Chapter-0 Category Theory

Topics	Page no.
Covariant, Contravariant Functors	1
Subcategory, Full Subcategory	2
Covariant and Contravariant Hom Functor	2
Isomorphism of Categories	2
Faithful, Fully Faithful	2
Essenitally Surjective, Conservative, Forgetful Functor	3
Morphisms of Functors, Natural Transformation, Category of Functors, Isomorphism of Functors	4
Equivalence of Categories, Quasi-inverse, Criteria for Equivalent categories, Essential Image of Functors	5
Duality Functor	7
Adjoint Functor(Ch-1 Homological algebra - P-64), Bifunctor,	8
Product and Coproduct of Objects in a Category	12
$X \to Y = \text{monomorphism} \iff \forall C, \ Hom(C,X) \to Hom(C,Y) \text{ is an injective and dual}$ statement (Ch-1-Homological algebra -page-72)	72*

CH-1-Chain Complexes and Abelian Categories

Topics	Page No.
Exact Sequences	2
Chain Complex Definition	2
Differentials, n-cylces and n-boundaries of chain complex	2
n-th Homology module of chain complex	2
Category of complexes	3
morphism of chain complexes	3
n-th Homology as a functor	5
Quasi-Isomorphism / Homologism	6
Co-chain complexes	6
<i>n</i> -cocylces and <i>n</i> -coboundaries of cochain complex	7
n-th Cohomology module of cochain complex	7
Bounded chain complex	7
Abelian categories	9
Initial, Final and Zero object	9
Zero morphism	10
Pre-additive category	12
Product/Coproduct	13
Finite products and coproducts in pre-additive category	15
Kernels / Cokernels	17
Uniqueness of (Co)Kernels via Universal property	18
Monomorphism / Epimorphism	18
Pre-abelian Categroy	23
Abelian Categroy	24,32
Kernel in terms of exact sequence	25
Snake's Lemma	26
Any Homomorphism into short exact sequence	26
Splitting and GLuing Exact sequence	27
Connecting homomorphism in Snake's Lemma	28
Category of chain complexes is an Ab category	29
Additive Functor	29
Additive Category	30
Category of chain complexes is an additive category	30
Subcomplex and Quotient Complex	31
Image of map $Im(f)$ in an abelian category	32,37
Abelian Subcategory	33
Product Category	33
Bifunctor	33
$Hom_{\mathscr{C}}(\cdot,\cdot)$ is a bifunctor	33
Matrix Notation	34
\mathscr{F} additive functor $\iff \mathscr{F}$ commutes with finite products	35
The category $Ch(\mathscr{A})$ where \mathscr{A} is abelian is an abelian category	37
Long Exact sequences (Connecting homomorphism)	39
Long exact sequence is a functor from the category of short exact sequences in \mathscr{C} to the	30
category of long exact sequences in $\mathscr C$	41
Chain Homotopies	41
Split Chain complex; splitting maps; Split exact chain complex;	41
Null Homotopic chain map; Chain Contraction	43

Split exact chain complex ← identity map is null homotopic	
Chain homotopic chain maps	44
Chain homotopy; chain homotopy equivalence / Homotopism	44
Chain homotopic maps induce the same map between <i>n</i> -th cohomology of chain complexes	46
Freyd-Mitchell Embedding theorem - Intuitive and exact statement	36,46
In an additive category, Kernel ⇒ monomorphism	47
In an additive category, Cokernel ⇒ epimorphism	47
In additive category, $ker \ u = ker(coker(ker \ u))$ and $coker \ u = coker(ker(coker \ u))$	48
In any abelian category, every morhism that is both monomorphism and epimorphism is	
an isomorphism	50
Functor Categories; Preasheaves on X	51
Sheaves; gluing axiom of sheaf;	52
Left Exact Functor; Right exact functor; Exact Functor	53
Contravariant left exact functor	71
$Hom_{\mathscr{A}}(M,-)$ is a left exact functor	54
Contravariant functor $Hom_{\mathscr{A}}(-,M)$ is a left exact functor	56
	57
$Hom_{\mathscr{A}}(M,A) \to Hom_{\mathscr{A}}(M,B) \to Hom_{\mathscr{A}}(M,C) \text{ exact } \Rightarrow A \to B \to C \text{ exact}$ Resolutions	
	59
Injective objects , Projective objects	59
Enough Injectives	60
$I = \text{Injective} \iff Hom_{\mathscr{A}}(Y, I) \to Hom_{\mathscr{A}}(X, I) \text{ is surjective}$	60
In an abelian category, any morphims f factors as me for a monomomorphism m and an	61
epimorphism e. One such $m = ker(coker\ f)$ and $e = coker(ker\ f)$	
$P = \text{Projective} \iff Hom_{\mathscr{A}}(P, X) \to Hom_{\mathscr{A}}(P, Y) \text{ is surjective}$	62
$X_i = \text{Injective} \iff \prod_i X_i = \text{Injective}$	62
$X_i = \text{Projective} \iff \prod_i X_i = \text{Projective}$	63
If Right adjoint functor is exact, then Left adjoint functor preserves projective objects	64
If left adjoint functor is exact, then right adjoint functor preserves injective objects	65
Split Exact sequence	65
Comimage $coim(f)$ of f , image $im(f)$ of f ,	66,67
Every Kernel morphism is a monomorphism and every coker morphism is epimorpphism	67
In additive category, $f = \text{monomorphism} \iff ker(f) = 0$	67
If kernel morsphism $ker \ f \to X$ is 0, then $ker \ f = 0$	68
$0 = id_A \iff A = \text{zero object}$	68
$ker f = 0 \iff \text{coimage of } f \text{ exists and the cannonical morphism } X \to coim(f) \text{ is an isomorphism}$	68
unique morphism between $u: coim(f) \to im(f)$	70
$im(g) = coker(f) \iff A \to B \to C$	70
unique map $u: Im(f) \to ker(g)$	70
$f: X \to Y$ is a monomorphism $\iff f_*: Hom(C, X) \to Hom(C, Y)$ for all C is injective	
and Dual statement	72

CH-2-Derived Functors

Covariant Homological δ -functor	7;
Covariant Cohomological δ -functor	7-
In δ -functor, T_0 is right exact and T^0 is left exact	7.
(Co)Homology gives (Co)Homological δ - functor	7.
Morphism of δ -functor	7
Universal δ -functor	7
Homology functor is a Homological δ -functor and also a universal δ -functor	7
In $\mathbf{R} - \mathbf{mod}$, free modules are projectives	7
Direct Summand and Projective object	7
A direct summand of a projective object is also projective	8
Projective resolution	80 (ii) , 8
Left Resolution; Projective resolution	80(ii),8
Free resolution	8
Every R -module has a projective resolution	
<u> </u>	81,8
Injective Resolutions; Right Resolution	82,8
Left Derived Functors	85
Comparison Theorem	8