Introduction to Probability

Lecture 6

Today

Ordered Events

Expectation Values

Attendance: 44982124

Ordered Events and the PMF

Ordering

So far we have just had **events**

We will now look at when those events are ordered.

Examples:

The number of heads when tossing a coin

The outcome of a die

Probability Mass Functions (PMF)

If we have a variable x then the probability of observing x is written

P(x)

When the outcomes are numerical, we can place them on an axis and sketch out P(x)

Normalisation

We can normalise P(x) through summation

$$\sum_{x} P(x) = 1$$

If
$$P(x) = \alpha f(x)$$

Then

$$\sum_{x} P(x) = 1 = \alpha \sum_{x} f(x)$$

$$\alpha = \frac{1}{\sum_{x} f(x)}$$

In statistical physics α is called the partition function

Normalise the following PMF

$$P(x) \propto \begin{cases} x & \text{if } x = \{1,2,3\} \\ 7 - x & \text{if } x = \{4,5,6\} \\ 0 & \text{otherwise} \end{cases}$$

Cumulative Distribution

Cumulative Distribution

Probability that a variable is **less** than or equal to a certain value.

$$C(x) \equiv \text{Prob}(X \le x) = \sum_{X \le x} P(x)$$

Die:
$$P(x) = \frac{1}{6}$$
 for $x = 1, 2 \dots 6$

X	1	2	3	4	5	6
P(x)	1/6	1/6	1/6	1/6	1/6	1/6
C(x)	1/6	2/6	3/6	4/6	5/6	1

Expectation Values

Expectation Values

The **expectation value** is defined by

$$\langle x \rangle \equiv \sum_{x} x \, P(x)$$

It is a weighted sum of all the outcomes and is a measure of location.

Warning

$$\langle x \rangle \equiv \sum_{x} x \, P(x)$$

Is confusing because x appears on both sides. You might prefer to write it has

$$\langle x \rangle \equiv \sum_{y} y \, P(y)$$

But somehow this is just as confusing.

Calculate $\langle x \rangle$ for the following PMF

\overline{x}	1	2	3	4	5
P(x)	0.1	0.2	0.4	0.2	0.1

$$\langle x \rangle \equiv \sum_{x} x P(x)$$

$$= 1 \times 0.1 + 2 \times 0.2 + 3 \times 0.4 + 4 \times 0.2 + 5 \times 0.1$$

$$= 3$$

You play a game where you receive $\pm x$'s for rolling an x on a die.

How much do you expect to win?

$$\langle x \rangle \equiv \sum_{x} x P(x)$$

$$= \frac{1}{6} (1 + 2 + 3 + 4 + 5 + 6)$$

$$= \frac{35}{6}$$

$$\to £3.50$$

Expectation value of function

In general:

$$\langle f \rangle \equiv \sum_{x} f(x) P(x)$$

Again: a weighted sum over the values of x.

$$\langle c \rangle = \sum_{x} c P(x) = c \sum_{x} P(x) = c$$

Note

$$\langle \langle x \rangle \rangle = \langle x \rangle$$

Linear Combinations

$$\langle ax + b \rangle = \sum_{x} (ax + b)P(x)$$

$$= \sum_{x} (ax)P(x) + \sum_{x} bP(x)$$

$$= a\sum_{x} x P(x) + b\sum_{x} P(x)$$

$$= a\langle x \rangle + b$$

Or we could have used

$$\langle ax + b \rangle = \langle ax \rangle + \langle b \rangle = a \langle x \rangle + b$$

Measure of Dispersion

How often is x far away from $\langle x \rangle$?

What about expected deviation from $\langle x \rangle$?

$$\langle x - \langle x \rangle \rangle = \langle x \rangle - \langle \langle x \rangle \rangle = 0$$

No good!

$$\langle |x - \langle x \rangle| \rangle = MAD(x)$$

Is uncommon

$$\langle (x - \langle x \rangle)^2 \rangle = \text{var}(x)$$

= $\sum (x - \langle x \rangle)^2 P(x)$

Variance and Standard Deviation

Show

$$var(x) = \langle x^2 \rangle - \langle x \rangle^2$$

Is a distance squared a good measure of spread?

$$\langle (x - \langle x \rangle)^2 \rangle = \langle (x^2 - 2\langle x \rangle x + \langle x \rangle^2) \rangle$$

$$= \langle x^2 \rangle - \langle 2\langle x \rangle x \rangle + \langle \langle x \rangle^2 \rangle$$

$$= \langle x^2 \rangle - 2\langle x \rangle \langle x \rangle + \langle x \rangle^2$$

$$\langle x^2 \rangle - 2\langle x \rangle^2 + \langle x \rangle^2 = \langle x^2 \rangle - \langle x \rangle^2$$

We define

$$std(x) = \sqrt{var(x)}$$

A distribution is given by

$$P(x) = \frac{1}{2} \quad x = 0.1$$

Calculate $\langle x \rangle$, var(x) and std(x).

$$\langle x \rangle \equiv \sum_{x} x P(x) = 0 \times \frac{1}{2} + 1 \times \frac{1}{2} = \frac{1}{2}$$

$$\text{var}(x) = \langle x^{2} \rangle - \langle x \rangle^{2}$$

$$\langle x^{2} \rangle \equiv \sum_{x} x^{2} P(x) = 0^{2} \times \frac{1}{2} + 1^{2} \times \frac{1}{2} = \frac{1}{2}$$

$$\to \text{var}(x) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

$$\text{std}(x) = \sqrt{\text{var}(x)} = \frac{1}{2}$$

Class Example

A 3 sided fair dice has

$$P(x) = \frac{1}{3}$$
 $x = 1,2,3$

Calculate var(x).

$$\langle x \rangle = 2$$

$$var(x) = \langle x^2 \rangle - \langle x \rangle^2$$

$$\langle x \rangle = \sum_{x} x P(x) = \frac{1}{3} \times (1 + 2 + 3) = 2$$

$$\langle x^{2} \rangle = \sum_{x} x^{2} P(x)$$

$$\langle x \rangle = 2$$

$$= \frac{1}{3} (1 + 4 + 9) = \frac{14}{3}$$

$$\langle x \rangle = 2$$

$$\langle x \rangle^{2} = 2^{2} = 4$$

$$\operatorname{var}(x) = \langle x^{2} \rangle - \langle x \rangle^{2} = \frac{14}{3} - 4 = \frac{2}{3}$$

Rules

Expectation

$$\langle ax + b \rangle = a \langle x \rangle + b$$

Variance

$$var(ax + b) = a^2 var(x)$$

$$var(ax) = \langle (ax)^2 \rangle - \langle ax \rangle^2 = a^2 \langle x^2 \rangle - a^2 \langle x \rangle^2$$
$$= a^2 (\langle x^2 \rangle - \langle x \rangle^2)$$

Probability and Statistics

Probability

$$\langle x \rangle = \sum_{x} x \, P(x)$$

$$var(x) = \sum_{x} (x - \langle x \rangle)^2 P(x)$$

We have a distribution in probability

Statistics

$$\bar{x} = \frac{1}{N} \sum_{n} x_n$$

$$\sigma^{2}(x) = \frac{1}{N-1} \sum_{n} (x_{n} - \bar{x})^{2}$$

We have a sample in statistics

Summary

Expectation

$$\langle x \rangle \equiv \sum_{x} x P(x)$$
 $\langle f \rangle \equiv \sum_{x} f(x)P(x)$
 $\langle ax + b \rangle = a\langle x \rangle + b$

Variance

$$var(x) \equiv \sum_{x} (x - \langle x \rangle)^2 P(x) = \langle x^2 \rangle - \langle x \rangle^2$$
$$var(ax + b) = a^2 var(x)$$

You keep playing a game until you win. The probability you win at each stage is 1 - p.

How many games do you expect to play until you have won?

Note:

$$\sum_{n=0}^{\infty} p^n = \frac{1}{1-p} \qquad \sum_{n=0}^{\infty} n \, p^n = \frac{p}{(1-p)^2}$$

We need to work out P(x)

$$P(0) = 1 - p$$

$$P(1) = p(1 - p)$$

$$P(2) = p^{2}(1 - p)$$

$$\rightarrow P(n) = p^{n}(1 - p)$$

Check for normalisation

$$(1-p)\sum_{n}p^{n} = \frac{(1-p)}{(1-p)} = 1$$

Then

$$\langle n \rangle = (1-p) \sum_{n} np^{n} = \frac{(1-p)p}{(1-p)^{2}} = \frac{p}{1-p}$$