EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Field Effect Transistors

FET vs BJT:

FET and BJT are three-terminal devices.

BJT is current-controlled device. JFET is voltage-controlled device.

BJT $\rightarrow npn$ and pnp. JFET $\rightarrow n$ -channel and p-channel.

BJT \rightarrow bipolar device = conduction level is function of two charge carriers. FET \rightarrow unipolar device = electron (*n*-channel) or hole (*p*-channel) conduction.

Input impedance \rightarrow FET >> BJT.

Sensitivity to changes in applied signal \rightarrow BJT >> FET.

AC voltage gain \rightarrow BJT >> FET.

Temperature stability \rightarrow FET >> BJT.

Size \rightarrow BJT >> FET.

Field Effect Transistors

Types of FETs:

- 1) Junction field-effect transistor (JFET).
- 2) Metal-oxide-semiconductor field-effect transistor (MOSFET).
 - i) Depletion type MOSFET.
 - ii) Enhancement type MOSFET.
- 3) Metal-semiconductor field-effect transistor (MESFET).

Construction of JFETs

- Source → through which majority carriers enter into channel.
- Drain → through which majority carriers leave from channel.
- Gate → two internally connected heavily doped impurity region.
- Channel →
 region between source and drain.
 sandwiched between two gates.
- No-bias condition \rightarrow two p-n junctions. depletion region at each junction.

 V_{GS} = 0 V, V_{DS} = Some +ve value

Depletion region is wider near top of both p-type Reason for change in width \rightarrow $^{\circ + 2}$ $^{\circ}$

 V_{DS}

 V_P

n

 I_D does not drop off at pinch-off \rightarrow

absence of I_D = absence of different potential levels through n-channel. loss of depletion region distribution.

$$V_{DS} > V_P \rightarrow$$

region of close encounter between two depletion regions increases in length.

level of I_D remains same.

JFET = characteristics of current source.

current is fixed at $I_D = I_{DSS}$

 I_{DSS} = maximum drain current Condition = V_{GS} = 0 V and V_{DS} > $|V_P|$.

 V_{GS} < 0 V \rightarrow

 V_{GS} is controlling voltage of JFET.

For *n*-channel, V_{GS} is made more and more -ve.

Effect of applied negative-bias →

Establish depletion regions = obtained with V_{GS} = o V at lower levels of V_{DS} .

Reach saturation level at lower level of V_{DS} .

Ohmic or voltage-controlled resistance region \rightarrow JFET is employed as variable resistor. resistance is controlled by applied V_{GS} . V_{GS} becomes more and more negative = resistance level increases.

$$r_d = \frac{r_o}{(1 - V_{GS}/V_P)^2}$$
 $r_o = \text{resistance with } V_{GS} = \text{o V}$
 $r_d = \text{resistance at particular level of } V_{GS}$

For *n*-channel JFET \rightarrow $r_o = 10 \text{ k}\Omega \text{ (}V_{GS} = 0 \text{ V}, V_P = -6 \text{ V}\text{)}$ $r_d = 40 \text{ k}\Omega \text{ at } V_{GS} = -3 \text{ V}.$

Transfer characteristics = plot of I_D versus V_{GS} . Shockley's equation \rightarrow

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

 I_{DSS} , V_P = constants. V_{GS} = control variable. nonlinear relationship between I_D and V_{GS} , curve grows exponentially with decreasing $|V_{GS}|$.

