

Test 3 for CS2334 (01)

December 15, 2008

ID . Name:

8 2 8S

(30%) 1. Mark \bigcirc if the statement is true, and mark \times otherwise.

(\mathbf{X} (a) Let $\mathbf{x}, \mathbf{y} \in R^n$ be nonzero vectors and the vector projection of \mathbf{x} onto \mathbf{y} is equal to the vector projection of \mathbf{y} onto \mathbf{x} , then \mathbf{x} and \mathbf{y} must be linearly dependent. **(b)** Let $U = span([1, -1]^t)$ and $V = span([-1, 1]^t)$, then $R^2 = U \oplus V$.

(c) If $U,\ V,\ W$ are vector subspaces of R^3 such that $U\perp V$ and $V\perp W,$ then $U\perp W$.

(()) (d) If $Null(A) = \{0\}$, the the system Ax = b will have a unique least squares

(()) (e) The product of orthogonal matrices in $\mathbb{R}^{n \times n}$ must be orthogonal.

(()) (f) A set of nonzero orthogonal vectors are linearly independent.

(g) A set of nonzero orthonormal vectors in \mathbb{R}^n must be a basis.

(h) Every square matrix can be factored as QR, where Q is orthogonal and R is

(X) (i) If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 1$, then \mathbf{x} and \mathbf{y} are linearly independent.

(()) (j) If $A \in \mathbb{R}^{m \times n}$, then AA^t and A^tA have the same rank.

(1) (k) Let $H_1, H_2, \dots, H_m \in \mathbb{R}^{n \times n}$ be Householder matrices, then $\prod_{i=1}^m H_i$ is an orthogo-

() (1) Let ${f v}_1,{f v}_2,{f v}_3$ be linearly independent vectors in $R^3,$ then any Gram-Schmidt orthogonalization process constructs the unique orthonormal basis.

(m) Let H be a Householder matrix, then H is symmetric, orthogonal, and det(H) =

)) (n) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ be such that $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ and $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2 = 1$, then \mathbf{x} and \mathbf{y} are orthonormal.

(o) In \mathbb{R}^n , if **p** is the projection of **b** along the line **a**, then $\langle \mathbf{a}, \mathbf{b} - \mathbf{p} \rangle = 0$.

(30%) 2. Fill the following blanks.

- (a) Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ be orthonormal vectors, then $\|2\mathbf{u} 4\mathbf{v} + 4\mathbf{w}\|_2 = \underline{b}$
- (b) Let $\mathbf{x} = [1, 2, 1, 2]^t$, $\mathbf{y} = [1, -1, -1, 1]^t$, then the angle between \mathbf{x} and $\mathbf{y} = \mathbf{z}$ (c) Let $V = \{[x, y, z]^t | x y + z = 0\} \subset \mathbb{R}^3$, then $V^{\perp} = \{[x, y, z]^t | x \in \mathbb{R}\}$
- (d) Let $\mathbf{u} = [1, 3, -2, 4]^t$, then the rank of $\mathbf{u}\mathbf{u}^t = \mathbf{u}$
- (e) Let $A \in R^{m \times n}$ have r independent column vectors, then $dim(Null(A)) + dim(R(A)) = \underbrace{\begin{subarray}{c} \begin{subarray}{c} \begin{suba$
- (f) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, the least squares solution of $A\mathbf{x} = \mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- (g) Define a Householder matrix $H = I 2\mathbf{u}\mathbf{u}^t$, where $\mathbf{u} = [0.6, 0.8, 0]^t$, and let $\mathbf{x} =$ $\sqrt{4+1}$ 4+3 $[2,-1,2]^t$, then $||H\mathbf{x}||_2 = 3$
 - (h) Let $\mathbf{x} = [2, -1, 2]^t$, then $\|\mathbf{x}\|_1 \cdot \|\mathbf{x}\|_2 \cdot \|\mathbf{x}\|_{\infty} = \frac{30}{20}$
 - (i) Let $\mathbf{a} = [1, 1, 1]^t$, $\mathbf{b} = [1, 3, 8]^t$, then the projection of \mathbf{b} onto the line $\mathbf{a} = [1, 1, 1]^t$
 - (j) The distance from the point $[1,1,1]^t$ to the plane 2x+y+2z+7=0 is 12+ 1+2+1 = 12 = 4
 - (10%) 3. Sketch the set of points $\mathbf{x} = [x_1, x_2]^t \in \mathbb{R}^2$ such that
 - (a) $\|\mathbf{x}\|_2 = 1$, (b) $\|\mathbf{x}\|_1 = 1$, (c) $\|\mathbf{x}\|_{\infty} = 1$.

10%) 4. Find the point on the line
$$y = 2x + 1$$
 that is closest to $[2,3]^t$.

L= 2x-y+1=0
$$\Rightarrow \vec{n} = (2,-1)$$

L1: (2t+2, -t+3)
4t+4+t-3+1=0 \Rightarrow 5t=-2 \Rightarrow t=- $\frac{2}{5}$
 $-\frac{4}{5}+\frac{10}{5}=\frac{4}{5}$ \Rightarrow $\frac{2}{5}+\frac{15}{5}=\frac{10}{5}$
 $P=(\frac{6}{5},\frac{10}{5})^{\frac{1}{5}}$

10%) 5. Let
$$\mathbf{a}_1 = [1, 1, 0]^t$$
, $\mathbf{a}_2 = [2, 3, 0]^t$, and $\mathbf{b} = [4, 5, 6]^t$. Find the projection vector of \mathbf{b} onto the plane that is spanned by the vectors \mathbf{a}_1 and \mathbf{a}_2 .

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 0 \end{bmatrix} \quad b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \quad \text{find least square solution of } Ax = b$$

$$\chi_1 + 2\chi_2 = 4$$

$$\chi_1 + 3\chi_2 = 5 \Rightarrow \chi_1 = 2$$

$$0\chi_1 + 0\chi_2 = 6 \qquad \chi_2 = 1$$

$$P = Ax = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 0 \end{bmatrix}_{xx}$$

(10%) 6. Let
$$x = [2, -1, 2]^t$$
, $y = [-2, 2, -1]^t$, find a Householder matrix H such that $Hx = y$.

$$H = I - 2\pi i \pi^{t} \quad |x - 2\pi i \pi^{t}| |x - 2\pi i \pi^{$$