Outi Wilppu

March 1, 2013

- Introduction
- 2 Multiple Gradient Descent Algorithm
 - Steepest Descent Method
 - Theoretical backround
 - Algorithm
- 3 MGDA for non-smooth convex problems
 - Theoretical backround
 - Algorithm
 - Example
 - Future work

Introduction

Many real life problems have multiobjective nature

- Problem has several goals such that they should all be as good as possible
- Goals are conflicting and have to make compromises
- For example in economics and engineering
- Many problems have also non-smooth nature

Definition

We consider a multiobjective problem of form

min
$$f_1(x), \dots, f_k(x)$$
 (1)
s.t. $x \in S$

where

- Objective functions $f_i(x): \mathbb{R}^n \longrightarrow \mathbb{R}$
- Set $S \subseteq \mathbb{R}^n$ is a set of feasible solutions

Pareto optimality

Definition

A solution $x^* \in S$ is Pareto optimal if there is no other solution $x \in S$ such that $f_i(x) \le f_i(x^*)$ for all i = 1, ..., k and $f_i(x) < f_i(x^*)$ for at least one index i.

- Usually there exists a lot of Pareto optimal solutions, called Pareto optimal set
- All Pareto optimal solution are mathematically equally good

Steepest Descent Method

 A method to solve smooth unconstrained optimization problem with single objective function

$$\min \ f(x), \quad \text{s. t. } x \in \mathbb{R}^n$$

- Search direction $d = -\frac{\nabla f(x)}{\| \ \nabla f(x) \ \|}$, which is the steepest descent direction at the point x
- Stepsize λ can be found with line search
- A new point is of the form $x_+ = x + \lambda d$, where $f(x_+) < f(x)$ until the optimum is reached

About MGDA

- Assume that in problem (1) we have
 - All objective functions f_i are continiously differentiable
 - Problem has no constrains and feasible set is \mathbb{R}^n
- The main idea is to find a common descent direction for all objective functions by defining the convex hull of gradients of objective functions and finding the minimum norm element of the convex hull
- With this method we obtain one Pareto stationary solution

Pareto stationary

Definition

Objective functions f_i are said to be Pareto stationary at the point $oldsymbol{x}^*$ if

$$\sum_{i=1}^k \alpha_i \nabla f_i(\boldsymbol{x}^*) = 0, \quad \alpha_i \ge 0 \quad \forall i, \quad \sum_{i=1}^k \alpha_i = 1.$$

Pareto stationarity is a necessary condition for Pareto optimality

Theorem

Let objective funtions f_i , i = 1, ..., k be continiously differentiable and

$$U = \{ \boldsymbol{w} \in \mathbb{R}^n \mid \boldsymbol{w} = \sum_{i=1}^k \alpha_i \nabla f_i(\boldsymbol{x}), \alpha_i \ge 0 \ \forall i, \sum_{i=1}^k \alpha_i = 1 \}$$

Let vector w^* be a minimum norm element of convex hull of U i.e. $w^* = \operatorname{argmin}\{ \| w \| \mid w \in \operatorname{conv} U \}$. Then

- either $w^* = 0$ and objective functions f_i , i = 1, ..., k are Pareto stationary at the point x^*
- ② or $w^* \neq 0$ and $-w^*$ is common descent direction for all objective functions. Additionally, if $w^* \in U$ then $u^T w^* = ||w^*||^2$ for all $u \in \text{conv } U$.

Search direction

ullet To find the vector $oldsymbol{w}$ we need to solve the problem

min
$$\|\sum_{i=1}^k \alpha_i \nabla f_i(\boldsymbol{x})\|^2$$

s.t. $\alpha_i \ge 0 \, \forall i, \quad \sum_{i=1}^k \alpha_i = 1.$

In case of two objective functions we have

$$\alpha_1 = \begin{cases} \frac{\|v\|^2 - u^T v}{\|u\|^2 + \|v\|^2 - 2u^T v}, & \text{if } u^T v < \min\{\|u\|^2, \|v\|^2\} \\ 0, & \text{if } \min\{\|u\|, \|v\|\} = \|v\| \\ 1, & \text{if } \min\{\|u\|, \|v\|\} = \|u\| \end{cases}$$

where $u = \nabla f_1(x)$, $v = \nabla f_2(x)$ and $\alpha_2 = 1 - \alpha_1$.

Stepsize

- Stepsize λ is the largest strictly positive real number such that all the functions $g_i(t) = f_i(x tw)$ are monotonically decreasing over the interval [0, t].
- A new point ${m x}_+$ is ${m x}_+ = {m x} \lambda {m w}$
- Algorithm stops when $oldsymbol{w}=0$

About MGDA for non-smooth convex problems

- Assume that in the problem (1)
 - Objective functions f_i are convex functions, not necessarily differentiable
 - Problem has no constrains and the feasible set is \mathbb{R}^n
 - The subdifferentials of objective functions f_i are known
- The basic idea is the same as before but now instead of gradients we use the steepest descent subgradients

Subdifferential and subgradient

Definition

Let function f be convex. A subdifferential of f at the point ${\boldsymbol x}$ is a set

$$\partial f(x) = \{ \xi \in \mathbb{R}^n \mid f'(x; d) \ge \xi^T d \}$$

for all $d \in \mathbb{R}^n$. A vector $\xi \in \partial f(x)$ is called subgradient of function f at the point x.

Theorem

Let function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be convex and differentiable at the point $x \in \mathbb{R}^n$. Then

$$\partial f(x) = {\nabla f(x)}.$$

Steepest descent direction

 To determine the steepest descent direction we need to solve the problem

$$\mathsf{min} \quad f'(x;d) \qquad \mathsf{s.t.} \quad \|d\| = 1 \tag{2}$$

The problem (2) can be written

min
$$\|\xi\|$$
 s.t. $\xi \in \partial f(x)$

• Thus the steepest descent direction at the point x is the smallest norm subgradient in the subdifferential $\partial f(x)$

Algorithm

 To obtain a search direction we need to define the steepest descent subgradient for every objective function at the point x. After that we can solve problem

$$\min \quad \|\sum_{i=1}^k \alpha_i \xi_i\|^2$$
s. t. $\alpha_i \ge 0 \, \forall i, \quad \sum_{i=1}^k \alpha_i = 1$

where $\xi_i \in \partial f_i(x)$ is the steepest descent subgradient.

• Stepsize and new point are determined as in smooth case

With this method we obtain one Pareto stationary solution since

$$\sum_{i=1}^{k} \alpha_i \xi_i = 0, \quad \alpha_i \ge 0 \quad \text{and} \quad \sum_{i=1}^{k} \alpha_i = 1.$$

- In convex case Pareto stationarity is necessary and sufficient condition to Pareto optimality
 - ⇒ We obtain one Pareto optimal solution

Example

Consider the following problem:

$$\min \quad \{f_1(x), f_2(x)\}$$
 s. t. $x \in \mathbb{R}^2$

where

$$f_1(x) = \max\{x_1^2 + (x_2 - 1)^2, (x_1 + 1)^2\}$$

$$f_2(x) = \max\{2x_1 - x_2, x_1^2 + x_2\}$$

and starting point $x_0 = (1, 0.5)$.

 $-\xi_1=(4,0)$

Introduction

– To determine ξ_2 we need to find $\rho \in [0,1]$ such that we find the minimum norm of subdifferential

$$\partial f_2(x_0) = \rho(2,-1) + (1-\rho)(2,1) = (2,1-2\rho).$$

To obtain the steepest descent subgradient $\rho = \frac{1}{2}$ and $\xi_2 = (2,0)$.

$$-\mathbf{w} = \alpha \xi_1 + (1 - \alpha)\xi_2$$

Introduction

– We obtain α from formula

$$\alpha = \begin{cases} \frac{\|\xi_2\|^2 - \xi_1^T \xi_2}{\|\xi_1\|^2 + \|\xi_2\|^2 - 2\xi_1^T \xi_2}, & \text{if } \xi_1^T \xi_2 < \min\{\|\xi_1\|^2, \|\xi_2\|^2\} \\ 0, & \text{if } \min\{\|\xi_1\|, \|\xi_2\|\} = \|\xi_2\| \\ 1, & \text{if } \min\{\|\xi_1\|, \|\xi_2\|\} = \|\xi_1\| \end{cases}$$

- Thus w = (2,0)

Stepsize:

- Function $g_1(t) = f_1(x_0 tw)$ is descent if $t \in [0, 0.6875]$
- Function $g_2(t) = f_2(x_0 tw)$ is descent if $t \in [0, 0.5]$ \Rightarrow Stepsize $\lambda = 0.5$

New point:

$$-x_1 = x_0 - \lambda w = (0, 0.5)$$

k	ξ_1	ξ_2	α	$oldsymbol{w}$	λ	x_{k+1}
0	(4,0)	(2,0)	0	(2,0)	0.5	(0, 0.5)
1	(2,0)	(0, 1)	0.2	(0.4, 0.8)	0.403	(-0.161, 0.178)
2	(1.678, 0)	(-0.322, 1)	0.329	(0.336; 0.671)		

Solution:
$$m{x}^* = (-0.161, 0.178)$$
, $f_1(m{x}^*) \approx 0.704$ and $f_2(m{x}^*) \approx 0.203$

Future work

- The biggest drawback is that we need to know whole subdifferential
- The aim is to find an effective way to get a common descent direction for all objective functions
- We do not need more than one arbitrary subgradient of function

Thank you for your attention!