A Tiny Taste of Machine Learning

All ML Methods Require

- Representation of the features
- Distance metric for feature vectors
- Objective function and constraints
- Optimization method for learning the model
- Evaluation method

Distance Between Vectors

Minkowski metric

$$dist(X1,X2,p) = (\sum_{k=1}^{len} abs(X1_k - X2_k)^p)^{1/p}$$

p = 1: Manhattan Distance

P = 2: Euclidean Distance

Manhattan (1902)

An Example

Features

Label

Name	Egg-laying	Scales	Poisonous	Cold- blooded	Number legs	Reptile
Cobra	1	1	1	1	0	1
Rattlesnake	1	1	1	1	0	1
Boa constrictor	0	1	0	1	0	1
Chicken	1	1	0	1	2	0
Guppy	0	1	0	0	0	0
Dart frog	1	0	1	0	4	0
Zebra	0	0	0	0	4	0
Python	1	1	0	1	0	1
Alligator	1	1	0	1	4	1

Distance Matrix

	cobra	rattlesnake	boa constrictor	chicken	guppy	dart frog	zebra	python	alligator
cobra	-	0.0	1.414	2.236	1.732	4.243	4.472	1.0	4.123
rattlesnake	0.0	-	1.414	2.236	1.732	4.243	4.472	1.0	4.123
boa constrictor	1.414	1.414	-	2.236	1.0	4.472	4.243	1.0	4.123
chicken	2.236	2.236	2.236	-	2.449	2.646	2.646	2.0	2.0
guppy	1.732	1.732	1.0	2.449	1	4.359	4.123	1.414	4.243
dart frog	4.243	4.243	4.472	2.646	4.359	1	1.414	4.359	1.732
zebra	4.472	4.472	4.243	2.646	4.123	1.414		4.359	1.732
python	1.0	1.0	1.0	2.0	1.414	4.359	4.359	-	4.0
alligator	4.123	4.123	4.123	2.0	4.243	1.732	1.732	4.0	

Producing the Distance Matrix

```
columnLabels = []
for a in animals:
    columnLabels.append(a.getName())
rowLabels = columnLabels[:]
tableVals = []
#Get distances between pairs of animals
#For each row
for al in animals:
    row = \lceil \rceil
    #For each column
    for a2 in animals:
        if a1 == a2:
            row.append('--')
        else:
            distance = a1.distance(a2)
             row.append(str(round(distance, precision)))
    tableVals.append(row)
```

Producing the Table

Using Distance Matrix for Classification

- Simplest approach is probably nearest neighbor
- Remember training data
- •When predicting the label of a new example
 - Find the nearest example in the training data
 - Predict the label associated with that example

K-nearest Neighbors

Advantages and Disadvantages of KNN

Advantages

- Learning fast, no explicit training
- No theory required
- Easy to explain method and results
- Disadvantages
 - Memory intensive and predictions can take a long time
 - Are better algorithms than brute force
 - No model to shed light on process that generated data
- Another method, logistic regression, covered in textbook

6.00.2X LECTURE

11

An Example of KNN

Features

Label

Name	Egg-laying	Scales	Poisonous	Cold- blooded	Number legs	Reptile
Cobra	1	1	1	1	0	1
Rattlesnake	1	1	1	1	0	1
Boa constrictor	0	1	0	1	0	1
Chicken	1	1	0	1	2	0
Guppy	0	1	0	0	0	0
Dart frog	1	0	1	0	4	0
Zebra	0	0	0	0	4	0
Python	1	1	0	1	0	1
Alligator	1	1	0	1	4	1

KNN with k = 3

	cobra	rattlesnake	boa constrictor	chicken	guppy	dart frog	zebra	python	alligator
cobra	-	0.0	1.414	2.236	1.732	4.243	4.472	1.0	4.123
rattlesnake	0.0		1.414	2.236	1.732	4.243	4.472	1.0	4.123
boa constrictor	1.414	1.414	-	2.236	1.0	4.472	4.243	1.0	4.123
chicken	2.236	2.236	2.236	-	2.449	2.646	2.646	2.0	2.0
guppy	1.732	1.732	1.0	2.449	ı	4.359	4.123	1.414	4.243
dart frog	4.243	4.243	4.472	2.646	4.359		1.414	4.359	1.732
zebra	4.472	4.472	4.243	2.646	4.123	1.414			
python	1.0	1.0	1.0	2.0	1.414	4.359			
alligator	4.123	4.123	4.123	2.0	4.243	1.732			

An Example of KNN

Features

Label

Name	Egg-laying	Scales	Poisonous	Cold- blooded	Number legs	Reptile
Cobra	1	1	1	1	0	1
Rattlesnake	1	1	1	1	0	1
Boa constrictor	0	1	0	1	0	1
Chicken	1	1	0	1	2	0
Guppy	0	1	0	0	0	0
Dart frog	1	0	1	0	4	0
Zebra	0	0	0	0	4	0
Python	1	1	0	1	0	1
Alligator	1	1	0	1	4	1

KNN with k = 3

	cobra	rattlesnake	boa constrictor	chicken	guppy	dart frog	zebra	python	alligator
cobra	-	0.0	1.414	2.236	1.732	1.732	2.236	1.0	1.414
rattlesnake	0.0		1.414	2.236	1.732	1.732	2.236	1.0	1.414
boa constrictor	1.414	1.414	-	2.236	1.0	2.236	1.732	1.0	1.414
chicken	2.236	2.236	2.236	-	2.449	2.0	2.0	2.0	1.0
guppy	1.732	1.732	1.0	2.449	-	2.0	1.414	1.414	1.732
dart frog	1.732	1.732	2.236	2.0	2.0	-	1.414	2.0	1.732
zebra	2.236	2.236	1.732	2.0	1.414	1.414			
python	1.0	1.0	1.0	2.0	1.414	2.0			
alligator	1.414	1.414	1.414	1.0	1.732	1.732			

A More General Approach: Scaling

Z-scaling

Each feature has a mean of 0 & a standard deviation of 1

•Interpolation

 Map minimum value to 0, maximum value to 1, and linearly interpolate

```
def zScaleFeatures(vals):
    """Assumes vals is a sequence of floats"""
    result = pylab.array(vals)
    mean = float(sum(result))/len(result)
    result = result - mean
    return result/stdDev(result)

def iScaleFeatures(vals):
    """Assumes vals is a sequence of floats"""
    minVal, maxVal = min(vals), max(vals)
    fit = pylab.polyfit([minVal, maxVal], [0, 1], 1)
    return pylab.polyval(fit, vals)
```