Math 0430 Homework #10

Sec. 6.2: #4: (a) Let [a]_n denote the congruence class of the integer a modulo n. Show that the map $f: \mathbf{Z}_{12} \to \mathbf{Z}_4$ that sends [a]₁₂ to [a]₄ is a well-defined surjective homomorphism.

<u>Proof</u>: Let $[a]_{12} = [b]_{12}$. Then 12|(a - b), so 4|(a - b) and $f([a]_{12}) = f([b]_{12})$. Thus f is a well-defined mapping. $f([a]_{12} + [b]_{12}) = f([a + b]_{12}) = [a]_4 + [b]_{12} = f([a]_{12}) + f([b]_{12})$ and $f([a]_{12} [b]_{12}) = f([ab]_{12}) = [a]_4 [b]_4 = f([a]_{12}) f([b]_{12})$, so f is a homomorphism. Clearly, if $[a]_4 \in \mathbf{Z_4}$, a is an integer, $[a]_{12} \in \mathbf{Z_{12}}$ and $f([a]_{12}) = [a]_4$, so f is surjective. ◆

(b) Find the kernel of f.

Proof: Ker(f) = {[a]₁₂ ∈
$$\mathbf{Z}_{12}$$
 | f([a]₁₂) = [a]₄ =[0]₄} = {[a]₁₂ ∈ \mathbf{Z}_{12} : 4|a} = ([4]₁₂]) = {[0]₁₂, [4]₁₂, [8]₁₂}. ♦

Sec. 6.2: #8: (a) Let_ I = {0,3} in \mathbb{Z}_6 . Verify that I is an ideal in \mathbb{Z}_6 and show that \mathbb{Z}_6 $\cong \mathbb{Z}_3$.

 $\begin{array}{l} \underline{Proof:} \ \ Define \ f: \ Z_6 \to Z_3 \ by \ f([a]_6 = [a]_3. \ \ Then \ f \ is \ clearly \ surjective. \ \ For \ [a]_6 \ , [b]_6 \in Z_6 \ , \\ f([a]_6 + [b]_6) = f([a + b]_3) = [a]_3 + [b]_3 = f([a]_6) + f([b]_6) \ and \ f([a]_6 \ [b]_6) = f([ab]_6) = [ab]_3 = [a]_3 \ [b]_3 = f([a]_6) \ f([b]_6); \ so \ f \ is \ also \ a \ homorphism. \ \ The \ kernel \ of \ f \ is \ I. \ \ So \ I \ is \ an \ ideal \ in \ \ Z_6 \ and \ by \ the \ First \ Isomorphism \ Theorem, \ \ Z_6 \ / \ \cong Z_3 \ . \ \ \bullet \end{array}$

Sec. 6.3: #7: Let R be a commutative ring with identity. Prove that R is a field if and only if (0_R) is a maximal ideal.

Proof: Assume that R is a field. Let $(0_R) \subseteq M \subseteq R$. If $M \neq (0_R)$, then there is $a \in M$ with $a \neq 0_R$. This means that a is a unit, $1_R \in M$ and M = R. Therefore, M is a maximal ideal of R.

Conversely, assume that (0_R) is a maximal ideal. Let $a \neq 0_R$ and consider (a). $(0_R) \subset (a) \subseteq R$, so (a) = R. It follows that $1_R \in (a)$ and there is $b \in R$ such that $1_R = ba$, and a is a unit. Therefore, R is a field.

Sec. 6.3: #10: Let p be a fixed prime and let J be the set of polynomials in Z[x] whose constant terms are divisible by p. Prove that J is a maximal ideal in Z[x].

<u>Proof</u>: Since p is prime, Z_p is a field, Define $\Phi: Z[x] \to Z_p$ by $\Phi(f(x)) = [a_0]$ where $f(x) = a_n x^n + a_$ $a_{n-1}x^{n-1} + ... + a_1x + a_0$. Let $g(x) = b_mx^m + b_{m-1}x^{m-1} + ... + b_1x + b_0$. Then $\Phi(f(x) + g(x)) = [a_0 + b_0]$ b_0] = $[a_0]$ + $[b_0]$ = $\Phi(f(x))$ + $\Phi(g(x))$ and $\Phi(f(x)g(x))$ = $[a_0b_0]$ = $[a_0][b_0]$ = $\Phi(f(x))\Phi(g(x))$, so Φ is a homomorphism. If $[a] \in Z_p$, then $f(x) = a \in Z[x]$, and $\Phi(a) = [a]$; so Φ is surjective. Furthermore, the kernel of Φ is $\{f(x) \in Z[x] \mid \Phi(f(x)) = [a_0] = [0]\} = \{f(x) \in Z[x] \mid p|a_0\} = J$. By the First Isomorphism Theorem, $\frac{Z[x]}{J} \cong Z_p$. Since Z_p is a field, J is a maximal ideal of Z[x].

Sec. 6.3: 11: Show that the principal ideal (x-1) in Z[x] is prime but not maximal.

Proof: Define Φ : $Z[x] \rightarrow Z$ by $\Phi(f(x)) = f(1)$ where $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$. Let g(x) $= b_m x^m + b_{m-1} x^{m-1} + ... + b_1 x + b_0$. Then $\Phi(f(x) + g(x)) = f(1) + g(1) = \Phi(f(x)) + \Phi(g(x))$ and $\Phi(f(x)g(x)) = f(1)g(1) = \Phi(f(x))\Phi(g(x))$, so Φ is a homomorphism. If $a \in Z$, then $f(x) = a \in Z[x]$, and $\Phi(f(x)) = f(1) = a$; so Φ is surjective. Furthermore, the kernel of Φ is $\{f(x) \in Z[x] \mid \Phi(f(x)) = a\}$ f(1) = 0 = { $f(x) \in Z[x] \mid x-1 \mid f(x)$ } = (x-1). By the First Isomorphism Theorem, $\frac{Z[x]}{(x-1)} \cong Z$. Since

Sec. 6.3: #13: Find an ideal in **Z** × **Z** that is prime, but not maximal.

<u>Proof</u>: Define $f: \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z}$ by $f((z_1, z_2)) = z_1$. F is a surjective homomorphism and the kernel of f is $I = (\mathbf{0}) \times \mathbf{Z}$. So the First Isomorphism Theorem implies that $\frac{\mathbf{Z} \times \mathbf{Z}}{(\mathbf{0}) \times \mathbf{Z}} \cong \mathbf{Z}$. Since \mathbf{Z} is an integral domain but not a field, $(\mathbf{0}) \times \mathbf{Z}$ is a prime ideal that is not maximal.