Soient H une sous-espace borné de $\mathbb{R}^+\setminus\{0\}$ pour lequel 0 est un point d'accumulation, $\tilde{\Omega}$ un polygone ouvert de \mathbb{R}^n tel que $\Omega\subset\tilde{\Omega}$ et, pour tout $h\in H$, on note $\tilde{\mathscr{T}}_h$ une triangulation sur $\tilde{\Omega}$ au moyen d'éléments K dont le diamètre h_K sont inférieurs ou égal à h et soit \tilde{V}_h un espace d'éléments finis construit sur $\tilde{\mathscr{T}}_h$ tel que :

$$\tilde{V}_h$$
 est un sous-espace de dimension fini de $H^m\left(\tilde{\Omega}\right) \cap C^k\left(\overline{\tilde{\Omega}}\right)$ (1)

(voir fig. 1)

FIGURE 1 – Définition des ensembles Ω , $\tilde{\Omega}$ et Ω_h

De plus, pour étudier la convergence de l'approximation, on suppose qu'il existe une famille d'opérateurs linéaires continus $(\tilde{\Pi}_h)_{h\in H}$ de $H^m(\Omega)$ dans \tilde{V}_h satisfaisant :

$$\exists C > 0; \ \forall h \in H, \ \forall l = 0, ..., m - 1, \ \forall v \in H^m(\tilde{\Omega}), \ \left| v - \tilde{\Pi}_h v \right|_{l,\tilde{\Omega}} \le C h^{m-1} |v|_{m,\tilde{\Omega}} \tag{2}$$

$$\forall v \in H^m(\tilde{\Omega}), \lim_{h \to 0} \left| v - \tilde{\Pi}_h v \right|_{m,\tilde{\Omega}} = 0 \tag{3}$$

Ces conditions n'ont pas besoin de l'hypothèse classique de régularité de la méthode des éléments finis $H^m(\tilde{\Omega}) \hookrightarrow C^s(\tilde{\Omega})$, où s est l'ordre maximal des dérivés apparaissant dans la définition des degrés de liberté de l'élément fini générique de $(\tilde{V}_h)_{h\in H}$, mais on assume que :

la famille
$$(\tilde{\mathcal{T}}_h)_{h\in H}$$
 est régulière (4)

Comme expliqué dans [1], une famille est dite régulière si, en notant h_K le diamètre de K et ρ_K le supremum du diamètre des sphères inscrites dans K:

$$\exists \alpha > 0; \ \forall K \in \tilde{\mathcal{T}}_h, \ h_K \leq \alpha \rho_K$$

De plus, les conditions (2)-(3) demandent l'hypothèse suivante : l'élément fini générique (K, P_K, Σ_K) de la famille $(\tilde{V}_h)_{h\in H}$ statisfait l'équation $P_m(K) \subset P_K$ où $P_n(K)$ définit l'ensemble des polynômes de degré inférieur ou égal à n définis sur K.

À présent, pour tout $h \in H$, on considère le sous-ensemble Ω_h (voir figure 1) définie par :

$$\Omega_h$$
 est l'intérieur de l'union des rectangles K de \mathscr{T}_h tel que $K \cap \Omega \neq \emptyset$ (5)

Il est clair que la famille $(\Omega_h)_{h\in H}$ satisfait les relations (en notant μ une mesure sur $\tilde{\Omega}$):

$$\forall h \in H, \Omega \subset \Omega_h \subset \tilde{\Omega} \tag{6}$$

$$\lim_{h \to 0} \mu(\Omega_h \setminus \overline{\Omega}) = 0 \tag{7}$$

Pour tout $h \in H$, on définit :

$$V_h = \{\phi|_{\Omega_h} | \phi \in \tilde{V}_h\} \tag{8}$$

Pour tout $\varepsilon>0$, on considère le problème de minimisation suivant : trouver $\sigma_{\varepsilon,h}^{\eta}\in V_h$ satisfaisant :

$$\forall v_h \in V_h, \ J_{\varepsilon,h}^{\eta}(\sigma_{\varepsilon,h}^{\eta}) \le J_{\varepsilon,h}^{\eta}(v_h) \tag{9}$$

où $J^\eta_{\varepsilon,h}$ est la fonctionnelle définie par :

$$J_{\varepsilon,h}^{\eta} = \ell^{\eta} \left[(v_h - f)^2 \right] + \varepsilon |v_h|_{m,\Omega_h}^2$$

On considère ensuite le problème variationnel suivant : trouver $\sigma_{\varepsilon,h}^{\eta} \in V_h$ satisfaisant :

$$\forall v_h \in V_h, \ \ell^{\eta}(\sigma_{\varepsilon,h}^{\eta}v_h) + \varepsilon\left(\sigma_{\varepsilon,h}^{\eta}, v_h\right) = \ell^{\eta}(fv_h) \tag{10}$$

où $(u,v)_{m,\Omega_h} = \sum_{|\alpha|=m} \int_{\Omega_h} \partial^{\alpha} u(x) \partial^{\alpha} v(x) dx$.

Théorème 0.0.1:

On suppose que Ω , ω , m et f sont définis comme dans la section précédente et que les hypothèses (??), (1), (5) et (8) sont vérfiées. Alors, pour tout $\varepsilon > 0$, tout $h \in H$, il existe $\eta_0 > 0$ tel que pour tout $\eta \in E$, $\eta \leq \eta_0$, les problèmes (9) et (10) admettent une même unique solution.

Références

[1] Philippe G Ciarlet and PA Raviart. General lagrange and hermite interpolation in r n with applications to finite element methods. Archive for Rational Mechanics and Analysis, 46(3):177–199, 1972.