EC3357:Machine Learning

Lecture 1: Introduction to Machine Learning

What is Learning?

- Herbert Simon: "Learning is any process by which a system improves performance from experience."
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." – Tom Mitchell
- From the definition by Tom Mitchell (1998):
 - Machine Learning is the study of algorithms that
 - improve their performance P
 - at some task T
 - with experience E.
 - A well-defined learning task is given by <P, T, E>.

Traditional Programming

Machine Learning

How can we solve a specific problem?

- As computer scientists we write a program that encodes a set of rules that are useful to solve the problem
- In many cases is very difficult to specify those rules, e.g., given a picture determine whether there is a cat in the image.

Learning

- Learning systems are not directly programmed to solve a problem, instead develop own program based on:
 - Examples of how they should behave
 - From trial-and-error experience trying to solve the problem
- Learning simply means incorporating information from the training(input-output pairs) examples into the system

A classic example of a task that requires machine learning

• It is very hard to say what makes a 2

Why use learning?

- It is very hard to write programs that solve problems like recognizing a handwritten digit
 - What distinguishes a 2 from a 7?
 - How does our brain do it?
- Instead of writing a program by hand, we collect examples that specify the correct output for a given input
- A machine learning algorithm then takes these examples and produces a program that does the job

When Do We Use Machine Learning

- ML is used when:
 - Human expertise does not exist (navigating on Mars)
 - Humans can't explain their expertise (speech recognition)
 - Models must be customized (personalized medicine)
 - Models are based on huge amounts of data (genomics)

- Learning isn't always useful:
 - There is no need to "learn" to calculate payroll

More examples of tasks that are best solved by using a learning algorithm

- Recognizing patterns:
 - Facial identities or facial expressions
 - Handwritten or spoken words
 - Medical images
- Generating patterns:
 - Generating images or motion sequences
- Recognizing anomalies:
 - Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction:
 - Future stock prices or currency exchange rates

Sample Applications

- Web search
 - Computational biology
 - Finance
 - E-commerce
 - Space exploration
 - Robotics
 - Information extraction
 - Social networks
 - Debugging software
 - [Your favorite area]

Samuel's Checkers-Player

• "Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed." - Arthur Samuel (1959)

Defining the Learning Task

Improve on task T, with respect to performance metric P, based on experience E

- T: Playing checkers
- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself
- T: Recognizing hand-written words
- P: Percentage of words correctly classified
- E: Database of human-labeled images of handwritten words
- T: Driving on four-lane highways using vision sensors
- P: Average distance traveled before a human-judged error
- E: A sequence of images and steering commands recorded while observing a human driver.
- T: Categorize email messages as spam or legitimate.
- P: Percentage of email messages correctly classified.
- E: Database of emails, some with human-given labels

Autonomous Driving

Flying Robots

Figure: Video: https://www.youtube.com/watch?v=YQIMGV5vtd4

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
- Rewards from sequence of actions. An agent interacting with the world makes observations, takes actions, and is rewarded or punished; it should learn to choose actions in such a way as to obtain a lot of reward.

ML taxonomy

Supervised Learning

- Learning a discrete function: Classification
 - Boolean classification:
 - Each example is classified as true(positive) or false(negative).
 - predict categorical values, i.e., labels
- Learning a continuous function: Regression
 - predict numerical values

Supervised learning

• In supervised learning, the algorithms are presented with a set of classified instances from which they learn a way of classifying unseen instances. When the attribute to be predicted is numeric rather than nominal it is called regression.

Classification

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Test set is independent of training set, otherwise over-fitting will occur
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Illustrating Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Learning algorithm Induction Learn Model **Model Apply** Model **Deduction**

Test Set

Issues: Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize data to (higher concepts, discretization)
 - Normalize attribute values

Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Naïve Bayes and Bayesian Belief Networks
- Neural Networks
- Support Vector Machines
- and more...

Classification

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings

Discriminant: IF $income > \theta_1$ AND $savings > \theta_2$ THEN low-risk ELSE high-risk

Classification: Applications

- Aka Pattern recognition
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Medical diagnosis: From symptoms to illnesses

• ...

Face Recognition

Training examples of a person

Test images

Supervised Learning: Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

Supervised Learning: Uses

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

Unsupervised Learning: Overview

- So far, in all the learning techniques we considered, a training example consisted of a set of attributes (or features) and either a class (in the case of classification) or a real number (in the case of regression) attached to it.
- Unsupervised Learning takes as training examples the set of attributes/features alone.
- The purpose of unsupervised learning is to attempt to find natural partitions in the training set.
- Two general strategies for Unsupervised learning include: *Clustering* and *Hierarchical Clustering*.

Clustering and Hierarchical Clustering

Other Unsupervised Methods:

There are a lot of other Unsupervised Learning Methods.

Examples:

- k-means
- The EM Algorithm
- Competitive Learning
- Kohonen's Neural Networks: Self-Organizing Maps
- Principal Component Analysis, Autoassociation

Supervised Learning vs Unsupervised Learning

Supervised Learning vs Unsupervised Learning

Supervised Learning vs Unsupervised Learning

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from statesàactions that tells you what to do in a given state
- Examples:
 - Credit assignment problem
 - Game playing
 - Robot in a maze
 - Balance a pole on your hand

Reinforcement Learning

Agent and environment interact at discrete time steps : t = 0, 1, 2, K

Agent observes state at step t: $s_t \subseteq S$

produces action at step $t: a_t \subseteq A(s_t)$

gets resulting reward: $\underline{r}_{t+1} \subseteq \Re$

and resulting next state: s_{t+1}

$$\cdots - \underbrace{ s_t } \underbrace{ a_t }^{r_{t+1}} \underbrace{ s_{t+1}}_{a_{t+1}} \underbrace{ s_{t+2}}_{a_{t+1}} \underbrace{ s_{t+2}}_{a_{t+2}} \underbrace{ s_{t+3}}_{a_{t+3}} \underbrace{ s_{t+3}}_{a_{t+3}} \cdots$$

Designing a Learning System

- Choose the training experience
- Choose exactly what is to be learned
 - i.e. the *target function*
- Choose how to represent the target function
- Choose a learning algorithm to infer the target function from the experience

Case Study

- What grade will I get in this course?
- Data: entry survey and marks from this and previous years
- Process the data
 - Split into training set; and test set
 - Determine representation of input;
 - Determine the representation of the output;
- Choose form of model: linear regression
- Decide how to evaluate the system's performance: objective function
- Set model parameters to optimize performance
- Evaluate on test set: generalization

ML in a Nutshell

- Tens of thousands of machine learning algorithms
 - Hundreds new every year
- Every ML algorithm has three components:
 - Representation
 - Optimization
 - Evaluation

Various Function Representations

- Numerical functions
 - Linear regression
 - Neural networks
 - Support vector machines
- Symbolic functions
 - Decision trees
 - Rules in propositional logic
 - Rules in first-order predicate logic
- Instance-based functions
 - Nearest-neighbor
 - Case-based
- Probabilistic Graphical Models
 - Naïve Bayes
 - Bayesian networks
 - Hidden-Markov Models (HMMs)
 - Probabilistic Context Free Grammars (PCFGs)
 - Markov networks

Various Search/Optimization Algorithms

- Gradient descent
 - Perceptron
 - Backpropagation
- Dynamic Programming
 - HMM Learning
 - PCFG Learning
- Divide and Conquer
 - Decision tree induction
 - Rule learning
- Evolutionary Computation
 - Genetic Algorithms (GAs)
 - Genetic Programming (GP)
 - Neuro-evolution

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- etc.

ML in Practice

- Understand domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learn models
- Interpret results
- Consolidate and deploy discovered knowledge

Lessons Learned about Learning

- Learning can be viewed as using direct or indirect experience to approximate a chosen target function.
- Function approximation can be viewed as a search through a space of hypotheses (representations of functions) for one that best fits a set of training data.
- Different learning methods assume different hypothesis spaces (representation languages) and/or employ different search techniques