In [130]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import re
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
```

In [622]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\madrid_2015.csv")
a
```

Out[622]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	ТСН	TOL
0	2015- 10-01 01:00:00	NaN	0.8	NaN	NaN	90.0	82.0	NaN	NaN	NaN	10.0	NaN	NaN
1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3
2	2015- 10-01 01:00:00	3.1	NaN	1.8	NaN	29.0	97.0	NaN	NaN	NaN	NaN	NaN	7.1
3	2015- 10-01 01:00:00	NaN	0.6	NaN	NaN	30.0	103.0	2.0	NaN	NaN	NaN	NaN	NaN
4	2015- 10-01 01:00:00	NaN	NaN	NaN	NaN	95.0	96.0	2.0	NaN	NaN	9.0	NaN	NaN
210091	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	11.0	33.0	53.0	NaN	NaN	NaN	NaN	NaN
210092	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	1.0	5.0	NaN	26.0	NaN	10.0	NaN	NaN
210093	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	7.0	74.0	NaN	NaN	NaN	NaN	NaN
210094	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	3.0	7.0	65.0	NaN	NaN	NaN	NaN	NaN
210095	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	9.0	54.0	29.0	NaN	NaN	NaN	NaN

210096 rows × 14 columns

◀

In [623]:

a.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210096 entries, 0 to 210095
Data columns (total 14 columns):
    Column
             Non-Null Count
                             Dtype
    -----
---
             -----
                             ----
0
             210096 non-null object
    date
    BEN
1
             51039 non-null
                            float64
2
    CO
             86827 non-null float64
3
    EBE
             50962 non-null float64
4
             25756 non-null float64
    NMHC
5
             208805 non-null float64
    NO
    NO_2
             208805 non-null float64
6
    0_3
             121574 non-null float64
7
8
    PM10
             102745 non-null float64
9
             48798 non-null float64
    PM25
             86898 non-null float64
10 SO_2
11
   TCH
             25756 non-null float64
12
    TOL
             50626 non-null float64
    station 210096 non-null int64
13
dtypes: float64(12), int64(1), object(1)
```

memory usage: 22.4+ MB

In [624]:

```
b=a.fillna(value=104)
b
```

Out[624]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн
0	2015- 10-01 01:00:00	104.0	0.8	104.0	104.00	90.0	82.0	104.0	104.0	104.0	10.0	104.00
1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83
2	2015- 10-01 01:00:00	3.1	104.0	1.8	104.00	29.0	97.0	104.0	104.0	104.0	104.0	104.00
3	2015- 10-01 01:00:00	104.0	0.6	104.0	104.00	30.0	103.0	2.0	104.0	104.0	104.0	104.00
4	2015- 10-01 01:00:00	104.0	104.0	104.0	104.00	95.0	96.0	2.0	104.0	104.0	9.0	104.00
210091	2015- 08-01 00:00:00	104.0	0.2	104.0	104.00	11.0	33.0	53.0	104.0	104.0	104.0	104.00
210092	2015- 08-01 00:00:00	104.0	0.2	104.0	104.00	1.0	5.0	104.0	26.0	104.0	10.0	104.00
210093	2015- 08-01 00:00:00	104.0	104.0	104.0	104.00	1.0	7.0	74.0	104.0	104.0	104.0	104.00
210094	2015- 08-01 00:00:00	104.0	104.0	104.0	104.00	3.0	7.0	65.0	104.0	104.0	104.0	104.00
210095	2015- 08-01 00:00:00	104.0	104.0	104.0	104.00	1.0	9.0	54.0	29.0	104.0	104.0	104.00

210096 rows × 14 columns

In [625]:

```
b.columns
```

Out[625]:

In [626]:

c=b.head(10)
c

Out[626]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOI
0	2015- 10-01 01:00:00	104.0	0.8	104.0	104.00	90.0	82.0	104.0	104.0	104.0	10.0	104.00	104.(
1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	3.8
2	2015- 10-01 01:00:00	3.1	104.0	1.8	104.00	29.0	97.0	104.0	104.0	104.0	104.0	104.00	7.'
3	2015- 10-01 01:00:00	104.0	0.6	104.0	104.00	30.0	103.0	2.0	104.0	104.0	104.0	104.00	104.0
4	2015- 10-01 01:00:00	104.0	104.0	104.0	104.00	95.0	96.0	2.0	104.0	104.0	9.0	104.00	104.0
5	2015- 10-01 01:00:00	0.7	0.4	0.3	104.00	35.0	104.0	1.0	26.0	104.0	3.0	104.00	3.0
6	2015- 10-01 01:00:00	0.5	0.3	0.3	0.12	6.0	83.0	1.0	19.0	12.0	3.0	1.29	4.8
7	2015- 10-01 01:00:00	104.0	104.0	104.0	104.00	54.0	94.0	1.0	104.0	104.0	104.0	104.00	104.0
8	2015- 10-01 01:00:00	104.0	0.5	104.0	104.00	38.0	114.0	16.0	104.0	104.0	104.0	104.00	104.0
9	2015- 10-01 01:00:00	104.0	0.7	104.0	104.00	64.0	97.0	104.0	34.0	104.0	6.0	104.00	104.(
4.0													•

In [627]:

```
d=c[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3',
    'PM10', 'SO_2', 'TCH', 'TOL', 'station']]
d
```

Out[627]:

	BEN	СО	EBE	NMHC	NO_2	O_3	PM10	SO_2	ТСН	TOL	station
0	104.0	0.8	104.0	104.00	82.0	104.0	104.0	10.0	104.00	104.0	28079004
1	2.0	0.8	1.6	0.33	95.0	4.0	37.0	12.0	1.83	8.3	28079008
2	3.1	104.0	1.8	104.00	97.0	104.0	104.0	104.0	104.00	7.1	28079011
3	104.0	0.6	104.0	104.00	103.0	2.0	104.0	104.0	104.00	104.0	28079016
4	104.0	104.0	104.0	104.00	96.0	2.0	104.0	9.0	104.00	104.0	28079017
5	0.7	0.4	0.3	104.00	104.0	1.0	26.0	3.0	104.00	3.3	28079018
6	0.5	0.3	0.3	0.12	83.0	1.0	19.0	3.0	1.29	4.8	28079024
7	104.0	104.0	104.0	104.00	94.0	1.0	104.0	104.0	104.00	104.0	28079027
8	104.0	0.5	104.0	104.00	114.0	16.0	104.0	104.0	104.00	104.0	28079035
9	104.0	0.7	104.0	104.00	97.0	104.0	34.0	6.0	104.00	104.0	28079036

In [628]:

```
d.plot.line()
```

Out[628]:

<AxesSubplot:>

In [629]:

```
sns.pairplot(d)
```

Out[629]:

<seaborn.axisgrid.PairGrid at 0x118836ffb80>

In [630]:

```
x=d[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2']]
y=d['TCH']
```

In [631]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [632]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[632]:

LinearRegression()

In [633]:

```
print(lr.intercept_)
```

0.8449704632442376

In [634]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[634]:

Co-efficient

BEN 1.624383e+00

CO 2.893869e-16

EBE -1.618118e+00

NMHC 9.856096e-01

NO_2 3.207197e-16

In [635]:

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[635]:

<matplotlib.collections.PathCollection at 0x1188f77f340>


```
In [636]:
print(lr.score(x_test,y_test))
0.0
In [637]:
from sklearn.linear_model import Ridge,Lasso
In [638]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[638]:
Ridge(alpha=10)
In [639]:
rr.score(x_test,y_test)
Out[639]:
0.0
In [640]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[640]:
Lasso(alpha=10)
In [641]:
la.score(x_test,y_test)
Out[641]:
```

0.0

In [642]:

```
a1=b.head(7000)
a1
```

Out[642]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	
0	2015- 10-01 01:00:00	104.0	0.8	104.0	104.00	90.0	82.0	104.0	104.0	104.0	10.0	104.00	1
1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	
2	2015- 10-01 01:00:00	3.1	104.0	1.8	104.00	29.0	97.0	104.0	104.0	104.0	104.0	104.00	
3	2015- 10-01 01:00:00	104.0	0.6	104.0	104.00	30.0	103.0	2.0	104.0	104.0	104.0	104.00	1
4	2015- 10-01 01:00:00	104.0	104.0	104.0	104.00	95.0	96.0	2.0	104.0	104.0	9.0	104.00	1
6995	2015- 10-13 04:00:00	104.0	0.3	104.0	104.00	32.0	44.0	7.0	104.0	104.0	104.0	104.00	1
6996	2015- 10-13 04:00:00	104.0	104.0	104.0	104.00	9.0	44.0	104.0	11.0	104.0	4.0	104.00	1
6997	2015- 10-13 04:00:00	104.0	104.0	104.0	104.00	30.0	27.0	104.0	28.0	23.0	104.0	104.00	1
6998	2015- 10-13 04:00:00	104.0	104.0	104.0	104.00	32.0	46.0	104.0	14.0	11.0	104.0	104.00	1
6999	2015- 10-13 04:00:00	104.0	104.0	104.0	104.00	44.0	37.0	2.0	104.0	104.0	104.0	104.00	1

7000 rows × 14 columns

In [643]:

```
e=a1[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3', 'PM10', 'SO_2', 'TCH', 'TOL', 'station']]
```

In [644]:

```
f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [645]:
h=StandardScaler().fit_transform(f)
In [646]:
logr=LogisticRegression(max_iter=10000)
logr.fit(h,g)
Out[646]:
LogisticRegression(max_iter=10000)
In [647]:
from sklearn.model_selection import train_test_split
h_train,h_test,g_train,g_test=train_test_split(h,g,test_size=0.3)
In [648]:
i=[[10,20,30,40,50,60,11,22,33,44,55]]
In [649]:
prediction=logr.predict(i)
print(prediction)
[28079059]
In [650]:
logr.classes_
Out[650]:
array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
       28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
       28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
       28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
      dtype=int64)
In [651]:
logr.predict_proba(i)[0][0]
Out[651]:
0.0
In [652]:
logr.predict proba(i)[0][1]
Out[652]:
0.0
```

```
In [653]:
logr.score(h_test,g_test)
Out[653]:
0.9395238095238095
In [654]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[654]:
ElasticNet()
In [655]:
print(en.coef_)
[0.00000000e+00 0.00000000e+00 3.55198081e-04 9.86404264e-01
0.0000000e+00]
In [656]:
print(en.intercept_)
1.371050983454026
In [657]:
prediction=en.predict(x_test)
print(en.score(x_test,y_test))
0.0
In [658]:
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(h_train,g_train)
Out[658]:
RandomForestClassifier()
In [659]:
parameters={'max_depth':[1,2,3,4,5],
 'min_samples_leaf':[5,10,15,20,25],
 'n_estimators':[10,20,30,40,50]
 }
```

```
In [660]:
```

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(h_train,g_train)
```

Out[660]:

In [661]:

```
grid_search.best_score_
```

Out[661]:

0.9920408163265306

In [662]:

```
rfc_best=grid_search.best_estimator_
```

In [663]:

In []: