Classification

- E.g. Predict if rooms>3 from area and price.
- Training data: $\{(\mathbf{x}^1, y^1), (\mathbf{x}^2, y^2), \dots, (\mathbf{x}^n, y^n)\}$
- $\mathbf{x}^i \in \mathbb{R}^d, y^i \in \{+1, -1\}$
- Algorithm outputs a model $f: \mathbb{R}^d {
 ightarrow} \{+1, -1\}$
- Loss $=\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}(f(\mathbf{x}^i)\neq y^i)$ = Fraction of training data classified wrongly by f
- $f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$

Linear separator

Classification Illustration 1

X	z	f	g	½	.	f = -1		
[0,0]	+1	+1	+1	4 1	f = +1	<i>f</i> = '	×	
[0,1]	+1	+1	-1				~	
[1,0]	+1	+1	+1	3			X	
[4,4]	-1	-1	-1	,		g	<u>-</u> -1	
[3,4]	-1	-1	-1	2 +			9=+1	
[4,3]	-1	- 1	- 1	1 *				
								\rightarrow
	I			D)	2 3	÷	x,
f (x)) =	Sign	(2-x,)	Loss [f]= 1 (0)) = 0	
g (x)	2	Sign	(x,-2	24)	Loss [g] = /(/)	· 1/6	

Classification Illustration 2

Area	Price	Rooms						
9	5.0	-1	Rooms=1 or 2 or 3 is encoded as -1.					
7	3.1	-1	Rooms > 3 is encoded as +1					
12	6.9	+1	f g h					
16	9.7	+1						
15	8.5	+1						
11	7.1	+1	+1					
		n (area - gn (price						
$g(x) = Sign \left(Pri'ce - 6\right)$ $h(x) : Sign \left(Pri'ce - 9\right)$								

Evaluating Learned Models: Test Data

- Learning algorithm uses training data $(x^1, y^1), \ldots, (x^n, y^n)$ to get model f.
- But evaluating the learned model must **not** be done on the training data itself.
- · Use test data that is **not** in the training data for model evaluation.

Model Selection: Validation Data

- Learning algorithms just find the "best" model in the collection of models given by the human.
- How to find the right collection of models?
- This is called model selection, and it is done by using another subset of data called **validation data** that is distinct from train and test data.