MATH 554: Section H01 Professor: Dr. Howard September 29, 2023

MATH 554 Take-Home Test 1

Problem 1 Prove that every open ball B(a,r) is open.

Solution.

Let $b \in B(a,r)$. By definition, d(a,b) < r, so we have $\rho := r - d(a,b) > 0$. We claim $B(b,\rho) \subseteq B(a,r)$. Let $c \in B(b,\rho)$. Then, we have

$$\begin{aligned} d(a,c) &= d(a,b) + d(b,c) & \text{(triangle inequality)} \\ &< d(a,b) + \rho & \text{(}d(b,c) < \rho \text{ because } c \in B(b,\rho)\text{)} \\ &= d(a,b) + r - d(a,b) & \text{(definition of } \rho\text{)} \\ &= r. \end{aligned}$$

So d(a,c) < r, and thus $c \in B(a,r)$ by definition. So $B(b,r-d(a,b)) \subseteq B(a,r)$ for every $b \in B(a,r)$, and therefore by definition B(a,r) is open.

Problem 2 Prove that for any $a \in E$ and r > 0, the set

$$U = \{x \in E : x \notin \overline{B}(a,r)\} = \{x \in E : d(x,a) > r\}$$

is open.

Solution.

Let $b \in U$. By definition, d(a,b) > r, so we have $\rho := d(a,b) - r > 0$. We claim $B(b,\rho) \subseteq U$. Let $c \in B(b,\rho)$. From the triangle inequality, we have

$$d(a,b) \le d(a,c) + d(c,b) \implies d(a,c) \ge d(a,b) - d(b,c).$$

Then, we have

$$d(a,c) \ge d(a,b) - d(b,c) \qquad \text{(from above)}$$

$$> d(a,b) - \rho \qquad \qquad (d(b,c) < \rho)$$

$$= d(a,b) - (d(a,b) - r) \qquad \text{(by choice of } \rho)$$

$$= r.$$

So d(a,c) > r, and thus $c \in U$ by definition. So $B(b,d(a,b)-r) \subseteq U$ for every $b \in U$, and therefore by definition U is open (it then follows that the complement of $U, \overline{B}(a,r)$, is closed).

Problem 3 Let $\{U_{\alpha}: \alpha \in A\}$ be a possibly infinite collection of open subsets of E. Prove that the union

$$U := \bigcup_{\alpha \in A} U_{\alpha}$$

is open.

Solution.

Let $x \in U$. Then there exists some $\alpha \in A$ such that $x \in U_{\alpha}$. Since U_{α} is open, there exists an r > 0 such that $B(x,r) \subseteq U_{\alpha}$. Since $U_{\alpha} \subseteq U$ by definition, by transitivity we have $B(x,r) \subseteq U$. Therefore, by definition U is open.

Problem 4 Let $U_1, U_2, \ldots, U_n \subseteq E$ be a finite collection of open subsets of E. Prove that the intersection

$$U = U_1 \cap U_2 \cap \cdots \cap U_n$$

is open.

Solution.

Let $x \in U$. Then $x \in U_i$ for all $i \in \{1, 2, ..., n\}$. Since U_i is open for all i, there exist $r_1, r_2, ..., r_n \in \mathbb{R}^+$ such that $B(x, r_i) \subseteq U_i$ for all i. Consider $r := \min\{r_1, r_2, ..., r_n\}$, which is well-defined since the set is finite. Then $B(x, r) \subseteq B(x, r_i)$ for all i (because any $y \in B(x, r)$ has $d(x, y) < r \le r_i$). Since $B(x, r_i) \subseteq U_i$ for all i, from transitivity we have $B(x, r) \subseteq U_i$ for all i. By definition of U, then, $B(x, r) \subseteq U$, so by definition U is open.

Problem 5 This problem shows that the collection of open subsets of \mathbb{R} is not closed under infinite intersections. Let $U_n = (-1/n, 1/n)$ in \mathbb{R} , which is open. Show

$$K := \bigcap_{n=1}^{\infty} U_n = \{0\}$$

and therefore the intersection is not open.

Solution.

We will show a double inclusion.

- (\subseteq) Suppose (toward contradiction) that $x \in K$ but $x \neq 0$. Then $x \in (-1/n, 1/n)$ for all $n \in \mathbb{N}$, so $|x| < \frac{1}{n}$. But by Archimedes, there exists an $n \in \mathbb{N}$ such that $\frac{1}{n} < |x|$, a contradiction. So $K \subseteq \{0\}$.
- (\supseteq) If $0 \notin K$, then $|0| \ge \frac{1}{n}$ for some $n \in \mathbb{N}$, so $0 \ge 1$, a contradiction. So $\{0\} \subseteq K$.

Therefore,
$$K = \{0\}$$
.