Unit 13 Problem Solutions

- Notice that this is a shift register. At each falling clock edge, Q_3 takes on the value Q_2 had right before the clock edge, Q_2 takes on the value Q_1 had right before the clock edge, and Q_1 takes on the value X had right before the clock edge. For example, if the initial state is 000 and the input sequence is X = 1100, the state sequence is X = 100, 110, 011, 001, and the output sequence is X = 1100, which does not depend on the present value of X. So it's a Moore machine. See FLD X 758 for the state graph.
- 13.3 (a) $A^{+} = AK_{A}' + A'J_{A} = A(B' + X) + A'(BX' + B'X)$ $B^{+} = B'J_{B} + BK_{B}' = AB'X + B(A' + X')$ Z = AB

A^+				B^+	v		
A B	X	0	1	АВ	X	0	1
(00	0	1		00	0	0
()1	1	0		01	1	1
1	11	0	1		11	1	0
1	10	1	1		10	0	1
				J			

Present State	Next A ⁺	_	
AB	X = 0	X=1	Z
00	00	10	0
01	11	01	0
11	01	10	1
10	10	11	0

13.3 (b)
$$X = 0 \quad 1 \quad 1 \quad 0 \quad 0$$
 $AB = 00 \quad 00 \quad 10 \quad 11 \quad 01 \quad 11$ $Z = (0) \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$

13.3 (c) *See FLD p. 758 for solution.*

13.4 (a)

	Χ (Q_1					
$Q_2 Q_3$		Q ₁ 00	01	11	10		
0		0	0	0	0		
0	1	1	1	1	1		
1	1	1	1	1	1		
1	0	0	0	0	0		
	,	$Q_2^+ = D_2$					

$\setminus X$	Q_1			
$Q_2 Q_3$	Q ₁	01	11	10
00	1	1	1	1
01	1	1	1	1
11	0	0	1	1
10	0	0	1	1
		Q ₃ +=	= D ₃	

$Q_2 Q_3$	Q ₁ 00	01	11	10	
00	0	0	1	1	
01	0	0	1	1	
11	1	1	0	0	
10	1	1	0	0	
	Z				

Z depends on the input X, so this is a Mealy machine. Because there are more than 2 state variables, we cannot put the state table in Karnaugh Map order (i.e. 00, 01, 11, 10), but we can still read the next state and output from the Karnaugh map. For example, when the input is X = 1 and the state is $Q_1Q_2Q_3 = 110$, we can read the next state and output from the $XQ_1Q_2Q_3 = 1110$ position in the Karnaugh maps for Q_1^+, Q_2^+, Q_2^+ , and Z. So in this case, the next state is $Q_1^+Q_2^+Q_3^+ = 101$ and the output is Z = 0. The entire table can be derived from the Karnaugh maps in this manner. *Note*: We can also fill in the state table directly from the equations, without using Karnaugh maps. See FLD p. 758 for the state table and state graph.

13.4 (b - d) *See FLD p. 759 for solutions.*

- **13.5 (a)** Mealy machine, because the output, *Z*, depends on the input *X* as well as the present state.
- **13.5 (c d)** *See FLD p. 759 for solutions.*

Z ΧA BC

Note: Not all Karnaugh map entries are needed. See FLD p. 759 for the state table.

13.6 (a) After a rising clock edge, it takes 4 ns for the flip-flop outputs to change. Then the ROM will take 8 ns to respond to the new flip-flop outputs. The ROM outputs must be correct at the flip-flop inputs for at least the setup time of 2 ns before the next rising clock edge. So the minimum clock period is (4 + 8 + 2) ns = 14 ns.

13.5 (b)

- **13.6 (b)** The correct output sequence is 0101. See FLD p. 760 for the timing diagram.
- **13.6 (c)** Read the state transition table from ROM truth table. See FLD p. 760 for the state graph and table.

Present State		State Q_2^+	Z		
Q_1Q_2	X = 0	X=1	X = 0	X=1	
00	10	10	0	0	
01	00	11	0	0	
10	11	01	0	1	
11	01	11	1	1	

Alternate solution: Using Karnaugh map order, swap states S_2 and S_3 in the graph and table.

13.7 (a)
$$Q_1^+ = J_1 Q_1' + K_1' Q_1 = X Q_1' + X Q_2' Q_1$$

 $Q_2^+ = J_2 Q_2' + K_2' Q_2 = X Q_2' + X Q_1 Q_2$
 $Z = X' Q_2' + X Q_2$

~ 2					
Present State		State	,	7	
		Q_2^+	Z		
Q_1Q_2	X = 0	X=1	X = 0	X = 1	
00	00	11	1	0	
01	00	10	0	1	
11	00	01	0	1	
10	00	11	1	0	

13.7 (c)
$$Z = 00011$$

13.8 (a)
$$Q_1^+ = J_1 Q_1' + K_1' Q_1 = X Q_2' Q_1' + X' Q_1$$

 $Q_2^+ = J_2 Q_2' + K_2' Q_2 = X Q_1 Q_2' + X' Q_2$
 $Z = X Q_2' + X' Q_2$

Present State		State Q_2^+	Z		
Q_1Q_2	X = 0	X = 1	X = 0	X = 1	
00	00	10	0	1	
01	01	00	1	0	
11	11	00	1	0	
10	10	01	0	1	

13.8 (c)
$$Z = 10110$$

State	Present State		Next State $X_1 X_2$			
	Q_1Q_2	00	01	11	10	
S_0	00	00	01	01	00	0
S_1	01	11	11	01	11	0
S_3	11	11	10	10	10	0
S_2	10	10	10	00	00	1

13.9 (b)

Clock

 X_1

13.10(a)	$Q_1^+ = D_1 = X_1 X_2 Q_1 + Q_1 Q_2 + X_2 Q_2$
	$Q_2^+ = D_2 = (X_1' + X_2')Q_2 + (X_1 + X_2)Q_1'$
	$Z = Q_1 Q_2'$

State	Present State		Next State $X_1 X_2 =$				
	Q_1Q_2	00	01	11	10		
S_0	00	00	01	01	01	0	
S_1	01	01	11	11	01	0	
S_3	11	11	11	10	11	0	
S_2	10	00	00	10	00	1	

13.10(b)

13.10(c)

$$Z = (0)000110$$

13.11 (a) Notice that Z depends on the input X, so this is a Mealy machine.

$$\begin{array}{l} Q_1^+ = J_1 Q_1' + K_1' Q_1 = X Q_1' Q_2 + X' Q_1 \\ Q_2^+ = J_2 Q_2' + K_2' Q_2 = X Q_1' Q_2' + X' Q_2 \\ Z = Q_2 \oplus X = X Q_2' + X' Q_2 \end{array}$$

State	Present State	Next State $Q_1^+Q_2^+$		$Q_1^{+}Q_2^{+}$		2	Z
	Q_1Q_2	X = 0	X=1	X = 0	X=1		
S_{0}	00	00	01	0	1		
S_{1}	01	01	10	1	0		
S_2	11	11	00	1	0		
S_3	10	10	00	0	1		

\ X		
$Q_1 Q_2$	0	1
00	0	0
01	0	1
11	1	0
10	1	0
	Q	1+

\ X		
$Q_1 Q_2$	0	1
00	0	1
01	1	0
11	1	0
10	0	0
	Q	2+

\ X		
$Q_1 Q_2$	0	1
00	0	1
01	1	0
11	1	0
10	0	1
	2	Z

Alternate solution: Swap states S_2 and S_3 .

13.11 (a) (cont.)

13.11 (b)

Correct output: Z = 11101

13.12(a) Notice that *Z* does not depend on either input, so this is a Moore machine.

$$Q_{1}^{+} = X_{1}X_{2}Q_{1} + Q_{1}Q_{2} + X_{1}Q_{2}$$

$$Q_{2}^{+} = Q_{1}^{+}(X_{1} + X_{2}) + Q_{2}(X_{1}^{+} + X_{2}^{+})$$

$$= X_{1}Q_{1}^{+} + X_{2}Q_{1}^{+} + X_{1}^{+}Q_{2} + X_{2}^{+}Q_{2}$$

$$Z = Q_{1}Q_{2}^{+}$$

$$Q_{2}$$

 Q_1^+

0 0

10

$\setminus X_1$	X_2			
$Q_1 Q_2$	X ₂ 00	01	11	10
00	0	1	1	1
01	1	1	1	1
11	1	1	0	1
10	0	0	0	0
		Q	22+	

0		

148

Z

0

13.12(a)
(cont.)

State	Present State		Next State $X_1 X_2 =$			
	Q_1Q_2	00	01	11	10	
S_0	00	00	01	01	01	0
S_1	01	01	01	11	11	0
S_2	11	11	11	10	11	0
S_3	10	00	00	10	00	1

13.12(b)

Correct output: Z = 1011

Correct output: Z = (0)00110

13.14

Correct output: Z = 0011

13.15 (a)

\ x (Q ₁			
$Q_2 Q_3$	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	1	1
10	1	1	0	0
	$D_2 = Q_2^+$			

\ X (Q ₁			
$Q_2 Q_3$	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	0	0	1	1
10	0	0	1	1
		D ₃ =	Q ₃ ⁺	

\	X	Q ₁			
$Q_2 Q_3$		00	01	11	10
	00	0	0	1	1
(01	0	0	1	1
	11	1	1	0	0
	10	1	1	0	0
			7	,	

13.15 (a) (cont.)

- 1						
		Present		State		
	State	State	Q_1^+Q	$Q_2^+Q_3^+$	2	Z
		$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	X=1
	S_{0}	000	001	101	0	1
	$S_0 \\ S_1$	001	011	111	0	1
	S_{2}	010	110	101	1	0
	$S_2 \\ S_3$	011	010	111	1	0
	S_4	100	001	001	0	1
	S_{5}	101	011	011	0	1
	S_6	110	110	101	1	0
	S_7	111	010	011	1	0

13.15 (b)

13.15 (c) From diagram: 0, 1, (0), 1, 0, 1

From graph: 0, 1, 1, 0, 1

(they are the same, except for the false output)

13.15 (d) Change the input on the falling edge of the clock (assuming negligible circuit delays).

13.16 (a)

$\setminus X$	Q ₁			
$Q_2 Q_3$	00	01	11	10
00	1	1	0	0
01	0	0	0	0
11	0	0	0	0
10	1	1	0	0
		$D_1 =$	01+	

$\setminus X$	Q ₁			
$Q_2 Q_3$	00	01	11	10
00	0	1	1	1
01	0	0	1	1
11	0	0	0	0
10	0	1	1	0
		D ₂ =	Q_2^+	

$\setminus X$	Q_1			
$Q_2 Q_3$	Q ₁	01	11	10
00	0	0	1	1
01	0	0	1	1
11	0	1	1	0
10	0	1	1	0
		D_3	$=Q_3^+$	

X	Q_1			
$Q_2 Q_3$	Q ₁	01	11	10
00	1	1	0	0
01	0	0	1	1
11	0	0	1	1
10	1	1	0	0
		2	Z	

State	Present State	Next State $Q_1^+Q_2^+Q_3^+$		2	Z
	$Q_1Q_2Q_3$	X = 0	X=1	X = 0	X=1
S_0	000	100	011	1	0
S_1	001	000	011	0	1
S_2	010	100	000	1	0
S_3	011	000	000	0	1
S_4	100	110	011	1	0
S_5	101	000	011	0	1
S_6	110	111	011	1	0
S_7	111	001	001	0	1

13.16 (b)

13.16 (c)

From diagram: 1 0 1 (0) 1 1 From graph: 1 0 1 1 1

(they are the same, except for the false

output)

13.16 (d)

Change the input on the falling edge of the clock (assuming negligible circuit delays).

13.17 (a) Circuit 1

$Q_2Q_1Q_0$	Present	Next	State	Output
	State	X = 0	X=1	Z
000	S_0	001	011	0
001	S_1	101	101	0
010	S_2	001	011	0
011	S_3	101	111	0
100	S_4	000	000	0
101	S_5	000	000	0
110	S_6	000	000	1
111	S_7	000	000	1

Circuit 2

$Q_2Q_1Q_0$				Output
	State	X = 0	X=1	Z
000	S_0	001	011	0
001	S_1	101	101	0
010	S_2	001	011	1
011	S_3	101	111	0
100	S_4	000	010	0
101	S_5	000	000	0
110	S_6	010	010	1
111	S_7	010	010	0

- **13.17 (b)** Both circuits examine 3 consecutive inputs and produce an output of 1 if the three consecutive inputs represent a binary number larger than 5.
- **13.17 (c)** The output of both circuits does not depend upon the input so they are Moore circuits.

13.17 (d) Circuit 1 produces the 1 output when the 3rd bit is present on the input, i.e., prior to the active clock edge when the 3rd bit is present. Circuit 2 produces the 1 output when the circuit enters the next state after receiving the 3rd bit. Circuit 1 has the functional dependence of a Moore circuit but the timing of a Mealy circuit. Circuit 2 is a Moore circuit both from the functional dependence and from the timing viewpoint.

151

13.18 (a)
$$D_1 = Q_1' + Q_2, D_2 = x, z = Q_1 + Q_2'$$

13.18 (b)	Present	Next	State	Output z
	Q_1Q_2	x = 0	x = 1	Z
•	00	10	11	1
	01	10	11	0
	10	00	01	1
	11	10	11	1

13.18 (d) Any input sequence ending with an odd number of 0's (1, 3, 5, etc.) followed by a single 1.

13.19 (a)
$$D_1 = Q_1' + Q_2, D_2 = xQ_2', z = Q_1 + Q_2'$$

13.19 (d) Any sequence ending with an odd number of 0's (1, 3, 5, etc.) followed by an odd number of 1's.

13.20 (a)
$$Q_1 + = J_1 Q_1' + K_1' Q_1$$

 $= (XQ_2' + XQ_2')Q_1' + (X + Q_2')Q_1$
 $= XQ_1'Q_2' + X'Q_1'Q_2 + XQ_1 + Q_1Q_2'$
 $= XQ_2' + X'Q_1'Q_2 + XQ_1 + Q_1Q_2'$
 $Q_2 + = J_2 Q_2' + K_2' Q_2$
 $= XQ_1'Q_2' + (X' + Q_1)Q_2$
 $= XQ_1'Q_2' + X'Q_2 + Q_1Q_2$
 $Z = Q_1Q_2$

Present State	Next State $Q_1^+Q_2^+$		Z
Q_1Q_2	X = 0	X=1	
00	00	11	0
01	11	00	0
10	10	10	0
11	01	11	1

13.20 (c)
$$Z = (0)01101$$

The circuit is a Moore circuit. State 2 is unused.

13.21

Clock Cycle	Information Gathered
1	$Q_1Q_2 = 00, X = 0 \Rightarrow Z = 1, Q_1^+Q_2^+ = 01$
2	$Q_1Q_2 = 01, X = 0 \Rightarrow Z = 0; X = 1 \Rightarrow Z = 1, Q_1^+Q_2^+ = 11$
3	$Q_1Q_2 = 11, X = 1 \Rightarrow Z = 1; X = 0 \Rightarrow Z = 0, Q_1^+Q_2^+ = 10$
4	$Q_1Q_2 = 10, X = 0 \Rightarrow Z = 1; X = 1 \Rightarrow Z = 0, Q_1^+Q_2^+ = 00$
5	$Q_1Q_2 = 00, X = 1 \Rightarrow Z = 0, Q_1^+Q_2^+ = 10$
6	$Q_1Q_2 = 10, X = 1 \Rightarrow (Z = 0); X = 0 \Rightarrow (Z = 1), Q_1^+Q_2^+ = 11$
7	$Q_1Q_2 = 11, X = 0 \Rightarrow (Z = 0); X = 1 \Rightarrow (Z = 1), Q_1^+Q_2^+ = 01$
8	$Q_1Q_2 = 01, X = 1 \Rightarrow (Z = 1); X = 0 \Rightarrow (Z = 0), Q_1^+Q_2^+ = 00$
9	$Q_1 Q_2 = 00, X = 0 \Rightarrow (Z = 1)$

Note: Information inside parentheses was already obtained in a previous clock cycle.

Present State	Next State $Q_1^+Q_2^+$		2	Z
Q_1Q_2	X=0 $X=1$		X = 0	X = 1
00	01	10	1	0
01	00	11	0	1
10	11	00	1	0
11	10	01	0	1

13.22

Clock Cycle	Information Gathered
1	$Q_1Q_2 = 00, X = 0 \Rightarrow Z = 0, Q_1^+Q_2^+ = 10$
2	$Q_1Q_2 = 10, X = 0 \Rightarrow Z = 1; X = 1 \Rightarrow Z = 0, Q_1^+Q_2^+ = 01$
3	$Q_1Q_2 = 01, X = 1 \Rightarrow Z = 0; X = 0 \Rightarrow Z = 1, Q_1^+Q_2^+ = 10$
4	$Q_1Q_2 = 10, X = 0 \Rightarrow (Z = 1), Q_1^+Q_2^+ = 11$
5	$Q_1Q_2 = 11, X = 0 \Rightarrow Z = 0, Q_1^+Q_2^+ = 11$
6	$Q_1Q_2 = 11, X = 0 \Rightarrow (Z = 0); X = 1 \Rightarrow Z = 1, Q_1^+Q_2^+ = 01$
7	$Q_1Q_2 = 01, X = 1 \Rightarrow (Z = 0), Q_1^+Q_2^+ = 00$
8	$Q_1Q_2 = 00, X = 1 \Rightarrow Z = 1, Q_1^+Q_2^+ = 11$
9	$Q_1Q_2 = 11, X = 1 \Rightarrow (Z = 1)$

Note: Information inside parentheses was already obtained in a previous clock cycle.

Present State	Next State $Q_1^+Q_2^+$		2	Z
Q_1Q_2	X = 0	X=1	X = 0	X = 1
00	10	11	0	1
01	10	00	1	0
10	11	01	1	0
11	11	01	0	1

13.23

Clock Cycle	Information Gathered
1	$Q_1Q_2 = 00, X_1X_2 = 01 \Rightarrow Z_1Z_2 = 10, Q_1^+Q_2^+ = 01$
2	$Q_1Q_2 = 01, X_1X_2 = 01 \Rightarrow Z_1Z_2 = 01; X_1X_2 = 10 \Rightarrow Z_1Z_2 = 10, Q_1^+Q_2^+ = 10$
3	$Q_1Q_2 = 10, X_1X_2 = 10 \Rightarrow Z_1Z_2 = 00; X_1X_2 = 11 \Rightarrow Z_1Z_2 = 00, Q_1^+Q_2^+ = 01$
4	$Q_1Q_2 = 01, X_1X_2 = 11 \Rightarrow Z_1Z_2 = 11; X_1X_2 = 01 \Rightarrow (Z_1Z_2 = 01), Q_1^+Q_2^+ = 11$
5	$Q_1Q_2 = 11, X_1X_2 = 01 \Rightarrow Z_1Z_2 = 01$

Note: When $Q_1Q_2 = 01$, the outputs Z_1Z_2 vary depending on the inputs X_1X_2 , so this is a Mealy machine.

Present State	X_1X		Q_2^+		X_1X	-	Z_2	
Q_1Q_2	00	01	11	10	00	01	11	10
00	?	01	?	?	?	10	?	?
01	?	11	?	10	?	01	11	10
11	?	?	?	?	?	01	?	?
10	?	?	01	?	?	?	00	00

13.24

Present State	X_1X		Q_2^+		X_1X		Z_2	
Q_1Q_2	00	01	11	10	00	01	11	10
00	?	01	?	?	?	10	?	?
01	?	11	?	10	?	01	11	10
11	?	?	?	?	?	01	?	?
10	?	?	01	?	?	?	00	00

? indicates next state or output values that cannot be determined from the timing chart

13.25(a)	$Q_1^+ = D_1 = X'Q_1 + XQ_1'Q_2$
	$Q_2^+ = D_2 = X'Q_2 + XQ_1'Q_2'$
	$Z = X'Q_2 + XQ_1'Q_2' + XQ_1Q_2'$

	Present State	Next State $Q_1^+Q_2^+$		2	Z
	Q_1Q_2	X = 0	X = 1	X = 0	X = 1
	S ₀ =00	00	01	0	1
	$S_1 = 01$	01	10	1	0
ı	$S_3 = 11$	11	00	1	0
Į	S ₂ =10	10	00	0	1

13.25(c) Z = 11101

13.26 (a)

Correct output: $Z_1 Z_2 = 10, 10, 00, 01$

Present State	X_1X	Q_{1}^{+}	Q_2^+		X_1X	$Z_1 = Z_1$	Z_2	
Q_1Q_2			10	11	00	01	10	11
00	00	00	01	01	10	10	10	10
01	11	11	10	10	00	10	01	11
10	11	00	11	00	00	00	01	01
11	10	01	10	01	00	00	00	00

Transition table using a straight binary state 13.27 assignment:

State	Present State	Next State $Q_1^+Q_2^+Q_3^+$		2	Z
	$Q_1Q_2Q_3$	X = 0	X=1	X = 0	X=1
S_0	000	001	011	0	0
S_1	001	010	011	0	0
S_2	010	001	011	0	1
S_3	011	100	000	0	0
S_4	100	011	000	0	1

Correct output: Z = 0, 0, 1, 0, 0, 1

13.28 (a)

All flip-flop inputs are stable for more than the setup time before each falling clock edge. So the circuit is operating properly.

13.25(b) If *X* is changed early enough:

Minimum clock period = Flip-flop propagation delay + Two NAND-gate delays + Setup time

= 4 + (3 + 3) + 2 = 12 ns

X can change as late as 8 ns (two NAND-gate delays plus the setup time) before the next falling edge without causing improper operation.

13.29

Correct output: $Z = 1 \ 0 \ 1 \ 0 \ 1$

Deriving the State Table:

JK flip-flop equation:

$$Q^+ = JQ' + K'Q$$

$$\therefore A^+ = (X'C + XC') A' + X'A$$

$$\therefore A' = (X'C + XC')A' + X'A$$

[As,
$$J_A = X'C + XC'$$
, $K_A = X$, $Q = A$]
= $A'X'C + A'XC' + X'A$

Similarly, $B^+ = XC' + XA + X'A'C$

$$C^{+} = 0' \cdot C + (XB'A) \cdot C' = C + XB'A$$

$$Z = XB + X'C' + X'B'A$$

13.29 (cont.)

A ⁺						I
ВС	X	00	01	11	10	ВС
	00	0	1	0	1	
	01	1	1	0	0	
	11	1	1	0	0	
	10	0	1	0	1	

B^{+}					
	X.		0.1		10
C		00	01	11	10
	00	0	0	1	1
	01	1	0	1	0
	11	1	0	1	0
	10	0	0	1	1
			.1		

$\setminus X$				
	00	01	11	10
00	0	0	1	0
01	1	1	1	1
11	1	1	1	1
10	0	0	0	0
	00 01 11	X A 00 00 0 0 1 1 1 1 1	X A 00 01 00 0 0 0 1 1 1 1 1 1 1 1	X A 00 01 11 00 0 0 1 01 1 1 1 11 1 1

Z	Z						
B C							
	00	1	1	0	0		
	01	0	1	0	0		
	11	0	0	1	1		
	10	1	1	1	1		

From the Karnaugh maps, we can get the state table that follows:

State	Present State	Next State $A^+B^+C^+$		2	Z
	ABC	X = 0	X = 1	X = 0	X=1
S_0	000	000	110	1	0
S_1	001	111	001	0	0
S_2	010	000	110	1	1
S_2 S_3	011	111	001	0	1
S_4	100	100	011	1	0
S_5	101	101	011	1	0
S_6 S_7	110	100	010	1	1
S_7	111	101	011	0	1

13.30
$$R = X_{2} (X'_{1} + B)$$

$$S = X'_{2} (X'_{1} + B')$$

$$A^{+} = A[(X_{2}) (X'_{1} + B)]' + X'_{2} (X'_{1} + B')$$

$$= A (X'_{2} + X_{1}B') + X'_{2}X'_{1} + X'_{2}B'$$

$$A^{+} = AX'_{2} + AX_{1}B' + X'_{2}X'_{1} + X'_{2}B'$$

$$T = X'_{1}BA + X'_{1}B'A'$$

$$B^{+} = BT' + B'T$$

$$= B(X'_{1}BA + X'_{1}B'A')' B' (X'_{1}BA + X'_{1}B'A')'$$

$$= B[(X'_{1}BA)' (X'_{1}B'A')'] + X'_{1}B'A'$$

$$= B[(X'_{1}BA)' (X'_{1}B'A')'] + X'_{1}B'A'$$

$$= B[(X'_{1} + B' + A') (X'_{1} + B + A)] + X'_{1}B'A'$$

$$= (BX'_{1} + BA') (X'_{1} + B + A) + X'_{1}B'A'$$

$$= BX'_{1} + BX'_{1} + BX'_{1}A + BA'X'_{1} + BA' + X'_{1}B'A'$$

 $= X_1 B(1 + 1 + A + A') + A'(B + X_1'B)$

13.30 (cont.)

	Present	A^+B^+				Z_1Z_2			
State	State	$X_1X_2=$				$X_1X_2=$			
	AB	00	01	10	11	00	01	10	11
S_0	00	11	01	10	00	10	10	00	00
S_1	01	11	01	01	01	11	00	11	00
S_2	10	10	00	10	10	01	00	01	00
S_3	11	10	00	11	01	00	00	00	00

 $= X_{1}B + A'B + X'_{1}A'$