Игра ним

Аутор: Марија Мијаиловић *Ментор*: проф.др Миодраг Живковић

Математички факултет Универзитет у Београду

Септембар, 2020

Садржај

Игра ним

Витхофова игра

Евалуација решења

Игра ним

- Два играча
- ▶ Број жетона и гомила на столу одређују сами играчи
- Жетони се узимају само са једне гомиле, и мора се узети бар један жетон
- ▶ Нормални и мизерни ним

Пример партије нормалног нима

4 / 19

Шта је Витхофова игра?

- ▶ Две гомиле жетона
- ▶ Жетони се узимају са једне или обе гомиле
- ▶ Све позиције се могу разврстати у добитне и изгубљене

Изгубљене позиције за a=1

n	Α	В		
0	0	0		
1	1	2		
2	3	5		
3	4	7		
4	6	10 13		
5	8			
6	9	15		
7	11	18		
8	12	20		
9	14	23		
10	16	26		
11	17	28		

Рекурзивна стратегија

7 / 19

Дефиниција оператора тех

 $\max(A)$ означава најмањи природни број који није у скупу A, тј. $\max(\emptyset)=0$ и $\max(A)=\min\{i|i\notin A\}$.

Рекурзивна карактеризација изгубљених позиција

Све изгубљене позиције (A_n,B_n) могу се изразити на следећи начин:

$$A_n = \max\{A_i, B_i : i < n\}$$

 $B_n = A_n + an$

Рекурзивна стратегија

За a = 1 неке изгубљене позиције су:

n	Α	В
0	0	0
1	1	$1 + 1 \cdot 1 = 2$
2	3	3 + 1.2 = 5
3	4	4 + 1.3 = 7

За a = 2 неке изгубљене позиције су:

n	Α	В
0	0	0
1	1	$1 + 2 \cdot 1 = 3$
2	2	$2 + 2 \cdot 2 = 6$
3	4	4 + 2.3 = 10

Алгебарска стратегија

Алгебарска карактеризација изгубљених позиција

Све изгубљене позиције (A_n, B_n) могу се изразити на следећи начин $A_n = \lfloor \alpha \cdot n \rfloor, B_n = \lfloor \beta \cdot n \rfloor$, где је:

$$\alpha = \frac{2 - a + \sqrt{a^2 + 4}}{2}$$

$$\beta = \alpha + a,$$

овде су α и β ирационални за свако a>0

Алгебарска стратегија

10 / 19

За a=2 онда је $\alpha=\sqrt{3}$ и $\beta=\sqrt{3}+2$ и неке изгубљене позиције су:

n	Α	В
0	0	0
1	$\lfloor \sqrt{3} \cdot 1 \rfloor = 1$	$\lfloor (\sqrt{3}+2)\cdot 1=3\rfloor$
2	$\lfloor \sqrt{3} \cdot 2 \rfloor = 2$	$\lfloor (\sqrt{3}+2)\cdot 2=6\rfloor$
3	$\lfloor \sqrt{3} \cdot 3 \rfloor = 4$	$\lfloor (\sqrt{3}+2)\cdot 3=10\rfloor$
4	$\lfloor \sqrt{3} \cdot 4 \rfloor = 5$	$\lfloor (\sqrt{3}+2)\cdot 4=13\rfloor$
5	$\left[\sqrt{3} \cdot 5 \right] = 7$	$\lfloor (\sqrt{3}+2)\cdot 5=17\rfloor$

Марија Мијаиловић Игра жим Септембар, 2020

Рекурзивна и алгебарска карактеризација изгубљених

11 / 19

Нека је a=2 и тренутна позиција (x,y) је:

позиција

- ▶ (17,29), како је $B_5 = 17$, то се из позиције (17,29) уклањајући 22 жетона прелази у позицију (A_5 , B_5) = (7,17).
- \blacktriangleright (11,29), како је $A_8=11$ и 29 > $B_8=27$, то се из позиције (11,29) уклањајући 2 жетона прелази у позицију (A_8,B_8) = (11,27).
- ▶ (11,25), како је $A_8 = 11$ и $25 < B_8 = 27$, то се из позиције (11,25) уклањајући по 2 жетона са обе гомиле прелази у позицију $(A_7, B_7) = (9, 23)$.

Аритметичка стратегија

Нека је $[a_0, a_1, a_2, ...]$ верижни развој броја α и за низове p_n и q_n (бројилаца и именилаца конвергената) важи следећа рекурентна релација:

$$p_{-1} = 1, p_0 = a_0, p_n = a_n p_{n-1} + p_{n-2}, (n \ge 1)$$

 $q_{-1} = 0, q_0 = 1, q_n = a_n q_{n-1} + q_{n-2}, (n \ge 1)$

Нека је верижни развој броја $\alpha = [1, 2, 2 \dots] = 1 + \frac{1}{2 + \frac{1}{2 + \dots}}$ чији су конвергенти:

$$C_0 = 1 = \frac{\rho_0}{q_0},$$

$$C_1 = [1, 2] = 1 + \frac{1}{2} = \frac{3}{2} = \frac{\rho_1}{q_1},$$

$$C_3 = [1, 2, 2] = 1 + \frac{1}{2 + \frac{1}{2}} = \frac{7}{5} = \frac{\rho_3}{q_3},$$
...

Аритметичка стратегија

Репрезентација R је:

$$R = (d_m, d_{m-1}, \dots, d_1, d_0), \ 0 \le d_i \le a_{i+1}$$

p-репрезентација R_p броја k је:

$$R_p(k) = (d_m, d_{m-1}, \dots, d_1, d_0)$$

q-репрезентација R_q броја k је:

$$R_q(k) = (d_m, d_{m-1}, \dots, d_1, d_0)$$

Приказ првих 15 бројева записаних у p и q систему, за

q ₃	q_2	q_1	\mathbf{q}_0	p ₃	p ₂	p_1	P ₀	
12	5	2	1	17	7	3	1	n
			1				1	1
		1	0				2	2
		1	1			1	0	3
		2	0			1	1	4
	1	0	0			1	2	5
	1	0	1			2	0	6
	1	1	0		1	0	0	7
	1	1	1		1	0	1	8
	1	2	0		1	0	2	9
	2	0	0		1	1	0	10
	2	0	1		1	1	1	11
1	0	0	0		1	1	2	12
1	0	0	1		1	2	0	13
1	0	1	0		2	0	0	14
1	0	1	1		2	0	1	15

Аритметичка стратегија

Леви померај репрезентације R је:

$$R' = (d_m, d_{m-1}, \dots, d_1, d_0, 0)$$

Десни померај репрезентације R је:

$$R^{''}=(d_m,d_{m-1},\ldots,d_1)$$

Веза p-интерпретације I_p и q-репрезентације R_q је:

$$I_p(R_q(k)) = I_p(d_m, d_{m-1}, \dots, d_0)$$

Аритметичка карактеризација изгубљених позиција

16 / 19

Нека је a=2 и тренутна позиција (x,y) је:

- ▶ (17,29), како се $R_p(17)=(1,0,0,0)$ завршава непарним бројем нула, онда је $B_5=17$ и $I_p(R_p^{''}(17)=I_p(1,0,0)=7$ па је победнички потез (7,17).
- lacktriangle (11, 29), како се $R_p(11)=(1,1,1)$ завршава парним бројем нула, онда је $A_8=11$ и $I_p(R_p^{'}(11))=I_p(1,1,1,0)=27$ па пошто је 29>27 победнички потез је (11, 27).
- ▶ (11,23), како се $R_p(11)=(1,1,1)$ завршава парним бројем нула, онда је $A_8=11$ и $I_p(R_p^{'}(11))=I_p(1,1,1,0)=27$, па пошто је 23<27 рачуна се $R_q(\lfloor \frac{y-x}{a} \rfloor)=R_q(6)=(1,0,1)$ и $I_p(R_q(6))=8$ па је победники потез (8,20).
- ▶ (11,25), како се $R_p(11)=(1,1,1)$ завршава парним бројем нула, онда је $A_8=11$ и $I_p(R_p^{'}(11))=I_p(1,1,1,0)=27$, па пошто је 25<27 рачуна се $R_q(\lfloor \frac{y-x}{a} \rfloor)=R_q(7)=(1,1,0)$ и $I_p(R_q(7))=10$ па је победники потез (9,23).

Евалуација решења

17 / 19

Сумирани приказ извршавања свих стратегија за конструкцију табеле изгубљених позиција

Марија Мијаиловић Игра ким Септембар, 2020

Евалуација решења

18 / 19

Сумирани приказ извршавања рекурзивне и алгебарске стратегије за конструкцију табеле изгубљених позиција

Марија Мијаиловић Игра вим Септембар, 2020

Kpaj

Хвала на пажњи! Питања?