Cvičení 10

Úloha 1. Řešte rekurence:

1.
$$T(n) = T(\frac{n}{2}) + \Theta(1)$$
 5. $T(n) = 8 \cdot T(\frac{n}{2}) + \Theta(n^2)$

2.
$$T(n) = 2 \cdot T(\frac{n}{2}) + n + 42$$
 6. $T(n) = 7 \cdot T(\frac{n}{2}) + \Theta(n^2)$

3.
$$T(n) = 3 \cdot T(\frac{n}{2}) + 42 \cdot n + 1$$
 7. $T(n) = 7 \cdot T(\frac{n}{2}) + \Theta(n^3)$

4.
$$T(n) = 4 \cdot T(\frac{n}{2}) + \Theta(n)$$
 8. $T(n) = T(\frac{n}{7}) + T(\frac{5}{7}n) + n$

Úloha 2. Vyřešte rekurenci $T(n) = c \cdot T(\frac{n}{2}) + \Theta(n \log n), \ T(1) = 1.$ Nejprve můžete vyřešit pro c = 1, 2, a pak se teprve zabývat obecným případem.

Úloha 3. Vyřešte rekurenci
$$T(1) = 1$$
, $T(n) = \sqrt{n} \cdot T(\sqrt{n}) + \Theta(n)$.

Úloha 4. V analýze Karacubova algoritmu na přednášce nezazněl jeden detail: čísla A + B a C + D mohou mít víc než n/2 cifer. Ukažte, že to asymptotickou složitost nezmění.

Úloha 5. Problému z předchozího cvičení se taky dá vyhnout jednoduchou úpravou algoritmu: místo (A + B)(C + D) spočtěme (A - B)(C - D). Jak přesně pak algoritmus vypadá?

Úloha 6. *Převod mezi soustavami:* Máme n-ciferné číslo v soustavě o základu z a chceme ho převést do soustavy o jiném základu. Ukažte, jak to metodou Rozděl a panuj zvládnout v čase $\mathcal{O}(M(n))$, kde M(n) je čas potřebný na násobení n-ciferných čísel v soustavě o novém základu.

Úloha 7. Vícecestný MERGESORT s k "cestami" dělí posloupnost na k stejně velkých částí, které rekurzivně setřídí a výsledky slije.

Nejprve ukažte, jak slévat k setříděných polí celkové délky n v čase $\mathcal{O}(n \log k)$. Pak analyzujte časovou složitost vícecestného MERGESORTU. Může takový algoritmus být rychlejší než standardní MERGESORT?

Čemu odpovída n-cestný Mergesort?

Kuchařka na řešení rekurencí (Master theorem):

Rekurentní rovnice $T(n) = a \cdot T(\frac{n}{b}) + \Theta(n^c), \, T(1) = 1$ má řešení

$$\begin{split} T(n) &= \Theta(n^c \log n), & \text{pokud } a/b^c = 1 \\ T(n) &= \Theta(n^c), & \text{pokud } a/b^c < 1 \\ T(n) &= \Theta(n^{\log_b a}), & \text{pokud } a/b^c > 1 \end{split}$$

(pro konstanty $a \ge 1, \ b > 1, \ c \ge 0)$