1995 年全国硕士研究生招生考试

数

(科目代码:301)

一、埴空题	本 晒井	5 小師	伝 小 野っ	\triangle	进 4 1 5	4
一、垣分剥(小型共	つ /11 記 .	. 世 八元以 3	π.	は アーコ	71

$$(1) \lim_{x \to \infty} (1 + 3x)^{\frac{2}{\sin x}} = \underline{\qquad}.$$

$$(2) \frac{\mathrm{d}}{\mathrm{d}x} \int_{x^2}^0 x \cos t^2 \, \mathrm{d}t = \underline{\qquad}.$$

(3) 设
$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 2$$
,则 $[(\mathbf{a} + \mathbf{b}) \times (\mathbf{b} + \mathbf{c})] \cdot (\mathbf{c} + \mathbf{a}) = ____.$

(4) 幂级数
$$\sum_{n=1}^{\infty} \frac{n}{2^n + (-3)^n} x^{2n-1}$$
 的收敛半径 $R = \underline{\qquad}$.

(4) 幂级数
$$\sum_{n=1}^{\infty} \frac{n}{2^n + (-3)^n} x^{2n-1}$$
 的收敛半径 $R = \underline{}$.

(5) 设 3 阶方阵 A , B 满足关系式 $A^{-1}BA = 6A + BA$, $A = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{7} \end{bmatrix}$, 则 $B = \underline{}$.

二、选择题(本题共5小题,每小题3分,满分15分)

(1) 设有直线
$$L$$
: $\begin{cases} x + 3y + 2z + 1 = 0, \\ 2x - y - 10z + 3 = 0 \end{cases}$ 及平面 $\pi: 4x - 2y + z - 2 = 0,$ 则直线 L ().

(A) 平行于 π

(B) 在π上

(C) 垂直于 π

- (D) 与π斜交
- (2) 设在[0,1]上 f''(x) > 0,则 f'(0), f'(1), f(1) f(0) 或 f(0) f(1) 的大小顺序为

$$(A)f'(1) > f'(0) > f(1) - f(0)$$

(B)
$$f'(1) > f(1) - f(0) > f'(0)$$

(C)
$$f(1) - f(0) > f'(1) > f'(0)$$

(D)
$$f'(1) > f(0) - f(1) > f'(0)$$

- (3) 设 f(x) 可导, $F(x) = f(x)(1 + |\sin x|)$,则 f(0) = 0 是 F(x) 在 x = 0 处可导的(
 - (A) 充分必要条件

- (B) 充分条件但非必要条件
- (C) 必要条件但非充分条件
- (D) 既非充分条件又非必要条件

).

(4) 设
$$u_n = (-1)^n \ln \left(1 + \frac{1}{\sqrt{n}}\right)$$
,则级数().

(A)
$$\sum_{n=1}^{\infty} u_n$$
 与 $\sum_{n=1}^{\infty} u_n^2$ 都收敛

(B)
$$\sum_{n=1}^{\infty} u_n$$
 与 $\sum_{n=1}^{\infty} u_n^2$ 都发散

(C)
$$\sum_{n=1}^{\infty} u_n$$
 收敛而 $\sum_{n=1}^{\infty} u_n^2$ 发散

(D)
$$\sum_{n=1}^{\infty} u_n$$
 发散而 $\sum_{n=1}^{\infty} u_n^2$ 收敛

(A)
$$\sum_{n=1}^{\infty} u_n$$
 与 $\sum_{n=1}^{\infty} u_n^2$ 都收敛
(B) $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} u_n^2$ 都发散
(C) $\sum_{n=1}^{\infty} u_n$ 收敛而 $\sum_{n=1}^{\infty} u_n^2$ 发散
(D) $\sum_{n=1}^{\infty} u_n$ 发散而 $\sum_{n=1}^{\infty} u_n^2$ 收敛
(5) 设 $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{11} & a_{32} + a_{12} & a_{33} + a_{13} \end{pmatrix}$, $\mathbf{P}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

$$\begin{pmatrix} a_{22} & a_{23} \\ a_{12} & a_{13} \\ a_{22} + a_{12} & a_{22} + a_{13} \end{pmatrix}$$
, $\boldsymbol{P}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

$$\mathbf{P}_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
,则必有().

$$(\mathbf{A})\mathbf{A}\mathbf{P}_{1}\mathbf{P}_{2} = \mathbf{B}$$

$$(\mathbf{B})\mathbf{A}\mathbf{P}_{2}\mathbf{P}_{1} = \mathbf{B}$$

$$(\mathbf{C})\boldsymbol{P}_{1}\boldsymbol{P}_{2}\boldsymbol{A} = \boldsymbol{B}$$

$$(D) \boldsymbol{P}_2 \boldsymbol{P}_1 \boldsymbol{A} = \boldsymbol{B}$$

三、(本题共 2 小题,每小题 5 分,满分 10 分)

(1) 设 $u = f(x,y,z), \varphi(x^2,e^y,z) = 0, y = \sin x$,其中 f,φ 都具有一阶连续的偏导数,且 $\frac{\partial \varphi}{\partial z} \neq 0$, 求 $\frac{\mathrm{d}u}{\mathrm{d}x}$.

(2) 设函数 f(x) 在区间[0,1] 上连续,并设 $\int_{0}^{1} f(x) dx = A$,求 $\int_{0}^{1} dx \int_{0}^{1} f(x) f(y) dy$.

四、(本题共2小题,每小题6分,满分12分)

(1) 计算曲面积分 $\iint z dS$,其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ 在柱体 $x^2 + y^2 \leqslant 2x$ 内的部分.

(2) 将函数 $f(x) = x - 1(0 \le x \le 2)$ 展开成周期为 4 的余弦级数.

五、(本题满分7分)

设曲线 L 位于 x O_y 平面的第一象限内,L 上任一点 M 处的切线与 y 轴总相交,交点记为 A. 已知 $|\overline{MA}| = |\overline{OA}|$,且 L 过点 $\left(\frac{3}{2},\frac{3}{2}\right)$,求 L 的方程.

六、(本题满分8分)

设函数 Q(x,y) 在 xOy 平面上具有一阶连续偏导数,曲线积分 $\int_{L} 2xy dx + Q(x,y) dy$ 与路径 无关,并且对任意 t 恒有 $\int_{(0,0)}^{(t,1)} 2xy dx + Q(x,y) dy = \int_{(0,0)}^{(1,t)} 2xy dx + Q(x,y) dy$,求 Q(x,y).

七、(本题满分8分)

设函数 f(x), g(x) 在[a,b] 上存在二阶导数,并且 $g''(x) \neq 0, f(a) = f(b) = g(a) = g(b) = 0,$ 试证:

- (1) 在开区间(a,b) 内 $g(x) \neq 0$;
- (2) 在开区间(a,b) 内至少存在一点 ξ ,使 $\frac{f(\xi)}{g(\xi)} = \frac{f''(\xi)}{g''(\xi)}$.

八、(本题满分7分)

设 3 阶实对称矩阵 \mathbf{A} 的特征值为 $\lambda_1 = -1$, $\lambda_2 = \lambda_3 = 1$, 对应于 λ_1 的特征向量为 $\boldsymbol{\xi}_1 = (0,1,1)^{\mathrm{T}}$, 求 \mathbf{A} .

九、(本题满分6分)

设 $A \in n$ 阶矩阵,满足 $AA^{T} = E(E \ni n)$ 阶单位矩阵, $A^{T} \ni A$ 的转置矩阵),|A| < 0,求|A + E|.

十、填空题(本题共2小题,每小题3分,满分6分)

- (1) 设 X 表示 10 次独立重复射击命中目标的次数,每次射中目标的命中率为 0.4,则 X^2 的数 学期望 $E(X^2)$ =
- (2) 设 X 和 Y 为两个随机变量,且 $P\{X \geqslant 0,Y \geqslant 0\} = \frac{3}{7}, P\{X \geqslant 0\} = P\{Y \geqslant 0\} = \frac{4}{7},$ 则 $P\{\max(X,Y) \geqslant 0\} = \frac{4}{7}$.

十一、(本题满分6分)

设随机变量 X 的概率密度为 $f_X(x) = \begin{cases} e^{-x}, & x \geqslant 0, \\ 0, & x < 0, \end{cases}$ 求随机变量 $Y = e^X$ 的概率密度 $f_Y(y)$.