Overview Package Class Use Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.vision

Class DistanceCalculations

java.lang.Object

com._604robotics.robot2012.vision.DistanceCalculations

public class DistanceCalculations
extends java.lang.Object

This code does the 2D-to-3D calculations

Field Summary

Fi		

Modifier and Type Field and Description		
31	•	
static double	cameraPixelHeight	
	The size of the Axis camera, in pixels	
static double	cameraPixelWidth	
	The size of the Axis camera, in pixels	

Constructor Summary

Constructors

Constructor and Description

DistanceCalculations()

Method Summary

	100			
-W	et	то	0 5	

motriodo	
Modifier and Type	Method and Description
double	<pre>getAngleOfTarget(Quad q, double z)</pre>
	This function gets the direction the target is facing, relative to the camera.
Target	<pre>getApproximationOfTarget(Quad quad)</pre>
	A method that tries to find the most likely location for the vision target to lie in 3D space
Point3d	<pre>getRelXYZOfTarget(Quad q)</pre>
	Remember that this requires the camera to be "perfectly" flat, and the targets to be "perfectly" vertical.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

cameraPixelHeight

public static final double cameraPixelHeight

The size of the Axis camera, in pixels

See Also:

Constant Field Values

cameraPixelWidth

public static final double cameraPixelWidth

The size of the Axis camera, in pixels

See Also:

Constant Field Values

Constructor Detail

DistanceCalculations

public DistanceCalculations()

Method Detail

getAngleOfTarget

This function gets the direction the target is facing, relative to the camera. It is imperfect, and half-assumes a simple orthographic projection (which is not quite like real life). If it causes issues (which the accuracy of this function doesn't need to be very high), we can fix it later.

Returns:

the resulting angle in radians.

getApproximationOfTarget

public Target getApproximationOfTarget(Quad quad)

A method that tries to find the most likely location for the vision target to lie in 3D space

Parameters:

 ${\tt quad}\,\text{-}\,\text{a}$ quadrilateral with corners indicating the corners of the target

Returns:

a Target as an estimation of

getRelXYZOfTarget

public Point3d getRelXYZOfTarget(Quad q)

Remember that this requires the camera to be "perfectly" flat, and the targets to be "perfectly" vertical. A new function will probably need to be created for use on the robot. That, or we'll need to manipulate the points based on camera angle.

Returns:

a Point3d holding the $X,\,Y,\,$ and Z of the target, relative to the camera.

