MA 630 - Quiz 4 Group 3

Authors: Jenna Dula, Adam Frank, Lee Hill, Phat Nguyen, Ronny Russell, Toneria Thigpen

- 1. Let x be an integer, and set $S = \{n \in \mathbb{N} : x \text{ is odd if and only if } x^n \text{ is odd}\}.$
 - (a) Prove that $1 \in S$.
 - (b) Suppose that $n \in S$. Prove that if x is odd, then x^{n+1} is odd.
 - (c) Suppose that $n \in S$. Prove that if x^{n+1} is odd, then x is odd.
 - (d) Suppose that $n \in S$. The results of parts (b) and (c) imply that what other integer is an element of S? Explain.
 - (e) Combining parts (a)-(d) with the Principle of Mathematical Induction, what result has been proved?
 - (a) *Proof:* To show that $1 \in S$ we need to show that x is odd if and only if x^1 is odd. But this is trivial since $x^1 = x$ for all integers x. So the statement is equivalent to "x is odd if and only if x is odd", and all sentences of the form "P if and only if P" are tautologically true. Hence $1 \in S$.
 - (b) *Proof:* Assume that $n \in S$ and we will show that if x is odd then x^{n+1} is odd. So also assume x is odd and we'll show that x^{n+1} is odd.

Since we have assumed $n \in S$ then we have by definition of S that x is odd if and only if x^n is odd. Since we are also assuming x is odd, then we actually have that x^n is odd. Since x and x^n are both odd there must exist integers a, b such that x = 2a + 1 and $x^n = 2b + 1$. Hence,

$$x^{n+1} = x \cdot x^n$$

$$= (2a+1)(2b+1)$$

$$= 4ab + 2a + 2b + 1$$

$$= 2(2ab+a+b) + 1.$$

Now since t = 2(2ab + a + b) is an integer, then $x^{n+1} = 2t + 1$ is odd.

(c) Suppose $n \in S$ and we will show that if x^{n+1} is odd then x is odd. We will prove this by showing the converse, so suppose x is even and we will show that

 x^{n+1} is even. Since x is even then there is some integer k such that x = 2k. Now we have

$$x^{n+1} = x \cdot x^n = 2kx^n.$$

Since $t = kx^n$ is an integer then $x^{n+1} = 2t$ is even.

(d) Explanation: Parts (b) and (c) together show that if $n \in S$ then x is odd if and only if x^{n+1} is odd. This consequent is the same thing as the condition for $n+1 \in S$. Hence parts (b) and (c) show that if $n \in S$ then $n+1 \in S$. \square

We may choose to set n=1 since the above holds for every natural number. Then we have that if $1 \in S$ then $2 \in S$. From part (a) we know that $1 \in S$. Therefore we conclude that $2 \in S$.

- (e) Explanation: Part (a) establishes the base-case. Parts (b) and (c) together establish the inductive case. Hence by the Principle of Mathematical Induction, we have that $S = \mathbb{N}$. That is to say, for every natural number n, and for every integer x, we have that x is odd if and only if x^n is odd.
- 2. Let $S = \{n \in \mathbb{N} : 12 \text{ does not divide } n^4 n^2\}.$
 - (a) Explain why $1, 2, 3, 4, 5, 6 \notin S$.

Proof/Explanation. Since $1^4 - 1^2 = 0$ and 12 divides 0, then $1 \notin S$. By the same logic, 12 divides each of the following

$$2^{4} - 2^{2} = 12,$$

$$3^{4} - 3^{2} = 72 = 12 \cdot 6,$$

$$4^{4} - 4^{2} = 240 = 12 \cdot 20,$$

$$5^{4} - 5^{2} = 600 = 12 \cdot 50,$$

$$6^{4} - 6^{2} = 1260 = 12 \cdot 105,$$

and hence $2, 3, 4, 5, 6 \notin S$.

(b) Suppose (for the sake of contradiction) that $S \neq \emptyset$. The Least Natural Number Principle implies that S has a smallest element, say k. Then, by part (a), $k \geq 7$ and thus, there exists a natural number $m, 1 \leq m < k$

such that k = m + 6. What must be true about $m^4 - m^2$ and $k^4 - k^2$? Explain.

Proof/Explanation. If we suppose that $S \neq \emptyset$ and that $1 \leq m < k$ such that k = m + 6, then it must be true that there is an integer r such that

$$m^4 - m^2 = 12r$$
.

Also by definition of k we have

$$k^4 - k^2 \neq 12t$$
, for any integer t.

(c) Notice that

$$k^{4} - k^{2} = (m+6)^{4} - (m+6)^{2}$$

$$= m^{4} + 24m^{3} + 215m^{2} + 852m + 1260$$

$$= m^{4} + 24m^{3} + (216m^{2} - m^{2}) + 852m + 1260$$

$$= (m^{4} - m^{2}) + (24m^{3} + 216m^{2} + 852m + 1260).$$

Where is the contradiction?

Proof/Explanation.

Since

$$k^{4} - k^{2} = (m^{4} - m^{2}) + (24m^{3} + 216m^{2} + 852m + 1260)$$
$$= 12r + 12(2m^{3} + 18m^{2} + 71m + 105)$$
$$= 12(r + 2m^{3} + 18m^{2} + 71m + 105)$$

hence $k^4 - k^2$ is divisible by 12. This contradicts the fact that $k^4 - k^2$ is not divisible by 12, from part (b).

(d) What result has been proved?

It has been proven that $S = \emptyset$.

3. Use induction to prove that

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

for all natural numbers n.

Proof: Let

$$S = \left\{ n \in \mathbb{N} : 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \right\}$$

.

We first show that $1 \in S$. Since

$$1^2 = \frac{1(1+1)(2\cdot 1+1)}{6},$$

it follows that $1 \in S$.

Now, let $n \in S$. Thus,

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

We must show that $n+1 \in S$. That is, we will show that

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2} = \frac{(n+1)(n+2)[2(n+1)+1]}{6}.$$

We have

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2} = (1^{2} + 2^{2} + 3^{2} + \dots + n^{2}) + (n+1)^{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^{2}}{6}$$

$$= \frac{(n+1)[n(2n+1) + 6(n+1)]}{6}$$

$$= \frac{(n+1)(2n^{2} + n + 6n + 6)}{6}$$

$$= \frac{(n+1)[2(n^{2} + 3n + 2) + (n+2)]}{6}$$

$$= \frac{(n+1)[2(n+1)(n+2) + (n+2)]}{6}$$

$$= \frac{(n+1)(n+2)[2(n+1) + 1]}{6}.$$

Thus, $n+1 \in S$. By the Principle of Mathematical Induction, $S = \mathbb{N}$. Therefore,

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

for all natural numbers n.

4. Use induction to prove that $2^n + 1 < 2^{n+1} - 1$ for all natural numbers $n \ge 2$. *Proof:* Let

$$S = \left\{ n \in \mathbb{N} : \forall n \ge 2, (2^n + 1) < (2^{n+1} - 1) \right\}$$

First, we shall show $2^n + 1 < 2^{n+1} - 1$ is valid for n = 2.

$$2^{2} + 1 < 2^{2+1} - 1$$
$$4 + 1 < 8 - 1$$
$$5 < 7.$$

Therefore we know that $2 \in S$. Now suppose that $n \in S$. We must show that

 $n+1 \in S$. So considering the inequality for n+1, we get that

$$2^{n+1} + 1 < 2^{(n+1)+1} - 1$$

$$2^{n+1} + 1 < 2^{n+2} - 1$$

$$2(2^n) + 1 < 4(2^n) - 1$$

$$2 < 2(2^n)$$

$$1 < 2^n.$$

Then, since n is a natural number, 2^n must be greater than 1. Thus, we have shown that the inequality holds for n+1, and therefore that $n+1 \in S$. Now, by the Principle of Mathematical Induction, we have shown that $2^n + 1 < 2^{n+1} - 1$ for all natural numbers $n \geq 2$.

5. Use induction to prove that $5^n - 2^n$ is divisible by 3 for all natural numbers n. It may be helpful to note that $5^{n+1} = 5 \cdot 5^n = (3+2)5^n$.

Proof.

Let
$$S = \left\{ n \in \mathbb{N} : 3 \text{ divides } 5^n - 2^n \right\}.$$

First we show that $1 \in S$: If n = 1, then

$$5^n - 2^n = 5^1 - 2^1 = 5 - 2 = 3.$$

Since 3 divides 3, $1 \in S$.

Suppose that $n \in S$. Then 3 divides $5^n - 2^n$. We want to use this fact to prove that $n + 1 \in S$. Note that $n + 1 \in S$ if and only if 3 divides $5^{n+1} - 2^{n+1}$. And we have,

$$5^{n+1} - 2^{n+1} = 5(5^n) - 2(2^n)$$

$$= (3+2)5^n - (2)2^n$$

$$= (3)5^n + (2)5^n - (2)2^n$$

$$= 2(5^n - 2^n) + (3)5^n.$$

Thus, $(3)5^n = 3k$ for some integer k, namely $k = 5^n$, proving that 3 divides $(3)5^n$. As we have previously shown, 3 also divides $5^2 - 2^n$, and so $n + 1 \in S$. By the Principle of Mathematical Induction, $S = \mathbb{N}$.