Juan Camilo Arevalo Arboleda¹

¹Pontificia Universidad Javeriana Cali

7 de abril de 2017

Contenido

- Distribución estable
 - Función característica
 - Función característica de levy
- ② Distribución de levy
- Gráficas
- 4 Aplicaciones

Distribución estable

Una distribución se denomina estable si es una combinación lineal de dos o más copias independientes de una muestra aleatoria que tiene la misma distribución de probabilidad, salvo por quizá algún parámetro de localización o factor de escala.

Distribución estable

Una distribución se denomina estable si es una combinación lineal de dos o más copias independientes de una muestra aleatoria que tiene la misma distribución de probabilidad, salvo por quizá algún parámetro de localización o factor de escala.

Definición

Dadas n-variables aleatorias independientes e idénticamente distribuidas $X_1, X_2, ..., X_n$ y X, entonces se dice que X sigue una distribución estable- α si existe una constante positiva Cn y un número real Dn tal que siga la siguiente relación:

$$X1 + X2 + ... + Xn \stackrel{d}{=} CnX + Dn$$

Función característica de la distribución estable

$$\varphi(t;\alpha,\beta,c,\mu) = E[e^{itX}] = \begin{cases} e^{it\mu - |ct|^{\alpha}(1-i\beta sign(t)tan(\frac{\pi\alpha}{2}))} & \alpha \neq 1 \\ e^{it\mu - c|t|(1+i\beta\frac{2}{\pi}sign(t)ln(|t|))} & \alpha = 1 \end{cases}$$
 Donde
$$sign(t) = \begin{cases} 1 & t > 0 \\ 0 & t = 0 \\ -1 & t < 0 \end{cases}$$

$$\operatorname{sign}(\mathsf{t}) = \left\{ egin{array}{ll} 1 & t > 0 \\ \\ 0 & t = 0 \\ \\ -1 & t < 0 \end{array}
ight.$$

- α : parámetro de estabilidad donde $\alpha \in (0,2]$
- β : parámetro de simetría donde $\beta \in [-1, 1]$
- μ : parámetro de localización donde $\mu \in (-\infty, \infty)$
- c: parámetro de escalabilidad donde $c \in (0, \infty]$

Función característica de levy

Para la distribución de levy, $\alpha = \frac{1}{2}$ y $\beta = 1$, entonces

$$\varphi(\mathbf{x}, \mathbf{c}, \mu) = \mathrm{e}^{it\mu - \sqrt{|\mathrm{et}|}(1 - i\mathrm{sgn}(t))}$$

Función característica de levy

Para la distribución de levy, $\alpha = \frac{1}{2}$ y $\beta = 1$, entonces

$$\varphi(\mathbf{x}, \mathbf{c}, \mu) = e^{it\mu - \sqrt{|et|}(1 - isgn(t))}$$

La función de densidad dada por la transformada de Fourier para una función característica $\varphi(t)$ esta dada por:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(t) e^{-ixt} dt$$

• Función de densidad: $f(x; \mu, c) = \sqrt{\frac{c}{2\pi}} \frac{e^{-\frac{c}{2(x-\mu)}}}{(x-\mu)^{3/2}}$ donde $x > \mu$

• Función acumulativa:
$$F(x; \mu, c) = erf(\sqrt{\frac{c}{2(x-\mu)}})$$

Donde $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} dx$

- Esperanza: ∞
- Mediana: $\frac{c}{2}(erf^{-1}(\frac{1}{2}))^2$ para $\mu=0$
- Moda: $\frac{c}{3}$ para $\mu = 0$
- ullet Varianza: ∞

Distribución de levy

- Función de densidad: $f(x; \mu, c) = \sqrt{\frac{c}{2\pi}} \frac{e^{-\frac{c}{2(x-\mu)}}}{(x-\mu)^{3/2}}$ donde $x > \mu$
- Función acumulativa: $F(x; \mu, c) = erf(\sqrt{\frac{c}{2(x-\mu)}})$ Donde $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} dx$
- Esperanza: ∞
- Mediana: $\frac{c}{2}(erf^{-1}(\frac{1}{2}))^2$ para $\mu=0$
- Moda: $\frac{c}{3}$ para $\mu = 0$
- ullet Varianza: ∞

Propiedades:

- $X \sim levy(\mu, c) \rightarrow kX + b \sim levy(k\mu + b, kc)$
- $X \sim levy(0, c) \to X \sim gamma^{-1}(1/2, c/2)$
- $X \sim levy(\mu, c) \rightarrow X \sim stable(1/2, 1, c, \mu)$

Figura: Función de densidad y acumulada con c=0,5,c=1,c=3,c=6 y $\mu=0$

Figura: Función de densidad y acumulada con $\mu=-0.5, \mu=1, \mu=2$, y c=1

Aplicaciones

- La frecuencia de las reversiones geométricas tienden seguir la distribución de levy.
- La longitud de la trayectoria seguida por un fotón en un medio turbio sigue la distribución de levy.
- Dado que los stocks(acciones) no son normales, las propiedades de la distribución de levy son importantes, ya que al estimar sus parámetros se pueden ayudar a minimizar riesgos.

Bibliografía I

Yiyang Yang.

Stable Distribution: Theory and Application.

November 2012.

Mirasol A. Cañedo and Edgardo D. Cruz, PhD .

THE PHILIPPINE STOCK RETURNS AND THE LEVY DISTRIBUTION.

12th National Convention on Statistics (NCS) EDSA Shangri-La Hotel, Mandaluyong City, October 1-2, 2013

Bibliografía II

Rafal Weron.

Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime.

: International Journal of Modern Physics, C (2001) 12(2), 209-223

German Bassi.

Funcion Caracteristica

: 21 de marzo de 2011

https://en.wikipedia.org/wiki/L %C3 %A9vy_d istribution visitado el: 09 de abril del 2017

Distribución de levy