

Mathematics: Units 3C and 3D Formula sheet

Number and algebra: Calculus

Differentiation

If f(x) = y, then $f'(x) = \frac{dy}{dx}$

If $f(x) = x^n$, then f(x) = f(x)

If $f(x) = e^x$, then $f'(x) = e^x$

$\frac{xp}{np} \times \frac{np}{\sqrt{kp}}$	$(x)\beta = n$ pue $(n) J = \lambda$	$(x)_{i}\delta((x)\delta)_{i}$	((x)b) ∫	9lu1 nisdO
$\frac{z^{\Lambda}}{\frac{xp}{\Lambda p} n - \Lambda \frac{xp}{np}}$	$\frac{\Lambda}{n}$	$\frac{\zeta((x)\delta)}{(x)\int_{a}^{b} (x)\int_{a}^{b} -(x)\delta(x)\int_{a}^{b}$	$\frac{(x)b}{(x)J}$	Quotient rule
$\frac{xp}{\Lambda p} n + \Lambda \frac{xp}{np}$	лп	$(x)_{i}\delta(x)_{j}+(x)\delta(x)_{i}$	$(x)\delta(x)J$	Product rule
, λ	K	, λ	λ	
Leibniz Motation		Function notation		

Integration

$$2 + x_0 = x p_x = x$$

Fundamental Theorem of Calculus: $\frac{d}{dx} \int_a^x f(t) dt = f(x)$ and $\int_a^b f'(x) dx = f(b) - f(a)$

Incremental formula: $\delta y \approx \frac{dy}{dx} \delta x$

Space and measurement: Measurement

Trapezium: Area = $\frac{1}{2}(a+b) \times \text{height}$, where a and b are the lengths of the parallel sides

Prism: Volume = Area of base \times height

Cylinder: Total surface area = $2\pi rh + 2\pi r^2$ Volume = $\pi r^2 \times h$

Pyramid: Volume = $\frac{1}{3}$ × area of base × height

ę.

Cone: Total surface area = $\pi rs + \pi r^2$, s is the slant height Volume = $\frac{1}{3} \times \pi r^2 \times h$

Sphere: Total surface area = $4\pi r^2$ Volume = $\frac{4}{3}\pi r^3$

Volume of solids of revolution about the axes: $\int x y^2 dx$ and $\int x x^2 dy$

100 lionno Curriculum Columbia

2010/5314 Council 2010

MATHEMATICS: UNITS 3C AND 3D

2

FORMULA SHEET

Space and measurement: Rate

If
$$y' = ky$$
, then $y = Ae^{kx}$

Chance and data: Quantify chance

Probability Laws

$$P(A) + P(\overline{A}) = 1$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A)P(B/A) = P(B)P(A/B)$$

Binomial distributions: Mean: $\mu = np$ and standard deviation: $\sigma = \sqrt{np(1-p)}$

Chance and data: Represent data

Central Limit Theorem:

Mean of the sample means, $\overline{\chi}$, equals the population mean, μ

Standard deviation of the sample means equals $\frac{\sigma}{\sqrt{n}}$

where σ is the population standard deviation.

Chance and data: Interpret data

Infer the mean of a population from a sample using \overline{x} - $z \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z \frac{\sigma}{\sqrt{n}}$

where z is the standard score for a confidence interval.

Note: Any additional formulas identified by the examination panel will be included in the body of the particular question.