Kis Fényintenzitások Mérése

Györgyfalvai Fanni, Schäffer Bálint

May 12, 2023

1 Fázisérzékeny detektálás

Sajnálatos módon egy laptop újraindulás miatt minden itt mért adatunk elveszett, így Erdei Tanár Úr 1. számú adatait használtuk fel a kiértékeléshez.

1.1 Háttérfény mérése sávszűrővel

Bekapcsoltuk a méréshez használt lock-in erősítőt és AC voltmérőt. Elsőnek a háttérből származó fényt mértük meg az AC feszültségmérővel ügyelve arra, hogy mindig jól leolvasható értéket kapjunk (ehhez a méréshatárt változtattuk, miközben a lock-in méréshatárát 30 mV-on hagytuk, így az erősítés 1X volt). A mérést elvégeztük továbbá egy wolramszálas asztali lámpa bekapcsolása esetén is. A mért frekvenciatartományok: * 1,5 - 50 Hz * 50 - 150 Hz * 150 - 500 Hz * 500 - 1500 Hz * 1,5 - 150 kHz

Az adatok között az n indexűek a lámpa nélkül mért adatok, míg az l indexűek a lámpa bekapcsolásával mért adatok

	f_min (Hz)	f_max (Hz)	V_n1 (mV)) V_n2 (mV)	$V_n3 (mV)$	V_n átlag (mV)	\
0	1.5	50.0	68.0	70.00	69.0	69.00	
1	50.0	150.0	93.0	91.00	92.0	92.00	
2	150.0	500.0	88.0	86.00	89.0	87.67	
3	500.0	1500.0	17.5	18.00	16.5	17.33	
4	1500.0	150000.0	3.0	2.95	2.9	2.95	
	V_11 (mV)	V_12 (mV) V	/_13 (mV)	V_l átlag (m	V)		
0	142.0	131.0	145.0	139.3	33		
1	184.0	185.0	180.0	183.0	00		
2	175.0	180.0	175.0	176.6	67		
3	29.5	29.0	28.5	29.0	00		
4	4.2	4.4	4.5	4.3	37		

1.2 Fázismérés lock-in erősítővel

Bekapcsoltuk a forgatható LED-es fényforrást PH1 állásba. A lock-in erősítőn a time constant-ot 1 s-ra állítottuk, a mért frekvenciatartományt pedig 1, 5-150 kHz-re. Az érzékenységet és mérési tartományt 30 mV-on hagytuk, majd megkerestük a fázis tekerőgomb segítségével azt a pozíciót, amikor az erősítő által mutatott érték maximális volt, azaz a lock-in erősítő fázisban volt a LED jelével. Ezután átkapcsoltuk a műszert phase shift állásba, azaz ekkor a fázistoló értékét láthattuk. Ez az érték így pont a referenciajel és a detektor jel (LED jele) közti fáziskülönbség volt. Ugyanezt a mérést megismételtük a PH2 állásban is, mely más fázisban volt.

```
phi_1 phi_2 phi_3 phi_átlag
PH1 264.0 264.0 263.0 263.67
PH2 169.0 170.0 167.0 168.67
Innen a fáziskülönbség: 95.00 fok
```

1.3 LED iránykarakterisztikájának mérése

A fénykibocsátó diódák, azaz LED-ek a tér különböző irányaiba különböző intenzitást sugároznak ki, ezt mértük ebben a részben. A LED-ünket tartalmazó forgatható tartót forgattuk néhány (2°) fokonként, miközben mértük a lock-in feszültséget (mely arányos az intenzitással) és a háttérfény zajfeszültségét. Az előző feladat fázistolását hagytuk meg itt is, hogy maximális legyen a kezdeti (0°) jel. Kifejezetten figyeltünk a méréshatárokra több szempontból is: * A műszer 1 mV méréshatárban az egyébként 1 mV értéket csak 0,92 mV-nak, míg 0,3 mV méréshatárban az 1 mV méréshatárban mért 0,3 mV értéket csak 0,23 mV-nak mutatja, így ezekkel a faktorokkal az ilyen méréshatárú méréseknél visszaszoroztunk: $\frac{1}{0.96}$ és $\frac{1\cdot0.3}{0.96\cdot0.23}$ * A műszer kisebb méréshatárokon erősítést eszközöl, mely 10 dB méréshatáronként (30 mV nál az erősítés egységnyi), így a háttér mérésekor ezekkel a faktorokkal le kell osztani ($\sqrt{10}$, 10, $\sqrt{10}$, stb.)

Elvégeztük ezeket a korrekciókat is és a lock-in feszültséget is normáltuk a 0°-ban mért értékkel

	phi	V_lockin	V_háttér	Méréshatár
0	-6.0	0.144828	91.0	3.0
1	-4.0	0.441379	88.0	10.0
2	-2.0	0.662069	91.0	10.0
3	0.0	1.000000	94.0	30.0
4	2.0	0.979310	93.0	30.0
5	4.0	0.937931	93.0	30.0
6	6.0	0.965517	92.0	30.0
7	8.0	1.158621	96.0	30.0
8	10.0	0.896552	92.0	30.0
9	12.0	0.689655	91.0	10.0
10	14.0	0.317241	91.0	10.0
11	16.0	0.262069	90.0	10.0
12	18.0	0.220690	90.0	10.0
13	20.0	0.131034	88.0	3.0
14	22.0	0.072414	88.0	3.0
15	24.0	0.045977	82.0	1.0
16	26.0	0.039511	82.0	1.0
17	28.0	0.029454	82.0	1.0
18	30.0	0.019678	52.0	0.3
19	32.0	0.016867	52.0	0.3
20	34.0	0.015461	52.0	0.3
21	36.0	0.014055	52.0	0.3
22	38.0	0.013118	52.0	0.3
23	40.0	0.012650	52.0	0.3
24	50.0	0.015461	52.0	0.3
25	56.0	0.028736	82.0	1.0
26	58.0	0.037356	82.0	1.0
27	60.0	0.044540	82.0	1.0

28	62.0	0.059626	82.0	1.0
29	64.0	0.048851	82.0	1.0
30	66.0	0.038793	82.0	1.0
31	68.0	0.037356	82.0	1.0
32	70.0	0.027299	82.0	1.0
33	80.0	0.013118	52.0	0.3

A normált detektor jel a forgatás függvényében

1.4 Sűrűségmérés fényáteresztés vizsgálatával

Visszaállítottuk a LED-et 0°-os állásba, majd felráztuk a csiszolópor elegyet és az útjába raktuk. A lock-in időállandóját átállítottuk 10 s-ra, az érzékenységet pedig 1 mV-ra, így leolvasható jelet kaptunk. Sok ideig mértük a feszültség változását, ahogy a csiszolópor folyamatosan ülepedett le. Láthatjuk, hogy a feszültség a leülepedéssel nőtt, azaz a LED útja tisztult, ahogy azt várnánk.

2 Hidrogén és LED-ek színképének vizsgálata

2.1 A spektrométer kalibrálása

Méréshez használt eszközök: PGS-2 spektrométer (elvi működést lásd fenti ábrán), hidrogén kisülési lámpa, tápegység. Célunk a PGS-2 spektrométer kalibrálása a Balmer formula segítségével, mivel a Rydberg-állandóban szereplő paraméterek függetlenek a környezeti paraméterektől ($R_{\infty} = \frac{m \cdot e^4}{8 \cdot c \cdot \epsilon_0^2 \cdot h^3}$). A hidrogén kisülési lámpa fényében bár több emissziós sorozat is megjelenik, ezekből a Balmer sorozat esik a látható tartományba, és itt érzékeny a detektornak használt fotoelektron sokszorozó

is.

Miután bekapcsolásra kerültek a méréshez használt eszközök, a fotoelektron sokszorozó feszültségét a laborvezető 600 V értékűre állította. A be- és kilépő rések elvileg 0,1 mm szélesek voltak. A mintvételezést a spektrométer adatgyűjtő programjának segítségével hajtottuk végre. A hullámhossz kalibrálásához kikapcsoltuk a normálás funkciót. Az

$$\lambda = \frac{1}{R_{\infty} \cdot \left(\frac{1}{n_0^2} - \frac{1}{n_1^2}\right)}$$

képlet alapján a Balmer-sororzat első 4 elemének hullámhossza kiszámolható (itt $R_H\approx 1,0968\cdot 10^7 {\rm m}^{-1}, n_0=2$ és $n_1=3,4,5,6$):

	n_1	Hullámhossz	(nm)
1	3.0	65	6.46
2	4.0	48	86.26
3	5.0	43	34.16
4	6.0	41	0.28

A
$$\lambda = \frac{2}{G} \cdot sin(\theta) + x \cdot \frac{cos(\theta)}{f \cdot G} [mm]$$

képlet alapján a hullámhossz a szög ismeretében számolható (G=651,5 1/mm; f=2075 mm; x=-2 mm):

	Szög	Hullámhossz (nm)
1	12.35	656.46
2	9.11	486.26
3	8.12	434.16
4	7.67	410.28

2.2 LED spektruma

A belépő rés elé különböző színű LED-eket tettünk úgy, hogy figyeltünk arra, hogy a detektor a mérés során ne menjen telítésbe. A tápegységen először 20, majd 30 mV-ot állítottunk be, majd a mérőprogram segítségével rögzítettük az adott LED színtartományának megfelelő spektrumot. Itt már használtuk a normálás funkciót. A mérési tartományt úgy határoztuk meg, hogy a maximális mért feszültség századrészénél megmértük mindkét irányban a szöget, és ezt adtuk meg a programnak.

