Dependências Funcionais e Normalização

MC536/MC526 Profs. Anderson Rocha e André Santanché

Qualidade do Projeto Lógico

- Como avaliar a qualidade do esquema da relação?
 - Semântica
 - Implementação/desempenho
- Análise informal:
 - Princípios para um bom projeto
- Análise formal:
 - Dependência funcional
 - Normalização

Qualidade do Projeto Lógico ...

- Análise Informal (princípios):
 - Semântica de atributos
 - Redução de redundância em tuplas:
 - prevenção de anomalias de inserção
 - prevenção de anomalias de remoção
 - prevenção de anomalias de alteração
 - Redução de valores nulos
 - Prevenção de geração de tuplas espúrias (ilegítimas)

Exemplo:

- **Emp_Dept**={Nome, <u>CPF</u>, DataNasc, End, Dnum, Dnome, DGerCPF}
 - Combina informações de tipos diferentes de entidades
 - Problema semântico
 - Redundância em relação às informações armazenadas
 - Dados do departamento (Dnome e DGerCPF)
 - Inserção
 - Para inserir um empregado, é necessário cadastrar informações sobre o departamento (ou nulls)
 - Tais informações podem gerar dados inconsistentes sobre o departamento

Exemplo...

- **Emp_Dept**={Nome, <u>CPF</u>, DataNasc, End, Dnum, Dnome, DGerCPF}
 - Exclusão:
 - Apagar um empregado pode significar apagar as informações do departamento
 - Atualização:
 - Mudar o valor de um atributo de uma tupla de Emp_Dept pode implicar em ter de alterar outros valores correspondentes
 - Ex.: mudar Dnum
 - Valores null:
 - Se muitos atributos não se aplicarem a muitas tuplas da relação, poderemos desperdiçar espaço de armazenamento. Ex:
 - Incluir no escritório na relação "empregados", sendo que somente 10% destes possuem de fato um escritório

Qualidade do Projeto Lógico ...

- Análise Formal:
 - Dependências Funcionais:
 - Restrições entre atributos:
 - · Avaliação da qualidade dos esquemas de relação
 - Garantia de consistência da base de dados

Dependência Funcional (DF)

- É uma restrição entre dois subconjuntos de atributos (A e B) de R, sendo denotada por A → B
- Especifica uma restrição nas possíveis tuplas de R(R):
 - Se $\mathbf{t}_i[\mathbf{A}] = \mathbf{t}_j[\mathbf{A}]$ então $\mathbf{t}_i[\mathbf{B}] = \mathbf{t}_j[\mathbf{B}]$ para quaisquer i, j
- Neste caso diz-se que A determina funcionalmente B (ou alternativamente que B depende funcionalmente de A)
- Alguns exemplos:
 - $\{\#UFF\} \rightarrow \{Nome, Idade, Curso\}$
 - \circ {Sigla, Sala, Hora} \rightarrow {CódigoTurma, Professor}
 - Sigla} → {NomeDisciplina, NCréditos}

Notação Diagramática para DF

Dependência Funcional (DF) ...

- Propriedade semântica, identificada pelo projetista da(o) BDs
- Pode ser verificada na instância do BDs mas não é definida a partir dela
 - Exemplo: Seja a relação Alunos = {Nome, Curso, Idade} e um de seus possíveis estados:

```
{
     <Mario, Comp., 21>,
     <Paulo, Eng. Prod. 22>,
     <Almir, Enf., 22>,
     <Marta, Comp., 21>,
     <Vânia, Eletr., 22>
}
```

Dependência Funcional ...

- A relação Alunos atende às seguintes
 DFs?
 - \circ Nome \rightarrow Curso
 - \circ Nome \rightarrow Idade
 - \circ Curso \rightarrow Idade
 - \circ Idade \rightarrow Curso

Alunos:

```
<Mario, Comp., 21>,
<Paulo, Eng. Prod. 22>,
<Almir, Enf., 22>,
<Marta, Comp., 21>,
<Vânia, Eletr., 22>
```

Exercícios

- Dada a relação Cliente (n_cliente, nome, endereço), as seguintes dependências são corretas?
 - n_cliente → nome;
 - n_cliente → endereço;
 - o nome → endereço;
 - o endereço → nome.
- Dada a seguinte relação, deseja-se saber se as dependências listadas são verdadeiras:

nro_pedido	nro_peça	qtidade_ comprada	preço_cotado
101	P0 I	3	30,00
101	P02	4	70,00
102	P0 I	8	80,00
102	P02	3	20,00

- nro_pedido → qtidade_comprada;
- nro_peça → qtidade_comprada;
- nro_pedido → preço_cotado;
- nro_peça → preço_cotado;
- {nro_pedido, nro_peça} → qtidade_comprada;
- {nro_pedido, nro_peça} → preço_cotado;
- $\{nro_pedido, nro_peça\} \rightarrow \{qtidade_comprada, preço_cotado\}.$

Dependência Funcional ...

- Controle de consistência:
 - Necessário conhecer todas as dependências funcionais
 - informação semântica fornecida pelo projetista
 - Algumas dependências funcionais (DFs)
 podem ser inferidas a partir de DFs
 existentes ⇒ regras de inferência

Dependência Funcional ...

- Regras de Inferência de DFs:
 - Reflexiva: se $B \subseteq A \Rightarrow A \rightarrow B$ (**DF trivial**)
 - Aumentativa: se $A \rightarrow B \Rightarrow AC \rightarrow BC$
 - Decomposição: se $A \rightarrow BC \Rightarrow A \rightarrow B, A \rightarrow C$
 - Aditiva: se $A \rightarrow B, A \rightarrow C \Rightarrow A \rightarrow BC$
 - Transitiva: se $A \rightarrow B$, $B \rightarrow C \Rightarrow A \rightarrow C$
 - Pseudo-Transitiva: se A \rightarrow B, BC \rightarrow D \Rightarrow AC \rightarrow D

Observação: AB representa {A,B}.

Controlando a consistência

- Na construção de um SGBD baseado no modelo relacional:
 - Definição das relações baseada na análise de DFs;
 - Formas normais;
 - Uma relação está em uma determinada forma normal quando satisfaz certas propriedades baseadas nas DFs;
 - Colocar uma relação em uma forma normal
 - ⇒ Normalização.

Normalização

- Normalização de Relações:
 - Baseada nas DFs;
 - Garante consistência na construção do sistema:
 - redução de anomalias.
 - redução de redundância;
 - Formas Normais (FNs) baseadas em DFs:
 - baseadas em chave primária: 2a FN, 3a FN;
 - baseadas em chaves candidatas: FN de Boyce-Codd (FNBC ou, em Inglês, BCNF).
 - FN baseada em dependências multivaloradas:
 - 4a FN.

Definições iniciais

- Dados os conjuntos de atributos X e Y, e um atributo A ∈ X :
 - X → Y é dependência funcional parcial se (X {A}) → Y
 - X → Y é dependência funcional total se (X {A}) → Y
 - $X \rightarrow Y$ é dependência funcional trivial se $Y \subseteq X$
 - $X \rightarrow Y$ é dependência funcional transitiva se existe $X \rightarrow Z$ e $Z \rightarrow Y$, e Z não é parte da chave primária
- Atributo primário: atributo que faz parte de alguma chave candidata em $\mathcal R$

la Forma Normal (IFN)

- Restá na IFN se:
 - o todo valor em R for atômico
 - Rnão contém grupos de repetição
- Considerações:
 - $^{\circ}$ geralmente considerada parte da definição de $\mathcal{R}_{.}$
 - não permite atributos multivalorados, compostos ou suas combinações

Atributos Multivalorados e Compostos (lembrete)

- Atributos multivalorados:
 - cor do carro
 - título acadêmico, etc
- Atributos compostos:
 - endereço {rua, número, ap.}, etc
- IFN não permite tais atributos, nem suas combinações

IFN...

Exemplo

• cliente (nro_cli, nome, {end_entrega})

nro_cli	nome	end_entrega
124	João dos Santos	Rua 10, 1024 Rua 24, 1356
311	José Ferreira Neves	Rua 46, I 344 Rua 98, 4456

Métodos para corrigir o problema

• Método I:

- gerar uma nova relação contendo o grupo de repetição e a chave primária da relação original
- determinar a chave primária da nova relação:
 - {chave primária da relação original, chave para o grupo de repetição};
- abordagem mais genérica e que não causa redundância

Métodos para corrigir o problema...

- Método 2:
 - remover o grupo de repetição
 - expandir a chave primária
 - abordagem que causa redundância
- Método 3:
 - substituir o grupo de repetição pelo número máximo de valores estabelecido para o grupo
 - abordagem menos genérica e que pode introduzir muitos valores null

Métodos para corrigir o problema...

- Voltando ao caso em estudo:
 - cliente (nro_cli, nome, {end_entrega})
- Corrigindo o problema ...
 - Solução I:
 - cliente_nome (<u>nro_cli</u>, nome);
 - cliente_entrega (nro_cli, rua, numero).
 - Solução 2:
 - cliente (<u>nro_cli</u>, nome, <u>rua</u>, <u>numero</u>).
 - Solução 3:
 - cliente (nro cli, nome, rua I, numero I, rua 2, numero 2).

Outros exemplos

- Aluno = {Nome, Idade, DataNasc., DataMatricula}
- Aluno = {Nome, Idade, DiaN, MesN, AnoN, DiaM, MesM, AnoM}
- Aluno = {<u>NUFF</u>, Idade, Disciplinas}

```
Aluno = {<u>NUFF</u>, Idade}

Disciplinas = {<u>NUFF</u>, Disciplina}
```

Exercício

- Considere a relação emp_proj (nro_emp, nome_emp, { projeto (nro_proj, nome_proj)}).
 Como normalizá-la para a IFN?
 - { } indica que o atributo projeto é multivalorado;
 - {projeto ()} indica os atributos componentes do atributo multivalorado projeto.

2ª Forma Normal (2FN)

- **Definição:** O esquema de relação \mathcal{R} está na 2FN se todo atributo não primário* A em \mathcal{R} tem dependência funcional total da chave primária de \mathcal{R}
 - IFN;
 - $X \rightarrow A$ é dependência funcional total se $(X \{B\})$ funcionalmente A para qualquer atributo $B \in X$.
 - "Teste para 2FN": verificar se atributos do lado esquerdo das DFs fazem parte da chave primária. Exemplos:
 - Pedido (<u>nro-pedido</u>, data, <u>nro-peça</u>, descrição, qtdade_comprada, preço_cotado)
 - nro-pedido \rightarrow data
 - nro-peça \rightarrow descrição
 - $\{nro-pedido, nro-peça\} \rightarrow \{qtdade_comprada, preço_cotado\}$
 - Obs: Caso XY e XZ forem chaves candidatas, Y pode determinar Z...

^{*} Atributo é dito primário se é membro de uma chave candidata

- Para corrigir o problema:
 - Para cada sub-conjunto de atributos da chave primária, gerar uma relação com esse sub-conjunto como sua chave primária;
 - Incluir os atributos da relação original na relação correspondente à chave primária apropriada:
 - colocar cada atributo junto com a coleção mínima da qual ele depende, atribuindo um nome a cada relação.
- Levando em conta nosso exemplo anterior:
 - Pedido (<u>nro-pedido</u>, data, <u>nro-peça</u>, descrição, qtdade_comprada, preço_cotado)
 - pedido (<u>nro-pedido</u>, data)
 - peça (nro_peça, descrição)
 - pedido_peça (<u>nro_pedido</u>, <u>nro_peça</u>, qtdade_comprada, preço_cotado)

- Outro exemplo:
 - DFs identificadas pelo desenvolvedor:
 - {Professor, Sigla} \rightarrow LivroTexto;
 - {NúmeroT, Sigla} \rightarrow Sala;
 - Sigla \rightarrow No.Horas;
 - LivroTexto → LivroExerc.
 - Ministra={Professor, Sigla, LivroTexto, LivroExerc}
 - Está na 2FN, mesmo que LivroTexto \rightarrow LivroExerc.
 - Turma={NúmeroT, Sigla, Sala, No.Horas}
 - Viola a 2FN, pois Sigla \rightarrow No. Horas.

- Corrigindo o problema para atender à 2FN:
 - Turma={NúmeroT, Sigla, Sala, No.Horas};
 - {NumeroT, Sigla} \rightarrow Sala;
 - Sigla \rightarrow No.Horas;
 - Então:
 - Turma = {NumeroT, Sigla, Sala};
 - Disciplina = $\{Sigla, No.Horas\}$.

• 2FN evita:

- Inconsistência e anomalias causadas por redundância de informação;
- Perda de informação em operações de remoção/alteração na relação.

3ª Forma Normal (3FN)

- **Definição.** R está na 3FN se:
 - i. Está na 2FN;
 - ii. Nenhum atributo não primário de R for transitivamente dependente da chave primária.
- Dependência transitiva:
 - Dependência transitiva X→Y em Racontece se:
 - i. $X \rightarrow Z e Z \rightarrow Y e$;
 - ii. \mathbf{Z} não for chave candidata nem subconjunto de qualquer chave de \mathcal{R}

- Em outras palavras, todos os atributos não primários devem possuir dependência total, não transitiva, da chave primária.
- Se X → Y é não transitiva, então não pode haver no conjunto de DFs: X → Z e Z → Y.
- Exemplo:
 - cliente (nro-cliente, nome-cliente, end-cliente, nro- nrovendedor, nome-vendedor)
 - nro-vendedor → nome_vendedor.

- Corrigindo o problema:
 - Para cada determinante que não é uma chave candidata, remover da relação os atributos que dependem desse determinante
 - Criar uma nova relação contendo todos os atributos da relação original que dependem desse determinante
 - Tornar o determinante a chave primária da nova relação
 - Levando em conta nosso exemplo anterior:
 - cliente (<u>nro-cliente</u>, nome-cliente, end-cliente, nro-vendedor, nomevendedor):
 - cliente (<u>nro-cliente</u>, nome-cliente, end-cliente, nro-vendedor),
 - vendedor (<u>nro-vendedor</u>, nome-vendedor).

Chave estrangeira

- Assim como a 2FN, a 3FN evita:
 - Inconsistência e anomalias causadas por redundância de informações;
 - Perda de informação em operações de remoção/alterações na relação.

Definições Gerais de 2FN e 3FN

- Definição de IFN não é diretamente dependente o conceitos de chaves e de DFs;
- 2FN e 3FN discutidas até agora desaprovam somente dependências parciais e transitivas em relação à chave primária;
- Definições gerais levam em conta todas as chaves candidatas de uma relação.

Definição geral de 2FN

- \Re está na 2FN se cada atributo não primário de \Re não for parcialmente dependente de nenhuma chave em \Re .
- Alternativamente: R está na 2FN se todo atributo não primário A de R possuir dependência funcional total de cada chave do esquema R.

Definição geral de 3FN

- Um esquema de relação R está na 3FN se para cada dependência funcional X → A, X é uma superchave de R ou A é um atributo primário de R.
- Alternativamente, um esquema de relação R está na 3FN se todo atributo não primário apresentar ambas as seguintes condições:
 - Ter dependência funcional total para todas as chaves (2FN);
 - Não ser transitivamente dependente de nenhuma chave.
- Ilustrando as definições gerais de 2FN e 3FN:

Exercícios

- Nos exercícios seguintes, normalize as relações de forma que todas as relações resultantes estejam na forma normal mais restrita. Considere a IFN, a 2FN e a 3FN. Para cada FN:
 - Se necessário, identifique quais as dependências funcionais que se aplicam sobre R;
 - Identifique e justifique se R encontra-se ou não na forma normal em questão; e
 - Caso R sendo analisada não se encontre na forma normal em questão, normalize-a, especificando as relações originadas.

Exercício I

- vendedor (nro_vend, nome_vend, {cliente (nro_cli, nome_cli)})
 - As seguintes dependências funcionais devem ser garantidas na normalização:
 - nro_vend → nome_vend;
 - nro_cli → nome_cli.
 - Observação: considere que um vendedor pode atender diversos clientes, e um cliente pode ser atendido por diversos vendedores.

Exercício 2

- aluno (nro_aluno, cod_depto, nome_depto, sigla_depto, cod_orient, nome_orient, fone_orient, cod_curso)
 - As seguintes dependências funcionais devem ser garantidas na normalização:
 - cod_depto → {nome_depto, sigla_depto};
 - cod_orient → {nome_orient, fone_orient};
 - nro_aluno → {cod_depto, cod_orient, cod_curso};
 - Observações adicionais:
 - um aluno somente pode estar associado a um departamento;
 - um aluno cursa apenas um único curso;
 - um aluno somente pode ser orientado por um único orientador.

Exercício 3

- aluno (nro_aluno, nome_aluno, {curso (nro_curso, descrição_curso, ano_ingresso, nro_depto, nome_depto)})
 - As seguintes dependências funcionais devem ser garantidas na normalização:
 - nro aluno \rightarrow nome aluno;
 - nro_curso → descrição_curso;
 - nro_depto → nome_depto;
 - $\{nro_aluno, nro_curso\} \rightarrow ano_ingresso;$
 - nro_curso → nro_depto.
 - Observações adicionais:
 - um aluno pode cursar mais do que um curso;
 - um curso somente pode ser oferecido por um único departamento.

Forma Normal de Boyce-Codd (FNBC)

- Definição. R está na FNBC se para cada dependência funcional X → A, X é uma superchave de R
- Diferença entre FNBC e 3FN:
 - 3FN permite A primário não se aplica à FNBC
 - Se \Re está na FNBC $\rightarrow \Re$ está na 3FN
 - Se $\mathcal R$ está na 3FN, não necessariamente $\mathcal R$ está na FNBC.
- Na prática, a maioria dos esquemas de relação que está na 3FN também está na FNBC.

Re-visitando exemplo anterior (lotes):

- Lotes1A{<u>num_id_propriedade</u>, município_nome, num_lote, area}
- Lotes1B{<u>area</u>, preço}
 - Supor haver milhares de lotes de 2 municípios (x e y)
 - x: área [0,1] e y: área (1,2]
 - Atende 3FN, mesmo com a nova DF:
 - área → município_nome./* município_nome é primário */
 - Nova tabela com áreas e número do município economizaria espaço
 - FNBC

Normalizando pela FNBC ...

- Lotes1AX{<u>num_id_propriedade</u>, área, num_lote}
- Lotes1AY{<u>área</u>, município_nome}
- Lotes1B{<u>área</u>, preço}
 - Decompor relações
 - Reunir Lotes I AY e Lotes I B causaria um desperdício de espaço de armazenamento, pois a maioria das tuplas desta relação possuiria somente dois valores para município_nome, a saber: x e y

Outro exemplo de FNBC ...

- R (aluno, curso, instrutor)
- DFs:
 - $\{aluno, curso\} \rightarrow instrutor;$
 - instrutor \rightarrow curso.
 - essa dependência, que representa que cada instrutor ministra um curso, é uma restrição particular da aplicação
 - "instrutor" não é superchave. Logo essa DF viola FNBC

FNBC ...

- Solução I:
 - aluno_instrutor (aluno, instrutor)
 - aluno_curso (aluno, curso)
- Solução 2:
 - instrutor_curso (instrutor, curso)
 - aluno_curso (aluno, curso)
- Solução 3:
 - instrutor_curso (instrutor, curso)
 - aluno_instrutor (aluno, instrutor)

Melhor solução: não gera tuplas ilegítimas

Considerações sobre DFs e Normalização...

- Normalização:
 - uma relação por vez;
 - FN de uma relação
 - forma normal mais restrita atendida;
 - Decompor relações, criando outras relações;
- Propriedades desejáveis:
 - decomposição sem perda de junção (sem geração de tuplas ilegítimas);
 - decomposição com preservação de dependências.
 - aumenta consistência, mas reduz desempenho (junções).

Dependência Multivalorada e Normalização

- DF: mecanismo formal para definição de restrições e garantia de consistência em bases de dados relacionais
- Entretanto, algumas restrições não podem ser especificadas com DFs
 - Exemplo: informação sobre empregados de uma empresa {nome do empregado, projetos, dependentes}
 - Semanticamente:
 - um conjunto de valores de projeto é determinado por um valor de nome, e somente por nome
 - projeto e dependente não têm relação alguma

Dependência Multivalorada ...

- Dependência Multivalorada (DM): restrição entre dois conjuntos de atributos
- A multidetermina B (ou B é multidependente de A)
 - conjunto de valores de **B** é determinado pelo valor de **A**, e somente pelo valor de **A**
 - Exemplo para Empregado={Nome, Projeto, Dependente}:
 - Carlos trabalha no projeto Museu Virtual e tem dois dependentes: Mário e Joana
 - Ana trabalha nos projetos Museu Virtual e Cidadania, e tem dois dependentes: Paulo e Sônia
 - Como armazenar os dados na relação Empregado de maneira a manter a semântica?

Dependência Multivalorada

Dependência Multivalorada ...

- Ocorrem quando atributos multivalorados são desmembrados em múltiplas ocorrências de tuplas por causa da IFN
- Identificadas pelo projetista da base de dados
- Problemas:
 - Redundância nas tuplas;
 - Como garantir consistência?
 - Exemplo:
 - Empregado={Nome, Projeto, Dependente}
 - Está na FNBC, mas ainda vulnerável a inconsistências....

4ª Forma Normal (4FN)

- Um esquema de relação está na 4FN se:
 - todas as DMs são triviais ou;
 - para cada DM não-trivial $\bf A$ ->>> $\bf B$, $\bf A$ é uma superchave em $\mathcal R$
 - Exemplos:
 - Empregado={Nome, Projeto}
 - Nome -» Projeto (trivial)
 - Empregado={Nome, Projeto, Dependente}
 - Nome -» Projeto
 - Nome -» Dependente

4a Forma Normal (4FN) ...

Colocando a relação na 4FN....

```
Nome -» Projeto
Nome -» Dependente
```

Empregado={Nome, Projeto, Dependente}

Dependentes = $\{Nome, Dependente\}$

 $Projetos = {Nome, Projeto}$

4a Forma Normal (4FN) ...

Outro exemplo:

```
Professor = {Nome, Programa, Orientado}
```

Nome -» Programa

Nome -» Orientado

```
Programa = \{ \underline{Nome, Programa} \}
```

Orientação = {Nome, Orientado}

4a Forma Normal (4FN) ...

- Evita redundância nas tuplas
 - evita inconsistências causadas por inclusão/remoção/alteração de tuplas;
- Normalização é importante quando atributos multivalorados independentes são misturados na mesma relação:
 - Reduz espaço de armazenamento;
 - Mais restrita que FNBC;
 - Propriedade desejada: decomposição sem perda de junção

Considerações Finais - Normalização

- FN, 2FN, 3FN, BCNF e 4FN são consideradas para cada relação:
 - BD é considerada normalizada para uma determinada FN quando todas as suas relações estiverem nessa FN
- Normalização: decomposição de relações:
 - aumenta consistência;
 - ∘ reduz desempenho ⇒ operações de junção.