Running Geant4 Functions on a GPU Discussion of Results

Stuart Douglas – dougls2 Rob Gorrie – gorrierw Matthew Pagnan – pagnanmm Victor Reginato – reginavp

McMaster University

April 14, 2016

Overview

- 1 Introduction
 - Brief Project Overview
 - Explanation of Terms
 - Scope
 - Purpose

2 Features

- Easily Enable/Disable GPU Acceleration
- Impl. 1: Existing Module in GPU Memory
- Impl. 2: Add New GPU-Accelerated Methods to Interface
- Accuracy / Testing

3 Conclusion

- Summary of Results
- Recommendations

Brief Project Overview

Take an existing particle simulation toolkit - Geant4 - and have some functions run on a GPU device to improve performance.

What is Geant4

- Geant4 is a toolkit that is meant to simulate the passage of particles through matter.
- It has been developed over the years through collaborative effort of many different institutions and individuals.
- Geant4's diverse particle simulation library has a wide variety of applications including
 - High energy physics simulations
 - Space and radiation simulations
 - Medical physics simulations

Introduction Features Conclusion Brief Project Overview Explanation of Terms Scope Purpose

Demonstration

Demonstration - Running Geant4 on the CPU

What is GP-GPU

- General-purpose graphic processing unit computing is a re-purposing of graphics hardware
- Allows GPUs to perform computations that would typically be computed on the CPU
- If a particular problem is well suited to parallelization,
 GP-GPU computing can greatly increase performance

Scope

- Make current CPU functions available for use on GPU
 - Add appropriate prefixes to function definitions
 - Make use of multiple parallel threads to execute each function
- Ensure correctness of each GPU available function by matching results to the corresponding CPU function
- Compare performance of GPU available functions to CPU functions

Purpose

- Determine if target functions are suitable to parallelization
- Increase performance of functions when run on GPU
- Decrease time required to run simulations involving ported functions

Features

- GPU acceleration available on an "opt-in" basis
- Easy to enable/disable GPU acceleration
- Same results whether acceleration enabled or disabled

Easily Enable/Disable GPU Acceleration

- Existing projects can use GPU acceleration without having to change any code
- Flag during build phase enables/disables GPU acceleration
- No new functions to learn ¹

¹implementation 1 only

Implementation

- Header forwards function calls to GPU or CPU Implementation
- This decision is made at compile time

Accelerating Module on GPU

a

Why G4ParticleHPVector

- Represents empirically-found probabilities of collisions for different particles based on their energy
- Identified as starting point by relevant stakeholders
 - Used heavily in simulations run by stakeholders
- Seems well-suited to parallelization
 - Based on large vector of 2D points
 - Performs calculations over this vector
 - Sorted by x-value (particle energy)

Two Implementations

- Forward all calls to existing G4ParticleHPVector interface to a GPU-based implementation of the module
 - Store data vector in GPU memory
 - Copy results back to the CPU to return to the caller
- 2 Add new methods to G4ParticleHPVector interface that are well-suited to GPU computing
 - Copy data vector to GPU memory on method call
 - Existing G4ParticleHPVector methods unchanged, continue to run on CPU

Impl. 1: Existing Module in GPU Memory

Calls to G4ParticleHPVector forwarded to new GPU-based class

Pros:

- + Do not have to maintain a copy of the vector on the CPU
- + Do not have to maintain a hashed vector
- + Reduces how much is being copied to the GPU

Cons:

All methods are run on the GPU

Easily Enable/Disable GPU Acceleration Impl. 1: Existing Module in GPU Memory Impl. 2: Add New GPU-Accelerated Methods to Interface Accuracy / Testing

Implementation - Times

Implementation - GetXSec

Easily Enable/Disable GPU Acceleration Impl. 1: Existing Module in GPU Memory Impl. 2: Add New GPU-Accelerated Methods to Interfact Accuracy / Testing

Implementation - SampleLin

Performance Results Summary

- Most methods slower on GPU until ~10,000 entries in data vector
- Most commonly-used methods significantly slower on GPU, even with large data vector
 - Lots of data accesses
- Many problems in vector class not well-suited to parallelism

Performance Results - Times

Multiplies each point in vector by factor

Figure: Runtime vs. Number of Data Points - Times

Easily Enable/Disable GPU Acceleration Impl. 1: Existing Module in GPU Memory Impl. 2: Add New GPU-Accelerated Methods to Interface Accuracy / Testing

Performance Results - GetXSec

Performance Results - SampleLin

Performance Results – System Tests

Easily Enable/Disable GPU Acceleration
Impl. 1: Existing Module in GPU Memory
Impl. 2: Add New GPU-Accelerated Methods to Interface
Accuracy / Testing

Performance Discussion

Impl. 2: Add New GPU-Accelerated Methods to Interface

Add new methods to G4ParticleHPVector interface that are well-suited to parallelism

Pros:

- + Only methods that run faster on the GPU are implemented
- + Not forced to run methods that run slowly on GPU

Cons:

- Will have to maintain two copies of the vector
- More copying the vector to and from the GPU

Implementation - GetXSecList

- Fill an array of energies we want to get xSec values for
- Send the array to the GPU to work on

Performance Results Summary

Performance Results - GetXSecList

Easily Enable/Disable GPU Acceleration Impl. 1: Existing Module in GPU Memory Impl. 2: Add New GPU-Accelerated Methods to Interface Accuracy / Testing

Performance Results – System Tests

Performance Discussion

Accuracy

- All modified functions except SampleLin and Sample yield results that precisely match
- Some functions fell extremely close in accuracy to the original, and were considered to 'pass'
- The average of 1000 SampleLin tests deviated from the average of 1000 tests of the original with an error of 0.01
- The system tests differ if the number of nentries is greater than 500; if not however the results of the system test conform.

Accuracy Discussion

- The deviations in SampleLin and Sample can be attributed to the functions use of random numbers
- The negligable deviations in other ported functions are likely attributed to differences in CPU and GPU arithmetic, leading to different round-off errors

Testing

- Comparing test results and performance with GPU acceleration enabled and disabled
- Testing framework based on two phases, one program for each phase
 - 1 GenerateTestResults: Run unit tests and save results to file
 - 2 AnalyzeTestResults: Compare results files from CPU and GPU runs
- Run GenerateTestResults once for GPU acceleration enabled, once with it disabled

GenerateTestResults Details

- Outputs simple results directly
- For vectors, calculates hash for vector and output it

Summary of Results

Recommendations