Applied Machine Learning!!!

W207 Section 9
Rasika Bhalerao
rasikabh@berkeley.edu

Format of this class

- Weekly synchronous sessions (Tuesdays 4pm Pacific)
- Weekly asynchronous material on Canvas
 - Complete before corresponding synchronous class
 - Bring any questions!
- 9 individual homework assignments
 - Due Sundays
- Final group project
- Weekly office hours
 - Tuesdays 6pm 7pm, open to all W207 sections

Where?

- Canvas "Calendar" section:
 - Synchronous sessions (Tuesdays 4pm Pacific)
 - Office hours
- Slack
 - #datasci-207
 - #w207-9-fall2022
- Github
 - Homework assignments:
 - https://github.com/MIDS-W207/coursework 2022/tree/main/Homework
 - Notes based on async modules:
 - https://github.com/MIDS-W207/coursework_2022/tree/main/Notes
 - Weekly synchronous material:
 - https://github.com/MIDS-W207/coursework_2022/tree/main/Demos
 - https://github.com/MIDS-W207/rasikabh/tree/main/live_sessions
- Contact me on Slack or at rasikabh@berkeley.edu

Introductions!

- Your name (and pronouns)
- What brings you here?
- Name one way machine learning affects your life!

Did everyone fill out the intro form?

https://forms.gle/UpzimpEUfMeFGFuE8

Schedule

Supervised learning methods

	Sync	Topic
2	Aug 30	Linear Regression / Gradient Descent
3	Sep 6	Feature Engineering
4	Sep 13	Logistic Regression
5	Sep 20	Multiclass classification / Eval Metrics
6	Sep 27	Neural Networks
7	Oct 4	KNN, Decision Trees, Ensembles

Unsupervised learning methods

	Sync	Topic
8	Oct 11	KMeans and PCA
9	Oct 18	Text Embeddings
10	Oct 25	CNNs
11	Nov 1	EDA, Real data, Baselines
12	Nov 15	Fairness / Ethics
13	Nov 29	Fancy Neural Networks
14	Dec 6	Final Presentations

Assignment Schedule

Due Date	Assignment		
Aug 28	HW1		
Sep 4	HW2		
Sep 11	HW3		
Sep 18	HW4		
Sep 25	HW5		
Oct 2	HW6		
Oct 16	Group project baseline		
Oct 23	HW8		
Nov 6	HW9		
Nov 20	HW10		
Dec 4	Final project notebook + presentation		

Homework assignments

- Find them here on Github:
 https://github.com/MIDS-W207/coursework 2022/tree/main/Homework
 - You should get access if you fill out the intro form (ask if not)
- You can do them in any IPython environment
 - Recommended: https://colab.research.google.com/
- Submit homework on Canvas / Gradescope
 - Either upload your .ipynb file or submit a link to a Github repo for that assignment
 - o If there is an issue of environment, upload the version that runs in default Google Colab
- Lowest 2 assignment grades will be dropped
 - Final homework grade will be the average of best 7 scores out of 9
 - 5 "late days" this semester

Grading

- Instructors want all students to get an A
- We care more about actual learning
- Approximate scale:

Α	4.0	94% - 100%
A-	3.7	90% - 93.9%
B+	3.3	86% - 89.9%
В	3.0	83% - 85.9%
B-	2.7	80% - 82.9%

C+	2.3	76% - 79.9%
С	2.0	73% - 75.9%
C-	1.7	70% - 72.9%
D+	1.3	66% - 69.9%
D	1.0	63% - 65.9%

D-	0.7	60% - 62.9%
F	0	< 60%

Final group project

- Each group will pick a Kaggle competition
 - One of the 4 default Kaggle projects or choose your own (run it by me just in case)
- In addition to doing the Kaggle competition task:
 - Thoroughly explore the data
 - Apply the learned thinking/methods/algorithms
 - Analyze and improve methods

Final group project deliverables

- Baseline progress update: .ipynb file to Canvas by Oct 16
 - An end-to-end solution with:
 - Exploratory data analysis
 - Metric of evaluation and why you chose it
 - Split the data into train/dev/test
 - A simple machine learning technique
 - Evaluate results
 - Explain how you will evaluate any challenges
 - Briefly describe what you still plan to do
- Final project: .ipynb file to Canvas by last day (Dec 4)
- Final group presentation on last day

Project groups

- Groups of 2 or 3
- Finding groups
 - Find groups and project topics by week 4 by signing up on this doc:
 https://docs.google.com/document/d/1R3J_X1Rz6WP8eMQ2cyMC0wAr5iQdhMK_httdoNO6L0w/edit?usp=sharing
 - This class has a large variety of backgrounds use it to your advantage!
 - Please tell me early on if you are having issues
- One person from each group should submit the baseline/final notebooks to Canvas
- Each group member must speak in the final presentation

Behavior expectations

- Healthy disagreement is expected
- Be mindful of one another's schedules
- Be a good listener
- Have fun in a professional manner
- Share related real-world experience
- Ask questions when something is confusing
- Keep it 100 but be respectful
- Be open-minded to new ideas in the real world and when coding
- On time for group meetings

https://arxiv.org/pdf/1810.04805.pdf

What is AI? What is ML?

-covered-what-was-new-with-google-cloud-in-march/

https://fortune.com/2016/12/01/facebook-artificial-intelligence-news/

https://blog.dormakaba.com/what-is-facial-recognition-and-how-does-it-work/

https://www.theatlantic.com/technology/archive/2012/02/on-this-day-garry-kasparov-faces-off-with-deep-blue/253230

What are these things?!!?!?

- Machine learning
- Artificial intelligence
- Deep learning
- Data mining
- Statistics
- Natural language processing
- Computer vision
- Big data