Instituto Politécnico Nacional Escuela Superior de Cómputo idad de Aprendizaje: Minería de datos

Unidad de Aprendizaje: Ciclo escolar: 2022–2

Proyecto No. 4. Clúster

Grı	upo: <u>5CDM1</u>	Equipo: 1	_
Non	nbre de los integrantes del equipo:		
1)	De Luna Ocampo Yanina		
2)	Medina Barreras Daniel Iván		

ESCUELA SUPERIOR DE CÓMPUTO

LICENCIATURA EN CIENCIA DE DATOS

UNIDAD DE APRENDIZAJE

MINERÍA DE DATOS CREACIÓN DE CLUSTERS - MATRIZ

NOMBRE DE LOS ALUMNOS:

DE LUNA OCAMPO YANINA MEDINA BARRERAS DANIEL IVÁN

PROFESOR:

OCAMPO BOTELLO FABIOLA

GRUPO:

5CDM1

FECHA:

PARTE 1. Diseñar una matriz con 6 puntuaciones (x, y) y desarrollar el proceso paso a paso de la creación de grupos aplicando las tres siguientes técnicas (*Inserte una portada indicando el tema que aborda*)

Point	а	b
P1	0.40	0.53
P2	0.22	0.38
Р3	0.35	0.32
P4	0.26	0.19
P5	0.08	0.41
P6	0.45	0.30

ESCUELA SUPERIOR DE CÓMPUTO

LICENCIATURA EN CIENCIA DE DATOS

UNIDAD DE APRENDIZAJE

MINERÍA DE DATOS

CREACIÓN DE CLUSTERS - ENLACE SIMPLE

NOMBRE DE LOS ALUMNOS:

DE LUNA OCAMPO YANINA MEDINA BARRERAS DANIEL IVÁN

PROFESOR:

OCAMPO BOTELLO FABIOLA

GRUPO:

5CDM1

FECHA:

1. Enlace simple Matriz de distancias Primer valor mínimo

	P1	P2	Р3	P4	P5	Р6
P1	0					
P2	0.23	0				
Р3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
Р6	0.23	0.25	0.11	0.22	0.39	0

Gráfico primer grupo

Actualizar matriz de distancias después crear primer grupo

MIN(DIST((P3,P1),(P6,P1))) = MIN[(0.22,0.23)] = 0.22

MIN(DIST((P3,P2),(P6,P2))) = MIN[(0.15,0.25)] = 0.15

MIN(DIST((P3,P4),(P6,P4))) = MIN[(0.15,0.22)] = 0.15

MIN(DIST((P3,P5),(P6,P5))) = MIN[(0.28,0.39)] = 0.22

Matriz actualizada para P3,P6 y nuevo valor mínimo

	P1	P2	P3,P6	P4	P5
P1	0				
P2	0.24	0			
P3,P6	0.22	0.15	0		
P4	0.37	0.20	0.15	0	
P5	0.34	0.14	0.28	0.29	0

Gráfico segundo grupo

 $\begin{array}{l} MIN(DIST((P2,P1),(P5,P1))) = MIN[(0.23,0.34)] = 0.23 \\ MIN(DIST((P2,(P3,P6)),(P5,(P3,P6)))) = MIN[(0.15,0.28)] = 0.15 \\ MIN(DIST((P2,P4),(P5,P4))) = MIN[(0.20,0.29)] = 0.20 \\ Matriz \ actualizada \ P5,P2 \end{array}$

	P1	P2, P5	P3,P6	P4
P1	0			
P2, P5	0.23	0		
P3,P6	0.22	0.15	0	
P4	0.37	0.20	0.15	0

Gráfico para el tercer grupo

 $\begin{array}{l} {\rm MIN(DIST(((P2,\,P5),P1),((P3,P6),P1)))=MIN[(0.23,0.22)]=0.22} \\ {\rm MIN(DIST(((P2,P5),P4),((P3,P6),P4)))=MIN[(0.20,0.15)]=0.15} \end{array}$

Matriz actualizada P2,P5,P3, P6

	P1	P2, P5,P3,P6	P4
P1	0		
P2, P5, P3, P6	0.22	0	
P4	0.37	0.15	0

Gráfica 4to grupo

MIN(DIST((((p2,p5,p3,p6)),P1),((P4,P1))) = MIN[(0.22,0.37)] = 0.22

Matriz actualizada para P2,P5,P3,P6,P4

	P1	P2, P5,P3,P6,P4
P1	0	
P2, P5, P3, P6,P4	0.22	0

Gráfica final

ESCUELA SUPERIOR DE CÓMPUTO

LICENCIATURA EN CIENCIA DE DATOS

UNIDAD DE APRENDIZAJE

MINERÍA DE DATOS

CREACIÓN DE CLUSTERS - ENLACE PROMEDIO

NOMBRE DE LOS ALUMNOS:

DE LUNA OCAMPO YANINA MEDINA BARRERAS DANIEL IVÁN

PROFESOR:

OCAMPO BOTELLO FABIOLA

GRUPO:

5CDM1

FECHA:

2. Enlace promedio

Matriz de distancias Primer valor mínimo

	P1	P2	Р3	P4	P5	Р6
P1	0					
P2	0.23	0				
Р3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P6	0.23	0.25	0.11	0.22	0.39	0

Actualizar matriz de distancias después crear primer grupo AVG(DIST((P3,P6),P1)) = DIST[(P3,P1),P1] = $\frac{1}{2}$ (DIST(P3,P1)+DIST(P6,P1)= $\frac{1}{2}$ (0.22+0.23)= $\frac{1}{2}$ (0.45)=0.23 AVG(DIST((P3,P6),P2)) = DIST[(P3,P6),P2] = $\frac{1}{2}$ (DIST(P3,P2)+DIST(P6,P2)= $\frac{1}{2}$ (0.15+0.25)= $\frac{1}{2}$ (0.4)=0.2 AVG(DIST((P3,P6),P4)) = DIST[(P3,P6),P4] = $\frac{1}{2}$ (DIST(P3,P4)+DIST(P6,P2)= $\frac{1}{2}$ (0.15+0.22)= $\frac{1}{2}$ (0.37)=0.19 AVG(DIST((P3,P6),P5)) =

 $DIST[(P3,P6),P5] = \frac{1}{2}(DIST(P3,P5)+DIST(P6,P5)=\frac{1}{2}(0.28+0.39)=\frac{1}{2}(0.67)=0.34$

Matriz actualizada para P3, P6, más el valor mínimo nuevo

	P1	P2	P3,P6	P4	P5
P1	0				
P2	0.24	0			
P3,P6	0.23	0.2	0		
P4	0.37	0.20	0.19	0	
P5	0.34	0.14	0.34	0.29	0

Gráfico para el tercer grupo

AVG(DIST((P2,P5),P1)) = DIST[(P2,P5),P1] = $\frac{1}{2}$ (DIST(P2,P1)+DIST(P5,P1)= $\frac{1}{2}$ (0.23+0.34)= $\frac{1}{2}$ (0.57)=0.29

AVG(DIST((P2,P5),(P3,P6))) = DIST[(P2,P5),(P3,P6)] = ½(DIST(P2,(P3,P6))+DIST(P5,(P3,P6))=½(0.2+0.34)=½(0.54)=0.27

AVG(DIST((P2,P5),P4)) =

 $DIST[(P2,P5),P4] = \frac{1}{2}(DIST(P2,(P4)) + DIST(P5,P4)) = \frac{1}{2}(0.20 + 0.29) = \frac{1}{2}(0.49) = 0.25$

Matriz actualizada P2,P5

	P1	P2, P5	P3,P6	P4
P1	0			
P2, P5	0.29	0		
P3,P6	0.22	0.27	0	
P4	0.37	0.25	0.19	0

Gráfica actualizada tercer grupo

 $\label{eq:avg} \begin{aligned} \text{AVG}(\text{DIST}((\text{P3},\text{P6},\text{P4}),\text{P1})) = \\ \text{DIST}((\text{P3},\text{P6},\text{P4}),\text{P1}) = \frac{1}{2}(\text{DIST}((\text{P3},\text{P6}),\text{P1}) + \text{DIST}((\text{P4}),\text{P1}) = \frac{1}{2}(0.23 + 0.37) = \frac{1}{2}(0.6) = 0.3 \end{aligned}$

AVG(DIST((P3,P6,P4),(P2,P5))) = DIST[(P3,P6,P4),(P2,P5)] = $\frac{1}{2}$ (DIST((P3,P6),(P2,P5))+DIST((P4),(P2,P5))= $\frac{1}{2}$ (0.27+0.25)= $\frac{1}{2}$ (0.52)=0.26

	P1	P2, P5,	P3,P6,P4
P1	0		
P2, P5,	0.29	0	
P3,P6,P4	0.3	0.26	0

Cuarto grupo

AVG(DIST((P3,P6,P4),(P2,P5))) = DIST[(P3,P6,P4),(P2,P5)] = ½(DIST((P3,P6,P4),P1)+DIST((P2,P5),P1)=½(0.3+0.29)=½(0.59)=0.3

	P1	P2, P5,P3,P6,P4
P1	0	
P2, P5, P3, P6,P4	0.3	0

ESCUELA SUPERIOR DE CÓMPUTO

LICENCIATURA EN CIENCIA DE DATOS

UNIDAD DE APRENDIZAJE

MINERÍA DE DATOS

CREACIÓN DE CLUSTERS - ENLACE COMPLETO

NOMBRE DE LOS ALUMNOS:

DE LUNA OCAMPO YANINA MEDINA BARRERAS DANIEL IVÁN

PROFESOR:

OCAMPO BOTELLO FABIOLA

GRUPO:

5CDM1

FECHA:

3. Enlace completo

Matriz de distancias Primer valor mínimo

	P1	P2	Р3	P4	P5	P6
P1	0					
P2	0.23	0				
Р3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P6	0.23	0.25	0.11	0.22	0.39	0

Primer grupo

Actualizar matriz de distancias después crear primer grupo $\begin{array}{ll} \text{MAX}(\text{DIST}((P3,P6),P1))) = \text{MAX}(\text{DIST}((P3,P1),(P6,P1)))) = \text{MAX}[(0.22,0.23)] = 0.23 \\ \text{MAX}(\text{DIST}((P3,P6),P2))) = \text{MAX}(\text{DIST}((P3,P2),(P6,P2)))) = \text{MAX}[(0.15,0.25)] = 0.25 \\ \text{MAX}(\text{DIST}((P3,P6),P4))) = \text{MAX}(\text{DIST}((P3,P4),(P6,P4)))) = \text{MAX}[(0.15,0.22)] = 0.22 \\ \text{MAX}(\text{DIST}((P3,P6),P5))) = \text{MAX}(\text{DIST}((P3,P2),(P6,P5)))) = \text{MAX}[(0.28,0.39)] = 0.39 \\ \end{array}$

	P1	P2	P3,P6	P4	P5
P1	0				
P2	0.23	0			
P3,P6	0.23	0.25	0		
P4	0.37	0.20	0.2	0	
P5	0.34	0.14	0.39	0.29	0

Segundo grupo

$$\begin{split} & \text{MAX}(\text{DIST}((\text{P2},\text{P5}),\text{P1}))) = \text{MAX}(\text{DIST}((\text{P2},\text{P1}),(\text{P5},\text{P1})))) = \text{MAX}[(0.23,0.34)] = 0.34 \\ & \text{MAX}(\text{DIST}((\text{P2},\text{P5}),(\text{P3},\text{P6})))) = \text{MAX}(\text{DIST}((\text{P2},(\text{P3},\text{P6}),(\text{P5},(\text{P3},\text{P6}))))) = \\ & \text{MAX}[(0.25,0.39)] = 0.39 \\ & \text{MAX}(\text{DIST}((\text{P2},\text{P5}),\text{P4}))) = \text{MAX}[(0.20,0.29)] = 0.29 \end{split}$$

	P1	P2, P5	P3,P6	P4
P1	0			
P2, P5	0.34	0		
P3,P6	0.23	0.39	0	
P4	0.37	0.29	0.22	0

Cuarto grupo

 $\begin{array}{l} {\rm MAX(DIST(((P3,P6),P4),P1))) = MAX(DIST(((P3,P6),P1),(P4,P1)))) = MAX[(0.23,0.37)] \\ = 0.37 \end{array}$

 $\begin{array}{l} {\rm MAX(DIST(((P3,P6),P4),(P4,P5)))) = MAX(DIST(((P3,P6),(P4,P5)),(P4,(P4,P5))))) = \\ {\rm MAX[(0.39,0.29)] = 0.39} \end{array}$

	P1	P2, P5,	P3,P6,P4
P1	0		
P2, P5	0.34	0	
P3,P6,P4	0.37	0.39	0

Grupo 4

 $\begin{array}{l} {\rm MAX(DIST(((P2,P5),(P3,P6,P4),(P1,(P3,P6,P4)))))} = \\ {\rm MAX(DIST(((P2,P5),(P3,P6.P4)),(P1,(P3,P5,P4)))))} = {\rm MAX[(0.39,0.37)]} = 0.39 \end{array}$

	P2,P5,P1	P3,P6,P4
P2,P5,P1	0	
P3,P6,P4	0.39	0

TABLA COMPARATIVA DE CLÚSTERS OBTENIDOS: ENLACE SIMPLE:

ENLACE PROMEDIO:

ENLACE COMPLETO:

TABLA COMPARATIVA DE DENDOGRAMAS OBTENIDOS: ENLACE SIMPLE:

ENLACE PROMEDIO:

ENLACE COMPLETO:

ESCUELA SUPERIOR DE CÓMPUTO

LICENCIATURA EN CIENCIA DE DATOS

UNIDAD DE APRENDIZAJE

MINERÍA DE DATOS CREACIÓN DE CLUSTERS - PARTE 2

NOMBRE DE LOS ALUMNOS:

DE LUNA OCAMPO YANINA MEDINA BARRERAS DANIEL IVÁN

PROFESOR:

OCAMPO BOTELLO FABIOLA

GRUPO:

5CDM1

FECHA:

PARTE 2. Diseñar una matriz con datos cualitativos, cinco registros y seis características y genere los grupos.

	Tos	Fiebre	camPeso	Hemorragia	Náuseas	dolCabeza
Paciente 1	0	0	1	0	1	1
Paciente 2	1	1	0	1	0	0
Paciente 3	1	0	0	1	1	0
Paciente 4	0	0	1	1	1	0
Paciente 5	1	1	1	0	1	1

Coeficiente de Jaccard

	1	2	3	4	5
1	1				
2	0	1			
3	0.60	0.25	1		
4	0.33	0.50	0.60	1	
5	0.17	0.67	0.17	0.40	1

Pasamos a la siguiente matriz, debido al umbral, que es este caso es: 0.51

	1	2	3	4	5
1	1				
2	0	1			
3	1	0	1		
4	0	0	1	1	
5	0	1	0	0	1

Multiplicamos por sí misma, con ayuda del software obtenemos:

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 1 & 0 \\ 0 & 2 & 0 & 0 & 1 \end{pmatrix}$$

Vemos cuántos vecinos en común hay. Obteniendo con la matriz de adyacencia lo siguiente:

	1	2	3	4	5
1	-				
2	0	-			
3	2	0	-		
4	1	0	2	-	
5	0	2	0	0	-

Podemos ver que hay grupos con el mismo número de enlaces. Escogemos uno, será el 3 con el 4.

	1	2	(3, 4)	5
1	-			
2	0	-		
(3, 4)	2+1	0	-	
5	0	2	0	-

Formamos un clúster ahora con el (1,3,4) por el número de enlaces contenidos. Nos quedaría:

	(1, 3, 4)	2	5
(1, 3, 4)	-		

2	0	-	
5	0	2	-

Solo nos queda el 2 y el 5 por lo que crearemos un clúster, como se muestra a continuación:

Recordando la tabla principal, vemos que estos agrupamientos son correctos debido a que por ejemplo, el 5 tiene más cosas en común con el 2 que con los demás.

Este usa el algoritmo ROCK, que es: RObust Clustering using linKs. Sirve para conjunto de datos con atributos categóricos y booleanos. Un par de puntos se consideran vecinos si su similitud está por encima del umbral preestablecido.

- El algoritmo ROCK evalúa las distancias entre objetos utilizando el coeficiente Jaccard.
- Utiliza el parámetro θ para determinar quienes son los vecinos en cada uno de los objetos.
- Dado un punto p, un punto q es vecino de p si el coeficiente de Jaccard sim(p, q) excede el valor de θ .
- Se generan los valores de la matriz de ligas (links), la cual consiste en la evaluación de links(p, q) como el número de vecinos comunes entre los puntos p y q.

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A|+|B|-|A \cap B|}$$