# **Definições**

Primeira Lei

equivalência de trabalho e calor

$$\Delta U = q + w$$
,  $\oint dU = 0$  para processo cíclico  $\Rightarrow$   $q = -w$ 

sugere que um motor pode funcionar em ciclo e converter calor em trabalho útil.

### Segunda Lei

- Restrições na conversão <u>útil</u> de q em w
- Observação da <u>direção</u> de processos naturais ou espontâneos
- Princípios para:
  - Determinar a direção de mudanças espontâneas
  - Determinar o estado de equilíbrio do sistema

Reservatório sistema com *T* uniforme, que não se altera independente da de calor quantidade de calor adicionado ou removido.

também conhecido como <u>banho térmico</u>. Sistemas reais podem se aproximar bastante dessa idealização.

## Diferentes postulados da Segunda Lei

#### Kelvin:

é impossível um <u>sistema</u> operar em um <u>ciclo</u> que consuma <u>calo</u>r de um <u>reservatório quente</u> e converta em <u>trabalho</u> na <u>vizinhança</u> sem transferir <u>calor</u> para um <u>reservatório frio</u> ao mesmo tempo.





#### Clausius:

é impossível um <u>sistema</u> operar em um <u>ciclo</u> que consuma <u>calor</u> de um <u>reservatório frio</u> e transfira para um <u>reservatório quente</u> sem converter trabalho em calor.





## Postulado Alternativo de Clausius:

Todos os processos espontâneos são irreversíveis.

(ex., calor calor fluindo do quente para o frio espontaneamente e irreversivelmente)

### Postulado matemático:

$$\oint \frac{dq_{rev}}{T} = 0 \qquad \text{e} \qquad \oint \frac{dq_{irrev}}{T} < 0$$

$$\int \frac{d^{d}q_{rev}}{T} \quad \text{é uma função de estado} \qquad = \int dS \qquad \rightarrow \qquad dS = \frac{d^{d}q_{rev}}{T}$$

$$\oint dS = 0 \quad \to \quad \Delta S = S_2 - S_1 = \int_1^2 \frac{\mathrm{d}q_{rev}}{T} > \int_1^2 \frac{\mathrm{d}q_{irrev}}{T}$$

Para um ciclo

$$[1]$$
  $\xrightarrow{irrev}$   $[2]$   $\xrightarrow{rev}$   $[1]$ 

$$\int_{1}^{2} \frac{q_{irrev}}{T} + \int_{2}^{1} \frac{q_{rev}}{T} = \oint \frac{q_{irrev}}{T} < 0$$

$$\int_{1}^{2} \frac{q_{irrev}}{T} - \Delta S < 0 \implies \Delta S > \int_{1}^{2} \frac{q_{irrev}}{T}$$

Os postulados de Kelvin e Clausius são específicos para máquinas térmicas.

Postulados matemáticos são muito abstrato.

Conectem eles através de um tratamento analítico de uma máquina térmica.

## O Ciclo de Carnot

#### Todos os caminhos são reversíveis





1 → 2 Expansão isotérmica a 
$$T_1$$
 (quente)  $\Delta U = q_1 + w_1$ 

$$\Delta U = q_1 + w_1$$

$$2 \rightarrow 3$$
 Expansão adiabática ( $q = 0$ )

$$\Delta U = W_1'$$

$$3 \rightarrow 4$$
 Compressão isotérmica a  $T_2$  (frio)  $\Delta U = q_2 + w_2$ 

$$\Delta U = q_2 + w_2$$

$$4 \rightarrow 1$$
 Compressão adiabática ( $q = 0$ )

$$\Delta U = w_2'$$

Eficiência = 
$$\frac{\text{Trabalho realizado na vizinhança}}{\text{Calor consumido a T}_1(\text{quente})} = \frac{-(w_1 + w_1' + w_2 + w_2')}{q_1}$$

1a Lei: 
$$\Rightarrow \oint dU = 0 \Rightarrow q_1 + q_2 = -(w_1 + w_1' + w_2 + w_2')$$

$$\therefore \text{ Eficiência } \equiv \varepsilon = \frac{q_1 + q_2}{q_1} = 1 + \frac{q_2}{q_1}$$

Kelvin: 
$$q_2 < 0 \rightarrow \text{Eficiência} \equiv \varepsilon < 1 (< 100\%)$$

 $-w = q_1 \varepsilon$  = Trabalho realizado pelo sistema

Obs. Se o ciclo for realizado em reverso, então  $q_1 < 0$ ,  $q_2 > 0$ , w > 0 e tem-se um refrigerador!

# Ciclo de Carnot para um Gás Ideal

$$1 \rightarrow 2$$
  $\Delta U = 0$ ;  $q_1 = -w_1 = \int_1^2 p dV = R T_1 \ln \left( \frac{V_2}{V_1} \right)$ 

$$2 \rightarrow 3$$
  $q = 0$ ;  $W_1' = C_V (T_2 - T_1)$ 

Rev. adiabat 
$$\Rightarrow \left(\frac{T_2}{T_1}\right) = \left(\frac{V_2}{V_3}\right)^{\gamma-1}$$

3 
$$\to$$
 4  $\Delta U = 0$ ;  $q_2 = -w_2 = \int_3^4 p dV = R T_2 \ln \left( \frac{V_4}{V_3} \right)$ 

$$4 \rightarrow 1$$
  $q = 0$ ;  $w_2' = C_V (T_1 - T_2)$ 

Rev. adiabat 
$$\Rightarrow \left(\frac{T_1}{T_2}\right) = \left(\frac{V_4}{V_1}\right)^{\gamma-1}$$

$$\frac{q_2}{q_1} = \frac{T_2 \ln(V_4/V_3)}{T_1 \ln(V_2/V_1)}$$

$$\left(\frac{V_1}{V_4}\right)^{\gamma-1} = \left(\frac{T_2}{T_1}\right) = \left(\frac{V_2}{V_3}\right)^{\gamma-1} \Rightarrow \left(\frac{V_4}{V_3}\right) = \left(\frac{V_1}{V_2}\right) \Rightarrow \left(\frac{q_2}{q_1} = -\frac{T_2}{T_1}\right) \quad \text{ou} \quad \frac{q_1}{T_1} + \frac{q_2}{T_2} = 0 \Rightarrow \left(\frac{d^2q_{\text{rev}}}{T}\right) = 0$$

## Postulado matemático de máquinas térmicas

Eficiência 
$$\varepsilon = 1 + \frac{q_2}{q_1} = 1 - \frac{T_2}{T_1}$$
  $\rightarrow$  100% quando  $T_2 \rightarrow$  0 K

Para uma máquina térmica (Kelvin):  $q_1 > 0$ , w < 0,  $T_2 < T_1$ 

Trabalho total realizado pelo sistema 
$$= -w = \varepsilon q_1 = \left(\frac{T_1 - T_2}{T_1}\right) q_1 \implies (-w) < q_1$$

**Obs.:** no limite  $T_2 \rightarrow 0$  K,  $(-w) \rightarrow q_1$ , e  $\varepsilon \rightarrow 100\%$ . A 3ª lei diz que não é possível!

Para um <u>refrigerador</u> (Clausius):  $q_2 > 0$ , w > 0,  $T_2 < T_1$ 

Trabalho total realizado no sistema  $= \mathbf{w} = \left(\frac{T_2 - T_1}{T}\right) \mathbf{q}_1$ 

porém 
$$\frac{q_1}{T_1} = -\frac{q_2}{T_2}$$
  $\Rightarrow$   $w = \left(\frac{T_1 - T_2}{T_2}\right)q_2$ 

**Obs.:** no limite  $T_2 \rightarrow 0$  K,  $w \rightarrow \infty$  (0 K não pode ser alcançado - 3ª lei)

