Analyse de trace de sang Projet 3A

Cléa Han, Yanis Labeyrie et Adrien Zabban

27 Mars 2024

Classes

Classe des types de trace de sang			
1- Traces passives	2- Goutte à Goutte		
3- Transfert par contact	4- Transfert glissé		
5- Altération par contact	6- Altération glissée		
7- d'Accumulation	8- Coulée		
9- Chute de volume	10- sang Propulsé		
11- d'éjection	12- Volume Impacté		
13- Imprégnation	14- Zone d'interruption		
15- d'impact	16- Foyer de modèle d'impact		
17- Trace gravitationnelle	18- Sang expiré		
19- Trace d'insecte			

Table: Liste des 19 modèles de trace de sang

Données

- 2 datasets: données de laboratoire et données réelles issus de scène de crime
- données labo: 10978 images coupés en 80%, 10%, 10%, contient 4 backgrounds différents (lino, bois, carrelage, papier)
- données réelles: 245 images coupés en 60%, 10%, 30% de sorte à avoir 70 images dans le test. Pas de background

Images de laboratoire

(b) Modèle de Coulée sur fond de lino

Figure: Deux images de laboratoire

Images réelles

(a) Modèle Volume Impacté

(b) Modèle d'impact

Figure: Deux images de scènes de crime

Données

(a) Un modèle de Trace passives

(b) Plusieurs trace de passives

(c) Un modèle de trace d'ejection

Distribution des données

Figure: Distribution des données sur les 18 classes selon le dataset de laboratoire et de scène de crime.

Data processing

- reshape en 256×256
- symétries horizontales et verticales
- pas de rotation
- changement contraste et la luminescence
- pas de data augmentation sur la validation et le test

Modèle ResNet

- LP ResNet: Resnet 50 où l'on a remplacé la dernière couche dense de dimension 1000 par deux couches dense avec une dimension de sortie de 18. Et on gèle les autres poids
- AWL ResNet: On ne gèle pas les poids.

Figure: Schéma du modèle LP Resnet

Modèle Adversarial: prédire le background

Figure: Schéma du modèle Resnet adversarial

• loss utilisé
$$L_{adv} = \frac{CE_{tache}}{\alpha CE_{background}}$$

Modèle Fine Tune

- Fine Tune des modèles ResNet sur les données réelles
- ullet LP Resnet o FT LP ResNet
- ullet AWL Resnet o FT AWL ResNet

Les Métriques utilisées

- Accuracy micro: accuracy "classique"
- Accuracy macro: moyenne des accuracy sur chacune des classes
- Rappel, précision et le f1 score
- top 3

Meilleur learning rate

 Implémentation d'un Grid Search pour trouver le meilleur learning rate pour LP ResNet.

learning rate	acc micro	acc macro	f1-score	top 3
0.01	85.1	78.8	78.1	49.4
0.005	89.1	84.7	83.6	52.5
0.001	90.4	85.7	84.8	50.5
0.0005	91.1	86.8	86.0	49.1
0.0001	84.9	78.6	77.4	50.4

Table: Résultat de validation à la fin des entraı̂nements des modèles LP ResNet avec différents learning rate.

Trouver les meilleurs hyperparamètres pour Adversarial

• loss utilisé: $L_{adv} = \frac{CE_{tache}}{\alpha CE_{background}}$

Paramètres	Valeurs possibles		
Ir_{res} Ir_{adv}	0.01, 0.005, 0.001, 0.005, 0.0001 0.01, 0.005, 0.001, 0.005, 0.0001 0.001, 0.1, 0.5, 1, 2, 5, 10, 100		

Table: Liste des valeurs possibles pour les hyperparamètres testés dans le Random Search

Trouver les meilleurs hyperparamètres pour Adversarial

res acc micro	res acc macro	adv acc micro	<i>Ir_{res}</i>	Ir_{adv}	α
79.3	72.8	82.5	0.1	1	10
89.6	84.7	16.1	0.1	1	0.1
90.8	86.2	20.2	0.5	0.01	0.1
85.3	81.2	44.6	0.1	1	0.5
88	85.7	72	0.5	0.5	2
89.4	85.4	56.8	0.01	0.1	0.5
89.5	85.4	71	0.1	0.1	1
87.2	82.2	71.7	1	0.01	1
85.3	80.3	85.3	0.1	0.5	10
86.7	83.2	84.8	0.1	0.01	10

Table: Résultat de validation à la fin des entraınements des modèles Adversarial avec différents hypermaramètres.

Résultats de test sur les données de labo

Modèles	Acc Micro	Acc Macro	F1-score	Top 3
LP ResNet	95.2	94.3	94.7	99.9
FT LP ResNet	83.9	86.2	80.4	98.3
AWL ResNet	97.3	97.1	96.2	99.9
FT AWL ResNet	76.4	76.1	70.7	93.8
Adversarial	93.4	91.8	91.8	99.9

Table: Résultats de test sur les données de laboratoire

Résultats de test sur les données de réelles

Modèles	Acc Micro	Acc Macro	F1-score	Top 3
LP ResNet	12.9	6.0	4.0	30.1
FT LP ResNet	11.8	6.1	6.4	36.6
AWL Resnet	17.2	13.8	8.1	30.1
FT AWL ResNet	41.9	33.4	26.9	67.7
Adversarial	11.8	5.7	3.7	23.7

Table: Résultats de test sur les données réelles

Cartes de saillance

• Utilisation de GRAD CAM pour trouver les cartes de saillance.

Figure: Exemple d'une image de trace de sang (à gauche) avec sa carte de chaleur Grad CAM superposée (à droite).

Cartes de saillances

Figure: Exemple d'une image de trace de sang (à droite) avec sa carte de chaleur Grad CAM superposée (à gauche), dans le cadre d'une attention portée à la réglette.

Métriques sur les cartes de saillance

Average Drop (AD)

$$AD = \frac{1}{N} \sum_{i=1}^{N} \frac{[p_i - o_i]_+}{p_i} \cdot 100$$
 (1)

Average increase (AI)

$$AI = \frac{1}{N} \sum_{i=1}^{N} 1_{\rho_i < o_i} \cdot 100$$
 (2)

Average Gain (AG)

$$AG = \frac{1}{N} \sum_{i=1}^{N} \frac{[o_i - p_i]_+}{1 - p_i} \cdot 100$$
 (3)

Métriques sur les cartes de saillance

Métriques	Avg Drop	Avg Increase	Avg Gain
AWL ResNet	91.6	0.0	0.0
FT AWL ResNet	87.6	0.0	0.0

Table: Résultats des métriques sur les données réelles (de la base de données de test).

- On a $\forall i \in [1, N], p_i < o_i$
- utiliser des méthodes de saliency maps plus performantes comme Grad-CAM++ ou Score-CAM.

Tentative d'utilisation de la clé de détermination

Figure: Morceau de la clé de détermination fait par l'expert.

Conclusion

- Bon potentiel: 97% d'accuracy (micro) contre 41% avec les données réelles, sachant qu'il y a 10 000 images de laboratoire contre 254 images réelles.
- Tentative d'utiliser une clé de détermination
- Utiliser un plus gros ResNet
- Faire du self-supervise learning pour traiter toutes les données de l'expert
- Installer le code chez l'expert pour qu'il puisse le faire tourner en local sur sa machine
- Mise à disposition d'un GitHub public pour les prochaines équipes.
 - https://github.com/Highdrien/blood_trace_analysis

Annexes: courbe d'apprentissage: LP ResNet

Figure: Valeurs de la loss et des accuracy d'entraînement (en bleue) et de validation (en orange) en fonction des epochs durant l'entraînement du modèle LP ResNet.

Annexes: courbe d'apprentissage: AWL ResNet

Figure: Valeurs de la loss et des accuracy d'entraînement (en bleue) et de validation (en orange) en fonction des epochs durant l'entraînement du modèle AWL ResNet.

Annexes: courbe d'apprentissage: Adversarial

Figure: Valeurs de la loss et des accuracy d'entraînement (en bleue) et de validation (en orange) en fonction des epochs durant l'entraînement du modèle Adversarial.

Annexes: courbe d'apprentissage: FT ResNet

Figure: Valeurs de la loss d'entraînement (en bleue) et de validation (en orange) en fonction des epochs durant l'entraînement des modèles fine-tune sur les données réelles.