Mathemathische Modellierung

Adrian Hieber

23. Oktober 2023

Inhaltsverzeichnis

1	Modulinfos	•
2	Einführung	•
	2.1 Mathematische Modellierung mit gewöhnlichen Diff.gleichungen (ODE):	
	2.1.1 Bemerkung:	
	2.1.2 Modellannahmen:	3
	2.2 Was haben wir alles vernachlässigt; Aussehen von komplexe Modelle?	
3	Entdimensionalisierung	4
	3.1 Modell in diesen Größen ausdrücken:	4
	$3.1.1$ Wahl von \overline{y} , \overline{t} ?	4

1 **Modulinfos**

Dieses Skript bezieht sich auf den Kurs Mathematische Modellierung von Kräutle. [?] Es gibt kein Ubungsbetrieb, da man hierfür eher an dem Seminar erarbeiten soll. Als Referenzbuch wird Mathematische Modellierung von Eck[?] empfohlen.

$\mathbf{2}$ Einführung

Mathematische Modellierung mit gewöhnlichen Diff.gleichungen (ODE): 2.1

Ein sehr einfaches Beispiel aus Populitionsdynamik: Wachstum Schafherde.

Zuerst: Welche Größen (unbekannte, Parameter) sind relevant (in physikalischer Dimension):

$$t = Zeit;$$
 $y(t) = Anzahl Schafe im Zeitpunkt t$ (2.1)

- Variable t hat die **Dimension** 'Zeit' und eine Einheit (zb. Tage, Stunden...)
- Variable y(t) hat die **Dimension** 'Anzahl' (='Stück'), kann auch als **Dimensionslos** bezeichnet werden

Für Funktion im mathematischen Modellen sollte man ein Definitionsbereich festlegen, wie z.B. $y:[0,T)\to$ $\mathbb{R}, y[t_0, T] \to \mathbb{R} \text{ oder } y : [0, \inf) \to \mathbb{R}.$

2.1.1 Bemerkung:

y ist keine gegebene Funktion, sondern gesucht; a priori ist klar, ob y(t) für beliebige große t existiert. Existiert eine Lsg für alle Zeite, d.h. $y:[t_0,\inf)\to\mathbb{R}$ so bezeichnet man sie als globale Lösung.

2.1.2 Modellannahmen:

Die Wachstumsrate w(t) sei proportional zum aktuellen Bestand:

$$w(t) = K \cdot g(t) \tag{2.2}$$

Es sei $K \in \mathbb{R}$ (ggf. $K \in \mathbb{R}^+$). Dabei ist die Wachstumsrate definiert als Änderung des Bestands pro Zeitintervall, für 'kurze' Zeitintervalle T, noch genauer für $T \to 0$:

$$w(t) = \lim_{T \to 0} \frac{y(t+T) - y(t)}{T} = y'(t)$$
(2.3)

Somit sind unsere Modellgleichungen (Anfangswerte nicht vergessen):

$$y'(t) = K \cdot y(t), \qquad y(0) = 0$$
 (2.4)

Mit y'(t) als $\frac{Anzahl}{Zeit}$ und y(0) als Anfangszeitpunkt $t_0=0$. Es enthält 2 **Parameter** $K\in\mathbb{R}$ (oder K>0 bzw $K\geq 0$) $y_0>0$ bzw $y_0\geq 0$ ('Daten')

2.1.2.1 Dimensionen: y_0 : Anzahl K: $\frac{1}{Zeit}$ (ergibt sich als Dgl. da y'(t) die Dimension $\frac{Anzahl}{Zeit}$ hat, was sich wieder aus dem Differenzenquotient ergibt.

Was haben wir alles vernachlässigt; Aussehen von komplexe Modelle?

- ggf, hängt die Wachstumsrate von Nahrungsangebot ab ('begrenzte Ressourcen') ??

3 Entdimensionalisierung

des Modells $y'(t) = K \cdot y(t), \qquad y(t_0) = y_0$

$$t[Zeit]; \quad y[StueckoderAnzahl]$$
 (3.1)

Wähle dazu (dimensionsbehaftete) "Basisgrößen" (Festlegeung von Maßstäben) $\overline{y},\overline{t}$ definiere:

$$\tau := \frac{t - t_0}{\overline{t}} \quad \text{und} \quad y(\tau) := \frac{y(t)}{\overline{y}} = \frac{y(\overline{t}\tau + t_0)}{\overline{y}}$$
(3.2)

Hierbei ist τ und $y(\tau)$ dimensionslose Größen.

3.1 Modell in diesen Größen ausdrücken:

bildlich:TODO

$$\rightsquigarrow y'(\tau) = \frac{\bar{t}}{\bar{y}}y'(\bar{t}\tau + t_0) \stackrel{DGL}{=} \frac{\bar{t}}{\bar{y}} \cdot K \cdot y(\bar{t}\tau + t_0) = \bar{t}Ky(\tau)$$
(3.3)

Nicht vergessen: Anfgangsbedingung auch skalieren:

Mit
$$\tau := 0$$
 ist $y(0) = \frac{y(\overline{t} \cdot 0 + t_0)}{\overline{y}} \stackrel{A.B.}{=} \frac{y(t_0)}{\overline{y}}$

Bemerkung Die $y(0), y'(\tau), y(\tau)$ und Kostr. dimensionslos sind, müssen auch die Größen $\bar{t}K$ und $\frac{y_0}{\bar{u}}$.

3.1.1 Wahl von \overline{y} , \overline{t} ?

• Größen sind dimensions
los (z.B.
$$ln\frac{y(t)}{y_0} = ln\underbrace{\begin{array}{c} dim.behaftet \\ y(t) \end{array}}_{-ln(\underbrace{\begin{array}{c} dim.behaftet \\ y_0 \end{array}}_{)}$$
 ist fragwürdig)

• einige Paramter können elemeniert werden

Analsis einfacher

es sind wenige Simulationen nötig um sich Überblick über die Abhängigkeiten der Lösung von den Paramtern zu verschaffen

- Größen haben moderate Werte
- Entdimensionalisierung dient als Vorbereitung eines eventuell geplanten **asymtotischen Entwick-** lung[?]