Tutorial 7 (Happy Halloween)

MATH 1200A02: Problems, Conjectures, and Proofs

Joe Tran (jtran0@yorku.ca)

York University

October 31, 2023

Set Theory

Definition (Set)

A set is a collection of unordered objects.

Definition (Members of a Set)

We say that x is a member of a set A, and write $x \in A$. If x is not a member of A, then write $x \notin A$.

Definition (Union of Two Sets)

Let A and B be two sets on some universal set X. The union of A and B, written $A \cup B$ is the set of all elements that are in A or in B.

$$A \cup B = \{x \in X : x \in A \text{ or } x \in B\}$$

Definition (Intersection of Two Sets)

Let A and B be two sets on some universal set X. The intersection of A and B, written $A \cap B$, is the set of all elements that are in A and B.

$$A \cap B = \{x \in X : x \in A \text{ and } x \in B\}$$

Definition

Let A and B be two sets on some universal set X. The difference $A \setminus B$ (or A - B) is the set of all elements that are in A but not in B.

$$A \setminus B = \{x \in X : x \in A \text{ and } x \notin B\}$$

Definition

Let A be a universal set on some universal set X. The complement of A, written as A^c is the set of all elements in X that are not in A.

$$A^{c} = \{x \in X : x \notin A\}$$

Example

Let $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 3, 4, 5, 8\}$ and $B = \{0, 2, 6, 7, 9\}$. Find the following:

- $\mathbf{Q} A \cap B =$
- \bullet $B \setminus A =$
- $A^c =$
- **6** $B^c =$
- $A^c \cup B^c =$
- $A^c \cap B^c =$
- \bigcirc $A^c \setminus B^c =$

Definition

Let A and B be sets on some universal set X. Then we say that A is a subset of B, and write $A \subset B$, if every element in A is inside B. In other words, for every $x \in A$, then $x \in B$.

Definition

Let A and B be sets on some universal set X. Then we say that the set A is equal to the set B, and write A = B if and only if $A \subset B$ and $B \subset A$.

Example

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

Example

Let $X = \mathbb{R}$, let A = (0,1), B = [0,1], and C = [0,6]. Determine whether the following statements are true or false:

- \bullet $A \subset B$
- a $B \subset A$
- \bullet $A \subset C$
- \bullet $C \subset A$
- **⑤** *B* ⊂ *C*
- **o** *C* ⊂ *B*

Definition

Let A be a set of some universal set X. Then the cardinality of A is the number of elements in A, and denote it by |A|.

Example

If $A = \{0, 2\}$ then |A| = 2, but if B = [0, 1], then $|B| = \infty$.

Definition

Let A be a set of some universal set X. Then the power set of A is the set of all subsets of A, and denote it by $\mathcal{P}(A)$.

 a In L TEX to use ${\cal P}$, you type L mathcal L P B

Example

If $A = \{a, b, c\}$, then

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

Tutorial Problems

Question 1

Let $C = \{x \in \mathbb{Z} : x \equiv 7 \pmod{9}\}$ and $D = \{x \in \mathbb{Z} : x \equiv 1 \pmod{3}\}$

- (a) List at least five different elements of the set A and at least five elements of the set B.
- (b) Is $A \subset B$?
- (c) Is $B \subset A$?

Question 2 (Exercise)

We can extend the idea of consecutive integers to represent four consecutive integers as m, m+1, m+2 and m+3, where $m\in\mathbb{Z}$. There are other ways to represent four consecutive integers. For example if $k\in\mathbb{Z}$, then k-1, k, k+1, and k+2 are four consecutive integers.

- (a) Prove that for each $n \in \mathbb{Z}$, n is the sum of four consecutive integers if and only if $n \equiv 2 \pmod{4}$.
- (b) Use set builder notation or the roster method to specify the set of integers that are the sum of four consecutive integers.
- (c) Specify the set of all natural numbers that can be written as the sum of four consecutive natural numbers.
- (d) Prove that for each $n \in \mathbb{Z}$, n is the sum of eight consecutive integers if and only if $n \equiv 4 \pmod{8}$
- (e) Use set builder notation or the roster method to specify the set of integers that are the sum of eight consecutive integers.
- (f) Specify the set of all natural numbers can be written as the sum of eight consecutive natural numbers.

Question 3

Completely factor $x^4 + 16$ as a product of linear factors.