

Measurement and Prediction of Radiative Non-equilibrium for Air Shocks Between 7-9 km/s

Brett A. Cruden
Aaron M. Brandis
AMA Inc at NASA Ames

AIAA AVIATION
Denver, CO
Jun. 12, 2017

Outline

- Motivation
- Experimental Approach
- Sample Data
 - Comparison of Data across two shock tubes at 0.14 Torr
 - Full data Set on <u>data.nasa.gov</u>
- Model Adjustments
 - Nitric Oxide (NO) Radiation
 - Revisions for Atomics, N2, N2+ in paper
- Comparison of Predictions to Data
 - 0.01 Torr and 0.70 Torr
 - 0.05, 0.14 and 0.3 Torr in paper
- Conclusions
- Outlook

Motivation

- About 8% of Lunar Return radiative heating occurs below 9 km/s
 - Based on current models
- Return from lower altitude (e.g. EFT1) is entirely in this speed regime
- Radiation phenomena not well validated in this speed regime

Approach

Entry Systems and Technology Division

Measurement by between 2-4 spectrometers covering 190-1450 nm

Conditions Measured

Entry Systems and Technology Division

- 51 shots between 7-9 km/s
 - 33 (27 good) on the 24" Tube (0.01, 0.05, 0.14 Torr)
 - 15 from 190-500 nm
 - 12 from 500-1450 nm
 - 18 (17 good) on the 4" Tube (0.14, 0.30, 0.50, 0.70 Torr)
 - All from 190-1450 nm
- Subset of 10 tests selected for further analysis (1 per pressure/wavelength/tube diameter combination):

Model Tests

Paper

Consistency Check

Shot No	Velocity (km/s)	Pressure (torr)	Range (nm)	Tube Diameter (cm)
15	8.18	0.01	190-500	60.33
32	8.57	0.01	500-1450	60.33
8	8.62	0.05	190-500	60.33
24	8.87	0.05	500-1450	60.33
20	8.29	0.14	190-500	60.33
22	8.36	0.14	500-1450	60.33
38	8.33	0.14	190-1450	10.16
42	8.09	0.3	190-1450	10.16
46	7.71	0.5	190-1450	10.16
50	7.34	0.7	190-1450	10.16

Sample Data (190-500 nm)

Entry Systems and Technology Division

Spectra are resolved in wavelength and position behind shock

Sample Data (500-1450 nm)

Entry Systems and Technology Division

Spectra are resolved in wavelength and position behind shock

Non-equilibrium Analysis

- (somewhat) arbitrarily assign ±2 cm of peak as "non-equilibrium zone"
- Integral of this, divided by tube diameter, is the "non-equilibrium metric"
- Presented as function of wavelength: "spectral non-equilibrium metric"

Spectral Non-equilibrium Metric

- Non-equilibrium metric composite from 4 different spectrometers
- Spectral Non-equilibrium Metric has units of radiance
 - It is equal to the radiance accumulated through the non-equilibrium zone if the non-equilibrium region is optically thin

- Spectral metric is larger in 4" tube than 24" tube
- Overlap region of spectrometer is consistent
- CN Contamination in 4" Tube
- Velocities differ, optical thickness may differ
 - Check predictions

DPLR/NEQAIR Comparison (190-500 nm)

- Some increase in radiation predicted at 8.33 km/s
- Increase is sensitive to rate model
- Prediction does not match data

Tube Disagreement (190-500 nm)

- Median disagreement: 46% (cf. 16% predicted)
 - Not clear how much of remaining 30% is due to errors in prediction or experiment
- Divergence at low wavelength
 - 24" Tube calibration suspect based on S/N
- CN contamination radiance

- Molecular emission (500-700 nm)
 - 4" Tube 30% larger than 24" Tube
- Atomic radiation significantly higher in 4" Tube
 - Lines may be optically thick

Predicted Non-equilibrium metric

- DPLR/NEQAIR prediction shows larger metric in 4" Tube
 - Indicates atomic lines are optically thick
- Molecular radiation not predicted by NEQAIR

N

Ratio of Tube measurements (500-890 nm)

Entry Systems and Technology Division

Ratio observed in EAST matches predicted ratio for atoms

Predictive Modeling

- DPLR/NEQAIR are used to produce 1D (stag. line) profiles for comparison to shock tube data
- Three "heritage" modeling options discussed
 - Park90 with Te=Tt (DPLR Default)
 - Park93 with Te=Tv
 - Johnston14 with Te=Tv (LAURA default)
- Revisions to Model will be discussed
 - Use data to guide reasonable modeling assumptions
 - Use third party measurements of input parameters
 - Do not "tune to fit"
 - Maintains some level of independence between model and data set

Spectral Non-equilibrium Metric

Entry Systems and Technology Division

Analysis will be divided by spectral features for discussion

NO Radiance

- NO Radiance from (primarily) γ, ε bands
 - Originate from $A^2\Sigma$ and $D^2\Sigma$ states
- Also δ band ($\mathbb{C}^2\Pi$)

NO Comparison to Heritage

Entry Systems and Technology Division

Underpredicted at all conditions, by all models

NO Boltzmann

Entry Systems and Technology Division

8.18 km/s, 0.01 Torr

7.34 km/s, 0.70 Torr

- Boltzmann Radiance is typically an upper bound for non-equilibrium radiation (in compression)
- Park models cannot match Boltzmann radiance at 0.7 Torr
 - Must check reaction rates
- Boltzmann radiation too high at 0.01 Torr
 - Non-Boltzmann model needs examination

NO Reaction Kinetics

Entry Systems and Technology Division

NO Formation is driven by so-called Zel'dovich exchange Reactions:

$$N_2 + O \leftrightarrow NO + N$$

 $O_2 + N \leftrightarrow NO + O$

NO Destruction depends on direct dissociation:

$$NO + M \leftrightarrow N + O + M$$

We opt to carry rates from combustion literature (Tsang/Baulch)

Impact on NO concentration (0.7 Torr)

- Updating Exchange Reactions increases peak NO density
- Reducing dissociation rate reduces decay
- Changing the ratio of dissociation by atoms vs. molecules further increases NO density
 - Johnston follows Park : ratio is 22
 - Figure shows ratio of 1.0
 - Tsang recommended ratio of <1

NO Non-Boltzmann modeling

Entry Systems and Technology Division

- For these conditions, NO non-Boltzmann is dominated by heavy particle processes
- Internal excitation:

$$NO(X) + M \leftrightarrow NO(A,C,D) + M$$

Heavy particle impact Dissociation:

$$NO(A,C,D) + M \leftrightarrow N + O + M$$

- Internal excitation rates in NEQAIR are only approximate, fundamental data is not available
- The reverse of internal excitation is quenching: rates are available at 300K. Assume:

$$k_q = k_{q,0} \sqrt{\frac{T_t(K)}{300}}$$

- Heavy particle impact dissociation is updated to be consistent with rate chemistry
- Ratio of atomic to molecular driven dissociation is still undetermined

Adjust Atom/Molecule Rates

- Rates adjusted consistently in DPLR and NEQAIR
- Ratio of 5 matches 0.7 Torr data
- NO δ is overpredicted at 0.01 Torr
 - Possibly experimental error due to lower sensitivity in this region

Summary of Model Revisions

Entry Systems and Technology Division

Flowfield model

- Update NO dissociation and exchange rates to be consistent with combustion literature
- Alter ratio of NO dissociation by atoms vs. molecules to 5
- Electron impact dissociation rate from radiation model used for flowfield
- Associative Ionization controlled by T_e
- Update selected charge exchange rates
- Non-Boltzmann Radiation Model Molecules
 - Heavy particle dissociation rate consistent with flowfield dissociation rate
 - Use quenching rates from literature to calculate heavy particle excitation rates for molecules
 - Electron impact dissociation calculation corrected
 - Estimate and include contributions from excited states
- Non-Boltzmann Radiation Model Atoms
 - Excitation rates updated to hybrid of Huo (dipole allowed) and Park (unallowed)
 - Include Associative Ionization process

- NO and N₂⁺ underpredictions rectified (mostly)
- N₂ 2nd Positive Somewhat Overpredicted
- Reasonable match to temporal trend

- N₂⁺ still overpredicted
- N2 2nd Positive overpredicted
- NO matched 240-290nm (Gamma bands)
- NO overpredicted < 240 nm (Epsilon bands)

- N₂ 1st Positive Matched
- Atomic lines nearly matched
- Reasonable match to temporal trend

- Underprediction N₂ 1st Positive Matched
- Extra atomic lines eliminated
- Other atomic lines underpredicted
- Temporal trend shows spike at shock front

- Atomic overprediction eliminated, lines that are present are reasonably close
- Missing molecular radiation source (TBD)
- Temporal trend looks ok

- Atomic overprediction eliminated
- Integral matches data
- Spike observed at shock front, trend otherwise ok

Summary

Entry Systems and Technology Division

- Non-equilibrium Radiation Data Measured from 7-9 km/s at 6 freestream pressures from 0.01-0.70 Torr
 - Comparison across two tubes with different diameter, calibration source indicate confidence in data of ~30% (in UV) or better (Vis/NIR)
 - Presentation focuses on highest and lowest pressure ranges
- Agreement to Predictive (DPLR/NEQAIR) Model has been improved
 - Underprediction of N₂/NO resolved by changes to rate chemistry, heavy particle excitation rates
 - N₂⁺ overpredicted at low pressure, revised rate/excitation model fixes underprediction at high pressure
 - Predctiion of atomic radiation improved by
 - Changing excitation model (high energy states)
 - Including associative ionization in non-Boltzmann model (3p states)
- How does your model do?

https://data.nasa.gov/docs/datasets/aerothermodynamics/EAST/index.html

Work to go

- Low pressure overpredictions of
 - N₂⁺: State specific associative ionization?
 - NO, N₂: Pre-dissociation rates?
- Missing molecular features in infrared (high pressure)
- Spike in shock front at low pressure
- Underpredicted atomic lines at low pressure
- non-Boltzmann associative ionization model : needs realistic statewise rates

Backup

Spectral Non-equilibrium Metric

Entry Systems and Technology Division

Identification of features suggests regions for further analysis

Reaction Rates

Entry Systems and Technology Division

 There are between up to 23 reactions rates across the 3 models, 11 of which have some differences:

	NO + M	\leftrightarrow	Ν	+ 0 +	M	increased by Johnston
	$N_2 + O$	\leftrightarrow	NO	+ N		Johnston used rate from Fujita, 2006
	NO + O	\leftrightarrow	O_2	+ N		Johnston uses rate from Bose, 1997
se rates not important	N + O	\leftrightarrow	NO ⁺	+ 6 ₋		Updated Park93, Johnston/Park90 same
	N + N	\leftrightarrow	N_2^+	+ e		Updated Park93, Johnston/Park93 same
	0 + 0	\leftrightarrow	0,+	+ c		Updated Park93, Johnston/Park93 same
	O+ + NO	\leftrightarrow	N+	+ O ₂		Activation energies differ
	N ⁺ + N ₂	\leftrightarrow	N_2^+	+ N		Missing from Park90, Johnston/Park93
	O ₂ + + O same	\leftrightarrow	O ⁺	+ O ₂		Missing from Park90*, Johnston/Park93
These	N ₂ + e	\leftrightarrow	N	+ N +	е	Differs across all three chemistries
	O ₂ + e	\leftrightarrow	02+	+ e		Missing from Park90/Park93

^{*} As implemented in DPLR

Revised Kinetic Model

Entry Systems and Technology Division

Reaction	M	A (cm ³ /mol·s)	n	$E_{a}\left(K\right)$	Controlling Temperature	Ref
$N_2 + M \rightarrow 2N + M$	Molecule Atom	$7.0 \times 10^{21} \\ 3.0 \times 10^{22}$	-1.6	113,200	$\sqrt{TT_{ev}}$	[5]
	e ⁻	1.2×10^{7}	2.69		T _e	This work
$O_2 + M \rightarrow 20 + M$	Molecule	2.0×10^{21}	-1.5	59,500	$\sqrt{\mathrm{TT}_{\mathrm{ev}}}$	[5]
	Atom	1.0×10^{22}	-1.3	37,300	VII ev	[2]
$NO + M \rightarrow N + O + M$	Molecule	1.5×10^{15}			$\sqrt{TT_{ev}}$	[21]
	Atom	7.3×10^{15}	0	74,570	VII ev	This work
	e ⁻	5.7×10^{18}			T _e	This work
$N + e^{-} \rightarrow N^{+} + 2e^{-}$		2.5×10^{34}	-3.82	168,600	$T_{\rm e}$	[6]
$O + e^- \rightarrow O^+ + 2e^-$		3.9×10^{33}	-3.78	158,500	T _e	[5]
$N_2 + O \rightarrow NO + N$		1.8×10^{14}	0	38,249	T_t	[24]
$O_2 + N \rightarrow NO + O$		9.0×10^{9}	1.0	3,270	T_t	[24]
$N + O \rightarrow NO^{+} + e^{-}$		8.8×10^{8}	1.0	31,900	T _e	[6]
$N + N \rightarrow N_2^+ + e$		4.4×10^{7}	1.5	67,500	$T_{\rm e}$	[6]
$O + O \rightarrow O_2^+ + e$		7.1×10^{2}	2.7	80,600	T _e	[6]
$N^+ + N_2 \rightarrow N_2^+ + N$		7.0×10^{6}	1.47	13,130	T_t	This work
$O^+ + N_2 \rightarrow N_2^+ + O$		9.1×10^{11}	0.36	22,800	T_t	[5]
$O_2^+ + O \rightarrow O^+ + O_2$		4.0×10^{12}	-0.09	18,000	T_{t}	[6]
$O^+ + NO \rightarrow N^+ + O_2$		1.4×10^{5}	1.9	26,600	T_{t}	[6]
$NO^+ + O_2 \rightarrow O_2^+ + NO$		2.4×10^{13}	0.41	32,600	T_t	[5]
$NO^+ + N \rightarrow N_2^+ + O$		7.2×10^{13}	0	35,500	T_t	[5]
$NO^+ + O \rightarrow N^+ + O_2$		1.0×10^{12}	0.5	77,200	T_{t}	[5]
$O_2^+ + N \rightarrow N^+ + O_2$		8.7×10^{13}	0.14	28,600	T_t	[5]
$O_2^+ + N_2 \rightarrow N_2^+ + O_2$		9.9×10^{12}	0	40,700	T_t	[5]
$NO^+ + N \rightarrow O^+ + N_2$		3.4×10^{13}	-1.08	12,800	T_t	[5]
$NO^+ + O \rightarrow O_2^+ + N$		7.2×10^{12}	0.29	48,600	T_t	[5]
$NO + N^{+} \rightarrow NO^{+} + N$		1.8×10^{12}	0.57	0	T_t	This work

Park 90

Park 93

Combustion Literature

Evaluated from ion collision cross-section data

From electron-impact cross-sections

Adjusted to match data

Entry Systems and Technology Division

N₂ Model

N₂ Radiance

Entry Systems and Technology Division

N₂ Features from

- 1st Positive System (B $^3\Pi \rightarrow A^3\Pi$) 500-750 nm

- 2nd Positive System ($C^3\Pi \rightarrow B^3\Pi$) 280-390 nm

N₂ 1st Positive

- Underpredicted at all conditions
- Bonus Atomic Lines!

N₂ 2nd Positive

Entry Systems and Technology Division

8.18 km/s, 0.01 Torr

7.34 km/s, 0.70 Torr

- Underpredicted at all conditions
- Partly obscured by N₂⁺ radiation at 0.01 Torr

Update to N₂ QSS

Entry Systems and Technology Division

7.34 km/s, 0.70 Torr

- Changing NO rates reduced underprediction @ 0.7 Torr
- Introducing N₂ Quenching rates brought data into overprediction
- Updating electron impact processes obtains near-agreement
 - Slight underprediction of N₂ 1st Positive, overprediction of 2nd Positive
- 0.01 Torr data (not shown) now overpredicted in UV, matched in Visible

Entry Systems and Technology Division

N₂+ Model

N₂+ Radiance

Entry Systems and Technology Division

- N₂⁺ Radiation from
 - 1st Negative System (B²Σ→X²Σ)

320-500 nm

N₂⁺ Comparison to Heritage

Entry Systems and Technology Division

8.18 km/s, 0.01 Torr

7.34 km/s, 0.70 Torr

- Underpredicted at high pressure
- Overpredicted at low pressure
 - Park90 gets right magnitude, but transient (not shown) is incorrect

N₂⁺ after updates

Entry Systems and Technology Division

8.18 km/s, 0.01 Torr

7.34 km/s, 0.70 Torr

- Discrepancy at higher pressure mostly solved by revisions to rate model
- Low pressure discrepancy remains

Low Pressure N₂⁺: Controlling Reaction

Entry Systems and Technology Division

 N_2 primarily formed by associative ionization:

$$N+N\longleftrightarrow N_2^++e^-$$

 This rate typically controlled by T_t: becomes rapid when thermal non-equilibrium is significant

- However, ground state N does not cross N₂+ states
- Reactions proceed through metastable (and possibly excited) N atoms
- This creates dependence on T_e

Change Controlling Temperature

- Experimental Radiation profile matches N₂⁺ density when T_e controlling
- The predicted radiance (and profile) does not match, however

Atomic Radiance

Entry Systems and Technology Division

Atomic Radiation

3p states
 700-900 nm

3d states
 900-1450 nm

N, O 3p Comparison to Heritage

Entry Systems and Technology Division

O atom:

- 777 nm underpredicted at all cases
- 845 nm underpedicted high pressure, matched low pressure

N atom:

- Low pressure : Fair agreement
- High pressure : adjusting for baseline, matched by Park93/Johnston, overpredicted by Park90

Entry Systems and Technology Division

8.18 km/s, 0.01 Torr

7.34 km/s, 0.70 Torr

Significant overprediction, all lines/pressures

Internal Excitation Rates

Entry Systems and Technology Division

Peak Radiance

7.34 km/s, 0.7 Torr

$$T_t = 10,598K$$

$$T_e = 10,645K$$

$$N = 1.27 \times 10^{17} \text{ cm}^{-3}$$

$$N^+ = 2.42 \times 10^{14} \text{ cm}^{-3}$$

- Park rates place 3d states at Boltzmann level (overpredicted)
- Huo rates equilibrate all states closer to ionization level
- Zatsarinny rates place highest states near ionization limit, lower states progress toward Boltzmann
- Hybrid Huo/Park equilibrates between Boltzman/Saha

Impact of Excitation Rate on Radiance

- Revised rates underpredict 3p atomic lines
- Three alternatives eliminate 3d overprediction
- Huo/Park slightly higher than Huo or Zatsarinny

Additional Processes

Entry Systems and Technology Division

Peak Radiance

7.34 km/s, 0.7 Torr

$$T_t = 10,598K$$

$$T_e = 10,645K$$

$$N = 1.27 \times 10^{17} \text{ cm}^{-3}$$

$$N^+ = 2.42 \times 10^{14} \text{ cm}^{-3}$$

- Traditionally, QSS balances internal excitation with ionization
- But, Ionization accounts for 0.15% of N atom chemistry
- N atom mass derivative is:
 - 81% exchange reactions
 - 10% molecular dissociation
 - 9% associative ionization

Including Dissociative Recombination in QSS

- State-wise associative ionization rates assumed proportional to overall associative ionization rates
- Preference factors dictate which atomic states are formed from a given ion state
- Best agreement uses literature data for ground state preference, no preference for other states of N₂⁺

Flip-through of Non-equilibrium Metric Comparisons

Non-equilibrium - 190-500 nm (0.01 Torr, 8.2 km/s)

- All models underpredict NO
- N₂⁺ overpredicted by T_e=T_v options, Heritage does ok
- N₂ 2nd Positive underpredicted

Non-equilibrium - 190-500 nm (0.05 Torr, 8.6 km/s)

- NO still underpredicted
- N₂+ improving for T_e=T_v options, Heritage now too low
- N₂ 2nd Positive still underpredicted

Non-equilibrium - 190-500 nm (0.14 Torr, 8.3 km/s)

- NO still underpredicted
- N₂⁺ slightly over for T_e=T_v options, Heritage underpredicts
- N₂ 2nd Positive underpredicted

Non-equilibrium - 190-500 nm (0.14 Torr, 8.3 km/s)

- NO underpredicted
- N₂⁺ matched for T_e=T_v options, Heritage underpredicts
 - CN contamination accounts for disagreement at 388 nm
- N₂ 2nd Positive underpredicted

Non-equilibrium - 190-500 nm (0.30 Torr, 8.1 km/s)

- NO underpredicted
- N₂⁺ matched for T_e=T_v options, Heritage underpredicts
 - CN contamination accounts for disagreement at 388 nm
- N₂ 2nd Positive underpredicted

Non-equilibrium - 190-500 nm (0.50 Torr, 7.7 km/s)

- NO still underpredicted
- N₂+ being underpredicted
 - Worse for Heritage
- N₂ 2nd Positive underpredicted

Non-equilibrium - 190-500 nm (0.70 Torr, 7.3 km/s)

- NO still underpredicted
- N₂⁺ more underpredicted
 - Heritage and newer models becoming more similar
- N₂ 2nd Positive underpredicted

Non-equilibrium – 190-500 nm (0.70 Torr, 7.3 km/s)

Entry Systems and Technology Division

10 cm tube – with Boltzmann state populations

- NO matched with Boltzmann distribution for Johnston rates
- N₂⁺ and N₂ are overpredicted by Boltzmann model

Summary 190-500 nm

- NO is always underpredicted
- N2 2nd Positive always underpredicted
- N2+ 1st Negative underpredicted at high pressure, overpredicted at low pressure

Non-equilibrium - 500-890 nm (0.01 Torr, 8.6 km/s)

- Broad features due to N₂ 1st Positive absent from prediction
- High level (4d,5s) N and O lines absent from data
- O 3p: 777 underpredicted, 845 underpredicted
- N 3p : overpredicted
- Errors cancel out when integrated radiance appears well matched

Non-equilibrium - 500-890 nm (0.05 Torr, 8.9 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines still overpredicted
- O 3p: underpredicted, but closer than before
- N 3p: matched by Park90/Park93, overpredicted Johnston
- Errors cancel out when integrated Johnston appears to matched

Non-equilibrium - 500-890 nm (0.14 Torr, 8.4 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines still overpredicted
- O 3p: matched by heritage model, underpredicted other models
- N 3p: overpredicted by heritage, matched other models

Non-equilibrium - 500-890 nm (0.14 Torr, 8.3 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines overpredicted
- O 3p: matched by heritage model, underpredicted other models
- N 3p: overpredicted by heritage, matched other models

Non-equilibrium - 500-890 nm (0.30 Torr, 8.1 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines overpredicted, but less significantly
- O 3p: matched by heritage model, underpredicted other models
- N 3p: further overpredicted by heritage, matched other models

Non-equilibrium - 500-890 nm (0.50 Torr, 7.7 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines overpredicted
- O 3p: matched by heritage model, underpredicted other models
- N 3p: overpredicted by heritage, matched other models

Non-equilibrium - 500-890 nm (0.70 Torr, 7.3 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines overpredicted
- O 3p: underpredicted all models
- N 3p: overpredicted by heritage, matched other models
 - Apparent disagreement due to missing underlying N₂ radiation

Non-equilibrium – 500-890 nm (0.70 Torr, 7.3 km/s)

- Boltzmann matches N₂ 1st Positive (Heritage slightly over)
- High level (4d,5s) N and O lines overpredicted by Boltzmann
- O 3p matched by Boltzmann (all models)
- N 3p: slightly overpredicted at Boltzmann

Impact of Alternate N Atom Excitation Cross-section

- Huo excitation cross-sections
 - Eliminate spurious radiation from N 4d, 5s
 - Underpredict N 3p features

Summary 500-890 nm

- N₂ is always underpredicted
- Spurious N and O lines originating from 4d, 5s states
- N 3p lines
 - Matched by Park90 (Te=Tt) at 0.05 Torr, overpredicted elsewhere
 - Matched by Johnston at 0.14-0.7 Torr, overpredicted at lower pressure
 - Matched by Park93 at 0.05-0.7 Torr, overpredicted at lower pressure
- O 3p lines
 - Underpredicted by Park93/Johnston, except at 0.01 Torr
 - 845 nm line overpredicted at 0.01 Torr
 - Heritage approach
 - Nearly matches 845 nm line from 0.01-0.50 Torr
 - Underpredicts 777 nm line, but not badly

60 cm tube

All lines in this range overpredicted

- Most lines overpredicted
 - Park90 matches 1362 nm line
 - N 3p line (939 nm) less overpredicted than others

60 cm tube

All lines overpredicted

10 cm tube

All lines overpredicted

Non-equilibrium - 890-1450 nm (0.30 Torr, 8.1 km/s)

NASA

Entry Systems and Technology Division

- All lines overpredicted
- N 3p line (939 nm) near match by Park93/Johnston

Non-equilibrium - 890-1450 nm (0.50 Torr, 7.7 km/s)

NASA

Entry Systems and Technology Division

- Most lines overpredicted
- N 3p line (939 nm) matched by Park93/Johnston

Non-equilibrium - 890-1450 nm (0.70 Torr, 7.3 km/s)

Entry Systems and Technology Division

- Most lines overpredicted
- N 3p line (939 nm) matched by Park93/Johnston
- Continuum (N₂ Band) not predicted

NASA

Alternate N Excitation Cross Sections

Entry Systems and Technology Division

- Alternate cross-sections underpredict N 3p line
- Other lines near noise limit
- O atoms unchanged

10 cm tube (Boltzmann)

Boltzmann improves background agreement, lines still too intense

Summary 890-1450 nm

- Atomic Lines originating from higher states generally over predicted
- One N 3p line is matched well by Park/Johnston from 0.3-0.7 Torr
- Molecular radiation at 0.7 Torr mostly matched under Boltzmann

Predictive Summary

Entry Systems and Technology Division

- Agreement to Predictive (DPLR/NEQAIR) Model is mixed
 - Molecular radiation from N₂/NO is underpredicted
 - Boltzmann distribution takes up underprediction for N₂ B state and NO radiation
 - N₂ C state is overpredicted by Boltzmann
 - N₂⁺ radiation prediction varies with pressure
 - At low pressure: overpredicted for T_e=T_v, matched by heritage model
 - Reasonably matched for intermediate pressure range
 - Underpedicted at high pressure
 - High lying N, O state radiation overpredicted
 - Radiation from 3p states of N predicted well, except at lowest pressure
 - Radiation from 3p states of O mostly underpredicted
- How does your model do?

https://data.nasa.gov/docs/datasets/aerothermodynamics/EAST/index.html (Test 59 - available soon)