TABLE II: Zero frequency, zero wave-vector shear viscosity and fitted parameter values for monatomic and diatomic systems

		WCA	WCA	WCA	LJ	LJ	${\bf Chlorine}$
State Point	ρ_a	0.375	0.480	0.840	0.840	0.840	1.088
	T	0.765	0.765	1.000	0.765	1.0	0.97
System size	N_a		2048	;			1728
	η_0	0.265(0.273[20])	0.392	2.290	2.810	2.650	6.889
2-term Gaussian , $A_2 = 1 - A_1$ Eq. (27)	A	0.189 (0.440 [20])	0.309	0.155	0.093	0.107	0.407
	σ_1	12.48(4.750[20])	6.916	8.122	10.04	9.088	5.377
	σ_2	2.116 (1.376 [20])	1.835	2.592	2.778	2.759	1.236
	s_r	0.007(0.005[20])	0.013	0.044	0.021	0.027	0.082
2-term Gaussian Eq. (27)	A_1	0.792	0.687	0.874	0.907	0.892	0.592
	A_2	0.174	0.254	0.155	0.094	0.106	0.407
	σ_1	2.245	2.113	2.592	2.776	2.765	1.237
	σ_2	13.36	7.745	8.124	10.02	9.127	5.377
	s_r	0.007	0.011	0.035	0.022	0.031	0.081
4-term Gaussian Eq. (27)	A_1	0.432	0.566	0.778	0.689	0.868	0.398
	A_2	0.394	0.248	0.118	0.190	0.047	0.538
	A_3	0.120	0.138	0.088	0.114	0.089	0.055
	A_4	0.056	0.047	0.017	0.017	0.020	0.008
	σ_1	3.228	2.826	2.950	2.709	2.814	4.355
	σ_2	1.261	0.821	0.651	2.709	0.145	1.155
	σ_3	8.165	6.973	8.496	7.037	7.628	10.46
	σ_4	15.19	14.74	23.66	24.94	19.99	37.56
	s_r	0.008	0.002	0.012	0.014	0.024	0.018
Lorentzian-type Eq. (28)	α	0.198 (0.180 [20])	0.170	0.062	0.041	0.043	0.239
	β	1.562(1.662[20])	1.715	2.326	2.602	2.572	1.667
	s_r	0.002(0.005[20])	0.005	0.042	0.018	0.042	0.016

FIG. 1: $\tilde{\eta}(k_y)$ versus k_y for chlorine calculated using atomic and molecular formalisms ($\rho_a = 1.088, T = 0.97, N_a = 1728$).

statistical uncertainty in both atomic and molecular formalisms.

It has been shown previously that numerous one parameter functions failed to capture the behaviour of the reciprocal space kernel data [20]. We therefore present the best fits with two or more fitting parameters. We have identified two functional forms that fit the data well:

an N_G term Gaussian function

$$\tilde{\eta}_G(k_y) = \eta_0 \sum_{j=1}^{N_G} A_j \exp(-k_y^2/2\sigma_j^2) \qquad A_j, \sigma_j \in \mathbb{R}_+$$
 (27)

and a Lorentzian type function

$$\tilde{\eta}_L(k_y) = \frac{\eta_0}{1 + \alpha |k_y|^{\beta}} \qquad \alpha, \beta \in \mathbb{R}_+, \tag{28}$$

We present the best fits of the data to (i) a two-term Gaussian function with freely estimated amplitudes (i.e. unconstrained fitting) termed as $\tilde{\eta}_{G_2}$, (ii) to a two-term Gaussian function with interdependent amplitudes (i.e. constrained fitting $\sum_{j}^{N_G} A_j = 1$) given by Hansen *et al.* [20] and termed as $\tilde{\eta}_{G_{2H}}$, (iii) to a four-term Gaussian sian function with freely estimated amplitudes, termed as $\tilde{\eta}_{G_4}$ and (iv) to the Lorentzian type function, Eq. (28). In order to measure the magnitude of the residuals we use the residual standard deviation defined as $s_r =$ $\sqrt{\sum_{n=1}^{n_s} r^2/(n_s-n_p)}$ where n_s is the number of data points, n_p is the number of fitting parameters, and r is the residual [48]. After an iterative curve fitting procedure the accurate estimation of η_0 was kept fixed allowing all other parameters in Eqs. (27) and (28) to be used as fitting parameters. In Table II we have listed the fitting parameters for monatomic and diatomic molecular fluids and compared to the previous results where possible.