Survival Analysis Lecture 8

Marta Fiocco^{1,2} & Hein Putter ¹

 Department of Medical Statistics and Bioinformatics Leiden University Medical Center
 Mathematical Institute Leiden University

Outline

Regression models

PH regression

Coding Covariates

Partial Likelihoods

Tests

Breast cancer data

Ties

Example

The objective

- We are studying survival data
- Time to an event plus status variable
- We have discussed ways of estimating survival curves, hazards
- We have discussed the problem of testing whether two (or more) survival curves are equal (log-rank test)
- We would like to quantify the effect of covariates on survival
 - ► We would like to have an effect size, not only a P-value, when comparing two survival curves
 - We would like to study the effect of continuous covariates, like age
 - We would like to look at several covariates at the same time.

Regression in general

The basic problem

$$Z_1, Z_2, \ldots, Z_p \Rightarrow Y$$

- ▶ Interest in the relation between $Z_1, Z_2, ..., Z_p$ and Y
- $ightharpoonup Z_1, Z_2, \dots, Z_p$:
 - Predictors
 - Explanatory variables
 - "Independent" variables
 - Covariates
 - Prognostic factors
- Y:
 - Response variable
 - Dependent variable
 - Outcome variable

Regression models

Statistical relationship

- ▶ The statistical relationship between $Z_1, ..., Z_p$ and Y can be studied by means of a regression model
- ► The type of regression model depends on the type of the distribution of Y given the Z's
 - Y continuous (approximately normal): linear regression
 - ▶ Y dichotomous: logistic regression model
 - Y Poisson (count): Poisson regression model

Survival Analysis Marta Fiocco 1,2 & Hein Putter¹

Regression models for survival data

- Y survival data: cannot use linear regression or logistic regression
- Special regression models for survival data
 - Accelerated failure time model
 - Poisson regression
 - Cox's proportional hazards model
 - The last one is by far the most popular

Motivation

Recall the D1/D2 study

Two survival curves

Question

- We have already tested equality of these survival curves
- We tested equality at 2 years, which gave P=0.038
- Now we would like to quantify how much better D1 is than D2

A look at the hazards

The two cumulative hazards

Survival Analysis Marta Fiocco 1,2 & Hein Putter¹

Proportional hazards

- \blacktriangleright $h_1(t)$: the hazard rate of D1
- $h_2(t)$: the hazard rate of D_2
- ► $HR(t) = \frac{h_2(t)}{h_1(t)}$ is the ratio of these hazards, the hazard ratio
- Since both h₁(t) and h₂(t) depend on time, in principle HR(t) depends on time

Proportional hazards assumption

► HR(t) does not depend on time, but is a constant HR

$$\frac{h_2(t)}{h_1(t)} = HF_1$$

Other notation

Same story

- Z: covariate, treatment
 - ightharpoonup Z = 0 corresponds to D1-dissection
 - ightharpoonup Z = 1 corresponds to D2-dissection
 - ▶ D1 is called reference category
- $h_0(t)$: hazard rate corresponding to reference category (Z=0), also called baseline hazard
- Model:

$$h(t \mid Z) = h_0(t) \exp(\beta Z)$$

Survival Analysis Marta Fiocco 1,2 & Hein Putter 1

What does it mean?

Proportional hazards model

$$h(t \mid Z) = h_0(t) \exp(\beta Z)$$

$$ightharpoonup Z = 0$$
: $h(t | Z = 0) = h_0(t) \exp(\beta \cdot 0) = h_0(t)$

$$Z = 0$$
: $h(t | Z = 0) = h_0(t) \exp(\beta \cdot 0) = h_0(t)$
 $Z = 1$: $h(t | Z = 1) = h_0(t) \exp(\beta \cdot 1) = h_0(t) \exp(\beta)$
Hazard rate of D1-dissection ($Z = 0$): $h_0(t)$ (previously

- called $h_1(t)$
- Hazard rate of D2-dissection (Z = 1): $h_0(t) \exp(\beta)$ (previously called $h_2(t)$

► The ratio of these hazards, the hazard ratio is given by

$$\frac{h(t \,|\, Z=1)}{h(t \,|\, Z=0)} = \frac{h_0(t) \exp(\beta)}{h_0(t)} = \exp(\beta)$$

• $\exp(\beta)$ is the <u>hazard ratio</u> (does not depend on time), β is the log-hazard ratio

Survival Analysis Marta Fiocco 1,2 & Hein Putter¹

D1/D2 trial

Table with estimates

- Recall:
 - ightharpoonup Z = 0: D1-dissection
 - ightharpoonup Z = 1: D2-dissection

Variables in the Equation

							95,0% CI for Exp(B)	
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
randgr	.187	.085	4.863	1	.027	1.206	1.021	1.425

Survival Analysis Marta Fiocco 1,2 & Hein Putter¹

The Cox model in general

- It has become the most used procedure for modeling the relationship of covariates to a survival or other censored outcome
- X: time to some event
- ► Z_j: vector of covariates (risk factors) for the jth individual at time t which may affect the survival distribution of X; covariates can be fixed or vary over time (ex repeated laboratory test); in the latter case the notation is Z_j(t)
- data consist of $(T_j, \delta_j, \mathbf{Z}_j(t))$

The Cox model in general

► The Cox model specifies the hazard $h(t|\mathbf{Z})$ for individual i as

$$h(t|\mathbf{Z}) = h_0(t) \exp(\boldsymbol{\beta}^{\top} \mathbf{Z}) = h_0(t) \exp(\sum_{k=1}^{p} \beta_k Z_k)$$

- h₀: baseline hazard rate; β: parameter vector of coefficients
- It is a semi-parametric model
 - A parametric form is assumed for the covariate effect
 - ► The baseline hazard is non-parametric
- Event rate $h(t|\mathbf{Z})$ must be positive $h(t|\mathbf{Z})$ positive
 - $\exp(\beta^{\top}\mathbf{Z})$ ensures that $h(t|\mathbf{Z})$ is positive (as long as $h_0(t)$ is)

Survival Analysis Marta Fiocco 1,2 & Hein Putter

Proportional hazards

► The hazard ratio for two subjects with fixed covariates vectors Z_i and Z_i

$$\frac{\textit{h}(t|\mathbf{Z}_i)}{\textit{h}(t|\mathbf{Z}_j)} = \frac{\textit{h}_0(t) \text{exp}(\sum_{k=1}^p \beta_k \mathbf{Z}_{ik})}{\textit{h}_0(t) \text{exp}(\sum_{k=1}^p \beta_k \mathbf{Z}_{jk})}$$

- Is constant over time
- ► The hazards are proportional

Survival Analysis Marta Fiocco ^{1,2} & Hein Putter¹

Relation between covariate and hazard

$$h(t \mid Z) = h_0(t) \exp(\beta Z)$$

Relation between covariate and cumulative hazard

$$H(t \mid Z) = H_0(t) \exp(\beta Z)$$

Relation between covariate and survival function

$$S(t|Z) = \exp(-H(t|Z)) = \exp(-H_0(t)\exp(\beta Z))$$
$$= S_0(t)^{\exp(\beta Z)}$$

Survival Analysis Marta Fiocco 1,2 & Hein Putter¹

Relation illustrated (Weibull(2,2))

Hazards

Relation illustrated (Weibull(2,2)

Cumulative hazards

Marta Fiocco ^{1,2} & Hein Putter¹

Relation illustrated (Weibull(2,2)

Survival functions

Marta Fiocco 1,2 & Hein Putter1

Coding Covariates

- Numerical (quantitative) or categorical (qualitative) covariates (explanatory variables)
- Numerical
 - Blood pressure, blood glucose levels, age or waiting time until a transplant
- Categorical
 - Gender, smoking behavior, stage of disease, presence/absence of something, treatment yes/no
- Categorical variables in regression analysis: care needs to be taken in the coding and interpretation
- Different ways of coding categorical variables

Coding Covariates

- 2分类的
- Dichotomous (for instance gender): obvious way is to code one of the genders as 0, the other as 1
- Coding is arbitrary
- Interpretation of the results will depend on the way the coding is done

Data Section 1.5

```
> data(btrial)
> head(btrial)

time death im
1    19    1    1
2    25    1    1
3    30     1    1
4    34    1    1
5    37    1    1
6    46    1    1
```

- Cox model with immunoperoxidase status (im) as single covariate
- ► Coded as 1=negative, 2=positive

```
> table(btrial$im)
1 2
```


36

Define

$$Z_1 = \begin{cases} 1 & \text{if immunoperoxidase positive (im+)} \\ 0 & \text{if immunoperoxidase negative (im-)} \end{cases}$$

A plot

> plot(survfit(Surv(time, death) ~ im, data=btrial), col=1:2)

Model

► The Cox model specifies

$$h(t \mid Z_1) = h_0(t) \exp(\beta Z_1)$$

 exp(β): hazard ratio of patient being im+ relative to the patient being im-

Survival Analysis Marta Fiocco 1,2 & Hein Putter 1

Software

Function coxph from the survival package

> c1 <- coxph(Surv(time, death) ~ z1, data=btrial)

```
> c1
Call:
coxph(formula = Surv(time, death) ~ z1, data = btrial)

coef exp(coef) se(coef) z p
z1 0.98     2.66     0.435 2.25 0.024

Likelihood ratio test=4.45 on 1 df, p=0.035 n= 45, number of events=
```

- ► Hazard ratio for an im+ patient relative to an im- patient is exp(0.98) = 2.67
- Patient who is im+ has 2.67 times higher risk of dying than L u an im- patient
 MC

More detail with summary()

```
> summarv(c1)
Call:
coxph(formula = Surv(time, death) ~ z1, data = btrial)
 n=45, number of events= 24
   coef exp(coef) se(coef) z Pr(>|z|)
z1 0.9802 2.6650 0.4349 2.254 0.0242 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  exp(coef) exp(-coef) lower .95 upper .95
z1 2.665 0.3752 1.136 6.25
Rsquare= 0.094 (max possible= 0.976)
Likelihood ratio test= 4.45 on 1 df, p=0.03498
Wald test = 5.08 on 1 df, p=0.0242
Score (logrank) test = 5.49 on 1 df, p=0.01908
```


The cumulative baseline hazard

- > bas1 <- basehaz(c1, centered=FALSE)
- > plot(bas1\$time, bas1\$hazard, type="s")

bas1\$time

Reversing reference category

Let's use a different coding of immunoperoxidase status

$$Z_2 = 0$$
: im+
 $Z_2 = 1$: im-

$$h(t \mid Z_2) = \tilde{h}_0(t) \exp(\tilde{\beta} Z_2)$$

- ► $h(t | Z_2 = 0) = \tilde{h}_0(t)$
- Since $Z_2 = 0$ is the same as $Z_1 = 1$, we have $\tilde{h}_0(t) = h_0(t) \exp(\beta)$
- $h(t | Z_2 = 1) = \tilde{h}_0(t) \exp(\tilde{\beta})$
- Since $Z_2 = 1$ is the same as $Z_1 = 0$, we have $\tilde{h}_0(t) \exp(\tilde{\beta}) = h_0(t)$, so $\tilde{h}_0(t) = h_0(t) \exp(-\tilde{\beta})$
- $\exp(\tilde{\beta}) = \exp(-\beta) = \frac{1}{\exp(\beta)}; \tilde{\beta} = -\beta$

Cox with z2

```
> btrial$z2 <- ifelse(btrial$im==1,1,0)
> table(btrial$z2,btrial$im)
 1 36 0
> coxph(Surv(time, death) ~ z2, data=btrial)
Call:
coxph(formula = Surv(time, death) ~ z2, data = btrial)
    coef exp(coef) se(coef) z
z2 -0.98 0.375 0.435 -2.25 0.024
Likelihood ratio test=4.45 on 1 df, p=0.035 n= 45, number of events=
```

The cumulative baseline hazard

- > bas2 <- basehaz(c2, centered=FALSE)
- > plot(bas2\$time, bas2\$hazard, type="s")

Marta Fiocco 1,2 & Hein Putter1

With factors in R

```
> btrial$im12 <- factor(btrial$im,levels=1:2,labels=c("neg","pos"))
> table(btrial$im12)

neg pos
36  9
> btrial$im21 <- factor(btrial$im,levels=2:1,labels=c("pos","neg"))
> table(btrial$im21)

pos neg
9  36
```


Cox with these factors

```
> coxph(Surv(time,death) ~ im12, data=btrial)
Call:
coxph(formula = Surv(time, death) ~ im12, data = btrial)
      coef exp(coef) se(coef) z p
im12pos 0.98 2.66 0.435 2.25 0.024
Likelihood ratio test=4.45 on 1 df, p=0.035 n= 45, number of events=
> coxph(Surv(time,death) ~ im21, data=btrial)
Call:
coxph(formula = Surv(time, death) ~ im21, data = btrial)
        coef exp(coef) se(coef) z p
```

im21neg -0.98 0.375 0.435 -2.25 0.024

Likelihood ratio test=4.45 on 1 df, p=0.035 n= 45, number of eM $_{\odot}$

The design matrix

```
> btrial[35:38,1
  time death im im12 im21
35
   182
                  neg
                       neg
36
  189
                  neg
                       neg
37
   22
            1 2 pos
                      pos
  23
3.8
                  pos
                       pos
> mm1 <- model.matrix(coxph(Surv(time, death) ~ im12, data=btrial))
> mm1[35:38,,drop=FALSE]
   im12pos
35
38
> mm2 <- model.matrix(coxph(Surv(time,death) ~ im21, data=btrial))
> mm2[35:38,,drop=FALSE]
   im21neg
35
36
```

More than two categories

Data Section 1.8 (used for the trend test last time)

```
> data <- larynx
> head(data)
  stage time age diagyr delta
       0.6
              77
                     76
              5.3
                    71
      1 2.4
             4.5
                 71
     1 2.5
                 78
5
      1 3.2
             58
                    74
        3.2 51
                    77
```

> table(data\$stage)

```
1 2 3 4
```


- > plot(survfit(Surv(time,delta) ~ stage, data=larynx), col=1:4)
- > legend("topright",c("Stage 1","Stage 2","Stage 4","Stage 4"),
- + lwd=1,col=1:4)

- Coding of the variable stage of disease
- Fit a proportional hazards regression with only stage as covariate in the model
- Stage has four levels
- Construct the dummy (or indicator) variables
- $ightharpoonup Z_1 = 1$: if the patient is in stage II, 0 otherwise
- $ightharpoonup Z_2 = 1$: if the patient is in stage III, 0 otherwise
- $ightharpoonup Z_3 = 1$: if the patient is in stage IV, 0 otherwise
- Patient with stage I cancer is the referent group $(Z_1 = Z_2 = Z_3 = 0)$
- Model

$$h(t \mid Z) = h_0(t) \exp{\{\beta_1 Z_1 + \beta_2 Z_2 + \beta_3 Z_3\}}$$

We have to declare covariate stage as categorical

```
> larynx$stage <- factor(larynx$stage)
> table(larynx$stage)
1 2 3 4
33 17 27 13
```

R-code coxph to fit the model

Likelihood ratio test=16.5 on 3 df, p=0.000902 n= 90, number c^{M} ver

Interpretation

- Estimated HR of death for Stage II disease with respect to Stage I disease: exp(0.0648) = 1.07
- ► Estimated HR of death for Stage III disease with respect to Stage I disease: exp(0.6148) = 1.85
- Estimated HR of death for Stage IV disease with respect to Stage I disease: exp(1.7349) = 5.67
- ► HR of death for Stage IV with respect to stage III exp(1.7349 0.6148) = 3.065

Continuous covariates

Unit is important

- ► Code the variable as a single covariate: $Z_{\parallel} = age$ (in years)
- ► Hazard ratio of an event for an individual of age x years compared to an individual of age x 1 years
- ► Hazard ratio of the event for an individual 10 years older than another individual: $\exp(10 \cdot \beta)$
- Model for larynx data with risk factors stage of the disease and age

$$h(t | \mathbf{Z}) = h_0(t) \exp(\beta_1 Z_1 + \beta_2 Z_2 + \beta_3 Z_3 + \beta_4 Z_4)$$

Survival Analysis Marta Fiocco 1,2 & Hein Putter

► The model fitted with coxph

 stage3
 0.6424
 1.90
 0.3561
 1.804
 7.1e-02

 stage4
 1.7060
 5.51
 0.4219
 4.043
 5.3e-05

 age
 0.0190
 1.02
 0.0143
 1.335
 1.8e-01

> res <- coxph(Surv(time, delta) ~ stage + age, data = larynx)

Likelihood ratio test=18.3 on 4 df, p=0.00107 n= 90, number of event

Interpretation

- the relative risk for a 50-year-old patient compared to a 40-year-old (with the same disease stage) is $\exp(10 \cdot \beta_4) = \exp(10 \cdot 0.0190) = 1.21$
- Or: a 50-year-old patient has a 1.21 times greater risk of dying than a 40-year-old patient with the same disease stage

The design matrix

```
> larynx[c(1,34,51,78),]
   stage time age diagyr delta
         0.6
               77
                      76
34
       2 0.2 86
                   74
      3 0.3
51
             49
                   72
       4 0.1
78
             6.5
                      72.
> model.matrix(res)[c(1,34,51,78),]
   stage2 stage3 stage4 age
                         77
34
                        86
51
                        49
78
                         6.5
```


Interactions

- When there are interactions, the coding of the covariates becomes even more important
- Computer exercise this afternoon

Partial Likelihoods for Distinct-Event Time Data

- $t_1 < t_2 < \ldots < t_D$: ordered event times
- Z_{(i)k}: k-th covariate associated with the individual whose failure time is t_i
- ► R(t_i): risk set at time t_i, (set of all individuals who are still under study at a time just prior to t_i
- Partial likelihood based on the hazard function is given by

$$L(\beta) = \prod_{i=1}^{D} \frac{\exp(\sum_{k=1}^{p} \beta_k Z_{(i)k})}{\sum_{i \in R(t_i)} \exp(\sum_{k=1}^{p} \beta_k Z_{jk})}$$

▶ (Make computations how to derive $L(\beta)$ on the blackboard)

Log partial likelihood

$$LL(\beta) = \log \left(\prod_{i=1}^{D} \frac{\exp(\sum_{k=1}^{p} \beta_k Z_{(i)k})}{\sum_{j \in R(t_i)} \exp(\sum_{k=1}^{p} \beta_k Z_{jk})} \right)$$

We can also write it as

$$LL(\beta) = \sum_{i=1}^{D} \sum_{k=1}^{p} \beta_k Z_{(i)k} - \sum_{i=1}^{D} \log \left[\sum_{j \in R(t_i)} \exp \left(\sum_{k=1}^{p} \beta_k Z_{jk} \right) \right]$$

- Estimate the parameters β by maximizing the partial likelihood or the log-likelihood
- ▶ Score equations: $U_h(\beta) = \partial LL(\beta)/\partial \beta_h$, h = 1, ..., p
- ▶ Information matrix $\mathcal{I}(\beta) = [\mathcal{I}_{gh}(\beta)]_{p \times p}$
- ▶ Show how to derive $U_h(\beta)$ and $\mathcal{I}(\beta)$

12....

- ► The (partial) maximum likelihood estimates $\hat{\beta}_1, \dots \hat{\beta}_p$ are found by solving the set of p nonlinear equations $U_h(\beta) = 0$
- ► The log-likelihood does **not** depend on the baseline hazard rate $h_0(t)$, inference may be made on the effects of the explanatory variables without knowing $h_0(t)$

Tests for the regression parameters

- $\hat{\boldsymbol{\beta}} = (\hat{\beta}_1, \dots \hat{\beta}_p)$: partial MLE of $\boldsymbol{\beta}$;
- ▶ $\mathcal{I}(\beta)$: $p \times p$ information matrix evaluated at β
- ▶ test of the global hypothesis: $H_0: \beta = \beta_0$

Wald's test

▶ Based on the asymptotic normality of the (partial) maximum likelihood estimates: $\hat{\beta} \sim N(\beta, \mathcal{I}^{-1}(\hat{\beta}))$

$$X_W^2 = (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^{\top} \mathcal{I}(\hat{\boldsymbol{\beta}}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \sim \chi_D^2$$

Tests for the regression parameters

Likelihood ratio test (LRT) test

$$X_{LR}^2 = 2[LL(\hat{\boldsymbol{\beta}}) - LL(\boldsymbol{\beta}_0)] \sim \chi_p^2$$

Score test

▶ Based on the efficient scores (first derivative of the log partial likelihood) $\mathbf{U}(\beta) = (U_1(\beta), \dots, U_p(\beta))^{\top}$

$$X_{SC}^2 = \mathbf{U}(\boldsymbol{\beta}_0)^{\top} \mathcal{I}^{-1}(\boldsymbol{\beta}_0) \mathbf{U}(\boldsymbol{\beta}_0) \sim \chi_D^2$$

Breast cancer data Section 1.5 (recall)

```
> data(btrial)
> head(btrial)
  time death im
  19 1 1
 25
 30 1 1
 34 1 1
5 37
6 46
> res <- coxph(Surv(time, death)~im, data=btrial)
> res
Call:
coxph(formula = Surv(time, death) ~ im, data = btrial)
  coef exp(coef) se(coef) z
im 0.98 2.66 0.435 2.25 0.024
Likelihood ratio test=4.45 on 1 df, p=0.035 n= 45
```


Software

Wald's test and score test can be found with summary

```
> summary(res)
Call:
coxph(formula = Surv(time, death) ~ im, data = btrial)
 n= 45, number of events= 24
    coef exp(coef) se(coef) z Pr(>|z|)
im 0.9802 2.6650 0.4349 2.254 0.0242 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  exp(coef) exp(-coef) lower .95 upper .95
      2.665 0.3752 1.136
                               6.25
im
Rsquare= 0.094 (max possible= 0.976)
Likelihood ratio test= 4.45 on 1 df, p=0.03498
Wald test = 5.08 on 1 df, p=0.0242
Score (logrank) test = 5.49 on 1 df, p=0.01908
```


Software

► Test the hypothesis H_0 : $\beta = 0$ by using the three tests seen

Check the computations by using the anova function

Software

- ▶ From anova we obtain $LL(\hat{\beta})$ and $LL(\beta_0)$
- ► LRT:

$$X_{LR}^2 = 2[LL(\hat{\beta}) - LL(\beta_0)] = 2(-81.521 - (-83.744)) = 4.446$$

```
> 1-pchisq(4.446,1)
[1] 0.0349831
```


Marta Fiocco 1,2 & Hein Putter1

Partial likelihoods when ties are present

- ► The partial likelihood for the Cox model is developed under the assumption of continuous data
- Real data sets often contain tied event times
- $ightharpoonup t_1, \ldots, t_D$: *D* distinct, ordered, event times
- d_i: number of deaths at t_i;
- D_i: set of all individuals who die at time t_i
- ▶ $\mathbf{s}_i = \sum_{j \in D_i} \mathbf{Z}_j$ (sum of the vectors \mathbf{Z}_j over all individuals who die at t_i)
- R_i: set of all individuals at risk just prior to t_i
- Three different algorithms are commonly used to address this problem

Marta Fiocco 1,2 & Hein Putter1

Partial Likelihoods When Ties Are Present

Breslow approximation

- Simplest to write down, easiest to program
 - Default method in most packages (but not in survival package!!)
 - Solution is the least accurate but the method is fast (see (8.4.1) in your book)

Efron approximation

- Quite accurate unless the proportion of ties relative to the size of the risk set is extremely large;
- As fast as the Breslow'method; default option in survival package (see (8.4.2))

Exact partial likelihood

- Exact method involves exhaustive enumeration of all possible risk sets at each tied death time
 - Can require a prohibitive amount of computation time
 - It computes the exact partial likelihood (method="exact" in coxph)
- Use data Section 1.4 to compare estimates obtained with different approximation

```
> data(kidney)
> names(kidney)
[1] "time" "delta" "type"
> table(kidney$type)

1  2
43  76
> hist(kidney$time)
```


Histogram of kidney\$time

> coxph(formula = Surv(time, delta) ~ type, data = kidney,

Likelihood ratio test=2.45 on 1 df, p=0.118 n= 119

Example

Call:

method = "efron")

```
coxph(formula = Surv(time, delta) ~ type, data = kidney,
method = "efron")
      coef exp(coef) se(coef) z p
type -0.613 0.542 0.398 -1.54 0.12
Likelihood ratio test=2.41 on 1 df, p=0.121 n= 119
> coxph(formula = Surv(time, delta) ~ type, data = kidney,
method = "breslow")
Call:
coxph(formula = Surv(time, delta) ~ type, data = kidney, method = "bre
      coef exp(coef) se(coef) z p
type -0.618 0.539 0.398 -1.55 0.12
```

(ロ) (部) (注) (注) 注 り(0)

Example

```
> coxph(formula = Surv(time, delta) ~ type, data = kidney,
method = "exact")
```

Could not estimate the model, the software is stuck!!!

