

10/538854

24. MÄRZ 2003 P. DE 03/03941
BUNDESREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

RECEIVED
25 MAR 2001
WIPO PCT

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

RECEIVED
25 MAR 2004
WIPO PCT

Aktenzeichen: 103 29 270.5

Anmeldetag: 30. Juni 2003

Anmelder/Inhaber: Koenig & Bauer Aktiengesellschaft,
97080 Würzburg/DE

Bezeichnung: Drucktcheinheit für einen Drucktuchzylinder
einer Rotationsdruckmaschine und ein Verfahren
zur Herstellung einer Drucktcheinheit für einen
Drucktuchzylinder

IPC: B 41 N, B 41 F

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 12. März 2004
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Steinle

Zusammenfassung

Die Erfindung betrifft eine Drucktucheinheit für einen Drucktuchzylinder einer Rotationsdruckmaschine, mit einer formstabilen Trägerplatte und einem auf der Außenseite der Trägerplatte befestigten Drucktuch, wobei das vorlaufende und/oder das nachlaufende Ende der Trägerplatte mit einem abgekanteten, drucktuchfreien Schenkel am Drucktuchzylinder festlegbar ist. Zumindest ein Ende des Drucktuchs steht mit seiner Innenseite ein Stück weit über die Abkantung des zugeordneten Schenkels der Trägerplatte über, wobei zwischen der Abkantung und der Innenseite des Drucktuchs ein Stützelement zur Abstützung des Überstands angeordnet ist.

Beschreibung

Drucktucheinheit für einen Drucktuchzylinder einer Rotationsdruckmaschine und ein Verfahren zur Herstellung einer Drucktucheinheit für einen Drucktuchzylinder

Die Erfindung betrifft eine Drucktucheinheit für einen Drucktuchzylinder einer Rotationsdruckmaschine und ein Verfahren zur Herstellung einer Drucktucheinheit für einen Drucktuchzylinder gemäß dem Oberbegriff des Anspruchs 1 oder 17.

Gattungsgemäße Drucktucheinheiten werden in Rotationsdruckmaschinen am Drucktuchzylinder befestigt und dienen beim Offsetdruck der Übertragung des Druckbilds vom Plattenzylinder auf die Bedruckstoffbahn. Um der Drucktucheinheit die erforderliche mechanische Festigkeit zu verleihen, wird eine Trägerplatte, beispielsweise aus Stahlblech, eingesetzt. Auf der Außenseite der Trägerplatte wird ein Drucktuch, das beispielsweise in der Art eines Gummitychs ausgebildet sein kann, befestigt. Zur Fixierung der Drucktucheinheit am Drucktuchzylinder sind am vorlaufenden Ende und/oder am nachlaufenden Ende der Trägerplatte abgekantete, drucktuchfreie Schenkel vorgesehen. Diese Schenkel können dann beispielsweise in einen am Drucktuchzylinder vorgesehenen Schlitz eingeführt und dort festgelegt werden.

Ein Problem bei bekannten Drucktucheinheiten ist es, dass das Drucktuch die Trägerplatte nicht nahtlos umschließt, sondern zwischen dem vorlaufenden und dem nachlaufenden Ende des Drucktuchs ein Spalt verbleibt. Im Bereich dieses Spalts kann keine Druckfarbe auf die Bedruckstoffbahn übertragen werden. An den Rändern des Drucktuchs zum Spalt hin ist zudem das Druckbild von schlechterer Qualität. Aus dem Stand der Technik sind deshalb verschiedene Lösungen bekannt, mit denen die durch den Spalt zwischen den Enden des Drucktuchs hervorgerufenen Nachteile vermieden werden können.

Aus der DE 195 47 917 A1 ist eine Drucktucheinheit bekannt, bei der die beiden Enden des verwendeten Drucktuchs einander formschlüssig überlappen, um dadurch den Spalt

zwischen den Enden des Drucktuchs zu verkleinern.

Aus der DE 195 21 645 A1 ist eine Drucktucheinheit bekannt, bei welcher zwischen den beiden Schenkeln der Trägerplatte ein Schieber angeordnet wird. Das nach außen weisende Ende des Schiebers ist dabei mit einem Füllstück verbunden, so dass der Spalt zwischen den Enden des Drucktuchs durch das Füllstück geschlossen wird.

Aus der DE 195 43 584 C1 ist eine Drucktucheinheit bekannt, bei der das Drucktuch aus einer Vielzahl von Lagen zusammengesetzt ist. Die Decklage überdeckt dabei die Stirnflächen der darunter befindlichen Lagen und bildet auf diese Weise einen Vorsprung, durch den der Spalt zwischen den Enden verkleinert wird.

Der Erfindung liegt die Aufgabe zugrunde, eine Drucktucheinheit für einen Drucktuchzylinder einer Rotationsdruckmaschine und ein Verfahren zur Herstellung einer Drucktucheinheit für einen Drucktuchzylinder zu schaffen.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 oder 17 gelöst.

Ein Vorteil der erfindungsgemäßen Drucktucheinheit liegt insbesondere darin, dass das vorlaufende und/oder nachlaufende Ende des Drucktuchs mit seiner Innenseite ein stückweit über die Abkantung des zugeordneten Schenkels übersteht. Durch diesen Überstand wird der Spalt zwischen den Enden des Drucktuchs verkleinert. Dabei ist es durchaus denkbar, dass der Überstand so groß gewählt wird, dass die beiden Enden des Drucktuchs in der Einbauposition aneinander zur Anlage kommen. Aufgrund der Abkantung der Trägerplatte sind die überstehenden Enden des Drucktuchs nicht durch die Trägerplatte von unten abgestützt, so dass ohne weitere Hilfsmittel kein Druck zwischen dem Drucktuch und der Bedruckstoffbahn im Bereich der überstehenden Enden aufgebaut werden könnte. Zur Lösung dieses Problems wird vorgeschlagen zwischen der Abkantung der Trägerplatte und der Innenseite des Drucktuchs ein Stützelement zur Abstützung des Überstands anzuordnen. Im Ergebnis werden die Druckkräfte dann vom Drucktuch über das Stützelement auf die Trägerplatte übertragen, so dass das Druckbild

auch im Bereich der überstehenden Enden des Drucktuchs einwandfrei auf die Bedruckstoffbahn aufgedruckt werden kann. Ob dabei an beiden Enden des Drucktuchs oder nur an einem Ende des Drucktuchs ein Stützelement zur Abstützung des Überstandes vorgesehen ist, ist grundsätzlich ohne Bedeutung.

Für die Befestigung der Stützelemente an der Drucktucheinheit sind vielfältige Befestigungslösungen denkbar. Nach einer bevorzugten Ausführungsform sind die Stützelemente an der Abkantung und/oder an der Innenseite des Drucktuchs stoffschlüssig befestigt, insbesondere festgeklebt oder anvulkanisiert.

Besonders einfach lassen sich die Stützelemente herstellen, wenn sie aus dem gleichen Material wie das Drucktuch, beispielsweise aus Gummi, oder aus dem gleichen Material wie die Trägerplatte, beispielsweise Metall, hergestellt sind. Insbesondere ist es dann denkbar, die Stützelemente einstückig an das Drucktuch oder die Trägerplatte anzuformen.

Bei der Herstellung der Stützelemente ist es zudem denkbar, dass die Stützelemente stoffschlüssig mit einer Unterbauschicht verbunden werden, die zwischen Drucktuch und Trägerplatte angeordnet ist und auf diese Weise die Trägerplatte, ausgehend von den beiden Abkantungen, durchgehend umschlingt. Durch die Unterbauschicht können die Eigenschaften der Drucktucheinheit, insbesondere hinsichtlich der Härte und des Rundlaufes, zusätzlich beeinflusst werden. Als Material zur Herstellung der Unterbauschicht ist insbesondere Gummi oder ein ähnliches Elastomermaterial geeignet.

Durch den Einsatz des erfindungsgemäßen Fertigungsverfahrens lassen sich in einfacher Weise Drucktucheinheiten herstellen, die nur einen minimalen Spalt aufweisen. Für die Durchführung des Verfahrens muss ein Fertigungszyylinder zur Verfügung stehen, dessen Gestalt, insbesondere dessen Durchmesser und dessen Befestigungseinrichtungen zur Befestigung der Trägerplatte, im Wesentlichen dem später in der Druckmaschine verwendeten Drucktuchzyylinder entspricht. An diesem Fertigungszyylinder wird die unbeschichtete Trägerplatte mit den abgekanteten Schenkeln befestigt und nimmt auf

diese Weise eine Position ein, die der späteren Position nach der Montage am Drucktuchzylinder entspricht.

Nach der Befestigung der Trägerplatte am Fertigungszyliner wird der Spalt zwischen den gegenüberliegenden Abkantungen der Trägerplatte mit einem Stützmaterial, beispielsweise mit einer härtbaren Gummimasse, ausgefüllt. Auf diese Weise werden die beiden Abkantungen der Trägerplatte stoffschlüssig miteinander verbunden.

Daran anschließend wird das Drucktuch derart an der Trägerplatte befestigt, beispielsweise festgeklebt oder aufvulkanisiert, dass zumindest ein Ende des Drucktuchs ein Stück weit über die Abkantung des zugeordneten Schenkels übersteht. Der Überstand liegt auf diese Weise dann auf dem Stützmaterial auf und wird vom Stützmaterial von unten abgestützt.

Um die Drucktucheinheit vom Fertigungszyliner abnehmen zu können, wird das Stützmaterial vor oder nach der Befestigung des Drucktuchs an der Trägerplatte unter Bildung von zwei Stützelementen durchtrennt. Dies kann beispielsweise dadurch erfolgen, dass das Stützmaterial mit einer scharfen Schneide durchschnitten wird. Die beiden durch das Trennverfahren gebildeten Seitenflächen der einander gegenüberliegenden Stützelemente weisen auf diese Weise eine Form auf, so dass die Stützelemente nach der Montage der Drucktucheinheit am Drucktuchzylinder einander formkomplementär mit kurzem Abstand gegenüberliegen oder aneinander zur Anlage kommen.

Um nicht nur eine optimale Abstützung des Überstands am Ende des Drucktuchs gewährleisten zu können, sondern auch den Spalt zwischen den beiden Enden des Drucktuchs zu minimieren bzw. zu eliminieren, wird eine bevorzugte Verfahrensvariante eingesetzt. Bei dieser Verfahrensvariante werden die üblichen Drucktücher verwendet, die vor Anbringung des Drucktuchs an der Trägerplatte eine ebene Gestalt, beispielsweise eine rechteckförmige Gestalt, aufweist. Durch Anbringung des Drucktuchs an der Trägerplatte wird bei Verwendung dieser ebenen Drucktücher ein Spalt zwischen den zueinander weisenden Seitenflächen an den einander gegenüberliegenden Enden des

Drucktuchs gebildet. Dieser Spalt wird mit einem geeigneten Siegelmaterial, beispielsweise einer härtbaren Gummimasse, ausgefüllt. Um die Drucktucheinheit vom Fertigungszyylinder abnehmen zu können, wird das Siegelmaterial dann nach ausreichender Aushärtung durchtrennt. Die durch das Trennverfahren gebildeten Seitenflächen der einander gegenüberliegenden Enden des Drucktuchs weisen dadurch eine Gestalt auf, dass die Enden des Drucktuchs nach der Montage der Drucktucheinheit am Drucktuchzyylinder einander formkomplementär mit kurzem Abstand gegenüberliegen oder aneinander zur Anlage kommen.

Um einen möglichst genauen Rundlauf zu erreichen, ist es besonders vorteilhaft, wenn das Siegelmaterial vor oder nach dem Durchtrennen unter Bildung einer zylindrischen Umfangsfläche bearbeitet, beispielsweise überschliffen, wird.

Vorzugsweise werden Siegelmaterial und Stützmaterial gleichzeitig durchtrennt, um einen optimalen Formschluss zwischen den einander gegenüberliegenden Enden der Drucktucheinheit bei Montage der Drucktucheinheit am Drucktuchzyylinder zu gewährleisten.

Alternativ zur Verwendung von ebenen Drucktüchern ist auch die Verwendung von schlauchförmigen Drucktüchern denkbar. Aufgrund ihrer schlauchförmigen Gestalt entfällt bei diesen Drucktüchern das Verbinden der Enden, wie es bei ebenen Drucktüchern bei der bevorzugten Verfahrensvariante zur Eliminierung des Spalt zwischen den Enden des Drucktuchs erforderlich ist. Zur Befestigung der schlauchförmigen Drucktücher ist es beispielsweise denkbar, dass ein geeigneter Klebstoff nach Anordnung des Drucktuchs auf der Trägerplatte in den Spalt zwischen Drucktuch und Trägerplatte eingepresst wird. Dazu können an der Trägerplatte Kanäle oder Ausnehmungen vorgesehen sein.

Alternativ dazu ist auch die Verwendung von durch Temperatur oder Lichteinstrahlung härtbaren Klebemassen denkbar, so dass das schlauchförmige Drucktuch zunächst auf die Trägerplatte aufgezogen werden kann und anschließend der an der Trägerplatte aufgebrachte Kleber durch Erhöhung der Temperatur oder Lichtbestrahlung ausgehärtet wird. Sobald das schlauchförmige Drucktuch an der Trägerplatte fixiert ist, kann es durch

geeignete Trennverfahren durchtrennt werden, um die Trägerplatte vom Fertigungszylinder abnehmen zu können.

Zwei Ausführungsformen der Erfindung sind in den Zeichnungen schematisch dargestellt und werden nachfolgend beispielhaft beschrieben. Es zeigen:

Fig. 1 eine erste Ausführungsform einer Drucktcheinheit in einer ersten Fertigungsphase;

Fig. 2 die Drucktcheinheit gemäß Fig. 1 in einer zweiten Fertigungsphase;

Fig. 3 die Drucktcheinheit gemäß Fig. 1 und Fig. 2 in einer dritten Fertigungsphase;

Fig. 4 eine zweite Ausführungsform einer Drucktcheinheit;

Fig. 5 eine dritte Ausführungsform einer Drucktcheinheit in einem Teilquerschnitt.

Die in Fig. 1 bis Fig. 3 dargestellte Drucktcheinheit 01, deren Dicke z. B. 1,6 mm beträgt, besteht aus einer formstabilen Trägerplatte 02, mit einer Dicke von ca. 0,2 mm bis 0,5 mm und einem auf der Trägerplatte 02 befestigten Drucktuch 03. Die Trägerplatte 02 kann beispielsweise aus einem Stahlblech oder Aluminium hergestellt sein. Das Drucktuch 03 kann beispielsweise in der Art eines Gummituchs, insbesondere aus mehreren Lagen unterschiedlichem Materials, ausgebildet sein.

In der in Fig. 1 dargestellten Fertigungsphase sind sowohl die Trägerplatte 02 als auch das Drucktuch 03 vollständig eben ausgelegt, so dass das Drucktuch 03 spannungs- und verformungsfrei auf der Trägerplatte 02 befestigt werden kann. Dazu kann das Drucktuch 03 beispielsweise aufgeklebt oder aufvulkanisiert werden.

Anschließend werden in einer Abkantmaschine am vorlaufenden und am nachlaufenden Ende der Trägerplatte 02 die drucktuchfreien Schenkel 04 und 06 nach unten abgekantet,

so dass die Schenkel 04 und 06 später zur Befestigung der Drucktucheinheit 01 an einem nicht dargestellten Drucktuchzylinder verwendet werden können. Zwischen den Schenkeln 04 und 06 verläuft der noch ebene Mittelteil 07 der Trägerplatte 02, der vom Drucktuch 03 vollständig nach außen hin abgedeckt ist. Am Übergang zwischen dem Mittelteil 07 einerseits und den Schenkeln 04 bzw. 06 andererseits verlaufen die Abkantungen 08 und 09 (Fig. 2).

Die Abkantungen 08 und 09 werden in der Abkantmaschine derart hergestellt, dass die beiden Enden 11 und 12 des Drucktuchs 03 ein Stück weit über die Abkantungen 08 und 09 überstehen. Der Zwischenraum zwischen den überstehenden Enden 11 und 12 einerseits und der Trägerplatte 02 andererseits wird durch zwei Stützelemente 13 und 14 ausgefüllt. Die Stützelemente 13 und 14 können beispielsweise durch Aufbringung einer härtbaren Gummimasse hergestellt werden.

In Fig. 3 ist ein Ausschnitt der Drucktucheinheit 01 in der Einbauposition dargestellt. Man erkennt, dass die beiden Schenkel 04 und 06 in der Einbauposition einander gegenüberliegend parallel zueinander verlaufen, so dass sie gemeinsam in einem Schlitz an einem nicht dargestellten Druckzylinder befestigt werden können. Aufgrund des Überstands der Enden 11 und 12 des Drucktuchs 03 wird die Breite des Spalts 16 zwischen den Enden 11 und 12 des Drucktuchs 03 minimiert. Dadurch ist es beispielsweise möglich, die Breite des Spalts 16 auf eine Breite von kleiner 0,5 mm zu minimieren.

Der Abstand der Schenkel 04 und 06 entspricht im wesentlichen dem Abstand a01 der Öffnung auf der Zylinderoberfläche und beträgt weniger als 3 mm, insbesondere ist er kleiner als 2,0 mm.

Aufgrund der Abstützung der überstehenden Enden 11 und 12 durch die Stützelemente 13 und 14 wird eine ausreichende Druckübertragung vom Drucktuch 03 auf eine Bedruckstoffbahn in diesem Bereich erreicht.

Wie in Fig. 4 dargestellt, beträgt der Abstand a02 der gegenüberliegenden Enden 11; 12 des Drucktuchs 03 0,2 mm bis 0,8 mm, vorzugsweise 0,3 mm bis 0,7 mm. In einer besonders bevorzugten Ausführung beträgt der Abstand a02 0,4 mm bis 0,6 mm, insbesondere 0,5 mm.

Die Abkantung des Schenkels 04 weist einen Radius R von 0,6 mm bis 1,2 mm, insbesondere von 0,8 mm, auf.

Die Abkantung des Schenkels 06 weist hingegen einen Radius R von 0,3 mm bis 0,7 mm, insbesondere von 0,5 mm, auf.

Die Länge L13; L14 des Stützelements 13; 14 beträgt in Umfangsrichtung 0,4 mm bis 1,0 mm, insbesondere 0,1 mm bis 1,3 mm. In einer bevorzugten Ausführung liegt die Länge L13; L14 des Stützelements 13; 14 bei 0,7 mm.

Wie in Fig. 4 dargestellt, können die Stützelemente 13; 14 in unterschiedlicher Gestalt ausgeformt sein. So weist das Stützelement 13 z. B. einen spitzen Winkel auf, während das Stützelement 14 rechtwinklig ausgeformt ist.

In Fig. 5 ist eine dritte Ausführungsform einer erfindungsgemäßen Drucktucheinheit 17 dargestellt. Auch die Drucktucheinheit 17 weist eine Trägerplatte 18 aus Stahlblech und ein Drucktuch 19 aus Gummi auf. Zur Herstellung der Drucktucheinheit 17 wird zunächst die Trägerplatte 18 mit deren Schenkeln 21 und 22 an einem Fertigungszyylinder befestigt, dessen Gestalt dem Drucktuchzyylinder entspricht, an dem die Drucktucheinheit 17 in der Druckmaschine befestigt werden soll. Anschließend wird ein Dichtungselement 23 in den Spalt 26 zwischen den Schenkeln 21 und 22 eingelegt, um den Spalt 26 nach unten abzudichten. Danach wird eine flüssige Elastomermasse an der Außenseite der Trägerplatte 18 derart aufgebracht, dass die Trägerplatte 18 von einer durchgehenden Unterbauschicht 24 umgeben wird. Im Bereich der gegenüberliegenden Schenkel 21 und 22 füllt die Unterbauschicht 24 den Spalt 26 zwischen den gegenüberliegenden Abkantungen 27 und 28 aus.

Anschließend wird auf der Unterbauschicht 24 das Drucktuch 19 befestigt, beispielsweise aufvulkanisiert. Der Spalt 26, der sich zwischen den Enden 31 und 32 des Drucktuchs 19 fortsetzt, wird mit Siegelmaterial 29, beispielsweise einer härtbaren Elastomermasse, verschlossen und anschließend an der Außenseite zur Herstellung einer gleichmäßig zylindrischen Außenfläche überschliffen.

Zum Schluss wird das Siegelmaterial 29 und die Unterbauschicht 24 entlang der Schnittlinie 33 durchtrennt, so dass die Drucktcheinheit 17 vom Fertigungszyliner abgenommen und an einem Drucktuchzyliner montiert werden kann. Durch die Trennung der Unterbauschicht 24 werden getrennte Stützelemente 34 und 36 gebildet, die jeweils die Enden 31 und 32 des Drucktuchs 19 von unten abstützen. Bei Montage der Drucktcheinheit 17 an einem Drucktuchzyliner kommen die durch den Schnitt entlang der Schnittlinie 33 gebildeten Seitenflächen der Stützelemente 34 und 36 formschlüssig aneinander zur Anlage.

Bezugszeichenliste

- 01 Drucktucheinheit
- 02 Trägerplatte
- 03 Drucktuch
- 04 Schenkel (Trägerplatte)
- 05 -
- 06 Schenkel (Trägerplatte)
- 07 Mittelteil (Trägerplatte)
- 08 Abkantung
- 09 Abkantung
- 10 -
- 11 Ende (Drucktuch)
- 12 Ende (Drucktuch)
- 13 Stützelement
- 14 Stützelement
- 15 -
- 16 Spalt
- 17 Drucktucheinheit
- 18 Trägerplatte
- 19 Drucktuch
- 20 -
- 21 Schenkel
- 22 Schenkel
- 23 Dichtungselement
- 24 Unterbauschicht
- 25 -
- 26 Spalt
- 27 Abkantung
- 28 Abkantung
- 29 Siegelmaterial

30 -
31 Ende (Drucktuch)
32 Ende (Drucktuch)
33 Schnittlinie
34 Stützelement
35 -
36 Stützelement

a01 Abstand
a02 Abstand

L13 Länge
L14 Länge
R Radius

Ansprüche

1. Drucktucheinheit (01; 17) für einen Drucktuchzylinder einer Rotationsdruckmaschine, mit einer formstabilen Trägerplatte (02; 18) und einem auf der Außenseite der Trägerplatte (02; 18) befestigten Drucktuch (03; 19), wobei das vorlaufende und/oder das nachlaufende Ende der Trägerplatte (02; 18) mit einem abgekanteten, drucktuchfreien Schenkel (04; 06; 21; 22) am Drucktuchzylinder festlegbar ist, dadurch gekennzeichnet, dass zumindest das vorlaufende und/oder das nachlaufende Ende (11; 12; 31; 32) des Drucktuchs (03; 19) mit seiner Innenseite ein Stück weit über die Abkantung (08; 09; 27; 28) des zugeordneten Schenkels (04; 06; 21; 22) der Trägerplatte (02; 18) übersteht, wobei zwischen der Abkantung (08; 09; 27; 28) und der Innenseite des Drucktuchs (03; 19) ein Stützelement (13; 14; 34; 36) zur Abstützung des Überstands angeordnet ist.
2. Drucktucheinheit nach Anspruch 1, dadurch gekennzeichnet, dass die zueinander weisenden Seitenflächen zweier einander gegenüberliegender Stützelemente (13; 14; 34; 36) nach der Montage der Drucktucheinheit (01; 17) am Drucktuchzylinder einander formkomplementär mit kurzen Abstand gegenüberliegen oder aneinander zur Anlage kommen.
3. Drucktucheinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die beiden Stützelemente (34; 36) unter Bildung der zueinander weisenden Seitenflächen aus einem Werkstück durch ein trennendes Fertigungsverfahren hergestellt sind.
4. Drucktucheinheit nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die zueinander weisenden Seitenflächen an den einander gegenüberliegende Enden (11; 12; 31; 32) des Drucktuchs (03; 19) nach der Montage der Drucktucheinheit (01; 17) am Drucktuchzylinder einander formkomplementär mit kurzen Abstand (a02) gegenüberliegen oder aneinander zur Anlage kommen.

5. Drucktucheinheit nach Anspruch 4, dadurch gekennzeichnet, dass der Abstand (a02) der gegenüberliegenden Enden (11; 12; 31; 32) des Drucktuchs (03; 19) 0,2 mm bis 0,8 mm beträgt.
6. Drucktucheinheit nach Anspruch 4, dadurch gekennzeichnet, dass der Abstand (a02) der gegenüberliegenden Enden (11; 12; 31; 32) des Drucktuchs (03; 19) 0,3 mm bis 0,7 mm beträgt.
7. Drucktucheinheit nach Anspruch 4, dadurch gekennzeichnet, dass der Abstand (a02) der gegenüberliegenden Enden (11; 12; 31; 32) des Drucktuchs (03; 19) 0,4 mm bis 0,6 mm beträgt.
8. Drucktucheinheit nach Anspruch 4, dadurch gekennzeichnet, dass der Abstand (a02) der gegenüberliegenden Enden (11; 12; 31; 32) des Drucktuchs (03; 19) 0,5 mm beträgt.
9. Drucktucheinheit nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die beiden Enden (31; 32) des Drucktuchs (19) unter Bildung der zueinander weisenden Seitenflächen aus einem Werkstück durch ein trennendes Fertigungsverfahren hergestellt sind.
10. Drucktucheinheit nach Anspruch 1, dadurch gekennzeichnet, dass die Abkantung (09; 27) des Schenkels (06; 21) einen Radius (R) von 0,3 mm bis 0,7 mm aufweist.
11. Drucktucheinheit nach Anspruch 1, dadurch gekennzeichnet, dass die Abkantung (09; 27) des Schenkels (06; 21) einen Radius (R) von 0,5 mm aufweist.
12. Drucktucheinheit nach Anspruch 1, dadurch gekennzeichnet, dass die Abkantung (08; 28) des Schenkels (04; 22) einen Radius (R) von 0,6 mm bis 1,2 mm aufweist.
13. Drucktucheinheit nach Anspruch 1, dadurch gekennzeichnet, dass die Abkantung (08; 28) des Schenkels (04 ;22) einen Radius (R) von 0,8 mm aufweist.

14. Drucktucheinheit nach Anspruch 2, dadurch gekennzeichnet, dass die Länge (L13; L14) eines Stützelements (13; 14) in Umfangsrichtung 0,4 mm bis 1 mm beträgt.
15. Drucktucheinheit nach Anspruch 2, dadurch gekennzeichnet, dass die Länge (L13; L14) eines Stützelements (13; 14) in Umfangsrichtung 0,1 mm bis 1,3 mm beträgt.
16. Drucktucheinheit nach Anspruch 2, dadurch gekennzeichnet, dass die Länge (L13; L14) eines Stützelements (13; 14) in Umfangsrichtung 0,7 mm beträgt.
17. Verfahren zur Herstellung einer Drucktucheinheit (17) für einen Drucktuchzylinder einer Rotationsdruckmaschine, mit einer formstabilen Trägerplatte (18) und einem auf der Außenseite der Trägerplatte (18) befestigten Drucktuch (19), wobei das vorlaufende und/oder das nachlaufende Ende der Trägerplatte (18) mit einem abgekanteten, drucktuchfreien Schenkel (21; 22) am Drucktuchzylinder festlegbar ist,
dadurch gekennzeichnet, dass
 - einem Fertigungszyllinder, dessen Gestalt dem Drucktuchzylinder entspricht, befestigt wird,
 - der Spalt (26) zwischen den gegenüberliegenden Abkantungen (27; 28) der Trägerplatte (18) mit einem Stützmaterial (24) ausgefüllt wird,
 - ein Drucktuch (19) derart an der Trägerplatte (18) befestigt wird, dass das vorlaufende und/oder das nachlaufende Ende (31; 32) des Drucktuchs (19) mit der Innenseite ein Stück weit über die Abkantung (27; 28) des zugeordneten Schenkels (21; 22) übersteht,
 - vor oder nach der Befestigung des Drucktuchs (19) an der Trägerplatte (18) das Stützmaterial (24) unter Bildung von zwei Stützelementen (34; 36) durchtrennt wird,
 - die Trägerplatte (18) vom Fertigungszyllinder abgenommen wird.

18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Drucktuch (19) vor der Anbringung des Drucktuchs (19) an der Trägerplatte (18) eine ebene Gestalt aufweist und nach der Anbringung des Drucktuchs (19) an der Trägerplatte (18) der Spalt (26) zwischen den zueinander weisenden Seitenflächen an den einander gegenüberliegende Enden (31; 32) des Drucktuchs (19) mit Siegelmaterial (29) ausgefüllt wird, wobei das Siegelmaterial (29) zum Abnehmen der Drucktucheinheit (17) vom Fertigungszyylinder durchtrennt wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass das Siegelmaterial (29) vor oder nach dem Durchtrennen unter Bildung einer zylindrischen Umfangsfläche bearbeitet, insbesondere überschliffen, wird.
20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass das Siegelmaterial (29) gleichzeitig mit dem Stützmaterial (24) durchtrennt wird.
21. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Drucktuch (19) vor der Anbringung des Drucktuchs (19) an der Trägerplatte (18) eine schlauchförmige Gestalt aufweist.
22. Verfahren nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, dass vor der Befestigung des Drucktuchs (19) an der Trägerplatte (18) zumindest eine Unterbauschicht (24) unter Bildung der Stützelemente (34, 36) an der Trägerplatte (18) angebracht wird.
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass Unterbauschicht (24) und Stützmaterial gleichzeitig unter Verwendung eines einheitlichen Materials an der Trägerplatte (18) angebracht wird.

1/3

Fig. 1

Fig. 2

Fig. 3

Fig. 4

3/3

Fig. 5