# Composante Télécommunications

# **Devoir Maison**

| Groupe |  |
|--------|--|
|        |  |
| Nom    |  |
| Prénom |  |

# 1 Etude des caractéristiques d'une antenne

Les caractéristiques de l'antenne considérée - vendue par le fournisseur Kathrein sous la référence 80010684 - sont données Figure 1, ses diagrammes de rayonnement sont données Figure 2.

| Quad-band Panel                                      | 790-960 | 1710-1880 | 1920-2170 | 2490-2690 | KATHREIN              |
|------------------------------------------------------|---------|-----------|-----------|-----------|-----------------------|
| <b>Dual Polarization</b>                             | X       | X         | X         | X         | Antennen · Electronic |
| Half-power Beam Width                                | 65°     | 65°       | 65°       | 65°       | Preliminary Issue     |
| Adjust. Electr. Downtilt                             | 0°-12°  | 0°-10°    | 0°-10°    | 0°-10°    |                       |
| set by hand or by optional RCU (Remote Control Unit) |         |           |           |           |                       |

XXXXPol Panel 790-960/1710-1880/1920-2170/2490-2690 65°/65°/65°/65° 14.5/16.5/17/17dBI 0°-12°/0°-10°/0°-10°/0°-10°/0

| Type No.                                                | 80010684                                                                                                                   |                             |                             |                             |                             |                             |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                                                         |                                                                                                                            | 790-960                     |                             | 1710-1880                   | 1920-2170                   | 2490-2690                   |
| Frequency range                                         | 790 – 862 MHz                                                                                                              | 824 - 896 MHz               | 880 – 960 MHz               | 1710 – 1880 MHz             | 1920 – 2170 MHz             | 2490 - 2690 MHz             |
| Polarization                                            | +45°, -45°                                                                                                                 | +45°, -45°                  | +45°, -45°                  | +45°, -45°                  | +45°, -45°                  | +45°, -45°                  |
| Average gain (dBi)<br>Tilt                              | 16.8 16.7 16.5<br>0° 6° 12°                                                                                                | 17.0 17.0 16.8<br>0° 6° 12° | 17.1 17.2 17.0<br>0° 6° 12° | 17.8 17.8 17.5<br>0° 5° 10° | 17.8 17.8 17.4<br>0° 5° 10° | 17.8 17.8 17.6<br>0° 5° 10° |
| Horizontal Pattern:                                     |                                                                                                                            |                             |                             |                             |                             |                             |
| Half-power beam width                                   | 69°                                                                                                                        | 68°                         | 67°                         | 67°                         | 63°                         | 62°                         |
| Front-to-back ratio, copolar (180°±30°)                 | > 25 dB                                                                                                                    | > 25 dB                     | > 25 dB                     | > 25 dB                     | > 25 dB                     | > 25 dB                     |
| Cross polar ratio Maindirection 0° Sector ±60°          | 20 dB<br>> 10 dB                                                                                                           | 20 dB<br>> 10 dB            | 20 dB<br>> 10 dB            | 20 dB<br>> 10 dB            | 18 dB<br>> 10 dB            | 20 dB<br>> 10 dB            |
| Vertical Pattern:                                       |                                                                                                                            |                             |                             |                             |                             |                             |
| Half-power beam width                                   | 15.7°                                                                                                                      | 15.3°                       | 15°                         | 6.7°                        | 5.9°                        | 5.2°                        |
| Electrical tilt, continuously adjust.                   | 0°-12°                                                                                                                     |                             |                             | 0°-10°                      | 0°-10°                      | 0°-10°                      |
| Sidelobe suppression for first sidelobe above main beam | 0° 6° 12° T<br>16 16 16 dB                                                                                                 | 0° 6° 12° T<br>16 16 16 dB  | 0° 6° 12° T<br>18 17 16 dB  | 0° 5° 10° T<br>16 16 15 dB  | 0° 5° 10° T<br>16 16 15 dB  | 0° 5° 10° T<br>16 16 15 dB  |
| Impedance                                               |                                                                                                                            | 50 Ω                        | •                           | 50 Ω                        | 50 Ω                        | 50 Ω                        |
| VSWR                                                    | <1.5                                                                                                                       |                             |                             | < 1.5                       | < 1.5                       | < 1.5                       |
| Isolation: Intrasystem                                  | > 30 dB                                                                                                                    |                             |                             | > 28 dB                     | > 28 dB                     | > 28 dB                     |
| Isolation: Intersystem                                  | > 30 dB (1710-1880 // 1920-2170 MHz)<br>> 35 dB (790-960 // 1710-2170 MHz)<br>> 38 dB (2490-2690 // 790-960 1710-2170 MHz) |                             |                             |                             |                             |                             |
| Intermodulation IM3                                     |                                                                                                                            |                             | <-150 dBc (2 x              | 43 dBm carrier)             |                             |                             |
| Max. power per input                                    | 500 W*                                                                                                                     |                             |                             | 200 W*                      | 200 W*                      | 200 W*                      |
| Total power                                             | 1000 W*                                                                                                                    |                             |                             | 400 W*                      |                             |                             |

\* (at 50 °C ambient temperature)

Figure 1: Caractéristiques générales de l'antenne Kathrein ref.: 80010684



Figure 2: Diagrammes de rayonnement de l'antenne Kathrein ref. : 80010684

## Question 1.

[Ant] Quelle est l'ouverture horizontale de cette antenne dans la bande 1710 - 1880 MHz?

[Ant] Quelle est l'ouverture verticale de cette antenne dans la bande 1710 - 1880 MHz?

[Ant] L'antenne est montée au sommet d'un pylône de 25 mètres. Paramétrer le tilt afin d'assurer un rayonnement optimal du lobe principal pour un piéton de taille moyenne, situé à 150 mètres de l'antenne.

[Ant] Ce tilt est-il compatible avec les caractéristiques de l'antenne? Argumentez votre réponse en une phrase.

Les valeurs limites d'exposition du public aux radio-fréquences dépendent fortement de la longueur d'onde utilisée. Elles sont données dans le Tableau 1, avec f la fréquence exprimée dans l'unité indiquée dans la colonne de la gamme de fréquences :

Un périmètre de sécurité doit être respecté autour de tout émetteur radio de telle sorte que, en dehors

| Gamme de fréquences $f_i$ | Valeur limite du champ électrique toléré $E_\ell$ en V/m |
|---------------------------|----------------------------------------------------------|
| 1 - 10 MHz                | $87 \div \sqrt{f}$                                       |
| 10 - 400 MHz              | 28                                                       |
| 400 - 2000 MHz            | $1.375 \times \sqrt{f}$                                  |
| 2 - 300 GHz               | 61                                                       |

Table 1: Champs électriques tolérés [ANFR]

de ce périmètre de sécurité :

$$\sum_{f_i} \left( \frac{E_i}{E_\ell(f_i)} \right)^2 \le 1$$

où  $E_{\ell}(f_i)$  est la valeur limite du champ électrique toléré dans la gamme de fréquences  $f_i$  considérée. Les données simplifiées de l'antenne Kathrein ref.:80010684 sont listées dans le Tableau 2 :

| Gamme de fréquences | Gain en dB | Puissance d'émission en W |
|---------------------|------------|---------------------------|
| 790 - 960 MHz       | 17         | 20                        |
| 1710 - 1880 MHz     | 17.8       | 20                        |
| 1920 - 2170 MHz     | 17.8       | 20                        |
| 2490 - 2690 MHz     | 17.8       | 20                        |

Table 2: Données simplifiées de l'antenne Kathrein ref. : 80010684

# Question 2.

[Ant] En considérant des conditions idéales de propagation dans le vide, trouver la distance de sécurité de l'antenne (on rappelle qu'elle est quadri-bande) :

[Radio-B] Dans un environnement urbain, cette distance augmente-t-elle ou diminue-t-elle? Argumentez votre réponse en une phrase.

[Radio-I] En considérant un site équipé d'une seule antenne, quelle forme devrait avoir la zone de sécurité autour du site : ronde, carrée, rectangulaire, autre ? Argumentez votre réponse en une phrase.

#### Question 3.

Dans la bande 790 - 960 MHz : [Radio-B] Calculer la Puissance Isotrope Rayonnée Equivalente de l'émetteur (ne considérer aucune perte dans les équipements) :

en dB: en dBm:

[Ant] Quelle serait la PIRE en direction d'un récepteur situé à un azimut de  $60^o$  par rapport à la direction privilégiée de l'antenne ? en dBm :

[Archi-B] Pour quel(s) système(s) de radiocommunications cette antenne pourrait-elle être utilisée ?

### 2 Communication radio

Un réseau radio doit transmettre à un utilisateur des données modulées dont : la densité spectrale de puissance est assimilée à un  $|sinc|^2$ , la bande passante vaut 20 MHz, la fréquence porteuse se situe dans la gamme de fréquences des 2.4 GHz.

Pour joindre l'utilisateur - dans un appartement en zone urbaine - le réseau peut utiliser : soit un émetteur WiFi indoor - distant de 10 mètres de l'utilisateur, soit un émetteur LTE outdoor - distant de 500 mètres de l'utilisateur. On considère les modèles d'affaiblissement de propagation suivants, où f est la fréquence porteuse (en MHz) et d est la distance entre l'émetteur et le récepteur (en km) :

- pour le LTE :  $A_L(d) = 50 + 26.16 \times log_{10}(f) + 36 \times log_{10}(d)$ , d en km
- pour le WiFi :  $A_W(d) = 20 \times log_{10}(f) + 33 \times log_{10}(d) 5$ , d en m

# Question 4.

[Ant] Tracer l'allure du spectre du signal modulé transmis en précisant bien les valeurs sur l'axe des fréquences, car les échelles ne peuvent pas être respectées :

#### Question 5.

[Capa-B] Calculer la puissance du bruit thermique dans un canal :

- WiFi 802.11a:
- WiFi 802.11b:
- LTE de 20 MHz :

[Capa-B] Comparer les résultats obtenus :

# Question 6.

Cas où on utilise le WiFi pour la communication

La puissance de l'émetteur en sortie d'antenne est fixée à 25 dBm.

[Radio-B] Convertir cette puissance :

- en dB:
- en mW:

[Radio-B] Calculer la puissance du signal reçue par l'utilisateur : en dBm :

La puissance de toutes les interférences reçues par l'utilisateur est estimée à -85 dBm. [Archi-B] Quelles sont les causes de ces interférences ?

[Capa-B] Calculer le SINR de la liaison :

[Capa-I] Quel débit l'utilisateur peut-il espérer ?

#### Question 7.

Cas où on utilise le LTE pour la communication

L'émetteur, de puissance 20W, est relié à une antenne omnidirectionnelle de gain 15 dB. On ne considère aucune perte dans les équipements.

[Radio-B] Calculer la Puissance Isotrope Rayonnée Equivalente de l'émetteur LTE :

en dBm:

en W:

[Radio-B] Calculer la puissance du signal reçue par l'utilisateur :

en dBm:

Les interférences reçues par l'utilisateur proviennent de six interféreurs. Chaque interféreur possède les mêmes caractéristiques que l'émetteur LTE et il est situé à 2 km de l'utilisateur.

[Radio-B] Calculer la puissance totale reçue par l'utilisateur de la part de tous les interféreurs :

[Capa-B] Calculer le SINR de la liaison :

[Capa-I] Quel débit l'utilisateur peut-il espérer?

# Question 8.

[Archi-B] Quel réseau conseilleriez-vous d'utiliser dans cette situation ?

### Question 9.

[Radio-I] On constate très souvent des différences entre les calculs 'théoriques' et les mesures 'terrain' des puissances reçues et des débits de transmission. Quelles pourraient en être les causes ?

### Question 10.

[Archi-B] Un utilisateur possède un téléphone mobile 4G compatible WiFi. Entourer les situations dans lesquelles il pourra essayer d'utiliser le WiFi :

- dans une rame de métro parisien
- dans une gare SNCF parisienne
- dans un café Starbucks
- dans un parc parisien
- sur l'autoroute Paris-Lyon