FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

TIN Teoretická informatika

3. domáca úloha

Obsah

1	Príklad číslo 1 1.1 (a) 1.2 (b)	2 2 3
2	Príklad číslo 2	4
3	Príklad číslo 3	5
4	Príklad číslo 4	7
5	Príklad číslo 5	8
6	Literatúra	9

1.1 (a)

Pre f(0) je reťazec x prázdny pre ktorý páska 4 obsahuje výslednú hodnotu 1 t.j. f(0) = 1.

		$R^41^4L^4$	R^1
1	$\Delta \Delta^{\omega}$	$\Delta\Delta^{\omega}$	$\Delta\underline{\Delta}\Delta^{\omega}$
2	$\Delta \Delta^{\omega}$	$\underline{\Delta}\Delta^{\omega}$	$\Delta \Delta^{\omega}$
3	$\Delta \Delta^{\omega}$	$\underline{\Delta}\Delta^{\omega}$	$\underline{\Delta}\Delta^{\omega}$
4	$\Delta \Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$

Pre f(1) je reťazec x = 1 pre ktorý páska 4 obsahuje výslednú hodnotu 1 t.j. f(1) = 1.

		$R^4 1^4 L^4$	R^1	CP(3, 2)	L^3_Δ	CP(4,3)	$L^2_{\Delta}L^3_{\Delta}L^4_{\Delta}$	$CP(2,4)L^{4}$	
1	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta \underline{1} \Delta^{\omega}$	$\Delta \underline{1} \Delta^{\omega}$	$\Delta \underline{1} \Delta^{\omega}$	$\Delta \underline{1} \Delta^{\omega}$	$\Delta \underline{1} \Delta^{\omega}$	$\Delta \underline{1} \Delta^{\omega}$	
2	$\underline{\Delta}\Delta^{\omega}$	$\underline{\Delta}\Delta^{\omega}$	$\underline{\Delta}\Delta^{\omega}$	$\Delta\underline{\Delta}\Delta^{\omega}$	$\Delta\underline{\Delta}\Delta^{\omega}$	$\Delta\underline{\Delta}\Delta^{\omega}$	$\underline{\Delta}\Delta^{\omega}$	$\Delta\underline{\Delta}\Delta^{\omega}$	
3	$\underline{\Delta}\Delta^{\omega}$	$\underline{\underline{\Delta}} \underline{\Delta}^{\omega}$	$\underline{\Delta}\Delta^{\omega}$	$\Delta\underline{\Delta}\Delta^{\omega}$	$\underline{\Delta}\Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\underline{\Delta}1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	
4	$\Delta \Delta^{\omega}$	$\underline{\Delta}1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\underline{\Delta}1\Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	

CP(3,4)	$L^2_\Delta L^3_\Delta L^4_\Delta$	R^1
$\Delta \underline{1} \Delta^{\omega}$	$\Delta \underline{1} \Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$
 $\Delta\underline{\Delta}\Delta^{\omega}$	$\underline{\Delta}\Delta^{\omega}$	$\Delta\Delta^{\omega}$
$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$
$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$

Pre f(2) je reťazec x=11 pre ktorý páska 4 obsahuje výslednú hodnotu 11 t.j. f(2)=2.

		$R^41^4L^4$	R^1	CP(3, 2)	L^3_Δ	CP(4,3)	$L^2_\Delta L^3_\Delta L^4_\Delta$	$CP(2,4)L^{4}$	
1	$\Delta 11\Delta^{\omega}$	$\Delta 11\Delta^{\omega}$	$\Delta \underline{1} 1 \Delta^{\omega}$	$\Delta \underline{1} 1 \Delta^{\omega}$	$\Delta \underline{1} 1 \Delta^{\omega}$	$\Delta \underline{1} 1 \Delta^{\omega}$	$\Delta \underline{1} 1 \Delta^{\omega}$	$\Delta \underline{1} 1 \Delta^{\omega}$	
2	$\Delta \Delta^{\omega}$	$\Delta\Delta^{\omega}$	$\underline{\Delta}\Delta^{\omega}$	$\Delta\underline{\Delta}\Delta^{\omega}$	$\Delta\underline{\Delta}\Delta^{\omega}$	$\Delta\underline{\Delta}\Delta^{\omega}$	$\Delta\Delta^{\omega}$	$\Delta\underline{\Delta}\Delta^{\omega}$	
3	$\Delta \Delta^{\omega}$	$\Delta\Delta^{\omega}$	$\underline{\Delta}\Delta^{\omega}$	$\Delta\underline{\Delta}\Delta^{\omega}$	$\Delta\Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\underline{\Delta}1\Delta^{\omega}$	
4	$\Delta\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\underline{\Delta}1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	

CP(3, 4)	$L^2_\Delta L^3_\Delta L^4_\Delta$	R^1	CP(3,2)	L^3_{Δ}	CP(4,3)	
$\Delta \underline{1} 1 \Delta^{\omega}$	$\Delta \underline{1} 1 \Delta^{\omega}$	$\Delta 1 \underline{1} \Delta^{\omega}$	$\Delta 1 \underline{1} \Delta^{\omega}$	$\Delta 1 \underline{1} \Delta^{\omega}$	$\Delta 1 \underline{1} \Delta^{\omega}$	
 $\Delta\underline{\Delta}\Delta^{\omega}$	$\Delta\Delta^{\omega}$	$\Delta\Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	
$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	
$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	

$L^2_\Delta L^3_\Delta L^4_\Delta$	$CP(2,4)L^4$	CP(3,4)	$L^2_\Delta L^3_\Delta L^4_\Delta$	R^1
$\Delta 1 \underline{1} \Delta^{\omega}$	$\Delta 1 \underline{1} \Delta^{\omega}$	$\Delta 1 \underline{1} \Delta^{\omega}$	$\Delta 1 \underline{1} \Delta^{\omega}$	$\Delta 11 \underline{\Delta} \Delta^{\omega}$
 $\underline{\Delta}1\Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\underline{\Delta}1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$
$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1 \underline{\Delta} \Delta^{\omega}$	$\Delta 1\Delta^{\omega}$	$\Delta 1\Delta^{\omega}$
$\Delta 1\Delta^{\omega}$	$\Delta \underline{1} \Delta^{\omega}$	$\Delta 11\underline{\Delta}\Delta^{\omega}$	$\Delta 11\Delta^{\omega}$	$\Delta 11\Delta^{\omega}$

Hodnoty na páske číslo 4 $TS\ M$ pre jednotlivé x sú uvedené dole v tabuľke.

x	unárny zápis x	obsah pásky č. 4 po zastavení $TS\ M$	hodnota čísla na páske č. 4
0	ε	$\Delta 1\Delta^{\omega}$	1
1	1	$\Delta 1\Delta^{\omega}$	1
2	11	$\Delta 11\Delta^{\omega}$	2
3	111	$\Delta 111\Delta^{\omega}$	3
4	1111	$\Delta 111111\Delta^{\omega}$	5
5	11111	$\Delta 111111111\Delta^{\omega}$	8

Pre f(0), f(1), f(2), f(3), f(4), f(5) odpovedá rada čísel 1, 1, 2, 3, 5, 8. Na základe získaných hodnôt ktoré sú uvedné vyššie v tabuľke a faktu, že sa jedná o veľmi známu radu čísel vyplýva, že funkcia f generuje čísla z Fibonacciho rady.

1.2 (b)

h(0) = (1,1)

Funkciu f môžeme definovať ako parciálne rekurzívnu funckiu nasledujúcim spôsobom

$$f(x) = \pi_1^2 \circ h(x)$$

$$h(x+1) = (\pi_2^2 \circ h(x), plus(\pi_1^2 \circ h(x), \pi_2^2 \circ h(x)))$$

$$h(0) = (1, 1)$$

Demonštrácia na príklade pre f(5):

$$\begin{split} f(5) &= \pi_1^2 (8,13) \\ &= \pi_1^2 (8,13) \\ &= 8 \\ h(5) &= (\pi_2^2 \circ h(4), plus(\pi_1^2 \circ h(4), \pi_2^2 \circ h(4))) \\ &= (\pi_2^2 (5,8), plus(\pi_1^2 (5,8), \pi_2^2 (5,8))) \\ &= (8, plus(5,8)) \\ &= (8,13) \\ h(4) &= (\pi_2^2 \circ h(3), plus(\pi_1^2 \circ h(3), \pi_2^2 \circ h(3))) \\ &= (\pi_2^2 (3,5), plus(\pi_1^2 (3,5), \pi_2^2 (3,5))) \\ &= (5, plus(3,5)) \\ &= (5,8) \\ h(3) &= (\pi_2^2 \circ h(2), plus(\pi_1^2 \circ h(2), \pi_2^2 \circ h(2))) \\ &= (\pi_2^2 (2,3), plus(\pi_1^2 (2,3), \pi_2^2 (2,3))) \\ &= (3,plus(2,3)) \\ &= (3,5) \\ h(2) &= (\pi_2^2 \circ h(1), plus(\pi_1^2 \circ h(1), \pi_2^2 \circ h(1))) \\ &= (\pi_2^2 (1,2), plus(\pi_1^2 (1,2), \pi_2^2 (1,2))) \\ &= (2,plus(1,2)) \\ &= (2,3) \\ h(1) &= (\pi_2^2 \circ h(0), plus(\pi_1^2 \circ h(0), \pi_2^2 \circ h(0))) \\ &= (\pi_2^2 (1,1), plus(\pi_1^2 (1,1), \pi_2^2 (1,1))) \\ &= (1,plus(1,1)) \\ &= (1,2) \end{split}$$

Nevypracované.

Dôkaz:

1.) Dôkaz sporom pre '⊆'

Predpokladajme, že platí

$$\mathcal{O}(3^{2n}) \subseteq \mathcal{O}(2^{3n})$$

Potom

$$\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : 3^{2n} \le c \, 2^{3n}$$

Môžeme krátiť vzhľadom ku tomu, že $3^{2n} \neq 0$ pre žiadne n

$$\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \frac{c2^{3n}}{3^{2n}} \ge 1$$

Uvážme

$$\lim_{n\to\infty}\frac{c2^{3n}}{3^{2n}}$$

Vypočítame hore uvedenú limitu

$$\lim_{n \to \infty} \frac{c2^{3n}}{3^{2n}} = \lim_{n \to \infty} \frac{c\left(2^{3}\right)^{n}}{\left(3^{2}\right)^{n}} = \lim_{n \to \infty} \frac{c8^{n}}{9^{n}} = \lim_{n \to \infty} c\frac{8^{n}}{9^{n}} = \lim_{n \to \infty} c\left(\frac{8}{9}\right)^{n} = c0 = 0$$

Nemôže súčastne platiť, že

$$\lim_{n \to \infty} \frac{c2^{3n}}{3^{2n}} = 0$$

a

$$\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \frac{c2^{3n}}{3^{2n}} \ge 1$$

z čoho vyplýva, že sa jedná o spor z čoho vyplýva, že

$$\mathcal{O}(3^{2n}) \nsubseteq \mathcal{O}(2^{3n})$$

2.) Dôkaz sporom pre '⊇'

Predpokladajme, že platí

$$\mathcal{O}(3^{2n}) \supseteq \mathcal{O}(2^{3n})$$

Potom

$$\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : c \, 3^{2n} \ge 2^{3n}$$

Môžeme krátiť vzhľadom ku tomu, že $2^{3n} \neq 0$ pre žiadne n

$$\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \frac{c3^{2n}}{2^{3n}} \ge 1$$

Uvážme

$$\lim_{n\to\infty}\frac{c3^{2n}}{2^{3n}}$$

Vypočítame hore uvedenú limitu

$$\lim_{n \to \infty} \frac{c3^{2n}}{2^{3n}} = \lim_{n \to \infty} \frac{c\left(3^2\right)^n}{\left(2^3\right)^n} = \lim_{n \to \infty} \frac{c9^n}{8^n} = \lim_{n \to \infty} c\frac{9^n}{8^n} = \lim_{n \to \infty} c\left(\frac{9}{8}\right)^n = c(+\infty) = +\infty$$

Keďže platí, že

$$\lim_{n \to \infty} \frac{c3^{2n}}{2^{3n}} = +\infty$$

a

$$\exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \frac{c3^{2n}}{2^{3n}} \ge 1$$

tak z toho vyplýva, že predpokladaný vzťah platí

$$\mathcal{O}(3^{2n}) \supseteq \mathcal{O}(2^{3n})$$

3.) Priamy dôkaz pre '='

Keďže z hore uvedených dôkazov platí, že

$$\mathcal{O}(3^{2n}) \not\subseteq \mathcal{O}(2^{3n})$$

a

$$\mathcal{O}(3^{2n}) \supset \mathcal{O}(2^{3n})$$

tak z toho vyplýva, že nasledujúci vzťah neplatí

$$\mathcal{O}(3^{2n}) = \mathcal{O}(2^{3n})$$

teda musí platiť, že

$$\mathcal{O}(3^{2n}) \neq \mathcal{O}(2^{3n})$$

Nevypracované.

Na obrázku 1 je nakreslená petriho sieť ktorá akceptuje jazyk

$$L = \{a^i(b^j)c^k \in \{a,b,c,(,)\}^* \mid i \geq j \geq k\}$$

Obr. 1: Petriho sieť.

6 Literatúra

[1] M. Češka, T. Vojnar, A. Smrčka, A. Rogalewicz: Teoretická informatika - Studijní text.
 2018-08-23, [Online; Accessed: 2018-10-15].
 URL: http://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf