128 MiB MM i) AM cache
64 ki; B cache blk size 4 words XIT
byte addressable ii) 4 may St
1 x19nd: 32 bits Lok 2 words XB, LRU

9) Index, fag, offsets

a) molex, tag, effects b) total cache size c) ox B, ox 84, 0x AC

Cache Performance
CPU time ideal = IC + CPI ideal X CCT
CPI and = CPI what + Mem. Stalk Cycles
(enly miosey)
Read Stall Cycles = fead Mass Penalty & access than
x Read Mrss Zate X
x fead Mrss fate x x feads / program
Write Stall Cycles = -11- + Artite buffer stall cycles
Mem Stall Cycles = Mem. Acc XMR xMP
IC -> MR = 2% 36% of instr
DC -> MR = 4%
CPI ideal = 2
MP = 100 CC
a) By how much fister -> perfect memory? b) -(1- CPI ideal to 1
b) _(1- CPI ideal to 1

a) How much faster would the processor be if we added a 22 cache with access time 5 ms

MR = 0.5%

b)
$$AMAT 21, AMAT 12=2$$

HM
5.12

RISC-Y ED.

5.12 Multilevel caching is an important technique to overcome the limited amount of space that a first-level cache can provide while still maintaining its speed. Consider a processor with the following parameters:

Base CPI, No Memory Stalls	Processor Speed	Main Memory Access Time	First-Level Cache Miss Rate per Instruction***	Second-Level Cache, Direct-Mapped Speed	Miss Rate with Second- Level Cache, Direct- Mapped	Second-Level Cache, Eight-Way Set Associative Speed	Miss Rate with Second- Level Cache, Eight-Way Set Associative
1.5	2 GHz	100 ns	7%	12 cycles	3.5%	28 cycles	1.5%

^{**}First Level Cache miss rate is per instruction. Assume the total number of L1 cache misses (instruction and data combined) is equal to 7% of the number of instructions.

2 G+Hz Base CPI = 1,5 MM tac = 100 ms MM cc = 200cc L1 MR L1 = 7%

L2 DM MRL2 DM = 3.5% L2 DM +. OC = 6 ND L2 DM CC = 12 CC

L2 8-may SA MR22 854= 1.5%

L2 854 tigc = 19m1

L2 854 Cc = 28 cc

I CPI for only L1 cache

CPI_1 = CPI ideal + Mem Stall Cycles

Mem Ace /Imits x MP xMP ((c))

CPTL₁ = 1,5 + 0.07 × 200 cc = 1,5+14 - 15,5 II L2 MM CPI real = CPT real + MR 1 * MP + MR * MR = 1,5 + 0.07 × 12 + 0.035 × 200

= 1,5 + 0,84 + 7 = 9,34 $11. L_2 8 may SA$ $CPI neal = 1,5 + 0.07 \times 28 + 0.015 \times 200$ = 6,46

MM cc = 400cc

I Ly only CPI neal = 1,5+0,07 × 400 - 295 I Ly MM CPI neal = 1,5+0,07×12+ 9,075 × 400 = 16,34

TII L2 8 May SA CPIned: 1,5 + 0,07 x 28 + 0,015 x 400
= 946

5.12.2 [10] <\$5.4> It is possible to have an even greater cache hierarchy than two levels? Given the processor above with a second-level, direct-mapped cache, a designer wants to add a third-level cache that takes 50 cycles to access and will have a 13% miss rate. Would this provide better performance? In general, what are the advantages and disadvantages of adding a third-level cache?

 $C_2 DM L_3 CC = 50 MR L_3 = 13%$ $CPI_{L_3} = 1.5 + 0.07 \times 12 + 0.035 \times 50 + 0.13 \times 200$ $= 30.09 too high min note for L_3$

5.12.3 [20] <\$5.4> In older processors, such as the Intel Pentium or Alpha 21264, the second level of cache was external (located on a different chip) from the main processor and the first-level cache. While this allowed for large second-level caches, the latency to access the cache was much higher, and the bandwidth was typically lower because the second-level cache ran at a lower frequency. Assume a 512 KiB off-chip second-level cache has a miss rate of 4%. If each additional 512 KiB of cache lowered miss rates by 0.7%, and the cache had a total access time of 50 cycles, how big would the cache have to be to match the performance of the second-level direct-mapped cache listed above?

Lo site 512 kiB each additional 372 kgB MR 22 = 4% Correred muss rates by 0.7% 12 CC = 50CC match L2 AM (512 kiB, 4% MR) 1, T x 0,07 x 12+ 0,035 x 200 -9,34 CPT old = 1,5+0,07 ×50 + 0,04 × 200 ,0,04 -> 0,033 1MB L CPI: 1,5 4 0,07 x50+0,033 x 200 1.5 MB L2 , 0,04 ,0,026 CPI = 1,5 + 0,07 × 50 + 0,026 × 200 = 102 2MB L2, 9,04-3 x 2,007 = 0,019 CPI = 1,5 + 0,07 x 50 + 0,019 x 200

-> 2 MB L2 needed