MATH 4000/6000

PRACTICE PROBLEMS FOR EXAM 2 ON CHAPTER 3 MATERIAL

Throughout, F denotes a field.

Getting comfortable with the definitions

- 1. Show that if p(x) is irreducible in F[x], then so is $c \cdot p(x)$ for any nonzero $c \in F$.
- 2. Show that if $a(x), b(x) \in F[x]$ and d(x) is a gcd of a(x) and b(x), then so is $c \cdot d(x)$ for any nonzero $c \in F$.
- 3. Suppose that $F \subseteq K$, where F and K are both fields. In class, we defined $F[\alpha]$ for every $\alpha \in K$.

Show that if in fact $\alpha \in F$, then $F[\alpha] = F$. (For example, $\mathbb{Q}[\frac{2}{3}] = \mathbb{Q}$, and $\mathbb{R}[\pi] = \mathbb{R}$.)

4. We know F[x] is a domain. Is F[x] a field? Hint: Does x have an inverse?

Further practice problems

- 1. Improving on the result of Problem 4 above, show that the units in F[x] are precisely the nonzero constant polynomials.
- 2. Recall that every nonconstant polynomial in $\mathbb{C}[x]$ has a root in \mathbb{C} . (This is the **fundamental theorem of algebra**.)

Suppose that $f(x) \in \mathbb{C}[x]$ is a polynomial with degree $n \geq 1$.

(a) Show that there are complex numbers r_1, \ldots, r_n with

$$f(x) = (x - r_1) \cdots (x - r_n).$$

Hint: Apply the root factor theorem n times.

- (b) Show that the numbers r_1, \ldots, r_n in part (a) are precisely the complex roots of f(x).
- (c) Now write $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$. Show that $r_1 + r_2 + \dots + r_n = -a_{n-1}$.
- 3. Let p be a prime number. Show that every element of \mathbb{Z}_p is a root of the polynomial $f(x) = x^p x \in \mathbb{Z}_p[x]$. Explain carefully why this implies that $f(x) = x(x \overline{1})(x \overline{2})(x \overline{(p-1)})$.
- 4. Find polynomials $X(x), Y(x) \in \mathbb{Q}[x]$ with

$$(x^3 - 2)X(x) + (x^2 + 3x + 1)Y(x) = 1.$$

- 5. Problem 3.1.10(a,c,e,f) from the textbook.
- 6. Problem 3.1.18 from the textbook.
- 7. (a) Suppose $d(x), e(x) \in F[x]$ and $d(x) \mid e(x)$, and $e(x) \mid d(x)$. Show that $d(x) = c \cdot e(x)$ for some nonzero constant $c \in F$.

- (b) Suppose that d(x) and e(x) are both gcds of the same pair of polynomials in F[x]. Show that $d(x) = c \cdot e(x)$ for some nonzero $c \in F$. (This is a converse to Problem 2 from the first section.)
- 8. Let $\omega = \cos(2\pi/5) + i\sin(2\pi/5)$. Show that $\mathbb{Q}[\omega]$ is a splitting field for $x^5 1$ over \mathbb{Q} .
- 9. Keeping the same definition of ω as in the last problem, show that $\mathbb{Q}[\omega, \sqrt[5]{2}]$ is a splitting field for $x^5 2$ over \mathbb{Q} .