Name:	MatrNr.:

Klausur: Berechenbarkeit und Komplexität (A)

(Niedermeier/Froese/Molter, Sommersemester 2017)

Einlesezeit: 15 Minuten Bearbeitungszeit: 60 Minuten Max. Punktezahl: 50 Punkte

1	2	3	4	5	Σ
(9)	(10)	(8)	(12)	(11)	(50)

Allgemeine Hinweise:

- Es sind keinerlei Hilfsmittel erlaubt.
- Benutzen Sie einen dokumentenechten Stift in der Farbe schwarz oder blau. Insbesondere also keinen Bleistift, sondern einen Kugelschreiber.
- Beschriften Sie jedes Blatt mit ihrem Vor- und Nachnamen und ihrer Matrikelnummer.
- Falls es in der Aufgabenstellung nicht explizit ausgeschlossen wird, so sind alle Antworten zu begründen! Antworten ohne Begründung erhalten 0 Punkte.

Viel Erfolg!

Name:

Matr.-Nr.:

Aufgabe 1: Turing-Maschinen

(3+3+3) Punkte)

Betrachten Sie die deterministische Turing-Maschine

$$M = (\{z_0, z_1, z_2, z_3\}, \{a, b\}, \{a, b, \Box\}, \delta, z_0, \Box, \{z_3\}),$$

wobe
i δ wie folgt definiert ist:

- (a) Hält M auf dem Eingabewort aba?
- (b) Auf wievielen verschiedenen Bandzellen befindet sich der Leseschreibkopf von M maximal bei einer beliebigen Eingabe $x \in \{a, b\}^*$?
- (c) Ist die von M akzeptierte Sprache T(M) entscheidbar?

Name: Matr.-Nr.:

Aufgabe 2: Die Komplexitätsklasse P

(5 + 5 Punkte)

Im Folgenden sei Σ ein endliches Alphabet und $A,B\subseteq \Sigma^*$ seien zwei Sprachen in P.

Begründen Sie für die beiden folgenden Sprachen, dass diese auch in P liegen (eine informelle algorithmische Beschreibung ist hierbei ausreichend).

- (a) $A \cup B$
- (b) $(\Sigma^* \setminus A) \cap (\Sigma^* \setminus B)$

Name:	MatrNr.:

Aufgabe 3: Transitivität von Polynomzeitreduktionen

(4+4 Punkte)

Im Folgenden seien Σ und Π zwei endliche Alphabete. Betrachten Sie die folgenden beiden Reduktionstypen.

Definition 1. Eine Sprache $A \subseteq \Sigma^*$ heißt **linearzeit-reduzierbar** bzw. **quadratzeit-reduzier-bar** auf eine Sprache $B \subseteq \Pi^*$ (in Zeichen $A \leq_m^{\ell} B$ bzw. $A \leq_m^{q} B$) genau dann, wenn es eine totale, in *linearer* Zeit (O(|x|) für jedes $x \in \Sigma^*$) bzw. *quadratischer* Zeit $(O(|x|^2)$ für jedes $x \in \Sigma^*$) berechenbare Funktion $f : \Sigma^* \to \Pi^*$ gibt, sodass gilt:

$$\forall x \in \Sigma^* : x \in A \Leftrightarrow f(x) \in B.$$

- (a) Begründen Sie die Transitivität für einen der beiden Reduktionstypen.
- (b) Argumentieren Sie kurz (in 2-3 Sätzen), warum Transitivität im Kontext des Vollständigkeitskonzepts eine sinnvolle Eigenschaft für Reduktionen ist.

Aufgabe 4: Polynomzeitreduktion

(4+2+3+3 Punkte)

Betrachten Sie die folgenden Probleme.

HAMILTONPFAD

Eingabe: Ein ungerichteter Graph G = (V, E).

Frage: Gibt es einen Pfad in G, der jeden Knoten aus V genau einmal enthält?

HAMILTONKREIS

Eingabe: Ein ungerichteter Graph G = (V, E).

Frage: Gibt es einen Kreis in G, der jeden Knoten aus V genau einmal enthält?

Geben Sie eine Polynomzeitreduktion f von Hamiltonpfad auf Hamiltonkreis an, indem Sie

- (a) einen Knoten zum Eingabegraph hinzufügen und diesen geeignet mit den restlichen Knoten verbinden,
- (b) begründen, dass f in Polynomzeit berechnet werden kann,
- (c) zeigen, dass für alle Graphen G gilt: $G \in HAMILTONPFAD \Rightarrow f(G) \in HAMILTONKREIS$ und
- (d) zeigen, dass für alle Graphen G gilt: $f(G) \in \text{Hamiltonkreis} \Rightarrow G \in \text{Hamiltonpfad}$.

Name:	MatrNr.:

Aufgabe 5: Vermischtes zu Komplexitätsklassen

(2 + 2 + 2 + 5) Punkte)

(a) Geben Sie eine Definition der Klasse NP an (ohne Begründung).

(b) Beschreiben Sie kurz und informell einen Algorithmus, der zeigt, dass $SAT \in PSPACE$.

SAT

Eingabe: Aussagenlogische Formel F.

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Booleschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

(c) Beschreiben Sie kurz und informell einen Algorithmus, der zeigt, dass TAUT ∈ PSPACE.

TAUT

Eingabe: Aussagenlogische Formel F.

Frage: Ist F eine Tautologie, d.h. wird F für alle $\{0,1\}$ -wertigen Belegungen der in F verwendeten Booleschen Variablen zu wahr (d.h. 1) ausgewertet?

(d) Geben Sie ein Inklusionsdiagramm an, das die Klassen P, PSPACE, coNP, $DTIME(n^2)$ und NP enthält, und begründen Sie die angegebenen Inklusionen.