Σ ΧΕ Δ ΙΑΣΜΌΣ Σ ΥΣΤΗΜΆΤ Ω N VLSI

 5^{η} Εργαστηριακή Άσκηση

Γιώργος Ντάχος 1059569 7 Ιουνίου 2021

Περίληψη

Στο παρακάτω κείμενο παραδίδεται η αναφορά της $5^{\eta\varsigma}$ εργαστηριακής άσκησης του μαθήματος Σχεδιασμός Συστημάτων VLSI . Όλοι οι κώδικες έχουν συγγραφεί σε γλώσσα VHDL & C++ μέσω του Notepad++ & HLS και έχουν μεταγλωτειστεί και επιβεβαιωθεί οι λειτουργίες τους μέσω του εργαλείου ModelSim HLS.Τέλος η σύνθεση όλων των κυκλωμάτων πραγματοποιήθηκαν από το εργαλείο VIVADO & HLS της Xilnix.

Περιεχόμενα Ενότητα Α Ενότητα Β Ενότητα Β Κατάλογος Σχημάτων Κατάλογος Πινάχων PowerSupply

Ενότητα Α

A.1

Στην συγκεκριμένη ενότητα θα φτιάξουμε εναν πολλαπλασιασμό wise element 2 μητρώων 3x3 των 5 bits το κάθε στοιχείο. Άρα στο αποτέλεσμα θα έχουμε ένα άλλο μητρώο 3x3 των 10(5+5) bits το κάθε στοιχείο. Αφού δημιουργήσουμε το αρχείο του κώδικα πραγματοποιούμε την εξομοίωση του και παίρνουμε τα παρακάτω αποτελέσματα όπου και μας επιβεβαιώνουν για την σώστη λειτουργία του κώδικα

Σχήμα 1: Αποτελεσματα simulation

Μετά κάνουμε την σύνθεση του κυκλωματός και παίρνουμε ως αποτέλεσμα για τους πόρους κτλ. που χρησιμοποίησε το σύστημα μας.(σχηματικό της σύνθεσης στο τέλος της εργασίας)

Table 1: PowerSupply

Utiliazation			
Name of circuit	LUT	IO	FF
Bits5MatrixMultiplier3X3	225 of 78600 (0.29%)	180 of 250 (72%)	0

Table 2: Utiliazation

Timing	Max Delay	
Name of Circuit	Critical Path	Frequency
Bits5MatrixMultiplier3X3	12.209 ns	81.90 MHz

Table 3: Data for Timing

A.2

Τώρα θα φτιάξουμε την ίδια διαδικασία σε γλώσσα c κάτι το οποίο είναι πιο εύκολο και πρακτικό. Δημιουργώντας την κατάλληλη συνάρτηση και το αρχείο testbench τρέχουμε το csimulation και παίρνουμε παρακάτω αποτέλεσματα τα οποία μας δείχνουν την ορθή λειτουργία του κωδικά μας.

```
1 INFO: [SIM 4] CSIM will launch GCC as the compiler.
3 make: csim.exe' is up to date.
4 A[0][0] = 6
5 [0][0] = 7
6 [0][0] = 42
7 C_test[0][0] = 42
8 A[0][1] = -10
9 B[0][1] = -50
11 C_test[0][1] = -50
11 A[0][2] = -9
11 A[0][2] = -9
11 A[0][2] = -9
11 A[0][2] = -9
11 A[0][0] = -3
12 A[0][0] = -3
13 B[0][2] = -3
13 B[0][2] = -3
14 C[0][0] = -3
15 C_test[0][0] = -3
16 A[1][0] = -3
18 C[1][0] = -3
```

Σχήμα 2: Αποτελέσματα csimulation

 Σ την συνέχεια ακολοθούν τα αποτελέσματα της σύνθεσης για την συναρτησή μας.

Έπειτα εκτέλεσαμε το cosimulation και πήραμε τα παρακάτω αποτελέσματα:

Επιπλέον μας δημιούργησε ένα αρχείο κώδικα σε VHDL που έχει αρκετές διαφορές από τον δικό μας κώδικα. Με μια γρηγόρη ματιά παρατηρούμε ότι ο κώδικας που πάραξε το εργαλείο HLS είναι πολύ μεγαλύτερος απο τον δικό μας. Έπειτα παρατηρούμε ότι μια πληθώρα από σήματα εξόδους και εισόδους στο κομμάτι της οντότητας ενώ εμείς χρειαστήκαμε μόνο 2 εισόδους και 1 έξοδο. Στη συνέχεια βλέπουμε ότι στην αρχιτεκτονική του συστήματος αυτού εχουμε πολλά τοπικά σήματα της μονάδας και μια διαφορετική διαδικασία με την οποία περιγράφει την

Σχήμα 3: Αποτελέσματα σύνθεσης

Σχήμα 4: Αποτελέσματα σύνθεσης

Summary					
RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	- 1	ap_ctrl_hs	mult_matr_func	return val
ap_rst	in	1	ap_ctrl_hs	mult_matr_func	return val
ap_start	in	- 1	ap_ctrl_hs	mult_matr_func	return val
ap_done	out	1	ap_ctrl_hs	mult_matr_func	return val
ap_idle	out	- 1	ap_ctrl_hs	mult_matr_func	return val
ap_ready	out	1	ap_ctrl_hs	mult_matr_func	return val
A_V_address0	out	4	ap_memory	A_V	arr
A_V_ce0	out	1	ap_memory	A_V	arr
A_V_q0	in	5	ap_memory	A_V	arr
B_V_address0	out	4	ap_memory	B_V	arr
B_V_ce0	out	- 1	ap_memory	B_V	arr
B_V_q0	in	5	ap_memory	B_V	arr
C_V_address0	out	4	ap_memory	C_V	arr
C_V_ce0	out	- 1	ap_memory	C_V	arr
C_V_we0	out	1	ap_memory	C_V	arr
C_V_d0	out	10	ap_memory	C_V	arr

Export the report(.html) using the <u>Export Wizard</u>
Open Analysis Perspective <u>Analysis Perspective</u>

Σχήμα 5: Αποτελέσματα σύνθεσης

Cosimulation Report for 'mult_matr_func'

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	Pass	25	25	25	NA	NA	NA
Verilog	NA	NA	NA	NA	NA	NA	NA

Σχήμα 6: Αποτελέσματα cosimulation

λειτουργία του κυκλώματος μας αλλά στην ουσία και οι 2 κώδικες πραγματοποιούν την ίδια λειτουργία.

Τέλος πραγματοποιούμε το export RTL και παίρνουμε τους τελικούς πόρους του συστηματός μας.

Σχήμα 7: Αποτελέσματα rtl

A.3

Για να ελλατώσουμε το latency όσο πιο πολύ μπορούμε θα χρησιμοποιήσουμε τις ετικέτες pragma στον κωδικά μας. Αυτό που πρέπει να αναφέρουμε είναι ότι δεν λάβαμε υπόψη μας περιορισμούς στους πόρους του συστηματός μας κάτι που στην πραγματικότητα είναι αρκετά σημαντικό κομμάτι στην υλοποίηση κυκλωμάτων. Αυτό που κάναμε για αρχή είναι να σπάσουμε τους 3 πίνακες σε 3 διαδοχικές διαφορετικές γραμμές των 3 στοιχείων, οι οποίες θα μπορούν να επεξεργαστούν παράλληλα. Έπειτα βλέπουμε ότι έχουμε εμφολευμένο for σε ένα μπλοκ for οπότε η χρήση pipilined μας βολεύει αρκετά για να μειώσουμε αρκετά το latency του συστηματός μας, όπου η κάθε διαδοχική επανάληψη του βρόχου θα γίνεται μετά από 1 κύκλο ρολογιού και το εμφολευμένο for θα γίνει total unroll οπότε όλες οι επαναλήψεις του θα τρέξουν παράλληλα. Τα αποτελέσματα των synthesis, cosimulation, export rtl φαίνονται παρακάτω:

Απο τα αποτελέσματα παρατηρούμε οτι μειώσαμε το λατενςψ 3 φορές και λίγο παραπάνω απο το σύστημα που δεν βάλαμε pragmas. Βέβαια παρατηρούμε ότι χρειάστηκαν τα διπλάσια και παραπάνω LUT αλλά ταυτόχρονα σχεδόν υποδιπλασιάστηκαν τα FF που θα χρησιμοποιήσουμε. Τώρα ο κώδικας VHDL που δημιούργησε είναι εξίσου διαφορετικός από τους άλλους δύο . Πρώτα πόλλα δημιουργήθηκαν 2 αρχεία VHDL όπου το σύστημα του το καλούμε στο τελικό μας σύστημα. Επίσης δηλώθηκαν πολλές περισσότεροι είσοδοι και έξοδοι κάτι το οποίο περιμέναμε αφού σπάσαμε τους πίνακες μας σε διαφορετικά τμήματα. Τέλος η αρχιτεκτονική έχει αλλάξει κατά πολύ, με περισσότερα τοπικά σήματα και την χρήση του υποσυστήματος για λειτουργία του τελικού συστήματος μας. Βέβαια η λειτουργία όλων των κωδικών VHDL είναι η ίδια.

Synthesis Report for 'mult_matr_func'

General Information

Date: Sat Jun 5 18:34:58 2021

Version: 2019.2 (Build 2704478 on Wed Nov 06 22:10:23 MST 2019)

Project: VLSI2-EA5
Solution: solution1
Product family: zynq

Target device: xc7z030i-fbg484-2L

Performance Estimates

■ Timing

■ Summary

Clock	Target	Estimated	Uncertainty	
ap_clk	10.00 ns	8.160 ns	1.25 ns	

■ Latency

■ Summary

Latency	(cycles)	Latency (absolute)	Interval		
min	max	min	max	min	max	Туре
8	8	80.000 ns	80.000 ns	8	8	none

Detail

■ Instance

+ Loop

Σχήμα 8: Αποτελέσματα σύνθεσης

Utilization Estimates

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	0	0	57	-
FIFO	-	-	-	-	-
Instance	-	-	0	52	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	49	-
Register	-	-	11	-	-
Total	0	0	11	158	0
Available	530	400	157200	78600	0
Utilization (%)	0	0	~0	~0	0

Detail

- **Instance**
- **DSP48E**
- **Memory**
- **∓ FIFO**
- **∓** Expression
- **■** Multiplexer
- **∓** Register

Σχήμα 9: Αποτελέσματα σύνθεσης

Interface

■ Summary

_ Summary			ı		
RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	mult_matr_func	return value
ap_rst	in	1	ap_ctrl_hs	mult_matr_func	return value
ap_start	in	1	ap_ctrl_hs	mult_matr_func	return value
ap_done	out	1	ap_ctrl_hs	mult_matr_func	return value
ap_idle	out	1	ap_ctrl_hs	mult_matr_func	return value
ap_ready	out	1	ap_ctrl_hs	mult_matr_func	return value
$A_0_V_address0$	out	2	ap_memory	A_0_V	array
A_0_V_ce0	out	1	ap_memory	A_0_V	array
A_0_V_q0	in	5	ap_memory	A_0_V	array
A_0_V_address1	out	2	ap_memory	A_0_V	array
A_0_V_ce1	out	1	ap_memory	A_0_V	array
A_0_V_q1	in	5	ap_memory	A_0_V	array
A_1_V_address0	out	2	ap_memory	A_1_V	array
A_1_V_ce0	out	1	ap_memory	A_1_V	array
A_1_V_q0	in	5	ap_memory	A_1_V	array
A_1_V_address1	out	2	ap_memory	A_1_V	array
A_1_V_ce1	out	1	ap_memory	A_1_V	array
A_1_V_q1	in	5	ap_memory	A_1_V	array
A_2_V_address0	out	2	ap_memory	A_2_V	array
A_2_V_ce0	out	1	ap_memory	A_2_V	array
A_2_V_q0	in	5	ap_memory	A_2_V	array
A_2_V_address1	out	2	ap_memory	A_2_V	array
A_2_V_ce1	out	1	ap_memory	A_2_V	array
A_2_V_q1	in	5	ap_memory	A_2_V	array
B_0_V_address0	out	2	ap_memory	B_0_V	array
B_0_V_ce0	out	1	ap_memory	B_0_V	array
B_0_V_q0	in	5	ap_memory	B_0_V	array
B_0_V_address1	out	2	ap_memory	B_0_V	array

Σχήμα 10: Αποτελέσματα σύνθεσης

B_0_V_ce1	out	1	ap_memory	B_0_V	array
B_0_V_q1	in	5	ap_memory	B_0_V	array
B_1_V_address0	out	2	ap_memory	B_1_V	array
B_1_V_ce0	out	1	ap_memory	B_1_V	array
B_1_V_q0	in	5	ap_memory	B_1_V	array
B_1_V_address1	out	2	ap_memory	B_1_V	array
B_1_V_ce1	out	1	ap_memory	B_1_V	array
B_1_V_q1	in	5	ap_memory	B_1_V	array
B_2_V_address0	out	2	ap_memory	B_2_V	array
B_2_V_ce0	out	1	ap_memory	B_2_V	array
B_2_V_q0	in	5	ap_memory	B_2_V	array
B_2_V_address1	out	2	ap_memory	B_2_V	array
B_2_V_ce1	out	1	ap_memory	B_2_V	array
B_2_V_q1	in	5	ap_memory	B_2_V	array
C_0_V_address0	out	2	ap_memory	C_0_V	array
C_0_V_ce0	out	1	ap_memory	C_0_V	array
C_0_V_we0	out	1	ap_memory	C_0_V	array
C_0_V_d0	out	10	ap_memory	C_0_V	array
C_0_V_address1	out	2	ap_memory	C_0_V	array
C_0_V_ce1	out	1	ap_memory	C_0_V	array
C_0_V_we1	out	1	ap_memory	C_0_V	array
C_0_V_d1	out	10	ap_memory	C_0_V	array
C_1_V_address0	out	2	ap_memory	C_1_V	array
C_1_V_ce0	out	1	ap_memory	C_1_V	array
C_1_V_we0	out	1	ap_memory	C_1_V	array
C_1_V_d0	out	10	ap_memory	C_1_V	array
C_1_V_address1	out	2	ap_memory	C_1_V	array
C_1_V_ce1	out	1	ap_memory	C_1_V	array
C_1_V_we1	out	1	ap_memory	C_1_V	array

Σχήμα 11: Αποτελέσματα σύνθεσης

C_1_V_d1	out	10	ap_memory	C_1_V	array
C_2_V_address0	out	2	ap_memory	C_2_V	array
C_2_V_ce0	out	1	ap_memory	C_2_V	array
C_2_V_we0	out	1	ap_memory	C_2_V	array
C_2_V_d0	out	10	ap_memory	C_2_V	array
C_2_V_address1	out	2	ap_memory	C_2_V	array
C_2_V_ce1	out	1	ap_memory	C_2_V	array
C_2_V_we1	out	1	ap_memory	C_2_V	array
C_2_V_d1	out	10	ap_memory	C_2_V	array

Σχήμα 12: Αποτελέσματα σύνθεσης

Cosimulation Report for 'mult_matr_func'

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	Pass	8	8	8	NA	NA	NA
Verilog	NA	NA	NA	NA	NA	NA	NA

Σχήμα 13: Αποτελέσματα cosimulation

Export Report for 'mult_matr_func'

General Information

Report date: Sat Jun 05 18:42:40 +0300 2021

Project: VLSI2-EA5
Solution: solution1

Device target: xc7z030i-fbg484-2L Implementation tool: Xilinx Vivado v.2019.2

Resource Usage

	VHDL
SLICE	0
LUT	102
FF	11
DSP	0
BRAM	0
SRL	0

Final Timing

	VHDL
CP required	10.000
CP achieved post-synthesis	1.505

Timing met

Σχήμα 14: Αποτελέσματα rtl

Ενότητα Β

B.1

Στην συγκεκριμένη άσκηση πρέπει να φτιάξουμε τον πολλαπλασιασμό 2 μητρώων 4ξ4 με 12 bits εύρος το κάθε στοιχείο οπότε στα αποτελέσματα θα έχουμε ένα μητρώο 4ξ4 με το κάθε στοιχείο να έχει εύρος 24 bits (12+12). Πραγματοποιούμε το simulation και παίρνουμε τα εξής αποτελέσματα:

Ενότητα Β

B.1

Σχήμα 15: Αποτελέσματα csimulation

```
|41|A[2][1] = -1099
42 B[2][1] = -1704
43 C[2][1] = -3646583
44 C_test[2][1] = -3646583
45 A[2][2] = 496
46 B[2][2] = -877
47 C[2][2] = -1689284
48 C_test[2][2] = -1689284
49 A[2][3] = 1175
50B[2][3] = 1330
51 C[2][3] = 1498068
52 C_test[2][3] = 1498068
53 A[3][0] = -2023
54 B[3][0] = 1323
55 C[3][0] = 1799286
56 C_test[3][0] = 1799286
57 A[3][1] = 209
58 B[3][1] = -1856
59 C[3][1] = 3686777
60 C_test[3][1] = 3686777
61 A[3][2] = 1533
62 B[3][2] = -490
63 C[3][2] = 516081
64 C_test[3][2] = 516081
65 A[3][3] = -1650
66 B[3][3] = 590
67 \, C[3][3] = 1945732
68 C_test[3][3] = 1945732
69 INFO: [SIM 1] CSim done with 0 errors.
71
```

Σχήμα 16: Αποτελέσματα csimulation

Μετά τα παραπάνω αποτελέσματα και την ορθή λειτουργία της συναρτησής μας πραγματοποιούμε την σύνθεση, cosimulation & rtl export και επιστράφηκαν τα εξής αποτελέσματα :

Synthesis Report for 'OGmult_matr_func'

General Information

Date: Sat Jun 5 21:10:04 2021

Version: 2019.2 (Build 2704478 on Wed Nov 06 22:10:23 MST 2019)

Project: VLSI2-EA5
Solution: solution2
Product family: zynq

Target device: xc7z030i-fbg484-2L

Performance Estimates

□ Timing

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00 ns	7.305 ns	1.25 ns

■ Latency

Summary

Latency (cycles)			Latency (absolute)	Interval		
	min	max	min	max	min	max	Туре
	169	169	1.690 us	1.690 us	169	169	none

□ Detail

∓ Instance

⊥ Loop

Σχήμα 17: Αποτελεσματα συνθεσης

Utilization Estimates

□ Summary

-					
Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	1	-	-	-
Expression	-	-	0	36	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	16	-
Register	-	-	57	-	-
Total	0	1	57	52	0
Available	530	400	157200	78600	0
Utilization (%)	0	~0	~0	~0	0

Detail

- **■** Instance
- **DSP48E**
- Memory
- **∓ FIFO**
- **∓** Expression
- **Multiplexer**
- **∓** Register

Σχήμα 18: Αποτελέσματα συνθεσης

Interface

■ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	OGmult_matr_func	return value
ap_rst	in	1	ap_ctrl_hs	OGmult_matr_func	return value
ap_start	in	1	ap_ctrl_hs	OGmult_matr_func	return value
ap_done	out	1	ap_ctrl_hs	OGmult_matr_func	return value
ap_idle	out	1	ap_ctrl_hs	OGmult_matr_func	return value
ap_ready	out	1	ap_ctrl_hs	OGmult_matr_func	return value
A_V_address0	out	4	ap_memory	A_V	array
A_V_ce0	out	1	ap_memory	A_V	array
A_V_q0	in	12	ap_memory	A_V	array
B_V_address0	out	4	ap_memory	B_V	array
B_V_ce0	out	1	ap_memory	B_V	array
B_V_q0	in	12	ap_memory	B_V	array
C_V_address0	out	4	ap_memory	C_V	array
C_V_ce0	out	1	ap_memory	C_V	array
C_V_we0	out	1	ap_memory	C_V	array
C_V_d0	out	24	ap_memory	C_V	array

Export the report(.html) using the $\[\underline{\text{Export Wizard}}\]$

Open Analysis Perspective <u>Analysis Perspective</u>

Σχήμα 19: Αποτελέσματα συνθεσης

Cosimulation Report for 'OGmult_matr_func'

Result

			Latency	y		Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	Pass	169	169	169	NA	NA	NA
Verilog	NA	NA	NA	NA	NA	NA	NA

Σχήμα 20: Αποτελέσματα cosimulation

Export Report for 'OGmult_matr_func'

General Information

Report date: Sat Jun 05 21:16:01 +0300 2021

Project: VLSI2-EA5 Solution: solution2

Device target: xc7z030i-fbg484-2L Implementation tool: Xilinx Vivado v.2019.2

Resource Usage

	VHDL
SLICE	0
LUT	27
FF	30
DSP	1
BRAM	0
SRL	0

Final Timing

	VHDL
CP required	10.000
CP achieved post-synthesis	1.660

Timing met

Σχήμα 21: Αποτελέσματα rtl

B.2

Τώρα θα προσπαθήσουμε πάλι να μειώσουμε το latency του αρχικού μας συστήματος με την χρήση pragmas ετικέτων. Πάλι να σημειώσουμε ότι δεν λάβαμε υπόψη μας το πόσους πόρους θα χρησιμοποιήσει το συστημά μας. Στο συγκεκριμένο κώδικα αυτό που κάναμε είναι να σπάσουμε και τους 3 πίνακες τον καθε ένα σε μεμωνομένα στοιχεία δηλαδή τα συνολικά 16 στοιχεία του κάθε πίνακα θα γίνουν 16 ξεχωριστοί πίνακες. Στη συνέχεια αφού έχουμε ολά τα στοιχεία του κάθε πίνακα μεμωνομένα θα βόλευε πάρα πολύ να κάνουμε και τους 3 βρόγχους for, totally unroll έτσι όλες οι επαναλήψεις των βρόγχων θα τρέξουν ταυτόχρονα παράλληλα. Θα μπορούσαμε πάλι να βάλουμε pipelined θα πέρναμε επίσης αρκετά καλά αποτελέσματα αλλά απο την στιγμή που έχουμε σπάσει ολοκληρωτικά τον κάθε πίνακα το να κάνουμε totally unroll τους 3 βρόγχους θα μας δώσουν τα βέλτιστα αποτελέσματα όσον αφορά το latency . Έχοντας κάνει όλα τα παραπάνω εκτελούμε τα synthesis, cosimulation & rtl export και καταγράφουμε τα παρακάτω αποτελέσματα:

Synthesis Report for 'OGmult_matr_func' **General Information** Date: Sat Jun 5 21:39:54 2021 2019.2 (Build 2704478 on Wed Nov 06 22:10:23 MST 2019) Version: Project: VLSI2-EA5 Solution: solution3 Product family: zynq Target device: xc7z030i-fbg484-2L **Performance Estimates** ■ Timing ■ Summary Clock Estimated Uncertainty ap_clk 10.00 ns 8.993 ns 1.25 ns ■ Latency ■ Summary Latency (cycles) Latency (absolute) Interval (cycles) Туре 4 40.000 ns 40.000 ns 4 4 4 none Detail **∓** Instance **∓** Loop

Σχήμα 22: Αποτελέσματα rtl

Utilization Estimates

■ Summary

_ Julilliary					
Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	64	-	-	-
Expression	-	-	0	384	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	100	-
Register	-	-	1205	-	-
Total	0	64	1205	484	0
Available	530	400	157200	78600	0
Utilization (%)	0	16	~0	~0	0

■ Detail

- **∓** Instance
- **DSP48E**
- **Hemory**
- **∓ FIFO**
- **∓** Expression
- **■** Multiplexer
- **∓** Register

Σχήμα 23: Αποτελέσματα rtl

Interface

■ Summary

- Sullillary					
RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	OGmult_matr_func	return value
ap_rst	in	1	ap_ctrl_hs	OGmult_matr_func	return value
ap_start	in	1	ap_ctrl_hs	OGmult_matr_func	return value
ap_done	out	1	ap_ctrl_hs	OGmult_matr_func	return value
ap_idle	out	1	ap_ctrl_hs	OGmult_matr_func	return value
ap_ready	out	1	ap_ctrl_hs	OGmult_matr_func	return value
A_0_V_address0	out	2	ap_memory	A_0_V	array
A_0_V_ce0	out	1	ap_memory	A_0_V	array
A_0_V_q0	in	12	ap_memory	A_0_V	array
A_0_V_address1	out	2	ap_memory	A_0_V	array
A_0_V_ce1	out	1	ap_memory	A_0_V	array
A_0_V_q1	in	12	ap_memory	A_0_V	arra
A_1_V_address0	out	2	ap_memory	A_1_V	arra
A_1_V_ce0	out	1	ap_memory	A_1_V	arra
A_1_V_q0	in	12	ap_memory	A_1_V	arra
A_1_V_address1	out	2	ap_memory	A_1_V	arra
A_1_V_ce1	out	1	ap_memory	A_1_V	arra
A_1_V_q1	in	12	ap_memory	A_1_V	arra
A_2_V_address0	out	2	ap_memory	A_2_V	arra
A_2_V_ce0	out	1	ap_memory	A_2_V	arra
A_2_V_q0	in	12	ap_memory	A_2_V	arra
A_2_V_address1	out	2	ap_memory	A_2_V	arra
A_2_V_ce1	out	1	ap_memory	A_2_V	arra
A_2_V_q1	in	12	ap_memory	A_2_V	arra
A_3_V_address0	out	2	ap_memory	A_3_V	arra
A_3_V_ce0	out	1	ap_memory	A_3_V	arra
A 3 V q0	in	12	ap memory	A 3 V	arra

Σχήμα 24: Αποτελέσματα rtl

A_3_V_address1 out 2 ap_memory A_3_V array A_3_V_ce1 out 1 ap_memory A_3_V array A_3_V_q1 in 12 ap_memory A_3_V array B_0_V_address0 out 2 ap_memory B_0_V array B_0_V_ce0 out 1 ap_memory B_0_V array B_0_V_q0 in 12 ap_memory B_0_V array B_0_V_address1 out 2 ap_memory B_0_V array B_0_V_ce1 out 1 ap_memory B_0_V array B_0_V_q1 in 12 ap_memory B_0_V array B_1_V_address0 out 2 ap_memory B_1_V array B_1_V_ce0 out 1 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory						
A_3_V_q1 in 12 ap_memory A_3_V array B_0_V_address0 out 2 ap_memory B_0_V array B_0_V_ce0 out 1 ap_memory B_0_V array B_0_V_q0 in 12 ap_memory B_0_V array B_0_V_address1 out 2 ap_memory B_0_V array B_0_V_ce1 out 1 ap_memory B_0_V array B_0_V_q1 in 12 ap_memory B_0_V array B_1_V_address0 out 2 ap_memory B_1_V array B_1_V_e0 out 1 ap_memory B_1_V array B_1_V_address0 out 2 ap_memory B_1_V array B_1_V_e0 in 12 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_2_V_address0 out 2 ap_memory	A_3_V_address1	out	2	ap_memory	A_3_V	array
B_0_V_address0 out 2 ap_memory B_0_V array B_0_V_ce0 out 1 ap_memory B_0_V array B_0_V_q0 in 12 ap_memory B_0_V array B_0_V_address1 out 2 ap_memory B_0_V array B_0_V_ce1 out 1 ap_memory B_0_V array B_0_V_ce1 in 12 ap_memory B_0_V array B_1_V_address0 out 2 ap_memory B_1_V array B_1_V_ce0 out 1 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_q0 in 12 ap_memory B_1_V array B_1_V_ce1 out 1 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_1_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array <tr< td=""><td>A_3_V_ce1</td><td>out</td><td>1</td><td>ap_memory</td><td>A_3_V</td><td>array</td></tr<>	A_3_V_ce1	out	1	ap_memory	A_3_V	array
B_0_V_ce0 out 1 ap_memory B_0_V array B_0_V_q0 in 12 ap_memory B_0_V array B_0_V_address1 out 2 ap_memory B_0_V array B_0_V_ce1 out 1 ap_memory B_0_V array B_0_V_q1 in 12 ap_memory B_0_V array B_1_V_address0 out 2 ap_memory B_1_V array B_1_V_ce0 out 1 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_ce1 out 1 ap_memory B_1_V array B_1_V_q0 in 12 ap_memory B_1_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_d0 in 12 ap_memory	A_3_V_q1	in	12	ap_memory	A_3_V	array
B_0_V_q0 in 12 ap_memory B_0_V array B_0_V_address1 out 2 ap_memory B_0_V array B_0_V_ce1 out 1 ap_memory B_0_V array B_0_V_q1 in 12 ap_memory B_0_V array B_1_V_address0 out 2 ap_memory B_1_V array B_1_V_ce0 out 1 ap_memory B_1_V array B_1_V_q0 in 12 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_e0 in 12 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_2_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_d0 in 12 ap_memory B_	B_0_V_address0	out	2	ap_memory	B_0_V	array
B_0_V_address1 out 2 ap_memory B_0_V array B_0_V_ce1 out 1 ap_memory B_0_V array B_0_V_q1 in 12 ap_memory B_0_V array B_1_V_address0 out 2 ap_memory B_1_V array B_1_V_ce0 out 1 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_ce1 out 1 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_1_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_d0 in 12 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory	B_0_V_ce0	out	1	ap_memory	B_0_V	array
B_0_V_ce1 out 1 ap_memory B_0_V array B_0_V_q1 in 12 ap_memory B_0_V array B_1_V_address0 out 2 ap_memory B_1_V array B_1_V_ce0 out 1 ap_memory B_1_V array B_1_V_q0 in 12 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_ce1 out 1 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_2_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_e0 out 1 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory B_3_V<	B_0_V_q0	in	12	ap_memory	B_0_V	array
B_0_V_q1 in 12 ap_memory B_0_V array B_1_V_address0 out 2 ap_memory B_1_V array B_1_V_ce0 out 1 ap_memory B_1_V array B_1_V_q0 in 12 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_ce1 out 1 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_1_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_ce0 out 1 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory B_3_V array B_3_V_address0 out 2 ap_memory	B_0_V_address1	out	2	ap_memory	B_0_V	array
B_1_V_address0 out 2 ap_memory B_1_V array B_1_V_ce0 out 1 ap_memory B_1_V array B_1_V_q0 in 12 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_ce1 out 1 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_2_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_e0 out 1 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_e1 in 12 ap_memory B_2_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_e0 out 1 ap_memory B_	B_0_V_ce1	out	1	ap_memory	B_0_V	array
B_1_V_ce0 out 1 ap_memory B_1_V array B_1_V_q0 in 12 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_ce1 out 1 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_1_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_ce0 out 1 ap_memory B_2_V array B_2_V_q0 in 12 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory B_2_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory <td< td=""><td>B_0_V_q1</td><td>in</td><td>12</td><td>ap_memory</td><td>B_0_V</td><td>array</td></td<>	B_0_V_q1	in	12	ap_memory	B_0_V	array
B_1_V_q0 in 12 ap_memory B_1_V array B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_ce1 out 1 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_1_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_ce0 out 1 ap_memory B_2_V array B_2_V_q0 in 12 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory B_2_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory	B_1_V_address0	out	2	ap_memory	B_1_V	array
B_1_V_address1 out 2 ap_memory B_1_V array B_1_V_ce1 out 1 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_1_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_ce0 out 1 ap_memory B_2_V array B_2_V_q0 in 12 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory B_2_V array B_2_V_q1 in 12 ap_memory B_2_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory <td< td=""><td>B_1_V_ce0</td><td>out</td><td>1</td><td>ap_memory</td><td>B_1_V</td><td>array</td></td<>	B_1_V_ce0	out	1	ap_memory	B_1_V	array
B_1_V_ce1 out 1 ap_memory B_1_V array B_1_V_q1 in 12 ap_memory B_1_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_ce0 out 1 ap_memory B_2_V array B_2_V_q0 in 12 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory B_2_V array B_2_V_q1 in 12 ap_memory B_2_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V	B_1_V_q0	in	12	ap_memory	B_1_V	array
B_1_V_q1 in 12 ap_memory B_1_V array B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_ce0 out 1 ap_memory B_2_V array B_2_V_q0 in 12 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory B_2_V array B_2_V_q1 in 12 ap_memory B_3_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V<	B_1_V_address1	out	2	ap_memory	B_1_V	array
B_2_V_address0 out 2 ap_memory B_2_V array B_2_V_ce0 out 1 ap_memory B_2_V array B_2_V_q0 in 12 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory B_2_V array B_2_V_q1 in 12 ap_memory B_2_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory	B_1_V_ce1	out	1	ap_memory	B_1_V	array
B_2_V_ce0 out 1 ap_memory B_2_V array B_2_V_q0 in 12 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory B_2_V array B_2_V_q1 in 12 ap_memory B_2_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_q0 in 12 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V	B_1_V_q1	in	12	ap_memory	B_1_V	array
B_2_V_q0 in 12 ap_memory B_2_V array B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory B_2_V array B_2_V_q1 in 12 ap_memory B_2_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_q0 in 12 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V	B_2_V_address0	out	2	ap_memory	B_2_V	array
B_2_V_address1 out 2 ap_memory B_2_V array B_2_V_ce1 out 1 ap_memory B_2_V array B_2_V_q1 in 12 ap_memory B_3_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_q0 in 12 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V array	B_2_V_ce0	out	1	ap_memory	B_2_V	array
B_2_V_ce1 out 1 ap_memory B_2_V array B_2_V_q1 in 12 ap_memory B_2_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_q0 in 12 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V array	B_2_V_q0	in	12	ap_memory	B_2_V	array
B_2_V_q1 in 12 ap_memory B_2_V array B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_q0 in 12 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V array	B_2_V_address1	out	2	ap_memory	B_2_V	array
B_3_V_address0 out 2 ap_memory B_3_V array B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_q0 in 12 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V array	B_2_V_ce1	out	1	ap_memory	B_2_V	array
B_3_V_ce0 out 1 ap_memory B_3_V array B_3_V_q0 in 12 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V array	B_2_V_q1	in	12	ap_memory	B_2_V	array
B_3_V_q0 in 12 ap_memory B_3_V array B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V array	B_3_V_address0	out	2	ap_memory	B_3_V	array
B_3_V_address1 out 2 ap_memory B_3_V array B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V array	B_3_V_ce0	out	1	ap_memory	B_3_V	array
B_3_V_ce1 out 1 ap_memory B_3_V array B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V array	B_3_V_q0	in	12	ap_memory	B_3_V	array
B_3_V_q1 in 12 ap_memory B_3_V array C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V array	B_3_V_address1	out	2	ap_memory	B_3_V	array
C_0_V_address0 out 2 ap_memory C_0_V array C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V array	B_3_V_ce1	out	1	ap_memory	B_3_V	array
C_0_V_ce0 out 1 ap_memory C_0_V array C_0_V_we0 out 1 ap_memory C_0_V array	B_3_V_q1	in	12	ap_memory	B_3_V	array
C_0_V_we0 out 1 ap_memory C_0_V array	C_0_V_address0	out	2	ap_memory	C_0_V	array
	C_0_V_ce0	out	1	ap_memory	C_0_V	array
C_0_V_d0 out 24 ap_memory C_0_V array	C_0_V_we0	out	1	ap_memory	C_0_V	array
	C_0_V_d0	out	24	ap_memory	C_0_V	array

Σχήμα 25: Αποτελέσματα rtl

C_0_V_address1	out	2	ap_memory	C_0_V	array
C_0_V_ce1	out	1	ap_memory	C_0_V	array
C_0_V_we1	out	1	ap_memory	C_0_V	array
C_0_V_d1	out	24	ap_memory	C_0_V	array
C_1_V_address0	out	2	ap_memory	C_1_V	array
C_1_V_ce0	out	1	ap_memory	C_1_V	array
C_1_V_we0	out	1	ap_memory	C_1_V	array
C_1_V_d0	out	24	ap_memory	C_1_V	array
C_1_V_address1	out	2	ap_memory	C_1_V	array
C_1_V_ce1	out	1	ap_memory	C_1_V	array
C_1_V_we1	out	1	ap_memory	C_1_V	array
C_1_V_d1	out	24	ap_memory	C_1_V	array
C_2_V_address0	out	2	ap_memory	C_2_V	array
C_2_V_ce0	out	1	ap_memory	C_2_V	array
C_2_V_we0	out	1	ap_memory	C_2_V	array
C_2_V_d0	out	24	ap_memory	C_2_V	array
C_2_V_address1	out	2	ap_memory	C_2_V	array
C_2_V_ce1	out	1	ap_memory	C_2_V	array
C_2_V_we1	out	1	ap_memory	C_2_V	array
C_2_V_d1	out	24	ap_memory	C_2_V	array
C_3_V_address0	out	2	ap_memory	C_3_V	array
C_3_V_ce0	out	1	ap_memory	C_3_V	array
C_3_V_we0	out	1	ap_memory	C_3_V	array
C_3_V_d0	out	24	ap_memory	C_3_V	array
C_3_V_address1	out	2	ap_memory	C_3_V	array
C_3_V_ce1	out	1	ap_memory	C_3_V	array
C_3_V_we1	out	1	ap_memory	C_3_V	array
C_3_V_d1	out	24	ap_memory	C_3_V	array

Σχήμα 26: Αποτελέσματα rtl

Cosimulation Report for 'OGmult_matr_func'

Result

		Latency			Interval		
RTL	Status	min	avg	max	min	avg	max
VHDL	Pass	4	4	4	NA	NA	NA
Verilog	NA	NA	NA	NA	NA	NA	NA

Σχήμα 27: Αποτελέσματα rtl

General I	nformat	ion			
Report d	ate:	Sat Jun 0	5 21:49:21 +0300 20		
Project:		VLSI2-EA5			
Solution:		solution3			
Device ta	rget:	xc7z030i	xc7z030i-fbg484-2L		
Impleme	ntation to	ool: Xilinx Vi	vado v.2019.2		
Resource	Usage				
	VHDL				
SLICE	0				
LUT	486				
FF	199				
DSP	64				
BRAM	0				
SRL	0				
Final Tim	ing				
		VHDL			
CP req	uired	10.000			
CP ach	ieved pos	3.975			
Timing n	net				

Σχήμα 28: Αποτελέσματα rtl

Όπως παρατηρούμε μειώσαμε το latency σχεδόν 44.5 φορές αλλά με το κόστος να αυξήσουμε όχι απλά λίγο τους πόρους του συστηματός μας αλλά δραματικά αρκετά αφού όπως βλέπουμε τα DSPs αυξήθηκαν 64 φορές παραπάνω, τα FF να φτάνουν τα 1205 απο 30 και τα LUT να αγγίζουν τα 484 εναντι των 27. Στο τέλος ακολουθούν τα σχηματικά με την σειρά για τον κάθε κώδικα εκτός του τελευταίου λόγου των πραγματικά πολλών πόρων που το υλοποιούσανε.

