Algoritmo de Peterson-Gorenstein-Zierler para códigos cíclicos sesgados

José María Martín Luque

Universidad de Granada

9 de julio de 2020 - Curso 2019-2020

Índice

Introducción

Teoría de códigos

Polinomios de Ore y códigos cíclicos sesgados

Algoritmo PGZ para códigos RS sesgados

Implementación en SageMath

Conclusiones

Introducción

Transmisión de la información

Figura: modelo de comunicación de Shannon

Transmisión de la información

Un código permite expresar información para su transmisión a través de un canal.

El algoritmo de Peterson-Gorenstein-Zierler permite corregir errores producidos en la transmisión de información si se han usado ciertos códigos cíclicos.

Objetivos

1. Exponer y estudiar el algoritmo de Peterson-Gorenstein-Zierler para códigos cíclicos sesgados.

Objetivos

- Exponer y estudiar el algoritmo de Peterson-Gorenstein-Zierler para códigos cíclicos sesgados.
 - Estudio de la teoría de códigos lineales.
 - Estudio de la teoría de polinomios de Ore y sus cocientes.

Objetivos

- 1. Exponer y estudiar el algoritmo de Peterson-Gorenstein-Zierler para códigos cíclicos sesgados.
 - Estudio de la teoría de códigos lineales.
 - Estudio de la teoría de polinomios de Ore y sus cocientes.
- 2. Implementar sistemas de decodificación en Python usando SageMath.

Contenido

anillos ideales cuerpos finitos cuerpos de descomposición elementos primitivos clases ciclotómicas anillos de polinomios automorfismos bases normales **códigos lineales códigos cíclicos** códigos BCH PGZ para códigos BCH códigos RS idempotentes **anillos de polinomios de Ore códigos cíclicos sesgados PGZ para códigos RS sesgados**

Teoría de códigos

Definición

Un (n,M) c'odigo C sobre el cuerpo \mathbb{F}_q es un subconjunto de tamaño M de \mathbb{F}_q^n .

Los elementos de un código se llaman palabras código.

Figura: codificación y decodificación

Figura: codificación y decodificación

Figura: codificación y decodificación

Definición

Un (n, M) código C sobre el cuerpo \mathbb{F}_q es un subconjunto de \mathbb{F}_q^n de tamaño M.

Los elementos de un código se llaman palabras código.

😆 Es un objeto demasiado sencillo.

Definición

Un [n,k] código lineal $\mathcal C$ de longitud n y dimensión k es un subespacio vectorial de $\mathbb F_q^n$ de dimensión k.

Definición

Un [n, k] código lineal C de longitud n y dimensión k es un subespacio vectorial de \mathbb{F}_a^n de dimensión k.

Trabajamos con una estructura bien conocida.

Definición

Un [n, k] código lineal C de longitud n y dimensión k es un subespacio vectorial de \mathbb{F}_a^n de dimensión k.

- Trabajamos con una estructura bien conocida.
- Ocificar es sencillo: multiplicar por una matriz (base).

Definición

Un código lineal $\mathcal C$ de longitud n sobre $\mathbb F_q$ es *cíclico* si verifica:

$$(c_0, \dots, c_{n-2}, c_{n-1}) \in \mathcal{C} \iff (c_{n-1}, c_0, \dots, c_{n-2}) \in \mathcal{C}$$

Definición

Un código lineal ${\mathcal C}$ de longitud n sobre ${\mathbb F}_q$ es *cíclico* si verifica:

$$(c_0, \dots, c_{n-2}, c_{n-1}) \in \mathcal{C} \iff (c_{n-1}, c_0, \dots, c_{n-2}) \in \mathcal{C}$$

Podemos asociar los elementos de ${\mathcal C}$ a polinomios mediante una biyección

$$v: \mathbb{F}_q^n \to \mathbb{F}_q[x]/(x^n - 1)$$

$$(c_0, c_1, \dots, c_{n-1}) \mapsto c_0 + c_1 x + \dots + c_{n-1} x^{n-1}.$$

Definición

Un código lineal ${\mathcal C}$ de longitud n sobre ${\mathbb F}_q$ es *cíclico* si verifica:

$$(c_0, \dots, c_{n-2}, c_{n-1}) \in \mathcal{C} \iff (c_{n-1}, c_0, \dots, c_{n-2}) \in \mathcal{C}$$

Podemos asociar los elementos de ${\mathcal C}$ a polinomios mediante una biyección

$$v: \mathbb{F}_q^n \to \mathbb{F}_q[x]/(x^n - 1)$$

$$(c_0, c_1, \dots, c_{n-1}) \mapsto c_0 + c_1 x + \dots + c_{n-1} x^{n-1}.$$

igotimes Más estructura: los códigos cíclicos son ideales del cociente $\mathbb{F}_q[x]/(x^n$ – 1).

Definición

Un código lineal $\mathcal C$ de longitud n sobre $\mathbb F_q$ es *cíclico* si verifica:

$$(c_0, \dots, c_{n-2}, c_{n-1}) \in \mathcal{C} \iff (c_{n-1}, c_0, \dots, c_{n-2}) \in \mathcal{C}$$

Podemos asociar los elementos de ${\mathcal C}$ a polinomios mediante una biyección

$$v: \mathbb{F}_q^n \to \mathbb{F}_q[x]/(x^n - 1)$$

$$(c_0, c_1, \dots, c_{n-1}) \mapsto c_0 + c_1 x + \dots + c_{n-1} x^{n-1}.$$

- \bigcirc Más estructura: los códigos cíclicos son ideales del cociente $\mathbb{F}_a[x]/(x^n-1)$.
- Oddificar es sencillo: multiplicar por un polinomio (generador del ideal).

Distancia de un código

Definición

La distancia de Hamming de un código $\mathcal C$ es el menor número de coordenadas que distinguen a una palabra código de otra.

Polinomios de Ore y códigos cíclicos sesgados

Polinomios de Ore

Definición

Sea \mathbb{F}_q un cuerpo finito y σ un automorfismo de \mathbb{F}_q . Entonces, el anillo $\mathbb{F}_q[x;\sigma]$ de los polinomios usuales de $\mathbb{F}_q[x]$ cuyo producto verifica la relación:

$$xa = \sigma(a)x$$
, $a \in \mathbb{F}_a$,

es un anillo de polinomios de Ore o anillos de polinomios sesgados.

Polinomios de Ore

Es un anillo no conmutativo.

Pero es un DIP y la aritmética funciona igual, teniendo en cuenta siempre que las operaciones se realizarán a izquierda o a derecha.

Códigos cíclicos sesgados

Códigos cíclicos pero usando polinomios de Ore: la biyección es $v : \mathbb{F}_a^n \to \mathbb{F}_a[x;\sigma]/(x^n-1)$, donde n es el orden de σ .

Códigos cíclicos sesgados

Códigos cíclicos pero usando polinomios de Ore: la biyección es $\mathfrak{v}:\mathbb{F}_q^n\to\mathbb{F}_q[x;\sigma]/(x^n-1)$, donde n es el orden de σ .

Definición

Un código cíclico sesgado sobre \mathbb{F}_q es un subespacio vectorial $\mathcal{C} \subseteq \mathbb{F}_q^n$ tal que:

$$(a_0,\dots,a_{n-2},a_{n-1})\in\mathcal{C}\iff(\sigma(a_{n-1}),\sigma(a_0),\dots,\sigma(a_{n-2}))\in\mathcal{C}$$

Códigos cíclicos sesgados

Códigos cíclicos pero usando polinomios de Ore: la biyección es $\mathfrak{v}:\mathbb{F}_q^n\to\mathbb{F}_q[x;\sigma]/(x^n-1)$, donde n es el orden de σ .

Definición

Un código cíclico sesgado sobre \mathbb{F}_q es un subespacio vectorial $\mathcal{C} \subseteq \mathbb{F}_q^n$ tal que:

$$(a_0,\ldots,a_{n-2},a_{n-1})\in\mathcal{C}\iff(\sigma(a_{n-1}),\sigma(a_0),\ldots,\sigma(a_{n-2}))\in\mathcal{C}$$

1 Los códigos cíclicos sesgados son ideales del cociente $\mathbb{F}_{\sigma}[x;\sigma]/(x^n-1)$.

Consideremos una base normal $\{\alpha, \sigma(\alpha), ..., \sigma^{n-1}(\alpha)\}\$ de \mathbb{F}_q y $\beta = \alpha^{-1}\sigma(\alpha)$.

El monomio $x - \beta$ divide a $x^n - 1$ por la derecha, y de hecho

$$x^{n}-1=\left[x-\beta,x-\sigma(\beta),\ldots,x-\sigma^{n-1}(\beta)\right]_{i}$$

Consideremos una base normal $\{\alpha, \sigma(\alpha), ..., \sigma^{n-1}(\alpha)\}\$ de \mathbb{F}_q y $\beta = \alpha^{-1}\sigma(\alpha)$.

El monomio $x - \beta$ divide a $x^n - 1$ por la derecha, y de hecho

$$x^n-1=\left[x-\beta,x-\sigma(\beta),\ldots,x-\sigma^{n-1}(\beta)\right]_i.$$

1 A los elementos de $\{\beta, \sigma(\beta), ..., \sigma^{n-1}(\beta)\}$ los llamamos β -raíces.

Definición

Un c'odigo RS sesgado de distancia mínima diseñada δ es un c'odigo c'odigo

$$g = \left[x - \sigma^{r}(\beta), x - \sigma^{r+1}(\beta), \dots, x - \sigma^{r+\delta-2}(\beta)\right]_{i}$$

para algún $r \ge 0$.

Definición

Un c'odigo RS sesgado de distancia mínima diseñada δ es un c'odigo c'odigo

$$g = \left[x - \sigma^{r}(\beta), x - \sigma^{r+1}(\beta), \dots, x - \sigma^{r+\delta-2}(\beta)\right]_{i}$$

para algún $r \ge 0$.

① Tienen distancia $\delta = n - k + 1$, máxima distancia posible para un código de esta longitud y dimensión.

Norma

En un anillo $\mathbb{F}_a[x;\sigma]$ definimos la *norma i-ésima* de un elemento $\gamma \in \mathbb{F}_a$ como

$$N_i(\gamma) = \sigma(N_{i-1}(\gamma))(\gamma) = \sigma^{i-1}(\gamma) \dots \sigma(\gamma)\gamma$$
 para $i > 0$ y $N_0(\gamma) = 1$.

Norma

En un anillo $\mathbb{F}_q[x;\sigma]$ definimos la *norma i-ésima* de un elemento $\gamma\in\mathbb{F}_q$ como

$$N_i(\gamma) = \sigma(N_{i-1}(\gamma))(\gamma) = \sigma^{i-1}(\gamma) \dots \sigma(\gamma)\gamma$$
 para $i > 0$ y $N_0(\gamma) = 1$.

1 Es el equivalente a evaluar un polinomio en álgebra conmutativa.

Norma

En un anillo $\mathbb{F}_q[x;\sigma]$ definimos la *norma i-ésima* de un elemento $\gamma\in\mathbb{F}_q$ como

$$N_i(\gamma) = \sigma(N_{i-1}(\gamma))(\gamma) = \sigma^{i-1}(\gamma) \dots \sigma(\gamma) \gamma$$
 para $i > 0$ y $N_0(\gamma) = 1$.

1 Es el equivalente a evaluar un polinomio en álgebra conmutativa.

Teorema

Si $f(x) = \sum_{i=0}^{n} a_i x^{n-i} \in \mathbb{F}_q[x; \sigma]$ $y \in \mathbb{F}_q$ entonces el resto de dividir f(x) por (x - y) por la derecha es

$$\sum_{i=0}^n a_i N_i(\gamma).$$

Norma

Sea N la matriz formada por las normas de las β -raíces:

$$N = \begin{pmatrix} N_0(\beta) & N_0(\sigma(\beta)) & \cdots & N_0(\sigma^{n-1}(\beta)) \\ N_1(\beta) & N_1(\sigma(\beta)) & \cdots & N_1(\sigma^{n-1}(\beta)) \\ \vdots & \vdots & & \vdots \\ N_{n-1}(\beta) & N_{n-1}(\sigma(\beta)) & \cdots & N_{n-1}(\sigma^{n-1}(\beta)) \end{pmatrix}.$$

Multiplicando los coeficientes de un polinomio por N, $(f_1, ..., f_{n-1})N$ obtenemos todos los restos de dividir dicho polinomio por cada una de las β -raíces.

Algoritmo PGZ para códigos RS sesgados

Recepción de mensajes

Un mensaje recibido puede expresarse como

$$y(x) = c(x) + e(x)$$

donde c(x) es el mensaje codificado original y e(x) es el error que se ha producido durante la transmisión, que es de la forma

$$e(x) = e_{k_1} x^{k_1} + e_{k_2} x^{k_2} + \dots + e_{k_v} x^{k_v}.$$

Recepción de mensajes

Un mensaje recibido puede expresarse como

$$y(x) = c(x) + e(x)$$

donde c(x) es el mensaje codificado original y e(x) es el error que se ha producido durante la transmisión, que es de la forma

$$e(x) = e_{k_1} x^{k_1} + e_{k_2} x^{k_2} + \dots + e_{k_v} x^{k_v}.$$

- \bigcirc El algoritmo encuentra el error e(x) para códigos RS sesgados.

```
Entrada: el código C, el mensaje recibido y = (y_0, ..., y_{n-1}) \in \mathbb{F}_q^n con no más
            de t errores
Salida: el error e = (e_0, ..., e_{n-1}) tal que y - e \in \mathcal{C}
```

```
// Paso 1: calcular síndromes
1 para 0 \le i \le 2t - 1 hacer
s_i \leftarrow \sum_{i=0}^{n-1} y_i N_i(\sigma^i(\beta))
3 fin
4 si s_i = 0 para todo 0 \leq i \leq 2t - 1 entonces
       devolver 0
ิล fin
```

// Paso 2: hallar polinomio localizador y las coordenadas de error

7
$$S^t \leftarrow \left(\sigma^{-j}(s_{i+j})\sigma^{j}(\alpha)\right)_{0 \leq i \leq t, 0 \leq j \leq t-1}$$

$$\operatorname{mepc}(S^{t}) = \left(\frac{I_{\mu}}{a_{0} \cdots a_{\mu-1}} \right) O_{(t+1) \times (t-\mu)}$$

9
$$\rho = (\rho_0, ..., \rho_\mu) \longleftarrow (-a_0, ..., -a_{\mu-1}, 1)$$
 y $\rho N \longleftarrow (\rho_0, ..., \rho_\mu, 0, ..., 0)$ No $\{k_1, ..., k_\nu\} \longleftarrow$ coordenadas iqual a cero de ρN

// Paso 2: hallar polinomio localizador y las coordenadas de error $S^t \leftarrow \left(\sigma^{-j}(s_{i+j})\sigma^j(\alpha)\right)_{0 \le i \le t} 0 \le i \le t$

$$\operatorname{mepc}(S^{t}) = \left(\frac{I_{\mu}}{\underline{a_{0} \cdots a_{\mu-1}}} \mid O_{(t+1) \times (t-\mu)}\right)$$

9
$$\rho = (\rho_0, ..., \rho_\mu) \longleftarrow (-a_0, ..., -a_{\mu-1}, 1)$$
 y $\rho N \longleftarrow (\rho_0, ..., \rho_\mu, 0, ..., 0) N$
10 $\{k_1, ..., k_v\} \longleftarrow$ coordenadas igual a cero de ρN

// Paso 2: hallar polinomio localizador y las coordenadas de error $S^t \leftarrow \left(\sigma^{-j}(s_{i+j})\sigma^i(\alpha)\right)_{0 \leq i \leq t, 0 \leq j \leq t-1}$

$$\operatorname{mepc}(S^{t}) = \left(\frac{I_{\mu}}{\underline{a_{0} \cdots a_{\mu-1}}} \mid O_{(t+1) \times (t-\mu)}\right)$$

9
$$\rho = (\rho_0, \dots, \rho_\mu) \longleftarrow (-a_0, \dots, -a_{\mu-1}, 1)$$
 y $\rho N \longleftarrow (\rho_0, \dots, \rho_\mu, 0, \dots, 0)N$
10 $\{k_1, \dots, k_\nu\} \longleftarrow$ coordenadas igual a cero de ρN

11 si $\mu \neq v$ entonces

$$M_{\rho} \longleftarrow \begin{pmatrix} \rho_{0} & \rho_{1} & \dots & \rho_{\mu} & 0 & \dots & 0 \\ 0 & \sigma(\rho_{0}) & \dots & \sigma(\rho_{\mu-1}) & \sigma(\rho_{\mu}) & \dots & 0 \\ 0 & \dots & 0 & \sigma^{n-\mu-1}(\rho_{0}) & \dots & \dots & \sigma^{n-\mu-1}(\rho_{\mu}) \end{pmatrix}_{(n-\mu) \times n}$$

$$N_{\rho} \leftarrow M_{\rho}N_{\rho}$$

13
$$N_{\rho} \leftarrow M_{\rho}N$$

14 $H_{\rho} \leftarrow \text{mepf}(N_{\rho})$

15
$$H' \leftarrow$$
 la matriz obtenida al eliminar las filas de H_{ρ} distintas de ϵ_i para algún i

$$\{k_1, \dots, k_v\} \leftarrow$$
 las coordenadas de las columnas igual a cero de H'

11 si $\mu \neq v$ entonces

12 Calcular

$$M_{\rho} \longleftarrow \begin{pmatrix} \rho_{0} & \rho_{1} & \dots & \rho_{\mu} & 0 & \dots & 0 \\ 0 & \sigma(\rho_{0}) & \dots & \sigma(\rho_{\mu-1}) & \sigma(\rho_{\mu}) & \dots & 0 \\ 0 & \dots & 0 & \sigma^{n-\mu-1}(\rho_{0}) & \dots & \dots & \sigma^{n-\mu-1}(\rho_{\mu}) \end{pmatrix}_{(n-\mu)\times r}$$

13
$$N_{\rho} \leftarrow M_{\rho}N$$

14
$$H_o \leftarrow \text{mepf}(N_o)$$

15
$$H^{'} \leftarrow$$
 la matriz obtenida al eliminar las filas de H_{ρ} distintas de ε_{i} para algún i

$$\{k_1, ..., k_v\} \leftarrow$$
 las coordenadas de las columnas igual a cero de H

17 fin

11 si $\mu \neq v$ entonces

 $N_{\rho} \leftarrow M_{\rho}N$ $H_0 \leftarrow \text{mepf}(N_0)$ $H' \longleftarrow$ la matriz obtenida al eliminar las filas de $H_{
ho}$ distintas de $arepsilon_i$ para $\{k_1, \dots, k_{\nu}\} \leftarrow$ las coordenadas de las columnas igual a cero de H'

17 fin

Cálculo de las magnitudes de error

Teorema

Las magnitudes de error (e_1, \dots, e_v) son las soluciones del sistema de ecuaciones lineales

$$X \underbrace{ \begin{pmatrix} \sigma^{k_1}(\alpha) & \sigma^{k_1+1}(\alpha) & \dots & \sigma^{k_1+v-1}(\alpha) \\ \sigma^{k_2}(\alpha) & \sigma^{k_2+1}(\alpha) & \dots & \sigma^{k_2+v-1}(\alpha) \\ \vdots & \vdots & & \vdots \\ \sigma^{k_v}(\alpha) & \sigma^{k_v+1}(\alpha) & \dots & \sigma^{k_v+v-1}(\alpha) \end{pmatrix}}_{(\Sigma^{v-1})^T} = (\alpha s_0, \sigma(\alpha) s_1, \dots, \sigma^{v-1}(\alpha) s_{v-1}).$$

```
// Paso 3: resolver el sistema de los síndromes, obteniendo las magnitudes de error
```

- 18 Encontrar $(x_1, ..., x_v)$ tal que $(x_1, ..., x_v)(\Sigma^{v-1})^T = (\alpha s_0, \sigma(\alpha) s_1, ..., \sigma^{v-1}(\alpha) s_{v-1})$
 - // Paso 4: construir el error y devolverlo
- 19 **devolver** $(e_0, ..., e_{n-1})$ con $e_i = x_i$ para $i \in \{k_1, ..., k_v\}$, cero en otro caso

```
error

18 Encontrar (x_1, ..., x_v) tal que (x_1, ..., x_v)(\Sigma^{v-1})^T = (\alpha s_0, \sigma(\alpha) s_1, ..., \sigma^{v-1}(\alpha) s_{v-1})^T

19 devolver (e_0, ..., e_{n-1}) con e_i = x_i para i \in \{k_1, ..., k_v\}, cero en otro caso
```

Obtención del mensaje original

Obtenido el error podemso restárselo al mensaje recibido, de forma que

$$c(x) = y(x) - e(x) \in \mathcal{C}$$

es el mensaje decodificado.

Implementación en SageMath

Clases desarrolladas

Se han implementado en SageMath:

- Un decodificador para códigos BCH usando el algoritmo PGZ.
- Los códigos cíclicos sesgados y los códigos RS sesgados.
- Un decodificador para códigos RS sesgados usando el algoritmo PGZ.

Aprovechan la estructura de códigos de Sage y su uso es similar a las incluidas.

Ejemplo

Implementación en SageMath

Conclusiones

Conclusiones

- Objetivos:
 - Estudio de polinomios de Ore, códigos cíclicos sesgados y del algoritmo PGZ.
 - ✓ Implementación en SageMath.
- Posible trabajo futuro: completar implementación códigos cíclicos sesgados y contruibuir lo desarrollado al proyecto SageMath.

Gracias por su atención