Subjectul 1

Se dă un graf neorientat conex G cu n>3 vârfuri, m muchii, m>n. Să se determine doi arbori parțiali T și T' ai lui G cu proprietățile:

- T este arbore de distante față de vârful 1: $d_T(1,v) = d_G(1,v)$ pentru orice vârf v din G
- În T' există cel puțin un vârf v cu $d_{T'}(1, v) \neq d_G(1, v)$.

Se vor afișa muchiile celor doi arbori parțiali determinați și, în plus, se vor afișa toate vârfurile v pentru care $d_{T}(1,v) \neq d_G(1,v)$. Complexitate O(m)

Informațiile despre graf se citesc din fișierul graf.in cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii

 $(d_G(x,y) = distanța de la x la y în G)$

graf.in	lesire pe ecran (solutia nu este unica)
5 7	T:
12	12
13	13
2 3	2 4
2 4	35
3 4	T':
35	12
45	2 4
	45
	3 4
	v: 3 5

Subjectul 2

Se citesc informații despre un graf **orientat** ponderat G din fișierul graf.in. Fișierul are următoarea structură:

- pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- pe următoarele m linii sunt câte 3 numere întregi **pozitive** reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf
- pe următoarea linie (a (m+2)-a linie) din fișier este un număr natural k (0<k<n) reprezentând numărul de vârfuri sursă; vârfurile sursă din G vor fi 1, 2, ..., k
- pe ultima linie a fișierului sunt două vârfuri t₁ și t₂, reprezentând vârfurile destinație ale grafului.

Notăm cu $S = \{1,...,k\}$ mulțimea vârfurilor sursă din G și cu $T = \{t_1,t_2\}$ mulțimea vârfurilor destinație din G. Spunem că un vârf y este accesibil din G acă există un drum de la G y. Presupunem că există cel puțin un vârf destinație care este accesibil dintr-un vârf sursă.

Să se determine distanța între cele două mulțimi:

$$d(S, T) = min \{d(x, y) | x \in S, y \in T\}$$

Să se determine în plus și o pereche de vârfuri (s,t) cu $s \in S$ și $t \in T$ cu

$$d(s,t) = d(S,T) = \min \{d(x, y) \mid x \in S, y \in T\}$$

și să se afișeze (pe ecran) un drum minim de la s la t. Complexitate O(mlog(n))

Exemplu

graf.in	Iesire pe ecran
6 8	distanta intre multimi = 2
1 2 3	s=2 t=3
1 6 10	drum minim 2 4 3
6 2 2	
2 4 1	
4 3 1	
5 3 4	
1 5 5	
3 2 7	
2	
3 6	

Explicații

$$k=2 \Rightarrow S = \{1, 2\}$$

 $T = \{3, 6\}$
 $d(1,3)=5, d(2,3)=2$
 $d(1,6)=10, d(2,6)=\infty$
Cea mai mică este $d(2,3)$
Un drum minim de la 2 la 3 este 2 4 3

Subjectul 3

Fisierul graf.in conține următoarele informații despre un graf bipartit conex:

- pe prima linie sunt 2 numere naturale n și m reprezentând numărul de vârfuri și numărul de muchii
- pe următoarele m linii sunt perechi de numere x y (separate prin spațiu) reprezentând extremitătile unei muchii

Se consideră graful G dat în fișierul graf.in. Notăm cu k numărul de vârfuri de grad impar din graf.

- a) Folosind un algoritm de determinare a unui flux maxim într-o rețea de transport, determinați un cuplaj maxim în subgraful indus de mulțimea vârfurilor de grad impar din G.
- b) Folosind punctul a) determinați dacă exista k/2 muchii care se pot elimina din G astfel încât să se obțină un graf cu următoarele proprietăți:
- gradul fiecărui vârf din G' este egal cu cel din G sau cu unu mai mic.
- în G' în fiecare componentă conexă există câte un ciclu care conține toate muchiile din componentă (o singura dată) Complexitate O(nm²)

graf.in	lesire pe ecran (solutia nu este unica)
8 9	16
15	2 5
16	3 7
17	
2 5	
3 5	
3 7	
3 4	
8 7	
8 4	

