WHAT IS CLAIMED IS:

- 1. A ferroelectric memory structure, comprising:
 - a substrate;
 - an insulating layer formed on said substrate;
 - a plurality of oxide electrodes formed on said insulating layer;
- a ferroelectric layer formed on said insulating layer and said plurality of oxide electrodes; and
- a plurality of metallic electrodes formed on said ferroelectric layer and corresponding to said plurality of said oxide electrodes.
- 2. The ferroelectric memory structure according to claim 1, wherein said substrate is a silicon substrate.
- 3. The ferroelectric memory structure according to claim 2, wherein said silicon substrate is a p-type silicon substrate.
- 4. The ferroelectric memory structure according to claim 2, wherein said silicon substrate is a n-type silicon substrate.
- 5. The ferroelectric memory structure according to claim 1, wherein said insulating layer is made of Ba_xSr_{1-x}TiO₃, wherein the x is in a range between 0.3 and 1.
- 6. The ferroelectric memory structure according to claim 5, wherein said insulating layer is doped by MgO.
- 7. The ferroelectric memory structure according to claim 1, wherein said plurality of oxide electrodes are made of LaNiO₃.

- 8. The ferroelectric memory structure according to claim 1, wherein said ferroelectric layer is made of Bi_xLa_{4-x}Ti₃O₁₂, wherein x is in a range between 0 and 1.
- 9. The ferroelectric memory structure according to claim 1, wherein said plurality of metallic electrodes are made of one of noble metals selected from a group consisting of Pt, Ru and Ir, and an oxide electrode containing a perovskite structure and comprising one selected a group consisting of LaNiO₃, SrRuO₃, BaRuO₃ and YBa₂Cu₃O₇.
- 10. The ferroelectric memory structure according to claim 1, wherein said plurality of metallic electrodes respectively have a first electrode area, and said plurality of oxide electrodes respectively have a second electrode area, wherein a ratio of said first electrode area to said second electrode area is less than 1/12.
- 11. A method for fabricating a ferroelectric memory structure, comprising steps of:
 - (a)providing a substrate;
 - (b) forming an insulating layer on said substrate;
 - (c)forming a plurality of oxide electrodes on said insulting layer;
- (d)forming a ferroelectric layer on said insulating layer and said plurality of oxide electrodes; and
- (e)forming a plurality of metallic electrodes on said ferroelectric layer corresponding to said plurality of oxide electrodes.
- 12. The method according to claim 11, wherein said substrate is a silicon substrate.
- 13. The method according to claim 12, wherein said silicon substrate is a p-type silicon substrate.

- 14. The method according to claim 12, wherein said silicon substrate is a n-type silicon substrate.
- 15. The method according to claim 11, wherein step (a) further comprises pretreating said substrate in turn with an RCA cleaning and a nitrogenization method.
- 16. The method according to claim 11, wherein said insulating layer is formed by a chemical vapor deposition.
- 17. The method according to claim 11, wherein said insulating layer is formed by a metal-organic deposition.
- 18. The method according to claim 11, wherein said insulating layer is formed by a physical vapor deposition.
- 19. The method according to claim 18, wherein said physical vapor deposition further employs a first sputtering target.
- 20. The method according to claim 19, wherein said first sputtering target is made of Ba_xSr_{1-x}TiO₃, wherein said x is in a range between 0.3 and 1.
- 21. The method according to claim 20, wherein said Ba_xSr_{1-x}TiO₃ sputtering target is formed by mixing and calcining BaCO₃, SrCO₃ and TiO₂.
- 22. The method according to claim 21, wherein said first sputtering target is further doped with MgO.
- 23. The method according to claim 11, wherein step (c) further comprises a step of forming an oxide layer on said insulating layer and performing a lithography process on said oxide layer to form said plurality of oxide electrodes.
- 24. The method according to claim 23, wherein said oxide layer is formed by a chemical vapor deposition.

- 25. The method according to claim 23, wherein said oxide layer is formed by a metal-organic deposition.
- 26. The method according to claim 23, wherein said oxide layer is formed by a physical vapor deposition.
- 27. The method according to claim 26, wherein said physical vapor deposition further employs a second sputtering target.
- 28. The method according to claim 27, wherein said second sputtering target is made of LaNiO₃.
- 29. The method according to claim 28, wherein said LaNiO₃ sputtering target is formed by mixing and calcining La₂O₃ and NiO₂.
- 30. The method according to claim 11, wherein said ferroelectric layer is formed by a physical vapor deposition.
- 31. The method according to claim 11, wherein said ferroelectric layer is formed by a chemical vapor deposition.
- 32. The method according to claim 11, wherein said ferroelectric layer is formed by a metal-organic deposition.
- 33. The method according to claim 32, wherein said metal-organic deposition is performed through a solution.
- 34. The method according to claim 33, wherein said solution is a $Bi_xLa_{4-x}Ti_3O_{12}$ solution, wherein said x in a range between 0 and 4.
- 35. The method according to claim 34, wherein said solution comprises acetic acid to be served as a solvent, and comprises lanthanum acetate, bismuth acetate and tetra(isopropyl)-titanate to be served as solutes.
- 36. The method according to claim 11, wherein step (e) further comprises a step of forming a metallic layer on said ferroelectric layer, and performing a lift-off

process on said metallic layer to form said plurality of metallic electrodes, wherein said plurality of metallic electrodes respectively have a first electrode area, said plurality of oxide electrodes respectively have a second electrode area, and a ratio of said first electrode area to said second electrode area is less than 1/12.

37. The method according to claim 1, wherein said plurality of metallic electrodes are made of one of noble metals selected from a group consisting of Pt, Ru and Ir, and an oxide electrode containing a perovskite structure and comprising one selected a group consisting of LaNiO₃, SrRuO₃, BaRuO₃ and YBa₂Cu₃O₇.