Roteiro - Unidade I

- Introdução às redes de computadores
 - Modelos de camadas OSI e TCP/IP
- Interligação de redes
 - Comutação de circuitos e de pacotes
 - Meios físicos de transmissão
 - Equipamentos e topologias de rede
- Comunicação de dados
 - Modelos de comunicação
 - Controle de acesso ao meio de comunicação
 - Técnicas de correção e detecção de erros

- Classificadas de acordo com o modo em que os computadores e outros componentes da rede estão conectados entre si
- Seja qual for a topologia utilizada, é preciso que exista sempre um caminho (meio físico) ligando cada equipamento aos demais equipamentos da rede
- Tipos de topologia:
 - Barramento (bus)
 - Anel (ring)
 - Estrela (star)
 - Árvore (tree ou hierarchical)
 - Malha (mesh)
 - Híbrida

Barramento

- Topologia linear
- Todos os elementos da rede são ligados em um mesmo barramento físico de dados
- O sinal gerado por um host propaga-se ao longo do barramento em todas as direções
- Utilizado na Ethernet clássica (coaxiais e BNCs)
 - Apenas uma máquina pode "escrever" por vez (half-duplex)

Barramento

- Vantagens:
 - Barato e de fácil implementação
 - Requer menos cabeamento, pois é utilizado um "tronco" comum para todos os dispositivos
 - Não necessita de utilizar nenhum equipamento de rede adicional para interligar os dispositivos (apenas conectores)
- Desvantagens:
 - A rede se corrompe ao remover um ou mais dispositivos
 - Uma quebra no barramento irá parar o acesso à rede (será segmentada)
 - Dificuldade para encontrar e solucionar problemas de comunicação

Anel

- A rede forma um circuito fechado (anel), onde cada dispositivo possui uma conexão ponto a ponto dedicada com os outros dois dispositivos conectados de cada lado (adjacentes)
- Um sinal percorre todo o anel em um sentido, de dispositivo para dispositivo, até atingir seu destino
- Cada dispositivo no anel atua como um repetidor
 - Quando um dispositivo recebe um sinal destinado a outro dispositivo, regenera os bits e os passa adiante

• Topologia comumente utilizada no método de transmissão por passagem de ficha (token

ring)

Anel

- Vantagens:
 - Falhas em cabos são facilmente localizadas
 - Facilidade na implementação/instalação
- Desvantagens:
 - Expansão da rede requer interrupção da comunicação
 - Uma única quebra em um cabo para toda a rede

Estrela

- Cada dispositivo tem um link ponto a ponto dedicado ligado a um controlador central
 - Um controlador central é comumente chamado de concentrador (hub ou switch)
 - O concentrador tem como função retransmitir/encaminhar os quadros para todos ou alguns dispositivos
- É a topologia mais comumumente utilizada em redes locais
- Aplica-se a redes de pequeno e médio porte (em termos de quantidade de dispostivos)

Estrela

- Vantagens:
 - Facilmente expansível sem interrupção da rede, pois os novos dispositivos são ligados ao concentrador e desta forma não interferirão no funcionamento da rede
 - Falhas em cabos afetam um único dispositivo
 - Fácil diagnosticar e solucionar problemas de comunicação
- Desvantagens:
 - Requer mais cabeamento que uma topologia em barramento ou anel, pois cada dispositivo tem um cabo dedicado
 - Um equipamento concentrador (central) resulta em um único ponto de falha, ou seja, caso o hub ou switch pare de funcionar, todos os dispositivos a ele ligados deixarão de se comunicar

Árvore

- Topologia hierárquica, com uma raiz como entidade principal
 - Combinação de múltiplas topologias em estrela ligadas à raiz
 - Múltiplos concentradores
 - A raiz da árvore pode ser um hub/switch ou roteador
- Comum em redes de grande porte (em termos de quantidade de dispositivos)

Árvore

- Vantagens:
 - Não concentra a possibilidade de falhas em um único ponto
 - Mais expansível que estrela (limitada pelo número de portas)
 - Melhor administração em grandes redes, devido a sua arquitetura hierárquica
- Desvatangens:
 - Requer mais cabeamento
 - Maior dificuldade de implementação

- Malha (ou mesh)
 - A topologia em malha pode ser:
 - Totalmente conectada
 - Rede totalmente interconectada, onde cada dispositivo possui uma conexão física dedicada com cada outro dispositivo
 - Parcialmente conectada
 - Rede parcialmente conectada, onde existem apenas algumas conexões físicas entre os dispositivos
 - Deve existir pelo menos um caminho de comunicação possível entre todos os dispositivos
 - Livremente hierárquica
 - Não existe um concentrador principal

Malha parcialmente conectada

Malha (exemplos)

Malha

- Vantagens:
 - Provê redundância de caminhos entre dispositivos
 - A rede pode ser expandida sem interrupção dos serviços
- Desvantagens:
 - Requer mais cabeamento
 - Implementação/gerenciamento mais complexo
 - Grande número de conexões, especialmente no caso de malha totalmente conectada (# de placas de rede = # computadores na rede-1)

Híbrida

- Rede que interliga diferentes topologias
 - Exemplo: um anel interligado a uma estrela por um barramento
- Topologia mais utilizada em redes de grande porte
- Uma topologia em malha pode ser considerada como híbrida

- Nas redes sem fio, existem dois tipo particulares de topologias:
 - Ad hoc (ou sem infraestrutura)
 - Infraestruturada

- Ad hoc (ou sem infraestrutura)
 - Não há uma entidade central para controlar a comunicação
 - Os dispositivos se associam entre si para formar a rede
 - Todos os dispositivos que estiverem no raio de alcance podem se comunicar
 - Similar a uma topologia em malha (sem fio)

- Ad hoc (ou sem infraestrutura)
 - Vantagens:
 - Provê redundância de caminhos entre dispositivos
 - A rede pode ser facilmente expandida
 - Implementação simples
 - Baixo custo de implementação
 - Desvantagens:
 - Controle de acesso ao meio descentralizado
 - Problemas de segurança
 - Taxa de transmissão reduzida
 - Alcance reduzido
 - Problemas de escalabilidade em redes com muitos dispositivos

Infraestruturada

- Existe uma entidade central que controla o acesso ao meio de comunicação
 - Geralmente um roteador ou ponto de acesso (AP)
- A comunicação entre dispositivos ocorre sempre passando pela entidade central
- Dispositivos se associam à entidade central
- Similar a uma topologia em estrela

Infraestruturada

- Vantagens:
 - Rede escalável
 - Mais segura e estável que uma rede ad hoc
- Desvantagens:
 - Todo o tráfego é "canalizado" para a entidade central, caracterizando um único ponto de falha
 - Topologia mais cara de implementar

- As redes são classificadas de acordo com a área geográfica que abrangem:
 - Redes Pessoais PAN (Personal Area Network)
 - Redes de curto alcance e de poucos dispositivos
 - Redes Locais LAN (Local Area Network)
 - Redes domésticas, empresariais com dezenas a centenas de dispositivos
 - Redes Metropolitanas MAN (Metropolitan Area Network)
 - Redes que longo alcance que abragem uma ou mais cidades
 - Redes de Longa Distância WAN (Wide Area Network)
 - Redes de longa distância e área de abrangência (a Internet)

- Redes Pessoais PAN (Personal Area Network)
 - Interconecta dispositivos de curto alcance
 - Paradigma mestre-escravo
 - Exemplos:
 - IrDA
 - Dispositivos Bluetooth
 - Dispositivos ZigBee

- Redes Locais LAN (Local Area Network)
 - Abrangem o espaço de uma sala e até de um prédio
 - Escritórios, residências, pequenas escolas ...
 - É o tipo mais comum de rede
 - Projeto e gerenciamento facilitado
 - Também sem fio: WLAN (Wireless LANs)

- Redes Metropolitanas MAN (Metropolitan Area Network)
 - Abrangem uma cidade ou mais cidades
 - Exemplos:
 - WiMAX (IEEE 802.16)
 - TV a cabo

- Redes de Longa Distância WAN (Wide Area Network)
 - Redes de longa distância e grande abrangência
 - Abrangem uma área maior que apenas uma cidade
 - Também chamadas de redes geograficamente distribuídas
 - Conjunto de várias LANs e MANs
 - Exemplos:
 - A Internet

• Resumo

Exercícios de fixação

- 1. Por que a topologia em barramento caiu em desuso?
- 2. Por que a topologia em estrela é mais utilizada em redes locais?
- 3. Uma topologia estrela pode interligar redes de nível 3 diferentes?
- 4. A topologia em árvore pode ser vista como várias estrelas interligadas a uma mesma raiz?
- 5. Qual a vantagem da topologia em árvore em relação à topologia em estrela?
- 6. É necessário utilizar concentradores em uma topologia em anel?
- 7. Uma topologia híbrida pode ser considerada como uma topologia malha?
- 8. Qual a principal diferença entre uma topologia em malha e em árvore?
- 9. Qual a diferença entre a topologia infraestruturada e a estrela?