Метод опорных векторов — набор схожих алгоритмов <u>обучения с учителем</u>, использующихся для <u>задач классификации</u> и <u>регрессионного анализа</u>. Принадлежит семейству <u>линейных классификаторов</u> и может также рассматриваться как специальный случай <u>регуляризации по Тихонову</u>. Особым свойством метода опорных векторов является непрерывное уменьшение эмпирической ошибки классификации и увеличение зазора, поэтому метод также известен как **метод классификатора с максимальным зазором**.

Основная идея метода — перевод исходных векторов в пространство более высокой размерности и поиск разделяющей гиперплоскости с максимальным зазором в этом пространстве. Две параллельных гиперплоскости строятся по обеим сторонам гиперплоскости, разделяющей классы. Разделяющей гиперплоскостью будет гиперплоскость, максимизирующая расстояние до двух параллельных гиперплоскостей. Алгоритм работает в предположении, что чем больше разница или расстояние между этими параллельными гиперплоскостями, тем меньше будет средняя ошибка классификатора.

Постановка задачи

Несколько классифицирующих разделяющих прямых (гиперплоскостей), из которых только одна соответствует оптимальному разделению

Часто в алгоритмах машинного обучения возникает необходимость классифицировать данные. Каждый объект данных представляется как вектор (точка) в р-мерном пространстве (упорядоченный наборчисел). Каждая из этих точек принадлежит только одному из двух классов. Вопрос состоит в том, можно ли разделить точки гиперплоскостью размерности р-1. Это — типичный случай <u>линейной разделимости</u>. Искомых гиперплоскостей может быть много, поэтому полагают, что максимизация зазора между классами способствует более уверенной классификации. То есть, можно ли найти такую <u>гиперплоскость</u>, чтобы расстояние от неё до ближайшей точки было максимальным. Это эквивалентно тому, что сумма расстояний до гиперплоскости от двух ближайших к ней точек, лежащих по разные стороны от неё, максимальна. Если такая гиперплоскость существует, она называется *оптимальной разделяющей гиперплоскостью*, а соответствующий ей линейный классификатор называется *оптимально разделяющим классификатором*.