Problem

For each n, exhibit two regular expressions, R and S, of length poly(n), where L(R) \neq L(S), but where the first string on which they differ is exponentially long. In other words, L(R) and L(S) must be different, yet agree on all strings of length up to $2^{\epsilon n}$ > 0.

Step-by-step solution

Step 1 of 2

Consider that two regular expressions, S and R, of length poly(n) can be exhibited for every n, where $L(R) \neq L(S)$ but the first string on which they differ in exponentially long.

• Now, consider the expression the expression which is given below:

$$\underbrace{\left(11...1\right)^*}_{\text{atimes}} \underbrace{11?1?...1?}_{p-2 \text{ times}}$$

The above expression identify $\ 1^k$ for each $\ ^k$ which is not a multiple of $\ ^p$.

Comment

Step 2 of 2

Now, a polynomial-length can be constructed in such a way that recognize 1^k for each k and except those expression which are multiple of every first n prime.

- The nth prime is less than $n(\ln n + \ln \ln n)$ foe every $n \ge 6$. Therefore, the addition of the first n primes is $O(n^2 \log n)$.
- It is because the first number which is not a multiple of any of the first prime number is of the order $O(n^2 \log n)$, that cause to stop it in growing exponentially with n.

Hence form the above explanation, it can be said that "every string of the length up to 2^{en} , for a constant $\varepsilon > 0$, will be agreed for two regular expression S and R, where L(R) and L(S) must be different".

Comment