The

Clause - Diffusion

theorem prover

Peers - mcd

Maria Paola Bonacina Dept. of Computer Science The University of Iowa

July 1997

Peers-mcd: an overview

Distributed theorem prover

EQP + Clause Diffusion

Contraction - based strategies

Equational Pogic with AC

C and MPI

Network of workstations or multiprocessor

A tool for experimenting with Parallel Search

Fine-grain parallelism: e.g. parallel rewriting

Medium-grain parallelism:
parallel inferences

Coarse-grain parallelism: parallel search

Clause - Diffusion

Clause - Diffusion

Parallel search by N processes

N separate derivations (only one needs to succeed)

N separate databases (separate memories)

Subdivision of the search space

Communication

Possibly different search plans

Subdivision of the search space in Clause - Diffusion

Build <u>dynamically</u> a partition of the search space by

assign generated clauses to processes

allocation criterion

(logical not physical allocation)

Subdivide inferences accordingly (both expansion and contraction)

Subdivision of the search space in Peers-mcd

Intuition: limit the overlap of the parallel searches

Approach:

model the search space as a search graph (including contraction)

each clause has ancestor-graph

Ancestor - Graph Oriented (AGO) allocation criteria

AGO criteria

Intuition: notion of proximity of clauses in the search graph

AGO criterion "parents":

$$\varphi_1$$
 φ_2
 φ_1
 φ_2
 φ_2
 φ_2
 φ_1
 φ_2
 φ_2
 φ_2
 φ_1
 φ_2
 φ_2
 φ_2
 φ_3
 φ_4
 φ_2
 φ_2
 φ_3
 φ_4
 φ_2
 φ_4
 φ_2
 φ_2
 φ_3
 φ_4
 φ_4
 φ_2
 φ_4
 φ_4
 φ_5
 φ_5
 φ_5
 φ_6
 φ_7
 φ_8
 φ_8

$$P_1$$
 to P_i \Rightarrow P_i and P_j overlap

$$id(\psi_1) \rightarrow \downarrow \downarrow \rightarrow p_k$$

 $id(\psi_2) \rightarrow \downarrow \downarrow \rightarrow p_k$
owner of ϕ_1/ϕ_2

AGO criteria

Intuition: notion of proximity between clauses and processes

AGO criterion "majority":

Pi.
ancestor
graph
of p

 φ is closer to p_i than p_j φ assigned to $p_j \implies increase overlap$ φ φ φ φ φ and φ .

Assign q to process that owns majority of ancestors

Robbins algebra

Huntington axiom } Boolean algebra

AC of +

Robbins axiom

AC of +

Robbins algebra

Robbins axiom ? Huntington axiom

Yes: EQP 1996

Robbins axiom

Second Winker Condition

First Winker Condition

Huntington axiom

A case study in Robbins algebra

First Winker Condition: 3x3y x+y=x

Lemma: FWC implies Huntington

Strategy: start-m-pair

AC- paramodulation

AC-simplification subsumption deletion by weight

inference system

pairs algorithm best-first search

search plan

Best "complete" sequential strategy
on the problem

First formulation

Strategy	Criterion	EQP0.9	1-Peers	2-Peers	4-Peers	6-Peers
start-n-pair	rotate	3,705	3,953	1,349	1,340	1,631
start-n-pair	parents	3,705	3,953	933	915	522
start-n-pair	majority	3,705	3,953	997	1,043	1,187

Max-weight = 30 for all processes

Network of workstations HP 715

Second formulation

$$\exists x \exists y \quad x + y = x \quad \rightarrow \quad \exists y \ \forall x \quad x + y = x$$

$$(\exists y \ \forall x \quad x + y = x \quad \rightarrow \quad \exists x \quad x + x = x \quad trivially)$$

Strategy	Criterion	EQP0.9	1-Peers	2-Peers
start-n-pair	rotate	3,649	3,809	2,220
start-n-pair	parents	3,649	3,809	1,591
start-n-pair	majority	3,649	3,809	485

Third formulation

Strategy	Criterion	EQP0.9	1-Peers	2-Peers	4-Peers
start-n-pair	rotate	4,857	4,904	3,557	1,177
start-n-pair	parents	4,857	4,904	1,437	2,580
start-n-pair	majority	4,857	4,904	872	709

Lemma: SWC implies FWC

Sequential time: almost 6 days

Max-weight = 34 for all processes

Strategy	Criterion	EQP0.9	1-Peers	$2 ext{-}Peers$	4-Peers	6-Peers	8-Peers
start-n-pair	rotate	518,393	520,336	265,145	71,416	6,391	5,436
start-n-pair	parents	518,393	520,336	10,162	108,975	7,792	3,283
start-n-pair	majority	518,393	520,336	161,779	54,660	68,919	7,415

Most efficient: 2-Peers

time: 2 hr. 49' 22"

speed-up: 51

efficiency: 25.5

Fastest proof: 8-Peers

time: Ohr 54' 43"

Speed-up: ~158

efficiency: ~ 20

Final lemma:

Robbins axiom implies SWC

Another strategy: basic \$-4-pair

Sequential time: 4 days 3 hr 24' 7"

Moving to a shared-memory machine:

Sequential time: 1 day 17 hr 30' 4"

41 hr 30'4"

2-Peers with majority:

23 hr 33' 26"

Speed - up = 1.76

efficiency = 0.88

Max-weight = 50 for all processes

Example of statistics from a sequential and a distributed derivation

Lemma: FWC implies H

Peers-med: 4-Peers with majority

Statistics	EQP0.9	Peer0	Peer1	Peer2	Peer3	Peers-mcd
clauses generated	25,939	5,047	5,138	2,826	2,687	15,698
clauses kept	2,905	928	556	189	144	1,817
retention	11%	18%	11%	7%	5%	12%
proof found	1	0	0	1	0	1
proof length	107	N/A	N/A	123	N/A	123

Different proofs: 55 clauses in common

Times	EQP0.9	Peer0	Peer1	Peer2	Peer3
wall-clock-time	4,902	705	704	704	704
cpu-time	4,665.60	664.79	677.03	603.66	612.11
demodulation-time	3,557.55	375.26	381.78	294.59	314.55
back-demod-find-time	876.95	253.81	250.83	252.63	252.82

Max-weight = 30 for all processes

Analysis of experiments

Super-linear speed-up:

much fewer clauses generated

effective subdivision of the space

In some cases, e.g. SWC -> FWC:
higher % clauses kept
same contraction
search may be better focused

Contraction time:
most of time for both EQP and Peers-mcd

Proofs: majority of equations in common difference: parallel search

Scalability: size of problem

dynamic subdivision

Discussion:

Practical theorem proving needs many tools: parallel search is one

Super-linear speed-up

Scalability

Future work:

Combine subdivision of space with use of different search plans

Strategy analysis