Toxic Comment Classification

Implementation of the Long-Short Term Memory (LSTM) Architecture

Problem Overview

- Detecting harmful speech on Wikipedia Talk Pages.
- An example of a sequence to vector problem.
- Multilabel problem with 6 possible binary categories.

	id	comment_text	toxic	severe_toxic	obscene	threat	insult	identity_hate
0	0000997932d777bf	Explanation\nWhy the edits made under my usern	0	0	0	0	0	0
1	000103f0d9cfb60f	D'aww! He matches this background colour I'm s	0	0	0	0	0	0
2	000113f07ec002fd	Hey man, I'm really not trying to edit war. It	0	0	0	0	0	0
3	0001b41b1c6bb37e	"\nMore\nI can't make any real suggestions on	0	0	0	0	0	0
4	0001d958c54c6e35	You, sir, are my hero. Any chance you remember	0	0	0	0	0	0

Two Possible Approaches

 Splitting the problem into 6 binary classification problems and training a classifier for each class Used on naive-bayes & logistic regression

II. Using a multi-label classification algorithm that is trained on all classes together.

Used on a recurrent neural network

Exploratory Data Analysis

- Identified the imbalance in classes
- Identified the high variance and skewness in comment lengths

Distribution of comment lengths

Evaluation Metrics

- 'Positive' observations make up a very small proportion in each category.
- Accuracy is an unreliable metric.
- Minimizing false positives is essential.
- Recall, and AUC-ROC are used in this project.

Recurrent Neural Networks

- Recurrent neural networks ideal for sequences like text data
- Yet, suffer from the twin vanishing and exploding gradient problems
- Vanishing gradient results in 'short-term' memory.

The LSTM Architecture

- The LSTM architecture is a solution to the problem of the vanishing gradient.
- Introduces an additional 'cell-state' connection between hidden nodes
- Uses a 'gate' mechanism, to regulate memory.

LSTM Model Implementation

- Used the sigmoid activation function, in combination with the binary cross-entropy loss function.
- Chose the 'Adam' optimizer.
- Chose learning rate (0.002) which maximized AUC-ROC using trial-and-error.
- Best accuracy was achieved in 4 epochs,
 recall improved when trained over 20 epochs.

Model Tuning

- Adjusted for the class imbalances:
 - Initialized the biases for each class as the log(pos/neg), where
 - pos = 'positive' observations of the class, and
 - neg = 'negative' observations of the class
- Recall improved on the toxic, obscene, and threat categories, but worsened in the others.
- Model generalisability was vastly improved, as overfitting was limited.

Performance Improvements

4 epochs - no adjustments to class weights

20 epochs - adjusted class weights and initialized biases

Comparison to Naive Bayes

Naive Bayes suffers from weaker recall

Obscene

Threat

Insult

Identity Hate

Toxic

Severe Toxic

But has a lower false positive rate

Comparison to Logistic Regression

LR outperforms the RNN in terms of recall

At the expense of a higher FPR

Conclusion

- Model selection depends on the objectives.
- Appears to be a trade off between model recall and FPR.
- Minimizing false positives may be more important than maximizing recall.
- Improvements could be made by using a custom 'weighted binary cross entropy' loss function.
- Alternatively, a combination oversampling and undersampling could help

