\mathbb{A}^1 -INVARIANCE FOR UNSTABLE K_2

S. SINCHUK, A. STAVROVA, AND A. LAVRENOV

1. AIM OF THE PAPER

The aim of this text is to prove that the non-stable K_2 -functors K_2^G , where G is a simply connected Chevalley group of suitable type, satisfy \mathbb{A}^1 -invariance on regular rings R containing a field k, that is,

{eq:A1-main}

(1.1)
$$K_2^G(R[t]) = K_2^G(R).$$

As a corollary, we should easily deduce that

$$K_2^G(R) = KV_2^G(R),$$

where $KV_2^G(R)$ is the Karoubi–Villamayor K-functor associated to G. This functor originates from [5]. The above equality by e.g. [2, Corollary 4.3.3] implies that $\pi_1^{\mathbb{A}^1}(G)(R) = K_2^G(R)$, i.e. we obtain an explicit presentation for the \mathbb{A}^1 -fundamental group of G in the sense of Morel–Voevodsky.

"Suitable type" here means that we consider only the cases where we know the centrality of K_2 , or at least the Quillen-Suslin lgp. Some intermediate steps can be proved in larger generality.

Essentially, we need to prove that $K_2^G(k[x_1,\ldots,x_n])=K_2^G(k)$. (Then (1.1) follows by standard geometric methods.) There are two models: Tulenbaev's proof for the SL_n case [12] and Stavrova's proof for K_1^G [9]. Tulenbaev [12] uses stabilization of the K_2 -functor, and the good properties of the limit=algebraic K-theory. In [9] stabilization is not used. However, the key steps of both proofs are the same: the case of R=k (hidden somewhere around [12, p. 140], or, respectively, [9, Theorem 3.1]); Quillen-Suslin lgp; \mathbb{P}^1 -gluing (see [12, Theorem 5.1] or [9, Theorem 1.1]).

1.1. The case R=k. We consider the case of $K_2^G(k[t])$ vs. $K_2^G(k)$. (As in the \mathbb{A}^1 -invariance of K_1^G , this case should be used to deduce that $K_2^G(k[t_1,\ldots,t_n])=K_2^G(k)$.)

In Tulenbaev's framework, it follows from stabilization. However, the equality $K_2^G(k[t]) = K_2^G(k)$ is sort of known for all groups. Namely, in [16, Theorem 5.1]: let k be an infinite field and let G be a connected reductive group over k. Then the inclusion $k \hookrightarrow k[t]$ induces an isomorphism

$$H_{\bullet}(G(k), \mathbb{Z}) \xrightarrow{\cong} H_{\bullet}(G(k[t]), \mathbb{Z}),$$

if the order of the fundamental group of G is invertible in k. Once we know that the homology H_2 coincides with K_2^G (on both sides), this gives the result. It would be nice to check Wendt's proof; maybe, discuss it in a seminar?

Is it necessary to know the centrality in order to show that K_2^G coincides with H_2 ? If yes, then we probably know it for $K_2^G(k)$ even for isotropic groups [3], but only for the

²⁰¹⁰ Mathematics Subject Classification. 19C09, 19C20, 14L15, 20G35.

Key words and phrases. Chevalley group, non-stable K_2 -functor, Steinberg group.

good Chevalley groups for $K_2^G(k[t])$. We should try to understand what is proved in [14, Proposition 5.3] using only the universality of the Steinberg group. This may be useful. The paper is unpublished, so again everything should be double-checked if you want to refer to it.

1.2. Plan of the proof.

plan:3t

(1) (done, see Theorem 2). Let R be a local ring. Show that

$$\operatorname{St}^{\operatorname{G}}(R[t^{\pm 1}]) = i_{+}(\operatorname{St}^{\operatorname{G}}(R[t]))i_{-}(\operatorname{St}^{\operatorname{G}}(R[t^{-1}]))i_{+}(\operatorname{St}^{\operatorname{G}}(R[t]))$$

Here i_{\pm} denote the natural homomorphisms into $\mathrm{St}^{\mathrm{G}}(R[t^{\pm 1}])$.

(2) (done, see Theorem 4). Show that $K_2^G(k[t]) = K_2^G(k)$.

(3) (done). Consequently, $\operatorname{St}^{G}(k[t]) \to \operatorname{St}^{G}(k[t^{\pm 1}])$ is injective and $\operatorname{St}^{G}(k[t]) \cap \operatorname{St}^{G}(k[t^{-1}]) = \operatorname{St}^{G}(k)$ inside $\operatorname{St}^{G}(k[t^{\pm 1}])$. Also, $K_{2}^{G}(k) = K_{2}^{G}(k[t^{\pm 1}])$.

The first claim uses (2). The second claim follows from (2) and (1).

(4) (**done** for split ACDE, see Theorem 1.(ii)). Prove Quillen-Suslin lgp for K_2^G .

(5) (Zariski gluing) for any commutative ring A and any non-nilpotent $f, g \in A$ such that A = fA + gA, the sequence of pointed sets

$$1 \longrightarrow K_2^G(A) \xrightarrow{g \mapsto (g,g)} K_2^G(A_f) \times K_2^G(A_g) \xrightarrow{(g_1,g_2) \mapsto g_1g_2^{-1}} K_2^G(A_{fg})$$

is exact. The proof is usually almost the same as for (4).

(Remark. It seems that we need this property only for A=R[t] and f,g non-constant polynomials.)

(6) (S-lemma) Let A be a commutative ring, S a multiplicative subset of A. If

$$K_2^G(A[X_1,...,X_n]) = K_2^G(A)$$

for some $n \geq 1$, then $K_2^G(A_S[X_1, \dots, X_n]) = K_2^G(A_S)$ as well.

This should be easy; see [1, Lemma 3.6].

(7) (Nisnevich gluing) Assume that B is a subring of a commutative ring A, and let $h \in B$ be a non-nilpotent element. Denote by $F_h: A \to A_h$ the localization homomorphism.

(i) If Ah + B = A, i.e. the natural map $B \to A/Ah$ is surjective, then for any $x \in St^{G}(A_h)$ there exist $y \in St^{G}(A)$ and $z \in St^{G}(B_h)$ such that $x = F_h(y)z$.

(ii) If moreover $Ah \cap B = Bh$, i.e. $B/Bh \to A/Ah$ is an isomorphism, and h is not a zero divisor in A, then the sequence of pointed sets

$$K_2^G(B) \xrightarrow{g \mapsto (F_h(g),g)} K_2^G(B_h) \times K_2^G(A) \xrightarrow{(g_1,g_2) \mapsto g_1 F_h(g_2)^{-1}} K_2^G(A_h)$$

is exact.

This should use something from the proof of (4) or (5); see [9, Lemma 3.4].

(8) (\mathbb{P}^1 -gluing) Let A be any commutative ring. Show that the sequence of pointed sets

$$1 \longrightarrow K_2^G(A) \xrightarrow{g \mapsto (g,g)} K_2^G(A[t]) \times K_2^G(A[t^{-1}]) \xrightarrow{(g_1,g_2) \mapsto g_1g_2^{-1}} K_2^G(A[t,t^{-1}])$$

is exact.

This should use (1)–(4).

- (a) Prove Proposition 5.9. This is hard. Have no idea how this can be proved at the moment.
- (b) Prove \mathbb{P}^1 -glueing using all the above facts.

plan:k[t] n:k-intersect

> plan:QSlgp plan:Zglu

plan:S-lemma

plan:Nglu

plan:P1

plan:[]f

(9) (Main corollary of \mathbb{P}^1 -gluing) Let A be any commutative ring, and let $f \in A[t]$ be a monic polynomial. Show that $K_2^G(A[t]) \to K_2^G(A[t]_f)$ is injective. The proof uses (5) and (8).

plan:k(t)

(10) Prove that $K_2^G(k(t)) = K_2^G(k)$. This may be a bit tricky; I will think if we can get rid of it. I don't think Tulenbaev uses it. Unsure whether this is true (?). This is true for SK_1 but in view of Milnor's theorem can not hold for K_1 and K_2 .

plan:k[tn]

(11) Prove that

$$K_2^G(k[t_1,\ldots,t_n]) = K_2^G(k).$$

If we strictly follow the pattern of K_1^G , this uses (9), (2), and (10). There may be other ways.

plan:final

(12) Final result: let R be a regular ring containing a field k. Then $K_2^G(R[t]) = K_2^G(R)$. This uses (4), (11) and (7).

2. Steinberg groups: Preliminaries

2.1. **Definition and basic properties.** Let G be a split simple Chevalley groups with a root system Φ of rank ≥ 2 . Recall that the *Steinberg group* $\operatorname{St}^{G}(R)$ (also denoted $\operatorname{St}(\Phi, R)$) is defined by means of generators $\mathcal{X}_{\Phi,R} = \{x_{\alpha}(\xi) \mid \xi \in R, \alpha \in \Phi\}$ and the set of relations $\mathcal{R}_{\Phi,R}$ defined as follows:

{rel:add}

 $(2.1) x_{\alpha}(s)x_{\alpha}(t) = x_{\alpha}(s+t),$

{rel:CCF}

 $[x_{\alpha}(s), x_{\beta}(t)] = \prod x_{i\alpha+j\beta} \left(N_{\alpha\beta ij} s^{i} t^{j} \right), \quad \alpha \neq -\beta, \quad N_{\alpha\beta ij} \in \mathbb{Z}.$

The indices i, j appearing in the right-hand side of the above relation range over all positive natural numbers such that $i\alpha + j\beta \in \Phi$. The structure constants $N_{\alpha\beta ij} = \pm 1, 2, 3$ appearing in (2.2) depend only on Φ and can be computed precisely.

Recall that for $\alpha \in \Phi$, $\varepsilon \in R^*$ the semisimple root elements $h_{\alpha}(\varepsilon)$ are defined as $h_{\alpha}(\varepsilon) = w_{\alpha}(\varepsilon)w_{\alpha}(-1)$. Denote by W(Φ , R) the subgroup of St(Φ , R) generated by all elements $w_{\alpha}(\varepsilon)$, $\varepsilon \in R^*$.

2.2. **Relative Steinberg groups.** Denote by D(R,I) the double of the ring R relative to an ideal I, i.e. the fibered product of rings $R \times_{R/I} R$ with the natural projections $p_1, p_2 \colon D(R,I) \to R$ defined by $p_i(\xi_1, \xi_2) = \xi_i$, i = 1, 2. Denote by G_i the kernel of the map $p_i^* \colon \operatorname{St}^G(D(R,I)) \to \operatorname{St}^G(R)$. We define the relative Steinberg group $\operatorname{St}^G(R,I)$ as G_1/C , where $C = [G_1, G_2]$. Clearly, there is an exact sequence.

{eq:suite}

$$(2.3) 1 \longrightarrow (G_1 \cap G_2)/C \longrightarrow \operatorname{St}^{G}(R,I) \xrightarrow{\overline{p_2^*}} \operatorname{St}^{G}(R) \xrightarrow{\pi^*} \operatorname{St}^{G}(R/I) \longrightarrow 1$$

Lemma 2.1. Assume that R and I are such that the canonical projection $R \to R/I$ splits. Then the following facts are true.

item:st-inj
item:st-semi

- (i) The map $St^{G}(R, I) \to St^{G}(R)$ is an injection.
- (ii) The group $\operatorname{St}^{\operatorname{G}}(R)$ is isomorphic to $\operatorname{St}^{\operatorname{G}}(R/I) \ltimes \operatorname{St}^{\operatorname{G}}(R,I)$.

Proof. For the proof of the first assertion see [8, Lemma 8]. Since the group $(G_1 \cap G_2)/C$ vanishes, the sequence (2.3) turns into a split short exact sequence which implies the second assertion.

lem:Zgen

Lemma 2.2. Let Σ be the special subset of some parabolic subset of roots $S \subseteq \Phi$. Then the relative Steinberg group $\operatorname{St}^{G}(R,I)$ admits the following generating set:

$$\mathcal{Z}(\Sigma, R, I) = \{x_{\alpha}(0, s) \cdot C \mid s \in I, \alpha \in \Phi\} \cup \{z_{\alpha}(s, \xi) \mid s \in I, \xi \in R, \alpha \in \Sigma\},\$$

where $z_{\alpha}(s,\xi)$ denotes the element $x_{\alpha}(0,s)^{x_{-\alpha}(\xi,\xi)} \cdot C$.

Proof. See [8, Lemma 5].

2.3. Tulenbaev's lifting property and its corollaries. Throughout this section $I \subseteq A$ is an ideal of arbitrary commutative ring A. For a nonnilpotent element $a \in A$ denote by $\lambda_a \colon A \to A_a$ the morphism of principal localization at a. Consider the following commutative square.

{msq}

(2.4)

$$\begin{array}{ccc}
A & \xrightarrow{\lambda_a} & A_a \\
\downarrow & & \downarrow \\
A/I & \xrightarrow{\overline{\lambda_a}} & A_a/I_a
\end{array}$$

Notice that (2.4) is a pull-back square if and only if λ_a induces an isomorphism of I and I_a . Such squares are usually called *Milnor squares* in the literature, see [15, Ch. I, § 2].

The following property of linear Steinberg groups was discovered for the first time by Tulenbaev (see [12, Lemmas 2.3, 3.2]) and plays a key role in the sequel.

def:tlp

Definition 2.3. We say that the Steinberg group functor St^G satisfies *Tulenbaev's lifting* property if for every pull-back square (2.4) the following lifting problem has a solution.

$$\operatorname{St}^{\operatorname{G}}(A,I) \xrightarrow{\mu} \operatorname{St}^{\operatorname{G}}(A)$$

$$\downarrow \qquad \qquad \downarrow \lambda_{a}^{*}$$

$$\operatorname{St}^{\operatorname{G}}(A_{a},I) \xrightarrow{\mu} \operatorname{St}^{\operatorname{G}}(A_{a})$$

Theorem 1. Assume that G satisfies Tulenbaev property (2.3) then the following facts are true for arbitrary commutative ring A:

thm:dp

(i) A dilation principle holds for $St^{G}(-)$, i. e. if $g \in St^{G}(A[t], tA[t])$ is such that equality $\lambda_a^*(h) = 1$ holds in $St^{G}(\Phi, R_a[t])$ then for sufficiently large n one has

$$ev_{\left[\frac{R[t]\to R[t]}{t\mapsto a^n\cdot t}\right]}^*(h)=1.$$

thm:lg-k2

(ii) A local-global principle holds for $St^{G}(-)$, i. e. an element $g \in St^{G}(A[t], tA[t])$ is trivial if and only if its image in $St^{G}(A_{m}[t], tA_{m}[t])$ is trivial for all maximal ideals $m \leq A$.

thm:centr

(iii) $K_2^G(A)$ is contained in the centre of $St^G(A)$.

Proof. Follows by the same argument as [12, Theorem 2.1] or [8, Theorem 2]

3. Decomposition theorems for $\mathrm{St}^{\mathrm{G}}(A[t^{\pm 1}])$ and $\mathrm{St}^{\mathrm{G}}(A((t)))$.

Lemma 3.1. Let (R, m) be a local ring, and let G be a simply connected simple group over R of isotropic rank ≥ 2 . Let $i_+: \operatorname{St}^{G}(R[t]) \to \operatorname{St}^{G}(R[t^{\pm 1}])$ and $i_-: \operatorname{St}^{G}(R[t^{-1}] \to \operatorname{St}^{G}(R[t^{\pm 1}])$ be the natural homomorphisms. Then

$$i_{+}(\operatorname{St}^{\operatorname{G}}(m \cdot R[t])^{\operatorname{St}^{\operatorname{G}}(R[t])})i_{-}(\operatorname{St}^{\operatorname{G}}(R[t^{-1}]) = i_{-}(\operatorname{St}^{\operatorname{G}}(R[t^{-1}])i_{+}(\operatorname{St}^{\operatorname{G}}(m \cdot R[t])^{\operatorname{St}^{\operatorname{G}}(R[t])})$$
inside $\operatorname{St}^{\operatorname{G}}(R[t^{\pm 1}])$.

Proof. This is proved exactly as [9, Lemma 5.12].

thm:3t

Theorem 2. Let R be a local ring, and let G be a simply connected simple group over R of isotropic rank ≥ 2 . Let $i_+: \operatorname{St}^G(R[t]) \to \operatorname{St}^G(R[t^{\pm 1}])$ and $i_-: \operatorname{St}^G(R[t^{-1}] \to \operatorname{St}^G(R[t^{\pm 1}])$ be the natural homomorphisms. Then

$$\operatorname{St}^{\operatorname{G}}(R[t^{\pm 1}]) = i_{+}(\operatorname{St}^{\operatorname{G}}(R[t]))i_{-}(\operatorname{St}^{\operatorname{G}}(R[t^{-1}]))i_{+}(\operatorname{St}^{\operatorname{G}}(R[t])).$$

Proof. This is proved exactly as [9, Theorem 5.1].

sec:stbA3

4. Steinberg groups: Another presentation

4.1. **Presentation of** St(4, R). The main goal of this subsection is to show that Tulenbaev's [12, Lemma 2.3] remains valid for the linear Steinberg group of rank ≥ 3 . In order to do this we will need yet another presentation for the relative linear Steinberg group (cf. [8, Definitions 3.3 and 3.7]).

dfn:yap

Definition 4.1. The relative Steinberg group $St^*(n, R, I)$ is the group defined by the following two families generators and four families of relations.

- Generators:
 - (1) $X^1(u, v)$, where $u \in E(n, R) \cdot e_1$, $v \in I^n$ such that $v^t \cdot u = 0$;
 - (2) $X^2(u,v)$, where $u \in I^n$, $v \in E(n,R) \cdot e_1$ such that $v^t \cdot u = 0$.

Notice that ϕ maps both $X^1(u,v)$ and $X^2(u,v)$ to $T(u,v)=e+u\cdot v^t\in \mathrm{E}(n,R,I)$.

- Relations:
 - (1) $X^1(u,v) \cdot X^1(u,w) = X^1(u,v+w), u \in E(n,R) \cdot e_1, v,w \in I^n;$
 - (2) $X^{2}(u,v) \cdot X^{2}(w,v) = X^{2}(u+w,v), u,w \in I^{n}, v \in E(n,R) \cdot e_{1};$
 - (3) $X^{\sigma(u^2,v^2)}X^{\tau}(u^1,v^1) = X^{\tau}(T(u^2,v^2) \cdot u^1, T(v^2,u^2)^{-1} \cdot v^1), \ \sigma, \tau = 1, 2;$
 - (4) $X^1(g \cdot e_1, g^* \cdot be_2) = X^2(g \cdot be_1, g^* \cdot e_2)$ where $b \in I$ and $g^* = g^{t-1}$ denotes the contragradient matrix.

Lemma 4.2. The groups $St^*(n, R, I)$ and St(n, R, I) are isomorphic.

Proof. **TODO:**

The next step of the proof is to is construct certain elements in St(n, R) similar to Tulenbaev's elements $X_{u,v}(a)$ see [12, § 1].

Let $v \in R^n$ be a column. Denote by O(v) the submodule of R^n consisting of all columns w such that $w^t \cdot v = 0$. A column $w \in R^n$ is called v-decomposable if it can be presented as a finite sum $w = \sum_{i=1}^p w^i$ such that each w^i has at least two zero entries and $v^t \cdot w^i = 0$. Denote by D(v) the submodule of O(v) consisting of all v-decomposable columns. For a column $v \in R^n$ denote by I(v) the ideal of R spanned by its entries v_1, \ldots, v_n .

Let $u, v, w \in \mathbb{R}^n$ be columns such that $w^t v = 0$. It is easy to check (cf. [6, Lemma 3.2]) that

$$(uv) \cdot w = \sum_{i < j} w_{ij}$$
, where $w_{ij} = (w_i u_j - w_j u_i)(v_j e_i - v_i e_j) \in A^n$.

The above decomposition is called the *canonical* decomposition of $(uv) \cdot w$. In particular, this shows that the column $a \cdot w$ is always v-decomposable for $a \in I(v)$, $w \in O(v)$, i.e. $I(v) \cdot O(v) \subseteq D(v)$. It is also straightforward to check that $D(v) \subseteq D(bv)$, $b \cdot D(v) \subseteq D(v)$ for $b \in R$.

Denote by B^1 the subset of $R^n \times R^n \times R$ consisting of triples (u, v, a) such that $v^t \cdot u = 0$, $v \in D(u)$, $a \in I(u)$. Denote by B^2 the set consisting of triples (v, u, a) such that $(u, v, a) \in B^1$.

lem:Zfacts

Lemma 4.3. Assume that $n \ge 4$. One can define two families of elements $Z^{\tau}(u, v, a)$, $\tau = 1, 2$ of the group St(n, R) parametrized by $(u, v, a) \in B^{\tau}$ satisfying the following properties:

- (1) $\phi(Z^{\tau}(u, v, a)) = e + uav^{t} \in E(n, R), (u, v, a) \in B^{\tau};$
- (2) $Z^1(u, v + w, a) = Z^1(u, v, a) \cdot Z^1(u, w, a);$
- (3) $Z^{2}(v+w,u,a) = Z^{2}(v,u,a) \cdot Z^{2}(w,u,a);$
- (4) for $\tau = 1, 2$ and $b \in R$ if $(u, vb, a), (ub, v, a) \in B^{\tau}$ then one has

$$Z^{\tau}(u, vb, a) = Z^{\tau}(u, v, ab) = Z^{\tau}(ub, v, a);$$

(5)
$${}^{g}Z^{\tau}(u, v, a) = Z^{\tau}(\phi(g) \cdot u, \phi(g)^* \cdot v, a), \ \tau = 1, 2, \ g \in St^{G}(n, R).$$

Proof. One constructs the elements $Z^1(u, v, a)$ in exactly the same way as Tulenbaev constructs his elements $X_{u,v}(a)$ (see definitions preceding [12, Lemma 1.2]). Indeed, set

(4.1)
$$Z^{1}(v, w, a) = \prod_{k=1}^{p} X(v, a \cdot w^{k}), \quad Z^{2}(w, v, a) = \prod_{k=1}^{p} X(a \cdot w^{k}, v).$$

where X(u, v) denotes the elements defined by Tulenbaev before [12, Lemma 1.1].

The correctness of this definition and all the assertions of the lemma (with the exception of the last one in the case n=4) can be proved by the same token as in [12, Lemma 1.3]. \square

For the rest of this section a denotes a nonnilpotent element of R and $\lambda_a \colon R \to R_a$ is the morphism of principal localization at a.

lem:rk3rels

Lemma 4.4. For any $g \in E(n, R_a)$ there exist $u, v \in R^n$ and sufficiently large natural numbers k, m such that the following facts hold:

- (1) $\lambda_a(u) = g \cdot a^k e_1$, $\lambda_a(v) = g^* \cdot a^k e_2$ and $u^t \cdot v = 0$;
- (2) $(u, v, a^m) \in B^1 \cap B^2$;
- (3) for $b \in R$ divisible by some sufficiently large power of a one has

$$Z^1(u, b \cdot v, a^m) = Z^2(b \cdot u, v, a^m).$$

Proof. It is straightforward to choose u and v satisfying the first requirement of the lemma. We can even choose u, v in such a way that $u \in D(v)$ and $v \in D(u)$. Indeed, notice that $I(u) = a^{k_1}$, $I(v) = a^{k_2}$ for some natural k_1 , k_2 hence for $u' = a^{k_2} \cdot u$ and $v' = a^{k_1} \cdot v$ one has

$$u' \in I(v) \cdot O(v) \subseteq D(v) \subseteq D(v'), \quad v' \in I(u) \cdot O(u) \subseteq D(u) \subseteq D(u'),$$

as required.

In fact, we can also choose two extra columns $x, y \in \mathbb{R}^n$ and a large natural p in such a way that vectors u, v, x, y additionally satisfy the following properties

$$\lambda_{a}(x) = g^{*} \cdot a^{k} e_{3}, \ \lambda_{a}(y) = g \cdot a^{k} e_{3}, \ y^{t} \cdot x = a^{p} \in R,$$
$$u^{t} \cdot x = 0, \ u^{t} \cdot v = 0, \ y^{t} \cdot v = 0,$$
$$(u, x, a^{m}) \in B^{1}, \ (y, v, a^{m}) \in B^{2}.$$

Now direct computation using Lemma 4.3 shows that

$$\begin{split} Z^2(a^{m+p}b \cdot u, v, a^m) &= Z^2(b \cdot (e + a^m \cdot ux^t)y, (e - a^m \cdot xu^t)v, a^m) \cdot Z^2(-by, v, a^m) = \\ &= [Z^1(u, x, a^m), Z^2(b \cdot y, v, a^m)] = \\ &= Z^1(u, x, a^m) \cdot Z^1((e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^{m+p}b \cdot v, a^m), \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^m)u, \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m) = Z^1(u, a^m)u, \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m)u, \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m)u, \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m)u, \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m)u, \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m)u, \quad \Box (e + a^mb \cdot yv^t)u, -(e - a^mb \cdot vy^t)x, a^m)u, \quad \Box (e + a^mb \cdot yv^t)u, \quad \Box (e + a^mb \cdot yv^t)u,$$

hence the third assertion of the lemma follows.

cor:tlpA3

Corollary 4.5. For $G = G(A_3, -)$ the Steinberg group functor $St^G(R)$ satisfies Tulenbaev lifting property 2.3.

Proof. Follows from Lemma 4.4 by the same token as in [12, Lemma 2.3]. \Box

sec:sigma

4.2. Application: centrality of K_2 in the simply-laced case.

4.3. **Application:** the automorphisms σ_i . Our notation and conventions follows [13, § 4]. Let Φ be an irreducible root system with some fixed basis of simple roots $\Pi = \{\alpha_1, \ldots, \alpha_\ell\}$. We denote by Φ^{\vee} the dual root system of Φ consisting of vectors $\alpha^{\vee} = 2\alpha/(\alpha, \alpha)$, $\alpha \in \Phi$. As usual, $P(\Phi^{\vee})$ denotes the lattice spanned by the fundamental weights ϖ_i . Recall that ϖ_i are uniquely determined by relations $\langle \varpi_i, \alpha_i^{\vee} \rangle = (\varpi_i, \alpha_j) = \delta_{ij}$.

Notice that for $\varpi \in P(\Phi^{\vee})$ and $\beta \in \mathbb{Z} \Phi$ one has $(\varpi, \beta) \in \mathbb{Z}$. Consequently, for $\varepsilon \in R^*$ and $\varpi \in P(\Phi^{\vee})$ the identity $\chi_{\varpi,\varepsilon}(\beta) = \varepsilon^{(\varpi,\beta)}$ gives a well-defined character $\chi_{\varpi,\varepsilon} \in \text{Hom}(\mathbb{Z}\Phi, R^*)$.

Consider the action of $H = \text{Hom}(\mathbb{Z}\Phi, R^*)$ on the set of generators $\mathcal{X}_{\Phi,R}$ of the Steinberg group $\text{St}^G(R)$ defined by

(4.2)
$$\chi \cdot x_{\alpha}(\xi) = x_{\alpha}(\chi(\alpha) \cdot \xi), \ \chi \in H, \ \alpha \in \Phi, \ \xi \in R.$$

Since χ is a character, the above action preserves the set of Steinberg relations $\mathcal{R}_{\Phi,R}$ and, thus, gives a well-defined action of H on $\mathrm{St}^{\mathrm{G}}(R)$.

Example 4.6. The principal example which motivates the above construction is as follows. Let A be a ring, take $R = A[t, t^{-1}]$ to be the ring of Laurent polynomials over A and let $\alpha_i \in \Pi$ be some simple root. Since $t \in R^*$ we can consider the automorphisms σ_i^+ and σ_i^- of $\operatorname{St}(\Phi, R)$ given by $\sigma_i^+ = \chi_{\varpi_i, t}, \ \sigma_i^- = \chi_{\varpi_i, t^{-1}}$. It is easy to see that

eq:sigma_act}

(4.3)
$$\sigma_i^{\pm}(x_{\alpha}(\xi)) = x_{\alpha}(t^{\pm m_i(\alpha)} \cdot \xi),$$

where $m_k(\alpha)$ denotes the coefficient in the expansion of α in Π , i.e. $\alpha = \sum m_k(\alpha)\alpha_k$.

One of the key steps of our proof of Suslin lemma for K_2 is to define an analogue of σ_i for the group $\operatorname{St}^{\operatorname{G}}(A[t])$. Of course, we cannot expect such map to be automorphism or even be defined on the whole group $\operatorname{St}^{\operatorname{G}}(A[t])$. However, it turns out that for certain i is still possible to define certain subgroups of $\operatorname{St}^{\operatorname{G}}(A[t])$ and the maps modeling σ_i between them. First, we settle the case $\Phi = \mathsf{A}_3$ invoking the presentation obtained in 4.1. Then we study the general case using the Curtis-Tits presentation.

lem:sigma

Lemma 4.7. Let A be a local commutative ring, $G = G(\Phi, -)$ where Φ is an irreducible root system. Assume that on the Dynkin diagram of Φ one can find an endnode numbered i such that i is contained in a subdiagram of type A_3 .

Then there exists subgroups N_i^+ , N_i^- of $\operatorname{St}^{\operatorname{G}}(A[t])$ and homomorphisms $\widetilde{\sigma}_i^+: N_i^+ \to N_i^-$, $\widetilde{\sigma}_i^-: N_i^- \to N_i^+$ compatible with the action of σ_i^\pm i. e. such that the following diagram commutes.

$$N_{i}^{\pm} \xrightarrow{\lambda_{t}^{*}} \operatorname{St}^{G}(A[t, t^{-1}])$$

$$\downarrow \tilde{\sigma}_{i}^{\pm} \qquad \qquad \downarrow \sigma_{i}^{\pm}$$

$$N_{i}^{\mp} \xrightarrow{\lambda_{t}^{*}} \operatorname{St}^{G}(A[t, t^{-1}])$$

Proof for $\Phi = \mathsf{A}_{\ell}$, $\ell \geq 3$ and i = 1. For $\alpha_i \in \Pi$ denote by P_i^+ (resp. P_i^-) the subgroup of $\operatorname{St}^{\mathsf{G}}(A)$ generated by $x_{\alpha}(\xi)$ for $\xi \in A$, $\alpha \in \Sigma_i^+ \cup \Delta_i$ (resp. $\alpha \in \Sigma_i^- \cup \Delta_i$).

First, we define the subgroups N_i^{\pm} (this definition also works for Φ such that $m_i(\widetilde{\alpha}) = 1$). Define N_i^+ (resp. N_i^-) to be the subgroup consisting of $g \in \text{St}^G(A[t])$ such that $g(0) \in P_i^+$ (resp. $g(0) \in P_i^-$).

Denote by j_{ℓ} the natural map $\operatorname{St}(\Delta_1, A) \to \operatorname{St}(\Phi, A)$. By the Levi decomposition P_1^{\pm} is isomorphic to $\operatorname{U}(\Sigma_1^{\pm}, A) \rtimes \operatorname{Im}(j_{\ell})$.

The stable rank of A equals 1 hence from the injective stability theorem for K_2 (see [11, Theorem 4.1]) it follows that the map j_{ℓ} is injective for $\ell \geq 3$ and that $P_1^{\pm} = \mathrm{U}(\Sigma_1^{\pm}, A) \times \mathrm{St}(\Delta_1, A)$. Clearly, there exists a unique group homomorphism $\sigma_1^{\pm} \colon P_1^{\pm} \to \mathrm{St}^{\mathrm{G}}(\Phi, A[t])$ acting identically on $\mathrm{St}(\Delta_1, A)$ and sending any generator $x_{\alpha}(\xi) \in \mathrm{U}(\Sigma_1^{\pm}, A)$ (i. e. $\alpha \in \Sigma_1^{\pm}$) to $x_{\alpha}(t \cdot \xi)$.

Set $H = \operatorname{St}^{\operatorname{G}}(A[t], tA[t])$. By Lemma 2.1.(ii) we have $\operatorname{St}^{\operatorname{G}}(A[t]) = \operatorname{St}^{\operatorname{G}}(A) \ltimes H$ hence $N_1^{\pm} \cong P_1^{\pm} \ltimes H$. Define the map $\widetilde{\sigma}_1^{\pm} \colon H \to \operatorname{St}^{\operatorname{G}}(A[t])$ on the generators of $\operatorname{St}^{\operatorname{G}}(A[t], tA[t])$ as follows ?????. A routine check shows that the defining relations ?????? of H are satisfied and that σ_1^{\pm} preserves the action of P_1^{\pm} on H. Thus, we obtain a well-defined map $\sigma_1^{\pm} \colon N_i^{\pm} \to \operatorname{St}^{\operatorname{G}}(A[t])$ fitting into the above commutative diagram. The fact that the image of σ_1^{\pm} is contained in N_i^{\mp} is obvious.

Proof in the general case.

5. \mathbb{P}^1 -GLUING

Throughout this section $G = G(\Phi, -)$ denotes a Chevalley group scheme of type Φ .

def:p1g

Definition 5.1. Let F be a group-valued functor from **CRings** to **Groups** and let A be a commutative ring. Consider the following commutative diagram.

$$\begin{array}{ccc} A & \xrightarrow{i_{+}} & A[t] \\ \downarrow^{i_{-}} & & \downarrow^{j_{+}} \\ A[t^{-1}] & \xrightarrow{j_{-}} & A[t, t^{-1}] \end{array}$$

We say that F satisfies the \mathbb{P}^1 -glueing property for A if the following sequence of pointed sets is exact in the middle term:

$$F(A) \stackrel{\Delta_A^F}{\longleftrightarrow} F(A[t]) \times F(A[t^{-1}]) \stackrel{\pm_A^F}{\longleftrightarrow} F(A[t,t^{-1}]).$$

Here Δ_A^F denotes the (split injective) diagonal map and, by definition, \pm_A^F maps (g^+, g^-) to $F(j_+)(g^+) \cdot F(j_-)(g^-)^{-1}$. Notice that a priori \pm_A^F is only a morphism of pointed sets but if F takes values in abelian groups then \pm_A^F is also a morphism of groups.

An equivalent way to formulate \mathbb{P}^1 -glueing property is as follows: $F(j_+)$ and $F(j_-)$ are injective and the intersection of their images coincides with the image of $F(j_+i_+) = F(j_-i_-)$.

The main result of this section is the following theorem which generalizes [12, Theorem 5.1] to Chevalley groups. Notice that a K_1 -analogue of the result below has been established in a much greater generality by the second-named author (see [9, Theorem 1.1]).

thm:p1

Theorem 3. Assume that G satisfies Tulenbaev lifting property 2.3. Then the Steinberg group functor $St^{G}(-)$ satisfies \mathbb{P}^{1} -glueing property for an arbitrary commutative ring A.

Proof. Let (g^+, g^-) be an element of $St^G(A[t]) \times St^G(A[t^{-1}])$ such that the equality $g^+ = g^-$ holds in $St^G(A[t, t^{-1}])$.

Let m be a maximal ideal of A. By Proposition 5.10 below the functor $St^G(-)$ satisfies \mathbb{P}^1 -glueing property for the local ring A_m hence $(\lambda_m^*(g_+), \lambda_m^*(g_-)) = \Delta_{A_m}(\lambda_m^*(g^+)(0))$ and in the groups $St^G(A_m[t])$ and $St^G(A_m[t^{-1}])$ we have the equalities:

$$\lambda_m^*(g^+ \cdot g^+(0)^{-1}) = \lambda_m^*(g^+) \cdot \lambda_m^*(g^+)(0)^{-1} = 1; \qquad \lambda_m^*(g^- \cdot g^+(0)^{-1}) = 1.$$

Now, by the local-global principle for $\mathrm{St}^{\mathrm{G}}(-)$ (see Theorem 1.(ii)) these equalities hold globally and $(g^+,g^-)=\Delta_A(g^+(0))$, as claimed.

rem:stk2

Remark 5.2. It is clear that if the functor St^G satisfies \mathbb{P}^1 -glueing property for A then so does the functor K_2^G . The converse statement also holds, indeed, if $(g^+, g^-) \in \operatorname{Ker}(\pm_A^{\operatorname{St}})$ then inside $E^G(A[t, t^{-1}])$ we have the equality:

$$\varphi(\operatorname{St}^{G}(j_{+})(g^{+})) = \varphi(\operatorname{St}^{G}(j_{-})(g^{-})) \in E^{G}(A[t]) \cap E^{G}(A[t^{-1}]) = E^{G}(A).$$

Consequently, we can find $g_0 \in \text{St}^G(A)$ so that $(g^+g_0^{-1}, g^-g_0^{-1}) \in \text{Ker}(\pm_A^{K_2})$ and it remains to apply the \mathbb{P}^1 -glueing property for K_2^G .

Corollary 5.3. Let A be any commutative ring and $f \in A[t]$ be a monic polynomial. Then the map $K_2^G(A[t]) \to K_2^G(A[t]_f)$ is injective.

Proof. \Box

5.1. The case of a field. Throughout this section k denotes arbitrary field k.

thm:k[t]

satz1

Theorem 4. Assume that $G = G(\Phi, -)$ and Φ is irreducible of rank ≥ 2 .

(i) The subgroup $K_2^G(k[t]) \leq \operatorname{St}^G(k[t])$ is generated by elements of the form

$$h_{\alpha}(uv)h_{\alpha}(u)^{-1}h_{\alpha}(v)^{-1}, \ u, v \in k^*.$$

(ii) As a consequence, the canonical injection $K_2^G(k) \hookrightarrow K_2^G(k[t])$ is an isomorphism.

Proof. See [7, Satz 1] and the corollary after it.

cor:k[t]inj

Corollary 5.4. Let G be as in the above theorem. Then the functors St^G , K_2^G satisfy \mathbb{P}^1 -glueing property for k.

Proof. By Remark 5.2 it suffices to prove the assertion only for the functor K_2^G . By the previous theorem $K_2^G(i_+)$ and $K_2^G(i_-)$ are isomorphisms hence the morphisms $K_2^G(j_+)$ and $K_2^G(j_-)$ are split injective and Im $(j_+i_+) = \text{Im } (j_-i_-) = \text{Im } (j_+) = \text{Im } (j_-)$.

Corollary 5.5. Let G, k be as in Theorem 4. Then $K_2^G(k[t^{\pm 1}]) = K_2^G(k)$.

Proof. We use Theorem 2. Take $g \in K_2^G(k[t^{\pm 1}])$, then $g = x_1yx_2, x_i \in St^G(k[t])$, $y \in St^G(k[t^{-1}])$. Since $E(k[t]) \cap E(k[t^{-1}]) = E(k)$, we have $y \in St^G(k)K_2^G(k[t^{-1}]) = St^G(k)$ and $x_1x_2 \in St^G(k)$. That is, $g \in K_2^G(k)$. □

- 5.2. Suslin lemma for K_2 . For the rest of this section A denotes an arbitrary commutative local ring with the maximal ideal m and the residue field k. We denote by π the canonical projection $A \to k$. Throughout this section we will employ the following notation:
 - R denotes the Laurent polynomial ring $A[t, t^{-1}]$;
 - B denotes the subring $A[t] + m[t^{-1}]$ of R consisting of Laurent polynomials $f(t, t^{-1})$ whose coefficients of terms of negative degree belong to m;
 - I denotes the ideal $m[t, t^{-1}]$ of R (which can be also considered as an ideal of B).

Our first result is analogous to [12, Lemma 3.1(e)] (cf. also with [4, § 2.3A]).

cor:bruhat

Lemma 5.6. The Steinberg group $St^G(A)$ admits the following analogue of the Bruhat decomposition:

$$\operatorname{St}^{\operatorname{G}}(A) = \operatorname{U}(\Phi^+, A) \cdot \operatorname{W}(\Phi, A) \cdot \operatorname{U}(\Phi^+, A) \cdot \operatorname{Im}\left(\operatorname{St}^{\operatorname{G}}(A, m) \to \operatorname{St}^{\operatorname{G}}(A)\right).$$

Proof. First of all, notice that $St^{G}(k)$ admits Bruhat decomposition for arbitrary field k:

$$\operatorname{St}^{G}(k) = \operatorname{U}(\Phi^{+}, k) \cdot \operatorname{W}(\Phi, k) \cdot \operatorname{U}(\Phi^{+}, k).$$

Indeed, this is an immediate consequence of the classical Bruhat decomposition for the linear groups (see e.g. [10, Theorem 4]) and the fact that $K_2^G(k)$ is central in $\operatorname{St}^G(k)$ and is generated by symbols $h_{\alpha}(u)$ lying in W(Φ , k) (cf. Theorem 4.(i)).

As a consequence, the first three factors in the right hand side of the decomposition are mapped epimorphically onto $\operatorname{St}^{G}(k)$ and the last factor coincides with $\operatorname{Ker}(\pi_{*})$ from which the assertion of the lemma follows.

lem:tulinj

Lemma 5.7. Assume that G satisfies Tulenbaev lifting property 2.3. Then the map i in the following commutative diagram of groups is injective.

$$C_{B} \hookrightarrow \operatorname{St^{G}}(B, I) \xrightarrow{\mu_{B}} \operatorname{St^{G}}(B) \xrightarrow{\pi_{B}} \operatorname{St^{G}}(k[t])$$

$$\downarrow^{k} \qquad \downarrow^{j} \qquad \downarrow^{i} \qquad \downarrow^{j} \qquad \downarrow^{i}$$

$$C_{R} \hookrightarrow \operatorname{St^{G}}(R, I) \xrightarrow{\mu_{R}} \operatorname{St^{G}}(R) \xrightarrow{\pi_{R}} \operatorname{St^{G}}(k[t, t^{-1}])$$

Proof. First of all, notice that by Corollary 5.4 the vertical map in the right-hand side of the diagram is injective. Invoking Tulenbaev's property 2.3 we also find a lifting map φ in the central square of the diagram.

Let $g \in \operatorname{St}^{G}(B)$ be an element of Ker (i). Since g also lies in Ker (π_{B}) it comes from some $\widetilde{g} \in \operatorname{St}^{G}(B, I)$ via μ_{B} . But $j(\widetilde{g})$ lies in C_{R} , hence, by Proposition 5.9 below it comes from some $\widehat{g} \in C_{B}$ via k. Finally, $g = \varphi(j(\widetilde{g})) = \varphi(k(\widehat{g})) = \mu_{B}(\widehat{g}) = 1$, as claimed.

The following result is analogous to [12, Proposition 4.1].

Lemma 5.8. The map j in the diagram (5.1) is surjective for any commutative ring A.

Proof. Let α_i be arbitrary simple root from Π and let Σ_i (resp. Σ_i^-) denote the special subsets of roots consisting of $\alpha \in \Phi$ such that $m_i(\alpha) > 0$ (resp. $m_i(\alpha) < 0$).

By Lemma 2.2 the sets $\mathcal{Z}(\Sigma_i, R, I)$ and $\mathcal{Z}(\Sigma_i^-, R, I)$ both generate $\operatorname{St}^{G}(R, I)$. Similarly, the subsets $\mathcal{Z}(\Sigma_i, B, I) \subseteq \mathcal{Z}(\Sigma_i, R, I)$, $\mathcal{Z}(\Sigma_i^-, B, I) \subseteq \mathcal{Z}(\Sigma_I, R, I)$ both generate the image of $j \colon \operatorname{St}^{G}(B, I) \to \operatorname{St}^{G}(R, I)$.

Using formula (4.3) we can calculate how the powers of the automorphism σ_i act on these generating sets. Indeed, for $z_{\alpha}(s,\xi) \in \mathcal{Z}(\Sigma_i^-,R,I)$ we have

$$\sigma_i^N(z_\alpha(s,\xi)) = \sigma_i^N(x_\alpha(0,s)^{x_{-\alpha}(\Delta(\xi))}) = z_\alpha(t^{Nm_i(\alpha)} \cdot s, t^{-Nm_i(\alpha)} \cdot \xi).$$

It is clear that for sufficiently large N the element $t^{-Nm_i(\alpha)} \cdot \xi$ belongs to $A[t] \subseteq B$. Consequently, for arbitrary $g \in \operatorname{St}^G(R, I)$ there exists N > 0 such that $\sigma^N(g)$ lies in the image of j. On the other hand, by a similar calculation we get for $z = z_{\alpha}(s, \xi) \in \mathcal{Z}(\Sigma_i, B, I)$ that the element $\sigma^{-N}(z)$ (N > 0) still lies in $\mathcal{Z}(\Sigma_i, B, I)$. Clearly, this implies that the image of j is preserved by σ_i^{-1} . The assertion of the lemma now follows from these two statements:

$$g = \sigma^{-N} \sigma^{N}(g) \in \sigma^{-N}(\operatorname{Im}(j)) \subseteq \operatorname{Im}(j).$$

Proposition 5.9. Under the assumptions of Lemma 5.7 the map k in the diagram (5.1) is surjective.

Sketch/draft of the proof. The argument presented below only may work under additional assumption that $m_i(\tilde{\alpha}) = 1$ (*i* is as in the statement of Lemma 4.7).

Consider the following set

$$X = \operatorname{St}^{G}(B) \times \widetilde{B}(R) \times \operatorname{St}^{G}(R, I) / \simeq .$$

The congruence relation we impose should be similar to that used in Tulenbaev's paper. In particular, there are two maps $\psi_1 \colon \operatorname{St}^{\operatorname{G}}(B,I) \to \operatorname{St}^{\operatorname{G}}(B,I)$, $p_{2B}^* \colon \operatorname{St}^{\operatorname{G}}(B,I) \to \operatorname{St}^{\operatorname{G}}(B)$ satisfying: $(p_2^*$ is the canonical projection from $\operatorname{St}^{\operatorname{G}}(B,I)$ to $\operatorname{St}^{\operatorname{G}}(B)$ induced by the projection from D(B,I) on the second coordinate, cf. section 3.1 in [8]),

$$[p_2^*(h), 1, g] \simeq [1, 1, \psi_1(h)g].$$

Notice that instead of $\mathrm{St}^{\mathrm{G}}(A[t])$ (used by Tulenbayev in the first factor) we use $\mathrm{St}^{\mathrm{G}}(B)$.

TODO: We should prove that there is a well-defined action of $St^{G}(R)$ on X.

We also assume that there is an automorphism σ_i defined on $\operatorname{St}^{G}(R, I)$ (this should be simple: first define it on $\operatorname{St}^{G}(D(R, I))$, then show that it is an automorphism of the subgroup $\ker(p_2^*)$ then show that it is an automorphism of the relative group $\operatorname{St}^{G}(R, I)$).

Now assume that $g \in \text{St}^{G}(R, I)$ is such that its image $p_{2R}^{*}(g)$ in $\text{St}^{G}(R)$ is trivial Using [8, Lemma 5] we can rewrite g as a product of $Z_{\alpha}((0, s), (\xi_{1}, \xi_{2})), (\xi_{1}, \xi_{2}) \in D(R, I), \alpha \in \Sigma_{1}^{+}, s \in I \text{ and } x_{\alpha}((0, s)), s \in I, \alpha \in \Phi.$ Clearly, for $\alpha \in \Sigma_{1}^{+}$ we have

$$\sigma^{-N}(Z_{\alpha}((0,s),(\xi_1,\xi_2))) = Z_{\alpha}((0,s \cdot t^{-N}),(\xi_1 \cdot t^N,\xi_2 \cdot t^N)).$$

By the above formula, for sufficiently large N we have that $\sigma^{-N}(g)$ is a product of $Z_{\alpha}((0,s),(\xi_1,\xi_2))$ for $\xi_1,\xi_2\in A[t]\subseteq B$. In particular, this shows that $g\in \text{Im}(\psi_1)$ hence for some $g'\in \text{St}^G(B,I)$ we have

$$[1,1,g] = \sigma^N \cdot \sigma^{-N}[1,1,g] = \sigma^N[1,1,\psi_1(g')] = \sigma^N[p_{2B}^*(g'),1,1] = \sigma^N p_{2B}^*(g') \cdot \sigma^{-N} \cdot [1,1,1].$$

prop:kersurj

At this point we should be able to prove that $\sigma^N p_{2B}^*(g') \cdot \sigma^{-N} = p_{2R}^*(g) = 1$ (cf. definition of Tulenbaev's action). Finally, we get [1,1,g] = [1,1,1] from which the assertion of the Lemma should follow.

5.3. **Proof of the main result.** The following result is analogous to [12, Proposition 4.3]. It plays the same role in our proof of \mathbb{P}^1 -glueing for K_2 as generalized Suslin lemma (cf. [1, Theorem 2.16]) does in the corresponding proof for K_1 .

|prop:p1g

Proposition 5.10. The functors St^G , K_2^G satisfy \mathbb{P}^1 -glueing property for arbitrary local ring A.

Proof.

References

Abe

[1] E. Abe. "Whitehead groups of Chevalley groups over polynomial rings". Comm. Algebra 11, no. 12, (1983), pp. 1271–1307.

AHW15

[2] A. Asok, M. Hoyois, and M. Wendt. "Affine representability results in A¹-homotopy theory II: principal bundles and homogeneous spaces". 2015. arXiv: 1507.08020 [math.AG].

Deo

[3] V. V. Deodhar. "On central extensions of rational points of algebraic groups". Amer. J. Math. (1978), pp. 303–386.

ном

[4] A. J. Hahn and T. O'Meara. The classical groups and K-theory. Springer, 1989.

J Ka [5] J. F. Jardine. "On the homotopy groups of algebraic groups". J. Algebra 81, no. 1, (1983), pp. 180–201.
[6] W. van der Kallen. "Another presentation for Steinberg groups". Indag. Math. 80, no. 4, (1977), pp. 304–312.

Re75

[7] U. Rehmann. "Präsentationen von Chevalleygruppen über k[t]". 1975. URL: http://www.math.uni-bielefeld.de/~rehmann/Publ/praesentation.pdf.

S15

[8] S. Sinchuk. "On centrality of K_2 for Chevalley groups of type E_ℓ ". J. Pure Appl. Algebra **220**, no. 2, (2016), pp. 857–875.

St-poly

[9] A. Stavrova. "Homotopy invariance of non-stable K_1 -functors". J. K-theory 13, no. 2, (2014), pp. 199–248.

St-lect

[10] R. Steinberg, J. Faulkner, and R. Wilson. *Lectures on Chevalley groups*. Yale University New Haven, 1967

ST76

[11] A. Suslin and M. Tulenbaev. "Stabilization theorem for the Milnor K_2 -functor". J. Soviet Math. 17, no. 2, (1981), pp. 1804–1819.

Tu

M. Tulenbaev. "The Steinberg group of a polynomial ring". Math. USSR Sb. 45, (1983), pp. 131–144.

VavWE

N. Vavilov. "Weight elements of Chevalley groups". St. Petersburg Math. J. 20, no. 1, (2009), pp. 23–57.

VW

[14] K. Völkel and M. Wendt. "On A¹-fundamental groups of isotropic reductive groups". 2012. arXiv: 1207.2364 [math.KT].

Kbook W-k[t] [15] C. A. Weibel. The K-book: An introduction to algebraic K-theory. Vol. 145. 2013.

[16] M. Wendt. "On homology of linear groups over k[t]". Math. Res. Lett. 21, no. 6, (2014).

DEPARTMENT OF MATHEMATICS AND MECHANICS, St. Petersburg State University, St. Petersburg, Russia

 $E ext{-}mail\ address: sinchukss@gmail.com}$

DEPARTMENT OF MATHEMATICS AND MECHANICS, ST. PETERSBURG STATE UNIVERSITY, ST. PETERSBURG, RUSSIA

E-mail address: anastasia.stavrova@gmail.com

Mathematisches Institut der Universität München, Theresienstr. 39, D-80333 München $E\text{-}mail\ address:}$ avlavrenov@gmail.com