Paralle!//

Operationalizing Edge Machine Learning with Apache Spark

ParallelM

Growing Al Investments; Few Deployed at Scale

Survey of 3073 Al-aware C-level Executives

Out of 160 reviewed But successful early Al use cases: Al adopters report: Profit margins 88% did not 3-15% progress higher than beyond the industry experimental average stage

Source: "Artificial Intelligence: The Next Digital Frontier?", McKinsey Global Institute, June 2017

Challenges of Deploying & Managing ML in Production

- Diverse focus and expertise of Data Science & Ops teams
- Increased risk from non-deterministic nature of ML
- Current Operations solutions do not address uniqueness of ML Apps

Challenges of Edge/Distributed Topologies

IoT is Driving Explosive Growth in Data Volume

- Varied resources at each level
- Scale, heterogeneity, disconnected operation

What We Need For Operational ML

- Accelerate deployment & facilitate collaboration between Data & Ops teams
- Monitor validity of ML predictions, diagnose data and ML performance issues
- Orchestrate training, update, and configuration of ML pipelines across distributed, heterogeneous infrastructure with tracking Parallel/\(\Delta\)

5

What We Need For Edge Operational ML

- Distribute analytics processing to the optimal point for each use case
- Flexible management framework enables:
 - Secure centralized and/or local learning, prediction, or combined learning/prediction
 - Granular monitoring and control of model update policies
- Support multi-layer topologies to achieve maximum scale while accommodating low bandwidth or unreliable connectivity

MLOps - Managing the full Production ML Lifecycle

Our Approach

Operational Abstraction

- Link pipelines (training and inference) via an ION (Intelligence Overlay Network)
- Basically a Directed Graph representation with allowance for cycles
- Pipelines are DAGs within each engine
- Distributed execution over heterogeneous engines, programming languages and geographies

Example - KMeans Batch Training
Plus Streaming Inference
Anomaly Detection

An Example ION to Resource Mapping

Pipeline Examples

Training Pipeline (SparkML)

Inference Pipeline (SparkML)

Instrument, Upload, Orchestrate, Monitor

Integrating with Analytics Engines (Spark)

Job Management

- Via SparkLauncher: A library to control launching, monitoring and terminating jobs
 - PM Agent communicates with Spark through this library for job management (also uses Java API to launch child processes)

Statistics

- Via SparkListener: A Spark-driver callback service
- SparkListener taps into all accumulators which, is one of the popular ways to expose statistics
- PM agent communicates with the Spark driver and exposes statistics via a REST endpoint

ML Health / Model collection and updates

 PM Agent delivers and receives health events, health objects and models via sockets from custom PM components in the ML Pipeline

Demo Description

Paralle ///

Thank You!

Nisha Talagala nisha.talagala@parallelm.com

Vinay Sridhar

vinay.sridhar@parallelm.com

What We Need For Edge Operational ML

- Distribute analytics processing to the optimal point for each use case
- Flexible management framework enables:
 - Secure centralized and/or local learning, prediction, or combined learning/prediction
 - Granular monitoring and control of model update policies
- Support multi-layer topologies to achieve maximum scale while accommodating low bandwidth or unreliable connectivity

Integrating with Analytics Engines (TensorFlow)

Job Management

- TensorFlow Python programs run as standalone applications
- Standard process control mechanisms based on the OS is used to monitor and control TensorFlow programs

Statistics Collection

• PM Agent parses contents via *TensorBoard* log files to extract meaningful statistics and events that data scientists added

ML Health / Model collection

Generation of models and health objects is recorded on a shared medium

An Example ION

