

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS DE CRATEÚS

CURSOS: CIÊNCIA DA COMPUTAÇÃO e SISTEMAS DE INFORMAÇÃO

DISCIPLINA: MATEMÁTICA BÁSICA

PROFESSORA: LÍLIAN DE OLIVEIRA CARNEIRO

Números Complexos

Em \mathbb{R}_+ a radiciação é uma operação, isto é, $\sqrt[n]{a} \in \mathbb{R}_+$ qualquer que seja a não negativo. Assim, por exemplo, $\sqrt{2}$, $\sqrt[3]{8}$ e $\sqrt[4]{8}$ são números reais.

Desde que o índice da raiz seja ímpar, os radicais da forma $\sqrt[n]{-a}$, com $a \in \mathbb{R}_+$, também representam números reais. É o caso, por exemplo, de $\sqrt[3]{-1}$ e $\sqrt[5]{-32}$.

Se o radicando é negativo e o índice da raiz é par, entretanto, o radical $\sqrt[n]{-a}$ não representa elemento de \mathbb{R} . Por exemplo, $\sqrt{-1}$ não é real, pois

$$\sqrt{-1} \Rightarrow -1 = x^2$$

e isto é impossível pois se $x \in \mathbb{R}$, então $x^2 \ge 0$.

Resolve-se definitivamente o problema de dar significado ao símbolo $\sqrt[n]{a}$, para todo número real a, introduzindo o conjunto dos números complexos (\mathbb{C}) do qual \mathbb{R} é um subconjunto.

Forma Algébrica

Um número complexo é um número z que pode ser escrito na forma z=a+bi, onde a é a parte real $(a \in Re(z))$, b é a parte imaginária $(b \in Im(z))$ e i é chamado de unidade imaginária. A unidade imaginária possui a seguinte propriedade $i^2=-1$.

Exemplo: Dado o número complexo z = -5 + 10i, temos Re(z) = -5 e Im(z) = 10.

Chama-se **real** todo número complexo cuja parte imaginária é nula. z = a + 0i é um exemplo de número real. Chama-se **imaginário puro** todo número complexo cuja parte real é nula e a imaginária não. $z = 0 + bi, b \neq 0$ é um exemplo de imaginário puro.

Operações:

- 1. **Igualdade**: $a + bi = c + di \Leftrightarrow a = c e b = d$;
- 2. **Adição**: (a+bi) + (c+di) = (a+c) + (b+d)i;
- 3. **Multiplicação**: $(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$.
- 4. Conjugado: $\overline{z} = a bi$;
- 5. Inverso Multiplicativo: $\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2}$
- 6. **Divisão**: Dados $z_1 = a + bi \neq 0$ e $z_2 = c + di$, temos:

$$\frac{z_2}{z_1} = \frac{c+di}{a+bi} = \frac{(c+di)(a-bi)}{(a+bi)(a-bi)} = \frac{ca+db}{a^2+b^2} + \frac{da-cb}{a^2+b^2}i$$