One-Sample Hypothesis Tests II(8.3)

- 1. Small Sample Test of Significance for Population Proportion, p
 - (a) **Population Proportion:** The proportion of individuals in a population with a specific attribute, often labeled as S for success.

Population	Sample	Sampling
Proportion	Proportion	Distribution
77 /77	A 37./	
$p = X_{pop}/N$	p = X/n	Small n : Binomial
		Large n: Normal

• The Null Hypothesis takes the form:

$$H_0: p = p_0$$

where p_0 is a hypothesized numerical value for population proportion.

• The Alternative Hypothesis is chosen from the three possible alternative hypotheses for use with the above null hypothesis:

$$H_A: p \neq p_0 \; ; \; H_A: p < p_0 \; ; or \; H_A: p > p_0$$

- Conclusion: Only when sample data strongly suggest that p equals something other than p_0 should the null hypothesis be rejected.
- 2. **Small Sample Test Statistic:** The test statistic is formulated based on the sampling distribution for X, the count of the number of successes in the sample. The sampling distribution for X is binomial with $p = p_0$ and n equal to the sample size.
 - (a) When H_0 is true: $X \sim b(n, p_0)$
 - (b) First identify the rejection region(s) boundary, C (or C_1 and C_2).

Type Test	Rejection Region(s)	Solve for C (or C_1 and C_2)
$H_A: p > p_0$	$X \ge C$	$1 - \sum_{x=0}^{C-1} b(x, n, p_0) \le \alpha$
$H_A: p < p_0$	$X \le C$	$\sum_{x=0}^{C} b(x, n, p_0) \le \alpha$
$H_A: p \neq p_0$	$X \ge C_1$	$1 - \sum_{x=0}^{C_1 - 1} b(x, n, p_0) \le \alpha/2$ $\sum_{x=0}^{C_2} b(x, n, p_0) \le \alpha/2$
	$X \le C_2$	$\sum_{x=0}^{C_2} b(x, n, p_0) \le \alpha/2$

(c) Then compare values of X with C, reject H_0 when the value of X lies within the rejection region.

3. Example: We have fed a diet high in saccharin to a sample of 20 rats and find that 2 of them develop bladder cancer. In our lab, historically 5.0% of all rats tested develop bladder cancer regardless of diet. Is our finding significantly greater than, at $\alpha = .05$, the diet neutral historical proportion?

$$H_0: p = .05$$

$$H_A: p > .05$$

- \bullet Let rv X denote the count of rats in the sample that develop bladder cancer.
- Sample Information: n = 20 and x = 2
- Point Estimate of p: $\hat{p} = \frac{x}{n} = \frac{2}{20} = 0.10$
- When H_0 is true, $X \sim b(20, .05)$
- Check for the Normal approximation: $n\hat{p}(1-\hat{p}) \ge 10$, here 20(.05)(.95) = 0.95. So Normal not a good approximation here.
- Test Statistic: Use binomial X as test statistic, determine C, the boundary of the rejection region. Reject H_0 if X lies in rejection region.
- Here, $H_A: p > p_0$, so the rejection region is $X \ge C$.
- Determine C from $1 \sum_{x=0}^{C-1} b(x, 20, .05) \le .05$.
- or $\sum_{x=0}^{C-1} b(x, 20, .05) \ge .95$
- Let d = C 1, then using Table A.1 with n = 20 evaluate $B(d; 20, .05) = \sum_{x=0}^{d} b(x; 20, .05) \ge .95$
- From Table A.1, d = 3 is the first value greater than .95 for $\alpha = .05$. Choose d = 3 as the value we seek.
- Since d = (C 1), C = 4 is the rejection region boundary.
- If sample computed $X \geq C$ then reject H_0 . Here, C = 4 and X = 2 from the problem statement, so X is not greater than or equal to C.
- Conclude: The data do not provide strong enough evidence to reject H_0 .