## M03: Memory& uDMA

### 3.2. uDMA

### Prof. Rosa Zheng

#### References:

- 1.TM4C123GH6PM data sheet (spms376e.pdf) Chapter 9.
- 2. TM4C123 Workshop Lab 13 slides
- 3. Tivaware example: udma\_demo.c uDMA example



### μDMA Features

#### Basic features:

- 32 channels, 2 priority levels, 8, 16 and 32-bit data element sizes
- Transfer sizes of 1 to 1024 elements (in binary steps)
- CPU bus accesses outrank DMA controller

#### Source – Destination:

- SRAM to SRAM, SRAM to peripheral and;
- peripheral to SRAM transfers
- no Flash or ROM transfers are possible
- Source and destination address increment sizes:
  size of element, half-word, word, no increment

#### • DMA Modes:

- Basic, Auto (transfer completes even if request is removed),
- Ping-Pong and Scatter-gather (via a task list)
- Interrupt on transfer completion (per channel)
- Hardware and software triggers
- Single and Burst requests

## **Transfer Types**

#### Basic

Single to Single; Single to Array; Array to Single; Array to Array

#### Auto

 Same as Basic but the transfer completes even if the request is removed

### Ping-Pong

 Single to Array (and vice-versa). Normally used to stream data from a peripheral to memory. When the PING array is full the µDMA switches to the PONG array, freeing the PING array for use by the program.

#### Scatter-Gather

 Many Singles to an Array (and vice-versa). May be used to read elements from a data stream or move objects in a graphics memory frame.

### SRAM & uDMA



#### **=**

# μDMA Channels

◆ Each channel has 5 possible assignments made in the DMACHMAPn register

| Enc. | 0           |      | 1          |      | 2          |      | 3          |      | 4          |      |
|------|-------------|------|------------|------|------------|------|------------|------|------------|------|
| Ch#  | Peripheral  | Туре | Peripheral | Туре | Peripheral | Туре | Peripheral | Туре | Peripheral | Туре |
| 0    | USB0 EP1 RX | SB   | UART2 RX   | SB   | Software   | В    | GPTimer 4A | В    | Software   | В    |
| 1    | USB0 EP1 TX | В    | UART2 TX   | SB   | Software   | В    | GPTimer 4B | В    | Software   | В    |
| 2    | USB0 EP2 RX | В    | GPTimer 3A | В    | Software   | В    | Software   | В    | Software   | В    |
| 3    | USB0 EP2 TX | В    | GPTimer 3B | В    | Software   | В    | Software   | В    | Software   | В    |
| 4    | USB0 EP3 RX | В    | GPTimer 2A | В    | Software   | В    | GPIO A     | В    | Software   | В    |
| 5    | USB0 EP3 TX | В    | GPTimer 2B | В    | Software   | В    | GPIO B     | В    | Software   | В    |
| 6    | Software    | В    | GPTimer 2A | В    | UART5 RX   | SB   | GPIO C     | В    | Software   | В    |
| 7    | Software    | В    | GPTimer 2B | В    | UART5 TX   | SB   | GPIO D     | В    | Software   | В    |
| 8    | UART0 RX    | SB   | UART1 RX   | SB   | Software   | В    | GPTimer 5A | В    | Software   | В    |
| 9    | UART0 TX    | SB   | UART1 TX   | SB   | Software   | В    | GPTimer 5B | В    | Software   | В    |
| 10   | SSI0 RX     | SB   | SSI1 RX    | SB   | UART6 RX   | SB   | GPTimer 6A | В    | Software   | В    |
| 11   | SSI0 TX     | SB   | SSI1 TX    | SB   | UART6 TX   | SB   | GPTimer 6B | В    | Software   | В    |
| 12   | Software    | В    | UART2 RX   | SB   | SSI2 RX    | SB   | GPTimer 7A | В    | Software   | В    |
| 13   | Software    | В    | UART2 TX   | SB   | SSI2 TX    | SB   | GPTimer 7B | В    | Software   | В    |
| 14   | ADC0 SS0    | В    | GPTimer 2A | В    | SSI3 RX    | SB   | GPIO E     | В    | Software   | В    |
| 15   | ADC0 SS1    | В    | GPTimer 2B | В    | SSI3 TX    | SB   | GPIO F     | В    | Software   | В    |
| 16   | ADC0 SS2    | В    | Software   | В    | UART3 RX   | SB   | GPTimer 8A | В    | Software   | В    |
| 17   | ADC0 SS3    | В    | Software   | В    | UART3 TX   | SB   | GPTimer 8B | В    | Software   | В    |
| 18   | GPTimer 0A  | В    | GPTimer 1A | В    | UART4 RX   | SB   | GPIO B     | В    | Software   | В    |
| 19   | GPTimer 0B  | В    | GPTimer 1B | В    | UART4 TX   | SB   | Software   | В    | Software   | В    |
| 20   | GPTimer 1A  | В    | Software   | В    | UART7 RX   | SB   | Software   | В    | Software   | В    |

# **Channel Configuration**

- Channel control is done via a set of control structures in a table
- The table must be located on a 1024-byte boundary
- Each channel can have one or two control structures; a primary and an alternate
- The primary structure is for BASIC and AUTO transfers. Alternate is for Ping-Pong and Scatter-gather

#### **Control Structure Memory Map**

| Offset | Channel       |
|--------|---------------|
| 0x0    | 0, Primary    |
| 0x10   | 1, Primary    |
|        |               |
| 0x1F0  | 31, Primary   |
| 0x200  | 0, Alternate  |
| 0x210  | 1, Alternate  |
|        |               |
| 0x3F0  | 31, Alternate |

#### **Channel Control Structure**

**Module 3: Memory** 

| Offset | Description             |
|--------|-------------------------|
| 0x000  | Source End Pointer      |
| 0x004  | Destination End Pointer |
| 0x008  | Control Word            |
| 0x00C  | Unused                  |

#### **Control word contains:**

- Source and Dest data sizes
- ◆ Source and Dest addr increment size
- # of transfers before bus arbitration
- ◆ Total elements to transfer
- ♦ Useburst flag
- ◆ Transfer mode