ML AND MAP

 \bullet Recall the basic definition: Likelihood of θ given the sample $\mathcal X$

$$l(\theta|X) = p(X|\theta) = \prod_{t} p(x^{t}|\theta)$$

- \square Want to find θ such that I is max
- Simple example: Tossing a coin 5 times and the results being H, H, T, T, H.

- □ If $P(\{H\}) = \theta = 0.1$, we have $P(\{H,H,T,T,H\}) = 0.1*0.1*0.9*0.9*0.1 = 8.1 \times 10^{-4}$
- □ If $P(\{H\}) = \theta = 0.2$, we have $P(\{H,H,T,T,H\}) = 0.2*0.2*0.8*0.8*0.2 = 5.1 x 10^{-3}$
- \square We can repeat this computation many times with different values of θ to find the max value
- □ Theoretic answer: $\theta_{ML} = \frac{N_H}{N}$, where N: total tossing, N_H : tossing with head shown

□ With a program, this can be done easily. Observe that θ = 0.6 yields highest probability, $\theta_{\rm ML}$ = 0.6

- This result is the same as theoretical derivation
- But, it seems counter-intuitive...If tossing a coin 100 times and head shows 100 times, what is the probability head shown on next tossing?

- ML says 1.0, but we know it is likely 0.5 because tossing coins is modeled as "repeated" (and/or independent) trials
- That is the difference between ML and MAP
- ML is derived ONLY based on observation
- MAP incorporates a priori probability to ML
- Recall Bayes theorem

$$P(\theta|\chi) = \frac{P(\chi|\theta)P(\theta)}{P(\chi)}$$

MAP estimator wants to find

$$\theta_{MAP} = \arg \max_{\theta} P(\theta | \boldsymbol{\chi})$$

 \square As $P(\chi)$ does not affect the max operation, we need to consider only

$$P(\chi|\theta)P(\theta)$$

 The first term is equal to ML, the second term is the a priori probability

□ The probability $P({H}) = \theta$ is typically modeled as outcome from beta distribution, whose pdf is

$$f(x; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{(a-1)} (1-x)^{(b-1)}$$

Therefore, we need to determine values of a and b
(a priori knowledge) in order to use MAP

- In terms of simulation: (1) Generate many uniformly spaced values for θ , say, 100 numbers between 0 and 1; (2) Compute likelihood for each θ , OK to use pdf in place of $P(\theta)$; (3) Find θ_{max}
- With lots of math, we have

$$\theta_{MAP} = \frac{N_H + a - 1}{N + a + b - 2}$$

Source: www.mi.fu-

berlin.de/wiki/pub/ABI/Genomics12/MLvsMAP.pdf

- \square To have a "mean" $\theta = 0.5$, we set a = b
- \square If a = b = 1, we have $\theta_{MAP} = 0.6$ (same as ML)
- If we are more confident about the a priori knowledge, we can set larger values of a and b, such as a = b = 10

 $_{\square}$ If a = b = 10, we have $heta_{MAP}=0.522$

