# PRÁCTICA 2

# TÉCNICAS DE BÚSQUEDA BASADAS EN POBLACIONES

PARA EL PROBLEMA DE AGRUPAMIENTO CON RESTRICCIONES (PAR)

Antonio José Blánquez Pérez 3°CSI METAHEURÍSTICAS 45926869D

# ÍNDICE

| 1. DESCRIPCIÓN DEL PROBLEMA                                        | 3  |
|--------------------------------------------------------------------|----|
| 2. FORMALIZACIÓN Y DESCRIPCIÓN DE LA APLICACIÓN DE LOS ALGORITMOS. | 4  |
| 2.1 FORMALIZACIÓN DE CONCEPTOS                                     | 4  |
| 2.2 REPRESENTACIÓN DE LA INFORMACIÓN                               | 5  |
| 2.3 FUNCIÓN OBJETIVO                                               | 6  |
| 2.4 DATAFRAMES                                                     |    |
| 3. ALGORITMOS GENÉTICOS                                            |    |
| 3.1. DESCRIPCIÓN                                                   | 8  |
| 3.2 OPERADORES DE SELECCIÓN                                        | 9  |
| 3.3 OPERADORES DE CRUCE                                            |    |
| 3.4 OPERADOR DE MUTACIÓN                                           |    |
| 3.5 OPERADORES DE REEMPLAZAMIENTO                                  | 10 |
| 3.6 AGG Y AGE                                                      |    |
| 4. ALGORITMO MEMÉTICO                                              | 12 |
| 4.1 ESTUDIO PRELIMINAR DE LOS AG                                   |    |
| 4.2 BÚSQUEDA LOCAL SUAVE                                           |    |
| 4.3 VARIANTES DE AM                                                |    |
| 5. PROCEDIMIENTO CONSIDERADO PARA EL DESARROLLO DE LA PRÁCTICA     |    |
| 5.1 CÓDIGO Y LIBRERÍAS USADAS                                      | 14 |
| 5.2 MANUAL DE USUARIO                                              |    |
| 6. ANÁLISIS DE RENDIMIENTO                                         |    |
| 6.1 DESCRIPCIÓN DE LOS CASOS DEL PROBLEMA                          |    |
| 6.2 CUESTIONES SOBRE BL Y COPKM                                    | 16 |
| 6.3 PROBLEMÁTICA                                                   |    |
| 6.4 RESULTADOS OBTENIDOS                                           |    |
| 6.5 ANÁLISIS DE RESULTADOS                                         | 21 |
| 7. BIBLIOGRAFÍA                                                    | 23 |

# 1. DESCRIPCIÓN DEL PROBLEMA

El agrupamiento o clustering busca clasificar objetos de un conjunto en subconjuntos o clusters a través de sus posibles similaridades. Es una técnica de aprendizaje no supervisado que permite descubrir grupos inicialmente desconocidos o agrupar objetos similares, de manera que podemos encontrar patrones en grandes grupos de datos que serían imposibles(o extremadamente difíciles) de encontrar sin esta técnica. Una muestra de agrupamiento sería la siguiente:



ejemplo cotidiano del problema del agrupamiento sería dividir una cantidad de frutas en verdes, poco maduras y muy maduras que, aunque trivial, nos permite entender el concepto que hay detrás de la técnica que nos ocupa. Con ésto podemos comprender otras aplicaciones del clustering, como pueden ser el análisis de caracteres escritos a mano, muestras de diálogo, huellas dactilares o imágenes, la clasificación de especies en subespecies o el agrupamiento para moléculas o proteínas.

Para poder aplicar esta técnica debemos medir d características de nuestro grupo de n objetos, por ejemplo el color o la textura en el caso de las frutas o la simetría o la intensidad en el caso de caracteres escritos a mano, obteniendo una conjunto de datos de longitud n con d dimensiones.

En nuestro caso concreto abordaremos una variación del clustering clásico, el Problema de Agrupamiento con Restricciones(PAR), es decir, además de nuestro conjunto de datos tenemos cierta información a la que llamaremos restricciones o, más concretamente, restricciones de instancia. Ésto quiere decir que tenemos alguna información sobre objetos que tienen que pertenecer al mismo cluster(ML, Must-Link) y sobre objetos que no pertenecen al mismo cluster(CL, Cannot-Link), siendo éstas restricciones débiles, o lo que es lo mismo, podemos incumplir restricciones pero debemos minimizar el número de incumplidas al máximo.

El planteamiento combinatorio de este problema es NP-Completo, por tanto a continuación propondremos algunas alternativas de algoritmos para intentar resolver el problema de forma aproximada en un tiempo razonable. El problema se abordará con k(nº de clusters) conocida, ya que su búsqueda es otro problema complejo.

# 2. FORMALIZACIÓN Y DESCRIPCIÓN DE LA APLICACIÓN DE LOS ALGORITMOS

# 2.1 FORMALIZACIÓN DE CONCEPTOS

Vamos a definir distintos conceptos que se nombrarán a lo largo del documento y que son necesarios para entender los procedimientos en cada algoritmo.

Primeramente podemos formalizar la definición de nuestro conjunto de datos como una matriz X de  $n \cdot d$ , n objetos en un espacio de d dimensiones(el número de medidas que tenemos sobre cada objeto). Lo podemos notar matemáticamente como:

$$\vec{x_i} = \{x_{[i,1]}, ..., x_{i,d}\}/x_{[i,d]} \in \mathbb{R} \ \forall \ j \in \{1,...,d\}$$

Llamaremos  $C=\{c_1,...,c_k\}$  al conjunto de los k clusters, de manera que cada  $c_i$  será un subconjunto de X y podrá asociada una etiqueta  $l_i$  que lo nombre Para cada cluster es posible calcular su centroide asociado  $\vec{\mu}_i$ , siendo el vector promedio de sus instancias, de la siguiente manera:

$$\vec{\mu}_i = \frac{1}{|c_i|} \sum_{\vec{x_i} \in c_i} \vec{x_j}$$

También debemos definir la distancia media intra-cluster,  $\overline{c_i}$ , como la media de las distancias entre cada instancia del cluster y su centroide asociado, usando en este caso la distancia euclídea, aunque es equivalente a usar, por ejemplo, la distancia Manhattan. Es calculable con la siguiente expresión:

$$\overline{c_i} = \frac{1}{|c_i|} \sum_{\vec{x_i} \in c_i} ||\vec{x_j} - \vec{\mu}_i||_2$$

A través de estas, podemos llegar a la desviación general de C, la media de las desviaciones intracluster, que nos será de gran ayuda para minimizar la solución y para el posterior análisis de la solución. La expresión sería la siguiente:

$$\overline{C} = \frac{1}{k} \sum_{c \in C} \overline{c_i}$$

Por otro lado tenemos las restricciones,  $R=ML\cup CL$ , donde  $ML(\overrightarrow{xi},\overrightarrow{xj})$  indica que las instancias  $\vec{x}_i y \vec{x}_j$  deben estar asignadas al mismo cluster y  $CL(\vec{x}_i,\vec{x}_j)$  que las instancias  $(\vec{x}_i,\vec{x}_j)$  no pueden ser asignadas al mismo cluster. Con ello, definimos la infactibilidad o infeasibility, que es un indicador de las restricciones que incumple nuestra solución, como:

$$infeasibility = \sum_{i=0}^{|ML|} 1 \left( h_c \left( \vec{ML}_{[i,1]} \right) \neq h_c \left( \vec{ML}_{[i,2]} \right) \right) + \sum_{i=0}^{|CL|} 1 \left( h_c \left( \vec{CL}_{[i,1]} \right) = h_c \left( \vec{CL}_{[i,2]} \right) \right)$$

Siendo 1 la función booleana que devolverá 1 si la expresión que toma como argumento es verdadera y 0 en otro caso.

# 2.2 REPRESENTACIÓN DE LA INFORMACIÓN

Ahora que tenemos algunos conceptos claros y formalizados, pasamos a ver como representaremos la información necesaria en el proceso de resolución del problema.

Primero aclarar que los datos de entrada, nuestro dataframe, estará organizado en una matriz implementada como un vector<vector<float> >(ambos vectores de la librería STL), es decir, un vector de longitud n de vectores de reales en coma flotante de longitud d.

Para las restricciones usaremos dos formas de representación, una para facilitar el acceso cuando conocemos la restricción que queremos comprobar y otra para cuando queramos recorrer todas las restricciones. Para el primer caso se usará la misma representación que para el dataframe, mientras que para el segundo se construirá una lista con elementos del tipo [x,y,{1,-1}], siendo x e y los dos elementos que tiene la restricción y el último elemento 1 si conforman una restricción ML y -1 si es CL. Esta lista se ha implementado usando un vector<vector<int>>, también de la STL. De ésta manera, al recorrer esa lista evadiremos todos los pares que no tienen una restricción y nuestra búsqueda será mucho más eficiente que en una matriz.

Por último, representaremos la solución con un vector<int> de longitud n, de manera que la posición i contendrá el número del cluster asignado al objeto i.

### 2.3 FUNCIÓN OBJETIVO

La función objetivo es la función que debemos minimizar, es decir, la función que dice como de buena es la solución que le pasamos como parámetro.

De todas las definiciones que hemos hecho, desviación general ( $\overline{C}$ ) e infactibilidad (infeasibility) nos dan información acerca de la bondad de la solución, la primera a través de la distancia promedio de cada dato a su centroide correspondiente y la segunda a través de la medida del incumplimiento de las restricciones de la solución dada. Ambas han de ser minimizadas, pero hay que darle más o menos importancia a una y a otra, de manera que debemos introducir un parámetro con el que controlar ésta importancia que debatiremos posteriormente. Así, nuestra función objetivo queda definida como:

$$f = \overline{C} + (infeasibility) * \lambda$$

Dicho ésto queda definir el parámetro  $\lambda$ , el cual se ha decidido proponer como el entero superior a la distancia máxima D dividida por el número de restricciones totales R.

$$\lambda = \frac{[D]}{|R|}$$

A continuación se expone la descripción en pseudocódigo de todos los operadores y de la función objetivo.

```
begin
   Para cada instancia de lista_restricciones
   begin
      Si ( solucion[lista_restricciones[i][0]] = solucion[lista_restricciones[i][1]] ) and
   ( lista_restricciones[2] = -1 )
         entonces infactibilidad ← infactibilidad +1
      Si (solucion[lista_restricciones[i][0]]!=solucion[lista_restricciones[i][1]]) and
   ( lista\_restricciones[2] = 1 )
          entonces infactibilidad ← infactibilidad +1
   end
   return infactibilidad
end
calcular_centroides
begin
   Para cada instancia i de solucion
      centroide[i] ← centroide[i] + dataframe[i.posicion]
   Para cada centroide
      centroide ← centroide / cluster.size
   return centroides
end
calcular_distancia_media_intracluster
begin
   Para cada instancia i de solucion
   begin
      distancia_intracluster[i] ← distancia_intracluster[i] +
   distancia_euclidea(centroide[i],dataframe[i.posicion])
   end
   Para cada cluster
      return distancia_intracluster
end
```

calular\_infeasibility

```
calcular_desv_general
begin
   Para cada cluster
      desv_general ← desv_general + distancia_intracluster[cluster]
   desv_general ← desv_general / #clusters
   return desv_general
end
calcular lamda
begin
   dist_max ← calcular_máxima_distancia(dataframe)
   lambda ← dist_max * rel / lista_restricciones.size
   return lambda
end
calcular_f_objetivo
begin
   inf ← calcular infeasibility()
   dist intra ← calcular distancia intracluster()
   desv ← calcular_desv_general()
   lamb ← calcular_lambda()
```

### 2.4 DATAFRAMES

end

return desv + inf \* lamb

Los conjuntos de datos usados para testear la bondad de los algoritmos son los siguientes:

- Iris: Contiene información sobre las características de tres tipos de flores de Iris. Tiene 3 clases(k=3) y 6 dimensiones.
- Ecoli: Contiene medidas sobre las ciertas características de diferentes tipos de células que pueden ser empleadas para predecir la localización de ciertas proteínas. Tiene 8 clases(k=8) y 7 dimesiones.
- Rand: Conjunto de datos artificial formado por tres agrupamientos bien diferenciados generados en base a distribuciones normales. Tiene 3 clases(k=3) y 2 dimensiones.
- Newthyroid: Contiene medidas cuantitativas tomadas sobre la glándula tiroides de 215 pacientes. Tiene 3 clases(k=3) y 5 dimensiones.

# 3. ALGORITMOS GENÉTICOS

### 3.1. DESCRIPCIÓN

Los Algoritmos Genéticos(AG) son algoritmos basados en poblaciones que funcionan de la siguiente manera: se generan un número determinado de soluciones, en principio, aleatorias(en nuestro caso 50) que llamaremos cromosomas conformadas como se ha explicado en el apartado 2.2(a cada componente del vector la llamaremos gen), se seleccionan un número determinado de cromosomas que serán los padres que posteriormente se cruzarán para formar hijos, que mutarán y podrán pasar a ser parte de la población para la siguiente iteración. Por tanto necesitaremos los siguientes operadores para conformar el algoritmo:

- Selección
- Cruce
- Mutación
- Reemplazamiento

Los cuales tendrán varias versiones con las que conformaremos cuatro variantes de AG: AG Generacional(AGG) y AG Estacionario(AGE), cada uno de ellos con cruce uniforme(UN) o con cruce por segmento finito(SF), es decir, AGG-UN, AGG-SF, AGE-UN y AGE-SF.

### 3.2 OPERADORES DE SELECCIÓN

Operadores de selección necesitaremos dos, uno para los AGG y otro para los AGE, a continuación detallaremos ambos.

```
seleccion_AGG
```

```
begin
repetir 50 veces
begin
escoger dos padres al azar de poblacion
introducir en la poblacion al mejor de ellos
end
end

seleccion_AGE
begin
repetir 2 veces
begin
escoger dos padres al azar de poblacion
introducir en la poblacion al mejor de ellos
end
end
```

Como vemos ambos se basan en lo mismo, se seleccionan los padres de la población a través de un torneo binario. La única diferencia es que para AGG seleccionaremos un número igual al de la población y para AGE tan solo dos.

### 3.3 OPERADORES DE CRUCE

Para el operador de cruce usaremos el mismo para AGG y para AGE, pero uno distinto para cada uno de sus variables. Pasemos a verlos:

```
cruce uniforme
begin
   para cada dos padres
   begin
       introducir dos veces padre1 en hijos
       repetir para cada uno de los dos hijos creados
          cambiar aleatoriamente la mitad de los genes por los de padre2
   end
end
cruce_segmento_finito
begin
   para cada dos padres
   begin
       introducir dos veces padre1 en hijos
       repetir para cada uno de los dos hijos creados
          introducir un segmento de tamaño y localización aleatoria de padre2
          cambiar aleatoriamente la mitad de los genes restantes por los de padre2
   end
end
```

# 3.4 OPERADOR DE MUTACIÓN

El operador de mutación es común a todas las versiones y es el siguiente:

#### mutacion

```
begin
para 1 de cada 1000 genes escogido de manera aleatoria
se le suma una cantidad aleatoria entre 1 y k-1 de manera modular
end
```

### 3.5 OPERADORES DE REEMPLAZAMIENTO

El operador de reemplazamiento es distinto para AGG y para AGE, dadas las naturalezas diferentes de sus poblaciones y que además el AGG requiere de elitismo, o lo que es lo mismo, mantener el mejor miembro en la siguiente generación.

### reemplazamiento\_AGG

```
begin
   introducir el mejor cromosoma de la población anterior en la nueva
   eliminar el peor hijo generados
   introducir los hijos en la población nueva
   introducir los padres no seleccionados a la nueva población
end
```

### reemplazamiento\_AGE

```
si ambos hijos son mejores que sus padres
       intercambiarlos en la población
   si solo uno de ellos es mejor
       intercambiarlo por el peor padre
end
```

### 3.6 AGG Y AGE

A través de los anteriores operadores ya podemos conformar las cuatro versiones ya mencionadas.

```
AGG_UN
```

```
begin
   Para los 50 cromosomas de la poblacion
      generar_sol_aleatoria(3.1 de la práctica anterior)
   Hasta alcanzar 1000 evalucaciones de f
      seleccion_AGG
      cruce_uniforme
      mutacion
      reemplazamiento_AGG
   Devolver mejor solución de la población
end
```

### AGG\_SF

```
begin
   Para los 50 cromosomas de la poblacion
      generar_sol_aleatoria(3.1 de la práctica anterior)
   Hasta alcanzar 1000 evalucaciones de f
      seleccion_AGG
      cruce_segmento_finito
      mutacion
      reemplazamiento AGG
   Devolver mejor solución de la población
end
```

```
AGE_UN
begin
Para los 50 cromosomas de la poblacion
generar_sol_aleatoria(3.1 de la práctica anterior)
Hasta alcanzar 1000 evalucaciones de f
seleccion_AGE
cruce_uniforme
```

mutacion reemplazamiento\_AGE

Devolver mejor solución de la población

end

### AGE\_SF

begin

Para los 50 cromosomas de la poblacion generar\_sol\_aleatoria(3.1 de la práctica anterior)
Hasta alcanzar 1000 evalucaciones de f seleccion\_AGE cruce\_segmento\_finito mutacion reemplazamiento\_AGE
Devolver mejor solución de la población

# 4. ALGORITMO MEMÉTICO

El algoritmo memético(AM) será una hibridación entre el mejor AGG y una búsqueda local suave(BLS), de manera que aprovechemos lo mejor de la exploración de AGG y la explotación de BLS. Esto debería mejorar los resultados de los AGG.

### 4.1 ESTUDIO PRELIMINAR DE LOS AG

Ahora vamos a estudiar cual es el AGG que mejores resultados ha dado en nuestros conjuntos de datos. Para ello observaremos la media de las medidas obtenidas en las ejecuciones realizadas, las cuales serán estudiadas en profundidad en el punto 6.

| 10%    |        |          | Iris |         |        | Ne       | wthyroid |         |        |          | Ecoli |          |        |          | Rand |         |
|--------|--------|----------|------|---------|--------|----------|----------|---------|--------|----------|-------|----------|--------|----------|------|---------|
| 1070   | Tasa_C | Tasa_inf | Agr. | T       | Tasa_C | Tasa_inf | Agr.     | T       | Tasa_C | Tasa_inf | Agr.  | T        | Tasa_C | Tasa_inf | Agr. | T       |
| AGG-UN | 1,83   | 333,20   | 4,45 | 4668750 | 13,41  | 886,60   | 68,92    | 6746884 | 336,31 | 1221,78  | 84,53 | 17909375 | 2,48   | 338,20   | 5,18 | 4362500 |
| AGG-SF | 1,80   | 336,80   | 4,45 | 4515625 | 13,48  | 898,20   | 69,69    | 8384375 | 44,61  | 1532,40  | 86,09 | 17778125 | 2,52   | 333,00   | 5,23 | 4287500 |
| AGE-UN | 1,64   | 302,00   | 4,01 | 4262500 | 13,42  | 793,80   | 63,07    | 8134375 | 38,37  | 1356,20  | 74,91 | 17734375 | 1,98   | 389,60   | 4,61 | 4068750 |
| AGE-SF | 1,75   | 307,40   | 4,17 | 4234375 | 13,42  | 799,00   | 63,43    | 8175000 | 37,05  | 1398,20  | 74,84 | 17734375 | 2,18   | 320,00   | 4,74 | 4071875 |

| 20%    |        |          | Iris |         |        | Nev      | vthyroid |          |        |          | Ecoli |          |        |          | Rand |         |
|--------|--------|----------|------|---------|--------|----------|----------|----------|--------|----------|-------|----------|--------|----------|------|---------|
| 20%    | Tasa_C | Tasa_inf | Agr. | T       | Tasa_C | Tasa_inf | Agr.     | T        | Tasa_C | Tasa_inf | Agr.  | T        | Tasa_C | Tasa_inf | Agr. | T       |
| AGG-UN | 1,49   | 775,00   | 4,60 | 7706250 | 13,41  | 886,60   | 68,92    | 8481250  | 41,65  | 3327,40  | 86,05 | 33559375 | 1,99   | 817,20   | 5,24 | 7640625 |
| AGG-SF | 1,52   | 771,80   | 4,62 | 7584375 | 13,44  | 1928,00  | 74,24    | 14843750 | 43,54  | 3310,20  | 87,65 | 33243750 | 2,03   | 834,20   | 5,35 | 7512500 |
| AGE-UN | 1,12   | 753,60   | 4,15 | 7300000 | 13,12  | 1694,80  | 66,46    | 14612500 | 33,68  | 3197,80  | 76,27 | 33106250 | 1,56   | 810,00   | 4,79 | 7328125 |
| AGE-SF | 1,16   | 753,40   | 4,19 | 7406250 | 12,94  | 1700,60  | 66,60    | 14709375 | 36,05  | 3163,80  | 78,12 | 33203125 | 1,54   | 826,60   | 4,83 | 7275000 |

Como se puede apreciar, los resultados no son demasiado buenos, esto se comentará también en el punto 6, ahora nos ceñiremos solo a elegir el mejor AGG que, como se puede apreciar fácilmente observando los agregados(f), es AGG-UN, ya que mejora a AGG-SF en casi todos los casos. Por lo tanto nuestro algoritmo memético quedaría formado por AGG-UN hibridado con BLS.

# **4.2 BÚSQUEDA LOCAL SUAVE**

La búsqueda local suave(BLS) es una variante de BL que busca vecinos en orden aleatorio para un cromosoma y se queda con el mejor, teniendo en cuenta las condiciones de parada que son exceder el número de fallos predeterminado(0.1\*cromosoma.size) y no se realiza mejora o exceder un número máximo de iteraciones, en este caso cromosoma.size(), que coincide con la generación de todos los vecinos posibles variando una vez cada gen de la mejor manera.

#### BLS

### 4.3 VARIANTES DE AM

Como se pide, se relizarán tres versiones de AM a partir de AGG-UN, ya descrito anteriormente, aunque sobre el mismo código ya que se puede controlar fácilmente mediante parámetros. Las versiones serían:

- AM(10,1): cada 10 cromosomas se aplica BLS a toda la población, se llama a memetico(1,false)
- AM(10,0.1): cada 10 cromosomas se aplica BLS al 10% de la población, se llama a memetico(0,1,false)
- AM(10,0.1mej): cada 10 cromosomas se aplica BLS al 10% de la población, se llama a memetico(0.1,true)

### memetico(ratio, mejor)

```
begin
Para los 10 cromosomas de la poblacion
generar_sol_aleatoria(3.1 de la práctica anterior)
Hasta alcanzar 1000 evalucaciones de f
seleccion_AGG
cruce_uniforme
mutacion
reemplazamiento_AGG
Si mejor
lanzar BLS para los mejores cromosomas.size*ratio cromosomas
Si no
lanzar BLS para cromosomas.size*ratio cromosomas
Devolver mejor solución de la población
```

# 5. PROCEDIMIENTO CONSIDERADO PARA EL DESARROLLO DE LA PRÁCTICA

### 5.1 CÓDIGO Y LIBRERÍAS USADAS

La práctica ha sido desarrollada en C++, siendo todo el código implementado a mano, con ayuda de las explicaciones dadas en clase y en el guión, y usando las siguientes librerías:

- iostream: para entrada y salida por teclado y pantalla respectivamente.
- fstream: para entrada y salida por ficheros.
- STL: todos los vectores usados provienen de ésta librería.
- cmath: para algunos cálculos necesarios los algoritmos.
- algorithm: para usar la función shuffle()
- ctime: para medir tiempos de ejecución
- cstdlib: para la generación de números aleatorios

### 5.2 MANUAL DE USUARIO

#### **Compilación:**

Se incluye un makefile, por lo que se compila tan solo ejecutando la orden 'make' desde la terminal.

### **Ejecución completa:**

La ejecución completa planteada para el ejercicio(6 conjuntos(3\*2 % de restricciones)\*5 ejecuciones distintas) se pueden hacer con ayuda del script incluido. Tan solo es necesario darle permisos de ejecución y ejecutarlo con el algoritmo como parámetro, 'copkm' para el algoritmo de comparación COPKM, 'bl' para el algoritmo de búsqueda local primero el mejor, 'aggun' para AGG-UN, 'aggsf' para AGG-SF, 'ageun' para AGE-UN, 'agesf' para AGE-SF. 'am1' para AM(10,1), 'am0.1' para AM(10,0.1) o 'am0.1mej' para AM(10,0.1mej)

### **Ejecución manual:**

Si se desea ejecutar a mano un sólo conjunto, se puede hacer llamando a 'clustering' de la siguiente forma:

./clustering <dataframe> <restricciones> <k> <ALG> <seed>

ALG = {0:COPKM, 1:BL, 2:AGG-UN, 3:AGG-SF, 4:AGE-UN, 5:AGE-SF, 6:AM(10,1), 7:AM(10,0.1), 8:AM(10,0.1mej)}

También es posible llamarlo sin argumentos, entonces pedirá por teclado la información necesaria.

# 6. ANÁLISIS DE RENDIMIENTO

### 6.1 DESCRIPCIÓN DE LOS CASOS DEL PROBLEMA

Se van utilizar todos los dataframes anteriormente mencionados para analizar como de buenos son los algoritmos planteados para resolver el problema del agrupamiento con restricciones, con el 10 y el 20% de restricciones en cada conjunto de datos. Los datos organizan en tablas y se analizarán posteriormente.

Para ello se han realizado con cada uno de los cuatro dataframes, Iris, Ecoli, Newthyroid y Rand, tanto con el 10% como con el 20% de restricciones, un total de 5 veces, lo que hace un total de 40 ejecuciones(4 conjuntos x 2 conjuntos de restricciones x 5 veces).

Para poder replicar el total de ejecuciones todas ellas se han realizado utilizando semillas para la generación de números aleatorios, por lo que conociendo estas semillas se puede realizar el estudio exactamente de la misma manera y con los mismos resultados. Las semillas usadas en este estudio son las siguientes:

| Ejecución 1 | Ejecución 2 | Ejecución 3 | Ejecución 4 | Ejecución 5 |
|-------------|-------------|-------------|-------------|-------------|
| 798245613   | 123456789   | 25022020    | 17042026    | 459268694   |

### **6.2 CUESTIONES SOBRE BL Y COPKM**

Como se ha introducido un dataframe más para el estudio, ha sido necesario probarlo con los algoritmos de la práctica anterior, por que se adjunta dicha información para su posterior estudio.

| BL 10%      |        | ]        | Iris  |       |        | New      | thyroid |      |        | ]        | Ecoli  |       |        | R        | and   |       |
|-------------|--------|----------|-------|-------|--------|----------|---------|------|--------|----------|--------|-------|--------|----------|-------|-------|
| DL 1070     | Tasa_C | Tasa_inf | Agr.  | T     | Tasa_C | Tasa_inf | Agr.    | T    | Tasa_C | Tasa_inf | Agr.   | T     | Tasa_C | Tasa_inf | Agr.  | T     |
| Ejecución 1 | 0,669  | 0        | 0,669 | 0,151 | 13,91  | 764,00   | 30,90   | 0,45 | 29,336 | 57       | 36,142 | 5,950 | 0,757  | 0        | 0,757 | 0,116 |
| Ejecución 2 | 0,669  | 0        | 0,669 | 0,120 | 14,54  | 748,00   | 29,52   | 0,63 | 30,591 | 135      | 47,286 | 1,241 | 0,757  | 0        | 0,757 | 0,254 |
| Ejecución 3 | 0,669  | 0        | 0,669 | 0,218 | 13,77  | 759,00   | 29,89   | 0,50 | 34,316 | 136      | 51,280 | 4,410 | 0,757  | 0        | 0,757 | 0,127 |
| Ejecución 4 | 0,669  | 0        | 0,669 | 0,222 | 13,79  | 752,00   | 29,63   | 0,36 | 30,610 | 143      | 47,380 | 4,137 | 0,757  | 0        | 0,757 | 0,196 |
| Ejecución 5 | 0,669  | 0        | 0,669 | 0,148 | 13,56  | 770,00   | 30,28   | 0,38 | 32,187 | 149      | 50,770 | 4,354 | 0,757  | 0        | 0,757 | 0,103 |
| Media       | 0,67   | 0,00     | 0,67  | 0,17  | 13,91  | 758,60   | 30,04   | 0,46 | 31,41  | 124,00   | 46,57  | 4,02  | 0,76   | 0,00     | 0,76  | 0,16  |

| BL 20%      |        | j        | ris   |       |        | New      | thyroid |       |        | l        | Ecoli  |       |        | R        | and   |       |
|-------------|--------|----------|-------|-------|--------|----------|---------|-------|--------|----------|--------|-------|--------|----------|-------|-------|
| BL 20%      | Tasa_C | Tasa_inf | Agr.  | T     | Tasa_C | Tasa_inf | Agr.    | T     | Tasa_C | Tasa_inf | Agr.   | T     | Tasa_C | Tasa_inf | Agr.  | T     |
| Ejecución 1 | 0,669  | 0        | 0,669 | 0,162 | 15,182 | 1550     | 30,865  | 1,141 | 28,967 | 204      | 41,146 | 1,916 | 0,757  | 0        | 0,757 | 0,152 |
| Ejecución 2 | 0,669  | 0        | 0,669 | 0,171 | 14,745 | 1638     | 32,488  | 1,250 | 32,345 | 316      | 51,885 | 1,962 | 0,757  | 0        | 0,757 | 0,430 |
| Ejecución 3 | 0,669  | 0        | 0,669 | 0,422 | 13,621 | 1746     | 34,420  | 0,922 | 29,404 | 190      | 41,253 | 7,133 | 0,757  | 0        | 0,757 | 0,206 |
| Ejecución 4 | 0,669  | 0        | 0,669 | 0,351 | 15,325 | 1597     | 31,770  | 1,094 | 30,643 | 210      | 42,957 | 7,329 | 0,757  | 0        | 0,757 | 0,244 |
| Ejecución 5 | 0,669  | 0        | 0,669 | 0,192 | 15,271 | 1556     | 30,988  | 1,031 | 32,005 | 169      | 45,545 | 8,000 | 0,757  | 0        | 0,757 | 0,130 |
| Media       | 0,67   | 0,00     | 0,67  | 0,26  | 14,83  | 1617,40  | 32,11   | 1,09  | 30,67  | 217,80   | 44,56  | 5,27  | 0,76   | 0,00     | 0,76  | 0,23  |

|        | ]                                         | Iris                                                                                                                                                                                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                              | New                                                                                                                                                                                                                                                                                                                                                                                                                    | thyroid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                        | l                                                      | Ecoli                                                  |                                                        |                                                        | R                                                      | and                                                    |                                                        |
|--------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Tasa_C | Tasa_inf                                  | Agr.                                                                                                                                                                                | T                                                                                                                                                                                                                                     | Tasa_C                                                                                                                                                                                                                                                                                                                       | Tasa_inf                                                                                                                                                                                                                                                                                                                                                                                                               | Agr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                                                      | Tasa_C                                                 | Tasa_inf                                               | Agr.                                                   | T                                                      | Tasa_C                                                 | Tasa_inf                                               | Agr.                                                   | T                                                      |
| 0,669  | 0                                         | 0,669                                                                                                                                                                               | 0,020                                                                                                                                                                                                                                 | 16,136                                                                                                                                                                                                                                                                                                                       | 732                                                                                                                                                                                                                                                                                                                                                                                                                    | 35,732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,016                                                  | 36,919                                                 | 2                                                      | 36,959                                                 | 0,268                                                  | 0,757                                                  | 0                                                      | 0,757                                                  | 0,004                                                  |
| 0,669  | 0                                         | 0,669                                                                                                                                                                               | 0,004                                                                                                                                                                                                                                 | 16,707                                                                                                                                                                                                                                                                                                                       | 715                                                                                                                                                                                                                                                                                                                                                                                                                    | 37,082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,031                                                  | 39,523                                                 | 64                                                     | 40,740                                                 | 0,234                                                  | 0,757                                                  | 0                                                      | 0,757                                                  | 0,004                                                  |
| 0,669  | 0                                         | 0,669                                                                                                                                                                               | 0,009                                                                                                                                                                                                                                 | 17,107                                                                                                                                                                                                                                                                                                                       | 721,250                                                                                                                                                                                                                                                                                                                                                                                                                | 37,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,023                                                  | 39,584                                                 | 89                                                     | 41,450                                                 | 0,265                                                  | 0,757                                                  | 0                                                      | 0,757                                                  | 0,004                                                  |
| 0,669  | 0                                         | 0,669                                                                                                                                                                               | 0,004                                                                                                                                                                                                                                 | 18,245                                                                                                                                                                                                                                                                                                                       | 716                                                                                                                                                                                                                                                                                                                                                                                                                    | 38,958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,016                                                  | 33,933                                                 | 1                                                      | 33,954                                                 | 0,203                                                  | 0,757                                                  | 0                                                      | 0,757                                                  | 0,003                                                  |
| 0,669  | 0                                         | 0,669                                                                                                                                                                               | 0,003                                                                                                                                                                                                                                 | 17,340                                                                                                                                                                                                                                                                                                                       | 722                                                                                                                                                                                                                                                                                                                                                                                                                    | 38,226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,031                                                  | 39,410                                                 | 3                                                      | 39,466                                                 | 0,273                                                  | 0,757                                                  | 0                                                      | 0,757                                                  | 0,004                                                  |
| 0,67   | 0,00                                      | 0,67                                                                                                                                                                                | 0,008                                                                                                                                                                                                                                 | 17,11                                                                                                                                                                                                                                                                                                                        | 721,25                                                                                                                                                                                                                                                                                                                                                                                                                 | 37,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,02                                                   | 37,87                                                  | 31,80                                                  | 38,51                                                  | 0,25                                                   | 0,76                                                   | 0,00                                                   | 0,76                                                   | 0,00                                                   |
|        | 0,669<br>0,669<br>0,669<br>0,669<br>0,669 | Tasa_C         Tasa_inf           0,669         0           0,669         0           0,669         0           0,669         0           0,669         0           0,669         0 | 0.669         0         0.669           0.669         0         0.669           0.669         0         0.669           0.669         0         0.669           0.669         0         0.669           0.669         0         0.669 | Tasa_C         Tasa_inf         Agr.         T           0,669         0         0,669         0,020           0,669         0         0,669         0,004           0,669         0         0,669         0,009           0,669         0         0,669         0,004           0,669         0         0,669         0,003 | Tasa_C         Tasa_inf         Agr.         T         Tasa_C           0,669         0         0,669         0,020         16,136           0,669         0         0,669         0,004         16,707           0,669         0         0,669         0,009         17,107           0,669         0         0,669         0,004         18,245           0,669         0         0,669         0,003         17,340 | Tasa_C         Tasa_inf         Agr.         T         Tasa_C         Tasa_inf           0,669         0         0,669         0,020         16,136         732           0,669         0         0,669         0,004         16,707         715           0,669         0         0,669         0,009         17,107         721,250           0,669         0         0,669         0,004         18,245         716           0,669         0         0,669         0,003         17,340         722 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| COPKM       |        | j        | Iris  |       |        | New      | thyroid |       |        | j        | Ecoli  |       |        | R        | and   |       |
|-------------|--------|----------|-------|-------|--------|----------|---------|-------|--------|----------|--------|-------|--------|----------|-------|-------|
| 20%         | Tasa_C | Tasa_inf | Agr.  | T     | Tasa_C | Tasa_inf | Agr.    | T     | Tasa_C | Tasa_inf | Agr.   | T     | Tasa_C | Tasa_inf | Agr.  | T     |
| Ejecución 1 | 0,669  | 0        | 0,669 | 0,007 | 16,283 | 1554     | 36,236  | 0,078 | 35,730 | 8        | 35,821 | 0,327 | 0,757  | 0        | 0,757 | 0,008 |
| Ejecución 2 | 0,669  | 0        | 0,669 | 0,008 | 16,040 | 1555     | 38,713  | 0,047 | 36,721 | 9        | 36,803 | 0,265 | 0,757  | 0        | 0,757 | 0,006 |
| Ejecución 3 | 0,669  | 0        | 0,669 | 0,006 | 16,500 | 1548     | 39,072  | 0,094 | 35,360 | 0        | 35,360 | 0,328 | 0,757  | 0        | 0,757 | 0,006 |
| Ejecución 4 | 0,669  | 0        | 0,669 | 0,006 | 16,059 | 1542     | 38,543  | 0,047 | 35,360 | 0        | 35,360 | 0,329 | 0,757  | 0        | 0,757 | 0,007 |
| Ejecución 5 | 0,669  | 0        | 0,669 | 0,007 | 38,403 | 1556     | 38,403  | 0,063 | 37,584 | 12       | 37,706 | 0,264 | 0,757  | 0        | 0,757 | 0,009 |
| Media       | 0,67   | 0,00     | 0,67  | 0,007 | 25,08  | 1551,40  | 38,63   | 0,06  | 36,15  | 5,80     | 36,21  | 0,30  | 0,76   | 0,00     | 0,76  | 0,01  |

\*En rojo: Cicla, se han introducido valores medios para que no afecte al resto

Como se puede ver, para COPKM se obtiene un comportamiento peor que en Ecoli, a pesar de que este último tiene más dimensiones y una k bastante más grande, mientras que para BL los resultados son también malos pero destaca que los resultados son parecidos a COPKM.

De esto se puede empezar a observar que Newthyroid es un conjunto de datos más complejo que el resto y no en términos de dimensiones o de conjuntos, si no en la distribución de estos conjuntos, es decir, en la dificultad de separar los clusters.

## **6.3 PROBLEMÁTICA**

**Importante:** Antes de comenzar a ver los resultados, es necesario comentar que los resultados no son buenas, no por la calidad de los algoritmos si no por la propia implementación. Teóricamente los AG deberían de ser mejores que BL y que COPKM, al menos en la mayoría de casos; sin embargo tras mucho tiempo dedicado al problema, el cual se presenta en las cuatro versiones de AG, me ha sido imposible encontrar el error en la implementación por lo que ante la falta de tiempo y teniendo en cuenta que esta práctica no debería de haber consumido tanto de este se ha tenido que dejar así. Esto implica que no se van analizar las mejoras respecto a la práctica anterior, sino que se hará un estudio de donde y cómo funcionan mejor este tipo de algoritmos teniendo en cuenta que existe un error derivado de la implementación.

### **6.4 RESULTADOS OBTENIDOS**

A continuación se detallan en el formato anteriormente comentado los resultados obtenidos en las pruebas realizadas:

| AGG-UN      |        | ]        | Iris  |             |        | New      | thyroid |             |        | j        | Ecoli  |              |        | R        | and   |             |
|-------------|--------|----------|-------|-------------|--------|----------|---------|-------------|--------|----------|--------|--------------|--------|----------|-------|-------------|
| 10%         | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T           | Tasa_C | Tasa_inf | Agr.   | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1 | 1,785  | 335      | 4,410 | 4937500     | 13,421 | 886      | 68,891  | 8453125,000 | 43,757 | 1487     | 84,038 | 17843750,000 | 2,659  | 327      | 5,278 | 4421875,000 |
| Ejecución 2 | 1,892  | 319      | 4,406 | 4687500,000 | 13,237 | 891      | 69,021  | 8359375,000 | 44,265 | 1507,000 | 85     | 17875000,000 | 2,183  | 356      | 5,034 | 4312500,000 |
| Ejecución 3 | 1,624  | 361      | 4,469 | 4609375,000 | 13,402 | 891      | 69,186  | 8406250,000 | 44,293 | 1504     | 85,036 | 18125000,000 | 2,426  | 330      | 5,068 | 4296875,000 |
| Ejecución 4 | 1,882  | 329      | 4,475 | 4500000,000 | 13,496 | 874      | 68,215  | 8453125,000 | 43,347 | 1532     | 84,849 | 17718750,000 | 2,444  | 359      | 5,319 | 4421875,000 |
| Ejecución 5 | 1,961  | 322      | 4,483 | 4609375,000 | 13,497 | 891      | 69,280  | 8421875,000 | 43,134 | 1501     | 83,796 | 17984375,000 | 2,679  | 319      | 5,203 | 4359375,000 |
| Media       | 1,83   | 333,20   | 4,45  | 4668750,00  | 13,41  | 886,60   | 68,92   | 6746883,85  | 336,31 | 1221,78  | 84,53  | 17909375,00  | 2,48   | 338,20   | 5,18  | 4362500,00  |

| AGG-UN      |        | ]        | Iris  |             |        | New      | thyroid |             |        | ]        | Ecoli  |              |        | R        | land  |             |
|-------------|--------|----------|-------|-------------|--------|----------|---------|-------------|--------|----------|--------|--------------|--------|----------|-------|-------------|
| 20%         | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T           | Tasa_C | Tasa_inf | Agr.   | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1 | 1,709  | 779      | 4,843 | 7750000,000 | 13,421 | 886      | 68,891  | 8515625,000 | 41,117 | 3329     | 85,492 | 34031250,000 | 1,808  | 837      | 5,143 | 7593750,000 |
| Ejecución 2 | 1,593  | 767      | 4,679 | 7640625,000 | 13,237 | 891      | 69,021  | 8656250,000 | 41,510 | 3328     | 85,871 | 33578125,000 | 1,966  | 822      | 5,237 | 7812500,000 |
| Ejecución 3 | 1,410  | 792      | 4,583 | 7640625,000 | 13,402 | 891      | 69,186  | 8343750,000 | 41,155 | 3310     | 85,590 | 33218750,000 | 1,927  | 825      | 5,216 | 7578125,000 |
| Ejecución 4 | 1,405  | 760      | 4,452 | 7781250,000 | 13,496 | 874      | 68,215  | 8500000,000 | 43,237 | 3323     | 87,468 | 33484375,000 | 1,873  | 824      | 5,148 | 7703125,000 |
| Ejecución 5 | 1,350  | 777      | 4,447 | 7718750,000 | 13,497 | 891      | 69,280  | 8390625,000 | 41,244 | 3347     | 85,852 | 33484375,000 | 2,368  | 778      | 5,469 | 7515625,000 |
| Media       | 1,49   | 775,00   | 4,60  | 7706250,00  | 13,41  | 886,60   | 68,92   | 8481250,00  | 41,65  | 3327,40  | 86,05  | 33559375,00  | 1,99   | 817,20   | 5,24  | 7640625,00  |

| AGG-SF      |        | ]        | Iris  |             |        | New      | thyroid |             |        | ]        | Ecoli  |              |        | R        | and   |             |
|-------------|--------|----------|-------|-------------|--------|----------|---------|-------------|--------|----------|--------|--------------|--------|----------|-------|-------------|
| 10%         | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T           | Tasa_C | Tasa_inf | Agr.   | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1 | 1,639  | 353      | 4,421 | 4609375,000 | 13,463 | 890      | 69,116  | 8484375,000 | 44,684 | 1561     | 86,906 | 17796875,000 | 2,550  | 335      | 5,233 | 4250000,000 |
| Ejecución 2 | 1,948  | 323      | 4,488 | 4578125,000 | 13,619 | 892      | 69,432  | 8296875,000 | 44,879 | 1534     | 86,391 | 17750000,000 | 2,741  | 314      | 5,255 | 4312500,000 |
| Ejecución 3 | 1,816  | 335      | 4,456 | 4500000,000 | 13,809 | 878      | 68,779  | 8406250,000 | 43,903 | 1508     | 84,754 | 17796875,000 | 2,300  | 338      | 5,201 | 4234375,000 |
| Ejecución 4 | 1,783  | 341      | 4,456 | 4453125,000 | 13,065 | 920      | 70,664  | 8406250,000 | 45,383 | 1529     | 86,803 | 17812500,000 | 2,713  | 329      | 5,348 | 4359375,000 |
| Ejecución 5 | 1,804  | 332      | 4,420 | 4437500,000 | 13,453 | 911      | 70,451  | 8328125,000 | 44,207 | 1530     | 85,613 | 17734375,000 | 2,310  | 349      | 5,103 | 4281250,000 |
| Media       | 1,80   | 336,80   | 4,45  | 4515625,00  | 13,48  | 898,20   | 69,69   | 8384375,00  | 44,61  | 1532,40  | 86,09  | 17778125,00  | 2,52   | 333,00   | 5,23  | 4287500,00  |

| AGG-SF      |        | ]        | Iris  |             |        | New      | thyroid |              |        | 1        | Ecoli  |              |        | R        | and   |             |
|-------------|--------|----------|-------|-------------|--------|----------|---------|--------------|--------|----------|--------|--------------|--------|----------|-------|-------------|
| 20%         | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T            | Tasa_C | Tasa_inf | Agr.   | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1 | 1,215  | 798      | 4,422 | 7484375,000 | 13,549 | 1916     | 73,924  | 14828125,000 | 43,468 | 3333     | 87,863 | 33375000,000 | 2,410  | 772      | 5,487 | 7562500,000 |
| Ejecución 2 | 1,731  | 755      | 4,769 | 7421875,000 | 13,262 | 1930     | 74,145  | 14843750,000 | 43,569 | 3294     | 87,477 | 33187500,000 | 1,748  | 880      | 5,256 | 7640625,000 |
| Ejecución 3 | 1,377  | 787      | 4,542 | 7578125,000 | 13,407 | 1938     | 74,562  | 14796875,000 | 43,258 | 3334     | 87,659 | 33218750,000 | 2,265  | 807      | 5,482 | 7453125,000 |
| Ejecución 4 | 1,398  | 773      | 4,492 | 7843750,000 | 13,394 | 1912     | 73,674  | 14859375,000 | 44,096 | 3288     | 87,924 | 33093750,000 | 1,891  | 851      | 5,283 | 7468750,000 |
| Ejecución 5 | 1,880  | 746      | 4,881 | 7593750,000 | 13,565 | 1944     | 74,910  | 14890625,000 | 43,305 | 3302     | 87,320 | 33343750,000 | 1,831  | 861      | 5,255 | 7437500,000 |
| Media       | 1,52   | 771,80   | 4,62  | 7584375,00  | 13,44  | 1928,00  | 74,24   | 14843750,00  | 43,54  | 3310,20  | 87,65  | 33243750,00  | 2,03   | 834,20   | 5,35  | 7512500,00  |

| AGE-UN      |        | ]        | Iris  |             |        | New      | thyroid |             |        | l        | Ecoli  |              |        | R        | and   |             |
|-------------|--------|----------|-------|-------------|--------|----------|---------|-------------|--------|----------|--------|--------------|--------|----------|-------|-------------|
| 10%         | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T           | Tasa_C | Tasa_inf | Agr.   | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1 | 1,931  | 290      | 4,217 | 4328125,000 | 13,323 | 776      | 61,894  | 8218750,000 | 38,302 | 1337     | 74,431 | 17656250,000 | 1,675  | 347      | 4,451 | 4015625,000 |
| Ejecución 2 | 1,324  | 325      | 3,862 | 4187500,000 | 13,321 | 807      | 63,845  | 8093750,000 | 38,066 | 1358     | 74,840 | 17812500,000 | 2,376  | 302      | 4,753 | 4093750,000 |
| Ejecución 3 | 1,445  | 311      | 3,891 | 4281250,000 | 13,349 | 824      | 64,938  | 8187500,000 | 38,098 | 1384     | 75,545 | 17640625,000 | 1,336  | 376      | 4,347 | 4109375,000 |
| Ejecución 4 | 1,815  | 288      | 4,084 | 4265625,000 | 13,597 | 766      | 61,555  | 8093750,000 | 40,199 | 1336     | 76,365 | 17843750,000 | 1,757  | 645      | 4,519 | 4046875,000 |
| Ejecución 5 | 1,665  | 296      | 3,997 | 4250000,000 | 13,522 | 796      | 63,105  | 8078125,000 | 37,172 | 1366     | 73,358 | 17718750,000 | 2,744  | 278      | 4,970 | 4078125,000 |
| Media       | 1,64   | 302,00   | 4,01  | 4262500,00  | 13,42  | 793,80   | 63,07   | 8134375,00  | 38,37  | 1356,20  | 74,91  | 17734375,00  | 1,98   | 389,60   | 4,61  | 4068750,00  |

| AGE-UN      |        | ]        | Iris  |             |        | New      | thyroid |              |        | I        | Ecoli  |              |        | R        | and   |             |
|-------------|--------|----------|-------|-------------|--------|----------|---------|--------------|--------|----------|--------|--------------|--------|----------|-------|-------------|
| 20%         | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T            | Tasa_C | Tasa_inf | Agr.   | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1 | 1,329  | 751      | 4,339 | 7265625,000 | 13,173 | 1665     | 65,474  | 14734375,000 | 31,524 | 3223     | 74,449 | 33234375,000 | 1,250  | 857      | 4,659 | 7406250,000 |
| Ejecución 2 | 1,038  | 766      | 4,119 | 7343750,000 | 13,252 | 1745     | 68,129  | 14593750,000 | 33,506 | 3209     | 76,234 | 33078125,000 | 1,675  | 790      | 4,824 | 7296875,000 |
| Ejecución 3 | 1,106  | 757      | 4,149 | 7265625,000 | 12,728 | 1682     | 65,640  | 14578125,000 | 35,187 | 3151     | 77,167 | 33125000,000 | 1,154  | 875      | 4,641 | 7359375,000 |
| Ejecución 4 | 1,082  | 742      | 4,067 | 7281250,000 | 13,282 | 1767     | 69,003  | 14531250,000 | 34,073 | 3197     | 76,618 | 33078125,000 | 1,823  | 786      | 4,952 | 7296875,000 |
| Ejecución 5 | 1,058  | 752      | 4,084 | 7343750,000 | 13,150 | 1615     | 64,039  | 14625000,000 | 34,118 | 3209     | 76,865 | 33015625,000 | 1,922  | 742      | 4,879 | 7281250,000 |
| Media       | 1,12   | 753,60   | 4,15  | 7300000,00  | 13,12  | 1694,80  | 66,46   | 14612500,00  | 33,68  | 3197,80  | 76,27  | 33106250,00  | 1,56   | 810,00   | 4,79  | 7328125,00  |

| AGE-SF      |        | l        | Iris  |             |        | New      | thyroid |             |        | l        | Ecoli  |              |        | R        | and   |             |
|-------------|--------|----------|-------|-------------|--------|----------|---------|-------------|--------|----------|--------|--------------|--------|----------|-------|-------------|
| 10%         | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T           | Tasa_C | Tasa_inf | Agr.   | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1 | 1,298  | 340      | 3,978 | 4328125,000 | 13,045 | 801      | 63,186  | 8390625,000 | 37,278 | 1418     | 75,439 | 17859375,000 | 1,868  | 329      | 4,503 | 4093750,000 |
| Ejecución 2 | 1,813  | 297      | 4,154 | 4203125,000 | 13,473 | 797      | 63,371  | 8125000,000 | 37,909 | 1410     | 76,033 | 17718750,000 | 1,946  | 330      | 4,589 | 4078125,000 |
| Ejecución 3 | 1,921  | 300      | 4,285 | 4265625,000 | 13,685 | 789      | 63,083  | 8140625,000 | 37,916 | 1364     | 74,830 | 17796875,000 | 2,688  | 303      | 5,096 | 4062500,000 |
| Ejecución 4 | 1,880  | 301      | 4,252 | 4156250,000 | 13,428 | 805      | 63,812  | 8078125,000 | 34,933 | 1391     | 72,582 | 17671875,000 | 2,283  | 314      | 4,798 | 4078125,000 |
| Ejecución 5 | 1,826  | 299      | 4,183 | 4218750,000 | 13,478 | 803      | 63,686  | 8140625,000 | 37,220 | 1408     | 75,298 | 17625000,000 | 2,138  | 324      | 4,693 | 4046875,000 |
| Media       | 1,75   | 307,40   | 4,17  | 4234375,00  | 13,42  | 799,00   | 63,43   | 8175000,00  | 37,05  | 1398,20  | 74,84  | 17734375,00  | 2,18   | 320,00   | 4,74  | 4071875,00  |

| AGE-SF      |        | ]        | Iris  |             |        | New      | thyroid |              |        | j        | Ecoli  |              |        | R        | and   |             |
|-------------|--------|----------|-------|-------------|--------|----------|---------|--------------|--------|----------|--------|--------------|--------|----------|-------|-------------|
| 20%         | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T            | Tasa_C | Tasa_inf | Agr.   | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1 | 1,089  | 787      | 4,253 | 7406250,000 | 12,830 | 1715     | 66,929  | 14718750,000 | 36,312 | 3123     | 77,922 | 33687500,000 | 1,153  | 866      | 4,604 | 7312500,000 |
| Ejecución 2 | 1,016  | 761      | 4,078 | 7375000,000 | 12,158 | 1621     | 63,310  | 14609375,000 | 36,610 | 3155     | 78,530 | 33187500,000 | 2,562  | 713      | 5,404 | 7312500,000 |
| Ejecución 3 | 1,532  | 718      | 4,421 | 7343750,000 | 13,012 | 1715     | 67,130  | 14671875,000 | 35,259 | 3203     | 77,910 | 33093750,000 | 1,267  | 853      | 4,650 | 7187500,000 |
| Ejecución 4 | 1,071  | 751      | 4,092 | 7359375,000 | 13,178 | 1773     | 69,115  | 14828125,000 | 37,086 | 3164     | 79,117 | 32921875,000 | 1,458  | 849      | 4,831 | 7265625,000 |
| Ejecución 5 | 1,093  | 750      | 4,104 | 7546875,000 | 13,541 | 1679     | 66,495  | 14718750,000 | 34,969 | 3174     | 77,145 | 33125000,000 | 1,246  | 852      | 4,642 | 7296875,000 |
| Media       | 1,16   | 753,40   | 4,19  | 7406250,00  | 12,94  | 1700,60  | 66,60   | 14709375,00  | 36,05  | 3163,80  | 78,12  | 33203125,00  | 1,54   | 826,60   | 4,83  | 7275000,00  |

| AM (10,1)   |        | 1        | Iris  |             |        | New      | thyroid |             |        | I        | Ecoli  |              |        | R        | and   |             |
|-------------|--------|----------|-------|-------------|--------|----------|---------|-------------|--------|----------|--------|--------------|--------|----------|-------|-------------|
| 10%         | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T           | Tasa_C | Tasa_inf | Agr.   | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1 | 1,181  | 348      | 3,923 | 4593750,000 | 12,989 | 815      | 64,015  | 8312500,000 | 31,272 | 1339     | 66,763 | 18171875,000 | 1,894  | 335      | 4,577 | 4218750,000 |
| Ejecución 2 | 1,927  | 299      | 4,283 | 4531250,000 | 13,602 | 821      | 65,009  | 8562500,000 | 29,137 | 1326     | 64,865 | 17656250,000 | 1,825  | 345      | 4,588 | 4187500,000 |
| Ejecución 3 | 1,245  | 344      | 3,956 | 4359375,000 | 13,458 | 803      | 63,732  | 8234375,000 | 27,953 | 1380     | 65,331 | 17765625,000 | 1,497  | 375      | 4,499 | 4250000,000 |
| Ejecución 4 | 1,639  | 321      | 4,169 | 4328125,000 | 13,363 | 780      | 62,197  | 8218750,000 | 31,129 | 1325     | 67,023 | 17875000,000 | 1,931  | 324      | 4,525 | 4156250,000 |
| Ejecución 5 | 1,765  | 297      | 4,106 | 4328125,000 | 13,131 | 788      | 62,466  | 8234375,000 | 33,090 | 1341     | 69,073 | 17812500,000 | 1,767  | 354      | 4,602 | 4250000,000 |
| Media       | 1,55   | 321,80   | 4,09  | 4428125,00  | 13,31  | 801,40   | 63,48   | 8312500,00  | 30,52  | 1342,20  | 66,61  | 17856250,00  | 1,78   | 346,60   | 4,56  | 4212500,00  |

|          |                                 |                                                               |                                                                                                                           | - 1 - 11                                                                                                                                                     | thyroid                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|---------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tasa_inf | Agr.                            | T                                                             | Tasa_C                                                                                                                    | Tasa_inf                                                                                                                                                     | Agr.                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tasa_C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tasa_inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Agr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tasa_C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tasa_inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Agr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 772      | 4,163                           | 7593750,000                                                   | 11,422                                                                                                                    | 1781                                                                                                                                                         | 67,624                                                                                                                                                                                                                                                                                                                                                                            | 15515625,000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28,570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70,493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34609375,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8125000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 766      | 4,208                           | 7515625,000                                                   | 13,870                                                                                                                    | 1816                                                                                                                                                         | 71,176                                                                                                                                                                                                                                                                                                                                                                            | 14968750,000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28,603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70,285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33625000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7468750,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 745      | 4,142                           | 7578125,000                                                   | 13,261                                                                                                                    | 1709                                                                                                                                                         | 67,190                                                                                                                                                                                                                                                                                                                                                                            | 15000000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70,795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32984375,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7500000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 751      | 4,152                           | 7625000,000                                                   | 13,510                                                                                                                    | 1784                                                                                                                                                         | 69,781                                                                                                                                                                                                                                                                                                                                                                            | 14953125,000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29,594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71,466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33093750,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7500000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 763      | 4,175                           | 7593750,000                                                   | 13,077                                                                                                                    | 1648                                                                                                                                                         | 65,081                                                                                                                                                                                                                                                                                                                                                                            | 14781250,000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26,296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68,245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32984375,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7531250,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 759,40   | 4,17                            | 7581250,00                                                    | 13,03                                                                                                                     | 1747,60                                                                                                                                                      | 68,17                                                                                                                                                                                                                                                                                                                                                                             | 15043750,00                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3134,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33459375,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 814,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7625000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 772<br>766<br>745<br>751<br>763 | 772 4,163<br>766 4,208<br>745 4,142<br>751 4,152<br>763 4,175 | 772 4,163 7593750,000<br>766 4,208 7515625,000<br>745 4,142 7578125,000<br>751 4,152 7625000,000<br>763 4,175 7593750,000 | 772 4,163 7593750,000 11,422<br>766 4,208 7515625,000 13,870<br>745 4,142 7578125,000 13,261<br>751 4,152 7625000,000 13,510<br>763 4,175 7593750,000 13,077 | 772         4,163         7593750,000         11,422         1781           766         4,208         7515625,000         13,870         1816           745         4,142         7578125,000         13,261         1709           751         4,152         7625000,000         13,510         1784           763         4,175         7593750,000         13,077         1648 | 772         4,163         7593750,000         11,422         1781         67,624           766         4,208         7515625,000         13,870         1816         71,176           745         4,142         7578125,000         13,261         1709         67,190           751         4,152         7625000,000         13,510         1784         69,781           763         4,175         7593750,000         13,077         1648         65,081 | 772         4,163         7593750,000         11,422         1781         67,624         15515625,000           766         4,208         7515625,000         13,870         1816         71,176         14968750,000           745         4,142         7578125,000         13,261         1709         67,190         15000000,000           751         4,152         7625000,000         13,510         1784         69,781         14953125,000           763         4,175         7593750,000         13,077         1648         65,081         14781250,000 | 772         4,163         7593750,000         11,422         1781         67,624         15515625,000         28,570           766         4,208         7515625,000         13,870         1816         71,176         14968750,000         28,603           745         4,142         7578125,000         13,261         1709         67,190         15000000,000         29,687           751         4,152         7625000,000         13,510         1784         69,781         14953125,000         29,594           763         4,175         7593750,000         13,077         1648         65,081         14781250,000         26,296 | 772         4,163         7593750,000         11,422         1781         67,624         15515625,000         28,570         3148           766         4,208         7515625,000         13,870         1816         71,176         14968750,000         28,603         3127           745         4,142         7578125,000         13,261         1709         67,190         15000000,000         29,687         3087           751         4,152         7625000,000         13,510         1784         69,781         14953125,000         29,594         3144           763         4,175         7593750,000         13,077         1648         65,081         14781250,000         26,296         3164 | 772         4,163         7593750,000         11,422         1781         67,624         15515625,000         28,570         3148         70,493           766         4,208         7515625,000         13,870         1816         71,176         14968750,000         28,603         3127         70,285           745         4,142         7578125,000         13,261         1709         67,190         15000000,000         29,687         3087         70,795           751         4,152         7625000,000         13,510         1784         69,781         14953125,000         29,594         3144         71,466           763         4,175         7593750,000         13,077         1648         65,081         14781250,000         26,296         3164         68,245 | 772         4,163         7593750,000         11,422         1781         67,624         15515625,000         28,570         3148         70,493         34609375,000           766         4,208         7515625,000         13,870         1816         71,176         14968750,000         28,603         3127         70,285         33625000,000           745         4,142         7578125,000         13,261         1709         67,190         15000000,000         29,687         3087         70,795         32984375,000           751         4,152         7625000,000         13,510         1784         69,781         14953125,000         29,594         3144         71,466         33093750,000           763         4,175         7593750,000         13,077         1648         65,081         14781250,000         26,296         3164         68,245         32984375,000 | 772         4,163         7593750,000         11,422         1781         67,624         15515625,000         28,570         3148         70,493         34609375,000         1,679           766         4,208         7515625,000         13,870         1816         71,176         14968750,000         28,603         3127         70,285         33625000,000         1,796           745         4,142         7578125,000         13,261         1709         67,190         15000000,000         29,687         3087         70,795         32984375,000         1,488           751         4,152         7625000,000         13,510         1784         69,781         14953125,000         29,594         3144         71,466         33093750,000         1,837           763         4,175         7593750,000         13,077         1648         65,081         14781250,000         26,296         3164         68,245         32984375,000         1,360 | 772         4,163         7593750,000         11,422         1781         67,624         15515625,000         28,570         3148         70,493         34609375,000         1,679         815           766         4,208         7515625,000         13,870         1816         71,176         14968750,000         28,603         3127         70,285         33625000,000         1,796         775           745         4,142         7578125,000         13,261         1709         67,190         15000000,000         29,687         3087         70,795         32984375,000         1,488         852           751         4,152         7625000,000         13,510         1784         69,781         14953125,000         29,594         3144         71,466         33093750,000         1,837         789           763         4,175         7593750,000         13,077         1648         65,081         14781250,000         26,296         3164         68,245         32984375,000         1,360         842 | 772         4,163         7593750,000         11,422         1781         67,624         15515625,000         28,570         3148         70,493         34609375,000         1,679         815         4,928           766         4,208         7515625,000         13,870         1816         71,176         14968750,000         28,603         3127         70,285         33625000,000         1,796         775         4,885           745         4,142         7578125,000         13,261         1709         67,190         15000000,000         29,687         3087         70,795         32984375,000         1,488         852         4,884           751         4,152         7625000,000         13,510         1784         69,781         14953125,000         29,594         3144         71,466         33093750,000         1,837         789         4,981           763         4,175         7593750,000         13,077         1648         65,081         14781250,000         26,296         3164         68,245         32984375,000         1,360         842         4,716 |

| AM (10.0.1)     |        | ]        | Iris  |             |        | New      | thyroid |             |        | ]        | Ecoli  |              |        | R        | and   |             |
|-----------------|--------|----------|-------|-------------|--------|----------|---------|-------------|--------|----------|--------|--------------|--------|----------|-------|-------------|
| (10,0,1)<br>10% | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T           | Tasa_C | Tasa_inf | Agr.   | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1     | 1,732  | 301      | 4,097 | 4218750,000 | 13,353 | 778      | 62,062  | 8015625,000 | 38,527 | 1426     | 77,158 | 17468750,000 | 1,984  | 341      | 4,714 | 4093750,000 |
| Ejecución 2     | 1,697  | 301      | 4,069 | 4265625,000 | 13,248 | 801      | 63,397  | 8031250,000 | 36,441 | 1428     | 75,126 | 17500000,000 | 1,860  | 346      | 4,631 | 4109375,000 |
| Ejecución 3     | 1,717  | 320      | 4,239 | 4218750,000 | 13,372 | 794      | 63,083  | 8093750,000 | 35,026 | 1452     | 74,361 | 17769875,000 | 2,562  | 300      | 4,964 | 4109375,000 |
| Ejecución 4     | 1,239  | 347      | 3,973 | 4218750,000 | 13,394 | 816      | 64,482  | 8218750,000 | 38,396 | 1384     | 75,889 | 17578125,000 | 1,544  | 356      | 4,395 | 4046875,000 |
| Ejecución 5     | 1,624  | 319      | 4,138 | 4234375,000 | 13,641 | 800      | 63,728  | 8046875,000 | 37,245 | 1432     | 76,038 | 17468750,000 | 1,671  | 358      | 4,537 | 4125000,000 |
| Media           | 1,60   | 317,60   | 4,10  | 4231250,00  | 13,40  | 797,80   | 63,35   | 8081250,00  | 37,13  | 1424,40  | 75,71  | 17557100,00  | 1,92   | 340,20   | 4,65  | 4096875,00  |

| AM          |        | ]        | Iris  |             |        | New      | thyroid |              |        | j        | Ecoli  |              |        | R        | and   |             |
|-------------|--------|----------|-------|-------------|--------|----------|---------|--------------|--------|----------|--------|--------------|--------|----------|-------|-------------|
| (10,0,1)    | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T            | Tasa_C | Tasa_inf | Agr.   | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1 | 1,076  | 742      | 4,061 | 7203125,000 | 13,099 | 1682     | 66,176  | 14578125,000 | 37,043 | 3161     | 79,178 | 33078125,000 | 1,524  | 818      | 4,784 | 7203125,000 |
| Ejecución 2 | 1,075  | 753      | 4,105 | 7375000,000 | 13,599 | 1744     | 68,632  | 14687500,000 | 36,548 | 3226     | 79,550 | 32812500,000 | 1,231  | 876      | 4,745 | 7218750,000 |
| Ejecución 3 | 1,484  | 714      | 4,357 | 7265625,000 | 12,536 | 1756     | 67,948  | 14515625,000 | 33,252 | 3223     | 76,192 | 32609375,000 | 1,125  | 882      | 4,641 | 7203125,000 |
| Ejecución 4 | 1,031  | 770      | 4,129 | 7296875,000 | 12,954 | 1641     | 64,738  | 14703125,000 | 36,031 | 3216     | 78,899 | 32984375,000 | 1,195  | 858      | 4,615 | 7234375,000 |
| Ejecución 5 | 1,103  | 748      | 4,112 | 7218750,000 | 13,113 | 1713     | 67,168  | 14656250,000 | 35,467 | 3230     | 78,522 | 32890625,000 | 1,169  | 868      | 4,629 | 7187500,000 |
| Media       | 1,15   | 745,40   | 4,15  | 7271875,00  | 13,06  | 1707,20  | 66,93   | 14628125,00  | 35,67  | 3211,20  | 78,47  | 32875000,00  | 1,25   | 860,40   | 4,68  | 7209375,00  |

| AM (10.0.1         |        |          | ris   |             |        | New      | thyroid |             |        | j        | Ecoli      |              |        | R        | and   |             |
|--------------------|--------|----------|-------|-------------|--------|----------|---------|-------------|--------|----------|------------|--------------|--------|----------|-------|-------------|
| (10,0.1mej)<br>10% | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T           | Tasa_C | Tasa_inf | Agr.       | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1        | 1,793  | 310      | 4,236 | 4312500,000 | 13,684 | 785      | 62,831  | 8093750,000 | 24,847 | 1322     | 606599,000 | 17578125,000 | 1,538  | 354      | 4,373 | 4140625,000 |
| Ejecución 2        | 1,456  | 319      | 3,970 | 4265625,000 | 13,257 | 761      | 60,902  | 8156250,000 | 26,632 | 1319     | 62,364     | 17484375,000 | 1,802  | 340      | 4,522 | 4125000,000 |
| Ejecución 3        | 1,418  | 340      | 4,097 | 4281250,000 | 13,878 | 761      | 61,523  | 8125000,000 | 26,075 | 1324     | 61,942     | 17687500,000 | 1,520  | 372      | 4,499 | 4156250,000 |
| Ejecución 4        | 1,670  | 314      | 4,144 | 4265625,000 | 13,063 | 798      | 63,024  | 8125000,000 | 29,224 | 1273     | 63,710     | 17500000,000 | 2,576  | 290      | 4,899 | 4109375,000 |
| Ejecución 5        | 1,204  | 342      | 3,900 | 4281250,000 | 13,728 | 789      | 63,126  | 8093750,000 | 27,859 | 1377     | 65,162     | 17593750,000 | 1,838  | 328      | 4,464 | 4156250,000 |
| Media              | 1,51   | 325,00   | 4,07  | 4281250,00  | 13,52  | 778,80   | 62,28   | 8118750,00  | 26,93  | 1323,00  | 121370,44  | 17568750,00  | 1,85   | 336,80   | 4,55  | 4137500,00  |

| AM<br>(10,0.1mej) |        | ]        | Iris  |             |        | New      | thyroid |              |        | ]        | Ecoli      |              |        | R        | and   |             |
|-------------------|--------|----------|-------|-------------|--------|----------|---------|--------------|--------|----------|------------|--------------|--------|----------|-------|-------------|
| 20%               | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr.    | T            | Tasa_C | Tasa_inf | Agr.       | T            | Tasa_C | Tasa_inf | Agr.  | T           |
| Ejecución 1       | 1,079  | 753      | 4,109 | 7390625,000 | 13,209 | 1682     | 66,286  | 15078125,000 | 27,947 | 3058     | 68,710     | 33328125,000 | 1,301  | 845      | 4,669 | 7312500,000 |
| Ejecución 2       | 1,040  | 760      | 4,097 | 7343750,000 | 13,211 | 1705     | 67,014  | 14750000,000 | 25,266 | 3121     | 66,869     | 32953125,000 | 1,834  | 791      | 4,987 | 7343750,000 |
| Ejecución 3       | 1,107  | 731      | 4,048 | 7359375,000 | 11,433 | 1613     | 62,332  | 14250000,000 | 22,374 | 3292     | 66,255     | 33109375,000 | 1,184  | 856      | 4,596 | 7312500,000 |
| Ejecución 4       | 1,046  | 760      | 4,104 | 7375000,000 | 13,725 | 1693     | 67,150  | 14734375,000 | 25,887 | 3182     | 68,303     | 33203125,000 | 1,213  | 869      | 4,676 | 7296875,000 |
| Ejecución 5       | 0,993  | 757      | 4,038 | 7343750,000 | 13,070 | 1739     | 67,946  | 14765625,000 | 22,975 | 3219,000 | 66         | 33125000,000 | 1,758  | 804      | 4,962 | 7328125,000 |
| Media             | 1,05   | 752,20   | 4,08  | 7362500,00  | 12,93  | 1686,40  | 66,15   | 11762504,60  | 664,09 | 2543,78  | 6625054,03 | 26518750,35  | 1,46   | 833,00   | 4,78  | 7318750,00  |

Con todo esto, junto con los resultados de la práctica anterior, obtenemos unos valores medios presentados en la siguiente tabla con se podrá estudiar el comportamiento de cada algoritmo más fácilmente.

| 10%           |        |          | Iris |            |        | Nev      | vthyroid |            |        |          | Ecoli     |             |        |          | Rand |            |
|---------------|--------|----------|------|------------|--------|----------|----------|------------|--------|----------|-----------|-------------|--------|----------|------|------------|
| 1070          | Tasa_C | Tasa_inf | Agr. | T          | Tasa_C | Tasa_inf | Agr.     | T          | Tasa_C | Tasa_inf | Agr.      | T           | Tasa_C | Tasa_inf | Agr. | T          |
| COPKM         | 0,67   | 0,00     | 0,67 | 0,01       | 17,11  | 721,25   | 37,50    | 0,02       | 37,87  | 31,80    | 38,51     | 0,25        | 0,76   | 0,00     | 0,76 | 0,00       |
| BL            | 0,67   | 0,00     | 0,67 | 0,17       | 13,91  | 758,60   | 30,04    | 0,46       | 31,41  | 124,00   | 46,57     | 4,02        | 0,76   | 0,00     | 0,76 | 0,16       |
| AGG-UN        | 1,83   | 333,20   | 4,45 | 4668750    | 13,41  | 886,60   | 68,92    | 6746884    | 336,31 | 1221,78  | 84,53     | 17909375    | 2,48   | 338,20   | 5,18 | 4362500    |
| AGG-SF        | 1,80   | 336,80   | 4,45 | 4515625    | 13,48  | 898,20   | 69,69    | 8384375    | 44,61  | 1532,40  | 86,09     | 17778125    | 2,52   | 333,00   | 5,23 | 4287500    |
| AGE-UN        | 1,64   | 302,00   | 4,01 | 4262500    | 13,42  | 793,80   | 63,07    | 8134375    | 38,37  | 1356,20  | 74,91     | 17734375    | 1,98   | 389,60   | 4,61 | 4068750    |
| AGE-SF        | 1,75   | 307,40   | 4,17 | 4234375    | 13,42  | 799,00   | 63,43    | 8175000    | 37,05  | 1398,20  | 74,84     | 17734375    | 2,18   | 320,00   | 4,74 | 4071875    |
| AM(10,1)      | 1,55   | 321,80   | 4,09 | 4428125,00 | 13,31  | 801,40   | 63,48    | 8312500,00 | 30,52  | 1342,20  | 66,61     | 17856250,00 | 1,78   | 346,60   | 4,56 | 4212500,00 |
| AM(10,0.1)    | 1,60   | 317,60   | 4,10 | 4231250,00 | 13,40  | 797,80   | 63,35    | 8081250,00 | 37,13  | 1424,40  | 75,71     | 17557100,00 | 1,92   | 340,20   | 4,65 | 4096875,00 |
| AM(10,0.1mej) | 1,51   | 325,00   | 4,07 | 4281250,00 | 13,52  | 778,80   | 62,28    | 8118750,00 | 26,93  | 1323,00  | 121370,44 | 17568750,00 | 1,85   | 336,80   | 4,55 | 4137500,00 |

| 20%           |        |          | Iris |            |        | Nev      | vthyroid |             |        |          | Ecoli |             |        |          | Rand |            |
|---------------|--------|----------|------|------------|--------|----------|----------|-------------|--------|----------|-------|-------------|--------|----------|------|------------|
| 20%           | Tasa_C | Tasa_inf | Agr. | T          | Tasa_C | Tasa_inf | Agr.     | T           | Tasa_C | Tasa_inf | Agr.  | T           | Tasa_C | Tasa_inf | Agr. | T          |
| COPKM         | 0,67   | 0,00     | 0,67 | 0,01       | 25,08  | 1551,40  | 38,63    | 0,06        | 36,15  | 5,80     | 36,21 | 0,30        | 0,76   | 0,00     | 0,76 | 0,01       |
| BL            | 0,67   | 0,00     | 0,67 | 0,26       | 14,83  | 1617,40  | 32,11    | 1,09        | 30,67  | 217,80   | 44,56 | 5,27        | 0,76   | 0,00     | 0,76 | 0,23       |
| AGG-UN        | 1,49   | 775,00   | 4,60 | 7706250    | 13,41  | 886,60   | 68,92    | 8481250     | 41,65  | 3327,40  | 86,05 | 33559375    | 1,99   | 817,20   | 5,24 | 7640625    |
| AGG-SF        | 1,52   | 771,80   | 4,62 | 7584375    | 13,44  | 1928,00  | 74,24    | 14843750    | 43,54  | 3310,20  | 87,65 | 33243750    | 2,03   | 834,20   | 5,35 | 7512500    |
| AGE-UN        | 1,12   | 753,60   | 4,15 | 7300000    | 13,12  | 1694,80  | 66,46    | 14612500    | 33,68  | 3197,80  | 76,27 | 33106250    | 1,56   | 810,00   | 4,79 | 7328125    |
| AGE-SF        | 1,16   | 753,40   | 4,19 | 7406250    | 12,94  | 1700,60  | 66,60    | 14709375    | 36,05  | 3163,80  | 78,12 | 33203125    | 1,54   | 826,60   | 4,83 | 7275000    |
| AM(10,1)      | 1,11   | 759,40   | 4,17 | 7581250,00 | 13,03  | 1747,60  | 68,17    | 15043750,00 | 28,55  | 3134,00  | 70,26 | 33459375,00 | 1,63   | 814,60   | 4,88 | 7625000,00 |
| AM(10,0.1)    | 1,15   | 745,40   | 4,15 | 7271875,00 | 13,06  | 1707,20  | 66,93    | 14628125,00 | 35,67  | 3211,20  | 78,47 | 32875000,00 | 1,25   | 860,40   | 4,68 | 7209375,00 |
| AM(10,0.1mej) | 1,05   | 752,20   | 4,08 | 7362500,00 | 12,93  | 1686,40  | 66,15    | 11762504,60 | 664,09 | 2543,78  | 67.42 | 26518750,35 | 1,46   | 833,00   | 4,78 | 7318750,00 |

## 6.5 ANÁLISIS DE RESULTADOS

Como resumen de lo dicho en la primera práctica, sabemos que COPKM funciona muy bien para conjuntos de datos sencillos, obteniendo además los resultados en poco tiempo, mientras que BL aunque consume más tiempo, sabemos que va a ser mejor en otro conjunto más complejos sabiendo que ésta sí que tiene en cuenta más directamente la desviación general.

Añadiendo el nuevo conjunto de datos, que como ya hemos visto es más complejo que el resto, confirmamos lo dicho, BL se comporta mejor en esas circunstancias.

Como para esta práctica tenemos más variedad que comparar, aclaremos un concepto sobre BL: se basa en la explotación, es decir, tiene una gran capacidad para encontrar mejores soluciones y llegar al óptimo más cercano. Sin embargo hay conjuntos de datos que tienen mucho óptimos locales y que necesitan de capacidad de exploración para encontrar óptimos globales.

Habrá que tener en cuenta también que los AG y los AM son mucho más costosos en tiempo que BL y COPKM, por lo que para conjuntos donde funcionen bien estos últimos no sería interesante usarlos. Un ejemplo son Iris y Rand, donde BL y COPKM ya encuentran óptimos y no son necesarios los AG(recalcar que estos también deberían dar el óptimo sin el error antes mencionado).

Centrémonos entonces en los conjuntos de datos más complejos, Ecoli y Newthyroid, para realizar el análisis, destacando primero que los AGE funcionan mejor que los AGG, probablemente porque estos pueden realizar más iteraciones ya que cada una de ellas requiere un menor número de evaluaciones de la función objetivo.



Ahora bien, comparando los comportamientos de AGG-UN, el seleccionado para hibridar, y todos los AM, podemos deducir algunas propiedades de los conjuntos de datos.



Es claro que Newthyroid obtiene mejores resultados tras hibridar, sin embargo Ecoli apenas nota la BLS. Es por ello por lo que podemos deducir que Newthyroid se beneficia tanto de la exploración, para salir de algunos óptimos locales, como de la explotación para llegar a esos óptimos, por lo que es un buen candidato para usar en él algoritmos meméticos. Ecoli parece ni inmutarse ante el cambio de AG a AM, por lo que parece que prima la exploración y no tanto la explotación de manera que el uso de los AG que funcionan mejor(como son en este caso cualquiera de los AGE) parece la mejor solución para este caso, prueba de ello que BL no funcione demasiado bien como vimos en la primera práctica.

A través de este estudio hemos podido ver que, dependiendo de la naturaleza del conjunto de datos, será recomendable usar un tipo de metaheurística u otra, ya que algunos se beneficiarán más de la exploración y otros de la explotación.

## 7. BIBLIOGRAFÍA

- <a href="http://www.cplusplus.com/reference/vector/vector/">http://www.cplusplus.com/reference/vector/vector/</a>
- http://www.cplusplus.com/reference/cstdlib/
- http://www.cplusplus.com/reference/fstream/
- http://www.cplusplus.com/reference/ctime/
- http://www.cplusplus.com/reference/algorithm/count/