DEFINITION

DEFINITION

Let S be a surface and $\operatorname{Homeo}^+(S, \partial S)$ denote the group of orientation-preserving self-homeomorphisms of S which fix the boundary pointwise.

Equipping Homeo⁺ $(S, \partial S)$ with the compact-open topology inherited from $C^0(S, S)$, we define

$$\operatorname{Mod}(S) := \pi_0(\operatorname{Homeo}^+(S, \partial S)).$$

Interpretation

LEMMA

Let X, Y, Z be Hausdorff spaces with Y locally compact. Then a map $f: X \to C_W^0(Y, Z)$ is continuous if and only if $F: X \times Y \to Z$ defined by F(x, y) = f(x)(y) is continuous.

Thus, a path $\gamma \colon I \to \operatorname{Mod}(S)$ is the same as a continuous map $I \times S \to S$ given by $(t,s) \mapsto \gamma(t)(s)$ which is an isotopy of S.

DEFINITION OF A DEHN TWIST

DEFINITION

Define the left twist map of the annulus $A = S^1 \times [1, 2]$ as $T: A \to A$ given by $T(\theta, t) = (\theta + 2\pi t, t)$.

DEFINITION

For an oriented surface S with a simple loop α in S, let N be a tubular neighborhood of α and choose an orientation-preserving homeomorphism $\varphi \colon A \to N$. We define a *Dehn twist about* α as

$$T_{\alpha}(x) = \begin{cases} \varphi \circ T \circ \varphi^{-1} & x \in N \\ x & x \in S - N \end{cases}$$

BRAID GROUP RELATIONS

PROPOSITION

If a, b are isotopy classes of simple closed curves, then i(a,b) = 0 if and only if $T_aT_b = T_bT_a$. Furthermore, if i(a,b) = 1, then

$$T_a T_b T_a = T_b T_a T_b$$

.

DEFINITION

The braid group on n strands, \mathcal{B}_n , is the free group on n-1 generators σ_i with the above relations: $\sigma_i \sigma_j = \sigma_j \sigma_i$ for |i-j| > 1 and $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ for all i.

GEOMETRIC REPRESENTATIONS

DEFINITION

A geometric representation of a group G is a homomorphism $G \to \operatorname{Mod}(S)$ where S is a surface.

By the previous proposition on relations of Dehn-twists, we find that if we have a sequence of curves $\alpha_1, \ldots, \alpha_{n-1}$ such that $i(\alpha_i, \alpha_{i+1}) = 1$ for all i and $i(\alpha_i, \alpha_j) = 0$ whenever |i - j| > 1, then we obtain a well-defined homomorphism $\mathcal{B}_n \to \operatorname{Mod}(S)$ by sending $\sigma_i \mapsto T_{\alpha_i}$.

YANG-BAXTER OPERATORS

DEFINITION

Let $T: \mathcal{A} \to \mathcal{V}$ be a functor from any category \mathcal{A} to a monoidal category \mathcal{V} . A Yang-Baxter operator on T is a natural family of isomorphisms

$$y = y_{A,B} \colon TA \otimes TB \xrightarrow{\sim} TB \otimes TA$$

such that the following diagram commutes

YANG-BAXTER ELEMENTS

Remark

When $\mathcal{A} = \mathbb{1}$, we say that y is a Yang-Baxter operator on $X = T(\mathcal{A})$ if it is a Yang-Baxter operator on T. That is, $y \in \operatorname{Aut}_{\mathcal{V}}(X \otimes X)$.

If $T: \mathcal{A} \to \mathcal{V}$ is a functor with \mathcal{V} braided monoidal, we obtain the Yang-Baxter operator

$$y_{A,B} = b_{TA,TB} \colon TA \otimes TB \xrightarrow{\sim} TB \otimes TA$$

We denote by z the Yang-Baxter operator obtained in this way from the inclusion functor $\iota: \mathbb{1} \to \mathcal{B}$, where \mathcal{B} is the braid groupoid and the inclusion maps id to the single strand.

OBTAINING REPRESENTATIONS FROM YANG-BAXTER OPERATORS

PROPOSITION

For any strict monoidal category V and any Yang-Baxter operator τ on an element $X \in V$, there exists a unique strict monoidal functor $\Phi_{X,\tau} \colon \mathcal{B} \to V$ such that $\Phi_{X,\tau} \circ z = y$.

PROOF.

Since $\Phi_{X,\tau}$ is strict monoidal, this forces $\Phi_{X,\tau}(A) \otimes \Phi_{X,\tau}(B) = \Phi_{X,\tau}(A \otimes B)$ which forces $\Phi_{X,\tau}(n) = X^{\otimes n}$ and since $\sigma_i = 1 \otimes \ldots \otimes 1 \otimes \sigma_1 \otimes 1 \otimes \ldots \otimes 1$, it forces $\Phi_{X,\tau}(\sigma_i) = X \otimes \ldots \otimes X \otimes y \otimes X \otimes \ldots \otimes X =: y_i$. As y is a Yang-Baxter operator and $\mathcal V$ is strict, these satisfy the braid group relations.

BRAIDED MONOIDAL CATEGORY OF DECORATED SURFACES

DEFINITION

A decorated surface is a pair (S, I) where S is a compact connected surface with at least one boundary component, and $I: [-1, 1] \hookrightarrow \partial S$ is an interval in the boundary.

Let \mathcal{M}_1 be the groupoid where the objects are decorated surfaces and morphisms are isotopy classes of homeomorphisms restricting to the identity on a neighborhood of I and fixing the other boundaries.

Then $\operatorname{Aut}_{\mathcal{M}_1}(S) = \operatorname{Mod}(S)$.

THE MONOIDAL STRUCTURE

We equip it with the monoidal structure $(S_1, I_1) \otimes (S_2, I_2) := (S_1 \natural S_2, I_1 \natural I_2)$ where $I_1 \natural I_2 = I_1^- \cup I_2^+$ and $S_1 \natural S_2$ is obtained by gluing S_1 and S_2 along I_1^+ and I_2^-

THE BRAIDING

The braiding is defined by a half twist of a pair-of-pants neighborhood of $\partial S_1 \cup \partial S_2$

By the proposition, we obtain a monoidal functor $\Phi: \mathcal{B} \to \mathcal{M}_1$ such that $\Phi \circ z = y$ where y is the Yang-Baxter operator on some decorated surface S which corresponds to the half-Dehn twist.

THE MAIN GOAL

Recall that a geometric representation of a group G is a group homomorphism $G \to \text{Mod}(S)$ for some surface S.

THEOREM

Let $n \geq 14$ and $N = N_{g,b}$ with $g \leq 2\lfloor \frac{n}{2} \rfloor + 1$ and $b \geq 0$. Then any geometric representation $\mathcal{B}_n \to \operatorname{Mod}(N)$ is, up to transvection, either trivial, a standard twist representation or a crosscap transposition representation.

The goal is to find out whether these representations can be obtained from Yang-Baxter operators on an appropriately chosen category of surfaces.

THE CROSSCAP TRANSPOSITION REPRESENTATION

Given the setup in the figure with μ_i the core curve of the Möbius band $K_i - K_{i-1}$, we let u_i be the crosscap transposition supported in K_i which swaps μ_i and μ_{i+1} and $u_i^2 = T_{a_i}$ - i.e., a half-twist of the crosscaps.

The mapping $\theta_C \colon \mathcal{B}_n \to \operatorname{PMod}(N)$ sending $\sigma_i \mapsto u_i$ is called the crosscap transposition representation.

It is clear that this is the representation induced by the braiding from \mathcal{M}_1 on the Möbius band.

THE STANDARD TWIST REPRESENTATION

Take a chain of two-sided curves $C = (a_1, \ldots, a_{g-1})$ as depicted in the figure and fix an orientation of a regular neighborhood of their union. Then the map $\rho_C \colon \mathcal{B}_n \to \mathrm{PMod}(S)$ defined by $\rho_C(\sigma_i) = T_{a_i}$ is called the standard twist representation.

THE YANG-BAXTER OPERATOR

We can obtain the standard twist representation as the Yang-Baxter element on the Möbius band M given by a Dehn twist about the curve denoted in the figure below for M
mid M.

RECOVERING THE BIRMAN-HILDEN EMBEDDING

PROPOSITION

For $b \geq 1$ and g odd, the standard twist representation $\rho_C \colon \mathcal{B}_g \to \operatorname{Mod}(N_{g,b})$ is the same as the Birman-Hilden embedding $B_g \hookrightarrow S_{\frac{g-1}{2},b-1} \# M$ into the orientable factor.

We first note that $T^2 \# M \approx K \# M$

We will follow the loops through the following chain of homeomorphisms

$$N_{2n+1,1} \approx (\mathbb{RP}^2)^{\#2n+1} - \mathring{D} \approx K^{\#n} \# M \approx K^{\#n-1} \# K \# M$$

$$\approx K^{\#n-1} \# T^2 \# M$$

$$\vdots$$

$$\approx (T^2)^{\#n} \# M$$

$$\approx S_{n,0} \# M$$

$$\approx S_{n,1} \sharp M$$

