19: Isosurfaces & Distance Fields

 $f: \mathbb{R}^2 \to \mathbb{R}$:

Height Field

- For every point in the plane, define a height
- The graph is then a terrain
 - i.e. a surface in a 3D embedding space

Contours

- We can define curves using contours
- Let an artist design the landscape
- Pick a threshold, generate a curve

COMP5821M:

Manifold Dimension

- f is a 2-manifold embedded in 3-D
- It's contours are 1-manifolds
 - embedded in 2-D
 - or in 3-D
- What happens if we add a dimension?

 COMP5821M: Geometry Processing

 UNIVERSITY OF LEEDS

Implicit (Blobby) Surfaces

- Define a function $f: \mathbb{R}^3 \to \mathbb{R}$
 - Often a sum of Gaussian distributions
 - It's a 3-manifold embedded in 4-D
 - It's contours are 2-manifolds in 3-/4-D
- Choose a threshold h
- Extract the level set / contours
 - They are guaranteed to be manifold

Isosurfaces

- Contours in 3D
- Based on the *inverse image* of and *isovalue*

$$f^{-1}(h) = \{(x, y, z) : f(x, y, z) = h\}$$

- 2-manifolds embedded in 3 or 4 space
- We can usually only show one isosurface
 - because they occlude each other

Implicit (Blobby) Surfaces

Wyvill, McPheeters & Wyvill, 1986

Bonus Points: Alien (1979)

Implicit Surfaces

- We can use many types of functions:
 - CT/MRI scans
 - Numerical simulations
 - Mathematical models eg. sum of Gaussians
 - Distance fields
 - any property we can compute in 3-D
- In practice, we need to start with a 3-D mesh

UNIVERSITY OF LEEDS

Meshes in 3D

- In 2-D, we use triangles and squares
- In 3-D, we use tetrahedra and cubes
 - also pyramids, octahedra & triangular prisms
- Interpolation follows the same rules as in 2-D
 - geometric interpolation (meshes)
 - kernel filters (sampling theory)

Mesh Construction

- Two common types of mesh:
 - Tetrahedral, either arbitrary or subdivided
 - Cubic basically, a 3D array in memory

Barycentric Interpolation

- Linear interpolation based on distances
- Extend by using distance to faces
- Applied in each tetrahedron

$$f(p) = \alpha f(A) + \beta f(B) + \gamma f(C) + \delta f(D)$$

$$\alpha + \beta + \gamma + \delta = 1$$

$$\alpha = d(p,b,c,d) = \begin{vmatrix} 1 & p_x & p_y & p_z \\ 1 & b_x & b_y & b_z \\ 1 & c_x & c_y & c_z \\ 1 & d_x & d_y & d_z \end{vmatrix}$$

Trilinear Interpolation

- Repeat linear interpolation in 3 dimensions
- Used for cubic meshes

Trilinear Interpolation

$$f(x,y,z) = a \ xyz + b \ yz + c \ xz + d \ xy + ex + fy + gz + h$$

$$a = b_{111} - b_{110} - b_{101} - b_{011} + b_{100} + b_{010} + b_{001} + b_{000}$$

$$b = b_{011} - b_{010} - b_{001} + b_{000}$$

$$c = b_{101} - b_{100} - b_{001} + b_{000}$$

$$d = b_{110} - b_{100} - b_{010} + b_{000}$$

$$e = b_{100} - b_{000}$$

$$f = b_{010} - b_{000}$$

$$g = b_{001} - b_{000}$$

$$h = b_{000}$$

Marching Cells

- A class of algorithms that extract contours
- Given a mesh made of cells
 - triangles, squares, tetrahedra, cubes, &c.
- Iterate (march) through each cell
 - Extract the part of the mesh in the cell
- Produces triangle soup
- Sort out connectivity, &c. afterwards

Marching Tetrahedra

- Classify vertices black / white
- Interpolate points along edges
- Connect with simplices in 3-D, triangles

• Any surface generated is flat (even quad in 2)

COMP5821M:

Geometry Processing

Result

Geometry Processing

COMP5821M:

Marching Cubes

An Example

Trilinear Tessellation

- Lorenson & Cline, 1987 (Marching Cubes)
- Wyvill, McPheeters & Wyvill, 1987 (Soft Objects)
- Dürst, 1988 (cracks in Marching Cubes)
- Wilhelms & van Gelder, 1990, (simplicial subdivision)
- Matveyev, 1994, Montani, Scateni & Scopigno, 1994 (modified MC tables)
- Nielson & Hamann, 1991 (Asymptotic Decider bilinear saddles on faces)
- Natarajan, 1994 (Extension of Asymptotic Decider trilinear body saddle)
- Cignoni, Ganovelli, Montani, & Scopigno, 2000 (Natarajan's solution)
- Pascucci (& others?), 2002 (also 2 body saddles)
- Nielson, 2003 (full set of cases)
- Lopes & Brodlie, 2003 (optimal placement of vertices)
- Carr (& Max) 2007/8 (alternate proof)

Computing Normal

- Normal vector is based on gradient
 - always perpendicular to contours
 - describes steepest ascent
 - but outside is typically low-valued
 - use negative gradient as normal

$$\vec{n} = -\nabla f(x)$$

$$= (-\frac{\delta f}{\delta x}, -\frac{\delta f}{\delta y}, -\frac{\delta f}{\delta z})$$

Central Differencing:

• Approximation of gradient:

$$\vec{n}_{i,j,k} \approx (-\frac{f(x_{i+1},y_j,z_k) - f(x_{i-1},y_j,z_k)}{2}, -\frac{f(x_i,y_{j+1},z_k) - f(x_i,y_{j-1},z_k)}{2}, -\frac{f(x_i,y_j,z_{k+1}) - f(x_i,y_j,z_{k-1})}{\delta z})$$

- Compute at vertices of cell
- Interpolate along edges

Distance Fields

- Given a set of points $P = \{p \in \mathbb{R}^3\}$
- Define a distance function

$$\bullet \ d(x,y) = \sqrt{(y-x)^2}$$

- Use this to define a distance field:
 - $^{\bullet} \delta(x) = \min_{p \in P} (d(x, p))$
- Which measures the distance from x to P
 - The closest distance)

Possibilities

- Explicit list of points
- Generic set (infinitely many)
 - Set of lines
 - Set of triangles
 - Arbitrary surface

An Example

Geometry Processing

Volumetric Mesh Repair

- Generate a distance field δ in 3D
 - From the primitives (triangles), &c.
- Choose a small distance value *d*
- Take the isosurface for value *d*
- Guaranteed manifold
 - But far too many triangles
 - And slow

