

Lecture 1 – Atomic Structure

Lecture 2 – The Ultraviolet Catastrophe

Lecture 3 - Particle Nature of Light

Lecture 4 – Atomic Energy Levels and Spectra

Lecture 5 – X-ray Production and Diffraction

Lecture 6 – X-ray Spectra

Lecture 7 – Matter Waves

Lecture 8 – Wave-Particle Duality

Lecture 9 – Wave functions for Quantum Particles

Lecture 10 – A Quantum Mechanical Wave Equation

Lecture 11 – Applications of Schrödinger's Equation

Recap of Lecture 4

- Atomic emission/absorption spectra
- Sharp lines in these are more evidence for quantised energy levels
- Bohr model lets us predict energy level splittings for H, single electron ions
- In general, spectra are very complex orbitals, fine splitting, hyperfine..

In this lecture

- The production of X-rays
- How to measure the wavelength of X-rays
- Bragg scattering of X-rays by crystals and the Bragg conditions

X-Ray source

X-Rays

E _{X-ray} keV	λnm		
0.1	10		
1	1		
10	0.1		Airport security
100	0.01		
1000	0.001	Gamma rays	

Crystaline materials as diffraction gratings

(SrTiO₃) – 0.389 nm spacing between green Sr atoms

Compton Scattering - Setup

X-Rays for crystallography

