

Engineering features

Nathan George
Data Science Professor

One problem with linear models

```
# add non-linear interaction term for a linear model
SMAxRSI = amd_df['14-day SMA'] * amd_df['14-day RSI']
```

Some models that don't require manually creating interaction features:

Decision-tree-based models

- Random forests
- Gradient boosting

Others

neural networks

Feature engineering

Volume

2018-04

Date

2018-02

2018.05

2018.06

Volume features

Datetime feature engineering

Extracting the day of week

Dummies

Engineer some features!

Decision Trees

Nathan George
Data Science Professor

Decision trees

Decision trees

Decision tree splits

Decision tree splits

Bad tree

Good tree

Decision tree regression

Regression trees

```
from sklearn.tree import DecisionTreeRegressor

decision_tree = DecisionTreeRegressor(max_depth=5)

decision_tree.fit(train_features, train_targets)
```


Decision tree hyperparameters

Max depth of 3

Evaluate model

```
print(decision_tree.score(train_features, train_targets))
print(decision_tree.score(test_features, test_targets))

0.6662215501032416
-0.08917300191734268

train_predictions = decision_tree.predict(train_features)
test_predictions = decision_tree.predict(test_features)
plt.scatter(train_predictions, train_targets, label='train')
plt.scatter(test_predictions, test_targets, label='test')
plt.legend()
plt.show()
```


Grow some trees!

Random forests

Nathan George
Data Science Professor

Random forests

Bootstrap aggregating (bagging)

Feature sampling

Random Forests

- A collection (ensemble) of decision trees
- Bootstrap aggregating (bagging)
- Sample of features at each split

sklearn implementation

```
from sklearn.ensemble import RandomForestRegressor

random_forest = RandomForestRegressor()
random_forest.fit(train_features, train_targets)
print(random_forest.score(train_features, train_targets))
```


Hyperparameters

ParameterGrid

ParamaterGrid

```
test_scores = []

# loop through the parameter grid, set hyperparameters, save the scores
for g in ParameterGrid(grid):
    rfr.set_params(**g) # ** is "unpacking" the dictionary
    rfr.fit(train_features, train_targets)
    test_scores.append(rfr.score(test_features, test_targets))

# find best hyperparameters from the test score and print
best_idx = np.argmax(test_scores)
print(test_scores[best_idx])
print(ParameterGrid(grid)[best_idx])

0.05594252725411142
{'max_depth': 5, 'max_features': 8, 'n_estimators': 200}
```


Plant some random forests!

Feature importances and gradient boosting

Nathan George
Data Science Professor

Extracting feature importances

```
from sklearn.ensemble import RandomForestRegressor

random_forest = RandomForestRegressor()
random_forest.fit(train_features, train_targets)

feature_importances = random_forest.feature_importances_

print(feature_importances)

[0.07586547 0.10697602 0.12215955 0.23969227 0.29010304 0.0314028
0.11977058 0.00276721 0.00246329 0.0026431 0.00615667]
```


Sorting and plotting

```
# feature importances from random forest model
importances = random_forest.feature_importances_

# index of greatest to least feature importances
sorted_index = np.argsort(importances)[::-1]

x = range(len(importances))
# create tick labels
labels = np.array(feature_names)[sorted_index]

plt.bar(x, importances[sorted_index], tick_label=labels)

# rotate tick labels to vertical
plt.xticks(rotation=90)
plt.show()
```


Linear models vs gradient boosting

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/

Boosted models

Available boosted models:

- Gradient boosting
- Adaboost

Fitting a gradient boosting model

Get boosted!