Nov 20, 2023					
	$P = \{P_{\theta}, \theta \in \mathcal{H}\}$				
	$x \sim l_0$, $l_0 \in P$				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
	x VEO, 13 five new to nake a decision if no gets napped to 0 or 13 If $x \in X$ $S: X \mapsto \{0, 1\}$				
	we ned to commit to S ex-ank. If we observe				
	some value of x, it gets mapped to what.				
	some value of x, it gets mapped to what. (fre-commit to decision)				
	1- regular decision				
	0 - acceptance / non - réjection				
۴	Propability of making the sciention decision:				
	Probability of making the rejection decision. (as a function of B)				
_					
POW TR	$\beta(0) = P_0(S(x) = 1)$ is the power function of the test $S(\cdot)$				
	(Rule that its optimal for some Os would not be for others.)				
	The size of test $S(\cdot)$ is $\sup_{\theta \in \mathfrak{P}_0} \{S(X) = 1\}$				
The worst case value of					
	(Probability of incoverely rejecting the null hypothesis if I it is me.)				

	The significance level of test $S(\cdot)$ is $\alpha \in [0,1]s.t.$ $\int_{0}^{1} (S(x) = 1) \leq \alpha + \theta \in \mathbb{H}_{0}$			
*	sup inf I	$\int_{0}^{\infty} \left(\xi(x) = 1 \right)$	lab	d them as bend) her they are bend)
Optimienter problem	lare d	= 1) < L Mis Cempred	Constrain	t so that bad but not all coo bad too)
	-> Pstring	pation 1	Joblen	· WLOY p, > Po
	$\frac{S_1(\alpha)}{S_1(\alpha)} = X$ $\frac{S_1(\alpha)}{S_1(\alpha)} = I$ $\frac{S_1(\alpha)}{S_1(\alpha)} = I$	%	<i>-</i> v	
	Decision Inle 1 2 3 4		ρ(ρ') 	
				J

*	If $\alpha < \min\{\rho_0, 1-\rho_0\}$ the optimum is a unique decrimant of the standard s
Stichestic Toot:	Define the problem differently (moving away from ML) Binary classifier -> distribution over a classifier
	Stochestic Fest: p(x): X \rightarrow [0,1] · Incorporation pre deterministre cause we saw & much nose. · More bright in discrebe settings · In continuous settings (when or are continuous) & deterministre tests would better.
*	Power Function of atrichastic test: $\beta(\theta) = \xi_{\theta}[\phi(x)]$ $\sup_{\theta \in \mathcal{H}_{\lambda}} \beta_{\phi}(\theta)$ $s.t. \beta_{\theta}(\theta) \leq x, \theta \in \mathcal{H}_{\theta}$ $\widehat{\mathcal{H}}_{\theta} = \xi_{\theta} \xi_{\theta}, \widehat{\mathcal{H}}_{\lambda} = \xi_{\theta} \xi_{\theta}$ $\beta(0), \beta(1)$

