and

$$**(e_{i_1} \wedge \dots \wedge e_{i_k}) = \operatorname{sign}(i_1, \dots i_k, j_1, \dots, j_{n-k}) *(e_{j_1} \wedge \dots \wedge e_{j_{n-k}})$$

= $\operatorname{sign}(i_1, \dots i_k, j_1, \dots, j_{n-k}) \operatorname{sign}(j_1, \dots, j_{n-k}, i_1, \dots i_k) e_{i_1} \wedge \dots \wedge e_{i_k}.$

It is easy to see that

$$sign(i_1, ..., i_k, j_1, ..., j_{n-k}) sign(j_1, ..., j_{n-k}, i_1, ..., i_k) = (-1)^{k(n-k)}$$

which yields

$$**(e_{i_1} \wedge \cdots \wedge e_{i_k}) = (-1)^{k(n-k)} e_{i_1} \wedge \cdots \wedge e_{i_k},$$

as claimed.

(ii) These identities are easily checked on basis elements; see Jost [101], Chapter 2, Lemma 2.1.1. In particular let

$$x = e_{i_1} \wedge \cdots \wedge e_{i_k}, \qquad y = e_{i_j} \wedge \cdots \wedge e_{i_j}, \qquad x, y \in \bigwedge^k V,$$

where $(e_i)_{i=1}^n$ is an orthonormal basis of V. If $x \neq y$, $\langle x, y \rangle_{\wedge} = 0$ since there is some e_{i_p} of x not equal to any e_{j_q} of y by the orthonormality of the basis, this means the p^{th} row of $(\langle e_{i_l}, e_{j_s} \rangle)$ consists entirely of zeroes. Also $x \neq y$ implies that $y \wedge *x = 0$ since

$$*x = sign(i_1, \dots, i_k, l_1, \dots, l_{n-k})e_{l_1} \wedge \dots \wedge e_{l_{n-k}},$$

where e_{l_s} is the same as some e_p in y. A similar argument shows that if $x \neq y$, $x \wedge *y = 0$. So now assume x = y. Then

$$*(e_{i_1} \wedge \dots \wedge e_{i_k} \wedge *(e_{i_1} \wedge \dots \wedge e_{i_k})) = *(e_1 \wedge e_2 \dots \wedge e_n)$$
$$= 1 = \langle x, x \rangle_{\wedge}.$$

It is possible to express *(1) in terms of any basis (not necessarily orthonormal) of V.

Proposition 34.17. If V is any finite-dimensional oriented vector space, for any basis (v_1, \ldots, v_n) of V, we have

$$*(1) = \frac{1}{\sqrt{\det(\langle v_i, v_j \rangle)}} v_1 \wedge \dots \wedge v_n.$$

Proof. If (e_1, \ldots, e_n) is an orthonormal basis of V and (v_1, \ldots, v_n) is any other basis of V, then

$$\langle v_1 \wedge \cdots \wedge v_n, v_1 \wedge \cdots \wedge v_n \rangle_{\wedge} = \det(\langle v_i, v_i \rangle),$$

and since

$$v_1 \wedge \cdots \wedge v_n = \det(A) e_1 \wedge \cdots \wedge e_n$$