Методы оптимизации. Условия оптимальности.

Александр Катруца

Московский физико-технический институт

4 марта 2020 г.

Напоминание

- Выпуклые функции
- Критерии выпуклости
- Неравенство Йенсена

Мотивация

Вопрос 0

Когда существует решение оптимизационной задачи?

Вопрос 1

Как проверить, что точка является решением оптимизационной задачи?

Вопрос 2

Из каких условий можно найти решение оптимизационной задачи?

Существование решения

Теорема Вейерштрасса

Пусть $X \subset R^n$ компактное множество и пусть f(x) непрерывная функция на X. Тогда точка глобального минимума функции f(x) на X существует.

Эта теорема гарантирует, что решение подавляющего большинства разумных задач существует.

Условия оптимальности

Определение

Условием оптимальности будем называть некоторое выражение, выполнимость которого даёт необходимое и (или) достаточное условие экстремума.

Классы задач:

- Задача безусловной минимизации
- Задача условной минимизации

Необходимое условие

Основной факт

Пусть f дифференцируема в точке x^* , тогда

- ullet если в точке x^* локальный минимум, то $f'(x^*) = 0$
- ullet если f выпукла и $f'(x^*)=0$, тогда x^* глобальный минимум функции f

Достаточное условие для невыпуклых функций

Пусть f дважды дифференцируема на \mathbb{R}^n и x^* такая что $\nabla f(x^*)=0$. Тогда если $\nabla^2 f(x^*)\succ 0$, то x^* точка строгого локального минимума f(x) на \mathbb{R}^n .

•
$$f(x) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2$$

- $f(x) = \frac{1}{2} ||\mathbf{A}\mathbf{x} \mathbf{b}||_2^2$
- Оценка максимального правдоподобия для среднего в нормальном распределении

- $f(x) = \frac{1}{2} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
- Оценка максимального правдоподобия для среднего в нормальном распределении
- $x_1e^{x_1} (1 + e^{x_1})\cos x_2 \to \min$

- $f(x) = \frac{1}{2} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
- Оценка максимального правдоподобия для среднего в нормальном распределении
- $x_1e^{x_1} (1 + e^{x_1})\cos x_2 \to \min$
- Функция Розенброка:

$$(1-x_1)^2 + \alpha \sum_{i=2}^n (x_i - x_{i-1}^2)^2 \to \min, \ \alpha > 0$$

- $f(x) = \frac{1}{2} ||\mathbf{A}\mathbf{x} \mathbf{b}||_2^2$
- Оценка максимального правдоподобия для среднего в нормальном распределении
- $x_1e^{x_1} (1 + e^{x_1})\cos x_2 \to \min$
- Функция Розенброка:

$$(1-x_1)^2 + \alpha \sum_{i=2}^n (x_i - x_{i-1}^2)^2 \to \min, \ \alpha > 0$$

• $x_1^2 + x_2^2 - x_1x_2 + e^{x_1 + x_2} \to \min$

Задача минимизации с ограничениями типа равенств

Задача

$$f(x) o \min_{x \in \mathbb{R}^n}$$

s.t. $g_i(x) = 0, \ i = 1, \dots, m$

Лагранжиан

$$L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$$

Возможные варианты

Рисунок взят из блога http://www.offconvex.org/2016/03/22/saddlepoints/

Задача минимизации с ограничениями типа равенств и неравенств

Задача

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) = 0, i = 1, ..., m$

$$h_j(x) \le 0, j = 1, ..., p$$

Лагранжиан

$$L(x, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

Условия оптимальности

Необходимые условия

Пусть для задачи выполнено условие регулярности. Тогда если x^* локальное решение задачи, и функции f,h_j,g_i дифференцируемы, то найдутся такие μ^* и λ^* , для которых выполнено следующее:

- $g_i(x^*) = 0, i = 1, ..., m$
- $h_j(x^*) \leq 0, j = 1, \ldots, p$
- $\mu_j^* \ge 0$, $j = 1, \dots, p$
- $\mu_i^* h_j(x^*) = 0$, j = 1, ..., p

Если задача выпуклая, то эти же условие является достаточным.

Примеры условий регулярности

- Если g_i и h_j линейны, то дополнительные условия не нужны
- Градиенты ограничений типа равенств и активных ограничений типа неравенств линейно независимы в x^*
- Условие Слейтера:
 - Задача является выпуклой, то есть g_i аффинные, h_j и f выпуклые
 - ullet Существует точка x_0 такая что $g_i(x_0) = 0$ и $h_j(x_0) < 0$

•

$$\min x + 3y$$

s.t.
$$x - y \ge 0$$

 $(x - 1)^2 + (y - 1)^2 \le 9$

min
$$(x+1)^2 + (y+1)^2$$

s.t. $2x + 3y > 5$

Резюме

- Существование решения оптимизационной задачи
- Условия оптимальности для
 - задачи безусловной оптимизации
 - задачи условной оптимизации