Arduino Day 2017

Arduino for Real-Time Control

Objectives

- Example of Real-Time System
- Example of Real-Time System Software Design
- Some Techniques to get you started.
 - Fixed Time Schedule
 - Designing and Implementing State Machine
 - BLE Example of a State Machine
 - Collision Avoidance Interrupt

What is Real-Time Control System?

A microprocessor based system that is paired with electrical/mechanical device that produces the desired performance by compensating for environment and the physical device limitations.

Common to all Real-Time Control Systems

Arduino Sensor Shield V5.0

Bluetooth LE

Ultrasonic Sensor and Servo

Arduino 101

L298N Motor Drive Board

4 Motors

Elegoo Robot Car - UNO + Arduino 101

Hardware Block Diagram

Features Intel Curio of the Arduino 101

Intel Quark microcontroller 32 bit – Pentium x86 core.

384kb of flash 80kb of SRAM

ARC EM-4 based Sensor Subsytem

Six-axis accelerometer/gyroscope (Inertial Measurement Unit)

Bluetooth Low Energy

Pattern Matching Engine (Neural Net)

USB, I2C,I2S, UART, SPI, DMA Controller, GPIO, PWM ADC Unit, Analog Compartors, RTC

Real Time Systems Cannot Wait to Think

Time in Seconds

Check for Event

Process the Event

Go Forward

Check for possible Collision

Check for Event

Go forward

F-18 HORNET MANAGEMENT MANAGEMENT

Just would not fly......

Demonstration — Event and State

Software needs to take action in "Real-Time"

Real-Time Execution needs Fixed Interval Execution

In order to use advanced control methods you should always design your system to sample its signals and execute algorithms at a high fixed rate. At least 10 times a second.

PID Controller

Numerical Integration

Code for Setting up a Fixed Intervals Execution

```
void setup() {
// initialize variables to pace updates to correct rate
   microsPerReading = 1000000 / 25; // .04 seconds or a 25Hz sample rate.
   microsPrevious = micros()
   // Insert additional setup code
void loop() {
 // check if it's time to run
    microsNow = micros();
    if (microsNow - microsPrevious >= microsPerReading) {
    // Insert you fixed time code that will execute 25 times a second.
     // increment previous time, so we keep proper pace
     microsPrevious = microsPrevious + microsPerReading;
    } else { Serial.print("Timing not met!"); };
  // other code not fixed time can go here....
```

Event and State processing is used to support real time decisions

Event state processing is a typical technique in real time system. Events and actions are taken based on your systems state.

Mealy Diagram

Code For State Machine


```
if (event == F)
{ headingCmd = 0;
  speedCmd = 100;
   state = "Forward";
 else if( event == R )
   headingCmd = -90;
 else if (event == L )
   headingCmd = 90;
} else if (event == B )
  headingCmd = 0;
  speedCmd = -100;
  state = "Backward";
 } else if (event == S )
   headingCmd = 0;
   speedCmd = 0;
   state = "Stop";
```

Collision Avoidance Processing

Collision Avoidance detects an object with in a certain minimum range and producing a stop event.

Range = High Level Time * 340 Meter/Second / 2; (Speed of sound)

Demonstration Collision Avoidance

Live Demo

Collision Avoidance State Machine

The device has three states that occur during short distance processing.

However there is a short cut path when objects are further away.


```
int Echo = A4i
                                                        This function sends the trigger
int Trig = A5;
                                                         pulse to the Ultrasonic Unit. It will
volatile float Distance;
volatile int echopulseStart;
                                                         be called from loop code to kick
volatile int echopulseEnd = 0;
volatile int echopulseLength = 0;
                                                        off sample.
int Distance Measure Start()
// This runs to kick off a measurement of Distance
{if ( obstAvoidState > 0 ) {
    Distance = 10000;
 digitalWrite(Trig, LOW);
 delayMicroseconds(2);
 digitalWrite(Trig, HIGH);
 delayMicroseconds(20);
 digitalWrite(Trig, LOW);
 attachInterrupt(digitalPinToInterrupt(Echo), Distance EchoPulse Start, RISING);
  obstAvoidState = 1;
```

```
interrupts on the Echo Pin. This one when
void Distance_EchoPulse_Start()
                                                    Pulse goes RISING. I get samples time
//This detects the Echo Pulse Going High
                                                    when it occurs.
 if ( obstAvoidState == 1 ) {
 echopulseStart = micros();
 attachInterrupt(digitalPinToInterrupt(Echo), Distance_Echo_Compute, FALLING);
 obstAvoidState = 2;
void Distance_Echo_Compute()
{if ( obstAvoidState == 2 ) {
   echopulseEnd = micros();
   if (echopulseEnd > echopulseStart ) {
                                       Execute when Pulse goes FALLING. It samples
       echopulseLength = echopulseEnd- ec
       Distance = echopulseLength /58;
                                      the time and computes the Distance.
   obstAvoidState = 0;
```

These two functions are executed by

```
//Setup Code
pinMode(Echo, INPUT);
pinMode(Trig, OUTPUT);

// Loop Code
Distance_Measure_Start();

This code initiates the conversion every 40 milliseconds as per a fixed interval.
```


Summary

- Example of Real-Time System
- Example of Real-Time System Software Design
- Some Techniques to get you started.
 - Fixed Time Schedule
 - Designing and Implementing State Machine
 - BLE Example of a State Machine
 - Collision Avoidance Interrupt

MAKE

GIVE

TOOL Up

SHARE

LEARN

Thank You

SUPPORT

PARTICIPATE

PLAY

CHANGE