Network Science Evolving Networks

Dubois Martin Verstraeten Baptiste Giraud Jean-François Paux Jean-Baptiste

Sommaire

I – Le modèle de Bianconi-Barabasi

II – Mesure de la fitness

III - Condensation de Bose-Einstein

IV – Evolving networks

Modèle Bianconi-Barabási

Modèle Barabási-Albert

→ Loi du plus fort

→ Croissance déterminée uniquement par le degré du noeud

Modèle Bianconi-Barabási

Nouveau paramètre: La fitness η

• Fitness du nouveau noeud suit une distribution $\rho(\eta)$

• Probabilité qu'un lien se connecte au noeud i :

$$\Pi_i = \frac{\eta_i k_i}{\sum_j \eta_j k_j}$$

LINEAR PLOT

LOG-LOG PLOT

Evolution du degré k d'un noeud

$$k(t, t_i, \eta_i) = m \left(\frac{t}{t_i}\right)^{\beta(\eta_i)}$$

$$C = \int \rho(\eta) \frac{\eta}{1 - \beta(\eta)} d\eta \qquad \beta(\eta) = \frac{\eta}{C}$$

• Dans le modèle Barabási-Albert: $\beta = \frac{1}{2}$, même fitness pour tout le monde

Dans le modèle Bianconi-Barabási: β proportionnel à η

- Bianconi-Barabási permet de simuler le fait que:
 - → Des noeuds différents ont des caractéristiques internes différentes, ils évoluent donc à des vitesses différentes

Mesure de la Fitness

D'après la formule vue dans la partie précédente

$$\ln k(t, t_i, \eta_i) = \beta(\eta_i) \ln t + B_i$$

• Pour un grand nombre de noeuds, la distribution de l'exposant dynamique β est la même que celle de la fitness η

Repartition de la fitness de documents Web

Fitness d'un document Web

- La distribution de fitness est indépendante du temps.
- La fitness d'un document est limité, elle varie dans une gamme étroite.
- Si 2 noeuds arrive en même temps avec η2 > η1 la différence entre leur degré d'évolution pour un grand t

$$\frac{k_2 - k_1}{k_1} \sim t^{\frac{n_2 - n_1}{C}}$$

Fitness d'une publication Scientifique

 La proba qu'un papier de recherche i est cité après un temps t après publication est :

$$\Pi_{i} \sim \eta_{i} c_{i}^{t} P_{i}(t)$$

$$P_{i}(t) = \frac{1}{\sqrt{2\pi t \sigma_{i}}} e^{-\frac{(\ln t - \mu_{i})^{2}}{2\sigma_{i}^{2}}}$$

Ce qui nous donne le nombre de citations C d'un papier:

$$C_i^t = m \left(e^{\frac{\beta \eta_i}{A} \Phi\left(\frac{\ln t - \mu_i}{\sigma_i}\right)} - 1 \right)$$

avec:
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$$

- Répartition de fitness des papiers de différents journaux scientifiques.
- Certains journaux sont plus "importants" que d'autres donc on remarque une répartition variable

Bose-Einstein condensation

Source: https://fr.wikipedia.org/wiki/Condensat_de_Bose-Einstein

Gaz de Bose

NETWORK

BOSE GAS

 \mathcal{E}_4 \mathcal{E}_2

 ε_6 ----- ε_1

 ε_2

Lien entre le modèle et les gaz de Bose

- Fitness η_i → Energie ε_i
- Nouveau noeud avec fitness η_i → Nouveau niveau d'énergie ε_i
- Lien pointant vers noeud i → Particule au niveau ε_i
- Degré du noeud i → Nombre de particules au niveau ε_i

$$\varepsilon_i = \frac{1}{\beta_T} \log \eta_i$$

$$n(\varepsilon) = \frac{1}{e^{\beta_T(\varepsilon - \mu)} - 1}$$

Deux phases distinctes

- Phase sans échelle (Scale-free Phase)
- Condensation de Bose-Einstein (Bose-Einstein Condensation)

Condition:
$$\int\limits_{\eta_{\min}}^{\eta_{\max}} \frac{\eta \rho(\eta)}{1-\eta} d\eta < 1$$

Cas particulier:
$$ho(\eta) = (1-\zeta)(1-\eta)^{\zeta}$$

Phase sans échelle

Condensation de Bose-Einsteein

Evolving networks

Extensions du modèle

Attractivité initiale

$$\Pi(0) = A$$
 $\Pi(k) \sim A + k$

- Permet liaison à l'arrivée d'un noeud Favorise les noeuds moins attractifs
- vinfluence des noeuds très attractifs

Liens internes

$$\Pi(k,k') = (A+Bk)(A+Bk')$$

Double attache possible (A=0) y = 2 + m/(m + 2n)

- influence fitness
- / l'hétérogénéité du réseau

Attache aléatoire (B=0)

$$y = 3 + 2n/m$$

- influence fitness

Suppression de noeuds

Exposant dynamique : y = 3+2r/(1-r)

Phase "scale-free" → suit loi de Puissance

Phase exponentielle → suit loi Exponentielle

Phase déclinante

Le nombre de liens ne varie pas linéairement

Croissance accélérée

$$m(t) = m0 * t^\theta$$

si $\theta = 0 \rightarrow$ les noeuds ont le même nombre de liens

si $\theta > 0 \rightarrow$ suit croissance accélérée

Vieillesse

 \prod (k) ~ (t - tk)^(-v)

- Capacité réduite
- Temps de vie des noeuds
- Affaiblissement des noeuds progressivement (nombres articles d'un scientifique, ceux qui ont tourné avec un acteur)

v <0 : Attraction des noeuds plus anciens

v >0: Attraction des noeuds plus récents

v > 1 : dépend de la taille (not scale-free property)

Merci de votre attention