SECTION A

- Answer the following questions: (True /False)
- For a limear transform T: $V \rightarrow V$, dim (Ker(T))-dim(Im(T)) = dim(V)--True /False
- (b) All Hermitian matrices are unitary -- True /False
- If a square matrix A has a zero row, then detA=1--True /False
- (d) If A is a Hermitian matrix, then the eigen values of A are complex-True /False
- The identity matrix of any order is positive definete-True /False
- Singular values of orthogonal matrix are always equal to 1--True /False
- The right singular vector represents perpendicular distance from the data point to the best fit line --True /False
- If A is orthogonally diagonalizable, then A is skew symmetric -True /False
- Any set of m vectors in R is linearly dependent if m>n -True /False
- If the matrix A is invertible, then the system of equation Ax=0 has only trivial solution--True [1x10=10] /False

SECTION B

- Answer the following questions:
- (a) If A is similar to B, then show that A^T is similar to B^T.
- Find the conjugate transpose of the matrix $A = \begin{pmatrix} 1+i & -i & 1+5i \\ 1 & 4-i & 11 \\ 3+7i & -9i & 4-3i \end{pmatrix}$
- Find the inverse of the elementary matrix $\begin{vmatrix} 1 & 0 & 0 \\ -3/5 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$
- Prove that the distance $\mathbf{d}(\mathbf{u},\mathbf{v}) = \sqrt{\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2}$ if and only if \mathbf{u} and \mathbf{v} are orthogonal.
- (e) Is the matrix $\mathbf{A} = \begin{pmatrix} 1 & 1-i & 0 \\ 1+i & 1 & i \\ 0 & -i & 1 \end{pmatrix}$ Hermatian? Justify

SECTION C

- wether the following is linear transformation or not T: $\mathbb{R}^2 \to \mathbb{R}^2$ defined by $\mathbb{T} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - y \\ x + 2y \end{pmatrix}$ [7+3=10]
- **4. a) Find the pseudo inverse of the matrix A=** $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ **b) Find the symmetric matrix A associated** with given quadratic form 5a2-b2+2c2+2ab-4ac+4bc. c) Let B be an invertible matrix, show that B^TB is posotive definite. [4+2+4=10]
- 5. a) Compute $A = \begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix}^k$ b) Diagonalize the matrix $M = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ [4+6=10]
- 6. Find the eigen value, eigen vector, the charecterastic plynomial, geometric multiplity and algebric multiplicity of the matrix $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 3 & 0 \\ -2 & 1 & 2 & -1 \end{pmatrix}$. b) Find out whether the following set of vectors spans \mathbf{R}^3 or not: $\mathbf{S} = \{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \}$ [(2.5+2.5+1+1+1)+2=10]

7. a) Find the QR factorization of the matrix $\begin{pmatrix} 2 & 8 & 2 \\ 1 & 7 & -1 \\ -2 & -2 & 1 \end{pmatrix}$ b) Show that $W = \begin{pmatrix} a \\ -a \\ 2a \end{pmatrix}$ is a

subspace of the vector space R3 with respect to standard vector addition and scalar multiplication in R3. c) Prove that every vector space has an unique zero vector. [5+3+2=10]

8. a) Find the outer product form of the SVD of the matrix $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix}$ b) If A is a nxn matrix, show that adj A is also invertible and (adj A)-1 = A/det A=adj (A-1) [7+3=10]

9. a) Apply Gram Schmidt process to obtain the othonormal basis from the set of vectors
$$\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} \}$$

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
 and
$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
 } in \mathbb{R}^4 b) Consider the set M_{axn} (R) is the set of all real square matrices. Find out

whether $\langle A,B \rangle = \text{Tr}(AB^T)$ for all $A,B \in M_{nxn}(R)$ is an inner product or not. [5+5=10]

10. a) Find a unitary matrix **U** and a diagonal matrix **D** such that $\mathbf{U}^*\mathbf{A}\mathbf{U}=\mathbf{D}$ for $\mathbf{A}=\begin{pmatrix} -1 & 1+i\\ 1-i & 0 \end{pmatrix}$ **b**) Solve the following system of equations by Cramer's rule $2\mathbf{x}+\mathbf{y}+3\mathbf{z}=1$, $\mathbf{y}+\mathbf{z}=1$, $\mathbf{z}=1$. [7+3=10]

Note: R is the set of Real numbers and C is the set of complex numbers