

COMPILER CONSTRUCTION

Grammars and Parsing

Chapter 4 **Grammars and Parsing**

Why Grammar?

- Grammar rules of natural languages, such as English or Chinese
 - Define proper sentence structure, e.g., defining phrases in terms of subjects, verbs, and objects; and phrases and conjunctions
 - Served as a tool for diagnosing malformed sentences (validity check)
- It is possible to construct sentences in a natural language
 - that are grammatically correct
 - but still make no sense

Why Grammar? (Cont'd)

- A structured sentence can be diagrammed
 - to show how its components conform to a language's grammar
 - Grammars can also explain what is absent or superfluous in a malformed sentence
- Ambiguity of a sentence
 - Can often be explained by providing multiple diagrams for the same sentence

"The little boy ran quickly" can be diagrammed as:

Grammars for Programming Languages

- Modern programming languages
 - contain a **grammar in their specification** as a guide to those who teach, study, or use the language

- A compiler front-end for the language
 - Scans for tokens in input stream based on the regular sets
 - Parses the structures formed by the tokens using the grammar that specifies a programming language's syntax

This Chapter is for CFGs

- We discuss the basics of **context-free grammars** (CFGs) in Ch. 2
- In Ch. 4 we
 - formalize the definition and notation for CFGs and
 - present algorithms that analyze such grammars in preparation for the parsing techniques covered in Ch. 5 and 6

The Role of the Parser

Context-Free Grammar

- Context-free grammar is a 4-tuple $G = \langle \Sigma, N, P, S \rangle$ where
 - Σ is a finite set of **terminal alphabet**, which is the set of tokens produced by the scanner
 - − *N* is a finite set of **nonterminal alphabet**
 - -P is a finite set of **productions** of the form $A \rightarrow \beta$ where $A \in N$ and $\beta \in (N \cup \Sigma)^*$
 - -S ∈ N is a designated **start symbol**, which initiates all derivations

Conventions

- Terminals
 - $a, b, c, \ldots \in \Sigma$
 - More example: 0, 1, +, *, id, if
- Nonterminals
 - *A*, *B*, *C*, ... ∈ *N*
 - More example: *expr*, *term*, *stmt*
- Grammar symbols
 - X, Y, $Z \in (N \cup \Sigma)$
- Strings of grammar symbols (sentential form)
 - $-\alpha$, β , $\gamma \in (N \cup \Sigma)^*$
- The head of the first production is often the start symbol

Production Rules

- A grammar consists of a set of production rules and a start symbol (left symbol of first rule)
- A **production rule** consists of two parts: a left-hand side and a right-hand side
 - ex: expression → expression '+' term

Production Rules (Cont.)

- The **left-hand side** (LHS) is the **name** of the syntactic construct
- The **right-hand side** (RHS) shows a **possible form** of the syntactic construct

• E.g., there are **two possible forms** (rules) derived by **the name** "expression":

```
expression → expression '+' term (rule 1) expression → expression '-' term (rule 2)
```


Production Rules (Cont.)

- LHS must be a single **non-terminal** symbol (or *non-terminal*)
- RHS of a production rule can contain zero or more terminals and non-terminals
- A **terminal symbol** (or *terminal*) is a grammar symbol
 - that cannot be rewritten
 - Is also an end point of the production process, also called **token**
 - Use lower-case letters such as a and b
- A **non-terminal symbol** (or *non-terminal*) is able to be rewritten
 - Use upper-case letters such as A, B, and S
- Non-terminal and terminal together are called grammar symbols (or vocabulary)

Different Forms of Production Rules

- There is often more than one way to rewrite a given nonterminal
- For example, when multiple productions share the same LHS symbol, it could be presented in one of the two forms

Derivations of Production Rules

Derivation

 The rewriting step replaces a nonterminal by the RHS of one of its production rules

Example:

- If $A \rightarrow \zeta$ is a production, then $\alpha A \beta \Rightarrow \alpha \zeta \beta$ denotes one step of a derivation using this production
- The one-step derivation can be denoted as $\alpha A\beta \Rightarrow \alpha \zeta\beta$
- The sequence of replacement a derivation of ζ from A

Notation for Derivations

- ⇒ derives in one step
- ⇒ derives in one or more steps
- ⇒ derives in zero or more steps
- \Rightarrow_{lm} refers to **leftmost derivation**, which expands nonterminals left to right
- \Rightarrow_{rm} refers to **right most derivation**, which expands nonterminals right to left
- Example:
 - $\alpha A\beta \Rightarrow \alpha \zeta\beta$
 - is leftmost derivation, if α does not contain a nonterminal
 - is rightmost derivation, if β does not contain a nonterminal

More about the Grammar

- We say that α is a **sentential form** of G
 - if $S \Rightarrow^* \alpha$, where S is the start symbol of a grammar G
 - Note that a sentential form may contain both terminals and nonterminals, and may be empty

- A **sentence** of *G* is a sentential form with no nonterminals
- The language generated by a grammar is its set of sentences
 - Hence, a string of terminals w is in L(G), the language generated by G, if and only if w is a sentence of G (or $S \Rightarrow^* w$)

Example of Rule Derivations

- Given the production rules:
 - $\exp r \rightarrow '('\exp r \circ p \cdot \exp r')'$
 - $expr \rightarrow '1'$

 - $\begin{array}{ccc} & op \rightarrow & '+' \\ & op \rightarrow & '*' \end{array}$

Example of Rule Derivations (Cont'd)

- Derivation of the string (1*(1+1))
 - expr
 - '('expr op expr ')'
 - '(' '1' op expr ')'
 - '(' '1' '*' expr ')'
 - '(' '1' '*' '('expr op expr ')' ')'
 - '(' '1' '*' '(' '1' op expr ')' ')'
 - '(' '1' '*' '(' '1' '\frac{1}{4}' expr ')' ')'
 - '(' '1' '*' '(' '1' '+' '1' ')' ')'

- $expr \rightarrow '('expr op expr ')'$
- $expr \rightarrow '1'$
- $\mathsf{op} \to \mathsf{'+}$
- $op \rightarrow \iota_{\star_1}$

- Each of the strings is a **sentential form**
- The *strings* refer to expr, '('expr op expr ')', '(' '1' op expr ')', '(' '1' '*' expr ')', etc.
- It forms a leftmost derivation, in which the leftmost nonterminal is always rewritten in each sentential form

A CFG Example

•
$$G = \langle \Sigma, N, P, S \rangle$$

- $\Sigma = \{+, *, (,), -, id\}$
- $N = \{E\}$
- $P = E \rightarrow E + E$
 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow -E$
 $E \rightarrow id$
- $S = E$

Parse tree for -(id + id)

• Is the string –(id + id) a sentence of G?

Yes, there is a derivation of the given string

$$\rightarrow$$
 $E \Rightarrow_{lm} - E \Rightarrow_{lm} -(E) \Rightarrow_{lm} -(E+E) \Rightarrow_{lm} -(id + E) \Rightarrow_{lm} -(id + id)$

- The strings E, E, (E), . . . , (id + id) are all sentential forms of this grammar
 - We write $E \Rightarrow^*$ (**id** + **id**) to indicate that (**id** + **id**) can be derived from E

You would ...

- Refer to Section 4.1 for more information
 - Examples of leftmost and right most derivations in Section 4.1.1 and 4.1.2
 - Parse Trees in Section 4.1.3

Properties of CFGs

- Some grammars have one or more of the following problems that preclude their use
 - (Reduced Grammar) The grammar may include useless symbols
 - (Ambiguity) The grammar may allow multiple, distinct derivations (parse trees) for some input string
 - (Faulty Language Definition) The grammar may include strings that do not belong in the language, or
 - the grammar may exclude strings that are in the language

We are ...

- going to know more about the ambiguity next
- You would ...
 - read Section 4.2.1 and 4.2.3 by yourself

Ambiguity

- A grammar that produces more than one parse tree for some sentence is said to be *ambiguous*
- Hence, an ambiguous grammar is one that produces
 - more than one leftmost derivation or
 - more than one rightmost derivation for the same sentence

Example of Ambiguous Grammar

- Given the sentence: id + id * id
- Production rules:

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

• Two possible derviations:

$$E \rightarrow E + E$$

$$\rightarrow id + E$$

$$\rightarrow id + E * E$$

$$\rightarrow id + id * E$$

$$\rightarrow id + id * id$$

$$E \rightarrow E * E$$

$$\rightarrow E + E * E$$

$$\rightarrow id + E * E$$

$$\rightarrow id + id * E$$

$$\rightarrow id + id * id$$

Another Example

- Given the sentence: 9-5+2
- Production rules:

```
string → string + string

| string - string

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```


Another Example (Con'td)

To Deal with Ambiguity

 Disambiguating rules are used to throw away undesirable parse trees

- Two options to deal with ambiguity:
 - Enforce precedence and associativity of the existing rules
 - Rewrite the grammar (rules)

Precedence and Associativity to Resolve Conflicts

• The grammar G with the rules

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

- G is **ambiguous** because
 - it does not specify the associativity or precedence of the operators + and *

• The following grammar G' with the rules

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

- G' is unambiguous grammar that generates the same language
 - but gives + lower precedence than * (as the top figure), and makes both operators left associative
- There are parsers for both handling unambiguous and ambiguous grammars respectively

30

Example

- Given the sentence: id+id*id
- The following grammar G' with the rules

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

The corresponding derivations:

$$E \rightarrow E + T$$

$$\rightarrow T+T$$

$$\rightarrow F+T$$

$$\rightarrow id + T*F$$

$$\rightarrow$$
 id+ F * F

$$\rightarrow$$
 id+id* F

$$\rightarrow$$
 id+id*id

Extended Grammars

- Backus-Naur Form (BNF)
 - is a **formal grammar** for expressing context-free grammars
- The single grammar rule format:
 - Non-terminal → zero or more grammar symbols

 Actually, BNF extends the grammar notation defined above, with syntax for defining optional and repeated symbols

Optional Symbols

- Optional symbols are enclosed in square brackets
- In the production rule

$$A \rightarrow \alpha [X1...Xn] \beta$$

- the symbols X1 . . .Xn are entirely present or absent between the symbols of α and β
- Refer to Fig. 4.4 for the algorithm to transform a BNF grammar into standard form

Repeated Symbols

- Repeated symbols are enclosed in braces. In the production
- In the production rule

$$B \rightarrow \gamma \{ X1 \dots Xm \} \delta$$

- the entire sequence of symbols X1 . . . Xm can be repeated zero or more times
- Refer to Fig. 4.4 for the algorithm to transform a BNF grammar into standard form, which is accepted by parsers

Example of BNF

- The extensions are useful in representing many programming language constructs
- For example, in Java
 - Declarations can optionally include modifiers, such as final, static, and const, and
 - each declaration can include a *list* of identifiers
 - A production specifying a Java-like declaration could be as follows:
 Declaration→[final] [static] [const] Type identifier {, identifier}
 - Possible declarations:
 int a
 int a,b,c
 static int a
- This declaration insists that the modifiers be ordered as shown

Parsers and Recognizers

- Compilers are expected to
 - verify the syntactic validity of their inputs with respect to a grammar that
 - defines the programming language's syntax
- A recognizer is an algorithm determines if $x \in L(G)$, given a grammar G and an input string x
- A parser is a module that determines the string's validity and its structure (or parse tree)
 - The process of finding the structure in the flat stream of tokens is called **parsing**

Two Parsing Approaches

- Top-down parsers
 - Left-scan, Leftmost derivation
 - Best-known parser in this category, called LL parsers
- Bottom-up parsers
 - Left-scan, Rightmost derivation in reverse
 - Best-known parser in this category, called LR parsers

Top-Down Parsers

- A parser is considered top-down
 - if it generates a parse tree by starting at the root of the tree (the start symbol),
 - expanding the tree by applying productions in a depth-first manner
 - It corresponds to a preorder traversal of the parse tree
- Top-down parsing techniques are **predictive**
 - because they always predict the production that is to be matched before matching actually begins

Illustration of Top-Down Parsing

• A top-down parser begins by constructing the top node of the parse tree, which is the start symbol

Bottom-Up Parsers

- The **bottom-up** parsers generate a parse tree by
 - starting at the tree's leaves and working toward its root
 - A node is inserted in the tree only after its children have been inserted
- A bottom-up parse corresponds to a postorder traversal of the parse tree

Illustration of Bottom-Up Parsing

 The bottom-up parsing method constructs the nodes in the parse tree in post-order

To Refresh Your (and My) Memory

Several ways for tree traversals

- When traversing a node N in pre-order
 - the process first visits the node \bar{N} and then traverses N's subtrees in left-to-right order
- When traversing a node N in post-order
 - the process first traverses N's subtrees in left-to-right order and then visits the node N

Quick note
Preorder: Root, Left, Right
Postorder: Left, Right, Root

Example of the Parsers

 An example grammar generates the skeletal block structure of a hypothetical programming language

```
1 Program \rightarrow begin Stmts end $
2 Stmts \rightarrow Stmt; Stmts
3 \mid \lambda
4 Stmt \rightarrow simplestmt
5 \mid begin Stmts end
```

• The Fig. 4.5 and 4.6 illustrate a top-down and bottomup parse of the given string:

begin simplestmt; simplestmt; end \$

Top-Down Parsing Example

Legend:

- 1.Each box shows one step of the parse, with the particular rule denoted by bold lines between a parent (the rule's LHS) and its children (the rule's RHS)
- 2.Solid, non-bold lines indicate rules that have already been applied
- 3.Dashed lines indicate rules that have not yet been applied

Figure 4.5: Parse of "begin simplestmt; simplestmt; end \$" using the top-down technique. Legend explained on page 126.

Top-Down Parsing Example'

Fig. 4.5(a)
 shows the rule
 Program→begin
 Stmts end \$
 applied as the first step of a top-down parse

Legend:

- Each box shows one step of the parse, with the particular rule denoted by bold lines between a parent (the rule's LHS) and its children (the rule's RHS)
- 2. Solid, non-bold lines indicate rules that have already been applied
- 3. Dashed lines indicate rules that have not yet been applied

Figure 4.5: Parse of "begin simplestmt; simplestmt; end \$" using the top-down technique. Legend explained on page 126.

Top-Down Parsing Example'

1 Program→ begin Stmts end \$

2 Stmts \rightarrow Stmt; Stmts

3 | λ

4 Stmt → simplestmt

5 | begin Stmts end

Figure 4.5: Parse of "begin simplestmt; simplestmt; end \$" using the top-down technique. Legend explained on page 126.

April 7, 2017

(e)

(d)

47

(f)

Parsing Example'

1 Program→ begin Stmts end \$

2 Stmts \rightarrow Stmt; Stmts

3 | λ

4 Stmt → simplestmt

5 | begin Stmts end

Figure 4.5: Parse of "begin simplestmt; simplestmt; end \$" using the top-down technique. Legend explained on page 126.

April 7, 2017

Top-Down Parsing Example'

1 Program→ begin Stmts end \$

2 Stmts \rightarrow Stmt; Stmts

3 | λ

4 Stmt → simplestmt

5 | begin Stmts end

Figure 4.5: Parse of "begin simplestmt; simplestmt; end \$" using the top-down technique. Legend explained on page 126.

April 7, 2017

1 Program \rightarrow begin Stmts end \$
2 Stmts \rightarrow Stmt; Stmts
3 $\mid \lambda$ 4 Stmt \rightarrow simplestmt
5 \mid begin Stmts end

Figure 4.5: Parse of "begin simplestmt; simplestmt; end \$" using the top-down technique. Legend explained on page 126.

April 7, 2017

1 Program \rightarrow begin Stmts end \$
2 Stmts \rightarrow Stmt; Stmts
3 $\mid \lambda$ 4 Stmt \rightarrow simplestmt
5 \mid begin Stmts end

Figure 4.5: Parse of "begin simplestmt; simplestmt; end \$" using the top-down technique. Legend explained on page 126.

April 7, 2017

You would ...

- Practice the bottom-up parsing in Fig. 4.6
- If you get stuck
 - I assume you forget to read Section 4.1.1 and 4.1.2 ◎
 - Please carefully read the sections first and try it again

LL and LR Parsers

- LL and LR reflect
 - how the input is processed and which kind of parse is produced
 - The first character (L) states that the token sequence is processed from left to right
 - The second letter (L or R) indicates whether a leftmost or rightmost parse is produced
- The parsing technique can be further characterized by the number of lookahead symbols
 - i.e., symbols beyond the current token that the parser may consult to make
 - parsing choices
 - LL(1) and LR(1) parsers are the most common, requiring only one symbol of lookahead

Summary

- There is a many-to-one relationship between derivations and parse trees
 - A parse tree ignores variations in the order in which symbols in sentential forms are replaced
- While the parsing sequences of top-down and bottom-up parsing are different, two parsing techniques construct the same parse tree, as shown in Fig. 4.5 and 4.6

Why FIRST and FOLLOW?

- FIRST and FOLLOW
 - are the two important functions for the construction of top-down and bottom-up parsers
- FIRST and FOLLOW allow the parsers to choose which production to apply
- During panic-mode error recovery, sets of tokens produced by FOLLOW can be used as synchronizing tokens

FIRST

- FIRST(a)
 - refers to the set of **terminals** that begin strings derived from α
 - where α is any string of grammar symbols

Example:

- If $A \Rightarrow^* cy$, then *c* is in FIRST(A)
- If $\alpha \Rightarrow^* \lambda$, then then λ is also in FIRST (α)
- Given $A \Rightarrow a \mid b$
 - FIRST(A) is the union of FIRST (a) and FIRST(b),
 - where FIRST (a) and FIRST(b) are disjoint sets

FIRST (Cont'd)

- *Compute FIRST(X)
 - X is grammar symbol
 - We apply the following rules until no more terminals or λ can be added to it
 - 1. If X is a terminal (i.e., $X \in \Sigma$), then FIRST(X)={X}
 - 2. If $X \Rightarrow \lambda$ is a production (i.e., $X \in N$ and $X \Rightarrow \lambda$), then add λ to FIRST(X)
 - 3. If X is a non-terminal (i.e., $X \in N$) and $X \Rightarrow Y_1Y_2...Y_k$ is a production for some $k \ge 1$, then place α in FIRST(X) if for some i, α is in FIRST(Y_i), and λ is in all of FIRST(Y_1),...,FIRST(Y_{i-1})

If λ is in FIRST(Y_i) for all j=1,2,...,k, then add λ to FIRST(X)

*Courtesy of Compilers: Principles, Techniques, & Tools. Alfred V. Aho and et al. Pearson/Addison Wesley, 2007 (Section 4.4.2)

April 7, 2017

FIRST(a) Function

```
function First(\alpha) returns Set
    foreach A \in NonTerminals() do VisitedFirst(A) \leftarrow false
                                                                              9
   ans \leftarrow InternalFirst(\alpha)
   return (ans)
end
function InternalFirst(X\beta) returns Set
   if X\beta = \bot
                                                      Rule 2
                                                                              (10)
   then return (0)
   if X \in \Sigma
                                                      Rule 1
   then return (\{X\})
   /\star X is a nonterminal.
                                                      Rule 3
                                                                          */ (12)
   ans \leftarrow \emptyset
   if not VisitedFirst(X)
   then
        VisitedFirst(X) \leftarrow true
                                                                              (13)
       foreach rhs \in ProductionsFor(X) do
           ans \leftarrow ans \cup InternalFirst(rhs)
   if SymbolDerivesEmpty(X)
    then ans \leftarrow ans \cup InternalFirst(\beta)
   return (ans)
                                                                              (16)
end
```

Figure 4.8: Algorithm for computing First(α).

- SymbolDerivesEmpty(A) indicates whether or not the nonterminal A can derive λ
- **VisitedFirst(X)** is to indicate that the productions of X is already participate in the computation of FIRST(α)

Handling Endless Recursion

```
A \Rightarrow B
\cdot \cdot \cdot \cdot
B \Rightarrow C
\cdot \cdot \cdot \cdot
C \Rightarrow A
```

```
function First(\alpha) returns Set
   foreach A \in NonTerminals() do VisitedFirst(A) \leftarrow false
                                                                           (9)
   ans \leftarrow InternalFirst(\alpha)
   return (ans)
end
function InternalFirst(X\beta) returns Set
   if X\beta = \bot
                                                                          10
   then return (0)
   if X \in \Sigma
                                                                          (11)
   then return (\{X\})
   /\star X is a nonterminal.
                                                                       */ 12
   if not VisitedFirst(X)
       VisitedFirst(X) \leftarrow true
                                                                          (13)
       foreach rhs \in ProductionsFor(X) do
           ans - ans | Internal First (rhs)
   if SymbolDerivesEmpty(X)
   then ans \leftarrow ans \cup InternalFirst(\beta)
                                                                          (16)
   return (ans)
```

Figure 4.8: Algorithm for computing First(α).

- Termination of FIRST(A) must be handled properly in grammars
 - where the computation of FIRST(A) appears to depend on FIRST(A)
- VisitedFirst(X) is to indicate that the productions of X is already participate in the computation of FIRST(α)

FIRST(Cont'd)

- More about the Rule 3 in the previous page
- 3. If X is a non-terminal (i.e., $X \in N$) and $X \Rightarrow Y_1Y_2...Y_k$ is a production for some $k \ge 1$, then place α in FIRST(X) if for some i, α is in FIRST(Y_i), and λ is in all of FIRST(Y₁),...,FIRST(Y_{i-1})
- Examples:
 - Everything in FIRST(Y₁) is surely in FIRST(X)
 - If Y_1 does not derive λ , then we add nothing more to FIRST(X)
 - If $Y_1 \Rightarrow^* \lambda$, then we add FIRST(Y_2), and so on

Example

Given the grammar,

- $E \Rightarrow TE'$
- E' ⇒ +TE' | λ
- $T \Rightarrow FT'$
- $T' \Rightarrow *FT' \mid \lambda$
- $F \Rightarrow (E) \mid id$

where E is for expression, T is for term, and F is for factor. Please find the FIRST set of each symbol

- FIRST sets for E, T, F, E', and T':
 - $FIRST(E) = FIRST(T) = FIRST(F) = \{(, id)\}$
 - FIRST(E') = $\{+, \lambda\}$
 - FIRST(T') = $\{*, \lambda\}$

Another Example for FIRST

Given the grammar,

- $input \Rightarrow expression$
- expression ⇒ term rest_expression
- $term \Rightarrow ID \mid parenthesized_expression$
- parenthesized_expression ⇒ '(' expression ')'
- $rest_expression \Rightarrow '+' expression \mid \lambda$

FIRST sets for input, expression, term, parenthesized_expression, and rest_expression:

- FIRST (input) = FIRST(expression) =FIRST (term) ={ ID, (}
- FIRST (parenthesized_expression) = { (}
- FIRST (rest_expression) = $\{+, \lambda\}$

You Should ...

• Refer to Section 4.5.3 to do the exercise in Fig. 4.9 and 4.10

Note the *ans* does not contain λ , which may cause trouble for you to derive the results

1	$E \longrightarrow$	Pı	efix	(Ε)
2		٧	Tail			
3	$Prefix \to$	f				
4		λ				
5	Tail →	+	Ε			
6		λ				

Level

First

X

Figure 4.1: A simple expression grammar.

function First(α) returns Set foreach $A \in NonTerminals()$ do $VisitedFirst(A) \leftarrow false$ $ans \leftarrow InternalFirst(\alpha)$	9
return (ans)	
end	
function InternalFirst($X\beta$) returns Set	
if $X\beta = \bot$	10
then return (\emptyset)	
if $X \in \Sigma$	11
then return $(\{X\})$	
$/\star$ X is a nonterminal.	*/ 12
$ans \leftarrow \emptyset$	
if not VisitedFirst(X)	
then	
$VisitedFirst(X) \leftarrow \mathbf{true}$	13
foreach $rhs \in ProductionsFor(X)$ do	
$ans \leftarrow ans \cup InternalFirst(rhs)$	14)
if SymbolDerivesEmpty(X)	15
then $ans \leftarrow ans \cup InternalFirst(\beta)$	
return (ans)	16
end	

Figure 4.8: Algorithm for computing $First(\alpha)$.

				FIRST(Iall)		
0	Tail	\perp	{ }	12		
1	+	Е	{+}	11)	*	Tail → +E
1	Т	工	{ }	10	*	Tail → λ
0			{+}	14)		After all rules for Tai l
1	Т	Т	{ }	10	*	Since $\beta = \bot$
0			{+}	15)	*	Final answer
			,			
				First(Prefix))	
0	Prefix	\perp	{ }	12		
1	f		{ f }	11)	*	Prefix→f
1			{ }	10	*	$Prefix \! \to \! \lambda$
0			{ f }	14)		After all rules for Prefix
1	Т		{ }	10	*	Since $\beta = \bot$
0			{ f }	15)	*	Final answer
				First(E)		
0	Е	\perp	{ }	12		

Marker

First (Tail)

ans

Done?

 $(\star = Yes)$

Comment

(16) { f } Computation shown above Since Prefix $\Rightarrow^* \lambda$ E) 11 {(} * (15) { f,(} Results due to E→Prefix (E) E→v Tail Tail { V } (11) * Since $\beta = \bot$ \perp (10) (15) { f,(,v } Final answer *

Figure 4.9: First sets for the nonterminals of Figure 4.1.

FOLLOW

- FOLLOW(β)
 - refers to the set of terminals a that can appear immediately to the right of non-terminal β in some sentential form

Example:

- If $S \Rightarrow \alpha Aa\beta$, then a is in the set of FOLLOW(A)

FOLLOW (Cont'd)

- *FOLLOW(B)
 - where B is non-terminal,
 - *S* is the start symbol for the grammar, and
 - \$ is the input right end-marker
 - We apply the following rules for all nonterminals B until nothing can be added
 - 1. Place \$ in FOLLOW(S)
 - 2. If there is a production $A \Rightarrow \alpha B\beta$, then everything in **FIRST**(β) except λ is added to FOLLOW(B)
 - 3. If there is a production
 - (a) $A \Rightarrow \alpha B$, or
 - (b) $\overline{A} \Rightarrow \alpha \overline{B}\beta$, where FIRST(β) contains λ , then everything in **FOLLOW(A)** is added to FOLLOW(B)

FOLLOW (A) Function

```
function Follow(A) returns Set
   foreach A \in NonTerminals() do
       VisitedFollow(A) \leftarrow \mathbf{false}
                                                                         (17)
   ans \leftarrow InternalFollow(A)
   return (ans)
end
function Internal Follow (A) returns Set
   ans \leftarrow \emptyset
   if not VisitedFolow(A)
   then
       VisitedFollow(A) \leftarrow true
       foreach a \in Occurrences(A) do
                                                                                 Rule 2
           ans \leftarrow ans \cup First(Tail(a))
           if AllDeriveEmpty(Tail(a))
           then
               targ \leftarrow LHS(Production(a))
                                                                                  Rule 3
              ans \leftarrow ans \cup InternalFollow(targ)
   return (ans)
end
function AllDeriveEmpty(\gamma) returns Boolean
   foreach X \in \gamma do
       if not SymbolDerivesEmpty(X) or X \in \Sigma
       then return (false)
   return (true)
                                                                                  Rule 3
                                         (when argument \gamma is empty set (3a) or the
end
                                         following non-terminals in \nu all contain \lambda (3b))
Figure 4.11: Algorithm for computing Follow(A).
```

- SymbolDerivesEmpt y(A) indicates whether or not the nonterminal A can derive λ
- VisitedFollow(X) is to indicate that the productions of X is already participate in the computation of FOLLOW(A)
- What happens to `\$'? It is fine. Rule 1 is not defined in the primary textbook

Example

Given the grammar,

- $E \Rightarrow TE'$
- $-E' \Rightarrow +TE' \mid \lambda$
- $T \Rightarrow FT'$
- $T' \Rightarrow *FT' \mid \lambda$
- $F \Rightarrow (E) \mid id$

where E is for expression, T is for term, and F is for factor

Please find the FOLLOW set of each symbol

Example (Cont'd)

Given the grammar,

- $E \Rightarrow TE'$
- $E' \Rightarrow +TE' \mid \lambda$
- $T \Rightarrow FT'$
- $T' \Rightarrow *FT' \mid \lambda$
- $F \Rightarrow (E) \mid id$

E is start symbol

• FIRST sets for E, T, F, E', and T':

- $FIRST(E) = FIRST(T) = FIRST(F) = \{(i, id)\}$
- FIRST(E') = $\{+, \lambda\}$
- FIRST(T') = $\{*, \lambda\}$

- FOLLOW(B) Place \$ in FOLLOW(S)
- If there is a production $A \Rightarrow \alpha B\beta$, then everything in FIRST(β) except λ is added to FOLLOW(B)
- If there is a production $A \Rightarrow \alpha B$, or $A \Rightarrow \alpha B\beta$, where FIRST(β) contains λ , then everything in FOLLOW(A) is added to FOLLOW(B)

- FOLLOW sets for E, T, F, E', and T':
 - FOLLOW(\mathbf{E}) = {\$, }}
 - $FOLLOW(E') = FOLLOW(E) = \{\$, \}$
 - $FOLLOW(T) = FIRST(E') + FOLLOW(E') = \{+, \$, \}$
 - FOLLOW(T') = FOLLOW(T)= {+, \$,) }
 - FOLLOW(F) = $FIRST(T')+FOLLOW(T)+FOLLOW(T')=\{*,+,\$,)\}$

Another Example for FOLLOW

Given the grammar,

- input \Rightarrow expression
- *expression* ⇒ *term rest_expression*
- $term \Rightarrow ID \mid parenthesized_expression$
- parenthesized_expression ⇒ '(' expression ')'
- $rest_expression \Rightarrow '+' expression \mid \lambda$

FOLLOW(B)

- 1. Place \$ in FOLLOW(S)
- 2. If there is a production $A \Rightarrow \alpha B\beta$, then everything in FIRST(β) except λ is added to FOLLOW(B)
- 3. If there is a production (a) $A \Rightarrow \alpha B$, or (b) $A \Rightarrow \alpha B\beta$, where FIRST(β) contains λ , then everything in FOLLOW(A) is added to FOLLOW(B)

FOLLOW sets for input, expression, term, parenthesized_expression, and rest_expression

- FOLLOW (input) = {\$ } Rule 1
- FOLLOW (expression) = {\$, }} Rule 3(a) got \$; Rule 2 got }
- FOLLOW (term) = FOLLOW (parenthesized_expression) Rule3(a)
 = {+, \$,) } Rule 2 got +; Rule 3(b) got \$)
- FOLLOW (rest_expression) = { \$, }} Rule 3(a)

You Should ...

• Refer to Section 4.5.4 to do the exercise in Fig. 4.12 and 4.13

Just Another Example for FOLLOW

- Fig. 4.10 grammar
- Can you derive the FOLLOW sets for A, B?
- Because of different definition used in the book, S does not contain \$

$1 \ S \to A \ B \ c$		Level	Rule	Marker	Result	Comment	
$ \begin{array}{cccc} 1 & 3 \rightarrow A & B & C \\ 2 & A \rightarrow a & & & \\ 3 & & \lambda & & \\ 4 & B \rightarrow b & & & \\ 5 & & \lambda & & \\ \end{array} $ function Follow(A) returns Set foreach A \in NonTerminals() do		0	S→A <u>B</u> c		Low(B) Follow({c}	В)	
$VisitedFollow(A) \leftarrow \mathbf{false}$	itedFollow(A) \leftarrow false InternalFollow(A) (ans) NTERNALFOLLOW(A) returns Set	0		24	{ c }	Returns	
return (ans) end function InternalFollow(A) returns Set		Follow(A)					
$ans \leftarrow \emptyset$ if not V is ited F olow (A) then		0	$S \rightarrow ABc$	21)	Follow({b,c}	Α)	
$VisitedFollow(A) \leftarrow true$ foreach $a \in Occurrences(A)$ do	(19) (20)	0	_	24)	{ b,c }	Returns	
$ans \leftarrow ans \cup First(Tail(a))$ if AllDeriveEmpty(Tail(a)) then	(19) (20) (21)	Follow(S)					
$targ \leftarrow \text{LHS}(\text{Production}(a))$ $ans \leftarrow ans \cup \text{InternalFollow}(targ)$	23)	0			Follow(S)	
return (ans)	24	0		24	{ }	Returns	
end function AllDeriveEmpty(γ) returns Boolean							

Figure 4.12: Follow sets for the grammar in Figure 4.10. Note that $Follow(S) = \{ \}$ because S does not appear on the RHS of any production.

Figure 4.11: Algorithm for computing Follow(A).

if not SymbolDerivesEmpty(X) or $X \in \Sigma$

foreach $X \in \gamma$ do

return (true)

end

then return (false)

QUESTIONS?