Projekt Kagedeling

MATEMATIK A

Cecilie Horshauge

27. april 2024

A:

Opstil en rekursionsligning, der fastlægger udviklingen i antallet af stykker kage udover samuraimesterens.

Reglerne for kagedeling er givet ved:

- Alle kagestykker halveres
- Samuraimesteren tildeles ét af stykkerne
- Denne proces gentages et passende antal gange.

NB: Jeg antager at for hver gentagelse at samuraimesteren får et stykke kage.

Rekursionsligningen $y_{n+1} = 2 \cdot y_n - 1$ må lige netop være en passende rekursionsligning. Da antallet afhænger af antallet af stykker der var skåret lige inden y_n og ved y_{n+1} fordobles antallet af stykker ved at hvert kagestykke halveres. Der tages højde for samuraimesterens kagestykker ved at trække 1 fra.

Udviklingen i antal kagestykker udover samuraimesterens kan derfor beskrives med rekursionsligningen

$$y_{n+1} = 2 \cdot y_n - 1.$$

B:

Bestem ligningens fuldstændige løsning.

Rekursionsligningen er inhomogen. Først vil samtlige løsninger bestemmes med udgangspunkt i sætning 3.

Jeg antager først at z_n er en løsning rekursionsligningen

$$y_{n+1} = 2 \cdot y_n - 1.$$

Dernæst gætter jeg på at $z_n = c$, altså at løsningen z_n er en konstant. Vi kan derfor lave denne manipulation af udtrykket og isolere for c.

$$z_{n+1} = 2 \cdot z_n - 1$$
$$c = 2 \cdot c - 1$$
$$c = 1$$

Som følge af sætning 3 bliver den fuldstændige løsning

$$y_n = 1 + k \cdot 2^n$$

C:

Bestem de partikulære løsninger med udgangspunkt i begyndelsesværdierne $y_0 = 1$, $y_0 = 2$, $y_0 = 3$ samt $y_0 = s$.

D:

Opstil talrækkerne ud fra de partikulære løsninger med begyndelsesværdierne i sp. C og sammenlign svaret med rekursionsligningen fra sp. A.

E:

 $Udvælg\ en\ funktions for skrift\ og\ vis\ hvordan\ Newtons\ metode\ kan\ anvendes\ til\ at\ bestemme\ nulpunkt/nulpunkter.$

F:

Udvælg en differentialligning og vis, hvordan Eulers metode kan anvendes til at bestemme punkter på løsningskurven.