Design and Analysis of Algorithms

CS2800

Yadu Vasudev yadu@cse.iitm.ac.in IIT Madras

Module plan

- 1. Introduction
- 2. Administrivia
- 3. SEAT algorithm

Introduction

· What is this course about?

- · What is this course about?
 - Design algorithms Haven't I been doing this already?

- · What is this course about?
 - Design algorithms Haven't I been doing this already?
 - Prove correctness All the implementations that I write work for all the test cases!

- · What is this course about?
 - Design algorithms Haven't I been doing this already?
 - Prove correctness All the implementations that I write work for all the test cases!
 - Analyze complexity All the programs I write run very fast on my computer!

- · What about the way you multiplied numbers in school?

- · What about the way you multiplied numbers in school?
 - Learn to multiply single digits multiplication tables!

- What about the way you multiplied numbers in school?
 - · Learn to multiply single digits multiplication tables!
 - · Learn to multiply large numbers with single digits

- What about the way you multiplied numbers in school?
 - · Learn to multiply single digits multiplication tables!
 - · Learn to multiply large numbers with single digits
 - Given $a = a_m a_{m-1} \dots a_0$ and $b = b_n b_{n-1} \dots b_0$ do the following:

- Do
$$c_0=a\times b_0$$
 , $c_1=a\times b_1$, . . . , $c_n=a\times b_n$

- What about the way you multiplied numbers in school?
 - · Learn to multiply single digits multiplication tables!
 - · Learn to multiply large numbers with single digits
 - Given $a=a_ma_{m-1}\dots a_0$ and $b=b_nb_{n-1}\dots b_0$ do the following:
 - Do $c_0=a\times b_0$, $c_1=a\times b_1$, . . . , $c_n=a\times b_n$
 - Write down the number $\sum_{i=0}^{n} c_i \times 10^i$.

Figure 1: Anonymous 1458 textbook - Treviso Arithmetic

Peasant's multiplication (1650 B.C) Given two numbers a, b Start with c=0, until a=0

- · Check parity of a
- Addition If a is odd, do c = c + b
- Duplation $b = 2 \times b$
- Mediation $a = \lfloor \frac{a}{2} \rfloor$

a	b	С
		0
35	+46	46
17	+92	138
8	184	138
4	368	138
2	736	138
1	+1472	1610

Question Can you perform multiplication using a compass and straight-edge?

Given two line segments of length a and b, and another line segment of unit length, construct a line segment of length a \times b

Question Can you perform multiplication using a compass and straight-edge?

Given two line segments of length a and b, and another line segment of unit length, construct a line segment of length a \times b

What if a and b are not integers

• Which is a better algorithm or are they all equally good?

- Which is a better algorithm or are they all equally good?
- How do we measure the goodness of an algorithm?

- Which is a better algorithm or are they all equally good?
- · How do we measure the goodness of an algorithm?
- Are there algorithms for integer multiplication that are better?
 - When do we decide to stop searching for better algorithms?

Administrivia

Administrative details

- · When: 'B' slot
 - 3 lectures (Mon, Tue, Wed) + 1 tutorial (Fri)
- · Contact: Sign-up on Zulip
- Course page: https://yaduvasudev.github.io/2800-23/
- TAs: Sampriti, Keshav, Abhijit, Bibhuti, Ravi, Rayan, Barenya, Souradipto, Ankit, Anmol, Susmit

Administrative details

Relative grading

Grading scheme:

- Tutorial quizzes: best 2 out of 3 = 20%
- Quizzes 1 & 2: 2 × 20% = 40%
- End-sem: 40%

Attendance requirements: 85% (as mandated by the institute)

SEAT algorithm

Student Elective Allocation Tool:

Student Elective Allocation Tool:

- Set of students with preference order for courses offered in the institute
- Set of courses with some preference order for students (GPA based?)

Student Elective Allocation Tool:

- Set of students with preference order for courses offered in the institute
- Set of courses with some preference order for students (GPA based?)
- Allocate students to courses so that the course instructors and students are "happy"

Student Elective Allocation Tool:

- Set of students with preference order for courses offered in the institute
- Set of courses with some preference order for students (GPA based?)
- Allocate students to courses so that the course instructors and students are "happy"
 - · How should we define "happy"?

Preference orders for students and courses

- $S_1 : (C_0, C_1, C_2, C_3, C_4),$ $S_2 : (C_0, C_3, C_4, C_1, C_2), \dots$
- C_0 : $(S_1, S_3, S_4, S_0, S_2)$, C_3 : $(S_2, S_1, S_0, S_4, S_3)$,...

Preference orders for students and courses

- $S_1 : (C_0, C_1, C_2, C_3, C_4),$ $S_2 : (C_0, C_3, C_4, C_1, C_2), \dots$
- C_0 : $(S_1, S_3, S_4, S_0, S_2)$, C_3 : $(S_2, S_1, S_0, S_4, S_3)$, . . .

• If S_1 is assigned the course C_0 , then S_1 and C_0 are happy!

Preference orders for students and courses

- $S_1: (C_0, C_1, C_2, C_3, C_4),$ $S_2: (C_0, C_3, C_4, C_1, C_2), \dots$
- C_0 : $(S_1, S_3, S_4, S_0, S_2)$, C_3 : $(S_2, S_1, S_0, S_4, S_3)$, . . .
- If S_1 is assigned the course C_0 , then S_1 and C_0 are happy!
- If S₂ is assigned the course C₃, he/she may not be happy but cannot do anything about it! (why?)

Preference orders for students and courses

- S₁: (C₀, C₁, C₂, C₃, C₄), S₂: (C₀, C₃, C₄, C₁, C₂),... • C₀: (S₁, S₃, S₄, S₀, S₂),
 - $C_3:(S_2,S_1,S_0,S_4,S_3),\ldots$
- If S_1 is assigned the course C_0 , then S_1 and C_0 are happy!
- If S₂ is assigned the course C₃, he/she may not be happy but cannot do anything about it! (why?)
- · The notion of happiness has to be modified to one of stability

Stable marriages

Stable marriages

How should the students be mapped to the courses?

How should the students be mapped to the courses?

$$\bullet \ \, S_0-C_0\text{, } S_1-C_2\text{, } S_2-C_1$$

- · How should the students be mapped to the courses?
 - $S_0 C_0$, $S_1 C_2$, $S_2 C_1$
- · Should such mappings always exist?

- How should the students be mapped to the courses?
 - $S_0 C_0$, $S_1 C_2$, $S_2 C_1$
- · Should such mappings always exist?
- Can there be more than one such mapping? If so, which one is "better"?

- · How should the students be mapped to the courses?
 - $S_0 C_0$, $S_1 C_2$, $S_2 C_1$
- · Should such mappings always exist?
- Can there be more than one such mapping? If so, which one is "better"?
- If a mapping exists, how will we find it?

COLLEGE ADMISSIONS AND THE STABILITY OF MARRIAGE

D. GALE* AND L. S. SHAPLEY, Brown University and the RAND Corporation

1. Introduction. The problem with which we shall be concerned relates to the following typical situation: A college is considering a set of n applicants of which it can admit a quota of only q. Having evaluated their qualifications, the admissions office must decide which ones to admit. The procedure of offering admission only to the q best-qualified applicants will not generally be satisfactory, for it cannot be assumed that all who are offered admission will accept.

COLLEGE ADMISSIONS AND THE STABILITY OF MARRIAGE

D. GALE* AND L. S. SHAPLEY, Brown University and the RAND Corporation

1. Introduction. The problem with which we shall be concerned relates to the following typical situation: A college is considering a set of n applicants of which it can admit a quota of only q. Having evaluated their qualifications, the admissions office must decide which ones to admit. The procedure of offering admission only to the q best-qualified applicants will not generally be satisfactory, for it cannot be assumed that all who are offered admission will accept.

We contend that the difficulties here described can be avoided. We shall describe a procedure for assigning applicants to colleges which should be satisfactory to both groups, which removes all uncertainties and which, assuming there are enough applicants, assigns to each college precisely its quota.

How Game Theory Helped Improve New York City's High School Application Process

How Game Theory Helped Improve New York City's High School Application Process

 Nobel prize in Economics (2012) for Shapley and Roth - "for the theory of stable allocations and the practice of market design"

Input: Set of students, courses and the list of preferences

	1 st	2 nd	3 rd
C_0	S_0	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C_2	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C_0	C_2
S ₁	C_0	C ₁	C_2
S ₂	C_0	S ₁	S ₂

Input: Set of students, courses and the list of preferences

	1 st	2 nd	3 rd
C_0	S_0	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C ₂	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C ₀	C ₂
S ₁	C_0	C ₁	C ₂
S ₂	C ₀	S ₁	S ₂

Output: A matching between the set of courses and the set of students.

Input: Set of students, courses and the list of preferences

	1 st	2 nd	3 rd
C ₀	S ₀	S ₁	S ₂
C ₁	S ₁	S_0	S ₂
C_2	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C ₀	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	S ₁	S ₂

Output: A matching between the set of courses and the set of students.

- Each course is assigned exactly one student.
- Each student is allotted exactly one course.

Input: Set of students, courses and the list of preferences

	1 st	2 nd	3 rd
C ₀	S ₀	S ₁	S ₂
C ₁	S ₁	S_0	S ₂
C_2	S_0	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C ₀	C ₂
S ₁	C_0	C ₁	C ₂
S ₂	C_0	S ₁	S ₂

Output: A matching between the set of courses and the set of students.

- Each course is assigned exactly one student.
- Each student is allotted exactly one course.

	1 st	2 nd	3 rd
C_0	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C_2	S_0	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C_0	C_2
S ₁	C ₀	C ₁	C ₂
S ₂	C_0	C ₁	C ₂

Matching: $S_0 \leftrightarrow C_2$, $S_1 \leftrightarrow C_1$, $S_2 \leftrightarrow C_0$

	1 st	2 nd	3 rd
C_0	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C_2	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S_0	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S_2	C_0	C ₁	C ₂

Matching: $S_0 \leftrightarrow C_2$, $S_1 \leftrightarrow C_1$, $S_2 \leftrightarrow C_0$

Unstable pair A pair (S_i, C_j) is said to be an unstable pair if

- S_i prefers C_i to the currently allotted course, and
- $\boldsymbol{C}_{\boldsymbol{j}}$ prefers $\boldsymbol{S}_{\boldsymbol{i}}$ to the currently assigned student

	1 st	2 nd	3 rd
C_0	S_0	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C_2	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C_0	C_2
S ₁	C ₀	C ₁	C ₂
S ₂	C_0	C ₁	C ₂

Matching: $S_0 \leftrightarrow C_2$, $S_1 \leftrightarrow C_1$, $S_2 \leftrightarrow C_0$

Unstable pair A pair (S_i, C_j) is said to be an unstable pair if

- S_i prefers C_i to the currently allotted course, and
- C_j prefers S_i to the currently assigned student

Question Are there any unstable pairs in the matching above?

	1 st	2 nd	3 rd
C_0	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C_2	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C_0	C_2
S ₁	C_0	C ₁	C_2
S ₂	C_0	C ₁	C ₂

Matching: $S_0 \leftrightarrow C_2$, $S_1 \leftrightarrow C_1$, $S_2 \leftrightarrow C_0$

Unstable pair A pair (S_i, C_j) is said to be an unstable pair if

- S_i prefers C_i to the currently allotted course, and
- C_i prefers S_i to the currently assigned student

Question Are there any unstable pairs in the matching above?

An unstable pair can improve their mutual happiness by breaking the current matching!

A **stable matching** is a matching where every course is allotted a student such that there are no unstable pairs

A **stable matching** is a matching where every course is allotted a student such that there are no unstable pairs

A **stable matching** is a matching where every course is allotted a student such that there are no unstable pairs

	1 st	2 nd	3 rd
C_0	S_0	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C ₂	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C_0	C ₂
S ₁	C_0	C ₁	C ₂
S ₂	C ₀	C ₁	C ₂

A **stable matching** is a matching where every course is allotted a student such that there are no unstable pairs

	1 st	2 nd	3 rd
C ₀	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C ₂	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C_0	C ₂
S ₁	C_0	C ₁	C ₂
S ₂	C ₀	C ₁	C ₂

A **stable matching** is a matching where every course is allotted a student such that there are no unstable pairs

	1 st	2 nd	3 rd
C ₀	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C ₂	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	C ₁	C ₂

$$\left. \begin{array}{l} S_0 \leftrightarrow C_0, \, S_1 \leftrightarrow C_1, \, S_2 \leftrightarrow C_2 \\ S_0 \leftrightarrow C_1, \, S_1 \leftrightarrow C_0, \, S_2 \leftrightarrow C_2 \end{array} \right\} \text{--two stable matchings}$$

- 2n people each person ranks the remaining 2n-1
- Construct a matching with no unstable pairs

- 2n people each person ranks the remaining 2n-1
- Construct a matching with no unstable pairs

	1 st	2 nd	3 rd
S ₁	S ₂	S ₃	S ₄
S ₂	S ₃	S ₁	S ₄
S ₃	S ₁	S ₂	S ₄
S ₄	S ₁	S ₂	S ₃

- 2n people each person ranks the remaining 2n-1
- · Construct a matching with no unstable pairs

	1 st	2 nd	3 rd
S ₁	S ₂	S ₃	S ₄
S ₂	S ₃	S ₁	S ₄
S ₃	S ₁	S ₂	S ₄
S ₄	S ₁	S ₂	S ₃

$$S_1 \leftrightarrow S_2$$
, $S_3 \leftrightarrow S_4$:

- 2n people each person ranks the remaining 2n-1
- · Construct a matching with no unstable pairs

	1 st	2 nd	3 rd
S ₁	S ₂	S ₃	S ₄
S ₂	S ₃	S ₁	S ₄
S ₃	S ₁	S ₂	S ₄
S ₄	S ₁	S ₂	S ₃

$$S_1 \leftrightarrow S_2$$
, $S_3 \leftrightarrow S_4$: (S_2, S_3) unstable

- 2n people each person ranks the remaining 2n-1
- · Construct a matching with no unstable pairs

	1 st	2 nd	3 rd
S ₁	S ₂	S ₃	S ₄
S ₂	S ₃	S ₁	S ₄
S ₃	S ₁	S ₂	S ₄
S ₄	S ₁	S ₂	S ₃

$$\begin{aligned} &S_1 \leftrightarrow S_2, S_3 \leftrightarrow S_4 : (S_2, S_3) \text{ unstable} \\ &S_1 \leftrightarrow S_3, S_2 \leftrightarrow S_4 : \end{aligned}$$

- 2n people each person ranks the remaining 2n-1
- Construct a matching with no unstable pairs

	1 st	2 nd	3 rd
S ₁	S ₂	S ₃	S ₄
S ₂	S ₃	S ₁	S ₄
S ₃	S ₁	S ₂	S ₄
S ₄	S ₁	S ₂	S ₃

$$S_1 \leftrightarrow S_2$$
, $S_3 \leftrightarrow S_4$: (S_2, S_3) unstable
 $S_1 \leftrightarrow S_3$, $S_2 \leftrightarrow S_4$: (S_1, S_2) unstable

- 2n people each person ranks the remaining 2n-1
- Construct a matching with no unstable pairs

	1 st	2 nd	3 rd
S ₁	S ₂	S ₃	S ₄
S ₂	S ₃	S ₁	S ₄
S ₃	S ₁	S ₂	S ₄
S ₄	S ₁	S ₂	S ₃

$$\begin{split} &S_1 \leftrightarrow S_2 \text{, } S_3 \leftrightarrow S_4 : \left(S_2, S_3\right) \text{ unstable} \\ &S_1 \leftrightarrow S_3 \text{, } S_2 \leftrightarrow S_4 : \left(S_1, S_2\right) \text{ unstable} \\ &S_1 \leftrightarrow S_4 \text{, } S_2 \leftrightarrow S_3 : \end{split}$$

- 2n people each person ranks the remaining 2n-1
- Construct a matching with no unstable pairs

	1 st	2 nd	3 rd
S ₁	S ₂	S ₃	S ₄
S ₂	S ₃	S ₁	S ₄
S ₃	S ₁	S ₂	S ₄
S ₄	S ₁	S ₂	S ₃

$$\begin{split} &S_1 \leftrightarrow S_2, S_3 \leftrightarrow S_4: (S_2, S_3) \text{ unstable} \\ &S_1 \leftrightarrow S_3, S_2 \leftrightarrow S_4: (S_1, S_2) \text{ unstable} \\ &S_1 \leftrightarrow S_4, S_2 \leftrightarrow S_3: (S_1, S_3) \text{ unstable} \end{split}$$

Set M $\leftarrow \emptyset$ while \exists unmatched student S and course to which (s)he has not applied **do**

Set $M \leftarrow \emptyset$ while \exists unmatched student S and course to which (s)he has not applied do $C \leftarrow$ first course in list of S to which (s)he has not applied

```
Set M \leftarrow \emptyset while \exists unmatched student S and course to which (s)he has not applied do
C \leftarrow \text{first course in list of S to which (s)he has not applied}
\text{if C is unmatched then}
M \leftarrow M + \{(C,S)\}
\text{else}
```

```
Set M \leftarrow \emptyset
while \exists unmatched student S and course to which (s)he
 has not applied do
    C \leftarrow first course in list of S to which (s)he has not
     applied
   if C is unmatched then
        M \leftarrow M + \{(C, S)\}
    else
        if C prefers S to its current student S' then
            M \leftarrow M - \{(C, S')\} + \{(C, S)\}
        else
```

```
Set M \leftarrow \emptyset
while \exists unmatched student S and course to which (s)he
 has not applied do
    C \leftarrow first course in list of S to which (s)he has not
     applied
   if C is unmatched then
        M \leftarrow M + \{(C, S)\}
    else
        if C prefers S to its current student S' then
            M \leftarrow M - \{(C, S')\} + \{(C, S)\}
        else
            C rejects S
```

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C ₀	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C ₀	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_0 applies to C_1 :

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C ₀	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C_2	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_0 applies to C_1 : C_1 accepts

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C ₀	C ₃	C_2
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C_0
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_1 applies to C_3 :

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C ₀	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_1 applies to C_3 : C_3 accepts

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C ₀	C ₃	C_2
S ₁	C ₃	C ₁	C_0	C_2
S ₂	C ₁	C ₂	C ₃	C_0
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_2 applies to C_1 :

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C ₀	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_2 applies to C_1 : C_1 accepts

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C ₀	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_0 applies to C_0 :

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C_0	C ₃	C_2
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C_0
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_0 applies to C_0 : C_0 accepts

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C_0	C ₃	C_2
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C_0
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_3 applies to C_0 :

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C_0	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_3 applies to C_0 : C_0 rejects

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C_0	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_3 applies to C_3 :

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C_0	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_3 applies to C_3 : C_3 accepts

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C_0	C ₃	C_2
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C_0
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_1 applies to C_1 :

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C_0	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_1 applies to C_1 : C_1 rejects

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C_0	C ₃	C_2
S ₁	C ₃	C ₁	C_0	C_2
S ₂	C ₁	C ₂	C ₃	C_0
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_1 applies to C_0 :

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C_0	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_1 applies to C_0 : C_0 rejects

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C_0	C ₃	C_2
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_1 applies to C_2 :

	1 st	2 nd	3 rd	4 th
S ₀	C ₁	C_0	C ₃	C ₂
S ₁	C ₃	C ₁	C ₀	C ₂
S ₂	C ₁	C ₂	C ₃	C ₀
S ₃	C ₀	C ₃	C ₂	C ₁

	1 st	2 nd	3 rd	4 th
C ₀	S ₀	S ₁	S ₃	S ₂
C ₁	S ₂	S ₁	S ₃	S ₀
C ₂	S ₁	S ₂	S ₃	S ₀
C ₃	S ₀	S ₃	S ₂	S ₁

 S_1 applies to C_2 : C_2 accepts

Gale-Shapley algorithm: pseudocode

```
Set M \leftarrow \emptyset
while \exists unmatched student S and course to which (s)he
 has not applied do
    C \leftarrow first course in list of S to which (s)he has not
     applied
   if C is unmatched then
        M \leftarrow M + \{(C, S)\}
    else
        if C prefers S to its current student S' then
            M \leftarrow M - \{(C, S')\} + \{(C, S)\}
        else
            C rejects S
```

Lemma: Once a course is matched to a student, the following are true

- · The course is never unmatched
- If the course is assigned a new student, (s)he will be higher in preference order for the course

Lemma: Once a course is matched to a student, the following are true

- The course is never unmatched
- If the course is assigned a new student, (s)he will be higher in preference order for the course
- Only reason for a course to change the assigned student is if a student who is higher in its preference order applies

Lemma: The Gale-Shapley algorithm terminates after n² iterations of the while-loop with a matching

Each student applies to a course at most once

- Each student applies to a course at most once
- After n² steps, every course has been applied to at least once

- Each student applies to a course at most once
- After n² steps, every course has been applied to at least once
- Once a course is applied to, it remains matched

- Each student applies to a course at most once
- After n² steps, every course has been applied to at least once
- Once a course is applied to, it remains matched
- If all courses are matched, then all students are also matched

Lemma: If M is the matching returned by the Gale-Shapley algorithm, then M has no unstable pairs

Lemma: If M is the matching returned by the Gale-Shapley algorithm, then M has no unstable pairs

Lemma: If M is the matching returned by the Gale-Shapley algorithm, then M has no unstable pairs

Consider a pair $(C, S) \notin M$ - Can (C, S) form an unstable pair?

S never applied to C

Lemma: If M is the matching returned by the Gale-Shapley algorithm, then M has no unstable pairs

- S never applied to C
 - S applies to courses in the decreasing order of preference

Lemma: If M is the matching returned by the Gale-Shapley algorithm, then M has no unstable pairs

- · S never applied to C
 - S applies to courses in the decreasing order of preference
 - S is matched to a course C' higher in its preference order

Lemma: If M is the matching returned by the Gale-Shapley algorithm, then M has no unstable pairs

- S never applied to C
 - S applies to courses in the decreasing order of preference
 - S is matched to a course C' higher in its preference order
- S applied to C at some iteration

Lemma: If M is the matching returned by the Gale-Shapley algorithm, then M has no unstable pairs

- S never applied to C
 - S applies to courses in the decreasing order of preference
 - S is matched to a course C' higher in its preference order
- S applied to C at some iteration
 - S was rejected by C because C was assigned a more preferred student

Lemma: If M is the matching returned by the Gale-Shapley algorithm, then M has no unstable pairs

- S never applied to C
 - S applies to courses in the decreasing order of preference
 - S is matched to a course C' higher in its preference order
- S applied to C at some iteration
 - S was rejected by C because C was assigned a more preferred student
 - S was ditched by C when it received request from a student higher in the preference order

Gale-Shapley algorithm: stability

Lemma: If M is the matching returned by the Gale-Shapley algorithm, then M has no unstable pairs

Consider a pair $(C, S) \notin M$ - Can (C, S) form an unstable pair?

- S never applied to C
 - S applies to courses in the decreasing order of preference
 - S is matched to a course C^\prime higher in its preference order
- · S applied to C at some iteration
 - S was rejected by C because C was assigned a more preferred student
 - S was ditched by C when it received request from a student higher in the preference order

Question Do all executions of the Gale-Shapley algorithm lead to the same stable matching?

The while-loop executes at most n² times

 How long does it take to find an unmatched student and a course that (s)he has not applied to?

- How long does it take to find an unmatched student and a course that (s)he has not applied to?
 - · Queue of students who are not matched
 - · Queue of courses not applied to (for every student)

- How long does it take to find an unmatched student and a course that (s)he has not applied to?
 - · Queue of students who are not matched
 - Queue of courses not applied to (for every student)
- How should the matching be stored so that you can check if C is matched in O(1) time?

The while-loop executes at most n² times

- How long does it take to find an unmatched student and a course that (s)he has not applied to?
 - · Queue of students who are not matched
 - · Queue of courses not applied to (for every student)
- How should the matching be stored so that you can check if C is matched in O(1) time?

One bit per course/student to indicate whether the course is matched, and id of the matched course/student

- How long does it take to find an unmatched student and a course that (s)he has not applied to?
 - · Queue of students who are not matched
 - Queue of courses not applied to (for every student)
- How should the matching be stored so that you can check if C is matched in O(1) time?
 - One bit per course/student to indicate whether the course is matched, and id of the matched course/student
- The data structure storing the matching should allow an update of the matching in O(1) time

- How long does it take to find an unmatched student and a course that (s)he has not applied to?
 - · Queue of students who are not matched
 - Queue of courses not applied to (for every student)
- How should the matching be stored so that you can check if C is matched in O(1) time?
 - One bit per course/student to indicate whether the course is matched, and id of the matched course/student
- The data structure storing the matching should allow an update of the matching in O(1) time
 - Update the corresponding bits, and change the course/student information

- How long does it take to find an unmatched student and a course that (s)he has not applied to? O(1)-time
- Checking if C is a matched course O(1)-time
- Update the matching O(1)-time

The while-loop executes at most n² times

- How long does it take to find an unmatched student and a course that (s)he has not applied to? O(1)-time
- Checking if C is a matched course O(1)-time
- Update the matching O(1)-time

Gale-Shapley algorithm runs in time $O(n^2)$

	1 st	2 nd	3 rd
C ₀	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C ₂	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	C ₁	C ₂

$$\left. \begin{array}{l} S_0 \leftrightarrow C_0, \, S_1 \leftrightarrow C_1, \, S_2 \leftrightarrow C_2 \\ S_0 \leftrightarrow C_1, \, S_1 \leftrightarrow C_0, \, S_2 \leftrightarrow C_2 \end{array} \right\} \text{--two stable matchings}$$

	1 st	2 nd	3 rd
C_0	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C_2	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	C ₁	C ₂

$$\left. \begin{array}{l} S_0 \leftrightarrow C_0, S_1 \leftrightarrow C_1, S_2 \leftrightarrow C_2 \\ S_0 \leftrightarrow C_1, S_1 \leftrightarrow C_0, S_2 \leftrightarrow C_2 \end{array} \right\} \text{--two stable matchings}$$

- There is no stable matching that matches S_2 to C_0 or C_1

	1 st	2 nd	3 rd
C_0	S_0	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C ₂	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S_0	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	C ₁	C ₂

$$\left. \begin{array}{l} S_0 \leftrightarrow C_0, \, S_1 \leftrightarrow C_1, \, S_2 \leftrightarrow C_2 \\ S_0 \leftrightarrow C_1, \, S_1 \leftrightarrow C_0, \, S_2 \leftrightarrow C_2 \end{array} \right\} \text{- two stable matchings}$$

- There is no stable matching that matches S₂ to C₀ or C₁
- There is no stable matching that matches C_2 to S_0 or S_1

	1 st	2 nd	3 rd
C_0	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C ₂	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S_0	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	C ₁	C ₂

$$\left. \begin{array}{l} S_0 \leftrightarrow C_0, \, S_1 \leftrightarrow C_1, \, S_2 \leftrightarrow C_2 \\ S_0 \leftrightarrow C_1, \, S_1 \leftrightarrow C_0, \, S_2 \leftrightarrow C_2 \end{array} \right\} \text{- two stable matchings}$$

- There is no stable matching that matches S₂ to C₀ or C₁
- There is no stable matching that matches C_2 to S_0 or S_1
- M is the best matching for the students, and the worst for the courses

	1 st	2 nd	3 rd
C_0	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C ₂	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S_0	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	C ₁	C ₂

$$\left. \begin{array}{l} S_0 \leftrightarrow C_0, \, S_1 \leftrightarrow C_1, \, S_2 \leftrightarrow C_2 \\ S_0 \leftrightarrow C_1, \, S_1 \leftrightarrow C_0, \, S_2 \leftrightarrow C_2 \end{array} \right\} \text{- two stable matchings}$$

- There is no stable matching that matches S_2 to C_0 or C_1
- There is no stable matching that matches C_2 to S_0 or S_1
- M is the best matching for the students, and the worst for the courses
- M' is the best matching for the courses, and the worst for the students

	1 st	2 nd	3 rd
C ₀	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C ₂	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S_0	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	C ₁	C_2

$$\left. \begin{array}{l} S_0 \leftrightarrow C_0, \, S_1 \leftrightarrow C_1, \, S_2 \leftrightarrow C_2 \\ S_0 \leftrightarrow C_1, \, S_1 \leftrightarrow C_0, \, S_2 \leftrightarrow C_2 \end{array} \right\} - \text{two stable matchings}$$

Theorem:

- If the students apply to the courses, then the output obtained will be the best matching for the students, and the worst for the courses.
- If the courses propose to the students, then the output obtained will be the best matching for the courses, and the worst for the students.

	1 st	2 nd	3 rd
C_0	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C_2	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	C ₁	C ₂

 A course C_j is a valid match for S_i if there exists a stable matching that matches C_j to S_i

	1 st	2 nd	3 rd
C ₀	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C ₂	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S ₀	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	C ₁	C_2

 A course C_j is a valid match for S_i if there exists a stable matching that matches C_j to S_i

 C_0 is a valid match for S_0 and $S_1\text{, but not for }S_2$

	1 st	2 nd	3 rd
C_0	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C_2	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S_0	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	C ₁	C ₂

- A course C_j is a valid match for S_i if there exists a stable matching that matches C_j to S_i
 - C_0 is a valid match for S_0 and S_1 , but not for S_2
- C_j is the best valid match for S_i if in every stable matching M', either C_j is matched to S_i , or if C' is matched to S_i , then C' is lower in the preference order than C_j

	1 st	2 nd	3 rd
C ₀	S ₀	S ₁	S ₂
C ₁	S ₁	S ₀	S ₂
C ₂	S ₀	S ₁	S ₂

	1 st	2 nd	3 rd
S_0	C ₁	C_0	C ₂
S ₁	C ₀	C ₁	C ₂
S ₂	C ₀	C ₁	C_2

 A course C_j is a valid match for S_i if there exists a stable matching that matches C_j to S_i

 C_0 is a valid match for S_0 and $S_1\text{, but not for }S_2$

 C_j is the best valid match for S_i if in every stable matching M', either C_j is matched to S_i, or if C' is matched to S_i, then C' is lower in the preference order than C_i

Theorem: Let $M^* = \{(S_i, best(S_i)) | 1 \leq i \leq n\}$. If Gale-Shapley algorithm is run with students making requests, then it always returns M^* irrespective of the order in which the students make the requests.

Theorem: Let $M^* = \{(S_i, best(S_i)) | 1 \leq i \leq n\}$. If Gale-Shapley algorithm is run with students making requests, then it always returns M^* irrespective of the order in which the students make the requests.

Proof: Suppose the GS algorithm returns matching $M \neq M^*$

Theorem: Let $M^* = \{(S_i, best(S_i)) | 1 \le i \le n\}$. If Gale-Shapley algorithm is run with students making requests, then it always returns M^* irrespective of the order in which the students make the requests.

Proof: Suppose the GS algorithm returns matching $M \neq M^*$

Consider first instance where a student is rejected by a course that is a valid match

S_i is rejected by a valid match C_j

Theorem: Let $M^* = \{(S_i, best(S_i)) | 1 \le i \le n\}$. If Gale-Shapley algorithm is run with students making requests, then it always returns M^* irrespective of the order in which the students make the requests.

Proof: Suppose the GS algorithm returns matching $M \neq M^*$

Consider first instance where a student is rejected by a course that is a valid match

- S_i is rejected by a valid match C_j
- C_j matched to S', higher in preference order

Theorem: Let $M^* = \{(S_i, best(S_i)) | 1 \leq i \leq n\}$. If Gale-Shapley algorithm is run with students making requests, then it always returns M^* irrespective of the order in which the students make the requests.

Proof: Suppose the GS algorithm returns matching $M \neq M^*$

Consider first instance where a student is rejected by a course that is a valid match

- S_i is rejected by a valid match C_j
- C_i matched to S', higher in preference order

Consider a stable matching M' where $(S_i,C_j)\in M'$, and $(S',C')\in M'$

Theorem: Let $M^* = \{(S_i, best(S_i)) | 1 \le i \le n\}$. If Gale-Shapley algorithm is run with students making requests, then it always returns M^* irrespective of the order in which the students make the requests.

Proof: Suppose the GS algorithm returns matching $M \neq M^*$

Consider first instance where a student is rejected by a course that is a valid match

- S_i is rejected by a valid match C_j
- C_j matched to S', higher in preference order

Consider a stable matching M' where $(S_i, C_j) \in M'$, and $(S', C') \in M'$

Question Which course does S' prefer more: C_j or C'?

Theorem: Let $M^* = \{(S_i, best(S_i)) | 1 \leq i \leq n\}$. If Gale-Shapley algorithm is run with students making requests, then it always returns M^* irrespective of the order in which the students make the requests.

Proof: Suppose the GS algorithm returns matching $M \neq M^*$

Consider first instance where a student is rejected by a course that is a valid match

- S_i is rejected by a valid match C_j
- C_i matched to S', higher in preference order

Consider a stable matching M' where $(S_i,C_j)\in M'$, and $(S',C')\in M'$

Question Which course does S' prefer more: C_j or C'?

- S^\prime was not rejected by a valid match when it is matched to C_j

Theorem: Let $M^* = \{(S_i, best(S_i)) | 1 \le i \le n\}$. If Gale-Shapley algorithm is run with students making requests, then it always returns M^* irrespective of the order in which the students make the requests.

Proof: Suppose the GS algorithm returns matching $M \neq M^*$

Consider first instance where a student is rejected by a course that is a valid match

- S_i is rejected by a valid match C_j
- C_i matched to S', higher in preference order

Consider a stable matching M' where $(S_i,C_j)\in M'$, and $(S',C')\in M'$

Question Which course does S' prefer more: C_j or C'?

- \bullet S' was not rejected by a valid match when it is matched to C_j
- S' prefers C_i to $C' \Rightarrow (S', C_i)$ is unstable in M'

Theorem: Let $M^*=\{(S_i, best(S_i))|1\leq i\leq n\}$. If Gale-Shapley algorithm is run with students making requests, then it always returns M^* irrespective of the order in which the students make the requests.

Proof: Suppose the GS algorithm returns matching $M \neq M^*$

Consider first instance where a student is rejected by a course that is a valid match

- S_i is rejected by a valid match C_i
- C_i matched to S', higher in preference order

Consider a stable matching M' where $(S_i,C_j)\in M'$, and $(S',C')\in M'$

Question Which course does S' prefer more: C_j or C'?

- S' was not rejected by a valid match when it is matched to Contradicts the fact that
- S' prefers C_j to $C' \Rightarrow (S', C_j)$ is unstable in $M' \rightarrow M'$ is a stable matching

Theorem: Let $\widehat{M} = \{(\mathsf{worst}(C_j), C_j) | 1 \leq j \leq n\}.$ Then $\widehat{M} = M^*$

Theorem: Let
$$\widehat{M} = \{(\text{worst}(C_j), C_j) | 1 \le j \le n\}$$
. Then $\widehat{M} = M^*$

Proof: Consider $(S_i,C_j)\in M^*$ such that $S_i\neq S=\mathsf{worst}(C_j)$

Theorem: Let
$$\widehat{M} = \{(\text{worst}(C_j), C_j) | 1 \le j \le n\}$$
. Then $\widehat{M} = M^*$

Proof: Consider $(S_i, C_j) \in M^*$ such that $S_i \neq S = worst(C_j)$

- \exists a stable matching M' such that $(S,C_j)\in M'$, and
- C_j prefers S_i to S

Theorem: Let
$$\widehat{M} = \{(\text{worst}(C_j), C_j) | 1 \leq j \leq n\}$$
. Then $\widehat{M} = M^*$

Proof: Consider $(S_i, C_j) \in M^*$ such that $S_i \neq S = worst(C_j)$

- \exists a stable matching M' such that $(S,C_j)\in M'$, and
- · C_i prefers S_i to S

Suppose $(S_i,C')\in M'$

Theorem: Let
$$\widehat{M} = \{(\text{worst}(C_j), C_j) | 1 \leq j \leq n\}$$
. Then $\widehat{M} = M^*$

Proof: Consider $(S_i, C_j) \in M^*$ such that $S_i \neq S = worst(C_j)$

- \exists a stable matching M' such that $(S,C_j)\in M'$, and
- · C_i prefers S_i to S

Suppose $(S_i, C') \in M'$

• S_i prefers C_j to C^\prime

Theorem: Let
$$\widehat{M}=\{(\text{worst}(C_j),C_j)|1\leq j\leq n\}.$$
 Then $\widehat{M}=M^*$

Proof: Consider $(S_i, C_i) \in M^*$ such that $S_i \neq S = worst(C_i)$

- \exists a stable matching M' such that $(S, C_i) \in M'$, and
- · C_i prefers S_i to S

Suppose
$$(S_i, C') \in M'$$
• S_i prefers C_j to C'

Theorem: Let
$$\widehat{M}=\{(\text{worst}(C_j),C_j)|1\leq j\leq n\}.$$
 Then $\widehat{M}=M^*$

Proof: Consider $(S_i, C_j) \in M^*$ such that $S_i \neq S = worst(C_j)$

- \exists a stable matching M' such that $(S,C_j)\in M'$, and
- · C_i prefers S_i to S

Suppose
$$(S_i, C') \in M'$$
• S_i prefers C_j to C'

• (S_i, C_j) is an unstable pair in M^\prime