Lecture 07: Evaluation of Point Estimators

Mathematical Statistics II, MATH 60062/70062

Thursday February 10, 2022

Reference: Casella & Berger, 7.3.1-7.3.2

Mean squared error

The **mean squared error (MSE)** of a point estimator W = W(X) of a parameter θ is

$$MSE_{\theta}(W) = E_{\theta}(W - \theta)^{2}$$

$$= Var_{\theta}(W - \theta) + (E_{\theta}(W - \theta))^{2}$$

$$= Var_{\theta}(W) + Bias_{\theta}^{2}(W),$$

where $\mathrm{Bias}_{\theta}(W) = E_{\theta}(W) - \theta$ is the **bias** of W, the difference between the expected value of W and θ . If $\mathrm{Bias}_{\theta}(W) = 0$ for all θ , then W is called an **unbiased** estimator.

MSE incorporates two components:

- **Precision**, measured by $Var_{\theta}(W)$.
- Accuracy, measured by $Bias_{\theta}(W)$.

Normal variance estimators

Suppose that X_1, \ldots, X_n are iid $\mathcal{N}(\mu, \sigma^2)$, where $-\infty < \mu < \infty$ and $\sigma^2 > 0$. Set $\theta = (\mu, \sigma^2)$.

• The sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

is an unbiased estimator for σ^2 , where $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$, $E_{\theta}(S^2) = \sigma^2$ for all σ^2 and $\mathrm{Var}_{\theta}(S^2) = 2\sigma^4/(n-1)$.

• The MLE of σ^2

$$S_{\rm B}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{n-1}{n} S^2$$

is a biased estimator for σ^2 , $E_{\pmb{\theta}}(S_{\mathrm{B}}^2) = \sigma^2(n-1)/n$.

MSE of Normal variance estimators

• MSE of S^2

$$MSE_{\theta}(S^2) = Var_{\theta}(S^2) = \frac{2\sigma^4}{n-1}$$

• MSE of $S_{
m B}^2$

$$MSE_{\theta}(S_{B}^{2}) = Var_{\theta}(S_{B}^{2}) + Bias_{\theta}^{2}(S_{B}^{2})$$

$$= \left(\frac{n-1}{n}\right)^{2} Var_{\theta}(S^{2}) + \left(\frac{-\sigma^{2}}{n}\right)^{2}$$

$$= \left(\frac{2n-1}{n^{2}}\right) \sigma^{4}$$

The biased MLE $S_{\rm B}^2$ has smaller MSE than S^2 , since $2/(n-1)>(2n-1)/n^2$ for all $n\geq 2$.

MSE of Bernoulli/Binomial estimators

Suppose that X_1, \ldots, X_n are iid $Bern(\theta)$, where the prior distribution on θ is Beta(a,b).

• The MLE of θ , $\hat{\theta} = \bar{X}$, is an unbiased estimator of θ , and its MSE is

$$MSE_{\theta}(\hat{\theta}) = Var_{\theta}(\bar{X}) = \frac{\theta(1-\theta)}{n}.$$

• The Bayes estimator is $\hat{\theta}_{\rm B}=(T+a)/(n+a+b)$, where $T=\sum_{i=1}^n X_i$. The MSE of $\hat{\theta}_{\rm B}$ is

$$MSE_{\theta}(\hat{\theta}_{B}) = Var_{\theta} \left(\frac{T+a}{n+a+b} \right) + Bias_{\theta}^{2} \left(\frac{T+a}{n+a+b} \right)$$
$$= \frac{n\theta(1-\theta)}{(n+a+b)^{2}} + \left(\frac{n\theta+a}{n+a+b} - \theta \right)^{2}.$$

MSE of Bernoulli/Binomial estimators

Suppose that X_1, \ldots, X_n are iid $Bern(\theta)$, where the prior distribution on θ is Beta(a,b).

• The MLE of θ , $\hat{\theta} = \bar{X}$, is an unbiased estimator of θ , and its MSE is

$$MSE_{\theta}(\hat{\theta}) = Var_{\theta}(\bar{X}) = \frac{\theta(1-\theta)}{n}.$$

• The Bayes estimator is $\hat{\theta}_{\rm B}=(T+a)/(n+a+b)$, where $T=\sum_{i=1}^n X_i$. The MSE of $\hat{\theta}_{\rm B}$ is

$$MSE_{\theta}(\hat{\theta}_{B}) = Var_{\theta} \left(\frac{T+a}{n+a+b} \right) + Bias_{\theta}^{2} \left(\frac{T+a}{n+a+b} \right)$$
$$= \frac{n\theta(1-\theta)}{(n+a+b)^{2}} + \left(\frac{n\theta+a}{n+a+b} - \theta \right)^{2}.$$

In the absence of good prior information, we choose $a=b=\sqrt{n/4}$ to make $\mathrm{MSE}_{\theta}(\hat{\theta}_{\mathrm{B}})$ constant,

$$\hat{\theta}_{\mathrm{B}} = \frac{T + \sqrt{n/4}}{n + \sqrt{n}}, \quad \mathrm{MSE}_{\theta}(\hat{\theta}_{\mathrm{B}}) = \frac{n}{4(n + \sqrt{n})^2}.$$

MSE of Bernoulli/Binomial estimators

- For small n, the Bayes estimator $\hat{\theta}_{\rm B}$ is a better choice (unless there is a strong belief that θ is near 0 or 1).
- For large n, the MLE $\hat{\theta}$ is a better choice (unless there is a strong belief that θ is close to 1/2).

Best unbiased estimators

In most cases, there is no one "best MSE" estimator. This is because the class of all estimators is too large a class.

Consider a nonsense estimator $\hat{\theta}_N = 0.21$.

- If $\theta=0.21$, then $\hat{\theta}_N$ is the best in terms of MSE, i.e., $\mathrm{MSE}_{\theta}(\hat{\theta}_N)=0.$
- If $\theta \neq 0.21$, then $\hat{\theta}_N$ can be a terrible estimator.

Best unbiased estimators

In most cases, there is no one "best MSE" estimator. This is because the class of all estimators is too large a class.

Consider a nonsense estimator $\hat{\theta}_N = 0.21$.

- If $\theta=0.21$, then $\hat{\theta}_N$ is the best in terms of MSE, i.e., $\mathrm{MSE}_{\theta}(\hat{\theta}_N)=0.$
- If $\theta \neq 0.21$, then $\hat{\theta}_{N}$ can be a terrible estimator.

One way to make the problem of finding a "best" estimator tractable is to limit the class of estimators (e.g., to consider only unbiased estimators).

A best unbiased estimator in terms of MSE is essentially an unbiased estimator whose variance is smaller than any other unbiased estimator.

Uniformly minimum-variance unbiased estimator (UMVUE)

An estimator $W^* = W^*(\boldsymbol{X})$ is a uniformly minimum-variance unbiased estimator (UMVUE) of $\tau(\theta)$ if

- ② $\operatorname{Var}_{\theta}(W^*) \leq \operatorname{Var}_{\theta}(W)$ for all $\theta \in \Theta$, where W is any other unbiased estimator of $\tau(\theta)$.

Uniformly minimum-variance unbiased estimator (UMVUE)

An estimator $W^* = W^*(\boldsymbol{X})$ is a uniformly minimum-variance unbiased estimator (UMVUE) of $\tau(\theta)$ if

- ② $Var_{\theta}(W^*) \le Var_{\theta}(W)$ for all $\theta \in \Theta$, where W is any other unbiased estimator of $\tau(\theta)$.

Note: UMVUEs may not exist. As we will show later, if a UMVUE does exist, then it's *unique*.

Finding UMVUE

Using the definition of UMVUE to find one is difficult. As we have to compare a candidate W^{\ast} to all unbiased estimators (there may be infinite of them!).

We will discuss two approaches to find UMVUEs:

- **①** (Cramér-Rao Inequality) Determine a lower bound on the variance of any unbiased estimator of $\tau(\theta)$. If we can find an unbiased estimator whose variance attains this lower bound, we have found the UMVUE.
- (Rao-Blackwell Theorem) Relate the property of UMVUEs with the notation of sufficiency and completeness.