

Pooling

We explore the Max Pool Layer and it's purpose

Pooling

- Pooling is the process whereby we reduce the size or dimensionality of the Feature Map
- This allows us to reduce the number of Parameters in our Network whilst retaining important features
- Also called Subsampling or Downsampling

Example of Max Pooling

Stride = 2Kernel = 2x2

123	167
187	165

More on Pooling

- Typically we use 2x2 kernels and a Stride of 2 with no padding.
- With the above setting, pooling reduces the dimensionality by a factor of 2 (width and height).
- Pooling makes our model more invariant to minor transformations and distortions in our image.
- We can also use Average Pooling or Sum Pooling

How Max Pooling Achieves Translation Invariance

Why Pooling Works

Pooling reduces our feature map size by half in most cases, is that ok?

- Neighbouring pixels are strongly correlated, especially in lowest layers
- Remember further apart two pixels are from each other, the less correlated
- Therefore, we can reduce the size of the output by subsampling (pooling)
 the filter response without losing information
- A big stride in the pooling layer leads to high information loss
- In practice, a stride of 2 and a kernel size 2x2 for the pooling layer was found to be effective in practice

Next...

Fully Connected Layer

