Walrus

An Efficient Decentralised Storage Network

Distributed Storage

Distributed Storage

+ Incentives

Two Challenges

- Dynamic availability
- Conflate consensus with proof of storage

Two Challenges

- Dynamic availability
- Conflate consensus with proof of storage

- Slow
- 90% Junk blocks

BFT Quorum

External Chain

blockchain

Avoid Full Replication

data

id

blockchain

Properties

- Honest writer can obtain a PoA
- If honest writer writes B, then honest reader can read B
- If PoA on chain, two honest readers either both read B or both read \perp

Each node adds ~55 TB

Each node adds ~55 TB

Erasure Codes

Efficient Recovery

- Clients can fail
- Nodes can be Byzantine
- Epoch change

from 2f+1 to n

from f+1 to n

primary slivers

secondary slivers

Blob id

Recovery

node 1 node 2 node 3 node 4

node 2 node 1 node 3 node 4 2f+1

Storage Optimisation

Storage Overhead

~100x

Blockchain System

Storage Overhead

~100x

Blockchain System

~4.5x

Walrus

Research Gifts

(please keep it short)

Small Blob (1kB)

Large Blob (135MB)

