NCEA Level 3 Calculus (Integration)

23. Trigonometric Substitution

Goal for this week

To practice using a special kind of substitution which is sometimes useful.

Consider the integral

$$\int_{0}^{1} x^3 \sqrt{1-x^2} \, \mathrm{d}x.$$

There is no obvious easy substitution to simplify this integral, and integration by parts could work but will require a lot of work with no guranteed payoff. However, recall that $\sqrt{1-\sin^2\theta}=\cos\theta$; this identity suggests that we could perhaps substitute $x=\sin\theta$ in order to obtain $\mathrm{d}x=\cos\theta\,\mathrm{d}\theta$ and so

$$\int_{0}^{1} x^{3} \sqrt{1 - x^{2}} dx = \int_{0}^{\frac{\pi}{2}} \sin^{3} \theta \cos^{2} \theta d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \sin \theta (1 - \cos^{2} \theta) \cos \theta d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} (\cos^{2} \theta - \cos^{4} \theta) \sin \theta d\theta$$

Now, letting $u = \cos \theta$ we obtain

$$\int_{0}^{\frac{\pi}{2}} (\cos^{2}\theta - \cos^{4}\theta) \sin\theta \, d\theta = -\int_{1}^{0} u^{2} - u^{4} \, du$$

$$= \frac{1}{3}u^{3} - \frac{1}{5}u^{5} \Big|_{u=0}^{1}$$

$$= \frac{1}{3} - \frac{1}{5} = \frac{2}{15}.$$

Here is a table of trig substitutions:

Integrand	Substitution	Identity	
$\sqrt{a^2-x^2}$	$x = a\sin\theta$	$1 - \sin^2 \theta = \cos^2 \theta$	
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$	$1 + \tan^2 \theta = \sec^2 \theta$	
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$\sec^2\theta - 1 = \tan^2\theta$	

Integrals requiring trig substitution to solve turn up quite often in physics, especially electromagnetism.

Example. Consider $I = \int \frac{dx}{\sqrt{9+x^2}}$. Let $x = 3 \tan \theta$ so $dx = 3 \sec^2 \theta d\theta$ and:

$$I = \int \frac{3\sec^2\theta}{3\sqrt{1+\tan^2\theta}} d\theta = \int \sec\theta d\theta$$
$$= \ln(\sec\theta + \tan\theta) + C = \ln(\sec\tan^{-1}(x/3) + x/3) + C$$
$$= \ln\left(\sqrt{\left(\frac{x}{3}\right)^2 + 1} + \frac{x}{3}\right) + C.$$

Questions

- 1. Find the following integrals:
 - (a) $\int \frac{x^2-9}{x^3} \, dx$
 - (b) $\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}}$
 - (c) $\int_0^3 x^2 (9 x^2) dx$
 - (d) $\int_0^1 x \sqrt{1 x^4} \, dx$
 - (e) $\int_{\sqrt{2}}^{2} \frac{dx}{t^3 \sqrt{t^2 1}}$
 - $(f) \int \frac{\sqrt{25x^2 4}}{x} \, \mathrm{d}x$
- 2. Use the integral $2\int_r^{-r} \sqrt{r^2 x^2} \, dx$ to find the area of a circle of radius r.
- 3. Scholarship 2005: Find, in terms of r, the area between the ellipse $x^2 + 16(y r)^2 = r^2$ and the circle $x^2 + y^2 = r^2$. You may use the substitution $x = r \sin u$ to find the integral $\int \sqrt{r^2 x^2} \, dx$.
- 4. By integrating, verify that

$$\int_{0}^{x} \sqrt{a^{2} - t^{2}} dt = \frac{1}{2} a^{2} \sin^{-1} \left(\frac{x}{a}\right) + \frac{1}{2} x \sqrt{a^{2} - x^{2}}.$$

5. A charged rod of length L produces a electric field at the point (a, b) given by

$$E(a,b) = \int_{-a}^{L-a} \frac{\lambda b}{4\pi\varepsilon_0(x^2 + b^2)^{3/2}} dx.$$

Evaluate this integral to find an explicit expression for E(a, b).

6. One of these integrations should be done by partial fractions and one by trig substitution. Do them both.

$$\int \frac{dx}{(4x^2+9)^2} \qquad \int \frac{x^3}{x^2+x-6} \, dx$$

7. Check this working (the substitution $x = 3\sin\theta$ is used). Find any mistakes.

$$I = \int \frac{\sqrt{9 - x^2}}{x^2} dx = \int \frac{\cos^2 \theta}{\sin^2 \theta} d\theta$$
$$= \int \frac{1 - \sin^2 \theta}{\sin^2 \theta} d\theta = \int \csc^2 \theta - 1 d\theta$$
$$= -\cot \theta - \theta = -\cot \left(\sin^{-1}(x/3)\right) - \sin(x/3)$$
$$= \frac{\sqrt{9 - x^2}}{x} - \sin(x/3).$$

9. When writing this worksheet I went on the internet and found this. Find the mistake(s), and do the integral.

S

For trigonometric substitution to solve the above integral, fill in the blanks below using the picture of the triangle given.

side A=	5x				
side B=	6			±	
side C=	sqrt(36-2	5x^2)			
$\frac{5x}{6}$ $=$ ta	an(Q)				
U	1/cos(C))^2		$^{ m d}Q$)
√36-25 6	$\frac{5x^2}{}$	1/cos(Q)			
Submit A	Answer	Incorrect.	Tries 1/8 F	Previous 7	ries