Lecture 7 Binary search trees

EECS-214

Representing collections of objects

We've been looking at collection classes

- Store a bunch of objects
- Different **flavors** support
 - Different kinds of operations
 - With different performance trade-offs
- Notice these are all bad at searching
 - All take
 - Or don't support it al all
- Can we do better?

- Dyanmic arrays
 - Get element at position: 0(1)
 - Add and remove: O(n)
 - 0(1) amortized time if implemented with doubling
 - Search for an element: O(n)
- Linked lists
 - Get element at position: O(n)
 - Add and remove from beginning: O(1)
 - Add and remove from position specified by index: O(n)
 - Search for an element: O(n)
- Stacks and queues
 - Add/remove element: 0(1)
 - If implemented with array and array can be expanded dynamically, then O(1) amortized time (see lecture 17)
 - No other operations supported

Binary trees

- Common case
- Fixed branching factor of 2
 - Every node has at most 2 children
 - Referred to as the left child and right child

Inorder traversal

```
Inorder(node) {
   Inorder(node.leftChild)
   print node
   Inorder(node.rightChild)
}
```

Output:

Inorder traversal

```
Inorder(node) {
   Inorder(node.leftChild)
   print node
   Inorder(node.rightChild)
}
```

Output:

1326574

- Binary tree
- Each node labeled with a value
 - Number, string, or some other set that has a total order on it
- Has the magic binary search tree property

- Binary tree
- Each node labeled with a value
 - Number, string, or some other set that has a total order on it
- Has the magic binary search tree property
 - For any node

- Binary tree
- Each node labeled with a value
 - Number, string, or some other set that has a total order on it
- Has the magic binary search tree property
 - For any node
 - All the nodes in the left subtree have labels ≤ to its label

- Binary tree
- Each node labeled with a value
 - Number, string, or some other set that has a total order on it
- Has the magic binary search tree property
 - For any node
 - All the nodes in the left subtree have labels ≤ to its label
 - All the nodes in the right subtree have labels ≥ to its label

Proposition

 An in-order traversal of a binary search tree prints the nodes in sorted order

Proposition

Proof (by induction)

- True for trees of depth 1
- Assume it's true for trees of depth n (for some n)
- Consider a tree of depth n+1
 - A traversal of the tree will print:
 - An in-order traversal of the left subtree
 - The root
 - An in-order traversal of the right subtree
 - By assumption, the subtrees are printed in sorted order
 - And the root is
 - ≥ anything on the left
 - ≤ any on the right
 - So the whole thing is sorted
- So the proposition holds for a tree of any depth

Representing binary search trees


```
class BST {
 int key;
  BST parent;
 BST left;
  BST right;
 public BST(int k) {
   key = k;
   // other fields null
```

tree search

Searching a binary search tree

(pseudocode)


```
// Search tree starting at node
// Return node containing key k
// Or null if k missing from tree
Search(node, int k) {
  if (node == null)
    // Failure: not in tree
    return null;
  else if (k == node.key)
    // Success: found it
    return node;
  else if (k < node.key)
    return Search(node.left, k);
  else
    return Search(node.right, k);
```

111 students:

What do we call this kind of recursion?


```
Search(node, int k) {
  if (node == null)
   // Failure: not in tree
    return null;
  else if (k == node.key)
    // Success: found it
    return node;
  else if (k < node.key)
    return Search(node.left, k);
  else
    return Search(node.right, k);
```

- Tail recursions are where all the recursive calls are of the form "return Search(...)"
 - All the procedure will do when it gets the result
 - Is forward it on to its caller
- Tail-call optimization
 - Don't bother making a new stack frame for the new call
 - Just reuse the existing stack frame
 - And jump back to the beginning of the procedure

```
Search(node, int k) {
  if (node == null)
    // Failure: not in tree
    return null;
  else if (k == node.key)
    // Success: found it
    return node;
  else if (k < node.key)
    return Search(node.left, k);
  else
    return Search(node.right, k);
```

- Tail recursions are where all the recursive calls are of the form "return Search()"
 - All the procedure will do when it gets the result
 - Is forward it on to its caller
- Tail-call optimization
 - Don't bother making a new stack frame for the new call
 - Just reuse the existing stack frame
 - And jump back to the beginning of the procedure

```
Search(node, int k) {
  start: if (node == null)
    // Failure: not in tree
    return null;
  else if (k == node.key)
    // Success: found it
    return node;
  else if (k < node.key)
  { node = node.left; goto start; }
  else
  { node = node.right; goto start; }
```

- But of course, goto is evil
 - Makes code hard to read
 - Hard to maintain
 - Your coworkers will put not be pleased with you

```
Search(node, int k) {
  start: if (node == null)
    // Failure: not in tree
    return null;
  else if (k == node.key)
   // Success: found it
    return node;
  else if (k < node.key)
  { node = node.left; goto start; }
  else
  { node = node.right; goto start; }
```

- But of course, goto is evil
 - Makes code hard to read
 - Hard to maintain
 - Your coworkers will put not be pleased with you
- So we just rewrite it as a while loop
- This is why 111 called tail recursions "iterations"
 - They're the set of iterations that can be rewritten as while loops
 - Good C compilers, like gcc do this automatically

```
Search(node, int k) {
  while (node != null) {
    if (k == node.key)
     // Success: found it
     return node;
    else if (k < node.key)
     node = node.left;
    else
     node = node.right;
 // Failure: not in tree
 return null;
```

 We can even simplify it a little more

```
Search(node, int k) {
    while (node != null
         && node.key != k)
    if (k < node.key)
        node = node.left;
    else
        node = node.right;
    return node;
}</pre>
```

performance

Analysis

 How do we analyze the running time of this algorithm?

```
Search(node, int k) {
    while (node != null
        && node.key != k)
    if (k < node.key)
        node = node.left;
    else
        node = node.right;
    return node;
}</pre>
```

Analysis

- How do we analyze the running time of this algorithm?
 - Each iteration replaces node with one of its children
 - So on each iteration, the depth of node increases by 1
 - But the depth is bounded by the height of the tree (number of levels in the tree)
 - So the loop can't run for more iterations than the height
- So the running time is O(h) where h is the height of the tree

```
Search(node, int k) {
    while (node != null
        && node.key != k)
    if (k < node.key)
        node = node.left;
    else
        node = node.right;
    return node;
}</pre>
```

A bad tree to search

A good tree to search

- Informally, a balanced binary tree is one where the different branches are the approximately same depth
- A balanced search tree has a small height for its given number of nodes
 - $O(\log n)$
- So tree search runs fast if the tree is balanced

A good tree to search

- The most balanced tree is a complete binary tree
 - All leaves at same depth
 - All other nodes have both left and right children
- We'll talk next time about strategies for automatically balancing trees

other operations

Special-case searches

```
// Get the node holding
// Get the node holding
// the minimum value
                              // the maximum value
// in the tree
                              // in the tree
Minimum(n) {
                              Maximum(n) {
 while (n.left != null)
                               while (n.right != null)
   n = n.left;
                                 n = n.right;
 return n;
                                return n;
```

Successor

- Sometimes you want to find the node that would come after this one in an in-order traversal
- Simulate what an in-order walk would do at this point

```
Successor(n) {
 if (n.right != null)
   return Minimum(n.right);
 p = n.parent;
 while (p!= null
        && n == p.right) {
   n = p;
   p = n.parent;
 return p;
```

Successor

Two cases:

1. If we have a right child

- In-order would go to the right child
- Which would go to its left child
- Which would go to its left child
- Etc., until we get to a leaf
- We can do all the with Minimum

```
Successor(n) {
 if (n.right != null)
   return Minimum(n.right);
 p = n.parent;
 while (p!= null
        && n = p.right) {
   n = p;
   p = n.parent;
 return p;
```

Successor

Two cases:

- 1. If we have a right child
- 2. No right child
 - Have to move up
 - But how far?
 - Until we find an ancestor node for whom we are a left descendant, not a right descendant

```
Successor(n) {
 if (n.right != null)
   return Minimum(n.right);
 p = n.parent;
 while (p!= null
        && n == p.right) {
   n = p;
   p = n.parent;
 return p;
```

Modifying binary search trees

- So BSTs are good for searching
 - $-O(\log n)$ for balanced trees
- But how do we add and delete elements?
 - Today: adding without worry about balancing
 - Tomorrow: adding in self-balancing trees

Insertion

Two cases

- Adding to empty tree
 - New node becomes root
- Non-empty tree
 - Node added as child of some leaf node

Basic idea

- Search for new key as if you were expecting to find it
- You'll fail (if you don't, no need to add it!)
- Add the node as a leaf of the last node examined before failing

Insertion code (returns root of tree)

```
Insert(root, int k) {
                                        FindInsertionPoint(n, int k) {
 node = new BST(k);
                                          parent = null;
 if (root==null)
   return node;
                                          while (n != null) {
                                            parent = n;
                                            if (k<n.key)
 parent = FindInsertionPoint(root, k);
 node.parent = parent;
                                              n = n.left;
 if (node.key<parent.key)
                                            else
   parent.left = node;
                                              n = n.right;
 else
   parent.right = node;
                                          return parent;
 return root
```

Analysis: how long does it take?

```
Insert(root, int k) {
                                        FindInsertionPoint(n, int k) {
 node = new BST(k);
                                          parent = null;
 if (root==null)
   return node;
                                          while (n != null) {
                                            parent = n;
                                            if (k<n.key)
 parent = FindInsertionPoint(root, k);
 node.parent = parent;
                                              n = n.left;
 if (node.key<parent.key)
                                            else
   parent.left = node;
                                              n = n.right;
 else
   parent.right = node;
                                          return parent;
 return root
```

Analysis: how long does it take?

```
Insert(root, int k) {
                                         FindInsertionPoint(n, int k) {
 node = new BST(k);
                                           parent = null;
                                              parent = \mathbb{N}:
                                              if (k<n.key)
 parent = FindInsertionPoint(root, k);
 node.parent = parent;
                                                n = n.left;
 if (node.key<parent.key)
                                              else
   parent.left = node;
                                                n = n.right;
 else
   parent.right = node;
                                           return parent;
 return root
```

Deletion

Lots of case analysis

- Node has no children
 - Set parent's child pointer to null
- Node has one child
 - Replace parent's child pointer with node's child pointer

- Node has two children
 - "Replace" node with its successor
 - Find its successor
 - Delete its successor
 - Change label of node to label of old successor

- Set parent's child pointer to null
 - And call delete on node,if using C++

Case 2: Node has one child

Case 2: Node has one child

- Set parent's child pointer to point at orphaned grandchild
- Update grandchild's parent pointer

Case 2: Node has one child

- Set parent's child pointer to point at orphaned grandchild
- Update grandchild's parent pointer
- Call delete on old node if using C++

- Find successor node
 - Claim: successor can have a most one child
 - Proof:
 - Successor is the minimum of the right subtree (by definition)
 - The minimum of a tree can't have a left child
 - Or the child would be less than it
 - So it wouldn't be minimal
 - So at most a right child

- Find successor node
- Delete it
 - Easy, because it falls
 under case 1 or case 2
 - So at most one level of recursion

- Find successor node
- Delete it
- Relabel node with label of successor

Pseudocode

```
Delete(v) { // v for "victim"
                                             Delete1or0children(v) {
 if (v.left != null && v.right != null)
                                               child = v.left, if non-null,
   Delete2children(v);
                                                      else v.right
 else
   Delete1or0children(v);
                                               if (child != null)
                                                 child.parent = v.parent;
Delete2children(v) {
                                               if (v.parent != null) {
 s = Successor(v);
                                                 if (v.parent.left == v)
 DeleteOor1Children(s);
                                                  v.parent.left = child;
 v.key = s.key;
                                                 else
                                                  v.parent.right = child;
```

Note: this code finesses the case where we delete the root of the tree, however it's easier to read. See the CLR book for (ugly) code that handles root deletion

Analysis: how long do these take?

```
Delete(v) { // v for "victim"
 if (v.left != null && v.right != null)
   Delete2children(v);
 else
   Delete1or0children(v);
Delete2children(v) {
 s = Successor(v);
 Delete0or1Children(s);
 v.key = s.key;
```

```
Delete1or0children(v) {
 child = v.left, if non-null,
        else v.right
 if (child != null)
   child.parent = v.parent;
 if (v.parent != null) {
   if (v.parent.left == v)
     v.parent.left = child;
   else
     v.parent.right = child;
```

Note: this code finesses the case where we delete the root of the tree, however it's easier to read. See the CLR book for (ugly) code that handles root deletion

Analysis

```
Delete(v) { // v for "victim"
          = nv/f && v.righ != null)
   Delete1or0children(v);
Delete2children(v) {
```

```
Delete1or0children(v) {
 child = v.left, if non-null,
        else v.right
 if (v.parent != null) {
   if (v.parent.left == v)
     v.parent.left = child;
   else
     v.parent.right = child;
```

Note: this code finesses the case where we delete the root of the tree, however it's easier to read. See the CLR book for (ugly) code that handles root deletion

Reading

Introduction to Algorithms ("CLR book")

- Third edition: chapter 12
- Second edition: chapter 13
- Don't need to read section on randomly built binary search trees