KAUNO TECHNOLOGIJOS UNIVERSITETAS		
Skaitiniai metodai ir algoritmai	(P170B115)	
Projektas	,	
Ketvirta užduotis		
7 variantas		
Atliko:		
	F-8/12 gr. studentas	
	kūbas Akramas	
20.	20 m. gruodžio 14 d.	
Priėmė:		
lek	tt. Darius Naujokaitis	
KAUNAS 2020		

Turinys

1.	PDL sprendimas	3
	1.1. Užduotis	
	1.2. Diferencialinės lygties sudarymas	
	1.3. Sprendimo metodų sudarymas	
	1.4. Rezultatai	
	1.5. Tikrinimas	8
2.	Išvados	10

1. PDL sprendimas

1.1. Užduotis

m1 masės parašiutininkas su m2 masės įranga iššoka iš lėktuvo, kuris skrenda aukštyje h0. Po tg laisvo kritimo parašiutas išskleidžiamas. Oro pasipriešinimo koeficientas laisvo kritimo metu lygus k1, o išskleidus parašiutą-k2. Tariama, kad paliekant lėktuvą parašiutininko greitis lygus 0 m/s, o oro pasipriešinimas proporcingas parašiutininko greičio kvadratui. Raskite, kaip kinta parašiutininko greitis nuo 0 s iki nusileidimo. Kada ir kokiu greičiu parašiutininkas pasiekia žemę? Kokiame aukštyje išskleidžiamas parašiutas?

Varianto numeris	m1, kg	m2, kg	h0, m	tg, s	k1, kg/m	k2, kg/m
7	70	15	4000	40	0,1	5

1.2. Diferencialinės lygties sudarymas

Pagal užduoties sąlygą kūnas juda su pagreičiu, todėl remsiuosi antruoju Niutono dėsniu, kuris teigia, kad pagreitis \vec{a} , kuriuo juda kūnas yra tiesiogiai proporcingas kūną veikiančiai jėgai \vec{F}_A ir atvirkščiai proporcingas to kūno masei.

$$\vec{F}_A = m\vec{a}$$

Kūną veikianti atstojanti jėga \vec{F}_A yra lygi dviejų kūną veikiančių jėgų sumai – oro pasipriešinimo ir svorio. $\vec{F}_A = \vec{F}_{\text{oro pasipriešinimo}} + \vec{F}_{\text{svorio}}$

Svorio jėga visada bus lygi masės ir laisvojo kitimo pagreičio sandaugai, nukreipta žemės branduolio link. Pasirinkę koordinatės ašį nuo dangaus link žemės, galime užrašyti kūną veikiančią svorio jėgą:

$$\vec{F}_{\text{svorio}} = \text{mg}$$

Oro pasipriešinimo jėga priklausys nuo kūno judėjimo krypties oro atžvilgiu (priešingai nukreiptai) ir proporcinga greičio kvadrato ir pasipriešinimo koeficiento sandaugai. Kūną veikiančią oro pasipriešinimo jėgą užrašome taip:

$$\vec{F}$$
 oro pasinriešinimo = $-kv^{-2}$

(kur k – oro pasipriešinimo koeficientas, priklausantis nuo laiko t (kai t < tg, tai k = k1; kai t > = tg, tai k = k2))

Kadangi užduotyje reikalingas tik vertikalus greitis, greičio vektorių galime išreikšti kaip reikšmę:

$$\vec{F}_{\text{oro pasipriešinimo}} = -kv^2$$

Sudėję abi jėgas, gausime atstojančią jėgą:

$$\vec{F}_A = mg - kv^2$$

Išreiškus jėgą remiantis antruoju Niutono dėsniu gauname:

$$m\vec{a} = mg - kv^2$$

Pertvarkius lygtį gauname:

$$\vec{a} = g - \frac{kv^2}{m}$$

Iš teorijos žinodami, kad kelio išvestinė pagal laiką yra greitis, o greičio – pagreitis, galime išsireikšti lygčių sistemą:

$$\begin{cases} \frac{dh}{dt} = v \\ \frac{dv}{dt} = g - \frac{kv^2}{m}, \quad k = \begin{cases} k1, & kai \ t < tg \\ k2, & kai \ t \ge tg \end{cases}$$

1.3. Sprendimo metodų sudarymas

Greičio pokyčio laike skaičiavimo metodo (f1) bei Eulerio (Eulerio) ir 4 eilės Rungės ir Kutos (RK) metodų realizacija.

```
    private double f(double v, double k)

3.
        int m1 = 70, m2 = 15;
4.
        double g = 9.8, m = m1 + m2;
5.
        return g - ((k * Math.Pow(v, 2)) / m);
6.
7. }
8. private double Eulerio(double v, double step, double k)
9. {
10.
       return v + step * f(v, k);
11. }
12. private double RK(double v, double step, double k)
13. {
        double v1 = v + (step / 2) * f(v, k);
        double v2 = v + (step / 2) * f(v1, k);
15.
        double v3 = v + step * f(v2, k);
16.
17.
        double v4 = v + (step / 6) * (f(v, k) + 2 * f(v1, k) + 2 * f(v2, k) + f(v3, k));
18.
        return v4;
19. }
```

Uždavinio sprendimo metodas.

```
    private void Sprendimas(double step, ref double[] t array, ref double[] h array, ref do

    uble[] v_array, out int it_iskleidimas, out int it_nusileidimas)
2.
3.
        double k1 = 0.1, k2 = 5, h = 4000, tg = 40, v = 0, k = k1, t = 0;
        //---
4.
        List<double> h list = new List<double>();
5.
        List<double> v_list = new List<double>();
6.
        List<double> t_list = new List<double>();
7.
8.
        //--
9.
        it iskleidimas = 0;
10.
        it_nusileidimas = 0;
11.
        //---
12.
        h list.Add(h);
13.
        v_list.Add(v);
14.
        t_list.Add(t);
15.
16.
       for (int i = 0; i < 5000; i++)</pre>
17.
18.
            if (t >= tg && k == k1)
19.
20.
                k = k2;
21.
                 it_iskleidimas = i;
22.
            }
            //---
23.
            if (radioButton3.Checked) v = Eulerio(v, step, k);
24.
25.
            else if (radioButton4.Checked) v = RK(v, step, k);
26.
            h -= step * v;
27.
            t += step;
28.
            //---
29.
            if (h > 0)
30.
31.
                h_list.Add(h);
                v list.Add(v);
32.
33.
                t_list.Add(t);
34.
35.
            else
36.
            {
37.
                 it nusileidimas = i;
38.
                t_array = t_list.ToArray();
                h_array = h_list.ToArray();
39.
40.
                v_array = v_list.ToArray();
41.
                break;
42.
43.
44.}
```

Tikslumo skaičiavimo metodas, kai lyginamos dvi kreivės, o antros kreivės žingsnis dvigubai trumpesnis.

```
private double tikslumas()
1.
2.
   {
3.
        int pilnas = t_step_pilnas.Length;
        int pusiau = t_step_pusiau.Length;
4.
5.
        int it_size = (pilnas > pusiau/2) ? pusiau/2 : pilnas;
        double suma = 0;
        for (int i = 0; i < it_size; i++)</pre>
7.
8.
            suma += (v_step_pilnas[i] - v_step_pusiau[i * 2]);
9.
10.
            System.Diagnostics.Debug.WriteLine(string.Format("reiksme = {2}, (t) = pilnas:
     {0}, pusiau: {1}\n", t_step_pilnas[i], t_step_pusiau[i*2], suma));
11.
        return Math.Abs(suma / it_size);
12.
13. }
```

1.4. Rezultatai

Toliau pateikiami skirtingų metodų, skirtingais žingsniais, rezultatai; tikslumo palyginimai; užduoties klausimų atsakymai.

PDL sprendimas Eulerio metodu su žingsniu 0.2. Greičio grafikas (pav. 1):

pav. 1 PDL sprendimas Eulerio metodu, greičio grafikas

PDL sprendimas 4 eilės Rungės ir Kutos metodu su žingsniu 0.2. Greičio grafikas (pav. 2):

pav. 2 PDL sprendimas 4 eilės Rungės ir Kutos metodu, greičio grafikas

PDL sprendimas Eulerio metodu su žingsniu 0.1. Greičio grafikas (pav. 3):

pav. 3 PDL sprendimas Eulerio metodu, greičio grafikas

PDL sprendimas 4 eilės Rungės ir Kutos metodu su žingsniu 0.1. Greičio grafikas (pav. 4):

pav. 4 PDL sprendimas 4 eilės Rungės ir Kutos metodu, greičio grafikas

Lentelėje pateikti tikslumų įverčiai skaičiuojant abejais metodais, keturiais skirtingais žingsniais (lentelė 1).

lentelė 1 Tikslumų įverčiai

	Metodas	Eulerio	4 eilės Rungės ir Kutos
Žingsnis			
0.05		0.0098352758519859	0.0190641682998929
0.1		0.0553003476099265	0.0301709628577643
0.15		0.0729651570562505	0.00078351832097184
0.2		0.258901571916042	0.00714309828942357
	Vidurkis	0.0993	0.0143

Remiantis praktiniais bandymais, 4 eilės Rungės ir Kutos metodas vidutiniškai beveik 7 kartais buvo tikslesnis už Eulerio metodą.

Remiantis programos skaičiavimais:

Kada ir kokiu greičiu parašiutininkas pasiekia žemę? – Ats.: praėjus ~110s nuo iššokimo iš lėktuvo, ~12.9 m/s greičiu.

Kokiame aukštyje išskleidžiamas parašiutas? – Ats.: ~930m

1.5. Tikrinimas

Toliau pateikiamas pagrindinio uždavinio sprendinio – greičio kitimo grafiko tikrinimas MATLAB standartine funkcija ode45 (pav. 5).

pav. 5 MATLAB tikrinimas

Tikrinimo kodas (MATLAB).

```
function RK4_metodas_parasiutas
2.
3.
   clc, clear all,
4. close all
5.
6. % sistemos parametrai:
7. m=85, g=9.81, H=4000, Tp=40; %mase, pradinis aukstis
8. v0=0 , %pradinis greitis
9. c1=0.1 %Ns/m pasipriesinimo koeff be parasiuto
10. c2=5 %Ns/m horizintalus pasipriesinimo koeff su parasiutu
11. %cv=5 %Ns/m vertikalus pasipriesinimo koeff su parasiutu
12. %cp=[ch;ch;cv];
13. iskleidimas = 0
14. nusileidimas = 0
15. h0=H %pradine padetis
16.
17. color='b';
18.
19. tmax=200;
                        % sprendimo intervalo pabaiga
20. dt=0.1;
21. figure(1), set(gcf, 'Color', 'w'); hold on, grid on, box on
22. axis equal;
23. xlabel('t');ylabel('v');axis equal
24. %zh=0:H/20:H;izh=length(zh);
25. axis([0 120 0 100]); xrng=xlim; yrng=ylim;
26. %fill3([xrng(1),xrng(2),xrng(2),xrng(1)],[yrng(1),yrng(1),yrng(2),yrng(2)]);
27. %for i=1:izh % braizo vejo vektorius
28. % vv=vvminh+(vvmaxh-vvminh)*zh(i)/H;
     %
29.
        quiver3(0,0,zh(i),vv(1),vv(2),vv(3),20);
30. %end
31. %t=0;r=[h0;v0];
                         % pradines reiksmes
```

```
32.
33. ttt=[0:dt:tmax];
34. ix=0; % kai pasieks zeme, taps ix=1
35. [TT,VV]=ode45(@fnk,ttt,v0); % PDL sprendimas
36. hndl=[]; % pradine markerio valdiklio reiksme
37. ttp=0; % laikas vizualizacijos valdymui
38. %vaizdavimas
39. %quiver3(0,0,H,v0(1),v0(2),v0(3),20,'LineWidth',3)
40. for i=1:length(TT)
41.
                 v=VV(i);
42.
                 h0 = h0 - dt*v;
43.
                 vaizdavimas(i, v); %vaizdavimas kiekviename zingsnyje
44.
                 if (i*dt-
    iskleidimas) < 0.005, disp('Isskleistas parasiutas, aukstis = '), disp(h0);end
45.
                 if h0 < 0, break,end</pre>
46. if ttp==0,disp('***** Press Key'),pause,ttp=0.01;else, pause(ttp);end
                 str=sprintf('t=\%5.3g x=\%5.3g y=\%5.3g z=\%5.3g',TT(i),r(1:3));title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['\fontname{Cour}]);title(['
        ier}',str]);
48. end
49.
50. return % pagrindines programos pabaiga
51.
53. function dy=fnk(t,r) % Lygciu sistemos funkcija
54.
                 v=r;
55.
                 if (t > Tp) && (iskleidimas == 0), iskleidimas = t; end
56.
                 if t < Tp, Fr=-c1*v^2;</pre>
                 else,
57.
                                     Fr=-c2*v^2;
             end
58.
59.
                            dy(1)=Fr/m+g;
60.
                 return
61. end
62.
63.
64. function vaizdavimas(i, v) % Vaizdavimo funkcija
65.
                 x=i*dt;y=v;
                 if ~isempty(hndl), set(hndl,'Color',[1 1 1]*0.7);end
66.
                 if x > Tp, hndl=plot(x,y,[color,'s'],'MarkerSize',4);
67.
                 else hndl=plot(x,y,[color,'*'],'MarkerSize',8);
68.
69.
70.
                 return
71. end
74. end
```

2. Išvados

Darant šį darbą buvo įsisavinti PDL sudarymo ir sprendimo metodai. Buvo prisimintas fizikos kursas. Išnagrinėti Eulerio ir 4 eilės Rungės ir Kutos metodai, nustatytas pastarojo pranašumas tikslumo atžvilgiu prieš Eulerio metodą. To buvo galima tikėtis, nes skaičiuojant sprendinį 4 eilės Rungės ir Kutos metodu yra daromi papildomi tarpiniai skaičiavimai (prognozės, atgalinis Eulerio metodas, Simpsono koreguojanti formulė). Taip pat panagrinėta MATLAB standartinė funkcija ode45 diferencialinių lygčių sprendimui.