Deep Learning 4

Michal Prozdzal mdrozdzal@fb.com

Index

Part 1
Introduction

Part 2
Basic blocks & concepts

Part 3 Models

Bonus material
Weakly supervised
localization

19/3/19 Deep learning 4 object detection

2

Computer Vision tasks 1. Classification 2. Localization: 3. Petection: 4. Segmentation: CAT CAT CAT, DOG, DUCK CAT, DOG, DUCK Deep learning 4 object detection https://chaosmali.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/

Datasets

19/3/19

Deep learning 4 object detection

2005-2012

Classification Detection Segmentation

- 20 categories
- 6k training images (17k objects)
 - 6k validation + 10k test

26/2/18

Localization

- 1000 categories
- 1.2M training images
- 150k validation + test images

Petection

- · 200 categories
- · 456k training images
- 60k validation + test images

Deep learning 4 object detection

Petection from video

- 30 categories
 - 6k videos

6

19/3/19

Segmentation

- · 80 categories
- 160k images
- 1M instances (350k people)

19/3/19

Deep learning 4 object detection

http://presentations.cocodataset.org/COCO17-Detect-Overview.pdf

Computing Average Precision (A four step procedure)

- 1. Order the predictions using confidence
 - 2. Compute Precision and Recall
 - 3. Plot Precision Recall plot (optional)
- 4. Compute Average Precision (AP) and Average Recall (AR)

19/3/19

Deep learning 4 object detection

Index

Part 1
Introduction

Part 2
Basic blocks & concepts

Part 3 Models

Bonus material
Weakly supervised
localization

19/3/19 Deep learning 4 object detection

What is an outcome of an object detector?

We expect:

We get:

Lots of FP.

19/3/19

Deep learning 4 object detection

Image credit: https://pjreddie.com/darknet/yolo/

Features (currently)

Use pretrained neural networks!

Architectures for Image Classification

Region Proposals (Class agnostic classifiers)

Objectness [1] Selective search [2] Category-independent object proposals [3] Constrained parametric min-cuts (CPMC) [4] Multi-scale combinatorial grouping [5]

- [1] B.Alexe et al.Measuring the objectness of image windows
- [2] J. Uijlings et al. Selective search for object recognition
- [4] J. Carreira and D. Hoiem. Category independent object proposals
 [4] J. Carreira and C. Sminchisescu. CPMC: Automatic object segmentation using constrained parametric min-cuts
- [5] P.Arbelaez et al. Multiscale combinatorial grouping

Deep learning 4 object detection 32 Image: https://ivi.fnwi.uva.nl/isis/publications/bibtexbrowser.php?key=UijlingsIJCV2013&bib=all.bib

Region Proposals Selective search

19/3/19

19/3/19

Deep learning 4 object detection

http://koen.me/research/pub/vandesande-iccv2011-poster.pdf

36

Classifier (Currently)

Neural Network!

Regressor (Refinement)

Regressor is used to adjust the position of class specific bounding boxes.

19/3/19 Deep learning 4 object detection

38

Bounding box regression

Annotation
(A_x, A_y, A_w, A_h)

Prediction
(P_x, P_y, P_w, P_h)

Regression error (t_x, t_y, t_w, t_h) $t_x = (A_x - Px)/P_w$ $t_y = (A_y - Py)/P_h$ $t_w = log(A_w/P_w)$ $t_h = log(A_h/P_h)$

Why divide by P_w and P_h ?

Regression loss = $loss(t_x) + loss(t_y) + loss(t_w) + loss(t_h)$

19/3/19

Deep learning 4 object detection

Detection: Loss Functions

- · Classification losses:
 - · Cross entropy (softmax)
 - · Hinge loss (SVM)
- · Regression losses:
 - · 11
 - · Smooth L1
 - · L2

19/3/19

12

Index

Part 1 Introduction

Part 2
Basic blocks & concepts

Part 3 Models

Bonus material
Weakly supervised
localization

19/3/19

Deep learning 4 object detection

R-CNN (2013, CVPR2014): training

AlexNet/VGG

Image Reg. Prop.

Training:

- 1. Pre-train network on Imagenet (image classification task)
- 2. Finetune network with softmax classifier (log loss)
- 3. Extract features
- 4. Train linear SVMs with hard negative mining (hinge loss)
- 5. Train bounding box regressions (least squares)

Training is slow (84h).

Why point #2?

19/3/19

Deep learning 4 object detection

http://kaiminghe.com/eccv14sppnet/sppnet_ilsvrc2014.pdf

R-CNN (2013, CVPR2014): inference

19/3/19

Reg. Prop. Warped region

Inference:

- 1. Extract 2000 region proposals per image
- 2. Extract features for each proposal

AlexNet/VGG

3. Infer class, confidence and bounding box for each proposal

Inference is slow (2k passes of CNN per image).

Deep learning 4 object detection

http://kaiminghe.com/eccv14sppnet/sppnet_ilsvrc2014.pdf

YOLO (2015, CVPR2016): training

Training:

- 1. Pre-train network on Imagenet classification task
- 2. Train the model with joint loss (quite engineered loss function)

19/3/19

https://docs.google.com/presentation/d/1kAa7NOamBt4calBU9iHgT8a86RRHz9Yz2oh4-GTdX6M/edit#slide=id.g151008b386_0_0

YOLO (2015, CVPR2016): training tricks

- 1. use 448 \times 448 input for detection, instead of 224 \times 224,
- 2. use Leaky ReLU for all layers,
- 3. dropout after the first fully connected layer.
- 4. normalize bounding boxes parameters in [0, 1].
- use a quadratic loss not only for the bounding box coordinates, but also for the confidence and the class scores,
- reduce the weight of large bounding boxes by using the square roots of the size in
- reduce the importance of empty cells by weighting less the confidence-related loss on them,
- use momentum 0.9, decay 5e-4.
- data augmentation with scaling, translation, and HSV transformation.

19/3/19

YOLOv2 (2016)

	YOLO								YOLOv2
batch norm?		✓	✓	✓	✓	✓	✓	√	✓
hi-res classifier?			/	✓	✓	1	✓	1	✓
convolutional?				✓	✓	1	✓	1	✓
anchor boxes?				✓	\checkmark				
new network?					\checkmark	1	✓	1	✓
dimension priors?						1	✓	1	✓
location prediction?						1	✓	1	✓
passthrough?							✓	1	✓
multi-scale?								1	✓
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

There are a lot of tricks to get a good architecture for object detection...

Interesting papers (not covered in the class)

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin^{1,2}, Piotr Dollár¹, Ross Girshick¹, Kaiming He¹, Bharath Hariharan¹, and Serge Belongie²

¹Facebook AI Research (FAIR) ²Cornell University and Cornell Tech

Focal Loss for Dense Object Detection

Tsung-Yi Lin Priya Goyal Ross Girshick Kaiming He Piotr Dollár Facebook AI Research (FAIR)

Mask R-CNN

Kaiming He Georgia Gkioxari Piotr Dollár Ross Girshick Facebook AI Research (FAIR)

19/3/19 Deep learning 4 object detection

Index

Part 1
Introduction

Part 2
Basic blocks & concepts

Part 3 Models

Bonus material
Weakly supervised
localization

19/3/19 Deep learning 4 object detection

Wrap up

Datasets Evaluation Part 1
Introduction

spp

Part 2
Basic blocks & concepts

Object detection pipeline
Hard Negative Mining
Non-Maximum Suppression
Region Proposals

OverFeat R-CNN

Fast R-CNN

Part 3
Models

Models

Bonus material

Is object localization for free?

Faster R-CNN

YOLO SSD

19/3/19

localization

Weakly supervised

Deep learning 4 object detection

84

85

References

- Ross B. Girshick, Jeff Donahue, Trevor Darrell and Jitendra Malik; Rich feature hierarchies for accurate object detection and semantic segmentation.
- Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun; OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks.
- Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun; Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
- Ross B. Girshick; Fast R-CNN.
- Shaoqing Ren, Kaiming He, Ross B. Girshick and Jian Sun; Faster R-CNN: Towards Real-Time Object
 Detection with Region Proposal Networks.
- Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, Ali Farhadi; You Only Look Once: Unified, Real-Time Object Detection.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; Deep Residual Learning for Image Recognition.
- Joseph Redmon and Ali Farhadi; YOLO9000: Better, Faster, Stronger.
- M. Oquab and L. Bottou and I. Laptev and J. Sivic; is object localization for free? Weakly-supervised learning with convolutional neural networks.

Deep Learning 4

Michal Prozdzal mdrozdzal@fb.com