Name:

Student ID:

Pre-tutorial 4 Questions (to be attempted before class on May 3rd, 2019)

Chapter 2, Ex 20: Power absorbed

Determine which of the five sources are being charged (absorbing positive power), and show that the

algebraic sum of the five absorbed power values is zero.

24 source
$$P = V(-1) = 2x(-2) = -4W$$
 absorbed or $4W$ generated.

8V source
$$P = V(-1) = 8 \times (-2) = -16W$$
 absorbed or $16Vg$ energied.

For power absorbed problems you can also try Ex. 22.

Chapter 7, Ex 11a: Capacitors

The current flowing through a 33 mF capacitor is shown graphically below.

a) Assuming the passive sign convention, sketch the resulting voltage waveform across the device.

(all a) c=33mF $v=\frac{1}{c}\left(\frac{t}{c}\text{ilt}\right)\text{dt} + v(t_{c})$ Fintegral of a horizontal straight line (i.e. a constant) is a constant slope straight line. If find the end-points can just join them.

(a) t=0.2: $v=\frac{1}{33\times10^{-3}}\left(\frac{c}{c}\right)^{2}$ $=\frac{4\times0.2}{33\times10^{-3}}$ =24.2V(a) t=0.4: $v=\frac{1}{33\times10^{-3}}\left(\frac{c}{c}\right)^{2}$ $=\frac{8\times0.2}{33\times10^{-3}}\left(\frac{c}{c}\right)^{2}$ $=\frac{8\times0.4-0.2}{33\times10^{-3}} + 24.2$ =72.7V

$$0 = 0.8 = 0.8 = 0.8 = 0.8 = 0.8 =$$

At Tutorial 4 – Marked Question (3rd May 2019)

Chapter 7, Ex 41: Equivalent capacitance/inductance

Reduce the network below to the smallest possible number of components if each inductor is 1 nH and each capacitor is 1 mF.

$$C_2 = \left(\frac{(1 \times 10^{-3})^2}{2 \times 10^{-3}}\right) \times 2 + 2 \times 10^{-3}$$
= 3MF

$$C_{1} = \frac{(1 \times 10^{-3})^{2}}{1 \times 10^{-3} + 1 \times 10^{-3}} + 1 \times 10^{-3}$$

$$= 1.5 \times 10^{-3} = \frac{(1 \times 10^{-3})^{2}}{1 \times 10^{-3} \times 2}$$

$$= \frac{(1 \times 10^{-3})^{2}}{1 \times 10^{-3} \times 2}$$

$$= 500 \times 10^{-12} \text{ H}$$

At Tutorial 4 – Unmarked Questions (3rd May 2019)

Ch 5 ex 61: Maximum power transfer

Given you can select any value of R_L , what is the maximum power that could be delivered to R_L ?

2A Source of V82 = Voc" = 20×8 - 8V · Voc = Voc + Voc = 12+8

 $\rho = \sqrt{2}/R = (20/2)^2/15.8$ = 6.33 W

Chapter 7, Ex 14: Power

Assume the circuits below have been connected for a long time. Calculate the power dissipated in the 40 Ω resistor and the voltage labeled v_C in the circuits below:

$$70c = iR$$

= $19 \times 10^{-3} \times 22$
= 0.43 V

Chapter 7, Ex 27: Inductors

Determine the amount of energy stored in a 33 mH inductor at t = 1 ms as a result of a current i_L given by:

a) 7 A

$$i = 7A$$

$$\omega_{L} = \frac{1}{2}Li^{2}$$

$$= \frac{1}{2} \times 33 \times 10^{-3} \times 7^{2}$$

$$= 868.5 \text{ mJ}$$

b)
$$3 - 9e^{-1} t mA$$

Chapter 7, Ex 25: Inductors

The voltage across a 2 H inductor is given by $v_L = 4.3t$, $-0.1 \text{ s} \le t \le 50 \text{ ms}$. Knowing that i_L (-0.1) = 100 μ A, calculate the current (assuming it is defined consistent with the passive sign convention) as t equal to:

c)
$$45ms$$
 $i(t) = \frac{1}{L} \int_{t}^{t} \nabla (t) dt + i(t)$
 $= \frac{1}{2} \left[\int_{0}^{t} + 3t dt \right] + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100 \times 10^{-6}$
 $= \frac{1}{2} \times 4.3 \int_{0}^{t} \nabla dt + 100$

Tuts: 10 of 30