```
In [1]: import pandas as pd
         import warnings
         warnings.filterwarnings("ignore")
In [2]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv")
In [3]: data.head()
Out[3]:
                model engine_power age_in_days
                                                 km previous_owners
                                                                          lat
                                                                                   Ion price
          0 1 lounge
                                               25000
                               51
                                          882
                                                                  1 44.907242
                                                                              8.611560 8900
             2
                               51
                                         1186
                                               32500
                                                                  1 45.666359 12.241890
                                                                                       8800
                  pop
                                              142228
                                                                 1 45.503300 11.417840
                 sport
                               74
                                         4658
                                                                                      4200
                               51
                                         2739
                                              160000
                                                                  1 40.633171 17.634609
                                                                                       6000
                lounge
                                         3074 106880
                                                                 1 41.903221 12.495650 5700
                  pop
                               73
In [4]: datal=data.loc[(data.previous_owners==1)]
```

In [5]: data1

Out[5]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1389 rows × 9 columns

```
In [6]: datal=data.drop(['lat','lon','lon'],axis=1)
```

```
In [7]: data1=pd.get_dummies(data1)
```

In [8]: data1

Out[8]:

	ID	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	8900	1	0	0
1	2	51	1186	32500	1	8800	0	1	0
2	3	74	4658	142228	1	4200	0	0	1
3	4	51	2739	160000	1	6000	1	0	0
4	5	73	3074	106880	1	5700	0	1	0
1533	1534	51	3712	115280	1	5200	0	0	1
1534	1535	74	3835	112000	1	4600	1	0	0
1535	1536	51	2223	60457	1	7500	0	1	0
1536	1537	51	2557	80750	1	5990	1	0	0
1537	1538	51	1766	54276	1	7900	0	1	0

1538 rows × 9 columns

```
In [9]: y=datal['price']
x=datal.drop('price',axis=1)

In [10]: from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(x,y,test_size=0.33,random_state=42)

In []:
In []:
```

```
In [12]: ccccc
Out[12]:
                GridSearchCV
          ▶ estimator: ElasticNet
                ▶ ElasticNet
In [13]: elastic_regressor.best_params_
Out[13]: {'alpha': 0.01}
In [16]: elastic=ElasticNet(alpha=0.1)
         elastic.fit(X_train,Y_train)
         y pred elastic=elastic.predict(X test)
In [18]: from sklearn.metrics import r2 score
         r2_score(Y_test,y_pred_elastic)
Out[18]: 0.8414565299012147
In [20]: from sklearn.metrics import mean_squared_error
         elastic_Error=mean_squared_error(y_pred_elastic,Y_test)
         elastic Error
Out[20]: 582240.9011940917
```

In [22]: Results=pd.DataFrame(columns=['price','predicted'])
 Results['price']=Y_test
 Results['predicted']=y_pred_elastic
 Results=Results.reset_index()
 Results['ID']=Results.index
 Results

Out[22]:

	index	price	predicted	ID
0	481	7900	5903.123297	0
1	76	7900	7223.403259	1
2	1502	9400	9794.808007	2
3	669	8500	9724.783858	3
4	1409	9700	9974.200594	4
503	291	10900	10069.090270	503
504	596	5699	6320.490299	504
505	1489	9500	9959.608673	505
506	1436	6990	8310.780259	506
507	575	10900	10384.079146	507

508 rows × 4 columns

```
In [23]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='price',data=Results.head(50))
sns.lineplot(x='ID',y='price',data=Results.head(50))
plt.plot()
```

Out[23]: []

In []:	
---------	--