In [331]: # Question 2

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

# Import data into Pandas Data Frame
data = pd.read_csv('regression.csv', header=None, names=['A','B','C'])
```

Out[331]:

data

	Α	В	С
0	0.490	-0.180	11.50
1	-1.410	-1.230	11.80
2	0.943	4.510	-3.24
3	3.570	5.070	-23.90
4	-1.700	6.910	-22.10
295	6.920	-0.421	33.20
296	11.700	-1.290	108.00
297	9.920	3.690	-126.00
298	11.400	6.290	-315.00
299	10.900	2.570	-97.70

300 rows × 3 columns

In [332]: # Explore the data
sns.boxplot(x=data['A'])

Out[332]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1d35e6d0>

In [333]: sns.boxplot(x=data['B'])

Out[333]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1be7ef90>


```
In [334]: sns.boxplot(x=data['C'])
# Found outliner with boxplot
```

Out[334]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1d407d90>


```
In [335]: # Remove outliners.
    Q1 = data.quantile(0.25)
    Q3 = data.quantile(0.75)
    IQR = Q3 - Q1
    data = data[~((data < (Q1 - 3 * IQR)) | (data > (Q3 + 3 * IQR))).any(adata.shape
```

Out[335]: (278, 3)

```
In [336]: data.plot(x='A', y='C', style='o')
    plt.title('A vs C')
    plt.xlabel('A')
    plt.ylabel('C')
    plt.show()
    # Heteroscedasticity needs to be addressed.
```



```
In [337]: data.plot(x='B', y='C', style='o')
   plt.title('B vs C')
   plt.xlabel('A')
   plt.ylabel('C')
   plt.show()
# Heteroscedasticity needs to be addressed.
```



```
In [338]: data['A*B'] = data['A'] * data['B']
    data.plot(x='A*B', y='C', style='o')
    plt.title('B vs C')
    plt.xlabel('A')
    plt.ylabel('C')
    plt.show()
```

/Users/shengchen/opt/anaconda3/lib/python3.7/site-packages/ipyke rnel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using <code>.loc[row_indexer,col_indexer] = value instead</code>

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

"""Entry point for launching an IPython kernel.

In [339]: data['|A|*B'] = data['A'].abs() * data['B'] del data['A*B'] data

/Users/shengchen/opt/anaconda3/lib/python3.7/site-packages/ipyke rnel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html #returning-a-view-versus-a-copy)

"""Entry point for launching an IPython kernel.

Out [339]:

	Α	В	С	A *B	
0	0.490	-0.180	11.50	-0.08820	
1	-1.410	-1.230	11.80	-1.73430	
2	0.943	4.510	-3.24	4.25293	
3	3.570	5.070	-23.90	18.09990	
4	-1.700	6.910	-22.10	11.74700	
292	7.230	6.690	-136.00	48.36870	
295	6.920	-0.421	33.20	-2.91332	
296	11.700	-1.290	108.00	-15.09300	
297	9.920	3.690	-126.00	36.60480	
299	10.900	2.570	-97.70	28.01300	

278 rows × 4 columns

```
In [340]: data.plot(x='|A|*B', y='C', style='o')
   plt.title('|A| vs C')
   plt.xlabel('A')
   plt.ylabel('C')
   plt.show()
# Linear relationship between
```


In [341]: # Random shuffle the dataset for train test split.
data = data.iloc[np.random.RandomState(seed=42).permutation(len(data))
data

30	-2.81	-0.0679	4.81	-0.190799	
126	-3.97	6.3300	-56.80	25.130100	
199	-4.43	-0.5990	7.63	-2.653570	
142	-5.82	-2.4400	38.70	-14.200800	
269 9.39		-1.7200	94.80	-16.150800	
188	-3.54	5.6200	-42.10	19.894800	
71	3.61	1.6900	3.36	6.100900	
106	4.66	-0.2260	22.00	-1.053160	
289	7.13	6.8200	-135.00	48.626600	
102	-2.03	6.5000	-24.30	13.195000	

278 rows × 4 columns

In [342]: # Split the data set to 70% training and 30% testing data_train = data.head(int(len(data)*0.7)).reset_index() data_test = data.tail(len(data)-int(len(data)*0.7)).reset_index() print(data_train) print(data_test)

```
index
                          В
                                 C
                 Α
                                         |A|*B
        30 -2.8100 -0.0679
                              4.81
0
                                    -0.190799
1
       126 -3.9700 6.3300 -56.80
                                    25.130100
2
       199 -4.4300 -0.5990
                              7.63
                                    -2.653570
3
       142 -5.8200 -2.4400
                             38.70 -14.200800
4
       269
           9.3900 -1.7200
                             94.80 -16.150800
. .
189
       153 -0.3030 -1.7100
                             14.60
                                    -0.518130
190
        23 -5.2700 -2.0900
                             28.90 -11.014300
191
       238
            7.0100 3.1800 -48.20 22.291800
192
       233
            7.0500
                   4.4800 -78.40
                                    31.584000
193
        81
            0.0713 5.6900 -6.93
                                     0.405697
[194 rows x 5 columns]
    index
                Α
                        В
                                C
                                       |A|*B
       39
           -0.409
                    2.500
                             1.53
                                     1.02250
0
1
      201
           10.700 - 1.710
                           115.00 -18.29700
2
                   2.370
                           -12.80
      265
            5.260
                                   12,46620
3
            2.170 -1.990
       47
                            24.10
                                   -4.31830
4
       94
           -2.180
                   3.290
                           -10.50
                                    7.17220
      . . .
79
      188
           -3.540
                   5.620
                           -42.10
                                   19.89480
80
       71
            3.610
                   1.690
                             3.36
                                    6.10090
81
      106
            4.660 -0.226
                            22.00
                                   -1.05316
                   6.820 -135.00
82
      289
            7.130
                                   48,62660
83
      102 - 2.030
                   6.500
                          -24.30
                                   13.19500
```

[84 rows x 5 columns]

```
In [343]: # Train the regression model.
    X = data_train.drop('C', axis=1).values
    y = data_train['C'].values
    ones = np.ones(shape=X.shape[0]).reshape(-1, 1)
    X = np.concatenate((ones, X),axis=1)

# Solve the coefficients for ordinary least square regression.
    beta = np.linalg.inv(X.transpose().dot(X)).dot(X.transpose()).dot(y)
    print(beta)
```

```
[ 1.18478845e+01 1.45314711e-03 1.96248283e+00 7.09852620e-01 -3.37211710e+00]
```

```
In [344]: beta0 = beta[0]
beta_coeff = beta[1:]
rows, _ = data_train.shape
y_pred = []
A_abs_B = data_train.drop('C', axis=1)

# Make predictions
for row in range(rows):
    y_pred.append(beta0 + beta_coeff.dot(A_abs_B.values[row, :]))
data_train['C_pred'] = np.ravel(y_pred)

# Reorder columns
data_train = data_train[['A', 'B', '|A|*B', 'C', 'C_pred']]
data_train
```

Out [344]:

	Α	В	A *B	С	C_pred
0	-2.8100	-0.0679	-0.190799	4.81	6.972100
1	-3.9700	6.3300	25.130100	-56.80	-76.008349
2	-4.4300	-0.5990	-2.653570	7.63	11.966209
3	-5.8200	-2.4400	-14.200800	38.70	46.787301
4	9.3900	-1.7200	-16.150800	94.80	83.907937
					•••
189	-0.3030	-1.7100	-0.518130	14.60	12.008931
190	-5.2700	-2.0900	-11.014300	28.90	37.196940
191	7.0100	3.1800	22.291800	-48.20	-46.962490
192	7.0500	4.4800	31.584000	-78.40	-77.302835
193	0.0713	5.6900	0.405697	-6.93	14.776518

194 rows × 5 columns

```
In [345]: # Coefficient of Determination.
# Compute Sum of Sqaured Error and Sum of Sqaured Total.
SSE = ((data_train['C_pred'] - data_train['C'])**2).sum()
SST = ((data_train['C'] - data_train['C'].mean())**2).sum()
# Compute r squared to measure performance.
r_sq = 1 - SSE/SST
print(r_sq)
# R squared for training set is high.
```

0.9384794124804481

```
In [346]: rows, _ = data_test.shape
y_pred = []
A_abs_B = data_test.drop('C', axis=1)

# Make predictions.
for row in range(rows):
    y_pred.append(beta0 + beta_coeff.dot(A_abs_B.values[row, :]))
data_test['C_pred'] = np.ravel(y_pred)

SSE = ((data_test['C_pred'] - data_test['C'])**2).sum()
SST = ((data_test['C'] - data_test['C'].mean())**2).sum()
# Compute r squared to measure performance.
osr_sq = 1 - SSE/SST
print(osr_sq)
```

0.9359914968357479

```
In [347]: # The out of sameple R^2 (test set) is 0.936 which is only slightly to # Therefore, overfitting is NOT a major issue for the model. # 0.936 OS-R^2 is high, thus C can be predicted by A and B.
```