Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 6G Rendering Parametric Curves and Surfaces

Rendering Parametric Curves and Surfaces

- Primary methods for rendering parametric curves and surfaces
 - Iterative evaluation
 - Forward differencing
 - Recursive subdivision
- Tessellation is process of creating triangles on the surface of a parametric surface
- Iterative evaluation of a Bezier surface patch
 - Solve p(u,v) for incrementally spaced values of u and v
 - x(u,v), y(u,v), z(u,v)
 - Uniform sampling of u,v
 - Example: create 10 evenly spaced points
 - $(u_k, v_l)=(0.1k, 0.1l)$
 - Create 2 triangles for each set of 4 surface points
 - $p(u_k, v_l), p(u_{k+1}, v_l), p(u_k, v_{l+1}), p(u_{k+1}, v_{l+1})$
 - Straightforward, but not very efficient

Rendering Parametric Curves and Surfaces

- Bezier curve can be written as $f(t) = p(t) = \sum_{i=0}^{n} t^{i} c_{i}$
- Forward differences can be used to rapidly evaluate such polynomials in uniformly spaced intervals

$$f_k = f(sk)$$

- Evaluate at 0, s, 2s, 3s, 4s, etc...
- Compute initial values for the curve and delta values
 - Delta values which are also simplified using forward differences
- Cubic polynomials require 3 forward differences
 - Text has example for a quadratic polynomial

$$\delta_k^1 = f_{k+1} - f_k$$
 1st forward difference $\delta_k^2 = \delta_{k+1}^1 - \delta_k^1$ 2nd forward difference $\delta_k^3 = \delta_{k+1}^2 - \delta_k^2$ 3rd forward difference

Pseudocode for Forward Differences

Recursive Subdivision Techniques

- Recursively subdividing spline curves and surfaces is a common rendering method
 - Can also be used to produce more control points to allow better shaping of a curve
- Subdivision technique
 - Repeatedly divide a curve section in half
 - Creating additional control points
 - Until the control points are sufficiently close to the desired curve
- Recursive subdivision is most easily done with Bezier representations
 - Curve always goes through first and last points
 - Parameter t is between 0 and 1
 - Easy to determine when the control points are close enough to the curve

Bezier Recursive Subdivision

- Bezier curves are subdivided by subdividing the control points
 - Creates two new sets of control points: r_i, s_i

•
$$r_0 = p_0$$
, $r_1 = (p_0 + p_1) / 2$,

•
$$r_2 = r_1/2 + (p_1 + p_2)/4$$

•
$$r_3 = s_0 = (r_2 + S_1) / 2$$

•
$$s_1 = (p_1 + p_2) / 4 + s_2 / 2$$

•
$$s_2 = (p_2 + p_3) / 2$$
, $s_3 = p_3$

- Each successive subdivision will be closer to the curve
- Can control the depth of the subdivision with a linearity criteria
 - Can test the distance from the middle two control points to the end point joining line
 - Stop subdividing when the distances are below a tolerance

Subdivision of Bezier Surfaces – Patch Splitting

- Patch splitting extends recursive subdivision of curves to surfaces
 - Creates nearly planar quadrilaterals
 - Split the surface along one parameter and then split each of the two resulting surfaces along the other parameter
 - Apply curve splitting method to each set of 4 control points in the direction of the parameter along which the split is made
 - Simplest if Bezier representation is used

Subdivision of Bezier Surfaces (cont.)

- Uniform patch splitting
 - Subdivide to a specified level (# of subdivisions) over entire surface
 - Fast and flexible
 - Can vary the depth of the subdivision to affect speed
 - Some areas become unnecessarily subdivided
 - May be nearly flat already
 - Simpler, but less elegant than an adaptive subdivision
 - Can become a preprocessing stage in the rendering engine
 - Convert parametric surfaces to triangles/quadrilaterals

Adaptive Patch Splitting

- Recursive or adaptive subdivision
 - Subdivide individual patches until flatness test is passed
 - Flatness is tested against a plane through 3 of the 4 corner points
 - Find distances of the other 13 control points to the plane
 - Test against tolerance
 - Areas become subdivided in relation to their degree of local curvature
 - Flat areas less subdivision into fewer, larger polygons
 - High curvature more subdivision into more, smaller polygon

Tears in Patch Splitting

- Adaptive subdivision can lead to 'tears' or 'cracks'
 - Different levels of subdivision between two patches sharing a boundary
 - Will appear as a hole or gap in the rendered image Eliminating tears
 - Tears can be avoided by uniform subdivision or making the flatness criteria very small
 - Both cause needless subdivisions
- Can modify the approximating quadrilaterals to eliminate the tear

