

计算机视觉

邬向前

计算学部

多模态智能及应用研究中心

电子邮箱: xqwu@hit.edu.cn

Fitting & Matching

How do we build panorama?

We need to match (align) images

Matching with Features

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

Matching with Features

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

Previous lecture

Scale Invariant Feature Transform(SIFT)

Scale Invariant Feature Transform(SIFT)

Scale Invariant Feature Transform(SIFT)

Overview

- Fitting techniques
 - –Least Squares
 - —Total Least Squares
 - Robust Fitting
- RANSAC
- Hough Voting
- Alignment as a fitting problem

Least squares line fitting

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = mx_i + b$
- •Find (*m*, *b*) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} \left(y_i - \begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} \right)^2 = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \|Y - XB\|^2$$

$$X \in \mathbb{R}^{n \times 2}$$

$$B \in \mathbb{R}^{2 \times 1}$$

$$Y \in \mathbb{R}^{n \times 1}$$

$$\frac{dE}{dB} = 2X^T XB - 2X^T Y = 0$$

$$X^T XB = X^T Y$$

Equation solution: $B = (X^T X)^{-1} X^T Y$

$$B = (X^T X)^{-1} X^T Y$$

Problem with "vertical" least squares

- •无法拟合垂直线,且由于误差采用的是垂直误差,导致越接近垂直线,拟合效果越差。
- 对噪声的鲁棒性不好, 受噪声影响较大。

Overview

- Fitting techniques
 - –Least Squares
 - —Total Least Squares
 - Robust Fitting
- RANSAC
- Hough Voting
- Alignment as a fitting problem

Total least squares

- •Distance between point (x_i, y_i) and line ax+by=d $(a^2+b^2=1)$: $|ax_i+by_i-d|$
- •Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

设直线 L 的方程为 Ax+By+C=0 ,点 P 的坐标为 (x0,y0) ,则点 P 到直线 L 的距离为:

$$\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}$$

可以解决无法拟合垂直直线问题

Total least squares

- •Distance between point (x_i, y_i) and line $ax+by=d(a^2+b^2=1): |ax_i + by_i - d|$
- •Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0$$

$$ax+by=d$$
Unit normal:
$$(x_i, y_i) \quad N=(a, b)$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0 \qquad d = \frac{a}{n} \sum_{i=1}^{n} x_i + \frac{b}{n} \sum_{i=1}^{n} y_i = a\bar{x} + b\bar{y}$$

$$E = \sum_{i=1}^{n} (a(x_i - \overline{x}) + b(y_i - \overline{y}))^2 = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}^2 = (UN)^T (UN)$$

$$\frac{dE}{dN} = 2(U^T U)N = 0$$

Total least squares

Solution to $(U^TU)N = 0$, subject to $||N||^2 = 1$: eigenvector of U^TU associated with the smallest eigenvalue

$$(U^{T}U)N = 0$$
拉格朗日乘数*法*

$$N^{T}N = 1$$

$$L = E - \frac{1}{2}\lambda(N^{T}N - 1)$$

$$AX = \lambda X \rightarrow (A - \lambda E)X = 0$$

$$U^{T}U - \lambda E)N = 0$$

$$(U^{T}U - \lambda E)N = 0$$

$$U = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix} \qquad U^T U = \begin{bmatrix} \sum_{i=1}^n (x_i - \overline{x})^2 & \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) \\ \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) & \sum_{i=1}^n (y_i - \overline{y})^2 \end{bmatrix}$$

转化为求UTU 特征值的特征向量。

Overview

- Fitting techniques
 - –Least Squares
 - —Total Least Squares
 - Robust Fitting
- RANSAC
- Hough Voting
- Alignment as a fitting problem

考虑到最小二乘法与总体最小二乘法 均受噪声影响较大,使用鲁棒估计进行改进

• General approach: minimize

$$\sum_{i} \rho\left(u;\sigma\right)$$

u-拟合误差

 ρ — 经过 σ 尺度缩放后的拟合误差

General approach: minimize

$$\sum_{i} \rho\left(\mathsf{u};\sigma\right)$$

u-拟合误差

 ρ – 经过 σ 尺度缩放后的拟合误差

u越大,误差越大,放缩效应越明显

Overview

- Fitting techniques
 - –Least Squares
 - —Total Least Squares
 - Robust Fitting
- RANSAC
- Hough Voting

Alignment as a fitting problem

RANSAC

- Robust fitting can deal with a few outliers what if we have very many?
- Random sample consensus (RANSAC):
 Very general framework for model fitting in the presence of outliers
- Outline
 - —Choose a small subset of points uniformly at random
 - -Fit a model to that subset
 - —Find all remaining points that are "close" to the model and reject the rest as outliers
 - —Do this many times and choose the best model

RANSAC for line fitting

- Repeat N times:
- Draw s points uniformly at random
- Fit line to these s points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers

RANSAC for line fitting

5. 重复1-4, 迭代N次, 记录每次迭代选择点、拟合曲线和投票数, 投票数/内点数最大所对应的直线模型就是找到的直线

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - -Zero-mean Gaussian noise with std. dev. σ : $t^2=3.84\sigma^2$

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - -Zero-mean Gaussian noise with std. dev. σ : $t^2=3.84\sigma^2$
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99)

$$N = \frac{\log(1-z)}{\log(1-p^s)}$$

RANSAC pros and cons

Pros

- —Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- –Lots of parameters to tune
- —Can't always get a good initialization of the model based on the minimum number of samples
- Sometimes too many iterations are required
- —Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

Voting schemes

- Let each feature vote for all the models that are compatible with it
- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

Overview

- Fitting techniques
 - –Least Squares
 - —Total Least Squares
 - Robust Fitting
- RANSAC
- Hough Voting

Alignment as a fitting problem

A line in the image corresponds to a point in Hough space

- What does a point (x_0, y_0) in the image space map to in the Hough space?
 - -Answer: the solutions of $b = -x_0 m + y_0$
 - -This is a line in Hough space

- Where is the line that contains both (x_0, y_0) and (x_1, y_1) ?
 - It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$

Image space

 $y \downarrow (x_0, y_0)$ $y_0 \downarrow x_0 \qquad x$

Hough parameter space

Hough transform

- An early type of voting scheme
- General outline:
 - Discretize parameter space into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - -Find bins that have the most votes

- •Problems with the (m,b) space:
 - -Unbounded parameter domain
 - -Vertical lines require infinite m

$$y = \left(-\frac{\cos\theta}{\sin\theta}\right)x + \left(\frac{\rho}{\sin\theta}\right)$$

Alternative: polar representation

Each point will add a sinusoid in the (θ, ρ) parameter space

- 经过变换,图像空间中的每个点 (x,y)就被映射为一个 (r,θ) 极坐标空间中的正弦曲线。
- 而图像空间中共线的点所对应的 (r, θ) 空间中正弦曲线相 交于一点 (r', θ') 。

Parameter space representation

Algorithm outline

- Initialize accumulator H to all zeros
- For each edge point (x,y) in the image
 For θ = 0 to 180
 ρ = x cos θ + y sin θ
 H(θ, ρ) = H(θ, ρ) + 1
 end
 end

- Find the value(s) of (θ, ρ) where $H(\theta, \rho)$ is a local maximum
 - The detected line in the image is given by ρ = x cos θ + y sin θ

Algorithm outline

霍夫变换检测直线步骤:

■ **3** 统计(*r*,*θ*)出现的次数。

	-1.4	-0.7	0	0. 7	1	1. 4	2	2 1	2. 8	3	3. 5	4	4. 9
-45°	1	2	1	2		1							
0*					2		3	\supset		1		1	
45°						2		1	1		1		2
90°			1		2					3	>	2	

- 最大次数3出现 $(r,\theta) = (2,0^{\circ})$ 和 $(r,\theta) = (3,90^{\circ})$
- 则相对应的图像空间中的线分别为:

$$2 = x\cos 0 + y\sin 0 \quad \text{If } x = 2$$

和

2.按点的坐标(x,y)和每个角度 θ 求r

 $r = x \cos \theta + y \sin \theta$

(x,y)	-45 °	0°	45°	90°
(2,0)	1.4	2	1.4	0
(1,1)	0	1	1.4	1
(2,1)	0.7	2	2.1	1
(1,3)	-1.4	1	2.8	3
(2,0) (1,1) (2,1) (1,3) (2,3) (4,3) (3,4)	-0.7	2	3.5	3
(4,3)	0.7	4	4.9	3
(3,4)	-0.7	3	4.9	4

Basic illustration

Other shapes Square

$$y = \left(-\frac{\cos\theta}{\sin\theta}\right)x + \left(\frac{\rho}{\sin\theta}\right)$$

Several lines

A more complicated image

Random points

features votesUniform noise can lead to spurious peaks in the array

Effect of noise

features

Peak gets fuzzy and hard to locate

votes

Dealing with noise

- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Try to get rid of irrelevant features
 - Take only edge points with significant gradient magnitude

- How many dimensions will the parameter space have?
- Given an oriented edge point, what are all possible bins that it can vote for?

Image space

Hough parameter space


```
For every edge pixel (x,y):
  For each possible radius value r:
     For each possible gradient direction \theta:
        // or use estimated gradient
     a = x - r \cos(\theta)
     b = y + r\sin(\theta)
     H[a,b,r] += 1
  end
end
                                    CSDN @长命百岁
```

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

$$x = a + r\cos\theta$$

$$y = b + r\sin\theta$$

- (1) 首先对图像应用边缘检测
- (2) 使用sobel算子计算所有像素的梯度
- (3)遍历边缘检测之后的所有非0的像素点,沿着梯度方向画线,每个点有一个累加器,有一个线经过该点,累加器加1,对所有累加器进行排序,根据阈值找到所有可能的圆心
- (4) 计算边缘图像中所有的非0像素点距离圆心的距离,距离从小到大排序,选取合适的半径
- (5) 对选取的半径设置累加器,对于满足半径r的累加器+1

Generalized Hough transform

- We want to find a shape defined by its boundary points and a reference point
- For every boundary point p, we can compute the displacement vector ${\bf r}$ = a p as a function of gradient orientation θ

$$(x - a)^{2} + (y - b)^{2} = r(\theta)^{2}$$
$$x = a + r(\theta)\cos\theta$$
$$y = b + r(\theta)\sin\theta$$

Generalized Hough transform

- ullet For model shape: construct a table indexed by ullet storing displacement vectors ${\bf r}$ as function of gradient direction
- Detection: For each edge point p with gradient orientation ϑ :
 - Retrieve all r indexed with ϑ
 - For each $r(\vartheta)$, put a vote in the Hough space at $p + r(\vartheta)$
- Peak in this Hough space is reference point with most supporting edges
- Assumption: translation is the only transformation here, i.e., orientation and scale are fixed

Example range of voting locations for test point

Example

Application in recognition

• Instead of indexing displacements by gradient orientation, index by "visual

visual codeword with displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Application in recognition

Instead of indexing displacements by gradient orientation, index by "visual

test image

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Overview

- Fitting techniques
 - –Least Squares
 - —Total Least Squares
 - Robust Fitting
- RANSAC
- Hough Voting
- Alignment as a fitting problem

Image alignment

Two broad approaches:

- –Direct (pixel-based) alignment
 - Search for alignment where most pixels agree
- –Feature-based alignment
 - Search for alignment where extracted features agree
 - Can be verified using pixel-based alignment

Alignment as fitting

• Previously: fitting a model to features in one image

 x_i

Find model M that minimizes

$$\sum_{i} \operatorname{residual}(x_i, M)$$

Alignment as fitting

Previously: fitting a model to features in one image

Find model *M* that minimizes

$$\sum_{i}$$
 residual (x_i, M)

 Alignment: fitting a model to a transformation between pairs of features (matches) in two images

Find transformation *T* that minimizes

$$\sum_{i} \operatorname{residual}(T(x_i), x_i')$$

2D transformation models

 Similarity (translation, scale, rotation)

Projective (homography)

Let's start with affine transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models

Fitting an affine transformation

Assume we know the correspondences, how do we get the transformation?

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

 $\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \qquad \begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & & & & & \\ \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \end{bmatrix} = \begin{bmatrix} \cdots \\ x_i' \\ y_i' \\ \cdots \end{bmatrix}$

Source: S. Lazebnik

Fitting an affine transformation

$$\begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & & & & & \\ \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} \cdots \\ x'_i \\ y'_i \\ \cdots \end{bmatrix}$$

- Linear system with six unknowns
- Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

Extract features

- Extract features
- Compute *putative matches*

估计单应性矩阵

• 在特征匹配中,我们最终要得到一个3*3的单应性矩阵。通常令h33=1来 归一化矩阵,因此单应性矩阵有8个自由度h11-h32,求这八个未知数, 至少要包含四个匹配点对。

$$s \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

估计单应性矩阵

- **1**、首先在得到的匹配点中,随机选择**4**个匹配点对(不共线),其他匹配点为外点。
- 2、根据4对内点计算单应性矩阵。
- 3、根据此矩阵来测试其他匹配点(计算的是其他匹配点与该模型的投影误差),并设置阈值,若小于为新内点,若大于则为外点,也就是误匹配对,因此通过计算出的单应性矩阵,就能实现一次误匹配点的剔除。
- 4、将所有的内点统计进行内点更新,在此基础上再次进行步骤3,迭代 M次,最终得到含有内点最多的模型,此时模型为最优模型,也就是我 们最终所需要的单应性矩阵。

- Extract features
- Compute *putative matches*
- Loop:
 - Hypothesize transformation T

- Extract features
- Compute *putative matches*
- Loop:
 - Hypothesize transformation T
 - Verify transformation (search for other matches consistent with T)

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T
 - Verify transformation (search for other matches consistent with T)

Dealing with outliers

- The set of putative matches contains a very high percentage of outliers
- Geometric fitting strategies:
 - RANSAC
 - Hough transform

作业:

- 1. 编程实现Ransec算法
- 2. 编程实现基于Hough变换的直线检测算法