CHEM 455 Physical Chemistry

From Classical to Quantum Mechanics

| Blackbody radiation

Description	Equations
Energy quantization	E=nh u
Average energy of an oscillating dipole	$\langle E_{ m osc} angle = rac{h u}{e^{h u/k_B T} - 1}$
Spectral radiation density of blackbody (Planck)	$ ho(u,T)~d u=rac{8\pi h u^3}{c^3}rac{1}{e^{h u/k_BT}-1}~d u$
Spectral radiation density of blackbody (classical)	$ ho(u,T) \ d u = rac{8\pi h u^3}{c^3} k_B T d u$

| Wave-particle duality

Description	Equations
Energy of light	E=h u
Photoelectric effect Kinetic energy of ejected photoelectron	$E_k = h u - \Phi$
de Broglie relation	<i>A</i>
Kinetic energy	$E_k=rac{1}{2}mv^2=rac{p^2}{2m}$

| Atomic spectra of hydrogen and Bohr's model

Description	Equations
Hydrogen emission lines $n_2 > n_1$	$ ilde{ u}=rac{1}{\lambda}=R_H\left(rac{1}{n_1^2}-rac{1}{n_2^2} ight)$
Bohr's radius	$r=rac{4\piarepsilon_0\hbar^2}{m_ee^2}$
Energy level in Bohr's model	$E_n = -rac{m_e e^4}{8arepsilon_0^2 h^2 n^2}$
Emission of hydrogen atom $n_2>n_1$	$ u = rac{m_e e^4}{8arepsilon_0^2 h^3} \left(rac{1}{n_1^2} - rac{1}{n_2^2} ight)$

| Waves

Description	Equations
Classical nondispersive wave equation	$rac{\partial \Psi(x,t)}{\partial x^2} = rac{1}{v^2} rac{\partial \Psi(x,t)}{\partial t^2}$
Wave number	$k=rac{2\pi}{\lambda}$
Frequency	$ u = rac{1}{T}$

Description	Equations
Angular frequency	$\omega=rac{2\pi}{T}=2\pi u$
Wave speed	$v=\lambda u$
Euler's formula	$e^{i heta}=\cos heta+i\sin heta$
Solution of wave equation	$egin{aligned} \Psi(x,t) &= A \sin(kx - \omega t + \phi) \ &= \mathrm{Re}(Ae^{i(kx - \omega t + \phi')}) \end{aligned}$
Interfering traveling waves give standing wave	$egin{aligned} \Psi(x,t) &= A[\sin(kx-\omega t) + \sin(kx+\omega t)] \ &= 2A\sin(kx)\cos(\omega t) \ &= \psi(x)\cos(\omega t) \end{aligned}$
Time-independent Schrodinger equation	$-rac{\hbar^2}{2m}rac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)$
Time-dependent Schrodinger equation	$-rac{\hbar^2}{2m}rac{\partial^2\Psi(x,t)}{\partial x^2}+V(x,t)\Psi(x,t)=i\hbar\Psi(x,t)$
Stationary states are standing waves	$\Psi(x,t)=\psi(x)e^{-i(E/\hbar)t}$
Normalization	$\ f(x)\ =\int_D f^*f\ dx=1$
Orthogonality	$\int_D f^* g \ dx = 0$
Use quantum mechanics when	1. $\lambda_{ m particle} \sim L_{ m problem}$ 2. $\Delta E \gtrsim k_b T$ (discrete energy spectrum)

Quantum-Mechanical Postulates

- 1. The state of a quantum-mechanical particle is completely specified by a wave function $\Psi(x,t)$. The probability that the particle will be found at time t_0 in a spatial interval of width dx centered at x_0 is given by $\Psi^*(x_0,t_0)\Psi(x_0,t_0)dx$
- 2. For every measurable property of a system, there exists a corresponding operator.
- 3. In any single measurement of the observable that corresponds to the operator \hat{A} , the only values that will ever be measured are the eigenvalues of that operator.
- 4. If the system is in a state described by the wave function $\Psi(x,t)$, and the value of the observatle a is measured once on each of many identically prepared systems, the average value (expectation value) of all of the measurements is given by

$$\langle a
angle = rac{\displaystyle \int_{-\infty}^{\infty} \Psi^* \hat{A} \Psi \; dx}{\displaystyle \int_{-\infty}^{\infty} \Psi^* \Psi \; dx}$$

5. The evolution in time of a quantum-mechanical system is governed by the time-dependent Schrödinger equation

$$\hat{H}\Psi(x,t)=i\hbarrac{\partial\Psi(x,t)}{\partial t}$$

| Operators

Description	1D	3D
Position	$\hat{x}=x$	$\mathbf{\hat{x}} = \mathbf{x}$
Linear momentum	$\hat{p}_x = -i\hbarrac{d}{dx}$	$\mathbf{\hat{p}}=-i\hbar\mathbf{\nabla}$
Kinetic energy	$\hat{T}=rac{\hat{p}_x^2}{2m}=-rac{\hbar^2}{2m}rac{d^2}{dx^2}$	$\mathbf{\hat{T}}=-rac{\hbar^2}{2m}\mathbf{ abla}^2$
Potential energy	$\hat{V} = V(x)$	$\mathbf{\hat{V}} = V(\mathbf{x})$

Total energy Hamiltonian
$$\hat{H}=\hat{T}+\hat{V}=-rac{\hbar^2}{2m}rac{d^2}{dx^2}+V(x)$$
 $\hat{\mathbf{H}}=-rac{\hbar^2}{2m}oldsymbol{
abla}^2+V(\mathbf{x})$

Simple Quantum Systems

| Stationary states

Description	Equations
Time dependent Schrodinger equation	$\hat{H}\Psi(x,t)=i\hbarrac{\partial\Psi(x,t)}{\partial t}$
Time independent Schrodinger equation	$\hat{H}\psi_n(x)=E_n\psi_n(x)$
Stationary state wave function	$\Psi(x,t)=\psi(x)T(t)$
Time component of wave function	$T(t)=e^{iEt/\hbar}$
Probability of finding particle in an interval	$\mathrm{Prob}(x,x+dx)= \Psi(x,t) ^2dx= \psi(x) ^2dx$
General solution as linear combination of stationary states	$\psi(x) = \sum\limits_n c_n \phi_n(x)$
Expansion coefficients	$c_n = \langle \phi_n \psi angle = \int \phi_n^* \psi \; dx$
Normalization	$\sum_n c_n = 1$

| Particle in a 1D box

Description	Equations
Time independent Schrodinger equation	$\left[-rac{\hbar^2}{2m}rac{d^2}{dx^2}+V(x) ight]\psi(x)=E\psi(x)$
Wave function $n=0,1,2,\ldots$	$\psi_n(x) = \sqrt{rac{2}{L}} \sin\left(rac{n\pi x}{L} ight)$
Energy eigenvalues	$E_n = rac{h^2}{8mL^2} n^2 = rac{\hbar^2 \pi^2}{2mL^2} n^2$

Particle in a 3D box

Description	Equations
Time independent Schrodinger equation	$\left[-rac{\hbar^2}{2m}oldsymbol{ abla}^2 + V(\mathbf{x}) ight]\psi(\mathbf{x}) = E\psi(\mathbf{x})$
Wave function $n_x=0,1,2,\ldots$ $n_y=0,1,2,\ldots$ $n_z=0,1,2,\ldots$	$\begin{aligned} &\psi_{nx,ny,nz}(\mathbf{x}) \\ &= &\psi_{nx}(x)\psi_{ny}(y)\psi_{nz}(z) \\ &= &\sqrt{\frac{2}{L_x}}\sqrt{\frac{2}{L_y}}\sqrt{\frac{2}{L_z}}\sin\left(\frac{n_x\pi x}{L_x}\right)\sin\left(\frac{n_y\pi y}{L_y}\right)\sin\left(\frac{n_z\pi z}{L_z}\right) \end{aligned}$
Energy eigenvalues	$E_{n}=rac{h^{2}}{8m}\left(rac{n_{x}^{2}}{L_{x}^{2}}+rac{n_{y}^{2}}{L_{y}^{2}}+rac{n_{z}^{2}}{L_{z}^{2}} ight)$

| Finite potential well

Description Equations

Description	Equations
Potential	$V(x) = egin{cases} 0 & x \in [0,L] \ V_0 & ext{elsewhere} \end{cases}$
Reflection probability	$R=rac{(\sqrt{E}-\sqrt{E-V_0})^2}{(\sqrt{E}+\sqrt{E-V_0})^2}$
Transmission probability	$T=rac{4\sqrt{E(E-V_0)}}{(\sqrt{E}-\sqrt{E-V_0})^2}$

Commutators and Uncertainty

Description	Equations
Commutator	[A,B] = AB - BA
Condition of commutation	[A,B]=0
Standard deviation (uncertainty)	$egin{aligned} \sigma_A &= \sqrt{\langle (A - \langle A angle^2 angle)} \ &= \sqrt{\langle A^2 angle - \langle A angle^2} \end{aligned}$
Heisenberg uncertainty principle (general)	$\sigma_A\sigma_B\geq rac{1}{2} \langle[\hat{A},\hat{B}] angle $
Heisenberg uncertainty principle (position-momentum)	$\sigma_x\sigma_p\geq rac{\hbar}{2}$

Spectroscopy

| Dimer model

Description	Equations
Hamiltonian of dimer	$\mathbf{H}_{ ext{dimer}} = rac{\mathbf{p}_1^2}{2m_1} + rac{\mathbf{p}_2^2}{2m_2} + V(\mathbf{x}_1 - \mathbf{x}_2)$
Total mass	$M=m_1+m_2$
Reduced mass	$\mu=\frac{m_1m_2}{m_1+m_2}$
Position in center of mass (COM) coordinate	$\mathbf{X} = rac{m_1\mathbf{x}_1 + m_2\mathbf{x}_2}{M}$
Momentum in center of mass (COM) coordinate	$\mathbf{\Pi} = \mathbf{p}_1 + \mathbf{p}_2$
Position in relative coordinate	$\mathbf{x}=\mathbf{x}_1-\mathbf{x}_2\equiv\mathbf{r}$
Momentum in relative coordinate	$\mathbf{p}=rac{m_1\mathbf{p}_1+m_2\mathbf{p}_2}{M}$
Hamiltonian of dimer	$egin{aligned} \mathbf{H}_{ ext{dimer}} &= \mathbf{H}_{ ext{free}} + \mathbf{H}_{ ext{int}} \ &= \underbrace{rac{\mathbf{\Pi}^2}{2M}}_{ ext{COM coord}} + \underbrace{rac{\mathbf{p}^2}{2\mu} + V(\mathbf{x})}_{ ext{rel coord}} \end{aligned}$
Free particle Hamiltonian	$\mathbf{H}_{ ext{free}} = rac{\mathbf{\Pi}^2}{2M}$
Internal Hamiltonian	$\mathbf{H}_{\mathrm{int}} = rac{\mathbf{p}^2}{2\mu} + V(\mathbf{x})$
Dimer wave function	$\Psi_{ m dimer} = \Phi({f X}) \psi({f x})$
Free particle (COM) wave function	$\Phi(\mathbf{X}) = e^{\pm i \mathbf{\Pi} \mathbf{X}/\hbar}$

Description	Equations
Internal Hamiltonian Schrodinger equation	$\left[-rac{\hbar^2}{2\mu} abla_{\mathbf{x}}^2 + V(\mathbf{r}) ight]\psi(\mathbf{x}) = E\psi(\mathbf{x})$
Laplacian in spherical coordinate $ heta \in [0,\pi] \ \phi \in [0,2\pi]$	$ abla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} $ angular breathing KE, rotation
Dimer Hamiltonian	${\hat H}_{ m dimer} = {\hat H}_{ m COM} + {\hat H}_{ m vib} + {\hat H}_{ m rot}$
Dimer total energy (see below)	$E=rac{\Pi^2}{2M}+\hbar\omega_0(n+rac{1}{2})+rac{\hbar^2l(l+1)}{2I}$

| Vibration: quantum harmonic oscillator

Description	Equations	
Vibrational Schrodinger equation	$\left[-rac{\hbar^2}{2\mu}rac{1}{r^2}rac{\partial}{\partial r}\left(r^2rac{\partial}{\partial r} ight) + V(r) ight]\psi({f x}) = E\psi({f x})$	
Wave function	$\psi(\mathbf{x}) = R(r)Y(heta,\phi)$	
Harmonic approximation	$V(r)pprox rac{1}{2}kr^2$	
Spring constant	$k=\mu\omega_0^2$	
Vibrational Schrodinger equation	$\left[-rac{\hbar^2}{2\mu}rac{1}{r^2}rac{\partial}{\partial r}\left(r^2rac{\partial}{\partial r} ight)+rac{1}{2}kr^2 ight]\psi(r)=E\psi(r)$	
Wave function $n=0,1,2,\ldots$	$\psi(r) = rac{1}{\sqrt{2^2 n!}} \left(rac{lpha}{\pi} ight)^{1/4} H_n(\sqrt{lpha}r) e^{-lpha r^2/2}$	
Hermite polynomials	als $H_n(r)=(-)^n e^{x^2}\left(rac{d^n}{dx^n} ight)e^{-x^2}$	
Constant	Constant $lpha=rac{m\omega_0}{\hbar}$	
Energy eigenvalue $n=0,1,2,\ldots$	$E_n=(n+rac{1}{2})\hbar\omega_0$	
Transition dipole moment	$ec{\mu}_{fi} = rac{dec{\mu}(x_0)}{dx} \langle \psi_f \hat{x} \psi_i angle$	
Vibrational selection rule	$\Delta n = \pm 1$	

| Rotation: rigid rotor

| Classical rigid rotor

Description	Equations
Angular momentum	$\mathbf{L} = \mathbf{x} imes \mathbf{p} = I \vec{\omega}$
Linear velocity	$ec{v}=R_0ec{\omega}$
Moment of inertia	$I=mR_0^2$
Rotational kinetic energy	$E=rac{1}{2}I\omega^2=rac{L^2}{2I}$

| Quantum rigid rotor

Description	Equations
Angular momentum operator	$\hat{\mathbf{L}} = \hat{\mathbf{x}} imes \hat{\mathbf{p}}$
z-component of angular momentum operator	$L_x = rac{\hbar}{i}rac{\partial}{\partial \phi}$
Magnitude of angular momentum operator	$\hat{\mathbf{L}}^2 = L^2 = -\hbar^2 \left[rac{1}{\sin heta} rac{\partial}{\partial heta} \left(\sin heta rac{\partial}{\partial heta} + rac{1}{\sin^2 heta} rac{\partial^2}{\partial\phi^2} ight) ight]$
Components of $\hat{\mathbf{L}}$ does not commute	$[\hat{L}_i,\hat{L}_j]=i\hbar\hat{L}_k$
Components of $\hat{\mathbf{L}}$ commute with its magnitude	$[\hat{L}_i, L^2] = 0$

Description	Equations
Rotational Schrodinger equation	$-rac{\hbar^2}{2\mu R_0^2}\left[rac{1}{r^2\sin heta}rac{\partial}{\partial heta}\left(\sin hetarac{\partial}{\partial heta} ight)+rac{1}{r^2\sin^2 heta}rac{\partial^2}{\partial\phi^2} ight]Y(heta,\phi)= \ EY(heta,\phi)$
Spherical harmonics	$Y_l^m(heta,\phi) = (-)^m \sqrt{rac{(2l+1)}{4\pi}rac{(l-m)!}{(l+m)!}} P_l^m(\cos heta) e^{im\phi}$
Legendre polynomial	$P_l^m(x) = rac{1}{2^l l!} (1-x^2)^{m/2} rac{d^{(l+m)}}{dx^{(l+m)}} (x^2-1)^l$
Energy eigenvalues $l=0,1,2,\ldots$	$E_l = rac{\hbar^2}{2I} l(l+1)$
Angular momentum eigenvalues $l=0,1,2,\ldots$	$L^2Y=\hbar^2l(l+1)Y$
z-component eigenvalues $m=-l,\ldots,0,\ldots,l$	$L_zY=\hbar mY$
Transition dipole moment	$\mu_{fi} = \langle \psi_f \mu_z \cos heta \psi_i angle$
Rotational selection rule	$\Delta l=\pm 1, \Delta m=0$

| Hydrogen atom

Description	Equations
Hydrogen atom Schrodinger equation	$\left[-rac{\hbar}{2m_e}rac{1}{r^2}rac{\partial}{\partial r}\left(r^2rac{\partial}{\partial r} ight)+rac{ec{L}}{2m_er^2}-rac{e^2}{r} ight]\psi(x)= \ E\psi(x)$
Effective potential	$V_{ m eff} = rac{\hbar l(l+1)}{2mr^2} - rac{e^2}{r}$
Wave function $n=1,2,\ldots$	$\psi_{nlm}(x) = R_{nl}(r) Y_l^m(heta,\phi)$
Energy eigenvalues $n=1,2,\ldots$	$E_n = -rac{e^2}{2a_0}rac{1}{n^2} = -rac{me^4}{2\hbar^2}rac{1}{n^2} - rac{R_H}{n^2}$
Rydberg's constant	$R_H = 2.179 imes 10^{-18} m J = 13.6 \ eV$
Bohr's radius	$a_0=rac{\hbar^2}{me^2}$
Radial probability distribution	$P_{nl}(r)dr=r^2R_{nl}^2(r)dr$

Many Electron and Proton System

| Many electron atom

Description	Equations
Helium Schrodinger equation	$\underbrace{\begin{bmatrix} \underbrace{-\frac{\hbar^2}{2m}\nabla_1^2 - \frac{\hbar^2}{2m}\nabla_2^2}_{\text{KE of }e_1^-} - \underbrace{\frac{2e^2}{ \mathbf{x}_1 }}_{e_1^-\text{-N attraction}} - \underbrace{\frac{2e^2}{ \mathbf{x}_2 }}_{e_1^-\text{-N attraction}} + \underbrace{\frac{e^2}{ \mathbf{x}_1 - \mathbf{x}_2 }}_{e_1^-\text{-}e_2^-\text{ repulsion}} \end{bmatrix} \psi(\mathbf{x}_1, \mathbf{x}_2) = E\psi(\mathbf{x}_1, \mathbf{x}_2)$
Orbital approximation	$\psi(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n) = \phi(\mathbf{x}_1)\phi(\mathbf{x}_2)\ldots\phi(\mathbf{x}_n)$
Hartree orbital equations	$\left[-rac{\hbar^2 abla_i^2}{2m}-rac{Ze^2}{ \mathbf{x} }+\sum\limits_{j=1,j eq i}^N\intrac{e^2\phi_j^*(\mathbf{x}')\phi_j(\mathbf{x}')}{ \mathbf{x}-\mathbf{x}' }d^3\mathbf{x}' ight]\phi_i(\mathbf{x})=arepsilon_{ii}\phi_i(\mathbf{x})$

| Spin

Description	Equations
Components of $\hat{\mathbf{S}}$ does not commute	$[\hat{S}_i,\hat{S}_j]=i\hbar\hat{S}_k$
Components of $\hat{\mathbf{S}}$ commute with its magnitude	$[\hat{S}_i,S^2]=0$
Eigenvalue of $\hat{\mathbf{S}}^2$	$\hat{\mathbf{S}}^2 \leftrightarrow \hbar^2 s(s+1)$
Eigenvalue of \hat{S}_z	$\hat{S}_z \leftrightarrow \hbar m_s$

| Electron spin

Description	Equations
Electron spin	$s=rac{1}{2}$
Spin up function	$lpha(m_s) = egin{cases} 1 & m_s = +rac{1}{2} \ 0 & m_s = -rac{1}{2} \end{cases}$
Spin down function	$eta(m_s) = egin{cases} 0 & m_s = +rac{1}{2} \ 1 & m_s = -rac{1}{2} \end{cases}$
$lpha$ is eigenfunction of \hat{S}_z	$\hat{S}_z lpha = + rac{1}{2} \hbar lpha$
eta is eigenfunction of \hat{S}_z	$\hat{S}_zeta=-rac{1}{2}\hbareta$
$lpha,eta$ are eigenfunctions of \hat{S}^2	$\hat{S^2}lpha=\hbar^2s(s+1)lpha=rac{3}{4}\hbar^2lpha \ \hat{S^2}eta=\hbar^2s(s+1)eta=rac{3}{4}\hbar^2eta$
Normalization	$\sum\limits_{m_{m{s}}}lpha^{*}lpha=\sum\limits_{m_{m{s}}}eta^{*}eta=1$
Orthogonality	$\sum\limits_{m_S}lpha^*eta=\sum\limits_{m_S}eta^*lpha=0$

| Identical particles

Description Equations	
	$(\mathbf{r}_i,\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_j,\ldots,\mathbf{r}_N)= (\mathbf{r}_i,\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_N)$

Description	Equations
Doing nothing	$P_{ij}P_{ij}=1$
Symmetric eigenvalue	$\lambda = 1$
Anti-symmetric eigenvalue	$\lambda = -1$
Fermions (e.g. electron)	$rac{1}{2}$ -integer spin, anti-symmetric
Bosons	integer spin, symmetric
Pauli exclusion principle	$egin{aligned} \psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_N) = \ -\psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_N) = 0 \end{aligned}$
Slater determinant	$\Psi(\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N) = rac{1}{\sqrt{N!}} egin{array}{cccc} \chi_1(\mathbf{x}_1) & \chi_2(\mathbf{x}_1) & \cdots & \chi_N(\mathbf{x}_1) \ \chi_1(\mathbf{x}_2) & \chi_2(\mathbf{x}_2) & \cdots & \chi_N(\mathbf{x}_2) \ dots & dots & \ddots & dots \ \chi_1(\mathbf{x}_N) & \chi_2(\mathbf{x}_N) & \cdots & \chi_N(\mathbf{x}_N) \ \end{array}$
Hartree-Fock orbital equations	$egin{split} &\left[-rac{\hbar^2 abla^2}{2m} - rac{Ze^2}{ \mathbf{x} } ight]\phi_i(\mathbf{r}) + \ &\sum_{j=1}^N \left[\phi_i(\mathbf{r})\intrac{e^2\phi_j^*(\mathbf{r})\phi_j(\mathbf{r})}{ \mathbf{x}-\mathbf{x}' }d^3r' - \phi_j(\mathbf{r})\intrac{e^2\phi_j^*(\mathbf{r})\phi_i(\mathbf{r})}{ \mathbf{x}-\mathbf{x}' }d^3r' ight] = \ &arepsilon_i\phi_i(\mathbf{r}) \end{split}$
Molecular orbital by linear combination of atomic orbitals (MO-LCAO)	$egin{aligned} \psi(\mathbf{x}) &= c_1\phi_1(\mathbf{x}) + c_2\phi_2(\mathbf{x}) \ \mathrm{MO} &= c_1(\mathrm{AO}) + c_2(\mathrm{AO}) \end{aligned}$
Variational principle	$E=rac{\langle \psi H \psi angle}{\langle \psi \psi angle}$