Anomalies and the Expected Market Return

Dong, Li, Rapach, and Zhou (2022)

Zirui Wang

McCombs School of Business

The University of Texas at Austin

March 31, 2022

Table of Contents

- Motivation
- 2 Intuition on Predictability
- Methodology
- 4 Data
- **6** Out-of-Sample Results
- 6 Conclusion

Table of Contents

- Motivation
- 2 Intuition on Predictability
- Methodology
- Data
- Out-of-Sample Results
- 6 Conclusion

- Two major lines of research in finance investigate
 - ▶ Whether firm characteristics can predict the cross-sectional dispersion in stock returns

- Two major lines of research in finance investigate
 - ▶ Whether firm characteristics can predict the cross-sectional dispersion in stock returns
 - ► The time-series predictability of the aggregate market excess return based on a variety of economic and financial variables

- Two major lines of research in finance investigate
 - ▶ Whether firm characteristics can predict the cross-sectional dispersion in stock returns
 - The time-series predictability of the aggregate market excess return based on a variety of economic and financial variables
- This paper investigates whether these two leading lines of the finance literature are linked

- Two major lines of research in finance investigate
 - ▶ Whether firm characteristics can predict the cross-sectional dispersion in stock returns
 - ► The time-series predictability of the aggregate market excess return based on a variety of economic and financial variables
- This paper investigates whether these two leading lines of the finance literature are linked
 - ► The ability of long-short anomaly portfolio returns from the cross-sectional literature to predict the market excess return

- This paper
 - examines 100 long-short anomaly portfolios

- This paper
 - examines 100 long-short anomaly portfolios
 - applies a variety of shrinkage techniques—including machine learning, forecast combination, and dimension reduction—to guard against overfitting the data in a high-dimensional setting.

- This paper
 - examines 100 long-short anomaly portfolios
 - applies a variety of shrinkage techniques—including machine learning, forecast combination, and dimension reduction—to guard against overfitting the data in a high-dimensional setting.
 - ▶ finds long-short anomaly returns strongly negatively predict the market return. The out-of-sample R^2 (R_{OS}^2) statistics are economically sizable, ranging from 0.89% to 2.81%.

Table of Contents

- 2 Intuition on Predictability

March 31, 2022

• Assume that the prices for the long and short legs of an anomaly portfolio contain a common martingale component and a stationary component

- Assume that the prices for the long and short legs of an anomaly portfolio contain a common martingale component and a stationary component
- The log return (in terms of price changes) in each leg is then given by

$$r_{l,t} = f_t + \Delta u_{l,t}$$
 for $l = L, S$

- Assume that the prices for the long and short legs of an anomaly portfolio contain a common martingale component and a stationary component
- The log return (in terms of price changes) in each leg is then given by

$$r_{I,t} = f_t + \Delta u_{I,t}$$
 for $I = L, S$

Assume that the long and short legs together comprise the market. Then

$$r_{M,t} = f_t + 0.5(\Delta u_{L,t} + \Delta u_{S,t})$$

• According to the Wold representation theorem, the stationary component in each leg related to mispricing (i.e., the pricing error) can be expressed as

$$u_{l,t} = \sum_{j=0}^{\infty} \psi_{l,j} v_{l,t-j}$$
 for $l = L, S$

• According to the Wold representation theorem, the stationary component in each leg related to mispricing (i.e., the pricing error) can be expressed as

$$u_{I,t} = \sum_{j=0}^{\infty} \psi_{I,j} v_{I,t-j}$$
 for $I = L, S$

• Example: $\psi_{S,1} = 0.9, \psi_{S,2} = 0.9, \psi_{S,j} = 0.9$ for $j \ge 3$

• According to the Wold representation theorem, the stationary component in each leg related to mispricing (i.e., the pricing error) can be expressed as

$$u_{l,t} = \sum_{j=0}^{\infty} \psi_{l,j} v_{l,t-j}$$
 for $l = L, S$

- Example: $\psi_{S,1} = 0.9, \psi_{S,2} = 0.9, \psi_{S,j} = 0.9$ for $j \ge 3$
- Taking the first difference of equation above, we obtain the expression for the change in mispricing

$$\Delta u_{l,t} = \sum_{j=0}^{\infty} \tilde{\psi}_{l,j} v_{l,t-j} \quad \text{for } l = L, S$$

where $\tilde{\psi}_{l,0}=\psi_{l,0}=1$ and $\tilde{\psi}_{l,j}=\psi_{l,j}-\psi_{l,j-1}$ for $j\geq 1$. Assume $\tilde{\psi}_{l,j}\leq 0$.

• Consider a predictive regression relating the long- or short-leg return of the anomaly portfolio to next period's market return

$$r_{M,t+1} = \alpha_I + \beta_I r_{I,t} + \varepsilon_{I,t+1}$$
 for $I = L, S$

• Consider a predictive regression relating the long- or short-leg return of the anomaly portfolio to next period's market return

$$r_{M,t+1} = \alpha_I + \beta_I r_{I,t} + \varepsilon_{I,t+1}$$
 for $I = L, S$

• We get the standardized slope coefficient

$$ilde{eta}_{I} = rac{0.5 cov(\Delta u_{I,t+1}, \Delta u_{I,t})}{\left[var(f_t) + var(\Delta u_{I,t})
ight]^{rac{1}{2}}}$$

• Consider a predictive regression relating the long- or short-leg return of the anomaly portfolio to next period's market return

$$r_{M,t+1} = \alpha_I + \beta_I r_{I,t} + \varepsilon_{I,t+1}$$
 for $I = L, S$

• We get the standardized slope coefficient

$$ilde{eta}_{I} = rac{0.5 cov(\Delta u_{I,t+1}, \Delta u_{I,t})}{\left[var(f_t) + var(\Delta u_{I,t})
ight]^{rac{1}{2}}}$$

We can also get

$$cov(\Delta u_{l,t+1}, \Delta u_{l,t}) = \left[(\psi_{l,1} - 1) + \sum_{j=1}^{\infty} (\psi_{l,j} - \psi_{l,j-1})(\psi_{l,j+1} - \psi_{l,j}) \right] var(v_{l,t})$$

for I = L, S

• We can write the changes in the level of mispricing for the current and next period as

$$\Delta u_{l,t} = v_{l,t} + \sum_{j=1}^{\infty} (\psi_{l,j} - \psi_{l,j-1}) v_{l,t-j}$$
 for $l = L, S$

$$\Delta u_{l,t+1} = v_{l,t+1} + (\psi_{l,1} - 1)v_{l,t} \sum_{j=2}^{\infty} (\psi_{l,j} - \psi_{l,j-1})v_{l,t-j}$$
 for $l = L, S$

• We can write the changes in the level of mispricing for the current and next period as

$$\Delta u_{l,t} = v_{l,t} + \sum_{j=1}^{\infty} (\psi_{l,j} - \psi_{l,j-1}) v_{l,t-j} \quad \text{for } l = L, S$$

$$\Delta u_{l,t+1} = v_{l,t+1} + (\psi_{l,1} - 1) v_{l,t} \sum_{i=2}^{\infty} (\psi_{l,j} - \psi_{l,j-1}) v_{l,t-j} \quad \text{for } l = L, S$$

 The consecutive changes in mispricing due to a new overpricing shock can generate negative serial dependence in the short-leg return. In contrast, old pricing shocks can produce positive serial dependence in the short-leg return.

Looking back to the covariance equation

$$cov(\Delta u_{l,t+1}, \Delta u_{l,t}) = \left[(\psi_{l,1} - 1) + \sum_{j=1}^{\infty} (\psi_{l,j} - \psi_{l,j-1}) (\psi_{l,j+1} - \psi_{l,j}) \right] var(v_{l,t})$$
 for $l = L, S$

Looking back to the covariance equation

$$cov(\Delta u_{l,t+1}, \Delta u_{l,t}) = \left[(\psi_{l,1} - 1) + \sum_{j=1}^{\infty} (\psi_{l,j} - \psi_{l,j-1}) (\psi_{l,j+1} - \psi_{l,j}) \right] var(v_{l,t})$$
for $l = L, S$

• For it to be the case that $cov(\Delta u_{l,t+1}, \Delta u_{l,t}) > 0$, the return **momentum** generated by the correction of the overpricing induced by old shocks needs to outweigh the magnitude of the return **reversal** generated by the immediate correction of the overpricing induced by a new shock.

$$\sum_{i=1}^{\infty} (\psi_{l,j} - \psi_{l,j-1})(\psi_{l,j+1} - \psi_{l,j}) > -(\psi_{l,1} - 1)$$

• Next, consider a predictive regression based on the long-short anomaly portfolio return

$$r_{M,t+1} = \alpha_{LS} + \beta_{LS}r_{LS,t} + \varepsilon_{LS,t+1}$$
 for $I = L, S$

• Next, consider a predictive regression based on the long-short anomaly portfolio return

$$r_{M,t+1} = \alpha_{LS} + \beta_{LS}r_{LS,t} + \varepsilon_{LS,t+1}$$
 for $I = L, S$

• We get the standardized slope coefficient

$$\tilde{\beta}_{LS} = \frac{0.5[cov(\Delta u_{L,t+1}, \Delta u_{L,t}) - cov(\Delta u_{S,t+1}, \Delta u_{S,t})]}{\left[var(\Delta u_{L,t}) + var(\Delta u_{S,t})\right]^{\frac{1}{2}}}$$

• Next, consider a predictive regression based on the long-short anomaly portfolio return

$$r_{M,t+1} = \alpha_{LS} + \beta_{LS}r_{LS,t} + \varepsilon_{LS,t+1}$$
 for $I = L, S$

• We get the standardized slope coefficient

$$\tilde{\beta}_{LS} = \frac{0.5[cov(\Delta u_{L,t+1}, \Delta u_{L,t}) - cov(\Delta u_{S,t+1}, \Delta u_{S,t})]}{\left[var(\Delta u_{L,t}) + var(\Delta u_{S,t})\right]^{\frac{1}{2}}}$$

 \bullet Empirically, the paper finds that $\tilde{\beta}_{LS}<0,$ which holds when

$$cov(\Delta u_{S,t+1}, \Delta u_{S,t}) > cov(\Delta u_{L,t+1}, \Delta u_{L,t})$$

• Next, consider a predictive regression based on the long-short anomaly portfolio return

$$r_{M,t+1} = \alpha_{LS} + \beta_{LS}r_{LS,t} + \varepsilon_{LS,t+1}$$
 for $I = L, S$

• We get the standardized slope coefficient

$$\tilde{\beta}_{LS} = \frac{0.5[cov(\Delta u_{L,t+1}, \Delta u_{L,t}) - cov(\Delta u_{S,t+1}, \Delta u_{S,t})]}{\left[var(\Delta u_{L,t}) + var(\Delta u_{S,t})\right]^{\frac{1}{2}}}$$

ullet Empirically, the paper finds that $ilde{eta}_{LS} <$ 0, which holds when

$$cov(\Delta u_{S,t+1}, \Delta u_{S,t}) > cov(\Delta u_{L,t+1}, \Delta u_{L,t})$$

• This is achieved when there is stronger MCP with respect to overpricing than underpricing (e.g. short-sale impediments).

Table of Contents

- Motivation
- 2 Intuition on Predictability
- Methodology
- 4 Data
- Out-of-Sample Results
- 6 Conclusion

March 31, 2022

Forecast Construction

• We are interested in generating $\hat{r}_{M,t+1|t}$, a forecast of the month t+1 market excess return based on information available through month t.

Forecast Construction

- We are interested in generating $\hat{r}_{M,t+1|t}$, a forecast of the month t+1 market excess return based on information available through month t.
- The prevailing mean forecast is simply the average of the market excess return observations available at the time of forecast formation.

Forecast Construction

- The paper compares the prevailing mean benchmark to the seven forecasts summarized below
 - Conventional OLS
 - ENet
 - Simple Combination
 - Combination ENet
 - Predictor Average
 - Principal Component
 - PLS

Forecast Evaluation: Statistical Accuracy

 The paper first assesses market excess return forecasts in terms of statistical accuracy via MSFE

$$\hat{e}_{0,t|t-1} = r_{M,t} - \hat{r}_{M,t|t-1}^{PM}$$

$$\hat{e}_{1,t|t-1} = r_{M,t} - \hat{r}_{M,t|t-1}$$

Forecast Evaluation: Statistical Accuracy

 The paper first assesses market excess return forecasts in terms of statistical accuracy via MSFE

$$\hat{e}_{0,t|t-1} = r_{M,t} - \hat{r}_{M,t|t-1}^{PM}$$
$$\hat{e}_{1,t|t-1} = r_{M,t} - \hat{r}_{M,t|t-1}$$

The sample MSFE is given by

$$\hat{MSFE}_{j} = rac{1}{T} \sum_{t=1}^{T} \hat{e}_{j,t|t-1}^{2} \quad ext{for } j = 0, 1$$

Forecast Evaluation: Statistical Accuracy

 The paper first assesses market excess return forecasts in terms of statistical accuracy via MSFE

$$\begin{split} \hat{e}_{0,t|t-1} &= r_{M,t} - \hat{r}_{M,t|t-1}^{PM} \\ \hat{e}_{1,t|t-1} &= r_{M,t} - \hat{r}_{M,t|t-1} \end{split}$$

• The sample MSFE is given by

$$\hat{MSFE}_{j} = \frac{1}{T} \sum_{t=1}^{T} \hat{e}_{j,t|t-1}^{2} \quad \text{for } j = 0, 1$$

• The out of sample R^2 is given by

$$R_{OS}^2 = 1 - \frac{M\hat{S}FE_1}{M\hat{S}FE_0}$$

It gives the proportional reduction in the sample MSFE for the competing forecast with regard to the prevailing mean benchmark

Forecast Evaluation: Economic Value

• consider a mean-variance investor who allocates across equities and risk-free Treasury bills each month. At the end of month t, the investor faces the objective function

$$\arg\max_{w_{t+1|t}} \ w_{t+1|t} \ \hat{r}_{M,t+1|t} - \frac{\gamma}{2} w_{t+1|t}^2 \ \hat{\sigma}_{t+1|t}^2$$

Forecast Evaluation: Economic Value

• consider a mean-variance investor who allocates across equities and risk-free Treasury bills each month. At the end of month t, the investor faces the objective function

$$\arg\max_{w_{t+1|t}} \ w_{t+1|t} \ \hat{r}_{M,t+1|t} - \frac{\gamma}{2} w_{t+1|t}^2 \ \hat{\sigma}_{t+1|t}^2$$

• The solution is given by

$$w_{t+1|t}^* = \left(\frac{1}{\gamma}\right) \left(\frac{\hat{r}_{M,t+1|t}}{\hat{\sigma}_{t+1|t}^2}\right)$$

Forecast Evaluation: Economic Value

• consider a mean-variance investor who allocates across equities and risk-free Treasury bills each month. At the end of month t, the investor faces the objective function

$$\arg\max_{w_{t+1|t}} \ w_{t+1|t} \ \hat{r}_{M,t+1|t} - \frac{\gamma}{2} w_{t+1|t}^2 \ \hat{\sigma}_{t+1|t}^2$$

• The solution is given by

$$w_{t+1|t}^* = \left(\frac{1}{\gamma}\right) \left(\frac{\hat{r}_{M,t+1|t}}{\hat{\sigma}_{t+1|t}^2}\right)$$

• The average utility realized by the investor is given by

$$ar{U}_j = ar{r}_j - rac{\gamma}{2}\hat{\sigma}_j^2 \quad ext{for } j = 0, 1$$

Forecast Evaluation: Economic Value

• consider a mean-variance investor who allocates across equities and risk-free Treasury bills each month. At the end of month t, the investor faces the objective function

$$\arg\max_{w_{t+1|t}} \ w_{t+1|t} \ \hat{r}_{M,t+1|t} - \frac{\gamma}{2} w_{t+1|t}^2 \ \hat{\sigma}_{t+1|t}^2$$

• The solution is given by

$$w_{t+1|t}^* = \left(\frac{1}{\gamma}\right) \left(\frac{\hat{r}_{M,t+1|t}}{\hat{\sigma}_{t+1|t}^2}\right)$$

• The average utility realized by the investor is given by

$$ar{U}_j = ar{r}_j - rac{\gamma}{2}\hat{\sigma}_j^2 \quad ext{for } j = 0, 1$$

• The average utility gain when the investor uses the competing forecast instead of the prevailing mean benchmark is

$$\Delta = ar{U}_1 - ar{U}_0$$

Table of Contents

- Motivation
- 2 Intuition on Predictability
- Methodology
- 4 Data
- Out-of-Sample Results
- 6 Conclusion

March 31, 2022

(1)	(2)	(3)	(4)	MVE	Market equity	ROE	Return on equity	-
Abbreviation	Description	Abbreviation	Description	NINCR	Number of quarters with consecutive earnings increase	ROEQ	Quarterly return on equity	
ABSACC	Absolute value of accruals	CURRAT	Current ratio	NOA	Net operating assets	ROIC	Return on invested capital	
ACC	Accruals	DEPR	Depreciation to gross PP&E	NSIANN	Net share issuance, annual	ROM	Return on market equity	
AGE	Firm age	DOLVOL	Dollar trading volume		rebalancing			
AGR	Asset growth	DROAQ	Change in quarterly return on assets	NSIFY	Net share issuance, fiscal-year	RSUP	Revenue surprise	
BETA1	Short-term beta	DROEQ	Change in quarterly return on equity	Nonto	rebalancing	all paren		
BETA1LAG	Short-term smoothed beta	EAR	Earnings announcement return	NSIMO	Net share issuance, annual rebalancing	SALECASH	Sales to cash	
BETA3	Long-term beta	EGR	Book equity growth	OL	Operating leverage	SALEINV	Sales to inventories	
BETA3LAG	Long-term smoothed beta	EP	Earnings to price	OPERPROF	Operating profitability	SALEREC	Sales to receivables	
BM	Book to market	FERR	Earnings forecast error	ORGCAP	Organization capital to assets	SGR	Sales growth	
CASH	Cash to assets	FP	Failure probability	OSCORE	O-score	SHR1	Short-term share issuance	
CASHDEBT	Cash flow to debt	GPA	Gross profitability to assets	PCHCURRAT	% change in current ratio	SHR5ANN	Long-term share issuance, annual	
CASHPR	Cash productivity	GRLTD	Growth in long-term debt		, comment that		rebalancing	
CEIANN	Composite equity issuance, annual rebalancing	GRLTNOA	Growth in long-term net operating assets	PCHDEPR	% change in depreciation to gross PP&E	SHR5MO	Long-term share issuance, monthly rebalancing	
CEIFY	Composite equity issuance, fiscal-year rebalancing	HERF	Industry sales concentration	PCHGMSALE	% change in gross margin minus % change in sales	SP	Sales to price	
CEIMO	Composite equity issuance,	HIRE	% change in employees	PCHQUICK	% change in quick ratio	SPI	Special items	
	monthly rebalancing			PCHSALEINV	% change in sales minus $%$ change	STDACC	Standard deviation of accruals	
CFPIA	Industry-adjusted cash flow to price	IDIOVOL	Idiosyncratic return volatility		in inventories			
CFPJUN	Cash flow to price	ILLIQ	Illiquidity	PCHSALEINVT	% change in sales to inventories	STDCF	Standard deviation of cash flows	
CHATOIA	Industry-adjusted change in asset turnover	INDMOM12M	Twelve-month industry momentum	PCHSALEREC	% change in sales minus % change in accounts receivable	STDTURN	Standard deviation of turnover	
CHEMPIA	Industry-adjusted percent change in employees	INDMOM1M	One-month industry momentum	PCHSALESGM	% change in sales minus % change in SG&M	SUE	Standardized earnings surprise	
CHFEPS	Change in forecasted earnings per	MAXRET	Maximum daily return	PS	Fundamental score	TANG	Tangibility	
CIII LI O	share		mannan any revan	QUICK	Quick ratio	TIBI	Taxable income to book income	
CHINV	Change in inventories	MOM12M	Twelve-month momentum	RD	R&D expense to market	TURN	Total turnover	
CHPMIA	Industry-adjusted change in profit	MOM1M	One-month momentum	RETVOL	Return volatility	TURN3	Average turnover, three months	
	margin			ROA	Return on assets	TURNL	Lagged total turnover	
CHTAX	% change in tax expense	MOM36M	36-month momentum	ROAQ	Quarterly return on assets	ZEROAVG	Average number of turnover-adjusted	
CINVEST	Corporate investment	MOM6M	Six-month momentum	ROAVOL	Volatility of return on assets	ZEROTOT	zero daily volume Total number of turnover-adjusted	
CSUE	Composite earnings surprise	MS	Growth score	ROAVOL	voiatility of return on assets	ZEROTOT	zero daily volume	

Table I Summary Statistics

The table reports summary statistics for monthly anomaly portfolio returns for 100 anomalies. The sample period is 1970:01 to 2017:12. For each anomaly, we sort stocks into value-weighted decile portfolios according to the characteristic underlying the anomaly. The long-short anomaly portfolio goes long (short) the tenth (first) decile portfolio.

Number of anomalies	100
Fama and French (1993) three-factor model alpha	
Number of long-short anomaly portfolio returns with $ t\text{-stat.} \ge 1.645$	75
Number of long-short anomaly portfolio returns with $ t$ -stat. $ \ge 1.96$	71
Number of long-short anomaly portfolio returns with $ t\text{-stat.} \ge 2.58$	56
Number of long-short anomaly portfolio returns with $ t$ -stat. $ \ge 3$	49
Average correlation across anomaly decile rankings	0.05
Average correlation across monthly anomaly excess returns	
Long leg	0.76
Short leg	0.82
Long-short	0.08
Long-leg anomaly portfolio excess returns	
Average of sample means	0.71%
Average of sample standard deviations	5.16%
Short-leg anomaly portfolio excess returns	
Average of sample means	0.33%
Average of sample standard deviations	6.20%
Long-short anomaly portfolio returns	
Average of sample means	0.38%
Average of sample standard deviations	4.37%

Table of Contents

- Motivation
- 2 Intuition on Predictability
- Methodology
- 4 Data
- **6** Out-of-Sample Results
- 6 Conclusion

Results: Forecast Accuracy

Results: Forecast Accuracy

Table II R_{OS}^2 Statistics

The table reports Campbell and Thompson (2008) out-of-sample R^2 ($R_{\rm OS}^2$) statistics in percent for market excess return forecasts based on 100 anomaly portfolio returns. The out-of-sample period is 1985:01 to 2017:12. The OLS (ENet) forecast is based on ordinary least squares (elastic net) estimation of a multiple predictive regression that includes all 100 of the anomaly portfolio returns. Combine is the arithmetic mean of univariate predictive regression forecasts based on the 100 individual anomaly portfolio returns (considered in turn). C-ENet is the arithmetic mean of the univariate predictive regression forecasts selected by the elastic net in a Granger and Ramanathan (1984) regression. Avg is a univariate predictive regression forecast based on the cross-sectional average of the 100 anomaly portfolio returns. PC (PLS) is a univariate predictive regression forecast based on the first principal component (target-relevant factor) extracted from the 100 anomaly portfolio returns. Based on the Clark and West (2007) test, *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively, for the positive $R_{\rm OS}^2$ statistics.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Anomaly Portfolio	OLS	ENet	Combine	C-ENet	Avg	PC	PLS
Long-short return	$-2,\!513.86$	2.03**	0.89***	2.81***	1.89**	1.25**	2.06***
Long-leg excess return	-344,960.22	-0.90	0.29	-0.68	0.26	0.24	0.41
Short-leg excess return	-13,284.68	1.81*	0.72*	0.39*	0.75*	0.74*	0.84*

Results: Fconomic Value

Table of Contents

- Motivation
- 2 Intuition on Predictability
- Methodology
- 4 Data
- Out-of-Sample Results
- **6** Conclusion

March 31, 2022

Conclusion

 A representative group of 100 long-short anomaly portfolio returns from the cross-sectional literature contains valuable information for predicting the market excess return on an out-of-sample basis, provided that we use forecasting strategies that guard against overfitting the data