SQL DATA ANALYSIS

Project Introduction

This project focuses on analyzing sales, customer behavior, and operational data from a retail e-commerce dataset to derive actionable insights that can support decision-making and business optimization. The dataset includes information about customer orders, reviews, payment transactions, order logistics, and seller performance. Through data exploration, aggregation, and visualization, the project aims to uncover key trends, patterns, and areas for improvement within the business.

The primary objectives of this project are as follows:

- 1. **Sales Analysis**: Understand revenue patterns, order volumes, and the average value of orders over time to identify seasonal trends, peak sales periods, and potential areas for sales growth.
- 2. **Customer Behavior Analysis**: Investigate customer demographics, purchasing habits, and satisfaction levels, with a focus on analyzing Net Promoter Score (NPS) and customer reviews. This will provide insights into customer preferences and areas needing service improvement.
- 3. **Operational Efficiency**: Analyze logistics data to assess the efficiency of order fulfillment processes, focusing on delivery times, discrepancies between estimated and actual delivery dates, and freight costs across different regions. This will highlight regions with operational inefficiencies and high costs.
- 4. **Payment Trends**: Examine payment methods and installment preferences to understand customer purchasing power and offer recommendations for optimizing payment options to boost sales.
- 5. **Seller Performance**: Evaluate seller performance in terms of the number of orders handled per seller and customer satisfaction associated with different sellers. This will help in identifying high-performing sellers and those who may require support to improve their service levels.

Context:

Target is a globally renowned brand and a prominent retailer in the United States. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This particular business case focuses on the operations of Target in Brazil and provides insightful information about 100,000 orders placed between 2016 and 2018. The dataset offers a comprehensive view of various dimensions including the order status, price, payment and freight performance, customer location, product attributes, and customer reviews.

By analyzing this extensive dataset, it becomes possible to gain valuable insights into Target's operations in Brazil. The information can shed light on various aspects of the business, such as order processing, pricing strategies, payment and shipping efficiency, customer demographics, product characteristics, and customer satisfaction levels.

Dataset: https://drive.google.com/drive/folders/1TGEc66YKbD443nslRi1bWgVd238gJCnb

The data is available in 8 csv files:

- 1. customers.csv
- 2. sellers.csv
- 3. order_items.csv
- 4. geolocation.csv
- 5. payments.csv
- 6. reviews.csv
- 7. orders.csv
- 8. products.csv

The column description for these csv files is given below.

The customers.csv contain following features:

The column description for these csv files is given below.

The customers.csv contain following features:

Features Description

customer_id ID of the consumer who made the purchase

customer_unique_id Unique ID of the consumer customer_zip_code_prefix Zip Code of consumer's location

customer_city Name of the City from where order is made

customer_state State Code from where order is made (Eg. são paulo - SP)

The sellers.csv contains following features:

Features Description

seller_id Unique ID of the seller registered seller_zip_code_prefix Zip Code of the seller's location seller_city Name of the City of the seller seller_state State Code (Eg. são paulo - SP)

The order_items.csv contain following features:

Features Description

order_id A Unique ID of order made by the consumers
order_item_id A Unique ID given to each item ordered in the order
product_id A Unique ID given to each product available on the site

seller_id Unique ID of the seller registered in Target

shipping_limit_date The date before which the ordered product must be shipped

price Actual price of the products ordered

freight_value Price rate at which a product is delivered from one point to another

The geolocations.csv contain following features:

Features Description

geolocation_zip_code_prefix First 5 digits of Zip Code

geolocation_lat Latitude
geolocation_lng Longitude
geolocation_city City
geolocation_state State

The payments.csv contain following features:

Features Description

order_id A Unique ID of order made by the consumers
payment_sequential Sequences of the payments made in case of EMI

payment_type Mode of payment used (Eg. Credit Card)

payment_installments Number of installments in case of EMI purchase

payment_value Total amount paid for the purchase order

The orders.csv contai	n following features:
Features	Description

order_id A Unique ID of order made by the consumers customer_id ID of the consumer who made the purchase

order_status Status of the order made i.e. delivered, shipped, etc.

order_delivered_carrier_date Delivery date at which carrier made the delivery order_delivered_customer_date Date at which customer got the product

The reviews.csv contain following features:

Features Description

review_id ID of the review given on the product ordered by the order id

order_id A Unique ID of order made by the consumers

review_score Review score given by the customer for each order on a scale of 1-5

review_comment_title Title of the review

review_comment_message Review comments posted by the consumer for each order

review_creation_date Timestamp of the review when it is created review_answer_timestamp Timestamp of the review answered

The products.csv contain following features:

Features Description

product_id A Unique identifier for the proposed project.

product_category_name Name of the product category

product_name_lenght Length of the string which specifies the name given to the products ordered product_description_lenght Length of the description written for each product ordered on the site product_photos_qty Number of photos of each product ordered available on the shopping portal

product_weight_g Weight of the products ordered in grams
product_length_cm Length of the products ordered in centimeters
product_height_cm Height of the products ordered in centimeters
product_width_cm Width of the product ordered in centimeters

1.1 Total number of products

Query

```
SELECT
| COUNT(DISTINCT product_id) total_product
FROM target.products

Output

Row total_product 

1 32951
```

1.2 Total number of product category

Query

```
SELECT | COUNT(DISTINCT product_category) total_product | FROM target.products
```

Output

1.3 What is the distribution of unique customers across different states?

```
WITH states AS
  (SELECT
   customer_state,
    COUNT(DISTINCT customer_unique_id )AS num_cust
  FROM target.customers
 GROUP BY customer_state),
rank_cust AS
 (SELECT
  ROW_NUMBER() OVER(ORDER BY num_cust DESC) rn
 FROM states)
SELECT
 customer_state,
 CONCAT (ROUND((SUM (num_cust) OVER(ORDER BY num_cust DESC) /SUM (num_cust) OVER())*100,2), '%')
 AS cum_of_cust
FROM rank_cust
ORDER BY num_cust DESC
```

Output

Row	customer_state ▼	 num_cust ▼	cum_num_of_cust ▼
1	SP	40302	41.92%
2	RJ	12384	54.8%
3	MG	11259	66.52%
4	RS	5277	72%
5	PR	4882	77.08%
6	SC	3534	80.76%
7	BA	3277	84.17%
8	DF	2075	86.33%
9	ES	1964	88.37%

Visualization

Insights

The cumulative percentage shows that the top three states (SP, RJ, and MG) account for nearly 67% of the total customer base. This insight can be vital for decision-making, particularly in determining where to allocate resources for customer service, marketing campaigns, or even logistics. The fact that a few states contribute to a large portion of the customer base can indicate opportunities for deeper market penetration in those areas.

1.4 What are the top product categories based on the number of orders?

Query

```
SELECT
 num_ord,
 product_category,
 CONCAT(ROUND(SUM(num_ord) OVER (ORDER BY rn)/SUM(num_ord) OVER()*100,2),'%') AS
 CONCAT(ROUND(COUNT(product_category) OVER (ORDER By rn)/COUNT(product_category)
 OVER()*100,2),'%') AS cum_cat_perc
FROM (SELECT
        ROW_NUMBER () OVER(ORDER BY num_ord DESC) rn
      FROM (SELECT
             COUNT(DISTINCT o.order_id) num_ord,
             p.product_category
           FROM target.orders o
LEFT JOIN target.order_items oi
            ON o.order_id = oi.order_id
            LEFT JOIN target.products p
            ON oi.product_id=p.product_id
            GROUP BY p.product_category)ord_table)tn_table
ORDER BY rn
```

Output

Row	num_ord ▼	product_category ▼	cum_ord_perc ▼	cum_cat_perc ▼
1	9417	bed table bath	9.39%	1.37%
2	8836	HEALTH BEAUTY	18.21%	2.74%
3	7720	sport leisure	25.91%	4.11%
4	6689	computer accessories	32.58%	5.48%
5	6449	Furniture Decoration	39.02%	6.85%
6	5884	housewares	44.89%	8.22%
7	5624	Watches present	50.5%	9.59%
8	4199	telephony	54.68%	10.96%
9	3897	automotive	58.57%	12.33%
10	3886	toys	62.45%	13.7%
11	3632	Cool Stuff	66 07%	15 07%

Visualization

Insights

The results show that "bed table bath" is the top-selling category with 9,417 orders, accounting for 9.39% of total orders. Categories like "HEALTH BEAUTY" and "sport leisure" follow closely behind. These categories collectively represent a significant portion of the total sales, indicating which product segments are most popular among customers.

1.5 How can we analyze product performance based on the number of orders and cumulative percentages?

Query

```
SELECT
  product_id,
  CONCAT(ROUND(SUM(num_ord) OVER (ORDER BY rn)/SUM(num_ord) OVER()*100,4),'%') AS cum_ord,
  CONCAT(ROUND(COUNT(product_id) OVER (ORDER By rn)/COUNT(product_id) OVER()*100,2),'%') AS cum_prod
        ROW_NUMBER () OVER(ORDER BY num_ord DESC) rn
      FROM (SELECT
             COUNT(DISTINCT o.order_id) num_ord,
             p.product_id
           FROM target.orders o
           LEFT JOIN target.order_items oi
           ON o.order_id = oi.order_id
           LEFT JOIN target.products p
           ON oi.product_id=p.product_id
           GROUP BY p.product_id)cnt_ord_table
      )rn_table
ORDER BY rn
```

Output

Query results

JOB IN	IFORMATION	RESULTS CHART J	ISON EXECUTION DETAILS	EXECUTION GRAPH
Row	num_ord ▼	product_id ▼	cum_ord ▼	cum_prod ▼
1	775	null	0.751%	0%
2	467	99a4788cb24856965c36a24e3	1.2035%	0%
3	431	aca2eb7d00ea1a7b8ebd4e683	1.6211%	0.01%
4	352	422879e10f46682990de24d77	1.9622%	0.01%
5	323	d1c427060a0f73f6b889a5c7c	2.2752%	0.01%
6	311	389d119b48cf3043d311335e4	2.5766%	0.02%
7	306	53b36df67ebb7c41585e8d54d	2.8731%	0.02%
8	291	368c6c730842d78016ad8238	3.155%	0.02%
9	287	53759a2ecddad2bb87a079a1f	3.4331%	0.02%
10	269	154e7e31ebfa092203795c972	3.6938%	0.03%

Visualization

Insights

The top product with 775 orders contributes 0.751% to the overall number of orders. As the rank goes down, products like "99a4788cb24856965c36a24e339b6058" and "aca2eb7d00ea1a7b8ebd4e68314663af" contribute 1.2035% and 1.6211% of orders respectively. This kind of insight is valuable for identifying high-demand products that should be prioritized in inventory management and marketing campaigns.

1.6 Which product categories have received the highest average customer reviews and a significant number of orders?

```
SELECT

ROUND(AVG(o.review_score),2) avg_review,
    COUNT(DISTINCT oi.order_id) num_ord,
    p.product_category

FROM target.order_reviews o

LEFT JOIN target.order_items oi

ON o.order_id = oi.order_id

LEFT JOIN target.products p

ON oi.product_id = p.product_id

GROUP BY product_category

HAVING num_ord >=1000 AND avg_review >=4.10

ORDER BY avg_review DESC;
```

Output

Row	avg_review ▼	num_ord ▼	product_category ▼
1	4.32	1030	Bags Accessories
2	4.19	2295	stationary store
3	4.19	1701	pet Shop
4	4.16	3150	perfumery
5	4.16	3853	toys
6	4.15	3599	Cool Stuff
7	4.14	8771	HEALTH BEAUTY
8	4.14	1854	Fashion Bags and Accessories
9	4.11	7669	sport leisure

Visualization

Insights

Bags Accessories leads with an average review score of 4.32 across 1,030 orders, making it the highest-rated category. Customers are highly satisfied with products in this category, and despite a lower number of orders compared to other categories, it shows strong customer approval.

Dashboard

2.1 How many distinct customers are in the database?

Query

Output

2.2 How has the number of unique customers grown over time, on a monthly basis?

Query

```
*,
SUM(num_cust) OVER (ORDER BY year,month) AS cum_cust
FROM (SELECT

EXTRACT(YEAR FROM o.order_purchase_timestamp) year,
EXTRACT(MONTH FROM o.order_purchase_timestamp) month,
COUNT(DISTINCT c.customer_unique_id) num_cust
FROM target.customers c
LEFT JOIN target.orders o
ON c.customer_id=o.customer_id
GROUP BY year,month
ORDER BY year,month)cust_table;
```

Output

Row	year ▼	month ▼	num_cust ▼	cum_cust ▼
1	2016	9	4	4
2	2016	10	321	325
3	2016	12	1	326
4	2017	1	765	1091
5	2017	2	1755	2846
6	2017	3	2642	5488
7	2017	4	2372	7860
8	2017	5	3625	11485
9	2017	6	3180	14665
10	2017	7	3947	18612
11	2017	8	4246	22858

Visualization

Insights

The company started with a few customers in **September 2016** and saw a substantial increase in the customer base as time progressed.

By **October 2017**, the cumulative number of unique customers reached **31,631**, indicating steady growth over the year.

The highest jump in customer acquisition occurred in **November 2017**, with **7,430 unique customers**, likely due to holiday season promotions or significant events.

2.3 How has the number of orders grown over time on a monthly basis?

Query

Output

Row	year ▼	month ▼	ord ▼	cum_ord ▼
1	2016	9	4	4
2	2016	10	324	328
3	2016	12	1	329
4	2017	1	800	1129
5	2017	2	1780	2909
6	2017	3	2682	5591
7	2017	4	2404	7995
8	2017	5	3700	11695
9	2017	6	3245	14940
10	2017	7	4026	18966

Visualization

Insights

The number of orders placed saw a gradual rise from **September 2016**, where only **4 orders** were placed, to **April 2018**, where the cumulative number of orders reached **73,577**.

The largest single-month increase occurred in **November 2017** with **7,544 orders**, which could align with promotional events or holiday sales, making it a peak period.

2.4 What is the Net Promoter Score (NPS) of the business based on customer reviews?

Insights

An NPS of **46.26**% is considered **moderately positive**. This indicates that a good proportion of customers are happy with their purchases and willing to recommend the company, though there is room for improvement.

Typically, an NPS above **50**% is considered excellent, and scores between **30-50**% reflect a satisfactory performance with potential for growth.

2.5 How are customer reviews distributed across different scores, and what is the percentage representation of each score?

Query

Output

Row	review_score ▼	num_review ▼	percentage ▼
1	1	11424	11.51%
2	2	3151	3.18%
3	3	8179	8.24%
4	4	19142	19.29%
5	5	57328	57.78%

Visualization

Insights

Majority Score: The majority of reviews (57.78%) are 5-star, indicating a strong level of customer satisfaction. This is a positive sign, suggesting that most customers are happy with their purchases.

Detractors (Score 1 & 2): Combined, these scores represent only **14.69**% of total reviews, suggesting that the percentage of unsatisfied customers is relatively low.

Promoters (Score 4 & 5): Combined, they account for **77.07**%, indicating a high level of customer loyalty and satisfaction.

2.6 What is the average number of days taken for order approvals based on customer review scores?

Query

```
DISTINCT review_score,
ROUND(AVG(day) OVER(PARTITION BY review_score),2) AS avg_approval_day,
ROUND(AVG(day) OVER(),2) AS avg_approval_day_overall
FROM (SELECT

TIMESTAMP_DIFF(o.order_approved_at,o.order_purchase_timestamp,SECOND)/86400 day,
ov.review_score
FROM target.orders o
RIGHT JOIN target.order_reviews ov
ON o.order_id=ov.order_id
WHERE o.order_approved_at IS NOT NULL)day_table

ORDER BY review_score
```

Output

Row	review_score ▼	avg_approval_day 🏸	avg_approval_day_ov
1	1	0.49	0.43
2	2	0.47	0.43
3	3	0.45	0.43
4	4	0.43	0.43
5	5	0.42	0.43

Visualization

Insights

The average approval time decreases as the review score increases, suggesting that orders with higher satisfaction ratings tend to be approved slightly faster than those with lower scores.

Customers giving **1-star** ratings had the longest average approval time (0.49 days), indicating potential issues that may be reflected in their reviews.

2.7 How do delivery carrier times vary by customer review score?

```
SELECT

DISTINCT review_score,
ROUND(AVG(day) OVER(PARTITION BY review_score),2) AS avg_carrier_day,
ROUND(AVG(day) OVER(),2) AS overall_avg_carrier_day

FROM (SELECT

TIMESTAMP_DIFF(o.order_delivered_carrier_date,o.order_approved_at ,SECOND)/86400 day,
ov.review_score
FROM target.orders o
RIGHT JOIN target.order_reviews ov
ON o.order_id=ov.order_id
WHERE o.order_approved_at IS NOT NULL)day_table

ORDER BY review_score
```

Row	review_score ▼	avg_carrier_day ▼	overall_avg_carrier_d
1	1	4.21	2.8
2	2	3.56	2.8
3	3	3.15	2.8
4	4	2.8	2.8
5	5	2.46	2.8

Visualization

Insights

The data suggests that higher review scores are associated with shorter delivery times to the carrier. Customers who rated their experience **1-star** experienced the longest delay in carrier delivery (4.21 days on average), while **5-star** ratings are linked to quicker deliveries (2.46 days on average).

As the review score increases, the delivery to carrier time tends to decrease, indicating that faster delivery may contribute to higher customer satisfaction.

2.8 Analysis of Order Status and Review Score with Delivery Time

```
SELECT

DISTINCT o.order_status,
ov.review_score,
COUNT(DISTINCT ov.order_id) OVER (PARTITION BY o.order_status,ov.review_score) num_ord,
ROUND(AVG(COALESCE (TIMESTAMP_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date ,SECOND)/86400,0))
OVER (PARTITION BY o.order_status,ov.review_score),2)day_avg
FROM target.orders o
RIGHT JOIN target.order_reviews ov
ON o.order_id=ov.order_id
ORDER BY o.order_status,ov.review_score
```

Output

Visualization

Insights

Early Delivery Impact: Orders being delivered significantly earlier than the estimated date (-11.22 days) could positively influence review scores, especially with a majority of 5-star ratings.

The consistent early delivery across all review scores may highlight that factors beyond just delivery timeliness contribute to lower review ratings (1-star or 2-star).

Review Variance: Even though the order was canceled, customers still left reviews. Interestingly, some canceled orders received 5-star reviews, which may suggest that customer service and handling of the cancellation process were satisfactory in certain cases.

2.9 Provides the count of reviews, their associated scores, and the percentage breakdown of those scores by state.

```
SELECT

DISTINCT c.customer_state,

COUNT(ov.review_id)OVER(PARTITION BY c.customer_state)num_reviews,

ov.review_score,

CONCAT(ROUND((COUNT (ov.review_score)

OVER (PARTITION BY c.customer_state,ov.review_score)/

COUNT(ov.order_id) OVER (PARTITION BY c.customer_state))*100,2),'%') rev_percentage,

COUNT(ov.order_id) OVER (PARTITION BY c.customer_state) num_review_by_state

FROM target.customers c

LEFT JOIN target.orders o

ON c.customer_id=o.customer_id

LEFT JOIN target.order_reviews ov

ON o.order_id=ov.order_id

WHERE review_score IS NOT NULL

ORDER BY c.customer_state,ov.review_score
```

Output

Row	customer_state ▼	num_reviews ▼	review_score ▼	rev_percentage ▼	num_review_by_state
1	AC	81	1	8.64%	81
2	AC	81	2	7.41%	81
3	AC	81	3	9.88%	81
4	AC	81	4	18.52%	81
5	AC	81	5	55.56%	81
6	AL	414	1	17.63%	414
7	AL	414	2	6.28%	414
8	AL	414	3	7%	414
9	AL	414	4	21.5%	414
10	AL	414	5	47.58%	414
11	AM	147	1	8.16%	147

Visualization

Insights

For the state **SP**, 60% of the reviews are **5 stars**, while 25% are **4 stars**. This indicates that most customers in SP are satisfied, with high ratings.

The lower review percentages for **1-star** and **2-star** reviews suggest that negative feedback is minimal in this state.

3.1 number of distinct orders

3.3 What is the average duration between order purchase and estimated delivery date across all orders

3.4 How many distinct sellers are there in the database

3.5 How do the number of order payments vary across different payment installment plans? Query

SELECT

payment_installments,

COUNT (order_id) num_ord

FROM target.payments

GROUP BY payment_installments

ORDER BY payment_installments

Output

Row	payment_installment	num_ord ▼	
1	0	2	
2	1	52546	
3	2	12413	
4	3	10461	
5	4	7098	
6	5	5239	
7	6	3920	
8	7	1626	
9	8	4268	
10	9	644	

Visualization

Insights

The highest number of orders (52,546) is associated with a single payment installment, indicating that most customers prefer immediate payment without installment plans. This may suggest a strong preference for cash flow management among customers.

As the number of payment installments increases, the number of orders decreases. This trend could indicate that while some customers may value flexibility in payment options, the majority may not opt for installment payments, possibly due to preferences for budgeting or simplicity in transactions

3.6 What is the average delivery time for orders across different customer states?

Query

```
SELECT

DISTINCT c.customer_state,
ROUND(AVG(TIMESTAMP_DIFF(o.order_estimated_delivery_date,o.order_purchase_timestamp,SECOND)/86400)
OVER(PARTITION BY c.customer_state),2) avg_day_delivery
FROM target.orders o
LEFT JOIN target.customers c
ON o.customer_id=c.customer_id
```

Output

Row	customer_state ▼	avg_day_delivery 🔻
1	DF	24.42
2	AL	32.59
3	CE	31.31
4	RO	38.79
5	MT	31.82
6	RS	28.57
7	RJ	26.37
8	RN	32.25
9	MS	25.96
10	RR	46.52
11	PE	31.21

Insights

The query provides insights into how delivery times vary by customer state, highlighting geographical differences in logistics and service efficiency.

By calculating the average delivery time (in days) for each state, businesses can identify which states may require improvements in delivery processes. States with significantly higher average delivery times might indicate logistical challenges or inefficiencies.

3.7 What is the average duration from order purchase to estimated delivery, broken down by year and month?

```
SELECT

DISTINCT year,
month,
ROUND(AVG(day) OVER (PARTITION BY year,month),2) AS avg_duration

FROM (SELECT

EXTRACT(YEAR FROM order_purchase_timestamp) year,
EXTRACT(MONTH FROM order_purchase_timestamp) month,
TIMESTAMP_DIFF(o.order_estimated_delivery_date,o.order_purchase_timestamp,SECOND)/86400 day

FROM target.orders o)day_table

ORDER BY year,month
```

Output

Row	year ▼	month ▼	avg_duration ▼
1	2016	9	33.24
2	2016	10	55.28
3	2016	12	26.03
4	2017	1	39.6
5	2017	2	32.01
6	2017	3	24.95
7	2017	4	27.4
8	2017	5	24.32
9	2017	6	24.05

Visualization

3.8 How does the number of orders vary by the time of day and payment type for each month?

Query

```
SELECT
 DISTINCT day,
 payment_type,
 month,
 COUNT(order_id) OVER (PARTITION BY day, month, payment_type) num_ord
FROM (SELECT
       CASE WHEN (EXTRACT (HOUR FROM o.order_purchase_timestamp)) <=6 THEN 'Dawn'
             WHEN (EXTRACT (HOUR FROM o.order_purchase_timestamp)) <=12 THEN 'Morning'
              WHEN (EXTRACT (HOUR FROM o.order_purchase_timestamp)) <=18 THEN 'Afternoon'
             WHEN (EXTRACT (HOUR FROM o.order_purchase_timestamp)) <=23 THEN'Night' END day,
       p.payment_type,
       EXTRACT (MONTH FROM o.order_purchase_timestamp) month,
       o.order_id
     FROM target.payments p
     LEFT JOIN target.orders o
     ON p.order_id=o.order_id
     WHERE o.order_purchase_timestamp IS NOT NULL AND p.payment_type IS NOT NULL)t
ORDER BY CASE
  WHEN day = 'Dawn' THEN 1
  WHEN day = 'Morning' THEN 2
  WHEN day = 'Afternoon' THEN 3
  WHEN day = 'Night' THEN 4
  END, payment_type, month;
```

Output

Row	day ▼	payment_type ▼	month ▼	num_ord ▼
1	Dawn	UPI	1	95
2	Dawn	UPI	2	87
3	Dawn	UPI	3	105
4	Dawn	UPI	4	94
5	Dawn	UPI	5	111
6	Dawn	UPI	6	83
7	Dawn	UPI	7	98
8	Dawn	UPI	8	98
9	Dawn	UPI	9	47
10	Dawn	UPI	10	53
11	Dawn	UPI	11	9.5

Insights

The query segments order placements into four-time categories: Dawn, Morning, Afternoon, and Night. This categorization allows for a detailed analysis of customer behavior based on the time they prefer to make purchases.

By including payment type, the query helps to understand which payment methods are favored during different times of the day. For example, customers may prefer specific payment options in the morning versus the evening, indicating potential trends in consumer preferences.

3.9 Which customer states experience the longest average delivery times?

```
SELECT

DISTINCT c.customer_state,
ROUND(AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,SECOND)/86400)
OVER(PARTITION BY c.customer_state),2) avg_delivery_day
FROM target.orders o
LEFT JOIN target.customers c
ON o.customer_id=c.customer_id
ORDER BY avg_delivery_day DESC
LIMIT 5
```

C	Output	_
Row	customer_state ▼	avg_delivery_day 🔻
1	RR	29.39
2	AP	27.19
3	AM	26.43
4	AL	24.54
5	PA	23.77

Insights

States like **RR**, **AP**, **and AM** have significantly longer delivery times. This could indicate logistical challenges such as geographic remoteness, poor infrastructure, or limited access to faster delivery methods.

Businesses may want to investigate the reasons behind these long delivery times in these specific states. Possible solutions could include optimizing delivery routes, collaborating with more efficient local carriers, or offering expedited shipping options.

3.10 Which customer states have the largest negative deviation from their estimated delivery dates?

```
SELECT

customer_state,
avg_day_dele_esti

FROM (SELECT

c.customer_state,
ROUND(AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date,SECOND)/86400),2) avg_day_dele_esti,
DENSE_RANK()

OVER (ORDER BY ROUND(AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_estimated_delivery_date, SECOND) / 86400), 2)) AS rn
FROM target.orders o
LEFT JOIN target.customers c
ON o.customer_id=c.customer_id
GROUP BY c.customer_id=c.customer_id
GROUP BY c.customer_state)ranked
WHERE rn <= 5
ORDER BY rn;
```

\sim			
Οι	IT	nı	ıΤ
\sim	aυ	v	ı

Row	customer_state ▼	avg_day_dele_esti
1	AC	-20.08
2	RO	-19.4
3	AP	-19.06
4	AM	-18.85
5	RR	-16.59

Visualization

Insights

The large negative deviations suggest that delivery times in these regions are consistently overestimated. Businesses may need to reassess their estimated delivery algorithms or methods to provide more accurate predictions.

Early deliveries can lead to enhanced customer satisfaction as orders arrive well before the expected time, creating a positive impression. However, consistently large deviations could also lead to confusion if customers are not prepared for the early arrival of goods.

3.11 Which customer states incur the highest average freight costs?

Query

```
SELECT

c.customer_state,

ROUND(AVG(oi.freight_value ),2) avg_fr

FROM target.customers c

RIGHT JOIN target.orders o

ON o.customer_id=c.customer_id

RIGHT JOIN target.order_items oi

ON o.order_id=oi.order_id

GROUP BY c.customer_state

ORDER BY avg_fr DESC

LIMIT 5;
```

Output

Row	customer_state ▼	avg_fr ▼	11
1	RR		42.98
2	PB		42.72
3	RO		41.07
4	AC		40.07
5	PI		39.15

Visualization

Insights

These states likely face higher freight charges due to their **geographical location**. They may be farther from major distribution hubs or have limited infrastructure, increasing transportation costs.

Customers in these regions could experience higher total purchase costs, which might affect purchasing behavior. Businesses might want to consider strategies to mitigate these costs, such as offering **discounts on freight charges** to maintain competitiveness in these areas.

3.12 Which customer states have the shortest average delivery times?

Query

```
SELECT

c.customer_state,
ROUND(AVG(TIMESTAMP_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,SECOND)/86400),2) avg_delivery_day
FROM target.orders o
LEFT JOIN target.customers c
ON o.customer_id=c.customer_id
GROUP BY c.customer_state
ORDER BY avg_delivery_day
LIMIT 5;
```

Output

Row	customer_state ▼	avg_delivery_day 🔻
1	SP	8.76
2	PR	11.99
3	MG	12.01
4	DF	12.97
5	SC	14.96

Visualization

Insights

Proximity to logistics hubs: São Paulo, for example, is a major economic and logistics center, which contributes to faster shipping times.

Developed transportation infrastructure: States like PR, MG, and DF may have better road networks and efficient logistics operations.

Higher concentration of distribution centers: These states may have more warehouses and fulfillment centers nearby, leading to quicker order processing and delivery.

Dashboard

4.1 What is the average order value across all transaction

Row	avg_order_value 🔻
1	160.99

4.2 What is the total revenue generated from all transactions?

Query

```
SELECT
   ROUND(SUM(payment_value)) AS total_revenue
FROM target.payments;
```

Output

4.3 What is the average freight (shipping) cost per order?

Query

```
SELECT
| ROUND(SUM(freight_value)/COUNT(DISTINCT order_id),2) avg_freight_value
FROM target.order_items
```

Output

4.4 What is the monthly revenue trend?

```
SELECT
FORMAT_TIMESTAMP('%b %Y', order_purchase_timestamp) ord_date,
ROUND(SUM(p.payment_value),2) revenue
FROM target.payments p
LEFT JOIN target.orders o
ON p.order_id=o.order_id
GROUP BY ord_date
ORDER BY PARSE_DATE('%b %Y', ord_date)
```

Output

Row	ord_date ▼	revenue ▼
1	Sep 2016	252.24
2	Oct 2016	59090.48
3	Dec 2016	19.62
4	Jan 2017	138488.04
5	Feb 2017	291908.01
6	Mar 2017	449863.6
7	Apr 2017	417788.03
8	May 2017	592918.82
9	Jun 2017	511276.38
10	Jul 2017	592382.92

Visualization

Dashboard

Project Conclusion

The project involved an in-depth analysis of sales, customer behavior, and operational performance data from the provided datasets. The key focus was on deriving actionable insights that could inform business decisions, improve customer satisfaction, and optimize logistics and sales strategies. Here's a summary of the conclusions drawn from the analysis:

1. Sales Performance:

- a. Monthly revenue trends were identified, showing fluctuations that could correlate with specific marketing campaigns, holidays, or external factors.
- b. The average order value was calculated, providing insight into customer purchasing behavior, which can be used to optimize pricing and upselling strategies.

2. Customer Behavior:

- a. Analysis of customer distribution by state revealed geographical patterns in delivery times and freight charges, highlighting regions with longer delivery durations and higher freight costs, which could be targeted for operational improvements.
- b. Net Promoter Score (NPS) provided a direct measurement of customer satisfaction, revealing areas where service improvements are needed.

3. Operational Efficiency:

a. The average time taken for deliveries was analyzed across states, showing discrepancies between estimated and actual delivery times in certain regions. This insight can be used to adjust delivery logistics and set more realistic expectations for customers.

b. Freight value analysis across states identified areas where shipping costs were higher, which may indicate inefficiencies or potential for renegotiation of shipping contracts.

4. Payment and Revenue:

- a. Payment installment trends revealed that most customers preferred single or short-term installment plans, providing insights for offering customized payment options.
- b. Total revenue and monthly revenue patterns were calculated, offering a comprehensive view of the business's financial performance, aiding in long-term financial planning.

Recommendations:

- **Target High Revenue Regions**: Focus on optimizing operations in states with high delivery times or freight charges to enhance customer satisfaction and reduce costs.
- Improve Customer Service: Use NPS and review data to address issues in lower-scoring segments, improving overall customer retention and satisfaction.
- **Optimize Payment Options**: Introduce more flexible payment plans or promotions in regions with lower installment usage to encourage higher-value purchases.
- **Forecasting and Planning**: Use the insights from monthly revenue patterns to forecast demand more accurately, plan inventory, and schedule marketing efforts during peak months.

In conclusion, the project successfully uncovered multiple opportunities for business improvements, and the insights generated will be crucial for enhancing customer experience, optimizing operations, and driving revenue growth.