Project

Elliott Pryor

 $5\ {\rm December}\ 2023$

Problem 1 Statement:

Consider the system

$$G(s) = \frac{50(s+3)}{s(s+2)(s+5)}$$

- a) Use Bode plot to design a lead compensator C(s) with unity DC gain so that the phase marginS of the closed-loop system is no less than 40° .
- b) Use MATLAB to verify the resulting phase marginally
- c) What is the bandwidth of the resulting closed-loop system?

Figure 1: Problem1

Solution

Problem 2 Statement:

Consider the system

$$G(s) = \frac{K}{s(s/5+1)(s/250+1)}$$

- a) Use Bode to design a lag compensator C(s) so that the closed loop system satisfies:
 - The steady state error to a unit ramp reference input is less than 0.01
 - \bullet The phase margin is no less than 40°
- b) Use MATLAB to verify the resulting phase margin

Figure 2: Problem2

Solution

Problem 3

Statement:

Given the state space model of a system:

$$\dot{x} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} x + \begin{pmatrix} 1 \\ 2 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 1 \end{pmatrix} x$$

- a) Find the state feedback gain F such that the closed-loop system has -1 and -2 at its poles. Compute F without using any state transformation.
- b) Design an observer to estimate the state of the system. Select the poles for the error dynamics to be $-2 \pm 2i$
- c) Construct an observer-based output feedback law that stabilizes the system.

Solution

Elliott Pryor Project

Problem 4 Statement:

Complete the class evaluation:

Solution

Yes