CS & IT ENGINEERING

Database Management System

Transaction & Concurrency Control

DPP - 03 Discussion Notes

By-Vijay Agarwal sir

TOPICS TO BE COVERED

01 Question

02 Discussion

$$S = r_1(P); r_3(S); w_1(Q); r_2(Q) r_4(Q),$$

$$w_2(R) r_5(R); w_4(T); r_5(T); w_5(Q)$$

How many serial schedules conflict equal to schedules(S)?

	<u>ID</u> .	Avg		Ave
CORIT	T2	Ty	T	
CoseTI T.	Ty)) T2	75	
(Port		21		

2)	T_1	TZ	T	Ty	15
qual to schedules(S)?	8(9)				
T_2	(2/0)	4	8(S)		
	(F3)	X(Q)			
Ty - (Tr)					
		W(R)		5/8)	
To To 13 Co	ny be ed Any ele				5(R)
9 3 Wh	ele		U		•
T T T				16	(T) (R)
9 7					

(i) (T3) T1 T4 T2 T5 (ii) TI (T3) Ty T2 T5 (iii) Ty (T3) T2 T5 (iv) TI Ty T2 (T3) T5 (V) TI TY T2 T5 (3)

$$S = r_1(P); r_3(S); w_1(Q); r_2(Q) r_4(Q), w_2(R);$$

$$r_5(R)$$
; $w_4(T)$; $r_5(T)$; $w_5(Q)$

How many serial schedules view equal to schedule(S)

(1)	Initial	Read
-----	---------	------

11, 2, 3 /4	.7
8(P) 8(S)	
W(Q)	
8(0)	
8(9)	
WIR	
W(T)	(R)
	x/+)
	8/T) W(Q)
	')

T2 4 Ty (TI) T2 T4 TB COSCI 0 (T3) TI TZ TU TS

(1) TI (T3) TZ TU TS (T3) T (5) T (5) 75 (

Another Approach Streets from 3 CORTI TI TS (T3) CORIX X T3 X T, 1 T5 X 13 丁 型 4 5

丁つて2 T2 Ty (T2 Ty) Abta Ti & Before 15 2 (T1 T3 (T2 T4)

By T2 Ty & Placed Abta T, & Rebox Ts.

Coletti T, 4 Ts Ts

Taty

T

TI T2 Ty T5 T5 7 (2)
TI T2 T5 T5

Cole I 2

Cose II: 6

Case III: 2 To Ang

Consider the following transactions

$$T_1: r_1(P); w_1(P); r_1(Q); w_1(Q) = y$$

$$T_2: r_2(P); r_2(Q) = 2$$

$$T_3 \rightarrow n_3$$
| Diferior of the distribution of the properties of the distribution of the distribution of the properties of the distribution of the dis

$$T_1 \rightarrow N_1$$
 $T_2 \rightarrow N_2$
 $T_3 \rightarrow N_3$
 $T_3 \rightarrow N_3$
 T_4
 $T_5 \rightarrow N_5$
 T_6
 T_8
 T_8

$$T_3: w_3(P); w_3(Q) - 2$$

How many concurrent schedules between T₁, T₂ and T₃ transactions _____?

- 400
- 410
- 420
- None

How many views equivalent serial schedules are possible for the

	The second second		
given	schedules	below_	(2) Arg

S: $w_1(P) r_2(P) w_3(P) r_4(P) w_5(P) r_6(P)$ $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt$	
The Ta)

The goal of concurrency control on database system is to

Only allow concurrent execution of transaction that correspond to serial execution of some of the transactions.

Allow only transactions that don't access common relationship to run concurrently.

Execute transactions serially.

None of the above. Serializable Schedule

What problem can occur when a DBMS executes multiple

Lost update problem.

Dirty read problem. (WR)

transactions concurrently?

Incorrect summary problem.

All of the above.

Problem due to Concurrent excention

Owe uncommitted Read Disty Read

3 RW un repeatable Read

3 WW Lost Uplate Problem

(9) Phantom Typle Possem

6) In correct Summary Roblem

Q.8

Consider the following statements

S₁: Every view serializable schedule is conflict serializable.

S₂: Some view serializable schedules are conflict serializable.

Only S_1 is true.

Only S₂ is true

WAI

V(A)
W(A)

Both S₁ & S₂ are true

WIA)

D.

Neither S₁ nor S₂ is true

& Final Write

Arg (B).

Cycle Not Conflict Bit View

12

O Fritial Read

B Ginal Write

Updated Read
(Write-Read)

View Serializable

& Conflict Devializable

Consider the following schedule involving two transactions

 S_1 : $r_1(A)$; $r_2(A)$; $w_2(A)$; $r_3(A)$; $w_1(A)$; $w_2(B)$; $r_3(B)$, (c_2) $w_3(A)$; c_1 , c_3

 S_2 : $r_2(A)$; $r_1(A)$; $w_1(A)$; $w_2(A)$; $w_2(A)$; $v_3(A)$; $v_3(A)$; $r_2(B); c_1, c_3; c_2$

Which one of the following statements is TRUE?

is recoverable and S₂ is not recoverable.

 S_1 is not recoverable and S_2 is recoverable.

Both S₁ and S₂ are recoverable.

R(Q)

0.9
٧.٠
-

Consider the following schedule involving two transactions

$S_1: r_1(A); r_2(A);$	$w_2(A); r_3(A);$	$w_1(A)$;	$w_2(B);$	$r_3(B)$,
$c_2, w_3(A); c_1,$, c ₃			

 S_2 : $r_2(A)$; $r_1(A)$; $w_1(A)$; $w_2(A)$; $w_2(A)$; $r_3(A)$; $r_3(A)$; $w_3(A)$, $r_2(B)$; c_1 , c_3 ; c_2

Which one of the following statements is TRUE?

 S_1 is recoverable and S_2 is not recoverable.

S₁ is not recoverable and S₂ is recoverable.

Both S₁ and S₂ are recoverable.

Both S₁ and S₂ are not recoverable.

[MCQ]	T1 0(A) W(A)	
t Recoverable	Commit	

	12	13
	8(A)	
)	(WIA)	/t2->To
		(SIA)
	8(B)	W(A)
		Commit
	Commit	Z 73→ 5

Consider the following schedule:

[MCQ]

S: $r_1(A)$; $r_2(C)$; $w_1(A)$; $r_3(A)$ $r_2(B)$; $w_2(B)$, $w_3(A)$; $r_3(B)$; $r_2(A)$ for the schedule S given above two orderings of commits (ci) operations are specified.

I. c_1 ; c_3 ; c_2

II. c1; c2; c3

Which of the above ordering ensures recoverability of schedule

S?

Only I

Both I and II

Only II

None of these

Q.II		Q.11
------	--	------

Consider the following partial schedule 'S' involving two

transaction T₁ and T₂

Suppose that the transaction T_1 fails immediately after time instance 8.

Which one of the following is correct?

S₁: Schedule S is non recoverable and cannot ensure transaction atomicity

S₂: Only T₂ should be aborted and then restarted to ensure truncation atomicity

Time	T ₁	T ₂
t _o	read(P);	
t ₁	write(P);	
t ₂		read(R);
t ₃		write(R)
t ₄		read(Q);
t ₅		write(Q)
t ₆		read(P);
t ₇		commit;
(t_8)	read(Q);	

Only S₁ is true

Only S₂ is true

C. Both S₁ and S₂ are true

D. Both S_1 and S_2 are false

Not Recoverable

Angla).

