Concours Communs Polytechniques - Session 2008

Corrigé de l'épreuve d'algèbre

Matrices réelles dont les valeurs propres sont sur la diagoanle.

Corrigé par Mohamed TARQI

I. EXEMPLES

Remarque: Si A est à diagonale propre, alors $\chi_A(X)$ est le premier terme qui apparaît dans le développement de $det(A - XI_n)$ par la règle de Sarrus.

1. (a) On appliquant la règle de Sarrus, on obtient facilement :

$$\chi_{M(\alpha)}(X) = (1 - X)(2 - X)(2 - \alpha - X) + \alpha - \alpha(2 - X) + \alpha(1 - X) = (1 - X)(2 - X)(2 - \alpha - X).$$

Donc $M(\alpha)$ est à diagonale propre.

- (b) On a $Sp(M(\alpha)) = \{1, 2, 2 \alpha\}.$
 - Si $\alpha \neq 0$ et $\alpha \neq 1$, alors $M(\alpha)$ aura trois valeurs propres distinctes, donc diagonlisable.
 - Si $\alpha = 0$, alors $M(\alpha)$ est diagonalisable si et seulement si dim $\ker(M(\alpha) 2I_3) = 2$. Or

$$(x,y,z) \in \ker(M(\alpha)-2I_3)$$
 si et seulement si $\left\{ \begin{array}{l} x-y=2x \\ 2y=2y \\ x+y+2z=2z \end{array} \right. \iff x+y=0$, donc

 $\dim \ker(M(\alpha) - 2I_3) = 2$, donc $M(\alpha)$ est diagonalisable.

• Si $\alpha = 1$, alors $M(\alpha)$ est diagonalisable si et seulement si dim $\ker(M(\alpha) - I_3) = 2$. Or

$$(x,y,z) \in \ker(M(\alpha)-I_3)$$
 si et seulement si $\begin{cases} x-y+z=x \\ 2y-z=y \\ x+y+z=z \end{cases}$ $\iff y=z=-x$, donc $\dim\ker(M(\alpha)-2I_3)=1<2$, donc $M(\alpha)$ n'est pas diagonalisable.

En conclusion, $M(\alpha)$ est diagonalisable si et seulement si $\alpha \neq 1$.

- 2. Si A est à diagonale propre, alors 0 sera l'unique valeur propre de A et par conséquent $A^3=0$ (théorème de Cayely-Hamilton), mais $A^3 \neq 0$ puisque $A^3e_1 = -e_3$ ((e_1, e_2, e_3) étant la base canonique de \mathbb{R}^3), donc A n'est pas à diagonale propre.
- 3. Soit $A=\left(egin{array}{cc} a & b \\ c & d \end{array} \right)$ une matrice à diagonale propre, donc $\chi_A(X)=X^2-(a+d)X+ad$, d'autre part $\chi_A(X) = X^2 - (a+d)X + ad - bc$ et par identification, on obtient : bc = 0, donc A est triangulaire. Réciproquement, toute matrice triangulaire est à diagonale propre, donc l'ensemble de matrices, d'ordre 2, à diagonale propre se réduit à l'ensemble des matrices triangulaires.

Rappel : l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$ est identifié à l'espace \mathbb{R}^{n^2} , et est muni, par exemple, de la norme

$$\|(a_{ij})_{1 \le i,j \le n}\|_{\infty} = \max_{1 \le i,j \le n} |a_{ij}|.$$

La convergence d'une suite de matrices est donc équivalente à la convergence " coefficient par coefficient ".

Soit $(A_k)_{k\in\mathbb{N}}$ une suite d'éléments de \mathcal{E}_2 de limite $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, montrons que $A\in\mathcal{E}_2$, en effet,

posons $A_k = \begin{pmatrix} a_k & b_k \\ 0 & d_k \end{pmatrix}$ (resp. $A_k = \begin{pmatrix} a_k & 0 \\ b_k & d_k \end{pmatrix}$, alors puisque $\lim_{k \to \infty} A_k = A$, nécessairement c = 0 (resp. b = 0) et par suite $A \in \mathcal{E}_2$, donc \mathcal{E}_2 est fermé de $\mathcal{M}_2(\mathbb{R})$, comme reunion de deux fermés.

II. Test dans le cas n=3

4. Soit $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ une matrice, d'ordre 3, à diagonale propre, donc

$$\chi_A(X) = (X - a_{11})(X - a_{22})(X - a_{33}),$$

ainsi A est inversible si et seulement si $\prod^{3} a_{ii} \neq 0$.

Étudions la matrice $A=M(0)=\begin{pmatrix}1&-1&0\\0&2&0\\1&1&2\end{pmatrix}$, A c'est une matrice à diagonale propre et inver-

sible avec $A^{-1} = \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \end{pmatrix}$, son polynôme caractéristique, d'après la règle de sarrus, est $\chi_{A^{-1}}(X) = (1 - X) \left(\frac{1}{2} - X\right)^2$, donc $A^{-1} \in \mathcal{E}_3$.

5. Soit $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ une matrice d'ordre 3. Par définition, on a :

$$\chi_A(X) = -X^3 + \operatorname{tr}(A)X - (a_{11}a_{22} + a_{11}a_{33} + a_{22}a_{33} - a_{12}a_{21} - a_{13}a_{31} - a_{23}a_{32})X + \det A.$$

Donc A est à diagonale propre si et seulement si

$$\chi_A(X) = (a_{11} - X)(a_{22} - X)(a_{33} - X) = -X^3 + \operatorname{tr} AX^2 - (a_{11}a_{22} + a_{11}a_{33} + a_{22}a_{33})X + a_{11}a_{22}a_{33},$$
 et par identification on obtient :

$$\det A = \prod_{i=1}^3 a_{ii} \text{ et } a_{12}a_{21} + a_{13}a_{31} + a_{23}a_{32} = 0.$$

- 6. Utilisation de la calculatrice
 - (a) Algorithme:

ENTRER A.

CALCULER $a = \det A - a_{11}a_{22}a_{33}$ ET $b = a_{12}a_{21} + a_{13}a_{31} + a_{23}a_{32} = 0$.

SI a=0 et b=0, sortir le résultat : A est à diagonale propre.

Sinon, sortir le résultat : A est non à diagonale propre.

- (b) D'après la question 5., on vérifie facilement que les matrices A_1 , $A_3 = M(4)$, A_4 , A_5 , A_6 , A_8 sont des matrices à diagonale propres.
- (c) L'étude des exemples précédents, "montre" qu'une condition nécessaire et suffisante pour qu'une matrice, d'ordre 3, $A=(a_{ij})_{(1\leq i,j\leq 3)}$ à diagonale propre soit telle que $A^{-1}\in\mathcal{E}_3$ est que $a_{12}a_{21} = a_{13}a_{31} = a_{23}a_{32} = 0$.

III. EXEMPLES DE MATRICES PAR BLOCS 7. Si $M=\left(\begin{array}{cc}A&B\\0&C\end{array}\right)$, avec $A\in\mathcal{M}_r(\mathbb{R})$ et $C\in\mathcal{M}_{n-r}$. Alors si $A=I_r$ ou $C=I_{n-r}$, en développant par rapport à la première colonne dans le premier cas, ou par rapport à la dernière linge dans le second, on a $\det M = \det A \det C$. Le cas général se découle de la décomposition :

$$\left(\begin{array}{cc} A & B \\ 0 & C \end{array}\right) = \left(\begin{array}{cc} I_r & 0 \\ 0 & C \end{array}\right) \left(\begin{array}{cc} A & B \\ 0 & I_{r-p} \end{array}\right).$$

8. (a) A_5 étant à diagonale propre, donc la matrice $M = \begin{pmatrix} A_5 & 0 \\ B & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 1 & 1 & 0 \\ -2 & 3 & 6 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ répond

à la question; elle contient 13 éléments non nuls.

(b) Méthode directe : posons $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $C=\begin{pmatrix} e & f \\ g & h \end{pmatrix}$ (le choix de B n'intervient pas). Alors $M=\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \in \mathcal{E}_4$ si et seulement si $\chi_M(X)=(a-X)(d-X)(e-X)(h-X)$. $\text{Mais } \chi_M(X) = \chi_A(X) \chi_C(X) = [(X^2 - (a+d)X + ad - bc][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (e+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+d)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+h)X + ad - bc)][X^2 - (a+h)X + eh - gf] \text{ et parallel} = [(X^2 - (a+$ identification on obtient le système suivant :

$$\begin{cases} a+d=e+h \\ ad-bc=eh \\ ad=eh-gf \end{cases}$$

On choisit, par exemple,
$$A=\left(\begin{array}{cc} 1 & 1 \\ 3 & -1 \end{array}\right)$$
, $B=\left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$ et $C=\left(\begin{array}{cc} 2 & -3 \\ 1 & -2 \end{array}\right)$.

IV. QUELQUES PROPRIÉTÉS

9. $A=(a_{ij})_{(1\leq i,j\leq n)}$ étant à diagonale propre, donc $\chi_A(X)=\prod_{i=1}^n(a_{ii}-X)$. Si a=0 le résultat est évident. Supposons $a\neq 0$ et posons $M=aA+bI_n$, donc

$$\chi_M(X) = \det(aA + bI_n - XI_n) = a^n \det\left[A - \left(\frac{X - b}{a}\right)\right]I_n = a^n \prod_{i=1}^n \left(a_{ii} - \frac{X - b}{a}\right) = \prod_{i=1}^n (aa_{ii} + b - X),$$

donc $aA + bI_n$ est à diagonale propre, de même pour $a^tA + bI_n$ puisque

$$\det(a^t A + bI_n - XI_n) = \det(aA + bI_n - XI_n).$$

- 10. Soit $A \in E_n$, montrons qu'il une suite $(A_k)_{k \in \mathbb{N}}$ d'éléments de G_n telle que $\lim_{k \to \infty} A_k = A$. En effet, $\operatorname{Sp}(A)$ étant fini, donc pour k assez grand la matrice de terme général $A_k = A \frac{1}{k+1}I_n$ est inversible, dans \mathcal{E}_n (question précédente) et $\lim_{k \to +\infty} A_k = A$.
- 11. Matrices trigonalisables
 - (a) La matrice $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ est trigonalisable (même diagonalisable car elle est symétrique), mais elle n'est pas à diagonale propre puisque $\chi_A(X) = X(X-2)$.
 - (b) Le polynôme caractéristique d'une matrice à diagonale propre est scindé, donc toute matrice à diagonale propre est trigonalisable.
 - (c) On sait qu'une matrice A est semblable à une matrice triangualaire si et seulement si son polynôme caractéristique est scindé et que toute matrice triangulaire est à diagonale propre, donc une matrice A est semblable à une matrice à diagonale propre si et seulement si χ_A est scindé.
- 12. Si $A = (a_{ij})_{(1 \leq i, j \leq n)}$, on a, par exemple,

$$A = \begin{pmatrix} a_{11} & \dots & 0 \\ a_{21} & a_{22} & & \vdots \\ & & \ddots & \\ a_{n1} & \dots & & a_{nn} \end{pmatrix} + \begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & & \vdots \\ & & \ddots & a_{n-1n} \\ 0 & \dots & & 0 \end{pmatrix},$$

c'est la somme de deux matrices triangualaires, donc à diagonale propre.

La somme des matrices à diagonale propre $A=\begin{pmatrix}I_{n-2}&0&0\\0&0&1\\0&0&0\end{pmatrix}$ et $B=\begin{pmatrix}I_{n-2}&0&0\\0&1&0\\0&1&1\end{pmatrix}$ n'est pas à diagonale propre, donc \mathcal{E}_n n'est pas un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.

V. MATRICES SYMÉTRIQUES ET MATRICES ANTISYMÉTRIQUES

13. Question préliminaire

Si
$$A = (a_{ij})_{(1 \le i, j \le n)}$$
, alors $\operatorname{tr}({}^t A A) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2$.

- 14. Matrices symétriques à diagonale propre
 - (a) Si A est symétrique de spectre $Sp(A) = \{\lambda_1, ..., \lambda_n\}$, alors $Sp(A^2) = \{\lambda_1^2, ..., \lambda_n^2\}$, alors

$$\operatorname{tr}({}^{t}AA) = \operatorname{tr}(A^{2}) = \sum_{i=1}^{n} \lambda_{i}^{2}$$

d'où

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2} = \sum_{i=1}^{n} \lambda_{i}^{2}$$

(b) Si A est symétrique à diagonale propre, alors $Sp(A) = \{a_{11}, ..., a_{nn}\}$ et donc

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2} = \sum_{i=1}^{n} a_{ii}^{2}$$

d'où $a_{ij}=0$ pour $i\neq j$. On en déduit que A est une matrice diagonale et réciproquement. En conclusion, l'ensemble des matrices symétriques à diagonale propre se réduit à l'ensemble les matrices diagonales.

- 15. Matrices antisymétriques à diagonale propre
 - (a) A étant antsymétrique, donc $a_{ii}=0$ pour tout i, comme elle est à diagonale propre, alors $Sp(A)=\{0\}$, ainsi $A^n=0$ (d'après le théorème Cayly Hamilton). On a $({}^tAA)^n=(-AA)^n=(-1)^nA^{2n}=0$.
 - (b) tAA est symétrique, donc diagonalisble et puisque $({}^tAA)^n=0$, alors 0 est la seule valeur propre et donc son polynôme minimal vaut X et par conséquent ${}^tAA=0$.
 - (c) Comme ${}^tAA = 0$ alors $\operatorname{tr}({}^tAA) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 = 0$, donc $a_{ij} = 0$ pour tout couple (i, j) et par suite A = 0.

VI. Dimension maximale d'un espace vectoriel inclus dans \mathcal{E}_n

16. Question préliminaire

D'après le cours dim $A_n = \frac{n(n-1)}{2}$.

17. On a $\dim(F + \mathcal{A}_n) = \dim F + \dim \mathcal{A}_n - \dim F \cap \mathcal{A}_n$, mais d'après la question 15., $\dim(F \cap \mathcal{A}_n) = 0$, donc $\dim F \leq n^2 - \frac{n(n-1)}{2} = \frac{n(n+1)}{2}$. ($n^2 = \dim \mathcal{M}_n(\mathbb{R})$)

La réponse à cette partie de question se trouve dans la question 18., l'ensemble des matrices tria-

La réponse à cette partie de question se trouve dans la question 18., l'ensemble des matrices triagulaires supérieures, par exemple, est un sous-espace vectoriel de dimension $\frac{n(n+1)}{2}$ et inclus dans \mathcal{E}_n . Donc la dimension maximale d'un sous-espace vectoriel F de $\mathcal{M}_n(\mathbb{R})$ vérifiant $F \subset \mathcal{E}_n$ est $\frac{n(n+1)}{2}$

18. L'ensemble des matrices par blocs $\begin{pmatrix} A & B \\ 0 & T \end{pmatrix}$ avec $A \in \mathbb{R}$, $B \in \mathcal{M}_{1,n-1}(\mathbb{R})$ et T une matrice triangulaire inférieure d'ordre n-1, est un sous-espace vectoriel de dimension $\frac{n(n+1)}{2}$ et inclus dans \mathcal{E}_n .

• • • • • • • • • •

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr