ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ»

Б.П. ЗЕЛЕНЦОВ

АЛГЕБРА и ГЕОМЕТРИЯ

Практикум

Рекомендовано УМО по образованию в области телекоммуникаций в качестве практикума для студентов высших учебных заведений, обучающихся по направлению 210400 «Телекоммуникации»

Новосибирск 2007

УДК 51(076)

Б.П. Зеленцов. Алгебра и геометрия: Практикум / ГОУ ВПО «СибГУТИ». - Новосибирск, 2010. – 88 с.

Практикум содержит планы 17 практических занятий, сводки формул, словарь основных терминов по теме пособия и список литературы. Практикум охватывает следующие основные темы: линейная алгебра, векторная алгебра, линейные образы аналитической геометрии, кривые и поверхности второго порядка. Практикум предназначен для использования в учебном процессе преподавателями и студентами дневной формы обучения при изучении математики на первом курсе по направлению подготовки дипломированных специалистов 210400 «Телекоммуникации».

Кафедра высшей математики Табл. – 34, список литературы – 24 назв.

Рецензенты: д.ф.-м.н., профессор Г.Г. Черных д.т.н., профессор В.Н. Максименко к.ф.-м.н., доцент Ю.Г. Боковиков

Утверждено редакционно-издательским советом ГОУ ВПО «СибГУТИ» в качестве практикума

[©] Б.П. Зеленцов, 2010 г.

[©] ГОУ ВПО «Сибирский государственный университет телекоммуникаций и информатики», 2010 г.

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ	5
ПРАКТИЧЕСКИЕ ЗАНЯТИЯ	6
Занятие 1. МАТРИЦЫ	
Занятие 2. ОПРЕДЕЛИТЕЛИ	10
Занятие 3. ОБРАТНАЯ МАТРИЦА. РАНГ МАТРИЦЫ	
Занятие 4. ФОРМУЛЫ КРАМЕРА. МАТРИЧНЫЕ УРАВНЕНИЯ	
Занятие 5. МЕТОД ГАУССА	
Занятие 6. ИССЛЕДОВАНИЕ СИСТЕМЫ	. 1/
линейных уравнений	18
Занятие 7. ГЕОМЕТРИЧЕСКИЙ ВЕКТОР	21
Занятие 8. ВЕКТОР В ДЕКАРТОВЫХ КООРДИНАТАХ	
Занятие 9. СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ДВУХ ВЕКТОРОВ	26
Занятие 10. ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ	27
Занятие 11. ПРЯМАЯ ЛИНИЯ НА ПЛОСКОСТИ	30
Занятие 12. ПРЯМАЯ ЛИНИЯ НА ПЛОСКОСТИ	32
Занятие 13. ПЛОСКОСТЬ В ПРОСТРАНСТВЕ	34
Занятие 14. ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ	37
Занятие 15. КРИВЫЕ ВТОРОГО ПОРЯДКА	39
Занятие 16. УПРОЩЕНИЕ УРАВНЕНИЙ КРИВЫХ	
ВТОРОГО ПОРЯДКА	41
Занятие 17. ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА	43
СВОДКИ ФОРМУЛ	45
Раздел 1. МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ,	4 ~
СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ	
Таблица 1.1. Используемые обозначения	
Таблица 1.2. Виды числовых матриц	46
Таблица 1.3. Некоторые операции с матрицами	47
Таблица 1.4. Свойства линейных операций над матрицами	48
Таблица 1.5. Вычисление определителей	48
<i>Таблица 1.6.</i> Свойства определителей	49 50
Таблица 1.7. Обратная матрица	50 50
Таблица 1.8. Свойства вырожденной квадратной матрицы А	50 51
Таблица 1.9. Свойства ранга матрицы	51 51
Таблица 1.10. Системы линейных уравнений	51 52
Таблица 1.11. Матричные уравнения Таблица 1.12. Схема исследования системы линейных уравнений	52 53
тиолици 1.12. Слема исследования системы линеиных уравнении	JJ

Раздел 2. ВЕКТОРНАЯ АЛГЕБРА	54
Таблица 2.1. Используемые обозначения	54
Таблица 2.2. Геометрический вектор	55
Таблица 2.3. Скалярное произведение	56
Таблица 2.4. Векторное произведение	57
Таблица 2.5. Смешанное произведение	58
Раздел 3. ЛИНЕЙНЫЕ ОБРАЗЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ	59
Таблица 3.1. Используемые обозначения	59
Таблица 3.2. Уравнения прямой на плоскости	60
Таблица 3.3. Частные случаи положения прямой на плоскости	61
Таблица 3.4. Взаимное расположение двух прямых на плоскости	62
Таблица 3.5. Уравнения плоскости в пространстве	62
Таблица 3.6. Частные случаи положения плоскости в пространстве	63
Таблица 3.7. Взаимное расположение двух плоскостей	64
Таблица 3.8. Уравнения прямой в пространстве	64
Таблица 3.9. Взаимное расположение двух прямых в пространстве	65
Таблица 3.10. Взаимное расположение прямой и плоскости	65
Таблица 3.11. Расстояние от точки до прямой на плоскости	
и до плоскости в пространстве	65
Раздел 4. КРИВЫЕ И ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА	66
Таблица 4.1. Канонические уравнения кривых второго порядка	66
Таблица 4.2. Свойства кривых второго порядка	67
Таблица 4.3. Преобразование декартовой прямоугольной	
системы координат на плоскости	68
Таблица 4.4 Нахождение матрицы поворота к главным	
направлениям квадратичной формы	69
Таблица 4.5. Схема упрощения уравнения кривой второго порядка	70
Таблица 4.6. Канонические уравнения поверхностей второго порядка	71
СЛОВАРЬ ОСНОВНЫХ ТЕРМИНОВ	72
Раздел 1. МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ,	
СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ	72
Раздел 2. ВЕКТОРНАЯ АЛГЕБРА	77
Раздел 3. ЛИНЕЙНЫЕ ОБРАЗЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ	82
Раздел 4. КРИВЫЕ ВТОРОГО ПОРЯДКА	82
Раздел 5. ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА	85
СПИСОК ЛИТЕРАТУРЫ	87

ПРЕДИСЛОВИЕ

Пособие содержит учебный материал для подготовки и проведения практических занятий и выполнения домашних.

Каждый преподаватель использует материал данного пособия в соответствии с государственным образовательным стандартом и рабочей программой дисциплины по реализации этого стандарта. При необходимости преподаватель может изменить количество задач для аудиторного и домашнего задания в зависимости от контингента студентов и реального распределения часов. Преподаватель может также перенумеровать занятия.

Материал настоящего пособия логически разбит на четыре раздела:

Наименование раздела	Номера занятий
1. Матрицы, определители, системы линейных уравнений	1 - 6
2. Векторная алгебра	7 - 10
3. Линейные образы аналитической геометрии	11 - 14
4. Кривые и поверхности второго порядка	15 - 17

В соответствии с этим разбиением приведены сводки формул и словарь основных терминов.

К каждому практическому занятию приводится изучаемый материал, теорию которого студент должен подготовить в качестве домашнего задания по конспекту лекций или по учебникам. Затем, в виде таблицы приведены номера задач, подлежащих решению. Как правило, задачи разбиты по типам в соответствии с изучаемым материалом. Номера задач к каждому практическому занятию приведены в трех столбцах: левый столбец содержит номера задач, решаемых в аудитории, средний - задаваемых на дом, а правый столбец содержит номера задач дополнительного задания.

Основным источником задач являются сборники [6, 12,17]; несколько задач взяты из методических указаний по линейной и векторной алгебре (Новосибирск, НЭИС, 1976, составитель И.Д.Суздальницкий).

Целью каждого практического занятия является усвоение студентами новых математических терминов и понятий, овладение новым теоретическим материалом, приобретение умения и навыков решения типовых математических задач в соответствии с принятой программой. Для достижения этой цели преподаватель должен научить студентов: определять тип математических объектов; сознательно применять основные теоремы и теоретические положения для решения задач; методам и алгоритмам решения типовых задач; методам выполнения изучаемых математических операций.

Пособие содержит справочный материал - сводки формул и словарь основных терминов. Этот справочный материал может быть использован не только при изучении математики, но и на старших курсах при изучении специальных дисциплин, а также при подготовке и защите курсовых и дипломных проектов. Следует отметить, что в словаре основных терминов предпочтение отдается определениям в словесной форме. В некоторых случаях приведены формально различные определения, взятые из разных источников. Совместно с определениями даются обозначения, используемые в настоящем пособии.

Автор будет признателен преподавателям и студентам, которые выскажут критические замечания и дадут полезные советы по всем аспектам этого учебного издания.

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

Занятие 1. МАТРИЦЫ

Изучаемый материал: понятие числовой матрицы; виды матриц; линейные операции над матрицами; умножение матриц; понятие матричного многочлена;

транспонирование матриц.

	Аудиторное	Домашнее	Дополнительное
Типы задач	задание	задание	задание
1. Линейные операции	1.1	1.9	1.18, 1.19
над матрицами			
2. Произведение матриц	1.2 - 1.4	1.10 - 1.14	1.20-1.29
3. Многочлен от матрицы	1.5 - 1.7	1.15, 1.16	1.30-1.32
4. Транспонирование	1.8	1.17	1.33-1.35

1.1. Найти линейные комбинации матриц: **a)** A + 2B, **б)** A - B, **в)** 2A + 4B,

где
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & -4 \end{pmatrix}; \quad B = \begin{pmatrix} -2 & 1 & 0 \\ -3 & 2 & 2 \end{pmatrix}.$$

1.2. Вычислить
$$AB$$
, BA , $AB - BA$, если $A = \begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}$.

Вычислить произведение матриц:

1.3.
$$\begin{pmatrix} 1 & -3 & 2 \\ 3 & -4 & 1 \\ 2 & -5 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 5 & 6 \\ 1 & 2 & 5 \\ 1 & 3 & 2 \end{pmatrix} .$$

$$\begin{bmatrix} \mathbf{1.3.} \begin{pmatrix} 1 & -3 & 2 \\ 3 & -4 & 1 \\ 2 & -5 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 5 & 6 \\ 1 & 2 & 5 \\ 1 & 3 & 2 \end{pmatrix}. \qquad \mathbf{1.4.} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 3 \\ 3 & 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} -1 & -1 \\ 2 & 2 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \end{pmatrix}.$$

1.5. Найти значение матричного многочлена
$$f(A)$$
 от матрицы A : $f(x) = 3x^2 - 4$, где

корнем многочлена $P(x) = x^2 + \alpha x + \beta$.

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}.$$

1.6. Показать, что матрица
$$A$$
 является корнем многочлена $P(x) = x^2 - 4x + 5$.

корнем многочлена
$$P(x) = x^2 - 4x + 5$$
. (1 2)

1.7. При каких значениях α и β матрица A является (2)

a)
$$A = \begin{pmatrix} -2 & 1 & 0 \\ -3 & 2 & 2 \end{pmatrix}$$
, **6)** $B = \begin{pmatrix} 5 & 8 & -4 \\ 6 & 9 & -5 \\ 4 & 7 & -3 \end{pmatrix}$

Домашнее задание 1

1.9. Найти линейные комбинации матриц: **a)** 3A + 2B, **6)** 3A - 2B,

где
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & -4 \end{pmatrix}; \quad B = \begin{pmatrix} -2 & 1 & 0 \\ -3 & 2 & 2 \end{pmatrix}.$$

1.10. Вычислить
$$AB$$
, BA , $AB - BA$, если $A = \begin{pmatrix} 2 & -3 \\ 4 & -6 \end{pmatrix}$, $B = \begin{pmatrix} 9 & -6 \\ 6 & -4 \end{pmatrix}$.

Вычислить произведение матриц:

1.11.
$$\begin{pmatrix} 5 & 8 & -4 \\ 6 & 9 & -5 \\ 4 & 7 & -3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 & 5 \\ 4 & -1 & 3 \\ 9 & 6 & 5 \end{pmatrix} .$$

1.12.
$$\begin{pmatrix} 5 & 0 & 2 & 3 \\ 4 & 1 & 5 & 3 \\ 3 & 1 & -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ -2 \\ 7 \\ 4 \end{pmatrix}$$
. **1.13.** $\begin{pmatrix} 4 & 0 & -2 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ -1 \\ 5 \\ 2 \end{pmatrix}$. **1.14.** $\begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}^3$.

1.15. Найти значение многочлена
$$f(A)$$
 от матрицы A : $f(x) = x^2 - 3x + 1$, где $A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$.

1.16. Найти значение матричного многочлена
$$f(A)$$
, если $f(x) = 2x^3 - 3x^2 + 5$, где $A = \begin{pmatrix} 1 & 2 \\ -2 & 3 \end{pmatrix}$.

1.17. Проверить свойство
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & -1 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 0 \end{pmatrix}.$$

Дополнительное задание 1

1.18. Даны матрицы
$$A = \begin{pmatrix} 0 & 3 & -3 \\ 5 & -2 & 1 \end{pmatrix}, \ B = \begin{pmatrix} -2 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix}$$
. Найти:

а) 3A + 2B; б) A - B; в) 2A + 4B; г) матрицу X в уравнении 3A + 2X = B.

$$A - \lambda E$$
, где $E - единичная матрица,$

$$A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}.$$

1.20. Найти произведения *AB* и *BA*:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 3 & 4 & 5 \\ 6 & 0 & -2 \\ 7 & 1 & 8 \end{pmatrix}.$$

Найти произведение матриц:

1.21.
$$\begin{pmatrix} 0 & 3 & 2 \\ 1 & -4 & -5 \\ 2 & -1 & 3 \end{pmatrix}$$
 $\cdot \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}$ $\cdot 1.22. \begin{pmatrix} 3 & -1 & 2 & 1 \\ 0 & 2 & 1 & -4 \end{pmatrix} \cdot \begin{pmatrix} -1 & 3 & 0 \\ 2 & 0 & 1 \\ -3 & 1 & -2 \\ 1 & 2 & 2 \end{pmatrix}$

1.23.
$$\begin{pmatrix} 1 & 3 & 0 \\ 2 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot (1 \quad 4) \cdot 1.24 \cdot \begin{pmatrix} 1 & 2 & 1 \\ 3 & -3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 2 \\$$

1.25.
$$\begin{pmatrix} 5 & 4 & -1 & -2 \ -5 & -3 & 1 & 3 \end{pmatrix}$$
. $\begin{pmatrix} -3 & 1 & -1 \ -2 & 3 & -5 \ 5 & 3 & -5 \ -1 & -4 & -2 \end{pmatrix}$.

1.26. Вычислить
$$AB$$
, BA , $AB - BA$, если $A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}$.

1.27. Вычислить
$$AB$$
, BA , $AB - BA$,

1.28. Найти все матрицы, перестановочные с матрицей
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.

1.29. Доказать, что
$$A^3 = E$$
, где $A = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$.

Найти значение матричного многочлена f(A), соответствующего многочлену f(x):

1.30.
$$f(x) = 2x^3 - 3x^2 + 5$$
, $A = \begin{pmatrix} 1 & 2 \\ -2 & 3 \end{pmatrix}$.

1.31.
$$f(x) = x^3 - 6x^2 + 9x + 4$$
, $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 1 & 4 \end{pmatrix}$.

1.32. Показать, что при некотором значении
$$k$$
 выполняется равенство

8

$$M^2 - 8M = kE$$
, где E - единичная матрица; $M = \begin{pmatrix} 1 & 5 \\ 2 & 7 \end{pmatrix}$.

Найти произведения **a)** AA^{T} и **б)** $A^{\mathrm{T}}A$:

1.33.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
. **1.34.** $A = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$. **1.35.** $A = \begin{pmatrix} 0 & 0 & -3 \\ 0 & 2 & 0 \\ 5 & 0 & 0 \end{pmatrix}$.

Ответы к занятию 1

1.2.
$$AB - BA = \begin{pmatrix} -24 & 24 \\ -24 & 24 \end{pmatrix}$$
. **1.3.** $\begin{pmatrix} 1 & 5 & -5 \\ 3 & 10 & 0 \\ 2 & 9 & -7 \end{pmatrix}$. **1.4.** $\begin{pmatrix} 5 \\ 15 \\ 25 \\ 35 \end{pmatrix}$. **1.5.** $\begin{pmatrix} 8 & 15 \\ 0 & 23 \end{pmatrix}$.

1.7.
$$-4$$
; 5. **1.10.** $AB - BA = \begin{pmatrix} 6 & -9 \\ 4 & -6 \end{pmatrix}$. **1.11.** $\begin{pmatrix} 11 & -22 & 29 \\ 9 & -27 & 32 \\ 13 & -17 & 26 \end{pmatrix}$. **1.12.** $\begin{pmatrix} 56 \\ 69 \\ 17 \end{pmatrix}$.

1.13. (31). **1.14.**
$$\begin{pmatrix} 13 & -14 \\ 21 & -22 \end{pmatrix}$$
. **1.15.** $\begin{pmatrix} -3 & 2 \\ -1 & -1 \end{pmatrix}$. **1.16.** $\begin{pmatrix} -24 & 12 \\ -12 & -12 \end{pmatrix}$.

1.18.
$$X = \begin{pmatrix} -1 & -4 & 5 \\ -6 & 4 & -1 \end{pmatrix}$$
. **1.19.** $\begin{pmatrix} 2-\lambda & -1 & 2 \\ 5 & -3-\lambda & 3 \\ -1 & 0 & -2-\lambda \end{pmatrix}$.

1.20.
$$AB = \begin{pmatrix} 36 & 7 & 25 \\ -4 & 3 & -3 \end{pmatrix}$$
, BA не существует. **1.21.** $\begin{pmatrix} -7 \\ 10 \\ 12 \end{pmatrix}$.

1.22.
$$\begin{pmatrix} -10 & 13 & -3 \\ -3 & -7 & 8 \end{pmatrix}$$
. **1.23.** $\begin{pmatrix} 7 & 28 \\ 1 & 4 \end{pmatrix}$. **1.24.** $\begin{pmatrix} 5 & 4 \\ 1 & -1 \end{pmatrix}$. **1.25.** $\begin{pmatrix} -28 & 22 & -26 \\ 23 & -23 & 19 \end{pmatrix}$.

1.28.
$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$$
, где a и b - любые числа. **1.30.** $\begin{pmatrix} -24 & 12 \\ -12 & -12 \end{pmatrix}$. **1.31.** $\begin{pmatrix} 8 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

1.33. a)
$$\begin{pmatrix} 5 & 11 \\ 11 & 25 \end{pmatrix}$$
, **6**) $\begin{pmatrix} 10 & 14 \\ 14 & 20 \end{pmatrix}$. **1.34.** a) (30); **6**) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{pmatrix}$.

1.35. a)
$$\begin{pmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 25 \end{pmatrix}$$
, **6)** $\begin{pmatrix} 25 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{pmatrix}$.

Занятие 2. ОПРЕДЕЛИТЕЛИ

Изучаемый материал: понятие числовой матрицы; определение определителя второго порядка; понятие подматрицы, минора и алгебраического дополнения; определение определителя третьего порядка; свойства определителей; вычисление путем разложения по элементам сроки или столбца; вычисление с помощью нулей.

·			
1. Вычисление определителя	2.1, 2.2	2.11, 2.12	
второго порядка			
2. Вычисление определителя третьего	2.3	2.13	
порядка по правилу треугольников			
3. Вычисление определителя путем	2.4 - 2.6	2.14 - 2.16	
разложения по строке или по столбцу			
4. Вычисление определителя	2.7 - 2.9	2.17 - 2.19	2.22 - 2.27
с помощью нулей			
5. Решение уравнения	2.10	2.20, 2.21	2.28 - 2.32

2.1. Вычислить:
 2.2. Вычислить:

$$\begin{vmatrix} -1 & 4 \\ -5 & 2 \end{vmatrix}$$
 $\begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix}$

Вычислить определитель путем разложения по строке или по столбцу:

2.4.
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$
. **2.5.** $\begin{vmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{vmatrix}$. **2.6.** $\begin{vmatrix} 2 & -3 & 4 & 1 \\ 4 & -2 & 3 & 2 \\ a & b & c & d \\ 3 & -1 & 4 & 3 \end{vmatrix}$.

Вычислить определитель помощью нулей:

2.7.
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$
. **2.8.** $\begin{vmatrix} 2 & -1 & 1 & 0 \\ 0 & 1 & 2 & -1 \\ 3 & -1 & 2 & 3 \\ 3 & 1 & 6 & 1 \end{vmatrix}$. **2.9.** $\begin{vmatrix} 7 & 3 & 2 & 6 \\ 8 & -9 & 4 & 9 \\ 7 & -2 & 7 & 3 \\ 5 & -3 & 3 & 4 \end{vmatrix}$

2.10. Решить уравнение:
$$\begin{vmatrix} 1 & 1 & 1 \\ x & 2 & 3 \\ x^2 & 4 & 9 \end{vmatrix} = 0$$

Домашнее задание 2

2.11. Вычислить: **2.12.** Вычислить: **2.13.** Вычислить
$$\begin{vmatrix} a+b & a-b \\ a-b & a+b \end{vmatrix}$$
. $\begin{vmatrix} \sqrt{a} & -1 \\ \sqrt{a} & -1 \end{vmatrix}$. по правилу треугольников:

Вычислить определитель путем разложения по строке или по столбцу:

2.14.
$$\begin{vmatrix} 3 & 4-5 \\ 8 & 7-2 \\ 2-1 & 8 \end{vmatrix}$$
. **2.15.** $\begin{vmatrix} -1 & 5 & 2 \\ 0 & 7 & 0 \\ 1 & 2 & 0 \end{vmatrix}$. **2.16.** $\begin{vmatrix} 5 & a & 2-1 \\ 4 & b & 4-3 \\ 2 & c & 3-2 \\ 4 & d & 5-4 \end{vmatrix}$.

Вычислить определитель с помощью нулей:

Вычислить определитель с помощью нулеи:

2.17.
$$\begin{vmatrix} 3 & 4-5 \\ 8 & 7-2 \\ 2-1 & 8 \end{vmatrix}$$
2.18. $\begin{vmatrix} 2 & 3-3 & 4 \\ 2 & 1-1 & 2 \\ 6 & 2 & 1 & 0 \\ 2 & 3 & 0-5 \end{vmatrix}$
2.19. $\begin{vmatrix} 1 & -2 & 3 & 4 \\ 2 & 1 & -4 & 3 \\ 3 & -4 & -1 & -2 \\ 4 & 3 & 2 & -1 \end{vmatrix}$

Решиль уравнение:

Решить уравнение:

$$2.20.\begin{vmatrix} x & x+1 \\ -4 & x+1 \end{vmatrix} = 0. \quad 2.21.\begin{vmatrix} 1 & 1 & 3 \\ 2 & x+2 & 1 \\ 4 & 3 & -1 \end{vmatrix} = 21.$$

Дополнительное задание 2

Вычислить, используя свойства определителей:

2.22.
$$\begin{vmatrix} \sin^2 \alpha & \cos^2 \alpha & 1 \\ \sin^2 \beta & \cos^2 \beta & 1 \\ \sin^2 \gamma & \cos^2 \gamma & 1 \end{vmatrix}$$
 2.23.
$$\begin{vmatrix} \sin^2 \alpha & \cos^2 \alpha & \cos 2\alpha \\ \sin^2 \beta & \cos^2 \beta & \cos 2\beta \\ \sin^2 \gamma & \cos^2 \gamma & \cos 2\gamma \end{vmatrix}$$

Вычислить определители:

Решить уравнение:

преобразований:

2.28.
$$\begin{vmatrix} 2x+1 & 3 \\ x+5 & 2 \end{vmatrix} = 0$$
. **2.29.** $\begin{vmatrix} x+3 & x-1 \\ 7-x & x-1 \end{vmatrix} = 0$. **2.30.** $\begin{vmatrix} 2x-1 & x+1 \\ x+2 & x-1 \end{vmatrix} = -6$. **2.31.** $\begin{vmatrix} 2 & 0 & 3 \\ -1 & 7 & x-3 \\ 5 & -3 & 6 \end{vmatrix} = 0$. **2.32.** $\begin{vmatrix} -1 & 0 & 2x+3 \\ 3-x & 1 & 1 \\ 2x+1 & -1 & 2 \end{vmatrix} = 0$.

Ответы к занятию 2

2.1. 18. **2.2.** 1. **2.3.** 0. **2.4.** 0. **2.5.** -2. **2.6.** 8a + 15b + 12c - 19d. **2.7.** 0. **2.8.** 0.

2.9. 150. **2.10.** (2; 3). **2.11.** 4*ab*. **2.12.** 2*a*. **2.13.** 0. **2.14.** 0. **2.15.** –14.

2.16. 2a - 8b + c + 5d. **2.17.** 0. **2.18.** 48. **2.19.** 900. **2.20.** $x_1 = -4$, $x_2 = -1$.

2.21. x = -2. **2.22.** 0. **2.23** 0. **2.24.** 100. **2.25.** 52. **2.26.** 132. **2.27.** -168.

2.28. 13. **2.29.** 1; 2. **2.30.** 1; 5. **2.31.** 5. **2.32.** -3, -5/2.

Занятие 3. ОБРАТНАЯ МАТРИЦА. РАНГ МАТРИЦЫ

Изучаемый материал: понятие обратной матрицы; метод присоединенной матрицы вычисления обратной матрицы; элементарные преобразования матриц; эквивалентные матрицы; вычисление обратной матрицы с помощью элементарных преобразований; определение ранга матрицы; вычисление ранга матрицы методом элементарных преобразований.

1. Вычисление обратной матрицы	3.1, 3.2	3.7- 3.9	3.14 - 3.17
2. Вычисление ранга матрицы по определению	3.3, 3.4	3.10, 3.11	3.18, 3.19
3. Вычисление ранга матрицы методом	3.5, 3.6	3.12, 3.13	3.20, 3.21
элементарных преобразований			

Вычислить обратную матрицу двумя методами: методом присоединенной матрицы и с помощью элементарных преобразований:

Вычислить ранг матрицы по определению:

3.1. $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. 3.2. $\begin{pmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{pmatrix}$.

Вычислить ранг матрицы по определению:

3.3. $\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$. 3.4. $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & 7 \\ -1 & 2 & 0 \end{pmatrix}$.

Домашнее задание 3

Вычислить обратную матрицу методом присоединенной матрицы и с помощью элементарных преобразований:

$$3.7. \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}. \quad 3.8. \begin{pmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & -1 \end{pmatrix}. \quad 3.9. \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$

Вычислить ранг матрицы по определению:

3.10.
$$\begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{pmatrix}$$
3.11.
$$\begin{pmatrix} 1 & 3 & 5 & -1 \\ 2 & -1 & -3 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{pmatrix}$$

Вычислить ранг матрицы методом элементарных преобразований:

3.12.
$$\begin{pmatrix} 1 & 3 & 5 & -1 \\ 2 & -1 & -3 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{pmatrix}$$

3.13.
$$\begin{vmatrix} 3 & -1 & 3 & 2 & 3 \\ 5 & -3 & 2 & 3 & 4 \\ 1 & -3 & -5 & 0 & -7 \\ 7 & -5 & 1 & 4 & 1 \end{vmatrix}$$

Дополнительное задание 3

Вычислить обратную матрицу методом элементарных преобразований:

3.14.
$$\begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix}$$
 . 3.15. $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. 3.16. $\begin{pmatrix} 1 & 3 & 2 \\ 3 & 5 & 1 \\ 2 & 2 & 0 \end{pmatrix}$. 3.17. $\begin{pmatrix} 4 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

Вычислить ранг 3. матрицы по определению:

3.18.
$$\begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{pmatrix}$$
 3.19.
$$\begin{pmatrix} 1 & 3 & 5 & -1 \\ 2 & -1 & -3 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{pmatrix}$$

Вычислить ранг матрицы методом элементарных преобразований:

3.20.
$$\begin{pmatrix} 4 & 3 & -5 & 2 & 3 \\ 8 & 6 & -7 & 4 & 2 \\ 4 & 3 & -8 & 2 & 7 \\ 4 & 3 & 1 & 2 & -5 \\ 8 & 6 & -1 & 4 & -6 \end{pmatrix}.$$

3.21.
$$\begin{pmatrix}
17 & -28 & 45 & 11 & 39 \\
24 & -37 & 61 & 13 & 50 \\
25 & -7 & 32 & -18 & -11 \\
31 & 12 & 19 & -43 & -55 \\
42 & 13 & 29 & -55 & -68
\end{pmatrix}$$

Ответы к занятию 3

3.1.
$$\begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}$$
. **3.2.** $\begin{pmatrix} 1 & -1 & 1 \\ -38 & 41 & -34 \\ 27 & -29 & 24 \end{pmatrix}$. **3.3.** 2. **3.4.** 2. **3.5.** 1. **3.6.** 3.

3.7.
$$\begin{pmatrix} 7 & -4 \\ -5 & 3 \end{pmatrix}$$
. **3.8.** $\begin{pmatrix} -8 & 29 & -11 \\ -5 & 18 & -7 \\ 1 & -3 & 1 \end{pmatrix}$. **3.9.** $\begin{pmatrix} 1/9 & 2/9 & 2/9 \\ 2/9 & 1/9 & -2/9 \\ 2/9 & -2/9 & 1/9 \end{pmatrix}$.

3.10. 2. **3.11.** 3. **3.12.** 3. **3.13.** 3.

3.14.
$$\begin{pmatrix} -7/3 & 2 & -1/3 \\ 5/3 & -1 & -1/3 \\ -2 & 1 & 1 \end{pmatrix}$$
. 3.15. $\begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$. 3.16. $\frac{1}{4} \begin{pmatrix} 2 & -4 & 7 \\ 2 & 4 & -5 \\ 4 & -4 & 4 \end{pmatrix}$.

3.17.
$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$
. 3.18. 2. 3.19. 3. 3.20. 2. 3.21. 2.

Занятие 4. ФОРМУЛЫ КРАМЕРА. МАТРИЧНЫЕ УРАВНЕНИЯ

Изучаемый материал: понятие системы линейных уравнений; формулы (правило) Крамера решения системы линейных уравнений; решение матричных уравнений с помощью обратной матрицы.

1. Правило Крамера	4.1, 4.2	4.6 - 4.8	4.12 - 4.14
2. Матричные уравнения	4.3, 4.4	4.9, 4.10	4.15 - 4.19
3. Решение системы с помощью	4.5	4.11	4.20
обратной матрицы			

Решить системы по правилу Крамера:

4.1.
$$\begin{cases} 3x - 4y = -6 \\ 3x + 4y = 18 \end{cases}$$
 4.2.
$$\begin{cases} 2x + y = 5 \\ x + 3z = 16 \\ 5y - z = 10 \end{cases}$$

Решить матричные уравнения:

4.3.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot X = \begin{pmatrix} 3 & 5 \\ 5 & 9 \end{pmatrix}$$
. **4.4.** $\begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 14 & 16 \\ 9 & 10 \end{pmatrix}$.

Решить матричные уравнения:
4.3.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot X = \begin{pmatrix} 3 & 5 \\ 5 & 9 \end{pmatrix}$$
. **4.4.** $\begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 14 & 16 \\ 9 & 10 \end{pmatrix}$.
4.5. Решить систему уравнений с помощью обратной матрицы:
$$\begin{cases} 2x & +y & +3z & =4 \\ & 2y & +z & =5 \\ 4x & +y & +6z & =5 \end{cases}$$

Домашнее задание 4

Решить системы по правилу Крамера:

ещить системы по правилу Крамера:
4.6. 4.7. 4.8.
$$\begin{cases} 7x + 2y + 3z = 15 \\ 5x - 3y + 2z = 15 \\ 10x - 11y + 5z = 36 \end{cases} \begin{cases} x + y - 2z = 6 \\ 2x + 3y - 7z = 16 \\ 5x + 2y + z = 16 \end{cases} \begin{cases} 4x_1 + 4x_2 + 5x_3 + 5x_4 = 0 \\ 2x_1 + 3x_3 - x_4 = 10 \\ x_1 + x_2 - 5x_3 = -10 \\ 3x_2 + 2x_3 = 1 \end{cases}$$

Решить матричные уравнения:

4.9.
$$X \cdot \begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -5 & 6 \end{pmatrix}$$
. **4.10.** $\begin{pmatrix} 1 & 2 & -3 \\ 3 & 2 & -4 \\ 2 & -1 & 0 \end{pmatrix} \cdot X = \begin{pmatrix} 1 & -3 & 0 \\ 10 & 2 & 7 \\ 10 & 7 & 8 \end{pmatrix}$.

4.9.
$$X \cdot \begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -5 & 6 \end{pmatrix}$$
. **4.10.** $\begin{pmatrix} 1 & 2 & -3 \\ 3 & 2 & -4 \\ 2 & -1 & 0 \end{pmatrix} \cdot X = \begin{pmatrix} 1 & -3 & 0 \\ 10 & 2 & 7 \\ 10 & 7 & 8 \end{pmatrix}$. **4.11.** Решить систему уравнений с помощью обратной матрицы:
$$\begin{cases} x & +y & +z & =3 \\ x & 2y & +3z & =13 \\ x & +3y & +6z & =27 \end{cases}$$

Решить систему по правилу Крамера:

4.12.
$$\begin{cases} x + 2y + 3z = 6 \\ 4x + 5y + 6z = 9 \\ 7x + 8y = -6 \end{cases}$$
 4.13.
$$\begin{cases} -3x + 4y + 4z = 5 \\ 3x - 4y + 5z = 13 \\ -2x + 4y - 3z = -12 \end{cases}$$
 4.14.
$$\begin{cases} 3x - y + z = 13 \\ 2x + y + 2z = 10 \\ -x + 3y + 4z = 0 \end{cases}$$

Решить **4.15.** $X \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. 4.16. матричное уравнение:

4.17. Решить матричное уравнение и сделать проверку:

а)
$$AX = B$$
;) $XA = B$, где $A = \begin{pmatrix} 9 & 2 \\ 4 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix}$

4.17. Решить матричное уравнение и следа. **a)** AX = B;) XA = B , где $A = \begin{pmatrix} 9 & 2 \\ 4 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix}$.

Решить матричное уравнение: **4.18.** $X \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{pmatrix}$. **4.19.** $\begin{pmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ 0 & -2 & 1 \end{pmatrix} X = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ $\begin{pmatrix} x & +2y & -z & =9 \\ -23 & -23 \end{pmatrix}$

4.20. Решить систему уравнений с помощью обратной матрицы:

Ответы к занятию 4

4.1. (2; 3). **4.2.** (1; 3; 5). **4.3.**
$$\begin{pmatrix} -1 & -1 \\ 2 & 3 \end{pmatrix}$$
. **4.4.** $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. **4.5.** (2; 3; -1).

4.6.
$$(2; -1; 1), \Delta = -36.$$
 4.7. $(3; 1; -1).$ **4.8.** $(1; -1; 2; -2).$

4.9.
$$\begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix}$$
. **10.** $\begin{pmatrix} 6 & 4 & 5 \\ 2 & 1 & 2 \\ 3 & 3 & 3 \end{pmatrix}$. **4.11.** $(-3; 2; 4)$. **4.12.** $(-2; 1; 2)$.

4.13.
$$(-3; -3; 2)$$
. **4.14.** $(4; 0; 1)$. **4.15.** $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. **4.16.** $\begin{pmatrix} 4 & 3 \\ -5 & -4 \end{pmatrix}$.

4.17. a)
$$X = \begin{pmatrix} 4 & 3 \\ -17 & -12 \end{pmatrix}$$
; **6)** $X = \begin{pmatrix} -10 & 23 \\ -1 & 2 \end{pmatrix}$. **4.18.** $\begin{pmatrix} 0 & 0 & 1/3 \\ 0 & 1 & 0 \\ 3 & 0 & 0 \end{pmatrix}$.

4.19.
$$\begin{pmatrix} 15/7 \\ -16/7 \\ -11/7 \end{pmatrix}$$
. **4.20.** (-4; 8; 3).

Занятие 5. МЕТОД ГАУССА

Изучаемый материал: понятие системы линейных уравнений; виды систем; метод Гаусса решения системы линейных уравнений.

1. Метод Гаусса	5.1 - 5.5	5.6 - 5.10	5.11 - 5.13
-----------------	-----------	------------	-------------

Решить систему методом Гаусса:

5.1.
$$\begin{cases} 2x + y + 3z = 8 \\ 4x + y + 2z = 7 \\ 6x + y - 4z = -4 \end{cases}$$
5.2.
$$\begin{cases} 2x_1 + 4x_2 + x_3 + 2x_4 = 0 \\ +x_2 + 4x_3 + 4x_4 = 5 \\ 3x_2 - 11x_3 - 6x_4 = -16 \end{cases}$$
5.3.
$$\begin{cases} x - 2y + 2z = -5 \\ 7x + y - z = 10 \\ 2x + y - z = 5 \end{cases}$$
5.4.
$$\begin{cases} 3x_1 - x_2 + x_3 - x_4 = 0 \\ x_1 + x_2 - x_3 + x_4 = 4 \\ 2x_1 - x_2 + 3x_3 - 2x_4 = 1 \\ x_1 - x_3 + 2x_4 = 6 \end{cases}$$
5.5.
$$\begin{cases} 2x_1 + 4x_2 + 2x_3 + x_4 = 10 \\ 3x_1 + 2x_2 + 2x_3 + x_4 = 10 \\ 3x_1 + 5x_2 + x_3 + x_4 = 15 \\ 4x_1 + 2x_2 + 3x_3 + x_4 = 8 \\ 3x_1 + 3x_2 + 2x_3 + x_4 = 10 \end{cases}$$

Домашнее задание 5

Решить методом Гаусса:

5.6.
$$\begin{cases} 2x_1 + 3x_2 + 11x_3 + 5x_4 = 2 \\ x_1 + x_2 + 5x_3 + 2x_4 = 1 \\ 2x_1 + x_2 + 3x_3 + 2x_4 = -3 \end{cases}$$
5.7.
$$\begin{cases} x + y - 3z = 4 \\ y + 2z = -4 \\ 2x + 3y + z = -1 \end{cases}$$

5.8.
$$\begin{cases} 2x + 5y - 3z = 4 \\ 4x - 3y + 2z = 9 \\ x + 9y - 4z = 9 \end{cases}$$
 5.9.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 23 \\ 4x_1 + x_2 + x_3 + x_4 = 11 \\ x_2 + 3x_3 + x_4 = 15 \\ x_1 + 2x_2 + x_3 + x_4 = 8 \end{cases}$$

5.10.
$$\begin{cases} x_1 - 2x_2 + x_3 + 2x_4 = -13 \\ 35x_1 - 21x_2 + 28x_3 - 45x_4 = 16 \\ 17x_1 - 32x_2 + 3x_3 - 48x_4 = -17 \\ 27x_1 - 19x_2 + 22x_3 - 35x_4 = 6 \\ 18x_1 - 9x_2 + 12x_3 - 17x_4 = 3 \end{cases}$$

Решить методом Гаусса:

5.11.
$$\begin{cases} 3x + 4y + 2z = 8 \\ 2x - 4y - 3z = -1. \\ x + 5y + z = 0 \end{cases} \begin{cases} 3x + 2y + z = 5 \\ 2x + 3y + z = 1 \\ 2x + y + 3z = 11. \\ 3x + 4y - z = -5 \end{cases} \begin{cases} 2x_1 + x_2 + 3x_4 = 4 \\ x_1 + x_2 - 2x_3 = 0 \\ 3x_1 + x_3 - x_4 = 2 \\ 2x_1 + x_3 + x_4 = 3 \\ x_1 + x_2 + 4x_3 - 3x_4 = -3 \end{cases}$$

$$Omegana \ \kappa \ 3ahgmu 0 \ 5$$

Ответы к занятию 5

5.1.
$$(1/2; 1; 2)$$
. **5.2.** $(1; 0; 2; -1)$. **5.3.** $(1; 5; 2)$. **5.4.** $(1; 2; 3; 4)$. **5.5.** $(3; 0; -5; 11)$. **5.6.** $(-2; 0; 1; -1)$. **5.7.** $(3; -2; -1)$. **5.8.** $(2; 3; 5)$. **5.9.** $(1; 2; 3; 4)$. **5.10.** $(1; 2; -4; -3)$. **5.11.** $(2; -1; 3)$. **5.12.** $(2; -2; 3)$. **5.13.** $(1; -1; 0; 1)$.

Занятие 6. ИССЛЕДОВАНИЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Изучаемый материал: виды систем линейных уравнений; задача исследования системы линейных уравнений; теорема Кронекера-Капелли; исследование однородной системы.

1. Исследование неоднородной систе-	6.1 - 6.3	6.7, 6.8	6.12 - 6.15
МЫ			
2. Исследование однородной системы	6.4, 6.5	6.9, 6.10	6.16 - 6.18
3. Задачи с однородной системой	6.6	6.11	6.19, 6.20

Примечание. Если система совместная и неопределенная, то в качестве свободных неизвестных предпочтительно брать последние неизвестные, а в качестве базовых неизвестных предпочтительно брать первые неизвестные.

Исследовать систему и в случае совместности найти решение:

6.1.
$$\begin{cases} x + 2y + z = 4 \\ 2x + y + 3z = 3 \end{cases}$$
 6.2.
$$\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 6 \\ 3x_1 + 5x_2 + 2x_3 + 2x_4 = 4 \end{cases}$$
 6.3.
$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 = 2 \\ 7x_1 - 4x_2 + x_3 + 3x_4 = 5 \end{cases}$$
 6.3.
$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 = 2 \\ 7x_1 - 4x_2 + x_3 + 3x_4 = 5 \end{cases}$$

Исследовать однородную систему и в случае существования ненулевого решения найти его:

6.4.
$$\begin{cases} x_1 & -2x_2 & -3x_3 & = 0 \\ -2x_1 & +4x_2 & +6x_3 & = 0 \end{cases}$$
6.5.
$$\begin{cases} 3x_1 & +2x_2 & +x_3 & = 0 \\ 2x_1 & +5x_2 & +3x_3 & = 0 \\ 3x_1 & +4x_2 & +2x_3 & = 0 \end{cases}$$
6.6. При каких значениях параметра a однородная система имеет ненулевое решение?
$$\begin{cases} a^2x_1 & +3x_2 & +2x_3 & = 0 \\ ax_1 & -x_2 & +x_3 & = 0 \\ 8x_1 & +x_2 & +4x_3 & = 0 \end{cases}$$

Домашнее задание 6

Исследовать систему и в случае совместности найти решение:

$$\begin{cases} 9x_1 & -3x_2 & +5x_3 & +6x_4 & = 4 \\ 6x_1 & -2x_2 & +3x_3 & +4x_4 & = 5 \\ 3x_1 & -x_2 & +3x_3 & +14x_4 & = -8 \end{cases} \begin{cases} x_1 & +x_2 & +3x_3 & -2x_4 & +3x_5 & = 1 \\ 2x_1 & +2x_2 & +4x_3 & -x_4 & +3x_5 & = 2 \\ 3x_1 & +3x_2 & +5x_3 & -2x_4 & +3x_5 & = 1 \\ 2x_1 & +2x_2 & +8x_3 & -3x_4 & +9x_5 & = 2 \end{cases}$$

Исследовать однородную систему и в случае существования ненулевого решения найти его:

6.9.
$$\begin{cases} x_1 + 2x_2 - x_3 = 0 \\ 2x_1 + 9x_2 - 3x_3 = 0 \end{cases}$$
 6.10.
$$\begin{cases} 2x_1 - 3x_2 + x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$
 6.11. При каких значениях параметра a однородная система имеет ненулевое решение?
$$\begin{cases} 2x_1 - 3x_2 + x_3 = 0 \\ x_1 + x_2 + 2x_3 = 0 \end{cases}$$

В задачах 6.12 – 6.18 исследовать систему и в случае совместности решить ее.

В задачах
$$6.12-6.18$$
 исследовать систему и в случае совместности реши $\begin{cases} x+y+z=3\\ 2x-y+z=2. \end{cases}$ 6.13. $\begin{cases} 4x-3y+2z=9\\ 2x+5y-3z=4. \end{cases}$ 6.14. $\begin{cases} 3x-y+2z=2\\ 4x-3y+3z=3\\ x+3y=0. \end{cases}$ 6.15. $\begin{cases} -x+y-3z=5\\ 3x-y-z=2. \end{cases}$ 6.16. $\begin{cases} 3x-y+2z=0\\ 4x-3y+3z=0. \end{cases}$ 6.17. $\begin{cases} x+y-z=0\\ 8x+3y-6z=0. \end{cases}$ 8.18. $\begin{cases} 3x+y-5z=0\\ 2x+3y-4z=0. \end{cases}$ 8.18. $\begin{cases} 3x-y+2z=0\\ 4x-3y+3z=0. \end{cases}$ 9.19. $\begin{cases} x+y-z=0\\ 4x-3y+3z=0. \end{cases}$ 9.19. $\begin{cases} x+z+z=0\\ 4x-3y+3z=0. \end{cases}$ 9.19. $\begin{cases} x+z+z=$

6.15.
$$\begin{cases} -x+y-3z=5\\ 3x-y-z=2 \\ 2x+y-9z=0 \end{cases}$$
 6.16.
$$\begin{cases} 3x-y+2z=0\\ 4x-3y+3z=0\\ x+3y=0 \end{cases}$$
 6.17.
$$\begin{cases} x+y-z=0\\ 8x+3y-6z=0 \\ 4x-y+3z=0 \end{cases}$$

6.18.
$$\begin{cases} 3x + y - 5z = 0 \\ x - 2y - z = 0 \\ 2x + 3y - 4z = 0 \\ x + 5y - 3z = 0 \end{cases}$$

При каких значениях параметра λ система имеет ненулевое решение?

6.19.
$$\begin{cases} (2-\lambda)x & +10y = 0 \\ 3x & (3-\lambda)y = 0 \end{cases}$$
 6.20.
$$\begin{cases} (4-\lambda)x & -3y & +6z = 0 \\ 6x-(5+\lambda)y & +4z = 0 \\ 4x & -4y-(4-\lambda)z = 0 \end{cases}$$

Ответы к занятию 6

6.1. (-1; 2; -1).

6.2. Совмест. и неопределенная;
$$x_1 = -\frac{2}{11} + \frac{1}{11}x_3 - \frac{9}{11}x_4$$
; $x_2 = \frac{10}{11} - \frac{5}{11}x_3 + \frac{1}{11}x_4$.

6.3. Несовместная. **6.4.** Имеет ненулевое решение; $x_1 = 2x_2 + 3x_3$.

6.5. Имеет только нулевое решение. **6.6.** $a_1 = 2$, $a_2 = -4$.

6.7. Совместная и неопределенная; $x_2 = -13 + 3x_1$; $x_3 = -7$; $x_4 = 0$.

6.8. Несовместная. **6.9.** Имеет ненулевое решение; $x_1 = \frac{3}{5}x_3$; $x_2 = \frac{1}{5}x_3$.

6.10. Имеет ненулевое решение; $x_1 = -\frac{4}{5}x_3$; $x_2 = -\frac{1}{5}x_3$. **6.11.** a = -1.

6.12. Несовместная. **6.13.** Совместная и определенная; (2; 3; 5).

6.14. Совместная и неопределенная; $x = \frac{3}{5} - \frac{3}{5}z$; $y = -\frac{1}{5} + \frac{1}{5}z$.

6.15. Несовместная.

6.16. Совмест. и неопределенная (имеет ненулевое решение); $x = -\frac{3}{5}z$; $y = \frac{1}{5}z$.

6.17. Совместная и определенная (только нулевое решение).

6.18. Совмест. и неопределенная (имеет ненулевое решение); $x = \frac{11}{7}z$; $y = \frac{2}{7}z$.

20

6.19.
$$\lambda_1 = -3$$
, $\lambda_2 = 8$. **6.20.** $\lambda_1 = 0$, $\lambda_2 = 1$, $\lambda_3 = 2$.

Занятие 7. ГЕОМЕТРИЧЕСКИЙ ВЕКТОР

Изучаемый материал: понятие геометрического вектора; модуль вектора; коллинеарность и компланарность векторов; линейные операции над векторами; единичный вектор, линейная комбинация векторов, линейно зависимые и линейно независимые векторы.

1. Операции с векторами	7.1- 7.4	7.9 - 7.12	7.17 - 7.21
2. Линейно зависимые и	7.5 - 7.8	7.13 - 7.16	7.22 - 7.24
линейно независимые векторы			

- **7.1.** Даны векторы a и b. Построить векторы: 3a, $\frac{1}{2}b$, a+2b, $\frac{1}{2}a-b$.
- **7.2.** В параллелограмме ABCD обозначены: $\overline{AB} = a$, $\overline{AD} = b$. Выразить через a и b векторы \overline{MA} , \overline{MB} , \overline{MC} , \overline{MD} , где M точка пересечения диагоналей параллелограмма.
 - **7.3.** *ABCDEF* правильный шестиугольник, причем $\overline{AB} = p$, $\overline{BC} = q$.

Выразить через p и q векторы \overline{CD} , \overline{DE} , \overline{EF} , \overline{FA} , \overline{AC} , \overline{AD} , \overline{AE} .

- **7.4.** В трапеции ABCD отношение длины основания AD к длине основания BC равно λ . Полагая $\overline{AC} = a$ и $\overline{BD} = b$, выразить через a и b векторы \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} .
- **7.5.** Даны два линейно независимых вектора a и b. При каком значении α следующие пары векторов линейно зависимы (коллинеарны):
- **a)** $\alpha a + 2b$ $\alpha a b$; **6)** $(\alpha + 1)a + b$ $\alpha 2b$; **B)** $\alpha a + b$ $\alpha a + \alpha b$.
- **7.6.** Даны два линейно независимых вектора m и n. Составлены три вектора: a = m + 3n, b = m n, c = 3m + 2n. а) Можно ли векторы a и b принять в качестве базиса двумерного пространства? б) Если да, то разложить вектор c по базису (a, b).
- **7.7.** Проверить, будут ли линейно зависимых векторы l, m, n, разложенные по трем некомпланарным векторам a, b, c. В случае утвердительного ответа указать связывающую их линейную зависимость: l = a b c, m = 2a + b + c, n = 4a + 2b + 2c.
- **7.8.** Доказать, что для любых заданных векторов a, b и c векторы a+b, b+c и c-a компланарны.

Домашнее задание 7

7.9. Доказать равенства с помощью геометрических построений:

a)
$$a + \frac{1}{2}(b - a) = \frac{1}{2}(a + b)$$
; 6) $a - \frac{1}{2}(a + b) = \frac{1}{2}(a - b)$.

- **7.10.** \overline{AD} , \overline{BE} и \overline{CF} медианы треугольника ABC. Доказать равенство \overline{AD} + \overline{BE} + \overline{CF} = $\boldsymbol{0}$.
- **7.11.** M точка пересечения медиан треугольника ABC, O произвольная точка пространства. Доказать равенство $\overline{OM} = \frac{1}{3}(\overline{OA} + \overline{OB} + \overline{OC})$.
- **7.12.** Точки E и F середины сторон AD и BC четырехугольника ABCD. Доказать, что $\overline{EF} = \frac{1}{2}(\overline{AB} + \overline{DC})$. Вывести отсюда теорему о средней линии трапеции.
- **7.13.** Даны два неколлинеарных вектора m и n. Составлены линейные комбинации этих векторов: a = 2m 3n, b = 3m + n, c = 6m + 2n. Будут ли линейно зависимы следующие пары векторов: a) a и b, b0 a0 и c0, b1 и c2.
- **7.14.** Будут ли линейно зависимы векторы l, m, n, разложенные по трем некомпланарным векторам a, b, c: l = a + b c, m = b, n = a + 2b c. В случае утвердительного ответа указать связывающую их линейную зависимость
- **7.15.** Даны три некомпланарных вектора a, b и c. Доказать, что векторы a+2b-c, 3a-b+c, -a+5b-3c компланарны.
- **7.16.** Даны три некомпланарных вектора a, b и c. Вычислить значения λ и μ , при которых векторы $\lambda a + \mu b + c$ и $a + \lambda b + \mu c$ коллинеарны.

Дополнительное задание 7

- **7.17.** В треугольнике ABC дано: $\overline{AB} = a$, $\overline{AC} = b$, точка M середина стороны BC. Выразить вектор \overline{AM} через векторы a и b.
- **7.18.** При каких значениях λ векторы $2\lambda a$ и $(\lambda^3 1)a$, $(a \neq o)$, имеют одинаковое направление?
- **7.19.** При каких значениях x векторы $x^3 \boldsymbol{a}$ и $(x^2 x 2)\boldsymbol{a}, \boldsymbol{a} \neq \boldsymbol{o}$, противоположно направлены?
 - **7.20.** Дано: $|\boldsymbol{a}| = 13$, $|\boldsymbol{b}| = 19$, $|\boldsymbol{a} + \boldsymbol{b}| = 24$. Найти: $|\boldsymbol{a} \boldsymbol{b}|$.
 - **7.21.** Дано: $a \perp b$, |a| = 5, |b| = 12. Найти: |a + b| и |a b|.
- **7.22.** В треугольнике ABC: M точка пересечения медиан треугольника, $\overline{AM} = a$, $\overline{AC} = b$. Разложить \overline{AB} и \overline{BC} по векторам a и b.
- **7.23.** В параллелограмме ABCD: K и M середины сторон BC и CD, $\overline{AK} = a$, $\overline{AM} = b$. Выразить векторы \overline{BD} и \overline{AD} через a и b.
- **7.24.** Проверить, будут ли линейно зависимы векторы l, m, n, разложенные по трем некомпланарным векторам a, b, c: l = a + 2b, m = b + 2c, n = c. В случае утвердительного ответа указать связывающую их линейную зависимость.

Ответы к занятию 7

7.2.
$$\overline{MA} = -\frac{1}{2}(\boldsymbol{a} + \boldsymbol{b}), \ \overline{MB} = \frac{1}{2}(\boldsymbol{a} - \boldsymbol{b}), \ \overline{MC} = -\overline{MA}, \ \overline{MD} = -\overline{MB}.$$

7.3.
$$\overline{CD} = q - p, \overline{DE} = -p, \overline{EF} = -q, \overline{FA} = p - q, \overline{AC} = p + q, \overline{AD} = 2q, \overline{AE} = 2q - p$$
.

7.4.
$$\overline{AB} = \frac{\lambda a - b}{1 + \lambda}$$
, $\overline{BC} = \frac{a + b}{1 + \lambda}$, $\overline{CD} = \frac{\lambda b - a}{1 + \lambda}$, $\overline{DA} = -\frac{\lambda}{1 + \lambda}(a + b)$.

7.5. а)
$$-2$$
; б) -1 ; в) ± 1 . **7.6.** а) да, можно; б) $c = \frac{5}{4} m + \frac{7}{4} n$.

- **7.7.** Линейно зависимы, 0l 2m + n = 0.
- 7.13. а) Линейно независимы; б) линейно независимы; в) линейно зависимы.

7.14. Линейно зависимы;
$$l + m - n = 0$$
. **7.16.** $\lambda = \mu = 1$. **7.17.** $\frac{1}{2}(a + b)$.

7.18.
$$(-\infty; 0) \cup (1; \infty)$$
. **7.19.** $(-\infty; -1) \cup (0; 2)$. **7.20.** 22. **7.21.** 13; 13.

7.22.
$$3a - b$$
; $2b - 3a$. **7.23.** $2b - 2a$. **7.24.** Линейно независимы.

Занятие 8. ВЕКТОР В ДЕКАРТОВЫХ КООРДИНАТАХ

Изучаемый материал: понятие базиса пространства; декартова прямоугольная система координат на плоскости и в пространстве; направляющие косинусы вектора; деление отрезка в данном отношении.

1. Операции с векторами	8.1 - 8.3	8.10 - 8.12	8.19 - 8.21
2. Линейная зависимость.	8.4 - 8.6	8.13 - 8.15	8.22 - 8.24
Разложение по базису			
3. Геометрические задачи	8.7	8.16	8.25 - 8.27
4. Деление отрезка в данном отношении	8.8, 8.9	8.17, 8.18	

Примечание. Для единичного вектора используется обозначение a^0 .

8.1. Заданы векторы
$$\boldsymbol{a} = (-1, 2, 0), \boldsymbol{b} = (3, 1, 1), \boldsymbol{c} = (2, 0, 1)$$
 и $\boldsymbol{d} = \boldsymbol{a} - 2\boldsymbol{b} + \frac{1}{3}\boldsymbol{c}$.

Вычислить: **a)** |a| и координаты единичного вектора a^0 вектора a; **б)** $\cos(a,j)$;

- в) координату d_{χ} вектора d; Γ) пр $_{j}$ d.
- **8.2.** Найти вектор x, коллинеарный вектору a = i 2j 2k, образующий с ортом j острый угол и имеющий длину |x| = 15.
 - **8.3.** Найти направляющие косинусы вектора a = (14, 22, 7).
 - 8.4. Являются ли линейно зависимыми следующие системы векторов:

a)
$$(1, 4)$$
 μ $(2, 8)$; **6)** $(2, -2, 3)$ μ $(4, -4, 4)$; **B)** $(3, 2)$, $(6, 4)$ μ $(-12, -8)$;

- г) (4, 1, 2), (2, 1, 1) и (-2, 3, -1).
- **8.5.** Даны три вектора a = (2, -1), b = (1, 2), c = (4, 3). Найти разложение вектора m = a + b + c по векторам a и b.

23

- **8.6.** Показать, что тройка векторов a = (1, 0, 0), b = (1, 1, 0), c = (1, 1, 1) образует базис в множестве всех векторов пространства. Вычислить координаты вектора d = -2i k в базисе (a, b, c) и написать соответствующее разложение по базису.
- **8.7.** Даны две смежные вершины параллелограмма A(-2, 6), B(2, 8) и точка пересечения его диагоналей M(2, 2). Найти две другие вершины.
- **8.8.** Даны вершины треугольника A(3, -1, 5), B(4, 2, -5), C(-4, 0, 3). Найти длину медианы, проведенной из вершины A.
- **8.9.** Определить координаты концов отрезка, который точками C(2, 0, 2) и D(5, -2, 0) разделен на три равные части.

Домашнее задание 8

- **8.10.** Заданы векторы a = 2i + 3j, b = -3j 2k, c = i + j k. Найти:
- **a**) координаты единичного вектора a^0 ;
- **б)** координаты вектора a 0.5b + c;
- **в)** разложение вектора a + b 2c по базису (i, j, k);
- Γ) π $p_i(a-b)$.
- **8.11.** Найти вектор x, образующий со всеми тремя базисными ортами равные острые углы, если $|x|=2\sqrt{3}$.
 - **8.12.** Найти направляющие косинусы вектора a = (13, -6, 18).
 - 8.13. Являются ли линейно зависимыми следующие системы векторов:
- **a)** (1, 4) $\mu(2, 5)$; **6)** (2, -2, 3) $\mu(6, -6, 9)$; **B)** (3, 2), (6, 4) $\mu(-12, 8)$;
- Γ) (5, 2, 1), (–1, 2, 3) и (1, –1, 3).
- **8.14.** Даны три вектора a = (2, -1), b = (1, 2), c = (4, 3). Найти разложение вектора m = a + b + c по векторам b и c.
- **8.15.** На плоскости заданы векторы a = (-1, 2), b = (2, 1) и c = (0, -2). Убедиться, что (a, b) базис в множестве всех векторов на плоскости. Построить заданные векторы и найти разложение вектора c по базису (a, b).
- **8.16.** Даны три вершины A(3, -4, 7), B(-5, 3, -2), C(1, 2, -3) параллелограмма ABCD. Найти его четвертую вершину D, противоположную вершине B.
- **8.17.** На оси ординат найти точку M, равноудаленную от точек A(1, -4, 7) и B(5, 6, -5).
- **8.18.** Отрезок с концами в точках A(3, -2) и B(6, 4) разделен на три равные части. Найти координаты точек деления.

- **8.19.** Вектор \boldsymbol{a} составляет с осями Ox и Oy углы $\alpha = 60^\circ$ и $\beta = 120^\circ$. Найти его координаты, если $|\boldsymbol{a}| = 2$.
- **8.20.** При каких значениях α и β векторы $a = -2i + 3j + \alpha k$ и $b = \beta i 6j + 2k$ коллинеарны?
 - **8.21.** Найти направляющие косинусы вектора a = (14, 2, -5).
 - 8.22. Являются ли линейно зависимыми следующие системы векторов:
- **a)** (10, 25) μ (2, 5); **6)** (1, 2, 3) μ (4, 5, 6); **B)** (3, 2), (6, 5) μ (12, 12);
- Γ) (5, 2, 1), (-1, 3, 3) μ (9, 7, 5).
- **8.23.** Представить вектор d = (4; 12; -3) как линейную комбинацию векторов a = (2; 3; 1), b = (5; 7; 0) и c = (3; -2; 4).
- **8.24.** Даны три вектора a = (2, -1), b = (1, 2), c = (4, 3). Найти разложение вектора m = a + b + c по векторам a и c.
- **8.25.** Луч образует с двумя осями координат углы в 60°. Под каким углом наклонен он к третьей оси?
- **8.26.** На оси Ox найти точку M, расстояние которой от точки A(3, -3) равно 5.
- **8.27.** Даны вершины треугольника A(3, 1, 5) и векторы $\overline{AB} = (1, -1, 2)$, $\overline{BC} = (2, 2, 3)$, совпадающие с его сторонами. Найти остальные вершины и длину стороны AC.

Ответы к занятию 8

- **8.1.** a) $|a| = \sqrt{5}$, $a^0 = (-1/\sqrt{5}, 2/\sqrt{5}, 0)$; 6) $2/\sqrt{5}$; b) -19/3; г) 0.
- **8.2.** x = -5i + 10j + 10k. **8.3.** (14/27, 22/27, 7/27). **8.4.** а) линейно зависимы;
- б) линейно независимы; в) линейно зависимы; г) линейно зависимы.
- **8.5.** 2a + 3b. **8.6.** d = -2a + b c. **8.7.** C(6, -2), D(2, -4).
- **8.8.** 7. **8.9.** (-1, 2, 4) и (8, -4, -2).
- **8.10.** a) $(2/\sqrt{13}, 3/\sqrt{13}, 0)$; **6**) (3, 11/2, 0); **B**) $(2j; \Gamma)$ 6. **8.11.** x = 2i + 2j + 2k.
- **8.12.** (13/23, -6/23, 18/23). **8.13.** а) линейно независимы; б) линейно зависимы; в) линейно зависимы; г) линейно независимы. **8.14.** -b + 2c.
- **8.15.** $c = -\frac{4}{5}a \frac{2}{5}b$. **8.16.** D(9, -5, 6). **8.17.** M(0, 1, 0). **8.18.** (4, 0) и (5, 2). **8.19.**
- $(1, -1, \pm \sqrt{2})$. **8.20.** $\alpha = -1$, $\beta = 4$. **8.21.** (14/15, 2/15, -5/15).
- 8.22. а) линейно зависимы; б) линейно независимы; в) линейно зависимы;
- г) линейно зависимы. **8.23.** d = a + b c. **8.24.** $\frac{1}{2}a + \frac{3}{2}c$. **8.25.** 45°.
- **8.26.** (7, 0) μ (-1, 0). **8.27.** B(4, 0, 7), C(6, 2, 10), $AC = \sqrt{35}$.

Занятие 9. СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ДВУХ ВЕКТОРОВ

Изучаемый материал: определение скалярного произведения, его физический смысл и свойства; выражение в декартовых координатах; условие ортогональности двух векторов; скалярный квадрат; угол между двумя векторами.

1. Скалярное произведение в	9.1 - 9.4	9.9 - 9.12	9.16 - 9.19
произвольном базисе			
2. Скалярное произведение	9.5 - 9.8	9.13 - 9.15	9.20 - 9.22
в декартовых координатах			

- **9.1.** Дано: |a| = 3, |b| = 4, $\angle(a, b) = 2\pi/3$. Вычислить: **a**) a^2 ; **б**) (3a 2b)(a + 2b).
- **9.2.** Найти угол, образованный единичными векторами e_1 и e_2 , если известно, что векторы $a = e_1 + 2e_2$ и $b = 5e_1 4e_2$ ортогональны.
- **9.3.** Вычислить $a \cdot b$, если a = 2m n, b = 2m + 3n, где m и n единичные ортогональные векторы.
- **9.4.** Дано: |a| = 3, |b| = |c| = 2, векторы a и b ортогональны, а вектор c образует с ними углы, равные $\pi/3$. Вычислить $(3a + b) \cdot (2a c)$.
 - **9.5.** Вычислить скалярное произведение векторов: a = 2i 3j + k и b = -i + j.
- **9.6.** Найти внутренний угол при вершине A треугольника ABC, если A(-1,2), B(1,1), C(3,2).
- **9.7.** Треугольник имеет вершины A (4, 2, 2), B(1, 1, 0), C(3, 2, 4). Найти проекцию стороны AB на сторону AC.
- **9.8.** Даны векторы a = -2i + k, b = i + j + 3k, c = 4i j + 5k. Найти пр $_a(b 2c)$, пр $_{b+c}a$.

Домашнее задание 9

- **9.9.** Дано: |a| = 3, |b| = 4, $\angle(a, b) = 2\pi/3$. Вычислить $(a + b)^2$.
- **9.10.** Дано: |a| = 3, |b| = 5. Определить, при каком значении α векторы $(a + \alpha b)$ и $(a \alpha b)$ будут ортогональны.
- **9.11.** Вычислить $a \cdot b$, если a = 3m + 2n, b = m n, где m и n ортогональные векторы, |m| = 2, |n| = 1.
- **9.12.** Дано: |a| = 3, |b| = |c| = 2. Векторы a и b ортогональны, а вектор c образует с ними углы, равные $\pi/3$. Вычислить $(2a b) \cdot (c b)$.
 - **9.13.** Даны векторы $\boldsymbol{a}=(4,-2,-4)$ и $\boldsymbol{b}=(6,-3,2)$. Вычислить:
- а) $a \cdot b$; б) (2a 3b)(a + 2b); в) $(a b)^2$; г) |2a b|; д) $\text{пр}_a b$; е) $\text{пр}_b a$;
- ж) направляющие косинусы вектора a; .3) пр $_{a+b}$ (a–2b); и) $\cos{(a,b)}$.
- **9.14.** Доказать, что четырехугольник с вершинами A(-3, 5, 6), B(1, -5, 7), C(8, -3, -1), D(4, 7, -2) является квадратом.
- **9.15.** Найти соѕ ϕ , где ϕ угол между диагоналями AC и BD параллелограмма, если заданы три его вершины: A(2, 1, 3), B(5, 2, -1), C(-3, 3, -3).

- **9.16.** Дано: $|\boldsymbol{a}|=3$, $|\boldsymbol{b}|=4$, $\phi=\angle(\boldsymbol{a},\boldsymbol{b})=120^\circ$. Найти модуль вектора $\boldsymbol{c}=3\boldsymbol{a}+2\boldsymbol{b}$.
- **9.17.** Единичные векторы e_1 , e_2 , e_3 , удовлетворяют условию $e_1 + e_2 + e_3 = o$. Найти $e_1 \cdot e_2 + e_2 \cdot e_3 + e_3 \cdot e_1$.
- **9.18.** Вычислить $a \cdot b$, если a = 3m + 2n, b = 2m + n, где m и n ортогональные векторы, |m| = 2, |n| = 1.
- **9.19.** Дано: |a| = 3, |b| = |c| = 2. Векторы a и b ортогональны, а вектор c образует с ними углы, равные $\pi/3$. Вычислить $(2a + 3b) \cdot (c b)$.
- **9.20.** Найти угол между диагоналями параллелограмма, построенного на векторах a = 2i + j и b = -j + 2k.
- **9.21.** При каком значении λ векторы $b = \lambda i 5j + 3k$ и $c = i + 2j \lambda k$ взаимно перпендикулярны?
- **9.22.** Какой угол образуют единичные векторы a и b, если известно, что векторы m = a + 2b и n = 5a 4b взаимно перпендикулярны.

Ответы к занятию 9

- **9.1.** a) 9; **6**) -61. **9.2.** $\pi/3$. **9.3.** 1. **9.4.** -5. **9.5.** -5. **9.6.** $\cos \varphi = 2\sqrt{5}/5$.
- **9.7.** $\sqrt{5}/5$. **9.8.** $7\sqrt{5}/5$; $-2/\sqrt{89}$. **9.9**. 13. **9.10.** $\alpha = \pm 3/5$. **9.11.** 10. **9.12.** 7.
- **9.13.** a) 22; б) -200; в) 41; г) $\sqrt{105}$; д) 11/3; е) 22/7;
- ж) $\cos \alpha = 2/3$, $\cos \beta = -1/3$, $\cos \gamma = -2/3$; з) $-84/\sqrt{129}$; и) 11/21.
- **9.15.** $\cos \varphi = 43/25\sqrt{13}$. **9.16.** $\sqrt{73}$. **9.17.** -1,5. **9.18.** 26. **9.19.** 0.
- **9.20.** $\pi/2$. **9.21.** 5. **9.22.** $\pi/3$.

Занятие 10. **ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ**

Изучаемый материал: правой и левой тройки векторов; определение векторного произведения; его свойства; выражение в декартовых координатах; условие коллинеарности двух векторов; вычисление площади параллелограмма и треугольника; определение смешанного произведения; его выражение в декартовых координатах, свойства и геометрический смысл; условие компланарности трех векторов; вычисление объема призмы и пирамиды.

1. Векторное произведение	10.1, 10.2	10.9 - 10.11	10.18 - 10.21
2. Задачи с применением	10.3, 10.4	10.12 - 10.14	10.22 - 10.24
векторного произведения			
3. Смешанное произведение	10.5, 10.6	10.15	10.25, 10.26
4. Задачи с применением	10.7, 10.8	10.16 - 10.17	10.27, 10.28
смешанного произведения			

Примечание. Для векторного произведения используется обозначение $a \times b$.

Упростить выражения:

- **10.1.** $i \times (j + k) j \times (i + k) + k \times (i + j + k)$.
- **10.2.** $(a + b + c) \times c + (a + b + c) \times b + (b c) \times a$.
- **10.3.** |a| = |b| = 5, $\angle(a, b) = \pi/4$. Вычислить площадь треугольника, построенного на векторах a 2b и 3a + 2b.
- **10.4.** Вычислить площадь треугольника с вершинами A(1, 1, 1), B(2, 3, 4) и C(4, 3, 2).
- **10.5.** Заданы векторы a = (1, -1, 3), b = (-2, 2, 1), c = (3, -2, 5). Вычислить abc. Какова ориентация троек: **a**) (a, b, c); **b**) (b, a, c); **b**) (a, c, b)?
- **10.6.** Установить, образуют ли векторы a, b и c базис в множестве всех векторов, если a = (2, 3, -1), b = (1, -1, 3), c = (1, 9, -11).
- **10.7.** Вычислить объем тетраэдра с вершинами в точках A(2, 1, 3), B(-1, 4, 1), C(-2, 2, 2), D(1, 5, 2).
- **10.8.** В тетраэдре с вершинами в точках A(1, 1, 1), B(2, 0, 2), C(2, 2, 2) и D(3, 4, -3) вычислить высоту h = DE.

Домашнее задание 10

10.9. Какому условию должны удовлетворять векторы a и b, чтобы векторы a+b и a-b были коллинеарны?

Упростить выражения:

- **10.10.** $(2a + b) \times (c a) + (b + c) \times (a + b)$.
- **10.11.** $2i \cdot (j \times k) + 3j \cdot (i \times k) + 4k \cdot (i \times j)$.
- **10.12.** В треугольнике с вершинами A(1, -1, 2), B(5, -6, 2), C(1, 3, -1) найти высоту h = BD.
- **10.13.** Вычислить площадь треугольника с вершинами A(0, 2, 1), B(1, 2, 2), C(2, 0, -2).
- **10.14.** Вычислить площадь параллелограмма, диагоналями которого служат векторы $2e_1 e_2$ и $4e_1 5e_2$, где e_1 и e_2 единичные векторы и $\angle(e_1, e_2) = \pi/4$.
- **10.15.** Установить, образуют ли векторы a, b и c базис в множестве всех векторов, если a = (3, -2, 1), b = (2, 1, 2), c = (3, -1, -2).
- **10.16.** Вычислить объем тетраэдра с вершинами в точках A(2, -3, 5), B(0, 2, 1), C(-2, -2, 3), D(3, 2, 4).
- **10.17.** Доказать, что четыре точки A(1, 2, -1), B(0, 1, 5), C(-1, 2, 1) и D(2, 1, 3) лежат в одной плоскости.

10.18. Найти координаты вектора $\mathbf{a} \times (2\mathbf{a} + \mathbf{b})$, если $\mathbf{a} = (3, -1, -2)$, $\mathbf{b} = (1, 2, -1)$.

10.19. Даны векторы a = i + 2j - 3k, b = -2i + j + k.

Найти $c = (a - b) \times (2b)$; |c|.

10.20. Найти единичный вектор c, перпендикулярный каждому из векторов a = (3; -1; 2) и b = (-1; 3; -1).

10.21. Найти единичный вектор e, перпендикулярный вектору

a = (1; 4; 3) и оси абсцисс.

10.22. Вычислить площадь параллелограмма, построенного на векторах a = (8; 4; 1) и b = (2; -2; 1).

10.23. Вычислить площадь треугольника с вершинами A(1, -2, 3), B(1, 1, 4), C(3, 2, 1).

10.24. Вычислить площадь параллелограмма, построенного на векторах

a = 3p + 2q и b = 2p - q, где |p| = 4, |q| = 3, $\angle(p, q) = 3\pi/4$.

10.25. При каком значении λ векторы $\boldsymbol{a} = (1; 1; \lambda), \boldsymbol{b} = (0; 1; 0)$ и $\boldsymbol{c} = (3; 0; 1)$ компланарны?

10.26. Вектор c перпендикулярен векторам a и b; $\angle(a, b) = \pi/6$, |a| = 6, |b| = 3, |c| = 3. Найти abc.

10.27. Вычислить объем тетраэдра с вершинами в точках A(1, 4, 1), B(-2, 3, 2), C(4, 6, 2), D(1, 1, 0).

10.28. Объем тетраэдра равен 5, три его вершины находятся в точках A(2, 1, -1), B(3, 0, 1), C(2, -1, 3). Найти координаты четвертой вершины D, если известно, что она лежит на оси ординат.

Ответы к занятию 10

10.1. 2(k-i). **10.2.** $2a \times c$. **10.3.** $50\sqrt{2}$. **10.4.** $2\sqrt{6}$.

10.5. – 7; а) левая; б) правая; в) правая. **10.6.** Нет. **10.7.** 2. **10.8.** $3\sqrt{2}$.

10.9. $a \parallel b$. **10.10.** $a \times c$. **10.11.** 3. **10.12.** 5. **10.13.** $\sqrt{33}/2$. **10.14.** $3\sqrt{2}/2$.

10.15. Да. **10.16.** 6. **10.18.** (5; 1; 7). **10.19.** (10; 10; 10), $10\sqrt{3}$.

10.20. $\pm \frac{1}{3\sqrt{10}}$ (5; -1; -8). **10.21.** \pm (0; 3/5; -4/5). **10.22.** $18\sqrt{2}$.

10.23. $\sqrt{35}$. **10.24.** $42\sqrt{2}$. **10.25.** 1/3. **10.26.** ± 27 .

10.27. 2,5. **10.28.** (0; 8; 0).

Занятие 11. ПРЯМАЯ ЛИНИЯ НА ПЛОСКОСТИ

Изучаемый материал: общее уравнение прямой; неполные уравнения; каноническое уравнение; уравнение с угловым коэффициентом; уравнение в отрезках; параметрические уравнения, уравнения прямой, через одну точку и через две точки.

1. Разные уравнения прямой	11.1 – 11.3	11.5 - 11.7	
2. Разные задачи	11.4	11.8	11.9 - 11.18

В задачах 11.1 – 11.3 написать уравнения прямой во всех возможных формах.

- **11.1.** Прямая L задана точкой $M_0(-1, 2) \in L$ и нормальным вектором n = (2,2).
- **11.2.** Прямая L задана точкой $M_{0}(-1,2) \in L$ и направляющим вектором q = (3,-1).
 - **11.3.** Прямая L задана двумя своими точками M_1 (1, 2) и M_2 (-1, 0).
 - **11.4.** Заданы прямая L: -2x + y 1 = 0 и точка M(-1, 2). Требуется:
- а) вычислить расстояние ρ от точки M до прямой L;
- **б**) написать общее уравнение прямой L', проходящей через точку M перпендикулярно заданной прямой L;
- **в**) написать общее уравнение прямой L", проходящей через точку M параллельно заданной прямой L;
- Γ) написать общее уравнение прямой, проходящей через точку M, если эта точка является основанием перпендикуляра, опущенного из начала координат на эту прямую;
- д) вычислить площадь треугольника, образованного осями координат и прямой L.

Домашнее задание 11

В задачах 11.5 – 11.7 написать уравнения прямой во всех возможных формах.

- **11.5.** Прямая L задана точкой $M_{\rm O}(2,1)\in L$ и нормальным вектором n=(2,0).
- **11.6.** Прямая L задана точкой $M_{0}(1, 1) \in L$ и направляющим вектором q = (0, -1).
 - **11.7.** Прямая L задана двумя своими точками M_1 (1, 1) и M_2 (1, 2).

- **11.8.** Заданы прямая L: x + y + 1 = 0 и точка M(0, -1). Требуется:
- **a**) вычислить расстояние ρ от точки M до прямой L;
- **б**) написать общее уравнение прямой L', проходящей через точку M перпендикулярно заданной прямой L;
- **в**) написать общее уравнение прямой L'', проходящей через точку M параллельно заданной прямой L;
- Γ) написать общее уравнение прямой, проходящей через точку M, если эта точка является основанием перпендикуляра, опущенного из начала координат на эту прямую;
- д) вычислить площадь треугольника, образованного осями координат и прямой L.

- **11.9.** Прямая проходит через точки A(2; 3) и B(-4; -1), пересекает ось Oy в точке C. Найти координаты точки C.
- **11.10.** Найти уравнение прямой, образующей с осью Ox угол $\pi/3$ и пересекающей ось Oy в точке (0; -6).
- **11.11.** Составить уравнение прямой, если точка M(4; 2) является серединой ее отрезка, заключенного между осями координат.
- **11.12.** Составить уравнение прямой, отсекающей на осях координат равные отрезки, если длина отрезка, заключенного между осями координат, равна $7\sqrt{2}$.
- **11.13.** Составить уравнение биссектрисы внутреннего угла A треугольника ABC с вершинами A(1; -2), B(5; 4) и C(-2; 0).
 - 11.14. Составить уравнение прямой, проходящей через точку
- A(3; -4), являющуюся основанием перпендикуляра, опущенного из начала координат на прямую.
- **11.15.** Найти площадь треугольника, заключенного между осями координат и прямой 2x 5y + 10 = 0.
 - 11.16. Написать уравнение прямой, проходящей через точку
- A(2; -1) и параллельной биссектрисе второго координатного угла.
- **11.17.** Найти прямую, проходящую через точку пересечения прямых x 2y + 3 = 0 и 2x + y + 5 = 0 и параллельную оси ординат и написать ее уравнение.
- **11.18.** Через точку пересечения прямых x + y 6 = 0 и 2x + y 13 = 0 провести прямую, отсекающую на осях равные отрезки и написать ее уравнение.

Ответы к занятию 11

11.1.
$$x + y - 1 = 0$$
. **11.2.** $x + 3y - 5 = 0$. **11.3.** $x - y + 1 = 0$.

11.4. a)
$$\rho = 3/\sqrt{5}$$
; **6)** $x + 2y - 3 = 0$; **B)** $-2x + y - 4 = 0$; Γ $-x + 2y - 5 = 0$; Γ $1/4$.

11.5.
$$x - 2 = 0$$
. **11.6.** $-x + 1 = 0$. **11.7.** $x - 1 = 0$.

11.8. a)
$$\rho = 0$$
; 6) $x - y - 1 = 0$; B) $x + y + 1 = 0$; Γ) $y + 1 = 0$; π) $1/2$.

11.9. (0; 5/3). **11.10.**
$$y = \sqrt{3}x - 6$$
. **11.11.** $x + 2y - 8 = 0$.

11.12.
$$x + y - 7 = 0$$
. **11.13.** $5x + y - 3 = 0$. **11.14.** $3x - 4y - 25 = 0$.

11.15. 5. **11.16.**
$$x + y - 1 = 0$$
. **11.17.** $5x + 13 = 0$. **11.18.** $x + y - 6 = 0$.

Занятие 12. ПРЯМАЯ ЛИНИЯ НА ПЛОСКОСТИ

Изучаемый материал: взаимное положение двух прямых на плоскости; угол между двумя прямыми; условия параллельности и перпендикулярности двух прямых; расстояние от точки до прямой; расстояние между двумя параллельными прямыми.

1.Взаимное расположение	12.1, 12.2	12.5 - 12.7	12.11 - 12.12
прямых			
2. Разные задачи	12.3, 12.4	12.8 - 12.10	12.13 - 12.15

В задачах 12.1 и 12.2 исследовать взаимное расположение заданных прямых L_1 и L_2 . Найти:

- 1) расстояние р между прямыми, если они параллельны;
- 2) $\cos \phi$ (ϕ угол между прямыми) и точку пересечения прямых в противном случае.

12.1.
$$L_1$$
: $-2x + y - 1 = 0$, L_2 : $2y + 1 = 0$. **12.2.** L_1 : $\frac{x-1}{-2} = \frac{y}{1}$, L_2 : $\frac{x+2}{1} = \frac{y}{0}$.

12.3. Треугольник ABC задан координатами своих вершин:

A(1, 2), B(2, -2), C(6, 1). Требуется:

- a) написать общее уравнение стороны AB;
- **б**) написать общее уравнение высоты CD и вычислить ее длину h_c ;
- в) найти угол ϕ между высотой CD и медианой BM.
- **12.4.** Вычислить расстояние от точки M(1, 1) до прямой L: x = -1 + 2t, y = 2 + t.

Домашнее задание 12

В задачах 12.5 - 12.7 исследовать взаимное расположение заданных прямых L_1 и L_2 . Найти:

- 1) расстояние р между прямыми, если они параллельны;
- 2) $\cos \phi$ (ϕ угол между прямыми) и точку пересечения прямых в противном случае.

12.5.
$$L_1$$
: $x + y - 1 = 0$, L_2 : $2x - 2y + 1 = 0$.

12.6.
$$L_1$$
: $x + y - 1 = 0$, L_2 : $\frac{x}{2} = \frac{y+1}{-2}$.

12.7.
$$L_1$$
: $-x + 2y + 1 = 0$, L_2 : $2x - 4y - 2 = 0$.

12.8. Треугольник *АВС* задан координатами своих вершин:

A(2, -2), B(6, 1), C(-2, 0). Требуется:

- a) написать уравнение стороны AB;
- **б**) написать уравнение высоты CD и вычислить ее длину h_c ;
- в) найти угол ϕ между высотой CD и медианой BM.
- **12.9.** Показать, что точка (-1, 2) принадлежит прямой L: x = 2t, y = -1 6t. Найти соответствующее этой точке значение параметра t.
- **12.10.** Написать уравнение прямой, проходящей через точку M_0 (- 2, 3) на одинаковых расстояниях от точек $M_1(5, -1)$ и $M_2(3, 7)$.

Дополнительное задание 12

- **12.11.** При каких значениях α следующие пары прямых параллельны и перпендикулярны?
- **a)** 2x 3y + 4 = 0 и $\alpha x 6y + 7 = 0$;
- **6)** $\alpha x 4y + 1 = 0$ $\mu 2x + y + 2 = 0$;
- **B)** 4x + y 6 = 0 и $3x + \alpha y 2 = 0$;
- \mathbf{r}) $x \alpha y + 5 = 0$ \mathbf{u} 2x + 3y + 3 = 0.

12.12. Найти уравнение прямой, проходящей через точку A(-1; 2):

- **а)** параллельно прямой y = 2x 7;
- **б)** перпендикулярно прямой x + 3y 2 = 0.
- **12.13.** Через точку пересечения прямых 3x 2y + 5 = 0,

x + 2y - 9 = 0 проведена прямая, параллельная прямой 2x + y + 6 = 0. Составить ее уравнение.

12.14. Найти координаты точки M_2 , симметричной точке

 $M_1(-3;4)$ относительно прямой 4x - y - 1 = 0.

12.15. Найти площадь треугольника, образованного прямыми:

$$2x + y + 4 = 0$$
, $x + 7y - 11 = 0$ и $3x - 5y - 7 = 0$.

Ответы к занятию 12

12.1.
$$(-3/4, -1/2)$$
, $\cos \varphi = 1/\sqrt{5}$. **12.2.** $(1, 0)$, $\cos \varphi = 2/\sqrt{5}$.

12.3. a) *AB*:
$$\frac{x-1}{1} = \frac{y-2}{-4}$$
; **6**) *CD*: $\frac{x-6}{-4} = \frac{y-1}{-1}$, $h_c = 19/\sqrt{17}$;

B)
$$\cos \varphi = 19/\sqrt{17 \cdot 58}$$
.

12.5. Перпендикулярны. **12.6.** Параллельны, $\rho = \sqrt{2}$. **12.7.** Совпадают.

12.8. a)
$$AB$$
: $\frac{x-2}{4} = \frac{y+2}{3}$; 6) CD : $\frac{x+2}{3} = \frac{y}{-4}$, $h_c = 4$; B) $\cos \varphi = 1/\sqrt{10}$.

12.9.
$$t = -1/2$$
. **12.10.** $x - 4y + 8 = 0$.

12.11. a)
$$4; -9;$$
 6) $8; -2;$ B) $3/4; -12;$ Γ) $-3/2;$ $2/3.$

12.12. a)
$$2x - y + 4 = 0$$
; 6) $3x - y + 5 = 0$. **12.13.** $2x + y - 6 = 0$.

12.14. (5; 2). **12.15.** 13.

Занятие 13. ПЛОСКОСТЬ В ПРОСТРАНСТВЕ

Изучаемый материал: общее уравнение; неполные уравнения; уравнение плоскости, проходящей через данную точку перпендикулярно данному направлению; уравнение плоскости, проходящей через три заданные точки; уравнение в отрезках; взаимное положение двух плоскостей; угол между двумя плоскостями; условия параллельности и перпендикулярности двух плоскостей.

1.Разные задачи	13.1 - 13.5	13.9 - 13.13	13.17 - 13.23
2. Взаимное расположение	13.6, 13.7	13.14, 13.15	
плоскостей			
3. Объем пирамиды	13.8	13.16	

- **13.1.** Заданы плоскость P: -2x + y z + 1 = 0 и точка M(1, 1, 1). Написать уравнение плоскости P', проходящей через точку M параллельно плоскости P, и вычислить расстояние ρ между плоскостями.
- **13.2.** Написать уравнение плоскости P', проходящей через заданные точки $M_1(1, 2, 0)$ и $M_2(2, 1, 1)$ перпендикулярно заданной плоскости P: -x + y 1 = 0.
- **13.3.** Написать уравнение плоскости, проходящей через точку M(1, 1, 1) параллельно векторам a = (0, 1, 2) и b = (-1, 0, 1).
- **13.4.** Написать уравнение плоскости, проходящей через точки A(1, 2, 0) и B(2, 1, 1) параллельно вектору a = (3, 0, 1).
- **13.5.** Написать уравнение плоскости, проходящей через три заданные точки A(1, 2, 0), B(2, 1, 1) и C(3, 0, 1).

В задачах 13.6 и 13.7 исследовать взаимное расположение плоскостей P_1 и P_2 . В случае параллельности плоскостей найти расстояние ρ между ними, в противном случае - косинус угла между ними.

13.6.
$$P_1$$
: $-x + 2y - z + 1 = 0$, P_2 : $y + 3z - 1 = 0$.

13.7.
$$P_1$$
: $2x - y + z - 1 = 0$, P_2 : $-4x + 2y - 2z - 1 = 0$.

13.8. Вычислить объем пирамиды, ограниченной плоскостью P: 2x - 3y + 6z - 12 = 0 и координатными плоскостями.

Домашнее задание 13

- **13.9.** Заданы плоскость P: x y 1 = 0 и точка M(1, 1, 2). Написать уравнение плоскости P', проходящей через точку M параллельно плоскости P, и вычислить расстояние ρ между плоскостями.
- **13.10.** Написать уравнение плоскости P', проходящей через заданные точки $M_1(0, 1, 1)$ и $M_2(2, 0, 1)$ перпендикулярно заданной плоскости P: 2x y + z + 1 = 0.
- **13.11.** Написать уравнение плоскости, проходящей через точку M(0, 1, 2) параллельно векторам a = (2, 0, 1) и b = (1, 1, 0).
- **13.12.** Написать уравнение плоскости, проходящей через точки A(1, 1, 1) и B(2, 3, -1) параллельно вектору a = (0, -1, 2).
- **13.13.** Написать уравнение плоскости, проходящей через три заданные точки A(1, 1, 1), B(0, -1, 2) и C(2, 3, -1).

В задачах 3.14 и 3.15 исследовать взаимное расположение плоскостей P_1 и P_2 . В случае параллельности плоскостей найти расстояние ρ между ними, в противном случае - косинус угла между ними.

13.14.
$$P_1$$
: $x - y + 1 = 0$, P_2 : $y - z + 1 = 0$.

13.15.
$$P_1$$
: $2x - y - z + 1 = 0$, P_2 : $-4x + 2y + 2z - 2 = 0$.

13.16. Найти объем пирамиды, ограниченной плоскостью x + 3y - 5z - 15 = 0 и координатными плоскостями.

13.17. Составить уравнение плоскости, проходящей через:

а) точку M(-2, 3, 1) параллельно плоскости Oxy; **б)** точку M и ось Oy.

13.18. Составить уравнение плоскости, проходящей через:

- **а)** точку A(5, -4, 6) перпендикулярно оси Ox;
- **б)** точку A и отсекающей равные отрезки на координатных осях.

13.19. Написать уравнение плоскости:

- а) параллельной оси Oz и проходящей через точки $M_1(3,-1,2)$ и $M_2(-1,2,5)$;
- **б)** проходящей через точку M_1 перпендикулярно вектору $\overline{M_1M_2}$.
- **13.20.** Найти длину перпендикуляра, опущенного из начала координат на плоскость 20x 5y + 4z 210 = 0.
- **13.21.** Найти плоскость, зная, что точка M(2, -4, 4) служит основанием перпендикуляра, опущенного из начала координат на эту плоскость.
- **13.22.** Составить уравнение плоскости, проходящей через точку M(1, 0, 3) и перпендикулярной к плоскостям x + y + z 8 = 0 и 2x y + 4z + 5 = 0.
- **13.23.** Составить уравнение плоскости, проходящей через начало координат и точку M(2, 1, -1) перпендикулярно плоскости 2x 3z = 0.

Ответы к занятию 13

13.1.
$$2x - y + z - 2 = 0$$
, $1/\sqrt{6}$. **13.2.** $x + y - 3 = 0$. **13.3.** $x - 2y + z = 0$.

13.4.
$$-x + 2y + 3z - 3 = 0$$
. **13.5.** $x + y - 3 = 0$. **13.6.** $\cos \varphi = 1/2\sqrt{15}$.

13.7. Параллельны,
$$\rho = 3/2\sqrt{6}$$
. **13.8.** 8. **13.9.** $x - y = 0$, $1/\sqrt{2}$.

13.10
$$x + 2y - 2 = 0$$
. **13.11.** $-x + y + 2z - 5 = 0$. **13.12.** $2x - 2y - z + 1 = 0$.

13.13.
$$2x - y - 1 = 0$$
. **13.14.** $\cos \varphi = 1/2$. **13.15.** Плоскости совпадают.

13.16. 37,5. **3.17.** a)
$$z - 1 = 0$$
; 6) $x + 2z = 0$.

13.18. a)
$$x - 5 = 0$$
; 6) $x + y + z - 7 = 0$.

13.19. a)
$$3x + 4y - 5 = 0$$
; 6) $-4x + 3y + 3z + 9 = 0$. **13.20.** 10.

13.21.
$$x - 2y + 2z - 18 = 0$$
. **13.22.** $5x - 2y - 3z + 4 = 0$. **13.23.** $3x - 4y + 2z = 0$.

Занятие 14. ПРЯМАЯ И ПЛОСКОСТЬ В ПРОСТРАНСТВЕ

Изучаемый материал: канонические, параметрические и общие уравнения прямой в пространстве; уравнения прямой, проходящей через две точки; взаимное положение двух прямых; угол между двумя прямыми; условия параллельности и ортогональности двух прямых; взаимное положение прямой и плоскости; угол между ними; нахождение точки пересечения; условия параллельности и перпендикулярности прямой и плоскости.

1.Прямая в пространстве	14.1 - 14.3	14.5, 14.6	
2. Прямая и плоскость	14.4	14.7	14.8 - 14.13

14.1. Прямая L задана общими уравнениями

L:
$$\begin{cases} 2x - y + 2z - 3 = 0 \\ x + 2y - z - 1 = 0 \end{cases}$$

Написать для нее канонические уравнения.

14.2. Написать канонические уравнения прямой, проходящей через точку $M_0(2, 0, -3)$ параллельно:

а) вектору
$$q = (2, -3, 5);$$
 б) прямой $\frac{x-1}{5} = \frac{y+2}{2} = \frac{z+1}{-1};$ в) оси $x;$ г) оси $z;$

д) прямой
$$\begin{cases} 3x - y + 2z - 7 = 0 \\ x + 3y - 2z - 3 = 0 \end{cases}$$
; е) прямой $x = -2 + t$, $y = 2t$, $z = 1 - \frac{1}{2}t$.

14.3. Написать уравнения прямой, проходящей через две заданные точки A(1, -2, 1) и B(3, 1, -1).

14.4. Даны прямая
$$L$$
: $\frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{0}$ и точка $M(0, 1, 2) \notin L$ (проверить!).

Требуется:

- a) написать уравнение плоскости, проходящей через прямую L и точку M;
- **б)** написать уравнение плоскости, проходящей через точку M перпендикулярно прямой L.

Домашнее задание 14

14.5. Прямая L задана общими уравнениями

L:
$$\begin{cases} x + 2y - 3z - 5 = 0 \\ 2x - y + z + 2 = 0 \end{cases}$$

Написать для нее канонические уравнения.

14.6. Написать уравнения прямой, проходящей через две заданные точки A(3, -1, 0) и B(1, 0, -3).

14.7. Заданы плоскость *P*:
$$x + y - z + 1 = 0$$
 и прямая L : $\frac{x-1}{0} = \frac{y}{2} = \frac{z+1}{1}$,

причем $L \notin P$ (проверить!). Требуется:

- **a)** вычислить $\sin \phi$, где ϕ угол между плоскостью и прямой, и координаты точки пересечения прямой и плоскости;
- **б)** написать уравнение плоскости, проходящей через прямую L перпендикулярно к плоскости P.

14.8. Составить уравнение плоскости, проходящей через точку

$$M(2; -3; 0)$$
 и прямую
$$\begin{cases} 2x + y - 6z + 3 = 0, \\ x - y + 2z - 6 = 0. \end{cases}$$

14.9. Найти величину острого угла между прямой

$$\begin{cases} x - y + z = 0, \\ 2x + y - z - 3 = 0 \end{cases}$$
 и плоскостью $2x + y + 2z - 5 = 0.$

14.10. Написать уравнение плоскости, проходящей через параллельные пряx+1 y-1 z+2 x-2 y+3 z

мые
$$\frac{x+1}{-2} = \frac{y-1}{3} = \frac{z+2}{-1}$$
 и $\frac{x-2}{-2} = \frac{y+3}{3} = \frac{z}{-1}$.

14.11. Найти координаты точки пересечения прямой

$$\frac{x-1}{2} = \frac{y+2}{1} = \frac{z-2}{1}$$
 с плоскостью $3x - y + 2z + 5 = 0$.

14.12. При каком значении m прямая $\frac{x+10}{m} = \frac{y-7}{2} = \frac{z+2}{-6}$ параллельна плоскости 5x-3y+4z-1=0?

14.13. При каких значениях C и D прямая $\frac{x-3}{2} = \frac{y-3}{-3} = \frac{z}{7}$ лежит в плоскости 2x - y + Cz + D = 0?

Ответы к занятию 14

14.1.
$$q = (-3, 4, 5)$$
. **14.2.** a) $\frac{x-2}{2} = \frac{y}{-3} = \frac{z+3}{5}$; 6) $\frac{x-2}{5} = \frac{y}{2} = \frac{z+3}{-1}$;

B)
$$\frac{x-2}{1} = \frac{y}{0} = \frac{z+3}{0}$$
; **r**) $\frac{x-2}{0} = \frac{y}{0} = \frac{z+3}{1}$; **д**) $\frac{x-2}{-2} = \frac{y}{4} = \frac{z+3}{5}$;

e)
$$\frac{x-2}{1} = \frac{y}{2} = \frac{z+3}{-1/2}$$
. 14.3. $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-1}{-2}$.

14.4. a)
$$x - 2y + z = 0$$
; **6)** $2x + y - 1 = 0$. **14.5.** $q = (1, 7, 5)$.

14.6.
$$\frac{x-3}{-2} = \frac{y+1}{1} = \frac{z}{-3}$$
. **14.7.** a) $1/\sqrt{15}$, $(1, -6, -4)$; 6) $3x - y + 2z - 1 = 0$.

14.8.
$$6x - 3y + 2z - 21 = 0$$
. **14.9.** $\pi/4$. **4.10.** $2x + y - z - 1 = 0$.

14.11.
$$(-3; -4; 0)$$
. **14.12.** 6. **14.13.** $C = -1$; $D = -3$.

Занятие 15. КРИВЫЕ ВТОРОГО ПОРЯДКА

Изучаемый материал: понятие кривой второго порядка; канонические уравнения окружности, эллипса, гиперболы и параболы; элементы симметрии, вершины, фокусы, фокальные свойства; параметры и связь между параметрами кривых второго порядка.

1. Окружность	15.1	15.9	15.17 - 15.20
2. Эллипс	15.2, 15.3	15.10, 15.11	15.21, 15.22
3. Гипербола	15.4, 15.5	15.12, 15.13	15.23, 15.24
4. Парабола	15.6 - 15.8	15.14 - 15.16	15.25, 15.26

15.1. Установить, что каждое из следующих уравнений определяет окружность, найти ее центр C и радиус R:

a)
$$x^2 + y^2 - 4x + 6y - 3 = 0$$
;

5)
$$x^2 + y^2 - 8x = 0$$
.

a) $x^2 + y^2 - 4x + 6y - 3 = 0;$ **b)** $x^2 + y^2 - 8x = 0.$ **15.2.** Построить эллипс $9x^2 + 25y^2 = 225$. Найти: **a)** полуоси;

б) координаты фокусов; в) эксцентриситет.

15.3. Составить каноническое уравнение эллипса, проходящего через точки $M_1(2; -4\sqrt{3})$ и $M_2(-1; 2\sqrt{15})$.

15.4. Построить гиперболу $16x^2 - 9y^2 = 144$. Найти: **a)** полуоси; **б)** координаты фокусов; в) эксцентриситет; г) уравнения асимптот.

15.5. Дан эллипс $5x^2 + 8y^2 = 40$. Найти уравнение гиперболы, вершины которой находятся в фокусах, а фокусы – в вершинах данного эллипса.

15.6. Построить следующие параболы и найти их параметры:

a)
$$y^2 = 6x$$
; **6**) $x^2 = -y$.

15.7. Парабола симметрична относительно оси Ox, ее вершина находится в начале координат. Составить каноническое уравнение параболы, зная, что она проходит через точку A(-3; -3).

15.8. Через фокус параболы $y^2 = 12x$ проведена хорда, перпендикулярная к ее оси. Найти длину хорды.

Домашнее задание 15

15.9. Написать уравнение окружности, заданной

- **a**) центром C(2, -3) и радиусом R = 7;
- **б)** концами диаметра A(3, 2) и B(-1, 6).

15.10. Написать каноническое уравнение эллипса, если

a)
$$a = 3, b = 2;$$
 6) $a = 5, c = 4;$ **B)** $c = 3, e = 3/5;$ **r)** $b = 5, e = 12/13.$

15.11. Составить каноническое уравнение эллипса, фокусы которого лежат на оси O_{Y} , а малая ось равна $\sqrt{3}$. Каждый из фокусов равноудален от центра эллипса и от ближайшего конца фокальной оси.

39

15.12. Написать каноническое уравнение гиперболы, если ее действительная ось лежит на оси Ox и **a**) a=2, b=3; **б**) b=4, c=5; **в**) c=3, e=3/2;

г)
$$a = 8$$
, $e = 5/4$; д) $c = 10$ и уравнения асимптот $y = \pm \frac{4}{3}x$.

- **15.13.** Составить каноническое уравнение гиперболы, если ее фокусы лежат на оси Oy и расстояние между ними равно 10, а длина действительной оси равна 8.
 - 15.14. Построить следующие параболы и найти их параметры:

a)
$$x^2 = 5y$$
; **6)** $y^2 = -4x$.

- **15.15.** Составить каноническое уравнение параболы, симметричной относительно оси Oy, имеющей вершину в начале координат, если она проходит через точку A(-2;4).
- **15.16.** Дана парабола $y^2 = 12x$. Найти длину ее хорды, проходящей через точку A(8; 0) и наклоненной к оси Ox под углом 60° .

Дополнительное задание 15

- **15.17.** Написать уравнение окружности, проходящей через точки (-1; 3), (0; 2), (1; -1).
- **15.18.** Написать уравнение окружности, если ее центр лежит в точке C(-4; 5) и окружность проходит через точку M(-1; 1).
- **15.19.** Составить уравнение окружности, проходящей через точки A(3; 5), B(5; -1),если ее центр лежит на прямой x y 2 = 0.
- **15.20.** Найти уравнения касательных к окружности $x^2 + y^2 = 5$, параллельных прямой y = 2x + 1.
- **15.21.** Составить уравнения касательных к эллипсу $\frac{x^2}{10} + \frac{y^2}{5/2} = 1$, параллельных прямой 3x + 2y + 7 = 0.
- **15.22.** Составить уравнения касательных к эллипсу $x^2 + 4y^2 = 20$, перпендикулярных прямой 2x 2y 13 = 0.
- **15.23.** Составить уравнения касательных к гиперболе $\frac{x^2}{16} \frac{y^2}{64} = 1$, параллельных прямой 10x 3y + 9 = 0.
- **15.24.** Составить уравнения касательных к гиперболе $\frac{x^2}{20} \frac{y^2}{5} = 1$, перпендикулярных прямой 4x + 3y 7 = 0.
- **15.25.** Написать уравнение касательной к параболе $y^2 = 8x$, параллельной прямой 2x + 2y 3 = 0.
- **15.26.** Написать уравнение касательной к параболе $x^2 = 16y$, перпендикулярной прямой 2x + 4y + 7 = 0.

Ответы к занятию 15

15.1. a)
$$C(2, -3)$$
, $R = 4$; 6) $C(4, 0)$, $R = 4$.

15.2. a)
$$a = 5$$
, $b = 3$; 6) $F(\pm 4, 0)$; B) $e = 4/5$. **15.3.** $\frac{x^2}{16} + \frac{y^2}{64} = 1$.

15.4. a)
$$a = 3$$
, $b = 4$; 6) $F(\pm 5, 0)$; B) $e = 5/3$; Γ) $y = \pm (4/3)x$. **15.5.** $\frac{x^2}{3} - \frac{y^2}{5} = 1$.

15.6. a)
$$p = 3$$
; 6) $p = -1/2$. **15.7.** $y^2 = -3x$. **15.8.** 12.

15.9. a)
$$(x-2)^2 + (y+3)^2 = 49$$
; **6)** $(x-1)^2 + (y-4)^2 = 8$.

15.9. a)
$$(x-2)^2 + (y+3)^2 = 49$$
; **6**) $(x-1)^2 + (y-4)^2 = 8$.
15.10. a) $x^2/9 + y^2/4 = 1$; **6**) $x^2/25 + y^2/9 = 1$; **B**) $x^2/25 + y^2/16 = 1$; \mathbf{r}) $x^2/169 + y^2/25 = 1$.

15.11.
$$\frac{x^2}{3} + \frac{y^2}{4} = 1$$
. **15.12. a)** $x^2/4 - y^2/9 = 1$; **6)** $x^2/9 - y^2/16 = 1$;

B)
$$x^2/4 - y^2/5 = 1$$
; **r)** $x^2/64 - y^2/36 = 1$; **д)** $x^2/36 - y^2/64 = 1$.

15.13.
$$-\frac{x^2}{9} + \frac{y^2}{16} = 1$$
. **15.14.** a) $p = 5/2$; 6) $p = -2$. **15.15.** $x^2 = y$. **15.16.** 24.

15.17.
$$(x+4)^2 + (y+1)^2 = 25$$
. **15.18.** $(x+4)^2 + (y-5)^2 = 25$.

15.19.
$$(x-4)^2 + (y-2)^2 = 10$$
. **15.20.** $y = 2x \pm 5$. **15.21.** $3x + 2y \pm 10 = 0$.

15.22.
$$x + y \pm 5 = 0$$
. **15.23.** $10x - 3y \pm 32 = 0$. **15.24.** $3x - 4y \pm 10 = 0$.

15.25.
$$x + y + 2 = 0$$
. **15.26.** $2x - y - 16 = 0$.

Занятие 16. УПРОЩЕНИЕ УРАВНЕНИЙ КРИВЫХ ВТОРОГО ПОРЯДКА

Изучаемый материал: преобразование координатного базиса; поворот и параллельный перенос осей координат; квадратичная форма, ее матрица, собственные числа и собственные векторы; вычисление собственных чисел и собственных векторов; матрица поворота к главным направлениям; приведение квадратичной формы к каноническому виду; упрощение уравнений кривых второго порядка.

== - F ==			
1. Параллельный перенос осей координат	6.1 - 6.3	6.8 - 6.10	
2. Квадратичная форма	6.4	6.11	
3. Поворот и параллельный перенос	6.5 - 6.7	6.12 - 6.14	6.15 - 6.17
осей координат			

При приведении уравнения кривой к каноническому виду рекомендуется руководствоваться следующим правилом:

- 1) выделить квадратичную форму, найти ее матрицу;
- 2) найти собственные числа и собственные векторы;
- 3) найти матрицу поворота к главным направлениям;
- 4) найти канонический вид квадратичной формы;
- 5) преобразовать линейную часть общего уравнения к повернутым координатам;
- б) выполнить алгебраические преобразования для параллельного переноса осей координат в центр или в вершину кривой;
- 7) записать каноническое уравнение кривой.

- 16.1. Установить, что данное уравнение определяет эллипс, найти его центр C, полуоси и эксцентриситет: $5x^2 + 9y^2 - 30x + 18y + 9 = 0$.
- 16.2. Установить, что данное уравнение определяет гиперболу, найти ее центр, полуоси, эксцентриситет и уравнения асимптот:

 $16x^2 - 9y^2 - 64x - 54y - 161 = 0.$

16.3. Установить, что каждое из следующих уравнений определяет параболу, найти координаты ее вершины A и величину параметра p:

a)
$$y^2 = 4x - 8$$
;

6)
$$y = -\frac{1}{6}x^2 + 2x - 7$$
.

16.4. Записать квадратичную форму, порожденную матрицей:

a)
$$\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$$
; **6)** $\begin{pmatrix} 2 & 5 \\ 5 & 7 \end{pmatrix}$.

$$\mathbf{6}) \begin{pmatrix} 2 & 5 \\ 5 & 7 \end{pmatrix}$$

Привести уравнение кривой к каноническому виду:

16.5.
$$9x^2 - 4xy + 6y^2 + 16x - 8y - 2 = 0.$$

16.6. $x^2 - 2xy + y^2 - 10x - 6y + 25 = 0.$

16.6.
$$x^2 - 2xy + y^2 - 10x - 6y + 25 = 0.$$

16.7.
$$32x^2 + 52xy - 7y^2 + 180 = 0$$
.

Домашнее задание 16

- 16.8. Установить, что данное уравнение определяет эллипс, найти его центр C, полуоси и эксцентриситет: $4x^2 + 3y^2 - 8x + 12y - 32 = 0$.
- 16.9. Установить, что данное уравнение определяет гиперболу, найти ее центр, полуоси, эксцентриситет и уравнения асимптот: $9x^2 - 16y^2 + 90x + 32y - 367 = 0.$
- 16.10. Установить, что каждое из следующих уравнений определяет параболу, найти координаты ее вершины A и величину параметра p:

a)
$$x^2 = 2 - y$$
;

a)
$$x^2 = 2 - y;$$
 6) $x = 2y^2 - 12y + 14.$

16.11. Записать квадратичную форму, порожденную матрицей:

a)
$$\begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$$
;

a)
$$\begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$$
; 6) $\begin{pmatrix} 25 & -7 \\ -7 & -25 \end{pmatrix}$.

Привести уравнение кривой к каноническому виду:

16.12.
$$5x^2 + 12xy - 22x - 12y - 19 = 0$$
.

16.13.
$$x^2 - 4xy + 4y^2 - 4x - 3y - 7 = 0$$
.

16.14.
$$5x^2 - 6xy + 5y^2 - 32 = 0$$
.

Дополнительное задание 16

Привести уравнение кривой к каноническому виду:

16.15.
$$16x^2 + 25y^2 + 32x - 100y - 284 = 0$$
.

16.16.
$$16x^2 - 9y^2 - 64x - 18y + 199 = 0.$$

16.17.
$$y = 4x^2 - 8x + 7$$
.

Ответы к занятию 16

16.1.
$$C(3, -1)$$
, $a = 3$, $b = \sqrt{5}$, $e = 2/3$.

16.2.
$$C(2, -3)$$
, $a = 3$, $b = 4$, $e = 5/3$, $4x - 3y - 17 = 0$, $4x + 3y + 1 = 0$.

16.3. a)
$$(2, 0), p = 2;$$
 6) $(6, -1), p = 3.$

16.5. Эллипс
$$\frac{{x''}^2}{2} + \frac{{y''}^2}{1} = 1$$
. **16.6.** Парабола ${y''}^2 = 4\sqrt{2} \ x''$.

16.7. Гипербола
$$\frac{{x''}^2}{9} - \frac{{y''}^2}{4} = 1$$
.

16.8.
$$C(1, -2)$$
, $a = 4$, $b = 2\sqrt{3}$, $e = 1/2$.

16.9.
$$C(-5, 1)$$
, $a = 8$, $b = 6$, $e = 5/4$, $3x + 4y + 11 = 0$, $3x - 4y + 19 = 0$.

16.10. a)
$$(0, 2), p = -1/2;$$
 6) $(-4, 3), p = 1/4.$

16.12. Гипербола
$$\frac{x''^2}{4} - \frac{y''^2}{9} = 1$$
, $O''(1;1)$, $\boldsymbol{e}_1 = \left(\frac{3}{\sqrt{13}}; \frac{2}{\sqrt{13}}\right)^T$, $\boldsymbol{e}_2 = \left(-\frac{2}{\sqrt{13}}; \frac{3}{\sqrt{13}}\right)^T$.

16.13. Парабола
$$y''^2 = \frac{1}{\sqrt{5}}x''$$
, $O''(3; 2)$, $e_1 = \left(-\frac{2}{\sqrt{5}}; -\frac{1}{\sqrt{5}}\right)^T$, $e_2 = \left(\frac{1}{\sqrt{5}}; -\frac{2}{\sqrt{5}}\right)^T$.

16.14. Эллипс
$$\frac{{x'}^2}{16} + \frac{{y'}^2}{4} = 1$$
, $\boldsymbol{e}_1 = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)^T$, $\boldsymbol{e}_2 = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)^T$.

16.15. Эллипс,
$$a = 5$$
, $b = 4$. **16.16.** Гипербола, $a = 4$, $b = 3$.

16.17. Парабола, p = 1/8.

Занятие 17. ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА

Изучаемый материал: алгебраические поверхности второго порядка: эллиптический, круговой, гиперболический и параболический цилиндры; эллипсоид и сфера; однополостный и двухполостный гиперболоиды; эллиптический и гиперболический параболоиды; классификация алгебраических поверхностей второго порядка; усвоение терминологии и признаков поверхностей по их каноническим уравнениям; построение графиков поверхностей по их каноническим уравнениям.

1. Определение вида поверхности	17.1 - 17.8	17.11 - 17.14	17.17 - 17.21
2. Построение тел в пространстве	17.9, 17.10	17.15, 17.16	

Определить вид поверхности и сделать чертеж:
17.1.
$$x^2 + y^2 - 9 = 0$$
. **17.2.** $x^2 + y^2 - 2x - 4y - 4 = 0$. **17.3.** $x^2 - 2y + 1 = 0$.
17.4. $z = x^2$. **17.5.** $x^2 = y^2 + z^2$. **17.6.** $x^2 = y^2 - z^2$. **17.7.** $x = y^2/4 + z^2/9$.

17.4.
$$z = x^2$$
. **17.5.** $x^2 = y^2 + z^2$. **17.6.** $x^2 = y^2 - z^2$. **17.7.** $x = y^2/4 + z^2/9$.

17.8.
$$(x-1)^2 + (y-3)^2 + (z-1)^2 = 4$$
.

Построить тело, ограниченное поверхностями:

17.9.
$$z = x^2 + y^2$$
, $z = 0$, $y = 1$, $y = 2x$, $y = 6 - x$.

17.10.
$$x = 0$$
, $y = 0$, $z = 0$, $2x + 3y - 12 = 0$, $z = y^2/2$.

Домашнее задание 17

Определить вид поверхности и сделать чертеж:
17.11.
$$x^2 + y^2 - 2x = 0$$
. **17.12.** $x^2 - y^2 = 4$. **17.13.** $x^2 + y^2 + 4z^2 - 1 = 0$.

17.14.
$$z = x^2 + y^2 - 1$$
.

Построить тело, ограниченное поверхностями:

17.15.
$$x = 4$$
, $y = 4$, $x = 0$, $y = 0$, $z = 0$, $z = x^2 + y^2 + 1$.
17.16. $x^2 + y^2 + z^2 = a^2$, $x^2 + y^2 = 2ax$.

17.16.
$$x^2 + y^2 + z^2 = a^2$$
, $x^2 + y^2 = 2ax$.

Дополнительное задание 17

Определить вид поверхности и сделать чертеж:
17.17.
$$x^2 - y^2 - z^2 - 4 = 0$$
. **17.18.** $x = y^2 + z^2$. **17.19.** $x = y^2/5 - z^2/9$.

17.20.
$$x^2 - 2x + y^2 - 4y - 11 = 0$$
. **17.21.** $x = y^2 - z^2 - 5$.

Ответы к занятию 17

- **17.1.** Круговой цилиндр. **17.2.** Круговой цилиндр.
- 17.3. Параболический цилиндр. 17.4. Параболический цилиндр.
- 17.5. Конус вращения. 17.6. Конус вращения. 17.7. Эллиптический параболоид.
- 17.8. Сфера. 17.11. Круговой цилиндр. 17.12. Гиперболический цилиндр.
- 17.13. Эллипсоид вращения. 17.14. Эллиптический параболоид вращения.
- 17.17. Двуполостный гиперболоид вращения.
- 17.18. Эллиптический параболоид вращения.
- 17.19. Гиперболический параболоид.
- 17.20. Круговой цилиндр. 17.21. Гиперболический параболоид.