제 5 장 상관관계

- 1. 산포도
- 2. 상관계수
- 3. 상관계수 구하기
- 4. 상관계수의 특징
- 5. 상관계수와 관련된 유의사항

결합분포

이제까지는 한 번에 하나의 변수만을 다루는 방법에 대해 살펴보았다. 이제부터는 두 변수 사이의 상호관계를 분석하기 위한 방법을 살펴본다. 남녀간의 관계처럼 많은 경우 둘간의 관계가 중요하다.

• 예: 교육과 임금

• 예: 통화증가율과 물가상승률

• 예: 학급 규모와 학생 성적

결합분포(joint distribution): 두 변수간의 관계 전모를 보여줌

산포도 (scatter plot)

두 변수 사이의 관계를 살펴보기 위해 산포도를 이용한다. 설명변수는 x로 표기하고 가로축에 표시 피설명변수는 y로 표기하고 세로축에 표시

중간고사 기말고사 성적간 관계가 약한 경우

- 변수 사이의 관계가 약하면 한 변수 값이 다른 변수 값을 예측하는 데 큰 도움 안됨
- 중간고사에서 150점 받은 학생들의 기말고 사 성적은 55점에서 175점 사이에 분포

중간고사 기말고사 성적간 관계가 강한 경우

- 변수 사이의 관계가 강하면 한 변수 값이 다른 변수 값을 예측하는 데 크게 도움됨
- 중간고사에서 150점 받은 학생들의 기말고
 사 성적은 105점에서 175점 사이에 분포

산포도의 요약

가로로 보면 대략 95%의 점들이 x평균점을 기준으로 $\pm 2SD_x$ 이내에 위치함 세로로 보면 대략 95%의 점들이 y평균점을 기준으로 $\pm 2SD_y$ 이내에 위치함 x의 평균과 표준편차, y의 평균과 표준편차는 x와 y의 분포를 따로따로 요약

상관계수의 필요성

가로든 세로든 평균과 표준편차가 동일해도 두 변수의 관계는 상이

위의 두 산포도는 가로든 세로든 중심과 퍼진 정도가 동일하지만 (a)가 (b)보다 더 강한 선형관계를 보임

두 변수간 선형관계의 방향과 강도가 얼마나 되는지 측정할 필요성 대두 상관계수는 두 변수간 선형관계의 방향과 강도 측정

두 변수 사이의 관계

이변량 자료의 요약 통계량

- x의 평균과 표준편차
- y의 평균과 표준편차
- x와 y간 상관계수 (correlation coefficient)
 - r로 표기

상관계수가 다른 여섯 개의 산포도

그림 5-6 양(+)의 상관계수 값을 갖는 여섯 개의 산포도

주: 각각의 산포도는 가로, 세로 모두 평균 3, 표준편차 1의 동일한 값을 갖는다. 각각의 산포도에는 50개씩의 점이 찍혀 있다.

상관계수의 범위, 부호

범위: $-1 \le r \le 1$

상관계수 = 1 또는 -1 이면 완전상관(perfect correlation)

• 모든 점들이 정확히 하나의 선 위에 위치

양의 상관관계이면 점의 분포가 우상향음의 상관관계이면 점의 분포가 우하향

두 변수의 표준편차가 모두 0이면 상관계수를 정의할 수 없음 두 변수 중 어느 한 변수만의 표준편차가 0이면 상관계수는 0

3. 상관계수 구하기

상관계수 구하는 절차 1

$$r = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \cdot \sqrt{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}}}$$

- i. 각 변수를 평균으로부터의 편차로 바꾼다.
- ii. 두 편차를 서로 곱한 뒤 합친다.
- iii. 각 편차를 제곱하여 합치고, 다시 제곱근을 취한다. 두 제곱근을 곱한다.
- iv. 위 ii에서 얻은 값을 위 iii에서 얻은 값으로 나눈다.

3. 상관계수 구하기

상관계수 구하는 절차 2

변형된 공식

$$r = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})/(n-1)}{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}/(n-1)} \cdot \sqrt{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}/(n-1)}}$$

- i. 각 변수를 평균으로부터의 편차로 변환한다.
- ii. 두 편차를 서로 곱하여 합친 뒤 자유도 n-1로 나누어 공분산을 구한다.
- iii. 두 표준편차를 곱한다.
- iv. 위 ii에서 구한 값을 위 iii에서 구한 값으로 나눈다.

4. 상관계수의 특징

상관계수의 특징

상관계수는 단위를 갖지 않음. 즉, 측정단위와 독립적으로 정의됨

- 하나의 변수가 취하는 모든 값에 상수를 더하거나 빼는 변환을 해도 상관계수는 변하지 않음
- 하나의 변수가 취하는 모든 값에 양의 상수를 곱하거나 양의 상수로 나누는 변환을 해도 상관계수는 변하지 않음

상관계수는 방향성을 갖지 않음. 즉 x와 y의 상관계수는 y와 x의 상관계수 와 같음

상관계수의 해석

상관계수의 의미

- '상관계수=0.8'은 산포도 상에서 80%의 점들이 하나의 선 주위에 빽빽하게 밀집 해 있다는 것을 의미하지 않는다.
- '상관계수=0.8'은 상관계수가 0.4일 때보다 선형관계의 강도가 강하기는 하지만 정확히 두 배로 강하다는 것을 의미하지도 않는다.

산포도상에서 표준편차를 변화시킬 때의 시각적 효과

사실상 두 그림에서 상관계수는 0.7로 같음

상관계수가 유용하지 않은 경우

이탈값(outlier)이 존재하는 경우 두 변수간 관계가 비선형인 경우

변수 변환

적절한 변수변환을 통하여 비선형 관계를 선형관계로 근사시킴

• 예: (x, y)간 존재하는 원래의 비선형 관계가 (x, ln(Y))간 선형관계로 바뀐 경우

Napoleon's Grand Armee 1812 Russian Campaign

Napoleon's Grand Armee 1812 Russian Campaign

상관관계가 실제의 관계를 과장하는 경우

비율이나 평균의 자료로부터 구한 상관관계는 종종 실제의 관계를 과장 지역이나 국가 등 집단의 자료로부터 구한 상관계수는 개개인에게 적용되는 선 형관계를 과장할 가능성이 있음.

상관계수가 곧바로 인과관계는 아니다

자유무역과 경제성장

- 많은 연구에서 자유무역과 경제성장 간에는 양의 상관관계가 존재하는 것으로 나타났다. 과연 자유무역이 경제 성장의 원동력이라고 말할 수 있을까?
- 후진국: 낙후된 지역, 잘못된 거시정책 (제3의 혼동요인 존재)

자본유입과 경제성장

- 중국 내 12개 성(省)을 대상으로 조사한 결과 해외자본을 많이 유치한 성일수록 경제성장률이 높았다. 이 결과로부터 해외자본이 경제성장을 촉진시켰다고 말할 수 있을까?
- 해외투자자: 성장잠재력이 큰 성에 투자할 것임 (역인과 관계 가능성)

상관계수가 곧바로 인과관계는 아니다

21