Root Finding with Chebyshev Polynomials in 2 Dimensions

Lucas C. Bouck

George Mason University
Department of Mathematical Sciences

September 8, 2017

Applied and Computational Math Seminar George Mason University Fairfax, VA

Collaborator: Ian H. Bell (NIST Applied Chemicals and Materials Division)

Outline

- Summary of the Problem and Background
- What Are Chebyshev Polynomials and Why Use Them?
- 3 The Algorithm for Rectangular Domains from chebfun
- Results and Future Work

Summary of the Problem and Background

The Problem

Global 2-D Root Finding Problem

We want to find all solutions $\mathbf{x} \in \Omega \subset \mathbb{R}^2$ to

$$F(x) = 0$$

Additional assumptions

- ullet Ω will be a bounded domain and rectangular for now
- Treat **F** as $\binom{f(x,y)}{g(x,y)}$, where $x,y\in\mathbb{R}$ and f,g are scalar functions
- Assume f, g are smooth enough (more on this later)
- Assume finitely many roots

Background and Motivation

The Big Picture: chebtools

- chebtools is a C++ library for working with Chebyshev expansions developed by Ian Bell
- Inspired by the Matlab library chebfun
- 2-D root finding will become a central feature of chebtools

Applications:

- One example is determining thermodynamic properties of steam or water (Kunick, Kretzschmar, and Gampe 2008)
- With a higher level Python interface, chebtools could be useful for a wide range of users

Example

$$f(x,y)=x^2-y^2$$
 and $g(x,y)=\sin\left(\pi\sqrt{x^2+y^2}\right)$ with the square domain $\Omega=[-1,1]^2$

A Need for a Method to Find All Roots

- Iterative methods may converge to roots outside the domain of interest.
- Globalized Newton methods guarantee convergence to a root but only find them one at a time (Deuflhard, 2011)
- We need a method to find all solutions at once

Figure: Initial guesses in white areas did not converge to roots in Ω

Summary of the Problem and Background

What Are Chebyshev Polynomials and Why Use Them?

The Algorithm for Rectangular Domains from chebfun

Results and Future Work

What are Chebyshev Polynomials?

Chebyshev polynomials

$$T_n(x) = \cos(n \arccos(x)), x \in [-1, 1]$$

- Orthogonal under an inner product with weight $w(x) = \frac{1}{\sqrt{1-x^2}}$
- Lipschitz continuity
 uniform
 convergence of
 Chebyshev interpolations
- Analytic function geometric convergence

Figure: First 5 Chebyshev Polynomials

Summary of the Problem and Background

2 What Are Chebyshev Polynomials and Why Use Them?

3 The Algorithm for Rectangular Domains from chebfun

4 Results and Future Work

2-D Interpolation

- Define our first error function as $e_0(x, y) = f(x, y)$
- Define later error functions as $e_k(x,y) := e_{k-1}(x,y) P_{k-1}(x,y)$ where P_{k-1} is our approximation

Algorithm Outline

- Find (x_k, y_k) s.t. $|e_k(x_k, y_k)| = \max |e_k(x, y)|$
- Do 1-D interpolations of $e_k(x, y_k)$ and $e_k(x_k, y)/e_k(x_k, y_k)$ denoted $p_x(x)$ and $p_y(y)$
- Compute new approximation $P_k(x, y) = P_{k-1}(x, y) + p_x(x)p_y(y)$

Interpolation From Our Example

Bézout Resultant Method

- From our Chebyshev approximations $p_f(x, y), p_g(x, y)$, we can construct a Bézout matrix polynomial B(x)
- $\det(B(x_0)) = 0 \iff p_f(x_0, \cdot) \text{ and } p_g(x_0, \cdot) \text{ have common root}$

If p_f, p_g are of degree $(m_f, n_f), (m_g, n_g)$ respectively, then the resulting form of the matrix polynomial of degree M is

$$B(x) = \sum_{i=0}^{M} B_i T_i(x)$$

- B_i are square matrices of size $n = \max(n_f, n_g)$ and $M \le m_f + m_g$.
- Solving $det(B(x_0)) = 0$ involves linearizing B(x) (Nakatsukasa et. al. 2016)
- Finally solve a generalized eigenvalue problem with computational complexity of $\mathcal{O}\left(M^3n^3\right)$

Conditioning of the Bézout Matrix Polynomials

- The Bézout matrix polynomial technique can square the condition number of the common root.
- The chebfun algorithm refines the roots by recomputing the matrix polynomial problem on a zoomed in region of the root

1-D Root Finding

1-D Root Finding

- We now have the possible x values for where there are common roots
- Employ a companion matrix method finding the roots of 1-D Chebyshev polynomials

Summary of the Problem and Background

What Are Chebyshev Polynomials and Why Use Them?

- The Algorithm for Rectangular Domains from chebfur
- Results and Future Work

First Results

	chebtools		chebfun	
Functions	2 Norm Error	Time (s)	2 Norm Error	Time (s)
$F_1(x,y), F_2(x,y)$	6.97×10^{-32}	0.004268	7.7×10^{-16}	0.522
$G_1(x,y), G_2(x,y)$	6.21×10^{-16}	214.059	2.92×10^{-10}	0.294
$H_1(x,y), H_2(x,y)$	3.24×10^{-16}	195.903	2.77×10^{-11}	0.296

$$G_1(x,y) = \cos(\pi x)(y-2) \qquad G_2(x,y) = (y-.9)(x-2)$$

$$H_1(x,y) = \cos\left(\pi x - \frac{\pi}{10}\right)(y-2) \quad H_2(x,y) = (y-.1)(y-.9)(x-2)$$

 $F_2(x, y) = T_3(y) - 13T_1(y)$

• chebfun is much faster than chebtools

 $F_1(x, y) = T_3(x) - 13T_1(x)$

 chebfun has a domain subdivision strategy for reducing the size of the generalized eigenvalue problem

Application Motivates Future Work

- Empirical equations of state in thermodynamics have ranges of validity which are not rectangular domains
- Solutions outside the domain will not make physical sense
- Some properties are not defined at certain points (ex: Critical Point)

Current Work for Moving Beyond Rectangular Domains

Suppose we have

- Subdivided such that part of the boundary of the subdomain of interest, Ω_s , can be expressed as a function
- mapped the rectangle containing Ω_s has been mapped to a reference square $[-1,1]^2$

Our Idea:

- Same 2-D interpolation procedure as with the rectangular domain
- Instead of 1-D interpolations, solve a least squares fitting problem with nodes inside $\Omega_{\rm S}$
- Constrain the least squares solution s.t. $p(\pm 1) \leq B$ for some bound B

Future Work

For Non-Rectangular Domains

- Further develop ideas for Chebyshev approximation methods
- Provide analysis of the new method of approximations

Other Future Work

Introduce GPU/parallel computing to the root finding process

Conclusions and Acknowledgements

Contributions:

- Made significant progress in replicating the 2-D root finding algorithm in chebfun with some modifications in C++11
- Began to develop ideas for extending the algorithm to non-rectangular domains

Acknowledgments

- Ian Bell and Bradley Alpert (NIST Applied Math Division)
- The Summer Undergraduate Research Fellowship program at NIST

Questions?

References

- [1] R. Bartels and G. Stewart. Solution of the Matrix Equation AX + XB = C: Algorithm 432, Comm. ACM, 1972.
- [2] I. Bell et. al. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp, Industrial & Engineering Chemical Research, 2014.
- [3] P. Deuflhard. Newton Methods for Nonlinear Problems, Springer, Berlin, 2011.
- [4] G. Golub and C. Van Loan. *Matrix Computations*. The Johns Hopkins University Press, Baltimore, 2013.
- [5] M. Kunick et. al. Fast Calculation of Thermodynamic Properties of Water and Steam in Process Modelling using Spline Interpolation. 2008.
- [6] Y. Nakatsukasa et. al. Vector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach, arXiv:1610.01859v1, 2016.
- [7] A. Townsend. *Computing with Functions in Two Dimensions* (Doctoral Dissertation). Oxford University, 2014.
- [8] L. N. Trefethen, *Approximation Theory and Approximation Practice*, SIAM, Philadelphia, 2013.