Интерактивный инструмент анализа изображений на основе PyQtGraph

Пользователь

29 октября 2025 г.

Аннотация

В данной работе представлен интерактивный программный инструмент для количественного анализа цифровых изображений, реализованный с использованием библиотек Python: PyQt5, pyqtgraph и imageio. Инструмент позволяет визуализировать изображения в оттенках серого, выделять области интереса (ROI), строить профили яркости, анализировать гистограммы интенсивности и отображать изокривые (линии равной яркости). Приведено теоретическое обоснование используемых методов, описан функционал и даны рекомендации по интерпретации результатов. Разработка ориентирована на применение в образовательных, научных и инженерных задачах.

1 Введение

Анализ цифровых изображений является ключевым этапом во многих областях науки и техники: от медицинской диагностики [1] до дистанционного зондирования Земли [2]. Современные подходы предполагают не только визуальный осмотр, но и количественную оценку пространственного распределения интенсивности пикселей. Для этого требуются интерактивные инструменты, позволяющие оперативно извлекать и визуализировать числовые характеристики.

Представленный в работе инструмент реализует базовые методы анализа изображений в удобном графическом интерфейсе, что делает его пригодным как для обучения, так и для предварительной обработки данных.

2 Представление изображения

Цифровое изображение в памяти компьютера представляется как двумерный массив (матрица) значений интенсивности:

$$I = \{I(i,j) \mid i = 0, \dots, H-1; \ j = 0, \dots, W-1\},\$$

где H и W — высота и ширина изображения в пикселях, а I(i,j) — яркость пикселя в строке i и столбце j.

Для 8-битных изображений $I(i,j) \in [0,255]$, где 0 соответствует чёрному, а 255 — белому. В программе все значения приводятся к типу float32 для совместимости с библиотекой руqtgraph.

Цветные изображения (в формате RGB) автоматически конвертируются в оттенки серого с использованием стандартной формулы яркости [3]:

$$Y = 0.2989 \cdot R + 0.5870 \cdot G + 0.1140 \cdot B$$

где R, G, B — компоненты цвета. Это необходимо, поскольку последующие инструменты (гистограмма, изокривые) работают только с одноканальными данными.

3 Функционал инструмента

Интерфейс программы состоит из трёх основных компонентов, описанных ниже.

3.1 Основное изображение

Изображение отображается в центральной области окна с сохранением пропорций (setAspectLocke Поддерживается: [leftmargin=*]

Панорамирование (перетаскивание правой кнопкой мыши),

Масштабирование (колёсико мыши),

Отображение координат и яркости под курсором.

При наведении курсора в заголовке графика отображается информация:

Позиция:
$$(x, y)$$
, Пиксель: (j, i) , Яркость: $I(i, j)$.

3.2 Область интереса (ROI)

ROI (Region of Interest) — прямоугольная область, выделяемая пользователем для локального анализа. Её положение и размер задаются интерактивно. ROI позволяет ограничить анализ только релевантной частью изображения, например, отдельной клеткой на микроскопическом снимке или дефектом на поверхности.

3.3 Профиль яркости

Для выделенной области ROI строится одномерный профиль яркости, представляющий собой среднее значение интенсивности по строкам:

$$P(j) = \frac{1}{H_{\text{ROI}}} \sum_{i=0}^{H_{\text{ROI}}-1} I_{\text{ROI}}(i, j),$$

где H_{ROI} — высота области, а I_{ROI} — фрагмент исходного изображения внутри ROI.

График профиля отображается в нижней части окна и обновляется в реальном времени при перемещении или изменении размера ROI. Профиль позволяет: [leftmargin=*] Оценивать ширину объектов (по расстоянию между минимумами),

Анализировать градиенты яркости,

Выявлять периодические структуры.

3.4 Гистограмма и управление контрастом

Слева от изображения отображается гистограмма распределения яркости:

$$H(k) = \#\{(i, j) \mid I(i, j) = k\},\$$

где k — уровень яркости, а # — количество пикселей с таким значением.

Под гистограммой расположен ползунок (LUT — Look-Up Table), позволяющий задавать диапазон отображаемых значений [L_{\min}, L_{\max}]. Все пиксели со значением $< L_{\min}$ отображаются как чёрные, $> L_{\max}$ — как белые, а промежуточные линейно растягиваются. Это стандартный метод улучшения контраста [1].

3.5 Изокривые

Изокривая — геометрическое место точек с одинаковой яркостью:

$$C_{\tau} = \{(i, j) \mid I(i, j) = \tau\},\$$

где au — пороговый уровень, задаваемый красной линией на гистограмме.

В программе изокривые отображаются зелёным цветом поверх изображения. Они полезны для: [leftmargin=*]

Визуализации топографии яркости (аналог горизонталей на карте),

Обнаружения локальных экстремумов (замкнутые контуры),

Оценки однородности освещения.

4 Интерпретация результатов

Рассмотрим примеры интерпретации:

[leftmargin=*]

Плато на профиле — однородная область (например, фон).

Острый пик — узкая яркая структура (например, провод на чипе).

Двугорбая гистограмма — бимодальное распределение (например, текст на белом фоне).

Концентрические изокривые — точечный источник света (звезда, флуоресцентная метка).

Таким образом, комбинация визуального и количественного анализа позволяет глубже понять структуру изображения.

5 Области применения

Инструмент может быть использован в следующих сферах: [leftmargin=*]

Медицина: анализ рентгенограмм, МРТ, гистологических срезов.

Биология: количественная флуоресцентная микроскопия.

Астрономия: измерение фотометрической яркости объектов.

Промышленность: контроль качества поверхностей, обнаружение дефектов.

Образование: демонстрация принципов обработки изображений.

6 Заключение

Разработанный инструмент предоставляет простой, но мощный интерфейс для интерактивного анализа изображений. Он объединяет визуализацию, локальный анализ (ROI), профилирование, гистограммный анализ и изокривые в единой среде. Несмотря на ограничения (работа только с оттенками серого, прямоугольный ROI), он является отличной отправной точкой для более сложных систем.

В будущем планируется расширение функционала: поддержка цветных изображений, экспорт данных, автоматическая сегментация и калибровка по физическим единицам.

Благодарности

Автор благодарит разработчиков библиотек PyQt5, pyqtgraph и imageio за создание мощных и бесплатных инструментов для научной визуализации.

Список литературы

- [1] R. C. Gonzalez, R. E. Woods. Digital Image Processing. 4th ed. Pearson, 2018.
- [2] J. A. Richards. Remote Sensing Digital Image Analysis. 5th ed. Springer, 2013.
- [3] ITU-R Recommendation BT.601. Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide-screen 16:9 Aspect Ratios. International Telecommunication Union, 2011.
- [4] L. Campagnola et al. pyqtgraph: High-performance plotting and GUI tools for Python. https://pyqtgraph.org, 2025.
- [5] Riverbank Computing. PyQt5 Documentation. https://www.riverbankcomputing.com/static/Docs/PyQt5/, 2025.