

Eigenvalue Problems. Introduction

Let A an $n \times n$ real nonsymmetric matrix. The eigenvalue problem:

$$Au = \lambda u$$

 $\lambda \in \mathbb{C}$: eigenvalue

 $u \in \mathbb{C}^n$: eigenvector

Example:

$$A = egin{pmatrix} 2 & 0 \ 2 & 1 \end{pmatrix}$$

- $m{\lambda}_1=1$ with eigenvector $m{u}_1=inom{0}{1}$
- $m{\lambda}_2=2$ with eigenvector $u_2=inom{1}{2}$
- \blacktriangleright The set of eigenvalues of A is called the spectrum of A

Eigenvalue Problems. Their origins

- ullet Structural Engineering $[Ku=\lambda Mu]$
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Quantum chemistry and Electronic structure calculations [Schrödinger equation..]
- Application of new era: page ranking on the world-wide web.

15-3 ______ Text: 5.1-5.3 - EIG

Basic definitions and properties

A scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u such that $Au = \lambda u$. The vector u is called an eigenvector of A associated with λ .

- The set of all eigenvalues of A is the 'spectrum' of A. Notation: $\Lambda(A)$.
- $ightharpoonup \lambda$ is an eigenvalue iff the columns of $A-\lambda I$ are linearly dependent.
- lacksquare λ is an eigenvalue iff $\det(A-\lambda I)=0$
- Compute the eigenvalues of the matrix:
- Eigenvectors?

$$A = egin{pmatrix} 2 & 1 & 0 \ -1 & 0 & 1 \ 0 & 1 & 2 \end{pmatrix}$$

Basic definitions and properties (cont.)

➤ An eigenvalue is a root of the Characteristic polynomial:

$$p_A(\lambda) = \det(A - \lambda I)$$

- \triangleright So there are n eigenvalues (counted with their multiplicities).
- The multiplicity of these eigenvalues as roots of p_A are called algebraic multiplicities.

5-5 ______ Text: 5.1-5.3 – EIG

Consider

$$A = \left[egin{array}{cccc} 1 & 2 & -4 \ 0 & 1 & 2 \ 0 & 0 & 2 \end{array}
ight]$$

Find all eigenvalues eigenvalues of A.

- rupe How many eigenvalues can you find if a_{33} is replaced by one?
- lacksquare Same questions if a_{12} is replaced by zero.
- What are all the eigenvalues of a diagonal matrix?

ightharpoonup Two matrices $m{A}$ and $m{B}$ are similar if there exists an invertible matrix $m{X}$ such that

$$A = XBX^{-1}$$

- \blacktriangleright A and B represent the same mapping in 2 different bases.
- Explain why [Hint: Assume a column of X represents one basis vector of the new basis expressed in the old basis...]
- Show: A and B have the same eigenvalues. What about eigenvectors?

Definition: A is diagonalizable if it is similar to a diagonal matrix

- Note: not all matrices are diagonalizable
- ightharpoonup Theorem 1: A matrix is diagonalizable iff it has n linearly independent eigenvectors

15-7 ______ Text: 5.1-5.3 — EIG

Example: Which of these matrices is/are diagonalizable

$$A = egin{bmatrix} 1 & 1 & 0 \ 0 & 2 & 1 \ 0 & 0 & 3 \end{bmatrix} \quad B = egin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{bmatrix} \quad C = egin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 2 \end{bmatrix}$$

- Theorem 2: The eigenvectors associated with distinct eigenvalues are linearly independent
- Prove the result for 2 distinct eigenvalues
- ightharpoonup Consequence: if all eigenvalues of a matrix $m{A}$ are simple then $m{A}$ is diagonalizable.
- Theorem 3: A symmetric matrix has real eigenvalues and is diagonalizable. In addition A admits a set of orthonormal eigenvectors.

The Singular Value Decomposition (SVD)

Theorem For any matrix $A\in\mathbb{R}^{m imes n}$ there exist orthogonal matrices $U\in\mathbb{R}^{m imes m}$ and $V\in\mathbb{R}^{n imes n}$ such that

$$A = U \Sigma V^T$$

where Σ is a diagonal matrix with entries $\sigma_{ii} \geq 0$.

$$\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0$$
 with $p = \min(n,m)$

- \blacktriangleright The σ_{ii} are the singular values of A.
- $ightharpoonup \sigma_{ii}$ is denoted simply by σ_i

Case 1:

 $\mathbf{A} = \begin{bmatrix} \mathbf{U} \\ \mathbf{\Sigma} \end{bmatrix}$

Case 2:

15-10 Text: 7.4 – SVD

The "thin" SVD

Consider the Case-1. It can be rewritten as

$$m{A} = [m{U}_1 m{U}_2] egin{pmatrix} m{\Sigma}_1 \ 0 \end{pmatrix} m{V}^T$$

Which gives:

$$A=U_1\Sigma_1\ V^T$$

where U_1 is m imes n (same shape as A), and Σ_1 and V are n imes n

- referred to as the "thin" SVD. Important in practice.
- $m{\triangle}$ How can you obtain the thin SVD from the QR factorization of $m{A}$ and the SVD of an $m{n} imes m{n}$ matrix?

15-11 Text: 7.4 – SVD

A few properties. Assume that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$
 and $\sigma_{r+1} = \cdots = \sigma_p = 0$

Then:

- rank(A) = r = number of nonzero singular values.
- $\bullet \ \operatorname{Ran}(A) = \operatorname{span}\{u_1, u_2, \dots, u_r\}$
- $Null(A) = span\{v_{r+1}, v_{r+2}, \dots, v_n\}$
- The matrix A admits the SVD expansion:

$$A = \sum_{i=1}^{\prime} oldsymbol{\sigma}_i u_i v_i^T$$

Rank and approximate rank of a matrix

- ightharpoonup The number of nonzero singular values $m{r}$ equals the rank of $m{A}$
- Can define approximate rank if we simply 'neglect smallest singular values

Example: Let

$$egin{aligned} \sigma_1 &= 10.0; & \sigma_2 &= 6.0; & \sigma_3 &= 3.0; \ \sigma_4 &= 0.030; & \sigma_5 &= 0.0130; & \sigma_6 &= 0.0010; \end{aligned}$$

- $ightharpoonup \sigma_4, \sigma_5, \sigma_6$, are likely due to noise so the approximate rank is 3.
- ➤ Rigorous way of stating this exists but beyond scope of this class [see csci 5304]

15-13 Text: 7.4 – SVD

Right and Left Singular vectors:

$$egin{aligned} Av_i &= \sigma_i u_i \ A^T u_j &= \sigma_j v_j \end{aligned}$$

- lacksquare Consequence $A^TAv_i=\sigma_i^2v_i$ and $AA^Tu_i=\sigma_i^2u_i$
- ightharpoonup Right singular vectors $(v_i$'s) are eigenvectors of A^TA
- \blacktriangleright Left singular vectors $(u_i$'s) are eigenvectors of AA^T
- ightharpoonup Possible to get the SVD from eigenvectors of AA^T and A^TA
- but: difficulties due to non-uniqueness of the SVD

__ Text: 7.4 – SVD

A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem

- Regularization methods require the solution of a least-squares linear system Ax = b approximately in the 'dominant singular' space of A
- The Latent Semantic Indexing (LSI) method in information retrieval, performs the "query" in the dominant singular space of \boldsymbol{A}
- Methods utilizing Principal Component Analysis, e.g. Face Recognition.

15-15 Text: 7.4 – SVDapp

Information Retrieval: Vector Space Model

Figure 3. Given: a collection of documents (columns of a matrix A) and a query vector q.

- igwedge Collection represented by an m imes n term by document matrix with $oxed{a_{ij}=L_{ij}G_iN_j}$
- ightharpoonup Queries ('pseudo-documents') $oldsymbol{q}$ are represented similarly to a column

Vector Space Model - continued

- \blacktriangleright Problem: find a column of A that best matches q
- \blacktriangleright Similarity metric: angle between column c and query q

$$\cos heta(c,q) = rac{|c^T q|}{\|c\| \|q\|}$$

To rank all documents we need to compute

$$s = A^T q$$

- ightharpoonup s = similarity vector.
- Literal matching not very effective.
- Problems with literal matching: polysemy, synonymy,...

Use of the SVD

- Solution: Extract intrinsic information or underlying "semantic" information –
- \blacktriangleright LSI: replace matrix A by a low rank approximation using the Singular Value Decomposition (SVD)

$$A = U \Sigma V^T \quad o \quad A_k = U_k \Sigma_k V_k^T$$

- $ightharpoonup U_k$: term space, V_k : document space.
- Refer to this as Truncated SVD (TSVD) approach
- \blacktriangleright Amounts to replacing small sing. values of A by zeros

New similarity vector:

$$s_k = A_k^T q = V_k \Sigma_k U_k^T q$$

LSI: an example

- Number of documents: 8
- Number of terms: 9

Raw matrix (before scaling).

Get the anwser to the query Child Safety, so

$$q = [0\ 1\ 0\ 0\ 0\ 0\ 1\ 0]$$

using cosines and then using LSI with k=3.