Welcome (1)

Agenda: 4 problems.

Q liven a rod of length N, and on array A of length N

A[i] => price of i length rod. [inden is 1 based)

Find the man value that can be obtained by cutting rod into some pieces. I selling them.

$$N=5$$
 $A = [1 4 2 5 6]$
 $1 2 3 4 5$

ways = 2 N-1 = 16

Unbounded Knapsack.

W → length of rod=N wt[i] → length of piece of rod. value[i] → A[i] $dp[i'] \Rightarrow man. value if capacity is i$ $\forall i dp[i'] = 0$ $for (i \Rightarrow 1 \text{ to } N) \text{ 11 capacity.}$ $\begin{cases} for (j \Rightarrow 1 \text{ to } i) \text{ 11 cuts of rods } / \text{ object.} \end{cases}$ $\begin{cases} dp[i'] = man (dp[i'], A[j] + dp[i'-j]) \end{cases}$ $\end{cases} \text{ return } dp[N]$ $\end{cases} Tc \rightarrow O(N^2)$ $Sc \rightarrow O(N)$

Jiven in the array i.e

A[i] -> value of i'm win

One coin can be selected multiple times.

A: Ordered selection $(n,y) \neq (y,n)$ N = 5 $\{1,43, \{3,1,13, \{1,1,3\}\}\}$ $A = [3] 1 4] \{4,13, \{1,3,13, \{1,1,1,1,1\}\}\}$

$$dp[i] \Rightarrow \# ways to select coins s.t sum = i$$
 $\forall i. dp[i] = 0$
 $dp[o] = I$

for $i \Rightarrow 1$ to N

{

 $for (j \Rightarrow 0 \text{ to } (A \cdot length () - 1)) 11 \text{ inden}$
 $if (A[j] \leq i)$
 $dp[i] += dp[i - A[j])$
 $gretorn dp[N]$
 $gretorn dp[N]$
 $gretorn dp[N]$
 $gretorn dp[N]$

S.C -> O(N)

return dp[N]

Circa N toys with their happiness of weight Find man total happiness that can be kept in a bang with capacity W (hoys comment be divide) Const vaint 0-1 Knapsack -> TC -> O(N*10) 1 5 N 5 500 500×109=541011 1 < hCi) < 80 15 wt[i] { 109 1 5 W 5 10 9 dp[N][W] -> man. happiness dp[N][H] -> min. capacity (W) required to acheive happiness H wim N elements. man- Happines = 500 to 50 = 25000 TIC > NXH = 100 × 25000 = 1.25×107 V for i > H to 0 [if (dp[N][i] ≤ W) return i

