CS 2

Introduction to **Programming Methods**

First Foray: Sorting

How do you sort a bunch of integers?

- setup: an array A of int, of size A.length
 - later on, we'll deal with arbitrary types, not just int
- now, how do we proceed?
 - not surprisingly, many algorithms to pick from
- let's start with a simple one: Bubble Sort
 - repeatedly step through the list, looking at pairs of adjacent items and swapping them if needed

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Bubble Sort Live 72854 27548 25478 24578 27854 27548 25478 24578 27854 25748 24578 all done 27584 25478 27548 the max value bubbled to the end can you optimize it a bit? do we always need to go to the end?

```
Bubble Sort Code
                                                            [Java]
public static void bubbleSort(int[] A)
  int i, temp;
  int n_remain = A.length-1;
                                            // elements from 0 to n_left-1 are left to sort
  while (n_remain>0) {
                                            // until done
                                            // initialize the last one swapped
    last = 0:
    last = 0;

for (i = 0; i<n_remain-1; i++) {

    if (A[i] > A[i+1]) {

        temp = A[i];

        A[i] = A[i+1];

        A[i+1] = temp;
                                           // bubbling up
// if out of order
                                            // ...then swap the two
          last = i:
                                            // & remember which one was last swapped
    n_remain = last;
                                            // from n left and up is sorted
                CS2 - INTRODUCTION TO PROGRAMMING METHODS
```

Questions to think about

Efficiency

- assuming that we only count #comparisons
 - what's the best case scenario?
 - what's the worst case scenario?
- can we do better than that?
 - what's the theoretical limit of #comparisons?

Generality

- "template" sorting code
 - that works for any type of value?
 - you just saw that last week...

Computational Complexity

How to analyze an algorithm?

- time to code, time to debug, and time to run
 - but different inputs/machine/memory size/coding details/... lead to different timings
- more abstract way: expected performance
 - without knowing the environment, or even the code!
 - interested in how *scalable* the algorithm is
 - think "order of magnitude" for large inputs
 - \blacksquare often counts number of operations for an input size of n
 - example: the simplest way to compute an average of n values will take about n operations (n-1 additions, 1 division)

C52 - INTRODUCTION TO PROGRAMMING METHODS

Complexity Analysis Notation

Big-O notation

- only cares about most significant term in n
 - details do not matter for large n... (asymptotic behavior)
 - n+4 operations \rightarrow O(n); n²+3n ops \rightarrow O(n²); 10 ops \rightarrow O(l); n!+4 \rightarrow O(n!) and you are in trouble...
 - we'll say that an algorithm has constant / linear / quadratic / {...} complexity based on its O(.)
- more formally:
 - O(f(n)) means $Time(n) \le C$. f(n) for large enough n
 - $\Omega(g(n))$ means C. $g(n) \leq Time(n)$ for infinitely many n
 - $\Theta(h(n))$ means O(h(n)) and $\Omega(h(n))$

CS2 - INTRODUCTION TO PROGRAMMING METHODS

What Is It Good For?

Predicting computational times

- if your algorithm is O(n) and it takes 1 second for n=1000, how long will it take for n=100,000?
 - -100 s.
- what if it's $O(n^2)$?
 - -10,000 s.
- ...if nothing worse happens for large n's
 - running out of memory, you playing angry birds while it computes, etc..., can make it slower than expected

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Additional Considerations

Let's go back to Bubble Sort

- what is its complexity?
- well, hard to say...
 - best case scenario? worst case scenario? average case?

Usually, one uses worst case scenario

- n-1+n-2+n-3+...+1 ops = ??
 - 1+2+3+...+n = n(n+1)/2 (easy to prove)
- So O(n²) it is.
- best case? "average"?

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Different Sorting, Better Sorting

Slew of quadratic-time sorting methods

- insertion sort
 - $\hspace{0.5cm} \hbox{ insert k^{th} element within first sorted $(k\text{-}1)$ elements } \\$

sorted next to be inserted

3 4 7 12 14 14 20 21 33 38 10 59 9 23 28 16

temp

10

3 4 7 10 12 14 14 20 21 33 38 55 9 23 28 16

sorted

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Different Sorting, Better Sorting

Slew of quadratic-time sorting methods

- insertion sort
 - insert k^{th} element within first sorted (k-1) elements
- see also selection sort
 - select smallest and move to front; repeat

Now here's a stupid idea...

- n twice larger, complexity 4 times larger
- but half smaller $\rightarrow \frac{1}{4}$ the time complexity
- so what about splitting the problem in 2?
 - and somehow "merge" the two halves quickly...

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Bottom-up Merge Sort

A faster approach (suppose n=2^m for now)

- idea: split into smaller sets, then merge
 - m multiple passes; array divided into smaller subarrays of size 2^k (k-0...m-1) then adjacent subarrays are merged
 - merging two sorted lists is fast (complexity?)
 - so timing is improved!
 - > code a bit messy (indices not trivial to get right the first time)
 - > total complexity?

 http://andreinc.net/2010/12/26/bottom-up-merge-sort-non-recurs

But... much simpler if we use recursion

divide and conquer—more on this later

C52 - INTRODUCTION TO PROGRAMMING METHODS

12

Before then...

Assuming a comparison-based method... what is the best complexity we can get?

- for n numbers, how many permutations?
 - $\mathbf{n} \cdot (\mathbf{n} 1) \cdot (\mathbf{n} 2) \dots \cdot 2 \cdot 1 = \mathbf{n}!$
- the sorted list is only *one* of these n! combos
- each comparison kills half the permutations
 - e.g., for 1,2,3: (123), (132), (213), (231), (312), (321)
 - if A[1]\(\text{A[2]}\), then we are left with (123), (132), (231)
 - like the "20 questions" game... (can find one out of 2²⁰)
- so sorting is $\Omega(\log_2 n!) = \Omega(n \log n)$ (Stirling's)

CS2 - INTRODUCTION TO PROGRAMMING METHODS

13