Worksheet 13 Solution

March 22, 2020

Question 1

a. Exact number of iterations: nSimplest theta expression: $f_1 \in \Theta(n)$

Correct Solution:

Exact number of iterations: $\frac{n}{5}$ Simplest theta expression: $f_1 \in \Theta(n)$

b. Exact number of iterations: n-4Simplest theta expression: $f_2 \in \Theta(n)$

c. Exact number of iterations: nSimplest theta expression: $f_3 \in \Theta(n)$

Correct Solution:

Exact number of iterations: $\frac{n}{\frac{n}{10}} = 10$ Simplest theta expression: $f_3 \in \Theta(1)$

d. Exact number of iterations: $n^2 - 20$ Simplest theta expression: $f_4 \in \Theta(n^2)$

Correct Solution:

Exact number of iterations: $\frac{n^2-20}{3}$ Simplest theta expression: $f_4 \in \Theta(n^2)$ e. Exact number of iterations: $n^2 - 20 + n$ Simplest theta expression: $f_5 \in \Theta(n^2)$

Correct Solution:

Exact number of iterations: $\frac{n^2-20}{3}+100n$ Simplest theta expression: $f_5 \in \Theta(n^2)$

Question 2

- a. $i_3 = 8$
 - $i_4 = 16$
 - $i_k = 2^k$
- b. Exact number of iterations: $\lceil \sqrt{n} \rceil$

Correct Solution:

The goal is to find the smallest k where the condition returns false.

So,

$$i_k \ge n \tag{1}$$

$$2^k \ge n \tag{2}$$

$$k \ge \log(n) \tag{3}$$

Hence, the exact number of iteration that occurs if $\lceil log(n) \rceil$.

c. $f \in \Theta(n^{\frac{1}{2}})$

Correct Solution:

 $f \in \Theta(\log(n))$

d. With i = 0, the i in loop will be forever 0. This will result in the while loop running indefinitely.

Question 3

• The value of $i_k = k^2$ by the pattern ruled in table below.

Then,

$$k^2 \ge n \tag{1}$$

$$k \ge \sqrt{n} \tag{2}$$

Then, it follows from above that the smallest value of i_k where $i_k < n$ returns false is \sqrt{n} .

Correct Solution:

The value of $i_k = 2^{2^k}$ by the pattern ruled in table below.

Then,

$$2^{2^k} \ge n \tag{1}$$

$$2^k \ge \log n \tag{2}$$

$$k \ge \log \log n \tag{3}$$

(4)

Then, it follows from above that the smallest value of i_k where $i_k < n$ returns false is $\log \log n$.