Blatt Nr. 06/1 Name: Bauer, Aaron

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/2 Name: Baumbach, Jonas

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	129	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	135	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/3 Name: Becher, Nicolas

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	130	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	134	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/4 Name: Beck, Jannis

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	131	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	133	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/5 Name: Bös, Cedric

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	132	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	132	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/6 Name: Büttner, Nico

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	133	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	131	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/7 Name: Chen, Jiuli

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	134	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	130	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/8 Name: Deibl, Nino

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	135	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	129	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/9 Name: Deißenberger, Fabian

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	183	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	215	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/10 Name: Englert, Lisa

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	182	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	214	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/11 Name: Gottschalk, Paul

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	181	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	213	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/12 Name: Grimmer, Lukas

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	180	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	212	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/13 Name: Hammerl, Jonas

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	179	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	211	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/14 Name: Hoffmann, Erik

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	52	3
75	55	1
65	70	4
55	81	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/15 Name: Hollemann, Stephan

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	51	3
75	55	1
65	70	4
55	81	9
40	136	8
20	217	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/16 Name: Hoxha, Lyra

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	50	3
75	55	1
65	70	4
55	81	9
40	136	8
20	218	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/17 Name: Jansen, Theodor

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	49	3
75	55	1
65	70	4
55	81	9
40	136	8
20	219	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Name: Karunaikumar, Pooshwikaa Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	48	3
75	55	1
65	70	4
55	81	9
40	136	8
20	220	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/19 Name: Kauppert, Florian

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	47	3
75	55	1
65	70	4
55	81	9
40	136	8
20	221	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/20 Name: Klupp, Björn

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	46	3
75	55	1
65	70	4
55	81	9
40	136	8
20	222	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/21 Name: Köberlein, Kai

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	45	3
75	55	1
65	70	4
55	81	9
40	136	8
20	223	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/22 Name: Kropfgans, Hans

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/23 Name: Lagerbauer, Daniel

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	127	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	82	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/24 Name: Marbaise, Sonja

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	126	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	83	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/25 Name: Mass, Agnessa

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	125	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	84	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/26 Name: Mehler, Iannis

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	124	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	85	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/27 Name: Meurer, Nils

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	123	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	86	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/28 Name: Miksch, Daniel

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	122	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	87	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/29 Name: Munne, Sophia

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	121	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	88	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/30 Name: Öffner, Raphael

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/31 Name: Pastuschka, Tim

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	48	1
90	53	3
75	55	1
65	70	4
55	81	9
40	137	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/32 Name: Patzwald, Lara

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	47	1
90	53	3
75	55	1
65	70	4
55	81	9
40	138	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/33 Name: Penny, Sean

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	46	1
90	53	3
75	55	1
65	70	4
55	81	9
40	139	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/34 Name: Rech, Victor

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	45	1
90	53	3
75	55	1
65	70	4
55	81	9
40	140	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/35 Name: Reuß, Erik

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	44	1
90	53	3
75	55	1
65	70	4
55	81	9
40	141	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/36 Name: Rieger, Daniel

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	43	1
90	53	3
75	55	1
65	70	4
55	81	9
40	142	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/37 Name: Römer, Jakob

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	42	1
90	53	3
75	55	1
65	70	4
55	81	9
40	143	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/38 Name: Röpke, Ludwig

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	41	1
90	53	3
75	55	1
65	70	4
55	81	9
40	144	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/39 Name: Schäberle, Joanna

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	40	1
90	53	3
75	55	1
65	70	4
55	81	9
40	145	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/40 Name: Schlagenhauf, Larissa

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	60	3
75	55	1
65	70	4
55	81	9
40	136	8
20	220	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/41 Name: Schneidereit, Noah

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/42 Name: Schomburg, Daniel

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	129	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	135	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/43 Name: Seelmann, Josef

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	130	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	134	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/44 Name: Spitzner, Joshua

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	131	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	133	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/45 Name: Stolz, Eduard

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	132	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	132	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/46 Name: Suppes, Maxim

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	133	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	131	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/47 Name: Tan, Jun Wei

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	134	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	130	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/48 Name: Uder, Anne

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	135	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	129	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/49 Name: Volpert, Moritz

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	183	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	215	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/50 Name: Wagner, Jonas

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	182	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	214	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/51 Name: Waldmann, Richard

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	181	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	213	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/52 Name: Willers, Marvin

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	180	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	212	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/53 Name: Wolf, Erik

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	179	5
135	128	4
120	99	4
100	49	1
90	53	3
75	55	1
65	70	4
55	81	9
40	136	8
20	211	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/54 Name: Ziegler, Julius

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	52	3
75	55	1
65	70	4
55	81	9
40	136	8
20	216	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!

Blatt Nr. 06/55 Name: Ziegler, Moritz

Regression III

A.) In einem Streuexperiment werde flüssiger Wasserstoff mit Antiprotonen beschossen und die Winkelverteilung der elastisch gestreuten Antiprotonen gemessen. Dazu wird die Anzahl der in einen bestimmten Winkelbereich gestreuten Antiprotonen relativ zum einfallenden Strahl erfasst. Da aus praktischen Gründen der flüssige Wasserstoff in einem gekühlten Behälter (bezeichnet als target) gehaltert werden muss, ergibt sich durch Streuung an diesem ein Untergrund, um den die beobachtete tatsächliche Anzahl an Ereignissen im Detektor bereinigt werden muss. Es wird daher weiterhin eine separate Messung zur Bestimmung der Streuung am leeren target durchgeführt, wobei bei dieser die Anzahl der Teilchen im einfallenden Strahl exakt halbiert wird. Sie erhalten folgendes Ergebnis:

Detektorwinkel (deg)	Erfasste Zählereignisse befülltes target	Erfasste Zählereignisse leeres target
155	184	5
135	128	4
120	99	4
100	49	1
90	51	3
75	55	1
65	70	4
55	81	9
40	136	8
20	217	7

Es kann davon ausgegangen werden, dass die Fehler in den Zählereignissen rein statistischer Natur sind. Bereinigen Sie zunächst die Daten um den Untergrund. Achten Sie dabei auf korrekte Skalierung, insbesondere in der resultierenden Unsicherheit der Zählereignisse. Finden Sie die beste Anpassung der korrigierten Daten an die folgende Funktion:

$$y(x) = a_1 P_0(x) + a_2 P_1(x) + a_3 P_2(x)$$

- **B.)** Diskutieren Sie die Güte der Anpassung des Modells an die korrigierten Daten. Wie könnten Sie eine quantitative Aussage über die Übereinstimmung finden?
- C.) Erstellen Sie eine graphische Darstellung der Messung mit der gefundenen besten Anpassung!