Rayleigh Fading Signal

Consider the following processor structure:

$$\underline{x}$$
 Processor $T(\underline{x})$

Our goal is to decide presence or absence of a signal buried in uncorrelated Gaussian noise

where:

$$H_1 \colon x(n) = s(n) + w(n) \; , \qquad \quad n = 0, 1, \dots, \, \text{N--}1$$

$$H_0$$
: $x(n) = w(n)$, $n = 0,1,..., N-1$

w(n) is an uncorrelated Gaussian noise sequence $\sim N(0,\sigma^2)$

I. Consider three different classes of signals:

A.
$$s(n) = A \sin(2\pi f_c n + \phi)$$
, $f_c = 1/16$

A known and ϕ uniformly distributed.

B.
$$s(n) = A \sin(2\pi f_c n + \phi)$$
, $f_c = 1/16$

A Rayleigh distributed and $\boldsymbol{\varphi}$ uniformly distributed.

C.
$$s(n) = w_s(n)$$

Uncorrelated Gaussian signal $\sim N(0,\sigma_s^2)$

II. Summarize briefly the analytical derivation of the test statistic and performance for the following optimum detection receivers:

A. SKEP
$$(N = 128)$$

B. Rayleigh fading sinusoid (
$$N = 128$$
)

C. Energy detector
$$(N = 128 \text{ and } N = 16)$$
.

Express P_D in terms of P_F for the SKEP and Rayleigh fading sinusoid processors.

- III. Plot the performance of the processors in II above as:
 - A. P_D vs. P_F on normal probability paper for 10 log (ENR) = 10 dB.
 - B. P_D (linear) vs. ENR (dB) for $P_F = 10^{-1}$, 10^{-2} , and 10^{-3} and ENR from 0 to 30 dB.

ENR is the expected energy-to-noise ratio.

Notes:

- 1. Include grid lines on your performance plots in III above.
- 2. For the energy detector, see Prob. 5.1 in [1] (pp. 176-177) for an iterative formula to calculate the threshold for a given P_F . Note that γ " defined on p. 144 and used in the expression for P_D differs from that defined on p. 176 (the iterative formula) by a factor of 2.

Reference

[1] S. Kay. Fundamentals of Statistical Signal Processing. Vol. II: Detection Theory. Prentice-Hall (1998).