Сходимость с оценкой вероятностей больших отклонений для задач выпуклой оптимизации и седловых задач в условиях повышенной гладкости

Рубцов Д.Н. rubtsov.dn@phystech.edu

Abstract

Классические результаты стохастической оптимизации, как правило, формулируются в терминах числа итераций, необходимых для достижения ε -точности по математическому ожиданию функции. В данной работе разрабатывается алгоритм, обеспечивающий гарантию сходимости с высокой вероятностью, причем предположения о "легкости хвостов" распределения шума стохастического градиента здесь не делаются, то есть Минимизируемая функция здесь предполагается обладающей повышеннюй гладкостью.

Ключевые слова: выпуклая оптимизация, седловые задачи, стохастическая оптимизация, тяжелые хвосты, повышенная гладкость, безградиентная оптимизация,

1 Введение

В данной работе рассматривается задача стохастической оптимизации

$$\min_{x \in \mathbb{R}^d} f(x) := \mathbb{E}f(x, \xi),\tag{1}$$

где случайная величина ξ из фиксированного, но неизвестного распределения \mathcal{P} : $\xi \sim \mathcal{P}$. Как правило, результатом стохастических градиентных методов является точка x_{ε} такая, что

$$\mathbb{E}f(x_{\varepsilon}) - \min f \le \varepsilon. \tag{2}$$

Стоимость таких алгоритмов, например, SGD в терминах количества итераций $\mathcal{O}(\frac{1}{\varepsilon^2})$ в выпуклом случае и $\mathcal{O}(\frac{1}{\varepsilon})$ в сильно выпуклом случае.

В данной работе мы рассматриваем алгоритмы, результатом которых являются точки $x_{\varepsilon,p}$, удовлетворяющие условию

$$\mathbb{P}(f(x_{\varepsilon,p}) - \min f \le \varepsilon) \ge 1 - p,\tag{3}$$

где «уровень уверенности» p>0 модет быть достаточно маленьким. Из неравенства Маркова ясно, что (2) можно гарантировать, если найти точку $x_{\varepsilon,p}$ такую, что $\mathbb{E} f(x_{\varepsilon}) - \min f \leq p\varepsilon$. Однако для этого необходимо $\mathcal{O}(\frac{1}{p^2\varepsilon^2})$ или $\mathcal{O}(\frac{1}{p\varepsilon})$ итераций, то есть сложность существенно возрастает при малых p. Существо несколько статей, в которых сложность относительно p снижается до логарифмической $\log(\frac{1}{p})$, однако либо в то же время ухудшается сложность относительно ε , либо делаются более жесткие ограничения на шум стохастического градиента: он предполагатся субгауссовским, то есть имеющим "легкие хвосты".

В работе Davis et al. [2021] был разработан общий алгоритм, работающий и в случае "тяжелых хвостов" распределения шума стохастического градиента, при этом требующий не очень большого числа итераций (вызовов оракула). В этой работе рассматривается оракул $\mathcal{M}(f,\varepsilon)$, возвращающий точку x_{ε} такую, что $\mathbb{P}(f(x_{\varepsilon}) - \min f \leq \varepsilon) \geq \frac{2}{3}$. В частности, такой оракул может быть порожден любым алгоритмом стохастической оптимизации, возвращающим точку x_{ε} такую, что $\mathbb{E}f(x_{\varepsilon}) - \min f \leq \frac{\varepsilon}{3}$

(следствие неравенства Маркова). Стоимость вызова такого оракула обозначим за $\mathcal{C}_{\mathcal{M}}(f,\varepsilon)$. Авторы показали, что для μ -сильно выпуклых L-гладких функций алгоритм, решающий задачу 2 требует $\log(\frac{\log\kappa}{p})\log\kappa\cdot\mathcal{C}_{\mathcal{M}}(f,\frac{\varepsilon}{\log\kappa})$. Таким образом, задача сходимости с высокой вероятностью сложнее (в смысле оракульной сложности) задачи сходимости по матожиданию лишь в логарфимическое по $\frac{1}{p}$ и полилогарифмическое по числу обусловленности $\kappa:=\frac{L}{\mu}$ раз.

Основываясь на техниках, предложенных в статье Davis et al. [2021], мы разрабатываем алгоритм для μ -сильно выпуклых β -гёльдеревых функций, учитывающей повышенную гладкость минимизируемых функций и тем самым, уменьшая полную стоимость алгоритма.

В последней части работы мы решаем седловые задачи

$$\min_{x \in X} \max_{x \in Y} \Phi(x, y) := \mathbb{E}\Phi_{\xi}(x, y), \tag{4}$$

являющиеся актуальными в связи с развитием обучения с подкреплением (reinforcement learning). Разрабатываются алгоритмы поиска приближенного решения с высокой вероятностью в условиях повышенной гладкости.

2 Техники и алгоритмы

Пусть \mathbb{R}^d - евклидаово пространство со скалярным произведением $\langle \cdot, \cdot \rangle$ и индуцированным им нормой $||x|| = \langle x, x \rangle, x \in \mathbb{R}^d$. Замкнутый шар с центром в точке x и радиусом ε будем обозначать $B_\varepsilon(x)$. Пусть исследуемая функция $f: \mathbb{R}^d \to \mathbb{R}$ μ -сильно выпуклая (т.е. $f(x) - \frac{\mu}{2}||x||^2$ - выпуклая) и L-гладкая (т.е. дифференцируемая с L-липшицевым градиентом). Для такой функции для всех точек $x, y \in \mathbb{R}^d$ справедливо:

$$\langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2 \le f(y) - f(x) \le \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2.$$

Для точки x^* , в которой достигается минимум функции f тогда справедливо (с учетом необходимого условия $\nabla f(x^*) = 0$):

$$\frac{\mu}{2}||x-x^*||^2 \le f(x) - f(x^*) \le \frac{L}{2}||x-x^*||^2$$

Далее $\min f = f(x^*) =: f^*$.

2.1 Robust distance estimation

Обозначим за $\mathcal{D}(\varepsilon)$ - оракул, возвращающий точку $\mathbb{P}[||x-x^*|| \leq \varepsilon] \geq \frac{2}{3}$. Можно сделать m вызовов этого оракула $x_1,...,x_m$ и выбрать среди полученных точек такую x_{i^*} , вокруг которой класстеризуются остальные точки.

Algorithm 1 Robust Distance Estimation (RDE) $\mathcal{D}(\varepsilon, m)$

Input: оракул $\mathcal{D}(\varepsilon)$ и число его вызовов m

0: for $i \in 1, ..., m$ do

0: $r_i = \min\{r \ge 0 : |B_r(x_i) \cap X| > \frac{m}{2}\} \leftarrow Compute$

0: end for

0: $i^* = \arg\min_{i \in 1, \dots, m} r_i \leftarrow Set = 0$

Output: x_{i^*}

Theorem 1 Точка x_{i^*} , возвращаемая алгоритмом RDE удовлетворяет условию

$$\mathbb{P}(||x_{i^*} - x^*|| \le 3\varepsilon) \ge 1 - e^{-\frac{m}{18}}$$

Пусть точки x_i (i=1,...,m) таковы, что $\mathbb{P}(f(x_i)-f^*\leq\varepsilon)\geq\frac{2}{3}$. Из μ -сильной выпуклости следует, что $\mathbb{P}(||x_i-x^*||<\sqrt{\frac{2\varepsilon}{\mu}}=:\delta)\geq\frac{2}{3}$. Применив к этим точкам алгоритм RDE, получим точку x_{i^*} , удовлетворяющую неравенству $\mathbb{P}(||x_{i^*}-x^*||<3\delta)\geq 1-e^{-\frac{m}{18}}$. Из L-гладкости функции f тогда следует, что $\mathbb{P}(f(x_{i^*})-f^*\leq\frac{L}{2}(3\delta)^2=9\frac{L}{\mu}\varepsilon)\geq 1-e^{-\frac{m}{18}}$. Таким образом, генерируя точки алгоритмом, дающим гарантии сходимости с точностью ε по матожиданию, но не с высокой вероятностью, мы предъявили алгоритм, дающий гарантию сходимости с высокой вероятностью, но лишь с $\kappa\varepsilon$ -точностью, где число обусловленности $\kappa=\frac{L}{\mu}\gg 1$ может быть достаточно большим. Для нивелирования этой проблемы в статье Davis et al. [2021] был предложена процедура proxBoost.

2.2 proxBoost

Зафиксируем возрастающую последовательность $\lambda_0, ..., \lambda_T$ и последовательность точек $x_0, ..., x_T$. Для каждого i = 0, ..., T введем функцию

$$f^{i}(x) := f(x) + \frac{\lambda_{i}}{2}||x - x_{i}||^{2}$$
$$\bar{x}_{i+1} := \operatorname*{min}_{x} f^{i}(x)$$

В качестве x_i можно брать $x_i = \bar{x}_i$ для $i \ge 1$. Так как точное вычисление точки минимума чаще всего невозможно, будем следить лишь за $||\bar{x}_i - x_i||$. Для простоты, $\bar{x}_0 := \arg\min f$, $\lambda_{-1} := 0$.

Theorem 2 (Inexact proximal point method) Для всех $j \ge 0$ выполняется следующее неравенство:

$$f^{j}(\bar{x}_{j+1}) - f^{*} \leq \sum_{i=0}^{j} \frac{\lambda_{j}}{2} ||\bar{x}_{i} - x_{i}||^{2}.$$

Слидовательно, имеем декомпозицию функциональной ошибки:

$$f(x_{j+1}) - f^* \le (f^j(x_{j+1}) - f^j(\bar{x}_{j+1})) + \sum_{i=0}^{j} \frac{\lambda_j}{2} ||\bar{x}_i - x_i||^2.$$

Если функция f еще и L-гладкая, то для всех $j \geq 0$ выполнена оценка:

$$f(x_j) - f^* \le \frac{L + \lambda_{j-1}}{2} ||\bar{x}_j - x_j||^2 + \sum_{i=0}^{j-1} \frac{\lambda_j}{2} ||\bar{x}_i - x_i||^2.$$

Основным результатом Теоремы 2 является декомпозиция функциональной ошибки на ошибку на последнем шаге $(f^T(x_{j+1}) - f^T(\bar{x}_{j+1}))$ и накопленную ошибку $\sum_{i=0}^T \frac{\lambda_j}{2} ||\bar{x}_i - x_i||^2$. Для достаточно больших T можно гарантировать то, что функция f^T хорошо обусловлена. Использование результатов теорем 1 и 2 позволило авторам Davis et al. [2021] разработать алгоритм proxBoost.

Алгоритм proxBoost состоит из 3 шагов. На первом шаге ищется точка, довольно близкая к точке минимума функции f с большой вероятностью. Эта задача может быть решена с помощью техники RDE. На втором шаге в цикле точно также можно решить аналогичные задачи для функциий f^j . На последнем шаге

3 Вычислительные эксперименты

Возьмем функцию $f(x,\xi)=\frac{Lx_1^2}{2}+\frac{\mu x_2^2}{2}+\langle \xi,x\rangle$, где $x=(x_1,x_2)\in R^2, L\geq \mu$. Эта функция является зашумленной версией функции $f(x):=\mathbf{E}_{\xi\sim\mathcal{P}}[f(x,\xi)]=\frac{Lx_1^2}{2}+\frac{\mu x_2^2}{2}$. Стохастический градиент $\nabla f(x,\xi)=[L,\mu]^T+\xi$, где $\mathbf{E}\xi=0$, $\mathbf{D}\xi<\sigma^2$. Для демонстрации работоспособности алгоритма не только в случае легких хвостов распределеня, но и в случае тяжелых хвостов, случайную величину будем брать из трех

Algorithm 2 $proxBoost(\delta, p, T)$

Input: $\delta \geq 0, p \in (0,1), T \in \mathbb{N}$

Set
$$\lambda_{-1} = 0$$
, $\varepsilon_{-1} = \sqrt{\frac{2\delta}{\mu}}$

Найти точку x_0 такую, что $||x_0 - \bar{x}_0|| \le \varepsilon_{-1}$ с вероятностью 1-p

0: for j = 0, ..., T - 1 do

0: Set
$$\varepsilon_j = \sqrt{\frac{2\delta}{\mu + \lambda_j}}$$

0: Найти точку x_{j+1} такую, что $\mathbb{P}(||x_{j+1}-\bar{x}_{j+1}||\leq \varepsilon_j|E_j)\geq 1-p$, где событие $E_j:=\{x_i\in B_{\varepsilon_{i-1}}(\bar{x}_i)\ \forall i\in [0,j]\}$

0: end for

0: Найти точку x_{T+1} такую, что $\mathbb{P}(f^T(x_{T+1}) - \min f^T \leq \delta | E_j) \geq 1 - p = 0$ Output: x_{T+1}

разных распределений: нормального, Вейбулла и Бурра с соответствующими функциями распределения $\mathcal{F}_{\mathcal{N}}, \mathcal{F}_{W}, \mathcal{F}_{B}$.

$$\mathcal{F}_{\mathcal{N}}(x) = \int_{-\infty}^{x} f_{\mathcal{N}}(x') dx', \ f_{\mathcal{N}}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mathcal{F}_W(x) = (1 - e^{-(\frac{x}{\alpha})^c})\mathbb{I}(x \ge 0)$$

$$\mathcal{F}_B(x) = (1 - (1 + x^c)^{-d})\mathbb{I}(x > 0)$$

Далее приведены результаты для $L=100, \mu=1,$ то есть $\kappa=\frac{L}{\mu}=100\gg 1.$ Цветное - SGD, черное - proxboost.

Список литературы

Damek Davis, Dmitriy Drusvyatskiy, Lin Xiao, and Junyu Zhang. From low probability to high confidence in stochastic convex optimization. Journal of machine learning research, 22(49):1–38, 2021.