1

Parallel line through trapezium

Krishnaja Kodali

Abstract—This document proves that a line passing through a trapezium which is parallel to the parallel sides of a trapezium cuts the non-parallel sides in equal ratios.

Download python codes from

svn co https://github.com/krishnajakodali/ Summer2020/trunk/geometry/codes

and latex-tikz codes from

svn co https://github.com/krishnajakodali/ Summer2020/trunk/geometry/figs

1 Problem

ABCD is a trapezium with $AB \parallel DC$. E and F are points on the non-parallel sides AD and BC respectively such that EF is parallel to AB.

Show that:

$$\frac{AE}{ED} = \frac{BF}{FC}$$

2 Construction

2.1. The trapezium ABCD looks like the Fig. 2.1. with $AB \parallel DC \parallel EF$

Fig. 2.1: Trapezium ABCD by Latex-Tikz

2.2. List the design parameters for construction **Solution:** See Table. 2.2

Parameter	Description	Value
Length of AB	a	4
Length of CD	c	9
x-coordinate of A	x_a	4
Height of trapezium	h	3
AE / ED ratio	k	1

TABLE 2.2: To construct trapezium ABCD

2.3. Find the coordinates of the various points in Fig. 2.1

Solution: From the given information,

$$\mathbf{D} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.3.1}$$

$$\mathbf{C} = \begin{pmatrix} 0 \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 9 \end{pmatrix} \tag{2.3.2}$$

 \therefore **A** x coordinate is given, y coordinate is same as the height of the trapezium.

$$\implies \mathbf{A} = \begin{pmatrix} x_a \\ h \end{pmatrix} \tag{2.3.3}$$

Also, \mathbf{B} is at a distance from \mathbf{A} and \mathbf{AB} is parallel to \mathbf{x} axis.

From (2.3.3),
$$\mathbf{A} = \begin{pmatrix} x_a \\ h \end{pmatrix}$$
 Let $\mathbf{B} = \begin{pmatrix} x_b \\ h \end{pmatrix}$

$$a^2 = \|\mathbf{A} - \mathbf{B}\|^2 = \|\mathbf{A} - \mathbf{B}\|^T \|\mathbf{A} - \mathbf{B}\|$$
(2.3.4)

$$= \mathbf{A}^T \mathbf{A} + \mathbf{B}^T \mathbf{B} - \mathbf{A}^T \mathbf{B} - \mathbf{B}^T \mathbf{A}$$
(2.3.5)

$$= \|\mathbf{A}\|^2 + \|\mathbf{B}\|^2 - 2\mathbf{A}^T \mathbf{B} \quad (\because \mathbf{A}^T \mathbf{B} = \mathbf{B}^T \mathbf{A})$$
(2.3.6)

$$= x_a^2 + h^2 + x_b^2 + h^2 - 2(x_a x_b + h^2)$$
(2.3.7)

$$= (x_a - x_b)^2$$
(2.3.8)

$$x_b = x_a + a \tag{2.3.9}$$

(2.3.10)

E divides AD in the ratio k: 1.

$$\frac{AD}{FD} = k + 1 \tag{2.3.11}$$

$$\mathbf{E} = \frac{k\mathbf{D} + \mathbf{A}}{k+1} \tag{2.3.12}$$

(2.3.13)

Let F divide BC in ratio m:1.

$$\mathbf{F} = \frac{m\mathbf{C} + \mathbf{B}}{m+1} \tag{2.3.14}$$

(2.3.15)

EF is parallel to DC and hence the x axis. So we equate y coordinates of E and F to find m. from 2.3.13 and 2.3.15

$$\frac{h}{k+1} = \frac{h}{m+1} \tag{2.3.16}$$

 $m = k \tag{2.3.17}$

$$\mathbf{F} = \frac{k\mathbf{C} + \mathbf{B}}{k+1} \tag{2.3.18}$$

(2.3.19)

The values are listed in 2.3.

D	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
C	$\binom{9}{0}$
A	$\binom{4}{3}$
В	(8)
E	$\begin{pmatrix} 2 \\ 1.5 \end{pmatrix}$
F	(8.5) (1.5)

TABLE 2.3: Derived coordinates trapezium ABCD

2.4. Draw Fig. 2.1 using python

Solution: The following Python code generates Fig. 2.1

codes/prob.py

and the equivalent latex-tikz code generating Fig. 2.1 is

figs/prob.tex

Fig. 2.4: Trapezium ABCD generated using python

The above latex code can be compiled as a standalone document as

figs/prob alone.tex

3 Solution

3.1. Let F divide CD in the ratio m:1.Then using section formulae,

$$\mathbf{F} = \frac{m\mathbf{C} + \mathbf{B}}{m+1} \tag{3.1.1}$$

Also using 2.3.13

$$\mathbf{E} = \frac{k\mathbf{D} + \mathbf{A}}{k+1} \tag{3.1.2}$$

$$\implies \mathbf{E} - \mathbf{F} = \frac{k\mathbf{D} + \mathbf{A}}{k+1} - \frac{m\mathbf{C} + \mathbf{B}}{m+1}$$
 (3.1.3)

If D is taken as the origin then $\mathbf{D} = \mathbf{0}$. So 3.1.3 becomes

$$\implies \mathbf{E} - \mathbf{F} = \frac{\mathbf{A}}{k+1} - \frac{m\mathbf{C} + \mathbf{B}}{m+1} \qquad (3.1.4)$$

3.2. AB is parallel to DC. So for some constant 1

$$\implies \mathbf{C} - \mathbf{D} = l(\mathbf{B} - \mathbf{A}) \tag{3.2.1}$$

$$\implies$$
 C = $l(B - A)$ (3.2.2)

3.3. Substituting 3.2.2 in 3.1.4 We get

$$\implies \mathbf{E} - \mathbf{F} = \frac{\mathbf{A}}{k+1} - \frac{ml(\mathbf{B} - \mathbf{A}) + \mathbf{B}}{m+1}$$
(3.3.1)

$$\implies \mathbf{E} - \mathbf{F} = \mathbf{A} \left(\frac{1}{k+1} + \frac{lm}{m+1} \right) - \mathbf{B} \left(\frac{ml+1}{m+1} \right)$$
(3.3.2)

But $EF \parallel AB$.So,For some w

$$\implies \mathbf{E} - \mathbf{F} = w(\mathbf{A} - \mathbf{B}) \tag{3.3.3}$$

Comparing 3.3.3 and 3.3.2. We have

$$\frac{1}{k+1} + \frac{lm}{m+1} = \frac{ml+1}{m+1} = w$$
(3.3.4)

$$\implies m+1+(k+1) lm = (lm+1) (k+1)$$
(3.3.5)

3.3.5 must hold true for all values of l,k and $m.Thus\ m=k$

Hence F divides BC in ratio k:1, same as the ratio in which E divides AD.