

SEQUENCE LISTING

Sub A

<110> Anderson, Christen M.
Clevenger, William

<120> COMPOSITIONS AND METHODS FOR REGULATING
ENDOGENOUS INHIBITOR OF ATP SYNTHASE, INCLUDING
TREATMENT FOR DIABETES

<130> 660088.435C2

<140> US
<141> 2002-02-27

<160> 72

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope tag

<400> 1
His His His His His
1 5

<210> 2
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope tag

<400> 2
Asp Tyr Asp Asp Asp Asp Lys
1 5

<210> 3
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope tag

10003845-022202

<400> 3
Asp Thr Tyr Arg Tyr Ile
1 5

<210> 4
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope tag

<400> 4
Thr Asp Phe Tyr Leu Lys
1 5

<210> 5
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope tag

<400> 5
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
1 5 10

<210> 6
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope tag

<400> 6
Glu Glu Glu Glu Tyr Met Pro Met Glu
1 5

<210> 7
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope tag

<400> 7
Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
1 5

<210> 8

<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope tag

<400> 8
Arg Tyr Ile Arg Ser
1 5

<210> 9
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope tag

<400> 9
Pro Pro Glu Pro Glu Thr
1 5

<210> 10
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> cellular transport sequence

<400> 10
Arg Lys Lys Arg Arg Gln Arg Arg
1 5

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> cellular transport sequence

<400> 11
aggaagaagc ggagacagag a 21

<210> 12
<211> 324
<212> DNA
<213> Rattus norvegicus

<400> 12
atggcaggct cggcggtggc gtttcgggct cggctcggtg tctgggtat gagggtcctg 60
caaaccgcag gcttcggctc gactcgtcg gagagcatgg attcggccgc tggctccatc 120

1000
900
800
700
600
500
400
300
200
100

cgagaagctg gtggggcctt cggaaacga gagaaggctg aagaggatcg gtactccga	180
gagaagacta gagaggcagct ggctgccttg aagaagcacc atgaagatga gattgaccac	240
cattcgaagg agatacgcg tctgcaaaaa cagatcgaac ggcataagaa gaagattaaa	300
tacctaaga atagtgagca ttga	324
<210> 13	
<211> 107	
<212> PRT	
<213> Rattus norvegicus	
<400> 13	
Met Ala Gly Ser Ala Leu Ala Val Arg Ala Arg Leu Gly Val Trp Gly	
1 5 10 15	
Met Arg Val Leu Gln Thr Arg Gly Phe Gly Ser Asp Ser Ser Glu Ser	
20 25 30	
Met Asp Ser Gly Ala Gly Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly	
35 40 45	
Lys Arg Glu Lys Ala Glu Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg	
50 55 60	
Glu Gln Leu Ala Ala Leu Lys Lys His His Glu Asp Glu Ile Asp His	
65 70 75 80	
His Ser Lys Glu Ile Glu Arg Leu Gln Lys Gln Ile Glu Arg His Lys	
85 90 95	
Lys Lys Ile Lys Tyr Leu Lys Asn Ser Glu His	
100 105	
<210> 14	
<211> 75	
<212> DNA	
<213> Rattus norvegicus	
<400> 14	
atggcaggct cggcggtggc gttcggct cggctcggtg tctgggtat gagggtcctg	60
caaaccgag gcttc	75
<210> 15	
<211> 509	
<212> DNA	
<213> Mus musculus	
<400> 15	
cgcaacgcga gctgagcaac gccgaagaca atggcaggct cggcggtggc agttcggtat	60
cggttcgggt tctgggtat gaagggtcccgaaaccggag gttcgatcg ggactcgatcg	120
gatagcatgg atacgggcgc tggctccatc cgagaagctg gtggagcctt cggaaaacga	180
gaaaaggctg aagaggatcg gtactccga gagaagacta aagaacagct ggctgccctg	240
aggaaaacacc atgaagatga gattgaccac cattcgaagg agatacgcg tctgcagaag	300
caaattgatc gccataagaa gaagatccaa caactaaaga ataattatcg aatgcgcgc	360
gtcggtccct cacagagtgg cccgtatcac tccccacgtc tgttagacaca tggctttgaa	420
tgattactat ttggctgtg tgctactaac agataataaa cgatcaccag gaaactttta	480
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	509
<210> 16	
<211> 106	
<212> PRT	

<213> Mus musculus

<400> 16

Met	Ala	Gly	Ser	Ala	Leu	Ala	Val	Arg	Ala	Arg	Phe	Gly	Val	Trp	Gly
1				5				10						15	
Met	Lys	Val	Leu	Gln	Thr	Arg	Gly	Phe	Val	Ser	Asp	Ser	Ser	Asp	Ser
				20				25					30		
Met	Asp	Thr	Gly	Ala	Gly	Ser	Ile	Arg	Glu	Ala	Gly	Gly	Ala	Phe	Gly
				35			40				45				
Lys	Arg	Glu	Lys	Ala	Glu	Glu	Asp	Arg	Tyr	Phe	Arg	Glu	Lys	Thr	Lys
				50			55				60				
Glu	Gln	Leu	Ala	Ala	Leu	Arg	Lys	His	His	Glu	Asp	Glu	Ile	Asp	His
				65			70			75			80		
His	Ser	Lys	Glu	Ile	Glu	Arg	Leu	Gln	Lys	Gln	Ile	Asp	Arg	His	Lys
				85			90				95				
Lys	Lys	Ile	Gln	Gln	Leu	Lys	Asn	Asn	His						
				100			105								

<210> 17

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 17

cacaaagata tcggaaccct cta

23

<210> 18

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 18

aagtgggctt ttgctcatgt gtcat

25

<210> 19

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 19

ttagctcaga tatggcagga agaagcggag acagagagga atggcag

47

<210> 20

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 20

atataagctt tcaatgctca ctattcttta ggta

34

<210> 21

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Tat-derived cellular targeting sequence

<400> 21

agatatatggca ggaagaagcg gagacagaga gga

33

<210> 22

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Tat-derived cellular targeting sequence

<400> 22

Arg Tyr Gly Arg Lys Lys Arg Arg Gln Arg Gly
1 5 10

<210> 23

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 23

ttagctcagg atatggcagg aagaagcgaa gacagagagg aggctcg

48

<210> 24

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 24

atataagctt tcaatgctca ctattcttta ggta

34

<210> 25

1
0
0
8
3
8
4
5
1
0
2
2
2
0
2

<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Polypeptide consisting of amino acids 22-46 of the
mature form of rat IF1

<400> 25
Phe Gly Lys Arg Glu Lys Ala Glu Glu Asp Arg Tyr Phe Arg Glu Lys
1 5 10 15
Thr Arg Glu Gln Leu Ala Ala Leu Lys
20 25

<210> 26
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Polypeptide consisting of amino acids 42-58 of the
mature form of rat IF1

<400> 26
Leu Ala Ala Leu Lys Lys His His Glu Asp Glu Ile Asp His His Ser
1 5 10 15
Lys

<210> 27
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Cellular transport sequence

<400> 27
Arg Lys Lys Arg Arg Gln Arg
1 5

<210> 28
<211> 25
<212> PRT
<213> Rattus norvegicus

<400> 28
Met Ala Gly Ser Ala Leu Ala Val Arg Ala Arg Leu Gly Val Trp Gly
1 5 10 15
Met Arg Val Leu Gln Thr Arg Gly Phe
20 25

<210> 29

40033845-022722

<211> 34
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 29
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu Gln Leu Ala Ala Leu
20 25 30
Lys Lys

<210> 30
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 30
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr
20

<210> 31
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 31
Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu Glu
1 5 10 15
Asp Arg Tyr Phe
20

<210> 32
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 32
Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu Glu Asp
1 5 10 15
Arg Tyr Phe Arg
20

<210> 33
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 33
Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu Glu Asp Arg
1 5 10 15
Tyr Phe Arg Glu
20

<210> 34
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 34
Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu Glu Asp Arg Tyr
1 5 10 15
Phe Arg Glu Lys
20

<210> 35
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 35
Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu Glu Asp Arg Tyr Phe

1 5 10 15
Arg Glu Lys Thr
20

<210> 36
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 36
Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu Glu Asp Arg Tyr Phe Arg
1 5 10 15
Glu Lys Thr Arg
20

<210> 37
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 37
Ala Phe Gly Lys Arg Glu Lys Ala Glu Glu Asp Arg Tyr Phe Arg Glu
1 5 10 15
Lys Thr Arg Glu
20

<210> 38
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 38
Phe Gly Lys Arg Glu Lys Ala Glu Glu Asp Arg Tyr Phe Arg Glu Lys
1 5 10 15
Thr Arg Glu Gln
20

<210> 39

4003815-022202

<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 39
Gly Lys Arg Glu Lys Ala Glu Glu Asp Arg Tyr Phe Arg Glu Lys Thr
1 5 10 15
Arg Glu Gln Leu
20

<210> 40
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 40
Lys Arg Glu Lys Ala Glu Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg
1 5 10 15
Glu Gln Leu Ala
20

<210> 41
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 41
Arg Glu Lys Ala Glu Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu
1 5 10 15
Gln Leu Ala Ala
20

<210> 42
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1

sequence.

<400> 42
Glu Lys Ala Glu Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu Gln
1 5 10 15
Leu Ala Ala Leu
20

<210> 43
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 43
Lys Ala Glu Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu Gln Leu
1 5 10 15
Ala Ala Leu Lys
20

<210> 44
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 44
Ala Glu Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu Gln Leu Ala
1 5 10 15
Ala Leu Lys Lys
20

<210> 45
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 45
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys
1 5 10

<210> 46
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 46
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg
1 5 10

<210> 47
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 47
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu
1 5 10

<210> 48
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 48
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys
1 5 10

<210> 49
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 49
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala

1

5

10

15

<210> 50
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 50
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15

<210> 51
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 51
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu

<210> 52
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 52
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp

<210> 53
<211> 19
<212> PRT
<213> Artificial Sequence

<220>

<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 53

Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg

<210> 54

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 54

Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr
20

<210> 55

<211> 21

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 55

Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr Phe
20

<210> 56

<211> 22

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 56

Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu

1	5	10	15
Glu Asp Arg Tyr Phe Arg			
	20		

<210> 57
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 57
 Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
 1 5 10 15
 Glu Asp Arg Tyr Phe Arg Glu
 20

<210> 58
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 58
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr Phe Arg Glu Lys
20

<210> 59
<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<210> 60

<211> 26
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 60
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg
20 25

<210> 61
<211> 27
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 61
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu
20 25

<210> 62
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1 sequence.

<400> 62
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu Gln
20 25

<210> 63
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1

sequence.

<400> 63

Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu Gln Leu
20 25

<210> 64

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 64

Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu Gln Leu Ala
20 25 30

<210> 65

<211> 31

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 65

Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu Gln Leu Ala Ala
20 25 30

<210> 66

<211> 32

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 66

Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu Gln Leu Ala Ala Leu

20

25

30

<210> 67
<211> 33
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide fragment derived from rat IF1
sequence.

<400> 67
Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly Lys Arg Glu Lys Ala Glu
1 5 10 15
Glu Asp Arg Tyr Phe Arg Glu Lys Thr Arg Glu Gln Leu Ala Ala Leu
20 25 30
Lys

<210> 68
<211> 35
<212> PRT
<213> Artificial Sequence

<220>
<223> Epitope tag sequence.

<400> 68
Met Gly Gly Ser His His His His His Gly Met Ala Ser Met Thr
1 5 10 15
Gly Gly Gln Gln Met Gly Arg Asp Leu Tyr Asp Asp Asp Asp Lys Asp
20 25 30
Pro Ser Ser
35

<210> 69
<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Organellar targeting sequence

<400> 69
Met Ala Gly Ser Ala Leu Ala Val Arg Ala Arg Leu Gly Val Trp Gly
1 5 10 15
Met Arg Val Leu Gln Thr Arg Gly Phe
20 25

<210> 70

<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Cellular transport sequence

<400> 70
Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly
1 5 10

<210> 71
<211> 107
<212> PRT
<213> Artificial Sequence

<220>
<223> Fusion protein

<400> 71
Met Gly Gly Ser His His His His His Gly Met Ala Ser Met Thr
1 5 10 15
Gly Gly Gln Gln Met Gly Arg Asp Leu Tyr Asp Asp Asp Asp Lys Asp
20 25 30
Pro Ser Ser Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly
35 40 45
Met Ala Gly Ser Ala Leu Ala Val Arg Ala Arg Leu Gly Val Trp Gly
50 55 60
Met Arg Val Leu Gln Thr Arg Gly Phe Ser Ile Arg Glu Ala Gly Gly
65 70 75 80
Ala Phe Gly Lys Arg Glu Lys Ala Glu Glu Asp Arg Tyr Phe Arg Glu
85 90 95
Lys Thr Arg Glu Gln Leu Ala Ala Leu Lys Lys
100 105

<210> 72
<211> 321
<212> DNA
<213> Artificial Sequence

<220>
<223> Nucleotide that codes for fusion protein.

<400> 72
atgggggggt ctcatcatca tcatacatcat ggtatggcta gcatgactgg tggacagcaa 60
atgggtcggt atctgtacga cgatgacgat aaggatccga gctcgggcta tggcaggaag 120
aagcggagac agagaaggag aggttatggca ggctcggcgt tggcgggtcg ggctcggctc 180
ggtgtctggg gtatgagggt cctgcaaacc cgaggcttct ccatccgaga agctgggtggg 240
gccttcggga aacgagagaa ggctgaagag gatcggtact tccgagagaa gactagagag 300
cagctggctg cttgaagaaa g 321