Project 1 Report

${\bf CMSC}$ 409 - Artificial Intelligence

Steven Hernandez

Fully generated data can be found in 'Project1_data/data.txt

Scenerio 1 using only height.

	Weights	
X	1.0	
bias	5.6	

Figure 1:

Assuming the following

Or in this situation:

1 if $0 \le -a(Height) + bias$, otherwise 0

$$net = \sum_{i=1}^{n} w_i x_i \qquad out = \begin{cases} 1 & if \ net \ge 0 \\ 0 & if \ net < 0 \end{cases}$$

Figure 2:

where a is some weight and 1 is male and 0 is female.

	Predicted Male	Predicted Female
Actual Male	1774	226
Actual Female	371	1629

Scenerio 2 heights and weights.

Confusion Matrix

	Weights
x	-290
y	1
bias	1860

Error	0.14925
Accuracy	0.85075
True Positive Rate	0.887
True Negative Rate	0.8145
False Positive Rate	0.1855
False Negative Rate	0.113

Assuming the following

Or in this situation:

1 if $0 \le a(\text{Height}) - b(\text{Weight}) + \text{bias}$, otherwise 0

where a and b are some weights and 1 is male and 0 is female.

where w_i is weight and

Confusion Matrix

	Predicted Male	Predicted Female
Actual Male	1420	580
Actual Female	37	1963

Error	0.15425
Accuracy	0.84575
True Positive Rate	0.71
True Negative Rate	0.9815
False Positive Rate	0.0185
False Negative Rate	0.29

Weight and Height for Male vs Female

Figure 3:

$$net = \sum_{i=1}^{n} w_i x_i \qquad out = \begin{cases} 1 & if \ net \ge 0 \\ 0 & if \ net < 0 \end{cases}$$

Figure 4:

The full code can be found in 'project1.py

```
def generate_random_data():
   data_file = open(dataFileName, "w")
    for gender in range (0, 2):
       height_mean = 70 / 12 if gender == 0 else 65 / 12
        weight_mean = 200 if gender == 0 else 165
        for i in range(0, 2000):
            # generate random heights and weights in a `normalized` way
            height = np.random.normal(height_mean, 0.2)
            weight = np.random.normal(weight_mean, 20)
            data_file.write(str(height) + "," + str(weight) + "," + str(gender) + "\n")
   data_file.close()
def plot_male_and_females(data_frame, remove_y_axis=False):
   males, females = separate_males_and_females(data_frame)
   male_x = males[0]
   male_y = np.full(males[0].shape, 0) if remove_y_axis else males[1]
   female x = females[0]
   female_y = np.full(males[0].shape, 0) if remove_y_axis else males[1]
  male_plot = plt.scatter(male_x, male_y, s=area, c=np.full(males[2].shape, 'r'), alpha=0.5)
  female_plot = plt.scatter(female_x, female_y, s=area, c=np.full(females[2].shape, 'g'), alpha=0.5)
   plt.legend((male_plot, female_plot),
               ('Male', 'Female'),
               scatterpoints=1,
               loc='lower left',
               ncol=3,
               fontsize=8)
    if remove_y_axis:
       plt.title("Height for Male vs Female")
       plt.xlabel("Height (ft)")
    else:
        plt.title("Weight and Height for Male vs Female")
        plt.xlabel("Height (ft)")
       plt.ylabel("Weight (lbs)")
def plot_male_and_females(data_frame, remove_y_axis=False):
   males, females = separate_males_and_females(data_frame)
   male_x = males[0]
   male_y = np.full(males[0].shape, 0) if remove_y_axis else males[1]
   female_x = females[0]
```

```
female_y = np.full(males[0].shape, 0) if remove_y_axis else males[1]
  male_plot = plt.scatter(male_x, male_y, s=area, c=np.full(males[2].shape, 'r'), alpha=0.5)
  female_plot = plt.scatter(female_x, female_y, s=area, c=np.full(females[2].shape, 'g'), alpha=0.5)
   plt.legend((male_plot, female_plot),
               ('Male', 'Female'),
               scatterpoints=1,
               loc='lower left',
               ncol=3,
               fontsize=8)
    if remove_y_axis:
        plt.title("Height for Male vs Female")
       plt.xlabel("Height (ft)")
    else:
        plt.title("Weight and Height for Male vs Female")
        plt.xlabel("Height (ft)")
       plt.ylabel("Weight (lbs)")
def get_confusion_matrix(data_frame, sep_line):
   true_positive = 0
   true negative = 0
   false_positive = 0
   false_negative = 0
   for row in data_frame.iterrows():
        r = row[1]
        if len(sep_line[0]) == 3:
            height = r[0]
            weight = r[1]
            gender = r[2]
            x_weight = sep_line[0][0]
            y_weight = sep_line[0][1]
            bias = sep_line[0][2]
            \# 0 \le bx + x - ay
            if (x_weight * height) + bias - (y_weight * weight) >= 0:
                if gender == 1:
                    true_positive += 1
                else:
                    false_positive += 1
            else:
                if gender == 0:
                    true_negative += 1
                else:
                    false_negative += 1
        else:
            height = r[0]
            weight = r[1]
            gender = r[2]
            x_weight = sep_line[0][0]
```

```
bias = sep_line[0][1]
        # 0 <= bx - c
        net = x_weight * height - bias * 1
        if net < 0:
            if gender == 1:
                true_positive += 1
            else:
                false_positive += 1
        else:
            if gender == 0:
                true_negative += 1
            else:
                false\_negative += 1
return (true_positive,
       true_negative,
        false_positive,
        false_negative)
```

Libraries Used

 $matplotlib,\ numpy,\ pandas,\ markdown 2pdf$