Seminar 20, 15.02.24. О Найти все гомоморфизмы Zn → Zm □ Гомоморфизм 4: Zn - G однозначно определяется odpazom I: $\varphi(k) = \varphi(7)^k$ В частности, обядательно $\varphi(\bar{n}) = n \cdot \varphi(\bar{1}) = 0$ Nycπ φ(1) = r => n·v = m·l Oбoznavum d = (n, m): $\frac{n}{d}r = \frac{m}{d}\ell \Rightarrow \frac{m}{d} \mid V$ Bz. npo cien Значит, если 4: In - Im - гомомороризм, го $\varphi(\overline{1}) \in \{\overline{0}, \frac{\overline{m}}{d}, 2. \frac{\overline{m}}{d}, \dots, (d-1)\frac{\overline{m}}{d}\} = 7 \text{ He Sonsure } d \text{ rom-mob}$ На самом деле, каждое такое в определяет гомоморфизм Ecnu $\varphi(\bar{1}) = t\left(\frac{m}{d}\right)$, To $Im \varphi \cong \mathbb{Z}_s$, The solution of $Jm \varphi \cong \mathbb{Z}_s$, The solution $Jm \varphi \cong \mathbb{Z}_s$ and $Jm \varphi \cong \mathbb{Z}_s$ and $Jm \varphi \cong \mathbb{Z}_s$ are solution $Jm \varphi \cong \mathbb{Z}_s$. => gociato440 gokajath, 4TO $\mathbb{Z}_{kS} \rightarrow \mathbb{Z}_s$ - rom-zm $k\cdot s=n$ Ho FTOT rom-zm pabotaet tak: Zks - Zks; Im y = Zs Пусть X-группоид. Тогда определени отображения: Ух є X $\ell_{x}: X \to X \qquad r_{x}: X \to X$ $y \mapsto x \cdot y \qquad y \mapsto y \times y$

HSE

② X actoy.
$$\iff$$
 $l_x \circ r_y = r_x \circ l_x$ $b_x, z \in X$.

□ $l_x \circ r_y (y) = l_x (yz) = x \cdot (y\cdot z)$
 $r_y \circ l_x (y) = r_z (xy) = (x\cdot y) \cdot z$

□ $l_x \circ r_y (y) = r_z (xy) = (x\cdot y) \cdot z$

□ $l_y \circ r_y \circ l_x (y) = r_z (xy) = (x\cdot y) \cdot z$

□ $l_y \circ r_y \circ l_x (y) = r_z (xy) = (x\cdot y) \cdot z$

□ $l_y \circ r_y \circ l_x (y) = r_z (xy) = (x\cdot y) \cdot z$

□ $l_y \circ r_y \circ l_x (y) = r_z (xy) = (x\cdot y) \cdot z$

□ $l_y \circ r_y \circ l_x (y) = r_y \circ r_y$

$$(g \sim h) \equiv Cg$$
 сопряжено с h — отношение эквивалентности I $g = C_{1}(g)$ $g = C_{2}(h) \Rightarrow h = C_{2}(g)$ $g = C_{2}(h)$ $h = C_{3}(g)$ $g = C_{3}(h)$ $h = C_{3}(g)$ $g = C_{4}(h)$ $g = C_{4}(h)$

