Vorlesungsaufgabe [Ereignisse 1-8]

Die untenstehende Abbildung stellt ein CPM-Netzwerk dar. Die Ereignisse sind fortlaufend nummeriert (Nummer im Inneren der Kreise) und tragen keine Namen.

(a) Berechnen Sie die früheste Zeit für jedes Ereignis, wobei angenommen wird, dass das Projekt zum Zeitpunkt 0 startet!

— Wir führen eine Vorwärtsterminierung durch und addieren die Dauern. Kann ein Ereignis über mehrere Vorgänge erreicht werden, wählen wir das Maximum aus. **Erläuterungen:** i: Ereignis i; FZ_i : Frühester Zeitpunkt, zu dem Ereignis i eintreten kann.

i	Nebenrechnung	FZ_i
1		0
2		5
3		18
4		7
5		19
6		26
7	$\max(19_3, 22_4)$	22
8	$\max(30_5, 30_6, 28_7)$	30

(b) Setzen Sie anschließend beim letzten Ereignis die späteste Zeit gleich der frühesten Zeit und berechnen Sie die spätesten Zeiten!

i	Nebenrechnung	SZ_i
8	siehe FZ_8	30
7		24
6		26
5		19
4		9
3	$min(18_6, 23_7)$	18
2	,	5
1	$\min(0_2, 0_3, 2_4)$	0

(c) Berechnen Sie nun für jedes Ereignis die Pufferzeiten!

GP: gesamter Pufferzeit (GP = SZ - FZ)

(d) Bestimmen Sie den kritischen Pfad!

Kritische Pfade: Pfad(e) mit minimaler Pufferzeit, meist $\boldsymbol{0}$

i	1	2	3	4	5	6	7	8
FZ_i	0	5	18	7	19	26	22	30
SZ_i	0	5	18	9	19	26	24	30
GP	0	0	0	2	0	0	2	0

 $Github: \verb|Module/40_SOSY/03_Projektplanung/20_CPM-Netzplantechnik/Aufgabe_Vorlesungsaufgabe. \\ tex$