=as.integer(year))

# timestamp to year of the publication of rating
edx <- edx %>%
  mutate(timestamp = as.integer(year(as_datetime(timestamp))))
validation <- validation %>%
  mutate(timestamp = as.integer(year(as_datetime(timestamp))))

Add mean/median rating per year

df_years <- edx %>% group_by(year) %>%
  summarise(mean_per_year=mean(rating), median_per_year=median(rating))
edx <- edx %>% left_join(df_years, by="year")
```

Genres

```
# data frame of genres and its numbers
(df_genres <- edx %>%
```

```
separate_rows(genres, sep = "\\|") %>%
  group_by(genres) %>%
  summarise(number = n(), mean_rating = mean(rating)) %>%
  arrange(desc(number)))
## # A tibble: 20 x 3
##
      genres
                          number mean_rating
      <chr>
##
                          <int>
                                       <dbl>
## 1 Drama
                         3910127
                                        3.67
## 2 Comedy
                         3540930
                                        3.44
                         2560545
## 3 Action
                                        3.42
## 4 Thriller
                         2325899
                                        3.51
## 5 Adventure
                                        3.49
                        1908892
## 6 Romance
                         1712100
                                        3.55
## 7 Sci-Fi
                                        3.40
                        1341183
## 8 Crime
                        1327715
                                        3.67
## 9 Fantasy
                         925637
                                        3.50
                         737994
## 10 Children
                                         3.42
## 11 Horror
                         691485
                                         3.27
## 12 Mystery
                        568332
                                         3.68
                         511147
                                        3.78
## 13 War
## 14 Animation
                        467168
                                        3.60
## 15 Musical
                                        3.56
                          433080
## 16 Western
                         189394
                                        3.56
## 17 Film-Noir
                          118541
                                         4.01
## 18 Documentary
                           93066
                                        3.78
## 19 IMAX
                            8181
                                        3.77
## 20 (no genres listed)
                                        3.64
                               7
Divide 'genres' into separate genres
#' create a data.frame with dummy genres columns from a list of mixed genres
GetDummyGenres <- function(my_vector, my_genres){</pre>
  df2 <- sapply(my_vector,</pre>
                function(x){
                  zeros <- rep(0,length(my_genres))</pre>
                  x \leftarrow strsplit(x, "\\|")[[1]] # split by char "/" into two strings
                  zeros[match(x, my_genres)] <- 1</pre>
                  return(as.integer(zeros))
                },
                USE.NAMES=FALSE) %>% t
  colnames(df2) <- my_genres</pre>
  df2 <- df2 %>% as_tibble # %>% select(-`(no genres listed)`)# %>% mutate_all(as.factor)
  return(df2)
}
# movies and its genres
df_movies <- edx %>% group_by(movieId) %>%
  summarise("mean_per_movie"=mean(rating),
            "median_per_movie"=median(rating),
            "number"=n(),
            "genres" = genres[1])
df_movies <- df_movies %>% bind_cols(GetDummyGenres(.$genres, df_genres$genres))
```

A movie can have multiple genres, so can estimate its rating as average of average ratings per genres

```
(df_movies <- df_movies %>%
  mutate(mean_per_genre =
           rowSums(as.matrix(df_movies %>% select(df_genres$genres)) * df_genres$mean_rating) /
           rowSums(df_movies %>% select(df_genres$genres))) %>%
   select(mean_per_genre, names(df_movies)))
## # A tibble: 10,677 x 26
##
      mean_per_genre movieId mean_per_movie median_per_movie number genres
##
               <dbl>
                       <dbl>
                                      <dbl>
                                                       <dbl>
                                                              <int> <chr>
##
                3.67
                           1
                                       3.93
                                                           4 23790 Adven~
## 2
                3.59
                           2
                                       3.21
                                                           3 10779 Adven~
## 3
                3.65
                           3
                                       3.15
                                                           3
                                                              7028 Comed~
                                                           3 1577 Comed~
## 4
                3.56
                                       2.86
                           4
## 5
                3.44
                           5
                                       3.07
                                                           3
                                                               6400 Comedy
##
  6
                           6
                3.72
                                       3.82
                                                           4 12346 Actio~
##
  7
                3.59
                           7
                                       3.36
                                                           3
                                                              7259 Comed~
## 8
                3.61
                           8
                                       3.13
                                                           3
                                                                821 Adven~
                3.42
                           9
                                       3.00
                                                               2278 Action
##
## 10
                3.65
                          10
                                       3.43
                                                           3 15187 Actio~
## # ... with 10,667 more rows, and 20 more variables: Drama <int>,
       Comedy <int>, Action <int>, Thriller <int>, Adventure <int>,
## #
       Romance <int>, `Sci-Fi` <int>, Crime <int>, Fantasy <int>,
## #
      Children <int>, Horror <int>, Mystery <int>, War <int>,
       Animation <int>, Musical <int>, Western <int>, `Film-Noir` <int>,
      Documentary <int>, IMAX <int>, `(no genres listed)` <int>
## #
edx <- edx %>% left_join(df_movies %>% select(movieId, mean_per_genre), by="movieId")
```

Add mean/median rating per movie

```
edx <- edx %>%
left_join(df_movies %>% select(movieId, mean_per_movie, median_per_movie), by="movieId")
```

Add mean/median rating per user

Data Summary and Data Visualisation

```
# summary
print(summary(edx))
                      movieId
##
       userId
                                       rating
                                                     timestamp
         :
                1
                   Min.
                          :
                               1
                                   Min.
                                          :0.500
                                                   Min.
                                                          :1995
## 1st Qu.:18124
                   1st Qu.: 648
                                   1st Qu.:3.000
                                                   1st Qu.:2000
## Median :35738
                                   Median :4.000
                   Median: 1834
                                                   Median:2002
```

```
## Mean
          :35870
                  Mean : 4122
                                 Mean
                                       :3.512
                                                Mean
                                                       :2002
##
   3rd Qu.:53607
                  3rd Qu.: 3626
                                 3rd Qu.:4.000
                                                3rd Qu.:2005
                  Max. :65133
                                 Max. :5.000
  Max. :71567
                                                Max.
                                                       :2009
##
                                   mean_per_year
                                                  median_per_year
        year
                    genres
## Min.
         :1915
                 Length:9000055
                                   Min. :3.285
                                                  Min.
                                                        :3.000
##
  1st Qu.:1987
                 Class :character
                                   1st Qu.:3.431
                                                 1st Qu.:3.500
## Median :1994
                 Mode :character
                                   Median :3.460 Median :3.500
## Mean :1990
                                   Mean :3.512 Mean :3.589
##
   3rd Qu.:1998
                                   3rd Qu.:3.530
                                                  3rd Qu.:3.500
## Max.
         :2008
                                                  Max. :4.000
                                   Max. :4.053
## mean_per_genre mean_per_movie
                                 median_per_movie mean_per_user
## Min. :3.270
                  Min. :0.500
                                       :0.500
                                                       :0.500
                                 Min.
                                                 Min.
                  1st Qu.:3.218
                                 1st Qu.:3.000
                                                 1st Qu.:3.252
## 1st Qu.:3.514
## Median :3.581
                  Median :3.591
                                 Median :4.000
                                                 Median :3.529
## Mean
         :3.585
                  Mean :3.512
                                 Mean
                                       :3.598
                                                 Mean
                                                       :3.512
## 3rd Qu.:3.649
                  3rd Qu.:3.876
                                 3rd Qu.:4.000
                                                 3rd Qu.:3.800
## Max.
         :4.012
                  Max. :5.000
                                 Max. :5.000
                                                 Max. :5.000
## median per user
## Min. :0.500
## 1st Qu.:3.000
## Median :4.000
## Mean :3.607
## 3rd Qu.:4.000
## Max.
        :5.000
# check if there are NA in data
cat("Number of rows containing NA :", edx %>% filter(!complete.cases(.)) %>% nrow, "\n")
## Number of rows containing NA: 0
cat("Number of users :", nrow(df users), "\n")
## Number of users : 69878
cat("Number of movies :", nrow(df movies), "\n")
## Number of movies: 10677
# plot a Histogram of Ratings
ggplot(edx, aes(rating)) +
 geom histogram(binwidth=0.5, fill=I("blue"), col=I("red"), alpha=I(.2)) +
 ggtitle("Histogram of Ratings") +
 scale x continuous(breaks=seq(0,5,.5))
```

Histogram of Ratings


```
# plot Mean Rating per Genre
ggplot(df_genres) + ggtitle("Mean Rating per Genre") + xlab(NULL) + ylab("Rating") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
    geom_point(aes(genres, mean_rating, size=number), col="tomato")
```


cat("We clearly see that the number of movies produced per year increases with time while the mean ration

Mean Rating per Year and Timestamp

plot correlations
corrplot(cor(edx %>% select(-c(genres, movieId, userId))), type="upper", diag=FALSE, title="Correlation"

We see that the rating is quite correlated with mean per user and mean per movie which are in their

```
# edx is too big to plot it all, so the next analysis is done over a small part of edx
edx_short <- edx[1:1000,]

# plot ratings vs other variables
ggplot(edx_short) + geom_point(aes(rating, genres), col="#FF9999")</pre>
```


ggplot(edx_short) + geom_point(aes(rating, movieId), col="#56B4E9")

cat("we can see that some ratings are less frequant for some generes\n")

we can see that some ratings are less frequant for some generes

```
# plot histrograms
# df <- gather(edx_short %>% select(-c("genres", "timestamp")))
df <- gather(edx_short %>% select(userId, movieId, timestamp, year))
ggplot(df, aes(value, fill=key)) +
  facet_wrap(~key, scales="free", ncol=1) +
  geom_histogram(bins=60)
```


cat("We see that our data is not homogeneous\n")

We see that our data is not homogeneous

Conclusion
cat("We do not see any obvious pattern that would certainly help us to determine a rating\n")

We do not see any obvious pattern that would certainly help us to determine a rating

Feature Importance

model_RandomForest

Model 0: Mean/Median Rating

Model 1: Mean/Median Rating per User

```
cat(min(df_users$number), max(df_users$number), "\n")
## 10 6616
q_90 <- quantile(df_users$number, 0.9)
hist(df_users %>% filter(number<q_90) %>% .$number, breaks = 30)
```

Histogram of df_users %>% filter(number < q_90) %>% .\$number

Model	RMSE
mean_per_user	0.978336
$median_per_user$	1.021136

kable(results_temp, "latex", booktabs = TRUE) %>% kable_styling(latex_options = "striped")

Model 2: Mean/Median Rating per Movie

```
cat(min(df_movies$number), max(df_movies$number), "\n")
## 1 31362
q_90 <- quantile(df_movies$number, 0.9)
hist(df_movies %>% filter(number<q_90) %>% .$number, breaks = 30)
```

Histogram of df_movies %>% filter(number < q_90) %>% .\$number

df_movies %>% filter(number < q_90) %>% .\$number

Model	RMSE
mean_per_movie	0.9439087
median_per_movie	0.9716910

Model 3 Mean/Median Rating per Year

Model 4 Mean Rating per Genre

Model 5 Ordinary Least Squares regression (OLS)

```
# data for regression type train
edx2 <- edx %>% select(-c(userId, movieId, genres, contains("median")))

ols <- lm(rating ~ ., data = edx2)
summary(ols)

##
## Call:
## lm(formula = rating ~ ., data = edx2)
##
## Residuals:
## Min    1Q Median    3Q Max
## -4.6629 -0.4994    0.0693    0.5856    4.8641</pre>
```

```
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                8.458e+00 1.671e-01 50.622 <2e-16 ***
## (Intercept)
## timestamp
                 -7.366e-03 8.100e-05 -90.948
                                                <2e-16 ***
## year
                 1.659e-03 4.063e-05 40.831 <2e-16 ***
                1.245e-01 3.671e-03 33.925
## mean_per_year
                                                 <2e-16 ***
## mean_per_genre -1.807e-03 2.642e-03 -0.684
                                                 0.494
## mean_per_movie 8.884e-01 6.366e-04 1395.644
                                                 <2e-16 ***
## mean_per_user
                 8.399e-01 6.894e-04 1218.263 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8714 on 9000048 degrees of freedom
## Multiple R-squared: 0.3246, Adjusted R-squared: 0.3246
## F-statistic: 7.21e+05 on 6 and 9000048 DF, p-value: < 2.2e-16
# test
results_temp <- tibble("Model" = "ols",
                      "RMSE" = RMSE(validation$rating, predict(ols, validation)))
results <- results %>% bind_rows(results_temp)
# show results table in latex format
kable(results_temp, "latex", booktabs = TRUE) %>% kable_styling(latex_options = "striped")
                                   Model
                                             RMSE
```

Model 6 Movie Effect Model

```
y_i = \mu + b_{movie(i)} + \epsilon_i
```

ols

0.8786586

```
Movie_Effect_Model <- function(lambda, return_prediction=FALSE){</pre>
  # the average rating
  mu <- mean(edx$rating)</pre>
  # calculate b_movie coefficients
  movie effect <- edx %>%
    group_by(movieId) %>%
    summarize(b_m = sum(rating - mu) / (n() + lambda))
  # add to validation
  validation <- validation %>% left_join(movie_effect, by='movieId')
  # rmse
  my_rmse <- RMSE(validation$rating, (mu + validation$b_m))</pre>
  if (return_prediction){
    return(list("rmse"
                              = my_rmse,
                 "prediction" = mu + validation$b_m))
  }else{
    return(my_rmse)
```

```
# calculate errors for a set of lambda values and choose the smallest rmse
lambdas <- seq(0, 10, 0.25)
model_rmses <- sapply(lambdas, Movie_Effect_Model)
lambda_of_smallest_rmse <- lambdas[which.min(model_rmses)]

# plot it
ggplot() + geom_line(aes(lambdas, model_rmses), col="#56B4E9", size=1) +
    geom_vline(xintercept=lambda_of_smallest_rmse, col="red") + ggtitle("Movie Effect Model: RMSE as func</pre>
```

Movie Effect Model: RMSE as function of lambda parameter

Model	RMSE
movie_effect	0.9438521

Model 7 Movie User Effect Model

```
y_i = \mu + b_{movie(i)} + b_{user(i)} + \epsilon_i
```

```
Movie_User_Effect_Model <- function(lambda, return_prediction=FALSE){</pre>
  # the average rating
  mu <- mean(edx$rating)</pre>
  # calculate b_movie coefficients
  movie_effect <- edx %>%
    group by (movieId) %>%
    summarize(b_m = sum(rating - mu) / (n() + lambda))
  # calculate b_user coefficients
  movie_user_effect <- edx %>%
    left_join(movie_effect, by="movieId") %>%
    group by(userId) %>%
    summarize(b_u = sum(rating - mu - b_m) / (n() + lambda))
  # add to validation
  validation <- validation %>%
    left_join(movie_effect, by='movieId') %>%
    left_join(movie_user_effect, by='userId')
  # rmse
  my_rmse <- RMSE(validation$rating, (mu + validation$b_m + validation$b_u))
  if (return prediction){
    return(list("rmse"
                              = my_rmse,
                "prediction" = mu + validation$b m + validation$b u))
  }else{
    return(my_rmse)
  }
# calculate errors for a set of lambda values and choose the smallest rmse
lambdas <- seq(0, 10, 0.25)
model_rmses <- sapply(lambdas, Movie_User_Effect_Model)</pre>
lambda_of_smallest_rmse <- lambdas[which.min(model_rmses)]</pre>
# plot it
ggplot() + geom_line(aes(lambdas, model_rmses), col="#56B4E9", size=1) +
  geom_vline(xintercept=lambda_of_smallest_rmse, col="red") + ggtitle("Movie Effect Model: RMSE as func
```

Movie Effect Model: RMSE as function of lambda parameter

Model	RMSE
movie_user_e	effect 0.864817

Conclusion

The model that has the smallest RMSE is the Movie User Effect model

```
kable(results, "latex", booktabs = TRUE) %>% kable_styling(latex_options = "striped")
```

Model	RMSE
mean	1.0612018
median	1.1680160
mean_per_user	0.9783360
$median_per_user$	1.0211364
mean_per_movie	0.9439087
median_per_movie	0.9716910
mean_per_year	1.0500259
median_per_year	1.0661375
mean_per_genre	1.0702479
ols	0.8786586
$movie_effect$	0.9438521
movie_user_effect	0.8648170