The group G is isomorphic to the group labelled by [72, 47] in the Small Groups library. Ordinary character table of $G\cong C6$ x A4:

	1a	2a	2b	3a	6a	2c	3b	6b	3c	6c	6d	3d	6e	6f	3e	6g	3f	6h	6i	3g	6j	6k	3h	6l
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	-1	1	-1	1	-1	1	1	-1	-1	1	-1	1	-1	1	1	-1	-1	1	-1
χ_3	1	-1	1	1	-1	-1	1	-1	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^2$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)	E(3)	E(3)	-E(3)	-E(3)	E(3)	-E(3)
χ_4	1	-1	1	1	-1	-1	1	-1	E(3)	-E(3)	E(3)	E(3)	-E(3)	-E(3)	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^2$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^{2}$
χ_5	1	-1	1	$E(3)^{2}$	$-E(3)^2$	-1	E(3)	-E(3)	1	-1	1	$E(3)^{2}$	$-E(3)^2$	-1	E(3)	-E(3)	1	-1	1	$E(3)^{2}$	$-E(3)^2$	-1	E(3)	-E(3)
χ_6	1	-1	1	E(3)	-E(3)	-1	$E(3)^{2}$	$-E(3)^2$	1	-1	1	E(3)	-E(3)	-1	$E(3)^{2}$	$-E(3)^2$	1	-1	1	E(3)	-E(3)	-1	$E(3)^{2}$	$-E(3)^2$
χ_7	1	-1	1	$E(3)^{2}$	$-E(3)^2$	-1	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	E(3)	-E(3)	$-E(3)^2$	1	-1	E(3)	-E(3)	E(3)	1	-1	-E(3)	$E(3)^{2}$	$-E(3)^2$
χ_8	1	-1	1	E(3)	-E(3)	-1	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)	E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	1	-1	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	1	-1	$-E(3)^2$	E(3)	-E(3)
χ_9	1	-1	1	$E(3)^{2}$	$-E(3)^2$	-1	E(3)	-E(3)	E(3)	-E(3)	E(3)	1	-1	-E(3)	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	E(3)	-E(3)	$-E(3)^2$	1	-1
χ_{10}	1	-1	1	E(3)	-E(3)	-1	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	$-E(3)^2$	$E(3)^{2}$	1	-1	$-E(3)^2$	E(3)	-E(3)	E(3)	-E(3)	E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	1	-1
χ_1	1	1	1	1	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)
χ_{12}	1	1	1	1	1	1	1	1	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$
χ_{13}	, 1	1	1	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	1	1	1	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	1	1	1	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)
χ_{14}	1	1	1	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	1	1	1	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	1	1	1	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$
χ_{1}	, 1	1	1	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	$E(3)^{2}$	1	1	E(3)	E(3)	E(3)	1	1	E(3)	$E(3)^{2}$	$E(3)^2$
χ_{16}	, 1	1	1	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	E(3)	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	1	1	$E(3)^{2}$	E(3)	E(3)
χ_{1}	. 1	1	1	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	E(3)	E(3)	E(3)	1	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	$E(3)^{2}$	1	1
χ_{18}	, 1	1	1	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	1	1	$E(3)^{2}$	E(3)	E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	E(3)	1	1
χ_{19}	3	1	-1	0	0	-3	0	0	3	1	-1	0	0	-3	0	0	3	1	-1	0	0	-3	0	0
χ_{20}	3	-1	-1	0	0	3	0	0	3	-1	-1	0	0	3	0	0	3	-1	-1	0	0	3	0	0
χ_{2}	3	1	-1	0	0	-3	0	0	$3 * E(3)^2$	$E(3)^{2}$	$-E(3)^2$	0	0	$-3*E(3)^2$	0	0	3 * E(3)	E(3)	-E(3)	0	0	-3 * E(3)	0	0
χ_{22}	3	1	-1	0	0	-3	0	0	3 * E(3)	E(3)	-E(3)	0	0	-3 * E(3)	0	0	$3 * E(3)^2$	$E(3)^{2}$	$-E(3)^2$	0	0	$-3*E(3)^2$	0	0
χ_{23}	3	-1	-1	0	0	3	0	0	$3*E(3)^2$	$-E(3)^2$	$-E(3)^2$	0	0	$3*E(3)^2$	0	0	3 * E(3)	-E(3)	-E(3)	0	0	3 * E(3)	0	0
$ \chi_{24} $	3	-1	-1	0	0	3	0	0	3 * E(3)	-E(3)	-E(3)	0	0	3 * E(3)	0	0	$3*E(3)^2$	$-E(3)^2$	$-E(3)^2$	0	0	$3*E(3)^2$	0	0

Trivial source character table of $C \simeq C6 \times M$ at n=3:

Trivial source character table of $G \cong C6 \times A4$ at $p=3$:												
Normalisers N_i		N_1	1		\overline{N}	V_2		N_3		Ł	N_5	N_6
p-subgroups of G up to conjugacy in G	P_1			P_2			P_3		P_4	Ł	P_5	P_6
Representatives $n_j \in N_i$		2a 2	2b $2c$	1a	2a	2b :	$2c \mid 1a$	$\iota = 2a$	1a	$2a \mid 1a$	a 2a	1a $2a$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	9	3 -	-3 -9	0	0	0	0 0	0	0	0 0) 0	0 0
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24}$	9	-3 -	-3 9	0	0	0	$0 \mid 0$	0	0	$0 \mid 0$) 0	0 0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$		_9 <u>9</u>	9 - 9	0	0	0	0 0	0	0	$0 \mid 0$) 0	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	9	9 9	9 9	0	0	0	0 0	0	0	0 0) 0	0 0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $		-1 -	-1 3	3	-1	-1	3 0	0	0	0 0) 0	0 0
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$		1 -	-1 -3	3	1	-1 -	$-3 \mid 0$	0	0	$0 \mid 0$) 0	0 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$	3	3 3	3 3	3	3	3	$3 \mid 0$	0	0	$0 \mid 0$) 0	0 0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$	3	-3 3	3 - 3	3	-3	3 -	$-3 \mid 0$	0	0	0 0) 0	00
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot $		-3 3	$\overline{3}$ -3	0	0	0	0 3	$\overline{-3}$	0	0 0) 0	0 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$	3	3 3	3 3	0	0	0	$0 \mid 3$	3	0	$0 \mid 0$) 0	0 0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	3	-3 3	$\overline{3}$ -3	0	0	0	0 0	0	3 -	-3 0) 0	0 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$	3	3 3	3 3	0	0	0	$0 \mid 0$	0	3	$3 \mid 0$) 0	0 0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot $	3	-3 :	$\overline{3}$ -3	0	0	0	0 0	0	0	0 3	3 -3	0 0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$	3	3 3	3 3	0	0	0	0 0	0	0	$0 \mid 3$	3	0 0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	1	-1 1	1 -1	1	-1	1 -	-1 1	-1	1 -	-1 1	1 -1	1 -1
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24}$	1	1	1 1	1	1	1	1 1	1	1	1 1	1 1	1 1

```
P_1 = Group([()]) \cong 1
```

 $P_2 = Group([(1,2,3)]) \cong C3$

 $P_3 = Group([(1, 2, 3)(4, 5, 7)(6, 8, 9)]) \cong C3$

 $P_4 = Group([(1,3,2)(4,5,7)(6,8,9)]) \cong C3$

 $P_5 = Group([(4,7,5)(6,9,8)]) \cong C3$

 $P_6 = Group([(1,2,3),(1,2,3)(4,5,7)(6,8,9)]) \cong C3 \times C3$

 $N_1 = Group([(4,6)(5,8)(7,9),(1,2,3)(4,5,7)(6,8,9),(1,2,3),(4,6)(5,8),(5,8)(7,9)]) \cong C6 \times A4$

 $N_2 = Group([(4,6)(5,8)(7,9),(1,2,3)(4,5,7)(6,8,9),(1,2,3),(4,6)(5,8),(5,8)(7,9)]) \cong C6 \times A4$ $N_3 = Group([(1,2,3)(4,5,7)(6,8,9),(4,8,7,6,5,9)]) \cong C6 \times C3$

 $N_4 = Group([(1,3,2)(4,5,7)(6,8,9),(4,8,7,6,5,9)]) \cong C6 \times C3$

 $N_5 = Group([(4,7,5)(6,9,8),(1,2,3),(4,6)(5,8)(7,9)]) \cong C6 \times C3$

 $N_6 = Group([(4,5,7)(6,8,9),(1,2,3),(4,8,7,6,5,9)]) \cong C6 \times C3$