

Enabling HPC Scientific Workflows for Serverless

Anderson Andrei Da Silva Postdoctoral Research Engineer, Hewlett Packard Labs

Anderson Andrei Da Silva*, Rolando Pablo Hong Enriquez*, Gourav Rattihalli*, Vijay Thurimella*, Rafael Ferreira da Silva‡, Dejan Milojicic*

* Hewlett Packard Labs, Milpitas, CA, USA
‡ Oak Ridge National Laboratory, Oak Ridge, TN, USA

Introduction

Serverless Computing

- A computing paradigm that deploys **fast execution functions** on **demand**, **reserving resources** just for the **time to run** the applications.
 - It is very beneficial for auto-scaling and low data-communication workloads;
 - It encompasses the FaaS (Function as a Service) approach:
 - Functions are deployed inside environments such as containers;
 - Functions respond to events.

HPC/ AI Workflows

- Scientific jobs, split in different coordinated tasks;
 - We have witnessed a growing population of different HPC/ AI workflows;
 - It is difficult but crucial to identify patterns for management purposes;

Motivation

Why is it important?

- Infrastructure Cloud computing entities have dealt with the difficulty of managing their resources for handling these many types of workflows;
- Serverless can address the problem above, but do not offer mechanisms to manage workflow invocations.

How are we tackling these challenges?

We propose a framework for executing and evaluating HPC scientific workflows on serverless

What are our contributions?

- A framework that enables HPC scientific workflows on serverless computing, assembling:
 - a workflow manager for serverless (evaluated using Knative);
 - the WfCommons framework (extended).
- An extensive evaluation, comparing serverless and bare-metal containers in terms of granularity, execution time, power, CPU, and memory usage.

DoE and Methodology

Parameter	Value
Platform	Bare-metal local containers, Knative
Workflow	Blast, Bwa, Cycles, Epigenomics, Genomes, Seismology, Srasearch
Workflow size	250, 500, 1000 tasks
CPU stress	100%
Number of workers	1, 10 workers
Function's granularity	Coarse-grained, fine-grained
Persistent Memory	With, without

Knative	Local Containers
Kn1wPM, Kn1wNoPM, Kn10wNoPM, Kn1000wPM,	LC1wPM, LC1wNoPM, LC10wNoPM, LC10wNoPmNoCR, LC1000wPM
Total of experiments	140 experiments

Experimental Results: Fine-grained Serverless and Local Containers

Fig. 4: Comparison between different setups for the Serverless Computational Paradigm.

Fig. 5: Comparison between different setups for the Local Containers.

Experimental Results: Fine-grained Serverless and Local Containers

Fig. 4: Comparison between different setups for the Serverless Computational Paradigm.

Fig. 5: Comparison between different setups for the Local Containers.

Experimental Results: Fine-grained Serverless and Local Containers

Fig. 7: Comparison between all workloads in best setups for Serverless and Local Container Computational Paradigms.

Experimental Results: Towards Workflow Characterization

Group A (Dense DAGs)

Group B (Sparse DAGs)

Dag Decompositions

Workflows	Common Performance
Blast, BWA, Genome, Seismology, SraSearch (Dense)	 Gain up to 5x in CPU and Memory Usage Gain in Power Usage by 1 - 2x Lose to bare-metal local containers for execution time by -1x
Cycles, Epigenomics (Sparse)	 Gain up to 5x in Memory Usage Match or slightly gain in Power and CPU. Match or slightly lose to baremetal local containers for execution time.

Conclusions (1) – The Framework

- We propose a framework for executing and evaluating HPC scientific workflows on serverless platforms:
 - a serverless workflow manager and
 - an extension of the WfCommons framework to translate traditional workflows into serverless-compatible versions.
- We empower researchers with new tools to study the performance of various HPC scientific workflows across multiple metrics, and scenarios

Conclusions (2) - Function's Granularity and Auto-scaling

- We evaluate coarse-grained scenarios for serverless.
 - The management of CPU and memory is simpler:
 - We can evaluate bigger workflows;
 - The results from serverless are closer to the bare-metal local containers;
 - However, the resource usage is not optimal for serverless as it is when using fine-grained resources.
- Fine-grained resources management and auto-scaling result in better resource utilization, however, we highlight that it is more challenging:
 - New processes can become either empty or underutilized due to mismatches between the action of creating new processes and finishing older processes;
 - More resources are used, and limits of memory and CPU may be reached.
 - Investigating different combination of parameters, we can do a better use of it.
 - We achieved good trade-offs of resource usage and execution time.

Conclusions (3) - Serverless for HPC/AI Scientific Workflows

- HPC scientific workflows can significantly benefit from serverless in terms of resource efficiency (CPU, memory, and power) while maintaining performance levels close to traditional execution times.
 - Still, not all evaluated workflows showed these benefits uniformly.
- We should recall that workflows can be composed of different steps and types of functions, not all
 of them are necessarily ideal for serverless execution.
- Therefore, it is likely that in some cases, a mapping of different execution paradigms per workflows might be a better choice.
 - The optimal strategy for complex workflows might be combining executions on serverless and bare-metal local containers for different tasks or groups of tasks.

Future Work

- We intend to leverage this study and include more aspects of serverless, by:
 - investigating the impacts of using external distributed data storage;
 - studying the impacts of serverless on multi-workflows invocation and multi-cluster scenarios.
- In addition to Knative, we will explore other serverless platforms, such as Globus Compute, AWS Lambda, Google Cloud Functions, and Azure.
- Finally, we expect that all these directions can lead us to the characterization of HPC scientific workflows on serverless.

Thank you very much! Any questions?

Anderson Andrei Da Silva Postdoctoral Research Engineer, Hewlett Packard Labs

Anderson Andrei Da Silva*, Rolando Pablo Hong Enriquez*, Gourav Rattihalli*, Vijay Thurimella*, Rafael Ferreira da Silva‡, Dejan Milojicic*

* Hewlett Packard Labs, Milpitas, CA, USA
‡ Oak Ridge National Laboratory, Oak Ridge, TN, USA

6th workshop on Containers and new orchestration paradigms for isolated environments in HPC (CANOPIE-HPC) at Supercomputing 2024

Experimental Results: Coarse-grained executions

Experimental Results: Fine-grained executions

Experimental Results: Towards Workflow Characterization

Fig. 3: Different workflows, its phase density in number of in functions, and its composition in function's name and quantity.

Experimental Results: Towards Workflow Characterization

Fig. 3: Different workflows, its phase density in number of in functions, and its composition in function's name and quantity.

Workflow characterization for serverless (4)

