THE GROWTH OF DIGITAL SUMS OF POWERS OF TWO

DAVID G RADCLIFFE

In this note, we prove that

$$\lim_{n \to \infty} s(2^n) = \infty$$

where s(n) denotes the sum of the digits of n written in base 10.

Lemma 1. Every positive integer N can be expressed in the form

$$N = \sum_{i=1}^{m} d[i] \cdot 10^{e[i]}$$

where d[i] and e[i] are integers so that $1 \le d[i] \le 9$ and

$$0 \le e[1] < e[2] < \dots < e[m]$$

Furthermore,

$$s(N) = \sum_{i=1}^{m} d[i] \ge m$$

Proof. This is simply the decimal expansion of N with zeros omitted. \square

Lemma 2. Let $2^n = A + B \cdot 10^k$ where A, B, k, n are positive integers and $A < 10^k$. Then $A \ge 2^k$.

Proof. Since $2^n > 10^k > 2^k$, it follows that n > k, so 2^k divides 2^n . But 2^k also divides 10^k , therefore 2^k divides A. But A > 0, so $A \ge 2^k$.

We use these lemmas to establish a lower bound on $s(2^n)$. Write

$$2^n = \sum_{i=1}^m d[i] \cdot 10^{e[i]}$$

so the conditions of Lemma 1 hold, and let k be an integer between 2 and m. Then $2^n=A+B\cdot 10^{e[k]}$ where

$$A = \sum_{i=1}^{k-1} d[i] \cdot 10^{e[i]}$$

Date: March 29, 2015.

and

$$B = \sum_{i=k}^{m} d[i] \cdot 10^{e[i] - e[k]}$$

Since $A < 10^{e[k]}$, Lemma 2 implies that $A \ge 2^{e[k]}$. Therefore,

$$2^{e[k]} \le A < 10^{e[k-1]+1}$$

which implies that

$$e[k] \le |(\log_2 10)(e[k-1]+1)|$$

We prove that $e[k] < 4^{k-1}$ for all k. It is clear that e[1] = 0, else 2^n would be divisible by 10. From the inequality above, we have $e[1] \le 3$, $e[2] \le 13$, $e[3] \le 46$, $e[4] \le 156$, $e[5] \le 521$, and $e[6] \le 1734$. If $k \ge 7$ then $e[k-1] \ge 5$, so

$$\begin{split} e[k] &< (\log_2 10)e[k-1] + (\log_2 10) \\ &< \frac{10}{3}e[k-1] + \frac{10}{3} \\ &\leq \frac{10}{3}e[k-1] + \frac{2}{3}e[k-1] \\ &= 4e[k-1] \end{split}$$

Therefore, $e[k] < 4^{k-1}$ for all k, by induction.

We are now able to prove the main result. Note that

$$2^n < 10^{e[m]+1} < 10^{4^{m-1}}$$

since $10^{e[m]}$ is the leading power of 10 in the decimal expansion of 2^n .

Taking logarithms gives

$$4^{m-1} > n \log_{10} 2 > n/4$$

 $m > \log_4 n$
 $s(2^n) > \log_4 n$

hence

$$\lim_{n \to \infty} s(2^n) = \infty$$