$12n_{0604} (K12n_{0604})$

A knot diagram¹

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 6141u^{12} + 35469u^{11} + \dots + 4348b - 14051, \ -17214u^{12} - 43917u^{11} + \dots + 47828a - 232915, \\ 3u^{13} + 18u^{12} + 47u^{11} + 60u^{10} + 14u^9 - 84u^8 - 153u^7 - 114u^6 + 14u^5 + 105u^4 + 80u^3 + 2u^2 - 25u - 11 \rangle \\ I_2^u &= \langle u^9 - 2u^8 + u^7 + 2u^6 - 2u^5 - u^4 + u^2a + 3u^3 - au + b - 2u + 1, \ -2u^{10}a - 13u^{10} + \dots - 2a - 35, \\ u^{11} - 2u^{10} + 4u^8 - 2u^7 - 4u^6 + 5u^5 + 2u^4 - 5u^3 + u^2 + 3u - 1 \rangle \\ I_3^u &= \langle b + 2a + 1, \ 2a^2 + 2a - 1, \ u - 1 \rangle \\ I_4^u &= \langle -2au + 2b - 2a + u + 3, \ 4a^2 - 4a + 1, \ u^2 + 2u + 1 \rangle \\ I_5^u &= \langle b, \ a - 1, \ u^3 - u + 1 \rangle \\ I_6^u &= \langle b + 1, \ a + u, \ u^3 - u + 1 \rangle \\ I_7^u &= \langle b, \ a - 1, \ u - 1 \rangle \\ I_8^u &= \langle b + 1, \ u^2a - au - 1 \rangle \\ I_9^u &= \langle b + 1, \ u + 1 \rangle \end{split}$$

- * 7 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 48 representations.
- * 2 irreducible components of $\dim_{\mathbb{C}} = 1$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 6141u^{12} + 35469u^{11} + \dots + 4348b - 14051, -1.72 \times 10^4u^{12} - 4.39 \times 10^4u^{11} + \dots + 4.78 \times 10^4a - 2.33 \times 10^5, \ 3u^{13} + 18u^{12} + \dots - 25u - 11 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.359915u^{12} + 0.918228u^{11} + \dots + 7.51984u + 4.86985 \\ -1.41237u^{12} - 8.15754u^{11} + \dots + 1.15501u + 3.23160 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.676612u^{12} + 3.37246u^{11} + \dots - 1.01834u - 0.308857 \\ 1.52001u^{12} + 5.01127u^{11} + \dots - 13.1615u - 3.97861 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.17283u^{12} - 6.60021u^{11} + \dots - 6.76142u - 0.483336 \\ 0.411914u^{12} + 3.59407u^{11} + \dots + 11.9177u + 2.69894 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.863344u^{12} - 5.14142u^{11} + \dots - 4.86443u + 1.08965 \\ -0.09965961u^{12} + 1.66697u^{11} + \dots + 20.0262u + 7.04140 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.863344u^{12} - 5.14142u^{11} + \dots - 4.86443u + 1.08965 \\ 0.890064u^{12} + 5.82889u^{11} + \dots + 22.8698u + 6.89972 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.234089u^{12} + 2.30426u^{11} + \dots + 5.28669u + 0.892866 \\ -0.449862u^{12} - 3.58096u^{11} + \dots + 5.28669u + 0.892866 \\ -0.449862u^{12} - 3.58096u^{11} + \dots + 1.62986u - 0.0270135 \\ 0.638224u^{12} + 1.82498u^{11} + \dots + 1.62986u - 0.0270135 \\ 0.638224u^{12} + 1.82498u^{11} + \dots + 21.8395u - 8.12810 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{9825}{2174}u^{12} - \frac{54711}{2174}u^{11} + \dots - \frac{20596}{1087}u + \frac{3441}{2174}u^{11} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$9(9u^{13} + 114u^{12} + \dots + 1485u + 121)$
c_2, c_6	$3(3u^{13} - 18u^{12} + \dots + 11u - 11)$
c_3, c_4, c_5 c_8, c_9, c_{10}	$u^{13} + 2u^{12} + \dots - 2u + 2$
c_7, c_{11}	$3(3u^{13} + 18u^{12} + \dots - 25u - 11)$
c_{12}	$9(9u^{13} - 42u^{12} + \dots + 669u - 121)$

Crossings	Riley Polynomials at each crossing
c_1	$81(81y^{13} - 1962y^{12} + \dots + 662717y - 14641)$
c_2, c_6	$9(9y^{13} - 114y^{12} + \dots + 1485y - 121)$
c_3, c_4, c_5 c_8, c_9, c_{10}	$y^{13} - 12y^{12} + \dots + 16y - 4$
c_7, c_{11}	$9(9y^{13} - 42y^{12} + \dots + 669y - 121)$
c_{12}	$81(81y^{13} + 630y^{12} + \dots + 37613y - 14641)$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.15461		
a = -0.667204	14.2281	19.7580
b = 1.65982		
u = -0.875852 + 0.854559I		
a = -0.480641 - 0.877360I	-8.47998 - 3.13363I	2.30766 + 3.10183I
b = 0.160333 - 1.044863I		
u = -0.875852 - 0.854559I		
a = -0.480641 + 0.877360I	-8.47998 + 3.13363I	2.30766 - 3.10183I
b = 0.160333 + 1.044863I		
u = -0.195045 + 1.209339I		
a = 0.484703 + 0.539351I	-2.29018 + 7.80194I	7.00595 - 5.86285I
b = 1.182797 + 0.515971I		
u = -0.195045 - 1.209339I		
a = 0.484703 - 0.539351I	-2.29018 - 7.80194I	7.00595 + 5.86285I
b = 1.182797 - 0.515971I		
u = -0.602765 + 0.436556I		
a = 0.289714 + 1.181214I	-0.98838 - 1.46599I	1.41277 + 4.35204I
b = 0.018598 + 0.533941I		
u = -0.602765 - 0.436556I		
a = 0.289714 - 1.181214I	-0.98838 + 1.46599I	1.41277 - 4.35204I
b = 0.018598 - 0.533941I		
u = 0.734365		
a = 0.253961	0.880574	13.4560
b = -0.323459		
u = 0.692816		
a = 1.53700	12.2154	2.46050
b = -1.80261		
u = -1.32583 + 0.68048I		
a = 0.433863 + 1.256459I	1.1831 - 14.4275I	9.59825 + 7.66969I
b = -1.39870 + 0.52665I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.32583 - 0.68048I		
a = 0.433863 - 1.256459I	1.1831 + 14.4275I	9.59825 - 7.66969I
b = -1.39870 - 0.52665I		
u = -1.29140 + 0.76843I		
a = -0.107698 - 1.063230I	6.78301 - 8.58406I	12.8385 + 7.0528I
b = 1.270099 - 0.358705I		
u = -1.29140 - 0.76843I		
a = -0.107698 + 1.063230I	6.78301 + 8.58406I	12.8385 - 7.0528I
b = 1.270099 + 0.358705I		

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u^9 + 2u^8 - u^7 - 2u^6 + 2u^5 + u^4 - u^2a - 3u^3 + au + 2u - 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u^9 + 2u^8 - 3u^6 + 2u^5 + u^3a + 2u^4 - u^2a - 3u^3 + a + 3u - 1 \\ -2u^9 + 3u^8 + \dots + 2u - 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u^2 + 1 \\ -u^2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{10}a + u^{10} + \dots - u + 5 \\ -u^8a + u^7a - u^5a - u^2a + u^3 - u^2 + 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u^{10} - 2u^9 - u^8 + 5u^7 - u^6 - 6u^5 + 4u^4 + 4u^3 - 5u^2 - u + 3 \\ u^{10} - 2u^9 - u^8 + 4u^7 - u^6 - 4u^5 + 2u^4 + 2u^3 - 3u^2 - u + 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u^{10} - 2u^9 - u^8 + 5u^7 - u^6 - 6u^5 + 4u^4 + 4u^3 - 5u^2 - u + 3 \\ 2u^{10} - 3u^9 - 2u^8 + 6u^7 - 6u^5 + 2u^4 + 4u^3 - 3u^2 - 2u + 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u^{10} - u^9 - u^8 + 3u^7 - 3u^5 + 3u^4 + 2u^3 - 3u^2 + 2 \\ -u^{10} + u^9 + 3u^8 - 3u^7 - 4u^6 + 7u^5 + 2u^4 - 6u^3 + 2u^2 + 4u - 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u^{10} - u^9 + \dots + a + 4 \\ u^{10}a - u^9a + \dots + a + 1 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1	$(u^{11} + 12u^{10} + \dots - 5u + 1)^2$
c_2, c_6	$(u^{11} + 2u^{10} - 4u^9 - 8u^8 + 6u^7 + 8u^6 - 7u^5 + 2u^4 + 7u^3 - 3u^2 - u - 1)^2$
c_3, c_4, c_5 c_8, c_9, c_{10}	$u^{22} + 2u^{21} + \dots - 54u - 23$
c_7, c_{11}	$(u^{11} - 2u^{10} + 4u^8 - 2u^7 - 4u^6 + 5u^5 + 2u^4 - 5u^3 + u^2 + 3u - 1)^2$
c_{12}	$(u^{11} - 4u^{10} + \dots + 11u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{11} - 24y^{10} + \dots - 13y - 1)^2$
c_2, c_6	$(y^{11} - 12y^{10} + \dots - 5y - 1)^2$
c_3, c_4, c_5 c_8, c_9, c_{10}	$y^{22} - 16y^{21} + \dots - 1306y + 529$
c_7, c_{11}	$(y^{11} - 4y^{10} + \dots + 11y - 1)^2$
c_{12}	$(y^{11} + 8y^{10} + \dots + 67y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.952018 + 0.226513I		
a = -0.347172 - 0.939025I	5.02081 - 0.74196I	15.5393 + 1.1191I
b = -0.930670 - 0.421418I		
u = -0.952018 + 0.226513I		
a = -1.36874 - 1.45440I	5.02081 - 0.74196I	15.5393 + 1.1191I
b = 1.254363 - 0.162092I		
u = -0.952018 - 0.226513I		
a = -0.347172 + 0.939025I	5.02081 + 0.74196I	15.5393 - 1.1191I
b = -0.930670 + 0.421418I		
u = -0.952018 - 0.226513I		
a = -1.36874 + 1.45440I	5.02081 + 0.74196I	15.5393 - 1.1191I
b = 1.254363 + 0.162092I		
u = -0.850023 + 0.614930I		
a = 0.76372 + 1.33350I	0.08426 - 2.41892I	7.07184 + 2.88947I
b = -1.49337 + 0.42695I		
u = -0.850023 + 0.614930I		
a = 0.077370 + 0.159281I	0.08426 - 2.41892I	7.07184 + 2.88947I
b = 1.27603 + 0.68990I		
u = -0.850023 - 0.614930I		
a = 0.76372 - 1.33350I	0.08426 + 2.41892I	7.07184 - 2.88947I
b = -1.49337 - 0.42695I		
u = -0.850023 - 0.614930I		
a = 0.077370 - 0.159281I	0.08426 + 2.41892I	7.07184 - 2.88947I
b = 1.27603 - 0.68990I		
u = 0.523691 + 0.948055I		
a = -0.534548 + 1.013410I	-5.32590 - 2.58451I	3.80806 + 1.01660I
b = 0.196709 + 0.952827I		
u = 0.523691 + 0.948055I		
a = 0.382826 - 0.290327I	-5.32590 - 2.58451I	3.80806 + 1.01660I
b = 1.191516 - 0.585396I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.523691 - 0.948055I		
a = -0.534548 - 1.013410I	-5.32590 + 2.58451I	3.80806 - 1.01660I
b = 0.196709 - 0.952827I		
u = 0.523691 - 0.948055I		
a = 0.382826 + 0.290327I	-5.32590 + 2.58451I	3.80806 - 1.01660I
b = 1.191516 + 0.585396I		
u = 0.978643 + 0.595733I		
a = -0.010571 - 0.992888I	2.61864 + 4.69742I	9.08124 - 5.88322I
b = -0.109176 - 0.710565I		
u = 0.978643 + 0.595733I		
a = -0.17727 + 1.45820I	2.61864 + 4.69742I	9.08124 - 5.88322I
b = 1.225999 + 0.305614I		
u = 0.978643 - 0.595733I		
a = -0.010571 + 0.992888I	2.61864 - 4.69742I	9.08124 + 5.88322I
b = -0.109176 + 0.710565I		
u = 0.978643 - 0.595733I		
a = -0.17727 - 1.45820I	2.61864 - 4.69742I	9.08124 + 5.88322I
b = 1.225999 - 0.305614I		
u = 1.126055 + 0.711355I		
a = -0.407610 + 0.813195I	-3.47965 + 8.65115I	6.21430 - 5.57892I
b = 0.097811 + 1.107042I		
u = 1.126055 + 0.711355I		
a = 0.531471 - 1.289216I	-3.47965 + 8.65115I	6.21430 - 5.57892I
b = -1.43289 - 0.49484I		
u = 1.126055 - 0.711355I		
a = -0.407610 - 0.813195I	-3.47965 - 8.65115I	6.21430 + 5.57892I
b = 0.097811 - 1.107042I		
u = 1.126055 - 0.711355I		
a = 0.531471 + 1.289216I	-3.47965 - 8.65115I	6.21430 + 5.57892I
b = -1.43289 + 0.49484I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.347303		
a = -3.28286	2.16369	2.57060
b = -1.15435		
u = 0.347303		
a = 4.46391	2.16369	2.57060
b = 0.601712		

III.
$$I_3^u = \langle b+2a+1,\ 2a^2+2a-1,\ u-1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ -2a - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -a - 1 \\ -2a - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 3 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 4a+2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 4a + 2 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 4a+1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 4a+2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -a-1 \\ -3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing		
$c_1, c_2, c_{11} \\ c_{12}$	$(u-1)^2$		
c_3, c_4, c_5 c_8, c_9, c_{10}	u^2-3		
c_6, c_7	$(u+1)^2$		

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^2$
c_3, c_4, c_5 c_8, c_9, c_{10}	$(y-3)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.36603	13.1595	12.0000
b = 1.73205		
u = 1.00000		
a = 0.366025	13.1595	12.0000
b = -1.73205		

IV.
$$I_4^u = \langle -2au + 2b - 2a + u + 3, \ 4a^2 - 4a + 1, \ u^2 + 2u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 2u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ au+a-\frac{1}{2}u-\frac{3}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u-2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -au+\frac{3}{2}u+\frac{1}{2} \\ au+a-\frac{5}{2}u-\frac{7}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2u+2 \\ 2u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}au-\frac{1}{2}a-\frac{1}{4}u+\frac{3}{4} \\ -2au-2a+u+2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -2au-2a+u+1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -2au-2a+3u+2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2au+2a-3u-3 \\ 2au+\frac{1}{2}a-\frac{3}{4}u-\frac{3}{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{3}{2}au+\frac{1}{2}a-\frac{3}{4}u-\frac{3}{4} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing		
$c_1, c_3, c_6 \\ c_7, c_8, c_{12}$	$(u-1)^4$		
$c_2, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$(u+1)^4$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	$(y-1)^4$		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.500000	3.28987	12.0000
b = -1.00000		
u = -1.00000		
a = 0.500000	3.28987	12.0000
b = -1.00000		
u = -1.00000		
a = 0.500000	3.28987	12.0000
b = -1.00000		
u = -1.00000		
a = 0.500000	3.28987	12.0000
b = -1.00000		

V.
$$I_5^u = \langle b, a - 1, u^3 - u + 1 \rangle$$

$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$
$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u+1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u^2 + 1 \\ -u^2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1	$u^3 + 2u^2 + u + 1$
c_2, c_6, c_7 c_{11}	$u^3 - u + 1$
c_3, c_9, c_{10}	u^3
c_4, c_5, c_8	$(u-1)^3$
c_{12}	$u^3 - 2u^2 + u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_{12}	$y^3 - 2y^2 - 3y - 1$
c_2, c_6, c_7 c_{11}	$y^3 - 2y^2 + y - 1$
c_3, c_9, c_{10}	y^3
c_4, c_5, c_8	$(y-1)^3$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.662359 + 0.562280I		
a = 1.00000	1.64493	6.00000
b = 0		
u = 0.662359 - 0.562280I		
a = 1.00000	1.64493	6.00000
b = 0		
u = -1.32472		
a = 1.00000	1.64493	6.00000
b = 0		

VI.
$$I_6^u = \langle b+1, \ a+u, \ u^3-u+1 \rangle$$

$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^2 \\ -1 \end{pmatrix}$$
$$a_4 = \begin{pmatrix} -u \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u^2 + 1 \\ -u^2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u+1\\1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1	$u^3 + 2u^2 + u + 1$
c_2, c_6, c_7 c_{11}	$u^3 - u + 1$
c_3, c_9, c_{10}	$(u-1)^3$
c_4, c_5, c_8	u^3
c_{12}	$u^3 - 2u^2 + u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_{12}	$y^3 - 2y^2 - 3y - 1$
c_2, c_6, c_7 c_{11}	$y^3 - 2y^2 + y - 1$
c_3, c_9, c_{10}	$(y-1)^3$
c_4, c_5, c_8	y^3

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.662359 + 0.562280I		
a = -0.662359 - 0.562280I	1.64493	6.00000
b = -1.00000		
u = 0.662359 - 0.562280I		
a = -0.662359 + 0.562280I	1.64493	6.00000
b = -1.00000		
u = -1.32472		
a = 1.32472	1.64493	6.00000
b = -1.00000		

VII.
$$I_7^u = \langle b, \ a-1, \ u-1 \rangle$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_n = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing		
$c_1, c_2, c_{11} \\ c_{12}$	u-1		
c_3, c_4, c_5 c_8, c_9, c_{10}	u		
c_6, c_7	u+1		

Crossings	Riley Polynomials at each crossing		
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	y-1		
c_3, c_4, c_5 c_8, c_9, c_{10}	y		

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	0	0
b = 0		

VIII.
$$I_8^u = \langle b+1, \ u^2a - au - 1 \rangle$$

a) Art colorings
$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a + u \\ -u^3 + u - 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u^2 + 1 \\ -u^2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -a + 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix}$$

$$a_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$u = \cdots$		
$a = \cdots$	3.28987	12.0000
$b = \cdots$		

IX.
$$I_9^u = \langle b+1, u+1 \rangle$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a-1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -a+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -a \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_9^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$u = \cdots$		
$a = \cdots$	3.28987	12.0000
$b = \cdots$		

X. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$9(u-1)^{7}(u^{3} + 2u^{2} + u + 1)^{2}(u^{11} + 12u^{10} + \dots - 5u + 1)^{2} $ $\cdot (9u^{13} + 114u^{12} + \dots + 1485u + 121)$
c_2	$3(u-1)^{3}(u+1)^{4}(u^{3}-u+1)^{2}$ $\cdot (u^{11}+2u^{10}-4u^{9}-8u^{8}+6u^{7}+8u^{6}-7u^{5}+2u^{4}+7u^{3}-3u^{2}-u-1)^{2}$ $\cdot (3u^{13}-18u^{12}+\cdots+11u-11)$
c_{3}, c_{8}	$u^{4}(u-1)^{7}(u^{2}-3)(u^{13}+2u^{12}+\cdots-2u+2)$ $\cdot (u^{22}+2u^{21}+\cdots-54u-23)$
c_4, c_5, c_9 c_{10}	$u^{4}(u-1)^{3}(u+1)^{4}(u^{2}-3)(u^{13}+2u^{12}+\cdots-2u+2)$ $\cdot (u^{22}+2u^{21}+\cdots-54u-23)$
<i>c</i> ₆	$3(u-1)^{4}(u+1)^{3}(u^{3}-u+1)^{2}$ $\cdot (u^{11}+2u^{10}-4u^{9}-8u^{8}+6u^{7}+8u^{6}-7u^{5}+2u^{4}+7u^{3}-3u^{2}-u-1)^{2}$ $\cdot (3u^{13}-18u^{12}+\cdots+11u-11)$
<i>c</i> ₇	$3(u-1)^{4}(u+1)^{3}(u^{3}-u+1)^{2}$ $\cdot (u^{11}-2u^{10}+4u^{8}-2u^{7}-4u^{6}+5u^{5}+2u^{4}-5u^{3}+u^{2}+3u-1)^{2}$ $\cdot (3u^{13}+18u^{12}+\cdots-25u-11)$
c_{11}	$3(u-1)^{3}(u+1)^{4}(u^{3}-u+1)^{2}$ $\cdot (u^{11}-2u^{10}+4u^{8}-2u^{7}-4u^{6}+5u^{5}+2u^{4}-5u^{3}+u^{2}+3u-1)^{2}$ $\cdot (3u^{13}+18u^{12}+\cdots-25u-11)$
c_{12}	$9(u-1)^{7}(u^{3}-2u^{2}+u-1)^{2}(u^{11}-4u^{10}+\cdots+11u-1)^{2}$ $\cdot (9u^{13}-42u^{12}+\cdots+669u-121)$

XI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$81(y-1)^{7}(y^{3}-2y^{2}-3y-1)^{2}(y^{11}-24y^{10}+\cdots-13y-1)^{2}$ $\cdot (81y^{13}-1962y^{12}+\cdots+662717y-14641)$
c_2, c_6	$9(y-1)^{7}(y^{3}-2y^{2}+y-1)^{2}(y^{11}-12y^{10}+\cdots-5y-1)^{2}$ $\cdot (9y^{13}-114y^{12}+\cdots+1485y-121)$
c_3, c_4, c_5 c_8, c_9, c_{10}	$y^{4}(y-3)^{2}(y-1)^{7}(y^{13}-12y^{12}+\cdots+16y-4)$ $\cdot (y^{22}-16y^{21}+\cdots-1306y+529)$
c_7, c_{11}	$9(y-1)^{7}(y^{3}-2y^{2}+y-1)^{2}(y^{11}-4y^{10}+\cdots+11y-1)^{2}$ $\cdot (9y^{13}-42y^{12}+\cdots+669y-121)$
c_{12}	$81(y-1)^{7}(y^{3}-2y^{2}-3y-1)^{2}(y^{11}+8y^{10}+\cdots+67y-1)^{2}$ $\cdot (81y^{13}+630y^{12}+\cdots+37613y-14641)$