Optimierung 02 27.10.2014

Carolin Konietzny, 6523939, Gruppe 3 Tronje Krabbe, 6435002, Gruppe 7 Julian Tobergte, 6414935, Gruppe 5

10. November 2014

1. a) (i) Größter Koeffizient:

Starttableau:

$$x_{3} = 10 - x_{1} - x_{2}$$

$$x_{4} = 8 - x_{1}$$

$$x_{5} = 3 - x_{2}$$

$$z = 2x_{1} + 3x_{2}$$

1. Iteration:

Eingangsvariable: x_2 Ausgangsvariable: x_5

$$x_{2} = 3 - x_{5}$$

$$x_{3} = 7 - x_{1} + x_{5}$$

$$x_{4} = 8 - x_{1}$$

$$z = 9 + 2x_{1} - 3x_{5}$$

2. Iteration:

Eingangsvariable: x_1 Ausgangsvariable: x_3

$$x_{1} = 7 + x_{5} - x_{3}$$

$$x_{2} = 3 - x_{5}$$

$$x_{4} = 1 - x_{5} + x_{3}$$

$$z = 23 - x_{3} - 2x_{3}$$

Dieses Tableau ergibt die optimale Lösung $x_1 = 7$, $x_2 = 3$ und z = 23.

Größter Zuwachs:

Starttableau:

$$x_{3} = 10 - x_{1} - x_{2}$$

$$x_{4} = 8 - x_{1}$$

$$x_{5} = 3 - x_{2}$$

$$z = 2x_{1} + 3x_{2}$$

1. Iteration:

Eingangsvariable: x_1 Ausgangsvariable: x_4

$$x_{1} = 8 - x_{4}$$

$$x_{3} = 2 - x_{2} + x_{4}$$

$$x_{5} = 3 - x_{2}$$

$$z = 16 + 3x_{2} - 2x_{4}$$

2. Iteration:

Einangsvariable: x_2 Ausgangsvariable: x_3

$$x_{2} = 2 + x_{4} - x_{3}$$

$$x_{1} = 8 - x_{4}$$

$$x_{5} = 1 - x_{4} + x_{3}$$

$$z = 22 + x_{4} - 3x_{3}$$

3. Iteration:

Eingangsvariable: x_4 Ausgangsvariable: x_5

$$x_{4} = 1 + x_{3} - x_{5}$$

$$x_{2} = 3 - x_{5}$$

$$x_{1} = 7 - x_{3} + x_{5}$$

$$z = 23 - 2x_{3} - x_{5}$$

Die Regel des größten Koeffizienten ist um eine Iteration schneller.

Bei der Wahl des größten Koeffizienten werden die Punkte in der Reihenfolge T,P,Q durchlaufen, bei der Wahl des größten Zuwachses in der Reihenfolge T,S,R,Q.

b) (i) Größter Koeffizient:

Starttableau:

$$x_3 = 10 - 5x_1 - x_2$$

$$z = 3x_1 + x_2$$

1. Iteration:

Eingangsvariable: x_1 Ausgangsvariable: x_3

$$x_1 = 2 - \frac{1}{5}x_2 - \frac{1}{5}x_3$$

$$z = 6 + \frac{2}{5}x_2 - \frac{3}{5}x_3$$

2. Iteration:

Eingangsvariable: x_2

Ausgangsvariable: x_1

$$x_2 = 10 - x_3 - 5x_1$$

$$z = 10 - x_3 - 2x_1$$

Dieses Tableau gibt die optimale Lösung $x_1=0,\,x_2=10$ und z=10.

Größter Zuwachs:

Starttableau:

$$x_3 = 10 - 5x_1 - x_2$$

$$z = 3x_1 + x_2$$

1. Iteration:

Eingangsvariable: x_2 Ausgangsvariable: x_3

$$x_2 = 10 - 5x_1 - x_3$$

$$z = 10 - 2x_1 - x_3$$

Hier ist die Regel vom größten Zuwachs schneller.

Bei der Regel des größten Koeffizienten werden die Punkte in der Reihenfolge A, C, B durchlaufen, bei der Regel des größten Zuwachses in der Reihenfolge A, B.

2. Starttableau:

$$x_{4} = 2 - x_{2}$$

$$x_{5} = 6 - 2x_{1} - 3x_{2} + 12x_{3}$$

$$x_{6} = 4 + x_{1} - 2x_{2} - 9x_{3}$$

$$z = 2x_{1} + 8x_{2} - 3x_{3}$$

1. Iteration:

Eingangsvariable: x_2 Ausgangsvariable: x_4

$$x_{2} = 2 - x_{4}$$

$$x_{5} = -2x_{1} + 12x_{3} + 3x_{4}$$

$$x_{6} = x_{1} - 9x_{3} - 2x_{4}$$

$$z = 16 + 2x_{1} - 3x_{3} - 8x_{4}$$

Die Basislösung nach dieser Iteration ist $x_1 = 0$, $x_2 = 2$, $x_3 = 0$ und z = 16.

2. Iteration:

Eingangsvariable: x_1 Ausgangsvariable: x_5

$$x_{1} = 6x_{3} + \frac{3}{2}x_{4} - \frac{1}{2}x_{5}$$

$$x_{2} = 2 - x_{4}$$

$$x_{6} = -3x_{3} + \frac{7}{2}x_{4} - \frac{1}{2}x_{5}$$

$$z = 16 + 9x_{3} - 5x_{4} - x_{5}$$

Die Basislösung nach dieser Iteration ist $x_1 = 0$, $x_2 = 2$, $x_3 = 0$ und z = 16. Dies ist ein degenerierter Schritt.

3. Iteration:

Eingangsvariable: x_3 Ausgangsvariable: x_6

$$x_{3} = \frac{7}{6}x_{4} - \frac{1}{6}x_{5} - \frac{1}{3}x_{6}$$

$$x_{1} = \frac{17}{2}x_{4} - \frac{3}{2}x_{5} - 2x_{6}$$

$$x_{2} = 2 - x_{4}$$

$$z = 16 + \frac{11}{2}x_{4} - \frac{5}{2}x_{5} - 3x_{6}$$

Die Basislösung nach dieser Iteration ist $x_1 = 0$, $x_2 = 2$, $x_3 = 0$ und z = 16. Dies ist ein degenerierter Schritt.

4. Iteration:

Eingangsvariable: x_4 Ausgangsvariable: x_2

$$x_{4} = 2 - x_{2}$$

$$x_{3} = \frac{7}{3} - \frac{1}{6}x_{5} - \frac{1}{3}x_{6} - \frac{7}{6}x_{2}$$

$$x_{1} = 17 - \frac{3}{2}x_{5} - 2x_{6} - \frac{17}{2}x_{2}$$

$$z = 27 - \frac{5}{2}x_{5} - 3x_{6} - \frac{11}{2}x_{6}$$

Die Basislösung nach dieser Iteration ist $x_1=17,\,x_2=0,\,x_3=\frac{7}{3}$ und z=27. Hierbei handelt es sich auch um die optimale Lösung; wir sind fertig.