Co	ognome	Nome
\mathbf{M}_{i}	atricola	Numero di CFU Fila 2
	Università degli Studi di Bologna, C Esame di LOGICA PER L'INFORM ilizzare i riquadri bianchi per le risposte. Se strettament da con ulteriore testo, indicando in alto nome, cognome, j	MATICA (9 CFU), 16/02/2024 te necessario, si può allegare un foglio protocollo in
L1 (5 punti).	Definiamo in teoria degli insiemi il seguente pro	edicato di overlap fra due insiemi:
	$A)B := \exists X.(X)$	$\in A \land X \in B$)
	Dimostrare in teoria degli insiemi che $\forall A.((\forall B$ abbreviare uno o più passi di deduzione natura Esplicitare l'enunciato di tutti gli assiomi utiliz	ale intuizionista al prim'ordine.
Teore Dime ∃Y.(Y dime	oma dell'insieme vuoto: $\forall X.X \notin \emptyset$ rema: $\forall A.((\forall B.A \subseteq B) \Rightarrow \forall C. \neg (A)(C))$ ostrazione: sia A insieme t.c. $\forall B.A \subseteq B$ (H) $Y \in A \land Y \in C$). Quindi sia Y l'insieme t.c. Y ostrare l'assurdo. Da H si ha $A \subseteq \emptyset$, ovvero $\forall X \in A$ Quindi, per l'assioma dell'insieme vuoto, assu	$Y \in A \text{ (K1) e } Y \in C \text{ (K2). Dobbiamo}$ $X.(X \in A \Rightarrow X \in \emptyset). \text{ Quindi, per K1,}$

L2 (5 punti).	Dimostrare in deduzione naturale per la logica al prim'ordine il seguente enunciato. Preferi	$_{ m re}$
	una prova intuizionista a una classica ove possibile.	

$$\forall n. \forall m. (P(m, f(n)) \Rightarrow P(f(m), n), \quad \forall n. \exists m. P(f(m), f(n)) \vdash \exists z. P(f(z), m)$$

$$\frac{\forall n. \forall m. P(m, f(n)) \Rightarrow P(f(m), n)}{\forall x. P(x, f(m)) \Rightarrow P(f(x), m)} \forall_{e}[m/n]}{\frac{\forall x. P(x, f(m)) \Rightarrow P(f(x), m)}{P(f(y), f(m)) \Rightarrow P(f(f(y)), m)} \forall_{e}[f(y)/x]} P(f(y), f(m))}{\frac{\exists x. P(f(x), f(m))}{\exists z. P(f(z), m)}} \exists_{e}[f(y)/z]} \Rightarrow$$

	Cognome	No	ome	
	Matricola	N	umero di CFU	Fila 2
	_	ER L'INFORMATI este. Se strettamente neces		4
L3 (5 pt	unti). Si consideri il seguente ragiona	mento:		
	Se l'amore non è per sempre all finire male e non ci sarà un mat allora ci sarà un matrimonio e andrà a finire male.	crimonio, se la coppia s	si lascerà. Se diventerà una co	oppia aperta
	Verificare la correttezza del ragi sizionale. Preferire una prova i		_	ogica propo-
	$\neg A \Rightarrow B \lor C, B \Rightarrow D \land \neg E, C = \frac{1}{A \lor \neg A} \xrightarrow{EM} \frac{\neg A \Rightarrow B \lor C}{B \lor C} \xrightarrow{[\neg A]} \Rightarrow_{e} \frac{\neg A \Rightarrow B \lor C}{B \lor C}$	$\Rightarrow E \land A \vdash A \lor D$ $\frac{\stackrel{B \Rightarrow D \land \neg E}{\stackrel{D \land \neg E}{\stackrel{\wedge}{A} \lor D}} \stackrel{\land e1}{\rightsquigarrow_{i2}}}{\stackrel{A \lor D}{\stackrel{A \lor D}{\nearrow}}} \rightarrow_{e}$	$ \frac{C \Rightarrow E \land A \qquad [C]}{\frac{E \land A}{A} \qquad \land e1} \Rightarrow_{e} $ $ \frac{A \lor D}{A \lor D} \lor_{e} $ $ [A] $	$\frac{4]}{\sqrt{D}} \stackrel{\bigvee_{i1}}{\bigvee_{e}}$

Cogne	ome	Nome	
Matri	cola	Numero di CFU	Fila 2
	Esame di LOGICA PER	i Bologna, Corso di Laurea in Informa L'INFORMATICA (9 CFU), 16/02/ Se strettamente necessario, si può allegare un fo ome, cognome, fila e matricola.	'2024
` - /	nsiderate la seguente sintassi per eri: $T ::= \emptyset \mid \langle T, \mathbb{Z}, T \rangle$ dove \mathbb{Z} g	er alberi binari i cui nodi interni sono etiche genera tutti i numeri interi.	ettati con numeri
(a) Scrivere per ricorsione strut prodotto di tutti gli interi co	tturale una funzione $prod$ che, dato un a ontenuti nell'albero.	albero, calcola il
(b	-	turale una funzione <i>prune</i> che, dato un a cutti gli interi negativi sono stati rimpiazza	*
(c) Dimostrare per induzione str intuizionista a una classica o	rutturale che $\forall T.prod(prune(T)) \geq 0$. Prove possibile.	eferire una prova
	_	ete utilizzare come date le operazioni di prod hè il lemma che dice che il prodotto di n	

(a) Prima arte di ricorsione strutturale:

```
prod(\emptyset) = 1

prod(\langle T_1, x, T_2 \rangle) = prod(T_1) * x * prod(T_2)
```

(b) Seconda arte di ricorsione strutturale:

```
prune(\emptyset) = \emptyset

prune(\langle T_1, x, T_2 \rangle) = \langle prune(T_1), \text{ if } (x \ge 0) \text{ then } x \text{ else } 1, prune(T_2) \rangle
```

(c) Parte di induzione strutturale:

Teorema: $\forall T.prod(prune(T)) \geq 0$.

Dimostrazione: procediamo per induzione strutturale su T per dimostrare $prod(prune(T)) \geq 0$

- Caso \emptyset : dobbiamo dimostrare $prod(prune(\emptyset)) \ge 0$ o, equivalentemente, $1 \ge 0$. Ovvio.
- Caso $\langle T_1, x, T_2 \rangle$: per ipotesi induttiva $prod(prune(T_1)) \geq 0$ (II1) e $prod(prune(T_2)) \geq 0$ (II2). Dobbiamo dimostrare $prod(prune(\langle T_1, x, T_2 \rangle)) \geq 0$ o, equivalentemente, $prod(prune(T_1))*($ if $(x \geq 0)$ then x else $1)*prod(prune(T_2)) \geq 0$. Dimostriamo che if $(x \geq 0)$ then x else $1 \geq 0$ per casi su $x \geq 0$:
 - Caso $x \ge 0 = true$: if (true) then x else $1 = x \ge 0$ in quando $x \ge 0$
 - Caso $x \ge 0 = false$: if (false) then x else $1 = 1 \ge 0$ ovvio.

La tesi consegue dalle ipotesi induttive II1 e II2, da quanto appena dimostrato e dalla proprietà dei numeri interi che dice che il prodotto di numeri non negativi è non negativo.

Qed.

Cognome	Nome	
Matricola	Numero di CFU	Fila 2

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di LOGICA PER L'INFORMATICA (9 CFU), 16/02/2024

 $Utilizzare\ i\ riquadri\ bianchi\ per\ le\ risposte.$ Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

A5 (3 punti). Per ciascuno dei seguenti enunciati, indica se é vero o falso. Se falso, scrivi un controesempio.

	Linguaggio	V	· F (scrivi controesempio)
(a)	Considera il monoide $(\mathbb{L}, ++, [])$ dove \mathbb{L} é l'insieme di liste di numeri naturali, $++$ é la concatenazione di liste, e $[]$ é la lista vuota. La funzione $f: \mathbb{L} \to \mathbb{L}$ definita come $f(l) = 0 :: l$ é un morfismo di monoidi da $(\mathbb{L}, ++, [])$ a $(\mathbb{L}, ++, [])$.		f([1,2] + +[1]) = [0,1,2,1] ma $f([1,2]) + +f([1]) = [0,1,2,0,1].$
(b)	$(\mathbb{R}, \times, 0)$ forma un monoide.		No, 0 non é l'elemento neutro per \times .
(c)	$(\mathcal{P}(X), \cup, \emptyset, \cap)$, dove $\mathcal{P}(X)$ é l'insieme dei sottoinsiemi di un dato insieme X , é un semianello.	Si	

A6 (3 punti). Sia $f: \mathbb{A} \to \mathbb{B}$ un morfismo tra strutture algebriche \mathbb{A} e \mathbb{B} dello stesso tipo.

- (a) Definisci cosa si intende per insieme quoziente di \mathbb{A} rispetto ad f, notazione $\mathbb{A}_{/\sim_f}$.
- (b) Definisci cosa si intende per immagine di f, notazione Imm(f).
- (c) Enuncia il teorema fondamentale dei morfismi per $f: \mathbb{A} \to \mathbb{B}$

- (a) Sia A il sostegno di A. L'insieme quoziente ha come elementi le classi di equivalenza della relazione R su A definita da: $(a,b) \in R$ se e solo se f(a) = f(b).
- (b) Sia B il sostegno di B. L'immagine di f é il suo sottoinsieme $\{b \in B \mid \exists a. f(a) = b\}$.
- (c) $\mathbb{A}_{/\sim_f}$ é il sostegno di una struttura algebrica dello stesso tipo di \mathbb{A} , e tale struttura é isomorfa all'immagine di f.

A7 (4 punti). Sia (X, \circ, e, e^{-1}) un gruppo abeliano, con operazione binaria \circ , elemento neutro e, ed operazione unaria \cdot^{-1} . Sia $Y \subseteq X$ un sottoinsieme non vuoto di X. Assumiamo che:

- (I) X é un insieme finito, diciamo di k elementi, che indichiamo come $\{a_1, a_2, \ldots, a_k\}$.
- (II) Y é chiuso sotto l'operazione \circ , cioé $x \in Y$ e $y \in Y$ implica $x \circ y \in Y$.

Dimostra le seguenti proposizioni (A), (B), (C), e (D):

- (A) Dimostra che, dati $a \in X$ e $b \in X$, $a \circ b = a$ implica b = e.
- (B) Definiamo per ricorsione sui numeri naturali:

$$\begin{array}{rcl} a^0 & = & e \\ a^{n+1} & = & a \circ a^n \end{array}$$

Per cui, ad esempio, $a^3 = a \circ (a \circ a)$. Dimostra che esiste j > 0 tale che $a^j = e$.

- (C) Dimostra che, se $a \in Y$, allora $a^{-1} \in Y$.
- (D) Dimostra che $(Y, \circ, e, ^{-1})$ forma un sottogruppo di $(X, \circ, e, ^{-1})$.

Nota che nel dimostrare ciascuna proposizione puoi assumere le precedenti come date.

Cognome	Nome	
Matricola	Numero di CFU	Fila 2

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di LOGICA PER L'INFORMATICA (9 CFU), 16/02/2024

Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

- Dimostriamo che, se $a=a\circ b$, allora b deve essere e. Abbiamo che $e=a^{-1}\circ a=a^{-1}\circ (a\circ b)=(a^{-1}\circ a)\circ b=e\circ b=b$.
- Dal momento che X é finito, esiste j > 0 per cui $a^{n+j} = a^n$. Per definizione, $a^{n+j} = a^n \circ a^j$. Perció $a^n \circ a^j = a^n$, che implica $a^j = e$ per la proposizione precedente.
- Supponi $a \in Y$. Per la proposizione precedente, abbiamo m tale che $a^{m+1} = e$. Perció $a \circ a^m = a^{m+1} = e$. Quindi a^m é l'elemento inverso di a. (Nota che non dobbiamo anche dimostrare $a^m \circ a = e$ in quanto il gruppo é abeliano.) Per definizione di a^n , dal momento che per assunzione Y é chiuso rispetto all'operazione \circ , abbiamo che $a^n \in Y$ per ogni n > 0. Inoltre, per n = 0, abbiamo anche che $a^n = e$ é in Y per la proposizione precedente. Perció in particolare l'inverso a^m di a é in Y.
- Abbiamo giá dimostrato che Y é chiuso rispetto all'operazione $^{-1}$, e per assunzione é chiuso rispetto all'operazione \circ . Rimane da dimostrate che contiene l'elemento neutro e. Dato $a \in Y$, abbiamo che $a^{-1} \in Y$, e anche $a \circ a^{-1} \in Y$. Dato che $a \circ a^{-1} = e$, questo conclude la dimostrazione. Alternativamente, possiamo utilizzare Proposizione (B).