Ph.D. Qualifying Exam, Real Analysis Fall 2011, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two short problems.
 - **a.** Suppose that (X, \mathcal{A}, μ) is a finite measure space and $f: X \to \mathbb{R}$ is an \mathcal{A} -measurable function. Prove that $||f||_{L^{\infty}} = \lim_{p \to \infty} ||f||_{L^p}$.
 - **b.** Let $\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z})$, and identify it with the unit circle $\{z\in\mathbb{C}:|z|=1\}$ in the complex plane. For $\delta\in(0,1)$, let $\Omega_\delta=\{z\in\mathbb{C}:1-\delta<|z|<1\}$. Suppose that $\phi\in C(\mathbb{T})$ and there exist $\delta\in(0,1)$ and $f\in C(\overline{\Omega_\delta})$, f holomorphic on Ω_δ such that $f|_{\mathbb{T}}=\phi$. Let $(\mathcal{F}\phi)_n=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{T}}e^{-in\theta}\phi(\theta)\,d\theta$ be the nth Fourier coefficient of ϕ . Show that for all k>0 there exists C>0 such that $|(\mathcal{F}\phi)_n|\leq C|n|^{-k}$ for $n\leq -1$.
- Suppose that $f: \mathbb{N} \to \mathbb{C}$ is a bounded function (where \mathbb{N} is the set of the positive integers), and define $M_f \in \mathcal{L}(\ell^p)$, $1 \le p < \infty$, by $M_f(\{a_n\}_{n=1}^{\infty}) = \{f(n)a_n\}_{n=1}^{\infty}$.
 - **a.** Find (with proof) the spectrum of M_f .
 - **b.** State and prove a necessary and sufficient condition in terms of f for M_f being a compact operator.
 - **c.** Can there be any points in the spectrum of M_f that are not eigenvalues? Give an example or prove the contrary.
- In this problem X,Y are Hilbert spaces, $\mathcal{L}(X,Y)$ the set of bounded linear operators from X to Y. Prove or disprove the following statements: (a) There exists $T \in \mathcal{L}(X,Y)$ such that T is a bijection, but the set theoretic inverse T^{-1} is not in $\mathcal{L}(Y,X)$. (b) There exists $T \in \mathcal{L}(X,Y)$ such that T is injective, but there is no left inverse $S \in \mathcal{L}(Y,X)$ for T (i.e. there is no $S \in \mathcal{L}(Y,X)$ such that ST is the identity on S). (c) There exists $S \in \mathcal{L}(Y,X)$ such that S0 is the identity on S1. (c) There is no $S \in \mathcal{L}(Y,X)$ such that S1 is the identity on S2.
- 4 Suppose that X is a separable reflexive Banach space.
 - **a.** Show that $B = \{x \in X : ||x|| \le 1\}$ is compact in the weak topology on X.
 - **b.** Give (and prove) a necessary and sufficient condition for $\{x \in X : ||x|| = 1\}$ to be compact in the weak topology on X.
 - **c.** Prove that $B = \{x \in X : ||x|| \le 1\}$ is sequentially compact in the weak topology of X, i.e. every sequence in B has a weakly convergent subsequence.
- Recall that $\mathrm{SL}_2(\mathbb{R}) \subset \mathrm{GL}_2(\mathbb{R})$, consisting of matrices of determinant 1, acts on \mathbb{R}^2 by $\mathrm{SL}_2(\mathbb{R}) \times \mathbb{R}^2 \ni (A,x) \mapsto Ax \in \mathbb{R}^2$. Find all Baire measures μ on \mathbb{R}^2 (i.e. Borel measures finite on compact sets) which are invariant under the $\mathrm{SL}_2(\mathbb{R})$ -action, i.e. such that $\mu(S) = \mu(AS)$ (with $AS = \{Ax : x \in S\}$) for all $A \in \mathrm{SL}_2(\mathbb{R})$ and S Borel.

Ph.D. Qualifying Exam, Real Analysis Fall 2011, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- Suppose $A \subset \mathbb{R}$ is Borel, T is a dense subset of \mathbb{R} and $\tau_t(A) \setminus A$ has Lebesgue measure zero for each $t \in T$, where $\tau_t : \mathbb{R} \to \mathbb{R}$ is the translation $x \mapsto x + t$. Prove that either A or $\mathbb{R} \setminus A$ has Lebesgue measure zero.
- 2 Two short problems.
 - **a.** Let $\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z})$ be the circle, and let $C^1(\mathbb{T})$ denote the Banach space of complex valued continuously differentiable functions on \mathbb{T} with the norm $\|f\|_{C^1}=\sup|f|+\sup|f'|$. Suppose that $u:C^1(\mathbb{T})\to\mathbb{C}$ is continuous and has the property that $\phi\in C^1(\mathbb{T}), \phi\geq 0$ on \mathbb{T} , imply $u(\phi)\geq 0$. Show that there is a finite Borel measure μ on \mathbb{T} such that $u(\phi)=\int \phi\,d\mu$ for all $\phi\in C^1(\mathbb{T})$.
 - **b.** Suppose that \mathcal{H} is a Hilbert space, $\mathcal{L}(\mathcal{H})$ the set of bounded operators on \mathcal{H} , $A \in \mathcal{L}(\mathcal{H})$ is self-adjoint, and for $t \in \mathbb{R}$ define $U(t) = f_t(A)$ via the functional calculus where $f_t(s) = e^{its}$. Show that U(t) I is compact for all $t \in \mathbb{R}$ if and only if A is compact.
- Let $\mathcal{L}(L^2(\mathbb{R}))$ denote the set of bounded linear operators on $L^2(\mathbb{R})$. Consider the following operators Λ_s , $s \in \mathbb{R}$, on $L^2(\mathbb{R})$: $(\Lambda_s f)(\xi) = (1 + |\xi|^2)^{is/2} f(\xi)$. Prove or disprove each of the following statements for the map $\Lambda: \mathbb{R} \to \mathcal{L}(L^2(\mathbb{R}))$ given by $\Lambda(s) = \Lambda_s$: (a) Λ is continuous when $\mathcal{L}(L^2(\mathbb{R}))$ is equipped with the norm topology. (b) Λ is continuous when $\mathcal{L}(L^2(\mathbb{R}))$ is equipped with the strong operator topology. (c) Λ is continuous when $\mathcal{L}(L^2(\mathbb{R}))$ is equipped with the weak operator topology.
- Let $\mathcal{D}'(\mathbb{T})$ denote the set of distributions on $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$, i.e. the dual of $C^{\infty}(\mathbb{T})$, equipped with the 'weak-* topology', i.e. the weakest topology in which the maps $E_{\phi}: \mathcal{D}'(\mathbb{T}) \to \mathbb{C}$, $E_{\phi}(u) = u(\phi)$ are continuous for all $\phi \in C^{\infty}(\mathbb{T})$.
 - **a.** Show that the multiplication map $M: C(\mathbb{T}) \times C(\mathbb{T}) \to C(\mathbb{T})$ given by (M(f,g))(x) = f(x)g(x) has no continuous extension to a map $\tilde{M}: \mathcal{D}'(\mathbb{T}) \times \mathcal{D}'(\mathbb{T}) \to \mathcal{D}'(\mathbb{T})$.
 - **b.** Show that, on the other hand, the convolution map $*: C(\mathbb{T}) \times C(\mathbb{T}) \to C(\mathbb{T})$ given by $*(f,g)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x-y)g(y) \, dy$ (usually written as (f*g)(x)) has a unique [separately] continuous extension to a map $\tilde{*}: \mathcal{D}'(\mathbb{T}) \times \mathcal{D}'(\mathbb{T}) \to \mathcal{D}'(\mathbb{T})$.
- For $s \geq 0$, let $H^s(\mathbb{T})$ be the space of L^2 functions f on the circle $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ whose Fourier coefficients $\hat{f}_n = \int e^{-inx} f(x) \, dx$ satisfy $\sum (1+n^2)^s |\hat{f}_n|^2 < \infty$, and define the norm on $H^s(\mathbb{T})$ by $\|f\|_s^2 = (2\pi)^{-1} \sum (1+n^2)^s |\hat{f}_n|^2$.
 - Consider $A = -\frac{d^2}{dx^2}$, $A \in \mathcal{L}(H^2(\mathbb{T}), L^2(\mathbb{T}))$, suppose $V \in \mathcal{L}(L^2(\mathbb{T}))$, and let $L = A + V \in \mathcal{L}(H^2(\mathbb{T}), L^2(\mathbb{T}))$. With $R(\lambda) = (\lambda I L)^{-1} : L^2(\mathbb{T}) \to H^2(\mathbb{T})$ when $\lambda I L : H^2(\mathbb{T}) \to L^2(\mathbb{T})$ is invertible, show that $\mathbb{C} \ni \lambda \mapsto R(\lambda)$ is a meromorphic operator-valued function, and that there exists a half-plane $\Omega = \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda < -C\}$ such that $R(\lambda)$ is holomorphic on Ω .