Liquid Argon optical properties to be used in Geant4 and Opticks Simulations

Hans Wenzel¹

¹ Fermilab PO Box 500, Batavia, IL 60510, USA

E-mail: wenzel@fnal.gov

Abstract. In Geant4 and Opticks optical properties like e.g. the materials refractive index are inputs that have to be provided. In this paper we collect the optical properties relevant for liquid Argon TPC's.

1. Introduction

In Geant4 and Opticks optical properties like e.g. the materials refractive index are inputs that have to be provided when the detector is constructed. In this article we briefly describe the physical processes relevant to the production, transport and detection of optical photons in liquid Argon. We collect the values and parameterizations of optical properties relevant for liquid Argon TPC's. We provide scripts that plot this quantities and that convert this values into a gdml description that can be directly used in the Geant4 Detector description. All values are summarized in the file material.xml which can be found in the github repository [6]. Usually quantities are given as a function of photon wavelength but Geant4 requires the photon energy.

$$E_{\gamma}(eV) = \frac{hc}{\lambda_{\gamma} 10^{-9}} \tag{1}$$

with:

speed of light: c = 299792458m/sec

Planck constant: $h = 4.13566743 \times 10^{-15} eV/sec$

2. Light production

2.1. Scintillation Properties of liquid Argon

Efficient scintilator with typical Light yields in the order of a few 10,000's of photons per MeV deposited (depends on E field, particle type and purity) (SCINTILLATIONYIELD: 50000/MeV when no electric field present)

2.2. Cerenkov spectrum and Yield

the particle (red arrow) travels in a medium with speed v_p such that $\frac{c}{n} < v_p < c$.

Property/Geant4 keyword	value
yield/SCINTILLATIONYIELD	50000 photons/MeV (no electric field)
Wavelength of emission	128nm (FWHM = 10nm)
fast component/SCINTILLATIONTIMECONSTANT1	6ns
fast fraction/SCINTILLATIONYIELD1	0.75
slow component/SCINTILLATIONTIMECONSTANT2	1500ns
slow fraction/SCINTILLATIONYIELD2	0.25
RESOLUTIONSCALE	1

Table 1. Scintillation Properties of liquid Argon.

Figure 1. Scintillation emmission spectrum.

3. Light propagation

3.1. Refraction Index of liquid Argon

$$v_g(\lambda) = \frac{c}{n - \lambda \frac{\partial n}{\partial \lambda}} \tag{2}$$

Refraction Index: $n=1.358\pm0.003$ at 128nm [?]. (compared to $n=1.45\pm0.07$ [8]) Group velocity: $\frac{1}{vg}=7.46\pm0.08ns/m$ at 128nm

$$n^2 = a_0 + \frac{a_{UV}\lambda^2}{\lambda^2 - \lambda_{UV}^2} + \frac{a_{IR}\lambda^2}{\lambda^2 - \lambda_{IR}^2}.$$
 (3)

3.2. Absorption length

Argon is highly transparent to its own scintillation light. (ABSLENGTH) > 1.1m (ArXiv:1511.07725)

3.3. Rayleigh Scattering length

Rayleigh scattering length (RAYLEIGH). In the literature one can find the following values at 128nm: 90 cm [?] and $55 \pm 5cm$ [8].

4. Photon Detection

4.1. Quantum efficiency and absorption length of the tetraphenyl butadiene wave length shifter [7]

5. Conclusions and Outlook

References

[1] https://github.com/hanswenzel/LArProperties.

T=83.81 K

Figure 2. refraction index

- $[2] \ \mathtt{https://github.com/hanswenzel/CaTS}.$
- [3] Allison J et al. 2016, Nuclear Instruments and Methods in Physics Research A 835 (186–225).
- [4] http://geant.cern.ch/.
- [5] High-Energy Physics Literature Database, http://inspirehep.net/.
- [6] https://github.com/hanswenzel/CaTS/tree/master/scripts/LAr.C. https://github.com/hanswenzel/CaTS/tree/master/scripts/wls.C.
- [7] Christopher Benson, Gabriel D. Orebi Gann, Victor Gehman,
 - $\label{lem:measurements} \textit{Measurements of the intrinsic quantum efficiency and absorption length of tetraphenyl but a diene thin films in the vacuum ultraviolet regime.}$
 - Eur. Phys. J. C (2018) 78:329
- [8] Emily Grace, Alistair Butcher, Jocelyn Monroe, James A. Nikkel,

 Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon.
 - ArXiv:1502.04213
- [9] A measurement of the group velocity of scintillation light in liquid argon, M. Babicz et al, 2020 JINST 15 P09009
- [10] Ben Jones, Introduction to Scintillation Light in Liquid Argon http://microboone-exp.fnal.gov"/
- [11] E. Morikawa, R. Reininger, P. Gürtler, V. Saile, and P. Laporte, Argon, krypton, and xenon excimer luminescence: From the dilute gas to the condensed phase. J. Chem. Phys. 91, 1469 (1989); https://doi.org/10.1063/1.457108

Figure 3. rayleigh scattering length.

FitReemissionSpect.csv

Figure 4. wave length spectrum extracted form [7].