

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- True
- False
- In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.

1 point

- Beam search will run more slowly.
- Beam search will use up more memory.
- ightharpoonup Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)
- Beam search will converge after fewer steps.
- 3. In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

1 point

- True
- False

4.	Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y . Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.
	On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."
	According to your model,
	$P(\hat{y}\mid x) = 1.09*10^{-7}$
	$P(y^* \mid x) = 7.21*10^-8$
	Would you expect increasing the beam width B to help correct this example?
	$lackbox{ No, because } P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
	On, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
	O Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
	O Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
5.	Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.
	True.
	○ False.

Further, here is the formula for $\alpha^{< t,t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t, t'>}$ are true? Check all that apply.

- ightharpoonup We expect $lpha^{< t, t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)
- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)
- $igstyle \sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t'.)

7.	The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network:	1 point
	We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.	
	True	
	○ False	
8.	Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:	1 point
	$lacksquare$ The input sequence length T_x is large.	
	$igcup$ The input sequence length T_x is small.	
9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?	1 point
	_c_oo_o_kkb_oooooookkk	
	○ cokbok	
	cookbook	
	○ cook book	
	○ coookkbooooookkk	
10.	In trigger word detection, $x^{< t>}$ is:	1 point
	lacktriangle Features of the audio (such as spectrogram features) at time t .	
	igcup The t -th input word, represented as either a one-hot vector or a word embedding.	
	igcup Whether the trigger word is being said at time $t.$	
	igcup Whether someone has just finished saying the trigger word at time $t.$	