Apellido y Nombre: email:

Lenguajes y Compiladores

Parcial 3

23/6/2009

- (1) Probar o refutar:
 - (a) $[\![\langle 1, \mathbf{letrec}\ f \equiv \lambda x. fx\ \mathbf{in}\ f\ x\rangle]\!]_{\eta}^{eager} = \bot.$
 - (b) $[\![\langle 1, \mathbf{letrec}\ f \equiv \lambda x. fx\ \mathbf{in}\ f\ x \rangle]\!]_{\eta}^{normal} = \bot.$
 - (c) [sumcase @ 0 e of (f_0, f_1)] $_{\eta}^{eager} = [f_0 \ e]_{\eta}^{eager}$.
 - (d) [sumcase @ 0 e of (f_0, f_1)] $_n^{normal} = [f_0 \ e]_n^{normal}$.
 - (e) $[(\lambda \langle \rangle.e) \langle \rangle] \eta \kappa = [e] \eta \kappa$
- (2) Probar que **callcc** (λk . 1 +**throw** k 1) es equivalente a la expresión 1. ¿Es **callcc** (λk . **True** + **throw** k 1) también equivalente a esa expresión?
- (3) Considere la siguiente expresión:

let
$$f \equiv \lambda \langle x, g \rangle$$
. if $x = 1$ then $g \langle 0, 1 + g \rangle$ else $\langle 100 \div x, g \rangle$ in $f \langle 1, f \rangle$

- (a) Elimine patrones y let.
- (b) Sugiera (sin efectuar el cómputo) el valor de la semántica denotacional directa de esta expresión considerando por separado los casos eager y normal.
- (4) Calcule la semántica operacional del programa:

letrec
$$f \equiv \lambda x$$
.
if $(\mathbf{mkref}\ 0) =_{ref} (\mathbf{mkref}\ 0)$ then true else $f(x-1)$
in f

(5) Demostrar el teorema de coincidencia para los casos 0, suma, abstracción, asignación del lenguaje Iswim.

Teorema de Coincidencia: Sean η y η' tales que $\forall w \in FV(e).\eta w = \eta' w$ entonces $\llbracket e \rrbracket \eta \kappa \sigma = \llbracket e \rrbracket \eta' \kappa \sigma$ para todo κ y σ .

(6) Para el lenguaje Iswim, sean v_0 y v_1 variables diferentes tales que $v_0 \notin FV(e_1)$ y $v_1 \notin FV(e_0)$. Demostrar o refutar la equivalencia del comando $v_0 := e_0$; $v_1 := e_1$ con el comando $v_1 := e_1$; $v_0 := e_0$.