

Model Development Phase Template

Date	5th July 2024
Team ID	739687
Project Title	SMS SPAM DETECTION
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Creating a model using Multinomial NaiveBayes

```
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB()

#Fitting the model to the training sets
model.fit(X_train, y_train)

MultinomialNB()
```

Prediction

```
y_pred=model.predict(X_test)
y_pred
array([0, 0, 0, ..., 0, 1, 0], dtype=uint8)
```


Model Validation and Evaluation Report:

Evaluating Model

```
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred)
score = accuracy_score(y_test,y_pred)
print(cm)
print('Accuracy Score Is:- ' ,score*100)

[[716  16]
  [ 17  286]]
Accuracy Score Is:- 96.81159420289856
```

```
from sklearn.svm import SVC
svm1=SVC(kernel='rbf')
svm1.fit(X_train,y_train)
SVC()
y_pred4=svm1.predict(X_test)
from sklearn.metrics import accuracy_score
svm_rbf=accuracy_score(y_test,y_pred4)
svm_rbf
0.9623188405797102
svm2=SVC(kernel='sigmoid')
svm2.fit(X_train,y_train)
SVC(kernel='sigmoid')
y_pred5=svm2.predict(X_test)
from sklearn.metrics import accuracy_score
svm_sig=accuracy_score(y_test,y_pred5)
svm_sig
0.9652173913043478
from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier()
dt.fit(X_train,y_train)
DecisionTreeClassifier()
y_pred6=dt.predict(X_test)
from sklearn.metrics import accuracy_score
dec_tree=accuracy_score(y_test,y_pred6)
dec_tree
0.9468599033816425
models = pd.DataFrame({
    'Model': [ 'MultinomialNB','SVM-rbf','SVM-sigmoid','Decision Tree'],
'Test Score': [ score,svm_rbf,svm_sig,dec_tree,]})
models.sort_values(by='Test Score', ascending=False)
```

Model Test Score 0 MultinomialNB 0.968116 2 SVM-sigmoid 0.965217 1 SVM-rbf 0.962319

3 Decision Tree 0.946860

Model	Classification Report	Accuracy	Confusion Matrix
Random Forest Regresso	Model Building With Random Forest Classifier from sklearn.ensemble import RandomforestClassifier ran = RandomforestClassifier(criterion = 'entropy', random_state = ran RandomforestClassifier(criterion='entropy', random_state=0) ran.fit(x_train,y_train) * RandomforestClassifier RandomforestClassifier RandomforestClassifier * RandomforestClassifier 2 . Random Forest >Traing Accuracy = 100.0 >Test Accuracy = 98.8	98%	
Decision Tree Regressor	Model Building With Decision Tree from sklearn.tree import DecisionTreeClassifier deci = DecisionTreeClassifier(criterion = 'entropy', random_state = 0) deci.fit(X_train,y_train) DecisionTreeClassifier DecisionTreeClassifier(criterion='entropy', random_state=0) y_train_pred = deci.predict(X_train) y_test_pred = deci.predict(X_test) #Confusion Natrix For Training Data With Decision Tree 3. Decision Tree >Traing Accuracy = 100.0	97%	
Gradient Boosting Regressor	>Test Accuracy = 97.733333333333333333333333333333333333	97%	