

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

BUSINESS SCHOOL

DEPARTMENT OF INFORMATION SYSTEM & OPERATIONS MANAGEMENT

MANAGEMENT SCIENCE OM 511

02 - Optimization Modelling - Graphical Method

amazonlogistics

Good morning, Sergio

Uberg

Non - Convex

Linear programming

A convex function curves upwards, and any local minimum is also a global minimum.

Non - Linear programming

A non-convex function may have regions where it curves downwards or contains multiple local minima and maxima

Generic algorithm for solving optimization problems

Algorithm 1 Generic modern optimization method

```
1: Inputs: f, C
                                        \triangleright f is the evaluation function, C includes control parameters
2: S \leftarrow initialization(C)
                                                                           \triangleright S is a solution or population
3: i \leftarrow 0
                                                           \triangleright i is the number of iterations of the method
4: while not termination_criteria(S, f, C, i) do
5: S' \leftarrow change(S, f, C, i)
                                                                             ▶ new solution or population
    B \leftarrow best(S, S', f, C, i)
                                                                                  > store the best solution
7: S \leftarrow select(S, S', f, C, i)

▶ solution or population for next iteration

    i \leftarrow i + 1
9: end while
10: Output: B
                                                                                        > the best solution
```

Problem formulation

The process of translating the verbal statement of a problem into a mathematical statement.

Formulating models is an art that can only be mastered with practice and experience.

Even though every problem has some unique features, most problems also have common features

Problem formulation

Some practical advices before starting

- Understand the problem thoroughly
- Describe the objective (max, min, punctual?)
- Identify the number of constrains
- Describe each constraint
- Define the Decision Variables
- Write the Objective in Terms of the Decision Variables
- Write the Constraints in Terms of the Decision
 Variables

Practical example

The director of manufacturing analysed each of the operations and concluded that if the company produces a medium-priced standard model, each bag will require 7/10 hour in the cutting and dyeing department, 1.0 hour in the sewing department, 1.0 hour in the finishing department, and 1/10 hour in the inspection and packaging department. The more expensive deluxe model will require 1.0 hour for cutting and dyeing, 5/6 hour for sewing, 2/3 hour for finishing, and 1/4 hour for inspection and packaging.

Department	Production Time (hours)			
	Standard Bag	Deluxe Bag		
Cutting and Dyeing	7/10	1		
Sewing	1/2	5/6		
Finishing	1	2/3		
Inspection and Packaging	1/10	1/4		

Practical example

```
Max 10S + 9D

subject to (s.t.)

7/10S + 1D \le 630 Cutting and dyeing

1/2S + 5/6D \le 600 Sewing

1S + 2/3D \le 708 Finishing

1/10S + 1/4D \le 135 Inspection and packaging

S, D \ge 0
```


What is Linear Programming?

 A mathematical technique for optimizing (maximizing or minimizing) a linear objective function, subject to a set of linear constraints.

Purpose of the Graphical Method:

- A visual approach to solving linear programming problems with two decision variables.
- Helps in finding the optimal solution by visually representing constraints and identifying the feasible region.

Five step approach for solving LP problems through the graphical method

Step 1: Define the Problem

• Identify the objective function and constraints.

Step 2: Plot the Constraints

- Convert each inequality constraint into an equation.
- Plot each equation on a graph with decision variables

Step 3: Identify the Feasible Region

- The feasible region is where all the constraints overlap.
- Represents all possible solutions that satisfy the constraints.

Step 4: Locate the Corner Points

- The optimal solution lies at one of the corner points (vertices) of the feasible region.
- Find these points by calculating the intersection of the constraint lines.

Step 5: Evaluate the Objective Function

- Calculate the value of the objective function at each corner point.
- The point that gives the highest (or lowest, if minimizing) value is the optimal solution.

https://www.desmos.com/calculator

Problem Statement:

- Maximize Z=10S + 9D
- Subject to:

$$7/6S + 1D \le 630$$
 Cutting and dyeing $1/2S + 5/6D \le 600$ Sewing $1S + 2/3D \le 708$ Finishing $1/6S + 1/4D \le 135$ Inspection and packaging $1/6S + 1/4D \le 135$ Inspection and packaging $1/6S + 1/4D \le 135$

Graphical Representation:

- Show a simple graph with constraints plotted as lines.
- Highlight the feasible region where all constraints overlap.

Solution:

- Indicate the corner points of the feasible region.
- Show the calculation of the objective function at each point.
- Identify the optimal solution based on the highest value of ZZZ.

https://www.desmos.com/calculator

Solution problem in page 33, chapter 2, Anderson book. Graphical method

Solution to problem 14 Anderson book. Graphical Method

Solution to problem 14 Anderson book. Graphical Method

Exercise in classroom

Chapter 2. Anderson. Pp 70 #14

RMC, Inc., is a small firm that produces a variety of chemical products. In a particular production process, three raw materials are blended (mixed together) to produce two products: a fuel additive (F) and a solvent base (S).

Each ton of **fuel additive (F)** is a mixture of 2/5 ton of material 1 and 3/5 of material 3. A ton of **solvent base (S)** is a mixture of 1/2 ton of material 1, 1/5 ton of material 2, and 3/10 ton of material 3.

The profit contribution is \$40 for every ton of **fuel additive (F)** produced and \$30 for every ton of **solvent base (S)** produced.

RMC's production is constrained by a limited availability of the three raw materials. For the current production period, RMC has available the following quantities of each raw material:

Raw Material	Amount Available for Production	
Material 1	20 tons	
Material 2	5 tons	
Material 3	21 tons	

Exercise in classroom

Chapter 2. Anderson. Pp 74 #24

Kelson Sporting Equipment, Inc., makes two different types of baseball gloves: a **regular model (R)** and a **catcher's model (C)**. The firm has 900 hours of production time available in its **cutting and sewing department**, 300 hours available in its **finishing department**, and 100 hours available in its **packaging and shipping department**. The production time requirements and the profit contribution per glove are given in the following table:

Production Time (hours)						
Model	Cutting and Sewing	Finishing	Packaging and Shipping	Profit/Glove		
Regular model	1	1/2	1/8	\$5		
Catcher's model	3/2	1/3	1/4	\$8		