

Deep Learning

Wafer Map Classification (Anomaly Detection)

U Kang Seoul National University

In This Project

- Imbalanced multiclass classification
- Anomaly detection in wafer maps
- Implement a deep learning model using TensorFlow

U Kang

2

Outline

- **→** □ Introduction
 - □ Data
 - □ Preprocessing Codes

Motivation

- Wafer map analysis is critical in semiconductor manufacturing operations
 - It provides visual details that are crucial for identifying failures
 - However, it is time-consuming to identify them manually
- How can we train a model that detects anomalies and their abnormality types in wafer maps?

Goals

- Classify the wafer maps into one of nine categories
 - "No-pattern" indicates a normal wafer map
 - The others indicate the types of abnormality

Problem Definition

Given

Various types of wafer maps

Goal

Classify the wafer maps into correct categories

Requirement

 Precision and recall of each category are important criteria for measurement since the data are severely imbalanced

Evaluation

F1-score

- It considers both of precision and recall of classification
- An evaluation measure for an imbalanced dataset

$$F_{1} = \frac{2}{\frac{1}{p} + \frac{1}{r}} = 2 \times \frac{p \times r}{(p+r)}$$

$$p = \frac{true \ positive}{true \ positive + false \ positive}$$

$$r = \frac{true \ positive}{true \ positive + false \ negative}$$

- It is not only for binary classification but also for multiclass classification.
- □ A model will be evaluated by the macro F1-score

Evaluation

Macro F1 score

- Average of per-class F1 score
- \Box Example: macro F1 = (42.1 + 30.8 + 66.7)/3 = 46.5 %

Class	Precision	Recall	F1-score
Cat	30.8%	66.7%	42.1%
Fish	66.7%	20.0%	30.8%
Hen	66.7%	66.7%	66.7%

Category description (1)

Center (abnormal)

Category description (2)

Donut (abnormal)

Category description (3)

Edge-Loc (abnormal)

Category description (4)

Edge-Ring (abnormal)

Category description (5)

Loc (abnormal)

Category description (6)

Random (abnormal)

Category description (7)

Scratch (abnormal)

Category description (8)

Near-full (abnormal)

Category description (9)

None (normal)

Outline

- **■** Introduction
- **→** □ Data
 - □ Preprocessing Codes

Providing data

- Datasets as pickle files
 - We provide two labeled datasets 'train.pkl' and 'test_gt.pkl' which are for training and test, respectively.
 - We evaluate the model on 'test_gt.pkl'
 - Note that the evaluation metric is macro F1-score

Dataset (1)

- 143,115 wafer map images
 - 112,294 training examples, 30,821 test examples
- Wafer map images vary in size

- There are nine categories
 - 8 abnormal, 1 normal

Dataset (2)

- There are nine categories
 - "None" indicates a normal wafer map
 - The others indicate the types of abnormality
 - The categories are severely imbalanced

Outline

- ☑ Introduction
- Data
- **→** □ Preprocessing Codes

Import libraries

 Import the libraries: numpy, pandas, pyplot, and tensorflow

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import tensorflow as tf
```


Load the Dataset

Load the pickle files

```
import pandas as pd
df_train = pd.read_pickle("./data/train.pkl")
df_test = pd.read_pickle("./data/test_gt.pkl")
```


Explore the Dataset (1)

- Number of instances
 - 112,294 training examples
 - 30,821 test examples
- Each row corresponds to each wafer map

df_train			df_	df_test			
	waferMap	failureType			waferMap	failureType	
0	[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2,	[[none]]		0	[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2,	[[none]]	
1	$\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,0$	[[none]]		1	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,1,}}$	[[none]]	
2	$\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,0$	[[none]]		2	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,2,1,2,2,2,}}$	[[none]]	
3	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,}}$	[[none]]		3	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,}$	[[none]]	
4	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,2,1,1,1,1,}}$	[[none]]		4	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,}}$	[[none]]	
112289	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,1,1,2,1,1,}}$	[[Center]]	308	316	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,}$	[[none]]	
112290	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,2,2,1,1,1,]}$	[[Edge-Loc]]	308	317	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,}}$	[[none]]	
112291	[[0,0,0,0,0,0,0,0,0,0,0,0,0,0	[[none]]	308	318	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,}}$	[[none]]	
112292	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,1,2,1,2,}$	[[none]]	308	319	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,1,}$	[[none]]	
112293	$\hbox{\tt [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,}$	[[none]]	308	320	$\hbox{\tt [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2,}\\$	[[none]]	
112294	rows × 2 columns		308	21 ו	rows × 2 columns		

Explore the Dataset (2)

- Attributes explanation
 - waferMap: wafer map represented as (width*height)
 size numpy array
 - 0: area that dies do not exist
 - 1: area that normal die exists
 - 2: area that defective die exists
 - failureType: type of failure
 - none: normal wafer without defect pattern
 - others: abnormal wafers with their types

Explore the Dataset (3)

Wafer maps vary in size

```
def find_dim(x):
    dim0=np.size(x,axis=0)
    dim1=np.size(x,axis=1)
    return dim0,dim1
df_train['waferMapDim']=df_train.waferMap.apply(find_dim)
df_test['waferMapDim']=df_test.waferMap.apply(find_dim)
```

```
shapes = df_train.waferMapDim.values
shapes = [[width, height] for (width, height) in shapes]
shapes = np.array(shapes)
plt.scatter(shapes[:, 0], shapes[:, 1])
plt.xlabel('width')
plt.ylabel('height')
plt.show()
```


Explore the Dataset (4)

- Each category has different number of examples
 - Severely imbalanced

```
uni_pattern = np.unique(df_train.failureNum, return_counts=True)
idxs = uni_pattern[0]
ratios = uni_pattern[1]/df_train.shape[0]
labels = list(mapping_type.keys())

ax = plt.subplot()
plt.bar(idxs, ratios, align='center')
plt.xticks(uni_pattern[0], labels, rotation=45)
plt.show()
```


Explore the Dataset (5)

Visualize the wafer maps

```
label_name = list(mapping_type.keys())
label idx = list(mapping type.values())
for k in label_idx:
    fig, ax = plt.subplots(nrows = 1, ncols = 10, figsize=(18, 12))
    ax = ax.ravel(order='C')
    for i in [k]:
        img = df_train.waferMap[df_train.failureType==label_name[j]]
        for i in range(10):
            ax[i].imshow(img[img.index[i]])
            ax[i].set title(df train.failureType[img.index[i]][0][0], fontsize=10)
            ax[i].set xlabel(df train
                             .index[img.index[i]], fontsize=10)
            ax[i].set xticks([])
            ax[i].set_yticks([])
    plt.tight layout()
    plt.show()
```


Questions?