COMP251: Amortized Analysis

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2009)

$$T(n) = 2 \cdot T\left(\frac{n}{5}\right) + n^3$$

What is the height of the recursion tree?

- $\log_3 n$ X
- log₅ n ✓
 log₂ n ✗


```
log_3(n) 4 36.4%
log_5 (n) 7
             63.6%
log_2 ( n ) 0
               0%
```

$$T(n) = 3 \cdot T\left(\frac{n}{4}\right) + n\log n$$

$$a = 3; b = 4$$

$$k = \log_4 3$$

$$f(n) = n \log n$$
(A)

$$f(n) = \Omega(n^{\log_4 3 + (1 - \log_4 3)})$$

(B)

$$3 \cdot \left(\frac{n}{4} \cdot \log \frac{n}{4}\right) \leq \frac{3}{4} \cdot n \log n$$

•
$$\Theta(n(\log n)^2)$$

- $\Theta(n \log n)$ \checkmark (case 3)
- $\Theta(n \log_4 3)$
- Not applicable X


```
\Tetha ( n * log^2 n ) 5 45.5%
\Tetha ( n * log n ) 4 36.4%
\Tetha ( n^log_4(3) ) 2 18.2%
The master theorem cannot be applied 0 0%
```

$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + \log n$$

$$a = 4; b = 2$$

$$k = \log_2 4 = 2$$

$$f(n) = \log n$$

$$f(n) = O(n^{2-1})$$

•
$$\Theta(\log n)$$

- $\Theta(n^2)$ \checkmark (case 1)
- $\Theta((\log n)^2)$
- Not applicable X

\Tetha (log n) 18.2%

\Tetha (n^2) 54.5%

\Theta (log^2 n) 1 9.1%

The master theorem cannot be applied 18.2%

Overview

- Analyze a sequence of operations on a data structure.
- We will talk about average cost in the worst case (i.e. not averaging over a distribution of inputs. No probability!)
- Goal: Show that although some individual operations may be expensive, on average the cost per operation is small.
- 3 methods:
 - 1. aggregate analysis
 - 2. accounting method
 - potential method

Aggregate analysis

Stack operations

- PUSH(S, x): O(1) each $\Rightarrow O(n)$ for any sequence of n operations.
- POP(S): O(1) each $\Rightarrow O(n)$ for any sequence of n operations.
- MULTIPOP(S,k): while $S \neq \emptyset$ and k > 0 do POP(S) $k \leftarrow k-1$

Running time of MULTIPOP?

Running time of MULTIPOP

- Linear in # of POP operations.
- Let each PUSH/POP cost 1.
- # of iterations of **while** loop is min(s, k), where s = # of objects on stack. Therefore, total cost = min(s, k).

Sequence of *n* PUSH, POP, MULTIPOP operations:

- Worst-case cost of MULTIPOP is O(n).
- Have n operations.
- Therefore, worst-case cost of sequence is $O(n^2)$.

But:

- Each object can be popped only once per time that it is pushed.
- Have $\leq n$ PUSHes $\Rightarrow \leq n$ POPs, including those in MULTIPOP.
- Therefore, total cost = O(n).
- Average over the n operations \Rightarrow O(1) per operation on average.

Binary counter

- k-bit binary counter A[0..k-1] of bits, where A[0] is the least significant bit and A[k-1] is the most significant bit.
- Counts upward from 0.

 $A[i] \leftarrow 1$

- Value of counter is: $\sum_{i=0}^{n-1} A[i] \cdot 2^{i}$
- Initially, counter value is 0, so A[0..k-1] = 0.
- To increment, add 1 (mod 2k):
 Increment(A,k):
 i←0
 while i<k and A[i]=1 do
 A[i]←0
 i←i+1
 if i < k then

Example (1)

k=3	Counter	Α	
	Value	210	cost
	0	0 0 <u>0</u>	0
	1	0 <u>0 1</u>	1
	2	0 1 <u>0</u>	3
	3	<u>0 1 1</u>	4
	4	10 <u>0</u>	7
	5	1 <u>0 1</u>	8
	6	11 <u>0</u>	10
	7	<u>111</u>	11
	0	000	14

Cost of INCREMENT = Θ (# of bits flipped) **Analysis:** Each call could flip k bits,
so n INCREMENTs takes O(nk) time.

Example (2)

Bit	Flips how often	Time in n INCREMENTs
0	Every time	n
1	½ of the time	floor(n/2)
2	1⁄4 of the time	floor(n/4)
i	1/2 ⁱ of the time	floor(n/2 ⁱ)
i≥k	Never	0

Thus, total # flips =
$$\sum_{i=0}^{k-1} \lfloor n/2^i \rfloor < n \cdot \sum_{i=0}^{\infty} 1/2^i = n \left(\frac{1}{1-1/2} \right) = 2 \cdot n$$

Therefore, n INCREMENTs costs O(n). Average cost per operation = O(1).

Accounting method

Assign different charges to different operations.

- Some are charged more than actual cost.
- Some are charged less.

Amortized cost = amount we charge.

When amortized cost > actual cost, store the difference on specific objects in the data structure as credit.

Use credit later to pay for operations whose actual cost > amortized cost.

Differs from aggregate analysis:

- In the accounting method, different operations can have different costs.
- In aggregate analysis, all operations have same cost.

But we need to guarantee that the credit never goes negative.

Definition

Let $c_i = \text{cost of actual i}^{\text{th}}$ operation.

 \hat{c}_i = amortized cost of ith operation.

Then require $\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$ for all sequences of n operations.

Total credit stored =
$$\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \ge 0$$

Stack

Operation	Actual cost	Amortized cost
PUSH	1	2
POP	1	0
MULTIPOP	min(k,s)	0

Intuition: When pushing an object, pay \$2.

- \$1 pays for the PUSH.
- \$1 is prepayment for it being popped by either POP or MULTIPOP.
- Since each object has \$1, which is credit, the credit can never go negative.
- Total amortized cost (= O(n)) is an upper bound on total actual cost.

Binary counter

Charge \$2 to set a bit to 1.

- \$1 pays for setting a bit to 1.
- \$1 is prepayment for flipping it back to 0.
- Have \$1 of credit for every 1 in the counter.
- Therefore, credit ≥ 0.

Amortized cost of INCREMENT:

- Cost of resetting bits to 0 is paid by credit.
- At most 1 bit is set to 1.
- Therefore, amortized cost ≤ \$2.
- For *n* operations, amortized cost = O(n).

Dynamic tables

Scenario

- Have a table maybe a hash table.
- Don't know in advance how many objects will be stored in it.
- When it fills, must reallocate with a larger size, copying all objects into the new, larger table.
- When it gets sufficiently small, might want to reallocate with a smaller size.

Goals

- 1. O(1) amortized time per operation.
- 2. Unused space always ≤ constant fraction of allocated space.

Load factor α = (# items stored) / (allocated size)

Never allow $\alpha > 1$; Keep $\alpha > a$ constant fraction \Rightarrow Goal 2.

Table expansion

Consider only insertion.

- When the table becomes full, double its size and reinsert all existing items.
- Guarantees that $\alpha \geq \frac{1}{2}$.
- Each time we insert an item into the table, it is an elementary insertion.

```
TABLE-INSERT (T, x)
if size[T]=0
   then allocate table[T] with 1 slot
       size[T] \leftarrow 1
if num[T]=size[T] then
   allocate new-table with 2 · size[T] slots
   insert all items in table[T] into new-table
   free table[T]
   table[T] \leftarrow new-table
   size[T] \leftarrow 2 \cdot size[T]
insert x into table[T]
                                  (Initially, num[T] = size[T] = 0)
num[T] \leftarrow num[T] + 1
```

Aggregate analysis

- Charge 1 per elementary insertion.
- Count only elementary insertions (other costs = constant).

 c_i = actual cost of i^{th} operation

- If not full, $c_i = 1$.
- If full, have i-1 items in the table at the start of the i^{th} operation. Have to copy all i-1 existing items, then insert i^{th} item $\Rightarrow c_i = i$.

n operations \Rightarrow $c_i = O(n) \Rightarrow O(n^2)$ time for *n* operations

$$c_{i} = \begin{cases} i & \text{if } i-1 \text{ is power of } 2\\ 1 & \text{Otherwise} \end{cases}$$

Total cost =
$$\sum_{i=1}^{n} c_i \le n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j = n + \frac{2^{\lfloor \log n \rfloor + 1} - 1}{2 - 1} < n + 2n = 3n$$

Amortized cost per operation = 3.

Accounting method

Charge \$3 per insertion of x.

- \$1 pays for x's insertion.
- \$1 pays for x to be moved in the future.
- \$1 pays for some other item to be moved.

Suppose we've just expanded, *size=m* before next expansion, *size=2m* after next expansion.

- Assume that the expansion used up all the credit, so that there's no credit stored after the expansion.
- Will expand again after another *m* insertions.
- Each insertion will put \$1 on one of the m items that were in the table just after expansion and will put \$1 on the item inserted.
- Have \$2m of credit by next expansion, when there are 2m items to move. Just enough to pay for the expansion...