Equality of Opportunity in Supervised Learning

Paper by Moritz Hardt, Eric Price and Nathan Sebro Presented by Fabian Bosshard

Importance of Fairness

The Scenario

- Y: The variable to predict, binary, truthful "Pays back the loan", "Will not relapse", ...
- A: The protected attribute, binary Ethnicity, Gender, Sexual orientation, ...
- X: Other attributes
 Profession, Wealth, ZIP code, ...
- Ŷ: The prediction of Y
 Produced by any classifier (SVM, Neural Network, Hand crafted, ...)

What is Fairness?

Oblivious Measure

Only depends on the joint distribution of (Y, A, \hat{Y})

Demographic Parity

Demographic Parity

Demographic Parity - Issue

Perfect Classifier...

... but Demographic Parity violated!

Equalized Odds

Equalized Odds

Equalized Odds

 $\hat{Y} = 0$

Ŷ = 1

Equalized Opportunity

 $\hat{Y} = 0$

Ŷ = 1

Achieving Equalized Odds

General Procedure

Deriving Classifiers

Training using Linear Programming

- Four Parameters: $P[\tilde{Y} = 1 \mid \hat{Y} = \hat{y}, A = a], \hat{y} \in \{0, 1\}, a \in \{0, 1\}$
- Objective: minimize E[ℓ(Ÿ, Y)]
- Constraints:
 - In the feasible region for each A
 - Same False Positive Rate (X-Axis)
 - Same False Negative Rate (Y-Axis)

General Procedure

General Procedure

Finding the Optimal Classifier

Theoretical Results - Near Optimality

• Bayes optimal regressor R*: $r^*(x, a) = \mathbb{E}[Y \mid X = x, A = a]$

$$\mathbb{E}[\ell(\tilde{Y}, Y)] - \mathbb{E}[\ell(Y^*, Y)] \leq d(R, R^*)$$

Loss of derived equalized odds predictor

How far the given regressor is from optimal

Best achievable loss for an equalized odds predictor

Examples

Scenario I

Scenario II

FICO Scores

- Predict credit worthiness
- Y: Failed to pay debt for 90 days on at least one account in 18-24 months
- X: Some features
- A: Race
- Finding a Threshold

Different Constraints

- Max Profit
 No constraints
- Race Blind
 Same threshold for all groups
- Demographic Parity
 Same fraction of people that qualify for all groups
- Equal Opportunity
- Equalized Odds

FICO Scores – Max Profit

FICO Scores – Single Threshold

FICO Scores – Demographic Parity

FICO Scores – Equal Opportunity

FICO Scores

Effects

- Classifier performance is reduced to that on the worst-classified group
- Decision maker cannot simply ignore a group
- Incentivized to gather better data

Conclusion

- Proposed a definition of fairness
- Practical algorithm to derive fair classifiers
- Issues pointed out
- Practical application

My Opinion

- + Very practical
- + Allows "real" predictor
- Shortcomings of obliviousness
- It is a good "last thing you can try" to achieve "fairness"
- Societal issues cannot be fixed by tuning ML classifiers

Questions and Discussion