Lecture Notes Calculus 3

Daniel Palma

 $August\ 29,\ 2023$

Contents

1	Orthongonality	3
2	Directional Cosines	4
3	Projections	5

1 Orthongonality

The word orthogonal is an extension of the idea of perpendicularity to things that dont have a direction.

orthongonal \approx perpendicular \approx normal

perpendicular applies to geometric objects meanwhule normal applies to vector objects $\,$

 \vec{a} and \vec{b} are orthonoonal if and only if $\vec{a}\cdot\vec{b}=0$

 \vec{O} is orthogonal to all vectors.

2 Directional Cosines

These are the cosines of the angles that a particular vector makes with the three different positive axes.

definitions:

- $\bullet\,$ Angle with positive x-axis: Alpha α
- Angle with positive y-axis: Beta β
- Angle with positive z-axis: Gamma γ

given
$$\vec{a} = \langle x, y, z \rangle$$

$$\cos \alpha = \frac{\vec{a} \cdot \hat{i}}{|\vec{a}||\hat{i}|} = \frac{x}{|\vec{a}|}$$

$$\cos \beta = \frac{\vec{a} \cdot \hat{j}}{|\vec{a}||\hat{j}|} = \frac{y}{|\vec{a}|}$$

$$\cos \gamma = \frac{\vec{a} \cdot \hat{j}}{|\vec{a}||\hat{j}|} = \frac{z}{|\vec{a}|}$$

another way to find the directional cosines is to find the unit vector, and each component will correspond to the appropriate directional cosine

3 Projections

Scalar Projection of \vec{a} onto $\vec{b} = comp_{\vec{b}}\vec{a}$