论文笔记《Paraphrase generation with latent bag of words》

论文来源: 2019 NIPS

论文代码: https://github.com/FranxYao/dgm_latent_bow

论文主要内容

作者提出了一个a latent bag of words(BOW)模型来进行paraphrase生成。作者首先使用source word取 预测他们自己的邻近词,然后用他们的softmax分布去预测target word,在从softmax分布中取词时,作者采用了Gumble top-k的重参化技巧。

首先,传统的使用词替换的方式来生成paraphrase,主要分为两步:plan stage和relization stage

- plan stage: 从wordNet中找到source word的邻近词
- realization stage: 把词替换掉,并且从组织新句子

作者使用来自source sentence中的词去预测他们的邻近词,把target sentence中的词作为target BOW,这一步可以看做是plan stage。从plan stage的所有词中,sample出一个词子集,然后去重新组织这些词,形成新的句子,这就是realization stage。在sample这一步中,作者使用了Gumble top-k 重参化的技巧。

模型

模型主要分为两部分: the sequence to sequence base model, bag of words for content planning

the sequence to sequence base model

传统的seq2seq模型的框架,encoder和decoder,其中encoder和decoder采用的都是LSTM

$$h = \operatorname{enc}_{\psi}(x)$$

$$p(y|x) = \operatorname{dec}_{\theta}(h)$$

$$\mathcal{L}_{S2S} = \mathbb{E}_{(x^{\star}, y^{\star}) \sim \mathbb{P}^{\star}}[-\log p_{\theta}(y^{\star}|x^{\star})],$$
(1)

bag of words for content planning

作者有一个假设,就是说从target sentence构建的BOW,应该和source sentence的邻近词构建的BOW基本相似。

首先第一步,对于每一个source word获取他们的邻近词表示,对于 $wordx_i$,它的邻近词 z_{ij} 是一个V维的(V代表词表大小)one-hot向量,并且每一个词的邻近词数目固定为I个,source word 共有m个。

$$p(z_{ij}|x_i) = Categorical(\phi_{ij}(x_i))$$

其实在实现时,作者是在encoder时,对于LSTM的每一个隐层输出,作者采用了一个softmax层接在每个隐层输出的后面,然后由于固定了每个词的邻近词数目I个,所以可以从词表V中选出每个词的I个邻近词。

然后把这mI个邻近词混合在一起进行表示【每个source word的邻近词都是一个one-hot表示的V维向量】,得到一个向量 \tilde{z} ,其实就是mI个向量相加在求平均值

$$ilde{z} \sim p_{\phi}(ilde{z}|x) = rac{1}{ml} \sum_{i,j} p(z_{ij}|x_i)$$

这时得到的 \tilde{z} 是一个V维的向量,其中每一维i上的值(i=1,2...V),可以看做是在词表V中取第i个词的概率,作者这里采用Gumbel top-k的方法来获取k个概率最大的词,具体的方法就是:

- \tilde{z} 的第i维的值,设为 π_i ,常规的方法就是对 π_i 进行排序,取分值最高的k个
- 作者在这里引入了Gumbel top-k的技巧,来引入随机性,具体就是用如下两个公式实现的,引入了随机变量 g_i

- 然后取分值最高的 $\mathbf{k} \cap a_i$ 作为邻近词,然后去词表中检索这 $\mathbf{k} \cap$ 词对应的词向量 $w_1, w_2...w_k$,并和他们的权重 π_i 相乘再相加,最后求平均,得到一个最终的所有邻近词的一个融合的权重词向量表示。
- 最后把这个融合的权重词向量表示和encoder得到的句子隐向量h作为decoder部分LSTM的初始状态

所以,上面的过程可以认为是选择k个邻近词的过程,可以用如下的一个公式代替:

$$z \sim p_{\phi}(ilde{z}|x)(samplektimes without replacement)$$

$$y \sim p_{ heta}(y|x,z) = dec_{ heta}(x,z)$$

最终的优化部分,可以看做由两部分组成,优化p(y|x,z)和 $p_{\tilde{z}}(\tilde{z}|x)$ 这两个负对数似然函数。

$$\mathcal{L}_{S2S'} = \mathbb{E}_{(x^{\star}, y^{\star}) \sim \mathbb{P}^{\star}, z \sim p_{\phi}(\tilde{z}|x)} [-\log p_{\theta}(y^{\star}|x^{\star}, z)]$$

$$\mathcal{L}_{BOW} = \mathbb{E}_{z^{\star} \sim \mathbb{P}^{\star}} [-\log p_{\phi}(z^{\star}|x)]$$

$$\mathcal{L}_{tot} = \mathcal{L}_{S2S'} + \mathcal{L}_{BOW}$$
(5)

其中, P^* 是从target sentence中获得的BOW的分布, z^* 是target BOW的一个k-hot的向量表示;

整个模型的结构如下:

Figure 1: Our model equip the seq2seq model(lower part) with latent bag of words(upper part).

实验

作者采用Quora和MSCOCO这两个数据集进行实验,作者使用一个seq2seq的LSTM,并有残差连接和 attention机制的模型作为baseline,作者也使用了一个 β -VAE模型作为baseline,通过调控 β 参数来平衡 重建和识别网络。其中LBOW-Topk网络是没有采用Gumbel重参化的方法挑选top k的词,LBOW-Gumbel是使用了Gubmel技巧的网络,Cheating BOW模型是在生成的时候能够看到target sentence中的BOW,可以看做是LBOW模型的上限,实验结果如下:

Table 1: Results on the Quora and MSCOCO dataset. B for BLEU and R for ROUGE.

Quora

Model	B-1	B-2	B-3	B-4	R-1	R-2	R-L
Seq2seq[40]	54.62	40.41	31.25	24.97	57.27	33.04	54.62
Residual Seq2seq-Attn [40]	54.59	40.49	31.25	24.89	57.10	32.86	54.61
β -VAE, $\beta = 10^{-3}$ [17]	43.02	28.60	20.98	16.29	41.81	21.17	40.09
β -VAE, $\beta = 10^{-4}$ [17]	47.86	33.21	24.96	19.73	47.62	25.49	45.46
BOW-Hard (lower bound)	33.40	21.18	14.43	10.36	36.08	16.23	33.77
LBOW-Topk (ours)	55.79	42.03	32.71	26.17	58.79	34.57	56.43
LBOW-Gumbel (ours)	55.75	41.96	32.66	26.14	58.60	34.47	56.23
RbM-SL[26]	-	43.54	-	-	64.39	38.11	-
RbM-IRL[26]	-	43.09	-	-	64.02	37.72	-
Cheating BOW (upper bound)	72.96	61.78	54.40	49.47	72.15	52.61	68.53

MSCOCO

Model	B-1	B-2	B-3	B-4	R-1	R-2	R-L
Seq2seq[40]	69.61	47.14	31.64	21.65	40.11	14.31	36.28
Residual Seq2seq-Attn [40]	71.24	49.65	34.04	23.66	41.07	15.26	37.35
β -VAE, $\beta = 10^{-3}$ [17]	68.81	45.82	30.56	20.99	39.63	13.86	35.81
β -VAE, $\beta = 10^{-4}$ [17]	70.04	47.59	32.29	22.54	40.72	14.75	36.75
BOW-Hard (lower bound)	48.14	28.35	16.25	9.28	31.66	8.30	27.37
LBOW-Topk (ours)	72.60	51.14	35.66	25.27	42.08	16.13	38.16
LBOW-Gumbel (ours)	72.37	50.81	35.32	24.98	42.12	16.05	38.13
Cheating BOW (upper bound)	80.87	75.09	62.24	52.64	49.95	23.94	43.77

生成一个句子的具体过程如下, 主要分为了三个阶段:

- 生成source word的邻近词
- 从邻近词的组合中进行sample
- 利用sample得到的结果进行句子生成。 具体case过程如下:

Quora											
Input	why	do	people	ask	question	on	quora	instead	of	googling	it
Neighbor				post	quora		quora			google	
				answer	question	5	questions			search	
BOW sample ask, quora, people, questions, google, googling, easily, googled, search, answer											
Output why do people ask questions on quora that can be easily found on a google search?											
Input	how	do	i	talk	english	fluently	?				
Neighbor				speak	english	fluently					
				better [.]	improve	confiden	ce				
BOW sample english, speak, improve, fluently, talk, spoken, better, best, confidence											
Output	how	can i im	prove my	english spe	eaking?						
Input	A	tennis	player	is	MSCOC walking		holding	his	racket		
Neighbor	-	court	holding		walks		carrying		court		
		racket			across		holds		racquet		
BOW sample	hold	ing, man	, tennis, w	alking, rad	cket, cour	t, player,	racquet, m	ale, wom	an, walk	,	_
Output	A m	an holdir	ng a tennis	racquet or	n a tennis	court					
Input	A	big	airplane	flying	in	the	blue	sky			_
Neighbor		large	airplane	sky			blue	clear			
		large	jet	airplane			clear	flying			
BOW sample blue, airplane, flying, large, plane, sky, clear, air, flies, jet											
Output A large jetliner flying through a blue sky											
word morphology syr		sync	onym		enta	ilment		mete	onymy		

Figure 2: Sentence generation samples. Our model exhibits clear interpretability with three generation steps: (1) generate the neighbors of the source words (2) sample from the neighbor BOW (3) generate from the BOW sample. Different types of learned lexical semantics are highlighted.