Data visualization with ggplot

Overview

Data visualization using ggplot

- Quick review of the grammar of graphics
- Using ggplot to create data visualizations

If there is time

• ggplot bonus features

Homework 3

It is due on Gradescope by 11pm on Monday July 21st

How is the homework going so far?

Review of the grammar of graphics and ggplot

The grammar of graphics

Leland Wilkinson noticed similarities between many graphs and tried to generate a 'grammar' that could be used to express a graph

• i.e., a list elements that can be combined to create a graph

Hadley Wickham implemented these ideas in R in the ggplot2 package

Graphs are composed of...

A Frame: Coordinate system on which data is placed

• ggplot() +

Glyphs: basic graphic unit representing cases or statistics

- Data is mapped onto these aesthetics such as: shape, color, size, etc. and/or aesthetics can be set to a fixed value
 - geom_point(aes(x = gdpPercap, y = lifeExp, color = continent))
 geom_point(aes(x = gdpPercap, y = lifeExp), color = "red")

Scales and guides: shows how to interpret axes and other properties of the glyphs

scale x continuous(trans = "log10")

scale color brewer(type = "qua", palette = 2)

Plots can also contain...

Facets: allows for multiple side-by-side graphs based on a categorical variable

facet_wrap(~country)

Layers: allows for more than one types of data to be mapped onto the same figure

geom_vline(xintercept = 1969, col = "red")

Theme: contains finer points of display (e.g., font size, background color, etc.)

theme_wsj()

Aesthetic mappings

Data Frame

state [‡]	date	organization	leaning [‡]	leaning_detail
Michigan	29-Aug	Roth	Leaning Dem	Leaning
Kentucky	31-Aug	NYT	Likely Rep	86% Rep.
Louisiana	4-Aug	538	Leaning Rep	55% Rep.
Arkansas	27-Aug	WaPo	Leaning Rep	65% Rep.
Georgia	22-Aug	Cook	Tossup	Tossup
Alaska	31-Aug	NYT	Leaning Dem	52% Dem.

	${f e}$	\bowtie	Cook POLITICAL REPORT	শ্বি	۱	wp
Compositive States	NYT	538	Cook	Roth.	Sabato	WaPo
Competitive States	Aug 31	Aug 4	Aug 22	Aug 29	Aug 27	Aug 29
New Hampshire	84% Dem.	90% Dem.	Leaning	Likely	Likely	>99% Dem.
Michigan	74% Dem.	65% Dem.	Tossup	Leaning	Likely	99% Dem.
Colorado	57% Dem.	60% Dem.	Tossup	Tossup	Leaning	65% Dem.
lowa	53% Dem.	55% Dem.	Tossup	Tossup	Tossup	63% Rep.
Alaska	52% Dem.	Even	Tossup	Tossup	Tossup	66% Dem.
North Carolina	51% Rep.	Even	Tossup	Tossup	Tossup	91% Dem.
Louisiana	60% Rep.	55% Rep.	Tossup	Tossup	Tossup	51% Dem.
Arkansas	66% Rep.	60% Rep.	Tossup	Tossup	Tossup	65% Rep.
Georgia	82% Rep.	75% Rep.	Tossup	Likely	Leaning	83% Rep.
Kentucky	86% Rep.	80% Rep.	Tossup	Leaning	Likely	94% Rep.

^{*} Rothenberg ratings are converted from a nine-category scale to a seven-category scale to make comparisons easier.

Solid Likely Leaning Tossup Leaning Likely Solid Dem. Dem. Dem. Rep. Rep. Rep.

Q: What are the mappings between each variable and visual attribute?

Example data: mtcars

PERFORMANCE	CADILLAC	LINCOLN	IMPERIAL
Acceleration		4.4	
0-30 mph	4.30	3.97	4.2
0-50 mph	8.49	-8.00	9.15
0-60 mph	12.00	9.50	12.1
Standing Start 1/4-mile Mph	77.05	77.65	80.28
Elapsed time	17.98	17.82	17.42
Passing speeds	17.00	11.02	111-46
40-60 mph	6.58	5.9	7.1
50-70 mph	7.00	6.8	6.8
Stopping distance			W. S. C.
From 30 mph	32'1"	31'4"	27'5"
From 60 mph	182'7"	153'10"	129'3"
Gas mileage range	10.43	10.42	14.7
Width - in.	79.8	80.0	79.7
Front Track - in.	63.5	64.3	64
Rear Track - in.	63.3	64.3	63.7
Wheelbase-in	133.0	127.0	124.0
Overall length – in.	233.7	232.6	231.1
Height-in.	55.6	55.4	54.7
Curb Weight-Ibs.	5,250	5,425	5,345
Fuel Capacity - gals.	27	22.5	25
Oil Capacity – qts.	4(1)	4(1)	4(1)
Storage Capacity - cu. ft.	19.27	20.9	20+
Base Price	\$9,312	\$7.637	\$7,062
Price as tested	\$11,435	\$9,452	\$8,737
Engine:	OHV V-8	OHV V-8	OHV V-8
Bore & Stroke - ins.	4.3x4.06	4.36x3.85	4.32x3.75
Displacement - cu. in.	472	460	440
HP @ RPM	205 @ 3600	215 @ 4000	230 @ 4000
Torque: lbsft. @ rpm	365 @ 2000 8.25:1	350 @ 2600 NA	350 @ 3200
Compression Ratio	8.25:1 4V	NA 4V	8.2:1 4V
Transmission	Auto.	Auto.	Auto.
Transmission	Turbo Hydra-Matic	Select Shift	Torqueflite
Final Drive Ratio	2.93	3.00	3.23 (?)
Steering Type	Recirculating Ball & Nut Power	Recirculating Ball & Nut With Integral Power Unit	Recirculating Ba Power
Steering Ratio	17.8-9.0	21.6 To 1	1891
Turning Diameter (curb-to-curb-ft.)	(Wall To Wall) 24.54'	46.7'	44.69
Wheel Turns (lock-to-lock)	2.83	3.99	3.5
Tire Size	LR78X15 Steel Belted Radials	LR78X15 Steel Belted Radials	LR78X15 Steel Belted Radial Ply
Brakes	Power Disc/Drum	Power Disc/Drum	Power Disc/Disc
Front Suspension	Coils/Shocks Front Diagonal Tie Struts Stabilizer	Coils/Shocks Axial Strut Stabilizer	Torsion Bar Shocks Stabilizer
Rear Suspension	4 Link, Coils/ Shocks	Three Link, Rubber Cushioned Pivots Coils/Shacks	Leaf Springs Shocks
Body/Frame Construction	Perimeter	Body On	Unitized
	Frame	Perimeter Frame	Construction

Key variables:

- mpg Miles/(US) gallon
- cyl Number of cylinders
- **hp** Gross horsepower
- wt Weight (1000 lbs)
- am Transmission
 - 0 = automatic, 1 = manual

Creating a scatter plot in ggplot

Data frame to be used

Aesthetic mapping

> ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()

Adds a layer with glyphs

_	wt [‡]	cyl [‡]	hp [‡]	mpg [‡]	disp [‡]
Mazda RX4	2.620	6	110	21.0	160.0
Mazda RX4 Wag	2.875	6	110	21.0	160.0
Datsun 710	2.320	4	93	22.8	108.0
Hornet 4 Drive	3.215	6	110	21.4	258.0
Hornet Sportabout	3.440	8	175	18.7	360.0

A lot more that ggplot can do!

- More aesthetic mapping
- Multiple glyphs/layers
- Axis labels
- Facets
- Visual themes
- Different coordinate systems
- Etc.

The R Graph Gallery

Let's try the rest in R!

Questions?

ggplot2 cheat sheet

Data visualization with ggplot2:: CHEAT SHEET

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms-visual marks that represent data points.

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations.

Complete the template below to build a graph.

ggplot (data = <DATA>) + <GEOM FUNCTION> (mapping = aes) <MAPPINGS> stat = <STAT>, position = <POSITION>) + <COORDINATE FUNCTION> + <FACET FUNCTION> +

<SCALE FUNCTION> + <THEME FUNCTION>

ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot that you finish by adding layers to. Add one geom function per layer.

last_plot() Returns the last plot.

ggsave("plot.png", width = 5, height = 5) Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

Aes Common aesthetic values.

color and fill - string ("red", "#RRGGBB")

linetype - integer or string (0 = "blank", 1 = "solid", 2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash", 6 = "twodash")

lineend - string ("round", "butt", or "square") linejoin - string ("round", "mitre", or "bevel")

Studio

size - integer (line width in mm) 0 1 2 3 4 5 6 7 8 9 90 11 12

DOΔ+×O∇Β*ΦΦΦΩΒ shape - integer/shape name or 13 14 15 16 17 18 19 20 21 22 23 24 25 a single character ("a") ⊠⊠□○△○○○□◆△▽

Geoms Use a geom function to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

GRAPHICAL PRIMITIVES

a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat))

> a + geom_blank() and a + expand_limits() Ensure limits include values across all plots.

b + geom curve(aes(yend = lat + 1. xend = long + 1), curvature = 1) - x, xend, y, yend, alpha, angle, color, curvature, linetype, size

a + geom_polygon(aes(alpha = 50)) - x, y, alpha,

a + geom_path(lineend = "butt", linejoin = "round", linemitre = 1) x, y, alpha, color, group, linetype, size

color, fill, group, subgroup, linetype, size b + geom_rect(aes(xmin = long, ymin = lat, xmax = long + 1, ymax = lat + 1)) - xmax, xmin,

ymax, ymin, alpha, color, fill, linetype, size a + geom_ribbon(aes(ymin = unemploy - 900. ymax = unemploy + 900)) - x, ymax, ymin,

LINE SEGMENTS

common aesthetics: x, y, alpha, color, linetype, size

alpha, color, fill, group, linetype, size

b + geom_segment(aes(vend = lat + 1, xend = long + 1)) b + geom_spoke(aes(angle = 1:1155, radius = 1))

ONE VARIABLE continuous

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin") x, y, alpha, color, fill, linetype, size

c + geom_density(kernel = "gaussian")

x, y, alpha, color, fill, group, linetype, size, weight

c + geom_dotplot() x, y, alpha, color, fill

> c + geom_freqpoly() x, y, alpha, color, group, linetype, size

c + geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight

c2 + geom_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight

d <- ggplot(mpg, aes(fl))

d + geom_bar() x, alpha, color, fill, linetype, size, weight

TWO VARIABLES

both continuous e <- ggplot(mpg, aes(cty, hwy))

nudge_y = 1) - x, y, label, alpha, angle, color. family, fontface, hjust, lineheight, size, vjust

e + geom_quantile() x, y, alpha, color, group, linetype, size, weight

e + geom smooth(method = lm) x, y, alpha, color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

one discrete, one continuous f <- ggplot(mpg, aes(class, hwy))

f + geom col() x, y, alpha, color, fill, group, linetype, size

x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight

f + geom_violin(scale = "area") x, y, alpha, color, fill, group, linetype, size, weight

both discrete

g <- ggplot(diamonds, aes(cut, color))

g + geom_count() x, y, alpha, color, fill, shape, size, stroke

e + geom_jitter(height = 2, width = 2)

x, y, alpha, color, fill, shape, size

continuous bivariate distribution

h <- ggplot(diamonds, aes(carat, price))

h + geom bin2d(binwidth = c(0.25, 500)) x, y, alpha, color, fill, linetype, size, weight

ggplot.

x, y, alpha, color, group, linetype, size

h + geom_hex() x, y, alpha, color, fill, size

continuous function

i <- ggplot(economics, aes(date, unemploy))

i + geom area()

x, y, alpha, color, fill, linetype, size

x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv")

x, y, alpha, color, group, linetype, size

visualizing error

df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2) j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))

ymin, alpha, color, fill, group, linetype, size

x, ymin, ymax, alpha, color, group, linetype, size

data <- data.frame(murder = USArrests\$Murder, state = tolower(rownames(USArrests))) map <- map data("state") k <- ggplot(data, aes(fill = murder))

k + geom_map(aes(map_id = state), map = map) + expand_limits(x = map\$long, y = map\$lat) map_id, alpha, color, fill, linetype, size

THREE VARIABLES

seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)); I <- ggplot(seals, aes(long, lat))

I + geom_contour(aes(z = z)) x, y, z, alpha, color, group, linetype, size, weight

I + geom_raster(aes(fill = z), hjust = 0.5, vjust = 0.5, interpolate = FALSE) x, y, alpha, fill

l + geom_tile(aes(fill = z)) x, y, alpha, color, fill, linetype, size, width

Adding labels to plots

We can add labels to the plots using the lab() functions

Adding labels to plots alternative

We can add labels to the plots using the xlab("label1") and ylab("label2") functions

Add labels to your last plot

```
> ggplot(mtcars, aes(x = wt, y = mpg)) +
        geom_point() +
        xlab("Weight") +
        ylab("Miles per Gallon")
```


If you don't want an ex, label you axes!

More aesthetic mappings

Let's look at the relationship between weight, miles per gallon and transmission type on the same graph by plotting... (?)

It is better if we make am a categorical variable

```
> ggplot(mtcars, aes(x = wt, y = mpg, col = factor(am))) + geom_point()
```

Notice the guides!!!

Try mapping am on to shape using:

- 1. shape = am
- 2. size using: size = am

Which is better to use color or shape or size?

Attributes vs. Aesthetics

Setting aesthetics map a variable to a glyph property

Setting attributes set a glyph property to a fixed value

Facets

Beyond comparing variables based on aesthetics you can compare categorical variables by splitting a plot into subplots (called facets) using facet_wrap

What do facets make it easy to see on this graph?

Facets along two dimensions

One can also do facets in two dimensions

Overplotting

Sometimes points overlap making it hard to estimate the number of points at a particular range of values

We can control the transparency of points by changing their alpha values

Overplotting

Scales

We can change the scale underlying each aesthetic visual feature

We use functions that start with scale_ to do this

For example, we can change the x scale from linear to logarithmic using:

scale_x_continuous(trans='log10')

> ggplot(gapminder, aes(x = gdpPercap, y = lifeExp)) + geom_point(alpha = .2) + scale_x_continuous(trans='log10')

Scales

We can change the scale underlying each aesthetic visual feature

We use functions that start with scale_ to do this

We can change the color scale using:

scale_color_manual()

Geometries: line plot

So far we've only created scatter plots, but we can use different geoms to create other types of plots

Create a plot that shows the GDP in the United States as a function of the year using the geom geom_line()

• Hint: filter the gapminder data first...

```
> gapminder |>
    filter(country == 'United States') |>
        ggplot(aes(x = year, y = gdpPercap)) +
        geom_line()
```


Geometries: columns

Create a plot that shows the GDP in the United States as a function of the year as columns geom geom_col()

```
> gapminder |>
    filter(country == 'United States') |>
        ggplot(aes(x = year, y = gdpPercap)) +
        geom_col()
```


Geometries: text

Create can also use text as a geom using geom_text(aes(label =))

We will first add the row names as a column to our data frame using tibble::rownames_to_column()

```
> mtcars |>
    tibble::rownames_to_column() |>
    ggplot(aes(x = wt, y = mpg)) +
        geom_text(aes(label = rowname))
```


Geometries: histograms

We can also make histograms using the geom_histogram() function.

Plot a histogram of the weights of cars

```
> ggplot(mtcars, aes(x = wt)) + geom_histogram()
```

Note the histogram geom only has an x aesthetic, and does not have a y aesthetic value.

Geometries: boxplot

There are many other geom as well, including geom_boxplot()

Plot a boxplot of the weights of cars

```
> ggplot(mtcars, aes(x = "", y = wt)) + geom_boxplot()
```

Side-by-side boxplots

Often it is useful to compare boxplots across different groups

> ggplot(mtcars, aes(x = factor(cyl), y = wt)) + geom_boxplot()

Violin and Joy plots

Violin and Joy plots are other ways to view distributions of data

Violin and Joy plots

Any ideas why they are called joy plots?

Multiple layers

We can also have multiple geom layers on a single graph by using the + symbol

E.g ggplot(...) + geom_type1() + geom_type2()

Create a scatter plot of miles per gallon as a function of weight and then add:

- a smoothed line using geom_smooth()
- a vertical line using geom_vline()

Multiple layers

We can also have multiple geom layers on a single graph by using the + symbol

E.g ggplot(...) + geom_type1() + geom_type2()

Recreate a boxplot of weight (wt) grouped by the factor of cylinders (cyl), and then add points using geom_point()

```
> ggplot(mtcars, aes(x = factor(cyl), y = wt)) +
        geom_boxplot() +
        geom_point()
```


Themes

We can also use different types to change the appearance of our plot

```
Add theme_classic() to your plot
```

```
> ggplot(mtcars, aes(x = wt, y = mpg)) +
        geom_point() +
        xlab("Weigth") +
        ylab("Miles per Gallon") +
        theme_classic()
```

Also see the theme_fivethirtyeight() from the ggthemes package

Themes

We can also create a customized theme using theme()

```
> ggplot(mtcars, aes(x = wt, y = mpg)) +
      geom_point() +
      theme_classic() +
      theme(
              axis.text.y = element blank(),
               plot.background = element_rect(fill = "red")
```

Adding text annotations

We can text annotations using the annotate("text", x = , y = , label =) function

ggplot bonus features

ggplot bonus features: plotly

We can use the plotly package to make interactive graphs

The easiest way to do this is to save our ggplot to an object and then use the ggplotly() function

```
g <- gapminder |>
    filter(year == 2007) |>
    ggplot(aes(x = gdpPercap, y = lifeExp, col = continent, name = country)) +
    geom_point()
```

ggplotly(g)

ggplot bonus features: emojis

There are also additional packages that add more geoms

```
library(emojifont)
load.emojifont('OpenSansEmoji.ttf')
```

ggplot bonus features alternative: emojis

There are also additional packages that add more geoms

- > library(emoGG)
- > ggplot(mtcars, aes(wt, mpg)) + geom_emoji(emoji="1f697")

ggplot bonus features: animation

We can create animated images (gifs) using the gganimate package

```
library(gganimate)
ggplot(gapminder, aes(gdpPercap, lifeExp,
       size = pop, col = continent)) +
 geom_point(alpha = 0.7, show.legend = FALSE) +
 scale_x_log10() +
 # Here comes the gganimate specific parts
  labs(title = 'Year: {frame_time}',
        x = 'GDP per capita', y = 'life expectancy') +
  transition_time(year) +
  ease_aes('linear')
```

