G4 de Álgebra Linear I-2013.1

Data: 28 de junho de 2013.

Nome:	Matrícula:
Assinatura:	Turma:

Duração: 1 hora 50 minutos

Provas sem nome não serão corrigidas e terão nota <u>ZERO</u>. Provas com algum dos campos matrícula, assinatura ou turma não preenchido ou preenchido de forma errada serão penalizadas com a perda de 1 ponto por campo.

Ques.	1.a	1.b	2.a	2.b	2.c	2.d	2.e	2.f	3.a	3.b	3.c	3.d	3.e	4.a	4.b	soma
Valor	0.5	0.5	0.5	0.5	1.0	0.5	1.0	0.5	0.5	0.5	1.0	1.0	1.0	0.5	0.5	10.0
Nota																

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- \bullet É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Escreva de forma clara, ordenada e legível.
- O desenvolvimento de cada questão deve estar após a palavra **Resposta** no lugar a ele destinado. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos!!</u>.
- J<u>ustifique cuidadosamente</u> todas as respostas de forma completa, ordenada e coerente.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento.

cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado.

fonte: mini-Aurélio

1) Considere o seguinte sistema de equações lineares

$$\begin{cases} x - 2y + z &= a, \\ x - z &= 0, \\ x + ay + z &= b, \end{cases} a, b \in \mathbb{R}.$$

- (a) Mostre que o sistema é possível e determinado (existe solução única) para $a \neq -2$.
- (b) Faça a=-2. Determine, se possível, os valores de b para que as soluções do sistema formem um plano de \mathbb{R}^3 .

2) Considere a base γ de \mathbb{R}^3

$$\gamma = \{(1,0,1), (0,1,0), (1,0,-1)\}$$

e a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por:

$$T(1,0,1) = (0,0,0),$$

 $T(0,1,0) = (0,1,0),$
 $T(1,0,-1) = (1,0,-1).$

- a) Mostre que γ é uma base de \mathbb{R}^3 .
- b) Determine a equação cartesiana da imagem de T,

imagem
$$(T) = {\vec{w} \in \mathbb{R}^3 \text{ tal que existe } \vec{v} \in \mathbb{R}^3 \text{ tal que } T(\vec{v}) = \vec{w}}.$$

- c) Determine uma base ortonormal η do conjunto imagem de T. Escreva as coordenadas do vetor (1, 1, -1) da imagem de T na base η . Escreva, se possível, as coordenadas do vetor (0, 1, 1) na base η .
- d) Encontre uma base ortogonal β de \mathbb{R}^3 formada por autovetores da transformação linear T.
- e) Determine a matriz $[T]_{\beta}$ da tranformação linear T na base β do item anterior.
- f) Determine a matriz [Q] de mudança de base da base canônica para a base β do item (d).

3) Considere a matriz [N]

$$[N] = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right].$$

- a) Sabendo que $\lambda=4$ é um autovalor de [N], determine todos os autovalores de [N] e suas multiplicidades.
- **b)** Determine, se possível, uma base ortonormal β de autovetores de [N].
- c) Determine uma matriz [D] diagonal e uma matriz [P] tais que

$$[N] = [P][D][P]^t$$
.

d) Considere a matriz $[M] = [N]^{-1}$, a matriz inversa de [N]. Escreva [M] da forma

$$[M] = [Q] [E] [Q]^{-1},$$

onde [E] é uma matriz diagonal.

e) Considere a matriz [L]

$$[L] = \left[\begin{array}{ccc} 222 & 22 & 2 \\ 111 & 11 & 1 \\ 333 & 33 & 3 \end{array} \right].$$

Determine todos os autovalores de [L]. Determine também um autovalor de $[L]^7$.

- 4) Decida se as afirmações a seguir são verdadeiras ou falsas.
- a) Uma matriz inversível não pode ser semelhante a uma matriz não inversível.
- b) Seja A uma matriz de 2×2 . Se A é semelhante a -A, então o único autovalor de A é zero.

 $\mathbf{J}\underline{\mathbf{ustifique}}$ cuidadosamente suas respostas de forma completa, ordenada e coerente.