

Universidad Nacional de Colombia Facultad de Ciencias Análisis Funcional

Ejercicio 1

- (I) Sea \mathbb{R} con la σ-álgebra de Borel $\mathcal{B}(\mathbb{R})$.
 - (a) Dado $x_0 \in \mathbb{R}$, considere δ_{x_0} la medida de Dirac centrada en x_0 dada por: $\delta_{x_0}(A) = 1$ si $x_0 \in A$, y $\delta_{x_0}(A) = 0$ si $x_0 \notin A$, para cada $A \in \mathcal{B}(\mathbb{R})$. Muestre que δ_{x_0} es una medida.

Demostración. Es claro que $\delta_{x_0} : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ ya que las únicas imágenes de la función son 0 y 1. Ahora comprobemos las dos condiciones.

Si $A=\varnothing$, claramente $x_0\notin A$, luego por la definición $\delta_{x_0}(A)=0$, como queríamos. Si $x_0\notin \bigcup_{i=1}^\infty A_i$, entonces $x_0\notin A_i$ para todo $j\in \mathbb{Z}^+$, por lo cual,

$$\sum_{j=1}^{\infty} \delta_{\chi_0}(A_j) = 0 = \delta_{\chi_0} \left(\bigcup_{j=1}^{\infty} A_j \right).$$

Ahora, si $x_0 \in \bigcup_{i=1}^{\infty} A_i$, entonces $x_0 \in A_j$ para algún j único, puesto que los conjuntos son disjuntos. Luego,

$$\delta_{\chi_0}(A_i) = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \neq j. \end{cases}$$

así,

$$\sum_{i=1}^{\infty} \delta_{\chi_0}(A_i) = 1 = \delta_{\chi_0} \left(\bigcup_{i=1}^{\infty} A_i \right).$$

por lo que δ_{x_0} es una medida.

 $Q^{*}Q$

(b) Sea $f : \mathbb{R} \to \mathbb{R}$ una función medible. Muestre que

$$\int_{\mathbb{R}} f(x) d\delta_{x_0} = f(x_0)$$

Demostración. Para probar esto primero veamos que se tiene para funciones simples positivas, sea $f(x) = \sum_{i=1}^{n} a_i \chi_{A_i}(x)$, donde

$$\chi_{A_i}(x) = \begin{cases} 1, & \text{si } x \in A_i, \text{ con } \alpha_i \geq 0, A_i \in \mathcal{B}(\mathbb{R}) \\ 0, & \text{si } x \notin A_i \end{cases}$$

para todo i = 1, ..., n y $A_i \cap A_j = \emptyset$ si $i \neq j$.

Por definición de funciones simples,

$$\int_{\mathbb{R}} f(x) d\delta_x = \int_{\mathbb{R}} \left(\sum_{i=1}^n \alpha_i \chi_{A_i}(x) \right) d\delta_x = \sum_{i=1}^n \alpha_i \delta_x(A_i)$$

como $A_i \cap A_j = \emptyset$ para $j \neq i$, entonces para algún j, $\delta_x(A_j) = 1$ y en el resto es 0, por lo tanto,

$$\int_{\mathbb{R}} f(x) d\delta_x = \sum_{i=1}^n a_i \chi_{A_i}(x) = a_j = f(x).$$

Por lo que la proposición es cierta para funciones simples positivas, ahora veamos que se cumple para funciones medibles no negativas. Tomemos $f: \mathbb{R} \to [0, \infty]$ una función medible no negativa. Entonces, por un teorema visto en clase, existe $\{f_n\}_{n=1}^{\infty}$ una sucesión de funciones simples tales que

$$0 \leq f_n(x) \leq f_{n+1} \leq f(x) \; y \; \lim_{n \to \infty} f_n(x) = f(x)$$

para cada $x \in \mathbb{R}$. Luego, por el teorema de la convergencia monótona,

$$\int_{\mathbb{R}} f(x) d\delta_x = \lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) d\delta_x = \lim_{n \to \infty} f_n(x_0) = f(x_0),$$

por lo que esto se cumple para funciones medibles no negativas.

Por último, veamos el caso general. Para $f : \mathbb{R} \to \mathbb{R}$ una función medible, recordamos que $f = f^+ - f^-$, donde f^+ , f^- son funciones medibles no negativas. Luego,

$$\int_{\mathbb{R}} f(x) d\delta_x = \int_{\mathbb{R}} f^+(x) d\delta_x - \int_{\mathbb{R}} f^-(x) d\delta_x.$$

Por lo probado anteriormente, como la parte negativa y la parte positiva son funciones medibles no negativas,

$$\int_{\mathbb{D}} f(x) d\delta_x = f^+(x_0) - f^-(x_0) = f(x_0).$$

(c) De un ejemplo de una función que sea integrable con la medida δ_{x_0} para algún x_0 , pero que no sea integrable con la medida de Lebesgue.

Solución. Sea $f : \mathbb{R} \to \mathbb{R}$ tal que f(x) = 1 para todo $x \in \mathbb{R}$. Entonces

2

$$\int_{\mathbb{R}} 1 \, d\lambda(x) = \lambda(\mathbb{R})$$

mientras que

$$\int_{\mathbb{R}} 1 \, \mathrm{d}\delta_0(x) = 1 < \infty$$

por lo cual, f es integrable respecto a la medida de Dirac centrada en 0, pero no lo es respecto a la medida de Lebesgue.

- (II) Sea $\mathbb{N} = \{1, 2, 3, \ldots\}$ con la σ -álgebra $\mathcal{P}(\mathbb{N})$.
 - (a) Considere la medida contadora μ dada por: $\mu(A) = \text{cardinal}(A)$ si A es finito y $\mu(A) = \infty$ caso contrario, para cada $A \in \mathcal{P}(\mathbb{N})$. Muestre que μ es una medida.

Demostración. Para ver que es medida, primero veamos que la medida del vacío es nula, claramente $\mu(\emptyset) = \operatorname{card}(\emptyset) = 0$. Sean $A_i \subseteq \mathcal{P}(\mathbb{N})$ con $A_i \cap A_j = \emptyset$ para $i \neq j$, si algún A_i es infinito, entonces $\bigcup_{i=1}^{\infty} A_i$ es infinito y así,

$$\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\infty=\sum_{i=1}^{\infty}\mu(A_{i}),$$

ya que $\mu(A_i) = \infty$ para algún i. Si todos los A_i son finitos, entonces $\mu(A_i) = \text{card}(A_i)$, y como son disjuntos

$$\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\operatorname{card}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\operatorname{card}(A_{i}).$$

por lo que µ es una medida

(b) Dada $f: \mathbb{N} \to \mathbb{R}$ una función medible, es decir, f es una secuencia, $f = \{\alpha_j\}_{j \in \mathbb{N}}$, para algunos $\alpha_j \in \mathbb{R}, j \in \mathbb{N}$. Muestre que si f es integrable (es decir, $\int_{\mathbb{N}} |f| d\mu < \infty$), entonces

$$\int_{\mathbb{N}} f dx = \sum_{j=1}^{\infty} \alpha_j$$

Demostración. Teniendo en cuenta que $N=\bigcup_{i=1}^{\infty}\{n\}$, donde para cada $n\in\mathbb{N}$, $\{n\}$ es un conjunto medible, podemos definir las funciones simples $\chi_{\{i\}}$ para todo $i\in\mathbb{N}$. Como toda función medible se puede escribir como $f=\{a_j\}_{j\in\mathbb{N}}$, si tomamos f no negativa entonces

$$f(x) = \sum_{j=1}^{\infty} \alpha_j \chi_{i_j}(x), \quad \text{con } \alpha_j \geq 0, \text{ para todo } j \in \mathbb{N},$$

así,

$$\int_N f(x) \ d\mu = \int_N \left(\sum_{i=1}^\infty \alpha_i \chi_{i_j}(x) \right) d\mu = \sum_{i=1}^\infty \alpha_i \mu(i_j) = \sum_{i=1}^\infty \alpha_i.$$

Ahora, si tomamos f una función medible e integrable, podemos escribirla como

 $f = f^+ - f^-$, donde f^+ y f^- son medibles, integrables y no negativas. Por lo que,

$$\int_{N} f(x) d\mu = \int_{N} f^{+}(x) d\mu - \int_{N} f^{-}(x) d\mu = \sum_{j=1}^{\infty} a_{j} - \sum_{j=1}^{\infty} b_{j} = \sum_{j=1}^{\infty} c_{j}.$$

donde $c_i \in \mathbb{R}$, por lo que f es integrable.

Ejercicio 3 Sea $\Omega \subseteq \mathbb{R}^n$ abierto. Sea $1 \le p \le \infty$. Entonces $L^p(\Omega)$ es un espacio de Banach.

Demostración. Distinguimos los casos $p = \infty$ y $1 \le p < \infty$.

Caso 1: $p = \infty$

Sea (f_n) una sucesión de Cauchy en L^{∞} . Dado un entero $k \ge 1$, existe un entero N_k tal que

$$\operatorname{ess\,sup}_{x\in\Omega}|f_n(x)-f_m(x)|=\|f_m-f_n\|_{L^\infty}\leq \frac{1}{k}\quad \text{para todo } m,n\geq N_k,$$

entonces, por la definición del supremo esencial, para cada k existe un conjunto de medida nula E_k tal que,

$$|f_{\mathfrak{m}}(x) - f_{\mathfrak{n}}(x)| \leq \frac{1}{k} \quad \text{ para todo } x \in \Omega \setminus E_k, \text{ para todo } m, n \geq N_k.$$

como cada conjunto E_k tiene medida nula y la medida de Lebesgue es subaditiva para uniones numerables, se tiene que

$$\mu\left(\bigcup_{k=1}^{\infty}E_{k}\right)\leq\sum_{k=1}^{\infty}\mu(E_{k})=0,$$

y por ser no negativa, concluimos que

$$\mu\left(\bigcup_{k=1}^{\infty}\mathsf{E}_{k}\right)=0.$$

Sea entonces $E := \bigcup_{k=1}^{\infty} E_k$, un conjunto de medida nula. Como $\Omega \setminus E \subseteq \Omega \setminus E_k$ para todo k, se tiene que para todo $x \in \Omega \setminus E$,

$$|f_n(x) - f_m(x)| \le \frac{1}{k}$$
 para todo $m, n \ge N_k$.

Esto muestra que $(f_n(x))$ es de Cauchy en \mathbb{R} , por lo que converge a un límite que denotamos por f(x). Pasando al límite cuando $m \to \infty$, se obtiene

$$|f(x) - f_n(x)| \le \frac{1}{k}$$
 para todo $x \in \Omega \setminus E$, para todo $n \ge N_k$.

Entonces,

$$\operatorname{ess\,sup}_{x\in\Omega}|f(x)-f_{\mathfrak{n}}(x)|=\sup_{x\in\Omega\setminus E}|f(x)-f_{\mathfrak{n}}(x)|\leq\frac{1}{k},$$

y por lo tanto,

$$\|f-f_n\|_{L^\infty} \leq \frac{1}{k} \quad \text{ para todo } n \geq N_k.$$

Para ver que $f \in L^{\infty}$, notamos que para todo $x \in \Omega \setminus E$,

$$|f(x)| \le |f(x) - f_n(x)| + |f_n(x)| \le \frac{1}{k} + ||f_n||_{L^{\infty}},$$

de modo que f es esencialmente acotada, es decir, $f \in L^{\infty}$. En consecuencia, $f_n \to f$ en L^{∞} .

Caso 2: $1 \le p < \infty$

Sea (f_n) una sucesión de Cauchy en L^p . Como L^p es un espacio métrico, basta demostrar que existe una subsucesión que converge en L^p . Tomemos una subsucesión (f_{n_k}) tal que

$$\|f_{n_{k+1}}-f_{n_k}\|_p\leq \frac{1}{2^k}\quad \text{ para todo } k\geq 1.$$

Esto se construye eligiendo inductivamente n_1, n_2, \ldots con $n_{k+1} \ge n_k$ tales que $\|f_m - f_n\|_p \le \frac{1}{2^{k+1}}$ para todo $m, n \ge n_{k+1}$, lo cual es posible por ser (f_n) Cauchy. Definimos $f_k := f_{n_k}$, y consideramos

$$g_n(x) := \sum_{k=1}^n |f_{k+1}(x) - f_k(x)|,$$

cada gn es medible, no decreciente y cumple

$$\|g_n\|_p \leq \sum_{k=1}^n \|f_{k+1} - f_k\|_p \leq \sum_{k=1}^\infty \frac{1}{2^k} = 1.$$

Por el Teorema de Convergencia Monótona, existe una función medible $g \in L^p$, finita casi en toda parte, tal que

$$q_n(x) \rightarrow q(x)$$
 casi en toda parte.

Por otro lado, para $m \ge n \ge 2$, se tiene

$$|f_{\mathfrak{m}}(x) - f_{\mathfrak{n}}(x)| \leq \sum_{k=n}^{m-1} |f_{k+1}(x) - f_k(x)| = g_{\mathfrak{m}}(x) - g_{n-1}(x) \leq g(x) - g_{n-1}(x).$$

Entonces, $(f_n(x))$ es de Cauchy en \mathbb{R} casi en toda parte, y por ser \mathbb{R} completo converge a una función f(x), finita casi en toda parte.

Además, para $n \ge 2$,

$$|f(x) - f_n(x)| \le g(x) - g_{n-1}(x) \le g(x)$$
 casi en toda parte.

Elevando a la potencia p,

$$|f(x)-f_n(x)|^p\leq g(x)^p,\quad con\ g^p\in L^1.$$

Como $|f_n(x) - f(x)|^p \to 0$ c.t.p., por el Teorema de Convergencia Dominada se concluye que

$$\|f_n - f\|_p^p = \int_{\Omega} |f_n(x) - f(x)|^p dx \to 0.$$

Es decir,

$$\|\mathbf{f}_{n}-\mathbf{f}\|_{p}\to 0,$$

como consecuencia, la función f pertenece a L^p por ser el límite en norma de funciones de L^p . Esto demuestra que $f_n \to f$ en L^p , y que L^p es completo.

Ejercicio 5 Considere el espacio $L^{p}(\mathbb{R}^{n})$, $1 \leq p \leq \infty$. Sean

$$f_0(x)=\left\{\begin{array}{ll} |x|^{-\alpha}, & \text{si } |x|\leq 1,\\ 0, & \text{si } |x|>1. \end{array}\right. \quad f_1(x)=\left\{\begin{array}{ll} 0, & \text{si } |x|\leq 1,\\ |x|^\alpha, & \text{si } |x|>1. \end{array}\right.$$

(I) ¿Para qué valores de $\alpha \in \mathbb{R}$, $f_0 \in L^p(\mathbb{R}^n)$?

Solución. Sea,

$$\|f_0\|_{L^p} = \left(\int_{\mathbb{R}^n} |f_0|^p \ d\overline{x}\right)^{1/p} = \left(\int_{\frac{1}{2} \times 1 + 1} |x_1^{-p}|^q \ d\overline{x}\right)^{1/p}$$

Usando coordenadas polares $x=r\theta,\,\theta\in S^{n-1}$ donde $r=|x|\in[0,\infty)$

$$\begin{split} \|f_0\|_{L^p} &= \left(\int_{\frac{1}{2}\times 1+1} |x_1^{-p}|^{\alpha} dx\right)^{1/p} \\ &= \left(\int_0^1 \int_{S^{n-1}} r^{-p\alpha} dr d\nu(\theta) dt\right)^{1/p} \\ &= \left(\int_{S^{n-1}}^1 d\nu(\theta) \int_0^1 r^{n-1-p\alpha} dr\right)^{1/p}. \end{split}$$

Sabemos que

$$\int_{\varepsilon}^{1} r^{\alpha} dr = \lim_{\varepsilon \to 0} \frac{r^{\alpha+1}}{\alpha+1} \bigg|_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} \left(\frac{1}{\alpha+1} - \frac{\varepsilon^{\alpha+1}}{\alpha+1} \right)$$

cuando a + 1 > 0 converge y cuando a + 1 < 0 diverge. Luego, para que

$$\int_0^1 r^{n-1-p\alpha} dr$$

converja se tiene que cumplir que $n-1-p\alpha>-1$ es decir, $n-p\alpha>0$ por lo que, para $\alpha<\frac{n}{p}$ la integral es finita, es decir, $f_0\in L^p(\mathbb{R}^n)$.

(II) ¿Para qué valores de $\alpha\in\mathbb{R},f_{1}\in L^{p}\left(\mathbb{R}^{n}\right)$?

Solución. Sea,

$$\|f_1\|_{L^p} = \left(\int_{\mathbb{R}^n} |f|^p dx\right)^{1/p} = \left(\int_{|x|>1} |x|^{\alpha p} dx\right)^{1/p}$$

haciendo el cambio a coordenadas polares $x=r\theta$ con $r=|x|\in[1,\infty)$ y $\theta\in S^{n-1}$

$$\|f_1\|_{L^p} = \left(\int_1^\infty \int_{S^{n-1}} r^{\alpha p} r^{n-1} \, d\nu(\theta) \, dr\right)^{1/p} = \left(\int_{S^{n-1}} d\nu(\theta) \int_1^\infty r^{\alpha p+n-1} \, dr\right)^{1/p}$$

La integral $\int_1^\infty r^{\alpha p+n-1} \; dr$ converge si y sólo si,

$$\alpha p + n - 1 < -1$$
 por lo que $\alpha p + n < 0$ así $\alpha < -\frac{n}{p}$

Por lo tanto, para $\alpha<-\frac{n}{p}$ la integral es finita, es decir, $f_1\in L^p(\mathbb{R}^n).$

(III) ¿Para qué valores de $\alpha \in \mathbb{R}, \frac{1}{1+|x|^{\alpha}} \in L^{p}(\mathbb{R}^{n})$?

Solución. Tenemos que

$$\begin{split} \|f\|_{L^{p}}^{p} &= \int_{\mathbb{R}^{n}} \left| \frac{1}{1 + |x|^{\alpha}} \right|^{p} dx \\ &= \int_{\mathbb{R}^{n}} \frac{1}{(1 + |x|^{\alpha})^{p}} dx \\ &= \int_{\|x\| \le 1} \frac{1}{(1 + |x|^{\alpha})^{p}} dx + \int_{\|x\| > 1} \frac{1}{(1 + |x|^{\alpha})^{p}} dx \end{split}$$

Sabemos que cuando $||x|| \le 1$ la integral converge entonces debemos preocuparnos por la condición cuando $||x|| \ge 1$.

Tenemos que

$$\int_{\|x\|>1} \frac{1}{(1+|x|^{\alpha})^p} \, dx \leq \int_{\|x\|>1} \frac{1}{(|x|^{\alpha})^p} \, dx$$

luego, tenemos que cambiando a coordenadas polares la última integral,

$$\int_{0}^{\infty} \left(\frac{1}{r^{\alpha}}\right)^{p} r^{n-1} dr = \int_{0}^{\infty} \frac{r^{n-1}}{(r^{\alpha})^{p}} dr$$

por lo que se tiene la convergencia con las siguientes condiciones

$$n-1 < \alpha p$$

$$n \leq \alpha p$$

$$\frac{n}{p} \leq \alpha$$
.

Con lo cual tenemos una aproximación de la cota que deseamos para α , ahora acotemos inferiormente la integral

$$\int_{\|x\|\geq 1} \frac{1}{(1+|x|^{\alpha})^p} dx,$$

luego como $||x|| \ge 1$ entonces

$$\int_{\|x\| \ge 1} \frac{1}{(1+|x|^{\alpha})^{p}} \, \mathrm{d}x \ge \int_{\|x\| \ge 1} \frac{1}{(2|x|^{\alpha})^{p}} \, \mathrm{d}x$$

cambiando a coordenadas polares,

$$\int_0^\infty \left(\frac{1}{2r^\alpha}\right)^p r^{n-1} \ dr = \int_0^\infty \frac{r^{n-1}}{(2r^\alpha)^p} \ dr$$

como p es fijo entonces solo debemos poner condiciones sobre ap, así,

$$n-1 < \alpha p$$

$$n \leq \alpha p$$

$$\frac{n}{p} \leq \alpha$$
.

por lo tanto, como las cotas para α son iguales tenemos que cuando $\alpha \geq \frac{n}{p}$ la integral es finita, es decir, $f \in L^p(\mathbb{R}^n)$.

Ejercicio 8

(I) Sea $1 . Considere las secuencias <math>x_n = \left\{x_n^j\right\}_{j=1}^{\infty}$, para cada $n \in \mathbb{N}$ y $x = \left\{x^j\right\}_{j=1}^{\infty}$. Asuma que $x_n, x \in l^p$, para todo $n \in \mathbb{N}$. Muestre que $x_n \rightharpoonup x$ en l^p si y solo si $\{x_n\}$ es acotada (en l^p) y $x_n^j \rightarrow x^j$ para cada entero positivo j.

Demostración. (\Rightarrow) Observe que como $x_n \to x$, sabemos de inmediato que $\{\|x_n\|\}$ es acotada por la convergencia débil, solo faltaría ver que $x_n^j \to x^j$ para cada j. Por el hecho de que $(l^p)^* = l^{p'}$, ya que $1 , por el teorema de representacion sabemos que dado un funcional en el dual <math>\varphi$, tenemos que

$$\langle \phi, x_n \rangle = \sum_{i=1}^{\infty} \alpha_i x_n^i,$$

$$\langle \phi, x \rangle = \sum_{i=1}^{\infty} a_i x^i.$$

Donde $\{\alpha_i\}\in l^{p'}$ con p' el conjugado de p. Por la convergencia débil y la representación

sabemos que $\sum_{i=1}^{\infty} a_i x_n^i \to \sum_{i=1}^{\infty} a_i x^i$ para cualquier secuencia, en particular si tomamos e_j la secuencia donde todas las entradas son 0, salvo la j-ésima que es 1. Tenemos que

$$\sum_{i=1}^{\infty} e_j^i x_n^i = x_n^j \to \sum_{i=1}^{\infty} e_j^i x^i = x^j.$$

Así, concluimos lo deseado para cada j.

 (\Leftarrow) Ahora queremos ver que para todo $\phi \in (l^p)^*$ tenemos que $\langle \phi, x_n \rangle \to \langle \phi, x \rangle$. Como $1 sabemos que <math>(l^p)^* = l^{p'}$, donde p' es el conjugado de p, y por el teorema de representación tenemos que respectivamente

$$\langle \varphi, x_n \rangle = \sum_{i=1}^{\infty} \alpha_i x_n^i,$$
 $\langle \varphi, x \rangle = \sum_{i=1}^{\infty} \alpha_i x^i.$

Donde $\{a_i\} \in l^{p'}$, luego, observe que como estas sumas convergen absolutamente por Holder, podemos operarlas de la siguiente manera

$$\begin{split} \left| \sum_{i=1}^{\infty} \alpha_i x_n^i - \sum_{i=1}^{\infty} \alpha_i x^i \right| &= \left| \sum_{i=1}^{\infty} \alpha_i (x_n^i - x^i) \right| \\ &\leq \sum_{i=1}^{\infty} |\alpha_i| |x_n^i - x^i| \end{split}$$

Ahora, como $\{\alpha_i\} \in l^{p'}$, existe N tal que $\sum_{i=N+1} |\alpha_i|^{p'} \to 0$, así con este N podemos separar la expresión anterior tal que

$$\sum_{i=1}^{\infty} |\alpha_i| |x_n^i - x^i| = \sum_{i=1}^{N} |\alpha_i| |x_n^i - x^i| + \sum_{i=N+1}^{\infty} |\alpha_i| |x_n^i - x^i|$$

y luego usando la desigualdad de holder y la hipótesis de que $\{x_n\}$ es acotada tenemos que

$$\begin{split} \sum_{i=1}^{N} |\alpha_i| |x_n^i - x^i| + \sum_{i=N+1}^{\infty} |\alpha_i| |x_n^i - x^i| & \leq \sum_{i=1}^{N} |\alpha_i| |x_n^i - x^i| + \left(\sum_{i=N+1}^{\infty} |\alpha_i|^{p'}\right)^{\frac{1}{p'}} \left(\sum_{i=N+1}^{\infty} |x_n^i - x^i|^p\right)^{\frac{1}{p}} \\ & \leq \sum_{i=1}^{N} |\alpha_i| |x_n^i - x^i| + \left(\sum_{i=N+1}^{\infty} |\alpha_i|^{p'}\right)^{\frac{1}{p'}} \|x_n - x\|_{l^p} \\ & \leq \sum_{i=1}^{N} |\alpha_i| |x_n^i - x^i| + \left(\sum_{i=N+1}^{\infty} |\alpha_i|^{p'}\right)^{\frac{1}{p'}} (\|x_n\|_{l^p} + \|x\|_{l^p}). \end{split}$$

Así, el segundo sumando es una constante por una cantidad que tiende a 0, faltaría ver que el otro sumando tiende a 0 cuando $n \to \infty$. Pero, como son finitos términos por la convergencia puntual de $\{x_n^j\}$, tenemos que $|x_n^i-x^i|\to 0$ para cada $i=1,\ldots,N$. De esta manera la cota superior tiende a 0, por lo que $\left|\sum_{i=1}^\infty a_i x_n^i - \sum_{i=1}^\infty a_i x^i\right|\to 0$, pero esto es lo mismo que $\langle \phi, x_n \rangle \to \langle \phi, x \rangle$. Como el funcional es arbitrario llegamos a la conclusión $x_n \rightharpoonup x$.

 $Q^{*}Q$

(II) Considere la secuencia $x_n = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, 0, \dots)$. En cuales espacios $l^p, 1 \le p \le \infty$, esta secuencia converge débilmente?

Demostración. Primero note que para 1 podemos usar el hecho probado en la primera parte ya que para todo n

$$\|x_n\|_{l^p}^p = \sum_{i=1}^n \left(\frac{1}{i}\right)^p \leq \sum_{i=1}^\infty \frac{1}{i^p} < \infty.$$

Esto último ya que p>1, luego pertenece a l^p y además $\{x_n\}$ es acotada. Note que puntualmente

$$x_n^j = \begin{cases} 0 & \text{si } j > n, \\ \frac{1}{j} & \text{si } j \le n. \end{cases}$$

Así, tenemos que dado $\epsilon>0,$ con j fijo, tenemos que para $n\leq N,$ si tomamos N=j

$$\left|x_n^j - \frac{1}{j}\right| = \left|\frac{1}{j} - \frac{1}{j}\right| = 0 < \varepsilon,$$

luego $x_n^j \to \frac{1}{j}$, por lo que nuestro candidato a convergencia seria $x = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$. Como $x \in l^p$ por lo mencionado al inicio, podemos conluir por la parte I que $x_n \to x$.

Ahora para p=1 note que no tiene sentido hablar de convergencia ya que $\|x\|_{l^1}=\sum_{i=1}^{\infty}\frac{1}{i}$, pero esta serie es la armónica, por lo que diverge, así nuestro candidato a convergencia $x \notin l^1$.

Para el caso $p = \infty$. Observe que

$$\|x_n - x\|_{l^{\infty}} = \sup_{j \in \mathbb{Z}^+} |x_n^j - x^j|.$$

Luego por la forma en la que están definidas las sucesiones tenemos que

$$|x_n^j - x^j| = \begin{cases} 0 & j \le n, \\ \frac{1}{j} & j > n. \end{cases}$$

Por lo que
$$|x_n^j - x^j| \le \frac{1}{n}$$
,

$$\|x_n-x\|_{l^{\infty}}\leq \frac{1}{n}.$$

Así, cuando $n\to\infty$, tenemos que $\|x_n-x\|_{l^\infty}\to 0$, luego $x_n\to x$ en l^∞ y como la convergencia fuerte implica la débil, concluimos que $x_n \rightharpoonup x$.

 $\hat{\Box} \Box$