The International RuleML Symposium on Rule Interchange and Applications Orlando, Florida: October 30-31, 2008

Building an Autopoietic Knowledge Structure for Natural Language Conversational Agents

TM

Yahoo! JAPAN Research
Kiyoshi Nitta

knitta@yahoo-corp.jp

(2008.10.28d)

Autopoietic Systems

self-reproducing processes

interactions

interactions

1st Step to be an Autopoietic System

- 1. Divide the interpreter module into a matching engine and executing functions.
- 2. Let these executing functions to have the ability to operate on rules.

Our Rule-Based Conversational Agent

Augmented Semantic Network

Data Structure and Semantics

	Semantic Network (SN)	Augmented Semantic Network (ASN)
Data Structure	Directed Graph DG=(V, E) $V=\{v_1, v_2,\}$ $E=\{e_1(v_i, v_j), e_2(v_k, v_l),\}$	Augmented Directed Graph ADG=(E) $E=\{e_1(e_i, e_j), e_2(e_k, e_l),\}$
Semantics	Each semantic definition of V and E elements is defined independently.	Semantic definitions are aggregated to classes. (described below)

IV. data red

III. custom classes

yellow

II. a priori classes

green

I. edge semantics

blue

I. Edge Semantics

Edge e_e expresses the relationship from e_s to e_d.

II. A priori Classes

Vertex v_{class} means that its instance vertices are classes, and vertex v_{ins} means that its instance edges are instance relations.

III. Custom Classes

Vertices v_{kw} , v_{msg} , and v_{sel} mean trigger keyword, reply message, and selection branch classes, respectively.

Every data element has at least one edge that connects from a semantically defined class vertex to the element.

Difference between SN and ASN

Autopoietic Behavior

Ontology Modification

Self-reproducing processes of autopoietic systems require ontology modifications.

> Semantic Network (SN)

Augmented Semantic Network (ASN)

IV. data

IV. data

III. custom classes

The ontology is fixed.

The ontology can be modified.

Achievement and Future Tasks

- current progress:
 - Implemented base classes for dialogue scripts that modify the <u>data</u>. (programming language reflection)
 - Trying to build enhanced classes for dialogue scripts that also modify the <u>custom</u> <u>classes</u>.
- open questions:
 - Can the class set finite?
 - Even if it is finite, how should we evaluate whether the system is autopoietic or not?

Thank you!