(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 April 2003 (17.04.2003)

PCT

(10) International Publication Number WO 03/031588 A2

- (51) International Patent Classification7:
-
- (21) International Application Number: PCT/US02/32512
- (22) International Filing Date: 10 October 2002 (10.10.2002)
- (25) Filing Language:

English

C12N

(26) Publication Language:

English

US

(30) Priority Data: 60/328,655

60/363,774

11 October 2001 (11.10.2001) 13 March 2002 (13.03.2002)

(71) Applicants (for all designated States except US): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). ISTITUTO DI RICERCHE DI BIOLOGIA MOLECOLARE P. ANGELETTI, S.P.A. [IT/IT]; VIA PONTINA KM. 30.600, I-00040 POMEZIA

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): EMINI, Emilio, A. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). KASLOW, David, C. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). BETT, Andrew, J. [CA/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). SHIVER, John, W. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). NICOSIA, Alfredo [IT/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT). LAHM, Armin [DE/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT). LUZZAGO, Alessandra [IT/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT). CORTESE, Riccardo [IT/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT). COLLOCA, Stefano [IT/IT]; Via Pontina KM. 30.600, I-00040 Pomezia (IT).
- (74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

[Continued on next page]

(54) Title: HEPATITIS C VIRUS VACCINE

(57) Abstract: The present invention features Ad6 vectors and a nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide containing an inactive NS5B RNA-dependent RNA polymerase region. The nucleic acid is particularly useful as a component of an adenovector or DNA plasmid vaccine providing a broad range of antigens for generating an HCV specific cell mediated immune (CMI) response against HCV.

WO 03/031588 A2

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

TITLE OF THE INVENTION HEPATITIS C VIRUS VACCINE

RELATED APPLICATIONS

5

15

20

25

30

The present application claims priority to provisional applications U.S. Serial No. 60/363,774, filed March 13, 2002, and U.S. Serial No. 60/328,655, filed October 11, 2001, each of which are hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

The references cited in the present application are not admitted to be prior art to the claimed invention.

About 3% of the world's population are infected with the Hepatitis C virus (HCV). (Wasley et al., Semin. Liver Dis. 20, 1-16, 2000.) Exposure to HCV results in an overt acute disease in a small percentage of cases, while in most instances the virus establishes a chronic infection causing liver inflammation and slowly progresses into liver failure and cirrhosis. (Iwarson, FEMS Microbiol. Rev. 14, 201-204, 1994.) In addition, epidemiological surveys indicate an important role of HCV in the pathogenesis of hepatocellular carcinoma. (Kew, FEMS Microbiol. Rev. 14, 211-220, 1994, Alter, Blood 85, 1681-1695, 1995.)

Prior to the implementation of routine blood screening for HCV in 1992, most infections were contracted by inadvertent exposure to contaminated blood, blood products or transplanted organs. In those areas where blood screening of HCV is carried out, HCV is primarily contracted through direct percutaneous exposure to infected blood, *i.e.*, intravenous drug use. Less frequent methods of transmission include perinatal exposure, hemodialysis, and sexual contact with an HCV infected person. (Alter *et al.*, *N. Engl. J. Med.* 341(8), 556-562, 1999, Alter, *J. Hepatol.* 31 Suppl. 88-91, 1999. Semin. Liver. Dis. 201, 1-16, 2000.)

The HCV genome consists of a single strand RNA about 9.5 kb encoding a precursor polyprotein of about 3000 amino acids. (Choo *et al.*, *Science* 244, 362-364, 1989, Choo *et al.*, *Science* 244, 359-362, 1989, Takamizawa *et al.*, *J. Virol.* 65, 1105-1113, 1991.) The HCV polyprotein contains the viral proteins in the order: C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B.

Individual viral proteins are produced by proteolysis of the HCV polyprotein. Host cell proteases release the putative structural proteins C, E1, E2, and

p7, and create the N-terminus of NS2 at amino acid 810. (Mizushima et al., J. Virol. 68, 2731-2734, 1994, Hijikata et al., P.N.A.S. USA 90, 10773-10777, 1993.)

The non-structural proteins NS3, NS4A, NS4B, NS5A and NS5B presumably form the virus replication machinery and are released from the

5 polyprotein. A zinc-dependent protease associated with NS2 and the N-terminus of NS3 is responsible for cleavage between NS2 and NS3. (Grakoui et al., J. Virol. 67, 1385-1395, 1993, Hijikata et al., P.N.A.S. USA 90, 10773-10777, 1993.) A distinct serine protease located in the N-terminal domain of NS3 is responsible for proteolytic cleavages at the NS3/NS4A, NS4A/NS4B, NS4B/NS5A and NS5A/NS5B junctions.

10 (Bartenschlager et al., J. Virol. 67, 3835-3844, 1993, Grakoui et al., Proc. Natl. Acad. Sci. USA 90, 10583-10587, 1993, Tomei et al., J. Virol. 67, 4017-4026, 1993.)

NS4A provides a cofactor for NS3 activity. (Failla et al., J. Virol. 68, 3753-3760, 1994, De Francesco et al., U.S. Patent No. 5,739,002.)

NS5A is a highly phosphorylated protein conferring interferon resistance. (De Francesco et al., Semin. Liver Dis., 20(1), 69-83, 2000, Pawlotsky, Viral Hepat. Suppl. 1, 47-48, 1999.)

NS5B provides an RNA-dependent RNA polymerase. (De Francesco et al., International Publication Number WO 96/37619, Behrens et al., EMBO 15, 12-22, 1996, Lohmann et al., Virology 249, 108-118, 1998.)

20

25

30

35

SUMMARY OF THE INVENTION

The present invention features Ad6 vectors and a nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide containing an inactive NS5B RNA-dependent RNA polymerase region. The nucleic acid is particularly useful as a component of an adenovector or DNA plasmid vaccine providing a broad range of antigens for generating an HCV specific cell mediated immune (CMI) response against HCV.

A HCV specific CMI response refers to the production of cytotoxic T lymphocytes and T helper cells that recognize an HCV antigen. The CMI response may also include non-HCV specific immune effects.

Preferred nucleic acids encode a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide that is substantially similar to SEQ. ID. NO. 1 and has sufficient protease activity to process itself to produce at least a polypeptide substantially similar to the NS5B region present in SEQ. ID. NO. 1. The produced polypeptide corresponding to NS5B is enzymatically inactive. More preferably, the HCV polypeptide has sufficient

protease activity to produce polypeptides substantially similar to the NS3, NS4A, NS4B, NS5A, and NS5B regions present in SEQ. ID. NO. 1.

5

10

15

20

25

30

Reference to a "substantially similar sequence" indicates an identity of at least about 65% to a reference sequence. Thus, for example, polypeptides having an amino acid sequence substantially similar to SEQ. ID. NO. 1 have an overall amino acid identity of at least about 65% to SEQ. ID. NO. 1.

Polypeptides corresponding to NS3, NS4A, NS4B, NS5A, and NS5B have an amino acid sequence identity of at least about 65% to the corresponding region in SEQ. ID. NO. 1. Such corresponding polypeptides are also referred to herein as NS3, NS4A, NS4B, NS5A, and NS5B polypeptides.

Thus, a first aspect of the present invention describes a nucleic acid comprising a nucleotide sequence encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1. The encoded polypeptide has sufficient protease activity to process itself to produce an NS5B polypeptide that is enzymatically inactive.

In a preferred embodiment, the nucleic acid is an expression vector capable of expressing the Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide in a desired human cell. Expression inside a human cell has therapeutic applications for actively treating an HCV infection and for prophylactically treating against an HCV infection.

An expression vector contains a nucleotide sequence encoding a polypeptide along with regulatory elements for proper transcription and processing. The regulatory elements that may be present include those naturally associated with the nucleotide sequence encoding the polypeptide and exogenous regulatory elements not naturally associated with the nucleotide sequence. Exogenous regulatory elements such as an exogenous promoter can be useful for expression in a particular host, such as in a human cell. Examples of regulatory elements useful for functional expression include a promoter, a terminator, a ribosome binding site, and a polyadenylation signal.

Another aspect of the present invention describes a nucleic acid comprising a gene expression cassette able to express in a human cell a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1. The polypeptide can process itself to produce an enzymatically inactive NS5B protein. The gene expression cassette contains at least the following:

a) a promoter transcriptionally coupled to a nucleotide sequence encoding a polypeptide;

5

10

15

20

25

30

35

- b) a 5' ribosome binding site functionally coupled to the nucleotide sequence,
 - c) a terminator joined to the 3' end of the nucleotide sequence, and
- d) a 3' polyadenylation signal functionally coupled to the nucleotide sequence.

Reference to "transcriptionally coupled" indicates that the promoter is positioned such that transcription of the nucleotide sequence can be brought about by RNA polymerase binding at the promoter. Transcriptionally coupled does not require that the sequence being transcribed is adjacent to the promoter.

Reference to "functionally coupled" indicates the ability to mediate an effect on the nucleotide sequence. Functionally coupled does not require that the coupled sequences be adjacent to each other. A 3' polyadenylation signal functionally coupled to the nucleotide sequence facilitates cleavage and polyadenylation of the transcribed RNA. A 5' ribosome binding site functionally coupled to the nucleotide sequence facilitates ribosome binding.

In preferred embodiments the nucleic acid is a DNA plasmid vector or an adenovector suitable for either therapeutic application in treating HCV or as an intermediate in the production of a therapeutic vector. Treating HCV includes actively treating an HCV infection and prophylactically treating against an HCV infection.

Another aspect of the present invention describes an adenovector comprising a Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette able to express a polypeptide substantially similar to SEQ. ID. NO. 1 that is produced by a process involving (a) homologous recombination and (b) adenovector rescue. The homologous recombinant step produces an adenovirus genome plasmid. The adenovector rescue step produces the adenovector from the adenogenome plasmid.

Adenovirus genome plasmids described herein contain a recombinant adenovirus genome having a deletion in the E1 region and optionally in the E3 region and a gene expression cassette inserted into one of the deleted regions. The recombinant adenovirus genome is made of regions substantially similar to one or more adenovirus serotypes.

Another aspect of the present invention describes an adenovector consisting of the nucleic acid sequence of SEQ. ID. NO. 4 or a derivative thereof,

wherein said derivative thereof has the HCV polyprotein encoding sequence present in SEQ. ID. NO. 4 replaced with the HCV polyprotein encoding sequence of either SEQ. ID. NO. 3, SEQ. ID. NO. 10 or SEQ. ID. NO. 11.

Another aspect of the present invention describes a cultured recombinant cell comprising a nucleic acid containing a sequence encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1. The recombinant cell has a variety of uses such as being used to replicate nucleic acid encoding the polypeptide in vector construction methods.

5

10

15

20

30

35

Another aspect of the present invention describes a method of making an adenovector comprising a Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette able to express a polypeptide substantially similar to SEQ. ID. NO. 1. The method involves the steps of (a) producing an adenovirus genome plasmid containing a recombinant adenovirus genome with deletions in the E1 and E3 regions and a gene expression cassette inserted into one of the deleted regions and (b) rescuing the adenovector from the adenovirus genome plasmid.

Another aspect of the present invention describes a pharmaceutical composition comprising a vector for expressing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ. ID. NO. 1 and a pharmaceutically acceptable carrier. The vector is suitable for administration and polypeptide expression in a patient.

A "patient" refers to a mammal capable of being infected with HCV. A patient may or may not be infected with HCV. Examples of patients are humans and chimpanzees.

Another aspect of the present invention describes a method of treating
a patient comprising the step of administering to the patient an effective amount of a
vector expressing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially
similar to SEQ. ID. NO. 1. The vector is suitable for administration and polypeptide
expression in the patient.

The patient undergoing treatment may or may not be infected with HCV. For a patient infected with HCV, an effective amount is sufficient to achieve one or more of the following effects: reduce the ability of HCV to replicate, reduce HCV load, increase viral clearance, and increase one or more HCV specific CMI responses. For a patient not infected with HCV, an effective amount is sufficient to achieve one or more of the following: an increased ability to produce one or more components of a HCV specific CMI response to a HCV infection, a reduced

susceptibility to HCV infection, and a reduced ability of the infecting virus to establish persistent infection for chronic disease.

Another aspect of the present invention features a recombinant nucleic acid comprising an Ad6 region and a region not present in Ad6. Reference to "recombinant" nucleic acid indicates the presence of two or more nucleic acid regions not naturally associated with each other. Preferably, the Ad6 recombinant nucleic acid contains Ad6 regions and a gene expression cassette coding for a polypeptide heterologous to Ad6.

Other features and advantages of the present invention are apparent from the additional descriptions provided herein including the different examples. The provided examples illustrate different components and methodology useful in practicing the present invention. The examples do not limit the claimed invention. Based on the present disclosure the skilled artisan can identify and employ other components and methodology useful for practicing the present invention.

15

20

10

5

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A and 1B illustrate SEQ. ID. NO. 1.

Figures 2A, 2B, 2C, and 2D illustrate SEQ. ID. NO. 2. SEQ. ID. NO. 2 provides a nucleotide sequence coding for SEQ. ID. NO. 1 along with an optimized internal ribosome entry site and TAAA termination. Nucleotides 1-6 provides an optimized internal ribosome entry site. Nucleotides 7-5961 code for a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide with nucleotides in positions 5137 to 5145 providing a AlaAlaGly sequence in amino acid positions 1711 to 1713 that renders NS5B inactive. Nucleotides 5962-5965 provide a TAAA termination.

25

30

Figures 3A, 3B, 3C, and 3D illustrate SEQ. ID. NO. 3. SEQ. ID. NO. 3 is a codon optimized version of SEQ. ID. NO. 2. Nucleotides 7-5961 encode a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide.

Figures 4A-4M illustrate MRKAd6-NSmut (SEQ. ID. NO. 4). SEQ. ID. NO. 4 is an adenovector containing an expression cassette where the polypeptide of SEQ. ID. NO. 1 is encoded by SEQ. ID. NO. 2. Base pairs 1-450 correspond to the Ad5 bp 1 to 450; base pairs 462 to 1252 correspond to the human CMV promoter; base pairs 1258 to 1267 correspond to the Kozak sequence; base pairs 1264 to 7222 correspond to the NS genes; base pairs 7231 to 7451 correspond to the BGH polyadenylation signal; base pairs 7469 to 9506 correspond to Ad5 base pairs 3511 to 5548; base pairs 9507 to 32121 correspond to Ad6 base pairs 5542 to 28156; base

35

pairs 32122 to 35117 correspond to Ad6 base pairs 30789 to 33784; and base pairs 35118 to 37089 correspond to Ad5 base pairs 33967 to 35935.

Figures 5A-5O illustrate SEQ. ID. NOs. 5 and 6. SEQ. ID. NO. 5 encodes a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide with an active RNA dependent RNA polymerase. SEQ. ID. NO. 6 provides the amino acid sequence for the polypeptide.

Figures 6A-6C provide the nucleic acid sequence for pV1JnsA (SEQ. ID. NO. 7).

Figures 7A-7N provide the nucleic acid sequence for the Ad6 genome 10 (SEQ. ID. NO. 8).

5

25

30

35

Figures 8A-8K provide the nucleic acid sequence for the Ad5 genome (SEQ. ID. NO. 9).

Figure 9 illustrates different regions of the Ad6 genome. The linear (35759 bp) ds DNA genome is indicated by two parallel lines and is divided into 100 map units. Transcription units are shown relative to their position and orientation in the genome. Early genes (E1A, E1B, E2A/B, E3 and E4 are indicated by gray arrows. Late genes (L1 to L5), indicated by black arrows, are produced by alternative splicing of a transcript produced from the major late promoter (MLP) and all contain the tripartite leader (1, 2, 3) at their 5' ends. The E1 region is located from approximately 1.0 to 11.5 map units, the E2 region from 75.0 to 11.5 map units, E3 from 76.1 to 86.7 map units, and E4 from 99.5 to 91.2 map units. The major late transcription unit is located between 16.0 and 91.2 map units.

Figure 10 illustrates homologous recombination to recover pAdE1-E3+ containing Ad6 and Ad5 regions.

Figure 11 illustrates homologous recombinant to recover a pAdE1-E3+ containing Ad6 regions.

Figure 12 illustrates a western blot on whole-cell extracts from 293 cells transfected with plasmid DNA expressing different HCV NS cassettes. Mature NS3 and NS5A products were detected with specific antibodies. "pV1Jns-NS" refers to a pV1JnsA plasmid where a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide is encoded by SEQ. ID. NO. 5, and SEQ. ID. NO. 5 is inserted between bases 1881 and 1912 of SEQ. ID. NO. 7. "pV1Jns-NSmut" refers to a pV1JnsA plasmid where SEQ. ID. NO. 2 is inserted between bases 1882 and 1925 of SEQ. ID. NO. 7. "pV1Jns-NSOPTmut" refers to a pV1JnsA plasmid where SEQ. ID. NO. 3 is inserted between bases 1881 and 1905 of SEQ. ID. NO. 7.

Figures 13A and 13B illustrate T cell responses by IFN γ ELIspot induced in C57black6 mice (A) and BalbC mice (B) by two injections of 25 μ g and 50 μ g, respectively, of plasmid DNA encoding the different HCV NS cassettes with Gene Electro-Transfer (GET).

5

10

15

20

25

Figure 14 illustrates protein expression from different adenovectors upon infection of HeLa cells. MRKAd5-NSmut is an adenovector based on an Ad5 sequence (SEQ. ID. NO. 9), where the Ad5 genome has an E1 deletion of base pairs 451 to 3510, an E3 deletion of base pairs 28134 to 30817, and has the NS3-NS4A-NS4B-NS5A-NS5B expression cassette as provided in base pairs 451 to 7468 of SEQ. ID. NO. 4 inserted between positions 450 and 3511. Ad5-NS is an adenovector based on an Ad5 backbone with an E1 deletion of base pairs 342 to 3523, and E3 deletion of base pairs 28134 to 30817 and containing an expression cassette encoding a NS3-NS4A-NS4B-NS5A-NS5B from SEQ. ID. NO. 5. "MRKAd6-NSOPTmut" refers to an adenovector having a modified SEQ. ID. NO. 4 sequence, wherein base pairs 1258 to 7222 of SEQ. ID. NO. 4 is replaced with SEQ. ID. NO. 3.

Figure 15 illustrates T cell responses by IFN γ ELIspot induced in C57black6 mice by two injections of 10^9 vp of adenovectors containing different HCV non-structural gene cassettes.

Figures 16A-16D illustrate T cell responses by IFN γ ELIspot induced in Rhesus monkeys by one or two injections of 10^{10} vp (A) or 10^{11} vp (B) of adenovectors containing different HCV non-structural gene cassettes.

Figures 17A and 17B illustrates CD8+ T cell responses by IFN γ ICS induced in Rhesus monkeys by two injections of 10^{10} vp (A) or 10^{11} vp (B) of adenovectors encoding the different HCV non-structural gene cassettes.

Figures 18A-18F illustrate T cell responses by bulk CTL assay induced in Rhesus monkeys by two injections of 10¹¹ vp of Ad5-NS (A), MRKAd5-NSmut (B), or MRKAd6-NSmut (C).

Figure 19 illustrates the plasmid pE2.

Figures 20A-D illustrates the partial codon optimized sequence

NSsuboptmut (SEQ. ID. NO. 10). Coding sequence for the Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide is from base 7 to 5961.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

The present invention features Ad6 vectors and nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide that contains an inactive NS5B region. Providing an inactive NS5B region supplies NS5B antigens while reducing the possibility of adverse side effects due to an active viral RNA polymerase. Uses of the featured nucleic acid include use as a vaccine component to introduce into a cell an HCV polypeptide that provides a broad range of antigens for generating a CMI response against HCV, and as an intermediate for producing such a vaccine component.

The adaptive cellular immune response can function to recognize viral antigens in HCV infected cells throughout the body due to the ubiquitous distribution of major histocompatibility complex (MHC) class I and II expression, to induce immunological memory, and to maintain immunological memory. These functions are attributed to antigen-specific CD4+ T helper (Th) and CD8+ cytotoxic T cells (CTL).

Upon activation via their specific T cell receptors, HCV specific Th cells fulfill a variety of immunoregulatory functions, most of them mediated by Th1 and Th2 cytokines. HCV specific Th cells assist in the activation and differentiation of B cells and induction and stimulation of virus-specific cytotoxic T cells. Together with CTL, Th cells may also secrete IFN-γ and TNF-α that inhibit replication and gene expression of several viruses. Additionally, Th cells and CTL, the main effector cells, can induce apoptosis and lysis of virus infected cells.

HCV specific CTL are generated from antigens processed by professional antigen presenting cells (pAPCs). Antigens can be either synthesized within or introduced into pAPCs. Antigen synthesis in a pAPC can be brought about by introducing into the cell an expression cassette encoding the antigen.

A preferred route of nucleic acid vaccine administration is an intramuscular route. Intramuscular administration appears to result in the introduction and expression of nucleic acid into somatic cells and pAPCs. HCV antigens produced in the somatic cells can be transferred to pAPCs for presentation in the context of MHC class I molecules. (Donnelly *et al.*, *Annu. Rev. Immunol. 15*:617-648, 1997.)

pAPCs process longer length antigens into smaller peptide antigens in the proteasome complex. The antigen is translocated into the endoplasmic reticulum/Golgi complex secretory pathway for association with MHC class I

proteins. CD8+ T lymphocytes recognize antigen associated with class I MHC via the T cell receptor (TCR) and the CD8 cell surface protein.

Using a nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide as a vaccine component allows for production of a broad range of antigens capable of generating CMI responses from a single vector. The polypeptide should be able to process itself sufficiently to produce at least a region corresponding to NS5B. Preferred nucleic acids encode an amino acid sequence substantially similar to SEQ. ID. NO. 1 that has sufficient protease activity to process itself to produce individual HCV polypeptides substantially similar to the NS3, NS4A, NS4B, NS5A, and NS5B regions present in SEQ. ID. NO. 1.

5

10

15

20

25

30

35

A polypeptide substantially similar to SEQ. ID. NO. 1 with sufficient protease activity to process itself in a cell provides the cell with T cell epitopes that are present in several different HCV strains. Protease activity is provided by NS3 and NS3/NS4A proteins digesting the Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide at the appropriate cleavage sites to release polypeptides corresponding to NS3, NS4A, NS4B, NS5A, and NS5B. Self- processing of the Met-NS3-NS4A-NS4B-NS5A-NS5B generates polypeptides that approximate naturally occurring HCV polypeptides.

Based on the guidance provided herein a sufficiently strong immune response can be generated to achieve beneficial effects in a patient. The provided guidance includes information concerning HCV sequence selection, vector selection, vector production, combination treatment, and administration.

I. HCV SEQUENCES

A variety of different nucleic acid sequences can be used as a vaccine component to supply a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide to a cell or as an intermediate to produce vaccine components. The starting point for obtaining suitable nucleic acid sequences are preferably naturally occurring NS3-NS4A-NS4B-NS5A-NS5B polypeptide sequences modified to produce an inactive NS5B.

The use of a HCV nucleic acid sequence providing HCV non-structural antigens to generate a CMI response is mentioned by Cho *et al.*, *Vaccine 17*:1136-1144, 1999, Paliard *et al.*, International Publication Number WO 01/30812 (not admitted to be prior art to the claimed invention), and Coit *et al.*, International Publication Number WO 01/38360 (not admitted to be prior art to the claimed invention). Such references fail to describe, for example, a polypeptide that processes

itself to produce an inactive NS5B, and the particular combinations of HCV sequences and delivery vehicles employed herein.

Modifications to a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide sequence can be produced by altering the encoding nucleic acid. Alterations can be performed to create deletions, insertions and substitutions.

5

10

15

25

30

35

Small modifications can be made in NS5B to produce an inactive polymerase by targeting motifs essentially for replication. Examples of motifs critical for NS5B activity and modifications that can be made to produce an inactive NS5B are described by Lohmann *et al.*, *Journal of Virology 71*:8416-8426, 1997, and Kolykhalov *et al.*, *Journal of Virology 74*:2046-2051, 2000.

Additional factors to take into account when producing modifications to a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide include maintaining the ability to self-process and maintaining T cell antigens. The ability of the HCV polypeptide to process itself is determined to a large extent by a functional NS3 protease. Modifications that maintain NS3 activity protease activity can be obtained by taking into account the NS3 protein, NS4A which serves as a cofactor for NS3, and NS3 protease recognition sites present within the NS3-NS4A-NS4B-NS5A-NS5B polypeptide.

Different modifications can be made to naturally occurring NS3NS4A-NS4B-NS5A-NS5B polypeptide sequences to produce polypeptides able to elicit a broad range of T cell responses. Factors influencing the ability of a polypeptide to elicit a broad T cell response include the preservation or introduction of HCV specific T cell antigen regions and prevalence of different T cell antigen regions in different HCV isolates.

Numerous examples of naturally occurring HCV isolates are well known in the art. HCV isolates can be classified into the following six major genotypes comprising one or more subtypes: HCV-1/(1a,1b,1c), HCV-2/(2a,2b,2c), HCV-3/(3a,3b,10a), HCV-4/(4a), HCV-5/(5a) and HCV-6/(6a,6b,7b,8b,9a,11a). (Simmonds, *J. Gen. Virol.*, 693-712, 2001.) Examples of particular HCV sequences such as HCV-BK, HCV-J, HCV-N, HCV-H, have been deposited in GenBank and described in various publications. (See, for example, Chamberlain *et al.*, *J. Gen. Virol.*, 1341-1347, 1997.)

HCV T cell antigens can be identified by, for example, empirical experimentation. One way of identifying T cell antigens involves generating a series of overlapping short peptides from a longer length polypeptide and then screening the

T-cell populations from infected patients for positive clones. Positive clones are activated/primed by a particular peptide. Techniques such as IFNY-ELISPOT, IFNY-Intracellular staining and bulk CTL assays can be used to measure peptide activity. Peptides thus identified can be considered to represent T-cell epitopes of the respective pathogen.

HCV T cell antigen regions from different HCV isolates can be introduced into a single sequence by, for example, producing a hybrid NS3-NS4A-NS4B-NS5A-NS5B polypeptide containing regions from two or more naturally occurring sequences. Such a hybrid can contain additional modifications, which preferably do not reduce the ability of the polypeptide to produce an HCV CMI response.

The ability of a modified Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide to process itself and produce a CMI response can be determined using techniques described herein or well known in the art. Such techniques include the use of IFNγ-ELISPOT, IFNγ-Intracellular staining and bulk CTL assays to measure a HCV specific CMI response.

A. Met-NS3-NS4A-NS4B-NS5A-NS5B Sequences

5

10

15

20

SEQ. ID. NO. 1 provides a preferred Met-NS3-NS4A-NS4B-NS5A-NS5B sequence. SEQ. ID. NO. 1 contains a large number of HCV specific T cell antigens that are present in several different HCV isolates. SEQ. ID. NO. 1 is similar to the NS3-NS4A-NS4B-NS5A-NS5B portion of the HCV BK strain nucleotide sequence (GenBank accession number M58335).

In SEQ. ID. NO. 1 anchor positions important for recognition by MHC

25 class I molecules are conserved or represent conservative substitutions for 18 out of
20 known T-cell epitopes in the NS3-NS4A-NS4B-NS5A-NS5B portion of HCV
polyproteins. With respect to the remaining two known T-cell epitopes, one has a
non-conservative anchor substitution in SEQ. ID. NO. 1 that may still be recognized
by a different HLA supertype and one epitope has one anchor residue not conserved.

30 HCV T-cell epitopes are described in Chisari et al., Curr. Top. Microbiol Immunol.,
242:299-325, 2000, and Lechner et al. J. Exp. Med. 9:1499-1512, 2000.

Differences between the HCV-BK NS3-NS4A-NS4B-NS5A-NS5B nucleotide sequence and SEQ. ID. NO. 1 include the introduction of a methionine at the 5' end and the presence of modified NS5B active site residues in SEQ. ID. NO. 1.

The modification replaces GlyAspAsp with AlaAlaGly (residues 1711-1713) to inactivate NS5B.

The encoded HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide preferably has an amino acid sequence substantially similar to SEQ. ID. NO. 1. In different embodiments, the encoded HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide has an amino acid identify to SEQ. ID. NO. 1 of at least 65%, at least 75%, at least 95%, at least 99% or 100%; or differs from SEQ. ID. NO. 1 by 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, or 1-20 amino acids.

Amino acid differences between a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide and SEQ. ID. NO. 1 are calculated by determining the minimum number of amino acid modifications in which the two sequences differ. Amino acid modifications can be deletions, additions, substitutions or any combination thereof.

10

25

Amino acid sequence identity is determined by methods well known in
the art that compare the amino acid sequence of one polypeptide to the amino acid
sequence of a second polypeptide and generate a sequence alignment. Amino acid
identity is calculated from the alignment by counting the number of aligned residue
pairs that have identical amino acids.

Methods for determining sequence identity include those described by Schuler, G.D. in *Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins*, Baxevanis, A.D. and Ouelette, B.F.F., eds., John Wiley & Sons, Inc, 2001; Yona, et al., in *Bioinformatics: Sequence, structure and databanks*, Higgins, D. and Taylor, W. eds, Oxford University Press, 2000; and *Bioinformatics: Sequence and Genome Analysis*, Mount, D.W., ed., Cold Spring Harbor Laboratory Press, 2001).

Methods to determine amino acid sequence identity are codified in publicly available computer programs such as GAP (Wisconsin Package Version 10.2, Genetics Computer Group (GCG), Madison, Wisc.), BLAST (Altschul *et al.*, *J. Mol. Biol.* 215(3):403-10, 1990), and FASTA (Pearson, Methods in Enzymology 183:63-98, 1990, R.F. Doolittle, ed.).

In an embodiment of the present invention sequence identity between two polypeptides is determined using the GAP program (Wisconsin Package Version 10.2, Genetics Computer Group (GCG), Madison, Wisc.). GAP uses the alignment method of Needleman and Wunsch. (Needleman, et al., J. Mol. Biol. 48:443-453, 1970.) GAP considers all possible alignments and gap positions between two sequences and creates a global alignment that maximizes the number of matched

residues and minimizes the number and size of gaps. A scoring matrix is used to assign values for symbol matches. In addition, a gap creation penalty and a gap extension penalty are required to limit the insertion of gaps into the alignment. Default program parameters for polypeptide comparisons using GAP are the BLOSUM62 (Henikoff et al., Proc. Natl. Acad. Sci. USA, 89:10915-10919, 1992) amino acid scoring matrix (MATrix=blosum62.cmp), a gap creation parameter (GAPweight=8) and a gap extension pararameter (LENgthweight=2).

5

10

15

20

25

30

35

More preferred HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptides in addition to being substantially similar to SEQ. ID. NO. 1 across their entire length produce individual NS3, NS4A, NS4B, NS5A and NS5B regions that are substantially similar to the corresponding regions present in SEQ. ID. NO. 1. The corresponding regions in SEQ. ID. NO. 1 are provided as follows: Met-NS3 amino acids 1-632; NS4A amino acids 633-686; NS4B amino acids 687-947; NS5A amino acids 948-1394; and NS5B amino acids 1395-1985.

In different embodiments a NS3, NS4A, NS4B, NS5A and/or NS5B region has an amino acid identity to the corresponding region in SEQ. ID. NO. 1 of at least 65%, at least 75%, at least 85%, at least 95%, at least 99%, or 100%; or an amino acid difference of 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, or 1-20 amino acids.

Amino acid modifications to SEQ. ID. NO. 1 preferably maintain all or most of the T-cell antigen regions. Differences in naturally occurring amino acids are due to different amino acid side chains (R groups). An R group affects different properties of the amino acid such as physical size, charge, and hydrophobicity. Amino acids can be divided into different groups as follows: neutral and hydrophobic (alanine, valine, leucine, isoleucine, proline, tyrptophan, phenylalanine, and methionine); neutral and polar (glycine, serine, threonine, tryosine, cysteine, asparagine, and glutamine); basic (lysine, arginine, and histidine); and acidic (aspartic acid and glutamic acid).

Generally, in substituting different amino acids it is preferable to exchange amino acids having similar properties. Substituting different amino acids within a particular group, such as substituting valine for leucine, arginine for lysine, and asparagine for glutamine are good candidates for not causing a change in polypeptide tertiary structure.

Starting with a particular amino acid sequence and the known degeneracy of the genetic code, a large number of different encoding nucleic acid

sequences can be obtained. The degeneracy of the genetic code arises because almost all amino acids are encoded by different combinations of nucleotide triplets or "codons". The translation of a particular codon into a particular amino acid is well known in the art (see, e.g., Lewin GENES IV, p. 119, Oxford University Press, 1990).

5 Amino acids are encoded by codons as follows:

A=Ala=Alanine: codons GCA, GCC, GCG, GCU

C=Cys=Cysteine: codons UGC, UGU

D=Asp=Aspartic acid: codons GAC, GAU

E=Glu=Glutamic acid: codons GAA, GAG

10 F=Phe=Phenylalanine: codons UUC, UUU

G=Gly=Glycine: codons GGA, GGC, GGG, GGU

H=His=Histidine: codons CAC, CAU

I=Ile=Isoleucine: codons AUA, AUC, AUU

K=Lys=Lysine: codons AAA, AAG

15 L=Leu=Leucine: codons UUA, UUG, CUA, CUC, CUG, CUU

M=Met=Methionine: codon AUG

N=Asn=Asparagine: codons AAC, AAU

P=Pro=Proline: codons CCA, CCC, CCG, CCU

Q=Gln=Glutamine: codons CAA, CAG

20 R=Arg=Arginine: codons AGA, AGG, CGA, CGC, CGG, CGU

S=Ser=Serine: codons AGC, AGU, UCA, UCC, UCG, UCU

T=Thr=Threonine: codons ACA, ACC, ACG, ACU

V=Val=Valine: codons GUA, GUC, GUG, GUU

W=Trp=Tryptophan: codon UGG

25 Y=Tyr=Tyrosine: codons UAC, UAU.

Nucleic acid sequences can be optimized in an effort to enhance expression in a host. Factors to be considered include C:G content, preferred codons, and the avoidance of inhibitory secondary structure. These factors can be combined in different ways in an attempt to obtain nucleic acid sequences having enhanced expression in a particular host. (See, for example, Donnelly et al. International

30 expression in a particular host. (See, for example, Donnelly *et al.*, International Publication Number WO 97/47358.)

The ability of a particular sequence to have enhanced expression in a particular host involves some empirical experimentation. Such experimentation involves measuring expression of a prospective nucleic acid sequence and, if needed,

35 altering the sequence.

B. Encoding Nucleotide Sequences

5

10

15

20

25

30

35

SEQ. ID. NOs. 2 and 3 provide two examples of nucleotide sequences encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B sequence. The coding sequence of SEQ. ID. NO. 2 is similar (99.4% nucleotide sequence identity) to the NS3-NS4A-NS4B-NS5A-NS5B region of the naturally occurring HCV-BK sequence (GenBank accession number M58335). SEQ. ID. NO. 3 is a codon-optimized version of SEQ. ID. NO. 2. SEQ. ID. NOs. 2 and 3 have a nucleotide sequence identity of 78.3%.

Differences between the HCV-BK NS3-NS4A-NS4B-NS5A-NS5B nucleotide (GenBank accession number M58335) and SEQ. ID. NO. 2, include SEQ. ID. NO. 2 having a ribosome binding site, an ATG methionine codon, a region coding for a modified NS5B catalytic domain, a TAAA stop signal and an additional 30 nucleotide differences. The modified catalytic domain codes for a AlaAlaGly (residues 1711-1713) instead of GlyAspAsp to inactivate NS5B.

A nucleotide sequence encoding a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide is preferably substantially similar to the SEQ. ID. NO. 2 coding region. In different embodiments, the nucleotide sequence encoding a HCV Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide has a nucleotide sequence identify to the SEQ. ID. NO. 2 coding region of at least 65%, at least 75%, at least 85%, at least 95%, at least 99%, or 100%; or differs from SEQ. ID. NO. 2 by 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-25, 1-30, 1-35, 1-40, 1-45, or 1-50 nucleotides.

Nucleotide differences between a sequence coding Met-NS3-NS4A-NS4B-NS5A-NS5B and the SEQ. ID. NO. 2 coding region are calculated by determining the minimum number of nucleotide modifications in which the two sequences differ. Nucleotide modifications can be deletions, additions, substitutions or any combination thereof.

Nucleotide sequence identity is determined by methods well known in the art that compare the nucleotide sequence of one sequence to the nucleotide sequence of a second sequence and generate a sequence alignment. Sequence identity is determined from the alignment by counting the number of aligned positions having identical nucleotides.

Methods for determining nucleotide sequence identity between two polynucleotides include those described by Schuler, in *Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins*, Baxevanis, A.D. and Ouelette, B.F.F.,

eds., John Wiley & Sons, Inc, 2001; Yona et al., in Bioinformatics: Sequence, structure and databanks, Higgins, D. and Taylor, W. eds, Oxford University Press, 2000; and Bioinformatics: Sequence and Genome Analysis, Mount, D.W., ed., Cold Spring Harbor Laboratory Press, 2001). Methods to determine nucleotide sequence identity are codified in publicly available computer programs such as GAP (Wisconsin Package Version 10.2, Genetics Computer Group (GCG), Madison, Wisc.), BLAST (Altschul et al., J. Mol. Biol. 215(3):403-10, 1990), and FASTA (Pearson, W.R., Methods in Enzymology 183:63-98, 1990, R.F. Doolittle, ed.).

In an embodiment of the present ivnention, sequence identity between two polynucleotides is determined by application of GAP (Wisconsin Package Version 10.2, Genetics Computer Group (GCG), Madison, Wisc.). GAP uses the alignment method of Needleman and Wunsch. (Needleman et al., J. Mol. Biol. 48:443-453, 1970.) GAP considers all possible alignments and gap positions between two sequences and creates a global alignment that maximizes the number of matched residues and minimizes the number and size of gaps. A scoring matrix is used to assign values for symbol matches. In addition, a gap creation penalty and a gap extension penalty are required to limit the insertion of gaps into the alignment. Default program parameters for polynucleotide comparisons using GAP are the nwsgapdna.cmp scoring matrix (MATrix=nwsgapdna.cmp), a gap creation parameter (GAPweight=50) and a gap extension pararameter (LENgthweight=3).

More preferred HCV Met-NS3-NS4A-NS4B-NS5A-NS5B nucleotide sequences in addition to being substantially similar across its entire length, produce individual NS3, NS4A, NS4B, NS5A and NS5B regions that are substantially similar to the corresponding regions present in SEQ. ID. NO. 2. The corresponding coding regions in SEQ. ID. NO. 2 are provided as follows: Met-NS3, nucleotides 7-1902; NS4A nucleotides 1903-2064; NS4B nucleotides 2065-2847; NS5A nucleotides 2848-4188: NS5B nucleotides 4189-5661.

In different embodiments a NS3, NS4A, NS4B, NS5A and/or NS5B encoding region has a nucleotide sequence identity to the corresponding region in SEQ. ID. NO. 2 of at least 65%, at least 75%, at least 85%, at least 95%, at least 99% or 100%; or a nucleotide difference to SEQ. ID. NO. 2 of 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-25, 1-30, 1-35, 1-40, 1-45, or 1-50 nucleotides.

25

30

PCT/US02/32512 WO 03/031588

C. Gene Expression Cassettes

10

20

25

30

35

A gene expression cassette contains elements needed for polypeptide expression. Reference to "polypeptide" does not provide a size limitation and includes protein. Regulatory elements present in a gene expression cassette generally include: (a) a promoter transcriptionally coupled to a nucleotide sequence encoding the polypeptide, (b) a 5' ribosome binding site functionally coupled to the nucleotide sequence, (c) a terminator joined to the 3' end of the nucleotide sequence, and (d) a 3' polyadenylation signal functionally coupled to the nucleotide sequence. Additional regulatory elements useful for enhancing or regulating gene expression or polypeptide processing may also be present.

Promoters are genetic elements that are recognized by an RNA polymerase and mediate transcription of downstream regions. Preferred promoters are strong promoters that provide for increased levels of transcription. Examples of strong promoters are the immediate early human cytomegalovirus promoter (CMV), and CMV with intron A. (Chapman et al, Nucl. Acids Res. 19:3979-3986, 1991.) 15 Additional examples of promoters include naturally occurring promoters such as the EF1 alpha promoter, the murine CMV promoter, Rous sarcoma virus promoter, and SV40 early/late promoters and the β -actin promoter; and artificial promoters such as a synthetic muscle specific promoter and a chimeric muscle-specific/CMV promoter (Li et al., Nat. Biotechnol. 17:241-245, 1999, Hagstrom et al., Blood 95:2536-2542, 2000).

The ribosome binding site is located at or near the initiation codon. Examples of preferred ribosome binding sites include CCACCAUGG, CCGCCAUGG, and ACCAUGG, where AUG is the initiation codon. (Kozak, Cell 44:283-292, 1986). Another example of a ribosome binding site is GCCACCAUGG (SEO. ID. NO. 12).

The polyadenylation signal is responsible for cleaving the transcribed RNA and the addition of a poly (A) tail to the RNA. The polyadenylation signal in higher eukaryotes contains an AAUAAA sequence about 11-30 nucleotides from the polyadenylation addition site. The AAUAAA sequence is involved in signaling RNA cleavage. (Lewin, Genes IV, Oxford University Press, NY, 1990.) The poly (A) tail is important for the mRNA processing.

Polyadenylation signals that can be used as part of a gene expression cassette include the minimal rabbit β -globin polyadenylation signal and the bovine growth hormone polyadenylation (BGH). (Xu et al., Gene 272:149-156, 2001, Post et

Examples of additional regulatory elements useful for enhancing or regulating gene expression or polypeptide processing that may be present include an enhancer, a leader sequence and an operator. An enhancer region increases transcription. Examples of enhancer regions include the CMV enhancer and the SV40 enhancer. (Hitt et al., Methods in Molecular Genetics 7:13-30, 1995, Xu, et al., Gene 272:149-156, 2001.) An enhancer region can be associated with a promoter.

A leader sequence is an amino acid region on a polypeptide that directs the polypeptide into the proteasome. Nucleic acid encoding the leader sequence is 5' of a structural gene and is transcribed along the structural gene. An example of a leader sequences is tPA.

An operator sequence can be used to regulate gene expression. For example, the Tet operator sequence can be used to repress gene expression.

II. THERAPEUTIC VECTORS

Nucleic acid encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide can be introduced into a patient using vectors suitable for therapeutic administration. Suitable vectors can deliver nucleic acid into a target cell without causing an unacceptable side effect.

Cellular expression is achieved using a gene expression cassette encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide. The gene expression cassette contains regulatory elements for producing and processing a sufficient amount of nucleic acid inside a target cell to achieve a beneficial effect.

Examples of vectors that can be used for therapeutic applications include first and second generation adenovectors, helper dependent adenovectors, adeno-associated viral vectors, retroviral vectors, alpha virus vectors, Venezuelan Equine Encephalitis virus vector, and plasmid vectors. (Hitt, et al., Advances in Pharmacology 40:137-206, 1997, Johnston et al., U.S. Patent No. 6,156,588, and Johnston et al., International Publication Number WO 95/32733.) Preferred vectors for introducing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide into a subject are first generation adenoviral vectors and plasmid DNA vectors.

5

10

15

20

25

30

A. First Generation Adenovectors

5

10

15

20

25

30

35

First generation adenovector for expressing a gene expression cassette contain the expression cassette in an E1 and optionally E3 deleted recombinant adenovirus genome. The deletion in the E1 region is sufficiently large to remove elements needed for adenoviral replication.

First generation adenovectors for expressing a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide contain a E1 and E3 deleted recombinant adenovirus genome. The deletion in the E1 region is sufficiently large to remove elements needed for adenoviral replication. The combinations of deletions of the E1 and E3 regions are sufficiently large to accommodate a gene expression cassette encoding a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide.

The adenovirus has a double-stranded linear genome with inverted terminal repeats at both ends. During viral replication, the genome is packaged inside a viral capsid to form a virion. The virus enters its target cell through viral attachment followed by internalization. (Hitt et al., Advances in Pharmacology 40:137-206, 1997.)

Adenovectors can be based on different adenovirus serotypes such as those found in humans or animals. Examples of animal adenoviruses include bovine, porcine, chimp, murine, canine, and avian (CELO). Preferred adenovectors are based on human serotypes, more preferably Group B, C, or D serotypes. Examples of human adenovirus Group B, C, D, or E serotypes include types 2 ("Ad2"), 4 ("Ad4"), 5 ("Ad5"), 6 ("Ad6"), 24 ("Ad24"), 26 ("Ad26"), 34 ("Ad34") and 35 ("Ad35"). Adenovectors can contain regions from a single adenovirus or from two or more adenovirus.

In different embodiments adenovectors are based on Ad5, Ad6, or a combination thereof. Ad5 is described by Chroboczek, *et al.*, *J. Virology 186*:280-285, 1992. Ad6 is described in Figures 7A-7N. An Ad6 based vector containing Ad5 regions is described in the Example section provided below.

Adenovectors do not need to have their E1 and E3 regions completely removed. Rather, a sufficient amount the E1 region is removed to render the vector replication incompetent in the absence of the E1 proteins being supplied in *trans*; and the E1 deletion or the combination of the E1 and E3 deletions are sufficiently large enough to accommodate a gene expression cassette.

E1 deletions can be obtained starting at about base pair 342 going up to about base pair 3523 of Ad5, or a corresponding region from other adenoviruses.

Preferably, the deleted region involves removing a region from about base pair 450 to about base pair 3511 of Ad5, or a corresponding region from other adenoviruses. Larger E1 region deletions starting at about base pair 341 removes elements that facilitate virus packaging.

E3 deletions can be obtained starting at about base pair 27865 to about base pair 30995 of Ad5, or the corresponding region of other adenovectors. Preferably the deletion region involves removing a region from about base pair 28134 up to about base pair 30817 of Ad5, or the corresponding region of other adenovectors.

5

10

15

20

25

30

35

The combination of deletions to the E1 region and optionally the E3 region should be sufficiently large so that the overall size of the recombinant genome containing the gene expression cassette does not exceed about 105% of the wild type adenovirus genome. For example, as recombinant adenovirus Ad5 genomes increase size above about 105% the genome becomes unstable. (Bett *et al.*, *Journal of Virology 67*:5911-5921, 1993.)

Preferably, the size of the recombinant adenovirus genome containing the gene expression cassette is about 85% to about 105% the size of the wild type adenovirus genome. In different embodiments, the size of the recombinant adenovirus genome containing the expression cassette is about 100% to about 105.2%, or about 100%, the size of the wild type genome.

Approximately 7,500 kb can be inserted into an adenovirus genome with a E1 and E3 deletion. Without any deletion, the Ad5 genome is 35,935 base pairs and the Ad6 genome is 35,759 base pairs.

Replication of first generation adenovectors can be performed by supplying the E1 gene products in *trans*. The E1 gene product can be supplied in *trans*, for example, by using cell lines that have been transformed with the adenovirus E1 region. Examples of cells and cells lines transformed with the adenovirus E1 region are HEK 293 cells, 911 cells, PERC.6TM cells, and transfected primary human aminocytes cells. (Graham *et al.*, *Journal of Virology 36*:59-72, 1977, Schiedner *et al.*, *Human Gene Therapy 11*:2105-2116, 2000, Fallaux *et al.*, *Human Gene Therapy 9*:1909-1917, 1998, Bout *et al.*, U.S. Patent No. 6,033,908.)

A Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette should be inserted into a recombinant adenovirus genome in the region corresponding to the deleted E1 region or the deleted E3 region. The expression cassette can have a parallel or anti-parallel orientation. In a parallel orientation the transcription direction

of the inserted gene is the same direction as the deleted E1 or E3 gene. In an antiparallel orientation transcription the opposite strand serves as a template and the transcription direction is in the opposite direction.

In an embodiment of the present invention the adenovector has a gene expression cassette inserted in the E1 deleted region. The vector contains:

5

10

15

20

25

- a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
- b) a gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to the first region;
- c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;
- d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the third region; and
- f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6 joined to the fourth region.

In another embodiment of the present invention the adenovector has an expression cassette inserted in the E3 deleted region. The vector contains:

- a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
- b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the first region;
- c) a third adenovirus region from about base pair 5549 to about

 30 base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair

 28156 corresponding to Ad6, joined to the second region;
 - d) a gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to the third region;

e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the gene expression cassette; and

f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region.

In preferred different embodiments concerning adenovirus regions that are present: (1) the first, second, third, fourth, and fifth region corresponds to Ad5; (2) the first, second, third, fourth, and fifth region corresponds to Ad6; and (3) the first region corresponds to Ad5, the second region corresponds to Ad5, the third region corresponds to Ad6, the fourth region corresponds to Ad6, and the fifth region corresponds to Ad5.

B. DNA Plasmid Vectors

5

10

15

20

25

30

DNA vaccine plasmid vectors contain a gene expression cassette along with elements facilitating replication and preferably vector selection. Preferred elements provide for replication in non-mammalian cells and a selectable marker. The vectors should not contain elements providing for replication in human cells or for integration into human nucleic acid.

The selectable marker facilitates selection of nucleic acids containing the marker. Preferred selectable markers are those that confer antibiotic resistance. Examples of antibiotic selection genes include nucleic acid encoding resistance to ampicillin, neomycin, and kanamycin.

Suitable DNA vaccine vectors can be produced starting with a plasmid containing a bacterial origin of replication and a selectable marker. Examples of bacterial origins of replication providing for higher yields include the CoIE1 plasmid-derived bacterial origin of replication. (Donnelly *et al.*, *Annu. Rev. Immunol.* 15:617-648, 1997.)

The presence of the bacterial origin of replication and selectable marker allows for the production of the DNA vector in a bacterial strain such as *E. coli*. The selectable marker is used to eliminate bacteria not containing the DNA vector.

III. AD6 RECOMBINANT NUCLEIC ACID

Ad6 recombinant nucleic acid comprises an Ad6 region substantially similar to an Ad6 region found in SEQ. ID. NO. 8, and a region not present in Ad6 nucleic acid. Recombinant nucleic acid comprising Ad6 regions have different uses such as in producing different Ad6 regions, as intermediates in the production of Ad6 based vectors, and as a vector for delivering a recombinant gene.

As depicted in Figure 9, the genomic organization of Ad6 is very similar to the genomic organization of Ad5. The homology between Ad5 and Ad6 is approximately 98%.

10

15

20

25

30

In different embodiments, the Ad6 recombinant nucleic acid comprises a nucleotide region substantially similar to E1A, E1B, E2B, E2A, E3, E4, L1, L2, L3, or L4, or any combination thereof. A substantially similar nucleic acid region to an Ad6 region has a nucleotide sequence identity of at least 65%, at least 75%, at least 85%, at least 99% or 100%; or a nucleotide difference of 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-25, 1-30, 1-35, 1-40, 1-45, or 1-50 nucleotides. Techniques and embodiments for determining substantially similar nucleic acid sequences are described in Section I.B. supra.

Preferably, the recombinant Ad6 nucleic acid contains an expression cassette coding for a polypeptide not found in Ad6. Examples of expression cassettes include those coding for HCV regions and those coding for other types of polypeptides.

Different types of adenoviral vectors can be produced incorporating different amounts of Ad6, such as first and second generation adenovectors. As noted in Section II.A. *supra*. first generation adenovectors are defective in E1 and can replicate when E1 is supplied *in trans*.

Second generation adenovectors contain less adenoviral genome than first generation vectors and can be used in conjugation with complementing cell lines and/or helper vectors supplying adenoviral proteins. Second generation adenovectors are described in different references such as Russell, *Journal of General Virology* 81:2573-2604, 2000; Hitt *et al.*, 1997, Human Ad vectors for Gene Transfer, Advances in Pharmacology, Vol 40 Academic Press.

In an embodiment of the present invention, the Ad6 recombinant nucleic acid is an adenovirus vector defective in E1 that is able to replicate when E1 is

supplied *in trans*. Expression cassettes can be inserted into a deleted E1 region and/or a deleted E3 region.

An example of an Ad6 based adenoviral vector with an expression cassette provided in a deleted E1 region comprises or consists of:

a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

5

15

20

25

30

- b) a gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to the first region;
- c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;
 - d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
 - e) an optionally present fourth region from about base pair 28134 to about base pair 30817 corresponding to Ad5, or from about base pair 28157 to about base pair 30788 corresponding to Ad6, joined to the third region;
 - f) a fifth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, wherein the fifth region is joined to the fourth region if the fourth region is present, or the fifth is joined to the third region if the fourth region is not present; and
 - g) a sixth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fifth region;

wherein at least one Ad6 region is present.

In different embodiments of the invention, all of the regions are from Ad6; all of the regions expect for the first and second are from Ad6; and 1, 2, 3, or 4 regions selected from the second, third, fourth, and fifth regions are from Ad6.

An example of an Ad6 based adenoviral vector with an expression cassette provided in a deleted E3 region comprises or consists of:

a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the first region;

- c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
 - d) a gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to the third region;
 - e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the gene expression cassette; and
 - f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region;

wherein at least one Ad6 region is present.

10

15

20

25

30

In different embodiment of the invention, all of the regions are from Ad6; all of the regions expect for the first and second are from Ad6; and 1, 2, 3, or 4 regions selected from the second, third, fourth and fifth regions are from Ad6.

IV. VECTOR PRODUCTION

Vectors can be produced using recombinant nucleic acid techniques such as those involving the use of restriction enzymes, nucleic acid ligation, and homologous recombination. Recombinant nucleic acid techniques are well known in the art. (Ausubel, *Current Protocols in Molecular Biology*, John Wiley, 1987-1998, and Sambrook *et al.*, *Molecular Cloning*, *A Laboratory Manual*, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989.)

Intermediate vectors are used to derive a therapeutic vector or to transfer an expression cassette or portion thereof from one vector to another vector. Examples of intermediate vectors include adenovirus genome plasmids and shuttle vectors.

Useful elements in an intermediate vector include an origin of replication, a selectable marker, homologous recombination regions, and convenient restriction sites. Convenient restriction sites can be used to facilitate cloning or release of a nucleic acid sequence.

Homologous recombination regions provide nucleic acid sequence regions that are homologous to a target region in another nucleic acid molecule. The homologous regions flank the nucleic acid sequence that is being inserted into the target region. In different embodiments homologous regions are preferably about 150 to 600 nucleotides in length, or about 100 to 500 nucleotides in length.

An embodiment of the present invention describes a shuttle vector containing a Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette, a selectable marker, a bacterial origin of replication, a first adenovirus homology region and a second adenovirus homologous region that target the expression cassette to insert in or replace an E1 region. The first and second homology regions flank the expression cassette. The first homology region contains at least about 100 base pairs substantially homologous to at least the right end (3' end) of a wild-type adenovirus region from about base pairs 4-450. The second homology contains at least about 100 base pairs substantially homologous to at least the left end (5' end) of Ad5 from about base pairs 3511-5792, or the corresponding region from another adenovirus.

Reference to "substantially homologous" indicates a sufficient degree of homology to specifically recombine with a target region. In different embodiments substantially homologous refers to at least 85%, at least 95%, or 100% sequence identity. Sequence identity can be calculated as described in Section I.B. *supra*.

One method of producing adenovectors is through the creation of an adenovirus genome plasmid containing an expression cassette. The pre-Adenovirus plasmid contains all the adenovirus sequences needed for replication in the desired complimenting cell line. The pre-Adenovirus plasmid is then digested with a restriction enzyme to release the viral ITR's and transfected into the complementing cell line for virus rescue. The ITR's must be released from plasmid sequences to allow replication to occur. Adenovector rescue results in the production on an adenovector containing the expression cassette.

A. Adenovirus Genome Plasmids

5

10

15

20

25

30

35

Adenovirus genome plasmids contain an adenovector sequence inside a longer-length plasmid (which may be a cosmid). The longer-length plasmid may contain additional elements such as those facilitating growth and selection in eukaryotic or bacterial cells depending upon the procedures employed to produce and maintain the plasmid. Techniques for producing adenovirus genome plasmids include those involving the use of shuttle vectors and homologous recombination, and those

involving the insertion of a gene expression cassette into an adenovirus cosmid. (Hitt et al., Methods in Molecular Genetics 7:13-30, 1995, Danthinne et al., Gene Therapy 7:1707-1714, 2000.)

Adenovirus genome plasmids preferably have a gene expression cassette inserted into a E1 or E3 deleted region. In an embodiment of the present invention, the adenovirus genome plasmid contains a gene expression cassette inserted in the E1 deleted region, an origin of replication, a selectable marker, and the recombinant adenovirus region is made up of:

5

10

15

25

30

- a) a first adenovirus region from about base pair 1 to about base 450 corresponding to either Ad5 or Ad6;
 - b) a gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to the first region;
 - c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;
 - d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the third region;
 - f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region, and
 - g) an optionally present E3 region corresponding to all or part of the E3 region present in Ad5 or Ad6, which may be present for smaller inserts taking into account the overall size of the desired adenovector.

In another embodiment of the present invention the recombinant adenovirus genome plasmid has the gene expression cassette inserted in the E3 deleted region. The vector contains an origin of replication, a selectable marker, and the following:

a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the expression cassette;

- c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to the second region;
 - d) the gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to the third region;
 - e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the gene expression cassette; and

10

15

20

25

30

35

f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region.

In different embodiments concerning adenovirus regions that are present: (1) the first, second, third, fourth, and fifth region corresponds to Ad5; (2) the first, second, third, fourth, and fifth region corresponds to Ad6; and (3) the first region corresponds to Ad5, the second region corresponds to Ad5, the third region corresponds to Ad6, the fourth region corresponds to Ad6, and the fifth region corresponds to Ad5.

An embodiment of the present invention describes a method of making an adenovector involving a homologous recombination step to produce a adenovirus genome plasmid and an adenovirus rescue step. The homologous recombination step involves the use of a shuttle vector containing a Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette flanked by adenovirus homology regions. The adenovirus homology regions target the expression cassette into either the E1 or E3 deleted region.

In an embodiment of the present invention concerning the production of an adenovirus genome plasmid, the gene expression cassette is inserted into a vector comprising: a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6; a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to the second region; a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6,

joined to the second region; a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to the third region; and a fifth adenovirus region from about 33967 to about 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region. The adenovirus genome plasmid should contain an origin of replication and a selectable marker, and may contain all or part of the Ad5 or Ad6 E3 region.

In different embodiments concerning adenovirus regions that are present: (1) the first, second, third, fourth, and fifth region corresponds to Ad5; (2) the first, second, third, fourth, and fifth region corresponds to Ad6; and (3) the first region corresponds to Ad5, the second region corresponds to Ad5, the third region corresponds to Ad6, the fourth region corresponds to Ad6, and the fifth region corresponds to Ad5.

15 B. Adenovector Rescue

10

20

25

30

35

An adenovector can be rescued from a recombinant adenovirus genome plasmid using techniques known in the art or described herein. Examples of techniques for adenovirus rescue well known in the art are provided by Hitt *et al.*, *Methods in Molecular Genetics* 7:13-30, 1995, and Danthinne *et al.*, *Gene Therapy* 7:1707-1714, 2000.

A preferred method of rescuing an adenovector described herein involves boosting adenoviral replication. Boosting adenoviral replication can be performed, for example, by supplying adenoviral functions such as E2 proteins (polymerase, pre-terminal protein and DNA binding protein) as well as E4 orf6 on a separate plasmid. Example 10 *infra*. illustrates the boosting of adenoviral replication to rescue an adenovector containing a codon optimized Met-NS3-NS4A-NS4B-NS5A-NS5B expression cassette.

V. PARTIAL-OPITIMIZED HCV ENCODING SEQUENCES

Partial optimization of HCV polyprotein encoding nucleic acid provides for a lesser amount of codons optimized for expression in a human than complete optimization. The overall objective is to provide the benefits of increased expression due to codon optimization, while facilitating the production of an adenovector containing HCV polyprotein encoding nucleic acid having optimized codons.

Complete optimization of an HCV polyprotein encoding sequence provides the most frequently observed human codon for each amino acid. Complete optimization can be performed using codon frequency tables well known in the art and using programs such as the BACKTRANSLATE program (Wisconsin Package version 10, Genetics Computer Group, GCG, Madison, Wisc.).

5

10

15

20

25

30

35

Partial optimization can be preformed on an entire HCV polyprotein encoding sequence that is present (e.g., NS3-NS5B), or one or more local regions that are present. In different embodiments the GC content for the entire HCV encoded polyprotein that is present is no greater than at least about 65%; and the GC content for one or more local regions is no greater than about 70%.

Local regions are regions present in HCV encoding nucleic acid, and can vary in size. For example, local regions can be about 60, about 70, about 80, about 90 or about 100 nucleotides in length.

Partial optimization can be achieved by initially constructing an HCV encoding polyprotein sequence to be partially optimized based on a naturally ocurring sequence. Alternatively, an optimized HCV encoding sequence can be used as basis of comparison to produce a partial optimized sequence.

VI. HCV COMBINATION TREATMENT

The HCV Met-NS3-NS4A-NS4B-NS5A-NS5B vaccine can be used by itself to treat a patient, can be used in conjunction with other HCV therapeutics, and can be used with agents targeting other types of diseases. Additional therapeutics include additional therapeutic agents to treat HCV and diseases having a high prevalence in HCV infected persons. Agents targeting other types of disease include vaccines directed against HIV and HBV.

Additional therapeutics for treating HCV include vaccines and non-vaccine agents. (Zein, *Expert Opin. Investig. Drugs 10*:1457-1469, 2001.) Examples of additional HCV vaccines include vaccines designed to elicit an immune response against an HCV core antigen and the HCV E1, E2 or p7 region. Vaccine components can be naturally occurring HCV polypeptides, HCV mimotope polypeptides or nucleic acid encoding such polypeptides.

HCV mimotope polypeptides contain HCV epitopes, but have a different sequence than a naturally occurring HCV antigen. A HCV mimotope can be fused to a naturally occurring HCV antigen. References describing techniques for producing mimotopes in general and describing different HCV mimotopes are

provided in Felici et al. U.S. Patent No. 5,994,083 and Nicosia et al., International Application Number WO 99/60132.

VII. PHARMACEUTICAL ADMINISTRATION

HCV vaccines can be formulated and administered to a patient using the guidance provided herein along with techniques well known in the art. Guidelines for pharmaceutical administration in general are provided in, for example, *Modern Vaccinology*, Ed. Kurstak, Plenum Med. Co. 1994; *Remington's Pharmaceutical Sciences 18th Edition*, Ed. Gennaro, Mack Publishing, 1990; and *Modern Pharmaceutics 2nd Edition*, Eds. Banker and Rhodes, Marcel Dekker, Inc., 1990, each

HCV vaccines can be administered by different routes such intravenous, intraperitoneal, subcutaneous, intramuscular, intradermal, impression through the skin, or nasal. A preferred route is intramuscular.

of which are hereby incorporated by reference herein.

Intramuscular administration can be preformed using different techniques such as by injection with or without one or more electric pulses. Electric mediated transfer can assist genetic immunization by stimulating both humoral and cellular immune responses.

Vaccine injection can be performed using different techniques, such as by employing a needle or a needless injection system. An example of a needless injection system is a jet injection device. (Donnelly *et al.*, International Publication Number WO 99/52463.)

A. Electrically Mediated Transfer

5

10

15

20

25

30

35

Electrically mediated transfer or Gene Electro-Transfer (GET) can be performed by delivering suitable electric pulses after nucleic acid injection. (See Mathiesen, International Publication Number WO 98/43702). Plasmid injection and electroporation can be performed using stainless needles. Needles can be used in couples, triplets or more complex patterns. In one configuration the needles are soldered on a printed circuit board that is a mechanical support and connects the needles to the electrical field generator by means of suitable cables.

The electrical stimulus is given in the form of electrical pulses. Pulses can be of different forms (square, sinusoidal, triangular, exponential decay) and different polarity (monopolar of positive or negative polarity, bipolar). Pulses can be delivered either at constant voltage or constant current modality.

Different patterns of electric treatment can be used to introduce nucleic acid vaccines including HCV and other nucleic acid vaccines into a patient. Possible patterns of electric treatment include the following:

Treatment 1: 10 trains of 1000 square bipolar pulses delivered every other second, pulse length 0.2 msec/phase, frequency 1000 Hz, constant voltage mode, 45 Volts/phase, floating current.

Treatment 2: 2 trains of 100 square bipolar pulses delivered every other second, pulse length 2 msec/phase, frequency 100 Hz, constant current mode, 100 mA/phase, floating voltage.

Treatment 3: 2 trains of bipolar pulses at a pulse length of about 2 msec/phase, for a total length of about 3 seconds, where the actual current going through the tissue is fixed at about 50 mA.

Electric pulses are delivered through an electric field generator. A suitable generator can be composed of three independent hardware elements assembled in a common chassis and driven by a portable PC which runs the driving program. The software manages both basic and accessory functions. The elements of the device are: (1) signal generator driven by a microprocessor, (2) power amplifier and (3) digital oscilloscope.

The signal generator delivers signals having arbitrary frequency and shape in a given range under software control. The same software has an interactive editor for the waveform to be delivered. The generator features a digitally controlled current limiting device (a safety feature to control the maximal current output). The power amplifier can amplify the signal generated up to +/- 150 V. The oscilloscope is digital and is able to sample both the voltage and the current being delivered by the amplifier.

B. Pharmaceutical Carriers

5

10

15

20

25

30

35

Pharmaceutically acceptable carriers facilitate storage and administration of a vaccine to a subject. Examples of pharmaceutically acceptable carriers are described herein. Additional pharmaceutical acceptable carriers are well known in the art.

Pharmaceutically acceptable carriers may contain different components such a buffer, normal saline or phosphate buffered saline, sucrose, salts and polysorbate. An example of a pharmaceutically acceptable carrier is follows: 2.5-10 mM TRIS buffer, preferably about 5 mM TRIS buffer; 25-100 mM NaCl, preferably

about 75 mM NaCl; 2.5-10% sucrose, preferably about 5% sucrose; 0.01 -2 mM MgCl₂; and 0.001%-0.01% polysorbate 80 (plant derived). The pH is preferably from about 7.0-9.0, more preferably about 8.0. A specific example of a carrier contains 5 mM TRIS, 75 mM NaCl, 5% sucrose, 1 mM MgCl₂, 0.005% polysorbate 80 at pH 8.0.

C. Dosing Regimes

5

10

15

20

25

30

35

Suitable dosing regimens can be determined taking into account the efficacy of a particular vaccine and factors such as age, weight, sex and medical condition of a patient; the route of administration; the desired effect; and the number of doses. The efficacy of a particular vaccine depends on different factors such as the ability of a particular vaccine to produce polypeptide that is expressed and processed in a cell and presented in the context of MHC class I and II complexes.

HCV encoding nucleic acid administered to a patient can be part of different types of vectors including viral vectors such as adenovector, and DNA plasmid vaccines. In different embodiments concerning administration of a DNA plasmid, about 0.1 to 10 mg of plasmid is administered to a patient, and about 1 to 5 mg of plasmid is administered to a patient. In different embodiments concerning administration of a viral vector, preferably an adenoviral vector, about 105 to 1011 viral particles are administered to a patient, and about 107 to 1010 viral particles are administered to a patient.

Viral vector vaccines and DNA plasmid vaccines may be administered alone, or may be part of a prime and boost administration regimen. A mixed modality priming and booster inoculation involves either priming with a DNA vaccine and boosting with viral vector vaccine, or priming with a viral vector vaccine and boosting with a DNA vaccine.

Multiple priming, for example, about to 2-4 or more may be used. The length of time between priming and boost may typically vary from about four months to a year, but other time frames may be used. The use of a priming regimen with a DNA vaccine may be preferred in situations where a person has a pre-existing anti-adenovirus immune response.

In an embodiment of the present invention, $1x10^7$ to $1x10^{12}$ particles and preferably about $1x10^{10}$ to $1x10^{11}$ particles of adenovector is administered directly into muscle tissue. Following initial vaccination a boost is performed with an adenovector or DNA vaccine.

In another embodiment of the present invention initial vaccination is performed with a DNA vaccine directly into muscle tissue. Following initial vaccination a boost is performed with an adenovector or DNA vaccine.

Agents such as interleukin-12, GM-CSF, B7-1, B7-2, IP10, Mig-1 can be coadministered to boost the immune response. The agents can be coadministered as proteins or through use of nucleic acid vectors.

D. Heterologous Prime-Boost

5

10

15

20

25

30

35

Heterologous prime-boost is a mixed modality involving the use of one type of viral vector for priming and another type of viral vector for boosting. The heterologous prime-boost can involve related vectors such as vectors based on different adenovirus serotypes and more distantly related viruses such adenovirus and poxvirus. The use of poxvirus and adenovirus vectors to protect mice against malaria is illustrated by Gilbert *et al.*, *Vaccine* 20:1039-1045, 2002.

Different embodiments concerning priming and boosting involve the following types of vectors expressing desired antigens such as Met-NS3-NS4A-NS4B-NS5A-NS5B: Ad5 vector followed by Ad6 vector; Ad6 vector followed by Ad5 vector; Ad5 vector followed by poxvirus vector; poxvirus vector followed by Ad5 vector; Ad6 vector followed by poxvirus vector; and poxvirus vector followed by Ad6 vector.

The length of time between priming and boosting typically varies from about four months to a year, but other time frames may be used. The minimum time frame should be sufficient to allow for an immunological rest. In an embodiment, this rest is for a period of at least 6 months. Priming may involve multiple priming with one type of vector, such as 2-4 primings.

Expression cassettes present in a poxvirus vector should contain a promoter either native to, or derived from, the poxvirus of interest or another poxvirus member. Different strategies for constructing and employing different types of poxvirus based vectors including those based on vaccinia virus, modified vaccinia virus, avipoxvirus, raccoon poxvirus, modified vaccinia virus Ankara, canarypoxviruses (such as ALVAC), fowlpoxviruses, cowpoxviruses, and NYVAC are well known in the art. (Moss, *Current Topics in Microbiology and Immunology 158*:25-38, 1982; Earl *et al.*, In *Current Protocols in Molecular Biology*, Ausubel *et al.*, eds., New York: Greene Publishing Associates & Wiley Interscience; 1991:16.16.1-16.16.7, Child *et al.*, *Virology* 174(2):625-9, 1990; Tartaglia *et al.*,

Virology 188:217-232, 1992; U.S. Patent Nos., 4,603,112, 4,722,848, 4,769,330, 5,110,587, 5,174,993, 5,185,146, 5,266,313, 5,505,941, 5,863,542, and 5,942,235.

E. Adjuvants

5

10

15

20

25

HCV vaccines can be formulated with an adjuvant. Adjuvants are particularly useful for DNA plasmid vaccines. Examples of adjuvants are alum, AlPO4, alhydrogel, Lipid-A and derivatives or variants thereof, Freund's incomplete adjuvant, neutral liposomes, liposomes containing the vaccine and cytokines, non-ionic block copolymers, and chemokines.

Non-ionic block polymers containing polyoxyethylene (POE) and polyxylpropylene (POP), such as POE-POP-POE block copolymers may be used as an adjuvant. (Newman et al., Critical Reviews in Therapeutic Drug Carrier Systems 15:89-142, 1998.) The immune response of a nucleic acid can be enhanced using a non-ionic block copolymer combined with an anionic surfactant.

A specific example of an adjuvant formulation is one containing CRL-1005 (CytRx Research Laboratories), DNA, and benzylalkonium chloride (BAK). The formulation can be prepared by adding pure polymer to a cold (< 5°C) solution of plasmid DNA in PBS using a positive displacement pipette. The solution is then vortexed to solubilize the polymer. After complete solubilization of the polymer a clear solution is obtained at temperatures below the cloud point of the polymer (~6-7°C). Approximately 4 mM BAK is then added to the DNA/CRL-1005 solution in PBS, by slow addition of a dilute solution of BAK dissolved in PBS. The initial DNA concentration is approximately 6 mg/mL before the addition of polymer and BAK, and the final DNA concentration is about 5 mg/mL. After BAK addition the formulation is vortexed extensively, while the temperature is allowed to increase from ~ 2°C to above the cloud point. The formulation is then placed on ice to decrease the temperature below the cloud point. Then, the formulation is vortexed while the temperature is allowed to increase from ~2°C to above the cloud point. Cooling and mixing while the temperature is allowed to increase from ~2°C to above the cloud point is repeated several times, until the particle size of the formulation is about 200-500 nm, as measured by dynamic light scattering. The formulation is then stored on ice until the solution is clear, then placed in storage at -70°C. Before use, the formulation is allowed to thaw at room temperature.

F. Vaccine Storage

5

10

15

20

25

30

35

Adenovector and DNA vaccines can be stored using different types of buffers. For example, buffer A105 described in Example 9 *infra*. can be used to for vector storage.

Storage of DNA can be enhanced by removal or chelation of trace metal ions. Reagents such as succinic or malic acid, and chelators can be used to enhance DNA vaccine stability. Examples of chelators include multiple phosphate ligands and EDTA. The inclusion of non-reducing free radical scavengers, such as ethanol or glycerol, can also be useful to prevent damage of DNA plasmid from free radical production. Furthermore, the buffer type, pH, salt concentration, light exposure, as well as the type of sterilization process used to prepare the vials, may be controlled in the formulation to optimize the stability of the DNA vaccine.

VII. EXAMPLES

Examples are provided below to further illustrate different features of the present invention. The examples also illustrate useful methodology for practicing the invention. These examples do not limit the claimed invention.

Example 1: Met-NS3-NS4A-NS4B-NS5A-NS5B Expression Cassettes

Different gene expression cassettes encoding HCV NS3-NS4A-NS4B-NS5A-NS5B were constructed based on a 1b subtype HCV BK strain. The encoded sequences had either (1) an active NS5B sequence ("NS"), (2) an inactive NS5B sequence ("NSmut"), (3) a codon optimized sequence with an inactive NS5B sequence ("NSOPTmut"). The expression cassettes also contained a CMV promoter/enhancer and the BGH polyadenylation signal.

The NS nucleotide sequence (SEQ. ID. NO. 5) differs from HCV BK strain GenBank accession number M58335 by 30 out of 5952 nucleotides. The NS amino acid sequence (SEQ. ID. NO. 6) differs from the corresponding 1b genotype HCV BK strain by 7 out of 1984 amino acids. To allow for initiation of translation an ATG codon is present at the 5' end of the NS sequence. A TGA termination sequence is present at the 3' end of the NS sequence.

The NSmut nucleotide sequence (SEQ. ID. NO. 2, Figure 2), is similar to the NS sequence. The differences between NSmut and NS include NSmut having an altered NS5B catalytic site; an optimal ribosome binding site at the 5' end; and a TAAA termination sequence at the 3' end. The alterations in NS5B comprise bases

5138 to 5146, which encode amino acids 1711 to 1713. The alterations result in a change of amino acids GlyAspAsp into AlaAlaGly and creates an inactive form of the NS5B RNA-dependent RNA-polymerase NS5B.

The NSOPTmut sequence (SEQ. ID. NO. 3, Figure 3) was designed based on the amino acid sequence encoded by NSmut. The NSmut amino acid sequence was back translated into a nucleotide sequence with the GCG (Wisconsin Package version 10, Genetics Computer Group, GCG, Madison, Wisc.)

BACKTRANSLATE program. To generate a NSOPTmut nucleotide sequence where each amino acid is coded for by the corresponding most frequently observed human codon, the program was run choosing as parameter the generation of the most probable nucleotide sequence and specifying the codon frequency table of highly expressed human genes (human_high.cod) available within the GCG Package as translation scheme.

15 Example 2: Generation pV1Jns plasmid with NS, NSmut or NSOPTmut Sequences pV1Jns plasmids containing either the NS sequence, NSmut sequence or NSOPTmut sequences were generated and characterised as follows:

pVIJns Plasmid with the NS Sequence

20

25

30

The coding region Met-NS3-NS4A-NS4B-NS5A and the coding region Met-NS3-NS4A-NS4B-NS5A-NS5B from a HCV BK type strain (Tomei *et al., J. Virol.* 67:4017-4026, 1993) were cloned into pcDNA3 plasmid (Invitrogen), generating pcD3-5a and pcD3-5b vectors, respectively. PcD3-5A was digested with Hind III, blunt-ended with Klenow fill-in and subsequently digested with Xba I, to generate a fragment corresponding to the coding region of Met-NS3-NS4A-NS4B-NS5A. The fragment was cloned into pV1Jns-poly, digested with Bgl II blunt-ended with Klenow fill-in and subsequently digested with Xba I, generating pV1JnsNS3-5A.

pV1Jns-poly is a derivative of pV1JnsA plasmid (Montgomery et al., DNA and Cell Biol. 12:777-783, 1993), modified by insertion of a polylinker containing recognition sites for XbaI, PmeI, PacI into the unique BglII and NotI restriction sites. The pV1Jns plasmid with the NS sequence (pV1JnsNS3-5B) was obtained by homologous recombination into the bacterial strain BJ5183, cotransforming pV1JNS3-5A linearized with XbaI and NotI digestion and a PCR fragment containing approximately 200 bp of NS5A, NS5B coding sequence and

approximately 60 bp of the BGH polyadenylation signal. The resulting plasmid represents pV1Jns-NS.

pV1Jns-NS can be summarized as follows:

Bases

1 to 1881 of pV1JnsA

5 an additional **AGCTT**

then the

Met-NS3-NS5B sequence (SEQ. ID. NO. 5)

then the

wt TGA stop

an additional

TCTAGAGCGTTTAAACCCTTAATTAAGG (SEQ. ID.

NO. 14)

10 **Bases**

15

1912 to 4909 of pV1JnsA

pVIJns Plasmid with the NSmut Sequence

The V1JnsNS3-5A plasmid was modified at the 5' of the NS3 coding sequence by addition of a full Kozak sequence. The plasmid (V1JNS3-5Akozak) was obtained by homologous recombination into the bacterial strain BJ5183, cotransforming V1JNS3-5A linearized by AfIII digestion and a PCR fragment containing the proximal part of Intron A, the restriction site BgIII, a full Kozak translation initiation sequence and part of the NS3 coding sequence.

The resulting plasmid (V1JNS3-5Akozak) was linearized with Xba I 20 digestion and co-transformed into the bacterial strain BJ5183 with a PCR fragment, containing approximately 200 bp of NS5A, the NS5B mutated sequence, the strong translation termination TAAA and approximately 60 bp of the BGH polyadenylation signal. The PCR fragment was obtained by assembling two 22bp-overlapping fragments where mutations were introduced by the oligonucleotides used for their 25 amplification. The resulting plasmid represents pV1Jns-NSmut.

pV1Jns-NSmut can be summarized as follows:

Bases

1 to 1882 of pVIJnsA

then the

kozak Met-NS3-NS5B(mut) TAAA sequence (SEQ. ID. NO. 2)

an additional TCTAGA

30 Bases

35

1925 to 4909 of pV1JnsA

pVIJns Plasmid with the NSOPTmut Sequence

The human codon-optimized synthetic gene (NSOPTmut) with mutated NS5B to abrogate enzymatic activity, full Kozak translation initiation sequence and a strong translation termination was digested with BamHI and SalI

PCT/US02/32512 WO 03/031588

restriction sites present at the 5' and 3' end of the gene. The gene was then cloned into the BglII and SalI restriction sites present in the polylinker of pV1JnsA plasmid, generating pV1Jns-NSOPTmut.

pVIJns-NSOPTmut can be summarized as follows:

5 Bases 1 to 1881 of pV1JnsA

an additional C

then

kozak Met-NS3-NS5B(optmut) TAAA sequence (SEQ. ID. NO. 3)

an additional TTTAAATGTTTAAAC (SEQ. ID. NO. 15)

Bases

1905 to 4909 of pV1JnsA

10

20

30

Plasmids Characterization

Expression of HCV NS proteins was tested by transfection of HEK 293 cells, grown in 10% FCS/DMEM supplemented by L-glutamine (final 4 mM). Twenty-four hours before transfection, cells were plated in 6-well 35 mm diameter, to reach 90-95% confluence on the day of transfection. Forty nanograms of plasmid 15 DNA (previously assessed as a non-saturating DNA amount) were co-transfected with 100 ng of pRSV-Luc plasmid containing the luciferase reporter gene under the control of Rous sarcoma virus promoter, using the LIPOFECTAMINE 2000 reagent. Cells were kept in a CO₂ incubator for 48 hours at 37 °C.

Cell extracts were prepared in 1% Triton/TEN buffer. The extracts were normalized for Luciferase activity, and run in serial dilution on 10% SDSacrylamide gel. Proteins were transferred on nitrocellulose and assayed with antibodies directed against NS3, NS5A and NS5B to assess strength of expression and correct proteolytic cleavage. Mock-transfected cells were used as a negative control.

Results from representative experiments testing pV1JnsNS, pV1JnsNSmut and 25 pV1JnsNSOPTmut are shown in Figure 12.

Example 3: Mice Immunization with Plasmid DNA Vectors

The DNA plasmids pV1Jns-NS, pV1Jns-NSmut and pV1Jns-NSOPTmut were injected in different mice strains to evaluate their potential to elicit anti-HCV immune responses. Two different strains (Balb/C and C57Black6, N=9-10) were injected intramuscularly with 25 or 50 µg of DNA followed by electrical pluses. Each animal received two doses at three weeks interval.

Humoral immune response elicited in C57Black6 mice against the NS3 protein was measured in post dose two sera by ELISA on bacterially expressed NS3 35

protease domain. Antibodies specific for the tested antigen were detected in animals immunized with all three vectors with geometric mean titers (GMT) ranging from 94000 to 133000 (Tables 1-3).

5

Table 1: pV1jns-NS

Mice n.	1	2	3	4	5	6	7	8	9	
Titer	105466	891980	78799	39496	543542	182139	32351	95028	67800	94553

Table 2: pV1jns-NSmut

10

					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						GMT
Mice n.	11	12	13	14	15	16	17	18	19	20	-
Titer	202981	55670	130786	49748	17672	174958	44304	37337	78182	193695	75083

Table 3: pV1jns-NSOPTmut

											GMT
Mice n.	21	22	23	24	25	26	27	28	29	30	
Titer	310349	43645	63496	82174	630778	297259	66861	146735	173506	77732	133165

15

20

25

A T cell response was measured in C57Black6 mice immunized with two intramuscular injections at three weeks interval with 25 μg of plasmid DNA. Quantitative ELIspot assay was performed to determine the number of IFN γ secreting T cells in response to five pools of 20mer peptides overlapping by ten residues encompassing the NS3-NS5B sequence. Specific CD8+ response was analyzed by the same assay using a 20mer peptide encompassing a CD8+ epitope for C57Black6 mice (pep1480).

Cells secreting IFN γ in an antigen specific-manner were detected using a standard ELIspot assay. T cell response in C57Black6 mice immunized with two intramuscular injections at three weeks interval with 50 μg of plasmid DNA, was

analyzed by the same ELIspot assay measuring the number of IFN γ secreting T cells in response to five pools of 20mer peptides overlapping by ten residues encompassing the NS3-NS5B sequence.

Spleen cells were prepared from immunized mice and re-suspended in R10 medium (RPMI 1640 supplemented with 10% FCS, 2 mM L-Glutamine, 50 U/ml-50μg/ml Penicillin/Streptomycin, 10 mM Hepes, 50 μM 2-mercapto-ethanol). Multiscreen 96-well Filtration Plates (Millipore, Cat. No. MAIPS4510, Millipore Corporation, 80 Ashby Road Bedford, MA) were coated with purified rat anti-mouse INFγ antibody (PharMingen, Cat. No. 18181D, PharmiMingen, 10975 Torreyana Road, San Diego, California 92121-1111 USA). After overnight incubation, plates were washed with PBS 1X/0.005% Tween and blocked with 250 μl/well of R10 medium.

Splenocytes from immunized mice were prepared and incubated for twenty-four hours in the presence or absence of 10 μM peptide at a density of 2.5 X 10⁵/well or 5 X 10⁵/well. After extensive washing (PBS 1X/0.005% Tween), biotinylated rat anti-mouse IFNγ antibody (PharMingen, Cat. No. 18112D, PharMingen, 10975 Torreyana Road, San Diego, California 92121-1111 USA) was added and incubated overnight at 4° C. For development, streptavidin-AKP (PharMingen, Cat. No. 13043E, PharMingen, 10975 Torreyana Road, San Diego, California 92121-1111 USA) and 1-StepTM NBT-BCIP development solution (Pierce, Cat. No. 34042, Pierce, P.O. Box 117, Rockford, IL 61105 USA) were added.

Pools of 20mer overlapping peptides encompassing the entire sequence of the HCV BK strain NS3 to NS5B were used to reveal HCV-specific IFNγ-secreting T cells. Similarly a single 20mer peptide encompassing a CD8+ epitope for C57Black6 mice was used to detect CD8 response. Representative data from groups of C57Black6 and Balb/C mice (N=9-10) immunized with two injections of 25 or 50 μg of plasmid vectors pV1Jns-NS, pV1Jns-NSmut and pV1Jns-NSOPTmut are shown in Figures 13A and 13B.

30 Example 4: Immunization of Rhesus Macaques

25

Rhesus macaques (N=3) were immunized by intramuscular injection with 5mg of plasmid pV1Jns-NSOPTmut in 7.5mg/ml CRL1005, Benzalkonium chloride 0.6 mM. Each animal received two doses in the deltoid muscle at 0, and 4 weeks.

CMI was measured at different time points by IFN-γ ELISPOT. This assay measures HCV antigen-specific CD8+ and CD4+ T lymphocyte responses, and can be used for a variety of mammals, such as humans, rhesus monkeys, mice, and rats.

The use of a specific peptide or a pool of peptides can simplify antigen presentation in CTL cytotoxicity assays, interferon-gamma ELISPOT assays and interferon-gamma intracellular staining assays. Peptides based on the amino acid sequence of various HCV proteins (core, E2, NS3, NS4A, NS4B, NS5A, NS5B) were prepared for use in these assays to measure immune responses in HCV DNA and adenovirus vector vaccinated rhesus monkeys, as well as in HCV-infected humans. The individual peptides are overlapping 20-mers, offset by 10 amino acids. Large pools of peptides can be used to detect an overall response to HCV proteins while smaller pools and individual peptides may be used to define the epitope specificity of a response.

15

20

25

30

10

5

IFNy ELISPOT

The IFNγ-ELISPOT assay provides a quantitative determination of HCV-specific T lymphocyte responses. PBMC are serially diluted and placed in microplate wells coated with anti-rhesus IFN-γ antibody (MD-1 U-Cytech). They are cultured with a HCV peptide pool for 20 hours, resulting in the restimulation of the precursor cells and secretion of IFN-γ. The cells are washed away, leaving the secreted IFN bound to the antibody-coated wells in concentrated areas where the cells were sitting. The captured IFN is detected with biotinylated anti-rhesus IFN antibody (detector Ab U-Cytech) followed by alkaline phosphatase-conjugated streptavidin (Pharmingen 13043E). The addition of insoluble alkaline phosphatase substrate results in dark spots in the wells at the sites where the cells were located, leaving one spot for each T cell that secreted IFN-γ.

The number of spots per well is directly related to the precursor frequency of antigen-specific T cells. Gamma interferon was selected as the cytokine visualized in this assay (using species specific anti-gamma interferon monoclonal antibodies) because it is the most common, and one of the most abundant cytokines synthesized and secreted by activated T lymphocytes. For this assay, the number of spot forming cells (SFC) per million PBMCs is determined for samples in the

presence and absence (media control) of peptide antigens. Data from Rhesus macaques on PBMC from post dose two material are shown in Table 4.

Table 4

		PV1J-NSOPTmut	
Pep pools	21G	99C161	99C166
F (NS3p)	8	10	170
G (NS3h)	7	592	229
H (NS4)	3	14	16
I (NS5a)	5	71	36
L (NS5b)	14	23	11
M (NS5b)	3	35	8
DMSO	2	4	5

INFγELISPOT on PBMC from Rhesus monkeys immunized with two injections of 5 mg DNA/dose in OPTIVAX/BAK of plasmid pV1Jns-NSOPTmut. Data are expressed as SFC7 106 PBMC.

Example 5: Construction of Ad6 Pre-Adenovirus Plasmids

Ad6 pre-adenovirus plasmids were obtained as follows:

10

15

20

Construction of pAd6 E1-E3+ Pre-adenovirus Plasmid

An Ad6 based pre-adenovirus plasmid which can be used to generate first generation Ad6 vectors was constructed either taking advantage of the extensive sequence identity (approx. 98%) between Ad5 and Ad6 or containing only Ad6 regions. Homologous recombination was used to clone wtAd6 sequences into a bacterial plasmid.

A general strategy used to recover pAd6E1-E3+ as a bacterial plasmid containing Ad5 and Ad6 regions is illustrated in Figure 10. Cotransformation of BJ 5183 bacteria with purified wt Ad6 viral DNA and a second DNA fragment termed the Ad5 ITR cassette resulted in the circularization of the viral genome by homologous recombination. The ITR cassette contains sequences from the right (bp 33798 to 35935) and left (bp 1 to 341 and bp 3525 to 5767) end of the Ad5 genome separated by plasmid sequences containing a bacterial origin of replication and an ampicillin resistance gene. The ITR cassette contains a deletion of E1 sequences from

Ad5 342 to 3524. The Ad5 sequences in the ITR cassette provide regions of homology with the purified Ad6 viral DNA in which recombination can occur.

Potential clones were screened by restriction analysis and one clone was selected as pAd6E1-E3+. This clone was then sequenced in it entirety. pAd6E1-E3+ contains Ad5 sequences from bp 1 to 341 and from bp 3525 to 5548, Ad6 bp 5542 to 33784, and Ad5 bp 33967 to 35935 (bp numbers refer to the wt sequence for both Ad5 and Ad6). pAd6E1-E3+ contains the coding sequences for all Ad6 virion structural proteins which constitute its serotype specificity.

A general strategy used to recover pAd6E1-E3+ as a bacterial plasmid

containing Ad6 regions is illustrated in Figure 11. Cotransformation of BJ 5183

bacteria with purified wt Ad6 viral DNA and a second DNA fragment termed the Ad6

ITR cassette resulted in the circularization of the viral genome by homologous

recombination. The ITR cassette contains sequences from the right (bp 35460 to

35759) and left (bp 1 to 450 and bp 3508 to 3807) end of the Ad6 genome separated

by plasmid sequences containing a bacterial origin of replication and an ampicillin

resistance gene. These three segments were generated by PCR and cloned

sequentially into pNEB193, generating pNEBAd6-3 (the ITR cassette). The ITR

cassette contains a deletion of E1 sequences from Ad5 451 to 3507. The Ad6

sequences in the ITR cassette provide regions of homology with the purified Ad6 viral

DNA in which recombination can occur.

Construction of pAd6 E1-E3- pre-adenovirus plasmids

25

30

Ad6 based vectors containing A5 regions and deleted in the E3 region were constructed starting with pAd6E1-E3+ containing Ad5 regions. A 5322 bp subfragment of pAd6E1-E3+ containing the E3 region (Ad6 bp 25871 to 31192) was subcloned into pABS.3 generating pABSAd6E3. Three E3 deletions were then made in this plasmid generating three new plasmids pABSAd6E3(1.8Kb) (deleted for Ad6 bp 28602 to 30440), pABSAd6E3(2.3Kb) (deleted for Ad6 bp 28157 to 30437) and pABSAd6E3(2.6Kb) (deleted for Ad6 bp 28157 to 30788). Bacterial recombination was then used to substitute the three E3 deletions back into pAd6E1-E3+ generating the Ad6 genome plasmids pAd6E1-E3-1.8Kb, pAd6E1-E3-2.3Kb and pAd6E1-E3-2.6Kb.

Example 6: Generation of Ad5 Genome Plasmid with the NS Sequence

5

10

15

20

25

30

A pcDNA3 plasmid (Invitrogen) containing the coding region NS3-NS4A-NS4B-NS5A was digested with *Xmn*I and *Nru*I restriction sites and the DNA fragment containing the CMV promoter, the NS3-NS4A-NS4B-NS5A coding sequence and the Bovine Growth Hormone (BGH) polyadenylation signal was cloned into the unique *EcorV* restriction site of the shuttle vector pDelE1Spa, generating the Sva3-5A vector.

A pcDNA3 plasmid containing the coding region NS3-NS4A-NS4B-NS5A-NS5B was digested with *Xmn*I and *Ecor*I (partial digestion), and the DNA fragment containing part of NS5A, NS5B gene and the BGH polyadenylation signal was cloned into the Sva3-5A vector, digested *Ecor*I and *BgI*II blunted with Klenow, generating the Sva3-5B vector.

The Sva3-5B vector was finally digested *SspI* and *Bst*1107I restriction sites and the DNA fragment containing the expression cassette (CMV promoter, NS3-NS4A-NS4B-NS5A-NS5B coding sequence and the BGH polyadenylation signal) flanked by adenovirus sequences was co-transformed with pAd5HVO (E1-,E3-) ClaI linearized genome plasmid into the bacterial strain BJ5183, to generate pAd5HVONS. pAd5HVO contains Ad5 bp 1 to 341, bp 3525 to 28133 and bp 30818 to 35935.

Example 7: Generation of Adenovirus Genome Plasmids with the NSmut Sequence
Adenovirus genome plasmids containing an NS-mut sequence were
generated in an Ad5 or Ad6 background. The Ad6 background contained Ad5 regions
at bases 1 to 450, 3511 to 5548 and 33967 to 35935.

pV1JNS3-5Akozak was digested with *BgI*II and *Xba*I restriction enzymes and the DNA fragment containing the Kozak sequence and the sequence coding NS3-NS4A-NS4B-NS5A was cloned into a *BgI*II and XbaI digested polypMRKpdelE1 shuttle vector. The resulting vector was designated shNS3-5Akozak.

PolypMRKpdelE1 is a derivative of RKpdelE1(Pac/pIX/pack450) + CMVmin+BGHpA(str.) modified by the insertion of a polylinker containing recognition sites for BglII, PmeI, SwaI, XbaI, SalI, into the unique BglII restriction site present downstream the CMV promoter. MRKpdelE1(Pac/pIX/pack450) + CMVmin + BGHpA(str.) contains Ad5 sequences from bp 1 to 5792 with a deletion of E1 sequences from bp 451 to 3510. The human CMV promoter and BGH polyadenylation signal were inserted into the E1 deletion in an E1 parallel orientation with a unique BglII site separating them.

The NS5B fragment, mutated to abrogate enzymatic activity and with a strong translation termination at the 3' end, was obtained by assembly PCR and inserted into the shNS3-5Akozak vector via homologous recombination, generating polypMRKpdelE1NSmut. In polypMRKpdelE1NSmut the NS-mut coding sequence is under the control of CMV promoter and the BGH polyadenylation signal is present downstream.

5

10

30

The gene expression cassette and the flanking regions which contain adenovirus sequences allowing homologous recombination were excised by digestion with *PacI* and *Bst*1107I restriction enzymes and co-transformed with either pAd5HVO (E1-,E3-) or pAd6E1-E3-2.6Kb *ClaI* linearized genome plasmids into the bacterial strain BJ5183, to generate pAd5HVONSmut and pAd6E1-,E3-NSmut, respectively.

pAd6E1-E3-2.6Kb contains Ad5 bp 1 to 341 and from bp 3525 to 5548, Ad6 bp 5542 to 28157 and from bp 30788 to 33784, and Ad5 bp 33967 to 35935 (bp numbers refer to the wt sequence for both Ad5 and Ad6). In both plasmids the viral ITR's are joined by plasmid sequences that contain the bacterial origin of replication and an ampicillin resistance gene.

Example 8: Generation of Adenovirus Genome Plasmids with the NSOPTmut

The human codon-optimized synthetic gene (NSOPTmut) provided by SEQ. ID. NO. 3 cloned into a pCRBlunt vector (Invitrogen) was digested with BamH1 and SalI restriction enzymes and cloned into BglII and SalI restriction sites present in the shuttle vector polypMRKpdelE1. The resulting clone (polypMRKpdelE1NSOPTmut) was digested with PacI and Bst1107I restriction enzymes and co-transformed with either pAd5HVO (E1-,E3-) or pAd6E1-E3-2.6Kb

ClaI linearized genome plasmids, into the bacterial strain BJ5183, to generate pAd5HVONSOPTmut and pAd6E1-,E3-NSOPTmut, respectively.

Example 9: Rescue and Amplification of Adenovirus Vectors

Adenovectors were rescued in Per.6 cells. Per.C6 were grown in 10% FCS / DMEM supplemented by L-glutamine (final 4mM), penicillin/streptomycin (final 100 IU/ml) and 10 mM MgCl₂. After infection, cells were kept in the same medium supplemented by 5% horse serum (HS). For viral rescue, 2.5 X 10⁶ Per.C6 were plated in 6 cm Ø Petri dishes.

Twenty-four hours after plating, cells were transfected by calcium phosphate method with $10~\mu g$ of the Pac~I linearized adenoviral DNA. The DNA precipitate was left on the cells for 4 hours. The medium was removed and 5% HS/DMEM was added.

Cells were kept in a CO₂ incubator until a cytopathic effect was visible (1 week). Cells and supernatant were recovered and subjected to 3X freeze/thawing cycles (liquid nitrogen / water bath at 37°C). The lysate was centrifuged at 3000 rpm at - 4°C for 20 minutes and the recovered supernatant (corresponding to a cell lysate containing virus passed on cells only once; P1) was used, in the amount of 1 ml/ dish, to infect 80-90% confluent Per.C6 in 10 cm ø Petri dishes. The infected cells were incubated until a cytopathic effect was visible, cells and supernatant recovered and the lysate prepared as described above (P2).

P2 lysate (4 ml) were used to infect 2 X 15 cm ø Petri dishes. The lysate recovered from this infection (P3) was kept in aliquots at -80°C as a stock of virus to be used as starting point for big viral preparations. In this case, 1 ml of the stock was enough to infect 2 X 15 cm ø Petri dishes and resulting lysate (P4) was used for the infection of the Petri dishes devoted to the large scale infection.

Further amplification was obtained from the P4 lysate which was diluted in medium without FCS and used to infect 30 X 15 cm ø Petri dishes (with Per.C6 80%-90% confluent) in the amount of 10 ml/dish. Cells were incubated 1 hour in the CO₂ incubator, mixing gently every 20 minutes. 12 ml / dish of 5% HS / DMEM was added and cells were incubated until a cytopathic effect was visible (about 48 hours).

Cells and supernatant were collected and centrifuged at 2K rpm for 20 minutes at 4° C. The pellet was resuspended in 15 ml of 0.1 M Tris pH=8.0. Cells were lysed by 3X freeze/thawing cycles (liquid nitrogen / water bath at 37° C). 150 μ l of 2 M MgCl₂ and 75 μ l of DNAse (10 mg of bovine pancreatic deoxyribonuclease I in 10 ml of 20 mM Tris-HCl pH= 7.4, 50 mM NaCl, 1 mM dithiothreitol, 0.1 mg/ml bovine serum albumin, 50% glycerol) were added. After a 1 hour incubation at 37° C in a water bath (vortex every 15 minutes) the lysate was centrifuged at 4K rpm for 15 minutes at 4° C. The recovered supernatant was ready to be applied on CsCl gradient.

The CsCl gradients were prepared in SW40 ultra-clear tubes as

follows:

5

10

15

20

25

30

0.5 ml of 1.5d CsCl

35 3 ml of 1.35d CsCl

3 ml of 1.25d CsCl

5

10

25

35

5-ml/ tube of viral supernatant was applied.

If necessary, the tubes were topped up with 0.1 M tris-Cl pH=8.0. Tubes were centrifuged at 35K rpm for 1 hour at -10^oC with rotor SW40. The viral bands (located at the 1.25/1.35 interface) were collected using a syringe.

The virus was transferred into a new SW40 ultraclear tube and 1.35d CsCl was added to top the tube up. After centrifugation at 35K rpm for 24 hours at 10° C in the rotor SW40, the virus was collected in the smallest possible volume and dialyzed extensively against buffer A105 (5 mM Tris, 5% sucrose, 75 mM NaCl, 1 mM MgCl₂, 0.005% polysorbate 80 pH=8.0). After dialysis, glycerol was added to final 10% and the virus was stored in aliquots at -80° C.

Example 10: Enhanced Adenovector Rescue

First generation Ad5 and Ad6 vectors carrying HCV NSOPTmut

transgene were found to be difficult to rescue. A possible block in the rescue process might be attributed to an inefficient replication of plasmid DNA that is a sub-optimal template for the replication machinery of adenovirus. The absence of the terminal protein linked to the 5'ends of the DNA (normally present in the viral DNA), associated with the very high G-C content of the transgene inserted in the E1 region of the vector, may be causing a substantial reduction in replication rate of the plasmid-derived adenovirus.

To set up a more efficient and reproducible procedure for rescuing Ad vectors, an expression vector (pE2; Figure 19) containing all E2 proteins (polymerase, pre-terminal protein and DNA binding protein) as well as E4 orf6 under the control of tet-inducible promoter was employed. The transfection of pE2 in combination with a normal preadeno plasmid in PerC6 and in 293 leads to a strong increase of Ad DNA replication and to a more efficient production of complete infectious adenovirus particles.

30 Plasmid Construction

pE2 is based on the cloning vector pBI (CLONTECH) with the addition of two elements to allow episomal replication and selection in cell culture: (1) the EBV-OriP (EBV [nt] 7421-8042) region permitting plasmid replication in synchrony with the cell cycle when EBNA-1 is expressed and (2) the hygromycin-B phosphotransferase (HPH)-resistance gene allowing a positive selection of

transformed cells. The two transcriptional units for the adenoviral genes E2 a and b and E4-Orf6 were constructed and assembled in pE2 as described below.

The Ad5-Polymerase *Clal/SphI* fragment and the Ad5-pTP *Acc65/EcoRV* fragment were obtained from pVac-Pol and pVac-pTP (Stunnemberg *et al. NAR 16*:2431-2444, 1988). Both fragments were filled with Klenow and cloned into the *SalI* (filled) and *EcoRV* sites of pBI, respectively obtaining pBI-Pol/pTP.

5

10

15

20

25

30

35

EBV-OriP element from pCEP4 (Invitrogen) was first inserted within two chicken β-globin insulator dimers by cloning it into *BamHI* site of pJC13-1 (Chung *et al.*, *Cell* 74(3):505-14, 1993). HS4-OriP fragment from pJC13-OriP was then cloned inside pSA1mv (a plasmid containing tk-Hygro-B resistance gene expression cassette as well as Ad5 replication origin), the ITR's arranged as head-to-tail junction, obtained by PCR from pFG140 (Graham, *EMBO J.* 3:2917-2922, 1984) using the following primers: 5'-TCGAATCGATACGCGAACCTACGC-3' (SEQ. ID. NO. 16) and 5'-TCGACGTGTCGACTTCGAAGCGCACACCAAAAACGTC-3' (SEQ. ID. NO. 17), thus generating pMVHS4Orip. A DNA fragment from pMVHS4Orip, containing the insulated OriP, Ad5 ITR junction and tk-HygroB cassette, was then inserted into pBI-Pol/pTP vector restricted *Asel/AatII* generating pBI-Pol/pTPHS4.

To construct the second transcriptional unit expressing Ad5-Orf6 as well as Ad5-DBP, E4orf6 (Ad 5 [nt] 33193-34077) obtained by PCR was first inserted into pBI vector, generating pBI-Orf6. Subsequently, DBP coding DNA sequence (Ad 5 [nt] 22443-24032) was inserted into pBI-Orf6 obtaining the second bi-directional Tet-regulated expression vector (pBI-DBP/E4orf6). The original polyA signals present in pBI were substituted with BGH and SV40 polyA.

pBI-DBP/E4orf6 was then modified by inserting a DNA fragment containing the Adeno5-ITRs arranged in head-to-tail junction plus the hygromicin B resistance gene obtained from plasmid pSA-1mv. The new plasmid pBI-DBP/E4orf6shuttle was then used as donor plasmid to insert the second tet-regulated transcriptional unit into pBI-Pol/pTPHS4 by homologous recombination using *E. coli* strain BJ5183 obtaining pE2.

Cell lines, Transfections and Virus Amplification

PerC6 cells were cultured in Dulbecco's modified Eagle's Medium (DMEM) plus 10% fetal bovine serum (FBS), 10 mM MgCl₂, penicillin (100 U/ml), streptomycin (100 μ g/ml) and 2 mM glutamine.

All transfections were performed using Lipofectamine2000 (Invitrogen) as described by the manufacturer. 90% confluent PERC.6TM planted in 6-cm plates were transfected with 3.5 μg of Ad5/6NSOPTmut pre-adeno plasmids, digested with PacI, alone or in combination with 5 μg pE2 plus 1 μg pUHD52.1. pUHD52.1 is the expression vector for the reverse tet transactivator 2 (rtTA2) (Urlinger *et al.*, *Proc. Natl. Acad. Sci. U.S.A. 97(14)*:7963-7968, 2000). Upon transfection, cells were cultivated in the presence of 1 μg/ml of doxycycline to activate pE2 expression. 7 days post-transfection cells were harvested and cell lysate was obtained by three cycles of freeze-thaw. Two ml of cell lysate were used to infect a second 6-cm dish of PerC6. Infected cells were cultivated until a full CPE was observed then harvested. The virus was serially passaged five times as described above, then purified on CsCl gradient. The DNA structure of the purified virus was controlled by endonuclease digestion and agarose gel electrophoresis analysis and compared to the original pre-adeno plasmid restriction pattern.

15

20

25

30

35

10

5

Example 11: Partial Optimizeation of HCV Polyprotein Encoding Nucleic acid

Partial optimization of HCV polyprotein encoding nucleic acid was performed to facilitate the production of adenovectors containing codons optimized for expression in a human host. The overall objective was to provide for increased expression due to codon optimization, while facilitating the production of an adenovector encoding HCV polyprotein.

Several difficulties were encountered in producing an adenovector encoding HCV polyprotein with codons optimized for expression in a human host. An adenovector containing an optimized sequence (SEQ. ID. NO. 3) was found to be more difficult to synthesize and rescue than an adenovector containing a non-optimized sequence (SEQ. ID. NO. 2).

The difficulties in producing an adenovector containing SEQ. ID. NO. 3 were attributed to a high GC content. A particularly problemetic region was the region at about position 3900 of NSOPTmut (SEQ. ID. NO. 3).

Alternative versions of optimized HCV encoding nucleic acid sequence were designed to facilitate its use in an adenovector. The alternative versions, compared to NSOPTmut, were designed to have a lower overall GC content, to reduce/avoid the presence of potentially problematic motifis of consecutive G's or C's, while maintaining a high level of codon optimization to allow improved expression of the encoded polyprotein and the individual cleavage products.

A starting point for the generation of a suboptimally codon-optimized sequence is the coding region of the NSOPTmut nucleotide sequence (bases 7 to 5961 of SEQ. ID. NO. 3). Values for codon usage frequencies (normalized to a total of 1.0 for each amino acid) were taken from the file human_high.cod available in the Wisconsin Package Version 10.3 (Accelrys Inc., a wholly owned subsidiary of Pharmacopeia, Inc).

5

25

To reduce the local and overall GC content a table defining preferred codon substitutions for each amino acid was manually generated. For each amino acid the codon having 1) a lower GC content as compared to the most frequent codon and 2) a relativly high observed codon usage frequency (as defined in human_high.cod) 10 was choosen as the replacement codon. For example for Arg the codon with the highest frequency is CGC. Out of the other five alternative codons encoding Arg (CGG, AGG, AGA, CGT, CGA) three (AGG, CGT, CGA) reduce the GC content by 1 base, one (AGA) by two bases and one (CGG) by 0 bases. Since the AGA codon is listed in human_high.cod as having a relatively low usage frequency (0.1), the codon 15 substituting CGC was therefore choosen to be AGG with a relative frequency of 0.18. Similar criteria were applied in order to establish codon replacements for the other amino acids resulting in the list shown in Table 5. Parameters applied in the following optimization procedure were determined empirically such that the resulting sequence maintained a considerably improved codon usage (for each amino acid) and the GC 20 content (overall and in form of local stretches of consecutive G's and/or C's) was decreased.

Two examples of partial optimized HCV encoding sequences are provided by SEQ. ID. NO. 10 and SEQ. ID. NO. 11. SEQ. ID. NO. 10 provides a HCV encoding sequence that is partially optimized throughout. SEQ. ID. NO. 11 provides an HCV encoding sequence fully optimized for codon usage with the exception of a region that was partially optimized.

Codon optimization was performed using the following procedure:

Step 1) The coding region of the input fully optimized NSOPTmut

sequence was analyzed using a sliding window of 3 codons (9 bases) shifting the window by one codon after each cycle. Whenever a stretch containing 5 or more consecutive C's and/or G's was detected in the window the following replacement rule was applied: Let N indicate the number of codon replacements previously performed. If N is odd replace the middle codon in the window with the codon specified in Table

5, if N is even replace the third terminal codon in the window with the codon

specified in a codon optimization table such as human_high.cod. If Leu or Val is present at the second or third codon do not apply any replacement in order not to introduce Leu or Val codons with very low relative codon usage frequency (see, for example, human_high.cod). In the following cycle analysis of the shifted window was then applied to a sequence containing the replacements of the previous cycle.

5

10

15

20

25

30

The alternating replacement of the middle and terminal codon in the 3 codon window was found empirically to give a more satisfying overall maintenance of optimized codon usage while also reducing GC content (as judged from the final sequence after the procedure). In general, however, the precise replacement strategy depends on the amino acid sequence encoded by the nucelotide sequence under analysis and will have to be determined empirically.

Step 2) The sequence containing all the codon replacements performed during step 1) was then subjected to an additional analysis using a sliding window of 21 codons (63 bases) in length: according to an adjustable parameter the overall GC content in the window was determined. If the GC content in the window was higher than 70% the following codon replacement strategy was applied: In the window replace the codons for the amino acids Asn, Asp, Cys, Glu, His, Ile, Lys, Phe, Tyr by the codons given in Table 5. Restriction of the replacement to this set of amino acids was motivated by the fact that a) the replacement codon still has an accetably high frequency of usage in human_high.cod and b) the average overall human codon usage in CUTG for the replacement codon is nearly as high as the most frequent codon. In the following cycle analysis of the shifted window is then applied to a sequence containing the replacements of the previous cycle.

The threshold 70% was determined empirically by compromising between an overall reduction in GC content and maintenance of a high codon optimization for the individual amino acids. As in step 1) the precise replacement strategy (choice of amino acids and GC content threshold value) will again depend on the amino acid sequence encoded by the nucleotide sequence under analysis and will have to be determined empirically.

Step 3) The sequence generated by steps 1) and 2) was then manually edited and additional codons were changed according to the following criteria: Regions still having a GC content higher than 70% over a window of 21 codons were examined manually and a few codons were replaced again following the scheme given in Table 5.

Subsequent steps were performed to provide for useful restriction sites, remove possible open reading frames on the complementary strand, to add homologous recombinant regions, to add a Kozac signal, and to add a terminator. These steps are numbered 4-7

Step 4) The sequence generated in step 3 was examined for the absence of certain restriction sites (BglII, PmeI and XbaI) and presence of only 1 StuI site to allow a subsequent cloning strategy using a subset of restriction enzymes. Two sites (one for BglII and one for StuI) were removed from the sequence by replacing codons that were part of the respective recognition sites.

5

10

15

35

Step 5) The sequence generated by steps 1) through 4) was then modified according to allow subsequent generation of a modified NSOPTmut sequence (by homologous recombination). In the sequence obtained from steps 1) through 4) the segment comprising base 3556 to 3755 and the segment comprising base 4456 to 4656 were replaced by the corresponding segments from NSOPTmut. The segment comprising bases 3556 to 4656 of SEQ. ID. NO. 10 can be used to replace the problematic region in NSOPTmut (around position 3900) by homologous recombination thus creating the variant of NSOPTmut having the sequence of SEQ. ID. NO. 11.

Step 6) Analysis of the sequence generated through steps 1) to 5) revealed a potential open reading frame spanning nearly the complete fragment on the 20 complementary strand. Removal of all codons CTA and TTA (Leu) and TCA (Ser) from the sense strand effectively removed all stop codons in one of the reading frames on the complementary strand. Although the likelyhood for transcription of this complementary strand open reading frame and subsequent translation into protein is very small, in order to exclude a potential interference with the transcription and 25 subsequent translation of the sequence encoded on the sense strand, TCA codons for Ser were introduced on the sense approximately every 500 bases. No changes were introduced in the segments introduced during step 5) to allow homologous recombination. The TCA codon for Ser was preferred over the CTA and TTA codons for Leu because of the higher relative frequency for TCA (0.05) as compared to CTA 30 (0.02) and TTA (0.03) in human_high.cod. In addition, the average human codon usage from CUTG favored TCA (0.14 against 0.07 for CTA and TTA).

Step 7) In a final step GCCACC was added at the 5' end of the sequence to generate an optimized internal ribosome entry site (Kozak signal) and a TAAA stop sgnal was added at the 3'. To maintain the initiation of translation

properties of NSsuboptmut the first 8 codons of the coding region were kept identical to the NSOPTmut sequence. The resulting sequence was again checked for the absence of BglII, PmeI and XbaI recognition sites and the presence of only 1 StuI site.

The NSsuboptmut sequence (SEQ. ID. NO. 10) has an overall reduced

5 GC content (63.5%) as compared to NSOPTmut (70.3%) and maintains a well optimized level of codon usage optimization. Nucleotide sequence identity of NSsuboptmut is 77.2% with respect to NSmut.

Table 5: Definition of codon replacements performed during steps 1) and 2).

4	
3	

Amino Acid	Most frequent	Relative	Reduction in	Replacement	Relative
	codon	frequency	GC content	codon	frequency
	1	oquonoy	(bases)	000011	oquoo,
Amino	Acids where the re	unlacement codon		CC content by 1	hana
Ala					
Arg	GCC	0.51	1	GCT	0.17
	CGC	0.37	1	AGG	0.18
Asn	AAC	0.78	1	AAT	0.22
Asp	GAC	0.75	1	GAT	0.25
Cys	TGC	0.68	1	TGT	0.32
Glu	GAG	0.75	1	GAA	0.25
Gln	CAG	0.88	1	CAA	0.12
Gly	GGC	0.50	I	GGA	0.14
His	CAC	0.79	1	CAT	0.21
Ile	ATC	0.77	1	ATT	0.18
Lys	AAG	0.82	1	AAA	0.18
Phe	TTC	0.80	1	TTT	0.20
Pro	ccc	0.48	1	CCT	0.19
Ser	AGC	0.34	1	TCT	0.13
Thr	ACC	0.51	1	ACA	0.14
Tyr	TAC	0.74	1	TAT	0.26
	Ami	no Acids with no	alternative codon	***************************************	
Met	ATG	1.00	0	ATG	1.00
Ттр	TGG	1.00	0	TGG	1.00

Amino Acid	s where the replaceme	nt codon has a very	low relative freq	uency. These amir	no acids were
	excl	uded from the repla	cement procedur	<u>e</u>	
Leu	CTG	0.58	1	TTG	0.06
Val	GTG	0.64	1	GTT	0.07

Example 12: Virus Characterization

Adenovectors were characterized by: (a) measuring the physical particles/ml; (b) running a TaqMan PCR assay; and (c) checking protein expression after infection of HeLa cells.

a) Physical Particles Determination

CsCl purified virus was diluted 1/10 and 1/100 in 0.1% SDS PBS. As a control, buffer A105 was used. These dilutions were incubated 10 minutes at 55°C.

After spinning the tubes briefly, O.D. at 260 nm was measured. The amount of viral particles was calculated as follows: 1 OD 260 nm = 1.1 X 10¹² physical particles/ml. The results were typically between 5 X 10¹¹ and 1 X 10¹² physical particles/ml.

b) TaqMan PCR Assay

5

15

20

25

30

TaqMan PCR assay was used for adenovectors genome quantification (Q-PCR particles/ml). TaqMan PCR assay was performed using the ABI Prism 7700-sequence detector. The reaction was performed in a final 50 μ l volume in the presence of oligonucleotides (at final 200 nM) and probe (at final 200 μ M) specific for the adenoviral backbone. The virus was diluted 1/10 in 0.1% SDS PBS and incubated 10 minutes at 55°C. After spinning the tube briefly, serial 1/10 dilutions (in water) were prepared. 10 μ l the 10°3, 10°5 and 10°7 dilutions were used as templates in the PCR assay.

The amount of particles present in each sample was calculated on the basis of a standard curve run in the same experiment. Typically results were between 1×10^{12} and 3×10^{12} Q-PCR particles /ml.

c) Expression of HCV Non-Structural Proteins

Expression of HCV NS proteins was tested by infection of HeLa cells. Cells were plated the day before the infection at 1.5 X 10⁶ cells/dish (10 cm ø Petri dishes). Different amounts of CsCl purified virus corresponding to m.o.i. of 50, 250

and 1250 pp/cell were diluted in medium (FCS free) up to a final volume of 5 ml. The diluted virus was added on the cells and incubated for 1 hour at 37^{0} C in a CO₂ incubator (gently mixing every 20 minutes). 5 ml of 5% HS-DMEM was added and the cells were incubated at 37^{0} C for 48 hours.

Cell extracts were prepared in 1% Triton/TEN buffer. The extracts were run on 10% SDS-acrylamide gel, blotted on nitrocellulose and assayed with antibodies directed against NS3, NS5a and NS5b in order to check the correct polyprotein cleavage. Mock-infected cells were used as a negative control. Results from representative experiments testing the Ad5-NS, MRKAd5-NSmut, MRKAd6-NSmut and MRKAd6-NSOPTmut are shown in Figure 14.

Example 13: Mice Immunization with Adenovectors Encoding Different NS Cassettes

The adenovectors Ad5-NS, MRKAd5-NSmut, MRKAd6-NSmut and
MRKAd6-NSOPTmut were injected in C57Black6 mice strains to evaluate their potential to elicit anti-HCV immune responses. Groups of animals (N=9-10) were injected intramuscularly with 10⁹ pp of CsCl purified virus. Each animal received two doses at three weeks interval.

Humoral immune response against the NS3 protein was measured in post dose two sera from C57Black6 immunized mice by ELISA on bacterially expressed NS3 protease domain. Antibodies specific for the tested antigen were detected with geometric mean titers (GMT) ranging from 100 to 46000 (Tables 6, 7, 8 and 9).

Table 6: Ad5-NS

Mice n.	1	2	3	4	5	6	7	8	9	10		
Titer	50	253	50	50	50	2257	504	50	50	50	108	

30

5

10

20

Table 7: Ad5-NSmut

					***						GMT
Mice n.	11	12	13	14	15	16	17	18	19	20	
Titer	3162	78850	87241	6796	12134	3340	18473	13093	76167	49593	23645

Table 8: MRKAd6-NSmut

5

											GMI
Mice n.	21	22	23	24	25	26	27	28	29	30	
Titer	125626	39751	40187	65834	60619	69933	21555	49348	29290	26859	46461

Table 9: MRKAd6-NSOPTmut

,											
Mice n.	31	32	33	34	35	36	37				
Titer	25430	3657	893	175	10442	49540	173	2785			

T cell response in C57Black6 mice was analyzed by the quantitative ELISPOT assay measuring the number of IFNγ secreting T cells in response to five pools (named from F to L+M) of 20mer peptides overlapping by ten residues encompassing the NS3-NS5B sequence. Specific CD8+ response induced in C57Black6 mice was analyzed by the same assay using a 20mer peptide encompassing a CD8+ epitope for C57Black6 mice (pep1480). Cells secreting IFNγ in an antigen specific-manner were detected using a standard ELIspot assay.

Spleen cells, splenocytes and peptides were produced and treated as described in Example 3, *supra*. Representative data from groups of C57Black6 mice (N=9-10) immunized with two injections of 10⁹ viral particles of vectors Ad5-NS, MRKAd5-NSmut and MRKAd6-NSmut are shown in Figure 15.

Example 14: Immunization of Rhesus macaques with Adenovectors

20

Rhesus macaques (N=3-4) were immunized by intramuscular injection of CsCl purified Ad5-NS, MRKAd5-NSmut, MRKAd6-NSmut or MRKAd6-

NSOPTmut virus. Each animal received two doses of 10^{11} or 10^{10} vp in the deltoid muscle at 0, and 4 weeks.

CMI was measured at different time points by a) IFN- γ ELISPOT (see Example 3, *supra*), b) IFN- γ ICS and c) bulk CTL assays. These assays measure HCV antigen-specific CD8+ and CD4+ T lymphocyte responses, and can be used for a variety of mammals, such as humans, rhesus monkeys, mice, and rats.

The use of a specific peptide or a pool of peptides can simplify antigen presentation in CTL cytotoxicity assays, interferon-gamma ELISPOT assays and interferon-gamma intracellular staining assays. Peptides based on the amino acid sequence of various HCV proteins (core, E2, NS3, NS4A, NS4B, NS5a, NS5b) were prepared for use in these assays to measure immune responses in HCV DNA and adenovirus vector vaccinated rhesus monkeys, as well as in HCV-infected humans. The individual peptides are overlapping 20-mers, offset by 10 amino acids. Large pools of peptides can be used to detect an overall response to HCV proteins while smaller pools and individual peptides may be used to define the epitope specificity of a response.

IFN-γICS

5

10

15

20

25

30

For IFN- γ ICS, 2 x 10⁶ PBMC in 1 ml R10 (RPMI medium, supplemented with 10% FCS) were stimulated with peptide pool antigens. Final concentration of each peptide was 2 μ g/ml. Cells were incubated for 1 hour in a CO₂ incubator at 37°C and then Brefeldin A was added to a final concentration of 10 μ g /ml to inhibit the secretion of soluble cytokines. Cells were incubated for additional 14-16 hours at 37°C.

Stimulation was done in the presence of co-stimulatory antibodies: CD28 and CD49d (anti-humanCD28 BD340975 and anti-humanCD49d BD340976). After incubation, cells were stained with fluorochrome-conjugated antibodies for surface antigens: anti-CD3, anti-CD4, anti-CD8 (CD3-APC Biosource APS0301, CD4-PE BD345769, CD8-PerCP BD345774).

To detect intracellular cytokines, cells were treated with FACS permeabilization buffer 2 (BD340973), 2x final concentration. Once fixed and permeabilized, cells were incubated with an antibody against human IFN-γ, IFN-γFTC (Biosource AHC4338).

Cells were resuspended in 1% formaldehyde in PBS and analyzed at FACS within 24 hours. Four color FACS analysis was performed on a FACSCalibur

instrument (Becton Dickinson) equipped with two lasers. Acquisition was done gating on the lymphocyte population in the Forward versus Side Scatter plot coupled with the CD3, CD8 positive populations. At least 30,000 events of the gate were taken. The positive cells are expressed as number of IFN- γ expressing cells over 10^6 lymphocytes.

IFN- γ ELISPOT and IFN- γ ICS data from immunized monkeys after one or two injections of 10^{10} or 10^{11} vp of the different adenovectors are reported in Figures 16A-16D, 17A, and 17B.

10 Bulk CTL Assays

5

15

30

A distinguishing effector function of T lymphocytes is the ability of subsets of this cell population to directly lyse cells exhibiting appropriate MHC-associated antigenic peptides. This cytotoxic activity is most often associated with CD8+ T lymphocytes.

PBMC samples were infected with recombinant vaccine viruses expressing HCV antigens in vitro for approximately 14 days to provide antigen restimulation and expansion of memory T cells. Cytotoxicity against autologous B cell lines treated with peptide antigen pools was tested.

The lytic function of the culture is measured as a percentage of specific

lysis resulted from chromium released from target cells during 4 hours incubation
with CTL effector cells. Specific cytotoxicity is measured and compared to irrelevant
antigen or excipient-treated B cell lines. This assay is semi-quantitative and is the
preferred means for determining whether CTL responses were elicited by the vaccine.

Data after two injections from monkeys immunized with 10¹¹ vp/dose with
adenovectors Ad5-NS, MRKAd5-NSmut and MRKAd6-NSmut are reported in
Figures 18A-18F.

Other embodiments are within the following claims. While several embodiments have been shown and described, various modifications may be made without departing from the spirit and scope of the present invention.

WHAT IS CLAIMED IS:

10

20

A nucleic acid comprising a nucleotide sequence encoding a
Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ ID
 NO: 1, provided that said polypeptide has sufficient protease activity to process itself
to produce an NS5B protein and said NS5B protein is enzymatically inactive.

- 2. The nucleic acid of claim 1, wherein said nucleotide sequence is substantially similar to the coding sequence of SEQ ID NO: 2.
- 3. The nucleic acid of claim 1, wherein said nucleotide sequence encodes for the polypeptide of SEQ ID NO: 1.
- 4. The nucleic acid of claim 3, wherein said nucleotide sequence 15 is the coding sequence of either SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
 - 5. The nucleic acid of claim 3, wherein said nucleotide sequence is the coding sequence of either SEQ ID NO: 2 or SEQ ID NO: 3.
 - 6. The nucleic acid of any one of claims 1-5, wherein said nucleic acid is an expression vector capable of expressing said polypeptide from said nucleotide sequence in a human cell.
- 7. A nucleic acid comprising a gene expression cassette able to express a Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide substantially similar to SEQ ID NO: 1 in a human cell, provided that said polypeptide can process itself to produce an NS5B protein and said NS5B protein is enzymatically inactive, said expression cassette comprising:
- a) a promoter transcriptionally coupled to a nucleotide sequence encoding said polypeptide;
 - b) a 5' ribosome binding site functionally coupled to said nucleotide sequence,

c) a terminator joined to the 3' end of said nucleotide sequence, and

- d) a 3' polyadenylation signal functionally coupled to said nucleotide sequence.
- 5 8. The nucleic acid of claim 7, wherein said nucleotide sequence is substantially similar to either SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
- 9. The nucleic acid of claim 8, wherein said nucleic acid is a shuttle vector further comprising a selectable marker, an origin of replication, a first adenovirus homology region and a second adenovirus homology region flanking said expression cassette, wherein said first homology region has at least about 100 base pairs substantially homologous to at least right end of a wild-type adenovirus region from about base pairs 1-425, and said second homology region has at least about 100 base pairs substantially homologous to at least the left end of a wild-type adenovirus region from about base pairs 3511-5792 of Ad5 or corresponding region of another adenovirus.
- The nucleic acid of claim 9, wherein said nucleotide sequence encodes for a polypeptide of SEQ ID NO: 1.
 - 11. The nucleic acid of claim 9, wherein said nucleotide sequence is SEQ ID NO: 2.
- 25 12. The nucleic acid of claim 9, wherein said nucleotide sequence is either SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
- 13. The nucleic acid of claim 8, wherein said nucleic acid is a plasmid suitable for administration into a human and further comprises a prokaryotic origin of replication and a gene coding for a selectable marker.
 - 14. The nucleic acid of claim 13, wherein said nucleotide sequence encodes for a polypeptide of SEQ ID NO: 1.

15. The nucleic acid of claim 14, wherein said nucleotide sequence is the coding sequence of either SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.

- 5 16. The nucleic acid of claim 14, wherein said nucleotide sequence is the coding sequence of SEQ ID NO: 2 or SEQ ID NO: 3.
 - 17. The nucleic acid of claim 14, wherein said promoter is the human intermediate early cytomegalovirus promoter (intron A), said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the bovine growth hormone (BGH) polyadenylation signal.

10

15

20

25

- 18. The nucleic acid of claim 8, wherein said nucleic acid is a adenovirus genome plasmid comprising a selectable marker, an origin of replication, and a recombinant adenovector genome containing an E1 deletion, an E3 deletion, and said expression cassette.
- 19. The nucleic acid of claim 8, wherein said nucleic acid is a adenovirus genome plasmid comprising a selectable marker, an origin of replication, and
- a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
- b) said gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to said first region;
- c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said expression cassette;
- d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and

f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.

- 5 20. The nucleic acid of claim 19, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.
- 10 21. The nucleic acid of claim 20, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.
- 15 22. The nucleic acid of claim 21, wherein said expression cassette is in an E1 anti parallel orientation and said nucleotide sequence is either SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
- 23. The nucleic acid of claim 19, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 or Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.
- 24. The nucleic acid of claim 23, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.
- The nucleic acid of claim 24, wherein said expression cassette
 is in an E1 anti parallel orientation and said nucleotide sequence is either SEQ ID NO:
 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
 - 26. The nucleic acid of claim 24, wherein said expression cassette is in an E1 anti parallel orientation and said nucleotide sequence is either SEQ ID NO: 2 or SEQ ID NO: 3.

27. The nucleic acid of claim 8, wherein said nucleic acid is a adenovirus genome plasmid comprising an origin of replication, a selectable marker, and:

- 5 a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
 - b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;
- 10 c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
 - d) said gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to said third region;
- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said gene expression cassette; and
 - f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.

20

25

30

- 28. The nucleic acid of claim 27, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.
- 29. The nucleic acid of claim 28, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.
- 30. The nucleic acid of claim 27, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 of Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.

31. The nucleic acid of claim 30, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.

5

10

20

30

- 32. The nucleic acid of claim 8, wherein said nucleic acid is a adenovector consisting of a nucleotide sequence substantially similar to of SEQ ID NO. 4 or a derivative thereof, wherein said derivative thereof has the HCV polyprotein encoding sequence present in SEQ ID NO: 4 replaced with the HCV polyprotein encoding sequence of either SEQ ID NO: 3, SEQ ID NO: 10 or SEQ ID NO: 11.
- 33. The nucleic acid of claim 8, wherein said nucleic acid is an adenovector having an adenovector genome containing an E1 deletion, an E3 deletion, and said expression cassette
 - 34. The nucleic acid of claim 8, wherein said nucleic acid is an adenovector consisting of:
 - a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
 - b) said gene expression cassette in a E1 parallel or E1 anti-parallel orientation joined to said first region;
- c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said expression cassette;
 - d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
 - e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and
 - f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.

35. The nucleic acid of claim 34, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.

- 36. The nucleic acid of claim 35, wherein said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.
- 37. The nucleic acid of claim 36, wherein said expression cassette is in an E1 anti parallel orientation and said nucleotide sequence is either SEQ ID NO: 2, SEQ ID NO: 10, or SEQ ID NO: 11.

15

10

5

38. The nucleic acid of claim 34, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 or Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.

- 39. The nucleic acid of claim 37, where said promoter is the human intermediate early cytomegalovirus promoter, said 5' ribosome binding site consists of SEQ ID NO: 12, and said 3' polyadenylation is the BGH polyadenylation signal.
- 25 40. The nucleic acid of claim 39, wherein said expression cassette is in an E1 anti parallel orientation and said nucleotide sequence is SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 10, or SEQ ID NO: 11.
- 41. The nucleic acid of claim 39, wherein said expression cassette 30 is in an E1 anti parallel orientation and said nucleotide sequence is SEQ ID NO: 2 or SEQ ID NO: 3.
 - 42. The nucleic acid of claim 8, wherein said nucleic acid is an adenovector consisting of:

a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;

- c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
- d) said gene expression cassette in a E3 parallel or E3 anti-parallel or e10 orientation joined to said third region;
 - e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said gene expression cassette; and
- f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region.
- 43. The nucleic acid of claim 42, wherein said first region corresponds to Ad5, said second region corresponds to Ad5, said third region corresponds to Ad5, said fourth region corresponds to Ad5, and said fifth region corresponds to Ad5.
- 44. The nucleic acid of claim 42, wherein said first region corresponds to Ad5 or Ad6, said second region corresponds to Ad5 or Ad6, said third region corresponds to Ad6, said fourth region corresponds to Ad6, and said fifth region corresponds to Ad5 or Ad6.
- 45. An adenovector consisting of the nucleic acid sequence of SEQ ID NO. 4 or a derivative thereof, wherein said derivative thereof has the HCV
 30 polyprotein encoding sequence present in SEQ ID NO: 4 replaced with the HCV polyprotein encoding sequence of either SEQ ID NO: 3, SEQ ID NO: 10 or SEQ ID NO: 11.
 - 46. An adenovector produced by a process comprising the steps of:

a) producing an adenovirus genome plasmid by homologous recombination between the shuttle vector of claim 9 and a nucleic acid comprising; a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;

5

10

a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;

a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and

a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region; and

- b) rescuing said adenovector from said adenovirus plasmid.
- 47. A cultured recombinant cell comprising the nucleic acid of 20 claim 6.
 - 48. A cultured recombinant cell comprising the nucleic acid of any one of claims 9-46.
- 25 49. A method of making an adenovector comprising the steps of:
 - a) producing an adenovirus genome plasmid comprising a gene expression cassette by homologous recombination between the nucleic acid of claim 9 and a nucleic acid comprising;

a first adenovirus region from about base pair 1 to about base 30 pair 450 corresponding to either Ad5 or Ad6;

a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;

a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;

- a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said third region; and
 - a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to the fourth region; and
- 10 b) rescuing said recombinant adenovirus from said recombinant adenovirus plasmid.
 - 50. A pharmaceutical composition comprising the nucleic acid of any one of claims 13-17 and 32-46 and pharmaceutically acceptable carrier.
- 51. A method of treating a patient comprising the step of administering to said patient an effective amount of the nucleic acid of any one of claims 13-17 and 32-46.
- The method of claim 51, wherein said patient is a human.
 - 53. The method of claim 52, wherein said patient is not infected with HCV.
- 25 54. The method of claim 52, wherein said patient is infected with HCV.
- 55. A recombinant nucleic acid comprising one or more Ad6 regions and a region not present in Ad6, wherein at least one Ad6 region is selected from the group consisting of: E1A, E1B, E2B, E2A, E4, L1, L2, L4, and L5.
 - 56. The recombinant nucleic acid of claim 55, wherein said region not present in Ad6, is an expression cassette coding for a polypeptide not found in Ad6.

57. The recombinant nucleic acid of claim 56, wherein said recombinant nucleic acid is an adenovirus vector defective in at least E1 that is able to replicate when E1 is supplied *in trans*.

- 58. The recombinant nucleic acid of claim 57, wherein said vector consists of:
 - a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;
- b) said gene expression cassette in an E1 parallel or E1 antiparallel orientation joined to said first region;
- c) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said gene expression cassette;
- d) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
 - e) an optionally present fourth region from about base pair 28134 to about base pair 30817 corresponding to Ad5, or from about base pair 28157 to about 30789 corresponding to Ad6, joined to said third region;
- 20 f) a fifth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, wherein said fifth region is joined to said fourth region if said fourth region is present, or said fifth is joined to said third region if said fourth region is not present; and
 - g) a sixth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region;

provided that at least one of said second, third, and fifth regions is from Ad6.

30

25

5

10

- 59. The recombinant nucleic acid of claim 57, wherein said vector consists of:
- a) a first adenovirus region from about base pair 1 to about base pair 450 corresponding to either Ad5 or Ad6;

b) a second adenovirus region from about base pair 3511 to about base pair 5548 corresponding to Ad5 or from about base pair 3508 to about base pair 5541 corresponding to Ad6, joined to said first region;

- c) a third adenovirus region from about base pair 5549 to about base pair 28133 corresponding to Ad5 or from about base pair 5542 to about base pair 28156 corresponding to Ad6, joined to said second region;
 - d) said gene expression cassette in a E3 parallel or E3 anti-parallel orientation joined to said third region;
- e) a fourth adenovirus region from about base pair 30818 to about base pair 33966 corresponding to Ad5 or from about base pair 30789 to about base pair 33784 corresponding to Ad6, joined to said gene expression cassette; and
 - f) a fifth adenovirus region from about base pair 33967 to about base pair 35935 corresponding to Ad5 or from about base pair 33785 to about base pair 35759 corresponding to Ad6, joined to said fourth region;
- provided that at least one of said second, third, and fourth regions is from Ad6.

1	MAPITAYSQQ	TRGLLGCIIT	SLTGRDKNQV	EGEVQVVSTA	TOSFLATOVN
51	GVCWTVYHGA	GSKTLAGPKG	PITQMYTNVD	QDLVGWQAPP	GARSLTPCTC
101	GSSDLYLVTR	HADVIPVRRR	GDSRGSLLSP	RPVSYLKGSS	GGPLLCPSGH
151	AVGIFRAAVC	TRGVAKAVDF	VPVESMETTM	RSPVFTDNSS	PPAVPQSFQV
201	AHLHAPTGSG	KSTKVPAAYA	AQGYKVLVLN	PSVAATLGFG	AYMSKAHGID
251	PNIRTGVRTI	${\tt TTGAPVTYST}$	YGKFLADGGC	SGGAYDIIIC	DECHSTDSTT
301	ILGIGTVLDQ	AETAGARLVV	LATATPPGSV	TVPHPNIEEV	ALSNTGEIPF
351	YGKAIPIEAI	RGGRHLIFCH	SKKKCDELAA	KLSGLGINAV	AYYRGLDVSV
401	IPTIGDVVVV	ATDALMTGYT	GDFDSVIDCN	${\tt TCVTQTVDFS}$	LDPTFTIETT
451	TVPQDAVSRS	QRRGRTGRGR	RGIYRFVTPG	ERPSGMFDSS	VLCECYDAGC
501	AWYELTPAET	SVRLRAYLNT	PGLPVCQDHL	EFWESVFTGL	THIDAHFLSQ
551	${\tt TKQAGDNFPY}$	LVAYQATVCA	RAQAPPPSWD	QMWKCLIRLK	$\mathtt{PTLHGPTPLL}$
601	YRLGAVQNEV	$\mathtt{TLTHPITKYI}$	MACMSADLEV	VTSTWVLVGG	VLAALAAYCL
651	${\tt TTGSVVIVGR}$	IILSGRPAIV	PDREFLYQEF	DEMEECASHL	PYIEQGMQLA
701	EQFKQKALGL	${\bf LQTATKQAEA}$	AAPVVESKWR	ALETFWAKHM	WNFISGIQYL
751	${\tt AGLSTLPGNP}$	AIASLMAFTA	SITSPLTTQS	TLLFNILGGW	VAAQLAPPSA
801	ASAFVGAGIA	GAAVGSIGLG	KVLVDILAGY	GAGVAGALVA	FKVMSGEMPS
851	TEDLVNLLPA	ILSPGALVVG	VVCAAILRRH	VGPGEGAVQW	MNRLIAFASR
901	${\tt GNHVSPTHYV}$	PESDAAARVT	QILSSLTITQ	LLKRLHQWIN	EDCSTPCSGS
951	WLRDVWDWIC	${\tt TVLTDFKTWL}$	${\tt QSKLLPQLPG}$	VPFFSCQRGY	KGVWRGDGIM
1001	QTTCPCGAQI	${\tt TGHVKNGSMR}$	IVGPKTCSNT	WHGTFPINAY	TTGPCTPSPA
1051	PNYSRALWRV	AAEEYVEVTR	VGDFHYVTGM	${\tt TTDNVKCPCQ}$	VPAPEFFTEV
1101	DGVRLHRYAP	ACRPLLREEV	${\tt TFQVGLNQYL}$	${\tt VGSQLPCEPE}$	PDVAVLTSML
1151	TDPSHITAET	AKRRLARGSP	PSLASSSASQ	LSAPSLKATC	TTHHVSPDAD
1201	LIEANLLWRQ	EMGGNITRVE	SENKVVVLDS	FDPLRAEEDE	REVSVPAEIL
1251	${\tt RKSKKFPAAM}$	PIWARPDYNP	PLLESWKDPD	YVPPVVHGCP	LPPIKAPPIP
1301	${\tt PPRRKRTVVL}$	TESSVSSALA	ELATKTFGSS	ESSAVDSGTA	TALPDQASDD
1351	GDKGSDVESY	SSMPPLEGEP	GDPDLSDGSW	${\tt STVSEEASED}$	VVCCSMSYTW
1401	TGALITPCAA	EESKLPINAL	${\tt SNSLLRHHNM}$	VYATTSRSAG	LRQKKVTFDR
1451	LQVLDDHYRD	VLKEMKAKAS	TVKAKLLSVE	EACKLTPPHS	AKSKFGYGAK
1501	DVRNLSSKAV	NHIHSVWKDL	LEDTVTPIDT	TIMAKNEVFC	VQPEKGGRKP
1551	ARLIVFPDLG	VRVCEKMALY	DVVSTLPQVV	MGSSYGFQYS	PGQRVEFLVN
1601	TWKSKKNPMG	FSYDTRCFDS	TVTENDIRVE	ESIYQCCDLA	PEARQAIKSL
1651	TERLYIGGPL	TNSKGQNCGY	RRCRASGVLT	TSCGNTLTCY	LKASAACRAA

FIG. 1A

1701	KLQDCTMLVN	AAGLVVICES	${\tt AGTQEDAASL}$	${\tt RVFTEAMTRY}$	SAPPGDPPQP
1751	EYDLELITSC	SSNVSVAHDA	SGKRVYYLTR	DPTTPLARAA	WETARHTPVN
1801	SWLGNIIMYA	PTLWARMILM	THFFSILLAQ	EQLEKALDCQ	IYGACYSIEP
1851	LDLPQIIERL	HGLSAFSLHS	YSPGEINRVA	SCLRKLGVPP	LRVWRHRARS
1901	VRARLLSQGG	RAATCGKYLF	NWAVKTKLKL	TPIPAASQLD	LSGWFVAGYS
1951	GGDIYHSLSR	ARPRWFMLCL	LLLSVGVGIY	LLPNR	

1	GCCACCATGG	CGCCCATCAC	GGCCTACTCC	CAACAGACGC	GGGCCTACT
51	TGGTTGCATC	ATCACTAGCC	TTACAGGCCG	GGACAAGAAC	CAGGTCGAGG
101	GAGAGGTTCA	GGTGGTTTCC	ACCGCAACAC	AATCCTTCCT	GGCGACCTGC
151	GTCAACGGCG	TGTGTTGGAC	CGTTTACCAT	GGTGCTGGCT	CAAAGACCTT
201	AGCCGGCCCA	AAGGGCCAA	TCACCCAGAT	GTACACTAAT	GTGGACCAGG
251	ACCTCGTCGG	CTGGCAGGCG	CCCCCGGGG	CGCGTTCCTT	GACACCATGC
301	ACCTGTGGCA	GCTCAGACCT	TTACTTGGTC	ACGAGACATG	CTGACGTCAT
351	TCCGGTGCGC	CGGCGGGGCG	ACAGTAGGGG	GAGCCTGCTC	TCCCCCAGGC
401	CTGTCTCCTA	CTTGAAGGGC	TCTTCGGGTG	GTCCACTGCT	CTGCCCTTCG
451	GGGCACGCTG	TGGGCATCTT	CCGGGCTGCC	GTATGCACCC	GGGGGTTGC
501	GAAGGCGGTG	GACTTTGTGC	CCGTAGAGTC	CATGGAAACT	ACTATGCGGT
551	CTCCGGTCTT	CACGGACAAC	TCATCCCCCC	CGGCCGTACC	GCAGTCATTT
601	CAAGTGGCCC	ACCTACACGC	TCCCACTGGC	AGCGGCAAGA	GTACTAAAGT
651	GCCGGCTGCA	TATGCAGCCC	AAGGGTACAA	GGTGCTCGTC	CTCAATCCGT
701	CCGTTGCCGC	TACCTTAGGG	TTTGGGGCGT	ATATGTCTAA	GGCACACGGT
751	ATTGACCCCA	ACATCAGAAC	TGGGGTAAGG	ACCATTACCA	CAGGCGCCCC
801	CGTCACATAC	TCTACCTATG	GCAAGTTTCT	TGCCGATGGT	GGTTGCTCTG
851	GGGGCGCTTA	TGACATCATA	ATATGTGATG	AGTGCCATTC	AACTGACTCG
901	ACTACAATCT	TGGGCATCGG	CACAGTCCTG	GACCAAGCGG	AGACGGCTGG
951	AGCGCGGCTT	GTCGTGCTCG	CCACCGCTAC	GCCTCCGGGA	TCGGTCACCG
1001	TGCCACACCC	AAACATCGAG	GAGGTGGCCC	${\tt TGTCTAATAC}$	TGGAGAGATC
1051	CCCTTCTATG	GCAAAGCCAT	CCCCATTGAA	GCCATCAGGG	GGGGAAGGCA
1101	TCTCATTTTC	TGTCATTCCA	AGAAGAAGTG	CGACGAGCTC	GCCGCAAAGC
1151	${\bf TGTCAGGCCT}$	CGGAATCAAC	${\tt GCTGTGGCGT}$	ATTACCGGGG	GCTCGATGTG
1201	TCCGTCATAC	CAACTATCGG	AGACGTCGTT	GTCGTGGCAA	CAGACGCTCT
1251	GATGACGGC	TATACGGGCG	ACTTTGACTC	AGTGATCGAC	TGTAACACAT
1301	GTGTCACCCA	GACAGTCGAC	TTCAGCTTGG	ATCCCACCTT	CACCATTGAG
1351	ACGACGACCG	TGCCTCAAGA	CGCAGTGTCG	CGCTCGCAGC	GGCGGGGTAG
1401	GACTGGCAGG	GGTAGGAGAG	GCATCTACAG	GTTTGTGACT	CCGGGAGAAC
1451	GGCCCTCGGG	CATGTTCGAT	TCCTCGGTCC	TGTGTGAGTG	CTATGACGCG
1501	GGCTGTGCTT	GGTACGAGCT	CACCCCCGCC	GAGACCTCGG	TTAGGTTGCG
1551	GGCCTACCTG	AACACACCAG	GGTTGCCCGT	TTGCCAGGAC	CACCTGGAGT
1601	TCTGGGAGAG	TGTCTTCACA	GGCCTCACCC	ACATAGATGC	ACACTTCTTG
1651	TCCCAGACCA	AGCAGGCAGG	AGACAACTTC	CCCTACCTGG	TAGCATACCA

FIG. 2A

1701	AGCCACGGTG	TGCGCCAGGG	CTCAGGCCCC	ACCTCCATCA	TGGGATCAAA
1751	TGTGGAAGTG	TCTCATACGG	CTGAAACCTA	CGCTGCACGG	GCCAACACCC
1801	TTGCTGTACA	GGCTGGGAGC	CGTCCAAAAT	GAGGTCACCC	TCACCCACCC
1851	CATAACCAAA	TACATCATGG	CATGCATGTC	GGCTGACCTG	GAGGTCGTCA
1901	CTAGCACCTG	GGTGCTGGTG	GGCGGAGTCC	TTGCAGCTCT	GGCCGCGTAT
1951	TGCCTGACAA	CAGGCAGTGT	GGTCATTGTG	GGTAGGATTA	TCTTGTCCGG
2001	GAGGCCGGCT	ATTGTTCCCG	ACAGGGAGTT	TCTCTACCAG	GAGTTCGATG
2051	AAATGGAAGA	GTGCGCCTCG	CACCTCCCTT	ACATCGAGCA	GGGAATGCAG
2101	CTCGCCGAGC	AATTCAAGCA	GAAAGCGCTC	GGGTTACTGC	AAACAGCCAC
2151	CAAACAAGCG	GAGGCTGCTG	CTCCCGTGGT	GGAGTCCAAG	TGGCGAGCCC
2201	${\tt TTGAGACATT}$	CTGGGCGAAG	CACATGTGGA	ATTTCATCAG	CGGGATACAG
2251	TACTTAGCAG	GCTTATCCAC	TCTGCCTGGG	AACCCCGCAA	TAGCATCATT
2301	GATGGCATTC	ACAGCCTCTA	TCACCAGCCC	GCTCACCACC	CAAAGTACCC
2351	TCCTGTTTAA	CATCTTGGGG	GGGTGGGTGG	CTGCCCAACT	CGCCCCCCC
2401	AGCGCCGCTT	CGGCTTTCGT	GGGCGCCGGC	ATCGCCGGTG	CGGCTGTTGG
2451	CAGCATAGGC	CTTGGGAAGG	TGCTTGTGGA	CATTCTGGCG	GGTTATGGAG
2501	CAGGAGTGGC	CGGCGCGCTC	GTGGCCTTCA	AGGTCATGAG	CGGCGAGATG
2551	CCCTCCACCG	AGGACCTGGT	CAATCTACTT	CCTGCCATCC	TCTCTCCTGG
2601	CGCCCTGGTC	GTCGGGGTCG	${\tt TGTGTGCAGC}$	AATACTGCGT	CGACACGTGG
2651	GTCCGGGAGA	GGGGGCTGTG	CAGTGGATGA	ACCGGCTGAT	AGCGTTCGCC
2701	TCGCGGGGTA	ATCATGTTTC	CCCCACGCAC	TATGTGCCTG	AGAGCGACGC
2751	CGCAGCGCGT	GTTACTCAGA	TCCTCTCCAG	CCTTACCATC	ACTCAGCTGC
2801	${\tt TGAAAAGGCT}$	CCACCAGTGG	ATTAATGAAG	ACTGCTCCAC	ACCGTGTTCC
2851	GGCTCGTGGC	TAAGGGATGT	TTGGGACTGG	ATATGCACGG	TGTTGACTGA
2901	CTTCAAGACC	TGGCTCCAGT	CCAAGCTCCT	GCCGCAGCTA	CCGGGAGTCC
2951	CTTTTTTCTC	GTGCCAACGC	GGGTACAAGG	GAGTCTGGCG	GGGAGACGGC
3001	ATCATGCAAA	CCACCTGCCC	ATGTGGAGCA	CAGATCACCG	GACATGTCAA
3051	AAACGGTTCC	ATGAGGATCG	TCGGGCCTAA	GACCTGCAGC	AACACGTGGC
3101	ATGGAACATT	CCCCATCAAC	GCATACACCA	CGGGCCCCTG	CACACCCTCT
3151	CCAGCGCCAA	ACTATTCTAG	GGCGCTGTGG	CGGGTGGCCG	CTGAGGAGTA
3201	CGTGGAGGTC	ACGCGGGTGG	GGGATTTCCA	CTACGTGACG	GGCATGACCA
3251	CTGACAACGT	AAAGTGCCCA	TGCCAGGTTC	CGGCTCCTGA	ATTCTTCACG
3301	GAGGTGGACG	GAGTGCGGTT	GCACAGGTAC	GCTCCGGCGT	GCAGGCCTCT
3351	CCTACGGGAG	GAGGTTACAT	TCCAGGTCGG	GCTCAACCAA	TACCTGGTTG

FIG. 2B

3401	GGTCACAGCT	ACCATGCGAG	CCCGAACCGG	ATGTAGCAGT	GCTCACTTCC
3451	ATGCTCACCG	ACCCCTCCCA	CATCACAGCA	GAAACGGCTA	AGCGTAGGTT
3501	GGCCAGGGGG	TCTCCCCCCT	CCTTGGCCAG	CTCTTCAGCT	AGCCAGTTGT
3551	CTGCGCCTTC	CTTGAAGGCG	ACATGCACTA	CCCACCATGT	CTCTCCGGAC
3601	GCTGACCTCA	TCGAGGCCAA	CCTCCTGTGG	CGGCAGGAGA	TGGGCGGGAA
3651	CATCACCCGC	GTGGAGTCGG	AGAACAAGGT	GGTAGTCCTG	GACTCTTTCG
3701	ACCCGCTTCG	AGCGGAGGAG	GATGAGAGGG	AAGTATCCGT	TCCGGCGGAG
3751	ATCCTGCGGA	AATCCAAGAA	GTTCCCCGCA	GCGATGCCCA	TCTGGGCGCG
3801	CCCGGATTAC	AACCCTCCAC	TGTTAGAGTC	CTGGAAGGAC	CCGGACTACG
3851	TCCCTCCGGT	GGTGCACGGG	TGCCCGTTGC	CACCTATCAA	GGCCCCTCCA
3901	ATACCACCTC	CACGGAGAAA	${\tt GAGGACGGTT}$	GTCCTAACAG	AGTCCTCCGT
3951	GTCTTCTGCC	TTAGCGGAGC	TCGCTACTAA	GACCTTCGGC	AGCTCCGAAT
4001	CATCGGCCGT	CGACAGCGGC	ACGGCGACCG	CCCTTCCTGA	CCAGGCCTCC
4051	GACGACGGTG	ACAAAGGATC	CGACGTTGAG	${\tt TCGTACTCCT}$	CCATGCCCCC
4101	CCTTGAGGGG	GAACCGGGGG	ACCCCGATCT	CAGTGACGGG	TCTTGGTCTA
4151	CCGTGAGCGA	GGAAGCTAGT	GAGGATGTCG	TCTGCTGCTC	AATGTCCTAC
4201	ACATGGACAG	GCGCCTTGAT	CACGCCATGC	GCTGCGGAGG	AAAGCAAGCT
4251	GCCCATCAAC	GCGTTGAGCA	ACTCTTTGCT	GCGCCACCAT	AACATGGTTT
4301	ATGCCACAAC	ATCTCGCAGC	GCAGGCCTGC	GGCAGAAGAA	GGTCACCTTT
4351	GACAGACTGC	AAGTCCTGGA	CGACCACTAC	CGGGACGTGC	TCAAGGAGAT
4401	GAAGGCGAAG	GCGTCCACAG	${\tt TTAAGGCTAA}$	ACTCCTATCC	GTAGAGGAAG
4451	CCTGCAAGCT	GACGCCCCCA	CATTCGGCCA	AATCCAAGTT	TGGCTATGGG
4501	GCAAAGGACG	TCCGGAACCT	ATCCAGCAAG	GCCGTTAACC	ACATCCACTC
4551	CGTGTGGAAG	GACTTGCTGG	AAGACACTGT	GACACCAATT	GACACCACCA
4601	TCATGGCAAA	AAATGAGGTT	TTCTGTGTCC	AACCAGAGAA	AGGAGGCCGT
4651	AAGCCAGCCC	GCCTTATCGT	ATTCCCAGAT	CTGGGAGTCC	GTGTATGCGA
4701	GAAGATGGCC	CTCTATGATG	TGGTCTCCAC	CCTTCCTCAG	GTCGTGATGG
4751	GCTCCTCATA	CGGATTCCAG	TACTCTCCTG	GGCAGCGAGT	CGAGTTCCTG
4801	${\tt GTGAATACCT}$	GGAAATCAAA	GAAAAACCCC	ATGGGCTTTT	CATATGACAC
4851	${\bf T}{\bf C}{\bf G}{\bf C}{\bf T}{\bf G}{\bf T}{\bf T}{\bf T}{\bf C}$	GACTCAACGG	TCACCGAGAA	CGACATCCGT	GTTGAGGAGT
4901	CAATTTACCA	ATGTTGTGAC	TTGGCCCCCG	AAGCCAGACA	GGCCATAAAA
4951	TCGCTCACAG	AGCGGCTTTA	TATCGGGGGT	CCTCTGACTA	ATTCAAAAGG
5001	GCAGAACTGC	GGTTATCGCC	GGTGCCGCGC	GAGCGGCGTG	CTGACGACTA
5051	GCTGCGGTAA	CACCCTCACA	TGTTACTTGA	AGGCCTCTGC	AGCCTGTCGA

FIG. 2C

5101	GCTGCGAAGC	TCCAGGACTG	CACGATGCTC	GTGAACGCCG	CCGGCCTTGT
5151	CGTTATCTGT	GAAAGCGCGG	GAACCCAAGA	GGACGCGGCG	AGCCTACGAG
5201	TCTTCACGGA	GGCTATGACT	AGGTACTCTG	CCCCCCCGG	GGACCCGCCC
5251	CAACCAGAAT	ACGACTTGGA	GCTGATAACA	TCATGTTCCT	CCAATGTGTC
5301	GGTCGCCCAC	GATGCATCAG	GCAAAAGGGT	GTACTACCTC	ACCCGTGATC
5351	CCACCACCCC	CCTCGCACGG	GCTGCGTGGG	AAACAGCTAG	ACACACTCCA
5401	GTTAACTCCT	GGCTAGGCAA	CATTATCATG	TATGCGCCCA	CTTTGTGGGC
5451	AAGGATGATT	CTGATGACTC	ACTTCTTCTC	CATCCTTCTA	GCACAGGAGC
5501	AACTTGAAAA	AGCCCTGGAC	TGCCAGATCT	ACGGGGCCTG	TTACTCCATT
5551	GAGCCACTTG	ACCTACCTCA	GATCATTGAA	CGACTCCATG	GCCTTAGCGC
5601	ATTTTCACTC	CATAGTTACT	CTCCAGGTGA	GATCAATAGG	GTGGCTTCAT
5651	GCCTCAGGAA	ACTTGGGGTA	CCACCCTTGC	GAGTCTGGAG	ACATCGGGCC
5701	AGGAGCGTCC	GCGCTAGGCT	ACTGTCCCAG	GGGGGGAGGG	CCGCCACTTG
5751	TGGCAAGTAC	CTCTTCAACT	GGGCAGTGAA	GACCAAACTC	AAACTCACTC
5801	CAATCCCGGC	TGCGTCCCAG	${\tt CTGGACTTGT}$	CCGGCTGGTT	CGTTGCTGGT
5851	TACAGCGGGG	GAGACATATA	TCACAGCCTG	TCTCGTGCCC	GACCCCGCTG
5901	GTTCATGCTG	TGCCTACTCC	TACTTTCTGT	AGGGGTAGGC	ATCTACCTGC
5951	TCCCCAACCG	ATAAA			

1	GCCACCATGG	CCCCCATCAC	CGCCTACAGC	CAGCAGACCC	GCGGCCTGCT
51	GGGCTGCATC	ATCACCAGCC	TGACCGGCCG	CGACAAGAAC	CAGGTGGAGG
101	GCGAGGTGCA	GGTGGTGAGC	ACCGCCACCC	AGAGCTTCCT	GGCCACCTGC
151	GTGAACGGCG	TGTGCTGGAC	CGTGTACCAC	GGCGCCGGCA	GCAAGACCCT
201	GGCCGGCCCC	AAGGGCCCCA	TCACCCAGAT	GTACACCAAC	GTGGACCAGG
251	ACCTGGTGGG	CTGGCAGGCC	CCCCCGGCG	CCCGCAGCCT	GACCCCCTGC
301	ACCTGCGGCA	GCAGCGACCT	GTACCTGGTG	ACCCGCCACG	CCGACGTGAT
351	CCCCGTGCGC	CGCCGCGCG	ACAGCCGCGG	CAGCCTGCTG	AGCCCCCGCC
401	CCGTGAGCTA	CCTGAAGGGC	AGCAGCGGCG	GCCCCTGCT	GTGCCCCAGC
451	GGCCACGCCG	TGGGCATCTT	CCGCGCCGCC	GTGTGCACCC	GCGGCGTGGC
501	CAAGGCCGTG	GACTTCGTGC	CCGTGGAGAG	CATGGAGACC	ACCATGCGCA
551	GCCCCGTGTT	CACCGACAAC	AGCAGCCCCC	CCGCCGTGCC	CCAGAGCTTC
601	CAGGTGGCCC	ACCTGCACGC	CCCCACCGGC	AGCGGCAAGA	GCACCAAGGT
651	GCCCGCCGCC	TACGCCGCCC	AGGGCTACAA	GGTGCTGGTG	CTGAACCCCA
701	GCGTGGCCGC	CACCCTGGGC	${\tt TTCGGCGCCT}$	ACATGAGCAA	GGCCCACGGC
751	ATCGACCCCA	ACATCCGCAC	CGGCGTGCGC	ACCATCACCA	CCGGCGCCCC
801	CGTGACCTAC	AGCACCTACG	GCAAGTTCCT	GGCCGACGGC	GGCTGCAGCG
851	GCGGCGCCTA	CGACATCATC	ATCTGCGACG	AGTGCCACAG	CACCGACAGC
901	ACCACCATCC	TGGGCATCGG	CACCGTGCTG	GACCAGGCCG	AGACCGCCGG
951	CGCCCGCCTG	GTGGTGCTGG	CCACCGCCAC	CCCCCCGGC	AGCGTGACCG
1001	TGCCCCACCC	CAACATCGAG	GAGGTGGCCC	${\tt TGAGCAACAC}$	CGGCGAGATC
1051	CCCTTCTACG	GCAAGGCCAT	CCCCATCGAG	GCCATCCGCG	GCGGCCGCCA
1101	CCTGATCTTC	TGCCACAGCA	AGAAGAAGTG	CGACGAGCTG	GCCGCCAAGC
1151	TGAGCGGCCT	GGGCATCAAC	GCCGTGGCCT	ACTACCGCGG	CCTGGACGTG
1201	AGCGTGATCC	CCACCATCGG	CGACGTGGTG	GTGGTGGCCA	CCGACGCCCT
1251	GATGACCGGC	TACACCGGCG	ACTTCGACAG	${\tt CGTGATCGAC}$	TGCAACACCT
1301	GCGTGACCCA	GACCGTGGAC	${\tt TTCAGCCTGG}$	ACCCCACCTT	CACCATCGAG
1351	ACCACCACCG	TGCCCCAGGA	CGCCGTGAGC	CGCAGCCAGC	GCCGCGGCCG
1401	CACCGGCCGC	GGCCGCCGCG	${\tt GCATCTACCG}$	${\tt CTTCGTGACC}$	CCCGGCGAGC
1451	GCCCCAGCGG	CATGTTCGAC	${\tt AGCAGCGTGC}$	TGTGCGAGTG	CTACGACGCC
1501	GGCTGCGCCT	GGTACGAGCT	GACCCCCGCC	GAGACCAGCG	TGCGCCTGCG
1551	CGCCTACCTG	AACACCCCCG	GCCTGCCCGT	GTGCCAGGAC	CACCTGGAGT
1601	TCTGGGAGAG	CGTGTTCACC	GGCCTGACCC	ACATCGACGC	CCACTTCCTG
1651	AGCCAGACCA	AGCAGGCCGG	CGACAACTTC	CCCTACCTGG	TGGCCTACCA

FIG. 3A

1701	GGCCACCGTG	TGCGCCCGCG	CCCAGGCCCC	CCCCCCAGC	TGGGACCAGA
1751	TGTGGAAGTG	CCTGATCCGC	CTGAAGCCCA	CCCTGCACGG	CCCCACCCC
1801	CTGCTGTACC	GCCTGGGCGC	CGTGCAGAAC	GAGGTGACCC	TGACCCACCC
1851	CATCACCAAG	TACATCATGG	CCTGCATGAG	CGCCGACCTG	GAGGTGGTGA
1901	CCAGCACCTG	GGTGCTGGTG	GGCGGCGTGC	TGGCCGCCCT	GGCCGCCTAC
1951	TGCCTGACCA	CCGGCAGCGT	GGTGATCGTG	GGCCGCATCA	TCCTGAGCGG
2001	CCGCCCCGCC	ATCGTGCCCG	ACCGCGAGTT	CCTGTACCAG	GAGTTCGACG
2051	AGATGGAGGA	GTGCGCCAGC	CACCTGCCCT	ACATCGAGCA	GGGCATGCAG
2101	CTGGCCGAGC	AGTTCAAGCA	GAAGGCCCTG	GGCCTGCTGC	AGACCGCCAC
2151	CAAGCAGGCC	GAGGCCGCCG	CCCCCGTGGT	GGAGAGCAAG	TGGCGCGCCC
2201	TGGAGACCTT	CTGGGCCAAG	CACATGTGGA	ACTTCATCAG	CGGCATCCAG
2251	TACCTGGCCG	GCCTGAGCAC	CCTGCCCGGC	AACCCCGCCA	TCGCCAGCCT
2301	GATGGCCTTC	ACCGCCAGCA	TCACCAGCCC	CCTGACCACC	CAGAGCACCC
2351	TGCTGTTCAA	CATCCTGGGC	GGCTGGGTGG	CCGCCCAGCT	GGCCCCCCC
2401	AGCGCCGCCA	GCGCCTTCGT	GGGCGCCGGC	ATCGCCGGCG	CCGCCGTGGG
2451	CAGCATCGGC	CTGGGCAAGG	TGCTGGTGGA	CATCCTGGCC	GGCTACGGCG
2501	CCGGCGTGGC	CGGCGCCCTG	GTGGCCTTCA	AGGTGATGAG	CGGCGAGATG
2551	CCCAGCACCG	AGGACCTGGT	GAACCTGCTG	CCCGCCATCC	TGAGCCCCGG
2601	CGCCCTGGTG	GTGGGCGTGG	TGTGCGCCGC	CATCCTGCGC	CGCCACGTGG
2651	GCCCCGGCGA	GGGCGCCGTG	CAGTGGATGA	ACCGCCTGAT	CGCCTTCGCC
2701	AGCCGCGGCA	ACCACGTGAG	CCCCACCCAC	TACGTGCCCG	AGAGCGACGC
2751	CGCCGCCCGC	GTGACCCAGA	TCCTGAGCAG	CCTGACCATC	ACCCAGCTGC
2801	TGAAGCGCCT	GCACCAGTGG	ATCAACGAGG	ACTGCAGCAC	CCCCTGCAGC
2851	GGCAGCTGGC	TGCGCGACGT	GTGGGACTGG	ATCTGCACCG	TGCTGACCGA
2901	CTTCAAGACC	TGGCTGCAGA	GCAAGCTGCT	GCCCCAGCTG	CCCGGCGTGC
2951	CCTTCTTCAG	CTGCCAGCGC	GGCTACAAGG	GCGTGTGGCG	CGGCGACGGC
3001	ATCATGCAGA	CCACCTGCCC	CTGCGGCGCC	CAGATCACCG	GCCACGTGAA
3051	GAACGGCAGC	ATGCGCATCG	TGGGCCCCAA	GACCTGCAGC	AACACCTGGC
3101	ACGGCACCTT	CCCCATCAAC	GCCTACACCA	CCGGCCCCTG	CACCCCAGC
3151	CCCGCCCCCA	ACTACAGCCG	CGCCCTGTGG	CGCGTGGCCG	CCGAGGAGTA
3201	CGTGGAGGTG	ACCCGCGTGG	GCGACTTCCA	CTACGTGACC	GGCATGACCA
3251	CCGACAACGT	GAAGTGCCCC	TGCCAGGTGC	CCGCCCCGA	GTTCTTCACC
3301	GAGGTGGACG	GCGTGCGCCT	GCACCGCTAC	GCCCCCGCCT	GCCGCCCCCT
3351	GCTGCGCGAG	GAGGTGACCT	TCCAGGTGGG	CCTGAACCAG	TACCTGGTGG

3401	GCAGCCAGCT	GCCCTGCGAG	CCCGAGCCCG	ACGTGGCCGT	GCTGACCAGC
3451	ATGCTGACCG	ACCCCAGCCA	CATCACCGCC	GAGACCGCCA	AGCGCCGCCT
3501	GGCCCGCGGC	AGCCCCCCA	GCCTGGCCAG	CAGCAGCGCC	AGCCAGCTGA
3551	GCGCCCCAG	CCTGAAGGCC	ACCTGCACCA	CCCACCACGT	GAGCCCCGAC
3601	GCCGACCTGA	TCGAGGCCAA	CCTGCTGTGG	CGCCAGGAGA	TGGGCGGCAA
3651	CATCACCCGC	GTGGAGAGCG	AGAACAAGGT	${\tt GGTGGTGCTG}$	GACAGCTTCG
3701	ACCCCTGCG	CGCCGAGGAG	GACGAGCGCG	${\tt AGGTGAGCGT}$	GCCCGCCGAG
3751	ATCCTGCGCA	AGAGCAAGAA	GTTCCCCGCC	GCCATGCCCA	TCTGGGCCCG
3801	CCCCGACTAC	AACCCCCCC	TGCTGGAGAG	CTGGAAGGAC	CCCGACTACG
3851	TGCCCCCGT	GGTGCACGGC	TGCCCCCTGC	CCCCCATCAA	GGCCCCCCC
3901	ATCCCCCCC	CCCGCCGCAA	GCGCACCGTG	GTGCTGACCG	AGAGCAGCGT
3951	GAGCAGCGCC	CTGGCCGAGC	TGGCCACCAA	GACCTTCGGC	AGCAGCGAGA
4001	GCAGCGCCGT	GGACAGCGGC	ACCGCCACCG	CCCTGCCCGA	CCAGGCCAGC
4051	GACGACGGCG	ACAAGGGCAG	CGACGTGGAG	AGCTACAGCA	GCATGCCCCC
4101	CCTGGAGGC	GAGCCCGGCG	ACCCCGACCT	GAGCGACGGC	AGCTGGAGCA
4151	CCGTGAGCGA	GGAGGCCAGC	GAGGACGTGG	TGTGCTGCAG	CATGAGCTAC
4201	ACCTGGACCG	GCGCCCTGAT	CACCCCTGC	GCCGCCGAGG	AGAGCAAGCT
4251	GCCCATCAAC	GCCCTGAGCA	ACAGCCTGCT	GCGCCACCAC	AACATGGTGT
4301	ACGCCACCAC	CAGCCGCAGC	GCCGGCCTGC	GCCAGAAGAA	GGTGACCTTC
4351	GACCGCCTGC	AGGTGCTGGA	CGACCACTAC	CGCGACGTGC	TGAAGGAGAT
4401	GAAGGCCAAG	GCCAGCACCG	TGAAGGCCAA	GCTGCTGAGC	GTGGAGGAGG
4451	CCTGCAAGCT	GACCCCCCC	CACAGCGCCA	AGAGCAAGTT	CGGCTACGGC
4501	GCCAAGGACG	TGCGCAACCT	GAGCAGCAAG	GCCGTGAACC	ACATCCACAG
4551	CGTGTGGAAG	GACCTGCTGG	AGGACACCGT	GACCCCCATC	GACACCACCA
4601	TCATGGCCAA	GAACGAGGTG	TTCTGCGTGC	AGCCCGAGAA	GGGCGGCCGC
4651	AAGCCCGCCC	GCCTGATCGT	GTTCCCCGAC	CTGGGCGTGC	GCGTGTGCGA
4701	GAAGATGGCC	CTGTACGACG	TGGTGAGCAC	CCTGCCCCAG	GTGGTGATGG
4751	GCAGCAGCTA	CGGCTTCCAG	TACAGCCCCG	GCCAGCGCGT	GGAGTTCCTG
4801	GTGAACACCT	GGAAGAGCAA	GAAGAACCCC	ATGGGCTTCA	GCTACGACAC
4851	CCGCTGCTTC	GACAGCACCG	TGACCGAGAA	CGACATCCGC	GTGGAGGAGA
4901	GCATCTACCA	GTGCTGCGAC	CTGGCCCCCG	AGGCCCGCCA	GGCCATCAAG
4951	AGCCTGACCG	AGCGCCTGTA	CATCGGCGGC	CCCCTGACCA	ACAGCAAGGG
5001	CCAGAACTGC	GGCTACCGCC	GCTGCCGCGC	CAGCGGCGTG	CTGACCACCA
5051	GCTGCGGCAA	CACCCTGACC	TGCTACCTGA	AGGCCAGCGC	CGCCTGCCGC

FIG. 3C

5101	GCCGCCAAGC	TGCAGGACTG	CACCATGCTG	GTGAACGCCG	CCGGCCTGGT
5151	GGTGATCTGC	GAGAGCGCCG	GCACCCAGGA	GGACGCCGCC	AGCCTGCGCG
5201	TGTTCACCGA	GGCCATGACC	CGCTACAGCG	CCCCCCCGG	CGACCCCCC
5251	CAGCCCGAGT	ACGACCTGGA	GCTGATCACC	AGCTGCAGCA	GCAACGTGAG
5301	CGTGGCCCAC	GACGCCAGCG	GCAAGCGCGT	GTACTACCTG	ACCCGCGACC
5351	CCACCACCCC	CCTGGCCCGC	GCCGCCTGGG	AGACCGCCCG	CCACACCCCC
5401	GTGAACAGCT	GGCTGGGCAA	CATCATCATG	TACGCCCCCA	CCCTGTGGGC
5451	CCGCATGATC	CTGATGACCC	ACTTCTTCAG	CATCCTGCTG	GCCCAGGAGC
5501	AGCTGGAGAA	GGCCCTGGAC	TGCCAGATCT	ACGGCGCCTG	CTACAGCATC
5551	GAGCCCCTGG	ACCTGCCCCA	GATCATCGAG	CGCCTGCACG	GCCTGAGCGC
5601	CTTCAGCCTG	CACAGCTACA	GCCCCGGCGA	GATCAACCGC	GTGGCCAGCT
5651	GCCTGCGCAA	GCTGGGCGTG	CCCCCCCTGC	GCGTGTGGCG	CCACCGCGCC
5701	CGCAGCGTGC	GCGCCCGCCT	GCTGAGCCAG	GGCGGCCGCG	CCGCCACCTG
5751	CGGCAAGTAC	CTGTTCAACT	GGGCCGTGAA	GACCAAGCTG	AAGCTGACCC
5801	CCATCCCCGC	CGCCAGCCAG	CTGGACCTGA	GCGGCTGGTT	CGTGGCCGGC
5851	TACAGCGGCG	GCGACATCTA	CCACAGCCTG	AGCCGCGCCC	GCCCCGCTG
5901	GTTCATGCTG	TGCCTGCTGC	TGCTGAGCGT	GGGCGTGGGC	ATCTACCTGC
5951	TGCCCAACCG	CTAAA			

FIG. 4A

1	catcatcaat	aatatacctt	attttggatt	gaagccaata	tgataatgag	ggggtggagt
61	ttgtgacgtg	gcgcggggcg	tgggaacggg	gcgggtgacg	tagtagtgtg	gcggaagtgt
121	gatgttgcaa	gtgtggcgga	acacatgtaa	gcgacggatg	tggcaaaagt	gacgtttttg
181	gtgtgcgccg	gtgtacacag	gaagtgacaa	ttttcgcgcg	gttttaggcg	gatgttgtag
241	taaatttggg	cgtaaccgag	taagatttgg	ccattttcgc	gggaaaactg	aataagagga
301	agtgaaatct	gaataatttt	gtgttactca	tagcgcgtaa	tatttgtcta	gggccgcggg
361	gactttgacc	gtttacgtgg	agactcgccc	aggtgttttt	ctcaggtgtt	ttccgcgttc
421	cgggtcaaag	ttggcgtttt	attattatag	gcggccgcga	tccattgcat	acgttgtatc
481	catatcataa	tatgtacatt	tatattggct	catgtccaac	attaccgcca	tgttgacatt
541	gattattgac	tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata
601	tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc
661	cccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggacttcc
721	attgacgtca	atgggtggag	tatttacggt	aaactgccca	cttggcagta	catcaagtgt
78 1	atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt
841	atgcccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca
901	tcgctattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg
961	actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc
1021	aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg
1081	gtaggcgtgt	acggtgggag	gtctatataa	gcagagctcg	tttagtgaac	cgtcagatcg
1141	cctggagacg	ccatccacgc	tgttttgacc	tccatagaag	acaccgggac	cgatccagcc
1201	teegeggeeg	ggaacggtgc	attggaacgc	ggattccccg	tgccaagagt	gagatetgee
1261	accatggcgc	ccatcacggc	ctactcccaa	cagacgcggg	gcctacttgg	ttgcatcatc
1321	actagcctta	caggccggga	caagaaccag	gtcgagggag	aggttcaggt	ggtttccacc
1381	gcaacacaat	ccttcctggc	gacctgcgtc	aacggcgtgt	gttggaccgt	ttaccatggt
1441	gctggctcaa	agaccttagc	cggcccaaag	gggccaatca	cccagatgta	cactaatgtg
1501	gaccaggacc	tcgtcggctg	gcaggcgccc	cccggggcgc	gttccttgac	accatgcacc
1561	tgtggcagct	cagaccttta	cttggtcacg	agacatgctg	acgtcattcc	ggtgcgccgg
1621	cggggcgaca	gtaggggag	cctgctctcc	cccaggcctg	tctcctactt	gaagggctct
1681	tcgggtggtc	cactgctctg	cccttcgggg	cacgctgtgg	gcatcttccg	ggctgccgta
1741	tgcacccggg	gggttgcgaa	ggcggtggac	tttgtgcccg	tagagtccat	ggaaactact
1801	atgcggtctc	cggtcttcac	ggacaactca	teceeeegg	ccgtaccgca	gtcatttcaa
1861	gtggcccacc	tacacgctcc	cactggcagc	ggcaagagta	ctaaagtgcc	ggctgcatat
1921	gcagcccaag	ggtacaaggt	gctcgtcctc	aatccgtccg	ttgccgctac	cttagggttt
1981	ggggcgtata	tgtctaaggc	acacggtatt	gaccccaaca	tcagaactgg	ggtaaggacc
2041	attaccacag	gcgcccccgt	cacatactct	acctatggca	agtttcttgc	cgatggtggt
2101	tgctctgggg	gcgcttatga	catcataata	tgtgatgagt	gccattcaac	tgactcgact
2161	acaatcttgg	gcatcggcac	agtcctgg ac	caagcggaga	cggctggagc	geggettgte
2221	gtgctcgcca	ccgctacgcc	teegggateg	gtcaccgtgc	cacacccaaa	catcgaggag
2281	gtggccctgt	ctaatactgg	agagatecee	ttctatggca	aagccatccc	cattgaagcc
2341	atcagggggg	gaaggcatct	cattttctgt	cattccaaga	agaagtgcga	cgagetegee
2401	gcaaagctgt	caggcctcgg	aatcaacgct	gtggcgtatt	accgggggct	egacgcgccc
2461	gtcataccaa	ctatcggaga	cgtcgttgtc	gtggcaacag	acgetetgat	gacgggctat
2521	acgggcgact	ttgactcagt	gatcgactgt	aacacatgtg	tcacccagac	agcegaette
2581	agcttggatc	ccaccttcac	cattgagacg	acgaccgtgc	ctcaagacgc	agtgtegege
2641	tcgcagcggc	ggggtaggac	tggcaggggt	aggagaggca	tctacaggtt	tgtgacteeg
2701	ggagaacggc	cctcgggcat	gttcgattcc	teggteetgt	gtgagtgcta	tgacgcgggc
2761	tgtgcttggt	acgageteae	ccccgccgag	acctcggtta	ggttgcgggc	ctacctgaac
2821	acaccagggt	tgcccgtttg	ccaggaccac	ctggagttct	gggagagtgt	cetcacagge
2881	ctcacccaca	tagatgcaca	cttcttgtcc	cagaccaagc	aggcaggaga	caacttcccc
2941	tacctggtag	cataccaage	cacggtgtgc	gccagggctc	aggececace	ccatcatgg
3001	gatcaaatgt	ggaagtgtct	catacggctg	aaacctacgc	tgcacgggcc	aacacccttg
3061	ctgtacaggc	tgggagccgt	ccaaaatgag	gtcaccctca	cccacccat	aaccaaatac
3121	atcatggcat	gcatgtcggc	tgacctggag	gtcgtcacta	gcacctgggt	getggtggge
3181	ggagtccttg	cagctctggc	cgcgtattgc	ctgacaacag	gcagtgtggt	cattgtgggt
3241	aggattatct	tgtccgggag	gccggctatt	gttcccgaca	gggagtttct	ctaccaggag

2251						
	gccgagcaat					
	gctgctgctc					
	atgtggaatt					
	cccgcaatag					
	agtaccctcc					
	gccgcttcgg					
3721	gggaaggtgc	ttgtggacat	tctggcgggt	tatggagcag	gagtggccgg	cgcgctcgtg
3781	gccttcaagg	tcatgagcgg	cgagatgccc	tccaccgagg	acctggtcaa	tctacttcct
3841	gccatcctct	ctcctggcgc	cctggtcgtc	ggggtcgtgt	gtgcagcaat	actgcgtcga
3901	cacgtgggtc	cgggagaggg	ggctgtgcag	tggatgaacc	ggctgatagc	gttcgcctcg
3961	cggggtaatc	atgtttcccc	cacgcactat	gtgcctgaga	gcgacgccgc	agcgcgtgtt
4021	actcagatcc	tctccagcct	taccatcact	cagctgctga	aaaggctcca	ccagtggatt
4081	aatgaagact	gctccacacc	gtgttccggc	tcgtggctaa	gggatgtttg	ggactggata
4141	tgcacggtgt	tgactgactt	caagacctgg	ctccagtcca	agctcctgcc	gcagctaccg
4201	ggagtccctt	ttttctcgtg	ccaacgcggg	tacaagggag	tctggcgggg	agacggcatc
	atgcaaacca					
4321	aggatcgtcg	ggcctaagac	ctgcagcaac	acgtggcatg	gaacattccc	catcaacgca
4381	tacaccacgg	gcccctgcac	accctctcca	gcgccaaact	attctagggc	gctgtggcgg
4441	gtggccgctg	aggagtacgt	ggaggtcacg	cgggtggggg	atttccacta	cgtgacgggc
	atgaccactg					
4561	gtggacggag	tgcggttgca	caggtacgct	ccggcgtgca	ggcctctcct	acgggaggag
	gttacattcc					
	gaaccggatg					
4741	acggctaagc	gtaggttggc	cagggggtct	ccccctcct	tggccagctc	ttcagctagc
	cagttgtctg					
4861	gacctcatcg	aggccaacct	cctgtggcgg	caggagatgg	gcgggaacat	cacccgcgtg
4921	gagtcggaga	acaaggtggt	agtcctggac	tctttcgacc	cgcttcgagc	ggaggaggat
4981	gagagggaag	tatccgttcc	ggcggagatc	ctgcggaaat	ccaagaagtt	ccccgcagcg
5041	atgcccatct	gggcgcgccc	ggattacaac	cctccactgt	tagagtcctg	gaaggacccg
5101	gactacgtcc	ctccggtggt	gcacgggtgc	ccgttgccac	ctatcaaggc	ccctccaata
	ccacctccac					
5221	gcggagctcg	ctactaagac	cttcggcagc	tccgaatcat	cggccgtcga	cagcggcacg
	gcgaccgccc					
5341	tactcctcca	tgcccccct	tgagggggaa	ccgggggacc	ccgatctcag	tgacgggtct
5401	tggtctaccg	tgagcgagga	agctagtgag	gatgtcgtct	gctgctcaat	gtcctacaca
5461	tggacaggcg	ccttgatcac	gccatgcgct	gcggaggaaa	gcaagctgcc	catcaacgcg
	ttgagcaact					
5581	ggcctgcggc	agaagaaggt	cacctttgac	agactgcaag	tcctggacga	ccactaccgg
5641	gacgtgctca	aggagatgaa	ggcgaaggcg	tccacagtta	aggctaaact	cctatccgta
	gaggaagcct					
	aaggacgtcc					
	ttgctggaag					
5881	tgtgtccaac	cagagaaagg	aggccgtaag	ccagcccgcc	ttatcgtatt	cccagatctg
5941	ggagtccgtg	tatgcgagaa	gatggccctc	tatgatgtgg	tctccaccct	tcctcaggtc
	gtgatgggct					
	aatacctgga					
	tcaacggtca					
	gcccccgaag					
	ctgactaatt					
	acgactagct					
	gcgaagctcc					
	agcgcgggaa					
	tactctgccc					
	tgttcctcca					
	cgtgatccca		-			
						-

6661	aactcctggc	taggcaacat	tatcatgtat	gcgcccactt	tgtgggcaag	gatgattctg
6721	atgactcact	tettetecat	ccttctagca	caggagcaac	ttgaaaaagc	cctggactgc
6781	cagatctacg	gggcctgtta	ctccattgag	ccacttgacc	tacctcagat	cattgaacga
6841	ctccatggcc	ttagcgcatt	ttcactccat	agttactctc	caggtgagat	caatagggtg
6901	gcttcatgcc	tcaggaaact	tggggtacca	cccttgcgag	tctggagaca	tegggeeagg
6961	agcgtccgcg	ctaggctact	gtcccagggg	gggagggccg	ccacttgtgg	caagtacctc
7021	ttcaactggg	cagtgaagac	caaactcaaa	ctcactccaa	tcccggctgc	gtcccagctg
7081	gacttgtccg	gctggttcgt	tgctggttac	agcgggggag	acatatatca	cagcctgtct
7141	cgtgcccgac	cccgctggtt	catgctgtgc	ctactcctac	tttctgtagg	ggtaggcatc
7201	tacctgctcc	ccaaccggta	aatctagagc	tgtgccttct	agttgccagc	catctgttgt
7261	ttgcccctcc	cccgtgcctt	ccttgaccct	ggaaggtgcc	actcccactg	teettteeta
7321	ataaaatgag	gaaattgcat	cgcattgtct	gagtaggtgt	cattctattc	tggggggtgg
7381	ggtggggcag	gacagcaagg	gggaggattg	ggaagacaat	agcaggcatg	ctggggatgc
7441	ggtgggctct	atggccgatc	ggcgcgccgt	actgaaatgt	gtgggcgtgg	cttaagggtg
7501	ggaaagaata	tataaggtgg	gggtcttatg	tagttttgta	tctgttttgc	agcagccgcc
7561	gccgccatga	gcaccaactc	gtttgatgga	agcattgtga	gctcatattt	gacaacgcgc
7621	atgcccccat	gggccggggt	gcgtcagaat	gtgatgggct	ccagcattga	tggtcgccc
7681	gtcctgcccg	caaactctac	taccttgacc	tacgagaccg	tgtctggaac	gccgttggag
7741	actgcagcct	ccgccgccgc	ttcagccgct	gcagccaccg	cccgcgggat	tgtgactgac
7801	tttgctttcc	tgagcccgct	tgcaagcagt	gcagcttccc	gttcatccgc	ccgcgatgac
7861	aagttgacgg	ctcttttggc	acaattggat	tctttgaccc	gggaacttaa	tgtcgtttct
7921	cagcagctgt	tggatctgcg	ccagcaggtt	tctgccctga	aggetteete	ccctcccaat
7981	gcggtttaaa	acataaataa	aaaaccagac	tctgtttgga	tttggatcaa	gcaagtgtct
8041	tgctgtcttt	atttaggggt	tttgcgcgcg	cggtaggccc	gggaccagcg	gtctcggtcg
8101	ttgagggtcc	tgtgtatttt	ttccaggacg	tggtaaaggt	gactctggat	gttcagatac
8161	atgggcataa	gcccgtctct	ggggtggagg	tagcaccact	gcagagcttc	atgctgcggg
8221	gtggtgttgt	agatgatcca	gtcgtagcag	gagcgctggg	cgtggtgcct	aaaaatgtct
8281	ttcagtagca	agctgattgc	caggggcagg	cccttggtgt	aagtgtttac	aaagcggtta
8341	agctgggatg	ggtgcatacg	tggggatatg	agatgcatct	tggactgtat	ttttaggttg
8401	gctatgttcc	cagccatatc	cctccgggga	ttcatgttgt	gcagaaccac	cagcacagtg
8461	tatccggtgc	acttgggaaa	tttgtcatgt	agcttagaag	gaaatgcgtg	gaagaacttg
8521	gagacgccct	tgtgacctcc	aagattttcc	atgcattcgt	ccataatgat	ggcaatgggc
8581	ccacgggcgg	cggcctgggc	gaagatattt	ctgggatcac	taacgtcata	gttgtgttcc
8641	aggatgagat	cgtcataggc	catttttaca	aagcgcgggc	ggagggtgcc	agactgcggt
8701	ataatggttc	catccggccc	aggggcgtag	ttaccctcac	agatttgcat	ttcccacgct
8761	ttgagttcag	atggggggat	catgtctacc	tgcggggcga	tgaagaaaac	ggtttccggg
8821	gtaggggaga	tcagctggga	agaaagcagg	ttcctgagca	gctgcgactt	accgcagccg
8881	gtgggcccgt	aaatcacacc	tattaccggc	tgcaactggt	agttaagaga	gctgcagctg
8941	ccgtcatccc	tgagcagggg	ggccacttcg	ttaagcatgt	ccctgactcg	catgttttcc
9001	ctgaccaaat	ccgccagaag	gegetegeeg	cccagcgata	gcagttcttg	caaggaagca
9061	aagtttttca	acggtttgag	accgtccgcc	gtaggcatgc	ttttgagcgt	ttgaccaagc
9121	agttccaggc	ggtcccacag	ctcggtcacc	tgctctacgg	catctcgatc	cagcatatet
9181	cctcgtttcg	cgggttgggg	cggctttcgc	tgtacggcag	tagtcggtgc	tcgtccagac
9241	gggccagggt	catgtctttc	cacgggcgca	gggtcctcgt	cagcgtagtc	tgggtcacgg
9301	tgaaggggtg	cgctccgggc	tgcgcgctgg	ccagggtgcg	cttgaggctg	gtcctgctgg
9361	tgctgaagcg	ctgccggtct	tcgccctgcg	cgtcggccag	gtagcatttg	accatggtgt
9421	catagtccag	cccctccgcg	gcgtggccct	tggcgcgcag	cttgcccttg	gaggaggcgc
9481	cgcacgaggg	gcagtgcaga	cttttgaggg	cgtagagctt	gggcgcgaga	aataccgatt
9541	ccggggagta	ggcatccgcg	ccgcaggccc	cgcagacggt	ctcgcattcc	acgagccagg
9601	tgagctctgg	ccgttcgggg	tcaaaaacca	ggtttccccc	atgctttttg	atgcgtttct
9661	tacctctggt	ttccatgagc	cggtgtccac	gctcggtgac	gaaaaggctg	teegtgteec
9721	cgtatacaga	cttgagaggc	ctgtcctcga	gcggtgttcc	gcggtcctcc	tcgtatagaa
9781	actcggacca	ctctgagacg	aaggctcgcg	tccaggccag	cacgaaggag	gctaagtggg
9841	aggggtagcg	gtcgttgtcc	actagggggt	ccactcgctc	cagggtgtga	agacacatgt
9901	cgccctcttc	ggcatcaagg	aaggtgattg	gtttataggt	gtaggccacg	tgaccgggtg

9961	ttcctgaagg	ggggctataa	aagggggtgg	gggcgcgttc	gtcctcactc	tcttccgcat
		gagggccagc				
10081	ctgcgctaag	attgtcagtt	tccaaaaacg	aggaggattt	gatattcacc	tggcccgcgg
		gagggtggcc				
		aaacgacccg				
		gtcgcgatcg				
		ccgccattcg				
		gttgtgcagg				
		ccagcagagg				
		gtccgggggg				
		tatcttgcat				
10621	gcgcgcgctc	gtatgggttg	agtgggggac	cccatggcat	ggggtgggtg	agcgcggagg
		gcaaatgtcg				
		tccaccgcgg				
10801	cgaggaggtc	gggaccgagg	ttgctacggg	cgggctgctc	tgctcggaag	actatctgcc
10861	tgaagatggc	atgtgagttg	gatgatatgg	ttggacgctg	gaagacgttg	aagctggcgt
10921	ctgtgagacc	taccgcgtca	cgcacgaagg	aggcgtagga	gtcgcgcagc	ttgttgacca
		gacctgcacg				
		tcccttttt				
11101	tccagtactc	ttggatcgga	aacccgtcgg	cctccgaacg	gtaagagcct	agcatgtaga
11161	actggttgac	ggcctggtag	gcgcagcatc	ccttttctac	gggtagcgcg	tatgcctgcg
11221	cggccttccg	gagcgaggtg	tgggtgagcg	caaaggtgtc	cctaaccatg	actttgaggt
11281	actggtattt	gaagtcagtg	tcgtcgcatc	cgccctgctc	ccagagcaaa	aagtccgtgc
11341	gctttttgga	acgcgggttt	ggcagggcga	aggtgacatc	gttgaagagt	atctttcccg
11401	cgcgaggcat	aaagttgcgt	gtgatgcgga	agggtcccgg	cacctcggaa	cggttgttaa
11461	ttacctgggc	ggcgagcacg	atctcgtcaa	agccgttgat	gttgtggccc	acaatgtaaa
11521	gttccaagaa	gcgcgggatg	cccttgatgg	aaggcaattt	tttaagttcc	tcgtaggtga
11581	gctcttcagg	ggagctgagc	ccgtgctctg	aaagggccca	gtctgcaaga	tgagggttgg
11641	aagcgacgaa	tgagctccac	aggtcacggg	ccattagcat	ttgcaggtgg	tcgcgaaagg
11701	tcctaaactg	gcgacctatg	gccattttt	ctggggtgat	gcagtagaag	gtaagcgggt
11761	cttgttccca	gcggtcccat	ccaaggtccg	cggctaggtc	tcgcgcggcg	gtcactagag
11821	gctcatctcc	gccgaacttc	atgaccagca	tgaagggcac	gagctgcttc	ccaaaggccc
11881	ccatccaagt	ataggtctct	acatcgtagg	tgacaaagag	acgctcggtg	cgaggatgcg
11941	agccgatcgg	gaagaactgg	atctcccgcc	accagttgga	ggagtggctg	ttgatgtggt
12001	gaaagtagaa	gtccctgcga	cgggccgaac	actcgtgctg	gcttttgtaa	aaacgtgcgc
		gcggtgcacg				
12121	caaggaagca	gagtgggaat	ttgagcccct	cgcctggcgg	gtttggctgg	tggtcttcta
12181	cttcggctgc	ttgtccttga	ccgtctggct	gctcgagggg	agttacggtg	gatcggacca
12241	ccacgccgcg	cgagcccaaa	gtccagatgt	ccgcgcgcgg	cggtcggagc	ttgatgacaa
		atgggagctg				
		gtttacctcg				
		gggctggttg				
		ggtaccgcgc				
		tgacgcgggc				
		ggcacgtcgg				
		gcgacgacgc				
		gtgagcttga				
		tggcgcaaaa				
		tgctcgatct				
		tcgttggaga				
		cggctgtaga				
		agctccacgt			-	
		gtggtggcgg				
		ttgatatccc				
13201	ggcgaagttg	aaaaactggg	agttgcgcgc	cgacacggtt	aactcctcct	ccagaagacg

13261	gatgagctcg	gcgacagtgt	cgcgcacctc	gcgctcaaag	gctacagggg	cetettette
13321	ttcttcaatc	tcctcttcca	taagggcctc	cccttcttct	tettetggeg	geggegggg
13381	aggggggaca	cggcggcgac	gacggcgcac	cgggaggcgg	tcgacaaagc	gctcgatcat
13441	ctcccgcgg	cgacggcgca	tggtctcggt	gacggcgcgg	ccgttctcgc	gggggcgcag
13501	ttggaagacg	ccgcccgtca	tgtcccggtt	atgggttggc	ggggggctgc	cgrgcggcag
13561	ggatacggcg	ctaacgatgc	atctcaacaa	ttgttgtgta	ggtactccgc	caccgaggga
13621	cctgagcgag	tccgcatcga	ccggatcgga	aaacctctcg	agaaaggcgt	ctaaccagtc
13681	acagtcgcaa	ggtaggctga	gcaccgtggc	gggcggcagc	gggcggcggc	cggggttgtt
13741	tctggcggag	gtgctgctga	tgatgtaatt	aaagtaggcg	gtcttgagac	ggcggatggt
13801	cgacagaagc	accatgtcct	tgggtccggc	ctgctgaatg	cgcaggcggt	eggeeatgee
13861	ccaggcttcg	ttttgacatc	ggcgcaggtc	tttgtagtag	tettgeatga	gcctttctac
13921	cggcacttct	tetteteett	cctcttgtcc	tgcatctctt	gcatctatcg	ctgcggcggc
13981	ggcggagttt	ggccgtaggt	ggcgccctct	tcctcccatg	cgtgtgaccc	cgaagcccct
14041	catcggctga	agcagggcca	ggtcggcgac	aacgcgctcg	gctaatatgg	cctgctgcac
14101	ctgcgtgagg	gtagactgga	agtcgtccat	gtccacaaag	cggtggtatg	cgcccgtgtt
14161	gatggtgtaa	gtgcagttgg	ccataacgga	ccagttaacg	gtctggtgac	ccggctgcga
14221	gagctcggtg	tacctgagac	gcgagtaagc	ccttgagtca	aagacgtagt	cgttgcaagt
14281	ccgcaccagg	tactggtatc	ccaccaaaaa	gtgcggcggc	ggctggcggt	agaggggcca
14341	gcgtagggtg	gccggggctc	cgggggcgag	gtcttccaac	ataaggcgat	gatatccgta
14401	gatgtacctg	gacatccagg	tgatgccggc	ggcggtggtg	gaggcgcgcg	gaaagtcacg
14461	gacgcggttc	cagatgttgc	gcagcggcaa	aaagtgctcc	atggtcggga	cgctctggcc
14521	ggtcaggcgc	gcgcagtcgt	tgacgctcta	gaccgtgcaa	aaggagagcc	tgtaagcggg
14581	cactcttccg	tggtctggtg	gataaattcg	caagggtatc	atggcggacg	accggggttc
14641	gaaccccgga	tccggccgtc	cgccgtgatc	catgcggtta	ccgcccgcgt	gtcgaaccca
14701	ggtgtgcgac	gtcagacaac	gggggagcgc	tccttttggc	ttccttccag	gcgcggcgga
14761	tgctgcgcta	gcttttttgg	ccactggccg	cgcgcggcgt	aagcggttag	gctggaaagc
14821	gaaagcatta	agtggctcgc	tccctgtagc	cggagggtta	ttttccaagg	gttgagtcgc
14881	gggacccccg	gttcgagtct	cgggccggcc	ggactgcggc	gaacgggggt	ttgcctcccc
14941	gtcatgcaag	accccgcttg	caaattcctc	cggaaacagg	gacgagcccc	ttttttgctt
15001	ttcccagatg	catccggtgc	tgcggcagat	gcgcccccct	cctcagcagc	ggcaagagca
15061	agagcagcgg	cagacatgca	gggcaccctc	cccttctcct	accgcgtcag	gaggggcaac
15121	atccgcggct	gacgcggcgg	cagatggtga	ttacgaaccc	ccgcggcgcc	ggacccggca
15181	ctacttggac	ttggaggagg	gcgagggcct	ggcgcggcta	ggagcgccct	ctcctgagcg
15241	acacccaagg	gtgcagctga	agcgtgacac	gcgcgaggcg	tacgtgccgc	ggcagaacct
15301	gtttcgcgac	cgcgagggag	aggagcccga	ggagatgcgg	gatcgaaagt	tccatgcagg
15361	gcgcgagttg	caacataacc	tgaaccgcga	gcggttgctg	cgcgaggagg	actttgagcc
15421	cgacgcgcgg	accgggatta	gtcccgcgcg	cgcacacgtg	geggeegeeg	acctggtaac
15481	cgcgtacgag	cagacggtga	accaggagat	taactttcaa	aaaagcttta	acaaccacgt
15541	gcgcacgctt	atagegegeg	aggaggtggc	tataggactg	atgcatctgt	gggactttgt
15601	aagegegetg	gagcaaaacc	caaatagcaa	gccgctcatg	gcgcagctgt	tccttatagt
15661	gcagcacagc	agggacaacg	aggcattcag	ggatgcgctg	ctaaacatag	tagagcccga
15721	gggccgctgg	ctactcaatt	tgataaacat	tctgcagagc	atagtggtgc	aggagcgcag
15781	cttgagcctg	gctgacaagg	tggccgccat	taactattcc	atgctcagtc	tgggcaagtt
15841	ttacgcccgc	aagatatacc	atacccctta	cattcccata	gacaaggagg	taaagatcga
15901	ggggttctac	atgcgcatgg	coctoaaoot	gettacettg	agegaegaee	tgggcgttta
15961	tcgcaacgag	cacatccaca	aggccgtgag	cataaaccaa	caacacaaac	tcagcgaccg
16021	cgagctgatg	cacageetge	aaaggggggt	ggctggcacg	adcadcadca	atagagaggc
16021	cgagtcctac	tttgacgcgc	gcgctgacct	acactaaacc	ccaagccgac	gcgccctgga
161/1	ggcagctggg	accadaccta	gactaccat	adcycccaca	cacactaaca	acatcaacaa
16701	cgtggaggaa	tatgaccag	accatoacta	cdadccadad	gacggcgagt	actaagcggt
16261	gatgtttctg	atcacatcat	acaaaacaca	acqqacccqq	caatacaaac	ggcgctgcag
16201	agccagccgt	ccagacyac	ctccacacac	dactageacc	aggtcatgga	ccgcatcatg
16301	tcgctgactg	cacacaaca	tracrostr	addadadad	Cacadaccas	ccaactctcc
16441	gcaattctgg	aagggaaccc	cadadacac	gcaaacccca	Cacacasass	aatactaaca
16571	atcgtaaacg	castasses	aaacacccc	atccaaccca	atgagggga	cctggtctac
TOOUT	accycaaacg	cgccggccga	aaacayyycc	acceggeceg	~caraaccaa	222220000

FIG. 4F

	gacgcgctgc					
	cggctggtgg					
	aacctgggct					
	cggggacagg					
	ccgcaaagtg					
	ctgcagaccg					
	gctcccacag					
	ctgctgctaa					
17041	cacttgctga	cactgtaccg	cgaggccata	ggtcaggcgc	atgtggacga	gcatactttc
	caggagatta					
	accctgaact					
	agcgaggagg					
	gacggggtaa					
	tatgcctcaa					
17401	gtgaaccccg	agtatttcac	caatgccatc	ttgaacccgc	actggctacc	gccccctggt
17461	ttctacaccg	ggggattcga	ggtgcccgag	ggtaacgatg	gattcctctg	ggacgacata
	gacgacagcg					
	gcagaggcgg					
	gctgcggccc					
	agcactcgca					
17761	ctgcagccgc	agcgcgaaaa	gaacctgcct	ccggcgtttc	ccaacaacgg	gatagagagc
	ctagtggaca					
17881	ccgcgcccgc	ccacccgtcg	tcaaaggcac	gaccgtcagc	ggggtctggt	gtgggaggac
17941	gatgactcgg	cagacgacag	cagcgtcttg	gatttgggag	ggagtggcaa	cccgtttgca
18001	caccttcgcc	ccaggctggg	gagaatgttt	taaaaaaaag	catgatgcaa	aataaaaaac
18061	tcaccaaggc	catggcaccg	agcgttggtt	ttcttgtatt	ccccttagta	tgcggcgcgc
18121	ggcgatgtat	gaggaaggtc	ctcctccctc	ctacgagagc	gtggtgagcg	cggcgccagt
18181	ggcggcggcg	ctgggttcac	ccttcgatgc	tcccctggac	ccgccgttcg	tgcctccgcg
18241	gtacctgcgg	cctaccgggg	ggagaaacag	catccgttac	tctgagttgg	cacccctatt
18301	cgacaccacc	cgtgtgtacc	ttgtggacaa	caagtcaacg	gatgtggcat	ccctgaacta
18361	ccagaacgac	cacagcaact	ttctaaccac	ggtcattcaa	aacaatgact	acagcccggg
	ggaggcaagc					
18481	aaccatcctg	cataccaaca	tgccaaatgt	gaacgagttc	atgtttacca	ataagtttaa
	ggcgcgggtg					
18601	gtgggtggag	ttcacgctgc	ccgagggcaa	ctactccgag	accatgacca	tagaccttat
	gaacaacgcg					
	cgacatcggg					
	tcttgtcatg					
18841	aggatgcggg	gtggacttca	cccacageeg	cctgagcaac	ttgttgggca	tccgcaagcg
	gcaacccttc					
	cgcactgttg					
	gggtggcgca					
	agctgcggca					
	tgccacacgg					
	cgctgcggag					
	cctgacagag					
	ccagtaccgc					
	atggaccctg					
	gcccgacatg					
	ggtggtgggc					
	ctactcccag					
	gaaccagatt					
	tgctctcaca					
	gaccattact					
	ctcgccgcgc					
T 2 O O T	cacycogcyc	guccuattya	googlaceet	cryuycaayc	algectatet	calactegee

FIG. 4G

19861 cagocactaca cagogtogg cottogott cocaagaag atgittigeg gygocaagaa 19981 caaacgogg cycactggg gycactggg cagogactac cycacgoggacatac cycacgocgac typegacgac 20041 gygoggacac tacacgocca cycacgocgac atgittcacc gygoggacgac 20161 togcaccgc cyccaccac gygoggaccac atgagaagaa cygyoggagag 20161 togcaccgc cyccaccac gygoggacac agatytcacc gyagygoggac 20161 togcaccgc cyccaccac gygoggacac agatygacacg cyaagygaga 20161 togcaccgc cyccaccacg cacagaaga gyagygaaga gygagaacacg 20161 togcaccgc cyccaccacg cacagaagaa gyagygaaga gyagygaacacg 20161 togcaccgc gyagygacacg 20161 togtactgt tytatytac cyagygagacg 20161 togtacagaa gyagyacacc gyagygacgacg 20161 togtacagaa gyagyacacc gyagygacgacg 20161 togtacagaa gyagyacacc gyagyagaaga 20161 togtacagaa gyagyacacc gyagyagagacg 20161 qyagyagaa gyacyaacc gyagyagaga gyagyaacacg 20161 qyagyagaa gyacyaacc gyagyagaa gyagyaacacg 20161 gyagyacgaa gyagyaacacg gyagyagaa agagyagacacg 20101 gyagaacyag gyatyaccc gyagaagaga cyagyagaaga 20101 gyagaacaga gyatyaacacg 20101 gyagaagaga gyagyaacacg gyagyagaagagaacagaac							
19981 caaacgcgg cycactgggc gacacacgt cyatqacgc atcyacgcgy tygtgyaggga 20101 cytgytgcgg gagaccgg gatacgctaa aatgaagaga cygggaggg gegtagcacg 20111 tygcacacge cycacacgy gacactgcog coaacgcggg gagggcgggggggggggggggggg	19861	cagcaataac	acaggctggg	gcctgcgctt	cccaagcaag	atgtttggcg	gggccaagaa
20101 ggcgggaaa tacaagcca cgcgccgcc agtgtcacc gtggacgcgg cattcagtaa 20101 cgtggtgcgc ggagcccgg gctacgctaa aatgaagaag cgggagggc ctgttaaccg 20121 cgcactgca cgcgcaccg gcactgcaccg caacgcgcg ggggggcc tgcttaaccg 20121 cgcactgcac cccccaggt ccaggcgact gcgagcgct gcgagggtgt 20141 tgtcatctgt cccccaggt ccaggcgact gcgagcgcc gcagacgaccg cgagggtgt 20141 tgctatgact caggcgcac ggcgcaccg gcgagcgcc gcagacgccg gggcgattag 20141 tgctatgact caggcgcac gccccccgc gaatatgt gcaataaaaa actattag 20141 tgcgatgcca gtgcgcacc gccccccgc gaatatgt gcaataaaaa actattag 20141 tgcggtgcca tgtgatgacc gccccccgc gaatatgt gcaataaaaa actattag 20141 tagtgatgaa gtgatgcca ggggaactg ttagggggat taggggggat 20151 aatcaaagaa gagtgtcc agtgatatg gccgggatat tatggcccc cgaatagag 20151 aatcaaagaa ggtcgacag ttagacggg ggcggacat gaagacgag 20161 tgtgtgata cttgacgac gagtgaactg tttgcacgcg gaaccaccg tgcacggg 20161 tgatgatgaa cttgacgacg agtggaactg tttgcacgcg gaccaccac gagcaggag 20161 tgcatgtgaa cttgacgac gagtagaactg tttgcacgca ggcgcaccacg ggcgacagg 20161 ggactgctt gagcaggca tagaagcgtt tttgcacgca ggcgcaccacg ggcgacaga 20101 gtctgtgaa gtgctgccc gcgttacacc ggaggggttt gcctacgaga agggggataa 20101 gtcttggaa agaatgaccg tggagaggg caaccaaca cctagacag gactgaca 20101 ttttggtgaa tttgcaccg cgttacacc cgtgagagg caaccaaca agacgggca taagacggga 20101 tgtcttggaa aaaatgaccg ttggaggagg gatggagac aaaacgaggac caacaacag 20101 gtcttggaa aaaatgaccg ttggaggaga gatggagac caacaacaacag 20111 tagacacag gttgcacag ttgagagga gatggagac caacaacag 20111 tagacacag gatgccccc cgtcaagag gatggagac caacaacacacag 20111 tagacacag gatgccccc cgaagaggg 20111 ggggaaacag aaccagtgag ttgtttgtgt ttcaacgcc ggctcaaga gatgacgaca 20111 ggtgcaaacg gaccgcaga gggagagac caacaacacacac	19921	gcgctccgac	caacacccag	tgcgcgtgcg	cgggcactac	cgcgcgccct	ggggcgcgca
201101 ogtgytgog ggagocogg gytacgogog coaacgogog goggogogoc toctaacog 20221 ogoacgocog gogogogocogocogocogocogo gogogogo	19981	caaacgcggc	cgcactgggc	gcaccaccgt	cgatgacgcc	atcgacgcgg	tggtggagga
20161 togocacego egocgaceg geactgoogo coaacgoogo geggogocc tgettaaceg 20221 cgcacgtego acoggocgac gggogocat gggagocgo cgagocageg egocgatag 20231 tgctatgat cacggocgac gggogocacg gagocgoc gagacagcog egocatag 20341 tgctatgat cagggtegoa gggogocacg gtattgggg egocgactog 20461 ctcqtactgt gtatgatac caggcgocgo gaccagagt gaactgatg caatagag 20521 aatcaaagaa gagatgctc aggtcatag 20581 agagcaggat tacaagccc gaaagtgatt catggoccc cgaagagatg 20641 tgatgatgaa cttgacgacg aggtgaact gttgacagcg acgggcacac 20641 tgatgatgaa cttgacgacg aggtgaat gttgacagcg acgggcacacg 20701 acagtggaaa ggtcacacc gaaagcgatg tttgacagga acgggcacacg 2071 gacctggtt gagcaggoc aagacggcoc ggggagttt gatgaggtg acgggacacg 20821 ggacctgctt gagcaggoca aggagocac aggggagttt gctacgaag aggggagacg 20821 ggacctgctt gagcaggoca aggagocac gggggagttt gctacgaag aggcggcgac 20821 ggacctggtt gagcaggoca aggagocac gggggagttt gctacggaa aggcggcdc 20821 ggacctggtt gagcaggoca cagtgacgocc ggggagttt gctacggaa aggcggcdc 20821 ggacctggtt gagcaggag caccgggocc ggggagttt gctacggaa aggcggcdc 20821 ggacttggta tttgcacagc gcaccacaca cctagctaa agccgtgac 20821 ggacttggta ttggacagag gaaccaacac gctagacag 20821 ggacttggaa ttggacac cgttgacac ggcagagacg 20821 ggacttggaa aaatgacg tggagcggac ggtgagacc gaggacacac aagccggac 21001 gtctggtgac ttggacacacggac cggtgagaca gatgagaacac 21011 gacactaga tttgcacatg cacagaggg cactggagac gaggacacacacacacacacacacacacacaca							
20221 tgcacetce acegocqae gggcgecat ggagcgect ggagagctg cggggcattag 20341 tgctactgg cccccagg cagggcag gaggcgec gagagcg ttagggcc 20401 ggcgttgcc gtgcgcacc gcccccagg caactagatt gcataaaaaa actacttag 20461 ctcqtactgt tgtatgtatc caggggcgg ggcgcqatc gagctatgt caagggcga 20521 aatcaaagaa gagatgtcc aggtcatcg ggcggagatc tatggccacc caagggca 20531 agagcaggat tacaagccc gaaagcaaa gcgggtcaaa agaaaaaa aagatgatga 20531 agagcaggat tacaagccc gaaagcaaa gcgggtcaaa agaaaaaga agagtgga 20631 tgatgatgaa cttgacgac ggtggaact gttgcacac ggcacacccg 20761 gccggtgaa ggtcqacac gcacctacaa gcggtgtcaa agaaaaaga agagtgga 20701 acagtggaa ggtcqacgc gactcacac gaacctaaa gcgggtcaaa agaaaaaga aggggcaca 20831 ggactgct gagcaggca acgagaggg caaccacaca cctagctaa agcgggacag 20831 ggactgct gggttgccc gcttgcacc gactcacaca ggggggttat gattgaggtt aggggaca 20831 ggactgtg gggttgccc gcttgcacc gcctcacaa gccgggagata agcggcgaca 20831 ggactgtga ttggcgcc ggcttgcac gtccacaca cctagctaa agcggcgac 21001 gtctgttgac ttggcacca ccgtgaagt gattgaccc aagcgtcag gactggag 21061 gtcttgtgaa aaatgacctg tggagggctag gaccgtgac ggtccacaccg 21121 caagcaggtg gaaccgga tggaggagg caaccacaca cctagctaa agccgtgac 21131 agggtgaaa gatgcccgg tgcagaggg cagtgagac aaagggcag caaccacaca 21131 ggggtgaaa gaaccgtga tgtgagggc gcgcacacaca cctaaccag 21131 ggggtgaaa gaaccgtga tgtttgtgt ttagacca agggtcagg ggttgcct 21141 tacccccgc tatctgtggt tacactag ccacagaaga caacctacacag 21141 acccccaga gtttaaaag 21151 gagtaagaag ggaaccgaa ggaaccgaa gaggagaaca caaccacaca ggagcacata ccgagaga 21161 ctcagttc ccggtgcgg ggtttttg ggttcttga 21171 cacaggcat ggaaccgc ggaaccgaa gaggagaaa caacacacac							
20281 tgctattgat caccacagt caagagaag agagacage gagacaceg gagcateg taagagact 20401 gegetgace gtgegeace gececege caactagatt gcaataaaa actacttaga 20461 ctcgtactgt tgtattgtate caggcagag gagagate tatgagegee 20521 aatcaaagaa gagatgete aggagate aggagate tatgageee 20581 agagaaggat tacaagcee gaagetaaa gegggtaaaa aagaaaaaga aagatgatg 20641 tgatgatgaa cttgacagag gaggggaact gttgacageg 20701 acagtggaaa ggtcgacageg taagaagtgt tttgagagee geggegeee 20761 geceggtgag gegttecacce gcacctacaa gegggttaat gatgagggt 20821 ggacctgett gagcaggea acaggaggagggggggggggggggggggg	20161	tcgccaccgc	cgccgacccg	gcactgccgc	ccaacgcgcg	geggeggeee	tgcttaaccg
20401 gogstyce gygegeace gygegeace gececege caactagatt geatataaaaa actacttaga 20461 ctegtactyf tytatytate cagegegeg gygegeacte gaagetatet caagegega 20591 aateaaaaa gagatgetee gygegagate tatgygeee caagegaga 20591 aateaaagaa gagatgetee gygegagate tatgygeee caageggaa 20591 agageagaga tacaagaga gyggaact gyggagate tatgygeee caageggaa 20641 tyatgataa actagagaga gyggaact gyttgeaceg geegagagagagagagagagagagagagagagagaga							
20461 ctcgtactgt tytatgtatc cagcgccgcg caactagatt gcaataaaaa actacttaga 20521 aatcaaagaa gagatgctcc aggtcatcgc gegeggaatc tatggcccc caaggcgaa 20581 agagcaaggat tacaaagccc gaaagctaaa gegggtcaaa agaaaaaaga aagatggaa 20641 tgatgatgaa cttgacgacg gaggggaact tatgggcccc caacgacgaacggaact tatgatgacaa cttgacgaaa ggtggaact gagggggaact tatgaagaagga 20701 acagtggaaa ggtcgacgcg cacactacaa gegggtgaact gatgagggg 20701 acagtggaaa ggtcgaccgc gacactacaa gegggggaact gatgagggg 20821 ggacctgctt gagcaggcaa acgaggccc cagggaggtt gacacacgg tagcggagaa 20821 ggacctgctt gagcaggca acgacctacaa geggggaatt gatgaggtgt acggggaaca 20841 actgcaqcag gtgctgcccg cgcttgcacc ggcagagaa aaccaacaa accacacaa 20941 actgcagaa gtgctgcccg cgcttgcacc ggctcgaagaa aagccgggaca 20041 actgcagaa gtgctgcccg cgcttgcacc ggctcgaagaa aagccgggac tagagagga 21001 gtctggtgaa ttggacacca cgctgcaag gatgcacca agacggcgac gatggaagaa 21181 tagacactagt attgccactg cacagaggg catggagaca caaacgtccc ggttcaaga 21301 ggtgcaaacg gatgccgggg tgcagagga gaccgtggaa gaccgtggaa gatggcagaa 21301 gaggacaacg gaccgggaa tgttcagga cacactaaca gaccagaagaa 21301 gaggacaacg gaccgcggaa tgttcagga cacactaaca gaccacaca gaggacactaa attgccacacg gcgcacacgg cgctacgac gaggacacacacaa 21311 acacaccacac gaaccagga ggcactgaagaa caaacacacacag 213301 gaggacaacg gaccgggaa tgttcagga cacactaaca gagacacacaa gagacacacaaa 21361 gaagtaagag ggaccgcgga ggcgcgcgc cacacacaga 21481 aaccaccacac ggtaccacgg gcgcactgac cacacacaca gagacacacacacacacacacacac							
20461 ctcgtactgt tgtatgtate cagegogog ggcgcgate gaagctatgt cagagcgaa 20521 aatcaaagaa gagatgtee aggtcatee gecggagate tatggeccee cgaagaagga 20641 tgatgatgaa ettgacgee gagatgate gttgeaegeg acagegoge 20701 acagtggaaa ggtcgacgee tagagctgt tttgegaece geacecace ggcaceaegeg 20761 geceggtgag cgetecaece geacetacaa gegggtgat gatgagggtg acagegoge tagagctgtg tttgeaegeg gacaceaegeg tagagatgtg teggaggate gatgaggggata ggatgaggg 20881 ggacatgetg gegttgeege tggagaggg acaceaegag acageggata 20841 actgcagaag gtgetgeege tggagaggg acaceaegag acageggata 20941 actgcagag gtgetgeege tggagaggg gatgagaag 21061 tytettggga aaaatgaceg ttggagetga gacegggaga aaaatgagg gaceaegagg gatgetgeege gggggagaga gtteagaggg gatgeagag attggagaga gatgeagag gatgeagag gatgeagag gatggagaga gttggagaga gatggagaga attggagaga gatggagaga gttggagagaga	20341	tgctatgact	cagggtcgca	ggggcaacgt	gtactgggtg	cgcgactcgg	ttagcggcct
20521 aatoaagaa gagatectee aggteatege geeggagate tatgeceee egaaaggaagga 20581 aggaeggat tacaageeee gaaagetaaa geeggteaaa aagaaaaaga aagatgatga 20641 tagatgaaa ettgaaagaee gagtgaaat gttgeaegee gaegeeggeee geeggagatee tagaeggte tagaegggt tugeaeggg aeggeeggaegga 20761 geeggtgag geeteeaeee gaaceacaa geeggtgat gagaaggaa aggegaataa 20821 ggaeatget gageageee gagaegeeee gagaegaega aggegaataa 20821 ggaeatget gageaeeee geeggaagge eaaceaaaa eetaageetaa aggeggaataa 20821 ggaeatgee gagteteeee geeggaagge eaaceaaaa eetaageeea aggegaaga 2001 gtetggtgae ttggaaceea eeggtgage gatggaacee gaggteegg 21001 gtetggtgae ttggaaceea eeggtgage gatggaacee aaagegegge taaaageggga 21001 gtetggtgae ttggaaceea eeggtgage getggagee gaggteegg 21011 gtetggaga aaaatgaeeg tggaggagge getggagee gaggteegg gaetggaga 21021 tagaeaggg gaacegggg tggaggagge getggagaee gaggteegg gaetggaga 21021 gagagagga gatgeeggg tegaggage eggtgagaa aagggegee taaaaggeega 21361 gaagtaegg gaceggagg tggaggagge geggagaaga eggtaetgee gaggteegg gegtteaaga 21361 gaagtaegg gaggaegg gegtaetgee gagaaggaga eggtaetgee gaggagaata eegggagaata 21361 gaagtaegg gaggaegga gaggagagaggaggaggaggaggaggaggaggagga	20401	gegegtgeee	gtgcgcaccc	gcccccgcg	caactagatt	gcaataaaaa	actacttaga
20581 agagcaggat tacaagccc gaaagctaaa gggggcaaa aagaaaaaaa aagaaaaaaa actagaagca cttgacgacg aggtggaact gttgcacgcg accgcgccca ggggacgggtggcgcg1701 acagtggaaa ggtcgacgcg taagacgtgt tttgcgaccc ggcaccaccg tagtcttacc20761 gcccggtgag cgctcaccc gcacctacaa ggcggtgtt gatgaggag aggggacgaga 20821 ggacctgctt gagcaggaca acgagcgct cggggagttt gatgaggga acgggacgaa acgagaggaca acgagaggaca ccaccacaa cctagcctaa agccgtgacacacc20941 actgcagagag gtcgtgcccc cgcttgacc gtcgaagaa aagcgtcaga gactggagaa 21001 gtctggtgac ttggacacca ccgtgcagct gtcgaagaa aagcgtcagg gactggagaa aaaatgacag tggacgtga gacgggaga gatggagaca gacgggaga aagagcggaga aagagcggaga aagagcggaga attggacgag gacgggagaga gtcgaggaga gatggagaca gacgggaga gtggagaca gacgggagaga gtggagaca gatggagaca gacgggagaga attggacgag gatggagaca gacggagaga gatgagagac gacggagaga gacggagaga gatgagaca gacgagaga gacggagaga gacggagaga gacggagaga gacgagaga gacgagaga gacgggagaga gaggagaacacacag gaaccagag gaccacacaca	20461	ctcgtactgt	tgtatgtatc	cagcggcggc	ggcgcgcatc	gaagctatgt	ccaagcgcaa
20761 geceggtgaga ggetgagaggagagagaggaggaggaggaggaggaggaggagg	20521	aatcaaagaa	gagatgctcc	aggtcatcgc	gccggagatc	tatggccccc	cgaagaagga
20701 acagtggaaa ggtcgacgg taagacgtgt tttgcgacc ggcaccaccg tagtctttac 20761 gcccggtgag gcctcaccc gaccacaa gcggtgtat gatgaggtga acggcgacga 20821 ggacctgctt gagcaggca acgacgcct cggggagttt gcctaaggaa acgggcataa 20881 ggacatgctg gcgttgcccg gcttgcacc gcctgacacaca cctagcctaa agccgtgac 20941 actgcagacag gtgctgccc gcttgcacc gtccgaagaa aacgcggacc taaagcggag 21001 gtctggtgac ttgcaccac cgctgcacc gtccgaagaa aacgcggacc gatggaaga 21061 tgcttggaa aaaatgaccg tggaggctg gatggtaccc aagcgtcagc gatggaaga 21181 taagcactagt attgccactg cacacagagg catggagacc cacacacag 21181 tagcactagt attgccactg cacacagagg catggaggcc ggttcaagac 21301 ggtgcaaacag 21301 ggtgcaaacag 21301 ggtgcaaacag 21301 ggtgcaacac 213181 tagcactagt gcccgaaga gcccgtgag cgccaagaa caaacgtccc cagctcaga 21301 ggtgcaaacag 21361 gaagtacggc gcccgaaga gcccgtgag cgttcatgc cggttcagag 21421 tacccccgg tatcgggc gccgaagag cgccaagaa caccatgcg cacacagag 21421 taccccaga tatcgtggct aaccataccg cccaagaaga cacacagagag 21601 ccccaagactc gtttaaaaga gtgtctcaga gaggaggaag agacacagac cccaagaagag 21781 tcgacgacag gtgttcaga gaggaggaag gaccctggag gtgtctgca gaggaggaag gaccctggag gtgtctacca 21781 tcgacggaag acgggaacacacacacacacacacacacac	20581	agagcaggat	tacaagcccc	gaaagctaaa	gcgggtcaaa	aagaaaaaga	aagatgatga
20761 geccetgett 20821 gagcatgea 20821 gagcatgea 20821 gagcatgea 20821 gagcatgea 20941 actgcagcag 20941 actgcagcag 21001 gtctggtac 21001 gtctggtac 21001 gtctggtac 21001 gtctggtac 21001 gtctggtac 21002 gagacaggea 21003 gagacaggea 21003 gagacaggea 21004 gagacaggea 21004 gagacaggea 21005 gagacaggea 21006 gagacaggea 21006 gagacaggea 21006 gagacaggea 21121 caagcaggtg 21121 caagcaggtg 21241 gagaggaga 21241 gagagaacag 21301 ggtgaaacag 21301 ggtgaaacag 21301 ggtgaaacag 21302 gaacaggaa 21421 taccccagga 21421 taccccagga 21421 taccccagga 21421 taccccaga 21421 taccccaga 21421 taccccaga 21421 taccccaga 21421 taccccaga 21422 gagacagaa 21501 catcggaag 21661 cctcagttc 21561 gtgagaa 21661 cctcagttc 21721 caaggaaa 21821 gagacagaa 21821 gagaaaa 21821 gagaaaa 21821 gagaaaa 21821 gagaaaa 21821 gagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa							
20821 ggacetgett gagtaggea acagaggea gagtett geataaga agaggataa 20881 ggacetgetg gettteceg tegacgaggg caaccacaca cetaagcaaa agacggataa 20941 actgcagcag gtgetgecg tegacgaggg caaccacacacacacacacacacacacacac							
20881 ggacatgctg gcgttgccgc tggacgagg caaccaaca cctagctaa agcccggaa 20941 actgcagcag gtgttgcccg cgcttgcacc gtccgaagaa aagccggaca taaagccgga 21001 gtctgtgtgac ttggcaccac ccgtgcagct gatggaccc aagcgtcagc gatggagaa 21061 tgtcttggaa aaaatgaccg tggagctgg gctggagccc aagcgtcagc gatggagaaa 21121 caagcaggtg gcaccggga tgggggtgaa gaccgtgaac caacagaggg catggagaca caaacgtcc cggttgcat1121 gacgggtgaa gatgccggg tggaggagaca caaacgtcc cgacacacacagagg catggagaca caaacgtcc cggttgcat21241 ggcggtgaa gatgccggg tgaaggagga cgctgggagaca caaacgtcc cggttgcat21361 gaagtacgg gaccgtgga tgtttegtgt ttcagcacc ggctgcagg cgctacagag caccacacagagg caccacacacagagg caccacacaca							
20941 actgcagcag gtgctgcccg cgcttgcacc gtccgaagaa aagcgtcagc taaagcgcgal 21001 gtctgttgaa tttggcaccca ccgttgcagct gatgtaccc aagcgtcagc gactggaaga 21061 ttgtcttggaa aaaatgaccg tggagcctgg gttggagccc gaggtccgcg tgcggcaat 21121 caagcaggtg gcaccgggac tggggtgca gaccgtggac caacagctccc cggttgcctc 21241 ggcggtggca gatgccgcgg tgcaggcgg cgctggggac caaacgtccc cggttgctc 21241 ggcggtggca gatgccgcgg tgcaggcgg cgctgcggac cacagcaga cctctacgga 21301 ggtgcaaacag gacccgtgga tgtttccgtgt ttcagcccc cggcgtccaag cctctacgga 21361 gaagtacggc gccgcagcg cgctactgcc cgcaatatgcc cdacatcctt cccaggaccaccact ggaacccgcc gcgccgtcg cgctgcgaag cggcgacaccactactggaccaccact ggaacccgcc gcgccgtcg cgctgcgaag cggcgaaccgcg 21421 tacccccagg tttaaaagc gcccgctgg ccgctgcaag gagcaactac cccagcacgc 21481 aaccaccact ggaacccgcc gccgctgcg ccgtcgcaag ccctgactgcc 21481 cgttgcgaag gtggctcgcg aaggaggacag gaccctggtg ctgccaacag cgcgctacca 21601 ccccagcatc gtttaaaagc ggtttttgt ggttcttgca gatatggcc tcacctgccg 21781 tcgcatgcg gacggaatcc tgcccccctct tattccactg accggcggg gattggcgc 21841 cgtgcccga attgcatca tgcgcctgca gaggagaac caatgataa aaacaagtta 21901 catgtggaaa aatcaaaata aaagtctgga ctctcacgct cgctggccg 21841 cgtgaccaga attgcaacaa cgccacacag ggcggaagaa cactgattaa aaactatatt 21961 ttgtagaaatg gaggaatat acggcacaac acttggcccc ggacacgcgg cgatgggg 22081 ctcgcttgtg gagggacata aaaatttcgg ttccgccgt aagaactgag gcaggaaga 22261 agtgcaaaat aagattaaca gtaagtttga ggacaagttg aagaagacaa atttccaaca 22201 aaaggtggta gatggcctg ccccaggaggg ggacaagttg aagaagacaa 22261 agtgcaaaat aagattaaca gtaagtttga ggacaagttg aagaagacaa atttccaaca 22231 ggccgtggag accggcccc caagagggcc ggcacaccggg ggacaagggagaa cactgagga 22381 agaaactctg gtaagcaaa tagacgaac tccccagaag ggacaaggagaa acctgagga 22381 agaaactctg gcgcccaa ccccagaaga aacctgaaca ggacaacacc 22501 cgtaacgctg gaccgcca ccccagaaga cgccccagaaga gaccacacc 22501 cgtaacgctg gaccgcaa ccccagaaga ccccagaaga gacacacac	20821	ggacctgctt	gagcaggcca	acgagcgcct	cggggagttt	gcctacggaa	agcggcataa
21001 gtctgtgac ttgacacca cgtgacgt gatggtacca aaggtcag gactggaaga 21061 tgtcttggaa aaaatgaccg tggagctgg gctggagcc gagtccagt tgaggacat 21121 caagcaggtg gacacgggac tggagcgtgaa gacagtggaa gatgcagtga gatgacggac tggaggacga gatgagaaga caaaaggac catcatacga 21301 ggtgaaaaag gaccagtgaa tgtttcgtgt ttcagacac caaaaggac catcatacga 21361 gaagtaagga gaccaggag ggtactgac cgctactgac cggaatatgac ctacaacact gaaacacacac ggaaccagga gaccacgga cgctactgac caaaagaaga cgagaaaata caagacgac 21421 taacacacact ggaaccagac gacgacgacg cgctactgac gagaacagac gaccagagg gaccatggag gaccatggag gaccatggag gagaacagac cgcgagaaga gaccatggtg cccgagaga gaccatggag gagaacagac ggtstataaagac cgtsagaaga gaccatggtg cccgagagacacta cccgaacga 21601 ccccagaag gtgatcacga gagaaggaag gaccatggtg cccaagaag cgcgtacaa 21721 ccaacggacga attgacacag gagatacaaga aagaaagaa aatacaaaata aaagttaga cgtattacaga gagagaga gacaaggaga gacaaggaga gacaaggac ggagagacga 1781 tcgcatggaa attgaacac ggacaagac cgtagagaaga catgagaga gacaagaa aatacaaaata aaagttaga ctctacacga gagagagaa cgtgacaagaa aatacaaaata aaagttaga ctctacagac ggagagac tggacaaga catgagaaga catgagaga gacaaggac aattgaaaa aatacaaaata aaagttaga ctctacagac ggagagacga tggacaagac actgagaga ggacaaggac actggagaga catgagaga actggagaa aatacaaaata aaagttagac ggacaaggac ggacaaggac ggacaagga catgagaga actgagaga gacaaggac agatgagaa aatacaaaata aaagttaga attgaagaga ggacaagga ggacaagga actgagaga gacaaggac agatgagaga actgagaga ggacaaggac ggacaagga ggacaagga ggacaagga ggacaagga gagaagaagaa aatacaaaaa aaagataaga aatagagaa cgatgagaga ggacaagga ggacaaggaga ggacaagga ggacaagga ggacaagga ggacaagga ggacaaggaga gagaagagaa gagagaagaa taggagagaa aagagaaa taggagaga gaaaggaga ggacaaggaga gacaaggaga gacaaggaga gacaaggaga gacaaggaga gacaaggaga gagaagagaa gagaaaggaa gagagaagaa	20881	ggacatgctg	gcgttgccgc	tggacgaggg	caacccaaca	cctagcctaa	agcccgtgac
21061 tgtcttggaa aaaatgaccg tggagcctgg gctggagccc gaggtccgcg tgcggcaata 21121 caagcaggtg gcaccgggac tggggcgtgca gaccgtggac gttcagaatac ccaccaccag 211361 tagcactaag attgccaccg ccacagaggg catggagacac caaacgtccc cggttgcctc 21241 ggcggttggca gatgccgcgg tgcagggcg cgctgcggc gcgtccaaga cctctaccgga 21301 ggtgcaaacg gacccgtgga tgtttcgtgt ttcagcccc cggcgtccgc gcgttcaag 21361 gaagtacggc gcgccacgc gcgcaccag cgctactgc cgaatatgcc ctacatcctt ccatcgcgc 21421 tacccccggc tatcgtggct acacctaccg ccacagagac cagagaacta ccccgacgcc 21481 aaccaccact ggaacccgc gcgccgcgg cgctgcgag cgctgcgag cgcgctgcg 21481 accaccact gttaaaagc cggtctttt ggttcttgc gatatggcc tcccatcct 21541 cgtgcgcagg gtttaaaagc cggtctttt ggttcttga gatatggccc tcacctacca 21601 ccccagcatc gtttaaaagc cggtctttt ggttcttga gatatggccc tcacctgccg 21721 ccacggcctg acgggggac tgggtggg gattccagag aagaatgcac cgtaggaggg gcatggccgg 21781 tcgcatgcg ggcggtatcc tgccctcct tattcacctg atcgccggg cgttgcacg 21841 cgtgcccgga attgcatcac tgccctcct tattcacctg atcgccgcg gattggcgc 21841 cgtgcccgga attgcatcac tggccttgca ggcggagac cactgattaa aaacagtta 21901 catgtggaaa attgcatcac tggccttgca ggcggagac cactgattaa aaacagtta 21901 catgggaaac tggagcata aaatttcgg ccctcacgcc cgctgtgtcc tgaaccatg 22021 catgggaaac tggagcata aaaatttcgg tcccccccc cgctgggggggggg	20941	actgcagcag	gtgctgcccg	cgcttgcacc	gtccgaagaa	aagcgcggcc	taaagcgcga
21121 caagcaggtg gcaccgggac tggggtgca gatcgtggac gttcagatac caaccacag 21181 tagcactagt attgccactg cacagaggg catggagaca caaacgtccc cggttgcctc 21241 ggcggtggac gatgccgcgg tgcaggcggc cgctgcggc ggtccaaga ccttctacgga 21301 ggtgcaaacg gacccgtgga tgtttcgtt ttcagcccc cggggtccaaga ccttctacgga 21361 gaagtacggc gccgcaagcg cgctactgcc cgaatatgcc ctacatcctt cacagcgcg 21481 aaccaccact ggaacccgcc gccgcgtcg cggcgcag cgcggtggcgc gccggcggcg 21481 aaccacact ggaacccgcc gccgcgtcg cggtcgcag cccggtgtgg cccggattc 21541 cgtgcgcagg gtggtcggg aaggaggaa gacctggtg ctgccaaaag cggcaacaca 21601 ccccagcatc gtttaaaagc cggtttttg ggttcttga gatatggcc tcacctgcg 21721 ccacggctg acgggcgga tgggtcgg gaaccacgg cggggggg gcatggccgg 21781 tcgcatggg aggggtatcc tgcccatcat tattccactg atcgccggg ggttggacgg 21781 tcgcatgga attgcatcc tggccttga ggcgaagaa cactgattaa aacaagtta 21901 catgtggaaa aatcaaaata aaagtctgga ctctcacgct cggttggtcg cgattggcgg 22021 catgggaaac tgggcata aaaatttcgg tcccacgc cgacaggc tgggccgtt 22021 catgggaaac tgggcata aaaatttcgg tcccacgct cgacacggc tggcccgtt 22141 ctggaacag agcacaggca gatgctga ggacaagtg aagaactaa ggcacaggc 22141 ctggaacag agcacaggc agatgctgg ggacaagtg aagaactaat tggcaagaga cactggggg gcagcaaga 22201 aaaggtggta gaggcatta aaaatttcgg ttcccacgct cgacaggcc tcagtgggg 2221 aggcagtgga acggctgg ccttggaa ggacaagtg aagaactatg ggcgcaagag 2221 ggcgtgga acaggcctg ccttggaa taggcctgg cccacaggc ggagaagac 22231 ggcgtggag acaggtctc cagaggggg tgggacagg ggagacaagac 22321 ggcgtggag acaggtcc cacaggag cactgggggg ggagacagga 22381 agaaactctg gtgacacaa tagacgagac tccctggac gagagagac cacacaggc 22501 gtaacgctg gactgcca tccggcca ggcgaaaga cacacaggc 22501 gtaacgctg gactgcca tcccggcca ggcgaaaga cacacaggc 22501 gtaacgctg gactgcca caccagga aacctgggg ggacctgg gaccacacc 22501 gtaacgctg gacctgcca tcccggcca tccctggaa gagacacacac cacaggca caccacaga aacctgtgc ggaccacacacc 22501 gtaacgctg gacctgca gaccagaa caccaggca gacctgaca accggcca gaccacacc 22501 gtaacgctg gacctgca accggaagaa caccaggc caaccacag gacctgacag gacctgcca gagagatac cacacagg cacacacag gagactgac cacacagg cacaca	21001	gtctggtgac	ttggcaccca	ccgtgcagct	gatggtaccc	aagcgtcagc	gactggaaga
21181 tagcactagt attgccactg cacagaggg catgagaca caaacgtcc cggttgcttc 21241 ggcgttgca gatgccgcgg tgcaggcggc cgctgcggc gcgtccaaga ccttcacgga 21301 ggtgcaaacg gacccgtgga tgtttcgtgt ttcagccce cggcgtccgc gcgttccaag 21361 gaagtacggc gcgccacgg cgctactgcc cacagaaga ctcactacgg 21421 tacccccggc tatcgtggct acacctaccg cgcagaaga caccagagccg 21431 cggtgcgag gtggctcgc gaaggagaaga gagcaacta cccgagcgcg 21441 cgcccagact gtttaaaagc cggtcttgt ggtcctgg gacggcaggaagaagaagaagaagaagaagaagaagaaga	21061	tgtcttggaa	aaaatgaccg	tggagcctgg	gctggagccc	gaggtccgcg	tgcggccaat
21241 ggcgtggca gatgccgcgg tgcaggcggc cgctgcggcc cgctcaaga cctctacgga 21361 gatgcaaacg gacccgtgga tgtttcgtgt ttcagccc cggcgtccgg gcgttcaaga 21361 gaagtacggc gccgccagcg cgctactgcc cgaatatgcc ctacatcctt ccatcggcc 21421 tacccccggc tatcgtggct acacctaccg cccagaaga cgagcaacta cccggacgcg 21481 aaccaccact ggaacccgcc gccgccgtcg ccgtcgcag cggcaacaa cccgacgcgc 21481 cgtgcgcagg gtggctcgcg aaggaggcag gaccttggt ctgccaacaag cgggctacca 21601 ccccagactc gtttaaaagc cggtctttgt ggttcttgca gatatggcc tcacctgccg 21721 ccacggcctg acgggcgaa tgcgtcgtgg ggctttggg ggattccggg attccgagg attgcgagg aggatgacc ggcggcaggg 21721 ccacggccg acgggggaa ttgcgtcgg ggcgcaccagg ggcggcggg cgtggcggg 21781 tcgcatggc ggcggtatcc tgccctcct tattccactg acggggggg cgttggcgg 21781 tcgcatgga attgcatccg tggccttgaa ggcggaagaa attgcatccg tggccttgaa ggcggaagaa acacagatta 21901 catgtggaaa aatcaaaata aaagtctgga ctctcacgct ggcgttggcg cgttggaac 22021 catgggaac tggcaagata tcggcacaag cactgattaa aaaaattta 21961 ttgtagaatg gacggaata tcggcaccag caatatggc cgacacaggc cgcgccegtt 22021 catgggaac agcacaggca agcacaggc agatgcgga 22141 ctggaacag agcacaggca agcacaggc agatgcggg ggacaagtg agggcaata aaagttaaca ggaaggggagga agggcagaa agggcagaa agggcagaa agggcgga ggacagggggggg	21121	caagcaggtg	gcaccgggac	tgggcgtgca	gaccgtggac	gttcagatac	ccaccaccag
21301 ggtgcaaacg gaccgtgga tgtttcgtgt ttcagcccc cggcgtccgc gccgtcaacg 21321 gaagtacggc gccgcaagc cgctactgc cgaatatgcc ctacatctt ccatcgcgcc 21421 tacccccgcc tatcgtggct accatcaccg cccagaaga cgagcaacta cccgacgcg 21481 aaccaccact ggaaccgcc gccgctcg ccgtcgcaag caggacaacta cccgacgcg 21541 cgtgcgcagg gtggctcgcg aaggaggaag gaccctggtg ctgccaacag cgcgctacca 21601 ccccagcacc gtttaaaagc cggtcttttt ggttcttgca gatatggccc tcacctgccg 21661 cctccgtttc ccggtgccgg gattccagg gattccagg gattcggggggaggagggagggagggagggagggagggag	21181	tagcactagt	attgccactg	ccacagaggg	catggagaca	caaacgtccc	cggttgcctc
21361 gaagtacgge geegecageg egetactgee egaatatgee etacateett taceceegee tategtgget acacetaceg eccagagaga egageaacta eccgacgeeg 21481 aaccaccact gaaccegee geegeteeg egeteeteg egeteeteg etacagage eegatette 21541 eggtegeagg gtggeteege aaggaggaag gaceetggte etacectageeg 21601 ecceageate gtttaaaage eggtetttgt ggttettgea gatatggeee teacetgeeg 21661 ecteegtte eeggteegg gatteegagg aagaatgeae eggeggegeg 21721 ecaeggeega aegggeega tgegtegtge geaceacegg eggeggeegg 21781 tegeatgeeg ggeggtatee tgeeettee etatteeaetg acggeegeg egattggeeg 21841 eggteegaga attegatee tggeettgea geggeagagg eactggeegg egattggeeg 21841 eggteegaga aateaaaata aaagtetgga eteteaeegg egattggeege 22021 eatgggaaa tacaaaata aaagtetgga eteteaeegg egaacaeggee eaatatgage gagaacatet etegeegeegt egaacaeggee eaatatggeeggeeggeeggeeggeeggeeggeeggeegg	21241	ggcggtggca	gatgccgcgg	tgcaggcggc	cgctgcggcc	gcgtccaaga	cctctacgga
21421 tacccccgc tatcgtggct acacctaccg ccccagaaga cgagcaacta cccgacgccg 21481 aaccaccact ggaacccgcc gccgctcg ccgtcgcag cccgtgtgtg ccccgatttc 21541 cgtgcgcagg gtggctcgcg aaggaggcag gaccctggtg ctgccaccag cgcgctacca 21601 ccccagcatc gtttaaaagc cggtctttgt ggttcttgca gatatggccc tcacctgccg 21661 cctccgtttc ccggtgcgg gattccqaag aagaatgcac cgtaggaggg gcatggccgg 21721 ccacggcctg acggcgcac tgcgtcgtg gcaccaccgg cggcggcgg cgtcgcaccg 21781 tcgcatgcgc ggcggtatcc tgccctcct tattccactg atcgccggg cgattggcgc 21841 cgtgcccgaa attgcatccg tggccttga acggcgaaa aaccaagtta 21901 catgtggaaa aatcaaaata aaagtctgga ctctcacgct cgttggtcc tgaaccagtt 2191 ttgtagaatg gaagacatca actttgcga cactgataa aaacaagtta 21901 catgtggaaa tggcacaag acggcaccag caatatgagc ggtggcgcct tcagctggg 22081 ctcgctgtgg agcggcatta aaaattcgg ttccgccgt aagaactatg gcagcaaagc 22141 ctggaacagc agcacaggcc agatgctga gatgcctgg cctctgggcg 22261 agtgcaaaat aagattaaca gtaagcttga gacggcata tagagcgggtg gggggggggg							
21481 aaccaccact ggaaccegce gccgccgtcg ccgtcgcag cccgtgtgg ccccgattte 21541 cgtgcgaagg gtggctcgg aaggaggaag gaacctggtg ctgccaacag cgcgctacca 21601 ccccaagcatc gtttaaaagc cggtttttt ggttcttgca gatatggccc tcacctgcgcg 21761 cctccgtttc ccggtgcggg gattccgagg gattccgagg aagaatggac cgtaggaggg gattcgggg 21721 ccacggcctg acggcggca tgcgtcgtgc gcaccaccgg cggcggcgg cgtcgaaccg 21781 tcgcatgoc ggcggtatcc tgccctcct tattccactg atcgccggg cgattggcgg 21781 catggtgaaa aatcaaaata aaagtctgaa ctttacaccg gagcgagaa cactgattaa aaacaagtta 21901 catgtggaaa aatcaaaata aaagtctgaa ctttacacgc cgacacggc cgacacggc cgacacggc 22021 catgggaaac tggcaacaa actttgcgtc actggccccg caacaggcc caatgggaaac tggcaaagat tcgcaccag caatatgagc ggtggcgcct tcagctgggg 22081 ctcgctgtgg agcgcaata aaaattcgg ttccgccgt aagaacatag gcagcaaagc 22141 ctggaacagc agcacaggcc agaagtgga gatggcctgg ccaaccaggc 22261 agtgcaaaat aagattaaca gtaagcttga gatggcctgg ccaaccaggc 22261 agtgcaaaat aagattaaca gtaagctga ccccgcgcaccacc 22261 agtgcaaaat acagttccca accggcca tcggcccat tagcgcgggggggggg							
21541 cgtgegcagg gtggctcgcg aaggaggcag gaccctggtg ctgccaacag cgcgctacca 21601 ccccagcate gtttaaaagc cggtctttg ggttcttgca gatatggccc tcacctgccg 21661 cctccgtttc ccgggcgcg gattccgagg aagaatgcac cgtaggaggg gcatggccgg 21721 ccacggcctg acgggcgca tggtcgtgg gcaccaccgg cggcggcgcg cgtcgcaccg 21781 tcgcatgcgc ggcggtatcc tgccctcct tattccactg atcgccgg cgattgcgcg 21841 cgtgcccga attgcatcc tgccctcct tattccactg atcgccgg cgattgcgcg 21841 cgtgcacaa aatcaaata aaagtctgaa ctctcaccgt cgcttggtcc tgtaactatt 21901 catgtggaaa atcaaaata actttgcgtc actggcccg cgacacggct tggcaggaactca tggcaagata tcggcaccaa caatatgagc ggtggcgctt tcagctgggg 22021 catgggaaac tggcaagata tcggcaccaa aaaattcag ggcacaaggc ggtggcgctt tcagctgggg 22141 ctggaacagc agcacaaggcc agatgctga ggacaagtga ggcacaagac 22201 aaaggtggta gatggcctgg cctctggaat taggcagaaa attccaaca 22201 aaaggtggag acagtgtcc caagagggcg tccctggaa 22321 ggccgtggag acagtgtcc caagaggggcg tccctggaa 22321 ggccgtggag acagtgtcc caagagggcg tccccggcct cccggaagag acactggga acagtgcca accggccaa acagggcaaa tagacaaggc accggaagaa cccgacaacc 22501 cgtaacgctg gacctgcca tcggcgccaa accggccaa accggccaacaacc 22501 gcaacgctg gacctgccc cccccgccaa accggccaacaacc 22501 gcgaacgtg gacctgccc cccccgccaa accggccaacaacc 22621 gcgatcgtc cgccgtag gacctgccc cccccgccaa ggcacaagac acctgggcc agcacacacc 22501 gcgaacgtg caatccctga gacctgccc cccccaccaagag acctgccc cccccaccaagag acctgccc cccccaccaccaccaccaccaccaccaccaccacca							
21601 ccccagcate gtttaaaage eggtetttgt ggttettgca gatatggee teacetgeegg 21661 cctcegtte eeggtgeegg gatteegag aagaatgeae eggtggeegg egtgeegg egegeaeaegg eggegeegg tegegeegg 21781 tegeatgeeg ggeggtatee tegeecteet tatteeaetg ategeeggge eggegege eggeggegeg 21841 egtgeegga attgeateeg ggeegttgea ggegegagga eactggeegg eggegegeg 21841 egtgeegga attgeateeg ggegettgea ggegegagga eactgattaa aaaacaagtta 21901 eatgtggaaa atteaaaata aaagtetgga eteteaeget eggegegeggegeg	21481	aaccaccact	ggaacccgcc	gccgccgtcg	ccgtcgccag	cccgtgctgg	ccccgatttc
21661 cetecgttte ceggtgeegg gattecgagg aagaatgeac cgtaggaggg geatggeegg 21721 ceaeggeetg aeggeggea tgegtegte geaecacegg eggeggeege egtegeaeegg 21781 tegeatgeeg geeggtatee tgeeeteet tatteeaetg ategeegeegg egattggeeg 21841 cgtgeegga attgeateeg tggeettgea ggeggagaga cactgattaa aaacaagtta 21901 catgtggaaa aateaaaata aaagtetgga eteteaegge egattggeegt tgtgaatgat teggeagaata eetetaeegee egettggtee tgtaaetatt 21961 ttgtagaatg gaagacatea actttgegte actggeeegg egacaegget eggeeggtt 22021 catgggaaac tggeaagata teggeaceag caatatgage ggtggegeet teagetgggg 22081 eteggetggg agegeatta aaaattteegg tteegeeggt aagaacatatg geageaaage 22141 etggaacage ageacaggee agatgetgag ggacaagttg aagaacatatg geageaaaa 22201 aaaggtggta gatggeetgg eetetggeat tageggggtg gtggacetgg eeaacaggee 22261 agtgeaaaat aagattaaea gtaagettga teeegeeet eeegtagagg ageetteeae 22321 ggeeggaga acagtgtee eeggegaa tagaeggggg teeeteeggagggggggggg	21541	cgtgcgcagg	gtggctcgcg	aaggaggcag	gaccctggtg	ctgccaacag	cgcgctacca
21721 ccacggcctg acggcgca tgcgtcgtc gcaccaccgg cggcggcgc cgtcgcaccg 21781 tcgcatgcc ggcggtatcc tgccctcct tattccactg atcgccgcg cgattggcgc 21841 cgtgcccgga attgcatccg tggccttgca ggcgcagaga cactgattaa aaacaagtta 21901 catgtggaaa aatcaaaata aaagtctgga ctctcacgct cgcttggtcc tgtaactatt 21961 ttgtagaatg gaagacatca actttgcgtc actggcccg cgacacggct cgcgccggt 22021 catgggaaac tggcaagata tcggcaccag caatatgagc ggtggggcct tcagctgggg 22081 ctcgctgtgg agcgcatta aaaatttcgg ttccgccgtt ggtggggcct tcagctgggg 22081 ctggaacagc agcacaggcc agatgctgg ggacaagttg aaagactatg gatggcctgg cctctggcat tagcgggggggggg							
21781 tegeatgee ggeggtatee tgeeceteet tattecaetg ategeeggg egattggege 21841 egtgeeegga attgeateeg tggeettgea ggeggaaga cactgattaa aaacaagtta 21901 catgtggaaa aateaaaata aaagtetgga eteteaeget egettggtee tgtaactatt 21961 ttgtagaatg gaagacatea actttgegte actggeeegg egacaegget egegeeggt egegegggg 22021 catgggaaae tggeaagata teggeaceag caatatgage ggtggegeet teagetgggg 22021 etegetgtgg ageggeatta aaaatttegg tteegeegt ggaaagtagggggggggg	21661	cctccgtttc	ccggtgccgg	gattccgagg	aagaatgcac	cgtaggaggg	gcatggccgg
21841 cgtgcccgga attgcatccg tggccttgca ggcgcagaga cactgattaa aaacaagtta 21901 catgtggaaa aatcaaaata aaagtctgga ctctcacgct cgcttggtcc tgtaactatt 21961 ttgtagaatg gaagacatca actttgcgtc actggccccg cgacacggct cgcgccgtt 22021 catgggaaac tggcaagata tcggcaccag caatatgagc ggtggcgcct tcagctgggg 22081 ctcgctgtgg agcggcatta aaaatttcgg ttccgccgtt aaagaactatg gcagcaaagc 22141 ctggaacagc agcacaggcc agatgctgag gatggcggc aaagggggggggg	21721	ccacggcctg	acgggcggca	tgcgtcgtgc	gcaccaccgg	cggcggcgcg	cgtcgcaccg
21901 catgtggaaa aatcaaaata aaagtetgga eteteaeget egettggtee tgtaactatt 21961 ttgtagaatg gaagacatca actttgegte actggeeegg egacaegget egegeeeggt 22021 catgggaaac tggcaagata teggcaecag caatatgage ggtggegeet teagetgggg 22081 etegetgtgg ageggeatta aaaatttegg tteegeegtt aagaactatg geageaaage 22141 etggaacage ageacaggee agatgetgag ggacaagttg aaagagcaaa attteeaaca 22201 aaaggtggta gatggeetgg eetetggeat tageggggtg gtggacetgg ecaaceagge 22141 eggeagaaa aagattaaca gtaagettga teeegeeet eegtagag ageeteeae 22321 ggeegtggag acagtgtee eagaggggeg tggegaaaag eggeeggag 22381 agaaactetg gtgaegaaa tagacgagee teeetegtae gaggaggeae eegacaggag 22441 eetgeeege gaeetgeeea teeggeeea teegegeeae 22501 egtaaegget ggaeetgeee eegeegeeae gaeetgeee geeggeeeg 22561 gteegeegt gtgtaaeee gteetageeg eeggeeegg eggeteee 22621 gegategttg eggeeegaa eeagtggaa eeggeegaeg ageetgeee 22681 tttgggggtg eaateeetga agegeegaeg aggeteetg egeegeegee eegeggeee eaaeetgtggg 22681 tttgggggtg eaateeetga agegeegaeg aggeteetga tagetaaegg gteegggg 22741 tgteatgtat gegteeatge egeegeeaga gagettetga tagetaaegg egeegettt 22801 eeaagatgge taeeeetteg atgatgeege aggeteetgg egeegeegg egeegettt 22801 eeaagatgge taeeeetteg atgatgeege aggettetga tagetaaegg egeegettt 22801 eeaagatgge taeeeetteg atgatgeege aggettettg ageegeeggg egeegeegt 22861 aegeetegga gtaeettgag eeeggeegg egeegeegg egeegeettt 22801 eeaagatgge taeeeetteg atgatgeege eeggeegeeg egeegeettt 22801 eeaagatgge taeeeetteg atgatgeege eeggeegeegg egeegeettt 22801 eeaagatgge taeeetteg atgatgeege eeggeegeege egeegeegg egeegeettt 22801 eeaagatgge taeeetteg atgatgeege eeggeegeege egeegeege egeegeege 22861 aegeetegga gtaeettgg eegggeegeegeege eeggeegeege egeegeege	21781	tcgcatgcgc	ggcggtatcc	tgcccctcct	tattccactg	atcgccgcgg	cgattggcgc
21961 ttgtagaatg gaagacatca actttgggtc actggcccg cgacacggct cgcgccgtt 22021 catgggaacc tggcaagata tcggcaccag caatatgagc ggtggggcct tcagctgggg 22081 ctcgctgtgg agcggcatta aaaatttcgg ttccgcgtt aagaactatg gcagcaaagc 22141 ctggaacagc agcacaggcc agatgctgag ggacaagttg aaagagcaaa atttccaaca 22201 aaaggtggta gatggcctgg cctctggcat tagcggggtg gtggacctgg ccaaccaggc 22141 ggccgtgaaaat aagattaaca gtaagcttga tccccgcct cccgtagagg agcctccacc 22321 ggccgtggag acagtgtct cagaggggcg tggcgaaaag cgtccgcac ccgacaggga 22381 agaaactctg gtgaccaaa tagacgagcc tccctcgtac gaggaggcac taaagcaagg 22441 cctgccacca acccgtcca tcgcgccat ggctaccgga gtgctgggga agcctgccc 22501 cgtaacgctg gacctgcct cccccgccac acccagcag gtgtaacgcc 22621 gcgatcgttg cggccgtag ccagtggca caaccaccc 22561 gtcgccgtt gtgtaaccc gtcctagccg cgggtcccatg gcgatcgttg cggccgtag caatccctga agcgcaaaagc acactgaaca gcaccaccc 22621 gcgatcgttg cggcccgtag ccagtggcaa ctggcaaaagc acactgaaca gcatcgtggg 22681 tttgggggtg caatccctga agcgccaaag agcgccaaag agcgccaag agcgccggg tgcaagagc taccctgag ggactgctg tgcaagatgt tgcaagacg agcgccggg gtaccatgt tgcaagacg ccagagggcc taccccgga gtacctggag 22861 acccctgaa gtaccttag gcgccgcaag gtacctgag gtacctgag gtacctgaa taacaagttt agaaacccca cggtggccc tacgcacac gagacgtact 22921 tcagcctgaa taacaagttt agaaacccca cggtggccc tacgcacac gtgaccacag 22981 accggtctaa gcgtttgacc ctagctgtg gtgataaccg ttgtgctaacca actgcacacc 23041 cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg ttgtgctaacca atggctccacacacacacacacacacacacacacacacac	21841	cgtgcccgga	attgcatccg	tggccttgca	ggcgcagaga	cactgattaa	aaacaagtta
22021 catgggaaac tggcaagata tcggcaccag caatatgagc ggtggcgcct tcagctgggg 22081 ctcgctgtgg agcggcatta aaaatttcgg ttccgccgtt aagaactatg gcagcaaagc 22141 ctggaacagc agcacaggcc agatgctgag ggacaagttg aaagagcaaa atttccaaca 22201 aaaggtggta gatggcctgg cctctggcat tagcggggtg gtggacctgg ccaaccaggc 22261 agtgcaaaat aagattaaca gtaagcttga tccccgccct cccgtagagg agcctccacc 22321 ggccgtggag acagtgtctc cagaggggcg tggcgaaaag cgtccggac ccgacaggga 22381 agaaactctg gtgacgcaaa tagacgagcc tccctcgtac gaggaggcac taaagcaagg 22441 cctgcccacc accegtccaa tcgcgccaat ggctaccgga gtgctgggc agcacacacc 22501 cgtaacgctg gacctgcctc cccccgccga cacccagcag gtgctgggcc agcacacacc 22561 gtccgccgtt gttgtaaccc gtcctagccg cgcgtcctg cgcggcccg ccagcggtcc 22621 gcgatcgttg cggcccgtag ccagtggcaa ctggcaaagc acactgaaca gcatcgtggg 22681 tttgggggtg caatccctga agcgccgaca agcgccagaa agcgccgcag agcgccgcgg caatccctga agcgccagaa ggagctgctg agcgccgcgg atgcttctga tagctaacgt gtcgtatgtg 22741 tgtcatgtat gcgtccatgt cgccgccaaa atgacctgaa ataccagtt agaacaccac agcggtctc accagagatgc tccaggatgg ccagagatggc ataccctgaa ataccagat ataccagtt agaaaccca cgggggcgc tacgccgcag gtacctgga agcgccacaagg 22861 accgctcgaa taacaagttt agaaacccca cggtggcgc tacgcacac gagacgtact 22921 tcagcctgaa taacaagttt agaaacccca cggtggcgc tacgcagag accgggatact accggtctca gcgtttgacg ctgcggttca tccccgtgga ccgcgaggat actgcgtact 23041 cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg ttgtgctagac atggcttcca	21901	catgtggaaa	aatcaaaata	aaagtctgga	ctctcacgct	cgcttggtcc	tgtaactatt
22081 ctcgctgtgg agcgcatta aaaatttcgg ttccgcgtt aagaactatg gcagcaaagc 22141 ctggaacagc agcacaggcc agatgctgag ggacaagttg aaagagcaaa atttccaaca 22201 aaaggtggta gatggcctgg cctctggcat tagcggggtg gtggacctgg ccaaccaggc 22261 agtgcaaaat aagattaaca gtaagcttga tcccegccct cccgtagagg agcctccacc 22321 ggccgtggag acagtgtctc cagaggggcg tggcgaaaag cgtccgggag agcatccacc 22381 agaaactctg gtgacgcaaa tagacgagcc tccctcgtac gaggaggcac taaagcaagg 22441 cctgcccacc accegtccaa tcgcgccaa ggctaccgga gtgctgggc agcacacacc 22501 cgtaacgctg gacctgcctc cccccgccga cacccagcag gtgctgggcc agcacacacc 22561 gtccgccgtt gttgtaaccc gtcctagccg cgcgtcctg cgcggccc 22621 gcgatcgttg cggcccgtag ccagtggcaa ctggcaaagc acactgaaca gcatcgtggg 22681 tttgggggtg caatccctga agcgccgacg atgcttctga tagctaacgt gtcgtatgtg 22741 tgccatgtat gcgtccatgt cgccgccaa atgatgctg agcgcccactg 22861 acgcctcgga gtacctgagc cccgggctgg gtacctgga gtacctgga atgattcta catgcacatc tcgggccagg 22861 acgcctcgaa taacaagttt agaaacccca cggtggccc tacgcacac gagacgtact 22921 tcagcctgaa taacaagttt agaaacccca cggtggcgc tacccgtga accggtctca gcgtttgacg ctgcggttca ctgcggtca cccgggggat accggtact 23041 cgtacaaggc gcggttcacc ctagctggg gtgataaccg ttgtgctagac atggcttcacc							
22141 ctggaacagc agcacaggcc agatgctgag ggacaagttg aaagagcaaa atttccaaca 22201 aaaggtggta gatggectgg cctctggcat tagcggggtg gtggacctgg ccaaccaggc 22261 agtgcaaaat aagattaaca gtaagcttga tcccegccct cccgtagagg agcctccacc 22321 ggccgtggag acagtgtctc cagaggggcg tggcgaaaag cgtccgcgac ccgacaggga 22381 agaaactctg gtgacgcaaa tagacgagcc tccctcgtac gaggaggcac taaagcaagg 22441 cctgcccacc accegtccaa tcgcgccat ggctaccgga gtgctgggc agcacacacc 22501 cgtaacgctg gacctgcctc cccccgccga cacccagcag aaacctgtgc tgccaggccc 22561 gtccgcgtt gttgtaaccc gtcctagccg cgcgtcctg cgccgcgcc ccagcggtcc 22621 gcgatcgttg cggcccgtag ccagtggcaa ctggcaaagc acactgaaca gcatcgtggg 22681 tttgggggtg caatccctga agcgccgacag atgcttctga tagctaacgt gtcgtatgtg 22741 tgccatgtat gcgtccatgt cgccgccaaga ggagctgctg agcgccgcgg 22861 acgcctcgga gtacctgagc cccggggtcg atgatgtgt caagcactgag atgatgtcta catgcacatc tcgggccagg 22861 acgcctcgaa taacaagttt agaaacccca cggtggcgc tacgcacac gagacgtact 22921 tcagcctgaa taacaagttt agaaacccca cggtggcgc tacgcaggat actgcgtact 22981 accggtctca gcggttcacc ctagctgtgg gtgataaccg tgtgctagac atggcttcacc 23041 cgtacaaggc gcggttcacc ctagctggg gtgataaccg tgtgctagac atggcttcacc							
22201 aaaggtggta gatggeetgg cetetggeat tageggggtg gtggacetgg ceaaccagge 22261 agtgeaaaat aagattaaca gtaagettga teecegeett eegtagagg ageeteeace 22321 ggeegtggag acagtgtete cagaggggeg tggegaaaag egteeggaa eegacaggga 22381 agaaactetg gtgaegeaa tagaegagee teectegtae gaggaggeae taaageaagg 22441 eetgeecaee accegteeca tegegeeae ggetaeegga gtgetgggee ageacaeaee 22501 egtaaegetg gaeetgeete eeeegega eaceeagaag aaacetgtge tgeeaggeee 22561 gteegeegtt gttgtaaeee gteetageeg egegteeetg egeegeege eeageggeee 22621 gegategttg eggeeegtag eeasteeetga eegegeeae atgettetga tagetaaegg 22681 tttgggggtg eaateeetga agegeegaeg atgettetga tagetaaegt gtegtatgtg 22741 tgteatgtat gegteeatgt egeegeeaga gtggtetta eatgeaeate tegggeeagg 22861 aegeetegga gtaeetgage eeeggeegg eegggetgg 22861 aegeetegga gtaeetgage eeegggetgg tgeagteet eageaegae gtgaeeatgt 22921 teageetgaa taaeaagttt agaaaeeeea eggtggeee taegeaegae gtgaeeaegg 22981 aeeggtetea geggtteaee etgeggttea teeeegtgga etgeteaeg etgegtaete 23041 egtaeaagge geggtteaee etagetggg gtgataaeeg tggaeteeae atggetteea							
22261 agtgcaaaat aagattaaca gtaagcttga teecegeest eeegtagagg ageeteeace 22321 ggeegtggag acagtgtete cagaggggeg tggcgaaaag egteegegae eegacaggga 22381 agaaactetg gtgacgaaa tagacgagee teectegtae gaggaggeae taaageaagg 22441 eetgeecae accegteeca tegegeeaa ggetaeegga gtgetgggee ageacaeaece 22501 egtaacgetg gacetgeete eeeeegga eaceeagga gaacetgtge tgeeaggeee 22561 gteegeegtt gttgtaacee gteetageeg egegteeetg egeegeegg eeagggeee 22621 gegategttg eggeeegtag eeagteggaa etggeaaage acaetgaaea geategtgg 22681 tttgggggtg eaateeetga agegeegaeg atgettetga tagetaaegt gtegtatgtg 22741 tgteatgtat gegteeatgt egeegeeaga ggagetgetg ageegeegge 22861 acgeetegaa gtaeetgage eeeggeegg atgetteta eatgeaeate teeggeeagg 22861 acgeetegaa taaeaagtt agaaaeeeea eggtggeee taegeaega gtgaceaegg 22921 teageetgaa taaeaagtt agaaaeeeea eggtggegee taegeaegae gtgaceaeag 22981 aceggtetea geggtteaee etageggtea teeeegtga etgegteeaeg etgegtaete 23041 egtaeaagge geggtteaee etagetgtgg gtgataaeeg tgtgetaaea atggetteea							
22321 ggccgtggag acagtgtctc cagaggggcg tggcgaaaag cgtccgcgac ccgacaggga 22381 agaaactctg gtgacgcaaa tagacgagcc tccctcgtac gaggaggcac taaagcaagg 22441 cctgccacc accegtcca tcgcgccat ggctaccgga gtgctgggcc agcacacacc 22501 cgtaacgctg gacctgcctc cccccgccga cacccagcag aaacctgtgc tgccaggccc 22561 gtccgccgtt gttgtaaccc gtcctagccg cgcgtcctg cgccgcgcg ccagcggtcc 22621 gcgatcgttg cggcccgtag ccagtggcaa ctggcaaagc acactgaaca gcatcgtggg 22681 tttgggggtg caatccctga agcgccgacg atgcttctga tagctaacgt gtcgtatgtg 22741 tgccatgtat gcgtccatgt cgccgccaga ggagctgctg agccgccgcg cgccgcttt 22801 ccaagatggc tacccctcg atgatgccg atgatgtcta catgcacatc tcgggccagg 22861 acgcctcgga gtacctgagc cccgggtcg tgcagttcg ccgggccagg gtacctgga tagcctcgga tagcctcgga tagcctcgga ccgggccagg 22921 tcagcctgaa taacaagttt agaaacccca cggtggcgcc tacgcacga gtgaccacag 22981 accggtctca gcgtttgacg ctgcggttca tccccgtgga ccgcgaggat actgcttca 23041 cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg tgtgctagac atggcttca	22201	aaaggtggta	gatggcctgg	cctctggcat	tagcggggtg	gtggacctgg	ccaaccaggc
22381 agaaactctg gtgacgcaaa tagacgagcc tccctcgtac gaggaggcac taaagcaagg 22441 cctgcccacc accegtccca tcgcgcccat ggctaccgga gtgctgggcc agcacacacc 22501 cgtaacgctg gacctgcctc cccccgccga cacccagcag aaacctgtgc tgccagggccc 22561 gtccgccgtt gttgtaaccc gtcctagccg cgcgtccctg cgccgcgcg ccagcggtcc 22621 gcgatcgttg cggcccgtag ccagtggcaa ctggcaaagc acactgaaca gcatcgtggg 22681 tttgggggtg caatccctga agcgccgacg atgcttctga tagctaacgt gtcgtatgtg 22741 tgtcatgtat gcgtccatgt cgccgccaga ggagctgctg agccgccgcg cgcccgcttt 22801 ccaagatggc taccccttcg atgatgccg agtggtctta catgcacatc tcgggccagg 22861 acgcctcgga gtacctgagc cccgggctgg tgcagttcgc cgccgccacc gagacgtact 22921 tcagcctgaa taacaagttt agaaacccca cggtggcgc tacgcacgac gtgaccacag 22981 accggtctca gcgtttgacg ctgcggttca tccccgtgga ccgcgaggat actgcgtact 23041 cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg tgtgctagac atggcttcca	22261	agtgcaaaat	aagattaaca	gtaagcttga	teceegecet	cccgtagagg	agcctccacc
22441 cctgccacc accegtcca tcgcgccat ggctaccgga gtgctgggcc agcacaccc 22501 cgtaacgctg gacctgcctc ccccgccga cacccagcag aaacctgtgc tgccaggccc 22561 gtccgccgtt gttgtaaccc gtcctagccg cgcgtccctg cgccgcgcg ccagcggtcc 22621 gcgatcgttg cggcccgtag ccagtggcaa ctggcaaagc acactgaaca gcatcgtggg 22681 tttgggggtg caatccctga agcgccgacg atgcttctga tagctaacgt gtcgtatgtg 22741 tgtcatgtat gcgtccatgt cgccgccaga ggagctgctg agccgccgcg cgcccgcttt 22801 ccaagatggc taccccttcg atgatgccg agtggtctta catgcacatc tcgggccagg 22861 acgcctcgga gtacctgagc cccgggctgg tgcagttcgc cgcgccacc gagacgtact 22921 tcagcctgaa taacaagttt agaaacccca cggtggcgcc tacgcacgac gtgaccacag 22981 accggtctca gcgtttgacg ctgcggttca tccccgtgga ccgcgaggat actgcgtact 23041 cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg tgtgctagac atggcttcca	22321	ggccgtggag	acagtgtctc	cagaggggcg	tggcgaaaag	cgtccgcgac	ccgacaggga
22501 cgtaacgctg gacctgcctc ccccgccga cacccagcag aaacctgtgc tgccaggccc 22561 gtccgccgtt gttgtaaccc gtcctagccg cgcgtccctg cgccgcgcg ccagcggtcc 22621 gcgatcgttg cggcccgtag ccagtggcaa ctggcaaagc acactgaaca gcatcgtggg 22681 tttgggggtg caatccctga agcgccgacg atgcttctga tagctaacgt gtcgtatgtg 22741 tgtcatgtat gcgtccatgt cgccgccaga ggagctgctg agccgccgcg cgcccgcttt 22801 ccaagatggc taccccttcg atgatgccgc agtggtctta catgcacatc tcgggccagg 22861 acgcctcgga gtacctgagc cccgggctgg tgcagttcgc ccgcgccacc gagacgtact 22921 tcagcctgaa taacaagttt agaaacccca cggtggcgcc tacgcacgac gtgaccacag 22981 accggtctca gcgtttgacg ctgcggttca tccccgtgga ccgcgaggat actgcgtact 23041 cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg tgtgctagac atggcttcca							
22501 cgtaacgctg gacctgcctc ccccgccga cacccagcag aaacctgtgc tgccaggccc 22561 gtccgccgtt gttgtaaccc gtcctagccg cgcgtccctg cgccgcgcg ccagcggtcc 22621 gcgatcgttg cggcccgtag ccagtggcaa ctggcaaagc acactgaaca gcatcgtggg 22681 tttgggggtg caatccctga agcgccgacg atgcttctga tagctaacgt gtcgtatgtg 22741 tgtcatgtat gcgtccatgt cgccgccaga ggagctgctg agccgccgcg cgcccgcttt 22801 ccaagatggc taccccttcg atgatgccgc agtggtctta catgcacatc tcgggccagg 22861 acgcctcgga gtacctgagc cccgggctgg tgcagttcgc ccgcgccacc gagacgtact 22921 tcagcctgaa taacaagttt agaaacccca cggtggcgcc tacgcacgac gtgaccacag 22981 accggtctca gcgtttgacg ctgcggttca tccccgtgga ccgcgaggat actgcgtact 23041 cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg tgtgctagac atggcttcca	22441	cctgcccacc	acccgtccca	tcgcgcccat	ggctaccgga	gtgctgggcc	agcacacacc
22561 gtccgcgtt gttgtaacce gtcctagccg egegteettg egeegegeg ccageggtee 22621 gegategttg eggeeegtag ecagtggcaa etggcaaage acactgaaca gcategtggg 22681 tttgggggtg eaatecetga agegeegaeg atgettetga tagetaacgt gtcgtatgtg 22741 tgtcatgtat gegteeatgt egeegeeaga ggagetgetg ageegeegeg egeegettt 22801 ecaagatgge tacceetteg atgatgeege agtggtetta eatgeacate tegggeeagg 22861 acgeetegga gtacetgage ecegggetgg tgeagttege egegeeace gagaegtaet 22921 teageetgaa taacaagttt agaaaceeca eggtggegee tacgeaegae gtgaceaeag 22981 aceggtetea gegtttgaeg etgeggttea teecegtgga eegegaggat actgegtaet 23041 egtacaagge geggtteaee etagetgtgg gtgataaceg tgtgetagae atggetteea	22501	cgtaacgctg	gacctgcctc	ccccgccga	cacccagcag	aaacctgtgc	tgccaggccc
22621 gegategttg eggecegtag ecagtggcaa etggcaaage acactgaaca geategtggg 22681 tttgggggtg eaateeetga agegeegaeg atgettetga tagetaaegt gtegtatgtg 22741 tgteatgtat gegteeatgt egeegeeaga ggagetgetg ageegeegeg egeeegettt 22801 ecaagatgge taeeeetteg atgatgeege agtggtetta eatgeaeate tegggeeagg 22861 aegeetegga gtaeetgage ecegggetgg tgeagttege eegegeeace gagaegtaet 22921 teageetgaa taacaagttt agaaaeeeea eggtggegee taegeaegae gtgaeeacag 22981 aeeggtetea gegtttgaeg etgeggtea teeeegtgga eegegaggat aetgegtaet 23041 egtaeaagge geggtteaee etagetgtgg gtgataaeeg tgtgetagae atggetteea	22561	gtccgccgtt	gttgtaaccc	gtcctagccg	cgcgtccctg	cgccgcgccg	ccagcggtcc
22681 tttgggggtg caatcoctga agcgccgacg atgcttctga tagctaacgt gtcgtatgtg 22741 tgtcatgtat gcgtccatgt cgccgccaga ggagctgctg agccgccgcg cgcccgcttt 22801 ccaagatggc taccccttcg atgatgccgc agtggtctta catgcacatc tcgggccagg 22861 acgcctcgga gtacctgagc cccgggctgg tgcagttcgc ccgcgccacc gagacgtact 22921 tcagcctgaa taacaagttt agaaacccca cggtggcgcc tacgcacgac gtgaccacag 22981 accggtctca gcgtttgacg ctgcggttca tccccgtgga ccgcgaggat actgcgtact 23041 cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg tgtgctagac atggcttca	22621	gcgatcgttg	cggcccgtag	ccagtggcaa	ctggcaaagc	acactgaaca	gcatcgtggg
22741 tgtcatgtat gegtecatgt egeegeeaga ggagetgetg ageegeegeg egeeegettt 22801 ccaagatgge tacccetteg atgatgeege agtggtetta catgeacate tegggeeagg 22861 aegeetegga gtacctgage ecegggetgg tgeagttege eegegeeace gagaegtact 22921 teageetgaa taacaagttt agaaaceeca eggtggegee tacgeaegae gtgaccaeag 22981 aeeggtetea gegtttgaeg etgeggtea teeeegtgga eegegaggat aetgegtact 23041 egtacaagge geggtteaee etagetgtgg gtgataaeeg tgtgetagae atggetteea	22681	tttgggggtg	caatccctga	agcgccgacg	atgcttctga	tagctaacgt	gtcgtatgtg
22801 ccaagatggc taccectteg atgatgcegc agtggtctta catgcacate tegggccagg 22861 acgcetegga gtacetgage ecegggetgg tgcagttege eegegecace gagacgtact 22921 teageetgaa taacaagttt agaaaceeca eggtggegee tacgcaegae gtgaceacag 22981 aceggtetea gegtttgaeg etgeggttea teecegtgga eegegaggat actgegtact 23041 egtacaagge geggtteace etagetgtgg gtgataaceg tgtgetagae atggetteca	22741	tgtcatgtat	gcgtccatgt	cgccgccaga	ggagctgctg	agccgccgcg	cgcccgcttt
22861 acgcctcgga gtacctgage ecegggetgg tgeagttege eegegeeace gagacgtact 22921 teageetgaa taacaagttt agaaaceeca eggtggegee taegeaegae gtgaccaeag 22981 aceggtetea gegtttgaeg etgeggttea teeeegtgga eegegaggat actgegtact 23041 egtacaagge geggtteaec etagetgtgg gtgataaeeg tgtgetagae atggetteea	22801	ccaagatggc	taccccttcg	atgatgccgc	agtggtctta	catgcacatc	tcgggccagg
22921 tcagcctgaa taacaagttt agaaacccca cggtggcgcc tacgcacgac gtgaccacag 22981 accggtctca gcgtttgacg ctgcggttca tccccgtgga ccgcgaggat actgcgtact 23041 cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg tgtgctagac atggcttcca							
22981 accggtctca gegtttgacg etgeggttca teccegtgga eegegaggat actgegtact 23041 egtacaagge geggttcace etagetgtgg gtgataaceg tgtgetagae atggetteca	22921	tcagcctgaa	taacaagttt	agaaacccca	cggtggcgcc	tacgcacgac	gtgaccacag
23041 cgtacaaggc gcggttcacc ctagctgtgg gtgataaccg tgtgctagac atggcttcca	22981	accggtctca	gcgtttgacg	ctgcggttca	tccccgtgga	ccgcgaggat	actgcgtact
23101 cgtactttga catccgcggc gtgctggaca ggggccctac ttttaagccc tactctggca	23041	cgtacaaggc	gcggttcacc	ctagctgtgg	gtgataaccg	tgtgctagac	atggcttcca
	23101	cgtactttga	catccgcggc	gtgctggaca	ggggccctac	ttttaagccc	tactctggca

FIG. 4H

23161	ctgcctacaa	cgcactggcc	cccaagggtg	cccccaactc	gtgcgagtgg	gaacaaaatg
			caagaacttg			
23281	aggcgcgaga	acaggaacaa	gctaagaaaa	cccatgtata	tgcccaggct	ccactgtccg
23341	gaataaaaat	aactaaagaa	ggtctacaaa	taggaactgc	cgacgccaca	gtagcaggtg
			gacaaaactt			
			acagcagctg			
23521	tgaaaccctg	ctatggctca	tacgctagac	${\tt ccaccaattc}$	caacggcgga	cagggcgtta
23581	tggttgaaca	aaatggtaaa	ttggaaagtc	aagtcgaaat	gcaattttt	tccacatcca
23641	caaatgccac	aaatgaagtt	aacaatatac	aaccaacagt	tgtattgtac	agcgaagatg
23701	taaacatgga	aactccagat	actcatcttt	cttataaacc	taaaatgggg	gataaaaatg
23761	ccaaagtcat	gcttggacaa	caagcaatgc	caaacagacc	aaattacatt	gcttttagag
23821	acaattttat	tggtctcatg	tattacaaca	gcacaggtaa	catgggtgtc	cttgctggtc
23881	aggcatcgca	gttgaacgct	gttgtagatt	tgcaagacag	aaacacagag	ctgtcctacc
23941	agcttttgct	tgattcaatt	ggcgacagaa	caagatactt	ttcaatgtgg	aatcaagctg
			gtcagaatta			
24061	caaattattg	ctttcctctt	ggtggaattg	ggattactga	cacttttcaa	gctgttaaaa
24121	caactgctgc	taacggggac	caaggcaata	ctacctggca	aaaagattca	acatttgcag
24181	aacgcaatga	aataggggtg	ggaaataact	ttgccatgga	aattaacctg	aatgccaacc
24241	tatggagaaa	tttcctttac	tccaatattg	cgctgtacct	gccagacaag	ctaaaataca
24301	accccaccaa	tgtggaaata	tctgacaacc	ccaacaccta	cgactacatg	aacaagcgag
24361	tggtggctcc	tgggcttgta	gactgctaca	ttaaccttgg	ggcgcgctgg	tctctggact
			tttaaccacc			
24481	tgttgttggg	aaacggccgc	tacgtgccct	ttcacattca	ggtgccccaa	aagttttttg
			ctgccaggct			
24601	atgttaacat	ggttctgcag	agctctctgg	gaaacgacct	tagagttgac	ggggctagca
24661	ttaagtttga	cagcatttgt	ctttacgcca	ccttcttccc	catggcccac	aacacggcct
24721	ccacgctgga	agccatgctc	agaaatgaca	ccaacgacca	gtcctttaat	gactaccttt
			cccatacccg			
24841	catcgcgcaa	ctgggcagca	tttcgcggtt	gggccttcac	acgcttgaag	acaaaggaaa
24901	ccccttccct	gggatcaggc	tacgaccctt	actacaccta	ctctggctcc	ataccatacc
24961	ttgacggaac	cttctatctt	aatcacacct	ttaagaaggt	ggccattact	tttgactctt
25021	ctgttagctg	gccgggcaac	gaccgcctgc	ttactcccaa	tgagtttgag	attaagcgct
25081	cagttgacgg	ggagggctat	aacgtagctc	agtgcaacat	gacaaaggac	tggttcctag
25141	tacagatatt	ggccaactac	aatattggct	accagggctt	ctacattcca	gaaagctaca
			ttcagaaact			
			cagcaggttg			
			accatgcgcg			
			gcggttgata			
25441	gcaccctgtg	gcgcatcccc	ttctccagta	actttatgtc	catgggtgcg	ctcacagacc
			gcaaactccg			
25561	atcccatgga	cgagcccacc	cttctttatg	ttttgtttga	agtctttgac	gtggtccgtg
25621	tacaccaacc	gcaccgcggc	gtcatcgaga	ccgtgtacct	gcgcacgccc	ttctcggccg
			agcaagcaac			
			ttgtcaaaga			
25801	ctatgacaag	cacttcccaa	gctttgtttc	cccacacaaq	ctcqcctgcg	ccatagttaa
			ggggcgtaca			
25921	aaaaacatgc	tacctctttq	agccctttgg	cttttctgac	caacgtctca	agcaggttta
25981	ccagtttgag	tacgagtcac	tcctgcgccg	tagcgccatt	gcctcttccc	ccgaccgctg
26041	tataacqctq	gaaaagtcca	cccaaagcgt	gcaggggccc	aactcggccg	cctgtggcct
26101	attetectec	atgtttctcc	acgcctttgc	caactggccc	caaactccca	tggatcacaa
26161	cccaccata	aaccttatta	ccggggtacc	caactccatg	cttaacagtc	cccaggtaca
26221	acccacccta	cgccgcaacc	aggaacagct	ctacagette	ctggagcgcc	actcgcccta
26281	cttccacaac	cacagtgcgc	aaattaggag	cgccacttct	ttttgtcact	tgaaaaacat
26341	gtaaaaataa	totactagga	gacactttca	ataaaggcaa	atgtttttat	ttgtacactc
			accettgeeg			
						=

26461	gccgcgcatc	gctatgcgcc	actggcaggg	acacgttgcg	atactggtgt	ttagtgctcc
26521	acttaaactc	aggcacaacc	atccgcggca	gctcggtgaa	gttttcactc	cacaggctgc
26581	gcaccatcac	caacgcgttt	agcaggtcgg	gcgccgatat	cttgaagtcg	cagttggggc
26641	ctccgccctg	cgcgcgcgag	ttgcgataca	cagggttaca	gcactggaac	actatcagcg
26701	ccgggtggtg	cacgctggcc	agcacgctct	tgtcggagat	cagatecgeg	tccaggtcct
26761	ccgcgttgct	cagggcgaac	ggagtcaact	ttggtagctg	ccttcccaaa	aagggtgcat
26821	gcccaggctt	tgagttgcac	tcgcaccgta	gtggcatcag	aaggtgaccg	tgcccagtct
26881	gggcgttagg	atacagcgcc	tgcatgaaag	ccttgatctg	cttaaaagcc	acctgagect
					aaactgattg	
					ctgcaccaca	
					cagcgcgcgc	
27121	cgctcgtcac	atccatttca	atcacgtgct	ccttatttat	cataatgctc	ccgtgtagac
27181	acttaagctc	gccttcgatc	tcagcgcagc	ggtgcagcca	caacgcgcag	cccgtgggct
27241	cgtggtgctt	gtaggttacc	tctgcaaacg	actgcaggta	cgcctgcagg	aatcgcccca
					caacccgcgg	
					gtcaggcagt	
27421	ttgcctttag	atcgttatcc	acgtggtact	tgtccatcaa	cgcgcgcgca	gcctccatgc
27481	ccttctccca	cgcagacacg	atcggcaggc	tcagcgggtt	tatcaccgtg	ctttcacttt
27541	ccgcttcact	ggactcttcc	ttttcctctt	gcatccgcat	accccgcgcc	actgggtcgt
27601	cttcattcag	ccgccgcacc	gtgcgcttac	ctcccttgcc	gtgcttgatt	agcaccggtg
27661	ggttgctgaa	acccaccatt	tgtagcgcca	catcttctct	ttcttcctcg	ctgtccacga
27721	tcacctctgg	ggatggcggg	cgctcgggct	tgggagaggg	gcgcttcttt	ttctttttgg
27781	acgcaatggc	caaatccgcc	gtcgaggtcg	atggccgcgg	gctgggtgtg	cgcggcacca
27841	gcgcatcttg	tgacgagtct	tcttcgtcct	cggactcgag	acgccgcctc	agccgctttt
27901	ttgggggcgc	gcggggaggc	ggcggcgacg	gcgacgggga	cgagacgtcc	tccatggttg
27961	gtggacgtcg	cgccgcaccg	cgtccgcgct	cgggggtggt	ttcgcgctgc	tcctcttccc
					ggagtcagtc	
					caccgatgcc	
28141	ctaccacctt	ccccgtcgag	gcacccccgc	ttgaggagga	ggaagtgatt	atcgagcagg
28201	acccaggttt	tgtaagcgaa	gacgacgaag	atcgctcagt	accaacagag	gataaaaagc
					gcggggggac	
					tctgcagcgc	
28381	ttatctgcga	cgcgttgcaa	gagcgcagcg	atgtgcccct	cgccatagcg	gatgtcagcc
28441	ttgcctacga	acgccacctg	ttctcaccgc	gcgtaccccc	caaacgccaa	gaaaacggca
28501	catgcgagcc	caacccgcgc	ctcaacttct	accccgtatt	tgccgtgcca	gaggtgcttg
28561	ccacctatca	catctttttc	caaaactgca	agatacccct	atcctgccgt	gccaaccgca
					catacctgat	
28681	tegacgaagt	gccaaaaatc	tttgagggtc	ttggacgcga	cgagaagcgc	gcggcaaacg
					agtgctggtg	
28801	gtgacaacgc	gcgcctagcc	gtgctgaaac	gcagcatcga	ggtcacccac	tttgcctacc
					gagcgagctg	
28921	gtgcacgacc	cctggagagg	gatgcaaact	tgcaagaaca	aaccgaggag	ggcctacccg
					cgagcctgcc	
					ggagcttgag	
29101	gattettae	tgacccggag	atgcagcgca	agctagagga	aacgttgcac	tacacctttc
29161	accaggacta	catacaccaa	gcctgcaaaa	tttccaacgt	ggagctctgc	aacctggtct
					cgtgcttcat	
29281	agggcgaggc	gegeegegae	tacgtccgcg	actgcgttta	cttatttctg	tgctacacct
29341	ggcaaacggc	catgggcgtg	tggcagcagt	gcctggagga	gcgcaacctg	aaggagctgc
29401	agaagctgct	aaagcaaaac	ttgaaggacc	tatggacggc	cttcaacgag	cgctccgtgg
29461	ccacacacat	ggcggacatt	atcttcccca	aacgcctgct	taaaaccctg	caacagggtc
29521	taccagactt	caccagtcaa	agcatottoc	aaaactttag	gaactttatc	ctagagcgtt
29581	caggaattct	acccaccacc	tactatacac	ttcctagcga	ctttgtgccc	attaagtacc
					gcagctagcc	
					cctactggag	
		_				-

		atgcaccccg				
	-	cggtaccttt				
		actcactccg				
		cgcccacgag				
		ctgcgtcatt				
		agagtttctg				
		caacccaatc				
		tggcacccaa				
		gggacagtca				
		gcctagacga				
		tcgcattccc				
		ccgctcctca				
		ctggaaccag				
		gccaaggcta				
30601	ttgcaagact	gtgggggcaa	catctccttc	gcccgccgct	ttcttctcta	ccatcacggc
		cccgtaacat				
30721	ggcggcagcg	gcagcaacag	cagcggccac	gcagaagcaa	aggcgaccgg	atagcaagac
		cccaagaaat				
		gaacccgtat				
30901	tgctatattt	caacagagca	ggggccaaga	acaagagctg	aaaataaaaa	acaggtctct
		accegeaget				
		gaggctctct				
		caaatttaag				
31141	agcacctgtc	gtcagcgcca	ttatgagcaa	ggaaattccc	acgccctaca	tgtggagtta
		atgggacttg				
		ggaccccaca				
		gaacaggcgg				
31381	ttggcccgct	gccctggtgt	accaggaaag	tcccgctccc	accactgtgg	tacttcccag
		gccgaagttc				
		cggtcgcccg				
		gacgagtcgg				
		gctggccgct				
31681	ctcgtcctcg	gagccgcgct	ccggaggcat	tggaactcta	caatttattg	aggagttcgt
31741	gccttcggtt	tacttcaacc	ccttttctgg	acctcccggc	cactacccgg	accagtttat
		gacgcggtaa				
		ctgcgcctga				
31921	cggctccggt	gagttttgtt	actttgaatt	gcccgaagag	catatcgagg	gcccggcgca
31981	cggcgtccgg	ctcaccaccc	aggtagagct	tacacgtagc	ctgattcggg	agtttaccaa
32041	gcgccccctg	ctagtggagc	gggagcgggg	tccctgtgtt	ctgaccgtgg	tttgcaactg
32101	tcctaaccct	ggattacatc	aagatcttat	tccattcaac	taacaataaa	cacacaataa
32161	attacttact	taaaatcagt	cagcaaatct	ttgtccagct	tattcagcat	cacctccttt
32221	ccctcctccc	aactctggta	tttcagcagc	cttttagctg	cgaactttct	ccaaagtcta
32281	aatgggatgt	caaattcctc	atgttcttgt	ccctccgcac	ccactatctt	catattgttg
32341	cagatgaaac	gcgccagacc	gtctgaagac	accttcaacc	ctgtgtaccc	atatgacacg
32401	gaaaccggcc	ctccaactgt	gcctttcctt	acccctccct	ttgtgtcgcc	aaatgggttc
32461	caagaaagtc	ccccggagt	gctttctttg	cgtctttcag	aacctttggt	tacctcacac
32521	ggcatgcttg	cgctaaaaat	gggcagcggc	ctgtccctgg	atcaggcagg	caaccttaca
		tcactgtttc				
32641	acateegege	cccttacagt	cagctcaggc	gccctaacca	tggccacaac	ttcgcctttg
		acaacactct				
		ttgctaccaa				
		ccctctctgc				
		caaatggtag				
32941	ggaaaacttq	ggctcaaaat	tggcggtcct	ttgcaagtgg	ccaccgactc	acatgcacta
33001	acactaggta	ctggtcaggg	ggttgcagtt	cataacaatt	tgctacatac	aaaagttaca

33061	ggcgcaatag	ggtttgatac	atctggcaac	atggaactta	aaactggaga	tggcctctat
	gtggatagcg					
33181	gcttttgaca	acaccgcaat	aacaattaac	gctggaaaag	ggttggaatt	tgaaacagac
33241	tcctcaaacg	gaaatcccat	aaaaacaaaa	attggatcag	gcatacaata	taataccaat
33301	ggagctatgg	ttgcaaaact	tggaacaggc	ctcagttttg	acageteegg	agccataaca
33361	atgggcagca	taaacaatga	cagacttact	ctttggacaa	caccagaccc	atccccaaat
33421	tgcagaattg	cttcagataa	agactgcaag	ctaactctgg	cgctaacaaa	atgtggcagt
33481	caaattttgg	gcactgtttc	agctttggca	gtatcaggta	atatggcctc	catcaatgga
33541	actctaagca	gtgtaaactt	ggttcttaga	tttgatgaca	acggagtgct	tatgtcaaat
33601	tcatcactgg	acaaacagta	ttggaacttt	agaaacgggg	actccactaa	cggtcaacca
33661	tacacttatg	ctgttgggtt	tatgccaaac	ctaaaagctt	acccaaaaac	tcaaagtaaa
33721	actgcaaaaa	gtaatattgt	tagccaggtg	tatcttaatg	gtgacaagtc	taaaccattg
33781	cattttacta	ttacgctaaa	tggaacagat	gaaaccaacc	aagtaagcaa	atactcaata
33841	tcattcagtt	ggtcctggaa	cagtggacaa	tacactaatg	acaaatttgc	caccaattcc
33901	tataccttct	cctacattgc	ccaggaataa	agaatcgtga	acctgttgca	tgttatgttt
33961	caacgtgttt	atttttcaat	tgcagaaaat	ttcaagtcat	ttttcattca	gtagtatagc
34021	cccaccacca	catagcttat	actaatcacc	gtaccttaat	caaactcaca	gaaccctagt
34081	attcaacctg	ccacctccct	cccaacacac	agagtacaca	gtcctttctc	cccggctggc
34141	cttaaacagc	atcatatcat	gggtaacaga	catattctta	ggtgttatat	tccacacggt
34201	ctcctgtcga	gccaaacgct	catcagtgat	gttaataaac	tccccgggca	gctcgcttaa
34261	gttcatgtcg	ctgtccagct	gctgagccac	aggctgctgt	ccaacttgcg	gttgctcaac
34321	gggcggcgaa	ggagaagtcc	acgcctacat	gggggtagag	tcataatcgt	gcatcaggat
34381	agggcggtgg	tgctgcagca	gcgcgcgaat	aaactgctgc	cgccgccgct	ccgtcctgca
34441	ggaatacaac	atggcagtgg	tctcctcagc	gatgattcgc	accgcccgca	gcataaggcg
34501	ccttgtcctc	cgggcacagc	agcgcaccct	gatctcactt	aagtcagcac	agtaactgca
34561	gcacagtacc	acaatattgt	ttaaaatccc	acagtgcaag	gcgctgtatc	caaagctcat
34621	ggcggggacc	acagaaccca	cgtggccatc	ataccacaag	cgcaggtaga	ttaagtggcg
34681	acccctcata	aacacgctgg	acataaacat	tacctctttt	ggcatgttgt	aattcaccac
34741	ctcccggtac	catataaacc	tctgattaaa	catggcgcca	tccaccacca	tcctaaacca
34801	gctggccaaa	acctgcccgc	cggctatgca	ctgcagggaa	ccgggactgg	aacaatgaca
34861	gtggagagcc	caggactcgt	aaccatggat	catcatgctc	gtcatgatat	caatgttggc
34921	acaacacagg	cacacgtgca	tacacttcct	caggattaca	agctcctccc	gcgtcagaac
34981	catatcccag	ggaacaaccc	attcctgaat	cagcgtaaat	cccacactgc	agggaagacc
	tcgcacgtaa					
35101	ctccagtatg	gtagcgcggg	tttctatctc	aaaaggaggt	agacgatccc	tactgtacgg
35161	agtgcgccga	gacaaccgag	atcotottoo	tcatagtatc	atgccaaatg	gaacgccgga
35221	cgtagtcata	tttcctgag	caaaaccagg	tacaaacata	acaaacagat	ctacatctcc
35281	ggtctcgccg	cttagatcgc	tctatataat	agttgtagta	tatccactct	ctcaaagcat
35341	ccaggcgccc	cctaacttca	gattetatat	aaactccttc	atgcgccgct	gccctgataa
35401	catccaccac	cocagaataa	gccacaccca	occaacctac	acattccttc	tgcgagtcac
35461	acacgggagg	agcgggaaga	gctggaagaa	ccatgttttt	ttttttattc	caaaagatta
35521	tccaaaacct	caaaatgaag	atctattaag	tgaacgcgct	ccctccaat	ggcgtggtca
35581	aactctacag	ccaaacaaca	gataatggca	tttgtaagat	ottocacaat	ggcttccaaa
35641	aggcaaacgg	ccctcacatc	caagtggacg	taaagggtaa	accetteagg	gtgaatctcc
35701	tctataaaca	ttccaccacc	ttcaaccato	cccasataat	totcatotog	ccaccttctc
35761	aatatatctc	taaccaaatc	cccaatatta	agtccggcca	ttgtaaaaat	ctoctccaga
35001	gcgccctcca	cattagaact	caagcagcga	atcatcatto	casasattca	gattecteac
35001	agacctgtat	aagattgaaa	accordance	taacaaaaaa	accoccatco	catagatece
35001	ttcgcagggc	aayactCadd	tasteetees	antetacea	daccadedece	accacttccc
26001	cgccaggaac	caycryaaca	anaccytyca	trattatras	accongruecy	gaaactatac
36061	tooggaac	catyataada	gaacccacac	gattagga	contata	tacasaatac
36151	taaccagcgt	agececgacg	raayuuuyuu	geargggegg	cacatoota	tratrotrat
30121	tgctcaaaaa	accaggcaaa	geetegegea	aaaaayaaay	agangent	tttatatata
30181	gcagataaag	gcaggtaagc	cccggaacca	ccacagaaaa	agacaccatt	tttaaaastt
36241	acatgtctgc	gggtttctgc	ataaacacaa	aacaaaacaa	caaaaaaaca	ataggaggat
36301	agaagcctgt	cttacaacag	gaaaaacaac	ccttataagc	acaagacgga	ctacygecat

FIG. 4L

36361	gccggcgtga	ccgtaaaaaa	actggtcacc	gtgattaaaa	agcaccaccg	acagctcctc
			tgtaagactc			
36481	cagtgctaaa	aagcgaccga	aatagcccgg	gggaatacat	acccgcaggc	gtagagacaa
36541	cattacagcc	cccataggag	gtataacaaa	attaatagga	gagaaaaaca	cataaacacc
36601	tgaaaaaccc	tcctgcctag	gcaaaatagc	accctcccgc	tccagaacaa	catacagcgc
36661	ttccacagcg	gcagccataa	cagtcagcct	taccagtaaa	aaagaaaacc	tattaaaaaa
36721	acaccactcg	acacggcacc	agctcaatca	gtcacagtgt	aaaaaagggc	caagtgcaga
36781	gcgagtatat	ataggactaa	aaaatgacgt	aacggttaaa	gtccacaaaa	aacacccaga
36841	aaaccgcacg	cgaacctacg	cccagaaacg	aaagccaaaa	aacccacaac	ttcctcaaat
36901	cgtcacttcc	gttttcccac	gttacgtcac	ttcccatttt	aagaaaacta	caattcccaa
36961	cacatacaag	ttactccgcc	ctaaaaccta	cgtcacccgc	cccgttccca	cgcccgcgc
37021	cacgtcacaa	actccacccc	ctcattatca	tattggcttc	aatccaaaat	aaggtatatt
37081	attgatgatg					

10	30	50
		GGGGCCTACTTGGTTGCATCATCACT
		+ rgGlyLeuLeuGlyCysIleIleThr
	10	20
70	90	110
		GAGAGGTTCAGGTGGTTTCCACCGCA
SerLeuThrGlyAr	gAspLysAsnGlnValGluG: 30	lyGluValGlnValValSerThrAla 40
	30	
130	150	170
		TGTGTTGGACCGTTTACCATGGTGCT
		++ alCysTrpThrValTyrHisGlyAla
Intollibelinese	50	60
190	210	230
		TCACCCAGATGTACACTAATGTGGAC
		++ leThrGlnMetTyrThrAsnValAsp
GIY OCILIY BIIM DC	70	80
250	270	290
		CGCGTTCCTTGACACCATGCACCTGT
		++ laArgSerLeuThrProCysThrCys
GIIMSPLEUVAIGI	90	100
310	330	350
		CTGACGTCATTCCGGTGCGCCGGCGG
		++ laAspValIleProValArgArgArg
01, 202001	110	120
370	390	410
		CTGTCTCCTACTTGAAGGGCTCTTCG
		roValSerTyrLeuLysGlySerSer
	130	140

FIG. 5A

430	450	470
GGTGGTCCACTGCTCTGCCC	TTCGGGGCACGCTGTGG	GCATCTTCCGGGCTGCCGTATGC
	+	++
GlyGlyProLeuLeuCysPr	oSerGlyHisAlaValG	lyIlePheArgAlaAlaValCys
	150	160
490	510	530
		TAGAGTCCATGGAAACTACTATG
		+
ThrArgGlyValAlaLysAl		alGluSerMetGluThrThrMet 180
	170	100
550	570	590
		CCGTACCGCAGTCATTTCAAGTG
		++
		laValProGlnSerPheGlnVal
	190	200
610	630	650
GCCCACCTACACGCTCCCAC	TGGCAGCGGCAAGAGTAC	CTAAAGTGCCGGCTGCATATGCA
		++
AlaHisLeuHisAlaProTh	ırGlySerGlyLysSerTh	hrLysValProAlaAlaTyrAla
	210	220
		710
670	690	710
		rtgccgctaccttagggtttggg ++
		alAlaAlaThrLeuGlyPheGly
Aradindrylyrnysvarne	230	240
	250	
730	750	770
• •	ACGGTATTGACCCCAACAT	ICAGAACTGGGGTAAGGACCATT
		+
AlaTyrMetSerLysAlaHi	.sGlyIleAspProAsnI	leArgThrGlyValArgThrIle
	250	260
790	810	830
ACCACAGGCGCCCCCGTCAC	:ATACTCTACCTATGGCA	AGTTTCTTGCCGATGGTGGTTGC
·	•	++
		ysPheLeuAlaAspGlyGlyCys
	270	280

850	870	890
		GCCATTCAACTGACTCGACTACA
		++ ysHisSerThrAspSerThrThr
	290	300
910	930	950
		CGGCTGGAGCGCGGCTTGTCGTG
·		hrAlaGlyAlaArgLeuValVal
-	310	320
970	990	1010
CTCGCCACCGCTACGCCT	CCGGGATCGGTCACCGTGC	CACACCCAAACATCGAGGAGGTG
		++ roHisProAsnIleGluGluVal
	330	340
1030	1050	1070
		AAGCCATCCCCATTGAAGCCATC
AlaLeuSerAsnThrGly	GluIleProPheTyrGlyLy 350	ysAlaIleProIleGluAlaIle 360
	330	300
1090	1110	1130
		AGAAGTGCGACGAGCTCGCCGCA
		ysLysCysAspGluLeuAlaAla
	370	380
1150	1170	1190
	ATCAACGCTGTGGCGTATT	ACCGGGGGCTCGATGTGTCCGTC
		++ yrArgGlyLeuAspValSerVal
ny sneuber GryneuGry	390	400
1010	1020	1250
1210	1230	1250 ACGCTCTGATGACGGGCTATACG
		++
IleProThrIleGlyAsp	ValValValAlaThrAs	spAlaLeuMetThrGlyTyrThr
	410	420

FIG. 5C

	1310	1290	1270
	CATGTGTCACCCAGACAGTC		
	++		·
440	into y o van i i i i o i i i i i van.	430	Giyaspriicaspscrvari
	1370	1350	1330
	CCGTGCCTCAAGACGCAGTG		
	hrValProGlnAspAlaValS		
460	ii vaii i ooimiopiia vaii	450	neursprioimiineimi
	1430	1410	1390
	GAGGCATCTACAGGTTTGTG		
	rgGlyIleTyrArgPheVal		
480	rggryfferyrargenevar.	470	GINAIGAIGGIYAIGINIC
	1490	1470	1450
	rcctgtgtgagtgctatgac		
500	alLeuCysGluCysTyrAspA	490	GluargeroserGrymete
	1550	1530	1510
CTGAACACA	CGGTTAGGTTGCGGGCCTAC	CCCCGCCGAGACCTCG	GCTTGGTACGAGCTCACCC
520	erValArgLeuArgAlaTyrI	rproAtaGiuThrser 510	AlaTrpTyrGluLeuTnrF
320		310	
	1610	1590	1570
ACAGGCCTC	AGTTCTGGGAGAGTGTCTTC#	CCAGGACCACCTGGAG	CCAGGGTTGCCCGTTTGCC
finitGlyLeu 540	luPheTrpGluSerValPheT	SGINASPHISLEUGIU 530	
340		330	
	1670	1650	1630
TTCCCCTAC	CCAAGCAGGCAGGAGACAACI	CTTCTTGTCCCAGACC	ACCCACATAGATGCACACT
PheProTyr. 560	nrLysGlnAlaGlyAspAsnI	sPheLeuSerGlnThr 550	ThrHisIleAspAlaHisF
200		220	

FIG. 5D

1690	1710	1730
		AGGCCCCACCTCCATCATGGGAT
•	•	lnAlaProProProSerTrpAsp
	570	580
1750	1770	1790
	\TACGGCTGAAACCTACGCT	rgcacgggccaacacccttgctg
		++
GinMetTrpLysCysLeu	tieArgLeuLysProThrLe 590	euHisGlyProThrProLeuLeu 600
1810	1830	1850
		CCCACCCCATAACCAAATACATC
		rHisProIleThrLysTyrIle
	610	620
1870	1890	1910
		GCACCTGGGTGCTGGTGGCGGA
		+
MetAlaCysMetSerAlaA	\spLeuGluValValThrSe	erThrTrpValLeuValGlyGly
	630	640
1930	1950	1970
GTCCTTGCAGCTCTGGCCC	CGTATTGCCTGACAACAG	CAGTGTGGTCATTGTGGGTAGG
		++ LySerValValIleValGlyArg
Valbedalaniabedalar	650	660
1990	2010	2030
		GGAGTTTCTCTACCAGGAGTTC
•		rgGluPheLeuTyrGlnGluPhe
	670	680
2050	2070	2090
		CGAGCAGGGAATGCAGCTCGCC
		+
AspGluMetGluGluCysA		.eGluGlnGlyMetGlnLeuAla
	690	700

FIG. 5E

2110	2130	2150
GAGCAATTCAAGCAGAAA	GCGCTCGGGTTACTGCAAA	CAGCCACCAAACAAGCGGAGGCT
	+ +	++
GluGlnPheLysGlnLys	AlaLeuGlyLeuLeuGlnT	hrAlaThrLysGlnAlaGluAla
	710	720
2170	2190	2210
GCTGCTCCCGTGGTGGAG	TCCAAGTGGCGAGCCCTTG	AGACATTCTGGGCGAAGCACATG
	+ +	++
AlaAlaProValValGlu	SerLysTrpArgAlaLeuG	luThrPheTrpAlaLysHisMet
	730	740
2230	2250	2270
TGGAATTTCATCAGCGGG	ATACAGTACTTAGCAGGCT	TATCCACTCTGCCTGGGAACCCC
	-+	++
TrpAsnPheIleSerGly	TleGlnTyrLeuAlaGlyL	euSerThrLeuProGlyAsnPro
-	750	760
2290	2310	2330
GCAATAGCATCATTGATG	GCATTCACAGCCTCTATCA	CCAGCCCGCTCACCACCCAAAGT
		++
AlaIleAlaSerLeuMet	AlaPheThrAlaSerIleT	hrSerProLeuThrThrGlnSer
	770	780
2350	2370	2390
ACCCTCCTGTTTAACATC	TTGGGGGGGTGGCTG	CCCAACTCGCCCCCCCCAGCGCC
		+
ThrLeuLeuPheAsnIle	LeuGlyGlyTrpValAlaA	laGlnLeuAlaProProSerAla
	790	800
2410	2430	2450
	GCCGGCATCGCCGGTGCGG(CTGTTGGCAGCATAGGCCTTGGG
		+
AlaSerAlaPheValGlv	AlaGlyIleAlaGlyAlaA	laValGlySerIleGlyLeuGly
	810	820
	020	
2470	2490	2510
		GAGTGGCCGGCGCGCTCGTGGCC
		++
		lyValAlaGlyAlaLeuValAla
-	oon	

FIG. 5F

	2570	2550	2530
CTTCCTGCC	CCGAGGACCTGGTCAATCTAC	CGGCGAGATGCCCTCCAC	TTCAAGGTCATGAGC
+	+	+	
LeuProAla	hrGluAspLeuValAsnLeuI	rGlyGluMetProSerT	PheLysValMetSer
860		850	
	2630	2610	2590
	rcgrgrgrgcagcaatactg(
	alValCysAlaAlaIleLeu/	-	IleLeuSerProGly
880		870	
	2690	2670	2050
CCCTCCCC	Z690 TGAACCGGCTGATAGCGTTC	2670 	2650
	++		
	etAsnArgLeuIleAlaPheA		
900	· · · · · · · · · · · · · · · · ·	890	,,,
	2750	2730	2710
CGTGTTACT	CTGAGAGCGACGCCGCAGCGC	CCCCACGCACTATGTGC	GGTAATCATGTTTCC
+	+_	+-	
ArgValThr	roGluSerAspAlaAlaAlaA	rProThrHisTyrValP	GlyAsnHisValSer
920		910	
	2810	2790	2770
	TGCTGAAAAGGCTCCACCAG		
	out outrahed out acted		
940	euLeuLysArgLeuHisGln1	rLeurnriterniginle 930	GinileLeusersei
740		930	
	2870	2850	2830
TGGATATGC	GGCTAAGGGATGTTTGGGAC1		
TrpIleCys	rpLeuArgAspValTrpAsp1	rProCysSerGlySerT	GluAspCysSerThr
960		950	
	2930	2910	2890
CTACCGGGA	AGTCCAAGCTCCTGCCGCAG(CTTCAAGACCTGGCTCC	ACGGTGTTGACTGAC
+		+	
LeuProGly	lnSerLysLeuLeuProGlnI	pPheLysThrTrpLeuG	ThrValLeuThrAsp
980		970	

FIG. 5G

2950	2970	2990
		rctggcggggagacggcatcatg ++
		alTrpArgGlyAspGlyIleMet
	990	1000
3010	3030	3050
		ATGTCAAAAACGGTTCCATGAGG
		++ isValLysAsnGlySerMetArg
	1010	1020
3070	3090	3110
		GAACATTCCCCATCAACGCATAC
		++ LyThrPheProIleAsnAlaTyr
lievaldlyffonysimic	1030	1040
2120	2150	3170
3130 ACCACGGGCCCCTGCACAC	3150 CCTCTCCAGCGCCAAACT?	ATTCTAGGGCGCTGTGGCGGGTG
	+	
ThrThrGlyProCysThrP		rSerArgAlaLeuTrpArgVal
	1050	1060
3190	3210	3230
		ATTTCCACTACGTGACGGGCATG
		spPheHisTyrValThrGlyMet
	1070	1080
3250	3270	3290
		CTCCTGAATTCTTCACGGAGGTG
		++ LaProGluPhePheThrGluVal
_		1100
3310	3330	3350
		GCCTCTCCTACGGGAGGAGGTT
		+
		gProLeuLeuArgGluGluVal 1120

FIG. 5H

3370	3390	3410
ACATTCCAGGTCGGGCTCA	ACCAATACCTGGTTGGGTC	ACAGCTACCATGCGAGCCCGAA
	+	-++
ThrPheGlnValGlyLeuA	snGlnTyrLeuValGlySe	erGlnLeuProCysGluProGlu
	1130	1140
3430	3450	3470
		CCTCCCACATCACAGCAGAAACG
		+
ProaspyalalavalLeur	nrsermettediniaspri 1150	oSerHisIleThrAlaGluThroser:
	1130	1100
3490	3510	3530
		rGGCCAGCTCTTCAGCTAGCCAG
= = : : : : : : : : : : : : : : : : : :		++
AlaLysArgArgLeuAlaA	rgGlySerProProSerLe	euAlaSerSerSerAlaSerGln
	1170	1180
3550	3570	3590
TTGTCTGCGCCTTCCTTGA	AGGCGACATGCACTACCCA	ACCATGTCTCTCCGGACGCTGAC
•		++
LeuSerAlaProSerLeuL		sHisValSerProAspAlaAsp
	1190	1200
3610	3630	3650
		GCGGGAACATCACCCGCGTGGAG
		-++
		.yGlyAsnIleThrArgValGlu
	1210	1220
3670	3690	3710
TCGGAGAACAAGGTGGTAG	TCCTGGACTCTTTCGACCC	GCTTCGAGCGGAGGAGGATGAG
+	+	-++
SerGluAsnLysValValV	alLeuAspSerPheAspPr	oLeuArgAlaGluGluAspGlu
	1230	1240
3730	3750	3770
		CAAGAAGTTCCCCGCAGCGATG
•		
ArgGluValSerValProA	laGluIleLeuArgLysSe	rLysLysPheProAlaAlaMet

FIG. 5I

3790	3810	3830
		TTAGAGTCCTGGAAGGACCCGGAC
+-		+
ProlleTrpAlaArgProAsp		LeuGluSerTrpLysAspProAsp
	1270	1280
2252	2050	2000
3850	3870	3890
		CCTATCAAGGCCCCTCCAATACCA
		+
Tyrvalproprovatvathis	1290	ProIleLysAlaProProIlePro 1300
	1290	1300
3910	3930	3950
		PCCTCCGTGTCTTCTGCCTTAGCG
		+
		SerSerValSerSerAlaLeuAla
110110111ggg, 2 g	1310	1320
3970	3990	4010
GAGCTCGCTACTAAGACCTTC	GGCAGCTCCGAATCA'	TCGGCCGTCGACAGCGGCACGGCG
~~~~~		
GluLeuAlaThrLysThrPhe	GlySerSerGluSer:	SerAlaValAspSerGlyThrAla
	1330	1340
4030	4050	4070
ACCGCCCTTCCTGACCAGGCC	rccgacgacggtgaca	AAAGGATCCGACGTTGAGTCGTAC
		+
ThrAlaLeuProAspGlnAla	SerAspAspGlyAspl	LysGlySerAspValGluSerTyr
	1350	1360
4090	4110	4130
TCCTCCATGCCCCCCCTTGAGG	GGGGAACCGGGGGAC	CCCGATCTCAGTGACGGGTCTTGG
		+
SerSerMetProProLeuGlu	GlyGluProGlyAspI	ProAspLeuSerAspGlySerTrp
	1370	1380
4150	4170	4190
TCTACCGTGAGCGAGGAAGCTAGTGAGGATGTCGTCTGCTGCTCAATGTCCTACACATGG		
SerThrValSerGluGluAlaSerGluAspValValCysCysSerMetSerTyrThrTrp		
SerThrValSerGluGluAlas	~	• -
	1390	1400

FIG. 5J

4210	4230	4250
		SCAAGCTGCCCATCAACGCGTTG
		++
ThrGIYAIaLeuileThr	Procysalaalaglugiuse 1410	erLysLeuProIleAsnAlaLeu 1420
4270	4290	4310
		CCACAACATCTCGCAGCGCAGGC
		++
SerAsnSerLeuLeuArg	HisHisAsnMetValTyrA 1430	LaThrThrSerArgSerAlaGly 1440
	1430	1440
4330	4350	4370
CTGCGGCAGAAGAAGGTCA	ACCTTTGACAGACTGCAAGT	PCCTGGACGACCACTACCGGGAC
·		
LeuArgGlnLysLysVal		alLeuAspAspHisTyrArgAsp
	1450	1460
4390	4410	4430
GTGCTCAAGGAGATGAAG(	GCGAAGGCGTCCACAGTTA!	AGGCTAAACTCCTATCCGTAGAG
	-+	+
ValLeuLysGluMetLys		ysAlaLysLeuLeuSerValGlu
	1470	1480
4450	4470	4490
	CCCCACATTCGGCCAAATC	CCAAGTTTGGCTATGGGGCAAAG
		+
GluAlaCysLysLeuThri		erLysPheGlyTyrGlyAlaLys
	1490	1500
4510	4530	4550
		CCACTCCGTGTGGAAGGACTTG
	-+	++
AspValArgAsnLeuSer:	SerLysAlaValAsnHisIl	leHisSerValTrpLysAspLeu
	1510	1520
4570	4590	4610
		TGGCAAAAAATGAGGTTTTCTGT
	-+	
LeuGluAspThrValThr	ProlleAspThrThrlleMe	etAlaLysAsnGluValPheCys
	1530	1540

FIG. 5K

4630	4650	4670
GTCCAACCAGAGAAAGGA	GCCGTAAGCCAGCCCGCCT	PTATCGTATTCCCAGATCTGGGA
	-+	
ValGlnProGluLysGly	GlyArgLysProAlaArgLe	eulleValPheProAspLeuGly
	1550	1560
4690	4710	4730
GTCCGTGTATGCGAGAAG	ATGGCCCTCTATGATGTGGT	CTCCACCCTTCCTCAGGTCGTG
	-+	+
ValArgValCysGluLys	MetAlaLeuTyrAspValVa	alSerThrLeuProGlnValVal
	1570	1580
4750	4770	4790
ATGGGCTCCTCATACGGA	PTCCAGTACTCTCCTGGGCA	AGCGAGTCGAGTTCCTGGTGAAT
	-+	
MetGlySerSerTyrGly	PheGlnTyrSerProGlyGl	nArgValGluPheLeuValAsn
	1590	1600
4810	4830	4850
ACCTGGAAATCAAAGAAA	AACCCCATGGGCTTTTCATA	TGACACTCGCTGTTTCGACTCA
	-+	
ThrTrpLysSerLysLys1	AsnProMetGlyPheSerTy	rAspThrArgCysPheAspSer
	.1610	1620
4870	4890	4910
ACGGTCACCGAGAACGACA	ATCCGTGTTGAGGAGTCAAT	TTACCAATGTTGTGACTTGGCC
		-+
ThrValThrGluAsnAspl	[leArgValGluGluSerIl	.eTyrGlnCysCysAspLeuAla
	1630	1640
4930	4950	4970
		GCTTTATATCGGGGGTCCTCTG
		_++
ProGluAlaArgGlnAlal		gLeuTyrIleGlyGlyProLeu
	1650	1660
4990	5010	5030
		CCGCGCGAGCGCGTGCTGACG
		-+
ThrAsnSerLysGlyGlnA		sArgAlaSerGlyValLeuThr
	1670	1680

FIG. 5L

ACTAGCTGCGGTAACACCCTCACATGTTACTTGAAGGCCTCTGCAGCCTGCG	5050	5070	5090
### ThrserCysGlyAsnThrLeuThrCysTyrLeuLysAlaSerAlaAlaCysArgAlaAla 1690 1700    5110   5130   5150     AAGCTCCAGGACTGCACGATGCTCGTGAACGGAGACGACCTTGTCGTTATCTGTGAAAGC			
1690   1700			
5110 5130 5150  AAGCTCCAGGACTGCACGATGCTCGTGAACGGAGACGACCTTGTCGTTATCTGTGAAAGC  LysLeuGlnAspCysThrMetLeuValAsnGlyAspAspLeuValValI1eCysGluSer 1710 1720  5170 5190 5210  GCGGGAACCCAAGAGGACGCGGGGGAGCCTACGAGTCTTCACGGAGGCTATGACTAGGTAC  AlaGlyThrGlnGluAspAlaAlaSerLeuArgValPheThrGluAlaMetThrArgTyr 1730 1740  5230 5250 5270  TCTGCCCCCCCGGGGGACCCGCCCCAACCAGAATACGACTTGGAGCTGATAACATCATGT	ThrSerCysGlyAsnThrLe		
AAGCTCCAGGACTGCACGATGCTCGTGAACGGAGACGACCTTGTCGTTATCTGTGAAAGC		1690	1700
AAGCTCCAGGACTGCACGATGCTCGTGAACGGAGACGACCTTGTCGTTATCTGTGAAAGC	5110	5130	5150
LysLeuGlnAspCysThrMetLeuValAsnGlyAspAspLeuValValIleCysGluSer 1710 1720  5170 5190 5210  GCGGGAACCCAAGAGGACGCGGGGAGCCTACGAGTCTTCACGGAGGCTATGACTAGGTAC			
1710			
1710   5190   5210			
5170 5190 5210  GCGGGAACCCAAGAGGACGCGGCGAGCCTACGAGTCTTCACGGAGGCTATGACTAGGTAC	-,		
GCGGGAACCCAAGAGGACGCGGCGAGCCTACGAGTCTTCACGGAGGCTATGACTAGGTAC			
AlaGlyThrGlnGluAspAlaAlaSerLeuArgValPheThrGluAlaMetThrArgTyr	5170	5190	5210
1730	GCGGGAACCCAAGAGGACGC	GGCGAGCCTACGAGTCTT	CACGGAGGCTATGACTAGGTAC
1730   1740			+
5230   5250   5270	AlaGlyThrGlnGluAspAl	.aAlaSerLeuArgValPh	neThrGluAlaMetThrArgTyr
### TCTGCCCCCCGGGGACCCGCCCCAACCAGAATACGACTTGGAGCTGATAACATCATGT		1730	1740
### TCTGCCCCCCGGGGACCCGCCCCAACCAGAATACGACTTGGAGCTGATAACATCATGT			
SerAlaProProGlyAspProProGlnProGluTyrAspLeuGluLeuIleThrSerCys	5230	5250	5270
SerAlaProProGlyAspProProGlnProGluTyrAspLeuGluLeuIleThrSerCys           1750         1760           5290         5310         5330           TCCTCCAATGTGTCGGTCGCCCACGATGCATCAGGCAAAAGGGTGTACTACCTCACCCGT	TCTGCCCCCCCGGGGACCC	:GCCCCAACCAGAATACGA	ACTTGGAGCTGATAACATCATGT
1750   1760			++
5290 5310 5330  TCCTCCAATGTGTCGGTCGCCCACGATGCATCAGGCAAAAGGGTGTACTACCTCACCCGT++++ SerSerAsnValSerValAlaHisAspAlaSerGlyLysArgValTyrTyrLeuThrArg	SerAlaProProGlyAspPr	oProGlnProGluTyrAs	spLeuGluLeuIleThrSerCys
TCCTCCAATGTGTCGGTCGCCCACGATGCATCAGGCAAAAGGGTGTACTACCTCACCCGT+ SerSerAsnValSerValAlaHisAspAlaSerGlyLysArgValTyrTyrLeuThrArg 1770 1780  5350 5370 5390  GATCCCACCACCCCCCTCGCACGGGCTGCGTGGGAAACAGCTAGACCACCTCCAGTTAAC+ AspProThrThrProLeuAlaArgAlaAlaTrpGluThrAlaArgHisThrProValAsn 1790 1800  5410 5430 5450  TCCTGGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCCAAGGATGATTCTGATG+ SerTrpLeuGlyAsnIleIleMetTyrAlaProThrLeuTrpAlaArgMetIleLeuMet		1750	1760
TCCTCCAATGTGTCGGTCGCCCACGATGCATCAGGCAAAAGGGTGTACTACCTCACCCGT+ SerSerAsnValSerValAlaHisAspAlaSerGlyLysArgValTyrTyrLeuThrArg 1770 1780  5350 5370 5390  GATCCCACCACCCCCCTCGCACGGGCTGCGTGGGAAACAGCTAGACCACCTCCAGTTAAC+ AspProThrThrProLeuAlaArgAlaAlaTrpGluThrAlaArgHisThrProValAsn 1790 1800  5410 5430 5450  TCCTGGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCCAAGGATGATTCTGATG+ SerTrpLeuGlyAsnIleIleMetTyrAlaProThrLeuTrpAlaArgMetIleLeuMet			
SerSerAsnValSerValAlaHisAspAlaSerGlyLysArgValTyrTyrLeuThrArg			
SerSerAsnValSerValAlaHisAspAlaSerGlyLysArgValTyrTyrLeuThrArg 1770 1780  5350 5370 5390  GATCCCACCACCCCCCTCGCACGGGCTGCGTGGGAAACAGCTAGACACACTCCAGTTAAC			
1770       1780         5350       5370       5390         GATCCCACCACCCCCCTCGCACGGGCTGCGTGGGAAACAGCTAGACACACTCCAGTTAAC      +         AspProThrThrProLeuAlaArgAlaAlaTrpGluThrAlaArgHisThrProValAsn       1790       1800         5410       5430       5450         TCCTGGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCCAAGGATGATTCTGATG			
5350 5370 5390  GATCCCACCACCCCCCTCGCACGGGCTGCGTGGGAAACAGCTAGACACACTCCAGTTAAC	SerSerAsnValSerValAl		
GATCCCACCACCCCCTCGCACGGGCTGCGTGGGAAACAGCTAGACACACTCCAGTTAAC+ AspProThrThrProLeuAlaArgAlaAlaTrpGluThrAlaArgHisThrProValAsn 1790 1800 5410 5430 5450 TCCTGGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCAAGGATGATTCTGATG+ SerTrpLeuGlyAsnIleIleMetTyrAlaProThrLeuTrpAlaArgMetIleLeuMet		1770	1780
GATCCCACCACCCCCTCGCACGGGCTGCGTGGGAAACAGCTAGACACACTCCAGTTAAC+ AspProThrThrProLeuAlaArgAlaAlaTrpGluThrAlaArgHisThrProValAsn 1790 1800 5410 5430 5450 TCCTGGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCAAGGATGATTCTGATG+ SerTrpLeuGlyAsnIleIleMetTyrAlaProThrLeuTrpAlaArgMetIleLeuMet	E2E0	E270	5300
AspProThrThrProLeuAlaArgAlaAlaTrpGluThrAlaArgHisThrProValAsn 1790 1800  5410 5430 5450  TCCTGGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCAAGGATGATTCTGATG		*	
AspProThrThrProLeuAlaArgAlaAlaTrpGluThrAlaArgHisThrProValAsn 1790 1800  5410 5430 5450  TCCTGGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCAAGGATGATTCTGATG	<del>-</del>		
1790 1800  5410 5430 5450  TCCTGGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCAAGGATGATTCTGATG+ SerTrpLeuGlyAsnIleIleMetTyrAlaProThrLeuTrpAlaArgMetIleLeuMet			
5410 5430 5450  TCCTGGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCAAGGATGATTCTGATG+ SerTrpLeuGlyAsnIleIleMetTyrAlaProThrLeuTrpAlaArgMetIleLeuMet	Asprionininininionedai		
TCCTGGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCAAGGATGATTCTGATG		1750	2000
TCCTGGCTAGGCAACATTATCATGTATGCGCCCACTTTGTGGGCAAGGATGATTCTGATG	5410	5430	5450
SerTrpLeuGlyAsnIleIleMetTyrAlaProThrLeuTrpAlaArgMetIleLeuMet			
	SerTrpLeuGlvAsnIleIl	.eMetTyrAlaProThrLe	euTrpAlaArgMetIleLeuMet
	•		

FIG. 5M

5510	5490	5470
	TTCTAGCACAGGAGCAACTTG	
	euLeuAlaGlnGluGlnLeuG	•
1840	1830	
5570	5550	5530
	CCATTGAGCCACTTGACCTAC	
	SerIleGluProLeuAspLeuP	
1860	1850	
5630	5610	5590
	CACTCCATAGTTACTCTCCAG	
	SerLeuHisSerTyrSerProG	
1880	1870	_
5690	5670	5650
	GGGTACCACCCTTGCGAGTCT	
	: :lyValProProLeuArgValT	
1900	1890	2010, 220
5750	5730	5710
	CCCAGGGGGGGAGGGCCGCCA	
	e++ SerGlnGlyGlyArgAlaAlaT	
1920	1910	varmightam groupour
5810	5790	5770
	AACTCAAACTCACTCCAATCC	
	++ ysLeuLysLeuThrProIleP	
	1930	
5870	5850	5830
	CTGGTTACAGCGGGGGAGACA	
	.laGlyTyrSerGlyGlyAspI	
	tagiyiyrsergiygiyaspi 1950	

FIG. 5N

5890	5910	5930					
GCCCGACCCCGCTGGTT	CATGCTGTGCCTACTCCTACTT	TTCTGTAGGGGTAGGCATCTAC					
	+	-+					
AlaArgProArgTrpPh	AlaArgProArgTrpPheMetLeuCysLeuLeuLeuSerValGlyValGlyIleTyr						
	1970	1980					
•							
5950 5955							
CTGCTCCCCAACCGA	(SEQ. ID. NO. 5)						
LeuLeuProAsnArg	(SEQ. ID. NO. 6)						
1985							

1.	TCGCGCGTTT	CGGTGATGAC	GGTGAAAACC	TCTGACACAT	GCAGCTCCCG
51	GAGACGGTCA	CAGCTTGTCT	GTAAGCGGAT	GCCGGGAGCA	GACAAGCCCG
101	TCAGGGCGCG	TCAGCGGGTG	TTGGCGGGTG	TCGGGGCTGG	CTTAACTATG
151	CGGCATCAGA	GCAGATTGTA	CTGAGAGTGC	ACCATATGCG	GTGTGAAATA
201	CCGCACAGAT	GCGTAAGGAG	AAAATACCGC	ATCAGATTGG	CTATTGGCCA
251	TTGCATACGT	TGTATCCATA	TCATAATATG	TACATTTATA	TTGGCTCATG
301	TCCAACATTA	CCGCCATGTT	GACATTGATT	ATTGACTAGT	TATTAATAGT
351	AATCAATTAC	GGGGTCATTA	GTTCATAGCC	CATATATGGA	GTTCCGCGTT
401	ACATAACTTA	CGGTAAATGG	CCCGCCTGGC	TGACCGCCCA	ACGACCCCCG
451	CCCATTGACG	TCAATAATGA	CGTATGTTCC	CATAGTAACG	CCAATAGGGA
501	CTTTCCATTG	ACGTCAATGG	GTGGAGTATT	TACGGTAAAC	TGCCCACTTG
551	GCAGTACATC	AAGTGTATCA	TATGCCAAGT	ACGCCCCTA	TTGACGTCAA
601	TGACGGTAAA	TGGCCCGCCT	GGCATTATGC	CCAGTACATG	ACCTTATGGG
651	ACTTTCCTAC	TTGGCAGTAC	ATCTACGTAT	TAGTCATCGC	TATTACCATG
701	GTGATGCGGT	TTTGGCAGTA	CATCAATGGG	${\tt CGTGGATAGC}$	GGTTTGACTC
751	ACGGGGATTT	CCAAGTCTCC	ACCCCATTGA	CGTCAATGGG	AGTTTGTTTT
801	GGCACCAAAA	${\tt TCAACGGGAC}$	${\tt TTTCCAAAAT}$	GTCGTAACAA	CTCCGCCCCA
851	TTGACGCAAA	${\tt TGGGCGGTAG}$	${\tt GCGTGTACGG}$	${\tt TGGGAGGTCT}$	ATATAAGCAG
901	AGCTCGTTTA	${\tt GTGAACCGTC}$	${\tt AGATCGCCTG}$	GAGACGCCAT	CCACGCTGTT
951	TTGACCTCCA	${\tt TAGAAGACAC}$	${\tt CGGGACCGAT}$	CCAGCCTCCG	CGGCCGGGAA
1001	CGGTGCATTG	GAACGCGGAT	${\tt TCCCCGTGCC}$	AAGAGTGACG	TAAGTACCGC
1051	CTATAGACTC	TATAGGCACA	CCCCTTTGGC	TCTTATGCAT	GCTATACTGT
1101	TTTTGGCTTG	GGGCCTATAC	ACCCCCGCTT	CCTTATGCTA	TAGGTGATGG
1151	TATAGCTTAG	CCTATAGGTG	${\tt TGGGTTATTG}$	ACCATTATTG	ACCACTCCCC
1201	TATTGGTGAC	GATACTTTCC	ATTACTAATC	CATAACATGG	CTCTTTGCCA
1251	CAACTATCTC	TATTGGCTAT	ATGCCAATAC	TCTGTCCTTC	AGAGACTGAC
1301	ACGGACTCTG	${\tt TATTTTTACA}$	GGATGGGGTC	CCATTTATTA	TTTACAAATT
1351	CACATATACA	ACAACGCCGT	CCCCGTGCC	CGCAGTTTTT	ATTAAACATA
1401	GCGTGGGATC	TCCACGCGAA	TCTCGGGTAC	GTGTTCCGGA	CATGGGCTCT
1451	TCTCCGGTAG	CGGCGGAGCT	TCCACATCCG	AGCCCTGGTC	CCATGCCTCC
1501	AGCGGCTCAT	GGTCGCTCGG	CAGCTCCTTG	CTCCTAACAG	TGGAGGCCAG
1551	ACTTAGGCAC	AGCACAATGC	CCACCACCAC	CAGTGTGCCG	CACAAGGCCG
1601	TGGCGGTAGG	GTATGTGTCT	GAAAATGAGC	GTGGAGATTG	GGCTCGCACG
1651	GCTGACGCAG	ATGGAAGACT	TAAGGCAGCG	GCAGAAGAAG	ATGCAGGCAG
1701	CTGAGTTGTT	GTATTCTGAT	AAGAGTCAGA	GGTAACTCCC	GTTGCGGTGC
1751	TGTTAACGGT	GGAGGGCAGT	GTAGTCTGAG	CAGTACTCGT	TGCTGCCGCG
1801	CGCGCCACCA	GACATAATAG	CTGACAGACT	AACAGACTGT	TCCTTTCCAT
1851	GGGTCTTTTC	TGCAGTCACC	GTCCTTAGAT	CTAGGTACCA	GATATCAGAA
1901	TTCAGTCGAC	AGCGGCCGCG	ATCTGCTGTG	CCTTCTAGTT	GCCAGCCATC
1951			TGCCTTCCTT		
2001	CCACTGTCCT				
2051	AGGTGTCATT	CTATTCTGGG	GGGTGGGGTG	GGGCAGGACA	GCAAGGGGGA

FIG. 6A

2101	GGATTGGGAA	GACAATAGCA	${\tt GGCATGCTGG}$	${\tt GGATGCGGTG}$	GGCTCTATGG
2151	CCGCTGCGGC	${\tt CAGGTGCTGA}$	AGAATTGACC	${\tt CGGTTCCTCC}$	TGGGCCAGAA
2201	AGAAGCAGGC	ACATCCCCTT	${\tt CTCTGTGACA}$	CACCCTGTCC	ACGCCCCTGG
2251	TTCTTAGTTC	${\tt CAGCCCCACT}$	${\tt CATAGGACAC}$	${\tt TCATAGCTCA}$	GGAGGGCTCC
2301	GCCTTCAATC	CCACCCGCTA	${\tt AAGTACTTGG}$	AGCGGTCTCT	CCCTCCCTCA
2351	TCAGCCCACC	AAACCAAACC	TAGCCTCCAA	${\tt GAGTGGGAAG}$	AAATTAAAGC
2401	AAGATAGGCT	ATTAAGTGCA	GAGGGAGAGA	${\tt AAATGCCTCC}$	AACATGTGAG
2451	GAAGTAATGA	GAGAAATCAT	AGAATTTCTT	${\tt CCGCTTCCTC}$	GCTCACTGAC
2501	TCGCTGCGCT	CGGTCGTTCG	${\tt GCTGCGGCGA}$	GCGGTATCAG	CTCACTCAAA
2551	GGCGGTAATA	CGGTTATCCA	CAGAATCAGG	GGATAACGCA	GGAAAGAACA
2601	TGTGAGCAAA	AGGCCAGCAA	AAGGCCAGGA	ACCGTAAAAA	GGCCGCGTTG
2651	CTGGCGTTTT	${\tt TCCATAGGCT}$	CCGCCCCCT	${\tt GACGAGCATC}$	ACAAAAATCG
2701	ACGCTCAAGT	${\tt CAGAGGTGGC}$	GAAACCCGAC	AGGACTATAA	AGATACCAGG
2751	CGTTTCCCCC	${\tt TGGAAGCTCC}$	CTCGTGCGCT	${\tt CTCCTGTTCC}$	GACCCTGCCG
2801	CTTACCGGAT	ACCTGTCCGC	${\tt CTTTCTCCCT}$	${\tt TCGGGAAGCG}$	TGGCGCTTTC
2851	TCATAGCTCA	CGCTGTAGGT	ATCTCAGTTC	GGTGTAGGTC	GTTCGCTCCA
2901	AGCTGGGCTG	TGTGCACGAA	CCCCCGTTC	AGCCCGACCG	CTGCGCCTTA
2951	TCCGGTAACT	ATCGTCTTGA	GTCCAACCCG	GTAAGACACG	ACTTATCGCC
3001	ACTGGCAGCA	GCCACTGGTA	ACAGGATTAG	CAGAGCGAGG	TATGTAGGCG
3051	GTGCTACAGA	GTTCTTGAAG	TGGTGGCCTA	ACTACGGCTA	CACTAGAAGA
3101	ACAGTATTTG	GTATCTGCGC	TCTGCTGAAG	CCAGTTACCT	TCGGAAAAAG
3151	AGTTGGTAGC	TCTTGATCCG	GCAAACAAAC	CACCGCTGGT	AGCGGTGGTT
3201	TTTTTGTTTG	CAAGCAGCAG	ATTACGCGCA	GAAAAAAAGG	ATCTCAAGAA
3251	GATCCTTTGA	TCTTTTCTAC	${\tt GGGGTCTGAC}$	GCTCAGTGGA	ACGAAAACTC
3301	ACGTTAAGGG	ATTTTGGTCA	TGAGATTATC	AAAAAGGATC	TTCACCTAGA
3351	TCCTTTTAAA	TTAAAAATGA	AGTTTTAAAT	CAATCTAAAG	TATATATGAG
3401	TAAACTTGGT	CTGACAGTTA	CCAATGCTTA	ATCAGTGAGG	CACCTATCTC
3451	AGCGATCTGT	CTATTTCGTT	CATCCATAGT	TGCCTGACTC	GGGGGGGGG
3501	GGCGCTGAGG	TCTGCCTCGT	GAAGAAGGTG	TTGCTGACTC	ATACCAGGCC
3551	TGAATCGCCC	CATCATCCAG	CCAGAAAGTG	AGGGAGCCAC	GGTTGATGAG
3601	AGCTTTGTTG	TAGGTGGACC	AGTTGGTGAT	TTTGAACTTT	TGCTTTGCCA
3651	CGGAACGGTC	TGCGTTGTCG	GGAAGATGCG	TGATCTGATC	CTTCAACTCA
3701	GCAAAAGTTC	GATTTATTCA	ACAAAGCCGC	CGTCCCGTCA	AGTCAGCGTA
3751	ATGCTCTGCC	AGTGTTACAA	CCAATTAACC	AATTCTGATT	AGAAAAACTC
3801	ATCGAGCATC	AAATGAAACT	GCAATTTATT	CATATCAGGA	TTATCAATAC
3851	CATATTTTTG	AAAAAGCCGT	TTCTGTAATG	AAGGAGAAAA	CTCACCGAGG
3901	CAGTTCCATA	GGATGGCAAG	ATCCTGGTAT	CGGTCTGCGA	TTCCGACTCG
3951	TCCAACATCA	ATACAACCTA	TTAATTTCCC	CTCGTCAAAA	ATAAGGTTAT
4001	CAAGTGAGAA	ATCACCATGA	GTGACGACTG	AATCCGGTGA	GAATGGCAAA
4051	AGCTTATGCA	TTTCTTTCCA	GACTTGTTCA	ACAGGCCAGC	CATTACGCTC
4101				GTTATTCATT	
4151				TAAAAGGACA	

FIG. 6B

4201	GGAATCGAAT	GCAACCGGCG	CAGGAACACT	${\tt GCCAGCGCAT}$	CAACAATATT
4251	TTCACCTGAA	${\tt TCAGGATATT}$	${\tt CTTCTAATAC}$	CTGGAATGCT	GTTTTCCCGG
4301	GGATCGCAGT	GGTGAGTAAC	CATGCATCAT	CAGGAGTACG	GATAAAATGC
4351	TTGATGGTCG	GAAGAGGCAT	AAATTCCGTC	AGCCAGTTTA	GTCTGACCAT
4401	CTCATCTGTA	ACATCATTGG	CAACGCTACC	TTTGCCATGT	TTCAGAAACA
4451	ACTCTGGCGC	ATCGGGCTTC	${\tt CCATACAATC}$	GATAGATTGT	CGCACCTGAT
4501	TGCCCGACAT	TATCGCGAGC	${\tt CCATTTATAC}$	CCATATAAAT	CAGCATCCAT
4551	${\tt GTTGGAATTT}$	AATCGCGGCC	${\tt TCGAGCAAGA}$	${\tt CGTTTCCCGT}$	TGAATATGGC
4601	TCATAACACC	${\tt CCTTGTATTA}$	${\tt CTGTTTATGT}$	AAGCAGACAG	TTTTATTGTT
4651	CATGATGATA	TATTTTTATC	${\tt TTGTGCAATG}$	TAACATCAGA	GATTTTGAGA
4701	CACAACGTGG	CTTTCCCCCC	$\tt CCCCCCATTA$	${\tt TTGAAGCATT}$	TATCAGGGTT
4751	ATTGTCTCAT	GAGCGGATAC	ATATTTGAAT	${\tt GTATTTAGAA}$	AAATAAACAA
4801	ATAGGGGTTC	CGCGCACATT	TCCCCGAAAA	GTGCCACCTG	ACGTCTAAGA
4851	AACCATTATT	ATCATGACAT	TAACCTATAA	AAATAGGCGT	ATCACGAGGC
4901	CCTTTCGTC				

1		AATATACCTT				
61		GCGCGGGGCG				
	GATGTTGTAA					
	GTGTGCGCCG					
	TAAATTTGGG					
30:	AGTGAAATCT	GAATAATTCT	GTGTTACTCA	TAGCGCGTAA	TATTTGTCTA	GGGCCGCGGG
36	GACTTTGACC	${\tt GTTTACGTGG}$	AGACTCGCCC	AGGTGTTTTT	CTCAGGTGTT	TTCCGCGTTC
42	CGGGTCAAAG	${\tt TTGGCGTTTT}$	${\tt ATTATTATAG}$	TCAGCTGACG	CGCAGTGTAT	TTATACCCGG
48	TGAGTTCCTC	AAGAGGCCAC	${\tt TCTTGAGTGC}$	CAGCGAGTAG	AGTTTTCTCC	TCCGAGCCGC
543	TCCGACACCG	GGACTGAAAA	${\tt TGAGACATAT}$	TATCTGCCAC	GGAGGTGTTA	TTACCGAAGA
60	AATGGCCGCC	AGTCTTTTGG	ACCAGCTGAT	CGAAGAGGTA	${\tt CTGGCTGATA}$	ATCTTCCACC
66	L TCCTAGCCAT	TTTGAACCAC	CTACCCTTCA	${\tt CGAACTGTAT}$	${\tt GATTTAGACG}$	TGACGGCCCC
72	L CGAAGATCCC	AACGAGGAGG	CGGTTTCGCA	${\tt GATTTTTCCC}$	GAGTCTGTAA	TGTTGGCGGT
78	L GCAGGAAGGG	ATTGACTTAT	TCACTTTTCC	GCCGGCGCCC	${\tt GGTTCTCCGG}$	AGCCGCCTCA
84	L CCTTTCCCGG	CAGCCCGAGC	AGCCGGAGCA	GAGAGCCTTG	${\tt GGTCCGGTTT}$	CTATGCCAAA
90	L CCTTGTGCCG	GAGGTGATCG	ATCTTACCTG	CCACGAGGCT	GGCTTTCCAC	CCAGTGACGA
96	L CGAGGATGAA	GAGGGTGAGG	AGTTTGTGTT	AGATTATGTG	GAGCACCCCG	GGCACGGTTG
102	L CAGGTCTTGT	CATTATCACC	GGAGGAATAC	GGGGGACCCA	GATATTATGT	GTTCGCTTTG
108	L CTATATGAGG	ACCTGTGGCA	TGTTTGTCTA	CAGTAAGTGA	${\tt AAAATTATGG}$	GCAGTGGGTG
114	L ATAGAGTGGT	GGGTTTGGTG	TGGTAATTTT	TTTTTTTAATT	${\tt TTTACAGTTT}$	TGTGGTTTAA
120	L AGAATTTTGT	ATTGTGATTT	TTTAAAAGGT	CCTGTGTCTG	AACCTGAGCC	TGAGCCCGAG
126	1 CCAGAACCGG	AGCCTGCAAG	ACCTACCCGG	CGTCCTAAAT	${\tt TGGTGCCTGC}$	TATCCTGAGA
132	L CGCCCGACAT	CACCTGTGTC	TAGAGAATGC	AATAGTAGTA	CGGATAGCTG	TGACTCCGGT
138	l CCTTCTAACA	CACCTCCTGA	GATACACCCG	GTGGTCCCGC	TGTGCCCCAT	TAAACCAGTT
144	L GCCGTGAGAG	TTGGTGGGCG	TCGCCAGGCT	GTGGAATGTA	TCGAGGACTT	GCTTAACGAG
150	L TCTGGGCAAC	CTTTGGACTT	GAGCTGTAAA	CGCCCCAGGC	CATAAGGTGT	AAACCTGTGA
156	1 TTGCGTGTGT	GGTTAACGCC	TTTGTTTGCT	GAATGAGTTG	ATGTAAGTTT	AATAAAGGGT
162	l GAGATAATGT	TTAACTTGCA	TGGCGTGTTA	AATGGGGCGG	GGCTTAAAGG	GTATATAATG
168	1 CGCCGTGGGC	TAATCTTGGT	TACATCTGAC	CTCATGGAGG	CTTGGGAGTG	TTTGGAAGAT
174	1 TTTTCTGCTG	TGCGTAACTT	GCTGGAACAG	AGCTCTAACA	GTACCTCTTG	GTTTTGGAGG
180	1 TTTCTGTGGG	GCTCCTCCCA	GGCAAAGTTA	GTCTGCAGAA	TTAAGGAGGA	TTACAAGTGG
186	1 GAATTTGAAG	AGCTTTTGAA	ATCCTGTGGT	GAGCTGTTTG	ATTCTTTGAA	TCTGGGTCAC
192	1 CAGGCGCTTT	TCCAAGAGAA	GGTCATCAAG	ACTTTGGATT	TTTCCACACC	GGGGCGCGCT
198	1 GCGGCTGCTG	TTGCTTTTTT	GAGTTTTATA	AAGGATAAAT	GGAGCGAAGA	AACCCATCTG
204	1 AGCGGGGGGT	ACCTGCTGGA	TTTTCTGGCC	ATGCATCTGT	GGAGAGCGGT	GGTGAGACAC
210	1 AAGAATCGCC	TGCTACTGTT	GTCTTCCGTC	CGCCCGGCAA	TAATACCGAC	GGAGGAGCAA
216	1 CAGCAGGAGG	AAGCCAGGCG	GCGGCGGCGG	CAGGAGCAGA	GCCCATGGAA	CCCGAGAGCC
222	1 GGCCTGGACC	CTCGGGAATG	AATGTTGTAC	AGGTGGCTGA	ACTGTTTCCA	GAACTGAGAC
228	1 GCATTTTAAC	CATTAACGAG	GATGGGCAGG	GGCTAAAGGG	GGTAAAGAAG	GAGCGGGGG
234	1 CTTCTGAGGC	TACAGAGGAG	GCTAGGAATC	TAACTTTTAG	CTTAATGACC	AGACACCGTC
240	1 CTGAGTGTGT	TACTTTTCAG	CAGATTAAGG	ATAATTGCGC	TAATGAGCTT	GATCTGCTGG
246	1 CGCAGAAGTA	TTCCATAGAG	CAGCTGACCA	CTTACTGGCT	GCAGCCAGGG	GATGATTTTG

FIG. 7A

2521	AGGAGGCTAT	TAGGGTATAT	GCAAAGGTGG	CACTTAGGCC	AGATTGCAAG	TACAAGATTA
2581	GCAAACTTGT	AAATATCAGG	AATTGTTGCT	ACATTTCTGG	GAACGGGGCC	GAGGTGGAGA
2641	TAGATACGGA	GGATAGGGTG	GCCTTTAGAT	GTAGCATGAT	AAATATGTGG	CCGGGGGTGC
2701	TTGGCATGGA	CGGGGTGGTT	ATTATGAATG	TGAGGTTTAC	TGGTCCCAAT	TTTAGCGGTA
2761	CGGTTTTCCT	GGCCAATACC	AATCTTATCC	TACACGGTGT	AAGCTTCTAT	GGGTTTAACA
2821	ATACCTGTGT	GGAAGCCTGG	ACCGATGTAA	GGGTTCGGGG	CTGTGCCTTT	TACTGCTGCT
2881	${\tt GGAAGGGGGT}$	GGTGTGTCGC	CCCAAAAGCA	GGGCTTCAAT	TAAGAAATGC	CTGTTTGAAA
2941	GGTGTACCTT	GGGTATCCTG	TCTGAGGGTA	ACTCCAGGGT	GCGCCACAAT	GTGGCCTCCG
3001	ACTGTGGTTG	CTTTATGCTA	GTGAAAAGCG	TGGCTGTGAT	TAAGCATAAC	ATGGTGTGTG
3061	GCAACTGCGA	GGACAGGGCC	TCTCAGATGC	${\tt TGACCTGCTC}$	GGACGGCAAC	TGTCACTTGC
3121	TGAAGACCAT	${\tt TCACGTAGCC}$	AGCCACTCTC	GCAAGGCCTG	GCCAGTGTTT	GAGCACAACA
3181	TACTGACCCG	CTGTTCCTTG	CATTTGGGTA	ACAGGAGGG	${\tt GGTGTTCCTA}$	CCTTACCAAT
3241	${\tt GCAATTTGAG}$	TCACACTAAG	ATATTGCTTG	AGCCCGAGAG	${\tt CATGTCCAAG}$	GTGAACCTGA
3301	ACGGGGTGTT	${\tt TGACATGACC}$	ATGAAGATCT	${\tt GGAAGGTGCT}$	${\tt GAGGTACGAT}$	GAGACCCGCA
3361	CCAGGTGCAG	ACCCTGCGAG	TGTGGCGGTA	AACATATTAG	GAACCAGCCT	GTGATGCTGG
3421	ATGTGACCGA	GGAGCTGAGG	CCCGATCACT	${\tt TGGTGCTGGC}$	${\tt CTGCACCCGC}$	GCTGAGTTTG
3481	GCTCTAGCGA	TGAAGATACA	GATTGAGGTA	${\tt CTGAAATGTG}$	${\tt TGGGCGTGGC}$	TTAAGGGTGG
3541	GAAAGAATAT	ATAAGGTGGG	GGTCTCATGT	AGTTTTGTAT	${\tt CTGTTTTGCA}$	GCAGCCGCCG
3601	CCATGAGCGC	CAACTCGTTT	GATGGAAGCA	TTGTGAGCTC	ATATTTGACA	ACGCGCATGC
3661	CCCCATGGGC	CGGGGTGCGT	CAGAATGTGA	TGGGCTCCAG	CATTGATGGT	CGCCCCGTCC
3721	TGCCCGCAAA	CTCTACTACC	TTGACCTACG	AGACCGTGTC	TGGAACGCCG	TTGGAGACTG
3781	CAGCCTCCGC	CGCCGCTTCA	GCCGCTGCAG	CCACCGCCCG	CGGGATTGTG	ACTGACTTTG
3841	CTTTCCTGAG	CCCGCTTGCA	AGCAGTGCAG	CTTCCCGTTC	ATCCGCCCGC	GATGACAAGT
3901	${\tt TGACGGCTCT}$	${\tt TTTGGCACAA}$	${\bf TTGGATTCTT}$	${\tt TGACCCGGGA}$	ACTTAATGTC	GTTTCTCAGC
3961	AGCTGTTGGA	TCTGCGCCAG	${\tt CAGGTTTCTG}$	CCCTGAAGGC	$\tt TTCCTCCCCT$	CCCAATGCGG
4021	TTTAAAACAT	AAATAAAAAC	CAGACTCTGT	${\tt TTGGATTTGG}$	ATCAAGCAAG	TGTCTTGCTG
4081	TCTTTATTTA	GGGGTTTTGC	$\tt GCGCGCGGTA$	GGCCCGGGAC	CAGCGGTCTC	GGTCGTTGAG
4141	GGTCCTGTGT	ATTTTTTCCA	GGACGTGGTA	AAGGTGACTC	TGGATGTTCA	GATACATGGG
4201	CATAAGCCCG	TCTCTGGGGT	GGAGGTAGCA	CCACTGCAGA	GCTTCATGCT	GCGGGGTGGT
4261	GTTGTAGATG	ATCCAGTCGT	AGCAGGAGCG	CTGGGCGTGG	TGCCTAAAAA	TGTCTTTCAG
4321	TAGCAAGCTG	ATTGCCAGGG	${\tt GCAGGCCCTT}$	GGTGTAAGTG	TTTACAAAGC	GGTTAAGCTG
4381	GGATGGGTGC	ATACGTGGGG	ATATGAGATG	CATCTTGGAC	TGTATTTTTA	GGTTGGCTAT
4441	GTTCCCAGCC	ATATCCCTCC	GGGGATTCAT	GTTGTGCAGA	ACCACCAGCA	CAGTGTATCC
4501	GGTGCACTTG	GGAAATTTGT	CATGTAGCTT	AGAAGGAAAT	GCGTGGAAGA	ACTTGGAGAC
4561	GCCCTTGTGA	CCTCCAAGAT	TTTCCATGCA	TTCGTCCATA	ATGATGGCAA	TGGGCCCACG
4621	GGCGGCGGCC	TGGGCGAAGA	TATTTCTGGG	ATCACTAACG	TCATAGTTGT	GTTCCAGGAT
4681	GAGATCGTCA	TAGGCCATTT	TTACAAAGCG	CGGGCGGAGG	GTGCCAGACT	GCGGTATAAT
4741	GGTTCCATCC	GGCCCAGGGG	CGTAGTTACC	CTCACAGATT	TGCATTTCCC	ACGCTTTGAG
4801	TTCAGATGGG	GGGATCATGT	CTACCTGCGG	GGCGATGAAG	AAAACCGTTT	CCGGGGTAGG
4861	GGAGATCAGC	TGGGAAGAAA	GCAGGTTCCT	AAGCAGCTGC	GACTTACCGC	AGCCGGTGGG
4921	CCCGTAAATC	ACACCTATTA	CCGGCTGCAA	CTGGTAGTTA	AGAGAGCTGC	AGCTGCCGTC
4981	ATCCCTGAGC	AGGGGGCCA	CTTCGTTAAG	CATGTCCCTG	ACTTGCATGT	TTTCCCTGAC

FIG. 7B

5041	CAAATCCGCC	AGAAGGCGCT	CGCCGCCCAG	CGATAGCAGT	TCTTGCAAGG	AAGCAAAGTT
5101	${\tt TTTCAACGGT}$	${\tt TTGAGGCCGT}$	CCGCCGTAGG	${\tt CATGCTTTTG}$	AGCGTTTGAC	CAAGCAGTTC
5161	${\tt CAGGCGGTCC}$	CACAGCTCGG	TCACGTGCTC	${\tt TACGGCATCT}$	CGATCCAGCA	TATCTCCTCG
5221	${\tt TTTCGCGGGT}$	${\tt TGGGGCGGCT}$	TTCGCTGTAC	GGCAGTAGTC	GGTGCTCGTC	CAGACGGGCC
5281	AGGGTCATGT	${\tt CTTTCCACGG}$	GCGCAGGGTC	CTCGTCAGCG	TAGTCTGGGT	CACGGTGAAG
5341	GGGTGCGCTC	${\tt CGGGTTGCGC}$	GCTGGCCAGG	${\tt GTGCGCTTGA}$	GGCTGGTCCT	GCTGGTGCTG
5401	AAGCGCTGCC	${\tt GGTCTTCGCC}$	${\tt CTGCGCGTCG}$	${\tt GCCAGGTAGC}$	ATTTGACCAT	GGTGTCATAG
5461	TCCAGCCCCT	CCGCGGCGTG	GCCCTTGGCG	${\tt CGCAGCTTGC}$	CCTTGGAGGA	GGCGCCGCAC
5521	GAGGGGCAGT	${\tt GCAGACTTTT}$	${\tt AAGGGCGTAG}$	${\tt AGCTTGGGCG}$	CGAGAAATAC	CGATTCCGGG
5581	GAGTAGGCAT	CCGCGCCGCA	GGCCCCGCAG	${\tt ACGGTCTCGC}$	ATTCCACGAG	CCAGGTGAGC
5641	${\tt TCTGGCCGTT}$	CGGGGTCAAA	AACCAGGTTT	CCCCCATGCT	${\tt TTTTGATGCG}$	TTTCTTACCT
5701	CTGGTTTCCA	${\tt TGAGCCGGTG}$	$\mathtt{TCCACGCTCG}$	GTGACGAAAA	GGCTGTCCGT	GTCCCCGTAT
5761	ACAGACTTGA	${\tt GAGGCCTGTC}$	${\tt CTCGAGCGGT}$	GTTCCGCGGT	CCTCCTCGTA	TAGAAACTCG
5821	GACCACTCTG	AGACGAAGGC	${\tt TCGCGTCCAG}$	GCCAGCACGA	AGGAGGCTAA	GTGGGAGGGG
5881	TAGCGGTCGT	TGTCCACTAG	${\tt GGGGTCCACT}$	CGCTCCAGGG	TGTGAAGACA	CATGTCGCCC
5941	TCTTCGGCAT	CAAGGAAGGT	${\tt GATTGGTTTA}$	${\tt TAGGTGTAGG}$	CCACGTGACC	GGGTGTTCCT
6001	GAAGGGGGC	TATAAAAGGG	GGTGGGGGCG	CGTTCGTCCT	CACTCTCTTC	CGCATCGCTG
6061	TCTGCGAGGG	CCAGCTGTTG	${\tt GGGTGAGTAC}$	TCCCTCTCAA	AAGCGGGCAT	GACTTCTGCG
6121	CTAAGATTGT	CAGTTTCCAA	AAACGAGGAG	GATTTGATAT	TCACCTGGCC	CGCGGTGATG
6181	CCTTTGAGGG	${\tt TGGCCGCGTC}$	CATCTGGTCA	GAAAAGACAA	TCTTTTTGTT	GTCAAGCTTG
6241	GTGGCAAACG	ACCCGTAGAG	GGCGTTGGAC	AGCAACTTGG	CGATGGAGCG	CAGGGTTTGG
6301	${\tt TTTTTGTCGC}$	GATCGGCGCG	CTCCTTGGCC	GCGATGTTTA	GCTGCACGTA	TTCGCGCGCA
6361	ACGCACCGCC	ATTCGGGAAA	GACGGTGGTG	CGCTCGTCGG	GCACTAGGTG	CACGCGCCAA
6421	CCGCGGTTGT	GCAGGGTGAC	AAGGTCAACG	CTGGTGGCTA	CCTCTCCGCG	TAGGCGCTCG
6481	${\tt TTGGTCCAGC}$	AGAGGCGGCC	GCCCTTGCGC	GAGCAGAATG	GCGGTAGTGG	GTCTAGCTGC
6541	GTCTCGTCCG	GGGGGTCTGC	GTCCACGGTA	AAGACCCCGG	GCAGCAGGCG	CGCGTCGAAG
6601	TAGTCTATCT	TGCATCCTTG	CAAGTCTAGC	GCCTGCTGCC	ATGCGCGGGC	GGCAAGCGCG
6661	CGCTCGTATG	GGTTGAGTGG	GGGACCCCAT	GGCATGGGGT	GGGTGAGCGC	GGAGGCGTAC
6721	ATGCCGCAAA	TGTCGTAAAC	${\tt GTAGAGGGGC}$	TCTCTGAGTA	TTCCAAGATA	TGTAGGGTAG
6781	CATCTTCCAC	CGCGGATGCT	GGCGCGCACG	TAATCGTATA	GTTCGTGCGA	GGGAGCGAGG
6841	AGGTCGGGAC	CGAGGTTGCT	ACGGGCGGC	TGCTCTGCTC	GGAAGACTAT	CTGCCTGAAG
6901	ATGGCATGTG	AGTTGGATGA	${\tt TATGGTTGGA}$	CGCTGGAAGA	CGTTGAAGCT	GGCGTCTGTG
				TAGGAGTCGC		
				TCCAGGGTTT		
7081	TCCTGTCCCT	TTTTTTTCCA	CAGCTCGCGG	TTGAGGACAA	ACTCTTCGCG	GTCTTTCCAG
						GTAGAACTGG
				TCTACGGGTA		
						GAGGTACTGG
						CGTGCGCTTT
7381	TTGGAACGCG	GGTTTGGCAG	GGCGAAGGTG	ACATCGTTGA	AGAGTATCTT	TCCCGCGCGA
						GTTAATTACC
7501	TGGGCGGCGA	GCACGATCTC	GTCAAAGCCG	TTGATGTTGT	GGCCCACAAT	GTAAAGTTCC

FIG. 7C

7561	AAGAAGCGCG	GGATGCCCTT	GATGGAAGGC	AATTTTTTAA	GTTCCTCGTA	GGTGAGCTCT
7621	TCAGGGGAGC	TGAGCCCGTG	CTCTGAAAGG	GCCCAGTCTG	CAAGATGAGG	GTTGGAAGCG
7681	ACGAATGAGC	TCCACAGGTC	ACGGGCCATT	AGCATTTGCA	GGTGGTCGCG	AAAGGTCCTA
7741	AACTGGCGAC	CTATGGCCAT	TTTTTCTGGG	GTGATGCAGT	AGAAGGTAAG	CGGGTCTTGT
7801	TCCCAGCGGT	CCCATCCAAG	GTCCGCGGCT	AGGTCTCGCG	${\tt CGGCGGTCAC}$	TAGAGGCTCA
7861	TCTCCGCCGA	ACTTCATGAC	CAGCATGAAG	GGCACGAGCT	${\tt GCTTCCCAAA}$	GGCCCCCATC
7921	CAAGTATAGG	TCTCTACATC	GTAGGTGACA	AAGAGACGCT	CGGTGCGAGG	ATGCGAGCCG
7981	ATCGGGAAGA	ACTGGATCTC	CCGCCACCAG	${\tt TTGGAGGAGT}$	GGCTGTTGAT	GTGGTGAAAG
8041	TAGAAGTCCC	TGCGACGGGC	${\tt CGAACACTCG}$	${\tt TGCTGGCTTT}$	${\tt TGTAAAAACG}$	TGCGCAGTAC
8101	TGGCAGCGGT	GCACGGGCTG	${\tt TACATCCTGC}$	ACGAGGTTGA	CCTGACGACC	GCGCACAAGG
8161	AAGCAGAGTG	GGAATTTGAG	${\tt CCCCTCGCCT}$	$\tt GGCGGGTTTG$	${\tt GCTGGTGGTC}$	TTCTACTTCG
8221	GCTGCTTGTC	${\tt CTTGACCGTC}$	TGGCTGCTCG	AGGGGAGTTA	CGGTGGATCG	GACCACCACG
8281	CCGCGCGAGC	${\tt CCAAAGTCCA}$	${\tt GATGTCCGCG}$	CGCGGCGGTC	GGAGCTTGAT	GACAACATCG
8341	CGCAGATGGG	${\tt AGCTGTCCAT}$	${\tt GGTCTGGAGC}$	TCCCGCGGCG	${\tt TCAGGTCAGG}$	CGGGAGCTCC
8401	TGCAGGTTTA	${\tt CCTCGCATAG}$	CCGGGTCAGG	GCGCGGGCTA	GGTCCAGGTG	ATACCTGATT
8461	TCCAGGGGCT	${\tt GGTTGGTGGC}$	${\tt GGCGTCGATG}$	GCTTGCAAGA	GGCCGCATCC	CCGCGGCGCG
8521	ACTACGGTAC	CGCGCGGCGG	GCGGTGGGCC	GCGGGGGTGT	CCTTGGATGA	TGCATCTAAA
8581	AGCGGTGACG	CGGGCGGGCC	CCCGGAGGTA	GGGGGGCTC	GGGACCCGCC	GGGAGAGGGG
8641	GCAGGGGCAC	GTCGGCGCCG	CGCGCGGGCA	GGAGCTGGTG	CTGCGCGCGG	AGGTTGCTGG
8701	CGAACGCGAC	GACGCGGCGG	TTGATCTCCT	GAATCTGGCG	CCTCTGCGTG	AAGACGACGG
8761	GCCCGGTGAG	CTTGAACCTG	AAAGAGAGTT	CGACAGAATC	AATTTCGGTG	TCGTTGACGG
8821	CGGCCTGGCG	CAAAATCTCC	TGCACGTCTC	CTGAGTTGTC	TTGATAGGCG	ATCTCGGCCA
	TGAACTGCTC					
8941	${\tt CGAGGTCGTT}$	GGAGATGCGG	GCCATGAGCT	GCGAGAAGGC	GTTGAGGCCT	CCCTCGTTCC
9001	AGACGCGGCT	GTAGACCACG	CCCCCTTCGG	CATCGCGGGC	GCGCATGACC	ACCTGCGCGA
	GATTGAGCTC					
9121	TGAGGGTGGT	GGCGGTGTGT	TCTGCCACGA	AGAAGTACAT	AACCCAGCGC	CGCAACGTGG
9181	ATTCGTTGAT	ATCCCCCAAG	GCCTCAAGGC	GCTCCATGGC	CTCGTAGAAG	TCCACGGCGA
	AGTTGAAAAA					
	GCTCGGCGAC					
	CAATCTCCTC					
9421	GGACACGGCG	GCGACGACGG	CGCACCGGGA	GGCGGTCGAC	AAAGCGCTCG	ATCATCTCCC
	CGCGGCGACG					
9541	AGACGCCGCC	CGTCATGTCC	CGGTTATGGG	TTGGCGGGGG	GCTGCCGTGC	GGCAGGGATA
9601	CGGCGCTAAC	GATGCATCTC	AACAATTGTT	GTGTAGGTAC	TCCGCCACCG	AGGGACCTGA
9661	GCGAGTCCGC	ATCGACCGGA	TCGGAAAACC	TCTCGAGAAA	GGCGTCTAAC	CAGTCACAGT
	CGCAAGGTAG					
	CGGAGGTGCT					
	GAAGCACCAT					
	CTTCGTTTTG					
	CTTCTTCTTC					
10021	AGTTTGGCCG	TAGGTGGCGC	CCTCTTCCTC	CCATGCGTGT	GACCCCGAAG	CCCCTCATCG

FIG. 7D

	GCTGAAGCAG					
	TGAGGGTAGA					
	TGTAAGTGCA					
	CGGTGTACCT					
10321	CCAGGTACTG	GTATCCCACC	AAAAAGTGCG	GCGGCGGCTG	GCGGTAGAGG	GGCCAGCGTA
10381	GGGTGGCCGG	GGCTCCGGGG	GCGAGGTCTT	CCAACATAAG	GCGATGATAT	CCGTAGATGT
10441	${\tt ACCTGGACAT}$	CCAGGTGATG	CCGCCGCGG	TGGTGGAGGC	GCGCGGAAAG	TCACGGACGC
10501	${\tt GGTTCCAGAT}$	${\tt GTTGCGCAGC}$	GGCAAAAAGT	GCTCCATGGT	CGGGACGCTC	TGGCCGGTCA
10561	GGCGCGCGCA	${\tt GTCGTTGACG}$	${\tt CTCTAGACCG}$	${\tt TGCAAAAGGA}$	GAGCCTGTAA	GCGGGCACTC
10621	${\tt TTCCGTGGTC}$	${\tt TGGTGGATAA}$	ATTCGCAAGG	${\tt GTATCATGGC}$	GGACGACCGG	GGTTCGAACC
10681	CCGGATCCGG	CCGTCCGCCG	${\tt TGATCCATGC}$	GGTTACCGCC	${\tt CGCGTGTCGA}$	ACCCAGGTGT
10741	GCGACGTCAG	ACAACGGGGG	AGCGCTCCTT	${\tt TTGGCTTCCT}$	TCCAGGCGCG	GCGGATGCTG
10801	CGCTAGCTTT	TTTGGCCACT	GCCGCGCGC	GGCGTAAGCG	GTTAGGCTGG	AAAGCGAAAG
10861	CATTAAGTGG	CTCGCTCCCT	GTAGCCGGAG	GGTTATTTTC	CAAGGGTTGA	GTCGCGGGAC
10921	CCCCGGTTCG	AGTCTCGGGC	CGGCCGGACT	GCGGCGAACG	GGGGTTTGCC	TCCCCGTCAT
10981	GCAAGACCCC	GCTTGCAAAT	TCCTCCGGAA	ACAGGGACGA	GCCCCTTTTT	TGCTTTTCCC
11041	AGATGCATCC	GGTGCTGCGG	CAGATGCGCC	CCCCTCCTCA	GCAGCGGCAA	GAGCAAGAGC
11101	AGCGGCAGAC	ATGCAGGGCA	CCCTCCCCTT	CTCCTACCGC	GTCAGGAGGG	GCAACATCCG
11161	CGGCTGACGC	GGCGGCAGAT	GGTGATTACG	AACCCCCGCG	GCGCCGGACC	CGGCACTACT
11221	TGGACTTGGA	GGAGGGCGAG	GGCCTGGCGC	GGCTAGGAGC	GCCCTCTCCT	GAGCGACACC
11281	CAAGGGTGCA	GCTGAAGCGT	GACACGCGCG	AGGCGTACGT	GCCGCGGCAG	AACCTGTTTC
11341	GCGACCGCGA	GGGAGAGGAG	CCCGAGGAGA	TGCGGGATCG	AAAGTTCCAT	GCAGGGCGCG
11401	AGTTGCGGCA	TGGCCTGAAC	CGCGAGCGGT	TGCTGCGCGA	GGAGGACTTT	GAGCCCGACG
11461	CGCGGACCGG	GATTAGTCCC	GCGCGCGCAC	ACGTGGCGGC	CGCCGACCTG	GTAACCGCGT
11521	ACGAGCAGAC	GGTGAACCAG	GAGATTAACT	TTCAAAAAAG	CTTTAACAAC	CACGTGCGCA
11581	CGCTTGTGGC	GCGCGAGGAG	GTGGCTATAG	GACTGATGCA	TCTGTGGGAC	TTTGTAAGCG
11641	CGCTGGAGCA	AAACCCAAAT	AGCAAGCCGC	TCATGGCGCA	GCTGTTCCTT	ATAGTGCAGC
11701	ACAGCAGGGA	CAACGAGGCA	TTCAGGGATG	CGCTGCTAAA	CATAGTAGAG	CCCGAGGGCC
11761	GCTGGCTGCT	CGATTTGATA	AACATTCTGC	AGAGCATAGT	GGTGCAGGAG	CGCAGCTTGA
11821	GCCTGGCTGA	CAAGGTGGCC	GCCATTAACT	ATTCCATGCT	CAGTCTGGGC	AAGTTTTACG
11881	CCCGCAAGAT	ATACCATACC	CCTTACGTTC	CCATAGACAA	GGAGGTAAAG	ATCGAGGGGT
	TCTACATGCG					
12001	ACGAGCGCAT	CCACAAGGCC	GTGAGCGTGA	GCCGGCGGCG	CGAGCTCAGC	GACCGCGAGC
12061	TGATGCACAG	CCTGCAAAGG	GCCCTGGCTG	GCACGGGCAG	CGGCGATAGA	GAGGCCGAGT
12121	CCTACTTTGA	CGCGGGCGCT	GACCTGCGCT	GGGCCCCAAG	CCGACGCGCC	CTGGAGGCAG
	CTGGGGCCGG					
	AGGAATATGA					
	TTCTGATCAG					
	GCCGTCCGGC					
	GACTGCGCGC					
	TCTGGAAGCG					
	AAACGCGCTG					
***					==	

FIG. 7E

12601	GCTGCTTCAG	CGCGTGGCTC	GTTACAACAG	CAGCAACGTG	CAGACCAACC	TGGACCGGCT
	GGTGGGGGAT					
	GGGCTCCATG					
	ACAGGAGGAC					
	AAGTGAGGTG					
	GACCGTAAAC					
	CACAGGCGAC					
	GCTAATAGCG					
	GCTGACACTG					
	GATTACAAGT					
	GAACTACCTG					
13261	GGAGGAGCGC	ATTTTGCGCT	ATGTGCAGCA	GAGCGTGAGC	CTTAACCTGA	TGCGCGACGG
13321	GGTAACGCCC	AGCGTGGCGC	TGGACATGAC	CGCGCGCAAC	ATGGAACCGG	GCATGTATGC
	CTCAAACCGG					
13441	CCCCGAGTAT	TTCACCAATG	CCATCTTGAA	CCCGCACTGG	CTACCGCCCC	CTGGTTTCTA
13501	CACCGGGGGA	TTCGAGGTGC	CCGAGGGTAA	CGATGGATTC	CTCTGGGACG	ACATAGACGA
13561	CAGCGTGTTT	TCCCCGCAAC	CGCAGACCCT	GCTAGAGTTG	CAACAACGCG	AGCAGGCAGA
13621	GGCGGCGCTG	CGAAAGGAAA	GCTTCCGCAG	GCCAAGCAGC	TTGTCCGATC	TAGGCGCTGC
13681	GGCCCCGCGG	TCAGATGCTA	GTAGCCCATT	TCCAAGCTTG	ATAGGGTCTC	TTACCAGCAC
13741	TCGCACCACC	CGCCCGCGCC	TGCTGGGCGA	GGAGGAGTAC	CTAAACAACT	CGCTGCTGCA
13801	GCCGCAGCGC	GAAAAGAACC	TGCCTCCGGC	GTTTCCCAAC	AACGGGATAG	AGAGCCTAGT
13861	GGACAAGATG	AGTAGATGGA	AGACGTATGC	GCAGGAGCAC	AGGGATGTGC	CCGGCCCGCG
13921	CCCGCCCACC	CGTCGTCAAA	GGCACGACCG	${\tt TCAGCGGGGT}$	${\tt CTGGTGTGGG}$	AGGACGATGA
13981	CTCGGCAGAC	GACAGCAGCG	TCTTGGATTT	$\tt GGGAGGGAGT$	GGCAACCCGT	TTGCACACCT
14041	TCGCCCCAGG	CTGGGGAGAA	${\tt TGTTTTAAAA}$	AAAGCATGAT	GCAAAATAAA	AAACTCACCA
14101	AGGCCATGGC	ACCGAGCGTT	${\tt GGTTTTCTTG}$	${\tt TATTCCCCTT}$	AGTATGCGGC	GCGCGGCGAT
14161	GTATGAGGAA	GGTCCTCCTC	CCTCCTACGA	GAGCGTGGTG	AGCGCGGCGC	CAGTGGCGGC
14221	GGCGCTGGGT	TCACCCTTCG	ATGCTCCCCT	GGACCCGCCG	${\tt TTCGTGCCTC}$	CGCGGTACCT
14281	GCGGCCTACC	GGGGGGAGAA	ACAGCATCCG	${\tt TTACTCTGAG}$	${\tt TTGGCACCCC}$	TATTCGACAC
14341	CACCCGTGTG	TACCTTGTGG	ACAACAAGTC	AACGGATGTG	${\tt GCATCCCTGA}$	ACTACCAGAA
14401	CGACCACAGC	AACTTTCTAA	CCACGGTCAT	${\tt TCAAAACAAT}$	GACTACAGCC	CGGGGGAGGC
14461	AAGCACACAG	ACCATCAATC	${\tt TTGACGACCG}$	${\tt GTCGCACTGG}$	GGCGGCGACC	TGAAAACCAT
14521	CCTGCATACC	AACATGCCAA	ATGTGAACGA	${\tt GTTCATGTTT}$	ACCAATAAGT	TTAAGGCGCG
14581	GGTGATGGTG	${\tt TCGCGCTCGC}$	${\tt TTACTAAGGA}$	CAAACAGGTG	GAGCTGAAAT	ACGAGTGGGT
14641	GGAGTTCACG	CTGCCCGAGG	${\tt GCAACTACTC}$	${\tt CGAGACCATG}$	ACCATAGACC	TTATGAACAA
14701	CGCGATCGTG	GAGCACTACT	${\tt TGAAAGTGGG}$	CAGGCAGAAC	$\tt GGGGTTCTGG$	AAAGCGACAT
14761	${\tt CGGGGTAAAG}$	TTTGACACCC	GCAACTTCAG	ACTGGGGTTT	GACCCAGTCA	CTGGTCTTGT
14821	CATGCCTGGG	GTATATACAA	ACGAAGCCTT	CCATCCAGAC	ATCATTTTGC	TGCCAGGATG
14881	CGGGGTGGAC	TTCACCCACA	GCCGCCTGAG	${\tt CAACTTGTTG}$	GGCATCCGCA	AGCGGCAACC
14941	CTTCCAGGAG	GGCTTTAGGA	TCACCTACGA	TGACCTGGAG	GGTGGTAACA	TTCCCGCACT
15001	GTTGGATGTG	GACGCCTACC	AGGCAAGCTT	GAAAGATGAC	ACCGAACAGG	GCGGGGGTGG
15061	CGCAGGCGGC	GGCAACAACA	GTGGCAGCGG	CGCGGAAGAG	AACTCCAACG	CGGCAGCTGC

FIG. 7F

15121	GGCAATGCAG	CCGGTGGAGG	ACATGAACGA	TCATGCCATT	CGCGGCGACA	CCTTTGCCAC
15181	ACGGGCGGAG	GAGAAGCGCG	CTGAGGCCGA	GGCAGCGGCC	${\tt GAAGCTGCCG}$	CCCCGCTGC
15241	GGAGGCTGCA	CAACCCGAGG	TCGAGAAGCC	TCAGAAGAAA	${\tt CCGGTGATTA}$	AACCCCTGAC
15301	AGAGGACAGC	AAGAAACGCA	GTTACAACCT	AATAAGCAAT	GACAGCACCT	TCACCCAGTA
15361	CCGCAGCTGG	TACCTTGCAT	ACAACTACGG	CGACCCTCAG	GCCGGGATCC	GCTCATGGAC
15421	CCTGCTTTGC	ACTCCTGACG	TAACCTGCGG	CTCGGAGCAG	GTATACTGGT	CGTTGCCCGA
15481	CATGATGCAA	GACCCCGTGA	CCTTCCGCTC	CACGCGCCAG	ATCAGCAACT	TTCCGGTGGT
15541	GGGCGCCGAG	CTGTTGCCCG	TGCACTCCAA	GAGCTTCTAC	AACGACCAGG	CCGTCTACTC
15601	CCAGCTCATC	CGCCAGTTTA	CCTCTCTGAC	CCACGTGTTC	AATCGCTTTC	CCGAGAACCA
15661	GATTTTGGCG	CGCCCGCCAG	CCCCCACCAT	CACCACCGTC	AGTGAAAACG	TTCCTGCTCT
15721	CACAGATCAC	GGGACGCTAC	CGCTGCGCAA	CAGCATCGGA	${\tt GGAGTCCAGC}$	GAGTGACCAT
15781	TACTGACGCC	AGACGCCGCA	CCTGCCCCTA	CGTTTACAAG	${\tt GCCCTGGGCA}$	TAGTCTCGCC
15841	GCGCGTCCTA	TCGAGCCGCA	${\tt CTTTTTGAGC}$	AAGCATGTCC	${\tt ATCCTTATAT}$	CGCCCAGCAA
15901	TAACACAGGC	${\tt TGGGGCCTGC}$	${\tt GCTTCCCAAG}$	CAAGATGTTT	GGCGGGGCCA	AGAAGCGCTC
15961	CGACCAACAC	CCAGTGCGCG	TGCGCGGGCA	${\tt CTACCGCGCG}$	CCCTGGGGCG	CGCACAAACG
16021	CGGCCGCACT	GGGCĠCACCA	CCGTCGATGA	CGCCATCGAC	${\tt GCGGTGGTGG}$	AGGAGGCGCG
16081	CAACTACACG	CCCACGCCGC	${\tt CGCCAGTGTC}$	CACCGTGGAC	${\tt GCGGCCATTC}$	AGACCGTGGT
16141	GCGCGGAGCC	CGGCGCTACG	CTAAAATGAA	GAGACGGCGG	${\tt AGGCGCGTAG}$	CACGTCGCCA
16201	CCGCCGCCGA	CCCGGCACTG	CCGCCCAACG	CGCGGCGGCG	${\tt GCCCTGCTTA}$	ACCGCGCACG
16261	TCGCACCGGC	CGACGGGCGG	${\tt CCATGCGAGC}$	CGCTCGAAGG	CTGGCCGCGG	GTATTGTCAC
16321	${\tt TGTGCCCCCC}$	AGGTCCAGGC	GACGAGCGGC	CGCCGCAGCA	GCCGCGGCCA	TTAGTGCTAT
16381	GACTCAGGGT	CGCAGGGGCA	${\tt ACGTGTACTG}$	GGTGCGCGAC	${\tt TCGGTTAGCG}$	GCCTGCGCGT
16441	GCCCGTGCGC	ACCCGCCCCC	CGCGCAACTA	GATTGCAATA	${\tt AAAAACTACT}$	TAGACTCGTA
16501	CTGTTGTATG	${\tt TATCCAGCGG}$	CGGCGCGCG	CATCGAAGCT	ATGTCCAAGC	GCAAAATCAA
16561	AGAAGAGATG	CTCCAGGTCA	${\tt TCGCGCCGGA}$	${\tt GATCTATGGC}$	CCCCGAAGA	AGGAAGAGCA
16621	GGATTACAAG	CCCCGAAAGC	${\tt TAAAGCGGGT}$	CAAAAAGAAA	${\tt AAGAAAGATG}$	ATGATGATGA
16681	${\tt TGAACTTGAC}$	${\tt GACGAGGTGG}$	AACTGTTGCA	CGCGACCGCG	CCCAGGCGAC	GGGTACAGTG
16741	GAAAGGTCGA	${\tt CGCGTAAGAC}$	${\tt GTGTTTTGCG}$	ACCCGGCACC	${\tt ACCGTAGTCT}$	TTACGCCCGG
16801	${\tt TGAGCGCTCC}$	ACCCGCACCT	ACAAGCGCGT	${\tt GTATGATGAG}$	GTGTACGGCG	ACGAGGACCT
16861	GCTTGAGCAG	GCCAACGAGC	${\tt GCCTCGGGGA}$	${\tt GTTTGCCTAC}$	GGAAAGCGGC	ATAAGGACAT
16921	${\tt GCTGGCGTTG}$	${\tt CCGCTGGACG}$	AGGGCAACCC	AACACCTAGC	CTAAAGCCCG	TGACACTGCA
16981	GCAGGTGCTG	CCCGCGCTTG	CACCGTCCGA	AGAAAAGCGC	GGCCTAAAGC	GCGAGTCTGG
17041	${\tt TGACTTGGCA}$	${\tt CCCACCGTGC}$	AGCTGATGGT	ACCCAAGCGT	${\tt CAGCGACTGG}$	AAGATGTCTT
17101	GGAAAAAATG	ACCGTGGAGC	${\tt CTGGGCTGGA}$	GCCCGAGGTC	CGCGTGCGGC	CAATCAAGCA
17161	GGTGGCACCG	GGACTGGGCG	${\tt TGCAGACCGT}$	${\tt GGACGTTCAG}$	ATACCCACCA	CCAGTAGCAC
17221	TAGTATTGCC	ACTGCCACAG	AGGGCATGGA	GACACAAACG	$\mathtt{TCCCCGGTTG}$	CCTCGGCGGT
17281	GGCAGATGCC	GCGGTGCAGG	CGGCCGCTGC	GGCCGCGTCC	AAGACCTCTA	CGGAGGTGCA
17341	AACGGACCCG	${\tt TGGATGTTTC}$	GTGTTTCAGC	CCCCCGGCGT	CCGCGCCGTT	CAAGGAAGTA
17401	CGGCGCCGCC	AGCGCGCTAC	${\tt TGCCCGAATA}$	${\tt TGCCCTACAT}$	CCTTCCATCG	CGCCTACCCC
17461	CGGCTATCGT	GGCTACACCT	ACCGCCCCAG	AAGACGAGCA	ACTACCCGAC	GCCGAACCAC
17521	CACTGGAACC	CGCCGCCGCC	GTCGCCGTCG	CCAGCCCGTG	CTGGCCCCGA	TTTCCGTGCG
17581	CAGGGTGGCT	CGCGAAGGAG	GCAGGACCCT	GGTGCTGCCA	ACAGCGCGCT	ACCACCCCAG

FIG. 7G

17641	CATCGTTTAA	AAGCCGGTCT	TTGTGGTTCT	TGCAGATATG	GCCCTCACCT	GCCGCCTCCG
17701	TTTCCCGGTG	CCGGGATTCC	GAGGAAGAAT	GCACCGTAGG	AGGGGCATGG	CCGGCCACGG
17761	CCTGACGGGC	GGCATGCGTC	GTGCGCACCA	CCGGCGGCGG	CGCGCGTCGC	ACCGTCGCAT
17821	GCGCGGCGGT	ATCCTGCCCC	TCCTTATTCC	ACTGATCGCC	GCGGCGATTG	GCGCCGTGCC
17881	CGGAATTGCA	TCCGTGGCCT	TGCAGGCGCA	GAGACACTGA	ттааааасаа	GTTACATGTG
17941	GAAAAATCAA	AATAAAAGTC	TGGACTCTCA	CGCTCGCTTG	GTCCTGTAAC	TATTTTGTAG
18001	AATGGAAGAC	ATCAACTTTG	CGTCACTGGC	CCCGCGACAC	GGCTCGCGCC	CGTTCATGGG
18061	AAACTGGCAA	GATATCGGCA	CCAGCAATAT	GAGCGGTGGC	GCCTTCAGCT	GGGGCTCGCT
18121	GTGGAGCGGC	ATTAAAAATT	TCGGTTCCGC	CGTTAAGAAC	TATGGCAGCA	AAGCCTGGAA
18181	CAGCAGCACA	GGCCAGATGC	TGAGGGACAA	GTTGAAAGAG	CAAAATTTCC	AACAAAAGGT
18241	GGTAGATGGC	CTGGCCTCTG	GCATTAGCGG	GGTGGTGGAC	${\tt CTGGCCAACC}$	AGGCAGTGCA
18301	AAATAAGATT	AACAGTAAGC	TTGATCCCCG	CCCTCCCGTA	GAGGAGCCTC	CACCGGCCGT
18361	GGAGACAGTG	${\tt TCTCCAGAGG}$	GGCGTGGCGA	AAAGCGTCCG	CGACCCGACA	GGGAAGAAAC
18421	TCTGGTGACG	CAAATAGACG	AGCCTCCCTC	${\tt GTACGAGGAG}$	${\tt GCACTAAAGC}$	AAGGCCTGCC
18481	CACCACCCGT	CCCATCGCGC	CCATGGCTAC	CGGAGTGCTG	GGCCAGCACA	CACCCGTAAC
18541	${\tt GCTGGACCTG}$	CCTCCCCCG	CCGACACCCA	GCAGAAACCT	${\tt GTGCTGCCAG}$	GCCCGTCCGC
18601	${\tt CGTTGTTGTA}$	ACCCGTCCTA	GCCGCGCGTC	CCTGCGCCGC	GCCGCCAGCG	GTCCGCGATC
18661	${\tt GTTGCGGCCC}$	${\tt GTAGCCAGTG}$	GCAACTGGCA	AAGCACACTG	AACAGCATCG	TGGGTTTGGG
18721	${\tt GGTGCAATCC}$	${\tt CTGAAGCGCC}$	GACGATGCTT	${\tt CTGATAGCTA}$	ACGTGTCGTA	TGTGTGTCAT
18781	${\tt GTATGCGTCC}$	ATGTCGCCGC	${\tt CAGAGGAGCT}$	GCTGAGCCGC	CGCGCGCCCG	CTTTCCAAGA
18841	${\tt TGGCTACCCC}$	${\tt TTCGATGATG}$	CCGCAGTGGT	CTTACATGCA	CATCTCGGGC	CAGGACGCCT
18901	${\tt CGGAGTACCT}$	GAGCCCCGGG	CTGGTGCAGT	TCGCCCGCGC	CACCGAGACG	TACTTCAGCC
18961	${\tt TGAATAACAA}$	GTTTAGAAAC	${\tt CCCACGGTGG}$	CGCCTACGCA	CGACGTGACC	ACAGACCGGT
19021	${\tt CTCAGCGTTT}$	${\tt GACGCTGCGG}$	${\tt TTCATCCCCG}$	${\tt TGGACCGCGA}$	GGATACTGCG	TACTCGTACA
19081	${\tt AGGCGCGGTT}$	CACCCTAGCT	${\tt GTGGGTGATA}$	ACCGTGTGCT	AGACATGGCT	TCCACGTACT
19141	${\tt TTGACATCCG}$	CGGCGTGCTG	GACAGGGGCC	${\tt CTACTTTTAA}$	GCCCTACTCT	GGCACTGCCT
19201	ACAACGCACT	GGCCCCCAAG	GGTGCCCCCA	ACTCGTGCGA	GTGGGAACAA	AATGAAACTG
19261	CACAAGTGGA	TGCTCAAGAA	CTTGACGAAG	AGGAGAATGA	AGCCAATGAA	GCTCAGGCGC
19321	GAGAACAGGA	ACAAGCTAAG	AAAACCCATG	TATATGCCCA	GGCTCCACTG	TCCGGAATAA
19381	AAATAACTAA	AGAAGGTCTA	CAAATAGGAA	CTGCCGACGC	CACAGTAGCA	GGTGCCGGCA
19441	AAGAAATTTT	CGCAGACAAA	ACTTTTCAAC	CTGAACCACA	AGTAGGAGAA	TCTCAATGGA
19501	ACGAAGCGGA	TGCCACAGCA	GCTGGTGGAA	GGGTTCTTAA	AAAGACAACT	CCCATGAAAC
19561	CCTGCTATGG	CTCATACGCT	AGACCCACCA	ATTCCAACGG	CGGACAGGGC	GTTATGGTTG
19621	AACAAAATGG	TAAATTGGAA	AGTCAAGTCG	AAATGCAATT	TTTTTCCACA	TCCACAAATG
19681	CCACAAATGA	AGTTAACAAT	ATACAACCAA	CAGTTGTATT	GTACAGCGAA	GATGTAAACA
19741	TGGAAACTCC	AGATACTCAT	CTTTCTTATA	AACCTAAAAT	GGGGGATAAA	AATGCCAAAG
19801	TCATGCTTGG	ACAACAAGCA	ATGCCAAACA	GACCAAATTA	CATTGCTTTT	AGAGACAATT
19861	TTATTGGTCT	CATGTATTAC	AACAGCACAG	GTAACATGGG	TGTCCTTGCT	GGTCAGGCAT
19921	CGCAGTTGAA	CGCTGTTGTA	GATTTGCAAG	ACAGAAACAC	AGAGCTGTCC	TACCAGCTTT
19981	TGCTTGATTC	AATTGGCGAC	AGAACAAGAT	ACTTTTCAAT	GTGGAATCAA	GCTGTTGACA
	GCTATGATCC					
20101	ATTGCTTTCC	TCTTGGTGGA	ATTGGGATTA	CTGACACTTT	TCAAGCTGTT	AAAACAACTG

FIG. 7H

						~~~~~~~
	CTGCTAACGG					
	ATGAAATAGG					
	GAAATTTCCT					
	CCAATGTGGA					
	CTCCTGGGCT					
	ACAACGTTAA					
	TGGGAAACGG					
	AAAACCTCCT					
	ACATGGTTCT					
20701	TTGACAGCAT	TTGTCTTTAC	GCCACCTTCT	TCCCCATGGC	CCACAACACG	GCCTCCACGC
20761	TGGAAGCCAT	GCTCAGAAAT	GACACCAACG	ACCAGTCCTT	TAATGACTAC	CTTTCCGCCG
20821	CCAACATGCT	ATATCCCATA	CCCGCCAACG	CCACCAACGT	GCCCATCTCC	ATCCCATCGC
20881	GCAACTGGGC	${\bf AGCATTTCGC}$	${\tt GGTTGGGCCT}$	${\tt TCACACGCTT}$	GAAGACAAAG	GAAACCCCTT
20941	CCCTGGGATC	AGGCTACGAC	${\tt CCTTACTACA}$	${\tt CCTACTCTGG}$	CTCCATACCA	TACCTTGACG
21001	GAACCTTCTA	TCTTAATCAC	ACCTTTAAGA	AGGTGGCCAT	${\tt TACTTTTGAC}$	TCTTCTGTTA
21061	GCTGGCCGGG	CAACGACCGC	${\tt CTGCTTACTC}$	${\tt CCAATGAGTT}$	${\tt TGAGATTAAG}$	CGCTCAGTTG
21121	ACGGGGAGGG	CTATAACGTA	GCTCAGTGCA	ACATGACAAA	GGACTGGTTC	CTAGTGCAGA
21181	TGTTGGCCAA	CTACAATATT	GGCTACCAGG	GCTTCTACAT	${\tt TCCAGAAAGC}$	TACAAAGACC
21241	GCATGTACTC	GTTCTTCAGA	AACTTCCAGC	CCATGAGCCG	GCAAGTGGTG	GACGATACTA
21301	AATACAAAGA	TTATCAGCAG	GTTGGAATTA	TCCACCAGCA	TAACAACTCA	GGCTTCGTAG
21361	GCTACCTCGC	TCCCACCATG	CGCGAGGGAC	AAGCTTACCC	CGCTAATGTT	CCCTACCCAC
21421	TAATAGGCAA	AACCGCGGTT	GATAGTATTA	CCCAGAAAAA	GTTTCTTTGC	GACCGCACCC
21481	TGTGGCGCAT	CCCCTTCTCC	AGTAACTTTA	TGTCCATGGG	TGCGCTCACA	GACCTGGGCC
21541	AAAACCTTCT	CTACGCAAAC	TCCGCCCACG	CGCTAGACAT	GACCTTTGAG	GTGGATCCCA
21601	TGGACGAGCC	CACCCTTCTT	TATGTTTTGT	TTGAAGTCTT	TGACGTGGTC	CGTGTGCACC
21661	AGCCGCACCG	CGGCGTCATC	GAGACCGTGT	ACCTGCGCAC	GCCCTTCTCG	GCCGGCAACG
21721	CCACAACATA	AAGAAGCAAG	CAACATCAAC	AACAGCTGCC	GCCATGGGCT	CCAGTGAGCA
21781	GGAACTGAAA	GCCATTGTCA	AAGATCTTGG	TTGTGGGCCA	${\tt TATTTTTGG}$	GCACCTATGA
21841	CAAGCGCTTC	CCAGGCTTTG	TTTCCCCACA	CAAGCTCGCC	TGCGCCATAG	TTAACACGGC
21901	CGGTCGCGAG	ACTGGGGGCG	TACACTGGAT	GGCCTTTGCC	TGGAACCCGC	GCTCAAAAAC
21961	ATGCTACCTC	TTTGAGCCCT	TTGGCTTTTC	TGACCAACGT	CTCAAGCAGG	TTTACCAGTT
22021	TGAGTACGAG	TCACTCCTGC	GCCGTAGCGC	CATTGCCTCT	TCCCCGACC	GCTGTATAAC
22081	GCTGGAAAAG	TCCACCCAAA	GCGTGCAGGG	GCCCAACTCG	GCCGCCTGTG	GCCTATTCTG
22141	CTGCATGTTT	CTCCACGCCT	TTGCCAACTG	GCCCCAAACT	CCCATGGATC	ACAACCCCAC
22201	CATGAACCTT	ATTACCGGGG	TACCCAACTC	CATGCTTAAC	AGTCCCCAGG	TACAGCCCAC
	CCTGCGCCGC					
	CAGCCACAGT					
	ATAATGTACT					
	GATTATTTAC					
	CATCGCTATG					
						CTGCGCACCA
	TCACCAACGC					
22021						

FIG. 71

22681	CCTGCGCGCG	CGAGTTGCGA	TACACAGGGT	TACAGCACTG	GAACACTATC	AGCGCCGGGT
22741	GGTGCACGCT	GGCCAGCACG	CTCTTGTCGG	AGATCAGATC	CGCGTCCAGG	TCCTCCGCGT
22801	TGCTCAGGGC	GAACGGAGTC	AACTTTGGTA	GCTGCCTTCC	CAAAAAGGGT	GCATGCCCAG
22861	GCTTTGAGTT	GCACTCGCAC	CGTAGTGGCA	TCAGAAGGTG	ACCGTGCCCA	GTCTGGGCGT
22921	TAGGATACAG	CGCCTGCATG	AAAGCCTTGA	TCTGCTTAAA	AGCCACCTGA	GCCTTTGCGC
22981	CTTCAGAGAA	GAACATGCCG	CAAGACTTGC	CGGAAAACTG	ATTGGCCGGA	CAGGCCGCGT
23041	CATGCACGCA	GCACCTTGCG	TCGGTGTTGG	AGATCTGCAC	CACATTTCGG	CCCCACCGGT
23101	TCTTCACGAT	CTTGGCCTTG	CTAGACTGCT	CCTTCAGCGC	GCGCTGCCCG	TTTTCGCTCG
23161	TCACATCCAT	TTCAATCACG	TGCTCCTTAT	TTATCATAAT	GCTCCCGTGT	AGACACTTAA
23221	GCTCGCCTTC	GATCTCAGCG	CAGCGGTGCA	GCCACAACGC	GCAGCCCGTG	GGCTCGTGGT
23281	GCTTGTAGGT	TACCTCTGCA	AACGACTGCA	GGTACGCCTG	${\tt CAGGAATCGC}$	CCCATCATCG
23341	TCACAAAGGT	CTTGTTGCTG	GTGAAGGTCA	${\tt GCTGCAACCC}$	GCGGTGCTCC	TCGTTTAGCC
23401	AGGTCTTGCA	TACGGCCGCC	AGAGCTTCCA	${\tt CTTGGTCAGG}$	${\tt CAGTAGCTTG}$	AAGTTTGCCT
23461	TTAGATCGTT	ATCCACGTGG	TACTTGTCCA	${\tt TCAACGCGCG}$	CGCAGCCTCC	ATGCCCTTCT
23521	CCCACGCAGA	${\tt CACGATCGGC}$	AGGCTCAGCG	${\tt GGTTTATCAC}$	CGTGCTTTCA	CTTTCCGCTT
23581	${\tt CACTGGACTC}$	${\tt TTCCTTTTCC}$	${\tt TCTTGCATCC}$	GCATACCCCG	CGCCACTGGG	TCGTCTTCAT
23641	${\tt TCAGCCGCCG}$	${\tt CACCGTGCGC}$	${\tt TTACCTCCCT}$	$\mathtt{TGCCGTGCTT}$	GATTAGCACC	GGTGGGTTGC
23701	${\tt TGAAACCCAC}$	${\tt CATTTGTAGC}$	GCCACATCTT	CTCTTTCTTC	CTCGCTGTCC	ACGATCACCT
23761	${\tt CTGGGGATGG}$	CGGGCGCTCG	GGCTTGGGAG	AGGGGCGCTT	CTTTTTCTTT	TTGGACGCAA
23821	${\tt TGGCCAAATC}$	CGCCGTCGAG	${\tt GTCGATGGCC}$	GCGGGCTGGG	TGTGCGCGGC	ACCAGCGCAT
23881	${\tt CTTGTGACGA}$	${\tt GTCTTCTTCG}$	TCCTCGGACT	CGAGACGCCG	CCTCAGCCGC	TTTTTTGGGG
23941	GCGCGCGGG	AGGCGGCGGC	GACGGCGACG	GGGACGAGAC	GTCCTCCATG	GTTGGTGGAC
24001	GTCGCGCCGC	ACCGCGTCCG	CGCTCGGGGG	TGGTTTCGCG	CTGCTCCTCT	TCCCGACTGG
24061	CCATTTCCTT	CTCCTATAGG	CAGAAAAAGA	TCATGGAGTC	AGTCGAGAAG	GAGGACAGCC
24121	TAACCGCCCC	CTTTGAGTTC	GCCACCACCG	CCTCCACCGA	TGCCGCCAAC	GCGCCTACCA
24181	CCTTCCCCGT	CGAGGCACCC	CCGCTTGAGG	AGGAGGAAGT	GATTATCGAG	CAGGACCCAG
24241	${\tt GTTTTGTAAG}$	CGAAGACGAC	GAAGATCGCT	CAGTACCAAC	AGAGGATAAA	AAGCAAGACC
24301	AGGACGACGC	AGAGGCAAAC	GAGGAACAAG	TCGGGCGGGG	GGACCAAAGG	CATGGCGACT
24361	ACCTAGATGT	GGGAGACGAC	GTGCTGTTGA	AGCATCTGCA	GCGCCAGTGC	GCCATTATCT
24421	GCGACGCGTT	GCAAGAGCGC	AGCGATGTGC	CCCTCGCCAT	AGCGGATGTC	AGCCTTGCCT
24481	ACGAACGCCA	CCTGTTCTCA	CCGCGCGTAC	CCCCCAAACG	CCAAGAAAAC	GGCACATGCG
24541	AGCCCAACCC	GCGCCTCAAC	TTCTACCCCG	TATTTGCCGT	GCCAGAGGTG	CTTGCCACCT
		TTTCCAAAAC				
24661	CGGACAAGCA	GCTGGCCTTG	CGGCAGGGCG	CTGTCATACC	TGATATCGCC	TCGCTCGACG
24721	AAGTGCCAAA	AATCTTTGAG	GGTCTTGGAC	GCGACGAGAA	GCGCGCGGCA	AACGCTCTGC
		CAGCGAAAAT				
		AGCCGTGCTG				
24901	TTAACCTACC	CCCCAAGGTT	ATGAGCACAG	TCATGAGCGA	GCTGATCGTG	CGCCGTGCAC
		GAGGGATGCA				
		GCTGGCGCGC				
		GATGGCCGCA				
25141	TTGCTGACCC	GGAGATGCAG	CGCAAGCTAG	AGGAAACGTT	GCACTACACC	TTTCGCCAGG

FIG. 7J

25201	GCTACGTGCG	CCAGGCCTGC	AAAATTTCCA	ACGTGGAGCT	CTGCAACCTG	GTCTCCTACC
25261	TTGGAATTTT	GCACGAAAAC	CGCCTTGGGC	AAAACGTGCT	TCATTCCACG	CTCAAGGGCG
25321	AGGCGCGCCG	CGACTACGTC	CGCGACTGCG	TTTACTTATT	TCTGTGCTAC	ACCTGGCAAA
25381	CGGCCATGGG	CGTGTGGCAG	CAGTGCCTGG	AGGAGCGCAA	CCTGAAGGAG	CTGCAGAAGC
25441	TGCTAAAGCA	AAACTTGAAG	GACCTATGGA	CGGCCTTCAA	CGAGCGCTCC	GTGGCCGCGC
25501	ACCTGGCGGA	CATTATCTTC	CCCGAACGCC	TGCTTAAAAC	CCTGCAACAG	GGTCTGCCAG
25561	ACTTCACCAG	TCAAAGCATG	TTGCAAAACT	TTAGGAACTT	TATCCTAGAG	CGTTCAGGAA
25621	TTCTGCCCGC	CACCTGCTGT	GCGCTTCCTA	GCGACTTTGT	GCCCATTAAG	TACCGTGAAT
25681	GCCCTCCGCC	GCTTTGGGGT	CACTGCTACC	TTCTGCAGCT	AGCCAACTAC	CTTGCCTACC
25741	ACTCCGACAT	CATGGAAGAC	GTGAGCGGTG	ACGGCCTACT	${\tt GGAGTGTCAC}$	TGTCGCTGCA
25801	ACCTATGCAC	CCCGCACCGC	${\tt TCCCTGGTCT}$	GCAATTCACA	ACTGCTTAGC	GAAAGTCAAA
25861	TTATCGGTAC	CTTTGAGCTG	CAGGGTCCCT	CGCCTGACGA	AAAGTCCGCG	GCTCCGGGGT
25921	TGAAACTCAC	TCCGGGGCTG	${\tt TGGACGTCGG}$	${\tt CTTACCTTCG}$	CAAATTTGTA	CCTGAGGACT
25981	ACCACGCCCA	CGAGATTAGG	${\tt TTCTACGAAG}$	ACCAATCCCG	CCCGCCAAAT	GCGGAGCTTA
26041	CCGCCTGCGT	CATTACCCAG	${\tt GGCCACATCC}$	${\tt TTGGCCAATT}$	${\tt GCAAGCCATT}$	AACAAAGCCC
26101	GCCAAGAGTT	${\tt TCTGCTACGA}$	${\tt AAGGGACGGG}$	${\tt GGGTTTACTT}$	GGACCCCCAG	TCCGGCGAGG
26161	AGCTCAACCC	AATCCCCCCG	CCGCCGCAGC	CCTATCAGCA	GCCGCGGGCC	CTTGCTTCCC
26221	AGGATGGCAC	CCAAAAAGAA	${\tt GCTGCAGCTG}$	CCGCCGCCGC	CACCCACGGA	CGAGGAGGAA
26281	TACTGGGACA	GTCAGGCAGA	${\tt GGAGGTTTTG}$	GACGAGGAGG	${\tt AGGAGATGAT}$	GGAAGACTGG
26341	GACAGCCTAG	ACGAGGAAGC	${\tt TTCCGAGGCC}$	${\tt GAAGAGGTGT}$	CAGACGAAAC	ACCGTCACCC
26401	TCGGTCGCAT	$\mathtt{TCCCCTCGCC}$	GGCGCCCCAG	AAATCGGCAA	CCGTTCCCAG	CATTGCTACA
26461	ACCTCCGCTC	CTCAGGCGCC	GCCGGCACTG	CCCGTTCGCC	GACCCAACCG	TAGATGGGAC
26521	ACCACTGGAA	CCAGGGCCGG	TAAGTCTAAG	CAGCCGCCGC	CGTTAGCCCA	AGAGCAACAA
26581	CAGCGCCAAG	GCTACCGCTC	GTGGCGCGTG	CACAAGAACG	CCATAGTTGC	TTGCTTGCAA
26641	${\tt GACTGTGGGG}$	GCAACATCTC	CTTCGCCCGC	CGCTTTCTTC	TCTACCATCA	CGGCGTGGCC
26701	${\tt TTCCCCCGTA}$	ACATCCTGCA	${\tt TTACTACCGT}$	CATCTCTACA	GCCCCTACTG	CACCGGCGGC
26761	AGCGGCAGCA	ACAGCAGCGG	CCACGCAGAA	GCAAAGGCGA	CCGGATAGCA	AGACTCTGAC
26821	AAAGCCCAAG	AAATCCACAG	CGGCGGCAGC	AGCAGGAGGA	GGAGCACTGC	GTCTGGCGCC
26881	CAACGAACCC	${\tt GTATCGACCC}$	${\tt GCGAGCTTAG}$	AAACAGGATT	TTTCCCACTC	TGTATGCTAT
26941	ATTTCAACAG	AGCAGGGGCC	AAGAACAAGA	GCTGAAAATA	AAAAACAGGT	CTCTGCGCTC
27001	CCTCACCCGC	AGCTGCCTGT	ATCACAAAAG	CGAAGATCAG	CTTCGGCGCA	CGCTGGAAGA
27061	CGCGGAGGCT	CTCTTCAGCA	AATACTGCGC	GCTGACTCTT	AAGGACTAGT	TTCGCGCCCT
27121	$\mathtt{TTCTCAAATT}$	TAAGCGCGAA	AACTACGTCA	TCTCCAGCGG	CCACACCCGG	CGCCAGCACC
					TACATGTGGA	
27241	ACAAATGGGA	CTTGCGGCTG	GAGCTGCCCA	AGACTACTCA	ACCCGAATAA	ACTACATGAG
27301	CGCGGGACCC	CACATGATAT	CCCGGGTCAA	CGGAATCCGC	GCCCACCGAA	ACCGAATTCT
					CTTAATCCCC	
					GTGGTACTTC	
					GCGGGCGCT	
					AGAGGGCGAG	
					GACGGGACAT	
27661	CGGCGCTGGC	CGCTCTTCAT	TTACGCCCCG	TCAGGCGATC	CTAACTCTGC	AGACCTCGTC

FIG. 7K

27721	CTCGGAGCCG	CGCTCCGGAG	GCATTGGAAC	TCTACAATTT	ATTGAGGAGT	TCGTGCCTTC
27781	GGTTTACTTC	AACCCCTTTT	CTGGACCTCC	CGGCCACTAC	CCGGACCAGT	TTATTCCCAA
27841	CTTTGACGCG	GTAAAAGACT	CGGCGGACGG	CTACGACTGA	ATGACCAGTG	GAGAGGCAGA
27901	GCAACTGCGC	CTGACACACC	TCGACCACTG	CCGCCGCCAC	AAGTGCTTTG	CCCGCGGCTC
27961	CGGTGAGTTT	TGTTACTTTG	AATTGCCCGA	AGAGCATATC	GAGGGCCCGG	CGCACGGCGT
28021	CCGGCTCACC	ACCCAGGTAG	AGCTTACACG	TAGCCTGATT	CGGGAGTTTA	CCAAGCGCCC
28081	CCTGCTAGTG	GAGCGGGAGC	GGGGTCCCTG	TGTTCTGACC	GTGGTTTGCA	ACTGTCCTAA
28141	CCCTGGATTA	CATCAAGATC	TTTGTTGTCA	TCTCTGTGCT	GAGTATAATA	AATACAGAAA
28201	TTAGAATCTA	CTGGGGCTCC	TGTCGCCATC	CTGTGAACGC	CACCGTTTTT	ACCCACCCAA
28261	AGCAGACCAA	AGCAAACCTC	ACCTCCGGTT	TGCACAAGCG	GGCCAATAAG	TACCTTACCT
28321	GGTACTTTAA	CGGCTCTTCA	TTTGTAATTT	ACAACAGTTT	CCAGCGAGAC	GAAGTAAGTT
28381	TGCCACACAA	CCTTCTCGGC	TTCAACTACA	CCGTCAAGAA	AAACACCACC	ACCACCCTCC
28441	TCACCTGCCG	GGAACGTACG	AGTGCGTCAC	CGGTTGCTGC	GCCCACACCT	ACAGCCTGAG
28501	CGTAACCAGA	CATTACTCCC	ATTTTCCCAA	AACAGGAGGT	GAGCTCAACT	CCCGGAACTC
28561	AGGTCAAAAA	AGCATTTTGC	${\tt GGGGTGCTGG}$	GATTTTTTAA	${\tt TTAAGTATAT}$	GAGCAATTCA
28621	AGTAACTCTA	${\tt CAAGCTTGTC}$	${\bf TAATTTTTCT}$	${\tt GGAATTGGGG}$	${\tt TCGGGGTTAT}$	CCTTACTCTT
28681	${\tt GTAATTCTGT}$	${\tt TTATTCTTAT}$	${\tt ACTAGCACTT}$	${\tt CTGTGCCTTA}$	GGGTTGCCGC	CTGCTGCACG
28741	CACGTTTGTA	CCTATTGTCA	${\tt GCTTTTTAAA}$	CGCTGGGGGC	GACATCCAAG	ATGAGGTACA
28801	${\tt TGATTTTAGG}$	${\tt CTTGCTCGCC}$	${\tt CTTGCGGCAG}$	${\tt TCTGCAGCGC}$	$\mathtt{TGCCAAAAAG}$	GTTGAGTTTA
28861	AGGAACCAGC	${\tt TTGCAATGTT}$	ACATTTAAAT	CAGAAGCTAA	TGAATGCACT	ACTCTTATAA
28921	AATGCACCAC	AGAACATGAA	AAGCTTATTA	TTCGCCACAA	AGACAAAATT	GGCAAGTATG
28981	CTGTATATGC	TATTTGGCAG	CCAGGTGACA	CTAACGACTA	TAATGTCACA	GTCTTCCAAG
29041	GTGAAAATCG	TAAAACTTTT	ATGTATAAAT	TTCCATTTTA	TGAAATGTGC	GATATTACCA
29101	TGTACATGAG	CAAACAGTAC	AAGTTGTGGC	CCCCACAAAA	GTGTTTAGAG	AACACTGGCA
29161	CCTTTTGTTC	CACCGCTCTG	CTTATTACAG	CGCTTGCTTT	GGTATGTACC	TTACTTTATC
29221	TCAAATACAA	AAGCAGACGC	AGTTTTATTG	ATGAAAAGAA	AATGCCTTGA	TTTTCCGCTT
29281	GCTTGTATTC	CCCTGGACAA	TTTACTCTAT	GTGGGATATG	CGCCAGGCGG	GAAAGATTAT
29341	ACCCACAACC	TTCAAATCAA	ACTTTCCTGG	ACGTTAGCGC	CTGACTTCTG	CCAGCGCCTG
29401	CACTGCAAAT	TTGATCAAAC	CCAGCTTCAG	CTTGCCTGCT	CCAGAGATGA	CCGGCTCAAC
29461	CATCGCGCCC	ACAACGGACT	ATCGCAACAC	CACTGCTACC	GGACTAAAAT	CTGCCCTAAA
29521	TTTACCCCAA	GTTCATGCCT	TTGTCAATGA	CTGGGCGAGC	TTGGGCATGT	GGTGGTTTTC
29581	CATAGCGCTT	ATGTTTGTTT	GCCTTATTAT	TATGTGGCTT	ATTTGTTGCC	TAAAGCGCAG
	ACGCGCCAGA					
29701	TCATAGATTG	GACGGTCTCA	AACCATGTTC	TCTTCTTTTA	CAGTATGATT	AAATGAGACA
29761	TGATTCCTCG	AGTCCTTATA	TTATTGACCC	TTGTTGCGCT	TTTCTGTGCG	TGCTCTACAT
	TGGCTGCGGT					
	ACGGATTTGT					
	AGTTCATTGA					
	ACAGGACTAT					
	TTTGCTGATT					
	ACATATTTCC					
30181	CGATTTGTCA	GAAGCCTGGT	TATACGCCAT	CATCTCTGTC	ATGGTTTTTT	GCAGTACCAT

FIG. 7L

3024	1 TTTTGC	CCTA	GCCATATACC	CATACCTTGA	CATTGGTTGG	AATGCCATAG	ATGCCATGAA
3030	1 CCACCC	TACT	TTCCCAGCGC	CCAATGTCAT	ACCACTGCAA	CAGGTTATTG	CCCCAATCAA
3036	1 TCAGCC	TCGC	CCCCCTTCTC	CCACCCCCAC	TGAGATTAGC	TACTTTAATT	TGACAGGTGG
3042	1 AGATGA	CTGA	ATCTCTAGAT	CTAGAATTGG	ATGGAATTAA	CACCGAACAG	CGCCTACTAG
3048	31 AAAGGC	GCAA	GGCGGCGTCC	GAGCGAGAAC	GCCTAAAACA	AGAAGTTGAA	GACATGGTTA
3054	11 ACCTGC	ACCA	GTGTAAAAGA	GGTATCTTTT	GTGTGGTCAA	GCAGGCCAAA	CTTACCTACG
3060	1 AAAAAA	CCAC	TACCGGCAAC	CGCCTTAGCT	ACAAGCTACC	CACCCAGCGC	CAAAAACTGG
3066	1 TGCTTA	TGGT	GGGAGAAAA	CCTATCACCG	TCACCCAGCA	${\tt CTCGGCAGAA}$	ACAGAAGGCT
3072	1 GCCTGC	ACTT	CCCCTATCAG	GGTCCAGAGG	ACCTCTGCAC	$\mathbf{TCTTATTAAA}$	ACCATGTGTG
3078	31 GCATTA	GAGA	TCTTATTCCA	TTCAACTAAC	AATAAACACA	CAATAAATTA	CTTACTTAAA
3084	11 ATCAGT	CAGC	AAATCTTTGT	CCAGCTTATT	CAGCATCACC	TCCTTTCCCT	CCTCCCAACT
3090)1 CTGGTA	TTTC	AGCAGCCTTT	TAGCTGCGAA	${\tt CTTTCTCCAA}$	${\tt AGTCTAAATG}$	GGATGTCAAA
3096	1 TTCCTC	ATGT	TCTTGTCCCT	CCGCACCCAC	${\tt TATCTTCATA}$	${\tt TTGTTGCAGA}$	TGAAACGCGC
3102	21 CAGACC	GTCT	GAAGACACCT	TCAACCCTGT	GTACCCATAT	GACACGGAAA	CCGGCCCTCC
3108	31 AACTGT	GCCT	${\tt TTCCTTACCC}$	${\tt CTCCCTTTGT}$	${\tt GTCGCCAAAT}$	GGGTTCCAAG	AAAGTCCCCC
3114	11 CGGAGT	GCTT	${\tt TCTTTGCGTC}$	${\tt TTTCAGAACC}$	${\tt TTTGGTTACC}$	TCACACGGCA	TGCTTGCGCT
3120)1 AAAAAT	GGGC	${\tt AGCGGCCTGT}$	${\tt CCCTGGATCA}$	GGCAGGCAAC	CTTACATCAA	ATACAATCAC
312	51 TGTTTC	TCAA	CCGCTAAAAA	AAACAAAGTC	CAATATAACT	TTGGAAACAT	CCGCGCCCCT
3132	1 TACAGT	CAGC	${\tt TCAGGCGCCC}$	${\tt TAACCATGGC}$	CACAACTTCG	CCTTTGGTGG	TCTCTGACAA
3138	31 CACTCT	TACC	ATGCAATCAC	AAGCACCGCT	AACCGTGCAA	GACTCAAAAC	TTAGCATTGC
314	11 TACCAA	AGAG	CCACTTACAG	${\tt TGTTAGATGG}$	AAAACTGGCC	CTGCAGACAT	CAGCCCCCT
3150)1 CTCTGC	CACT	GATAACAACG	CCCTCACTAT	CACTGCCTCA	CCTCCTCTTA	CTACTGCAAA
						AACAATGGAA	
					*	GCACTAACAC	
3168	31 TCAGGG	GGTT	GCAGTTCATA	ACAATTTGCT	ACATACAAAA	GTTACAGGCG	CAATAGGGTT
3174	11 TGATAC	ATCT	GGCAACATGG	AACTTAAAAC	TGGAGATGGC	CTCTATGTGG	ATAGCGCCGG
						GGCCTTGCTT	
						ACAGACTCCT	
319	1 TCCCAT	AAAA	ACAAAAATTG	GATCAGGCAT	ACAATATAAT	ACCAATGGAG	CTATGGTTGC
319	31 AAAACT	TGGA	ACAGGCCTCA	GTTTTGACAG	CTCCGGAGCC	ATAACAATGG	GCAGCATAAA
						CCAAATTGCA	
						GGCAGTCAAA	
						AATGGAACTC	
-						TCAAATTCAT	
						CAACCATACA	
						AGTAAAACTG	
						CCATTGCATT	
						TCAATATCAT	
						AATTCCTATA	
						ATGTTTCAAC	
						TATAGCCCCA	
327	01 GCTTAT	'AÇTA	ATCACCGTAC	CTTAATCAAA	CTCACAGAAC	CCTAGTATTC	AACCTGCCAC

FIG. 7M

32761	CTCCCTCCCA	ACACACAGAG	TACACAGTCC	TTTCTCCCCG	GCTGGCCTTA	AACAGCATCA
32821	TATCATGGGT	AACAGACATA	TTCTTAGGTG	TTATATTCCA	CACGGTCTCC	TGTCGAGCCA
32881	AACGCTCATC	AGTGATGTTA	ATAAACTCCC	CGGGCAGCTC	GCTTAAGTTC	ATGTCGCTGT
32941	CCAGCTGCTG	AGCCACAGGC	TGCTGTCCAA	CTTGCGGTTG	CTCAACGGGC	GGCGAAGGAG
33001	AAGTCCACGC	CTACATGGGG	GTAGAGTCAT	AATCGTGCAT	CAGGATAGGG	CGGTGGTGCT
33061	GCAGCAGCGC	GCGAATAAAC	TGCTGCCGCC	${\tt GCCGCTCCGT}$	CCTGCAGGAA	TACAACATGG
33121	CAGTGGTCTC	CTCAGCGATG	ATTCGCACCG	${\tt CCCGCAGCAT}$	${\tt AAGGCGCCTT}$	GTCCTCCGGG
33181	CACAGCAGCG	CACCCTGATC	${\tt TCACTTAAGT}$	${\tt CAGCACAGTA}$	ACTGCAGCAC	AGTACCACAA
33241	TATTGTTTAA	AATCCCACAG	${\tt TGCAAGGCGC}$	${\tt TGTATCCAAA}$	${\tt GCTCATGGCG}$	GGGACCACAG
33301	AACCCACGTG	GCCATCATAC	CACAAGCGCA	${\tt GGTAGATTAA}$	GTGGCGACCC	CTCATAAACA
33361	CGCTGGACAT	AAACATTACC	${\tt TCTTTTGGCA}$	${\tt TGTTGTAATT}$	CACCACCTCC	CGGTACCATA
33421	TAAACCTCTG	${\tt ATTAAACATG}$	${\tt GCGCCATCCA}$	CCACCATCCT	AAACCAGCTG	GCCAAAACCT
33481	GCCCGCCGGC	${\tt TATGCACTGC}$	AGGGAACCGG	GACTGGAACA	ATGACAGTGG	AGAGCCCAGG
33541	ACTCGTAACC	${\tt ATGGATCATC}$	ATGCTCGTCA	TGATATCAAT	GTTGGCACAA	CACAGGCACA
33601	CGTGCATACA	${\tt CTTCCTCAGG}$	ATTACAAGCT	CCTCCCGCGT	CAGAACCATA	TCCCAGGGAA
33661	CAACCCATTC	${\tt CTGAATCAGC}$	GTAAATCCCA	CACTGCAGGG	AAGACCTCGC	ACGTAACTCA
33721	CGTTGTGCAT	${\tt TGTCAAAGTG}$	${\tt TTACATTCGG}$	GCAGCAGCGG	ATGATCCTCC	AGTATGGTAG
33781	CGCGTGTCTC	${\tt TGTCTCAAAA}$	GGAGGTAGGC	GATCCCTACT	GTACGGAGTG	CGCCGAGACA
33841	ACCGAGATCG	TGTTGGTCGT	AGTGTCATGC	CAAATGGAAC	GCCGGACGTA	GTCATATTTC
33901	CTGAAGCAAA	ACCAGGTGCG	GGCGTGACAA	ACAGATCTGC	GTCTCCGGTC	TCGTCGCTTA
33961	GCTCGCTCTG	TGTAGTAGTT	GTAGTATATC	CACTCTCTCA	AAGCATCCAG	GCGCCCCTG
34021	GCTTCGGGTT	CTATGTAAAC	TCCTTCATGC	GCCGCTGCCC	TGATAACATC	CACCACCGCA
34081	GAATAAGCCA	CACCCAGCCA	ACCTACACAT	TCGTTCTGCG	AGTCACACAC	GGGAGGAGCG
	GGAAGAGCTG					
	AATGAAGATC					
34261	AAGAACAGAT	AATGGCATTT	GTAAGATGTT	GCACAATGGC	TTCCAAAAGG	CAAACTGCCC
34321	TCACGTCCAA	GTGGACGTAA	AGGCTAAACC	CTTCAGGGTG	AATCTCCTCT	ATAAACATTC
	CAGCACCTTC					
34441	GCAAATCCCG	AATATTAAGT	CCGGCCATTG	TAAAAATCTG	CTCCAGAGCG	CCCTCCACCT
34501	TCAGCCTCAA	GCAGCGAATC	ATGATTGCAA	AAATTCAGGT	TCCTCACAGA	CCTGTATAAG
	ATTCAAAAGC					
	CTGAACATAA					
	GACAAAAGAA					
	CCCGATGTAA					
	AGGCAAAGCC					
	GGTAAGTTCC					
	TTCCTGCATA					
	TGTNTTACAA					
	TGACCGTAAA					
	TCCGGAGTCA					
	AAAAAGCGAC					
35221	GCCCCCATAG	GAGGTATAAC	AAAATTAATA	GGAGAGAAAA	ACACATAAAC	ACCTGAAAAA

FIG. 7N

35281	CCCTCCTGCC	${\tt TAGGCAAAAT}$	AGCACCCTCC	CGCTCCAGAA	${\tt CAACATACAG}$	CGCTTCCACA
35341	GCGGCAGCCA	TAACAGTCAG	CCTTACCAGT	ааааааасст	${\tt ATTAAAAAAC}$	ACCACTCGAC
35401	ACGGCACCAG	CTCAATCAGT	CACAGTGTAA	AAAGGGCCAA	${\tt GTACAGAGCG}$	AGTATATATA
35461	GGACTAAAAA	ATGACGTAAC	GGTTAAAGTC	CACAAAAACC	ACCCAGAAAA	CCGCACGCGA
35521	ACCTACGCCC	AGAAACGAAA	GCCAAAAAAC	${\tt CCACAACTTC}$	${\tt CTCAAATCTT}$	CACTTCCGTT
35581	TTCCCACGAT	ACGTCACTTC	CCATTTTAAA	AAAAAACTAC	AATTCCCAAT	ACATGCAAGT
35641	TACTCCGCCC	TAAAACCTAC	GTCACCCGCC	CCGTTCCCAC	GCCCGCGCC	ACGTCACAAA
35701	CTCCACCCC	TCATTATCAT	ATTGGCTTCA	ATCCAAAATA	AGGTATATTA	TTGATGATG

	CATCATCAAT					
	TTGTGACGTG					
	GATGTTGCAA					
	GTGTGCGCCG					
	TAAATTTGGG					
	AGTGAAATCT					
	GACTTTGACC					
	CGGGTCAAAG					
	TGAGTTCCTC					
	TCCGACACCG					
	AATGGCCGCC					
	TCCTAGCCAT					
	CGAAGATCCC					
	GCAGGAAGGG					
	CCTTTCCCGG					
	CCTTGTACCG					
	CGAGGATGAA					
	CAGGTCTTGT					
1081	${\tt CTATATGAGG}$	ACCTGTGGCA	TGTTTGTCTA	CAGTAAGTGA	AAATTATGGG	CAGTGGGTGA
	TAGAGTGGTG					
	GAATTTTGTA					
	CCAGAACCGG					
	CGCCCGACAT					
1381	${\tt CCTTCTAACA}$	CACCTCCTGA	GATACACCCG	GTGGTCCCGC	TGTGCCCCAT	TAAACCAGTT
	GCCGTGAGAG					
	CCTGGGCAAC					
	TTGCGTGTGT					
1621	${\tt GAGATAATGT}$	${\tt TTAACTTGCA}$	TGGCGTGTTA	AATGGGGCGG	GGCTTAAAGG	GTATATAATG
	CGCCGTGGGC					
	TTTTCTGCTG					
	TTTCTGTGGG					
1861	GAATTTGAAG	AGCTTTTGAA	ATCCTGTGGT	GAGCTGTTTG	ATTCTTTGAA	TCTGGGTCAC
1921	CAGGCGCTTT	TCCAAGAGAA	GGTCATCAAG	ACTTTGGATT	TTTCCACACC	GGGGCGCCT
1981	GCGGCTGCTG	TTGCTTTTTT	GAGTTTTATA	AAGGATAAAT	GGAGCGAAGA	AACCCATCTG
2041	AGCGGGGGGT	ACCTGCTGGA	TTTTCTGGCC	ATGCATCTGT	GGAGAGCGGT	TGTGAGACAC
2101	AAGAATCGCC	TGCTACTGTT	GTCTTCCGTC	CGCCCGGCGA	TAATACCGAC	GGAGGAGCAG
2161	CAGCAGCAGC	AGGAGGAAGC	CAGGCGGCGG	CGGCAGGAGC	AGAGCCCATG	GAACCCGAGA
2221	GCCGGCCTGG	ACCCTCGGGA	ATGAATGTTG	TACAGGTGGC	TGAACTGTAT	CCAGAACTGA
	GACGCATTTT					
2341	GGGCTTGTGA	GGCTACAGAG	GAGGCTAGGA	ATCTAGCTTT	TAGCTTAATG	ACCAGACACC
	GTCCTGAGTG					
2461	TGGCGCAGAA	GTATTCCATA	GAGCAGCTGA	CCACTTACTG	GCTGCAGCCA	GGGGATGATT
2521	TTGAGGAGGC	TATTAGGGTA	TATGCAAAGG	TGGCACTTAG	GCCAGATTGC	AAGTACAAGA
2581	TCAGCAAACT	TGTAAATATC	AGGAATTGTT	GCTACATTTC	TGGGAACGGG	GCCGAGGTGG
2641	AGATAGATAC	GGAGGATAGG	GTGGCCTTTA	GATGTAGCAT	GATAAATATG	TGGCCGGGGG
	TGCTTGGCAT					
2761	GTACGGTTTT	CCTGGCCAAT	ACCAACCTTA	TCCTACACGG	TGTAAGCTTC	TATGGGTTTA
2821	ACAATACCTG	TGTGGAAGCC	TGGACCGATG	TAAGGGTTCG	GGGCTGTGCC	TTTTACTGCT
2881	GCTGGAAGGG	GGTGGTGTGT	CGCCCCAAAA	GCAGGGCTTC	AATTAAGAAA	TGCCTCTTTG
	AAAGGTGTAC					
	CCGACTGTGG					
3061	GTGGCAACTG	CGAGGACAGG	GCCTCTCAGA	TGCTGACCTG	CTCGGACGGC	AACTGTCACC
3121	TGCTGAAGAC	CATTCACGTA	GCCAGCCACT	CTCGCAAGGC	CTGGCCAGTG	TTTGAGCATA
3181	ACATACTGAC	CCGCTGTTCC	TTGCATTTGG	GTAACAGGAG	GGGGGTGTTC	CTACCTTACC
3241	AATGCAATTT	GAGTCACACT	AAGATATTGC	TTGAGCCCGA	GAGCATGTCC	AAGGTGAACC

3301	TGAACGGGGT	GTTTGACATG	ACCATGAAGA	TCTGGAAGGT	GCTGAGGTAC	GATGAGACCC
3361	GCACCAGGTG	CAGACCCTGC	GAGTGTGGCG	GTAAACATAT	TAGGAACCAG	CCTGTGATGC
3421	TGGATGTGAC	CGAGGAGCTG	AGGCCCGATC	ACTTGGTGCT	GGCCTGCACC	CGCGCTGAGT
3481	TTGGCTCTAG	CGATGAAGAT	ACAGATTGAG	GTACTGAAAT	GTGTGGGCGT	GGCTTAAGGG
3541	TGGGAAAGAA	TATATAAGGT	GGGGGTCTTA	TGTAGTTTTG	TATCTGTTTT	GCAGCAGCCG
3601	CCGCCGCCAT	GAGCACCAAC	TCGTTTGATG	GAAGCATTGT	GAGCTCATAT	TTGACAACGC
3661	CCATCCCCCC	ATGGGCCGGG	GTGCGTCAGA	ATGTGATGGG	CTCCAGCATT	GATGGTCGCC
3721	CCGTCCTGCC	CCCAAACTCT	ACTACCTTGA	CCTACGAGAC	CGTGTCTGGA	ACGCCGTTGG
3781	AGACTGCAGC	CTCCGCCGCC	GCTTCAGCCG	CTGCAGCCAC	CGCCGCGGG	ATTGTGACTG
3841	ACTITICATION	CCTGAGCCCG	CTTGCAAGCA	GTGCAGCTTC	CCGTTCATCC	GCCCGCGATG
3901	ACAAGTTGAC	GGCTCTTTTG	GCACAATTGG	ATTCTTTGAC	CCGGGAACTT	AATGTCGTTT
3961	CTCAGCAGCT	GTTGGATCTG	CGCCAGCAGG	TTTCTGCCCT	GAAGGCTTCC	TCCCCTCCCA
4021	ATGCGGTTTA	AAACATAAAT	AAAAAACCAG	ACTCTGTTTG	GATTTGGATC	AAGCAAGTGT
					CCGGGACCAG	
4141	CGTTGAGGGT	CCTGTGTATT	TTTTCCAGGA	CGTGGTAAAG	GTGACTCTGG	ATGTTCAGAT
					CTGCAGAGCT	
					GGCGTGGTGC	
4321	CTTTCAGTAG	CAACCTGATT	GCCAGGGGCA	GGCCCTTGGT	GTAAGTGTTT	ACAAAGCGGT
4381	TAACCTCCCA	TGGGTGCATA	CGTGGGGATA	TGAGATGCAT	CTTGGACTGT	ATTTTTAGGT
4441	TCCCTATCTT	CCCAGCCATA	TCCCTCCGGG	GATTCATGTT	GTGCAGAACC	ACCAGCACAG
4501	TCTATCCCCT	CCACTTGGGA	AATTTGTCAT	GTAGCTTAGA	AGGAAATGCG	TGGAAGAACT
4561	TGGAGACCCC	CTTCTCACCT	CCAAGATTTT	CCATGCATTC	GTCCATAATG	ATGGCAATGG
4621	CCCCACGGC	CCCCCCCTCC	GCGAAGATAT	TTCTGGGATC	ACTAACGTCA	TAGTTGTGTT
4621	CCACCATGAG	ATCGTCATAG	CCCATTTTTA	CAAAGCGCGG	GCGGAGGGTG	CCAGACTGCG
					ACAGATTTGC	
					GATGAAGAAA	
4861	CCCTACCCCA	CATCACCTCC	GAAGAAAGCA	GGTTCCTGAG	CAGCTGCGAC	TTACCGCAGC
4921	CCCTCCCCCC	CTAAATCACA	CCTATTACCG	GGTGCAACTG	GTAGTTAAGA	GAGCTGCAGC
					GTCCCTGACT	
5041	CCCTGACCAA	ATCCGCCAGA	AGGCGCTCGC	CGCCCAGCGA	TAGCAGTTCT	TGCAAGGAAG
5101	CAAAGTTTTT	CAACGGTTTG	AGACCGTCCG	CCGTAGGCAT	GCTTTTGAGC	GTTTGACCAA
5161	CCACTTCCAG	GCGGTCCCAC	AGCTCGGTCA	CCTGCTCTAC	GGCATCTCGA	TCCAGCATAT
5221	CTCCTCCTTT	CCCCCCCTTCC	GGCGGCTTTC	GCTGTACGGC	AGTAGTCGGT	GCTCGTCCAG
5221	ACCCCCCACC	CTCATCTCTT	TCCACGGGCG	CAGGGTCCTC	GTCAGCGTAG	TCTGGGTCAC
5341	GGTGAAGGGG	TGCGCTCCGG	GCTGCGCGCT	GGCCAGGGTG	CGCTTGAGGC	TGGTCCTGCT
5401	GGTGCTGAAG	CCCTCCCGCT	CTTCGCCCTG	CGCGTCGGCC	AGGTAGCATT	TGACCATGGT
					AGCTTGCCCT	
					TTGGGCGCGA	
					GTCTCGCATT	
5641	GGTGAGCTCT	GGCCGTTCGG	GGTCAAAAAC	CAGGTTTCCC	CCATGCTTTT	TGATGCGTTT
5701	CTTACCTCTG	GTTTCCATGA	GCCGGTGTCC	ACGCTCGGTG	ACGAAAAGGC	TGTCCGTGTC
5761	CCCGTATACA	GACTTGAGAG	GCCTGTCCTC	GAGCGGTGTT	CCGCGGTCCT	CCTCGTATAG
5821	AAACTCGGAC	CACTCTGAGA	CAAAGGCTCG	CGTCCAGGCC	AGCACGAAGG	AGGCTAAGTG
5881	CCACCCCTAC	CGGTCGTTGT	CCACTAGGGG	GTCCACTCGC	TCCAGGGTGT	GAAGACACAT
59/1	CTCCCCCTCT	TCGGCATCAA	GGAAGGTGAT	TGGTTTGTAG	GTGTAGGCCA	CGTGACCGGG
6001	TGTTCCTGAA	CCCCCCTAT	AAAAGGGGGT	GGGGGCGCGT	TCGTCCTCAC	TCTCTTCCGC
6061	ስጥር ርርጥር ጥርጥር ጥር	CCCAGGGCCA	GCTGTTGGGG	TGAGTACTCC	CTCTGAAAAG	CGGGCATGAC
6121	TTCTGCGCTA	AGATTGTCAG	TTTCCAAAAA	CGAGGAGGAT	TTGATATTCA	CCTGGCCCGC
6181	GGTGATGCCT	TTGAGGGTGG	CCGCATCCAT	CTGGTCAGAA	AAGACAATCT	TTTTGTTGTC
6241	AAGCTTGGTG	GCAAACGACC	CGTAGAGGGC	GTTGGACAGC	AACTTGGCGA	TGGAGCGCAG
6301	GGTTTGGTTT	TTGTCGCGAT	CGGCGCGCTC	CTTGGCCGCG	ATGTTTAGCT	GCACGTATTC
6361	GCGCGCAACG	CACCGCCATT	CGGGAAAGAC	GGTGGTGCGC	TCGTCGGGCA	CCAGGTGCAC
					GTGGCTACCT	
6481	GCGCTCGTTG	GTCCAGCAGA	GGCGGCCGCC	CTTGCGCGAG	CAGAATGGCG	GTAGGGGGTC
6541	TACCTCG11G	TCGTCCGGGG	GGTCTGCGTC	CACGGTAAAG	ACCCCGGGCA	GCAGGCGCGC
0347	1490190910	TCGTCCGGGG	001010010			

						TGCTGCCATG	
						ATGGGGTGGG	
	6721	GGCGTACATG	CCGCAAATGT	CGTAAACGTA	GAGGGGCTCT	CTGAGTATTC	CAAGATATGT
						TCGTATAGTT	
	6841	AGCGAGGAGG	TCGGGACCGA	GGTTGCTACG	GGCGGGCTGC	TCTGCTCGGA	AGACTATCTG
	6901	CCTGAAGATG	GCATGTGAGT	TGGATGATAT	GGTTGGACGC	TGGAAGACGT	TGAAGCTGGC
	6961	GTCTGTGAGA	CCTACCGCGT	CACGCACGAA	GGAGGCGTAG	GAGTCGCGCA	GCTTGTTGAC
	7021	CAGCTCGGCG	GTGACCTGCA	CGTCTAGGGC	GCAGTAGTCC	AGGGTTTCCT	TGATGATGTC
	7081	ATACTTATCC	TGTCCCTTTT	TTTTCCACAG	CTCGCGGTTG	AGGACAAACT	CTTCGCGGTC
	7141	TTTCCAGTAC	TCTTGGATCG	GAAACCCGTC	GGCCTCCGAA	CGGTAAGAGC	CTAGCATGTA
						ACGGGTAGCG	
						TCCCTGACCA	
	7321	GTACTGGTAT	TTGAAGTCAG	TGTCGTCGCA	TCCGCCCTGC	TCCCAGAGCA	AAAAGTCCGT
	7381	GCGCTTTTTG	GAACGCGGAT	TTGGCAGGGC	GAAGGTGACA	TCGTTGAAGA	GTATCTTTCC
						GGCACCTCGG	
						ATGTTGTGGC	
						TTTTTAAGTT	
						CAGTCTGCAA	
						ATTTGCAGGT	
						ATTGCAGGT	
						TCTCGCGCGG	
						ACGAGCTGCT	
						AGACGCTCGG	
						GAGGAGTGGC	
						TGGCTTTTGT	
						AGGTTGACCT	
						GGGTTTGGCT	
						GGAGTTACGG	
						GGCGGTCGGA	
						CGCGGCGTCA	
						CGGGCTAGAT	
						TGCAAGAGGC	
						GGGGTGTCCT	
						GGGGCTCCGG	
						GCTGGTGCTG	
						TCTGGCGCCT	
						CAGAATCAAT	
						AGTTGTCTTG	
						CGCGTCCGGC	
						AGAAGGCGTT	
						CGCGGGCGCG	
						AGTTTCGCAG	
	9121	AGGTAGTTGA	GGGTGGTGGC	GGTGTGTTCT	GCCACGAAGA	AGTACATAAC	CCAGCGTCGC
						CCATGGCCTC	
	9241	ACGGCGAAGT	TGAAAAACTG	GGAGTTGCGC	GCCGACACGG	TTAACTCCTC	CTCCAGAAGA
	9301	CGGATGAGCT	CGGCGACAGT	GTCGCGCACC	TCGCGCTCAA	AGGCTACAGG	GGCCTCTTCT
	9361	TCTTCTTCAA	TCTCCTCTTC	CATAAGGGCC	TCCCCTTCTT	CTTCTTCTGG	CGGCGGTGGG
	9421	GGAGGGGGGA	CACGGCGGCG	ACGACGGCGC	ACCGGGAGGC	GGTCGACAAA	GCGCTCGATC
:	9481	ATCTCCCCGC	GGCGACGGCG	CATGGTCTCG	GTGACGGCGC	GGCCGTTCTC	GCGGGGGCGC
						GCGGGGGCT	
						TAGGTACTCC	
						CGAGAAAGGC	
						GCGGGCGCG	
						CGGTCTTGAG	
						TGCGCAGGCG	
•							

						01 000mmmmm
9901	CCCCAGGCTT	CGTTTTGACA	TCGGCGCAGG	TCTTTGTAGT	AGTCTTGCAT	GAGCCTTTCT
9961	ACCGGCACTT	CTTCTTCTCC	TTCCTCTTGT	CCTGCATCTC	TTGCATCTAT	CGCTGCGGCG
10021	$\tt GCGGCGGAGT$	TTGGCCGTAG	GTGGCGCCCT	CTTCCTCCCA	TGCGTGTGAC	CCCGAAGCCC
10081	${\tt CTCATCGGCT}$	GAAGCAGGGC	TAGGTCGGCG	ACAACGCGCT	CGGCTAATAT	GGCCTGCTGC
10141	ACCTGCGTGA	GGGTAGACTG	GAAGTCATCC	ATGTCCACAA	AGCGGTGGTA	TGCGCCCGTG
10201	${\tt TTGATGGTGT}$	AAGTGCAGTT	GGCCATAACG	GACCAGTTAA	CGGTCTGGTG	ACCCGGCTGC
10261	GAGAGCTCGG	TGTACCTGAG	ACGCGAGTAA	GCCCTCGAGT	CAAATACGTA	GTCGTTGCAA
10321	GTCCGCACCA	GGTACTGGTA	TCCCACCAAA	AAGTGCGGCG	GCGGCTGGCG	GTAGAGGGGC
10381	${\tt CAGCGTAGGG}$	TGGCCGGGGC	TCCGGGGGCG	AGATCTTCCA	ACATAAGGCG	ATGATATCCG
10441	${\tt TAGATGTACC}$	TGGACATCCA	GGTGATGCCG	GCGGCGGTGG	TGGAGGCGCG	CGGAAAGTCG
10501	${\tt CGGACGCGGT}$	TCCAGATGTT	GCGCAGCGGC	AAAAAGTGCT	CCATGGTCGG	GACGCTCTGG
10561	${\tt CCGGTCAGGC}$	GCGCGCAATC	GTTGACGCTC	TAGACCGTGC	AAAAGGAGAG	CCTGTAAGCG
10621	${\tt GGCACTCTTC}$	CGTGGTCTGG	TGGATAAATT	CGCAAGGGTA	TCATGGCGGA	CGACCGGGGT
10681	${\tt TCGAGCCCCG}$	TATCCGGCCG	TCCGCCGTGA	TCCATGCGGT	TACCGCCCGC	GTGTCGAACC
10741	${\tt CAGGTGTGCG}$	ACGTCAGACA	ACGGGGGAGT	GCTCCTTTTG	GCTTCCTTCC	AGGCGCGGCG
10801	GCTGCTGCGC	TAGCTTTTTT	GGCCACTGGC	CGCGCGCAGC	GTAAGCGGTT	AGGCTGGAAA
10861	GCGAAAGCAT	TAAGTGGCTC	GCTCCCTGTA	GCCGGAGGGT	TATTTTCCAA	GGGTTGAGTC
10921	GCGGGACCCC	CGGTTCGAGT	CTCGGACCGG	CCGGACTGCG	GCGAACGGGG	GTTTGCCTCC
10981	CCGTCATGCA	AGACCCCGCT	TGCAAATTCC	TCCGGAAACA	GGGACGAGCC	CCTTTTTTGC
11041	TTTTCCCAGA	TGCATCCGGT	GCTGCGGCAG	ATGCGCCCCC	CTCCTCAGCA	GCGGCAAGAG
11101	CAAGAGCAGC	GGCAGACATG	CAGGGCACCC	TCCCCTCCTC	CTACCGCGTC	AGGAGGGGCG
11161	ACATCCGCGG	TTGACGCGGC	AGCAGATGGT	GATTACGAAC	CCCCGCGGCG	CCGGGCCCGG
11221	CACTACCTGG	ACTTGGAGGA	GGGCGAGGGC	CTGGCGCGGC	TAGGAGCGCC	CTCTCCTGAG
11281	CGGTACCCAA	GGGTGCAGCT	GAAGCGTGAT	ACGCGTGAGG	CGTACGTGCC	GCGGCAGAAC
11341	CTGTTTCGCG	ACCGCGAGGG	AGAGGAGCCC	GAGGAGATGC	GGGATCGAAA	GTTCCACGCA
11401	GGGCGCGAGC	TGCGGCATGG	CCTGAATCGC	GAGCGGTTGC	TGCGCGAGGA	GGACTTTGAG
11461	CCCGACGCGC	GAACCGGGAT	TAGTCCCGCG	CGCGCACACG	TGGCGGCCGC	CGACCTGGTA
11521	ACCGCATACG	AGCAGACGGT	GAACCAGGAG	ATTAACTTTC	AAAAAAGCTT	TAACAACCAC
11581	GTGCGTACGC	TTGTGGCGCG	CGAGGAGGTG	GCTATAGGAC	TGATGCATCT	GTGGGACTTT
11641	GTAAGCGCGC	TGGAGCAAAA	CCCAAATAGC	AAGCCGCTCA	TGGCGCAGCT	GTTCCTTATA
11701	GTGCAGCACA	GCAGGGACAA	CGAGGCATTC	AGGGATGCGC	TGCTAAACAT	AGTAGAGCCC
11761	GAGGGCCGCT	GGCTGCTCGA	TTTGATAAAC	ATCCTGCAGA	GCATAGTGGT	GCAGGAGCGC
11821	AGCTTGAGCC	TGGCTGACAA	GGTGGCCGCC	ATCAACTATT	CCATGCTTAG	CCTGGGCAAG
11881	TTTTACGCCC	GCAAGATATA	CCATACCCCT	TACGTTCCCA	TAGACAAGGA	GGTAAAGATC
11941	GAGGGGTTCT	ACATGCGCAT	GGCGCTGAAG	GTGCTTACCT	TGAGCGACGA	CCTGGGCGTT
12001	TATCGCAACG	AGCGCATCCA	CAAGGCCGTG	AGCGTGAGCC	GGCGGCGCGA	GCTCAGCGAC
12061	CGCGAGCTGA	TGCACAGCCT	GCAAAGGGCC	CTGGCTGGCA	CGGGCAGCGG	CGATAGAGAG
12121	GCCGAGTCCT	ACTTTGACGC	GGGCGCTGAC	CTGCGCTGGG	CCCCAAGCCG	ACGCGCCCTG
12181	GAGGCAGCTG	GGGCCGGACC	TGGGCTGGCG	GTGGCACCCG	CGCGCGCTGG	CAACGTCGGC
12241	GGCGTGGAGG	AATATGACGA	GGACGATGAG	TACGAGCCAG	AGGACGGCGA	GTACTAAGCG
12301	GTGATGTTTC	TGATCAGATG	ATGCAAGACG	CAACGGACCC	GGCGGTGCGG	GCGGCGCTGC
12361	AGAGCCAGCC	GTCCGGCCTT	AACTCCACGG	ACGACTGGCG	CCAGGTCATG	GACCGCATCA
12421	TGTCGCTGAC	TGCGCGCAAT	CCTGACGCGT	TCCGGCAGCA	GCCGCAGGCC	AACCGGCTCT
12481	CCGCAATTCT	GGAAGCGGTG	GTCCCGGCGC	GCGCAAACCC	CACGCACGAG	AAGGTGCTGG
	CGATCGTAAA					
12601	ACGACGCGCT	GCTTCAGCGC	GTGGCTCGTT	ACAACAGCGG	CAACGTGCAG	ACCAACCTGG
12661	ACCGGCTGGT	GGGGGATGTG	CGCGAGGCCG	TGGCGCAGCG	TGAGCGCGCG	CAGCAGCAGG
	GCAACCTGGG					
12781	CGCGGGGACA	GGAGGACTAC	ACCAACTTTG	TGAGCGCACT	GCGGCTAATG	GTGACTGAGA
12841	CACCGCAAAG	TGAGGTGTAC	CAGTCTGGGC	CAGACTATTT	TTTCCAGACC	AGTAGACAAG
12901	GCCTGCAGAC	CGTAAACCTG	AGCCAGGCTT	TCAAAAACTT	GCAGGGGCTG	TGGGGGGTGC
12961	GGGCTCCCAC	AGGCGACCGC	GCGACCGTGT	CTAGCTTGCT	GACGCCCAAC	TCGCGCCTGT
13021	TGCTGCTGCT	AATAGCGCCC	TTCACGGACA	GTGGCAGCGT	GTCCCGGGAC	ACATACCTAG
13081	GTCACTTGCT	GACACTGTAC	CGCGAGGCCA	TAGGTCAGGC	GCATGTGGAC	GAGCATACTT
13141	TCCAGGAGAT	TACAAGTGTC	AGCCGCGCGC	TGGGGCAGGA	GGACACGGGC	AGCCTGGAGG

	CAACCCTAAA					
	ACAGCGAGGA					
13321	GCGACGGGGT	AACGCCCAGC	GTGGCGCTGG	ACATGACCGC	GCGCAACATG	GAACCGGGCA
13381	TGTATGCCTC	AAACCGGCCG	TTTATCAACC	GCCTAATGGA	CTACTTGCAT	CGCGCGGCCG
13441	CCGTGAACCC	CGAGTATTTC	ACCAATGCCA	TCTTGAACCC	GCACTGGCTA	CCGCCCCCTG
13501	GTTTCTACAC	CGGGGGATTC	GAGGTGCCCG	AGGGTAACGA	TGGATTCCTC	TGGGACGACA
13561	TAGACGACAG	CGTGTTTTCC	CCGCAACCGC	AGACCCTGCT	AGAGTTGCAA	CAGCGCGAGC
13621	AGGCAGAGGC	GGCGCTGCGA	AAGGAAAGCT	TCCGCAGGCC	AAGCAGCTTG	TCCGATCTAG
13681	GCGCTGCGGC	CCCGCGGTCA	GATGCTAGTA	GCCCATTTCC	AAGCTTGATA	GGGTCTCTTA
	CCAGCACTCG					
	TGCTGCAGCC					
	GCCTAGTGGA					
	GCCCGCGCCC					
	ACGATGACTC					
	CGCACCTTCG					
	AAAAACTCAC					
	GCGCGCGGCG					
	GCCAGTGGCG					
	TCCGCGGTAC					
	CCTATTCGAC					
	GAACTACCAG					
	CCCGGGGGAG					
14521	CCTGAAAACC	ATCCTGCATA	CCAACATGCC	AAATGTGAAC	GAGTTCATGT	TTACCAATAA
14581	GTTTAAGGCG	CGGGTGATGG	TGTCGCGCTT	GCCTACTAAG	GACAATCAGG	TGGAGCTGAA
14641	ATACGAGTGG	GTGGAGTTCA	CGCTGCCCGA	GGGCAACTAC	TCCGAGACCA	TGACCATAGA
14701	CCTTATGAAC	AACGCGATCG	TGGAGCACTA	CTTGAAAGTG	GGCAGACAGA	ACGGGGTTCT
14761	GGAAAGCGAC	ATCGGGGTAA	AGTTTGACAC	CCGCAACTTC	AGACTGGGGT	TTGACCCCGT
14821	CACTGGTCTT	GTCATGCCTG	GGGTATATAC	AAACGAAGCC	TTCCATCCAG	ACATCATTTT
14881	GCTGCCAGGA	TGCGGGGTGG	ACTTCACCCA	CAGCCGCCTG	AGCAACTTGT	TGGGCATCCG
14941	CAAGCGGCAA	CCCTTCCAGG	AGGGCTTTAG	GATCACCTAC	GATGATCTGG	AGGGTGGTAA
	CATTCCCGCA					
	GGGCGGGGT					
	CGCGGCAGCC					
	CACCTTTGCC					
	CGCCCCCGCT					
	GACAGAGGAC					
	GTACCGCAGC					
	GACCCTGCTT					
	AGACATGATG					
	GGTGGGCGCC					
	CTCCCAACTC					
	CCAGATTTTG					
	TCTCACAGAT					
15781	CATTACTGAC	GCCAGACGCC	GCACCTGCCC	CTACGTTTAC	AAGGCCCTGG	GCATAGTCTC
	GCCGCGCGTC					
15901	CAATAACACA	GGCTGGGGCC	TGCGCTTCCC	AAGCAAGATG	TTTGGCGGGG	CCAAGAAGCG
15961	CTCCGACCAA	CACCCAGTGC	GCGTGCGCGG	GCACTACCGC	GCGCCCTGGG	GCGCGCACAA
16021	ACGCGGCCGC	ACTGGGCGCA	CCACCGTCGA	TGACGCCATC	GACGCGGTGG	TGGAGGAGGC
16081	GCGCAACTAC	ACGCCCACGC	CGCCACCAGT	GTCCACAGTG	GACGCGGCCA	TTCAGACCGT
	GGTGCGCGGA					
	CCACCGCCGC					
	ACGTCGCACC					
	CACTGTGCCC					
	TATGACTCAG					
	CGTGCCCGTG					
			22222222			

16501	GTACTGTTGT	ΔΦΩΦΑΦΟΟΑΩ	CGGCGGCGGC	GCGCAACGAA	GCTATGTCCA	AGCGCAAAAT
16561	CAAAGAAGAG	ATCCTCCACC	TCATCGCGCC	CCACATCTAT	GGCCCCCGA	AGAAGGAAGA
16631	GCAGGATTAC	AIGCICCAGG	ACCTABACCC	GGTCAAAAAG	AAAAAGAAAG	ATGATGATGA
16601	TGAACTTGAC	CACCACCTCC	AACTGCTGCA	CGCTACCGCG	CCCAGGCGAC	GGGTACAGTG
16741	GAAAGGTCGA	CCCCTAAAAC	CTCTTTTCCC	ACCCGGCACC	ACCGTAGTCT	TTACGCCCGG
16001	TGAGCGCTCC	ACCCGCACCT	ACAAGCGCGT	CTATCATGAG	GTGTACGGCG	ACGAGGACCT
16061	GCTTGAGCAG	CCCA ACCACCI	CCCTCCCCCA	CTTTCCCTAC	GGAAAGCGGC	ATAAGGACAT
10001	GCTGGCGTTG	CCCCAACGAGC	ACCCCAACCC	ANCACCTAGO	CTAAACCCCG	TAACACTGCA
10021	GCAGGTGCTG	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CACCCTCCCA	AGAAAAGCGC	CCCCTAAACC	CCCACTCTCC
10701	TGACTTGGCA	CCCGCGCIIG	ACCTCATCCT	ACCCAAGCGC	CAGCGACTGG	AAGATGTCTT
17101	GGAAAAAATG	ACCCTCCAAC	CTCCCCTCCA	CCCCACCTC	CCCCTCCCCC	CAATCAAGCA
1/101	GGTGGCGCCG	ACCGIGGAAC	CIGGGCIGGA	CCACCOMOGIC	ATACCCACTA	CCAGTAGCAC
1/101	CAGTATTGCC	ACCCCCACAC	ACCCCATCCA	CACACAAACG	TCCCCCCTTC	CCTCAGCGGT
17221	GGCGGATGCC	ACCGCCACAG	CCCTCCCTCC	CCCCCCCCCTCC	AAGACCTCTA	CGGAGGTGCA
17281	AACGGACCCG	GCGGTGCAGG	CGGTCGCTGC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCCCCCCCTT	CGAGGAAGTA
17341	CGGCGCCGCC	TGGATGTTTC	CCCTTTCAGC	mccccmxcxm	CCGCGCGGII	CGCCTACCCC
17401	CGGCGCCGCC	AGCGCGCTAC	AGGGGGGGAATA	ANGROCACCA	ACMACCCCALIG	CCCGAACCAC
17461	CGGCTATCGT	GGCTACACCT	ACCGCCCCAG	AAGACGAGCA	CECCCCCCC	TOTAL CONTROL OF THE
17521	CACTGGAACC	CGCCGCCGCC	GTCGCCGTCG	CCAGCCCGIG	A C A C C C C C C C C	ACCACCCCAG
17581	CAGGGTGGCT	CGCGAAGGAG	GCAGGACCCT	GGTGCTGCCA	ACAGCGCGCT	CCCCCCTCCC
17641	CATCGTTTAA	AAGCCGGTCT	TIGIGGITCT	TGCAGATATG	ACCOCACCT	GCCGCCICCG
17701	TTTCCCGGTG	CCGGGATTCC	GAGGAAGAAT	GCACCGTAGG	AGGGGCATGG	* CCCCCCCCC
17761	CCTGACGGGC	GGCATGCGTC	GTGCGCACCA	CCGGCGGCGG	CGCGCGTCGC	ACCGTCGCAT
17821	GCGCGGCGGT	ATCCTGCCCC	TCCTTATTCC	ACTGATCGCC	GCGGCGATTG	GCGCCGTGCC
17881	CGGAATTGCA	TCCGTGGCCT	TGCAGGCGCA	GAGACACTGA	T'TAAAAACAA	GTTGCATGTG
17941	GAAAAATCAA	AATAAAAAGT	CTGGACTCTC	ACGCTCGCTT	GGTCCTGTAA	CTATTTTGTA
18001	GAATGGAAGA	CATCAACTTT	GCGTCTCTGG	CCCCGCGACA	CGGCTCGCGC	CCGTTCATGG
18061	GAAACTGGCA	AGATATCGGC	ACCAGCAATA	TGAGCGGTGG	CGCCTTCAGC	TGGGGCTCGC
18121	${\tt TGTGGAGCGG}$	CATTAAAAAT	TTCGGTTCCA	CCGTTAAGAA	CTATGGCAGC	AAGGCCTGGA
18181	ACAGCAGCAC	AGGCCAGATG	CTGAGGGATA	AGTTGAAAGA	GCAAAATTTC	CAACAAAAGG
18241	TGGTAGATGG	CCTGGCCTCT	GGCATTAGCG	GGGTGGTGGA	CCTGGCCAAC	CAGGCAGTGC
18301	AAAATAAGAT	TAACAGTAAG	CTTGATCCCC	GCCCTCCCGT	AGAGGAGCCT	CCACCGGCCG
18361	TGGAGACAGT	GTCTCCAGAG	GGGCGTGGCG	AAAAGCGTCC	GCGCCCGAC	AGGGAAGAAA
18421	CTCTGGTGAC	GCAAATAGAC	GAGCCTCCCT	CGTACGAGGA	GGCACTAAAG	CAAGGCCTGC
18481	CCACCACCCG	TCCCATCGCG	CCCATGGCTA	CCGGAGTGCT	GGGCCAGCAC	ACACCCGTAA
18541	CGCTGGACCT	GCCTCCCCCC	GCCGACACCC	AGCAGAAACC	TGTGCTGCCA	GGCCCGACCG
18601	CCGTTGTTGT	AACCCGTCCT	AGCCGCGCGT	CCCTGCGCCG	CGCCGCCAGC	GGTCCGCGAT
18661	CGTTGCGGCC	CGTAGCCAGT	GGCAACTGGC	AAAGCACACT	GAACAGCATC	GTGGGTCTGG
18721	GGGTGCAATC	CCTGAAGCGC	CGACGATGCT	TCTGAATAGC	TAACGTGTCG	TATGTGTGTC
18781	ATGTATGCGT	CCATGTCGCC	GCCAGAGGAG	CTGCTGAGCC	GCCGCGCGCC	CGCTTTCCAA
18841	GATGGCTACC	CCTTCGATGA	TGCCGCAGTG	GTCTTACATG	CACATCTCGG	GCCAGGACGC
18901	CTCGGAGTAC	CTGAGCCCCG	GGCTGGTGCA	GTTTGCCCGC	GCCACCGAGA	CGTACTTCAG
18961	CCTGAATAAC	AAGTTTAGAA	ACCCCACGGT	GGCGCCTACG	CACGACGTGA	CCACAGACCG
19021	GTCCCAGCGT	TTGACGCTGC	GGTTCATCCC	TGTGGACCGT	GAGGATACTG	CGTACTCGTA
19081	CAAGGCGCGG	TTCACCCTAG	CTGTGGGTGA	TAACCGTGTG	CTGGACATGG	CTTCCACGTA
19141	CTTTGACATC	CGCGGCGTGC	TGGACAGGGG	CCCTACTTTT	AAGCCCTACT	CTGGCACTGC
19201	CTACAACGCC	CTGGCTCCCA	AGGGTGCCCC	AAATCCTTGC	GAATGGGATG	AAGCTGCTAC
19261	TGCTCTTGAA	ATAAACCTAG	AAGAAGAGGA	CGATGACAAC	GAAGACGAAG	TAGACGAGCA
19321	AGCTGAGCAG	CAAAAAACTC	ACGTATTTGG	GCAGGCGCCT	TATTCTGGTA	TAAATATTAC
19381	AAAGGAGGGT	ATTCAAATAG	GTGTCGAAGG	TCAAACACCT	AAATATGCCG	ATAAAACATT
19441	TCAACCTGAA	CCTCAAATAG	GAGAATCTCA	GTGGTACGAA	ACTGAAATTA	ATCATGCAGC
19501	TGGGAGAGTC	CTTAAAAAGA	CTACCCCAAT	GAAACCATGT	TACGGTTCAT	ATGCAAAACC
19561	CACAAATGAA	AATGGAGGGC	AAGGCATTCT	TGTAAAGCAA	CAAAATGGAA	AGCTAGAAAG
19621	TCAAGTGGAA	ATICOMOGU	ТСТСААСТАС	TGAGGCGACC	GCAGGCAATG	GTGATAACTT
19691	GACTCCTAAA	CTCCTATTTT	ACAGTGAAGA	TGTAGATATA	GAAACCCCAG	ACACTCATAT
107/1	TTCTTACATG	CCCACMAMMA	ACCAACCTAA	CTCACGAGAA	CTAATGGGCC	AACAATCTAT
17/41	TICITACATG	CCCMCIMIIM	"GOUTIGO TUM			

10001	CCCCN N C N C C	CCTAATTACA	птостттт с	CCACARMOME	Ammeemem A	memamma e a a
		AATATGGGTG				
		AGAAACACAG				
		TTTTCTATGT				
		CATGGAACTG				
		GAGACTCTTA				
20161	AAAAGATGCT	ACAGAATTTT	CAGATAAAAA	TGAAATAAGA	GTTGGAAATA	ATTTTGCCAT
20221	GGAAATCAAT	CTAAATGCCA	ACCTGTGGAG	AAATTTCCTG	TACTCCAACA	TAGCGCTGTA
20281	TTTGCCCGAC	AAGCTAAAGT	ACAGTCCTTC	CAACGTAAAA	ATTTCTGATA	ACCCAAACAC
20341	CTACGACTAC	ATGAACAAGC	GAGTGGTGGC	TCCCGGGTTA	GTGGACTGCT	ACATTAACCT
20401	TGGAGCACGC	TGGTCCCTTG	ACTATATGGA	CAACGTCAAC	CCATTTAACC	ACCACCGCAA
20461	TGCTGGCCTG	CGCTACCGCT	CAATGTTGCT	GGGCAATGGT	CGCTATGTGC	CCTTCCACAT
20521	CCAGGTGCCT	CAGAAGTTCT	TTGCCATTAA	AAACCTCCTT	CTCCTGCCGG	GCTCATACAC
20581	CTACGAGTGG	AACTTCAGGA	AGGATGTTAA	CATGGTTCTG	CAGAGCTCCC	TAGGAAATGA
20641	CCTAAGGGTT	GACGGAGCCA	GCATTAAGTT	TGATAGCATT	TGCCTTTACG	CCACCTTCTT
20701	CCCCATGGCC	CACAACACCG	CCTCCACGCT	TGAGGCCATG	CTTAGAAACG	ACACCAACGA
		AACGACTATC				
		CCCATATCCA				
		AAGACTAAGG				
		TCTATACCCT				
		ACCTTTGACT				
		GAAATTAAGC				
		GACTGGTTCC				
		CCAGAGAGCT				
		CAGGTGGTGG				
		AACAACTCTG				
		GCTAACTTCC				
		TTTCTTTGCG				
21481	GTCCATGGGC	GCACTCACAG	ACCTGGGCCA	AAACCTTCTC	TACGCCAACT	CCGCCCACGC
21541	GCTAGACATG	ACTTTTGAGG	TGGATCCCAT	GGACGAGCCC	ACCCTTCTTT	ATGTTTTGTT
21601	TGAAGTCTTT	GACGTGGTCC	GTGTGCACCG	GCCGCACCGC	GGCGTCATCG	AAACCGTGTA
21661	CCTGCGCACG	CCCTTCTCGG	CCGGCAACGC	CACAACATAA	AGAAGCAAGC	AACATCAACA
21721	ACAGCTGCCG	CCATGGGCTC	CAGTGAGCAG	GAACTGAAAG	CCATTGTCAA	AGATCTTGGT
21781	TGTGGGCCAT	ATTTTTTGGG	CACCTATGAC	AAGCGCTTTC	CAGGCTTTGT	TTCTCCACAC
		GCGCCATAGT				
21901	GCCTTTGCCT	GGAACCCGCA	CTCAAAAACA	TGCTACCTCT	TTGAGCCCTT	TGGCTTTTCT
		TCAAGCAGGT				
		CCCCGACCG				
		CCGCCTGTGG				
		CCATGGATCA				
		GTCCCCAGGT				
		GCCACTCGCC				
		ACTTGAAAAA	-			
						-
		ATTTGTACAC				
		CAAAGGGGTT				
		GTTTAGTGCT				
		TCCACAGGCT				
		CGCAGTTGGG				
		ACACTATCAG				
		CGTCCAGGTC				
22801	TGCCTTCCCA	AAAAGGGCGC	GTGCCCAGGC	TTTGAGTTGC	ACTCGCACCG	TAGTGGCATC
		CGTGCCCGGT				
22921	TGCTTAAAAG	CCACCTGAGC	CTTTGCGCCT	TCAGAGAAGA	ACATGCCGCA	AGACTTGCCG
22981	GAAAACTGAT	TGGCCGGACA	GGCCGCGTCG	TGCACGCAGC	ACCTTGCGTC	GGTGTTGGAG
23041	ATCTGCACCA	CATTTCGGCC	CCACCGGTTC	TTCACGATCT	TGGCCTTGCT	AGACTGCTCC

02101	mma	GCTGCCCGTT	mmaaamaama	A CLAMOO A MOTOR	CAAMCACCTC	CUCCUUTATUT
23101	TTCAGCGCGC	GCTGCCCGTT	TICGCICGIC	ACAICCAIII	CARICACGIG	CCCCTATI
23161	ATCATAATGC	TTCCGTGTAG	ACACTTAAGC	TUGUUTTUGA	CCCCCCCA	GCGGIGCAGC
23221	CACAACGCGC	AGCCCGTGGG	CTCGTGATGC	TTGTAGGTCA	CCTCTGCAAA	CGACTGCAGG
23281	TACGCCTGCA	GGAATCGCCC	CATCATCGTC	ACAAAGGTCT	TGTTGCTGGT	GAAGGTCAGC
23341	TGCAACCCGC	GGTGCTCCTC	GTTCAGCCAG	GTCTTGCATA	CGGCCGCCAG	AGCTTCCACT
23401	TGGTCAGGCA	${\tt GTAGTTTGAA}$	GTTCGCCTTT	AGATCGTTAT	CCACGTGGTA	CTTGTCCATC
23461	AGCGCGCGCG	CAGCCTCCAT	GCCCTTCTCC	CACGCAGACA	CGATCGGCAC	ACTCAGCGGG
23521	TTCATCACCG	TAATTTCACT	TTCCGCTTCG	CTGGGCTCTT	CCTCTTCCTC	TTGCGTCCGC
23581	ATACCACGCG	${\tt CCACTGGGTC}$	GTCTTCATTC	AGCCGCCGCA	CTGTGCGCTT	ACCTCCTTTG
23641	CCATGCTTGA	TTAGCACCGG	TGGGTTGCTG	AAACCCACCA	TTTGTAGCGC	CACATCTTCT
23701	CTTTCTTCCT	CGCTGTCCAC	GATTACCTCT	GGTGATGGCG	GGCGCTCGGG	CTTGGGAGAA
23761	GGGCGCTTCT	TTTTCTTCTT	GGGCGCAATG	GCCAAATCCG	CCGCCGAGGT	CGATGGCCGC
23821	GGGCTGGGTG	TGCGCGGCAC	CAGCGCGTCT	TGTGATGAGT	CTTCCTCGTC	CTCGGACTCG
23881	ATACGCCGCC	TCATCCGCTT	TTTTGGGGGC	GCCCGGGGAG	GCGGCGGCGA	CGGGGACGGG
		CCTCCATGGT				
24001	GTTTCGCGCT	GCTCCTCTTC	CCGACTGGCC	ATTTCCTTCT	CCTATAGGCA	GAAAAAGATC
24061	ATGGAGTCAG	TCGAGAAGAA	GGACAGCCTA	ACCGCCCCCT	CTGAGTTCGC	CACCACCGCC
24121	TCCACCGATG	CCGCCAACGC	GCCTACCACC	TTCCCCGTCG	AGGCACCCCC	GCTTGAGGAG
2/121	CACCAACTCA	TTATCGAGCA	GGACCCAGGT	TTTGTAAGCG	AAGACGACGA	GGACCGCTCA
24101	CHACCAACAC	AGGATAAAAA	CCAACACCAG	GACAACGCAG	AGGCAAACGA	GGAACAAGTC
24241	GCCCCCCCCCC	ACGAAAGGCA	TCCCCACTAC	CTAGATGTGG	GAGACGACGT	GCTGTTGAAG
24201	CATCTCCACC	GCCAGTGCGC	CATTATCTCC	CACCCCTTCC	AAGAGCGCAG	CGATGTGCCC
24301	CMCCCCAMAC	CGGATGTCAG	CCTTCCCTAC	CAACCCCACC	TATTCTCACC	GCGCGTACCC
24421	CICGCCAIAG	AAGAAAACGG	CACATCCCAC	CCCAACCCCC	CCCTCAACTT	CTACCCCGTA
24401	TETTTO	CAGAGGTGCT	TO CALA COMA	CACAMCCCCCC	TOCABACTO	CAAGATACCC
24541	TTTGCCGTGC	GTGCCAACCG	CACCCCACCIAI	CACAACCACC	TCCAAAACTG	CAACCCCCCT
24001	CTATCCTGCC	ATATCGCCTC	CAGCCGAGCG	CMCCCCAAAAA	TGGCCTTGCG	TOTTCCACCC
24661	GTCATACCTG	ATATCGCCTC	GCTCAACGAA	GIGCCAAAAA	CCCAAAAMCA	A A CTTC A CTTCTT
24721	GACGAGAAGC	GCGCGGCAAA	CGCTCTGCAA	CAGGAAAACA	GCGAAAATGA	AAGICACICI
24781	GGAGTGTTGG	TGGAACTCGA	GGGTGACAAC	GCGCGCCTAG	CCGTACTAAA	ACGCAGCATC
24841	GAGGTCACCC	ACTTTGCCTA	CCCGGCACTT	AACCTACCCC	CCAAGGTCAT	GAGCACAGIC
24901	ATGAGTGAGC	TGATCGTGCG	CCGTGCGCAG	CCCCTGGAGA	GGGATGCAAA	TTTGCAAGAA
24961	CAAACAGAGG	AGGGCCTACC	CGCAGTTGGC	GACGAGCAGC	TAGCGCGCTG	GCTTCAAACG
		CCGACTTGGA				
		AGTGCATGCA				
		ACTACACCTT				
25201	GTGGAGCTCT	GCAACCTGGT	CTCCTACCTT	GGAATTTTGC	ACGAAAACCG	CCTTGGGCAA
		ATTCCACGCT				
		TATGCTACAC				
25381	GAGTGCAACC	TCAAGGAGCT	GCAGAAACTG	CTAAAGCAAA	ACTTGAAGGA	CCTATGGACG
25441	GCCTTCAACG	AGCGCTCCGT	GGCCGCGCAC	CTGGCGGACA	TCATTTTCCC	CGAACGCCTG
25501	CTTAAAACCC	TGCAACAGGG	TCTGCCAGAC	TTCACCAGTC	AAAGCATGTT	GCAGAACTTT
25561	AGGAACTTTA	TCCTAGAGCG	CTCAGGAATC	TTGCCCGCCA	CCTGCTGTGC	ACTTCCTAGC
25621	GACTTTGTGC	CCATTAAGTA	CCGCGAATGC	CCTCCGCCGC	TTTGGGGCCA	CTGCTACCTT
25681	CTCCACCTAG	CCAACTACCT	TGCCTACCAC	TCTGACATAA	TGGAAGACGT	GAGCGGTGAC
25741	GGTCTACTGG	AGTGTCACTG	TCGCTGCAAC	CTATGCACCC	CGCACCGCTC	CCTGGTTTGC
25801	AATTCGCAGC	TGCTTAACGA	AAGTCAAATT	ATCGGTACCT	TTGAGCTGCA	GGGTCCCTCG
		AGTCCGCGGC				
		AATTTGTACC				
25221	CAATCCCCC	CGCCAAATGC	GGAGCTTACC	GCCTGCGTC≱	TTACCCAGGG	CCACATTCTT
25701	CCCCS STORCC	AAGCCATCAA	CAAAGCCCCGC	CAAGAGTTTTC	TGCTACGAAA	GGGACGGGG
20047	COUNTY COMOCO	ACCCCCAGTC	CCCCCACCAC	CTCAACCCAA	TUCCUCUCCU	GCCGCAGCCC
20101	GITIMCTIGG	ACCCCCAGTC	CCGCGMGGMG	CICAACCCAA	TCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	AGCTGCAGCT
20101	TATCAGCAGC	AGCCACCACC	ACCACCA ACA	CACCATOCA	CACCCACACACC	ACCTOCAGCI
70551	GUUGUUGUCA	CCCACGGACG	AGGAGGAATA	CIGGGACAGT	CHGGCHGHGG	CUMCCCACCA
26281	CGAGGAGGAG	GAGGACATGA	TGGAAGACTG	GGAGAGCCTA	GACGAGGAAG	CTTCCGAGGT
26341	CGAAGAGGTG	TCAGACGAAA	CACCGTCACC	CTCGGTCGCA	TICCCCTCGC	COGCOCCCCA

26401	GAAATCGGCA	ACCGGTTCCA	GCATGGCTAC	AACCTCCGCT	CCTCAGGCGC	CGCCGGCACT
		CGACCCAACC				
26521	GCAGCCGCCG	CCGTTAGCCC	AAGAGCAACA	ACAGCGCCAA	GGCTACCGCT	CATGGCGCGG
26581	GCACAAGAAC	GCCATAGTTG	CTTGCTTGCA	AGACTGTGGG	GGCAACATCT	CCTTCGCCCG
26641	CCCCTTTCTTC	CTCTACCATC	ACGGCGTGGC	CTTCCCCCGT	AACATCCTGC	ATTACTACCG
26701	TCATCTCTAC	AGCCCATACT	GCACCGGCGG	CAGCGGCAGC	GGCAGCAACA	GCAGCGGCCA
		AAGGCGACCG				
26821	CGGCAGCAGC	AGGAGGAGGA	GCGCTGCGTC	TGGCGCCCAA	CGAACCCGTA	TCGACCCGCG
26881	ACCTTAGAAA	CAGGATTTTT	CCCACTCTGT	ATGCTATATT	TCAACAGAGC	AGGGGCCAAG
		GAAAATAAAA				
27001	ACAAAAGCGA	AGATCAGCTT	CGGCGCACGC	TGGAAGACGC	GGAGGCTCTC	TTCAGTAAAT
		GACTCTTAAG				
		CCAGCGGCCA				
		CACGCCCTAC				
		CTACTCAACC				
27301	GCGTCAACGG	AATCCGCGCC	CACCGAAACC	GAATTCTCTT	GGAACAGGCG	GCTATTACCA
		TAATAACCTT				
		CACCACTGTG				
		GCAGCTTGCG				
		GACAATCAGA				
		CCGTCCGGAC				
		GGCAATCCTA				
		GCAATTTATT				
		CCACTATCCG				
		CGACTGAATG				
27011	TCCACTCTCC	CCGCCACAAG	TITUTOTOCIC	GCGACTCCGG	TGAGTTTTGC	TACTTTGAAT
		TCATATCGAG				
		CCTGATTCGG				
		TCTCACTGTG				
20001	CTTCCCIGIGI	CTGTGCTGAG	TATATATAAAT	ACACAAATTA	AAATATACTI	GGGCTCCTAT
		TAAACGCCAC				
20201	CGCCAICCIG	ACATCTCTCC	CTCTCTCATT	TACAACAGTT	TCAACCCAGA	CGGAGTGAGT
28321	CTACCACACA	ACCTCTCCGA	CCTCACCTAC	TCCATCAGAA	AAAACACCAC	CCTCCTTACC
		GTACGAGTGC				
		TCCGGACAGA				
		GGGTATTAGG				
		GGCTATTCTA				
		CTCTTTATTC				
20021	TC11G1GA11	TGCATTTATT	COCACCOOO	TANACCCTCC	CCTCCCCACC	CAACATCATT
		TCCTAGGTTT				
		AGCCAGCCTG				
		GCACCACAGA				
		TTTATGCTAT				
		AAAGTCATAA				
		ACATGAGCAA				
27041	ATTACCATGE	TCTGCTGCAC	TO CHOINT TO THE	ATTACACTOC	TO CONTINUE	CTCTACCCTA
29101	COCCONTRACTI	AATACAAAAG	CACACCCACC	TTACAGIGC	AAAACAAAAT	CCCTTTA ATTTT
20221	ACMA ACMMAC	AATACAAAAG	TCACCACTA A	CACCAMMAYCA	CCCACCAAAA	ΔΑΑΔΟΑΑΑΤΤΙ
20201	ACTAAGTTAC	GCATTATAAT	TCACCACTAA	THE THAT	CCCCTCCTTGC	CCACCACY ya
		TGAACAATTG				
		GGATGTCAGC				
		AGCGACCCAC				
		CATCTACCAC				
		TGTGGTGGTT				
29641	CTCATCTGCT	GCCTAAAGCG	CAAACGCGCC	CGACCACCCA	TCTATAGTCC	CATCALIGIG

					max x x ax ax m	ammammam.
	CTACACCCAA					
	CTTACAGTAT					
	CGCTTTTTTG					
	CAGCCTTCAC					
	TCACTGTGGT					
30001	TCAGACACCA	TCCCCAGTAC	AGGGACAGGA	CTATAGCTGA	GCTTCTTAGA	ATTCTTTAAT
30061	TATGAAATTT	ACTGTGACTT	TTCTGCTGAT	TATTTGCACC	CTATCTGCGT	TTTGTTCCCC
	GACCTCCAAG					
30181	TTGCTACAAT	GAAAAAAGCG	ATCTTTCCGA	AGCCTGGTTA	TATGCAATCA	TCTCTGTTAT
30241	GGTGTTCTGC	AGTACCATCT	TAGCCCTAGC	TATATATCCC	TACCTTGACA	TTGGCTGGAA
30301	ACGAATAGAT	GCCATGAACC	ACCCAACTTT	CCCCGCGCCC	GCTATGCTTC	CACTGCAACA
30361	AGTTGTTGCC	GGCGGCTTTG	TCCCAGCCAA	TCAGCCTCGC	CCCACTTCTC	CCACCCCCAC
	TGAAATCAGC					
	ACGGAATTAT					
	GCATGAATCA					
	GTCTGGTAAA					
	ACAAGTTGCC					
	TAACTCAGCA					
	ATCTCTGCAC					
	AAAAAAAAA					
	TTCAGCAGCA					
	AACTTTCTCC					
	ACTATCTTCA					
	GTGTATCCAT					
	GTATCCCCCA					
	CCTCTAGTTA					
	GAGGCCGGCA					
	AAGTCAAACA					
	${\tt GTGGCTGCCG}$					
31441	CCGCTAACCG	TGCACGACTC	CAAACTTAGC	ATTGCCACCC	AAGGACCCCT	CACAGTGTCA
	GAAGGAAAGC					
	ACTATCACTG					
	GAGCCCATTT					
31681	ACAGACGACC	TAAACACTTT	GACCGTAGCA	ACTGGTCCAG	GTGTGACTAT	TAATAATACT
31741	TCCTTGCAAA	CTAAAGTTAC	TGGAGCCTTG	${\tt GGTTTTGATT}$	CACAAGGCAA	TATGCAACTT
31801	AATGTAGCAG	GAGGACTAAG	GATTGATTCT	CAAAACAGAC	GCCTTATACT	TGATGTTAGT
31861	TATCCGTTTG	ATGCTCAAAA	CCAACTAAAT	CTAAGACTAG	GACAGGGCCC	TCTTTTTATA
	AACTCAGCCC					
	AACAATTCCA					
	ACAGCCATAG					
	ACAAATCCCC					
	GTTCCTAAAC					
	AAAAATAATG					
	AATGCAGAGA					
	GCTACAGTTT					
	AGTGCTCATC	*			_	
-						
	GACCCAGAAT					
	GCTGTTGGAT					
	AGTAACATTG					
	ATTACACTAA					
	TTTTCATGGG					
	ACTTTTTCAT					
	TTTTCAATTG					
32881	TAGCTTATAC	AGATCACCGT	ACCTTAATCA	AACTCACAGA	ACCCTAGTAT	TCAACCTGCC
32941	ACCTCCCTCC	CAACACACAG	AGTACACAGT	CCTTTCTCCC	CGGCTGGCCT	TAAAAAGCAT

33001	CATATCATGG	GTAACAGACA	TATTCTTAGG	TGTTATATTC	CACACGGTTT	CCTGTCGAGC
					TCACTTAAGT	
					TGCTTAACGG	
					ATCAGGATAG	
					GTCCTGCAGG	
					ATAAGGCGCC	
					TAACTGCAGC	
					AAGCTCATGG	
					AAGTGGCGAC	
					TTCACCACCT	
33601	TATAAACCTC	TGATTAAACA	TGGCGCCATC	CACCACCATC	CTAAACCAGC	TGGCCAAAAC
					CAATGACAGT	
					ATGTTGGCAC	
					GTTAGAACCA	
					${\tt GGAAGACCTC}$	
					${\tt GGATGATCCT}$	
					CTGTACGGAG	
34021	CAACCGAGAT	CGTGTTGGTC	GTAGTGTCAT	GCCAAATGGA	ACGCCGGACG	TAGTCATATT
34081	TCCTGAAGCA	AAACCAGGTG	CGGGCGTGAC	AAACAGATCT	GCGTCTCCGG	TCTCGCCGCT
34141	TAGATCGCTC	TGTGTAGTAG	TTGTAGTATA	TCCACTCTCT	CAAAGCATCC	AGGCGCCCCC
34201	TGGCTTCGGG	TTCTATGTAA	ACTCCTTCAT	GCGCCGCTGC	CCTGATAACA	TCCACCACCG
34261	CAGAATAAGC	CACACCCAGC	CAACCTACAC	ATTCGTTCTG	CGAGTCACAC	ACGGGAGGAG
					AAAGATTATC	
					CGTGGTCAAA	
					CTTCCAAAAG	
					GAATCTCCTC	
					ACCTTCTCAA	
					GCTCCAGAGC	
					TTCCTCACAG	
					TAGGTCCCTT	
34801	GCTGAACATA	ATCGTGCAGG	TCTGCACGGA	CCAGCGCGGC	CACTTCCCCG	CCAGGAACCT
					AGCTATGCTA	
					GCAAGGTGCT	
					CATGCTCATG	
					TTCTCTCAAA	
					TTAAACATTA	
					TACGGCCATG	
					CAGCTCCTCG	
					CATCGGTCAG	
353/1	CCACCCAAAT	ACCCCCCCCC	AATACATACC	CGCAGGCGTA	GAGACAACAT	TACAGCCCCC
					AAACACCTGA	
					ACAGCGCTTC	
					AAAAAACACC	
					GCAGAGCGAG	
					CCAGAAAACC	
					CAAATCGTCA	
					CCCAACACAT	
					CGCGCCACGT	
35881	ACCCCCTCAT	TATCATATTG	GCTTCAATCC	AAAATAAGGT	ATATTATTGA	TGATG

68/92

Structure of the Ad6 Genome

FIG. 11

Western blot on whole-cell extracts from 293 cells transfected with plasmid DNA expressing the different HCV NS cassettes. Mature NS3 and NS5A products were detected with specific antibodies.

FIG. 12

72/92

					Pep pool				
	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L(NS35b)	M(NS5b)	1480(CD8 ep)	DMSO
	#31	41	135	19	44	25	17	137	8
	#32	121	783	77	144	13	22	604	4
	#33	8	32	3	11	6	6	43	3
	#34	16	139	13	47	31	25	151	2
pV1jns-NS	#35	21	101	40	32	21	20	75	1
p / ~J 1.	#36	18	26	24	25	5	7	29	6
	#37	19	73	15	39	8	20	49	2
	#38	133	575	74	345	75	63	515	5
	#39	40	183	10	85	14	9	148	2
	#40	66	465	29	111	15	16	189	0
	Geomean	33	146	21	57	15	16	123	na

					Pep pool				
	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L(NS35b)	M(NS5b)	1480(CD8 ep)	DMSQ
	#41	39	293	58	187	5	4	248	1
	#42	21	220	46	107	26	10	189	4
	#43	76	134	12	78	8	6	144	2
	#44	30	45	20	52	4	8	40	4
pV1jns-NSmut	#45	36	100	17	56	4	6	116	3
	#46	67	172	16	138	8	9	145	3
	#47	34	131	28	38	9	5	118	1
•	#48	55	316	43	107	9	7	277	5
	#49	6	131	5	25	4	1	91	0
	#50	13	93	11	11	5	1	76	1
	Geomean	30	142	20	61	7	5	126	na

					Pep pool				
	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L(NS35b)	M(NS5b)	1480(CD8 ep)	DMSO
	#51	53	409	34	84	11	25	271	4
	#52	140	660	65	276	23	36	377	2
	#53	- 58	553	48	105	23	18	564	1
	#54	50	105	35	134	10	16	80	2
V1jns-NSOPTmut	#55	14	80	11	35	4	7	91	6
	#56	14	342	30	101	23	14	207	1
	#57	63	325	66	239	17	24	123	1
	#58	75	542	66	168	127	93	191	0
	#59	65	468	40	124	18	23	344	4
	#60	27	142	48	16	7	8	77	0
	Geomean	45	295	40	99	16	20	188	na

IFN γ ELIspot on splenocytes from C57black6 mice immunized with two injections of 25 μ g DNA/dose with GET of plasmid vectors expressing the different HCV NS cassettes. Data are expressed as SFC/106 PBMC.

FIG. 13A

73/92

				Pe	p pool			
	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L(NS35b)	M(NS5b)	DMSO
	#51	219	699	634	486	487	264	34
	#52	67	302	347	167	111	87	9
	#53	59	460	400	246	244	136	26
	#54	139	817	685	236	547	223	24
m\$71 i hid	#55	96	904	542	277	256	337	17
pV1jns-NS	#56	225	603	686	156	350	240	56
	#57	44	288	211	148	100	141	4
	#58	37	262	221	53	58	62	3
	#59	131	975	928	159	305	284	14
	#60	93	475	464	77	206	113	12
	geo mean	111	5 79	512	201	266	189	20
		Pep pool						
	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L(NS35b)	M(NS5b)	DMSO
	#61	72	840	515	219	278	249	19
	#62	294	1881	1266	365	434	411	63
	#63	73	415	422	103	141	99	41
pV1jns-NSmut	#64	66	824	486	175	162	144	18
h a This-Mount	#66	24	313	168	53	47	42	, 5
	#67	15	230	253	94	25	39	2
	#68	53	354	252	89	101	86	15
	#69	271	895	909	518	322	285	74
	#70	417	1303	1186	468	557	267	34
	geo mean	143	784	606	232	230	180	30
				Pe	ep pool			
	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L(NS35b)	M(NS5b)	DMSO
	#71	206	944	890	342	207	397	47
	#72	393	1655	1151	575	626	401	72
	#73	123	522	515	319	223	198	21
	#74	500	1414	1419	878	1035	1122	137
V1jns-NSOPTmut	#75	286	812	873	382	543	267	31
	#76	224	1143	942	218	420	281	22
	#7 7	95	643	630	169	385	218	15
	#78	401	1302	1068	538	608	623	12
	#79	108	1190	914	199	265	215	4
	#80	122	511	546	189	286	190	13
	geo mean	209	941	854	331	406	329	24

IFNy ELIspot on splenocytes from BalbC mice immunized with two injections of $50\mu g$ DNA/dose with GET of plasmid vectors expressing the different HCV NS cassettes. Data are expressed as SFC/10⁶ PBMC.

FIG. 13B

74/92

Western blot on whole-cell extracts from HeLa cells infected at different multiplicity of infection (m.o.i.; indicated at the top) with Adenovectors expressing the different HCV NS cassettes. Mature NS5B and NS5A products were detected with specific antibodies.

FIG. 14

75/92

					Pep pool			
	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L+M(NS35b)	1480(CD8	p)DMSO
	#1	14	492	9	27	10	554	7
	#2	8	440	2	26	5	438	o
	#3	12	92	5	12	7	73	4
	#4	16	388	6	40	6	228	2
Ad5-NS	#6	8	210	4	31	3	238	3
1,400 140	#7	7	133	13	16	0	128	9
	#8	11	342	25	55	22	267	12
	#9	5	345	0	45	5	285	3
	#10	22	888	3	65	25	799	1
	Geomea	10	305	na	31	na	269	na
					Pep pool			
	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L+M(NS35b)	1480(CD8	p)DMSO
	#11	14	1009	13	75	7	751	6
	#12	15	695	3	39	9	552	1
	#13	12	389	4	20	7	352	3
	#14	7	459	6	50	1	274	1
3.50 V. 1.5 V.	#15	5	549	3	22	6	485	0
MRKAd5-NSmut	#16	10	631	1	6	4	60 0	3
	#17	5	257	3	9	1	245	3
	#18	13	659	6	43	7	555	1
	#19	12	758	1	37	5	669	0
•	#20	22	1380	5	163	8	1003	4
	Geomean	10	615	3	31	4	504	na
					Pep pool	A		
	mouse	F(NS3p)	G(NS3h)	H(NS4)	I(NS5a)	L+M(NS35b)	1480(CD8	p)DMSO
	#21	6	584	5	27	4	491	2
	#22	6	231	3	12	3	235	0
	#23	8	482	1	18	1	511	0
MRKAd6-NSmut	#24	14	1120	6	38	10	1004	5
	#25	1	311	3	9	0	382	1
	#26	29	903	3	60	5	751	5
	#27	35	1573	4	40	4	1277	4
	#28	7	406	5	15	1	443	3
	#29	4	461	3	12	3	515	3
	Geomean	8	567	3	21	na	554	na

IFN γ ELISPOT on splenocytes from C57black6 mice immunized with two injections of 10^9 vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as SFC/ 10^6 PBMC.

FIG. 15

76/92

	Ads	5-NS 10 ¹⁰ vp/d	ose
Pep pools	96074	134T	063Q
F (NS3p)	374	11	74
G (NS3h)	359	1070	1455
H (NS4)	376	30	64
I (NS5a)	240	40	63
L(NS5b)	226	29	121
M (NS5b)	511	23	35
DMSO	128	3	31

	MRK Ad6-NSmut 10 ¹⁰ vp/dose			
Pep pools	S207	035Q	057Q	
F (NS3p)	363	382	150	
G(NS3h)	180	316	119	
H (NS4)	126	113	62	
1 (NS5a)	1780	688	114	
L(NS5b)	447	111	81	
M (NS5b)	153	38	16	
DMSO	9	6	9	

IFNy ELISPOT on PBMC from Rhesus monkeys immunized with one injection of 10^{10} vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as SFC/10⁶ PBMC.

FIG. 16A

77/92

	MRK Ad5-NSmut 10 ¹⁰ vp/dose					
Pep pools	S201	075Q	137Q			
F (NS3p)	928	69	254			
G (NS3h)	317	436	98			
H (NS4)	56	101	45			
I (NS5a)	1530	1100	413			
L (NS5b)	149	23	92			
M (NS5b)	398	32	80			
DMSO	29	6	29			

	MRK Ad6-I	NSOPTmut 1	0 ¹⁰ vp/dose
Pep pools	98D209	106Q	113Q
F (NS3p)	3110	263	404
G(NS3h)	2115	642	1008
H (NS4)	373	72	19
I (NS5a)	103	37	347
L (NS5b)	149	22	10
M (NS5b)	314	428	- 19
DMSO	0	1	3

IFNy ELISPOT on PBMC from Rhesus monkeys immunized with one injection of 10^{10} vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as SFC/10⁶ PBMC.

FIG. 16B

78/92

	Ad5-NS 10 ¹¹ vp/dose						
Pep pools	99C008	97N104	97X008	99C026			
F (NS3p)	28	1026	579	889			
G(NS3h)	1279	188	103	2453			
H (NS4)	18	39	138	109			
I (NS5a)	131	1068	172	141			
L (NS5b)	78	144	103	32			
M (NS5b)	24	68	47	84			
DMSO	3	16	1	19			
Diabo				<u> </u>			

	MRI	KAd6-NSmi	ut 10 ¹¹ vp/d	dose
Pep pools	98C047	97C055	93G	97X014
F (NS3p)	477	25	93	1022
G(NS3h)	959	398	81	1513
H (NS4)	36	14	99	53
I (NS5a)	171	45	1237	98
L (NS5b)	18	32	23	51
M (NS5b)	88	4	13	40
DMSO	8	3	1	5

IFNy ELISPOT on PBMC from Rhesus monkeys immunized with two injections of 10^{11} vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as SFC/ 10^6 PBMC.

FIG. 16C

79/92

	MRKAd5-NSmut 10 ¹¹ vp/dose						
Pep pools	99C059	99C060	97X009	96069			
F (NS3p)	28	81	1308	1618			
G(NS3h)	2600	161	1008	123			
H (NS4)	31	74	101	40			
1 (NS5a)	181	99	69	96			
L (NS5b)	24	31	40	20			
M (NS5b)	11	58	38	164			
DMSO	6	15	1	16			

IFN γ ELISPOT on PBMC from Rhesus monkeys immunized with two injections of 10^{11} vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as SFC/ 10^6 PBMC.

80/92

	MRK A	MRK Ad5-NSmut 10 10 vp/dose						
Pep pools	S201	075Q	137 <u>Q</u>					
pool F (NS3p)	881	1755	73					
pool G (NS3h)	573		•					
pool H (NS4)		3541						
pool I (NS5a)	2094		39					
pool L (NS5b)								
pool M (NS5b)	756							
DMSO	319	117	44					

	MRK Ad6-N	10 vp/dose	
Pep pools	98D209	106Q	113Q
pool F (NS3p)	5073	84	952
pool G (NS3h)	2376	160	3325
pool H (NS4)	700		
pool I (NS5a)			1106
pool L (NS5b)			
pool M (NS5b)	530	530 706	
DMSO	43	47	28

	MRK Ad	6-NSmut 10	¹⁰ vp/dose
Pep pools	S207	035 <u>Q</u>	057 <u>Q</u>
pool F (NS3p)	118	480	
pool G (NS3h)		196	
pool H (NS4)			
pool I (NS5a)	3340	933	
pool L (NS5b)	118		
pool M (NS5b)			
DMSO	145	34	

IFNy ICS on PBMC from Rhesus monkeys immunized with two injections at four weeks interval with 10^{10} vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as number of positive IFNy/CD3/CD8 per 10^6 lymphocytes.

FIG. 17A

81/92

		.d5-NS 10	11 vp/do:	~
Pep pools	99C008	97N104	97X008	99C026
F (NS3p)	1	1703	1136	615
G (NS3h)	3153			2787
H (NS4)				
I (NS5a)		2233		
L (NS5b)				
M (NS5b)				
DMSO	125	98	130	0
			11	
		Ad6-NSm		p/dose
Pep pools	98C047	97C055	93G	97X014
F(NS3p)	1024			948
G (NS3h)	3246	353		1074
H (NS4)			316	
I (NS5a)			6224	
L (NS5b)				
M (NS5b)				
DMSO	49	23	37	93
	MRKA	\d5-NSm	ut 10 ¹¹ v	p/dose
Pep pools	99C059	99C060	97X009	96069
F (NS3p)			2266	5053
G (NS3h)	2434	316	1018	
H (NS4)				
I (NS5a)				
L (NS5b)				
M (NS5b)				205
DMSO	13	110	119	15

IFNγ ICS on PBMC from Rhesus monkeys immunized with two injections at four weeks interval with 10¹¹ vp/dose of Adenovectors expressing the different HCV NS cassettes. Data are expressed as number of positive IFNγ/CD3/CD8 per 10⁶ lymphocytes.

FIG. 17B

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 10¹¹vp/dose of Ad5-NS.

FIG. 18A

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 10¹¹vp/dose of Ad5-NS.

FIG. 18B

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 10¹¹vp/dose of MRKAd5-NSmut.

FIG. 18C

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 10¹¹vp/dose of MRKAd5-NSmut

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 1011vp/dose of MRKAd6-NSmut.

Bulk CTL assays on PBMC from Rhesus monkeys immunized with two injections of 10¹¹vp/dose of MRKAd6-NSmut.

FIG. 19

1	GCCACCATGG	CCCCCATCAC	CGCCTACAGC	CAGCAGACCA	GGGGCCTGCT
51	GGGCTGCATC	ATCACCAGCC	TGACCGGACG	CGACAAGAAC	CAGGTGGAGG
101	GAGAGGTGCA	GGTGGTGAGC	ACCGCTACCC	AGAGCTTCCT	GGCCACCTGC
151	GTGAACGGCG	TGTGCTGGAC	CGTGTACCAC	GGAGCCGGAA	GCAAGACCCT
201	GGCCGGACCC	AAGGGCCCTA	TCACCCAGAT	GTACACCAAT	GTGGATCAGG
251	ATCTGGTGGG	CTGGCAGGCC	CCTCCCGGAG	CCAGGAGCCT	GACACCCTGT
301	ACCTGTGGAA	GCAGCGACCT	GTACCTGGTG	ACACGCCACG	CCGATGTGAT
351	CCCCGTGAGG	CGCAGGGGCG	ATTCTCGCGG	AAGCCTGCTG	AGCCCTAGGC
401	CCGTGAGCTA	CCTGAAGGGC	AGCAGCGGAG	GACCCCTGCT	GTGTCCTTCT
451	GGCCATGCCG	TGGGCATTTT	TCGCGCTGCC	GTGTGTACCA	GGGGCGTGGC
501	CAAAGCCGTG	GATTTTGTGC	CCGTGGAAAG	CATGGAGACC	ACCATGCGCA
551	GCCCTGTGTT	CACCGACAAC	AGCTCTCCCC	CTGCCGTGCC	CCAATCATTC
601	CAGGTGGCTC	ACCTGCACGC	CCCTACCGGA	TCTGGCAAGA	GCACCAAGGT
651	GCCCGCTGCC	TACGCCGCTC	AGGGCTACAA	GGTGCTGGTG	CTGAACCCCA
701	GCGTGGCCGC	TACCCTGGGC	TTCGGCGCTT	ACATGAGCAA	GGCCCATGGC
751	ATCGACCCCA	ACATCCGCAC	AGGCGTGCGC	ACCATCACCA	CCGGAGCTCC
801	CGTGACCTAC	AGCACCTACG	GCAAGTTCCT	GGCCGATGGA	GGCTGCAGCG
851	GAGGAGCCTA	CGACATCATC	ATCTGCGACG	AGTGCCACAG	CACCGACAGC
901	ACCACCATCC	TGGGCATTGG	CACCGTGCTG	GATCAGGCCG	AAACAGCTGG
951	AGCCAGGCTG	GTGGTGCTGG	CCACAGCTAC	CCCTCCTGGC	AGCGTGACCG
1001	TGCCCCATCC	CAATATCGAG	GAGGTGGCCC	TGAGCAACAC	AGGCGAGATC
1051	CCCTTCTACG	GCAAGGCCAT	CCCCATCGAG	GCCATCCGCG	GAGGCAGGCA
1101	CCTGATCTTC	TGCCACAGCA	AGAAGAAGTG	CGACGAGCTG	GCTGCCAAGC
1151	TGAGCGGACT	GGGCATCAAC	GCCGTGGCCT	ACTACAGGGG	CCTGGACGTG
1201	TCAGTGATCC	CCACCATCGG	CGATGTGGTG	GTGGTGGCCA	CCGACGCCCT
1251	GATGACAGGC	TACACCGGAG	ACTTCGACAG	CGTGATCGAC	TGCAACACCT
1301	GCGTGACCCA	GACCGTGGAC	TTCAGCCTGG	ACCCCACCTT	CACCATCGAA
1351	ACCACCACCG	TGCCTCAGGA	TGCTGTGAGC	AGGAGCCAGA	GGCGCGGACG
1401	CACCGGAAGG	GGCAGGCGCG	GAATTTATCG	CTTTGTGACC	CCTGGCGAAA
1451	GGCCCTCTGG	CATGTTCGAC	AGCAGCGTGC	TGTGCGAGTG	CTACGACGCT
1501	GGCTGCGCTT	GGTACGAGCT	GACACCCGCT	GAAACCAGCG	TGCGCCTGCG
1551	CGCTTATCTG	AATACCCCTG	GCCTGCCCGT	GTGTCAGGAC	CACCTGGAGT

FIG. 20A

1601	TCTGGGAGAG	CGTGTTCACA	GGACTGACCC	ACATCGACGC	CCATTTCCTG
1651	AGCCAGACCA	AGCAGGCTGG	CGACAACTTC	CCCTATCTGG	TGGCCTATCA
1701	GGCCACCGTG	TGTGCTAGGG	CCCAAGCTCC	ACCTCCTTCA	TGGGACCAGA
1751	TGTGGAAGTG	CCTGATCCGC	CTGAAGCCCA	CCCTGCACGG	CCCTACCCCT
1801	CTGCTGTACC	GCCTGGGAGC	CGTGCAGAAC	GAGGTGACCC	TGACCCACCC
1851	CATCACCAAG	TACATCATGG	CCTGCATGAG	CGCTGATCTG	GAAGTGGTGA
1901	CCAGCACCTG	GGTGCTGGTG	GGAGGCGTGC	TGGCCGCTCT	GGCTGCCTAC
1951	TGCCTGACCA	CCGGAAGCGT	GGTGATCGTG	GGACGCATCA	TCCTGAGCGG
2001	AAGGCCCGCT	ATCGTGCCCG	ATCGCGAGTT	CCTGTACCAG	GAGTTCGACG
2051	AGATGGAGGA	GTGTGCCAGC	CACCTGCCCT	ACATCGAGCA	GGGCATGCAG
2101	CTGGCCGAAC	AGTTCAAGCA	GAAGGCCCTG	GGCCTGCTGC	AGACAGCCAC
2151	CAAACAGGCC	GAAGCTGCCG	CTCCCGTGGT	GGAAAGCAAG	TGGAGGGCCC
2201	TGGAGACCTT	CTGGGCTAAG	CACATGTGGA	ACTTCATCTC	TGGCATCCAG
2251	TACCTGGCCG	GACTGAGCAC	CCTGCCTGGC	AACCCCGCTA	TCGCCAGCCT
2301	GATGGCCTTC	ACCGCTAGCA	TCACCTCTCC	CCTGACCACC	CAGAGCACCC
2351	TGCTGTTCAA	CATTCTGGGC	GGATGGGTGG	CCGCTCAGCT	GGCCCCTCCT
2401	TCAGCTGCTT	CTGCCTTTGT	GGGCGCTGGC	ATTGCCGGAG	CCGCTGTGGG
2451	CAGCATTGGC	CTGGGCAAAG	TGCTGGTGGA	TATTCTGGCT	GGCTATGGCG
2501	CTGGCGTGGC	CGGAGCCCTG	GTGGCCTTCA	AGGTGATGAG	CGGAGAGATG
2551	CCCAGCACCG	AGGACCTGGT	GAACCTGCTG	CCTGCCATTC	TGAGCCCTGG
2601	AGCCCTGGTG	GTGGGCGTGG	TGTGTGCTGC	CATTCTGAGG	CGCCATGTGG
2651	GACCCGGAGA	GGGCGCTGTG	CAGTGGATGA	ACCGCCTGAT	CGCCTTCGCC
2701	TCTCGCGGAA	ACCACGTGAG	CCCTACCCAC	TACGTGCCTG	AGAGCGACGC
2751	CGCTGCCAGG	GTGACCCAGA	TCCTGAGCAG	CCTGACCATC	ACCCAGCTGC
2801	TGAAGCGCCT	GCACCAGTGG	ATCAACGAGG	ACTGCAGCAC	ACCCTGCAGC
2851	GGAAGCTGGC	TGAGGGACGT	GTGGGACTGG	ATCTGCACCG	TGCTGACCGA
2901	CTTCAAGACC	TGGCTGCAGA	GCAAGCTGCT	GCCCCAACTG	CCTGGCGTGC
2951	CCTTCTTCTC	ATGCCAGCGC	GGATACAAGG	GCGTGTGGAG	GGGCGATGGC
3001	ATCATGCAGA	CCACCTGTCC	CTGCGGAGCC	CAGATCACAG	GCCACGTGAA
3051	GAACGGCAGC	ATGCGCATCG	TGGGCCCTAA	GACCTGCAGC	AACACCTGGC
3101	ACGGCACCTT	CCCCATCAAC	GCCTACACCA	CCGGACCCTG	CACACCCAGC
3151	CCTGCTCCCA	ACTACAGCAG	GGCCCTGTGG	AGGGTGGCTG	CCGAGGAGTA

FIG. 20B

3201	CGTGGAGGTG	ACCAGGGTGG	GAGACTTCCA	CTACGTGACC	GGAATGACCA
3251	CCGACAACGT	GAAGTGTCCC	TGTCAGGTGC	CCGCTCCCGA	ATTTTTTACC
3301	GAAGTGGATG	GCGTGCGCCT	GCATCGCTAT	GCCCCTGCCT	GTAGGCCCCT
3351	GCTGCGCGAA	GAAGTGACCT	TCCAGGTGGG	CCTGAACCAG	TACCTGGTGG
3401	GCAGCCAGCT	GCCCTGCGAG	CCTGAGCCCG	ATGTGGCCGT	GCTGACCAGC
3451	ATGCTGACCG	ACCCCAGCCA	CATCACAGCC	GAAACCGCTA	AAAGGCGCCT
3501	GGCCAGGGGC	TCTCCTCCAA	GCCTGGCCTC	AAGCAGCGCT	AGCCAGCTGT
3551	CTGCTCCCAG	CCTGAAGGCC	ACCTGCACCA	CCCACCACGT	GAGCCCCGAC
3601	GCCGACCTGA	TCGAGGCCAA	CCTGCTGTGG	CGCCAGGAGA	TGGGCGGCAA
3651	CATCACCCGC	GTGGAGAGCG	AGAACAAGGT	GGTGGTGCTG	GACAGCTTCG
3701	ACCCCTGCG	CGCCGAGGAG	GACGAGCGCG	AGGTGAGCGT	GCCCGCCGAG
3751	ATCCTGCGCA	AGAGCAAGAA	GTTCCCCGCT	GCCATGCCCA	TCTGGGCTAG
3801	ACCTGATTAC	AACCCTCCCC	TGCTGGAGAG	CTGGAAGGAC	CCTGATTACG
3851	TGCCTCCAGT	GGTGCATGGC	TGTCCTCTGC	CTCCCATTAA	AGCCCCTCCT
3901	ATTCCACCTC	CTAGGCGCAA	AAGGACCGTG	GTGCTGACAG	AAAGCAGCGT
3951	GAGCTCTGCT	CTGGCCGAAC	TGGCCACCAA	GACCTTTGGC	AGCAGCGAGA
4001	GCTCTGCCGT	GGACAGCGGA	ACAGCCACCG	CTCTGCCTGA	CCAGGCCAGC
4051	GACGACGGCG	ATAAGGGCAG	CGATGTGGAG	AGCTATAGCA	GCATGCCTCC
4101	CCTGGAAGGC	GAACCTGGCG	ATCCCGATCT	GAGCGATGGC	AGCTGGAGCA
4151	CCGTGAGCGA	AGAGGCCAGC	GAGGACGTGG	TGTGTTGCAG	CATGAGCTAC
4201	ACCTGGACAG	GCGCTCTGAT	CACACCCTGC	GCTGCCGAGG	AGAGCAAGCT
4251	GCCCATCAAC	GCCCTGAGCA	ACAGCCTGCT	GAGGCACCAC	AACATGGTGT
4301	ACGCCACCAC	CAGCAGGTCT	GCCGGACTGA	GGCAGAAGAA	GGTGACCTTC
4351	GACCGCCTGC	AGGTGCTGGA	CGACCACTAC	CGCGATGTGC	TGAAGGAGAT
4401	GAAGGCCAAG	GCCAGCACCG	TGAAGGCCAA	GCTGCTGAGC	GTGGAGGAGG
4451	CCTGCAAGCT	GACCCCCCC	CACAGCGCCA	AGAGCAAGTT	CGGCTACGGC
4501	GCCAAGGACG	TGCGCAACCT	GAGCAGCAAG	GCCGTGAACC	ACATCCACAG
4551	CGTGTGGAAG	GACCTGCTGG	AGGACACCGT	GACCCCCATC	GACACCACCA
4601	TCATGGCCAA	GAACGAGGTG	TTCTGCGTGC	AGCCCGAGAA	GGGCGGCCGC
4651	AAGCCCGCTC	GCCTGATCGT	GTTCCCCGAT	CTGGGCGTGC	GCGTGTGCGA
4701	GAAGATGGCC	CTGTACGACG	TGGTGAGCAC	CCTGCCTCAG	GTGGTGATGG
4751	GCTCAAGCTA	CGGCTTCCAG	TACAGCCCTG	GCCAGCGCGT	GGAGTTCCTG

4801	GTGAACACCT	GGAAGAGCAA	GAAGAACCCC	ATGGGCTTCA	GCTACGACAC
4851	ACGCTGCTTC	GACAGCACCG	TGACCGAGAA	CGACATCCGC	GTGGAGGAGA
4901	GCATCTACCA	GTGCTGCGAC	CTGGCCCCTG	AGGCCAGGCA	GGCCATCAAG
4951	AGCCTGACCG	AGCGCCTGTA	CATCGGAGGC	CCTCTGACCA	ACAGCAAGGG
5001	ACAGAACTGC	GGATACAGGC	GCTGTAGGGC	CTCTGGCGTG	CTGACCACCA
5051	GCTGTGGCAA	CACCCTGACC	TGCTACCTGA	AGGCCAGCGC	TGCCTGTCGC
5101	GCTGCCAAGC	TGCAGGACTG	CACCATGCTG	GTGAACGCCG	CTGGCCTGGT
5151	GGTGATTTGT	GAAAGCGCTG	GCACCCAGGA	AGATGCTGCC	AGCCTGCGCG
5201	TGTTCACCGA	GGCCATGACC	AGGTACTCTG	CCCCTCCCGG	AGACCCCCCT
5251	CAGCCCGAAT	ACGACCTGGA	GCTGATCACC	AGCTGCTCAA	GCAACGTGAG
5301	CGTGGCTCAC	GACGCCAGCG	GAAAGCGCGT	GTACTACCTG	ACACGCGATC
5351	CCACCACCCC	TCTGGCTCGC	GCTGCCTGGG	AAACCGCTCG	CCATACACCC
5401	GTGAACAGCT	GGCTGGGCAA	CATCATCATG	TACGCCCCTA	CCCTGTGGGC
5451	TCGCATGATC	CTGATGACCC	ACTTCTTCAG	CATCCTGCTG	GCTCAGGAGC
5501	AGCTGGAGAA	GGCCCTGGAC	TGCCAGATTT	ACGGCGCTTG	CTACAGCATC
5551	GAGCCCCTGG	ACCTGCCCCA	AATCATCGAG	CGCCTGCACG	GCCTGTCTGC
5601	CTTCAGCCTG	CACAGCTACA	GCCCTGGCGA	AATTAATCGC	GTGGCCAGCT
5651	GTCTGCGCAA	ACTGGGCGTG	CCTCCTCTGC	GCGTGTGGAG	GCATAGGGCT
5701	AGGAGCGTGA	GGGCTAGGCT	GCTGAGCCAG	GGAGGCAGGG	CCGCTACCTG
5751	TGGAAAGTAC	CTGTTCAACT	GGGCCGTGAA	GACCAAGCTG	AAGCTGACCC
5801	CTATCCCTGC	CGCTAGCCAG	CTGGACCTGA	GCGGATGGTT	CGTGGCTGGC
5851	TACAGCGGAG	GCGACATCTA	CCACAGCCTG	TCTCGCGCTC	GCCCTCGCTG
5901	GTTCATGCTG	TGCCTGCTGC	TGCTGAGCGT	GGGCGTGGGC	ATCTACCTGC
5951	TGCCCAACCG	CTAAA			

IN THE PCT RECEIVING OFFICE OF THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Mer

Merck & Co., Inc

PCT Serial No.:

To Be Assigned

Case No.: PCT ITR0015Y

US/RO

Filing date:

On Even Date Herewith

For:

HEPATITIS C VIRUS VACCINE

Authorized Officer:

To Be Assigned

Assistant Commissioner of Patents BOX PCT

BOX PC1

Washington, D.C. 20231

NUCLEOTIDE AND/OR AMINO ACID SEQUENCE DISCLOSURE, PCT RULE 5.2

Sir:

As required under PCT Rule 5.2, Applicant respectfully encloses a paper (64 pages) and a computer readable form of the Sequence Listing for the above-identified PCT International Application, filed on even date herewith.

I hereby state that the content of the paper and computer readable forms of the Sequence Listing, submitted in accordance with WIPO and Standard ST.23 and under PCT Rule 13ter.1, respectively, are the same.

Respectfully submitted,

By Sheldon O. Heber Reg. No. 38,179

Attorney for Applicants

Merck & Co., Inc. P.O. Box 2000

Rahway, NJ 07065-0907

(732) 594-1958

SEQUENCE LISTING

<110> Merck & Co. Inc., and Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A.

<120> HEPATITIS C VIRUS VACCINE

<130> ITR0015Y

<150> 60/363,774

<151> 2002-03-13

<150> 60/328,655

<151> 2001-10-11

<1.60> 17

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1985

<212> PRT

<213> Artificial Sequence

<220>

<223> Met-NS3-NS4A-NS4B-NS5A-NS5B polypeptide

<400> 1

 Met Ala Pro
 Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly

 1
 5
 10
 15

 Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly
 20
 25

Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys 35 40 45

Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr 50 55 60

Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp 65 70 75 80

Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr 85 90 95

Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala 100 105 110

Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu 115 120 125

Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu 130 135 140

Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys 145 150 155 160

Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met 165 170 175

Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro 180 185 190

Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly 195 200 205

Ser	Gly 210	Lys	Ser	Thr	rys	Val 215	Pro	Ala	Ala	Tyr	Ala 220	Ala	Gln	Gly	Tyr
Lys 225	Va1	Leu	Val	Leu	Asn 230	Pro	Ser	Val	Ala	Ala 235	Thr	Leu	Gly	Phe	Gly 240
Ala	Tyr	Met	Ser	Lys 245	Ala	His	Gly	Ile	Asp 250	Pro	Asn	Ile	Arg	Thr 255	Gly
	_		Ile 260			_		265					270		
		275	Ala				280					285			
	290		Glu			295					300				
305			Leu		310					315					320
			Ala	325					330					335	
			Val 340					345					350		
_		355	Pro				360					365			
	370		Lys			375					380				
385			Asn		390					395					400
			Ile	405					410					415	
			Thr 420					425					430		
		435	Thr				440					445			
	450		Val			455					460				
465			Arg		470					475					480
			Ser	485					490					495	
			Cys 500					505					510		
		515	Ala				520					525			
	530		Phe			535					540				
545			Leu -		550					555					560
			Tyr	565					570					575	
			Asp 580					585					590		
		595	Pro				600					605			
	610		Leu			615					620				
Ser 625	ALA	Asp	Leu	G1u	Val 630	Val	Thr	ser	Tnr	Trp 635	val	ьeu	val	СТĀ	640

Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val 645 650 Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Ile Val Pro Asp 665 Arg Glu Phe Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys Ala Ser 685 680 His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys 695 700 Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala 710 715 Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr Phe Trp 730 725 Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly 745 740 Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala Phe 760 765 Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Ser Thr Leu Leu Phe 770 775 780 Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser Ala 790 795 Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser 810 805 Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala 825 830 Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly Glu Met 840 845 Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro 855 860 Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg His 870 875 Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu Ile Ala 885 890 895 Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val Pro Glu 900 905 910 Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Ser Leu Thr Ile 920 925 Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp Cys Ser 935 Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Ile Cys 950 955 Thr Val Leu Thr Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu Leu Pro 970 965 Gln Leu Pro Gly Val Pro Phe Phe Ser Cys Gln Arg Gly Tyr Lys Gly 985 990 980 Val Trp Arg Gly Asp Gly Ile Met Gln Thr Thr Cys Pro Cys Gly Ala 1000 1005 995 Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Val Gly Pro 1010 1015 1020 Lys Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn Ala Tyr 1030 1035 1040 Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser Arg Ala 1050 1055 1045 Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg Val Gly 1065 1070 1060

Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys Cys Pro 1075 1080 1085 Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Val Asp Gly Val Arg 1090 1095 1100 Leu His Arg Tyr Ala Pro Ala Cys Arg Pro Leu Leu Arg Glu Glu Val 1110 1115 1120 Thr Phe Gln Val Gly Leu Asn Gln Tyr Leu Val Gly Ser Gln Leu Pro 1125 1130 1135 Cys Glu Pro Glu Pro Asp Val Ala Val Leu Thr Ser Met Leu Thr Asp 1140 1145 1150 Pro Ser His Ile Thr Ala Glu Thr Ala Lys Arg Arg Leu Ala Arg Gly 1155 1160 1165 Ser Pro Pro Ser Leu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro 1170 1175 1180 Ser Leu Lys Ala Thr Cys Thr Thr His His Val Ser Pro Asp Ala Asp 1185 1190 1195 1200 Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile 1205 1210 1215 . Thr Arg Val Glu Ser Glu Asn Lys Val Val Leu Asp Ser Phe Asp 1220 1225 1230 Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser Val Pro Ala Glu 1235 1240 1245 Ile Leu Arg Lys Ser Lys Lys Phe Pro Ala Ala Met Pro Ile Trp Ala 1250 1255 1260 Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asp Pro Asp 1265 1270 1275 1280 Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Ile Lys Ala 1285 1290 1295 Pro Pro Ile Pro Pro Pro Arg Arg Lys Arg Thr Val Val Leu Thr Glu 1300 1305 1310 Ser Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly 1315 1320 1325 Ser Ser Glu Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Ala Leu Pro 1330 1335 1340 Asp Gln Ala Ser Asp Asp Gly Asp Lys Gly Ser Asp Val Glu Ser Tyr 1345 1350 1355 1360 Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser 1365 1370 1375 Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val Val 1380 1385 1390 Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys 1395 1400 1405 Ala Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu Ser Asn Ser Leu 1410 1415 1420 Leu Arg His His Asn Met Val Tyr Ala Thr Thr Ser Arg Ser Ala Gly 1425 1430 1435 1440 Leu Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp Asp 1445 1450 1455 His Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val 1460 1465 1470 Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro 1475 1480 1485 His Ser Ala Lys Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Asn 1500 1495

Leu Ser Ser Lys Ala Val Asn His Ile His Ser Val Trp Lys Asp Leu 1505 1510 1515 1520 Leu Glu Asp Thr Val Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn 1530 1535 1525 Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg 1540 1545 1550 Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Val Val Met Gly Ser Ser 1570 1575 1580 Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn 1585 1590 1595 1600 Thr Trp Lys Ser Lys Lys Asn Pro Met Gly Phe Ser Tyr Asp Thr Arg 1605 1610 1615 Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg Val Glu Glu Ser 1620 1625 1630 Ile Tyr Gln Cys Cys Asp Leu Ala Pro Glu Ala Arg Gln Ala Ile Lys 1635 1640 1645 Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys 1650 1655 1660 Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr 1665 1670 1675 Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala 1685 1690 1695 Cys Arg Ala Ala Lys Leu Gln Asp Cys Thr Met Leu Val Asn Ala Ala 1700 1705 1710 Gly Leu Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala Ala 1715 1720 1725 Ser Leu Arg Val Phe Thr Glu Ala Met Thr Arg Tyr Ser Ala Pro Pro 1730 1735 1740 Gly Asp Pro Pro Gln Pro Glu Tyr Asp Leu Glu Leu Ile Thr Ser Cys 1745 1750 1755 1760 Ser Ser Asn Val Ser Val Ala His Asp Ala Ser Gly Lys Arg Val Tyr 1765 1770 1775 Tyr Leu Thr Arg Asp Pro Thr Thr Pro Leu Ala Arg Ala Ala Trp Glu 1780 1785 1790 Thr Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile Ile Met 1795 1800 1805 Tyr Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His Phe Phe 1810 1815 1820 Ser Ile Leu Leu Ala Gln Glu Gln Leu Glu Lys Ala Leu Asp Cys Gln 1825 1830 1835 1840 Ile Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro Gln Ile 1845 1850 1855 Ile Glu Arg Leu His Gly Leu Ser Ala Phe Ser Leu His Ser Tyr Ser 1860 1865 1870 Pro Gly Glu Ile Asn Arg Val Ala Ser Cys Leu Arg Lys Leu Gly Val 1875 1880 1885 Pro Pro Leu Arg Val Trp Arg His Arg Ala Arg Ser Val Arg Ala Arg 1890 1895 1900 Leu Leu Ser Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr Leu Phe 1905 1910 1915 Asn Trp Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Ile Pro Ala Ala 1930 1925

```
Ser Gln Leu Asp Leu Ser Gly Trp Phe Val Ala Gly Tyr Ser Gly Gly
                               1945
                                                  1950
            1940
Asp Ile Tyr His Ser Leu Ser Arg Ala Arg Pro Arg Trp Phe Met Leu
        1955
                          1960
                                              1965
Cys Leu Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu Pro Asn
                        1975
                                           1980
    1970
Ara
1985
<210> 2
<211> 5965
<212> DNA
<213> Artificial Sequence
<220>
<223> Non-optimized cDNA sequence encoding SEQ. ID. NO.
<400> 2
                                                                       60
gccaccatgg cgcccatcac ggcctactcc caacagacgc ggggcctact tggttgcatc
                                                                      120
atcactagcc ttacaggccg ggacaagaac caggtcgagg gagaggttca ggtggtttcc
accgcaacac aatccttcct ggcgacctgc gtcaacggcg tgtgttggac cgtttaccat
                                                                      180
ggtgctggct caaagacctt agccggccca aaggggccaa tcacccagat gtacactaat
                                                                      240
                                                                      300
qtqqaccagg acctcgtcgg ctggcaggcg cccccgggg cgcgttcctt gacaccatgc
acctgtggca gctcagacct ttacttggtc acgagacatg ctgacgtcat tccggtgcgc
                                                                      360
cggcggggcg acagtagggg gagcctgctc tcccccaggc ctgtctccta cttgaagggc
                                                                      420
tcttcgggtg gtccactgct ctgcccttcg gggcacgctg tgggcatctt ccgggctgcc
                                                                      480
gtatgcaccc ggggggttgc gaaggcggtg gactttgtgc ccgtagagtc catggaaact
                                                                      540
                                                                      600
actatgcggt ctccggtctt cacggacaac tcatccccc cggccgtacc gcagtcattt
caagtggccc acctacacgc tcccactggc agcggcaaga gtactaaagt gccggctgca
                                                                      660
tatgcagccc aagggtacaa ggtgctcgtc ctcaatccgt ccgttgccgc taccttaggg
                                                                      720
                                                                      780
tttggggcgt atatgtctaa ggcacacggt attgacccca acatcagaac tggggtaagg
accattacca caggegeeec egteacatac tetacetatg geaagtttet tgccgatggt
                                                                      840
ggttgctctg ggggcgctta tgacatcata atatgtgatg agtgccattc aactgactcg
                                                                      900
                                                                      960
actacaatct tgggcatcgg cacagtcctg gaccaagcgg agacggctgg agcgcggctt
                                                                     1020
qtcqtqctcq ccaccqctac qcctccqgqa tcqqtcaccq tqccacaccc aaacatcqaq
gaggtggccc tgtctaatac tggagagatc cccttctatg gcaaagccat ccccattgaa
                                                                     1080
gccatcaggg ggggaaggca tetcatttte tgtcatteca agaagaagtg egacgagete
                                                                     1140
gccgcaaagc tgtcaggcct cggaatcaac gctgtggcgt attaccgggg gctcgatgtg
                                                                     1200
tccgtcatac caactatcgg agacgtcgtt gtcgtggcaa cagacgctct gatgacgggc
                                                                     1260
tatacgggcg actttgactc agtgatcgac tgtaacacat gtgtcaccca gacagtcgac
                                                                     1320
                                                                     1380
ttcagcttgg atcccacctt caccattgag acgacgaccg tgcctcaaga cgcagtgtcg
cqctcqcagc ggcggggtag gactggcagg ggtaggagag gcatctacag gtttgtgact
                                                                     1440
ccgggagaac ggccctcggg catgttcgat tcctcggtcc tgtgtgagtg ctatgacgcg
                                                                     1500
                                                                     1560
ggctgtgctt ggtacgagct cacccccgcc gagacctcgg ttaggttgcg ggcctacctg
aacacaccag ggttgcccgt ttgccaggac cacctggagt tctgggagag tgtcttcaca
                                                                     1620
ggcctcaccc acatagatgc acacttcttg tcccagacca agcaggcagg agacaacttc
                                                                     1680
                                                                     1740
ccctacctgg tagcatacca agccacggtg tgcgccaggg ctcaggcccc acctccatca
                                                                     1800
tgggatcaaa tgtggaagtg tctcatacgg ctgaaaccta cgctgcacgg gccaacaccc
ttgctgtaca ggctgggagc cgtccaaaat gaggtcaccc tcacccaccc cataaccaaa
                                                                     1860
tacatcatgg catgcatgtc ggctgacctg gaggtcgtca ctagcacctg ggtgctggtg
                                                                     1920
                                                                     1980
ggcggagtcc ttgcagctct ggccgcgtat tgcctgacaa caggcagtgt ggtcattgtg
                                                                     2040
qgtaggatta tcttgtccgg gaggccggct attgttcccg acagggagtt tctctaccag
gagttcgatg aaatggaaga gtgcgcctcg cacctccctt acatcgagca gggaatgcag
                                                                     2100
ctcgccgagc aattcaagca gaaagcgctc gggttactgc aaacagccac caaacaagcg
                                                                     2160
```

gaggetgetg	ctcccgtggt	ggagtccaag	tggcgagccc	ttgagacatt	ctgggcgaag	2220
cacatgtgga	atttcatcag	cgggatacag	tacttagcag	gcttatccac	tctgcctggg	2280
aaccccgcaa	tagcatcatt	gatggcattc	acagcctcta	tcaccagccc	gctcaccacc	2340
caaagtaccc	tcctgtttaa	catcttgggg	gggtgggtgg	ctgcccaact	cgccccccc	2400
agcgccgctt	cggctttcgt	gggcgccggc	atcgccggtg	cggctgttgg	cagcataggc	2460
cttgggaagg	tgcttgtgga	cattctggcg	ggttatggag	caggagtggc	cggcgcgctc	2520
gtggccttca	aggtcatgag	cggcgagatg	ccctccaccg	aggacctggt	caatctactt	2580
cctgccatcc	teteteetgg	cgccctggtc	gtcggggtcg	tgtgtgcagc	aatactgcgt	2640
cgacacgtgg	gtccgggaga	gggggctgtg	cagtggatga	accggctgat	agcgttcgcc	2700
tcgcggggta	atcatgtttc	ccccacgcac	tatgtgcctg	agagcgacgc	cgcagcgcgt	2760
gttactcaga	tcctctccag	ccttaccatc	actcagctgc	tgaaaaggct	ccaccagtgg	2820
attaatgaag	actgctccac	accgtgttcc	ggctcgtggc	taagggatgt	ttgggactgg	2880
atatgcacgg	tgttgactga	cttcaagacc	tggctccagt	ccaagctcct	gccgcagcta	2940
ccaggaatcc	cttttttctc	gtgccaacgc	gggtacaagg	gagtctggcg	gggagacggc	3000
atcatgcaaa	ccacctgccc	atgtggagca	cagatcaccg	gacatgtcaa	aaacggttcc	3060
atgaggatcg	tegggeetaa	gacctgcagc	aacacgtggc	atggaacatt	ccccatcaac	3120
gcatacacca	egggeeeetg	cacaccctct	ccagcgccaa	actattctag	ggcgctgtgg	3180
cgggtggccg	ctgaggagta	cgtggaggtc	acgcgggtgg	gggatttcca	ctacgtgacg	3240
ggcatgacca	ctgacaacgt	aaagtgccca	tgccaggttc	cggctcctga	attcttcacg	3300
gaggtggacg	gagtgcggtt	gcacaggtac	gctccggcgt	gcaggcctct	cctacgggag	3360
gaggttacat	tccaggtcgg	gctcaaccaa	tacctggttg	ggtcacagct	accatgcgag	3420
cccgaaccgg	atgtagcagt	gctcacttcc	atgctcaccg	acccctccca	catcacagca	3480
gaaacggcta	agcgtaggtt	ggccaggggg	tctccccct	ccttggccag	ctcttcagct	3540
agccagttgt	ctacaccttc	cttgaaggcg	acatgcacta	cccaccatgt	ctctccggac	3600
gctgacctca	tegaggecaa	cctcctgtgg	cggcaggaga	tgggcgggaa	catcacccgc	3660
gtggagtcgg	agaacaaggt	ggtagtcctg	gactctttcg	acccgcttcg	agcggaggag	3720
gatgagaggg	aagtatccgt	teeggeggag	atcctgcgga	aatccaagaa	gttccccgca	3780
gcgatgccca	tctgggcgcg	cccggattac	aaccctccac	tgttagagtc	ctggaaggac	3840
ccggactacg	teceteeggt	ggtgcacggg	tgcccgttgc	cacctatcaa	ggcccctcca	3900
ataccacctc	cacggagaaa	gaggacggtt	gtcctaacag	agtectccgt	gtcttctgcc	3960
ttagcggagc	tcgctactaa	gaccttcggc	agctccgaat	catcggccgt	cgacagcggc	4020
acqqcqaccq	cccttcctga	ccaggcctcc	gacgacggtg	acaaaggatc	cgacgttgag	4080
tcgtactcct	ccatgeeece	ccttgagggg	gaaccggggg	accccgatct	cagtgacggg	4140
tettagteta	ccgtgagcga	ggaagctagt	gaggatgtcg	tetgetgete	aatgtcctac	4200
acatggacag	gcgccttgat	cacgccatgc	gctgcggagg	aaagcaagct	gcccatcaac	4260
gcgttgagca	actetttget	gcgccaccat	aacatggttt	atgccacaac	atctcgcagc	4320
gcaggcctgc	ggcagaagaa	ggtcaccttt	gacagactgc	aagtcctgga	cgaccactac	4380
cagaacatac	tcaaggagat	gaaggcgaag	gcgtccacag	ttaaggctaa	actcctatcc	4440
gtagaggaag	cctgcaagct	gacgccccca	catteggeea	aatccaagtt	tggctatggg	4500
gcaaaggacg	tccggaacct	atccagcaag	gccgttaacc	acatccactc	cgtgtggaag	4560
gacttgctgg	aagacactgt	gacaccaatt	gacaccacca	tcatggcaaa	aaatgaggtt	4620
ttctgtgtcc	aaccagagaa	aggaggccgt	aagccagccc	gccttatcgt	attcccagat	4680
ctgggagtcc	gtgtatgcga	gaagatggcc	ctctatgatg	tggtctccac	ccttcctcag	4740
gtcgtgatgg	gctcctcata	cggattccag	tactctcctg	ggcagcgagt	cgagttcctg	4800
gtgaatacct	ggaaatcaaa	gaaaaacccc	atgggctttt	catatgacac	tcgctgtttc	4860
gactcaacgg	tcaccgagaa	cgacatecgt	gttgaggagt	caatttacca	atgttgtgac	4920
ttaacccca	aagccagaca	ggccataaaa	tegeteacag	agcggcttta	tatcgggggt	4980
cctctgacta	attcaaaagg	gcagaactgc	ggttatcgcc	ggtgccgcgc	gagcggcgtg	5040
ctgacgacta	gctgcggtaa	caccctcaca	tgttacttga	aggcctctgc	agcctgtcga	5100
gctgcgaagc	tecaggaetg	cacgatgete	gtgaacgccg	ccggccttgt	cgttatctgt	5160
gaaagcgcgg	gaacccaaga	ggacgcggcg	agcctacgag	tcttcacgga	ggctatgact	5220
aggtactctg	ccccccaa	ggacccgccc	caaccagaat	acgacttgga	gctgataaca	5280
tcatgttcct	ccaatgtgtc	ggtcgcccac	gatgcatcag	gcaaaagggt	gtactacctc	5340
acccgtgatc	ccaccacccc	cctcgcacgg	getgegtggg	aaacagctag	acacactcca	5400
gttaactcct	ggctaggcaa	cattatcatq	tatgcgccca	ctttgtgggc	aaggatgatt	5460
•		~		-		

```
5520
ctgatgactc acttcttctc catccttcta gcacaggagc aacttgaaaa agccctggac
tgccagatct acggggcctg ttactccatt gagccacttg acctacctca gatcattgaa
                                                                     5580
cgactccatg gccttagcgc attttcactc catagttact ctccaggtga gatcaatagg
                                                                     5640
                                                                     5700
qtqqcttcat gcctcaggaa acttggggta ccacccttgc gagtctggag acatcgggcc
aggagegtee gegetagget actgteecag ggggggaggg cegecacttg tggeaagtae
                                                                     5760
ctcttcaact gggcagtgaa gaccaaactc aaactcactc caatcccggc tgcgtcccag
                                                                     5820
                                                                     5880
ctggacttgt ccggctggtt cgttgctggt tacagcgggg gagacatata tcacagcctg
                                                                     5940
totogtgccc gaccccgctg gttcatgctg tgcctactcc tactttctgt aggggtaggc
                                                                     5965
atctacctgc tccccaaccg ataaa
<210> 3
<211> 5965
<212> DNA
<213> Artificial Sequence
<220>
<223> Optimized cDNA encoding SEQ ID NO: 1
<400> 3
                                                                       60
gccaccatgg cccccatcac cgcctacagc cagcagaccc gcggcctgct gggctgcatc
atcaccagec tgaccggccg cgacaagaac caggtggagg gcgaggtgca ggtggtgagc
                                                                      120
acceccaccc agagettect ggccacctge gtgaacggeg tgtgctggac cgtgtaccac
                                                                      180
qqcqccqqca qcaaqacct ggccggcccc aagggcccca tcacccagat gtacaccaac
                                                                      240
                                                                      300
gtggaccagg acctggtggg ctggcaggcc cccccggcg cccgcagcct gaccccctgc
acctgcggca gcagcgacct gtacctggtg acccgccacg ccgacgtgat ccccgtgcgc
                                                                      360
cgccgcggcg acagccgcgg cagcctgctg agcccccgcc ccgtgagcta cctgaagggc
                                                                      420
                                                                      480
agcageggeg geoccetget gtgeeceage ggccaegeeg tgggcatett cegegeegee
                                                                      540
qtgtgcaccc gcggcgtggc caaggccgtg gacttcgtgc ccgtggagag catggagacc
accatgogca geocogtgtt caccgacaac agcageeece cegeogtgee ecagagette
                                                                      600
caggtggccc acctgcacgc ccccaccggc agcggcaaga gcaccaaggt gcccgccgcc
                                                                      660
tacgccgccc agggctacaa ggtgctggtg ctgaacccca gcgtggccgc caccctgggc
                                                                      720
                                                                      780
tteggegeet acatgageaa ggeeeacgge ategaceeca acateegeac eggegtgege
                                                                      840
accateacea ceggegeeee egtgacetae ageacetaeg geaagtteet ggccgaegge
ggctgcagcg gcggcgccta cgacatcatc atctgcgacg agtgccacag caccgacagc
                                                                      900
                                                                      960
accaccatcc tgggcatcgg caccgtgctg gaccaggccg agaccgccgg cgcccgcctg
gtggtgctgg ccaccgccac ccccccggc agcgtgaccg tgccccaccc caacatcgag
                                                                     1020
                                                                     1080
gaggtggccc tgagcaacac cggcgagatc cccttctacg gcaaggccat ccccatcgag
gccatccgcg gcggccgcca cctgatcttc tgccacagca agaagaagtg cgacgagctg
                                                                     1140
gccgccaagc tgagcggcct gggcatcaac gccgtggcct actaccgcgg cctggacgtg
                                                                     1200
                                                                     1260
agcgtgatcc ccaccatcgg cgacgtggtg gtggtggcca ccgacgccct gatgaccggc
tacaccggcg acttcgacag cgtgatcgac tgcaacacct gcgtgaccca gaccgtggac
                                                                     1320
ttcaqcctqq acccacctt caccatcgag accaccaccg tgccccagga cgccgtgagc
                                                                     1380
                                                                     1440
cgcagccagc gccgcggcg caccggccgc ggccgccgcg gcatctaccg cttcgtgacc
                                                                     1500
cccggcgagc gccccagcgg catgttcgac agcagcgtgc tgtgcgagtg ctacgacgcc
                                                                     1560
ggctgcgcct ggtacgagct gaccccgcc gagaccagcg tgcgcctgcg cgcctacctg
aacacccccg gcctgcccgt gtgccaggac cacctggagt tctgggagag cgtgttcacc
                                                                     1620
                                                                     1680
ggcctgaccc acatcgacgc ccacttcctg agccagacca agcaggccgg cgacaacttc
                                                                     1740
ccctacctgg tggcctacca ggccaccgtg tgcgcccgcg cccaggcccc cccccccagc
tgggaccaga tgtggaagtg cctgatccgc ctgaagccca ccctgcacgg ccccaccccc
                                                                     1800
ctgctgtacc gcctgggcgc cgtgcagaac gaggtgaccc tgacccaccc catcaccaag
                                                                     1860
                                                                     1920
tacatcatgg cctgcatgag cgccgacctg gaggtggtga ccagcacctg ggtgctggtg
                                                                     1980
ggcggcgtgc tggccgccct ggccgcctac tgcctgacca ccggcagcgt ggtgatcgtg
ggccgcatca tcctgagcgg ccgccccgcc atcgtgcccg accgcgagtt cctgtaccag
                                                                     2040
gagttcgacg agatggagga gtgcgccagc cacctgccct acatcgagca gggcatgcag
                                                                     2100
ctggccgagc agttcaagca gaaggccctg ggcctgctgc agaccgccac caagcaggcc
                                                                     2160
```

gaggccgccg	cccccgtggt	ggagagcaag	tggcgcgccc	tggagacctt	ctgggccaag	2220
cacatgtgga	acttcatcag	cggcatccag	tacctggccg	gcctgagcac	cctgcccggc	2280
aaccccgcca	tcgccagcct	gatggccttc	accgccagca	tcaccagccc	cctgaccacc	2340
cagagcaccc	tgctgttcaa	catcctgggc	ggctgggtgg	ccgcccagct	ggccccccc	2400
agcgccgcca	gcgccttcgt	gggcgccggc	atcgccggcg	ccgccgtggg	cagcatcggc	2460
ctgggcaagg	tgctggtgga	catcctggcc	ggctacggcg	ccggcgtggc	cggcgccctg	2520
gtggccttca	aggtgatgag	cggcgagatg	cccagcaccg	aggacctggt	gaacctgctg	2580
cccgccatcc	tgagccccgg	cgccctggtg	gtgggcgtgg	tgtgcgccgc	catcctgcgc	2640
cgccacgtgg	gccccggcga	gggcgccgtg	cagtggatga	accgcctgat	cgccttcgcc	2700
agccgcggca	accacgtgag	ccccacccac	tacgtgcccg	agagcgacgc	cgccgcccgc	2760
gtgacccaga	tcctgagcag	cctgaccatc	acccagctgc	tgaagcgcct	gcaccagtgg	2820
atcaacgagg	actgcagcac	ccctgcagc	ggcagctggc	tgcgcgacgt	gtgggactgg	2880
atctgcaccg	tgctgaccga	cttcaagacc	tggctgcaga	gcaagctgct	gccccagctg	2940
cccggcgtgc	ccttcttcag	ctgccagcgc	ggctacaagg	gcgtgtggcg	cggcgacggc	3000
atcatgcaga	ccacctgccc	ctgcggcgcc	cagatcaccg	gccacgtgaa	gaacggcagc	3060
atgcgcatcg	tgggccccaa	gacctgcagc	aacacctggc	acggcacctt	ccccatcaac	3120
gcctacacca	ccggcccctg	caccccagc	cccgccccca	actacagccg	cgccctgtgg	3180
cgcgtggccg	ccgaggagta	cgtggaggtg	acccgcgtgg	gcgacttcca	ctacgtgacc	3240
ggcatgacca	ccgacaacgt	gaagtgcccc	tgccaggtgc	ccgcccccga	gttcttcacc	3300
gaggtggacg	gcgtgcgcct	gcaccgctac	gccccgcct	geegeeect	gctgcgcgag	3360
gaggtgacct	tccaggtggg	cctgaaccag	tacctggtgg	gcagccagct	gccctgcgag	3420
cccgagcccg	acgtggccgt	gctgaccagc	atgctgaccg	accccagcca	catcaccgcc	3480
gagaccgcca	agcgccgcct	ggcccgcggc	agecececa	gcctggccag	cagcagcgcc	3540
agccagctga	gcgcccccag	cctgaaggcc	acctgcacca	cccaccacgt	gagccccgac	3600
gccgacctga	tcgaggccaa	cctgctgtgg	cgccaggaga	tgggcggcaa	catcacccgc	3660
gtggagagcg	agaacaaggt	ggtggtgctg	gacagcttcg	acccctgcg	cgccgaggag	3720
gacgagcgcg	aggtgagcgt	gcccgccgag	atcctgcgca	agagcaagaa	gttccccgcc	3780
	tctgggcccg					3840
	tgccccccgt					3900
atccccccc	cccgccgcaa	gcgcaccgtg	gtgctgaccg	agagcagcgt	gagcagcgcc	3960
ctggccgagc	tggccaccaa	gaccttcggc	agcagcgaga	gcagcgccgt	ggacagcggc	4020
accgccaccg	ccctgcccga	ccaggccagc	gacgacggcg	acaagggcag	cgacgtggag	4080
agctacagca	gcatgccccc	cctggagggc	gagcccggcg	accccgacct	gagcgacggc	4140
agctggagca	ccgtgagcga	ggaggccagc	gaggacgtgg	tgtgctgcag	catgagctac	4200
acctggaccg	gcgccctgat	caccccctgc	gccgccgagg	agagcaagct	gcccatcaac	4260
gccctgagca	acagcctgct	gcgccaccac	aacatggtgt	acgccaccac	cagccgcagc	4320
gccggcctgc	gccagaagaa	ggtgaccttc	gaccgcctgc	aggtgctgga	cgaccactac	4380
cgcgacgtgc	tgaaggagat	gaaggccaag	gccagcaccg	tgaaggccaa	gctgctgagc	4440
gtggaggagg	cctgcaagct	gaccccccc	cacagcgcca	agagcaagtt	cggctacggc	4500
gccaaggacg	tgcgcaacct	gagcagcaag	gccgtgaacc	acatccacag	cgtgtggaag	4560
gacctgctgg	aggacaccgt	gacccccatc	gacaccacca	tcatggccaa	gaacgaggtg	4620
ttctgcgtgc	agcccgagaa	gggcggccgc	aagcccgccc	gcctgatcgt	gttccccgac	4680
ctgggcgtgc	gcgtgtgcga	gaagatggcc	ctgtacgacg	tggtgagcac	cctgccccag	4740
gtggtgatgg	gcagcagcta	cggcttccag	tacagccccg	gccagcgcgt	ggagttcctg	4800
gtgaacacct	ggaagagcaa	gaagaacccc	atgggcttca	gctacgacac	ccgctgcttc	4860
gacagcaccg	tgaccgagaa	cgacatccgc	gtggaggaga	gcatctacca	gtgctgcgac	4920
ctggcccccg	aggcccgcca	ggccatcaag	agcctgaccg	agegeetgta	catcggcggc	4980
cccctgacca	acagcaaggg	ccagaactgc	ggctaccgcc	gctgccgcgc	cagcggcgtg	5040
ctgaccacca	gctgcggcaa	caccctgacc	tgctacctga	aggccagcgc	cgcctgccgc	5100
gccgccaagc	tgcaggactg	caccatgctg	gtgaacgccg	ccggcctggt	ggtgatctgc	5160
gagagegeeg	gcacccagga	ggacgccgcc	agcctgcgcg	tgttcaccga	ggccatgacc	5220
cgctacagcg	cccccccgg	cgaccccccc	cagcccgagt	acgacctgga	gctgatcacc	5280
agetgeagea	gcaacgtgag	cgtggcccac	gacgccagcg	gcaagcgcgt	gtactacctg	5340
	ccaccacccc					5400
gtgaacagct	ggctgggcaa	catcatcatg	tacgccccca	ccctgtgggc	ccgcatgatc	5460
		_				

```
5520
ctgatgaccc acttetteag cateetgetg geocaggage agetggagaa ggccetggae
                                                                     5580
tgccagatet aeggegeetg etacageate gageecetgg acetgeeeca gateategag
cgcctgcacg gcctgagcgc cttcagcctg cacagctaca gccccggcga gatcaaccgc
                                                                     5640
                                                                     5700
atagecaget geotgegeaa getgggegtg ceceeetge gegtgtggeg ceaeegegee
                                                                     5760
cgcagcgtgc gcgcccgcct gctgagccag ggcggccgcg ccgccacctg cggcaagtac
ctgttcaact gggccgtgaa gaccaagctg aagctgaccc ccatccccgc cgccagccag
                                                                     5820
                                                                     5880
ctggacctga gcggctggtt cgtggccggc tacagcggcg gcgacatcta ccacagcctg
                                                                     5940
agcogococ gooccogotg gttcatgotg tgcctgctgc tgctgagcgt gggcgtgggc
                                                                     5965
atctacctgc tgcccaaccg ctaaa
<210> 4
<211> 37090
<212> DNA
<213> Artificial Sequence
<223> MRKAd6-NSmut nucleic acid
<400> 4
                                                                       60
catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt
ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt
                                                                      120
gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg
                                                                      180
qtqtqcqccq qtqtacacaq gaagtgacaa ttttcqcqcq qttttagqcq gatgttgtag
                                                                      240
                                                                      300
taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga
agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggccgcggg
                                                                      360
gactttgacc gtttacgtgg agactcgccc aggtgttttt ctcaggtgtt ttccgcgttc
                                                                      420
                                                                      480
cqqqtcaaaq ttqqcqtttt attattatag gcggccgcga tccattgcat acgttgtatc
                                                                      540
catatcataa tatqtacatt tatattggct catgtccaac attaccgcca tgttgacatt
                                                                      600
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc
                                                                      660
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
                                                                      720
                                                                      780
attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt
                                                                      840
                                                                      900
atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca
                                                                      960
tegetattae categotgatg eggttttgge agtacateaa tgggegtgga tageggtttg
actcacgggg atttccaagt ctccaccca ttgacgtcaa tgggagtttg ttttggcacc
                                                                     1020
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg
                                                                     1080
gtaggcgtgt acggtgggag gtctatataa gcagagctcg tttagtgaac cgtcagatcg
                                                                     1140
                                                                     1200
cctggagacg ccatccacgc tgttttgacc tccatagaag acaccgggac cgatccagcc
tccgcggccg ggaacggtgc attggaacgc ggattccccg tgccaagagt gagatctgcc
                                                                     1260
accatggcgc ccatcacggc ctactcccaa cagacgcggg gcctacttgg ttgcatcatc
                                                                     1320
                                                                     1380
actaqcctta caqqccqqqa caagaaccag gtcgagggag aggttcaggt ggtttccacc
                                                                     1440
gcaacacaat cottootggc gacctgcgtc aacggcgtgt gttggaccgt ttaccatggt
gctggctcaa agaccttagc cggcccaaag gggccaatca cccagatgta cactaatgtg
                                                                     1500
                                                                     1560
gaccaggacc tcgtcggctg gcaggcgccc cccggggcgc gttccttgac accatgcacc
tgtggcagct cagacettta ettggtcacg agacatgetg acgteattee ggtgegeegg
                                                                     1620
                                                                     1680
cggggcgaca gtagggggag cctgctctcc cccaggcctg tctcctactt gaagggctct
                                                                     1740
togggtggte cactgetetg ceettegggg cacgetgtgg geatetteeg ggetgeegta
tgcacccggg gggttgcgaa ggcggtggac tttgtgcccg tagagtccat ggaaactact
                                                                     1800
                                                                     1860
atgeggtete eggtetteae ggacaactea tecceeegg eegtaeegea gteattteaa
qtggcccacc tacacgctcc cactggcagc ggcaagagta ctaaagtgcc ggctgcatat
                                                                     1920
gcagcccaag ggtacaaggt gctcgtcctc aatccgtccg ttgccgctac cttagggttt
                                                                     1980
ggggcgtata tgtctaaggc acacggtatt gaccccaaca tcagaactgg ggtaaggacc
                                                                     2040
attaccacag gcgcccccgt cacatactct acctatggca agtttcttgc cgatggtggt
                                                                     2100
tgctctgggg gcgcttatga catcataata tgtgatgagt gccattcaac tgactcgact
                                                                     2160
```

acaatcttgg	gcatcggcac	agtcctggac	caagcggaga	cggctggagc	gcggcttgtc	2220
gtgctcgcca	ccgctacgcc	tccgggatcg	gtcaccgtgc	cacacccaaa	catcgaggag	2280
gtggccctgt	ctaatactgg	agagatecee	ttctatggca	aagccatccc	cattgaagcc	2340
atcagggggg	gaaggcatct	cattttctgt	cattccaaga	agaagtgcga	cgagctcgcc	2400
gcaaagctgt	caggcctcgg	aatcaacgct	gtggcgtatt	accgggggct	cgatgtgtcc	2460
gtcataccaa	ctatcggaga	cgtcgttgtc	gtggcaacag	acgctctgat	gacgggctat	2520
acgggcgact	ttgactcagt	gatcgactgt	aacacatgtg	tcacccagac	agtcgacttc	2580
agcttggatc	ccaccttcac	cattgagacg	acgaccgtgc	ctcaagacgc	agtgtcgcgc	2640
tcgcagcggc	ggggtaggac	tggcaggggt	aggagaggca	tctacaggtt	tgtgactccg	2700
ggagaacggc	cctcgggcat	gttcgattcc	tcggtcctgt	gtgagtgcta	tgacgcgggc	2760
tgtgcttggt	acgagctcac	ccccgccgag	acctcggtta	ggttgcgggc	ctacctgaac	2820
acaccagggt	tgcccgtttg	ccaggaccac	ctggagttct	gggagagtgt	cttcacaggc	2880
ctcacccaca	tagatgcaca	cttcttgtcc	cagaccaagc	aggcaggaga	caacttcccc	2940
tacctggtag	cataccaagc	cacggtgtgc	gccagggctc	aggccccacc	tccatcatgg	3000
gatcaaatgt	ggaagtgtct	catacggctg	aaacctacgc	tgcacgggcc	aacacccttg	3060
ctgtacaggc	tgggagccgt	ccaaaatgag	gtcaccctca	cccaccccat	aaccaaatac	3120
atcatggcat	gcatgtcggc	tgacctggag	gtcgtcacta	gcacctgggt	gctggtgggc	3180
ggagtccttg	cagctctggc	cgcgtattgc	ctgacaacag	gcagtgtggt	cattgtgggt	3240
aggattatct	tgtccgggag	gccggctatt	gttcccgaca	gggagtttct	ctaccaggag	3300
ttcgatgaaa	tggaagagtg	cgcctcgcac	ctcccttaca	tcgagcaggg	aatgcagctc	3360
gccgagcaat	tcaagcagaa	agcgctcggg	ttactgcaaa	cagccaccaa	acaagcggag	3420
getgetgete	ccgtggtgga	gtccaagtgg	cgagcccttg	agacattctg	ggcgaagcac	3480
atgtggaatt	tcatcagcgg	gatacagtac	ttagcaggct	tatccactct	gcctgggaac	3540
cccgcaatag	catcattgat	ggcattcaca	gcctctatca	ccagcccgct	caccacccaa	3600
agtaccctcc	tgtttaacat	cttggggggg	tgggtggctg	cccaactcgc	ccccccagc	3660
gccgcttcgg	ctttcgtggg	cgccggcatc	gccggtgcgg	ctgttggcag	cataggcctt	3720
gggaaggtgc	ttgtggacat	tctggcgggt	tatggagcag	gagtggccgg	cgcgctcgtg	3780
gccttcaagg	tcatgagcgg	cgagatgccc	tccaccgagg	acctggtcaa	tctacttcct	3840
gccatcctct	ctcctggcgc	cctggtcgtc	ggggtcgtgt	gtgcagcaat	actgcgtcga	3900
cacgtgggtc	cgggagaggg	ggctgtgcag	tggatgaacc	ggctgatagc	gttcgcctcg	3960
cggggtaatc	atgtttcccc	cacgcactat	gtgcctgaga	gcgacgccgc	agcgcgtgtt	4020
actcagatcc	tctccagcct	taccatcact	cagctgctga	aaaggctcca	ccagtggatt	4080
aatgaagact	gctccacacc	gtgttccggc	tcgtggctaa	gggatgtttg	ggactggata	4140
tgcacggtgt	tgactgactt	caagacctgg	ctccagtcca	agctcctgcc	gcagctaccg	4200
ggagtccctt	ttttctcgtg	ccaacgcggg	tacaagggag	tctggcgggg	agacggcatc	4260
atgcaaacca	cctgcccatg	tggagcacag	atcaccggac	atgtcaaaaa	cggttccatg	4320
aggatcgtcg	ggcctaagac	ctgcagcaac	acgtggcatg	gaacattccc	catcaacgca	4380
tacaccacgg	gcccctgcac	accctctcca	gcgccaaact	attctagggc	gctgtggcgg	4440
gtggccgctg	aggagtacgt	ggaggtcacg	cgggtggggg	atttccacta	cgtgacgggc	4500
atgaccactg	acaacgtaaa	gtgcccatgc	caggttccgg	ctcctgaatt	cttcacggag	4560
gtggacggag	tgcggttgca	caggtacgct	ccggcgtgca	ggcctctcct	acgggaggag	4620
gttacattcc	aggtcgggct	caaccaatac	ctggttgggt	cacagctacc	atgcgagccc	4680
gaaccggatg	tagcagtgct	cacttccatg	ctcaccgacc	cctcccacat	cacagcagaa	4740
acggctaagc	gtaggttggc	cagggggtct	ccccctcct	tggccagctc	ttcagctagc	4800
cagttgtctg	cgccttcctt	gaaggcgaca	tgcactaccc	accatgtctc	tccggacgct	4860
gacctcatcg	aggccaacct	cctgtggcgg	caggagatgg	gcgggaacat	cacccgcgtg	4920
gagtcggaga	acaaggtggt	agtcctggac	tetttegace	cgcttcgagc	ggaggaggat	4980
gagagggaag	tatccgttcc	ggcggagatc	ctgcggaaat	ccaagaagtt	ccccgcagcg	5040
atgcccatct	gggcgcgccc	ggattacaac	cctccactgt	tagagtcctg	gaaggacccg	5100
gactacgtcc	ctccggtggt	gcacgggtgc	ccgttgccac	ctatcaaggc	ccctccaata	5160
ccacctccac	ggagaaagag	gacggttgtc	ctaacagagt	cctccgtgtc	ttctgcctta	5220
geggageteg	ctactaagac	cttcggcagc	tccgaatcat	cggccgtcga	cagcggcacg	5280
gcgaccgccc	ttcctgacca	ggcctccgac	gacggtgaca	aaggatccga	cgttgagtcg	5340
tactcctcca	tgcccccct	tgagggggaa	ccgggggacc	ccgatctcag	tgacgggtct	5400
tggtctaccg	tgagcgagga	agctagtgag	gatgtcgtct	gctgctcaat	gtcctacaca	5460

tggacaggeg cettgateae gecatgeget geggaggaaa geaagetgee cateaaegeg 5520 5580 ttgagcaact ctttgctgcg ccaccataac atggtttatg ccacaacatc tcgcagcgca 5640 ggcctgcggc agaagaaggt cacctttgac agactgcaag tcctggacga ccactaccgg gacgtgctca aggagatgaa ggcgaaggcg tccacagtta aggctaaact cctatccgta 5700 5760 gaggaagect gcaagetgac gccccacat teggccaaat ccaagtttgg ctatggggca 5820 aaggacgtcc ggaacctatc cagcaaggcc gttaaccaca tccactccgt gtggaaggac 5880 ttgctggaag acactgtgac accaattgac accaccatca tggcaaaaaa tgaggttttc tgtgtccaac cagagaaagg aggccgtaag ccagcccgcc ttatcgtatt cccagatctg 5940 ggagtccgtg tatgcgagaa gatggccctc tatgatgtgg tctccaccct tcctcaggtc 6000 gtgatgggct cctcatacgg attccagtac tctcctgggc agcgagtcga gttcctggtg 6060 6120 aatacctgga aatcaaagaa aaaccccatg ggcttttcat atgacactcg ctgtttcgac tcaacggtca ccgagaacga catccgtgtt gaggagtcaa tttaccaatg ttgtgacttg 6180 gcccccgaag ccagacaggc cataaaatcg ctcacagagc ggctttatat cgggggtcct 6240 6300 ctgactaatt caaaagggca gaactgcggt tatcgccggt gccgcgcgag cggcgtgctg acgactaget geggtaacac ceteacatgt tacttgaagg cetetgeage etgtegaget 6360 gcgaagctcc aggactgcac gatgctcgtg aacgccgccg gccttgtcgt tatctgtgaa 6420 agcgcgggaa cccaagagga cgcggcgagc ctacgagtct tcacggaggc tatgactagg 6480 tactctgccc ccccgggga cccgcccaa ccagaatacg acttggagct gataacatca 6540 6600 tgttcctcca atgtgtcggt cgcccacgat gcatcaggca aaagggtgta ctacctcacc cgtgatccca ccaccccct cgcacgggct gcgtgggaaa cagctagaca cactccagtt 6660 aactcctggc taggcaacat tatcatgtat gcgcccactt tgtgggcaag gatgattctg 6720 6780 atgactcact tettetecat cettetagea caggageaac ttgaaaaage cetggactge cagatetacg gggcetgtta etceattgag ceaettgace taceteagat cattgaacga 6840 6900 ctccatggcc ttagcgcatt ttcactccat agttactctc caggtgagat caatagggtg gcttcatgcc tcaggaaact tggggtacca cccttgcgag tctggagaca tcgggccagg 6960 7020 agcgtccgcg ctaggctact gtcccagggg gggagggccg ccacttgtgg caagtacctc 7080 ttcaactggg cagtgaagac caaactcaaa ctcactccaa tcccggctgc gtcccagctg 7140 gacttgtccg gctggttcgt tgctggttac agcgggggag acatatatca cagcctgtct 7200 cgtgcccgac cccgctggtt catgctgtgc ctactcctac tttctgtagg ggtaggcatc 7260 tacetgetee ceaaceggta aatetagage tgtgeettet agttgecage catetgttgt ttgcccctcc cccgtgcctt ccttgaccct ggaaggtgcc actcccactg tcctttccta 7320 ataaaatgag gaaattgcat cgcattgtct gagtaggtgt cattctattc tggggggtgg 7380 7440 ggtggggcag gacagcaagg gggaggattg ggaagacaat agcaggcatg ctggggatgc 7500 ggtgggctct atggccgatc ggcgcgccgt actgaaatgt gtgggcgtgg cttaagggtg ggaaagaata tataaggtgg gggtcttatg tagttttgta tctgttttgc agcagccgcc 7560 7620 gccgccatga gcaccaactc gtttgatgga agcattgtga gctcatattt gacaacgcgc 7680 atgcccccat gggccggggt gcgtcagaat gtgatgggct ccagcattga tggtcgcccc 7740 gtcctgcccg caaactctac taccttgacc tacgagaccg tgtctggaac gccgttggag actgcagcct ccgccgccgc ttcagccgct gcagccaccg cccgcgggat tgtgactgac 7800 tttgctttcc tgagcccgct tgcaagcagt gcagcttccc gttcatccgc ccgcgatgac 7860 7920 aagttgacgg ctcttttggc acaattggat tctttgaccc gggaacttaa tgtcgtttct cagcagetgt tggatetgeg ccagcaggtt tetgecetga aggetteete cceteccaat 7980 8040 gcggtttaaa acataaataa aaaaccagac tctgtttgga tttggatcaa gcaagtgtct tqctgtcttt atttaggggt tttgcgcgcg cggtaggccc gggaccagcg gtctcggtcg 8100 ttgagggtcc tgtgtatttt ttccaggacg tggtaaaggt gactctggat gttcagatac 8160 8220 atgggcataa gcccgtctct ggggtggagg tagcaccact gcagagcttc atgctgcggg 8280 gtggtgttgt agatgatcca gtcgtagcag gagcgctggg cgtggtgcct aaaaatgtct ttcagtagca agctgattgc caggggcagg cccttggtgt aagtgtttac aaagcggtta 8340 8400 agetgggatg ggtgeataeg tggggatatg agatgeatet tggaetgtat ttttaggttg gctatgttcc cagccatatc cctccgggga ttcatgttgt gcagaaccac cagcacagtg 8460 8520 tatccggtgc acttgggaaa tttgtcatgt agcttagaag gaaatgcgtg gaagaacttg gagacgccct tgtgacctcc aagattttcc atgcattcgt ccataatgat ggcaatgggc 8580 8640 ccacgggcgg cggcctgggc gaagatattt ctgggatcac taacgtcata gttgtgttcc 8700 aggatgagat cgtcataggc catttttaca aagcgcgggc ggagggtgcc agactgcggt 8760 ataatggttc catccggccc aggggcgtag ttaccctcac agatttgcat ttcccacgct

ttgagttcag	atggggggat	catgtctacc	tgcggggcga	tgaagaaaac	ggtttccggg	8820
gtagggaga	tcagctggga	agaaagcagg	ttcctgagca	gctgcgactt	accgcagccg	8880
ataggcccgt	aaatcacacc	tattaccggc	tgcaactggt	agttaagaga	gctgcagctg	8940
ccgtcatccc	tgagcagggg	ggccacttcg	ttaagcatgt	ccctgactcg	catgttttcc	9000
ctgaccaaat	ccgccagaag	gcgctcgccg	cccagcgata	gcagttcttg	caaggaagca	9060
aagtttttca	acggtttgag	accgtccgcc	gtaggcatgc	ttttgagcgt	ttgaccaagc	9120
agttccaggc	ggtcccacag	ctcggtcacc	tgctctacgg	catctcgatc	cagcatatct	9180
cctcgtttcg	cgggttgggg	cggctttcgc	tgtacggcag	tagtcggtgc	tcgtccagac	9240
gggccagggt	catgtctttc	cacgggcgca	gggtcctcgt	cagcgtagtc	tgggtcacgg	9300
tgaaggggtg	cgctccgggc	tgcgcgctgg	ccagggtgcg	cttgaggctg	gtcctgctgg	9360
tgctgaagcg	ctgccggtct	tegecetgeg	cgtcggccag	gtagcatttg	accatggtgt	9420
catagtccag	ccctccgcg	gcgtggccct	tggcgcgcag	cttgcccttg	gaggaggcgc	9480
cgcacgaggg	gcagtgcaga	cttttgaggg	cgtagagctt	gggcgcgaga	aataccgatt	9540
ccggggagta	ggcatccgcg	ccgcaggccc	cgcagacggt	ctcgcattcc	acgagccagg	9600
tgagctctgg	ccgttcgggg	tcaaaaacca	ggtttccccc	atgctttttg	atgcgtttct	9660
tacctctggt	ttccatgagc	cggtgtccac	gctcggtgac	gaaaaggctg	teegtgteee	9720
cgtatacaga	cttgagaggc	ctgtcctcga	gcggtgttcc	gcggtcctcc	tcgtatagaa	9780
actcggacca	ctctgagacg	aaggctcgcg	tccaggccag	cacgaaggag	gctaagtggg	9840
aggggtagcg	gtcgttgtcc	actagggggt	ccactcgctc	cagggtgtga	agacacatgt	9900
cgccctcttc	ggcatcaagg	aaggtgattg	gtttataggt	gtaggccacg	tgaccgggtg	9960
ttcctgaagg	ggggctataa	aagggggtgg	gggcgcgttc	gtcctcactc	tcttccgcat	10020
cgctgtctgc	gagggccagc	tgttggggtg	agtactccct	ctcaaaagcg	ggcatgactt	10080
ctgcgctaag	attgtcagtt	tccaaaaacg	aggaggattt	gatattcacc	tggcccgcgg	10140
tgatgccttt	gagggtggcc	gcgtccatct	ggtcagaaaa	gacaatcttt	ttgttgtcaa	10200
gcttggtggc	aaacgacccg	tagagggcgt	tggacagcaa	cttggcgatg	gagcgcaggg	10260
tttggttttt	gtcgcgatcg	gcgcgctcct	tggccgcgat	gtttagctgc	acgtattcgc	10320
gcgcaacgca	ccgccattcg	ggaaagacgg	tggtgcgctc	gtcgggcact	aggtgcacgc	10380
gccaaccgcg	gttgtgcagg	gtgacaaggt	caacgctggt	ggctacctct	ccgcgtaggc	10440
gctcgttggt	ccagcagagg	cggccgccct	tgcgcgagca	gaatggcggt	agtgggtcta	10500
gctgcgtctc	gtccgggggg	tctgcgtcca	cggtaaagac	cccgggcagc	aggcgcgcgt	10560
cgaagtagtc	tatcttgcat	ccttgcaagt	ctagcgcctg	ctgccatgcg	cgggcggcaa	10620
gcgcgcgctc	gtatgggttg	agtgggggac	cccatggcat	ggggtgggtg	agcgcggagg	10680
cgtacatgcc	gcaaatgtcg	taaacgtaga	ggggctctct	gagtattcca	agatatgtag	10740
ggtagcatct	tccaccgegg	atgctggcgc	gcacgtaatc	gtatagttcg	tgcgagggag	10800
cgaggaggtc	gggaccgagg	ttgctacggg	cgggctgctc	tgctcggaag	actatetgee	10860
tgaagatggc	atgtgagttg	gatgatatgg	ttggacgctg	gaagacgttg	aagetggegt	10920
ctgtgagacc	taccgcgtca	cgcacgaagg	aggcgtagga	gregegeage	ttgttgacca	10980
gctcggcggt	gacctgcacg	tctagggcgc	agragreeag	ggtttecttg	acgaigical	11040 11100
acttatectg	tecettttt	ttccacaget	cgcggttgag	gacaaactet	cegeggiett	11160
tccagtactc	ttggatcgga	aacccgtcgg	cctccgaacg	gtaagagcct	agcatgtaga	11220
actggttgac	ggcctggtag	gcgcagcatc	cettttetae	gggtagcgcg	catgeetgeg	11220
cggccttccg	gagcgaggtg	tgggtgagcg	caaaggtgtc	cctaaccatg	actitigaggi	11340
actggtattt	gaagtcagtg	tcgtcgcatc	cgccctgctc	ccagagcaaa	addicedite	11400
gctttttgga	acgcgggttt	ggcagggcga	aggrgacare	gttgaagagt	accettates	11460
cgcgaggcat	aaagttgcgt	gtgatgcgga	agggteeegg	caceteggaa	acaatotaaa	11520
ttacctgggc	ggcgagcacg	atctcgtcaa	agecgetgat	gttgtggccc	taataataa	11520
gttccaagaa	gcgcgggatg	cccttgatgg	aayycaaccc	gtatagaaga	taaaaattaa	11640
getetteagg	ggagctgagc	acceptage	aaayyyeeda	ttacacatac	taagggccgg	11700
aagcgacgaa	tgagctccac	aggicacggg	ctaggatast	acagtagasg	ataaaaaaa	11760
ceceaaactg	gcgacctatg	goodettill	constants	tagrayaay	atcactacan	11820
cetgetecca	gcggtcccat	atraccarca	taaaaaaaa	gagetgette	ccaaacccc	11880
goldatetee	gccgaacttc	acyaccayca	tracessors	accetecate	caagaataca	11940
ccacccaagt	ataggtetet	acategragg	accacttons	acyclogycy	ttastataat	12000
ageegategg	gaagaactgg gtccctgcga	accorded	accayttyya	acttttata	agacutucuc	12060
yaaaytayaa	geocoegoga	cgggccgaac	accegigety	geeeegeaa	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

agtactggca	acaatacaca	ggctgtacat	cctgcacgag	gttgacctga	cgaccgcgca	12120
		ttgagcccct				12180
					gateggacea	12240
					ttgatgacaa	12300
					tcaggcggga	12360
		catageeggg				12420
		gtggcggcgt				12480
		ggcgggcggt				12540
		ggggggggg				12600
		cgccgcgcgc				12660
		ggcggttgat				12720
		acctgaaaga				12780
		teteetgeac				12840
		cttcctcctg				12900
		tgcgggccat				12960
		ccacgccccc				13020
						13080
		gccgggcgaa				13140
		tgtgttctgc ccaaggcctc				13200
						13260
		agttgcgcgc cgcgcacctc				13320
		taagggcctc				13380
		gacggcgcac				13440
						13500
		tggtctcggt tgtcccggtt				13560
		atctcaacaa				13620
		ccggatcgga				13680
						13740
		gcaccgtggc				13800
		tgatgtaatt				13860
		tgggtccggc ggcgcaggtc				13920
						13980
		cctcttgtcc				14040
		ggcgccctct				14100
		ggtcggcgac agtcgtccat				14160
		ccataacgga				14220
						14280
		gcgagtaagc				14340
		ccaccaaaaa				14400
		cgggggggag				14460
		tgatgccggc				14520
		gcagcggcaa				14520
		tgacgctcta				14640
		gataaattcg				14700
		cgccgtgatc				14760
		gggggagcgc				
		ccactggccg				14820 14880
_		tccctgtagc				14940
		cgggccggcc				15000
		caaattcctc				
		tgcggcagat				15060
		gggcaccctc				15120
		cagatggtga				15180
		gcgagggcct				15240
		agcgtgacac				15300
gtttcgcgac	cgcgagggag	aggagcccga	ggagatgcgg	gatcgaaagt	tccatgcagg	15360

gcgcgagttg	cggcatggcc	tgaaccgcga	gcggttgctg	cgcgaggagg	actttgagcc	15420
cgacgcgcgg	accgggatta	gtcccgcgcg	cgcacacgtg	gcggccgccg	acctggtaac	15480
cgcgtacgag	cagacggtga	accaggagat	taactttcaa	aaaagcttta	acaaccacgt	15540
gcgcacgctt	gtggcgcgcg	aggaggtggc	tataggactg	atgcatctgt	gggactttgt	15600
aagcgcgctg	gagcaaaacc	caaatagcaa	gccgctcatg	gcgcagctgt	tccttatagt	15660
gcagcacagc	agggacaacg	aggcattcag	ggatgcgctg	ctaaacatag	tagagcccga	15720
gggccgctgg	ctgctcgatt	tgataaacat	tctgcagagc	atagtggtgc	aggagcgcag	15780
cttgagcctg	gctgacaagg	tggccgccat	taactattcc	atgctcagtc	tgggcaagtt	15840
ttacgcccgc	aagatatacc	atacccctta	cgttcccata	gacaaggagg	taaagatcga	15900
ggggttctac	atgcgcatgg	cgctgaaggt	gcttaccttg	agcgacgacc	tgggcgttta	15960
tcgcaacgag	cgcatccaca	aggccgtgag	cgtgagccgg	cggcgcgagc	tcagcgaccg	16020
cgagctgatg	cacagcctgc	aaagggccct	ggctggcacg	ggcagcggcg	atagagaggc	16080
cgagtcctac	tttgacgcgg	gcgctgacct	gcgctgggcc	ccaagccgac	gcgccctgga	16140
ggcagctggg	gccggacctg	ggctggcggt	ggcacccgcg	cgcgctggca	acgtcggcgg	16200
cgtggaggaa	tatgacgagg	acgatgagta	cgagccagag	gacggcgagt	actaagcggt	16260
gatgtttctg	atcagatgat	gcaagacgca	acggacccgg	cggtgcgggc	ggcgctgcag	16320
agccagccgt	ccggccttaa	ctccacggac	gactggcgcc	aggtcatgga	ccgcatcatg	16380
tcgctgactg	cgcgcaaccc	tgacgcgttc	cggcagcagc	cgcaggccaa	ccggctctcc	16440
gcaattctgg	aagcggtggt	cccggcgcgc	gcaaacccca	cgcacgagaa	ggtgctggcg	16500
atcgtaaacg	cgctggccga	aaacagggcc	atccggcccg	atgaggccgg	cctggtctac	16560
gacgcgctgc	ttcagcgcgt	ggctcgttac	aacagcagca	acgtgcagac	caacctggac	16620
cggctggtgg	gggatgtgcg	cgaggccgtg	gcgcagcgtg	agegegegea	gcagcagggc	16680
aacctgggct	ccatggttgc	actaaacgcc	ttcctgagta	cacageeege	caacgtgccg	16740
cggggacagg	aggactacac	caactttgtg	agcgcactgc	ggctaatggt	gactgagaca	16800
ccgcaaagtg	aggtgtatca	gtccgggcca	gactatttt	tccagaccag	tagacaaggc	16860
ctgcagaccg	taaacctgag	ccaggctttc	aagaacttgc	aggggctgtg	gggggtgcgg	16920 16980
gctcccacag	gcgaccgcgc	gaccgtgtct	agcttgctga	cgcccaactc	gegeetgttg	
ctgctgctaa	tagcgccctt	cacggacagt	ggcagcgtgt	cccgggacac	atacctaggt	17040
cacttgctga	cactgtaccg	cgaggccata	ggtcaggcgc	atgtggacga	gcatactttc	17100
caggagatta	caagtgttag	ccgcgcgctg	gggcaggagg	acacgggcag	cctggaggca	17160 17220
accetgaact	acctgctgac	caaceggegg	caaaaaatcc	cetegitgea	cagittaaac	17280
agcgaggagg	agcgcatttt	gcgctatgtg	cagcagagcg	tgageettaa	eccgacgege	17340
gacggggtaa	cgcccagcgt	ggcgctggac	atgaccgcgc	geaacatgga	accegggcate	17400
tatgcctcaa	accggccgtt	tatcaatcgc	ctaatggact	actigeateg	egeggeegee	17460
gtgaaccccg	agtatttcac	caatgccatc	ttgaacccgc	actggctacc	gccccccggc	17520
ttctacaccg	ggggattcga	ggcgcccgag	ggcaacgacg	gatteetetg	ggacgacata	17580
gacgacagcg	tgttttcccc	gcaaccgcag	accetyctag	agrigeada	acgegageag	17640
gcagaggcgg	cgctgcgaaa	ggaaagette	cgcaggccaa	geagerrace	gtatattaca	17700
gctgcggccc	cgcggtcaga	tgctagtage	ccattttccaa	gerrgatagg	geetcatc	17760
agcactcgca	ccacccgccc	gegeetgetg	ggcgaggagg	agracecaaa	datadadad	17820
ctgcagccgc	agcgcgaaaa	gaacetgeet	totagagagaa	aggagaggg	tatacacaac	17880
ctagtggaca	agatgagtag	atggaagacg	catgogoagg	agcacaggga	atagaaaaaa	17940
ccgcgcccgc	ccacccgtcg	ccaaayycac	gattgcage	ggggtctggt	cccatttaca	18000
	cagacgacag					18060
cacettegee	ccaggctggg catggcaccg	gagaatgett	ttcttctatt	ccccttagta	tacaacacac	18120
caccaagge	gaggaaggtc	agegeeggee	ctaccacac	ataataaaca	caacaccaat	18180
ggcgatgtat	ctgggttcac	ecceccec	tececterase	ccaccattca	tacctccaca	18240
ggcggcggcg	cctaccgggg	ggagaaaaaa	catcoottec	totaattaa	cacccctatt	18300
gtacctgcgg	cgtgtgtacc	yyayaaacay	catcogttac	gatgtggg	ccctcaacta	18360
cgacaccacc	cacagcaact	ttotascoso	catcattcaa	aacaatgact	acadcccaaa	18420
ccayaacyac	acacagacca	tcaatcttca	caaccaatca	cactagaaca	acaacctaaa	18480
ggaggcaagc	cataccaaca	toccasatot	daacdagttc	atotttacca	ataaotttaa	18540
aaccatccttg	atggtgtcgc	actracttec	taaggagaaa	caggtggagg	tgaaatacga	18600
ggcgcggggtg	ttcacgctgc	ccasaaas	ctactccgag	accatgacca	tagaccttat	18660
grgggrggag	ccacyccyc	cegaggeaa				

	atcgtggagc					18720
	gtaaagtttg					18780
	cctggggtat				-	18840
	gtggacttca					18900
	caggagggct					18960
	gatgtggacg					19020
	ggcggcggca					19080
	atgcagccgg					19140
	gcggaggaga					19200
	gctgcacaac					19260
	gacagcaaga					19320
	agctggtacc					19380
	ctttgcactc					19440
	atgcaagacc		_		-	19500
	gccgagctgt					19560
	ctcatccgcc					19620
	ttggcgcgcc					19680
	gatcacggga					19740
	gacgccagac					19800
	gtcctatcga					19860
	acaggctggg					19920
	caacacccag					19980
	cgcactgggc					20040
	tacacgccca					20100
	ggagcccggc					20160
	cgccgacccg					20220
	accggccgac					20280
	cccccaggt					20340
	cagggtcgca					20400
	gtgcgcaccc					20460
	tgtatgtatc					20520
	gagatgctcc					20580
	tacaagcccc					20640
	cttgacgacg					20700
	ggtcgacgcg					20760
	cgctccaccc					20820
	gagcaggcca					20880
	gcgttgccgc					20940
	gtgctgcccg					21000
	ttggcaccca					21060
	aaaatgaccg					21120
	gcaccgggac					21180
	attgccactg					21240
	gatgccgcgg					21300
	gacccgtgga					21360
	gccgccagcg					21420
	tatcgtggct					21480
	ggaacccgcc					21540
	gtggctcgcg					21600
-	gtttaaaagc					21660 21720
	ccggtgccgg					21720
	acgggcggca					21780
	ggcggtatcc					21840
	attgcatccg					21960
catgiggada	aatcaaaata	aaagtutgga	Cectoacyce	cycliggicc	cycaactatt	21300

ttgtagaatg	gaagacatca	actttgcgtc	actggccccg	cgacacggct	cgcgcccgtt	22020
catgggaaac	tggcaagata	tcggcaccag	caatatgagc	ggtggcgcct	tcagctgggg	22080
ctcgctgtgg	agcggcatta	aaaatttcgg	ttccgccgtt	aagaactatg	gcagcaaagc	22140
ctggaacagc	agcacaggcc	agatgctgag	ggacaagttg	aaagagcaaa	atttccaaca	22200
aaaggtggta	gatggcctgg	cctctggcat	tagcggggtg	gtggacctgg	ccaaccaggc	22260
agtgcaaaat	aagattaaca	gtaagcttga	tccccgccct	cccgtagagg	agcctccacc	22320
ggccgtggag	acagtgtctc	cagaggggcg	tggcgaaaag	cgtccgcgac	ccgacaggga	22380
agaaactctg	gtgacgcaaa	tagacgagcc	tccctcgtac	gaggaggcac	taaagcaagg	22440
cctgcccacc	acccgtccca	tegegeceat	ggctaccgga	gtgctgggcc	agcacacacc	22500
cgtaacgctg	gacctgcctc	ccccgccga	cacccagcag	aaacctgtgc	tgccaggccc	22560
gtccgccgtt	gttgtaaccc	gtcctagccg	cgcgtccctg	cgccgcgccg	ccagcggtcc	22620
gcgatcgttg	cggcccgtag	ccagtggcaa	ctggcaaagc	acactgaaca	gcatcgtggg	22680
tttgggggtg	caatccctga	agcgccgacg	atgcttctga	tagctaacgt	gtcgtatgtg	22740
tgtcatgtat	gcgtccatgt	cgccgccaga	ggagctgctg	agccgccgcg	cgcccgcttt	22800
ccaagatggc	taccccttcg	atgatgccgc	agtggtctta	catgcacatc	tegggeeagg	22860
acgcctcgga	gtacctgagc	cccgggctgg	tgcagttcgc	ccgcgccacc	gagacgtact	22920
tcagcctgaa	taacaagttt	agaaacccca	cggtggcgcc	tacgcacgac	gtgaccacag	22980
accggtctca	gcgtttgacg	ctgcggttca	tccccgtgga	ccgcgaggat	actgcgtact	23040
cgtacaaggc	gcggttcacc	ctagctgtgg	gtgataaccg	tgtgctagac	atggcttcca	23100
cgtactttga	catccgcggc	gtgctggaca	ggggccctac	ttttaagccc	tactctggca	23160
ctgcctacaa	cgcactggcc	cccaagggtg	ccccaactc	gtgcgagtgg	gaacaaaatg	23220
aaactgcaca	agtggatgct	caagaacttg	acgaagagga	gaatgaagcc	aatgaagete	23280
aggcgcgaga	acaggaacaa	gctaagaaaa	cccatgtata	tgcccaggct	ccactgtccg	23340
gaataaaaat	aactaaagaa	ggtctacaaa	taggaactgc	cgacgccaca	gtagcaggtg	23400
ccggcaaaga	aattttcgca	gacaaaactt	ttcaacctga	accacaagta	ggagaatctc	23460
aatggaacga	agcggatgcc	acagcagctg	gtggaagggt	tcttaaaaag	acaactccca	23520
tgaaaccctg	ctatggctca	tacgctagac	ccaccaattc	caacggcgga	cagggcgtta	23580
tggttgaaca	aaatggtaaa	ttggaaagtc	aagtcgaaat	gcaatttttt	tccacatcca	23640
caaatgccac	aaatgaagtt	aacaatatac	aaccaacagt	tgtattgtac	agcgaagatg	23700
taaacatgga	aactccagat	actcatcttt	cttataaacc	taaaatgggg	gataaaaatg	23760
ccaaagtcat	gcttggacaa	caagcaatgc	caaacagacc	aaattacatt	gettttagag	23820
acaattttat	tggtctcatg	tattacaaca	gcacaggtaa	catgggtgtc	ettgetggte	23880
aggcatcgca	gttgaacgct	gttgtagatt	tgcaagacag	aaacacagag	ctgtcctacc	23940 24000
agcttttgct	tgattcaatt	ggcgacagaa	caagatactt	ttcaatgtgg	aatcaagetg	
ttgacagcta	tgatccagat	gtcagaatta	ttgagaacca	tggaactgag	gatgagttgc	24060
caaattattg	ctttcctctt	ggtggaattg	ggattactga	cacttttcaa	getgttaaaa	24120 24180
caactgctgc	taacggggac	caaggcaata	ctacctggca	aaaagattca	acatttgcag	24240
aacgcaatga	aataggggtg	ggaaataact	ttgccatgga	aattaacctg	aatgccaacc	24240
tatggagaaa	tttcctttac	tccaatattg	cgctgtacct	gccagacaag	Ctadaataca	24360
accccaccaa	tgtggaaata	tctgacaacc	ccaacaccta	cgactacatg	aacaagcgag	24420
tggtggctcc	tgggcttgta	gactgctaca	ttaaccttgg	ggcgcgctgg	tetetggaet	24420
acatggacaa	cgttaatccc	tttaaccacc	accgcaatgc	gggcctgcgt	cacegeteea	24540
tgttgttggg	aaacggccgc	tacgtgccct	ttcacattca	ggtgcccaa	ttanganaga	24540
ccattaaaaa	cetectecte	ctgccaggct	catacacata	tgaatggaac	cccaggaagg	24660
atgttaacat	ggttctgcag	agetetetgg	gaaacgacct	tagagttgac	ggggctagca	24720
ttaagtttga	cagcatttgt	ctttacgcca	CCETCETCCC	catggcccac	aacacyyccc	24720
ccacgctgga	agccatgctc	agaaatgaca	ccaacgacca	gtcctttaat	gactacette	24840
ccgccgccaa	catgetatat	cccatacccg	ccaacgccac	caacgtgccc	accoccacce	24940
catcgcgcaa	ctgggcagca	tttegeggtt	gggcctcac	acgcttgaag	acadayyada	24960
ccccttccct	gggaccaggc	Lacgaccctt	actacaccca	ctctggctcc	tttaactatt	25020
ctgacggaac	cttctatctt	aatcacacct	ttaagaaggt	ggccattact	attagaccact	25020
ctgttagctg	geegggeaac	gaccgcctgc	ctacceccaa	tgagtttgag	taattaataa	25140
cagttgacgg	ggagggctat	aacgtagctc	agrycaacat	gacaaaggac	rasarctace	25200
tgcagatgtt	ygccaactac	aatattggct	tagaggggtt	ctacattcca	gaaayctaca	25260
aagaccgcat	gracicgete	cccayaaact	Locayoodat	gagccggcaa	araaraaara	23200

atactaaata	caaagattat	cagcaggttg	gaattatcca	ccagcataac	aactcaggct	25320
	cctcgctccc					25380
acccactaat	aggcaaaacc	gcggttgata	gtattaccca	gaaaaagttt	ctttgcgacc	25440
gcaccctgtg	gcgcatcccc	ttctccagta	actttatgtc	catgggtgcg	ctcacagacc	25500
tgggccaaaa	ccttctctac	gcaaactccg	cccacgcgct	agacatgacc	tttgaggtgg	25560
atcccatgga	cgagcccacc	cttctttatg	ttttgtttga	agtctttgac	gtggtccgtg	25620
	gcaccgcggc					25680
gcaacgccac	aacataaaga	agcaagcaac	atcaacaaca	gctgccgcca	tgggctccag	25740
	ctgaaagcca					25800
ctatgacaag	cgcttcccag	gctttgtttc	cccacacaag	ctcgcctgcg	ccatagttaa	25860
	cgcgagactg					25920
aaaaacatgc	tacctctttg	agccctttgg	cttttctgac	caacgtctca	agcaggttta	25980
ccagtttgag	tacgagtcac	tcctgcgccg	tagcgccatt	gcctcttccc	ccgaccgctg	26040
tataacgctg	gaaaagtcca	cccaaagcgt	gcaggggccc	aactcggccg	cctgtggcct	26100
	atgtttctcc					26160
ccccaccatg	aaccttatta	ccggggtacc	caactccatg	cttaacagtc	cccaggtaca	26220
gcccaccctg	cgccgcaacc	aggaacagct	ctacagcttc	ctggagcgcc	actcgcccta	26280
cttccgcagc	cacagtgcgc	aaattaggag	cgccacttct	ttttgtcact	tgaaaaacat	26340
	tgtactagga					26400
tcgggtgatt	atttaccccc	acccttgccg	tctgcgccgt	ttaaaaatca	aaggggttct	26460
gccgcgcatc	gctatgcgcc	actggcaggg	acacgttgcg	atactggtgt	ttagtgctcc	26520
acttaaactc	aggcacaacc	atccgcggca	gctcggtgaa	gttttcactc	cacaggctgc	26580
	caacgcgttt					26640
	cgcgcgcgag					26700
ccgggtggtg	cacgctggcc	agcacgctct	tgtcggagat	cagatccgcg	tccaggtcct	26760
ccgcgttgct	cagggcgaac	ggagtcaact	ttggtagctg	ccttcccaaa	aagggtgcat	26820
	tgagttgcac					26880
	atacagcgcc					26940
ttgcgccttc	agagaagaac	atgccgcaag	acttgccgga	aaactgattg	gccggacagg	27000
ccgcgtcatg	cacgcagcac	cttgcgtcgg	tgttggagat	ctgcaccaca	tttcggcccc	27060
accggttctt	cacgatcttg	gccttgctag	actgctcctt	cagcgcgcgc	tgcccgtttt	27120
cgctcgtcac	atccatttca	atcacgtgct	ccttatttat	cataatgctc	ccgtgtagac	27180
	gccttcgatc					27240
cgtggtgctt	gtaggttacc	tctgcaaacg	actgcaggta	cgcctgcagg	aatcgcccca	27300
tcatcgtcac	aaaggtcttg	ttgctggtga	aggtcagctg	caacccgcgg	tgctcctcgt	27360
ttagccaggt	cttgcatacg	gccgccagag	cttccacttg	gtcaggcagt	agcttgaagt	27420
	atcgttatcc					27480
	cgcagacacg					27540
	ggactcttcc					27600
cttcattcag	ccgccgcacc	gtgcgcttac	ctcccttgcc	gtgcttgatt	agcaccggtg	27660
	acccaccatt					27720
tcacctctgg	ggatggcggg	cgctcgggct	tgggagaggg	gcgcttcttt	ttctttttgg	27780
	caaatccgcc					27840
	tgacgagtct					27900
ttgggggcgc	gcggggaggc	ggcggcgacg	gcgacgggga	cgagacgtcc	tccatggttg	27960
gtggacgtcg	cgccgcaccg	cgtccgcgct	cgggggtggt	ttcgcgctgc	tcctcttccc	28020
gactggccat	ttccttctcc	tataggcaga	aaaagatcat	ggagtcagtc	gagaaggagg	28080
	cgcccccttt					28140
ctaccacctt	ccccgtcgag	gcacccccgc	ttgaggagga	ggaagtgatt	atcgagcagg	28200
	tgtaagcgaa					28260
aagaccagga	cgacgcagag	gcaaacgagg	aacaagtcgg	gcggggggac	caaaggcatg	28320
	agatgtggga					28380
	cgcgttgcaa					28440
	acgccacctg					28500
catgcgagcc	caacccgcgc	ctcaacttct	accccgtatt	tgccgtgcca	gaggtgcttg	28560

ccacctatca	catctttttc	caaaactgca	agatacccct	atcctgccgt	gccaaccgca	28620
gccgagcgga	caagcagctg	gccttgcggc	agggcgctgt	catacctgat	atcgcctcgc	28680
tcgacgaagt	gccaaaaatc	tttgagggtc	ttggacgcga	cgagaagcgc	gcggcaaacg	28740
ctctgcaaca	agaaaacagc	gaaaatgaaa	gtcactgtgg	agtgctggtg	gaacttgagg	28800
gtgacaacgc	gcgcctagcc	gtgctgaaac	gcagcatcga	ggtcacccac	tttgcctacc	28860
cggcacttaa	cctaccccc	aaggttatga	gcacagtcat	gagcgagctg	atcgtgcgcc	28920
gtgcacgacc	cctggagagg	gatgcaaact	tgcaagaaca	aaccgaggag	ggcctacccg	28980
cagttggcga	tgagcagctg	gcgcgctggc	ttgagacgcg	cgagcctgcc	gacttggagg	29040
agcgacgcaa	gctaatgatg	gccgcagtgc	ttgttaccgt	ggagcttgag	tgcatgcagc	29100
ggttctttgc	tgacccggag	atgcagcgca	agctagagga	aacgttgcac	tacacctttc	29160
gccagggcta	cgtgcgccag	gcctgcaaaa	tttccaacgt	ggagctctgc	aacctggtct	29220
cctaccttgg	aattttgcac	gaaaaccgcc	ttgggcaaaa	cgtgcttcat	tccacgctca	29280
agggcgaggc	gcgccgcgac	tacgtccgcg	actgcgttta	cttatttctg	tgctacacct	29340
ggcaaacggc	catgggcgtg	tggcagcagt	gcctggagga	gcgcaacctg	aaggagctgc	29400
agaagctgct	aaagcaaaac	ttgaaggacc	tatggacggc	cttcaacgag	cgctccgtgg	29460
ccgcgcacct	ggcggacatt	atcttccccg	aacgcctgct	taaaaccctg	caacagggtc	29520
tgccagactt	caccagtcaa	agcatgttgc	aaaactttag	gaactttatc	ctagagcgtt	29580
caggaattct	gcccgccacc	tgctgtgcgc	ttcctagcga	ctttgtgccc	attaagtacc	29640
gtgaatgccc	tccgccgctt	tggggtcact	gctaccttct	gcagctagcc	aactaccttg	29700
cctaccactc	cgacatcatg	gaagacgtga	gcggtgacgg	cctactggag	tgtcactgtc	29760
gctgcaacct	atgcaccccg	caccgctccc	tggtctgcaa	ttcacaactg	cttagcgaaa	29820
gtcaaattat	cggtaccttt	gagctgcagg	gtccctcgcc	tgacgaaaag	tccgcggctc	29880
cggggttgaa	actcactccg	gggctgtgga	cgtcggctta	ccttcgcaaa	tttgtacctg	29940
aggactacca	cgcccacgag	attaggttct	acgaagacca	atcccgcccg	ccaaatgcgg	30000
agcttaccgc	ctgcgtcatt	acccagggcc	acatccttgg	ccaattgcaa	gccattaaca	30060
aagcccgcca	agagtttctg	ctacgaaagg	gacggggggt	ttacttggac	ccccagtccg	30120
gcgaggagct	caacccaatc	ccccgccgc	cgcagcccta	tcagcagccg	cgggcccttg	30180
cttcccagga	tggcacccaa	aaagaagctg	cagctgccgc	cgccgccacc	cacggacgag	30240
gaggaatact	gggacagtca	ggcagaggag	gttttggacg	aggaggagga	gatgatggaa	30300
gactgggaca	gcctagacga	ggaagcttcc	gaggccgaag	aggtgtcaga	cgaaacaccg	30360
tcaccctcgg	tegeattece	ctcgccggcg	ccccagaaat	cggcaaccgt	tcccagcatt	30420
gctacaacct	ccgctcctca	ggcgccgccg	gcactgcccg	ttcgccgacc	caaccgtaga	30480
tgggacacca	ctggaaccag	ggccggtaag	tctaagcagc	cgccgccgtt	agcccaagag	30540
caacaacagc	gccaaggcta	ccgctcgtgg	cgcgtgcaca	agaacgccat	agttgcttgc	30600
ttgcaagact	gtgggggcaa	catctccttc	gcccgccgct	ttcttctcta	ccatcacggc	30660
gtggccttcc	cccgtaacat	cctgcattac	taccgtcatc	tctacagccc	ctactgcacc	30720
ggcggcagcg	gcagcaacag	cagcggccac	gcagaagcaa	aggcgaccgg	atagcaagac	30780
tctgacaaag	cccaagaaat	ccacagcggc	ggcagcagca	ggaggaggag	cactgcgtct	30840
ggcgcccaac	gaacccgtat	cgacccgcga	gcttagaaac	aggatttttc	ccactctgta	30900
tgctatattt	caacagagca	ggggccaaga	acaagagctg	aaaataaaaa	acaggtctct	30960
gcgctccctc	acccgcagct	gcctgtatca	caaaagcgaa	gatcagcttc	ggcgcacgct	31020
ggaagacgcg	gaggctctct	tcagcaaata	ctgcgcgctg	actcttaagg	actagtttcg	31080
cgccctttct	caaatttaag	cgcgaaaact	acgtcatctc	cagcggccac	acccggcgcc	31140
agcacctgtc	gtcagcgcca	ttatgagcaa	ggaaattccc	acgccctaca	tgtggagtta	31200
ccagccacaa	atgggacttg	cggctggagc	tgcccaagac	tactcaaccc	gaataaacta	31260
catgagcgcg	ggaccccaca	tgatatcccg	ggtcaacgga	atccgcgccc	accgaaaccg	31320
aattctcctc	gaacaggcgg	ctattaccac	cacacctcgt	aataacctta	atccccgtag	31380
ttggcccgct	gccctggtgt	accaggaaag	tecegetece	accactgtgg	tacttcccag	31440
agacgcccag	gccgaagttc	agatgactaa	ctcaggggcg	cagcttgcgg	gcggctttcg	31500
tcacagggtg	cggtcgcccg	ggcagggtat	aactcacctg	aaaatcagag	ggcgaggtat	31560
tcagctcaac	gacgagtcgg	tgagctcctc	tcttggtctc	cgtccggacg	ggacatttca	31620
gateggegge	gctggccgct	cttcatttac	gccccgtcag	gcgatcctaa	ctctgcagac	31680
ctcgtcctcg	gagccgcgct	ccggaggcat	tggaactcta	caatttattg	aggagttcgt	31740
gccttcggtt	tacttcaacc	ccttttctgg	acctcccggc	cactacccgg	accagtttat	31800
tcccaacttt	gacgcggtaa	aagactcggc	ggacggctac	gactgaatga	ccagtggaga	31860

•		cacacctcga				31920
		actttgaatt				31980
		aggtagagct				32040
		gggagcgggg				32100
					cacacaataa	32160
		cagcaaatct				32220
		tttcagcagc				32280
		atgttcttgt				32340
		gtctgaagac				32400
		gcctttcctt				32460
		gctttctttg				32520
	-	gggcagcggc				32580
		tcaaccgcta				32640
acatccgcgc	cccttacagt	cagctcaggc	gccctaacca	tggccacaac	ttcgcctttg	32700
		taccatgcaa				32760
aaacttagca	ttgctaccaa	agagccactt	acagtgttag	atggaaaact	ggccctgcag	32820
acatcagccc	ccctctctgc	cactgataac	aacgccctca	ctatcactgc	ctcacctcct	32880
		tctggctgtt				32940
ggaaaacttg	ggctcaaaat	tggcggtcct	ttgcaagtgg	ccaccgactc	acatgcacta	33000
acactaggta	ctggtcaggg	ggttgcagtt	cataacaatt	tgctacatac	aaaagttaca	33060
ggcgcaatag	ggtttgatac	atctggcaac	atggaactta	aaactggaga	tggcctctat	33120
gtggatagcg	ccggtcctaa	ccaaaaacta	catattaatc	taaataccac	aaaaggcctt	33180
		aacaattaac				33240
tcctcaaacg	gaaatcccat	aaaaacaaaa	attggatcag	gcatacaata	taataccaat	33300
ggagctatgg	ttgcaaaact	tggaacaggc	ctcagttttg	acagctccgg	agccataaca	33360
atgggcagca	taaacaatga	cagacttact	ctttggacaa	caccagaccc	atccccaaat	33420
		agactgcaag				33480
		agctttggca				33540
actctaagca	gtgtaaactt	ggttcttaga	tttgatgaca	acggagtgct	tatgtcaaat	33600
tcatcactgg	acaaacagta	ttggaacttt	agaaacgggg	actccactaa	cggtcaacca	33660
		tatgccaaac				33720
actgcaaaaa	gtaatattgt	tagccaggtg	tatcttaatg	gtgacaagtc	taaaccattg	33780
		tggaacagat				33840
		cagtggacaa				33900
-		ccaggaataa				33960
		tgcagaaaat				34020
		actaatcacc				34080
		cccaacacac				34140
		gggtaacaga				34200
		catcagtgat				34260
		gctgagccac				34320
		acgcctacat				34380
		gcgcgcgaat				34440
		tctcctcagc				34500
		agcgcaccct				34560
gcacagtacc	acaatattot	ttaaaatccc	acagtgcaag	gcgctgtatc	caaagctcat	34620
		cgtggccatc				34680
		acataaacat				34740
		tctgattaaa				34800
		cggctatgca				34860
		aaccatggat				34920
		tacacttcct				34980
		attcctgaat				35040
		gcattgtcaa				35100
						35160
ceccageatg	grayryryyg	tttctgtctc	uaaayyayyt	agacgatece	Lactytacyy	33100

```
agtgcgccga gacaaccgag atcgtgttgg tcgtagtgtc atgccaaatg gaacgccgga
                                                                  35220
cgtagtcata tttcctgaag caaaaccagg tgcgggcgtg acaaacagat ctgcgtctcc
                                                                  35280
ggtctcgccg cttagatcgc tctgtgtagt agttgtagta tatccactct ctcaaagcat
                                                                  35340
                                                                  35400
ccaggegeee cetggetteg ggttetatgt aaacteette atgegeeget geeetgataa
catccaccac cgcagaataa gccacaccca gccaacctac acattcgttc tgcgagtcac
                                                                  35460
acacgggagg agcgggaaga gctggaagaa ccatgttttt ttttttattc caaaagatta
                                                                  35520
                                                                   35580
tccaaaacct caaaatgaag atctattaag tgaacgcgct cccctccggt ggcgtggtca
aactctacag ccaaagaaca gataatggca tttgtaagat gttgcacaat ggcttccaaa
                                                                   35640
aggcaaacgg ccctcacgtc caagtggacg taaaggctaa acccttcagg gtgaatetcc
                                                                   35700
totataaaca ttocagcaco ttoaaccatg cocaaataat totoateteg coaccttoto
                                                                  35760
aatatatctc taagcaaatc ccgaatatta agtccggcca ttgtaaaaat ctgctccaga
                                                                  35820
                                                                   35880
gegeeeteca detteageet caageagega ateatgattg caaaaattea ggtteeteac
agacctgtat aagattcaaa agcggaacat taacaaaaat accgcgatcc cgtaggtccc
                                                                   35940
ttcgcagggc cagctgaaca taatcgtgca ggtctgcacg gaccagcgcg gccacttccc
                                                                   36000
cgccaggaac catgacaaaa gaacccacac tgattatgac acgcatactc ggagctatgc
                                                                   36060
                                                                   36120
taaccagcgt agccccgatg taagcttgtt gcatgggcgg cgatataaaa tgcaaggtgc
tgctcaaaaa atcaggcaaa gcctcgcgca aaaaagaaag cacatcgtag tcatgctcat
                                                                   36180
gcagataaag gcaggtaagc tccggaacca ccacagaaaa agacaccatt tttctctcaa
                                                                   36240
36300
agaagcctgt cttacaacag gaaaaacaac ccttataagc ataagacgga ctacggccat
                                                                   36360
gccggcgtga ccgtaaaaaa actggtcacc gtgattaaaa agcaccaccg acagctcctc
                                                                   36420
ggtcatgtcc ggagtcataa tgtaagactc ggtaaacaca tcaggttgat tcacatcggt
                                                                   36480
cagtgctaaa aagcgaccga aatagcccgg gggaatacat acccgcaggc gtagagacaa
                                                                   36540
cattacagcc cccataggag gtataacaaa attaatagga gagaaaaaca cataaacacc
                                                                   36600
tgaaaaaccc teetgeetag geaaaatage acceteeege teeagaacaa catacagege
                                                                   36660
ttccacagcg gcagccataa cagtcagcct taccagtaaa aaagaaaacc tattaaaaaa
                                                                   36720
                                                                   36780
acaccactcg acacggcacc agctcaatca gtcacagtgt aaaaaagggc caagtgcaga
gcgagtatat ataggactaa aaaatgacgt aacggttaaa gtccacaaaa aacacccaga
                                                                   36840
aaaccgcacg cgaacctacg cccagaaacg aaagccaaaa aacccacaac ttcctcaaat
                                                                   36900
cgtcacttcc gttttcccac gttacgtcac ttcccatttt aagaaaacta caattcccaa
                                                                   36960
                                                                   37020
cacatacaag ttactccgcc ctaaaaccta cgtcacccgc cccgttccca cgccccgcgc
                                                                   37080
cacgtcacaa actccaccc ctcattatca tattggcttc aatccaaaat aaggtatatt
                                                                   37090
attgatgatg
<210> 5
<211> 5955
<212> DNA
<213> Artificial Sequence
<220>
<223> NS cDNA sequence
<221> CDS
<222> (1)...(5955)
atg gcg ccc atc acg gcc tac tcc caa cag acg cgg ggc cta ctt ggt
                                                                     48
Met Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly
                                    10
                                                                     96
tgc atc atc act agc ctt aca ggc cgg gac aag aac cag gtc gag gga
Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly
                                25
             20
gag gtt cag gtg gtt tee ace gea aca caa tee tte etg geg ace tge
                                                                    144
```

Glu	Val	Gln 35	Val	Val	Ser	Thr	Ala 40	Thr	Gln	Ser	Phe	Leu 45	Ala	Thr	Суз	
															acc Thr	192
										-					gac Asp 80	240
						_	-		ccc Pro 90						aca Thr	288
	-				-				tac Tyr	_	-	-	-		-	336
	_			_				_	gac Asp							384
				-			_	-	ggc Gly		_				-	432
	-		_			-			atc Ile			_	_	_	-	480
									ttt Phe 170							528
			_			_			acg Thr	-					_	576
									cac His							624
									gca Ala							672
									gcc Ala							720
									gac Asp 250							768

gta Val	agg Arg	acc Thr	att Ile 260	acc Thr	aca Thr	ggc Gly	gcc Ala	ccc Pro 265	gtc Val	aca Thr	tac Tyr	tct Ser	acc Thr 270	tat Tyr	ggc Gly	816
aag Lys	ttt Phe	ctt Leu 275	gcc Ala	gat Asp	ggt Gly	ggt Gly	tgc Cys 280	tct Ser	ggg Gly	ggc Gly	gct Ala	tat Tyr 285	gac Asp	atc Ile	ata Ile	864
ata Ile	tgt Cys 290	gat Asp	gag Glu	tgc Cys	cat His	tca Ser 295	act Thr	gac Asp	tcg Ser	act Thr	aca Thr 300	atc Ile	ttg Leu	ggc	atc Ile	912
ggc Gly 305	aca Thr	gtc Val	ctg Leu	gac Asp	caa Gln 310	gcg Ala	gag Glu	acg Thr	gct Ala	gga Gly 315	gcg Ala	cgg Arg	ctt Leu	gtc Val	gtg Val 320	960
ctc Leu	gcc Ala	acc Thr	gct Ala	acg Thr 325	cct Pro	ccg Pro	gga Gly	tcg Ser	gtc Val 330	acc Thr	gtg Val	cca Pro	cac His	cca Pro 335	aac Asn	1008
atc Ile	gag Glu	gag Glu	gtg Val 340	gcc Ala	ctg Leu	tct Ser	aat Asn	act Thr 345	gga Gly	gag Glu	atc Ile	ccc Pro	ttc Phe 350	tat Tyr	ggc Gly	1056
aaa Lys	gcc Ala	atc Ile 355	ccc Pro	att Ile	gaa Glu	gcc Ala	atc Ile 360	agg Arg	ggg Gly	gga Gly	agg Arg	cat His 365	ctc Leu	att Ile	ttc Phe	1104
tgt Cys	cat His 370	tcc Ser	aag Lys	aag Lys	aag Lys	tgc Cys 375	gac Asp	gag Glu	ctc Leu	gcc Ala	gca Ala 380	aag Lys	ctg Leu	tca Ser	ggc Gly	1152
ctc Leu 385	gga Gly	atc Ile	aac Asn	gct Ala	gtg Val 390	gcg Ala	tat Tyr	tac Tyr	cgg Arg	ggg Gly 395	ctc Leu	gat Asp	gtg Val	tcc Ser	gtc Val 400	1200
ata Ile	cca Pro	act Thr	atc Ile	gga Gly 405	gac Asp	gtc Val	gtt Val	gtc Val	gtg Val 410	gca Ala	aca Thr	gac Asp	gct Ala	ctg Leu 415	atg Met	1248
acg Thr	ggc	tat Tyr	acg Thr 420	ggc Gly	gac Asp	ttt Phe	gac Asp	tca Ser 425	gtg Val	atc Ile	gac Asp	tgt Cys	aac Asn 430	aca Thr	tgt Cys	1296
gtc Val	acc Thr	cag Gln 435	aca Thr	gtc Val	gac Asp	ttc Phe	agc Ser 440	ttg L e u	gat Asp	ccc Pro	acc Thr	ttc Phe 445	acc Thr	att Ile	gag Glu	1344
acg Thr	acg Thr 450	Thr	gtg Val	cct Pro	caa Gln	gac Asp 455	gca Ala	gtg Val	tcg Ser	cgc Arg	tcg Ser 460	cag Gln	cgg Arg	cgg Arg	ggt Gly	1392
agg Arg 465	Thr	ggc	agg Arg	ggt Gly	agg Arg 470	aga Arg	ggc	atc Ile	tac Tyr	agg Arg 475	Phe	gtg Val	act Thr	ccg Pro	gga Gly 480	1440

gaa Glu	cgg Arg	ccc	tcg Se r	ggc Gly 485	atg Met	ttc Phe	gat Asp	tcc Ser	tcg Ser 490	gtc Val	ctg Leu	tgt Cys	gag Glu	tgc Cys 495	tat Tyr	1488
	gcg Ala															1536
	ttg Leu															1584
	ctg Leu 530															1632
	cac His															1680
	gta Val															1728
	tca Ser															1776
	cac His															1824
	gtc Val 610											-	-	_	-	1872
	gct Ala		_		_	_		_				_				1920
	ctt Leu															1968
	gtg Val															2016
	gag Glu															2064
cac	ctc	cct	tac	atc	gag	cag	gga	atg	cag	ctc	gcc	gag	caa	ttc	aag	2112

His	Leu 690	Pro	Tyr	Ile	Gl u	Gln 695	Gly	Met	Gln	Leu	Ala 700	Glu	Gln	Phe	Lys	
cag Gln 705	aaa Lys	gcg Ala	ctc Leu	ggg Gly	tta Leu 710	ctg Leu	caa Gln	aca Thr	gcc Ala	acc Thr 715	aaa Lys	caa Gln	gcg Ala	gag Glu	gct Ala 720	2160
gct Ala	gct Ala	ccc Pro	gtg Val	gtg Val 725	gag Glu	tcc Ser	aag Lys	tgg Trp	cga Arg 730	gcc Ala	ctt Leu	gag Glu	aca Thr	ttc Phe 735	tgg Trp	2208
gcg Ala	aag Lys	cac His	atg Met 740	tgg Trp	aat Asn	ttc Phe	atc Ile	agc Ser 745	ggg ggg	ata Ile	cag Gln	tac Tyr	tta Leu 750	gca Ala	ggc Gly	2256
tta Leu	tcc Ser	act Thr 755	ctg L eu	cct Pro	Gly g gg	aac Asn	ccc Pro 760	gca Ala	ata Ile	gca Ala	tca Ser	ttg Leu 765	atg Met	gca Ala	ttc Phe	2304
aca Thr	gcc Ala 770	tct Ser	atc Ile	acc Thr	agc Ser	ccg Pro 775	ctc Leu	acc Thr	acc Thr	caa Gln	agt Ser 780	acc Thr	ctc Leu	ctg Leu	ttt Phe	2352
aac Asn 785	atc Ile	ttg Leu	Gly	Gly aaa	tgg Trp 790	gtg Val	gct Ala	gcc Ala	caa Gln	ctc Leu 795	gcc Ala	ccc Pro	ccc Pro	agc Ser	gcc Ala 800	2400
gct Ala	tcg Ser	gct Ala	ttc Phe	gtg Val 805	ggc Gly	gcc Ala	ggc Gly	atc Ile	gcc Ala 810	ggt Gly	gcg Ala	gct Ala	gtt Val	ggc Gly 815	agc Ser	2448
ata Ile	ggc Gly	ctt Leu	ggg Gly 820	aag Lys	gtg Val	ctt Leu	Val	gac Asp 825	att Ile	ctg Leu	gcg Ala	ggt Gly	tat Tyr 830	gga Gly	gca Ala	2496
gga Gly	gtg Val	gcc Ala 835	Gly	gcg Ala	ctc Leu	gtg Val	gcc Ala 840	ttc Phe	aag Lys	gtc Val	atg Met	agc Ser 845	ggc Gly	gag Glu	atg Met	2544
ccc Pro	tcc Ser 850	acc Thr	gag Glu	gac Asp	ctg Leu	gtc Val 855	aat Asn	cta Leu	ctt Leu	cct Pro	gcc Ala 860	Ile	ctc Leu	tct Ser	cct Pro	2592
ggc Gly 865	Ala	ctg Leu	gtc Val	gtc V al	ggg Gly 870	gtc Val	gtg Val	tgt Cys	gca Ala	gca Ala 875	ata Ile	ctg Leu	cgt Arg	cga Arg	cac His 880	2640
gtg Val	ggt Gly	ccg Pro	gga Gly	gag Glu 885	Gly	gct Ala	gtg Val	cag Gln	tgg Trp 890	atg Met	aac Asn	cgg Arg	ctg Leu	ata Ile 895	gcg Ala	2688
ttc Phe	gcc Ala	tcg Ser	cgg Arg 900	Gly	aat Asn	cat His	gtt Val	tcc Ser 905	Pro	acg Thr	cac His	tat Tyr	gtg Val 910	cct Pro	gag Glu	2736

				gcg Ala												2784
				aaa Lys												2832
	_	_		ggc	-				-							2880
_	-	_		gac Asp 965		_				_		_		_	_	2928
_		_		gtc Val				_			_			_		2976
_			Gly	gac Asp			-	${\tt Gln}$			-		Cys		-	3024
		Thr		cat His			Asn					Ile				3072
_	Thr	_	_	aac Asn	_	Trp					Pro			-		3120
Lys 1025	Thr acg	Cys	Ser		Thr 1030 aca Thr	Trp) ccc	His tct	Gly	Thr gcg	Phe 1035 cca Pro	Pro aac	Ile tat	Asn tct	Ala	Tyr 1040 gcg Ala	3120
Lys 1025 acc Thr	Thr acg Thr	Cys ggc Gly cgg	ser ccc Pro	tgc Cys 1045 gcc Ala	Thr 1030 aca Thr	Trp) ccc Pro	His tct Ser	Gly cca Pro	gcg Ala 1050 gtg Val	Phe 1035 cca Pro	Pro aac Asn	Ile tat Tyr	Asn tct Ser	agg Arg 1055 gtg Val	Tyr 1040 gcg Ala G	
Lys 1025 acc Thr ctg Leu	Thr acg Thr tgg Trp	Cys ggc Gly cgg Arg	ser ccc Pro gtg Val 1060 tac Tyr	tgc Cys 1045 gcc Ala	Thr 103(aca Thr get Ala	Trp) ccc Pro gag Glu ggc	tct Ser gag Glu	Gly cca Pro tac Tyr 1065	gcg Ala 1050 gtg Val	Phe 1035 cca Pro gag Glu	aac Asn gtc Val	tat Tyr acg Thr	tct Ser cgg Arg 1070 aag Lys	agg Arg 1055 gtg Val	Tyr 1040 gcg Ala ggg Gly	3168
Lys 1025 acc Thr ctg Leu gat Asp	Thr acg Thr tgg Trp ttc Phe	ggc Gly cgg Arg cac His 1075	ccc Pro gtg Val 1060 tac Tyr	tgc Cys 1045 gcc Ala	Thr 1030 aca Thr gct Ala acg Thr	Trp CCC Pro gag Glu ggc Gly gaa	tct Ser gag Glu atg Met 1080	Gly cca Pro tac Tyr 1065 acc Thr	gcg Ala 1050 gtg Val act Thr	Phe 1035 Cca Pro gag Glu gac Asp	aac Asn gtc Val aac Asn	tat Tyr acg Thr gta Val 1085	tct Ser cgg Arg 1070 aag Lys	agg Arg 1055 gtg Val tgc Cys	Tyr 1040 gcg Ala ggg Gly cca Pro	3168 3216
Lys 1025 acc Thr ctg Leu gat Asp	acg Thr tgg Trp ttc Phe cag Gln 1090 cac His	Cys ggc Gly cgg Arg cac His 1075 gtt Val	ccc Pro gtg Val 1060 tac Tyr ccg Pro	tgc Cys 1045 gcc Ala) gtg Val	Thr 1030 aca Thr gct Ala acg Thr cct Pro	CCC Pro gag Glu ggc Gly gaa Glu 1095 gcg Ala	tct Ser gag Glu atg Met 1080 ttc Phe	CCA Pro tac Tyr 1065 acc Thr	gcg Ala 1050 gtg Val act Thr	Phe 1035 cca Pro gag Glu gac Asp gag Glu ctc	aac Asn gtc Val aac Asn gtg Val 1100 cta Leu	tat Tyr acg Thr gta Val 1085 gac Asp	tct Ser cgg Arg 1070 aag Lys gga Gly	agg Arg 1055 gtg Val tgc Cys gtg Val	Tyr 1040 gcg Ala ggg Gly cca Pro cgg Arg	3168 3216 3264

tgc Cys	gag Glu	ccc Pro	gaa Glu 1140	Pro	gat Asp	gta Val	gca Ala	gtg Val 1145	Leu	act Thr	tcc Ser	atg Met	ctc Leu 1150	Thr	gac Asp	3456
ccc Pro	tcc Ser	cac His 115	Ile	aca Thr	gca Ala	gaa Glu	acg Thr 1160	Ala	aag Lys	cgt Arg	agg Arg	ttg Leu 1165	Ala	agg Arg	GJÅ aaa	3504
tct Ser	ccc Pro 1170	Pro	tcc Ser	ttg Leu	gcc Ala	agc Ser 1175	Ser	tca Ser	gct Ala	agc Ser	cag Gln 1180	Leu	tct Ser	gcg Ala	cct Pro	3552
tcc Ser 118	ttg Leu 5	aag Lys	gcg Ala	aca Thr	tgc Cys 1190	Thr	acc Thr	cac His	cat His	gtc Val 1195	Ser	ccg Pro	gac Asp	gct Ala	gac Asp 1200	3600
ctc Leu	atc Ile	gag Glu	gcc Ala	aac Asn 1205	Leu	ctg Leu	tgg Trp	cgg Arg	cag Gln 121	Glu	atg Met	ggc Gly	GJA Gaa	aac Asn 1215	Ile	3648
acc Thr	cgc Arg	gtg Val	gag Glu 1220	Ser	gag Glu	aac Asn	aag Lys	gtg Val 1225	Val	gtc Val	ctg Leu	gac Asp	tct Ser 1230	Phe	gac Asp	3696
ccg Pro	ctt Leu	cga Arg 123	Ala	gag Glu	gag Glu	gat Asp	gag Glu 1240	Arg	gaa Glu	gta Val	tcc Ser	gtt Val 124	Pro	gcg Ala	g ag Glu	3744
atc Ile	ctg Leu 1250	Arg	aaa Lys	tcc Ser	aag Lys	aag Lys 125!	Phe	ccc Pro	gca Ala	gcg Ala	atg Met 1260	Pro	atc Ile	tgg Trp	gcg Ala	3792
cgc Arg 126	ccg Pro 5	gat Asp	tac Tyr	aac Asn	cct Pro 1270	Pro	ctg Leu	tta Leu	gag Glu	tcc Ser 1275	Trp	aag Lys	gac Asp	ccg Pro	gac Asp 1280	3840
tac Tyr	gtç Val	c ct Pro	ccg Pro	gtg Val 1289	Val	cac His	Gly	tgc Cys	ccg Pro 1290	Leu	cca Pro	cct Pro	atc Ile	aag Lys 1299	Ala	3888
cct Pro	cca Pro	ata Ile	cca Pro 1300	Pro	cca Pro	cgg Arg	aga Arg	aag Lys 1309	Arg	acg Thr	gtt Val	gtc Val	cta Leu 131	Thr	gag Glu	3936
tcc Ser	tcc Ser	gtg Val 131	Ser	tct Ser	gcc Ala	tta Leu	gcg Ala 132	Glu	ctc Leu	gct Ala	act Thr	aag Lys 132	Thr	ttc Phe	ggc Gly	3984
																4000
agc Ser	tcc Ser 133	Glu	tca Ser	tcg Ser	gcc Ala	gtc Val 133	Asp	agc Ser	ggc Gly	acg Thr	gcg Ala 1340	Thr	gcc Ala	Leu	Pro	4032

Asp Gln Ala Se	er Asp Asp Gly 1350	Asp Lys Gly	Ser Asp Val G 1355	lu Ser Tyr 1360
tcc tcc atg cc Ser Ser Met Pr			Gly Asp Pro A	
gac ggg tct tg Asp Gly Ser Tr 13			Ala Ser Glu A	
tgc tgc tca at Cys Cys Ser Me 1395				
gct gcg gag ga Ala Ala Glu Gl 1410	a agc aag ctg u Ser Lys Leu 141	Pro Ile Asn	gcg ttg agc a Ala Leu Ser A 1420	ac tct ttg 4272 sn Ser Leu
ctg cgc cac ca Leu Arg His Hi 1425				
ctg cgg cag aa Leu Arg Gln Ly			Leu Gln Val L	
cac tac cgg ga His Tyr Arg As 14			Ala Lys Ala S	
aag gct aaa ct Lys Ala Lys Le 1475				
cat tcg gcc aa His Ser Ala Ly 1490		Gly Tyr Gly		
cta tec age aa Leu Ser Ser Ly 1505				
ctg gaa gac ac Leu Glu Asp Th	t gtg aca cca r Val Thr Pro 1525	att gac acc Ile Asp Thr 1530	Thr Ile Met A	ca aaa aat 4608 la Lys Asn 1535
gag gtt ttc tg Glu Val Phe Cy 15			Gly Arg Lys P	
ctt atc gta tt Leu Ile Val Ph 1555	c cca gat ctg e Pro Asp Leu	gga gtc cgt Gly Val Arg 1560	gta tgc gag aa Val Cys Glu Ly 1565	ag atg gcc 4704 /s Met Ala

ctc Leu	tat Tyr 1570	Asp	gtg Val	gtc Val	tcc Ser	acc Thr 1575	Leu	cct Pro	cag Gln	gtc Val	gtg Val 1580	Met	ggc Gly	tcc Ser	tca Ser	4752
tac Tyr 1585	Gly	ttc Phe	cag Gln	tac Tyr	tct Ser 1590	Pro	Gly	cag Gln	cga Arg	gtc Val 1595	Glu	ttc Phe	ctg Leu	gtg Val	aat Asn 1600	4800
acc Thr	tgg Trp	aaa Lys	tca Ser	aag Lys 1609	Lys	aac Asn	ccc Pro	atg Met	ggc Gly 1610	Phe	tca Ser	tat Tyr	gac Asp	act Thr 1615	Arg	4848
tgt Cys	ttc Phe	gac Asp	tca Ser 1620	Thr	gtc Val	acc Thr	gag Glu	aac Asn 1625	Asp	atc Ile	cgt Arg	gtt Val	gag Glu 1630	gag Glu)	tca Ser	4896
att Ile	tac Tyr	caa Gln 1639	Cys	tgt Cys	gac Asp	ttg Leu	gcc Ala 1640	Pro	gaa Glu	gcc Ala	aga Arg	cag Gln 164	Ala	ata Ile	aaa Lys	4944
tcg Ser	ctc Leu 1650	Thr	gag Glu	cgg Arg	ctt Leu	tat Tyr 1655	Ile	Gly ggg	ggt Gly	cct Pro	ctg Leu 1660	Thr	aat Asn	tca Ser	aaa Lys	4992
ggg Gly 1665	Gln	aac Asn	tgc Cys	ggt Gly	tat Tyr 1670	Arg	cgg Arg	tgc Cys	cgc Arg	gcg Ala 167	Ser	ggc Gly	gtg Val	ctg Leu	acg Thr 1680	5040
act Thr	agc Ser	tgc Cys	ggt Gly	aac Asn 1685	Thr	ctc Leu	aca Thr	tgt Cys	tac Tyr 1690	Leu	aag Lys	gcc Ala	tct Ser	gca Ala 169	Ala	5088
tgt Cys	cga Arg	gct Ala	gcg Ala 170	Lys	ctc Leu	cag Gln	gac Asp	tgc Cys 1705	Thr	atg Met	ctc Leu	gtg Val	aac Asn 171	gga Gly O	gac Asp	5136
gac Asp	ctt Leu	gtc Val 171	Va1	atc Ile	tgt Cys	gaa Glu	agc Ser 1720	Ala	gga Gly	acc Thr	caa Gln	gag Glu 172!	Asp	gcg Ala	gcg Ala	5184
agc Ser	cta Leu 1730	Arg	gtc Val	ttc Phe	acg Thr	gag Glu 1735	Ala	atg Met	act Thr	agg Arg	tac Tyr 1740	Ser	gcc Ala	ccc Pro	ccc Pro	5232
ggg Gly 174	Asp	ccg Pro	ccc Pro	caa Gln	cca Pro 1750	Glu	tac Tyr	gac Asp	ttg Leu	gag Glu 175	Leu	ata Ile	aca Thr	tca Ser	tgt Cys 1760	5280
tcc Ser	tcc Ser	aat Asn	gtg Val	tcg Ser 1769	Val	gcc Ala	cac His	gat Asp	gca Ala 1770	Ser	ggc Gly	aaa Lys	agg Arg	gtg Val 1779	Tyr	5328
tac Tyr	ctc Leu	acc Thr	cgt Arg 178	Asp	ccc Pro	acc Thr	acc Thr	ccc Pro 1785	Leu	gca Ala	cgg Arg	gct Ala	gcg Ala 1790	tgg Trp	gaa Glu	5376

aca gct aga cac act cca gtt aac tcc tgg cta ggc aac att atc atg Thr Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile Ile Met 1795 1800 1805	5424
tat gcg ccc act ttg tgg gca agg atg att ctg atg act cac ttc ttc Tyr Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His Phe Phe 1810 1815 1820	5472
tcc atc ctt cta gca cag gag caa ctt gaa aaa gcc ctg gac tgc cag Ser Ile Leu Leu Ala Gln Glu Gln Leu Glu Lys Ala Leu Asp Cys Gln 1825 1830 1835 1840	5520
atc tac ggg gcc tgt tac tcc att gag cca ctt gac cta cct cag atc Ile Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro Gln Ile 1845 1850 1855	5568
att gaa cga ctc cat ggc ctt agc gca ttt tca ctc cat agt tac tct Ile Glu Arg Leu His Gly Leu Ser Ala Phe Ser Leu His Ser Tyr Ser 1860 1865 1870	5616
cca ggt gag atc aat agg gtg gct tca tgc ctc agg aaa ctt ggg gta Pro Gly Glu Ile Asn Arg Val Ala Ser Cys Leu Arg Lys Leu Gly Val 1875 1880 1885	5664
cca ccc ttg cga gtc tgg aga cat cgg gcc agg agc gtc cgc gct agg Pro Pro Leu Arg Val Trp Arg His Arg Ala Arg Ser Val Arg Ala Arg 1890 1895 1900	5712
cta ctg tcc cag ggg ggg agg gcc gcc act tgt ggc aag tac ctc ttc Leu Leu Ser Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr Leu Phe 1905 1910 1915 1920	5760
aac tgg gca gtg aag acc aaa ctc aaa ctc act cca atc ccg gct gcg Asn Trp Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Ile Pro Ala Ala 1925 1930 1935	5808
tee cag etg gae ttg tee gge tgg tte gtt get ggt tae age ggg gga Ser Gln Leu Asp Leu Ser Gly Trp Phe Val Ala Gly Tyr Ser Gly Gly 1940 1945 1950	5856
gac ata tat cac age ctg tct cgt gcc cga ccc cgc tgg ttc atg ctg Asp Ile Tyr His Ser Leu Ser Arg Ala Arg Pro Arg Trp Phe Met Leu 1955 1960 1965	5904
tgc cta ctc cta ctt tct gta ggg gta ggc atc tac ctg ctc ccc aac Cys Leu Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu Pro Asn 1970 1975 1980	5952
cga Arg 1985	5955
<210> 6 <211> 1984	

30/64

<212> PRT <213> Artificial Sequence <220> <223> NS sequence <400> 6 Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys 10 Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu 20 25 Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val 40 Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr Leu 55 Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln 75 70 Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr Pro 90 . 85 Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp 100 105 Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser 115 120 Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu Leu 135 140 Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys Thr 150 155 Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met Glu 170 165 Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro Ala 180 185 190 Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly Ser 205 200 Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr Lys 210 215 220 Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly Ala 230 235 Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly Val 245 250 Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly Lys 265 270 Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile 280 Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile Gly 300 295 Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu 310 315 Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn Ile 330 325 Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly Lys 350 345 Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe Cys 360 His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly Leu 375 380

Gly 385	Ile	Asn	Ala	Val	Ala 390	Tyr	Tyr	Arg	Gly	Leu 395	Asp	Val	Ser	Val	Ile 400
Pro	Thr	Ile	Gly	Asp 405	Val	Val	Val	Val	Ala 410	Thr	Asp	Ala	Leu	Met 415	Thr
Gly	туг	Thr	Gly 420	Asp	Phe	Asp	Ser	Val 425	Ile	Asp	Cys	Asn	Thr 430	Суѕ	Val
Thr	Gln	Thr 435	Val	Asp	Phe	Ser	Leu 440	Asp	Pro	Thr	Phe	Thr 445	Ile	Glu	Thr
Thr	Thr 450	Val	Pro	Gln	Asp	Ala 455	Val	Ser	Arg	Ser	Gln 460	Arg	Arg	Gly	Arg
Thr 465	Gly	Arg	Gly	Arg	Arg 470	Gly	Ile	Tyr	Arg	Phe 475	Val	Thr	Pro	Gly	Glu 480
Arg	Pro	Ser	Gly	Met 485	Phe	Asp	Ser	Ser	Val 490	Leu	Суѕ	Glu	Суѕ	Tyr 495	Asp
Ala	Gly	Сув	Ala 500	Trp	Tyr	Glu	Leu	Thr 505	Pro	Ala	Glu	Thr	Ser 510	Val	Arg
Leu	Arg	Ala 515	Tyr	Leu	Asn	Thr	Pro 520	Gly	Leu	Pro	Val	Cys 525	Gln	Asp	His
	530		Trp			535					540				
545			Ser		550					555					560
Val			Gln	565					570					575	
Ser		_	Gln 580		_	_	_	585				_	590	•	
		595	Thr				600			_		605			
	610		Thr			615		_	_		620	•			
625	_		Glu		630				_	635			_	_	640
			Leu	645					650					655	
			11e 660					665					670		
		675	Tyr				680					685			
	690		Ile			695					700			_	
705			Gly		710					715					720
			Val	725		_	_	_	730					735	
	His		740					745		Gln			750		
		755	Pro	_			760					765			
	770		Thr			775					780				
785			Gly		790					795					800
			Val	805					810					815	
Gly	Leu	Gly	Lys	Val	Leu	Val	Asp	Ile	Leu	Ala	Gly	Tyr	Gly	Ala	Gly

			820					825					830		
17-1	210	C111		T 011	3751	7 1 a	Dhe		17a 1	Met	Cor	Glv		Met	Pro
vaı	Ala	835	Ата	neu	var	АІа	840	nys	Vai	nec	Der	845		1100	
Ser	Thr		Asp	Leu	Val	Asn		Leu	Pro	Ala	Ile		Ser	Pro	Gly
502	850				•	855					860				_
Ala		Val	Val	Gly	Val	Val	Cys	Ala	Ala	Ile	Leu	Arg	Arg	His	Val
865					870					875					880
Gly	Pro	Gly	Glu	Gly	Ala	Val	Gln	Trp	Met	Asn	Arg	Leu	Ile	Ala	Phe
				885					890				_	895	_
Ala	Ser	Arg		Asn	His	Val	Ser		Thr	His	Tyr	Val	Pro	Glu	Ser
			900		_			905	_		~	_	910	-1.	ml
Asp	Ala		Ala	Arg	vai	unr		тте	ьeu	Ser	ser	925	THE	116	1111
~ 1	Ŧ	915	T	7	T 011	IIi a	920	m~~	T10	Asn	Clu		Care	Sar	Thr
GIn	ьеи 930	Leu	Lys	Arg	neu	935	GIII	TLD	TIE	Wali	940	MSD	Cys	267	1111
Dro		Ser	Glv	Ser	Trn		Ara	Asp	Val	Trp		Tro	Ile	Cvs	Thr
945	Cys	per	GTĀ	Der	950	cu	**** 9	11010	, ,	955				-,, -	960
Val	Leu	Thr	Asp	Phe		Thr	Trp	Leu	Gln	Ser	Lys	Leu	Leu	Pro	Gln
				965					970					975	
Leu	Pro	Gly	Val	Pro	Phe	Phe	Ser	Cys	Gln	Arg	Gly	Tyr	Lys	Gly	Val
			980					985					990	_	_
Trp	Arg	Gly	Asp	Gly	Ile	Met			Thr	Cys	Pro			Ala	Gln
		995					1000					1005			•
Ile			His	Val	Lys			Ser	Met	Arg			GIY	Pro	гÀг
_,	1010		•	m1	m	1015		mh sa	Dho	Dwo	1020		715	There	Thr
	_	Ser	Asn	Thr	103		GTÅ	THE	File	Pro 103		VPII	ALG	TYL	1040
1025		Dro	Cve	ጥኮዮ			Pro	Δla	Pro	Asn		Ser	Ara	Ala	
1111	GTĀ	220	Cys	104		501	110	1114	105		-1-		3	105	
Trp	Arq	Val	Ala			Glu	Tyr	Val	Glu	Val	Thr	Arg	Val	Gly	Asp
			1060	0				106	5				1070	כ	
Phe	His	Tyr	Val	Thr	Gly	Met	Thr	Thr	Asp	Asn	Val	Lys	Cys	Pro	Cys
		107					108		_			1085	-	_	_
Gln			Ala	Pro	Glu			Thr	Glu	Val			Val	Arg	Leu
•	109				- 1 -	109!		D-10	T	T 4	1100		C1	77-a l	What
		Tyr	Ala	Pro			Arg	Pro	ьец	Leu 111:		GIU	GIU	vaı	1120
110		V- 1	Clar	Lou	111		There	T.e.11	Val	Gly		G1n	Len	Pro	
Pile	GIII	val	СТХ	112		GIII	ıyı	Dea	113		001	0111	200	113	
Glu	Pro	Glu	Pro			Ala	Val	Leu		Ser	Met	Leu	Thr	Asp	Pro
0-0			114					114					1150		
Ser	His	Ile	Thr	Ala	Glu	Thr	Ala	Lys	Arg	Arg	Leu	Ala	Arg	Gly	Ser
		115	5				116)				1169	5		
Pro	Pro	Ser	Leu	Ala	Ser	Ser	Ser	Ala	Ser	Gln			Ala	Pro	Ser
	117					1179					118		- 1	_	
	_	Ala	Thr	Cys			His	His	Val	Ser		Asp	Ala	Asp	
118	5		_	_	119	J 	3	01 -	~1	119		C1	Th care	т1.	1200
Ile	GLu	Ala	Asn			urp	Arg	GIN	121	Met	GTĀ	GTÄ	ASII	1219	
3	T t = 3	03	Cox	120		T 120	17a1	17= 1		Leu	Acn	Cor	Phe		
AIG	val	GIU	122		veil	פעע	var	122	, a.i.	u	1125		1230)	
T,em	Ara	Ala			Asp	Glu	Ara			Ser	Val	Pro			Ile
	9	123					124			•		124			
Leu	Arg			Lys	Lys	Phe	Pro	Ala	Ala	Met	Pro	Ile	Trp	Ala	Arg
	125					125					126				

Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asp Pro Asp Tyr 1265 1270 1275 1280 Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Ile Lys Ala Pro 1285 1290 Pro Ile Pro Pro Pro Arg Arg Lys Arg Thr Val Val Leu Thr Glu Ser 1300 1305 1310 Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly Ser 1315 1320 1325 Ser Glu Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Ala Leu Pro Asp 1330 1335 1340 Gln Ala Ser Asp Asp Gly Asp Lys Gly Ser Asp Val Glu Ser Tyr Ser **1345 1350 1355 1360** Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser Asp 1365 1370 1375 Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val Val Cys 1380 1385 1390 Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys Ala 1395 1400 1405 Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu Ser Asn Ser Leu Leu 1410 1415 1420 Arg His His Asn Met Val Tyr Ala Thr Thr Ser Arg Ser Ala Gly Leu 1425 1430 1435 1440 Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp Asp His 1445 1450 1455 Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val Lys 1460 1465 1470 Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro His 1480 1485 Ser Ala Lys Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Asn Leu 1490 1495 1500 Ser Ser Lys Ala Val Asn His Ile His Ser Val Trp Lys Asp Leu Leu 1505 1510 1515 1520 Glu Asp Thr Val Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg Leu 1540 1545 1550 Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala Leu 1555 1560 1565 Tyr Asp Val Val Ser Thr Leu Pro Gln Val Val Met Gly Ser Ser Tyr 1570 1575 1580 Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn Thr 1585 1590 1595 1600 Trp Lys Ser Lys Lys Asn Pro Met Gly Phe Ser Tyr Asp Thr Arg Cys 1605 1610 1615 Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg Val Glu Glu Ser Ile 1620 1625 1630 Tyr Gln Cys Cys Asp Leu Ala Pro Glu Ala Arg Gln Ala Ile Lys Ser 1635 1640 1645 Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys Gly 1650 1655 1660 Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr Thr 1665 1670 1675 1680 Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala Cys 1690 1685

```
Arg Ala Ala Lys Leu Gln Asp Cys Thr Met Leu Val Asn Gly Asp Asp
      1700 1705 1710
Leu Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala Ala Ser
      1715
            1720
                                     1725
Leu Arg Val Phe Thr Glu Ala Met Thr Arg Tyr Ser Ala Pro Pro Gly
  1730 1735 1740
Asp Pro Pro Gln Pro Glu Tyr Asp Leu Glu Leu Ile Thr Ser Cys Ser
1745 1750
                              1755
Ser Asn Val Ser Val Ala His Asp Ala Ser Gly Lys Arg Val Tyr Tyr
           1765 1770 1775
Leu Thr Arg Asp Pro Thr Thr Pro Leu Ala Arg Ala Ala Trp Glu Thr
        1780 1785 1790
Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile Ile Met Tyr
     1795 1800 1805
Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His Phe Phe Ser
 1810 1815 1820
Ile Leu Leu Ala Gln Glu Gln Leu Glu Lys Ala Leu Asp Cys Gln Ile
       1830 1835 1840
Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro Gln Ile Ile
           1845 1850 1855
Glu Arg Leu His Gly Leu Ser Ala Phe Ser Leu His Ser Tyr Ser Pro
         1860 1865 1870
Gly Glu Ile Asn Arg Val Ala Ser Cys Leu Arg Lys Leu Gly Val Pro
                     1880
Pro Leu Arg Val Trp Arg His Arg Ala Arg Ser Val Arg Ala Arg Leu
                 1895 1900
Leu Ser Gln Gly Gly Arg Ala Ala Thr Cys Gly Lys Tyr Leu Phe Asn
             1910 1915 1920
Trp Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Ile Pro Ala Ala Ser
           1925 1930 1935
Gln Leu Asp Leu Ser Gly Trp Phe Val Ala Gly Tyr Ser Gly Gly Asp
        1940 1945 1950
Ile Tyr His Ser Leu Ser Arg Ala Arg Pro Arg Trp Phe Met Leu Cys
   1955 1960 1965
Leu Leu Leu Ser Val Gly Val Gly Ile Tyr Leu Leu Pro Asn Arg
                                   1980
                  1975
<210> 7
<211> 4909
<212> DNA
<213> Artificial Sequence
<220>
<223> pV1J nucleic acid
tegegegttt eggtgatgae ggtgaaaace tetgacacat geageteeeg gagaeggtea
cagettgtet gtaageggat geegggagea gacaageeeg teagggegeg teagegggtg
                                                        120
                                                        180
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg
                                                        240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata ttggctcatg
                                                        300
tccaacatta ccgccatgtt gacattgatt attgactagt tattaatagt aatcaattac
                                                        360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg
                                                        420
                                                        480
cccgcctggc tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc
                                                        540
catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac
```

		aagtgtatca				600
		ggcattatgc				660
		tagtcatcgc				720
		ggtttgactc				780
		ggcaccaaaa				840
		tgggcggtag				900
		agatcgcctg				960
		ccagcctccg				1020
		taagtaccgc				1080
		ttttggcttg				1140
		cctataggtg				1200
		attactaatc				1260
		tctgtccttc				1320
		tttacaaatt				1380
		gcgtgggatc				1440
		cggcggagct				1500
		cagctccttg				1560
		cagtgtgccg				1620
		ggctcgcacg				1680
		ctgagttgtt				1740
		ggagggcagt				1800
		ctgacagact				1860
		ctaggtacca				1920
		gccagccatc				1980
-		ccactgtcct				2040
		ctattctggg				2100
		ggcatgctgg				2160
		cggttcctcc				2220
		acgcccctgg				2280
_		gccttcaatc				2340
		aaaccaaacc				2400
		gagggagaga				2460
		ccgcttcctc				2520
-		ctcactcaaa				2580
		tgtgagcaaa				2640
		tccataggct				2700
		gaaacccgac				2760
		ctcctgttcc				2820
		tggcgctttc				2880
		agctgggctg				2940
		atcgtcttga				3000
		acaggattag				3060
		actacggcta				3120
		tcggaaaaag				3180
		tttttgtttg				3240
		tcttttctac				3300
		tgagattatc				3360
		caatctaaag				3420
-		cacctatctc				3480
		ggcgctgagg				3540
		catcatccag				3600
		agttggtgat				3660
		tgatctgatc				3720
		agtcagcgta				3780
aattctgatt	agaaaaactc	atcgagcatc	aaatgaaact	gcaatttatt	catatcagga	3840

```
ttatcaatac catatttttg aaaaagccgt ttctgtaatg aaggagaaaa ctcaccgagg
                                                                     3900
                                                                     3960
cagttccata qqatqqcaag atcctggtat cggtctgcga ttccgactcg tccaacatca
                                                                     4020
atacaaccta ttaatttccc ctcgtcaaaa ataaggttat caagtgagaa atcaccatga
gtgacgactg aatccggtga gaatggcaaa agcttatgca tttctttcca gacttgttca
                                                                     4080
acaggecage cattacgete gtcatcaaaa teactegcat caaccaaace gttatteatt
                                                                     4140
                                                                     4200
cgtgattgcg cctgagcgag acgaaatacg cgatcgctgt taaaaggaca attacaaaca
ggaatcgaat gcaaccggcg caggaacact gccagcgcat caacaatatt ttcacctgaa
                                                                     4260
                                                                     4320
tcaggatatt cttctaatac ctggaatgct gttttcccgg ggatcgcagt ggtgagtaac
catgcatcat caggagtacg gataaaatgc ttgatggtcg gaagaggcat aaattccgtc
                                                                     4380
                                                                     4440
agccagttta gtctgaccat ctcatctgta acatcattgg caacgctacc tttgccatgt
                                                                     4500
ttcagaaaca actctggcgc atcgggcttc ccatacaatc gatagattgt cgcacctgat
                                                                     4560
tgcccgacat tatcgcgagc ccatttatac ccatataaat cagcatccat gttggaattt
aatcgcggcc tcgagcaaga cgtttcccgt tgaatatggc tcataacacc ccttgtatta
                                                                     4620
                                                                     4680
ctgtttatgt aagcagacag ttttattgtt catgatgata tatttttatc ttgtgcaatg
                                                                     4740
taacatcaga gattttgaga cacaacgtgg ctttcccccc cccccatta ttgaagcatt
                                                                     4800
tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa aaataaacaa
ataggggttc cgcgcacatt tccccgaaaa gtgccacctg acgtctaaga aaccattatt
                                                                     4860
                                                                     4909
atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtc
<210> 8
<211> 35935
<212> DNA
<213> Adenovirus serotype 6
<400> 8
                                                                       60
catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt
                                                                      120
ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt
                                                                      180
gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg
gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag
                                                                      240
                                                                      300
taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga
                                                                      360
agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggccgcggg
gactttgacc gtttacgtgg agactcgccc aggtgttttt ctcaggtgtt ttccgcgttc
                                                                      420
cgggtcaaag ttggcgtttt attattatag tcagctgacg tgtagtgtat ttatacccgg
                                                                      480
tgagttcctc aagaggccac tcttgagtgc cagcgagtag agttttctcc tccgagccgc
                                                                      540
                                                                      600
tocqacaccg ggactgaaaa tgagacatat tatotgocac ggaggtgtta ttaccgaaga
                                                                      660
aatggccgcc agtcttttgg accagctgat cgaagaggta ctggctgata atcttccacc
                                                                      720
tcctagccat tttgaaccac ctacccttca cgaactgtat gatttagacg tgacggcccc
                                                                      780
cgaagatccc aacgaggagg cggtttcgca gatttttccc gactctgtaa tgttggcggt
                                                                      840
gcaggaaggg attgacttac tcacttttcc gccggcgccc ggttctccgg agccgcctca
cctttcccgg cagcccgagc agccggagca gagagccttg ggtccggttt ctatgccaaa
                                                                      900
ccttgtaccg gaggtgatcg atcttacctg ccacgaggct ggctttccac ccagtgacga
                                                                      960
                                                                     1020
cgaggatgaa gagggtgagg agtttgtgtt agattatgtg gagcaccccg ggcacggttg
                                                                     1080
caggtettqt cattateacc ggaggaatac gggggaccca gatattatgt gttcgctttg
                                                                     1140
ctatatgagg acctgtggca tgtttgtcta cagtaagtga aaattatggg cagtgggtga
tagagtggtg ggtttggtgt ggtaattttt tttttaattt ttacagtttt gtggtttaaa
                                                                     1200
gaattttgta ttgtgatttt tttaaaaggt cctgtgtctg aacctgagcc tgagcccgag
                                                                     1260
                                                                     1320
ccagaaccgg agcctgcaag acctacccgc cgtcctaaaa tggcgcctgc tatcctgaga
                                                                     1380
cgcccgacat cacctgtgtc tagagaatgc aatagtagta cggatagctg tgactccggt
                                                                     1440
cettetaaca caceteetga gatacaceeg gtggteeege tgtgeeecat taaaceagtt
gccgtgagag ttggtgggcg tcgccaggct gtggaatgta tcgaggactt gcttaacgag
                                                                     1500
                                                                     1560
cctgggcaac ctttggactt gagctgtaaa cgccccaggc cataaggtgt aaacctgtga
                                                                     1620
ttgcgtgtgt ggttaacgcc tttgtttgct gaatgagttg atgtaagttt aataaagggt
                                                                     1680
gagataatgt ttaacttgca tggcgtgtta aatggggcgg ggcttaaagg gtatataatg
cgccgtgggc taatcttggt tacatctgac ctcatggagg cttgggagtg tttggaagat
                                                                     1740
                                                                     1800
ttttctgctg tgcgtaactt gctggaacag agctctaaca gtacctcttg gttttggagg
```

tttctgtggg	gctcatccca	ggcaaagtta	gtctgcagaa	ttaaggagga	ttacaagtgg	1860
gaatttgaag	agcttttgaa	atcctgtggt	gagctgtttg	attctttgaa	tctgggtcac	1920
		ggtcatcaag				1980
		gagttttata				2040
		ttttctggcc				2100
		gtcttccgtc				2160
		caggcggcgg				2220
gccggcctgg	accctcggga	atgaatgttg	tacaggtggc	tgaactgtat	ccagaactga	2280
gacgcatttt	gacaattaca	gaggatgggc	aggggctaaa	gggggtaaag	agggagcggg	2340
gggcttgtga	ggctacagag	gaggctagga	atctagcttt	tagcttaatg	accagacacc	2400
gtcctgagtg	tattactttt	caacagatca	aggataattg	cgctaatgag	cttgatctgc	2460
tggcgcagaa	gtattccata	gagcagctga	ccacttactg	gctgcagcca	ggggatgatt	2520
ttgaggaggc	tattagggta	tatgcaaagg	tggcacttag	gccagattgc	aagtacaaga	2580
tcagcaaact	tgtaaatatc	aggaattgtt	gctacatttc	tgggaacggg	gccgaggtgg	2640
agatagatac	ggaggatagg	gtggccttta	gatgtagcat	gataaatatg	tggccggggg	2700
tgcttggcat	ggacggggtg	gttattatga	atgtaaggtt	tactggcccc	aattttagcg	2760
gtacggtttt	cctggccaat	accaacctta	tcctacacgg	tgtaagcttc	tatgggttta	2820
acaatacctg	tgtggaagcc	tggaccgatg	taagggttcg	gggctgtgcc	ttttactgct	2880
gctggaaggg	ggtggtgtgt	cgccccaaaa	gcagggcttc	aattaagaaa	tgcctctttg	2940
aaaggtgtac	cttgggtatc	ctgtctgagg	gtaactccag	ggtgcgccac	aatgtggcct	3000
		ctagtgaaaa				3060
gtggcaactg	cgaggacagg	gcctctcaga	tgctgacctg	ctcggacggc	aactgtcacc	3120
tgctgaagac	cattcacgta	gccagccact	ctcgcaaggc	ctggccagtg	tttgagcata	3180
acatactgac	ccgctgttcc	ttgcatttgg	gtaacaggag	gggggtgttc	ctaccttacc	3240
aatgcaattt	gagtcacact	aagatattgc	ttgagcccga	gagcatgtcc	aaggtgaacc	3300
tgaacggggt	gtttgacatg	accatgaaga	tctggaaggt	gctgaggtac	gatgagaccc	3360
gcaccaggtg	cagaccctgc	gagtgtggcg	gtaaacatat	taggaaccag	cctgtgatgc	3420
tggatgtgac	cgaggagctg	aggcccgatc	acttggtgct	ggcctgcacc	cgcgctgagt	3480
ttggctctag	cgatgaagat	acagattgag	gtactgaaat	gtgtgggcgt	ggcttaaggg	3540
tgggaaagaa	tatataaggt	gggggtctta	tgtagttttg	tatctgtttt	gcagcagccg	3600
ccgccgccat	gagcaccaac	tcgtttgatg	gaagcattgt	gagctcatat	ttgacaacgc	3660
gcatgccccc	atgggccggg	gtgcgtcaga	atgtgatggg	ctccagcatt	gatggtcgcc	3720
ccgtcctgcc	cgcaaactct	actaccttga	cctacgagac	cgtgtctgga	acgccgttgg	3780
agactgcagc	ctccgccgcc	gcttcagccg	ctgcagccac	cgcccgcggg	attgtgactg	3840
actttgcttt	cctgagcccg	cttgcaagca	gtgcagcttc	ccgttcatcc	gcccgcgatg	3900
acaagttgac	ggctcttttg	gcacaattgg	attctttgac	ccgggaactt	aatgtcgttt	3960
ctcagcagct	gttggatctg	cgccagcagg	tttctgccct	gaaggettee	tcccctccca	4020
atgcggttta	aaacataaat	aaaaaaccag	actctgtttg	gatttggatc	aagcaagtgt	4080
cttgctgtct	ttatttaggg	gttttgcgcg	cgcggtaggc	ccgggaccag	cggtctcggt	4140
cgttgagggt	cctgtgtatt	ttttccagga	cgtggtaaag	gtgactctgg	atgttcagat	4200
acatgggcat	aagcccgtct	ctggggtgga	ggtagcacca	ctgcagagct	tcatgctgcg	4260
gggtggtgtt	gtagatgatc	${\tt cagtcgtagc}$	aggagcgctg	ggcgtggtgc	ctaaaaatgt	4320
		gccaggggca				4380
		cgtggggata				4440
		tccctccggg				4500
tgtatccggt	gcacttggga	aatttgtcat	gtagcttaga	aggaaatgcg	tggaagaact	4560
		ccaagatttt				4620
		gcgaagatat				4680
		gccattttta				4740
		ccaggggcgt				4800
		atcatgtcta				4860
gggtagggga	gatcagctgg	gaagaaagca	ggttcctgag	cagctgcgac	ttaccgcagc	4920
cggtgggccc	gtaaatcaca	cctattaccg	ggtgcaactg	gtagttaaga	gagetgeage	4980
		ggggccactt				5040
ccctgaccaa	atccgccaga	aggcgctcgc	cgcccagcga	tagcagttct	tgcaaggaag	5100

caaagttttt	caacggtttg	agaccgtccg	ccgtaggcat	gcttttgagc	gtttgaccaa	5160
gcagttccag	gcggtcccac	agctcggtca	cctgctctac	ggcatctcga	tccagcatat	5220
ctcctcgttt	cgcgggttgg	ggcggctttc	gctgtacggc	agtagtcggt	gctcgtccag	5280
acgggccagg	gtcatgtctt	tccacgggcg	cagggtcctc	gtcagcgtag	tctgggtcac	5340
ggtgaagggg	tgcgctccgg	gctgcgcgct	ggccagggtg	cgcttgaggc	tggtcctgct	5400
ggtgctgaag	cgctgccggt	cttcgccctg	cgcgtcggcc	aggtagcatt	tgaccatggt	5460
gtcatagtcc	agcccctccg	cggcgtggcc	cttggcgcgc	agcttgccct	tggaggaggc	5520
gccgcacgag	gggcagtgca	gacttttgag	ggcgtagagc	ttgggcgcga	gaaataccga	5580
ttccggggag	taggcatccg	cgccgcaggc	cccgcagacg	gtctcgcatt	ccacgagcca	5640
ggtgagctct	ggccgttcgg	ggtcaaaaac	caggtttccc	ccatgctttt	tgatgcgttt	5700
cttacctctg	gtttccatga	gccggtgtcc	acgctcggtg	acgaaaaggc	tgtccgtgtc	5760
cccgtataca	gacttgagag	gcctgtcctc	gagcggtgtt	ccgcggtcct	cctcgtatag	5820
aaactcggac	cactctgaga	caaaggctcg	cgtccaggcc	agcacgaagg	aggctaagtg	5880
ggaggggtag	cggtcgttgt	ccactagggg	gtccactcgc	tccagggtgt	gaagacacat	5940
gtcgccctct	teggeateaa	ggaaggtgat	tggtttgtag	gtgtaggcca	cgtgaccggg	6000
tgttcctgaa	ggggggctat	aaaagggggt	gggggcgcgt	tcgtcctcac	tctcttccgc	6060
atcgctgtct	gcgagggcca	gctgttgggg	tgagtactcc	ctctgaaaag	cgggcatgac	6120
ttctgcgcta	agattgtcag	tttccaaaaa	cgaggaggat	ttgatattca	cctggcccgc	6180
ggtgatgcct	ttgagggtgg	ccgcatccat	ctggtcagaa	aagacaatct	ttttgttgtc	6240
aagcttggtg	gcaaacgacc	cgtagagggc	gttggacagc	aacttggcga	tggagcgcag	6300
ggtttggttt	ttgtcgcgat	cggcgcgctc	cttggccgcg	atgtttagct	gcacgtattc	6360
gcgcgcaacg	caccgccatt	cgggaaagac	ggtggtgcgc	tcgtcgggca	ccaggtgcac	6420
gcgccaaccg	cggttgtgca	gggtgacaag	gtcaacgctg	gtggctacct	ctccgcgtag	6480
gcgctcgttg	gtccagcaga	ggcggccgcc	cttgcgcgag	cagaatggcg	gtagggggtc	6540
tagctgcgtc	tcgtccgggg	ggtctgcgtc	cacggtaaag	accccgggca	gcaggcgcgc	6600
gtcgaagtag	tctatcttgc	atccttgcaa	gtctagcgcc	tgctgccatg	cgcgggcggc	6660
aagcgcgcgc	tcgtatgggt	tgagtggggg	accccatggc	atggggtggg	tgagcgcgga	6720
ggcgtacatg	ccgcaaatgt	cgtaaacgta	gaggggctct	ctgagtattc	caagatatgt	6780
agggtagcat	cttccaccgc	ggatgctggc	gcgcacgtaa	tcgtatagtt	cgtgcgaggg	6840
agcgaggagg	tcgggaccga	ggttgctacg	ggcgggctgc	tctgctcgga	agactatctg	6900
cctgaagatg	gcatgtgagt	tggatgatat	ggttggacgc	tggaagacgt	tgaagctggc	6960
gtctgtgaga	cctaccgcgt	cacgcacgaa	ggaggcgtag	gagtcgcgca	gcttgttgac	7020
cagctcggcg	gtgacctgca	cgtctagggc	gcagtagtcc	agggtttcct	tgatgatgtc	7080
atacttatcc	tgtccctttt	ttttccacag	ctcgcggttg	aggacaaact	cttcgcggtc	7140
tttccagtac	tcttggatcg	gaaacccgtc	ggcctccgaa	cggtaagagc	ctagcatgta	7200
gaactggttg	acggcctggt	aggcgcagca	tecettttet	acgggtagcg	cgtatgcctg	7260
cgcggccttc	cggagcgagg	tgtgggtgag	cgcaaaggtg	tccctgacca	tgactttgag	7320
gtactggtat	ttgaagtcag	tgtcgtcgca	teegeeetge	teccagagea	aaaagtccgt	7380
gcgctttttg	gaacgcggat	ttggcagggc	gaaggtgaca	tcgttgaaga	gtatetttee	7440
cgcgcgaggc	ataaagttgc	gtgtgatgcg	gaagggtccc	ggcacctcgg	aacggttgtt	7500
aattacctgg	gcggcgagca	cgatctcgtc	aaagccgttg	atgttgtggc	ccacaatgta	7560
aagttccaag	aagcgcggga	tgcccttgat	ggaaggcaat	tttttaagtt	cctcgtaggt	7620
gagetettea	ggggagctga	gcccgtgctc	tgaaagggcc	cagtctgcaa	gatgagggtt	7680
ggaagcgacg	aatgagctcc	acaggtcacg	ggccattage	atttgcaggt	ggtcgcgaaa	7740
ggtcctaaac	tggcgaccta	tggccatttt	ttctggggtg	atgcagtaga	aggraagcgg	7800
gtcttgttcc	cagcggtccc	atccaaggtt	cgcggctagg	tctcgcgcgg	cagtcactag	7860 7920
aggeteatet	ccgccgaact	tcatgaccag	catgaagggc	acgagctgct	teceaaagge	7980
ccccatccaa	gtataggtct	ctacatcgta	ggtgacaaag	agacgctcgg	tgcgaggatg	8040
cgagccgatc	gggaagaact	ggateteeeg	ccaccaattg	gaggagtggc	tattgatgtg	8100
gtgaaagtag	aagtccctgc	gacgggccga	acactegtge	tggcttttgt	aaaaacgtgc	8160
gcagtactgg	cagcggtgca	cgggctgtac	accotgcacg	aggttgacct	yacyaccycg	8220
cacaaggaag	cagagtggga	atttgagece	ecegeetgge	gggtttggct	ygtggtcttc	8280
tacttcggct	gcttgtcctt	gaccgtctgg	ergeregagg	ggagttacgg	cyyarcyyac	8340
caccacgccg	cgcgagccca	aagtccagat	gceegegege	ggcggtcgga	gettgatgat	8400
aacatcgcgc	agatgggagc	tgtccatggt	erggageree	cgcggcgtca	ggccaggcgg	0400

			ggtcagggcg			8460
			gtcgatggct			8520
			gtgggccgcg			8580
			ggaggtaggg			8640
			gcgggcagga			8700
			atctcctgaa			8760
			gagagttcga			8820
			acgtctcctg			8880
			tggagatete			8940
			atgagctgcg			9000
			ccttcggcat			9060
			aagacggcgt			9120
			gccacgaaga			9180
			tcaaggcgct			9240
			gccgacacgg		_	9300
			tcgcgctcaa			9360
			teceettett			9420
			accgggaggc			9480
			gtgacggcgc			9540
			ttatgggttg			9600
agggatacgg	cgctaacgat	gcatctcaac	aattgttgtg	taggtactcc	gccgccgagg	9660
gacctgagcg	agtccgcatc	gaccggatcg	gaaaacctct	cgagaaaggc	gtctaaccag	9720
tcacagtcgc	aaggtaggct	gagcaccgtg	gcgggcggca	gcgggcggcg	gtcggggttg	9780
tttctggcgg	aggtgctgct	gatgatgtaa	ttaaagtagg	cggtcttgag	acggcggatg	9840
gtcgacagaa	gcaccatgtc	cttgggtccg	gcctgctgaa	tgcgcaggcg	gtcggccatg	9900
			tctttgtagt			9960
accggcactt	cttcttctcc	ttcctcttgt	cctgcatctc	ttgcatctat	cgctgcggcg	10020
gcggcggagt	ttggccgtag	gtggcgccct	cttcctccca	tgcgtgtgac	cccgaagccc	10080
ctcatcggct	gaagcagggc	taggtcggcg	acaacgcgct	cggctaatat	ggcctgctgc	10140
acctgcgtga	gggtagactg	gaagtcatcc	atgtccacaa	agcggtggta	tgcgcccgtg	10200
ttgatggtgt	aagtgcagtt	ggccataacg	gaccagttaa	cggtctggtg	acccggctgc	10260
gagagctcgg	tgtacctgag	acgcgagtaa	gccctcgagt	caaatacgta	gtcgttgcaa	10320
gtccgcacca	ggtactggta	tcccaccaaa	aagtgcggcg	gcggctggcg	gtagaggggc	10380
cagcgtaggg	tggccggggc	tccgggggcg	agatcttcca	acataaggcg	atgatatccg	10440
tagatgtacc	tggacatcca	ggtgatgccg	gcggcggtgg	tggaggcgcg	cggaaagtcg	10500
cggacgcggt	tccagatgtt	gcgcagcggc	aaaaagtgct	ccatggtcgg	gacgctctgg	10560
ccggtcaggc	gcgcgcaatc	gttgacgctc	tagaccgtgc	aaaaggagag	cctgtaagcg	10620
ggcactcttc	cgtggtctgg	tggataaatt	cgcaagggta	tcatggcgga	cgaccggggt	10680
tcgagccccg	tatccggccg	tccgccgtga	tccatgcggt	taccgcccgc	gtgtcgaacc	10740
caggtgtgcg	acgtcagaca	acgggggagt	gctccttttg	gcttccttcc	aggcgcggcg	10800
gctgctgcgc	tagctttttt	ggccactggc	cgcgcgcagc	gtaagcggtt	aggctggaaa	10860
gcgaaagcat	taagtggctc	gctccctgta	gccggagggt	tattttccaa	gggttgagtc	10920
gcgggacccc	cggttcgagt	ctcggaccgg	ccggactgcg	gcgaacgggg	gtttgcctcc	10980
ccgtcatgca	agaccccgct	tgcaaattcc	tccggaaaca	gggacgagcc	ccttttttgc	11040
ttttcccaga	tgcatccggt	gctgcggcag	atgcgccccc	ctcctcagca	gcggcaagag	11100
			tecetecte			11160
acatccgcgg	ttgacgcggc	agcagatggt	gattacgaac	ccccgcggcg	ccgggcccgg	11220
cactacctgg	acttggagga	gggcgagggc	ctggcgcggc	taggagcgcc	ctctcctgag	11280
cggtacccaa	gggtgcagct	gaagcgtgat	acgcgtgagg	cgtacgtgcc	gcggcagaac	11340
ctgtttcgcg	accgcgaggg	agaggagccc	gaggagatgc	gggatcgaaa	gttccacgca	11400
			gagcggttgc			11460
			cgcgcacacg			11520
			attaactttc			11580
			gctataggac			11640
gtaagcgcgc	tggagcaaaa	cccaaatagc	aagccgctca	tggcgcagct	gttccttata	11700

gtgcagcaca	gcagggacaa	cgaggcattc	agggatgcgc	tgctaaacat	agtagagccc	11760
gagggccgct	ggctgctcga	tttgataaac	atcctgcaga	gcatagtggt	gcaggagcgc	11820
agcttgagcc	tggctgacaa	ggtggccgcc	atcaactatt	ccatgcttag	cctgggcaag	11880
tttacgccc	gcaagatata	ccatacccct	tacgttccca	tagacaagga	ggtaaagatc	11940
gaggggttct	acatgcgcat	ggcgctgaag	gtgcttacct	tgagcgacga	cctgggcgtt	12000
tatcgcaacg	agcgcatcca	caaggccgtg	agcgtgagcc	ggcggcgcga	gctcagcgac	12060
cgcgagctga	tgcacagcct	gcaaagggcc	ctggctggca	cgggcagcgg	cgatagagag	12120
gccgagtcct	actttgacgc	gggcgctgac	ctgcgctggg	ccccaagccg	acgcgccctg	12180
gaggcagctg	gggccggacc	tgggctggcg	gtggcacccg	cgcgcgctgg	caacgtcggc	12240
ggcgtggagg	aatatgacga	ggacgatgag	tacgagccag	aggacggcga	gtactaagcg	12300
gtgatgtttc	tgatcagatg	atgcaagacg	caacggaccc	ggcggtgcgg	gcggcgctgc	12360
agagccagcc	gtccggcctt	aactccacgg	acgactggcg	ccaggtcatg	gaccgcatca	12420
tgtcgctgac	tgcgcgcaat	cctgacgcgt	tccggcagca	gccgcaggcc	aaccggctct	12480
ccgcaattct	ggaagcggtg	gtcccggcgc	gcgcaaaccc	cacgcacgag	aaggtgctgg	12540
cgatcgtaaa	cgcgctggcc	gaaaacaggg	ccatccggcc	cgacgaggcc	ggcctggtct	12600
acgacgcgct	gcttcagcgc	gtggctcgtt	acaacagcgg	caacgtgcag	accaacctgg	12660
accggctggt	gggggatgtg	cgcgaggccg	tggcgcagcg	tgagcgcgcg	cagcagcagg	12720
gcaacctggg	ctccatggtt	gcactaaacg	ccttcctgag	tacacagccc	gccaacgtgc	12780
cgcggggaca	ggaggactac	accaactttg	tgagcgcact	gcggctaatg	gtgactgaga	12840
caccgcaaag	tgaggtgtac	cagtctgggc	cagactattt	tttccagacc	agtagacaag	12900
gcctgcagac	cgtaaacctg	agccaggctt	tcaaaaactt	gcaggggctg	tggggggtgc	12960
gggctcccac	aggcgaccgc	gcgaccgtgt	ctagcttgct	gacgcccaac	tegegeetgt	13020
tgctgctgct	aatagcgccc	ttcacggaca	gtggcagcgt	gtcccgggac	acatacctag	13080
gtcacttgct	gacactgtac	cgcgaggcca	taggtcaggc	gcatgtggac	gagcatactt	13140
tccaggagat	tacaagtgtc	agccgcgcgc	tggggcagga	ggacacgggc	agcctggagg	13200
caaccctaaa	ctacctgctg	accaaccggc	ggcagaagat	cccctcgttg	cacagtttaa	13260
acagcgagga	ggagcgcatt	ttgcgctacg	tgcagcagag	cgtgagcctt	aacctgatgc	13320
gcgacggggt	aacgcccagc	gtggcgctgg	acatgaccgc	gcgcaacatg	gaaccgggca	13380
tgtatgcctc	aaaccggccg	tttatcaacc	gcctaatgga	ctacttgcat	cacacaacca	13440
ccgtgaaccc	cgagtatttc	accaatgcca	tcttgaaccc	gcactggcta	ccgcccctg	13500 13560
gtttctacac	cgggggattc	gaggtgcccg	agggtaacga	tggattcctc	tgggacgaca	
tagacgacag	cgtgttttcc	ccgcaaccgc	agaccctgct	agagttgcaa	cagcgcgagc	13620
aggcagaggc	ggcgctgcga	aaggaaagct	tccgcaggcc	aagcagcttg	tecgatetag	13680
gcgctgcggc	cccgcggtca	gatgctagta	gcccatttcc	aagcttgata	gggtctctta	13740
ccagcactcg	caccacccgc	ccgcgcctgc	tgggcgagga	ggagtaccta	aacaactcgc	13800
tgctgcagcc	gcagcgcgaa	aaaaacctgc	ctccggcatt	tcccaacaac	gggatagaga	13860 13920
gcctagtgga	caagatgagt	agatggaaga	cgtacgcgca	ggagcacagg	gacgtgccag	13920
gcccgcgccc	gcccacccgt	cgtcaaaggc	acgaccgtca	geggggtetg	grgrgggagg	
acgatgactc	ggcagacgac	agcagcgtcc	tggatttggg	agggagtggc	aacccgtttg	14040 14100
cgcaccttcg	ccccaggctg	gggagaatgt	tttaaaaaaa	aaaaagcatg	atgcaaaata	14160
aaaaactcac	caaggccatg	gcaccgagcg	ttggttttct	tgtattcccc	ttagtatgeg	
gcgcgcggcg	atgtatgagg	aaggtcctcc	tecetectae	gagagtgtgg	tgagegegge	14220
gccagtggcg	gcggcgctgg	gttctccctt	cgatgctccc	ctggacccgc	cgtttgtgcc	14280 14340
teegeggtae	ctgcggccta	ccggggggag	aaacagcatc	cgttactctg	agttggcacc	
cctattcgac	accacccgtg	tgtacctggt	ggacaacaag	tcaacggatg	tggcatccct	14400 14460
gaactaccag	aacgaccaca	gcaactttct	gaccacggtc	attcaaaaca	atgactacag	14520
cccgggggag	gcaagcacac	agaccatcaa	tettgaegae	cggtcgcact	ggggcggcga	14520
cctgaaaacc	atcctgcata	ccaacatgcc	aaatgtgaac	gagttcatgt	ttaccaataa	14560
gtttaaggcg	cgggtgatgg	tgtcgcgctt	gcctactaag	gacaatcagg	tggagetgaa	14700
atacgagtgg	gtggagttca	cgctgcccga	gggcaactac	Leegagacea	.gaccataga	14760
ccttatgaac	aacgcgatcg	tggagcacta	cttgaaagtg	ggcagacaga	acggggttct	14780
ggaaagcgac	atcggggtaa	agtttgacac	ccgcaacttc	agactggggt	cegaeceege	14820
cactggtctt	gtcatgcctg	gggtatatac	aaacgaagcc	ttccatccag	acatcatttt	14880
gctgccagga	tgcggggtgg	acttcaccca	cagccgcccg	agcaacttgt	cgggcatccg	15000
caagcggcaa	cccttccagg	agggctttag	gatcacctac	gatgatetgg	ayyyryytaa	72000

		tggacgccta			15060
		gcagcaacag			15120
		agccggtgga			15180
		aggagaagcg			15240
		aggtcgagaa			15300
		gcagttacaa			15360
		catacaacta			15420
		acgtaacctg			15480
		tgaccttccg			15540
		ccgtgcactc			15600
		ttacctctct			15660
		cagcccccac			15720
		taccgctgcg			15780
		gcacctgccc			15840
		gcactttttg			15900
		tgcgcttccc			15960
		gcgtgcgcgg			16020
		ccaccgtcga			16080
		cgccaccagt			16140 16200
		atgctaaaat			
		ctgccgccca			16260
		cggccatgcg			16320
		ggcgacgagc			16380
		gcaacgtgta			16440
		ccccgcgcaa			16500 16560
		cggcggcggc			
		tcatcgcgcc			16620 16680
		agctaaagcg			16740
		aactgctgca			16800
		gtgttttgcg			16860
		acaagcgcgt gcctcgggga			16920
		agggcaaccc			16980
		caccgtccga			17040
		agctgatggt			17100
		ctgggctgga			17160
		tgcagaccgt			17220
		agggcatgga			17280
		cggtcgctgc			17340
		gcgtttcagc			17400
		tgcccgaata			17460
		accgccccag			17520
		gtcgccgtcg			17580
		gcaggaccct			17640
		ttgtggttct			17700
		gaggaagaat			17760
		gtgcgcacca			17820
		tccttattcc			17880
		tgcaggcgca			17940
		ctggactctc			18000
-	_	gcgtctctgg	 	_	18060
		accagcaata			18120
		ttcggttcca			18180
		ctgagggata			18240
		ggcattagcg			18300

aaaataagat	taacagtaag	cttgatcccc	gccctcccgt	agaggagcct	ccaccggccg	18360
togagacagt	gtctccagag	gggcgtggcg	aaaagcgtcc	gcgccccgac	agggaagaaa	18420
ctctggtgac	gcaaatagac	gagcetecet	cgtacgagga	ggcactaaag	caaggcctgc	18480
ccaccacccq	tcccatcgcg	cccatggcta	ccggagtgct	gggccagcac	acacccgtaa	18540
cactagacct	acctccccc	gccgacaccc	agcagaaacc	tgtgctgcca	ggcccgaccg	18600
ccattattat	aacccgtcct	agccgcgcgt	ccctgcgccg	cgccgccagc	ggtccgcgat	18660
cattacaacc	cgtagccagt	ggcaactggc	aaagcacact	gaacagcatc	gtgggtctgg	18720
gggtgcaatc	cctgaagcgc	cgacgatgct	tctgaatagc	taacgtgtcg	tatgtgtgtc	18780
atgtatgcgt	ccatgtcgcc	gccagaggag	ctgctgagcc	gccgcgcgcc	cgctttccaa	18840
gatggctacc	ccttcgatga	tgccgcagtg	gtcttacatg	cacatctcgg	gccaggacgc	18900
ctcggagtac	ctgagccccg	ggctggtgca	gtttgcccgc	gccaccgaga	cgtacttcag	18960
cctgaataac	aagtttagaa	accccacggt	ggcgcctacg	cacgacgtga	ccacagaccg	19020
gtcccagcgt	ttgacgctgc	ggttcatccc	tgtggaccgt	gaggatactg	cgtactcgta	19080
caaggcgcgg	ttcaccctag	ctgtgggtga	taaccgtgtg	ctggacatgg	cttccacgta	19140
ctttgacatc	cgcggcgtgc	tggacagggg	ccctactttt	aagccctact	ctggcactgc	19200
ctacaacqcc	ctggctccca	agggtgcccc	aaatccttgc	gaatgggatg	aagctgctac	19260
toctcttgaa	ataaacctag	aagaagagga	cgatgacaac	gaagacgaag	tagacgagca	19320
agctgagcag	caaaaaactc	acgtatttgg	gcaggcgcct	tattctggta	taaatattac	19380
aaaggagggt	attcaaatag	gtgtcgaagg	tcaaacacct	aaatatgccg	ataaaacatt	19440
tcaacctgaa	cctcaaatag	gagaatctca	gtggtacgaa	actgaaatta	atcatgcagc	19500
taggagagtc	cttaaaaaga	ctaccccaat	gaaaccatgt	tacggttcat	atgcaaaacc	19560
cacaaatgaa	aatggagggc	aaggcattct	tgtaaagcaa	caaaatggaa	agctagaaag	19620
tcaagtggaa	atgcaatttt	tctcaactac	tgaggcgacc	gcaggcaatg	gtgataactt	19680
gactcctaaa	gtggtattgt	acagtgaaga	tgtagatata	gaaaccccag	acactcatat	19740
ttcttacatg	cccactatta	aggaaggtaa	ctcacgagaa	ctaatgggcc	aacaatctat	19800
gcccaacagg	cctaattaca	ttgcttttag	ggacaatttt	attggtctaa	tgtattacaa	19860
cagcacgggt	aatatgggtg	ttctggcggg	ccaagcatcg	cagttgaatg	ctgttgtaga	19920
tttgcaagac	agaaacacag	agctttcata	ccagcttttg	cttgattcca	ttggtgatag	19980
aaccaggtac	ttttctatgt	ggaatcaggc	tgttgacagc	tatgatccag	atgttagaat	20040
tattgaaaat	catggaactg	aagatgaact	tccaaattac	tgctttccac	tgggaggtgt	20100
gattaataca	gagactctta	ccaaggtaaa	acctaaaaca	ggtcaggaaa	atggatggga	20160
aaaagatgct	acagaatttt	cagataaaaa	tgaaataaga	gttggaaata	attttgccat	20220
ggaaatcaat	ctaaatgcca	acctgtggag	aaatttcctg	tactccaaca	tagcgctgta	20280
tttgcccgac	aagctaaagt	acagtecttc	caacgtaaaa	atttctgata	acccaaacac	20340
ctacgactac	atgaacaagc	gagtggtggc	tcccgggtta	gtggactgct	acattaacct	20460
tggagcacgc	tggtcccttg	actatatgga	caacgtcaac	ccatttaacc	accacegeaa	20520
tgctggcctg	cgctaccgct	caatgttgct	gggcaatggt	cgctatgtgc	ccttccacat	20520
ccaggtgcct	cagaagttct	ttgccattaa	aaacctcctt	ctcctgccgg	geteatacae	20580
ctacgagtgg	aacttcagga	aggatgttaa	catggttctg	cagagetece	taggaaatga	20700
cctaagggtt	gacggagcca	gcattaagtt	tgatagcatt	tgcctttacg	ccaccucu	20760
ccccatggcc	cacaacaccg	cctccacgct	tgaggccatg	cttagaaacg	acaccaacga	20700
ccagtccttt	aacgactatc	tctccgccgc	caacatgctc	taccctatac	ccgccaacgc	20820
taccaacgtg	cccatatcca	tececteceg	caactgggcg	gettteegeg	getgggeett	20940
cacgcgcctt	aagactaagg	aaaccccatc	actgggctcg	ggctacgacc	Cttattacac	21000
ctactctggc	tctataccct	acctagatgg	aaccttttac	ctcaaccaca	cctttaagaa	21060
ggtggccatt	acctttgact	cttctgtcag	ctggcctggc	aatgaccgcc	tgettacecc	21120
caacgagttt	gaaattaagc	gctcagttga	cggggagggt	tacaacgttg	cccagrataa	21120
catgaccaaa	gactggttcc	tggtacaaat	gctagctaac	Lacadcattg	getaceaygg	21240
cttctatatc	ccagagagct	acaaggaccg	catgtactee	ttctttagaa	terrestect	21300
catgagccgt	caggtggtgg	atgatactaa	atacaaggac	caccaacagg	rogageacect	21360
acaccaacac	aacaactctg	gatttgttgg	ctaccttgcc	cccaccatgc	gcgaaggaca	21420
ggcctaccct	gctaacttcc	cctatccgct	tataggcaag	accycagttg	ataactttat	21420
ccagaaaaag	tttctttgcg	atcgcaccct	ttggcgcatc	ccattctcca	gtaactttat	21540
gtccatgggc	gcactcacag	acctgggcca	aaaccttctc	cacgccaact	ccgcccacgc	21540
gctagacatg	acttttgagg	tggatcccat	ggacgagccc	accellent	atgttttgtt	22000

				ggcgtcatcg		21660
				agaagcaagc		21720
				ccattgtcaa		21780
				caggctttgt		21840
				ctgggggcgt		21900
				ttgagccctt		21960
_				cactcctgcg		22020
				ccacccaaag		22080
				tccacgcctt		22140
				ttaccggggt		22200
				accaggaaca		22260
	-			cgcagattag		22320
-				gagacacttt		22380
				ccacccttgc		22440
				ccactggcag		22500
				ccatccgcgg		22560
				ttagcaggtc		22620
				agttgcgata		22680
				ccagcacgct		22740
				acggagtcaa		22800
				actcgcaccg		22860
				cctgcataaa		22920
				acatgccgca		22980
gaaaactgat	tggccggaca	ggccgcgtcg	tgcacgcagc	accttgcgtc	ggtgttggag	23040
atctgcacca	catttcggcc	ccaccggttc	ttcacgatct	tggccttgct	agactgctcc	23100
ttcagcgcgc	gctgcccgtt	ttcgctcgtc	acatccattt	caatcacgtg	ctccttattt	23160
				tctcagcgca		23220
cacaacgcgc	agcccgtggg	ctcgtgatgc	ttgtaggtca	cctctgcaaa	cgactgcagg	23280
				tgttgctggt		23340
				cggccgccag		23400
tggtcaggca	gtagtttgaa	gttcgccttt	agatcgttat	ccacgtggta	cttgtccatc	23460
				cgatcggcac		23520
				cetetteete		23580
				ctgtgcgctt		23640
				tttgtagcgc		23700
				ggcgctcggg		23760
				ccgccgaggt		23820
				cttcctcgtc		23880
				gcggcggcga		23940
				cgcgtccgcg		24000
				cctataggca		24060
				ctgagttcgc		24120
				aggcaccccc		24180
				aagacgacga		24240
				aggcaaacga		24300
				gagacgacgt		24360
				aagagcgcag		24420
-				tattctcacc		24480
-				gcctcaactt		24540
-				tccaaaactg		24600
				tggccttgcg		24660
				tctttgaggg		24720
				gcgaaaatga		24780
				ccgtactaaa		24840
gaggtcaccc	actttgccta	cccggcactt	aacctacccc	ccaaggtcat	gagcacagtc	24900

atgagtgagc	tgatcgtgcg	ccgtgcgcag	cccctggaga	gggatgcaaa	tttgcaagaa	24960
caaacagagg	agggcctacc	cgcagttggc	gacgagcagc	tagcgcgctg	gcttcaaacg	25020
cgcgagcctg	ccgacttgga	ggagcgacgc	aaactaatga	tggccgcagt	gctcgttacc	25080
gtggagcttg	agtgcatgca	gcggttcttt	gctgacccgg	agatgcagcg	caagctagag	25140
gaaacattgc	actacacctt	tcgacagggc	tacgtacgcc	aggcctgcaa	gatctccaac	25200
gtggagctct	gcaacctggt	ctcctacctt	ggaattttgc	acgaaaaccg	ccttgggcaa	25260
aacgtgcttc	attccacgct	caagggcgag	g cgcgccgcg	actacgtccg	cgactgcgtt	25320
tacttatttc	tatgctacac	ctggcagacg	gccatgggcg	tttggcagca	gtgcttggag	25380
gagtgcaacc	tcaaggagct	gcagaaactg	ctaaagcaaa	acttgaagga	cctatggacg	25440
gccttcaacg	agcgctccgt	ggccgcgcac	ctggcggaca	tcattttccc	cgaacgcctg	25500
cttaaaaccc	tgcaacaggg	tctgccagac	ttcaccagtc	aaagcatgtt	gcagaacttt	25560
aggaacttta	tcctagagcg	ctcaggaatc	ttgcccgcca	cctgctgtgc	acttcctagc	25620
gactttgtgc	ccattaagta	ccgcgaatgc	cctccgccgc	tttggggcca	ctgctacctt	25680
ctgcagctag	ccaactacct	tgcctaccac	tctgacataa	tggaagacgt	gagcggtgac	25740
ggtctactgg	agtgtcactg	tcgctgcaac	ctatgcaccc	cgcaccgctc	cctggtttgc	25800
aattcgcagc	tgcttaacga	aagtcaaatt	atcggtacct	ttgagctgca	gggtccctcg	25860
cctgacgaaa	agtccgcggc	tccggggttg	aaactcactc	cggggctgtg	gacgtcggct	25920
taccttcgca	aatttgtacc	tgaggactac	cacgcccacg	agattaggtt	ctacgaagac	25980
caatcccgcc	cgccaaatgc	ggagcttacc	gcctgcgtca	ttacccaggg	ccacattctt	26040
ggccaattgc	aagccatcaa	caaagcccgc	caagagtttc	tgctacgaaa	gggacggggg	26100
gtttacttgg	acccccagtc	cggcgaggag	ctcaacccaa	tccccccgcc	gccgcagccc	26160
tatcagcagc	agccgcgggc	ccttgcttcc	caggatggca	cccaaaaaga	agctgcagct	26220
gccgccgcca	cccacggacg	aggaggaata	ctgggacagt	caggcagagg	aggttttgga	26280
cgaggaggag	gaggacatga	tggaagactg	ggagagccta	gacgaggaag	cttccgaggt	26340
cgaagaggtg	tcagacgaaa	caccgtcacc	ctcggtcgca	ttcccctcgc	cggcgcccca	26400
gaaatcggca	accggttcca	gcatggctac	aacctccgct	cctcaggcgc	cgccggcact	26460
gcccgttcgc	cgacccaacc	gtagatggga	caccactgga	accagggccg	gtaagtccaa	26520
gcagccgccg	ccgttagccc	aagagcaaca	acagcgccaa	ggctaccgct	catggcgcgg	26580
gcacaagaac	gccatagttg	cttgcttgca	agactgtggg	ggcaacatct	ccttcgcccg	26640
ccgctttctt	ctctaccatc	acggcgtggc	cttcccccgt	aacatcctgc	attactaccg	26700
tcatctctac	agcccatact	gcaccggcgg	cagcggcagc	ggcagcaaca	gcagcggcca	26760
cacagaagca	aaggcgaccg	gatagcaaga	ctctgacaaa	gcccaagaaa	tccacagcgg	26820
cggcagcagc	aggaggagga	gcgctgcgtc	tggcgcccaa	cgaacccgta	tcgacccgcg	26880
agcttagaaa	caggattttt	cccactctgt	atgctatatt	tcaacagagc	aggggccaag	26940
aacaagagct	gaaaataaaa	aacaggtctc	tgcgatccct	cacccgcagc	tgcctgtatc	27000
acaaaagcga	agatcagctt	cggcgcacgc	tggaagacgc	ggaggctctc	ttcagtaaat	27060
actgcgcgct	gactcttaag	gactagtttc	gcgccctttc	tcaaatttaa	gcgcgaaaac	27120
tacgtcatct	ccagcggcca	cacccggcgc	cagcacctgt	cgtcagcgcc	attatgagca	27180
aggaaattcc	cacgccctac	atgtggagtt	accagccaca	aatgggactt	geggetggag	27240
ctgcccaaga	ctactcaacc	cgaataaact	acatgagcgc	gggaccccac	atgatatece	27300
gggtcaacgg	aatccgcgcc	caccgaaacc	gaattetett	ggaacaggcg	gctattacca	27360
ccacacctcg	taataacctt	aatccccgta	gttggcccgc	tgccctggtg	taccaggaaa	27420
gtcccgctcc	caccactgtg	gtacttccca	gagacgccca	ggccgaagtt	cagatgacta	27480
actcaggggc	gcagcttgcg	ggcggctttc	gtcacagggt	gcggtcgccc	gggcagggta	27540
taactcacct	gacaatcaga	gggcgaggta	ttcagctcaa	cgacgagtcg	grgagereer	27600
cgcttggtct	ccgtccggac	gggacatttc	agatcggcgg	cgccggccgt	CCETCATECA	27660
cgcctcgtca	ggcaatccta	actctgcaga	cctcgtcctc	tgagccgcgc	tetggaggca	27720
ttggaactct	gcaatttatt	gaggagtttg	tgccatcggt	ctactttaac	cccttctcgg	27780
gacctcccgg	ccactatccg	gatcaattta	ttcctaactt	tgacgcggta	aaggactcgg	27840
cggacggcta	cgactgaatg	ttaagtggag	aggcagagca	actgcgcctg	aaacacctgg	27900
tccactgtcg	ccgccacaag	tgctttgccc	gcgactccgg	tgagttttgc	tactttgaat	27960
tgcccgagga	tcatatcgag	ggcccggcgc	acggcgtccg	gcttaccgcc	cagggagagc	28020
ttgcccgtag	cctgattcgg	gagtttaccc	agegeeect	gctagttgag	cgggacaggg	28080
gaccctgtgt	tctcactgtg	atttgcaact	gtcctaacct	tggattacat	caagatcttt	28140
gttgccatct	ctgtgctgag	tataataaat	acagaaatta	aaatatactg	gggcccctat	28200

cgccatcct	g taaacgccac	cgtcttcacc	cgcccaagca	aaccaaggcg	aaccttacct	28260
	a acatctctcc					28320
	a acctctccga					28380
tgccgggaa	c gtacgagtgc	gtcaccggcc	gctgcaccac	acctaccgcc	tgaccgtaaa	28440
ccagacttt	t teeggaeaga	cctcaataac	tctgtttacc	agaacaggag	gtgagcttag	28500
aaaaccctt	a gggtattagg	ccaaaggcgc	agctactgtg	gggtttatga	acaattcaag	28560
	g g <mark>gctatt</mark> cta					28620
tcttgtgat	t ctctttattc	ttatactaac	gcttctctgc	ctaaggctcg	ccgcctgctg	28680
	t tgcatttatt					28740
	a tcctaggttt					28800
	g <mark>agccagc</mark> ctg					28860
cttataaaa	t gcaccacaga	acatgaaaag	ctgcttattc	gccacaaaaa	caaaattggc	28920
aagtatgct	g tttatgctat	ttggcagcca	ggtgacacta	cagagtataa	tgttacagtt	28980
ttccagggt	a aaagtcataa	aacttttatg	tatacttttc	cattttatga	aatgtgcgac	29040
	t acatgagcaa					29100
actggcact	t tctgctgcac	tgctatgcta	attacagtgc	tcgctttggt	ctgtacccta	29160
ctctatatt	a aatacaaaag	cagacgcagc	tttattgagg	aaaagaaaat	gccttaattt	29220
actaagtta	c aaagctaatg	tcaccactaa	ctgctttact	cgctgcttgc	aaaacaaatt	29280
caaaaagtt	a gcattataat	tagaatagga	tttaaacccc	ccggtcattt	cctgctcaat	29340
accattccc	c tgaacaattg	actctatgtg	ggatatgctc	cagcgctaca	accttgaagt	29400
	t ggatgtcagc					29460
gtccaacta	c agcgacccac	cctaacagag	atgaccaaca	caaccaacgc	ggccgccgct	29520
accggactt	a catctaccac	aaatacaccc	caagtttctg	cctttgtcaa	taactgggat	29580
	a tgtggtggtt					29640
ctcatctgc	t gcctaaagcg	caaacgcgcc	cgaccaccca	tctatagtcc	catcattgtg	29700
ctacaccca	a acaatgatgg	aatccataga	ttggacggac	tgaaacacat	gttcttttct	29760
cttacagta	t gattaaatga	gacatgattc	ctcgagtttt	tatattactg	acccttgttg	29820
	g tgcgtgctcc					29880
cagccttca	c agtctatttg	ctttacggat	ttgtcaccct	cacgctcatc	tgcagcctca	29940
tcactgtgg	t catcgccttt	atccagtgca	ttgactgggt	ctgtgtgcgc	tttgcatatc	30000
tcagacacc	a tececagtae	agggacagga	ctatagctga	gcttcttaga	attctttaat	30060
tatgaaatt	t actgtgactt	ttctgctgat	tatttgcacc	ctatctgcgt	tttgttcccc	30120
gacctccaa	g cctcaaagac	atatatcatg	cagattcact	cgtatatgga	atattccaag	30180
ttgctacaa	t gaaaaaagcg	atctttccga	agcctggtta	tatgcaatca	tctctgttat	30240
ggtgttctg	c agtaccatct	tagccctagc	tatatatccc	taccttgaca	ttggctggaa	30300
acgaataga	t gccatgaacc	acccaacttt	ccccgcgccc	gctatgcttc	cactgcaaca	30360
agttgttgc	c ggcggctttg	tcccagccaa	tcagcctcgc	cccacttctc	ccacccccac	30420
tgaaatcag	c tactttaatc	taacaggagg	agatgactga	caccctagat	ctagaaatgg	30480
acggaatta	t tacagagcag	cgcctgctag	aaagacgcag	ggcagcggcc	gagcaacagc	30540
	a agagctccaa					30600
gtctggtaa	a gcaggccaaa	gtcacctacg	acagtaatac	caccggacac	cgccttagct	30660
acaagttgc	c aaccaagcgt	cagaaattgg	tggtcatggt	gggagaaaag	cccattacca	30720
taactcagc	a ctcggtagaa	accgaaggct	gcattcactc	accttgtcaa	ggacctgagg	30780
atctctgca	c ccttattaag	accctgtgcg	gtctcaaaga	tcttattccc	tttaactaat	30840
	t aataaagcat					30900
	a cctccttgcc					30960
aactttctc	c acaatctaaa	tggaatgtca	gtttcctcct	gttcctgtcc	atccgcaccc	31020
	a tgttgttgca					31080
gtgtatcca	t atgacacgga	aaccggtcct	ccaactgtgc	cttttcttac	tcctcccttt	31140
gtatccccc	a atgggtttca	agagagtccc	cctggggtac	tctctttgcg	cctatccgaa	31200
	a cctccaatgg					31260
	a accttacctc					31320
	a taaacctgga					31380
	g ccgcacctct					31440
	g tgcacgactc					31500

~~~~~~~~~~~	tagccctgca	aacatcanno	ccctcacca	ccaccgatag	cagtaccctt	31560
gaaggaaagc	cctcacccc	tctaactact	accactagta	gettgggeat	tgacttgaaa	31620
gaggggattt	atacacaaaa	tagaaaacta	ggactaaagt	acqqqqctcc	tttgcatgta	31680
gageceacee	taaacacttt	raccutacca	actootccao	gtgtgactat	taataatact	31740
tacttacese	ctaaagttac	tagaacetta	agttttgatt	cacaaggcaa	tatgcaactt	31800
antataggaa	gaggactaag	cattcattct	caaaacadac	gccttatact	tgatgttagt	31860
tatecattta	atgctcaaaa	ccaactaaat	ctaagactag	gacaggggcc	tetttttata	31920
nactogette	acaacttgga	tattaactac	aacaaaaaacc	tttacttatt	tacagettea	31980
aacccagccc	aaaagcttga	gattaaccta	aggactgcca	aggggttgat	atttgacact	32040
aacaacccca	ccattaatgc	aggedaceed	cttgaatttg	gttcacctaa	tocaccaaac	32100
acagecatag	tcaaaacaaa	aattooccat	ggcctagaat	ttgattcaaa	caaggctatg	32160
acaaaccccc	taggaactgg	ccttagtttt	gacagcacag	gtgccattac	agtaggaaac	32220
geecetaaac	ataagctaac	tttatagacc	acaccacctc	catctcctaa	ctgtagacta	32280
addacaacg	aagatgctaa	actcactttq	gtcttaacaa	aatgtggcag	tcaaatactt	32340
aatycayaya	cagttttggc	tattaaaaac	agtttggctc	caatatctgg	aacagttcaa	32400
getacagete	ttattataag	atttgacgaa	aatagagtac	tactaaacaa	tteetteeta	32460
agryctcatt	attggaactt	tagaaatgga	gatcttactg	aaggcacagg	ctatacaaac	32520
gacccagaat	ttatgcctaa	cctatcacct	tatccassat	ctcaccottaa	aactgccaaa	32580
getgttggat	tcagtcaagt	ttacttaaac	ggagagaaa	ctaaacctgt	aacactaacc	32640
agtaacatty	acggtacaca	cassocate	gagacadaa	caadtocata	ctctatotca	32700
attacactaa	actggtctgg	ggaaacagga	attaatmaaa	tatttgccac	atcctcttac	32760
cettettant	acattgccca	anaataaana	atcatttata	ttatotttca	acgtgtttat	32820
actititicat	cagaaaattt	gaataaaga	ttcattcact	agtatagece	caccaccaca	32880
trestates	agatcaccgt	caagecatee	aactcaccage	accetactat	tcaacctgcc	32940
tagettatae	caacacacag	accetaacca	aactcacaga	caactaacct	taaaaaacat	33000
acctccccc	Caacacacag	tottottogc	tattatatta	cacacacttt	cctatcaaac	33060
catateatgg	gtaacagaca	tattettayy	cacacacacac	taaattaaat	tcatatcact	33120
caaacgctca	tcagtgatat	caacaaacce	anattagaat	tacttaagu	acaacaaaaa	33180
greeagerge	tgagccacag	getgetgtee	atcategige	atcaccatac	geggegaagg	33240
agaagtccac	gcctacatgg	gggtagagte	acaaccgryc	atcaggacag	aatacaacat	33300
ctgcagcagc	gcgcgaataa	actgetgeeg	cegeegeeee	gteetgeagg	ttatacaacac	33360
ggcagtggtc	tcctcagcga	tgattegeac	ogecegeage	taactccacc	acaccaccac	33420
ggcacagcag	cgcaccctga	teteaettaa	accaycacay	agetestee	caagcaccac	33480
aatattgttc	aaaatcccac	agtgcaaggc	gergraceca	aaguccacgg	contratasa	33540
agaacccacg	tggccatcat	accacaageg	caggiagati	ttereseet	cccccacaaa	33600
cacgctggac	ataaacatta	cccccccgg	catguigua	ptanagagg	taaaaaaaa	33660
tataaacctc	tgattaaaca	tggcgccatc	caccaccacc	ctadactagt	rangaracca	33720
ctgcccgccg	gctatacact	gcagggaacc	gggactggaa	caatgacagt	ggagageeea	33780
ggactcgtaa	ccatggatca	tcatgctcgt	catgatatea	atgutggcac	tatacaggca	33840
cacgtgcata	cacttcctca	ggattacaag	ctecteeege	gttagaacca	catectayyy	33900
aacaacccat	tcctgaatca	gcgtaaatcc	cacactgcag	ggaagacete	geacycaact	33960
cacgttgtgc	attgtcaaag	tgttacattc	gggcagcagc	ggatgatect	teagrarge	34020
agegegggtt	tctgtctcaa	aaggaggtag	acgateceta	ctgtacggag	tgegeegaya	34020
caaccgagat	cgtgttggtc	gtagtgtcat	gccaaatgga	acgccggacg	tayteatatt	34140
tcctgaagca	aaaccaggtg	cgggcgtgac	aaacagatct	gcgtctccgg	tetegeeget	34200
tagatcgctc	tgtgtagtag	ttgtagtata	tccactctct	caaagcatcc	aggegeeeee	34260
tggcttcggg	ttctatgtaa	actccttcat	gcgccgctgc	cctgataaca	cecaecaecg	34320
cagaataagc	cacacccagc	caacctacac	attegttetg	cgagtcacac	acgggaggag	34320
cgggaagagc	tggaagaacc	atgtttttt	ttttattcca	aaagattatc	caaaacctca	
aaatgaagat	ctattaagtg	aacgcgctcc	cctccggtgg	cgtggtcaaa	ctctacagcc	34440
aaagaacaga	taatggcatt	tgtaagatgt	tgcacaatgg	cttccaaaag	gcaaacggcc	34500
ctcacgtcca	agtggacgta	aaggctaaac	ccttcagggt	gaatctcctc	tataaacatt	34560
ccagcacctt	caaccatgcc	caaataattc	tcatctcgcc	accttctcaa	tatatctcta	34620
agcaaatccc	gaatattaag	tccggccatt	gtaaaaatct	getecagage	gccctccacc	34680
ttcagcctca	agcagcgaat	catgattgca	aaaattcagg	ttcctcacag	acctgtataa	34740
gattcaaaag	cggaacatta	acaaaaatac	cgcgatcccg	taggtccctt	cgcagggcca	34800

```
34860
gctgaacata atcgtgcagg tctgcacgga ccagcgcggc cacttccccg ccaggaacct
tgacaaaaga acccacactg attatgacac gcatactcgg agctatgcta accagcgtag
                                                                    34920
ccccgatgta agctttgttg catgggcggc gatataaaat gcaaggtgct gctcaaaaaa
                                                                    34980
                                                                    35040
traggraaag cotogogoaa aaaagaaago acatogtagt catgotoatg cagataaagg
                                                                    35100
caggtaaget ceggaaceae cacagaaaaa gacaecattt tteteteaaa catgtetgeg
ggtttctgca taaacacaaa ataaaataac aaaaaaacat ttaaacatta gaagcctgtc
                                                                    35160
                                                                    35220
ttacaacaqq aaaaacaacc cttataaqca taagacggac tacggccatg ccggcgtgac
cgtaaaaaaa ctggtcaccg tgattaaaaa gcaccaccga cagctcctcg gtcatgtccg
                                                                    35280
gagtcataat gtaagactcg gtaaacacat caggttgatt catcggtcag tgctaaaaaag
                                                                    35340
cgaccgaaat agcccggggg aatacatacc cgcaggcgta gagacaacat tacagccccc
                                                                    35400
ataggaggta taacaaaatt aataggagag aaaaacacat aaacacctga aaaaccctcc
                                                                    35460
tgcctaggca aaatagcacc ctcccgctcc agaacaacat acagcgcttc acagcggcag
                                                                    35520
                                                                    35580
cctaacagtc agccttacca gtaaaaaaga aaacctatta aaaaaacacc actcgacacg
gcaccagete aatcagteac agtgtaaaaa agggeeaagt gcagagegag tatatatagg
                                                                    35640
actaaaaaat gacgtaacgg ttaaagtcca caaaaaacac ccagaaaaacc gcacgcgaac
                                                                    35700
                                                                    35760
ctacgcccag aaacgaaagc caaaaaaccc acaacttcct caaatcgtca cttccgtttt
                                                                    35820
cccacgttac gtaacttccc attttaagaa aactacaatt cccaacacat acaagttact
                                                                    35880
ccgccctaaa acctacgtca cccgccccgt tcccacgccc cgcgccacgt cacaaactcc
acccctcat tatcatattg gcttcaatcc aaaataaggt atattattga tgatg
                                                                    35935
<210> 9
<211> 35935
<212> DNA
<213> Adenovirus serotype 5
<400> 9
                                                                       60
catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt
                                                                      120
ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt
gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg
                                                                      180
gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag
                                                                      240
                                                                      300
taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga
                                                                      360
agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggccgcggg
gactttgacc gtttacgtgg agactegece aggtgttttt ctcaggtgtt ttccgcgttc
                                                                      420
cgggtcaaag ttggcgtttt attattatag tcagctgacg tgtagtgtat ttatacccgg
                                                                      480
                                                                      540
tgagttcctc aagaggccac tcttgagtgc cagcgagtag agttttctcc tccgagccgc
                                                                      600
tccgacaccg ggactgaaaa tgagacatat tatctgccac ggaggtgtta ttaccgaaga
                                                                      660
aatggccgcc agtcttttgg accagctgat cgaagaggta ctggctgata atcttccacc
tectagecat tttgaaccae ctaccettea egaactgtat gatttagaeg tgaeggeece
                                                                      720
                                                                      780
cgaagatccc aacgaggagg cggtttcgca gatttttccc gactctgtaa tgttggcggt
gcaggaaggg attgacttac tcacttttcc gccggcgccc ggttctccgg agccgcctca
                                                                      840
cctttcccgg cagcccgagc agccggagca gagagccttg ggtccggttt ctatgccaaa
                                                                      900
ccttgtaccg gaggtgatcg atcttacctg ccacgaggct ggctttccac ccagtgacga
                                                                      960
                                                                     1020
cgaggatgaa gagggtgagg agtttgtgtt agattatgtg gagcaccccg ggcacggttg
                                                                     1080
caggicity cattatcacc ggaggaatac gggggaccca gatattatyt gitcgcttty
ctatatgagg acctgtggca tgtttgtcta cagtaagtga aaattatggg cagtgggtga
                                                                     1140
tagagtggtg ggtttggtgt ggtaattttt tttttaattt ttacagtttt gtggtttaaa
                                                                     1200
qaattttgta ttgtgatttt tttaaaaggt cetgtgtetg aacetgagee tgageeegag
                                                                     1260
ccagaaccgg agcctgcaag acctacccgc cgtcctaaaa tggcgcctgc tatcctgaga
                                                                     1320
cgcccgacat cacctgtgtc tagagaatgc aatagtagta cggatagctg tgactccggt
                                                                     1380
ccttctaaca cacctcctga gatacacccg gtggtcccgc tgtgccccat taaaccagtt
                                                                     1440
                                                                     1500
gccgtgagag ttggtgggcg tcgccaggct gtggaatgta tcgaggactt gcttaacgag
cetgggcaac etttggactt gagetgtaaa egeeceagge cataaggtgt aaacetgtga
                                                                     1560
ttgcgtgtgt ggttaacgcc tttgtttgct gaatgagttg atgtaagttt aataaagggt
                                                                     1620
gagataatgt ttaacttgca tggcgtgtta aatggggcgg ggcttaaagg gtatataatg
                                                                     1680
cgccgtgggc taatcttggt tacatctgac ctcatggagg cttgggagtg tttggaagat
                                                                     1740
```

ttttctgctg	tgcgtaactt	gctggaacag	agctctaaca	gtacctcttg	gttttggagg	1800
tttctgtggg	gctcatccca	ggcaaagtta	gtctgcagaa	ttaaggagga	ttacaagtgg	1860
gaatttgaag	agcttttgaa	atcctgtggt	gagctgtttg	attctttgaa	tctgggtcac	1920
caggcgcttt	tccaagagaa	ggtcatcaag	actttggatt	tttccacacc	ggggcgcgct	1980
geggetgetg	ttgctttttt	gagttttata	aaggataaat	ggagcgaaga	aacccatctg	2040
agcggggggt	acctgctgga	ttttctggcc	atgcatctgt	ggagagcggt	tgtgagacac	2100
aagaatcgcc	tgctactgtt	gtcttccgtc	cgcccggcga	taataccgac	ggaggagcag	2160
cagcagcagc	aggaggaagc	caggcggcgg	cggcaggagc	agagcccatg	gaacccgaga	2220
gccggcctgg	accctcggga	atgaatgttg	tacaggtggc	tgaactgtat	ccagaactga	2280
gacgcatttt	gacaattaca	gaggatgggc	aggggctaaa	gggggtaaag	agggagcggg	2340
gggcttgtga	ggctacagag	gaggctagga	atctagcttt	tagcttaatg	accagacacc	2400
gtcctgagtg	tattactttt	caacagatca	aggataattg	cgctaatgag	cttgatctgc	2460
tggcgcagaa	gtattccata	gagcagctga	ccacttactg	gctgcagcca	ggggatgatt	2520
ttgaggaggc	tattagggta	tatgcaaagg	tggcacttag	gccagattgc	aagtacaaga	2580
tcagcaaact	tgtaaatatc	aggaattgtt	gctacatttc	tgggaacggg	gccgaggtgg	2640
agatagatac	ggaggatagg	gtggccttta	gatgtagcat	gataaatatg	tggccggggg	2700
tgcttggcat	ggacggggtg	gttattatga	atgtaaggtt	tactggcccc	aattttagcg	2760
gtacggtttt	cctggccaat	accaacctta	tcctacacgg	tgtaagcttc	tatgggttta	2820
acaatacctg	tgtggaagcc	tggaccgatg	taagggttcg	gggctgtgcc	ttttactgct	2880
gctggaaggg	ggtggtgtgt	cgccccaaaa	gcagggcttc	aattaagaaa	tgcctctttg	2940
aaaggtgtac	cttgggtatc	ctgtctgagg	gtaactccag	ggtgcgccac	aatgtggcct	3000
ccgactgtgg	ttgcttcatg	ctagtgaaaa	gcgtggctgt	gattaagcat	aacatggtat	3060
gtggcaactg	cgaggacagg	gcctctcaga	tgctgacctg	ctcggacggc	aactgtcacc	3120
tgctgaagac	cattcacgta	gccagccact	ctcgcaaggc	ctggccagtg	tttgagcata	3180
acatactgac	ccgctgttcc	ttgcatttgg	gtaacaggag	gggggtgttc	ctaccttacc	3240
aatgcaattt	gagtcacact	aagatattgc	ttgagcccga	gagcatgtcc	aaggtgaacc	3300
tgaacggggt	gtttgacatg	accatgaaga	tctggaaggt	gctgaggtac	gatgagaccc	3360
gcaccaggtg	cagaccctgc	gagtgtggcg	gtaaacatat	taggaaccag	cctgtgatgc	3420
tggatgtgac	cgaggagctg	aggcccgatc	acttggtgct	ggcctgcacc	cgcgctgagt	3480
ttggctctag	cgatgaagat	acagattgag	gtactgaaat	gtgtgggcgt	ggcttaaggg	3540
tgggaaagaa	tatataaggt	gggggtctta	tgtagttttg	tatctgtttt	gcagcagccg	3600
ccgccgccat	gagcaccaac	tcgtttgatg	gaagcattgt	gagctcatat	ttgacaacgc	3660
gcatgccccc	atgggccggg	gtgcgtcaga	atgtgatggg	ctccagcatt	gatggtcgcc	3720
ccgtcctgcc	cgcaaactct	actaccttga	cctacgagac	cgtgtctgga	acgccgttgg	3780
agactgcagc	ctccgccgcc	gcttcagccg	ctgcagccac	cgcccgcggg	attgtgactg	3840
actttgcttt	cctgagcccg	cttgcaagca	gtgcagcttc	ccgttcatcc	gcccgcgatg	3900
acaagttgac	ggctcttttg	gcacaattgg	attctttgac	ccgggaactt	aatgtcgttt	3960
ctcagcagct	gttggatctg	cgccagcagg	tttctgccct	gaaggcttcc	tcccctccca	4020
atgcggttta	aaacataaat	aaaaaaccag	actctgtttg	gatttggatc	aagcaagtgt	4080
cttgctgtct	ttatttaggg	gttttgcgcg	cgcggtaggc	ccgggaccag	cggtctcggt	4140
cgttgagggt	cctgtgtatt	ttttccagga	cgtggtaaag	gtgactctgg	atgttcagat	4200
acatgggcat	aagcccgtct	ctggggtgga	ggtagcacca	ctgcagagct	tcatgctgcg	4260
gggtggtgtt	gtagatgatc	cagtcgtagc	aggagcgctg	ggcgtggtgc	ctaaaaatgt	4320
ctttcagtag	caagctgatt	gccaggggca	ggcccttggt	gtaagtgttt	acaaagcggt	4380
taagctggga	<b>tgg</b> gtgcata	cgtggggata	tgagatgcat	cttggactgt	atttttaggt	4440
tggctatgtt	cccagccata	tccctccggg	gattcatgtt	gtgcagaacc	accagcacag	4500
tgtatccggt	gcacttggga	aatttgtcat	gtagcttaga	aggaaatgcg	tggaagaact	4560
tggagacgcc	cttgtgacct	ccaagatttt	ccatgcattc	gtccataatg	atggcaatgg	4620
gcccacgggc	ggcggcctgg	gcgaagatat	ttctgggatc	actaacgtca	tagttgtgtt	4680
ccaggatgag	atcgtcatag	gccattttta	caaagcgcgg	gcggagggtg	ccagactgcg	4740
gtataatggt	tccatccggc	ccaggggcgt	agttaccctc	acagatttgc	atttcccacg	4800
ctttgagttc	agatgggggg	atcatgtcta	cctgcggggc	gatgaagaaa	acggtttccg	4860
gggtagggga	gatcagctgg	gaagaaagca	ggttcctgag	cagctgcgac	ttaccgcagc	4920
cggtgggccc	gtaaatcaca	cctattaccg	ggtgcaactg	gtagttaaga	gagctgcagc	4980
tgccgtcatc	cctgagcagg	ggggccactt	cgttaagcat	gtccctgact	cgcatgtttt	5040

				tagcagttct		5100
				gcttttgagc		5160
				ggcatctcga		5220
-				agtagtcggt		5280
				gtcagcgtag		5340
				cgcttgaggc		5400
				aggtagcatt		5460
				agcttgccct		5520
				ttgggcgcga		5580
				gtctcgcatt		5640
				ccatgctttt		5700
				acgaaaaggc		5760
				ccgcggtcct		5820
				agcacgaagg		5880
				tccagggtgt		5940
gtcgccctct	tcggcatcaa	ggaaggtgat	tggtttgtag	gtgtaggcca	cgtgaccggg	6000
tgttcctgaa	ggggggctat	aaaagggggt	gggggcgcgt	tcgtcctcac	tetetteege	6060
atcgctgtct	gcgagggcca	gctgttgggg	tgagtactcc	ctctgaaaag	cgggcatgac	6120
ttctgcgcta	agattgtcag	tttccaaaaa	cgaggaggat	ttgatattca	cctggcccgc	6180
ggtgatgcct	ttgagggtgg	ccgcatccat	ctggtcagaa	aagacaatct	ttttgttgtc	6240
aagcttggtg	gcaaacgacc	cgtagagggc	gttggacagc	aacttggcga	tggagcgcag	6300
ggtttggttt	ttgtcgcgat	cggcgcgctc	cttggccgcg	atgtttagct	gcacgtattc	6360
gcgcgcaacg	caccgccatt	cgggaaagac	ggtggtgcgc	tcgtcgggca	ccaggtgcac	6420
gcgccaaccg	cggttgtgca	gggtgacaag	gtcaacgctg	gtggctacct	ctccgcgtag	6480
gcgctcgttg	gtccagcaga	ggcggccgcc	cttgcgcgag	cagaatggcg	gtagggggtc	6540
tagctgcgtc	tcgtccgggg	ggtctgcgtc	cacggtaaag	accccgggca	gcaggcgcgc	6600
gtcgaagtag	tctatcttgc	atccttgcaa	gtctagcgcc	tgctgccatg	cgcgggcggc	6660
aagcgcgcgc	tcgtatgggt	tgagtggggg	accccatggc	atggggtggg	tgagcgcgga	6720
ggcgtacatg	ccgcaaatgt	cgtaaacgta	gaggggctct	ctgagtattc	caagatatgt	6780
agggtagcat	cttccaccgc	ggatgctggc	gcgcacgtaa	tcgtatagtt	cgtgcgaggg	6840
				tctgctcgga		6900
cctgaagatg	gcatgtgagt	tggatgatat	ggttggacgc	tggaagacgt	tgaagctggc	6960
				gagtcgcgca		7020
cagctcggcg	gtgacctgca	cgtctagggc	gcagtagtcc	agggtttcct	tgatgatgtc	7080
				aggacaaact		7140
				cggtaagagc		7200
				acgggtagcg		7260
				tccctgacca		7320
				tcccagagca		7380
				tcgttgaaga		7440
				ggcacctcgg		7500
				atgttgtggc		7560
				tttttaagtt		7620
				cagtctgcaa		7680
				atttgcaggt		7740
				atgcagtaga		7800
				tetegegegg		7860
-				acgagetget	-	7920
				agacgctcgg		7980
				gaggagtggc		8040
				tggcttttgt		8100
•				aggttgacct		8160
				gggtttggct		8220
		-		ggagttacgg		8280
		-		ggcggtcgga		8340
caccacgeeg	cycyaycca	aayeecayat	guergegege	ggeggregga	geregatgat	0340

aacatcgcgc	agatgggagc	tgtccatggt	ctggagctcc	cgcggcgtca	ggtcaggcgg	8400
gageteetge	aggtttacct	cgcatagacg	ggtcagggcg	cgggctagat	ccaggtgata	8460
cctaatttcc	aggggctggt	tggtggcggc	gtcgatggct	tgcaagaggc	cgcatccccg	8520
cggcgcgact	acggtaccgc	gcggcgggcg	gtgggccgcg	ggggtgtcct	tggatgatgc	8580
atctaaaagc	ggtgacgcgg	gcgagccccc	ggaggtaggg	ggggctccgg	acccgccggg	8640
agagggggca	ggggcacgtc	ggcgccgcgc	gcgggcagga	gctggtgctg	cgcgcgtagg	8700
ttgctggcga	acgcgacgac	gcggcggttg	atctcctgaa	tctggcgcct	ctgcgtgaag	8760
acgacgggcc	cggtgagctt	gagcctgaaa	gagagttcga	cagaatcaat	ttcggtgtcg	8820
ttgacggcgg	cctggcgcaa	aatctcctgc	acgtctcctg	agttgtcttg	ataggcgatc	8880
tcggccatga	actgctcgat	ctcttcctcc	tggagatctc	cgcgtccggc	tcgctccacg	8940
gtggcggcga	ggtcgttgga	aatgcgggcc	atgagctgcg	agaaggcgtt	gaggcctccc	9000
tcgttccaga	cgcggctgta	gaccacgccc	ccttcggcat	cgcgggcgcg	catgaccacc	9060
tgcgcgagat	tgagctccac	gtgccgggcg	aagacggcgt	agtttcgcag	gcgctgaaag	9120
aggtagttga	gggtggtggc	ggtgtgttct	gccacgaaga	agtacataac	ccagcgtcgc	9180
aacgtggatt	cgttgatatc	ccccaaggcc	tcaaggcgct	ccatggcctc	gtagaagtcc	9240
acggcgaagt	tgaaaaactg	ggagttgcgc	gccgacacgg	ttaactcctc	ctccagaaga	9300
cggatgagct	cggcgacagt	gtcgcgcacc	tcgcgctcaa	aggctacagg	ggcctcttct	9360
tcttcttcaa	tctcctcttc	cataagggcc	tccccttctt	cttcttctgg	cggcggtggg	9420
ggaggggga	cacggcggcg	acgacggcgc	accgggaggc	ggtcgacaaa	gcgctcgatc	9480
atctccccgc	ggcgacggcg	catggtctcg	gtgacggcgc	ggccgttctc	gcgggggcgc	9540
agttggaaga	cgccgcccgt	catgtcccgg	ttatgggttg	gcggggggct	gccatgcggc	9600
agggatacgg	cgctaacgat	gcatctcaac	aattgttgtg	taggtactcc	gccgccgagg	9660
gacctgagcg	agtccgcatc	gaccggatcg	gaaaacctct	cgagaaaggc	gtctaaccag	9720
tcacagtcgc	aaggtaggct	gagcaccgtg	gegggeggea	gegggeggeg	gtcggggttg	9780
tttctggcgg	aggtgctgct	gatgatgtaa	ttaaagtagg	cggtcttgag	acggcggatg	9840
gtcgacagaa	gcaccatgtc	cttgggtccg	gcctgctgaa	tgcgcaggcg	gtcggccatg	9900
ccccaggctt	cgttttgaca	tcggcgcagg	tctttgtagt	agtcttgcat	gagcctttct	9960
accggcactt	cttcttctcc	ttcctcttgt	cctgcatctc	ttgcatctat	cgctgcggcg	10020
gcggcggagt	ttggccgtag	gtggcgccct	cttcctccca	tgcgtgtgac	cccgaagccc	10080
ctcatcggct	gaagcagggc	taggtcggcg	acaacgcgct	cggctaatat	ggcctgctgc	10140
acctgcgtga	gggtagactg	gaagtcatcc	atgtccacaa	agcggtggta	tgcgcccgtg	10200
ttgatggtgt	aagtgcagtt	ggccataacg	gaccagttaa	cggtctggtg	acceggetge	10260
gagagctcgg	tgtacctgag	acgcgagtaa	gccctcgagt	caaatacgta	gtcgttgcaa	10320
gtccgcacca	ggtactggta	tcccaccaaa	aagtgcggcg	gcggctggcg	gtagaggggc	10380
cagcgtaggg	tggccggggc	tccgggggcg	agatcttcca	acataaggcg	atgatatccg	10440
tagatgtacc	tggacatcca	ggtgatgccg	gcggcggtgg	tggaggcgcg	cggaaagtcg	10500
cggacgcggt	tccagatgtt	gcgcagcggc	aaaaagtgct	ccatggtcgg	gacgctctgg	10560
ccggtcaggc	gcgcgcaatc	gttgacgctc	tagaccgtgc	aaaaggagag	cctgtaagcg	10620
ggcactcttc	cgtggtctgg	tggataaatt	cgcaagggta	tcatggcgga	cgaccggggt	10680
tcgagccccg	tatccggccg	teegeegtga	tccatgcggt	taccgcccgc	gtgtcgaace	10740 10800
caggtgtgcg	acgtcagaca	acgggggagt	gctccttttg	getteettee	aggegegeg	10860
gctgctgcgc	tagctttttt	ggccactggc	cgcgcgcagc	gtaagcggtt	aggctggaaa	10920
gcgaaagcat	taagtggctc	gctccctgta	gccggagggt	tattttecaa	gggttgagte	
gcgggacccc	cggttcgagt	ctcggaccgg	ccggactgcg	gcgaacgggg	gtttgeetee	10980
ccgtcatgca	agaccccgct	tgcaaattcc	tccggaaaca	gggacgagcc	cettttttge	11040
ttttcccaga	tgcatccggt	gctgcggcag	atgcgccccc	ctcctcagca	geggeaagag	11100 11160
caagagcagc	ggcagacatg	cagggcaccc	teceeteete	ctaccgcgtc	aggaggggcg	11220
acateegegg	ttgacgcggc	agcagatggt	gattacgaac	ccccgcggcg	eegggeeegg	11220
cactacctgg	acttggagga	gggcgagggc	craacacaac	taggagegee	eteteetgag	11340
cggtacccaa	gggtgcagct	gaagcgtgat	acgcgtgagg	cgtacgtgcc	geggeagaac	11340
ctgtttcgcg	accgcgaggg	agaggagccc	gaggagatgc	gggatcgaaa	gttccacgca	11460
gggcgcgagc	tgcggcatgg	cctgaatcgc	gageggttge	tagagga	ggactttgdg	11520
cccgacgcgc	gaaccgggat	tagtcccgcg	cgcgcacacg	eggeggeege	taggeouggia	11520
accgcatacg	agcagacggt	gaaccaggag	attadcttcc	tastastat	ataggaettt	11640
gtgcgtacgc	ttgtggcgcg	cgaggaggtg	gctataggac	Lyalycatct	gryggactet	11040

		cccaaatagc				11700
		cgaggcattc				11760
		tttgataaac				11820
		ggtggccgcc				11880
		ccatacccct				11940
		ggcgctgaag				12000
		caaggccgtg				12060
		gcaaagggcc				12120
		gggcgctgac				12180
		tgggctggcg				12240
		ggacgatgag				12300
gtgatgtttc	tgatcagatg	atgcaagacg	caacggaccc	ggcggtgcgg	geggegetge	12360
		aactccacgg				12420
		cctgacgcgt				12480
		gtcccggcgc				12540
		gaaaacaggg				12600
		gtggctcgtt				12660
		cgcgaggccg				12720
		gcactaaacg				12780
		accaactttg				12840
		cagtctgggc				12900
		agccaggctt				12960
		gcgaccgtgt				13020
		ttcacggaca				13080
		cgcgaggcca				13140
		agccgcgcgc				13200
		accaaccggc				13260
		ttgcgctacg				13320
		gtggcgctgg				13380
		tttatcaacc				13440
		accaatgcca				13500 13560
		gaggtgcccg				13620
		ccgcaaccgc				13620
		aaggaaagct				13740
		gatgctagta ccgcgcctgc				13800
		aaaaacctgc				13860
		agatggaaga				13920
		cgtcaaaggc				13980
		agcagcgtcc				14040
		gggagaatgt				14100
		gcaccgagcg				14160
		aaggtcctcc				14220
		gttctccctt				14280
		ccggggggag				14340
		tgtacctggt				14400
		gcaactttct				14460
		agaccatcaa				14520
		ccaacatgcc				14580
-	_	tgtcgcgctt				14640
		cgctgcccga				14700
		tggagcacta				14760
_		agtttgacac				14820
		gggtatatac				14880
		acttcaccca				14940
2 - c 2 - c m g g d	-9~555569				-3550000	

						15000
caagcggcaa	cccttccagg	agggctttag	gatcacctac	gatgatctgg	agggtggtaa	15000
cattcccgca	ctgttggatg	tggacgccta	ccaggcgagc	ttgaaagatg	acaccgaaca	15060 15120
gggcgggggt	ggcgcaggcg	gcagcaacag	cagtggcagc	ggcgcggaag	agaactccaa	
cgcggcagcc	gcggcaatgc	agccggtgga	ggacatgaac	gatcatgcca	ttcgcggcga	15180
cacctttgcc	acacgggctg	aggagaagcg	cgctgaggcc	gaagcagcgg	ccgaagctgc	15240
cgcccccgct	gcgcaacccg	aggtcgagaa	gcctcagaag	aaaccggtga	tcaaacccct	15300
gacagaggac	agcaagaaac	gcagttacaa	cctaataagc	aatgacagca	ccttcaccca	15360
gtaccgcagc	tggtaccttg	catacaacta	cggcgaccct	cagaccggaa	tccgctcatg	15420
gaccctgctt	tgcactcctg	acgtaacctg	cggctcggag	caggtctact	ggtcgttgcc	15480
agacatgatg	caagaccccg	tgaccttccg	ctccacgcgc	cagatcagca	actttccggt	15540
ggtgggcgcc	gagctgttgc	ccgtgcactc	caagagcttc	tacaacgacc	aggccgtcta	15600
ctcccaactc	atccgccagt	ttacctctct	gacccacgtg	ttcaatcgct	ttcccgagaa	15660
ccagattttg	gcgcgcccgc	cagcccccac	catcaccacc	gtcagtgaaa	acgttcctgc	15720
tctcacagat	cacgggacgc	taccactaca	caacagcatc	ggaggagtcc	agcgagtgac	15780
cattactgac	gccagacgcc	gcacctgccc	ctacgtttac	aaggccctgg	gcatagtctc	15840
accacacate	ctatcgagcc	gcactttttg	agcaagcatg	tccatcctta	tatcgcccag	15900
caataacaca	ggctggggcc	tacacttccc	aagcaagatg	tttggcgggg	ccaagaagcg	15960
ctccgaccaa	cacccagtgc	acatacacaa	gcactaccgc	gcgccctggg	gcgcgcacaa	16020
acacaaccac	actgggcgca	ccaccotcoa	tgacgccatc	gacgcggtgg	tggaggaggc	16080
acacaactac	acgcccacgc	coccaccagt	gtccacagtg	gacgcggcca	ttcagaccgt	16140
gegeaactae	geceggeget	atoctaaaat	gaagagacgg	cadadacaca	tagcacgtcg	16200
ggcgcgcgga	cgacccggca	ctaccaccca	acacacaaca	acaaccetae	ttaaccgcgc	16260
ccaccyccyc	ggccgacggg	caaccataca	aaccactcaa	aggetageea	coootattot	16320
acytcycacc	cccaggtcca	accascasca	aaccaccaca	acsaccacaa	ccattagtgc	16380
tategegeee	ggtcgcaggg	ggcgacgagc	ttaaatacac	gactcggtta	acaacctaca	16440
tatgactcag	ggregeaggg	gcaacgcgca	ctagattgca	acceggeen	acttagactc	16500
egraceara	cgcacccgcc	ccccgcgcaa	ccagaccae	aguadatace	agcgcaaaat	16560
gtactgttgt	atgtatccag	tastagaga	gcgcaacgaa	gecaegecea	agagggaaaga	16620
caaagaagag	atgctccagg	ccatcgcgcc	ggagacccac	ggcccccga	ataataataa	16680
gcaggattac	aagccccgaa	agctaaagcg	ggtCaaaaag	aaaaayaaay	acgacgacga	16740
tgaacttgac	gacgaggtgg	aactgetgea	egetacegeg	accatagedac	ttacaccaa	16800
gaaaggtcga	cgcgtaaaac	grattracy	acceggeace	accytagece	agaagaaga	16860
tgagcgctcc	acccgcacct	acaagegegt	grargargag	gracaggra	atgaggacct	16920
gcttgagcag	gccaacgagc	gcctcgggga	gtttgectae	ggaaagegge	tongagacac	16980
getggegttg	ccgctggacg	agggcaaccc	aacacctagc	ctaaageeeg	caacactgca	17040
gcaggtgctg	cccgcgcttg	caccgtccga	agaaaagcgc	ggcctaaage	gegagtetgg	17100
tgacttggca	cccaccgtgc	agctgatggt	acccaagege	cagcgactgg	aagatgtett	
ggaaaaaatg	accgtggaac	ctgggctgga	gcccgaggtc	cgcgtgcggc	caatcaagca	17160
ggtggcgccg	ggactgggcg	tgcagaccgt	ggacgttcag	atacccacta	ccagtagcac	17220
cagtattgcc	accgccacag	agggcatgga	gacacaaacg	teceeggttg	cctcagcggt	17280
ggcggatgcc	gcggtgcagg	cggtcgctgc	ggccgcgtcc	aagacctcta	cggaggtgca	17340
aacggacccg	tggatgtttc	gcgtttcagc	ccccggcgc	ccgcgcggtt	cgaggaagta	17400
cggcgccgcc	agcgcgctac	tgcccgaata	tgccctacat	ccttccattg	cgcctacccc	17460
cggctatcgt	ggctacacct	accgccccag	aagacgagca	actacccgac	gccgaaccac	17520
cactggaacc	cgccgccgcc	gtegeegteg	ccagcccgtg	ctggccccga	tttccgtgcg	17580
cagggtggct	cgcgaaggag	gcaggaccct	ggtgctgcca	acagcgcgct	accaccccag	17640
catcgtttaa	aagccggtct	ttgtggttct	tgcagatatg	gccctcacct	gccgcctccg	17700
tttcccggtg	ccgggattcc	gaggaagaat	gcaccgtagg	aggggcatgg	ccggccacgg	17760
cctgacgggc	ggcatgcgtc	gtgcgcacca	ccggcggcgg	cgcgcgtcgc	accgtcgcat	17820
gcgcggcggt	atcctgcccc	tccttattcc	actgatcgcc	gcggcgattg	gcgccgtgcc	17880
cggaattgca	tccgtggcct	tgcaggcgca	gagacactga	ttaaaaacaa	gttgcatgtg	17940
gaaaaatcaa	aataaaaagt	ctggactctc	acgctcgctt	ggtcctgtaa	ctattttgta	18000
gaatggaaga	catcaacttt	gcgtctctgg	ccccgcgaca	cggctcgcgc	ccgttcatgg	18060
gaaactggca	agatatcggc	accagcaata	tgagcggtgg	cgccttcagc	tggggctcgc	18120
tgtggagcgg	cattaaaaat	ttcggttcca	ccgttaagaa	ctatggcagc	aaggcctgga	18180
acagcagcac	aggccagatg	ctgagggata	agttgaaaga	gcaaaatttc	caacaaaagg	18240
3 3						

	cctggcctct					18300
	taacagtaag					18360
	gtctccagag					18420
	gcaaatagac					18480
	tcccatcgcg					18540
cgctggacct	gcctccccc	gccgacaccc	agcagaaacc	tgtgctgcca	ggcccgaccg	18600
	aacccgtcct					18660
	cgtagccagt					18720
	cctgaagcgc					18780
	ccatgtcgcc					18840
	ccttcgatga					18900
	ctgagccccg					18960
	aagtttagaa					19020
	ttgacgctgc					19080
caaggcgcgg	ttcaccctag	ctgtgggtga	taaccgtgtg	ctggacatgg	cttccacgta	19140
	cgcggcgtgc					19200
	ctggctccca					19260
	ataaacctag					19320
	caaaaaactc					19380
	attcaaatag					19440
	cctcaaatag					19500
	cttaaaaaga					19560
	aatggagggc					19620
tcaagtggaa	atgcaatttt	tctcaactac	tgaggcgacc	gcaggcaatg	gtgataactt	19680
	gtggtattgt					19740
	cccactatta					19800
	cctaattaca					19860
	aatatgggtg					19920
	agaaacacag					19980
aaccaggtac	ttttctatgt	ggaatcaggc	tgttgacagc	tatgatccag	atgttagaat	20040
_	catggaactg					20100
	gagactctta					20160
	acagaatttt					20220
	ctaaatgcca					20280
	aagctaaagt					20340
	atgaacaagc					20400
tggagcacgc	tggtcccttg	actatatgga	caacgtcaac	ccatttaacc	accaccgcaa	20460
tgctggcctg	cgctaccgct	caatgttgct	gggcaatggt	cgctatgtgc	ccttccacat	20520
	cagaagttct					20580
	aacttcagga					20640
cctaagggtt	gacggagcca	gcattaagtt	tgatagcatt	tgcctttacg	ccaccttctt	20700
	cacaacaccg					20760
	aacgactatc					20820
	cccatatcca					20880
	aagactaagg					20940
ctactctggc	tctataccct	acctagatgg	aaccttttac	ctcaaccaca	cctttaagaa	21000
	acctttgact					21060
	gaaattaagc					21120
	gactggttcc					21180
	ccagagagct					21240
	caggtggtgg					21300
acaccaacac	aacaactctg	gatttgttgg	ctaccttgcc	cccaccatgc	gcgaaggaca	21360
	gctaacttcc					21420
	tttctttgcg					21480
gtccatgggc	gcactcacag	acctgggcca	aaaccttctc	tacgccaact	ccgcccacgc	21540

gctagacatg	acttttgagg	tggatcccat	ggacgagccc	acccttcttt	atgttttgtt	21600
tgaagtcttt	gacgtggtcc	gtgtgcaccg	gccgcaccgc	ggcgtcatcg	aaaccgtgta	21660
cctgcgcacg	cccttctcgg	ccggcaacgc	cacaacataa	agaagcaagc	aacatcaaca	21720
acagetgeeg	ccatgggctc	cagtgagcag	gaactgaaag	ccattgtcaa	agatcttggt	21780
tgtgggccat	atttttggg	cacctatgac	aagcgctttc	caggctttgt	ttctccacac	21840
aagctcgcct	gcgccatagt	caatacggcc	ggtcgcgaga	ctgggggcgt	acactggatg	21900
acctttacct	ggaacccgca	ctcaaaaaca	tgctacctct	ttgagccctt	tggcttttct	21960
gaccagcgac	tcaagcaggt	ttaccagttt	gagtacgagt	cactcctgcg	ccgtagcgcc	22020
attgcttctt	cccccgaccg	ctgtataacg	ctggaaaagt	ccacccaaag	cgtacagggg	22080
cccaactcgg	ccgcctgtgg	actattctgc	tgcatgtttc	tccacgcctt	tgccaactgg	22140
ccccaaactc	ccatggatca	caaccccacc	atgaacctta	ttaccggggt	acccaactcc	22200
atoctcaaca	gtccccaggt	acageceace	ctgcgtcgca	accaggaaca	gctctacagc	22260
ttcctggagc	gccactcgcc	ctacttccgc	agccacagtg	cgcagattag	gagcgccact	22320
tctttttgtc	acttgaaaaa	catgtaaaaa	taatgtacta	gagacacttt	caataaaggc	22380
aaatgctttt	atttgtacac	tctcgggtga	ttatttaccc	ccacccttgc	cgtctgcgcc	22440
gtttaaaaat	caaaggggtt	ctgccgcgca	tcgctatgcg	ccactggcag	ggacacgttg	22500
cgatactggt	gtttagtgct	ccacttaaac	tcaggcacaa	ccatccgcgg	cagctcggtg	22560
aagttttcac	tccacaggct	gcgcaccatc	accaacgcgt	ttagcaggtc	gggcgccgat	22620
atcttgaagt	cgcagttggg	gcctccgccc	tgcgcgcgcg	agttgcgata	cacagggttg	22680
cagcactgga	acactatcag	cgccgggtgg	tgcacgctgg	ccagcacgct	cttgtcggag	22740
atcagatccg	cgtccaggtc	ctccgcgttg	ctcagggcga	acggagtcaa	ctttggtagc	22800
tgccttccca	aaaagggcgc	gtgcccaggc	tttgagttgc	actcgcaccg	tagtggcatc	22860
aaaaggtgac	catacccagt	ctgggcgtta	ggatacagcg	cctgcataaa	agccttgatc	22920
tocttaaaag	ccacctgagc	ctttgcgcct	tcagagaaga	acatgccgca	agacttgccg	22980
gaaaactgat	tggccggaca	ggccgcgtcg	tgcacgcagc	accttgcgtc	ggtgttggag	23040
atctgcacca	catttcggcc	ccaccggttc	ttcacgatct	tggccttgct	agactgctcc	23100
ttcagcgcgc	gctgcccgtt	ttcgctcgtc	acatccattt	caatcacgtg	ctccttattt	23160
atcataatgc	ttccgtgtag	acacttaagc	tcgccttcga	tctcagcgca	gcggtgcagc	23220
cacaacgcgc	agcccgtggg	ctcgtgatgc	ttgtaggtca	cctctgcaaa	cgactgcagg	23280
tacgcctgca	ggaatcgccc	catcatcgtc	acaaaggtct	tgttgctggt	gaaggtcagc	23340
tgcaacccgc	ggtgctcctc	gttcagccag	gtcttgcata	cggccgccag	agcttccact	23400
tggtcaggca	gtagtttgaa	gttcgccttt	agatcgttat	ccacgtggta	cttgtccatc	23460
agcgcgcgcg	cagcctccat	gcccttctcc	cacgcagaca	cgatcggcac	actcagcggg	23520
ttcatcaccg	taatttcact	ttccgcttcg	ctgggctctt	cctcttcctc	ttgcgtccgc	23580
ataccacgcg	ccactgggtc	gtcttcattc	agccgccgca	ctgtgcgctt	acctcctttg	23640
ccatgcttga	ttagcaccgg	tgggttgctg	aaacccacca	tttgtagcgc	cacatcttct	23700
ctttcttcct	cgctgtccac	gattacctct	ggtgatggcg	ggcgctcggg	cttgggagaa	23760
gggcgcttct	ttttcttctt	gggcgcaatg	gccaaatccg	ccgccgaggt	cgatggccgc	23820
gggctgggtg	tgcgcggcac	cagcgcgtct	tgtgatgagt	cttcctcgtc	ctcggactcg	23880
atacgccgcc	tcatccgctt	ttttgggggc	gcccggggag	gcggcggcga	cggggacggg	23940
gacgacacgt	cctccatggt	tgggggacgt	cgcgccgcac	cgcgtccgcg	ctcgggggtg	24000
gtttcgcgct	gctcctcttc	ccgactggcc	atttccttct	cctataggca	gaaaaagatc	24060
atggagtcag	tcgagaagaa	ggacagccta	accgccccct	ctgagttcgc	caccaccgcc	24120
tccaccgatg	ccgccaacgc	gcctaccacc	ttccccgtcg	aggcaccccc	gcttgaggag	24180
gaggaagtga	ttatcgagca	ggacccaggt	tttgtaagcg	aagacgacga	ggaccgctca	24240
gtaccaacag	aggataaaaa	gcaagaccag	gacaacgcag	aggcaaacga	ggaacaagtc	24300
gaacaaaaaa	acgaaaggca	tggcgactac	ctagatgtgg	gagacgacgt	gctgttgaag	24360
catctgcagc	gccagtgcgc	cattatctgc	gacgcgttgc	aagagcgcag	cgatgtgccc	24420
ctcgccatag	cggatgtcag	ccttgcctac	gaacgccacc	tattctcacc	gcgcgtaccc	24480
cccaaacgcc	aagaaaacgg	cacatgcgag	cccaacccgc	gcctcaactt	ctaccccgta	24540
tttgccgtgc	cagaggtgct	tgccacctat	cacatctttt	tccaaaactg	caagataccc	24600
ctatcctgcc	gtgccaaccg	cagccgagcg	gacaagcagc	tggccttgcg	gcagggcgct	24660
gtcatacctg	atatcgcctc	gctcaacgaa	gtgccaaaaa	tctttgaggg	tcttggacgc	24720
gacgagaagc	gcgcggcaaa	cgctctgcaa	caggaaaaca	gcgaaaatga	aagtcactct	24780
ggagtgttgg	tggaactcga	gggtgacaac	gcgcgcctag	ccgtactaaa	acgcagcatc	24840

gaggtcaccc	actttgccta	cccggcactt	aacctacccc	ccaaggtcat	gagcacagtc	24900
			cccctggaga			24960
			gacgagcagc			25020
			aaactaatga			25080
			gctgacccgg			25140
			tacgtacgcc			25200
			ggaattttgc			25260
			gcgcgccgcg			25320
			gccatgggcg			25380
			ctaaagcaaa			25440
			ctggcggaca			25500
			ttcaccagtc			25560
			ttgcccgcca			25620
			cctccgccgc			25680
			tctgacataa			25740
			ctatgcaccc			25800
			atcggtacct			25860
			aaactcactc			25920
			cacgcccacg			25980
			gcctgcgtca			26040
			caagagtttc			26100
			ctcaacccaa			26160
			caggatggca			26220
			ctgggacagt			26280
			ggagagccta			26340
			ctcggtcgca			26400
			aacctccgct			26460
			caccactgga			26520
	-		acagcgccaa			26580
			agactgtggg			26640
			cttcccccgt			26700
			cagcggcagc			26760
			ctctgacaaa			26820
			tggcgcccaa			26880
			atgctatatt			26940
			tgcgatccct			27000
						27060
			tggaagacgc			27120
			gcgccctttc			27120
			cagcacctgt			27240
			accagccaca			27240
			acatgagege			27360
			gaattetett			27420
			gttggcccgc			27420
•			gagacgccca			27540
			gtcacagggt			27600
			ttcagctcaa			27660
			agatcggcgg			27720
			cctcgtcctc			
			tgccatcggt			27780
			ttcctaactt			27840
			aggcagagca			27900
			gcgactccgg			27960
			acggcgtccg			28020
ttgcccgtag	cctgattcgg	gagtttaccc	agcgccccct	gctagttgag	cgggacaggg	28080
gaccctgtgt	tctcactgtg	atttgcaact	gtcctaacct	tggattacat	caagatcttt	28140

gttgccatct	ctgtgctgag	tataataaat	acagaaatta	aaatatactg	gggctcctat	28200
cgccatcctg	taaacgccac	cgtcttcacc	cgcccaagca	aaccaaggcg	aaccttacct	28260
ggtactttta	acatctctcc	ctctgtgatt	tacaacagtt	tcaacccaga	cggagtgagt	28320
ctacgagaga	acctctccga	gctcagctac	tccatcagaa	aaaacaccac	cctccttacc	28380
tgccgggaac	gtacgagtgc	gtcaccggcc	gctgcaccac	acctaccgcc	tgaccgtaaa	28440
ccagactttt	tccggacaga	cctcaataac	tctgtttacc	agaacaggag	gtgagcttag	28500
aaaaccctta	gggtattagg	ccaaaggcgc	agctactgtg	gggtttatga	acaattcaag	28560
caactctacg	ggctattcta	attcaggttt	ctctagaatc	ggggttgggg	ttattctctg	28620
tcttgtgatt	ctctttattc	ttatactaac	gcttctctgc	ctaaggctcg	ccgcctgctg	28680
tgtgcacatt	tgcatttatt	gtcagctttt	taaacgctgg	ggtcgccacc	caagatgatt	28740
aggtacataa	tcctaggttt	actcaccctt	gcgtcagccc	acggtaccac	ccaaaaggtg	28800
gattttaagg	agccagcctg	taatgttaca	ttcgcagctg	aagctaatga	gtgcaccact	28860
cttataaaat	gcaccacaga	acatgaaaag	ctgcttattc	gccacaaaaa	caaaattggc	28920
aagtatgctg	tttatgctat	ttggcagcca	ggtgacacta	cagagtataa	tgttacagtt	28980
ttccagggta	aaagtcataa	aacttttatg	tatacttttc	cattttatga	aatgtgcgac	29040
attaccatgt	acatgagcaa	acagtataag	ttgtggcccc	cacaaaattg	tgtggaaaac	29100
actggcactt	tctgctgcac	tgctatgcta	attacagtgc	tcgctttggt	ctgtacccta	29160
ctctatatta	aatacaaaag	cagacgcagc	tttattgagg	aaaagaaaat	gccttaattt	29220
actaagttac	aaagctaatg	tcaccactaa	ctgctttact	cgctgcttgc	aaaacaaatt	29280
caaaaagtta	gcattataat	tagaatagga	tttaaacccc	ccggtcattt	cctgctcaat	29340
accattcccc	tgaacaattg	actctatgtg	ggatatgctc	cagcgctaca	accttgaagt	29400
caggcttcct	ggatgtcagc	atctgacttt	ggccagcacc	tgtcccgcgg	atttgttcca	29460
gtccaactac	agcgacccac	cctaacagag	atgaccaaca	caaccaacgc	ggccgccgct	29520
accggactta	catctaccac	aaatacaccc	caagtttctg	cctttgtcaa	taactgggat	29580
aacttgggca	tgtggtggtt	ctccatagcg	cttatgtttg	tatgccttat	tattatgtgg	29640
ctcatctgct	gcctaaagcg	caaacgcgcc	cgaccaccca	tctatagtcc	catcattgtg	29700
ctacacccaa	acaatgatgg	aatccataga	ttggacggac	tgaaacacat	gttcttttct	29760
cttacagtat	gattaaatga	gacatgattc	ctcgagtttt	tatattactg	acccttgttg	29820
cgcttttttg	tgcgtgctcc	acattggctg	cggtttctca	catcgaagta	gactgcattc	29880
cagccttcac	agtctatttg	ctttacggat	ttgtcaccct	cacgctcatc	tgcagcctca	29940
tcactgtggt	catcgccttt	atccagtgca	ttgactgggt	ctgtgtgcgc	tttgcatatc	30000
tcagacacca	tccccagtac	agggacagga	ctatagctga	gcttcttaga	attctttaat	30060
tatgaaattt	actgtgactt	ttctgctgat	tatttgcacc	ctatctgcgt	tttgttcccc	30120
gacctccaag	cctcaaagac	atatatcatg	cagattcact	cgtatatgga	atattccaag	30180
ttgctacaat	gaaaaaagcg	atctttccga	agcctggtta	tatgcaatca	tetetgttat	30240
ggtgttctgc	agtaccatct	tagccctagc	tatatatccc	taccttgaca	ttggctggaa	30300
acgaatagat	gccatgaacc	acccaacttt	ccccgcgccc	gctatgcttc	cactgcaaca	30360
agttgttgcc	ggcggctttg	teccagecaa	tcagcctcgc	cccacttctc	ccaccccac	30420
tgaaatcagc	tactttaatc	taacaggagg	agatgactga	caccctagat	ctagaaatgg	30480
acggaattat	tacagagcag	cgcctgctag	aaagacgcag	ggcagcggcc	gagcaacagc	30540
gcatgaatca	agagctccaa	gacatggtta	acttgcacca	gtgcaaaagg	ggtatctttt	30600
gtctggtaaa	gcaggccaaa	gtcacctacg	acagtaatac	caccggacac	cgccttagct	30660
acaagttgcc	aaccaagcgt	cagaaattgg	tggtcatggt	gggagaaaag	cccattacca	30720
taactcagca	ctcggtagaa	accgaaggct	gcattcactc	accttgtcaa	ggacctgagg	30780
atctctgcac	ccttattaag	accctgtgcg	gtctcaaaga	tcttattccc	tttaactaat	30840
aaaaaaaaat	aataaagcat	cacttactta	aaatcagtta	gcaaatttct	gtccagttta	30900
ttcagcagca	cctccttgcc	ctcctcccag	ctctggtatt	gcagcttcct	cctggctgca	30960
aactttctcc	acaatctaaa	tggaatgtca	gtttcctcct	gttcctgtcc	atccgcaccc	31020
actatcttca	tgttgttgca	gatgaagcgc	gcaagaccgt	ctgaagatac	cttcaacccc	31080
gtgtatccat	atgacacgga	aaccggtcct	ccaactgtgc	cttttcttac	tectecettt	31140
gtatccccca	atgggtttca	agagagtccc	cctggggtac	tetetttgeg	cctatccgaa	31200
cctctagtta	cctccaatgg	catgcttgcg	ctcaaaatgg	gcaacggcct	ctctctggac	31260
gaggccggca	accttacctc	ccaaaatgta	accactgtga	gcccacctct	caaaaaaacc	31320
aagtcaaaca	taaacctgga	aatatctgca	cccctcacag	ttacctcaga	agccctaact	31380
gtggctgccg	ccgcacctct	aatggtcgcg	ggcaacacac	tcaccatgca	accacaggcc	31440

						21500
	tgcacgactc					31500
	tagccctgca					31560
	cctcaccccc					31620
	atacacaaaa					31680
	taaacacttt					31740
	ctaaagttac					31800
	gaggactaag					31860
	atgctcaaaa					31920
-	acaacttgga					31980
	aaaagcttga					32040
acagccatag	ccattaatgc	aggagatggg	cttgaatttg	gttcacctaa	tgcaccaaac	32100
	tcaaaacaaa					32160
gttcctaaac	taggaactgg	ccttagtttt	gacagcacag	gtgccattac	agtaggaaac	32220
	ataagctaac					32280
aatgcagaga	aagatgctaa	actcactttg	gtcttaacaa	aatgtggcag	tcaaatactt	32340
	cagttttggc					32400
agtgctcatc	ttattataag	atttgacgaa	aatggagtgc	tactaaacaa	ttccttcctg	32460
gacccagaat	attggaactt	tagaaatgga	gatcttactg	aaggcacagc	ctatacaaac	32520
gctgttggat	ttatgcctaa	cctatcagct	tatccaaaat	ctcacggtaa	aactgccaaa	32580
	tcagtcaagt					32640
attacactaa	acggtacaca	ggaaacagga	gacacaactc	caagtgcata	ctctatgtca	32700
ttttcatggg	actggtctgg	ccacaactac	attaatgaaa	tatttgccac	atcctcttac	32760
actttttcat	acattgccca	agaataaaga	atcgtttgtg	ttatgtttca	acgtgtttat	32820
ttttcaattg	cagaaaattt	caagtcattt	ttcattcagt	agtatagccc	caccaccaca	32880
tagcttatac	agatcaccgt	accttaatca	aactcacaga	accctagtat	tcaacctgcc	32940
acctccctcc	caacacacag	agtacacagt	cctttctccc	cggctggcct	taaaaagcat	33000
catatcatgg	gtaacagaca	tattcttagg	tgttatattc	cacacggttt	cctgtcgagc	33060
caaacgctca	tcagtgatat	taataaactc	cccgggcagc	tcacttaagt	tcatgtcgct	33120
gtccagctgc	tgagccacag	gctgctgtcc	aacttgcggt	tgcttaacgg	gcggcgaagg	33180
agaagtccac	gcctacatgg	gggtagagtc	ataatcgtgc	atcaggatag	ggcggtggtg	33240
	gcgcgaataa					33300
ggcagtggtc	tcctcagcga	tgattcgcac	cgcccgcagc	ataaggcgcc	ttgtcctccg	33360
ggcacagcag	cgcaccctga	tctcacttaa	atcagcacag	taactgcagc	acagcaccac	33420
aatattgttc	aaaatcccac	agtgcaaggc	gctgtatcca	aagctcatgg	cggggaccac	33480
agaacccacg	tggccatcat	accacaagcg	caggtagatt	aagtggcgac	ccctcataaa	33540
cacgctggac	ataaacatta	cctcttttgg	catgttgtaa	ttcaccacct	cccggtacca	33600
	tgattaaaca					33660
	gctatacact					33720
	ccatggatca					33780
	cacttcctca					33840
	tcctgaatca					33900
	attgtcaaag					33960
	tctgtctcaa					34020
	cgtgttggtc					34080
tcctgaagca	aaaccaggtg	cgggcgtgac	aaacagatct	gcgtctccgg	tctcgccgct	34140
	tgtgtagtag					34200
	ttctatgtaa					34260
	cacacccagc					34320
	tggaagaacc					34380
	ctattaagtg					34440
aaaqaacaqa	taatggcatt	tgtaagatgt	tgcacaatgg	cttccaaaag	gcaaacggcc	34500
	agtggacgta					34560
	caaccatgcc					34620
	gaatattaag					34680
	agcagcgaat					34740
-	<del>-</del>	- <del>-</del>		-		

```
gattcaaaag eggaacatta acaaaaatac egegateeeg taggteeett egeagggeea
                                                                    34800
                                                                    34860
gctgaacata atcgtgcagg tctgcacgga ccagcgcggc cacttccccg ccaggaacct
tgacaaaaga acccacactg attatgacac gcatactcgg agctatgcta accagcgtag
                                                                    34920
ccccgatgta agetttgttg catgggcggc gatataaaat gcaaggtgct gctcaaaaaa
                                                                    34980
tcaggcaaag cctcgcgcaa aaaagaaagc acatcgtagt catgctcatg cagataaagg
                                                                    35040
                                                                    35100
caggtaagct ccggaaccac cacagaaaaa gacaccattt ttctctcaaa catgtctgcg
ggtttctgca taaacacaaa ataaaataac aaaaaaacat ttaaacatta gaagcctgtc
                                                                    35160
ttacaacagg aaaaacaacc cttataagca taagacggac tacggccatg ccggcgtgac
                                                                    35220
cgtaaaaaaa ctggtcaccg tgattaaaaa gcaccaccga cagctcctcg gtcatgtccg
                                                                    35280
gagtcataat gtaagactcg gtaaacacat caggttgatt catcggtcag tgctaaaaag
                                                                    35340
                                                                    35400
cgaccgaaat agcccggggg aatacatacc cgcaggcgta gagacaacat tacagccccc
ataggaggta taacaaaatt aataggagag aaaaacacat aaacacctga aaaaccctcc
                                                                    35460
tgcctaggca aaatagcacc ctcccgctcc agaacaacat acagcgcttc acagcggcag
                                                                    35520
                                                                    35580
cctaacaqtc agccttacca gtaaaaaaga aaacctatta aaaaaacacc actcgacacg
                                                                    35640
gcaccagctc aatcagtcac agtgtaaaaa agggccaagt gcagagcgag tatatatagg
actaaaaaat gacgtaacgg ttaaagtcca caaaaaacac ccagaaaaacc gcacgcgaac
                                                                    35700
ctacgcccag aaacgaaagc caaaaaaccc acaacttcct caaatcgtca cttccgtttt
                                                                    35760
cccacgttac gtaacttccc attttaagaa aactacaatt cccaacacat acaagttact
                                                                    35820
                                                                    35880
ccgccctaaa acctacgtca cccgccccgt tcccacgccc cgcgccacgt cacaaactcc
                                                                    35935
accccctcat tatcatattg gcttcaatcc aaaataaggt atattattga tgatg
<210> 10
<211> 5965
<212> DNA
<213> Artificial Sequence
<220>
<223> NSsuboptmut
<400> 10
                                                                       60
qccaccatgg cccccatcac cgcctacagc cagcagacca ggggcctgct gggctgcatc
                                                                      120
atcaccagcc tgaccggacg cgacaagaac caggtggagg gagaggtgca ggtggtgagc
accgctaccc agagettect ggccacctgc gtgaacggcg tgtgctggac cgtgtaccac
                                                                      180
ggagccggaa gcaagaccct ggccggaccc aagggcccta tcacccagat gtacaccaat
                                                                      240
                                                                      300
gtggatcagg atctggtggg ctggcaggcc cctcccggag ccaggagcct gacaccctgt
acctgtggaa gcagcgacct gtacctggtg acacgccacg ccgatgtgat ccccgtgagg
                                                                      360
                                                                      420
cgcaggggcg attctcgcgg aagcctgctg agccctaggc ccgtgagcta cctgaagggc
agcagcggag gacccctgct gtgtccttct ggccatgccg tgggcatttt tcgcgctgcc
                                                                      480
                                                                      540
gtgtgtacca ggggcgtggc caaagccgtg gattttgtgc ccgtggaaag catggagacc
                                                                      600
accatgogca goodtgttt caccgacaac agototococ otgoogtgco ocaatcatto
caggtggctc acctgcacgc ccctaccgga tctggcaaga gcaccaaggt gcccgctgcc
                                                                      660
tacgccgctc agggctacaa ggtgctggtg ctgaacccca gcgtggccgc taccctgggc
                                                                      720
                                                                      780
tteggegett acatgageaa ggeceatgge ategaceeca acateegeae aggegtgege
                                                                      840
accatcacca coggagetee egtgacetae ageaectaeg geaagtteet ggeogatgga
                                                                      900
ggctgcagcg gaggagccta cgacatcatc atctgcgacg agtgccacag caccgacagc
accaccatcc tgggcattgg caccgtgctg gatcaggccg aaacagctgg agccaggctg
                                                                      960
gtggtgctgg ccacagctac ccctcctggc agcgtgaccg tgccccatcc caatatcgag
                                                                     1020
                                                                     1080
gaggtggccc tgagcaacac aggcgagatc cccttctacg gcaaggccat ccccatcgag
                                                                     1140
qccatccqcq qaggcaggca cctgatcttc tgccacagca agaagaagtg cgacgagctg
gctgccaagc tgagcggact gggcatcaac gccgtggcct actacagggg cctggacgtg
                                                                     1200
                                                                     1260
teagtgatec ceaceategg egatgtggtg gtggtggeea eegacgeeet gatgacagge
                                                                     1320
tacaccqqag acttcgacag cgtgatcgac tgcaacacct gcgtgaccca gaccgtggac
ttcagcctgg accccacctt caccatcgaa accaccaccg tgcctcagga tgctgtgagc
                                                                     1380
aggagccaga ggcgcggacg caccggaagg ggcaggcgcg gaatttatcg ctttgtgacc
                                                                     1440
cctggcgaaa ggccctctgg catgttcgac agcagcgtgc tgtgcgagtg ctacgacgct
                                                                     1500
```

ggctgcgctt	ggtacgagct	gacacccgct	gaaaccagcg	tgcgcctgcg	cgcttatctg	1560
aatacccctg	gcctgcccgt	gtgtcaggac	cacctggagt	tctgggagag	cgtgttcaca	1620
			agccagacca			1680
ccctatctgg	tggcctatca	ggccaccgtg	tgtgctaggg	cccaagctcc	acctccttca	1740
			ctgaagccca			1800
ctgctgtacc	gcctgggagc	cgtgcagaac	gaggtgaccc	tgacccaccc	catcaccaag	1860
tacatcatgg	cctgcatgag	cgctgatctg	gaagtggtga	ccagcacctg	ggtgctggtg	1920
			tgcctgacca			1980
			atcgtgcccg			2040
			cacctgccct			2100
ctggccgaac	agttcaagca	gaaggccctg	ggcctgctgc	agacagccac	caaacaggcc	2160
gaagctgccg	ctcccgtggt	ggaaagcaag	tggagggccc	tggagacctt	ctgggctaag	2220
cacatgtgga	acttcatctc	tggcatccag	tacctggccg	gactgagcac	cctgcctggc	2280
aaccccgcta	tcgccagcct	gatggccttc	accgctagca	tcacctctcc	cctgaccacc	2340
			ggatgggtgg			2400
tcagctgctt	ctgcctttgt	gggcgctggc	attgccggag	ccgctgtggg	cagcattggc	2460
ctgggcaaag	tgctggtgga	tattctggct	ggctatggcg	ctggcgtggc	cggagccctg	2520
			cccagcaccg			2580
cctgccattc	tgagccctgg	agccctggtg	gtgggcgtgg	tgtgtgctgc	cattctgagg	2640
			cagtggatga			2700
			tacgtgcctg			2760
			acccagctgc			2820
			ggaagctggc			2880
			tggctgcaga			2940
cctggcgtgc	ccttcttctc	atgccagcgc	ggatacaagg	gcgtgtggag	gggcgatggc	3000
			cagatcacag			3060
atgcgcatcg	tgggccctaa	gacctgcagc	aacacctggc	acggcacctt	ccccatcaac	3120
			cctgctccca			3180
			accagggtgg			3240
			tgtcaggtgc			3300
			gcccctgcct			3360
			tacctggtgg			3420
cctgagcccg	atgtggccgt	gctgaccagc	atgctgaccg	accccagcca	catcacagcc	3480
			tctcctccaa			3540
			acctgcacca			3600
gccgacctga	tcgaggccaa	cctgctgtgg	cgccaggaga	tgggcggcaa	catcacccgc	3660
gtggagagcg	agaacaaggt	ggtggtgctg	gacagcttcg	accccctgcg	cgccgaggag	3720
			atcctgcgca			3780
			aaccctcccc			3840
cctgattacg	tgcctccagt	ggtgcatggc	tgtcctctgc	ctcccattaa	agcccctcct	3900
			gtgctgacag			3960
			agcagcgaga			4020
acagccaccg	ctctgcctga	ccaggccagc	gacgacggcg	ataagggcag	cgatgtggag	4080
agctatagca	gcatgcctcc	cctggaaggc	gaacctggcg	atcccgatct	gagcgatggc	4140
agctggagca	ccgtgagcga	agaggccagc	gaggacgtgg	tgtgttgcag	catgagctac	4200
acctggacag	gcgctctgat	cacaccctgc	gctgccgagg	agagcaagct	gcccatcaac	4260
			aacatggtgt			4320
			gaccgcctgc			4380
			gccagcaccg			4440
			cacagcgcca			4500
			gccgtgaacc			4560
			gacaccacca			4620
			aagcccgctc			4680
			ctgtacgacg			4740
gtggtgatgg	gctcaagcta	cggcttccag	tacagccctg	gccagcgcgt	ggagttcctg	4800

```
4860
gtgaacacct ggaagagcaa gaagaacccc atgggcttca gctacgacac acgctgcttc
gacagcaccg tgaccgagaa cgacatccgc gtggaggaga gcatctacca gtgctgcgac
                                                                     4920
ctggcccctg aggccaggca ggccatcaag agcctgaccg agcgcctgta catcggaggc
                                                                     4980
cctctgacca acagcaaggg acagaactgc ggatacaggc gctgtagggc ctctggcgtg
                                                                     5040
                                                                     5100
ctgaccacca gctgtggcaa caccctgacc tgctacctga aggccagcgc tgcctgtcgc
                                                                     5160
gctgccaagc tgcaggactg caccatgctg gtgaacgccg ctggcctggt ggtgatttgt
gaaagcgctg gcacccagga agatgctgcc agcctgcgcg tgttcaccga ggccatgacc
                                                                     5220
aggtactetg cccctcccgg agacccccct cagcccgaat acgacctgga gctgatcacc
                                                                     5280
                                                                     5340
agctgctcaa gcaacgtgag cgtggctcac gacgccagcg gaaagcgcgt gtactacctg
acacgcgatc ccaccaccc tctggctcgc gctgcctggg aaaccgctcg ccatacaccc
                                                                     5400
gtgaacagct ggctgggcaa catcatcatg tacgccccta ccctgtgggc tcgcatgatc
                                                                     5460
                                                                     5520
ctgatgaccc acttcttcag catcctgctg gctcaggagc agctggagaa ggccctggac
                                                                     5580
tgccagattt acggcgcttg ctacagcatc gagcccctgg acctgcccca aatcatcgag
                                                                     5640
cgcctgcacg gcctgtctgc cttcagcctg cacagctaca gccctggcga aattaatcgc
gtggccaget gtetgegeaa actgggegtg ceteetetge gegtgtggag geataggget
                                                                     5700
                                                                     5760
aggagcgtga gggctaggct gctgagccag ggaggcaggg ccgctacctg tggaaagtac
                                                                     5820
ctgttcaact gggccgtgaa gaccaagctg aagctgaccc ctatccctgc cgctagccag
                                                                     5880
ctggacctga gcggatggtt cgtggctggc tacagcggag gcgacatcta ccacagcctg
tctcgcgctc gccctcgctg gttcatgctg tgcctgctgc tgctgagcgt gggcgtgggc
                                                                     5940
                                                                     5965
atctacctgc tgcccaaccg ctaaa
<210> 11
<211> 5965
<212> DNA
<213> Artificial Sequence
<220>
<223> Chimeric NSsuboptmut
<400> 11
gccaccatgg cccccatcac cgcctacagc cagcagaccc gcggcctgct gggctgcatc
                                                                       60
atcaccagcc tgaccggccg cgacaagaac caggtggagg gcgaggtgca ggtggtgagc
                                                                      120
                                                                      180
accgccaccc agagettect ggccacctge gtgaacggcg tgtgctggac cgtgtaccac
                                                                      240
ggcgccggca gcaagaccct ggccggcccc aagggcccca tcacccagat gtacaccaac
gtggaccagg acctggtggg ctggcaggcc cccccggcg cccgcagcct gaccccctgc
                                                                      300
acctgcggca gcagcgacct gtacctggtg acccgccacg ccgacgtgat ccccgtgcgc
                                                                      360
                                                                      420
cqcqqqqq acaqcqqqq caqcctqctg agccccqcc ccgtgagcta cctgaagggc
                                                                      480
agcagcggcg gccccctgct gtgccccagc ggccacgccg tgggcatctt ccgcgccgcc
gtgtgcaccc gcggcgtggc caaggccgtg gacttcgtgc ccgtggagag catggagacc
                                                                      540
accatgcgca gccccgtgtt caccgacaac agcagccccc ccgccgtgcc ccagagcttc
                                                                      600
caggtggccc acctgcacgc ccccaccggc agcggcaaga gcaccaaggt gcccgccgcc
                                                                      660
                                                                      720
tacgccgccc agggctacaa ggtgctggtg ctgaacccca gcgtggccgc caccctgggc
ttcggcgcct acatgagcaa ggcccacggc atcgacccca acatccgcac cggcgtgcgc
                                                                      780
accatcacca coggogococ ogtgacctac agcacctacg gcaagtteet ggcogacggc
                                                                      840
ggctgcagcg gcggcgccta cgacatcatc atctgcgacg agtgccacag caccgacagc
                                                                      900
                                                                      960
accaccatcc tgggcatcgg caccgtgctg gaccaggccg agaccgccgg cgcccgcctg
gtggtgctgg ccaccgccac ccccccggc agcgtgaccg tgccccaccc caacatcgag
                                                                     1020
gaggtggccc tgagcaacac cggcgagatc cccttctacg gcaaggccat ccccatcgag
                                                                     1080
gccatccgcg gcggccgcca cctgatcttc tgccacagca agaagaagtg cgacgagctg
                                                                     1140
gccgccaagc tgagcggcct gggcatcaac gccgtggcct actaccgcgg cctggacgtg
                                                                     1200
                                                                     1260
agcgtgatcc ccaccatcgg cgacgtggtg gtggtggcca ccgacgccct gatgaccggc
tacaccggcg acttcgacag cgtgatcgac tgcaacacct gcgtgaccca gaccgtggac
                                                                     1320
ttcagcctgg accccacctt caccatcgag accaccaccg tgccccagga cgccgtgagc
                                                                     1380
                                                                     1440
cgcagccagc gccgcggccg caccggccgc ggccgccgcg gcatctaccg cttcgtgacc
                                                                     1500
cccggcgagc gccccagcgg catgttcgac agcagcgtgc tgtgcgagtg ctacgacgcc
```

				tgcgcctgcg		1560
				tctgggagag		1620
				agcaggccgg		1680
				cccaggcccc		1740
tgggaccaga	tgtggaagtg	cctgatccgc	ctgaagccca	ccctgcacgg	ccccaccccc	1800
ctgctgtacc	gcctgggcgc	cgtgcagaac	gaggtgaccc	tgacccaccc	catcaccaag	1860
tacatcatgg	cctgcatgag	cgccgacctg	gaggtggtga	ccagcacctg	ggtgctggtg	1920
ggcggcgtgc	tggccgccct	ggccgcctac	tgcctgacca	ccggcagcgt	ggtgatcgtg	1980
ggccgcatca	tcctgagcgg	ccgccccgcc	atcgtgcccg	accgcgagtt	cctgtaccag	2040
				acatcgagca		2100
				agaccgccac		2160
				tggagacctt		2220
				gcctgagcac		2280
				tcaccagccc		2340
				ccgcccagct		2400
agcgccgcca	gcgccttcgt	gggcgccggc	atcgccggcg	ccgccgtggg	cagcatcggc	2460
				ccggcgtggc		2520
				aggacctggt		2580
				tgtgcgccgc		2640
				accgcctgat		2700
agccgcggca	accacgtgag	ccccacccac	tacgtgcccg	agagcgacgc	cgccgcccgc	2760
gtgacccaga	tcctgagcag	cctgaccatc	acccagctgc	tgaagcgcct	gcaccagtgg	2820
atcaacgagg	actgcagcac	cccctgcagc	ggcagctggc	tgcgcgacgt	gtgggactgg	2880
atctgcaccg	tgctgaccga	cttcaagacc	tggctgcaga	gcaagctgct	gccccagctg	2940
cccggcgtgc	ccttcttcag	ctgccagcgc	ggctacaagg	gcgtgtggcg	cggcgacggc	3000
atcatgcaga	ccacctgccc	ctgcggcgcc	cagatcaccg	gccacgtgaa	gaacggcagc	3060
atgcgcatcg	tgggccccaa	gacctgcagc	aacacctggc	acggcacctt	ccccatcaac	3120
gcctacacca	ccggcccctg	cacccccagc	cccgccccca	actacagccg	cgccctgtgg	3180
cgcgtggccg	ccgaggagta	cgtggaggtg	acccgcgtgg	gcgacttcca	ctacgtgacc	3240
ggcatgacca	ccgacaacgt	gaagtgcccc	tgccaggtgc	ccgcccccga	gttcttcacc	3300
gaggtggacg	gcgtgcgcct	gcaccgctac	geceeegeet	gccgccccct	gctgcgcgag	3360
gaggtgacct	tccaggtggg	cctgaaccag	tacctggtgg	gcagccagct	gccctgcgag	3420
cccgagcccg	acgtggccgt	gctgaccagc	atgctgaccg	accccagcca	catcaccgcc	3480
gagaccgcca	agcgccgcct	ggcccgcggc	agccccccca	gcctggccag	cagcagcgcc	3540
agccagctga	gcgcccccag	cctgaaggcc	acctgcacca	cccaccacgt	gagccccgac	3600
gccgacctga	tcgaggccaa	cctgctgtgg	cgccaggaga	tgggcggcaa	catcacccgc	3660
gtggagagcg	agaacaaggt	ggtggtgctg	gacagcttcg	accccctgcg	cgccgaggag	3720
gacgagcgcg	aggtgagcgt	gcccgccgag	atcctgcgca	agagcaagaa	gttccccgct	3780
gccatgccca	tctgggctag	acctgattac	aaccctcccc	tgctggagag	ctggaaggac	3840
cctgattacg	tgcctccagt	ggtgcatggc	tgtcctctgc	ctcccattaa	agcccctcct	3900
attccacctc	ctaggcgcaa	aaggaccgtg	gtgctgacag	aaagcagcgt	gagetetget	3960
ctggccgaac	tggccaccaa	gacctttggc	agcagcgaga	gctctgccgt	ggacagcgga	4020
acagccaccg	ctctgcctga	ccaggccagc	gacgacggcg	ataagggcag	cgatgtggag	4080
agctatagca	gcatgcctcc	cctggaaggc	gaacctggcg	atcccgatct	gagcgatggc	4140
agctggagca	ccgtgagcga	agaggccagc	gaggacgtgg	tgtgttgcag	catgagetae	4200
acctggacag	gcgctctgat	cacaccctgc	gctgccgagg	agagcaagct	gcccatcaac	4260
gccctgagca	acagcctgct	gaggcaccac	aacatggtgt	acgccaccac	cagcaggtct	4320
gccggactga	ggcagaagaa	ggtgaccttc	gaccgcctgc	aggtgctgga	cgaccactac	4380
cgcgatgtgc	tgaaggagat	gaaggccaag	gccagcaccg	tgaaggccaa	gctgctgagc	4440
gtggaggagg	cctgcaagct	gaccccccc	cacagcgcca	agagcaagtt	cggctacggc	4500
				acatccacag		4560
				tcatggccaa		4620
ttctgcgtgc	agcccgagaa	gggcggccgc	aagcccgccc	gcctgatcgt	gttccccgac	4680
ctgggcgtgc	gcgtgtgcga	gaagatggcc	ctgtacgacg	tggtgagcac	cctgcccag	4740
gtggtgatgg	gcagcagcta	cggcttccag	tacagccccg	gccagcgcgt	ggagttcctg	4800

```
gtgaacacct ggaagagcaa gaagaacccc atgggcttca gctacgacac ccgctgcttc
                                                                     4860
gacagcaccg tgaccgagaa cgacatccgc gtggaggaga gcatctacca gtgctgcgac
                                                                     4920
ctggcccccg aggcccgcca ggccatcaag agcctgaccg agcgcctgta catcggcggc
                                                                     4980
                                                                     5040
cccctgacca acagcaaggg ccagaactgc ggctaccgcc gctgccgcgc cagcggcgtg
ctgaccacca getgeggeaa caccetgace tgetacetga aggeeagege egeetgeege
                                                                     5100
gccgccaagc tgcaggactg caccatgctg gtgaacgccg ccggcctggt ggtgatctgc
                                                                     5160
gagagegeeg geacceagga ggaegeegee ageetgegeg tgttcacega ggccatgace
                                                                     5220
                                                                     5280
cgctacagcg cccccccgg cgacccccc cagcccgagt acgacctgga gctgatcacc
agetgeagea geaacgtgag egtggeecac gaegeeageg geaagegegt gtactacetg
                                                                     5340
                                                                     5400
accegegace ecaccacece ectggeeege geogeetggg agacegeeeg ecacacecee
gtgaacagct ggctgggcaa catcatcatg tacgccccca ccctgtgggc ccgcatgatc
                                                                     5460
                                                                     5520
ctgatgaccc acttcttcag catcctgctg gcccaggagc agctggagaa ggccctggac
                                                                     5580
tgccagatct acggcgcctg ctacagcatc gagcccctgg acctgcccca gatcatcgag
                                                                     5640
cgcctgcacg gcctgagcgc cttcagcctg cacagctaca gccccggcga gatcaaccgc
gtggccaget gcctgcgcaa gctgggcgtg cccccctgc gcgtgtggcg ccaccgcgcc
                                                                     5700
cgcagcgtgc gcgcccgcct gctgagccag ggcggccgcg ccgccacctg cggcaagtac
                                                                     5760
ctgttcaact gggccgtgaa gaccaagctg aagctgaccc ccatccccgc cgccagccag
                                                                     5820
ctggacctga gcggctggtt cgtggccggc tacagcggcg gcgacatcta ccacagcctg
                                                                     5880
ageogegee geocegetg gttcatgetg tgcctgctgc tgctgagegt gggcgtgggc
                                                                     5940
                                                                     5965
atctacctgc tgcccaaccg ctaaa
<210> 12
<211> 10
<212> RNA
<213> Artificial Sequence
<220>
<223> Ribosome binding site
<400> 12
                                                                       10
gccaccaugg
<210> 13
<211> 49
<212> RNA
<213> Artificial Sequence
<220>
<223> Synthetic polyadenylation signal
                                                                       49
aauaaaagau cuuuauuuuc auuagaucug uguguugguu uuuugugug
<210> 14
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Additional nucleotides present in pVIJns-NS
<400> 14
                                                                       28
tctagagcgt ttaaaccctt aattaagg
<210> 15
```

<211> 15 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Additional nucleotides present in pV1Jns-NSOPTmut	
<400> 15	
tttaaatgtt taaac	15
<210> 16	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 16	
tcgaatcgat acgcgaacct acgc	24
<210> 17	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 17	•
tcgacgtgtc gacttcgaag cgcacaccaa aaacgtc	37