

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Cálculo Diferencial e Integral II — Lista 8 Prof. Adriano Barbosa

- (1) Mostre que $y = \frac{2}{3}e^x + e^{-2x}$ é uma solução da equação diferencial $y' + 2y = 2e^x$.
- (2) (a) Para quais valores de r a função $y=e^{rx}$ satisfaz a equação diferencial 2y''+y'-y=0?
 - (b) Se r_1 e r_2 são os valores de r encontrados no item (a), mostre que $y = ae^{r_1x} + be^{r_2x}$ também é uma solução da EDO quaisquer que sejam $a, b \in \mathbb{R}$.
- (3) Uma população é modelada pela equação diferencial

$$\frac{dP}{dt} = 1, 2P\left(1 - \frac{P}{4200}\right)$$

- (a) Para quais valores de P a população cresce?
- (b) Para quais valores de P a população decresce?
- (4) Resolva as equações diferenciais abaixo:

(a)
$$\frac{dp}{dt} = t^2p - p + t^2 - 1$$

(b)
$$(y + \sin y)y' = x + x^3$$

(c)
$$\frac{dy}{dt} = \frac{t}{ue^{y+t^2}}$$

(5) Resolva os problemas de valor inicial abaixo:

(a)
$$\frac{dy}{dx} = \frac{\ln x}{xy}, y(1) = 2$$

(b)
$$\frac{dy}{dx} = \frac{x}{y}, y(0) = -3$$

(c)
$$\frac{dP}{dt} = \sqrt{Pt}, P(1) = 2$$

(d)
$$x \ln x = y(1 + \sqrt{3 + y^2})y', y(1) = 1$$

- (6) Resolva a equação diferencial y' = x + y utilizando a mudança de variáveis u = x + y.
- (7) Use a mudança de variáveis v = y/x para resolver a EDO $xy' = y + xe^{y/x}$.