Unit: Applications of vectors (1)

Dot Product of two Geometric Vectors

Definition

The $\underline{\mathbf{dot\ product}}$ of two vectors \overrightarrow{u} and \overrightarrow{v} is a scalar given by

$$\overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{u}| |\overrightarrow{v}| \cos(\theta)$$

where θ is the angle between the vectors \vec{u} and \vec{v} .

Note: Dot product of two vectors is **NOT** a vector it is a

scalar (number).

Note: By convention $0^{\circ} \le \theta \le 180^{\circ}$.

Ex. Calculate the dot product, $\vec{u} \cdot \vec{v}$, to one decimal place accuracy, given that

 $|\vec{u}| = 10$, $|\vec{v}| = 2$, and the angle between \vec{u} and \vec{v} is 40°

Properties of Dot Product

1.
$$a(\overrightarrow{u} \cdot \overrightarrow{v}) = (a\overrightarrow{u}) \cdot \overrightarrow{v} = \overrightarrow{u} \cdot (a\overrightarrow{v})$$

2.
$$\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

3.
$$\vec{u} \cdot \vec{u} = |\vec{u}|^2$$

4.
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

5. If $\overrightarrow{u} \cdot \overrightarrow{v} = 0$ where $\overrightarrow{u}, \overrightarrow{v} \neq 0$, then $\overrightarrow{u} \perp \overrightarrow{v}$. Conversely, if $\overrightarrow{u} \perp \overrightarrow{v}$, then $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Ex. Prove properties 3 and 5.

Ex. The magnitude of the sum of vectors \vec{a} and \vec{b} is equal to the magnitude of their difference. Determine the angle between \vec{a} and \vec{b} .

Dot Product of Algebraic Vectors

The dot product of the standard unit vectors is given
by:

$$\vec{i} \cdot \vec{i} = 1 \qquad \vec{i} \cdot \vec{j} = 0$$
$$\vec{j} \cdot \vec{j} = 1 \qquad \vec{j} \cdot \vec{k} = 0$$
$$\vec{k} \cdot \vec{k} = 1 \qquad \vec{k} \cdot \vec{i} = 0$$

The dot product of two algebraic vectors

$$\vec{a}$$
 = (a_x, a_y, a_z) and \vec{b} = (b_x, b_y, b) is given by
$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

We have now seen two definitions of dot product! $\vec{u} \cdot \vec{v} = u_x v_x + u_y v_y + u_z v_z = |\vec{u}||\vec{v}|\cos(\theta)$

Ex. Given
$$\vec{a}$$
 and \vec{b} , determine their dot product.
 \vec{a} . \vec{a} = (2,-1) and \vec{b} =(4,3)

b.
$$\vec{a} = (1,0,3)$$
 and $\vec{b} = (-2,5,8)$

Angle between two Vectors

The angle $\theta = \angle(\vec{a}, \vec{b})$ between two vectors \vec{a} and \vec{b} (when positioned tail to tail) is given by:

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2 \sqrt{b_x^2 + b_y^2 + b_z^2}}}$$

- 1. If $\cos\theta = 1$ then $\vec{a} \uparrow \uparrow \vec{b}$ (vectors are parallel and have same direction).
- 2. If $\cos \theta = -1$ then $\vec{a} \uparrow \downarrow \vec{b}$ (vectors are parallel but have opposite direction).
- 3. If $\cos\theta = 0$ then $\vec{a} \perp \vec{b}$ (vectors are perpendicular to each other or orthogonal).

$$\cos\theta = 0$$
 \vec{b} $\theta = 90^{\circ}$

4. If $\cos \theta > 0$ then $0^{\circ} < \theta < 90^{\circ}$ (θ is an acute angle).

$$\cos \theta > 0$$
 $0^{\circ} < \theta < 90$
 \vec{a}

5. If $\cos\theta < 0$ then $90^{\circ} < \theta < 180^{\circ}$ (θ is an obtuse

Ex. For what values of k are the vectors $\vec{a} = (k, -2, 3)$ and $\vec{b} = (2, 2k - 6, 6)$

- a) perpendicular(orthogonal)?
- b) parallel (collinear)?

Ex. Find the angle between each pair of vectors:

- a. $\vec{u} = 3\hat{\imath} \hat{\jmath}$ and $\vec{v} = -\hat{\imath} + 2\hat{\jmath}$
- b. (2,1,-3) and (1,0,4)

Ex. If the vectors $\overrightarrow{2a} + \overrightarrow{b}$ and $\frac{1}{2}\overrightarrow{a} - \overrightarrow{b}$ are perpendicular to each other and $2 |\vec{b}| = 3 |\vec{a}|$ find the angle

 $\theta = \angle (\vec{a}, \vec{b}).$

Scalar and Vector Projections

Scalar Projection

The scalar projection of the vector \vec{a} onto the vector \vec{b} is a scalar defined as:

 $SProj(\vec{a} \ onto \ \vec{b}) = ||\vec{a}|| \cos \theta \text{ where } \theta = \angle(\vec{a}, \vec{b})$

Special Cases

Consider two vectors \vec{a} and \vec{b} .

a) If
$$\vec{a} \uparrow \uparrow \vec{b}$$
 (cos $\theta = 1$), then $SProj(\vec{a} \text{ onto } \vec{b}) = ||\vec{a}||$

b) If
$$\vec{a} \uparrow \downarrow \vec{b}$$
 (cos $\theta = -1$), then $SProj(\vec{a} \text{ onto } \vec{b}) = -\|\vec{a}\|$

c) If
$$\vec{a} \perp \vec{b}$$
 then $SProj(\vec{a} \text{ onto } \vec{b}) = 0$

Dot Product and Scalar Projection

Recall that the *dot product* of the vectors \vec{a} and \vec{b} is defined as:

$$\vec{a} \cdot \vec{b} = \parallel \vec{a} \parallel \parallel \vec{b} \parallel \cos \theta$$

So, the *scalar projection* of the vector \vec{a} onto the vector \vec{b} can be written as:

$$SProj(\vec{a} \ onto \ \vec{b}) = \parallel \vec{a} \parallel \cos \theta = \frac{\vec{a} \cdot \vec{b}}{\parallel \vec{b} \parallel}$$

Note:

For a Cartesian (Rectangular) coordinate system, the scalar components a_x , a_y , and a_z of a vector $\vec{a} = (a_x, a_y, a_z)$ are

the $\it scalar \, projections$ of the vector \vec{a} onto the unit vectors \vec{i} , \vec{j} , and \vec{k} .

Proof:

$$SProj(\vec{a} \ onto \ \vec{i}\) = \frac{\vec{a} \cdot \vec{i}}{\|\vec{i}\|} = \frac{(a_x, a_y, a_z) \cdot (1,0,0)}{1} = a_x$$

Ex. Given the vector \vec{a} = (2,-3,4), find the scalar projection:

a) of \vec{a} onto the unit vector $\vec{\iota}$

a) of \vec{a} onto the unit vector $\vec{i} - \vec{j}$

Vector Projection

The *vector projection* of the vector \vec{a} onto the vector \vec{b} is a vector defined as:

$$VProj(\vec{a} \ onto \ \vec{b}) = \parallel \vec{a} \parallel \cos \theta \frac{\vec{b}}{\parallel \vec{b} \parallel}$$

 $VProj(\vec{a} \ onto \ \vec{b})$

Ex. Given two vectors $\vec{a} = (0,1,-2)$ and $\vec{b} = (-1,0,3)$, find:

a) the vector projection of the vector \vec{a} onto the vector \vec{b}

Dot Product and Vector Projection

The *vector projection* of the vector \vec{a} onto the vector \vec{b} can be written using the dot product as:

$$VProj(\vec{a} \text{ onto } \vec{b}) = \frac{(\vec{a} \cdot \vec{b})\vec{b}}{\|\vec{b}\|^2}$$

Note:

For a Cartesian (Rectangular) coordinate system, the vector components $\vec{a}_x = a_x \vec{i}$, $\vec{a}_y = a_y \vec{j}$, and $\vec{a}_z = a_z \vec{k}$ of a vector $\vec{a} = (a_x, a_y, a_z)$ are the vector projections of the vector \vec{a} onto the unit vectors \vec{i} , \vec{j} , and \vec{k} .

b) the vector projection of the vector \vec{i} onto the vector \vec{a}

Cross Product

Right Hand System

The Right Hand System is based on the position of first three fingers of the right hand as illustrated on the following figure:

Cork-Screw Rule

The cork-screw rule describes a right hand system based on the cork-screw property:

If you rotate the x-axis towards the y-axis using the shortest path, the screw goes in the positive direction of the z-axis.

Cross Product

The *cross product* between two vectors \vec{a} and \vec{b} is a *vector* quantity denoted by $\vec{a} \times \vec{b}$ having the following properties:

- a) $\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \sin \alpha$ where $\alpha = \angle(\vec{a}, \vec{b})$
- b) $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b} (is perpendicular to the plane determined by \vec{a} and \vec{b})
- c) the vectors \vec{a} , \vec{b} , and $\vec{a} \times \vec{b}$ form a *right-handed system*

Specific Cases

- 1. If $\vec{a} \parallel \vec{b}$ ($\alpha = 0$ or $\alpha = \pi = 180^{\circ}$), then $\vec{a} \times \vec{b} = \vec{0}$.
- 2. If $\vec{a} \perp \vec{b}$ ($\alpha = \pi/2 = 90^{\circ}$), then

 $\parallel \vec{a} \times \vec{b} \parallel = \parallel \vec{a} \parallel \parallel \vec{b} \parallel = maximum$

3. If $\vec{a} \equiv \vec{b}$ then $\vec{a} \times \vec{a} = \vec{0}$.

Ex. The magnitudes of two vectors \vec{a} and \vec{b} are $|\vec{a}|$ = 2 and $|\vec{b}|$ = 3 respectively, and the angle between them is α = 60°. Find the magnitude of the cross product of these vectors.

Cross Product of Unit Vectors

The cross product of the standard unit vectors is given by:

$$\vec{i} \times \vec{i} = \vec{0} \qquad \qquad \vec{j} \times \vec{j} = \vec{0} \qquad \qquad \vec{k} \times \vec{k} = \vec{0}$$

$$\vec{i} \times \vec{j} = \vec{k} \qquad \qquad \vec{j} \times \vec{k} = \vec{i} \qquad \qquad \vec{k} \times \vec{i} = \vec{j}$$

Cross Product of two Algebraic Vectors

The cross product of two algebraic vectors

$$\vec{a} = (a_x, a_y, a_z) = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$
 and
$$\vec{b} = (b_x, b_y, b_z) = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}$$
 is given by:

$$\vec{a} \times \vec{b} = \vec{i} (a_y b_z - a_z b_y) + \vec{j} (a_z b_x - a_x b_z) + \vec{k} (a_x b_y - a_y b_x)$$

$$= \vec{i} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} + \vec{j} \begin{vmatrix} a_z & a_x \\ b_z & b_x \end{vmatrix} + \vec{k} \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\vec{a} \times \vec{b} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} & \vec{i} & \vec{j} \\ a_x & a_y & a_z & a_x & a_y \\ b_x & b_y & b_z & b_x & b_y \end{bmatrix}$$

Ex. Find the cross product $\vec{u} \times \vec{v}$ given that

a.
$$\vec{u} = 3\hat{i} - \hat{j} + 4\hat{k}$$
 and $\vec{v} = -\hat{i} + 2\hat{j} + 5\hat{k}$

b.
$$\vec{u} = (1,2,3)$$
 and $\vec{v} = (4,-1,5)$

c.
$$\vec{u} = (-2,1,3)$$
 and $\vec{v} = (4,-2,-6)$

Properties of Cross Product

The following properties apply for the cross product:

1.
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$
 (anti-commutative property)

2.
$$\lambda(\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$$

 $=(\vec{c}\cdot\vec{a})b_x-(\vec{b}\cdot\vec{a})c_x=RS$

3.
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$
 (distributive property)

4.
$$\vec{a} \times \vec{b} = 0 \Leftrightarrow \vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0} \text{ or } \vec{a} \parallel \vec{b}$$

5.
$$\vec{a} \times \vec{0} = \vec{0}$$

6.
$$\vec{a} \times \vec{a} = \vec{0}$$

Note: The dot and cross products have a higher priority in comparison to addition and subtraction operations.

d)
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{c} \cdot \vec{a})\vec{b} - (\vec{b} \cdot \vec{a})\vec{c}$$
 (triple cross product)
$$[\vec{a} \times (\vec{b} \times \vec{c})]_x = a_y (\vec{b} \times \vec{c})_z - a_z (\vec{b} \times \vec{c})_y$$
$$= a_y (b_x c_y - b_y c_x) - a_z (b_z c_x - b_x c_z)$$
$$= (c_y a_y + c_z a_z)b_x - (b_y a_y + b_z a_z)c_x + a_x c_x b_x - a_x c_x b_x$$

Ex. Given the vectors $\vec{u} = (-2,1,-1)$ and $\vec{v} = (-1,2,-1)$

- a. Find a unit vector perpendicular to both \vec{u} and \vec{v} .
- b. Find two vectors of magnitude 11 which are perpendicular to both \vec{u} and \vec{v} .