Network (Entities) Profiling and Classification

for differentiation, and anomaly detection

Observation Window (1)

- An observation is constructed based on multiple sampling/counting metrics.
- Sampling/counting metrics should <u>quantify</u> activity events:
 - Start/End of activity.
 - Traffic Flows, Calls, Service usage, etc...
 - Amount of activity.
 - → Traffic per sampling interval, activity duration, actions per sampling interval, etc...
 - Activity targets
 - → IP addresses contacted, UCP/TCP ports used, services user IDs, points of access, etc...

Observation Window (2)

decision

decision

Sequential

Decision interval is equal to

window size.

decision

decision

decision

Sliding

Allows for longer periods of observation, while maintaining a short period of decision.

time

decision

Entity Profiling

Characterization of the observation windows after multiple observations.

universidade de aveiro

Profile Comparison

- A profile allows to:
 - Classify entity into groups,
 - Groups may be known or inferred.

Profile

- Group "similar" entities ,
- Detect anomalous behaviors,
- Predict future events.

Observation Features

- Time-independent descriptive statistics.
 - Mean, variance, quantiles, etc...
- Time-dependent descriptive statistics.
 - Time-relations between metrics over time
 - → E.g., length of silences [number of sampling slots with metric equal to zero], length of activity [number of sampling slots with metric greater than zero], etc...
- (Pseudo-)Periodicity components.
 - Time dependent.
 - → Time multi-fractality (repetition of "similar events" in multiple time-scale).
 - Auto-correlation, FFT, CWT, DWT, and other spectral/frequency analysis.
- (Parameters of) Probabilistic functions/models.
 - Base function/model may be time independent or time dependent.

Descriptive Statistics (1)

For a (equally) sampled-continuous time process:

$$X = \{x'_t = x_k, T_0 + k\Delta t \le t < T_0 + (k+1)\Delta t, k = 1, 2, \dots, N\}$$

- Mean: $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$
- Median: $m_d = F^{-1}(0.5)$
- Variance: $Var(X) = \sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \mu)^2$
- ullet nth Central Moment: $m_n = rac{1}{N} \sum_{i=1}^N (x_i \mu)^n$
- Quantiles/Percentiles

$$Y = \{y_j\}_{1 \le j \le N} = \operatorname{sorted}(\{x_k\}_{1 \le k \le N})$$

- ◆ 64th percentile (64%)=0.64 quantile
- Quartiles: 25%, 50%, and 75%

$$\pi_p = \min(y_{j \ge pN})$$

Descriptive Statistics (2)

Skewness:

 Measure of the asymmetry of the probability distribution about its mean.

• Excess Kurtosis:

- Measure of the "tailedness" of the probability distribution.
 - "-3" constant is used to normalize kurtosis to zero for a normal distribution.

$$k = \frac{m_4}{\sigma^4} = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^4}{\left[\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2\right]^2} - 3$$

$$b_1 = \frac{m_3}{\sigma^3} = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^3}{\left[\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2\right]^{3/2}}$$

Descriptive Statistics (3)

Covariance

 Metric that quantifies how much two random variables have simultaneous variations:

$$Cov_{X,Y} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_X)(y_i - \mu_Y)$$

- Correlation coefficient
 - Normalized covariance, varies between -1 and 1:

$$\rho_{X,Y} = \frac{\text{Cov}_{X,Y}}{\sigma_X \sigma_Y} \quad \sigma_X = \sqrt{\text{Var}(X)}$$

- Correlation matrix
 - Defined by a (MxM) matrix, to quantify the correlation between M variables X_i :

$$C = \{c_{i,j}\}, i, j = 1, \dots, M$$

$$c_{i,j} = \rho_{X_i, X_j}$$

Periodicity Analysis (1) Autocorrelation

- Autocorrelation
 - Correlation between the process and a shifted version (in time, by k samples) of the same process:

$$r_k = \frac{\sum_{i=1}^{N-k} (x_i - \mu_X)(x_{i+k} - \mu_X)}{\sum_{i=1}^{N} (x_i - \mu_X)^2}$$

- Autocorrelation local maximums (peaks), reveal periodicity.
 - Differences between positions (k) of local maximums give periodicity.

Periodicity Analysis (2) Periodograms

- Periodogram
 - ◆ Frequency analysis → Spectral density estimation: Energy per frequency.
 - Given by the modulus squared of the discrete Fourier transform.
 - → For a signal x_i sampled every Δt :

$$S(f) = \frac{\Delta t}{N} \left| \sum_{n=1}^{N} x_n e^{-j2\pi nf} \right|^2, -\frac{1}{2\Delta t} < t \le \frac{1}{2\Delta t}$$

The inverse of the frequencies with higher energy give the different periods (of periodicity).

Periodicity Analysis (3) Scalograms

- Scalogram
 - ◆ Joint Frequency/Time analysis → Wavelet Analysis
 - Energy per frequency/time.

$$\Psi_x^{\psi}(\tau, s) = \frac{1}{\sqrt{|s|}} \int_{+\infty}^{-\infty} x(t) \psi^*(\frac{t - \tau}{s}) dt$$

Wavelet functions

$$\psi^*(t)$$

5th Gaussian derivative 6th Gaussian derivative

Periodicity Analysis (4) Scalograms

• Given by the normalized modulus squared of the Wavelet transform. $|\nabla \psi(\tau, s)|^2$

$$\hat{E}_x(\tau, s) = \frac{\left|\Psi_x^{\psi}(\tau, s)\right|^2}{\sum_{\tau' \in \mathbf{T}} \sum_{s' \in \mathbf{S}} \left|\Psi_x^{\psi}(\tau', s')\right|^2}$$

Averaged over time.

$$\bar{e}_x(s) = \frac{1}{|\mathbf{T}|} \sum_{\tau \in \mathbf{T}} \hat{E}_x(\tau, s), \forall s \in \mathbf{S}$$

Stochastic Process

 A collection of variables indexed by a time variable, representing the evolution of some system over time.

$$X = \{x_t = a, t \in T\}$$

- Discrete variables: $a \in A, A = \{\alpha_1, \alpha_2, \dots, \alpha_S\}$
- Continuous variables: $a \in \mathbb{R}$
- Discrete time: $T = \{T_0 + k\Delta t, k \in \mathbb{N}_0\}$
- Continuous time: $T = \mathbb{R}_0$
- A continuous time process never exists in practice, what exists is a Sample-Continuous time process:

$$x_t = x'_{T_k}, t \in \mathbb{R}, T_k \le t < T_{k+1}$$

Multivariate Stochastic Processes

Variables belong to a multidimensional space of dimension N.

$$X = \{x_t = \vec{a}, t \in T\}$$

Discrete variables:

$$\vec{a} \in A, A = {\{\vec{\alpha}_1, \vec{\alpha}_2, \dots, \vec{\alpha}_S\}, \vec{\alpha}_i \in \mathbb{R}^N}$$

Continuous variables:

$$\vec{a} \in \mathbb{R}^N$$

Probability Functions (1)

Discrete

- Probability Mass Function (PMF)
- $\sum_{\forall a \in A} \mathrm{pmf}_X(a) = 1$

Continuous

- Probability Density Function (PDF)
- $f_X(a) = Pr[X = a], a \in \mathbb{R}$
- $\int_{-\infty}^{+\infty} f_X(x) dx = 1$
- Cumulative Density Function (CDF)
- $F_X(a) = Pr[X \le a] = \int_{-\infty}^a f_X(x) dx$

Probability Functions (2)

- Inference and interpretation
 - Histogram with bins $B = \{b_1, b_2, \dots, b_{M+1}\}$

$$n_i = \text{count}(b_i \le X < b_{i+1}), i = 1, 2, \dots, M$$

$$f_X(a) = \frac{n_i}{N(b_{i+1} - b_i)}, \exists i, b_i \le a < b_{i+1}$$

$$F_X(a) = \sum_{i=1}^{j} \frac{n_i}{N(b_{i+1} - b_i)}, \max_j : a < b_{j+1}$$

Statistical Univariate Distributions

- Most commonly used distributions:

- Continuous
 - Uniform: $f_X(a) = \begin{cases} \frac{1}{a_{\max} a_{\min}}, a \in [a_{\min}, a_{\max}] \\ 0, \text{otherwise} \end{cases}$
 - Normal/Gaussian: $f_X(a) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(a-\mu)^2}{2\sigma^2}}$
 - Exponential: $f_X(a) = \lambda e_{1.6}^{-\lambda a}$

Multivariate Distributions

- Joint probability of a multidimensional variable.
- Incorporates correlation (ρ) between dimensions.
- E.g., 2-Dimensions Gaussian:

$$f_X((a_1, a_2)) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{z}{2(1-\rho^2)}}$$

$$z = \frac{(a_1 - \mu_1)^2}{\sigma_1^2} - \frac{2(a_1 - \mu_1)(a_2 - \mu_2)}{\sigma_1 \sigma_2} + \frac{(a_2 - \mu_2)^2}{\sigma_2^2}$$

Variable/Features Reduction (1)

- An event/entity is many times described by multiple descriptors/metrics.
 - e.g., mean, variance, maximum, skewness, percentile x%, etc...
 - a.k.a. features.

$$e_i = [y_1, y_2, \dots, y_m]$$

- The reduction of variables is mandatory to simplify classification.
- Principal Components Analysis (PCA)
 - Uses a transformation to convert a set of possibly correlated features into a set of values of uncorrelated variables called principal components.
 - The principal components of an event will be a linear combination of the that event features.

$$t_i = e_i W, W = [w_{ij}]_{i,j=1,...,m}$$

- The number of principal components is less than or equal to the number of original features.
 - → Defined in such a way that the first principal component has the largest possible variance, and the *mth* (last) component has the smallest variation.
 - → The first n components can be chosen to describe the event.
 - **→** *W* is a (*m* x *n*) matrix.

Variable/Features Reduction (2)

- PCA can be used to reduce the number of features.
 - Simplify Machine Learning or Statistical Analysis (input) complexity.
 - Removes correlated features!
 - Creates a linear combination of features to create uncorrelated new features.

Profile as a N-Dimensional Euclidean Universe

- Each set of N features (reduced or not) in each observation can be seen as a point a N-dimensional Euclidean universe.
- Each point can be:
 - Pre-classified to identify know behaviors/activities.
 - Classified as an belong to a specific group
 - Short Euclidean distance from the known group points.
 - Short Euclidean distance from group points previously "grouped" (cluster).
 - Classified as an anomaly.
 - Large Euclidean distance from the other points.

Decision by Statistical Patterns

for differentiation, classification, and anomaly detection

Distances to Central Point(s)

- Group dataset points
 - Use a single group (to detect anomalies),
 - By known classification,
 - By clustering algorithms.
- Find central point of each group.
- For each new dataset point:
 - Calculate Euclidean distances to each group central point,
 - Use distances to classify:
 - Shortest distance to group,
 - Probabilistic result based on the relative distances,
 - Ex: d1=10, d2=20, d3=30 → Group1 prob.=10/(10+20+30)=16.6%
 - Define as anomaly if distance(s) above predefined threshold.

X - Group Central Point
... - Anomaly Boundary

N-Dimensional Distributions

 Infer the multivariate PDF of each group of dataset points.

 For a new point, calculate the probability (using respective the PDF) of that point belong to a specific group.

 An anomaly may be defined as a point that has lower probabilities in all groups.

Decision by Machine Learning

for differentiation, classification, and anomaly detection

Categories

- Supervised learning
 - Inputs and outputs are given.
 - Outputs may be classification labels or system quantifiers.
 - Creates a general mapping rule between input and output.
- Unsupervised learning
 - Only inputs are given.
 - Algorithm must by structure in input data.
 - Post-classification based on known inputs and found data structure may be done to create a classifier.
- Reinforcement learning
 - Inputs are given, and "quality" of outputs is defined in terms of reward and penalization (cost functions) relative to the problem goal.

Data Inputs

- Raw data inputs are possible, however its increases the complexity of the machine learning algorithm.
 - Worse results, longer calculation/response times.
- Input data should be the result of raw data processing (complexity reduction).
 - Observation features.
 - Statistical metrics, statistical functions, PCA, scale analysis metrics/descriptors, ...
- Inputs should be normalized.
 - Usually to mean zero, variance one!

Approaches

- Clustering
- Support vector machines
- Artificial neural networks
 - Composed of one input and one output layer, and at most one hidden layer in between.
- Deep learning
 - ANN with more than three layers (including input and output).
 - More than one hidden layer.
- Other
 - Bayesian networks
 - Decision tree learning
 - Genetic algorithms
 - *****

Classification / Clustering

 Clustering is the process of grouping (classifying) a set of objects in such a way that objects in the same group (cluster) are more "similar" to each other than to those in other clusters.

• Algorithms:

- K-Means
 - Requires the a priori knowledge of the number of clusters.
 - Uses the distances between points as metric.

DBSCAN

- Requires the a priori definition of the neighborhood size.
- Uses the distances between nearest points as metric.
- Others...

Support Vector Machines

- Classification defined by a separating hyper-plane-
- Optimal hyper-plane for linearly separable patterns.
- Kernel functions allow the separation of patterns that are not linearly separable by transformations of original data.
- Solutions found using a minimization problem.

Artificial Neural Networks

- Composed by input and output layers, and an optimal hidden layers
 - More than one hidden layer, becomes a deep learning NN.
- Hidden and output layers, perform a weighted sum of the values outputted by the nodes of the previous layer and applies an activation function.
 - Activation functions: linear, tanh, arctan, etc...
 - Weights define the NN, and must be inferred by a training algorithm.
 - Each node-node connection have a different weight.
- Training algorithms adjust connection weights to minimize the error between inputs and training outputs.
 - Back propagation of error.
 - Levenberg-Marquardt algorithm, Newton and quasi-Newton methods, Gradient descent, and Conjugate gradient.
- Some nodes/layers may have bias inputs to activate/deactivate and/or offset node outputs.

Deep Learning

- Supervised learning algorithms
 - Logistic Regression.
 - Multilayer perceptron.
 - Deep Convolutional Network.
- Unsupervised and semi-supervised learning algorithms
 - Auto Encoders
 - Denoising Autoencoders
 - Stacked Denoising Auto-Encoders
 - Restricted Boltzmann Machines
 - Deep Belief Networks

Performance Evaluation

Evaluation Process

