Math 6417 Homework 3

Jacob Hauck

November 11, 2023

Question 1.

Let $B(\cdot,\cdot)$ be a continuous, bilinear form on a real Hilbert space H. Suppose that B is coercive in the sense that there is some $\alpha > 0$ such that $B(x,x) \ge \alpha ||x||^2$ for all $x \in H$.

1.1) Let $y \in H$. Then the map $f_y : H \to \mathbf{R}$ defined by $f_y(x) = B(x, y)$ is a bounded linear functional on H. Consequently, there exists a unique $w \in H$ such that $B(x, y) = f_y(x) = (x, w)$ for all $x \in H$.

Proof. Firstly, it is clear that f_y is linear; indeed, given $a_1, a_2 \in \mathbf{R}$ and $x_1, x_2 \in H$,

$$f_{\nu}(a_1x_1 + a_2x_2) = B(a_1x_1 + a_2x_2, y) = a_1B(x_1, y) + a_2B(x_2, y) = a_1f_{\nu}(x_1) + a_2f_{\nu}(x_2)$$
(1)

by the bilinearity of B.

Secondly, $B(\cdot, y) = f_y$ must be continuous because B is continuous. Hence, f_y is bounded.

Thirdly, by the Riesz representation theorem, there exists a unique $w \in H$ such that $B(x,y) = f_y(x) = (x, w)$ for all $x \in H$.

1.2) Given $y \in H$, by 1.1), there is a unique w such that B(x,y) = (x,w) for all $x \in H$; this defines a function $A: H \to H$, where Ay = w. Then A is a bounded, linear operator on H, that is, $A \in B(H)$.

Proof. Let $a_1, a_2 \in \mathbf{R}$ and $y_1, y_2 \in H$. Then for all $x \in H$,

$$(x, A(a_1y_1 + a_2y_2)) = B(x, a_1y_1 + a_2y_2) = a_1B(x, y_1) + a_2B(x, y_2) = a_1(x, Ay_1) + a_2(x, Ay_2)$$

$$= (x, a_1Ay_1 + a_2Ay_2).$$
(2)

Thus, $w = A(a_1y_1 + a_2y_2)$ and $w' = a_1Ay_1 + a_2Ay_2$ satisfy the property that $B(x, a_1y_1 + a_2y_2) = (x, w) = (x, w')$ for all $x \in H$. Since there is only one element of H that can satisfy this property by the Riesz representation theorem, it follows that w = w', that is, $A(a_1y_1 + a_2y_2) = a_1Ay_1 + a_2Ay_2$. Therefore, A is linear.

Note that B is continuous if and only if (see, e.g., Theorem 8.10 assumption (a) in Arbogast and Bona) there exists some M>0 such that

$$|B(x,y)| \le M||x|| ||y||, \text{ for all } x, y \in H.$$
 (3)

Let $y \in H$. Then

$$||Ay|| = \left| \left(\frac{Ay}{||Ay||}, Ay \right) \right| = \left| B\left(\frac{Ay}{||Ay||}, y \right) \right| \le M||y||. \tag{4}$$

Since y was arbitrary, it follows that A is bounded, and $||A|| \leq M$. Thus, A is a bounded, linear operator on H.

1.3) A is bounded below in the sense that there exists $\gamma > 0$ such that $||Ay|| \ge \gamma ||y||$ for all $y \in H$.

Proof. This follows from the coercivity of B: for all $y \in H$,

$$||Ay|||y|| \ge |(y, Ay)| = |B(y, y)| \ge \alpha ||y||^2, \tag{5}$$

so $||Ay|| \ge \alpha ||y||$ for all $y \in H$, as claimed.

1.4) A is one-to-one, and the range of A is closed.

Proof. Let $y_1, y_2 \in H$, and suppose that $Ay_1 = Ay_2$. Then, by the previous part,

$$||y_1 - y_2|| \le \frac{1}{\gamma} ||A(y_1 - y_2)|| = \frac{1}{\gamma} ||Ay_1 - Ay_2|| = 0.$$
 (6)

Therefore, $y_1 = y_2$. This shows that A is one-to-one.

Let R(A) denote the range of A. To show that R(A) is closed, we need to show that if $\{w_n\} \subset R(A)$ is any sequence that converges to w, then $w \in R(A)$. To this end, let $\{w_n\} \subseteq R(A)$ be a convergent sequence, and let w be its limit. Since $w_n \in R(A)$ for all n, there exists $y_n \in H$ such that $w_n = Ay_n$ for all n. We can use the coercivity of B to show that $\{y_n\}$ is convergent.

Indeed, for all m, n and all $x \in H$, the definition of A implies that $|B(x, y_n - y_m)| = |(x, w_n - w_m)| \le ||x|| ||w_n - w_m||$. Since $\{w_n\}$ converges, it is Cauchy; hence,

$$\forall \varepsilon > 0 : \exists N : n, m > N \to ||w_n - w_m|| < \varepsilon \tag{7}$$

$$\Longrightarrow \forall \varepsilon > 0: \exists N: n, m > N \to \forall x \in H: |B(x, y_n - y_m)| \le ||x|| ||w_n - w_m|| < ||x|| \varepsilon$$
 (8)

$$\Longrightarrow \forall \varepsilon > 0: \exists N: n, m > N \to \alpha \|y_n - y_m\|^2 \le |B(y_n - y_m, y_n - y_m)| < \|y_n - y_m\|\varepsilon \tag{9}$$

$$\Longrightarrow \forall \varepsilon > 0 : \exists N : n, m > N \to ||y_n - y_m|| < \frac{\varepsilon}{\alpha}, \tag{10}$$

which implies that $\{y_n\}$ is Cauchy. Therefore, there exists $y \in H$ such that $y_n \to y$ as $n \to \infty$. Let $x \in H$, and let $\varepsilon > 0$ be given. By the continuity of B and the inner product and the convergence of $\{y_n\}$ and $\{w_n\}$, there exists n large enough that $|B(x, y - y_n)| < \frac{\varepsilon}{2}$, and $|(x, w - w_n)| < \frac{\varepsilon}{2}$. Then

$$|B(x,y) - (x,w)| = |B(x,y-y_n) + B(x,y_n) - (x,w_n) - (x,w-w_n)|$$

$$\leq |B(x,y-y_n)| + |(x,w-w_n)| < \varepsilon.$$
(11)

Since $\varepsilon > 0$ was arbitrary and $x \in H$ was arbitrary, it follows that B(x,y) = (x,w) for all $x \in H$. This implies that w = Ay by the definition of A, and $w \in R(A)$. Since the convergent sequence $\{w_n\} \subseteq R(A)$ was arbitrary, and its limit $w \in R(A)$, it follows that R(A) is closed.

1.5) *A* is onto.

Proof. Suppose that $x \in R(A)^{\perp}$, that is, (x, w) = 0 for all $w \in R(A)$. This implies that (x, Ay) = 0 for all $y \in H$, which is equivalent to saying that B(x, y) = 0 for all $y \in H$. In particular, if we choose y = x, then $||x||^2 \le \frac{1}{\alpha} |B(x, x)| = 0$. Therefore, x = 0. This shows that $R(A)^{\perp} = \{0\}$ because x was arbitrary.

Let $y \in H$. Since R(A) is a closed subspace of H by (1.4), there exists a best approximation $w \in R(A)$ of y, which satisfies the property (y-w,x)=0 for all $x \in R(A)$ (Theorem 3.7 and Corollary 3.8 in Arbogast and Bona). That is, $y-w \in R(A)^{\perp}$. Since $R(A)^{\perp}=\{0\}$ by the above, it follows that y-w=0, and $y=w \in R(A)$. Since y was arbitrary and $R(A) \subseteq H$, it follows that R(A)=H, that is, A is onto.

1.6) A is invertible.

Proof. By the previous two parts, A is bijective, so it has a set-theoretic inverse function A^{-1} . By 1.2), A is bounded. Therefore, by the open mapping theorem, A maps open sets to open sets, which means that the preimage of an open set under A^{-1} is open, that is, A^{-1} is continuous. Therefore, A is invertible.

- **1.7**) Given $f \in H^*$, the Riesz representation theorem implies that there exists a unique $w \in H$ such that f(x) = (x, w) for all $x \in H$, and we can view H^* and H as the same under the correspondence $f \leftrightarrow w$.
- 1.8) Consider the equation B(x,y) = f(x) for all $x \in H$, where $f \in H^*$. By the remark in part 1.7), we can choose $w \in H$ such that f(x) = (x, w) for all $x \in H$. Then the equation is equivalent to B(x,y) = (x,w) for all $x \in H$. If y is a solution of this equation, then, by the definition of A, we must have Ay = w. Using the invertibility of A, we obtain $y = A^{-1}w$ as the unique solution of the equation. Viewing f and w as the same under the correspondence in 1.7), we might also write $y = A^{-1}f$.

Question 2.