Spis treści

Mas	szyny Turinga obliczające funkcje v	y alfahacia unarnym
1.1		w anabetie unarnym
1.1		
	· / /	
1.0		
1.2		
1.3		
	$1.3.1 f(3) \dots \dots \dots \dots$	
	$1.3.2 f(6) \dots \dots \dots \dots \dots$	
1.4	Zadanie 1.4	
	$1.4.1 f(5) \dots \dots \dots \dots$	
	$1.4.2 f(7) \dots \dots \dots \dots \dots$	
1.5	. ,	
1.0		
	· /	
1.6	. ,	
1.6		
1.7		
	0 \ /	
	9 ()	
1.8		
	$1.8.1 \overline{sgn}(0) \dots \dots \dots$	
	$1.8.2 \overline{sgn}(7) \dots \dots \dots$	
1.9	Zadanie 1.9	
	$1.9.1 f(4) \dots \dots \dots \dots \dots$	
1.10	. ,	
1.10		
	· /	
	. ,	
1.11		
	\ ' '	
	* * *	
1.12		
	$1.12.1 \min(3, 1) \dots \dots \dots \dots$	
	$1.12.2 \min(2, 4) \ldots \ldots \ldots$	
	szyny Turinga obliczające funkcje v	w alfabecie binarnym
2.1	Zadanie 1.18	
	$2.1.1 f(6, 4) \dots \dots \dots \dots$	
	$2.1.2 f(13, 7) \dots \dots \dots \dots$	
	szyny Turinga akceptujące języki	
3.1	Zadanie 1.19	
	3.1.1 aba	
	3.1.2 aabb	
3.2	Zadanie 1.20	
	3.2.1 baab	
	3.2.2 baaa	
3.3		
5.5		
9 1		
3.4		
3.5	Zadanie 1.24	
	3.5.1 xyxxyx	
	3.5.2 xxyyyy	

4	Mas	szyny Turinga i wyrażenia regularne	98
	4.1	Zadanie 1.46	98
		4.1.1 Przykładowe łańcuchy	98
		4.1.2 aabbb	98
		4.1.3 aaaba	99
	4.2	Zadanie 1.47	100
		4.2.1 Przykładowe łańcuchy	100
		4.2.2 1001	100
		4.2.3 1011	101
5	7 nd	lania z wielotaśmowej maszyny Turinga	102
J	5.1	Zadanie 1.51	$102 \\ 102$
	0.1		$102 \\ 103$
			108
	5.2		119
	9.2		119
		5.2.2 f(3)	122
	5.3		126
	0.0		127
		$5.3.2 f(3, 2) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	128
	5.4		132
	0.1		135
		$5.4.2 \text{f}(11) \dots $	142
	5.5		157
	3.3		157
			158
			159
		5.5.4 n!	160
		555 $n^n!$	161

1 Maszyny Turinga obliczające funkcje w alfabecie unarnym

1.1 Zadanie 1.1

Zaprojektuj maszynę Turinga, które oblicza funkcję odejmowania ograniczonego f dla liczb naturalnych m i n w reprezentacji unarnej, czyli

(1)
$$f(m,n) = m - n = \begin{cases} m - n, & \text{jeżeli } m \ge n, \\ 0, & \text{jeżeli } m < n \end{cases}$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

1.1.1 f(3,2)

1. $K_0 \quad q_0 1 1 1 1 0 1 1 1 \quad \vdash$ 1 1 1 1 0 1 1 1 ∇ ∇ 2. K_1 $q_11110111$ \vdash 1 0 3. $K_2 \quad 1q_1110111 \quad \vdash$ ∇ 0 1

 $\nabla \ / \ \nabla \ \leftarrow$

30. K_{29} $q_4\nabla 1101$ \vdash 31. K_{30} q_51101 \vdash ∇ ∇ 1 0 1 ∇ ∇ 32. K_{31} q_1101 \vdash 0 ∇ 33. K_{32} $1q_101$ \vdash ∇ ∇ 0 ∇ ∇ ∇ 34. K_{33} 10 q_1 1 \vdash 35. K_{34} $101q_1\nabla$ \vdash ∇ ∇ 0 ∇ ∇ ∇ 36. K_{35} 10 q_2 1 \vdash 37. K_{36} $1q_30$ \vdash ∇ ∇ 0 ∇ ∇ ∇ 38. K_{37} 1 q_71 1.1.2 f(2, 3)1. ∇ K_0 $q_0111011111$ \vdash ∇ 2. K_1 $q_111011111$ \vdash ∇ ∇ 1 3. $K_2 \quad 1q_1101111 \quad \vdash$

4.

 ∇

1

 K_3 11 q_1 01111 \vdash

31. K_{30} q_51011 \vdash 32. ∇ ∇ ∇ ∇ 0 1 ∇ K_{31} q_1011 \vdash 33. K_{32} $0q_111$ \vdash 34. K_{33} 01 q_1 1 \vdash ∇ ∇ 0 ∇ 35. K_{34} $011q_1\nabla$ \vdash 36. K_{35} 01 q_2 1 \vdash 0 37. $K_{36} \quad 0q_31 \quad \vdash$ 38. K_{37} q_401 \vdash 39. K_{38} $q_4\nabla 01$ \vdash 40. K_{39} q_501 \vdash 41. K_{40} $0q_61$ \vdash 42. K_{41} $0q_6\nabla$ \vdash 43.

 ∇

 K_{42} q_70

1.2 Zadanie 1.2

Zaprojektuj maszynę Turinga, które oblicza funkcję mnożenia f dla liczb naturalnych m i n w reprezentacji unarnej, czyli

$$f(m,n) = m \cdot n$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia, w tym pomnóż 3.2 lub 2.3 (wykonaj rysunki taśmy i zapisz konfiguracje).

 $(4) \qquad M=(Q,\Sigma,\Gamma,\delta,q_{0},\nabla,F)=(\{q_{0},q_{1},q_{2},q_{3},q_{4},q_{5},q_{6},q_{7},q_{8},q_{9},q_{10},q_{11},q_{12},q_{13}\},\{1,0\},\{1,0,\nabla\},\delta,q_{0},\nabla,\{q_{13}\})$

1.2.1 f(3, 2)

55. K_{54} $10\nabla q_{10}1\nabla 111$ \vdash ∇ 56. K_{55} $10q_{10}\nabla 1\nabla 111$ \vdash 0 ∇ 1 ∇ 1 1 1 57. K_{56} 101 q_6 1 ∇ 111 \vdash ∇ 58. K_{57} $101\nabla q_7\nabla 111$ \vdash ∇ ∇ 0 1 ∇ 1 1 59. K_{58} $101\nabla\nabla q_8111$ \vdash 60. K_{59} $101\nabla\nabla 1q_811$ \vdash 0 ∇ ∇ 1 1 1 61. K_{60} $101\nabla\nabla11q_{8}1$ \vdash 62. K_{61} $101\nabla\nabla111q_8\nabla$ \vdash 1 ∇ 63. K_{62} $101\nabla\nabla11q_{9}11$ \vdash 64. K_{63} $101\nabla\nabla 1q_9111$ \vdash ∇ 65. K_{64} $101\nabla\nabla q_91111$ \vdash ∇ 66. K_{65} $101\nabla q_9\nabla 1111$ \vdash 67. K_{66} $101q_{10}\nabla\nabla1111$ \vdash ∇ 1 1 1

71.

							\Downarrow								
∇	1	1	1	1	K_7	0	$q_{12}\nabla 1111$	⊢							

72.

•							\Downarrow						
∇	1	1	1	1	1	K_{71}	$q_{13}11111$						

1.3 Zadanie 1.3

Zaprojektuj maszynę Turinga, które oblicza funkcję f dla liczby naturalnej n w reprezentacji unarnej, gdzie

(5)
$$f(n) = \begin{cases} \frac{n}{2}, & \text{jeżeli } n \text{ jest parzysta,} \\ \frac{n+1}{2}, & \text{jeżeli } n \text{ jest nieparzysta} \end{cases}$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

(6)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{1\}, \{1, x, \nabla\}, \delta, q_0, \nabla, \{q_6\})$$

1.3.1 f(3)

	\Downarrow							
∇	1	1	1	1	∇	K_0	q_011111	\vdash

11. $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad K_{10} \quad \mathbf{x} q_{3}\mathbf{x} \vdash$

12. $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad K_{11} \quad q_5 \ge 1 \quad \vdash \qquad \qquad K_{12} \quad q_5 \ge 1 \quad \vdash \qquad \qquad K_{13} \quad q_5 \ge 1 \quad \vdash \qquad \qquad K_{14} \quad q_5 \ge 1 \quad \vdash \qquad \qquad K_{15} \quad q_5 \ge 1 \quad \vdash \qquad K_{15} \quad q_5 = 1$

13. $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad K_{12} \quad q_5 \nabla 11 \quad \vdash \qquad \qquad K_{12} \quad q_5 \nabla 11 \quad \vdash \qquad \qquad K_{13} \quad q_5 \nabla 11 \quad \vdash \qquad \qquad K_{14} \quad q_5 \nabla 11 \quad \vdash \qquad \qquad K_{15} \quad q_5 \nabla 11 \quad \vdash \qquad \qquad K_{15} \quad q_5 \nabla 11 \quad \vdash \qquad K_{15} \quad q_5 \quad q_5 \nabla 11 \quad \vdash \qquad K_{15} \quad q_5 \quad q_$

1.3.2 f(6)

1.

 $K_0 \quad q_0 1 1 1 1 1 1 1 1 1 \vdash$

2.

 K_1 $q_11111111$ \vdash

3.

			\Downarrow					
∇	∇	х	1	1	1	1	1	∇

 K_2 $\times q_2 111111$ \vdash

4.

				\Downarrow				
∇	∇	х	1	1	1	1	1	∇

 K_3 $\times 1q_21111$ \vdash

5.

					\Downarrow			
∇	∇	х	1	1	1	1	1	∇

 K_4 x11 q_2 111 \vdash

6.

						\Downarrow		
∇	∇	X	1	1	1	1	1	∇

 K_5 x111 q_2 11 \vdash

7.

 K_6 x1111 q_2 1 \vdash

8.

 K_7 x11111 $q_2\nabla$ \vdash

9.

								\Downarrow		
F	∇	∇	х	1	1	1	1	1	∇	~~~

 K_8 x1111 q_3 1 \vdash

10.

						\Downarrow			
∇	∇	x	1	1	1	1	∇	∇	3

 K_9 x111 q_4 1 \vdash

11.

					\Downarrow			
∇	∇	X	1	1	1	1	∇	∇

 K_{10} x11 q_4 11 \vdash

12.

				\Downarrow					
∇	∇	x	1	1	1	1	∇	∇	3

 K_{11} x1 q_4 111 \vdash

13.

 K_{12} $\times q_41111$ \vdash

27.

 K_{26} $xxxq_31$ \vdash

28.

∇	∇	x	X	X	∇	∇	∇	∇

 K_{27} xxq_4x \vdash

29.

					\Downarrow				
∇	∇	Х	X	X	∇	∇	∇	∇	

 $K_{28} \quad \mathbf{x}\mathbf{x}\mathbf{x}q_1\nabla \quad \vdash$

30.

				\Downarrow				
∇	∇	X	X	X	∇	∇	∇	∇

$$K_{29}$$
 xxq_5x \vdash

31.

$$K_{30}$$
 $\times q_5 \times 1$ \vdash

32.

$$K_{31}$$
 q_5 x11 \vdash

33.

$$K_{32}$$
 $q_5\nabla 111$ \vdash

$$K_{33}$$
 $q_6\nabla 1111$

1.4 Zadanie 1.4

Zaprojektuj maszynę Turinga, które oblicza funkcję f dla liczby naturalnej n w reprezentacji unarnej, gdzie

$$f(n) = n \mod 5$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$(8) M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}, q_{11}\}, \{1\}, \{1, x, \nabla\}, \delta, q_0, \nabla, \{q_{11}\})$$

1.4.1 f(5)

1.

	\Downarrow						
∇	1	1	1	1	1	1	$oxed{\nabla}$

$$K_0 \quad q_0 1 1 1 1 1 1 1 \quad \vdash$$

2.

		\Downarrow					
∇	∇	1	1	1	1	1	$oxed{ abla}$

$$K_1$$
 $q_1111111$ \vdash

3.

_			\Downarrow				
∇	∇	Х	1	1	1	1	∇

$$K_2$$
 $\times q_2 1111$ \vdash

				\Downarrow			
∇	∇	X	X	1	1	1	∇

$$K_3 \quad xxq_3111 \quad \vdash$$

5. $\nabla \mid \}$ $K_4 \quad xxxq_411 \quad \vdash$ 6. $K_5 \quad xxxxq_51 \quad \vdash$ ∇ X X х X 7. ∇ $K_6 \quad \text{xxxxx} q_6 \nabla \quad \vdash$ 8. ∇ $K_7 \quad xxxxq_9x \quad \vdash$ X X X 9. $K_8 \quad \mathbf{x}\mathbf{x}\mathbf{x}q_9\mathbf{x} \quad \vdash$ 10. $K_9 \quad \mathbf{x} \mathbf{x} q_9 \mathbf{x} \quad \vdash$ X ∇ 11. K_{10} $\times q_9 \times$ \vdash 12. K_{11} $q_9\mathbf{x}$ \vdash ∇ X ∇ ∇ ∇ ∇ 13.

1.4.2 f(7)

1. $\begin{picture}(1,0) \put(0,0) \put(0$

 K_1 $q_111111111$ \vdash

17.

 K_{16} $q_7 \nabla \nabla 11$ \vdash

18.

 K_{17} $q_7\nabla 11$ \vdash

19.

							\Downarrow		
∇	1	1	∇						

 K_{18} q_711 \vdash

20.

 K_{19} $\times q_2 1$ \vdash

21.

 $K_{20} \quad \mathbf{x} \mathbf{x} q_3 \nabla \quad \vdash$

22.

 K_{21} $\mathbf{x}q_{10}\mathbf{x}$ \vdash

23.

 K_{22} q_{10} x1 \vdash

24.

 K_{23} $q_{10}\nabla 11$ \vdash

25.

							\Downarrow				
لسسم	∇	∇	∇	∇	∇	∇	1	1	1	∇	00000

 K_{24} $q_{11}111$

1.5 Zadanie 1.5

Zaprojektuj maszynę Turinga, które oblicza funkcję f dla liczby naturalnej n w reprezentacji unarnej, gdzie

$$f(n) = \left\lfloor \frac{n}{2} \right\rfloor$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

(10)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{1\}, \{1, x, \nabla\}, \delta, q_0, \nabla, \{q_6\})$$

1.5.1 f(5)

1.

$$K_0 \quad q_0 1 1 1 1 1 1 1 \vdash$$

2.

$$K_1 \quad q_1 1 1 1 1 1 1 \vdash$$

3.

$$K_2 \quad \mathbf{x} q_2 \mathbf{1} \mathbf{1} \mathbf{1} \mathbf{1} \quad \vdash$$

4.

$$K_3$$
 $\times 1q_2111$ \vdash

					\Downarrow		
∇	∇	x	1	1	1	1	∇

$$K_4$$
 x11 q_2 11 \vdash

6. $\nabla \parallel$ K_5 x111 q_2 1 \vdash 7. K_6 x1111 $q_2\nabla$ \vdash ∇ X 1 1 1 8. $\nabla \mid \rangle$ K_7 x111 q_3 1 \vdash 9. K_8 x11 q_4 1 \vdash ∇ ∇ Х 1 1 ∇ 10. K_9 $x1q_411$ \vdash 11. 12.

 K_{10} $\times q_4111$ \vdash

 K_{11} q_4 x111 \vdash

13. K_{12} $\times q_1 111$ \vdash

14. K_{13} xxq_211 \vdash

15. K_{14} $xx1q_21$ \vdash

16. K_{15} xx11 $q_2\nabla$ \vdash

17. K_{16} $xx1q_31$ \vdash

18. K_{17} xxq_41 \vdash ∇

19. 20. X ∇ 21.

 K_{19} xxq_11 \vdash

 K_{18} $\times q_4 \times 1$ \vdash

 $K_{20} \quad \mathbf{x}\mathbf{x}\mathbf{x}q_2\nabla \quad \vdash$

22. X ∇ ∇

 K_{21} xxq_3x \vdash

23.

 K_{22} $\times q_5 \times$ \vdash

24. ∇

 K_{23} q_5 x1 \vdash

25.

 K_{24} $q_5\nabla 11$ \vdash

26. ∇ ∇ ∇

 K_{25} q_6111

1.5.2 f(6)

1. \Downarrow ∇ ∇

 K_0 $q_011111111$ \vdash

2.

 K_1 $q_11111111$ \vdash

3. ∇

 K_2 $\times q_2 111111$ \vdash

4.

 K_3 $\times 1q_21111$ \vdash

5.

 K_4 x11 q_2 111 \vdash

6. $\nabla \parallel$ K_5 x111 q_2 11 \vdash 7. K_6 x1111 q_2 1 \vdash \mathbf{X} 1 1 1 1 $\nabla \mid \{$ 8. K_7 x11111 $q_2\nabla$ \vdash $\nabla \parallel$ 9. $\nabla \parallel$ K_8 x1111 q_3 1 \vdash X 1 1 1 10. K_9 x111 q_4 1 \vdash 11. K_{10} x11 q_4 11 \vdash X 12. K_{11} x1 q_4 111 \vdash 13. K_{12} $\times q_41111$ \vdash 14. K_{13} q_4 x1111 \vdash 15. K_{14} $\times q_1 1111$ \vdash 16. K_{15} xxq_2111 \vdash 17. K_{16} $xx1q_211$ \vdash 18. K_{17} xx11 q_2 1 \vdash

 K_{18} xx111 $q_2\nabla$ \vdash

20.

 K_{19} xx11 q_3 1 \vdash

21.

$$K_{20}$$
 $xx1q_41$ \vdash

22.

				\Downarrow				
∇	∇	Х	Х	1	1	∇	∇	∇

$$K_{21}$$
 xxq_411 \vdash

23.

$$K_{22}$$
 $\times q_4 \times 11$ \vdash

24.

				₩				_
∇	∇	Х	X	1	1	∇	∇	∇

$$K_{23}$$
 xxq_111 \vdash

25.

$$K_{24} \quad \mathbf{x}\mathbf{x}\mathbf{x}q_2\mathbf{1} \quad \vdash$$

26.

$$K_{25}$$
 $xxx1q_2\nabla$ \vdash

27.

					\Downarrow				
∇	∇	х	x	X	1	∇	∇	∇	

$$K_{26}$$
 $xxxq_31$ \vdash

28.

				\Downarrow					
∇	∇	х	х	х	∇	∇	∇	∇	

$$K_{27}$$
 xxq_4x \vdash

29.

$$K_{28} \quad \mathbf{x}\mathbf{x}\mathbf{x}q_1\nabla \quad \vdash$$

30.

$$K_{29}$$
 xxq_5x \vdash

$$\begin{array}{|c|c|c|c|c|c|c|} \hline & & & & & \\ \hline \hline \hline & \nabla & \nabla & x & x & 1 & \nabla & \nabla & \nabla & \nabla \\ \hline \end{array}$$

$$K_{30}$$
 $\times q_5 \times 1$ \vdash

1.6 Zadanie 1.6

Zadanie 1.6 i zadanie 1.3 polegają na tym samym, różni się tylko zapis

1.7 Zadanie 1.7

Zaprojektuj maszynę Turinga, które oblicza funkcję signum (znaku)

(11)
$$sgn(n) = \begin{cases} 1, & \text{jeżeli } n \ge 0, \\ 0, & \text{jeżeli } n = 0 \end{cases}$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

(12)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4\}, \{1\}, \{1, 0, \nabla\}, \delta, q_0, \nabla, \{q_4\})$$

1.7.1 sgn(0)

1.

	\Downarrow			
∇	1	∇	K_0	q_01

2.

		\Downarrow			
 ∇	1	∇	K_1	$1q_1\nabla$	H

3.

	\Downarrow				
∇	1	∇	K_2	q_31	H

4.

	\Downarrow			
∇	0	∇	K_3	$q_{4}0$

$1.7.2 \quad \text{sgn}(7)$

1.

	\Downarrow								
∇	1	1	1	1	1	1	1	1	∇

 $K_0 \quad q_0 1 1 1 1 1 1 1 1 1 1 \vdash$

2.

		\Downarrow							
∇	1	1	1	1	1	1	1	1	∇

 $K_1 \quad 1q_111111111 \quad \vdash$

3.

 K_2 $1\nabla q_2 1111111$ \vdash

4.

					\Downarrow					
-	∇	1	∇	∇	1	1	1	1	1	∇

 K_3 $1\nabla\nabla q_2$ 11111 \vdash

5.

					\Downarrow				
∇	1	∇	∇	∇	1	1	1	1	∇

 $K_4 \quad 1\nabla\nabla\nabla q_2 1111 \quad \vdash$

6.

 $K_5 \quad 1\nabla\nabla\nabla\nabla\nabla q_2 111 \quad \vdash$

7.

 K_6 $1\nabla\nabla\nabla\nabla\nabla q_2$ 11 \vdash

8.

								\Downarrow	
 ∇	1	∇	∇	∇	∇	∇	∇	1	∇

 K_7 $1\nabla\nabla\nabla\nabla\nabla\nabla\nabla q_21$ \vdash

10.

									\Downarrow		
∇	1	∇	K_9	$1\nabla\nabla\nabla\nabla\nabla\nabla\nabla\nabla q_4\nabla$							

1.8 Zadanie 1.8

Zaprojektuj maszynę Turinga, które oblicza funkcję dopełnienie signum

(13)
$$\overline{sgn}(n) = \begin{cases} 0, & \text{jeżeli } n \ge 0, \\ 1, & \text{jeżeli } n = 0 \end{cases}$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

(14)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4\}, \{1\}, \{1, 0, \nabla\}, \delta, q_0, \nabla, \{q_4\})$$

1.8.1 $\overline{sgn}(0)$

1.

3. ∇ K_2 q_30 \vdash 4. ∇ K_3 q_41 **1.8.2** $\overline{sgn}(7)$ 1. \Downarrow K_0 $q_0111111111$ \vdash ∇ ∇ 1 1 1 2. $K_1 \quad 0q_111111111 \quad \vdash$ ∇ 3. K_2 $0\nabla q_2$ 1111111 \vdash ∇ 0 ∇ 1 1 1 1 1 4. $K_3 \quad 0\nabla\nabla q_2$ 11111 \vdash 5. $K_4 \quad 0\nabla\nabla\nabla q_2$ 1111 \vdash ∇ 0 ∇ 1 1 1 ∇ ∇ ∇ 1 6. $K_5 \quad 0\nabla\nabla\nabla\nabla\nabla q_2$ 111 \vdash 1 7. $K_6 \quad 0\nabla\nabla\nabla\nabla\nabla q_2$ 11 \vdash ∇ 0 ∇ ∇ ∇ ∇ ∇ 1 1 8. $K_7 \quad 0\nabla\nabla\nabla\nabla\nabla\nabla\nabla q_2 1 \quad \vdash$

9.

 $K_9 \quad 0\nabla\nabla\nabla\nabla\nabla\nabla\nabla\nabla q_4\nabla$

1.9 Zadanie 1.9

Zaprojektuj maszynę Turinga, które oblicza funkcję

(15)
$$f(n) = \begin{cases} 0, & \text{jeżeli } n \text{ jest parzysta,} \\ 1, & \text{jeżeli } n \text{ jest nieparzysta} \end{cases}$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

(16)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{1\}, \{1, 0, \nabla\}, \delta, q_0, \nabla, \{q_6\})$$

1.9.1 f(4)

1.

$$K_0$$
 $q_0111111$ \vdash

2.

$$K_1$$
 q_11111 \vdash

3.

$$K_2$$
 $1q_2111$ \vdash

4.

$$K_3$$
 q_31111 \vdash

$$K_4$$
 q_4 111 \vdash

6. K_5 q_111 \vdash 7. K_6 $1q_21$ \vdash ∇ ∇ ∇ 8. K_7 q_311 \vdash ∇ 9. ∇ $\nabla \mid \rangle$ K_8 q_41 \vdash ∇ ∇ 10. ∇ $K_9 \quad q_1 \nabla \quad \vdash$ 11. K_{10} $q_5\nabla$ \vdash $\nabla \parallel$ ∇ ∇ ∇ ∇ 12. K_{11} $0q_6\nabla$ ∇ ∇ 1.9.2 f(7) 1.

6.

 ∇ ∇

 K_0 $q_0111111111$ \vdash

2. ∇ 1 ∇ 1

 K_1 $q_111111111$ \vdash

3. ∇

 K_2 1 q_2 1111111 \vdash

4. ∇ 1

 K_3 q_3 11111111 \vdash

5.

 K_4 q_4 1111111 \vdash

 ∇ K_5 $q_1111111$ \vdash

1.10 Zadanie 1.10

Zaprojektuj maszynę Turinga, które oblicza funkcję

(17)
$$f(n) = \begin{cases} 0, & \text{jeżeli } n \text{ jest podzielna przez } 3, \\ 1, & \text{jeżeli } n \text{ nie jest podzielna przez } 3 \end{cases}$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

(18)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{1\}, \{1, 0, \nabla\}, \delta, q_0, \nabla, \{q_5\})$$

1.10.1 f(4)

1.

· •	\Downarrow						
∇	1	1	1	1	1	∇	3

$$K_0$$
 $q_0111111$ \vdash

$$K_1$$
 q_11111 \vdash

1.10.2 f(6)

								\Downarrow			
 ∇	∇	0		K_8	q_50						

1.11 Zadanie 1.11

Zaprojektuj maszynę Turinga, które oblicza funkcję maksimum dla liczb naturalnych m i n w reprezentacji unarnej, czyli

$$(19) f(m,n) = max(m,n).$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$(20) \qquad M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}\}, \{1, 0\}, \{1, 0, x, y, \nabla\}, \delta, q_0, \nabla, \{q_{10}\})$$

1.11.1 $\max(3, 2)$

	\Downarrow									
∇	1	1	1	1	0	1	1	1	∇	

$$K_0$$
 $q_011110111$ \vdash

 K_{25} $111q_{10}\nabla$

1.12 Zadanie 1.12

Zaprojektuj maszynę Turinga, które oblicza funkcję minimum dla liczb naturalnych m i n w reprezentacji unarnej, czyli

$$(21) f(m,n) = min(m,n).$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$(22) M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}\}, \{1, 0\}, \{1, 0, x, y, \nabla\}, \delta, q_0, \nabla, \{q_{10}\})$$

$1.12.1 \quad \min(3, 1)$

 $K_0 \quad q_0 1 1 1 1 0 1 1 \quad \vdash$

2.

		\Downarrow						_
∇	Х	1	1	1	0	1	1	∇

$$K_1 \quad \mathbf{x} q_1 1 1 1 0 1 1 \quad \vdash$$

			\Downarrow					
∇	X	1	1	1	0	1	1	∇

$$K_2 \quad x1q_211011 \quad \vdash$$

30. K_{29} q_7 x110yy \vdash ∇ x 31. K_{30} q_7110 yy \vdash ∇ ∇ 1 0 32. K_{31} q_710 yy \vdash 0 ∇ 33. K_{32} q_70yy \vdash y ∇ ∇ ∇ 0 у ∇ 34.у K_{33} $q_7 yy \vdash$ 35. K_{34} $1q_7y$ \vdash y ∇ ∇ ∇ ∇ ∇ 36. K_{35} $11q_7\nabla$ \vdash ∇ 37. K_{36} $11q_{10}\nabla$ ∇ ∇ ∇ ∇ 1 1 ∇ $1.12.2 \quad \min(2, 4)$

1. $K_0 \quad q_0 1 1 1 0 1 1 1 1 1 1 \vdash$ ∇ 1 1 1 ∇ 1 2. $K_1 \quad \mathbf{x} q_1 1 1 0 1 1 1 1 1 1 \vdash$ 3. $K_2 \quad x1q_210111111 \quad \vdash$ ∇ 1 1 4. K_3 x11 q_2 011111 \vdash 5.

 K_4 x110 q_2 111111 \vdash

32.					\Downarrow									
	∇	X	х	1	0	1	1	1	у	у	∇	K_{31}	$xx1q_50111yy$	⊢
33.							ı				<u> </u>			
	∇	X	x	1	0	1	1	1	у	у	∇	K_{32}	$xxq_510111yy$	⊢
34.	<u>{</u>						<u> </u>				<u> </u>			
	∇	X	↓	1	0	1	1	1	у	у	∇	K_{33}	$xq_5x10111yy$	⊢
35.	<u>}</u>									<u> </u>	<u> </u>			
	∇	x	x	↓ 1	0	1	1	1	у	у	∇	K_{24}	$xxq_010111yy$	F
36.	{ L	11		1	0	1	1	1	<i>,</i>		_ v _}}	54	111140101111	
	{ .	37	37	37		1	1	1	V	V		<i>K</i>	$xxxq_10111yy$	L
37.	$\left\{ \begin{array}{c} \nabla \end{array} \right\}$	X	X	X	0	1	1	1	У	У	∇	N 35	$xxxq_10111yy$	1
91.	{			#			I				<u> </u>	T.5	0444	
9.0	∇	X	X	X	0	1	1	1	У	У		K_{36}	$xxq_6x0111yy$	F
38.	ξ Ι		#					г			T			
	∇	Х	Х	X	0	1	1	1	у	У	∇	K_{37}	$xq_6xx0111yy$	F
39.										_				
	∇	х	х	Х	0	1	1	1	У	у	∇	K_{38}	q_6 xxx0111yy	\vdash
40.	\Downarrow													
	∇	X	X	X	0	1	1	1	у	у	$oxed{\nabla}$	K_{39}	$q_6 \nabla xxx0111y$	у ⊢
41.														
	∇	X	х	X	0	1	1	1	у	у	∇	K_{40}	q_9 xxx0111yy	⊢
42.			\Downarrow								_			
	∇	1	x	X	0	1	1	1	у	у	∇	K_{41}	$1q_9$ xx 0111 yy	⊢
43.				↓				ļ.						
	∇	1	1	X	0	1	1	1	у	у	∇	K_{42}	$11q_9$ x 0111 yy	\vdash
44.	·		1	l		I	I	I	I	1	<u> </u>			
	∇	1	1	1	0	1	1	1	у	у	∇	K_{43}	$111q_90111yy$	⊢
	<u>}</u>							L						

45.y K_{44} 111 ∇q_9 111yy \vdash 46. K_{45} 111 $\nabla \nabla q_9$ 11yy \vdash ∇ 1 у ∇ 1 1 1 ∇ 47. K_{46} 111 $\nabla\nabla\nabla q_9$ 1yy \vdash y 48. K_{47} 111 $\nabla\nabla\nabla\nabla\nabla q_9$ yy \vdash ∇ ∇ у 1 1 ∇ ∇ У ∇ 49. K_{48} 111 $\nabla\nabla\nabla\nabla\nabla\nabla q_9$ y \vdash 50. K_{49} 111 $\nabla\nabla\nabla\nabla\nabla\nabla\nabla q_9\nabla$ \vdash ∇ ∇ ∇ 51.

 K_{50} 111 $\nabla\nabla\nabla\nabla\nabla\nabla \nabla q_{10}\nabla$

2 Maszyny Turinga obliczające funkcje w alfabecie binarnym

2.1 Zadanie 1.18

Zaprojektuj maszynę Turinga, która oblicza funkcję dodawania

$$(23) f(m,n) = m+n.$$

dla liczby naturalnej n w reprezentacji binarnej. Za separator przyjmij 2. Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia, w tym dodaj 3+2 (wykonaj rysunki taśmy i zapisz konfiguracje).

$$(24) M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8\}, \{0, 1, 2\}, \{0, 1, 2, x, y, \nabla\}, \delta, q_0, \nabla, \{q_8\})$$

$2.1.1 \quad f(6, 4)$

1.

$$K_0 \quad q_0 1102100 \quad \vdash$$

2.

_		\Downarrow						
∇	1	1	0	2	1	0	0	∇

$$K_1 \quad 1q_0102100 \quad \vdash$$

3.

_			\Downarrow					
∇	1	1	0	2	1	0	0	∇

$$K_2 \quad 11q_002100 \quad \vdash$$

_				\Downarrow				
∇	1	1	0	2	1	0	0	∇

$$K_3$$
 110 q_0 2100 \vdash

18. ∇ K_{17} $11x21q_10 \vdash$ 19. K_{18} $11x2q_21$ \vdash 1 \mathbf{X} 2 ∇ ∇ $\nabla \parallel$ 20. K_{19} $11 \times q_2 21$ \vdash 21. ∇ K_{20} 11 q_3 x21 \vdash ∇ 2 1 ∇ ∇ 22. 23. 2 24.

 K_{21} $1q_31$ x21 \vdash K_{22} 1y q_0 x21 \vdash

 K_{23} 1yx q_0 21 \vdash

25. K_{24} 1yx2 q_0 1 \vdash Х ∇

26. K_{25} 1yx21 $q_0\nabla$ \vdash

27. K_{26} 1yx2 q_1 1 \vdash

28. K_{27} 1yx q_4 2 \vdash

29. K_{28} 1y q_5 x2 \vdash

30. K_{29} $1q_5$ yx2 \vdash ∇ ∇

44. K_{43} q_81010 ∇ 2.1.2 f(13, 7) 1. $\nabla \parallel$ K_0 $q_011012111$ \vdash ∇ 1 2. K_1 1 q_0 1012111 \vdash ∇ ∇ 3. K_2 11 q_0 012111 \vdash ∇ 4. ∇ K_3 110 q_0 12111 \vdash 0 1 2 5. ∇ K_4 1101 q_0 2111 \vdash 2 1 6. 2 ∇ K_5 11012 q_0 111 \vdash ∇ 1 1 1 7. ∇ K_6 110121 q_0 11 \vdash 1 2 1 1 1 8. K_7 1101211 q_0 1 \vdash ∇ 2 1 ∇ 1 0 1 1 1 9. ∇ K_8 11012111 $q_0\nabla$ \vdash 2 10.

 ∇ K_9 1101211 q_1 1 \vdash 1 0 1 2 11. K_{10} 110121 q_4 1 \vdash $\nabla \parallel$

2

12. ∇ K_{11} 11012 q_4 11 \vdash 2 ∇

		\Downarrow											
-	∇	1	0	1	0	0	∇	∇	∇	∇	∇	K_{51}	q_810100

3 Maszyny Turinga akceptujące języki

3.1 Zadanie 1.19

Zaprojektuj maszynę Turinga, która kopiuje wejściowy łańcuch w dla alfabetu $\Sigma = \{a,b\}$. Rozwiązanie może nie zawierać separatora

$$q_0w \stackrel{*}{\vdash} q_fww$$

lub może zawierać dowolny separator, na przykład separatorem może być blank, czyli

$$q_0w \stackrel{*}{\vdash} q_f w \nabla w$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$(27) M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{a, b\}, \{a, b, x, y, \nabla\}, \delta, q_0, \nabla, \{q_7\})$$

3.1.1 aba

2. K_1 $\mathbf{x}q_1\mathbf{ba}$ \vdash 3. $K_2 \quad xbq_1a \quad \vdash$ ∇ x b 4. $K_3 \quad \text{xba} q_1 \nabla \quad \vdash$ 5. ∇ ∇ b 6.

 $K_4 \operatorname{xba} \nabla q_2 \nabla \vdash$

 $K_5 \quad \text{xba} q_5 \nabla \text{a} \quad \vdash$ 7.

 $K_6 \operatorname{xb} q_5 \operatorname{a} \nabla \operatorname{a} \vdash$

8. $K_7 \quad \mathbf{x}q_5\mathbf{ba}\nabla\mathbf{a} \quad \vdash$

9. K_8 q_5 xba ∇ a \vdash

10. $K_9 \quad \mathbf{x}q_0\mathbf{b}\mathbf{a}\nabla\mathbf{a} \quad \vdash$

11. K_{10} xy q_3 a ∇ a \vdash

12. K_{11} xya $q_3\nabla a$ \vdash

13. K_{12} xya ∇q_4 a \vdash

14. K_{13} xya ∇ a $q_4\nabla$ \vdash ∇

15. K_{14} xya ∇q_5 ab \vdash 16. K_{15} xya $q_5\nabla$ ab \vdash y ∇ a b 17. K_{16} xy q_5 a ∇ ab \vdash 18. K_{17} x q_5 ya ∇ ab \vdash у ∇ a ∇ b 19. K_{18} xy q_0 a ∇ ab \vdash 20. у \mathbf{X} b 21.

 $K_{19} \quad \text{xyx} q_1 \nabla \text{ab} \quad \vdash$

 K_{20} xyx ∇q_2 ab \vdash х

22. K_{21} xyx ∇aq_2b \vdash b

23. $K_{22} \quad \text{xyx} \nabla \text{ab} q_2 \nabla \quad \vdash$ ∇

24. K_{23} xyx ∇aq_5 ba \vdash

25. K_{24} xyx ∇q_5 aba \vdash

26. K_{25} xyx $q_5\nabla$ aba \vdash

27. K_{26} xy q_5 x ∇ aba \vdash

 $K_{27} \quad \text{xyx} q_0 \nabla \text{aba} \quad \vdash$

29.

 K_{28} xy q_6 x ∇ aba \vdash

30.

		\Downarrow					
∇	x	у	a	∇	a	b	a

 K_{29} x q_6 ya ∇ aba \vdash

31.

	\Downarrow							
∇	х	b	a	∇	a	b	a	

 K_{30} q_6 xba ∇ aba \vdash

32.

$$K_{31}$$
 $q_6\nabla aba\nabla aba$ \vdash

33.

_	\Downarrow						
∇	a	b	a	∇	a	b	a

 K_{32} q_7 aba ∇ aba

3.1.2 aabb

1.

 K_0 q_0 aabb \vdash

2.

 K_1 $\times q_1$ abb \vdash

3.

 $K_2 \quad xaq_1bb \quad \vdash$

4.

				\Downarrow	
∇	x	a	b	b	∇

 $K_3 \operatorname{xab} q_1 \mathbf{b} \vdash$

5.

 $K_4 \quad \mathrm{xabb} q_1 \nabla \quad \vdash$

6.

						\Downarrow	
∇	х	a	b	b	∇	∇	

$$K_5 \quad \mathrm{xabb} \nabla q_2 \nabla \quad \vdash$$

					\Downarrow	
∇	X	a	b	b	∇	a

$$K_6 \quad \text{xabb} q_5 \nabla \text{a} \quad \vdash$$

8. $K_7 \operatorname{xab} q_5 \mathrm{b} \nabla \mathrm{a} \vdash$ ∇ 9. $K_8 \quad xaq_5bb\nabla a \vdash$ x a b ∇ 10. $K_9 \quad \mathbf{x}q_5\mathbf{a}\mathbf{b}\mathbf{b}\nabla\mathbf{a} \quad \vdash$ 11. K_{10} q_5 xabb ∇ a \vdash ∇ ∇ \mathbf{a} b b 12. K_{11} $\mathbf{x}q_0\mathbf{a}\mathbf{b}\mathbf{b}\nabla\mathbf{a}$ \vdash 13. $K_{12} \quad \mathbf{x} \mathbf{x} q_1 \mathbf{b} \mathbf{b} \nabla \mathbf{a} \vdash$ x X ∇ b 14. K_{13} xxb q_1 b ∇ a \vdash X ∇ 15. $K_{14} \quad \text{xxbb} q_1 \nabla \mathbf{a} \quad \vdash$ X ∇ a 16. \Downarrow K_{15} xxbb ∇q_2 a \vdash ∇ a 17. $K_{16} \quad \text{xxbb} \nabla a q_2 \nabla \quad \vdash$ \mathbf{a} 18. K_{17} xxbb ∇q_5 aa \vdash ∇ 19. K_{18} xxbb $q_5\nabla$ aa \vdash 20.

 ∇

 $K_{19} \operatorname{xxb} q_5 \mathrm{b} \nabla \mathrm{aa} \vdash$

34. K_{33} xxy q_0 b ∇ aab \vdash ∇ b 35. K_{34} xxyy $q_3\nabla$ aab \vdash у ∇ X ∇ a a b 36. K_{35} xxyy ∇q_4 aab \vdash a 37.y y K_{36} xxyy ∇aq_4ab \vdash ∇ X ∇ a a b 38. K_{37} xxyy ∇ aa q_4 b \vdash b 39. K_{38} xxyy ∇ aab $q_4\nabla$ \vdash у ∇ a X b 40. K_{39} xxyy ∇ aa q_5 bb \vdash 41. K_{40} xxyy ∇aq_5abb \vdash ∇ X a b 42. K_{41} xxyy ∇q_5 aabb \vdash ∇ \mathbf{a} 43. K_{42} xxyy $q_5\nabla$ aabb \vdash \mathbf{a} 44. K_{43} xxy q_5 y ∇ aabb \vdash ∇ 45. K_{44} xxyy $q_0\nabla$ aabb \vdash 46. K_{45} xxy q_6 y ∇ aabb \vdash ∇ a b

47.											
			\Downarrow								
∇	X	х	у	b	∇	a	a	b	b	K_{46}	$xxq_6yb\nabla aabb \vdash$
48.											
		\Downarrow									
	x	X	b	b	∇	a	a	b	b	K_{47}	$xq_6xbb\nabla aabb \vdash$
49.											
49.	\Downarrow										
∇	х	a	b	b	∇	a	a	b	b	K_{48}	q_6 xabb ∇ aabb \vdash
F0											
50. ↓											
∇	a	a	b	b	∇	a	a	b	b	K_{49}	$q_6\nabla$ aabb ∇ aabb \vdash
51.	п										
_		,									
V	a	a	b	b	∇	a	a	b	b	K_{50}	q_7 aabb ∇ aabb

3.2 Zadanie 1.20

Zaprojektuj maszynę Turinga, która akceptuje język

$$(28) L = \{\omega\omega : \omega \in \{a, b\}^+\}$$

nad alfabetem $\Sigma = \{a, b\}$. Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$(29) \quad M = (Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_8, q_{10}, q_{11}\}, \{a, b\}, \{a, b, x, y, \nabla\}, \delta, q_0, \{q_{10}\}, \{q_{11}\})$$

3.2.1 baab

 K_0 q_0 baab \vdash

 K_1 y q_4 aab \vdash

 K_2 ya q_4 ab \vdash

4. ∇ 5. ∇ a a 6. 7. y ∇ ∇ 8.

 K_6 ya q_3 ay \vdash

 K_3 yaa q_4 b \vdash

 K_4 yaab $q_4\nabla$ \vdash

$$K_7$$
 y q_3 aay \vdash

9.

$$K_8$$
 q_3 yaay \vdash

10.

$$K_9$$
 y q_0 aay \vdash

11.

$$K_{10}$$
 yx q_1 ay \vdash

12.

$$K_{11}$$
 yxa q_1 y \vdash

13.

$$K_{12}$$
 yx q_2 ay \vdash

14.

$$K_{13}$$
 yq_3xxy \vdash

15.

$$K_{14}$$
 yx q_0 xy \vdash

$$K_{15}$$
 $yxxq_6y$ \vdash

 K_{16} yxxy $q_6\nabla$ \vdash

18.

 K_{17} $yxxq_7y$ \vdash

19.

$$K_{18}$$
 yx q_7 xb \vdash

20.

$$K_{19}$$
 y q_7 xab \vdash

21.

$$K_{20}$$
 q_7 yaab \vdash

22.

$$K_{21}$$
 $q_7 \nabla \text{baab} \vdash$

23.

$$K_{22}$$
 q_{10} baab

3.2.2 baaa

1.

$$K_0$$
 q_0 baaa \vdash

2.

$$K_1$$
 y q_4 aaa \vdash

3.

			\Downarrow		
∇	у	a	a	a	∇

$$K_2$$
 ya q_4 aa \vdash

4.

				\Downarrow	
∇	у	a	a	a	∇

$$K_3$$
 yaa q_4 a \vdash

5.

					\Downarrow	
∇	у	a	a	a	∇	000000

$$K_4$$
 yaaa $q_4\nabla$ \vdash

$$K_5$$
 yaa q_5 a \vdash

 ∇ y a a a ∇ K_8 ya q_9 aa \vdash 10.

 ∇

a

 K_9 y q_9 aaa \vdash

3.3 Zadanie 1.22

Zaprojektuj maszynę Turinga nad alfabetem $\Sigma = \{a, b\}$, która akceptuje język

(30)
$$L = \{\omega : \omega \text{ zawiera równą liczbę symboli a i b} \}$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$(31) M = (Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{a, b\}, \{a, b, x, y, \nabla\}, \delta, q_0, \{q_6\}, \{q_7\})$$

3.3.1 aabba

1.

	\Downarrow						
∇	a	a	b	b	a	∇	3

$$K_0$$
 q_0 aabba \vdash

2.

$$K_1$$
 $\times q_1$ abba \vdash

3.

			\Downarrow				
 ∇	x	a	b	b	a	∇	~~~

$$K_2 \quad xaq_1bba \quad \vdash$$

$$\begin{array}{|c|c|c|c|c|c|}\hline & & & & & \\ \hline \hline & \nabla & x & a & y & b & a & \nabla \\ \hline \end{array}$$

$$K_3$$
 $\times q_2$ ayba \vdash

18. K_{17} xxy q_0 ya \vdash 19. K_{18} xxyy q_0 a \vdash у X a ∇ 20. ∇

 K_{19} $xxyyxq_1\nabla$ \vdash 21.

 K_{20} xxyy q_4 x \vdash у ∇ 22.

 K_{21} xxy q_4 ya \vdash y ∇

23. K_{22} xx q_4 yba \vdash y b ∇

24. K_{23} $\times q_4 \times bba$ \vdash

25. K_{24} q_4 xabba \vdash

26. K_{25} $q_4\nabla$ aabba \vdash

27. K_{26} q_7 aabba a b

3.3.2 abbbaa

1. K_0 q_0 abbbaa \vdash ∇ 2. K_1 xq_1 bbbaa \vdash 3.

 K_2 q_2 xybbaa \vdash

4.											
1.	{∏	1	1					T [}		- 11
		X	У	b	b	a	a	∇	}	K_3	$q_2\nabla xybbaa \vdash$
5.		.							2		
	∇	Х	У	b	b	a	a	∇	}	K_4	q_0 xybbaa \vdash
6.			\Downarrow								
	∇	X	у	b	b	a	a	∇	}	K_5	$xq_0ybbaa \vdash$
7.			•	11		•			1		
	∇	X	у	↓ b	b	a	a	∇	}	K_6	xyq_0 bbaa \vdash
8.	<u> </u>								}		
	{ \	x	у	у	↓	a		∇	}	K_7	$xyyq_3$ baa \vdash
9.			<u> </u>	y	b	a	a	∇	}	ιιγ	хуудзыа
9.	Л	1	ı			#		1 [₹		
	∇	X	У	У	b	a	a	∇		K_8	$xyybq_3aa \vdash$
10.					\Downarrow						
	∇	X	у	у	b	х	a	∇]	K_9	$xyyq_2bxa \vdash$
11.				\Downarrow							
	∇	х	у	у	b	х	a	∇	}	K_{10}	$xyq_2ybxa \vdash$
12.	4								3		
	∇	x	<u>↓</u>	y	b	X	a	∇	}	K_{11}	$xq_2yybxa \vdash$
13.	{I	<u> </u>							}		
	1	 	1,	77	,			I . [}	IZ.	a www.brro
1.4		Х	У	У	b	Х	a	∇	}	Λ_{12}	q_2 xyybxa \vdash
14.	↓	1	ĭ						₹		
	∇	Х	у	у	b	х	a	∇	}	K_{13}	$q_2\nabla xyybxa \vdash$
15.		\Downarrow									
	∇	X	у	у	b	х	a	∇	}	K_{14}	q_0 xyybxa \vdash
16.											
	∇	x	у	у	b	x	a	∇	}	K_{15}	$xq_0yybxa \vdash$
	<u>1</u>		I			L			}		

17. $\nabla \parallel$ K_{16} xy q_0 ybxa \vdash 18. K_{17} xyy q_0 bxa \vdash у X ∇ 19. K_{18} xyyy q_3 xa \vdash X 20. K_{19} xyyyx q_3 a \vdash у y y ∇ X 21. K_{20} xyyy q_2 xx \vdash ∇ 22. K_{21} xyy q_2 yxx \vdash у X 23. K_{22} xyq_2yyxx \vdash 24. K_{23} $\times q_2 yyyxx$ \vdash 25. K_{24} q_2 xyyyxx \vdash 26. K_{25} $q_2 \nabla xyyyxx \vdash$ 27. K_{26} q_0 xyyyxx \vdash 28. K_{27} $\times q_0 yyyxx$ \vdash 29.

 K_{28} xyq_0yyxx \vdash

 K_{30} xyyy q_0 xx \vdash

y

y

X

 ∇

 K_{31} xyyyx q_0 x \vdash

 K_{32} xyyyxx $q_0\nabla$ \vdash

 K_{33} xyyyx q_5 x \vdash

 K_{34} xyyy q_5 xa \vdash

 K_{35} xyy q_5 yaa \vdash

 K_{36} xy q_5 ybaa \vdash

 K_{37} x q_5 ybbaa \vdash

 K_{38} q_5 xbbbaa \vdash

 K_{39} $q_5\nabla$ abbbaa \vdash

 K_{40} q_6 abbbaa

3.4 Zadanie 1.23

Zaprojektuj maszynę Turinga, która akceptuje język

(32)
$$L = \{\omega : |\omega| \text{ jest parzysta}\}\$$

nad alfabetem $\Sigma = \{0, 1\}$. Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

(33)
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R) = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, \nabla\}, \delta, q_0, \{q_2\}, \{q_3\})$$

3.4.1 100111

1.

	\Downarrow						
∇	1	0	0	1	1	1	∇

$$K_0 \quad q_0 100111 \quad \vdash$$

2.

			\Downarrow						
لسسم	∇	1	0	0	1	1	1	∇	7

$$K_1 \quad 1q_100111 \quad \vdash$$

3.

$$K_2 \quad 10q_00111 \quad \vdash$$

4.

$$K_3 \quad 100q_1111 \quad \vdash$$

5.

					\Downarrow		
∇	1	0	0	1	1	1	∇

$$K_4 \quad 1001q_011 \quad \vdash$$

6.

							\Downarrow	
*	∇	1	0	0	1	1	1	∇

$$K_5 \quad 10011q_11 \quad \vdash$$

								\Downarrow	
~~~	$\nabla$	1	0	0	1	1	1	$\nabla$	

$$K_6 \quad 100111q_0 \nabla \quad \vdash$$

						$\Downarrow$				
 $\nabla$	1	0	0	1	1	1	$\nabla$	}	$K_7$	$10011q_21$

## 3.4.2 11011

1.

	$\Downarrow$					
$\nabla$	1	1	0	1	1	$\nabla$

 $K_0$   $q_011011$   $\vdash$ 

2.

		$\Downarrow$				
$\nabla$	1	1	0	1	1	$\nabla$

 $K_1$   $1q_11011$   $\vdash$ 

3.

•			$\Downarrow$			
$\nabla$	1	1	0	1	1	$\nabla$

 $K_2$  11 $q_0$ 011  $\vdash$ 

4.

				$\Downarrow$		
$\nabla$	1	1	0	1	1	$\nabla$

 $K_3$  110 $q_1$ 11  $\vdash$ 

5.

					$\Downarrow$	
$\nabla$	1	1	0	1	1	$\nabla$

 $K_4$  1101 $q_0$ 1  $\vdash$ 

6.

							$\Downarrow$	
-	$\nabla$	1	1	0	1	1	$\nabla$	}  }

 $K_5$  11011 $q_1\nabla$   $\vdash$ 

7.

					₩	
$\nabla$	1	1	0	1	1	$\nabla$

 $K_6 \quad 1101q_31$ 

### 3.5 Zadanie 1.24

Zaprojektuj maszynę Turinga nad alfabetem  $\Sigma = \{x, y\}$ , która akceptuje język

(34) Maszyna Turinga akceptująca język  $L = \{\omega : |\omega| \text{ ma dwa razy wiecej symboli } x \text{ niz } y\}$ 

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$(35) \hspace{1cm} M = (Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8\}, \{x, y\}, \{x, y, a, b, \nabla\}, \delta, q_0, \{q_7\}, \{q_8\})$$



### 3.5.1 xyxxyx

$$K_0$$
  $q_0$ xyxxyx  $\vdash$ 

$$K_1$$
  $\times q_0 y \times x y \times \vdash$ 





29.				<b></b>								
	$\nabla$	a	b	a	a	b	a	$\nabla$		$K_{28}$	$abq_4aaba$	$\vdash$
30.			<b></b>									
	$\nabla$	a	b	a	a	b	a	$\nabla$		$K_{29}$	$aq_4$ baaba	$\vdash$
31.	<u> </u>						I	<u> </u>	<b>?</b>			
	$\nabla$	↓ a	b	a	a	b	a	$\nabla$	}	$K_{30}$	$q_4$ abaaba	⊢
32.	{ <b>]</b> •							[}	}	30	11	
<u> </u>	₩							T _ 18	}	17	<del></del>	
2.2	$\nabla$	a	b	a	a	b	a	$\nabla$		$K_{31}$	$q_4\nabla$ abaab	a ⊢
33.		<b></b>					·		,			
	$\nabla$	a	b	a	a	b	a	$\nabla$		$K_{32}$	$q_0$ abaaba	$\vdash$
34.			$\Downarrow$									
	$\nabla$	a	b	a	a	b	a	$\nabla$		$K_{33}$	$aq_0$ baaba	$\vdash$
35.				<b>.</b>								
	$\nabla$	a	b	a	a	b	a	$\nabla$		$K_{34}$	$\mathrm{ab}q_0\mathrm{aaba}$	$\vdash$
36.	<u> </u>					l	<u> </u>	1 13	}			
	$\nabla$	a	b	a	<b>↓</b> a	b	a	$\nabla$		$K_{35}$	aba $q_0$ aba	⊢
37.			L D			_ D		$\nabla$		1135	abaqqaba	'
91.	<u>η</u>					<b>#</b>	ı	T B	}			
	$\nabla$	a	b	a	a	b	a	$\nabla$		$K_{36}$	abaa $q_0$ ba	F
38.	_						<b></b>					
	$\nabla$	a	b	a	a	b	a	$\nabla$		$K_{37}$	abaab $q_0$ a	$\vdash$
39.								<b></b>				
	$\nabla$	a	b	a	a	b	a	$\nabla$		$K_{38}$	abaaba $q_0$	7 -
40.						•						
	$\nabla$	a	b	a	a	b	↓ a	$\nabla$		$K_{39}$	abaab $q_5$ a	$\vdash$
41.	<u> </u>						<u> </u>	1 3	?			
		9	l h	9	9	\\ \  \  \  \  \  \  \  \  \  \  \  \  \		$\nabla$		$K_{40}$	${ m abaa}q_5{ m bx}$	⊢
	$\mid \nabla \mid$	a	b	a	a	b	x			<b>41</b> 40	avaaq5 DX	1

42.

\[ \nabla \quad \text{a b a a y x } \nabla \]

43.

\[ \nabla \quad \text{a b a x y x } \nabla \]

44.

 $K_{43}$  a $q_5$ bxxyx  $\vdash$ 

 $K_{44}$   $q_5$ ayxxyx  $\vdash$ 

 $K_{41}$  aba $q_5$ ayx  $\vdash$ 

 $K_{42}$  ab $q_5$ axyx  $\vdash$ 

y

 $\nabla$ 

 $K_{46}$   $q_7$ xyxxyx

 $\mathbf{3.5.2} \quad \mathbf{xxyyyy}$ 

 $K_0$   $q_0$ xxyyyy  $\vdash$ 

 $K_1$   $\times q_0 \times y \times y \times \vdash$ 

 $K_2 \quad xxq_0yyyy \quad \vdash$ 

 $K_3$   $\times q_1 \times \text{byyy}$   $\vdash$ 

 $K_4$   $q_1$ xxbyyy  $\vdash$ 

 $K_5 \quad q_1 \nabla x x b y y y \vdash$ 

 $K_6$   $q_2$ xxbyyy  $\vdash$ 

8.											
	$\nabla$	a	<b>↓</b>	b	у	у	у	$\nabla$	$K_7$	$aq_3x$ byyy	⊢
9.	{ ·			.5				<u> </u>	•	10 000	
	<u> </u>	<del> </del>		,			T	T _ R	TZ.	1.	
	$\nabla$	a	a	b	У	У	У	$oxed{\nabla}$	$\kappa_8$	$q_4$ aabyyy	Η
10.	<b>#</b>						,				
	$\nabla$	a	a	b	у	у	У		$K_9$	$q_4\nabla$ aabyyy	·  -
11.		$\Downarrow$									
	$\nabla$	a	a	b	у	у	у	$\nabla$	$K_{10}$	$q_0$ aabyyy	$\vdash$
12.	ч							<u> </u>			
	$\nabla$	a	↓ a	b	у	у	у	$\nabla$	$K_{11}$	$aq_0abyyy$	⊢
13.	{  <b>v</b>			О		<u> </u>		_ <b>'</b> _}}	11	10 333	
10.	{I			<b></b>		ı		T B		,	
	$\nabla$	a	a	b	У	У	У		$K_{12}$	$aaq_0$ byyy	⊢
14.	_				$\Downarrow$			_			
	$\nabla$	a	a	b	у	у	у		$K_{13}$	$\mathrm{aab}q_0$ yyy	$\vdash$
15.				$\Downarrow$							
	$\nabla$	a	a	b	b	у	у	$\nabla$	$K_{14}$	$aaq_1bbyy$	$\vdash$
16.	υ	l				l	I	<u> </u>			
	$\nabla$	a	↓ a	b	b	у	у	$\nabla$	$K_{15}$	$aq_1abbyy$	⊢
17.	{  <b>v</b>			Б				<b>v</b>  }	15	aqrassyy	
<b></b>	Я	<b>#</b>				1	1	ТВ			
		a	a	b	b	У	У		$K_{16}$	$q_1$ aabbyy	⊢
18.											
	$\nabla$	a	a	b	b	у	у	$\nabla$	$K_{17}$	$q_1\nabla$ aabby	y F
19.		<b></b>									
	$\nabla$	a	a	b	b	у	у	$\nabla$	$K_{18}$	$q_2$ aabbyy	⊢
20.	Ъ	I			I	I	I	1 13			
	{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	e e	<b>↓</b>	h	h	у	у	$\nabla$	<i>K</i>	$\mathrm{a}q_2\mathrm{abbyy}$	⊢
	$\nabla$	a	a	b	b	^y	^y		11 19	ayzanny y	1



# 4 Maszyny Turinga i wyrażenia regularne

## 4.1 Zadanie 1.46

Wypisz cztery przykładowe łańcuchy opisywane przez wyrażenie  $\mathbf{a}(\mathbf{a}+\mathbf{b})^*\mathbf{b}\mathbf{b}$ . Czy można skonstruować (deterministyczną) maszynę Turinga, która akceptuje język

$$(36) L = L(a(a+b)^*bb)$$

$$(37) M = (Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R) = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a, b\}, \{a, b, \nabla\}, \delta, q_0, \{q_4\}, \{q_5\})$$



### 4.1.1 Przykładowe łańcuchy

- 1. abb
- 2. aabb
- 3. abbb
- 4. aabbb

#### 4.1.2 aabbb

1.



$$K_0$$
  $q_0$ aabbb  $\vdash$ 

2.



$$K_1$$
 a $q_1$ abbb  $\vdash$ 

				$\downarrow$			
20000	$\nabla$	a	a	b	b	b	$\nabla$

$$K_2$$
 aa $q_1$ bbb  $\vdash$ 

4. $K_3$  aab $q_1$ bb  $\vdash$ 5.  $K_4$  aabb $q_1$ b  $\vdash$ b a b  $\nabla$ 6.  $K_5$  aabbb $q_1\nabla$   $\vdash$  $\nabla$ 7.  $K_6$  aabb $q_2$ b  $\vdash$ b b b  $\nabla \mid$ 8.  $K_7$  aab $q_3$ bb  $\vdash$  $\nabla$ 9.

 $K_8$  aa $q_4$ bbb b b  $\nabla$ 

## 4.1.3 aaaba

1.  $K_0$   $q_0$ aaaba  $\vdash$  $\nabla \parallel$ 2.  $K_1$  a $q_1$ aaba  $\vdash$  $\nabla$ 

3.  $K_2$  aa $q_1$ aba  $\vdash$  $\nabla \parallel$ 

4.  $K_3$  aaa $q_1$ ba  $\vdash$  $\nabla$ 

5.  $K_4$  aaab $q_1$ a  $\vdash$  $\nabla$ 

6.  $K_5$  aaaba $q_1\nabla$   $\vdash$ 

7.  $\nabla$  $K_6$  aaab $q_2$ a  $\vdash$ 

				$\Downarrow$				
$\nabla$	a	a	a	b	a	$\nabla$	$K_7$	aaa $q_5$ ba

#### 4.2 Zadanie 1.47

Wypisz cztery przykładowe łańcuchy opisywane przez wyrażenie  $\mathbf{10} + (\mathbf{0} + \mathbf{11})\mathbf{0}^*\mathbf{1}$ . Czy można skonstruować (deterministyczną) maszynę Turinga, która akceptuje język

$$(38) L = L(10 + (0+11)0^*1)$$

Jeżeli można, to narysuj diagram przejść i dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$(39) \hspace{3.1em} M=(Q,\Sigma,\Gamma,\delta,q_0,q_A,q_R)=(\{q_0,q_1,q_2,q_3,q_4,q_5,q_6,q_7\},\{1,0\},\{1,0,\nabla\},\delta,q_0,\{q_6\},\{q_7\})$$



#### 4.2.1 Przykładowe łańcuchy

- 1. 1001
- 2. 10111
- 3. 100001
- 4. 101101

#### 4.2.2 1001

1.



$$K_0 \quad q_0 1001 \quad \vdash$$

$$K_1$$
  $1q_1001$   $\vdash$ 



 $K_2$  10 $q_2$ 01  $\vdash$ 

4.



 $K_3 \quad 100q_41 \quad \vdash$ 

5.

					$\Downarrow$
$\nabla$	1	0	0	1	$\nabla$

 $K_4$  1001 $q_6\nabla$ 

## 4.2.3 1011

1.



 $K_0$   $q_01011$   $\vdash$ 

2.



 $K_1$   $1q_1011$   $\vdash$ 

3.

			$\Downarrow$		
$\nabla$	1	0	1	1	$\nabla$

 $K_2 \ 10q_211 \ \vdash$ 

4.

				₩	
$\nabla$	1	0	1	1	$\nabla$

 $K_3$  101 $q_3$ 1  $\vdash$ 

5.

					$\Downarrow$	
$\nabla$	1	0	1	1	$\nabla$	3

 $K_4$  1011 $q_4\nabla$   $\vdash$ 

6.

						$\Downarrow$	
 $\nabla$	1	0	1	1	$\nabla$	$\nabla$	~~~~

 $K_5$   $1011\nabla q_7\nabla$ 

# 5 Zadania z wielotaśmowej maszyny Turinga

## 5.1 Zadanie 1.51

Używając unarnej reprezentacji liczb, zaprojektuj wielotaśmową maszynę Turinga, która oblicza funkcję

$$(40) f(n) = \lceil \log_2 n \rceil.$$

Podaj tabelę przejść i narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśm i zapisz konfiguracje).

(41) 
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4\}, \{1\}, \{1, \nabla\}, \delta, q_0, \nabla, \{q_4\})$$



Nr	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
1	$q_0$	$[1,\  abla,\  abla]$	$[\nabla,\ 1,\ 1]$	$q_1$	$[\rightarrow, -\!\!\!-, \rightarrow]$
2	$q_1$	$[1,\ 1,\ \nabla]$	$[1,\ 1,\ 1]$	$q_1$	$[, \rightarrow, \rightarrow]$
3	$q_1$	$[1,\  abla,\  abla]$	$[1,\ 1,\  abla]$	$q_2$	$[\leftarrow, \leftarrow, \leftarrow]$
4	$q_2$	[1,1,1]	$[1,\ 1,\ 1]$	$q_2$	$[\leftarrow, \leftarrow, \leftarrow]$
5	$q_2$	$[\nabla,\ 1,\ 1]$	$[\nabla,1,1]$	$q_2$	$[,\leftarrow,\leftarrow]$
6	$q_2$	$[1,\ \nabla,\ 1]$	$[1,\ \nabla,\ 1]$	$q_2$	$[\leftarrow,, \leftarrow]$
7	$q_2$	$[1,\ 1,\  abla]$	$[1,\ 1,\  abla]$	$q_2$	$[\leftarrow, \leftarrow,]$
8	$q_2$	$[\nabla,\ \nabla,\ 1]$	$[\nabla,\ \nabla,\ 1]$	$q_2$	[─-, ─-, ←]
9	$q_2$	$[1, \ \nabla, \ \nabla]$	$[1, \nabla, \nabla]$	$q_2$	[←, —, —]
10	$q_2$	$[\nabla,\ \nabla,\ \nabla]$	$[ abla, \  abla, \  abla]$	$q_3$	$[\rightarrow,\rightarrow,\rightarrow]$
11	$q_3$	[1,1,1]	$[1,\ 1,\ 1]$	$q_3$	[ o,  o,  o]
12	$q_3$	$[1,\ 1,\ \nabla]$	$[1,\ 1,\ \nabla]$	$q_1$	[,,]
13	$q_3$	$[\nabla,\ 1,\ 1]$	$[ abla,\ 1,\ 1]$	$q_4$	[,,]

Wynik na środkowej taśmie

## 5.1.1 f(3)



$$K_0=(q_0,\uparrow 1111,\uparrow \nabla,\uparrow \nabla)$$



$$K_1=(q_1,\uparrow 111,\uparrow 1,1\uparrow 
abla)$$



$$K_2=(q_1,\uparrow 111,\,1\uparrow 
abla,\,11\uparrow 
abla)$$



$$K_3=(q_2,\uparrow 
abla 111,\uparrow 11,1\uparrow 1)$$



$$K_4=(q_2,\uparrow
abla 111,\uparrow
abla 11,\uparrow
abla 11)$$



$$K_5=(q_2,\uparrow 
abla 111,\uparrow 
abla 11,\uparrow 
abla 11)$$



$$K_6=(q_3,\uparrow 111,\uparrow 11,\uparrow 11)$$

$$K_7=(q_3,\,1{\uparrow}11,\,{\uparrow}11,\,1{\uparrow}1)$$



$$K_8=(q_3,\,11{\uparrow}1,\,{\uparrow}11,\,11{\uparrow}
abla)$$



$$K_9=(q_1,\,11{\uparrow}1,\,{\uparrow}11,\,11{\uparrow}
abla)$$



$$K_{10}=(q_1,\,11\uparrow 1,\,1\uparrow 1,\,111\uparrow \nabla)$$

$$K_{11}=(q_1,\ 11{\uparrow}1,\ 11{\uparrow}
abla,\ 1111{\uparrow}
abla)$$



$$K_{12}=(q_2,\,1{\uparrow}11,\,1{\uparrow}11,\,111{\uparrow}1)$$



$$K_{13}=(q_2,\uparrow 111,\uparrow 111,11\uparrow 11)$$



$$K_{14}=(q_2,\uparrow 
abla 111,\uparrow 
abla 111,1 \uparrow 1111)$$

$$K_{15}=(q_2,\uparrow 
abla 111,\uparrow 
abla 1111)$$



$$K_{16}=(q_2,\uparrow 
abla 111,\uparrow 
abla 111,\uparrow 
abla 1111)$$



$$K_{17}=(q_3,\uparrow 111,\uparrow 111,\uparrow 1111)$$



$$K_{18}=(q_3,\,1{\uparrow}11,\,{\uparrow}111,\,1{\uparrow}111)$$

$$K_{19}=(q_3,\,11\uparrow 1,\,\uparrow 111,\,11\uparrow 11)$$







$$K_{21}=(q_4,\,111\uparrow
abla,\,\uparrow111,\,111\uparrow1)$$

## 5.1.2 f(5)



$$K_0=(q_0,\uparrow 111111,\uparrow 
abla,\uparrow 
abla)$$



$$K_1=(q_1,\uparrow 11111,\uparrow 1,1\uparrow \nabla)$$



$$K_2=(q_1,\uparrow 11111,1\uparrow 
abla,\,11\uparrow 
abla)$$



$$K_3=(q_2,\uparrow\nabla 11111,\uparrow 11,1\uparrow 1)$$



$$K_4=(q_2,\uparrow 
abla 11111,\uparrow 
abla 11,\uparrow 11)$$

$$K_5=(q_2,\uparrow \nabla 11111,\uparrow \nabla 11,\uparrow \nabla 11)$$



$$K_6=(q_3,\uparrow 11111,\uparrow 11,\uparrow 11)$$



$$K_7=(q_3,\,1\uparrow1111,\,\uparrow11,\,1\uparrow1)$$



$$K_8=(q_3,\,11{\uparrow}111,\,{\uparrow}11,\,11{\uparrow}
abla)$$

$$K_9=(q_1,\,11{\uparrow}111,\,{\uparrow}11,\,11{\uparrow}
abla)$$



 $K_{10}=(q_1,\,11{\uparrow}111,\,1{\uparrow}1,\,111{\uparrow}
abla)$ 



 $K_{11}=(q_1,\,11{\uparrow}111,\,11{\uparrow}
abla,\,1111{\uparrow}
abla)$ 



 $K_{12}=(q_2,\,1\!\!\uparrow\!\!1111,\,1\!\!\uparrow\!\!11,\,111\!\!\uparrow\!\!1)$ 



 $K_{13}=(q_2,\uparrow 11111,\uparrow 111,\,11\uparrow 11)$ 



$$K_{14}=(q_2,\uparrow 
abla 11111,\uparrow 
abla 1111)$$



$$K_{15}=(q_2,\uparrow 
abla 11111,\uparrow 
abla 1111)$$



$$K_{16}=(q_2,\uparrow 
abla 11111,\uparrow 
abla 1111)$$



$$K_{17}=(q_3,\uparrow 11111,\uparrow 111,\uparrow 1111)$$



 $K_{18}=(q_3,\,1\!\!\uparrow\!\!1111,\,\uparrow\!\!111,\,1\!\!\uparrow\!\!111)$ 



 $K_{19}=(q_3,\,11{\uparrow}111,\,{\uparrow}111,\,11{\uparrow}11)$ 



 $K_{20}=(q_3,\,111{\uparrow}11,\,{\uparrow}111,\,111{\uparrow}1)$ 



 $K_{21}=(q_3,\,1111\uparrow 1,\,\uparrow 111,\,1111\uparrow \nabla)$ 







 $K_{27}=(q_2,\,11{\uparrow}111,\,1{\uparrow}111,\,11111{\uparrow}11)$ 





 $K_{30}=(q_2,\uparrow\nabla 11111,\uparrow\nabla 1111,\\11\uparrow11111)$ 



 $\begin{array}{l} K_{31}=(q_2,\uparrow\nabla 11111,\uparrow\nabla 1111,\\ 1\uparrow 111111) \end{array}$ 



 $K_{32} = (q_2, \uparrow \nabla 11111, \uparrow \nabla 1111, \uparrow 1111111)$ 



 $K_{33} = (q_2, \uparrow \nabla 11111, \uparrow \nabla 1111, \uparrow \nabla 11111, \uparrow \nabla 111111)$ 



 $K_{34}=(q_3,\uparrow 11111,\uparrow 1111,\uparrow 1111111)$ 



 $K_{35}=(q_3,\,1\!\!\uparrow\!\!1111,\,\uparrow\!\!1111,\,1\!\!\uparrow\!\!111111)$ 



 $K_{36}=(q_3,\,11{\uparrow}111,\,{\uparrow}1111,\,11{\uparrow}11111)$ 



 $K_{37}=(q_3,\,111{\uparrow}11,\,{\uparrow}1111,\,111{\uparrow}1111)$ 



 $K_{38}=(q_3,\,1111\uparrow 1,\,\uparrow 1111,\,1111\uparrow 111)$ 



 $K_{39}=(q_3,\,11111\uparrow\nabla,\,\uparrow1111,\,11111\uparrow11)$ 



 $K_{40}=(q_4,\,111111\uparrow
abla,\,\uparrow 1111,\,11111\uparrow 11)$ 

## 5.2 Zadanie 1.53

Używając unarnej reprezentacji liczb, zaprojektuj wielotaśmową maszynę Turinga, która oblicza funkcję

$$(42) f(n) = n^2$$

Podaj tabelę przejść i narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśm i zapisz konfiguracje).

(43) 
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4\}, \{1\}, \{1, x, \nabla\}, \delta, q_0, \nabla, \{q_4\})$$



$\mathbf{Nr}$	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
1	$q_0$	$[1, \nabla]$	[B, B]	$q_1$	[ o,]
2	$q_1$	$[1, \nabla]$	$[\mathbf{x},\ 1]$	$q_1$	[ o,   o]
3	$q_1$	[ abla,   abla]	[B, B]	$q_2$	[←, —]
4	$q_2$	$[\mathrm{x},\;  abla]$	$[\mathbf{B},\ \mathbf{B}]$	$q_3$	[←, —]
5	$q_2$	[ abla,   abla]	[B, 1]	$q_4$	[,]
6	$q_3$	$[\mathrm{x},\;  abla]$	[1, 1]	$q_3$	$[\leftarrow, \rightarrow]$
7	$q_3$	[ abla,   abla]	[B, B]	$q_1$	[ o,]

#### $5.2.1 \quad f(2)$



$$K_0=(q_0,\uparrow 111,\uparrow \nabla)$$



$$K_1=(q_1,\uparrow 11,\uparrow \nabla)$$



$$K_2 = (q_1, x \uparrow 1, 1 \uparrow \nabla)$$



$$K_3 = (q_1, xx\uparrow\nabla, 11\uparrow\nabla)$$



$$K_4 = (q_2, x \uparrow x, 11 \uparrow \nabla)$$



$$K_5 = (q_3, \uparrow \mathbf{x}, 11 \uparrow \nabla)$$

7. 
$$q_3$$
 $\nabla$ 
 $1$ 
 $1$ 
 $1$ 
 $1$ 

$$K_6=(q_3,\uparrow\nabla 1,\,111\uparrow\nabla)$$



$$K_7=(q_1,\uparrow 1,\, 111\uparrow \nabla)$$



$$K_8 = (q_1, x \uparrow \nabla, 1111 \uparrow \nabla)$$



$$K_9 = (q_2, \uparrow \mathbf{x}, 1111 \uparrow \nabla)$$



$$K_{10}=(q_3,\uparrow\nabla,1111\uparrow\nabla)$$



$$K_{11}=(q_1,\uparrow 
abla,1111\uparrow 
abla)$$

$$K_{12}=(q_2,\uparrow 
abla,\,1111 \uparrow 
abla)$$



$$K_{13}=(q_4,\uparrow 
abla,1111\uparrow 1)$$

## 5.2.2 f(3)



$$K_0=(q_0,\uparrow 1111,\uparrow \nabla)$$



$$K_1=(q_1,\uparrow 111,\uparrow \nabla)$$



$$K_2 = (q_1, \, \mathrm{x} {\uparrow} 11, \, 1 {\uparrow} \nabla)$$

$$K_3=(q_1,\,\mathrm{xx}\!\uparrow\!1,\,11\!\uparrow\!\nabla)$$



$$K_4 = (q_1, \, \text{xxx} \uparrow \nabla, \, 111 \uparrow \nabla)$$



$$K_5 = (q_2, \, \mathbf{xx} \uparrow \mathbf{x}, \, 111 \uparrow \nabla)$$



$$K_6=(q_3,\,\mathrm{x}\!\uparrow\!\mathrm{x},\,111\!\uparrow\!
abla)$$



$$K_7 = (q_3, \uparrow \mathbf{x}1, 1111 \uparrow \nabla)$$



$$K_8=(q_3,\uparrow 
abla 11,11111 \uparrow 
abla)$$

$$K_9=(q_1,\uparrow 11,\, 111111\uparrow \nabla)$$







$$K_{11}=(q_1,\,\mathrm{xx}\!\!\uparrow\!\!
abla,\,11111111\!\!\uparrow\!\!
abla)$$



$$K_{12} = (q_2, x \uparrow x, 11111111 \uparrow \nabla)$$



$$K_{13} = (q_3, \uparrow \mathbf{x}, 11111111\uparrow \nabla)$$



$$K_{14}=(q_3,\uparrow\nabla 1,\,11111111\uparrow\nabla)$$



$$K_{15}=(q_1,\uparrow 1,111111111\uparrow \nabla)$$



## 5.3 Zadanie 1.54

Zaprojektuj wielotaśmową maszynę Turinga, które oblicza funkcję mnożenia f dla liczb naturalnych m i n w reprezentacji unarnej

$$(44) f(m,n) = m \cdot n$$

Podaj tabelę przejść i narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśm i zapisz konfiguracje).

$$(45) \hspace{3.1em} M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{1\}, \{1, \nabla\}, \delta, q_0, \nabla, \{q_5\})$$



$\mathbf{Nr}$	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
1	$q_0$	$[1,\ 1,\  abla]$	$[\nabla,\ \nabla,\ \nabla]$	$q_1$	$[\rightarrow,\rightarrow,-\!\!\!-]$
2	$q_1$	$[\nabla,\ 1,\ \nabla]$	$[\nabla,\ 1,\ 1]$	$q_5$	[,,]
3	$q_1$	$[1,\ 1,\  abla]$	$[\nabla,\ 1,\ 1]$	$q_2$	$[, \rightarrow, \rightarrow]$
4	$q_2$	$[1,\ 1,\ \nabla]$	$[\nabla,\ 1,\ 1]$	$q_2$	$[, \rightarrow, \rightarrow]$
5	$q_2$	$[\nabla,\ 1,\ \nabla]$	$[\nabla,\ 1,\ 1]$	$q_2$	$[, \rightarrow, \rightarrow]$
6	$q_2$	$[\nabla,\ \nabla,\ \nabla]$	$[\nabla,\ \nabla,\ \nabla]$	$q_3$	$[\rightarrow,\leftarrow,-\!\!-\!]$
7	$q_3$	$[\nabla,\ 1,\ \nabla]$	$[\nabla,\ 1,\ 1]$	$q_5$	[,,]
8	$q_3$	$[1,\ 1,\ \nabla]$	$[\nabla,\ 1,\ 1]$	$q_4$	$[,\leftarrow,\rightarrow]$
9	$q_4$	$[1,\ 1,\  abla]$	$[\nabla,\ 1,\ 1]$	$q_4$	$[,\leftarrow,\rightarrow]$
10	$q_4$	$[\nabla,\ 1,\ \nabla]$	$[\nabla,\ 1,\ 1]$	$q_4$	$[,\leftarrow,\rightarrow]$
11	$q_4$	$[\nabla,\ \nabla,\ \nabla]$	$[ abla, \  abla, \  abla]$	$q_1$	$[\rightarrow,\rightarrow,-\!\!-\!]$

# $5.3.1 \quad f(0, 2)$



$$K_0=(q_0,\uparrow 1,\uparrow 111,\uparrow 
abla)$$



$$K_1=(q_1,\uparrow
abla,\uparrow
abla,\uparrow
abla)$$



$$K_2=(q_5,\uparrow
abla,\uparrow11,\uparrow1)$$

## $5.3.2 \quad f(3, 2)$



$$K_0=(q_0,\uparrow 1111,\uparrow 111,\uparrow \nabla)$$



$$K_1=(q_1,\uparrow 111,\uparrow 11,\uparrow \nabla)$$



$$K_2=(q_2,\uparrow 
abla 11,\, 1\uparrow 1,\, 1\uparrow 
abla)$$



$$K_3=(q_2,\uparrow 
abla 11,\, 11 {\uparrow} 
abla,\, 11 {\uparrow} 
abla)$$



$$K_4=(q_3,\uparrow 11,\,1\uparrow 1,\,11\uparrow \nabla)$$



$$K_5=(q_4,\uparrow 
abla 1,\uparrow 11,111 \uparrow 
abla)$$

$$K_6=(q_4,\uparrow \nabla 1,\uparrow \nabla 11,1111\uparrow \nabla)$$



$$K_7=(q_1,\uparrow 1,\uparrow 11,\, 1111\uparrow 
abla)$$



$$K_8=(q_2,\uparrow 
abla,\,1\uparrow 1,\,11111\uparrow 
abla)$$



$$K_9=(q_2,\uparrow 
abla,111\uparrow 
abla,111111\uparrow 
abla)$$



$$K_{10}=(q_3,\uparrow \nabla,1 \uparrow 1,111111 \uparrow \nabla)$$



#### 5.4 Zadanie 1.57

Używając binarnej reprezentacji liczb, zaprojektuj wielotaśmową maszynę Turinga, która oblicza funkcję

$$(46) f(n) = n^2$$

Podaj tabelę przejść i narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśm i zapisz konfiguracje).

$$(47) M = (Q, \Sigma, \Gamma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{1, 0\}, \{1, 0, \nabla\}, \delta, q_0, \nabla, \{q_7\})$$



Nr	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
1	$q_0$	$[0,\ \nabla,\ \nabla]$	$[0,0,\nabla]$	$q_0$	$[\rightarrow,\rightarrow,\rightarrow]$
2	$q_0$	$[1,\  abla,\  abla]$	$[1,\ 1,\  abla]$	$q_0$	$[\rightarrow,\rightarrow,\rightarrow]$
3	$q_0$	$[\nabla,\;\nabla,\;\nabla]$	$[\nabla,\ \nabla,\ \nabla]$	$q_2$	$[\leftarrow,\leftarrow,\leftarrow]$

Tabela 1: Tabela przejścia dla stanu  $q_0$ 

Nr	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
4	$q_1$	[0,0,0]	$[0,\ 0,\ 0]$	$q_1$	$[\rightarrow,\rightarrow,\rightarrow]$
5	$q_1$	[0,0,1]	$[0,\ 0,\ 1]$	$q_1$	$[\rightarrow,\rightarrow,\rightarrow]$
6	$q_1$	[0,1,0]	$[0,\ 1,\ 0]$	$q_1$	$[\rightarrow,\rightarrow,\rightarrow]$
7	$q_1$	[0,1,1]	$[0,\ 1,\ 1]$	$q_1$	$[\rightarrow,\rightarrow,\rightarrow]$
8	$q_1$	[1,  0,  0]	$[1, \ 0, \ 0]$	$q_1$	$[\to,\to,\to]$
9	$q_1$	$[1,\ 0,\ 1]$	$[1,\ 0,\ 1]$	$q_1$	$[\rightarrow,\rightarrow,\rightarrow]$
10	$q_1$	[1, 1, 0]	$[1,\ 1,\ 0]$	$q_1$	$[\to,\to,\to]$
11	$q_1$	[1,1,1]	$[1,\ 1,\ 1]$	$q_1$	$[\rightarrow,\rightarrow,\rightarrow]$
12	$q_1$	$[\nabla,\ 0,\ 0]$	$[\nabla,\ 0,\ 0]$	$q_1$	$[, \rightarrow, \rightarrow]$
13	$q_1$	$[\nabla,\ 0,\ 1]$	$[\nabla,\ 0,\ 1]$	$q_1$	$[, \rightarrow, \rightarrow]$
14	$q_1$	$[\nabla,\ 1,\ 0]$	$[\nabla,\ 1,\ 0]$	$q_1$	$[, \rightarrow, \rightarrow]$
15	$q_1$	$[\nabla,\ 1,\ 1]$	$[\nabla,\ 1,\ 1]$	$q_1$	$[, \rightarrow, \rightarrow]$
16	$q_1$	$[0,\;\nabla,\;0]$	$[0,\ \nabla,\ 0]$	$q_1$	$[\rightarrow,-\!\!-\!,\rightarrow]$
17	$q_1$	$[0,\;\nabla,\;1]$	$[0,\ \nabla,\ 1]$	$q_1$	$[\rightarrow,-\!\!-\!,\rightarrow]$
18	$q_1$	$[1,\;  abla,\; 0]$	$[1,\;\nabla,\;0]$	$q_1$	$[\rightarrow,-\!\!-\!,\rightarrow]$
19	$q_1$	$[1,\;  abla,\; 1]$	$[1,\ \nabla,\ 1]$	$q_1$	$[\rightarrow,-\!\!-\!,\rightarrow]$
20	$q_1$	$[0,0,\nabla]$	$[0,\ 0,\ \nabla]$	$q_1$	$[\rightarrow,\rightarrow,-\!\!-\!]$
21	$q_1$	$[0,1,\nabla]$	$[0,\ 1,\ \nabla]$	$q_1$	$[\rightarrow,\rightarrow,-\!\!-]$
22	$q_1$	$[1,0,\nabla]$	$[1,\ 0,\ \nabla]$	$q_1$	$[\rightarrow,\rightarrow,-\!\!-]$
23	$q_1$	$[1,\ 1,\  abla]$	$[1,\ 1,\ \nabla]$	$q_1$	$[\rightarrow,\rightarrow,-\!\!-]$
24	$q_1$	[ abla,   abla,  0]	$[ abla, \  abla, \ 0]$	$q_1$	$[,,\rightarrow]$
25	$q_1$	$[\nabla,\ \nabla,\ 1]$	$[\nabla,\ \nabla,\ 1]$	$q_1$	$[,,\to]$
26	$q_1$	$[0,\ \nabla,\ \nabla]$	$[0,\ \nabla,\ \nabla]$	$q_1$	$[\rightarrow,,]$
27	$q_1$	$[1,\;  abla,\;  abla]$	$[1,\;\nabla,\;\nabla]$	$q_1$	$[ o,  -\!\!\!-\!\!\!-,  -\!\!\!\!-]$
28	$q_1$	$[ abla,\  abla,\  abla]$	$[\nabla,\ \nabla,\ \nabla]$	$q_2$	$[\leftarrow, \leftarrow, \leftarrow]$

Tabela 2: Tabela przejścia dla bieżącego stanu  $q_1$ 

$\mathbf{Nr}$	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
29	$q_2$	[1,0, abla]	$[1,\  abla,\  abla]$	$q_3$	[ o,  o,  o]
30	$q_2$	$[0,0,\nabla]$	$[0,\ \nabla,\ \nabla]$	$q_3$	$[\rightarrow,-\!\!-\!,-\!\!-\!]$
31	$q_2$	[1,  0,  1]	$[1,\  abla,\ 1]$	$q_3$	$[\rightarrow,,]$
32	$q_2$	[1,  0,  0]	$[1,\ \nabla,\ 0]$	$q_3$	$[\rightarrow,-\!\!-\!,-\!\!-\!]$
33	$q_2$	[0,0,1]	$[0,\ \nabla,\ 1]$	$q_3$	$[\rightarrow,,]$
34	$q_2$	[0,0,0]	$[0,\ \nabla,\ 0]$	$q_3$	$[\rightarrow,,]$
35	$q_2$	[1,1, abla]	$[1,\;  abla,\;  abla]$	$q_6$	$[\rightarrow,,]$
36	$q_2$	$[0,1,\nabla]$	$[0,\ \nabla,\ \nabla]$	$q_6$	$[\rightarrow,,]$
37	$q_2$	[1, 1, 1]	$[1,\  abla,\ 1]$	$q_6$	$[\rightarrow,,]$
38	$q_2$	[1, 1, 0]	$[1,\;\nabla,\;0]$	$q_6$	$[\rightarrow,,]$
39	$q_2$	[0,1,1]	$[0,\ \nabla,\ 1]$	$q_6$	$[\rightarrow,,]$
40	$q_2$	[0,1,0]	$[0,\ \nabla,\ 0]$	$q_6$	$[\rightarrow,,]$
41	$q_2$	$[0,\;  abla,\; 0]$	$[0,\ \nabla,\ 0]$	$q_7$	[,,]
42	$q_2$	$[0,\;\nabla,\;1]$	$[0,\ \nabla,\ 1]$	$q_7$	[,,]
43	$q_2$	$[1, \  abla, \ 0]$	$[1,\ \nabla,\ 0]$	$q_7$	[,,]
44	$q_2$	$[1,\  abla,\ 1]$	$[1,\ \nabla,\ 1]$	$q_7$	[,,]

Tabela 3: Tabela przejścia dla bieżącego stanu  $q_2\,$ 

Nr	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
45	$q_3$	$[\nabla,\ \nabla,\ \nabla]$	$[\nabla,\;\nabla,\;0]$	$q_1$	[←, <del></del> , <del></del> ]
46	$q_3$	$[\nabla,\nabla,1]$	$[0,\ \nabla,\ 1]$	$q_1$	$[\rightarrow,-\!\!-\!,-\!\!-\!]$
47	$q_3$	$[\nabla,\ \nabla,\ 0]$	$[0,\ \nabla,\ 0]$	$q_1$	$[\rightarrow, -\!\!\!-\!\!\!-, -\!\!\!-\!\!\!]$

Tabela 4: Tabela przejścia dla bieżącego stanu  $q_3$ 

Nr	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
48	$q_4$	$[1,\;  abla,\;  abla]$	$[1,\  abla,\ 1]$	$q_4$	[←, ─, ←]
49	$q_4$	$[1,\;\nabla,\;0]$	$[1,\  abla,\ 1]$	$q_4$	$[\leftarrow,, \leftarrow]$
50	$q_4$	$[0,\;\nabla,\;1]$	$[0,\ \nabla,\ 1]$	$q_4$	[←, ─, ←]
51	$q_4$	$[0,\ \nabla,\ \nabla]$	$[0,\;\nabla,\;0]$	$q_4$	$[\leftarrow,, \leftarrow]$
52	$q_4$	$[0,\;\nabla,\;0]$	$[0,\ \nabla,\ 0]$	$q_4$	[←, ─, ←]
53	$q_4$	$[1,\;\nabla,\;1]$	$[1,\; oldsymbol{ abla},\; 0]$	$q_5$	$[\leftarrow,, \leftarrow]$
54	$q_4$	$[\nabla,\ \nabla,\ \nabla]$	$[\nabla,\;\nabla,\;\nabla]$	$q_1$	$[\rightarrow, -\!\!\!-, \rightarrow]$

Tabela 5: Tabela przejścia dla bieżącego stanu  $q_4$ 

$\mathbf{Nr}$	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
55	$q_5$	$[1,\;\nabla,\;1]$	$[1,\  abla,\ 1]$	$q_5$	$[\leftarrow,, \leftarrow]$
56	$q_5$	$[0,\;\nabla,\;1]$	$[0,\ \nabla,\ 0]$	$q_5$	$[\leftarrow,, \leftarrow]$
57	$q_5$	$[1,\;\nabla,\;0]$	$[1,\;\nabla,\;0]$	$q_5$	$[\leftarrow,, \leftarrow]$
58	$q_5$	$[1,\;\nabla,\;\nabla]$	$[1,\;\nabla,\;0]$	$q_5$	$[\leftarrow,, \leftarrow]$
59	$q_5$	$[0,\;\nabla,\;0]$	$[0,\ \nabla,\ 1]$	$q_4$	$[\leftarrow,, \leftarrow]$
60	$q_5$	$[0,\ \nabla,\ \nabla]$	$[0,\ \nabla,\ 1]$	$q_4$	$[\leftarrow,, \leftarrow]$
61	$q_5$	$[\nabla,\ \nabla,\ \nabla]$	$[ abla, \  abla, \ 1]$	$q_1$	$[\rightarrow,,\rightarrow]$

Tabela 6: Tabela przejścia dla bieżącego stanu  $q_{5}\,$ 

$\mathbf{Nr}$	Stan bieżący	Czytany symbol	Nowy symbol	Nowy stan	Kierunki głowic
62	$q_6$	$[\nabla,\;\nabla,\;\nabla]$	$[\nabla,\ \nabla,\ \nabla]$	$q_4$	[←, <del></del> , <del></del> ]
63	$q_6$	$[\nabla,\ \nabla,\ 1]$	$[0,\ \nabla,\ 1]$	$q_4$	[,]
64	$q_6$	$[\nabla,\ \nabla,\ 0]$	$[0,\ \nabla,\ 0]$	$q_4$	[,]

Tabela 7: Tabela przejścia dla bieżącego stanu  $q_6$ 

### $5.4.1 \quad f(4)$



$$K_0=(q_0,\uparrow 100,\uparrow 
abla,\uparrow 
abla)$$



$$K_1=(q_0,\,1{\uparrow}00,\,1{\uparrow}
abla,\,{\uparrow}
abla$$



$$K_2=(q_0,\,10{\uparrow}0,\,10{\uparrow}
abla,\,{\uparrow}
abla)$$



$$K_3 = (q_0, 100 \uparrow \nabla, 100 \uparrow \nabla, \uparrow \nabla)$$



$$K_4=(q_2,\,10{\uparrow}0,\,10{\uparrow}0,\,{\uparrow}\nabla)$$



$$K_5=(q_3,\,100{\uparrow}
abla,\,10{\uparrow}
abla,\,\uparrow
abla)$$



$$K_6 = (q_1, 10 \uparrow 0, 10 \uparrow \nabla, \uparrow 0)$$



$$K_7=(q_1,\,100{\uparrow}
abla,\,10{\uparrow}
abla,\,0{\uparrow}
abla,\,0{\uparrow}
abla)$$



$$K_8=(q_2,\,10{\uparrow}0,\,1{\uparrow}0,\,{\uparrow}0)$$



$$K_9 = (q_3, 100 \uparrow \nabla, 1 \uparrow \nabla, \uparrow 0)$$







$$K_{11} = (q_1, 1000 \uparrow \nabla, 1 \uparrow \nabla, 0 \uparrow \nabla)$$



$$K_{12}=(q_2,\,100\uparrow 0,\,\uparrow 1,\,\uparrow 0)$$

$$K_{13} = (q_6, 1000 \uparrow \nabla, \uparrow \nabla, \uparrow 0)$$







$$K_{15} = (q_4, 100\uparrow 00, \uparrow \nabla, \uparrow \nabla 0)$$



$$K_{16} = (q_4, 10 \uparrow 000, \uparrow \nabla, \uparrow \nabla 00)$$

$$K_{17}=(q_4,\,1\uparrow 0000,\,\uparrow \nabla,\,\uparrow \nabla 000)$$



 $K_{18}=(q_4,\uparrow 10000,\uparrow \nabla,\uparrow \nabla 0000)$ 



 $K_{19} = (q_4, \uparrow \nabla 10000, \uparrow \nabla, \uparrow \nabla 10000)$ 



 $K_{20}=(q_1,\uparrow 10000,\uparrow 
abla,\uparrow 10000)$ 



 $K_{21}=(q_1,\,1\uparrow 0000,\,\uparrow \nabla,\,1\uparrow 0000)$ 







 $K_{23}=(q_1,\,100{\uparrow}00,\,{\uparrow}
abla,\,100{\uparrow}00)$ 



 $K_{24}=(q_1,\,1000{\uparrow}0,\,{\uparrow}
abla,\,1000{\uparrow}0)$ 



 $K_{25}=(q_1,\,10000\uparrow
abla,\,\uparrow
abla,\,10000\uparrow
abla)$ 



$$K_{26}=(q_2,\,1000{\uparrow}0,\,{\uparrow}
abla,\,1000{\uparrow}0)$$



$$K_{27}=(q_7,\,1000{\uparrow}0,\,{\uparrow}
abla,\,1000{\uparrow}0)$$

## 5.4.2 f(11)



$$K_0=(q_0,\uparrow 1011,\uparrow \nabla,\uparrow \nabla)$$

$$K_1=(q_0,\,1{\uparrow}011,\,1{\uparrow}
abla,\,{\uparrow}
abla)$$



$$K_2=(q_0,\,10{\uparrow}11,\,10{\uparrow}
abla,\,{\uparrow}
abla)$$



$$K_3 = (q_0, 101\uparrow 1, 101\uparrow \nabla, \uparrow \nabla)$$



$$K_4 = (q_0, 1011 \uparrow \nabla, 1011 \uparrow \nabla, \uparrow \nabla)$$



$$K_5=(q_2,\,101{\uparrow}1,\,101{\uparrow}1,\,{\uparrow}
abla)$$



$$K_6=(q_6,\,1011{\uparrow}
abla,\,101{\uparrow}
abla,\,{\uparrow}
abla$$



$$K_7 = (q_4, 101 \uparrow 1, 101 \uparrow \nabla, \uparrow \nabla)$$



$$K_8=(q_4,\,10{\uparrow}11,\,101{\uparrow}
abla,\,{\uparrow}
abla1)$$

$$K_9=(q_4,\,1\uparrow 011,\,101\uparrow \nabla,\,\uparrow \nabla 11)$$



$$K_{10}=(q_4,\uparrow 1011,\, 101\uparrow \nabla,\, \uparrow \nabla 011)$$



$$K_{11} = (q_4, \uparrow \nabla 1011, 101 \uparrow \nabla, \uparrow \nabla 1011)$$



$$K_{12}=(q_1,\uparrow 1011,\, 101\uparrow 
abla,\, \uparrow 1011)$$

$$K_{13}=(q_1,\,1\uparrow 011,\,101\uparrow \nabla,\,1\uparrow 011)$$







$$K_{15}=(q_1,\,101{\uparrow}1,\,101{\uparrow}\nabla,\,101{\uparrow}1)$$



$$K_{16}=(q_1,\,1011{\uparrow}
abla,\,101{\uparrow}
abla,\,1011{\uparrow}
abla)$$



$$K_{17}=(q_2,\,101{\uparrow}1,\,10{\uparrow}1,\,101{\uparrow}1)$$



 $K_{18}=(q_6,\,1011\uparrow
abla,\,10\uparrow
abla,\,101\uparrow
abla)$ 



 $K_{19}=(q_4,\,1011\uparrow 0,\,10\uparrow \nabla,\,101\uparrow 1)$ 



 $K_{20} = (q_4, 101 \uparrow 10, 10 \uparrow \nabla, 10 \uparrow 11)$ 



 $K_{21}=(q_5,\,10{\uparrow}110,\,10{\uparrow}
abla,\,1{\uparrow}001)$ 



$$K_{22}=(q_5,\,1{\uparrow}0110,\,10{\uparrow}
abla,\,{\uparrow}1001)$$



$$K_{23}=(q_5,\uparrow 10110,\,10\uparrow \nabla,\uparrow \nabla 0001)$$



$$K_{24}=(q_5,\uparrow 
abla 10110,\, 10 \uparrow 
abla,\, \uparrow 
abla 00001)$$

$$K_{25}=(q_1,\uparrow 10110,\,10\uparrow \nabla,\,1\uparrow 00001)$$



 $K_{26}=(q_1,\,1{\uparrow}0110,\,10{\uparrow}
abla,\,10{\uparrow}0001)$ 



 $K_{27}=(q_1,\,10{\uparrow}110,\,10{\uparrow}
abla,\,100{\uparrow}001)$ 



 $K_{28}=(q_1,\,101{\uparrow}10,\,10{\uparrow}
abla,\,1000{\uparrow}01)$ 



 $K_{29}=(q_1,\,1011{\uparrow}0,\,10{\uparrow}
abla,\,10000{\uparrow}1)$ 



 $\begin{array}{l} K_{30} = (q_1,\, 10110 {\uparrow} \nabla,\, 10 {\uparrow} \nabla, \\ 100001 {\uparrow} \nabla) \end{array}$ 



 $K_{31}=(q_2,\,1011{\uparrow}0,\,1{\uparrow}0,\,10000{\uparrow}1)$ 



 $K_{32}=(q_3,\,10110{\uparrow}
abla,\,1{\uparrow}
abla,\,10000{\uparrow}1)$ 



 $K_{33}=(q_1,\,101100\uparrow\nabla,\,1\uparrow\nabla,\,10000\uparrow1)$ 





 $K_{38}=(q_4,\,10110{\uparrow}00,\,{\uparrow}
abla,\,1000{\uparrow}01)$ 



 $K_{39}=(q_4,\,1011\uparrow000,\,\uparrow\nabla,\,100\uparrow001)$ 



 $K_{40} = (q_4, 101 \uparrow 1000, \uparrow \nabla, 10 \uparrow 0001)$ 



 $K_{41}=(q_4,\,10{\uparrow}11000,\,{\uparrow}
abla,\,1{\uparrow}01001)$ 







$$K_{43}=(q_4,\uparrow 1011000,\uparrow \nabla,\uparrow \nabla 111001)$$



$$K_{44} = (q_4, \uparrow \nabla 1011000, \uparrow \nabla, \uparrow \nabla 1111001)$$

$$K_{45} = (q_1, \uparrow 1011000, \uparrow \nabla, \uparrow 1111001)$$



 $K_{46}=(q_1,\,1{\uparrow}011000,\,{\uparrow}
abla,\,1{\uparrow}111001)$ 



 $K_{47}=(q_1,\,10{\uparrow}11000,\,{\uparrow}\nabla,\,11{\uparrow}11001)$ 



 $K_{48}=(q_1,\,101{\uparrow}1000,\,{\uparrow}
abla,\,111{\uparrow}1001)$ 



 $K_{49}=(q_1,\,1011\uparrow 000,\,\uparrow \nabla,\,1111\uparrow 001)$ 





## 5.5 Zadanie 1.70

## 5.5.1 Makra

Makro M (Mnóż)



Makro POP (Poprzednik)







## **5.5.4** n!



5.5.5  $n^{n!}$ 

