Disease Knowledge Transfer across

Neurodegenerative Diseases

Răzvan V. Marinescu 1,2 , Marco Lorenzi 5 , Stefano B. Blumberg 1 , Alexandra L. Young 1 , Pere Planell-Morell 1 , Neil P. Oxtoby 1 , Arman Esh 1 Centre for Medical Image Computing, University College London 2 Queen Square MS Centre, UCL Institute of Neurology

Aim

Propose mechanism to infer progression of non-MRI biomarkers in rare neurodegenerative diseases by leveraging larger datasets of common neurodegenerative diseases.

Why

- Datasets on rare neurodegenerative diseases (e.g., Posterior Cortical Atrophy) are unimodal (MRI only), cross-sectional and small.
- The continuous progression of non-MRI markers in rare neurodegenerative diseases is not well understood

Method

1. Each disease characterised by region-specific dysfunction

2. Dysfunction score modelled using region-specific biomarkers

$$N(y_{ijk}|g(\gamma_{ij}^{\psi(k)};\theta_k),\epsilon_k)$$
 abnormal
$$g(\cdot;\theta_{amyl}) = y_{i,j,amyl}$$

$$y_{i,j,amyl}$$

$$y_{i,j}$$

$$y_{i,j$$

Occipital Dysfunction

3. Extend to multiple subjects, biomarkers and diseases $p(\mathbf{y}|\theta,\lambda,\beta,\epsilon) = \prod_{(i,j,k)\in\Omega} p(y_{ijk}|\theta_k,\lambda_{d_i}^{\psi(k)},\beta_i)$

Results

Synthetic experiment shows that the model can recover the underlying parameters

Inferred trajectories for Posterior Cortical Atrophy

Our model has favourable performance compared to other models

Model	Cingulate	Frontal	Hippocam.	Occipital	Parietal	Temporal
	TADPOLE: Hippocampal subgroup to Cortical subgroup					
DKT (ours)	0.56 ± 0.23	$\textbf{0.35}\pm\textbf{0.17}$	$\textbf{0.58} \pm \textbf{0.14}$	-0.10 ± 0.29	0.71 ± 0.11	$\textbf{0.34}\pm\textbf{0.26}$
Latent stage	0.44 ± 0.25	0.34 ± 0.21	$0.34 \pm 0.24^*$	-0.07 ± 0.22	0.64 ± 0.16	$0.08 \pm 0.24^*$
Multivariate	0.60 ± 0.18	$0.11 \pm 0.22^*$	$0.12 \pm 0.29^*$	-0.22 ± 0.22	$-0.44 \pm 0.14^*$	$-0.32 \pm 0.29^*$
Spline	$-0.24 \pm 0.25^*$	$-0.06 \pm 0.27^*$	0.58 ± 0.17	-0.16 ± 0.27	$0.23 \pm 0.25^*$	$0.10 \pm 0.25^*$
Linear	$-0.24 \pm 0.25^*$	$0.20 \pm 0.25^*$	0.58 ± 0.17	-0.16 ± 0.27	$0.23 \pm 0.25^*$	$0.13 \pm 0.23^*$
	typical Alzheimer's to Posterior Cortical Atrophy					
DKT (ours)	0.77 ± 0.11	0.39 ± 0.26	0.75 ± 0.09	0.60 ± 0.14	$\textbf{0.55}\pm\textbf{0.24}$	$\textbf{0.35}\pm\textbf{0.22}$
Latent stage	0.80 ± 0.09	$\textbf{0.53}\pm\textbf{0.17}$	$\textbf{0.80}\pm\textbf{0.12}$	0.56 ± 0.18	0.50 ± 0.21	0.32 ± 0.24
Multivariate	0.73 ± 0.09	0.45 ± 0.22	0.71 ± 0.08	$-0.28 \pm 0.21^*$	0.53 ± 0.22	$0.25 \pm 0.23^*$
Spline	$0.52 \pm 0.20^*$	$-0.03 \pm 0.35^*$	$0.66 \pm 0.11^*$	$0.09 \pm 0.25^*$	0.53 ± 0.20	$0.30 \pm 0.21^*$
Linear	$0.52 \pm 0.20^*$	0.34 ± 0.27	$0.66 \pm 0.11^*$	0.64 ± 0.17	0.54 ± 0.22	$0.30 \pm 0.21^*$

Conclusion

References

- 1. Fontejin et al., Neuroimg., 2012
- 3. Villemagne et al., Lancet Neurol., 2013
- 2. Young et al., Nat. Comms., 2018
- 4. Marinescu et al., IPMI, 2017

Weblinks

- UCL Progression of Neurodegenerative Disease (POND): cmic.cs.ucl.ac.uk/pond/
- UCL Centre for Medical Image Computing: www.ucl.ac.uk/cmic/

