Introduction to Agent-Based Modeling

Uzay Çetin

SosLab Presentation 2016

January 1, 2017

Outline

Complex Systems Agent-Based Modeling ABM perspective Generative Social Science What is a Model? How to do modeling? Verification and Validation **Examples With Netlogo** Simple Socio-Economy Simple Ecology Ideal ABM Research Grimm's ODD Protocol

Systems Thinking

"A change without a pattern is beyond science."

Boris Zeide

System

A "meaningful" collection of interacting parts.

Patterns within real systems

Patterns are encoded in real world. Our purpose is to decode them.

"More is different."

P. W. Anderson

Emergence

Emergence is the essential reason to study Complex Systems.

Aggregate properties can not be attained by a simple sum

Scientific Methodology

"Simulation is a new way of doing science."

Robert Axelrod, 1997

"We can now simulate to understand."

Uri Wilensky, 2016

∟_{ABM perspective}

Agent-based modeling (ABM)

ABM perspective

ABM provides us a new way of thinking perspective (model) on how modeling should be done.

- multi-layered view
- bottom-up

Simple rules and properties at the micro-level can generate complex behavior at the macro-level.

LABM perspective

Agent-based models

An agent is a autonomous computational unit

- Autonomy in decision making
- Distinctive properties (heterogeneity)
- A set of rules to follow (conditional if-then rules)
- Clear goal (rationality)
- Limited knowledge and capacities (Bounded rationality)
- Reactivity or Pro-activity
- Social Skills Sociability
- Embeddedness in a pyhsical of conceptual space.
- Adaptive behavior to environment.
- and so on.

Agent-Based Modeling

ABM perspective

A Simple Agent

Agent-Based Modeling

Generative Social Science

Generative Social Science

The Generativist's Experiment

Given some macroscopic explanandum - a regularity to be explained

Situate an initial population of autonomous heterogeneous agents in a relevant spatial environment; allow them to interact according to simple local rules, and thereby generate—or "grow"—the macroscopic regularity from the bottom up.

The Generativist's Motto

If you didn't grow it, you didn't explain its emergence.

-Agent-Based Modeling

Generative Social Science

Generative Social Science

Are the given microspecifications sufficient to generate a macrostructure of interest?

Micro-to-macro mapping

We get macro-surprises despite complete micro-knowledge.

Model

Reality

A real system is unknown, due to its infinitely many dimensions.

Definition of a Model

Simplified representation of some selected aspects of a real system, w.r.t a clearly stated problem.

Modeling

Like stone carving we remove what we regard as unneceassary, and like cartooning, we exaggerate what we regard as important.

Modeling is more art than science.

"Things should be as simple as possible but not simpler."

Albert Einstein

Abstraction

- Scope reduction: What to include
- Detail reduction: How to include

⊢How to do modeling?

Two Modeling Approaches

Modeling starts with

Grimm's Modeling Cycle

- an observation of a macro-phenomenon (top-down) or
- micro-specifications of agents (bottom-up)

To count as modeling, aggregate behavior of the model (output) correspond to a real macro-phenomena.

─What is a Model?

└Verification and Validation

Verification and Validation

Verification

Correctness of the code

debugging, unit tests etc..

Validation

Usefulness of the model

- ► Face Validation qualitative agreement between the model output and reality
- Emprical Validation quantitative agreement

There can not be such thing as general validity.

└Verification and Validation

Analysing a Model

Creating a model and understanding what it actually does are completely different things.

Analysing a model takes %90 of the scientific efforts.

Frankenstein

Examples With Netlogo
Simple Socio-Economy

Cowards and Heros

Exploration: What patterns will emerge?

Even very simple rules can generate hard-to-predict complex behavior.

Examples With Netlogo
Simple Socio-Economy

Simple Economy

Each agent starts with 500\$. At each tick, agents with non-zero wealth gives 1\$ to a random agent. Agent's xcor is their "wealth" in the black grid.

Counter-intuitively, it goes to an exponential distribuiton (great inequality in wealth)

Examples With Netlogo

Simple Socio-Economy

Seggregation Model

Thomas Schelling took a more exploratory approach (1971).

- Even very weak prejudice can create the dynamics of segregation.
- Micro-motives and macro-behavior can fail to align.

Simple Socio-Economy

Age-at-Marriage Model

The "Wedding Ring" Article

Examples With Netlogo

Simple Socio-Economy

Age-at-Marriage Model

- More married friend in one's social surroundings, more likely to get married.
- Social surrounding is given by the rectangle with social distance and age distance

Examples With Netlogo
Simple Ecology

Prey-predator Model

Figure 9-3. Changes in the abundance of the lynx and the snowshoe hare, as indicated by the number of pelts received by the Hudson's Bay Company. This is a classic case of cyclic oscillation in population density. (Redrawn from MacLulich 1937.)

└Simple Ecology

Prey-predator Model

Model

Simple Ecology

"All models are wrong, but some are useful."

George Box.

"Art is a lie that helps us see the truth."

Picasso

Ideal ABM Research

Grimm's ODD Protocol

ODD Protocol for ABM

Remar	k: ODD and NetLog	go match well
	Elements of the updated ODD protocol	NetLogo elements
Over-view	1. Purpose	Information tab
	Entities, state variables, and scales	breeds, turtles-own, patches-own, globals
	3. Process overview and scheduling	"go" procedure
Design concepts	4. Design concepts Emergence Adaptation/Adaptive traits? Objectives Learning Prediction Sensing Interaction Stochasticity Collectives Observation	Information tab primitives plots, monitors, agent monitors, file output
<u></u>	5. Initialization	"setup" procedure

6. Input data

7. Submodels

A comprehensive checklist for doing ABM.

file input

procedures, reporters

└Grimm's ODD Protocol

Ideal Multi-disciplinary Research Environment for ABM

Ideal ABM require interdisciplinary research.

- Purpose Social scientist, ecologist or etc.
- Programming Computer Scientist
- Analysis Statistician

└ Ideal ABM Research └ Grimm's ODD Protocol

References

Generative Social Science

Epstein, J. M., Agent-based computational models and generative social science", Complexity, Vol. 4, No. 5, pp. 41-60, 1999.

Netlogo Models

- Wilensky, U. and W. Rand, An Introduction to Agent-Based Modeling, The MIT Press, 2015.
- Billari, F., et al. "The Wedding-Ring: An agent-based marriage model based on social interaction", Demographic Research, Vol. 17, No. 3, pp. 59-82, 2007,

ODD protocol

 Grimm, V. et al. (2010). The ODD protocol: a review and first update. Ecological modelling, 221(23), 2760-2768.