[Solution] Quiz - 2 (A)

Name:_				Roll:	Sign:	
	2.	Switch off your elect Please read all ques	tronic devices an stions carefully b th your neighbou	d put them in you efore writing your	e space provided in the question paper. If bag or pocket. If answers. If you have any questions, do and we will come to you.	
1.	Let X be a positive random variable and 'a' be a positive constant. Which of the following statement is 'incorrect' for computing an upper bound on $Pr(X \ge a)$?					
		☐ It cannot be unknown.	bounded if V	ar[X] is known	to be a fixed value and E[X] is	
		\square It can be bou	be bounded if only $E[X^2]$ is known to be a fixed value. be bounded if $Var[X]$ and $E[X]$ are known to be fixed values			
		\square It can be bou	nded if Var[X]	and E[X] are k	known to be fixed values.	
	\square It cannot be bounded if only E[X 2] is known to be a fixed value.					
2.	(H	nsider you have a biased coin. You toss it for a pair of 2 times and observed H, HT). Let θ be the probability of getting heads. From the following options, ich is the most likely θ_{MLE} ? $\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
		on: For every p , Likelihood is m			oute Likelihood, L(p) = p ³ ·(1-p) ¹ = = 0.7.	
3.	is ı	consider an unbiased die of 6 sides. Let X be the value that we see when the die x rolled. As, we know that $E[X] = 3.5$, so with at least what probability a roll will exturn 1,2,3 or 4 (Use Markov's inequality)?				
		□ 1/3	□ 0.3	□ 2/3	□ 0.4	
4.	who for mir	Let $X_1, X_2,, X_n$ be independently and identically distributed (i.i.d.) random variables, where the expectation and variance of each variables are 0.3 and 0.2 respectively, (i.e., for every $1 \le i \le n$ $E[X_i] = 0.3$ and $Var(X_i) = 0.2$). Let , $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$ then what is the minimum required value of n such that Y is between 0.2 and 0.4 with at least 0.9 probability?				
Solution: Here E[Y] = E[$\frac{1}{n}\sum_{i=1}^{n}X_{i}$] = 0.3. Further, the Var(Y) = 0.2/n.						
We require $P(Y \in (0.2,0.4)) \ge 0.9$ or equivalently $P(Y \le 0.2 \text{ or } Y \ge 0.4) \le 0.1$.						
	Rewrite the event, $(Y \le 0.2 \text{ or } Y \ge 0.4)$ as E_1 : $ Y - E[Y] \ge 0.1$. Now, applying chebyshev's inequality we get,					
pro	bab	$P(Y - E[Y] \ge 0.1) \le$ ility by at most 0.1.	≤ 0.2/(n·0.1²). By	simple algebra v	ve need n ≥ 200, to bound its	