Intro to Spatial Science & Technology

Lec 1: General Introduction and Overview

K S Rajan and RC Prasad Lab for Spatial Informatics, IIIT Hyderabad

2nd Jan 2024

1

What is Location?

When do you talk/refer to it?

And Why?

Location or (Geo-) Spatial - Significance?

- World view Maps, etc
- Navigation, Locational neighborhood, closeness etc
- Locating something
- Natural resources
- Governance / Management disasters, prioritizing work, etc..
- Interactions between objects/bodies
 - Helps discover science

3

Examples of GeoSpatial Technologies

- Online Maps Open Street Maps, Bing, Google Earth
- Devices like Car Navigation

- Just a point in space?
- A clue for what is happening in its neighbourhood
- ■Help discover Larger spatial-temporal phenomena like Climatic, health/disease surveillance

Geospatial Technologies

- –How to handle Location a constant or as a variable?
- -Geospatial Information Systems
 - Simple Map Visualization to Web-based Map mashups
 - DB to Geo/Spatial DB; Spatial Data Mining
 - Analysis
 - Statistical to evolving field of Spatio-Statistical tools
 - BI to Geo-BI
 - Modelling and Simulation
 - Eg., Complex Climate-Social-Economic Integrated Modelling

Challenges due to **Emerging** Computing Models; Data collection platforms; **New Tech**

 Remote Sensing - again, Volumes of Data to Information – a still struggling journey

Spatio-temporal Data

- Are all Spatio-temporal data big data?
 - Multi-dimensional
 - Large Volume
 - Unknown Parameters/Variables
 - Limited knowledge of underlying processes Science

- Land use and Agriculture
 - Cropping Systems
- Meteorological phenomena
 - Climatic perturbations
- Urbanization Patterns
- Image Processing challenges -
 - as Spatial and Spectral resolutions improve

7

Satellite Imagery

- Provides us with info of large regions in spectral regions not visible to human eye
- A range of applications due to its advantages
 - Agriculture
 - Forestry
 - Urban
 - Oceanography
 - Etc
- But, till what level have these Applications dependent on RS?
 - Due to spatial resolution, spectral clarity, radiometric detail and temporal history

9

Challenges that these pose

- How do we store and handle such volume of data
- Are current data models good enough Preserving Spatio-temporal characteristics
- Are we interested in Trajectories or Snapshot views
- What kind of correlations with other events can be done
- Analysis
 - Point-flow analysis
 - Path based analysis
 - Aggregators for Behaviour and Pattern extraction
 - Identifying the Outliers

Course Structure - ISSAT

- Unit-1: Characteristics of Satellite imagery
- Unit-2: Satellite data processing
- Unit-3: Case studies and challenges in satellite data processing
- Unit-4: Spatial data handling and Processing including Global Navigational Satellite Systems
- Unit-5: Spatial data analysis and its Challenges
- Unit-6: Geo-visualization and Web GIS

ISSAT Course Grading Plan

Type of Evaluation	Weightage
Quiz (after RS content mostly) In class quizes	20% 10%
Final Exam (Mid Sem Dates)	40%
Course Project - RS data processing - Spatial Analysis - WebGIS - Interactive	40%

17

Expectations from Students

- Each student Project report
 - A topic to choose from those to be listed (some flexibility will be there)
 - Work on Satellite data handling, Image Processing and Spatial Object generation
 - Spatial data analysis
 - Analyse and Discuss on outcomes
 - Present an Online WebGIS demo