

ArcGIS与Python在国土"双评价"中的应用简析

内容提要

- 国土双评价计算模型综述
- 空间数据处理与中间数据的计算
- ArcGIS Python脚本在建模与分析中的应用
- 构建复杂模型计算方式
- 案例:水土保持功能重要性评价模型建模及计算

双评价计算模型综述

双评价模型分类

单项评价

- 生态
- 土地资源
- 水资源
- 气候
- 环境
- ・灾害
- 区位
- • • • •

集成评价

- 优先识别生态系 统服务功能极重 要和生态极敏感 空间
- 基于一定经济技术水平和生产生活方式,确定农业生产适宜性和承载规模、城镇建设适宜性和承载规模

综合评价

- 资源环境禀赋分析
- 问题和风险识别
- ・潜力分析
- 情景分析

技术体系

评价模型技术路线

元数据、信息管理与版本

成果: 图件、数据与报告

模型的构建与计算

数据的获取与处理

数据的获取与处理

模型的构建与计算

- ◆ 双评价的计算模型有如下特点:
 - 单个指标的计算模型仅进行对象本身的属性计算。
 - 多个指标的叠加计算只有数学性质的 计算,很少有逻辑判定计算。
 - 所有的分析模型都属于向下钻取获取 更深入的信息,极少有向上抽象获取 模式类信息。

成果: 图件、数据与报告

评价报告

- 对双评价技术路线、评价过程、评价结果的系统表述
- 说明评价的主要步骤和关键技术,重点阐述评价形成的核心结论与基本判断

图件

- 评价图件是用图纸形式表达双评价的主要内容结果
- 包括概貌与基础图、现状分析图、评价成果图等系列。

数据表格

- 评价数据表是用表格形式表达双评价主要结果
- 对重要参数、指标值、阈值等在地域功能和行政区划单元下进行分解细化

信息管理

栅格数据

表格数据

矢量数据

文档数据

检索

存储

还原

地形数据

统计数据

模型数据

图片数据

空间数据处理与中间数据的计算

善用工具

- 数据提取
- 数据合并
- 属性处理
- 叠加分析
- 临域分析
-

矢量数据 处理

- 栅格提取
- 表面分析
- 地图(栅格)计算
- 表面插值
-

栅格数据 处理

数据处理的主要方法

空间未知数据 的补全

- •空间插值
- 回归(地理)加权回归)
- • • • •

时间间隔缺失 数据的补全

- 时间拟合插值
- 统计法补全
- • • • •

基础数据的模型推演

- 数学计算
- 数据组合
- • • • •

中间数据计算原则

- ① 模型代码编写简单,不需要复杂逻辑代码
- ② 模型和结果都能进行人工阅读与检查
- ③ 结果数据可以随时查阅,不需要专门 工具访问
- ④ 结果数据的格式可以转换为其他格式, 方便各种工具调用
- ⑤ 结果数据可以与其他空间数据或者数据数据进行关联挂接。
- ⑥ 模型与结果数据都有清晰的元数据描 述以及信息化表达,可以进行快速检 索与访问。
- ⑦ 所有的模型和数据,均可以回溯到原始状态,方便追踪。

易实现

易阅读

易访问

易转换

易关联

易管理

易回溯

ArcGIS Python脚本 在建模与分析中的应用

ArcGIS平台里面的Python

ArcGIS 平台中的Python

ArcPy概览

包含ArcPy的产品

ArcGIS for Desktop

- Python 2.7. x
- 原装32位 (BG 64位)

ArcGIS Engine

- Python 2.7. x
- 原装32位(BG64位)

ArcGIS Server

- Python 2.7.x (最新3.x)
- 64位

ArcGIS Pro

- Python 3.6. x
- 64位

ArcPy的功能

地理数据分析

数据转换

数据管理

地图自动化

Arcpy中的空间数据结构

矢量数据的组成

空间数据 部分 Geometry

属性数据 部分 Attribute

- 在物理上存储 为二进制类型 的字段
- 在ArcGIS里面, 字段类型为 Shape

- 在物理上存储 为属性值相关 类型的字段
- 在ArcGIS里面, 字段类型主要 有数值、文本、 二进制、日期 等

• 空间数据和属性数据的组合,称之为要素

ArcPy的数据游标: 啥叫游标

通过一个 指针来对这些 数据进行访问

件

	370000	证使	4894.25104	4576.04896	9470.3	9248	9079	8883	8705	8439.2827	
	410000	河南	5910	3577	9487	9380	9256	9387	9100	8550.9535	
	320000	125	3429.9	4295.1	7725	7475	7438	7213	7066	6705.6519	
	340000	会収	3549,849	2581.151	6131	6120	5986	6237	6013	5618.0813	
П	42000	類北	3088.8	2631.2	5720	5710	6028	5938	5772	5396.921	
	330/		2180.78	2999.22	5180	4898	4677	4475	4319	4144,593	
	5	1 4	*18.352232	1913.805868	4432.1581	4311	4140	4231	4063	3771.0281	
		护	3	2767,392	6406	6326	6440	6532	6392	6065.9754	
	I Et	7/2	ベクャ	*4.14	4571	4450	4288	4192	3990	3697.261	
	*	巡回.	in th	7							
74	※1	# 7	这个指								
		で用		7							

游标的特性

ArcPy的游标类型

查询游标

更新游标

插入游标

删除游标

ArcPy的数据查询

传统游标模式传统数据库思维

• 优点: 动态、全操作

• 缺点: 性能差、系统开销大

令牌模式 (arcpy. da包10.1之后)

• 优点: 高性能; 支持编辑控制、版本、副本、子类型等ArcGIS编辑特性。

• 缺点: 需要预先声明操作内容。

ArcGIS E

传统查询游标

定义:

```
cursor = arcpy. SearchCursor(要素类)
```

- 使用方式一: 使用for模式 for row in cursor: print(row.getValue(字段))
- 使用方式二: 使用while模式

```
row = cursor.next()
while row:
    print(row.getValue(字段))
    row = cursor.next()
```

- SearchCursor 函数用 于在要素类或表上建 立只读游标。
- SearchCursor 可用于 遍历行对象并提取字 段值。可以使用 where 子句或字段限 制搜索,并对结果排 序。

令牌查询模式

ArcGIS 10.1之后特有的da (data access) 包。

定义:

cursor = arcpy.da.SearchCursor(要素, [字段1,字段2,字段n]):

使用方式:

for row in cursor:

print(row[1],row[2],row[n])

- da. SearchCursor 用于建立从要素类或表中返回的记录的只读访问权限。
- 返回一组迭代的元组。元组中值的顺序与字段名列表参数指定的字段顺序相符。

官方建议使用: with ···· as ···· 模式来使用

属性条件设定

- 在语法里面称为:where_clause(条件分句、条件表达式)
- 使用的是SQL语句里面的where子句语法的子集。
- 一般形式:

〈字段名〉〈运算符〉〈值或字符串〉

或者:

〈字段名〉〈运算符〉〈值或字符串〉

〈连接符〉

〈字段名〉〈运算符〉〈值或字符串〉...

- 示例:
 - -单字段查询: 查询所有09人口大于5000万的省份
 - -组合查询: 09年人口大于5000万且GDP大于2万亿的省份

新增游标InsertCursor: 令牌模式

定义

cursor = arcpy.da. InsertCursor(要素类,[字段1,字段2...字段n])

• 使用:

row = 字段1的新值1,字段2的新值2...字段n的新值n

cursor.insertRow(row)

采用元红的方式 来定义一个新的 要素记录

把新值插入到表中

更新游标UpdateCursor: 令牌模式

定义:

cursor = arcpy.da. UpdateCursor(要素类,[字段1,字段2...字段n])

使用:

row = 字段1的新值1,字段2的新值2...字段n的新值n

cursor. updateRow(row).

采用元组的方式 来定义一个新的 要素记录

把新值更新到表中

删除:

cursor.deleteRow ()

把游标所指向的数 据删除掉

arcpy的空间数据结构

Geometry

- · 所有几何对象的基类。
 - 支持所有几何信息的处理方法。
 - 支持在内存中生成、处理。
 - 支持持久化。

Geometry

几何 信息

几何 计算

海性 处理 数据 labelPoint
partCount

pointCount

spatialReference

isMultipart

hullRectangle

lastPoint

firstPoint

trueCentroid

Extent

Centroid

type

length3D

Length

Area

WKT

WKB

JSON

Geometry

Geometry对象支持OGC的矢量操作,包括但不限于:

	equals
	disjoint
	touches
→	crosses
	within
	contains
	overlaps

栅格数据的存储结构

- 栅格数据就是将空间分割成有规律的网格,每一个网格称为一个单元,并在各单元上赋予相应的属性值来表示实体的一种数据形式。每一个单元(像素)的位置由它的行列号定义,所表示的实体位置隐含在栅格行列位置中
 - Cell

栅格数据的表现结构

2	1	4	4	4	1	l
2	2	1	5	5	1	值为 1 的区域
2	2	1	5	5	1	值为 2 的区域
1	2	4	1	2	1	值为 3 的区域
3	3	3	1	2	1	值为 4 的区域
1	1	3	4	4	4	值为 5 的区域

Arcpy处理栅格数据的方法

- RasterToNumPyArray
 - 将栅格数据转换为numpy数组
- NumPyArrayToRaster
 - 将numpy数组转换为栅格数据

2	1	4	4	4	1	RasterToNumPyArray			(=) =/
2	2	1	5	5	1		Ш	arr[2] arr[2, :]	(3,) (3,)
2	2	1	5	5	1			arr[2:, :]	(1, 3)
1	2	4	1	2	1			arr[:, :2]	(3, 2)
3	3	3	1	2	1				
1	1	3	4	4	4	` NumPyArrayToRaster		arr[1, :2]	(2,)
								arr[1:2, :2]	(1, 2)

arcpy栅格处理的核心参数

构建复杂模型计算方式

高性能数据计算NumPy

- NumPy(numerical python)是高性能科学计算和数据分析的基础包。部分功能如下:
 - ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的 多维数组。
 - 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。
 - 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。
 - 线性代数、随机数生成以及傅里叶变换功能。
 - 用于集成C、C++、Fortran等语言编写的代码的工具。

数学工具包scipy

• Scipy是一个用于数学、科学、工程领域的常用软件包,可以处理插值、积分、优化、图像处理、常微分方程数值解的求解、信号处理等问题。它用于有效计算Numpy矩阵,使Numpy和Scipy协同工作,高效解决问题。

强大数据处理包Pandas

- Pandas: (Python Data Analysis Library) Python数据分析库是一个开源的高性能Python数据结构和数据分析工具库,其主要是基于numpy来实现。
- 特点如下:
 - 在数据结构上采用向量和数据框进行结构化,保证效率。
 - 大部分Python的可视化工具包和数据分析工具包,都基于Pandas的数据结构,可以直接调用。
 - 大量的内嵌函数可以很方便的实现聚合、分组、追加、索引、透视图等操作。
 - 与R语言的data frame可以无缝转换。

ArcGIS数据与Python数据的转换

Sqlite3

- SQLite 是一个软件库,实现了自给自足的、无服务器的、零配置的、事务性的 SQL 数据库引擎。SQLite 是在世界上最广泛部署的 SQL 数据库引擎。SQLite 源代码不受版权限制。
- Sqlite3是Python对Sqlite数据的集成,在当前所有Python发 行版中,均默认内置了该模块
- Sqlite3支持内存和硬盘两种模式,兼顾快速处理和持久化的能力。
- 拥有完整的SQL能力。

ArcGIS 地图代数

- 地图代数是一种简单而强大的代数语言,利用它可以操作所有 Spatial Analyst 工具、运算符及函数以执行各种地理分析。
- 地图代数可通过 Spatial Analyst 模块获得
- 地图代为 ArcPy Python 站点包的扩展模块。
- 由于地图代数已集成到 Python 中,因此, Python 和 ArcPy 的所有功能及 其扩展(模块、类、函数和属性)均可供使用。

ArcGIS 栅格计算器

 栅格计算器工具不适合用于脚本环境中,而且不能在标准的 Spatial Analyst ArcPy 模块中使用。

案例:水土保持功能重要性评价模型建模及计算

计算流程

数据处 理

- 数据承载模板
- 统一投影
- 统一结构

单项建 模

- 降雨侵蚀力因子R 建模计算
- 土壤可蚀性因子K 建模计算

综合计 算

- 统一数据结构
- •综合计算
- •结果成图

数据处理

- 统一所有矢量数据的承载模板
 - ▶ 矢量数据很多情况下,在空间上是一致的,只是需要调用不同的属性数据,所以统一一份空间数据数据,作为所有需要迭代计算的属性数据的基础数据。

统一投影

最后所有数据需要合并计算,所以最好是统一投影,防止后期的错误。统一投影包括统一矢量数据和栅格数据的投影。

统—结构

▶ 用于计算的属性数据,需要统一结构,如字段名、字段类型等,便于编码和批处理。

单项建模

读懂公式,完 成简要手算

数据输出。

检查关键步骤, 验算结论。

选定编码方法, 编程开发 读懂迭代模型, 编写核心流程。 空间与属性数 据挂接生成数 据

公式分解,计 算关键变量。

关键计算步骤 封装成核心计 算方法。

单项结果成图。

综合计算

统一数据格式:

优先转换为栅格结构的数据

优先转换为粗粒度的cellsize

栅格计算

优先使用栅格计算工具

也可以编码实现

导出数据

选择导出的栅格格式

归档并记录元数据

插播广告

所有的PPT、数据、文章、代码.....均可以通过此公众号获取。

公众号:

虾神daxialu

THE SCIENCE OF WHERE

