WAILABLE

INT ABSTRACTS OF JAR

61-247743 (11)Publication number: (43)Date of publication of application: 05.11.1986

(51)Int.CI.

CO8J 7/06 B32B 27/00 // CO9K 3/00 CO9K 3/18

(21)Application number: 60-088776 (22)Date of filing:

26.04.1985

(71)Applicant: ASAHI GLASS CO LTD

(72)Inventor: MATSUO HITOSHI

YAMAGISHI NOBUYUKI

(54) ANTIFOULING AND LOWLY REFLECTIVE PLASTIC

(57)Abstract:

PURPOSE: To provide the title plastic which has excellent antifouling properties, low reflectiveness and resistance to marring and is suitable for use as an automotive window, by forming a coating film composed of an antireflective coating compsn. contg. a plurality of compds. fluorine and silicon atoms on the surface of a plastic.

CONSTITUTION: 5W80 wt% compd. of formula I (wherein A is a bivalent org. group; X is halogen, a group of formula II, OR; R is lower alkyl; Rf1 is polyfluoroalkyl) such as the compd. of formula III, 5W94 wt% compd. of formula IV (wherein Rf2 is a fluorinated 2C or higher bivalent org. group) such as the compd. of formula V and 1W9 wt% compd. of the formula SiX4 (e.g. SiCl4) are mixed together to prepare an antireflective coating compsn. The compsn. is applied to the surface of a plastic which is pref. transparent and whose surface is pref. treated to activate it, to form a coating film, thus obtaining the desired antifouling and lowly reflective plastic.

Ryl-A-BIX	

Bf(cR;):8191;

ELLE-A-Tyn-A-LBEX

Clasica E4 (CF2) 0 12 84 81 Cla

H

Ш

N

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right] .

Copyright (C): 1998,2003 Japan Patent Office

19 日本国特許庁(JP)

① 特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭61-247743

<pre>⑤Int.Cl.⁴</pre>	識別記号	庁内整理番号	@	33公開	昭和61年(1986	3)11月5日
B 32 B 27/ // C 09 K 3/	06 00 1 0 1 00 1 1 2 18 1 0 4	7446-4F 7112-4F 6683-4H 7229-4H	審査請求 🧦	未請求	発明の数	1	(全6頁)

公発明の名称 防汚性・低反射性プラスチック

②特 願 昭60-88776

②出 願 昭60(1985)4月26日

⑫発 明 者 松 尾 仁 横浜市緑区荏田南1丁目20

⑫発 明 者 山 岸 展 幸 横浜市旭区鶴ケ峰2-59-1

①出 願 人 旭 硝子株式会社 東京都千代田区丸の内2丁目1番2号

仰代 理 人 弁理士 内 田 明 外1名

明 細 春

1 器明の名称

防汚性・低反射性ブラスチック

2.特許請求の範囲

1 表面に反射防止腹が形成された低反射性ブラスチックにおいて、下記一般式で表わされる化合物を含有する反射防止膜組成物からなる塗膜が形成されてなることを特徴とする防汚性・低反射性ブラスチック。

一般式

R_f¹-A-81X₃ 5~80重数多 X₃81-A-R_f²-A-81X₃ 5~94重数多 C₁Y₂ 1~90重数多

(但し、式中▲は二価の有根基、▼はハログ

ック。

5. ブラスチックの表面が活性処理されてなる 特許請求の範囲第1項記載の低反射性ブラス チック。

3.発明の詳細な説明

[産業上の利用分野]

本発明は表面に反射防止塗膜が形成されたブラスチックに関し、特に、防汚性と低反射性に優れ、しかも耐擦傷性をも有する低反射性ブラスチックに関するものである。

〔従来の技術〕

一般に、ブラスチック材料、 特に透明ブラスチック材料は透明性に加えて、 自身の有する経量、 耐衝撃性及び易加工性をどの利点を活かして、 建築物の窓・ドアー・間仕切り、 ショーウィンド・ショーケース、 車輌の窓・ 照明灯 レンズ、 2 輪車の風防、 0 A 破器の ハウジング、 光学レンズ、 メガネレンズをどの広い分野に利用されている。

しかしながら、それらブラスチック材料から

[発明の解決しようとする問題点]

前配の反射防止膜の形成方法において、真空蒸滑あるいはスパッタリング法は装置の根構上及びコスト面から適応物品は小型精密光学部品などに限定されるという制約があり、更に連続的製造には適していない。

一方前記のどとき公知の低反射処理剤はブラ

したがつて、低反射処理工程が簡単であり、 しかも形成された反射防止強膜は耐痰傷性と防 汚性とに優れている低反射性ブラスチックの開 発が望まれている。

[問題点を解決するための手段]

本発明者は、前記問題点に鑑み、ブラスチック要面に対して接着性に優れ、しかも形成された反射防止塗膜は耐擬傷性と防汚性とを満足する低反射処理剤について種々研究、検討を行なつた。その結果、特定の含フッ素シリコーン化合物の2種とシリコーン化合物との三成分から

なる組成物は反射防止強膜としてブラスチック 表面に形成されると、前配問題点を解決するに 足る強膜となり得るという事実を見い出し本発 明を完成するに至つたものである。

而して、上記組成物において、三成分のいかがれが欠けても特性は満足されなりのないであれる。 さまれることによって各種ブラスチックに通りである。 が可能であることなるので、吹付付けである。 が可能を損なりなるとなるで、吹付付けである。 を提知の簡便な方法によってといるである。 現代を対して形成されることにも耐援を ではないである。 では、これるにはないである。 では、これるにはないである。

即ち、本発明は、表面に反射防止膜が形成された低反射性ブラスチックにおいて、下記一般式で表わされる化合物を含有する反射防止膜組成物からなる塗膜が形成されてなることを特徴とする防汚性・低反射性ブラスチックを提供するものである。

一般式

R 1 - A - 8 1 X3

5~80度量多

X. 81-A-Rf2-A-81X3

5~94重量多

8114

1~90重量%

(但し、式中▲は二価の有機基、xはハロゲ

 $R_{f}SO_{2}H(CH_{3})(CH_{2})_{2}CONH(CH_{2})_{3}Si(OC_{2}H_{5})_{3}$,

本 発 明 の 反 射 防 止 膜 組 成 物 は 一 般 式 R g 1 - A -

 $R_{f}(CH_{2})_{2}OCO(CH_{2})_{2}S(CH_{2})_{3}S1(OCH_{3})_{3}$,

Rf(CH2)20CONH(CH2)3Si(OC2H5)2.

 $R_{f}(CH_{2})_{2}NH(CH_{2})_{2}S1(OCH_{3})_{3}$,

Rf(CH2)2NH(CH2)2S1(OCH2CH2OCH3)3.

(但し、Rr はポリフルオロアルキル基、m は1以上の整数)

などのポリフルオロアルキル基含有シラン化合物、ポリフルオロアルキル基がエーテル結合を 有するシラン化合物が挙げられる。

81 X₃、 X₃ 81 - A - R x² - A - 81 X₃、 81 X₄ で 要 わ さ れ る 各 化 合 物 の 三 成 分 よ り な る が 、 R x¹ - A - 81 X₃ で 要 わ さ れ る 化 合 物 は 強 膜 の 低 屈 折 率 化 及 び 防 汚 性 付 与 、 X₃ 81 - A - R x² - A - 81 X₃ で 要 わ さ れ る 化 合 物 は 低 屈 折 率 化 及 び 耐 類 傷 性 向 上 、 そ し て 81 X₄ は 耐 類 傷 性 向 上 に 有 用 で あ つ て 、 こ れ ら 三 成 分 が 最 適 な 割 合 で 組 合 せ ら れ る こ と に よ つ て 低 反 射 性 、 防 所 性 及 び 耐 類 傷 が 発 現 さ れ る も の で あ る 。

ことで、一般式 Rr1-A-81Xs で表わされる化合物は、 Rr1 は防汚性の付与と、 その向上という点でポリフルオロアルキル基で あるのが好ましく、エーテル結合が含まれてい てもよい。 A は二価の有機基、エはハロゲン、

OCR、ORであつてRは低級アルキル基である。 かかる化合物を例示すると Rf(CH₂)₂81Cl₃。 Rf(CH₂)₂81(OCH₃)₃。 RfCONH(CH₂)₃81(OC₂H₅)₃。 RfCONH(CH₂)₂NH(CH₂)₃81(OC₂H₅)₃。

る化合物は、 R t² がフッ素を含有する炭素数 2 以上の二価の有機基であつて A 、 X は前配と同 ーである。かかる化合物としては例えば Cl₃ B i C₂ E₄ (CF₂)_n C₂ E₄ B i Cl₃.

(CH₃O)₃81C₂H₄(CF₂)_nC₂H₄81(OCH₃)₃.

(但し、nは2~14の整数) などが挙げられる。

上記、一般式 X₃81-A-R₁2-A-81X₃ で畏わされる化合物は反射防止膜組成物中 5 ~ 9 4 重量 6 含まれるのが好ましく、5 重量 9 以下であると耐擦偽性が、9 4 重量 9 以上であると防汚性が低下する。

更に一般式 S1x で 表わされる化合物は x は 前記と同一である。この化合物としては 81Cl₄, S1(OCH₅)₄, S1(OC₂H₅)₄,

O || S1(OCCH₃)4

などを例示することができる。この一般式 81%

で表わされる化合物は反射防止膜組成物 1~90 重量 5 含まれるのが好ましく、1 重量 5 以下では耐擦傷性が、90 重量 5 以上では低反射性、防汚性が低下する。

上記、三成分を構成する化合物において、それぞれの化合物内で数額が組合わされてもよい。

反射防止瞑組成物は上記、三成分を構成する 化合物の他に反射防止膜の特性を向上させる目 的で、シリカゾルなどの無機質フィラーや、例 えば

CH₂-OHCH₂O(CH₂)₃S1(OCH₃)₃,

NH₂ (CH₂)₂NH (CH₂)₃S1 (OCH₃)₃, NH₂ (CH₂)₃S1 (OCH₃)₃, CH₂=CHS1 (OCH₃)₃.

CH3

 $CH_2 = CHSiCl_3$, $CH_2 = CCOO(CH_2)_3Si(OCH_3)_3$, $HS(CH_2)_3Si(OCH_3)_3$, $NCO(CH_2)_3Si(OC_2H_5)_3$, $Cl(CH_2)_3Si(OCH_3)_3$.

 $CH_2 = CH - CH_2NH(CH_2)_2NH(CH_2)_3S1(OCH_3)$,

かくして調製された途膜形成用の処理液のブ ラスチック表面への強布方法は、はけ塗り、ロ ール塗り、スピニング、吹付け、あるいは浸漬 など既知の方法によつて行なわれる。

整布後は50~150℃の温度で20分以上で化処理することによつて強膜が形成される。で化処理における温度の設定はブラスチックの軟化温度との関係において適当に選定される。形成される強膜の膜厚は a 2 p 以下、好ましくは a 0 5~ a 1 p であつて、かかる 膜 厚の調整は a 2 p 大によって たし得るものであり、例えば浸漬法においては 組成物 濃度と引上げ速度とによって決定される。

ブラスチック 表面 に形成される 登 度 の 密 着 性は上記の方法によれば 実 用上は充分であるが、ブラステック 表面を予め、 アルカリ 処理、 グロー放電処理、 ブラズマ処理などの活性処理を施こすことによつて、 更に向上せしめることができる。

〔 寒施例〕

などのシランカンブリング剤、あるいは架橋剤、 帯電防止剤、その他の特性改良用の添加剤など が配合、含有されてもよい。

次に、本発明を実施例により具体的に説明するが本発明はこれら実施例のみに限定されるものではない。尚、実施例において防汚性・低反射性プラスチックとしての評価試験方法は次の通りである。

Q厚測定:『タリステップ』(Rank Taylor Hobson 社製)を使用し針圧測定より求め る。

耐換偽性:綿布を 5 0 0 9 荷重下、 1 0 0 0 回 摩擦し傷の発生の有無を確認

防汚性:油性フェルトペンにて汚染し、 1 時間 放置後、綿布で払拭し、インクの除去性を 確認。

奥施例1

下記 [A] ~ [c] の化合物と tert - ブタノール 2 5 0 0 9 とを混合し、それに 1 9 塩酸水溶液 1 4 3 9 を加え室温で 2 中時間提押しながら反応させて、反射防止強膜形成用の処理液を調製した。

[A] RfC2H4S1(OCH3)2

508

(ここで、Rg は Cn F 2n+1 で n は 6 ~ 1 6 で 平均値 9)

(B) (CH3O)381C2H4C6F12C2H4S1(OCH3)3

408

[C] Si(OCE;)4

108

第 1 表

	処理液組成(タ)		膜厚	反射率	耐擦傷性	耐汚染性	
No.	(A)	(B)	(c)	(p)	(%)	*1)	*2)
実施例2	2 0	60	2 0	0.09	2.1	A	0
<i>n</i> 3	30	20	50	0.0 9	2.5	A	0
# 4	75	15	10	0.09	1.5	A	0
<i>n</i> 5	15	80	5	۵9	2.1	A	. 0
<i>"</i> 6	15	.10	75	۵9	2.7	A	0
比較例1	_	80	20	009	2.3	A	×
, 2	80	_	20	0.09	1.7	С	
# 3	80	20	-	0.09	1.5	В	۵
n 4	-	_	-	-	4.0	С	×

≈1) A:傷の発生なし B:若干の傷の発生あり

c:多数の傷の発生あり

+2) 〇:完全に除去

ム:除去性に難点あり

×:除去は困難

奥施例2~6、比较例1~4

奥施例1における [A] ~ [C] の化合物の量を 第1 表に示す量に変えた他は、実施例1 と同様 の方法により、反射防止登膜形成用の処理液を 調製した。次いで、実施例1 と同様に平板に処 理して反射防止強膜の形成された平板を得て、 その評価試験を行なつた。試験結果を第1 表に 示した。

奥施例7~8

実施例1における[A]の化合物を第2表に示す化合物に変えた他は実施例1と同様の方法により、反射防止塗膜形成用の処理液を調製した。続いて平板に処理して反射防止膜の形成された平板を得た。その評価試験を行ない結果を第2 衷に示す。

第 2 表

Na	[A] の化合物	膜厚 (µ)	反射率 (%)	耐擦傷性 *1)	耐汚染性 +2)
実施例 7	CF ₃ CF ₃	0.09	2.0	A	0
, a	C4F9C2H4S1(OCH3)3	0.09	2:1	A	0

*1), *2) 前記第1表と同。

奥施例 9

奥施例1における[B]の化合物を

丧

(CHO) SICELCFCF20C4B30CF2CFC AB1(OCHS) に変えた他は実施例1と同様の方法により、反射防止強原形成用の処理液を調製した。統仮で平板に強度の形成された強度の形成された平均反射防止膜の形成された強度の関域された平均反射防止性は原の形成された強度の関域は0.0 9 μ、平均反射線防治が大力に対しているの発生は全く認められず、払拭に対しているとによって完全に除去することができた。実施例10~11

CF3

実施例1における平板をポリメタクリル製及びポリウレタン製の平板とした他は実施例1と同様に処理して、反射防止強膜の形成された平板を得た。その評価試験を行ない、結果を第3 表に示した。

Ns.	平 板	膜 <i>厚</i> (µ)	反射率 (%)	耐擦傷性 +1)	耐汚染性 +2)
突施例10	ポリメタアクリル製	0.09	1,8	A	0
# 11	ポリウレタン製	0.09	1.6	. A	0

*1), *2) 前記1と同

[発明の効果]

本発明の防汚性・低反射性ブラスチックは、 従来、得られなかつた防汚性と低反射性という 両特性を同時に満足させ、しかも耐擦傷性にも 優れているという効果が認められるものである。

特にブラスチック袋面に形成される反射防止 塗膜は塗膜の形成工程が簡略化され、コスト的 にも有利であるという効果をも有するものであ る。

> R 理人 内 田 明 R 理人 萩 原 亮 一

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.