WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

8)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT

(51) International Patent Classification 4:	A2	(11) International Publication Number:	WO 08/0097
C12N 15/00, G01N 33/569 A61K 39/04		(43) International Publication Date: 11 Feb	mary 1988 (11.02.88

(21) International Application Number:	PCT/US87/01825	(81) E

(22) International Filing Date: 28 July 1987 (28.07.87)

(31) Priority Application Number: 892,095

(32) Priority Date: 31 July 1986 (31.07.86)

(33) Priority Country: US

(71) Applicant: WHITEHEAD INSTITUTE FOR BIOM-EDICAL RESEARCH [US/US]; Nine Cambridge Center, Cambridge, MA 02142 (US).

(72) Inventor: YOUNG, Richard, A.; 11 Sussex Road, Winchester, MA 01890 (US).

(74) Agents: GRANAHAN, Patricia et al.; Hamilton, Brook, Smith & Reynolds, Two Militia Drive, Lexington, MA 02173 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), BR, CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), IP, LU (European patent), NL (European patent), SE (European patent).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: GENES ENCODING ANTIGENS OF M. LEPRAE

(57) Abstract

3

Genes encoding five immunodeterminant protein antigens of the leprosy parasite Mycobacterium leprae have been isolated. The gene encoding the M. leprae 65kD antigen was sequenced and a lambda gtll gene sublibrary was constructed with fragments of the gene. Recombinant DNA clones producing specific antigenic determinants were isolated using monoclonal antibodies and the sequences of their insert DNAs were determined with a rapid primer extension method. Amino acid sequences for six different epitopes of the M. leprae protein were elucidated. A peptide containing sequences for one of these epitopes, which is unique to M. leprae, was synthesized and shown to bind the appropriate monoclonal antibody. The approach described here can be used to elucidate rapidly protein epitopes that are recognized by antibodies or T cells. In addition, the well-characterized M. leprae antigens can be used in prevention, diagnosis and treatment of leprosy.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	ML	Mali
AU	Australia	GA	Gabon	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
BE	Belgium	HU	Hungary	NL	Netherlands
BG	Bulgaria	П.	Italy	NO	Norway
BJ	Benin	JP	Japan	RO	Romania
BR	Brazil	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic "		of Korea	SE	Sweden
ČĞ	Congo	KR	Republic of Korea	SN	Senegal
CH	Switzerland	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
DE	Germany, Federal Republic of	ĹÜ	Luxembourg	TG	Togo
DK	Denmark	MC	Monaco	US	United States of America
FT	Finland	MG	Madagascar		

Genes Encoding Antigens of M. leprae

Description

Background

Leprosy is a chronic infectious disease

5 afflicting millions of people worldwide. The overwhelming majority of leprosy cases occur in Third World countries. Approximately 3000 leprosy cases now exist in the United States and an average of 225 new cases are reported annually, almost all in recent immigrants from areas where leprosy is endemic.

The disease is caused by the obligate intracellular parasite Mycobacterium leprae (M. leprae), which is found in monocytes, macrophages, epithelial cells and, occasionally, peripheral nerve Schwann cells. The mechanism by which M. leprae is transmitted is as yet unknown and the time elapsing between infection with the organism and appearance of clinical symptoms can be as long as 10 years, during which time many others can unknowingly become infected.

Leprosy is a disease which presents a spectrum of diverse clinical and immunological manifestations. At one end of the spectrum are tuberculoid leprosy patients, who develop high levels of specific cell-mediated immunity, which ultimately kills and clears the bacilli in the tissues. Immunohistochemical studies have identified the predominant infiltrating lymphocytes as T4 helper cells. Peripheral nerve damage occurs concomitant with clearing of the bacilli in tuberculoid leprosy, and is thought to be immunologically mediated.

At the opposite end of the spectrum, lepromatous patients exhibit a selective unresponsiveness to antigens of M. leprae and the organisms often multiply to extraordinary numbers (e.g., 10¹⁰/cm² skin). Infiltrating lymphocytes are predominately of the T8 suppressor type. Peripheral nerve damage also occurs in lepromatous leprosy, although the mechanism of the damage is not clear. The majority of leprosy patients fall between these two extremes in the spectrum and are classified as borderline tuberculoid, borderline, or borderline lepromatous.

Because M. leprae attacks the nerve cells of the skin and peripheral nervous system, a loss of sensation and, in some cases, loss of control over muscles occurs in the extremities. As a result, leprosy victims often do not feel pain, and injuries to hands, arms, legs and feet are not noticed and

15

frequently go untreated. Such wounds become infected; formation of scar tissue and scabs follows. Repeated injury results in gradual deformation and destruction of tissues.

A method of detecting the disease at an early stage would make it possible to screen populations in areas where the disease is common and begin treatment at an early stage in those affected, thus preventing nerve damage and deformity in the affected individual and limiting its transmission to others. Such a method is not available and diagnosis is presently delayed until clinical signs of the disease appear. Treatment of leprosy patients is not highly successful, particularly because M. leprae is becoming resistant to dapsone, the most widely used anti-leprosy drug. As many as 50 percent of new leprosy patients in some Asian clinics have drug-resistant leprosy.

As with other intracellular parasites, protec-20 tive immunity against M. leprae is dependent on T cells and cell mediated immunity. Bloom, B.R. and T. Godal, Review of Infectious Diseases, 5:765-780 (1983). The human immune response to M. leprae has been shown to involve both T_4 and T_8 cells, which are thought to be involved in T cell help and T cell 25 suppression, respectively. Little is known about the importance of individual M. leprae antigens for immune protection and/or suppression. It has been shown that T_A cells from sensitized individuals are 30 stimulated in vitro by crude M. leprae protein

WO 88/00974 PCT/US87/01825

-4-

preparations containing five of the most abundant polypeptides in M. leprae (e.g., five protein antigens which are 65kD, 36kD, 23kD, 18kD and 12kD in molecular weight). In contrast, a pure phenolic glycolipid from M. leprae can activate human T₈ cells to suppress a mitogenic response in vitro. Mehra, V. et al., Nature, 308:194 (1984).

At present, there is insufficient knowledge of leprosy and the causative organism, particularly in terms of an understanding of the contribution of the components of M. leprae to protective immunity. In addition, effective, specific and reliable means of diagnosing, preventing and controlling the disease are unavailable.

15 Summary of the Invention

Genes encoding immunodominant protein antigens of the leprosy bacillus Mycobacterium leprae (M. leprae) have been isolated from a recombinant DNA expression library of M. leprae DNA. In particular, genes encoding the five most immunodominant protein antigens of the leprosy bacillus (i.e., those M. leprae proteins of molecular weight 65,000 daltons (65kD), 36kD, 28kD, 18kD and 12kD) have been isolated by probing a lambda gtll expression library of M. leprae DNA with monoclonal antibodies directed against M. leprae specific antigens. Recombinant DNA clones producing the specific antigenic determinants recongnized by the monoclonal antibodies were also isolated in this way and the sequences of

25

20

5

10

15

20

25

their insert DNAs were determined with a rapid primer extension method. Amino acid sequences for six different epitopes of the 65kD M. leprae protein were deduced. One of these epitopes is unique to M. leprae; a peptide having the amino acid sequence of this epitope was synthesized and shown to bind the appropriate monoclonal antibody.

As a result, well-characterized M. leprae antigens are available which are useful in the prevention, diagnosis and treatment of leprosy. They can be used, for example, in the development of highly specific serological tests for screening populations for individuals producing antibodies to M. leprae, in the development of vaccines against the disease and in the assessment of the efficacy of treatment of infected individuals.

Brief Description of the Drawings

Figure 1 illustrates the nucleotide sequence of clone Y3178 insert DNA containing the M. leprae 65kD antigen gene. The deduced amino acid sequence is shown above the nucleotide sequence. The epitope containing sequences are underlined.

Figure 2 illustrates arrays of antigen from \underline{M} . <u>leprae</u> recombinant DNA clones probed with individual monoclonal antibodies.

Figure 3 illustrates restriction maps of \underline{M} . leprae DNA.

Figure 4 illustrates the result of direct sequencing of lambda gtll recombinant M. leprae DNA.

Figure 5 is an epitope map of the M. leprae 65kD antigen. The horizontal line at the bottom represents the Y3178 insert DNA; the open box represents the 65kD antigen open reading frame. The thin horizontal lines represent the extents of insert DNA fragments from Y3178 subclones. The vertical shaded regions indicate the extent of each epitope coding sequence as defined by the minimum overlap among clones that produces a positive signal with an antibody. The insert end points and the antibody binding data for each DNA clone are tabulated at the right. — indicates that the nucleotide position was estimated from DNA fragment length data and * indicates that clone Y3211 contains a fragment of lambda gtll DNA inserted with the M. leprae DNA.

Detailed Description of the Invention

The invention described herein is based on the isolation of genes encoding protein antigens of the leprosy parasite <u>m. leprae</u>. In particular, it is based on the isolation, using monoclonal antibodies directed against <u>M. leprae</u> specific antigens, of genes encoding the five most immunodominant protein antigens of the leprosy bacillus. Immunodominant protein antigens are those antigens against which the immune system directs a significant portion of its response. Genes encoding <u>M. leprae</u> antigens of molecular weight 65,000 daltons (65kD), 36kD, 28kD, 18kD and 12kD were isolated in this manner.

The gene encoding the 65kD antigen of M. leprae

25

20

30

has been sequenced; its nucleotide sequence and the deduced amino acid sequence of the product it encodes are shown in Figure 1. A sublibrary was constructed with fragments of the gene encoding the 5 65 kD antigen. Using the recombinant DNA strategy described in detail below, expression of epitope-coding sequences by individual recombinant bacteriophage was detected, DNA clones of interest were isolated and their nucleotide sequences 10 determined. Using this approach, it has been possible to define epitopes encoded by the gene for the 65kD protein antigen of M. leprae. The same strategy can, of course, be used to define epitopes encoded by genes for other protein antigens of M. 15 leprae and to define other epitopes recognized by antibodies or T cells. The 65 kD antigen is immunologically relevant in other medically important mycobacteria (e.g., M. tuberculosis and

important mycobacteria (e.g., <u>M. tuberculosis</u> and BCG) as well as in <u>M. leprae</u> and contains at least six different epitopes, one of which has been shown to be unique to <u>M. leprae</u>. The other epitopes are shared with the 65kD proteins of other mycobacteria.

As a result of the work described herein, well-characterized M. leprae antigens are available and it is possible to address problems associated with the prevention, diagnosis and treatment of leprosy. For example, M. leprae specific antigenic determinants can be used to develop highly specific serological tests. Such tests are useful in screening populations (e.g., in areas of the world where

10

leprosy is endemic) for individuals producing antibodies to M. leprae-specific antigenic determinants; in monitoring the development of active disease in individuals and in assessing the efficacy of treatment. As a result, early diagnosis of leprosy will be feasible, making it possible to institute treatment in the early stages of the disease. This, in turn, makes it possible to reduce the likelihood of transmission of the organism from an infected individual (who previously would have remained an undiagnosed case for several years) and to limit the extent of deformity occurring in such an individual.

As a result of the work described, it is also possible to determine which segment(s) of the M. 15 leprae antigen is recognized by M. leprae specific T cells. A mixture of peptides recognized by helper T cells can then provide a specific skin test antigen useful in assessing the immunological status (delayed hypersensitivity) of infected individuals 20 and those with whom they come in contact. This specific skin test antigen is useful in evaluating rapidly the immunological efficacy of anti-leprosy vaccines being developed. Assessment of the protective efficacy of an anti-leprosy vaccine using 25 presently available methods is a lengthy process because of the very long incubation period of the disease. Specific skin tests for delayed hypersensitivity as described herein, however, allow relatively rapid preliminary evaluation of new 30 vaccines.

10

15

It is reasonable to expect that the products encoded by M. leprae genes, particularly those shown to be recognized by helper T cells, are themselves immunogenic and thus useful components of vaccines against leprosy. These products include proteins and portions of such proteins (e.g., polypeptides and peptides). For example, one approach to vaccine development is the introduction of genes encoding products which provide protection into recombinant vaccine vectors, such as vaccinia virus or bacteria (e.g., cultivatable mycobacteria), thus providing a vaccine capable of engendering long-lasting cellmediated immunity. The genes encoding five immunodeterminant protein antigens of the leprosy bacillus, described herein, are useful for that purpose; the gene encoding the 65kD antigen, or a portion of that gene, is particularly valuable in vaccine construction.

Isolation and characterization of genes encoding immunogenic protein antigens of M. leprae are
described below, as are uses of the genes and their
encoded products. The description which follows is
of the two-step process which was used. In the
first step, genes encoding five immunodeterminant
protein antigens of M. leprae were isolated from a
recombinant DNA expression library of M. leprae DNA.
In the second step, a recombinant DNA expression
strategy was used to deduce the amino acid sequences
of six different antigenic determinants in the 65kD
M. leprae protein.

- I. Isolation and Characterization of Genes Encoding Immunogenic Protein Antigens of M. leprae
 - A. Construction of a recombinant DNA expression library of M. leprae DNA
- À recombinant DNA expression library of M.

 leprae DNA was constructed using lambda gtll, a
 bacteriophage vector capable of driving the expression of foreign insert DNA with E. coli transcription and translation signals. Lambda gtll expresses the insert DNA as a fusion protein connected to the
- the insert DNA as a fusion protein connected to the E. coli Beta-galactosidase polypeptide. The fusion protein approach assures that the foreign sequence will be efficiently transcribed and translated in E. coli. To increase the likelihood that all possible
- foreign coding sequences would be expressed in E.

 coli, an approach previously used successfully in
 isolating M. tuberculosis genes was used. This
 approach is described by R.A. Young et al. in
 Proceedings of the National Academy of Sciences,
- 20 <u>U.S.A.</u>, <u>82</u>:2583-2587 (1985), the teachings of which are incorporated herein by reference.
 - M. leprae was purified from an armadillo that had been inoculated with bacillus from a single human patient. DNA was purified from the bacillus
- and was mechanically sheared to produce fragments 1-7 kilobases (kb) in size. EcoRI linkers were added to the ends of the DNA fragments to allow insertion at the unique EcoRI site of lambda gtll.
- heads and this material was used to infect <u>E. coli</u> cells. Huynh, <u>T. et al.</u>, in <u>DNA Cloning Techniques:</u> A <u>Practicing Approach</u>, (D. Glover, ed.) IRL, <u>Press</u>,

The ligated recombinant DNA was packaged into phage

10

15

20

25

30

Oxford, 49-78 (1985). The aim of this approach was to generate DNA fragments with random endpoints throughout the foreign genome and to produce recombinant phage in sufficient numbers that insert endpoints occurred at each base pair in the pathogen genome. This strategy should ensure that all coding sequences are inserted in the correct transcriptional orientation and translational frame to be expressed as a fusion protein with the Beta-galactosidase encoded in lambda gtl1.

The <u>M. leprae</u> DNA library constructed in this manner contained 2.5x10⁶ individual recombinant phage. This library was amplified in <u>E. coli</u> Y1088 by producing a plate stock whose titre was 2x10¹¹ PFU (plaque-forming units) ml⁻¹. The amplified library consisted of 25% recombinants whose foreign DNA insert lengths averaged 2 kb, as determined by DNA restriction endonuclease analysis of 25 independent phage clones. The <u>M. leprae</u> genome consists of approximately 10⁶ base pairs (bp), and, therefore, it is likely that this library comprehensively represents the DNA of the bacillus.

B. Isolation of recombinant DNA clones encoding M. leprae protein antigens

Monoclonal antibodies were produced in mice immunized with intact or crude extracts of armadillo-derived, purified M. leprae Ivanyi, J. et al., in Monoclonal Antibodies Against Bacteria (A.J.L. Macario and E.C. Macario) Academic Press (1984); Gillis, T.P. and T.M. Buchanan, Infection

and Immunity, 37:172 (1982); Coates, A.R.M. et al., Lancet, ii:167 (1981); Young, D.B. et al., Clinical Experiments in Immunology, 60:546-552 (1985); Engers, H. et al., Infection and Immunity, 48: 603-605 (1985). The sizes of the antigens to which the antibodies bind are shown in Table 1; all of the antibodies are IgG1.

Table 1 Monoclonal Antibodies Used to Isolate M. leprae Genes

10		М.	leprae
	Antibody	<u>Ar</u>	ntigen
	MLIIC8		65kD
	MLIIIC8		65kD
	Y1-2		65kD
15	MLIIH9		65kD
	MLIIIE9		65kD
-	C1-1		65kD
	ML-30		65kD
	F47 CL9.1		36kD
20	SA1.D2D		28kD
	SA1.B11H		28kD
	L7-15		18kD
	ML-06		12kD

The antibodies directed against the antigen of molecular weight 65,000 (65kD) were pooled at approximately 1:200 dilution and used to probe 10⁶ plaques (0.25x10⁶ recombinant plaques) according to protocols described previously. Young, R.A. et al., in Genetic Engineering: Principles and Techniques

(J. Setlow and A. Hollaender, ed.) 7:29-41, Plenum Press (1985); Young, R.A. et al., Proceedings of the National Academy of Sciences, U.S.A., 82:2583-2587 (1985). Seventeen plaques produced signals; 15 of these were successfully purified to homogeneity in one or two successive rescreens with the antibody pool.

Recombinant DNA clones isolated in this manner were then arrayed and probed with each of the monoclonal antibodies individually. Figure 2 shows the results obtained with six of the seven antibodies directed against the 65 kD antigen.

The recombinant DNA clones were probed with the monoclonal antibodies in the following manner. Drops containing about 10 4 PFU each of 15 cloned 15 lambda qtll recombinants were arrayed on lawns of E. coli Y1090. The phage were grown and the antigens blotted and probed with individual monoclonal antibodies at about 1:200 dilution. The monoclonal antibodies used were: a, MLIIC8; b, MLIIIC8; c, MLIIIE9; d, MLIIH9; e, Y1-2; and f, C1-1. The recombinant DNA clones are coded in section g of Figure 2: 1, Y3159; 2, Y3160; 3, Y3161; 4, Y3162; 5, Y3165; 6, Y3166; 7, Y3170; 8, Y3171; 9, Y3172; 10, Y3173; 11, Y3174; 12, Y3175; 13, Y3176; 14, Y3177; 25 15, Y3178; 16, lambda gtll (this phage plaque produced the background signal for each monoclonal antibody). All seven monoclonal antibodies, each directed against a different epitope, were capable of recognizing antigen produced in E. coli.

10

15

20

least four different signal patterns were observed in the array of clones. Antibodies MLIIC8, MLIIIC8 and MLIIE9 (Figure 2a, b- and c, respectively) produced three distinct patterns. A fourth pattern was generated by antibodies MLIIH9, Y1-2 and C1-1 (Figure 2d, e and f, respectively). Antibody ML-30, directed against an epitope shared with E. coli, produced strong signals with all clones, generating a poorly discernible pattern. There was considerable variation in the number of different epitopes produced by each clone, as evidenced by their reaction with different monoclonal antibodies. While some clones produced antigen that was recognized by only one antibody (for example, clone 13 in Figure 2), and one of the clones produced antigen recognized by all seven antibodies (clone 15), most clones produced antigen that was bound by some intermediate number of antibodies.

Recombinant DNA clones were also isolated and characterized with antibodies directed against the 36kD, 28kD, 18kD and 12kD antigens. Approximately 10⁶ lambda gtll plaques were screened with a pool of these monoclonal antibodies. Eleven plaques that produced signals were purified to homogeneity.

Clones were arrayed as in Figure 2 and probed with each of the individual antibodies that comprised the pool. The anti-36kD, 28kD, 18kD and 12kD antibodies produced signals with 1, 4, 4 and 2 recombinant clones, respectively.

C. Restriction mapping of isolated <u>M. leprae</u> DNA

The insert DNAs of all the recombinant DNA clones isolated using these monoclonal antibodies were mapped with restriction endonucleases. Lambda DNA was prepared from phage plate stocks according to previously described methods. Davis, R.W. et al., Advanced Bacterial Genetics, Cold Spring Harbor Laboratory (1980). Figure 3 shows the genomic DNA restriction maps deduced for genes encoding each of 10 the five antigens of interest and illustrates how each of the cloned DNAs aligns with that map. Figure 3, A represents SacI; B, BglII; E, EcoRI; H, HindfII; K, KpnI; M, BamHI; P, Pvul; S, SalI; and X, 15 XhoI. All clones isolated with monoclonal antibodies directed against any single antigen appear to align with a single genomic DNA segment. For example, the insert DNAs of the 12 recombinant clones isolated with the seven different anti-65kD 20 monoclonal antibodies overlap sufficiently to allow the construction of a unique genomic DNA restriction map with which all clones align unambiguously. result indicates that all the anti 65-kD antibodies recognize epitopes encoded in a single DNA locus, 25 presumably in a single gene. Similarly, the multiple clones isolated with the anti-28kD, 18kD or 12kD antibodies produced overlapping restriction maps.

One concern with the approach used here is that some recombinant clones may be isolated not because

they express the protein of interest, but because they express an unrelated polypeptide containing a similar or identical immunological determinant. However, when multiple recombinant DNA clones were isolated by using a single monoclonal antibody, all contained overlapping DNA; this suggests that each of the epitopes of interest is encoded by a single genomic DNA segment.

II. Determination of the amino acid sequence of specific antigenic determinants in M. leprae protein

An efficient recombinant DNA strategy was used to deduce the amino acid sequences that comprise specific antigenic determinants in M. leprae pro-15 tein. (Antigenic determinants, or epitopes, are the specific segments of antigens that are recognized by antibodies or T cells.) The strategy involves isolating a DNA clone that encodes the entire antigen of interest, determining its nucleotide sequence, and constructing a sublibrary containing 20 fragments of the gene with random end points in the bacteriophage expression vector lambda gtll. R.A. and R.W. Davis, Science, 222:778-782 (1983). The expression of epitope coding sequences by 25 individual recombinant bacteriophage is detected with monoclonal antibody probes and the appropriate DNA clones isolated. The precise nucleotide sequences of the cloned DNA fragments are determined by using primer-directed DNA sequence analysis. The

10

DNA sequence encoding the epitope is attributed to sequences that are shared by multiple antibody-positive recombinant clones.

The use of this approach to define epitopes encoded within the gene for the 65 kD protein antigen of Mycobacterium leprae is described below. However, it can be used in a similar manner to define epitopes encoded by other M. leprae genes and, more generally, to elucidate rapidly other protein epitopes that are recognized by antibodies or T cells.

There are several reasons for the selection of the 65kD antigen for detailed study. First, it is one of the major immunologically relevant proteins in a variety of medically important mycobacteria, 15 including Mycobacterium leprae, Mycobacterium tuberculosis and BCG. Gillis, T.P. and T.M. Buchanan, Infections and Immunity, 37:172-178 (1982); Gillis, T.P. et al., Infections and 20 Immunity, 49:371-377 (1985). Antibodies and T cells that recognize the 65 kD antigen can be detected in patients with leprosy or tuberculosis. Second, the antigen contains at least 6 different epitopes that can be distinguished with monoclonal antibodies in competitive inhibition radioimmunoassays. 25 H. et al., Infections and Immunity, 48:603-605 (1985). One of these epitopes is unique to M. leprae; the remainder are shared with the 65 kD proteins from a number of other mycobacteria.

The first step in this approach involved defining the M. leprae gene. A lambda gtll Mycobacterium leprae recombinant DNA expression library had been constructed and screened with a pool of monoclonal antibodies, as described above, to 5 isolate DNA clones that encode 6 different epitopes within the 65 kD antigen. These monoclonal antibodies, (listed in Table 1) are Cl.1, IIH9, IIIE9, IIC8, T2.3 and IIIC8; they are from murine hybridomas obtained by fusion of spleen cells of 10 mice immunized with intact or sonicated, armadilloderived M. leprae. Recombinant phage plaques that produced signals with these antibodies were purified to homogeneity and their insert DNAs mapped with restriction endonucleases. The recombinant clones 15 that were positive with the pooled antibodies were probed with each of the six monoclonal antibodies in order to identify a clone likely to contain the entire coding sequence for the 65 kD antigen. All of the recombinant phage from the first screen 20 produced signals with one or more antibodies; one (Y3178) produced signals with all six antibodies. The response of the clone designated Y3178 indicated that it contained DNA coding for all of the known 65kD epitopes and might therefore contain the entire 25 gene. The fact that all of the monoclonal antibodies used in this study could bind antigen produced by recombinant phage in E. coli prompted further investigation of the nature of the six epitopes in the 65 kD antigen. 30

A lambda gtll gene sublibrary was constructed using the 3.6 kb EcoRI insert DNA fragment of the lambda gtll clone Y3178. The DNA fragment was isolated by agarose gel electrophoresis and digested with DNaseI (1 ng DNaseI/10ug DNA/ml) in a buffer 5 containing 20 mM tris-HCl (pH 7.5), 1.5 mM MnCl, and 100 ug/ml BSA at 24°C for 10-30' to produce short random fragments. The DNA was fractionated on a 1% agarose gel and fragments of 250-1000 bp were 10 isolated and purified. These DNA fragments were end repaired by treatment with T4 DNA polymerase in the presence of dNTPs and then ligated to phosphorylated EcoRI linkers (Collaborative Genetics). material was digested with EcoRI, heat inactivated 15 at 70°C for 5', and fractionated on a Bio-Rad P60 column to remove unligated linkers. The linkered DNA fragments were further purified on an agarose gel from which they were eluted, phenol extracted and ethanol precipitated. The EcoRI-linkered DNA 20 fragments were ligated onto phosphatase-treated lambda gtll arms (Promega Biotec). The ligated DNA was packaged into lambda phage heads and the resultant recombinant phage were amplified on E. coli Y1090. The library was screened with individual 25 monoclonal antibodies and recombinant clones were isolated as described by Young and co-workers in Young, R.A. et al., Proceedings of the National Academy of Sciences, USA, 82:2583-1587 (1985), the teachings of which are incorporated herein by reference. 30

10

Sequence analysis of DNA from recombinant clone Y3178 was carried out. The DNA was prepared from CsCl purified phage plate stocks and was sequenced by the dideoxy termination method of Sanger et al. Huynh, T. et al., DNA Cloning Techniques: A Practical Approach, Vol. 1, (D. Glover, ed.) IRL Press, Oxford, 49-78 (1985); Sanger, F. et al., Journal of Molecular Biology, 143:161-178 (1980). The sequence of both DNA strands was determined and analyzed using the computer programs of Staden. Staden, R., Nucleic Acids Research, 10:4731 (1982).

Direct sequence analysis of DNA insert endpoints in lambda gtll was also carried out by the following methods. Recombinant DNA was isolated from phage purified by CsCl block gradient centrifu-15 gation. Huynh, T. et al., in: DNA Cloning Techoniues: A Practical Approach, Vol. 1: (D. Glover, ed.) IRL Press, Oxford, 49-78 (1985). (1-5 ug) was digested with the restriction 20 endonucleases KpnI and SacI, phenol extracted, ethanol precipitated and resuspended in 20 ul water. The DNA was denatured by adding 2 ul of 2M NaOH and 2mM EDTA; the resulting solution was incubated for 10 minutes at 37°C. The solution was neutralized 25 with 6.5 ul of 3M sodium acetate (pH 5.2), 6.5 ul water was added and the DNA was ethanol precipitated and resuspended in 10 ul water. To the DNA was added I ul of 10 ug.ml DNA primer and 1.5 ul sequencing buffer (75 mM tris HCl, pH 7.5, 75 mM

DTT, 50 mM MgCl₂). The DNA was incubated at 50°C for 15'. The two primers used (New England Biolabs) were complementary to lac2 sequences adjacent the EcoRI site in lambda gtll; the sequence of the "forward primer" was GGTGGCGACGACTCCTGGAGCCCG, that of the "reverse" primer was TTGACACCAGACCAACTGGTAATG. Primer extension and dideoxy termination reactions were performed immediately after the annealing step as described by Sanger et al. Sanger, F. et al., Journal of Molecular Biology, 143:161-178 (1980). The products were subjected to electrophoresis on an 8% polyacrylamide-8M urea gel.

The determination of the DNA sequence of the 3.6kb insert of clone Y3178 (Figure 1) permitted the 15 elucidation of the amino acid sequence of the 65kD antigen. In Figure 1, nucleotides are numbered from the left end of the Y3178 insert DNA. The deduced amino acid sequence is given above the nucleotide 20 sequence. The first translation initiation codon in the open reading frame is a GUG at nucleotide 66, which predicts a 61,856 dalton polypeptide. This is in good agreement with the estimated molecular weight of 65,000 daltons. The first AUG in the open 25 reading frame occurs at nucleotide 207; a polypeptide initiating at this position would have a molecular weight of 56,686 daltons. The antigen of interest appears on SDS polyacrylamide gels as a doublet migrating with an apparent molecular weight of approximately 55-65,000 daltons (55-65kD). Thus, 30

30

translation of the antigen may initiate at both the GUG and the AUG codons, producing the two polypeptides observed. The epitope-containing sequences are underlined.

The DNA sequence also indicates that the M. lebrae antigen is not expressed as a B-galactosidase fusion protein from the recombinant phage Y3178 in E. coli, suggesting that E. coli may correctly utilize the M. leprae transcription and translation start sites in this gene. 10

The epitope coding sequences within the 65kD antigen gene were also defined. They were mapped precisely by constructing and screening the lambda gtll gene sublibrary (described above) that contained small random DNA fragments from the 3.6 kb 15 Y3178 DNA insert. The aim in making the library was to produce recombinant phage in sufficient numbers to obtain DNA insert end points at each base pair in the 65 kD antigen gene, with the result that all possible overlapping segments of the coding sequence 20 were expressed. DNA fragments with random endpoints were generated by digestion of the Y3178 EcoRI insert fragment with DNase I as described above. DNA fragments of 250-1000 base pairs were inserted into lambda gtll arms, the recombinant DNA was 25 packaged into lambda phage heads and the material was plated on E. coli strain Y1090. A library of 10⁵ individual phage was obtained of which 98% contained foreign DNA.

The Y3178 sublibrary was screened with each of

WO 88/00974 PCT/US87/01825

Control of the Contro

-23-

the six monoclonal antibodies that were initially used to probe the lambda gtl1 M. leprae genomic DNA library. Approximately 500 recombinant plaques were screened and about 10 clones were isolated with each antibody using techniques described previously. Young , R.A. et al., Proceedings of the National Academy of Sciences, USA, 82:2583-2587 (1985). A total of 54 clones were purified to homogeneity.

The limits of the sequences that encode each epitope were defined by subjecting the recombinant 10 clones to three types of analysis. First, all of the clones were tested for their ability to express each of the six different epitopes. Second, the sequences of the DNA insert endpoints were determined for each clone. Single-stranded DNA 15 primers, complementary to lambda gtll DNA sequences on one side or the other of the EcoRI site, were hybridized to the recombinant phage DNAs and elongated with DNA polymerase using the dideoxy chain termination sequencing method of Sanger et al. 20 (Figure 4). Sequences of insert DNA endpoints were determined for 40 of the lambda gtll subclones. All but 2 of these recombinant DNA clones contained insert DNAs whose transcriptional orientations and translational frames predict inframe B-galactosidase 25 fusion proteins. The insert DNAs of clones Y3201 and Y3198 were oriented opposite the others, indicating that these foreign DNA fragments are expressed independent of lacZ gene expression signals.

5

WO 88/00974 PCT/US87/01825

-24-

Third, the recombinant subclones were characterized by restriction digests to ascertain whether they contained multiple inserts or rearranged insert DNA, either of which could complicate the interpretation of the data. DNA from each of the 5 clones was digested with the restriction endonuclease EcoRI and was subjected to agarose gel electrophoresis to determine the number and sizes of inserted DNA fragments. By this analysis, it was determined that 14 of the clones contained multiple 10 inserts. Of these, 11 were excluded from further study because the endpoints of each of their multiple inserts could not be determined precisely. All of the remaining subclones contained insert DNAs whose sequenced endpoints predict a DNA fragment length that agreed with the size determined by agarose gel electrophoresis. Thus, for a total of 29 individual subclones, the number and type of epitopes expressed could be correlated with the size and endpoint sequence of insert DNA (Figure 5). 20

The amino acid sequences containing the six epitopes of interest were deduced from the data in Figure 5 and are summarized in Figure 1. The circled letters in Figure 1 designate antigenic determinants for the monoclonal antibodies C1.1(A), MLIIH9(B), MLIIIE9(C), MLIIC8(D), T2.3(E) and MLIIC8,(F). The amino acid sequence containing an epitope is defined here as the minimum coding sequence shared by all subclones that produce positive signals with a particular antibody. Since

25

30

10

inants.

the epitope lies within the amino acid sequences shared by signal-producing clones, the definition of the boundaries of an epitope should improve as larger numbers of recombinant clones are analyzed. Each of the six epitopes investigated here was determined to lie within 13 to 35 amino acids. However, the minimum coding sequence will not necessarily fall within this range (e.g., it can be fewer than 13 amino acids or more than 35 amino acids).

Assessment of the Technique used to Elucidate Antigenic Determinants

One of the antigenic determinants elucidated with this approach, that recognized by the monoclonal antibody MLIIIE9, is unique to M. leprae. 15 Enger, H. et al., Infections and Immunology, 48:603-605 (1985). This 15 amino acid peptide was synthesized and tested by ELISA to determine whether it is bound by MLIIIE9. Of the six anti-65 kD antibodies tested, only MLITIE9 bound to this 20 peptide. Using ELISA plates coated with 20 ug/ml of BSA-conjugated peptide, the midpoint of the titration occurred at a 1 in 30,000 dilution of ascites. This makes it reasonable to conclude that the method described here allows accurate elucidation of the 25 amino acid sequences that comprise antigenic determ-

It was striking that all of the recombinant clones that contain coding sequences for an antigenic determinant express detectable levels of that determinant. The design of the lambda gtll system, coupling the expression of fusion protein with the use of <u>lon</u> protease-deficient host cells, may account in part for the ability to express all encoded epitopes at detectable levels. The particular monoclonal antibodies used here and the segmental epitopes that they recognize might also influence this result.

These results attest to the power of the 10 approach used here to detect and isolate specific antigen-coding sequences from lambda gtll recombinant DNA libraries. It is surprising that all but one of the 24 different anti-mycobacterial protein monoclonal antibodies assayed react with 15 antigen produced by lambda gtll recombinant DNA clones Young, R.A. et al., Proceedings of the National Academy of Sciences, USA, 82:2583-2587 (1985); Young R.A., et al., Nature, 316:450-452 (1985). The signal-producing antibodies bind to 23 20 different epitopes in 12 different M. leprae and M. tuberculosis proteins. All of these antibodies produce signals on nitrocellulose blots of mycobacterial proteins transferred from SDS polyacrylamide gels, suggesting that they recognize continuous antigenic determinants. Why the majority of monoclonal antibodies made against M. leprae proteins react with segmental determinants is unclear, but might reflect the presence of denatured protein in the mycobacterial antigen preparations used for immunizing or hybridoma screening. Alternatively, 30

segmental portions of mycobacterial polypeptides may be more abundant or immunogenic than assembled topographic sites.

served to delimit the six epitopes can be used to deduce antigenic determinants on the 65 kD molecule that are recognized by other antibodies or by T cell clones. A simple array permits rapid determination of the clones that produce polypeptides containing the appropriate antibody epitope. These recombinant clones can also be used to elucidate determinants to which T cells respond; E. coli lysates containing antigen expressed by lambda gtll recombinants can be used to assay antigen-specific T cell stimulation in vitro. Mustafa, A.S. et al., Nature, 319:63-66 (1986).

III. Implications for Leprosy

The availability of well characterized M.

leprae antigens make it possible to address basic

biochemical, immunological, diagnostic and therapuetic questions still unanswered about leprosy and

M. leprae. For example, M. leprae specific
antigenic determinants can be used to develop simple and specific seroepidemiological tests to screen

human populations (e.g., in areas where leprosy is endemic). The serological tests will be highly specific because of the use of an antigenic determinant known to be unique to M. leprae (i.e., that recognized by the MLIIIE9 monoclonal antibody).

25

30

For example, a serological test to detect the presence of antibody to M. leprae protein can make use of M. leprae protein or peptide (such as the unique antigenic determinant) immobilized on a solid phase to form an antigen-immunoadsorbent. immunoadsorbent is incubated with the sample to be tested. After an appropriate incubation period, the immunoadsorbent is separated from the sample and the presence of antibodies to the M. legrae protein or peptide determined. This can be done, for example, 10 by addition of labeled antibodies (e.g., enzyme labeled, radiaoactively labeled) to the mixture and determination of the amount of label associated with the immunoadsorbent. Particularly useful is the well known ELISA technique, in which the antigenic determinant unique to M. leprae can be used. Serological tests will make early diagnosis of leprosy feasible, thus permitting early treatment to reduce deformity of infected individuals and limiting transmission of the disease to others. 20 Resistance to leprosy is provided by cell-

mediated immunity. The strategy used herein to define antibody binding sites can be extended to determine which segments of the antigen are recognized by M. leprae-specific T cells. A mixture of peptides recognized by helper T cells can provide a specific skin test antigen for use in assessing the immunological status of patients and their contacts. A mixture of such peptides in a solution can be administered by injection under the skin. Such a reagent is useful in evaluating rapidly the immunological efficacy of candidate vaccines being

developed. Bloom, B.R. and Mehra, V., in: New Approaches to Vaccine Development (R. Bwell and G. Torrigiana, ed.), Schwabe & Co., pp 368-389 (1984). In addition, peptides recognized by M. lepraespecific T cells can be components of a vaccine against the disease.

A vaccine can be constructed by incorporating a gene encoding a protein or a peptide, such as an antigenic determinant, into an appropriate vector.

10 For example, the gene encoding the 65kD M. lebrae protein or a portion of the protein can be incorporated into a recombinant vector such as vaccinia virus or bacteria (e.g., cultivatable mycobacteria such as BCG) to produce a vaccine

15 capable of conferring long-lasting cell-mediated immunity on individuals to whom it is administered.

Equivalents

20

Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, many equivalents to the specific materials and components described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims.

CLAIMS

- 1. Isolated DNA encoding an immunodeterminant protein antigen of Mycobacterium leprae.
- 2. DNA of Claim 1 selected from the group consisting of DNA encoding <u>Mycobacterium leprae</u> protein antigens of molecular weight 65kD, 36kD, 28kD, 18kD and 12kD.
 - 3. Isolated DNA encoding an antigenic determinant of Mycobacterium leprae protein.
- 10 4. DNA of Claim 3 which encodes an antigenic determinant selected from the group consisting of antigenic determinants of Mycobacterium
 Leprae proteins of molecular weight 65kD, 36kD, 28kD, 18kD and 12kD.
- 15 5. Isolated DNA encoding an amino acid sequence of an antigenic determinant of Mycobacterium
 Lebrae protein, said protein having a molecular weight of approximately 65kD.
- 6. Isolated DNA of Claim 5 encoding an antigenic determinant unique to Mycobacterium leprae protein, said determinant being recognized by the monoclonal antibody MLIITE9.
 - 7. Isolated DNA having the nucleotide sequence of Figure 1 or a portion of said sequence.

- 8. A peptide encoded by DNA having the nucleotide sequence of Figure 1-or by a portion of said nucleotide sequence.
- 9. A peptide having the amino acid sequence of an antigenic determinant of Mycobacterium leprae protein, said antigenic determinant being unique to Mycobacterium leprae protein.
 - 10. A peptide of Claim 9 which has an amino acid sequence selected from the group consisting of:
- 10 a. NSLADAVKVTLGPKGRNVVLEKKWGAPTITNDGVS:
 - b. RNVAAGANPLGLKRGIEKAV;
 - c. ALDKLKLTGDEATGA;
 - d. GEYEDLLKAGVADP;
 - e. TRSALQNAASIAGLF; and
- f. ASDPTGGMGGMDF.
 - 11. A peptide encoded by a <u>Mycobacterium leprae</u> gene, said peptide being recognized by helper T cells.
- 12. A peptide encoded by the <u>Mycobacterium leprae</u>

 20 DNA insert of clone Y3178 or a portion of said

 DNA insert.
 - 13. A vaccine comprising DNA encoding <u>Mycobacterium</u> <u>leprae</u> protein in a recombinant vaccine vector capable of expressing said DNA.

- 14. A vaccine of Claim 13 in which the recombinant vaccine vector is vaccinia virus or cultivatable mycobacteria.
- 15. A vaccine of Claim 14 in which the DNA encodes
 the 65kD Mycobacterium leprae protein or a
 portion of said protein.
 - 16. A vaccine comprising DNA encoding an antigenic determinant unique to Mycobacterium leprae in cultivatable mycobacteria capable of expressing said DNA.
 - 17. A vaccine of Claim 15 in which the DNA encodes an antigenic determinant of Mycobacterium
 Lebrae which is recognized by the monoclonal antibody MLIIIE9.
- 15 18. A method of detecting antibody against

 Mycobacterium leprae in a biological fluid,
 comprising the steps of:
- a) incubating an immunoadsorbent comprising a solid phase to which is attached immunodeterminant Mycobacterium leprae protein with a sample of the biological fluid to be tested, under conditions which allow the anti-Mycobacterium leprae antibody in the sample to bind to the immunoadsorbent;
- 25 b) separating the immunoadsorbent from the sample; and

- c) determining if antibody is bound to the immunoadsorbent as an indication of anti-Mycobacterium leprae in the sample.
- 19. A method of Claim 18 in which the <u>Mycobacterium</u>
 5 <u>leprae</u> protein attached to the solid phase has
 a molecular weight of 65kD.
 - 20. A method of detecting antibody against

 Mycobacterium leprae in a biological fluid,
 comprising the steps of:
- a) incubating an immunoadsorbent comprising a solid phase to which is attached a peptide having the amino acid sequence of an antigenic determinant of Mycobacterium leprae protein with a sample of the biological fluid to be tested, under conditions which allow antibody against Mycobacterium leprae to bind to the immunoadsorbent;
 - b) separating the immunoadsorbent; and
- c) determining if antibody is bound to the immunoadsorbent as an indication of the presence of antibody against Mycobacterium leprae in the sample.
- 21. A method of Claim 20 in which the peptide has the amino acid sequence of an antigenic determinant which is unique to Mycobacterium leprae protein.

	22.	A me	thod of determining the amino acid sequence
		of a	n antigenic determinant of a protein
		anti	gen, comprising the steps of:
		a)	fragmenting DNA encoding said protein
5		~	antigen to produce random fragments;
		b)	inserting said DNA fragments into an
			appropriate expression vector;
		c)	cloning the expression vector containing
			said DNA fragments;
10		d)	isolating cloned vectors expressing DNA
			fragments encoding an antigenic determi-
			nant by screening said cloned vectors with
			monoclonal antibodies specific for the
		٠	antigenic determinant;
15		e)	determining the nucleotide sequence of the
			DNA fragments contained in said isolated
			cloned vectors;
•		f)	determining the amino acid sequence commor
			to said DNA fragments; and
20		g)	deducing the amino acid sequence encoded

by said common amino acid sequence.

FIG. 1

GAATTCUGGAATT	GCACTEGEST	TAGGGGAGIGC	TAAAAATGA	ICCIGGCÁCI	CGCGATCA
10	20	30	40	50	60
V P G	R D G	E T Q P	A S C	G R P	S R A
GCGAGTGCCAGGT	CGGGACGGTC	GAGACCCAGCCA	AGCAAGCTGT	GGTCGTCCG	TEGEGGG
		90			
		H G G C			
CACTGCACCCGG					
		150			180
		A H A K			
CCTAATCCGGAGG					
190	200	A) 210	220	230	240
		A S L A			
GTCGCGGCCTCGA					
250		270			
	., ., .				
		EKKW		· · · · · · · · · · · · · · · · · · ·	
GAAGGGGGGGAAG	GICGITÇTA	GAGAAGAAGTG	GGGTGCTCCC	ACGATCACE	AACGATG
GAAGGGGGGCAAG	GICGITCIAC 320	GAGAAGAAGTGO - 330	GGGTGCTCCC 340	ACGATCACE. 350	AACGATG 360
GAAGGGGGGCAAG 310 V S I A	320 A K E I	GAGAAGAAGTGO - 330 E L E C	GGGTGCTCCC 340 P Y E	ACGATCACE. 350 K I G	AACGATG 360 A E L
GAAGGGGEGEAAG 310 V S I A	320 A K E I	GAGAAGAAGTGO 330 E L E C	340 PYE	ACGATCACC 350 K I G GAAGATTGG	AACGATG 360 A E L
GAAGGGGEGEAAG 310 VSIA GCGTGTCCATCGG 370	320 A K E I CCAAGGAGATO 380	GAGAAGAAGTGO 330 E L E C CGAGCTGGAGGA 390	340 PYE ACCEGTACGA 400	ACGATCACE. 350 K I G GAAGATTGG	AACGATG 360 A E L CGCTGAGTT 420
GAAGGGGCGCAAG 310 V S I A GCGTGTCCATCGG 370 V K E V	320 A K E I CCAAGGAGATO 380 A K K	GAGAAGAAGTGO 330 E L E C CGAGCTGGAGGA 390 T D D V	340 PYE CCCGTACGA 400 A G D	ACGATCACC 350 K I G GAAGATTGGG 410 G T T	AACGATG 360 A E L CGCTGAGTT 420 T A T
GAAGGGGEGEAAG 310 V S I A GCGTGTECATCGG 370 V K E V GGTCAAGGAAGTG	320 A K E I CCAAGGAGATO 380 A K K CCCAAGAAAAA	GAGAAGAAGTGO 330 E L E C CGAGCTGGAGGA 390 T D D V ACAGATGACGTO	340 PYE CCCGTACGA 400 AGD CCCGGTGAT	ACGATCACE. 350 K I G GAAGATTGGG 410 G T T GGCACCACG.	AACGATG 360 A E L CGCTGAGTT 420 T A T ACGGCCA
GAAGGGGEGEAAG 310 V S I A GCGTGTECATCGG 370 V K E V GGTCAAGGAAGTG	320 A K E I CCAAGGAGATO 380 A K K CCCAAGAAAAA	GAGAAGAAGTGO 330 E L E C CGAGCTGGAGGA 390 T D D V ACAGATGACGTO	340 PYE CCCGTACGA 400 AGD CCCGGTGAT	ACGATCACE. 350 K I G GAAGATTGGG 410 G T T GGCACCACG.	AACGATG 360 A E L CGCTGAGTT 420 T A T ACGGCCA
GAAGGGGCGCAAG 310 V S I A GCGTGTCCATCGG 370 V K E V GGTCAAGGAAGTG 430 V L A	320 A K E I CCAAGGAGATO 380 A K K CGCCAAGAAGA 440 A L V	GAGAAGAAGTGO 330 E L E C CGAGCTGGAGGA 390 T D D V ACAGATGACGTO 450 K E G L	GGTGCTCCC 340 P Y E ACCCGTACGA 400 A G D CGCCGGTGAT 460 R N V	ACGATCACC. 350 K I G GAAGATTGGG 410 G T T GGCACCACG. 470 A A G	AACGATG 360 A E L CGCTGAGTT 420 T A T ACGGCCA 480 A N P
GAAGGGGEGEAAG 310 V S I A GCGTGTECATCGG 370 V K E V GGTCAAGGAAGTG	320 A K E I CCAAGGAGATO 380 A K K CGCCAAGAAGA 440 A L V	GAGAAGAAGTGO 330 E L E C CGAGCTGGAGGA 390 T D D V ACAGATGACGTO 450 K E G L CAAAGAGAGGGCCT	GGTGCTCCC 340 P Y E ACCCGTACGA 400 A G D CGCCGGTGAT 460 R N V	ACGATCACE. 350 K I G GAAGATTGGG 410 G T T GGCACCACG. 470 A A G	AACGATG 360 A E L CGCTGAGTT 420 T A T ACGGCCA 480 A N P
GAAGGGGCGCAAG 310 V S I A GCGTGTCCATCGG 370 V K E V GGTCAAGGAAGTG 430 V L A C CCGTGCTGGCCCA	320 A K E I CCAAGGAGATO 380 A K K CGCCAAGAAGA 440 A L V	GAGAAGAAGTGO 330 E L E C CGAGCTGGAGGA 390 T D D V ACAGATGACGTO 450 K E G L	GGTGCTCCC 340 P Y E ACCCGTACGA 400 A G D CGCCGGTGAT 460 R N V	ACGATCACC. 350 K I G GAAGATTGGG 410 G T T GGCACCACG. 470 A A G	AACGATG 360 A E L CGCTGAGTT 420 T A T ACGGCCA 480 A N P
GAAGGGGGGGCAAG 310 V S I A GCGTGTCCATCGG 370 V K E V GGTCAAGGAAGTG 430 V L A C CCGTGCTGGCCC 490 L G L K	320 A K E I CCAAGGAGATO 380 A K K CGCCAAGAAGA 440 A A L V AGGCATTGGTO 500 R G I	GAGAAGAAGTGG 330 E L E C CGAGCTGGAGGA 390 T D D V ACAGATGACGTG 450 K E G L CAAAGAGGGCCT	GGGTGCTCCC 340 P Y E ACCCGTACGA 400 A G D CGCCGGTGAT BR N V TACGCAACGT 520 D K V	ACGATCACCA 350 K I G GAAGATTGGG 410 G T T GGCACCACGA 470 A A G CGCGGCCGGGC 530 T E T	AACGATG 360 A E L CGCTGAGTT 420 T A T ACGGCCA 480 A N P CGCCAACCC 540 L L K
GAAGGGGCGCAAG 310 V S I A GCGTGTCCATCGG 370 V K E V GGTCAAGGAAGTG 430 V L A C CCGTGCTGGCCCA	320 A K E I CCAAGGAGATO 380 A K K CGCCAAGAAGA 440 A A L V AGGCATTGGTO 500 R G I	GAGAAGAAGTGG 330 E L E C CGAGCTGGAGGA 390 T D D V ACAGATGACGTG 450 K E G L CAAAGAGGGCCT	GGGTGCTCCC 340 P Y E ACCCGTACGA 400 A G D CGCCGGTGAT BR N V TACGCAACGT 520 D K V	ACGATCACCA 350 K I G GAAGATTGGG 410 G T T GGCACCACGA 470 A A G CGCGGCCGGGC 530 T E T	AACGATG 360 A E L CGCTGAGTT 420 T A T ACGGCCA 480 A N P CGCCAACCC 540 L L K

DAKEVETKEQ1	A A T A A I S A G
AGGACGCTAAGGAGGTCGAAACCAAGGAACAAATT	GCTGCCACTGCAGCGATTTCGGCGGG
610 620 `630	640 650 660
DQSIGDLIAEA	M D K V G N E G V
TGACCAGTCGATCGGTGATCTGATCGCCGAGGCG	ATGGACAAGGTTGGCAACGAGGGTG
	700 710 720
ITVEESHTFGL	PULELTEGHR
TTATCACCGTCGAGGAATCCAACACCTTCGGTCT	GCAGCTCGAGCTCACCGAGGGAATGCG
730 740 750	760 770 780
FDKGYISGYFV	TDAERQEAV
GTTCGACAAGGGCTACATTTCGGGCTACTTCGTC	ACCGACGCCGAGCGTCAGGAAGCTG
790 800 810	820 830 840
LEEPYILLVSS	KVSTVKDLL
TECTAGAGGAGECETACATECTTETGGTCAGETE	CAAAGTGTCTACCGTCAAGGACCTGCT
850 860 870	880 890 [.] 900
PLLEKVIQAGK	S L L I I A E D - V
GCCGCTGCTAGAGAAGGTCATCCAGGCCGGCAAG	
910 920 930	940 950 960
EGEALSTLVV	K I R G T F K S V
TEGAGGGTGAGGEGTTGTETACCETGGTEGTCAA	CAAGATCCGTGGCACTTTCAAGTCGGT
970 980 990	1000 1010 1020
AVKAPGFGDRR	KAHLQDHAI
GGCGGTCAAAGCTCCTGGCTTTGGTGACCGCCGC	CAAGGCAATGTTGCAAGACATGGCCA
1030 1040 1050	
	V G L T L E N T D L
TTETEACEGGAGEECAGGTEATEAGEGAGGAGGT	TEGGTETEACATTGGAGAACAEEGATET
1090 1100 1110	
S L L G K A R K V V H	TKDETTIVE
GTCATTGCTGGGCAAGGCCCGCAAGGTGGTTATC	GACCAAGGACGAAACCACCAT CGT CG
1150 1160 1170	1180 1190 1200

			V A O I	
	· ·			
		-		
GAACAGTGACTC	TGACTATGAC	CGCGAGAAACTGC	AGGAACGCETGG	CTAAGTTGGCCG
1270				
GTGGTGTTGCGG				
1330	1340	1350	1360	1370 1380
AGGGTGCCGGTGACACCGACGCCATCGCCGGGCGAGTGGCTCAGATCCGTACCGAGATCG 1210		GGATEGTEGEEG		
1390	1400	1410	1420 14	30 1440
G G V	TLLQ	A A POA	LDKL	KLTGD
GCGGCGGTGTGA	CTCTGCTACA	GCTGCTCCGC	TETGGACAAGET	GAAGETGACEGGTGA
1450	1460	1470	1480	1490 1500
EATG	AGGGTGCCGGTGACACCGACGCCATCGCCGGGCGAGTGGCTCAGATCCGAGATCGA 1210 1220 1230 1240 1250 1260 N S D S D Y D R E K L Q E R L A K L A G AACAGTGACTCTGACTATGACCGCGAGAAACTGCAGGAACGCCTGGCTAAGTTGGCCG 1270 1280 1290 1300 1310 1320 G V A V I K A G A A T E V E L K E R K H ATGGTGTTGCGGTGATCAAGGCCGGTGCTGCCACTGAGGTGGAGCCTCAAGGAGGCGCAAGCA 1330 1340 1350 1360 1370 1380 R I E D A V R N A K A A V E E G I V A G CCGCATCGAGGACGCAGTCCGCAAAGGCCGCGAAGGCGGGAGGGGGATCGTCGCCG 1390 1400 1410 1420 1430 1440 G G V T L L Q A A P A L D K L K L T G D CCGGGCGGTGTGACTCTGCTACAGGCTGCTCCGGCTCTGGACAAGCTGAACCTGACCGGTGA 1450 1460 1470 1480 1490 1500 E A T G A N I V K V A L E A P L K Q I A GAGGCGACCGGTGCCAATATTGTCAAGGTGGCGTTGGAAGCTCCGCTCAAGCAGATCG 1510 1520 1530 1540 1550 1560 F N S G M E P G V V A E K V R N L S V G CCTICAATTCCGGGATGAGCCCGGCGTGGTGGCCGAAAAGGTGCGTAACCTTTCAGTGGG 1570 1580 1590 1600 1610 1620 H G L N A A T G E Y E D L L K A G V A D			
CGAGGEGACEGG	IGCCAATATTO	GTCAAGGTGGCGT	TGGAAGCTCCGC	TCAAGCAGATCG
CGAGGEGACEGG 1510	IGCCAATATTO 1520	TCAAGGTGGCGT 1530	TGGAAGCTCCGC 1540 15	TCAAGCAGATCG 50 1560
CGAGGCGACCGG 1510 F N S	IGCCAATATIC 1520 G M E P	GTCAAGGTGGCGT 1530 G V V A	TGGAAGCTCCGC 1540 15 EKVR	TCAAGCAGATCG 50 1560 N L S V G
CGAGGCGACCGG 1510 F N S CCTTCAATTCCG	IGCCAATATIO 1520 G M E P GGATGGAGCE	STCAAGGTGGCGT 1530 G V V A CCGCCGTGGTGGC	TGGAAGCTCCGC 1540 15 E K V R CGAAAAGGTGCG	TCAAGCAGATCG 50 1560 N L S V G TAACCTTTCAGTGGG 1610 1620
N S D S D Y D R E K L Q E R L A K L A G				
F N S CCTTCAATTCCG 1570 H G L N	1520 G M E P GGATGGAGCC 1580 A A T	TCAAGGTGGCGT 1530 G V V A CCGGCGTGGTGGC 1590 G E Y E	TGGAAGCTCCGC 1540 15 E K V R CGAAAAGGTGCG - 1600 D t L K	TCAAGCAGATCG 50 1560 N L S V G TAACCTTTCAGTGGG 1610 1620 A G V A D
AGGGTGCCGGTGACACCGACGCCATCGCCGGGCGAGTGGCTCAGATCCGATCCGAGATCCATCC				
CGAGGCGACCGG 1510 F N S CCTTCAATTCCG 1570 H G L N TCACGGCCTGAA	IGCCAATATIO 1520 G M E P GGATGGAGCE 1580 A A T GGCCGCCACCO	TCAAGGTGGCGT 1530 G V V A CCGGCGTGGTGGC 1590 G E Y E GGTGAGTACGAGG 1650	TGGAAGCTCCGC 1540 15 E K V R CGAAAAGGTGCG 1600 D t L K GACCTGCTCAAGG	TCAAGCAGATCG 50 1560 N L S V G TAACCTTTCAGTGGG 1610 1620 A G V A D ECCGGCGTTGCCG 70 1680
CGAGGCGACCGG 1510 F N S CCTTCAATTCCG 1570 H G L N TCACGGCCTGAAT 1630 P V K	IGCCAATATIC 1520 G M E P GGATGGAGCC 1580 A A T CGCCGCCACCC 1640 V T R S	TICAAGGTGGCGT 1530 G V V A CCGGCGTGGTGGC 1590 G E Y E GGTGAGTACGAGG 1650 A L Q N	TGGAAGCTCCGC 1540 15 E K V R CGAAAAGGTGCG - 1600 D t L K GACCTGCTCAAGG 1660 16 A A S I	TCAAGCAGATCG 50 1560 N L S V G TAACCTTTCAGTGGG 1610 1620 A G V A D CCCGGCGTTGCCG 70 1680 A G L F L
F N S CCTTCAATTCCG 1570 H G L N TCACGGCCTGAAG 1630 P V K ACCCGGTGAAGG	1210 1220 1230 1240 1250 1260			TCAAGCAGATCG 50 1560 N L S V G TAACCTTTCAGTGGG 1610 1620 A G V A D CCGGCGTTGCCG 70 1680 A G L F L CGCCGGCCTGTTCCT
TEACGGCCTGAAGG 1510 F N S CCTTCAATTCCG 1570 H G L N TCACGGCCTGAAG 1630 P V K ACCCGGTGAAGG 1690	IGCCAATATIC 1520 G M E P GGATGGAGCC 1580 A A T CGCCGCCACCC 1640 V T R S TIACACGITC 1700	TICAAGGTGGCGT 1530 G V V A CGGCGTGGTGGC 1590 G E Y E GGTGAGTACGAGG 1650 A L Q N TGCGCTGCAGAAG	TGGAAGCTCEGC 1540 15 E K V R CGAAAAGGTGEG 1600 D t L K GACCTGCTCAAGG 1660 16 A A S I CGCAGCGTCCATG	TICAAGEAGATEG 50 1560 N L S V G TAACETTTCAGTGGG 1610 1620 A G V A D CCGGCGTTGCCG 70 1680 A G L F L CGCCGGCCTGTTCCT 1730 1740
TTE A	IGCCAATATIC 1520 G M E P GGATGGAGCC 1580 A A T GGCCGCCACCC V T R S TTACACGTTC 1700 V V A	TICAAGGTGGCGT 1530 G V V A CGGCGTGGTGGC 1590 G E Y E GGTGAGTACGAGG 1650 A L Q N TGCGCTGCAGAAG 1710 D K P E	TGGAAGCTCCGC 1540 15 E K V R CGAAAAGGTGCG 1600 D L L K GACCTGCTCAAGG 1660 16 A A S I CGCAGCGTCCATG	TCAAGCAGATCG 50 1560 N L S V G TAACCTTTCAGTGGG 1610 1620 A G V A D CCGGCGTTGCCG 170 1680 A G L F L CGCCGGCCTGTTCCT 1730 1740 PDA S D P
TEACGGCCTGAAGG 1510 F N S CCTTCAATTCCG 1570 H G L N TCACGGCCTGAAG 1630 P V K ACCCGGTGAAGG 1690	IGCCAATATIC 1520 G M E P GGATGGAGCC 1580 A A T GGCCGCCACCC V T R S TTACACGTTC 1700 V V A	TICAAGGTGGCGT 1530 G V V A CGGCGTGGTGGC 1590 G E Y E GGTGAGTACGAGG 1650 A L Q N TGCGCTGCAGAAG 1710 D K P E GACAAGCCGGAGA	TGGAAGCTCCGC 1540 15 E K V R CGAAAAGGTGCG 1600 D L L K GACCTGCTCAAGG 1660 16 A A S I CGCAGCGTCCATG	TCAAGCAGATCG 50 1560 N L S V G TAACCTTTCAGTGGG 1610 1620 A G V A D ECCGGCGTTGCCG 70 1680 A G L F L EGCCGGCCTGTTCCT 1730 1740 PDA S D P ECGGCGAGCGACC

	T	G	G	н	G	G	H	D	F						
CGA	CC	GGT	GGC	ATG	GGT	GGT	ATG	GAC	1101	GACGI	CCGGT	CATGA	ATGEAGE	STAGE	TACGIG
		18				820			1830		1840		1850		1860
GTC	TG	AAG	TGG	GGT	ACT	TCA	TCA	ACT	GAGT	AGEGG	cecece	AACT	GGACAA	TCGA	ATTA
		187				80			890	•	1900		1910		1920
				4 (8	444	ACA	כרר	ירהנ	:כבכנ	CCAAA	AAAAG	GAC	CGGGCT	CTTTC	TIGITC
میایا	(6)			AUA		940			1950		1960		1970		1980
		17	30			790 775	. – – t	-тт!	יתית: יתוח:	Toragi	GTGCAG	GAGE	GTGGGT	CGGAA	CGAC
110	יכני יי			ىا يا يا،			,001		2010		2020		2030		2040
		199	, U		عام 	000	7.5			רברה:		CGCT	GGAAGG	AGCGC	202222
ACI	لقا								2070		2080		2090		2100
		20)50 			2060					_	GGGT	GAAATG	GCTGT	TTTT
CCS	AC			IAG			.		2130		2140		2150		2160
		211	U 		21	20						GCAG		ATCCT	GTTGAC
GC	31	TTT	ATG/	CTU				<u>.</u>			2200		2210		2220
			170		_	2180			219				-		
GTO	II	TTC	CTC	TGT	TG	CGGC	GT	TTT	TGTT	GGTGG		GACI	GCCTGC		AIGA
		223				240			2250		2260		2270		2280
GG	CT	rcgi	GTO	CTI	TG	CGC	AG	TGG,	ACAC	GATTA	gcgcag	CGCA	CGTAAG	CATG	regatag
		22	290		2	2300)		231	0	2320	•	2330		2340
TG	36	raci	מכו	TTG	STC'	TAC	ATG	TTG	ATGA	TGCCA	GGGGCT	GGGG	ACCTGO	GCTG	TGCTG
		235				360			2370		2380		2390		2400
											1 CTTCT	T. C. C.			
AA	GG	CGA	TAT	CGA	TGC.	AGGI	2 61	<u> </u>					GCCGCG		
		. 2	410			2421	כ		243	0	2440		2450		2460
GT	TT:	TAG	TGT	GCA	TGT	CAT	GGC	CTI	GAG	TGTC	GCGTG	GTCA	ATGTGG	CCGCA	CCTGAA
		24	470			248	0		249	70	250	0	251	0	2520

EAGGCACGTEEE	CGTGCACGGTA	TAACTATTCG	CACCIGATGTI	ATCCCTTGC	ACCATTT
2530	2540	2550	2560	2570	2580
CTGCCGCTGGTAT	TCGGTGTCGGC	:פַפַכדדפדדפאַ	ACCGGCCCTCA	GCCAGCAAG	CAGGCATG
2590	2600	2610	2620	2630	2640
CCGCCGGGTGCAG	GCAGTATCGTG	TTAGTGAACA	STECATORATO	ATCCGGCCG	TCGGCGG
2650	2660	2670	2680	2690	2700
CACATACGGCAA	CCTTCTAGCGC	AGATEAACE	ACCCACACCCC	ACCAGCCCA	CCACAACA
2710	2720	2730	2740	2750	2760
CCACCACCCAAA	CCAAACCAGCA	AAAAATAACC.	ACCAAATGACO	CATCACGACG	ACGATAT
2770	2780	2790	2800	2810	2820
GGTGGGTGCGTT	CAGEGEGEAGA	TGCCCGCTGC	CCCCCCATAC	CAACCEGGT	TGGGATCA
2830	2840	2850	2860	2870	2880
ACGCTGTGTTGG	GCAGTAGCAGG	TTAGAGTAGG	CTGAGGCTAGG	GCAATCGCG	ACTGAGA
2890	2900	2910	2920	2930	2940
GATCTGGTGCCGG	GATEGGTTAAC	CGCATGCCGT	CTACGGTGAA	AAGATAGAC	GTTATTGA
2950	2960	2970	2980	2990	3000
CCGCGATGCTCT	AGTIGGTIGTG	TTTTTCCAGG	GCGGTGGTGG	CTATAGCTGC	CCGGGCG
3010	3020	3030	3040	3050	3060
TGTGTCGATCCT	GTTGATGACAC	aggggggggggggggggggggggggggggggggggggg	GECACTAATA	TGGCGTTGC	CAATAGEG
3070	3 08 0	3090	3100	3110	3120
TCTGGATCTCGC	CGATGAGTGGT	TECTTTCCTC	CACCCAGTGT	CATCGTGATC	GCAGTAC
3130	3140	3150	3160	3170	3180
CGGCTACCGGTGT	TTGGCCGCTGA	TTGATTGAAG	BAAAGGTTTC	AATGGATCG	SCAACGTC
3190	3200	3210	3220	3230	3240

GTCGATTC	CGTCGTCA	CGCAACAGGA	AACACTEGAE	TTTGTCACTT	TGTCGGTGGC	TCCG
32	50	3260 -	3270	3280	3290	3300
AATTGATT	CTTGACGT	CCCGGACCG1	CTGCATCGG	STAGTTTGTG	ATTTTECTGE	DIAAD
33		3320	3330	3340	3350	3360
CAGCACTA	CGTCGACC	AGGTGTTCGA	GCGAGTACGO	SCCTGGCGATO	GACCCGTCTT	TGGT
33	70	3380	3390	3400	3410	3420
GACATGTC	CGACCAGA	AATCAACGCAA	ACTACEGTTG	GCTTTGGCGT	TEGGEGTEGT	TGTTA.
343	30	3440	3450	3460	3470	3480
CGGCACGT	ACTTGGG	TGCCACCACCI	GETEATTICE	TEGGETTEGG	TGAGTGGCCA	TCGTT
34	90	3500	3510	3520	3530	3540
TGCACTGA	GCCGGTG	CTGCTCAGCG	CAGACAGACC	ATCACGACGT	GGCCCAGCAC	CGTGT
35	50	3560	3570	3580	3590	3600
GCAGGTCG	AATTC					
36	10					

7/11

FIG. 2

FIG.3

55 K	, ikb.	
		Y3159 Y3160 Y3161 Y3162 Y3176 Y3177 Y3165 Y3166 Y3170 Y3172 Y3174 Y3178
36K		
28K	Y3158	
18K	Y3179 Y3181 Y3182 Y3183	
12K	73184 73191 73191 73191	·

FIG.4

FIG. 5

FIG. 5 (CC	NT'D)
------------	-------

•								∞ -
				611	豆	2 2		$\tilde{\Omega}$
ne	=	~	-	MLIII19	ML111E9	MLIIC8	(1)	MLÍHC8
Clone	Start	End	CI-1	ML	M	M	T2.3	Ξ
	01				_	_	•	
Y3194	2	733	+ .~	+	٠ ــ	-	_	_
Y3225	55	12	+	_	_	_	-	-
	37	418						
Y3203	47	622	+	+	_	-	_	_
Y3223	56	367	+	-	_	-	-	-
Y3196	68	725	+	+	-	-	_	_
¥3233	89	576	+	+	-	-	_	_
Y3199	135	-740	+	+	-	_	-	***
Y3201	1014	162	+ -	+	-	-	_	-
Y3198	1170	163	+	+	-	-	-	_
Y3202	227	743	+	÷	_			_
Y3222	251	631	+	+	_	-	-	-
Y3243	263	803	+	+	. –	-	-	
Y3246	503	875	_	+	-	-	_	-
Y3244	514	-820	-	+	-	-	-	
	-2830	3203						
Y3218	882	2008	-	-	+	+	+	+
Y3211	-1070*	1517	÷.	_	+	-	-	-
Y3219	1202	1525	_		+	-	_	-
Y3234	-1280	1785	-	-	+	+	+	-
Y3240	1286	1775	_		+	+	+	-
Y3237	1300	1884	_	-	+	+	+	+
Y3217	- 1369	1352	_	-	+	-	-	-
	1363	1591		÷				
Y3206	1400	1690	-	-	+	, +	-	-
Y3210	1473	1739	_	-	+	+	+	_
Y3186	1548	1711	_	-	-	+	-	_
Y3185	1575	1684	-	-	- '	+	′	-
Y3189	1644	1850	-	-	-	+	+	+
Y3187	1677	1868	-	***	-		+	÷
Y3239	1694	1783	_	***		_	+	-
	3511	3603						
Y3192	1790	1853	_	-	-	-	-	+
Y3178	1	3613	+	+	+.	+	+	+

- 3

	14.7				₹% % .		AL, THE			EN.	24 15	1 2.0		3+ ·	
	*		- 24 - 24	× .	**		* 4				7			ď.,	
	, 19				<i>A</i>		,					*		4	
								= -							
		1 .		•										•	
				. "						-			٠,		
					•							•			
													٠		
															•
					7.						٠	•			
															,
ŧ.		. *		•	٠.		•	_							
					,							-			
					00.7	•									
													•		
			>=:-												٠.
								ř							
					•										
								•		•					
															*.
					÷-										
			1°						,	-					
			ν,												
									:						
						•	•					· .			
			T		•							· ·			
			*												
		-			٠.										
			*												
											•	•			
	•0														٠.
				-											
										5	-				
			•										-		
												•			**
	1.												,		
															The second second

									•	•					