SPRAWOZDANIE Z ĆWICZENIA A3 - TRÓJFAZOWE SILNIKI INDUKCYJNE

GRUPA D: DAWID LEGUTKI, PIOTR MERYNDA, DAMIAN PACIUCH, MACIEJ PODSIADŁO I ŁUKASZ RADZIO

DATA WYKONANIA ĆWICZENIA: 16.03.2015

1. SCHEMAT STANOWISKA:

DANE ZNAMIONOWE SILNIKA PIERŚCIENIOWEGO:

P_n	3 kW
U_{n}	380 V
I_n	6,6 A
cosφ	0,81
n_{π}	1420 obr/min
R_s	1,2 Ω
J	$0,39 \ kg/m^2$

2. Charakterystyka mechaniczna T(n) silnika klatkowego:

Wnioski:

- Duży prąd rozruchowy
- Moment rozruchowy większy od zera zdolność samorozruchu
- Poślizg krytyczny wynosi około 0,2
- Prąd rozruchowy dużo większy od znamionowego

3. Charakterystyki silnika pierścieniowego z oporem dołączonym do obwodu wirnika i bez oporu:

Charakterystyka prądu stojana silnika pierścieniowego

Wnioski:

- Dodanie oporu do obwodu wirnika przesuwa charakterystykę mechaniczną silnika pierścieniowego w lewo, czyli zwiększa poślizg krytyczny
- Poprzez dodanie oporu zmniejszamy prąd rozruchowy zwiększając jednocześnie moment rozruchowy
- Dołaczenie rezystancji powoduje negatywny skutek rozproszenia się energii na oporniku

4. Charakterystyki mocy podczas biegu jałowego:

Moc w funkcji kwadratu napięcia

dPFe – straty w żelazie dPM – straty mechaniczne (na łożyskach)

Wnioski:

- Straty mechaniczne nie zależą od napięcia i wynoszą ok. 200W
- Straty w żelazie są wprost proporcjonalne do kwadratu napięcia zasilania
- Przy próbie biegu jałowego straty w wirniku są pomijalnie małe
- Podczas próby biegu jałowego silnik pobiera dwukrotnie mniejszy prąd niż podczas pracy znamionowej

Charakterystyka obciążeniowa sprawności w funkcji mocy oddanej

Wnioski:

- Dla mocy znamionowej silnika (3kW) sprawność osiąga maksimum
- Kształt charakterystyki zdeterminowany jest poprzez zależności strat w żelazie w funkcji kwadratu napięcia oraz strat w miedzi w funkcji prądu

