

Maestría en Ciencias Naturales y Matemáticas Clase 2 - Cálculo Avanzado de Varias Variables

Mg: Julián Uribe Castañeda

UPB

15 de diciembre de 2022

Topología en \mathbb{R}^n - Métricas en \mathbb{R}^n

Definición (métrica en \mathbb{R}^n).

Una métrica sobre \mathbb{R}^n es una función $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ que satisface las siguientes condiciones:

(1) Para cada $x, y \in \mathbb{R}^n$, tenemos que $d(x, y) \ge 0$. Además

$$\begin{cases} d(x,y) = 0 & \text{ si } x = y, \\ d(x,y) > 0 & \text{ si } x \neq y. \end{cases}$$

- (2) Para cada $x, y \in \mathbb{R}^n$, tenemos que d(x, y) = d(y, x).
- (3) Para cada $x, y, z \in \mathbb{R}^n$, tenemos que $d(x, y) \le d(x, z) + d(z, y)$.

Notación (definición anterior).

En la definición anterior, las condiciones (2) y (3) se le suele dar la siguiente nomenclatura:

- (\checkmark) Si una función $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ satisface (2), decimos que d es simétrica.
- (\checkmark) Si una función $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ satisface (3), decimos que d satisface la designaldad triangular.

Nota (definición anterior).

Es importante tener en cuenta que \mathbb{R}^n tiene muchas métricas diferentes. A continuación mostramos algunos ejemplos de métricas.

Ejemplo (métrica Euclidea).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ la función definida como

$$d(x,y) = ||x-y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

para cada $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$. Verificar que d es una métrica en \mathbb{R}^n .

Solución.

Para mostrar que d es una métrica en \mathbb{R}^n tenemos que verificar que d satisface las condiciones (1), (2) y (3) de la definición de métrica.

Prueba de (1). Para cada $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ en \mathbb{R}^n y cada $i \in \{1, ..., n\}$ tenemos que:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \ge \sqrt{(x_i - y_i)^2} = |x_i - y_i| \ge 0.$$

Por lo tanto, si d(x,y) = 0 entonces

$$0 \le |x_i - y_i| \le d(x, y) = 0 \iff |x_i - y_i| = 0 \iff x_i - y_i = 0 \iff x_i = y_i$$

de donde, podemos concluir que

$$d(x,y) = 0 \Rightarrow \text{para cada } i \in \{1,...,n\} \text{ se tiene que } x_i = y_i \iff (x_1,...,x_n) = (y_1,...,y_n).$$

$$d(x,y) = 0 \Rightarrow x = y.$$

Además es sencillo probar que si x = y, entonces d(x,y) = 0, y así:

$$d(x,y)=0 \iff x=y$$

Ahora como $d(x,y) \ge 0$ concluimos que:

$$\begin{cases} d(x,y) = \sqrt{\sum_{i=i}^{n} (x_i - y_i)^2} = 0 & \text{si } x = y, \\ d(x,y) = \sqrt{\sum_{i=i}^{n} (x_i - y_i)^2} > 0 & \text{si } x \neq y. \end{cases}$$

Prueba de (2): Para cada $x = (x_1, ..., x_n)$ y $y = (y_1, ..., y_n)$ en \mathbb{R}^n se tiene que:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2} = d(y,x).$$
$$d(x,y) = d(y,x).$$

Prueba de (3): Para cada $x,y,z \in \mathbb{R}^n$, tenemos que:

$$d(x,y) = ||x-y|| = ||(x-z) + (z-y)|| \le ||x-z|| + ||z-y|| = d(x,z) + d(z,y),$$

donde la desigualdad (*) es consecuencia de la desigualdad triangular probada anteriormente.

Ejemplo (métrica del supremo).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ la función definida como

$$d(x,y) = ||x-y||_s = \max_{1 < i < p} |x_i - y_i|$$

para cada $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$. Verificar que d es una métrica en \mathbb{R}^n .

Solución:

Para mostrar que d es una métrica en \mathbb{R}^n tenemos que verificar que d satisface las condiciones (1), (2) y (3) de la definición de métrica.

Prueba de (1): Para cada $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ en \mathbb{R}^n y cada $i \in \{1, ..., n\}$ tenemos que:

$$d(x,y) = ||x-y||_s = \max_{1 \le i \le n} |x_i - y_i| \ge |x_i - y_i| \ge 0$$

Por lo tanto, si d(x,y) = 0 entonces

$$0 \le |x_i - y_i| \le d(x, y) = 0 \iff |x_i - y_i| = 0 \iff x_i - y_i = 0 \iff x_i = y_i$$

de donde, podemos concluir que

$$d(x,y) = 0 \Rightarrow \text{para cada } i \in \{1,...,n\} \text{ se tiene que } x_i = y_i \Leftrightarrow (x_1,...,x_n) = (y_1,...,y_n).$$

$$d(x,y) = 0 \Rightarrow x = y$$

Además es sencillo probar que si x = y, entonces d(x,y) = 0, y así:

$$d(x,y)=0 \iff x=y.$$

Ahora como $d(x,y) \ge 0$, concluimos que:

$$\begin{cases} d(x,y) = \max_{1 \leq i \leq n} |x_i - y_i| = 0 & \text{ si } x = y, \\ d(x,y) = \max_{1 \leq i \leq n} |x_i - y_i| > 0 & \text{ si } x \neq y. \end{cases}$$

Prueba de (2): Para cada $x = (x_1, ..., x_n)$ y $y = (y_1, ..., y_n)$ en \mathbb{R}^n se tiene que:

$$d(x,y) = \|x - y\|_{s} = \max_{1 \le i \le n} |x_{i} - y_{i}| = \max_{1 \le i \le n} |y_{i} - x_{i}| = \|y - x\|_{s} = d(y,x).$$
$$d(x,y) = d(y,x).$$

Prueba de (3): Para cada $x, y, z \in \mathbb{R}^n$, tenemos que:

$$d(x,y) = \|x - y\|_{s} = \max_{1 \le i \le n} |x_{i} - y_{i}| = \max_{1 \le i \le n} |(x_{i} - z_{i}) + (z_{i} - y_{i})| \le \max_{1 \le i \le n} |x_{i} - z_{i}| + |z_{i} - y_{i}| \le \max_{1 \le i \le n} |x_{i} - z_{i}| + \max_{1 \le i \le n} |z_{i} - y_{i}| = \|x - z\|_{s} + \|z - y\|_{s} = d(x,z) + d(z,y).$$

donde la desigualdad (*) es consecuencia de la desigualdad triangular probada anteriormente.

7/9

Problemas.

(1) Supongamos que $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ es una métrica sobre \mathbb{R}^n y sea r > 0. Demostrar que la función $r \cdot d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ definida como

$$(r \cdot d)(x,y) := r \cdot d(x,y)$$

para cada $x, y \in \mathbb{R}^n$ es una métrica en \mathbb{R}^n

(2) Supongamos que $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ es una métrica sobre \mathbb{R}^n . Si $D: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ es la función definida por

$$D(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

para cada $x, y \in \mathbb{R}^n$ Demostrar que D es una métrica en \mathbb{R}^n

(3) Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ la función definida como

$$d(x,y) = \begin{cases} 1 & \text{si } x \neq y, \\ 0 & \text{si } x = y. \end{cases}$$

Demostrar que d es una métrica en \mathbb{R}^n .

Nota: Esta métrica es llamada la métrica discreta en \mathbb{R}^n .

(4) Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ |a función definida por

$$d(x,y) = ||x-y||_p := \sum_{i=1}^n |x_i - y_i|$$

para todo $x=(x_1,...,x_n)$ y $y=(y_1,...,y_n)$ en \mathbb{R}^n . Demostrar que d es una métrica en \mathbb{R}^n .