

SimFair: Physics-Guided Fairness-Aware Learning with Simulation Model

Zhihao Wang¹, Yiqun Xie^{1*}, Zhili Li¹, Xiaowei Jia², Zhe Jiang³, Aolin Jia¹, Shuo Xu¹

¹University of Maryland, ²University of Pittsburgh, ³University of Florida

{zhwang1, xie, lizhili}@umd.edu, xiaowei@pitt.edu, zhe.jiang@ufl.edu, {aolin, shuoxu98}@umd.edu

Societal Importance of Spatial Fairness

A glimpse of spatial fairness:

	Spat	ially Fair			Spatially Biased			
Overall Accuracy:	80%				80%			
Accuracy by location:	80%	80%	80%			100%	100%	100%
	80%	80%	80%			100%	40%	40%

- If left unattended, spatial bias may cause unfair distribution of resources, social division, spatial disparity in sustainability.
- Energy Budget: Temperature estimation
 - Risk of unfair temperature estimation...
 - Risk of unfair heat energy projections...
- Agriculture: Crop monitoring
 - Machine learning based crop mapping
 - G20's GEOGLAM, NASA Harvest, ... Risk of unfair distribution of subsidies...
- Natural disasters: Flood mapping
 - Risk of unfair distribution of resources...
 - Risk of unfair estimation of insurance rates...

•

Problem Definition

- Inputs
 - X: Input features.
- Outputs
- Y_{pred} : fairer predictions.
- Objectives
 - Prediction performance
 - RMSE, ...
 - Transfer Fairness to test

Training region *D* Test region D'**Prediction** Prediction Transfer **Fairness** No Truth Truth

Challenges

- Test groups are **not prefixed** and can be **highly dynamic**.
 - Difficult to transfer learning objectives from train to test.
- No truth available in test regions.

• Train • Test 1 • Test 2 • Test 3 • Not used Distribution of U.S. Climate Reference Network

Global distribution of rainfall stations Scientific Report, 2017

Contributions

- A Dual-fairness consistency to improve fairness to new locations by reducing the gap between simulations and predictions.
- An inverse-modeling design to align the physics-based simulation with the learning objectives for embedding physical laws.
- Physical-rule-based constraints to improve prediction performance.

SimFair Framework

Dual-Fairness Consistency

- Goal: to make predictions closer to truth given simulations.
- How: learn triplet relationships to have better initial conditions for predictions.

Inverse Modeling

A bijector-based invertible network F_{M} .

• Forward path: learn **prior physical knowledge** in **M**.

Inverse path: output target y. A physical model **M**. $x_0 = M(y, x_1, x_2, x_3, x_4)$

Experiment Results

 $\mathbf{y}, x_1, x_2, x_3, x_4 = \mathbf{F}_{\mathbf{M}}^{-1}(x_0)$

Spatial distributions of temperature data:

•Train •Test1 •Test2 • West • East • Alaska • Cold • Warm • Hot

•Test3 •Not used

Results:

	Model	RMSE	Corr.	Fairness	RMSE	Corr	: Fairness	RMSE	Corr.	Fairness	
	BaseNet	6.75	0.83	4.49 (±0.81)	27.56	0.34	13.65 (±2.48)	52.03	0.19	44.42 (±3.37)	
	Sim	6.45	0.86	4.69 (±0.82)	20.33	0.44	,	43.74	0.29	38.84 (±5.69)	
	SimPhy	7.19	0.84	5.56 (±0.4)	17.78	0.48	,	45.52	0.29	38.84 (±3.4)	
FNN	RegFair	7.22	0.8	4.97 (±0.69)	25.35	0.37		38.5	0.06	29.73 (±6.78)	
臣	Self-Reg	6.35	0.84	4.27 (±0.7)	31.97	0.31		38.01	0.06	28.95 (±4.15)	
	SimFair	3.07	0.97	2.04 (±0.19)	3.11	0.96		6.23	0.84	4.25 (±0.78)	
	SimFair-P	2.88	0.97	1.89 (±0.06)	3.13	0.96		6.29	0.81	4.45 (±0.51)	
	BaseNet	4.22	0.93	2.66 (±0.14)	4.02	0.97	,	11.93	0.8	5.14 (±0.31)	
	Sim	3.89	0.95	2.43 (±0.15)	3.3	0.97		13.32	0.85	5.25 (±0.49)	
1	SimPhy	4.46	0.95	2.69 (±0.17)	3.23	0.97		12.27	0.88	4.82 (±0.28)	
STM	RegFair	4.17	0.94	2.66 (±0.22)	4.03	0.96		12.16	0.81	5.03(±0.4)	
S	Self-Reg	4.10	0.94	2.57 (±0.26)	3.85	0.96		11.24	0.84	4.68(±0.41)	
	SimFair	3.46	0.96	2.21 (±0.11)	3.22	0.98		11.05	0.86	4.55(±0.27)	
	SimFair-P	3.35	0.96	$2.12(\pm 0.11)$	3.24	0.97	1.99 (±0.17)	10.52	0.89	4.15(±0.23)	
	Proposed Methods Pred. Quality Fairness										
150	0 BaseNe	BaseNet	Temperat	/	Temperature						
Fair=4.5 Fair=4.2 100 Fair=10.8 Fair=10.9 Fair=10.9 Sim by Fair=10.9 Fair=10.9 RMSE=5.84 Corr=0.92 RMSE=3.07 Corr=0.97							-0.4				
50 0 SimFair SimFair SimFair SimFair SimFair P 280 Corr=0.92											
								9 280 <u>3</u>		8000	
Fred 100	0 Fair=3.	Fair=6.7	6.2	260		260					
占 50	o	·		200							
0 10 20 30 0 10 20 30 0 0 20 40 0 20 40 Absolute err. Absolute err. Absolute err.							240	200 220	240 260 280 300 320 Test		
							240 260 280 Test	300 320			
	(a) AT2 8/4	(b) AT2 4/8 1	(a) X, Y data swap approx. (b) $\mathcal{F}_{\mathcal{M}}^{-1}$: inverse approx.								
	` '	` /									
Temporal splits.						Inver modeling.					
		_									

Conclusions

SimFair: a simulation-guided fairness-aware learning

- transfer fairness to the regions without truth;
- inversely model simulations to align learning objectives;
- softly regularize predictions using physical constraints.

Future: expand to more knowledge- or rule-based models with various domain tasks for fairness-aware learning.

Acknowledgements

