MAE 0311 2018 - INFERÊNCIA ESTATÍSTICA. PROF. ALEXANDRE PATRIOTA LISTA 3

1. Seja (X_1, \ldots, X_n) uma amostra de uma variável aleatória $X \sim P_\theta$, com $\theta = (\mu, \sigma^2)$, em que $\mu \in \mathbb{R}$, e $\sigma^2 > 0$ são tais que $E_\theta(X) = \mu$ e $Var_\theta(X) = \sigma^2$. Defina T da seguinte forma

$$T = \frac{a}{2n+1} \sum_{i=1}^{n} X_i + \frac{b}{n^2} \sum_{i=1}^{n} X_i, \quad a, b > 0.$$

Para que valores de a e b, o estimador T é assintoticamente não viesado?

2. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim f_{\theta}$, tal que

$$f_{\theta}(x) = \begin{cases} a \exp(-a(x-\theta)), & \text{se } x > \theta, \quad \theta > 0, \quad a > 0 \\ 0, & \text{c.c.} \end{cases}$$

sendo a uma constante conhecida.

- a) Mostre que $T = X_{(1)}$, em que $X_{(1)} = \min\{X_1, \dots, X_n\}$, é um estimador assintoticamente não viesado para θ .
- b) Encontre o limite inferior para as variâncias de estimadores não viciados (também conhecido como limite de Cram'er-Rao) para $g(\theta)=\theta$.
- 3. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim Poisson(\theta)$, com $\theta > 0$. Verifique se $T = \sum_{i=1}^n X_i$ é suficiente para o modelo utilizando a definição (não utilize o Critério da Fatoração). Explicite e justifique todos os passos.
- 4. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim N(\mu, \mu^2)$, com $\mu \in \mathbb{R}$,
 - a) Verifique se $T=(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ é suficiente minimal para o modelo em questão.
 - b) Verifique se T definido em a) é uma estatística completa para o modelo em questão.
- 5. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim f_{\theta}$, com $\theta \in \Theta$. Seja T uma estatística suficiente minimal para o modelo, verifique se
 - a) $T_1 = (T, T)$ é uma estatísitica suficiente minimal para o modelo.
 - b) $T_2 = (T, T^2)$ é uma estatística suficiente minimal para o modelo.
 - c) Se $T = \overline{X}$, mostre que $T_3 = (T, X_1)$ não é suficiente minimal para o modelo.
- 6. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim f_\theta$, com $\theta \in \Theta$. Seja T uma estatística suficiente para o modelo. Mostre que T não é uma estatística completa para o modelo em questão considerando os seguintes casos (a, b, c, k, l) são constantes que não dependem de θ :
 - a) $E_{\theta}(T) = cE_{\theta}(T^2)$, com $c \neq 0$.
 - b) $E_{\theta}(T^k) = a + bE_{\theta}(T^l)$, para $k, l, a \in \mathbb{R}$, $b \neq 0$ e $k \neq l \neq 0$ tais que $T^k \neq a + bT^l$ comprobabilidade 1.
 - c) De maneira geral, $E_{\theta}(h_1(T)) = E_{\theta}(h_2(T))$, em que h_1 e h_2 são duas funções que não dependem de θ tais que $h_1(T) \neq h_2(T)$ com probabilidade 1.
- 7. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim Unif(0, \theta)$, com $\theta > 0$ e 0 < x < 1, mostre que $T = X_{(n)}$ é uma estatística completa, em que $X_{(n)} = \max\{X_1, \ldots, X_n\}$.
- 8. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim Unif(\theta, \theta+1)$, com $\theta > 0$ e 0 < x < 1, mostre que a amplitude $T = X_{(n)} X_{(1)}$, com $X_{(n)} = \max\{X_1, \ldots, X_n\}$ e $X_{(1)} = \min\{X_1, \ldots, X_n\}$, é ancilar ao modelo.
- 9. Seja $(X_1, ..., X_n)$ uma amostra aleatória de $X \sim Poisson(\theta)$, com $\theta > 0$. Use o teorema de Lehmann-Scheffé para encontrar um estimador não-viesado com variância uniformemente mínima para $g(\theta) = P_{\theta}(X_1 = 3)$. Use o fato de que $T = \sum_{i=1}^{n} X_i$ é estatística suficiente e completa para o modelo em questão.