Marking Scheme Strictly Confidential

(For Internal and Restricted use only)

Senior School Certificate Examination, 2023

SUBJECT NAME: APPLIED MATHEMATICS (SUBJECT CODE S46547A) (PAPER CODE 465)

(PAPER CODE 465)		
Gene	ral Instructions: -	
	, (/)	
1	You are aware that evaluation is the most important process in the actual and correct	
	assessment of the candidates. A small mistake in evaluation may lead to serious problems	
	which may affect the future of the candidates, education system and teaching profession. To	
	avoid mistakes, it is requested that before starting evaluation, you must read and understand	
	the spot evaluation guidelines carefully.	
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the	
	examinations conducted, Evaluation done and several other aspects. Its' leakage to	
	public in any manner could lead to derailment of the examination system and affect the	
	life and future of millions of candidates. Sharing this policy/document to anyone,	
	publishing in any magazine and printing in News Paper/Website etc may invite action	
	under various rules of the Board and IPC."	
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not	
	be done according to one's own interpretation or any other consideration. Marking Scheme	
	should be strictly adhered to and religiously followed. However, while evaluating, answers	
	which are based on latest information or knowledge and/or are innovative, they may be	
	assessed for their correctness otherwise and due marks be awarded to them. In class-	
	X, while evaluating two competency-based questions, please try to understand given	
	answer and even if reply is not from marking scheme but correct competency is	
	enumerated by the candidate, due marks should be awarded.	
4	The Marking scheme carries only suggested value points for the answers	
	These are in the nature of Guidelines only and do not constitute the complete answer. The	
	students can have their own expression and if the expression is correct, the due marks should	
_	be awarded accordingly.	
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator	
	on the first day, to ensure that evaluation has been carried out as per the instructions given	
	in the Marking Scheme. If there is any variation, the same should be zero after delibration	
	and discussion. The remaining answer books meant for evaluation shall be given only after	
	ensuring that there is no significant variation in the marking of individual evaluators.	
6	Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be	
	marked. Evaluators will not put right (\checkmark)while evaluating which gives an impression that	
	answer is correct and no marks are awarded. This is most common mistake which	
	evaluators are committing.	
7	If a question has parts, please award marks on the right-hand side for each part. Marks	
	awarded for different parts of the question should then be totaled up and written in the left-	
	hand margin and encircled. This may be followed strictly.	

8	If a question does not have any parts, marks must be awarded in the left-hand margin and	
	encircled. This may also be followed strictly.	
9	If a student has attempted an extra question, answer of the question deserving more marks	
	should be retained and the other answer scored out with a note "Extra Question".	
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only	
	once.	
11	A full scale of marks(example 0 to 80/70/60/50/40/30 marks as given in	
	Question Paper) has to be used. Please do not hesitate to award full marks if the answer	
	deserves it.	
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours	
	every day and evaluate 20 answer books per day in main subjects and 25 answer books per	
	day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced	
10	syllabus and number of questions in question paper.	
13	Ensure that you do not make the following common types of errors committed by the	
	Examiner in the past:-	
	• Leaving answer or part thereof unassessed in an answer book.	
	Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an anguar.	
	Wrong transfer of marks from the inside pages of the answer book to the title page.	
	 Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. 	
	 Wrong totaling of marks of the two columns on the title page. 	
	 Wrong grand total. 	
	 Marks in words and figures not tallying/not same. 	
	Wrong transfer of marks from the answer book to online award list.	
	• Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is	
	correctly and clearly indicated. It should merely be a line. Same is with the X for	
	incorrect answer.)	
	• Half or a part of answer marked correct and the rest as wrong, but no marks awarded.	
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be	
	marked as cross (X) and awarded zero (0)Marks.	
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error	
	detected by the candidate shall damage the prestige of all the personnel engaged in the	
	evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned,	
1.6	it is again reiterated that the instructions be followed meticulously and judiciously.	
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for	
17	spot Evaluation" before starting the actual evaluation. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to	
17	the title page, correctly totaled and written in figures and words.	
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment	
10	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head	
	Examiners are once again reminded that they must ensure that evaluation is carried out	
	strictly as per value points for each answer as given in the Marking Scheme.	

MARKING SCHEME

APPLIED MATHEMATICS

Section A

	EXDECTED OUTCOMES ALL HE DOINTS	Monka
Q.	EXPECTED OUTCOMES/VALUE POINTS	Marks
No.		
	SECTION A	
	Questions no. 1 to 18 are multiple choice questions (MCQs) and questions	
	number 19 and 20 are Assertion-Reason based questions of 1 mark each.	
1.	The last (unit) digit of $(22)^{12}$ is:	
	(a) 2 (b) 4	
	(c) 6 (d) 8	
Sol.	(c) 6	(1)
2.	The least non-negative remainder, when 3^{15} is divided by 7 is :	
	(a) 1 (b) 5	
	(c) 6 (d) 7	
Sol.	(c) 6	(1)
3.	If $A = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -5 & 10 \\ -10 & -5 \end{bmatrix}$, then AB is:	
	(a) $\begin{bmatrix} -5 & 10 \\ 0 & -5 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & -5 \\ 25 & 10 \end{bmatrix}$	
5	(c) $\begin{bmatrix} 10 & -25 \\ -5 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} -5 & 10 \\ 0 & -25 \end{bmatrix}$	

Sol.	$ (d) \begin{bmatrix} -5 & 10 \\ 0 & -25 \end{bmatrix} $	(1)
4.	If $\begin{bmatrix} x+y & x+2 \\ 2x-y & 16 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 1 & 3y+1 \end{bmatrix}$, then the values of x and y are:	
	(a) $x = 3, y = 5$ (b) $x = 5, y = 3$	40
	(c) $x = 2, y = 7$ (d) $x = 7, y = 2$	
Sol.	(a) $x = 3, y = 5$	(1)
5.	The ratio in which a grocer mixes two varieties of pulses costing ₹ 85 per	
	kg and ₹ 100 per kg respectively so as to get a mixture worth ₹ 92 per	
	kg, is:	
	(a) 7:8 (b) 8:7	
	(c) 5:7 (d) 7:5	
Sol.	(b) 8:7	(1)
6.	If $\frac{ x+1 }{x+1} > 0$, $x \in \mathbb{R}$, then:	
	(a) $x \in [-1, \infty)$ (b) $x \in (-1, \infty)$	
	(c) $x \in (-\infty, -1)$ (d) $x \in (-\infty, -1]$	
Sol.	(b) $x \in (-1, \infty)$	(1)
7.	A and B are square matrices each of order 3 such that	
	A = -1 and $ B = 3$. What is the value of $ 3AB $?	
	(a) -9 (b) -18	
	(c) -27 (d) -81	
Sol.	(d) -81	(1)

8.	If $\begin{vmatrix} 2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1 \end{vmatrix} + 3 = 0$, then the value of x is:	
	(a) -1 (b) 0	. Q
	(c) 1 (d) 3	
Sol.	(a) -1	(1)
9.	The relation between 'Marginal cost' and 'Average cost' of producing 'x' units of a product is: (a) $\frac{d(AC)}{dx} = x(MC - AC)$ (b) $\frac{d(AC)}{dx} = x(AC - MC)$	
	(c) $\frac{d(AC)}{dx} = \frac{1}{x}(AC - MC)$ (d) $\frac{d(AC)}{dx} = \frac{1}{x}(MC - AC)$	
Sol.	$(d) \frac{d(AC)}{dx} = \frac{1}{x} (MC - AC)$	(1)
10.	$\int (x-1)e^{-x} dx \text{ is equal to :}$	
	(a) $(x-2)e^{-x} + C$ (b) $xe^{-x} + C$ (c) $-xe^{-x} + C$ (d) $(x+1)e^{-x} + C$	
	(c) $-xe^{-x} + C$ (d) $(x + 1)e^{-x} + C$	
Sol.	$(c) - xe^{-x} + C$	(1)
11.	The solution of the differential equation $\frac{dx}{x} + \frac{dy}{y} = 0$ is:	
	(a) $\frac{1}{x} + \frac{1}{y} = C$ (b) $xy = C$	
	(c) $\log x \log y = C$ (d) $x + y = C$	
Sol.	(b) $xy = C$	(1)

12.	If X is a Poisson variable such that $P(X = 1) = 2P(X = 2)$, then $P(X = 0)$	
	is:	
	(a) e (b) $\frac{1}{e}$	
	(b) e	
	(c) 1 (d) e^2	40
Sol.		(1)
	$(b)\frac{1}{e}$	
13.	If the calculated value of $ t < t_{v}(\alpha)$, then the null hypothesis is :	
	(a) rejected	
	(b) accepted	
	(c) cannot be determined	
	(d) neither accepted nor rejected	
Sol.	(b) accepted	(1)
14.	For testing the significance of difference between the means of two	
	independent samples, the degree of freedom (v) is taken as:	
	(a) $n_1 - n_2 + 2$ (b) $n_1 - n_2 - 2$	
	(c) $n_1 + n_2 - 2$ (d) $n_1 + n_2 - 1$	
Sol.	(c) $n_1 + n_2 - 2$	(1)
15.	The straight line trend is represented by the equation:	
	(a) $y_c = a + bx$ (b) $y_c = a - bx$	
C	(c) $y_c = na + b\Sigma x$ (d) $y_c = na - b\Sigma x$	
Sol.	(a) $y_c = a + bx$	(1)

16.	The present value of a perpetuity of ₹ R payable at the end of each payment period, when the money is worth i per period, is given by :	
	(a) Ri (b) $R + \frac{R}{i}$	
	(c) $\frac{R}{i}$ (d) $R - Ri$	10
Sol.	$(c)\frac{R}{i}$	(1)
17.	The effective rate which is equivalent to nominal rate of 10% p.a.	
	compounded quarterly is:	
	(a) 10·25% (b) 10·38%	
	(c) 10·47% (d) 10·53%	
Cal	(b) 10 290/	(1)
Sol.	(b) 10.38%	(1)
18.	Region represented by $x \ge 0$, $y \ge 0$ lies in	
	(a) I quadrant (b) II quadrant	
	(c) III quadrant (d) IV quadrant	
Sol.	(a) I quadrant	(1)
	Questions number 19 and 20 are Assertion and Reason based questions carrying	
	1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d)	
	as given below.	
	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).	
	(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).	
	(c) Assertion (A) is true and Reason (R) is false.	
	(d) Assertion (A) is false and Reason (R) is true.	
19.	Assertion (A): The function $f(x) = (x + 2) e^{-x}$ is increasing in the interval	
	$(-1, \infty).$	
	Reason (R): A function $f(x)$ is increasing, if $f'(x) > 0$.	
Sol.	(d) Assertion (A) is false and Reason (R) is true.	(1)

•	A (A) TD 100 (C) 1 (C) 1 (C) 1 (C) 1	1
20.	Assertion (A): The differential equation representing the family	
	of parabolas $y^2 = 4ax$, where 'a' is a parameter, is	
	$x\frac{dy}{dx} - 2y = 0.$	
	Reason (R): If the given family of curves has n parameters, then it is	.0
	to be differentiated n times to eliminate the parameter	
	and obtain the $\mathrm{n^{th}}$ order differential equation.	
Sol.	(d) Assertion (A) is false and Reason (R) is true.	(1)
	SECTION B	
	This section comprises very short answer (VSA) type questions of 2 marks	
	each.	
21(a).	Two pipes A and B can fill a tank in 24 minutes and 32 minutes	
	respectively. If both the pipes are opened simultaneously,	
	after how much time should B be closed so that the tank is full in	
	18 minutes ?	
G 1		
Sol.	Let B be closed after n minutes. Then, pipe A runs for 18 minutes and B runs	
	for n minutes to fill the tank.	
	$\therefore \frac{18}{24} + \frac{n}{32} = 1$	(1)
	$\Rightarrow \frac{3}{4} + \frac{n}{32} = 1 \Rightarrow n = 8.$	(1)
	Hence, pipe B must be closed after 8 min	
	OR	
21(1)		
21(b).	In a one-kilometre race, A beats B by 30 seconds and B beats C by	
	15 seconds. If A beats C by 180 metres, then find the time taken by	
	A to run 1 kilometre.	
Sol.		
	Suppose A takes 't' seconds to run 1 km race. Then, B takes $(t + 30)$ seconds and C takes $(t + 30 + 15)$ seconds, i.e. $(t + 45)$ seconds.	
	We find A beats C by $(30 + 15)$ seconds = 45 seconds and it is given that A beats C by 180 metres.	

	C 100 ' 45 1	1
	∴ C runs 180 m in 45 seconds	$(\frac{1}{2})$
	\Rightarrow C runs 1000 m in $\left(\frac{45}{180} \times 1000\right)$ seconds = 250 seconds.	(1)
	∴ $t + 45 = 250 \Rightarrow t = 205$ Hence, A takes 205 seconds to run 1 km	$(\frac{1}{2})$
	Tience, A takes 203 seconds to full 1 kill	2
22.	Solve for $x : \frac{x+3}{x-2} \le 2$.	
Sol.	$\frac{x+3}{x-2} - 2 \le 0 \implies \frac{-x+7}{x-2} \le 0 \text{ or } \frac{x-7}{x-2} \ge 0$	(1)
	Thus, the solution set is $(-\infty, 2) \cup [7, \infty)$	(1)
23(a).	Solve the following system of equations by Cramer's rule:	
	2x - y = 17, $3x + 5y = 6$	
Sol.	v p 2 - 1 12	(1)
502	Here, D = $\begin{vmatrix} 2 & -1 \\ 3 & 5 \end{vmatrix} = 13$	$(\frac{1}{2})$
	$D_1 = \begin{vmatrix} 17 & -1 \\ 6 & 5 \end{vmatrix} = 91$	$(\frac{1}{2})$
	$D_2 = \begin{vmatrix} 2 & 17 \\ 3 & 6 \end{vmatrix} = -39$	$(\frac{1}{2})$
	Thus, $x = \frac{D_1}{D} = 7$; $y = \frac{D_2}{D} = -3$	$(\frac{1}{2})$
	OR	
23(b).	Determine the integral value(s) of x for which the matrix A is	
	singular:	
	$\begin{bmatrix} x+1 & -3 & 4 \end{bmatrix}$	
	$A = \begin{bmatrix} -5 & x+2 & 2 \end{bmatrix}$	
	$\begin{bmatrix} 4 & 1 & x-6 \end{bmatrix}$	
Sol.	A is singular gives	
	$\begin{vmatrix} x+1 & -3 & 4 \\ -5 & x+2 & 2 \\ 4 & 1 & x-6 \end{vmatrix} = 0$	$(\frac{1}{2})$
	$\begin{bmatrix} 1 & 4 & 1 & x-6 \end{bmatrix}$	
	i.e. $(x + 1)[(x + 2)(x - 6) - 2] + 3[-5x + 30 - 8] + 4[-5 - 4x - 8] = 0$	

	i.e. $(x + 1) (x^2 - 4x - 14) - 15x + 66 - 52 - 16x = 0$	
	i.e. $x^3 - 3x^2 - 49x = 0$	(1)
	$x = 0, \frac{3 \pm \sqrt{205}}{2}$	10
	Hence, $x = 0$ is the only integral value.	$(\frac{1}{2})$
24.	A particle moves along the curve $6y = x^3 + 2$. Find the points on the curve at which the ordinate is changing 8 times as fast as abscissa.	
Sol.	Here, $6y = x^3 + 2$	
	$\Rightarrow 6\frac{dy}{dt} = 3x^2 \frac{dx}{dt}$	$(\frac{1}{2})$ $(\frac{1}{2})$
	As $\frac{dy}{dt} = 8\frac{dx}{dt}$, we have	$(\frac{1}{2})$
	$48\frac{dx}{dt} = 3x^2\frac{dx}{dt} \Rightarrow x = 4, -4$	$(\frac{1}{2})$ $(\frac{1}{2})$
	when $x = 4$, $y = 11$; when $x = -4$, $y = \frac{-31}{3}$.	$(\frac{1}{2})$
	\therefore Points on the curve are $(4, 11)$, $\left(-4, \frac{-31}{3}\right)$	
25.	Suppose 2% of the items made by a factory are defective. Find the	
	probability that there are 3 defective items in a sample of 100 items selected at random. (Given $e^{-2} = 0.135$)	
Sol.	Let p be the probability that an item is defective so, $p = \frac{2}{100} = 0.02$.	$(\frac{1}{2})$
	Here $n = 100 : m = np = 2$	$(\frac{1}{2})$
	$P(X = r) = \frac{m^r}{r!}e^{-m} = \frac{2^r e^{-2}}{r!}$	$(\frac{1}{2})$
7	$\Rightarrow P(X = 3) = \frac{2^3 e^{-2}}{3!} = \frac{4}{3} \times 0.135 = 0.18$	$(\frac{1}{2})$
	SECTION C	
<u> </u>		

	This section comprises short answer (SA) type questions of 3 marks each.	
26(a).	A bottle is full of dettol. One-third of its dettol is taken away and an equal amount of water is poured into the bottle to fill it again. This operation is repeated three times. Find the final ratio of dettol to water in the bottle.	.0,
Sol.	Let the original quantity of dettol be x litres and the quantity of Dettol	
	replaced by water be y litres.	
	So, $y = \frac{x}{3}$. After 3 operations the quantity of dettol left = $x \left(1 - \frac{y}{x}\right)^3$.	(1)
	After 3 operations the quantity of water in the bottle = $x - x \left(1 - \frac{x}{3x}\right)^3$	(1)
	Hence, the required ratio is $x \left(1 - \frac{x}{3x}\right)^3 : \left[x - x \left(1 - \frac{x}{3x}\right)^3\right]$	
	$= \left(1 - \frac{1}{3}\right)^3 : \left[1 - \left(1 - \frac{1}{3}\right)^3\right]$	
	$= \frac{8}{27} : \frac{19}{27} \\ = 8 : 19$	(1)
26(b).	A pipe A can fill a tank in 3 hours. There are two outlet pipes B	
	and C from the tank which can empty it in 7 and 10 hours	
	respectively. It all the three pipes are opened simultaneously, how long will it take to fill the tank?	
Sol.	Here, $n_A = 3$, $n_B = 7$ and $n_C = 10$.	
	1_ 1 1 1	
	$\overline{n} \equiv \overline{n_A} - \overline{n_B} - \overline{n_C}$	
	$\Rightarrow \frac{1}{n} = \frac{1}{3} - \frac{1}{7} - \frac{1}{10}$	(2)
5	$\Rightarrow \frac{1}{n} = \frac{19}{210} \Rightarrow n = 11\frac{1}{19}$	(1)
	Hence, the tank is filled in $11\frac{1}{19}$ hours.	

		T
27.	Find all the points of local maxima and local minima for the	
	function $f(x) = x^3 - 6x^2 + 9x - 8$.	
Sol.	$y = x^3 - 6x^2 + 9x - 8$.0
		\mathcal{A}
	$\Rightarrow \frac{dy}{dx} = 3x^2 - 12x + 9$	(1)
	dx	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 3(x-1)(x-3)$	
		(1)
	Critical points are 1, 3	(1)
	Showing, x=1 is a point of local maxima.	$(\frac{1}{2})$
	Showing, x=3 is a point of local minima.	$(\frac{1}{2})$
28.	An unbiased die is thrown again and again until three sixes are obtained.	
	Find the probability of obtaining a third six in the sixth throw of the die.	
Sol.	Let A be the event of obtaining two sixes in the first five throws of a die. Let	
501.		
	B be the event of obtaining a six in the sixth throw of a die.	
	Then required probability = $P(AB) = P(A) P(B)$	
	1 (1) 2 (5) 3 (25)	
	Here, $P(B) = \frac{1}{6}$ and $P(A) = 5_{C_2} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^3 = \frac{625}{3888}$	(2)
	Thus, Required probability = $\frac{625}{3888} \times \frac{1}{6} = \frac{625}{23328}$	(1)
	3888 6 23328	
29.	The mean weekly sales of a four-wheeler were 50 units per agency in	
	20 agencies. After an advertising campaign, the mean weekly sales	
	increased to 55 units per agency with standard deviation of 10 units. Test	
	whether the advertising campaign was successful.	
	(Use $t_{0.005} = 1.729$ for 19 d.f.)	

Sol.	We are g	iven						
		μ = 50, \bar{x} = 55, SD =	10, $n = 20$		(1)			
	H_{0} : $\mu = 50$							
		$H_1: \mu > 50$		3				
		$t = \frac{\bar{x} - \mu}{\frac{SD}{\sqrt{n}}} = \frac{55 - 50}{\frac{10}{\sqrt{20}}} = 2.2$	236	cess	(2)			
		t _{cal value} 2	> t _{tab value}	C				
	Hence H ₀ is rejected. So, Advertising Campaign was successful.							
30(a).	An asset costs ₹ 4,50,000 with an estimated useful life of 5 years							
	and a scrap value of ₹ 1,00,000. Using linear depreciation method,							
	find the annual depreciation of the asset and construct a yearly							
	deprecia	ation schedule.	Co					
Sol.	Here C =	₹ 4,50,000	•					
	S = ₹ 1,00,000							
	a	nd $n = 5$ years.						
	Annual depreciation D = $\frac{C - S}{n} = ₹70,000$							
	Thus, yearly depreciation schedule is as follows:							
	Years	Book value at the beginning of the year (in ₹)	Depreciation (in ₹)	Book value at the end of the year (in ₹)				
2	1	4,50,000	70,000	3,80,000				
	2	3,80,000	70,000	3,10,000				

	3	3,10,000	70,000	2,40,000	(1 for		
		3,10,000	70,000	2,10,000	correct		
	4	2,40,000	70,000	1,70,000	table)		
	5	1,70,000	70,000	1,00,000	10		
30(b).	Amrita	bought a car worth ₹	12,50,000 and r	nakes a down			
	payment	t of $\ge 3,00,000$. The balan	ce amount is to be	paid in 4 years			
	by equal	l monthly instalments at	an interest rate of	f 15% p.a. Find			
	the EMI	that Amrita has to pay fo	or the car.				
	{Given ($1.0125)^{-48} = 0.5508565)$) ·			
Sol.	Here P = ₹ 9,50,000, $i = \frac{15}{1200} = 0.0125$						
		n = 48 months	Cio		$(\frac{1}{2})$ $(\frac{1}{2})$		
	Usin	ng the reducing balancing	method,				
	$E = \frac{1}{1}$	$\frac{Pi}{1 - (1+i)^{-n}} = \frac{9,5,0000 \times 0.01}{1 - (1+0.0125)}$	25 -48		(1)		
	:	$=\frac{11875}{1-(1.0125)^{-48}}=\frac{1187}{1-0.550}$			$(\frac{1}{2})$		
					$(\frac{1}{2})$ $(\frac{1}{2})$		
		= ₹ 26,439·21					
31.	Maxim	ise $z = 300x + 190y$					
	subject	to constraints:					
		$x + y \le 24,$					
		$2x + y \le 32,$					
		$x \ge 0, y \ge 0.$					

32(a).	Find the inverse of the matrix:	
	$A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$	
	$\begin{bmatrix} -1 & 3 & 4 \end{bmatrix}$	
	and hence show that $AA^{-1} = I$.	1
Sol.	Here, $ A = -(-4-3) - (12+1) + 2(9-1)$	
	$= 7 - 13 + 16 = 10 \neq 0$	(1)
	$\Rightarrow adj(A) = \begin{bmatrix} -7 & -13 & 8 \\ 2 & -2 & 2 \\ 3 & 7 & -2 \end{bmatrix}^{T} = \begin{bmatrix} -7 & 2 & 3 \\ -13 & -2 & 7 \\ 8 & 2 & -2 \end{bmatrix}$	$(2\frac{1}{2})$
	Hence $A^{-1} = \frac{1}{10} \begin{bmatrix} -7 & 2 & 3 \\ -13 & -2 & 7 \\ 8 & 2 & -2 \end{bmatrix}$	$(\frac{1}{2})$
	$AA^{-1} = \frac{1}{10} \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix} \begin{bmatrix} -7 & 2 & 3 \\ -13 & -2 & 7 \\ 8 & 2 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	(1)
	OR	
32(b).	Using matrix method, solve the following system of equations for x,	
	y and z :	
	x - y + z = 4 $2x + y - 3z = 0$	
	x + y + z = 2	
Sol.		
	The matrix equation $AX = B$ is	
7	$\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$	$(\frac{1}{2})$
L		

		T
	A = 10	(1)
	$adj A = \begin{bmatrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{bmatrix}' = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$	(2)
	Here $A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$	$(\frac{1}{2})$
	So, $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ Thus, $x = 2$, $y = -1$, $z = 1$	(1)
33(a).	Divide a number 15 into two parts such that the square of one part multiplied with the cube of the other part is maximum.	
Sol.	Let the two parts be x and $15 - x$. Then, let $y = x^2(15 - x)^3$	(1)
	$\Rightarrow \frac{dy}{dx} = x(15 - x)^2 (-5x + 30)$	(1)
	$\frac{dy}{dx} = 0 \text{ gives } x = 0, 15, 6$	$(1\frac{1}{2})$
	Rejecting $x = 0$, 15. Hence $x = 6$	
	Showing, $x = 6$ is a point of maxima	(1)
	So, y is maximum when $x = 6$.	
	Hence two parts are 6 and 9	(1)
		$(\frac{1}{2})$
	OR	
33(b).	Find a point on the curve $y^2 = 2x$ which is nearest to the point	
	(1, 4).	

Sol.											
			e required ıld be mini							um.	$(\frac{1}{2})$
	Now, $(PQ)^2 = (x-1)^2 + (y-4)^2 = \left(\frac{y^2}{2} - 1\right)^2 + (y-4)^2$							(1)			
	$=\frac{y^4 - 32y + 68}{4}$							(1)			
	Let $D = \frac{y}{2}$	$y^4 - 32y - 4$	+68								
	$\frac{dD}{dy} = y^3 -$	- 8						^			$(\frac{1}{2})$
	$\frac{dD}{dy} = 0 \Rightarrow$	y = 2					. ()	•		(1)
	Showing,	y = 2	is a point	tof	minima	×					$(\frac{1}{2})$
	Thus, the	point is	(2, 2)			.0					$(\frac{1}{2})$
34.	Fit a strai and find th		trend by movalues:	etho	d of least	square	s to th	e followii	ng data		
	Year :		2010 2	2012	2013	2014	2015	2016	2019		
	Sales (in	lakh ₹)	: 65	68	70	72	75	67	73		
Sol.	Consider	year 20	14 as the	yea	r of orig	gin. Ca	lculati	on of ti	end va	lues by	
	method of least squares.										
		Year	Sales (in lakh ₹)	у		ations 014 (x)	De	uares of viations (x^2)	S	ales ion (xy)	
) '	2010	65			4		16	_	260	
7		2012	68		_	- 2		4	_	136	
		2013	70		_	· 1		1	_	- 70	

	2014	72	0	0	0		
	2015	75	1	1	75		
	2016	67	2	4	134	(2 fo	
	2019	73	5	25	365	corre	
	n = 7	$\Sigma y = 490$	$\sum x = 1$	$\sum x^2 = 51$	$\sum xy = 108$	table	
The equation of the straight-line trend is							
	y	c = a + bx		0			
Т	wo nor	mal equations	are	(O)			
		∑y = na + b∑x	X				
	Σ	$\sum xy = a\sum x + b\sum x$	χ^2				
\Rightarrow 490 = 7a + b and 108 = a + 51b							
\Rightarrow a = 69·9 and b = 0·75						(1)	
$y_c = 69.9 + 0.75x$							
Thus, trend values are							

$$y_{2010} = 69.9 + 0.75(-4) = 66.90$$

$$y_{2012} = 69.9 + 0.75(-2) = 68.40$$

$$y_{2013} = 69.9 + 0.75(-1) = 69.15$$

$$y_{2014} = 69.9 + 0.75(0) = 69.90$$

$$y_{2015} = 69.9 + 0.75(1) = 70.65$$

$$y_{2016} = 69.9 + 0.75(2) = 71.40$$

(1 for correct trend values)

		y ₂₀₁₉	₉ = 69·9 + 0).75 (5) = 7	⁄3·65			
35.	Define Compound Annual Growth Rate (CAGR) and give the formula for calculating CAGR. Using the formula, calculate CAGR of Vikas's investment given below: Vikas invested ₹ 10,000 in a stock of a company for 6 years. The value of his investment at the end of each year is given below:						CO	
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6		
	₹ 11,000	₹ 11,500	₹ 11,650	₹ 11,800	₹ 12,200	₹ 14,000)	
	[Use (1·4) ^{1/6}	= 1.058]						
Sol.	CAGR is th	e mean ani	nual growtl	n rate of ar	n investmer	nt over a s	pecified	(1)
	period of tin	ne longer th	an one year	r.				
	CAC	$SR = \left[\frac{Ending}{a}\right]$	g investment Start amoun	amount t	$\frac{1}{1}$ -1			(1)
	P.V. = ₹ 10,000							
	F.V.	= ₹ 14,000	A)				(1)
		years						
	So, C	$CAGR = \left(\frac{1}{1}\right)$	$\left(\frac{4000}{0000}\right)^{1/6}$	$1 = (1 \cdot 4)^{1/6}$	9 – 1			$(\frac{1}{2})$
		2		= 1.0	58 – 1			$(\frac{1}{2})$
		>		= 0.058	}			$(\frac{1}{2})$
C)	Hend	ce, CAGR =	= 5.8%					$(\frac{1}{2})$
			SE	ECTION E				
	This section	n comprises	s of 3 case-	study based	questions	of 4 mark s	s each.	

36.	A factory produces bulbs, of which 6% are defective bulbs in a large bulk	
	of bulbs.	
	Based on the above information, answer the following questions:	
	(i) Find the probability that in a sample of 100 bulbs selected at random, none of the bulbs is defective. (Use: $e^{-6} = 0.0024$)	
1	(ii) Find the probability that the sample of 100 bulbs has exactly two defective bulbs.	46
l	(iii) (a) Find the probability that the sample of 100 bulbs will include not more than one defective bulb.	
	OR	
	(iii) (b) Find the mean and the variance of the distribution of number of defective bulbs in a sample of 100 bulbs.	
Sol.	$n=100, p=\frac{6}{100}, m=np$	
	Here $m = 100 \times \frac{6}{100} = 6$.	
	•. ()	
	$P(r) = e^{-m} \frac{m^r}{r!}$	
	(i) $P(0) = e^{-m} \frac{m^0}{0!} = e^{-6} = 0.0024$	(1)
	(ii) $P(2) = e^{-m} \frac{m^2}{2!} = e^{-6} \times \frac{36}{2} = 0.0432$	(1)
	(iii)(a) $P(0) + P(1) = e^{-6} + e^{-6} \frac{m^{1}}{1!} = e^{-6} + 6e^{-6} = 7e^{-6} = 0.0168$	(1+1)
	OR	
	(iii)(b) Mean = Variance = m = np = 6	(1+1)

	Corner Points	Value of Z		
	O (0,0)	0		
	A (14,0)	140	1	
	B (12,4)	200 → Max value	1	.0
	C (0,8)	160	3	(1)
(iii)	∴ P is maximum at B (12,	4); which is ₹ 200 OR	Coy	
18 -16	10 2x + y = 28 28 26 24 22 20 18 16 16 17 18 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	B = (12, 4) A = (14, 0) 8 10 12 11 16 18 20 22		(1)
	Corner Points	Value of Z		
	O (0,0)	0	-	
	A (14,0)	140	-	
5	B (12,4)	200 → Max value	-	
	C (0,8)	160	-	(1)
12	bats and 4 rackets	1	J	

38.	In the year 2010, Mr. Aggarwal took a home loan of ₹ 30,00,000 from	
	State Bank of India at 7.5% p.a. compounded monthly for 20 years.	
	Based on the above information, answer the following questions:	
	(i) Determine the EMI.	
	(ii) Find the principal paid by Mr. Aggarwal in the 150 th instalment.	.(0
	(iii) (a) Find the total interest paid by Mr. Aggarwal.	
	OR	
	(iii) (b) How much was paid by Mr. Aggarwal to repay the entire amount of home loan?	
	[Use $(1.00625)^{240} = 4.4608$; $(1.00625)^{91} = 1.7629$]	
Sol.	Given P = ₹ 30,00,000, i = $\frac{7.5}{1200}$ = 0.00625	
	and $n = 12 \times 20 = 240$ months	
	(i) EMI = $\frac{P i}{1 - (1 + i)^{-n}}$	
		$(\frac{1}{2})$
	$=\frac{30,000,000\times0.00625}{1-(1.00625)^{-240}-1}$	2′
	$=\frac{30,00,000\times0.00625\times4.4608}{}$	
		$(\frac{1}{2})$
	(ii) Interest paid on 150 th instalment	
	$= \frac{\text{EMI} \times [(1+i)^{240-150+1} - 1]}{(1+i)^{240-150+1}}$	
		$(\frac{1}{2})$
	$=\frac{24167 \times [1.7629 - 1]}{1.7629}$ $= 1.0459.70$	2′
	= ₹ 10458.70	
7	\Rightarrow Principal paid in 150 $^{ ext{th}}$ instalment = EMI – interest	
	=₹ (24167.82 – 10458.70)	$(\frac{1}{2})$
		1 I D o o o

= ₹ 13709.12	
(iii)(a) Total Interest paid = $n \times EMI - P$	
= ₹ (240 × 24167.82 – 30,00,000)	(1)
= ₹ 28,00,276.80	(1)
OR	
(iii)(b) Total amount paid = n x EMI	
= 240 x 2416.81	(1)
= ₹ 5800276.8	(1)