# Discretionary Note

Anish Krishna Lakkapragada

# IF YOU USE THIS FILE TO CHEAT, YOU ARE NOT ONLY STUPID BUT YOU ARE CHEATING YOURSELF OUT OF THE ABILITY TO FALL IN LOVE WITH MATH. Furthermore, I am not smarter than you and my solutions did not always get a perfect score.

# CONTENT STARTS ON NEXT PAGE.

To access the general instructions for this repository head here.

# STATS 242 HW 2

# January 29, 2025

# Number of late days: 0; Collaborators: None.

1.

For  $1 \le i \le n$ , let us define r.v.  $B_i \sim Bern(p)$ , where for  $i \ne j$ ,  $B_i$  and  $B_j$  are independent. Then, we have that  $X = \sum_{i=1}^{n} B_i$ . Because all  $B_i$ s are independent, we have that:

$$M_X(t) = M_{\sum_{i=1}^n B_i}(t) = \prod_{i=1}^n M_{B_i}(t)$$

The MGF of r.v.  $B_i$  can be computed as:  $M_{B_i}(t) = \mathbb{E}[e^{tB_i}] = e^{t(1)}P(B_i = 1) + e^{t(0)}P(B_i = 0) = pe^t + (1-p) = 1 + p(e^t - 1)$ . Thus, we have  $M_X(t)$  as:

$$M_X(t) = \prod_{i=1}^n M_{B_i}(t) = \prod_{i=1}^n 1 + p(e^t - 1) = [1 + p(e^t - 1)]^n$$

2.

We first start by computing the distributions of  $X_1$  and  $X_2$ . Note that because  $Z_1$  and  $Z_2$  are independent normal distributions, their sum forms a normal distribution as well.

## 1. Distribution of $X_1$

Since  $c_1 Z_1 \sim \mathcal{N}(0, c_1^2)$  and  $d_1 Z_1 \sim \mathcal{N}(0, d_1^2)$ ,  $c_1 Z_1 + d_1 Z_2 \sim \mathcal{N}(0, c_1^2 + d_1^2)$ . Finally,  $e_1$  is just a constant and so it doesn't affect the variance so  $X_1 = c_1 Z_1 + d_1 Z_2 + e_1 \sim \mathcal{N}(e_1, c_1^2 + d_1^2)$ . Therefore we can set  $e_1 = \mu_1$ , the mean of  $X_1$ . Furthermore, the variance  $\sigma_1^2$  of  $X_1$  is equal to  $c_1^2 + d_1^2$ .

### 2. Distribution of $X_2$

We use identical reasoning as with before.  $c_2Z_1 \sim \mathcal{N}(0, c_2^2)$  and  $d_2Z_2 \sim \mathcal{N}(0, d_2^2)$ , so we have  $c_2Z_2 + d_2Z_2 \sim \mathcal{N}(0, c_2^2 + d_2^2)$ . Thus,  $X_2 = c_2Z_2 + d_2Z_2 + e_2 \sim \mathcal{N}(e_2, c_2^2 + d_2^2)$ . Therefore we can set  $e_2 = \mu_2$ , the mean of  $X_2$ . Furthermore, the variance  $\sigma_2^2$  of  $X_2$  is equal to  $c_2^2 + d_2^2$ .

We now have  $c_1, c_2, d_1, d_2$  remaining to assign. We compute the correlation  $\rho$  between  $X_1$  and  $X_2$ , starting by computing the covariance between  $X_1$  and  $X_2$ :

$$Cov(X_1, X_2) = Cov(c_1 Z_1 + d_1 Z_2 + e_1, c_2 Z_1 + d_2 Z_2 + e_2)$$
  
=  $c_1 Cov(Z_1, c_2 Z_1 + d_2 Z_2 + e_2) + d_1 Cov(Z_2, c_2 Z_1 + d_2 Z_2, e_2) + Cov(e_1, c_2 Z_1 + d_2 Z_2 + e_2)$ 

Note that because  $e_1$  is a fixed constant,  $Cov(e_1, c_2Z_1 + d_2Z_2 + e_2) = 0$ . Also note that because  $Z_1$  and  $Z_2$  are independent,  $Cov(Z_1, Z_2) = 0$ .

$$Cov(X_1, X_2) = c_1[c_2Cov(Z_1, Z_1) + d_2Cov(Z_1, Z_2) + Cov(Z_1, e_2)] + d_1Cov(Z_2, c_2Z_1 + d_2Z_2, e_2)$$

$$= c_1[c_2 + 0 + 0] + d_1[c_2Cov(Z_2, Z_1) + d_2Cov(Z_2, Z_2) + Cov(Z_2, e_2)] = c_1c_2 + d_1[0 + d_2 + 0]$$

$$= c_1c_2 + d_1d_2$$

and now we compute the correlation  $\rho$  between  $X_1$  and  $X_2$  as:

$$\rho = \frac{\text{Cov}(X_1, X_2)}{\sqrt{\text{Var}(X_1)\text{Var}(X_2)}} = \frac{c_1c_2 + d_1d_2}{\sigma_1\sigma_2}$$

This gives us three equations:

$$\rho \sigma_1 \sigma_2 = c_1 c_2 + d_1 d_2$$

$$c_1^2 + d_1^2 = \sigma_1^2$$

$$c_2^2 + d_2^2 = \sigma_2^2$$

to solve for four variables. As such, we arbitrarily choose to set  $c_1=0$ , giving us  $d_1=\sigma_1$  and  $\rho\sigma_1\sigma_2=d_1d_2=\sigma_1d_2 \implies d_2=\rho\sigma_2$ . Finally, we can solve for  $c_2^2=\sigma_2^2-d_2^2=\sigma_2^2-\rho^2\sigma_2^2=\sigma_2^2(1-\rho^2) \implies c_2=\sigma_2\sqrt{1-\rho^2}$ .

As a summary of my answer,

$$e_1 = \mu_1$$

$$e_2 = \mu_2$$

$$c_1 = 0$$

$$c_2 = \sigma_2 \sqrt{1 - \rho^2}$$

$$d_1 = \sigma_1$$

$$d_2 = \rho \sigma_2$$

3.

(a) We first show  $\mathbb{E}[\hat{I}_n(f)] = I(f)$ . Note that  $\frac{f(X_i)}{g(X_i)}$  is a random variable and so its expectation is given to us by  $\mathbb{E}[\frac{f(X_i)}{g(X_i)}] = \int_{-\infty}^{\infty} \frac{f(u)}{g(u)} g(u) du = \int_a^b \frac{f(u)}{g(u)} g(u) du = \int_a^b f(u) du = I(f)$ . Thus:

$$\mathbb{E}[\hat{I}_n(f)] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n \frac{f(X_i)}{g(X_i)}\right] = \frac{1}{n} \cdot n \cdot \mathbb{E}\left[\frac{f(X_i)}{g(X_i)}\right] = I(f)$$

Notice that  $\hat{I}_n(f)$  is essentially an average of n random variables, each of with an expectation of I(f). Thus,  $\hat{I}_n(f) \to I(f)$  in probability as  $n \to \infty$  due to the (Weak) Law of Large Numbers.

b) We first compute  $\operatorname{Var}[\hat{I}_n(f)]$ . We begin by computing the variance of random variable  $\frac{f(X_i)}{g(X_i)}$ :

$$\operatorname{Var}\left[\frac{f(X_i)}{g(X_i)}\right] = \mathbb{E}\left[\left(\frac{f(X_i)}{g(X_i)}\right)^2\right] - \mathbb{E}\left[\frac{f(X_i)}{g(X_i)}\right]^2 = \int_a^b \frac{f^2(u)}{g^2(u)}g(u)du - I^2(f) = \int_a^b \frac{f^2(u)}{g(u)}du - I^2(f)$$

Let us call define this quantity to be  $\sigma^2 = \int_a^b \frac{f^2(u)}{g(u)} g(u) du - I^2(f) \in \mathbb{R}$ . and so we have:

$$Var[\hat{I}_n(f)] = Var[\frac{1}{n}\sum_{i=1}^n \frac{f(X_i)}{g(X_i)}] = \frac{1}{n^2}\sum_{i=1}^n Var[\frac{f(X_i)}{g(X_i)}] = \frac{1}{n}\sigma^2$$

Let us define  $c_n = \frac{\sqrt{n}}{\sigma} \in \mathbb{R}$ . Thus, by the Central Limit Theorem, we have that:

$$c_n(\hat{I}_n(f) - I(f)) \to \mathcal{N}(0,1) \text{ as } n \to \infty$$

c) In this problem, a=0 and b=1,  $f(x)=\cos(2\pi x)$ , and g(x)=1 if  $x\in[0,1]$  and 0 otherwise. We first compute I(f):

$$I(f) = \int_0^1 \cos(2\pi x) dx = \sin(2\pi x) \Big|_0^1 = \sin(2\pi) - \sin(0) = 0 - 0 = 0$$

and then  $\sigma^2$ :

$$\sigma^{2} = \int_{0}^{1} \frac{\cos^{2}(2\pi x)}{1} dx - I^{2}(f) dx = \int_{0}^{1} \left[ \frac{1}{2} + \frac{\cos(4\pi x)}{2} \right] dx = \left[ \frac{x}{2} + \frac{\sin(4\pi x)}{8} \right] \Big|_{0}^{1}$$
$$= \frac{1}{2} + \frac{1}{8} (\sin(4\pi) - \sin(0)) = \frac{1}{2}$$

and so  $c_n$  is given by:

$$c_n = \frac{\sqrt{n}}{\sigma} = \sqrt{\frac{n}{\sigma^2}} = \sqrt{2n}$$

### 4.

From my simulation, the mean and standard deviation of  $X_{median}$  are given by 0.00178 and 0.1265 respectively. Below is the histogram of the 5000 values of  $X_{median}$  from my simulation:



Based on the above histogram, we can see that the sampling distribution of  $X_{median}$  follows a normal distribution. We now derive the standard deviation of the sample mean  $\bar{X}$ . Note that 99 observations is enough for us to apply the Central Limit Theorem with confidence. Thus<sup>1</sup>,  $\bar{X} = \frac{X_1 + \cdots + X_{99}}{99} \sim \mathcal{N}(\mathbb{E}[X_1], \frac{\text{Var}(X_1)}{99})$  or  $\bar{X} \sim \mathcal{N}(0, \frac{1}{99})$ . Thus the analytically-computed standard deviation of sample mean  $\bar{X}$  is  $\sqrt{\frac{1}{99}}$  or 0.1005, which is less than my calculated simulated standard deviation for  $X_{median}$  (0.1265). According to my simulation,  $X_{median}$  is more variable than  $\bar{X}$ .

```
# %%

# Run all imports first and then write helper functions.

import numpy as np
import math
import matplotlib.pyplot as plt

def get_N_obs_iid_standard_normal(N):
    return np.random.normal(0, 1, N)

def compute_median(arr):
    # assume arr is numpy
    return np.median(arr)
```

<sup>&</sup>lt;sup>1</sup>Note that  $X_1 \dots X_{99}$  are identical distributions and so they all have the same mean and variances.

```
15 # %%
N_SIMULATIONS = 5000
17 X_medians = []
18 for _ in range(N_SIMULATIONS):
      samples = get_N_obs_iid_standard_normal(99)
      X_median_curr = compute_median(samples)
20
      X_medians.append(X_median_curr)
21
X_medians = np.array(X_medians)
X_median_mean = np.mean(X_medians)
25 X_median_std = np.std(X_medians)
print(f"X_median mean: {X_median_mean} and std: {X_median_std}")
28 # %%
29
  11 11 11
31 Plot a histogram.
33
plt.hist(X_medians, bins=100, edgecolor='black', alpha=0.7)
36 # Add labels and title
plt.xlabel('X_median values')
38 plt.ylabel('Frequency')
plt.title('Histogram of 5000 values of X_median')
41 # %%
```