ISYS2120 21s2 Week 06 Tut

Relational Design, Functional Dependencies and Schema Normalisation

Dependency Format

- $X \rightarrow Y$
 - X functionally determines Y
 - Y is functionally dependant on X

Attribute X is like a candidate key value for Attribute Y. i.e. Each value of X will map to exactly one value of Y in any given row in a relation.

Transitive Dependency

- If $X \rightarrow Y$ and $Y \rightarrow Z$
- •Then $X \rightarrow Z$

Functional Dependency Representation

The attribute(s) to where the arrow is pointing is the DEPENDANT ATTRIBUTE(s)

The attribute(s) from which the line originates are the DETERMINING ATTRIBUTE(s)

$$D \rightarrow F$$

$$A \rightarrow D$$

- \bullet A, B \rightarrow C
- $\bullet\,\mathsf{A}\to\mathsf{D}$
- $\bullet\,D\to F$
- $\bullet E \rightarrow B$

$$\bullet$$
 A, B \rightarrow C

$$\bullet A \rightarrow D \longrightarrow A \rightarrow F$$

$$\bullet\, D \to F$$

Deduced FD (transitivity rule)

$$\bullet E \rightarrow B$$

Transitive / Attribute Closure

- Transitive Closure of a set S of attributes is shown as: (S)+
- Transitive Closure is the application of Functional Dependency rules until the resultant set of attributes represented does not change:
- If
 - FD1: $X \rightarrow Y$
 - FD2: $Y \rightarrow Z$
 - FD3: $M \rightarrow N$
- Then, (X)+:
 - Apply FD1 (X \rightarrow Y), Attributes represented are X and Y
 - (XY)+, Apply FD2 $(Y \rightarrow Z)$, Attributes represented are X, Y and Z
 - (XYZ)+, Apply FD3 (M → N), Attributes represented are X, Y and Z unchanged!
- Hence the transitive closure of X given FD1, FD2, FD3 is (XYZ)+

Finding Candidate keys

- A superkey is a set of attributes whose transitive closure contains EVERY attribute in a relation
- A candidate key is a superkey for which no smaller subset is a superkey

$$A \rightarrow D$$

$$(AD)+ D \rightarrow F$$

$$\mathsf{D} \to \mathsf{F}$$

No more FD

Try adding the missing attribute E

$$A \rightarrow D$$

$$AB \rightarrow C$$

$$E \rightarrow B$$

Try adding the next attribute B

$$(AB)+$$

$$A \rightarrow D$$

$$D \rightarrow F$$

$$AB \rightarrow C$$

$$D \rightarrow F$$

No more FD, E is missing

Other Dependencies

- Trivial dependencies:
 - XY also implies $XY \rightarrow X$
- Partial dependencies
 - If $XY \rightarrow Z$
 - Then Z has a partial dependency on X, and
 - A partial dependency on Y

Normal Forms

- 1NF
 - All attributes are atomic (no multi values attributes)
- 2NF
 - 1NF conditions holds true
 - No Partial Dependencies
- 3NF
 - 1NF, 2NF conditions holds true
 - No Transitive Dependencies
- Boyce-Codd Normal Form (BCNF)
 - In any non-trivial $X \rightarrow Y$: X is a superkey

A(i)

BrokerName → Office

each broker works in at most one office,

StockName → Dividend

each stock pays at most one dividend,

• InvestorId → BrokerName

each investor deals with at most one broker,

• InvestorID, StockName → Quantity

an investor can own at most one quantity of a given stock (ie all the holdings of a given investor in a given stock are in one parcel).

Violation of BrokerName → Office

- BrokerName → Office
- StockName → Dividend
- InvestorId → BrokerName
- InvestorID, StockName \rightarrow Quantity

BrokerName	Office	InvestorId	StockName	Dividend	Quantity
JBWere	Melbourne	4069	ВНР	1.25	35
CommSec	Sydney	5035	ВНР	1.25	20
JBWere	Sydney	3772	ANZ	0.60	50
ETrade	Canberra	4069	ВНР	0.60	15
CommSec	Sydney	5035	RIO	1.25	20
JBWere	Melbourne	3772	ANZ	0.60	100

A(ii)

Violation of StockName → Dividend

- BrokerName → Office
- StockName → Dividend
- InvestorId → BrokerName
- InvestorID, StockName \rightarrow Quantity

BrokerName	Office	InvestorId	StockName	Dividend	Quantity
JBWere	Melbourne	4069	ВНР	1.25	35
CommSec	Sydney	5035	ВНР	1.25	20
JBWere	Sydney	3772	ANZ	0.60	50
ETrade	Canberra	4069	ВНР	0.60	15
CommSec	Sydney	5035	RIO	1.25	20
JBWere	Melbourne	3772	ANZ	0.60	100

A(ii)

- BrokerName → Office
- StockName → Dividend
- InvestorId → BrokerName
- InvestorID, StockName \rightarrow Quantity

BrokerName	Office	InvestorId	StockName	Dividend	Quantity
JBWere	Melbourne	4069	ВНР	1.25	35
CommSec	Sydney	5035	ВНР	1.25	20
JBWere	Sydney	3772	ANZ	0.60	50
ETrade	Canberra	4069	ВНР	0.60	15
CommSec	Sydney	5035	RIO	1.25	20
JBWere	Melbourne	3772	ANZ	0.60	100

Violation of InvestorID, StockName → Quantity

- BrokerName → Office
- StockName → Dividend
- InvestorId → BrokerName
- InvestorID, StockName → Quantity

BrokerName	Office	InvestorId	StockName	Dividend	Quantity
JBWere	Melbourne	4069	ВНР	1.25	35
CommSec	Sydney	5035	ВНР	1.25	20
JBWere	Sydney	3772	ANZ	0.60	50
ETrade	Canberra	4069	ВНР	0.60	15
CommSec	Sydney	5035	RIO	1.25	20
JBWere	Melbourne	3772	ANZ	0.60	100

A(iii)

- BrokerName → Office
- StockName → Dividend
- InvestorId → BrokerName
- InvestorID, StockName \rightarrow Quantity

BrokerName	Office	InvestorId	StockName	Dividend	Quantity
JBWere ETrade	Melbourne Canberra	4069	ВНР	1.25	35
CommSec	Sydney	5035	ВНР	1.25	20
JBWere	Sydney Melbourne	3772	ANZ	0.60	50
ETrade	Canberra	4069	BHP RIO	0.60 1.25	15
CommSec	Sydney	5035	RIO	1.25	20
JBWere	Melbourne	3772	ANZ RIO	0.60 1.25	100

There are many different instances that do meet the FDs!

$\mathsf{A}(\mathsf{i}\mathsf{v})$

- BrokerName → Office
- StockName → Dividend
- InvestorId → BrokerName
- InvestorID, StockName → Quantity
 - (BrokerName, StockName)+
 - Apply FD1: (BrokerName, StockName, Office)+
- Apply FD2: (BrokerName, StockName, Office, Dividend)+
- Can't apply FD3 No InvestorID
- Can't apply FD4 No InvestorID
- Closure is: (BrokerName, StockName, Office, Dividend)
- (BrokerName, StockName) is not a candidate key, as we can not determine InvestorId or Quantity

A(v)

- BrokerName → Office
- StockName → Dividend
- InvestorId → BrokerName
- InvestorID, StockName → Quantity
- Recall that (BrokerName, StockName)+ is: (BrokerName, StockName, Office, Dividend)
- Try (BrokerName, StockName, InvestorID)+
 - Apply FD3, (BrokerName, StockName, Office, Dividend, InvestorID)
 - Apply FD4, (BrokerName, StockName, Office, Dividend, InvestorID, Quantity)
- So Attribute Closure (BrokerName, StockName, InvestorID)+ is a set of all attributes of the whole relation
 - therefore (BrokerName, StockName, InvestorID) is a superkey

Try subsets; we find that (StockName, InvestorID)+ is all attributes, so (StockName, InvestorID) can be a suitable candidate key

A(vi)

- BrokerName → Office
- StockName → Dividend
- InvestorId → BrokerName
- InvestorID, StockName → Quantity
- Is Investments(BrokerName;Office; InvestorId; StockName;Dividend; Quantity) in BCNF?
 - For InvestorID, StockName → Quantity
 - Left hand side (InvestorID, StockName) is a superkey: this does not contradict BCNF
 - For BrokerName → Office
 - Left hand side (BrokerName) is NOT a superkey: this contradicts BCNF
 - Also for other FDs
 - As long as there is a single FD, where lhs is not a superkey, then we are not in BCNF!

A(vii)

R1(InvestorID, StockName, Dividend, Quantity)

InvestorId	StockName	Dividend	Quantity
4069	ВНР	1.25	35
5035	ВНР	1.25	20
3772	ANZ	0.60	50
4069	BHP RIO	0.60 1.25	15
5035	RIO	1.25	20
3772	ANZ RIO	0.60 1.25	100

- BrokerName → Office
- StockName → Dividend
- InvestorId → BrokerName
- InvestorID, StockName → Quantity

Keep FDs which apply to R1

Project the contents from A(iii) into just the columns of R1

R2(InvestorID, BrokerName, Office)

BrokerName	Office	InvestorId
ETrade	Canberra	4069
CommSec	Sydney	5035
JBWere	Melbourne	3772

- BrokerName → Office
- StockName → Dividend
- InvestorId → BrokerName
- InvestorID, StockName → Quantity

A(viii)

- Is decomposition into R1, R2 lossless?
 - Yes; when you join tables back, you get original state
 - Use theorem: Deduce InvestorID, StockName → Dividend, Quantity
 - R1 is the attributes of this deduced FD
 - And R2 is all attributes except rhs Dividend, Quantity
- Are FDs preserved?
 - Yes R1 has FD2, FD4; R2 has FD1, FD3
- Is it in BCNF?
 - No, in R2 we have BrokerName → Office but BrokerName is not superkey
 - No, in R1 we have StockName → Dividend but StockName is not superkey

A(ix)

- R3(BrokerName,Office)
- R4(Office,InvestorId),
- R5(InvestorId, Stockname),
- R6(Stockname, Dividend), and
- R7(Dividend, Quantity).
- 1. Is this a lossless decomp?
 - 1. No We can not match which investorid's have bought how much of each stock
- 2. Is this a dependency preserving decomp?
 - 1. No FD3 and FD4 are notd educed from what fits into the decomposed relations
- 3. BCNF does hold (in fact, a relation with two columns is always in BCNF!)
- 4. Problems with the design No way to match which investors bought what stock (or how much of it)

- BrokerName → Office
- StockName → Dividend
- InvestorId → BrokerName
- InvestorID, StockName → Quantity

A(x)

- R8(BrokerName,Office)
- R9(Stockname, Dividend)
- R10(InvestorId, BrokerName),
- R11(InvestorID, StockName, Quantity)

Initial state of wide table

BrokerName	Office	InvestorId	StockName	Dividend	Quantity
JBWere ETrade	Melbourne Canberra	4069	ВНР	1.25	35
CommSec	Sydney	5035	ВНР	1.25	20
JBWere	Sydney Melbourne	3772	ANZ	0.60	50
ETrade	Canberra	4069	BHP RIO	0.60 1.25	15
CommSec	Sydney	5035	RIO	1.25	20
JBWere	Melbourne	3772	ANZ RIO	0.60 1.25	100

R8(BrokerName, Office)

R9(Stockname, Dividend)

BrokerName	Office
CommSec	Sydney
ETrade	Canberra
JBWere	Melbourne

StockName	Dividend
ВНР	1.25
ANZ	0.60
RIO	1.25

R10(InvestorId, BrokerName)

BrokerName	InvestorId
ETrade	4069
CommSec	5035
JBWere	3772

R11(InvestorID, StockName, Quantity)

InvestorId	StockName	Quantity
4069	ВНР	35
5035	ВНР	20
3772	ANZ	50
4069	BHP RIO	15
5035	RIO	20
3772	ANZ RIO	100