

Attentive State-Space Modeling of Disease Progression

Ahmed M. Alaa Mihaela van der Schaar

Disease Trajectory Modeling

- <u>Cross-sectional modeling</u>: Simple prognostic questions (how long will a patient <u>survive</u>?) are not enough!
- Longitudinal modeling: addresses a more adequate question: what will happen to the patient in future?

Inform patient carers
about the patient's
future needs and
interactions with health
services

Two Central Goals of Longitudinal Models

- Goal A: Predicting individual-level disease trajectories
 - Early diagnosis
 - What are the risks of mortality, comorbidities, complications, infections in the future?
- Goal B: Understanding disease progression mechanisms.
 - Underlying <u>latent structure</u> of <u>disease evolution</u>
 - Causal pathways and comorbidity networks
 - Patients' <u>subgroup</u> analysis
 - Refined <u>phenotypes</u> and ontologies

Accuracy-interpretability Trade-off

Goals A and B have very different (and conflicting) modeling requirements!

Complex black-box models optimized for a given prediction task

Example: Recurrent neural networks (RNNs)

Models with structures that are understandable to humans and mimic an underlying physical process

Example: Hidden Markov model (HMM)

Different Forms of Interpretability

Form A: Instance-wise variable importance

- For every patient: identify important variables for future predictions at every time step based on the patient's history.
- Useful for transparency and actionability but not sufficient (no knowledge extraction).
- Example RETAIN [E. Choi, 2017].

Different Forms of Interpretability

- Form B: Discovering latent structures in disease progression
 - <u>Learn a hidden representation of the disease</u>: identify disease states and manifestations of states.

Population-level representation of disease states

Generative models

Segmentation and annotation of individual-level trajectories

Attentive State-space Modeling

- We want Form A and Form B + accurate predictions
- Our contribution: attentive state-space models
- Main idea:

Observations

Maintain probabilistic structure of an HMM

Hidden states Z_1 Z_2 Z_3 Z_4 Z_4

But use an RNN to model the state dynamics

Attentive State-space Modeling

• Attentive state-space models

Contextual Attention

- Use attention mechanism to keep state dynamics interpretable
- Observable variables: $(X_1,...,X_t)$
- lacktriangle Disease states: $(\boldsymbol{Z}_1,...,\boldsymbol{Z}_t)$

Baseline Markov chain

$$P(\boldsymbol{Z}_{m} = z \mid \mathcal{F}_{t_{m-1}}) = P(\boldsymbol{Z}_{m} = z \mid \{(\boldsymbol{Z}_{k} = z_{k}, \boldsymbol{\alpha}_{k}^{m}, \Delta_{k})\}_{k=1}^{m-1}) = \sum_{k=1}^{m-1} \boldsymbol{\alpha}_{k}^{m} (e^{\Delta_{k} \Lambda})_{z, z_{k}}$$
Sufficient statistics Attention weights

Contextual Attention

- The attentive state-space model can be interpreted as a soft version of a variable-order Markov model
- Memory is shaped by the current patient's context (clinical events, treatments, etc)

Comparison with Existing Models

Difference with RNNs, HMMs, HSMMs, Joint models.

 X_3

 X_4

No latent structure

Interpretable predictions,
Uninterpretable latent
structure

<u>Uninterpretable</u> predictions, <u>Uninterpretable</u> latent structure

 \boldsymbol{X}_2

 \boldsymbol{X}_1

Comparison with Existing Models

Difference with RNNs, HMMs, HSMMs, Joint models.

<u>Memoryless</u> predictions, <u>Interpretable</u> latent structure

PASS

Memoryful and interpretable predictions,
Interpretable latent structure

Generality of Attentive State Space Model

 Attentive state space models reduce to various classical sequential models for certain settings of attention mechanism.

Attention mechanism	Model
• 1 step back attention Time	Hidden Markov Model
Fixed multi-step attentionTime	Higher-order Hidden Markov Model

Generality of Attentive State Space Model

Attention mechanism	Model
Phased attention with binarized attention weightsTime	Variable-order Markov Model (context tree)
1 step back attention with non-linear transitions Time	Deep Markov Model

Learning and Inference

Sequence-to-sequence architecture for the attention mechanism

Experiments

- We used data from a cohort of patients enrolled in the UK CF registry, a database held by the UK CF trust.
- The dataset records annual follow-ups for 10,263 patients over the period from 2008 and 2015, with a total of 60,218 hospital visits.
- Each patient is associated with 90 variables, including information on 36 possible treatments, diagnoses for 31 possible comorbidities and 16 possible infections, in addition to biomarkers and demographic information.

Experiments

Learning curve

Individual trajectory

CF Phenotypes

Experiments

 Attentive state-space models do not only extract interpretable representations, but improve accuracy of prediction of comorbidities as well.

	Diabetes	ABPA	Depression	Pancreatitus	P. Aeruginosa
Model	AUC-ROC	AUC-ROC	AUC-ROC	AUC-ROC	AUC-ROC
Attentive SS	0.709 ± 0.02	$\textbf{0.787} \pm \textbf{0.01}$	$\textbf{0.751} \pm \textbf{0.03}$	0.696 ± 0.04	$\textbf{0.680} \pm \textbf{0.01}$
HMM	0.625 ± 0.02	0.686 ± 0.03	0.667 ± 0.08	0.625 ± 0.04	0.610 ± 0.02
RNN	0.634 ± 0.03	0.727 ± 0.10	0.575 ± 0.01	0.590 ± 0.06	0.654 ± 0.01
LSTM	0.675 ± 0.03	0.740 ± 0.07	0.609 ± 0.12	0.578 ± 0.05	0.671 ± 0.01
RETAIN	0.610 ± 0.06	0.718 ± 0.05	0.580 ± 0.09	0.600 ± 0.08	0.676 ± 0.02