Semantic Search-by-Examples for Scientific Topic Corpus Expansion in Digital Libraries

SERecSys Workshop at ICDM 2017, New Orleans, USA

Hussein T. Al-Natsheh^{1,2} Lucie Martinet^{1,3} Fabrice Muhlenbach⁴ Fabien Rico⁵ Djamel A. Zighed¹

18 November 2017

¹ Université de Lyon, Lyon 2, ERIC EA 3083, 5 Avenue Pierre Mendès France – F69676 Bron Cedex – France ² CNRS, Institut des Sciences de l'Homme FRE 3768, 14 avenue Berthelot – F69363 Lyon Cedex 07 – France

CNRS, Institut des Sciences de l'Homme FRE 3768, 14 avenue Berthelot – F69363 Lyon Cedex 07 – Franco ³CESI EXIA/LINEACT, 19 Avenue Guy de Collongue – F69130 Écully – France

⁴ Université de Lyon, UJM-Saint-Étienne, CNRS, Laboratoire Hubert Curien UMR 5516 – F42023 Saint Étienne – France ⁵ Université de Lyon, Lyon 1, ERIC EA 3083, 5 Avenue Pierre Mendès France – F69676 Bron Cedex – France

Example: Multivariate Analysis or Machine Leaning?

FIGURE - High Energy Physics Research Discipline

During my internship at CERN:

- What I know as machine learning in computer science and data mining
- Was referred to multivariate analysis in high energy physics

Problem Statement

Recommending semantically relevant documents from different disciplines

- **Different terminologies** used over different related disciplines
- Term usage **evolves** over time
- Total **number of articles** of a scientific topic
- No standard topic categorization over publishers
- Limited number of keywords per article
- Multi-disciplines expert manual labeling solution is too expensive

Outline

- 1 Introduction
- 2 SSbE Model
 - Model Overview
 - Vectorization
 - Learning Process
- 3 Use Case
 - Scientific Corpus
 - Scientific Topic
- 4 Experiment
 - Semantics Feature Extraction
 - Evaluation
- 5 Results
 - Sample of Interesting Recommended Articles
 - Evaluation Results
 - MLT versus SSbE
- 6 Reproducibility
- 7 Conclusion
- 8 Acknowledgment

Vectorization

FIGURE - Document vectorization of the corpus and the seed articles (semantics feature extraction)

Eperementally Finding the Best Vector Transformer

Tuning vectorization parameters

$$AICS = \frac{\sum_{i=1}^{n-1} cosine_similarity(list[i], list[i+1:n])}{number_of_comparisons}$$
(1)

$$argmax_{transformer}(AICS_{positive\ list} - AICS_{random\ list})$$
 (2)

Learning Process

Balanced Dataset Generation

- Positive examples as the seed articles and topic name keyword matching
- Negative examples as a random sampling from the corpus other than positives

Supervised Classifier

- Logistic regression or ensemble learning classifier
- Experimentally Designed (cross validation on the dataset)
- Rank the corpus by the regression model (or class belonging prob) prediction value

Learning Process

Corpus Semantic Expansion

FIGURE - Find the semantics-based expanded corpus

Issues

- Where to cut (thresholding / set the boundaries)
- Validation and user feedback
- Utilizing user feedback for an active learning?

Scientific Corpus

Open Meta-data Digital Library with +16 Million Publication

FIGURE – Excellence Initiative of Scientific and Technical Information

Out of many document types, e.g., slides, posters and conference articles, we only considered **English research papers** that were published **after 1990** with sufficient abstract size (35 to 500 words). The extracted meta-data dataset contains more than **+4 Million** articles.

Sport Sciences Topic : Mental Rotation

FIGURE - Mental Rotation. (Source : psytoolkit.org)

Multi-disciplinary topic : health sciences, psychology, cognitive sciences...

SSbE for Mental Rotation Use Case

Seed Articles 182 Articles

- Title
- Abstract
- Year of publication
- DOI
- Keywords
- Authors

Expanded Positive Articles

Using "mental rotation" as search keywords in ISTEX search engine to find more positive examples with matches in:

- Title
- **Abstract**
- Keywords

199 articles were found

18 November 2017

Semantics Feature Extraction

Experimentally Decided Design Parameters

Bag of Word

word ngram range*: (1, 2)

Min term frequency: 20

Max term frequency percentage: 95%

Filtering out stop-words or not: yes

*: constrained by the memory size

SVD Decomposition

Using TF-IDF transformer or not : yes

Dense vector size*: 150

Regression

- Random Forest
- 500 estimators

SSbE Model Use Case **Experiment** Results Reproducibility Conclusion Acknowledgment 00000 000 000 0000

Three Models Comparative Evaluation

Introduction

Evaluation

Evaluation of the top ranked recommendations for each of the three systems :

- More-Like-This method : MLT
- Partial SSbE model (without active learning) : SSbEp
- SSbE model with active learning : SSbE

Sample of Interesting Recommended Articles

Sample of Interesting Recommended Articles

Some interesting multi-disciplinary research topics found in some recommended relevant articles by the system. The articles do not contain the terminology "mental rotation":

- The studies on abilities to read a map in different orientations or Movement Trajectory
- Sign language and lip-reading used by deaf signers are actions that require some mental rotation abilities for reading the manual communication
- Gaze aversion benefiting cognitive performance, e.g., visualspatial imagination, unlike face-to-face communication
- Specific reading disorder due to a specific difficulty in orienting and focusing.

Other terminologies : Spatial imagery, visualspatial imagination, spatial abilities, mental imagery ...

Evaluation Results

Expert Annotation Results

TABLE — Confusion matrix of the two domain expert judgment of both of $SSbE_p$ (SSbE without active learning) and MLT method on 100 results randomly picked from the top 200. S corresponds to $SSbE_p$ and M corresponds to MLT. CND indicates that the expert Can Not Decide

	relevant		CND		irrelevant		Total	
Method	S	М	S	M	S	M	S	M
relevant	8	2	3	3	0	0	11	5
cannot decide	10	1	10	4	17	4	37	9
irrelevant	2	0	13	5	37	81	52	86
Total	20	3	26	12	54	85	100	100

TABLE – Cohen's kappa scores for annotation of the two domain experts. The table shows results for different combination of annotation labels. The scores are rounded to 4 decimals

Labels	Cohen's kappa score
[relevant, irrelevant]	0.90
[relevant, cannot decide]	0.18
[cannot decide, irrelevant]	0.28
[relevant, irrelevant, cannot decide]	0.38

MLT versus SSbE

MLT versus SSbE

TABLE — Frequencies of the evaluation scores values for both the $SSbE_p$ method and the MLT method. The blue score labels are good while the red score labels are bad

Score	1	0.75	0.5	0.25	0
$SSbE_p$	8	13	12	30	37
MLT	2	4	4	9	81

MLT versus SSbE

E

Sentence Semantic Similarity

TABLE — Comparative results of the 3 methods using sentence semantic relatedness measure based on count of pairs with score higher than 3.0 out of 5.0

Method	MLT	$SSbE_p$	SSbE	
Count of pairs	124	217	382	

TABLE — Comparative results of the 3 methods on the top 959 results of each method using a test set extracted from the digital library meta-data that was hidden from our experiment. The number of 959 results were selected as a result of excluding extended positive articles, which have been used in the training phase, from the top 1000 results of SSbE_D. * The total number of the MLT results is 391 articles

Method	MLT*	$SSbE_p$	SSbE
matches count	1	1	6
rank of them	1	851	24, 82, 227, 567, 699, 929

19/22

Open-Access Data and Code

Available on GitHub

SSbE Model and Experiments : https://github.com/ERICUdL/ISTEX_MentalRotation

Sentence Similarity Estimator: https://github.com/natsheh/sensim

Conclusion and Future Work

Conclusion

- SSbE was able to recommend relevant articles from different disciplines
- Active learning enhances the recommendation
- Sentence semantic similarity was a good evaluation measure for the different method

Future Work

- Study the use of semantic networks for expanding the positive examples
- Semantic topic auto tagging based on standard topic category
- Compare the topic tagging with topic modeling

Acknowledgment

- This work was kindly funded by ISTEX project.
- The use-case study was funded by the Centre de Recherche et d'Innovation sur le Sport who also technically contributed though the expert annotation process by:
 - Dr. Patrick Fargier
 - Prof. Raphaël Massarelli.
- We would like also to thank ARC6 of the French Region Auvergne-Rhône-Alpes that funds the current PhD studies of the first author

