COT3210–Computability and Automata Practice Problems for Final

- 1. Let $\Sigma = \{0, 1\}$. Draw the state diagram for a deterministic finite automaton (DFA) which accepts the language consisting of strings w described in each of the following:
 - i. The length of w is a multiple of 3.
 - ii. w ends with 00.
 - iii. w has an even number of 0s and an odd number of 1s.
 - iv. w is any string not in L(R), with $R = (01^+)^*$.
 - v. w is any strong not in $0^* \cup 1^*$.
 - vi. w contains an even number of 0s or contains exactly two 1s.
- 2. Let $\Sigma = \{0,1\}$. Draw the state diagram for a non-deterministic finite automaton (NFA) which accepts the language consisting of strings w described in each of the following. Your NFA should also use the number of states where specified:
 - i. w contains an even number of 0s or exactly two 1s (6 states).
 - ii. w is given by the regular expression 0*1*0+ (3 states).
 - iii. w is the language described by the regular expression $1^*(001^+)^*$ (3 states).
 - iv. w is the concatenation of strings containing at least three 1s and the empty string.
 - v. w is the star of the language of strings containing at least two 0s and at most one 1.
- 3. Let $\Sigma = \{0, 1\}$. Give regular expressions for languages of strings $w \in \Sigma^*$ described below:
 - i. w has an even number of 0s and an odd number of 1s and does not contain the substring 01.
 - ii. w is any string except 11 and 111.
 - iii. w starts with a 0 and has odd length, or starts with a 1 and has even length.
 - iv. w contains at least two 0s and at most one 1.
- 4. Let $\Sigma = \{a, b\}$. Convert the following DFA to its equivalent regular expression.

5. Let $\Sigma = \{0, 1\}$. Convert the following DFA to its equivalent regular expression.

- 6. Use the pumping lemma to prove that the following languages are not regular.
 - i. $\{w \# x \mid w, x \in \{0, 1\} \text{ and the number of 0s in } w \text{ equals the number of 1s in } x\}$
 - ii. $\{wwww | w \in \{0, 1\}^*\}$
 - iii. $\{0^{2n}1^{3n}0^n \mid n > 0\}$
- 7. Determine the language generated by each of the following grammars. Assume
 - i. Assume $\Sigma = \{0, 1\}$.

$$S \rightarrow 0S0 \mid 0B0$$

$$B \rightarrow 1B \mid 1$$

ii. Assume $\Sigma = \{a, b, c\}$.

$$S \to abScB \mid \varepsilon$$

$$B \to bB \mid b$$

- 8. Find a CFG G that generates each of the following languages.
 - i. Assume $\Sigma = \{a, b, c, d\}$. $L(G) = \{a^n b^m c^m d^{2n} \mid n \ge 0, m > 0\}$.
 - ii. Assume $\Sigma = \{a,b\}$. $L(G) = \{a^n \ b^m \mid 0 \le n \le m \le 2n\}$.
 - iii. Assume $\Sigma = \{a, b, c\}$. $L(G) = \{a^n b^m c^k \mid k = n + m\}$.
- 9. Transform the following grammar to Chomsky Normal Form.

$$S \to aXbY$$

$$X \to aX \mid \varepsilon$$

$$Y \to bY \mid \varepsilon$$

- 10. Construct a NPDA that accepts the language specified in each of the following:
 - i. The set of all palindromes over $\{a, b\}$.
 - ii. $\{1^n0^n \mid n>0\} \cup \{1^n0^{2n} \mid n>0\}$
- 11. Construct a Turing Machine with $\Sigma = \{1\}$ which calculates the following function, assuming x > 2:

$$f(x) = \begin{cases} x+2, & \text{if } x \text{ is even;} \\ x-2, & \text{if } x \text{ is odd.} \end{cases}$$

12. Given $f(n) = n^{\log_2 n}$ and $g(n) = n^3$, determine whether f(n) = O(g(n)), or g(n) = O(f(n)).

- 13. Show that $RELPRIME \in P$.
- 14. Show that $CONNECTED \in P$.
- 15. Find gcd(2831, 317). Are 2831 and 317 relatively prime?
- 16. Estimate the maximum number of division steps needed in order to compute gcd(4713, k)?
- 17. Is $(\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$ satisfiable?
- 18. Show that $HAMPATH \in NP$.
- 19. Show that $CLIQUE \in NP$.
- 20. Give three examples of NP-complete problems, with a clear statement of problem for each example.