1 Mengen

- Reihenfolge und Vielfachheit bei einer Menge egal: $\{a, b, c, b\} = \{b, c, a\}$
- Mengen gleich/aequivalent falls $A \subseteq B \land B \subseteq A$
- Mengen sind Objekte die Objekte enthalten $\rightarrow \{a,b,\{c,d\}\}$ ist eine Menge
- $A \subseteq \emptyset \Leftrightarrow A = \emptyset$
- $A \cap B = \emptyset \Leftrightarrow A$ und B sind disjunkt

Die Potenzmenge 2^M , bzw. P(M) enthaelt alle moeglichen Teilmengen von der Menge M:

-
$$M=\{1,2\} \to P(M)=P(\{1,2\})=\{\emptyset,\{1\},\{2\},\{1,2\}\}$$
- $|P(M)|=2^{|M|}\to |P(M)|=2^2=4\to$ Beweis durch Binaerbaum

 $P\subseteq P(M)$ ist die Partition einer Menge M und besteht aus disjunkten, nicht leeren Teilmenge von M, deren Vereinigung M ergibt:

- \forall A, B ∈ P ⊆ P(M) : A ∩ B = ∅ \lor A = B - moegliche Partitionen von M = {1,2,3} : {1,2,3}, {{1},2,3}}, ...

1.1 Operationen auf Mengensysteme

-
$$\cap S := \cap_{M \in S} M \Rightarrow \text{mit } S = \{\{a, b, c\}, \{b, d\}\}, \ \cap S = \{b\}$$

- $\cup S := \cup_{M \in S} M \Rightarrow \text{mit } S = \{\{a, b, c\}, \{b, d\}\}, \ \cup S = \{a, b, c, d\}$

Damit gilt:

-
$$A \cap B = \bigcap \{A, B\}$$

- $A \cup B = \bigcup \{A, B\}$

Fuer $S = \{M_1, ..., M_k\}$ ueber die Mengen $M_1, ..., M_n$ und $k \in \mathbb{N}$:

-
$$\bigcup_{i=1}^k := \bigcup$$

- $\bigcap_{i=1}^k := \bigcap$

Mengenoperationen auf einem definierten Universum 1.2

Ist eine Menge Ω (Universum) definiert $\Omega \setminus A = -A$

Mengenumformungen:

- A = - A
- $A \triangle B = (A \setminus B) \cup (B \setminus A)$ $A \setminus (...) = A \cap -(...)$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $-A\cup (B\cap C)=(A\cup B)\cap (A\cup C)$
- $-A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$
- $-A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$

2 Tupel

Endliche Auflistung einer Anzahl an Objekten unter Beachtung von Reihenfolge und Vielfachheiten.

- $(a,b,c,a,c,a) \neq (a,b,c)$
- |(a, b, c, a, c, a)| = 6
- $\forall i \in (\mathbb{N} \vee \mathbb{N}_0) \exists_1 \ a_i \Rightarrow \text{Sequenz/Folge (geordnete Auflistung)}$

2.1 Karthesisches Produkt

- $-A \times B := \{(a,b) \mid a \in A, b \in B\}$
- $-A \times B \times C := \{(a, b, c) \mid a \in A, b \in B, c \in C\}$
- $-(A \times B) \times C := \{((a,b),c) \mid a \in A, b \in B, c \in C\}$

$$\rightarrow A^k = A \times ... \times A^k \text{ mit } a_1, ..., a_k \in A$$

2.2 Sprachen

Die Menge aller (endlicher) Tupel mit Eintraegen aus dem Alphabet Σ schreibt man:

$$\Sigma^* := \cup_{k \in \mathbb{N}} = \cup \{ \Sigma^k \mid k \in \mathbb{N}_0 \}$$

 $(\Sigma^* \text{ beschreibt } \# \text{ endlicher Woerter ueber } \Sigma)$

- leeres Tupel entspricht dem leeren Wort: ϵ
- Woerter werden konkatiniert dagestellt und nicht als Tupel
- $L\subseteq \Sigma$ beinhaltet die erlaubten Woerter der Sprache aus dem Alphabet Σ
- uv beschreibt das konkatinieren zweier Woerter

3 Relationen

- die Relation $R \subseteq A_1 \times ... \times A_k$ lautet k-stellige Relation.
- analog dazu lautet $R \subseteq A \times B$ binaere Relation.
- $(a_1,...,a_k) \in R \Rightarrow$ die Elemente $(a_1,...,a_k)$ stehen bzgl. R in Relation.

Ein Notationsproblem taucht auf \rightarrow Somit fuehren wir die Infixnotation ein:

```
- 3 \leq_{\mathbb{N}} 5 statt (3,5) \in \leq_{\mathbb{N}}
- \geq_{\mathbb{R}}^{-1} = \leq_{\mathbb{R}} - die Inverse Relation R^{-1} := \{(b,a) \mid (a,b) \leq_{R}\}
```

3.1 Ausblick Datenbanken

Der Join - $R \bowtie_{i=j} S$ konkatiniert die Eintragege zweier Tables, dessen i-ter Eintrag in ihrer jeweiligen Zeile zum j-ten Eintrag der jeweiligen Zeile in S passt.

Die Projektion $\pi_{i_1}, ..., \pi_{i_j}$ reduiziert jedes Tupel mit $(r_1, ..., r_k)$ auf die Eintraege der Position $i \leq 1, ..., j \leq k$.

3.2 Graphen

Veranschaulichung von binaeren Relationen mittels Graphen. Ein gerichteter Graph (kurz: Digraph) G = (V, E) besteht aus:

- die Knotenmenge $V \colon v \in V$ sind die Knoten von G
- die binaere Relation $E \subseteq V \times V$: Menge an Kantentupeln zwischen 2 Knoten
- $\forall (s,t) \in E \text{ gilt: } s \text{ (source)} \longrightarrow t \text{ (target) (Darstellungsrichtung)}$

Ein Digraph G ist endlich, falls |V| endlich.

Ein Digraph G ist bipartit falls man V in M_1 und M_2 unterteilen kann mit $M_1 \cap M_2 = \{\}$ und $\forall \ e \in E$ gilt: (a,b) mit $a \in M_1$ und $b \in M_2$

Ein Weg/Pfad:

- $(v_0,...,v_k), v_i \in V$ ist ein Pfad falls $(v_{i-1},v_i) \in E$ exisitiert
- Laenge des Pfades entspricht den Eintraegen des Tupels -1
- ein Pfad lautet "einfach", falls jeder enthaltende Knoten im Tupel unique ist

3.3 Relationales Produkt

Sind $R \subseteq A \times B$ sowie $S \subseteq C \times D$ binare Relationen so ist das relationale Produkt die binaere Relation $RS \subseteq A \times D$ (Verkettung):

$$RS = \{(a,d) \mid x \in B \cap C, (a,x) \in R, (x,d) \in S\}$$

Binaere Relationen $R \subseteq A \times A$, auf der Menge A:

```
- R^0:=Id_A:=\{(a,a)\mid a\in A\}
- R^1:=R - trivial
```

- $R^2 := RR$ Verkettung

- $-R^k := R....R k\text{-mal}, k \in \mathbb{N}_0$ $-R^{\leq k} := \cup_{i=0}^k R^i = R^0 \cup ... \cup R^k, k \in \mathbb{N}_0$ $-R^{\geq k} := \cup_k^\infty R^i = R^k \cup ... \cup R^\infty, k \in \mathbb{N}_0$

- Transitive Huelle: $R^+:=\cup_{k\in\mathbb{N}}R^k=R^{>0}$ Reflexiv-transitive Huelle: $R^*:=\cup_{k\in\mathbb{N} \omega}R^k=R^0\cup R^+=R^{\geq 0}$

Ist A endlich und n = |A|, dann gilt: $R^* = R^{\leq n-1}$, denn der groete einfache Pfad ist n-1 Kanten lang mit einem Pfad von n Eintraegen

Eigenschaften Relationen

 $R \subseteq A \times A$ auf einer Menge A:

- reflexiv: $Id_A \subseteq R$
- symmetrisch: $\forall (s,t) \in R \exists (t,s) \in R$
- asymmetrisch: $\forall (s,t) \in R \text{ not } \exists (t,s) \in R, s \neq t$
- antisymmetrisch: $(s,t) \in R$ falls $\exists (t,s) \in R$ dann s=t
- transitiv: $\forall ((s,t) \in R \land (t,u) \in R) \exists (s,u) \in R$

Aequivalenzrelation - Unterteilen/partitionieren die Objekte eines Universums nach verschiedenen "Aequivalenzbegriffen":

- Eigenschaften: reflexiv, symmetrisch, transitiv
- $=_{\mathbb{Z}}$: dieselbe/identische Zahl
- $\equiv_{\mathbb{N}}$: derselbe Rest bei Division durch n

Ordnungsrelation - (teilweise) (partitielle) Anordnung von Objekten:

 $R \subseteq A \times A$: reflexiv, antisymmetrisch, transitiv \rightarrow partielle Ordnung (Halbordnung)

 $R \subseteq A \times A : \forall a, b \in R \text{ gilt: } ((a,b) \lor (b,a)) \in R \to \text{totale Ordnung (To-}$ talordnung)

3.5 Hasse-Diagramm

Eine Hasse-Diagramm visualisiert Ordnungsrelationen. Dabei kann es eine Ordnung bezglich, Teilbarkeit, Groessee, etc. sein.

Hasse-Diagramm bezueglich der Teilmengen der Potenzmenge \subseteq auf P([3]) :

Hasse-Diagramm bezueglich $|_{\mathbb{N}}\cap([10]\times[10])$ - direkte Teiler
(an)ordnung:

3.6 Ordnungsrelationen

Hasse-Diagramm zur Ordnung auf Aequivalenz
relation ueber $\{1,2,3\}$ $-R \preccurlyeq S$:

 $m \in A$ ist ein maximales Element falls es keine ausgehenden Kanten gibt (ausser zu sich selbst)

 $m \in A$ ist das groete Element falls es von jedem Element eine eigehende Kante hat aber keine ausgehenden Kanten besitzt

Analog dazu definiert man minimales / kleinstes Element

4 Funktionen

Eine Relationen $R \subseteq A \times B$ ist eine totale Funktion, falls $\forall a \in A \exists_1 b \in B$ mit $(a,b) \in R$

Als partielle Funktion bezeichnet man Funktionen die jedem $a \in A$ hoechstens ein $b \in B$ zuordnen koennen

Konventionen:

- $f:A\to B$ bedeutet: $f\subseteq A\times B$ eine totale Funktion von A nach B ist
- $f:A\hookrightarrow B$ bedeutet: $f\subseteq A\times B$ eine partielle Funktion von A nach. B ist
- f(a) steht fuer das eindeutige $b \in B$ mit $(a, b) \in f$
- " \mapsto " definiert Funktion: $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2 + 1$
- die Menge aller Funktionen von A nach B: $B^A := \{f : A \to B\}$
- die Anzahl der Funktionen dazu analog: $|B|^{|A|}$
- Schreibweise von Funktion die k Parameter nehmen: $f(a_1,...,a_k)$
- k bezeichnet man als Stelligkeit/Aritaet von f (k-aere Funktion)
- die Urbildmenge ist eine Teilmenge von A fuer die gilt: $a \in A \, \exists_{\geq 1} \, b \in B$
- die Bildmenge ist die Menge $\{f(a) \mid a \in A\}$

Operationen:

- $f:A^k\to A$ bedeutet k-stellige Operation auf A
- Infixnotation fuer binaere Operationen: $(x +_{\mathbb{R}} y)$ statt $+_{\mathbb{R}}(x,y)$

Eine binaere Operation $\otimes: A \times A \to A$ ist:

- assoziativ, falls: $(a \otimes b) \otimes c = a \otimes (b \otimes c), \forall a, b, c \in A$
- kommutativ, falls: $a \otimes b = b \otimes a$, $\forall a, b \in A$
- idempotent, falls: $a \otimes a = a, \forall a \in A$

Komposition (Nacheinanderausfuehrung):

- $f: A \to B$ und $g: B \to C$ schreibt man: $(g \circ f): A \to C, a \mapsto g(f(a))$
- Komposition ist assoziativ: $(h \circ (g \circ f)(a) = ((h \circ g) \circ f)(a)$
- Komposition ist nicht kommutativ!
- Schreibweise: $fg = \{(a, g(f(a))) \mid a \in A\} = (g \circ f)$

Eigenschaften:

- injektiv, falls $\forall a \in A$ bilden jeweils allein auf $\exists_1 \ b$ ab
- surjektiv, falls $\forall b \in B \exists_{>1} \ a \in A \text{ womit } (a, f(a))$
- bijektiv, falls injektiv und surjektiv erfuellt
- \rightarrow ist f bijektiv existiert ihre Umkehrfunktion: $\{(b,a) \mid b \in B, a \in f^{-1}(\{b\})\}$
- $\rightarrow f^{-1}$ ist auch bijektiv, da $(f^{-1} \circ f)(a) = a, \forall a \in dom(f) \subseteq A$

Weitere Eigenschaften:

```
- f injektiv \Rightarrow g: A \to f(A), \ a \mapsto f(a) bijektiv

- f: A \to A mit f: A \to \mathbb{N}_k und injektiv \Rightarrow f bijektiv

- f: A \to A mit f: A \to \mathbb{N}_k und surjektiv \Rightarrow f bijektiv

- f: A \to B \land g: B \to C injektiv \Rightarrow (g \circ f) injektiv

- f: A \to B \land g: B \to C surjektiv \Rightarrow (g \circ f) surjektiv

- (g \circ f) surjektiv \Rightarrow g surjektiv

- (g \circ f) injektiv \Rightarrow f injektiv

- f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)

- f^{-1}(X \cap Y) = f^{-1}(X) \cup f(Y)

- f(X \cup Y) = f(X) \cup f(Y)

- f(X \cap Y) \subseteq f(X) \cap f(Y) (Achtung)
```

- $f(X \cap Y) = f(X) \cap f(Y) \Leftrightarrow f$ injektiv

4.1 Visualisierung

$$f=\big\{(a,1),(b,1),(c,2)\big\}\subseteq A\times B \text{ mit } A=\{a,b,c\},\ B=[3]$$

als Funktion:

$$f = \{(a, a), (b, a), (c, b)\} \subseteq A \times A \text{ mit } A = \{a, b, c\}$$

als Funktion:

$$f = \big\{(a, f(f(a)))|\ a \in A)\big\} \text{ mit } A = \{a, b, c\}$$

Hierbei ueberspringt man den ersten Schritt und visualisiert direkt (a, f(f(a))) und nicht (a, b), (b, c) als Aneinanderhaengung

als Funktion:

5 Kardinalitaet von Mengen

 $f:A\to B$ injektiv $\Rightarrow \forall a\in A\ \exists_1$ unique $b\in B\ \land (a,b)\in R\Rightarrow |B|\geq |A|$ \Rightarrow B mindestens so maechtig wie A

$$f:A \to B$$
 bijektiv $\Rightarrow \forall a \in A \exists_1$ unique $b \in B$
 $\land \forall b \in B \exists_1$ unique $a \in A \land (a,b) \in R \Rightarrow |B| = |A|$
 \Rightarrow A und B sind gleichmaechtig

Die Komposition injektiver Funktionen ist wieder injektiv:

$$|A| \le |B| \ \land \ |B| \le |C| \Rightarrow |A| \le |C|$$

Fuer zwei beliebige Mengen gilt:

$$|A| \leq |B| \wedge |A| \geq |B| \Rightarrow |A| = |B|$$
 (Satz von Cantor-Bernstein-Schroeder)

Fuer nichtabzaehlbare Mengen gilt:

- $|\mathbb{N}| \leq |\mathbb{N}_0| \leq |\mathbb{Z}| \leq |\mathbb{N}| \leq ... \Rightarrow$ gleichmaechtig
- unendliche Mengen sind zueinander immer bijektiv $\Rightarrow |\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$
- eine beliebige Mengen Anennt man abzaehlbar, falls $|A|<|\mathbb{N}|,$ sonst nennt man Aueberabzaehlbar

5.1 Ueberabzaehlbare Mengen

- |A| nennt man Kardinalzahl fuer eine Menge A
- ≤ ist auf alle Kardinalzahlen antisymmetrisch ist (Cantor-Schroeder)
- Aabzaehlbar, falls $\forall~a\in A$ eine eindeutige Identifikationsnummer aus $\mathbb N$ erhalten koennen

Satz von Cantor:

- es gilt
$$|A| < |P(A)|$$

- $f: A \to P(A), a \mapsto \{a\} \Rightarrow |A| \le |P(A)|$

Durch Diagonalisierung: $m \in M \Leftrightarrow m \notin f(m) \in M$ \Rightarrow Widerspruch $\Rightarrow f: A \to P(A)$ nicht bijektiv