Ξ_1	E_2	E_3	E_4	E_5	Calif.

Probabilidad Rubén Pérez Palacios Lic. Computación Matemática NUA 424730

Agosto - Diciembre de 2020 Parcial 2 (13 de noviembre)

Resuelva formal y detalladamente los siguientes ejercicios, de manera totalmente individual.

Está estrictamente prohibido consultar cualquier otro tipo de bibliografía distinto a las notas del curso. Ante cualquier sospecha de esto, el examen se anulará (se calificará automáticamente con cero) sin derecho a réplica.

Coloque una y solamente una respuesta a cada ejercicio. En caso de colocar más de una, solamente se revisará la primera.

La nota de este examen será el promedio de las puntuaciones obtenidas en cada ejercicio.

- 1. (100 pts.) Sea $Z \sim N(0,1)$ y $X \sim \Gamma(\nu/2,1/2)$ con $\nu>0$ no precisamente entero. Utilice el Teorema de Cambio de Variable Multivariado para demostrar que $T=\frac{Z}{\sqrt{X/\nu}}$ tiene distribución t_{ν} , bajo la hipótesis $Z \perp X$.
- 2. (100 pts.) Sean $X \sim \Gamma(\nu/2,1/2)$ y $Y \sim \Gamma(\mu/2,1/2)$ con $\nu,\mu>0$ no precisamente enteros. Utilizando Probabilidad Total halle la distribución de $F=\frac{\mu X}{\nu Y}$, bajo la hipótesis $X\perp Y$.
- 3. Una sucesión de vectores aleatorios $\{\vec{X}_n\}$ converge en distribución a otro vector aleatorio \vec{X} ssi $F_{\vec{X}_n}(\vec{x})$ converge a $F_{\vec{X}}(\vec{x})$ para todo \vec{x} en el que $F_{\vec{X}}$ es continua (según la distancia euclidiana).
 - (a) (70 pts.) Demuestre que si $\{\vec{X}_n\}$ es una sucesión de vectores aleatorios tales que convergen en distribución a \vec{X} , entonces cada entrada de $\{\vec{X}_n\}$ converge a la correspondiente entrada de \vec{X} . ¿Se cumple el recíproco?
 - (b) (30 pts.) Sea $\vec{X} \sim N_d(\mu \vec{1}, \sigma^2 I_d)$. Halle la distribución de \overline{X}_d condicionada a $\max\{X_1, \dots, X_d\} \min\{X_1, \dots, X_d\}$.
- 4. (100 pts.) Sean $\{X_n\}$ variables aleatorias iid con media μ y varianza finita σ^2 . Demuestre que

$$\sqrt{n}\left(e^{\overline{X}_n} - e^{\mu}\right) \stackrel{d}{\to} \sigma e^{\mu} Z, \quad Z \sim N(0, 1).$$

5. (100 pts.) Sea $\{X_n\}$ una sucesión de variables aleatorias iid cuya función de distribución tiene extremo derecho infinito. Para x > 0 fijo, sea

$$T(x) := \inf\{n \in \mathbb{N} : X_n > x\}.$$

T(x) es el índice de la primera variable de la sucesión que toma un valor mayor a x. Sea X otra variable aleatoria con la misma distribución que las X_n e independiente de todas las X_n y sea $\{Y_n\}$ v.a. iid con distribución $Bernoulli(\mathbb{P}[X > x])$. Sea $m \in \mathbb{N}$ arbitrario, demuestre que

$$\frac{1}{mx}T(x)\sum_{j=1}^{\lceil mx\rceil}Y_j\stackrel{d}{\to}E, x\to\infty,\quad E\sim exp(1).$$

6. (10 pts. extra en la nota final del examen). Sea $A \in \mathcal{B}(\mathbb{R})$ y definamos

$$\partial A := \{x : \exists \{y_n\} \subseteq A, y_n \to x \land \exists \{z_n\} \subseteq A^c, z_n \to x\}.$$

 ∂A se conoce como la **frontera de** A. Sea $\{X_n\}$ una sucesión de v.a. con funciones de distribución $\{F_n\}$ y sea X otra v.a. con función de distribución F. Demuestre que $X_n \stackrel{d}{\to} X$ ssi

$$\int_{A} F_n(dx) \to \int_{A} F(dx), n \to \infty,$$

para todo A tal que $F(\partial A) = 0$. $(F(A) := \mathbb{P}[X \in A])$.