Lösungshinweise zur 4. Hausaufgabe

Differential- und Integralrechnung für Informatiker

(H7)

a) Die Formel für die Summe der geometrischen Reihe anwendend, erhält man

$$\sum_{n=0}^{\infty} \frac{(-2)^n}{3^{n+1}} = \frac{1}{3} \sum_{n=0}^{\infty} \left(-\frac{2}{3} \right)^n = \frac{1}{3} \cdot \frac{1}{1 - \left(-\frac{2}{3} \right)} = \frac{1}{5}.$$

- b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \infty$, da verallgemeinerte harmonische Reihe mit $\alpha := \frac{1}{2} \le 1$.
- c) Die folgenden Gleichheiten gelten für alle $n \geq 2$

$$\frac{3n^2 + 3n + 1}{n^3(n+1)^3} = \frac{1}{n^3} - \frac{1}{(n+1)^3}.$$

Sei $a_n := \frac{1}{n^3}$ für $n \ge 2$. Die Formel für die Summe einer Teleskopreihe anwendend, erhält man

$$\sum_{n=2}^{\infty} \frac{3n^2 + 3n + 1}{n^3(n+1)^3} = \sum_{n=2}^{\infty} (a_n - a_{n+1}) = a_2 - \lim_{n \to \infty} a_n = \frac{1}{8}.$$

d) Die folgenden Gleichheiten gelten für alle $n \geq 1$

$$\frac{1}{(5n+1)(5n+6)} = \frac{1}{5(5n+1)} - \frac{1}{5(5n+6)}.$$

Sei $a_n := \frac{1}{5(5n+1)}$ für $n \ge 1$. Ist $n \ge 1$, dann ist $a_{n+1} = \frac{1}{5(5(n+1)+1)} = \frac{1}{5(5n+6)}$. Die Formel für die Summe einer Teleskopreihe anwendend, erhält man

$$\sum_{n=1}^{\infty} \frac{1}{(5n+1)(5n+6)} = \sum_{n=1}^{\infty} (a_n - a_{n+1}) = a_1 - \lim_{n \to \infty} a_n = \frac{1}{30}.$$

e) Aus

$$\sum_{n=0}^{\infty} \frac{(-3)^{n+1}}{5^{n+2}} = \sum_{n=0}^{\infty} \frac{(-3)}{5^2} \frac{(-3)^n}{5^n} = -\frac{3}{25} \sum_{n=0}^{\infty} \left(-\frac{3}{5} \right)^n = -\frac{3}{25} \cdot \frac{1}{1 - \left(-\frac{3}{5} \right)} = -\frac{3}{40}$$

und

$$\sum_{n=0}^{\infty} \frac{5}{(n+2)!} = 5\sum_{k=2}^{\infty} \frac{1}{k!} = 5\left(\sum_{k=0}^{\infty} \frac{1}{k!} - \frac{1}{0!} - \frac{1}{1!}\right) = 5e - 10$$

folgt, die Rechenregeln für konvergente Reihen anwendend, dass

$$\sum_{n=0}^{\infty} \left(\frac{(-3)^{n+1}}{5^{n+2}} - \frac{5}{(n+2)!} \right) = -\frac{3}{40} - 5e + 10 = \frac{397}{40} - 5e$$

ist.