ENDOMORPHISMES DONT LE POLYNÔME MINIMAL EST DE DEGRÉ n-1

Notations et rappels:

On considère un espace vectoriel E, de dimension finie $n \ge 3$, sur le corps $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

 $\mathscr{L}(E)$ désigne la \mathbb{K} -algèbre des endomorphismes de E.

Si $u, v \in \mathcal{L}(E)$, $u \circ v$ se note uv et l'identité de E est notée Id_E .

Pour $u \in \mathcal{L}(E)$ et $P = \sum_{k=0}^m a_k X^k \in \mathbb{K}[X]$, P(u) désigne l'endomorphisme $\sum_{k=0}^m a_k u^k$ où les u^p sont définis par les relations $u^0 = \operatorname{Id}_E$ et $\forall p \in \mathbb{N}, \ u^p = u \, u^{p-1}$. On «rappelle» que si $P, Q \in \mathbb{K}[X]$, les endomorphismes P(u) et Q(u) commutent.

Si u est un endomorphisme de E, le polynôme minimal de u sera noté π_u et le polynôme caractéristique se notera χ_u ; on rappelle que π_u est le polynôme normalisé de degré minimal annulateur de u, c'est le générateur unitaire de l'idéal des polynômes annulateurs de u, et que

$$\forall \lambda \in \mathbb{K}$$
, $\chi_u(\lambda) = \det(u - \lambda \operatorname{Id}_E)$

Un endomorphisme u est dit nilpotent s'il existe $p \in \mathbb{N}^*$ tel que $u^p = 0$. On rappelle que pour un tel endomorphisme, en dimension n, le polynôme caractéristique vaut $(-1)^n X^n$.

On admettra ici le théorème suivant (cf. DS n°3 et feuille d'exercices n°2...):

Théorème de Bezout

Deux polynômes P et Q de $\mathbb{K}[X]$ sont premiers entre eux si et seulement si il existe deux polynômes A et B tels que AP + BQ = 1.

1ère partie: Résultats préliminaires

A - Le théorème de décomposition des noyaux

- 1. Soit $u \in \mathcal{L}(E)$, et P,Q deux polynômes de $\mathbb{K}[X]$ premiers entre eux. En utilisant le théorème de Bezout, montrer que $\operatorname{Ker} \operatorname{PQ}(u) = \operatorname{Ker} \operatorname{P}(u) \oplus \operatorname{Ker} \operatorname{Q}(u)$
- **2.** Soient A, B, $C \in \mathbb{K}[X]$. On suppose que A est premier avec B et que A est premier avec C. En utilisant le théorème de Bezout, montrer que A est premier avec BC.
- 3. Déduire des deux questions précédentes le théorème de décomposition des noyaux :

Soient P_1, \dots, P_r r polynômes de $\mathbb{K}[X]$, premiers entre eux deux à deux, et $P = \prod P_i$.

Soit $u \in \mathcal{L}(E)$. Alors:

$$\operatorname{Ker} P(u) = \bigoplus_{i=1}^{r} \operatorname{Ker} P_i(u).$$

B - Calcul de la dimension d'un sous-espace vectoriel de E

Soit $u \in \mathcal{L}(E)$, λ une valeur propre de u et $p \in \mathbb{N}^*$ son ordre de multiplicité; on sait qu'il existe $Q \in \mathbb{K}[X]$ tel que

$$\chi_u = (X - \lambda)^p Q$$
 et $Q(\lambda) \neq 0$.

On pose $F_{\lambda} = \text{Ker}(u - \lambda \text{Id}_{E})^{p}$ (F_{λ} s'appelle le sous-espace vectoriel caractéristique associé à λ).

- **1.** Montrer que $E = F_{\lambda} \oplus Ker Q(u)$ et que les sous-espaces vectoriels F_{λ} et Ker Q(u) sont stables par u.
- **2.** On désigne par v (respectivement w) l'endomorphisme de F_{λ} (respectivement $\operatorname{Ker} Q(u)$) induit par u.
 - a) Que peut-on dire de l'endomorphisme $\nu \lambda Id_{F_{\lambda}}$ de F_{λ} ?
 - **b)** Calculer χ_{ν} en fonction de λ et de $d = \dim F_{\lambda}$, puis montrer que

$$\chi_u = (-1)^d (\mathbf{X} - \lambda)^d \chi_w$$

avec la convention $\chi_w = 1$ si $\text{Ker Q}(u) = \{0_E\}$.

c) Montrer que $\chi_w(\lambda) \neq 0$ et en conclure que p = d.

C - Un résultat sur le polynôme minimal

Soit u un endomorphisme de E.

- 1. Soit $x \in E \setminus \{0_E\}$. Montrer qu'il existe un unique polynôme unitaire (=normalisé) de degré minimal noté $\pi_{x,u} \in K[X]$ tel que $\pi_{x,u}(u)(x) = 0_E$, puis justifier que $\pi_{x,u}$ divise π_u .
- 2. On pose $\pi_u = \mathrm{P}_1^{a_1} \dots \mathrm{P}_r^{a_r}$ où $(\alpha_1, \dots, \alpha_r) \in (\mathbb{N}^*)^r$ et les P_i sont irréductibles et deux à deux distincts. Soit $i \in [1, r]$. Montrer que $\mathrm{Ker}\,\mathrm{P}_i^{a_i-1}(u) \varsubsetneq \mathrm{Ker}\,\mathrm{P}_i^{a_i}(u)$ (on pourra raisonner par l'absurde). En déduire qu'il existe $x_i \in \mathrm{Ker}\,\mathrm{P}_i^{a_i}(u)$, non nul, tel que $\pi_{x_i,u} = \mathrm{P}_i^{a_i}$.
- **3.** On pose alors $e = x_1 + \dots + x_r$. Déduire du théorème de décomposition des noyaux que $\pi_{e,u} = \pi_u$.

2ème partie : Étude de $\mathscr{C} = \{u \in \mathscr{L}(E), \deg(\pi_u) = n - 1\}$

A- Le cas d'un endomorphisme nilpotent

Soit $v \in \mathcal{L}(E)$; on suppose que $v^{n-1} = 0$ et $v^{n-2} \neq 0$.

1. Montrer que, pour tout $k \in \mathbb{N}$,

$$\operatorname{Ker} v^k \subset \operatorname{Ker} v^{k+1}$$

et que

$$\operatorname{Ker} v^k = \operatorname{Ker} v^{k+1} \Longrightarrow \operatorname{Ker} v^{k+1} = \operatorname{Ker} v^{k+2}$$
.

2. En déduire

$$\{0_{\mathrm{E}}\} \subsetneq \operatorname{Ker} v \subsetneq \operatorname{Ker} v^2 \subsetneq \dots \subsetneq \operatorname{Ker} v^{n-2} \subsetneq \operatorname{Ker} v^{n-1} = \mathrm{E}.$$

3. Montrer alors que, pour tout $k \in [1, n-2]$,

$$k \leq \dim(\operatorname{Ker} v^k) \leq k+1$$

- **4.** Supposons que, pour $p \in [1, n-2]$ on ait : $\dim(\operatorname{Ker} v^p) = p$ et $\dim(\operatorname{Ker} v^{p+1}) = p+2$; montrer que $\dim(\operatorname{Ker} v^p) \geqslant \dim(\operatorname{Ker} v^{p-1}) + 2$ et en déduire une contradiction. (*on pourra considérer un supplémentaire* F *de* $\operatorname{Ker} v^p$ *dans* $\operatorname{Ker} v^{p+1}$ *et utiliser* v(F)).
- **5.** En déduire que, pour tout $q \in [1, n-2]$, dim(Ker v^q) = q+1.
- **6.** Montrer que Ker v n'est pas inclus dans Im v. (on pourra raisonner par l'absurde et considérer l'endomorphisme g induit par v sur Im v).
- 7. Soient $x_0 \in \operatorname{Ker} v \setminus \operatorname{Im} v$ et $y \in E \setminus \operatorname{Ker} v^{n-2}$.
 - a) Quelle est la dimension du sous-espace vectoriel $H = Vect(\{y, v(y), ..., v^{n-2}(y)\})$?
 - **b)** Vérifier que H et $\mathbb{K}x_0$ sont supplémentaires dans E et que H est stable par v.
 - c) Vérifier que $(y, v(y), ..., v^{n-2}(y), x_0)$ est une base de E et écrire la matrice J de v dans cette base.

B- Cas général

1. Soient $R = X^{n-1} - \sum_{k=0}^{n-2} a_k X^k \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$ une racine de R. Soient $\mathscr{B} = (e_1, \dots, e_n)$ une base de E et u l'endomorphisme de E dont la matrice M relativement à \mathscr{B} est

$$\mathbf{M} = \begin{pmatrix} 0 & 0 & \dots & 0 & a_0 & 0 \\ 1 & 0 & \dots & 0 & a_1 & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \ddots & 1 & 0 & a_{n-3} & 0 \\ 0 & \dots & 0 & 1 & a_{n-2} & 0 \\ 0 & 0 & \dots & 0 & 0 & \alpha \end{pmatrix}$$
(1)

- a) Pour $k \in [1, n-1]$, exprimer $u^k(e_1)$ en fonction des éléments de la base \mathcal{B} .
- **b)** Calculer $R(u)(e_1)$ puis $R(u)(e_k)$ pour $k \in [2, n-1]$, et enfin $R(u)(e_n)$; en déduire que R est un polynôme annulateur de u.
- c) Montrer que le degré du polynôme minimal π_u de u est supérieur ou égal à n-1 et en déduire que R coïncide avec π_u puis que $u \in \mathscr{C}$. (on pourra raisonner par l'absurde).
- **d)** Déterminer χ_u en fonction de R et α .
- **2.** Soit $u \in \mathcal{C}$.

a) Montrer qu'il existe $\alpha \in \mathbb{K}$ tel que $\chi_u = (-1)^n (X - \alpha) \pi_u$ et que $\pi_u(\alpha) = 0$.

Dans la suite, k désigne l'ordre de multiplicité de la valeur propre α de u. On sait, puisque $\chi_u = (-1)^n (X - \alpha) \pi_u$, qu'il existe $Q \in \mathbb{K}[X]$ tel que

$$\pi_u = (X - \alpha)^{k-1} Q$$
 et $Q(\alpha) \neq 0$.

b) Montrer que

$$E = Ker(u - \alpha Id_E)^k \oplus Ker Q(u) = Ker(u - \alpha Id_E)^{k-1} \oplus Ker Q(u)$$

et en déduire que

$$\operatorname{Ker}(u - \alpha \operatorname{Id}_{\mathsf{E}})^{k-2} \subsetneq \operatorname{Ker}(u - \alpha \operatorname{Id}_{\mathsf{E}})^{k-1} = \operatorname{Ker}(u - \alpha \operatorname{Id}_{\mathsf{E}})^k$$

- c) On désigne par v l'endomorphisme de $Ker(u \alpha Id_E)^k$ induit par $u \alpha Id_E$.
 - i. Vérifier que $v^{k-1} = 0$ et $v^{k-2} \neq 0$.
 - ii. En déduire qu'il existe un vecteur propre x_0 de u, associé à la valeur propre α , et un sous-espace vectoriel H_1 de $Ker(u-\alpha Id_E)^k$, stable par u, tels que

$$\operatorname{Ker}(u - \alpha \operatorname{Id}_{\operatorname{E}})^k = \mathbb{K} x_0 \oplus \operatorname{H}_1$$

- **d)** Montrer que la somme $H = H_1 + \text{Ker } Q(u)$ est directe et que le sous-espace vectoriel H est un supplémentaire de $\mathbb{K}x_0$ dans E, qui est stable par u.
- e) On désigne par w l'endomorphisme induit par u sur H.
 - i. Montrer que $\chi_u = (\alpha X)\chi_w$, puis en déduire $\pi_w(\alpha)$.
 - ii. Montrer que π_w est un polynôme annulateur de u, puis que $\deg(\pi_w) = n 1$.
- **f)** En utilisant la question C.3 de la première partie, montrer que H possède une base de la forme $(e, w(e), ..., w^{n-2}(e))$ avec $e \in H$, et écrire la matrice de w dans cette base.
- g) Construire alors une base \mathcal{B}_1 de E dans laquelle la matrice de u est de la forme (1).
- 3. Soit $A \in \mathbb{M}_n(\mathbb{K})$, π_A son polynôme minimal. Montrer que $\deg(\pi_A) = n-1$ si et seulement si il existe une matrice $P \in GL_n(\mathbb{K})$ et $a_0, \ldots, a_{n-2}, \alpha$ éléments de \mathbb{K} avec $\alpha^{n-1} = \sum_{k=0}^{n-2} a_k \alpha^k$ tels que $P^{-1}AP$ soit de la forme (1).

