

MEC-E1070 Selection of Engineering Materials

Prof. Junhe Lian, Prof. Sven Bossuyt course assistant Zinan Li

Notes

Fix Eco Audit Crashes (Remote connection)

This software is picky about the Regional format setting in Windows. Unfortunately at least on our VDI workstations the default format is not working with the Eco Audit feature, and may need to be changed by the user on each session. This is how to do it:

- 1. Click the Windows Start-menu on the lower left corner of desktop.
- 2. Seach for "region" by typing it, then choose "Region Settings".
- Regional format might be Recommended [English (United States)] change it to for example: English (Finland)

4. Restart EduPack and Eco Audit should work. Remember, you may need to do this again on your next session.

Material and process selection

- Eco-informed selection
- Eco Audits and the Audit tool
- Demo: soft drink containers

The product life-cycle

Eco-informed design

Eco-informed design

- 80% of eco-impact tied in at design stage
- Build-in eco criteria at the design stage

The drivers for eco-design

- Focus on carbon footprint by governments
- Legislation (Carbon taxes, EuP, REACH)
- Incentives (Subsidies, concessions)
- Urge for "responsible" manufacture
- Doing more with less = \$\$\$

The materials life-cycle

Eco-informed selection

Eco Audit for design

- 1 resource energy (oil equivalent)
- 1 emission CO_2 equivalent
- Distinguish life-phases
- Audit: Energy

Transport

Product

Eco Audit for design

- 1 resource energy (oil equivalent)
- 1 emission CO_2 equivalent
- Distinguish life-phases
- Audit: Energy or Cost

Eco-selection for a soft drink bottle

Design brief

Improve green credentials of bottle

Translation

Constraints

- Able to be molded
- Transparent / translucent
- Able to contain pressure

Objectives

- Minimize embodied energy of bottle
- Minimize material cost of bottle

Modelling the bottle

R= Bottle radius

t = Thickness of bottle wall

p = Internal pressure

 σ_v = Yield strength of material

 ρ = Density of material

H_m = Embodied energy of material/kg

 $E = Embodied energy/m^2 of wall$

C_m = Material cost per kg

Cylindrical pressure vessel

• Circumferential stress $\sigma = \frac{pR}{t} < \sigma_y$

Embodied energy per unit area of wall

$$E = tH_{m} \rho = pR H_{m} \rho$$

$$O_{y} = \frac{Embodied \ energy / kg}{of \ material}$$

Find material with lowest energy, seek largest

$$\frac{\sigma_y}{H_m \, \rho}$$

Find material with lowest cost, seek largest

Selection to minimize embodied energy

Constraints

- Can be molded
- Transparent / translucent

Bio-polymers are colored green

Selection to minimize cost

Trade-off plot

Minimizing both embodied energy and cost

Eco-property records

The EduPack Eco Audit tool

User inputs Database User interface Eco data Bill of materials Embodied energies Manufacturing process Process energies 2 kW electric kettle Transport needs **■** CO₂ footprints Duty cycle Unit transport energies **Eco Audit** Recycling / combustion End of life choice model **Outputs:** Energy (MJ) CO2 Footprint (kg) 2500-150-Full report 2000-Data Use is 88% 1500-100-Criticality of life-energy Hazard 1000-50-500-Material Manufacture Transport Use Disposal EoL potential Material Manufacture Transport Disposal EoL potential Use

The Eco Audit tool at Level 2

Task 5.1: Environment

Estimate the amount of energy in different polymers.

Which polymer embodies the least energy during its manufacture when a Young's modulus value of at least 0.8 GPa is required? Solve the task with level 2 map.

Draw up a map with which you can compare different materials with regard to beam strength (in bending) versus CO2-emissions.

Which material possesses the smallest carbon footprint compared to strength?

Also draw up this map for beam strength versus CO2-emissions when recycled material is used.

Task 5.2: Processes

Essay in approximately 200-300 words with one or two illustrations

Summary

- Eco-informed material choice is part of the eco-design process
- An Eco Audit identifies the most damaging phase of life and identifies strategies for overcoming it
- Systematic strategies, using material indices, optimize material choice to minimize life energy, eco-impact.