NASA GR-143665

CATHORENATION CATELLE SYSTEM DENIENT OF STREET

REPORT NO. 3: DESIGN/COST-TRADEOFF STUDIES

Appendix C: EOS Program Requirements

Document

(NASA-CR-143665) EARTH OBSERVATORY N75-15711
SATELLITE SYSTEM DEFINITION STUDY. REPORT
NO. 3: DESIGN/COST TRADEOFF STUDIES.
APPENDIX C: EOS PROGRAM REQUIREMENTS Unclas
DOCUMENT (Grumman Aerospace Corp.) 162 p HC G3/18 09248

EARTH OBSERVATORY SATELLITE SYSTEM DEFINITION STUDY

REPORT NO. 3: DESIGN/COST TRADEOFF STUDIES

• Appendix C: EOS Program Requirements

Document

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GODDARD SPACE FLIGHT CENTER

GREENBELT, MARYLAND 20771

Prepared By
GRUMMAN AEROSPACE CORPORATION
BETHPAGE, NEW YORK 11714

					en e
COMMINO	REQUIR	EMENTS	CONTRACT ITEM	MODEL	CONTRACT NO
	Kalendaria Romania				
				REPORT	
		NO.	EOR-74-001	D	ATE May 31, 1974
	i de esta Esta de esta de la compansión de la compan		E O S REX	QUIREMENTS DOCU	MENT
		L		CODE 26512	
PREPARED . B	ıv R.	Pratt/B	Sidor	TECHNICAL	APPROVAL
CHECKED BY	<u> </u>			APPROVED	BY
DEPARTMENT			<u> </u>	APPROVED	BY
SECTION				APPROVED	
			RE	VISION S	
DATE	REV BY	ſ	IEVISIONS & ADDE	D PAGES	REMARKS
7/12/74	RLP	Se	e following pag	e : : : : : : : : : : : : : : : : : : :	Document re-issued
	1				

GAC 924A HEV. 1

EOC TROCKAM REQUIREMENTS DOCUMENT FOR 74-001 REVISIONS

NO.	REVISION	DATE
1	Replace 1, 11, 111, vi Add 2.6-1, 2.6.1-1, 2, 3, 5, 6, 6; 2.6.2-1, 2.3, 4; 2.6.3-1, 2, 3, 4; 3.18.1-1, 2, 3, 4, 5, 6, 7	6/6/74
5	Delete: 2.4-1; 2.5-1 Replace: i, ii, iii, iv, v, vi, vii, viii, ix, x, xi; 1.0-2; 2.1-1; 2.2-1; 2.3-1; 3.4-1; 3.6-1 Add: xii; 2.1-2, 3, 4; 2.3-2, 3, 4, 5, 6, 7, 8, 9, 10; 3.1-1, 2, 3; 3.2-1; 3.3-1; 3.8-1; 3.9.1-1, 2, 3; 3.9.2-1, 2; 3.9.3-1, 2; 3.10-1, 2, 3, 4, 5, 6, 7; 3.11.1-1, 2; 3.11.2-1; 3.11.3-1; 3.11.4-1, 2, 3, 4, 5, 6, 7, 8, 9; 3.11.5-1, 2; 3.13-1; 3.14-1; 3.15-1; 4.1.1-1; 4.1.7-1; 4.4.4-1	6/14/7
3	Replace v	6/18/
} ‡	Delete: 3.10-1, 2, 3, 4, 5, 6 & 7; 4.1.5-2 Replace: ii; 3.6-1; 3.18.1-4 & 7; 4.1.5-1 Add: 3.6-6; 3.17-1, 2, 3, 4, 5, 6, 7, &8; 3.16-1 & 2	6/21/7
5	Replace i, iv, v, vi, xi, xii, 1.0-3; 2.1-2; 2.2-1; 4.1.1-1; 4.1.7-1 Add: 2.1-5, xv, 4.1.7-2 Revise: Change page no. vi to vii, vii to viii, viii toix, ix to x, x to xiii, xi to xiv,	6/28/
6.	Delete: vi Replace: ii, iv, v, 2.2-1 Add: 2.6.1-7, 3.18.2-1, 2, 3, 4, 5, 6, 7 & 8	7/5/7
7.	Document re-issued as option designation revised on all pages Replace: vi, vii, viii, ix, xi, xiv; 2.1-1, 2, 4 & 7; 3.5-1; 3.16-1; 4.1.2-3; 4.1.3-3 Add: 2.1-3; 2.1-5/6,-8,-9; 3.5-3,4; 3.9.4-1,2; 3.11.4-10,11,12; 3.12-1; 3.13-2; 4.1.8-1,-2; 4.2.3-5, 6, 7, 8 & 9	7/12/

Insert after title page.

CONTENTS

	Page
Table of Contents	
Introduction	iv
Requirement Page Nomenclature	iv
Spacecraft Options	V
Trade Studies	vi
Table of WBS vs Requirements	vii
List of Acronyms	x
Source Documentation	xii
1.0 PROGRAM REQUIREMENTS	1.0-1
2.0 MISSION REQUIREMENTS	2.0-1
2.1 MISSION MODEL	2.1-1
2.1.1 LRM Mission	2.1-1
2.1.2 Seasat Mission	2.1-2
	2.1-3
2.1.3 Solar Maximum Mission	2.1-4
2.1.4 SEOS Mission	
2.1.5 TIROS O Mission	2.1.4
2.2 TRAFFIC MODEL	2.2-1
2.3 SHUTTLE PELATED PERFORMANCE	2.3-1
2.4 DELETED	
2.5 DELETED	
	2.6-1
2.6 BOOSTER RELATED PERFORMANCE	0 4 1 1
2.6.1 Delta 2910	
2.6.2 Titan IIIB/SSB/NUS	2.6.2-1
2.6.3 Titan IIID/NUS	2.6.3-1

CONTENTS

		Page
3.0	SYSTEMS REQUIREMENTS	3.0-L
3.1	SAFETY	3.1-1
3.2	RELIABILATY	3.2-1
3.3	MAINTAINABILITY	3.3-1
3.4	SPACECRAFT	3.4-1
3.5	INSTRUMENTS	3.5-1
	3.5.1 Thematic Mapper (TM	3.5-1
	3.5.2 High Resolution Pointable Imager (HRPI)	3.5-1
	3.5.3 Synthetic Aperture Radar (SAR)	3.5-1
	3.5.4 Passive Multichannel Microwave Radiometer (PMMR)	3.5-1
კ.6	DATA COLLECTION SYSTEM	3.6-1
3.7	DELETED	
3.8	SHUTTLE RESUPPLY PROJECT	3.8-1
3.9	S/C TO INSTRUMENT INTERFACES	3.9.1-1
	3.9.1 Thematic Mapper (TM)	3.9.1-1
	3.9.2 High Resolution Pointing Imager (HRPI)	3.9.2-1
	3.9.3 Synthetic Aperture Radar (SAR)	3.9.3-1
	3.9.4 Passive Multichannel Microwave Radiometer (PMMR)	3.9.4-1
3, 10	DELETED	
3.11	S/C TO SHUTTLE INTERFACES	3.11-1
3.12	DATA MANAGEMENT	3.12-1
3.13	FLIGHT OPERATIONS	3.13-1
3.14	FLIGHT OPERATIONS SUPPORT	3.14-1
3.15	s/c GSE	3.15-1

CONTENTS (CONT)	Page
3.16 s/c to delta 2910 interfaces	3.16-1
3.17 S/C TO TITAN TITB/SSB/NUS INTERFACES	3.17-1
3.18 SPACECRAFT STRUCTURAL TEST	3.18.1-1
3.18.1 Component Dynamic Environment 3.18.2 Spacecraft Dynamic Environment	3.18.1-1 3.18.2-
3.19 SPACECRAFT THERMAL TEST	3.19-1
3.20 SPACECPAFT MECHANICAL TEST	3.20-1
3.21 SPACECRAFT GROUND & FLIGHT SYSTEMS TEST	3.21-1
3.22 SPACECRAFT SHUTTLE INTERFACES TEST 4.0 SUBSYSTEM REQUIREMENTS	3.22-1 4.0-1
4.1 SPACECRAFT	4.1-1.
4.1.1 Orbit Transfer	4.1.1-1
4.1.2 Comm. and Data Handling	4.1.2-1
4.1.3 Electrical Power	4.1.3-1
4.1.4 Attitude & Control	4.1.4-1
4.1.5 Structure	4.1.5-1
4.1.6 Thermal	4.1.5-1
4.1.7 RCS/Orbit Adjust	4.1.7-1
4.1.8 Instrument Data Handling	4.1.8-1
4.2 DATA MANAGEMENT SYSTEM	4.2-1
4,2,1 Data Acquisition	4.2.1-1
4.2.2 DELETED	
4.2.3 Data Processing	4.2.3-1
4.2.4 Data User Service	4.2.4-1

CONTENTS (CONT)

•		Page
	4.2.4.1 Low Cost Ground System	4.2.4-1
4.3	DELETED	
4.4	DELETED	
	4.4.1 DELETED	
	4.4.2 DELETED	
	4.4.3 DELETED	•
	4.4.4 Transportation and Handling	7-4-7-7
	4.4.5 DELETED	
	4.4.6 DELETED	
4.5	DELETED	
4.6	DELETED	•

Introduction

This document serves as the basis for the subsequent EOS System Specification. It consists of requirements obtained from existing documentation and those derived from functional analysis. After EOS trade studies have been completed the requirements identified will be incorporated.

Requirement Page Nomenclature

Requirements follow the hierarchy of Program, Mission, System and Subsystem.

The "Source" column on the attached pages references the location of the requirements contained in existing documentation or those derived by GAC functional analysis

In addition, where applicable, relevant System Trades which constrain the requirement are identified in paratheses.

e.g.

The "Option" column identifies the applicability of requirements to each of the GAC EOS options being considered by placing a dot in the appropriate column. An open dot (o) is for interim requirements and a solid dot (e) indicates a verified requirement. Options are contained in the table on page v.

	S/C OPTIONS										
Γ	OFTICE			1		2	3		ž .	5	
	Targue Targue	KIOSTER ALLOV. S'O STEE	537,	DELTA 2910 "1005 i 86" DIAME		WI. COEST. ITAN 237 LONG I 96 DIA	TITAN 381" LONG K	III P 110" MANGEER	FITAN III C 683° 1000 X 110° DIA.	5 변경 보 15 전 .ELA	
	Missick	Designation Inclination Altitude Weight to Debit	# # # * 98 * 36 * 366 r. mi. 2560	Alternate 98° 193 X 193 m. ml. 2030	90° 324 n. ml. 2625	3 & 3° 98° 366 I 366 n. mi. 3730	96° 100 1 366 n. mi 7150 lb.	E 103° 100 % 915 v. mi. 4500 lb	7 0° 19300 X 19300 m. mi. 5600 1b		
	Sasic Pacecraft	Enrebance Wt. Ortiter Retrieval Ortiter resupply 2 Yr Service Life Increase Struct. Cap. Costingency Jeight	1485 36 107 32 20 1683 16		1485 36 107 32 20 1680 1b	1485 36 107 32 35 31 1722 15	11.25. 17: 20 30 101 39 1762	1585 36 107 32 60 52 1732 18	1465 36 107 32 60 36 1776 18		
-		Elect. Power (Battery) Solar Array Attitude Communication Communication Hamiling		., .	6k 8s —	<u>-</u>	64 84 145 1	32 23 145 —	145		
		Orbit Adjust/ Transfer Contingency	27 - 11 110		27 23 198 15	<u>#</u> 1P	351 57 765 15	1589 <u>52</u> 1241 15	27 8. 27. 16		9g
X	DSTRUKENTS	5 Send 1000 TO	160 400 53 periment tion Radiometer teal Sounder awnel meter tionster ter/Scatterometer itomater twonitor Survey Telescope		706.16	\$00 \$00 53	900 (2) h00 53 500	770 16	2300 2300 13		ORIGINAL PAGE IS OF POOR QUALFFY
Haviaton 6	IN THISENT MISSION PROVIDER	Structure Sesupply latches Thermal WE tape Recorder -ECS -MARS -MA	90 32 11		70 53 (TDRS) — 110 25 267 15	120 32 22 22 40 40 22 34 30 700 1b	225 53 40 60 60 38 48 56	80 42 11 (7D:5) = - - - - - - - - - - - - - - - - - -	230 21 160 (Direct) 		
Date You, I	Wirsion erove)	Tor Mission Feedlis Feedlish Cross Swing prioss	980 1044 1b 112 48 1b		1145 .1171 35 166 140 15	2008 1597 lb — 411 lb	3398 3378 1b	2748 2648 16 126 26 15	3884 3105 16 719 18		

•

UNITETARD

SYSTEM TRADE STUDIES

- 1. Orbital Altitude Selection
- 2. Launch Vehicle Selections
- 3. Shuttle Compatibility
- 4. Instrument Approach
- 5. Data Operations
- 6. Attitude Control System/Central Processing Facility,
- 7. Spacecraft Autonomy/Hardware vs. Software
- 8. Electronic Technology
- 9. International Data Acquisition
- 10. User/Science and Orbit Time of Day Studies
- 11. Utilization of Control Center Personnel
- 12. Coupled vs. Uncoupled Pneumatics
- 13. Wide Dand Data Format
- 14. Modularity Level
- 15. Design Growth Economic Study
- 16. Single Satellite vs. Multiple Satellites
- 17. Management Approach
- 18. Test Philosophy
- 19. Reliability and Quality Assurance

TABLE OF WIS VS. REQUIREMENTS

	With (Rev. 11)			REQUIREMENTS
•				1,()
1.0	EOS Program			Not Applicable
1.1	Program Management NASA			3.12
1.2	Data Management System			
1.2.1	Project Management .			Not Applicable
1.2.2	Systems Engineering and Integration			Not applicable
1.2.3	Documentation			Not Applicable
1.2.4	Central Data Processing Equipment			4.2
1.2.1.1	Pre-Processing		. *	4.2
1.2.4.2	Processing Equipment			#.3
1.2.4.3	Products Production			4.2
1.2.4.4	Archives		•	11.0
1.2.4.5	Information Management System Equipment	•		$1_{k_{\bullet}} \rho = 0$
1.2.4.6	Interfacing Systems Equipment			4.7
1.2.4.7	Facilities .			4. Ω
1.2.5	Low Cost Ground Station Equipment			4.2.4
1.2.6	Data Acquisition			4.2
1.2.7	Software			4.2
1.2.8	Spare Parts			4.2
1.20.0	Expendables		•	4.2
1.2.10	Operation and Maintenance			$\eta_{i\bullet} z$
1.3	Instruments		•	3.5
1.3.1	1,RM Instrument .			3.1>
1.3.1.1	Thematic Mapper (TM)			3.5.1
1,3.1.2	High Resolution Pointable Imager (HRPI)			3.5.2
1.3.1.3	Data Collection System (DCB)		٠.	3.6
1.3.2	Follow-On Instruments			3.1
1.3.2.1	Passive Multichannel Microwave Radiometer	(PMMR)		3.5
1.3.2.2	Synthetic Aperature Radar (SAR)			3.5.3
1.3.2.3	Synchronous Earth Observatory			3.5
1.3.2.4	Sea Satellite (SEASAT)			3.5
1.3.2.5	Five Band Multi-Spectral Scanner (MSS)			- 3.5
	· · · · · · · · · · · · · · · · · · ·			

ORIGINAL PAGE IS OF POOR QUALITY

WBS VS. REQUIREMENTS

	W.BS		REQUIREMENTS
1.3.2.6	Solar Maximum Mission (SMM		3,5
1.4	Flight Operations and Serv		3.13
1.4.1	Ground Command Control and	Tracking	3.1h
1.4.1.1	Telemetry Transmission		3.14
1.4.1.2	Computer Program		3.13
1.4.1.3	Mission Planning		3.13
1.4.1.4	Project Control Center		3 .1 4
1,4,1.5	Data Analysis		3.14
1.4.1.6	Network Modifications		3.14
1.4.1.7	GFSC Operations		3.14
1.4.2	Retrieval Resupply & Operat	ions Support	3.8
1.5	Launch System		3.7
1.5.1	Launch Vehicle		3.7
1.5.2	Shroud & Adapter		3.7
1.5.3	Operations Support & Servic	ing	3.7
1.5.4	Payload Interfaces		3.10
1.6	Shuttle Resupply Project		3.8
1.6.1	Manipulator System		3. 8
1.6.2	Storage System		3.8
1.7	Spacecraft Project		3.4
1.7.1	Project Management		N/A
1.7.1.1	Project Control		N/A
1.7.1.2	Configuration Management		N/A
1.7.1.3	Data Management		N/A
1.7.1.4	Cost Performance Management		N/A
1.7.2	Systems Engineering & Integ	ration	N/A
1.7.2.1	Systems Analysis		N/A
1.7.2.2	System Integration		N/A
1.7.2.3	Test Requirements & Definit:	ion	3.18
1.7.2.4	Control Center Definition	m to	3.14
1.7.2.5	Reliability	ORIGINAL PAGE IS	3•2
1.7.2.6	Safety	OF POOR QUALITY	3.1
	n en		in the second

WRS VS. REQUIREMENTS

	<u>WBB</u>	REQUIREMENTS
1.7.2.7	Quality Assurance	· N/A
1.7.2.8	Maintainability	3.3
1.7.3	Spacecraft	4.1
1.7.3.1	Basic Comm. & Data Handling Model	4.1.2
1.7.3.2	Basic EPS Module	4.1.3
1.7.3.3	Basic ACS Module	4.1.4
1.7.3.4	Basic On-Board Software	4.1.2
1.7.3.5	Structure/Thermal	h.l.b & 6 2
1.7.3.0	Inst. Mission Peculiar & Structure	4.1.5
1.7.3.7	Mission Peculiar EPS	4.1.3
1.7.3.8	Mission Peculiar ACS	4.1.4
1.7.3.9	Mission Peculiar Orbit Adjust	4.1.1
1.7.3.10	Mission Peculiar Pneumatics	4-1-7
1.7.3.11	Mission Peculiar Orbit Transfer	4.1.1
1.7.3.12	Mission Peculiar On-Board Software	4.1.2
1.7.3.13	Shuttle Flight Support System	3.11
1.7.3.14	Integration & Test	N/A
1.7.3.15	Mission Peculiar Comm/Data Handling	4.1.2
1.7.4	Che no ava 64 CCF	4.3
1.7.4.1	Spacecraft GSE	4+3
	Electrical GSE	4.3
1.7.4.2	Mechanical GSE	4.3
1.7.4.3	Fluid GSE	4.3
1.7.5	Logistics Support	4.4
1.7.5.1	Spares	4.4.1
1.7.5.2	Training	4.4.2
1.7.5.3	Publications	4.4.3
1.7.5.4	Transportation & Handling	4.4.4
1.7.5.5	Inventory Control & Warehousing	4.4.5
1.7.6	Facilities	4.5

2

WBS VS. REQUIREMENTS

	WBS	EQUIREMENTS
1.7.6.1	Manufacturing/Engineering	4.5
1.7.6.2	Launch	4.5
1.7.6.3	Project Control Center	4.5
1.7.6.4	STON	4.5
1.7.6.5	Recovery & Refurbishment	4.5
1.7.6.6	Site Activation	4.5
1.7.7	Vehicle Level Test	3.1 8
1.7.7.1	Dev./Qual. Test Operations	3.18
1.7.7.2	Dev./Qual. Test Hardware	3.18
1.7.7.3	Orbit Test Hardware	3.18
1.7.7.4	Orbital Test Operations	3.1 8
1.7.8	Spacecraft Refurbishment	4.6

LIST OF ACRONYMS

ÁCM	Attitude Control Module	LCGS	Low Cost Ground System
ACB	Attitude Control System	LIPS	Linear Image Plane Scanner
AGE	Aerospace Ground Equipment	LOPS	Linear Object Plane Scanner
AOP	Advanced On-Board Processor	LRM	Land Resource Management
	Absolute Radiometric Calibration	LSA	Limited Space Charge Accumulation
ARC	Applied Technology Satellite F	Γ⁄Λ	Launch Vehicle
ATS-F	Bit Error Rate	MBP8	Megabits Per Second
BER		MEM	Module Exchange Mechanism
B/L	Baseline Bus Protection Assembly	MEM	Multiplexer/Encoder Module
BPA	Boresighted Star Tracker	MLT	Multi Layer Insulation
BST	Biphase Shift Keying	MOMS	Multi-Megabit-Operation
BPSK	Control Center	1-10/1-40/	Multiplexer System
CC	COUPLOT CAUCAL	MSS	Multi Spectral Scanner
a ar	Ground Control Points	MUS	Magnetic Unloading System
CCP	Communications & Data Handling	MUX	Multiplexer
C&DH		NASCOM	NASA Communications
CDP	Central Data Processing	NEFD	Noise Equivalent Flux
	O I I I I I I I I I I I I I I I I I I I	NEFU	MOIRE Edutation Line
CIPS	Conical Image Plan Scanner		Density
CMD	Command	ŃM	Nautical Mile
CMD/TLM	Command/Telemetry		Non Return to Zero Level
CDPF	Central Data Processing Facility	NRZL	the state of the s
		NTTF	NASA Test & Training
CSC	Computer Sciences Corporation		Facility
DMS	Data Management System	NUS	No Upper Stage
DOD	Department of Defense	oao/lst	Orbiting Astronomical
DOMSAT	Domestic Satellite		Observatory/Large Space
DPS	Data Processing System		Telescope
EBR	Electron Beam Recorders	CAS	Orbit Adjust Subsystem
ELMS	Earth Limb Measurements Satellite	OBC	On-Board Computer
emc	Electro Magnetic Compatibility	OBDC	On-Board Data Compaction
EOS	Earth Observatory Satellite	OBP	On-Board Processor
erts	Earth Resources Technoloty Satellite		Operations
fht	Fixed Head Tracker	OT'S	Orbit Transfer Subsystem
fmea	Failure Mode Effects Analysis	OWS	Orbital Workshop (Skylab)
FOM	Figure of Merit	PCM	Pulse Code Modulation
FBK	Frequency Shift Keying	PCU	Power Control Unit
FSS	Flight Support System	PDSS	Precision Digital Sun
GAC	Grumman Aerospace Corporation		Sensor
GFE	Government Furnished Equipment		
GLS	Ground Logistics System	PDU	Power Distribution
GPS	Ground Processing System	•	
GSE	Ground Support Equipment	PGST	Precision Gimballed
GSFC	Goddart Space Flight Center		Star Tracker
HPRI	High Resolution Pointable Imager	P/L	Payload
ICD	Interface Control Document	PMMR	Passive Multichannel
IMPATT	Impact-Avalanche and Transit Time		Microwave Radiometer
IMS	Information Management SYSTEM	PRN	Pseudo Random Noise
LBR	Laser Beam Recorder	PRU	Power Regulation Unit

LIST OF ACRONYMS (Cont.'d)

PSK Phase Shift ! PSM Power Supply QPSK Quadrophase :	Module SMM	Subsystem Module Solar Maximum Mission Synchronous Metrological Satellite Signal-Noise Ratio
REL Reliability RF Radio Frequei RGA Rate Gyro Ass RMS Remote Munipe ROM Read Only Men R&QA Reliability Assurance RS Resupply Syst RTC Real Time Cor RTS Remote Tracks SAMS Shuttle Attacks	ncy SRM sembly SSR ulator System STAB mory STON & Quality TDRS tem TBD mmands TEA ing Site TIID	Statement of Work Solid Rocket Motor Scanning Spectral Radiometer Space Transporation & Budget Space Tracking Data Network Space Vehicle Tracking & Data Relay Satellite To Be Determined Transferred Electron Amplifier Transferred Electron Oscillator Titan IIID
SAR Synthetic Ap S/C Spacecraft BCO Bub-Carrier (BEABAT Sea Satellite SEOS Synchronous '	perture Radar TM TRAPATT Dacellation TWTA WBS	Test & Integration Station Thematic Mapper Tapped-Plasma-Avalanche Triggered Transit Traveling Wave Tube Amplifier Work Breakdown Structure Wide Band Video Tape Recorder

DEFINITIONS

S/V Spacecraft and Launch Vehicle

Basic S/C-Standard Modules

S/C Payload-Instruments

3 - Beta angle is the minimum angle formed by the earth sun line and the orbit plane

SOURCE DOCUMENTATION

- A. Request for Proposal No. 5-66203-202, "Earth Observatory Satellite System Definition Study," dated 17 January 1974.
- B. GAC Memo NSS-TR-74-005, "EOS System Definition Study General & Splinter Meetings at GSFC 4/17/74," dated 19 April 1974.
- C. GAC Memo NSS-TR-74-004, "EOS Kick-off Meeting at GSFC 4/15/74," dated 16 April 1974.
- D. Arthur D. Little, Inc. Report, C-75567, "Thermal Design of the Earth Observatory Satellite An Interim Report," dated September 1973 (Ref. 1.5.15).
- E. GSFC Report EOS-410-05, "Demonstration Model Spacecraft Description," dated September 1973 (Ref. 1.5.2)
- F. GSFC Report EOS-410-04, "Performance Specification for Spacecraft Subsystems," dated 14 September 1973 (Ref. 1.5.1).
- G. GSFC Report EOS-410-07, "The Earth Observatory Satellite (EOS) A System Concept," dated 4 September 1973 (Ref. 1.6.1).
- H. ORI Technical Report 769, "Study of Data Collection Platform Concepts Final Report-Data Collection System User Requirements," dated April 1973 (Ref. 1.2.7).
- I. GAC Memo EOM-74-033, "Earth Observatory Satellite, System Definition Study Guidelines," dated 14 May 1974.
- J. GAC Memo SDM-73-085, "EOS Orbit Analysis," dated 14 May 1974.
- K. GSFC Report, "Seasat-A Phase A Study Report," dated Aug. 1973 (Ref. II.B.1).
- L. MSFC Report, "Payload Descriptions-Vol.I-Automated Payloads", dated October 1973.
- M. GSFC Report X-703-74-42, "Solar Maximum Mission (SMM) Conceptual Study Report," dated January 1974 (Ref. II.A.1)

- N. GSFC Table, "SEO S Instrument," (Ref. II.D.3)
- O. GSFC Table, "Seasat Instrument" (Ref. II.B.4)
- P. IEEE, "Earth and Ocean Physics Applications Program," 1974 IEEE International Convention (Ref. II.B.3)
- Q. GSFC Table, "SMM Instrument" (Ref. II.A.2).
- R. GAC Memo EOM-74-059, "FOS Reference System Definition, Revision A dated 29 May 1974.
- S. GAC Memo EOM-74-060, "Qualification and Acceptance Dynamic Test Requirements for Components," Rev A, 31 May 1974.
- MDAC Report DAC-6 1687, "Delta Spacecraft Design Restraints,"
 Revised November 1973 (Ref. 2.4.1)
- U. MMC Report M-70-7 (Rev. 1), "Performance and Characteristics Handbook, Titan III Vehicle Family," revised January 1973.
- V. GAC Memo EOM 74-074, "S/C GSE Requirements," dated 6/3/74.
- W. GAC Memo 74-064," EOS GSE Requirements," dated 5/29/74.
- X. Unpublished GAC Memo, "Tentative Sensor Interface Hughes TM"
- Y. GSFC Memo EOS-410-8, "High Resolution Pointable Imager Specification for Baseline EOS," dated 9/24/73 (Ref 1.1.10).
- Westinghouse Report, "Final Report, Spaceborne Synthetic Aperture Radar Pilot Study," dated 4/11/74

- AB MMC Report 1R-73-1, "Mission Planning Guide-Titan IIIC," dated Feb. 1974.
- AC NASA/JSC Report JSC 07700, Volume XIV, "Space Shuttle System Payload Accommodations," Rev. B dated 12/21/73 (Ref. 2.4.3 a).
- AD GSFC Internal Memo to W.A. White from E. Painter, Data Collection System for EOS-A, dated May 21/74
- AE Martin Marietta Document, Titan Candidate Launch Vehicles for EOS Missions at WTR, dated 10/73
- AF GAC Memo, EOM 74-085 Impulse Requirements for Pneumatics & Orbit Adjust Modules, dated 6/7/74
- AG GAC Memo, EOM 74-127, Spacecraft Dynamic Test Requirements, dated 6/28/74
- AH GAU Memo, EOM 74-113 CDP-Thruput Considerations and Data Output Formats, dated 6/24/74
- AI GSFC Document, Payloads Description. dated 10/73
- AJ GAC Memo EOM 74-090, Meeting With J. Purcell at GAC 6/7/74
- AK Operations Research, Inc. Report, Passive Multichannel Microwave Radiometer (PMMR) Feasibility Study, dated 6/15/73
- AL GFSC Report, Synchronous Earth Observation Satellite (Ref. II D2)
- AM GAC Memo, ECM 74-114, Wide Band Data Handling & On board Data Compaction Subsystem Specification dated 6/24/74.

Rev. 7 dated: 7/12/74

<u></u>				ATT ATT	
	REQUIREMENT		SOURCE	OPTION	
1.0 PROGRAM				14342 × 8C	DEF
	ory Satellite (EOS)Progra t for use with existing l costs when used with the	aunch vehicles that wi			2 0
1.0.2 The baseline system	m shall consist of:				
Shuttle Compatible Resupply Capabilit Data Collection Sy Modular Subsystem Transition Ring Co	y stem	bility	A/2.1.1/2+1 A/1.5.142/1-68 A/1.5.3/1-7 A/1.5.4/1-7 A/2.1.1/2-1 A/2.2.3/2-8 A/2.2.3/2-8 A/1.3.6/1-5		5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1.0.3 The system contrac	tor will assume responsib	ility for the instrum	ents A/1.1/1-1	00000	
1.0.4 Provide flexibilit mission instrument	· , =	nodate follow-on	A/1.2/1-2		
1.0.5 Follow on instrume and the Passive Mu	nts are the Synthetic Ape Itichannel Microwave Radi		A/2.3/2-9		
1.0.6 Demonstrate the spinstruments for the mission, SEOS, and	e following missions: SE		POOR QUA		
1.0.7 Provide spacecraft of the Department	that demonstrate the ope of Interior	erational requirements	GAC		
1.0.8					

			REQUIREMENT			SOURCE	OPTION
2	retri e val, r Shutt le Syst	elaunch and em.	in the decade of in-orbit service	e capabilities	of the Space	A/1.4.4/ 1-6	123µ5
1.0.11	The EOS will \$ SEOS which	l be launche h will be la	ed from WIR except aunched from ETR	pt the Shuttle	demonstration fligh	11-/1	
	•						
		QF R					
en e		OF POOR OUAL PAGE					
	4	ACE TO					

	REQUIREMENT		SOURCE	OPTIO	OFF .
.l MISSIC				12315	
2.1.1 La	and Resources Management (LRM)				
2.1.1,1	Mission Objectives		G/1.0/1-1	00000	
O .	Develop sensor and other spacecraft systems to surements and images suitable for generating tearth's surface.				
0	Operate these systems to generate a data base information such as crop or timber acreages or amounts of actual or potential water run-off a of stresses on the environment will be extract	volumes, courses and and the nature and extent			
O	Demonstrate the application of this extracted management of resources such as food and water prediction of hazards such as floods, and the of land use such as strip mining and urbanizat	the assessment and planning and regulation			
2.1.1.2	Mission Description		J/-/1	00000	
	The basic requirement of the LEM instruments ingearth coverage under nearly constant obser. This requires a circular sun synchronous orbit of orbits and days per repeat ground trace pat analysis indicates that a solar orbit of 98° i orbital altitude of 366 nm. meets al	vation conditions. with an integral number tern. Preliminary nelination with an	IS- 1 ÷18)		
2.1.1.3	Payload Instruments				
	The following instruments in various combination for the LRM missions: Thermatic Mapper, High Imager, Data Collection System, 5 Band Multi S	Resolution Pointable	AJ/-/-		
	Page 2.1-1		Revision 7	Date 7	/12/74

REQUIREMENT	SOURCE	OPTION
2.1.2 Seasat Mission		12345ABCDEF
2.1.2.1 SEASAT A		
Mission Objectives	K/1.1/1-1	
The SEASAT-A mission is designed for development and demonstration of space techniques for forecasting and monitoring sea state, currents, circulation, pileup, storm surges, tsunamis, air sea interactions, surface winds, and ice formations.		
Mission Description	K/1.1/1-1	
A nominal orbit altitude of 391 n.mi. (725 km) is high enough to avoid orbit uncertainties due to drag and low enough to obtain good radar performance with acceptable power consumption. An 82° inclination provides good earth coverage, non-sunsynchronous, to high latitudes.		
2.1.2.2 SEASAT B		
Mission Objectives	L/OPO7A/A-2 (TS 2:17)	
Provide data for short-wavelength gravity field determination for earthquake and geoid mapping. Provide data in support of ocean studies such as large amplitude ocean features, currents, circulation systems, temporal variations, ocean geoid and surface conditions. These condition include sea state/surface wave height, wind fields, shelf tides, ocean tides, barometric pressure, storm surges and tsunamis	ıs	
Mission Description	L/OPO7A/A-1	
Nominal circular orbital altitude of 324 n mi (600 km) at an inclination of 90° .		
Payload Instruments	AZ /4/6488	
See table 2.1.2-1.		
Page 2.1-2	Revision 7	Date 7 12/75

AUTOMATED PAYLOAD. MISSION EQUIPMENT

Dete	16.3	lui-	1979		0	_	 	
Payl	ond Mo)	OP07	A				_
Dáta	Sheet	No.	<u>.</u>	, ·	7-0			
	1.				A-3			

Payload No	LIDESEASAT-B										1. 11.				10 70	IV 1973	A
			U	NIT SIZE		T. UNIT	8. UNIT		NIT POWI	R III.		DATA	1	OF VIEW,		NMENT RAINTS	18.
	EQUIPMENT			(f1)		VOLUME	WEIGHT	i.e	ve <u>i</u> itts	Peak	Form:	PUT	1	rees)			RE MARKS
Ref.	2. Name	3. Qty	f.Width or Dia.		i.ength	<i>(</i> ₹3)	(05)	Average	16. A Peak	Duration, sec.	A. D. Gilzo	Hz. b/s. trames	14 Instan- tenerus	15 Total	Contain. Sensi- tivity	Temp,	
OP 039	Altimeter (K-band pulsed altimeter)	1	.2 (8.6 0)	0.2 (.66)	0_5 (1. 64)	0.62 (0.72)	45 (100)	100	-	1 9 2. ¥11	/ D	12-04	9.17 5 (29)	0, 175 (19) Nadir	Class 190,000	290 <u>+</u> 20	Measure ocean height to 0.1m precision (P.1se
OP 940	Erutterometer		1.1	1.5	1	1.65	91	120	100		D	1E+04	0.026	0.87	Cinas	290+20	compression techniques Measure sea-sta
J. V.	(K-band, CW, scannet)		(3, 6)	(4.92)	(3.28)	(58.3)	(200)			957			n.s	(50)	100,000		(wind speed
OP 041	IR Scanner (Thermal channel scanning radiometer)	1	(3.28)	1 (3.26)	1.2 (3.96)	1;Z: 5 (42,4)	43 (95)	45.	20	18	D	1.5E-06	6.625 (1.5)	± 0.7 (±40) Cross Track	Class 100,000	290 ± 20	Measure ses sur- face temperature AT to ≈1K
11P 942	Transponder (C-bend, estellite-to- satellite)	1	6.25 (0.82)	9.2 (0.66)	0.2 (0.66)	0.01 (0.35)	8 (17. 6)	20	-	-	NA	-		2.6x2.6 7 (150 x 150 Nadir			Monsure satellis position, _1m
OP 043	Retroreflector (Optical quality glass reflectors)	1	0.61 (2)	-	0.46 (1.5)	0.0653 (2.31)	20 (44)		-			2.4		5 2.6 x 2.6 6 (150 x 150 Nadir		273 <u>+</u> 80	Measure satelli position, •0.1n
OP 044	Transponder (3/C-band, satellite-to- satellite)		0.3 (1)	0.61 (2)	(2)	0.114 (4) *	40 (88)	30	20	1	NA	-		3,1 x 3. (180 x 180 Nadir		290±20	Measure satelli- to-satelli-te Position rate -0,0001 m/sec
OP 045	Coherent-Radar Experiment (Dual frequency, 155 & 1215 MHz aitimeter)		0.3	1 (3.29)	1 (3,26)	0.3 (10.5)	73 (161)**		20	10.00	D	BE - 06	1.57 (90)	1.57 (90) Redir	Ciass 100,000	290 <u>+</u> 20	Measure ocean surface roughne and aititude -0.01m
		,	ission Equi	ioment To	ta l	3.36	320 (706)	455		Sufficiently of							
	ORIGINAL OF POOR					110.0;	(rop)		PACE EVC		OLDAG)						
	GINAL PAGE POOR QUALI																
	PAGE QUALI				e							1		·			

SSPD (A-3) 3-12-73

Table 2.1.2-1 2.1-3

Revision 7

Dated)7/12/7

	REQUIREMENT	SOURCE	OPTION
2.1.3 Sol	ar Maximum Mission (SMM)		14345
2.1.3.1	Mission Objectives		
	The basic scientific goal of the SMM is to study the fundamental mechanisms of a solar flare.	M/2.1/ 5	
2.1.3.2	Mission Description	M/3.3.1/14	
	Initial launch is scheduled for June 1978 on a Delta vehicle. Subsequent retrieval and re-deployment is planned for Shuttle. Minimum orbital life is 1 year. The nominal orbit is 275-300 n/mi. circular at an inclination of 28-33 degrees.	Q/ -/ - I	
2.1.3.3	Payload Instruments	M/-/-	
	See table 2.1.3-1.		
	Fage 2.1-4	Revision 7	Date = _2 /-4

CARDIDATE PAYLOAD INSTRUMENTS FOR INITIAL SMI

	Sensor	Sensor	Sensor	Sensor Unos- structed	Sens:	Flactronics Volume/	Day-		Discrete/	Analog/
Experiment Title 4	Solar Pacing Size on (inch)	Length E (ft)	Weight Yg (1bs)	View Angle (icg)	Alignment Accuracy	Weight m3/Kg (ft=/lb)	time Power ⁶ (watta)	Data Rate /bps}	Serial Cmd. Req.	Digital Telemetry Channels
UV Magneto- graph	18:5 ± 25.4 (7 x 10)	1.84 (6)	45 (100)	2	5 arc sec	.03m ² /16 Eg (1(ft ³)/ 35 lbs).	20	.500	24/4	24/6
EUV Spec- trometer	25:4 x 25.4 (10 x 10)	(1.84). 6	45 (100)	2,	5 ere séc	.03/16 (1/35)	20	1000	24/5	24/6
High Besolm- tion X-Bay Spectrometer	18.8 x 25.4 (7 x 10)	1.99 (6.5)	i45 (100)	5	5 arc sec	.03/16 (1/35)	15	350	50/5	24/4
Hard X-Ray Imaging	15.2 x 13.7 (6 x 5)	1,99	45 · (100)	5	10 arc sec	.03/16 (1/35)	15	200	20/2	12/3
Low Energy X-Ray Pola- rimeter Me- dium Energy	20.3 x 20.3 (8 x 3)	.92 (3)	7-3 (16)	5	l arc min	.014/9 (.5/20)	10	40 0	5#/2	24/4
X-Ray Pola- rimeter		, '								
Gemma Ray Detector	45.7 x 45.7 (18 x 18)	.92 (3)	20 (200)	20	1 deg	.03/16 (1/35)	12	500	24/2	20/3
Hard X-Ray Spectrometer	30.4 x 30.4 (12 x 12)	.92 (3)	31.6 (70)	20	1 deag	.03/16 (1/35)	12	500	24/2	20/3
Solid State X-Say Detector	30.4 x 30.4 (12 x 12)	.31 (1)	9 (20)	10	1 deg	.011/9 (.5/20)	5	1.2 200	12/1	12/2
Coronsgraph	12.7 x 30.4 (5 x 12)	1.84	45 (100)	20	2 are min	.014/9 (.5/20)	ю	500	24/I	12/2
tv Spectrometer	20.3 x 30.4 (8 x 12)	1.84	50 (110)	2	5 arc sec	.03/16 (1/35)	. 20	500	24/4	24/6
Bectron Detector	25.4 x 50.8 (10 x 20)	.92 (3)	93 (205)	20	l deg	.03/16 (1/35)	15	200	54\5	30/2
H- Photometer	10.2 x 10.2 (4 x 4)	.92- (3)	9. (20)	2	5 are sec	.014/9 (5/ 2 0)	10	125	12/1	10/1
Flare Finder	10.2 x 10.2 (4 x 4)	1.84	13.5° (30)	2	10 arc sec	.014/9 (.5/20)	ю	503	12/1	10/1

- 2 Bit rate requirement is orbital average. Typical requirement is 6000 bps for one minute per flare.
 3 Bit rate requirement is orbital average. Typical requirement is 1000 bps for one minute per flare.
 4 SMM shall accommodate all of these experiments simultaneously.

- 5 Indicates relative alignment accuracy between the instrument and the fine pointing sun sensor.
- 6 Nighttime power requirements approximately 20% of daytime power.

	REQUIREMENT	SOURCE	OPTION
2.1.4 SEC	S Mission		123454800
2.1.4.1	Mission Requirement	L/E0-09A/5-34	
	The SEOS mission is intended to investigate remote sensing techniques for measuring transient environmental phenomena from a geosynchronous orbit.	(TS (2.17)	
2.1.4.2	Mission Description Nominal mission altitude will be 19323 n.mi circular at an inclination	L/E0-09A/5-3 ¹ 4	
	of 0 degrees. Nominal orbit positioning will be 96° west longitude. Nominal mission duration is to be 2 years with initial launch scheduled for CY 1981. Recovery and/or on-orbit servicing is not planned.		
	The EOS shall be capable of placing the SEOS experiments in an equatorial orbit of the following characteristics:	L/E0-09A/5-34	
	ha = 19323 ± 25 n.mi		
	The EOS shall place the SEOS experiments at a nominal orbit position of 96° west longitude.	L/E0-09A/5-34	
	The EOS shall maintain the SEOS experiments on-orbit for not less than 2 years.	L/E0-09A/5-34	
	The EOS shall support an initial launch of SEOS experiments in CY 1981.	L/E0-09A/5-34	
2.1.4.3	Payload Instruments		
	Prime instrument for this mission is the Large Earth Survey Telescope (LEST). Other instruments being considered are: Advanced Atmosphere Sounder & Imaging Radiometer (AASIR), Microwave Sounder, Data Collection System, Framing Camera	AL/-/-	

	REQUIREMENT	SOURCE	OPTION
		•	12345ABCDEF
2.1.5	TIROS O Mission		
	Mission Objectives	L/E0-12A/A-2	
, i	The TIROS O vehicle is intended to verify for operational use an advanced environmental operation payload. This spacecraft will have implemented operational versions of remote sensing techniques proven in nimbus and EOS flight experiments as well as improvements in those sensors carried by the previous N/ITCS vehicles. The TIROS O satellite will be the first of the operational vehicles to be designed with the shuttle exploitive modular design so that in orbit refurbishment of the payload can be effected and evaluated.	(TS 2-17)	
	Mission Description	L/EO-12A/A-1	
	Nominal perigee altitude of 905 mmi (1676 km) and apogee of 915 n mi (1695 n mi) at an inclination of 1030.		
	Payload Instruments	AI/-/5-66	
	See table 2.1.5-1.		
l			
	Page 2.1-3	Revision 7	Date 7/12/74

MISSION ROUTPMENT

eta fibest No.		A-3	. •
Periond No.	BO-12A		
)ata	9/5/73	Bov.	ORIE.

Paylord Name TIROS C

No. 1			· · · · · · · · · · · · · · · · · · ·	NIT SIZE		T. UNIT	S. UNIT	ប	KIT POWI			DATA		OF VIEW			16.
	EQUIPMENT	Marya. Marya				VOLUME			rel, dis	Peak	Porm:	IPUT	(degr	iene rees)	CONST.		REMARKS
l. Ref. No.	2. Name	3. Qty	4.Width or Dia		i. Length	(C ³)	(A)	Атогаро	20 Peak	Duration sec.	A. D. films	Hz. b/s. frames	lastan- Lasectus	Total	Contain. Sensi- tivity	Temp,	
20-95	ADVANCED VERY HIGH RESDL- UTION RADIOMETER	1	0.31 p		0.62 (2.7)	0.06	27.2	15.			Đ	1.08+06	5.5E-04		TRANS.		
			(1)		(2.7)	(2.12)	(60)	\$				b/a	(0.0315)	2.19	LASS 10,000	2 .	
E0-96	ADVANCED YIROS OPERATIONAL VERTICAL SOCIEDES	2	0.46	0.31	0.70 (2.3)	0.10	45.4	40		.,,,	, p	4000 h/s	0.0197	1.42	MP9SZTZC		
- 4				, ;							1				FIRAL S	ORDYACES .	
E0-97	SCAMPING MULTICHAMMEL MICROMAVE RADIOMETER	·		P			,										
	ELECTRONICS	a²	0.31	0.31	0.31 (1.0)	0.030	52.2	85				1500 5/6		±0.61			CONTCAL SCAN
	SCANNER	1	1.0 D		0.5	0.39	(115)	"					(1.14)	((1 95)			
			(3,26)		(1.64)	(13.9)	,									· .`	
BO-98	HICKSHAVE RADIOMETER/	. ,			8.2		İ										
	RLECTROFICS	1	0.348	0.348	0.348 (1.14)	0:042 : (1:48)	36.3				D	10,0005	0.013	(1.05)			
	ANTERNA	1	0.27	0.02	0.27	0.0015	20.4	92					(0.74)	(60)			
	er i de la familia de la composición d La composición de la		(0.88)	(0.07)	(0.88)	(0.054)	(44.9)				1						
EO-99	CLOUD FRUSICS RADIOGERA	1	0.23	0.23	0.46	0.024	13.6				٥	3 .OE+64	0.0025	± 1.3			
			(0.75)	(0.75)	(1.5)	(0.64)	(30)	20				b/4	(0.14)	(± 75)			
EO-100	SPACE ENVIRONMENTAL MONITOR	2	0.27	0.27	0.27	0,020 (0.73)	11.4	6			D	120 b/s	3 15	. 3.			
							:			,							
E0-101	DATA COLLECTION SYSTEM	2 ~	0.15 (0.5)	0,20 (0,67)	(1,67)	(0.55)	22.7 (50)	10			D:	800 b/s		1			
				12.											1.		
i					·								6				
			1 - 3 - 3		1												
· · · · · · · · · · · · · · · · · · ·					* * * * *					1. 35							

Table 2.1.5-1

Page 2.1-9

errier on 7

atable: 112 /71

		REQUIREMENT			SOURCE	OPTION
2.2 Traffi	c Model				AJ/-/4	123454600
Mission	Purpose	Booster Option	S/C Payload	Launch Date		
A	LRM	1 (Delta 2910).	MSS, TM, DCS	179,		0 .
A	LPM	1 (Delta 2910)	MSS, TH, DCS	80	(TS 16)	•
Test	Demo Rendez dock- ing & resupply	5 (Shuttle)	Eng. Model	'80		
В	LRM	2 (WCT)	TM, HRPI, DCS	81		
В'	LRM	2 (WCT)	IM, HRPI, DCS	182		
C	Marine Resources	3 (Titan IIIB)	2TM, HRPI, SAF, DCS	80		
	Ocean Dynamics	l (Delta 2910)	(SEASAT-B)	. 55		•
E	weather Observa- tion	3 (Titan IIIB)	(TIROS-O)	82		
F	Transient Environ-	ዛ(ጥitan TTTጥ)	(SEOS-A)	*81		•
	men tal phenomena	(120001 1130)	(10000-4)			
-						
* Weight	Constrained Titan	(TS 2)				
			ORIGINAL PAGE OF POOR QUALIT	IS		
			OF POOR QUALT	M		

Kevision 6

Date 7/5/7-

	in the second se	n de la companya della companya della companya de la companya della companya dell	ere din e <u>la participa de la compa</u>					
		RESULTES	13. T			<u> 204702</u>		м.ж. Ону г. г.
			at a state				2,231.5	
2.3	SHUTTLE RELA	ATED PERFORMANCE						
2.3.1	Shuttle laur as shown in	nch azimuth and o Fig. 2.3-1	rbit inclin	ation limi	ts are	AC/3.2.2/	3.3	
2.3.2	Shuttle peri	formance capabili	ties are de	efined in:			•	
	o Figs. o Fig. 2					AC/3.2.3. AC/3.2.3. AC/3.2.3.	2/3-4	

Fig. 2.3-1 LAUNCH AZIMUTH AND INCLINATION LIMITS FROM VAFB AND KSC

Fig. 2.3-2 - Payload weight versus circular orbital altitude - KSC launch, delivery only.

Revision 2 Date: 6/14/74

Fig. 2.3-3 - Payload weight versus circular orbital altitude - VAFB launch, delivery only. 2.3-4

Revision 2 Date: 6/14/74

Fig. 2.3-4 - Payload weight versus inclination for various circular orbital altitudes - delivery only.

2.3-5

Fig. 2.3-5 - Payload weight versus circular orbital altitude - KSC launch, delivery and rendezvous.
2.3-6

Date: 6/14/74

Fig. 2.3-6. - Payload weight versus circular orbital attitude - VAFB launch, delivery and rendezvous:

2.3-7

Fig. 2.3-7 - Payload weight versus inclination for various circular orbital altitudes - delivery and rendezvous.

2.3-8

Fig. 2.3-8 - Payload weight versus elliptical orbital altitude. 2.3-9

Revision 2 Date: 6/14/7

Fig. 2.3-9- Payload weight versus sun synchronous orbital altitude.

2.3-10

Revision 2 Date: 6/14/74

			
	REQUIREMENT	SOURCE	OPTION
2.6.1 Delta	2910		14345
2.6.1,1	General vehicle characteristics are as defined in Fig. 2.6.1-1	T/Fig 1-3/1-5 T/1.2.1/1-4	
2.6.1.2	Vehicle performance capabilities are as defined in Figures 2.6.1-2 through -6	T/Fig 2-1/2-2 T/Fig 2-4/2-5 T/Fig 2-7/2-10 T/Fig 2-11/2-14	
		T/Fig 2-11/2-14	

ENGINE SECTION

Hardpoints - TBD

Guidance - TBD

Stage II - Delta vehicle (96 in/2438 mm diam) with TRW Systems TR-201 propulsion system.

Propellants loaded - TED

 I_{sp} nominal - \underline{THD}

Thrust - TED

Loaded weight - TBD

Stage I - Extended Long Tank Thor with Rocketdyne RS-27 engine

Propellants loaded - TBD

I sp nominal - TBD

Thrust - TED

Loaded weight - TBD

Stage 0 - Nine Castor II (TX-354-5) SRM's

Impulse propellant - THD

TVC loaded - TRD

I average - TBD

Total impulse - TED

Loaded weight - TBD

Liftoff

Weight - TBD

Thrust - TBD

Fig. 2.6.1-1 Vehicle Characteristics, Delta 2910

Fig. 2.6.1-2 Two Stage Perigee Velocity, 100 n.mi Perigee Altitude, ETR

Fig. 2.6.1-3 Two Stage Perigee Velocity, 100 n.mi Perigee Altitude WTR

Page 2.6.1-4

Circular Orbit Altitude, H. n.mi

Fig. 2.6.1-4, Sun Synchronous Orbit Capability. ETR

Page 2.6.1-5

Circular Orbit Altitude, H_c n.mi

Fig. 2.6.1-5, Sun Synchronous Orbit Capability, WTR

Page 2.6.1-6

CIRCULAR ORBIT ALTITUDE
FIGURE 2.6.1-6 CIRCULAR ORBIT CAPABILITY, WTR
PAGE 2.6.1-7

	<u>and the second of the second </u>		T	
M. Carlotte	REQUIREMENT		SOURCE	OPTION
2.6.2 Titan III	R/SSR/MIS			12345
2.5.2.1 Ger	eral vehicle characteristics are as defined in	n Fig. 2.6.2-1	U/Fig II-15/II-26	
2622 1/41	icle performance capabilities are as defined	in Figures 2 6 2-2	11/Pig 111-17/TIT-	5
and	-3	in lighter c.c.c-c	U/Fig III-17/III- U/Fig III-19/III-	7 []]]]]
.,				
	사는 현실하다 하는 사람들이 살아온 그리다면 다른 사람이다.			

Fig. 2.6.2-1 Vehicle Characteristics. Titan IIIB(SSB), ETR and WTR

Fig. 2.6.2-2 Titan IIIB(SSB), Payload Weight vs Characteristic Velocity

Fig. 2.6.2-3 Titan IIIB(SSB), Payload Weight vs Altitude, ETR and WIR
Page 2.6.2-4

	REQUIREMENT	SOURCE	OPTION
			12345
2.6.3 Titan			
2.6.3.1	General vehicle characteristics are as defined in Fig. 2.6.3-1	U/Fig II-9/II-20	
v. 2.6.3.2	Vehicle performance capabilities are as defined in Figures 2.6.3-2 and -3	U/Fig III-14/III- U/Fig III-15/III-	2
	2.6.3-2 and -3	10/5JE 111-12/111-	13
	그는 인물이 되었다면 그 그리고 그렇게 되고 있습니다. 하는 것 같아요 그렇다.	51	
	그런 가다 그 그리다는 물로 그리는 것이 한다. 이 한테를 내려 살을 다고 있다.		
	ORIGINAL PAGE IS OF POOR QUALITY		
	어느님이 이 말이는 불인이 하루어졌다고 있다면 화학생물이 들어 다른다.		
12.0			
	하는 그는 그는 사용이 하는 회교들의 교수를 모르는 경기를 통하는 모르게 돼 먹		
	그 이 그는 그는 그가 얼마를 맞았다고 있다면 되었다면 없는데 말라 있다		
	요즘 보다 하는 사람들은 사람들은 사람들이 되었다면 하고 있었다면 하는데 살아 없는데 다른데 없는데 다른데 되었다면 하는데		

Page 2.6.3-1

Revision l

Date 6/6/7

Hardpoints - 36 Equally Spacea

Guidance - Radio

Stage II

Propellants Loaded - 67,900 lb Isp Nominal - 319 sec (Vacuum) Thrust - 102,300 lb (Vacuum) Loaded Weight - 73,700 lb

Stage I

Propellants Loaded - 262,200 lb Isp Nominal - 302 sec (Vacuum) Thrust - 526,300 lb (Vacuum) Loaded Weight - 277,600 lb

Stage 0 - Two 5-Segment SRMs

Impulse Propellant - 850,100 lb

TVC (N₂O₄) Loaded - 16,850 lb

Isp Average - 266 sec (Vacuum)

Total Impulse - 226.1 x 106 lb-sec

(Vacuum)

Loaded Weight - 1,017,800 lb

Liftoff - Three Stages without - Payload or Payload Fairing

Weight - 1,368,100 lb Thrust - 2,295,200 lb

Fig. 2.6.3-1 Vehicle Characteristics, Titan IIID, WTP

Fig. 2.6.3-2 Titan IIID and IIIE, Payload Weight vs Characteristic Velocity, ETR

38 41 42 Characteristic Velocity, 10³ fps

Fig. 2.6.3-3 Titan III Panel IIIE, Payload vs Altitude, ETR and WTR

* *	REQUIREMENT	SOURCE	OPTION
3.1 SAF	FIY	GAC	14315
3.1.1	The EOS must be capable of providing a safe mission operation while passively contained within the Orbiter cargo bay and have provisions for relaying immediately to the Orbiter crew, while it is attached to Orbiter, any emergency conditions originating in the EOS.		
3.1.2	While in the Orbiter cargo bay on the launch pad or during ascent, retrieval, re-entry and landing, the EOS shall provide a readout of parameters critical to Shuttle system and range safety operations.		
3.1.3	As a goal, no single EOS failure shall result in a hazard which jeopardizes the flight or ground crews.		
3,1.4	Appropriate safety factors shall be used where necessary to minimize the possibility of failures which might affect manned safety (i.e., structures, pressure vessels, etc.).		
3.1.5	Manned factors of safety will be maintained under Shuttle abort load conditions		
3.1. 6	Provision for command override of critical EOS functions by the Orbiter crew shall be provided during stowage, deployment and retrieval operations.		
3.1.7	EOS elements shall have self contained protective devices or provisions against EOS generated hazards while mounted to the Orbiter. Hazards generated by Orbiter-EOS interactions during load, transport, deploy and retrieval activities shall be identified and mutually resolved.		
3.1.8	Provisions shall be provided for emergency manual release of EOS to Orbiter connections.		

	REQUIREMENT	SOURCE	OPTION
3.1.9	A pressure relief capability shall be provided for the EOS tanks which automatically limits the maximum pressure. Venting shall be through the EOS/Orbiter interface when EOS is in the Orbiter payload bay.		142345
3.1.10	No single failure shall result in unprogrammed motion of the EOS.		
3.1.11	Provisions shall be provided for remote emergency jettisoning of EOS deployable equipment as necessary to complete retrieval and stowage operations.		
3.1.12	RF communication capability shall be available between the Orbiter and the EOS for command and control functions.		
3.1.13	The critical command and control circuitry shall be designed to be fail-operational/fail-safe as a minimum.		
3.1.14	Safety design features such as interlocks, redundancy, grounding and isolation devices shall be incorporated so that no single detectable failure or combination of undetectable failures shall result in premature detonation of explosive devices.		
3.1.15	Unused explosive devices aboard the EOS must be safed on command and safing verification sent to the Orbiter prior to retrieval.		
3 .1.1 6	Toxic or other chemically hazardous gases, liquids, or particles shall not be vented into the Orbiter payload compartment, and shall be isolated from the Orbiter environmental control system.		
3.1.17	All pressurized tankage in the EOS will be vented to 20 psia after restow in the Orbiter.		
3.1.18	All enclosed EOS volumes into which toxic or flammable vapors or liquid could enter must be purged or inerted with an inert gas and the volumes atmosphere sampled while the EOS is on the ground.		
	Page 3.1-2	Revision 2	Date 6/14/74

	REQUIREMENT	To de de		renari Mari	SOURCE	OPTION
						1431.5
3.1.19 Provide redund	lant valves on all line	s which can b	ecome leak	paths		
overboard.						
				(4) 经多线的		

				and the second second		
See American Conference and Section (See American Section 1) and section (Section 1) and section (S	Page 3	1-3		Topic Control	Revision 2	Date 6/14/74

An.		REQUIREMENT			SOURCE		OPTIO	N
						1	2345	
3.2 RELIABI	PILA							
3.2.1 The	mean mission duration	m shall be 2 years.			AA/ - 1			
3.2.2 Con	sumables and survival	l shall be 5 years			AA/ - 1	•		
			the out of nation		GAC			
J.∠.J AIT rel	er EOS refurbishment iability goal.	the S/C shall meet	rue original	~ .	GAC			
		-						
				y				
							l tribate	
		Page 3.2-1					ute 6/14	

	REQUIREMENT	SOURCE	OPTICE
2.3			12345
3.3	MAINTAINABILITY 1 FOS shall have the canability to be refurbished	15 0 6 5 15	
3.3	1 EOS shall have the capability to be refurbished in space by the Shuttle Orbiter	A/1.3.6/1-5	
3•3	.2 The Shuttle Orbiter will retrieve the EOS for ground refurbishment	A/1.3.6/1-5	0000

e when the e		REQUIREMENT		<u> </u>		SOURCE	OP	rion
3.4 SPACEC	RAFT				and the second of the second o		14345	
3.4.1 The	e basic EOS referes as defined in	ence system shall Fig. 3.4-1.	te three orthogo	onal .	R/	- / -		
∵ °Cα x	e three basic sub mm. & Data Handli nfigurations.	system modules: A	CS, EPS, ame for all EOS			GAC		
		Page 3.	4-1 - 1 - 1 - 1 - 1 - 1 - 1			ision 2	Date	6/14/74

SPACECRAFT (S/S) COORDINATE REFERENCE SYSTEM
TABLE 3.4-1

	REQUIREMENT	SOURCE	OPTION
3.5	Instruments		12345AFCOEF
3.5.1	Thematic Mapper (TM)	(TS 2.4)	
79 3.5.1.1 1 989 4.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The TM images are normally beneath the ECS, but when required shall be available, upon command, from regions offset up to + 45° from the down-nadir direction	A/2.1.1/2-1	
3.5.1.2	TM design parameters are given in Table 3.5-1	A/2.1.1/2-1	
3.5.2	High Resolution Pointable Imager (HRPI)	(TS 2.4)	
3.5.2.1	The HRPI images are normally beneath the EOS, but when required, upon command, shall be available from regions offset up to $\pm 30^{\circ}$ from the down-nadir direction	B/ - /6	
3.5.2.2	HRPI design parameters are given in Table 3.5-1	A/2.1.1/2-1	
3.5.3	Synthetic Aperture Radar (SAR)		
3.5.3.1	SAR Paremeters Frequency Dual, X- and L- bands Swath \(\leq \) 40 Km Resolution 30 meters	A/2.3.1/2-9	
3.5.3.2	SAR will be "on" for two 10-minute periods per orbit	B/ - /13	
3.5.4	Passive Multichannel Microwave Radiometer (PMMR)	aK/1.1.1/3	0
	The orbit and scan parameters are contained in table 3.5-2.		
stadio e tra			Deta 7/12/74

Page 3.5-1

Revision 7

Date 7/12/74

TABLE 3.5-3

INTERIM DESIGN PARAMETERS FOR THE THEMATIC MAPPER (TM)
AND THE HIGH RESOLUTION POINTABLE IMAGER (HRPI)

			THEMATIC M	APPER (TM)	HIGH RESOLUTION POINTABLE IMAGER(HRPI)		
BAND NO.	SPECTRAL REGION (µm)	ASSUMED RADIANCE, N ₁ (w m ⁻² sr ⁻¹)	IFOV (urad) (approx.)	S/N(PP/RMS) (@N ₁ &MTF=1)	IFOV (urad) (approx.)	S/N(PP/RMS) (<u>@N_BMTF=1)</u> 6	
* 2	0.5 - 0.6	1.9	35	7	10	6	
* 3	0.7 - 0.8	1.6	35	5	10	6	
* 4	0.8 - 1.1	3.0	35	5	10	6	
5	1,55 - 1,75	0.8	35	5 ,	. -	· •	
6	2.1 - 2.35	0.3	35	5	-	•	
7	10.4 - 12.6	20.0 @ 300K	140	0.5K NEAT @ 300K	•	-	

[&]quot;Spectral Bandwidth may be reduced

TABLE 3.5-2

System Specifications and Assumptions

A. Orbit and Scan Specifications

Orbit Height

1,000 km

Nadir Angle

Approx. 40° (Assume 45°)

Incidence Angle

50° ± 2° (52.2° for 45° nadir angle)

Scan Mode

Conical

Scan Angle

±35°

B. Frequencies and IFOV Space

Frequency, GHz:

4.99

10.69

21.5

37.0

IFOV, km:

178

88

88

18.0

88

22

C. Antenna Spece

Main Beam Efficiency

≥80%

Maximum Sidelobes:

In Scan

<15 dB ~

Cross Scan

<25 dB

Cross Polarization

Isolation

>25 dB

D. Bandwidth and Temperature Specs

RP Bandwidth

>240 MHz (all frequencies)

Temperature Sensitivity

<0.3° at 4.99 GHz

<1.0° at other frequencles

Target Temperature

300°K ± 10°K

Dynamic Range

10°K to 330°K

Absolute Accuracy

2°K

E. Assumptions

Antenna

Scan Mode

Scan Speed

Receivers

Sensing

Coverage

Temperatures

Losues

Single dish with multiple feeds

Zig-zag in azimuth (+35° to -35° and back)

Sinusoidal (60% efficiency relative to

linear scan)

Dicke, with square wave modulation (b=2). Two receivers at 37 GHz (one for each polarization); one receiver for both polarizations at each of the other

frequencies

Vertical polarization for one-half scan

period, horizontal for other half

Contiguous for 37 GHz; overlap allowed

for other frequencies

 $T_A = 300^{\circ} K, T_O = 290^{\circ} K$

 $L_a = 1.2 dB$

	REQUIREMENT	SOURCE	OPTION
3.6 DATA	COLLECTION SYSTEM (DCS)		1231,5
3.6.1	The characteristics of the earth-based DCS platforms are contained in Table 3.6.1 and Figs. 3.6-1 and -2.	H/Table 4.4/4.19	
3.6.2	The DCS shall operate in the VHF RF range	6/3.2.1.3/3-13	
3.6.3	The DCS shall be compatible with an experiment density of at least 200 earth-based platforms within a 200 n.mi. (370 .4Km) diameter circle.	G/3.2.1.3/3-13	occ
3.6.4	The DCS electronic characteristics are: Volume 12,000 cc Weight 20 kg Power 40 watts	AD/-/2	occo
3.6.5	The DCS antenna characteristics are: Volume 42,000 cc Weight 4 kg Pig. 3.6-3 contains a sketch of the antenna	AD/-/2,3, & 4	c o co
3.6.6	DCS commands are: Power 4 (2 on/off) Impulse 10	AD/-/2	0000
3.6.7	DCS telemetry: Analog 12 Bilevel 10	AD/-/2	0000

Page 3.6-1

Revision 4

Date 6/21/74

TABLE 3.6-1 (CONT)

•	Time Frame:
	- Time of Implementation
	- Duration of Operation Variable, 3 months
9	Data Dissemination to indefinite
	- DCP Data Delay
	- Position Location Data Delay

FIGURE 3.6-1 TOTAL DATA COLLECTION PLATFORM POPULATION VS TIME

FIGURE 3.6-2 SATFLLITE THROUGHPUT

8.8 SHUTTLE RESUPPLY PROJECT. 3.8.1 On orbit Shuttle resupply shall utilize the Special Purpose A.1.5.4/1-7 ODG T. Manipulator provided by the Canadian Sovernment A.1.5.4/1-7		REQUIREMENT	. ,			SOURCE			OPTIO	N
.6 SHUTTLE RESUPPLY PROJECT	***	AE-QUIALO-FEAT	4			aonos	1			יווד
	3.8 SH1	HTTLE RESUPPLY PROJECT						144	#211	++++
3.8.1 On orbit Shuttle resupply shall utilize the Special Purpose A/1.5.4/1-7 ODO3 Manipulator provided by the Canadiar Sovernment A/1.5.4/1-7 ODO3					*					
Manipulator provided by the Canadian Government	3.8.1	On orbit Shuttle resupply shall utilize the	e Special	Purpose		A/1.5.4/1-7		opo	111	1111
		Manipulator provided by the Canadian Govern	nment				- 1			
										1111
										1111
							-			
	100									
						,	٠.			
							٠, .			
									{	
	<u> </u>									
	* •									
				San San San				i c		:
							1.47			
			1,690							
							1. 5.			
	gi e si									
							· . ·,			
								111		

	REQUIREMENT	SOURCE	OPTION
			14345
3.9 S/C-TO-INST	TRUMENT INTERFACES		
3.9.1 Themati	ic Mapper (TM)		
3.9.1.1 Com	munications and Data Handling		
3.9.1.1.1	The EOS shall provide for transmission of instrument sensor data to be selected from the following candidate rates:	X/ - / - (TS 4)	
	a. 50.8 Mbps		
	b. 73.2 Mbps		
	c. 88.9 Mbps		
	d. 100 Mops		
	e. 102.5 Mbps		
	f. 118.3 Mbps		
3.9.1.1.2	The EOS shall provide for transmission of instrument status and health data in real-time and stored/playback modes:	X/-/- (TS 4)	
	a. Digital TBD		
	b. Analog TRD		
3.9.1.1.3	The EOS shall provide timing signal clock pulses accurate to 10-5 sec to the instrument.	X/ - / - (TS 4)	
3.9.1.1.4	The EOS shall provide for relay from the ground to the instrument of 16 digital (On/Off) commands	X/ - / - (TS 4)	
	Logic 1 = + 3.5 VDC to + 5.5 VDC		
	Logic 0 = 0 + 0.5 VDC		
	하는 요즘 하는 것으로 살을 모르게 되고 있어서 했다. 그래를 모든 글림없다		
	Page 3.9.1-1	Revision 2	Date 6/14/74
	하는데 아이들의 현장된 교회 절환가 되었는데 하라고 다음된다.		

47

A Company of the Comp

.

		REQUIREMENT	SOURCE	OPTION
3.	.9.1.2 Ele	ctrical Power		12345
	3.9.1.2.1	The EOS shall provide 28 ± 7 VDC electrical power at levels of:	X/ - / - (TS 4)	
		a. Full operation 50 watts	4)	
		b. Dark side ≤ 50 watts		
3.	.9.1.3 Att	itude Control		
•	:	TRD		
3.	.9.1.4 Str	ucture/Mechanical		
	3.9.1.4.1	The EOS shall accommodate an instrument weight of 350 lb.	X/- / - (TS 4)	
	3.9.1.4.2	The EOS shall provide a clear volume to accommodate an instrument configured as shown in Fig. 3.9.1-1	X/- / - (TS 4)	
	3.9.1.4.3	The instrument shall be aligned relative to structural and ACS references to + 0.1 mrad.	X/-/- (TS 4)	
3.	.9.1.5 The	rmal.		
	3.9.1.5.1	The EOS shall be compatible with an instrument total heat dissipation rate of 130 watts continuous.	X/- / - (TS 4)	
•	3.9.1.5.2	The EOS shall provide thermal insulation to isolate the instrument from the spacecraft, including insulating barriers in attachment hardware.	X/- / - (TS 4)	

FIGURE 3.9.1-1 CANDIDATE TM CONFIGURATION

P . 3013

	REQUIREMENT				SOURCE	OPTIO	<u> </u>
<u> </u>	A CONTRACTOR OF THE PARTY OF TH	<u> </u>	2, 1, 1,			12345	
3.9.2 High Resolu	tion Pointing Imager (HRPI)		and the second second second				
3.9.2.1 Communi	cations and Data Handling						
	EOS data interface shall be h Speed Multiplexing	compatible wi	th	Y/ (TS	D/ 1.2 4)		
3.9.2.2 Electri	cal Power						
	BOS shall provide 28 ± 7 VD			Y/	D/ 1-2	po	
	er at an average level of 10 luding heaters.	O watts, not			4/		
3.9.2.3 Attitud	le Control						
<u>TRI</u>	2						
3.9.2.4 Struct	re/Mechanical	•					
	EOS shall accommodate an inght of 600 lb	strument		Y/ (T:	D/1-2 5 4)		
3.9.2.4.2 The	EOS shall provide a clear v	rolume to		Y/ (T	D/ 1-2 S 4)	DO	
Di.	ameter = 36 in						
Le	ngth = 84 in						
• • • • • • • • • • • • • • • • • • •	e instrument shall be mounted a 4 lugs located 42 inches up the HRPI.	to the spaced from the base	eraft	Y/ (T	D/ 1-2 s 4)	20	

Page 3.9.2-1

Revision 2

ø	REQUIREMENT	<u>-</u>		SOURCE	OPTION	(- 1
3.9.2.5 The					14345	
3.9.2.5.1		erom the		Y/ D/ 1-2		
3.7.2.7.1	Spacecraft	1. Cui one		(TS 4)		
3.9.2.5.2	Heat leaks to the spacecraft through blankets and mounts shall be less to	gh insulating than 10 watts		Y/ D/ 1-2 (TS 4)	pe	
	(as a goal)		* * * * * * * * * * * * * * * * * * *			
		•				
			•			
			• ,			
	·,					
				·		
			·			
•	· .			Revision 2	Date 6/14/	Ш

	REQU	TREMENT 1 - 19		SOURCE	OPTION
Cu. With	hetic Aperture Radar (SAR rrently, two alternate SAI ere requirements differ be	R configurations etween configurat			12345A \$C
3.9.3.1	Communications and Data H	andling			
3.9.3.1	.1 The EOS shall provide data in real-time at	and the second s		Z/5.1.2/5-7	0
3.9.3.2	Electrical Power				
3.9.3.2	.1 The EOS shall provide instrument at:	TBD V electrical	power to the	Z/Table 3.1.2-1/ 3-7	
	a. Configuration 1 -				
	b. Configuration 2 -	1250 watts			
3.9.3.3	Attitude Control				
3.9.3.3	.1 The EOS shall provide limits for a period o		to the following	Z/Table 3.2.3.7-1 3-95	L/O
		Pointing	Stability Error		
	Pitch, Yaw	0.02 deg	0.01 deg/sec		
	Roll	0.06 deg	f (f)		
3.9.3.4	Structure/Mechanical				
3.9.3.4	.1 The EOS shall accommo package of the follow			Z/Table 4.3.1-1/ 4-3	О
		Config. 1	Config. 2		
			in $38 \times 24.5 \times 9.5$ in		
	Weight	172 lb	213.5 1b		
		<u> </u>		# . \$ 10 0 ,	Date 6/14/

7		REQU	IREMENT					sou	RCE	Y	0F	TION		-11200
3.9.3.4.2	The EOS shall r	make provis	ions for a	a side mon racterist:	mted lcs:					12 О	334	AB	C C	+
	Dimensions	•	Config	. 1 5 x 1 ft	_ 27	Config.		Z/Table	3.1.2-1/					
٠,	Weight		92 lb			174 1b		3-7		-				
			<i>yc</i> 10					4.3	4.3.1-1/					
			,						*					İ
				·						Creation of the Control of the Contr				
					-									
						•								
	4	·		·										
										20000000000000000000000000000000000000				

AND LONG TO THE PROPERTY OF TH	SOURCE	OPTION
	m/o = 0 = /o = 00	12345 A BC DE FG
3.9.4 Passive Multichannel Microwave Radiometer (PMMR)	K/3.5.2.5/3-128	
The radiometers have the 80 cm scanning reflector and a set of four 7 cm diameter cold horns mounted on the spacecraft structure to view the earth (reflector) and cold space (horns) respectively. The reflector can be positioned to look in front or behind the spacecraft nadir. It scans symmetrically about this track ± 35°. The antennas are mounted so their field of view does not intersect the spacecraft or any solar panels or experiments. The antenna itself must not obstruct the solar paddles or any horizon scanners.		
The four cold horns are pointed to avoid looking at the sun if possible. Sun temperature corrections can be made, but these corrections require additional data processing.		
The radiometer receivers can be packaged into a volume of 0.06 m ³ with the cold horns and antenna feeds mounted external to the spacecraft interior.		
Table 3.94-1shows the power and weight estimates for the passive facility excluding only the 13.9-GHz radiometer presently integrated into the active		
facility.		
[4] 이 이 [4] 이 전 이 이 이 아마는 사람이 가는 사람이 가는 사람이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은		
요하는 아이들 그는 그는 그는 그들은 사람들이 하는 사람들이 사람들이 불어지는 것이다.		

38.8 kg

TABLE 3.9.1-1 RECEIVER POWER AND WEIGHT

	Power (W)	Weight (kg)
53-GHz channel	5.0	2.268
36-GHz channel	8.0	7.2576
22-GHz channel	5.0	3.6288
18-GHz channel	5.0	3.6288
5-GHz channel	5.0	3,6288
Power supply (loss)	12.0	4.5360
Feed system	•	0.9072
Cold horn/radiation		0.9072
rm data system	5.0	
	43,0	26.7624
Total	System Weight and P	ower
Receivers	45W	26.8 kg
Antenna Reflector	_	3.0 kg
Antenna Drive and Support Structure	18W	6.8 kg
Cabling and Thermal		2.27 kg

Note: The 13.9-GHz radiometer's power and weight are included as part of the active sensor power and weight.

63.0W

	REQUIREMENT	SOURCE	CPRION
3.11	S/C-TO-SHUTTLE INTERFACES	(TS 3)	123,15
3.11.1	Communications and Data Handling		
3.11.1.1	While the ECS is attached to Orbiter, the Orbiter will support EOS telemetry as follows:	AC/5.3.2.2d/ 5-5	
	 a. Up to 25 Kbps of EOS/Instrument status data (hardline) to be interleaved with Orbiter operational telemetry. b. Up to 256 Kbps of EOS/Instrument data to be relayed to the ground via wideband FM transmitter. 		
3.11.1.2	After EOS release from the Orbiter, the Orbiter will accept up to 16 Kbps EOS/Instrument telemetryhaving the following characteristics:	AC/5.3.2.2e/5-5	
	o S-band, phase modulation		
	o Frequency band, 2200 - 2300 MHz		
3.11.1.3	While the EOS is attached to the Orbiter, the Orbiter will provide to the EOS a 2.4 Kbps hardline command channel, or which 0.4 Kbps is allocated to vehicle and subsystem overhead.	AC/5.3.2.3c/5-6	

	REQUIREMENT	SOURCE	OPTION
3.11.1.4	After EOS release from the Orbiter, the Orbiter will be capable of generating and transmitting to the EOS 2.4 Kbps of command data, of which 0.4 Kbps is allocated to vehicle and subsystem overhead, with the following characteristics:	AC/5.3.2.3d/ 5-6	1/23,45
,	o S-band, phase modulation o Frequency band, 2025-2120 MHz o Time division multiplex (TDM) serial data of 8 Kbps consisting of encoded command data and synchronization.		
3.11.1.5	The EOS shall provide commutation and subcarrier oscillators compatible with the Orbiter wideband transmitter for television and wideband experiment data. For digital data, the EOS shall perform the required encoding at a bit rate compatible with the capabilities of the Orbiter wideband transmitter.	AC/5.3.2.5/ 5-7	
3.11.1.6	Orbiter will provide both RF and hardline (umbilical) interfaces between the Orbiter communications subsystem and launch facilities for prelaunch telemetry, commands, TV, and wideband data.	AC/5.3.2.6/ 5-7	
<u></u>	Page 3.11.1 - 2	Revision 2	Date 6/14/74

REQUIREMENT	SOURCE	OPTION
.11.2 Electrical Power		12345
.11.2.1 During ascent and descent Orbiter will provide electrical power to EOS/Instruments as follows:	AC/6.0/6-1	
o 1 Kw average o 1.5 Kw peak		
.11.2.2 During orbital operations Orbiter will provide electrical power to EOS/Instruments as follows:	AC/5.0/6.1	
o 5 Kw average o 8 Kw peak		
.11.2.3 Orbiter will provide total electrical energy to EOS/ Instruments of 50 Kwh.	AC/6.0/6.1	
.11.2.4 Additional energy requirements of EOS/Instruments may be provided with the necessary additional consumables, tankage, and plumbing chargeable to EOS/Instrument weight.	AC/6.0/6.1	
.11.2.5 The electrical power characteristics at the EOS/ Instruments - Orbiter interface is as follows:	AC/6.0/6.1	
o Power: 28VDC nominal, two wire, structure ground (payload must not use structure for DC return) o Steady-state limits: 23-32.0 VDC intermittent duty 24-32.0 VDC continuous duty		
o Ripple voltage: lV peak-to-peak		

Page 3.11.2-1

Revision 2

	REQUIREMENT			SOURCE		OP.	TION	
2.13.2	itude Control				1	23145		
				1-10-0-10-0				
3.11.3.1 EOS req	shall provide data to the Orbit uirements prior to separation fr	er for attitud com Orbiter.	e control	AC/3.3.2/3-5				
3.11.3.2 The	Orbiter will maintain attitude	to ± 0.1 degre	es.	AC/3.3.2/3-5				
					(11			
	eg a sweet to be for the fi							
								İ
		•						1.
•								
								1 :
		- N			. 3 / .			
								1
								1
	Page 3.	11.3-1		Revision 2		ate	6/14/	74

	REQUIREMENT	SOURCE	OPTION
3.11.4 Str	uctural/Mechanical		12345
3.11.4.1	The EOS/Instrument shall fit within a maximum dynamic envelope of 15 ft diam by 60 ft length	AC /4.1/4-1	
3.11.4.2	The EOS shall structurally interface with the Orbiter via the standard attachments defined in Fig. 3.11.4-1	AC/4.2/4-1	
3.11.4.3	Orbiter payload c.g. shall fall within the envelope defined in Figs. 3.11.4-2 through -4	AC/4.2/4-2	
3.11.4.4	The Orbiter will induce random vibration levels within the payload bay as shown in Fig. 3.11.4-5, not including payload impedence effects	AC/10.1/10-1	
3.11.4.5	The acoustic environment within the Orbiter payload bay is defined in Figs. 3.11.4-6 and -7	AC /10.2/10-1	
3.11.4.6	The pressure environment within the Orbiter payload bay during ascent-to-orbit is defined in Fig. 3.11.4-8	AC/10.4/10-1	•
3.11.4.7	The deployment and retrieval of EOS is accomplished by the general purpose remote manipulator system (RMS). Table 3.11.4-1 lists some basic characteristics of the RMS. One manipulator arm is provided by the orbiter and may be mounted on either left or right longeron. If a second manipulator is required, the weight is chargeable to the payload. The manipulator has a maximum reach of 52 ft. (Ref. Fig. 3.11.4-9).	AC/4.3/4-2	

Page 3,11.4-1

Revision 7

Date 7/12/74

Fig 3.11.4 - 1 - PAYLOAD ATTACHMENT LOCATIONS

Fig 3.11.4 - 2 PAYLOAD LONGITUDINAL C.G. ENVELORE

Fig 3.11.4 - 3 -PAYLCAD VERTICAL CG ENVELOPE

Fig 3.11.4-5 - ACALITICAL PRODUCTIONS OF THE CREETER MIGHE/SELAGE PRIMARY STRUCTURE VIBIATION SPECTRA

Fig 3:11.4-6 - ANALYTICAL PREDICTIONS OF THE ORBITER PAYLOAD BAY INTERNAL ACCUSTIC ENVIRONMENT

Page 3.11.4 - 7

Revision 2

Fig 3.11.4-7 ANALYTICAL PREDICTIONS OF THE ORBITER PAYLOAD BAY INTERNAL ACCUSTIC SPECIFIE

FIG. 3.11.4-8 - PAYLOAD BAY ASCENT PRESSURE WISTOR

Operational Bode	BBS Characteristics
Payload deployment	32% gaylcad in less than 7 minutes
	65K payload in less than 10 minutes
	Residual rates 1.0 - 2.0 fps and 0.15 deg/sec
• · · · · · · · · · · · · · · · · · · ·	Up to 5 payloads/mission
Payload retrieval	Stabilized payloads up to 651
	Stopping distance:
	65K payload 2.5 feet at a tip speed of 0.2 fps
	Unloaded tip apeed 2.0 fps
	miss distance 2 inches

Table 3.11.4-1 Revote Hamipulator System (BHS) Characteristics

FIGURE 3.11 4-9 REMOTE MANIPULATOR SYSTEM REACH CAPABILITY

Rev. 7 Lated: 7/12/74

FIGURE 3.11.14-9 REMOTE MANIPULATOR SYSTEM REACH CAPABILITY (CONT)

	REQUIREMENT	SOURCE	OPTION
3.11.5 The			12345
3.11.5.1	The Orbiter will provide nominal payload bay environments, not considering EOS/Instruments heat addition or removal, as noted in Table 3.11.5-1	AC/10.5/10-2	
3.11.5.2	The Orbiter will provide additional, active thermal control through a heat exchanger. The active heat rejection capacity dedicated to the EOS/Instruments is as follows:	AC /8.3 /8-2	
*	Average capacity		
	- Nominal: 3400 Btu/hr - Peak: 5200 Btu/hr		
entra de la companya de la companya de la companya de la companya de la companya de la companya de la companya	Orbital operations capacity (maximum)		
	- Nominal: 11,250 Btu/hr - Peak: 21,500 Btu/hr		
3.11.5.3	During on-orbit operations, the EOS/Instruments will normally be exposed to the space environment	AC 10.5/10-2	
3.11.5.3		AC 10.5/10-2	
3.11.5.3		AC 10.5/10-2	
3.11.5.3		AC 10.5 /10-2	
3.11.5.3		AC 10.5/10-2	
3.11.5.3		AC 10.5/10-2	

	DESTGN	PESIGN	
CONDITION	HINIHUH	HUMIKAM	
医足虫 化磨异素 有身体 经保险的价格 最终 经订货 非故障的 有意义			
Prelaunch	+ flOoi	+ 120°F	
Launch	+ 400 F	+ 1 = 0 o F	
On-orbit (doors closed)	See C&T	See ASE	
entry and postlanding	- 100° F	+ 200°F	
	an and and an an an an an an an an an an an an an		

Heat leak criteria into or out of a 100°F constant payload are as follows:

- A. Total bay heat gain, average 5 0 Btu/ft2-br
- B. Heat gain, local area 5 3 Btu/ft2-br
- C. Total bay heat loss, average ≤ 3 Btu/ft2-br
- D. Heat loss, local area < 4 Ptu/ft2-hr

Table 3.11.5-1 Paylead Bay Wall Thermal Environment

	REQUIREMENT	SOURCE	OPTION
3.12	DATA MANAGEMENT SYSTEM (DMS)		12345A BC DE FG
3.12.1	The DMS shall contain the ground located EOS system operational elements that convey, handle, convert, distribute, and manage high-rate and edited lower rate spacecraft earth sensing instrument generated payload data.	csc	
3.12.2	The DMS is composed of the following subsystems:	csc	
	o Instrument Data Acquisition & Recording		
	o Data Processing & Product Generation		
	o S/C & Processing Management & Control		
	o Data User Services		
3.12.3	Two types of Data Acquisition & Data Processing configurations exist:	CSC	co co
	of the Primary Ground Stations (PCE) and the Central Data Processing Facility (CDFF). o Secondary or Local User System (LUE) including the Low Cost Ground Station (LCCE) which receive compacted instrument data at lower rates than		
	the PCS.		

Revision 7

Date 7/12/74

	REQUIREMENT		SOURCE	OPTION	مجمعي
				14345	
3.13 FLI	GHT OPERATIONS				П
3.13.1	The EOS shall support retrieval by the Shuttle Orbiter		A/ 1.3.6/1-5 (TS 1)	1	
			(TS 3)		
3.13.2	The EOS shall provide for on-orbit servicing by the Shuttle Orbiter		A/ 1.3.6/1-5		
at :			2 7		
3.13.3	The BOS shall provide for Level TED autonomy		GAC (TS 7)		
3.13.4	All EOS venting while within TED distance of the Shuttle Orbiter shall be non-propulsive		GAC (TS 3)		
3.13.5	Contaminants from EOS system effluents, including outgassing, shall not impinge harmfully upon:		GAC		
•	a. The instruments	*			
	b. The Shuttle Orbiter				
3.13.6	The EOS shall not discharge or jettison solid debris in in the vicinity of instrument operations	orbit	GAC		
3.13.7	Two hours shall be allotted between deployment from the Shuttle Orbiter and the first major BOS maneuver.		GAC		
3.13.8	The EOS shall be targeted 10 n.mi above and 300 n.mi		GAC		
	ahead of the Orbiter on the return from mission orbit for recovery		(TS 1)		
3.13.9	Three hours shall be allotted in all EOS mission timelines for Orbiter catch-up during EOS retrieval		GAC (TS 3)		
3.13.10	The EOS shall maintain a stable attitude during Shuttle Orbiter terminal rendezvous and capture		GAC (TS 3)		

,	REQUIREMENT.	SOURCE	OPTION
3.13.11	Contaminents from the launch vehicle shall not impinge harmfully upon the instruments	PA-2.16.3 FA-2.16.5.24	12345ABCDEF
3.13.12	Provide S/C health data during launch (max. q), subsequent L/V burns and during SRM firing.	FA-2.1,4,6, 10 & 19	
:			

	REQUIREMENT	SOURCE	OPTION
3.14 FLI	GHT OPERATIONS SUPPORT		12345
3.14.1	Flight Operations Support (FOS) shall be capable of controlling two spacecraft in orbit concurrently	B/-/9 (TS 7\$11)	pop
3.14.2	Maximize use of existing NASA facilities	GAC	
3.14.3	Minimize use of mission-peculiar hardware/ software	GAC	
3.14.4	Data acquisition, tracking, and orbit determination will be provided by GSFC.	A/2.1.6/2-7	
3.14.5	Data acquisition facilities for complete U.S. coverage will be provided at three STIM sites:	A/2.1.6/2-7	oloc
	o Greenbelt, Maryland o Goldstone, California o Fairbanks, Alaska		
3.14.6	Communications with the primary and other data acquisition facilities will be via NASCOM	A/2.1.6/2-7	oacao
3.14.7	The Mission Control Center (MCC) shall be used for real-time support of the ECS, including operations scheduling.	B/-/9 (TS H)	

for the state of	REQUIREMENT	SOURCE	OPTION
3.15 S/C GSE			12345
3.15.1 Fact	t ory		
3.15.1.1	The S/C will consist of three assemblies: Instrument, S/S Module & Orbit Adjust/Transfer, assembly therefore holding fixtures must be provided for each module during assembly and test.	v / - / 1	
3.15.1.2	Provisions shall be made to assemble the S/C vertically for systems tests.	v / - / 1	
3-15.1.3	Provide bench checkout equipment for each of the three basic S/S modules: ACS, EPS, Comm. & Data Handling	W / - / 2	
3.15 .1.4	Provide power to S/S modules, which simulates S/C power, variable within S/C limits	W / - / 2	opopu
3.15.1.5	Provide loads to the S/S modules during test, which simulates S/C interfaces	W / - / 2	
3.15 .1.6	Provide work stands for vehicle assembly and checkout	W / - / 2	
3.15.2 Lau	nch Site		
3.15.2.1	Provide flexibility in the design of bench checkeut equipment so that its use can grow to a module maintenace bench during Shuttle operations	W / - / 2	
3.15.2.2	Provide for conditioning of S/C flight batteries	W / - / 2	

Page

3.15-1

Revision 2

	REQUIREMENT	SOURCE	OPTION
3.16 S/C TO I	DELITA 2910 INTERFACES		12345
3.16.1 Struc	tural/Mechanical		
3.16.1.1	The EOS shall attach to the Delta 2910 launch vehicle attach fitting via:	T/3.2/3-4	co
	a. A two-piece marman clamp arrangement		
	b. A four-bolt attachment arrangement		
3.16.1.2	The EOS shall accept a relative separation velocity of 2-8 ft/sec (0.61 - 2.4 m/s).	T/3.2/3-4	
3.16.1.3	The EOS shall fit within the payload envelope defined	in T/Fig. 3-60/3- U/Fig. VI-6/VI	
	Fig. 3.17-1		
3.16.1.4	The EOS shall withstand a maximum steady state longitu acceleration of 8.3 g's.	dinal T/3.6.3.5.3/3-	10 5 C
3.16.2 Commu	nication & Data Handling		
3.16.2.1	Spacecraft separation is initiated directly from the g computer after SECO. It can provide up to six program to accomplish various functions. Two of the signals at the range of 30 to 160 sec. after initiation with an a a 0.5 sec. or 0.5% of the specified set time, whicheve greater. The remaining four programmed signals can be 1 to 50 sec. after either of the first two signals wit accuracy of ± 10%.	med signals re within ccuracy of r is set from	2

Projection of S/C appendages below the S/C separation plane are permitted but must be coordinated with the Delta project

Fig. 3.16- i Allowable Payload Envelope, Delta 2910

	REQUIREMENT	SOURCE	OPTION
_			12345
3.1/ S/C to 3	Titan III B/SSB/NUS		
3.17.1 Com	munications and Data Handling		
3.17.1.1	The Launch wehicle can provide up to 16 discrete outputs, sequenced on the basis of time or event dependency, for S/C control. Maximum output current is 10 amps.	AB/VII/VII-6	
3.17.1.2	Telemetry data transmitted through the launch vehicle shall conform to the characteristics of Table 3.171	AB/VII/VII-7	0
3.17.2 Kle	ctrical Power		
3.17.2.1	BOS electrical demands upon the launch vehicle shall be consistent with the power system characteristics defined in Table 3.17-2.	AB/VII /V II-5	0
3. I 7.2.2	All power leads from the EOS to the launch vehicle shall be:	AB/VII/VII-7	O
e de la companya de l	a. Physically separated from other wiring		
e v	b. Isolated from EOS structure by at least 10 megohms.		

DATA TYPE	IMPLEMENTATION	number of Available Channels	Sample Rate (SPS)
Bilevel On, 4 to 35 vdc Off, -5 to 0.6 vdc	In Remote Multiplexed Instrumentation System	6 6 8	1600 400 100
Analog O to 40 mvdc imput	In Each	2 14	800 400
8-bit D/A output	Multiplexer	lg.	200
	Unit	ւ 8	100 40
		10	20

Table 3.17-1 Typical Titan III B/SSB S/C Instrumentation Services

CONSIDERATION	MULTIBUS POWER SYSTEM (STEADY STATE)	TRANSIENT POWER SYSTEM
Power available to spacecraft	ş∍5 sup÷hr at 28 vüc ⇔ te o sa	4 amp-hr st 28 võe
Voltage	25 to 32 VDC	20 to 38 vdc
Noise and ripple	30 Hz to 20 KHz, with peak of 2.0v on gnd pwr and peak of 1.25v on airborne pwr	No constraints
Special considerations	Not to be used for spacecraft transient power loads	High-transient-current capacity, suitable for firing ordnance, driving motors, etc.

Table 3.17-2, Titan III B/SSB S/C Electrical Power Services (Estimated)

	REQUIREMENT			·	SOURCE		OPT	ION		
2 17 2 8++	itude Control						1	231,5		
	The launch vehicle shall to the following limits:	control atti	tude at	separation	1	AB/VII/VII-8		0		
	<u>Poir</u>	rting (deg)	Rate (deg/sec)						
		<u>+</u> 0.5	<u>+</u> 0.45	Pitch, Yav	u					
		,	± 0.75	Roll						
		± 2.0	± 0.1	Pitch, Ya	u				- :	
			+ 0.2	Roll				1	:	
	• ,	± 4.0	<u>+</u> 0.1	Pitch, Ya	w .					
			<u>+</u> 0.2	R oll				; ;	:	:
						No. of the Control of				
										1

1	REQUIREMENT		SOURCE	OPTION
3.17.4 Struct	ural/Mechanical			14345
	The EOS shall structurally interface wit	th the laumah mahiala	AT / _ /7	
2.1(.4.1	as shown in Fig. 3.17-1	th the launch vehicle	AE/-/7	
3.17.4.2	The impulse to separate EOS from the land be provided by a spring-driven separation by and charged to the EOS.	unch vehicle shall on system carried	AB/VII/VII-8	0
3.17.4.3	The EOS shall fit within the payload entries. 3.17-2 and 3	velope defined in	U/Fig VI-6/VI-9 AE/-/8	9 0
÷				
• • • • • • • • • • • • • • • • • • •				
••				
		en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la co		

Figure 3.17-1

Page 3.17-6

FIG. 3.17 - 2 Allowable Payload Envelope, Titan IIIB/SSB/NUS For WTR Type P 123 Seg. A,D,E, and G

Titan IIIB or IIID

Note: All dimensions and Sta. No.'s are in inches.

Figure 3.17-3

Page 3.17-8

· (·			4
	REQUIREMENT	SOURCE	OPTION
3.18	SPACECRAFT TEST REQUIREMENTS		1/234,5
3.18.1	Component Dynamic Environmental Requirements	V/Appendix I/-	
3.18.1.1	Transportation and Handling		
	The component shall be capable of operating within specifica-		
	tion limits after exposure to controlled environments, while		
	in a non-operating mode during transportation and handling.		
	Controlled environments shall be provided by properly designed		
	shipping containers to insure that the experienced transpor-		
	tation and handling levels are less severe than those pertain-		
	ing to launch and orbital mission phases.		
3.18.1.1.2	Fabrication Shock		
	In accordance with MIL-STD-810B, Method 516.1, Procedure V.	:	
0			
3.18.1.1.3	Transportation Shock		
	In accordance with MIL-STD-810B, Method 516.1, Paragraph 3.9.5		
3.18.1.1.4	Transit Shock		
	In accordance with MIL-STD-810B, Method 516.1 Procedure II		
3.18.1.1.5	Sinusoidal Vibration		
	In accordance with MIL-STD-810B, Method 514.1, Procedure X.		
	The test levels shall be as indicated in Figure 516.1-7, curve		
	"AW" and "AY." The test procedure and duration shall be as		
	indicated in Table 514.1 - VII.		

	REQUIREMENT		OPTION
	•		12345
3 .1 8.1.2	Qualification Environments		
	The component shall be capable of operating within specifica-		
	tion limits during and after exposure to the following environ-		
	ments.		
3.18.1.2.1	Acceleration		
	The test levels shall be 20g applied for one minute in each		
3 .	direction along each of the three orthogonal axes.	-	
3.18.1.2.2	Acoustic Field		
	The test levels and duration shall be as shown in Table 3.18.1-1		
	Acoustic tests shall be conducted in lieu of the random vibra-		
	tion test only on selected components which are likely		
	to be susceptible to acoustic noise excitation (e.g., antennas,		
	solar panels).		
3.18.1.2.3	Random Vibration		
	The test levels and duration shall be as shown in Table 3.18.1-2		
	The levels and duration shall be applied along each of the		
	three orthogonal axes.		

	REQUIREMENT	SOURCE	OPTION
3.18.1.2.4	Sinusoidal Vibration		12345
and the second second	The test levels and logarithmic frequency sweep rate shall be		
	as shown in Table 3.18.1-3. The levels and sweep rate shall		
	be applied along each of the three orthogonal axes.		
	Note: In lieu of the 200-2000Hz portion of the simusoidal		
	vibration test, a shock test (3.18.1.2.5) is preferred.		
230305			
3.18.1.2.5	Shock		
	A shock spectral analysis, using Q=10, of the applied shock		
	transient shall be in accordance with the shock response		
	spectrum shown in Figure 3.18.1-4. A sufficient number of		
	shocks shall be imposed to meet the amplitude criteria in		
	both directions along each of the three orthogonal axes at		
	least three times (total of 18 shocks).		

TABLE 3.18.1-2

RANDOM VIBRATION

QUALIFICATION TEST LEVELS

Duration: 3 Minutes/axis

TABLE 3.18.1-1 ACCUSTIC QUALIFICATION TEST LEVELS

Duration: 3 minutes

*(dB Re: 20 p Newton/m²)

OCT	OCTAVE BAND				
Center Frequency (Hz)	Sound Pressure Level (dB*)				
31.5 63 125 250 500 1000 2000 4000 8000	131 137 142 144 143 141 137.5 135				
OVERALL	149.5				

Spectral Density (g /Hz)	Overal (g-rms
+3dB/Oct 0.18 -6dB/Oct	16
	(g ² /Hz) +3dB/Oct 0.18

TABLE 3.18.1-3 SINUSOIDAL VIBRATION

QUALIFICATION TEST LEVELS

Sweep Rate: 2 Octaves/Minute/Axis

Frequency	Acceleration
Range	Zero -to-Peak
(Hz)	(g)
5-9.5	12.7 mm d.a.
9.5-15	+ 2.3
15-21	+ 6.0
21-50	+ 10.0
50-200	+ 2.3
200-2000	+ 5.0

	REQUIREMENT	SOURCE	OPTION
2 10 1			12345
3.18.1.	Acceptance Test Environment		
3.18.1.	3.1 General		
2 19 1	2.2.3 White Components	1945. 1	
3.18.1.	Flight Components Flight components, which are tested later as part of a com-		
	pletely assembled flight spacecraft, shall be subjected to		
•	random vibration or, where applicable, to acoustic noise tests.		
3.18.1.	3.1.2 Flight Spare Components		
	Flight spare components that have not been exposed to system		
	tests as part of a prototype or backup spacecraft shall be		
	subjected to both sinusoidal and random vibration.		
3.18.1.	3.2. Acoustic Field		
3.10.1.	The test levels and duration shall be as shown in Table		
	3.18.1-4. Acoustic tests shall be conducted in lieu of the		
	random vibration test only on selected components		
	which are likely to be susceptible to acoustic noise excita-		
	tion (e.g., antennas, solar panels).		
	oron (c.g., discinity, solut panels).		
3.18.1.	Random Vibration		
	The test levels and duration shall be as shown in Table	·	
	3.18.1-5. The levels and duration shall be applied along		
	each of the three orthogonal axes.		
3.18.1.	3.4 Sinusoidal Vibration		
J.+0.1.	The test levels and logarithmic frequency sweep rate shall be		
	as shown in Table 3.18.1-6. The levels and sweep rate shall be		
-	applied along each of the three orthogonal axes.	Posicion 1	Dete 6/6/7

TABLE 18.1-4 ACOUSTIC ACCEPTANCE TEST LEVELS

Duration: 1 minute₂ *(dB Re: 20 μ Newton/m²)

	BAND .	OCTAVE		
Sound saure Level (dB*)		y	Center Frequency (Hz.)	
127			31.5	
133			63	
138			125	
140			250	1 1
 139	u.		500	
137	•	•	1000	
 133.5	* * *		2000	
131	·		4000	
129			8000	
144.5			OVERALL	

TABLE 3.18.1-5

RANDOM VIBRATION

ACCEPTANCE TEST LEVELS

Duration: 1 Minute/Axis

Spectral Dens (g ² /Hz)	ity	Acceleration Overall (g-rms)
217/01		
-6dB/Oct		10
	(g ² /Hz) +3d B/Oct 0.072	(g ² /Hz) +3dB/Oct 0.072

TABLE 3.18.1-6

SINUSOIDAL VIERATION

ACCEPTANCE TEST LEVELS

Sweep Rate: 4 Octaves/Minute/Axis

Frequency Range (Hz)	* .e.g		Acceleration Zero-to-Peak (g)
5-9.5 9.5-15 15-21 21-50 50-200 2 00- 2000		+1+1+1+	4 mm d.a. 1.5 4.0 6.6 1.5 3.3

		REQUIREMENT	SOURCE	OPTION
Transportation and Handling The Spacecraft shall be capable of operating within specification limits after exposure to controlled induced environments, while in a non-operating mode during transportation and handling. Controlled environments shall be provided, by properly designed shipping container, proper selection of modes of transportation and handling methods, to ensure that transportation and handling do not impose environmental conditions which exceed the maximum predicted launch and orbital mission requirements. Controlled environments shall be provided to protect the Spacecraft against the following conditions (TBD). 3.18.2.2 Qualification Test Environments The Spacecraft qualification test article shall be subjected to the environments specified below and in accordance with the requirements of NASA GSTC S-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be "xposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter				14345
The Spacecraft shall be capable of operating within specification limits after exposure to controlled induced environments, while in a non-operating mode during transportation and handling. Controlled environments shall be provided, by properly designed shipping container, proper selection of modes of transportation and handling methods, to ensure that transportation and handling do not impose environmental conditions which exceed the maximum predicted launch and orbital mission requirements. Controlled environments shall be provided to protect the Spacecraft against the following conditions (TED). 3.18.2.2 Qualification Test Environments The Spacecraft qualification test article shall be subjected to the environments specified below and in accordance with the requirements of NASA GSFC s-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 \(\mu\) Newton/m^2). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter	3.18.2	Spacecraft Dynamic Environmental Requirements	AG/append. I/-	
specification limits after exposure to controlled induced environments, while in a non-operating mode during transportation and handling. Controlled environments shall be provided, by properly designed shipping container, proper selection of modes of transportation and handling methods, to ensure that transportation and handling methods, to ensure that transportation and handling do not impose environmental conditions which exceed the maximum predicted launch and orbital mission requirements. Controlled environments shall be provided to protect the Spacecraft against the following conditions (TED). 3.18.2.2 Qualification Test Environments The Spacecraft qualification test article shall be subjected to the environments specified below and in accordance with the requirements of NASA GSFC 3-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 2011 Newton/m ²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter	3.18.2.1	Transportation and Handling		
environments, while in a non-operating mode during transportation and handling. Controlled environments shall be provided, by properly designed shipping container, proper selection of modes of transportation and handling methods, to ensure that transportation and handling do not impose environmental conditions which exceed the maximum predicted launch and orbital mission requirements. Controlled environments shall be provided to protect the Spacecraft against the following conditions (TBD). 3.18.2.2 Qualification Test Environments The Spacecraft qualification test article shall be subjected to the environments specified below and in accordance with the requirements of NASA GSFC 3-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter				
shall be provided, by properly designed shipping container, proper selection of modes of transportation and handling methods, to ensure that transportation and handling do not impose environmental conditions which exceed the maximum predicted launch and orbital mission requirements. Controlled environments shall be provided to protect the Spacecraft against the following conditions (TED). 3.18.2.2 Qualification Test Environments The Spacecraft qualification test article shall be subjected to the environments specified below and in accordance with the requirements of NASA GSFC s-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 II Newton/m ²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter		environments, while in a non-operating mode during		
container, proper selection of modes of transportation and handling methods, to ensure that transportation and handling do not impose environmental conditions which exceed the maximum predicted launch and orbital mission requirements. Controlled environments shall be provided to protect the Spacecraft against the following conditions (TRD). 3.18.2.2 Qualification Test Environments The Spacecraft qualification test article shall be subjected to the environments specified below and in accordance with the requirements of NASA GSFC g-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 ll Newton/m²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter				
handling do not impose environmental conditions which exceed the maximum predicted launch and orbital mission requirements. Controlled environments shall be provided to protect the Spacecraft against the following conditions (TBD). 3.18.2.2 Qualification Test Environments The Spacecraft qualification test article shall be subjected to the environments specified below and in accordance with the requirements of NASA GSFC \$-320-G-1\$ except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter		container, proper selection of modes of transportation		
exceed the maximum predicted launch and orbital mission requirements. Controlled environments shall be provided to protect the Spacecraft against the following conditions (TED). 3.18.2.2 Qualification Test Environments The Spacecraft qualification test article shall be subjected to the environments specified below and in accordance with the requirements of NASA GSFC s-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter	ina di Paris di Paris di Paris di Paris di Paris di Paris di Paris di Paris di Paris di Paris di Paris di Pari Paris di Paris di Pa			
requirements. Controlled environments shall be provided to protect the Spacecraft against the following conditions (TBD). 3.18.2.2 Qualification Test Environments The Spacecraft qualification test article shall be subjected to the environments specified below and in accordance with the requirements of NASA GSFC s-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a filipht-type adapter				
The Spacecraft qualification test article shall be subjected to the environments specified below and in accordance with the requirements of NASA GSFC s-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter		requirements. Controlled environments shall be provided		
The Spacecraft qualification test article shall be subjected to the environments specified below and in accordance with the requirements of NASA GSFC s-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter		to protect the Spacecraft against the following conditions (TBD).		
to the environments specified below and in accordance with the requirements of NASA GSFC s-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested before and after each environmental exposure. During the test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter	3.18.2.2	Qualification Test Environments		
test, the Spacecraft shall be operated in the appropriate mission phase duty cycle. 3.18.2.2.1 Acoustic Field The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter		to the environments specified below and in accordance with the requirements of NASA GSFC s-320-G-1 except as noted. The Spacecraft shall be examined and functionally tested		
The Spacecraft shall be exposed to a broadband random sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter		test, the Spacecraft shall be operated in the appropriate		
sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m ²). The octave band sound pressure levels shall be as specified in Table 3.18.2-1 The Spacecraft shall be mounted on a flight-type adapter	3.18.2.2.1	Acoustic Field	,	
The Spacecraft shall be mounted on a flight-type adapter		sound field with an overall sound pressure level of 149 dB (Re: 20 U Newton/m ²). The octave band sound pressure		
		The Spacecraft shall be mounted on a flight-type adapter		

	REQUIREMENT	SOURCE	OPTION
3.18.2. 2.2	Sinusoidal Vibration The Spacecraft shall be attached to a vibration fixture using a flight-type adapter and flight-type clamp. Sinusoidal vibration excitation shall be applied at the base of the adapter along each of the three orthogonal axes. The test levels and logarithmic frequency sweep rate shall be as shown in Table 3.18.2-2. The reduction of the sinusoidal vibration test levels, in the Spacecraft's resonant frequency band, will be required in order to prevent the application of unrealistic loads. This "notching" of the input levels shall be determined by dynamic analysis	SOURCE	12345
3,18.2.2.3	Mechanical Shock The Spacecraft shall be subjected to a mechanically applied shock transient to the Spacecraft/Launch Vehicle interface twice along each of the three orthogonal axes. The test level, using shock spectral analysis with a Q = 10, shall be defined in terms of shock response spectrum and in accordance with Figure 3.18.2-1		
3.18.2.2.4	The Spacecraft shall be subjected to two pyrotechnic separation tests. In addition to the Spacecraft, the test shall include the flight-type adapter, flight-type clamp and pyrotechnic devices. The Spacecraft shall also be subjected to additional pyrotechnic shocks dependent on the type and quantity of release devices used for solar arrays, antennas, etc.		
4			

	REQUIREMENT		SOURCE	OPTION
<u> </u>				12345
3.18.2.2.5	Static Load			
	The Spacecraft structural model shall be sub,			
	a static load test. The test levels to be ap shall be determined from a combined Spacecrat			
	Vehicle dynamic loads analysis, Spacecraft s			
	loads and stress analyses for the worst case	conditions		
	of Tables 3.18.2-3, 4, & 5.			
3-18-2-2-6	Modal Survey			
	The test is a developmental engineering test			
	The test is a developmental engineering test a qualification test. modal survey of the		189.75	
	with installed mass simulation of components	, shall be		
	performed to determine the natural frequencie shapes, and structural damping. This shall have			
	test with the Spacecraft structure (including			
	fitting) mounted on a fixed base.	•		
3.18.2.3	Acceptance Test Environments			
the second second	Each Flight Spacecraft shall be subjected to			
	environment specified below and in accordance requirements of NASA GSFC S-320-G-1 except as			
	The Spacecraft's components shall be operating	ng and		
	monitored for identification of intermittent	failure.		
3.18.2.3.1	Acoustic Field			
	The Flight Spacecraft shall be exposed to a large random sound field. The Octave band sound pro-	oroadband		
	shall be as specified in Table 3.18.2-6 . 3			
	shall be mounted on a flight-type adapter dur	ing the test.		

SINUSOIDAL VIBRATION

TABLE 3.18.2-1

ACCUSTIC NOISE SPACECRAFT QUALIFICATION TEST LEVELS

SPACECRAFT QUALIFICATION TEST LEVELS

*(dB Re: 20 \(\text{Newton/M}^2 \)

OCTA	VE BAND
Center Frequency (HZ)	Sound Pressure Level (dB*)
2. 6	7.27
31.5	131
63	137
125	142
250	144
500	143
1000	141
2000	137.5
4000	135
8000	133
Overall	149.5
Duration: 2!	Minutes

<u> </u>		
Axis of Excitation	Frequency Range (HZ)	Acceleration Zero-to-peak + (g)
	5 - 9.5	12.7 mm d.a.
Longitudinal (X-X)	9.5 - 15	2.3
	15 - 21	6.0
	21 - 50	3.0
	50 - 200	2.3
	5 - 7.1	19.0 mm d.a.
Lateral	7.1 -22	2.0
(Y-Y) & (Z-Z)	22 - 200	1.5
Sweep Rate:	2 Octaves/Minut	że

FIGURE 3.18.2-1
SHOCK RESPONSE SPECTRUM
AT SPACECRAFT/LAUNCH VEHICLE INTERFACE
LAUNCH VEHICLE INDUCED SHOCKS

FREQUENCY - H_Z

QUALIFICATION TEST LEVELS

I-S.El : Modif

SMICK SEPROMORS SPECIAL IN

STRIBLED FORTH, PRESENTATIONS OF

THEOLOGY AND SHEET ASSESSED.

TABLE 3.18.2-3

ULTIMATE LOAD FACTORS

DELTA LAUNCH VEHICLE

4	8	-	11.1	U_{2}			, et :	٠.	1.7	-		-		. 7)	0		1.		ľ	Υ.	611	٢	, ,	٠,			٨	- :	ξ	 (-4	1	÷	۲.	` :		` '-j-	ťΥ			٧.	6	X	>);		. Est	-	المشعا	<u>ئىد</u>	- 1	÷. (, **		زز	Ĺ	'r-"	
	\mathcal{L}_{r}	, 2 - 				.,.	ا			ر -		or										· 	4,	i		'n		. 1		L	် ဝ	n	ζi	t	ú	11	'n	a.	ĺ.	(<u>.</u> \				-	柄 文章	L	at	e)7 E	1	Ķ.	*:/ ^				
	ć.) 1	: T		r	:v:	ě			7	· ·	<u>.</u>	OI L	10	.1	L.		, I I	<u>></u> ر	10	ر ا ند اد	· ·	ء - تب					ا ا	1					-	Ŷ	7			, j., .,	4		95		·	-\. \.		Y:	Ó	n T	Ż	145	1	Ť		1	-	
.;:	Ĺ				ų,	, <u>}</u>	e G		1			, . ,		* *	5. 1	•		· '		*	į.	· /						:				**		4	j.	35	î.	ر بر پر	- 1 - 1 - 1 - 1	و ورين مسرل	3	Ţ				•	3) (Ó.			di.		1		
:	1	- ;	.(-)	1.2		1. ₁ .]	į	ſ	ţ	_		Ó.	f i		i V					` .	χ.	. د. الح	7		1	i.			·· `	1	• !	5		- 1	3) 	1		er J			÷.		, , ,		党		(1)), j.,	y Jan	,	
j	(.)		ندسېد رو	نه وا در: د	ر ک	1		3	े		<u>دا ت</u> مورید	7,~				1				7.3		البهائة الم	ند		\ \ \ \	<u>.</u> د	į	.; .;		>	7.	ì	9.			7 7	<u></u>		بوراني رغم. - زي	110		1	jė,	ŗ	<u>1-1</u> 44,		Š		3	<u> </u>	1	} <u>}</u>	12		7.7	
7)-1-0-0			¥ 5			ļ.	Ì	a	11)	E	nε	ς Ι,	n	ė	C	ų	t	Ç	ĹĊ	ſ		,	* : * : * :	i.		X					.).		1	8.	Į,	5				(1) (1)				ī.	Ĥ	1,	(Ö.			1	1			
	-		77		7-7				_	****	,	_			_	-	***	7.7	-	•	<u> </u>	_		-	•••	V_{i}	•			 	ř.	٠.,	•••	٠,4.	4,0	أوخ	٠.		ي ئب	٠.		٤,	٤.	-4	<u> </u>	غيب		لمند			<u> </u>	<u> </u>	44	-3, 1	. 11	٠,

ULTIMATE LOAD FACTORS TITAN III B/NUS LAUNCH VEHICLES

	<u>家是好物都是一个人的人的人的人的人。 在</u> 是一种情况是一个人的特别的人的人的
	Longitudinal Lateral
Condition	Y or Z
Lift - off	+ 3.45
	+12.3
Stage I shutdown (depletion)	3.7 5
Stage II shutdown (command)	+ 16.2 - 3.0

- Limit load factor times 1.5 Load factor carries the sign of the externally applied load.
- Includes both steady state and dynamic conditions.

TABLE 3.18.2-5 ULTIMATE LOAD FACTORS (1) SHUTTLE

	1	Directions(2)	
Condition	v	Y	Z
Lift - off (4)	+ 2.55 <u>+</u> 0.9	<u>+</u> 0.45	+ 1.20 + 0.30
High Q Boost	+ 2.85	<u>+</u> 0.30	- 0.30 + 0.75
Booster End Burn	+ 4.5 + 0.45	<u>+</u> 0.30	+ 0.60
Orbiter End Burn	+ 4.5 ± 0.45	<u>+</u> 0.30	+ 0.75
Space Operations	+ 0.30 - 0.15	<u>+</u> 0.15	<u>+</u> 0.15
Entry	<u>+</u> 0.38	<u>+</u> 0.75	- 4.5 + 1.5
Subsonic Manenvering	<u>+</u> 0.38	<u>+</u> 0.75	- 3.75 + 1.5
Landing and Braking	+ 2.25	<u>+</u> 2.25	- 3.75
Crash (3)	- 9.5 + 1.5	± 1.5	- 4.5 + 2.0

Notes:

1. Limit load factor times 1.5 except for crash.

2. Load factor carries the sign of the externally applied factor. Positive X, Y, Z, directions equal forward, right and down.

3. Crash load factors are ultimate and only used to design local payload support fittings and attachments. The specified load factors shall apply separately.

4. These factors include dynamic transient load factors.

Revision 6

Dated: 7/5/74

TABLE 3.18.2-6

ACOUSTIC NOISE

SPACECRAFT ACCEPTANCE TEST LEVELS

	OCTAVE E	AND	
Center Frequency	Sound (dB Re:	Pressure Level dB 20 H Newton/M2)	
(HŽ)	Level I	Level II	Level III
31.5	124	127	127
63	125	132.5	133
125	130	137	1,38
250	135	139	140
500	139	139	139
1000	133	137	137
2000	130	133.5	133.5
4000	126	130	131
8000	123	124	129
OVERALL:	142	145	145.5

Level	Options		
	1	2	3
I	*		
II		*	
III			*

	REQUIREMENT	SOURCE	OPTION
	REQUIREMENT	BOURCE	12345
4.1.1	Orbit Adjust		
4.1.1.1	Provide thrusters, propellant storage and controls to effect orbit adjustment	c/3.2.2.2.2/3-35	
4.1.1.2	Provide + x impulse (lb-sec) requirements as follows:	AF/Table 4,6,7/-	006
	Maneuver Option		
	<u> 1</u>		
	Correct injection error 3374 4070 6403		
	Correct SRM error 522		
- '	Orbit keys 108 140 168		
	Contingency 10% 348 421 704		
	Total 3830 4631 7802		
4.1.1.3	Provide SRM for orbit insertion	G/3.2.2.2/3-35	
4.1.1.4	The orbit adjust subsystem shall consist of four 75 lb thrusters which shall be used to maintain control during SRM operations	G/Fig. 3-12/3-25	
4.1.1.5	For non SRM operations provide four 5 lb thrusters	GAC	

	REQUIREMENT	SOURCE	OPTION
			14345
4.1.2	Communications and Data Handling		
4.1.2.1	The variable downlink TLM rates are 32, 16, 8, 4, 2, 1 kbps	B/-/20 F/2.2.2.1.3/-	olotok
4.1.2.2	The 8 GHz (X-band) frequency should be utilized	B/-/21	
4.1.2.3	Use 95% link reliability for sizing the X-band link	B/-/21	
4.1.2.4	The complete optional payload for EOS-B will acquire data at a continuous rate of up to 2.5 Mbps, with individual instrument data ranging from 100 bps to 2.0 Mbps	A/2.3.2/2-9	ofacac
4.1.2.5	Provide for STDN compatible, S-band experiment data transmission at the following rates:	m/3.3.3.4/16	Cpoec
* *	a. Real-time - 6.4 Kbps		
	b. Stored/playback 128 Mops		
4.1.2.6	Provide a command system with both discrete (single) pulse and serial magnitude word capability	M/3.3.3.4/16	
4.1.2.7	Provide for variable formatting of experiment and spacecraft data upon command	M/3.3.3.4/16	
4.1.2.8	Provide on-board storage for at least two orbits of experiment and subsystem data	M/3.3.3.4/16	
4.1.2.9	Provide for simultaneous transmission of real-time and playback telemetry	m/3.3.3.4/16	
4.1.2.10	Provide an on-board processor for command memory and for use by experiments and EOS subsystems	M/3.3.3.4/16	cacac
4.1.2.11	The EOS on-board processor, with associated hardware, shall provide for:	м/3.3.3.4/16	
	a. Stored commands		

Page 4.1.2-1

<u>,</u>	REQUIREMENT	SOURCE	OPTION
4.1.2	Communications and Data Handling (Cont'd)		12345ABCCEF
	b. Automatic interaction between experiment data and spacecraft subsystem modes		
4.1.2.12	Provide for maximum instrument data rates of 60 Mbps	N/ - / -	
4.1.2.13	Provide for two discrete levels of instrument data transmission:	0/-/-	
	a. 0.5 Kbps Real Time		
	b. 10 Mbps Stored/playback		
4.1.2.14	Provide a means for tracking, ground and on-board control of all spacecraft and payload sensor functions, and for retrieval of observatory data.	F/II,2.1/-	
4.1.2.15	An S-band transponder shall be used for ranging, receiving, commanding, and transmitting narrow band sensor and housekeeping data.	F/II,2.2.1/-	cpccc
4.1.2.16	All communications shall be fully compatible with the GSFC Aerospace Data System Standards X-560-63-2	F/II,2.2.1/-	
4.1.2.17	Frequency assignments shall be made on a mission-by-mission basis:	F/II,2.2.1/-	
	a. Transmit 2200 MHz to 2300 MHz		
	b. Receive 2050 MHz to 2150 MHz		
4.1.2.18	The probability of executing a false command shall be less than 10^{-10} for any input signal conditions.	F/II,2.2.1.2/-	coccc
4 .1.2.1 9	The probability of rejecting a good command shall be less than 10-3 over a signal range of -105 to -40 dbm.	F/II,2.2.1.2/-	oback

	REQUIREMENT	SOURCE	OPTION
4.1.2.20	The S-band transmitter shall be capable of simultaneously transmitting:	F/II,2.2.1.3/-	12345 cccc3
	o 32 kbps real-time, low rate housekeeping/sensor data		
	o Up to 640 kbps stored/playback medium rate data		
4.1.2.21	The C&DH system shall be capable of simultaneously distributing within the $S/C_062.5$ cmds/sec from the on-board computer while executing 50 cmds/sec from the ground.	F/II,2.2 .1 /-	
4.1.2.22	The CADE system shall be capable of simultaneously acquiring up to 32 kbps of S/C data for the computer only and acquiring up to 32 kbps of additional S/C data for transmission to both the ground and the on-board computer.	F/II,2.2.2/-	obcac
4.1.2.23	RF characteristics shall be as defined in Table 4.1.2-1	F/II,2.2.2/-	olococ
4.1.2.24	A general purpose digital computer shall be included in the C&DH subsystem	F/II,2.2.3/-	orcas
4.1.2.25	Assure that all receivers cannot be turned off simultaneously when activated for flight	FA-2.16.6	

Page 4.1.2-3

Revision 7

Date 7/12/74

Transmit Frequency

Receive Frequency

Turnaround Ratio

Transponder Sidetone Frequency

Command Bit Rate

Command Modulation

Narrow Band Data Rate

Narrow Band Modulation

Medium Band Data Rate

Medium Band Data Modulation

Transmitter Power

T/M Data Coding

TBD MHz +.001% (S-Band)

TBD MHz (S-Band)

221/240

500 KHz maximum

2000 bps

PCM/PSK - Z/FM/PM (Uses 70KHz

subcarrier)

Selectable: 32 kbps, 16 kbps, 8 kbps, 4 kbps, 2 kbps & 1 kbps

Split phase PCM/PM on subcarrier

500 kbps maximum

Split phase PCM/PM on carrier

2 watts, & .2 watts

Manchester (split phase)

BASELINE RF CHARACTERISTICS

TABLE 4.1.2-1

ORIGINAL PAGE IS OF POOR QUALITY

, , , , , , , , , , , , , , , , , , ,	REQUIREMENT	SOURCE	OPTION
4.1.3	Electrical Power Subsystem		12345
4.1.3.1	The EPS shall be capable of controlling, storing, distributing & monitoring power derived from a solar array. The physical & electrical characteristics of the array will be based on individual mission and power subsystem requirements. The subsystem shall contain storage batteries and all associated charge/discharge control and monitoring circuitry.	F/III,2.1/-	
4.1.3.2	Electrical interfaces of subsystem modules shall be standardized	E/2.1/2-1	ogogo
4.1.3.3	All S/C power will be supplied by a solar array	E/3.1/3-1	
4.1.3.4	The power output of the array will be adequate to supply normal daylight loads plus recharge the batteries	E/3.1/3-1	
4.1.3.5	Bus voltage shall be 28 ± 7 DC	E/3.2.1.1/3-8	
4.1.3.6	Bus transients:	E/3.2.1.4/3-8	
	Load switching + 1V for 100 ms or less Fault correction +20 to +39 V for 100 ms or less		
4.1.3.7	Bus Noise & Ripple: Due to EPS less than 500 mv peak to peak, 5 Hz to 100 KHZ Due to EOS loads TBD	E/3.2.1.5/3-8	
4.1.3.8	Operating temperature range for equipment will not exceed: electronic assys. 0 to 130°F batteries 32 to 60° F	E/3.2.9/3-11	opcop
4.1.3.9	Fuses will be operated at 20% of rated current	E/3.3.5/3-30	
	Page 4.1.3-1	Revision	Date

	REQUIREMENT	SOURCE	OPTICE
4.1.3.10	EPS shall be designed to automatically maintain a safe state of charge in the batteries for normal orbital operations. Capability shall be provided via command circuitry for overriding all automatic functions except those considered necessary for normal operation or survival of the spacecraft during emergency conditions.	F/III,2.2.3/-	12345
4.1.3.11	The power distribution bus shall supply power to the subsystems and instruments. Common impedences in the distribution circuitry shall be as low as practical to minimize the coupling of conducted interference between loads.	F/III,2.2.4/-	
4.1.3.12	The distribution circuitry for subsystem loads shall contain devices to protect power busses from short circuits. The bus protection circuitry shall be provided for all loads except those which are non-redundant and/or critical to mission success.	r/III,2.2.4.1/-	
4.1.3.13	Individual groups of power contacts shall be provided for each major subsystem and instruments	F/III,2.2.4.2/-	
4.1.3.14	Current sensors shall be provided for monitoring load currents supplied to each subsystem & instrument.	F/III,2.2.4.3/-	olacoc
4.1.3.15	Power subsystem shall contain circuitry for arming & disabling the power input/output circuitry during ground tests & during orbital resupply	F/IV,2.2.5/-	
4.1.3.16	The subsystem shall have the capability for being powered by ground or shuttle orbiter based power supplied during test and thoseperiods when the solar array power is not available.	F/III,2.2.6/-	

	REQUIREMENT	SOURCE	OPTION
4.1.3.17	Power Output		12315
	Orbital average - min. 500 W, max TBD	F/III,2.2.1.2/-	
	Peak power - 5.6 KW for 10 min. day or night		
4.1.3.18	Impedance (at power module/structure interface connector)	F/Ш,2.2.1.3/-	pacar
	Not to exceed 0.15 ohms - 1 Hz to 5 Hz 0.5 ohms - 5 KHz to 100 KHz 1.0 ohms -100 KHz to 1 MHz		
4.1.3.19	Batteries		
	Type TBD		
	Capacity - Total TED	F/III,2.2.2.2/-	ob
	- Minimum 40 amp hrs - Maximum 120 amp hrs		
	Depth of discharge	F/III,2.2.2.3/-	
	Not to exceed 50% for normal orbital operations		
4.1.3.20	The solar array shall be configured (retractable/jettisonable) to permit EOS retrieval for refurbishment.	FA 2.36	
·			
	Page 4.1.3-3	Revision 7	Date 7/12/74

	REQUIREMENT	SOURCE	OPTION
			1/2345
4.1.4	Attitude and Control		
4.1.4.1	Provide for spacecraft control during initial acquisition, reacquisition, normal operations, orbit adjustment maneuvers, and coarse attitude hold mode.	F/I, 2.1/-	
4.1.4.2	Where an integral Tug is required, the ACS shall provide attitude and rate signals required for its control	F/I, 2.1/-	
4.1.4.3	The ACS shall be driven directly in response to error signals generated by sensors or via the on-board computer	F/I, 2.1/-	
4.1.4.4	The ACS shall be capable of operating within specification cyclic disturbance torque limits of:	F/I,2.2.5/-	
	Orbit Alt (n.mi) Torque (ft-lb)		
	Average (Secular) Cyclic (Peak) 10 ⁻⁵ to 0.1 2 x 10 ⁻⁴ to 0.2		
	Geosynch 10^{-6} to 0.01 2×10^{-5} to 0.02		
4.1.4.5	The ACS shall accommodate the following range of spacecraft mass properties:	F/I,2.1/-	ocoon
	Weight 2500 - 25,000 lb		
	Moment of inertia 500 - 100,000 slug - ft ²		
4.1.4.6	ACS response cut-off frequency shall be 0.1 Hz	F/1,2.1/-	occos
4.1.4.7		F/I,2.2.1/- (TS 6)	Lock
	a. Reduce S/C rates to less than ± 0.03 deg/sec	(13.6)	
	b. Define S/C inertial attitude to within + 2 deg		
	Page 4.1.4-1	Revision	Date

	REQUIREMENT	SOURCE	OPTION
4.1.2	Attitude and Control (Cont'd)		123+5
4.1.4.8	In Inertial Attitude Hold Mode, maintain an arbitrarily selected inertially referenced attitude to:	F/I,2.2.2/-	ecck
	a. Before in-orbit calibration, + 0.03 deg/hr		
	b. After in-orbit calibration, ± 0.003 deg/hr		
4.1.4.9	In Coarse Attitude Hold Mode:	F/I,2.2.3/-	cesce
	a. Provide a high level of reliability		
	b. Maintain the sun line normal to the solar array within ± 7.0 deg (total)		
	c. Limit S/C rates to < 0.05 deg/sec/axis		
	d. Maintain this mode of operation for up to 30 days		
4.1.4.10	In Slew Mode:	F/I,2.2.4/-	reco
	a. Reorient the S/C (on a single axis basis) up to 90 deg with an accumulated error of $< \pm 0.03$ deg		
	b. Provide a slew rate ≥ 2 deg/min		
4.1.4.11	For normal operations, the ACS shall meet the following performance levels per axis:	F/I,2.2.5-1/- F/I,2.2.5-2/-	cccoc
	a. Pointing accuracy < ± 0.01 deg	(TS 6)	
	b. Pointing stability		
	(1) Average rate deviation $< \pm 10^{-6}$ deg/sec		
	(2) Attitude jitter		
·	(a) Up to 30 sec period, $\leq \pm 0.0003$ deg		
	(b) Up to 20 min period, $<\pm$ 0.0006 deg		
	c. Maintain these conditions for periods up to 1 hour		
•			

	REQUIREMENT	SOURCE	OPTION
4.1.4	Attitude and Control (Cont'd)		12345 AECDEF
4.1.4.12	The ACS shall provide the capability for utilizing error signals generated by a stellar payload instrument for S/C control. It shall meet the following performance levels (peraxis) exclusive of instrument error signal limitations:	F/I,2.2.5.2/-	
e 	a. Pointing accuracy $< \pm 3 \times 10^{-6} \text{ deg}$ b. Attitude jitter $< \pm 10^{-7} \text{ deg}$		
4.1.4.13	Maintain spacecraft attitude to ≤ ± 0.25 deg in all axes	o/ - / - c/ - / 6	
4.1.4.14	For initial SMM, provide pointing accuracies of:	M/3.3.3.5/18	6
	a. Pitch b. Yaw 1 to 5 sec (rms) 1 to 5 sec (rms) c. Roll 6 min (rms)		
4.1.4.15	For Shuttle launched SMM, provide pointing accuracies of:	Q/ - /	þ
	a. Pitch 2 sec b. Yaw 2 sec c. Roll TBD		
4.1.4.16	For initial SMM, provide pointing stability of:		P
	a. In each of two axes, 1 sec for not less than 5 min b. In the third axis (normal to line-of-sight to sun), 0.1 deg	M/3.3.3.5/18 M/4.5.1/63	
4.1.4.17	For Shuttle launched SMM, provide pointing stability of:		þ
	a. In each of two axes, 0.22 sec for not less than 5 min b. In the third axis, TBD	Q/ - / -	
	Page 4.1.4-3	Revision	Date

		SOURCE	OPTION
	REQUIREMENT		12345 ABC DEF
4.1.4	Attitude and Control (Cont'd)		
4.1.4.18	Provide pointing to any selected point on the solar disc (± 15 min pointing range in each of two axes)	м/4.5.1/63	
4.1.4.19	Provide the capability to slew 5 min within 1 sec time	M/3.3.3.5/18	
4.1.4.20	Provide the capability to acquire the required attitude position from any orientation	M/3.3.3.5/18	
4.1.4.21	Provide the capability of pointing sensor to ± 1 Km accuracy at subpoint (28 µ rad).	N/-/-	
4.1.4.22	Provide the capability of holding pointing to ± 25 meters (0.7 µ rad)	N/-/-	0
4.1.4.23	Provide two classes of slew rate:	N/ - / -	
	a. Incremental traverses at selectable rates of 100 to 800 km/min		
	b. Sustained traverse across CONUS (5000 km) in 5 min (\$\approx 0.028 rad/min).	•	
4.1.4.24	Provide means of activating attitude control price to S/C separation from L/V	FA-2.16.5.23	
•	Page 4.1.4-4	Revision 7	Date 7/12/74

	REQUIREMENT	SOURCE	OPTION
4.1.5 Stru	eture		12345ABCCE
4.1.5.1	Mechanical configurations of subsystem modules shall be standardized	E/2.1/2-1 (TS)+)	
4.1.5.2	The only structural contact that the EOS has with the launch vehicle is at the transition ring.		
4.1.5.3	The systems contractor shall provide a NASTRAN computer model (desk) of the module structure to S/C subsystem contractors.	F/IV,1.1.1/-	cococ
4.1.5.1	Only one S/C subsystem module configuration shall be provided which shall satisfy the specific requirements of the 3 basic S/C subsystems (C & DH, Att. Control & Power).	F/IV,1.2/-	
4.1.5.	The S/C subsystem module shall have a total volume of not less than 23 cu. ft. (approx. 48" x 48" x 18").	F/IV,1.3.1/-	coco
4.1.5.	The max. wt. of S/S module shall be 100 lb.	F/IV,1.3.2/-	ku do
4.1.5.	The max. load carrying capability of S/S modules is 600 lb.	F/IV,1.3.2/-	otcop
4.1.5.8	The S/S module structure shall be designed for max steady-state-acceleration of 25 g's longitudinal & 15 g's for lateral.	F/IV,1.3.5.1/-	
4.1.5.9	Fittings for the purpose of mounting the S/S modules to the S/C shall be compatible with the module resupply concept. The maximum repeatable mechanical misalignment of a module to S/C structure shall be + 15 arc seconds in each axis.	F/IV,1.3.6.1/-	
4.1.5	O Accommodate 600 ft ³ (17 m ³) of SEASAT experiments	0/ - / -	
4.1.5.	1 Accommodate 500 lb of SEASAT experiments	0/ - / -	
4.1.5.	2 Provide appropriate structure to accommodate interfacing with the Delta launch vehicle.	M/3.3.3-1/14	00
			Date 6/21/74

REQUIREMENT	SOURCE	OPTION
4.1.5.13 Support a minimum SMM scientific payload weight of 1431 lb (649 Kg) 4.1.5.14 Provide a minimum clear viewing area of 7 ft ² 4.1.5.15 Accommodate a minimum total SMM instrument volume of 13.5 ft ³ (0.38m ³)	Q/ - / - M/3.3.3.1/15 Q/- / -	12345 ABC DEF.
4.1.5.17 Accommodate a SEOS instrument volume of 459 ft ³ (13 m ³) 4.1.5.18 Support a minimum SEOS scientific payload weight of 2646 lb (1200 Kg).	N/- / - N/- / -	0 0

	REQUIREMENT	3.	SOURCE	OPTION
4.1.6 Therm				14345
4.1.6.1	Each S/C module will be independently thermally	y controlled	D/III/25 E/2.1.2/2-4	
4.1.6.2	Internal components heat sink will operate at	70° <u>+</u> 20°F	D/II/8	
4.1.6.3	Maximize thermal isolation of subsystem modules modules by insulation with an effective emission		E/2.1.2/2-4 F/IV,1.3.6.3/-	opcoc
4.1.6.4	Maintain SMM experiment temperatures at 15°C +	10°	M/3.3.2/15	

1.1.7 Presentics 1.21.5		REQUIREMENT				SOURCE	OPTIO	AN
### attitude control 4.1.7.2 Provide impulse requirements as follows: Option 1	4.1.7						12345	
Maneuver	4.1.7.1		nd contr	ols to effec	et .	G/3.2.2.2.2/3-3	3 ob o	
Impulse - 1b-sec P Y	4.1.7.2	Provide impulse requirements as follows	:			AF/Table 4,6,7/	- 6 14	
Initial stabilization 6 11 11 Control-orbit correction 9.5 17 17 Stabilization after array deployment 9.5 1 1 Gravity Gradient compensation 35 79 0 Contingency 10% 4 11 3 Total 46 119 32 Option 2 Maneuver R Impulse-lb-sec R P Y Initial stabilization 7 14 14 Control-orbit correction 9.5 21 21 Stabilization after array deployment 1 2 2 Gravity gradient compensation 105 236 0 Contingency 10% 11 27 4			I	npulse - lo-s				
Stabilization after array deployment 0.5 1 1 1			6 '		11			
Contingency 10% 4 il 3 Total 46 ll9 32 Option 2 Maneuver	, , , ,				1			
Total		Gravity Gradient compensation	35	79	0			
Maneuver Impulse-lb-sec R P Y		Contingency 10%	14	11	3			
Maneuver Impulse-1b-sec R P Y Initial stabilization 7 14 14 Control-orbit correction 0.5 21 21 Stabilization after array deployment 1 2 2 Gravity gradient compensation 105 236 0 Contingency 10% 11 27 4		Total	46	119	32			
R P Y Initial stabilization 7 14 14 Control-orbit correction 9.5 21 21 Stabilization after array deployment 1 2 2 Gravity gradient compensation 105 236 0 Contingency 10% 11 27 4		Option 2						
Control-orbit correction 0.5 21 21 Stabilization after array deployment 1 2 2 Gravity gradient compensation 105 236 0 Contingency 10% 11 27 4		Maneuver						
Stabilization after array deployment 1 2 2 Gravity gradient compensation 105 236 0 Contingency 10% 11 27 4		Initial stabilization	7	14	14			
Gravity gradient compensation 105 236. 0 Contingency 10% 11 27 4		Control-orbit correction	9.5	21	-,			
Contingency 10%		Stabilization after array deployment	1		2			
					0			
Total 125 300 41		Contingency 10%	11	27	4 ,			
		Total	125	300	1+1			

REQUIREMENT					SOURCE	(PTION	
						143	4 5	
4.1.7.2 Provide impulse requirements as follows	(cont	inued)			,			
Option 3				,				
Maneuver	_	mpulse - 1b-		:				
	R	P	Y	•				
Initial stabilization	7	15	15		·			
Control during SRM burn	5	210	27.0			1111		
Stabilization after SRM jettison	2	3	3					
Control-orbit correction	1	29	29		,			
Stabilization after array deployment	1	2	2					
Gravity gradient compensation	105	238	0					
Contingency 10%	2	50	26					
Total	123	547	285					
							111	
		•						
	•		•					
		•				111		
				,				
		•						
					<u> </u>		لمبل	<u></u>

	REQUIREMENT	SOURCE	OPTION
			12345A BC DE
4.1.8 Instrument D	ata Handling	AM/-/-	
•	a Handling Subsystem which accepts		
	ments whose outputs are formatted into two identical rate digita		
streams for transmi	ssion to the ground. These instruments are called the Themati	c	
Mapper (TM) and Hig	gh Resolution Pointable Imager (HRPI). Two additional lower r	ate	
digital data streams	one for each of the instruments, are also required. The data i	rate	
is about one quarter	that of the high rate (wideband) data and is referred to as comp	acted	
data.			
The Data Hand	ling Subsystem has two primary functions, wideband data comb	ining	
and selective or com	pacted data combining. In wideband the input data lines (seven	for	
the TM and four for i	the HRPI) are multiplexed together, framed and combined with	a	
small amount of over	rhead. These two data streams at 85.7 Mbps (one for HRPI and	lone	
for TM) are inputs to	o a spacecraft QPSK modulator,		
Data compaction	on reduces the wideband data rate to a value that can be handled	by	
a relatively low cost	ground station. The data rate selected is exactly one quarter	of	
the wideband rate, o	r approximately 21.4 Mbps. Data here includes actual data fro	om the	
	nired overhead and framing.		
Thre	ee interfaces are defined, as shown in fig4.1.8-1 between the	instru	
ment data handling	units and instruments, on-board processor and modulators.	Data	
and framing informa	ation are supplied via the interface with the instruments. Over	head	
information require	c to process the data on the ground and to select the compactio	n al-	
gorithm is received	from the spacecraft on-board processor. The third interface	is the	
wideband and compa	acted data stream to the modulators.		

Fig.4.1.8-1 Data Handling Subsystem Interface

	REQUIREMENT	SOURCE	OPTION
4.2.1 Data	Acquistion and Communications		14345
4.2.1.1	Orbit definition shall be sufficiently accurate to permit orbit predictions 2 weeks in advance.	M/5.1.1/71	
4.2.1.2	Orbit predictions shall be sufficient to predict:	M/5.1.1/71	
	a. S/C position within 10 km for S-band acquisition with 30 ft diameter antennas (10 beamwidth)		
	b. Times of S/C entrance and exit into and from eclipse (spherical, no atmosphere earth and point-source sun) with an accuracy of + 8 sec in time.		
	c. S/C position within 500 meters 24 hours in advance.		
4.2.1.3	Relay real-time command data from the Operations Control Center (OCC) to the spacecraft at 800-1200 bps.	M/5.1.2/71	
4.2.1.4	Command data transmission shall have a bit error rate (BER) $\leq 10^{-6}$	M/5.1.2/71	
4.2.1.5	Provide for at least one command opportunity of not less than 5 minutes on each orbit	M/5.1.2/71	
4.2.1.6	Provide for receipt of a S/C command memory dump and relay to the OCC within three minutes of the start of the dump	M/5.1.2/71	
4.2.1.7	Provide the capability for receipt of real-time S/C telemetry data at 6.4 Kbps for a minimum of one contact/orbit with a minimum contact time of six minutes and relay to the OCC in real-time.	M/5.1.3/71	
4.2.1.8	Provide for receipt of S/C telemetry data at 128 Kbps for:	M/5.1.3/72	
	a. One contact per orbit with a duration of 6 minutes Or b. One contact per two orbits with a duration of 11 minutes		
	Page 4.2.1-1	Revision	Date

REQUIREMENT	SOURCE	OPTION
4.2.1.9 Provide for the relay of S/C telemetry data to the OCC as follows: a. Five minutes of 128 Kbps data within 30 minutes of receipt	M/5.1.3/72	1,231,5
<u>Or</u>		
b. Ten minutes of 128 Kbps data within 60 minutes of receipt		
4.2.1.10 Telemetry acquisition and command opportunity periods must be completely overlapping	M/5.1.3/72	
4.2.1.11 The telemetry RF link shall provide a BER $\leq 10^{-5}$	м/5.1.3/72	
4.2.1.12 Tracking, telemetry, and command support shall be provided for a minimum period of launch to launch plus one year. Support is desired from launch to launch plus two years.	M/5.1.3/72	0
	ľ	

	REQUIREMENT	SOURCE	OPTION
4.2.3	Data Processing		12345
4.2.3.1	All products, standard and custom, will be radiometrically corrected	A/2.1.2/2-3	cccc
4.2.3.2	The standard products requirements are:	A/2.1.2/2-3	cbook
	Reduced Geometrically Geometrically Data Uncorrected Corrected Options		
	B/W Film X Color Film X High Density Digital X X Tape (HDDT) Computer Compatible X X Tape (CCT)		
* 1.2.3.3 * *********************************	Custom output products from the system shall include film products geometrically corrected with custom gamma capability and sub-area enlargement capability to specific map scales	A/2.1.2/2-3	
4.2.3.4	Custom film products are those of specific false color mix	A/2.1.2/2-3	carici
4.2.3.5	Custom digital products (CCT output) include sub-area or swath width reduction, band sequential or band interleaved, specific bands, and reduced resolution	A/2.1.2/2-3	
. 4.2.3.6	Quality requirements for the output products are shown in Table 4.2.3-1	A/2.1.2/2-3	
4.2.3.7	Processing of the daily volume of data shall be accomplished within a 16 hour day	A/2.1.2/2-5	
4.2.3.8	Basic processing of image data (i.e., geometric correcting, radiometric calibration, etc.) shall be performed digitally	A/2.1.3/2-5	cocer
4.2.3.9	Data products and ranges are in Table 4.2.3-2	A/2.1.3/2-5	

	GEOMETRICA UNCORRECTE		GEOMETRIC/ CORRECTED	
••• •••••••	TM	HRPI	<u>TM</u>	HRPI
Swath Width	185km	48km	185km	48km
Spatial Resolution				
Visible	30m	1 Om	30m ×	10m
Thermal	120m		120m	**
tinearity (urad)	0.2 IFOV	0.2 IFOV	0.2 IFOV	0.2 IFOV
Band to Band Registration	0.1 IFOV	0.3 IFOV	0.1 IFOV	0.3 IFOV
Position Accuracy(w/o GCP)**	+450m	<u>+</u> 450m	<u>+</u> 170m	<u>+</u> 170m
Position Accuracy(with GCP)**	es es.	-	<u>+</u> 15m	<u>+</u> 15m
Relative Radiometric Accuracy	•			.*
Visible		·		•
Tape	<u>+</u> 1.6%	<u>+</u> 1.6%	<u>+</u> 1.6%	<u>+</u> 1.6%
Film	<u>+</u> 5%	<u>+</u> 5%	<u>+</u> 5%	<u>+</u> 5% _
Thermal				•
Tape	` <u>+</u> [1K]		<u>+</u> 1K	-
Film	<u>+</u> 3K	= =	<u>+</u> 3K	

^{*}Includes radiometric correction, earth-rotation correction, line-length adjustment, correction for earth curvature, and predicted emphemeris.

+Additionally includes use of best-fit ephemeris from measured data.

SYSTEM OUTPUT QUALITY REQUIREMENT

TABLE 4.2.3-1

^{**}GCP = ground control points.

PRODUCT	DATA VOLUME	NUMBER OF DATA USERS	NUMBER OF FORMATS
HDDT (uncorrected)	\ 1010-1012bits/day	2 - 10	
HDDT (corrected)	1010-1012bits/day	2 - 10	
CCT (corrected)	109-1010bits/day	10 -100	1 - 5
BLACKAWHITE POS/NEG (1)	20 - 200 scenes/ day	5 - 50	1 - 3
BLACK&WHITE PRINTS		5 - 10	1 - 3
COLOR POS/NEG (2)	10 - 100 scenes/ day	2 - 20	1 - 3
COLOR PRINTS		2 - 10	.1 - 3

- (1) FIRST GENERATION PRODUCT 241MM (9.5 inch)
- (2) SECOND GENERATION PRODUCT 241MM (9.5 inch)
- (3) ENLARGEMENT TO STANDARD MAP SCALES

DATA PRODUCTS AND RANGES

TABLE 4.2.3-2

Page 4.2.3-3

	REQUIREMENT	SOURCE	OPTION
4.2.3	Data Processing (Cont'd)		1423145
4.2.3.10	Provide processing of experiment data	M/7.1.c/85	Ы
4	a. 6.4 Kbps telemtry data rate		
	b. 6.0×10^8 bits/day		
	c. 100% orbital coverage		
4.2.3.11	Accept investigator's data base on formatted magnetic tapes	M/7.1.d/85	
4.2.3.12	Provide quick-look data processing to 10 principal investigators on a daily basis	M/7.1.e/85	
	on a warry basis		
	. •		

			R	EQUIREME	NT.			SOUF	CE		OP	ROIT	
										12	345	AB	DB
2.3.1	3 Input	Data Load	d					AH/-/-		oc	\prod	00	
*	The input	to the CD	PF consists	s of digita	ıl dəta as	recorded	by						
high :	speed inst	rumentatic	on tape reco	rders. I	The range of it	put data to be consid	dered by				!		
each	of the har	dware conf	figurations i	is:									
				•									
	System Instr.	Minim	oum	Ва	seline	Expanded	7		•				
	TM	20 scenes			nes/day					\prod			
*			bits/day	4	11 bits/day				• • . :				
	TM and	20 scenes			nes/day	400 scenes/day	-						
	HRPI**		bits/day		11 bits/day	6.7x10 ¹¹ bits/day							
l l	<u> </u>					. O							
	*TM sce	ie: 6168 _] x.:	6165 7-bit p	oixels x 6	$\frac{1}{2}$ bands = 1.6	64 x 10 ⁹ bits/scene.	•						
	*HRPI so	ene: 3200	x 12333 7-b	it pixels	x + 1 bands = 1	.105 x 10 ⁹ bits/scen	ie.						
7-1				on the pro	ocessing requi	rements for the TM							
2 -	and HRI	PI are simi	ilar.										
,	4 Quant	itv of Dat	ta Processe	d and Ar	chived			AH/-/-	•				
.3.1				and the second second		ne above table whic	h	741/-/-			:	\mathcal{M}	
2.3.1	THE D	CT CCTI COME				TO O PROPER MATERIAL	***	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•				
2.3.1	are to	o be proce	essed and a	rchived	at each stage	e is:			4		1 1 1	111	10.5
	are to	o be proce	essed and a										
	are to	o be proce	S Data Pro		at each stage	<u></u>							
	are to	o be proce	essed and a			Internal Purge							
	are to	o be proce	Seed and a Data Pro		% Archived	Internal Purge (Months)							
	Processin Raw Inpu	o be proce	Data Pro	ocessed	% Archived 100 100	Internal Purge (Months)							
2.3.1	are to	g Stage t Data	Seed and a Data Pro	ocessed	% Archived	Internal Purge (Months)							

REQUIREMENT		SOURCE		1	OPT	TON		
. The Stage II and Stage III processing are not necessarily mutuall	1		1	L 23	45	ΑВ	CDE	E
	•							ì
exclusive. The Stage II and Stage III processing loads should be considered addi	1							•
as long as their sum does not exceed 100 percent; above this point Stage III proc							1	i ,
replaces Stage II processing. Thus when Stage III processing is 50 percent only	tne	•						1
Stage II processing option of 50 percent should be considered.								
	-							
			1					}
		·						
			1		•			i
			1		•		1	
			İ					
		•]					
			l					•
								1
		, -					'	
							1	
								1
								1
Page 4.2.3-6	Q Q	Revision 7		Date	나누 e	7/12	2/74	

The following figure shows the requirement for output (user) products at 3 points: STAGE		REQUIREMENT		SOURCE	OPTION
The following figure shows the requirement for output (user) products at 3 points: PHOTO ONLOWING ASSUMATE Throughput Model. The HDDT (High Density Digital Tape) refers to any very high density tape (> 10,000 bpi) not directly readable (without special interface hardware) by a computer. The CCT (Computer Compatible Tape) refers to other magnetic tapes with density <10,000 bpi that are directly readable by computers. The photo products consist of B&W film (positive and negative), B&W prints, color film (positive and negative) and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.					12345A BC DE F
The following figure shows the requirement for output (user) products at 3 points: PHOTO ONLOWING ASSUMATE Throughput Model. The HDDT (High Density Digital Tape) refers to any very high density tape (> 10,000 bpi) not directly readable (without special interface hardware) by a computer. The CCT (Computer Compatible Tape) refers to other magnetic tapes with density <10,000 bpi that are directly readable by computers. The photo products consist of B&W film (positive and negative), B&W prints, color film (positive and negative) and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.	4.2.3.15	Output Products		AH/-/-	
Throughput Model. The HDDT (High Density Digital Tape) refers to any very high density tape (> 10,000 bpi) not directly readable (without special interface hardware) by a computer. The CCT (Computer Compatible Tape) refers to other magnetic tapes with density < 10,000 bpi that are directly readable by computers. The photo products consist of B&W film (positive and negative), B&W prints, color film (positive and negative) and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.		The following figure shows the requirement for	output (user)		
Throughput Model. The HDDT (High Density Digital Tape) refers to any very high density tape (> 10,000 bpi) not directly readable (without special interface hardware) by a computer. The CCT (Computer Compatible Tape) refers to other magnetic tapes with density < 10,000 bpi that are directly readable by computers. The photo products consist of B&W film (positive and negative), B&W prints, color film (positive and negative) and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.		PHO TO HOOT Secured			
Throughput Model. The HDDT (High Density Digital Tape) refers to any very high density tape (> 10,000 bpi) not directly readable (without special interface hardware) by a computer. The CCT (Computer Compatible Tape) refers to other magnetic tapes with density < 10,000 bpi that are directly readable by computers. The photo products consist of B&W film (positive and negative), B&W prints, color film (positive and negative) and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.	Tupar ==	31805	HOOT		
Throughput Model. The HDDT (High Density Digital Tape) refers to any very high density tape (> 10,000 bpi) not directly readable (without special interface hardware) by a computer. The CCT (Computer Compatible Tape) refers to other magnetic tapes with density < 10,000 bpi that are directly readable by computers. The photo products consist of B&W film (positive and negative), B&W prints, color film (positive and negative) and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.		Account	F ARCHURE		
The HDDT (High Density Digital Tape) refers to any very high density tape (> 10,000 bpi) not directly readable (without special interface hardware) by a computer. The CCT (Computer Compatible Tape) refers to other magnetic tapes with density < 10,000 bpi that are directly readable by computers. The photo products consist of B&W film (positive and negative), B&W prints, color film (positive and negative) and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.		ARCHIUS.			
(> 10,000 bpi) not directly readable (without special interface hardware) by a computer. The CCT (Computer Compatible Tape) refers to other magnetic tapes with density < 10,000 bpi that are directly readable by computers. The photo products consist of B&W film (positive and negative), B&W prints, color film (positive and negative) and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.					
The CCT (Computer Compatible Tape) refers to other magnetic tapes with density < 10,000 bpi that are directly readable by computers. The photo products consist of B&W film (positive and negative), B&W prints, color film (positive and negative) and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.			•		
< 10,000 bpi that are directly readable by computers. The photo products consist of B&W film (positive and negative), B&W prints, color film (positive and negative) and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.					
of B&W film (positive and negative), B&W prints, color film (positive and negative) and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.			• •		
and color prints. The B&W and color film are to be 241mm (9.5 inch). The B&W film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.	< 10,000 b	pi that are directly readable by computers. The ph	noto products consist		
film is to be a first generation product; i.e., produced directly from the digital data through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.	of B&W film	(positive and negative), B&W prints, color film (p	ositive and negative)		
through, for example, a laser beam recorder. The color film is to be a second generation product; i.e., produced from B&W film.	and color pr	rints. The B&W and color film are to be 241mm (9.	.5 inch). The B&W		
generation product; i.e., produced from B&W film.	film is to be	eafirst generation product; i.e., produced directly	from the digital data		
	through, for	r example, a laser beam recorder. The color film	is to be a second		
	generation p	product; i.e., produced from B&W film.			

Not shown in Figure are custom products. Custom photo products
include special gamma correction, special sub-area enlargement to specific map
scales and special false color mix. Custom digital products relate only to CCT and
include partial scenes (sub-area or swath width reduction), special format and
reduced resolution. Initially, as a first order approximation, assume these custom
products to require the same processing required by other products identified in the
Figure.

REQUIREMENT

Table - shows the range of data products to be considered.

Product	Number (Each Different)	Av. Copies of Each**	No. Users Receiving	Number Formats***
HDDT*	2,20,200	1	2-20	1
CCT (6250 bpi)	2,10	5	10-50	5
CCT (1600 bpi)	1,10	10	20-100	5
B&W Film	20,200	. 1	5-50	3
Color Film	10,100	ì	2-20	3
Prints (B&W and Color)	Existing EF	RTS Photolab	2-20	3

^{*}Distributed among Stages I, II and III. Assume a mix of packing densities to equal total specified. The number of HDDTs specified is based on packing roughly 10¹⁰ bits per HDDT.

Table - User Data Products.

SOURCE

OPTION

1 23 4 5 A BC DE FG

^{**}Does not include archive requirements.

^{***}Formats for tape are discussed separately. Formats for photo included full scenes at 1:10⁶ scale and multiple scenes at increased scale.

Each CDPF hardware configuration should be sized to handle the required data load in a standard 16-hour day. This implies a 24-hour turnaround for most standing orders. Also assume up to 10 percent demand for retrospective orders for data previously archived, included as part of the load defined in (Table) para. 4.2.5.14	A A TOTAL CONTRACTOR	DEVICTORMENT		V 1		SOUR	CE	OI	TION	·
Each CDPF hardware configuration should be sized to handle the required data load in a standard 16-hour day. This implies a 24-hour turnaround for most standing orders. Also assume up to 10 percent demand for retrospective orders for data previously archived, included as part of the load defined in(Table) para. 4.2.5.14	4.2.3.16	REQUIREMENT Throughput Delay						1231	1 1	DEF
load in a standard 16-hour day. This implies a 24-hour turnaround for most standing orders. Also assume up to 10 percent demand for retrospective orders for data previously archived, included as part of the load defined in (Table) pera. 4.2.5.14			e sized to hand	le the requir	ed data			o	iolo I	
orders. Also assume up to 10 percent demand for retrospective orders for data previously archived, included as part of the load defined in (Table) para. 4.2.3.14										
previously archived, included as part of the load defined in (Table) para 4.2-3.14	load in a st	landard 16-nour day. This implies a 2-	· retrospective	orders for d	ata					4
	orders. A	iso assume up to 10 percent demain to	and in Table) Dara 4 2 1 1	<i>n</i>		•			
	previously	archived, included as part of the toad of	ienneu m(rabie	para. 4.2.5.	7 					
			10 mm mm mm mm mm mm mm mm mm mm mm mm mm							
			•							
			e sees from the							
					ا المحورية المستخدم					

	REQUIREMENT	SOURCE	OPTION
4.2.4	Data User Services		14345
4.2.4.1	Low Cost Ground System (LCGS)	(TS 9)	
4.2.4.1.1	The LCGS will accept direct readout of selected TM or HRPI data	A/2.1.5/2-6	
4.2.4.1.2	Basic capabilities of LCGS are to display image data and produce photo products	A/2.1.5/2-6	
4.2.4.1.3	Additional capabilities, electable at user option, are data formatting and editing, computer aided analysis	A/2.1.5/2-6	
4.2.4.1.4		A/2.1.5/2-6	

	REQUIREMENT	SOURCE	OPTION
			12345
4.4.4 Tran	nsportation & Handling		
4.4.4.1	A shipping container shall be provided to transport the S/C horizontally to the launch site	GAC	opapa
	5/C nortzontarry to the ramich sive		
4.4.4.2	Shipping containers shall be provided for each of the three S/C assemblies: Instrument, S/S Modules, & Orbit Adjust/Transfer Assembly, since spares will be shipped independent		Posco
	to the launch site		
4.4.4.3	Provide for a constant positive nitrogen purge within the	W / - / 3	M M M M M M M M M M
	instrument housing for contamination control ouring		
•	transportation.		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
<i>5.</i>			
• • • • •			
		and the second s	2 Date 6/14/74