Vectoren

Steven Bronsveld

February 23, 2019

1 Gegevens

Uiterlijke inleverdatum: ${f Datum~1}$

1.1 Links

- $\bullet \ \, Github.com/StevenBrons$
- $\bullet \ \, \rm https://nature of code.com/book$
- $\bullet \ \, \rm http://hello.processing.org/editor/$

2 Leerdoelen

- x,y coördinaten om kunnen zetten in de PVector objecten.
- Gebruik kunnen maken van de volgende PVector methods: add(PVector p), sub(PVector p), mult(float amount), rotate(float angle)

3 Vectoren

Omdat het onhandig is om telkens twee argumenten mee te moeten geven voor een positie op het scherm int x, int y en we een betere manier nodig hebben om met coördinaten om te gaan bestaat er in Processing de PVector class.

3.1 [optioneel] Vectoren in de wiskunde

Een vector is een verzameling van meerdere variabelen. Wij zullen ons alleen maar bezig houden met 2 dimensionale vectoren van x,y coördinaten. Een vector wordt als volgt genoteerd:

$$\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Er zijn een paar rekenregels, die erg voor de hand liggen als je bedenkt dat een vector gewoon een verzameling van twee coördinaten is:

$$\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} a+c \\ b+d \end{pmatrix}$$

$$a * \begin{pmatrix} b \\ c \end{pmatrix} = \begin{pmatrix} a * b \\ a * c \end{pmatrix}$$

De tweede rekenregel heet *scalaire vermenigvuldiging*. Dit geeft het uitrekken of inkrimpen van een vector weer. Dit is makkelijker te zien als we de vectoren als pijltjes (of natuurkundige krachten) tekenen:

3.1.1 Opdrachten

- 1. Teken de optelling van $\binom{2}{1} + \binom{-1}{3}$
- 2. Bereken $2*((3*\vec{a})+\vec{b})$ met $\vec{a}=\begin{pmatrix}1\\2\end{pmatrix}$ en $\vec{b}=\begin{pmatrix}-1\\2\end{pmatrix}$
- 3. Bepaal het midden tussen \vec{a} en \vec{b} . (We zoeken dus een algemene formule voor het midden tussen twee vectoren).
- 4. Bereken de vector op $\frac{2}{3}$ afstand tussen \vec{a} en \vec{b} (Wederom zoeken we dus een algemene formule).

3.2 PVector

Processing heeft de class PVector, met daarin een heleboel handige methods, zie https://processing.org/reference/PVector.html

```
1
             void setup() {
                     PVector v1 = new PVector(3,2);
2
3
                     PVector v2 = v1.copy();
                     v1.add(v2);
                     v2.sub(new\ PVector(1,1));
                     v1.mult(3);
                     drawDot(v1);
8
                     drawDot(v2);
            }
10
11
            void drawDot(PVector v) {
12
                     circle(v.x, v.y, 5);
13
             }
```

Let op! De oorsprong (0,0) zit bij computers links boven, en niet links onder zoals bij de meeste wiskundige grafieken! De y-as is als het ware gespiegeld!

Op welke coördinaten tekent dit stukje code een stip? Schrijf je antwoord in een *comment* van je sketch:

3.3 Polygoon

Een gelijkzijdige polygoon of veelhoek is een figuur met n hoeken en lijnstukken van gelijke lengte. Voor n=3 is dit een driehoek, voor n=4 is dit een vierkant, voor n=5 is dit een pentagon en voor n=17 is dit een pentagon. Maak de volgende functie:

```
void polygon(PVector center, int radius, int n) {

}
```

Deze functie moet een polygoon van int n hoeken tekenen met een straal van int radius. Maak gebruik van vectoren en gebruik de rotate(float angle) method.

Let op! Een hoek wordt niet in graden uitgedrukt maar in radialen, dit betekent dat één cirkel (dus 360 graden) gelijk is aan $2 * \pi$, ofwel: 2 * PI.

4 Inleveren

Als je klaar bent met de hele opdracht kun je deze naar je repository pushen.