

锂电池保护电路

SC8261是一个锂电池保护电路。是为保护锂电池避免因为过度充电,过度放电或电流过大时,会损坏电池或缩短电池寿命设计的电路。它有高精确度的电压检测与时间迟延电路。

主要特点

- *工作电流低
- * 过度充电检测
- * 过度充电释放
- * 过度放电检测
- * 过度放电释放
- * 过电流1检测
- * 过电流2 (短路电流) 检测
- * 过度充电检测迟延
- * 充电器检测
- * 过电流保护复位电阻
- *工作电压范围广
- * 小封装

产品规格分类

产品	封 装
SC8261	SOT-23-6

应用

*单一锂电池保护电路

管脚排列图

内部框图

极限参数

参数	符号	参数范围	单 位
工作电压	VDD	Vss-0.3 ~ Vss+12	V
OC输出管脚电压	Voc	VDD-15 ~ VDD+0.3	V
OD输出管脚电压	Vod	Vss-0.3 ~ Vss+0.3	V
CSI输入管脚电压	Vcsı	VDD-15 ~ VDD+0.3	V
工作温度	Тор	-10 ~ + 70	°C
存储温度	Тѕт	-40 ~ +125	°C

电气特性参数(除非特别指定, Tamb=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
电流消耗						
工作电流	IDD	VDD=3.9V		3.0	6.0	uA
待机电流	IPD	VDD=2.0V		0.3	0.6	uA
工作电压						
工作电压	VDD		1.8		8.0	V

(见下页)

- 杭州士兰微电子股份有限公司-

(接上页)

(接上页)							
参数	符 号	测试条件	最小值	典型值	最大值	单位	
检测电压							
过度充电检测电压	Vocu		4.230	4.275	4.320	V	
过度充电释放电压	Vocr		4.00	4.15	4.25	V	
过度放电检测电压	VODL		2.80	3.00	3.20	V	
过度放电释放电压	Vodr		2.85	3.05	3.25	V	
过电流1检测电压	VOI1		0.12	0.15	0.18	V	
过电流2(短路电流)检测电压	VOI2	V _{DD} =3.6V	1.25	1.35	1.45	V	
过电流复位电阻	Rshort	VDD=3.6V	400	500	600	kΩ	
充电器检测电压	Vсн		-0.8	-0.6	0.4	V	
迟延时间			•				
过度充电检测迟延时间	Toc	CTD=0.01uF	50	100	150	ms	
过度放电检测迟延时间	Tod	VDD=3.6V to 2.0V	5	25	45	ms	
过电流1检测迟延时间	TOI1	VDD=3.6V	5	10	15	ms	
过电流2(短路电流)检测迟延	TOI2	VDD=3.6V		_	5 0		
时间	1012	VDD=3.6 V		5	50	μs	
其他		T		1			
OC管脚输出高电平电压	Voh1		VDD-0.1	VDD-0.02		V	
OC管脚输出低电平电压	Vol1			0.01	0.1	V	
OD管脚输出高电平电压	Voh2		VDD-0.1	VDD-0.02		V	
OD管脚输出低电平电压	Vol2			0.01	0.1	V	

管脚描述

管脚号	符号	管 脚 描 述
1	OD	放电控制FET门限连接管脚。
2	CSI	电流感应输入管脚,充电器检测
3	ОС	充电控制FET门限连接管脚
4	TD	通过外部电容设置Vocu迟延管脚
5	VDD	正电源输入管脚
6	Vss	负电源输入管脚

— 杭州士兰微电子股份有限公司—

功能描述

正常条件

如果VODL<VDD<VOCU,并且VCH<VCSI<VOI1,那么M1和M2都开启。此时充电和放电均可以正常进行。

过度充电情况

当从正常情况进入充电情况时,可以通过VDD检测到电池电压。当电池电压进入到过度充电情况时,VDD电压大于VOCU,迟延时间超过TOC,M2关闭。

释放过度充电情况

进入过度充电情况后,要解除过度充电情况,进入正常情况,有两种方法。

- 如果电池自我放电,并且VDD<VOCR, M2开启,并返回到正常情况。
- 在移去充电器,连接负载后,如果VOCR<VDD<VOCu, VCSI>VOI1, M2开启,返回到正常模式。

过度放电检测

当由正常情况进入到放电状态时,可以通过VDD检测到电池电压。当电池电压进入过度放电情况时,VDD电压小于VODL,迟延时间超过TOD,则M1关闭。此时CSI管脚通过内部电阻RCSID 拉到VDD。如果VCSI>VOI2,则电路进入断电模式(电流小于0.3μA)。

释放断电模式

当电池在断电模式时,若连接一个充电器入,并且此时VCH<VCSI<VOI2, VDD<VODR, M1仍旧关闭,但是释放断电模式。如果VDD>VODR, M1开启并返回到正常模式。

充电检测

如果在断电模式有一个充电器连接电池,电压将变为VCSI<VCH 和VDD>VODL 。M1开启并返回到正常模式。

异常充电情况

如果在正常模式下,充电器连接在电池上,若VCSI<VCH ,迟延超过TOC,则M2关闭。

过电流/短路电流检测

在正常模式下,当放电电流太大时,由CSI管脚检测到电压大于Voix(Vio1或Vio2),并且迟延大于Toix (Tio1或Tio2),则代表过电流(段路)情况。M1关闭,CSI通过内部电阻RCSIS拉到Vss。

释放过电流/短路电流情况

当保护电流保持在过电流/短路电流情况时,移去负载或介于VBAT+ 和VBAT-之间的阻抗大于 $500K\Omega$,并且 VCSI-VOII,那么M1开启,并返回到正常条件。

注:

- 1. 当电池第一次接上保护电路时,这个电路可能不会进入正常模式,此时无法放电。如果产生这种现象,使CSI管脚电压等于VSS电压(将CSI与VSS短路或连接充电器),就可以进入正常模式。
- 2. 根据电池电压、过电流1检测电压的设定值的改变,自动恢复阻抗是不同的。

时序图

过度充电情况 →自放电情况 →正常情况

- 杭州士兰微电子股份有限公司-

过度充电情况→负载放电→正常情况

过度充电情况→充电器充电→正常情况

- 杭州士兰微电子股份有限公司-

过度充电情况→反常情况→正常情况

过电流情况→正常情况

- 杭州士兰微电子股份有限公司:

操作状态图

典型应用电路图

杭州士兰微电子股份有限公司-

封装外形图

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电放电影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- 装配过程中使用的工具必须接地。
- 必须采用导体包装或抗静电材料包装或运输。

- 杭州士兰微电子股份有限公司—

附:

修改记录:

日 期	版本号	描述	页码
2005.07.29	1.0	原版	
2005.08.04	1.1	修改"电器特性参数"	3
2005.09.05	1.2	修改"电器特性参数"	3
2005.09.29	1.3	修改"功能描述"	5