libFM & Factorization Machines

Universität Konstanz

Application to Large Categorical Domains

User	Movie	Rating
Alice	Titanic	5
Alice	Notting Hill	3
Alice	Star Wars	1
Bob	Star Wars	4
Bob	Star Trek	5
Charlie	Titanic	1
Charlie	Star Wars	5

Applying regression models to this data leads to:

Linear regression:

$$\hat{y}(\mathbf{x}) = w_0 + w_u + w_i$$

Polynomial regression:

$$\hat{y}(\mathbf{x}) = w_0 + w_u + w_i + w_{u,i}$$

Matrix factorization (with biases):
$$\hat{y}(u,i) = c + w_u + h_i + \langle \mathbf{w}_u, \mathbf{h}_i \rangle$$

Factorization Machine (FM)

- ▶ Let $\mathbf{x} \in \mathbb{R}^p$ be an input vector with p predictor variables.
- ► Model equation (degree 2):

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^p w_i x_i + \sum_{i=1}^p \sum_{j>i}^p \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

► Model parameters:

$$w_0 \in \mathbb{R}, \quad \mathbf{w} \in \mathbb{R}^p, \quad \mathbf{V} \in \mathbb{R}^{p \times k}$$

Compared to Polynomial regression:

▶ Model equation (degree 2):

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^p w_i x_i + \sum_{i=1}^p \sum_{j\geq i}^p w_{i,j} x_i x_j$$

Model parameters:

$$w_0 \in \mathbb{R}, \quad \mathbf{w} \in \mathbb{R}^p, \quad \mathbf{W} \in \mathbb{R}^{p \times p}$$

Computation Complexity

Factorization Machine model equation:

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^p w_i \, x_i + \sum_{i=1}^p \sum_{j>i}^p \langle \mathbf{v}_i, \mathbf{v}_j \rangle \, x_i \, x_j$$

- ▶ Trivial computation: $\mathcal{O}(p^2 k)$
- ▶ Efficient computation can be done in: $\mathcal{O}(p \, k)$
- ▶ Making use of many zeros in \mathbf{x} even in: $\mathcal{O}(N_z(\mathbf{x}) k)$, where $N_z(\mathbf{x})$ is the number of non-zero elements in vector \mathbf{x} .

Efficient Computation

The model equation of an FM can be computed in $\mathcal{O}(p k)$.

Proof:

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^p w_i x_i + \sum_{i=1}^p \sum_{j>i}^p \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j
= w_0 + \sum_{i=1}^p w_i x_i + \frac{1}{2} \sum_{f=1}^k \left[\left(\sum_{i=1}^p x_i v_{i,f} \right)^2 - \sum_{i=1}^p (x_i v_{i,f})^2 \right]$$

- ▶ In the sums over i, only non-zero x_i elements have to be summed up.
- ► This is the same complexity as the subsumed factorization models (e.g. MF, PITF, Attr-Aware MF, ...).
- ▶ (The complexity of polynomial regression is $\mathcal{O}(N_z(\mathbf{x})^2)$.)

Factorization Machines: Discussion

- ► FMs work with real valued input.
- ► FMs include variable interactions like polynomial regression.
- Model parameters for interactions are factorized.
- ▶ Number of model parameters is $\mathcal{O}(k\,p)$ (instead of $\mathcal{O}(p^2)$ for poly. regr.).

Variable Encoding: Example

User	Movie	Rating
Alice	Titanic	5
Alice	Notting Hill	3
Alice	Star Wars	1
Bob	Star Wars	4
Bob	Star Trek	5
Charlie	Titanic	1
Charlie	Star Wars	5

2 categorical variables

|U| + |I| real valued variables

Matrix Factorization and Factorization Machines

Two categorical variables encoded with real valued predictor variables:

\bigcap	Feature vector x										
X ⁽¹⁾	1	0	0		1	0	0	0			
X ⁽²⁾	1	0	0		0	1	0	0			
X ⁽³⁾	1	0	0		0	0	1	0			
X ⁽⁴⁾	0	1	0		0	0	1	0			
X ⁽⁵⁾	0	1	0		0	0	0	1			
X ⁽⁶⁾	0	0	1		1	0	0	0			
x ⁽⁷⁾	0	0	1		0	0	1	0			
	A	B Us	C ser		TI		SW Movie				

With this data, the FM is identical to MF with biases:

$$\hat{y}(\mathbf{x}) = w_0 + w_u + w_i + \underbrace{\langle \mathbf{v}_u, \mathbf{v}_i \rangle}_{\mathsf{ME}}$$

Tag-Recommendation with Factorization Machines

Three categorical variables encoded with real valued predictor variables:

\bigcap	Feature vector x													
X ⁽¹⁾	1	0	0		1	0	0	0		1	0	0	0	
X ⁽²⁾	1	0	0		0	1	0	0		0	1	0	0	
x ⁽³⁾	1	0	0		0	0	1	0		0	0	0	1	
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	1	0	
x ⁽⁵⁾	0	1	0		0	0	0	1		0	0	1	0	
X ⁽⁶⁾	0	0	1		1	0	0	0		1	0	0	0	
X ⁽⁷⁾	0	0	1		0	0	1	0		0	0	0	1	
	A	B Us	C er		S1	S2	S3 Song	S4		T1	T2	T3 Tag	T4	

With this data, the FM is a tensor factorization model with lower-level interactions (here up to pairwise ones):

$$\hat{y}(\mathbf{x}) := w_0 + w_i + w_u + w_t + \langle \mathbf{v}_u, \mathbf{v}_t \rangle + \langle \mathbf{v}_i, \mathbf{v}_t \rangle + \langle \mathbf{v}_u, \mathbf{v}_i \rangle$$

Attribute-aware MF and Factorization Machines

Two categorical variables and attributes on one of them (here on user) encoded with real valued predictor variables:

\bigcap	Feature vector x													
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0	
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0	
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0	
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5	
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5	
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0	
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0	
	Α	B Us	C ser		TI	NH I	SW Movie			TI Oth	NH ner M	SW lovie	ST s rate	ed

With this data, the FM is identical to:

$$\hat{y}(\mathbf{x}) = w_0 + w_u + w_i + \langle \mathbf{v}_i, \mathbf{v}_u + \sum_{l=1}^{\tilde{p}} a_{u,l} \mathbf{v}_l \rangle$$

$$+ \sum_{l=1}^{\tilde{p}} \left(a_{u,l} w_l + \langle \mathbf{v}_u, a_{u,l} \mathbf{v}_l \rangle + \sum_{l'>l} \langle a_{u,l} \mathbf{v}_l, a_{u,l'} \mathbf{v}_l' \rangle \right)$$

Matrix Factorization & Extensions

Example for data:

Examples for models:

$$\begin{split} \hat{y}^{\mathsf{MF}}(u,i) := \sum_{f=1}^k v_{u,f} v_{i,f} = \langle \mathbf{v}_u, \mathbf{v}_i \rangle \\ \hat{y}^{\mathsf{SVD}++}(u,i) := \left\langle \mathbf{v}_u + \sum_{j \in N(u)} \mathbf{v}_j, \mathbf{v}_i \right\rangle \\ \hat{y}^{\mathsf{Fact-KNN}}(u,i) := \frac{1}{|R(u)|} \sum_{j \in R(u)} r_{u,j} \langle \mathbf{v}_i, \mathbf{v}_j \rangle \end{split}$$

$$\hat{y}^{\text{timeSVD}}(u, i, t) := \langle \mathbf{v}_u + \mathbf{v}_{u, t}, \mathbf{v}_i \rangle$$

$$\hat{y}^{\text{timeTF}}(u, i, t) := \sum_{f=1}^{k} v_{u, f} v_{i, f} v_{t, f}$$

. . .

Sequential Factorization Models

Example for data:

Examples for models:

$$\hat{y}^{\mathsf{FMC}}(u, i, t) := \sum_{I \in \mathcal{B}_{t-1}} \langle \mathbf{v}_i, \mathbf{v}_I \rangle$$

$$\hat{y}^{\mathsf{FPMC}}(u, i, t) := \langle \mathbf{v}_u, \mathbf{v}_i \rangle + \sum_{I \in \mathcal{B}_{t-1}} \langle \mathbf{v}_i, \mathbf{v}_I \rangle$$
...

RDF-Triple Prediction with Factorization Machines

Three categorical variables encoded with real valued predictor variables:

	Feature vector x													
X ⁽¹⁾	1	0	0		1	0	0	0		1	0	0	0	
$\mathbf{X}^{(2)}$	1	0	0		0	1	0	0		0	1	0	0	
X ⁽³⁾	1	0	0	90	0	0	1	0	99	0	0	0	1	300
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	1	0	
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	1	0	
X ⁽⁶⁾	0	0	1		1	0	0	0		1	0	0	0	
X ⁽⁷⁾		0	1		0	0	1	0		0	0	0	1	
	S1 S2 S3 P1 P2 P3 P4 O1 O2 O3 O4 Subject Predicate Object													

With this data, the FM is equivalent to the PITF model:

$$\hat{y}(\mathbf{x}) := w_0 + w_s + w_p + w_o + \langle \mathbf{v}_s, \mathbf{v}_p \rangle + \langle \mathbf{v}_s, \mathbf{v}_o \rangle + \langle \mathbf{v}_p, \mathbf{v}_o \rangle$$

[PITF: Rendle et al. 2010, WSDM Best Student Paper, ECML 2009 Best DC Award]

Time with Factorization Machines

Two categorical variables and time as linear predictor:

Feature vector x										
X ⁽¹⁾	1	0	0		1	0	0	0		0.2
X ⁽²⁾	1	0	0		0	1	0	0		0.6
X ⁽³⁾	1	0	0		0	0	1	0		D.61
X ⁽⁴⁾	0	1	0		0	0	1	0		0.3
X ⁽⁵⁾	0	1	0		0	0	0	1		0.5
X ⁽⁶⁾	0	0	1		1	0	0	0		0.1
X ⁽⁷⁾	0	0	1		0	0	1	0		0.8
	A	B Us	C		П	NH	SW	ST		fime

The FM model would correspond to:

$$\hat{y}(\mathbf{x}) := w_0 + w_i + w_u + t \, w_{\mathsf{time}} + \langle \mathbf{v}_u, \mathbf{v}_i \rangle + t \, \langle \mathbf{v}_u, \mathbf{v}_{\mathsf{time}} \rangle + t \, \langle \mathbf{v}_i, \mathbf{v}_{\mathsf{time}} \rangle$$

Time with Factorization Machines

Two categorical variables and time discretized in bins (b(t)):

	_			_	eat	ure v	/ecto	or x			
(⁽¹⁾	1	0	0		1	0	0	0	 1	0	0
(⁽²⁾	1	0	0		0	1	0	0	 0	1	0
(⁽³⁾	1	0	0		0	0	1	0	 0	1	0
(⁽⁴⁾	0	1	0		0	0	1	0	 1	0	0
(⁽⁵⁾	0	1	0		0	0	0	1	 0	1.	0
(⁽⁶⁾	0	0	1		1	0	0	0	 1	0	0
(⁽⁷⁾	0	0	1		0	0	1	0	 0	0	1
	Α	B Us	C		TI	NH	SW	ST	 TI	T2 Tim	T3

The FM model would correspond to:2

$$\hat{y}(\mathbf{x}) := w_0 + w_i + w_u + w_{b(t)} + \langle \mathbf{v}_u, \mathbf{v}_i \rangle + \langle \mathbf{v}_u, \mathbf{v}_{b(t)} \rangle + \langle \mathbf{v}_i, \mathbf{v}_{b(t)} \rangle$$

²libFM, k = 128, MCMC inference, Netflix RMSE=0.8873

SVD++

						eatu	re w	ecto	r X					
(⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0	
(⁽³⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0	
(8)	1	0	0		0	0	1	0	<u></u>	0.3	0.3	0.3	0	
(⁽⁶⁾	0	1	0		0	0	1	0	<u></u>	0	0	0.5	0.5	12
(B)	0	1	0	4.	0	0	0	1	12	0	0	0.5	0.5	
c ⁶⁰	0	0	1		1	0	0	0		0.5	0	0.5	0	-
m	0	0	1		0	0	1	0		0.5	0	0.5	0	
	A	B Us	C		TI	NH	SW Novi	ST		De	Not be	SW lovie	87 s mb	xd

With this data, the FM3 is identical to:

$$\hat{y}(\mathbf{x}) = \underbrace{w_0 + w_u + w_i + \langle \mathbf{v}_u, \mathbf{v}_i \rangle + \frac{1}{\sqrt{|N_u|}} \sum_{l \in N_u} \langle \mathbf{v}_i, \mathbf{v}_l \rangle}_{\text{I} \in N_u} \left(\mathbf{v}_l + \langle \mathbf{v}_u, \mathbf{v}_l \rangle + \frac{1}{\sqrt{|N_u|}} \sum_{l' \in N_u, l' > l} \langle \mathbf{v}_l, \mathbf{v}_l' \rangle \right)$$

$$\frac{1}{\sqrt{|N_u|}} \sum_{l \in N_u} \left(w_l + \langle \mathbf{v}_u, \mathbf{v}_l \rangle + \frac{1}{\sqrt{|N_u|}} \sum_{l' \in N_u, l' > l} \langle \mathbf{v}_l, \mathbf{v}_l' \rangle \right)$$
[Koren, 2008]

Factorizing Personalized Markov Chains (FPMC)

Two categorical variables (u,i), one set categorical (B_{t-1}) :

FM is equivalent to

$$\hat{y}(\mathbf{x}) := w_0 + w_u + w_i + \frac{1}{|B_{t-1}|} \sum_{j \in B_{t-1}} w_j + \langle \mathbf{v}_u, \mathbf{v}_i \rangle + \frac{1}{|B_{t-1}|} \sum_{j \in B_{t-1}} \langle \mathbf{v}_i, \mathbf{v}_j \rangle + \dots$$
[Repdie et al. 2010, WAW, Best Panel

[Rendle et al. 2010, WWW Best Paper]

(Context-aware) Rating Prediction

- Main variables:
 - ► User ID (categorical)
 - ► Item ID (categorical)
- Additional variables:
 - ► time
 - ▶ mood
 - ► user profile
 - ▶ item meta data
 - **>** ...
- ► Examples: Netflix prize, Movielens, KDDCup 2011

Netflix Prize

Method (Name)	Ref.	Learning Method	k	Quiz RMSE
Models using user ID and item ID	t or the control of the control	201-7-00-707-70-70-70-00-		
Probabilistic Matrix Factorization	[14, 13]	Batch GD	40	*0.9170
Probabilistic Matrix Factorization	[14, 13]	Batch GD	150	0.9211
Matrix Factorization	[6]	Variational Bayes	30	*0.9141
Matchbox	[15]	Variational Bayes	50	*0.9100
ALS-MF	[7]	ALS	100	0.9079
ALS-MF	[7]	ALS	1000	*0.9018
SVD/ MF	[3]	SGD	100	0.9025
SVD/ MF	[3]	SGD	200	*0.9009
Bayesian Probablistic Matrix Factorization (BPMF)	[13]	MCMC	150	0.8965
Bayesian Probablistic Matrix Factorization (BPMF)	[13]	MCMC	300	*0.8954
FM, pred. var: user ID, movie ID	100	MCMC	128	0.8937
Models using implicit feedback	esamoro.	190 MW 901545	10000	000000000000000000000000000000000000000
Probabilistic Matrix Factorization with Cons- traints	[14]	Batch GD	30	*0.9016
SVD++	[3]	SGD	100	0.8924
SVD++	[3]	SGD	200	*0.8911
BSRM/F	[18]	MCMC	100	0.8926
BSRM/F	[18]	MCMC	400	*0.8874
FM, pred. var: user ID, movie ID, impl.	- 1	MCMC	128	0.8865

Link Prediction in Social Networks

- ► Main variables:
 - ► Actor A ID
 - ► Actor B ID
- ► Additional variables:
 - profiles
 - ► actions
 - ▶ ...

KDDCup 2012: Track 1

KDDCup 2012 Track 1: Prediction Quality

- ▶ k = 22 factors, 512 MCMC samples (no burnin phase, initialization from random)
- MCMC inference (no hyperparameters (learning rate, regularization) to specify)

[Awarded 2nd place (out of 658 teams)]

Clickthrough Prediction

- ► Main variables:
 - ▶ User ID
 - ► Query ID
 - ► Ad/ Link ID
- ► Additional variables:
 - query tokens
 - ► user profile
 - ▶ ...

KDDCup 2012: Track 2

Model	Inference	wAUC (public)	wAUC (private)
ID-based model $(k = 0)$	SGD	0.78050	0.78086
Attribute-based model $(k = 8)$	MCMC	0.77409	0.77555
Mixed model $(k = 8)$	SGD	0.79011	0.79321
Final ensemble	n/a	0.79857	0.80178

Ensemble

- ► Rank positions (not predicted clickthrough rates) are used.
- The MCMC attribute-based model and different variations of the SGD models are included.

[Awarded 3rd place (out of 171 teams)]

ECML/PKDD Discovery Challenge 2013

- ▶ Problem: Recommend given names.
- Main variables:
 - ▶ User ID
 - ► Name ID
- ► Additional variables:
 - session info
 - string representation for each name
 - **>** ...
- ► FM approach won 1st place (online track) and 2nd (offline track).

Student Performance Prediction

- ▶ Main variables:
 - Student ID
 - ► Question ID
- Additional variables:
 - question hierarchy
 - sequence of questions
 - ► skills required
 - **.** . . .
- ► Examples: KDDCup 2010, Grockit Challenge⁴ (FM placed 1st/241)

⁴http://www.kaggle.com/c/WhatDoYouKnow

Other Kaggle Competitions

- EMI Music Data Science Hackathon: Best single model is a Factorization Machine with MCMC inference and achieves 13.30247 (private) / 13.27626 (public) [Rendle]
- Blue Book for Bulldozers: Factorization machines [...] gave us our best single model, scoring 0.22450 on the public leaderboard set. We used only the categorical features here [Leustagos, winning team]

Criteo Display Advertising Challenge: Feature Engineering +
 Factorization machines

Criteo Display Advertising Challenge

"nnz" means the number of non-zero elements of each impression; "feat" represents the size of feature space.

3 Idiots' Approach for Display Advertising Challenge, Juan et.al https://github.com/guestwalk/kaggle-2014-criteo

Conclusion

- Representing categorical variables with real-valued variables and applying FMs is comparable to the factorization models that have been derived individually before (e.g. (bias) MF, tensor factorization, attribute-aware MF)
- FMs are much more flexible and can handle non-categorical variables.
- Applying FMs is simple, as only data preprocessing has to be done (defining the real-valued predictor variables)
- Starting to be in the toolbox of every ML people along Random Forest, Vowpal Wabbit, Scikit-learn, Caffe

libFM Software

libFM is an implementation of FMs

- Learning/inference: SGD, ALS, MCMC
- Classification and regression
- Uses the same format as LIBSVM, LIBLINEAR [Lin et. Al], SVMlight [Joachims]
- Support variable grouping
- Open Source: GPLv3

www.libfm.org

https://github.com/srendle/libfm

https://groups.google.com/forum/#!forum/libfm

Thanks

@SilbermannT

thierrysilbermann.wordpress.com (will put some tutorials on libFM)

thierry.silbermann@gmail.com

References

L. Drumond, S. Rendle, and L. Schmidt-Thieme.

Predicting rdf triples in incomplete knowledge bases with tensor factorization.

In Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC '12, pages 326-331, New York, NY, USA, 2012. ACM.

C. Freudenthaler, L. Schmidt-Thieme, and S. Rendle.

Bayesian factorization machines.

In NIPS workshop on Sparse Representation and Low-rank Approximation, 2011.

Y. Koren.

Factorization meets the neighborhood: a multifaceted collaborative filtering model.

In KDD '08: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 426-434, New York, NY, USA, 2008. ACM.

Y. Koren.

The bellkor solution to the netflix grand prize. 2009.

Y. Koren.

Collaborative filtering with temporal dynamics.

In KDD '09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 447-456, New York, NY, USA, 2009. ACM.

Y. J. Lim and Y. W. Teh.

Variational Bayesian approach to movie rating prediction.

In Proceedings of KDD Cup and Workshop, 2007.

References

S. Rendle.

Factorization machines.

In Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM '10, pages 995-1000, Washington, DC, USA, 2010. IEEE Computer Society.

S. Rendle.

Factorization machines with libFM. ACM Trans. Intell. Syst. Technol., 3(3):57:1-57:22, May 2012.

S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized markov chains for next-basket recommendation.

In WWW '10: Proceedings of the 19th international conference on World wide web, pages 811-820, New York, NY, USA, 2010. ACM.

S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast context-aware recommendations with factorization machines. In Proceedings of the 34th ACM SIGIR Conference on Reasearch and Development in Information Retrieval. ACM, 2011.

I. Pilászy, D. Zibriczky, and D. Tikk.

Fast als-based matrix factorization for explicit and implicit feedback datasets.

In RecSys '10: Proceedings of the fourth ACM conference on Recommender systems, pages 71-78, New York, NY, USA, 2010. ACM.

I. Porteous, A. Asuncion, and M. Welling. Bayesian matrix factorization with side information and dirichlet process mixtures.

In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, pages 563-568, 2010.

References

R. Salakhutdinov and A. Mnih.

Bayesian probabilistic matrix factorization using Markov chain Monte Carlo.

In Proceedings of the 25th international conference on Machine learning, ICML '08, pages 880–887, New York, NY, USA, 2008. ACM.

R. Salakhutdinov and A. Mnih.

Probabilistic matrix factorization.

In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, *Advances in Neural Information Processing Systems 20*, pages 1257–1264, Cambridge, MA, 2008. MIT Press.

D. H. Stern, R. Herbrich, and T. Graepel.

Matchbox: large scale online bayesian recommendations.

In *Proceedings of the 18th international conference on World wide web*, WWW '09, pages 111–120, New York, NY, USA, 2009. ACM.

L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell. Temporal collaborative filtering with bayesian probabilistic tensor factorization.

In Proceedings of the SIAM International Conference on Data Mining, pages 211–222. SIAM, 2010.

S. Zhu, K. Yu, and Y. Gong. Stochastic relational models for large-scale dyadic data using MCMC.

In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, *Advances in Neural Information Processing Systems 21*, pages 1993–2000, 2009.