Assignment-1 group-C7 (prince, Bhayik, Lyon) I. Shingles: (a) Here 2-shingles for ABRACADABRA cire; $D_1 = \{AB, AC, AD, BR, CA, DA, RA\}$ 50 101 = 7 (b) 2-Shingles for BRICABRAC use, Dz={AB, AC, BR, CA, IC, RA, RI} 50 D2 =7 (c) The common 2-shingles we; [D2 DD] = {AC,AB, BR, CA, RA] $|\mathcal{D}_1 \cap \mathcal{D}_2| = 5$ (d) The Juceard similarity is defined as, SIM (DIADZ) SIM (D1, D2) = 10, ND21 5IM (D, D2)= 5

•

- 2. Minhushing:
 - (a) Permuting rows of characteristic mutrix
 - Dying permetation vertor.

 (4,5,0,2,3,1)

A characteristic matrix of four sets (C1, C2, C3, C4) over universal set {0,1,2,3,4,5} and permutation of it's rows.

 $0\rightarrow4,1\rightarrow5,2\rightarrow0,3\rightarrow2,4\rightarrow3,5\rightarrow1$ is given us;

ROW	C	(2	3	C4		ROW	4	62	51	CA	
0	0	1	Ī	0		4	1	0	1	0	
11	1	0	11	MA	28	4 5	0	1	0	0	
2	0	1	0	1	7	0	0	1	1	0	
3	0	0	1	0		2	0	1	0	1	1
4		0	1	0		3	0	0	011	0	
5	0	1	0)	0		1	1	10	1	1	1

The minhoush function has on C is defined by,

BRUNNEN

(

(0

where we are given; - a charactristic metrix with m rows = 6 und coloumn c.

- a fermutation Ton the rows, that is

T: {1,...m} -> {1,...m} is a

bijection. (1 corresponds to 0) T° 4→0,5→1,0→2,2→3,3→4,1→5 50; $h_{\pi}(c_1) = 0$, $h_{\pi}(c_2) = 1$, $h_{\pi}(c_3) = 0$, $h_{\pi}(c_4) = 3$ (2) Using the Permutation Versons, (3,1,0,5,2,4) T: 3-10, 1-11, 0-12, 5-13, 2-14, 4-15 Permuteutions of it's row is given by: Pow 4 62 3 4 3 0 0 1 0 1 0 1 1 0 1 0 0 2 0 1 0 1 2 0 1 0 1 4 1 0 1 ROW 4 62 63 64 0 0 1 1 0 1 1 2 0 1 0 1 0 1 0 1 0 1 0 50; hy(C1)=1, hy(e2)=2, hy(C3)=0, hy(C4)=1. (counting from 0).

-

First iteration gives

$$5I6_{32} = 5I6_{34} = min (\Delta, h_3(0)) = 2$$

 $\begin{vmatrix} 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 6 & 0 & 1 & 0 \\ 6 & 0 & 2 & 0 \\ 6 & 0 & 2 & 0 \\ 7 & 0 & 2 & 0 \\ 8 & 0 & 2 & 0 \\ 9 & 0 & 2 & 0 \\ 9 & 0 & 0$

Therd iteration; fourth iteration $\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Seventh fincy ; textition, $\frac{ S_1 S_2 S_3 S_4 }{ S_2 S_3 S_4 }$ $\frac{ S_1 S_2 S_3 S_4 }{ S_2 S_3 S_4 }$ $\frac{ S_2 S_3 S_4 }{ S_2 S_3 S_4 }$ $\frac{ S_2 S_3 S_4 }{ S_2 S_3 S_4 }$ $\frac{ S_2 S_3 S_4 }{ S_3 S_4 }$ $\frac{ S_3 S_4 }{ S_3 S_4 }$ $ S_3 $
(b) here he and he are permutentions. (c) Jacob rd similarities, $SIM(S_1, S_2) = S_1 \cap S_2 = 0 = SIM(S_1, S_3)$ $ S_1 \cup S_2 = S_1 \cap S_2 = SIM(S_1, S_4)$
= SIM(S3,54)

00000

6

5

00000

5

-6 • --• = • • • • • 2 C • • C E e e e •

e e

00000000

-

$$SIM(S_2, S_3) = \frac{2}{3},$$

 $SIM(S_2, S_4) = \frac{1}{3}$

True Juccurd Similarity:

$$SIM(S_1, S_3) = \frac{1}{5}$$
, $SIM(S_2, S_4) = \frac{1}{4}$
 $SIM(S_1, S_4) = 0$ $SIM(S_3, S_4) = 0$

for puir (8,,54) ((3, 54) it's equal

Par (52,53) has a difference of 1

Which is Small, so this par has Close estimated and True Jaccurd Similarity.

- (d) Benifits of using howh functions instead of Permutations;
 - Requires less memory.
 - easy to generate
 - No memo rizcetion required.

- Permutation require l'teration over whole Problem spale while for hush function we am apply iteratively 6 - Some hash functions come with the gaurantee of uniformality, rundomness 6 - Permutation is time consuming for large number of rows while hearn function is easier as it is not a bijection