LINEAR MODELS

EDWARD O'CALLAGHAN

Contents

1.	Prelude	2
2.	Introduction	2
3.	Semi-groups	2

1. Prelude

TODO: Fix notation here...

2. Introduction

In this course we builds up the rudiments of some important notions of algebraic structures. That is, a algebraic structure of an arbitrary set, or carrier set, coupled with various finitary operations defined on it. ..

3. Semi-groups

Definition 3.1 (binary operation). A binary operation on a set \mathcal{G} is a map $\circ : \mathcal{G} \times \mathcal{G} \to \mathcal{G}$. N.B. that the binary operation is *closed*.

Definition 3.2 (magma). A **magma** is a set \mathcal{M} equipped with a binary operation \circ . We denote the magma as the tuple pair (\mathcal{M}, \circ) .

Definition 3.3 (semi-group). A **semi-group** is a set \mathcal{G} equipped with binary operation that is associative. Hence, a semi-group is a magma where the operation is associative; That is, given any $x, y, z \in \mathcal{G}$ then $x \circ (y \circ z) = (x \circ y) \circ z \in \mathcal{G}$. We denote the semi-group as the tuple pair (\mathcal{G}, \circ) , not to be confused with a magma from context.

Definition 3.4 (monoid). A semi-group with identity or, monoid for short, is a semi-group (\mathcal{G}, \circ) with a unquie element $e \in \mathcal{G}$ such that $x \circ e = x = e \circ x \, \forall x \in \mathcal{G}$

Example 3.5. Given $\mathcal{G} = \mathbb{Z}$ with the binary law of composition \circ to be defined as arithmetic addition +. Then, $(\mathbb{Z}, +)$ forms a semi-group with identity 0. Verify the axioms.