Clutch size is dependent on multiple variables:

Symbol	description
a	fraction of sons aborted
C	clutch size
E	total energy invested in clutch
$e_daughter$	energy investment to produce one healthy daughter
e_son	energy investment to produce one healthy son
s	primary sex ratio

Clutch size general formula without abortion:

$$C\left(s\right) = \frac{E}{e_son \, s + e_daughter \, (1 - s)}$$

Clutch size general formula with all sons aborted:

$$C\left(s\right) = \frac{E}{e_abort\,s + e_daughter\,\left(1 - s\right)}$$

Clutch general formula, where a denotes the fraction of sons that are aborted:

$$C\left(s,a\right) = \frac{E}{\left(1-a\right) \; a \; e_abort \; e_son \, s + e_daughter \; \left(1-s\right)}$$

Assuming s = 0.5, this results in:

$$C\left(0.5,a\right) = \frac{E}{0.5\left(1-a\right)\;a\;e_abort\;e_son + 0.5\;e_daughter}$$