Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Image Processing avanzato
 - Edge detection
 - Canny Edge Detection

Crediti

- Slides adattate da vari corsi
 - Analisi di Immagini (F. Angiulli) Unical
 - Intro to Computer Vision (J. Tompkin) CS Brown Edu
 - Computer Vision (I. Gkioulekas), CS CMU Edu

Sharpening

- Evidenziare transizioni d'intensità
 - Printing, medical imaging, industrial inspection, ecc

• Smoothing richiede averaging, analogo di integrazione spaziale

• Sharpening richiede derivazione spaziale

Immagine

Discontinuità molto ripide nell'intensità

dominio
$$oldsymbol{x} = \left[egin{array}{c} x \ y \end{array}
ight]$$

• Come si possono identificare le discontinuità?

- Come si possono identificare le discontinuità?
 - Si calcolano le derivate
 - Nei punti di discontinuità le derivate sono grandi

- Come si possono identificare le discontinuità?
 - Si calcolano le derivate
 - Nei punti di discontinuità le derivate sono grandi

Come si calcolano le derivate di un segnale discreto?

- Come si possono identificare le discontinuità?
 - Si calcolano le derivate
 - Nei punti di discontinuità le derivate sono grandi

- Come si calcolano le derivate di un segnale discrete?
 - Calcolando le differenze finite

Derivate di immagini digitali

- Le derivate di un'immagine digitale sono definite in termini di differenze
- Proprietà della derivata prima:
 - (1) pari a zero nelle aree di intensità costante
 - (2) diversa da zero in presenza di una rampa o gradino
 - (3) diversa da zero lungo le rampe
- Proprietà della derivata seconda:
 - (1) pari a zero nelle aree di intensità costante
 - (2) diversa da zero all'inizio ed alla fine di una rampa o gradino
 - (3) pari a zero lungo le rampe di pendenza costante

Derivate di immagini digitali

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial f'(x)}{\partial x} = f'(x+1) - f'(x) =$$

$$= f(x+2) - f(x+1) - [f(x+1) - f(x)] =$$

$$= f(x+2) - 2f(x+1) + f(x)$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

Derivate di immagini digitali

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

Sobel filter

Che cos'è?

1	0	-1		1	
2	0	-2	=	2	
1	0	-1		1	

Sobel filter

*

1 0 -1

Derivata prima

Sobel filter

Qual'è il responso su un'immagine 2D?

Sobel filter

Orizzontale

1	0	-1		1		1	0	-1
2	0	-2	=	2	*			
1	0	-1		1				

Com'è fatto il filtro verticale?

The Sobel filter

Orizzontale

1	0	-1		
2	0	-2		
1	0	-1		

=

*

Verticale

=

*

Filtri basati su derivate

• Come si ottiene un filtro di dimensione più grande?

Gradient-based filtering

1. Scegli la derivata

$$m{S}_{m{x}} = egin{array}{c|ccc} 1 & 0 & -1 \\ \hline 2 & 0 & -2 \\ \hline 1 & 0 & -1 \end{array}$$

$$m{S}_{m{y}} = egin{array}{c|ccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

Gradient-based filtering

1. Scegli la derivata

$$m{S}_y = egin{array}{c|ccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

2. Convolvi con l'immagine

$$rac{\partial oldsymbol{f}}{\partial x} = oldsymbol{S}_x \ ^* oldsymbol{f}$$

$$rac{\partial oldsymbol{f}}{\partial y} = oldsymbol{S}_y * oldsymbol{f}$$

Gradient-based filtering

1. Select your favorite derivative filters.

$$m{S}_{x} = egin{array}{c|ccc} 1 & 0 & -1 \ 2 & 0 & -2 \ 1 & 0 & -1 \ \end{array}$$

$$m{S}_y = egin{array}{c|ccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

2. Convolvi con l'immagine

$$rac{\partial oldsymbol{f}}{\partial x} = oldsymbol{S}_x * oldsymbol{f}$$

$$rac{\partial oldsymbol{f}}{\partial y} = oldsymbol{S}_y * oldsymbol{f}$$

3. Calcola direzione e ampiezza del gradiente.

$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y} \end{bmatrix} \qquad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \qquad ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$
 gradient direction amplitude

$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y} \end{bmatrix} \qquad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \qquad ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$
 gradient direction amplitude

Esempio

original

Derivata verticale

Ampiezza

Derivata orizzontale

Laplaciano: derivata seconda di immagini digitali

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Laplaciano di immagini digitali

- Filtro isotropico: invariante rispetto alle rotazioni
- · Laplaciano può essere utilizzato per image sharpening
 - Una proprietà desiderabile è che la risposta del filtro sia indipendente dalla direzione delle discontinuità (isotropia)

$$w = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad w = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$w = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad w = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Sharpening utilizzando il Laplaciano

- Gli operatori del secondo ordine sono più sensibili alle variazioni d'intensità
- Il laplaciano evidenzia le discontinuità di intensità; per recuperare lo sfondo sommiamo l'input

$$g(x,y) = f(x,y) + c \left[\nabla^2 f(x,y) \right]$$

• dove c=-1 se il centro è negativo e c=+1 se è positivo

Problema

• Le derivate sono calcolate sulla scala determinata dalla risoluzione dell'immagine

• Le immagini rumorose comportano un'alta instabilità della derivata

Segnali instabili

Segnali instabili

intensità

derivata

Segnali instabili

Usiamo il filtro di blurring

Derivata del Filtro Gaussiano (DoG Filter)

Derivata della convoluzione: $\frac{\partial}{\partial x}(h\star f)=(\frac{\partial}{\partial x}h)\star f$

Laplaciano del filtro Gaussiano (LoG filter)

Applichiamo lo stesso principio

Laplacian of Gaussian (LoG) filter

Applichiamo lo stesso principio

Zero crossing

50	50	50	50	50	50	50	50	50	50
50	50	50	50	50	50	50	50	50	50
50	50	200	200	200	200	200	200	50	50
50	50	200	200	200	200	200	200	50	50
50	50	200	200	200	200	200	200	50	50
50	50	200	200	200	200	200	200	50	50
50	50	50	50	200	200	200	200	50	50
50	50	50	50	200	200	200	200	50	50
50	50	50	50	50	50	50	50	50	50
50	50	50	50	50	50	50	50	50	50

(a) A simple image

-100	- 50	-50	-50	-50	-50	-50	-50	-50	-100
- 50	0	150	150	150	150	150	150	0	-50
-50	150	-300	-150	-150	-150	-150	-300	150	-50
-50	150	-150	0	0	0	0	-150	150	-50
-50	150	-150	0	0	0	0	-150	150	-50
-50	150	-300	-150	0	0	0	-150	150	-50
-50	0	150	300	-150	0	0	-150	150	-50
-50	0	0	150	-300	-150	-150	-300	150	-50
-50	0	0	0	150	150	150	150	0	-50
-100	-50	-50	-50	-50	- 50	-50	-50	-50	-100

(b) After laplace filtering

Zero crossing

Filtri gaussiani

Gaussian

