Аугментация с физической коррекцией для предсказания движений человека

(СКАЗАТЬ НАЗВАНИЕ СТАТЬИ, ЗАТЕМ НОВЫЙ СЛАЙД)

Предсказание движений человека применяется во многих сферах, например при разработке автомобильного автопилота или для приложений виртуальной реальности. Существующие модели предсказания основаны, в основном, на RNN и GCN (сверточные графы). Для того, чтобы справляться с определенной «случайностью» применяются GAN или генеративно-состязательные сети (алгоритм машинного обучения без учителя, построенный на комбинации из двух нейронных сетей, одна из которых (сеть G) генерирует образцы, а другая (сеть D) старается отличить правильные («подлинные») образцы от неправильных) и VAE (вариационные автоэнкодеры). Однако, существующие подходы требуют наличия большого количества тренировочных данных, которые очень трудно и дорого добывать. Одним из решений этой проблемы является аугментация данных. (НОВЫЙ СЛАЙД)

Существует несколько подходов, например через добавление шума или использование генеративных моделей, таких как GAN. У этих способов есть проблемы: добавление шума ведет к появлению неправдоподобных движений, а GAN генерирует практически идентичные позы при малом наборе данных.

Авторы статьи предлагают новый метод, основанный на использовании VAE с некоторыми дополнениями, и обратной кинематики в полуавтоматическом режиме. (НОВЫЙ СЛАЙД)

VAE

Предлагаемая авторами сеть на основе VAE представлена на слайде. На вход поступает некоторый вектор движений, по которому энкодер генерирует среднее мю и отклонение сигма квадрат. Затем, из нормального распределения с такими параметрами выбирается скрытое представление z, по которому декодер реконструирует новый выходной вектор движения. Затем, блоки DisF и DisS разграничивают X и X с крышкой для того, чтобы улучшить X с крышкой с точки зрения точности поз и динамики движения. Чтобы сохранить баланс между детализированностью движения и простотой выборки, данные, прошедшие энкодер разбиваются на кластеры. Затем, в каждом кластере выбирается определенное количество сэмплов и по ним усредняются параметры мю и сигма. Затем z выбирается из нормального распределения уже с новыми параметрами.

(НОВЫЙ СЛАЙД)

IK

Чтобы генерация движений с помощью обратной кинематики работала в полуавтоматическом режиме, от пользователя требуется только о б о з н а ч и т ь целевое пространство для ключевого кадра, как показано на слайде. Далее из этого пространства выбирается целевая позиция, и через определенные преобразования получается новый экземпляр данных. (НОВЫЙ СЛАЙД)

КОРРЕКЦИЯ

Для того, чтобы увеличить правдоподобность движений, необходимо как-то скорректировать появляющиеся в процессе артефакты. В данном случае

коррекция основывается на имитационном обучении с симуляцией физики, чтобы отбросить неправдоподобные движения.

(НОВЫЙ СЛАЙД)

Однако несмотря на то, что движения физически правдоподобны, при предсказании модель не может полностью избежать ошибок, вызванных несоответствием между моделируемым персонажем и реальным человеком, со всеми его мышцами, сухожилиями и т.д. Для минимизации этого эффекта применяется debiasing движений. (НОВЫЙ СЛАЙД)

ЭКСПЕРИМЕНТ

Практическое исследование состояло из 4 частей.

В первой части исследовался синтез движения с помощью VAE, основными метриками были the minimum Dynamic Time Warping distance между тестовым движением и синтезированным и Максимальное Среднее Расхождение (MMD).

Как видно из таблицы, VAE с двумя дополнениями показал лучший результат.

(НОВЫЙ СЛАЙД)

Вторым этапом стало сравнение времени схождения метода коррекции, известного как RFC и предложенного в статье. Новый метод показал время 9 часов и был более стабильным, тогда как RFC сошелся лишь за 30.

(НОВЫЙ СЛАЙД)

Третьим этапом была проверка предсказаний таким методом аугментации. Для оценок использовались 2 модели: Основанная на RNN, которая представлена на слайде, и **(НОВЫЙ СЛАЙД)** на SOTA GCN.

TEMEPA4,00

(НОВЫЙ СЛАЙД)

Последним этапом стало сравнения с методом DeepMimic. Как видно на слайде, DeepMimic показал намного меньшее разнообразие в сгенерированных движениях, чем предложенный в статье метод.

(НОВЫЙ СЛАЙД)

ОГРАНИЧЕНИЯ

В этом методе 2 основных ограничения:

Коррекция движения все еще занимает несколько часов, что ограничивает его применение.

Во-вторых, метод тяжело применять для распознавания частичных последовательностей движений, как например движениям отдельно торса или рук.

(НОВЫЙ СЛАЙД) ЗАКЛЮЧЕНИЕ

В этой работе представлен новый подход к аугментации движений человека с использованием синтеза движения на основе VAE и IK и коррекции движения с помощью физического моделирования. Эксперименты показали, что такой метод превзошел все предыдущие методы.