

AMENDMENTS TO THE CLAIMS

The listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1. **(Original)** A method for performing OTDM, said method comprising the following steps:

- a) generating n bit streams of approximately B Gb/s from respectively n tunable laser beams having respectively wavelengths of $\lambda_1, \lambda_2, \dots$ and λ_n ;
- b) generating from said n bit streams n group velocity dispersed bit streams by introducing group velocity dispersion into said n bit streams;
- c) combining said n group velocity dispersed bit streams into a composite bit stream of approximately nB Gb/s; and
- d) in response to misalignment of bits within said composite bit stream, tuning said $\lambda_1, \lambda_2, \dots$ and λ_n to create the proper OTDM time differential between consecutive bits within said composite bit stream.

2. **(Original)** The method of Claim 1, further comprising the following steps:

- e) generating a single-wavelength composite bit stream of approximately wavelength λ_v and nB Gb/s by operating on said composite bit stream with a wavelength converter; and
- f) in response to misalignment of bits within said single-wavelength composite bit stream, tuning said $\lambda_1, \lambda_2, \dots$ and λ_n to create the proper OTDM time differential between consecutive bits within said single-wavelength composite bit stream.

3. **(Original)** An OTDM transmitter, comprising:

- a) n channels of bit streams D_1, D_2, \dots and D_n having respectively wavelengths of $\lambda_1, \lambda_2, \dots$ and λ_n , wherein for $j = 1$ to n , the j-th channel comprises:

- j1) a tunable laser source S_j providing a bit stream B_j of approximately B Gb/s;
and
- j2) a group velocity dispersive element E_j coupled to said S_j , introducing group velocity dispersion into said B_j to generate said D_j ;
- b) a combiner coupled to said n channels and adapted to optically combine said $D_1, D_2,$ and D_n into a composite bit stream of approximately nB Gb/s; and
- c) a wavelength converter coupled to said combiner and adapted to convert said composite bit stream into a single-wavelength composite bit stream of approximately nB Gb/s to be transmitted through an optical link, wherein OTDM time differential can be created between consecutive bits of said single-wavelength composite bit stream by tuning $\lambda_1, \lambda_2, \dots$ and λ_n .

4. **(Original)** A method for performing OTDM transmission, said method comprising the steps of:

- a) generating n bit streams of approximately B Gb/s from respectively n tunable laser beams having respectively initial wavelengths of $\lambda_1, \lambda_2, \dots$ and λ_n ;
- b) generating n group velocity dispersed bit streams by introducing group velocity dispersion into said n bit streams;
- c) combining said n group velocity dispersed bit streams into a composite bit stream of approximately nB Gb/s;
- d) generating a single-wavelength composite bit stream of wavelength λ_v by wavelength converting said composite bit stream with a wavelength converter;
- e) in response to misalignment of bits within said single-wavelength composite bit stream, tuning said $\lambda_1, \lambda_2, \dots$ and λ_n to create the proper OTDM time differential between consecutive bits within said single-wavelength composite bit stream; and
- f) transmitting said single-wavelength composite bit stream by launching said single-wavelength composite bit stream into an optical transmission link.

5. **(Original)** A WDM system, comprising:

- a) m OTDM channels, wherein for k = 1 to m, the k-th OTDM channel comprises:
 - kl) n channels V_{k1}, V_{k2}, ... and V_{kn} providing respectively bit streams D_{k1}, D_{k2}, ... and D_{kn} having respectively wavelengths of λ_{k1} , λ_{k2} , ... and λ_{kn} , wherein for j = 1 to n, the j-th channel V_{kj} comprises:
 - kj 1) a tunable laser source S_{kj} providing a bit stream B_{kj} of approximately B Gb/s; and
 - kj 2) a group velocity dispersive element E_{kj} coupled to said S_{kj}, introducing group velocity dispersion into said B_{kj} to generate said D_{kj};
 - k2) a combiner coupled to said n channels and adapted to optically combine said n bit streams into a composite bit stream U_k;
 - k3) a wavelength converter coupled to said combiner and adapted to convert said composite bit stream into a single-wavelength composite bit stream A_k of wavelength λ_{vk} , wherein the proper OTDM time differential can be created between consecutive bits of said A_k by tuning λ_{k1} , λ_{k2} , ... and λ_{kn} ; and
- b) a WDM multiplexer coupled to said m OTDM channels, with said WDM multiplexer adapted to generate a composite optical signal with a data rate of approximately mnB Gb/s.

6. **(Original)** An OTDM subsystem for performing optical time-division-multiplexing, said OTDM subsystem comprising:

- a) n channels of bit streams D₁, D₂, ... and D_n having respectively wavelengths of λ_1 , λ_2 , ... and λ_n , wherein for j = 1 to n, the j-th channel comprises:
 - j 1) a tunable laser source S_j providing a bit stream B_j of approximately B Gb/s; and
 - j 2) a group velocity dispersive element E_j coupled to said S_j, introducing group velocity dispersion into said B_j to generate said D_j;
- b) a combiner coupled to said N channels and adapted to optically combine said D₁, D₂, and D_n into a composite bit stream of approximately nB Gb/s, wherein OTDM time differential can be created between consecutive bits of said composite bit stream by tuning λ_1 , λ_2 , ... and λ_n .

7. **(Currently amended)** The ~~Claims of 2-6~~method according to claims 2 or 4, wherein return-to-zero (RZ) format is used in generating bit streams.
8. **(Currently amended)** The ~~Claims of 2-6~~method according to claims 1, 2 or 4, wherein said B Gb/s is 10 Gb/s, and wherein said n is 4.
9. **(Currently amended)** The ~~Claims of 2-6~~method according to claims 1, 2 or 4, wherein said B Gb/s is 40 Gb/s, and wherein said n is 4.
10. **(Currently amended)** The ~~Claims of 2-5~~device according to claims 3 or 5, wherein said wavelength converter is a vertical lasing semiconductor optical amplifier (VLSOA), and wherein said single wavelength is generated from the vertical lasing of said VLSOA.
11. **(Currently amended)** The ~~Claims of 2-5~~device according to claims 3 or 5, wherein said wavelength converter uses four-wave mixing.
12. **(Currently amended)** The ~~Claims of 2-5~~device according to claims 3 or 5, wherein said wavelength converter is a MZ-SOA.
13. **(Currently amended)** The ~~Claims of 2-5~~device according to claims 3 or 5, wherein said wavelength converter is a SOA.
14. **(Original)** The method of Claim 1, wherein said n bit streams are generated by modulating respectively n CW tunable laser sources.
15. **(Original)** The method of Claim 1, wherein said n bit streams are generated respectively by n directly modulated tunable laser sources.

16. **(Original)** The OTDM transmitter of Claim 3, wherein for said $j=1$ to n , said S_j in said j -th channel is a CW tunable laser that is coupled to a modulator M_j , said M_j modulating a laser beam L_j generated by said S_j into said B_j .
17. **(Original)** The OTDM transmitter of Claim 3, wherein for said $j=1$ to n , said S_j in said j -th channel is a tunable laser that is directly modulated.
18. **(Original)** The method of Claim 4, wherein said n bit streams are generated by modulating respectively n CW tunable laser sources.
19. **(Original)** The method of Claim 4, wherein said n bit streams are generated respectively by n directly modulated tunable laser sources.
20. **(Original)** The WDM system of Claim 5, wherein for $k=1$ to m and $j = 1$ to n , said tunable laser source S_{kj} in said j -th channel V_{kj} is a tunable CW laser source that is coupled to a modulator M_{kj} , said M_{kj} modulating a laser beam L_{kj} produced from said S_{kj} into said stream B_{kj} .
21. **(Original)** The WDM system of Claim 5, wherein for $k=1$ to m and $j = 1$ to n , said tunable laser source S_{kj} in said j -th channel V_{kj} is a tunable laser that is directly modulated.
22. **(Original)** The OTDM subsystem of Claim 6, wherein for said $j=1$ to n , said S_j in said j -th channel is a CW tunable laser that is coupled to a modulator M_j , said M_j modulating a laser beam L_j generated by said S_j into said B_j .
23. **(Original)** The OTDM subsystem of Claim 6, wherein for said $j=1$ to n , said S_j in said j -th channel is a tunable laser that is directly modulated.