

## DT3120 User's Manual



#### Fifth Edition September, 2002

## Copyright © 2001, 2002 by Data Translation, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise, without the prior written permission of Data Translation, Inc.

Information furnished by Data Translation, Inc. is believed to be accurate and reliable; however, no responsibility is assumed by Data Translation, Inc. for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Data Translation, Inc.

Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer software clause at 48 C.F.R, 252.227-7013, or in subparagraph (c)(2) of the Commercial computer Software - Registered Rights clause at 48 C.F.R., 52-227-19 as applicable. Data Translation, Inc., 100 Locke Drive, Marlboro, MA 01752.

Data Translation<sup>®</sup> and GLOBAL LAB<sup>®</sup> are registered trademarks, and Imaging OMNI CD<sup>TM</sup>, DT-Open Layers<sup>TM</sup>, Frame Grabber SDK<sup>TM</sup>, and DT Vision Foundry<sup>TM</sup> are trademarks of Data Translation, Inc.

All other brand and product names are trademarks or registered trademarks of their respective companies.

Data Translation, Inc. 100 Locke Drive Marlboro, MA 01752-1192 (508) 481-3700 www.datatranslation.com Fax: (508) 481-8620 E-mail: info@datx.com

#### Radio and Television Interference

This equipment has been tested and found to comply with CISPR EN55022 Class A and EN50082-1 (CE) requirements and also with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Changes or modifications to this equipment not expressly approved by Data Translation could void your authority to operate the equipment under Part 15 of the FCC Rules.

**Note:** This product was FCC-Certified under test conditions that included use of shielded cables and connectors between system components. It is important that you use shielded cables and connectors to reduce the possibility of causing interference to radio, television, and other electronic devices.

### **Canadian Department of Communications Statement**

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la class A prescrites dans le Règlement sur le brouillage radioélectrique édicté par le Ministère des Communications du Canada.

## Table of Contents

| About this Manual ix                      |
|-------------------------------------------|
| Intended Audienceix                       |
| What You Should Learn from this Manual ix |
| Conventions Used in this Manual           |
| Related Information xi                    |
| Where to Get Helpxv                       |
| Chapter 1: Overview 1                     |
| Features                                  |
| Supported Software                        |
| Chapter 2: Principles of Operation 5      |
| Video Input Signals                       |
| Video Signal Types                        |
| Videos Input Channels                     |
| Color Intensity                           |
| Pixel Clock                               |
| Triggers                                  |
| Sync Signals11                            |
| Video Area                                |
| Active Video Area                         |
| Horizontal Video Signal                   |
| Vertical Video Signal                     |
| Frame (Region of Interest)                |
| Frame Size                                |
| Types of Frames                           |
| Scaling Frames                            |
| Frame Storage Mode                        |

| Passthru Operations                                |
|----------------------------------------------------|
| Passthru Modes                                     |
| Bitmap Passthru Mode                               |
| Continuous-Acquire Passthru Mode 23                |
| Source Origin                                      |
| Passthru Scaling                                   |
| Overlays                                           |
| Acquisition Operations                             |
| Chapter 3: Supported Device Driver Capabilities 29 |
| DT3120 Device Driver Capabilities                  |
| Initialized Control Values                         |
| Chapter 4: Programming Flowcharts 55               |
| Single-Frame Acquisition                           |
| Multiple-Frame Acquisition                         |
| Passthru without Overlays 62                       |
| Passthru with Overlays                             |
| Chapter 5: Troubleshooting 79                      |
| General Checklist                                  |
| Service and Support84                              |
| Telephone Technical Support84                      |
| E-Mail and Fax Support                             |
| World-Wide Web                                     |
| If Your Board Needs Factory Service                |
| Annendix A: Specifications 89                      |

| Appendix B: Modifying the Device Driver 93               |
|----------------------------------------------------------|
| Windows 98 and Windows Me Procedures                     |
| Adding a Board to the Device Driver Configuration 94     |
| Modifying a Board in the Device Driver Configuration 95  |
| Uninstalling the Device Driver                           |
| Windows 2000 Procedures                                  |
| Adding a Board to the Device Driver Configuration 97     |
| Modifying a Board in the Device Driver Configuration 98  |
| Uninstalling the Device Driver                           |
| Windows XP Procedures                                    |
| Adding a Board to the Device Driver Configuration 100    |
| Modifying a Board in the Device Driver Configuration 101 |
| Uninstalling the Device Driver                           |
| Index                                                    |

## About this Manual

This manual describes the features of the DT3120 frame grabber board, and how to use the DT3120 Device Driver with the Frame Grabber SDK™ to write an application program.

#### **Intended Audience**

This document is intended for engineers, scientists, technicians, or others responsible for programming and/or using a DT3120 board to perform machine vision and/or image analysis operations. It is assumed that you have some familiarity with imaging principles and that you are familiar with the operating characteristics of your video source.

If you are writing application programs using the device driver and the Frame Grabber SDK, it is also assumed that you are familiar with the Microsoft<sup>®</sup> Windows<sup>®</sup> 98, Windows Me (Millennium Edition), Windows 2000, or Windows XP operating system and with the Microsoft C compiler.

#### What You Should Learn from this Manual

This manual provides detailed information about the features of the DT3120 board and the DT3120 Device Driver to allow you to access the board's capabilities using software. It is organized as follows:

- Chapter 1, "Overview," describes the major features of the boards, as well as the supported software and accessories for the boards.
- Chapter 2, "Principles of Operation," describes all of the features of the boards and how to use them in your application.

- Chapter 3, "Supported Device Driver Capabilities," describes the capabilities supported by the DT3120 Device Driver and the initialized control values.
- Chapter 4, "Programming Flowcharts," describes the processes you must follow to program the DT3120 board using the DT-Open Layers<sup>TM</sup> Frame Grabber SDK.
- Chapter 5, "Troubleshooting," provides information that you can use to resolve problems with the boards and the device driver, should they occur.
- Appendix A, "Specifications," lists the specifications of the boards.
- Appendix B, "Modifying the Device Driver," describes how to add, modify, and remove boards from the device driver, and how to uninstall the device driver, if necessary.
- An index complete this manual.

#### **Conventions Used in this Manual**

The following conventions are used in this manual:

- Notes provide useful information that requires special emphasis, cautions provide information to help you avoid losing data or damaging your equipment, and warnings provide information to help you avoid catastrophic damage to yourself or your equipment.
- Items that you select or type are shown in **bold**.
- Courier font is used to represent source code.

### **Related Information**

Refer to the following documents for more information on using the DT3120 board:

- DT3120 Getting Started Manual (UM-18113), included on the Imaging OMNI CD™ or GLI/2 Streamline™ CD provided with the DT3120 board, describes how to install the DT3120 software, install a DT3120 board, connect signals to the board, install and configure the DT3120 Device Driver, verify the board's operation with DT-Acquire, and view the DT3120 manuals online.
- Frame Grabber SDK User's Manual (UM-13442) and online help, included on the Imaging OMNI CD provided with the DT3120 board, describe the Dynamic Linkable Library (DLL) that you can use to write image acquisition application software.
- DT-Active Open Layers User's Manual (UM-17325), available from Data Translation, describes DT-Active Open Layers™, an ActiveX control, which allows you to use Data Translation PCI frame grabber boards within graphical programming environments such as Microsoft Visual Basic® and Visual C++®.
- GLOBAL LAB Image/2 User's Manual (UM-17790) and GLOBAL LAB Image/2 API Manual (UM-17792), available from Data Translation, describe how to use GLOBAL LAB® Image/2 (GLI/2) and GLI/2 Streamline to create scientific applications using object-oriented image processing tools.
- DT Vision Foundry User's Manual (UM-17755) and DT Vision Foundry API Manual (UM-17757), available from Data Translation, describe how to use DT Vision Foundry™ to create machine vision applications using object-oriented image processing tools.

Additionally, it may be helpful to read other material to gain a better understanding of image processing concepts, algorithms, and their applications. Data Translation's Technical Support Department recommends the following resources for understanding image processing concepts, processing, and coding:

- Baxes, Gregory A. *Digital Image Processing, Principles & Applications*. New York: John Wiley & Sons, 1994.

  Introduction to image processing and hardware/software basics.
- Benson, K. Blair, and Donald G. Fink. *HDTV Advanced TV for the* 1990's. New York: McGraw-Hill, 1990. Details high-definition television concepts.
- Castleman, K. R. *Digital Image Processing*. Englewood Cliffs, NJ: Prentice-Hall, 1987. Explains major image processing concepts and mathematical concepts involved in digital image manipulation.
- Cunningham, John E. *Cable TV*. 2nd ed. Indianapolis: Howard W. Sams & Company, Inc., 1987. Provides the basics of cable television.
- Foley, J. D., and A. Van Dam. *Fundamentals of Interactive Computer Graphics*. Addison-Wesley: Reading, MA, 1984. Provides information on geometric functions.
- Friedhoff, Richard M., and William Benzon. *The Second Computer Revolution, Visualization*. New York: Harry N. Abrams, Inc., 1989. Covers the history of image processing technology.
- Gonzalez, Rafael C., and Paul Wintz. *Digital Image Processing*. Menlo Park, CA: Addison-Wesley, 1987. Explains major image processing concepts and mathematical concepts involved in digital image manipulation, including FFT processing, filtering operations, geometric functions, histograms, and linear equalization.

- Held, Gilbert. *Data Compression Techniques and Applications: Hardware and Software Considerations*. 3rd ed. Somerset, NJ:
  John Wiley & Sons, Inc., 1991. Covers various techniques currently used for data compression; includes programming examples.
- Holzmann, Gerard J. *Beyond Photography The Digital Darkroom.* Englewood Cliffs, NJ: Prentice-Hall, 1988. Introduces and explains image editing; includes programming examples.
- Ingram, Dave. *Video Electronics Technology*. Blue Ridge Summit, PA: Tab Books, Inc., 1984. Explains the basic electronics used in video devices.
- Kiver, M. S. *Color Television Fundamentals*. New York: McGraw-Hill, 1977. Covers television and video basics.
- Lindley, Craig. *Practical Image Processing in C.* Somerset, NJ: John Wiley & Sons, Inc., 1991. Explains basic image processing techniques using C, provides many programming examples, covers TIFF and PICT file formats, and describes how to map images into VGA memory space.
- Luther, Arch C. *Digital Video in the PC Environment*. New York: McGraw-Hill, 1991. Explains Digital Video Interactive (DVI) technology.
- National Semiconductor Corporation. *Linear Applications Handbook.* Santa Clara, CA: National Semiconductor
  Corporation, 1986. Explains broadcasting standards and
  major circuit components of frame grabber boards.
- Pratt, William K. *Digital Image Processing*. Somerset, NJ: John Wiley & Sons, Inc., 1991. Detailed text on image processing, including morphological processing, feature extraction, image segmentation, and shape analysis.

- Reid, Christopher E. and Thomas B. Passin. *Signal Processing in C.* Somerset, NJ: John Wiley & Sons, Inc.
- Rimmer, Steve. *Bit-Mapped Graphics*. Blue Ridge Summit, PA: Tab Books, Inc., 1990. Details digital image file formats and image manipulation after digitizing.
- Rimmer, Steve. *Graphical User Interface Programming*. Blue Ridge Summit, PA: Tab Books, Inc., 1992. Covers various techniques currently used for GUI programming; gives insight into how Microsoft Windows was written/implemented along with the design aspects related to windows programming; includes programming examples.
- Rosenfeld, Azriel, and Avinash C. Kak. *Digital Picture Processing*. New York: Academic Press, Inc., 1990. Describes image processing techniques and concepts.
- Russ, John C. *Computer-Assisted Microscopy*, The Measurement and Analysis of Images. New York: Plenum Press.
- Serra, J. *Image Analysis and Mathematical Morphology.* London: Academic Press, Ltd., 1982. Provides information on morphological processing.
- Smith, C. Cecil. *Mastering Television Technology*. Richardson, TX: Newman Smith Publishing Company, Inc., 1988. Describes current video technology and concepts.
- Tektronix, Inc. *Television Measurements NTSC Systems*. Beaverton, OR: Tektronix, Inc., 1989. Covers test equipment and broadcasting standards.
- Ulichney, Robert. *Digital Halftoning*. Cambridge, MA: The MIT Press, 1987. Describes image manipulation, creation, and analysis in the digital environment.

Watkinson, John. *The Art of Digital Video*. Stoneham, MA: Focal Press, 1990. Provides an in-depth description of digital video fundamentals.

### Where to Get Help

Should you run into problems installing or using a DT3120 board, the Data Translation Technical Support Department is available to provide technical assistance. Refer to Chapter 5 for more information. If you are outside the United States or Canada, call your local distributor, whose number is listed in your Data Translation product handbook.



# **Overview**

| Features           | 2 |
|--------------------|---|
| Supported Software | 3 |

### **Features**

The DT3120 is a low-cost, color frame grabber board for the PCI bus. This board is suitable for both color image analysis and machine vision applications.

Each DT3120 board digitizes the image, then either stores the digitized data to the host computer's system memory or transfers the digitized data to the computer's display controller to display images in real-time. The board transfers image data to the host computer using PCI burst transfers.

Key features of the DT3120 board are summarized as follows:

- Operates as PCI bus masters on half-size board.
- Supports the scatter/gather memory capability using the PCI interface chip.
- Supports one monochrome or composite video input, which uses the NTSC/RS-170 or PAL/CCIR video format, or one S-video signal, which uses the Y/C video format.
- Accepts a software or external trigger.
- Acquires single or multiple fields and/or frames synchronously or asynchronously.
- Stores images in either 32-bit RGB, 16-bit RGB, 15-bit RGB, 16-bit YUYV422, or 8-bit monochrome format.
- Supports programmable region-of-interest (ROI).
- Provides real-time, interpolated scaling to any size.
- Provides programmable control of the color settings of the board, including brightness, contrast, saturation, and hue.
- Supports overlays.

### Supported Software

The following software is available for use with a DT3120 board:

- **DT3120 Device Driver** –This software, which is operating-system specific, is provided on the Imaging OMNI CD, which is shipped with the board. You *must* install this device driver to use a DT3120 board with any of the supported software packages or utilities. Refer to the *DT3120 Getting Started Manual* (UM-18113) for information on installing the device driver.
- **DT-Acquire** –This software is provided on the Imaging OMNI CD, which is shipped with the board. This utility allows you to verify the operation of your board during startup. Refer to the *DT3120 Getting Started Manual* for information on installing and using this utility.
- GLI/2 Streamline –This package is shipped with the board if you purchased the SCI-PAK<sup>™</sup> package. This package allows you to create scientific applications using object-oriented image processing tools.
- 32-Bit Frame Grabber SDK –Use this software package, provided on the Imaging OMNI CD, if you want to develop your own application software for the DT3120 board using the Microsoft C compiler in Windows 98, Windows Me, Windows 2000, or Windows XP.
- DT-Active Open Layers –Order this optional software package if you want to use the DT-Active Open Layers ActiveX control to access the capabilities of the DT3120 board using Microsoft Visual Basic or Visual C++.
- GLOBAL LAB Image/2 –Order this optional software package if you want to develop scientific applications using object-oriented image processing tools.
- DT Vision Foundry —Order this optional software package if you want to develop machine vision applications using object-oriented image processing tools.

Refer to the Data Translation catalog for information on additional software packages available for the DT3120 board.



# **Principles of Operation**

| Video Input Signals    | 7  |
|------------------------|----|
| Sync Signals           | 11 |
| Video Area1            | 12 |
| Passthru Operations    | 22 |
| Acquisition Operations | 26 |

To aid the discussions in this chapter, refer to the block diagram of the DT3120 board, shown in Figure 1. Bold signal names indicate signals you can access.



Figure 1: DT3120 Block Diagram

### Video Input Signals

This section describes the following aspects of the supported input signals:

- Video signal types,
- Video formats,
- Video input channels,
- Color controls,
- Pixel clock, and
- Triggers.

### **Video Signal Types**

The DT3120 can acquire images from the following signal types:

- Monochrome –Data is represented as 8-bit grayscale values.
- Composite (CVBS) –The Color Video Broadcast Standard, where both luminance and chrominance information is encoded on a single composite video signal. The signal passes through high- and low-pass filters on the board to separate the chrominance and luminance signals. The decoded signals are represented as 8-bit data.
- S-Video —This signal contains both luminance and chrominance information. The filters on the board are bypassed. S-video signals are generally "cleaner," since the high- and low-pass filters can sacrifice signal integrity.

The following video formats are supported for monochrome and composite inputs:

- NTSC –Standard for 60 Hz, color video signal. In this format, the video input is a single analog signal. A video frame is displayed as 640 x 480 lines.
- RS-170 –Standard for 60 Hz, monochrome video signal. In this format, the video input is a single analog signal. A video frame is displayed as 640 x 480 lines.
- PAL –Standard for 50 Hz, color video signal. In this format, the video input is a single analog signal. A video frame is displayed as 768 x 576 lines.
- CCIR –Standard for 50 Hz, monochrome video signal. In this
  format, the video input is a single analog signal. A video frame is
  displayed as 768 x 576 lines.

The Y/C format is supported for an S-video input. In this format, the video input is provided as two separate analog signals. The Y signal contains luminance information (the gray-scale portion of the color image). The C signal contains chrominance information (the color portion of the image). For 60 Hz, a video frame is displayed as  $640 \times 480$  lines. For 50 Hz, a video frame is displayed as  $768 \times 576$  lines.

### **Videos Input Channels**

The DT3120 board accepts one composite (CVSB) or one S-video input source at a time. Connect the composite input to connector J2 connector on the DT3120 board or connect the S-video input to connector J 3 on the DT3120 board.

### **Color Intensity**

Using software, you can adjust the following settings of the DT3120 board to affect the intensity of the color:

- **Brightness** –The value associated with a pixel representing its gray value. Values range from 0 to 255 (in increments of 1); the nominal value is 128.
- Contrast The overall range of the monochrome signal of an image. For example, a high contrast image has a large range between black and white values; a low contrast image has a small range between black and white values. Values range from 0 to 511 (in increments of 1); the nominal value is 216.
- V-Saturation The purity of the blue and green primary colors in an image. For example, if a particular pixel has a value of 0 for green, but a value of 511 for blue, then the pixel is said to be saturated in blue. Values range from 0 to 511 (in increments of 1); the nominal value is 180.
- **U-Saturation** –The purity of the green and red primary colors in an image. For example, if a particular pixel has a value of 0 for green, but a value of 511 for red, then the pixel is said to be saturated in red. Values range from 0 to 511 (in increments of 1); the nominal value is 254.
- **Hue** –The intensity or shade of the color. Values range from 0 to 255 (in increments of 1); the nominal value is 128.

#### **Pixel Clock**

The DT3120 generates a 12.5 MHz pixel clock signal for 60 Hz image formats and a 15 MHz pixel clock signal for 50 Hz image formats. Pixels are available to the DT3120 frame grabber board in increments of *PixelPeriod*, which is equal to 1 /clock frequency.

### **Triggers**

DT3120 board can accept one of the following trigger sources:

- A software trigger –The board can acquire a frame when a software command is issued.
- An external trigger –By attaching a digital signal to connector J1 on the board, you can synchronize frame acquisitions with external events.

By default, the external trigger is disabled. Through software, you can enable the external trigger.

You program the trigger source for the acquisition using software.

You can specify whether to start image acquisition when the board detects either a low-to-high edge (rising-edge) transition or a high-to-low edge (falling-edge) transition.

The incoming external trigger is forwarded to the device driver as an interrupt. The interrupt is processed by the device driver to start the acquisition, if desired.

## Sync Signals

To digitize the incoming video signal, the DT3120 board requires both horizontal and vertical sync signals. The board determines this information, as well as the odd and even fields, from the video input signal being digitized.

Horizontal sync pulses are asserted low for 4  $\mu$ s typically. Vertical sync pulses are asserted low for 230  $\mu$ s typically. The odd field indication changes state on the falling edge of the vertical sync signal.

### Video Area

The total video area is a complete set of horizontal and vertical input lines from which you extract the active video area and the frame within the active video area. The total video area includes all parts of the signal, including nonvisual portions such as horizontal and vertical blanking information. (Blanking information is the data not included in the active video area; it contains sync and other information.)

The total video area is as wide as the total pixels per line (the entire area between two consecutive horizontal sync signals) and as tall as the total lines per field (the entire area between two consecutive vertical sync signals).

You can calculate the total pixels per line as follows:

```
Total pixels per line = \frac{\text{pixel clock frequency (MHz)}}{\text{horizontal frequency (kHz)}}
```

You can calculate the total lines per field as follows:

```
Total lines per field = \frac{\text{horizontal frequency (kHz)}}{\text{vertical frequency (Hz)}}
```

#### **Active Video Area**

The active video area floats in the total video area. The active video area is defined as that part of the incoming signal that contains valid video data (not blanking or sync information). Therefore, the active video area consists of the visible portion of those lines containing visible pixel data. Its top is set by the first active line, its left side is set by the first active pixel, it is as wide as the active pixel count, and it is as tall as the active line count.

For more information about the horizontal and vertical signals that comprise the total video area and the parameters you can set to specify the active video area, refer to the following sections.

### Horizontal Video Signal

Each line of video comprising the total video area contains blanking information and active video. Figure 2 shows the components of a single horizontal line of video.

Note that the frame is an area that you establish within the active video area. For information about the frame, refer to page 15.



Figure 2: Horizontal Video Signal

A horizontal line of video is identified by the falling edge of the horizontal sync, and a field is composed of a collection of horizontal lines defined by the active line count. Pixel measurements are relative to the horizontal reference point, which is defined as the beginning of the horizontal sync.

The horizontal video signal settings are fixed and cannot be programmed.

### Vertical Video Signal

Each field of video also contains blanking information and lines of active video. Figure 3 shows the components of a single vertical field of noninterlaced video.

Note that the frame is an area that you establish within the active video area. For information about the frame, refer to page 15.



Figure 3: Vertical Video Signal

Line measurements are relative to the vertical reference point, which is defined as the beginning of the vertical sync. Lines themselves are measured in terms of pixels.

The vertical video signal settings are fixed.

### Frame (Region of Interest)

The frame is the portion of the active video area that you want to digitize. For this reason, it is sometimes called the region of interest (ROI).

This section describes the following aspects of frames:

- Frame size,
- Frame type,
- Scaling frames, and
- Frame storage modes.

#### Frame Size

The top of the frame is the first line of video relative to the active video area. The left side of the frame is the first pixel of video relative to the active video area. The width of the frame is the number of pixels per line of video. The height of the frame is the number of lines per field.

Table 1 shows the settings you can program on the DT3120 board to define the frame. Figure 4 illustrates these relationships.

Table 1: Frame Settings for the DT3120 Board

| Setting      | Description                                                                                 | Range <sup>a</sup>                                          | Nominal<br>Values        |
|--------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------|
| Frame Left   | The first pixel in the region of interest, relative to the first active pixel, to digitize. | 50 Hz: 0 to 763 pixels<br>60 Hz: 0 to 635 pixels            | 0                        |
| Frame Width  | The number of pixels per line of video to digitize.                                         | 50 Hz: 1 to 768 pixels<br>60 Hz: 1 to 640 pixels            | 50 Hz: 768<br>60 Hz: 640 |
| Frame Top    | The first line of the region of interest, relative to the first active line, to digitize.   | 50 Hz: 0 to 575 lines<br>60 Hz: 0 to 479 lines <sup>a</sup> | 0                        |
| Frame Height | The number of lines per frame of video to digitize.                                         | 50 Hz: 1 to 576 lines<br>60 Hz: 1 to 480 lines              | 50 Hz: 576<br>60 Hz: 480 |

a. Granularity is 1.



Figure 4: Spatial Relationship of Video Signal

### Types of Frames

The DT3120 board can acquire interlaced frames.

The video signal is defined as two consecutive fields, where the start of each field is identified by the falling edge of the vertical sync. These two fields are acquired to create the complete frame. The even field contains lines 0, 2, 4, and so on; the odd field contains lines 1, 3, 5, and so on.

Using software, you can select one of the following types of frame acquisitions:

- Interlaced frames, starting on the next even field (the default),
- Interlaced frames, starting on the next odd field,

- Interlaced frames, starting on the next field (odd or even),
- Even fields only, starting with the next even field,
- An odd field only, starting with the next odd field, or
- Odd or even fields only, starting with the next field of either kind.
   For example, if the next field is odd, only the odd fields are acquired. If the next field is even, only the even fields are acquired.

### Scaling Frames

DT3120 board can perform simultaneous, interpolated, arbitrary scaling in real-time. This feature is useful if you want to reduce the size of an image.

The number of lines per frame in the scaled image can range from 1 to 480 for 60 Hz image formats or from 1 to 576 for 50 Hz image formats (in increments of 1). The number of pixels per line in the scaled image can range from 4 to 640 for 60 Hz image formats or from 4 to 768 for 50 Hz image formats (in increments of 4).

Using software, you provide the scale factor for the horizontal and vertical directions. The scale factor is the ratio of the target values (the total number of pixels or lines in the resulting scaled image) to the source values (the total number of pixels or lines in the image to scale) in each direction.

The minimum scale factor is 1; the maximum scale factor is 100 (nominal is 100).

### Frame Storage Mode

You can store the data in one of the following formats:

- Monochrome format (8-bits per pixel), as shown in Figure 5;
- RGB16 (16-bits per pixel), as shown in Figure 6;
- RGB24 (24-bits per pixel), as shown in Figure 7; and
- RGB (32-bits per pixel), as shown in Figure 8; and
- YUYV422 (16-bits per pixel), as shown in Figure 9.



Figure 5: Monochrome Mode (8-Bit Data Format)



Figure 6: RGB16 (16-Bit) Color Data Format



Figure 7: RGB 24-Bit Color Data Format





Figure 8: RGB 32-Bit Color Data Format



Figure 9: YUYV422 (16-Bit) Data Format

# Passthru Operations

In a passthru operation, a DT3120 board continuously captures and displays video data until you stop the operation. Typically, you use passthru to view images (in as close to real time as possible for the configuration and passthru method chosen) for the purpose of focusing or positioning the camera.

In addition to displaying passthru data, you can continuously store the data to user-allocated buffers in host memory, if desired. This operation is called continuous-acquire passthru mode.

This section describes the following aspects of passthru:

- Passthru modes,
- Source origin,
- Passthru scaling, and
- Overlays.

#### **Passthru Modes**

The DT3120 board supports bitmap passthru mode and continuous-acquire passthru mode. This section describes these modes.

#### Bitmap Passthru Mode

The DT3120 board supports asynchronous bitmap passthru mode.

In an asynchronous operation, the operation starts but gives control to you immediately, allowing you to perform other operations while data is displayed.

Bitmap passthru mode requires a frame in device memory into which the image is captured.

Once the image is captured, functions in Windows perform bit copies of the image data to display memory. Functions in Windows handle obstructions to the passthru window by automatically clipping the passthru image to the visible client window region. Therefore, even if the window is obstructed in bitmap mode, the passthru can continue unabated. Once an obstruction has been removed from the passthru window client area, Windows automatically restores the correct underlying image data.

A passthru operation continues until you stop it. You can stop an asynchronous bitmap passthru operation using software.

#### Continuous-Acquire Passthru Mode

The DT3120 board supports asynchronous, continuous-acquire passthru mode. Since it is asynchronous, the operation starts but gives control to you immediately, allowing you to perform other operations while data is acquired and/or displayed.

Using software, you can set up the continuous-acquire passthru operation so that data is continuously stored and displayed, or continuously stored but not displayed.

If you want to display data in continuous-acquire passthru mode, functions in Windows perform bit copies of the image data to display memory. These functions also handle obstructions to the passthru window by automatically clipping the passthru image to the visible client window region. Therefore, even if the window is obstructed in bitmap mode, the passthru can continue unabated. Once an obstruction has been removed from the passthru window client area, Windows automatically restores the correct underlying image data.

In continuous-acquire passthru mode, data is stored in a circular buffer in device memory.

This mode also has a synchronization mechanism using a WIN32 event object. Using this object, you can synchronize your application with the DT3120 board to process data as it becomes available.

Continuous-acquire passthru operations continues until you stop them using software.

#### **Source Origin**

The source origin of an image is the upper left corner of the image. On the DT3120 board, the source origin is always 0,0.

#### **Passthru Scaling**

On a DT3120 board, the same scaling mechanism that is used to scale frames is used to scale passthru images.

The number of lines per frame in the scaled image can range from 1 to 480 for 60 Hz image formats or from 1 to 576 for 50 Hz image formats (in increments of 1). The number of pixels per line in the scaled image can range from 4 to 640 for 60 Hz image formats or from 4 to 768 for 50 Hz image formats (in increments of 4).

Using software, you provide the scale factor for the horizontal and vertical directions. The scale factor is the ratio of the target values (the total number of pixels or lines in the resulting scaled image) to the source values (the total number of pixels or lines in the image to scale) in each direction.

The minimum scale factor is 1; the maximum scale factor is 100 (nominal is 100).

#### 2

#### **Overlays**

You can add overlays to the display using software during passthru operations. Overlays allow you to place an image on top of another image that was captured using passthru.

**Note:** Overlays require Direct Draw Interface (DDI) support.

# **Acquisition Operations**

The DT3120 board can acquire interlaced frames or individual fields either synchronously or asynchronously, and store them in system memory. In a synchronous acquisition, you cannot perform another operation until the synchronous acquisition completes. In an asynchronous acquisition, the operation starts but gives control to you immediately, allowing you to perform other operations while data is acquired.

Using the DT3120, you can acquire a single full frame, a single field (subframe), multiple full frames, or multiple fields. Data is stored to an area in system memory that is allocated by the DT3120 Device Driver (called *device memory*). Table 2 lists the memory size that is used for each image format and image type supported.

Table 2: Memory Used

| Video Format | Storage Image<br>Format | Maximum Memory Used<br>(Bytes) |
|--------------|-------------------------|--------------------------------|
| 60 Hz        | RGB or RGB24            | 1,228,800                      |
|              | RGB16 or YUYV422        | 614,400                        |
|              | MONO                    | 307,200                        |
| 50 Hz        | RGB or RGB24            | 1,769,472                      |
|              | RGB16 or YUYV422        | 884,736                        |
|              | MONO                    | 442,368                        |

An interrupt is generated when an even or odd field has been acquired; the PCI bus assigns the interrupt to the board automatically when it is installed.

The speed of the PCI bus allows the DT3120 to transfer an unlimited number of consecutive frames across the bus in real time. You can acquire consecutive images, up to the capacity of available system RAM.

Acting as a PCI bus master, the board sends pixel data over the PCI bus directly using burst transfer rates up to 30 frames/s for 60 Hz image formats and 25 frames/s for 50 Hz image formats, when used with a 16-bit or 32-bit color display adapter board that supports DDI.



# Supported Device Driver Capabilities

| DT3120 Device Driver Capabilities | 30 |
|-----------------------------------|----|
| Initialized Control Values        | 52 |

## DT3120 Device Driver Capabilities

Because the Frame Grabber SDK is intended to be used with all DT-Open Layers frame grabbers, the DT3120 may not support all of the Frame Grabber SDK capabilities or may support the Frame Grabber SDK capabilities differently from other boards.

To help you determine which capabilities are supported by the DT3120 board, you can use query functions provided by the Frame Grabber SDK. These functions return either information about a specific capability or the current value of a specific capability.

The tables in this chapter list the capabilities supported by the DT3120 board and the information needed to query the board. The left column of the tables lists the capabilities along with the query key/control used for the listed function. The query's possible returned flags, if any, are indented under the key along with a description. The right column indicates whether the DT3120 board support the capability or flag or the range of values supported by the capability.

To find the information about a capability more readily, use this information:

| For capabilities that apply to | Refer to the table starting on |
|--------------------------------|--------------------------------|
| All frame grabbers             | page 32                        |
| Input signals                  | page 34                        |
| Sync signals                   | page 38                        |
| Active video area              | page 40                        |
| Frames                         | page 42                        |
| Passthru                       | page 46                        |

| For capabilities that apply to | Refer to the table starting on |
|--------------------------------|--------------------------------|
| Overlay                        | page 47                        |
| Memory                         | page 48                        |
| Acquisition                    | page 49                        |
| Digital I/O                    | page 51                        |

**Note:** If your code is intended to be compatible with various Data Translation products, use the query functions to determine that the capability is supported by the installed board, prior to execution.

For more information, refer to the description of SDK functions in the Frame Grabber SDK online help.

Table 3: General Device Capabilities for the DT3120 Device Driver

| Capability                                                                                                                                                                                                                                                                                                                                  | DT3120 Support        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| OllmgQueryDeviceCaps                                                                                                                                                                                                                                                                                                                        |                       |
| Board Signature OLC_IMG_DC_OL_SIGNATURE                                                                                                                                                                                                                                                                                                     | 0x44544F4C            |
| Device ID OLC_IMG_DC_DEVICE_ID                                                                                                                                                                                                                                                                                                              | 8080h                 |
| Board Name OLC_IMG_DC_DEVICE_NAME                                                                                                                                                                                                                                                                                                           | "DT3120"              |
| Device Type OLC_IMG_DC_OL_DEVICE_TYPE Monochrome Frame Grabber OLC_IMG_DEV_MONO_FRAME_GRABBER Color Frame Grabber OLC_IMG_DEV_COLOR_FRAME_GRABBER                                                                                                                                                                                           | Yes<br>Yes            |
| Sections Supported OLC_IMG_DC_SECTIONS Supports Input Operations OLC_FG_SECTION_INPUT Supports Camera Control Operations OLC_FG_SECTION_CAMCTL Supports Management of Device Memory OLC_FG_SECTION_MEMORY Supports Linear Memory Operations OLC_FG_SECTION_LINEAR Supports passthru OLC_FG_SECTION_PASSTHRU Supports DDI OLC_FG_SECTION_DDI | Yes No Yes No Yes Yes |

3

Table 3: General Device Capabilities for the DT3120 Device Driver (cont.)

| Capability                                                  | DT3120 Support |
|-------------------------------------------------------------|----------------|
| DtColorQueryInterface                                       |                |
| SDK Extension Capabilities                                  |                |
| OLT_QUERY_COLOR_INTERFACE Supports Signal Type              |                |
| COLOR INTERFACE SIGNAL TYPE                                 | True           |
| Supports Storage Mode                                       |                |
| COLOR_INTERFACE_STORAGE_MODE                                | True           |
| Supports Image Parameter                                    | _              |
| COLOR_INTERFACE_IMAGE_PARAMETER Supports Hardware Scaling   | True           |
| COLOR INTERFACE HARDWARE SCALING                            | True           |
| Supports Digital I/O                                        |                |
| COLOR_INTERFACE_DIGITAL_IO                                  | False          |
| Supports Draw Acquired Frame                                | _              |
| COLOR_INTERFACE_DRAW_ACQUIRED_FRAME                         | True           |
| Supports Sync Master Mode  COLOR_INTERFACE_SYNC_MASTER_MODE | False          |
| Supports Extracting RGB Frames                              |                |
| COLOR_INTERFACE_EXTRACT_FRAME                               | False          |
| Supports Drawing Extracted Data                             |                |
| COLOR_INTERFACE_DRAW_BUFFER                                 | False          |

Table 4: Input Signal Capabilities for the DT3120 Device Driver

| Capability                                                                                                                                                                                                                                        | DT3120 Support |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| OIFgQueryInputCaps                                                                                                                                                                                                                                |                |
| Number of Input Sources OLC_FG_INPUT_SOURCE_COUNT                                                                                                                                                                                                 | 1              |
| Supports Input Filter Selection OLC_FG_IC_DOES_INPUT_FILTER                                                                                                                                                                                       | No             |
| Supports Input Filter Query OLC_FG_IC_DOES_QUERY_INPUT_FILTER                                                                                                                                                                                     | No             |
| Supported Filters OLC_FG_IC_INPUT_FILTER_LIMITS AC Coupled, no Input Filter OLC_FG_FILT_AC_NONE AC Coupled, 50 Hz Input Filter OLC_FG_FILT_AC_50 AC Coupled, 60 Hz Input Filter OLC_FG_FILT_AC_60 DC Coupled, no Input Filter OLC_FG_FILT_DC_NONE | N/A            |
| Supports Programmable A/D OLC_FG_IC_DOES_PROG_A2D                                                                                                                                                                                                 | No             |
| Supports Programmable A/D Query OLC_FG_IC_DOES_QUERY_PROG_A2D                                                                                                                                                                                     | No             |
| Voltage Range of Black Level, in μV OLC_FG_IC_BLACK_LEVEL_LIMITS                                                                                                                                                                                  | N/A            |
| Voltage Range of White Level, in μV OLC_FG_IC_WHITE_LEVEL_LIMITS                                                                                                                                                                                  | N/A            |
| Supports Pixel Clock OLC_FG_IC_DOES_PIXEL_CLOCK                                                                                                                                                                                                   | No             |
| Supports Pixel Clock Query OLC_FG_IC_DOES_QUERY_PIXEL_CLOCK                                                                                                                                                                                       | Yes            |

Table 4: Input Signal Capabilities for the DT3120 Device Driver (cont.)

| Capability                                                                                                                                                                   | DT3120 Support                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Range of Internal Input Clock Frequency, in Hz OLC_FG_IC_CLOCK_FREQ_LIMITS                                                                                                   | Fixed<br>50 Hz: 15,000,000<br>60 Hz: 12,500,000 |
| Clock Sources OLC_FG_IC_CLOCK_SOURCE_LIMITS Supports Internal Clock OLC_FG_CLOCK_INTERNAL Supports External Clock OLC_FG_CLOCK_EXTERNAL                                      | Yes<br>No                                       |
| Provides Trigger OLC_FG_IC_DOES_TRIGGER                                                                                                                                      | Yes                                             |
| Trigger Types OLC_FG_TRIGGER_TYPE_LIMITS Supports Externally Triggered Acquisition OLC_FG_TRIG_EXTERNAL_LINE                                                                 | Yes                                             |
| Multiple Trigger Types OLC_FG_IC_MULT_TRIGGER_TYPE_LIMITS Supports Externally Triggered Acquisition OLC_FG_TRIG_EXTERNAL_LINE                                                | Yes                                             |
| Multiple Trigger Modes OLC_FG_IC_MULT_TRIGGER_MODE_LIMITS Trigger Starts Multiple Frame Acquisition OLC_FG_MODE_START Trigger Starts Each Frame Acquisition OLC_FG_MODE_EACH | Yes<br>Yes                                      |
| Supports Strobing OLC_FG_IC_DOES_STROBE                                                                                                                                      | No                                              |

Table 4: Input Signal Capabilities for the DT3120 Device Driver (cont.)

| Capability                                                                                       | DT3120 Support |
|--------------------------------------------------------------------------------------------------|----------------|
| Strobing Modes For Each Input Group OLC_FG_IC_STROBE_TYPE_LIMITS Can Strobe After Each Field     | No             |
| OLC_FG_STROBE_FIELD_BASED Can Strobe After Each Frame                                            | No             |
| OLC_FG_STROBE_FRAME_BASED Can Strobe On A Software Command                                       | No             |
| OLC_FG_STROBE_NOW                                                                                | No             |
| Strobe Pulse Width Limits OLC_FG_IC_STROBE_PULSE_WIDTH_LIST_LIMITS                               | N/A            |
| Strobe Pulse Width List, in µs OLC_FG_IC_STROBE_PULSE_WIDTH_LIST                                 | N/A            |
| Number of LUTs OLC_FG_IC_ILUT_COUNT                                                              | 0              |
| Maximum Index Allowed in each ILUT OLC_FG_IC_MAX_ILUT_INDEX                                      | N/A            |
| Maximum Value Allowed in each ILUT OLC_FG_IC_MAX_ILUT_VALUE                                      | N/A            |
| <b>DtColorSignalType</b>                                                                         | ,              |
| Signal Type in the SDK Extensions OLT_SIGNAL_TYPE                                                |                |
| Supports Monochrome Signal Type OLC_MONO_SIGNAL Supports Y/C Signal Type (Luminance/Chrominance) | Yes            |
| OLC_YC_SIGNAL Support Composite Signal Type                                                      | Yes            |
| OLC_COMPOSITE_SIGNAL<br>Supports RGB Signal                                                      | Yes            |
| OLC_RGB_SIGNAL                                                                                   | No             |
| Supports Dual-Mono SIgnal OLC_DUAL_MONO_SIGNAL Supports Triple-Mono Signal                       | No             |
| OLC_TRIPLE_MONO_SIGNAL                                                                           | No             |

Table 4: Input Signal Capabilities for the DT3120 Device Driver (cont.)

| Capability                                                                                      | DT3120 Support                                       |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------|
| DtColorImageParameters                                                                          | ,                                                    |
| Image Parameters in the SDK Extensions OLT_COLOR_PARAMETER Brightness Values OLC_SET_BRIGHTNESS | min: 0<br>max: 255<br>nominal: 128<br>granularity: 1 |
| Contrast Values OLC_SET_CONTRAST                                                                | min: 0<br>max: 511<br>nominal: 216<br>granularity: 1 |
| V-Saturation Values OLC_SET_V_SAT                                                               | min: 0<br>max: 511<br>nominal: 180<br>granularity: 1 |
| U-Saturation Values OLC_SET_U_SAT                                                               | min: 0<br>max: 511<br>nominal: 254<br>granularity: 1 |
| Hue Values OLC_SET_HUE                                                                          | min: 0<br>max: 255<br>nominal: 128<br>granularity: 1 |

Table 4: Input Signal Capabilities for the DT3120 Device Driver (cont.)

| Capability                             | DT3120 Support |
|----------------------------------------|----------------|
| Image Parameters in the SDK Extensions |                |
| OLT_COLOR_PARAMETER                    |                |
| Red Level Values                       |                |
| OLC_SET_RED_LEVEL                      | N/A            |
| Green Level Values                     |                |
| OLC_SET_GREEN_LEVEL                    | N/A            |
| Blue Level Values                      |                |
| OLC_SET_BLUE_LEVEL                     | N/A            |
| Red Reference                          |                |
| OLC_SET_RED_REF                        | N/A            |
| Red Offset                             |                |
| OLC_SET_RED_OFFSET                     | N/A            |
| Green Reference                        |                |
| OLC_SET_GREEN_REF                      | N/A            |
| Green Offset                           |                |
| OLC_SET_GREEN_OFFSET                   | N/A            |
| Blue Reference                         |                |
| OLC_SET_BLUE_REF                       | N/A            |
| Blue Offset                            |                |
| OLC_SET_BLUE_OFFSET                    | N/A            |

Table 5: Sync Signal Capabilities for the DT3120 Device Driver

| Capability                                                             | DT3120 Support |
|------------------------------------------------------------------------|----------------|
| OIFgQueryInputCaps                                                     |                |
| Supports Input Video Selection OLC_FG_IC_DOES_VIDEO_SELECT             | Yes            |
| Supports Input Video Selection Query OLC_FG_IC_DOES_QUERY_VIDEO_SELECT | Yes            |

Table 5: Sync Signal Capabilities for the DT3120 Device Driver (cont.)

| Capability                                                                                                                          | DT3120 Support |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Video Types OLC_FG_IC_VIDEO_TYPE_LIMITS Supports Composite Video Source OLC_FG_VID_COMPOSITE Supports Variable Scan Video Source    | Yes            |
| OLC_FG_VID_VARSCAN                                                                                                                  | No             |
| Video Sources OLC_FG_IC_CSYNC_SOURCE_LIMITS Composite Sync from Current Input Only OLC_FG_CSYNC_CURRENT_SRC                         | Yes            |
| Composite Sync from Any Specified Input OLC_FG_CSYNC_SPECIFIC_SRC Composite Sync from External Sync Line OLC_FG_CSYNC_EXTERNAL_LINE | No<br>No       |
| Composite Sync Threshold Limits, in mV OLC_FG_IC_CSYNC_THRESH_LIST_LIMITS                                                           | N/A            |
| Composite Sync Threshold List OLC_FG_IC_CSYNC_THRESH_LIST                                                                           | N/A            |
| Supports Sync Sentinel OLC_FG_IC_DOES_SYNC_SENTINEL                                                                                 | No             |
| Supports Sync Sentinel Query OLC_FG_IC_DOES_QUERY_SYNC_SENTINEL                                                                     | Yes            |
| Sync Sentinel Types OLC_FG_IC_SYNC_SENTINEL_TYPE_LIMITS Supports Fixed Sync Sentinel OLC_FG_SYNC_SENTINEL_FIXED                     | No             |
| Supports Variable Sync Sentinel OLC_FG_SYNC_SENTINEL_VARIABLE                                                                       | No             |
| <b>DtColorSyncMasterMode</b>                                                                                                        |                |
| Sync Master in SDK Extensions OLT_SYNC_MASTER_PARAMETER Enable Sync Master Mode OLC_SYNC_MASTER_ENABLE                              | No             |

Table 6: Active Video Area Capabilities for the DT3120 Device Driver

| Capability                                                                 | DT3120 Support                                                                                                                   |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| OIFgQueryInputCaps                                                         |                                                                                                                                  |
| Supports Defining of Active Video Area OLC_FG_IC_DOES_ACTIVE_VIDEO         | Yes                                                                                                                              |
| Supports Active Video Area Query OLC_FG_IC_DOES_QUERY_ACTIVE_VIDEO         | Yes                                                                                                                              |
| Range of Back Porch Start Position OLC_FG_IC_BACK_PORCH_START_LIMITS       | min: 0<br>max: 0<br>nominal: 0<br>granularity: 0                                                                                 |
| Range of Clamp Start Position OLC_FG_IC_CLAMP_START_LIMITS                 | min: 0<br>max: 0<br>nominal: 0<br>granularity: 0                                                                                 |
| Range of Clamp End Position OLC_FG_IC_CLAMP_END_LIMITS                     | min: 0<br>max: 0<br>nominal: 0<br>granularity: 0                                                                                 |
| Range of Total Pixels Per Line Control OLC_FG_IC_TOTAL_PIX_PER_LINE_LIMITS | min:<br>50 Hz:1135<br>60 Hz: 910<br>max:<br>50 Hz: 1135<br>60 Hz: 910<br>nominal:<br>50 Hz: 1135<br>60 Hz: 910<br>granularity: 0 |

Table 6: Active Video Area Capabilities for the DT3120 Device Driver (cont.)

| Capability                                                                  | DT3120 Support                                                                                                                 |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Range of First Active Pixel Position OLC_FG_IC_ACTIVE_PIXEL_LIMITS          | min: 0<br>max: 255<br>nominal:<br>50 Hz: 190<br>60 Hz: 140<br>granularity: 1                                                   |
| Range of Active Pixels Count OLC_FG_IC_ACTIVE_WIDTH_LIMITS                  | min: 50 Hz: 768 60 Hz: 640 max: 50 Hz: 768 60 Hz: 640 nominal: 50 Hz: 768 60 Hz: 640 granularity: 0                            |
| Range of Total Lines per Field Control OLC_FG_IC_TOTAL_LINES_PER_FLD_LIMITS | min:<br>50 Hz: 312<br>60 Hz: 262<br>max:<br>50 Hz: 312<br>60 Hz: 262<br>nominal:<br>50 Hz: 312<br>60 Hz: 262<br>granularity: 0 |

Table 6: Active Video Area Capabilities for the DT3120 Device Driver (cont.)

| Capability                                                       | DT3120 Support                                                                                      |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Range of First Active Line Position OLC_FG_IC_ACTIVE_LINE_LIMITS | min: 0<br>max: 255<br>nominal:<br>50 Hz: 38<br>60 Hz: 21<br>granularity: 1                          |
| Range of Active Lines Count OLC_FG_IC_ACTIVE_HEIGHT_LIMITS       | min: 50 Hz: 288 60 Hz: 240 max: 50 Hz: 288 60 Hz: 240 nominal: 50 Hz: 288 60 Hz: 240 granularity: 0 |

Table 7: Frame Capabilities for the DT3120 Device Driver

| Capability                                                       | DT3120 Support |
|------------------------------------------------------------------|----------------|
| OIFgQueryInputCaps                                               |                |
| Supports Frame Selection OLC_FG_IC_DOES_FRAME_SELECT             | Yes            |
| Supports Frame Selection Query OLC_FG_IC_DOES_QUERY_FRAME_SELECT | Yes            |

3

Table 7: Frame Capabilities for the DT3120 Device Driver (cont.)

| Capability                                                  | DT3120 Support                                                                                       |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Range of Frame Top Control OLC_FG_IC_FRAME_TOP_LIMITS       | min: 0<br>max:<br>50 Hz: 575<br>60 Hz: 479<br>nominal: 0<br>granularity: 1                           |
| Range of Frame Left Control OLC_FG_IC_FRAME_LEFT_LIMITS     | min: 0<br>max:<br>50 Hz: 763<br>60 Hz: 635<br>nominal: 0<br>granularity: 1                           |
| Range of Frame Height Control OLC_FG_IC_FRAME_HEIGHT_LIMITS | min: 1<br>max:<br>50 Hz: 576<br>60 Hz: 480<br>nominal:<br>50 Hz: 576<br>60 Hz: 480<br>granularity: 1 |
| Range of Frame Width Control OLC_FG_IC_FRAME_WIDTH_LIMITS   | min: 1<br>max:<br>50 Hz: 768<br>60 Hz: 640<br>nominal:<br>50 Hz: 768<br>60 Hz: 640<br>granularity: 1 |

Table 7: Frame Capabilities for the DT3120 Device Driver (cont.)

| Capability                                                                                                                                                                                                                                                                                                                                                                                                                                 | DT3120 Support                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Range Between Pixels (Scale factor - horizontal) OLC_FG_IC_FRAME_HINC_LIMITS                                                                                                                                                                                                                                                                                                                                                               | min: 1<br>max: 10<br>nominal: 1<br>granularity: 1            |
| Range Between Lines (Scale factor - vertical) OLC_FG_IC_FRAME_VINC_LIMITS                                                                                                                                                                                                                                                                                                                                                                  | min: 1<br>max: 10<br>nominal: 1<br>granularity: 1            |
| Frame Types OLC_FG_IC_FRAME_TYPE_LIMITS Acquire Interlaced Frame Starting on Even Field OLC_FG_FRM_IL_FRAME_EVEN Acquire Interlaced Frame Starting on Odd Field OLC_FG_FRM_IL_FRAME_ODD Acquire Interlaced Frame Starting on Next Field OLC_FG_FRM_IL_FRAME_NEXT Acquire the Even Field OLC_FG_FRM_FIELD_EVEN Acquire the Odd Field OLC_FG_FRM_FIELD_ODD Acquire the Next Field OLC_FG_FRM_FIELD_NEXT Acquire the Next Noninterlaced Frame | Yes Yes Yes Yes Yes Yes                                      |
| OLC_FG_FRM_NON_INTERLACED                                                                                                                                                                                                                                                                                                                                                                                                                  | No                                                           |
| Maximum Number of Pixels in Frame OLC_FG_IC_MAX_FRAME_SIZE                                                                                                                                                                                                                                                                                                                                                                                 | 50 Hz: 442368<br>60 Hz: 307200                               |
| Number of Bytes in a Pixel OLC_FG_IC_PIXEL_DEPTH                                                                                                                                                                                                                                                                                                                                                                                           | RGB = 4<br>RGB24 = 3<br>RGB16 = 2<br>YUYV422 = 2<br>Mono = 1 |

Table 7: Frame Capabilities for the DT3120 Device Driver (cont.)

| Capability                                                                                | DT3120 Support                                       |
|-------------------------------------------------------------------------------------------|------------------------------------------------------|
| <b>DtColorHardwareScaling</b>                                                             |                                                      |
| Hardware Scaling in SDK Extensions OLT_SCALE_PARAM                                        |                                                      |
| Horizontal scale factor (percentage) hscale                                               | min: 1<br>max: 100<br>nominal: 100<br>granularity: 1 |
| Vertical scale factor (percentage) vscale                                                 | min: 1<br>max: 100<br>nominal: 100<br>granularity: 1 |
| <b>DtColorStorageMode</b>                                                                 |                                                      |
| Storage Mode in the SDK Extensions OLT_IMAGE_MODE Supports Monochrome Mode OLC_IMAGE_MONO | Yes                                                  |
| Supports YUV Mode OLC_IMAGE_YUV Supports RGB                                              | No                                                   |
| OLC_IMAGE_RGB Supports RGB24                                                              | Yes                                                  |
| OLC_IMAGE_RGB_24 Supports RGB16                                                           | Yes                                                  |
| OLC_IMAGE_RGB_16 Supports RGB15 OLC_IMAGE_RGB_15                                          | Yes                                                  |
| Supports YUYV422 OLC_IMAGE_YUYV_422                                                       | Yes                                                  |

Table 8: Passthru Capabilities for the DT3120 Device Driver

| 210120 201100 211101                                                                             |                 |
|--------------------------------------------------------------------------------------------------|-----------------|
| Capability                                                                                       | DT3120 Support  |
| OIFgQueryPassthruCaps                                                                            |                 |
| Supports Passthru Section OLC_FG_PC_DOES_PASSTHRU                                                | Yes             |
| Passthru Modes OLC_FG_PC_PASSTHRU_MODE_LIMITS Supports Async Direct                              |                 |
| OLC_FG_PASSTHRU_ASYNC_DIRECT Supports Sync Direct                                                | No              |
| OLC_FG_PASSTHRU_SYNC_DIRECT Supports Async Bitmap                                                | No              |
| OLC_FG_PASSTHRU_ASYNC_BITMAP Supports Sync Bitmap                                                | Yes             |
| OLC_FG_PASSTHRU_SYNC_BITMAP Supports Continuous-Acquire                                          | No              |
| OLC_FG_PASSTHRU_ASYNC_BITMAP_EXTENDED                                                            | Yes             |
| Source Origin OLC_FG_PC_DOES_SOURCE_ORIGIN Available Range for the X Value of the Source Origin  | No              |
| OLC_FG_PC_SRC_ORIGIN_X_LIMITS                                                                    | N/A             |
| Source Origin Available Range for the Y value of the Source Origin OLC_FG_PC_SRC_ORIGIN_Y_LIMITS | N/A             |
| Passthru Scaling OLC_FG_PC_DOES_SCALING Range of Legal Values for Height                         | No <sup>a</sup> |
| OLC_FG_PC_SCALE_HEIGHT_LIMITS                                                                    | N/A             |
| Range of Legal Values for Width OLC_FG_PC_SCALE_WIDTH_LIMITS                                     | N/A             |

Table 8: Passthru Capabilities for the DT3120 Device Driver (cont.)

| Capability                         | DT3120 Support |
|------------------------------------|----------------|
| Passthru LUT                       |                |
| OLC_FG_PC_DOES_PASSTHRU_LUT        | No             |
| Number of Extra Palette Entries    |                |
| OLC_FG_PC_MAX_PALETTE_INDEX        | N/A            |
| Maximum RGB Value for Palette      |                |
| OLC_FG_PC_MAX_PALETTE_VALUE        | N/A            |
| Number of Entries in Passthru LUT  |                |
| OLC_FG_PC_MAX_PLUT_INDEX           | N/A            |
| Maximum RGB Value for Passthru LUT |                |
| OLC_FG_PC_MAX_PLUT_VALUE           | N/A            |
| Passthru snapshot                  |                |
| OLC_FG_PC_DOES_PASSTHRU_SNAPSHOT   | Yes            |

a. With the DT3120, use the  ${\bf DtColorHardwareScaling}$  function to perform passthru scaling.

Table 9: Overlay Capabilities for the DT3120 Device Driver

| Capability                                                       | DT3120 Support |
|------------------------------------------------------------------|----------------|
| OIFgQueryDDICaps                                                 |                |
| Passthru with DDI OLC_FG_DDI_FAST_PASSTHRU                       | No             |
| Overlay support OLC_FG_DDI_OVERLAYS                              | Yes            |
| Translucent overlay capability OLC_FG_DDI_TRANSLUCENT_OVERLAYS   | No             |
| Color overlay capability OLC_FG_DDI_COLOR_OVERLAY                | Yes            |
| Multiple overlay surface capability OLC_FG_DDI_MULTIPLE_SURFACES | Yes            |
| Color keying (filtering) OLC_FG_DDI_COLOR_KEY_CONTROL            | Yes            |

Table 9: Overlay Capabilities for the DT3120 Device Driver (cont.)

| Capability                                                            | DT3120 Support |
|-----------------------------------------------------------------------|----------------|
| Add overlay to image OLC_FG_DDI_OVERLAY_ON_FRAME                      | No             |
| User-managed DDI surface support OLC_FG_DDI_USER_SURFACE_PTR          | No             |
| Passthru event synchronization support OLC_FG_DDI_PASSTHRU_SYNC_EVENT | Yes            |

Table 10: Memory Capabilities for the DT3120 Device Driver

| Capability                                                       | DT3120 Support |
|------------------------------------------------------------------|----------------|
| OIFgQueryMemoryCaps                                              |                |
| Memory Types OLC_FG_MC_MEMORY_TYPES Volatile Memory              |                |
| OLC_FG_MEM_VOLATILE  Nonvolatile Memory  OLC_FG_MEM_NON_VOLATILE | Yes<br>No      |
| Number of Volatile Buffer Handles OLC_FG_MC_VOL_COUNT            | 1 <sup>a</sup> |
| Number of Nonvolatile Buffer Handles OLC_FG_MC_NONVOL_COUNT      | N/A            |

a. You can allocate as many frames as the system memory allows using  ${\bf OlFgAllocateBuiltInFrame}.$ 

Table 11: Acquisition Capabilities for the DT3120 Device Driver

| Capability                        | DT3120 Support |
|-----------------------------------|----------------|
| OIFgQueryInputCaps                |                |
| Acquisition Types (single frame)  |                |
| OLC_FG_IC_SINGLE_FRAME_OPS        |                |
| -Single Frame to Host (sync)      |                |
| Supports Full Frame Acquisition   |                |
| OLC_FG_ACQ_FRAME                  | No             |
| Supports Subframe Acquisition     |                |
| OLC_FG_ACQ_SUBFRAME               | No             |
| Supports Frame-to-Fit Acquisition |                |
| OLC_FG_ACQ_FRAME_TO_FIT           | No             |
| -Single Frame to Device (sync)    |                |
| Supports Full Frame Acquisition   |                |
| OLC_FG_ACQ_FRAME                  | Yes            |
| Supports Subframe Acquisition     |                |
| OLC_FG_ACQ_SUBFRAME               | No             |
| Supports Frame-to-Fit Acquisition |                |
| OLC_FG_ACQ_FRAME_TO_FIT           | No             |
| -Single Frame to Host (async)     |                |
| Supports Full Frame Acquisition   |                |
| OLC_FG_ACQ_FRAME                  | No             |
| Supports Subframe Acquisition     |                |
| OLC_FG_ACQ_SUBFRAME               | No             |
| Supports Frame-to-Fit Acquisition |                |
| OLC_FG_ACQ_FRAME_TO_FIT           | No             |
| -Single Frame to Device (async)   |                |
| Supports Full Frame Acquisition   |                |
| OLC_FG_ACQ_FRAME                  | Yes            |
| Supports Subframe Acquisition     |                |
| OLC_FG_ACQ_SUBFRAME               | No             |
| Supports Frame-to-Fit Acquisition | NI-            |
| OLC_FG_ACQ_FRAME_TO_FIT           | No             |

Table 11: Acquisition Capabilities for the DT3120 Device Driver (cont.)

| Capability                            | DT3120 Support |
|---------------------------------------|----------------|
| Acquisition Types (multiple frame)    |                |
| OLC_FG_IC_MULT_FRAME_OPS              |                |
| -Multiple Frames to Host (sync)       |                |
| Supports Full Frame Acquisition       |                |
| OLC_FG_ACQ_FRAME                      | No             |
| Supports Subframe Acquisition         |                |
| OLC_FG_ACQ_SUBFRAME                   | No             |
| Supports Frame-to-Fit Acquisition     |                |
| OLC_FG_ACQ_FRAME_TO_FIT               | No             |
| -Multiple Frames to Device (sync)     |                |
| Supports Full Frame Acquisition       |                |
| OLC_FG_ACQ_FRAME                      | Yes            |
| Supports Subframe Acquisition         | l              |
| OLC_FG_ACQ_SUBFRAME                   | No             |
| Supports Frame-to-Fit Acquisition     |                |
| OLC_FG_ACQ_FRAME_TO_FIT               | No             |
| -Multiple Frames to Host (async)      |                |
| Supports Full Frame Acquisition       | l              |
| OLC_FG_ACQ_FRAME                      | No             |
| Supports Subframe Acquisition         |                |
| OLC_FG_ACQ_SUBFRAME                   | No             |
| Supports Frame-to-Fit Acquisition     |                |
| OLC_FG_ACQ_FRAME_TO_FIT               | No             |
| -Multiple Frames to Device (async)    |                |
| Supports Full Frame Acquisition       |                |
| OLC_FG_ACQ_FRAME                      | Yes            |
| Supports Subframe Acquisition         |                |
| OLC_FG_ACQ_SUBFRAME                   | No             |
| Supports Frame-to-Fit Acquisition     | No             |
| OLC_FG_ACQ_FRAME_TO_FIT               | No             |
| Supports Drawing Acquired Frame       |                |
| OLC_FG_IC_DOES_DRAW_ACQUIRED_FRAME    | Yes            |
| OLC_FG_IC_DOES_DRAW_ACQUIRED_FRAME_EX | Yes            |

Table 12: Digital I/O Capabilities for the DT3120 Device Driver

| Capability                                             | DT3120 Support |
|--------------------------------------------------------|----------------|
| OIFgQueryCameraControlCaps                             |                |
| Number of Digital Output Lines OLC_FG_CC_DIG_OUT_COUNT | 0              |
| <b>DtColorDigitalIOControl</b>                         |                |
| Number of Digital Input/Output Lines                   | 0              |

## **Initialized Control Values**

Table 13 lists the default control values after opening or initializing the DT3120 Device Driver.

**Table 13: Default Control Values** 

| Control Name                   | Value                     |
|--------------------------------|---------------------------|
| OLC_FG_CTL_INPUT_FILTER        | N/A                       |
| OLC_FG_CTL_BLACK_LEVEL         | N/A                       |
| OLC_FG_CTL_WHITE_LEVEL         | N/A                       |
| OLC_FG_CTL_VIDEO_TYPE          | OLC_FG_VID_COMPOSITE      |
| OLC_FG_CTL_CSYNC_SOURCE        | OLC_FG_CSYNC_CURRENT_SRC  |
| OLC_FG_CTL_CSYNC_THRESH        | N/A                       |
| OLC_FG_CTL_SYNC_SENTINEL       | N/A                       |
| OLC_FG_CTL_HSYNC_INSERT_POS    | N/A                       |
| OLC_FG_CTL_HSYNC_SEARCH_POS    | N/A                       |
| OLC_FG_CTL_VSYNC_INSERT_POS    | N/A                       |
| OLC_FG_CTL_VSYNC_SEARCH_POS    | N/A                       |
| OLC_FG_CTL_BACK_PORCH_START    | 0                         |
| OLC_FG_CTL_CLAMP_START         | 0                         |
| OLC_FG_CTL_CLAMP_END           | 0                         |
| OLC_FG_CTL_TOTAL_PIX_PER_LINE  | 50 Hz: 1135<br>60 Hz: 910 |
| OLC_FG_CTL_FIRST_ACTIVE_PIXEL  | 50 Hz: 190<br>60 Hz:140   |
| OLC_FG_CTL_ACTIVE_PIXEL_COUNT  | 50 Hz: 768<br>60 Hz: 640  |
| OLC_FG_CTL_TOTAL_LINES_PER_FLD | 50 Hz: 312<br>60 Hz: 262  |

3

**Table 13: Default Control Values (cont.)** 

| Control Name                                                                                              | Value                                         |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| OLC_FG_CTL_FIRST_ACTIVE_LINE                                                                              | 50 Hz: 38<br>60 Hz: 21                        |
| OLC_FG_CTL_ACTIVE_LINE_COUNT                                                                              | 50 Hz: 288<br>60 Hz: 240                      |
| OLC_FG_CTL_FRAME_TOP                                                                                      | 0                                             |
| OLC_FG_CTL_FRAME_LEFT                                                                                     | 0                                             |
| OLC_FG_CTL_FRAME_WIDTH                                                                                    | 50 Hz: 768<br>60 Hz: 640                      |
| OLC_FG_CTL_FRAME_HEIGHT                                                                                   | 50 Hz: 576<br>60 Hz: 480                      |
| OLC_FG_CTL_HOR_FRAME_INC                                                                                  | 1                                             |
| OLC_FG_CTL_VER_FRAME_INC                                                                                  | 1                                             |
| OLC_FG_CTL_CLOCK_FREQ                                                                                     | 50 Hz: 15,000,000<br>60 Hz: 12,500,000        |
| OLC_FG_CTL_CLOCK_SOURCE                                                                                   | OLC_FG_CLOCK_INTERNAL                         |
| OLC_FG_CTL_FRAME_TYPE                                                                                     | OLC_FG_FRM_IL_FRAME_EVEN                      |
| OLC_FG_IC_STROBE_PULSE_WIDTH_<br>LIST_LIMITS                                                              | N/A                                           |
| OLC_FG_CTL_ILUT                                                                                           | N/A                                           |
| DtColorSignalType                                                                                         | OLC_COMPOSITE_SIGNAL                          |
| DtColorStorageMode                                                                                        | OLC_IMAGE_RGB                                 |
| DtColorImageParameters Brightness Contrast V Saturation U Saturation Hue Red Level Green Level Blue Level | 128<br>216<br>180<br>254<br>128<br>N/A<br>N/A |

Table 13: Default Control Values (cont.)

| Control Name                                                               | Value        |
|----------------------------------------------------------------------------|--------------|
| DtColorHardwareScaling<br>Horizontal scale factor<br>Vertical scale factor | 100<br>100   |
| DtColorDigitalIOControl Digital I/O Configuration                          | 0            |
| DtColorSyncMasterMode<br>Enable/Disable                                    | 0 (disabled) |



# **Programming Flowcharts**

| Single-Frame Acquisition   | 57 |
|----------------------------|----|
| Multiple-Frame Acquisition | 60 |
| Passthru without Overlays  | 62 |
| Passthru with Overlays     | 64 |

The following flowcharts show the steps required to perform imaging operations using DT-Open Layers. For illustration purposes, the functions in the Frame Grabber SDK are shown; however, the concepts apply to all DT-Open Layers software for imaging.

Note that many steps represent several substeps; if you are unfamiliar with the detailed operations involved with any one step, refer to the indicated page for detailed information. Optional steps appear in shaded boxes.

**Note:** Although the flowcharts do not show error/status checking, it is recommended that you check for error/status messages after calling each function.

# Single-Frame Acquisition



# Single-Frame Acquisition (cont.)



# Single-Frame Acquisition (cont.)



## Multiple-Frame Acquisition



# Multiple-Frame Acquisition (cont.)



# Passthru without Overlays



# Passthru without Overlays (cont.)



## Passthru with Overlays



# Passthru with Overlays (cont.)



# Passthru with Overlays (cont.)



# Passthru with Overlays (cont.)



#### Set the Standard Controls for the Input Channel



#### Set the Color Controls for the Input Channel



### Process the Acquired Image



#### Process the Acquired Image



#### Process the Acquired Image (cont.)



#### Process the Acquired Image (cont.)



#### Start the Passthru Operation



### Take a Snapshot



### Set up and Enable Overlays



#### Execute an Overlay Animation Sequence





# **Troubleshooting**

| General Checklist                   | 80 |
|-------------------------------------|----|
| Service and Support                 | 84 |
| If Your Board Needs Factory Service | 88 |

### General Checklist

Should you experience problems using the DT3120 board, please follow these steps:

- 1. Read all the appropriate sections of this manual. Make sure that you have added any "Read This First" information to your manual and that you have used this information.
- 2. Check your CD-ROM for a README file and ensure that you have used the latest installation and configuration information available.
- **3.** Check that your system meets the requirements stated in the *DT3120 Getting Started Manual*.
- **4.** Check that you have installed your hardware properly using the instructions in the *DT3120 Getting Started Manual*.
- 5. Check that you have installed and configured the device driver properly using the instructions in the *DT3120 Getting Started Manual*.

If you still experience problems, try using the information in Table 14 to isolate and solve the problem. If you cannot identify the problem, refer to page 84.

**Table 14: Troubleshooting Problems** 

| Symptom                         | Possible Cause                                            | Possible Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Board does not respond.         | The board is incorrectly aligned in a PCI expansion slot. | Check that the slot in which your DT3120 board is located is a PCI slot and that the board is correctly seated in the slot; see the instructions in the DT3120 Getting Started Manual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | The interrupt level is unacceptable.                      | An interrupt conflict exists in your system.  If you think you may have an interrupt conflict between a PCI device and a device that is plugged into the ISA bus, change the interrupt setting (usually by changing a jumper) on the ISA device.  If you think you may have an interrupt conflict on a PCI device that was not designed to share interrupts, select a different interrupt for each PCI slot in the PCI BIOS. To do this, enter the system BIOS program; this is usually done by pressing the DEL key when rebooting your system. Once in the system BIOS, enter the PCI/PnP BIOS setup, and select a unique interrupt for each PCI slot. The PCI BIOS assigns the interrupt; the device on the PCI bus does not have control over the interrupt assignment.  Some network devices do not share interrupts. If you still have an interrupt conflict, remove the network device, install the DT3120 board, and reboot the system. Then reinsert the network device. |
| Board does not respond (cont.). | The board is damaged.                                     | Contact Data Translation for technical support; refer to page 84.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Table 14: Troubleshooting Problems (cont.)

| Symptom                     | Possible Cause                                                                    | Possible Solution                                                                                                                                                                                                                           |
|-----------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intermittent operation.     | Loose connections or vibrations exist.                                            | Check your wiring and tighten any loose connections or cushion vibration sources; see the instructions in the <i>DT3120 Getting Started Manual</i> .                                                                                        |
|                             | Electrical noise exists.                                                          | Check your connections; see the instructions in the <i>DT3120 Getting Started Manual</i> .                                                                                                                                                  |
|                             | The board is overheating.                                                         | Check environmental and ambient temperature; consult the board's specifications on page 91 of this manual and the documentation provided by your computer manufacturer for more information.                                                |
| Data appears to be invalid. | Wiring is not connected properly.                                                 | Check your wiring and fix any open connections; see the instructions in the DT3120 Getting Started Manual.                                                                                                                                  |
| Computer does not boot.     | Board is not seated properly.                                                     | Check that the slot in which your DT3120 board is located is a PCI slot, that the board is correctly seated in the slot, and that the board is secured in the slot with a screw; see the instructions in the DT3120 Getting Started Manual. |
|                             | The power supply of the computer is too small to handle all the system resources. | Check the power requirements of your system resources and, if needed, get a larger power supply; consult the board's specifications on page 91 of this manual.                                                                              |

Table 14: Troubleshooting Problems (cont.)

| Symptom        | Possible Cause                   | Possible Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System lockup. | Board is not seated properly.    | Check that the slot in which your DT3120 board is located is a PCI slot, that the board is correctly seated in the slot, and that the board is secured in the slot with a screw; see the instructions in the DT3120 Getting Started Manual.                                                                                                                                                                                                                                        |
|                | Interrupt level is unacceptable. | If you think you may have an interrupt conflict between a PCI device and a device that is plugged into the ISA bus, change the interrupt setting (usually by changing a jumper) on the ISA device.  If you think you may have an interrupt                                                                                                                                                                                                                                         |
|                |                                  | conflict on a PCI device that was not designed to share interrupts, select a different interrupt for each PCI slot in the PCI BIOS. To do this, enter the system BIOS program; this is usually done by pressing the DEL key when rebooting your system. Once in the system BIOS, enter the PCI/PnP BIOS setup, and select a unique interrupt for each PCI slot. The PCI BIOS assigns the interrupt; the device on the PCI bus does not have control over the interrupt assignment. |
|                |                                  | Some network devices do not share interrupts. If you still have an interrupt conflict, remove the network device, install the DT3120 board, and reboot the system. Then, reinsert the network device.                                                                                                                                                                                                                                                                              |

## Service and Support

If you have difficulty using the DT3120 board, Data Translation's Technical Support Department is available to provide prompt technical assistance. Support upgrades, technical information, and software are also available.

All customers can always obtain the support needed. The first 90 days are complimentary, as part of the product's original warranty, to help you get your system running. Customers who call outside of this time frame can either purchase a support contract or pay a nominal fee (charged on a per-incident basis).

For "priority support," purchase a support contract. Support contracts guarantee prompt response and are very affordable; contact your local sales office for details.

Refer to the Data Translation Support Policy located at the end of this manual for a list of services included and excluded in our standard support offering.

### **Telephone Technical Support**

Telephone support is normally reserved for original warranty and support-contract customers. Support requests from non-contract or out-of-warranty customers are processed after requests from original warranty and support-contract customers.

For the most efficient service, please complete the form on page 86 and be at your computer when you call for technical support. This information helps to identify specific system and configuration-related problems and to replicate the problem in house, if necessary.

You can reach the Technical Support Department by calling (508) 481-3700  $\times 1401$ .

If you are located outside the USA, call your local distributor. The name and telephone number of you nearest distributor are provided in your Data Translation catalog.

If you are leaving a message to request a support call, please include the following information:

- Your name (please include proper spelling),
- Your company or organization (please include proper spelling),
- A phone number,
- An email address where you can be reached,
- The hardware/software product you need help on,
- A summary of the issue or question you have,
- Your contract number, if applicable, and
- Your product serial number or purchase date.

Omitting any of the above information may delay our ability to resolve your issue.

#### **Information Required for Technical Support**

| Name:                                                                                               | Phone            |  |
|-----------------------------------------------------------------------------------------------------|------------------|--|
| Contract Number:                                                                                    |                  |  |
| Address:                                                                                            |                  |  |
|                                                                                                     |                  |  |
|                                                                                                     |                  |  |
| Data Translation hardware product(s):                                                               |                  |  |
| serial number:                                                                                      |                  |  |
| configuration:                                                                                      |                  |  |
| Data Translation device driver - SPO number:                                                        |                  |  |
|                                                                                                     | version:         |  |
| Data Translation software - SPO number:                                                             |                  |  |
| serial number:                                                                                      |                  |  |
| PC make/model:                                                                                      |                  |  |
| operating system:                                                                                   | version:         |  |
| Windows version:                                                                                    |                  |  |
| processor:                                                                                          |                  |  |
| RAM:                                                                                                | hard disk space: |  |
| network/number of users:                                                                            | disk cache:      |  |
| graphics adapter:                                                                                   | data bus:        |  |
| I have the following boards and applications installed  I am encountering the following problem(s): |                  |  |
|                                                                                                     |                  |  |
| and have received the following error messages/code                                                 | 98:              |  |
|                                                                                                     |                  |  |
|                                                                                                     |                  |  |
| I have run the board diagnostics with the following re                                              | sults:           |  |
| You can reproduce the problem by performing these 1.                                                | •                |  |
|                                                                                                     |                  |  |
| 2                                                                                                   |                  |  |
|                                                                                                     |                  |  |
| 3                                                                                                   |                  |  |
|                                                                                                     |                  |  |
|                                                                                                     |                  |  |

### E-Mail and Fax Support

You can also get technical support by e-mailing or faxing the Technical Support Department:

• E-mail: You can reach Technical Support at the following address: tsupport@datx.com

Ensure that you provide the following minimum information:

- Your name,
- Your company or organization,
- A phone number,
- An email address where you can be reached,
- The hardware/software product you need help on,
- A summary of the issue you are experiencing,
- Your contract number, if applicable, and
- Your product serial number or purchase date.
   Omitting any of the above information may delay our ability to resolve your issue.
- **Fax**: Please photocopy and complete the form on page 86, then fax Technical Support at the following number: (508) 481-8620.

Support requests from non-contract and out-of-warranty customers are processed with the same priority as telephone support requests.

#### World-Wide Web

For the latest tips, software fixes, and other product information, you can always access our World-Wide Web site free of charge at the following address: http://www.datatranslation.com

# If Your Board Needs Factory Service

If your board must be returned to Data Translation, perform the following steps:

1. Record the board's serial number, then contact the Customer Service Department at (508) 481-3700 (if you are in the USA) and obtain a Return Material Authorization (RMA).

If you are located outside the USA, call your local distributor for authorization and shipping instructions. The name and telephone number of your nearest distributor are listed in your Data Translation catalog.

All return shipments to Data Translation must be marked with the correct RMA number to ensure proper processing.

- 2. Using the original packing materials, if available, package the board as follows:
  - Wrap the board in an electrically conductive plastic material.
     Handle with ground protection. A static discharge can destroy components on the board.
  - Place in a secure shipping container.
- **3.** Return the board to the following address, making sure the RMA number is visible on the outside of the box.

Customer Service Dept. Data Translation, Inc. 100 Locke Drive Marlboro, MA 01752-1192



# **Specifications**

Table 15 lists the electrical specifications for the video input signals of the DT3120 boards.

**Table 15: Video Input Electrical Specifications** 

| Feature            | Specification  |  |
|--------------------|----------------|--|
| Input Signal Range | 0.5 V to 2.0 V |  |
| Input Impedance    | 75 Ω ± 10%     |  |

Table 16 lists the electrical specifications for the external trigger signals of the DT3120 board.

**Table 16: External Trigger Electrical Specifications** 

| Feature                             | Minimum<br>Specification | Maximum<br>Specification |
|-------------------------------------|--------------------------|--------------------------|
| Input Low Level (V <sub>IL</sub> )  | 0 VDC                    | 0.4 VDC <sup>a</sup>     |
| Input High Level (V <sub>IH</sub> ) | 3.5 VDC                  | 5.0 VDC                  |
| Input rate                          | -                        | 10 Hz                    |

a. Exceeding the voltage limits noted may cause damage to the device to which the input is connected.

Table 17 lists the power, physical, and environmental specifications of the DT3120 board.



Table 17: Power, Physical, and Environmental Specifications

| Feature               | Specification                    |
|-----------------------|----------------------------------|
| Operating temperature | 0° C to 50° C (32° F to 122° F)  |
| Storage temperature   | -25°C to 70°C (-13° F to 158° F) |
| Humidity              | 0 to 90%, noncondensing          |
| Dimensions            | 6.875 inches x 4.2 inches        |
| Weight                | 5.3 ounces (150 grams)           |



## Modifying the Device Driver

| Windows 98 and Windows Me Procedures | 94  |
|--------------------------------------|-----|
| Windows 2000 Procedures              | 97  |
| Windows XP Procedures                | .00 |

## Windows 98 and Windows Me Procedures

This section describes the following procedures in Windows 98 and Windows Me:

- Adding a board to the device driver configuration (on this page);
- Modifying the board settings in the device driver configuration (on page 95); and
- Uninstalling the device driver, if necessary (on page 96).

## Adding a Board to the Device Driver Configuration

To add a new board to the DT3120 Device Driver configuration, perform the following steps:

- 1. Turn your computer off and insert the new DT3120 board into your computer following the instructions in the *DT3120 Getting Starting Manual*.
- **2.** Turn your computer on and start Windows 98 or Windows Me. *The Add New Hardware Wizard dialog box appears.*
- Click Next.
- **4.** For Windows 98:

Click Search for the best driver for your device (Recommended), make sure all optional search locations are unchecked, then click Next.

For Windows Me:

Click Automatic search for a better driver (Recommended).

- 5. Click **Next**. *The files are copied*.
- Click Finish.
- 7. Open the Control Panel.
- 8. Double-click the **DT Imaging Control** icon.

- 9. Select the DT3120 board to configure.
- **10.** Select the **Video Format** as either 50 Hz or 60 Hz.
- **11.** When you are finished, click **Done**. *If you made any changes, the Save Changes dialog box appears.*
- 12. If you want to save your changes, click Yes.

## B

# Modifying a Board in the Device Driver Configuration

To modify a board in the device driver configuration, perform the following steps:

- 1. Open the Control Panel.
- **2.** Double-click the **DT Imaging Control** icon.
- **3.** Select the DT3120 board to configure.
- **4.** Select the **Video Format** as either 50 Hz or 60 Hz.
- **5.** When you are finished, click **Done**. *If you made any changes, the Save Changes dialog box appears.*
- **6.** If you want to save your changes, click **Yes**.

## **Uninstalling the Device Driver**

Generally, you will always require the DT3120 Device Driver. However, if you are no longer using the DT3120 with the supported software, you can uninstall the DT3120 Device Driver from the system by performing the following steps:

- Open the Control Panel, and double-click System.
- 2. Click the **Device Manager** tab.
- Double-click DT Image Device.
- **4.** Click **DT3120 Secondary Device**, then click **Remove**. *The Confirm Device Removal dialog appears*.
- 5. Click **OK** to confirm the removal.
- **6.** Click **DT3120 Frame Grabber**, then click **Remove**. *The Confirm Device Removal dialog appears*.
- 7. Click **OK** to confirm the removal.
- **8.** Repeat steps 6 and 7 until all DT3120 frame grabber boards have been removed.
- 9. Close the System dialog box.
- **10.** From the Control Panel, click **Add/Remove Programs**.
- 11. Click DT3120 Drivers for Windows 98 and Me, then click Add/Remove.
- **12.** Click **Yes** to remove read-only files.
- 13. Click Finish.
- 14. Close the Control Panel.
- 15. Turn your computer off and remove any DT3120 boards.

**Note:** If you want to reinstall the device driver after removing it, refer to the *DT3120 Getting Started Manual* for instructions.

## Windows 2000 Procedures

This section describes the following procedures in Windows 2000:

- Adding a board to the device driver configuration (on this page);
- Modifying the board settings in the device driver configuration (on page 98); and
- Uninstalling the device driver, if necessary (on page 98).

## Adding a Board to the Device Driver Configuration

To add a new board to the DT3120 Device Driver configuration, perform the following steps:

- 1. Turn your computer off and insert the new DT3120 board into your computer following the instructions in the *DT3120 Getting Starting Manual*.
- **2.** Turn your computer on and start Windows 2000. *The Add New Hardware Wizard dialog box appears.*
- Click Next.
- Click Search for a suitable driver for my device (recommended), make sure all optional search locations are unchecked, then click Next.
- **5.** Click **Next**. *The files are copied*.
- 6. Click Finish.
- 7. Open the Control Panel.
- **8.** Double-click the **DT Imaging Control** icon.
- **9.** Select the DT3120 board to configure.
- **10.** Select the **Video Format** as either 50 Hz or 60 Hz.

B

- **11.** When you are finished, click **Done**. *If you made any changes, the Save Changes dialog box appears.*
- 12. If you want to save your changes, click Yes.

# Modifying a Board in the Device Driver Configuration

To modify a board in the device driver configuration, perform the following steps:

- 1. Open the Control Panel.
- **2.** Double-click the **DT Imaging Control** icon.
- **3.** Select the DT3120 board to configure.
- **4.** Select the **Video Format** as either 50 Hz or 60 Hz.
- **5.** When you are finished, click **Done**. *If you made any changes, the Save Changes dialog box appears.*
- **6.** If you want to save your changes, click **Yes**.

## Uninstalling the Device Driver

Generally, you will always require the DT3120 Device Driver. However, if you are no longer using the DT3120 board with the supported software, you can uninstall the DT3120 Device Driver from the system by performing the following steps:

- 1. Open the Control Panel.
- 2. Double-click System.
- 3. Click Hardware, then click Device Manager.
- 4. Double-click DT Image Device.
- Click the DT3120 Frame Grabber, click Action, then click Uninstall.

- **6.** Click **DT3120 Secondary Device**, click **Action**, then click **Uninstall**.
- 7. Close the System dialog box.
- 8. From the Control Panel, click **Add/Remove Programs**.
- 9. Click **DT3120 Drivers for Windows 2000**, then click **Change/Remove**.
- **10.** If prompted, click **Yes** to remove read-only files.
- 11. Click OK.
- 12. Close the Control Panel.
- **13.** Turn your computer off and remove any DT3120 boards.

**Note:** If you want to reinstall the device driver after removing it, refer to the *DT3120 Getting Started Manual* for instructions.



## Windows XP Procedures

This section describes the following procedures in Windows XP:

- Adding a board to the device driver configuration (on this page);
- Modifying the board settings in the device driver configuration (on page 101); and
- Uninstalling the device driver, if necessary (on page 101).

## Adding a Board to the Device Driver Configuration

To add a new board to the DT3120 Device Driver configuration, perform the following steps:

- 1. Turn your computer off and insert the new DT3120 board into your computer following the instructions in the *DT3120 Getting Starting Manual*.
- **2.** Turn your computer on and start Windows XP. *The Add New Hardware Wizard dialog box appears.*
- Click Next.
- Click Search for a suitable driver for my device (recommended), make sure all optional search locations are unchecked, then click Next.
- **5.** Click **Next**. *The files are copied*.
- Click Finish.
- 7. Open the Control Panel.
- **8.** Double-click the **DT Imaging Control** icon.
- 9. Select the DT3120 board to configure.
- **10.** Select the **Video Format** as either 50 Hz or 60 Hz.

- **11.** When you are finished, click **Done**. *If you made any changes, the Save Changes dialog box appears.*
- 12. If you want to save your changes, click Yes.

# Modifying a Board in the Device Driver Configuration

B

To modify a board in the device driver configuration, perform the following steps:

- 1. Open the Control Panel.
- 2. Double-click the **DT Imaging Control** icon.
- **3.** Select the DT3120 board to configure.
- **4.** Select the **Video Format** as either 50 Hz or 60 Hz.
- **5.** When you are finished, click **Done**. *If you made any changes, the Save Changes dialog box appears.*
- **6.** If you want to save your changes, click **Yes**.

## Uninstalling the Device Driver

Generally, you will always require the DT3120 Device Driver. However, if you are no longer using the DT3120 board with the supported software, you can uninstall the DT3120 Device Driver from the system by performing the following steps:

- 1. Open the Control Panel.
- 2. Double-click System.
- 3. Click Hardware, then click Device Manager.
- 4. Double-click DT Image Device.
- 5. Click the DT3120 Frame Grabber, click Action, then click Uninstall.
- 6. Click OK.

- 7. Click **DT3120 Secondary Device**, click **Action**, then click **Uninstall**.
- 8. Click OK.
- **9.** Close the System dialog box.
- **10.** From the Control Panel, click **Add/Remove Programs**.
- 11. Click DT3120 Drivers, then click Change/Remove.
- 12. Click Finish.
- 13. Click Close.
- **14.** Turn your computer off and remove any DT3120 boards.

**Note:** If you want to reinstall the device driver after removing it, refer to the *DT3120 Getting Started Manual* for instructions.

## Index

| acquisition modes 26, 49 active video area 12 active video area, see video area adding a board to the driver configuration Windows 2000 97 Windows 98 94 Windows Me 94 Windows XP 100 asynchronous acquisition 26 asynchronous bitmap passthru 22   B bitmap passthru mode 22 asynchronous 46 extended 46 synchronous 46 blanking information 12 block diagram 6 board ID 32 | color intensity 9 COLOR_INTERFACE_DIGITAL_IO 33 COLOR_INTERFACE_DRAW_ ACQUIRED_FRAME 33 COLOR_INTERFACE_IMAGE_ PARAMETER 33 COLOR_INTERFACE_SIGNAL_ TYPE 33 COLOR_INTERFACE_STORAGE_ MODE 33 composite signals 7, 36 composite video source 39 continuous acquire 46 continuous-acquire passthru mode 23 contrast 9, 37 controls color 69 standard 68 conventions used x customer service 88 CVBS signal type 7 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| board name 32<br>board signature 32<br>brightness 9, 37<br>bytes per pixel 44                                                                                                                                                                                                                                                                                                | D data storage 33, 45 DDI 25, 32 device memory 26, 49, 50 device memory management 32                                                                                                                                                                                                                                                                                                                           |
| capabilities 30 CCIR 8 clock sources 35 color frame grabber 32                                                                                                                                                                                                                                                                                                               | device type 32<br>diagrams, programming 55<br>digital I/O signals 33, 51<br>digital input specifications 90                                                                                                                                                                                                                                                                                                     |

| drawing acquired frames 33, 50     | first pixel (left) 15          |
|------------------------------------|--------------------------------|
| DT Vision Foundry 3                | height 15, 16, 43              |
| DT3120 Device Driver 3             | left 16, 43                    |
| Windows 98 procedures 94           | selection 42                   |
| Windows Me procedures 94           | selection query 42             |
| DT-Acquire 3                       | top 16, 43                     |
| DT-Active Open Layers 3            | types 44                       |
| DtColorHardwareScaling 45, 62, 64, | width 15, 16, 43               |
| 69                                 | Frame Grabber SDK 3            |
| DtColorImageParameters 37, 69      | full frame acquisition 49, 50  |
| DtColorQueryInterface 33           | _                              |
| DtColorSignalType 36, 69           |                                |
| DtColorStorageMode 45              | G                              |
| DtColorSyncMasterMode 39           | GLI/2 Streamline 3             |
|                                    | GLOBAL LAB Image/2 3           |
| E                                  |                                |
|                                    | Н                              |
| e-mail support 87                  |                                |
| environmental specifications 91    | help 80                        |
| external trigger 35                | horizontal sync signals 11     |
| specifications 90                  | horizontal video signal 13     |
|                                    | hue 9, 37                      |
| F                                  |                                |
| •                                  | 1                              |
| factory service 88                 | IIII 0                         |
| fax support 87                     | ILUTs 36                       |
| features 2                         | image parameters 33, 37, 38    |
| field 26                           | image processing               |
| acquiring even 44                  | input look-up tables 36        |
| acquiring next 44                  | input scaling 44               |
| acquiring odd 44                   | initialized control values 52  |
| first active line 42               | input controls 68, 69          |
| first active pixel 41              | input look-up tables 36        |
| fixed Sync Sentinel type 39        | input operations 32            |
| frame                              | input scaling 18, 44           |
| acquisitions 35                    | input sources, number of 34    |
| first line (top) 15                | input video selection query 38 |
|                                    |                                |

| interlaced frame 26<br>even field 44<br>next field 44<br>odd field 44                                                                                                                                                                                                                               | <b>N</b><br>NTSC 8                                                                                                                                                                                                                                                                                                                                                        |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| interlaced signal 17<br>internal clock 35<br>internal pixel clock frequency 35                                                                                                                                                                                                                      | OLC_COMPOSITE_SIGNAL 36<br>OLC_FG_ACQ_FRAME 49, 50<br>OLC_FG_ACQ_SUBFRAME 49, 50                                                                                                                                                                                                                                                                                          |  |  |
| L lines range between 44 total per field 12 look-up tables 36                                                                                                                                                                                                                                       | OLC_FG_CC_DIG_OUT_COUNT 51 OLC_FG_CLOCK_INTERNAL 35 OLC_FG_CSYNC_CURRENT_SRC 39 OLC_FG_CTL_CSYNC_SOURCE 68 OLC_FG_CTL_FRAME_HEIGHT 68 OLC_FG_CTL_FRAME_LEFT 68 OLC_FG_CTL_FRAME_TOP 68                                                                                                                                                                                    |  |  |
| memory device 49, 50 types 48 modifying a board in the driver configuration Windows 2000 98 Windows 98 95 Windows Me 95 Windows XP 101 monochrome format 19 monochrome signals 7, 36 monochrome storage mode 45 multiple frame acquisitions 35 to device, asynchronous 50 to device, synchronous 50 | OLC_FG_CTL_FRAME_WIDTH 68 OLC_FG_CTL_VIDEO_TYPE 68 OLC_FG_FRM_FIELD_EVEN 44 OLC_FG_FRM_FIELD_NEXT 44 OLC_FG_FRM_FIELD_ODD 44 OLC_FG_FRM_IL_FRAME_EVEN 44 OLC_FG_FRM_IL_FRAME_NEXT 44 OLC_FG_FRM_IL_FRAME_ODD 44 OLC_FG_IC_ACTIVE_LINE_LIMITS 42 OLC_FG_IC_ACTIVE_PIXEL_LIMITS 41 OLC_FG_IC_CLOCK_FREQ_LIMITS 35 OLC_FG_IC_CLOCK_SOURCE_ LIMITS 35 OLC_FG_IC_CSYNC_SOURCE_ |  |  |
| multiple trigger modes 35 multiple trigger types 35                                                                                                                                                                                                                                                 | LIMITS 39 OLC_FG_IC_CSYNC_THRESH_LIST 39 OLC_FG_IC_CSYNC_THRESH_LIST_ LIMITS 39                                                                                                                                                                                                                                                                                           |  |  |

| OLC_FG_IC_DOES_DRAW_        | OLC_FG_IC_SINGLE_FRAME_OPS   |
|-----------------------------|------------------------------|
| ACQUIRED_FRAME 50           | 49                           |
| OLC_FG_IC_DOES_DRAW_        | OLC_FG_IC_SYNC_SENTINEL_     |
| ACQUIRED_FRAME_EX 50        | TYPE_LIMITS 39               |
| OLC_FG_IC_DOES_FRAME_SELECT | OLC_FG_IC_TRIG_EXTERNAL_     |
| 42                          | LINE 35                      |
| OLC_FG_IC_DOES_QUERY_FRAME  | OLC_FG_IC_VIDEO_TYPE_LIMITS  |
| _SELECT 42                  | 39                           |
| OLC_FG_IC_DOES_QUERY_PIXEL_ | OLC_FG_ILUT_COUNT 36         |
| CLOCK 34                    | OLC_FG_INPUT_SOURCE_COUNT    |
| OLC_FG_IC_DOES_QUERY_SYNC_  | 34                           |
| SENTINEL 39                 | OLC_FG_MC_MEMORY_TYPES 48    |
| OLC_FG_IC_DOES_QUERY_VIDEO_ | OLC_FG_MC_VOL_COUNT 48       |
| SELECT 38                   | OLC_FG_MEM_VOLATILE 48       |
| OLC_FG_IC_DOES_SYNC_        | OLC_FG_MODE_EACH 35          |
| SENTINEL 39                 | OLC_FG_MODE_START 35         |
| OLC_FG_IC_DOES_TRIGGER 35   | OLC_FG_PASSTHRU_ASYNC_       |
| OLC_FG_IC_FRAME_HEIGHT_     | BITMAP 46                    |
| LIMITS 43                   | OLC_FG_PASSTHRU_ASYNC_       |
| OLC_FG_IC_FRAME_HINC_LIMITS | BITMAP_EXTENDED 46           |
| 44                          | OLC_FG_PASSTHRU_SYNC_        |
| OLC_FG_IC_FRAME_LEFT_LIMITS | BITMAP 46                    |
| 43                          | OLC_FG_PC_DOES_PASSTHRU 46   |
| OLC_FG_IC_FRAME_TOP_LIMITS  | OLC_FG_PC_DOES_PASSTHRU_     |
| 43                          | SNAPSHOT 47                  |
| OLC_FG_IC_FRAME_TYPE_LIMITS | OLC_FG_PC_DOES_SOURCE_       |
| 44                          | ORIGIN 46                    |
| OLC_FG_IC_FRAME_VINC_LIMITS | OLC_FG_PC_PASSTHRU_MODE_     |
| 44                          | LIMITS 46                    |
| OLC_FG_IC_FRAME_WIDTH_      | OLC_FG_PC_PC_DOES_SCALING 46 |
| LIMITS 43                   | OLC_FG_PC_SCALE_HEIGHT_      |
| OLC_FG_IC_MAX_FRAME_SIZE 44 | LIMITS 46                    |
| OLC_FG_IC_MULT_TRIGGER_     | OLC_FG_PC_SCALE_WIDTH_       |
| MODE_LIMITS 35              | LIMITS 46                    |
| OLC_FG_IC_MULT_TRIGGER_TYPE | OLC_FG_PC_SRC_ORIGIN_X_      |
| _LIMITS 35                  | LIMITS 46                    |
| OLC_FG_IC_PIXEL_DEPTH 44    |                              |

| LIMITS 46 Device 61                                                    |                     |
|------------------------------------------------------------------------|---------------------|
| OLC EC CECTIONI DDI 00                                                 |                     |
| OLC_FG_SECTION_DDI 32 OlFgCancelAsyncAcquireJo                         | b 58, 61            |
| OLC_FG_SECTION_INPUT 32 OlFgCopyFrameRect 71, 72                       |                     |
| OLC_FG_SECTION_MEMORY 32 OlFgCreateSurface 65                          |                     |
| OLC_FG_SECTION_PASSTHRU 32 OlFgDestroyFrame 59, 61, 63                 | 3, 67               |
| OLC_FG_SYNC_SENTINEL_FIXED OlFgDestroySurface 67                       |                     |
| 39 OlFgDrawAcquiredFrameEx                                             | 70                  |
| OLC_FG_TRIG_EXTERNAL_LINE 35 OlfgEnableOverlays 67, 76                 |                     |
| OLC_FG_TRIGGER_TYPE_LIMITS 35 OlFgEraseSurface 65                      |                     |
| OLC_FG_VID_COMPOSITE 39 OlFgGetPassthruSyncEvent                       | 77                  |
| OLC_IMAGE_MONO 45 OlFgGetSurfaceDC 65, 77                              |                     |
| OLC_IMAGE_RGB 45 OlFgIsAsyncAcquireJobDon                              | 1e 58               |
| OLC_IMAGE_RGB_16 45 OlfgMapFrame 73                                    |                     |
| OLC_IMAGE_RGB_24 45 OlFgQueryCameraControlC                            | aps <mark>51</mark> |
| OLC_IMAGE_YUYV_422 45 OlFgQueryDDICaps 47                              |                     |
| OLC_IMG_DC_DEVICE_ID 32 OlFgQueryMemoryCaps 48                         |                     |
| OLC_IMG_DC_DEVICE_NAME 32 OlFgQueryPassthruCaps 46                     |                     |
| OLC_IMG_DC_OL_SIGNATURE 32 OlfgReadContiguousPixels                    | 71                  |
| OLC_IMG_DC_SECTIONS 32 OlFgReadFrameRect 71                            |                     |
| OLC_IMG_DEV_COLOR_FRAME_ OlfgReadPixelList 71                          |                     |
| GRABBER 32 OlFgReleaseSurfaceDC 65, 7                                  |                     |
| OLC_MONO_SIGNAL 36 OlFgSetInputControlValue 6                          |                     |
| OLC_SET_BRIGHTNESS 37 OlFgSetInputVideoSource 5                        | 7, 60, 62,          |
| OLC_SET_CONTRAST 37 64                                                 |                     |
| OLC_SET_HUE 37 OlFgSetOverlayColorKey 76                               | )                   |
| OLC_SET_U_SAT 37 OlFgSetPassthruScaling 65                             |                     |
| OLC_SET_V_SAT 37 OlFgSetTranslucentOverlay                             | 76                  |
| OLC_YC_SIGNAL 36 OlFgSetTriggerInfo 57, 60                             |                     |
| OlFgAcquireFrameToDevice 59 OlFgSetVisibleSurface 76, 77               |                     |
| OlFgAcquireMultipleToDevice 61 OlFgStartAsyncPassthruBitm              | -                   |
| OlFgAllocateBuiltInFrame 57, 60, 74, OlFgStartAsyncPassthruEx 7        |                     |
| 75 OlFgStopAsyncPassthru 63,                                           | 67                  |
| OlFgAsyncAcquireFrameToDevice OlFgUnmapFrame 73                        |                     |
| 58 OlFgWriteContiguousPixels                                           | 72                  |
|                                                                        |                     |
| OlFgAsyncAcquireJobDone 61 OlFgWriteFrameRect 72 OlFgWritePixelList 72 |                     |

| OlImgCloseDevice 59, 61, 63, 67                       | single-frame acquisition 57        |  |
|-------------------------------------------------------|------------------------------------|--|
| OllmgOpenDevice 57, 60, 62, 64 programming flowcharts |                                    |  |
| OlImgQueryDeviceCaps 32                               | passthru with overlays 64          |  |
| OlImgQueryInputCaps 34, 38, 40, 42,                   |                                    |  |
| 49                                                    | D                                  |  |
| OlImgSetTimeoutPeriod 57, 60, 62,                     | R                                  |  |
| 64                                                    | related documents xi               |  |
| OLT_COLOR_PARAMETER 37, 38                            | returning boards to the factory 88 |  |
| OLT_IMAGE_MODE 45                                     | RGB 19, 45                         |  |
| OLT_QUERY_COLOR_INTERFACE                             | RGB16 19, 45                       |  |
| 33                                                    | RGB24 19, 45                       |  |
| OLT_SCALE_PARAM 45                                    | RMA 88                             |  |
| OLT_SIGNAL_TYPE 36                                    | RS-170 8                           |  |
| overlays 25                                           |                                    |  |
| •                                                     | S                                  |  |
| <b>n</b>                                              | 3                                  |  |
| P                                                     | scale factor                       |  |
| PAL 8                                                 | horizontal 45                      |  |
| passthru 22, 32, 46                                   | vertical 45                        |  |
| bitmap mode 22, 46                                    | scaling                            |  |
| continuous-acquire mode 23                            | height 46                          |  |
| scaling 24, 46                                        | input 18, 44                       |  |
| scaling height 46                                     | passthru 24, 46                    |  |
| scaling width 46                                      | width 46                           |  |
| snapshot 47                                           | service and support procedure 84   |  |
| with overlays 64                                      | setting color input controls 69    |  |
| physical specifications 91                            | setting standard input controls 68 |  |
| pixel clock 9, 35                                     | signal types 7, 33, 36             |  |
| pixel clock query 34                                  | single frame acquisitions          |  |
| pixels 9                                              | to device, asynchronous 49         |  |
| per frame 44                                          | to device, synchronous 49          |  |
| range between 44                                      | source origin 46                   |  |
| total per line 12                                     | X value 46                         |  |
| power specifications 91                               | Y value 46                         |  |
| programming flow diagrams 55                          | specifications                     |  |
| multiple-frame acquisition 60                         | environmental 91                   |  |
| passthru without overlays 62                          | input 90                           |  |
|                                                       |                                    |  |

| physical 91                    | telephone support 84             |
|--------------------------------|----------------------------------|
| power 91                       | total lines per field 12         |
| video input 90                 | total pixels per line 12         |
| status code 56                 | total video area, see video area |
| storage modes 19, 33, 45       | trigger 35                       |
| monochrome 45                  | external 35                      |
| RGB 45                         | types 35                         |
| RGB16 45                       | troubleshooting                  |
| RGB24 45                       | procedure 80                     |
| YUYV422 45                     | service and support procedure 84 |
| subframe acquisition 49, 50    | troubleshooting table 81         |
| suggested reading xii          |                                  |
| support                        | U                                |
| e-mail 87                      |                                  |
| fax 87                         | uninstalling the device driver   |
| telephone 84                   | Windows 2000 98                  |
| World Wide Web 87              | Windows 98 96                    |
| S-video signal type 7          | Windows Me 96                    |
| sync from current input 39     | Windows XP 101                   |
| Sync Sentinel 39               | U-saturation 9, 37               |
| query 39                       |                                  |
| types 39                       | V                                |
| sync signals 11, 39            | •                                |
| sync threshold limits 39       | vertical sync signals 11         |
| sync threshold list 39         | vertical video signal 14         |
| synchronous acquisition 26     | video area                       |
| synchronous bitmap passthru 22 | active 12                        |
| synchronous continuous-acquire | frame 15                         |
| passthru 23                    | total 12                         |
|                                | video input channels 8           |
| T                              | video input signals 7            |
| •                              | video input specifications 90    |
| technical support 84           | video sources 39                 |
| e-mail 87                      | video types 39                   |
| fax 87                         | Visual Basic programs 3          |
| telephone 84                   | Visual C++ programs 3            |
| World-Wide Web 87              | volatile buffer handles 48       |

YUYV422 45 volatile memory 48 V-saturation 9, 37 W Windows 2000 adding a board to the driver configuration 97 modifying a board in the driver configuration 98 uninstalling the device driver 98 Windows 98 adding a board to the driver configuration 94 modifying a board in the driver configuration 95 uninstalling the device driver 96 Windows Me adding a board to the driver configuration 94 modifying a board in the driver configuration 95 uninstalling the device driver 96 Windows XP adding a board to the driver configuration 100 modifying a board in the driver configuration 101 uninstalling the device driver 101 World-Wide Web 87 writing programs in Visual Basic 3 writing programs in Visual C++ 3 Y/C signals 8, 36

YUYV 19

### Warranty and Service Policy

#### WARRANTY

Data Translation, for the effective period of the warranty set out below, warrants that its standard hardware products and software media will be free from defects in materials and workmanship under normal use and service. Data Translation's obligation under this warranty shall not arise until the Buyer returns the defective product, freight prepaid, to Data Translation's facility or another specified location. The only responsibility of Data Translation under this warranty is, at its option, to replace or repair, free of charge, any defective component part of such products.

### **EFFECTIVE PERIOD OF WARRANTY**

All boards, modules, systems, and software media are warranted for one year from date of invoice. Products repaired or replaced within this warranty period maintain their original warranty. Products repaired or replaced outside the warranty period are warranted for 30 days from invoiced date of return.

### **RETURN OUTSIDE USA**

Contact the local sales representative or factory for authorization and shipping instructions.

#### LIMITATIONS ON WARRANTY

The warranty set forth above does not extend to and shall not apply to

- Products which have been repaired or altered by other than Data Translation personnel, unless Buyer has properly altered or repaired the products in accordance with procedures previously approved in writing by Data Translation.
- 2. Products which have been subject to misuse, neglect, accident, or improper installation.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED, ORAL OR WRITTEN, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WHICH DATA

TRANSLATION SPECIFICALLY DISCLAIMS. DATA TRANSLATION, INC. NEITHER ASSUMES NOR AUTHORIZES ANY OTHER LIABILITY IN CONNECTION WITH THE SALES, INSTALLATION, OR USE OF ITS PRODUCTS. DATA TRANSLATION, INC. SHALL HAVE NO LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING OUT OF THE SALE, INSTALLATION, OR USE OF ITS PRODUCTS.

#### CUSTOMER SERVICE POLICY

- a. Data Translation, Inc. will repair or replace, at its option, any faulty item within ten days after receipt of said part regardless of its warranty status.
- b. A Quick Turnaround Plan is available to expedite servicing. Contact the Data Translation Customer Service Department for details.
- c. If a product should fail during the warranty period, it will be repaired free of charge. For out-of-warranty repairs, the customer will be invoiced for repair charges.

### RETURN/REPAIR PROCEDURES

Upon determining that repair services are required, or to return a product to Data Translation, contact the Data Translation Customer Service Department at (508) 481-3700, extension 394 to obtain a Return Material Authorization (RMA) number. Have the following information ready when you call: complete product model number, product serial number, name, address, and telephone number of person returning product; and any special repair instructions.

Carefully package the product in anti-static packaging, making sure the RMA number appears on the outside of the package. Ship prepaid to:

Customer Service Department Data Translation, Inc. 100 Locke Drive Marlboro, MA 01752-1192 USA

On completion of required service, an invoice is issued stating charges, when applicable, and the work that has been completed.

### **Data Translation Support Policy**

Data Translation, Inc. (Data Translation) offers support upon the following terms and conditions at prices published by Data Translation from time to time. Current price information is available from Data Translation, or its authorized distributor. If Licensee elects to obtain support services from Data Translation, Licensee must complete the Support Order Form attached hereto and submit to Data Translation the completed form, along with Licensee's purchase order for support. Support will only be provided for all (not less than all) Licensed Processors (as defined in the Data Translation Software License Agreement).

1. DEFINITIONS. Capitalized terms used herein and not otherwise defined shall have the meanings assigned thereto in the applicable Data Translation Software License Agreement (the Agreement). The following terms have the meanings set forth below:

Enhanced Release means a new release of any Product that contains new features and may contain corrections to previously identified errors. Enhanced Releases are designated in the tenths digit of the release designation (e.g., 1.2 is an Enhanced Release from 1.1.x).

Maintenance Release means a new release of any Product that contains corrections to previously identified errors. Maintenance Releases are designated in the hundredths digit of the release designation (e.g., 1.2.2 is a Maintenance Release from 1.2.1).

Major Release means a new version of any Product that involves major feature changes. Major Releases are designated in the ones digit of the release designation (e.g., 2.0, 3.0, etc., are Major Releases).

2. DATA TRANSLATION'S OBLIGATIONS. Subject to the terms of the Agreement, and this Support Policy, Data Translation will provide the following support services (Support Services) for the Products comprising the Software, as they may be used with the Licensed Processors:

- (a) problem reporting, tracing and monitoring by internet electronic mail; (b) telephone support for problem determination, verification and resolution (or instruction as to work-around, as applicable) on a call-back basis during Data Translation's normal weekday business hours of 8:30 a.m. to 5 p.m. Eastern Time, excluding holidays; (c) one (1) copy of each Maintenance Release for the Products comprising the Software; (d) commercially reasonable efforts to diagnose and resolve defects and errors in the Software and Documentation; and (e) furnishing of the maintenance and technical support described above, for the current release and the immediately previous Enhanced Release of the Software. Support Services will be delivered in English. Enhanced Releases and Major Releases can be purchased by Licensee at a discount of twenty five percent (25%) off the then-current list prices for such releases
- 3. EXCLUSIONS. Support Services do not include: (a) the provision of or support for Products other than those identified in the Agreement as to which the applicable license and support fees shall have been paid, including without limitation, compilers, debuggers, linkers or other third party software or hardware tools or components used in conjunction with any Product; (b) services required as a result of neglect, misuse, accident, relocation or improper operation of any Product or component thereof, or the failure to maintain proper operating and environmental conditions; (c) support for processors other than Licensed Processors or for Products modified by or on behalf of Licensee; (d) repair or restoration of any Software arising from or caused by any casualty, act of God, riot, war, failure or interruption of any electrical power, air conditioning, telephone or communication line or any other like cause.

### **Data Translation Support Policy**

It is Licensee's responsibility to have adequate knowledge and proficiency with the use of the compilers and various software languages and operating systems used with the Products, and this Support Policy does not cover training of, or detailed direction on the correct use of these compilers, operating systems, or components thereof. On-site assistance shall not be provided hereunder, but may be available on a per call basis at Data Translation's then current rates (Specialized Application Support Charges) for labor, travel time, transportation. subsistence and materials during normal business hours, excluding holidays observed by Data Translation. The troubleshooting of faulty Licensee programming logic may also be subject to Specialized Application Support Charges and is not covered under this Support Policy. Direct authoring or development of customized application code is not provided hereunder but may be available on a per call basis upon payment of Specialized Application Support Charges.

4. LICENSEE'S OBLIGATIONS. Licensee agrees: (a) that the Designated Contact persons identified on the Support Order Form (or such other replacement individuals as Licensee may designate in writing to Data Translation) shall be the sole contacts for the coordination and receipt of the Support Services set forth in Section 2 of this Support Policy; (b) to maintain for the term of the support, an internet address for electronic mail communications with Data Translation; (c) to provide reasonable supporting data (including written descriptions of problems, as requested by Data Translation) and to aid in the identification of reported problems; (d) to install and treat all software releases delivered under this Support Policy as Software in accordance with the terms of the Agreement; and (e) to maintain the Agreement in force and effect.

#### 5. TERM AND TERMINATION.

- 5.1 Term. For each Product comprising the Software, Support Services will begin on the later of the date the Software warranty granted in the Agreement expires or the date of Licensee's election to obtain Support Services and will apply to such Product for an initial term of one (1) year, unless an alternative commencement date is identified in the Support Order Form. The initial term will automatically be extended for additional terms of one (1) year unless Support Services are terminated at the expiration of the initial term or any additional term, by either party upon thirty (30) days prior written notice to the other party.
- 5.2 Default. If Licensee is in default of its obligations under the Agreement (except for Licensee's obligation to maintain valid licenses for the Software, in which case termination is immediate) and such default continues for thirty (30) days following receipt of written notice from Data Translation, Data Translation may, in addition to any other remedies it may have, terminate the Support Services.

### 6. CHARGES, TAXES AND PAYMENTS.

- 6.1 Payment. The Support Fee in respect of the initial term, and, as adjusted pursuant to Section 5.2 in respect of additional terms, is payable in full prior to the commencement of the initial term or any additional term, as applicable.
- 6.2 Changes From Term to Term. The Support Fee and the terms and conditions of this Support Policy may be subject to change effective at the end of the initial term or any additional term by giving Licensee at least sixty (60) days prior written notice.

### **Data Translation Support Policy**

- 6.3 Taxes. The charges specified in this Support Policy are exclusive of taxes. Licensee will pay, or reimburse Data Translation, for all taxes imposed on Licensee or Data Translation arising out of this Support Policy except for any income tax imposed on Data Translation by a governmental entity. Such charges shall be grossed-up for any withholding tax imposed on Data Translation by a foreign governmental entity.
- 6.4 Additional Charges. Licensee agrees that Data Translation or its authorized distributor will have the right to charge in accordance with Data Translation's then-current policies for any services resulting from (a) Licensee's modification of the Software, (b) Licensee's failure to utilize the then-current release, or the immediately previous Enhanced Release, of the Software, (c) Licensee's failure to maintain Data Translation Support Services throughout the term of the Agreement, (d) problems, errors or inquiries relating to computer hardware or software other than the Software, or (e) problems, errors or inquiries resulting from the misuse or damage or of the Software or from the combination of the Software with other programming or equipment to the extent such combination has not been authorized by Data Translation. Pursuant to Section 2.4 of the Agreement, the Support Fee will also be adjusted in accordance with Data Translation's then current fee schedule as additional Licensed Processors are added. Support Fees do not include travel and living expenses or expenses for installation, training, file conversion costs, optional products and services, directories, shipping charges or the cost of any recommended hardware, third party software, or third party software maintenance fees or operating system upgrade.
- 7. WARRANTY LIMITATION. EXCEPT AS EXPRESSLY STATED IN THIS SUPPORT POLICY, THERE ARE NO EXPRESS OR IMPLIED WARRANTIES WITH RESPECT TO THE SUPPORT SERVICES PROVIDED HEREUNDER (INCLUDING THE FIXING OF ERRORS THAT MAY BE CONTAINED IN THE APPLICABLE DATA TRANSLATION SOFTWARE), INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE WARRANTIES AND REMEDIES SET FORTH IN THIS SUPPORT POLICY ARE EXCLUSIVE, AND ARE IN LIEU OF ALL OTHER WARRANTIES WHETHER ORAL OR WRITTEN, EXPRESS OR IMPLIED.
- 8. GENERAL PROVISIONS. Upon the election by Licensee to obtain Support Services, the terms of this Support Policy shall be governed by and are made a part of the Agreement.