Limit of a function

Nguyen Thu Huong

School of Appiled Mathematics and Informatics Hanoi University of Science and Technology

October 23, 2020

Content

- Definitions
- 2 Properties and limit laws
- Infinities. Infinitesimals
 - Infinitesimals
 - Infinities

Content

① Definitions

2 Properties and limit laws

- Infinities. Infinitesimals
 - Infinitesimals
 - Infinities

Two equivalent definitions of limit of a function

Definition

Let f(x) be a function defined on (a,b), possibly except at $x_0 \in (a,b)$. The limit of f(x) is a finite number L as x tends to x_0 , denoted by $\lim_{x \to x_0} f(x) = L$, iff

$$\forall \{x_n\} \subset (a,b) \setminus \{x_0\} : \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = L.$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists \delta(\varepsilon, x_0) > 0 \mid 0 < |x - x_0| < \delta : |f(x) - L| < \varepsilon.$$

Limit Nguyen Thu Huong

Example

- $\lim_{x\to 1} (2x+3) = 5$.
- There does not exist $\lim_{x\to 0} \sin \frac{1}{x}$.

Prove of nonexistence of $\lim_{x\to x_0} f(x)$: there exist two sequences

$$\{x_n\}$$
 and $\{x_n'\}$ such that $\lim_{n\to\infty}x_n=\lim_{n\to\infty}x_n'=x_0$

BUT
$$\lim_{n\to\infty} f(x_n) \neq \lim_{n\to\infty} f(x'_n)$$
.

One sided limits

Definition

Right hand limit at x_0 :

$$\lim_{x \to x_0^+} f(x) = L \Leftrightarrow \forall \, \varepsilon > 0, \exists \delta(\varepsilon) > 0 \mid 0 < x - x_0 < \delta : |f(x) - L| < \varepsilon.$$

Left hand limit at x_0 :

$$\lim_{x \to x_0^-} f(x) = L \Leftrightarrow \forall \, \varepsilon > 0, \exists \delta(\varepsilon) > 0 \mid 0 < x_0 - x < \delta : |f(x) - L| < \varepsilon.$$

We write:
$$f(x_0^+) = \lim_{x \to x_0^+} f(x), f(x_0^-) = \lim_{x \to x_0^-} f(x).$$

Note:
$$\lim_{x \to x_0} f(x) = L \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = L$$
.

Limit at infinity

Definition

$$\lim_{x\to\infty} f(x) = L \Leftrightarrow \forall \, \varepsilon > 0, \exists N(\varepsilon) > 0 \mid |x| > N(\varepsilon) : |f(x) - L| < \varepsilon.$$

Content

Definitions

Properties and limit laws

- Infinities. Infinitesimals
 - Infinitesimals
 - Infinities

Properties

- **1** The limit $\lim_{x \to x_0} f(x)$, if exists, is **unique**.
- ② Squeeze theorem: assume that $f(x) \le g(x) \le h(x)$ for all $x \in (a,b) \setminus \{x_0\}$, and

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = L.$$

Then $\lim_{x\to x_0} g(x) = L$.

Example

$$\lim_{x\to 0} x\cos\frac{1}{x} = 0.$$

Limit laws

Theorem

Assume that $\lim_{x \to x_0} f(x) = a$, $\lim_{x \to x_0} g(x) = b$. Then

- $\bullet \lim_{x\to x_0} [f(x)\pm g(x)] = a\pm b.$
- $\bullet \lim_{x \to x_0} f(x).g(x) = a.b.$
- $\bullet \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b} \ (b \neq 0, \ g(x) \neq 0 \ \forall x_0 \varepsilon < x < x_0 + \varepsilon).$

Note: the theorem excludes the case $a=\infty$ or $b=\infty$. x_0 stands for x_0^{\pm}, ∞ . In such cases, we work with indeterminate forms $\infty-\infty$, $0.\infty$, $0.\infty$, $0.\infty$, $0.\infty$, $0.\infty$.

Evaluating indeterminate forms

Example

Find the following limits

a)
$$\lim_{x\to 1} \frac{x^3 - 3x^2 + 2}{x^2 - 1}$$

$$c) \lim_{x \to 2} (2 - x) \tan \frac{\pi x}{4}$$

b)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x+3} - 2}$$

Limit of composite functions

Theorem

Assume that
$$\lim_{x\to x_0} u(x) = u_0$$
, $\lim_{u\to u_0} v(u) = v_0$. Then

$$\lim_{x\to x_0}v\circ u(x)=v_0.$$

Example

$$\lim_{x \to x_0} [f(x)]^{g(x)} = \lim_{x \to x_0} \exp(g(x) \ln f(x))$$

$$= \exp\left[\lim_{x \to x_0} (g(x) \ln f(x))\right].$$

Infinite limits

Definition

$$\lim_{x\to\infty} f(x) = \infty \Leftrightarrow \forall M > 0, \exists \delta(\varepsilon) > 0 \mid |x-x_0| < \delta(\varepsilon) : |f(x)| > M.$$

Content

Definitions

2 Properties and limit laws

- 3 Infinities. Infinitesimals
 - Infinitesimals
 - Infinities

Definition

Definition

A quantity $\alpha(x)$ is called an infinitesimal when $x \to x_0$ if $\lim_{x \to x_0} \alpha(x) = 0$.

Example

- x^m , m > 0, is an infinitesimal as $x \to 0$.
- $e^{\sqrt{x}} 1$ is an infinitesimal as $x \to 0^+$.
- $\cot x$, $\cos x$ are infinitesimals as $x \to \frac{\pi}{2}$.

Properties

- If $\lim_{x \to x_0} f(x) = a$, we can write $f(x) = a + \alpha(x)$, where $\alpha(x)$ is an infinitesimal as $x \to x_0$.
- ② If $\alpha(x)$, $\beta(x)$ are infinitesimals as $x \to x_0$ then $c_1\alpha(x) + c_2\beta(x)$, c_1 , c_2 are constants, is also an infinitesimal as $x \to x_0$.
- **3** If $\alpha(x)$ is an infinitesimal as $x \to x_0$, and f(x) is **bounded** in $(x_0 \varepsilon, x_0 + \varepsilon)$ then $\alpha(x)f(x)$ is also an infinitesimal as $x \to x_0$.

Example

 $3x\sin\frac{1}{x} + 5\ln(1-2x)$ is an infinitesimal as $x \to 0$.

Comparison of infinitesimals

Definition

Let $\alpha(x)$, $\beta(x)$ be infinitesimals as $x \to x_0$ and $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \mathbf{k}$.

- If k = 0, $\alpha(x)$ is of higher order than $\beta(x)$, written as $\alpha(x) = o(\beta(x))$. Or $\beta(x)$ is of lower order than $\alpha(x)$.
- If $k \neq 0, \infty$, $\alpha(x)$ and $\beta(x)$ are of the same order, written as $\alpha(x) = O(\beta(x))$.

In particular, k = 1, $\alpha(x)$ and $\beta(x)$ are said to be equivalent, written as $\alpha(x) \sim \beta(x)$.

Q: If $k = \infty$ $\beta(x) = o(\alpha(x))$.

For m, n > 0: x^m is of higher order than x^n as $x \to 0$ iff m > n.

Example (Fundametal equivalent pairs of infinitesimals)

As $x \to 0$:

- $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$.
- $\ln(1+x) \sim x \sim e^x 1$.
- $1 \cos x \sim \frac{x^2}{2}$.
- $(1+x)^{\alpha}-1\sim \alpha x$, $\alpha\in\mathbb{R}$.

Evaluating indeterminate forms

In the process $x \to x_0$

Proposition

- 2 If $\alpha(x) \sim \widetilde{\alpha}(x)$, $\beta(x) \sim \widetilde{\beta}(x)$, then

$$\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x\to x_0} \frac{\widetilde{\alpha}(x)}{\widetilde{\beta}(x)}.$$

Example

Find the following limits

$$\lim_{x \to 0} \frac{(2^x - 1) \ln(1 + 2x)}{\sin^2 x}$$

$$\lim_{x \to 0} \frac{\sin^2 x}{\sqrt[4]{1 + 5x} - \sqrt[3]{1 - 2x}}$$

$$\lim_{x \to 0} \frac{x + \sin^3 x - 2 \tan^4 x}{e^{2x} - \cos x}$$

Definition

Definition

A quantity A(x) is called an infinity as $x \to x_0$ if $\lim_{x \to x_0} A(x) = \infty$.

Example

- x^n , n > 0, are infinities as $x \to \infty$.
- x^n , n < 0, are infinities as $x \to 0$.
- $\tan x$ is an infinity as $x \to \frac{\pi}{2}$.

Note: A(x) is an infinity as $x \to x_0$ iff $\frac{1}{A(x)}$ is an infinitesimal as $x \to x_0$.

Comparison of infinities

Definition

Let A(x), B(x) be two infinities as $x \to x_0$ and $\lim_{x \to x_0} \frac{A(x)}{B(x)} = k$.

- If k = 0, A(x) is said to be of lower order than B(x) as $x \to x_0$, (B(x)) is an infinity of higher order than A(x).
- If $k \neq 0, \infty$, we say A(x) and B(x) are of the same order. In particular, k = 1, we say A(x) and B(x) are equivalent, written as $A(x) \sim B(x)$.

Q:
$$k = \infty$$
?

Evaluating indeterminate forms

As $x \to x_0$:

Proposition

- **1** If $\overline{A}(x)$ is an infinity of lower order than A(x). Then $A(x) + \overline{A}(x) \sim A(x)$.
- ② If $A(x) \sim \overline{A}(x)$, $B(x) \sim \overline{B}(x)$, then

$$\lim_{x\to x_0}\frac{A(x)}{B(x)}=\lim_{x\to x_0}\frac{\overline{A}(x)}{\overline{B}(x)}.$$

Example

$$\lim_{x \to \infty} \frac{x + 2x^2 + 4x^5}{2014x^2}$$

PAY ATTENTION

Be careful when substituting equivalent infinitesimals or infinities in a sum or a difference.

Ex: $\sin x \sim \tan x$ khi $x \to 0$.

BUT $\sin x - x \sim -\frac{x^3}{3!}$ and $\tan x - x \sim \frac{x^3}{3!}$ are not equivalent as $x \to 0$.

Limit Nguyen Thu Huong