Symmetric Polynomials (Boot camp)

1 Main Ideas

- 1. If f is a symmetric polynomial in the variables x_1, x_2, \ldots, x_n , then it can be expressed as a sum of products of elementary symmetric polynomials in those variables.
- 2. (Newton's Sums) Let x_1, x_2, \dots, x_n be the roots of $P(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$.
 - If $r \le n$, then $s_r + a_{n-1}s_{r-1} + \cdots + a_{n-r+1}s_1 + na_{n-r} = 0$
 - If r > n, then $s_r + a_{n-1}s_{r-1} + \cdots + a_0s_{r-n} = 0$
- 3. Other Techniques: Factoring, Polynomial Transformations, Plugging values into polynomial

2 Lecture

- 1. Let a, b, c be the roots of $x^3 + ax^2 + bx + c$. Find $\sum_{\text{sym}} a^2$, $\sum_{\text{sym}} a^2 b$, and $\sum_{\text{sym}} \frac{a}{b}$.
- 2. Let $P(x) = x^3 + x^2 + x + 1$ have roots a, b, c. Find the polynomials with roots $\{a-1, b-1, c-1\}, \{\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\}, \text{ and } \{\frac{1}{a-1}, \frac{1}{b-1}, \frac{1}{c-1}\}.$
- 3. Find a constructive proof of Main Idea 1 and use it to find $\sum_{\text{sym}} a^2$, $\sum_{\text{sym}} a^2 b$
- 4. Let $P(x) = x^4 + 2x^2 + x + 1$. Find the sum of the squares and cubes of the roots of P.
- 5. Let $P(x) = x^2 + x + 3$. Find the sum of the 4th powers of the roots.
- 6. Given a + b + c = 6, ab + bc + ca = 11, abc = 6, find a, b, c.

3 Problems

- 1. Find the sums of the cubes of the roots of $x^3 + 2x^2 + x + 1$ in two ways.
- 2. Let a+b+c=12, $a^2+b^2+c^2=50$, and $a^3+b^3+c^3=168$. Find a,b,c

3. Let a, b, c be the roots of $P(x) = x^3 + 2x^2 + 3x + 1$. Find

(a)
$$\sum_{\text{sym}} \frac{1}{b-1}$$

(b)
$$\sum_{\text{sym}} a^4$$

(c)
$$\sum_{\text{sym}} \frac{a}{b^2}$$

(a)
$$\sum_{\text{sym}} \frac{1}{b-1}$$
 (b) $\sum_{\text{sym}} a^4$ (c) $\sum_{\text{sym}} \frac{a}{b^2}$ (d) $\sum_{\text{sym}} \frac{a}{b-1}$

- 4. Find the sum of the 20th powers of the roots of $z^{20} 19z 1$.
- 5. Let a and b be real numbers, and let r, s, and t be the roots of $f(x) = x^3 + ax^2 + bx 1$. Also, $g(x) = x^3 + mx^2 + nx + p$ has roots r^2 , s^2 , and t^2 . If g(-1) = -5, find the maximum possible value of b.
- 6. Find all possible triples of real numbers (x, y, z) satisfying

$$x^{2}y + y^{2}z + z^{2}x = -1$$
$$xy^{2} + yz^{2} + zx^{2} = 5$$
$$xyz = -2$$

7. The complex numbers $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ are the four distinct roots of the equation x^4 + $2x^3 + 2 = 0$. Determine the unordered set

$$\{\alpha_1\alpha_2 + \alpha_3\alpha_4, \alpha_1\alpha_3 + \alpha_2\alpha_4, \alpha_1\alpha_4 + \alpha_2\alpha_3\}$$