

ConvGP

Genetic Programming for Evolutionary Deep Learning for Image Classification

Ben Evans | Mengjie Zhang, Bing Xue, Harith Al-Sahaf

Goal?

A novel method for Binary Image Classification which overcomes some major current limitations

Specific Objectives

That can correctly classify images by automatically detecting interesting regions from the images, performing feature extraction on these regions, and then automatically constructing higher level features from these extracted features.

Visualisation

Visualise and interpret the features automatically extracted, constructed and learned by the evolutionary learning process.

Feature Construction

Investigate whether the automatically extracted/constructed features can be useful for common classification algorithms, such as Nearest Neighbour or Decision Trees

Convolutional Neural Networks

Achieve great accuracy, however suffer some limitations

- Manually crafted architectures
- Poor interpretability
- Need for large amounts of training data

Genetic Programming

Genetic Programming

Accuracy not currently as high as conv net methods. However has some other benefits such as

- Greater Interpretability
- Automatic programming
- Automatically determine appropriate height/width
- Do not require domain knowledge (although can be utilised)

However they are not specifically defined for image classification or widely used for feature maps

Image Classification Design Decisions and Constraints

Challenges

How to remove the need for human intervention?

How can the various stages be combined into a single algorithm?

How to incorporate domain knowledge, i.e. neighbouring pixels are related?

How to incorporate the useful components from convnets and genetic programming?

New Method Incorporates Key ideas from both

Experiment Design

Datasets

JAFFE

Faces

Cars

Pedestrians

Experiment Design

Datasets

JAFFE

Faces

Cars

Pedestrians

Benchmark Methods

- ConvNet
- Existing GP approach (two-tier GP)
- Decision Trees
- Naive Bayes
- Nearest Neighbour
- Adaboost
- Support Vector Machine

Experiment Design

Datasets

JAFFE

Faces

Cars

Pedestrians

Benchmark Methods

- ConvNet
- Existing GP approach (two-tier GP)
- Decision Trees
- Naive Bayes
- Nearest Neighbour
- Adaboost
- Support Vector Machine

Parameter Settings

Population	1024
Generations	50
Max Depth	10
Tournament	7
Crossover	0.8
Mutation	0.2
Elitism	0.01

Results

Results: Average Testing Accuracy

Results on Efficiency: Average Testing Time vs Conv Nets

Visualisation

The corresponding conv-net had **5,479,489** parameters

Feature Construction

Pedestrian Set of constructed features from output of aggregation tier Classification Classification Layer Aggregation Aggregation Layer Pooling Convolution Convolution Pooling 3 0 Convolution 0 0 Image -1 0 Image Convolution Layer

Dimensionality Reduction

Pedestrians 648

	Original		Average # of Constructed
Jaffe	23,400		8
Cars	4,000		13
Faces	361		14

Highlights of feature construction results

Jaffe			
	Training Speedup	Testing Speedup	Testing Accuracy
Naive Bayes	32x	22x	Improvement
Nearest Neighbour	7x	8x	Improvement

Cars			
	Training Speedup	Testing Speedup	Testing Accuracy
Naive Bayes	263x	284x	Improvement
Decision Tree	220x	7x	Equivalent

Faces			
	Training Speedup	Testing Speedup	Testing Accuracy
Naive Bayes	23x	33x	Equivalent
Nearest Neighbour	14x	18x	Equivalent

Pedestrians			
	Training Speedup	Testing Speedup	Testing Accuracy
Naive Bayes	42x	43x	Improvement
Adaboost	30x	3x	Equivalent

Note: Testing accuracy column based on an unpaired welch t-test on resulting testing accuracies. **Improvement** means statistical improvement (p < 0.05) with the constructed features, **Equivalent** means no statistically significant difference (p > 0.05).

1. Classification: The proposed method was able to outperform many general classification methods in terms of maximum testing accuracy.

In terms of classification accuracy, although the method was unable to outperform ConvNets, the proposed solution offered **faster testing**, greater interpretability and the architecture was able to be evolved automatically rather than manually crafted.

Objectives

- Develop a novel structure
- ² Visualisation
- Feature Construction

2. Visualisation: The method offered greater visualisation ability than the state-of-the-art convolutional neural networks, which are very difficult to visualise due to the large number of parameters.

Objectives

- Develop a novel structure
- ² Visualisation
- Feature Construction

3. Feature Construction: The constructed features offered

- Drastic reduction in dimensionality
- Matched (and in some cases improved) classification accuracy*
- Huge speedup for both training and testing times

Objectives

- Develop a novel structure
- **Visualisation**
- **3** Feature Construction

 Fitness function to learn from a small number of instances

 Architectural changes (half from proposed method, half without convolution tier)

 Look to improve training time/efficiency of process

Thanks!

Any questions?