1 Définitions

Définition 1 (Chemin eulérien, circuit eulérien) Soit G = (S, A) un graphe non orienté.

- Un chemin eulérien de G est un chemin simple (i.e. constitué d'arêtes distinctes) relient deux sommets de G utilisant toutes les arêtes. Autrement dit, c'est un chemin simple de longueur |A|.
- Un circuit eulérien est un chemin eulérien dont les deux extrémités sont les mêmes. Autrement dit, c'est un cycle de longueur |A|.
- Un graphe eulérien est un graphe possédant un circuit eulérien.
- 1. Montrer que le graphe suivant possède un chemin eulérien.

FIGURE 1 – Le graphe G_1 .

2. Montrer que le graphe suivant possède un circuit eulérien.

FIGURE 2 – Le graphe G_2 .

2 Condition nécessaire

- 3. Soit G un graphe eulérien. Montrer que tous les sommets de G sont de degré pair.
- 4. Énoncer une condition nécessaire similaire à celle de la question précédente pour qu'un graphe possède un chemin eulérien.

3 Condition suffisante

- 5. Soit G un graphe dont tous les sommets sont de degré pair. On considère le processus suivant :
 - \bullet on part d'un sommet x quelconque;
 - on suit les arêtes à partir de x, sans les réutiliser, jusqu'à se retrouver bloqué. Ici, **bloqué** signifie que l'on est sur un sommet depuis lequel il n'y a plus d'arête disponible.

Montrer que le processus se termine nécessairement au sommet x.

- 6. On suppose avoir construit un cycle en suivant le processus de la question précédente. Montrer que, si le graphe est connexe, on est forcément dans l'un des deux cas suivants :
 - soit le cycle construit est un circuit eulérien;
 - soit il existe un sommet du cycle qui dispose encore d'une arête disponible.
- 7. En déduire qu'un graphe connexe est eulérien si et seulement si tous ses sommets sont de degré pair.
- 8. Énoncer et démontrer une propriété similaire pour l'existence d'un chemin eulérien.

Le problème historique qui a donné naissance à la notion de graphe eulérien est celui des ponts de Königsberg. La ville de Königsberg possédait à l'époque d'Euler 7 ponts, disposés comme suit :

FIGURE 3 – Les 7 ponts de Königsberg.

Le problème est de savoir s'il est possible de traverser successivement tous ces ponts sans repasser deux fois par le même.

9. Proposer une extension des résultats précédents aux **multigraphes** (graphes dans lesquels on peut avoir plusieurs arêtes entre deux sommets donnés) permettant de répondre à cette question.

4 Construction de chemins eulériens

On s'intéresse dans cette partie à la construction effective d'un circuit eulérien dans un graphe. L'algorithme utilisé, dit algorithme de Hierholzer, suit essentiellement la démonstration faite plus haut pour la condition suffisante.

On maintient deux piles:

- une nommée actuel correspondant au chemin en cours d'exploration;
- et l'autre nommée euler correspondant au circuit eulérien que l'on construit.

L'algorithme est le suivant.

- On commence à un sommet x_0 quelconque que l'on empile sur actuel.
- On suit des arêtes pour former un chemin, en supprimant au fur et à mesure les arêtes du graphe et en empilant les sommés visités sur actuel.
- Si à un moment on arrive sur un sommet ne disposant plus d'arête disponible, on dépile des sommets de actuel jusqu'à retomber sur un sommet qui dispose encore d'une arête disponible. Ces sommets sont empilés sur euler au fur et à mesure.
- L'algorithme se termine quand actuel est vide : euler contient alors un circuit eulérien si le graphe de départ était eulérien.
- 10. Simuler à la main l'exécution de l'algorithme sur le multigraphe suivant, en supposant que, quand il y a plusieurs arêtes x-y disponibles depuis un certain sommet x, on traite d'abord celle pour laquelle y est minimal.

On le fera une fois en commençant depuis le sommet 0, et une fois en commençant depuis le sommet 4.

FIGURE 4 – Le graphe G_3 .

Le fichier stack.h contient l'interface d'une structure de pile mutable, et le fichier graph.h l'interface d'une structure de graphes. On donne les garanties suivantes sur la complexité des fonctions :

- toutes les opérations élémentaires sur les piles sont en temps constant, l'initialisation d'une pile se fait en temps proportionnel à sa capacité;
- build_graph, avec nb_vertex = n et nb_edges = p, est en $\mathcal{O}(n+p)$;
- get_edge, has_available_edge, et delete_edge sont en temps constant.
- 11. Écrire une fonction int *read_data(int *nb_vertex, int *nb_edges); lisant des données sur l'entrée standard au format suivant :
 - la première ligne contient deux entiers n et p séparés par un espace : n sera le nombre de sommets, et p le nombre d'arêtes ;
 - les p lignes suivantes contiennent chacune deux entiers de [0, n-1] séparés par un espace : les deux sommets incidents à une arête.

La fonction renverra un tableau edges de longueur 2p tel que edges [2*i] et edges [2*i+1] soient les sommets constituant l'arête i. Elle modifiera également les valeurs pointées par les arguments de sortie nb_vertex et nb_edges.

- 12. Écrire une fonction stack *euler_tour(graph g); qui renvoie un circuit eulérien du graphe g (en supposant qu'un tel circuit existe), sous forme d'un pointeur vers une pile de sommets.
- 13. Créer un fichier correspondant au graphe G_3 , et vérifier que l'on obtient bien ce qui était prévu.
- 14. Déterminer la complexité totale de l'algorithme (lecture des données, construction du graphe, construction du circuit eulérien).
- 15. Si le graphe possède un chemin eulérien mais pas de circuit eulérien, est-il garanti que cet algorithme le trouve?
 - Si ce n'est pas le cas, indiquer la modification qu'il faudrait apporter pour traiter correctement ce cas.