Outline

- Definitions
- Sensor Classification
- Sensor Characteristics
- Sensor Working Principles

Classification: Field of applications

Classification: Stimuli

Stimulus	Stimulus	
Acoustic Wave amplitude, phase Spectrum polarization Wave velocity Other Biological Biomass (types, concentration states) Other Chemical Components (identities, concentration, states) Other Electric Charge, current Potential, voltage Electric field (amplitude, phase, polarization, spectrum)	Mechanical	Position (linear, angular) Acceleration Force Stress, pressure Strain Mass, density Moment, torque Speed of flow, rate of mass transport Shape, roughness, orientation Stiffness, compliance Viscosity Crystallinity, structural integrity Other
Conductivity Permittivity Other	Radiation	Type Energy Intensity Other
Magnetic field (amplitude, phase, polarization, spectrum) Magnetic flux Permeability Other Optical Wave amplitude, phase, polarization, spectrum Wave velocity Refractive index Emissivity, reflectivity, absorption Other	Thermal	Temperature Flux Specific heat Thermal conductivity Other

Handbook of Modern Sensors; Physics, Designs, and Applications

Fifth Edition – Jacob Fraden

Classification: Sensing element material

Sensor Characteristics

Sensor specifications

- Sensitivity
- Stimulus range (span)
- Stability (short and long term)
- Resolution
- Accuracy
- Selectivity
- Speed of response
- Environmental conditions
- Overload characteristics
- Linearity
- Hysteresis
- Dead band
- Operating life
- Output format
- Cost, size, weight Other

https://www.signaguard.com/case-studies-in-bridge-health-monitoring/

Range and Span

Range

Minimum and Maximum value of a physical quantity that a sensor can measure Example: A Resistance Temperature Detector (RTD) for the measurement of temperature has a range of -200 to 800°C

Span

Difference between maximum and minimum values of input measured In the above example, span of RTD = 800 - (-200) = 1000°C

Accuracy and Resolution

- Accuracy is the capacity of a sensor to give results close to the TRUE
 VALUE of the measured quantity
 - ➤ Measured by absolute and relative errors

 ABSOLUTE ERROR = RESULT TRUE VALUE (measured value to a known absolute true value)

 RELATIVE ERROR = ABSOLUTE ERROR / TRUE VALUE (how close is the value to a standard value in relative terms)
- **Resolution** is the minimal change of the input necessary to produce a detectable change at the output

Precision

 Capacity of a sensor to give same reading when repetitively measuring the same quantity under the same prescribed conditions

Source: https://www.electrical4u.com/characteristics-of-sensors/

Errors

- Systematic Errors
 Due to interfering or modifying variables (e.g., temperature), loading, attenuation, etc.
- Random Errors
 A signal that carries no information such as environmental noise

