IMPLICIT DIFFERENTIATION & INVERSE TRIGONOMETRIC FUNCTIONS

The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable—for example

$$y = \sqrt{x^3 + 1}$$
 or $y = x \sin x$

or, in general, y = f(x). Some functions, however, are defined implicitly by a relation between x and y such as

$$x^2 + y^2 = 25$$

$$or x^3 + y^3 = 6xy$$

Implicit differentiation consists of differentiating both sides of the equation with respect to x and then solving the resulting equation for y'.

EXAMPLE

- (a) If $x^2 + y^2 = 25$, find dy/dx
- (b) Find an equation of the tangent to the circle $x^2 + y^2 = 25$ at the point (3, 4)

SOLUTION 1

(a) Differentiate both sides of the equation $x^2 + y^2 = 25$:

$$\frac{d}{dx}\left(x^2+y^2\right) = \frac{d}{dx}\left(25\right)$$

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = 0$$

Using the Chain Rule, we have

$$\frac{d}{dx}(y^2) = \frac{d}{dy}(y^2)\frac{dy}{dx} = 2y\frac{dy}{dx}$$

Thus

$$2x + 2y \frac{dy}{dx} = 0$$

Now we solve this equation for dy/dx:

$$\frac{dy}{dx} = -\frac{x}{y}$$

(b) At the point (3, 4) we have x = 3 and y = 4, so

$$\frac{dy}{dx} = -\frac{3}{4}$$

An equation of the tangent to the circle at (3, 4) is therefore

$$y - 4 = -\frac{3}{4}(x - 3)$$
 or $3x + 4y = 25$

EXAMPLE

- (a) Find y' if $x^3 + y^3 = 6xy$.
- (b) Find the tangent to the folium of Descartes $x^3 + y^3 = 6xy$ at the point (3, 3).
- (c) At what points in the first quadrant is the tangent line horizontal?

SOLUTION

a) Differentiating both sides of $x^3 + y^3 = 6xy$ with respect to x, regarding y as a function of x, and using the Chain Rule on the term y^3 and the Product Rule on the term 6xy, we get

$$3x^{2} + 3y^{2}y' = 6xy' + 6y$$
$$x^{2} + y^{2}y' = 2xy' + 2y$$

or

We now solve for
$$y'$$
: $y^2y' - 2xy' = 2y - x^2$
$$(y^2 - 2x)y' = 2y - x^2$$

$$y' = \frac{2y - x^2}{y^2 - 2x}$$

(b) When x = y = 3,

$$y' = \frac{2 \cdot 3 - 3^2}{3^2 - 2 \cdot 3} = -1$$

So an equation of the tangent to the folium at (3, 3) is

$$y - 3 = -1(x - 3)$$
 or $x + y = 6$

(c) The tangent line is horizontal if y'=0. Using the expression for y' from part (a), we see that y'=0 when $2y-x^2=0$ (provided that $y^2-2x\neq 0$). Substituting $y=\frac{1}{2}x^2$ in the equation of the curve, we get $x^3+(\frac{1}{2}x^2)^3=6x(\frac{1}{2}x^2)$

which simplifies to $x^6 = 16x^3$. Since $x \neq 0$ in the first quadrant, we have $x^3 = 16$. If $x = 16^{1/3} = 2^{4/3}$, then $y = \frac{1}{2}(2^{8/3}) = 2^{5/3}$. Thus the tangent is horizontal at (0, 0) and at $(2^{4/3}, 2^{5/3})$, which is approximately (2.5198, 3.1748)

EXAMPLE

Find y' if $\sin(x + y) = y^2 \cos x$.

SOLUTION

$$\cos(x + y) \cdot (1 + y') = y^2(-\sin x) + (\cos x)(2yy')$$

If we collect the terms that involve y', we get

$$\cos(x+y) + y^2 \sin x = (2y \cos x)y' - \cos(x+y) \cdot y'$$

So

$$y' = \frac{y^2 \sin x + \cos(x+y)}{2y \cos x - \cos(x+y)}$$

EXAMPLE

Find y" if $x^4 + y^4 = 16$.

SOLUTION

Differentiating the equation implicitly with respect to , we get

$$4x^3 + 4y^3y' = 0$$

Solving for y' gives $y' = -\frac{x^3}{v^3}$

$$y' = -\frac{x^3}{y^3}$$

To find y'' we differentiate this expression for y' using the Quotient Rule and remembering that y is a function of x:

$$y'' = \frac{d}{dx} \left(-\frac{x^3}{y^3} \right) = -\frac{y^3 \left(\frac{d}{dx} \right)(x^3) - x^3 \left(\frac{d}{dx} \right)(y^3)}{(y^3)^2}$$
$$= -\frac{y^3 \cdot 3x^2 - x^3 (3y^2 y')}{y^6}$$

Substituting $y' = -\frac{x^3}{v^3}$ into this expression, we get

$$y'' = -\frac{3x^2y^3 - 3x^3y^2\left(-\frac{x^3}{y^3}\right)}{y^6}$$
$$= -\frac{3(x^2y^4 + x^6)}{y^7} = -\frac{3x^2(y^4 + x^4)}{y^7}$$

But the values of x and y must satisfy the original equation $x^4 + y^4 = 16$. So the answer simplifies to

$$y'' = -\frac{3x^2(16)}{y^7} = -48\frac{x^2}{y^7}$$

DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

We will use implicit differentiation to find the derivatives of the inverse trigonometric functions, assuming that these functions are differentiable

Recall the definition of the arcsine function:

$$y = \sin^{-1} x$$
 means $\sin y = x$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Differentiating $\sin y = x$ implicitly with respect to x, we obtain

$$\cos y \frac{dy}{dx} = 1$$
 or $\frac{dy}{dx} = \frac{1}{\cos y}$

Now cos $y \ge 0$, since $-\pi/2 \le y \le \pi/2$, so

$$\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$$

Therefore

$$\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

The formula for the derivative of the arctangent function is derived in a similar way. If $y = tan^{-1} x$, then tan y = x. Differentiating this latter equation implicitly with respect to x, we have

$$\sec^2 y \, \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}$$

$$\frac{d}{dx}\left(\tan^{-1}x\right) = \frac{1}{1+x^2}$$

EXAMPLE

Differentiate (a)
$$y = \frac{1}{\sin^{-1}x}$$
 and (b) $f(x) = x \arctan \sqrt{x}$.

SOLUTION

(a)
$$\frac{dy}{dx} = \frac{d}{dx} (\sin^{-1}x)^{-1} = -(\sin^{-1}x)^{-2} \frac{d}{dx} (\sin^{-1}x)$$
$$= -\frac{1}{(\sin^{-1}x)^2 \sqrt{1 - x^2}}$$

(b)
$$f'(x) = x \frac{1}{1 + (\sqrt{x})^2} (\frac{1}{2} x^{-1/2}) + \arctan \sqrt{x}$$
$$= \frac{\sqrt{x}}{2(1+x)} + \arctan \sqrt{x}$$

DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1 + x^2} \qquad \frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1 + x^2}$$