統計学II

早稲田大学政治経済学術院 西郷 浩

本日の目標

- χ²検定
 - 適合度の検定
 - 独立性の検定
- p 値

適合度の検定(1)

実験

- サイコロを6,000回投げる。
- 結果

表1:サイコロ投げの結果

出目	1	2	3	4	5	6	合計
度数	1,041	1,010	976	1,000	985	988	6,000

- このサイコロは公正(すべての目が等しい確率で出現する)か?
- 不十分な解法
 - ・どれか一つの目に注目して、成功確率の検定を適用する。
 - 他の目の情報が活用できない。
 - それぞれの目に、成功確率の検定を適用する
 - 有意水準の制御が困難。

適合度の検定(2)

- χ^2 分布にもとづく適合度の検定
 - 仮説の設定
 - H_0 : $p_k = \frac{1}{6} (k = 1, 2, ..., 6)$ - ただし、 $p_k = P(出目がkになる)$
 - H_1 : $p_k \neq \frac{1}{6}$ (for some k)
 - H₀の下での期待度数を計算する。
 - $E_k = np_{k(0)} (k = 1, 2, ..., 6)$ - 例: $E_1 = 6000 \times \frac{1}{6} = 1000$

適合度の検定(3)

表2:観察度数と(H₀のもとでの)期待度数

出目	1	2	3	4	5	6	合計
O_k	1,041	1,010	976	1,000	985	988	6,000
E_k	1,000	1,000	1,000	1,000	1,000	1,000	6,000

- 検定統計量

•
$$W = \sum_{k=1}^{6} \frac{(O_k - E_k)^2}{E_k}$$

- W の性質
 - » H₀ が正しいとき、W は小さくなりやすい。
 - » H₀ が正しくないとき、W は大きくなりやすい。
- $-H_0$ が真とき、W は自由度 5=6-1 の χ^2 分布にしたがう。

適合度の検定(4)

- 検定手続き(有意水準0.05)
 - もし、 $W_{obs} > \chi^2_{0.95}(5) = 11.07$ なら、 H_0 を棄却する。
 - もし、そうでなければ、H₀を棄却しない。
 - ただし、 $\chi^2_{0.95}(5)$ は、自由度5の χ^2 分布の下側0.95(上側0.05)点
- 検定の結果

•
$$W_{obs} = \frac{(1041 - 1000)^2}{1000} + \dots + \frac{(988 - 1000)^2}{1000} = 2.73 < 11.07$$

H₀は棄却されない。

独立性の検定(1)

・ 習慣的な朝食の摂取状況

表3:男女別朝食の摂取状況

性別		슴計			
	6-7/w	4-5/w	2-3/w	0-1/w	
男性	2,641	182	75	332	3,230
女性	3,323	223	53	218	3,817
合計	5,964	405	128	550	7,047

資料:厚生労働省「平成23年国民健康・栄養調査」

- 朝食の摂取状況に男女差があるか?

独立性の検定(2)

- 行和に対する相対度数

表4:行和に対する相対度数(%)

性別		合計			
	6-7/w	4-5/w	2-3/w	0-1/w	
男性	81.8	5.6	2.3	10.3	100.0
女性	87.1	5.8	1.4	5.7	100.0
合計	84.6	5.7	1.8	7.8	100.0

資料:表4

- 女性の方が朝食をきちんと取る人の割合が大きい。
- はっきりとした差があるかどうかは客観的に判断すべき。
 - 独立性に関するχ²検定

独立性の検定(3)

- 独立性に関するχ²検定
 - 仮説の設定
 - H₀: 性別(X)と朝食の摂取状況(Y)とが独立である。
 - H₁:性別(X)と朝食の摂取状況(Y)とが独立でない。
 - 仮説の再表現

•
$$p_j = P(X = x_j)$$
 $x_1 = 男性, x_2 = 女性$

•
$$q_k = P(Y = y_k)$$
 $y_1 = 6 - 7/w$, ..., $y_4 = 0 - 1/w$

独立性の検定(4)

- H_0 : $X \succeq Y$ が独立である。 $\Leftrightarrow P(X = x_j, Y = y_k) = P(X = x_j)P(Y = y_k) = p_j q_k$ for all (j, k).
- H_1 : $X \succeq Y$ が独立でない。 $\Leftrightarrow P(X = x_j, Y = y_k) \neq P(X = x_j)P(Y = y_k) = p_j q_k$ for some (j, k).
- $-H_0$ は、 p_i や q_k の値を指定していない。
 - データから推定できる。

独立性の検定(5)

- H_0 (朝食の摂取状況に男女差がない)が正しいときの q_k の推定
 - $\hat{q}_1 = P(Y = 6 7/w | 男女差がない) = \frac{2641 + 3323}{3230 + 3817} = \frac{5964}{7047} = 0.846$
 - 同様にして、 $\hat{q}_2 = 0.057$, $\hat{q}_3 = 0.018$, $\hat{q}_4 = 0.078$
- H_0 (朝食の摂取状況に男女差がない)が正しいときの p_j の推定
 - $\hat{p}_1 = P(X =$ 男性|朝食の摂取状況に差がない $) = \frac{3230}{7047} = 0.458$ 同様にして、 $\hat{p}_2 = 0.542$
- H₀が正しいときの期待度数
 - $\hat{E}_{jk} = n\hat{p}_j\hat{q}_k$ - 例: $\hat{E}_{11} = 7047 \times \frac{3230}{7047} \times \frac{5964}{7047} = 2734$

独立性の検定(6)

- 観察度数と期待度数

表5:観察度数 O_{jk} と $(H_0$ のもとで推定された)期待度数 E_{jk}

性別		ᄉᆗ				
	6-7/w	4-5/w	2-3/w	0-1/w	合計	
男性	2,641	182	75	332	2 220	
	2,734	186	59	252	3,230	
女性	3,323	223	53	218	2 017	
	3,230	219	69	298	3,817	
合計	5,964	405	128	550	7,047	

独立性の検定(7)

- 検定統計量

•
$$W = \sum_{j=1}^{J} \sum_{k=1}^{K} \frac{(O_{jk} - E_{jk})^2}{E_{jk}}$$

- W の性質
 - » H₀ が正しいとき、W は小さくなりやすい。
 - » H₀ が正しくないとき、W は大きくなりやすい。
- H_0 が正しいとき、W は自由度 $(J-1) \times (K-1) = (2-1) \times (4-1) = 3$ の χ^2 分布にしたがう。

独立性の検定(8)

- 検定手続き(有意水準0.05)
 - もし、 $W_{obs} > \chi_{0.95}^2(3) = 7.8147$ なら、 H_0 を棄却する。
 - もし、そうでなければ、H₀を棄却しない。
 - ただし、 $\chi^2_{0.95}(3)$ は、自由度3の χ^2 分布の下側0.95(上側0.05)点
- 検定の結果

•
$$W_{obs} = \frac{(2641 - 2734)^2}{2734} + \dots + \frac{(218 - 298)^2}{298} = 61.1 > 7.8147$$

H₀は棄却される。

p値(1)

- p値
 - 右側検定でのp値の計算方法(定義)
 - $p value = P(W > W_{obs}|H_0)$
 - H₀が正しいときの、検定統計量の標本分布において、観察された検定統計量よりも右側の裾の面積
 - H₀ の信憑性の尺度と解釈されることもある。 » p値が小さいほど、H₀ が疑わしい。
 - 有意水準0.05の検定の実行方法(2つ)
 - 検定統計量 > 有意水準0.05の臨界値 ⇒H₀を棄却する。
 - p値 < 0.05 ⇒ H_0 を棄却する。
 - 両方ともH₀の採否については同じ結論を導く。

p値(2)

図1:サイコロの実験における棄却域と有意水準

p値(3)

図2:サイコロの実験におけるp値と有意水準

p値(4)

図3:朝食摂取状況データにおける棄却域と有意水準

p値(5)

- p値
 - 有意水準0.05の検定の実行方法(2つ)
 - p値 < 0.05 ⇒ H₀ が棄却される。
 - p値 ≥ 0.05 ⇒ H₀ が棄却されない。
 - 注:
 - 両側検定:分布の両側を使ってp値を計算する。
 - 片側検定の2倍になる。