FIRST SEMESTER 2020-2021

Course Handout Part II

Date: 17-08-2020

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : INSTR F343

Course Title : Industrial Instrumentation & Control

Instructor-in-charge : Balasubramanian M Instructor : Balasubramanian M

1. Scope and Objective of the course

This course offers study of various aspects of automatic control for industrial processes, including some recent developments in the field of process control.

2. **Course Description:**

Introduction to process control; Elements of process loop; Controller principle; Hydraulic, pneumatic, electronic controllers; Controller tuning; Final control elements; Control loop characteristics; Complex control systems; Intelligent controllers; Programmable logic controllers; Distributed control systems; Digital control principles;

3. **Text Book:**

Surekha Bhanot, *Process Control: Principles and Applications*, Oxford University press, Fourth Impression 2010

4. **Reference Book**:

R1 C.D. Johnson, *Process Control Instrumentation Technology*, Prentice Hall of India, New Delhi, 1993

R2 Liptak B.G., *Process Control: Instrument Engineer's handbook*, Butterworth Heinemann

R3 Krishan Kant, *Computer Based Industrial Control*, Prentice Hall of India, New Delhi, 1997

R4 Stephanopoulos George, *Chemical Process Control*, Prentice Hall of India R5 Ogata K., *Modern Control Engineering*, Pearson Education Asia

5. Course plan

Lecture No.	Learning Objective	Topics to be covered	Chapter in the Text Book
1,2	To appreciate the needs,	Basic Control loop,	T-CH1
	objectives of process control	variables, requirements,	R4(1.9)

		nime parameters	
		aims, parameters, dynamics of the process	
3	To understand the dynamics of	Terms, concepts used in	T-CH2
	processes	process dynamics	1-0112
4	To understand/review the	Transfer functions, block	R5-CH4
_	concepts of Transfer function	diagram and signal flow	IND CITY
	concepts of Transfer function	representation	
5	To understand need and	Model of lumped and	T-CH2, R3 –
	concept of mathematical	distributed parameter	CH11, R5-
	modeling	systems	CH2,3&4
			,
6,7	To understand steady state and	Transient and steady state	R5-CH5
	transient analysis	analysis of first order,	
		second order and higher	
		order systems and	
		numerical to highlight	
		concepts	
8	To understand different	On-off, on-off with neutral	T-CH3,
	controller modes	zone	R4(9), R3 –
0.10			CH1
9,10	To understand different	Proportional, Integral,	T-CH3, R4(9),
44.40	controller modes	derivative, PI, PD, PID	R3 – CH1
11,12	To learn dynamic behavior of	Effect on dynamic	T-CH4,
	feedback controlled systems	behavior of process with	R4(14)
		different controller modes	
13	To learn about controller tuning	in closed loop with Ziegler, Cohen-Coon,	T-CH4, R4
13	To learn about controller tulling	Integral performance	1-C114, K4
14	To learn about DDC loop	Sampling and	T-CH5
14	To learn about DDC loop	reconstruction, DDC	1 CHS
		structure, position &	
		velocity algorithm	
15	To realize controller modes in	Controller modes in	T-CH6, R5
	pneumatic controllers	Pneumatic controllers	(4.3)
16	To realize controller modes in	Controller modes in	T-CH6, R5
	hydraulic controllers	Hydraulic controllers	(4.4)
17	To realize controller modes in	Controller modes in	T- CH7,
	electronic controllers	Electronic controllers	R1(10.3)
18,19	To learn the evolution,	PLC vs relay Logic, PLC	T-CH13,
	hardware of Programmable	vs PCs, hardware	R3(5),R2
	Logic Controllers	components	
20,21	To learn ladder diagram	Ladder diagram, selection	T-CH13,
	programming	of PLCs	R3(5),R2
22	To learn application of AI	Role of AI	T-CH14,
	techniques in process control		R3(13),R2
23,24	To learn ES structure &	ES structure, Design &	T-CH15,
DE 26	Application	Applications	R3(13)
25,26	To ANN concepts	Neural networks –	T-CH16,
		structure, applications	R3(18), R2

27,28	Learning algorithms	g algorithms BPA, learning	
29	Case studies	Examples, Matlab simulation	T-CH16
30,31	To learn concept & applications of FLC	Fuzzy controllers	T-CH17, R3(13),R2
32	To learn about different final control elements	Functions of control valves, Types of control valves, actuators	T-CH8, R3 – CH4
33	To understand P&I diagrams	Draw P&I diagrams	T-CH9
34,35	To understand complex control	Cascade control, Ratio	T-CH10,
	schemes	control,	R4(20, 21)
36	To understand complex control schemes	Feedforward, Adaptive control, Inferential, Model reference adaptive control, Self tuning regulator	T-CH10, R4 (21)
37-38	To understand complex control schemes	Override, Auctioneering, Split Range	T1-CH11, R4(22)
39-40	To understand interaction and decoupling of control loops	Design of cross controllers and selection of loops using RGA	T-CH12, R4(24)
41-42	To understand distributed digital control systems	History, functional requirements, system architecture, configuration	T-CH18, R3(6),R2

6. Evaluation Scheme

Components	Duration	Weightage	Marks	Date & Time	Nature of
					Component
Test-1	30 min	10%	10	September 10 – September 20 (During scheduled class hour)	
Test-2	30 min	15%	15	October 09 – October 20 (During scheduled class hour)	Open Book
Test-3	30 min	15%	15	November 10 – November 20 (During scheduled class hour)	
Term Paper / Assignments	-	30%	30	Take Home	
Comprehensive	120 min	30%	30	TBA	
Total		100%	100		

- 7. **Chamber Consultation Hour** : To be announced in the class.
- 8. **Course Notices:** Notices will be displayed in CMS.

- 9. **Make-up Examination**: Make-up will be given on *extremely genuine* grounds only for those receiving prior approval.
- 10. **Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge INSTR F343