Neural Network Basics

CS4742 Natural Language Processing Lecture 05

Jiho Noh

Department of Computer Science Kennesaw State University

CS4742 Summer 2025 ¹

1/31

¹This lecture is based on the slides from Dr. Hafiz Khan at KSU.

Topics

- Deep Learning
- 2 Multilayer Perceptron
- 3 Learning
 - Backprogagation

2/31

Where is deep learning the best-known approach?

NLP	answering questions; speech recognition; summarizing documents; classifying documents; finding names, dates, etc. in documents; searching for articles mentioning a concept
Computer vision	satellite and drone imagery interpretation (e.g. for disaster resilience); face recognition; image captioning; reading traffic signs; locating pedestrians and vehicles in autonomous vehicles
Medicine	finding anomalies in radiology images, including CT, MRI, and x-ray; counting features in pathology slides; measuring features in ultrasounds; diagnosing diabetic retinopathy
Biology	folding proteins; classifying proteins; many genomics tasks, such as tumor-normal sequencing and classifying clinically actionable genetic mutations; cell classification; analyzing protein/protein interactions
Image generation	colorizing images; increasing image resolution; removing noise from images; converting images to art in the style of famous artists
Recommendation systems	web search; product recommendations; home page layout
Playing games	better than humans and better than any other computer algorithm at Chess, Go, most Atari videogames, many real-time strategy games
Robotics	handling objects that are challenging to locate (e.g. transparent, shiny, lack of texture) or hard to pick up
Other applications	financial and logistical forecasting; text to speech; much much more

Neural Networks

1943 Warren McCulloch proposed a mathematical model of an artificial neuron

Deep learning is just a multiple layers of Neural Network Learning, "Deep Learning"

Human Brain

Brain

- ► Composed of a very large (10¹¹) number of processing units, *neurons*, operating in **parallel**.
- ▶ Neurons in the brain have connections, called *synapses*.
- ► The large connectivity is the power.
- It is believed that both the processing and memory are distributed together over the network.
- Artificial Neural Network (ANN) models
 - Our aim is to utilize the function of brain to build useful machine.

5/31

NN as a paradigm for Parallel Processing

- Neural Networks (NN) are a class of models that are built with layers.
 Commonly used types of neural networks include convolutional and recurrent neural networks.
- Learning
 - Distribute a task over a network of small processors and to determine the local parameter values.
- No need to program and determine the parameter values ourselves; Such machines can learn from examples.
- Graphical Processing Unit (GPU) is good at doing this kind of job.

6/31

Schema of training a deep learning model

- inputs: Preprocess data to be used for training, validation, testing.
- 2 models and weights: define the architecture of the neural network, and initialize the learnable weights.
- operformance assessment: compare predictions to actual values using a loss function to measure error.
- optimization: update the weights using an optimization algorithm (like gradient descent) to minimize the loss.
- **1** iterate the above process

7/31

"Deep" Learning

- Universal Approximation Theorem stats that a neural network with one hidden layer can approximate any continous function on a compact domain, given sufficient neurons.
- So why deeper?
 - ▶ Shallow net may need (exponentially) more width.
 - Shallow net may overfit more

8/31

Topics

- Deep Learning
- 2 Multilayer Perceptron
- 3 Learning
 - Backprogagation

Perceptron Model

$$y = \sum_{j=1}^{d} w_j x_j + w_0$$

• Or, write the output as a dot product.

$$y = w^T x$$

10/31

Non-linearity

$$a_i = g(\sum_j W_{j,i} a_j)$$

11/31

Activation Function

- An activation function decides whether a neuron should be activated and transmit a signal to the next connected neuron.
- That is, an activation function computes how important the set of input signals is.
- Activation functions are used at the end of a hidden unit to introduce non-linear comlexities to the model.
- NN without the activation functions?
 - ► Every neuron will be performing a linear transformation.
 - ► The composition of two linear functions is a linear function itself; the model would be just a linear regression model.
 - ▶ NN will loose higher abstraction capability.

12 / 31

Name ¢	Plot	Function, $f(x)$ $\qquad \qquad \qquad$	Derivative of $f, f'(x)$ $\qquad \qquad \qquad$	Range ¢
Identity	/	x	1	$(-\infty,\infty)$
Binary step		$\begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$	$\left\{egin{array}{ll} 0 & ext{if } x eq 0 \ ext{undefined} & ext{if } x = 0 \end{array} ight.$	{0,1}
Logistic, sigmoid, or soft step		$\sigma(x) = rac{1}{1+e^{-x}}$	f(x)(1-f(x))	(0, 1)
Hyperbolic tangent (tanh)		$ anh(x) = rac{e^x - e^{-x}}{e^x + e^{-x}}$	$1-f(x)^2$	(-1,1)
Rectified linear unit (ReLU) ^[7]		$\begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$ $= \max\{0, x\} = x1_{x > 0}$	$ \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ \text{undefined} & \text{if } x = 0 \end{cases} $	$[0,\infty)$
Gaussian Error Linear Unit (GELU) ^[4]		$rac{1}{2}x\left(1+ ext{erf}\left(rac{x}{\sqrt{2}} ight) ight) \ =x\Phi(x)$	$\Phi(x) + x\phi(x)$	$(-0.17\ldots,\infty)$
Softplus ^[8]		$\ln(1+e^x)$	$\frac{1}{1+e^{-x}}$	$(0,\infty)$
Exponential linear unit (ELU) ^[9]		$\begin{cases} \alpha \ (e^x-1) & \text{if } x \leq 0 \\ x & \text{if } x > 0 \\ & \text{with parameter } \alpha \end{cases}$	$\begin{cases} \alpha e^x & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ 1 & \text{if } x = 0 \text{ and } \alpha = 1 \end{cases}$	$(-lpha,\infty)$
Scaled exponential linear unit (SELU) ^[10]		$\lambda \begin{cases} \alpha(e^x-1) & \text{if } x<0 \\ x & \text{if } x\geq 0 \end{cases}$ with parameters $\lambda=1.0507$ and $\alpha=1.67326$	$\lambda \begin{cases} \alpha e^x & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$	$(-\lambda lpha, \infty)$
Leaky rectified linear unit (Leaky ReLU) ^[11]		$\begin{cases} 0.01x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$	$\begin{cases} 0.01 & \text{if } x < 0 \\ 1 & \text{if } x \geq 0 \end{cases}$	$(-\infty,\infty)$
	/	$\int \alpha x \text{if } x < 0$	(- :60	

200

Common Activation Functions — Sigmoid

$$g(x) = \frac{1}{1 + e^{-x}}$$

14/31

Logistic Regression

Assumes the following functional form for P(Y|X):

$$P(Y = 1|X) = \frac{1}{1 + exp(-(w_0 + \sum_i w_i X_i))}$$

Logistic function applied to a linear function of the data

Logistic function (or Sigmoid)

$$\frac{1}{1 + exp(-z)}$$

Jiho Noh (CS/KSU) Neural Network Basics Summer 2025 15/31

Common Activation Functions — Tanh

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

16/31

Common Activation Functions — ReLU

$$R(x) = \max(0, z)$$

17/31

Common Activation Functions — Leaky ReLU

$$g(x) = \max(\epsilon z, z)$$
 with $\epsilon << 1$

18/31

Logistic function as a Graph

Output,
$$o(x) = \sigma(w_0 + \sum_i w_i X_i) = \frac{1}{1 + exp(-(w_0 + \sum_i w_i X_i))}$$

Neural networks represent a function f by network of logistic/sigmoid units

19/31

Boolean Functions and Perceptron

20/31

Neural Networks

- Feedforward Networks or Multilayer Perceptrons (MLPs)
- $y = f^*(x; \theta)$ maps an input x to y

21/31

Feedforward Network Example

22/31

Topics

- Deep Learning
- 2 Multilayer Perceptron
- Learning
 - Backprogagation

23/31

NN Learning as Optimization

- NN learning is cast as an optimization (search) problem.
- Navigate the space of model weights in order to make good predictions.

How do we update the weights to improve at any given task?

Stochastic Gradient Descent

• Update weights using the backpropagation of error.

• (Error) Gradient

- Gradient Descent algorithm seeks to update the model weights to reduce the next evaluation error
- Optimization algorithm navigates down the gradient (or slope) of error.

- Stochastic means "random"
 - Randomness in selecting a training example.
 - Incrementally update weights using each training example.

Jiho Noh (CS/KSU)

Geoffrey Hinton, 2012. Reproduced with permission.

Loss Functions

• The function that computes the distance between the current output of the algorithm and the expected output.

- Regression
 - Mean Squared Error Loss
 - Mean Squared Logarithmic Error Loss
 - Mean Absolute Error Loss
- Binary Classification
 - Binary Cross-Entropy
 - Hinge Loss
 - Squared Hinge Loss
- Multi-class Classification
 - Multi-class Cross-Entropy Loss
 - Sparse Multiclass Cross-Entropy Loss
 - Kullback-Leibler Divergence loss

27/31

Loss Functions

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$MSLE = \frac{1}{n} \sum_{i=1}^{n} (\log Y_i - \log \hat{Y}_i)^2$$

$$BCE = \frac{1}{n} \sum_{i=1}^{n} Y_i \log \hat{Y}_i + (1 - Y_i) \log(1 - \hat{Y}_i)$$

$$Hinge = \frac{1}{n} \sum_{i=1}^{n} max(0, 1 - Y_i \hat{Y}_i)$$

$$KL = \frac{1}{n} \sum_{i=1}^{n} Y_i \log(Y_i / \hat{Y}_i)$$

Topics

- Deep Learning
- Multilayer Perceptron
- Learning
 - Backprogagation

29/31

Backpropagation

• Dr. Fei-Fei Li's Backpropagation Lecture Slides

30/31

Summary

31/31