SVKM's NMIMS

Mukesh Patel School of Technology Management & Engineering

Programme:

B.Tech (ALL STREAMS)

Year: I

Trimester

Academic Year: 2012-2013

Batch:

2012-2013

Subject:

Basic Electrical Engineering

Marks: Time:

10 00 am To 100 pm

IBRARY

Date:

12/6/2013

Duration:

3 hrs.

Re - Examination

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer book, which is provided for their use.

NB:

1. Question no. 1 is compulsory.

2. Out of remaining questions, attempt any 4 questions.

3. In all 5 questions to be attempted.

4. All questions carry equal marks.

5. Answer to each new question to be started on a fresh page.

6. Figure in brackets on the right hand side carry equal marks.

	A	pt any four questions:- Describe RMS and Average value.	5
I	В .	State & explain Thevenin's theorem.	5-
(С	Compare Electric and Magnetic Circuits	5
]	D	What is the effect of temperature on resistor? Define temp. coefficient of resistance	5
I	Е	State & explain Fleming's Left hand rule.	5
I	F	Explain with neat diagram SC test on single phase transformer.	5
Q2 /	A	For the circuit given below, switch is closed at t=0, Assuming no initial current through inductor, find current at t = 0.3 sec. $\frac{K}{t=0} = \frac{1000}{1000}$	10
Ī	В	Calculate the effective resistance between points A & B.	10
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Q3	A	Find power delivered by 50 volts supply.	10
		$\begin{array}{c c} 5 \Omega \\ \hline 50 V \\ \hline 10 A \end{array}$	
	В	Define form factor & crest factor? Draw the vector diagrams & impedance triangle for R-L, R-C & RLC series circuits.	10
Q4	A	A 20 Ohm resistor is connected in series with an inductor, a capacitor and an ammeter across 25 volts variable frequency supply. When frequency is 400 Hz, the current is at its maximum value of 0.5 A and potential difference across capacitor is 150 volts. Find capacitance of capacitor and resistance, inductance of Inductor.	10
		Ammeter Ammeter Stroke	
	В	For the given circuit find the value of load resistance for maximum power transfer and calculate maximum power.	10
)	$\begin{array}{c c} 1 \Omega & & & \\ 8 V & & & \\ \end{array}$ $\begin{array}{c c} & & & \\ \hline & & & \\ \end{array}$ $\begin{array}{c c} & & & \\ \hline & & & \\ \end{array}$ $\begin{array}{c c} & & & \\ \hline & & & \\ \end{array}$	
Q5	A	Find current through 24 Ohm using Thevenin's Theorem.	10
		30 \Omega \q	ŝ
-		$ \begin{array}{c c} 220 \text{ V} & & & \\ \hline 50 \Omega^{2} I_{2} & & & \\ \hline 50 \Omega^{2} I_{2} & & & \\ \end{array} $	

	В	State relations between line & phase voltage, current & three phase power in star connected system? Three inductive coils each with the resistance of 15 ohm & an inductance of 0.03 H are connected in star & then in Delta to a three phase, 400 V, 50 Hz Supply. Calculate for each of the above case (i) phase current & line current (ii) phase voltage & line voltage (iii) Total power absorbed.	10
Q6	A	Define magnetic field strength, leakage flux & Explain hysteresis loop with practical circuit diagram.	10
	В	A steel ring of 25 cm mean diameter & of circular section 3 cm in diameter has an air gap of 1.5mm length. It is wound uniformly with 700 turns of wire carrying a current of 2 amp. Calculate (i) mmf (ii) air gap flux density (iii) magnetic flux (neglect magnetic leakage & assume that iron path takes about 35% of total magnetomotive force.)	10
Q7	A	Derive expression for EMF equation of single phase transformer? Compare core type & shell type transformer?	10
	В	Calculate the efficiency of transformer at full load & half load at i) unity pf (ii) 0.71 pf lagging for 80 kVA, 1100/250 V, 50 Hz, single phase transformer whose losses are as follows: iron losses = 800 W & Total copper losses with 160 A in low voltage winding is 200 W.	10