Lesson 2.1.1: Linear Inequalities in Two Variables

Linear Inequality in Two Variables: an inequality which can be written in any one of the following forms

$$Ax + By < C$$
 $Ax + By \le C$ $Ax + By \ge C$

where A, B, and C are any real numbers.

The solution of an inequality in two variables are the ordered pairs of numbers that make the inequality true.

Practice Exercises 2.1.1

A. Identify whether each ordered pair is a solution to the given inequality. Write YES if it is or NO if it is not.

- B. Translate the following situations into mathematical phrases.
 - 1. The sum of two numbers is less than 7.
 - 2. The difference of two numbers is greater than 2.
 - 3. Thrice a number is less than or equal to another number.
 - 4. Nicole bought 2 earrings (e) and 3 bracelets (b) and paid not more than ₱1,000.00.
 - 5. Twice the number of mango (m) exceeds thrice the number of guava (g).

Activity 2.1.1

A. Identify whether each ordered pair is a solution to the given inequality. Write YES if it is or NO if it is not.

1. $-x-y>1$	2. $3x - 3y \ge 2$	3. $3x + y \le 2$
a. (-1, 2)	a. (2, 1)	a. (4, 2)
b. (o, o) c. (-3, 2)	b. $(2, 0)$ c. $(\frac{2}{3}, 1)$	b. $\left(-\frac{1}{2}, -3\right)$
	3′′′	c. (-5, 2)

- B. Translate the following situations into mathematical phrases.
- 1. The sum of two numbers is less than 9.
- 2. The difference of two numbers is greater than 5.
- ${\it 3.}$ Twice a number is greater than or equal to another number.
- 4. Nica bought 4 rings (r) and 2 dresses (d) and paid not more than ₱1,300.00.
- 5. To get a passing mark in school, a student must have a grade (g) of at least 75.

Lesson 2.1.1: Linear Inequalities in Two Variables

Linear Inequality in Two Variables: an inequality which can be written in any one of the following forms

$$Ax + By < C$$
 $Ax + By \le C$ $Ax + By \ge C$

where A, B, and C are any real numbers.

The solution of an inequality in two variables are the ordered pairs of numbers that make the inequality true.

Practice Exercises 2.1.1

A. Identify whether each ordered pair is a solution to the given inequality. Write YES if it is or NO if it is not.

1.
$$x+y>-1$$
 2. $2x-y\geq 3$ 3. $3x+2y\leq 5$
a. $(-1,2)$ a. $(2,1)$ a. $(4,2)$
b. $(0,0)$ b. $(2,0)$ b. $(-\frac{1}{2},-3)$
c. $(-3,2)$ c. $(\frac{1}{2},2)$ c. $(-5,2)$

- B. Translate the following situations into mathematical phrases.
 - 1. The sum of two numbers is less than 7.
 - 2. The difference of two numbers is greater than 2.
 - 3. Thrice a number is less than or equal to another number.
 - Nicole bought 2 earrings (e) and 3 bracelets (b) and paid not more than ₱1,000.00.
 - 5. Twice the number of mango (m) exceeds thrice the number of guava (g).

Activity 2.1.1

A. Identify whether each ordered pair is a solution to the given inequality. Write YES if it is or NO if it is not.

1.
$$-x - y > 1$$
 2. $3x - 3y \ge 2$ 3. $3x + y \le 2$ 4. $(-1, 2)$ 5. $(0, 0)$ 6. $(0, 0)$ 7. $(-3, 2)$ 7. $(-3, 2)$ 7. $(-3, 2)$ 8. $(-1, 2)$ 8. $(-1, 2)$ 8. $(-1, 2)$ 8. $(-1, 2)$ 9. $(-1,$

- B. Translate the following situations into mathematical phrases. 1. The sum of two numbers is less than 9.

 - 2. The difference of two numbers is greater than 5.
 - ${\tt 3.}\,$ Twice a number is greater than or equal to another number.
- 4. Nica bought 4 rings (r) and 2 dresses (d) and paid not more than ₱1,300.00.
- 5. To get a passing mark in school, a student must have a grade (g) of at least 75.

Lesson 2.1.1: Linear Inequalities in Two Variables

Linear Inequality in Two Variables: an inequality which can be written in any one of the following forms

$$Ax + By < C$$
 $Ax + By \le C$ $Ax + By \ge C$

where A, B, and C are any real numbers.

The solution of an inequality in two variables are the ordered pairs of numbers that make the inequality true.

Practice Exercises 2.1.1

A. Identify whether each ordered pair is a solution to the given inequality. Write YES if it is or NO if it is not.

- 3. $3x + 2y \le 5$ 1. x + y > -12. $2x - y \ge 3$ a. (-1, 2) b. (0, 0) c. (-3, 2) a. (2, 1)b. (2, 0)c. $(\frac{1}{2}, 2)$ a. (4, 2)b. $(-\frac{1}{2}, -3)$ c. (-5, 2)
- B. Translate the following situations into mathematical phrases.
- 1. The sum of two numbers is less than 7.
- 2. The difference of two numbers is greater than 2.
- 3. Thrice a number is less than or equal to another number.
- 4. Nicole bought 2 earrings (e) and 3 bracelets (b) and paid not more than ₱1,000.00.
- Twice the number of mango (m) exceeds thrice the number of guava (g).

Activity 2.1.1

A. Identify whether each ordered pair is a solution to the given inequality. Write YES if it is or NO if it is not.

-x-y>1	2. $3x - 3y \ge 2$	3. $3x + y \le 2$
a. (-1, 2)	a. (2, 1)	a. (4, 2)
b. (o, o) c. (-3, 2)	b. $(2, 0)$ c. $(\frac{2}{3}, 1)$	b. $\left(-\frac{1}{2}, -3\right)$
()	3′′	c. (-5, 2)

- B. Translate the following situations into mathematical phrases.
- 1. The sum of two numbers is less than 9.
- 2. The difference of two numbers is greater than 5.
- Twice a number is greater than or equal to another number.
- 4. Nica bought 4 rings (r) and 2 dresses (d) and paid not more than ₱1,300.00.
- To get a passing mark in school, a student must have a grade (g) of at least 75.

Lesson 2.1.1: Linear Inequalities in Two Variables

Linear Inequality in Two Variables: an inequality which can be written in any one of the following forms

$$Ax + By < C$$
 $Ax + By \le C$ $Ax + By \ge C$

where A, B, and C are any real numbers.

The solution of an inequality in two variables are the ordered pairs of numbers that make the inequality true.

Practice Exercises 2.1.1

A. Identify whether each ordered pair is a solution to the given inequality. Write YES if it is or NO if it is not.

- 1. x+y > -12. $2x - y \ge 3$ 3. $3x + 2y \le 5$ a. (-1, 2) b. (0, 0) c. (-3, 2) a. (2, 1)b. (2, 0)c. $(\frac{1}{2}, 2)$ a. (4, 2)b. $(-\frac{1}{2}, -3)$
- B. Translate the following situations into mathematical phrases.
 - 1. The sum of two numbers is less than 7.
 - The difference of two numbers is greater than 2.
- 3. Thrice a number is less than or equal to another number.
- 4. Nicole bought 2 earrings (e) and 3 bracelets (b) and paid not more than ₱1,000.00.
- Twice the number of mango (m) exceeds thrice the number of guava (g).

Activity 2.1.1

A. Identify whether each ordered pair is a solution to the given inequality. Write YES if it is or NO if it is not.

- B. Translate the following situations into mathematical phrases.
- 1. The sum of two numbers is less than 9. 2. The difference of two numbers is greater than 5.
- 3. Twice a number is greater than or equal to another number.
- 4. Nica bought 4 rings (r) and 2 dresses (d) and paid not more than ₱1,300.00.
- 5. To get a passing mark in school, a student must have a grade (g) of at least 75.