

FlashAttention-3

Fast and Accurate Attention with Asynchrony and Low-precision

2024.08.01

HPC Lab

홍성준, 박지연, 김유나

Contents Table

- 1 Summary
- 2 Background
- 3 FlashAttention-3
- 4 Empirical Validation

- ✓ FlashAttention1, 2는 A100 GPU에서 메모리 Read/Write를 최소화하여 Attention 속도를 높이는 접근 방식을 소개했다. 그러나 FlashAttention-2는 H100 GPU에서 35%의 활용률만 달성했다.
- ✓ 따라서 Hopper GPU에서 Attention 속도를 높이기 위해 세 가지 주요 기술을 개발했다.
- 1. Warps-Specialization을 통한 전체 계산과 데이터 이동을 Overlap 한다.
- 2. Block 단위의 Matmul 및 Softmax 연산을 교차적으로 수행한다.
- 3. FP8 Low-Precision에 대한 하드웨어 지원을 활용하는 Block Quantization 및 Incoherent Processing.
- ✓ H100 GPU에서 FP16으로 **740 TFLOPs/s (75% 활용률)**를 달성하고,
 FP8에서는 **1,200 TFLOPs/s**를 달성했다.

Features on Hopper GPU Hardware

- ✓ WGMMA: WarpGroup level에서 Matrix Multiply 및 Accumulate operation을 수행하는 명령어이다.
 Ampere 아키텍처의 mma.sync 명령어 보다 높은 처리량을 제공한다.
- ✓ TMA(Tensor Memory Accelerator): GMEM와 SMEM 간의 데이터 전송을 가속화하는 하드웨어 unit이다.
- ✓ WGMMA 명령어는 Hopper에서 FP8 Tensor Core를 대상으로 하여 FP16과 비교할 때 SM당 처리량을 2배로 제공한다.

Warps-Specialization

- ✓ CTA(Cooperative Thread Array) 내의 Warps를 특정 역할(Producer / Consumer)로 분할하여
 각각의 Warp가 특정 작업(데이터 로드 / 계산)만 수행하도록 하는 방식이다.
- ✓ Producer Warps: TMA(Tensor Memory Accelerator)를 이용하여 데이터 로드를 비동기적으로 처리할 수 있어 하나의 데이터 전송이 완료되기를 기다리지 않고 다른 작업을 진행할 수 있다.
- ✓ **Consumer Warps**: WGMMA는 전체 워프 그룹 내에서 GEMM을 수행할 수 있어, 병렬 처리를 극대화한다.
- ✓ 이를 통해 데이터 로드와 계산을 비동기적으로 처리하여 병렬성이 향상되고, 대기 시간을 최소화한다.

Ping-Pong Scheduling

- ✓ Matmul 연산은 Tensor Core에서 처리되고, Non-matmul 연산은 Multi-function unit에서 수행된다.
- ✓ Non-matmul 연산의 처리량은 Matmul 연산보다 훨씬 낮다.
- ✓ 따라서 Tensor Core에서 Matmul 연산을 수행할 때 Multi-function unit에서 지수 계산이 스케줄링 되는 것이 이상적이다.
- ✓ Warpgroup1의 Softmax는 Warpgroup2가 GEMM을 수행하는 동안 수행된다.
- ✓ 그런 다음, Warpgroup2가 Softmax를 수행하는 동안 Warpgroup1이 GEMM을 수행한다.

Ping-Pong Scheduling

- 4: Compute $S_{cur} = Q_i K_0^T$ using WGMMA. Commit and wait.
- 5: Release the 0th stage of the buffer for K.
- 6: Compute m_i , $\tilde{\mathbf{P}}_{\text{cur}}$ and ℓ_i based on \mathbf{S}_{cur} , and rescale \mathbf{O}_i .
- 7: **for** $1 \le j < T_c 1$ **do**
- 8: Wait for \mathbf{K}_{i} to be loaded in shared memory.
- 9: Compute $S_{\text{next}} = Q_i K_j^T$ using WGMMA. Commit but do not wait.
- 10: Wait for V_{j-1} to be loaded in shared memory.
- 11: Compute $O_i = O_i + \tilde{P}_{cur}V_{j-1}$ using WGMMA. Commit but do not wait.
- 2: Wait for the WGMMA $\mathbf{Q}_i \mathbf{K}_i^T$.
- 13: Compute m_i , \tilde{P}_{next} and ℓ_i based on S_{next} .
 - 4: Wait for the WGMMA $\tilde{\mathbf{P}}_{cur}\mathbf{V}_{i-1}$ and then rescale \mathbf{O}_i
- Release the (i % s)th, resp. (i − 1 % s)th stage of the buffer for K, resp. V.
- 16: Copy Speet to Scur.
- 17: end for

Warpgroup 1	S _{cur}	P _{cur}	O _{cur}	9	13 Softmax		GEMM1	GEMM0	Softmax			
Warpgroup 2		S_{next}	Softmax P_{next}		GEMM1 O_{next}	GEMM0	Softmax	ĺ	GEMM1	GEMMO	Softmax	

time

Intra-warpgroup overlapping GEMMs and softmax

- ✓ 한 Warpgroup 내에서도 Softmax 명령어와 GEMM의 일부 명령어를 겹칠 수 있다.
- ✓ Loop 안에서 반복 i의 두 번째 WGMMA 연산(O = PV)은 반복 j+1의 Softmax 연산과 겹친다.
- ✓ 따라서 아래 그림과 같이 한 Warpgroup 내에서도 병렬화가 가능하다.

Intra-warpgroup overlapping GEMMs and softmax

- ✓ 이 파이프라인은 이론적인 성능 향상을 제공하지만, 실질적인 측면에서 고려해야 할 점이 있다.
- 1. Compiler Reordering: Compiler(NVCC)는 최적화를 위해 종종 명령어를 재배치하여 설계된 WGMMA 및 non-WGMMA 연산 파이프라인 순서를 방해할 수 있다.
- Register Pressure: GEMM의 Accumulate와 Softmax의 Input / Output을 보관하기 위해
 Threadblock 당 Br × Bc × float* 크기의 추가 레지스터 사용을 초래한다.

 이러한 레지스터 수요 증가는 더 큰 블록 크기 사용(Another Common Optimization)과 충돌할 수 있으며, 이는 레지스터를 많이 요구한다. 따라서 실제로는 프로파일링 결과에 따라 절충해야 한다.

* B_r , B_c : Block size

Low-Precision with FP8

- ✓ Efficiency: FP8 precision에서 Layout 일치 문제가 발생한다.
- 입력 Tensor Q, K, V는 일반적으로 Head dimension에서 연속적이지만,
 FP8 WGMMA의 GEMM을 위해서 V가 Sequence dimension에서 연속적이어야 한다.
 - -> SMEM에 로드한 후 V의 타일을 Kernel 내에서 전치한다.

- 2. FP8 WGMMA의 FP32 Accumulator의 메모리 Layout은 레지스터에 저장된 피연산자 A의 Layout과 다르다.
 - -> Byte permute 명령어를 사용하여 이전의 WGMMA Accumulator를 다음 WGMMA에 적합한 형식으로 변환할 수 있다.

{d0 d1 d4 d5 d2 d3 d6 d7} The order in sequence

Low-Precision with FP8

✓ Accuracy: FP8 형식은 FP16/BF32에 비해 더 높은 수치적 오류(Outlier)를 초래한다.
 텐서별 스케일링(M)을 사용하여 각 텐서(Q, K, V)에 대해 하나의 스칼라 값을 유지한다.

- 1. Block Quantization: 블록당 하나의 스칼라 값을 유지하여, Q, K, V 각각에 대해 텐서를 블록으로 나누고 **별도로 양자화**한다.
- 2. Incoherent Processing: Outlier를 고르게 하기 위해 Q, K에 랜덤 직교 행렬 M을 곱한 후 양자화한다.

$$\mathbf{M}\mathbf{M}^{\top} = I$$
 and so $(\mathbf{Q}\mathbf{M})(\mathbf{K}\mathbf{M})^{\top} = \mathbf{Q}\mathbf{K}^{\top}$

With Causal Mask

Empirical Validation

Sequence length

Figure 5: Attention forward speed (FP16/BF16) on H100 GPU

Empirical Validation

(a) Forward, without causal mask, head dim 256

(b) Forward, with causal mask, head dim 256

Figure 7: Attention forward speed (FP8) on H100 GPU

Table 3: Numerical error comparisons in FP16 and FP8 (e4m3).

	Met	Method Baseline		FP16	FLASHATTENTION	-2 FP16	FLASH	ATTENTION-3 FP16	
	RMSE 3.2e-		-4 1.9e-4			1.9e-4			
Metho	od 1	d Baseline FP8 FL		Flash	Attention-3 FP8	No block quant		No incoherent processi	
RMS	Е	2.4e-2			9.1e-3		e-3	2.4e-2	

