

Hiperbola 1.03.2023 Hai An Mai

Rzędy i generatory

Teoria

Oznaczenia. \mathbb{Z}_+ oznacza zbiór liczb całkowitych dodatnich.

Definicja 1. Dane są dodatnie liczby całkowite a i $m \ge 2$ względnie pierwsze. Wówczas **rząd** a **modulo** m to najmniejsza taka dodatnia liczba całkowita n, że $a^n \equiv 1 \pmod{m}$, i oznaczamy ją ord $_m(a)$.

Twierdzenie 1. Dane są dodatnie liczby całkowite a,k oraz $m\geqslant 2$ takie, że $a^k\equiv 1\pmod m$. Wówczas

$$ord_m(a) \mid k$$
.

Twierdzenie 2. Z powyższego twierdzenia wynika kilka następujących własności:

- 1. $ord_m(a) \mid \varphi(m)$,
- 2. $a^k \equiv a^l \pmod{m} \iff k \equiv l \pmod{ord_m(a)}$,
- 3. $ord_m(a^k) = ord_m(a) / NWD(k, ord_m(a)),$
- 4. $ord_m(a) \perp ord_m(b)$ to $ord_m(ab) = ord_m(a) \cdot ord_m(b)$.

Twierdzenie 3. Dana jest liczba całkowita $m \ge 2$ oraz względnie pierwsza liczba z nim liczba a. Niech $s \ge 1$ będzie najmniejsza dodatnia liczba całkowita taka, że $a^s \equiv -1 \pmod{m}$. Wówczas

$$ord_m(a) = 2s$$

oraz dla dowolnej liczby całkowitej t taka, że $a^t \equiv -1 \pmod{m} \iff t = (2k-1)s$. $k \in \mathbb{Z}_+$.

Definicja 2. Dane są dodatnie liczby całkowite a i $m \ge 2$ względnie pierwsze. Wówczas a jest **generatorem** modulo m, jeżeli $\operatorname{ord}_m(a) = \varphi(m)$. Dla m = p - liczba pierwsza mamy $\operatorname{ord}_p(g) = p - 1$.

Twierdzenie 4. Generator modulo m istnieje wtedy i tylko wtedy, $gdy \ m = 2, 4, p^k, 2p^k$ dla nieparzystej liczby pierwszej p oraz $k \in \mathbb{Z}_+$.

Twierdzenie 5. Dane są dodatnie liczby całkowite a i $m \ge 2$. Niech $r = ord_m(a)$ to liczby

$$1, a, a^2, \ldots, a^{t-1}$$

są parami różne modulo p. W szczególności, gdy a = g jest generatorem modulo m to zbiór liczb

$$q, q^2, \ldots, q^{\varphi(m)}$$

zawiera wszystkie reszty moduło m wzglednie pierwsze z m. Czyli gdy m=p jest liczbą pierwszą to liczby

$$q, q^2, \dots, q^{p-1}$$

tworzą permutację zbioru $\{1, 2, \dots, p-1\}$.

Przykłady

- 1. Znajdź wszystkie liczby $n \in \mathbb{Z}_+$, dla których $n \mid 2^n 1$.
- 2. Dowieść, że jeżeli n > 1 jest nieparzystą liczbą całkowitą, to $n \nmid 3^n 1$.

Hiperbola 1.03.2023 Hai An Mai

Zadania

- 1. Wykazać, że jeżeli $n \ge 2$ jest liczbą całkowitą oraz $n \mid 11^n 2^n$, to $3 \mid n$.
- 2. Dana jest liczba całkowita n>1taka, że $n \mid 2^n+3^n.$ Dowieść, że 5 | n.
- 3. Udowodnij, że dla dodatnich liczb całkowitych $a, n \ge 2$ zachodzi $n \mid \varphi(a^n 1)$.
- 4. Dana jest liczba pierwsza p. Dowieść, że $p \equiv 1 \pmod 4$ wtedy i tylko wtedy, gdy istnieje liczba całkowita n taka, że $p \mid n^2 + 1$.
- 5. Udowodnić, że jeśli p jest liczbą pierwszą, to p^p-1 ma dzielnik pierwszy w postaci pk+1.
- 6. Wyznacz wszystkie pary liczb pierwszych p i q, dla których $pq \mid 2^p + 2^q$.
- 7. Dana jest liczba pierwsza p oraz dodatnia liczba całkowita k taka, że $p-1 \nmid k$. Wykaż, że

$$p \mid 1^k + 2^k + \ldots + (p-1)^k$$
.

8. Udowodnij, że jeśli k i n są liczbami całkowitymi większymi od 1, to nie istnieją takie liczby dodatnie liczby całkowite a i b, że zachodzą jednocześnie podzielności

$$k \mid 2^a - 1, \ 2^b + 1, \text{ oraz } n \mid 2^b - 1, 2^a + 1.$$