Table 1. The Berea sandstone core properties

Table 1. The Berea sandstone core properties									
Core #	D, cm	L, cm	Kg, md	φ, %	Swi,%	μ₀, ср	Wetness		
Soltrol 220, no aging VSWW									
Ev8h8b	3.764	7.91	73.9	0.1615	22.6	3:8	VSWW		
Ev8h9a	3.739	8.057	82.9	0.1601	20.9	3.8			
Ev8h9b	3.742	7.922	76.7	0.1588	24.6	3.8	VSWW		
Ev8h10a	3.761	8.047	76.7	0.1636	22.7	3.8	VSWW		
Ev8h10b	3.764	7.83	70.1	0.1627	22.5	3.8	VSWW		
Ev8h17a	3.763	8.245	77.4	0.1734	22.59	3.8	VSWW		
Ev8h18a	3.753	7.894	95.8	0.1746	23.02	3.8	VSWW		
Minnelusa 2002 crude oil									
Ev8hla	7.864	3.786	101.5	0.1760	23.9	68.0	MXW, 10d aging		
Ev8h2b	7.538	3.765	71.7	0.1652	23.7	68.0	MXW, 10d aging		
Ev8h3a	3.764	7.963	70.1	0.1678	24.3	1.5	MXW-F (Dakota), 10d aging		
Ev8h4a	3.764	8.06	65.1	0.1636	24.3	68.0	MXW, 10d aging		
Ev8h4b	7.680	3.767	66.6	0.1628	24.6	680	MXW, Id aging		
Ev8h5a	8.242	3.764	68.2	0.1649	24.6	68.0	MXW, no aging		
Ev8h5b	3.766	7.754	74.6	0.1664	24.4	3.8	MXW-F (S220), no aging		
Ev8h6b	7.736	3.764	67.6	0.1605	22.0	68.0	MXW, 10d aging		
Ev8h7b	3.765	7.67	72.4	0.1603	22.5	1.5	MXW-F (Dakota), no aging		
	3.758	7.791	120	0.1743	22.8	1.5	MXW (Dakota), no aging		
Ev8h11b	3.758	8.105	126.2	0.1754	23.2	68.0	MXW, no aging		
Ev8h13a	8.280	3.759	114.0	0.1778	22.1	68.0	MXW, 10d aging		
Ev8h16a	3.76	7.921	117.2	0.1774	21.3	68.0	MXW, 10d aging		
Ev8h16b		8.262	133.1	0.1749	18.8	68.0	MXW, 4d aging, 45°C		
Ev8h29a	3.75	3.788	58.2	0.1748	23.3	68.0	MXW, 10d aging		
Ev7v1b	7.644	7.581	46.2	0.1703	22.0	68.0	MXW, 10d aging		
Evlvld	3.777		113	0.1703	23.9	68.0	MXW, 10d aging		
Ev5hlc	3.787	7.634	113	0.162	23.5				
	5 cruide oil	7.025	119.3	0.1731	21.3	19.2	MXW, 10d aging		
Ev8h13b	3.758	7.835 8.076	109.6	0.1717	22.6	19.2	. MXW, no aging		
Ev8h14a	3.759		106.2	0.1708	22.0	1.5	MXW-F (Dakota), no aging		
Ev8h14b	3.76	7.839		0.1778	22.2	1.5	MXW-F (Dakota), no aging		
Ev8h15a	3.757	8.228	111.1	0.1776	22.7	19.2	MXW, no aging		
Ev8h15b	3.759	7.974	87.6	0.1770	22.6	33.9	MXW-F (frontier), no aging		
Ev8h21b	3.758	7.686	87.0	0.174	22.0	1 ,55.5			
	Draw crude	011	700	0.1698	23.1	3.8	MXW-F (S220), no aging		
Ev8hl9a	3_756	7.866	70.9		23.3	7.0	MXW, no aging		
Ev8h21a	3_758	7.832	84.8	0.1724		7.0	MXW, no aging		
Ev8h27b	3.750	7.758	119.7	0.1741	23.6	7.0	MXW, 10d aging		
Ev8h28b	3_750	8.056	121.2	0.1794	22.3	7.0	MXW, 2d aging		
Ev8h30a	3_748	7.597	86.8	0.1705	<24.7	7.0	MXW. 2d aging		
Ev8h30b	3.752	7.153	86	0.1717	<26.3	7.0			

Table 2. The Limestone core properties

Table 2. The Elinestone core properties										
Core #	D, cm	L, cm	K _g , md	φ, %	Swi,%	μ ₀ , cp	Wetness			
Oil recovery (Cottonwood oil)										
1TC15a	3.724	7.477	19.1	0.2696	24.3	24.1	MXW, 10d aging			
T2Tc11a	3.729	7.320	.14.7	0.2767	18.59	24.1	MXW, 10d aging			
T2Tc21a	3.698	7.797	7.1	0.2300	22.12	24.1	MXW, 10d aging			
Gas flood	Gas flooding									
1TC8b	3.734	6.59	3.7	18.0	100		VSWW			
1TC20b	3.749	7.452	6.1	21.6	100		VSWW			
1TC24b	3.753	7,593	3.6	18.0	100		VSWW			
3TC18b	3.740	6.490	1.4	20.2	21.4		VSWW			
2TC4b	3.788	6.481	3.4	· 22.8	21.7		Tensleep/S130, 2d aging			
1TC24b	3.753	7.593	3.6	18.0	27.5		BS oil (the 2 nd and 3 rd cycle), 2d aging			

Table 3. Selected properties of crude and refined oils

	Oils	ρ, g/mL @20°C	η, cP @~22°C	IFT, mN/M @20°C	Asphalt.%
	Minnelusa 2002	0.9076	68	23.4	9.5
Asphaltic	Black Mt.	0.9219	134		8.1
crudes	Tensleep 95	0.8692	19.2	23.3	3.2
·	Cottonwood	0.8874	24.1	28.9	2.3
	Big Sand Draw	0.8496	7.0	21.5	1.6
Mineral oils	S220	0.7869	3.8	49.5	0
	S130 ,	0.7605	1.6	~50	´0
	Pentane			~50	0
	Dakota	0.7741	1.5	34.2	0
Paraffinic crudes	Frontier	0.8338	21.8	33.8	. 0

Table 4 Synthetic brine composition

	Table 4. Symmetic composition							
	Brine	NaCl (g/L)	KCI (g/L)	CaCl ₂ (g/L)	MgCl ₂ (g/L)	NaN ₃ (g/L)	рН	TDS (mg/L)
							-	26770
-	Sea water	28	0.935	2.379	5.365	0.1	6.6	36779

Table 5 Interfacial tensions (Aqueous phase = SSW)

Oleic phase	IFT, mN/m	Temp.,°C
S220	49.5	20.0
S220	1.7	20.0
S220+0.025%polyamine	24.3	20.0
S220+0.2%RAP	0.03	20.0
S220+O.05%RAP	0.55	20.0
S220+O.025%PA+0.05%RAP	1.0	20.0
S220+O.2%TDA-6	1.34	20.0
S220+O.1%DA-4	11.7	20.0
S220+O.1%oleic acid	29.8	20.0
Minnelusa 2002 crude oil	23.4	20.0
Dakota crude oil	34.2	20.0
Tensleep 1995 crude oil	23.3	20.0
Big SarıdDraw crude oil	21.5	20.0
Frontier crude oil	33.8	20.0
M'02+0.025%PA	17.7	20.0
M'02+O.05%RAP	8.6	20.0
Dakota oil+0.025%PA	7.9	20.0
Tensleep 95 +0.05%PA	10.5	20.0
BS oil +0.05%PA	10	20.0
BS oil + 0.1%PA	7.2	20.0
BS oil + 0.1%PA	4.3	75.0
Cottonwood oil +0.025% PA	12.1	20.0
Cottonwood oil	28.9	20.0

Table 6 Asphaltene precipitation

1	Minnelusa crude	Black Mountain crude	Tensleep crude	Big Sand Draw
S220 or S130	Yes	Yes	Yes	Yes
Dakota oil	Yes	Yes	Yes	Yes
Frontier oil		Yes (under microscope)	No	No

Fig. 1 Method 1 of treatment for oil reservoir case

Fig.1c

Fig. 2 The sketch of water saturation change near well bore vs. cycle numbers of treatment

Fig. 3 Method 2 of treatment for oil reservoir case

Fig.3e

7/16

Retained neutral/oil wetting film Residual water

Fig. 4 Method 1 of treatment for gas or gas condensate reservoir case

Fig. 5 Method 2 of treatment for gas or gas cond ensate reservoir case

Fig. 6 Method 3 of treatment for gas or gas condensate reservoir case

Fig. 7 Water coning case

Fig. 8 Case with hydraulic fracture wells—plane view sketch

Wettability alteration was induced by displacement of crude oil with mineral oil or paraffinic oil directly.

FIG. 10 Re-exposing surfaceprecipitated asphaltenes to fresh crude oil resulted in increased water wetness.

100000

Figure . The effect of re-aging on wettability alteration

100

(2) Cyclic imbibition of BS crude with re-aging

1000

re-aging on wettability alteration

FST . 13 The effect of alcohol flush, oil-soluble surfactant and re-aging on wettability alteration for Berea sandstones

The effect of wettability alteration orn gas return permeability