Métodos Matemáticos I

Prof. Aparecido J. de Souza aparecidosouza@ci.ufpb.br

Operadores Auto-Adjuntos Matrizes Hermitianas e Matrizes Simétricas O Teorema Espectral

Recapitulando

Teorema. Sejam V um espao vetorial de dimensão **n** e $T: \mathbb{V} \to \mathbb{V}$ um operador linear com matriz $A_{n \times n}$ em relação a uma base B_1 de V. Se T (ou A) possuir n autovetores LI entre si, **então** existe uma base **B**₂ de V tal que a matriz de T nesta "nova" base é uma matriz diagonal Λ. Os autovalores de T (ou de A) formam a diagonal de Λ. Além disto, a matriz S mudança da base de autovetores B2 para a base original B1, ou matriz de diagonalização, tem como colunas os n autovetores de T e valem as identidades $S^{-1}AS = \Lambda$, ou $A = S\Lambda S^{-1}$, ou

$$AS = S\Lambda$$
, ou $AS^{-1} = S^{-1}A$.

Obs. Se $[v]_{B_1}$ é a representação de v na base B_1 e $[v]_{B_2}$ é a representação de v na base de autovetores, então

$$|[v]_{\mathsf{B}_2} = \mathsf{S}^{-1}[v]_{\mathsf{B}_1} \text{ ou } [v]_{\mathsf{B}_1} = \mathsf{S}[v]_{\mathsf{B}_2} |.$$

Operações com números complexos

Seja $\mathbb C$ o conjunto dos números complexos. **Então**,

- um **número complexo** é representado por $z = a + \mathbf{i}b$ com $a \in \mathbb{R}, b \in \mathbb{R}$ e $\mathbf{i}^2 = -1$;
- a = Re(z) é a parte real e b = Im(z) é a parte imaginária de z.
- o número **complexo conjugado** de z é $\bar{z} = a ib$;
- um número complexo é real se, e somente se, $\bar{z} = z$;
- Se $z_1 = a_1 + ib_1$ e $z_2 = a_2 + ib_2$, então $z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$;
- Se $z_1 = a_1 + ib_1$ e $z_2 = a_2 + ib_2$, então $z_1 z_2 = (a_1 a_2 b_1 b_2) + i(a_1 b_2 + b_1 a_2)$;
- O **módulo** de um número complexo z = a + ib é um **número real** definido por $|z| = \sqrt{a^2 + b^2}$;
- $|z|^2 = z\bar{z}$;
- $z + \bar{z} = 2Re(z), z \bar{z} = 2iIm(z);$
- Forma Polar: $z = r[cos(\theta) + isen(\theta)]$, com $r = \sqrt{a^2 + b^2} = |z|$, $cos(\theta) = \frac{a}{r}$ e $sen(\theta) = \frac{b}{r}$.

Espaços vetoriais sobre o corpo complexo

Seja \mathbb{V} um espaço vetorial sobre os complexos \mathbb{C} . **Então**,

- Um PI ⟨v₁, v₂⟩ em V deve satisfazer:
 - $\langle v_1, v_2 \rangle = \overline{\langle v_2, v_1 \rangle}, \forall v_1, v_2 \in \mathbb{V}$ (propriedade hermitiana);
 - $\langle \alpha v_1, v_2 \rangle = \alpha \langle v_1, v_2 \rangle, \forall v_1, v_2 \in \mathbb{V} \text{ e } \forall \alpha \in \mathbb{C};$
 - $\langle v_1 + v_2, v_3 \rangle = \langle v_1, v_3 \rangle + \langle v_2, v_3 \rangle, \forall v_1, v_2, v_3 \in \mathbb{V};$
 - $\langle v, v \rangle \ge 0$, $\forall v \in \mathbb{V}$ e $\langle v, v \rangle = 0 \iff v = \mathbf{0}$.

Consequências:

- $\langle v_1, \alpha v_2 \rangle = \overline{\alpha} \langle v_1, v_2 \rangle$, $\forall v_1, v_2 \in \mathbb{V}$ e $\forall \alpha \in \mathbb{C}$;
- $\langle v_1, v_2 + v_3 \rangle = \langle v_1, v_2 \rangle + \langle v_1, v_3 \rangle, \forall v_1, v_2, v_3 \in \mathbb{V}.$
- Dada uma matriz A_{n×n}, com entradas a_{ij}, a matriz transposta conjugada de A tem entradas ā_{jj} e é denotada por A* (se A é real, então A* = A^t).
- Uma matriz $\mathbf{A}_{\mathbf{n} \times \mathbf{n}}$ é hermitiana quando $\mathbf{A}^* = \mathbf{A}$, isto é, quando $\bar{a}_{ji} = a_{ij}$ (se \mathbf{A} é real, então \mathbf{A} é simétrica). Neste caso, os elementos da diagonal de \mathbf{A} , os a_{ii} , devem ser números reais.

Seja $\mathbb V$ um espaço vetorial sobre um corpo $\mathbb K$ ($\mathbb K=\mathbb R$, ou $\mathbb K=\mathbb C$) munido de um PI \langle,\rangle .

Definição. Um operador $\mathbf{T}^*: \mathbb{V} \to \mathbb{V}$ é dito **adjunto** de um operador $\mathbf{T}: \mathbb{V} \to \mathbb{V}$ quando $\langle \mathbf{T}(\nu), w \rangle = \langle \nu, \mathbf{T}^*(w) \rangle, \forall \nu, w \in \mathbb{V}$.

Definição. Um operador $T : \mathbb{V} \to \mathbb{V}$ é **auto-adjunto** quando $T^* = T$, isto é, quando $\langle T(v), w \rangle = \langle v, T(w) \rangle, \forall v, w \in \mathbb{V}$.

Exemplo 1. Sejam
$$T_1 : \mathbb{R}^2 \to \mathbb{R}^2$$
 tal que $T_1(x_1, x_2) = (x_1, 2x_2)$. $T_2 : \mathbb{R}^2 \to \mathbb{R}^2$ tal que $T_2(x_1, x_2) = (x_2, x_1)$.

Note que, para quaisquer $(x_1, x_2) \in \mathbb{R}^2$ e $(w_1, w_2) \in \mathbb{R}^2$ tem-se: $\langle \mathbf{T}_1(x_1, x_2), (w_1, w_2) \rangle = \langle (x_1, 2x_2), (w_1, w_2) \rangle = x_1 w_1 + 2x_2 w_2$, e que,

$$\langle (x_1,x_2), \mathbf{T}_1(w_1,w_2) \rangle = \langle (x_1,x_2), (w_1,2w_2) \rangle = x_1w_1 + 2x_2w_2.$$

Analogamente,

$$\langle T_2(x_1, x_2), (w_1, w_2) \rangle = \langle (x_1, x_2), T_2(w_1, w_2) \rangle$$
 (verifique).

Seja $\mathbb V$ um espaço vetorial sobre um corpo $\mathbb K$ ($\mathbb K=\mathbb R$, ou $\mathbb K=\mathbb C$) munido de um PI \langle,\rangle .

Teorema. Se $\mathbb V$ é um espaço vetorial de dimensão finita $\mathbf n$, então um $\mathbf T: \mathbb V \to \mathbb V$ é auto-adjunto, se e somente se, a matriz $\mathbf A$ de $\mathbf T$ é hermitiana (simétrica no caso \mathbf{real}).

No Exemplo 1 temos

$$[\mathbf{T}_1] = \mathbf{A}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \mathbf{A}_1^t = \mathbf{A}_1^*. \quad [\mathbf{T}_2] = \mathbf{A}_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \mathbf{A}_2^t = \mathbf{A}_2^*.$$

Portanto A₁ e A₂ são hermitianas.

Versão matricial de operador auto-adjunto. Uma matriz quadrada \mathbf{A} é hermitiana, se e somente se, $\langle \mathbf{A} \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{A} \mathbf{w} \rangle$, $\forall \mathbf{v}, \mathbf{w} \in \mathbb{V}$.

Teorema. O produto de dois operadores auto-adjuntos T_1 e T_2 é um operador auto-adjunto, se e somente se, comutam, isto é, $T_1 \circ T_2 = T_2 \circ T_1$.

Versão matricial. O produto de duas matrizes A_1 e A_2 hermitianas é uma matriz hermitiana, se e somente se, comutam, isto é, $A_1A_2 = A_2A_1$.

Exemplo 2. $T_1(x_1, x_2) = (x_1, 2x_2)$ e $T_2(x_1, x_2) = (x_2, x_1)$ do **Exemplo 1** são auto-adjuntos, no entanto $T_1 \circ T_2$ não o é.

De fato

$$\mathbf{T}_1 \circ \mathbf{T}_2\big(x_1,x_2\big) = \mathbf{T}_1\big(x_2,x_1\big) = \big(x_2,2x_1\big), \qquad \text{ou } \mathbf{A}_1\mathbf{A}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}.$$

$$\mathbf{T}_2 \circ \mathbf{T}_1 \big(x_1, x_2 \big) = \mathbf{T}_2 \big(x_1, 2x_2 \big) = \big(2x_2, x_1 \big), \quad \text{ou } \mathbf{A}_2 \mathbf{A}_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}.$$

confirmando que $T_1 \circ T_2 \neq T_2 \circ T_1$, ou que $A_1 A_2 \neq A_2 A_1$.

Exercício. Verifique que nem $T_1 \circ T_2$, e que nem $T_2 \circ T_1$ satisfazem a definição de operador auto-adjunto.

Teorema. Se T : $\mathbb{V} \to \mathbb{V}$ é um operador **auto-adjunto** num espaço vetorial \mathbb{V} (sobre o corpo \mathbb{C} ou \mathbb{R}) munido de um PI, então **todo autovalor** de **T** é **um número real**.

De fato. Sejam $\lambda \in \mathbb{K}$ e $\bar{\lambda}$ o seu conjugado complexo.

Suponha que exista $v \in \mathbb{V}$, $v \neq \mathbf{0}$ tal que $\mathbf{T}(v) = \lambda v$.

Então
$$\lambda \|v\|^2 = \lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle \mathbf{T}(v), v \rangle = \langle v, \mathbf{T}(v) \rangle = \langle v, \lambda v \rangle = \bar{\lambda} \langle v, v \rangle = \bar{\lambda} \|v\|^2.$$

Portanto, $\lambda \|v\|^2 = \bar{\lambda} \|v\|^2$.

Como $v \neq 0$, então $\lambda = \overline{\lambda}$, isto é, λ é um número real.

Seja \mathbb{V} um espaço vetorial sobre \mathbb{K} munido de um PI \langle , \rangle .

Teorema. Se $T: \mathbb{V} \to \mathbb{V}$ é um operador auto-adjunto, então autovetores de T associados à autovalores distintos de T, além de serem LI entre si, também são ortogonais entre si.

De fato. Sejam λ_1 e λ_2 com $\lambda_1 \neq \lambda_2$ autovalores de **T** com os respectivos autovetores $v^{(1)}$ e $v^{(2)}$.

Então
$$(\lambda_2 - \lambda_1)\langle v^{(1)}, v^{(2)}\rangle$$
 distributiva $\lambda_2\langle v^{(1)}, v^{(2)}\rangle - \lambda_1\langle v^{(1)}, v^{(2)}\rangle$ linearidade do PI $\langle v^{(1)}, \lambda_2 v^{(2)}\rangle - \langle \lambda_1 v^{(1)}, v^{(2)}\rangle$ def de autovetor $\langle v^{(1)}, \mathbf{T}(v^{(2)})\rangle - \langle \mathbf{T}(v^{(1)}), v^{(2)}\rangle$ def de Adjunto $\langle v^{(1)}, \mathbf{T}(v^{(2)})\rangle - \langle v^{(1)}, \mathbf{T}^*(v^{(2)})\rangle$ $\mathbf{T}^* = \mathbf{T} \langle v^{(1)}, \mathbf{T}(v^{(2)})\rangle - \langle v^{(1)}, \mathbf{T}(v^{(2)})\rangle = 0$. Como $(\lambda_2 - \lambda_1) \neq 0$, então $\langle v^{(1)}, v^{(2)}\rangle = 0$.

Teorema Espectral. Sejam $\mathbb V$ um espaço vetorial sobre um coro $\mathbb K$ de dimensão finita $\mathbf n$ munido de um PI e $\mathbf T: \mathbb V \to \mathbb V$ e um operador linear **auto-adjunto** com matriz hermitiana $\mathbf A_{n\times n}$ em relação a uma base $\mathbf B_1$ de $\mathbb V$. Então existe uma base ortonormal $\mathbf B_2$ de $\mathbb V$ tal que a matriz de $\mathbf T$ nesta base ortonormal é uma matriz diagonal Λ . Os autovalores (reais) de $\mathbf T$ (ou de $\mathbf A$) formam a diagonal de Λ . Além disto, as colunas da matriz $\mathbf Q$ mudança da base ortonormal $\mathbf B_2$ para a base $\mathbf B_1$ são exatamente os $\mathbf n$ autovetores de $\mathbf T$ ortonormais entre si. Isto é,

$$\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}=\Lambda$$
, ou $\mathbf{A}=\mathbf{Q}\Lambda\mathbf{Q}^{-1}$, ou $\mathbf{A}\mathbf{Q}=\mathbf{Q}\Lambda$, ou $\Lambda\mathbf{Q}^{-1}=\mathbf{Q}^{-1}\mathbf{A}$.

Obs. Se $[v]_{B_1}$ é a representação de v na base B_1 e $[v]_{B_2}$ é a representação de v na base de autovetores B_2 , então

$$[v]_{\mathsf{B}_1} = \mathsf{Q}[v]_{\mathsf{B}_2} \quad \text{e} \quad [v]_{\mathsf{B}_2} = \mathsf{Q}^{-1}[v]_{\mathsf{B}_1}$$

Versão Matricial do Teorema Espectral. Toda matriz quadrada hermitiana (simétrica, no caso real) é diagonalizável.

Obs. A matriz mudança de base **Q** é uma matriz ortogonal, isto é, **Q** é uma matriz quadrada com colunas ortogonais entre si.

Exemplo 3. Seja $P_v : \mathbb{R}^3 \to \mathbb{R}^3$ o operador projeção sobre o vetor v = (1, 1, 1), isto é,

$$\mathbf{P}_{\mathbf{v}}(x,y,z) = \frac{\langle (x,y,z),(1,1,1)\rangle}{\|(1,1,1)\|^2}(1,1,1) = \frac{1}{3}(x+y+z,x+y+z,x+y+z).$$

Logo,
$$\mathbf{A} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 é simétrica e o operador auto-adjunto.

Autovalores de A: $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = 0$.

Autovetores de A associados à $\lambda_1 = 1$: $v^{(1)} = \frac{1}{\sqrt{3}}(1,1,1)$.

Os Autovetores de A associados à $\lambda_2 = \lambda_3 = 0$ devem estar no plano x + y + z = 0 (duas variáveis livres).

Usando o processo de ortogonalização de Gram-Schmidt escolhemos os autovetores ortonormais

$$v^{(2)} = \frac{1}{\sqrt{2}}(-1,0,1)$$
 e $v^{(3)} = \frac{1}{\sqrt{6}}(-1,2,-1)$.

Exemplo 3(cont.). Seja $P_v : \mathbb{R}^3 \to \mathbb{R}^3$ o operador projeção sobre o vetor v = (1, 1, 1), isto é,

Autovalores de A: $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = 0$.

Assim,

$$\mathbf{Q} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \end{bmatrix} \quad e \quad \Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Portanto, em relação a base **ortonormal** de autovetores **Q**, **se** $[v]_{\mathbf{Q}} = (a, b, c)$, **então** $\mathbf{P}_{\mathbf{v}}(a, b, c) = (a, 0, 0)$.

Exemplo 3(cont.). Seja $P_v : \mathbb{R}^3 \to \mathbb{R}^3$ o operador projeção

sobre o vetor
$$v = (1, 1, 1)$$
, isto é,
$$P_{\mathbf{v}}(x, y, z) = \frac{\langle (x, y, z), (1, 1, 1) \rangle}{\|(1, 1, 1)\|^2} (1, 1, 1) = \frac{1}{3} (x + y + z, x + y + z, x + y + z).$$

Matriz de Diagonalização:
$$\mathbf{Q} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \end{bmatrix}$$

Matriz inversa da matriz de Diagonalização(WolframAlpha):

$$\mathbf{Q}^{-1} = \frac{1}{6(-2+\sqrt{2}+\sqrt{6})} \begin{bmatrix} -12\sqrt{3} & 6\sqrt{2}+6\sqrt{6} & 12\sqrt{2} \\ \\ 18\sqrt{2} & -12-6\sqrt{2} & 2(6-6\sqrt{2}) \\ \\ 6\sqrt{6} & 12-6\sqrt{6} & -12 \end{bmatrix}.$$

Fábrica de matrizes hermitianas(simétricas)

Se M_{$m \times n$} é uma matriz quadrada, ou não, **então** a matriz produto $\mathbf{A} = \mathbf{M}\mathbf{M}^*$ é uma matriz hermitiana $m \times m$ (simétrica, no caso real) e a matriz produto $\mathbf{B} = \mathbf{M}^*\mathbf{M}$ é uma matriz hermitiana $n \times n$ (simétrica, no caso real).

De fato.
$$A = M_{m \times n} M_{n \times m}^*$$
 e $A^* = [MM^*]^* = [M^*]^* M^* = MM^* = A$.

$$\mathbf{B} = \mathbf{M}_{n \times m}^* \mathbf{M}_{m \times n}$$
 e $\mathbf{B}^* = [\mathbf{M}^* \mathbf{M}]^* = \mathbf{M}^* [\mathbf{M}^*]^* = \mathbf{M}^* \mathbf{M} = \mathbf{B}$.

Exemplo 4. Seja a matriz linha $M = [3 \ 4]_{1\times 2}$.

Então
$$\mathbf{M}^* = \begin{bmatrix} 3 \\ 4 \end{bmatrix}_{2 \times 1}$$
.

$$\mathbf{B} = \mathbf{M}_{2\times 1}^* \mathbf{M}_{1\times 2} = \begin{bmatrix} 3\times 3 & 3\times 4 \\ 4\times 3 & 4\times 4 \end{bmatrix}_{2\times 2} = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}_{2\times 2}.$$

Sistemas simétricos reais

Considere o sistema linear de **n** equações e **n** incógnitas $X = (x_1, x_2, \dots, x_n)$ na forma $\mathbf{A}X = \mathbf{B}$, com \mathbf{A} , $X \in \mathbf{B}$ reais.

Caso A não seja simétrica, mas $det(\mathbf{A}) \neq 0$ (ou $posto(\mathbf{A}) = \mathbf{n}$), **então** multiplicando o lado esquerdo e o lado direito do sistema pela matriz \mathbf{A}^t , transposta de \mathbf{A} , tem um "novo" sistema nas mesmas \mathbf{n} variáveis X, cuja matriz dos coeficientes é simétrica. Sistema este da forma $\mathbf{A}^t \mathbf{A} X = \mathbf{A}^t \mathbf{B}$ com a mesma solução que o sistema originalmente colocado.