LÍNEA DE CACHÉ

Tamaño de caché y línea de caché

Para averiguar el tamaño de caché y de la línea utilizamos make info del makefile proporcionado, lscpu y cpu-g. De estas herramientas podemos obtener la siguiente información:

```
xkuzz@xKuZz:~/Escritorio$ make info
line size = 64B
cache size = 32K/32K/256K/3072K/
cache level = 1/1/2/3/
cache type = Data/Instruction/Unified/Unified/
```

```
Arquitectura: x86_64
modo(s) de operación de las CPUs:32-bit, 64-bit
Orden de bytes: Little Endian
 n-line CPU(s) list:
Hilo(s) de procesamiento por núcleo:2
Núcleo(s) por «socket»:2
Socket(s): 1
Modo(s) NUMA:
ID de fabricante:
Familia de CPU:
                                     GenuineIntel
  odelo:
 lodel name:
Revisión:
                                     Intel(R) Core(TM) i3-3217U CPU @ 1.80GHz
 PU MHz:
                                    803.953
 PU max MHz:
PU min MHz:
                                     1800,0000
800,0000
3592.10
 ogoMIPS:
'irtualización:
                                    VT-x
 aché L1d:
aché L1i:
                                    32K
 aché 12:
                                    256K
  ché L3:
                                    3072K
       node0 CPU(s):
```


Tamaño de la línea de caché: Tamaño de caché L1 de datos: Tamaño de caché L1 de instrucciones:

Tamaño de caché L2:

32 K (make info, Iscpu, CPU-G) 32 K (make info, Iscpu, CPU-G) 256 K (make info, Iscpu, CPU-G)

64 B (make info)

Tamaño de caché L3:

3072 K (make info, Iscpu, CPU-G) Para

fijarnos en el tamaño de la línea de caché sólo encuentro dicha información en el valor **line size** de *lscpu*.

Para fijarnos en el tamaño de la caché de datos miramos make info, Iscpu y CPU-G:

NIVEL DE CACHÉ	make info	lscpu	CPU-G
L1	Miro el primer valor del campo	Miro el valor	Miro el valor
datos	cache size	Caché L1d	L1 data
L1	Miro el segundo valor del	Miro el valor	Miro el valor
instrucciones	campo <i>cache size</i>	Caché L1i	L1 instruction
L2	Miro el tercer valor del campo	Miro el valor	Miro el valor
	cache size	Caché L2	Level 2
L3	Miro el cuarto valor del campo	Miro el valor	Miro el valor
	cache size	Caché L3	Level 3

Medición de datos y gráficas

line (B)	time (ms)
1	421.1
2	207.7
4	104.3
8	53.1
16	26.8
32	13.7
64	7.8
128	7.0
256	4.7
512	2.2
1024	1.2

Optimización -O1

line (B)	time (ms)
1	52.4
2	20.5
4	10.1
8	7.4
16	7.4
32	7.6
64	7.5
128	4.6
256	2.1
512	0.9
1024	0.5

line (B)	time (ms)
1	53.7
2	20.0
4	10.1
8	7.9
16	7.6
32	7.9
64	7.8
128	4.7
256	2.6
512	1.0
1024	0.5

Optimización - Ofast

line (B)	time (ms)
1	44.4
2	21.8
4	10.2
8	7.5
16	7.3
32	7.4
64	7.2
128	4.2
256	2.3
512	1.0
1024	0.5

Conclusión

Podemos observar que con un mayor nivel de optimización obtenemos resultados más claros, resulta obvio en todas las gráficas (menos en la de OO) que el tamaño de la **línea de caché es de 64 Bytes** caracterizado por la pendiente negativa que podemos observar en la gráfica, y que podemos afirmar con seguridad debido a la información obtenida en *make info*. Los resultados por tanto son los esperados:

- Para valores menores que el tamaño de la línea de caché se tardará igual (en lo relativo al acceso a memoria) porque tendríamos que acceder a todas las líneas de caché correspondientes al array en cuestión.
- Para valores mayores que el tamaño de la línea de caché no habrá que cargar todas las líneas de caché por lo que el tiempo invertido en acceso a memoria será cada vez más rápido.
- El hecho de que los primeros valores tarden bastante más que los siguientes se debe a que tardan mucho más en llegar al último valor del array. Hay que tener en cuenta que los que utilizan tamaño de línea más grande llegaran antes al último valor y una vez haya sido accedido por primera vez desde memoria no debería ser necesario volver a cargarlo.

TAMAÑO DE CACHÉ

line (B)	time (ms)
1024	381.0
2048	376.0
4096	374.7
8192	374.8
16384	374.6
32768	375.2
65536	376.6
131072	376.4
262144	379.1
524288	379.8
1048576	380.4
2097152	387.8
4194304	424.2
8388608	568.5
16777216	531.7

line (B)	time (ms)
1024	53.2
2048	38.2
4096	38.8
8192	38.1
16384	37.8
32768	38.6
65536	157.7
131072	121.6
262144	129.0
524288	160.8
1048576	167.2
2097152	200.7
4194304	378.0
8388608	469.8
16777216	466.4

line (B)	time (ms)
1024	46.8
2048	37.8
4096	39.0
8192	39.9
16384	38.3
32768	40.3
65536	120.1
131072	121.4
262144	126.2
524288	163.9
1048576	173.3
2097152	177.5
4194304	245.7
8388608	399.9
16777216	439.8

Optimización - Ofast

line (B)	time (ms)
1024	41.9
2048	39.2
4096	39.1
8192	39.2
16384	39.5
32768	40.4
65536	120.0
131072	120.9
262144	129.6
524288	162.7
1048576	169.9
2097152	198.8
4194304	384.7
8388608	480.9
16777216	474.0

Conclusión

Los tamaños de los distintos niveles de caché se pueden observar con más claridad en la gráfica más optimizada. Cada vez que pasamos al siguiente nivel de caché se ve una clara pendiente en la gráfica indicándonos la diferencia de tiempo de acceder a cada uno de los distintos niveles de caché.

El nivel L1 de datos de caché es claro que llega hasta 32K, donde encontramos la primera gran pendiente.

La caché L2 llega hasta 256 K, donde nos encontramos con otra pendiente considerable.

La caché L3 llega a su final a una gran pendiente entre 2 M y 4 M lo k nos indica que el tamaño de la caché L3 era de 3 M