MTH 375

Fall 2022

Hw 4 - due 2/10/2022

Key Concepts: Rao-Blackwell Theorem UMVUE, Lehman-Sheffé Theorem.

Read Sec 4.3. Do

#1. Let X_1, \ldots, X_n be iid Binomial(1, p) random variables.

- (a) Write out the likelihood function $L(p|x_1,\ldots,x_n)$, and find a sufficient statistic for p.
- (b) Use your answer to (a) to find an UMVUE for p.
- (c) Evaluate $E(\overline{X}^2)$. **Hint**: Use $E(\overline{X})$ and $V(\overline{X})$.
- (d) Use your answer to (c) to find an UMVUE for p^2 .
- #2. Let X_1, \ldots, X_n be iid Normal $(\mu, 1)$. We know that \overline{X} is an UMVUE for μ .
- (a) Find an UMVUE for μ^2
- (b) We know that \overline{X} is $N(\mu, \sigma^2)$, and with the same μ as X_i , and we know σ^2 . (It's not
- 1.) Use the MGF of \overline{X} to compute $E(\overline{X}^3)$.
 - (c) Use (b) to find an UMVUE for μ^3 .
 - #3. Let $X_1 \ldots X_n$ be iid with common pdf

$$f(x;\theta) = \frac{3x^2}{\theta^3}$$
 for $0 \le x \le \theta$.

- (a) Find the likelihood function $L(\theta|x_1,\dots x_n)$, and find a sufficient statistic T for θ .
- (b) Find the pdf of T and E(T), and find an UMVUE for θ .
- #4. Let $X_1 \ldots, X_n$ be iid with common pdf

$$f(x; \theta_1, \theta_2) = \frac{1}{\theta_1} e^{-(x-\theta_2)/\theta_1}$$
 for $x > \theta_2$.

- (a) Show that the pair $(\sum_{k=1}^n X_k, X_{(1)})$ is sufficient for (θ_1, θ_2) . We use the notation $X_{(1)} = \min\{X_1, \dots, X_n\}$.
 - (b) Find a pair (T_1, T_2) which is an UMVUE for (θ_1, θ_2) .