F09T1A4

Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ ein stetig differenzierbares Vektorfeld. Der topologische Abschluss M der Menge $\{x \in \mathbb{R}^n : f(x) \neq 0\}$ sei kompakt. Man zeige:

- a) Eine Lösung des Anfangswertproblems x' = f(x), $x(0) = x_0$ verläuft für jeden Punkt $x_0 \in M$ vollständig in M.
- b) Das Anfangswertproblem x' = f(x), $x(0) = x_0$ ist für jeden Punkt $x_0 \in \mathbb{R}^n$ global lösbar.

Zu a):

Behauptung: Eine Lösung $\lambda: I \to \mathbb{R}^n$ von x' = f(x), $x(0) = x_0$ mit $x_0 \in M$ erfüllt $\lambda(t) \in M$ für alle $t \in I$.

<u>Beweis:</u> Da $f: \mathbb{R}^n \to \mathbb{R}$ stetig differenzierbar ist, hat für jedes $x_0 \in \mathbb{R}^n$ das Anfangswertproblem $x' = f(x), x(0) = x_0$ eine eindeutige maximale Lösung $\lambda_{(0,x_0)}: I_{(0,x_0)} \to \mathbb{R}^n$ (mit $0 \in I_{(0,x_0)}$ offen).

Nach dem globalen Existenz- und Eindeutigkeitssatz hat für jedes $(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^n$ das Anfangswertproblem $x' = f(x), x(\tau) = \xi$ eine eindeutige maximale Lösung $\lambda_{(\tau,\xi)}$, daher ist

$$\mathbb{R} \times \mathbb{R}^n = \bigcup_{(\tau,\xi) \in \mathbb{R} \times \mathbb{R}^n} \Gamma(\lambda_{(\tau,\xi)})$$

eine Zerlegung von $\mathbb{R} \times \mathbb{R}^n$

 $\mathbb{R}^n \setminus M \subseteq \{x \in \mathbb{R}^n : f(x) = 0\}$. Für $\xi \in \mathbb{R}^n \setminus M$ ist $\lambda_{(\tau,\xi)} : \mathbb{R} \to \mathbb{R}^n$, $t \mapsto \xi$ die maximale Lösung von x' = f(x), $x(\tau) = \xi$.

$$\Rightarrow \mathbb{R} \times \mathbb{R}^{n} = \bigcup_{(\tau,\xi) \in \mathbb{R} \times (\mathbb{R}^{n} \setminus M)} \Gamma(\lambda_{(\tau,\xi)}) \cup \bigcup_{(\tau,\xi) \in \mathbb{R} \times M} \Gamma(\lambda_{(\tau,\xi)})$$
$$= (\mathbb{R} \times (\mathbb{R}^{n} \setminus M)) \cup (\mathbb{R} \times M)$$

(die Mengen sind wegen des Existenz- und Eindeutigkeitssatzes disjunkt) d.h. für alle $(\tau, \xi) \in \mathbb{R} \times M$ ist $\Gamma(\lambda_{(\tau, \xi)}) \subseteq \mathbb{R} \times M$

Zu b):

Behauptung: $I_{(0,x_0)} = \mathbb{R}$ für alle $x_0 \in \mathbb{R}^n$

Nach a) ist für $x_0 \in \mathbb{R}^n \setminus M$ $\lambda_{(\tau,\xi)} : \mathbb{R} \to \mathbb{R}^n$, $t \mapsto x_0$ die maximale Lösung.

Ist $x_0 \in M$, $I_{(0,x_0)} =]a, b[$

Angenommen $b < \infty$, dann ist

$$\Gamma_{+}(\lambda_{(0,x_0)}) = \{(t,\lambda_{(0,x_0)}(t)) : t \ge 0, t \in I_{(0,x_0)}\} \subseteq [0,b[\times M])$$

 $\overline{\Gamma_{+}(\lambda_{(0,x_0)})} \subseteq [0,b] \times M$ ist kompakt in $\mathbb{R} \times \mathbb{R}n$ im Widerspruch zur Charakterisierung maximaler Lösungen.

Angenommen $a > -\infty$, dann ist

$$\Gamma_{-}(\lambda_{(0,x_0)}) = \{(t,\lambda_{(0,x_0)}(t)) : t \le 0, t \in I_{(0,x_0)}\} \subseteq]a,0] \times M$$

 $\overline{\Gamma_{-}(\lambda_{(0,x_0)})} \subseteq [a,0] \times M$ ist kompakt in $\mathbb{R} \times \mathbb{R}n$ im Widerspruch zur Charakterisierung maximaler Lösungen.

Alternative zu b) ohne Teil a):

$$M \text{ ist kompakt, } f \text{ stetig } \Rightarrow f(M) \subseteq \mathbb{R} n \text{ kompakt.}$$

$$f(\mathbb{R} n \backslash M) = \{0\}$$

 $(*) \Rightarrow f(\mathbb{R}n) = f(M) \cup \{0\}$ kompakt, insbesondere ist f (linear) beschränkt. Also gilt nach dem Existenz- und Eindeutigkeitssatz mit linear beschränkter rechter Seite, dass die maximalen Lösungsintervalle $0\mathbb{R}$ sind.