Baze podataka

Katedra za računarstvo Elektronski fakultet u Nišu

Relaciona algebra

Prof.dr Leonid Stoimenov

Zašto je važna relaciona algebra?

- Obezbeđuje formalnu osnovu za operacije relacionog modela
- Koristi se kao osnova za
 - implementaciju i
 - optimizaciju upita u RDBMS-u

Neki od njenih koncepata su ugrađeni u SQL standardni upitni jezik za relacioni model podataka

Relaciona algebra – Uvod (1)

- Relaciona algebra je formalni jezik za relacioni model
- Zasniva se na matematičkoj teoriji skupova
- Izraz relacione algebre sekvenca operacija relacione algebre
- Izrazi relacione algebre se sastoje od operatora i operanada
 - Operandi su relacije (skupovi torki ili reprezentanti skupova torki)
 - ▶ Rezultat je takođe relacija

Relaciona algebra – Uvod (2)

- Za iskazivanje upita putem relacione algebre koriste se dve vrste operatora
 - Specijalni operatori relacione algebre
 - selekcija,
 - projekcija,
 - spoj,
 - deljenje
 - Standardni operatori matematičke teorije skupova
 - Unija,
 - presek,
 - razlika,
 - Dekartov proizvod

Operacije relacione algebre

- ▶ Osnovni skup operacija relacione algebre:
 - Selekcija (SELECT)
 - Projekcija (PROJECT)
 - Unija (UNION)
 - ▶ Razlika (DIFFERENCE, MINUS, EXCEPT)
 - Dekartov proizvod (CARTESIAN PRODUCT, CROSS PRODUCT, CROSS JOIN)

Operacije relacione algebre

- Prošireni skup operacija relacione algebre:
 - Presek (INTERSECTION)
 - Deljenje (DIVISION)
 - Spoj (JOIN)
 - Unutrašnji (INNER)
 - Spoljašnji (OUTER)
 - □ Levi (LEFT)
 - □ Desni (RIGHT)
 - □ Potpuni (FULL)
 - Polu spoj (SEMI JOIN)
- Operacije iz proširenog skupa se mogu izvesti iz operacija osnovnog skupa

Selekcija

- ▶ To je operacija kojom se iz relacije izdvajaju one torke koje imaju zadatu vrednost specificiranih atributa
- Atributi i njihove vrednosti po kojima se vrši selekcija se zadaju uslovom selekcije

radnik

<u>MBR</u>	LIME	LD	SBR
2203	MIRA	50 000	10
2817	PERA	40 000	20
2932	MIRA	35 000	10
2995	GOCA	18 000	30
3305	LAZA	60 000	40
3515	JOVAN	20 000	20
3819	VLADA	65 000	30

Selekcija

Operacija selekcije se označava sa

- ▶ Rezultat: RELACIJA
- Selekcija se vrši iz zadate relacije <ime relacije>
- Atributi i njihove vrednosti po kojima se vrši selekcija se zadaju uslovom selekcije
- Redosled atributa rezultantne relacije ekvivalentan je redosledu atributa relacije nad kojom je primenjena selekcija

Uslov selekcije

Prost uslov selekcije je logički izraz oblika:

$$A_i \theta A_j$$

 $A_i \theta C$
 $C \theta A_i$

- gde je
 - $\theta \in \{<, =, >, <=, >=, !=\}$
 - A_i i A_i imena atributa relacije nad kojom se selekcija izvodi
 - C konstanta koja uzima vrednosti iz domena atributa Ai
- Složeni uslov selekcije se sastoji od prostih uslova selekcije koji su povezani operatorima ∧, ∨ i ¬, odnosno AND, OR i NOT

Primer selekcije

Iz relacije radnik nad šemom relacije RADNIK (MBR,LIME,LD,SBR)

izabrati sve radnike koji ispunjavaju uslov:

- (a) LD > 20000
- (b) LD > 20000 i SBR = 10

Primer selekcije

Iz relacije radnik nad šemom relacije RADNIK (MBR,LIME,LD,SBR)

izabrati sve radnike koji ispunjavaju uslov:

- (a) LD > 20000
- (b) LD > 20000 i SBR = 10
- Odgovarajuće operacije relacione algebre su:
 - (a) $\sigma_{LD>20000}$ (radnik)
 - (b) $\sigma_{LD>20000 \text{ AND SBR}=10}$ (radnik)

radnik

Primer selekcije

<u>MBR</u>	LIME	LD	SBR
2203	MIRA	50 000	10
2817	PERA	40 000	20
2932	MIRA	35 000	10
2995	GOCA	18 000	30
3305	LAZA	60 000	40
3515	JOVAN	20 000	20
3819	VLADA	65 000	30

(b)

σ_{LD>20000} (radnik)

σ_{LD>20000} AND SBR=10 (radnik)

(a) MBR		LIME	LD	SBR
	2203	MIRA	50 000	10
	2817	PERA	40 000	20
	2932	MIRA	35 000	10
	3305	LAZA	60 000	40
	3819	VLADA	65 000	30

MBR	LIME	LD	SBR
2203	MIRA	50 000	10
2932	MIRA	35 000	10

Svojstva selekcije

Selekcija je komutativna operacija

$$\sigma_{\text{suslov}} (\sigma_{\text{suslov}} (r)) = \sigma_{\text{suslov}} (\sigma_{\text{suslov}} (r))$$

Posledica

 Sekvenca operacija selekcije može biti primenjena u bilo kom redosledu ili zamenjena jednom operacijom selekcije sa složenim uslovom

$$\sigma_{\text{}} (\sigma_{\text{}} (\dots \sigma_{\text{}} (r)) =$$

Projekcija

- To je operacija kojom se iz relacije izdvajaju kolone koje odgovaraju atributima po kojima se vrši projekcija i kojom se iz tako dobijene relacije eliminišu jednake torke
- Operator projekcije se označava sa

	<u>MBR</u>	LIME		LD	SBR
	2203	MIRA		50 000	10
	2817	PERA		40 000	20
	2932	MIRA		35 000	10
	2995	GOCA		18 000	30
	3305	LAZA		60 000	40
	3515	JOVAN		20 000	20
-	3819	VLADA\	-	65-000	30

Projekcija

$$\pi_{\text{}}(\text{})$$

- Rezultat: relacija
- lista atributa> definiše za koje atribute se vrši projekcija
- Redosled atributa rezultantne relacije definisan je listom atributa projekcije
- Projekcija nije komutativna

Primer projekcije

Projektovati po atributima LIME, SBR relaciju radnik definisanu nad šemom relacije RADNIK(MBR, LIME, LD, SBR)

radnik

MBR	LIME	LD	SBR
2203	MIRA	50 000	10
2817	PERA	40 000	20
2932	MIRA	35 000	10
2995	GOCA	18 000	30
3305	LAZA	60 000	40
3515	JOVAN	20 000	20
3819	VLADA	65 000	30

 $\pi_{\text{LIME,SBR}}(\text{radnik}) \quad \pi_{\text{SBR,LIME}}(\text{radnik})$

LIME	SBR
MIRA	10
PERA	20
GOCA	30
LAZA	40
JOVAN	20
VLADA	30

SBR	LIME
10	MIRA
20	PERA
30	GOCA
40	LAZA
20	JOVAN
30	VLAD A

Preimenovanje

- - Preimenuje ime relacije i imena atributa
- $\triangleright \rho_s(r)$
 - Preimenuje ime relacije
- $\triangleright \rho_{(B1,B2,...,Bn)}(r)$
 - Preimenuje atribute relacije
- s je novo ime relacije r(AI,A2,...,An)
- BI,B2,...,Bn su nova imena atributa AI,A2,...,An

Operacije relacione algebre iz teorije skupova

- Standardne matematičke operacije nad skupovima
 - Unija
 - Presek
 - Razlika
 - Dekartov proizvod

Unija

- Unija relacija r i s je skup torki koje pripadaju relacijama r ili s ili obema.
- Uslov za obavljanje ove operacje je da su r i s unijski kompatibilne relacije
 - To znači da obe relacije imaju isti stepen i da su domeni korespodentnih atributa u obe relacije isti
- Rezultujuća relacija ima imena atributa prve relacije
- Unija je komutativna i asocijativna operacija

$$r \cup s = s \cup r$$

 $(r \cup s) \cup t = r \cup (s \cup t)$

Razlika

- Razlika relacija r i s je skup torki koje pripadaju relaciji r ali ne pripadaju relaciji s
- Relacije r i s treba da su unijski kompatibilne
- Rezultujuća relacija ima imena atributa prve relacije
- ▶ Razlika nije komutativna operacija

$$r-s \neq s-r$$

Presek

- Presek relacija r i s je skup torki koje pripadaju obema relacijama
- Uslov za obavljanje ove operacije je da su r i s unijski kompatibilne relacije
- ▶ Rezultujuća relacija ima imena atributa prve relacije
- Presek se može izraziti preko razlike na sledeći način:

$$r \cap s = r - (r - s)$$

Presek je komutativna i asocijativna operacija

$$r \cap s = s \cap r$$

 $(r \cap s) \cap t = r \cap (s \cap t)$

Primer skupovnih operacija (1)

student

<u>IND</u>	IME	DATR	GRAD
1211	PERA	010971	NI
1213	VERA	130872	NI
1215	MILA	150171	LE
1217	VERA	220371	SV

kandidat

<u>ID</u>	IME	DATR	GRAD
1213	VERA	130872	NI
1217	VERA	220371	SV
1223	MIKA	101072	LE

student - kandidat

<u>IND</u>	IME	DATR	GRAD
1211	PERA	010971	NI
1215	MILA	150171	LE

IME **DATR GRAD** IND 1211 PERA 010971 NI 1213 VERA 130872 NI 1215 MILA LE 150171 1217 **VERA** 220371 SV 101072 LE 1223 MIKA

student ∪ kandidat

Primer skupovnih operacija (2)

student

<u>IND</u>	IME	DATR	GRAD
1211	PERA	010971	NI
1213	VERA	130872	N
1215	MILA	150171	LE
1217	VERA	220371	SV

kandidat

<u>ID</u>	IME	DATR	GRAD
1213	VERA	130872	N
1217	VERA	220371	SV
1223	MIKA	101072	LE

student ∩ kandidat

<u>IND</u>	IME	DATR	GRAD
1213	VERA	130872	NI
1217	VERA	220371	SV

kandidat - student

П	IME	DATR	GRAD
1223	MIKA	101072	LE

Dekartov proizvod

Dekartov proizvod relacija r i s nad šemama relacije R(A1, A2, ..., An) i S(B1, B2, ..., Bm) je relacija q nad šemom relacije Q(A1, A2,..., An, B1, B2, ..., Bm) koju čine torke dužine n+m, gde prvih n komponenti čini torku u r, a drugih m torku u s

- Relacija q ima po jednu torku za sve kombinacije torki, jedna iz r, jedna iz s
- Ako r ima K_r torki i ako s ima K_s torki, tada q ima $K_r \times K_s$ torki
- Notacija

$$q = r \times s$$

Primer Dekartovog proizvoda relacija

r

Α	В	С
a1	b1	c1
a2	b2	c2

S

D	E
d1	e1
d2	e2
d3	e3

1 X S

Α	В	C	D	E
a1	b1	c1	d1	e1
a1	b1	c1	d2	e2
a1	b1	c1	d3	e3
a2	b2	c2	d1	e1
a2	b2	c2	d2	e2
a2	b3	c2	d3	e3

Deljenje

- ▶ Količnik relacija r i s, r/S je skup torki t koje se javljaju u r u kombinaciji sa svim torkama iz s
- Deljenje se može izraziti pomoću operacija (π, x, -) na sledeći način :

$$\pi_y$$
 (r) -> qI
 π_y ((s x qI) - r) -> q2
qI - q2 -> q

Deljenje nije ni komutativna, ni asocijativna operacija

Primer delenja

r

b1 **a**1 b2 **a**1 b1 **a**3 b2 a4 b3 a4 b1 a5 b2 a5

S

В

b1 b2 r/s

A

a1 a5

Θ-join (Θ-spoj)

▶ Spoj relacija r i s nad šemama relacija R(A1, A2, ..., An) i S(B1, B2, ..., Bm) je relacija q nad šemom Q(A1, A2, ..., An, B1, B2, ..., Bm) koja ima po jednu torku za svaku kombinaciju torki, jedna iz r i jedna iz s, kad god ova kombinacija zadovoljava uslov spoja (što je glavna razlika u odnosu na Dekartov proizvod)

Za spoj se koristi oznaka:

Torke čiji atributi spoja imaju NULL vrednost ne pojavljuju se u rezultatu

Varijacije θ-spoja

- Equijoin (ekvi spoj) je spoj gde je uslov spoja oblika
 Ai = Bj
- Natural join (prirodni spoj) je ekvi spoj gde je iz rezultata isključen jedan od dva jednaka atributa (Ai ili Bj)
 - Označavaćemo ga sa **

 - Uslov je da oba atributa u uslovu spoja imaju isto ime
 - Ukoliko to nije slučaj koristimo operaciju preimenovanja

radnik

Primer spoja

<u>MBR</u>	LIME	LD	SBR
2203	·····MIRA·····	50 000	10
2817	PERA	40 000	20
2932	MIRA	35 000	10
2995	GOCA	18 000	30
3305	LAZA	60 000	40
3515	JOVAN	20 000	20
3819	VLADA	65 000	30

projekat

 <u>PBR</u>	PNAZIV	SBR	PRUK
100	PC	10	2203
200 300	HOST LAN	20 30	3305 3819
400	VIPX	40	2817

radnik → radnik.SBR=projekat.SBR projekat

MBR	IME	LD	SBR	<u>PBR</u>	PNAZIV	SBR	PRUK
2203	MIRA	50 000	10	100	PC	10	2203
2932	MIRA	35 000	10	100	PC	10	2203
2817	PERA	40 000	20	200	HOST	20	3305
3515	JOVAN	20 000	20	200	HOST	20	3305
2995	GOCA	18 000	30	300	LAN	30	3819
3819	VLADA	65 000	30	300	LAN	30	3819
3305	LAZA	60 000	40	400	VIPX	40	2817

Primer - prirodni spoj

radnik * projekat radnik ⋈ projekat

MBR	IME	LD	SBR	<u>PBR</u>	PNAZIV	PRUK
2203	MIRA	50 000	10	100	PC	2203
2932	MIRA	35 000	10	100	PC	2203
2817	PERA	40 000	20	200	HOST	3305
3515	JOVAN	20 000	20	200	HOST	3305
2995	GOCA	18 000	30	300	LAN	3819
3819	VLADA	65 000	30	300	LAN	3819
3305	LAZA	60 000	40	400	VIPX	2817

Outer join (Spoljašnji spoj)

Levi (Left) spoj – rezultat zadržava sve torke iz leve relacije bez obzira na to da li ispunjavaju uslov spoja, ali se u desni deo upisuje NULL vrednost

Desni (Right) spoj - rezultat zadržava sve torke iz desne relacije bez obzira na to da li ispunjavaju uslov spoja, ali se u levi deo upisuje NULL vrednost

Puni (Full) spoj - rezultat zadržava sve torke bez obzira na to da li ispunjavaju uslov spoja, stim što neuparene torke dobijaju NULL vrednost na drugoj strani

Zašto spoljašnji spoj?

- Da bi se dobila unija torki u slučaju kada relacije nisu unijski kompatibilne
- Ova operacija obezbeđuje uniju svih torki relacija koje su parcijalno kompatibilne
 - Samo neki atributi su unijski kompatibilni

Funkcije agregacije

<a tributi grupisanja > F < lista funkcija > (r)

- gde su:
 - <atributi grupisanja> lista atributa relacije r
 - lista funkcija> je lista parova (<funkcija><atribut>)
 - <funkcija> može biti
 - **SUM**
 - AVERAGE
 - MAXIMUM
 - MINIMUM
 - COUNT
- Primer: Za svaki sektor naći broj radnika u tom sektoru i prosečan lični dohodak

SBR COUNT MBR, AVERAGE LD (radnik)

Relacioni model podataka

Pitanja ???