

Data Science for Business – Becoming a Data Science Expert (D)

Pilot Presentation: for participants of and use in the pilot only

Agenda week two

	Introduction
1	Recap Basic Machine Learning and Python
2	Complex Models
3	Model Evaluation
4	Hyperparameters
5	Unsupervised Learning
6	Gradient Descent
7	Deep Learning and Image Recognition
8	Deep Learning and Natural Language Processing
9	Repetition
10	Bias and Ethics in Machine Learning
11	Introduction to Data Science with AWS

Schedule week two

Week 2					
	Day 1 Monday, 06.09.2021		Day 2 Tuesday, 07.09.2021		
Start: 12:00	Recap	Start: 12:00	Recap		
	5 – Unsupervised Learning (Part 1)		6 – Gradient Descent (Part 1)		
14:00 – 15:00	Break	14:00 – 15:00	Break		
	5 – Unsupervised Learning (Part 2)		6 – Gradient Descent (Part 2)		
End: 18:00	Q&A and Feedback	End: 18:00	Q&A and Feedback		

We will also have several short coffee breaks in between.

Feedback for pilot training

We aim to provide a great training experience for you and are looking forward to receiving your feedback!

You will have three different ways to give us your feedback on each training day:

- 1. We will have an anonymized feedback collection after the last session of each day per Myforms.
- 2. We will have an open feedback round and discussion at the end of each training day.
- 3. Please also **take notes** regarding your ideas during the sessions: **locally or via the Mural Board** which you can reach via <u>LINK</u>.

Quiz: Recap week one

Please join at slido.com with #031 077.

Let's go through some questions together.

Let's see what you think. All answers will be anonymous.

Module 5 **Unsupervised Learning**

Agenda week one

	Introduction
1	Recap Basic Machine Learning and Python
2	Complex Models
3	Model Evaluation
4	Hyperparameters
5	Unsupervised Learning
6	Gradient Descent
7	Deep Learning and Image Recognition
8	Deep Learning and Natural Language Processing
9	Repetition
10	Bias and Ethics in Machine Learning
11	Introduction to Data Science with AWS

Selected model types

Introduction to clustering

Goal

Grouping a set of data in such a way that samples within the same group are more similar to each other than to samples in different groups. The groups are called **clusters**.

Example

Your boss wants you to find out what preferences your customers have when buying in the company's online shop. To analyze the customer behavior a cluster analysis might help.

Input

Table of customers including the information of the bought items and their (categorical) attributes (type, price, color, size, sale (yes/no), quality, etc)

K-Means

Algorithm

- Start with two randomly initialized centroids *c*
- Repeat those steps until convergence
 - Assign each point x to the closest centroid
 - Move the centroids to the center of the cluster
 - Reassign the points

Pros

- Works for many different problems and domains
- Scales well for large data

Cons

- Suffers from curse of dimensionality
- Performs poorly on elongated clusters
- Requires the number of clusters
- Has no concept of outliers

Density clustering with DBSCAN

DBSCAN: Density-Based Spatial Clustering of Applications with Noise DBSCAN sees clusters as areas of high and low density

Algorithm

- Calculate the distance from each point to each other point in the dataset
- All points that have more than #neighbours points in a radius of epsilon will be classified as core points
- All points that have less neighbours but are a neighbour of a core point are called border points
- All points that have neither are classified as outliers
- Connect all core points to their neighbouring core and border points
- All directly connected points are called a cluster

Density clustering with DBSCAN

Pros

- Can find clusters of any shape
- No need to specify number of clusters

Cons

- DBSCAN has problems when the clusters have different densities
- Need to tune the parameters #neighbours and radius epsilon

Hierarchical Clustering

Algorithm

- Start: each data point in on cluster $C_i = \{x_i\}$
- Repeat until one cluster left:
 - Find two clusters that are close, i.e., $\min_{i,j} D(c_i, c_j)$ for D defined with help of d, e.g.,
 - Single linkage: $D(c_i, c_j) = \min\{d(x, y) \text{ for } x \in c_i, y \in c_j\}$
 - Merge closest clusters c_i , c_i to c_{i+j}

Alternative

- Complete linkage: $D(c_i, c_i) = \max\{d(x, y) \text{ for } x \in c_i, y \in c_i\}$
- Average linkage: $D(c_i, c_j) = mean\{d(x, y) \text{ for } x \in c_i, y \in c_j\}$

Pros

- Allows adding connectivity constraints, to only merge directly adjacent clusters
- Connectivity constraints greatly increase the scalability of the algorithm

Cons

Can be computationally expensive

Connectivity constraints allow to only merge directly adjacent clusters

Hierarchical Clustering

Dendrogram

- Visualize the merging process of samples in a tree structure
- Decide the number of clusters after the clustering ran
- The cutoff point will determine the number of clusters that weren't merged yet

Dendograms are best used for **small sample sizes**

Gaussian Mixtures

- Distribution-based clustering with predefined number of clusters \boldsymbol{k}
- Assumes that the data points are generated from a mixture of Gaussian distributions with unknow means and variances
 - Think of it as each cluster being distributed according to a Gaussian distribution
- Clustering means finding the best parameters to explain the data

Soft clustering with gaussian mixtures

Algorithm

- Start with random or clever chosen means and variances
- For each point compute the likelihood that it comes from each distribution in the mixture
- Update the means and variances based on the likelihood of all data points

Pros

- Detects circles and ellipsoids
- Soft clusters: For each point we get the probability that it belongs to a given cluster

Cons

- Number of clusters must be fixed in advance
- Unstable if number of samples is too low
- Slower than k-means

Overview Clustering Algorithms

Selected evaluation metrics

Evaluation metric for clustering

Within-cluster sum-of-squares criterion (inertia)

- Measures the sum of squared distances between each datapoint and its assigned cluster center
- Increasing the number of clusters decreases the within-cluster sum-of-squares criterion

Silhouette Score

- Calculates the difference between the average distance of samples within a cluster and the average distance between a sample and the nearest neighboring cluster
- A value of 1 is the best possible value. A value of 0 indicates overlapping clusters. A value -1 means points were assigned to the wrong cluster

Important takeaways

Depending on our problem and data different clustering algorithms can summarize and describe our data

- KMeans partitioned the data by moving around centroids
- Agglomerative clustering builds hierarchical clusters by merging the nearest two clusters
- DBSCAN connects densely connected regions of samples
- Gaussian Mixtures use distributions of centroids for soft-clustering

For some clustering algorithms we need to **specify the number of clusters**. We can do that by using cluster evaluation metrics:

- Use the inertia score from the KMeans algorithm with the elbow method
- Choose the number of clusters that maximizes the silhouette score

Try it yourself!

In the following exercises

Selected model types

Outliers

Outliers are observations that diverge from an overall pattern on a sample

Causes of outliers:

- Measurement or input error
- True outlier observation

Types of outliers

- Univariate: Found when looking at the distribution of values of a single feature
 - Univariate unrealistic values can just be filtered
- Multivariate: Is found when looking at the outlier in ndimensional space
 - Collective and multivariate outliers we need a model to encode what is normal

Isolation Forest: Random Tree

Create a random tree as follows:

- Repeat until single sample in node or set depth reached:
 - Create split by randomly select a feature and a random split value between minimum and maximum of that feature

Isolation Forest: Outlier detection

- Create a lot of the random trees from previous slide
- For each sample: Compute
 a score based on the
 average path length (i.e.,
 number of splits in the
 tree until we end up a that
 sample)
 - Outlier x₀ will have a lower score since the average path length smaller (x₀ is easier to "isolate")

Outlier Detection: Isolation Forest

Pros

- Non-parametric
- No scaling of features necessary
- Trainable without anomalies in the dataset
- Can handle high dimensionality and irrelevant features
- Scales well in terms of computation time and memory for large data

Cons

- Cuts are always parallel to feature axis, sometimes cause problems
- Large numbers of anomaly points in the training data can reduce the detection capabilities

Selected model types

Dimensionality Reduction

Goal

- Reducing the number of features, i.e. the dimensionality of the data set
- Feature selection: only use a subset of the available features
- Feature extraction/projection: Transform data from high-dimensional space to a space of fewer dimensions

Why to do it?

- High-dimensional data sets are hard to understand for humans and some models (this is sometimes called the curse of dimensionality)
- Speed up model training and evaluation
- Reduces noise and redundant/linear correlated feature in data (especially PCA) might increase model performance

Dimensionality Reduction: PCA

• Principal component analysis computes new features that are linear combination of the given features: given features $f_1,...,f_d$ compute new features

$$\tilde{f} = a_1 f_1 + \dots + a_d f_d$$

- New features $\widetilde{f_1}$, ..., $\widetilde{f_d}$ are computes in such a way that f_1 explains more variance of the data than f_2 that explains more variance than f_3 and so on, i.e., the new feature are sorted by importance
- Dimension reduction by using only the first k new features

Pros

Reduces noise and "removes" redundant (linear correlated) features

Cons

- New features might not have an understandable interpretation
- Can only perform linear transformations

Note: PCA requires normalization of each feature separately if the features have different scales. Otherwise the features with the biggest values will always be more important

Dimensionality Reduction: MDS

- MDS: (metric) Multi-dimensional scaling
- Given high-dimensional or complex data $x_1, ... x_n$ and a distance function d, compute all pairwise distances $d_{i,j} = d(x_i, x_j)$
- Find representatives $\bar{x}_1, \dots, \bar{x}_n \in \mathbb{R}^2$ that minimize

$$\sum_{i \neq j=1,...,n} (d_{i,j} - ||\bar{x}_i - \bar{x}_j||)^2$$

- Creates basically a 2d map of the samples
- E.g., samples are chemical compounds and MDS is used to create a map where similar compounds end up close together

Pros

 Nice visualizations that are easy to understand for experts if the distance makes sense

Cons

- Slow for even medium data sets
- Reduction is often too strong since distance to other samples is not enough information to train a model

t-distributed Stochastic Neighbor Embedding (T-SNE)

- Main purpose visualize high-dimensional data in two or three dimensions
- MDS reduces data into low dimensions while keeping the distances intact
- T-SNE reduces the dimensionality of the data while clustering points together that where also clustered in high dimensional space
- "Kullback-Leibler (KL) divergence of the joint probabilities in the original space and the embedded space will be minimized by gradient descent"

Advantages

- Reduce any data into low dimensional space
- Reveal relationships even if they exist in multiple sub-dimensions
- Avoids the tendency to crowd all data points into one center

Disadvantages

- Computationally expensive and takes a long time to finish compared to PCA
- The algorithm is stochastic and multiple restarts will lead to different outcomes
- The global structure is not explicitly preserved

Dimensionality reduction with Neural Networks

- Learn a neural network that takes an input and reduces the dimensionality into the layer h
- Then it reconstructs the input as x'
- The loss is the difference between x and x'

Autoencoders

Learn how to efficiently encode and com-press given data

Embeddings

- Very import in NLP (natural language processing), especially when working with texts
- Word2Vec embeddings: Learn a vector representation of words and their context

Important takeaways

Depending on our problem and data different clustering algorithms can summarize and describe our data

We have covered kMeans, Agglomerative clustering, DBSCAN and Gaussian Mixtures

Outliers are observations that diverge from an overall pattern on a sample

- Univariate: Found when looking at the distribution of values of a single feature
- **Multivariate**: Is found when looking at the outlier in n-dimensional space. We used the **Isolation Forest** to find these outliers.

With **dimensionality reduction** we reduce the number of features

- Principle Component Analysis (PCA) is often used to created a reduced and uncorrelated feature set
- Algorithms like MDS and t-SNE are used to represent high dimensional data in two or three dimensions

Outlier detection and dimensionality reduction is often used as a preprocessing step in the Data Science workflow

Quiz: Unsupervised Learning

Please join at slido.com with #031 077.

Let's go through some questions together.

Let's see what you think. All answers will be anonymous.

Try it yourself!

In the following exercises

Agenda

	Introduction
1	Recap Basic Machine Learning and Python
2	Complex Models
3	Model Evaluation
4	Hyperparameters
5	Unsupervised Learning
6	Gradient Descent
7	Deep Learning and Image Recognition
8	Deep Learning and Natural Language Processing
9	Repetition
10	Bias and Ethics in Machine Learning
11	Introduction to Data Science with AWS

Thank you

If you would like any further information please contact
Werner, Dr., Fabian_Georg (BI X) BIX-DE-I
<fabian_georg.werner@boehringer-ingelheim.com>

This presentation contains information that may be priviledged or confidential and is the property of the Capgemini Group.

Copyright© 2021 Capgemini. All rights reserved.

