Engenharia de Machine Learning [23E1_3]

Projeto da Disciplina

Aluno: Pedro Pinheiro Cabral

Professor: Felipe Fink

Link do github: https://github.com/ppcpedro/engenharia_de_machine_learning_pedro_p

1) Metodologia

Data Science Lifecycle

2) Diagrama

- 3) Os pipelines de desenvolvimento e produção são importantes em soluções de aprendizado de máquinas porque eles permitem que as equipes de desenvolvimento e operações trabalhem juntas para criar e implementar código em um ambiente de produção. Eles também padronizam a prática de MLOps e dão suporte à colaboração em equipe de maneira escalável. Os pipelines de aprendizado de máquina implementam e formalizam processos para acelerar, reutilizar, gerenciar e implantar modelos de aprendizado de máquina.
- 4) As ferramentas Streamlit, MLFlow, PyCaret e Scikit-Learn auxiliam na construção dos pipelines de aprendizado de máquina em vários aspectos:
- a. Rastreamento de experimentos: O MLFlow é uma ferramenta que permite rastrear experimentos e gerenciar modelos de aprendizado de máquina;
- b. Funções de treinamento: O PyCaret é uma ferramenta de AutoML que auxilia no treinamento de modelos utilizando vários "flavors" sendo Scikit-Learn um deles:
- c. Monitoramento da saúde do modelo: É possível utilizar gráficos com as mais variadas métricas no Streamlit para monitorar a saúde do modelo;
- d. Atualização de modelo: O MLFlow permite atualizar modelos de aprendizado de máquina com facilidade;
- e. Provisionamento (Deployment): O Scikit-Learn exporta modelos com o formato pickle nativo do Python e o MLFlow exporta modelos para uso por ferramentas genéricas baseadas em pyfunc e inferência em lote.
- 5) Uma descrição dos artefatos que serão criados, dado o diagrama: De início, temos a nossa base crua. Daí, iremos pré-processar esses dados e teremos a base filtrada. Com isso, nas fases seguintes teremos as informações de performance do modelo, além do próprio modelo. Por fim, teremos uma base final com a previsão do modelo.

```
import pandas as pd
 In [2]:
          import mlflow
          import mlflow.sklearn
          from sklearn.model selection import train test split
          from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import log loss, f1 score
          from pycaret.classification import *
         mlflow.set tracking uri("http://localhost:5000")
         mlflow.set experiment("PreparacaoDados")
         pd.set option('display.max columns', None)
          data = pd.read csv("./Data/kobe dataset.csv")
In [3]:
          data.columns
In [31]:
         Index(['action type', 'combined shot type', 'game event id', 'game id', 'lat',
Out[31]:
                 'loc x', 'loc y', 'lon', 'minutes remaining', 'period', 'playoffs',
                 'season', 'seconds_remaining', 'shot_distance', 'shot_made_flag',
                 'shot_type', 'shot_zone_area', 'shot_zone_basic', 'shot zone range',
                 'team id', 'team name', 'game date', 'matchup', 'opponent', 'shot id'],
                dtype='object')
In [32]:
          data
Out[32]:
                action type
                           combined_shot_type game_event_id
                                                            game id
                                                                         lat loc x loc y
                                                                                             lon
                                                                                                 minutes rema
             0
                                                           20000012 33.9723
                                                                              167
                                                                                    72 -118.1028
                 Jump Shot
                                    Jump Shot
                 Jump Shot
                                    Jump Shot
                                                        12 20000012 34.0443
                                                                             -157
                                                                                     0 -118.4268
             2
                 Jump Shot
                                                           20000012 33.9093
                                                                             -101
                                                                                    135 -118.3708
                                    Jump Shot
                 Jump Shot
                                    Jump Shot
                                                           20000012 33.8693
                                                                              138
                                                                                    175 -118.1318
                    Driving
             4
                                        Dunk
                                                       155
                                                           20000012 34.0443
                                                                                0
                                                                                     0 -118.2698
                  Dunk Shot
          30692
                                                       397 49900088 33.9963
                                                                                    48 -118.2688
                 Jump Shot
                                    Jump Shot
          30693
                                                       398 49900088 34.0443
                                                                                     0 -118.2698
                   Tip Shot
                                      Tip Shot
                   Running
          30694
                                    Jump Shot
                                                       426 49900088 33.8783
                                                                             -134
                                                                                    166 -118.4038
                 Jump Shot
          30695
                                                       448 49900088 33.7773
                                                                               31
                                                                                    267 -118.2388
                 Jump Shot
                                    Jump Shot
          30696
                                                       471 49900088 33.9723
                                                                                    72 -118.2688
                 Jump Shot
                                    Jump Shot
                                                                               1
         30697 rows × 25 columns
```

In [5]: # Filtrando os dados onde o valor de shot_type for igual à 2PT Field Goal e selecionando
data = data[data["shot_type"] == "2PT Field Goal"][["lat", "lon", "minutes_remaining", "
Removendo linhas com valores faltantes

```
data = data.dropna()

# Salvando o dataset resultante na pasta "./Data/processed/data_filtered.parquet"
data.to_parquet("./Data/processed/data_filtered.parquet")
```

In [6]: data

Out[6]:

	lat	lon	minutes_remaining	period	playoffs	shot_distance	shot_made_flag
1	34.0443	-118.4268	10	1	0	15	0.0
2	33.9093	-118.3708	7	1	0	16	1.0
3	33.8693	-118.1318	6	1	0	22	0.0
4	34.0443	-118.2698	6	2	0	0	1.0
5	34.0553	-118.4148	9	3	0	14	0.0
•••							
30690	33.9443	-118.3828	11	4	1	15	0.0
30691	34.0443	-118.2698	7	4	1	0	0.0
30692	33.9963	-118.2688	6	4	1	4	0.0
30694	33.8783	-118.4038	3	4	1	21	1.0
30696	33.9723	-118.2688	0	4	1	7	0.0

20285 rows × 7 columns

In [7]: data.describe()

Out[7]:

	lat	lon	minutes_remaining	period	playoffs	shot_distance	shot_made_flag
count	20285.000000	20285.000000	20285.000000	20285.000000	20285.000000	20285.000000	20285.000000
mean	33.980645	-118.262310	5.100173	2.471974	0.148731	10.216317	0.477348
std	0.065895	0.093401	3.423866	1.148192	0.355831	7.559547	0.499499
min	33.543300	-118.487800	0.000000	1.000000	0.000000	0.000000	0.000000
25%	33.926300	-118.312800	2.000000	1.000000	0.000000	1.000000	0.000000
50%	33.999300	-118.269800	5.000000	3.000000	0.000000	12.000000	0.000000
75%	34.044300	-118.194800	8.000000	3.000000	0.000000	17.000000	1.000000
max	34.088300	-118.049800	11.000000	7.000000	1.000000	50.000000	1.000000

6) A escolha do que vai para treino e teste é determinante para o sucesso do modelo. Primeiramente, é necessário encontrar um bom equilíbrio entre dados de treino e teste, em geral a regra 80/20 tende a funcionar bem, porém é preciso ter cuidado com isso. Mais criticamente, é importante que a distribuição dos dados de treino e teste seja similar, o uso de amostras estratificadas serve justamente para não ter dados desequilibrados entre treino e teste, que introduziria um viés e prejudicaria a performance.

```
# c. Separando os dados em treino (80%) e teste (20 %) usando uma escolha aleatória e es
train data, test data = train test split(data, test size=0.2, random state=42, \
                                         stratify=data["shot made flag"])
# Salvando os datasets resultantes em "./Data/operation/base {train|test}.parquet"
train data.to parquet("./Data/operation/base train.parquet")
test data.to parquet("./Data/operation/base test.parquet")
# Registrando os parâmetros (% teste) e métricas (tamanho de cada base) no MlFlow
mlflow.set experiment("Kobe Bryant Shot Selection")
with mlflow.start run(run name="PreparacaoDados"):
  # b. Qual a dimensão resultante do dataset?
   print(f"Dimensão do dataset resultante: {data.shape}")
    # d. Registre os parâmetros (% teste) e métricas (tamanho de cada base) no MlFlow
   mlflow.log param("test size", 0.2)
   mlflow.log_metric("train_size", len(train_data))
   mlflow.log metric("test size", len(test data))
   mlflow.log artifact("./Data/operation/base train.parquet")
   mlflow.log artifact("./Data/operation/base test.parquet")
######### 7)
with mlflow.start run(run name="Treinamento Regression"):
    # 7a. Treinando um modelo com regressão logística do sklearn usando a biblioteca pyC
    exp clf101 = setup(data=train data, target='shot made flag', session id=123)
   best model = compare models()
    # b. Registre a função custo "log loss" usando a base de teste
    y pred = predict model(best model, data=test data)
   log loss score = log loss(y true=y pred['shot made flag'], \
                              y pred=y pred['prediction label'])
   mlflow.log metric("log loss score", log loss score)
with mlflow.start run(run name="Treinamento Classification") as run:
    # c. Treinando um modelo de classificação do sklearn usando a biblioteca pyCaret.
   best model = compare models(sort='F1')
    # d. Registre a função custo "log loss" e F1 score para esse novo modelo
    y pred = predict model(best model, data=test data)
    log loss score = log loss(y true=y pred['shot made flag'],\
                              y pred=y pred['prediction label'])
    f1 score value = f1 score(y true=y pred['shot made flag'],\
                              y pred=y pred['prediction label'])
   mlflow.log metric("log loss score", log loss score)
   mlflow.log metric("f1 score value", f1 score value)
    # Logar o modelo sklearn e registrar como versão 1
   mlflow.sklearn.log model(
       sk model=best model,
        artifact path="best-model",
       registered model name="best-model-registered",
    # registrar run id para próxima questão
   run id = run.info.run id
    uri = mlflow.get tracking uri()
```

Dimensão do dataset resultante: (20285, 7)

	Description	Value
0	Session id	123
1	Target	shot_made_flag

2	Target type	Binary
3	Original data shape	(16228, 7)
4	Transformed data shape	(16228, 7)
5	Transformed train set shape	(11359, 7)
6	Transformed test set shape	(4869, 7)
7	Numeric features	6
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	StratifiedKFold
13	Fold Number	10
14	CPU Jobs	-1
15	Use GPU	False
16	Log Experiment	False
17	Experiment Name	clf-default-name
18	USI	400e

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс	TT (Sec)
ada	Ada Boost Classifier	0.5919	0.6020	0.3984	0.6114	0.4823	0.1695	0.1802	0.0540
gbc	Gradient Boosting Classifier	0.5887	0.6038	0.4141	0.6002	0.4899	0.1645	0.1724	0.0540
ridge	Ridge Classifier	0.5803	0.0000	0.4974	0.5691	0.5308	0.1543	0.1555	0.0450
lda	Linear Discriminant Analysis	0.5802	0.6037	0.4982	0.5689	0.5311	0.1542	0.1553	0.0460
Ir	Logistic Regression	0.5798	0.6017	0.4934	0.5691	0.5284	0.1530	0.1543	0.7480
qda	Quadratic Discriminant Analysis	0.5796	0.6043	0.5483	0.5609	0.5544	0.1567	0.1568	0.0450
nb	Naive Bayes	0.5768	0.5980	0.5125	0.5623	0.5362	0.1486	0.1492	0.0480
lightgbm	Light Gradient Boosting Machine	0.5758	0.5965	0.4989	0.5624	0.5286	0.1455	0.1464	0.0520
rf	Random Forest Classifier	0.5584	0.5748	0.5297	0.5382	0.5338	0.1144	0.1145	0.0840
et	Extra Trees Classifier	0.5493	0.5676	0.5293	0.5278	0.5285	0.0968	0.0968	0.1100
knn	K Neighbors Classifier	0.5486	0.5563	0.5076	0.5284	0.5174	0.0937	0.0939	0.2130
svm	SVM - Linear Kernel	0.5349	0.0000	0.4054	0.4454	0.3574	0.0588	0.0734	0.0460
dt	Decision Tree Classifier	0.5323	0.5187	0.5658	0.5090	0.5359	0.0671	0.0675	0.0480
dummy	Dummy Classifier	0.5227	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0440

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	str	0.5903	0.5908	0.3779	0.6156	0.4683	0.1651	0.1781

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (Sec)

qda	Quadratic Discriminant Analysis	0.5796	0.6043	0.5483	0.5609	0.5544	0.1567	0.1568	0.0460
nb	Naive Bayes	0.5768	0.5980	0.5125	0.5623	0.5362	0.1486	0.1492	0.0510
dt	Decision Tree Classifier	0.5323	0.5187	0.5658	0.5090	0.5359	0.0671	0.0675	0.0490
rf	Random Forest Classifier	0.5584	0.5748	0.5297	0.5382	0.5338	0.1144	0.1145	0.0740
lda	Linear Discriminant Analysis	0.5802	0.6037	0.4982	0.5689	0.5311	0.1542	0.1553	0.0450
ridge	Ridge Classifier	0.5803	0.0000	0.4974	0.5691	0.5308	0.1543	0.1555	0.0440
lightgbm	Light Gradient Boosting Machine	0.5758	0.5965	0.4989	0.5624	0.5286	0.1455	0.1464	0.0490
et	Extra Trees Classifier	0.5493	0.5676	0.5293	0.5278	0.5285	0.0968	0.0968	0.0890
lr	Logistic Regression	0.5798	0.6017	0.4934	0.5691	0.5284	0.1530	0.1543	0.0480
knn	K Neighbors Classifier	0.5486	0.5563	0.5076	0.5284	0.5174	0.0937	0.0939	0.0530
gbc	Gradient Boosting Classifier	0.5887	0.6038	0.4141	0.6002	0.4899	0.1645	0.1724	0.0520
ada	Ada Boost Classifier	0.5919	0.6020	0.3984	0.6114	0.4823	0.1695	0.1802	0.0530
svm	SVM - Linear Kernel	0.5349	0.0000	0.4054	0.4454	0.3574	0.0588	0.0734	0.0440
dummy	Dummy Classifier	0.5227	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0440

Model Accuracy AUC Recall Prec. F1 Kappa MCC

0 Quadratic Discriminant Analysis 0.5679 0.5967 0.5225 0.5500 0.5359 0.1322 0.1323

Registered model 'best-model-registered' already exists. Creating a new version of this model...

2023/04/15 18:52:24 INFO mlflow.tracking._model_registry.client: Waiting up to 300 secon ds for model version to finish creation.

Model name: best-model-registered, version 2

Created version '2' of model 'best-model-registered'.


```
#print(response.json())
In [19]: response.text ###### deu errado o requests, vamos usar os arquivos locais
         '<!doctype html>\n<html lang=en>\n<title>404 Not Found</title>\n<h1>Not Found</h1>\nT
Out[19]:
        he requested URL was not found on the server. If you entered the URL manually please che
        ck your spelling and try again.
        import mlflow.pyfunc
In [42]:
         import requests
         import pandas as pd
         # Carreque o modelo
         model = mlflow.pyfunc.load model("file:///C:/Pedro/posgrad/Engenharia de Machine Learnin
In [44]: result = model.predict(df.drop('shot made flag', axis=1))
In [45]: df['prediction'] = result
        # eixo y
In [46]:
         df.shot made flag.value counts()
        0.0 3630
Out[46]:
        1.0
               1782
        Name: shot made flag, dtype: int64
In [47]: | # predição
        df['prediction'].value counts()
        0.0 5410
Out[47]:
        1.0
        Name: prediction, dtype: int64
In [48]: df.to parquet("./Data/processed/teste 2pts.parquet")
         mlflow.log artifact("./Data/processed/teste 2pts.parquet")
         log loss score = log loss(y true=df['shot made flag'], y pred=df['prediction'])
         f1 score value = f1 score(y true=df['shot made flag'], y pred=df['prediction'])
         print(f"New log loss: {log loss score}")
        print(f"New F1 score: {f1 score value}")
        New log loss: 5.255213515378235
        New F1 score: 0.0
```

- 8)a) O modelo não é aderente a essa nova base, afinal a predição está totalmente descolada da realidade. O motivo é que o modelo foi treinado com os dados de cestas de 2 pontos, para 3 pontos os parâmetros são diferentes.
- 8)b) A monitoração da saúde do modelo é uma tarefa importante para garantir que o modelo está funcionando corretamente e produzindo resultados precisos e confiáveis. No entanto, sem a disponibilidade da variável resposta para o modelo em operação, a monitoração pode ser mais difícil.

Uma abordagem comum para monitorar a saúde do modelo sem a disponibilidade da variável resposta é monitorar as variáveis preditoras. Isso pode ser feito usando técnicas de análise de dados para identificar padrões e tendências nas variáveis preditoras que possam indicar problemas com o modelo. Além disso, é possível usar técnicas de análise de dados para identificar anomalias nas saídas do modelo que possam indicar problemas.

Outra abordagem é usar técnicas de simulação para gerar dados sintéticos que possam ser usados para testar o modelo. Isso pode ser útil para avaliar como o modelo se comporta em diferentes cenários e identificar quaisquer problemas que possam surgir.

8)c) A estratégia reativa envolve a atualização do modelo em resposta a eventos específicos ou mudanças no ambiente. Por exemplo, se o modelo começar a produzir resultados imprecisos ou inconsistentes, pode ser necessário atualizá-lo para corrigir o problema. A estratégia reativa é útil quando as mudanças no ambiente são previsíveis e podem ser facilmente identificadas.

A estratégia preditiva envolve a atualização do modelo com base em previsões sobre mudanças futuras no ambiente. Por exemplo, se houver uma mudança planejada no ambiente que possa afetar o desempenho do modelo, pode ser necessário atualizá-lo antes que a mudança ocorra. A estratégia preditiva é útil quando as mudanças no ambiente são menos previsíveis ou difíceis de identificar.

```
In [ ]:
       import streamlit as st
        import pandas as pd
        import mlflow.pyfunc
        # Carregar o modelo
        model = mlflow.pyfunc.load model("file:///C:/Pedro/posgrad/Engenharia de Machine Learnin
        # Crie o aplicativo Streamlit
        st.title("Previsão de Arremessos do Kobe Bryant")
        st.write("Insira os seguintes detalhes para prever se Kobe acertou ou errou a cesta.")
        # Crie campos de entrada para o usuário
        lat = st.number input("Latitude")
        lon = st.number input("Longitude")
        minutes remaining = st.number input("Minutos Restantes")
        period = st.number input("Período")
        playoffs = st.selectbox("Playoffs?", ["Sim", "Não"])
        shot distance = st.number input("Distância do Arremesso")
        # Converta a entrada do usuário em um DataFrame
        user input = pd.DataFrame({
            'lat': [lat],
            'lon': [lon],
            'minutes remaining': [minutes remaining],
            'period': [period],
            'playoffs': [playoffs == "Sim"],
            'shot distance': [shot distance]
        })
        # Use o modelo para fazer uma previsão
        prediction = model.predict(user input)
        # Exiba a previsão para o usuário
        if prediction[0] == 1:
           st.write("Kobe acertou a cesta!")
            st.write("Kobe errou a cesta.")
```

exemplo de erro da cesta

exemplo de acerto da cesta

