# CSC429 – Computer Security

LECTURE 13
WIRELESS SECURITY

Mohammed H. Almeshekah, PhD meshekah@ksu.edu.sa

#### Wireless Communication

- IEEE 802 is a dominant collection of networking standards developed by IEEE.
  - E.g. IEEE 802.3 specifies the physical and data link layer properties of Ethernet.
- IEEE 802.11 is a family of standards for wireless LANs.
  - Provides protocols at Layer 1 & Layer 2 of OSI model.

## 802.11 Components

- Two pieces of equipment defined:
  - Wireless station
    - A desktop or laptop PC or PDA with a wireless NIC.
  - Access point
    - A bridge between wireless and wired networks
    - Composed of
      - Radio
      - Wired network interface (usually 802.3)
      - Bridging software
    - Aggregates access for multiple wireless stations to wired network.

#### 802.11 Modes

- Infrastructure mode
  - Basic Service Set (BSS)
    - One access point
  - Extended Service Set
    - Two or more BSSs forming a single subnet.
- Ad-hoc mode
  - Also called peer-to-peer.
  - Set of 802.11 wireless stations that communicate directly without an access point.
    - Useful for quick & easy wireless networks.

#### Infrastructure Mode



## Joining a BSS

- When 802.11 client enters range of one or more APs:
  - APs send beacons.
  - AP beacon can include SSID.
  - AP chosen on signal strength and observed error rates.
  - After AP accepts client.
    - Client tunes to AP channel.
- Periodically, all channels surveyed.
  - To check for stronger or more reliable APs.
  - If found, may reassociate with new AP.

# Wireless Security

Security of IEEE 802.11

### Security of IEEE 802.11

- 1. Authentication and Access Control.
- 2. Interception.
- 3. Wired Equivalent Privacy (WEP).
- 4. WiFi Protected Access (WPA).
- 5. WPA2

#### Authentication & Access Control

#### **Open System Authentication:**

- Relies on Service Set Identifier (SSID).
- Station must specify SSID to Access Point when requesting association.
- APs can broadcast their SSID as a beacon.

Is it reliable authentication?

i.e. you can only join if you know the SSID!

## SSID Hiding

- AP can choose not to transmit SSID in its beacons.
- Can still attack APs that don't transmit SSID:
  - Send deauthenticate frames to client.
  - SSID then captured when client sends reauthenticate frames containing SSID.
  - Implemented in "essid\_jack" tool.
- Open System Authentication only provides trivial level of security.

#### **Authentication & Access Control**

- Access points may have Access Control Lists (ACLs).
- ACL is a list of allowed MAC addresses.
  - E.g. only allow access to:
    - 00:01:42:0E:12:1F
    - 00:01:42:F1:72:AE
    - 00:01:42:4F:E2:01
- But MAC addresses are sniffable and spoofable.
- Hence MAC ACLs are of limited value.
  - Will not prevent determined attacker.

## Interception

- Wireless LAN uses radio signal.
- Not limited to physical building.
- Directional antenna allows interception over longer distances.

 Record is 304 kilometre for an unamplified wifi signal (using a 120 centimetre antenna).

# Wireless Security

Wired Equivalent Privacy

## Wired Equivalence Privacy (WEP)

- Shared key between stations and an Access Point.
  - All Access Points will have same shared key in ESS.
- Key used in stream cipher to encrypt WLAN traffic.
- No key management.
  - Shared key entered manually into wireless stations and Access points.
  - Key never expires.
  - Key management problems in large wireless LANs.

## WEP Stream Cipher

- WEP uses RC4 stream cipher
  - Proprietary to RSA Security Inc.
  - Designed in 1987 by Ron Rivest.
  - Trade secret until reverse-engineered in 1994.
- RC4 can use key sizes from 1 bit to 2048 bits.
  - WEP typically uses 40-bit key.
- RC4 algorithm generates a stream of pseudorandom bits.
  - Using key and Initialisation Vector (IV) as input.
  - Called the key-stream.
  - Key-stream is XOR'd bit-by-bit with frame data.

## WEP - Sending

- Compute Integrity Check Vector (ICV).
  - 32-bit Cyclic Redundancy Check (CRC).
  - Keyless algorithm, specified in IEEE standard.
  - Appended to message to create plaintext for encryption.
- Plaintext then encrypted using RC4 stream cipher.
  - RC4 is initialised with
    - 40-bit secret key
    - 24-bit initialisation vector (IV)
  - RC4 generates the key-stream as function of these 64 bits.
  - Key-stream XOR'd with plaintext to generate ciphertext.
- Ciphertext is transmitted along with IV.

## WEP Encryption



## WEP - Receiving

- Ciphertext is received.
- Ciphertext decrypted using RC4 stream cipher.
  - RC4 initialised with:
    - 40-bit secret key;
    - 24-bit initialisation vector (IV) from start of ciphertext.
  - RC4 generates key-stream as function of these 64 bits.
  - Key-stream XOR'd with ciphertext to recover plaintext.

#### Check ICV

- Separate plaintext to obtain ICV and message.
- Compute expected ICV for message.
- Compare with received ICV.

## Shared Key Authentication

- Station requests association with AP.
- AP sends challenge to station.
- Station encrypts challenge using WEP to produce response.
  - Uses RC4, 40-bit shared secret key & 24-bit IV selected by station.
- Response received by AP, decrypted by AP and result compared to initial challenge.

## WEP Safeguards

- Shared secret key required for:
  - Associating with an access point.
  - Sending data.
  - Receiving data.
- Messages are encrypted.
  - Confidentiality.
- Messages have checksum.
  - Intended to provide integrity.

#### WEP Vulnerabilities

- 1. Insecure Authentication Protocol.
- 2. IV Vulnerabilities.
- 3. Passive Attacks.
- 4. Active Attacks.
- 5. Limited WEP Keys.
- 6. Brute-force Attacks.

#### Insecurity of Shared Key Authentication

- Rogue station records run of authentication protocol.
- Uses known plaintext (challenge) to compute portion of keystream for the (known) IV.
  - Recall that C = P XOR key-stream.
- Rogue station can now respond to any future authentication challenge from AP.
  - Rogue receives fresh challenge.
  - Wireless station gets to choose IV in protocol.
  - But same IV (and same secret key) means that RC4 produces the same key-stream bits.
  - Hence rogue who repeats IV can reuse old key-stream portion to encrypt, producing correct response.
- Moral: A stream cipher is a very poor choice as an encryption primitive in an challenge-response protocol.

#### Initialisation Vector

- IV should be different for every message transmitted.
- But 802.11 standard doesn't specify how IV is calculated.
- Wireless cards use several methods:
  - Some use a simple ascending counter for each message.
  - Some switch between alternate ascending and descending counters.
  - Some use a pseudo-random IV generator.

#### Passive WEP Attack

- If 24-bit IV is an ascending counter, and if Access Point transmits at 11 Mbps, then all IVs are exhausted in roughly 5 hours.
- Passive attack:
  - Attacker collects all traffic.
  - Attacker will eventually collect two messages encrypted with same key and same IV.
  - Statistical attacks may then reveal plaintext:
     XOR of ciphertexts = XOR of plaintexts.
  - Hard to extract plaintexts this way in reality.
  - Much better attacks are available against WEP...

#### **Active WEP Attacks**

- If attacker knows plaintext/ciphertext pair and IV:
  - Corresponding key-stream is then known.
  - Now attacker can create correctly encrypted messages by repeating IV.
  - Access Point is deceived into accepting messages.
  - And short key-streams are obtained for free by observing runs of the authentication protocol!

## Limited WEP Keys

- Some vendors allow limited WEP keys.
  - User types in a pass-phrase.
  - WEP key is generated from pass-phrase.
  - Pass-phrases creates as few as 21 bits of entropy in 40-bit key.
    - Reduces key strength to 21 bits;  $2^{21} = 2,097,152$ .
    - 21-bit key can be brute forced in minutes.

## Brute Force Key Attack

- Capture ciphertext.
  - IV is included in message.
- Search all 2<sup>40</sup> possible secret keys.
  - A few days on a modern laptop.
- Select key that decrypts ciphertext to a meaningful plaintext.
  - WLAN logical link control layer frames have well-defined format.
  - E.g. first two bytes are always AA, AA (hex).
  - Automated recognition of correct key is possible.
- 40-bit keys do not provide adequate security.

## Brute Force Key Attack

- Vendors have extended WEP to 128-bit keys.
  - 104-bit secret key.
  - 24-bit IV.
- Brute force now infeasible.
- Effectively safeguards against brute force attacks.
- But ....

#### The FMS Attack

- Paper from Fluhrer, Mantin, Shamir, 2001.
  - www.isoc.org/isoc/conferences/ndss/02/papers/stubbl.pdf
- Detailed analysis of several features of RC4 key scheduling algorithm.
- Main result of interest to us:
  - If the RC4 key is composed from a known IV and an unknown secret part by concatenation;
  - And if the attacker knows the first byte of key-stream for enough different IVs;
    - Then the whole RC4 key can be determined in a statistical attack.
    - Attack only makes use of some of the IVs so-called "weak" IVs.

#### Automated Tools to Break WEP

- Wepcrack
  - First tool to demonstrate FMS attack using IV weakness.
  - http://wepcrack.sourceforge.net/
- Aircrack-ng
  - Automated tool for mounting FMS attack
  - http://www.aircrack-ng.org/doku.php

#### WEP - Last Words

- The WEP authentication protocol is trivially breakable.
- The WEP encryption method is severely weakened by FMS and related attacks.