Operációs rendszerek BSc

8. Gyak. 2022. 03. 31.

Készítette:

István Miklós Bsc Mérnökinformatikus VN7XCW

Miskolc, 2022

1.feladat: Adott a következő ütemezési feladat, amit a FCFS, SJF és Round Robin

(RR:10ms) ütemezési algoritmus alapján határozza meg következő **teljesítmény értékeket, metrikákat** (külön-külön táblázatba):

FCFS	P1	P2	Р3	P4
Érkezés	0	7	11	20
CPU idő	14	8	36	10
Indulás	0	14	22	58
Befejezés	14	22	58	68
Várakozás	0	7	11	38

SJF	P1	P2	Р3	P4
Érkezés	0	7	11	20
CPU idő	14	8	36	10
Indulás	0	14	32	22
Befejezés	14	22	68	32
Várakozás	0	7	21	2

RR(10ms)		'1	P2		Р	3		P4
Érkezés	0	10	7	11	32	52	62	20
CPU idő	14	4	8	36	26	16	6	10
Indulás	0	18	10	22	42	52	62	32
Befejezés	10	22	18	32	52	62	68	42
Várakozás	0	8	3	11	10	0	0	12

Külön táblázatba számolja a teljesítmény értékeket!

Algoritmus neve :	FCFS
CPU kihasználtság	99,4%
Körülfordulási idők átlaga	31
Várakozási idők átlaga	14
Válaszidők átlaga	14

Algoritmus neve :	SJF
CPU kihasználtság	99,4%
Körülfordulási idők átlaga	24,5
Várakozási idők átlaga	7,5
Válaszidők átlaga	7,5

Algoritmus neve :	RR
CPU kihasználtság	98,3%
Körülfordulási idők átlaga	28
Várakozási idők átlaga	11

Válaszidők átlaga 6,5

CPU kihasználtság: számolni kell a cs: 0,1(ms) és sch: 0,1 (ms)

2.feladat: Adott négy processz a rendszerbe, melynek a ready sorban a beérkezési sorrendje: A, B, C és D. Minden processz USER módban fut és mindegyik processz futásra kész.

Kezdetben mindegyik processz p uspri = 60.

Az A, B, C processz p_nice = 0, a D processz p_nice = 5.

Mindegyik processz p_cpu = 0, az óraütés 1 indul, a befejezés legyen 301. óraütés-ig.

- a.) Határozza meg az ütemezést RR nélkül 301 óraütésig és RR-nal
 201 óraütésig különkülön táblázatba!
- **b.**) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés *előtt/után*.
- c.) Igazolja a számítással a tanultak alapján.

A táblázat javasolt formája RR/RR nélkül a következő:

A pro	cess	B pro	cess	C pro	ocess	ss D process		Resch	edule
p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_uspri	p_uspri	p_cpu	running before	running after
60	0	60	0	60	0	60	0		
:	:		:	:	:	:	:	:	:
	p_uspri		p_uspri p_cpu p_uspri	p_uspri p_cpu p_uspri p_cpu	p_uspri p_cpu p_uspri p_cpu p_uspri	p_uspri p_cpu p_uspri p_cpu p_uspri p_uspri	p_uspri p_cpu p_uspri p_cpu p_uspri p_uspri p_uspri	p_uspri p_cpu p_uspri p_cpu p_uspri p_uspri p_uspri p_cpu	p_uspri p_cpu p_uspri p_cpu p_uspri p_uspri p_uspri p_cpu running before

Clock tick	Ap	rocess	Вр	B process		rocess	D process	
	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu
Starting po	60	0	60	0	60	0	60	0
1	60	1	60	0	60	0	60	0
99	60	99	60	0	60	0	60	0
100	71	86	50	0	50	0	60	0
101	71	86	50	1	50	0	60	0
199	71	86	50	99	50	0	60	0
200	68	73	71	86	50	0	60	0
201	68	73	71	86	50	1	60	0
299	68	73	71	86	50	99	60	0
300	66	63	68	73	71	86	60	0
301	66	63	68	73	71	86	60	1

Resch	edule
running before	running after
	Α
Α	Α
A	Α
Α	В
В	В
В	В
В	C
С	C
C	C
C	D
D	D

	A process		B process		C	C process		process	Resched ule	
Clock tick	p_us pri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	running before	running after
Starting point	60	0	60	0	60	0	60	0		A
1	60	1	60	0	60	0	60	0	A	A
10	60	10	60	0	60	0	60	0	A	В
11	60	10	60	1	60	0	60	0	В	В
20	60	10	60	10	60	0	60	0	В	C
21	60	10	60	10	60	1	60	0	c	c
30	60	10	60	10	60	10	60	0	C	D
31	60	10	60	10	60	10	60	1	D	D
40	60	10	60	10	60	10	60	10	D	A
41	60	11	60	10	60	10	60	10	A	A:
50	60	20	60	10	60	10	60	10	A	В
51	60	20	60	11	60	10	60	10	В	В
60	60	20	60	20	60	10	60	10	В	С
61	60	20	60	20	60	11	60	10	c	c c
70	60	20	60	20	60	20	60	10	С	D
71	60	20	60	20	60	20	60	11	D	D
80	60	20	60	20	60	20	60	20	D	A
81	60	21	60	20	60	20	60	20	A	A
90	60	30	60	20	60	20	60	20	A	В
91	60	30	60	21	60	20	60	20	В	В
99	60	30	60	29	60	20	60	20	В	В
100	56	26	56	26	54	17	64	17	В	С
101	56	26	56	26	54	18	64	17	С	c
102	56	26	56	26	54	19	64	17	С	c c
199	56	26	56	26	54	116	64	17	С	C
200	56	22	56	22	75	100	64	15	c	A
201	56	23	56	22	75	100	64	15	A	A
210	56	32	56	22	75	100	64	15	A	В
211	56	32	56	23	75	100	64	15	В	В

Mivel az A folyamat érkezett be elsőként, ezért ez kezd futni. A futó folyamatra minden óraütésnél p_cpu++. A 10. óraütésnél mivel van futásra kész folyamat az aktuálisan futó folyamattal azonos prioritással, ezért váltás lesz. A 10. óraütéstől a futó folyamat B lesz és így tovább.

A 100. óraütésnél a folyamatok p_cpu és p_pri értékeinek karbantartása következik. A korrekciós faktor KF=2*3/(2*3+1)=6/7=0,86, mivel három futásra kész folyamat van a rendszerben.

```
A folyamatra: p_cpu új értéke: p_cpu*KF = 30 * 0,86 = 26 p_pri=p_usrpri új értéke: 50+p_cpu/4+2*p_nice = 50+26/4+2*0 = 56 B folyamatra: p_cpu új értéke: p_cpu*KF = 30 * 0,86 = 26 p_pri=p_usrpri új értéke: 50+p_cpu/4+2*p_nice = 50+26/4+2*0 = 56 C folyamatra: p_cpu új értéke: p_cpu*KF = 20 * 0,86 = 17 p_pri=p_usrpri új értéke: 50+p_cpu/4+2*p_nice =
```

50+17/4+2*5 = 54 D folyamatra: p cpu új értéke:

p cpu*KF = 20 * 0.86 = 17 p pri=p usrpri új értéke:

50+p_cpu/4+2*p_nice = 50+17/4+2*5 = 64 A C folyamat a legmagasabb prioritású, így az fog futni.