Benchmarking of quasi-Newton methods

Igor Sokolov

Optimization Class Project. MIPT

Introduction

The most well-known minimization technique for unconstrained problems is Newtons Method. In each iteration, the step update is $x_{k+1} = x_k - (\nabla^2 f_k) \, \nabla f_k$. wever, the inverse of the Hessian has to be calculated in every iteration so it takes $O\left(n^3\right)$. Moreover, in some applications, the second derivatives may be unavailable. One fix to the problem is to use a finite difference approximation to the Hessian. We consider solving the nonlinear unconstrained minimization problem

$$\min f(x), x \in \mathbb{R}$$

Let's consider the following quadratic model of the objective function $m_k(p) = f_k + \nabla f_k^T p + \frac{1}{2} B_k p$, where $B_k = B_k^T, B_k \succ 0$ is an $n \times n$

The minimizer p_k of this convex quadratic model $p_k=-B_k^{-1}\nabla f_k$ is used as the search direction, and the new iterate is

$$x_{k+1} = xk + \alpha p_k$$
, let $s_k = \alpha p_k$

The general structure of quasi-Newton method can be summarized as follows

- Given x_0 , B_0 (or H_0), $k \to 0$;
- For $k = 0, 1, 2, \dots$

Evaluate gradient g_k .

Calculate s_k by line search or trust region methods.

$$x_{k+1} \leftarrow x_k + s_k$$

$$y_k \leftarrow g_{k+1} - g_k$$

Update B_{k+1} or H_{k+1} according to the quasi-Newton formulas.

End(for)

Basic requirement in each iteration, i.e., $B_k s_k = y_k$ (or $H_k y_k = s_k$)

Quasi-Newton Formulas for Optimization

BFGS

$\min H - H_k $,	$H_{k+1} = (I - \rho s_k y_k^T) H_k (I - \rho y_k s_k^T) + \rho s_k s_k^T$
s.t $H=H^T$, $Hy_k=s_k$	where $ ho = rac{1}{y_k^T s_k}$
	$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$
DFP	
$\min B - B_k ,$	$B_{k+1} = (I - \gamma y_k s_k^T) H_k (I - \gamma s_k y_k^T) + \gamma y_k y_k^T$
s.t $B=B^T$, $Bs_k=y_k$	where $\gamma = \frac{1}{T}$

 $H_{k+1} = H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + \frac{s_k s_k^T}{y_k^T s_k}$

PSB

$$\begin{aligned} &\min ||B - B_k||, & B_{k+1} &= B_k - \frac{(y_k - B_k s_k) s_k^T + s_k (y_k - B_k s_k)^T}{s_k^T s_k} + \\ &\text{s.t } (B - B_k) = (B - B_k)^T, & + \frac{s_k (y_k - B_k s_k) s_k s_k^T}{(s_k^T s_k)^2} \\ &Bs_k &= y_k & + \frac{s_k (y_k - B_k s_k) s_k s_k^T}{(s_k^T s_k)^2} \\ &H_{k+1} &= H_k - \frac{(s_k - H_k y_k) y_k^T + y_k (s_k - H_k y_k)^T}{y_k^T y_k} + \\ &+ \frac{s_k (s_k - H_k y_k) y_k y_k^T}{(y_k^T y_k)^2} \end{aligned}$$

SR1

$$\begin{split} B_{k+1} &= B_k + \sigma \nu \nu^T, \\ \text{s.t } B_{k+1} s_k &= y_k \end{split} \qquad B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}, \\ H_{k+1} &= H_k + \frac{(s_k - H_k y_k)(s_k - H_k y_k)^T}{(s_k - H_k y_k)^T y_k} \end{split}$$

Method	Advantages	Disadvantages
BFGS	 H₀ ≻ 0 hence if H₀ ≻ 0 self correcting property if Wolfe chosen superlinear convergence 	 y_k^Ts_k ≈ 0 formula produce bad results sensitive to round-off error sensitive to inaccurate line search can get stuck on a saddle point for the nonlinear problem
DFP	 can be highly inefficient at cor- recting large eigenvalues of ma- trices 	 sensitive to round-off error sensitive to inaccurate line search
PSB	superlinear convergence	 can get stuck on a saddle point for nonlinear problem
SR1	 garantees to be B_{k+1} ≻ 0 even if s_ky_k > 0 doesn't satisfied very good approximations to the Hessian matrices, often better than BFGS 	

Line Search vs. Trust Region

- Line search (strong Wolfe conditions) $f(x_k + \alpha_k p_k) \leq f(x_k) + c_1 \alpha_k \nabla_k^T p_k$ $|f(x_k + \alpha_k p_k)^T p_k| \leq c_2 |\nabla f_k^T p_k|$
- Trust region

Both direction and step size find from solving $\min_{p\in\mathbb{R}^n} m_k(p) = f_k + \nabla f_k^T p + \tfrac{1}{2} B_k p \quad \text{s.t } ||p|| \leq \Delta_k$

Numerical Experiment

- All quasi-newton methods (BFGS,DFP, PSB, SR1) with two strategies (line search, trust region) were implemented in Python (overall 8 algorithms)
- 165 various N- $d(N \ge 2)$ strong benchmark problems
- For each algorithm, all problems were launched from the random point of domain 100 times and results were averaged

Examples of benchmark problems

Results

Proportion of problems where have been success- in more than square under plot of fully found global minimizer in more than half of all 0.99 launches performance profile function

Strategy	BFGS		DFP		PSB			SR1			Total			
LS	0.21	0.12	2.58	0.16	0.08	2.54	0.09	0.05	2.66	0.09	0.05	2.97	0.07	0.04
TR	0.18	0.12	2.93	0.16	0.1	2.91	0.19	0.14	2.93	0.11	0.06	2.83	0.1	0.05

Performance evaluation: n_s - number of solvers, n_p - number of problems, $t_{s,p}$ - time, $r_{s,p}=\frac{t_{s,p}}{\min\{t_{s,n}:s\in S\}}$ - performance profile function

 $ho_s(au)=rac{1}{n_p}size\{p:1\le p\le n_p,\ \log(r_{s,p}\le au)\}$ - defines the probability for solver s that the performance ratio $r_{s,p}$ is within a factor au of the best possible ratio

Conclusions and Further Work

- Trust region based strategy for all methods(except BFGS) successfully solved more problems than line search. It's square metric also showed better results
- Though SR1 solved the least amount of problems it founded solution faster for line search
- Futher, one may add to comparison L-BFGS-B

Source code of this work is available here [3]

Acknowledgements

The author of the project expresses gratitude to Daniil Merkulov for his lectures of optimization and his support in this work.

- [1] Ding, Yang, Enkeleida Lushi, and Qingguo Li. "Investigation of quasi-Newton methods for unconstrained optimization." Simon Fraser University, Canada (2004).
- [2] Wright, Stephen, and Jorge Nocedal. Numerical optimization. Springer Science 35.67-68 (1999)
- [3] https://github.com/IgorSokoloff/benchmarking_of_quasi_newton_methods