ENGR30002 SM1 2021 Assignment 1

Michael Le

TOTAL POINTS

7.2 / 10

QUESTION 1

1 Question 1 2 / 3.5

- 0 pts All correct answers
- √ 0.5 pts K_entrance, K_exit
- √ 0.5 pts Incorrect velocity
- √ 0.5 pts Incorrect Re
 - 0.5 pts Incorrect f_F
 - 0.5 pts Incorrect pump power: Batu
 - **0.5 pts** Incorrect pump power: Sukun
 - 0.5 pts Incorrect pump power: Gumung
 - Incorrect v and Re affected the final answers.
 No penalties on the rest of the wrong answers.

QUESTION 2

2 Question 2 (a) 0.5 / 1

- 0 pts Correct
- √ 0.5 pts Partially correct
 - 1 pts Incorrect answer

QUESTION 3

3 Question 2 (b) 2.5 / 2.5

- √ 0 pts Correct
- **0.5 pts** Incorrect equation (cavitation occurs before the pump):
- **0.5 pts** Incorrect length of the pipe before the pump
- 1 pts No work for length of the pipe before the pump
 - **0.5 pts** Incorrect height (but minor mistakes)
 - 1 pts Incorrect height (but showed all work)
 - 2 pts Incorrect height (no work)
 - 2.5 pts Wrong page selection or No pages

QUESTION 4

4 Question 3 2.2 / 3

- 0 pts Correct
- 0.5 pts Incorrect frictional head losses
- 0.5 pts Incorrect minor losses

√ - 0.5 pts Incorrect power (but showed all work)

- 2.5 pts Incorrect power (No work)
- 1 pts No power but showed all work
- 1 pts No comparison

√ - 0.3 pts Compared but less explanation or

incorrect answer

- **0.5 pts** Compared but not enough explanation or incorrect
 - 1 pts No comparisson
 - 3 pts No submission or incomplete answer

Michael (e (998211) Ass	19 NMENT EN 4030002.	
Gustian 1		
7		
Source 1 Both bah,	Source 2 Jakyn Synry,	Source 3, Gumnung Tank.
D = 0.05m	D=0.05m	D=0.USM
1=641m	L=351m	L=1157m
$\varepsilon = 0.046 \times 10^{-3} \text{m}$	E=0.046x10-3m	E = 0.046 × 10-3n
3 St = 30M	82=50m	07=152W
@ = 40pl 18		13
	14 × hr × min	1 M ³
1 day 24	hours 60 mans 60 serg	inas; IRE
= 0,0064629	6296 m3/5 (S)	(units)
=0.0004629	- 1	- /
$= 4.629 \times 10^{-}$	4m3/-	
Accept the median	And is in compressible	11.5
and the water	Mia is M Compressible	11 (22 4 3/2
Q = Q Bata bah = 0	Sukun Spring = Qqumming tunk	= 4,629 ×10 M/3
2 3636363636		
A = Amautu Asah = A	sikun sprez = Aqumay ng Tunk	1 = 4 coop m
Q=VA	$\frac{10^{-4}m^{3}/5}{5} = 0.235$	25242344
$V = Q = \frac{4.629x}{}$	$\frac{10^{10}}{10^{15}} = 0.235$	75 30341mls.
A T (0.00	5)° M°	
E 004hna	0.046 - 0.00092	2 (for all 3 water sources).
3 - Somm	50	
SOMIN	Rem	
Rendry from the Moody - (P= 998	(1 kg/23 victore 1 + 2005
regard from the thought	L=0.00(0	19 kg/m³ vister deady at 20°C.
franke-pvD	- 998.19 ks/m3 × 0.2	
/ / m	2.00	010005 8.5
The Maynolds number for	110 - (
	= 11757.79	
water resources!	$=1.175779\times10^{4}$	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	701-	
> f= = 0.00	to to	1
Funning Friction f		
Milling Triction 1		

.

Using the Mechanical Balance Equation.
d=1 for Inlbulent flow
OP +1 (0V2) + 902 + Ws +2 fe LV2 =0
E 7 B
Apply the system between the surface for all three sources. Buth pressures at both ends Cie. all authorted to Butit Kauh tank.)
pressures at both ends (i.e. all annested to Bukit Kanh Tank.)
are greato Atmospheriz pressure, DP=0.
Source 1 Bet Asah,
-U/s, = (1 (0.\$ 23752-02) +9.81×30+2(0.007875) ×641×03552 J/kg
0.05
=305,725/kg.
Paver required
D- W (- 325225/ 2990 10h. 13 × 11629 × 10 - m/k
N=-Ws, G= 305.72 5/kg × 998.19/kg/m3 × 4.629×10-m/5 = 141.26 J/s (GIr1)
- 141,26 J/3 (301° ±)
-WS = [1 (0.23752-02)+9.81×50+2(0.007875) x 351x0,23752]
(2
=496.743/kg
Power required
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$P_2 = -W_5 G = 496.74 J/kg \times 998.19 kg/h^3 \times 4.629 \times 10^{-4} m^3/s$ = 229,52 J/s (sol 29)
=229.529/5(301129)
Source 3 Gumming Tank,
SOUTH TO THE PARTY OF THE PARTY
- Ws2 = (0.237320) +9.8 (X125 + 2(0.007875) × 1157 x. 23752]/kg
0,05)
1/1 01/10/1
= 1246.84J/kg
b w/ 1 = 77 (71
p3 = -Ws, G = 576. 11 J/s = 1246.845/kg ×998. 19 hg/m3 × 4.629 × 10-4 m3/5

1 Question 1 2 / 3.5

- O pts All correct answers
- √ 0.5 pts K_entrance, K_exit
- √ 0.5 pts Incorrect velocity
- √ 0.5 pts Incorrect Re
 - 0.5 pts Incorrect f_F
 - **0.5 pts** Incorrect pump power: Batu
 - **0.5 pts** Incorrect pump power: Sukun
 - 0.5 pts Incorrect pump power: Gumung
 - Incorrect v and Re affected the final answers. No penalties on the rest of the wrong answers.

2 Question 2 (a) **0.5** / **1**

- 0 pts Correct
- √ 0.5 pts Partially correct
 - 1 pts Incorrect answer

3 Question 2 (b) 2.5 / 2.5

√ - 0 pts Correct

- **0.5 pts** Incorrect equation (cavitation occurs before the pump):
- **0.5 pts** Incorrect length of the pipe before the pump
- 1 pts No work for length of the pipe before the pump
- **0.5 pts** Incorrect height (but minor mistakes)
- 1 pts Incorrect height (but showed all work)
- 2 pts Incorrect height (no work)
- 2.5 pts Wrong page selection or No pages

-W=(n 23752- n M8942) /2 +901 x30 +11 N/42
$-W_{5}(0.2375^{2}-0.05894^{2})/2 + 9.81 \times 30 + 11.0142$ $= 305.34 \text{ J/kg}$
Power required (100% efficiency)
b=-W-G-205247/60 x 198,19 kg/3 x 4629x10-4 m3/5
p=-Ws G= 305.345/pg x 198,19 kg/m3 × 4.629×10-4 m3/5 =141.08 5/5.
The Power in this question compared to QI is slightly less. Due to go bends around the free due to the resistence coefficient K, which the steel pipe diameter changes from the first and last 300m. Before and after the flyid enters into a bigger pipe, the friction bisse!!
the tool nine drawber alineer from the first and last 300m. Before
and after the flyid enters into a bigger nine, Due to fairthough This
heavy impacts the friction loss!!
3

4 Question 3 2.2 / 3

- **0 pts** Correct
- **0.5 pts** Incorrect frictional head losses
- **0.5 pts** Incorrect minor losses
- √ 0.5 pts Incorrect power (but showed all work)
 - 2.5 pts Incorrect power (No work)
 - 1 pts No power but showed all work
 - 1 pts No comparison
- $\sqrt{-0.3}$ pts Compared but less explanation or incorrect answer
 - **0.5 pts** Compared but not enough explanation or incorrect
 - 1 pts No comparisson
 - 3 pts No submission or incomplete answer