

FACULTAD DE INGENIERÍA

Álgebra y Geometría Guía Nº 2 Ejercicios Resueltos Primer Semestre 2017 Instituto de Ciencias Básicas

Conjuntos

Ejercicio: Demuestre que $A = B \iff A \cup B = A \cap B$

Solución:

 \Longrightarrow Sea A=B. Entonces $A\subseteq B$ y $B\subseteq A$.

Si $A \subseteq B$ entonces $A \cap B = A$ y $A \cup B = B$. Pero como A = B, entonces $A \cap B = A \cup B$. Por otro lado, si $B \subseteq A$ entonces $A \cap B = B$ y $A \cup B = A$. Pero como A = B, entonces $A \cap B = A \cup B$.

Así,
$$A = B \Longrightarrow A \cup B = A \cap B$$

 \leftarrow Sea $A \cup B = A \cap B$.

Se sabe que $A \cap B \subseteq A \subseteq A \cup B$. Pero como $A \cup B = A \cap B$ se tiene que $A \cap B = A = A \cup B$.

Por otro lado, también se sabe que $A\cap B\subseteq B\subseteq A\cup B$. Pero como $A\cup B=A\cap B$ se tiene que $A\cap B=B=A\cup B$.

Así,
$$A \cup B = A \cap B \Longrightarrow A = B$$

Ejercicio: Usando Álgebra de conjuntos, pruebe que:

a)
$$(A - B) - C = A - (B \cup C)$$

b)
$$(A - B) \cup (A \cup B)^c \cup (B - A) = (B \cap A)^c$$

Solución:

a)

$$(A - B) - C = (A \cap B^c) \cap C^c$$
$$= A \cap (B^c \cap C^c)$$
$$= A \cap (B \cup C)^c$$
$$= A - (B \cup C)$$

udp Instituto de Ciencias Básicas

FACULTAD DE INGENIERÍA

b)

$$(A - B) \cup (A \cup B)^c \cup (B - A) = (A \cap B^c) \cup (A^c \cap B^c) \cup (B \cap A^c)$$

$$= [(A \cup A^c) \cap B^c] \cup (B \cap A^c)$$

$$= [U \cap B^c] \cup (B \cap A^c)$$

$$= B^c \cup (B \cap A^c)$$

$$= (B^c \cup B) \cap (B^c \cup A^c)$$

$$= U \cap (B^c \cup A^c)$$

$$= B^c \cup A^c$$

$$= (B \cap A)^c$$

Ejercicio: Simplifique las expresiones de conjuntos:

- a) $(A \cap B) \cup (A B)$
- b) $(A^c \cap B)^c \cup (B \cup A^c) \cup A$
- c) $[A (A \cap B)] \cup [B (A \cap B)] \cup (A \cap B)$

Solución:

a)

$$(A \cap B) \cup (A - B) = (A \cap B) \cup (A \cap B^c)$$
$$= A \cap (B \cup B^c)$$
$$= A \cap U$$
$$= A$$

b)

$$(A^c \cap B)^c \cup (B \cup A^c) \cup A = (A \cup B^c) \cup (B \cup A^c) \cup A$$
$$= A \cup B^c \cup B \cup A^c \cup A$$
$$= (A \cup A^c \cup A) \cup (B^c \cup B)$$
$$= U \cup U$$
$$= U$$

FACULTAD DE INGENIERÍA

c)

$$[A - (A \cap B)] \cup [B - (A \cap B)] \cup (A \cap B) = [A \cap (A \cap B)^c] \cup [B \cap (A \cap B)^c] \cup (A \cap B)$$

$$= [A \cap (A^c \cup B^c)] \cup [B \cap (A^c \cup B^c)] \cup (A \cap B)$$

$$= [(A \cap A^c) \cup (A \cap B^c)] \cup [(B \cap A^c) \cup (B \cap B^c)] \cup (A \cap B)$$

$$= [\phi \cup (A \cap B^c)] \cup [(B \cap A^c) \cup \phi] \cup (A \cap B)$$

$$= (A \cap B^c) \cup (B \cap A^c) \cup (A \cap B)$$

$$= (A \cap B^c) \cup [B \cap (A^c \cup A)]$$

$$= (A \cap B^c) \cup [B \cap U]$$

$$= (A \cap B^c) \cup B$$

$$= (A \cup B) \cap (B^c \cup B)$$

$$= (A \cup B) \cap U$$

$$= A \cup B$$

Ejercicio: Sean #(A - B) = 18, $\#(A \cup B) = 70$ y $\#(A \cap B) = 25$. Calcule #(B).

Solución:

Se tiene que

$$\#(A \cup B) = \#(A - B) + \#(A \cap B) + \#(B - A)$$
$$70 = 18 + 25 + \#(B - A)$$
$$\#(B - A) = 27$$

y luego,

$$\#(B - A) = \#(B) - \#(A \cap B)$$

 $27 = \#(B) - 25$
 $\#(B) = 52$

Ejercicio: Juan, en cada desayuno, come huevos o tocino (o ambos) durante un febrero en año bisiesto. Si come tocino 25 mañanas y huevos 18 mañanas, ¿cuántas mañanas come huevos con tocino?

Solución:

Sea H el conjunto de días que Juan come huevos al desayuno, y T el conjunto de días que Juan come tocino al desayuno.

Se tiene que #(H) = 18 y #(T) = 25. También se tiene que $\#(H \cup T) = 29$, debido a que es la cantidad de días que tiene febrero en un año bisiesto. Luego,

$$\#(H \cup T) = \#(H) + \#(T) - \#(H \cap T)$$
$$29 = 18 + 25 - \#(H \cap T)$$
$$\#(H \cap T) = 14$$

Juan come huevos con tocino durante 14 días.

FACULTAD DE INGENIERÍA

Ejercicio: En una competencia artística, donde participaron 80 personas, se entregaron medallas en diferentes categorías: baile, teatro y música.

Se tiene la siguiente información:

- 37 personas obtuvieron medalla en baile
- 33 personas obtuvieron medalla en teatro
- 14 personas obtuvieron medalla en baile y teatro
- 9 personas obtuvieron medalla en teatro y música
- 12 personas obtuvieron medalla en baile y música
- 58 personas obtuvieron medalla en teatro o música
- 7 personas no obtuvieron ninguna medalla

¿Cuántas personas recibieron medallas de todas las categorías?

Solución: Considere los conjuntos A, B y C como el número de personas que recibieron medallas en baile, teatro y música respectivamente.

Se tienen los siguientes datos:

$$\#(A) = 37$$
 $\#(A \cap B) = 14$ $\#(B \cup C) = 58$
 $\#(B) = 33$ $\#(B \cap C) = 9$ $\#((A \cup B \cup C)^c) = 7$
 $\#(U) = 80$ $\#(B \cap C) = 12$

Primero se observa que

$$\#(A \cup B \cup C) = \#(A) + \#(B) + \#(C) - \#(A \cap B) - \#(A \cap B) - \#(A \cap B) + \#(A \cap B \cap C)$$

$$\#(A \cup B \cup C) = 37 + 33 + \#(C) - 14 - 12 - 9 + \#(A \cap B \cap C)$$

$$\#(A \cup B \cup C) = 35 + \#(C) + \#(A \cap B \cap C)$$

$$\#(A \cap B \cap C) = \#(A \cup B \cup C) - \#(C) - 35$$

Por otro lado, se obtiene el valor de #(C):

$$\#(B \cup C) = \#(B) + \#(C) - \#(B \cap C)$$
$$58 = 33 + \#(C) - 9$$
$$\#(C) = 34$$

y el valor de $\#(A \cup B \cup C)$:

$$\# ((A \cup B \cup C)^c) = 7$$

$$\#(U) - \# (A \cup B \cup C) = 7$$

$$80 - \# (A \cup B \cup C) = 7$$

$$\# (A \cup B \cup C) = 73$$

Y así, reemplazando estos valores en la primera expresión deducida, se obtiene el valor de $\#(A \cap B \cap C)$:

$$\#(A \cap B \cap C) = 73 - 34 - 35$$

$$\#(A \cap B \cap C) = 4$$

Luego, 4 personas obtuvieron medallas de todas las categorías.