Модуль подсистемы "Специальные" <FLibComplex1>

Модуль:	FLibComplex1	
Имя:	Библиотека функций совместимости со SCADA Complex1.	
Tun:	Специальные	
Источник:	spec_FLibComplex1.so	
Версия:	0.9.0	
Автор:	Роман Савоченко	
Описание:	Предоставляет библиотеку функций совместимости со SCADA Complex1 фирмы НИП "DIYA".	
Лицензия:	GPL	

Оглавление

<u> Модуль подсистемы "Специальные" <flibcomplex1></flibcomplex1></u>	
Введение	4
<u>1 Сигнал (alarm) <111></u>	2
2 Условие '<' (cond It) <239>	2
<u> 3 Условие '>' (cond gt) <240></u>	2
4 Полное условие (cond_full) <513>	2
<u> 5 Дискретный блок (digitBlock) <252></u>	
<u>6 Деление (div) <526></u>	
7 Экспонента (exp) <476>	
8 Расход (flow) <235>	3
9 Итератор (increment) <181>	
<u>10 Задержка (lag) <121></u>	4
11 Простое умножение(mult) <259>	4
12 Умножение+деление(multDiv) <468>	
<u>13 ПИД регулятор (pid) <745></u>	
14 Степень (pow) <564>	_
<u>15 Выбор (select) <156></u>	_
16 Простой сумматор (sum) <404>	5
17 Сумма с делением (sum div) <518>	

Введение

Специальный модуль FLibComplex1 предоставляет в систему OpenSCADA статическую библиотеку функций совместимости со SCADA Complex1 фирмы НИП "DIYA". Эти функции использовались в SCADA системе Complex1 в виде алгоблоков для создания внутрисистемных вычислений на основе виртуального контроллера. Предоставление библиотеки этих функций позволяет выполнять перенос вычислительных алгоритмов из системы Complex1.

Для адресации к функциям этой библиотеки необходимо использовать путь:

<Special.FLibComplex1.*>. Где '*' идентификатор функции в библиотеке.

Ниже приведено описание каждой функции библиотеки. Для каждой функции производилась оценка времени исполнения. Измерение производилось на системе со следующими параметрами: Athlon 64 3000+ (ALTLinux 3.0(32бит)) путём замера общего времени исполнения функции при вызове её 1000 раз. Выборка производилась по наименьшему значению из пяти вычислений. Время заключается в угловые скобки и измеряется в микросекундах.

1 Сигнал (alarm) <111>

Описание: Установка признака сигнализации в случае выхода значения переменной за указанную границу.

```
Формула:
```

```
out = if(val>max || val<min) then true; else false;
```

2 Условие '<' (cond_lt) <239>

Описание: Операция ветвления в соответствии с условием "<".

Формула:

```
out=if(in1<(in2_1*in2_2*in2_3*in2_4))
then in3_1*in3_2*in3_3*in3_4;
else in4_1*in4_2*in4_3*in4_4;
```

3 Условие '>' (cond_gt) <240>

Описание: Операция ветвления в соответствии с условием ">".

Формула:

```
out=if(in1>(in2_1*in2_2*in2_3*in2_4))
then in3_1*in3_2*in3_3*in3_4;
else in4_1*in4_2*in4_3*in4_4;
```

4 Полное условие (cond_full) <513>

Описание: Полная проверка условия, включая: больше, меньше и равно.

Формула:

```
out = if(in1<(in2_1*in2_2*in2_3*in2_4))
then in3_1*in3_2*in3_3*in3_4;
else if(in1>(in4_1*in4_2*in4_3*in4_4)
then in5_1*in5_2*in5_3*in5_4;
else in6_1*in6_2*in6_3*in6_4;
```

5 Дискретный блок (digitBlock) <252>

Описание: Функция содержит алгоритм управления сборками дискретных сигналов

для задвижек и насосов содержащих: признаки "Open", "Close" и команды "Open", "Close", "Stop". Функция поддерживает работу с импульсными командами, т.е. может снимать сигнал через указанный промежуток времени.

Параметры:

ID	Параметр	Тип	Режим
cmdOpen	Команда «Открыть»	Bool	Выход
cmdClose	Команда «Закрыть»	Bool	Выход
cmdStop	Команда «Стоп»	Bool	Выход
stOpen	Сотояние «Открыт»	Bool	Вход
stClose	Состояние «Закрыт»	Bool	Вход
tCmd	Command hold time (s)	Целый	Вход
frq	Период обсчёта (мс)	Целый	Вход

6 Деление (div) <526>

Описание: Производит деление сборок переменных.

Формула:

```
out = (in1_1*in1_2*in1_3*in1_4*in1_5 + in2_1*in2_2*in2_3*in2_4*in2_5
+ in3) /
(in4_1*in4_2*in4_3*in4_4*in4_5 + in5_1*in5_2*in5_3*in5_4*in5_5 + in6);
```

7 Экспонента (ехр) <476>

Описание: Вычисление экспоненты над группой переменных.

Формула:

8 Pacxoд (flow) <235>

Описание: Вычисление расхода газа.

Формула:

```
f = K1*((K3+K4*x)^K2);
```

9 Итератор (increment) <181>

Описание: Итерационное вычисление с указанием приращения. Коэффициент приращения для разных направлений различный.

```
Формула:
```

```
out = if( in1 > in2 ) then in2 + in3*(in1-in2); else in2-in4*(in2-in1);
```

10 Задержка (lag) <121>

Описание: Задержка изменения переменной. Практически это фильтр без привязки ко времени.

Формула:

$$y = y - Klag*(y - x);$$

11 Простое умножение(mult) <259>

Описание: Простое умножение с делением.

Формула:

```
out=(in1_1*in1_2*in1_3*in1_4*in1_5*in1_6)/
(in2_1*in2_2*in2_3*in2_4);
```

12 Умножение+деление(multDiv) <468>

Описание: Разветвленное умножение+деление.

Формула:

```
out=in1_1*in1_2*in1_3*in1_4*in1_5*
(in2_1*in2_2*in2_3*in2_4*in2_5+(in3_1*in3_2*in3_3*in3_4*in3_5)/
(in4_1*in4_2*in4_3*in4_4*in4_5));
```

13 ПИД регулятор (pid) <745>

Описание: Пропорционально-интегрально-дифференциальный регулятор.

Параметры:

ID	Параметр	Тип	Режим
var	Переменная	Веществен.	Вход
sp	Задание	Веществен.	Вход
max	Макс. шкалы	Веществен.	Вход
min	Мин. шкалы	Веществен.	Вход
out	Выход (%)	Веществен.	Возврат
auto	Автомат	Bool	Вход
casc	Каскад	Bool	Вход
Kp	Kp	Веществен.	Вход
Ti	Ти (мс)	Целый	Вход
Td	Тд (мс)	Целый	Вход
Tf	Тфильтр (мс)	Целый	Вход
Hup	Верхняя граница выхода (%)	Веществен.	Вход
Hdwn	Нижняя граница выхода (%)	Веществен.	Вход
Zi	Нечувствительность (%)	Веществен.	Вход

ID	Параметр	Тип	Режим
K 1	Коэф. входа 1	Веществен.	Вход
in1	Вход 1	Веществен.	Вход
K2	Коэф. входа 2	Веществен.	Вход
in2	Вход 2	Веществен.	Вход
K3	Коэф. входа 3	Веществен.	Вход
in3	Вход 3	Веществен.	Вход
K4	Коэф. входа 4	Веществен.	Вход
in4	Вход 4	Веществен.	Вход
cycle	Цикл обсчёта (мс)	Целый	Вход

Структура:

14 Степень (pow) <564>

Описание: Возведение в степень.

Формула:

```
out=(in1_1*in1_2*in1_3*in1_4*in1_5)^
(in2_1*in2_2*in2_3*in2_4*in2_5 + (in3_1*in3_2*in3_3*in3_4*in3_5)/
(in4_1*in4_2*in4_3*in4_4*in4_5));
```

15 Выбор (select) <156>

Описание: Выбор одного из четырёх вариантов.

Формула:

```
out = if( sel = 1 ) then in1_1*in1_2*in1_3*in1_4;
if( sel = 2 ) then in2_1*in2_2*in2_3*in2_4;
if( sel = 3 ) then in3_1*in3_2*in3_3*in3_4;
if( sel = 4 ) then in4_1*in4_2*in4_3*in4_4;
```

16 Простой сумматор (sum) <404>

Описание: Простое суммирование с умножением.

Формула:

```
out=in1_1*in1_2+in2_1*in2_2+in3_1*in3_2+in4_1*in4_2
+ in5_1*in5_2+in6_1*in6_2+in7_1*in7_2+in8_1*in8_2;
```

17 Сумма с делением (sum_div) <518>

Описание: Суммирование с делением группы значений.

Формула:

```
out = in1_1*in1_2*(in1_3+in1_4/in1_5) +
in2_1*in2_2*(in2_3+in2_4/in2_5) +
in4_1*in4_2*(in4_3+in4_4/in4_5) +
in5_1*in5_2*(in5_3+in5_4/in5_5);
```

18 Сумма с умножением (sum_mult) <483>

Описание: Суммирование с умножением группы значений.

Формула:

```
out = in1_1*in1_2*(in1_3*in1_4+in1_5) +
in2_1*in2_2*(in2_3*in2_4+in2_5) +
in4_1*in4_2*(in4_3*in4_4+in4_5) +
in5_1*in5_2*(in5_3*in5_4+in5_5);
```