

Multivariable Calculus Notes

MATH 230

Start

 $\overline{\text{JANUARY } 22, \ 2025}$

Author

Paul Beggs BeggsPA@Hendrix.edu

Instructor

Prof. Lars Seme, M.S.

End

May 13, 2025

TABLE OF CONTENTS

1	Parametric Eqs and Polar Coords 2			
		Param	netric Equations	2
			Introduction	2
		1.1.2	Parametric Equations	2
		1.1.3	Graphing Parametric Curves in the Second Dimension	2
		1.1.4	The Cycloid	3
		1.1.5	Final Notes	3
	1.2	Calcul	lus of Parametric Curves	3
		1.2.1	Slope for a Parametric Curve	4
		1.2.2	Second Derivative	4
		1.2.3	Area Under a Curve	4
		1.2.4	Arc Length	4
		1.2.5	Surface Area	4
		1.2.6	The Cycloid	5
2	Vec	tors in	i Space	7
			luction	7
				7
			Notation	7
	2.2		es in the Plane	7
	2.3		$\operatorname{cs\ in\ Space}$	8
			Vector Properties	8
			Special Vectors	9

PARAMETRIC EQS AND POLAR COORDS

1.1 Parametric Equations

1.1.1 Introduction

Most of your calculus experience has been single variable, so that the functions under consideration were typically $f: \mathbb{R} \to \mathbb{R}$. Our course is divided into roughly 3 sections:

- Parametric Equations/Functions: Functions of the form $f: \mathbb{R} \to \mathbb{R}^n$ (Chapters 1 3)
- Scalar Functions: Functions of the form $f: \mathbb{R}^n \to \mathbb{R}$ (Chapters 4 5)
- Vector Fields: Functions of the form $f: \mathbb{R}^n \to \mathbb{R}^n$ (Chapter 6)

1.1.2 Parametric Equations

A parametric equation (or, sometimes parametric function or vector-valued function) is a function of the form $f: \mathbb{R} \to \mathbb{R}^n$. We will typically consider n = 2 or n = 3 and call the input variable the parameter, usually denoted by t. We write them as

$$f(t) = \begin{cases} x(t) \\ y(t) \end{cases}$$
 or $f(t) = \begin{cases} x(t) \\ y(t) \\ z(t) \end{cases}$.

A parametric curve is the set of points (x(t), y(t)) in \mathbb{R}^2 or (x(t), y(t), z(t)) in \mathbb{R}^3 traced out. Note that in general, the curve may not be a function for y in terms of x, but is a function of the parameter t.

1.1.3 Graphing Parametric Curves in the Second Dimension

Elimination of the Parameter

In some cases, we can explicitly solve for t in terms of one of x or y. When this is possible, you can write y(x) or x(y) and use your "regular" algebraic knowledge. We call this process eliminating the parameter.

Using Technology

- Your TI-84 can graph this if you switch to par mode.
- Likewise, GeoGebra can do this, using the curve function.
 - In general, the syntax is: curve(x(t), y(t), t, min, max)

1.1.4 The Cycloid

A wheel of radius a is rolling along a flat road at a constant velocity. The curve generated by a point along the edge of the wheel traces out a shape called a *cycloid*. Let t represent the angle - in radians!!!! - rotated through, and that the point of interest starts at the origin. Before we find the equations for the point, let's find the location of the center of the circle:

$$f_{\text{center}}(t) = \begin{cases} x(t) = at \\ y(t) = a \end{cases}$$

Then, relative to the center, our point along the edge has equations

$$f(t) = \begin{cases} x(t) = -a\sin(t) \\ y(t) = -a\cos(t) \end{cases}$$

Thus, our point has parametric equations

$$f(t) = \begin{cases} x(t) = a(t - \sin(t)) \\ y(t) = a(1 - \cos(t)) \end{cases}$$

1.1.5 Final Notes

Next time, we'll start asking Calculus-y questions: What are the velocities in the x, y, and total directions? What total distance does it travel? What is the area of the region under one period of the cycloid?

- The syllabus has a number of practice problems to work on. These are not required, and not to be turned in, but are for you to work before class next time.
- We will talk about them at the start of the next class. You should try them beforehand.
- The most common reason for a lack of success in this class is not spending time working problems on your own.

1.2 Calculus of Parametric Curves

For this section, we will have a parametric curve in R2, defined by $f(t) = \begin{cases} x(t) \\ y(t) \end{cases}$. In many cases, the curve does not describe y as a function of x. However, we can still carry over many ideas from single variable calculus.

1.2.1 Slope for a Parametric Curve

Given a point t_0 , the slope of the curve in the xy-plane is given by

$$\left. \frac{dy}{dx} \right|_{t=t_0} = \left. \frac{dy/dt}{dx/dt} \right|_{t=t_0}.$$

Note that this is undefined when $x'(t_0) = 0$.

The *tangent line* at t_0 is given by

$$y = \left(\frac{dy}{dx}\Big|_{t=t_0}\right)(x - x(t_0)) + y(t_0).$$

1.2.2 Second Derivative

The value of the second derivative for the curve at t_0 is given by

$$\left. \frac{d^2y}{dx^2} \right|_{t=t_0} = \frac{d}{dt} \left(\frac{dy}{dx} \right) \right|_{t=t_0} = \frac{d}{dt} \left(\frac{dy/dt}{dx/dt} \right) \right|_{t=t_0}.$$

Note the benefit of Leibnitz notation for each of these two derivatives!

1.2.3 Area Under a Curve

Suppose that a parametric curve is non-self intersecting. Then, the signed area of the region between the curve and the x-axis on the t interval $[t_a, t_b]$ is given by

$$A = \int_{t_a}^{t_b} y(t) \frac{dx}{dt} dt = \int_{t_a}^{t_b} y(t) \frac{dx}{dt} dt.$$

1.2.4 Arc Length

The arc length of a parametric curve over the t interval $[t_a, t_b]$ is given by

$$s = \int_{t_a}^{t_b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

1.2.5 Surface Area

The *surface area* of the region obtained by rotating a non-self intersecting parametric curve is given by

$$S = \int_{t_a}^{t_b} 2\pi y(t) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

1.2.6 The Cycloid

We can apply each of the above to the cycloid:

- Derivative: $\frac{dy}{dx} = \frac{dy}{dx} = \frac{\sin(t)}{1-\cos(t)}$. Note that the slope is then independent of the radius of the wheel and that the slope is undefined at each of $t = \dots, -4\pi, -2\pi, 0, 2\pi, 4\pi, \dots$
- Concavity: $\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{\sin(t)}{1-\cos(t)} \right)$. After some work, we find that $\frac{d^2y}{dx^2} = -\frac{a}{y^2}$, which shows that the cycloid is always concave down.
- Area: The area of one period of the cycloid $A = 3\pi a2$, after some work.

$$A = \int_0^{2\pi} (a - a\cos t)(a - a\cos t)dt$$

$$= a^2 \int_0^{2\pi} (1 - 2\cos t + \cos^2 t)dt$$

$$= a^2 \left(2\pi + \int_0^{2\pi} 1 - 2\cos t + \cos^2 t\right)dt$$

$$= a^2 \left(2\pi + \left(\frac{t}{2} + \frac{1}{4}\sin(2t)\right)\right)\Big|_0^{2\pi}$$

$$= 3\pi a^2.$$

• Arc Length: The arc length of one period of the cycloid is s = 8a, again after some work.

$$S = \int_0^{2\pi} \sqrt{(a - a\cos t)^2 + (a\sin t)^2} dt$$

$$= a \int_0^{2\pi} \sqrt{1 - 2\cos t + \cos^2 t + \sin^2 t} dt$$

$$= a \int_0^{2\pi} \sqrt{2 - 2\cos t} dt$$

$$= \sqrt{2}a \int_0^{2\pi} \sqrt{1 - \cos t} dt$$

$$= \sqrt{2}a \int_0^{2\pi} \sqrt{2\sin^2\left(\frac{t}{2}\right)} dt$$

$$= \sqrt{2}a \cdot \sqrt{2} \int_0^{2\pi} \sin\left(\frac{t}{2}\right) dt$$

$$= 2a \left(-2\cos\left(\frac{t}{2}\right)\right) \Big|_0^{2\pi}$$

$$= 8a.$$

• Surface Area: The surface area of the solid obtained by rotating one period of the cycloid around the x-axis is $S = \frac{64\pi a^2}{3}$, after a lot of tedious work.

2.1 Introduction

2.1.1 Vectors

A *vector* is a quantity with both magnitude (size, length, strength, ...) and direction.

2.1.2 Notation

In print, we write vectors in bold like: \mathbf{v} , \mathbf{w} , \mathbf{u} , In handwriting, we often write vectors with an arrow over the top: \vec{v} , \vec{w} , \vec{u} ,

2.2 Vectors in the Plane

Given two points in the plane $P = (x_1, y_1)$ and $Q = (x_2, y_2)$, the vector from P to Q, denoted $\overrightarrow{PQ} = \mathbf{PQ} = \langle x_2 - x_1, y_2 - y_1 \rangle$.

We can also simply state components: $\mathbf{v} = \langle x, y \rangle$.

The *zero vector*, denoted $\mathbf{0}$, is $\mathbf{0} = \langle 0, 0 \rangle$. Note that $\mathbf{0} \neq 0$.

A *scalar* is a real number (or a magnitude), without direction.

If c is a scalar and $\mathbf{v} = \langle x, y \rangle$, then

$$c\mathbf{v} = c\langle x, y \rangle = \langle cx, cy \rangle.$$

This operation is called *scalar multiplication*. Scalar multiplication changes the magnitude of a vector, but not its direction.

Note that the individual components of a vector are themselves *scalars*. You need to keep track of which is which.

If $\mathbf{v} = \langle x_1, y_1 \rangle$ and $\mathbf{w} = \langle x_2, y_2 \rangle$, then the vector sum

$$\mathbf{v} + \mathbf{w} = \langle x_1 + x_2, y_1 + y_2 \rangle.$$

That is, we add component wise.

If $\mathbf{v} = \langle x_1, y_1 \rangle$, then the *magnitude* of \mathbf{v} is given by

$$\|\mathbf{v}\| = \sqrt{x_1^2 + y_1^2}.$$

This is really just the Pythagorean theorem.

2.3 Vectors in Space

In \mathbb{R}^3 , we have three axes, x, y, and z, which follow the *right-hand rule*: point the fingers of the right hand in the direction of the positive x-axis, curl them towards the positive y-axis, and the thumb points in the direction of the positive z-axis.

Since the distance formula in \mathbb{R}^3 is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$, then $\mathbf{u} = \langle x, y, z \rangle$ we have $\|\mathbf{u}\| = \sqrt{x^2 + y^2 + z^2}$.

To *normalize* a vector, we divide by its magnitude: $\mathbf{v} = \langle x, y, z \rangle$, then $\mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v} = \langle \frac{x}{\|\mathbf{v}\|}, \frac{y}{\|\mathbf{v}\|}, \frac{z}{\|\mathbf{v}\|} \rangle$. This gives us a *unit vector* in the direction of \mathbf{v} .

Everything else is basically the same.

2.3.1 Vector Properties

Suppose that each of \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors and r and s are scalars. Then the following properties hold:

- Additive Commutativity: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$.
- Additive Associativity: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- Additive Identity: $\mathbf{v} + \mathbf{0} = \mathbf{v}$.
- Additive Inverse: $-\mathbf{v} = (-1)\mathbf{v}$ and $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.
- Scalar Associativity: $r(s\mathbf{u}) = (rs)\mathbf{u}$.
- Scalars Distributive over Vectors: $r(\mathbf{u} + \mathbf{v}) = r\mathbf{u} + r\mathbf{v}$.
- Vectors Distributive over Scalars: $(r+s)\mathbf{u} = r\mathbf{u} + s\mathbf{u}$.
- Multiplicative Identity: $1\mathbf{u} = \mathbf{u}$.
- Zero Scalar: $0\mathbf{u} = \mathbf{0}$.

2.3.2 Special Vectors

A *unit vector* is a vector **u** such that $\|\mathbf{u}\| = 1$.

In \mathbb{R}^2 the *standard unit vectors* are $\hat{\imath} = \mathbf{i} = \langle 1, 0 \rangle$ and $\hat{\jmath} = \mathbf{j} = \langle 0, 1 \rangle$. This allows us to write $\mathbf{v} = \langle 2, 3 \rangle = 2\mathbf{i} + 3\mathbf{j}$, for example.

In \mathbb{R}^3 , we have three stand unit vectors, $\hat{\imath} = \mathbf{i} = \langle 1, 0, 0 \rangle$, $\hat{\jmath} = \mathbf{j} = \langle 0, 1, 0 \rangle$, and $\hat{k} = \mathbf{k} = \langle 0, 0, 1 \rangle$.

It is a picky detail, but $\mathbf{i} \in \mathbb{R}^2 \neq \mathbf{i} \in \mathbb{R}^3$.