Exercises for Lectures 10 and 11

These lectures considered functions and cardinality.

|A| < |B|: There is a one-to-one function from A to B.

or

There is an onto function from B to A.

 $|A|=|B|\colon\,|A|\leq|B|\text{ and }|B|\leq|A|$

or

There is a one-to-one onto function from A to B.

For any set X, and any function $f: X \to \mathcal{P}(X)$, we defined the set $C_f = \{x \in X \mid x \notin f(x)\}$ and used it to show that there is no onto function from X to $\mathcal{P}(X)$.

We described Cantor's diagonal argument (a variation on this) to show that $\mathbb R$ is uncountable.

We showed that \mathbb{N} , \mathbb{Z} , and \mathbb{Q} are all countably infinite.

We showed that \mathbb{R} and $\mathcal{P}(\mathbb{N})$ are both uncountable.

We showed that if A and B are countably infinite, then $A \cup B$ and $A \times B$ are both countably infinite.

We showed that if you have countably infinite collection of countably infinite sets, A_1 , A_2 , A_3 , A_4 , A_5 , ..., then the set

$$\bigcup_{i=1}^{\infty} A_i$$

is countably infinite.

But noted that then the set

$$A_1 \times A_2 \times A_3 \times \cdots$$

is uncountable.

Exercises

- 1. Definite a function $\mathcal{P}(\mathbb{N}) \to \mathbb{N}$ which is onto. What does this say about the cardinalities of $\mathcal{P}(\mathbb{N})$ and \mathbb{N} ?
- 2. Definite a function $\mathbb{N} \to \mathcal{P}(\mathbb{N})$ which is one-to-one. What does this say about the cardinalities of $\mathcal{P}(\mathbb{N})$ and \mathbb{N} ?
- 3. Define a function $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ for which $C_f = \mathbb{N}$. Show that the set \mathbb{N} is not the image of any element in \mathbb{N} under f.
- 4. Define a function $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ for which $C_f = \emptyset$. Show that the set \emptyset is not the image of any element in \mathbb{N} under f.
- 5. Define a function $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ for which $C_f = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

- 6. Let $X = \{n \in \mathbb{N} \mid n \text{ is evenly divisible by 1 million}\}$. Define a function which shows that X is countably infinite.
 - Is this compatible with the fact that $X \subseteq \mathbb{N}$?
- 7. Let $Y = \{n \in \mathbb{N} \mid \text{the decimal representation of } n \text{ contains no } 7.\}$. Define a function which shows that X is countably infinite.
- 8. Let $Z = \{n \in \mathbb{R} \mid \text{the decimal representation of } n \text{ contains only 4's and 7's.} \}$. Define a function which shows that X is uncountable.
- 9. Find a one-to-one onto function with domain $A \times (B \times C)$ and target $(A \times B) \times C$.
- 10. Label each of the following as finite, countable, or uncountable.
 - (a) The set of subsets of \mathbb{Q} .
 - (b) $\mathcal{P}(\mathbb{R})$.
 - (c) The set of functions with domain $\mathbb{Z} \times \mathbb{Z}$ and target $\{0,1\} \times \{0,1\}$.
 - (d) The set of functions with domain $\{0,1\} \times \{0,1\}$ and target $\mathbb{Z} \times \mathbb{Z}$.
 - (e) the set of positive prime integers.
 - (f) the set of finite subsets of \mathbb{Z} . [Hint: Write it as a countable union of finite sets.]
 - (g) The set of non-increasing infinite sequences of elements of \mathbb{N} , that is sequences

$$\{a_k\}_{k\in\mathbb{N}}$$

such that $a_{k+1} \leq a_k$ for all k.

11. Challenging: Don't do this unless you found the problems above were too easy.

Let

 $\{X \in \mathcal{P}(\mathbb{R}) \mid X \text{ is the set of real roots of some polynomial with rational coeficients.} \}$

Find three elements of X, each with different cardinalities.

Show that X is countably infinite.