

Kevin Wang

Sydney University
Mathematics Society

New Law 024, 4th October, Thursday, 1-2pm

CRICINFORMATICS: How To Play Cricket With Your Mates While Pretending To Be Doing Research

A Quick Intro About Myself

PhD candidate in Biostatistics/
 Bioinformatics and Postgraduate
 Teaching Fellow at the School of
 Mathematics and Statistics

Smashed way too many stuff in Carslaw playing office cricket

I am here at the risk of being excommunicated by my supervisors

My Talk In One Slide

- Bioinformatics an interdisciplinary field that uses mathematics, statistics and computer science tools to understanding biological data
- Cricinformatics applying all those bioinformatics methods to cricket data
- Aim: Shameless advertising to grab more students into our research group

What Is Data?

▶ Each row is an observation and each column is a variable.

1	A	В	С	D	Е	F	G	Н		J
1	Player	Career Start	Career End	Matches Play	Innings Batte	Not Outs	Runs Scored	Highest Innir	Highest Innir	Batting Avg
2	DG Bradman (1928-1948)	1928	1948	52	80	10	6996	334	334	99.94
3	MN Nawaz (2002-2002)	2002	2002	1	2	1	99	78*	78	99
4	VH Stollmeyer (1939-1939)	1939	1939	1	1	0	96	96	96	96
5	DM Lewis (1971-1971)	1971	1971	3	5	2	259	88	88	86.33
6	Abul Hasan (2012-2013)	2012	2013	3	5	3	165	113	113	82.5
7	RE Redmond (1973-1973)	1973	1973	1	2	0	163	107	107	81.5
8	BA Richards (1970-1970)	1970	1970	4	7	٥	508	140	140	72.57
9	H Wood (1888-1892)	1888	1892	4	4	1	204	134*	134	68
10	TA Blundell (2017-2017)	2017	2017	2	3	1	136	107*	107	68
11	CS Dempster (1930-1933)	1930	1933	10	15	4	723	136	136	65.72

The job of a statistician is to make data to sing a harmonious song and inform us of something useful.

In God We Trust All Others Bring Data

Edwards Deming

THE ASHES

PARTNERSHIP NETWORK ANALYSIS

Batting Partnership

In a batting Innings, two
players must bat together in a
partnership to score runs

All Michael Clarke's batting partners

Network Visualisation

Good data
visualisation can
immediately bring
out the important
features of the data.

Relations To Bioinformatics

Genes form networks to regulate different functions in a human body.

- Cancer = Uncontrollable cancer cell growth
- Often this growth is due to a disturbance in a key regulatory gene - the hub of the network.

Network Centralisation

Node centralisation defines the most important node in a network.

Centralisation = 0

Network
 centralisation is the
 weighted average of
 node centralisations.

Centralisation = 0.67

Australia Vs England

Networks can inform us of the batsmen lineage and team

performance

Network Centralisation Of Australia And England

Network Centralisation Of Australia And England

AREYOUA BATSMANOR ABOWLER?

CLASSIFICATION, PREDICTION AND INTERPRETING ERRORS

Classification

Suppose we want to build a mathematical relationship between:

- $y_i \in \{0,1\}$, denoting a player as a batsman or not a batsman.
- $X=(x_1,...,x_p)\in\mathbb{R}^{n imes p}$, which is a data matrix, with row i denoting a cricket player and column j denoting a variable, e.g. batting average

This is called a **classification problem** and not at all trivial!

Let's Take A Step Back First

What if we want to predict the highest number of runs by batting average?

Linear Regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- β_0 and β_1 are both real numbers, to be estimated from the data
- ϵ_i are the random errors

Matrix Notation

$$y = X\beta + \epsilon$$

 $m{y}$, $m{\beta}$ and $m{E}$ are all vectors

• X = (1, x) is the data matrix with all entries in the the first column equal to 1

Minimisation Of Errors

- $||y-X\beta||^2$ calculates the sum of squared errors.
- We want to minimise this term with respect to $oldsymbol{eta}$.
- The solution is:

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Linear Regression Line

Logistics Regression

- When a player is a batsman (1) or not (0), we don't have continuous response variable.
- Solution: transformations:
- 1. We model on the **probability** of a player being a batsman, $p_i \in [0,1]$.
- 2. We transform the probabilities so they can be modelled over \mathbb{R} :

$$\log\left(\frac{p}{1-p}\right) = X\beta + \epsilon$$

Interpretations

 $oldsymbol{eta}$ tells us about the strength and effect of each

variable

	term \$	estimate 🏺	std.error	statistic ϕ	p.value
1	(Intercept)	-1.7	0.39	-4.4	0.000013
2	notOuts	-0.082	0.017	-4.7	0.0000022
3	battingAvg	0.11	0.021	5.1	2.7e-7
4	highestInningsScoreNum	0.0021	0.0034	0.62	0.54
5	ducksScored	-0.021	0.03	-0.68	0.5

tells us about the probability of each observation being a 1 or 0

		player	notOuts	battingAvg	${\tt highestInningsScoreNum}$	ducksScored	i	sBowler	isBatsman	probBatsman	isAllrounder
1	MJ	Clarke	22	49.10	329	9	Not	bowler	1	0.901950262	FALSE
2	DG B	radman	10	99.94	334	7	Not	bowler	1	0.999827751	FALSE
3	SK	Warne	17	17.32	99	34		bowler	0	0.147570883	FALSE
4	GD M	cGrath	51	7.36	61	35		bowler	0	0.003311592	FALSE
5	GS	Sobers	21	57.78	365	12		bowler	0	0.962297895	TRUE

Connection With Bioinformatics

Cross-validation

Interpretation Of Errors

WILL YOU
BECOME A GREAT
CRICKET
PLAYER?

TRAJECTORY ANALYSIS

Trajectory Analysis

Biotechnology has improved to such a point that we can extract and analyse RNA materials within individual cells.

One of the hottest question is how cells develop and knows their fate? What role does each gene play in this process?

(Way Too Complicated) Mathematics Of Cell Trajectories

- The idea is to find:
 - 1. a tree network ${\mathscr G}$
 - 2. a low-dimension representation $\,Z\,$ of the original data $\,X\,$
 - 3. a function $f_{\mathscr{G}}$ that maps Z to X

s.t. we can preserve the similarities between individual cells in the original data.

$$\min_{\mathcal{G}} \min_{f_{\mathcal{G}}} \min_{Z} \sum_{(V_i, V_j) \in E} w_{i,j} ||f_{\mathcal{G}}(z_i) - f_{\mathcal{G}}(z_j)||^2$$

Who Cares About Maths? Show Me Pretty Pictures!

We can think of each batsman as a cell with potential to develop further into their careers.

Who Cares About Maths? Show Me Pretty Pictures!

Final Words

- The biggest different between a mathematician and a statistician is the level of abstraction and removal of context.
- Even though these tools are very simple, but the data + context + programming make things harder.
- There is nothing stopping you from applying a tool, and it is actually quite fun to do so! But it has to make sense.
- Come and talk to me or the Sydney Bioinformatics Group to learn more!