2023-2학기 전자기파와 광학 HW2, Due: XXpm March XX (eTL upload)

Fine name: NAME_ID_HW#, e.g. 홍길동_20230101_HW#

1. Consider a plane wave in incident from vacuum to a medium 2 as shown below. Suppose that the medium 2 is a perfectly absorbing medium. Using the conservation of momentum, show that the radiation pressure on the medium 2 is same as the field energy density (field energy per unit volume) contained in the wave.

2. Griffiths Problem 8.6 (4th ed. Pg 383)

Problem 8.6 A charged parallel-plate capacitor (with uniform electric field $\mathbf{E} = E \,\hat{\mathbf{z}}$) is placed in a uniform magnetic field $\mathbf{B} = B \,\hat{\mathbf{x}}$, as shown in Fig. 8.6.

- (a) Find the electromagnetic momentum in the space between the plates.
- (b) Now a resistive wire is connected between the plates, along the z axis, so that the capacitor slowly discharges. The current through the wire will experience a magnetic force; what is the total impulse delivered to the system, during the discharge?⁷

FIGURE 8.6

2023-2학기 전자기파와 광학 HW2, Due: XXpm March XX (eTL upload)

Fine name: NAME_ID_HW#, e.g. 홍길동_20230101_HW#

3. Griffiths Problem 8.23

Problem 8.23

(a) Carry through the argument in Sect. 8.1.2, starting with Eq. 8.6, but using \mathbf{J}_f in place of \mathbf{J} . Show that the Poynting vector becomes

$$\mathbf{S} = \mathbf{E} \times \mathbf{H},\tag{8.46}$$

and the rate of change of the energy density in the fields is

$$\frac{\partial u}{\partial t} = \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} + \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t}.$$

For linear media, show that24

$$u = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H}). \tag{8.47}$$

(b) In the same spirit, reproduce the argument in Sect. 8.2.2, starting with Eq. 8.15, with ρ_f and \mathbf{J}_f in place of ρ and \mathbf{J} . Don't bother to construct the Maxwell stress tensor, but do show that the momentum density is²⁵

$$\mathbf{g} = \mathbf{D} \times \mathbf{B}.\tag{8.48}$$

4. Griffiths Problem 9.3

Problem 9.3 Use Eq. 9.19 to determine A_3 and δ_3 in terms of A_1 , A_2 , δ_1 , and δ_2 .

5. Griffiths Problem 9.8 (a와 b까지만 푸시오)

Problem 9.8 Equation 9.36 describes the most general linearly polarized wave on a string. Linear (or "plane") polarization (so called because the displacement is parallel to a fixed vector $\hat{\bf n}$) results from the combination of horizontally and vertically polarized waves of the *same phase* (Eq. 9.39). If the two components are of equal amplitude, but *out of phase* by 90° (say, $\delta_v = 0$, $\delta_h = 90^\circ$), the result is a *circularly* polarized wave. In that case:

- (a) At a fixed point z, show that the string moves in a circle about the z axis. Does it go clockwise or counterclockwise, as you look down the axis toward the origin? How would you construct a wave circling the other way? (In optics, the clockwise case is called **right circular polarization**, and the counterclockwise, **left circular polarization**.)³
- (b) Sketch the string at time t = 0.

2023-2학기 전자기파와 광학 HW2, Due: XXpm March XX (eTL upload)

Fine name: NAME_ID_HW#, e.g. 홍길동_20230101_HW#

6. Griffiths Problem 9.35

Problem 9.35 Suppose

$$\mathbb{E}(r,\theta,\phi,t) = A \frac{\sin\theta}{r} \left[\cos(kr - \omega t) - (1/kr)\sin(kr - \omega t) \right] \hat{\phi}, \quad \text{with } \frac{\omega}{k} = c.$$

(This is, incidentally, the simplest possible spherical wave. For notational convenience, let $(kr - \omega t) \equiv u$ in your calculations.)

- (a) Show that E obeys all four of Maxwell's equations, in vacuum, and find the associated magnetic field.
- (b) Calculate the Poynting vector. Average S over a full cycle to get the intensity vector I. (Does it point in the expected direction? Does it fall off like r^{-2} , as it should?)
- (c) Integrate $\mathbf{I} \cdot d\mathbf{a}$ over a spherical surface to determine the total power radiated. [Answer: $4\pi A^2/3\mu_0c$]