

Лекция 3

Алгебры операторов и матриц

Содержание лекции:

В настоящей лекции мы обсудим композицию линейных операторов, а также рассмотрим структуры, которые возникают на множествах с этой операцией. Наибольший интерес для нас будет представлять алгебра линейных операторов и связанная с ней алгебра матриц. В конце лекции мы введем новое понятие обратного оператора и обсудим ключевые свойства этого отображения.

Ключевые слова:

Композиция операторов, произведение матриц, алгебра операторов, структурные константы алгебры, обратимый оператор, обратный оператор, критерий существования обратного оператора.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

3.1 Композиция операторов

Пусть $X(\Bbbk)$, $Y(\Bbbk)$, $Z(\Bbbk)$ - линейные пространства. **Композицией** линейных операторов $\psi \in \operatorname{Hom}_{\Bbbk}(Y,Z)$ и $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ называется отображение $\chi \in \operatorname{Hom}_{\Bbbk}(X,Z)$, такое что

$$\chi = \psi \circ \varphi, \quad (\psi \circ \varphi)x = \psi (\varphi x) \quad \forall x \in X.$$

Лемма 3.1. Отображение χ - линейный оператор.

Действительно:

$$\chi(x_1 + x_2) = \psi(\varphi(x_1 + x_2)) = \psi(\varphi x_1 + \varphi x_2) = \psi(\varphi x_1) + \psi(\varphi x_2) = \chi x_1 + \chi x_2,$$
$$\chi(\lambda x) = \psi(\varphi(\lambda x)) = \psi(\lambda \varphi x) = \lambda \psi(\varphi x) = \lambda \chi x.$$

Пусть $\{e_i\}_{i=1}^n$, $\{g_j\}_{j=1}^m$ и $\{h_k\}_{k=1}^p$ - базисы пространств X,Y и Z соответственно. Определим матрицы операторов φ,ψ и χ в этих базисах:

$$\varphi \quad \leftrightarrow \quad A_{\varphi} = \|\alpha_i^j\| : \quad \varphi e_i = \sum_{j=1}^m \alpha_i^j g_j,$$

$$\psi \quad \leftrightarrow \quad B_{\psi} = \|\beta_j^k\| : \quad \psi h_k = \sum_{k=1}^p \beta_j^k h_k,$$

$$\chi \quad \leftrightarrow \quad C_{\chi} = \|\gamma_i^k\| : \quad \chi e_i = \sum_{j=1}^p \gamma_j^k h_k,$$

Произведением матриц $B_{p \times m}$ и $A_{m \times n}$ называется матрица $C_{p \times n}$, такая что

$$C = \|\gamma_i^k\| : \quad \gamma_i^k = \sum_{j=1}^m \beta_j^k \cdot \alpha_i^j.$$

Теорема 3.1. Пусть $\chi = \psi \circ \varphi$, тогда $C = B \cdot A$.

Действительно, из определения следует

$$\chi e_i = \psi\left(\varphi e_i\right) = \psi\left(\sum_{j=1}^m \alpha_i^j g_j\right) = \sum_{j=1}^m \alpha_i^j \psi\left(g_j\right) = \sum_{j=1}^m \alpha_i^j \left(\sum_{k=1}^p \beta_j^k h_k\right) = \sum_{k=1}^p \left(\sum_{j=1}^m \alpha_i^j \beta_j^k\right) h_k = \sum_{i=1}^p \gamma_i^k h_k \quad \Rightarrow \quad \gamma_i^k = \sum_{j=1}^m \alpha_i^j \beta_j^k.$$

АЛГЕБРЫ ОПЕРАТОРОВ И МАТРИЦ

3.2 Алгебры операторов и матриц

Лемма 3.2. Операция композиции операторов ассоциативна:

$$\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y), \quad \psi \in \operatorname{Hom}_{\Bbbk}(Y,Z), \quad \chi \in \operatorname{Hom}_{\Bbbk}(Z,W),$$

$$\Rightarrow \quad \chi \circ (\psi \circ \varphi) = (\chi \circ \psi) \circ \varphi$$

▶

Покажем, что композиция ассоциативна всегда:

$$(\chi \circ (\psi \circ \varphi))(x) = \chi ((\psi \circ \varphi)(x)) = \chi (\psi (\varphi(x))) = (\chi \circ \psi)(\varphi(x)) = ((\chi \circ \psi) \circ \varphi)(x).$$

4

Лемма 3.3. Множество $\operatorname{End}_{\mathbb{k}}(X)$ имеет структуру полугруппы относительно операции композиции \circ и структуру кольца - относительно операций + и \circ .

Алгеброй называется кольцо, снабженное структурой линейного пространства.

 $Nota\ bene$ Множество $\mathrm{End}_{\Bbbk}(X)$ имеет структуру алгебры относительно операций сложения и композиции.

 $\|$ Алгебра $\operatorname{End}_{\Bbbk}(X)$ называется **алгеброй операторов** над пространством $X(\Bbbk)$.

Пример 3.1. Другие примеры алгебр:

- 1. \mathbb{R} алгебра вещественных чисел;
- 2. \mathbb{C} алгебра комплексных чисел:

$$x = (x_0, x_1), \quad \leftrightarrow \quad 1 \cdot x_0 + i \cdot x_2.$$

 $3. \mathbb{R}^4$ - алгебра кватернионов:

$$x = (x_0, x_1, x_2, x_3), \quad \leftrightarrow \quad 1 \cdot x_0 + i \cdot x_1 + j \cdot x_2 + k \cdot x_3.$$

 ${\it Nota \ bene}$ Пусть ${\it A}$ - произвольная алгебра и $x,y\in {\it A},$ и $\{e_j\}_{j=1}^n$ - базис ${\it A},$ тогда

$$x = \sum_{j=1}^{n} \xi^{j} e_{j}, \quad y = \sum_{k=1}^{n} \eta^{k} e_{k},$$

и для произведения элементов будем иметь

$$x \cdot y = \left(\sum_{j=1}^{n} \xi^{j} e_{j}\right) \cdot \left(\sum_{k=1}^{n} \eta^{k} e_{k}\right) = \sum_{j,k=1}^{n} \xi^{j} \eta^{k} \left(e_{j} \cdot e_{k}\right) = \sum_{j,k,l=1}^{n} \xi^{j} \eta^{k} m_{jk}^{l} e_{l}.$$

Набор $\left\{m_{jk}^l\right\}$ называется **структурными константами** алгебры \mathcal{A} :

$$e_j \cdot e_k = \sum_{l=1}^n m_{jk}^l e_l.$$

АЛГЕБРЫ ОПЕРАТОРОВ И МАТРИЦ

Nota bene Пусть $X = X(\mathbb{k})$ - линейное пространство и $\{e_i\}_{i=1}^n$ его базис. Положим далее, что $\operatorname{End}_{\mathbb{k}}(X)$ - алгебра операторов над $X(\mathbb{k})$, причем:

$$\varphi \leftrightarrow A_{\varphi}, \quad \psi \leftrightarrow B_{\psi}, \quad A_{\varphi}, B_{\psi} \in \operatorname{Mat}_{n}.$$

Лемма 3.4. Имеют место следующие соответсвия:

$$\varphi + \psi \leftrightarrow A_{\varphi} + B_{\psi}, \quad \lambda \varphi \leftrightarrow \lambda A_{\varphi}, \quad \psi \circ \varphi \leftrightarrow B_{\psi} \cdot A_{\varphi}$$

Лемма 3.5. Имеет место изоморфизм алгебры эндоморфизмов пространства $X(\mathbb{k})$ и алгебры квадратных $n \times n$ матриц:

$$\operatorname{End}_{\mathbb{k}}(X) \simeq \operatorname{Mat}_{\mathbb{k}}(n), \quad \dim_{\mathbb{k}} X = n.$$

Соответствующий изоморфизм устанавливается посредством выбора базиса $\{^i_j \varepsilon\}$ в $\operatorname{End}_{\Bbbk}(X)$ и отображением

$$\varphi = \sum_{i,j=1}^{n} {}_{j}^{i} \varepsilon \alpha_{i}^{j} \quad \leftrightarrow \quad \|\alpha_{i}^{j}\| = A_{\varphi}.$$

3.3 Обратный оператор

Nota bene Пусть $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ - линейный оператор. Рассмотрим отображение $\tilde{\varphi}: \operatorname{Im} \varphi \to X$, такое что:

$$\tilde{\varphi}(y) = x \quad \forall y \in \operatorname{Im} \varphi.$$

Nota bene Иными словами, можно написать:

$$(\tilde{\varphi} \circ \varphi)(x) = x \quad \forall x \in X,$$
$$(\varphi \circ \tilde{\varphi})(y) = y \quad \forall y \in \operatorname{Im} \varphi.$$

Лемма 3.6. Отображение $\tilde{\varphi}$ - линейный оператор.

Докажем аддитивность:

$$\varphi(\tilde{\varphi}(y_1) + \tilde{\varphi}(y_2)) = (\varphi \circ \tilde{\varphi})(y_1) + (\varphi \circ \tilde{\varphi})(y_2) = y_1 + y_2,$$

$$\tilde{\varphi}(y_1) + \tilde{\varphi}(y_2) = \tilde{\varphi}(y_1 + y_2).$$

Однородность доказывается аналогично.

Оператор φ , для которого существует $\tilde{\varphi}$, обладающий перечисленными выше свойствами, называется **обратимым**.

АЛГЕБРЫ ОПЕРАТОРОВ И МАТРИЦ

Линейный оператор $\varphi^{-1} \in \operatorname{Hom}_{\Bbbk}(Y,X)$ называется **обратным оператором** к оператору $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$, если

$$(\tilde{\varphi} \circ \varphi)(x) = x \quad \forall x \in X \quad \Leftrightarrow \quad \tilde{\varphi} \circ \varphi = \mathrm{id}_X$$
$$(\varphi \circ \tilde{\varphi})(y) = y \quad \forall y \in Y \quad \Leftrightarrow \quad \varphi \circ \tilde{\varphi} = \mathrm{id}_Y.$$

Теорема 3.2. Для оператора $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ существует ему обратный $\varphi^{-1} \in \operatorname{Hom}_{\Bbbk}(Y,X)$ тогда и только тогда, когда

$$\ker \varphi = \{0\}, \quad \operatorname{Im} \varphi = Y.$$

Первое из условий гарантирует инъективность отображения, а второе - его сюрьективность. Поэтому отображение, обладающее перечисленными свойствами, является биекцией, и значит обратимо.

Nota bene Необходимым условием существования оператора обратного к $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ является изоморфность пространств X и Y:

$$X \simeq Y \quad \Leftrightarrow \quad \dim_{\mathbb{k}} X = \dim_{\mathbb{k}} Y.$$

Лемма 3.7. Отображение $\varphi \mapsto \varphi^{-1}$ обладает следующими свойствами:

$$(\varphi^{-1})^{-1} = \varphi, \quad (\psi \circ \varphi)^{-1} = \varphi^{-1} \circ \psi^{-1}.$$