

BREATHING SATTELITE

PARTICLE COLLECTION FOR AIR ENGINE IN SATELLITE

Team #38

Very Low Earth Orbit (VLEO) — most commercially viable orbit

Physical Parameters	Model Predictions		
Orbital altitude (km)	200	400	800
Satellite Mass (kg)	24,4	194,8	1558,6

PROELEM STATEMENT

Short Lifespar of Satellites in Very Low Earth Orbit (150 250 km) because of Lel limitation

Forecasted Number of satellites in 2017-2026

OUR SOLUTION: ACTIVE PARTICLE COLLECTOR FOR SATELLITE ENGINE

Active system
 collection of air particles
 thrust generation to overcome the drag

COMPETITORS

There is no ready solution with use atmospheric air as fuel

European Space Agency Project

Japan Aerospace Exploration Agency

The Super Low Altitude Test Satellite "TSUBAME"

Design life	~ 2 years	
Altitude	180 to 270 km	

BUSINESS CASE

Manufacturing Cost for particle collector

Cost vs Altitude for Fixed Resolution & Coverage

SOLUTION details

What is Air Breathing Electric Propulsion?

Fight Direction Atmosphere Solar Panel Power Supply Solar Panel Intake Flow Direction **Our Focus**

Scientific Validation

Active Intake Possibility to Active Intake reach 40 K RpM using Magnetic Suspension

Magnetic Suspension in Space

Engineering Validation

Operational number density of conventional 10 cm HET

END USER FEEDBACK

"...you'd have unlimited force available. ... it has the potential to revolutionize the space industry"

Stefano Antonetti

Technical Team Lead Sfantonetti@gmail.com

"It`s a great option as you don't need to carry any fuel "

Anatoliy Kopik

Project Manager & Marketing Director
Anatoliy.Kopik@sputnix.ru

TsAGI100

"Active intakes are usually heavy and not feasible, ...your solutions looks like a great idea "

"You can use our launch platform, We will send your working prototype to Space!

LONG TERM PLAN

Salman Ali Thepdawala

Space Engineering

Ekaterina Trofimova

Data Science Economics

Alexey Bunkov

Electronics
Quantum and Photonics

Lev Popyvanov

3d printing Prototype Designe

Liliya Mironova

Advanced Manufacturing Technologies Computer Science

Iurii Lebedev

Records Manager

Appendix 1. Density dependence on Altitude

Appendix 2. Parameters

Altitude: 206 km

GSR = 100 cm

Geometry:

Diameter: 0.5 m

Length = 1.46 m

Solar Arrays Area = 1.9 m²

Body Drag = $3.77 \, \text{mN} \, (\text{Cd} = 2.87)$

Solar Panel Drag = 1.65 mN (Cd = 19.1)

Overall Drag = 5.42 mN

Available Thrust = 6.9 mN