Rutgers University School of Engineering

Fall 2011

14:440:127 - Introduction to Computers for Engineers

Sophocles J. Orfanidis ECE Department orfanidi@ece.rutgers.edu

week 12

Weekly Topics

```
Week 1 - Basics – variables, arrays, matrices, plotting (ch. 2 & 3)
Week 2 - Basics – operators, functions, program flow (ch. 2 & 3)
Week 3 - Matrices (ch. 4)
Week 4 - Plotting – 2D and 3D plots (ch. 5)
Week 5 - User-defined functions (ch. 6)
Week 6 - Input-output processing (ch. 7)
Week 7 - Program flow control & relational operators (ch. 8)
Week 8 - Matrix algebra – solving linear equations (ch. 9)
Week 9 - Strings, structures, cell arrays (ch. 10)
Week 10 - Symbolic math (ch. 11)
Week 11 - Numerical methods – data fitting (ch. 12)
Week 12 - Numerical methods – data fitting – part II (ch. 12)
```

Textbook: H. Moore, MATLAB for Engineers, 2nd ed., Prentice Hall, 2009

Numerical Methods Data Fitting – part II

- data fitting with polynomials polyfit, polyval
- examples: Moore's law,
- Hank Aaaron,
- US census data
- least-squares polynomial regression
- least-squares with other basis functions
- examples: exponential models
- trigonometric basis functions
- trigonometric with polynomial trends (CO2 data)

$$P(x) = p_1 x^M + p_2 x^{M-1} + \cdots + p_M x + p_{M+1}$$

$$\mathbf{p} = [p_1, p_2, ..., p_M, p_{M+1}]$$

$$P(x) = 5x^4 - 2x^3 + x^2 + 4x + 3$$

$$\mathbf{p} = [5, -2, 1, 4, 3]$$

polynomial P(x) is represented by its coefficients **p**

Given N data points $\{x_i, y_i\}$, i=1,2,...,N, find an M-th degree polynomial that best fits the data – (polyfit)

```
% design procedure:
xi = [x1,x2,...,xN];
yi = [y1,y2,...,yN];

p = polyfit(xi,yi,M);
y = polyval(p,x);
```

evaluate P(x) at a given vector x

M = polynomial order

if N = M+1, the polynomial interpolates the data

if N > M+1, the polynomial provides the best fit in a least-squares sense

$$J = \sum_{i=1}^N ig(P(x_i) - y_iig)^2 = \min$$

```
xi = [1, 3, 4, 6, 9];
yi = [4, 4, 7, 11, 19];
x = linspace(0,10,101);
for M = [1,2,3,4]
  p = polyfit(xi,yi,M);
  y = polyval(p,x);
  figure;
  plot(x,y,'r-', xi,yi,'b.', 'markersize',25);
  yaxis(-2,22,0:5:20); xaxis(0,10,0:2:10);
  xlabel('x'); title('polynomial fit');
  legend([' fit, {\itM} = ',num2str(M)],...
         ' data', 'location','se');
end
```



```
A = load('aaron.dat');
   = A(:,2); H = A(:,3);
   = cumsum(H);
 = polyfit(ti,yi,1)
p
   37.2617 -39.8474
 = linspace(1,20, 101);
y = polyval(p,t);
plot(t,y,'r-', ...
     ti,yi,'b.', ...
     'markersize', 18);
```


Given N data points $\{x_i, y_i\}$, i=1,2,...,N, the following data models can be reduced to linear fits using an appropriate transformation of the data:

```
linear: y = ax + b

exponential: y = b e^{ax} \Rightarrow \log(y) = ax + \log(b)

exponential: y = b 2^{ax} \Rightarrow \log_2(y) = ax + \log_2(b)

exponential: y = b x e^{ax} \Rightarrow \log(y/x) = ax + \log(b)

power: y = b x^a \Rightarrow \log(y) = a \log(x) + \log(b)
```

```
>> p = polyfit(xi,log(yi),1);  % exponential
>> y = exp(polyval(p,x));  % y=exp(a*x+log(b))
>> a = p(1);
>> b = exp(p(2));  % so that y = b*exp(a*x)
```

уi	ti		
2.300e+003	1971		
2.500e+003	1972		
4.500e+003	1974		
2.900e+004	1979		
1.340e+005	1982		
2.750e+005	1985		
1.200e+006	1989		
3.100e+006	1993		
4.300e+006	1996		
7.500e+006	1997		
8.800e+006	1997		
9.500e+006	1999		
2.130e+007	1999		
2.200e+007	1999		
4.200e+007	2000		
5.430e+007	2003		
1.059e+008	2003		
2.200e+008	2003		
5.920e+008	2004		
2.410e+008	2006		
2.910e+008	2006		
5.820e+008	2006		
6.810e+008	2006		
7.890e+008	2007		
1.700e+009	2006		
2.000e+009	2008		

Moore's law from set-4

fitted model:

$$f(t) = b*2.^(a*(t-t1));$$

```
Y = load('transistor count.dat');
y = Y(:,1); t = Y(:,2);
t1 = t(1);
p = polyfit(t-t1, log2(y), 1);
p =
    0.5138 10.5889 % b = 2^p(2) = 1.5402e + 003
f = 2.^(polyval(p,t-t1));
semilogy(t,f,'r-', t,y,'b.', 'markersize',18)
```

```
fitted model:

f(t) = b * 2.^(a*(t-t1)) = 2.^(a*(t-t1)+log2(b));

% a = p(1), log2(b) = p(2) --> b = 2^(p(2))
```



```
A = load('uspop.dat');
ti = A(:,1); yi = A(:,2);
p = polyfit(ti,log(yi),2) % quadratic fit
p =
   -0.0001 0.2653 -266.4672
t = linspace(1790, 2010, 201);
y = \exp(polyval(p,t));
figure; plot(t, log(y), 'r-', ...
             ti,log(yi),'b.','markersize',18);
figure; plot(t, y,'r-', ...
              ti, yi, 'b.', 'markersize', 18);
```

```
A = load('uspop.dat');
ti = A(:,1); yi = A(:,2); t1 = ti(1);
p = polyfit(ti,yi,2)
                               % quadratic fit
p1 = polyfit(ti-t1,yi,2)
                               % t1 = 1790
t = linspace(1790, 2010, 201);
y = polyval(p,t);
y1 = polyval(p1, t-t1);
                              % shifted origin
norm(y-y1)
                              % = 7.7100e-011
plot(t, y,'r-', ti,yi,'b.','markersize',18);
>> num2str([p',p1'],'%12.2e')
ans =
6.78e-003 6.78e-003
-2.44e+001 -1.32e-001
 2.20e+004 6.51e+000
```


How does **polyfit** work? Consider a straight-line fit, y = ax+b, to N data points $\{x_i, y_i\}$, i=1,2,...,N

polynomial regression

overdetermined & inconsistent linear system of 5 equations in 2 unknowns

least-squares solution

A is the design matrix $\mathbf{A} \mathbf{p} = \mathbf{y}$ $\mathbf{p} = \mathbf{A}$

$$\mathbf{A} \mathbf{p} = \mathbf{y}$$

$$\mathbf{p} = \mathbf{A} \setminus \mathbf{y}$$

```
xi = [1, 3, 4, 6, 9]';
                               % column vectors
yi = [4, 4, 7, 11, 19]';
A = [xi, ones(5,1)];
                               % design matrix
p = A \setminus yi
                             20
    1.9892
   -0.1505
                             15
p = polyfit(xi,yi,1)
                            >> 10
p =
                              5
    1.9892 -0.1505
                                          6
                                                 10
x = linspace(1,9,91);
                                        \mathbf{X}
y = polyval(p,x);
plot(x,y,'r', xi,yi,'b.','markersize',20);
```

Quadratic fit, $y = ax^2 + bx + c$ to N data points $\{x_i, y_i\}$, i=1, 2, ..., N polynomial regression

overdetermined & inconsistent linear system of 5 equations in 3 unknowns

least-squares solution

$$a x_1^2 + b x_1 + c = y_1$$

 $a x_2^2 + b x_2 + c = y_2$
 $a x_3^2 + b x_3 + c = y_3 \implies$
 $a x_4^2 + b x_4 + c = y_4$
 $a x_5^2 + b x_5 + c = y_5$

$$\begin{array}{ll}
a x_1^2 + b x_1 + c = y_1 \\
a x_2^2 + b x_2 + c = y_2 \\
a x_3^2 + b x_3 + c = y_3 \\
a x_4^2 + b x_4 + c = y_4 \\
a x_5^2 + b x_5 + c = y_5
\end{array}
\Rightarrow
\begin{bmatrix}
x_1^2 & x_1 & 1 \\
x_2^2 & x_2 & 1 \\
x_3^2 & x_3 & 1 \\
x_4^2 & x_4 & 1 \\
x_5^2 & x_5 & 1
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5
\end{bmatrix},
\mathbf{p} =
\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}$$

$$\mathbf{p} = \mathbf{A} \setminus \mathbf{y}$$

$$\mathbf{A} \mathbf{p} = \mathbf{y}$$

```
% column vectors
xi = [1, 3, 4, 6, 9]';
yi = [4, 4, 7, 11, 19]';
A = [xi.^2, xi, xi.^0];
                                % design matrix
p = A \setminus yi
p =
                              20
    0.1905
    0.0476
                              15
    3.3333
                             > 10
p = polyfit(xi,yi,2)
                              5
   0.1905 0.0476 3.3333
                                               8
                                                   10
                                         \mathbf{X}
x = linspace(1,9,91);
y = p(1)*x.^2 + p(2)*x + p(3); % polyval(p,x)
plot(x,y,'r', xi,yi,'b.','markersize',20);
```


assumes that $M+1 \le N$ and that **A** has full rank, conditions that are typically satisfied in practice (then, **p** is unique least-squares solution)

other norms – such as L₁ – are used in practice but don't have a closed-form solution – several MATLAB toolboxes exist for such problems The data model is assumed to be a linear combination of known basis functions, such as exponential, trigonometric, etc:

regression with other basis functions

$$y = c_0 + c_1 f_1(x) + c_2 f_2(x) + \cdots + c_M f_M(x)$$

and the objective is to determine the coefficients c_i to fit N data points $\{x_i, y_i\}, i = 1, 2, ..., N$, where again we must assume $M+1 \le N$

Polynomial fitting is a special case using the monomial basis: $1, x, x^2, ..., x^M$

Design procedure: set up the design matrix \mathbf{A} and solve the overdetermined linear system $\mathbf{A} \mathbf{c} = \mathbf{y}$

 $\mathbf{A} \ \mathbf{c} = \mathbf{y}$ $\mathbf{c} = \mathbf{A} \setminus \mathbf{y}$

Example: M = 3, N = 5

$$y = c_0 + c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x)$$

$$c_0 + c_1 f_1(x_1) + c_2 f_2(x_1) + c_3 f_3(x_1) = y_1$$

$$c_0 + c_1 f_1(x_2) + c_2 f_2(x_2) + c_3 f_3(x_2) = y_2$$

$$c_0 + c_1 f_1(x_3) + c_2 f_2(x_3) + c_3 f_3(x_3) = y_3$$

$$c_0 + c_1 f_1(x_4) + c_2 f_2(x_4) + c_3 f_3(x_4) = y_4$$

$$c_0 + c_1 f_1(x_5) + c_2 f_2(x_5) + c_3 f_3(x_5) = y_5$$

regression with other basis functions

$$\begin{bmatrix} 1 & f_1(x_1) & f_2(x_1) & f_3(x_1) \\ 1 & f_1(x_2) & f_2(x_2) & f_3(x_2) \\ 1 & f_1(x_3) & f_2(x_3) & f_3(x_3) \\ 1 & f_1(x_4) & f_2(x_4) & f_3(x_4) \\ 1 & f_1(x_5) & f_2(x_5) & f_3(x_5) \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix}$$

coeffs, c

data, y

design matrix, A

 $\mathbf{A} \ \mathbf{c} = \mathbf{y}$ $\mathbf{c} = \mathbf{A} \setminus \mathbf{y}$

$$y = \exp(c_0 + c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x))$$

$$y = \sqrt{c_0 + c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x)}$$

$$y = \frac{1}{c_0 + c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x)}$$

$$y = \sqrt{1 + \frac{f(x)}{c_0 + c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x)}}$$

Examples of other models reducible to the standard form

$$\log(y) = c_0 + c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x)$$

$$y^2 = c_0 + c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x)$$

$$\frac{1}{y} = c_0 + c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x)$$

$$\frac{f(x)}{y^2 - 1} = c_0 + c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x)$$

ti	yi		
0	42.7		
1	46.7		
2	59.1		
3	69.5		
4	81.0		
5	80.7		
6	83.2		
7	72.0		
8	67.1		
9	52.6		
10	43.7		
11	40.9		
12	38.6		
13	48.8		
14	57.2		
15	71.2		
16	77.5		
17	79.8		
18	82.3		
19	76.3		
20	61.5		
21	53.0		
22	41.5		
23	37.3		

regression
with other
basis functions

Example 1: modeling of temperature variations in a city over 24 months

$$y(t) = c_0 + c_1 \cos\left(\frac{2\pi t}{12}\right) + c_2 \sin\left(\frac{2\pi t}{12}\right)$$

basis functions

```
N = length(ti);
A = [ones(N,1), cos(2*pi*ti/12), sin(2*pi*ti/12)];
c = A \setminus yi
                     24x3 design matrix
   61.0083
  −20.3333 ← estimated parameters
                 estimated model
    8.5565
f = @(t) c(1) + c(2) * cos(2*pi*t/12) + ...
          c(3) * sin(2*pi*t/12);
t = linspace(0, 24, 241);
plot(t,f(t),'r', ti,yi,'b.','markersize',25);
```


Example 2:
$$y = \frac{c_1}{x} + c_2 x$$
basis functions

```
A = [1./xi, xi];
c = A\yi
c =
        4.3350
        1.2950

x = linspace(1,4.2, 100);
y = c(1)./x + c(2)*x;
```

plot(x,y,'r-', xi,yi,'b.');

хi	yi		
1.0	5.7		
1.4	4.8		
1.9	4.7		
2.1	4.9		
2.7	5.0		
3.0	5.3		
3.3	5.6		
3.9	6.3		
4.2	6.4		

estimated model

Example 2:
$$y = \frac{c_1}{x} + c_2 x$$

Example 3:
$$y = \frac{1}{\frac{c_1}{x} + c_2 x}$$
 \Rightarrow $\frac{1}{y} = \frac{c_1}{x} + c_2 x$

```
basis functions
A = [1./xi, xi];
c = A \setminus (1./yi)
     4.3012
     1.2858
```

x = linspace(1, 4.2, 100);y = 1./(c(1)./x + c(2)*x);plot(x,y,'r-', xi,yi,'b.');

```
хi
     yi
1.0
     0.18
1.4
     0.21
1.9
     0.21
2.1
     0.20
2.7
     0.20
3.0
     0.19
3.3
     0.18
3.9
     0.16
4.2
     0.16
```

estimated model

Example 3:
$$y = \frac{1}{\frac{c_1}{x} + c_2 x}$$
 \Rightarrow $\frac{1}{y} = \frac{c_1}{x} + c_2 x$


```
%
   ti
            Vi
  0.00
          2.0684
  0.05
          1.6970
  0.10
          1.4921
  0.15
          1.2633
  0.20
          1.1564
  0.25
          0.9048
  0.30
          0.8943
  0.35
          0.6919
  0.40
          0.7459
  0.45
          0.5832
  0.50
          0.5065
  0.55
          0.4657
  0.60
          0.2966
  0.65
          0.3131
  0.70
          0.2082
  0.75
          0.2399
  0.80
          0.1516
  0.85
          0.0928
  0.90
          0.1930
  0.95
          0.2144
  1.00
          0.1036
```

Example 4:
$$V = V_0 e^{-at}$$

set-11

$$\log(V) = -a\,t + \log(V_0) \equiv p_1\,t + p_2$$

$$p = \text{polyfit}(t_i, \log(V_i), 1)$$

$$p = [p_1, p_2]$$

$$-a = p_1$$
, $\log V_0 = p_2$

$$a = -p_1$$
, $V_0 = \exp(p_2)$

```
A = load('capacitor.dat');
ti = A(:,1); Vi = A(:,2);
p = polyfit(ti,log(Vi),1); % p = [-2.92,0.70];
a = -p(1), V0 = exp(p(2))
                              2.5
    2.9170
V0 =
    2.0154
                              1.5
t = linspace(0,1,101);
V = \exp(polyval(p,t));
                              0.5
% V = \exp(p(1)*t+p(2));
                               0
                                   0.2
                                        0.4
                                            0.6
                                                 0.8
plot(t, V, 'r-', ...
                                           t
     ti, Vi, 'b.',...
      'markersize',18);
```

Ti	ki
1	28.7
2	57.3
3	85.5
4	113
5	138
6	159
7	177
8	189
9	195
10	196
11	193
12	185
13	176
14	166
15	156
16	145
18	124
20	105
25	68
30	43
35	29
40	20.5
45	15.3

Example 5: copper data

set-11

model
$$k = \frac{1}{\frac{c_0}{T} + c_1 T + c_2 T^2 + c_3 T^3}$$

$$\frac{1}{k} = \frac{c_0}{T} + c_1 T + c_2 T^2 + c_3 T^3$$
basis functions

```
Y = load('copper.dat');
ti = Y(:,1);
ki = Y(:,2);
yi = 1./ki;
A = [1./ti, ti, ti.^2, ti.^3]; % basis
c = A\yi; % fit 1/k to model
T = linspace(0,50,101);
k = T./(c(1) + c(2)*T.^2 + c(3)*T.^3 + ...
        c(4)*T.^{4};
plot(T,k,'r-', ti,ki,'b.','markersize',18);
```

Thermal Conductivity

Example 6: CO2 emissions

% %	year	month	decimal	average	trend	
	1980	1	1980.042	338.33	337.70	
	1980	2	1980.125	339.04	337.99	
	1980	3	1980.208	339.36	338.02	
	1980	4	1980.292	339.74	338.12	
	1980	5	1980.375	340.16	338.64	
	1980	6	1980.458	339.73	338.94	file: co2.dat
	1980	7	1980.542	338.20	339.05	
	1980	8	1980.625	336.99	339.24	on sakai
	1980	9	1980.708	336.81	339.20	
	1980	10	1980.792	337.57	338.91	
	1980	11	1980.875	338.69	339.03	
	1980	12	1980.958	339.41	339.19	
	• • •	• • •	• • •	• • •	• • •	
	2011	7	2011.542	389.04	390.27	
	2011	8	2011.625	387.76	390.48	
	2011	9	2011.708	388.04	390.80	

ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_gl.txt


```
% file on sakai
Y = load('co2.dat');
y = Y(:,4);
t = (0:length(y)-1)';
ty = t/12 + 1980;
                            % rescale time
figure; plot(ty, y, 'b-');
xaxis(1980, 2012, 1980:10:2010);
xlabel('year '); ylabel('CO_2');
                           cyclical component
```

model

$$y = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 \cos\left(\frac{2\pi t}{12}\right) + c_5 \sin\left(\frac{2\pi t}{12}\right)$$
trend component

basis functions

```
c = [t.^{0}, t, t.^{2}, t.^{3}, ...]
     cos(2*pi*t/12), sin(2*pi*t/12)] \setminus y;
T = @(t) c(1) + c(2)*t + c(3)*t.^2 + ...
         c(4)*t.^3;
                                       % trend
C = @(t) c(5)*cos(2*pi*t/12) + ...
         c(6)*sin(2*pi*t/12);
                                      % cycle
figure; plot(ty, y, 'b-', ty,T(t),'g-', ...
             ty, T(t)+C(t), 'r-');
xaxis(1980, 2012, 1980:10:2010);
xlabel('year '); ylabel('CO_2')
legend(' data', ' trend', ' trend+cycle',...
       'location','nw');
```


