Microstructure & Mechanical Properties of Direct Metal Laser Sintered (DMLS) CoCrMo in the As-Printed and Heat Treated Condition

Nidhish Sagar, Anigani Sudarshan Reddy*, Dheepa Srinivasan*

Undergraduate (Materials) at IISc

*INTECH DMLS PVT LTD.
India's 1st service provider of 3D printing

July 13th 2018

May 14th 2018 – July 14th 2018

ACKNOWLEDGEMENTS

INTECH DMLS PVT LTD
Sridhar Balaram
Naniah M A
Raghunandan M
Chidanand Hiremath
Rekha Rs
Production Team INTECH-DMLS

Indian Institute of Science (IISc)				
Prof Suryasarathi Bose	Project Faculty			
Krishnamurthy A	XRD			
Esakkiraja R N	Furnace			
Pooja S G	SEM			
Shailendra Verma	SEM, XRD			
M A Wadood, Sarthak Jadhav, Shirin P	Co-Interns			
Shashidhara S	Tensile Tests			
Sandeep, Ananth Prof. A S ShetraBalan	AIMIL (Particle Size Distribution) VIT (Surface Roughness)			

Background on Additive Manufacturing

Additive Manufacturing technology is seen as an emerging technology for repair as well as new make (near net shape) applications. The advantages of the process are in being able to result in near net shape, complex parts, with weight savings

Additive Manufacturing Applications

Aerospace

Healthcare

Automotive Parts

Background – CoCrMo

Cobalt-base alloys are generally described as non magnetic, wear, ${\bf CoCrMo}$ corrosion and heat-resistant (high strength even at elevated temperature). Many properties of the alloy originate from the 1) crystallographic nature of cobalt, the solid-solution-strengthening 2) effect of chromium and molybdenum, the formation of extremely hard carbides and the corrosion resistance imparted by chromium.

Due to its excellent resistance to degradation in the oral 4) environment, the first medical use of cobalt-base alloys was in the cast of dental implants. Today, the use of Co alloys for surgical applications is mainly related to orthopaedic prostheses for the knee, shoulder and hip as well as to fracture fixation devices. Joint endoprostheses are typical long-term implants and the applied implant material must therefore meet extremely high requirements with regard to biocompatibility with the surrounding body tissue material and corrosion resistance to body fluids.

Objective – Characterization of DMLS CoCrMo

- To optimize parameters for dense part in the As-Printed sample without any Hot Isostatic Pressing (HIPing).
- To characterize DMLS CoCrMo (Cobalt-Chromium-Molybdenum) and evaluate its suitability for orthopaedic implant materials.

Properties of

- **High Strength**
- **High Fatigue** Resistance
- **Biocompatibility 3**)
- **High Resistance** to Wear and Corrosion.

The objective of this analysis is characterize Direct Metal Laser Sintered CoCrMo in the as printed and heat treated condition, for Praxair (powder and bulk)

- **Roughness** a.
- **Hardness** b.
- Microstructure (porosity, particle size analysis, chemistry and phases)
- X-ray diffraction (phase analysis)
- **Tensile strength (Room Temperature)** small scale testing

in order to serve as a baseline for building various products

AM Fuel Nozzle used in General Electric's LEAP **Jet Aircraft engine.** One of the greatest inventions of additive manufacturing. (Source: General Electric Company, All rights reserved)

Characterization DOE

Particle Size •Malvern 3000; Dry Method; **Analyser** Size Range (10nm to 3.5mm) Mahr MarSurf GD 120; Surface Measuring Speed: 0.1mm/s Roughness • Traversing Length: 1.75mm •Zeiss Axiocam HRc with Microstructure Axiovision & ImageJ software Microhardness •Future Tech FM 800 Tester Load=300gf; Vickers Method •FEI Quanta200 **SEM** •ThermoFisher EDS Xpert PRO PANAnalytica Cu K_a $\lambda = 1.54 \text{ Å}$; Angle X-Ray Range (20-100) deg, Step Diffraction Size: 0.033, Step Time: 118.5 seconds • Instron 5987, 2 KN, Strain Tensile Strength Rate: 0.006mm/s; Heat Delta Power Tools High treatment Temperature Tubular Furnace

Etchant for CoCrMo As-Printed/HeatTreated Electrolytic etching with 5% HCl at 6V

Nominal Composition of CoCrMo (wt%) from EOS Data Sheet

Element	Со	Cr	Мо	Mn	Si	Fe	С	Ni
Percentage	60-65	26-30	5 to 7	<1	<1	<0.75	<0.16	<0.1

Process Parameters for DMLS sample	May not be accurate
Laser Power	290W
Beam Diameter	80µm
Layer Thickness	40μm
Hatch Distance	110μm
Scan Speed	950mm/s
Powder Size	35µm

Legend: Cube

1 Top surface (where name/code is)
2 Transverse surface used
4- Side surface (Any side can be Longitudinal)

Heat Treatment Process

GaugeLength:6mm
Thickness: 0.5mm

StrainRate: 0.006 mm/s

Powder Analysis

Particle Size Distribution

Particle	Avg.Size
Range	μm
Dv10	21.32
Dv50	32.96
Dv90	50.81

Energy Dispersive Spectroscopy (EDS)

Composition of CoCrMo (wt%)

Со	66.74
Cr	28.91
Мо	4.14
Mn	0
Si	0.21

Average Particle Size was found to be approx : 33 μm

Surface Roughness

Glass bead blasting conditions

Pressure	7.5 bar
Time	5min
Distance bw gun & workpiece	Average 155mm
Angle bw gun and workpiece	45 deg

Glass bead Blaster

$$R_{\mathrm{a}} = rac{1}{n} \sum_{i=1}^{n} |y_i|$$

As-Printed

Grit Blasted

Comparison Graph Ra (μm)

Roughness decreases by almost 60% upon glass bead blasting in both Transverse and Longitudinal directions

Porosity Optical Images

% Porosity:

The porosity of the As-Printed sample

As-Printed: 0.06 %

Heat Treated: 0.188%

Porosity increases upon Heat

Treatment

Optical Microstructure

Transverse

Longitudinal

Average width: 76.32 microns Angle between layers of 3D printed sample as measured was: 67.3 degrees

Average Diameter: 114.7 microns Average Depth: 69.5 microns

Heat Treated

Average grain size (approx. diameter equals 40-45 μm)

Transverse

Longitudinal

Scanning Electron Microscope Images (Microstructure)

X-Ray Diffraction

Parameter	Values
Starting angle (deg)	20
Finishing angle (deg)	100
Wavelength (Å) Cu K alpha	1.54
Voltage(KV)	40
Current (mA)	30
Step size(deg)	0.003

Intensity (arbitrary units)

As-Printed has HCP and FCC phases

Heat Treated majorly has FCC phases

Referring to close matches in

- 1) ICDD 00-005-726 for ASP and HT
- 2) ICDD 00-015-0806 for powder

The peaks are matched for γFCC and εHCP phases of cobalt.

Hardness Measurements

Hardness decreases upon Heat Treatment due to formation of equiaxed structure upon recrystallisation. The residual stress gets relieved upon heat crystallisation.

Tensile Testing- Room Temperature- Small scale test

Load v/s Displacement As Printed and Heat Treated CoCrMo plot

As Printed Extension: 1.9mm

Heat Treated Extension: 2.3mm

The As-Printed sample has higher 0.2% yield strength than Heat Treated sample (difference >200MPa) The small scale tensile test results match with EOS regular size sample standards.

%Elongation: As-Printed= 38% and Heat Treated=42%

Fractographs

As-Printed

Heat Treated

Some lamellar tearing can be seen in the as printed fractographs, corroborating with the presence of the hcp-beta phase in the as printed microstructure. In some sense it appears like a cleavage fracture in appearance characterized by a well defined crystallographic appearance in the facets. Upon heat treatment the occurrence of an equiaxed recrystallized microstructure renders the alloy with a ductile matrix as indicative of the heat treated fractographs, corresponding to a much higher ductility of 42%.

EDS Summary

Weight %			Sample Type			
Elements	Powder	AsP	rinted	Heat Treat		Nominal Composition
		Transverse	Longitudinal	Transverse	Longitudinal	
Cobalt	66.74	64.21	64.23	65.74	66.1	62-66%
Chromium	28.91	28.67	28.1	29.42	28.86	27-30%
Molybdenum	4.14	6.8	6.96	4.6	4.21	5-7%
Silicon	0.21	0	0.55	0.25	0.35	<1%
Manganese	0	0.15	0.16	0	0.49	<1%
Iron		0.17				<0.75%
Carbon						<0.35%
Nickel						<0.5%

As-Printed

Base(1)_pt1 Full scale counts: 1626 Cursor: 4.500 keV Integral Counts: 98308 37 Counts 2000 -1500 · 1000 Co Fe 500 Ni Fe Mn Ni

Heat Treated

Executive Summary

Attribute	Overall	As-Printed (μm)	Heat Treated (µm)
Powder Particle size	33µm		
Surface Roughness (As-Printed)	6.7	6.7	
Surface Roughness (Glass Blasted)	3		
Porosity		0.06%	0.19%
Weld Pool: Avg. width	76.3μm		
Angle bw layers	67.3 deg		
Weld Bead: Avg. Diameter	114.7μm		
Weld Bead: Avg. Depth	69.5μm		
XRD		εHCP & γ FCC phase	γ FCC phase
Hardness		405 HV	348 HV
% Elongation		38%	42%

References:

- 1) http://www.georgevandervoort.com/metallography/
- 2) https://www.finishing.com/
- 3) www.metallographic.com/Etchants/Etchants.htm
- 4) https://www.cartech.com/
- 5) 'Microstructural Evolution and Mechanical Properties of Direct Metal Laser-Sintered (DMLS) CoCrMo After Heat Treatment 'Bawane et.al Metallurgical and Materials Transactions A, 2018;
 DOI 10.1007/s11661-018-4771-4
- 6) 'Study of Process Parameter and Powder Variability on the Properties and Recrystallization
 Behavior of Direct Metal Laser Sintered CoCrMo' Santhosh Kumar Rao Chandrasekara, Anigani Sudarshan Reddy,
 Dheepa Srinivasan, Durga Ananthanarayanan; Proceedings of the ASME 2017 Gas Turbine India Conference

