山东大学
硕士学位论文
两类非线性方程的双层网格差分方法
姓名: 陈涛
申请学位级别:硕士
专业: 计算数学
指导教师: 芮洪兴

两类非线性方程的双层网格差分方法

陈 涛 (山东大学数学与系统科学学院,济南 250100)

中文摘要

本文给出了椭圆型非线性方程和抛物型非线性方程的双层网格差分方法,在解椭圆型非线性方程中由于非线性方程比较难解,所以我们将问题分为粗网格上和细网格上两次求解,首先在粗网格上解原问题的离散的非线性方程,利用牛顿迭代法求得粗网格上的离散解.然后利用粗网格节点上的离散解来近似细网格节点上的解.将细网格节点上的离散差分格式中的非线性项用细网格点上的近似值的线性函数逼近.这使得原问题在细网格上就变成了线性方程.最后再利用上面求得的细网格节点上的差分解对非线性项作更精确的近似,得到更加精确的差分解.

用双层网格差分方法解抛物型方程时,我们在粗网格上利用显格式解原问题的离散方程,求得粗网格上的差分解,这种情况下此格式不需求解方程组。然后将粗网格剖分形成细网格,利用上面求得的粗网格节点上的差分解来近似细网格上的方程的非线性项。这样原问题在细网格上就可以利用对称格式求解。然后再对求得的解做一次误差修正,这使得差分解的精确度提高。

下面介绍一下本文的组织,本文共分两章

第一章给出了矩形区域的椭圆型非线性方程的双层网格差分方法,数值实验 举了一个实例验证这种方法的可行性。

本章共分五节

第一节是引言,引入椭圆型问题,并对本章用到的符号和不等式做了简单的说明.

第二节在粗网格上利用中心差分格式以及牛顿迭代法求得粗网格上的差分解, 并验证该非线性格式的解 Vn 的存在唯一性, 然后得出该解的误差估计:

$$||u - V_H||_{L^2} \le C_2 H^2$$

第三节在细网格上求解,我们先用粗网格上的解来近似细网格上的解,记为 $(Iv)_h$,由于在细网格上的离散形式的右端项也是非线性的,所以我们将右端项在

 $(Iv)_h$ 处做 Taylor 展开,保留一阶导数项。这样我们可以得到这种线性离散形式的截断误差为 $r_h \leq C_6(h^2 + H^4)$ 。接着我们可以求得该形式的解 v_h 的误差估计:

$$||u - v_h||_{L^2} \le C_7(h^2 + H^4)$$

第四节误差修正,利用上节求得的差分解来近似得到非线性右端项的 Taylor 展开式中的二阶导数项. 这样使得修正后的细网格上的格式的截断误差为 $\bar{r}_h \leq \bar{C}(h^2 + H^6)$. 这样得到修正后的差分解的误差估计:

$$||u - (v_h + \bar{e}_h)||_{L^2} \le \hat{C}(h^2 + H^6)$$

第五节数值实验,举出实例,经三种不同的网格剖分我们可以验证双层差分 方法的可行性,

第二章用双层网格差分方法求解抛物型非线性方程,证明粗网格和细网格上的解的误差估计.在数值实验中举一实例验证上面理论的可行性.

本章共分五节

第一节是引言,给出了一个抛物型非线性方程,并对本章用到的符号和不等 式做了简单的说明,

第二节在空间粗网格上用显格式求解,可得误差估计为:

$$||u^k - V_H^k||_{L^2} \le K_1(\tau + H^2)$$

第三节在空间细网格上用中心差分格式求解,其中的非线性项用粗网格上的解的函数逼近,可得误差估计为:

$$||u^k - v_h^k||_{L^2} \le C_8(\tau^2 + h^2 + H^4)$$

第四节进行误差修正,修正后的差分解满足误差估计:

$$||u^k - (v_h^k + \bar{e}^k)||_{L^2} \le C_{11}(\tau^2 + h^2 + H^6)$$

第五节进行了数值实验,结果证明前面的双层网格差分方法是可行的.

关键词:双层网格,非线性抛物型方程,误差修正,非线性椭圆型方程

TWO-GRID DIFFERENCE METHODS FOR TWO KINDS OF NON-LINEAR EQUATIONS

Chen Tao

(School of Mathematics and System Science, Shandong University, Jinan 250100)

Abstract

In this dissertation, we shall present two-grid difference methods for non-linear elliptic equations and non-linear parabolic equations. First we present two-grid difference method for non-linear elliptic equations. It is difficult to solve one non-linear equation. So we solve the non-linear equation by solving one non-linear equation on the coarse-grid space and one linear equation on the fine-grid space. We get the solution on the coarse-grid space by using Newton iteration. Then we use solution on the coarse-grid space to produce a rough approximation of the solution on the fine-grid space and use a linear function about that to produce a approximation of the non-linear term of the discretization on the fine-grid space. So the discretization on the fine-grid space become linear. We use the solution on the fine-grid space to produce a more accuracy of the solution.

Second we present two-grid difference method for non-linear parabolic equations. We can get the discretization solution by solving forward difference scheme on the coarse-grid space. In this case we needn't solving system of equations. Then we divide coarse-grid space into fine-grid space. Then we use the solution on the coarse-grid space to produce a rough approximation of the solution on the fine-grid space, and use a linear function about that to produce a approximation of the non-linear term of the discretization on the fine-grid space. We discrete the equation by using Crank-Nicolson scheme. We use the solution on the fine-grid space to improve the accuracy of the solution.

This dissertation is organizaed as follows. This dissertation is devided into two chapters.

The first chapter give the two-grid difference method for elliptic equation on square area. The experiment gives a simple numerical example to prove that this

method is feasible.

This chapter is devided into five sections.

The first section is introduction. We present the elliptic equation and introduce the notation and inequation in this chapter.

The second section we use central difference scheme and Newton iteration to get the solution on the coarse-grid space. We prove the solution V_H is exist and unique. Then we can get the error estimate.

$$||u - V_H||_{L^2} \le C_2(H^2)$$

The third section we get the solution on the coarse-grid space. We approximate the solution $(Iv)_h$ on the fine-grid space by the solution on the coarse-grid space. We use Taylor expansion to novation non-linear term in the discretization style. So we can get the intercept error $r_h \leq C(h^2 + H^4)$. Then we get the error estimate:

$$||u-v_h||_{L^2} \le C_7(h^2+H^4)$$

The forth section gives the error estimate. We use solution of the before section to novation the 2-order term of the Taylor expansion. So the intercept error become $\ddot{r}_h \leq \ddot{C}(h^2 + H^6)$. The error estimate become:

$$||u - (v_h + \bar{e}_h)||_{L^2} \le \dot{C}(h^2 + H^6)$$

The fifth section is the numerical experiment. Through three kinds of grid subdivide to prove that this method is feasible.

The second chapter give the two-grid difference method for parabolic equation and we prove the error estimate of the solution on the both space. The experiment gives a simple numerical example to prove this method is feasible.

This chapter is divided into five sections.

The first section is introduction. We present the parabolic equation and introduce the notation and inequation in this chapter.

The second section we use forward difference scheme to get the error estimate:

$$||u^k - V_H^k||_{L^2} \le K_1(\tau + H^2)$$

In the third section we use a function of the solution on the coarse-grid space to novation the non-linear term. Then we can use Crank-Nicolson scheme to get the error estimate;

$$||u^k - v_h^k||_{L^2} \le C_8(\tau^2 + h^2 + H^4)$$

The forth section gives the error estimate:

$$||u^k - (v_h^k + \bar{e}^k)||_{L^2} \le C_{11}(\tau^2 + h^2 + H^6)$$

The fifth section is the numerical experiment. The result prove that this method is feasible.

keyboard: two-grid,non-linear parabolic equation.error estimate, non-linear elliptic equation

原创性声明

本人郑重声明: 所呈交的学位论文, 是本人在导师的指导下, 独立进行研究所取得的成果。除文中已经注明引用的内容外, 本论文不包含任何其他个人或集体已经发表或撰写过的科研成果。对本文的研究作出重要贡献的个人和集体, 均已在文中以明确方式标明。本声明的法律责任由本人承担。

论文作者签名: <u>R. 涛</u> 日 期: 2004, 5,2]

关于学位论文使用授权的声明

本人完全了解山东大学有关保留、使用学位论文的规定,同意学校保留或向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅;本人授权山东大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其他复制手段保存论文和汇编本学位论文。

(保密论文在解密后应遵守此规定)

论文作者签名: **性** 导师签名: **201** 月 期: 201,5,2]

第一章 一类非线性椭圆型方程的双层网格差分方法

§1.1 引言

在文献 [1][2][3] 中已经提出了基于有限元的双层网格方法的思想以及离散技术、本章提出了基于差分的解非线性椭圆型方程的双层网格方法,它的主要思想是将问题分为粗网格上和细网格上两次求解,首先在粗网格上解原问题的离散的非线性方程,利用牛顿迭代法求得粗网格上的离散解 V_H . 再将粗网格进行剖分形成细网格,然后利用粗网格节点上的离散解 V_H 和牛顿插值公式来近似细网格节点上的解,记为 $(Iv)_h$. 将细网格节点上的离散差分格式中的非线性项在细网格点上的近似值 $(Iv)_h$. 上进行 Taylor 展开,然后只保留到一阶导数项,省略后面的高阶导数项,这使得原问题在细网格上就变成了线性方程,而解线性问题比解非线性问题要容易的多。这样双层网格差分方法比在细网格上直接利用牛顿迭代法解非线性问题要简单 [1] . 最后再利用上面求得的细网格节点上的差分解对非线性项的 Taylor 展开式中的二阶导数项作近似,通过这样的误差纠正可以使算法精确度提高 1-2 阶。

考虑如下的非线性椭圆型方程的第一类边值问题:

$$\begin{cases}
-\Delta u = f(x, y, u), & (x, y) \in G \\
u \mid_{\Gamma} = 0
\end{cases}$$
(1.1)

其中 G 为矩形区域 (a,b;c,d),函数 f 为足够光滑的. 为简单起见,我们在下面阐述中不再考虑 f(x,y,u) 对 x , y 的依赖.

我们假定上面方程至少有一个解 $u \in H_0^1(G) \cap H^2(G)$, 并且 f 满足两个条件 $\frac{\partial f}{\partial u} \leq 0$ 和 $\frac{\partial^2 f}{\partial u^2} \leq k(k)$ 为一正常数)[2].

引入符号,用 H_1 和 H_2 分别表示粗网格区域沿 x 方向和 y 方向的步长, H max (H_1 , H_2), h_1 和 h_2 分别表示细网格区域沿 x 方向和 y 方向的步长。 G_H 、 G_h 分别表示 G 的粗网格剖分和细网格剖分.以 V_H 表示粗网格区域 G_H 上的上差分解, $V_{i,j}$ 表示 V_H 在粗网格点(X_i,Y_j)处的值,以 v_h 表示细网格区域 G_h 上的差分解, $v_{m,n}$ 表示 v_h 在细网格结点(x_m,y_n)处的值。

引入记号:

$$\tilde{G}_{H} = \{(X_{i}, Y_{j}) | i = 0, 1, \dots, I, j = 0, 1, \dots, J, \}$$

$$G_{H} = \{(X_{i}, Y_{j}) | i = 1, 2, \dots, I - 1, j = 1, 2, \dots, J - 1, \}$$

$$G_{H}^{+} = \{(X_{i}, Y_{j}) | i = 1, 2, \dots, I, j = 1, 2, \dots, J, \}$$

$$(V_{i,j})_{\bar{x}} = \frac{V_{i,j} - V_{i-1,j}}{H_{1}}, \qquad (V_{i,j})_{\bar{y}} = \frac{V_{i,j} - V_{i,j-1}}{H_{2}}$$

$$(V_{i,j})_{x} = \frac{V_{i+1,j} - V_{i,j}}{H_{1}}, \qquad (V_{i,j})_{y} = \frac{V_{i,j+1} - V_{i,j}}{H_{2}}$$

对于给定在 G_H 上的网函数 V_H, W_H , 定义内积:

$$(V_H, W_H)_{\bar{G}_H} = \sum_{i=0}^{I} \sum_{j=0}^{J} V_{i,j} W_{i,j} H_1 H_2$$

$$(V_H, W_H)_{G_H} = \sum_{i=1}^{I-1} \sum_{j=1}^{J-1} V_{i,j} W_{i,j} H_1 H_2$$

$$(V_H, W_H)_{G_H^+} = \sum_{i=1}^{I} \sum_{j=1}^{J} V_{i,j} W_{i,j} H_1 H_2$$

引入范数:

$$||V_H||_{L^2(G_H)} = (V_h, V_h)_{\bar{G}_H}^{\frac{1}{2}}$$

$$||(V_H)_{\bar{x}}||_{L^2(G_H)} = ((V_H)_{\bar{x}}, (V_H)_{\bar{x}})_{G_H^+}^{\frac{1}{2}}$$

$$||(V_H)_{\bar{y}}||_{L^2(G_H)} = ((V_H)_{\bar{y}}, (V_H)_{\bar{y}})_{G_H^+}^{\frac{1}{2}}$$

同样在细网格空间中也引入上面类似的记号.

显然对定义在粗(细)网格空间中满足零边值条件的函数 V_H (v_h), 下面的不等式成立:

$$||V_H||_{L^2(G_H)}^2 \le C(||(V_H)_{\bar{x}}||_{L^2(G_H)}^2 + ||(V_H)_{\bar{y}}||_{L^2(G_H)}^2)$$
(1.2)

$$||v_h||_{L^2(G_h)}^2 \le C(||(v_h)_{\bar{x}}||_{L^2(G_h)}^2 + ||(v_h)_{\bar{y}}||_{L^2(G_h)}^2) \tag{1.3}$$

其中 C 为一正常数.

$\S 1.2$ 求解粗网格区域上的差分解 V_H

将区域 G 进行剖分,沿 x 方向均匀分为 I 份,沿 y 方向均匀分为 J 份,则 $H_1 = (b-a)/I$, $H_2 = (d-c)/J$, $X_i = a + iH_1, Y_j = b + jH_2$. 所得的网格节点记为 (X_i, Y_i) ,令差分解 V_H 在点 (X_i, Y_i) 处为 $V_{i,j}$.

将方程(1.1)用五点差分格式离散化得 粗网格上的求解格式:

$$-\Delta_{H}V_{i,j} = -\left[\frac{V_{i+1,j} - 2V_{i,j} + V_{i-1,j}}{H_{1}^{2}} + \frac{V_{i,j+1} - 2V_{i,j} + V_{i,j-1}}{H_{2}^{2}}\right] = f(X_{i}, Y_{j}, V_{i,j})$$

$$i = 1, 2, \dots, I - 1, \quad j = 1, 2, \dots, J - 1,$$

$$(2.1)$$

由边界条件得:

$$V_{i,J} = 0, V_{I,j} = 0, V_{i,0} = 0, V_{0,j} = 0$$

$$i = 0, 1, 2 \cdots I, \quad j = 0, 1, 2 \cdots J$$
(2.2)

我们将方程组 (2.1) 用矩阵记号写出, 定义如下:

$$\mathbf{V} = (V_{1,1}, \cdots, V_{I-1,1}, V_{1,2}, \cdots, V_{I-1,J-1})$$

并定义 $(J-1) \times (J-1)$ 块三对角矩阵

$$\mathbf{A} = \begin{pmatrix} \mathbf{B} & -\frac{H_1}{H_2} \mathbf{I} & \cdots & \Theta & \Theta \\ -\frac{H_1}{H_2} \mathbf{I} & \mathbf{B} & \cdots & \Theta & \Theta \\ \vdots & \vdots & & \vdots & \vdots \\ \Theta & \Theta & \cdots & \mathbf{B} & -\frac{H_1}{H_2} \mathbf{I} \\ \Theta & \Theta & \cdots & -\frac{H_1}{H_2} \mathbf{I} & \mathbf{B} \end{pmatrix}$$

其中 Θ 为 $(I-1) \times (I-1)$ 零矩阵, I 为 $(I-1) \times (I-1)$ 单位矩阵, B 为 $(I-1) \times (I-1)$ 矩阵

$$\mathbf{B} = \begin{pmatrix} 2(\frac{H_1}{H_2} + \frac{H_2}{H_1}) & -\frac{H_2}{H_1} & \cdots & 0 & 0 \\ -\frac{H_2}{H_1} & 2(\frac{H_1}{H_2} + \frac{H_2}{H_1}) & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 2(\frac{H_1}{H_2} + \frac{H_2}{H_1}) & -\frac{H_2}{H_1} \\ 0 & 0 & \cdots & -\frac{H_2}{H_1} & 2(\frac{H_1}{H_2} + \frac{H_2}{H_1}) \end{pmatrix}$$

于是方程组 (2.1) 可以写成

$$\mathbf{AV} - \Phi \mathbf{V} = \mathbf{0} \tag{2.3}$$

其中非线性算子 Φ 的第 i 个分量 ϕ_i 由下式确定:

$$\phi_i(\mathbf{V}) = H_1 H_2 f(kH_1, lH_2, V_i), \qquad i = l(I-1) + k \tag{2.4}$$

则矩阵 A 为对称的、不可约对角占优矩阵,并有正的对角元素。故矩阵 A 为对称正定的。

所以由文献 [6] 以及条件 $\frac{\partial f}{\partial x} \le 0$ 得, $AV - \Phi V = 0$ 有唯一解.

故 粗网格上求解格式 存在唯一解 V_H .

定理 1.1 粗网格上的求解格式的解 V_H 满足下面的误差估计式:

$$||u - V_H||_{L^2(G_H)} \le C_2 H^2$$

其中 C_2 为一正常数.

证明: 令 $E_{i,j} = u(X_i, Y_j) - V_{i,j}$, 将 (1.1) 式在点 (X_i, Y_j) 处展开并与 (2.1) 式作差得:

$$-\left[\frac{E_{i+1,j} - 2E_{i,j} + E_{i-1,j}}{H_1^2} + \frac{E_{i,j+1} - 2E_{i,j} + E_{i,j-1}}{H_2^2}\right] - \frac{1}{12}\left[H_1^2 \frac{\partial^4 u(X_i, Y_j)}{\partial x^4} + H_2^2 \frac{\partial^4 u(X_i, Y_j)}{\partial y^4}\right]$$

$$= f(X_i, Y_j, u(X_i, Y_j)) - f(X_i, Y_j, V_{i,j}) + O(H^4)$$
(2.5)

令 R_H 为 (1.1) 式与 (2.1) 式的截断误差,则:

$$R_{i,j} = \frac{1}{12} \left[H_1^2 \frac{\partial^4 u(X_i, Y_j)}{\partial x^4} + H_2^2 \frac{\partial^4 u(X_i, Y_j)}{\partial y^4} \right] + O(H^4)$$
 (2.6)

因此 $\|R_H\|_{L^2(G_H)} \le C_1 H^2$, 其中 C_1 为一正常数. $R_H = (R_{1,1}, R_{2,1}, \cdots, R_{I-1,J-1})^T$.

由中值定理知:存在 ξ_{i,j} 使得:

$$f(X_i, Y_j, u(X_i, Y_j)) - f(X_i, Y_j, V_{i,j}) = \frac{\partial f}{\partial u}(X_i, Y_j, \xi_{i,j}) E_{i,j}$$
 (2.7)

故 (2.5) 式可变为:

$$-\left[\frac{E_{i+1,j} - 2E_{i,j} + E_{i-1,j}}{H_1^2} + \frac{E_{i,j+1} - 2E_{i,j} + E_{i,j-1}}{H_2^2}\right] = \frac{\partial f}{\partial u}(X_i, Y_j, \xi_{i,j})E_{i,j} + R_{i,j}$$
(2.8)

方程 (2.8) 两边同乘 $H_1H_2E_{i,j}$, 并且关于 i, j 求和得:

$$\frac{H_2}{H_1} \sum_{j=1}^{J-1} \sum_{i=1}^{I-1} (2E_{i,j}^2 - E_{i+1,j} E_{i,j} - E_{i-1,j} E_{i,j}) + \frac{H_1}{H_2} \sum_{j=1}^{J-1} \sum_{i=1}^{I-1} (2E_{i,j}^2 - E_{i,j+1} E_{i,j} - E_{i,j-1} E_{i,j})$$

$$= \sum_{j=1}^{J-1} \sum_{i=1}^{I-1} \frac{\partial f}{\partial u}(X_i, Y_j, \xi_{i,j}) H_1 H_2 E_{i,j}^2 + \sum_{j=1}^{J-1} \sum_{i=1}^{I-1} R_{i,j} E_{i,j} H_1 H_2$$

注意到 $E_H \mid_{\Gamma} = 0$,整理上式可得:

$$\sum_{j=1}^{J} \sum_{i=1}^{I} \left(\frac{E_{i,j} - E_{i-1,j}}{H_1} \right)^2 H_1 H_2 + \sum_{j=1}^{J} \sum_{i=1}^{I} \left(\frac{E_{i,j} - E_{i,j-1}}{H_2} \right)^2 H_1 H_2$$

$$= \sum_{j=1}^{J} \sum_{i=1}^{I} \frac{\partial f}{\partial u}(X_i, Y_j, \xi_{i,j}) H_1 H_2 E_{i,j}^2 + \sum_{j=1}^{J} \sum_{i=1}^{I} R_{i,j} E_{i,j} H_1 H_2$$

由 $\frac{\partial f}{\partial u}(x,y,u) \leq 0$ 得:

$$((E_H)_{\bar{x}}, (E_H)_{\bar{x}})_{G_H^+} + ((E_H)_{\bar{y}}, (E_H)_{\bar{y}})_{G_H^+} \le (R_H, E_H)_{G_H}$$
(2.9)

其中 $E_H = (E_{1,1}, E_{2,1}, \cdots, E_{I-1,J-1})^T$. 即:

$$||(E_H)_{\bar{x}}||_{L^2(G_H)}^2 + ||(E_H)_{\bar{y}}||_{L^2(G_H)}^2 \le (R_H, E_H)_{G_H}$$

$$\le ||R_H||_{L^2(G_H)} \cdot ||E_H||_{L^2(G_H)}$$

利用上节不等式可得:

$$||E_H||_{L^2(G_H)}^2 \le C(||(E_H)_{\bar{x}}||_{L^2(G_H)}^2 + ||(E_H)_{\bar{y}}||_{L^2(G_H)}^2)$$

$$\le C||R_H||_{L^2(G_H)} \cdot ||E_H||_{L^2(G_H)}$$

所以:

$$||E_H||_{L^2(G_H)} \le C||R_H||_{L^2(G_H)} \le CC_1H^2$$
 (2.10)

取 $C_2 = CC_1$. 定理证毕.

$\S 1.3$ 求解细网格区域上的差分解 v_h

首先对粗网格进行细剖分,将每个粗网格沿 x 方向均匀剖分为 M 份,沿 y 方向均匀剖分为 N 份. 然后把所得的所有结点进行整体编号,记为 (x_m,y_n) . 令细网格 x 方向的步长为 h_1 , y 方向的步长为 h_2 则 $H_1 = Mh_1, H_2 = Nh_2$.

令差分解 v_h 在点 (x_m, y_n) 处为 $v_{m,n}$.其中 $m=1,2,\cdots MI$ $n=1,2,\cdots NJ$ 我们取 i 为 m 关于 M 的商数,余数为 s ,取 j 为 n 关于 N 的商数,余数为 t .则我 们可知细网格节点 (x_m, y_n) 位于粗网格节点 (X_i, Y_j) 、 (X_i, Y_{j+1}) 、 (X_{i+1}, Y_j) 、 (X_{i+1}, Y_{j+1}) 所围成的一个粗网格区域内,且在此粗网格内的局部坐标为 (s, t) .

由牛顿差值公式得:

$$u(x_{m}, y_{n}) = \frac{s}{M}u(X_{i+1}, y_{n}) + \frac{M-s}{M}u(X_{i}, y_{n}) + \frac{\partial u}{\partial x}(x_{m}, y_{n})\frac{(M-s)s}{M^{2}}H_{1}^{2} + O(H_{1}^{3})$$

$$u(X_{i+1}, y_{n}) = \frac{t}{N}u(X_{i+1}, Y_{i+1}) + \frac{N-t}{N}u(X_{i+1}, Y_{j}) + \frac{\partial u}{\partial y}(X_{i+1}, y_{n})\frac{(N-t)t}{N^{2}}H_{2}^{2} + O(H_{2}^{3})$$

$$u(X_{i}, y_{n}) = \frac{t}{N}u(X_{i}, Y_{i+1}) + \frac{N-t}{N}u(X_{i}, Y_{j}) + \frac{\partial u}{\partial y}(X_{i}, y_{n})\frac{(N-t)t}{N^{2}}H_{2}^{2} + O(H_{2}^{3})$$

整理上面三式可得:

$$u(x_m, y_n) = \frac{st}{MN} u(X_{i+1}, Y_{j+1}) + \frac{s(N-t)}{MN} u(X_{i+1}, Y_j)$$

$$+ \frac{(M-s)t}{MN} u(X_i, Y_{j+1}) + \frac{(M-s)(N-t)}{MN} u(X_i, Y_j) + a_{m,n} + O(H^3)$$
(3.1)

其中

$$a_{m,n} = \frac{\partial u}{\partial x}(x_m, y_n) \frac{(M-s)s}{M^2} H_1^2 + \frac{\partial u}{\partial y}(X_{i+1}, y_n) \frac{(N-t)t}{N^2} H_2^2 + \frac{\partial u}{\partial y}(X_i, y_n) \frac{(N-t)t}{N^2} H_2^2$$

令:

$$(Iv)_{m,n} = \frac{st}{MN} V_{i+1,j+1} + \frac{s(N-t)}{MN} V_{i+1,j} + \frac{(M-s)t}{MN} V_{i,j+1} + \frac{(M-s)(N-t)}{MN} V_{i,j}$$
(3.2)

则:

$$u(x_m, y_n) - (Iv)_{m,n} = \frac{st}{MN} E_{i+1,j+1} + \frac{s(N-t)}{MN} E_{i+1,j} + \frac{(M-s)t}{MN} E_{i,j+1} + \frac{(M-s)(N-t)}{MN} E_{i,j} + a_{m,n} + O(H^3)$$

$$(3.3)$$

由边值条件及内积与范数的定义得:

$$||u - (Iv)_h||_{L^2(G_h)}^2 \le 6\left[\frac{s^2t^2}{M^2N^2}||E_H||_{L^2(G_h)}^2 + \frac{s^2(N-t)^2}{M^2N^2}||E_H||_{L^2(G_h)}^2 + \frac{(M-s)^2t^2}{M^2N^2}||E_H||_{L^2(G_h)}^2 + \frac{(M-s)^2(N-t)^2}{M^2N^2}||E_H||_{L^2(G_h)}^2 + a_{m,n}^2 + O(H^6)\right]$$

$$(3.4)$$

由 $\|E_H\|_{L^2(G_H)} \le C_2 H^2$,得: $\|E_H\|_{L^2(G_h)} \le C_2 H^2$ 因此

$$||u - (Iv)_h||_{L^2(G_h)} \le 6C_2C_3H^2 = C_4H^2$$

其中

$$C_{3} = max(\frac{st}{MN}, \frac{(M-s)t}{MN}, \frac{s(N-t)}{MN}, \frac{(M-s)(N-t)}{MN}, |\frac{\partial u}{\partial x}(x_{m}, y_{n})\frac{(M-s)s}{M^{2}}|.$$

$$|\frac{\partial u}{\partial y}(X_{i+1}, y_{n})\frac{(N-t)t}{N^{2}}|, |\frac{\partial u}{\partial y}(X_{i}, y_{n})\frac{(N-t)t}{N^{2}}|), \qquad C_{4} = 6C_{2}C_{3}$$

由 Taylor 展开知存在 $w_{m,n}$, 使得:

$$f(x_m, y_n, u(x_m, y_n)) = f(x_m, y_n, (Iv)_{m,n}) + \frac{\partial f}{\partial u}(x_m, y_n, (Iv)_{m,n})(u(x_m, y_n) - (Iv)_{m,n}) + \frac{\partial^2 f}{2\partial u^2}(x_m, y_n, w_{m,n})(u(x_m, y_n) - (Iv)_{m,n})^2$$

$$(3.5)$$

则我们可得 细网格上的求解格式为:

$$\begin{cases}
-\Delta_h v_{m,n} = -\left[\frac{v_{m+1,n} - 2v_{m,n} + v_{m-1,n}}{h_1^2} + \frac{v_{m,n+1} - 2v_{m,n} + v_{m,n-1}}{h_2^2}\right] \\
= f(x_m, y_n, (Iv)_{m,n}) + \frac{\partial f}{\partial u}(x_m, y_n, (Iv)_{m,n})(u_{m,n} - (Iv)_{m,n}) \\
m = 1, 2, 3, \dots MI - 1, n = 1, 2, 3, \dots NJ - 1 \\
v_{m,NJ} = 0, v_{MI,n} = 0, v_{m,0} = 0, v_{0,n} = 0
\end{cases}$$
(3.6)

则将 (1.1) 与 (3.6) 比较可得截断误差

$$r_{m,n} = \frac{h_1^2}{12} \frac{\partial^4 u(x_m, y_n)}{\partial x^4} + \frac{h_2^2}{12} \frac{\partial^4 u(x_m, y_n)}{\partial y^4}$$

$$+ \frac{\partial^2 f}{\partial u^2}(x_m, y_n, w_{m,n})[u(x_m, y_n) - (Iv)_{m,n}]^2 + O(h^4)$$
因此:
$$||r_h||_{L^2(G_h)} \le C_5 ||[u - (Iv)_h]^2||_{L^2(G_h)} + O(h^2)$$

$$\le C_5 ||u - (Iv)_h||_{L^2(G_h)}^2 + O(h^2)$$

$$\le C_6 (h^2 + H^4)$$

$$(3.7)$$

其中 $r_h = (r_{1,1}, r_{2,1}, \dots, r_{MI-1,NJ-1})^T$, C_5, C_6 为正常数.

定理 1.2 细网格上的求解格式的解 v_h 为存在唯一的且满足下面的误差估计式:

$$||u-v_h||_{L^2(G_h)} \le C_7(h^2+H^4)$$

其中 C7 为一正常数。

证明: 将 (3.6) 式变形, 令:

$$L_{h}v_{m,n} = \left(\frac{2}{h_{1}^{2}} + \frac{2}{h_{2}^{2}}\right)v_{m,n} - \frac{1}{h_{1}^{2}}v_{m+1,n} - \frac{1}{h_{1}^{2}}v_{m-1,n} - \frac{1}{h_{2}^{2}}v_{m,n+1} - \frac{1}{h_{2}^{2}}v_{m,n-1}$$

$$-\frac{\partial f}{\partial u}(x_{m}, y_{n}, (Iv)_{m,n})v_{m,n}$$

$$= f(x_{m}, y_{n}, (Iv)_{m,n}) - \frac{\partial f}{\partial v}(x_{m}, y_{n}, (Iv)_{m,n})(Iv)_{m,n}$$
(3.8)

经过这样的变形后, (3.8) 式为一线性方程组,设其系数矩阵为 D,则 D为对称对角占优矩阵,所以由极值原理得 (3.8) 式只有唯一的解。

记:

$$q_{m,n} = \frac{\partial f}{\partial u}(x_m, y_n, (Iv)_{m,n}) \le 0,$$

$$g_{m,n} = f(x_m, y_n, (Iv)_{m,n}) - \frac{\partial f}{\partial u}(x_m, y_n, (Iv)_{m,n})(Iv)_{m,n}$$

则 (3.8) 式可化为:

$$L_h v_{m,n} = -((v_{m,n})_{\bar{x}})_x - ((v_{m,n})_{\bar{y}})_y - q_{m,n} v_{m,n} = q_{m,n}$$

估计差分解 v_h 收敛速度, 令:

$$e_{m,n} = u(x_m, y_n) - v_{m,n}$$

则:

$$\begin{cases} L_h e_{m,n} = r_{m,n} \\ m = 1, 2, 3, \dots, MI - 1, n = 1, 2, 3, \dots, NJ - 1, \\ e_{m,NJ} = 0, e_{MI,n} = 0, e_{m,0} = 0, e_{0,n} = 0 \end{cases}$$
(3.9)

(3.9) 式两端同乘 $h_1h_2e_{m,n}$, 且关于 m,n 求和得:

$$\sum_{n=1}^{NJ} \sum_{m=1}^{MI} \left(\frac{e_{m,n} - e_{m-1,n}}{h_1} \right)^2 h_1 h_2 + \sum_{n=1}^{NJ} \sum_{m=1}^{MI} \left(\frac{e_{m,n} - e_{m,n-1}}{h_2} \right)^2 h_1 h_2$$

$$= \sum_{n=1}^{NJ} \sum_{m=1}^{MI} q_{m,n} e_{m,n}^2 h_1 h_2 + \sum_{n=1}^{NJ} \sum_{m=1}^{MI} r_{m,n} e_{m,n} h_1 h_2$$

由 $q_{m,n} \leq 0$ 得:

$$((e_h)_{\bar{x}}, (e_h)_{\bar{x}})_{G_h^+} + ((e_h)_{\bar{y}}, (e_h)_{\bar{y}})_{G_h^+} \le (r_h, e_h)_{G_h}$$
(3.10)

再利用第一节的不等式可得:

$$||e_h||_{L^2(G_h)}^2 \le C(||(e_h)_{\bar{x}}||_{L^2(G_h)}^2 + ||(e_h)_{\bar{y}}||_{L^2(G_h)}^2) \le C||r_h||_{L^2(G_h)}||e_h||_{L^2(G_h)}$$

故:

$$||e_h||_{L^2(G_h)} \le C||r_h||_{L^2(G_h)} \le CC_6(h^2 + H^4)$$

取 $C_7 = CC_6$.

定理证毕.

§1.4 误差修正

我们由上两节讨论可得:

$$||u - V_H||_{L^2(G_h)} \le C_1 H^2, ||u - v_h||_{L^2(G_h)} \le C_7 (h^2 + H^4)$$

所以: $||v_h - V_H||_{L^2(G_h)} \le C_1 H^2$ 由: $||u - (Iv)_h|| \le C_4 H^2$ 得:

$$||v_h - (Iv)_h|| \le C_8 H^2 \tag{4.1}$$

·其中 $C_8 = C_7 + C_4$.

由 Taylor 展开式,存在 ℑ_{m,n} 使 (3.5) 式可修改为:

$$f(x_m, y_n, u(x_m, y_n)) = f(x_m, y_n, (Iv)_{m,n}) + \frac{\partial f}{\partial u}(x_m, y_n, (Iv)_{m,n})(u(x_m, y_n) - (Iv)_{m,n})$$

$$+ \frac{\partial^2 f}{2\partial u^2}(x_m, y_n, (Iv)_{m,n})(u(x_m, y_n) - (Iv)_{m,n})^2$$

$$+ \frac{\partial^3 f}{6\partial u^3}(x_m, y_n, \Im_{m,n})(u(x_m, y_n) - (Iv)_{m,n})^3$$

则细网格上 (3.6) 式的截断误差变为:

$$r_{m,n} = \frac{h_1^2}{12} \frac{\partial^4 u(x_m, y_n)}{\partial x^4} + \frac{h_2^2}{12} \frac{\partial^4 u(x_m, y_n)}{\partial y^4} + \frac{1}{2} \frac{\partial^2 f}{\partial u^2} (x_m, y_n, (Iv)_{m,n}) (u(x_m, y_n) - (Iv)_{m,n})^2 + \frac{1}{6} \frac{\partial^3 f}{\partial u^3} (x_m, y_n, \Im_{m,n}) (u(x_m, y_n) - (Iv)_{m,n})^3 + O(h^4)$$

$$L_{h}\bar{e}_{m,n} = \left(\frac{2}{h_{1}^{2}} + \frac{2}{h_{2}^{2}}\right)\bar{e}_{m,n} - \frac{1}{h_{1}^{2}}\bar{e}_{m+1,n} - \frac{1}{h_{1}^{2}}\bar{e}_{m-1,n} - \frac{1}{h_{2}^{2}}\bar{e}_{m,n+1} - \frac{1}{h_{2}^{2}}\bar{e}_{m,n-1}$$
$$-\frac{\partial f}{\partial u}(x_{m}, y_{n}, (Iv)_{m,n})\bar{e}_{m,n}$$
$$= \frac{\partial^{2} f}{\partial u^{2}}(x_{m}, y_{n}, (Iv)_{m,n})(v_{m,n} - (Iv)_{m,n})^{2} \tag{4.2}$$

且:

$$\bar{e}_{m,NJ} = 0, \bar{e}_{MI,n} = 0, \bar{e}_{m,0} = 0, \bar{e}_{0,n} = 0$$

下面取:

$$\bar{r}_{m,n} = r_{m,n} - \frac{\partial^2 f}{2\partial u^2} (x_m, y_n, (Iv)_{m,n}) (v_{m,n} - (Iv)_{m,n})^2$$

$$= \frac{1}{2} \frac{\partial^2 f}{\partial u^2} (x_m, y_n, (Iv)_{m,n}) [(u(x_m, y_n) - (Iv)_{m,n})^2 - (v_{m,n} - (Iv)_{m,n})^2] + \frac{1}{6} \frac{\partial^3 f}{\partial u^3} (x_m, y_n, \Im_{m,n}) (u(x_m, y_n) - (Iv)_{m,n})^3 + O(h^2)$$

$$= \frac{1}{2} \frac{\partial^2 f}{\partial u^2}(x_m, y_n, (Iv)_{m,n})[u(x_m, y_n) - v_{m,n}][(u(x_m, y_n) - (Iv)_{m,n}) + (v_{m,n} - (Iv)_{m,n})]$$

$$+ \frac{1}{6} \frac{\partial^3 f}{\partial u^3}(x_m, y_n, \Im_{m,n})(u(x_m, y_n) - (Iv)_{m,n})^3 + O(h^2)$$
(4.3)

故:

$$\|\bar{r}_{h}\|_{L^{2}(G_{h})} \leq \|\frac{1}{2}\frac{\partial^{2}f}{\partial u^{2}}(x,y,(Iv)_{h})[u-v_{h}][(u-(Iv)_{h})+(v_{h}-(Iv)_{h})]\|_{L^{2}(G_{h})}$$

$$+\|\frac{1}{6}\frac{\partial^{3}f}{\partial u^{3}}(x,y,\Im)(u-(Iv)_{h})\|_{L^{2}(G_{h})}^{3}+O(h^{2}) \tag{4.4}$$

其中 $\bar{r}_h = (\bar{r}_{1,1}, \bar{r}_{2,1}, \dots, \bar{r}_{MI-1,NJ-1})^T$ 由条件 $\frac{\partial^2 f}{\partial u^2} \le k$ 得:

$$\|\bar{r}_h\|_{L^2(G_h)} \leq \frac{k}{2} \|[u - v_h][(u - (Iv)_h) + (v_h - (Iv)_h)]\|_{L^2(G_h)} + C_9(h^2 + H^6)$$

其中 C_9 为一正常数.

因为:

$$\begin{aligned} \|[u-v_h][(u-(Iv)_h)+(v_h-(Iv)_h)]\|_{L^2(G_h)} \\ &\leq \|u-v_h\|_{L^2(G_h)} \cdot [\|(u-(Iv)_h)\|_{L^2(G_h)} + \|(v_h-(Iv)_h)\|_{L^2(G_h)}] \\ &\leq C_7(h^2+H^4) \cdot [C_4(H^2)+C_8(H^2)] \\ &\leq C_7C_8(h^2+H^6) \end{aligned}$$

所以:

$$\|\bar{r}_h\|_{L^2(G_h)} \le \bar{C}(h^2 + H^6)$$
 (4.5)

其中 $\tilde{C} \approx C_7 C_8 + C_9$.

定理 1.3 误差修正格式的解 \bar{e} 满足下面的式子:

$$||u - (v_h + \bar{e}_h)||_{L^2(G_h)} \le \hat{C}(h^2 + H^6)$$

其中 \hat{C} 为一正常数.

证明: 令 $\hat{e}_{m,n} = u(x_m, y_n) - (v_{m,n} + \bar{e}_{m,n})$ 可得:

$$\begin{cases} L_h \hat{e}_{m,n} = \bar{r}_{m,n} \\ m = 1, 2, 3, \dots, MI + 1, n = 1, 2, 3, \dots, NJ - 1. \end{cases}$$

$$\hat{e}_{m,n} \mid_{\Gamma} = 0$$
(4.6)

(4.6) 式两端同乘 $h_1h_2\hat{e}_{m,n}$, 且关于 m,n 求和得:

$$\sum_{n=1}^{NJ} \sum_{m=1}^{MI} \left(\frac{\hat{e}_{m,n} - \hat{e}_{m-1,n}}{h_1} \right)^2 h_1 h_2 + \sum_{n=1}^{NJ} \sum_{m=1}^{MI} \left(\frac{\hat{e}_{m,n} - \hat{e}_{m,n-1}}{h_2} \right)^2 h_1 h_2$$

$$= \sum_{n=1}^{NJ} \sum_{m=1}^{MI} q_{m,n} \hat{e}_{m,n}^2 h_1 h_2 + \sum_{n=1}^{NJ} \sum_{m=1}^{MI} r_{m,n} \hat{e}_{m,n} h_1 h_2$$

所以:

$$((\hat{e}_h)_{\bar{x}}, (\hat{e}_h)_{\bar{x}})_{G_h^+} + ((\hat{e}_h)_{\bar{y}}, (\hat{e}_h)_{\bar{y}})_{G_h^+} \le (\bar{r}_h, \hat{e}_h)_{G_h}$$

$$(4.7)$$

同样由第一节不等式可得:

$$\|\hat{e}_h\|_{L^2(G_h)} \le C\|r_h\|_{L^2(G_h)} \le C\bar{C}(h^2 + H^6)$$
 (4.8)

取 $\hat{C} = C\bar{C}$. 定理证毕.

§1.5 数值实例

在这一节我们将用一个简单例子的数值实验结果来验证双层网格差分方法。我们引入的这个模型问题是:

$$-\triangle u = f(x, y) - u^2, (x, y) \in G$$
$$u = 0. \quad (x, y) \in \partial G$$

在这里区域 G 是单位正方形 $(0,1)\times(0,1)$,并且函数 f 是满足问题的精确解为 $u=sin\pi x sin\pi y$ 的函数. 则我们可以求得函数 f 为:

$$f = 2\pi^2 \sin\pi x \sin\pi y + \sin^2\pi x \sin^2\pi y$$

首先我们对区域 G 进行粗网格剖分,在 x 方向和 y 方向上的步长我们取为 $H_1 = H_2 = \frac{1}{4}$,则我们需要求 9 个粗网格内节点上的差分解。在粗网格节点上我们用牛顿迭代法解模型问题的非线性离散形式 [6].则我们可以得到如表 1 中的部分粗网格节点的数值结果 [8].

表 1 粗网格节点上的部分数值结果

(x,y)	(0.25, 0.25)	(0.5, 0.25)	(0.5,0.5)	(0.25, 0.75)
u	5.0000E-1	7.0711E-1	1.0000	5.0000E-1
V_H	5.3193E-1	7.4185E-1	1.0225	5.3193E-1
$ u-V_H $	3.193E-2	3.474E-2	2.250E-2	3.193E-2

我们可以求得 $||u - V_H||_{L^2} = 2.425E - 2$,而 $H^2 = 6.25E - 2$,所以我们求得的 V_H 是满足我们前面的理论的.

下面我们再将粗网格剖分成细网格,为了比较数值结果,我们将粗网格剖分为三种不同的份数。

(1) 我们将粗网格沿 x 方向,y 方向均匀分为 4 份,即满足 $h = H^2 = 6.25E - 2$,然后我们按照细网格上的方法先对细网格上的解进行近似得到 $(Iv)_h$,我们可以求得 $\|u - (Iv)_h\|_{L^2} = 8.996E - 2$,然后将 $(Iv)_h$ 在各个节点的值代入方程组 (3.6) 中,进行整理后解这个线性方程组可得细网格节点上的细网格差分解 v_h ,然后再利用我们的误差修正式,可以求得 v_h 的修正 $v_h + \bar{e}_h$. 所得部分节点的数值解如下表所示:

表 2 $h = H^2$ 时细网格节点上的部分数值结果

(x,y)	(6.25E-2,6.25E-2)	(0.5, 0.125)	(0.5,0.5)	(0.625, 0.875)
u	3.8060E-2	3.8268E-1	1.0000	3.5355E-1
v_h	3.8188E-2	3.8405E-1	1.0036	3.5494E-1
$v_h + \bar{e}_h$	3.818 3 E-1	3.8372E-1	1.0019	3.5478E-1
$ u-v_h $	1.283E-4	1.368E-3	3.60E-3	1.387E-3
$ u-(v_h+\bar{e}_h) $	1.237E-4	1.048E-3	1.90E-3	1.233E-3

我们还可求得 $||u-v_h||_{L^2}=1.929E-3$, $||u-(v_h+\bar{e}_h)||_{L^2}=1.496E-3$. 另外 $h^2=H^4=3.90625E-3$.

(2) 将粗网格沿 x 方向, y 方向均匀分为 8 份,所以 $h = \frac{H^2}{2}$. 采用与 (1) 中相同的步骤可得下表结果:

	及5 在一									
(x.y)	(6.25E-2.6.25E-2)	(0.5.0.125)	(0.5,0.5)	(0.625, 0.875)						
u	3.806023E-2	3.826834E-1	1.000000	3.535532E-1						
v_h	3.810115E-2	3.813795E-1	1.001395	3.541442E-1						
$v_h + \bar{e}_h$	3.808906E-1	3.829700E-1	1.000739	3.538178E-1						
$ u-v_h $	4.092E-5	4.961E-4	1.395E-3	5.910E-4						
$ u-(v_h+\bar{e}_h) $	2.883E-5	2.866E-4	7.394E-4	2.646E-4						

表 3 $h = \frac{H^2}{2}$ 时细网格节点上的部分数值结果

我们还可求得 $||u-v_h||_{L^2}=8.182E-4$. $||u-(v_h+\bar{e}_h)||_{L^2}=3.716E-4$. 另外 $H^4=3.90625E-3$, $h^2=9.765625E-4$.

(3) 将粗网格沿 x 方向, y 方向均匀分为 16 份, 所以 $h = H^3$. 采用与 (1) 中相同的步骤可得下表结果:

表 4 $h = H^3$ 时细网格节点上的部分数值结果

The state of the s								
(x,y)	(6.25E-2,6.25E-2)	(0.5, 0.125)	(0.5,0.5)	(0.625, 0.875)				
\overline{u}	3.806023E-2	3.826834E-1	1.000000	3.535532E-1				
v_h	3.807921E-2	3.829595E-1	1.000823	3.539436E-1				
$v_h + \vec{e}_h$	3.806736E-1	3.827539E-1	1.000181	3.536180E-1				
$ u-v_h $	1.898E-5	2.761E-4	8.234E-4	3.904E-4				
$ u-(v_h+\bar{e}_h) $	7.133E-6	7.049E-5	1.811E-4	6.473E-5				

我们还可求得 $||u-v_h||_{L^2}=5.500E-4$, $||u-(v_h+\bar{e}_h)||_{L^2}=9.088E-5$. 另外 $H^4=3.906E-3$, $h^2=H^6=2.441E-4$.

第二章 一类非线性抛物型方程的双层网格差分方法

§2.1 引 言

这种双重网格差分法的思想是将抛物型问题分为空间粗细网格上的两次求解,在空间粗网格上利用显格式解原问题的离散方程,求得粗网格上的差分解 V_H. 这种情况下此格式不需求解方程组. 然后将空间粗网格剖分形成空间细网格,利用上面求得的粗网格节点上的解 V_H 来近似细网格上的方程的非线性项. 这样原问题在空间细网格上就可以利用对称格式求解,而且对网比的要求也没有限制. 这种方法还提高了差分解的精确度.

考虑如下的非线性抛物型方程的初边值问题:

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + f(x, y, u), & (x, y) \in G, 0 < t < T \\ u(x, y; 0) = \varphi(x, y) \\ u|_{\Gamma} = 0 \end{cases}$$
(1.1)

其中 G 为矩形区域 (a,b;c,d), Γ 为 G 的边界,函数 f 为足够光滑的. 为简单起见,我们在下面阐述中不再考虑 f(x,y,u) 对 x , y 的依赖.

我们假定上面方程至少有一个解 $u \in H_0^1(G) \cap H^2(G)$,并且 f 满足条件 $\frac{\partial f}{\partial u} \leq 0$ 与 $\frac{\partial^2 f}{\partial u^2}$ 有界.

用 τ 表示时间步长、时间 $t_k = k\tau$,以 V_H^k 表示时刻 $t = k\tau$ 时粗网格空间区域 G_H 上的上差分解, $V_{i,j}^k$ 表示 V_H^k 在时刻 $t = k\tau$ 时粗网格点(X_i,Y_j)处的值,以 v_n^k 表示时刻 $t = k\tau$ 时细网格区域 G_h 上的差分解, $v_{m,n}^k$ 表示 v_n^k 在时刻 $t = k\tau$ 时细网格结点(x_m,y_n)处的值、

$\S 2.2$ 求解粗网格区域上的差分解 V_H^k

将空间区域 G 进行剖分,沿 x 方向均匀分为 I 份,沿 y 方向均匀分为 J 份,则 $H_1 = (b-a)/I$, $H_2 = (d-c)/J$. $X_i = a+iH_1, Y_i = b+jH_2$ 所得的结点记为 (X_i, Y_i) ,令差分解 V_H^k 在点 $(X_i, Y_j, k\tau)$ 处为 $V_{i,j}^k$.

下面给出 粗网格上的求解格式:

$$\begin{cases}
\frac{V_{i,j}^{k+1} - V_{i,j}^{k}}{\tau} = \frac{V_{i+1,j}^{k} - 2V_{i,j}^{k} + V_{i-1,j}^{k}}{H_{1}^{2}} + \frac{V_{i,j+1}^{k} - 2V_{i,j}^{k} + V_{i,j-1}^{k}}{H_{2}^{2}} + f(X_{i}, Y_{j}, V_{i,j}^{k}) \\
V_{i,j}^{0} = \varphi(X_{i}, Y_{j}), \\
V_{0,j}^{k} = V_{I,j}^{k} = V_{i,0}^{k} = V_{i,J}^{k} = 0
\end{cases}$$
(2.1)

其中 $i=1,2,3,\dots,I-1$, $j=1,2,3,\dots,J-1$, 以 $r_1=\tau/H_1^2$, $r_2=\tau/H_2^2$ 表示网比. 将上式改写成便于计算的形式,使第 k 层值(上标为 k)在等式右边,第 k+1 层值在等式的左边,则得:

$$V_{i,j}^{k+1} = (1 - 2r_1 - 2r_2)V_{i,j}^k + r_1V_{i+1,j}^k + r_1V_{i-1,j}^k$$
$$+r_2V_{i,j+1}^k + r_2V_{i,j-1}^k + \tau f(X_i, Y_j, V_{i,j}^k)$$
(2.2)

取 k=0 ,则利用初值 $V_{i,j}^0=\varphi(X_i,Y_j)$ 和边值 $V_{0,j}^k=V_{i,j}^k=V_{i,0}^k=V_{i,j}^k=0$,可由上式算出第一层值 $V_{i,j}^1$,再取 k=1 ,则又可利用 $V_{i,j}^1$ 和边值条件可计算出 $V_{i,j}^2$.如此下去,即可逐层算出所有 $V_{i,j}^k$,并视 $V_{i,j}^k$ 为真解 $u(X_i,Y_j,t_k)$ 的近似.将 (2.2) 式看成网点 (X_i,Y_j,t_k) 处的差分方程,它联系第 (k+1) 层的点 (X_i,Y_j,t_{k+1}) 和第 k 层的点 (X_{i+1},Y_j,t_k) , (X_{i-1},Y_j,t_k) , (X_i,Y_{j+1},t_k) , (X_i,Y_{j-1},t_k) 及 (X_i,Y_j,t_k) ,第 k 层的点分布如图.

$$Lu = \frac{\partial u}{\partial t} - \Delta u - f(x, y, v)$$

$$L_H V_{i,j}^k = \frac{V_{i,j}^{k+1} - V_{i,j}^k}{\tau} - \frac{V_{i+1,j}^k - 2V_{i,j}^k + V_{i-1,j}^k}{H_1^2} - \frac{V_{i,j+1}^k - 2V_{i,j}^k + V_{i,j-1}^k}{H_2^2} - f(X_i, Y_j, V_{i,j}^k)$$

则得 (2.2) 式的截断误差 [3]:

$$R_{i,j}^{k} = L_{H}u(X_{i}, Y_{j}, t_{k}) - [Lu]_{i,j}^{k}$$

$$= -\tau \left[\frac{1}{12r_1} + \frac{1}{12r_2} - \frac{1}{2}\right] \left(\frac{\partial^2 \tilde{u}}{\partial t^2}\right)_{i,j}^k + o(\tau^2 + H^2)$$

$$= O(\tau + H^2) \tag{2.3}$$

其中 $(\frac{\partial^2 \bar{u}}{\partial t^2})_{i,j}^k$ 是 $\frac{\partial^2 u}{\partial t^2}$ 在立方体 $X_{i-1} < x < X_{i+1}, Y_{j-1} < y < Y_{j+1}, t_k < t < t_{k+1}$ 中某点的值.

$$\Leftrightarrow E_{i,j}^k = u(X_i, Y_j, t_k) - V_{i,j}^k$$
 则:

$$[Lu]_{i,j}^{k} - L_{H}V_{i,j}^{k} = L_{H}E_{i,j}^{k} - R_{i,j}^{k} = f(X_{i}, Y_{j}, u(X_{i}, Y_{j}, t_{k})) - f(X_{i}, Y_{j}, V_{i,j}^{k})$$
(2.4)

由 Taylor 展开式可得,存在 $\tilde{u}_{i,j}^k$ 使得:

$$f(X_i, Y_j, u(X_i, Y_j, t_k)) - f(X_i, Y_j, V_{i,j}^k) = \frac{\partial f}{\partial u}(X_i, Y_j, \tilde{u}_{i,j}^k) \cdot E_{i,j}^k$$
(2.5)

记: $a_{i,j}^k = \frac{\partial f}{\partial u}(X_i, Y_j, \tilde{u}_{i,j}^k)$, 则 (2.4) 式可变为:

$$E_{i,j}^{k+1} = (1 - 2r_1 - 2r_2 - a_{i,j}^k \tau) E_{i,j}^k + r_1 E_{i+1,j}^k + r_1 E_{i-1,j}^k$$

$$+ r_2 E_{i,j+1}^k + r_2 E_{i,j-1}^k + \tau R_{i,j}^k$$
(2.6)

利用零边值条件可得:

$$||E^{k+1}||_{L^2(G_H)} \le (|1-2r_1-2r_2|+2r_1+2r_2+a\tau)||E^k||_{L^2(G_H)} + \tau ||R^k||_{L^2(G_H)}$$
(2.7)

其中 $a = max(|a_{i,j}^k|)$.

引理 2.1 误差方程 (2.6) 式按初值稳定的充分条件是

$$(r_1 + r_2) \le \frac{1}{2} \tag{2.8}$$

证明: 此时 $R^k=0$,

$$||E^{k+1}||_{L^{2}(G_{H})} \leq (|1-2r_{1}-2r_{2}|+2r_{1}+2r_{2}+a\tau)||E^{k}||_{L^{2}(G_{H})}$$

$$\leq (|1-2r_{1}-2r_{2}|+2r_{1}+2r_{2}+a\tau)^{2}||E^{k-1}||_{L^{2}(G_{H})}$$

$$\cdots$$

$$\leq (|1-2r_{1}-2r_{2}|+2r_{1}+2r_{2}+a\tau)^{k+1}||E^{0}||_{L^{2}(G_{H})}$$
(2.9)

显然若差分格式 (2.6) 按初值稳定,当且只当存在 $\tau_0 > 0$ 和常数 K > 0 使得:

$$(|1 - 2r_1 - 2r_2| + 2r_1 + 2r_2 + a\tau)^k \le K, 0 < \tau \le \tau_0, 0 < k\tau \le T$$
(2.10)

故为使格式按初值稳定,需满足不等式(2.9).

不妨设 K>1,并取 $k=\left[\frac{T}{\tau}\right](\left[\frac{T}{\tau}\right]$ 表示 T/τ 的整数部分),由条件 (2.8) 得:

$$(|1 - 2\tau_1 - 2\tau_2| + 2\tau_1 + 2\tau_2 + a\tau)^k = (1 + a\tau)^k$$

$$\leq (1 + a\tau)^{\frac{T}{\tau}} \leq K$$

故: 引理得证.

下面讨论差分格式 (2.6) 按右端稳定的概念,如果存在 $\tau_0 > 0$ 和常数 K > 0 使不等式

$$||E^{k+1}|| \le K_1 \max_{0 \le i \le k} ||R^i|| \tag{2.11}$$

对一切 $0 < \tau \le \tau_0, 0 < k\tau \le T$ 成立, 其中 E^k 是方程 (2.6) 与初值条件 $E^0 = 0$ 的解.

定理 2.1 误差方程 (2.6) 式在条件 (2.8) 下按右端稳定.

证明: 此时认为初值没有误差即 $E^0=0$.

令 $b = |1 - 2r_1 - 2r_2| + 2r_1 + 2r_2 + a\tau$ 反复利用 (2.7) 式得:

$$||E^{k+1}||_{L^{2}(G_{H})} \leq b||E^{k}||_{L^{2}(G_{H})} + \tau \max_{0 < i \leq k} ||R^{i}||_{L^{2}(G_{H})}$$

$$\leq b^{2}||E^{k-1}||_{L^{2}(G_{H})} + (b+1)\tau \max_{0 < i \leq k} ||R^{i}||_{L^{2}(G_{H})}$$

$$\cdots$$

$$\leq (b^{k} + b^{k-1} + \dots + b + 1)\tau \max_{0 < i \leq k} ||R^{i}||_{L^{2}(G_{H})}$$
(2.12)

由引理 2.1 知:存在常数 K,使 $b^k \le K$,则:

$$\|E^{k+1}\|_{L^2_{G_H}} \leq \tau(k+1)K \max_{0 < i \leq k} \|R^i\|_{L^2(G_H)} \leq TK \max_{0 < i \leq k} \|R^i\|_{L^2(G_H)}$$

取 $K_1 = TK$, 定理证毕.

由 $R_{i,j}^k = O(\tau + H^2)$ 可得: $||R^k|| = O(\tau + H^2)$ 所以:

$$||E^k|| \le K_1 \max_{0 < i \le k} ||R^i|| \le K_1(\tau + H^2)$$
(2.13)

$\S 2.3$ 求解细网格区域上的差分解 v_h^k

首先对第 k 层的空间粗网格进行细剖分,将每个空间粗网格沿 x 方向均匀剖分为 M 份,沿 y 方向均匀剖分为 N 份。然后把所得的所有结点进行整体编号,记为 (x_m,y_n,t_k) 。 令细网格 x 方向的步长为 h_1 , y 方向的步长为 h_2 则 $H_1=Mh_1,H_2=Nh_2$.

令差分解 v_n^k 在点 (x_m, y_n, t_k) 处为 $v_{m,n}^k$. 其中 $m=1,2,\cdots,MI$, $n=1,2,\cdots,NJ$, $k=0,1,2,\cdots$, 我们取 i 为 m 关于 M 的商数,余数为 s ,取 j 为 n 关于 N 的商数,余数为 l . 则我们可知第 k 层的细网格节点 (x_m,y_n,t_k) 位于该层的粗网格节点 (X_i,Y_j,t_k) 、 (X_i,Y_{j+1},t_k) 、 (X_{i+1},Y_j,t_k) 、 (X_{i+1},Y_{j+1},t_k) 所围成的一个空间粗网格区域内,且在此粗网格内的空间局部坐标为 (s,l) .

由牛顿差值公式得 [4]:

$$u(x_m, y_n, t_{k+\frac{1}{2}}) = \frac{u(x_m, y_n, t_{k+1}) + u(x_m, y_n, t_k)}{2} + O(\tau^2), t_{k+\frac{1}{2}} = (k + \frac{1}{2})\tau$$

在第 k+1 层:

$$u(x_m, y_n, t_{k+1}) = \frac{sl}{MN} u(X_{i+1}, Y_{j+1}, t_{k+1}) + \frac{s(N-l)}{MN} u(X_{i+1}, Y_j, t_{k+1}) + \frac{(M-s)l}{MN} u(X_i, Y_{j+1}, t_{k+1}) + \frac{(M-s)(N-l)}{MN} u(X_i, Y_j, t_{k+1}) + O(H^2)$$
 、(3.1) 在第 k 层上:

$$u(x_m, y_n, t_k) = \frac{sl}{MN} u(X_{i+1}, Y_{j+1}, t_k) + \frac{s(N-l)}{MN} u(X_{i+1}, Y_j, t_k) + \frac{(M-s)l}{MN} u(X_i, Y_{j+1}, t_k) + \frac{(M-s)(N-l)}{MN} u(X_i, Y_j, t_k) + O(H^2)$$
(3.2)

所以:

$$u(x_{m}, y_{n}, t_{k+\frac{1}{2}}) = \frac{1}{2} \left[\frac{sl}{MN} u(X_{i+1}, Y_{j+1}, t_{k+1}) + \frac{s(N-l)}{MN} u(X_{i+1}, Y_{j}, t_{k+1}) + \frac{(M-s)l}{MN} u(X_{i}, Y_{j+1}, t_{k+1}) + \frac{(M-s)(N-l)}{MN} u(X_{i}, Y_{j}, t_{k+1}) + \frac{sl}{MN} u(X_{i+1}, Y_{j+1}, t_{k}) + \frac{s(N-l)}{MN} u(X_{i+1}, Y_{j}, t_{k}) + \frac{(M-s)l}{MN} u(X_{i}, Y_{j+1}, t_{k}) + \frac{(M-s)(N-l)}{MN} u(X_{i}, Y_{j}, t_{k}) \right] + O(\tau^{2} + H^{2})$$

$$(3.3)$$

令;

$$(Iv)_{m,n}^{k+\frac{1}{2}} = \frac{1}{2} \left[\frac{sl}{MN} (V_{i+1,j+1}^k + V_{i+1,j+1}^{k+1}) + \frac{s(N-l)}{MN} (V_{i+1,j}^{k+1} + V_{i+1,j}^k) + \frac{(M-s)l}{MN} (V_{i,j+1}^{k+1} + V_{i,j+1}^k) + \frac{(M-s)(N-l)}{MN} (V_{i,j}^{k+1} + V_{i,j}^k) \right]$$

$$(3.4)$$

则:

$$||u^{k+\frac{1}{2}} - (Iv)_h^{k+\frac{1}{2}}||_{L^2(G_h)} \le C_1(||E^k||_{L^2(G_h)} + ||E^{k+1}||_{L^2(G_h)}) + O(\tau^2 + H^2)$$
 (3.6)

其中 C_1 为一正常数.

由
$$||E^k||_{L^2(G_H)} \le K_1(\tau + H^2)$$
,得: $||E^k||_{L^2(G_h)} \le K_1(\tau + H^2)$
因此取 $C_2 = 2C_1K_1$ 为一正常数,则:

$$||u^{k+\frac{1}{2}} - (Iv)_{h}^{k+\frac{1}{2}}||_{L^{2}(G_{h})} \le C_{2}(\tau + H^{2}) + O(\tau^{2} + H^{2}) \le C_{3}(\tau + H^{2})$$
(3.7)

其中 C_3 为一正常数.

由 Taylor 展开,存在 $\bar{v}_{m,n}^{k+\frac{1}{2}}$,使得:

$$f(x_m, y_n, u(x_m, y_n, t_{k+\frac{1}{2}})) = f(x_m, y_n, (Iv)_{m,n}^{k+\frac{1}{2}})$$

$$+\frac{\partial f}{\partial u}(x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}})(u(x_{m}, y_{n}, t_{k+\frac{1}{2}}) - (Iv)_{m,n}^{k+\frac{1}{2}}) +\frac{\partial^{2} f}{\partial u^{2}}(x_{m}, y_{n}, \tilde{v}_{m,n}^{k+\frac{1}{2}})(u(x_{m}, y_{n}, t_{k+\frac{1}{2}}) - (Iv)_{m,n}^{k+\frac{1}{2}})^{2}$$

$$(3.8)$$

下面给出 细网格上的求解格式:

$$\frac{v_{m,n}^{k+1} - v_{m,n}^{k}}{\tau} = \frac{1}{2h_{1}^{2}} \left[v_{m+1,n}^{k+1} - 2v_{m,n}^{k+1} + v_{m-1,n}^{k+1} + v_{m+1,n}^{k} - 2v_{m,n}^{k} + v_{m-1,n}^{k} \right]
+ \frac{1}{2h_{2}^{2}} \left[v_{m,n+1}^{k+1} - 2v_{m,n}^{k+1} + v_{m,n-1}^{k+1} + v_{m,n+1}^{k} - 2v_{m,n}^{k} + v_{m,n-1}^{k} \right] (3.9)
+ f(x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}}) + \frac{\partial f}{\partial u} (x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}}) \left[\frac{v_{m,n}^{k} + v_{m,n}^{k+1}}{2} - (Iv)_{m,n}^{k+\frac{1}{2}} \right]$$

其中 $m = 1, 2, 3, \dots MI - 1, n = 1, 2, 3, \dots NJ - 1, k = 0, 1, 2, \dots$

原问题的初边值条件可表示为:

$$v_{m,n}^0 = \varphi(x_m, y_n), \tag{3.10}$$

$$v_{0,n}^{k} = v_{MI-1,n}^{k} = v_{m,0}^{k} = v_{m,NJ-1}^{k} = 0, (3.11)$$

今.

$$\begin{split} L_h v_{m,n}^k &= \frac{v_{x_m,y_n}^{k+1} - v_{x_m,y_n}^k}{\tau} - \frac{1}{2h_1^2} [v_{m+1,n}^{k+1} - 2v_{m,n}^{k+1} + v_{m-1,n}^{k+1}] \\ &- \frac{1}{2h_1^2} [v_{m+1,n}^k - 2v_{m,n}^k + v_{m-1,n}^k] - \frac{1}{2h_2^2} [v_{m,n+1}^{k+1} - 2v_{m,n}^{k+1} + v_{m,n-1}^{k+1}] \\ &- \frac{1}{2h_2^2} [v_{m,n+1}^k - 2v_{m,n}^k + v_{m,n-1}^k] - \frac{\partial f}{\partial u} (x_m, y_n, (Iv)_{m,n}^{k+\frac{1}{2}}) \frac{v_{m,n}^k + v_{m,n}^{k+1}}{2} \end{split}$$

引入误差估计 $e_{m,n}^k = u(x_m, y_n, t_k) - v_{m,n}^k$, 利用 Taylor 展开式, 将 (1.1) 式在 $(x_m, y_n, t_{k+\frac{1}{2}})$ 处展开并由 (3.9) 式得:

$$L_{h}e_{m,n}^{k} = f(x_{m}, y_{n}, u(x_{m}, y_{n}, t_{k+\frac{1}{2}})) - f(x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}}) + O(\tau^{2} + h^{2})$$

$$-\frac{\partial f}{\partial u}(x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}}) \left[\frac{v(x_{m}, y_{n}, t_{k}) + v(x_{m}, y_{n}, t_{k+1})}{2} - (Iv)_{m,n}^{k+\frac{1}{2}}\right]$$

$$= \frac{\partial^{2} f}{\partial u^{2}}(x_{m}, y_{n}, \tilde{v}_{m,n}^{k+\frac{1}{2}}) (u(x_{m}, y_{n}, t_{k+\frac{1}{2}}) - (Iv)_{m,n}^{k+\frac{1}{2}})^{2} + O(\tau^{2} + h^{2})$$
(3.12)

令:

$$r_{m,n}^{k} = \frac{\partial^{2} f}{\partial u^{2}}(x_{m}, y_{n}, v_{m,n}^{k+\frac{1}{2}})(u(x_{m}, y_{n}, t_{k+\frac{1}{2}}) - (Iv)_{m,n}^{k+\frac{1}{2}})^{2} + O(\tau^{2} + h^{2})$$

由 $\frac{\partial^2 f}{\partial u^2}$ 有界及 (3.7) 式得:

$$||r^{k}||_{L^{2}(G_{h})} \leq C_{4}||(u^{k+\frac{1}{2}} - (Iv)_{h}^{k+\frac{1}{2}})^{2}||_{L^{2}(G_{h})} + O(\tau^{2} + h^{2})$$

$$\leq C_{4}||u^{k+\frac{1}{2}} - (Iv)_{h}^{k+\frac{1}{2}}||_{L^{2}(G_{h})}^{2} + O(\tau^{2} + h^{2})$$

$$\leq C_{5}(\tau^{2} + h^{2} + H^{4})$$

$$(3.13)$$

其中 C_4, C_5 为正常数, $r^k = (r_{1,1}^k, r_{2,1}^k, \dots, r_{MI-1,NJ-1}^k)$.

定理 2.2 格式 (3.9) 的解 v_h^k 满足下面的误差估计:

$$||u^k - v_h^k||_{L^2(G_h)} \le C_8(\tau^2 + h^2 + H^4)$$
 (3.14)

其中 C_8 为一正常数.

证明: 令 $\bar{r}_1 = \tau/h_1^2$, $\bar{r}_2 = \tau/h_2^2$, 整理 (3.12) 式可得:

$$(1 + \bar{r}_1 + \bar{r}_2 - \frac{\partial f}{\partial u}(x_m, y_n, (Iv)_{m,n}^{k+\frac{1}{2}})\tau)e_{m,n}^{k+1} - \frac{\bar{r}_1}{2}e_{m+1,n}^{k+1} - \frac{\bar{r}_1}{2}e_{m-1,n}^{k+1} - \frac{\bar{r}_2}{2}e_{m,n+1}^{k+1} - \frac{\bar{r}_2}{2}e_{m,n-1}^{k+1}$$

$$= (1 - \bar{r}_1 - \bar{r}_2 + \frac{\partial f}{\partial u}(x_m, y_n, (Iv)_{m,n}^{k+\frac{1}{2}})\tau)e_{m,n}^k + \frac{\bar{r}_1}{2}e_{m+1,n}^k + \frac{\bar{r}_1}{2}e_{m-1,n}^k$$

$$+ \frac{\bar{r}_2}{2}e_{m,n+1}^k + \frac{\bar{r}_2}{2}e_{m,n-1}^k + r_{m,n}^k\tau$$

$$(3.15)$$

利用 Fourier 方法,可以求得增长因子:

$$|G| = |G(\alpha h_1, \beta h_2)|$$

$$\leq (1 - 2\bar{r}_1\sin^2\frac{\alpha h_1}{2} - 2\bar{r}_2\sin^2\frac{\beta h_2}{2} + C_6\tau)(1 + 2\bar{r}_1\sin^2\frac{\alpha h_1}{2} + 2\bar{r}_2\sin^2\frac{\beta h_2}{2})^{-1}$$

其中: $\alpha = \frac{2\pi p}{b-a}, \beta = \frac{2\pi q}{d-c}, C_6$ 为一正常数.

显然:

$$|G| \le 1 + O(\tau) \tag{3.16}$$

故 (3.15) 式按初值和右端项稳定, 因此与上节相似推导可得:

$$||e^{k+1}||_{L^2(G_h)} \le C_7 ||r^k||_{L^2(G_h)} \le C_7 C_5 (\tau^2 + h^2 + H^4)$$

定理证毕.

§2.4 误差修正

我们由上两节讨论可得,

$$||u^k - V_H^k||_{L^2} \le K_1(\tau + H^2), ||u^k - v_h^k||_{L^2} \le C_8(\tau^2 + h^2 + H^4)$$

所以: $||v_h^k - V_H^k|| \le K_1(\tau + H^2)$

由 Taylor 展开式,存在 $\Im_{m,n}^{k+\frac{1}{2}}$ 使得 (3.8) 式可修改为:

$$f(x_{m}, y_{n}, u(x_{m}, y_{n}, t_{k+\frac{1}{2}})) = f(x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}})$$

$$+ \frac{\partial f}{\partial u}(x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}})(u(x_{m}, y_{n}, t_{k+\frac{1}{2}}) - (Iv)_{m,n}^{k+\frac{1}{2}})$$

$$+ \frac{\partial^{2} f}{2\partial u^{2}}(x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}})(u(x_{m}, y_{n}, t_{k+\frac{1}{2}}) - (Iv)_{m,n}^{k+\frac{1}{2}})^{2}$$

$$+ \frac{\partial^{3} f}{6\partial u^{3}}(x_{m}, y_{n}, \Im_{m,n}^{k+\frac{1}{2}})(u(x_{m}, y_{n}, t_{k+\frac{1}{2}}) - (Iv)_{m,n}^{k+\frac{1}{2}})^{3}$$

$$(4.1)$$

则 k 层细网格上 (3.13) 式的截断误差可修改为:

$$\begin{split} r_{m,n}^{k} &= \frac{\partial^{2} f}{2 \partial u^{2}}(x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}})(u(x_{m}, y_{n}, t_{k+\frac{1}{2}}) - (Iv)_{m,n}^{k+\frac{1}{2}})^{2} \\ &+ \frac{\partial^{3} f}{6 \partial u^{3}}(x_{m}, y_{n}, \Im_{m,n}^{k+\frac{1}{2}})(u(x_{m}, y_{n}, t_{k+\frac{1}{2}}) - (Iv)_{m,n}^{k+\frac{1}{2}})^{3} + O(\tau^{2} + h^{2}) \end{split}$$

令 ēh 为误差纠正,下面为 误差修正的求解格式::

$$L_{h}\bar{e}_{m,n}^{k} = \frac{\partial^{2} f}{2\partial u^{2}}(x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}})(\frac{v_{m,n}^{k+1} + v_{m,n}^{k}}{2} - (Iv)_{m,n}^{k+\frac{1}{2}})^{2}$$
(4.2)

且:

$$\bar{e}_{m,n}^{0} = \varphi(x_{m}, y_{n})$$

$$\bar{e}_{i,NJ}^{k} = \bar{e}_{i,0}^{k} = \bar{e}_{0,i}^{k} = \bar{e}_{MI,i}^{k} = 0$$
(4.3)

定理 2.3~(4.2) 式求得的误差修正 e^{k} 满足下式:

$$||u^k - (v_h^k + \bar{e}^k)|| \le C(\tau^2 + h^2 + H^6)$$
 (4.4)

其中 C 为一正常数.

证明: 取:

$$\bar{r}_{m,n}^{k} = r_{m,n}^{k} - \frac{\partial^{2} f}{2\partial u^{2}} (x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}}) (\frac{v_{m,n}^{k+1} + v_{m,n}^{k}}{2} - (Iv)_{m,n}^{k+\frac{1}{2}})^{2}$$

$$= \frac{\partial^{2} f}{2\partial u^{2}} (x_{m}, y_{n}, (Iv)_{m,n}^{k+\frac{1}{2}}) F_{m,n}^{k} [(u(x_{m}, y_{n}, t_{k+\frac{1}{2}}) - (Iv)_{m,n}^{k+\frac{1}{2}}) + (\frac{v_{m,n}^{k+1} + v_{m,n}^{k}}{2} - (Iv)_{m,n}^{k+\frac{1}{2}})]$$

$$+ O(\tau^{2} + h^{2} + H^{6}) \tag{4.5}$$

其中:

$$F_{m,n}^{k} = u(x_m, y_n, t_{k+\frac{1}{2}}) - \frac{v_{m,n}^{k+1} + v_{m,n}^{k}}{2}$$

由于:

$$||F^k||_{L^2} \le ||u^k - v_h^k||_{L^2} \le C_8(\tau^2 + h^2 + H^4)$$

根据条件 $\frac{\partial^2 f}{\partial u^2}$ 为有界得:

$$||r^{k}||_{L^{2}} \leq C_{9}||F^{k}||_{L^{2}}(||u^{k+\frac{1}{2}} - (Iv)^{k+\frac{1}{2}}||_{L^{2}} + ||u^{k} - v_{h}^{k}||_{L^{2}} + ||\frac{v^{k} + v^{k+1}}{2} - v^{k+\frac{1}{2}}||_{L^{2}})$$

$$+O(\tau^{2} + h^{2} + H^{6})$$

$$\leq C_{10}(\tau^{2} + h^{2} + H^{6})$$

$$\leq C_{10}(\tau^{2} + h^{2} + H^{6})$$

$$(4.6)$$

其中 C_9 , C_{10} 为正常数.

由 (3.12) 与 (4.2) 式, 并令
$$\hat{e}_{m,n}^k = u(x_m, y_n, t_k) - (v_{m,n}^k + \bar{e}_{m,n}^k)$$
 可得

$$\begin{cases} L_{h}\hat{e}_{m,n}^{k} = \bar{r}_{m,n}^{k} \\ m = 1, 2, 3, \dots, MI - 1, n = 1, 2, 3, \dots, NJ - 1, \\ \hat{e}^{k} \mid_{\Gamma} = 0 \end{cases}$$
(4.7)

采用定理 2.2 的证明方法可得上面定理.

§2.5 数值实例

在这一节我们将用一个简单例子的数值实验结果来验证非线性抛物型问题的双层网格差分方法.我们引入的这个模型问题是:

$$\frac{\partial u}{\partial t} = \Delta u + f(x, y) - u^2, (x, y) \in G, t \in (0, 1)$$

$$u(x, y, 0) = 0,$$
 $(x, y) \in \partial G$
$$u(0, y, t) = u(1, y, t) = u(x, 1, t) = u(x, 0, t) = 0$$

在这里区域 G 是单位正方形 $(0,1) \times (0,1)$,并且函数 f 是满足问题的精确解为 $u = tsin\pi x sin\pi y$ 的函数. 则我们可以求得函数 f 为:

$$f = (2\pi^2t + 1)sin\pi xsin\pi y + t^2sin^2\pi xsin^2\pi y$$

首先我们进行网格剖分,为了比较数值结果,我们将网格按两种分法进行剖分.

(1) 首先我们对区域 G 进行粗网格剖分,在 x 方向和 y 方向上的步长我们取为 $H_1 = H_2 = \frac{1}{4}$,时间步长 τ 取为 0.02.则我们需要求 50 个时间层的差分解.我们知道每层上有 9 个空间粗网格差分解.在每层的粗网格节点上我们用显格式解模型问题的离散形式得到我们每层的错网格差分解.这样我们可以得到如表 1 中的部分时间层和空间粗网格节点的数值结果 [6][8].

(x,y)	(0.25, 0.25)	(0.5, 0.25)	(0.5,0.5)	(0.25, 0.75)			
	u(x,y,t)	1.0000E-1	1.4142E-1	2.0000E-1	1.0000E-1			
t=0.2	V_H	1.0387E-1	1.4689E-1	2.0773E-1	1.0387E-1			
_	$ u-V_H $	3.873E-3	5.472E-3	7.727E-3	3.873E-3			
	u(x,y,t)	3.0000E-1	4.2426E-1	6.0000E-1	3.0000E-1			
t=0.6	V_H	3.1400E-1	4.4399E-1	6.2775E-1	3.1400E-1			
	$ u-V_H $	1.400E-2	1.972E-2	2.775E-2	1.400E-2			
	u(x,y,t)	5.0000E-1	7.0711E-1	1.0000	5.0000E-1			
t=1.0	V_H	5.2360E-1	7.4025E-1	1.0465	5.2360E-1			
	$ u-V_H $	2.360E-2	3.314E-2	4.649E-2	2.360E-2			

表 1 H=1时部分时间层粗网格节点上的数值结果

我们还可以得到如下结果:

$$||u^{10} - V_H^{10}||_{L^2} = 3.869E - 3, ||u^{30} - V_H^{30}||_{L^2} = 1.394E - 2$$
$$||u^{50} - V_H^{50}||_{L^2} = 2.343E - 2$$

下面我们再将空间粗网格进行剖分, 沿 x 方向和 y 方向将粗网格剖分为 4 份, 即 $h_1=h_2=\frac{1}{16}$. 我们利用前面求到的每层上的粗网格上的差分解 $V_{i,j}^k$ 来近似细网

格的中间值 $(Iv)_{m,n}^{k+\frac{1}{2}}$. 然后在细网格上的对称离散形式中的非线性项用与 $(Iv)_{m,n}^{k+\frac{1}{2}}$ 相关的线性函数来代替.

最后我们再利用上面求得的细网格上的解来进一步的近似右端项,这样我们经过误差纠正之后的细网格上的差分解会更精确.这样我们可以得到如表 2 中的部分时间层和空间细网格节点的数值结果.

表 $2 \quad h = H^2 = \frac{1}{16}$ 时部分时间层细网格节点上的数值结果

表 $2 n = n = \frac{16}{16}$ 的 即 7 的 的 6 短 的 6 医 6 E 6								
(x,y)	(6.25E-2,6.25E-2)	(0.5, 0.125)	(0.5,0.5)	(0.625, 0.875)				
u(x,y,t)	7.6120E-3	7.6537E-2	2.0000E-1	7.0711E-2				
v_h	7.6306E-3	7.6725E-2	2.0050E-1	7. 08 89E-2				
$v_h + \bar{e}_h$	7.6303E-3	7.6720E-2	2.0048E-1	7.0880E-2				
$ u-v_h $	1.853E-5	1.884E-4	4.950E-4	1.782E-4				
$ u-v_h-\bar{e}_h $	1.829E-5	1.835E-4	4.786E-4	1.696E-4				
u(x, y, t)	2.2836E-2	2.2961E-1	6.0000E-1	2.1213E-1				
v_h	2.2905E-2	2.3033E-1	6.01 90E -1	2.1284E-1				
$v_h + \bar{e}_h$	2.2902E-2	2.3026E-1	2.0170E-1	2.1274E-1				
$ u-v_h $	6.895E-5	7.181E-4	1.900E-3	7.061E-4				
$ u-v_h-\bar{e}_h $	6.544E-5	6.543E-4	1.698E-3	6.048E-4				
u(x,y,t)	3.8060E-2	3.8268E-1	1.0000	3.5355E-1				
v_h	3.8181E-2	3.8397E-1	1.0034E-1	3.5487E-1				
$v_h + \bar{e}_h$	3.8171E-2	3.8378E-1	1.0028E-1	3.5457E-1				
$ u-v_h $	1.212E-4	1.290E-3	3.434E-3	1.313E-3				
$ u-v_h-ar{e}_h $	1.106E-4	1.101E-3	2.845E-3	1.018E-3				
	(x,y) $u(x,y,t)$ v_h $v_h + \bar{e}_h$ $ u - v_h $ $ u - v_h - \bar{e}_h $ $ u - v_h $ v_h $ u - v_h $	$\begin{array}{c cccc} (x,y) & (6.25E-2,6.25E-2) \\ \hline u(x,y,t) & 7.6120E-3 \\ \hline v_h & 7.6306E-3 \\ \hline v_h + \bar{e}_h & 7.6303E-3 \\ \hline u-v_h & 1.853E-5 \\ \hline u-v_h-\bar{e}_h & 1.829E-5 \\ \hline u(x,y,t) & 2.2836E-2 \\ \hline v_h & 2.2905E-2 \\ \hline v_h + \bar{e}_h & 2.2902E-2 \\ \hline u-v_h & 6.895E-5 \\ \hline u-v_h-\bar{e}_h & 6.544E-5 \\ \hline u(x,y,t) & 3.8060E-2 \\ \hline v_h & 3.8181E-2 \\ \hline v_h + \bar{e}_h & 3.8171E-2 \\ \hline u-v_h & 1.212E-4 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(x,y) $(6.25E-2,6.25E-2)$ $(0.5,0.125)$ $(0.5,0.5)$ $u(x,y,t)$ $7.6120E-3$ $7.6537E-2$ $2.0000E-1$ v_h $7.6306E-3$ $7.6725E-2$ $2.0050E-1$ $v_h + \bar{e}_h$ $7.6303E-3$ $7.6720E-2$ $2.0048E-1$ $ u-v_h $ $1.853E-5$ $1.884E-4$ $4.950E-4$ $ u-v_h-\bar{e}_h $ $1.829E-5$ $1.835E-4$ $4.786E-4$ $u(x,y,t)$ $2.2836E-2$ $2.2961E-1$ $6.0000E-1$ v_h $2.2905E-2$ $2.3033E-1$ $6.0190E-1$ $ u-v_h+\bar{e}_h $ $2.2902E-2$ $2.3026E-1$ $2.0170E-1$ $ u-v_h-\bar{e}_h $ $6.895E-5$ $7.181E-4$ $1.900E-3$ $ u-v_h-\bar{e}_h $ $6.544E-5$ $6.543E-4$ $1.698E-3$ $u(x,y,t)$ $3.8060E-2$ $3.8268E-1$ 1.0000 v_h $3.8181E-2$ $3.8397E-1$ $1.0034E-1$ $v_h + \bar{e}_h$ $3.8171E-2$ $3.8378E-1$ $1.0028E-1$ $ u-v_h $ $1.212E-4$ $1.290E-3$ $3.434E-3$				

我们还可以求得以下结果:

$$||u^{10} - v_h^{10}||_{L^2} = 2.509E - 4. ||u^{10} - (v_h^{10} + \bar{e}^{10})||_{L^2} = 2.396E - 4$$

$$||u^{30} - v_h^{30}||_{L^2} = 9.854E - 4, ||u^{30} - (v_h^{30} + \bar{e}^{30})||_{L^2} = 8.519E - 4$$

$$||u^{50} - v_h^{50}||_{L^2} = 1.822E - 3, ||u^{50} - (v_h^{50} + \bar{e}^{50})||_{L^2} = 1.431E - 3$$

(2) 我们对区域 G 进行粗网格剖分, 在 x 方向和 y 方向上的步长我们取为 $H_1 = H_2 = \frac{1}{3}$, 时间步长 τ 取为 0.02. 则我们需要求 50 个时间层的差分解。我们知道每层上有 4 个空间粗网格差分解。在每层的粗网格节点上我们用显格式解

模型问题的离散形式得到我们每层的错网格差分解.这样我们可以得到如表 3 中的部分时间层和空间粗网格节点的数值结果。

(\mathbf{x},\mathbf{y})		(1/3,1/3)	(2/3,1/3)	(1/3,2/3)	(2/3,2/3)
	u(x,y,t)	1.5000E-1	1.5000E-1	1.5000E-1	1.5000E-1
t=0.2	V_H	1.6042E-1	1.6042E-1	1.6042E-1	1.6042E-1
	$ u-V_H $	1.042E-2	1.042E-3	1.042E-3	1.042E-3
	u(x,y,t)	4.5000E-1	4.5000E-1	4.5000E-1	4.5000E-1
t=0.6	V_H	4.8783E-1	4.8783E-1	4.8783E-1	4.8783E-1
	$ u-V_H $	3.783E-2	3.783E-2	3.783E-2	3.783E-2
	u(x,y,t)	7.5000E-1	7.5000E-1	7.5000E-1	7.5000E-1
t=1.0	V_H	8.1351E-1	8.1351E-1	8.1351E-1	8.1351E-1
	$ u-V_H $	6.351E-2	6.351E-2	6.351E-2	6.351E-2

表 3 H= 1 时部分时间层粗网格节点上的数值结果

我们还可以得到如下结果:

$$||u^{10} - V_H^{10}||_{L^2} = 6.947E - 3, ||u^{30} - V_H^{30}||_{L^2} = 2.522E - 2$$
$$||u^{50} - V_H^{50}||_{L^2} = 4.234E - 2$$

下面我们再将空间粗网格进行剖分,沿 x 方向和 y 方向将粗网格剖分为 9 份,即 $h_1 = h_2 = \frac{1}{27}$.我们利用前面求到的每层上的粗网格上的差分解 $V_{i,j}^k$ 来近似细网格的中间值 $(Iv)_{m,n}^{k+\frac{1}{2}}$. 然后在细网格上的对称离散形式中的非线性项用与 $(Iv)_{m,n}^{k+\frac{1}{2}}$ 相关的线性函数来代替.

最后我们再利用上面求得的细网格上的解来进一步的近似右端项,这样我们经过误差纠正之后的细网格上的差分解会更精确.这样我们可以得到表 4 中的部分时间层和空间细网格节点的数值结果.

表 4 $h = H^3 = \frac{1}{27}$ 时部分时间层细网格节点上的数值结果

山东大学硕士学位论文

(x,y)		(1/27,1/27)	(2/3,2/27)	(2/3,2/3)	(20/27,19/27)
	u(x,y,t)	2.6955E-3	3.9944E-2	1.5000E-1	1.1669E-1
	v_h	2.6980E-3	3.9983E-2	1.5019E-1	1.1684E-1
t=0.2	$v_h + \tilde{e}_h$	2.6978E-3	3.99770E-2	1.5013E-1	1.1679E-1
	$ u-v_h $	2.481E-6	3.945E-5	1.892E-4	1.471E-4
	$ u-v_h-\vec{e}_h $	2.272E-6	3.363E-5	1.260E-4	9.810E-5
	u(x,y,t)	8.0865E-3	1.1983E-1	4.5000E-1	3.5007E-1
	v_h	8.0974E-3	1.2002E-1	4.5112E-1	3.5041E-1
t=0.6	$v_h + \bar{e}_h$	$v_h + \bar{e}_h$ 8.0947E-2		4.5044E-1	3.5095E-1
	$ u - v_h $ 1.086E-5		1.925E-4 1.121E-3		8.797E-4
	$ u-v_h-ar{e}_h $	8.116E-6	1.197E-4	4.448E-4	3.467E-4
	u(x,y,t)	1.3478E-2	1.9972E-1	7.5000E-1	5.8344E-1
t=1.0	v_h	1.3499E-2	2.0013E-1	7.5268E-1	5.8555E-1
	$v_h + \bar{e}_h$	1.3491E-2	1.9992E-1	7.5074E-1	5.8402E-1
	$ u-v_h $	2.190E-5	4.155E-4	2.680E-3	2.110E-3
	$ u-v_h-\bar{e}_h $	1.367E-5	2.004E-4	7.351E-4	5.736E-4

我们还可以求得以下结果:

$$||u^{10} - v_h^{10}||_{L^2} = 1.071E - 4, ||u^{10} - (v_h^{10} + \bar{e}^{10})||_{L^2} = 8.405E - 5$$

$$||u^{30} - v_h^{30}||_{L^2} = 5.651E - 4, ||u^{30} - (v_h^{30} + \bar{e}^{30})||_{L^2} = 2.976E - 4$$

$$||u^{50} - v_h^{50}||_{L^2} = 1.282E - 3, ||u^{50} - (v_h^{50} + \bar{e}^{50})||_{L^2} = 4.951E - 4$$

参考文献

- Jinchao Xu. A Novel Two-grid Method For Semilinear Elliptic Equations. SIAM
 J.Numer Anal. Vol 15(1994). No.1. 172-184
- [2] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDES. SIAM J.Numer. Anal. Vol 33(1996). 1759-1777
- [3] Xu.Two grid finite element discretizations for linear and nonlinear elliptic equation, Tech, Report, AM105. Dept. of Mathematics, Pennsylvania State University, Universith Park, Yuly, 1992.
- [4] 李荣华, 冯果忱主编。微分方程数值方法。高等教育出版社。 1997
- [5] 蔡耀志主编. 数值逼近. 浙江大学出版社. 1991
- [6] 曹志浩主编. 矩阵计算和方程求根. 高等教育出版社。 1984
- [7] J.M. 奥特加, W.C. 莱茵博儿卡著. 多元非线性方程组迭代解法. 科学出版社. 1983
- [8] 桂良进,王军,董波著。 Fortran PowerStation V4.0 使用与编程、北京航空航天大学。 1999

致 谢

首先我要向我的导师芮洪兴教授表示衷心的感谢,感谢芮老师对我的毕业论文给予了精心的指导,帮助我顺利完成了整个论文的写作。在三年的硕士研究生期间,芮老师在学习和生活方面给予了我无微不至的关心和照顾,他严谨的治学作风、一丝不苟的科学态度和兢兢业业的敬业精神将使我终生受益。

我还要感谢袁益让教授、羊丹平教授、鲁统超教授、王文 洽教授、孙文涛副教授、杜宁老师,他们悉心的教导使我受益 匪浅,使我对专业知识有了更加深入的了解。

最后,向曾经给予我帮助的老师和同学表示诚挚的感谢。

学位论文评阅及答辩情况表

	姓	名	专业技术	职务	所	在	单	位	对论文	.总	体评价*
论文评阅人											
	姓	名	专业技术	职务	所	在	单	位		——	注
	主席										,
答辩委员会成	委										
员	员										
	详委员会 的总体:	会对论文 评价*		答辩和	必书			答	幹日期		
	各注									Í	

[※] 优秀为 "A"; 良好为 "B"; 合格为 "C"; 不合格为 "D"。