B. E. First Semester (All) / SoE – 2018-19 Examination

Course Code: GE 2102 Course Name: Engineering

Mathematics – II

Time: 3 Hours/4 Hours [Max. Marks: 60

Instructions to Candidates :-

(1) All questions are compulsory.

- (2) All questions carry marks as indicated.
- (3) Assume suitable data wherever necessary.
- (4) Illustrate your answers wherever necessary with the help of neat sketches.
- (5) Use of Logarithmic tables, non-programmable calculator is permitted.
- 1. (A) Solve any One :—
 - (A1) Compute the value of Particular Integral from D.E.

$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = e^{2x}$$

(A2) Compute the value of C.F. for the following D.E.

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} - 2\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 5\frac{\mathrm{d}y}{\mathrm{d}x} = \sin^2 x$$

(B) Solve any One :—

(B1) Evaluate the Solution of
$$[(1 + \log xy)] dx + \left[1 + \frac{x}{y}\right] dy = 0.$$
 3

(B2) Solve the differential equation
$$y \log y \frac{dy}{dx} + x - \log y = 0$$
.

(C) Solve any One :—

(C1) Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = \sin hx + \sin x.$$

RDR/ORT/2KNT-10006

Contd.

(C2) Use Method of Variation of parameter and solve
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$$
.

- 2. (A) Solve any **One** :—
 - (A1) Convert following D. E. Into Differential equation with constant Coefficient form

$$(x+3)^2 \frac{d^2y}{dx^2} - 4(x+3)\frac{dy}{dx} + 6y = \log(x+3)$$

- (A2) Develop a differential equation for an electrical circuit connecting Resistance of R ohm, inductance of L Henry and capacitance of C Farade in series with emf of E volt.
- (B) Solve any One :—
 - (B1) When a switch closed in a circuit containing a battery E, resistance R and inductance L, the current i builds up at the rate given by

$$L \frac{di}{dt} + Ri = E$$
. Find current i as function of t.

(B2) Compute the value of C.F. for the following D.E.

$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^3 \sin(\log x).$$
 3

(C) Solve any One :—

(C1) Solve
$$(3x+2)^2 \frac{d^2y}{dx^2} + 5(3x+2)\frac{dy}{dx} - 3y = x^2 + x + 1.$$
 5

(C2) Solve
$$\frac{dx}{dt} + 3x - 2y = 1$$
, $\frac{dy}{dt} - 2x + 3y = e^t$ given that $x(0) = y(0) = 0$.

- 3. (A) Solve any One :—
 - (A1) Express $\sqrt{3-i}$ in polar form.
 - (A2) Compute the general values of $\log (1+i) + \log (1-i)$.

- (B) Solve any One :—
 - (B1) If $\tan (A + iB) = x + iy$ then prove that (i) $\tan 2A = \frac{2x}{1 - x^2 - y^2}$, (ii) $\tanh 2B = \frac{2y}{1 + x^2 + y^2}$
 - (B2) If $i^{\alpha+\beta} = \alpha + i\beta$, prove that $\alpha^2 + \beta^2 = e^{-(4n+1)\pi\beta}$.
- (C) Solve any One :—
 - (C1) Prove that $\sinh^{-1} z = \log(z + \sqrt{z^2 + 1})$.
 - (C2) If $\cosh (x + iy) = u + iv$ then show that $\frac{u^2}{\cosh^2 x} + \frac{v^2}{\sinh^2 x} = 1 \quad \text{and} \quad \frac{u^2}{\cos^2 x} \frac{v^2}{\sin^2 x} = 1$
- 4. (A) Solve any One :—
 - (A1) Test whether following functions are analytic or not $f(z) = \log z$
 - (A2) Evaluate $\oint_C \left(\frac{3z^2 + 7z + 1}{z + 1} \right) dz$ where |z| = 1.5.
 - (B) Solve any One :—
 - (B1) Expand the following functions by Laurent's Series $f(z) = \frac{z}{(z-1)(2-z)} \text{ for the region } |z-1| > 2.$
 - (B2) Use method of Milnes Thomson and find v(x, y) such that f(z) = u(x, y) + iv(x, y) is an analytical function, Where $u(x, y) = e^{-2xy} \sin(x^2 y^2)$.
 - (C) Solve any One :—
 - (C1) Use Method of Residue and evaluate $\oint_C \frac{12z-7}{(z-1)^2 (2z+3)} dz$, Where (i) $|z| \le 2$ and (ii) $|z+i| \le 3/2$.

3

2

3

(C2) Evaluate
$$\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4\cos\theta} d\theta$$
, by contour Integration. 5

(A1) Find the rank of the matrix
$$A = \begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$$

(A2) Compute the Eigen values of the matrix
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$$

2

3

5

2

Contd.

- (B) Solve any One :—
 - (B1) Test the consistency of the following Equation : $5x + 3y + 7z = 4, \quad 3x + 26y + 2z = 9, \quad 7x + 2y + 10z = 5.$ And if so, find the solution.
 - (B2) Verify the Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix}$

(C) Solve any One :—

(C1) Using Sylvester's theorem Verify
$$\log_e e^A = A$$
, where $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$

(C2) Find the Eigen value and Eigen vectors and modal matrix for the matrix

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

6. (A) Solve any **One** :—

(A1) Compute the normal equations for the curve $y = ax^b$.

(A2) Find the ranks of X and Y from the following data:

X	24	13	27	12	31	42	13	29	17	11
у	24	25	21	25	22	19	24	20	25	26

Solve any One :— (B)

> (B1) Use Method of Least square and Fit a curve $y = ax + \frac{b}{x}$ to the following data:

X	1	2	3	4	5	6	7	8
у	5•43	6•28	8•23	10.32	12.63	14.86	17•27	19•51

2

(B2) Obtain the rank correlation coefficient for the following data:

X	68	64	75	50	64	80	75	40	55	64
у	62	58	68	45	81	60	68	48	50	70

3

(C) Solve any One :—

(C1) Two lines of regression are given by 8x - 10y + 66 = 0 and 40x - 18y = 214.

If
$$\sigma_x^2 = 9$$
, find

(i) Mean values of x and y,

The coefficient of correlation between x and y and

(iii) Variance of y.

5

(C2) Find the equation of regression lines and the coefficient of correlation for the following data:

X	3	5	6	8	9	11
у	2	3	4	6	5	8

5