

UGA L3 MIASH: Econometrics 1 Introduction

Michal W. Urdanivia*

*Université de Grenoble Alpes, Faculté d'Économie, GAEL, e-mail: michal.wong-urdanivia@univ-grenoble-alpes.fr

September 26, 2017

1. What is Econometrics?

2. Causality

What is Econometrics?

Econometrics is concerned with the development of quantitative methods for:

- Estimation of economic relationships
- Testing of economic theories
- Forecasting of important economic variables
- Evaluation of government and business policy

Why statistics?

- Economic theory is used to construct models characterizing relationships between variables of interest
- Economic models are only approximations
- A model can take into account a number of important factors but there will be many factors left out that also affect outcomes
- We therefore replace the exact (deterministic) model with a probabilistic model

Example: Becker's (1968) economic model of crime

■ Economic Model: we have the relation,

$$Y = f(X_1, X_2, X_3, X_4, ...)$$

- Y: hours spent in criminal activities (crime)
- \blacksquare X_1 : wage for an hour spent in criminal activities
- \blacksquare X_2 : wage in legal employment (wagem)
- X₃: income other than from crime or employment (othinc)
- X₄: probability of getting caught (frequency)
- An standard econometric specification is:

crime =
$$\beta_0 + \beta_1$$
wagem + β_2 othinc + β_3 fregarr + U

Where the term U captures unobserved factors such as:

- the reward for criminal activity,
- family background,
- measurement error

Example: Mincer's (1974) wage regression

Economic Model: wage depends on human capital

$$wage = f (educ, exper, training)$$

Econometric Model:

$$\log(\text{wage}) = \beta_0 + \beta_1 \text{educ} + \beta_2 \text{exper} + \beta_3 (\text{exper})^2 + \beta_4 \text{training} + u$$

The term u captures unobserved factors:

- innate ability,
- family background,
- quality of education
- Hypothesis Testing: whether training affects wage H_0 : $\beta_4 = 0$

Data and causal effects

- While we are interested in causal relations, statistics only allows us to establish correlations
- In order to say that one variable has a causal effect on another, other factors affecting the outcome must be held fixed
- In natural sciences can use controlled experiments
- Experiment are often impossible in economics (too costly and/or for ethical reasons)
- Must rely on observational data

Example: effect of health insurance coverage on health

- Question: what is the effect of health insurance on health?
- Ideal experiment: randomly people health insurance or not, compare their health afterward

Observed survey data:

Group	Sample Size	Mean Health	Std.Dev.	
Some insurance	8114	4.01	0.93	
No insurance	1281	3.70	1.01	
Source: 2000 NHIS data reported by Apprint and Dischlo (2014)				

Source: 2009 NHIS data reported by Angrist and Pischke (2014)

- Is 4.01 3.70 = 0.31 the causal effect of health insurance on health?
- Not likely, people with and without insurance differ in other ways that

= 1101 miesj, people men and menede meanance amer meget may				
	Group	Mean Education	Mean income	
might affect health	Some insurance	14.31	106,467	
	No insurance	11.56	45,656	

Potential Outcomes

- Potential outcomes (aka the Rubin causal model) are one powerful way of thinking about causality
- Let $D_i = 1$ if person i has health insurance, 0 otherwise
- Let Y_{i0} and Y_{i1} be the **potential outcomes**
 - Y_{i0} = health if person i does not have health insurance
 - Y_{i1} = health if person i has health insurance
- We observe

$$Y_i = \begin{cases} Y_{i0} & \text{if } D_i = 0 \\ Y_{i1} & \text{if } D_i = 1 \end{cases}$$

Hence,

$$Y_i = (1 - D_i)Y_{i0} + D_iY_{i1}$$

= $Y_{i0} + D_i \times \underbrace{(Y_{i1} - Y_{i0})}$

causal effect of health insurance for person i

Potential Outcomes

Observed average difference in health

$$\begin{split} \mathbb{E}[Y_{i1}|D_i = 1] - \mathbb{E}[Y_{i0}|D_i = 0] = \\ = & \underbrace{\mathbb{E}[Y_{i1} - Y_{i0}|D_i = 1]}_{\text{Average treatment effect on the treated}} + \\ + \underbrace{\mathbb{E}[Y_{i0}|D_i = 1] - \mathbb{E}[Y_{i0}|D_i = 0]}_{\text{Selection bias}} \end{split}$$

- Insurance may help you or hurt you (on average), but wealthier people are more likely to afford insurance and might be healthier for other reasons; conversely people who are sick might be more willing to pay for insurance
- Random assignment of D_i removes selection bias because D_i and Y_{i0} are then independent
- Often cannot randomize, but can
 - Use available data to approximate desired experiment
 - Use economic theory to impose restrictions

Examples

Education

$$\log(\mathsf{Wage}) = \alpha + \beta \times \mathsf{Years} \text{ of Schooling} + U,$$

U represents other factors, for example, ability.

Since it is very hard to control for ability, one can overestimate the return to education by relying on usual correlations.

■ Minimum wage and employment (Card and Krueger AER 1994)

Unemployment =
$$\beta_0 + \beta_1 \times \text{Minium Wage} + U$$

Reverse causality: High employment may lead to political pressure for higher minimum wage.

Examples

Size of the police force and crime

Number of Crimes =
$$\alpha + \beta \times \text{Size}$$
 of the Police Force + U

Usually, cities with a lot of criminal activity have a bigger police force. Simple correlations can spuriously indicate that the size of the police force has a positive effect on the crime rates.

References

Angrist, Joshua D and Jörn-Steffen Pischke. 2014. *Mastering 'Metrics: The Path from Cause to Effect*. Princeton University Press.