Time series applied to finance

Marouane Arab

March 28, 2016

Abstract

This documents is generated by an R script and a brew file (latex file which embeds R code). All sources are available at https://github.com/arabm/multifractal_model. This article contains some details about existing financial modelisation, and some examples.

It has

- modelisation examples on financial stock, exchange rates (ARMA, Markov Switching Model)
- ARMA model presentation

It still misses:

- statistical test explanation (Student, p-value,...)
- deeper details on ARMA model
- GARCH model
- MSM model
- forecasting, backtesting

Question to answer :

- Why working on log return?
- How an ARMA/Garch/MSM model can be accepted/rejected?
- What are tests that can be done?
- How validate backtesting ?
- Why doing forecasting? How much time in prevision is relevant (1 day, 1 month...)?

Contents

1 CAC40	2
2 EURUSD	10
B IBM	18
4 MSFT	26
Appendix A To determine white noise	34
Appendix B Notions	35
Appendix C AR Model	37
Appendix D MA Model	42
Appendix E. ARMA(p.q)	46

1 CAC40

This is the historical close quotation. S_t . A stationarize are the log return. $r_t = \log(\frac{S_t}{S_{t-1}})$

Looking at original

Is it an AR model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm. Results:

Call:

ar(x = value)

Coefficients:

1 2 3 4 5 6 0.9586 0.0052 -0.0014 0.0545 -0.0643 0.0442

Order selected 6 sigma^2 estimated as 4526

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.34186, df = 1, p-value = 0.5588

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.9639, p-value < 2.2e-16

Is it an MA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,5) with non-zero mean

Coefficients:

ma1ma2 ma3ma4ma5intercept 1.7514 2.1009 1.9138 1.3178 0.5338 4139.6223 0.0265 0.0439 0.0337 0.0234 0.0180 22.3093

sigma^2 estimated as 15867: log likelihood=-14782.85 AIC=29579.69 AICc=29579.74 BIC=29620.07

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 209.85, df = 1, p-value < 2.2e-16

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.98947, p-value = 3.684e-12

Is it an ARMA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,5) with non-zero mean

Coefficients:

ma1ma2 ma3ma4ma5intercept 1.7514 2.1009 1.9138 1.3178 0.5338 4139.6223 0.0265 0.0439 0.0337 0.0234 0.0180 22.3093

sigma^2 estimated as 15867: log likelihood=-14782.85 AIC=29579.69 AICc=29579.74 BIC=29620.07

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 209.85, df = 1, p-value < 2.2e-16

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.98947, p-value = 3.684e-12

Markov Switching Model Try with 2 regimes.

Results:

Markov Switching Model

Call: msmFit(object = mod, k = 2, sw = c(T, T, T), p = 1, control = list(parallel = F))

AIC BIC logLik 25609.13 25663.27 -12800.56

Coefficients:

(Intercept)(S) value_1(S) Std(S)
Model 1 18.121358 0.9938143 86.46705
Model 2 7.304968 0.9989027 42.64456

Transition probabilities:

Regime 1 Regime 2

Regime 1 0.9788516 0.0093812

Regime 2 0.0211484 0.9906188

(a) Which 2

Looking at logret

Is it an AR model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm. Results:

Call:

ar(x = value)

Coefficients:

Order selected 5 sigma^2 estimated as 0.0002385

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.00024827, df = 1, p-value = 0.9874

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.94774, p-value < 2.2e-16

Is it an MA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,5) with zero mean

Coefficients:

sigma^2 estimated as 0.000238: log likelihood=6501.84 AIC=-12991.69 AICc=-12991.65 BIC=-12957.08

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.00020489, df = 1, p-value = 0.9886

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.94707, p-value < 2.2e-16

Is it an ARMA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,5) with zero mean

Coefficients:

sigma^2 estimated as 0.000238: log likelihood=6501.84 AIC=-12991.69 AICc=-12991.65 BIC=-12957.08

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.12362, df = 1, p-value = 0.7251

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res W = 0.94391, p-value < 2.2e-16

Markov Switching Model Try with 2 regimes.

Results:

Markov Switching Model

Call: msmFit(object = mod, k = 2, sw = c(T, T, T), p = 1, control = list(parallel = F))

AIC BIC logLik -13538.51 -13484.38 6773.255

Coefficients:

| Model | 1 | 0.0005173361 | -0.03039309 | 0.01084260 | Model | 2 | -0.0021582307 | -0.06141297 | 0.02489934

Transition probabilities:

Regime 1 Regime 2

Regime 1 0.98836266 0.03654694

Regime 2 0.01163734 0.96345306

(a) Which 2

2 EURUSD

This is the historical close quotation. S_t . A stationarize are the log return. $r_t = \log(\frac{S_t}{S_{t-1}})$

Looking at original

Is it an AR model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm. Results:

Call:
ar(x = value)
Coefficients:
 1
0.999

Order selected 1 sigma^2 estimated as 6.313e-05

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.17242, df = 1, p-value = 0.678

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.97606, p-value < 2.2e-16

Is it an MA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,5) with non-zero mean

Coefficients:

 ma1
 ma2
 ma3
 ma4
 ma5
 intercept

 2.1483
 2.8344
 2.6013
 1.6428
 0.5836
 1.2171

 s.e.
 0.0182
 0.0336
 0.0296
 0.0182
 0.0116
 0.0036

sigma^2 estimated as 0.0004708: log likelihood=10429.22 AIC=-20844.43 AICc=-20844.4 BIC=-20799.82

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 479.06, df = 1, p-value < 2.2e-16

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res W = 0.99702, p-value = 1.523e-07

Is it an ARMA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,5) with non-zero mean

Coefficients:

	ma1	ma2	ma3	ma4	ma5	intercept
	2.1483	2.8344	2.6013	1.6428	0.5836	1.2171
s.e.	0.0182	0.0336	0.0296	0.0182	0.0116	0.0036

sigma^2 estimated as 0.0004708: log likelihood=10429.22 AIC=-20844.43 AICc=-20844.4 BIC=-20799.82

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 479.06, df = 1, p-value < 2.2e-16

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.99702, p-value = 1.523e-07

Markov Switching Model Try with 2 regimes.

Results:

Markov Switching Model

Call: msmFit(object = mod, k = 2, sw = c(T, T, T), p = 1, control = list(parallel = F))

AIC BIC logLik -30176.57 -30117.6 15092.29

Coefficients:

| Model | 1 | 0.0051391138 | 0.9959467 | 0.010649831 | Model | 2 | -0.0001810602 | 1.0002282 | 0.006159484 |

Transition probabilities:

Regime 1 Regime 2 Regime 1 0.98867243 0.005043856 Regime 2 0.01132757 0.994956144

(a) Which 2

Looking at logret

Is it an AR model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm. Results:

Call:

ar(x = value)

Coefficients:

1 2 3 4 5 6 7 0.0088 -0.0113 -0.0026 0.0359 -0.0309 0.0185 0.0241

Order selected 7 sigma^2 estimated as 4.069e-05

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 1.1456e-05, df = 1, p-value = 0.9973

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.98309, p-value < 2.2e-16

Is it an MA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,0) with non-zero mean

Coefficients:

intercept

0e+00

1e-04 s.e.

sigma^2 estimated as 4.075e-05: log likelihood=15721.53

AIC=-31439.06 AICc=-31439.06 BIC=-31426.32

(a) MA coefficients

(b) QQnorm of residual

Normal Q-Q Plot

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.24259, df = 1, p-value = 0.6223

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.98276, p-value < 2.2e-16

Is it an ARMA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,0) with non-zero mean

Coefficients:

intercept

0e+00

1e-04 s.e.

sigma^2 estimated as 4.075e-05: log likelihood=15721.53

AIC=-31439.06 AICc=-31439.06 BIC=-31426.32

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.24259, df = 1, p-value = 0.6223

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.98276, p-value < 2.2e-16

Markov Switching Model Try with 2 regimes.

Results:

Markov Switching Model

Call: msmFit(object = mod, k = 2, sw = c(T, T, T), p = 1, control = list(parallel = F))

AIC BIC logLik -31659.28 -31600.3 15833.64

Coefficients:

(Intercept)(S) value_1(S) Std(S)
Model 1 -0.0002184246 0.06645888 0.008243233

Model 2 0.0001969037 -0.06868736 0.003960878

Transition probabilities:

Regime 1 Regime 2

Regime 1 0.6089057 0.3545759

Regime 2 0.3910943 0.6454241

(a) Which 2

3 IBM

This is the historical close quotation. S_t . A stationarize are the log return. $r_t = \log(\frac{S_t}{S_{t-1}})$

Looking at original

Is it an AR model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm. Results:

Call:
ar(x = value)
Coefficients:
 1
0.9981

Order selected 1 sigma^2 estimated as 5.151

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.098621, df = 1, p-value = 0.7535

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.9508, p-value < 2.2e-16

Is it an MA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,5) with non-zero mean

Coefficients:

ma1 ma2 ma3 ma4 ma5 intercept 2.0207 2.6273 2.4116 1.5390 0.568 150.1698 s.e. 0.0216 0.0375 0.0352 0.0242 0.015 1.0180

sigma^2 estimated as 23.34: log likelihood=-6958.04 AIC=13930.08 AICc=13930.13 BIC=13970.33

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 213.87, df = 1, p-value < 2.2e-16

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.99703, p-value = 0.0001803

Is it an ARMA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,5) with non-zero mean

Coefficients:

	ma1	ma2	ma3	ma4	ma5	intercept	
	2.0207	2.6273	2.4116	1.5390	0.568	150.1698	
s.e.	0.0216	0.0375	0.0352	0.0242	0.015	1.0180	

sigma^2 estimated as 23.34: log likelihood=-6958.04 AIC=13930.08 AICc=13930.13 BIC=13970.33

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 213.87, df = 1, p-value < 2.2e-16

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.99703, p-value = 0.0001803

Markov Switching Model Try with 2 regimes.

Results:

Markov Switching Model

Call: msmFit(object = mod, k = 2, sw = c(T, T, T), p = 1, control = list(parallel = F))

AIC BIC logLik 9388.168 9442.169 -4690.084

Coefficients:

Transition probabilities:

Regime 1 Regime 2

Regime 1 0.96502377 0.09019822

Regime 2 0.03497623 0.90980178

(a) Which 2

Looking at logret

Is it an AR model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm. Results:

Call:
ar(x = value)

Coefficients:

Order selected 10 sigma^2 estimated as 0.0002069

Test residual independences with ljung:

Box-Ljung test

data: res X-squared = 0.0038622, df = 1, p-value = 0.9504

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res W = 0.94224, p-value < 2.2e-16

Is it an MA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,0) with non-zero mean

Coefficients:

intercept 2e-04

s.e. 3e-04

sigma^2 estimated as 0.0002084: log likelihood=6545.89 AIC=-13087.77 AICc=-13087.77 BIC=-13076.27

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.28676, df = 1, p-value = 0.5923

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.94027, p-value < 2.2e-16

Is it an ARMA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,0) with non-zero mean

Coefficients:

intercept

2e-04

s.e. 3e-04

sigma^2 estimated as 0.0002084: log likelihood=6545.89 AIC=-13087.77 AICc=-13087.77 BIC=-13076.27

(a) MA coefficients

(b) QQnorm of residual

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.28676, df = 1, p-value = 0.5923

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.94027, p-value < 2.2e-16

Markov Switching Model Try with 2 regimes.

Results:

Markov Switching Model

Call: msmFit(object = mod, k = 2, sw = c(T, T, T), p = 1, control = list(parallel = F))

AIC BIC logLik -13687.27 -13633.27 6847.635

Coefficients:

(Intercept)(S) value_1(S) Std(S)

Model 1 -0.0007904372 -0.00119046 0.023807260

Model 2 0.0005225907 -0.03309368 0.009267872

Transition probabilities:

Regime 1 Regime 2

Regime 1 0.90554306 0.03205306

Regime 2 0.09445694 0.96794694

(a) Which 2

4 MSFT

This is the historical close quotation. S_t . A stationarize are the log return. $r_t = \log(\frac{S_t}{S_{t-1}})$

Looking at original

Is it an AR model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm. Results:

Call:
ar(x = value)
Coefficients:
 1
0.9965

Order selected 1 sigma^2 estimated as 0.5186

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.23417, df = 1, p-value = 0.6284

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.91461, p-value < 2.2e-16

Is it an MA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,5) with non-zero mean

Coefficients:

 ma1
 ma2
 ma3
 ma4
 ma5
 intercept

 1.8856
 2.3315
 2.1797
 1.4642
 0.5639
 32.1564

 s.e.
 0.0188
 0.0280
 0.0285
 0.0251
 0.0143
 0.2431

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 210.06, df = 1, p-value < 2.2e-16

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.96066, p-value < 2.2e-16

Is it an ARMA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,5) with non-zero mean

Coefficients:

ma1ma2ma3ma4ma5intercept 1.8856 2.3315 2.1797 1.4642 0.5639 32.1564 0.0188 0.0280 0.0285 0.0251 0.0143 0.2431

sigma^2 estimated as 1.549: log likelihood=-3807.32 AIC=7628.63 AICc=7628.68 BIC=7668.89

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 210.06, df = 1, p-value < 2.2e-16

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.96066, p-value < 2.2e-16

Markov Switching Model Try with 2 regimes.

Results:

Markov Switching Model

Call: msmFit(object = mod, k = 2, sw = c(T, T, T), p = 1, control = list(parallel = F))

AIC BIC logLik 3252.634 3306.636 -1622.317

Coefficients:

(Intercept)(S) value_1(S) Std(S)
Model 1 0.03245657 0.9993361 0.3726641
Model 2 0.02607107 0.9994247 0.9869924

Transition probabilities:

Regime 1 Regime 2

Regime 1 0.96872469 0.1242708

Regime 2 0.03127531 0.8757292

(a) Which 2

Looking at logret

Is it an AR model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm. Results:

Call:

ar(x = value)

Coefficients:

1	2	3	4	5	6	7	8
-0.0589	-0.0615	0.0261	-0.0638	-0.0414	-0.0102	-0.0472	-0.0193
9	10	11	12	13	14	15	16
-0.0166	0.0409	0.0378	0.0283	-0.0386	0.0019	0.0110	0.0052
17	18						
0.0335	-0.0584						

Order selected 18 sigma^2 estimated as 0.000324

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.00018124, df = 1, p-value = 0.9893

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.91986, p-value < 2.2e-16

Is it an MA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,2) with zero mean

Coefficients:

 $\begin{array}{ccc} & \text{ma1} & \text{ma2} \\ & -0.0560 & -0.0613 \\ \text{s.e.} & 0.0209 & 0.0224 \end{array}$

sigma^2 estimated as 0.0003278: log likelihood=6019.9 AIC=-12033.8 AICc=-12033.79 BIC=-12016.55

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.0083701, df = 1, p-value = 0.9271

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.91432, p-value < 2.2e-16

Is it an ARMA model? We look for the AR coefficient, and minimize it with the AIC indicator. The AIC is a ratio between a good calibration and the number of parameters. The AR model implies that residual should be white noise (iid normal law). It's tested with the QQnorm.

Results:

Series: value

ARIMA(0,0,2) with zero mean

Coefficients:

ma1 ma2 -0.0560 -0.0613

s.e. 0.0209 0.0224

sigma^2 estimated as 0.0003278: log likelihood=6019.9 AIC=-12033.8 AICc=-12033.79 BIC=-12016.55

Normal Q-Q Plot

(a) MA coefficients

(b) QQnorm of residual

Test residual independences with ljung:

Box-Ljung test

data: res

X-squared = 0.0017872, df = 1, p-value = 0.9663

Test residual normal law with Shapiro:

Shapiro-Wilk normality test

data: res

W = 0.91427, p-value < 2.2e-16

Markov Switching Model Try with 2 regimes.

Results:

Markov Switching Model

Call: msmFit(object = mod, k = 2, sw = c(T, T, T), p = 1, control = list(parallel = F))

AIC BIC logLik -12733.08 -12679.08 6370.541

Coefficients:

(Intercept)(S) value_1(S)

Model 1 -0.001015905 -0.09460918 0.03640935

Model 2 0.000462657 -0.01414423 0.01256221

Transition probabilities:

Regime 2 Regime 1

Regime 1 0.8903983 0.01873014

Regime 2 0.1096017 0.98126986

(a) Which 2

A To determine white noise

What is it? Be ϵ_t a time serie. It's a white noise, if it's independ through time t and got the same law. We will consider a normal law $\mathcal{N}(0,\sigma)$ for white noise.

Example Below example of noise

Figure 37: Example of $\mathcal{N}(0,6)$

Test of Box-Ljung for independance : Test of Shapiro for Normal law :

Shapiro-Wilk normality test

data: res
W = 0.99763, p-value = 0.7064

Figure 38: Example of $\mathcal{N}(0,6)$

Test of Box-Ljung for independance : Test of Shapiro for Normal law :

Shapiro-Wilk normality test

data: res

W = 0.95801, p-value = 9.744e-11

B Notions

Strongly Stationary Be X_t a time series. X_t is strictly stationary process or strongly stationary process if:

$$\forall h, \forall n, X_{t_1}...X_{t_n}$$
 has the same law than $X_{t_1+h}...X_{t_n+h}$

Weakly stationary X_t is a weak or wide-sense stationary process if:

- (i) $\forall t, \mathbb{E}\left\{X_t^2\right\} < \infty$, finite variance
- (ii) $\forall t, \mathbb{E} \{X_t\} = m$, expectation doesn't depend of time t
- (iii) $\forall t, \text{cov}(X_t, X_{t+h}) = \gamma(h)$, covariance doesn't depend of time t and only on the lag h.

In practice strongly stationary process are hard to demonstrate. In models below we'll demonstrate weak stationarity.

Covariance Be X, Y two random variables. We note cov(X, Y) the covariance between X and Y

$$\mathrm{cov}(X,Y) = \mathbb{E}\left\{(X - \mathbb{E}\left\{X\right\})(Y - \mathbb{E}\left\{Y\right\})\right\}$$

Correlation Be X, Y two random variables. We note $\rho(X, Y)$ the correlation between X and Y

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sqrt{\text{Var}(X)\,\text{Var}(Y)}}$$

Autocorrelation Be X_t a time serie. $X_1, X_2, ...$ are random variables. We note γ_l the covariance between X_t and X_{t-l}

$$\gamma_l = \frac{\text{cov}(X_t, X_{t-l})}{\sqrt{\text{Var}(X_t) \text{Var}(X_{t-l})}}$$

Note that $\gamma_0 = 1$

Partial autocorrelation (PACF) We note $\pi(k)$ the partial autocorrelation:

$$\pi(k) = \text{corr}(X_t - \mathbb{E}\left\{X_t | X_{t-1} ... X_{t-k+1}\right\}, X_{t-k} - \mathbb{E}\left\{X_{t-k} | X_{t-1} ... X_{t-k+1}\right\}) =$$

Akaike Information Criterion (AIC)

$$AIC = \frac{-2}{T}\ln(\text{likelihood}) + \frac{2}{T}(\text{number of parameters})$$

Normal law $\mathcal{N}(\mu, \sigma)$ X follow a normal law $\mathcal{N}(\mu, \sigma)$. The density function is :

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Figure 39: Example of $\mathcal{N}(0,1)$

Figure 40: Example of $\mathcal{U}(-1,1)$

C AR Model

AR(1)

Definition Be $c, \beta \in \mathbb{R}^2$, X_t is an AR(1) process if

$$X_t = c + \beta X_{t-1} + \epsilon_t$$
$$= c + \beta^t X_0 + \sum_{i=0}^t \beta^i \epsilon_{t-i}$$

Stationary condition

(i) X_t has a finite variance if $|\beta| < 1$:

$$Var(X_t) = Var(\sum_{i=0}^{t} \beta^i \epsilon_{t-i})$$
$$= \sum_{i=0}^{t} \beta^{2i} \sigma^2$$
$$= \frac{1 - \beta^{2t}}{1 - \beta} \sigma^2$$

When
$$|\beta| > 1$$
, $\operatorname{Var}(X_t) \xrightarrow[t \to \infty]{} \infty$.
When $|\beta| < 1$, $\operatorname{Var}(X_t) \xrightarrow[t \to \infty]{} \frac{1}{1-\beta}\sigma^2$

(ii) Expectation doesn't depend of t implies $\mathbb{E}\{X_t\} = \mathbb{E}\{X_{t-1}\} = \mu$

$$\mathbb{E}\left\{X_{t}\right\} = c + \beta \mathbb{E}\left\{X_{t-1}\right\}$$

$$\Leftrightarrow \mu = \frac{c}{1-\beta}$$

But we could rewrite $\mathbb{E}\{X_t\}$ as:

$$\mathbb{E}\left\{X_{t}\right\} = c + \mathbb{E}\left\{\beta X_{t-1} + \epsilon_{t}\right\}$$

$$= c + \mathbb{E}\left\{\sum_{i=1}^{t} \beta^{i}(c + \epsilon_{t-i})\right\}$$

$$= c \frac{1 - \beta^{t}}{1 - \beta}$$

(iii) Covariance doesn't depend of t?

$$cov(X_{t}, X_{t-1}) = \mathbb{E} \{ (c + \beta X_{t-1} + \epsilon_{t}) X_{t-1} \} - c^{2}$$

$$= c \mathbb{E} \{ X_{t-1} \} + \beta \mathbb{E} \left\{ X_{t-1}^{2} \right\} - c^{2}$$

$$= c \frac{1 - \beta^{t-1}}{1 - \beta} + \beta \frac{1 - \beta^{2(t-1)}}{1 - \beta} \sigma^{2} - c^{2}$$

$$\gamma(1) = \mathbb{E}\left\{ (X_t - c)(X_{t-1} - c) \right\}
= \mathbb{E}\left\{ (\beta X_{t-1} + \epsilon_t)(X_{t-1} - c) \right\}
= \mathbb{E}\left\{ \beta X_{t-1} \right\}$$

ACF of AR(1) process

Demonstration There is a linear relation between t and t-1.

$$\gamma_{l} = \operatorname{cov}(X_{t}, X_{t-l}) \\
= \mathbb{E}\left\{ (X_{t} - \mu)(X_{t-l} - \mu) \right\} \\
= \mathbb{E}\left\{ (\epsilon_{t} + \sum_{i=1}^{\infty} \beta^{i} \epsilon_{t-i}) (\sum_{i=1}^{\infty} \beta^{i} \epsilon_{t-l-i}) \right\} \\
= \mathbb{E}\left\{ \sum_{i,j=1}^{\infty} \beta^{i} \epsilon_{t-i} \beta^{j} \epsilon_{t-l-j} \right\} \\
= \mathbb{E}\left\{ \sum_{i=1}^{\infty} \beta^{i+l} \epsilon_{t-l-i} \beta^{i} \epsilon_{t-l-i} \right\} \\
= \sigma^{2} \sum_{i=1}^{\infty} \beta^{i+l} \beta^{i} \\
= \sigma^{2} \frac{\beta^{l}}{1 - \beta^{2}} \\
= \beta \gamma_{l-1}$$

Figure 41: Expected ACF for AR(1) process

Examples

Figure 42: Example of AR(1) process, coefficient AR(0.8) (n=1000)

Figure 43: Example of AR(1) process, coefficient AR(-0.7) (n=1000)

Figure 44: Example of AR(1) process, coefficient AR(0.3) (n=1000)

AR(p)

Definition Be $c, \beta \in \mathbb{R}^2$, X_t is an AR(p) process if

$$X_t = c + \sum_{i=1}^{p} \beta_i X_{t-i} + \epsilon_t$$
$$= c + \sum_{i=1}^{p} \beta_i$$

Stationary condition To be stationary, roots of the polynom $z^p - \sum_{i=1}^p \beta_i z^{p-i}$ must be within the unit circle, $|z_i| < 1$

Figure 45: AR(2) process with coefficient AR(0.6,0.3) (n=100)

Figure 46: AR(2) process with coefficient AR(0.6,0.3) (n=10000)

Figure 47: AR(6) process with coefficient AR(-0.2,0.2,0.1,0.3,0.2,0.1) (n=1000)

Figure 48: AR(2) process with coefficient AR(-0.1,-0.2) (n=1000)

Figure 49: AR(2) process with coefficient AR(0.01,0.02) (n=1000)

D MA Model

MA(1)

Definition Be $\theta \in \mathbb{R}$, X_t is an MA(1) process if

$$X_t = c + \theta \epsilon_t$$

$$= c + \beta^t X_0 + \sum_{i=0}^t \beta^i \epsilon_{t-i}$$

Stationary condition X_t has a finite variance : $\operatorname{Var}(X_t) = \theta^2 \sigma^2$

Figure 50: MA(1) process with coefficient MA(3) (n=100)

Figure 51: MA(1) process with coefficient MA(3) (n=1000)

Figure 52: MA(1) process with coefficient MA(-4) (n=1000)

Figure 53: MA(1) process with coefficient MA(10) (n=1000)

Figure 54: MA(1) process with coefficient MA(0.01) (n=1000)

MA(q)

Definition Be $\theta \in \mathbb{R}$, X_t is an MA(q) process if

$$X_t = c + \sum_{i=0}^{q} \theta_i \epsilon_{t-i}$$

Stationary condition X_t has a finite variance : $Var(X_t) = \sum_{i=0}^q \theta_i^2 \sigma^2$

Figure 55: MA(2) process with coefficient MA(3,6) (n=100)

Figure 56: MA(2) process with coefficient MA(3,6) (n=1000)

Figure 57: MA(2) process with coefficient MA(-4,10) (n=1000)

Figure 58: MA(4) process with coefficient MA(10,4,-7,9) (n=1000)

Figure 59: MA(4) process with coefficient MA(10,0,0,9) (n=1000)

E ARMA(p,q)

Definition Be $\theta \in \mathbb{R}$, X_t is an MA(q) process if

$$X_t = c + \sum_{i=0}^{q} \theta_i \epsilon_{t-i} + \sum_{i=1}^{p} \beta_i X_{t-i}$$

stationary To see if X_t is stationary we look at its variance.

$$Var(X_t) = \sum_{i=0}^{q} \theta_i^2 \sigma^2$$

Examples See below various example of ARMA(p,q)

Figure 60: ARMA(1,2) process with coefficient AR(0.8), MA(3,6) (n=100)

Figure 61: ARMA(1,2) process with coefficient AR(0.8), MA(3,6) (n=1000)

Figure 62: ARMA(3,2) process with coefficient AR(-0.1,0.2,0.1), MA(-4,10) (n=1000)

Figure 63: ARMA(2,4) process with coefficient AR(0,0.9), MA(10,4,-7,9) (n=1000)

Figure 64: ARMA(2,4) process with coefficient AR(0,0.3), MA(10,0,0,9) (n=1000)