Quiz 1, Time for quiz: max1 hour Allowed help: Std. mathematical and physical tables, calculator, no internet, no textbook. The test is a service only
1. I'm really looking forward to take this test [] (cross mark the politically correct alternative)
Cross mark only the correct course code which you register for [] FYS4310 [] FYS9310, 3 Cross mark the correct statement(s) only. In a CVD reactor for Si epitaxial growth the feed gas is $SiCl_2H_2$ and H_2 . The feed flow rates are 0.2 l/min and 4 l/min respectively. The HCl gas concentration in the chamber is proportional to [] $\left[SiCl_2H_2\right]^{\frac{1}{2}}$
Cross mark the correct statement(s) only 'The energy required to create a Si vacancy (free energy of creation) with a net positive charge of one elementary charge is less than that required to to create a neutral one' This statement is [] never correct for Si [] correct for n-type Si [] always correct for float zone grown Si
 Cross mark the correct statement(s) only The thermal oxidation growth rate for SiO₂ on Si [] is faster for wet oxidation than for dry oxidation because the equilibrium concentration of water molecules are higher than that of oxygen at identical gas pressure. [] is increasing exponentially with the doping concentration,

6 (*	2210 stuff)
The	figure to th

ne right shows a CV curve of a MOS capacitor (Metal-Oxide-Semiconductor). The sign of the voltage is defined as positive when the metal is a positive electrostatic potential with respect to the semiconductor. The graph tell if the semiconductor is n-type or n-type

The doping type of the semiconductor is.
[] n-type
[] p-type
[] don't know
7
From a CV curves MOS capacitor structures yielding C-V curves like that shown in problem 6 can be used to find:
[] The dielectric constant of Si
[] The area density of charges in the oxide
[] The break down voltage of the oxide
[] The elementary charge
8
When growing CVD Si at high temperature, the rate limiting mechanism in the growth process is.
[] Step creation
[] Step flow velocity
[] Chemical reaction rate
[] Space charge neutrality
[] Gas transport
[] Space charge neutrality
[] Recombination

Describe Henry's law in the space provided before problem 10

10
Consider MBE growth of GaAs. Mark the correct statements only.
[] The growth is typically performed at atmospheric pressure
[] The growth rate (at constant temperature) varies parabolic with time
[] The As vapor pressure is much higher than that of Ga
[] Crystals can be grown fast, but the quality can not be as good as Czochralski grown (bulk) material
[] Surface diffusion of ad atoms occur at the growth temperature.
[] AlAs is grown in a different growth chamber than where GaAs is grown
[] MBE is presently the only technique used for growing Mo(molybdenum) doped GaAs.
11
What are the dominant diffusing species during so-called wet oxidation of Si.
[] water
[] silicon
[] oxygen
[] nitrogen
[] vacancies
[] hydrogen and oxygen molecules
12
There are many acronyms used throughout the course. Please write the what the following acronyms stands for
[a] VLSI=Very Large Scale Integration
[b] MOS =
[c] CVD =
[d] MBE =
[e] LPCVD =
[f] ALE =
[g] SLS =

13
Give an order of magnitude answer to these questions
[a] In 1 cm 3 of GaAs there are 5Exx atoms where xx =
[b] To grow a 1 μ m thick oxide on Si in steam at 1000 °C, we need to grow 1Exx sec, where xx=
[c] The activation energy for vacancy concentration in Si is 2Exx eV where xx=
and where the value for the different charge states adds a spread about 1Eyy eV where yy =
[d] The solid solubility of As in Si at 1100 °C is about 1Exx cm ³ where xx=
[e] The bandgap of InAs is about 3Exx eV where xx=
14
The growth of an epitaxial Si layer in a CVD chamber is diffusion limited, then the instant growth rate dx/dt varies with time as
{where k is a parameter independent of t, and x is the thickness}
[] $k*t$
$\lceil \rceil \ln(k^*t)$
$[] \exp(-k^*t)$
[] k
$[\] k^*t^{1/2}$
15
The segregation coefficient is important for Czochralski growth because
[] The sign indicates whether striations will develop
[] It explains why float-zone technique yields less oxygen
[] It controls nucleation of precipitates in the crystal towards the seed
[] It is zero

16
The following statements can be true or false. Check with a cross the statements that are TRUE only
[x] This is a test
[] The most common material for the crucible in Czochralskii growth of Si is silica
[] Crystalline Si is too brittle to withstand the processing and handling used for making
electronic devices
[] A getter process is done during float Zone growth to get as few vacancies as possible in Si
[] Twins often occur when growing epitaxial Si on wafers with the surface normal along <111>
[] When silicon is exposed to water vapor at 1000 °C, the surface will be covered by silicon monoxide
[] * In silicon the electron mobility in n-type is higher than the hole mobility when the doping concentration
is the same in n and p type.
[] In a piece of crystalline Si the room temperature electron mobility is highrer than that of the hole in the same material, at all doping concentrations in the range 1E11 cm ³ to 1E20 cm ³ .
[] Vacancies ca condense on an atomic plane in a disk like fashion, creating a stacking fault.
The dislocation bounding that stacking fault is called an extrinsic dislocation
[] The equilibrium vacancy concentration in Si, depends upon the doping concentration
[] The vacancy concentration in Si decreases with increasing temperature as $1/T$.
[] It is fundamentally impossible to grow a dislocation free crystal at a finite temperature
17
Which of these denote a polar surface?
[] A cold surface
[] A surface which is biased
[] A surface which is biased positively
[] The surface facing the gas flow in Atomic Layer Deposition
[] An AlAs (111) surface

When growing GAAs on Si(111) surface, by MBE the first atomic layer is likely to be [] A (211) layer [] A Ga layer [] A 7x7 reconstructed layer [] An As layer
Which of these materials can be called a semiconductor. Mark all that apply! [] A (211) layer [] Single crystal Silicon [] Silica [] Aluminum saturated with silicon [] Indium Arsenide doped with Zn [] Silicon rubber [] Silane [] Gallium phosphide at 100 °C [] Ice [] Sapphire [] Tin at 30 °C [] Zink Selenide [] Graphene
The figure below shows the solubility of B and A in a *new insulator* in contact with Si as a function of temperature. The Insulator is in contact with regions of Si that is rich in B (boron) and other that are rich in As at the same concentration. When annealing at 1000 °C, which part of the insulator will first reach 10 percent of the solubility limit? [] That above the A region [] That above the B region [] I don't know

