

دانشكده مهندسي كامپيوتر

درس امنیت سیستم های کامپیوتری تمرین حمله به DES

ملیکا محمدی فخار - ستاره باباجانی

99071109-99077089

استاد درس: دكتر ابوالفضل ديانت

بهار ۱۴۰۳

سوال اول: حمله تفاضلی به DES

یکی از مهمترین حملات به ،DES حمله تفاضلی است که توسط Biham Eli و Shamir Adi در دهه ۱۹۹۰ مطرح شد. در مورد این حمله تحقیق کنید و نحوه این حمله را با یک مثال ساده شده DES بیان کنید. مثلا با DES سه دور یا شش دور.

پاسخ: حمله تفاضلی به DES

حمله تفاضلی یک تکنیک رمزنگاری است که به تحلیل تغییرات در ورودی و خروجی یک الگوریتم رمزنگاری پرداخته و از تفاوتهای مشاهده شده برای کشف کلید مخفی استفاده میکند. در DES این حمله با استفاده از تفاوتهای ورودی و خروجی در چندین دور از الگوریتم، سعی در یافتن کلید دارد.

به عنوان مثال، فرض کنید دو متن ساده P و P که در یک بیت تفاوت دارند (یعنی P میشوند. تفاوت متن رمز P به الگوریتم DES داده میشوند و متنهای رمز شده P تولید میشوند. تفاوت متن رمز شده P به P' است.

حمله کننده با تحلیل تفاوتهای ورودی و خروجی در چندین دور DES و استفاده از جدولهای تفاوتی برای ها S-box میتواند بخشی از کلید مخفی را پیدا کند.

در یک DES سه دور، فرض کنید تفاوت ورودی ΔP را میدانیم. با تحلیل تفاوتها در خروجی هر S-box و استفاده از خواص آنها، میتوانیم تفاوت در خروجی هر دور را محاسبه کنیم و از این اطلاعات برای حدس زدن کلید استفاده کنیم.

سوال دوم: الگوريتم AES

نكات كليدي

- الگوریتم کلید متقارن: AES از یک کلید برای هر دو فرآیند رمزگذاری و رمزگشایی استفاده میکند. این به این معنی است که هم فرستنده و هم گیرنده باید به همان کلید دسترسی داشته باشند.
- رمز بلاکی: AES دادهها را در بلاکهای با اندازه ثابت رمزگذاری میکند. اندازه استاندارد بلاک ۱۹۲۸ بیت است، اما می تواند بلاکهایی با اندازه ۱۹۲ و ۲۵۶ بیت را نیز پردازش کند.

مراحل الكوريتم AES

گسترش كلىد

کلید اولیه داده شده به چندین کلید دوری با استفاده از برنامه کلید AES گسترش مییابد. تعداد دورها بستگی به طول کلید دارد:

- ۱۰ دور برای کلیدهای ۱۲۸ بیتی
- ۱۲ دور برای کلیدهای ۱۹۲ بیتی

• ۱۴ دور برای کلیدهای ۲۵۶ بیتی

دور اوليه

• AddRoundKey: هر بایت از بلاک با یک بایت از کلید دوری با استفاده از عملیات AddRoundKey: ترکیب می شود.

دورهای اصلی

(۹، ۱۱، یا ۱۳ بار بسته به اندازه کلید تکرار می شود):

- SubBytes: هر بایت از بلاک با بایت معادل در یک جدول جایگزینی ثابت (S-box) جایگزین می شود.
- ShiftRows: ردیفهای بلاک به صورت چرخشی جابجا می شوند. هر ردیف به میزان متفاوتی جابجا می شود.
- MixColumns: ستونهای بلاک با ضرب در یک چندجملهای ثابت در میدان گالوا مخلوط می شوند.
 - AddRoundKey: بلاک جاری با کلید دوری با استفاده از XOR ترکیب می شود.

دور نهایی

(همانند دورهای اصلی اما بدون مرحله :(MixColumns

- SubBytes •
- ShiftRows •
- AddRoundKey •

رمزگشایی

فرآیند رمزگشایی معکوس رمزگذاری است. شامل همان مراحل است اما به ترتیب معکوس و با عملیات معکوس:

- SubBytes Inverse •
- ShiftRows Inverse •
- MixColumns Inverse
 - AddRoundKey •

کد

تحليل كد

این کد پایتون از کتابخانه PyCryptodome برای رمزنگاری و رمزگشایی متن با استفاده از الگوریتم AES در حالت CBC استفاده میکند. کد شامل مراحل زیر است:

- وارد كردن كتابخانهها
- تولید کلید و داده ورودی
 - رمزنگاري
- چاپ دادههای رمزنگاری شده
 - رمزگشایی
 - نتايج


```
1 from Crypto.Cipher import AES
 2 from Crypto.Util.Padding import pad, unpad
 3 from Crypto.Random import get random bytes
 6 key = get_random_bytes(16) # كليد 16 بايتى
 7 data = 'It is a test message'.encode('utf-8')
 رمزنگاری # 9
10 cipher = AES.new(key, AES.MODE CBC)
11 ciphertext = cipher.encrypt(pad(data, AES.block size))
12 iv = cipher.iv
13
چاپ داده های رمزنگاری شده # 14
15 print("key:", key.hex())
16 print("IV:", iv.hex())
17 print("cipher text:", ciphertext.hex())
18
رمزگشایی # 19
20 decipher = AES.new(key, AES.MODE_CBC, iv)
21 plaintext = unpad(decipher.decrypt(ciphertext), AES.block size)
چاپ داده های رمزگشایی شده # 23
24 print("plain text:", plaintext.decode('utf-8'))
```

شکل ۱: کد زده شده

```
key: 694e41a4a5b2a673f63f3e50b463e0cb
IV: 500888fee6c6fa5bfd69736d137fa2e1
cipher text: 73134e593bb259e4fe84515001f1a9918ef86be61ed632682dff8a8b2fdf99db
plain text: It is a test message
```

شكل ٢: خروجي كد