Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002078

International filing date: 10 February 2005 (10.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-067105

Filing date: 10 March 2004 (10.03.2004)

Date of receipt at the International Bureau: 07 April 2005 (07.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

14.02.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 3月10日

出 願 番 号 Application Number:

特願2004-067105

[ST. 10/C]:

[JP2004-067105]

出 願 人
Applicant(s):

株式会社きもと

2005年 3月25日

特許庁長官 Commissioner, Japan Patent Office ·) · [1]

【書類名】 特許願 【整理番号】 A44-057 平成16年 3月10日 【提出日】 特許庁長官 殿 【あて先】 B32B 27/20 【国際特許分類】 G02B 5/02 【発明者】 埼玉県さいたま市中央区鈴谷4丁目6番35号 株式会社きもと 【住所又は居所】 技術開発センター内 齋藤 正登 【氏名】 【発明者】 埼玉県さいたま市中央区鈴谷4丁目6番35号 株式会社きもと 【住所又は居所】 技術開発センター内 北原 慶一 【氏名】 【発明者】 埼玉県さいたま市中央区鈴谷4丁目6番35号 株式会社きもと 【住所又は居所】 技術開発センター内 小山 益生 【氏名】 【発明者】 埼玉県さいたま市中央区鈴谷4丁目6番35号 株式会社きもと 【住所又は居所】 技術開発センター内 木村 剛久 【氏名】 【特許出願人】 【識別番号】 000125978 【氏名又は名称】 株式会社 きもと 丸山 良克 【代表者】 【代理人】 【識別番号】 100113136 【弁理士】 松山 弘司 【氏名又は名称】 048 (853) 3381 【電話番号】 【選任した代理人】 【識別番号】 100118050 【弁理士】 中谷 将之 【氏名又は名称】 【先の出願に基づく優先権主張】 特願2004-40996 【出願番号】 平成16年 2月18日 【出願日】 【手数料の表示】 000790 【予納台帳番号】 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】

図面 1

要約書 1

0208872

【物件名】

【物件名】

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

透明支持体の一方の面に、電離放射線硬化型樹脂組成物、および平均粒子径が 0.5μ m $\sim 3.0\mu$ m、粒子径分布の変動係数が $20\% \sim 80\%$ である微粒子から形成されてなるニュートンリング防止層を有することを特徴とするニュートンリング防止シート。

【請求項2】

前記透明支持体のもう一方の面に微粒子を含有してなるハードコート層を有することを 特徴とする請求項1記載のニュートンリング防止シート。

【請求項3】

JIS K7136:2000におけるヘーズが20%以下であることを特徴とする請求項2記載のニュートンリング防止シート。

【請求項4】

導電性膜を有する一対のパネル板の前記導電性膜同士が対向するようにスペーサーを介して配置してなる抵抗膜方式のタッチパネルであって、前記導電性膜のいずれか一方または両方の導電性膜が請求項1から3いずれか1項記載のニュートンリング防止シートのニュートンリング防止層上に形成されてなることを特徴とするタッチパネル。

【書類名】明細書

【発明の名称】ニュートンリング防止シート、およびこれを用いたタッチパネル

【技術分野】

[0001]

本発明は、ニュートンリング防止シートに関し、特にCRTやフラットパネルディスプレイ等のディスプレイ画面上に用いられるタッチパネル等で使用されるニュートンリング防止シートに関する。

【背景技術】

[0002]

従来から写真製版分野および光学機器分野などでは、プラスチックフィルムやガラス板等の部材同士の密着により発生するニュートンリングによる問題が生じていた。このようなニュートンリングは、部材同士が密着する際に両者の間に生じる隙間を一定以上に維持することによって発生を防止することが可能となるため、部材表面にサンドブラストを施したり、部材上にバインダー成分、および微粒子からなるニュートンリング防止層を形成するなどして、部材の片面あるいは両面を凹凸処理したニュートンリング防止シートが提案されている(特許文献1参照)。

[0003]

一方、CRTやフラットパネルディスプレイ等のディスプレイ画面上に用いられるタッチパネルで使用されるフィルムやガラス等の部材においても、タッチパネルのタッチ(押圧)時に生じるニュートンリングを防止するため、上記のようなニュートンリング防止シートが使用されている。

[0004]

しかし、このようなCRTやフラットパネルディスプレイ等のカラー化が進むと共に、各種ディスプレイのカラーの高精細化が進んだ結果、従来のニュートンリング防止シートをタッチパネルに使用すると、ニュートンリング防止層に含有されている微粒子が輝点となってスパークルと呼ばれるギラつき現象が発生し、高精細化されたカラー画面がぎらついて見えてしまうという問題が生じるようになってきた。

[0005]

【特許文献1】特開平11-77946号公報(段落番号0007)

【発明の開示】

【発明が解決しようとする課題】

[0006]

そこで本発明は、ニュートンリング防止性に優れ、かつ高精細化されたカラーディスプレイを用いたタッチパネルに使用した際にも、スパークルが発生しにくいニュートンリング防止シート、およびこれを用いたタッチパネルを提供することを目的とする。

【課題を解決するための手段】

[0007]

本発明のニュートンリング防止シートは、透明支持体の一方の面に、電離放射線硬化型 樹脂組成物、および平均粒子径が $0.5 \mu m \sim 3.0 \mu m$ 、粒子径分布の変動係数が $20 \% \sim 80\%$ である微粒子から形成されてなるニュートンリング防止層を有することを特徴とするものである。

[0008]

また、本発明のニュートンリング防止シートは、前記透明支持体のもう一方の面に微粒子を含有してなるハードコート層を有することを特徴とするものである。

[0009]

また好ましくは、JIS K7136:2000におけるヘーズが20%以下であることを特徴とするものである。

[0010]

また、本発明のタッチパネルは、導電性膜を有する一対のパネル板の前記導電性膜同士が対向するようにスペーサーを介して配置してなる抵抗膜方式のタッチパネルであって、

前記導電性膜のいずれか一方または両方の導電性膜が上記いずれかのニュートンリング防止シートのニュートンリング防止層上に形成されてなることを特徴とするものである。

[0011]

なお、本発明でいう平均粒子径、および粒子径分布の変動係数は、コールターカウンター法により測定した値から算出したものである。

【発明の効果】

[0012]

本発明のニュートンリング防止シートによれば、ニュートンリング防止性に優れ、かつ 高精細化されたカラーディスプレイを用いたタッチパネルに使用した際にも、スパークルが発生しにくく、カラー画面のギラつきを目立たなくすることができるため、ディスプレイの視認性を低下させないタッチパネルとすることができる。

【発明を実施するための最良の形態】

[0013]

本発明のニュートンリング防止シートは、透明支持体の一方の面に電離放射線硬化型樹脂組成物、および特定の微粒子から形成されてなるニュートンリング防止層をするものである。また、本発明のニュートンリング防止シートは、透明支持体のもう一方の面に微粒子を含有してなるハードコート層を有するものである。また、本発明のタッチパネルは、このようなニュートンリング防止シートが用いられたものである。以下、各構成要素の実施の形態について説明する。

$[0\ 0\ 1\ 4]$

透明支持体としては、ガラス板やプラスチックフィルム等の透明性の高いものを用いることができる。プラスチックフィルムとしては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリスチレン、トリアセチルセルロース、アクリル、ポリ塩化ビニル、ノルボルネン化合物等の透明性を阻害しないものが使用でき、延伸加工、特に二軸延伸されたポリエチレンテレフタレートフィルムが機械的強度、寸法安定性に優れているために好適に使用される。このような透明支持体はプラズマ処理、コロナ放電処理、遠紫外線照射処理、下引き易接着層の形成等の易接着処理が施されたものを用いることが好ましい。

[0015]

透明支持体の厚みは、特に限定されず適用される材料に対して適宜選択することができるが、ニュートンリング防止シートとしての取扱い性等を考慮すると、一般に $25~\mu$ m $\sim 5~0~0~\mu$ m程度であり、好ましくは $5~0~\mu$ m $\sim 3~0~0~\mu$ m程度である。

[0016]

次に、ニュートンリング防止層を構成する電離放射線硬化型樹脂組成物としては、電離放射線(紫外線または電子線)の照射によって架橋硬化することができる光重合性プレポリマーを用いることができ、この光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましく使用される。このアクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート、ポリフルオロアルキルアクリレート、シリコーンアクリレート等が使用できる。さらにこれらのアクリル系プレポリマーは単独でも使用可能であるが、架橋硬化性を向上させ表面保護膜の硬度をより向上させるために、光重合性モノマーを加えることが好ましい。

[0017]

光重合性モノマーとしては、2-xチルヘキシルアクリレート、2-yドロキシエチルアクリレート、2-yドロキシプロピルアクリレート、ブトキシエチルアクリレート等の単官能アクリルモノマー、1, 6-y キャンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート等の2官能アクリルモノマー、ジペンタエリスリトールヘキサアクリレート、トリメチル

プロパントリアクリレート、ペンタエリスリトールトリアクリレート等の多官能アクリル モノマー等の1種若しくは2種以上が使用される。

[0018]

ニュートンリング防止層は、上述した光重合性プレポリマー及び光重合性モノマーの他、紫外線照射によって硬化させる場合には、光重合開始剤や光重合促進剤等の添加剤を用いることが好ましい。

[0019]

光重合開始剤としては、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾイルベンゾエート、αーアシロキシムエステル、チオキサンソン類等があげられる。

[0020]

また、光重合促進剤は、硬化時の空気による重合障害を軽減させ硬化速度を速めることができるものであり、例えば、p-ジメチルアミノ安息香酸イソアミルエステル、p-ジメチルアミノ安息香酸エチルエステルなどがあげられる。

[0021]

このような電離放射線硬化型樹脂組成物を用いることにより、微粒子が添加されたニュートンリング防止層は、その表面に波状の凹凸形状である「うねり」が発生するため、微粒子の大きさが小さく、添加量が少量でも表面に凹凸を形成することができ、ニュートンリングを防止することができる。また、微粒子の添加量を少量にできるため、高精細化されたカラーディスプレイを用いたタッチパネルに使用した際に、スパークルが発生を抑制減少させることができる。

[0022]

また、本発明においては、ニュートンリング防止層を構成するバインダー成分として電離放射線硬化型樹脂組成物を用いることにより、繰り返しタッチ(押圧)等を行ってもニュートンリング防止層の表面に傷をつきにくくすることができる。これにより、タッチパネルに用いた際に、傷がつくことによるヘーズの上昇を抑制し、ディスプレイの表示画像の解像力の低下を防止することができる。

[0023]

ニュートンリング防止層の表面硬度は、特に限定されず、選択する透明支持体によって異なってくるので一概にいえないが、JIS K5600-5-4:1999における鉛筆硬度でH以上であることが好ましい。

$[0\ 0\ 2\ 4\]$

次に、本発明におけるニュートンリング防止層は、上述の電離放射線硬化型樹脂組成物、および平均粒子径が $0.5\mu m \sim 3.0\mu m$ 、粒子径分布の変動係数が $20\% \sim 80\%$ である微粒子から形成されてなるものである。このようなニュートンリング防止層とすることにより、ニュートンリング防止性と透明性を低下させることなく、スパークルの発生を抑制したニュートンリング防止シートとすることができる。

[0025]

このような微粒子は、ニュートンリング防止層表面に微粒子による凸部を形成することにより、また上述したようにニュートンリング防止層に「うねり」を生じさせることにより、ニュートンリングが発生するのを防止するために添加する。微粒子の種類としては、特に限定されず、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、シリカ、カオリン、クレー、タルク等の無機粒子や、アクリル樹脂粒子、ポリスチレン樹脂粒子、ポリウレタン樹脂粒子、ポリエチレン樹脂粒子、ベンゾグアナミン樹脂粒子、エポキシ樹脂粒子等の樹脂粒子が使用できる。このような微粒子としては、取扱い性、および表面形状の制御のしやすさという観点から球形の微粒子を用いることが好ましく、透明性を阻害しないという観点から樹脂粒子を用いることが好ましい。

[0026]

微粒子の平均粒子径は、 $0.5\mu m \sim 3.0\mu m$ 、好ましくは $1.0\mu m \sim 2.5\mu m$ とする。微粒子の平均粒子径を $0.5\mu m$ 以上とすることにより、ニュートンリング防止

層表面に微粒子による凸部を形成させ凹凸形状を形成し、ニュートンリングの発生を防止することができる。また、前記微粒子の平均粒子径を3. 0 μ m未満とすることにより、微粒子の平均粒子径を3. 0 μ m以上の微粒子を用いた場合よりも、微粒子による表示画像の光の散乱を小さいものにすることができるため、スパークルの発生を抑制することができる。

[0027]

また、微粒子の粒子径分布の変動係数は、 $20\% \sim 80\%$ とすることが好ましく、より好ましくは $30\% \sim 70\%$ 、さらに好ましくは $40\% \sim 60\%$ とする。微粒子の粒子径分布の変動係数を20%以上とすることにより、単分散粒子で粒子径が揃っているものとは異なり、ニュートンリング防止層表面で、表示画像の光が微粒子により均一に散乱するのを防ぐため、さらに効果的にスパークルの発生を抑制することができる。また、微粒子の粒子径分布の変動係数を80%以下とすることにより、透明性を保持すると共に、表示画像の光の散乱が大きくなってしまう微粒子を排除できるため、スパークルの発生をさらに抑制することができる。

[0028]

なお、微粒子の粒子径分布の変動係数とは、微粒子の粒子径分布のバラツキ状態を示す値であって、粒子径分布の標準偏差を平均粒子径で除した値の百分率である {変動係数= (不偏分散の平方根) / (算術平均値) ×100% 。

[0029]

また、ニュートンリング防止層の厚みは、 $0.2\mu m \sim 3.5\mu m$ とすることが好ましく、さらには、 $0.5\mu m \sim 3.0\mu m$ とすることが好ましい。ニュートンリング防止層の厚みを $0.2\mu m$ 以上とすることにより、微粒子をニュートンリング防止層から脱落するのを防ぐことができ、また最低限必要な表面硬度を得ることができる。またニュートンリング防止層の厚みを $3.5\mu m$ 以下とすることにより、少なくとも一部の微粒子によりニュートンリング防止層表面に凸部を形成させ、表面に凹凸形状を形成し、ニュートンリングの発生を防止することができる。このようなニュートンリング防止層の凹凸形状は特に限定されないが、JIS B0601:2001におけるRaが $0.07\mu m$ 以上 $0.3\mu m$ 未満、Rs mが $150\mu m$ 未満とすることが好ましい。

[0030]

なお、ニュートンリング防止層の厚みは、微粒子の大きさに関わらず、平均粒子径に対して $20\% \sim 80\%$ 、好ましくは $40\% \sim 80\%$ の厚みとすることが好ましい。平均粒子径に対して 20%以上とすることにより、微粒子がニュートンリング防止層から脱落するのを防ぐことができ、また最低限必要な表面硬度を得ることができる。また、平均粒子径に対して 80%以下とすることにより、表面に微粒子による凸部が形成された際の形状を、表示画像の光の散乱を打ち消し合うことができるような形状とすることができる。また、ニュートンリング防止層表面に微粒子による凸部の数を多く形成することができ、ニュートンリングの発生を防止することができる。

[0031]

なお、ニュートンリング防止層の厚みとは、微粒子により凸部を形成していない樹脂部 分の厚みをいう。

[0032]

また、このようなニュートンリング防止層における微粒子の添加量は、特に限定されないが、ニュートンリング防止層を構成する全固形分中の0.5重量% ~ 1.5 重量%程度とすることが好ましい。微粒子の添加量を0.5重量%以上とすることにより、良好なニュートンリング防止性を付与することができる。1.5重量%以下としたのは、それ以上添加してもニュートンリング防止性は変わらず、透明性の低下とスパークルの発生を招くのみという理由からである。このような本発明のニュートンリング防止シートは、JIS K7 136:2000におけるヘーズが、3.0%未満とすることが好ましい。図1にこのような本発明のニュートンリング防止シートの断面図を示す。

[0033]

ここで、例えば、バインダー成分として熱硬化型樹脂、熱可塑性樹脂を用いて作製した場合には、図2に示すように、ニュートンリング防止層は「うねり」が発生しないため、ニュートンリング防止効果を得ることができない。したがって、ニュートンリングの発生を防止する形状とするためには、微粒子の粒子径を大きくし、かつ添加量を増やさざるを得ず、このようなニュートンリング防止シートでは、透明性の保持とスパークルの発生を抑制しきれない(図3)。

[0034]

なお、ニュートンリング防止層は、電離放射線硬化型樹脂組成物、および微粒子の他、これらの効果を阻害しない範囲であれば他の樹脂や、滑剤、蛍光増白剤、顔料、帯電防止剤、難燃剤、抗菌剤、防カビ剤、紫外線吸収剤、光安定剤、酸化防止剤、可塑剤、レベリング剤、流動調整剤、消泡剤、分散剤、離型剤、架橋剤等の種々の添加剤を含ませることができる。

[0035]

このようなニュートンリング防止シートは、上述の透明支持体の少なくとも一方の面に、上述の電離放射線硬化型樹脂組成物、微粒子、および必要に応じて加えた他の樹脂や添加剤、希釈溶媒を混合してニュートンリング防止層用塗布液を調整し、従来公知のコーティング方法、例えば、バーコーター、ダイコーター、ブレードコーター、スピンコーター、ロールコーター、グラビアコーター、フローコーター、スプレー、スクリーン印刷などによって、塗布、乾燥し、電離放射線を照射することにより硬化させニュートンリング防止層を形成して、得ることができる。

[0036]

また、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプなどから発せられる $100\,\mathrm{nm}\sim 400\,\mathrm{nm}$ 、好ましくは $200\,\mathrm{nm}\sim 400\,\mathrm{nm}$ の渡長領域の紫外線を照射する、又は走査型やカーテン型の電子線加速器から発せられる $100\,\mathrm{nm}$ 以下の波長領域の電子線を照射することにより行うことができる。

[0037]

ここで、一般にタッチパネル用のニュートンリング防止シートは、タッチパネルとした際に、タッチされる方の面が傷つくのを防止するため、表面にハードコート層が設けられて使用される。その際に蛍光灯等の光が映り込んでしまうという問題がある。

[0038]

本発明のニュートンリング防止シートは、上述した透明支持体のもう一方の面に微粒子を含有してなるハードコート層を有するものである。このようなハードコート層を有することにより、タッチパネルとした際に、爪等により表面が傷つくのを防止すると共に、上述したニュートンリング防止層との相乗効果で蛍光灯等の光の映り込みを効果的に防止することができる。

[0039]

微粒子としては、上述したニュートンリング防止層に用いられる微粒子と同様のものを 1 種または 2 種以上を混合して用いることができる。また微粒子の大きさ、粒子径分布の 変動係数についても、スパークルの発生を抑制するという観点から、上述と同様の範囲と することが好ましいが、これに限定されるものではない。微粒子の含有量は、後述する微粒子を含有するためのバインダー成分の種類、ハードコート層の厚みによって異なり、特に限定されるものではないが、バインダー成分の固形分 100 重量部に対して 2 重量部 ~ 20 重量部、さらには 4 重量部 ~ 18 重量部、さらには 6 重量部~ 16 重量部とすることが好ましい。このような範囲とすることにより、ニュートンリング防止シートとした際に、JIS K7136:2000におけるヘーズが 20%以下、さらには 10%以下とすることができ、透明性を維持しつつ映り込み防止性の効果を発揮することができる。

[0040]

次に、微粒子を含有するためのバインダー成分としては、主として熱硬化型樹脂や電離放射線硬化型樹脂組成物を用いることが好ましく、特に、上述した「うねり」を生じさせ

[0041]

電離放射線硬化型樹脂組成物としては、上述したものと同様のものを用いることができる。また、電離放射線硬化型樹脂組成物として、電離放射線硬化型有機無機ハイブリッド樹脂を用いることも好ましい。なお、本発明でいう電離放射線硬化型有機無機ハイブリッド樹脂とは、ガラス繊維強化プラスチック(FRP)で代表される昔からの複合体と異なり、有機物と無機物の混ざり方が緊密であり、また分散状態が分子レベルかそれに近いもので、電離放射線の照射により、無機成分と有機成分が反応して、被膜を形成することができるものである。このような電離放射線硬化型有機無機ハイブリッド樹脂の無機成分としては、シリカ、チタニア等の金属酸化物があげられるが、なかでもシリカを用いたものが好ましい。

[0042]

以上のようなハードコート層は、本発明の機能を損なわない範囲であれば、上述したニュートンリング防止層と同様の種々の添加剤を含ませることができる。

[0043]

このようなハードコート層は、上述の透明支持体のニュートンリング防止層を設ける面とは反対の面に、上述した微粒子、バインダー成分、および必要に応じて加えた添加剤、希釈溶媒を混合してハードコート層用塗布液を調整し、上述した従来公知のコーティング方法によって、塗布、乾燥し、必要に応じて熱によるキュアリングまたは上述と同様に電離放射線を照射することにより硬化させて、形成することができる。なお、以上説明した本発明のニュートンリング防止シートは、ニュートンリング防止層、およびハードコート層のどちらから先に形成して作製してもよい。

[0044]

次に、本発明のタッチパネルは、導電性膜を有する一対のパネル板の前記導電性膜同士が対向するようにスペーサーを介して配置してなる抵抗膜方式のタッチパネルであって、前記導電性膜のいずれか一方または両方の導電性膜が、上述の本発明のニュートンリング防止シートのニュートンリング防止層上に形成されてなるものである。

[0045]

導電性膜としては、In、Sn、Au、Al、Cu、Pt、Pd、Ag、Rhなどの金属や、酸化インジウム、酸化スズ、及びこれらの複合酸化物であるITOなどの金属酸化物からなる透明性および導電性を有する無機の薄膜や、ポリパラフェニレン、ポリアセチレン、ポリアニリン、ポリチオフェン、ポリパラフェニレンビニレン、ポリピロール、ポリフラン、ポリセレノフェン、ポリピリジン等のアロマティック導電性高分子からなる有機の薄膜があげられる。

[0046]

パネル板としては、本発明のニュートンリング防止シートで詳述した透明支持体と同様のもの、または本発明のニュートンリング防止シートを用いることができ、前記透明支持体の一方の面、またはニュートンリング防止層上に、上述の導電性膜を無機の薄膜については真空蒸着法、スパッタリング法、イオンプレーティング法などの真空製膜法で、有機の薄膜についてはニュートンリング防止層と同様の従来公知のコーティング方法によって形成することにより得られる。このようなパネル板はタッチされる方の面には、任意のハードコート処理を施しておくことが好ましい。

[0047]

スペーサーは、一対のパネル板とした時のパネル板同士間の空隙を確保したり、タッチ時の荷重を制御したり、またタッチ後の各パネル板との離れを良くしたりするために形成される。このようなスペーサーは、一般に透明な電離放射線硬化型樹脂が用いられ、フォトプロセスで微細なドット状に形成して得ることができる。また、ウレタン系樹脂などを用いて、シルクスクリーン等の印刷法により微細なドットを多数印刷することにより形成

することもできる。また、無機物や有機物からなる粒子の分散液を噴霧、または塗布し乾燥することによっても得ることができる。スペーサーの大きさは、タッチパネルの大きさによって異なるので一概にいえないが、一般に直径 $3~0~\mu$ m \sim $1~0~0~\mu$ m、高さ $1~\mu$ m \sim $1~5~\mu$ mのドット状に形成され、 $0.~1~\mu$ m \sim $1~0~\mu$ mの一定の間隔で配列される。

[0048]

以上のように、本発明によれば、透明支持体の一方の面に、電離放射線硬化型樹脂組成物、および平均粒子径が $0.5\mu m \sim 3.0\mu m$ 、粒子径分布の変動係数が $20\% \sim 80\%$ である微粒子から形成されてなるニュートンリング防止層を有するニュートンリング防止シートであるため、ニュートンリング防止性、および透明性に優れ、かつ高精細化されたカラーディスプレイを用いたタッチパネルに使用した際にも、スパークルが発生しにくいニュートンリング防止シートが得られる。また、透明支持体のもう一方の面に微粒子を含有してなるハードコート層を有するものとした場合には、蛍光灯等の光の映り込み防止性の優れたニュートンリング防止シートが得られる。また、本発明のニュートンリング防止シートを用いたタッチパネルは、カラー画面のギラつきを目立たなくすることができるため、ディスプレイの視認性を低下させないタッチパネルとすることができる。

【実施例】

[0049]

以下、本発明を実施例に基づいてさらに詳細に説明する。なお、本実施例において「部」、「%」は、特に示さない限り重量基準である。

[0050]

1. ニュートンリング防止シートの作製

[実施例1]

透明支持体として厚み 1 8 8 μ mのポリエステルフィルム (コスモシャインA4300: 東洋紡績社) の一方の面に、下記処方のニュートンリング防止層用塗布液を塗布、乾燥し、高圧水銀灯で紫外線を照射して厚み 1 . 5 μ mのニュートンリング防止層を形成し、実施例 1 のニュートンリング防止シートを作製した。

[0051]

<実施例1のニュートンリング防止層用塗布液の処方>

- ・電離放射線硬化型樹脂組成物(固形分100%) 50部
- (ビームセット575:荒川化学工業社)

・微粒子 (アクリル系樹脂粒子) 0.4部

(平均粒子径 2 μ m) (変動係数 5 0 %)

・イソプロピルアルコール

200部

[0052]

[実施例2]

実施例 1 のニュートンリング防止層用塗布液の微粒子を、平均粒子径 1 μ m、変動係数 6 5 %のアクリル系樹脂粒子に変更し、厚み 0. 7 μ mのニュートンリング防止層を形成した以外は、実施例 1 と同様にして、実施例 2 のニュートンリング防止シートを作製した

[0053]

「実施例3]

実施例 1 のニュートンリング防止層用塗布液の微粒子を、平均粒子径 3 μ m、変動係数 4 2 %のアクリル系樹脂粒子に変更し、厚み 2 . 4 μ mのニュートンリング防止層を形成した以外は、実施例 1 と同様にして、実施例 3 のニュートンリング防止シートを作製した

[0054]

[実施例4]

実施例 1 のニュートンリング防止層用塗布液の微粒子を、平均粒子径 2 μ m、変動係数 3 3 %のアクリル系樹脂粒子に変更した以外は、実施例 1 と同様にして、実施例 4 のニュートンリング防止シートを作製した。

[0055]

「比較例1]

実施例1のニュートンリング防止層用塗布液の微粒子を、平均粒子径9μm、変動係数 22%のアクリル系樹脂粒子に変更し、厚み7μmのニュートンリング防止層を形成した 以外は、実施例1と同様にして、比較例1のニュートンリング防止シートを作製した。

[0056]

「比較例2]

実施例1と同様のポリエステルフィルムの一方の面に、下記処方のニュートンリング防 止層用塗布液を塗布、乾燥し、厚み1.5 μmのニュートンリング防止層を形成した後、 60℃、48時間キュアリングして、比較例2のニュートンリング防止シートを作製した

[0057]

<比較例2のニュートンリング防止層用塗布液の処方>

- ・熱硬化型樹脂(アクリル系樹脂)(固形分50%)81部 (アクリディックA807:大日本インキ化学工業社)
- ・架橋剤 (ポリイソシアネート) (固形分60%) 16部 (タケネートD110N:三井武田ケミカル社)
- 0.4部 ・微粒子(アクリル系樹脂粒子)
- (平均粒子径 2 μ m) (変動係数 5 0 %)

7 7 部 ・メチルエチルケトン 7 6 部 ・トルエン

[0058]

「比較例3]

比較例 2 のニュートンリング防止層用塗布液の微粒子を、平均粒子径 9 μm、変動係数 22%のアクリル系樹脂粒子に変更し、厚み7μmのニュートンリング防止層を形成した 以外は、比較例2と同様にして、比較例3のニュートンリング防止シートを作製した。

[0059]

「比較例4]

比較例3のニュートンリング防止層用塗布液の微粒子の添加量を5部に変更した以外は 、比較例3と同様にして、比較例4のニュートンリング防止シートを作製した。

[0060]

[比較例5]

実施例1のニュートンリング防止層用塗布液の微粒子を、平均粒子径3μm、変動係数 95%のアクリル系樹脂粒子に変更した以外は、実施例1と同様にして、比較例5のニュ ートンリング防止シートを作製した。

[0061]

「比較例6]

実施例 1 のニュートンリング防止層用塗布液の微粒子を、平均粒子径 2 μ m、変動係数 5%のアクリル系樹脂粒子に変更した以外は、実施例1と同様にして、比較例6のニュー トンリング防止シートを作製した。

[0062]

2. タッチパネルの作製

(1) 上部電極のパネル板の作製

上記実施例1~4、および比較例1~6のニュートンリング防止シートのニュートンリ ング防止層上に、厚み約20nmのITOの導電性膜をスパッタリング法で形成し、もう 一方の面に接着剤を介してハードコートフィルム(KBフィルムNO5S:きもと社)を貼合 し、4型の大きさ(縦87.3mm、横64.0mmの長方形)に切り取り、上部電極の パネル板をそれぞれ作製した。

[0063]

(2) 下部電極のパネル板の作製

透明支持体として、厚み 1 mm の強化ガラス板の一方の面に、厚み約 2 0 nm の I TO の導電性膜をスパッタリング法で形成し、 4 型の大きさ(縦 8 7.3 mm、横 6 4.0 m mの長方形)に切り取り、下部電極のパネル板を作製した。_

[0064]

(3) スペーサーの作製

上記下部電極のパネル板の導電性膜を有する面に、スペーサー用塗布液として電離放射線硬化型樹脂(Dot Cure TR5903:太陽インキ社)をスクリーン印刷法によりドット状に印刷した後、高圧水銀灯で紫外線を照射して、直径 $50\mu m$ 、高さ $8\mu m$ のスペーサーを1mmの間隔で配列させた。

[0065]

(4) タッチパネルの作製

上記上部電極のパネル板と下部電極のパネル板とを、各パネル板の導電性膜同士を対向するように配置させ、接着部分が表示面の領域外となるよう、厚み 30μ m、幅3mmの両面接着テープで縁を接着し、実施例 $1\sim4$ 、および比較例 $1\sim6$ のタッチパネルを作製した。

[0066]

3. 評価

実施例 $1\sim 4$ 、および比較例 $1\sim 6$ で得られたニュートンリング防止シートについて、ニュートンリング防止性と透明性について評価した。また、実施例 $1\sim 4$ 、および比較例 $1\sim 6$ で得られたタッチパネルについて、スパークルの防止性について評価した。評価結果を表 1 に示す。

[0067]

(1) ニュートンリング防止シートのニュートンリング防止性

実施例 $1 \sim 4$ 、および比較例 $1 \sim 6$ で得られたニュートンリング防止シートを、表面が平滑なガラス板の上にニュートンリング防止層が密着するように乗せて指で押しつけ、ニュートンリングが発生するかどうかを目視にて評価した。評価は、ニュートンリングが発生しなかったものを「〇」、ニュートンリングがわずかに発生したものを「△」、ニュートンリングが発生したものを「×」とした。

[0068]

(2) ニュートンリング防止シートの透明性

実施例 $1\sim 4$ 、および比較例 $1\sim 6$ で得られたニュートンリング防止シートのヘーズを、JIS K7136:2000に基づいて、ヘーズメーター(NDH2000:日本電飾社)を用いて測定し、評価した。評価は、測定値が 3.0%未満であったものを「 \bigcirc 」、3.0%以上であったものを「 \bigcirc 」とした。なお、測定はニュートンリング防止層を有する面から光を入射させた。

[0069]

(3) タッチパネルのスパークル防止性

実施例 $1\sim 4$ 、および比較例 $1\sim 6$ のタッチパネルについて、CRTディスプレイの表示画面をグリーン 1 0 0 %に画像表示させ、タッチパネルの下部電極側を表示画面に密着させて、目視にて評価した。評価は、ギラつきが目立たないものを「〇」、ギラつきがほとんど目立たないものを「△」、ギラつきが明らかに目立つものを「×」とした。

[0070]

【表1】

	ニュートンリング	透明性	スパークル
	防止性		防止性
実施例1	0	0	0
実施例2	0	0	0
実施例3	0	0	0
実施例4	0	0	0
比較例1	0	0	×
比較例2	×	0	0
比較例3	×	0	×
比較例4	0	×	×
比較例5	0	×	Δ
比較例6	0	0	×

[0071]

表1の結果からも明らかなように、実施例 $1 \sim 4$ のニュートンリング防止シートは、バインダー成分として電離放射線硬化型樹脂組成物を用いたため、ニュートンリング防止層表面に「うねり」が発生し、微粒子の添加量を少量としてもニュートンリング防止性の優れたものとなり、また、このようにスパークルの発生原因となる微粒子の添加量を少量にし、さらに、微粒子の大きさや変動係数を特定のものとしたため、微粒子による表示画像の光の散乱を小さくし、かつ均一に散乱するのを防ぐため、高精細化されたCRTカラーディスプレイを用いたタッチパネルに使用した際にも、スパークルの発生を抑制することができた。また、実施例 $1 \sim 4$ のニュートンリング防止シートを用いたタッチパネルは、カラー画面のギラつきが目立たず、ディスプレイの視認性を低下させないタッチパネルとすることができた。

[0072]

一方、比較例1のニュートンリング防止シートは、実施例 $1\sim4$ と同様に、バインダー成分として電離放射線硬化型樹脂組成物を用いたため、ニュートンリング防止性の優れるものであったが、粒子径の大きい微粒子を用いたため、微粒子による表示画像の光の散乱は大きくなり、スパークルの発生を抑制できないものとなった。

[0073]

比較例2のニュートンリング防止シートは、バインダー成分として熱硬化型樹脂を用いたため、ニュートンリング防止層表面に「うねり」が発生せず、また微粒子の粒子径が小さいため、ニュートンリング防止効果を得ることができないものとなった。また、比較例2のニュートンリング防止シートは、スパークルは発生しなかったが、微粒子が異物のように見え、見た目の悪いものとなった。

[0074]

比較例3のニュートンリング防止シートは、比較例2と同様に、バインダー成分として 熱硬化型樹脂を用いたため、ニュートンリング防止層表面に「うねり」が発生せず、また 微粒子の添加量が少ないため、ニュートンリング防止効果を得ることができないものとな った。また、粒子径の大きい微粒子を用いたため、微粒子による表示画像の光の散乱は大 きくなり、スパークルの発生を抑制できないものとなった。

[0075]

比較例4のニュートンリング防止シートは、比較例3と同様に、バインダー成分として 熱硬化型樹脂を用いたため、ニュートンリング防止層表面に「うねり」が発生しなかった が、粒子径を大きく、添加量を多くしたため、ニュートンリング防止性の優れたものとな った。しかし、粒子径の大きい微粒子を用いたため、微粒子による表示画像の光の散乱は 大きくなり、スパークルの発生を抑制できないものとなった。また、透明性の低いものと なった。

[0076]

比較例5のニュートンリング防止シートは、実施例1~4と同様に、バインダー成分と して電離放射線硬化型樹脂組成物を用いたため、ニュートンリング防止性の優れるもので あったが、変動係数の大きい微粒子を用いたことにより、粒子径の大きい微粒子も含有し ていたため、微粒子による表示画像の光の散乱が大きくなり、実施例1~4の方がスパー クル防止効果の高いものとなった。また、透明性の低いものとなった。

[0077]

比較例6のニュートンリング防止シートは、実施例1~4と同様に、バインダー成分と して電離放射線硬化型樹脂組成物を用いたため、ニュートンリング防止性の優れるもので あったが、変動係数の小さい微粒子を用いたことにより、表示画像の光が微粒子により均 一に散乱してしまったため、スパークルの発生を抑制できないものとなった。

[0078]

「実施例5]

実施例1と同様にして、ポリエステルフィルムの一方の面にニュートンリング防止層を 形成し、もう一方の面には下記処方のハードコート層用塗布液を塗布、乾燥し、高圧水銀 灯で紫外線を照射して厚み約5μmのハードコート層を形成し、実施例5のニュートンリ ング防止シートを作製した。

[0079]

<実施例 5 のハードコート層用塗布液の処方>

- ・電離放射線硬化型有機無機ハイブリッド樹脂 100部
- (固形分50%) (デソライト7503: JSR社)

・微粒子(シリカ)

5部

(平均粒子径3.5μm) (変動係数60%)

- ・メチルエチルケトン
- ・トルエン

4 0 部 15部

[0080]

「実施例6」

実施例5のハードコート層用塗布液を、下記処方のハードコート層用塗布液に変更した 以外は、実施例5と同様にして、実施例6のニュートンリング防止シートを作製した。

[0081]

<実施例6のハードコート層用塗布液の処方>

- ·電離放射線硬化型樹脂組成物(固形分100%) 30部 (ダイヤビームUR6530:三菱レイヨン社)
- ・微粒子(シリカ)

1.5部

(平均粒子径4.5μm) (変動係数60%)

- ・微粒子 (シリカ) (平均一次粒子径30 n m) 1.5部 (アエロジル50:日本アエロジル社)
- 0.15部 · 光重合開始剤

(イルガキュア651:チバスペシャルティケミカルズ社)

4 0 部 ・メチルエチルケトン 3 0部 ・トルエン

[0082]

「比較例 7]

比較例4と同様にして、ポリエステルフィルムの一方の面にニュートンリング防止層を

[0083]

「比較例8]

比較例 4 と同様にして、ポリエステルフィルムの一方の面にニュートンリング防止層を 形成し、もう一方の面には実施例 6 と同様にしてハードコート層を形成し、比較例 8 のニュートンリング防止シートを作製した。

[0084]

「比較例9]

実施例5と同様にして、ポリエステルフィルムの一方の面にハードコート層を形成し、 もう一方の面にはニュートンリング防止層を形成しなかったものを、比較例9のシートと した。

[0085]

「比較例10]

実施例6と同様にして、ポリエステルフィルムの一方の面にハードコート層を形成し、 もう一方の面にはニュートンリング防止層を形成しなかったものを、比較例10のシート とした。

[0086]

実施例 5、6、および比較例 7~10のシートの映り込み防止性について評価した。評価は、3波長蛍光灯ランプ下で黒い下地の上に各シートをハードコート層が上面になるように置き、蛍光灯のランプの輪郭が映り込まないものを「〇」、輪郭がほとんど映り込まないものを「△」、輪郭がはっきりと映り込むものを「×」とした。結果を表2に示す。

[0087]

また、これらのシートのJIS K7136:2000におけるヘーズを併せて表 2 に示す。なお、測定はハードコート層を有する面から光を入射させた。

[0088]

また、実施例 5、6、および比較例 $7\sim1$ 0のシートを用いて、上記と同様にしてタッチパネルを作製し、スパークル防止性について評価した。評価の基準は、上記と同様とした。結果を併せて表 2 に示す。

[0089]

【表2】

	映り込み	ヘーズ	スパークル
	防止性		防止性
実施例5	0	9%	0
実施例6	0	9%	Δ
比較例7	Δ	20%	×
比較例8	Δ	20%	×
比較例9	×	7%	0
比較例10	×	7%	Δ

[0090]

表2の結果から明らかなように、ニュートンリング防止層を有する実施例5、6、および比較例7、8のニュートンリング防止シートは、ニュートンリング防止層を有していない比較例9、10のシートと比べて、映り込み防止性の高いものとなり、さらに本発明のニュートンリング防止シートである実施例5、6は、特定のニュートンリング防止層としているため、その相乗効果により従来のニュートンリング防止層である比較例7、8と比

べて、映り込み防止性の優れたものとなった。

[0091]

また、実施例5のニュートンリング防止シートは、実施例6のニュートンリング防止シートよりもハードコート層がスパークルの発生しにくいものであったため、実施例6よりもスパークル防止性の優れたものとなった。

[0092]

しかし、比較例7、8は、表1の比較例4の結果から分かるように、ニュートンリング 防止層にスパークルが発生してしまうため、ハードコート層のスパークル防止性能に関わ らずこのような低い評価となった。

【図面の簡単な説明】

[0093]

- 【図1】本発明のニュートンリング防止シートの一実施例を示す断面図
- 【図2】他のニュートンリング防止シートの一実施例を示す断面図
- 【図3】他のニュートンリング防止シートの他の実施例を示す断面図

【符号の説明】

[0094]

- 1・・・・ニュートンリング防止シート
- 2 · · · 透明支持体
- 3 ・・・・ニュートンリング防止層
- 31・・・微粒子
- 32・・・バインダー成分

【図2】

【図3】

【書類名】要約書

【要約】

【課題】 ニュートンリング防止性に優れ、かつ高精細化されたカラーディスプレイを用いたタッチパネルに使用した際にも、スパークルが発生しにくいニュートンリング防止シート、およびこれを用いたタッチパネルを提供する。

【解決手段】 本発明のニュートンリング防止シート 1 は、透明支持体 2 の一方の面に電離放射線硬化型樹脂組成物(バインダー成分 3 2)、および平均粒子径が 0 . 5 μ m \sim 3 . 0 μ m、粒子径分布の変動係数が 2 0 % \sim 8 0 % である微粒子 3 1 から形成されてなるニュートンリング防止層 3 を有するものである。

【選択図】 図1

特願2004-067105

出願人履歴情報

識別番号

[000125978]

1. 変更年月日 [変更理由]

1996年 4月 8日

更理田」 住 所

住所変更 東京都新宿区新宿2丁目19番1号

氏 名

株式会社きもと