Bagging, boosting, and stacking

Ensembling
$$\rightarrow$$
 combine different moduls into 1
Bagging

Y, X

If,(X) $\stackrel{\sim}{\sim}$

Y, X

If,(X) $\stackrel{\sim}{\sim}$

Y, X, $\stackrel{\sim}{\sim}$

If $\stackrel{\sim}{\sim}$
 $\stackrel{\sim}{\sim}$
 $\stackrel{\sim}{\sim}$
 $\stackrel{\sim}{\sim}$

If $\stackrel{\sim}{\sim}$
 $\stackrel{$

Boosting
$$y, \chi$$

$$e_1 = y - f_1$$

$$e_2 = e_1 - f_1$$

$$e_3(\chi) \approx e_1$$

$$e_4 = f_1(\chi) \approx e_1$$

$$e_5 = e_5 - f_1(\chi) \approx e_1$$

$$e_7 = e_7 - f_1(\chi) \approx e_1$$

1 Stacking y $f_1(x)$ $f_2(x)$ $f_3(x)$ f=g(f1,fz,f3)

Which model to use??

General approaches to interpretable ML

Without Machine Learning

With Machine Learning

Why do we care about interpretability?

Taxonomy of interpretability

Intrinsize >> moduls are simple,
so we suterpret directly.

Post-hoc >> train any black box" modul
and analyze preductions

Local - suby was a certain predictor made.

Globel - how dur fre model work?

Intrinsic interpretability in linear regression

$$y \approx \hat{y} = f(X) = w_0 x_0 + w_1 x_1 + \cdots$$

$$w = w : \min_{w} \left| |\hat{y} - y| \right|_{2}^{2}$$

Intrinsic interpretation of decision trees

From model-specific to model-agnostic methods

Model-agnostre methods Lo dresn't matter modul type some model j=f(x) interpret f

One global method: permutation importances

Idea! how much worse dons my model get if a feature is "shuffled"? 1) tran a model, ÿ=f(x) 2) Comple error, e = 1/y - 7/12 3) For feature, XI in X, a) Shwille XI b) Compte prror, e; us my f(X) 4) Importance = e; -eo

One global method: permutation importances

Compute on training data or validation data?

training => how much is XI leveraged

during training?

validation => how important is XI for

generalization to men data.

One global method: permutation importances

P(X)

G(X)

 $r_m(R)$

Z(R)

From global to local methods

Our data may not be globally interpretable

Local version of surrogate: LIME

LIME => Local Interpretable Model-Agnostiz Explanation Given: ý=f(X) 1) Select probe point, Xi 2) Romadomby generate M new points 3) Preded y for these M points 4) Train linear modul on ym weighting L by proximity t Xi 5) Interpret this simple model.

Local version of surrogate: LIME

EXPLAINING MOLECULAR PROPERTIES WITH NATURAL LANGUAGE

A PREPRINT

Pitfalls of interpretable ML

1. Assuming one method will always work

Pitfalls of interpretable ML

2. Bad model generalization

Pitfalls of interpretable ML

3. Unnecessary complexity

Recall why we care about interpretability:

Intrinsic interpretability is always preferred!

