Moderni polprevodniški izvori svetlobe

Marko Zgonik, Oddelek za fiziko FMF, 22.10. 2010

Moderni polprevodniški izvori svetlobe

- Osnovna fizika elektronskih stanj
- Interakcija svetlobe in elektronov
- Nehomogeni polprevodniki heterostrukture
- Delovanje svetlečih diod in laserjev
- Tehnologija izdelave
- Nekaj fotometrije
- Primeri naprav in njihovih karakteristik

Energija prostega elektrona

$$E = \frac{\hbar^2 k^2}{2m}$$

E

Energija elektrona v periodičnem potencialu

Elektronska stanja v Si, Ge in C

Shema elektronskih stanj v različnih materialih

ELEKTRONSKA STANJA (a) izolator ali polprevodnik (b) kovina

Figure 28.1

(a) In an insulator there is a region of forbidden energies separating the highest occupied and lowest unoccupied levels. (b) In a metal the boundary occurs in a region of allowed levels. This is indicated schematically by plotting the density of levels (horizontally) vs. energy (vertically).

Energija elektronov v direktnem in indirektnem polprevodniku

Dopiranje Si z As n - dopiranje

Dopiranje Si z Ga p - dopiranje

Spoj pn

Karakteristika *pn* spoja, polprevodniška dioda

Notranji fotoefekt v pn spoju

Energija elektronov v direktnem in indirektnem polprevodniku

Nekaj, kar je dobro vedeti

$$\lambda = \frac{1248 \, \text{nm eV}}{E}$$

Photoluminiscenca

Elektronska stanja v heterostrukturah

Koncentracija (omejevanje) elektronov in svetlobe v tanki plasti

Kvantne jame, enojne in večkratne

Kako lahko omejujemo elektrone

Elektroni v *pn* spoju in v hetero-strukturi

Molecular Beam Epitaxy (MBE) III–V compounds

Molekularna žarkovna epitaksija

Zelo dobra kontrola čistosti in sestave, dobra kontrola strukture v času rasti, natančnost debeline skoraj na atomsko plast.

Shema MBE

Molecular Beam Epitaxy (MBE) III–V compounds

MOCVD growth of III–V compounds

Schematic view of MOCVD chamber

MOCVD — high purity of materials, large-scale device-oriented technology

MOCVD growth of III–V compounds

Aixtron AIX2000
HT
(up to 6 x 2"
wafers)
Production
oriented growth
machine for the
fabrication of
device structures

LED: kako do svetlobe iz polprevodnika?

Fig. 7.5. Illustration of different geometric shapes of LEDs. (a) Rectangular parallelepipedal LED die with a total of six escape cones. (b) Cylindrical LED die with a top escape cone and a side escape ring.

Geometrija je pomembna zaradi loma na meji polprevodnika

Kaj omejuje izkostistek LED

• Grenzwinkel α_q : $\sin \alpha_q = n_2/n_1$ (\leftarrow Brechungsgesetz) n_2 (Luft) =1 $n_1 = 1.5 : \alpha_0 \approx 42^\circ$ $n_1 = 2.5 : \alpha_q \approx 24^\circ$ $n_1 = 3.5 : \alpha_q \approx 17^\circ$ Vergrößerung des Austrittskegels durch Überschichten mit z.B. Epoxy (n ≈ 1.5) · möglichst viele Austrittskegel ermöglichen $\eta(ext)=8\%$ $\eta(ext)=4\%$ Air Epoxy n_e $\eta(ext)>24\%$ Total internal Seitlicher reflection Escape Austritt Semiconductor ns **Transparentes** Substrat Active Laver nach Zuskaukas et al. Absorbing Substrate

Kako izboljšati izkoristek LED

Običajna svetleča dioda (LED)

Conduction band

Valence band

LED Materials

Inorganic

III – V Semiconductors

Al, Ga, In N, P, As, Sb

Al Ga As
Al Ga In P
Al Ga P
Ga N

Organic (OLED)

Polymeric luminescent molecules with conjugated electron systems

Polyphenylenvinylene

LED: kako do bele barve?

InGaN-QW/GaN/sapphire light-emitting chip + YAG Ce phosphor

Kako do svetlobe iz laserske diode?

Tipična laserska dioda manjše moči

Laserski resonatorji

Sestavljen laser za velike moči

OSVETLJEVANJE S SVETLEČIMI DIODAMI

Fotometrija

Fizikalne enote

Fiziološke enote

Svetlobni tok

W

Lumen

Svetilnost

Svetlobni tok / prostorskim kotom

Svetlost

Svetilnost / površino

Relativna občutljivost oči

Pri 555 nm velja 1 W = 680 lm ... definicija

```
• 700 nm 1 W
```

•
$$400 \text{ nm}$$
 $1 \text{ W} = 0.27 \text{ lm}$

Relativna občutljivost oči pri barvnem gledanju

Barve različnih LED in občutljivost oči

Učinkovitost svetlobnih izvorov za osvetljevanje

OSRAM LED za osvetljevanje

Туре	color temperature	Luminous Flux ^{1) page 23} $I_{\rm F} = 350 \text{ mA}$ $\Phi_{\rm V} \text{ (mlm)}$	Luminous Intensity ²⁾ page 23 $I_F = 350 \text{ mA}$ $I_V \text{ (mcd)}$
LCW W5AM-JYKX-4U9X	2700 K	52.000 82.000	16.750 (typ.)
LCW W5AM-JYJZ-4R9T LCW W5AM-JZKY-4R9T LCW W5AM-KXKY-4R9T	3000 K	52.000 71.000 61.000 97.000 71.000 97.000	15.400 (typ.) 19.800 (typ.) 21.000 (typ.)
LCW W5AM-JYKZ-409Q	3500 K	52.000 112.000	20.500 (typ.)
LCW W5AM-JZKX-4L8N LCW W5AM-KXKY-4L8N LCW W5AM-KYKZ-4L8N	4000 K	61.000 82.000 71.000 97.000 82.000 112.000	17.900 (typ.) 21.000 (typ.) 26.150 (typ.)
LCW W5AM-JZKZ-4J8K	4500 K	61.000 112.000	21.650 (typ.)

Maximum Ratings			
Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebstemperatur Operating temperature range	T_{op}	- 40 + 110	°C
Lagertemperatur Storage temperature range	$T_{ m stg}$	- 40 + 110	°C
Sperrschichttemperatur Junction temperature	T_{j}	125	°C
		100 1000	mA mA
Stoßstrom Surge current $t \le 10 \ \mu s, D = 0.005, T_A = 25 ^{\circ} C$	I_{FM}	2000	mA
Sperrspannung Reverse voltage $(T_{\rm A}$ =25°C)	V_{R}	not designed for reverse operation	V
Leistungsaufnahme Power consumption $(T_A=25^{\circ}\text{C})$	P_{tot}	4.0	W
Wärmewiderstand Thermal resistance Sperrschicht/Lötpad (max.) Junction/solder point	$R_{th\ JS}$	11	K/W

Farbtemperatur ^{2) Seite 23)}	(min.)	T	2500	K
Color temperature ^{2) page 23}		T		K
$I_{\rm F}$ = 350 mA	(max.)	T	4800	K
Abstrahlwinkel bei 50 % I _V (Vollwinkel)	(typ.)	2φ	170	Grad
Viewing angle at 50 $\%~\mathrm{I_V}$				deg.
Durchlassspannung 4) Seite 23)	(min.)	V_{F}	2.7	V
Forward voltage ^{4) page 23}	(typ.)	V_{F}	3.2	V
$I_{\rm F}$ = 350 mA	(max.)	V_{F}	3.8	V
Sperrstrom			not designed for	
Reverse current	(max.)	I_{R}	reverse operation	μΑ
Optischer Wirkungsgrad	(typ.)	η_{opt}	62	lm/W
Optical efficiency				
$I_{\rm F}$ = 350 mA, $T_{\rm C}$ = 3500 K				

Osvetljevalniki za mikroskopijo

Tehnologija LED v avtomobilih

Voll-LED-Scheinwerfer 2007/2008

Voll-LED Rückleuchte 2006

Erste Signalfunktionen im Scheinwerfer 2003

Hochgesetzte Bremsleuchte 1992

Primerjava avtomobilskih žarnic

	Glüh- lampe P21 W	Halogen- lampe H21 W	Halogen- lampe H7	Xenon- lampe D2 S	LED
Effizienz Im/W	18	25	25	90	50 - 90* (* Labor)
Lebens- dauer h	400 (Tc)	440 (Tc)	550 (Tc)	2000 (B50)	10000 - 50000 (B50)

Tc: 63 % Ausfälle, B50: 50 % Ausfälle

Laserska dioda 10 W

Data Sheet

10W 9xxnm Uncooled Multimode Laser Diode Module

BMU10A-9xx-01/02-R

Features:

- High output powers of 10W
- 0.15NA or 0.22NA 105µm core multimode optical fiber
- Hermetically sealed 2-pin package
- Floating anode/cathode
- High reliability
- Excellent solderability
- Standard wavelengths at 915, 940, 960, and 975nm (others available on request)

OCLARO 10 W laserska dioda z optičnim vlaknom

Features:

- High output powers of 10W
- 0.15NA or 0.22NA 105µm core multimode optical fiber
- Hermetically sealed 2-pin package
- Floating anode/cathode
- High reliability
- Excellent solderability
- Standard wavelengths at 915, 940, 960, and 975nm (others available on request)
- RoHS compliant

OCLARO 10 W laserska dioda z optičnim vlaknom - karakteristike

Parameter	Symbol	Typical	Unit
Fiber Coupled CW Output Power	Pop	10	W
Center Wavelength [1] BMU10A-915-01/02-R BMU10A-940-01/02-R BMU10A-960-01/02-R BMU10A-975-01/02-R BMU10A-975B-01/02-R	λ _c 915 λ _c 940 λ _c 960 λ _c 975 λ _c 975B	915 ± 10 940 ± 10 960 ± 10 975 ± 10 976 ± 3	nm
Spectral Width (95% of Power)	Δλ	6	nm
Threshold Current	l _{th}	600	mA
Slope Efficiency	$\eta_{D} = P_{op} / (I_{op} - I_{th})$	0.95	W/A
Conversion Efficiency	H= P _{op} /(V _{op} xI _{op})	48	%
Operating Current	l op	11.5	Α
Operating Voltage	V _{op}	1.9	٧
Operating Temperature	Top	25 ±5	°C

Uporaba močnostnih laserskih diod

- Črpanje (vlakenskih) laserjev
- Direktna uporaba snopa
- Obdelava materialov
- Tiskanje
- Medicinske aplikacije

Quantum cascade lasers

Band diagram

Layer sequence

Emission spectrum at room temperature

Light- and Volt-current characteristics

Multijunction solar cells provide conversion of the solar spectrum with higher efficiency. Achievable efficiency of multijunction cells is > 50%

Hvala za vašo pozornost!