Probability and Statistics: Lecture-38

Monsoon-2020

by Dr. Pawan Kumar (IIIT, Hyderabad) on November 11, 2020

» Union bound and extension... Union Bound Recall the inclusion exclusion principle:

Union Bound

Recall the inclusion exclusion principle:

$$P((\bigcup_{i=1}^{n} A_{i})) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j} P(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_{i})$$

Union Bound

Recall the inclusion exclusion principle:

$$P((\bigcup_{i=1}^{n} A_{i})) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < i < k} P(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_{i})$$

* union bound states that probability of union of events is smaller than the sum of first term.

Union Bound

Recall the inclusion exclusion principle:

$$P((\bigcup_{i=1}^{n} A_{i})) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < i < k} P(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_{i})$$

* union bound states that probability of union of events is smaller than the sum of first term. That is for n = 2, we have

Union Bound

Recall the inclusion exclusion principle:

$$P((\bigcup_{i=1}^{n} A_{i})) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j} P(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_{i})$$

* union bound states that probability of union of events is smaller than the sum of first term. That is for n=2, we have

$$P(A \cup B) \le P(A) + P(B),$$

Union Bound

Recall the inclusion exclusion principle:

$$P((\bigcup_{i=1}^{n} A_{i})) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j} P(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_{i})$$

* union bound states that probability of union of events is smaller than the sum of first term. That is for n = 2, we have

$$P(A \cup B) \le P(A) + P(B),$$

For any events A_1, A_2, \ldots, A_n , we have

Inion Bound

Recall the inclusion exclusion principle:

$$P((\bigcup_{i=1}^{n} A_{i})) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j})$$

$$+ \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_{i})$$

union bound states that probability of union of events is smaller than the sum of first term. That is for n = 2, we have

$$P(A \cup B) \leq P(A) + P(B)$$

For any events A_1, A_2, \ldots, A_n , we have n

$$P\left(\bigcup_{i=1}^{n}A_{i}\right)\leq\sum_{i=1}^{n}P(A_{i})$$
 (Union Bound)

Generalized Union Bounds

Generalized Union Bounds

Let A_1, A_2, \ldots, A_n be events, then

$$P((\bigcup_{i=1}^{n} A_i)) \leq \sum_{i=1}^{n} P(A_i)$$

$$P((\bigcup_{i=1}^{n} A_i)) \geq \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j)$$

$$P((\bigcup_{i=1}^{n} A_i)) \geq \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k)$$

1. If we stop at the second term, we obtain a lower bound

Generalized Union Bounds

$$P(\left(\bigcup_{i=1}^{n} A_{i}\right)) \leq \sum_{i=1}^{n} P(A_{i})$$

$$P(\left(\bigcup_{i=1}^{n} A_{i}\right)) \geq \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j})$$

$$P(\left(\bigcup_{i=1}^{n} A_{i}\right)) \leq \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k})$$

- 1. If we stop at the second term, we obtain a lower bound
- 2. If we stop at the third term, we obtain an upper bound, etc

Generalized Union Bounds

$$P(\left(\bigcup_{i=1}^{n}A_{i}\right))\leq\sum_{i=1}^{n}P(A_{i})$$

$$P((\bigcup_{i=1}^{n} A_i)) \geq \sum_{i=1}^{n} P(A_i) - \sum_{i \leq j} P(A_i \cap A_j)$$

$$i(\bigcup_{i=1}^{n} A_i)) \ge \sum_{i=1}^{n} i(A_i) - \sum_{i < j} i(A_i + A_j)$$

$$P(\left(\bigcup_{i=1}^{n} A_{i}\right)) \geq \sum_{i=1}^{n} P(A_{i}) - \sum_{i \leq j} P(A_{i} \cap A_{j}) + \sum_{i \leq j \leq k} P(A_{i} \cap A_{j} \cap A_{k})$$

- 1. If we stop at the second term, we obtain a lower bound
- 2. If we stop at the third term, we obtain an upper bound, etc
- In general, if we write an odd number of terms, we get an upper bound

Generalized Union Bounds

$$P((\bigcup_{i=1}^{n} A_i)) \leq \sum_{i=1}^{n} P(A_i)$$

$$P((\bigcup_{i=1}^{n} A_i)) \geq \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j)$$

$$P((\bigcup_{i=1}^{n} A_i)) \geq \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k)$$

- 1. If we stop at the second term, we obtain a lower bound
- 2. If we stop at the third term, we obtain an upper bound, etc
- 3. In general, if we write an odd number of terms, we get an upper bound
- 4. If we write an even number of terms, we get a lower bound

» Solved Example Using Union Bound...

» Solved Example Using Union Bound...

Example (Application of Union Bound

Consider the random graph denoted G(n,p), a graph with n nodes and p denotes the probability of an edge between pair of nodes.

» Solved Example Using Union Bound...

Example (Application of Union Bound

Consider the random graph denoted G(n,p), a graph with n nodes and p denotes the probability of an edge between pair of nodes. Let B_n be the event that this graph has at least one node. Show that

$$P(B_n) \ge n(1-p)^{n-1} - \binom{n}{2}(1-p)^{2n-3}$$

Markov and Chebyshev Inequalities

If X is any nonnegative random variable, then

Markov and Chebyshev Inequalities

If X is any nonnegative random variable, then

$$P(X \ge a) \le \frac{E[X]}{a}.$$

Markov and Chebyshev Inequalities

If X is any nonnegative random variable, then

$$P(X \ge a) \le \frac{E[X]}{a}$$

This inequality is called Markov inequality.

Markov and Chebyshey Inequalities

If X is any nonnegative random variable, then

$$P(X \ge a) \le \frac{E[X]}{a}$$

This inequality is called Markov inequality. Moreover, let b > 0, then

Markov and Chebyshev Inequalities

If X is any nonnegative random variable, then

$$P(X \ge a) \le \frac{E[X]}{a}.$$

This inequality is called Markov inequality. Moreover, let b > 0, then

$$P(|X - E[X]| \ge b) \le \frac{\operatorname{Var}(X)}{b^2}$$

Markov and Chebyshev Inequalities

If X is any nonnegative random variable, then

$$P(X \ge a) \le \frac{E[X]}{a}.$$

This inequality is called Markov inequality. Moreover, let b > 0, then

$$P(|X - E[X]| \ge b) \le \frac{Var(X)}{b^2}$$

The above inequality is called Chebyshev inequality.

* Chebyshev inequality states that the difference between X and E[X] is bounded by Var(X)

» Answer to previous problem... Frod of Chebycher Define $y = (x - E[x])^T$ is <u>non-negative</u> We can apply Markon. For any positive real no. 6, we have P(Y> 62) & E[7] (Morkon) $=) P(Y>b^2) = P((X-E[Y])^2>b^2)$

Example (Markov Inequality

Let $X \sim \text{Binomial}(n, p)$

Let $X \sim \text{Binomial}(n, p)$. Using Markov inequality, find an upper bound on $P(X \ge \alpha n)$, where

Let $X \sim \text{Binomial}(n, p)$. Using Markov inequality, find an upper bound on $P(X \ge \alpha n)$, where $p < \alpha < 1$. Verify this bound for p = 1/2 and $\alpha = 3/4$.

Marskov
$$P(x>dn) \in \frac{E[x]}{dn} = \frac{h}{dx} = \frac{p}{dx}$$

Pintr $p=\frac{1}{2}, d=\frac{3}{2} = \frac{p}{2}$

P(x>3n) $\leq \frac{1}{2} = \frac{2}{2}$

Example (Chebychev Inequality

Let $\lambda \sim \text{Binomial}(n, \mu)$

Example (Chebychev Inequality

Let $X \sim \text{Binomial}(n, p)$. Using Chebyshev inequality, find an upper bound on $P(X \ge \alpha n)$, where $p < \alpha < 1$.

$$P(x>\alpha n) = P(x-np > \alpha n-np)$$

$$\in P(|x-np| > n\alpha-np)$$

$$\in Var(x) = \frac{\pi p(1-p)}{n^{2}(\alpha-p)^{2}} = \frac{p(1-p)}{n(\alpha-p)^{2}}$$

Example (Chebychev Inequality

Let $X \sim \text{Binomial}(n, p)$. Using Chebyshev inequality, find an upper bound on $P(X \ge \alpha n)$, where $p < \alpha < 1$. Verify this bound for p = 1/2 and $\alpha = 3/4$.

Chernoff Bound

Let X be a random variable and $a \in \mathbb{R}$.

Nomentaling for sx = 1+ 1 + 5x = 1

Chernoff Bound

Let X be a random variable and $a\in\mathbb{R}.$ Let $M_X(s)=E[e^{sX}]$ be the moment generating function.

Chernoff Bound

Let X be a random variable and $a \in \mathbb{R}$. Let $M_X(s) = E[e^{sX}]$ be the moment generating function. Then the following holds

Chernoff Bound

Let X be a random variable and $a \in \mathbb{R}$. Let $M_X(s) = E[e^{sX}]$ be the moment generating function. Then the following holds

$$P(X \ge a) \le e^{-sa} M_X(s)$$
, for all $s > 0$

$$P(X \le a) \le e^{-sa} M_X(s)$$
, for all $s < 0$

Chernoff Bound

Let X be a random variable and $a \in \mathbb{R}$. Let $M_X(s) = E[e^{sX}]$ be the moment generating function. Then the following holds

$$P(X \ge a) \le e^{-sa} M_X(s)$$
, for all $s > 0$

$$P(X \le a) \le e^{-sa} M_X(s)$$
, for all $s < 0$

Since, the above holds for any s, we have the following

hernoff Bound

Let X be a random variable and $a \in \mathbb{R}$. Let $M_X(s) = E[e^{sX}]$ be the moment generating function. Then the following holds

$$P(X \ge a) \le e^{-sa} M_X(s),$$
 for all $s > 0$
 $P(X \le a) \le e^{-sa} M_X(s),$ for all $s < 0$

Since, the above holds for any s, we have the following

we have the following
$$P(X \ge a) \le \min_{s>0} e^{-sa} M_X(s)$$

$$P(X \le a) \le \min_{s>0} e^{-sa} M_X(s)$$

$$P(X \le a) \le \min_{s < 0} e^{-sa} M_{\lambda}$$

» Answer to previous problem...

Example (Application of Chernoff bound

Let $X \sim \text{Binomial(n,p)}$

Example (Application of Chernoff bound)

Let $X \sim \text{Binomial}(n,p)$. Find an upper bound for $P(X \ge \alpha n)$ using Chernoff bound.

example (Application of Chernoff bound

Let $X \sim \text{Binomial(n,p)}$. Find an upper bound for $P(X \geq \alpha n)$ using Chernoff bound. Assume $p < \alpha < 1$.

14/42

Example: Application of Chernoff Bound...

$$P(X > X n) = \min_{S > 0} e^{-S\alpha} M_X(s) = \min_{S > 0} e^{-S\alpha} (pe^{S} + p)^n \longrightarrow F$$

Example (Application of Chernoff bound)

Let $X \sim B$ inomial(n,p). Find an upper bound for $P(X \ge \alpha n)$ using Chernoff bound. Assume $p < \alpha < 1$. Verify the bound for $p = 1/2$ and $\alpha = 3/4$.

We have $\min_{S > 0} f(s) = 0$ Solve for $S = 1/2$ solve for $S = 1/2$

» Answer to previous problem...

From provious clide (check that this By veing Cheroff Lound.

16/42

» Comparison between Markov, Chebyshev, and Chernoff Bounds...

» Comparison between Markov, Chebyshev, and Chernoff Bounds...

Example (Comparison between Markov, Chebyshev, and Chernoff Bound

Let $X \sim \text{Binomial}(n, p)$

» Comparison between Markov, Chebyshev, and Chernoff Bounds...

Example (Comparison between Markov, Chebyshev, and Chernoff Bound

Let $X \sim \text{Binomial}(n, p)$. Find the upper bounds for $P(X \ge \alpha n)$ using Markov, Chebyshev, and Chernoff bounds.

» Cauchy Schwarz Inequality...

Cauchy Schwarz Inequality

For any two random variables X and Y we have

$$E[XY] \leq \sqrt{E[X^2]E[Y^2]}$$

where equality holds if and only if $X = \alpha Y$, for some constant $\alpha \in \mathbb{R}$.

Left: Cauchy, Right: Schwarz

» Answer to previous problem... Proof: Dfine RV W= (X-XY) Clearly W is nonnegative RV for =) O E E[W] = E[(X-KY)] + E[X1]2 E[F] = E[x] - 22E[xy] + 2 E[xy] = f(1) If f(d)=0/ E[w] = E(x-d7)2]=0 $=) \quad E[xy]^2 \leq \quad E[x^2] \quad E[y^2]$ =) X = LY with prob. 1. To prove e-s., Choose L= E[XY]

/ 42

» Example of Cauchy Schwarz...

Example (Application of Cauchy Schwarz

For any two random variables \boldsymbol{X} and \boldsymbol{Y} , show that

Example (Application of Cauchy Schwarz

For any two random variables X and Y, show that

$$|\rho(X, Y)| \leq$$

Example (Application of Cauchy Schwarz

For any two random variables X and Y, show that

$$|\rho(X, Y)| \leq 1$$

using Cauchy Schwarz inequality.

$$V = \frac{X - E[Y]}{6x} | V = \frac{1}{1 - E[Y]} | \frac{1}{1 - E[Y$$

Example (Application of Cauchy Schwarz

For any two random variables X and Y, show that

$$|\rho(X, Y)| \leq$$

using Cauchy Schwarz inequality. Furthermore, show that $|\rho(X,Y)|=1$ if and only if Y=aX+b for some constants $a,b\in\mathbb{R}$.

$$S(x_1): Con(x_1y) = E[x] - E[x] = [7]$$

$$S(u_1v) = E[uv] - E[v] = [1]$$