GEE for Mean and Association (Continued)

Model:

$$g(\mu_{ij}) = \mathbf{X}_{ij}^T \boldsymbol{\beta}$$

 $ln(\nu_{ijk}) = \mathbf{Z}_{ijk}^T \boldsymbol{\alpha}$

where

$$\mu_{ij} = E(Y_{ij}) = Pr[Y_{ij} = 1]$$

$$\nu_{ijk} = OR(Y_{ij}, Y_{ik})$$

e.g. $ln(\nu_{iik}) = \alpha_0 + \alpha_1 |t_{ii} - t_{ik}|^{-1}$, no constraint on α 's.

GEE2

$$\mathbf{U}_{\beta}(\beta, \alpha) = \sum_{i=1}^{m} \frac{\partial \mu_{i}^{T}}{\partial \beta} \mathbf{V}_{i}^{-1} (\mathbf{Y}_{i} - \mu_{i}) = 0$$

$$\mathbf{U}_{\alpha}(\beta, \alpha) = \sum_{i=1}^{m} \frac{\partial \eta_{i}^{T}}{\partial \alpha} \mathbf{H}_{i}^{-1} (\mathbf{W}_{i} - \eta_{i}) = 0$$

where

$$\mathbf{V_i}$$
 = working covariance of $\mathbf{Y_i}$
 \mathbf{W}_i = $(R_{i1}R_{i2}, R_{i2}R_{i3}, \cdots, R_{i,n_i-1}R_{i,n_i})^T$
 $\boldsymbol{\eta}_i$ = $E(\mathbf{W}_i)$
 \mathbf{H}_i = working covariance of \mathbf{W}_i

GEE2: Remarks

- One can set $\mathbf{H}_i = diag\{var(R_{i1}R_{i2}), \cdots var(R_{i,n_i-1}R_{in_i})\}$ then η_i and \mathbf{H}_i are fully determined by the marginal mean μ_i and the marginal odds ratios ν_i .
- The exact covariance of \mathbf{W}_i depends on higher order moments of \mathbf{Y}_i .
- In principle, we could continue modeling the higher order moments... until we modeled them all...

GEE2: η_i and μ_i , ν_i

Question: How is η_i related to μ_i, ν_i ?

$$\begin{split} \eta_{ijk} &= E(W_{ijk}) = \frac{E(Y_{ij}Y_{ik}) - \mu_{ij}\mu_{ik}}{\{\mu_{ij}(1 - \mu_{ij})\mu_{ik}(1 - \mu_{ik})\}^{1/2}} \\ &= \frac{\mu_{ijk} - \mu_{ij}\mu_{ik}}{\{\mu_{ij}(1 - \mu_{ij})\mu_{ik}(1 - \mu_{ik})\}^{1/2}} \\ \mu_{ijk} &= Pr[Y_{ij} = Y_{ik} = 1] \\ &= \begin{cases} \frac{1 - (\mu_{ij} + \mu_{ik})(1 - \nu_{ijk}) - \{[1 - (\mu_{ij} + \mu_{ik})(1 - \nu_{ijk})]^2 - 4(\nu_{ijk} - 1)\nu_{ijk}\mu_{ij}\mu_{ik}\}^{\frac{1}{2}}}{2(\nu_{ijk} - 1)}, \\ &= \begin{cases} \frac{1 - (\mu_{ij} + \mu_{ik})(1 - \nu_{ijk}) - \{[1 - (\mu_{ij} + \mu_{ik})(1 - \nu_{ijk})]^2 - 4(\nu_{ijk} - 1)\nu_{ijk}\mu_{ij}\mu_{ik}\}^{\frac{1}{2}}}{2(\nu_{ijk} - 1)}, \\ &= \begin{cases} \mu_{ij}\mu_{ik}, & \text{if } \nu_{ijk} = 1 \end{cases} \end{split}$$

GEE2: Distribution of $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\alpha}}$

$$\Rightarrow \mathbf{U}(\delta) = \sum_{i} \frac{\partial (\mu_{i}, \eta_{i})^{T}}{\partial \delta} \begin{pmatrix} \mathbf{V}^{-1}_{i} & 0 \\ 0 & \mathbf{H}_{i}^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{Y}_{i} - \mu_{i} \\ \mathbf{W}_{i} - \boldsymbol{\eta}_{i} \end{pmatrix}$$
$$= \sum_{i} \mathbf{C}_{i}^{T} \mathbf{B}_{i} \begin{pmatrix} \mathbf{Y}_{i} - \boldsymbol{\mu}_{i} \\ \mathbf{W}_{i} - \boldsymbol{\eta}_{i} \end{pmatrix}$$

where $\boldsymbol{\delta} = (\boldsymbol{\beta}^T, \boldsymbol{\alpha}^T)^T$. Then:

$$\hat{oldsymbol{\delta}} \sim \textit{N}(oldsymbol{\delta}, oldsymbol{\mathsf{V}}_{oldsymbol{\delta}})$$
 asymptotically

where

$$\mathbf{V}_{\delta} = \frac{1}{m} \left(\sum_{i=1}^{m} \mathbf{C}_{i}^{T} \mathbf{B}_{i} \mathbf{C}_{i} \right)^{-1} \left\{ \sum_{i=1}^{m} \mathbf{C}_{i}^{T} \mathbf{B}_{i} \begin{pmatrix} \mathbf{Y}_{i} - \boldsymbol{\mu}_{i} \\ \mathbf{W}_{i} - \boldsymbol{\eta}_{i} \end{pmatrix} \right)$$
$$\begin{pmatrix} \mathbf{Y}_{i} - \boldsymbol{\mu}_{i} \\ \mathbf{W}_{i} - \boldsymbol{\eta}_{i} \end{pmatrix}^{T} \mathbf{B}_{i}^{T} \mathbf{C}_{i} \right\} \left(\sum_{i=1}^{m} \mathbf{C}_{i}^{T} \mathbf{B}_{i} \mathbf{C}_{i} \right)^{-1}$$

Alternative Estimating Equation

An alternative EE:

$$\mathbf{U}(\boldsymbol{\delta}) = \sum_{i} \frac{\partial (\mu_{i}, \eta_{i})^{\mathsf{T}}}{\partial \boldsymbol{\delta}} cov^{-1} \begin{pmatrix} \mathbf{Y}_{i} \\ \mathbf{W}_{i} \end{pmatrix} \begin{pmatrix} \mathbf{Y}_{i} - \boldsymbol{\mu}_{i} \\ \mathbf{W}_{i} - \boldsymbol{\eta}_{i} \end{pmatrix}$$

Now
$$cov^{-1}\left(egin{array}{c} \mathbf{Y}_i \\ \mathbf{W}_i \end{array}
ight)$$
 may not be a block diagonal matrix.

Dis/Advantages

Advantage: If $cov^{-1}\begin{pmatrix} \mathbf{Y}_i \\ \mathbf{W}_i \end{pmatrix}$ is correctly specified, then $\hat{\delta}$ would be more efficient and $\mathbf{U}(\delta)$ is optimal.

Disadvantage: If $cov^{-1}\begin{pmatrix}\mathbf{Y}_i\\\mathbf{W}_i\end{pmatrix}$ is misspecified and contains off-block-diagonal elements, then misspecification of the ν (OR) model would result in a biased estimator of the mean parameter vector $\boldsymbol{\beta}$.

Alternating Logistic Regression (ALR)

Reference: Carey, Zeger, Diggle (1993)

Model:

$$g(\mu_{ij}) = \mathbf{X}_{ij}^T \boldsymbol{\beta}$$

 $In(\nu_{ijk}) = \mathbf{Z}_{ijk}^T \boldsymbol{\alpha}$

GEE2 can be fitted as follows:

- 1. Assign an initial value α_0 .
- 2. Use GEE1 to estimate β and μ_{ij} .
- 3. Fit the following offset logistic model:

$$extit{logit} \, \mathsf{Pr}[Y_{ij} = 1 | Y_{ik} = 1] = Y_{ik} \mathbf{Z}_{ijk}^{\mathsf{T}} lpha + \mathsf{In}\left(rac{\mu_{ij} - \mu_{ijk}}{1 - \mu_{ij} - \mu_{ik} + \mu_{ijk}}
ight)$$

4. Iterate between 2 and 3.

Indonesian Infectious Disease Data (Again)

- Data:
 - m = 275 children examined every 3 months up to 6 consecutive quarters
 - Outcome=respiratory infection (Y/N)
 - Covariates=XERO, Gender, Age, Height, Season
- Models considered:
 - Model 1: GEE1 (cross-sectional age effect: $\beta_1 age_{ij} + \beta_2 age_{ij}^2$)
 - Model 2: GEE2 (cross-sectional age effect)

$$In\nu_{ijk} = \alpha$$

 Model 3: GEE2 (distinguish cross-sectional and longitudinal effects, no seasonal effect)

$$\beta_1 age_{i1} + \beta_2 age_{i1}^2 + \beta_3 (age_{ij} - age_{i1}) + \beta_4 (age_{ij} - age_{i1})^2$$

Indonesian Infectious Disease Data: Results

Model 1 2 3 4		
3 4		
-1.76 -2.21		
(0.25) (0.32)		
-0.53 -0.53		
(0.24) (0.24)		
-0.051 -0.048		
(0.025) (0.024)		
0.54		
(0.21)		
0.016		
- (0.18)		
0.53 0.64		
(0.45) (0.44)		
)		
-0.053 -0.053		
(0.013) (0.013)		
-0.0013 -0.0013		
(0.0005) (0.0005)		
-0.19 -0.082		
(0.071) (0.099)		
0.013 0.007		

Indonesian Infectious Disease Data: Cross Sectional

Fig. 8.1. Prevalence of respiratory infection as a function of age for three different models. ——: Model 1;: Model 2; ---: Model 3.

Indonesian Infectious Disease Data: Longitudinal

Fig. 8.3. The logarithm of the risk of respiratory infection as a function of follow-up time relative to the risk at an individual's first visit.

12