中国农业大学

2017~2018 学年春季学期(2018.7)

高等数学A(下) 课程考试试题

题号	_	=	11	四	五	六	七	八	总分
得分									

(注意:本试卷共有八道大题,满分100分,考试时间100分钟)

- 一、填空题(本题共有5道小题,每小题3分,满分15分),请将答案填在横线上.
- **1.** 过点(1,0,1)且与平面x+y+z=0平行的平面方程为

2. 曲线
$$\Gamma$$
:
$$\begin{cases} x = a \cos t \\ y = a \sin t & \text{在点}(a,0,0) \text{处的切线方程为} \\ z = bt \end{cases}$$

3. 设
$$z = \arctan \frac{y}{x}$$
,则 $dz =$ ______.

- **4.** 函数 $u = \ln \sqrt{x^2 + y^2 + z^2}$ 在点 (3,4,0) 处沿方向 $\vec{l} = (2,1,2)$ 的方向导数为______.
- **5.** 设 f(x) 在 [0, π] 上的表达式为 $f(x) = x^2$,则它展开为正弦级数时,在 $x = 2018\pi$ 处该 级数收敛于_____.
- 二、单项选择题(本题共 5 小题,每小题 3 分,满分 15 分),请将合适选项填在括号内.
- 1. 对于二元函数 z = f(x, y), 下列有关连续、偏导数与全微分关系中正确的命题是 1.
- (A)偏导数存在,则函数必连续; (B)偏导数连续,则全微分必存在;
- (C)全微分存在,则偏导数必连续; (D)全微分存在,而偏导数不一定存在.

2. 已知函数 f(x,y) 在 (0,0) 点某邻域内连续,且 $\lim_{\substack{x\to 0 \ x^2+y^2}} \frac{f(x,y)}{x^2+y^2} = 1$,则下述四个选项中正确

的是【 1.

- (A) 点(0,0) 不是f(x,y) 的极值点;
- (B) 点(0,0) 是 f(x,y) 的极大值点;
- (C) 点(0,0) 是 f(x,y) 的极小值点;
- (D) f(x, y) 在点(0,0) 处不可微.
- 3. 设 f(x,y) 为连续函数, 区域 D 由 $x^2 + y^2 = 2ax$ (a > 0) 给出,则 $\iint_{\Sigma} f(x,y) dx dy$ 在极坐标 系下可表示为【

 - (A) $\int_0^{2\pi} d\theta \int_0^a f(\rho \cos \theta, \rho \sin \theta) \rho d\rho ;$ (B) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_0^a f(\rho \cos \theta, \rho \sin \theta) \rho d\rho ;$
 - (C) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta} f(\rho\cos\theta, \rho\sin\theta) d\rho ;$ (D) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho .$
- **4.** 已知向量 \vec{a} , \vec{b} , \vec{c} 的模分别为 $|\vec{a}|$ = 3, $|\vec{b}|$ = 4, $|\vec{c}|$ = 5 且 \vec{a} + \vec{b} + \vec{c} = 0 ,则 $|\vec{a} \times \vec{b}|$ 与 $|\vec{c} \times \vec{a}|$ 的关 系是【
 - (A) $|\vec{a} \times \vec{b}| < |\vec{c} \times \vec{a}|$;

(B) $|\vec{a} \times \vec{b}| > |\vec{c} \times \vec{a}|$;

(C) $\left| \vec{a} \times \vec{b} \right| = \left| \vec{c} \times \vec{a} \right|$;

- (D) 它们的大小没有联系.
- **5.** 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 x = R 处收敛,则下列结论中正确的是【
 - (A) 该级数在x = -R 也收敛;
- (B) 该级数的和函数在x = R处可导;
- (C) 该级数在x = R处绝对收敛;
- (D) 该级数的收敛半径大于等于R.
- 三、计算下列各题(本题共有2道小题,每小题8分,满分16分)

1.
$$\frac{\pi}{2} z = \ln \frac{1}{r}, \quad r = \sqrt{x^2 + y^2}, \quad \Re \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$$

2. 计算
$$\iint_{D} \frac{x}{(1+x^2+y^2)^2} dxdy$$
, 其中 $D = \{(x,y) | x^2 + y^2 \le 1\}$.

四、(本题满分 10 **分)** 设平面闭区域 D 是半平面 $y \le x$ 和圆 $x^2 + (y-a)^2 \le a^2$ 的公共部分,求 D 的面积,其中 a > 0.

五、(本题满分 10 分)设 Σ 为球面 $x^2 + y^2 + z^2 = R^2$,取外侧,其中 R > 0. 计算第二类曲面积分 $I = \iint_{\Sigma} \frac{x \mathrm{d} y \mathrm{d} z + y \mathrm{d} z \mathrm{d} x + z \mathrm{d} x \mathrm{d} y}{\left(x^2 + y^2 + z^2\right)^{3/2}}$.

六、(本题满分 12 分) 设 p > 0, a > 0, b > 0, c > 0,且 a + b + c = 1,则函数 $f(x, y, z) = x^a y^b z^c$

在约束条件 $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{p}$, x > 0, y > 0, z > 0 下达到最小值, 试求出这个最小值, 并由此

证明: 当
$$x, y, z > 0$$
时,成立不等式 $\sqrt[3]{xyz} \ge \frac{3}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}$.

七、(本题满分 **10** 分)设 $P_0(x_0, y_0, z_0)$ 是球面 $S: x^2 + y^2 + z^2 = 1$ 上的点,球面 S 在点 P_0 的 切平面经过点 (0,0,2),证明:满足上述条件的 P_0 的点全体是球面 S 上的一个圆.

八、(本题共有2道小题,每小题6分,满分12分).

- **1.** 讨论级数 $\sum_{n=1}^{\infty} \left(\frac{1}{n} \ln(1 + \frac{1}{n}) \right)$ 的敛散性,又已知 $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \ln(1 + n)$,证明数列 $\{x_n\}$ 收敛.
- **2.** $\Re \lim_{n \to \infty} \frac{1}{\ln n} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right).$