Plug-and-Play Priors for Reconstruction-based Placental Image Registration (PnP-RR)

Jiarui Xing, Ulugbek Kamilov, Wenjie Wu, Yong Wang, and Miaomiao Zhang

Monitoring Pregnancy Health through Diffusionweighted MRI (DW-MRI)

Motion Correction for DW-MRI

•

Motion Correction for DW-MRI

Higher b-value -> stronger noise

Goal

 Motion Correction for placental DW-MR images containing severe noise

Goal

- Motion Correction for placental DW-MR images containing severe noise
- Develop a noise-robust registration framework

Challenges

Traditional registration methods fail due to severe noises

Challenges

- Traditional registration methods fail due to severe noises
- Explicit objective function for optimization is unclear

Outline

- Background: Image registration
- Related Work
- Proposed Method: Plug-and-play Reconstruction-registration (PnP-RR)
- Experiments and results
- Conclusion

Outline

- Background: Image registration
- Related Work
- Proposed Method: Plug-and-play Reconstruction-registration (PnP-RR)
- Experiments and results
- Conclusion

Background: Image registration

• Task: find the deformation ϕ between a source Image S and a target image T

Background: Image registration

• Task: find the deformation ϕ between a source Image S and a target image T

Outline

- Background: Image registration
- Related Work
- Proposed Method: Plug-and-play Reconstruction-registration (PnP-RR)
- Experiments and results
- Discussion and conclusion

Traditional Image Registration

→ FAIL for SEVERE NOISE-CORRUPTED images

Traditional Image Registration

• Idea: Denoising + Registration

→ FAIL for SEVERE NOISE-CORRUPTED images

Traditional Image Registration

Two-step Method: denoising before registration

Traditional Image Registration

Two-step Method: denoising before registration

Joint Optimization Method

Outline

- Background: Image registration
- Related Work
- Proposed Method: Plug-and-play Reconstruction-registration (PnP-RR)
- Experiments and results
- Conclusion

S: Source image T: Target image

 \tilde{T} : denoised target images

 ϕ : deformation

S: Source image T: Target image

 \tilde{T} : denoised target images

 ϕ : deformation

S: Source image *T*: Target image

 \tilde{T} : denoised target images

 ϕ : deformation

Advantages

Mathematical View

JOINT

denoising-registration objective function

$$\underset{\phi,\tilde{T}}{\operatorname{argmin}} \frac{1}{\sigma^{2}} \| S \circ \phi^{-1} - \tilde{T} \|_{L2}^{2} + \mathcal{R}_{\operatorname{reg}}(\phi)$$
$$+ \lambda_{1} \mathcal{R}_{\operatorname{denoising}}(\tilde{T}) + \lambda_{2} \| T - \tilde{T} \|_{L2}^{2}$$

Mathematical View

JOINT

denoising-registration objective function

$$\underset{\phi,\tilde{T}}{\operatorname{argmin}} \underbrace{\left\{ \frac{1}{\sigma^2} \left\| S \circ \phi^{-1} - \tilde{T} \right\|_{L2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi) \right\}}_{+ \underbrace{\left\{ \lambda_1 \mathcal{R}_{\operatorname{denoising}}(\tilde{T}) + \lambda_2 \left\| T - \tilde{T} \right\|_{L2}^2 \right\}}_{-} - \operatorname{Registration}$$

Mathematical View

JOINT

denoising-registration objective function

SPLIT

Formulated as proximal algorithm

$$\underset{\phi,\tilde{T}}{\operatorname{argmin}} \frac{1}{\sigma^2} \left\| S \circ \phi^{-1} - \tilde{T} \right\|_{L^2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi) \quad \operatorname{register}_{\sigma} \left(S, \tilde{T}^k \right) \to \phi^k$$

$$+\lambda_1 \mathcal{R}_{\text{denoising}}(\tilde{T}) + \lambda_2 \|T - \tilde{T}\|_{L^2}^2$$
 denoise _{τ} $(\tilde{T}^k | S, \phi^k) \to \tilde{T}^{k+1}$

$$\operatorname{register}_{\sigma}(S, \tilde{T}^k) \to \phi^k$$

denoise_{$$\tau$$} $(\tilde{T}^k|S,\phi^k) \rightarrow \tilde{T}^{k+1}$

Mathematical View

JOINT

denoising-registration objective function

SPLIT

Formulated as proximal algorithm

$$\underset{\phi,\tilde{T}}{\operatorname{argmin}} \frac{1}{\sigma^2} \left\| S \circ \phi^{-1} - \tilde{T} \right\|_{L2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi) \quad \operatorname{register}_{\sigma} \left(S, \tilde{T}^k \right) \to \phi^k \\ + \lambda_1 \mathcal{R}_{\operatorname{denoising}} \left(\tilde{T} \right) + \lambda_2 \left\| T - \tilde{T} \right\|_{L2}^2 \quad \operatorname{denoise}_{\tau} \left(\tilde{T}^k \middle| S, \phi^k \right) \to \tilde{T}^{k+1} \quad \right\} \quad \text{Iteratively repeat until convergence}$$

$$+\lambda_1 \mathcal{R}_{\text{denoising}}(\tilde{T}) + \lambda_2 \|T - \tilde{T}\|_{L^2}^2$$

register
$$_{\sigma}(S, \tilde{T}^k) \to \phi^k$$

denoise_{$$au$$} $(\tilde{T}^k | S, \phi^k) \to \tilde{T}^{k+1}$

Mathematical View

- JOINT
 denoising-re
 - denoising-registration objective function
- SPLIT

Formulated as proximal algorithm

REPLACE
 Formulated as
 PnP algorithm

$$\underset{\phi,\tilde{T}}{\operatorname{argmin}} \frac{1}{\sigma^2} \left\| S \circ \phi^{-1} - \tilde{T} \right\|_{L^2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi)$$

$$+\lambda_1 \mathcal{R}_{\text{denoising}}(\tilde{T}) + \lambda_2 \|T - \tilde{T}\|_{L^2}^2$$

 $\operatorname{register}_{\sigma}$

 $register_{\sigma}$

 \rightarrow denoise'_{τ}

Mathematical View

• JOINT

denoising-registration objective function

SPLIT

Formulated as proximal algorithm

REPLACE

Formulated as PnP algorithm

$$\underset{\phi,\tilde{T}}{\operatorname{argmin}} \frac{1}{\sigma^2} \left\| S \circ \phi^{-1} - \tilde{T} \right\|_{L^2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi)$$

 $+\lambda_1 \mathcal{R}_{\text{denoising}}(\tilde{T}) + \lambda_2 \|T - \tilde{T}\|_{L^2}^2$

 $\operatorname{register}_{\sigma}$

 $denoise_{\tau}$

Replace with arbitrary denoiser

 $\operatorname{register}_{\sigma}$

 $ilde{}$ denoise $^{\prime}_{ au}$ \Box

Iteratively repeat until convergence

Mathematical View

- JOINT
 denoising-registration
 objective function
- SPLIT

 Formulated as proximal algorithm
- REPLACE
 Formulated as
 PnP algorithm

$$\underset{\phi,\tilde{T}}{\operatorname{argmin}} \frac{1}{\sigma^2} \| S \circ \phi^{-1} - \tilde{T} \|_{L2}^2 + \mathcal{R}_{\operatorname{reg}}(\phi) \quad \operatorname{register}_{\sigma}$$

$$+ \lambda_1 \mathcal{R}_{\operatorname{denoising}}(\tilde{T}) + \lambda_2 \| T - \tilde{T} \|_{L2}^2$$

$$\operatorname{denoise}_{\tau}$$

$$\operatorname{denoise}_{\tau'}$$
 Specifying an image prior

Outline

- Background: Image registration
- Related Work
- Proposed Method: Plug-and-play Reconstruction-registration (PnP-RR)
- Experiments and results
- Conclusion

Experiments

- Data
 - 2D synthetic images

Target T

• 3D placental DW-MR images

Source S

Algorithm Setting

- Registration
 - Fourier-approximated Lie Algebras for Shooting (FLASH)[1]
- Denoising
 - Total variation (TV)^[2]
 - Total generalized variation (TGV)[3]
 - Block-matching and 3D filtering (BM3D)^[4]
 - [1] Zhang, et al., IPMI, 2017
 - [2] Rudin, Leonid I. et al., Physica D: nonlinear phenomena 60.1-4 (1992)
 - [3] Bredies et al., SIAM Journal on Imaging Sciences 3.3 (2010)
 - [4] Dabov et al. Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning. Vol. 6064. (2006) $$_{\rm 30}$$

• 2D synthetic images: Dice Evaluation

• 3D placental DW-MR images

Source S

Target T

Propagated placental segments

Outline

- Background: Image registration
- Related Work
- Proposed Method: Plug-and-play Reconstruction-registration (PnP-RR)
- Experiments and results
- Conclusion

Conclusion

• Develop a robust registration framework, PnP-RR, that corrects motion for severely noise-corrupted images

Conclusion

- Develop a robust registration framework, PnP-RR, that corrects motion for severely noise-corrupted images
- Model has more flexibility to allow arbitrary denoising algorithm integrated with the registration task

Conclusion

- Develop a robust registration framework, PnP-RR, that corrects motion for severely noise-corrupted images
- Model has more flexibility to allow arbitrary denoising algorithm integrated with the registration task
- Easy to implement and robust to parameter tuning

Paper

Slides

