

# Intracom Telecom Java SE / EE Workshop

Challenges and techniques for handling multiple device type and tens of thousands of network elements simultaneously

**Ioannis Gkionis** 

Network Management Systems Section Manager - ggio@intracom-telecom.com

# **Network Management System Dimensioning**



We need to answer questions like these -

- How many network elements can the NMS manage?
- What are the H/W requirements?
- How much bandwidth is required for network management traffic?

How do we find the answers?

# **Network Management System Dimensioning**



- Simulation of the network in the lab with software (SNMP MIMIC)
- Monitoring tools capturing system measurements (munin)
- Let's look at 2 reports
  - uni|MS Dimensioning Report
  - munin report







- The NMS collects up to 0,5 million measurements every 15 minutes
- It uses SNMP and the latency is the field is about 60ms
- So we would need ~8 hours for collection
- How do we solve this problem?



- Collect performance in parallel rather than sequentially.
- In Java we can use the Thread class for this.
- So would we create 0,5 million thread objects?



| Schedule                                  | Status    | Max<br>Threads: 200       |
|-------------------------------------------|-----------|---------------------------|
| Performance - Ethernet Port               | SCHEDULED | Danding                   |
| Performance - G.826                       | NOT_ADDED | Jobs : 177170             |
| Performance - Hub Availability            | NOT_ADDED | Jobs in<br>Progress : 200 |
| Performance - ISR Ethernet Payload Status | NOT_ADDED | 1 Togress :               |
| Performance - Radio Link                  | RUNNING   |                           |
| Performance - Radio Utilization           | RUNNING   |                           |
| Performance - Single Ended ETH-LM Test    | NOT_ADDED |                           |
| Performance - Two Way ETH-DM Test         | NOT_ADDED |                           |
| Performance - WiBAS-C BER Test            | NOT_ADDED |                           |
| Performance - ptp600                      | NOT_ADDED |                           |
| Performance - ptp600 Traffic Statistics   | NOT_ADDED |                           |







- With multithreading
  - 80.000 collections take 1 minute
- Without multithreading
  - 80.000 collections take (80k \* 60ms) 80 minutes

## **Trap Anti Flooding**



- Elements send SNMP traps (notifications) to the NMS
- Trap examples are (ETH Link down, Temperature high)
- The trap rate can be unpredictable
- How can we protect the NMS from trap flooding?

# **Trap Anti Flooding Mechanisms**



- 1. Place traps in a queue and monitor the queue size
  - A lightweight thread that places traps evenly in a queue
  - A heavyweight trap processing thread is on the other side of each queue
  - When the queue size exceeds the limit, trap processing stops
- 2. Block problematic sources
  - Keep a count of traps per source per hour
  - When a source exceeds the limit, it is blocked

# **Trap Anti Flooding Mechanisms**



| Process                     | Stop Trap<br>ling when 10000<br>exceeds :                 |     |  |  |
|-----------------------------|-----------------------------------------------------------|-----|--|--|
| Restart T                   | rap Processing on next                                    | _   |  |  |
| Sync                        | hronize Alarms Schedule                                   |     |  |  |
| Full Synchronize Schedule   |                                                           |     |  |  |
| None                        | (Manual Restart Only)                                     |     |  |  |
| Tran Pro                    | cessing Status                                            |     |  |  |
| , map mo                    | Status                                                    |     |  |  |
| Port                        | Status                                                    |     |  |  |
| Port<br>8088                | Status                                                    | _   |  |  |
|                             |                                                           |     |  |  |
| 8088                        | Running                                                   |     |  |  |
| 8088<br>Trap Statis         | Running stics                                             | 0.0 |  |  |
| 8088 Trap Statis            | Running stics ng Time : 1d 1h 23min 24.99s                | ec  |  |  |
| 8088  Trap Statis           | Running stics                                             | ec  |  |  |
| Trap Statis Runnin          | Running stics ng Time : 1d 1h 23min 24.99s                | ec  |  |  |
| Trap Statis Runnin Received | Running stics ng Time: 1d 1h 23min 24.99s 1 Traps: 943508 | ec  |  |  |

| Problematic Source Trap Anti-flooding       |    |           |  |  |  |  |
|---------------------------------------------|----|-----------|--|--|--|--|
| Sampling Period (hour) :                    | 1  |           |  |  |  |  |
| Activate anti-flooding when traps exceed :  | 60 |           |  |  |  |  |
| Deactivate anti-flooding when traps below : | 20 |           |  |  |  |  |
| Show the top trap oids :                    | 20 | <b>\$</b> |  |  |  |  |
| Show the top trap ips :                     | 20 | <b>\$</b> |  |  |  |  |
| Blocked Elements                            |    |           |  |  |  |  |
| No Blocked Elements                         |    |           |  |  |  |  |

# **Trap Anti Flooding Queues**





#### **Trap Anti Flooding Blocked Network Elements**











#### **Trap Anti Flooding Traps Received/Processed**











# **Trap Anti Flooding Conclusions from the Field**



1% of Network Elements produce 99% of the traps

For more information, visit www.intracom-telecom.com









#### **Efficient Collection of Performance Measurements - Calculations**



- We manage 40.000 Network Elements
- We collect performance measurements from
  - about 3 Modems per NE
  - about 4 Ethernet Ports per NE
- We collect performance measurements every 15 minutes
- 40.000 \* (3 + 4) = 480.000 performance collections evry 15 minutes
- The protocol is SNMP and the average latency time for a request is 60ms
- 480.000 \* 60ms = 480 minutes (in the best case scenario 1 SNMP operation per measurement)
- During this 480 minutes is time the CPU is idle waiting for the SNMP request to complete
- What can we do about it?