总成绩 (100%) = 考勤 (10%) + 习题 (30%) + 测验 (60%), 习题每个点至少完成一半 **课程概况**:

- 绪论 2h
- 凸集和凸函数 3h
- 凸优化问题 6h
- 拉格朗日乘子 5h
- 凸优化应用 6h
- 无约束凸优化问题求解 5h
- 有约束凸优化问题求解 4h
- 课程测试 2h

1 绪论

Remark 1.1. f 是凸函数, $\nabla f_x = 0 \Leftrightarrow \text{点 } x$ 是最小值点

2 凸集和凸函数

 $Remark\ 2.1.$ 凸集: $\forall x,y\in C,\theta\in[0,1]\Longrightarrow\theta x+(1-\theta)y\in C$ 。空集、点、线段都是凸集。 $Remark\ 2.2.$ 凸集的例子:

- 超平面: $\{x: a^t x = b\}, a \in \mathbb{R}^n \{0\}$ 是法向量
- + = 1: $\{x : a^t x \leq b\}, a \in \mathbb{R}^n \{0\}$
- 欧几里得球: $B(x_c, r) = \{x : ||x x_c|| < r\} = \{x_c + ru : ||u|| < 1\}$
- $\text{Mix}: \{x: (x-x_c)^t P^{-1}(x-x_c) < 1\}, P \in S_{++}^n \text{ if } \{x_c + Au: ||u|| < 1\}, A \in S_{++}^n \}$
- 多面体: $\{x: Ax \leq b, Cx = d\}$, $A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times n}$, $b \in \mathbb{R}^m$, $d \in \mathbb{R}^p$, 多面体是半空间和超平面的交集,任意个数的凸集的交集是凸集。

Remark 2.3. 凸集 S: 是 S 中所有点的凸组合的最小集合

- 如果 C 是一个凸集, 则 $aC + b = \{ax + b : x \in C\}, a \in \mathbb{R}, b \in \mathbb{R}^n$ 也是一个凸集
- 对于仿射函数 $f(x) = Ax + b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

- 凸集在 f 下的像是凸集

$$S \subset \mathbb{R}^n \text{ convex } \Longrightarrow f(S) = \{f(x) : x \in S\} \subset \mathbb{R}^m \text{ convex }$$

- 凸集在 f 下的逆像是凸集

$$C \subset \mathbb{R}^m \text{ convex } \Longrightarrow f^{-1}(C) = \{x : f(x) \in C\} \subset \mathbb{R}^n \text{ convex }$$

- 两个凸集可以用一个超平面分离(证明困难)
- 支撑超平面: $\{x: a^t x = a^t x_0\}, a \in \mathbb{R}^n \{0\}, a^t x \leq a^t x_0, \forall x \in C, 其中 C 是一个凸集, x_0 是凸集上一边界点$

Remark 2.4. 凸函数: $f: \mathbb{R}^n \to \mathbb{R}$ 的定义域 dom(f) 是一个凸集, 满足 $\forall x, y \in dom(f), \theta \in [0, 1]$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

f 是一个凸函数,则 f 在定义域的任何内点都是连续的,并且 f 是局部有界的: $\exists B(x,r) \subset \text{dom}(f)$

$$z = \theta x + (1 - \theta)y \Longrightarrow \frac{f(z) - f(x)}{1 - \theta} \le \frac{f(y) - f(z)}{\theta} \Longrightarrow \frac{f(z) - f(x)}{\|z - x\|} \le \frac{f(y) - f(z)}{\|y - z\|}$$

Remark 2.5. 一些凸函数的例子:

- 仿射函数: $a^t x + b, \forall a \in \mathbb{R}^n, b \in \mathbb{R}$
- 幂函数 x^{α} on $\mathbb{R}_{++} = (0, \infty), \alpha > 1$ or $\alpha < 0$
- l^p 范数: $||x||_p = \sum_{i=1}^n (|x_i|^p)^{\frac{1}{p}}$ on \mathbb{R}^n for $p \ge 1$

Remark 2.6. 凸函数的性质

- f is convex $\Longrightarrow \alpha f$ for $\alpha > 0$ is convex.
- f_1, \ldots, f_m are convex $\Longrightarrow f_1 + \cdots + f_m$ is convex.
- Composition with affine function: f is convex $\Longrightarrow f(Ax+b)$ is convex.
- f_1, \ldots, f_m are convex $\Longrightarrow f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex.
 - 分段线性函数 (piecewise-linear function): $f(x) = \max_{1 \leq i \leq m} \{a_i^t x + b_i\}$

 $Remark\ 2.7.$ 严格凸函数 strictly convex function, $f: \mathbb{R}^n \to \mathbb{R}$

陈景龙 22120307

due: 11 weeks October 13, 2022

- dom(f) is convex set
- $\forall x \neq y \in \text{dom}(f), \theta \in (0,1)$

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

 l^p -norm and l^∞ -norm are not strictly convex.

Remark 2.8. 强凸函数 strongly convex function, $f: \mathbb{R}^n \to \mathbb{R}$

- dom(f) is convex set
- $\exists m > 0$, satisfy $f(x) \frac{m}{2} ||x||^2$ is convex.
- 判定方法: $\nabla^2 f \succ 0$
- 谱分解: $A = P^tQP$, 其中 Q 的对角线是 A 的特征值
- $\nabla^2 f mI \succeq 0 \Longrightarrow u^t (\nabla^2 f mI) u \geq 0 \Longrightarrow u^t \nabla^2 f u \geq m ||u||^2 \Longrightarrow u^t P^t Q P u \geq m ||u||^2 \Longrightarrow \forall \lambda \geq m, \lambda \not\in \nabla^2 f(x)$ 的特征值
- f(x) is convex $\Longrightarrow f(x) + \frac{m}{2} ||x||^2$ is strictly convex.

strongly convex \Longrightarrow strictly convex \Longrightarrow convex

Remark 2.9. 凸函数判定:

• First-order condition: **differentiable** f with **convex domain** is convex iff $\forall x, y \in \text{dom}(f)$

$$f(y) \ge f(x) + \nabla f(x)^t (y - x)$$

- Proof. * f is convex $\iff \frac{f(z)-f(x)}{z-x} \le \frac{f(y)-f(z)}{y-z} \implies \text{with } z \to x, \frac{f(y)-f(x)}{y-x} \ge f'(x) \implies f(y) \ge f(x) + f'(x)(y-x)$

*
$$f(y) \ge f(x) + f'(x)(y-x) \implies \frac{f(y)-f(z)}{y-z} \ge f'(z) \ge \frac{f(x)-f(z)}{x-z} \implies \text{by } z = \theta x + (1-\theta)y, f \text{ is convex}$$

 $f(x^*) = 0 \iff x^*$ is global minimum of f.

$$f$$
 is strictly convex $\iff \forall x \neq y \in \text{dom}(f), f(y) > f(x) + \nabla f(x)^t (y-x)$

• Second-order conditions: for **twice differentiable** f with **convex domain** is convex iff $x \in \text{dom}(f)$

$$\nabla^2 f(x) \succeq 0$$

- if $\nabla^2 f(x) > 0$ for $\forall x \in \text{dom}(f) \Longrightarrow f$ is strictly convex.

- $-\exists m>0$, satisfy $\nabla^2 f(x)\succeq mI$ for $\forall x\in\mathrm{dom}(f)\Longleftrightarrow f$ is strongly convex.
- Restriction of a convex function to a line:
 - $-f:\mathbb{R}^n\to\mathbb{R}$ is convex iff the function $g:\mathbb{R}\to\mathbb{R}$

$$g(t) = f(x+tv), \quad \operatorname{dom}(g) = \{t : x+tv \in \operatorname{dom}(f)\}\$$

is convex for any $x \in \text{dom}(f)$ and $v \in \mathbb{R}^n$

- Proof.
$$g(t) = f(x + t(y - x))$$
 is convex $\iff g(\theta) \le \theta g(0) + (1 - \theta)g(1) \iff f(\theta x + (1 - \theta y)) \le \theta f(x) + (1 - \theta)f(y) \iff f$ is convex.

Remark 2.10. $X \in \mathbb{S}_{++}^n \Longrightarrow X = P^t Q P = P^t \operatorname{diag}(q_1, \dots, q_n) P \Longrightarrow X^{\alpha} \triangleq P^t \operatorname{diag}(q_1^{\alpha}, \dots, q_n^{\alpha}) P$, satisfy $X^{\alpha} X^{\beta} = X^{\alpha+\beta}$, $X^0 = I$.

Remark 2.11.

$$C_{\alpha} = \{x \ in \operatorname{dom}(f) : f(x) \le \alpha\}$$

sublevel set of convex functions are convex.

• Epigraph(上境图) set of $f: \mathbb{R}^n \to \mathbb{R}$

$$\mathrm{epi}(f) = \left\{ (x, t) \in \mathbb{R}^{n+1} : x \in \mathrm{dom}(f), t \ge f(x) \right\}$$

f is convex iff epi is convex set.

3 凸优化问题

Remark 3.1. Optimization problem:

$$\begin{cases} \text{minimize} & f(x) \\ \text{subject to} & f_i(x) \le 0, \quad 1 \le i \le m \\ & h_i(x) = 0, \quad 1 \le i \le p \end{cases}$$

• feasible set $X \subset \mathcal{D}$

$$\mathcal{D} = \operatorname{dom}(f) \cap \left(\bigcap_{i=1}^{m} \operatorname{dom}(f_i)\right) \cap \left(\bigcap_{i=1}^{p} \operatorname{dom}(h_i)\right)$$

• optimal value: $p^* = \inf\{f(x) : x \text{ is feasible}\}$

• a feasible x is an optimal solution(minimizer) if $f(x) = p^*$

Remark 3.2. Convex optimization problem(COP):

$$\begin{cases} \text{minimize} & f(x) \\ \text{subject to} & f_i(x) \le 0, \quad 1 \le i \le m \\ & Ax = b \end{cases}$$

- objective function f is convex
- inequality constraints f_1, \dots, f_m are convex
- equality constraints are affine: $A \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^p$
- the feasible set X of COP is convex

$$-X = \operatorname{dom}(f) \cap (\bigcap_{i=1}^{m} X_i) \cap \text{hyperplanes}$$

$$*X_i = \{x \in \operatorname{dom}(f_i) : f_i(x) \le 0\}$$

- so a COP is actually an unconstrained COP defined on a convex set.
- any local minimum of a COP is globally optimal.
 - $-x^*$ is a local minimum: a solution of the COP in $B(x^*,r) \cap X$

$$- \forall y \in X$$
, take $\theta \to 0$, satisfy $z = \theta x^* + (1 - \theta)y \in B(x^*, r)$, by convexity, $\theta f(x^*) + (1 - \theta)f(y) \ge f(z) \ge f(x^*)$, thus $f(y) \ge f(x^*)$.

• the set of optimal solutions is convex.

Remark 3.3. Important examples:

• Linear program(LP):

$$\begin{cases} \text{minimize} & c^t x \\ \text{subject to} & Gx \leq h \\ & Ax = b \end{cases}$$

- convex problem with affine object over a polyhedron
- standard from

$$\begin{cases} \text{minimize} & c^t x \\ \text{subject to} & x \succeq 0 \\ & Ax = b \end{cases}$$

• Quadratic program(QP):

$$\begin{cases} \text{minimize} & \frac{1}{2}x^t P x + q^t x + r \\ \text{subject to} & Gx \leq h \\ & Ax = b \end{cases}$$

 $P \in \mathcal{S}^n_+$, convex problem with quadratic object over a polyhedron.

• Quadratically constrained quadratic program(QCQP)

$$\begin{cases} \text{minimize} & \frac{1}{2}x^t P x + q^t x + r \\ \text{subject to} & \frac{1}{2}x^t P_i x + q_i^t x + r \leq 0, \quad 1 \leq i \leq m \\ & Ax = b \end{cases}$$

- $-P, P_i \in \mathbb{S}^n_+$, objective and constraints are convex quadratic.
- if $P_1, \ldots, P_m \in \mathbb{S}^n_{++}$, feasible region is intersection of m ellipsoids and an affine set.

Remark 3.4. For **differentiable** $f, x \in X$ is optimal iff

$$\nabla f(x)^t (y-x) \ge 0, \quad \forall y \in X$$

• if x is optimal, let $g(\theta) = f(x + \theta(y - x))$

$$0 \le \lim_{\theta \downarrow 0} \frac{f(x + \theta(y - x)) - f(x)}{\theta} = g'(0) = \nabla f(x)^t (y - x)$$

• conversely, by convexity(First order condition)

$$f(y) \ge f(x) + \nabla f(x)^t (y - x) \Longrightarrow \nabla f(x)^t (y - x) \ge 0$$

Important, for COP:

$$x \text{ optimal} \iff \nabla f(x)^t (y - x) \ge 0, \forall y \in X$$

Remark 3.5. Unconstrained COP, with differentiable f

minimize
$$f(x)$$

- $x \in \text{dom}(f)$ (open set!) is optimal iff $\nabla f(x) = 0$
 - if x is optimal, $\nabla f(x)^t(y-x) \geq 0$ for any feasible y, take $y=x-\lambda \nabla f(x)$ for sufficient small $\lambda > 0$, thus $\nabla f(x) = 0$
 - conversely, $\nabla f(x)^t(y-x) = 0$

- Intuitive interpretation: x is optimal, then $\langle \nabla f(x), y - x \rangle \geq 0$. if $\nabla f(x) \neq 0$, $\exists y$ satisfy $\langle \nabla f(x), y - x \rangle < 0$, so $\nabla f(x) = 0$.

Remark 3.6. Equality constrained COP, with differentiable $f, A \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^p$

$$\begin{cases} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{cases}$$

• $x \in \text{dom}(f)$ is optimal iff:

$$Ax = b$$
, and there exists $v \in \mathbb{R}^p$, s.t. $\nabla f(x) = A^t v, \nabla f(x) \in \mathcal{R}(A^t)$

Proof. $x \text{ optimal} \iff Ax = b, \nabla f(x) = A^t v$.

- "\iff ": $\forall y \in X$, $Ay = b \Longrightarrow (\nabla f(x))^t (y x) = v^t A(y x) = v^t (b b) = 0 \Longrightarrow$, x is optimal.
- $\mathcal{N}(A) = \mathcal{R}(A^t)^{\perp}, \mathcal{N}(A)^{\perp} = \mathcal{R}(A^{\perp})$
- "\improx": $\forall u \in \mathcal{N}(A), x + \theta u \in \text{dom}(f) \text{ for } \theta \to 0. \text{ make } y = x + \theta u, \nabla f(x)(y x) \ge 0 \implies \theta \langle \nabla f(x), u \rangle \ge 0 \text{ satisfy for all } \theta \to 0, \text{ so } \langle \nabla f(x), u \rangle = 0. \text{ As a result,}$ $\nabla f(x)^t \in \mathcal{N}(A)^\perp, \text{ then } \exists v \in \mathbb{R}^p \text{ s.t. } \nabla f(x) = A^t v.$

Remark 3.7. Equality constrained QP: $P \in \mathbb{S}^n_+, q \in \mathbb{R}^n, r \in \mathbb{R}, A \in \mathbb{R}^{p \times n}$ with rank $(A) = p, b \in \mathbb{R}^p$

$$\begin{cases} \text{minimize} & \frac{1}{2}x^t P x + q^t x + r \\ \text{subject to} & Ax = b \end{cases}$$

• x^* is optimal $\iff \exists v^* \in \mathbb{R}^p \text{ s.t.}$

$$\begin{bmatrix} P & A^t \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ v^* \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

- coefficient matrix is called KKT matrix.
- KKT matrix is nonsingular \iff " $Ax = 0, x \neq 0 \implies x^t Px > 0$ "

Remark 3.8. Inequality constrained COP, with differentiable f, f_1, \ldots, f_m

$$\begin{cases} \text{minimize} & f(x) \\ \text{subject to} & f_i(x) \le 0, \quad , 1 \le i \le m \end{cases}$$

- sufficient condition: for a feasible x, if $\lambda_i \geq 0$ for $i \in [1, m]$ and $\nabla f(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) = 0$, $\lambda_1 f_1(x) = \ldots = \lambda_m f_m(x) = 0$, x is optimal if the following is established
 - $-f_i(x) \neq 0 \Longrightarrow \lambda_i = 0$
 - $-f_i(x) = 0 \Longrightarrow \nabla f_i(x)^t (y-x) \le 0$ for any feasible y
 - for any feasible y, $\nabla f(x)^t(y-x) = -\sum_{i=1}^m \lambda_i \nabla f_i(x)^t(y-x) \ge 0$
- the converse is false.

Remark 3.9. COP over nonnegative orthant, with differentiable f

$$\begin{cases} \text{minimize} & f(x) \\ \text{subject to} & x \succeq 0 \end{cases}$$

• $x \in dom(f)$ is optimal iff

$$x \succeq 0, \quad \begin{cases} \nabla f(x)_i \ge 0 & \text{if } x_i = 0 \\ \nabla f(x)_i = 0 & \text{if } x_i > 0 \end{cases}$$

- Proof. by observe
 - x is optimal $\Longrightarrow \nabla f(x)^t(y-x) \ge 0$ holds for all feasible y
 - for $x_i > 0 \Longrightarrow y_i x_i$ can be positive or negative, so $\nabla f(x)_i = 0$
 - for $x_i = 0 \Longrightarrow y_i x_i \ge 0, \nabla f(x)_i \ge 0$

 $Remark\ 3.10.$

$$\lim_{\varepsilon \to 0} \frac{f(x + a\varepsilon) - f(x)}{\varepsilon} = \langle \nabla f(x), a \rangle, \qquad \varepsilon \to x + a\varepsilon \to f(x + a\varepsilon)$$

Remark 3.11. COP over a simplex, with differentiable f

$$\begin{cases} \text{minimize} & f(x) \\ \text{subject to} & x \succeq 0, \sum_{i=1}^{n} x_i = 1 \end{cases}$$

• $x \in dom(f)$ is optimal iff

$$\partial_j f(x) \ge \partial_i f(x)$$
 for all $1 \le j \le n$ when $x_i > 0$

• *Proof.* by observe

- if x is optimal, $\nabla f(x)^t(y-x) \geq 0$ holds for all feasible y
- for $x_i > 0 \Longrightarrow y_i x_i$ can be positive or negative, so $\partial_j f(x) \ge \partial_i f(x) = 0$ for any j
- the converse is obvious

$$\nabla f(x)^{t}(y-x) = \sum_{x_{i}>0} \partial_{i} f(x)(y_{i}-x_{i}) + \sum_{x_{i}=0} \partial_{i} f(x)(y_{i}-x_{i}) \ge C \sum_{i=1}^{n} (y_{i}-x_{i}) = 0$$

4 拉格朗日乘子

Remark 4.1. Standard form optimization problem (not necessarily convex)

$$\begin{cases} \text{minimize} & f(x) \\ \text{subject to} & f_i(x) \le 0, \quad 1 \le i \le m \\ & h_i(x) = 0, \quad 1 \le i \le p \end{cases}$$

 $x \in \mathcal{D} = \text{dom}(f) \cap (\bigcap_{i=1}^m \text{dom}(f_i)) \cap (\bigcap_{i=1}^p \text{dom}(h_i))$, optimal value denoted p^* . $x \in \mathcal{D}$ do not need to satisfy constraints.

• Lagrange function, $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \mapsto \mathbb{R}$

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \mu_i h_i(x)$$

• Lagrange dual function, $g: \mathbb{R}^m \times \mathbb{R}^p \mapsto \mathbb{R}$

$$g(\lambda, \mu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \mu)$$

- -g is concave, can be $-\infty$ for some (λ, μ)
- lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \mu) \leq p^*$

Remark 4.2. Standard form LP:

$$\begin{cases} \text{minimize} & c^t x \\ \text{subject to} & x \succeq 0 \\ & Ax = b \end{cases}$$

• Lagrangian:

$$L(x,\lambda,\mu) = c^t x - \lambda^t x + \mu^t (Ax - b) = -\mu^t b + (c + A^t \mu - \lambda)^t x$$

陈景龙 22120307

due: 11 weeks October 13, 2022

• dual function:

$$g(\lambda, \mu) = \inf_{x} \left(-\mu^t b + (c + A^t \mu - \lambda)^t x \right)$$
$$= \begin{cases} -\mu^t b, & \text{if } c + A^t \mu - \lambda = 0 \\ -\infty, & \text{otherwise} \end{cases}$$

• lower bound property: $p^* \ge -\mu^t b$ if $c + A^t \mu \succeq 0$.

Remark 4.3. Tow-way partitioning, for $W \in \mathbb{S}^n$

$$\begin{cases} \text{minimize} & x^t W x \\ \text{subject to} & x_i^2 = 1, \quad i = 1, \dots, n \end{cases}$$

- a nonconvex problem, feasible set contains 2^n discrete points
- Lagrangian: $L(x, \mu) = f(x) + \sum_{i=1}^{n} \mu_i(x_i^2 1)$
- dual function:

$$g(\mu) = \inf_{x} \left(x^{t}Wx + \sum_{i=1}^{n} \mu_{i}(x_{i}^{2} - 1) \right)$$

$$= \inf_{x} x^{t}(W + \operatorname{diag}(\mu))x - \sum_{i=1}^{n} \mu_{i}$$

$$= \begin{cases} -\sum_{i=1}^{n} \mu_{i}, & \text{if } W + \operatorname{diag}(\mu) \succeq 0 \\ -\infty, & \text{otherwise} \end{cases}$$

- lower bound property: $p^* \ge -\sum_{i=1}^n \mu_i$ if $W + \operatorname{diag}(\mu) \succeq 0$.
 - $-p^* \ge n\lambda_{\min}(W)$, where $\lambda_{\min}(W)$ is the smallest eigenvalue of W.

- Proof.
$$W + \operatorname{diag}(\mu) = P^t Q P + \theta I = P^t (Q + \theta I) P \succeq 0$$
, let $\operatorname{diag}(\mu) = \theta I$, so $\lambda_i + \theta \geq 0, \theta = -\lambda_{\min}(W), p^* \geq n\lambda_{\min}(W)$.

Remark 4.4. Lagrange dual problem

$$\begin{cases} \text{maximize} & g(\lambda, \mu) \\ \text{subject to} & \lambda \succeq 0 \end{cases}$$

- COP, optimal value denoted d^*
- finds best lower bound on p*, obtained from Lagrange dual function.
- week duality: $d^* \leq p^*$

- always holds (for both convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems
- strong duality: $d^* = p^*$
 - does not hold in general, but usually holds for COP
 - an example that the strong duality does not hold

$$\begin{cases} \text{minimize} & e^{-x} \\ \text{subject to} & x^2/y \leq 0 \end{cases}$$
 * $\mathcal{D} = \{(x,y): x \in \mathbb{R}, y > 0\}, g(\lambda) = 0 \Longrightarrow d^* = 0 < p^* = 1$

- 5 凸优化应用
- 6 无约束凸优化问题求解
- 7 有约束凸优化问题求解