Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Practice Problem Sheet 2

- 1. If the terms of the convergent series $\sum_{n=1}^{\infty} a_n$ are positive and forms a non-increasing sequence, then prove that $\lim_{n\to\infty} 2^n a_{2^n} = 0$.
- 2. Determine which of the following series converges/diverges:

$$(a)\sum_{n=1}^{\infty} \frac{(\log n)^2}{n^{3/2}}, \quad (b)\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1}, \quad (c)\sum_{n=1}^{\infty} \frac{1-n}{n2^n}.$$

3. Determine which of the following series converges/diverges:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{n-2}{n}\right)^n$$
, (b) $\sum_{n=1}^{\infty} \frac{(\log n)^n}{n^n}$.

4. Find the value of x for which the following series converges:

(a)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{a^n}$$
, $a \neq 0$, (b) $\sum_{n=0}^{\infty} \frac{x^n}{n!n^n}$.

5. Test the convergence of the infinite series:

$$(a)$$
 $\sum_{n=2}^{\infty} \frac{1}{n \ln(n^3)}, \quad (b)$ $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin\left(\frac{1}{n}\right).$

6. Test the convergence of the series: (a) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$, (b) $\sum_{n=2}^{\infty} \frac{1}{(\log n)^x}$, $x \in \mathbb{R}$.

Solutions for Practice Problem Sheet 2

- 1. Let $t_n = a_1 + 2a_2 + ... + 2^n a_{2^n}$. Then $\{t_n\}$ converges. This implies $\sum_{n=1}^{\infty} 2^n a_{2^n}$ is convergent. Hence $\lim_{n\to\infty} 2^n a_{2^n} = 0$.
- 2. (a) Take $a_n = \frac{(\log n)^2}{n^{3/2}}$ and $b_n = \frac{1}{n^{\alpha}}$ where $1 < \alpha < \frac{3}{2}$. By limit comparison test series converges. (one can also use Cauchy condensation test i.e find the behaviour of the series $\sum 2^n a_{2^n}$.)
 - (b) Take $b_n = \frac{1}{n^{3/2}}$. By limit comparison test series converges.
 - (c) Take $b_n = \frac{1}{2^n}$. By limit comparison test series converges.
- 3. (a) Take $a_n = \left(\frac{n-2}{n}\right)^n$. Then $\lim_{n\to\infty} a_n = e^{-2} \neq 0$. Hence series diverges.
 - (b) Take $a_n = \left(\frac{\log n}{n}\right)^n$. Then $\limsup_{n \to \infty} |a_n|^{1/n} = 0 < 1$. Hence series converges.
- 4. (a) Apply root test, $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{x^2}{a}$ and series converges if $|x|^2 < a$.
 - (b) $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 0$. So every value of x, series converges.
- 5. (a) Diverges, use Cauchy condensation test, here, $2^n a_{2^n} = \frac{1}{3n \log 2}$.
 - (b) Converges, $|a_n| \leq \frac{1}{n^{3/2}}$.
- 6. (a) Note that $\sum_{k=1}^{\infty} 2^k \frac{1}{2^k (\log 2^k)^p} = \sum_{k=1}^{\infty} \frac{1}{(k \log 2)^p} = \frac{1}{(\log 2)^p} \sum_{k=1}^{\infty} \frac{1}{k^p}.$ Hence the series converges for p > 1 and diverges for $p \le 1$.
 - (b) Note that $\sum_{k=1}^{\infty} 2^k \frac{1}{(\log 2^k)^x} = \frac{1}{(\log 2)^x} \sum_{k=1}^{\infty} \frac{2^k}{k^x}$. Now let $a_k = \frac{2^k}{k^x}$. Then as $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = 2 > 1$, so $\sum_{k=1}^{\infty} \frac{2^k}{k^x}$ does not converge.