Föreläsning 2 sammanfattning

Sannolikhetsgrunder repetition

Slumpförsök

Experiment som kan upprepas flera gånger och resultatet kan inte på förhand avgöras.

Utfall

Resultat av slumpförsök.

Händelse

Samling utfall.

Kolmogorovs axiomsystem

- 1. För varje händelse A gäller $0 \le P(A) \le 1$.
- 2. För hela utfallsrummet Ω gäller $P(\Omega) = 1$.
- 3. Om A_1,A_2,\cdots , är en följd parvis oförenliga händelser så gäller att

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

Kombinatorik - välj k utav n

	Med återläggning	Utan återläggning
Med ordningshänsyn	n^k	$\frac{n!}{(n-k)!}$
Utan ordningshänsyn	$\binom{n+k-1}{k}$	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Betingad sannolikhet

$$P(B|A) = \frac{P(A \cap B)}{P(B)}$$

Tolkning: Sannolikheten för att B skall inträffa om A har inträffat.

Lagen om total sannolikhet

Om H_1, \ldots, H_n är parvis oförenliga händelser och $\bigcup_{i=1}^n H_i = \Omega$. Då gäller för varje händelse A att

$$P(A) = \sum_{i=1}^{n} P(A|H_i)P(H_i)$$

Bayes' formel

Innebär att man tar den omvända betingade sannolikheten. Om man känner till P(A|B) hur kan man beräkna P(B|A)?

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

ger

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}.$$

Genom kombination med lagen om total sannolikhet fås

$$P(H_i|A) = \frac{P(A|H_i)P(H_i)}{\sum_{j=1}^{n} P(A|H_j)P(H_J)}$$
 för $i = 1, ..., n$.

Oberoende händelser

Sannolikheten för att A inträffar om B har inträffat är densamma som den totala sannolikheten för att A inträffar. Dvs P(A|B) = P(A). Detta kan även uttryckas som snittet av att A inträffar och B inträffar är samma som produkten av sannolikheten att A inträffar och B inträffar. Dvs $P(A \cap B) = P(A)P(B)$.