

Malak Diab, Mohammed Hourani, Mayas Masalmeh

0

TABLE OF CONTENT

0

0

INTRODUCTION

- Problem Statement.
- The Target.
- Dataset.

APPROACH

- Model Steps.
- Algorithms.

03

CONCLUSION

Accuracy Before and After Fine Tunning.

DEPLOYMENT

User Interface for the Credit Score Model.

DATA INTRODUCTION

We're working as a data scientists. Our dataset includes basic bank details with a lot of creditrelated information. We're looking forward building an intelligent system that predict customers credit score based on the main features that effects it.

PROBLEM STATEMENT

0

CREDIT SCORE (TARGET)

Represents the bracket of credit score (Poor, Standard, Good). It's used to help the lender to decide either to lend the customer or not based on multiple features that affects the credit score.

CREDIT SCORE DISTRIBUTION

APPROACH OVERVIEW

MODEL STEPS:

Reading the Data After the Analysis.

ENCODING

Get Dummmies & Ordirnal Encoder.

02

SPLITTING

Splitting the Data to Train and Test.

DROPPING & FEATURE SELECTION

Removing Irrelevant Columns and Selecting the Most Important Feature for the Model.

STANDARDIZATION

Re-scaling the Data.

MODEL BUILDING

Training the Model & Fine Tunning Hyperparameter

0

 \bigcirc

0

MODEL STEPS:

Reading the Data After the Analysis.

02

ENCODING

Get Dummmies & Ordirnal Encoder.

SPLITTING

Splitting the Data to Train and Test.

DROPPING & FEATURE SELECTION

Removing Irrelevant Columns and Selecting the Most Important Feature for the Model.

STANDARDIZATION

Re-scaling the Data.

MODEL BUILDING

Training the Model & Fine Tunning Hyperparameter

0

 \bigcirc

0

Number of Customers

100,000

Number of Rows

28 \(\to \) 43

Number of Columns

COLUMNS DIGGER

-

ORDINAL ENCODING

PAYMENT OF MIN AMOUNT	MAPPINGS
No	2
NM	1
Yes	0

CREDIT MIX	MAPPINGS
Good	2
Standard	1
Bad	0

GET DUMMIES ENCODING

CONCLUSION

-

OCCUPATION	ACCOUNTANT
Customer-1	1
Customer-2	1
Customer-3	0

PEYMENT BEHAVIOR	SMALL SPENT SMALL VALUE PAYMENT
Customer-1	0
Customer-2	1
Customer-3	0

03

COLUMN DROPPING

CUSTOMER ID

CONCLUSION

NAME

13

SSN

MONTHLY IN HAND SALARY

TYPE OF LOAN

ANNUAL CATEGORY

HISTORY AGE CATEGORY

AGE CATEGORY

FEATURE SELECTION:

Before feature selection, we've chosen one month for our model.

After encoding for categorical features, we ended up with 49 columns and used 16 of them.

We used SelectKBest with Mutual Information.

Mutual information is a measure between two (possibly multi-dimensional) random variables X and Y, that quantifies the amount of information obtained about one random variable.

04

DATA SPLITTING

Training 80%

Testing 20%

Stratify Split to Ensure the Same Distribution of Classes in Training and Testing Data.

ALGORITHMS

XGBOOST CLASSIFIER

First: Accuracy -> 77%
Then: Accuracy -> 74%

GRADIENT BOOST

0

Accuracy -> 77%

CONCLUSION & RESULTS

ACCURACIES

-

MODEL DEPLOYMENT

THANKS!

DO YOU HAVE ANY QUESTIONS?

Made with Lots of Love by the Most Creative Clever People Ever.

0

MALAK DIAB **MAYAS MASALMEH**

