CH NG VI

QUANH TRÊN CÁC T PH P

I. QUAN H HAI NGÔI:

- **1.2**/ NH NGH A: M t quan h hai ngôi \Re trên t ph p S \varnothing th c ch t là m t t p h p con \Re c a t ph p S² = S × S. T ph p con này ch a t t c các c p (x,y) c a S² có quan h \Re . Nói khác i, m i t ph p con c a S² xác nh m t quan h hai ngôi trên S. Ta có $\Re = \{ (x,y) \in S^2 \mid x\Re y \} \subset S^2$. $\forall x,y \in S$, ta vi t $[x\Re y \Leftrightarrow (x,y) \in \Re]$ và $[x\Re y \Leftrightarrow (x,y) \notin \Re]$. N u |S| = n thì $|S^2| = n^2$ nên ta có 2^{n^2} quan h hai ngôi khác nhau trên S.

1.3/ XÁC NH QUAN H HAI NGÔI:

Chot $ph p S \emptyset$.

Ví d: S = **Z** v i các quan h hai ngôi
$$\Re$$
 và θ trên S nh sau: $\Re = \{ (4,-1), (0,0), (-9,2), (3,3), (-5,-6), (7,4), (-8,-8), (1,0) \} \subset S^2.$ θ = $\{ (2k, 5k + 1) \mid k \in \mathbf{Z} \} = \{ (0,1), (2,6), (-2, -4), \dots \} \subset S^2.$

b) Cách 2: gi i thi u n i dung c a quan h hai $ng \hat{o}i$ \Re (n u \Re có nhi u ph n t).

c) <u>Cách 3</u>: dùng *ma tr n s nh phân bi u di n quan h hai ngôi* \Re khi S h u h n. Xét $S = \{a_1, a_2, \ldots, a_n\}$. M t quan h hai ngôi \Re trên S có th bi u di n b ng m t b ng ma tr n vuông $(n \times n)$ g m các s nh phân nh sau: $\mathbf{M}_{\Re} = \mathbf{M} = \left(m_{ij}\right)_{1 \le i, i \le n}$ trong ó $m_{ij} = 1$ (n u $a_i \Re a_j$) và $m_{ij} = 0$ (n u $a_i \Re a_j$)

M	a_1	•••	a_{i}	•••	a_n
a_1	m_{11}		m_{1j}		m_{1n}
i	:	:	÷	:	:
a_{i}	m _{i1}		m _{ij}		m _{in}
:	:	:	:	:	:
a_n	m_{n1}	• • •	m_{nj}	• • •	m _{nn}

<u>Ví d:</u> $S = \{a, b, c, d\}$ và quan h hai ngôi \Re trên S có ma tr n bi u di n là $\mathbf{M}_{\Re} = \mathbf{M} = (m_{ij})$

	,	(9)	$1 \le i, j \le 4$
a	b	c	d
1	0	1	0
0	0	1	1
	a 1 0	a b1 00 0	1

b 0 0 1 1 c 1 0 1 1 d 1 1 0 0

Suy ra $\Re = \{ (a,a), (a,c), (b,c), (b,d), (c,a), (c,c), (c,d), (d,a), (d,b) \} \subset S^2$.

II. CÁC TÍNH CH T C A QUAN H HAI NGÔI:

Cho quan h hai ngôi \Re trên t p h p S \varnothing .

2.1/ <u>TÍNH PH N X :</u>

- a) \Re ph nx n u " \forall x \in S, x \Re x" (m i ph n t c a S quan h \Re v i chính nó).
- b) \Re không ph n x n u " $\exists x_o \in S, x_o \overline{\Re} x_o$ ". (có ít nh t m t ph n t c a S không quan h \Re v i chính nó).

<u>Ví d</u>:

a) $S = \{1, 2, 3\} \subset T = \{1, 2, 3, 4\}.$

Xét quan h hai ngôi R trên S (và c ng là quan h hai ngôi trên T):

 $\Re = \{ (3,3), (2,1), (1,1), (1,3), (2,2) \} \subset S^2 \subset T^2.$

 \Re (trên S) ph n x ($\forall x \in S, x\Re x$) nh ng \Re (trên T) không ph n x ($\exists 4 \in T, 4\overline{\Re} 4$).

b) $S = \mathbb{R}$. $\forall x, y \in S$, $t [x \gamma y \iff x \le y + 2]$ và $[x \delta y \iff 2x^3 \ne 3y^2]$.

 γ ph n x ($\forall x \in S, x \le x + 2$ nên x γ x).

δ không ph n x ($\exists 0 \in S, 2.0^3 = 3.0^2$ nên $0\overline{\delta}0$).

2.2/ <u>TÍNH I X NG:</u>

- a) \Re $i \times ng$ n u " $\forall x, y \in S, x\Re y \Rightarrow y\Re x$ ". (m i c p ph n t c a S có quan h \Re theo hai chi u ho c không có quan h \Re theo b t c chi u nào c).
- b) \Re không i x ng n u " $\exists x_o, y_o \in S, x_o \Re y_o$ và $y_o \overline{\Re} x_o$ ". (có ít nh t m t c p ph n t c a S ch quan h \Re theo m t chi u).

Ví d:

a) $S = \{0, 1, 2\}$. Xét các quan h hai ngôi \Re và θ trên S nh sau:

$$\Re = \{ (0,0), (2,1), (1,1), (1,2) \} \subset \Theta = \Re \cup \{ (0,1) \} \subset S^2$$

- \Re ix ng [các c p (0,0), (1,1), (1,2) có quan h hai chi u. Các c p khác v ng m t].
- θ không ix ng ($\exists 0, 1 \in S, 0\theta 1$ và $1\overline{\theta} 0$).
- b) S = Q. $\forall x, y \in S$, $t [x \gamma y \iff x^2 + \sin x = y^2 + \sin y] v \grave{a}$ $[x \delta y \Leftrightarrow 3x^2 + 2y = 3x - 2y^2].$
- γ ix ng $(\forall x, y \in S, x \gamma y \Rightarrow x^2 + \sin x = y^2 + \sin y \Rightarrow y^2 + \sin y = x^2 + \sin x \Rightarrow y \gamma x).$ δ không i x ng ($\exists 1, 0 \in S, 1\delta 0$ và $0\overline{\delta} 1$).

2.3/ TÍNH PH N (I) X NG:

- a) \Re ph nx ng n u " $\forall x, y \in S$, $(x\Re y \ v\grave{a} \ y\Re x) \Rightarrow x = y$ " (c p ph n t nào c a S có quan h \Re theo hai chi u thì ph i trùng nhau).
- a') \Re ph n x ng n u " $\forall x, y \in S, x \neq y \Rightarrow (x \overline{\Re} y \text{ hay } y \overline{\Re} x)$ " (m i c p ph n t khác nhau c a S không có quan h R
- b) \Re không ph $n \times ng$ n u " $\exists x_0, y_0 \in S, (x_0 \Re y_0 \text{ và } y_0 \Re x_0) \text{ và } x_0 \neq y_0$ " (có ít nh t hai ph n t khác nhau c a S có quan h R theo hai chi u).

Ví d:

a) S = N. Xét các quan h hai ngôi \Re và θ trên S nh sau:

$$\Re = \{ (0,0), (2,3), (4,1), (8,8), (5,5) \} \subset \Theta = \Re \cup \{ (3,2) \} \subset S^2.$$

$$\Re$$
 ph n x ng [$\forall x,y \in S$, (x $\Re y$ và y $\Re x$) \Rightarrow $\begin{bmatrix} (x=0,y=0) \\ (x=8,y=8) \\ (x=5,y=5) \end{bmatrix}$.

- θ không ph n x ng [$\exists 2, 3 \in S$, (2 θ 3 và 3 θ 2) và 2 \neq 3].
- b) $S = \mathbf{R}$. $\forall x, y \in S$, $t [x \gamma y \Leftrightarrow x = y^2]$, $[x \delta y \Leftrightarrow x < y]$ và $[x \rho y \Leftrightarrow 2x^2 \ge 4y^3 - 5].$

$$\gamma \text{ ph n x ng } [\forall x, y \in S, (x \gamma y \text{ và } y \gamma x) \Rightarrow (x = y^2 \text{ và } y = x^2) \Rightarrow \\
\Rightarrow (x = x^4 \text{ và } y = x^2) \Rightarrow \begin{cases} (x = 0, x = 1) \\ y = x^2 \end{cases} \Rightarrow \begin{bmatrix} (x = 0, y = 0) \\ (x = 1, y = 1) \end{cases} \Rightarrow x = y].$$

 δ ph n x ng [$\forall x, y \in S$, (x δ y và y δ x) \Rightarrow (x < y và y < x) \Rightarrow (x < x) \Rightarrow \Rightarrow (x = y)] [d u \Rightarrow cu i cùng úng vì (x < x) có chân tr sai] [dùng phát bi u a)].

 δ ph n x ng [$\forall x, y \in S, x \neq y \Rightarrow (x > y \text{ hay } y > x) \Rightarrow (x \overline{\delta} y \text{ hay } y \overline{\delta} x)$] [dùng phát bi u a')].

 ρ không ph n x ng $[\exists 1, 0 \in S, (1\rho 0 \text{ và } 0\rho 1) \text{ và } 0 \neq 1].$

- 2.4/ TÍNH TRUY N (B C CÂU): a) \Re truy n n u " $\forall x, y, z \in S$, $(x\Re y \ và \ y\Re z) \Rightarrow x\Re z$ ".
 - b) \Re không truy n n u " $\exists x_0, y_0, z_0 \in S$, $(x_0 \Re y_0)$ và $y_0 \Re x_0$ và $x_0 \Re z_0$ ".

Ví d:

a) $S = \mathbb{Z}$. Xét các quan h hai ngôi \Re và θ trên S nh sau:

 $\Re = \{ (0,0), (-5,4), (-8,-9), (1,4), (0,-6), (1,-5) \} \subset \Theta = \Re \cup \{ (-9,7) \} \subset S^2.$

$$\Re \text{ truy n } [\forall x,y,z \in S, (x\Re \textbf{y} \text{ và } \textbf{y}\Re z) \Rightarrow \begin{bmatrix} (x=0,y=0,z=0) \\ (x=0,y=0,z-6) \Rightarrow \\ (x=1,y=-5,z=4) \end{bmatrix} \Re 0$$

 θ không truy n [$\exists (-8), (-9), 7 \in S, \{(-8)\theta (-9) \text{ và } (-9)\theta 7\} \text{ và } (-8) \overline{\theta} 7$].

- $b) \ S = \textbf{Q}. \ \forall x,y \in S, \quad t \quad [\ x \ \gamma \ y \iff x+1 < y \] \quad v\grave{a} \quad [\ x \ \delta \ y \iff x < y+1 \].$
 - γ truy $n [\forall x, y, z \in S, (x \gamma y \ va \ y \gamma x) \Rightarrow (x + 1 < y \ va \ y + 1 < z) \Rightarrow (x + 1) < y < y + 1 < z \Rightarrow (x + 1) < z \Rightarrow x\Re z].$
 - $\delta \text{ không truy } n \ [\ \exists 1, \frac{1}{2}, 0 \in S, (1\delta \frac{1}{2} \ \text{và} \ \frac{1}{2} \delta 0) \ \text{và} \ 1 \overline{\delta} \ 0].$

III. QUANH TH T:

- 3.1/ NH NGH A: Cho quan h hai ngôi \Re trên t p h p S \varnothing .
 - a) \Re là m t quan h th t trên S n u \Re ph n x ph n x ng và truy n trên S.
 - b) Ta dùng ký hi u \prec th hi n m t quan h th t t ng quát.

Ký hi u (S, \prec) c hi u là trên t p h p S có quan h th t \prec .

 $\forall x,y \in S$, n u $x \prec y$ thì ta nói m t cách hình th c r ng

- "x nh h n y" hay "x $k\acute{e}m$ h n y" hay "x ng tr c y" hay
- "y l n h n x" hay "y tr i h n x" hay "y ng sau x".
- c) N u \Re là m t quan h th t trên S và $\emptyset \neq T \subset S$ thì \Re c ng là m t quan h th t trên T.

$\underline{\text{Ví d}}$:

a) (\mathbf{R}, \leq) và (\mathbf{R}, \geq) là các quan h th t . Th t v y,

 \leq ph n x (\forall x \in **R**, x \leq x), \leq ph n x ng [\forall x, y \in **R**, (x \leq y và y \leq x) \Rightarrow (x = y)], và \leq truy n [\forall x, y, z \in **R**, (x \leq y và y \leq z) \Rightarrow (x \leq z)]. T ng t cho quan h \geq .

Do \acute{o} $(\mathbf{Q}, \leq), (\mathbf{Q}, \leq), (\mathbf{Z}, \leq)$ và (\mathbf{Z}, \geq) c ng là các quan h th t .

b) $(\mathbf{N}, |)$ và (\mathbf{N}, \vdots) là các quan h th t . Th t v y, | ph n x $(\forall x \in \mathbf{N}, x = 1. x \text{ nên } x | x)$, | ph n x ng $[\forall x, y \in \mathbf{N}, (x | y \text{ và } y | x) \Rightarrow (\exists a, b \in \mathbf{N}, y = ax \text{ và } x = by)$

$$\Rightarrow (x = abx \ va) \Rightarrow \begin{bmatrix} x = 0 & y = 0 \\ hoac \\ x \ge 1, ab = 1, y = ax \end{bmatrix} \Rightarrow \begin{bmatrix} x = 0 & y = 0 \\ hoac \\ x \ge 1, a = b = 1, y = x \end{bmatrix} \Rightarrow (x = y)$$

và | truy n [$\forall x, y, z \in \mathbb{N}$, $(x \mid y \ va \ y \mid z) \Rightarrow (\exists a, b \in \mathbb{N}, y = ax \ va \ z = by) \Rightarrow (z = abx \ v \ i \ ab \in \mathbb{N}) \Rightarrow (x \mid z)$]. T ng t cho quan h :.

- c) ($\Pi = \wp(E)$, \subset) và ($\Pi = \wp(E)$, \supset) là các quan h th t . Th t v y, \subset ph n x ($\forall A \in \Pi, A \subset A$), \subset ph n x ng [$\forall A, B \in \Pi, (A \subset B \text{ và } B \subset A) \Rightarrow A = B$], \subset truy n [$\forall A, B, C \in \Pi, (A \subset B \text{ và } B \subset C) \Rightarrow A \subset C$]. T ng t cho quan h \supset .
- d) $(\mathbf{R},<)$ và $(\mathbf{R},>)$ không ph i là các quan h th t vì các quan h < và > không ph n x trên \mathbf{R} ($\exists 1 \in \mathbf{R}, 1 < 1$ và 1 > 1).

 \dot{y} < $v\dot{a}$ > v n ph n x ng $v\dot{a}$ truy n trên \mathbf{R} .

e) (\mathbf{Z} , |) và (\mathbf{Z} , \vdots) không ph i là các quan h th t vì các quan h | và \vdots không ph n x ng trên \mathbf{Z} ($\exists 1$, (-1) \in \mathbf{Z} , 1| (-1), (-1) | 1, 1 \vdots (-1), (-1) \vdots 1 và $1 \neq -1$). \circ và \vdots v n ph n x và truy n trên \mathbf{Z} .

3.2/ TH T TOÀN PH N – TH T BÁN PH N: Cho (S, \prec) .

Có úng m t trong hai tr ng h p sau ây x y ra:

- a) Tr $ng h p 1: \forall x, y \in S, x \prec y hay y \prec x (x và y so sánh c v i nhau b i quan h th t <math>\prec$). Ta nói \prec là m t th t toàn ph n trên S.
- b) Tr $ng h p 2: \exists x_0, y_0 \in S, x_0 \stackrel{-}{\prec} y_0 \text{ và } y_0 \stackrel{-}{\prec} x_0 (x_0 \text{ và } y_0 \text{ $không so sánh} c$ $v \text{ i nhau b i quan h th } t \stackrel{-}{\prec}). Ta nói \stackrel{-}{\prec} là m t \text{ t $bán ph n trên S}.$

Ví d:

- a) (\mathbf{R}, \leq) và (\mathbf{R}, \geq) là các quan h th t toàn ph n. $[\forall x, y \in S, (x \leq y \text{ hay } y \leq x) \text{ và } (x \geq y \text{ hay } y \geq x)].$
- c) (N, |) và (N, \vdots) là các quan h th t bán ph n. $(\exists 2, 3 \in N, 2 \text{ và } 3 \text{ không ph i là } \text{ c s và không ph i là b i s c a nhau}).$
- d) ($\Pi = \wp(E)$, \subset) và ($\Pi = \wp(E)$, \supset) là các quan h th t bán ph n n u | E | \geq 2. Th t v y, vi t E = { a, b, ... } và $\Pi = \wp(E) = \{\varnothing, A = \{a\}, B = \{b\}, C = \{a,b\}, ... \}$ thì ta th y $\exists A, B \in \Pi, A \not\subset B$ và $B \not\subset A$. N u | E | \leq 1 thì $\Pi = \{\varnothing\}$ ho c $\Pi = \{\varnothing, \{a\}\}$ nên ta th y ngay ($\Pi = \wp(E)$, \subset) và ($\Pi = \wp(E)$, \supset) là các quan h th t toàn ph n.

3.3/ KHÁI NI M K NHAU TRONG QUAN H TH T :

Cho (S, \prec) và $x, y \in S$ v i $x \neq y$.

- a) N u x \prec y và không có z \in S \ {x, y} th a x \prec z \prec y thì ta nói "x k v i y (v i v th x kém y tr i)" hay "y là m t tr i tr c ti p c a x". Ta v o n th ng (cong) có m i tên nh h ng n i tr c ti p t x n y: x \rightarrow y.
- b) Suy ra x và y không k nhau n u x y ra m t trong các tr ng h p sau:
 - * $x \stackrel{-}{\prec} y$ và $y \stackrel{-}{\prec} x$ (x và y không so sánh c v i nhau b i quan h t \prec).
 - * $\exists z \in S \setminus \{x, y\}$ th a $(x \prec z \prec y \text{ hay } y \prec z \prec x)$.

Lúc này không có o n th ng (o n cong) nào n i tr c ti p t x n y.

<u>Ví d:</u>

- a) $\forall k \in (\mathbf{Z}, \leq)$ ta có k và (k+1) là k nhau [$k \leq k+1$ và $\forall a \in \mathbf{Z}$, không x y ra k < a < k+1] nh ng k và k+2 không k nhau [$\exists (k+1) \in \mathbf{Z}$, k < k+1 < k+2].
- b) Trong (\mathbf{R}, \leq) và (\mathbf{R}, \geq) , không có c p ph n t nào k nhau.

[$\forall x, y \in \mathbf{R} \text{ mà } x < y \text{ (t c } y > x), \exists z = 2^{-1}(x + y) \in \mathbf{R}, x < z < y \text{ (t c } y > z > x)].$

c) Trong (N, |):

12 và 36 k nhau (12 | 36 và không có $a \in \mathbb{N}$ th a 12 | a, a | 36 và $12 \neq a \neq 36$). 3 và 5 không k nhau (3 và 5 không ph i là cs c a nhau).

4 và 40 không k nhau ($\exists 8 \in \mathbb{N}$ th a $4 \mid 8, 8 \mid 40$ và $4 \neq 8 \neq 40$).

- d) Trong $(\wp(E), \subset)$ v i $E = \{a,b,c\} : A = \{a\}$ và $B = \{a,b\}$ k nhau (A tr c B). $B = \{a,b\}$ và $C = \{b,c\}$ không k nhau (v) $B \not\subset C$ và $C \not\subset B$. $A = \{a\}$ và E không k nhau (v) $A \subset B = \{a,b\} \subset E$ và $A \neq B \neq E$).
- 3.4/BI U HASSE C A QUAN H TH T : Cho (S, \prec) v i S h u h n.
 - a) V c nh n i $(có m i tên nh h ng) cho t t c các c p ph n t k nhau trong <math>(S, \prec)$. Hình v có c g i là bi u Hasse c a (S, \prec) .
 - b) N $u \prec l$ à m t th t toàn ph n trên S thì bi u Hasse c a (S, \prec) có th v m t cách n gi n trên m t o n th n g. N $u \prec l$ à m t th t bán ph n trên S thì bi u Hasse c a (S, \prec) ph i r thành nhi u nhánh.

Víd:

a) $S = \{ a = 2^k \mid k = 0, 1, 2, ..., 7 \}$. Ta có (S, |) và (S, \vdots) u là các quan h th t toàn ph n $[\forall x = 2^p, y = 2^q \in S, (x | y \Leftrightarrow p \leq q) \text{ và } (x \vdots y \Leftrightarrow p \geq q)]$ nên bi u Hasse c a chúng có th v trên m t o n th ng nh sau:

$$2^{0} \rightarrow 2^{1} \rightarrow 2^{2} \rightarrow 2^{3} \rightarrow 2^{4} \rightarrow 2^{5} \rightarrow 2^{6} \rightarrow 2^{7}$$
 [s Hasse c a (S, |)]
 $2^{7} \rightarrow 2^{6} \rightarrow 2^{5} \rightarrow 2^{4} \rightarrow 2^{3} \rightarrow 2^{2} \rightarrow 2^{1} \rightarrow 2^{0}$ [s Hasse c a (S, |)]

b) $T = \{ các \quad c \quad s \quad d \quad ng \quad c \quad a \quad 30 \} = \{ 1, 2, 3, 5, 6, 10, 15, 30 \}$. $Ta \quad có \quad (T, |) \quad và \quad (T, \exists) \quad u \quad là các quan \quad h \quad th \quad t \quad bán \quad ph \quad n \quad (2 \quad và \quad 3 \quad không \quad là \quad c \quad s \quad và \quad b \quad i \quad s \quad c \quad a \quad 1 \quad n \quad nhau) \quad nên \quad bi \quad u \quad Hasse \quad c \quad a \quad chúng \quad s \quad r \quad nhánh \quad nh \quad sau:$

3.5/ PH NT C CTI U (NH NH T) VÀ C C I (L N NH T): Cho (S, \prec) .

- a) Ta nói $a = min(S, \prec)$ n u $a \in S$ và $a \prec x, \forall x \in S$.
- b) Ta nói $b = max(S, \prec)$ n u $b \in S$ và $x \prec b$, $\forall x \in S$.
- c) Ph n t $min(c \ c \ ti \ u, \ nh \ nh \ t)$ và $max(c \ c \ i, \ lón \ nh \ t)$ ho c $không \ t \ n \ t \ i$ ho c $t \ n \ t \ i \ duy \ nh \ t$.

3.6/ **NH N XÉT:** Cho (S, ≺).

Víd:

a) Cho (S, ≺) có bi u Hasse nh sau:

Ta có $a = min(S, \prec)$ và $b = max(S, \prec)$.

b) Xét các t p S và T trong Ví d (3.4).

Ta có $\min(S, |) = 2^{\circ}$, $\max(S, |) = 2^{7}$, $\min(S, \vdots) = 2^{7}$ và $\max(S, \vdots) = 2^{\circ}$. $\min(T, |) = 1$, $\max(T, |) = 30$, $\min(T, \vdots) = 30$ và $\max(T, \vdots) = 1$.

- c) Cho $S = [-3, 8] \subset \mathbf{R}$. Khi ó $\min(S, \leq) = -3$ và $\max(S, \leq) = 8$ (vì $-3, 8 \in S$ và $\forall x \in S, -3 \leq x \leq 8$). $\min(S, \geq) = 8$ và $\max(S, \geq) = -3$ (vì $8, -3 \in S$ và $\forall x \in S, 8 \geq x \geq -3$).
- d) $\min(\mathbf{N}, |) = 1 \text{ và } \max(\mathbf{N}, |) = 0 \text{ (vì } 1, 0 \in \mathbf{N} \text{ và } \forall x \in \mathbf{N}, 1 | x \text{ và } x | 0).$ $\min(\mathbf{N}, \vdots) = 0 \text{ và } \max(\mathbf{N}, |) = 1 \text{ (vì } 0, 1 \in \mathbf{N} \text{ và } \forall x \in \mathbf{N}, 0 \vdots x \text{ và } x \vdots 1).$
- e) $\min(\Pi = \wp(E), \subset) = \emptyset$ và $\max(\Pi = \wp(E), \subset) = E$ (vì \emptyset , $E \in \Pi$ và $\forall A \in \Pi$, $\emptyset \subset A \subset E$). $\min(\Pi = \wp(E), \supset) = E$ và $\max(\Pi = \wp(E), \supset) = \emptyset$ (vì $E, \emptyset \in \Pi$ và $\forall A \in \Pi, E \supset A \supset \emptyset$).
- f) (\mathbf{R}, \le) và (\mathbf{R}, \ge) không có min và max vì $\forall x \in \mathbf{R}, \exists (x-1), (x+1) \in \mathbf{R}, x-1 < x < x+1$ và x+1 > x > x-1.
- g) Cho T = $(-4, 9) \subset \mathbf{R}$. Khi ó (T, \le) và (T, \ge) không có min và max vì $\forall x \in T$, $\exists \frac{x-4}{2}, \frac{x+9}{2} \in T, \frac{x-4}{2} < x < \frac{x+9}{2} \text{ và } \frac{x+9}{2} > x > \frac{x-4}{2}$.

3.7/ PH NT T ITI U VÀT I I: Cho (S, \prec) .

a) Ta nói a là m t ph n t t i ti u c a (S, \prec) n u $a \in S$ và không có a' $\in S \setminus \{a\}$ th a a' $\prec a$.

Ph n t min (n u có) là ph n t t i ti u c bi t và duy nh t.

- b) Ta nói b là m t ph n t t i c a (S, \prec) n u $b \in S$ và không có b' $\in S \setminus \{b\}$ th a b \prec b'.
 - Ph n t max (n u có) là ph n t t i i c bi t và duy nh t.
- c) Ph n t t i ti u và t i i ho c không t n t i ho c t n t i mà không nh t thi t duy nh t.

3.8/ **NH N XÉT**: Cho (S, ≺).

- a) Trên bi u Hasse c a (S, ≺), ph n t t i ti u (n u có) là *i m xu t phát c a ít nh t m t nhánh* và ph n t t i i (n u có) là *i m k t thúc c a ít nh t m t nhánh. Các ph n t cô l p* c a (S, ≺) (không so sánh c v i m i ph n t khác) xem nh là các nhánh c t nên chúng v a là t i ti u v a là t i i.
- b) N u S h u h n và \prec là t t t u v v thì (S, \prec) luôn có t i ti u và t i i.

Vid:

a) Cho (S, ≺) có bi u Hasse nh sau:

 (S, \prec) có 7 ph n t t i ti u là a, c, e, g, h, i, j và 5 ph n t t i i là b, d, f, h, i. b) Cho $S = \{2, 3, 4, ..., 12, 13, 14\}$. Bi u Hasse c a (S, |) và (S, \vdots) 1 n l t là

- (S, |) có các ph n t t i ti u là 2, 3, 5, 7, 11, 13 và các ph n t t i i là 8, 9, 10, 11, 12, 13, 14.
- (S, :) có các ph n t t i ti u là 8, 9, 10, 11, 12, 13, 14 và các ph n t t i i là 2, 3, 5, 7, 11, 13.

- c) (\mathbf{R}, \leq) và (\mathbf{R}, \geq) không có các ph n t t i ti u và t i i vì $\forall x \in \mathbf{R}, \exists (x-1), (x+1) \in \mathbf{R}, x-1 < x < x+1 \text{ và } x+1 > x > x-1.$
- d) Cho T = $(-4, 9) \subset \mathbf{R}$. Khi ó (T, \le) và (T, \ge) không có t i ti u và t i i vì $\forall x \in T, \exists \frac{x-4}{2}, \frac{x+9}{2} \in T, \frac{x-4}{2} < x < \frac{x+9}{2}$ và $\frac{x+9}{2} > x > \frac{x-4}{2}$.

3.9/ TOÀN PH N HÓA M T TH T BÁN PH N (S P X P TOPO):

Cho (S, \prec) v i S h u h n (|S| = n) và \prec là th t bán ph n trên S. Ta mu n xây d ng m t th t toàn ph n \prec^* trên S n i r ng th t bán ph n \prec . $(ngh a là <math>\forall x, y \in S, x \prec y \Rightarrow x \prec^* y)$.

Quá trình xây d ng th t toàn ph n \prec * trên S g i là m t s s p x p topo (S, \prec).

a) Thu t toán d a trên các ph n t t i ti u:

Ch n ph n t t i ti u tùy ý $a_1 c$ a S và t $S_1 = S \setminus \{a_1\}$.

 $\forall j \in \{2, 3, \dots, n-1\}, \text{ ch } n \text{ ph } n \text{ t } i \text{ ti } u \text{ tivy } \acute{y} \text{ } a_j \text{ c } a \text{ } S_{j-1} \text{ và } t$

 $S_i = S_{i-1} \setminus \{a_i\}$. Ta có $|S_{n-1}| = 1$ và vi t $S_{n-1} = \{a\}$. Ch n $a_n = a$.

 $S \ p \ th \quad t \quad \ \ a_1 \prec^* a_2 \prec^* a_3 \prec^* \ldots \prec^* a_{n-2} \prec^* a_{n-1} \ \prec^* a_n \ .$

Bi u Hasse c a (S, \prec^*) là $a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow ... \rightarrow a_{n-2} \rightarrow a_{n-1} \rightarrow a_n$.

Ta có \prec * là m t th t toàn ph n trên S n i r ng th t bán ph n \prec .

- b) Thu t toán d a trên *các ph n t t i i*: hoàn toàn t ng t nh thu t toán d a trên các ph n t t i ti u nh ng ta ch n các ph n t t i i (thay vì t i ti u) và s p theo th t ng c l i $a_n \prec * a_{n-1} \prec * a_{n-2} \prec * \dots \prec * a_3 \prec * a_2 \prec * a_1$. Bi u Hasse c a (S, \prec *) là $a_n \rightarrow a_{n-1} \rightarrow a_{n-2} \rightarrow \dots \rightarrow a_3 \rightarrow a_2 \rightarrow a_1$. Th t toàn ph n \prec * trên S *không duy nh t* do vi c ch n tùy ý các ph n t t i
- That toàn phan \prec^* trên S không duy nhat do vìac chan tuy ý các phantatiu (ho c t i i) trong thu t toán.

$$H \rightarrow V \rightarrow T \rightarrow A$$

$$\downarrow \qquad . L$$

$$\rightarrow Si \rightarrow Su$$

 $\begin{array}{lll} Bi\ u & Hasse\ c\ a\ (S, \prec^*)\ l\grave{a} & \to H \to V \to Si \to L \to Su \to T \to A\ . \\ \underline{C\acute{a}ch\ 2:}\ V\ i\ th & t & \prec, l\ n\ l\ t\ ch\ n\ c\acute{a}c\ ph\ n\ t & t\ i & i\ L,\ A,\ Su,\ Si,\ T,\ V,\quad ,\ H \\ c\ a\ c\acute{a}c\ t\ p\ h\ p\ S,\ S_1 = S\setminus \{L\},\ S_2 = S_1\setminus \{A\},\ S_3 = S_2\setminus \{Su\},\ S_4 = S_3\setminus \{Si\},\ S_5 = S_4\setminus \{T\},\ S_6 = S_5\setminus \{V\},\ S_7 = S_6\setminus \{\quad\}.\ ta\ c\acute{o}\ th & t\ to\grave{a}n\ ph\ n\ \prec^*\ tr\^{e}n\ S\ l\grave{a} \\ H \prec^* & \prec^* V \prec^* T \prec^* Si \prec^* Su \prec^* A \prec^* L. \end{array}$

Bi u Hasse c a (S, \prec^*) là $H \rightarrow \to V \rightarrow T \rightarrow Si \rightarrow Su \rightarrow A \rightarrow L$.

3.10/ TH T T I N:

Cho (S, \prec) v i S h u h n và \prec là th t toàn ph n trên S. M i ph n t c a S c g i là m t "ký t ".

Tr ng h p 1: $m \le n$ và $a_i = b_i$ ($1 \le i \le m$), ngh a là α là m t o n u c a β .

Tr ng h p 2 : $a_1 \prec b_1$ và $a_1 \neq b_1$ (α và β có s khác bi t ngay "ký t " u).

Tr ng h p 3 : $p = min\{m, n\} \ge 2$ và $\exists k \in \{1, ..., p-1\}$ sao cho

 $a_i = b_i \ (1 \le i \le k), \ a_{k+1} \prec b_{k+1} \ và \ a_{k+1} \ne b_{k+1} \ (\alpha \ và \beta \ gi \ ng \ nhau \ k "ký t" u tiên và có s khác bi t "ký t" th k+1).$

Tr ngh p 2 cóth xem nh t <math>ngt v itr ngh p 3 ngv ik = 0.

The toàn phon \prec * gi là the tetri n trên \prod n i r ng the territorisms.

Ví d:

- a) $S = \{0, 1, 2, ..., 7, 8, 9\}$ v i the toàn phen tenhiên 0 < 1 < 2 < ... < 8 < 9. $\Pi = T$ phen the cacadays are chành lepter S. Ta có the toàn phen \prec * coxay deng trên Π g i là the total in. Cheng hen he $37952 \prec *37952041$ (treng hep 1), $6589617 \prec *9109$ (treng hep 2), $543018 \prec *543092$ (treng hep 3 eng vik = 4).
- b) $T = \{a, b, c, \ldots, x, y, z \} v$ i the total phenetenhien $a < b < c < \ldots < y < z$. $\Pi = T$ phenetenhie các tecác tecác ngh a trong ting Anh) chành leptenhin leptenhin total phenedenhin chành leptenhin lep

IV. QUAN H T NG NG:

- **4.1**/ NH NGH A: Cho quan h hai ngôi ℜ trên t p h p S Ø.
 - a) \Re là m t quan h t ng ng trên S n u \Re ph n x , i x ng và truy n trên S.
 - b) Ta dùng ký hi u ~ th hi n m t quan h t ng ng t ng quát. Ký hi u (S,\sim) c hi u là trên t p h p S có quan h t ng ng ~ . $\forall x,y \in S$, n u x ~ y thì ta nói m t cách hình th c r ng "x t ng ng v i y"
 - c) N u \Re là m t quan h t ng ng trên S và $\varnothing \neq T \subset S$ thì \Re c ng là m t quan h t ng ng trên T.

$\underline{\text{Ví d}}$:

a) S = T p h p m i ng i trên trái t.

 $\forall x, y \in S$, $t \times x \sim y \Leftrightarrow x \text{ cùng tu i v i (ctv) y}$.

~ ph n x ($\forall x \in S, x \text{ ctv } x$), ~ i x ng ($\forall x, y \in S, x \text{ ctv } y \Rightarrow y \text{ ctv } x$), ~ truy n [$\forall x, y, z \in S, (x \text{ ctv } y \text{ và } y \text{ ctv } z) \Rightarrow x \text{ ctv } z$]. b) $S = \mathbf{R}$ và hàm s tùy ý f : $\mathbf{R} \rightarrow \mathbf{R}$. $\forall x, y \in S, t x \Re y \Leftrightarrow f(x) = f(y)$. Ta có \Re là m t quan h t ng ng trên S vì \Re ph n x [$\forall x \in S, f(x) = f(x)$], \Re i x ng ($\forall x, y \in S, f(x) = f(y) \Rightarrow f(y) = f(x)$] và

Ta có ~ là m t quan h t ng ng trên S. Th t v y,

4.2/ L PT NG NG C A M T PH N T : Cho (S, ~) và $a \in S$. t $\overline{a} = \{ x \in S \mid x \sim a \} = \{ a, ... \}$ (vì $a \sim a$ do tính ph n x c a quan h ~). Ta có $\emptyset \neq \overline{a} \subset S$ và ta nói \overline{a} là l p t ng ng c a a (xác nh b i quan h t ng ng ~ trên S). Ta c ng có th dùng ký hi ng ng that ng ng ~ ng~ ng ~ ng~ ng~

 \Re truy n [$\forall x, y, z \in S$, { f(x) = f(y) và f(y) = f(z) } \Rightarrow f(x) = f(z)].

Ví d:

 $(a) S = \{An^{18}, Lý^{21}, Tú^{18}, Hà^{19}, V^{20}, Hy^{19}, S^{18}, S^{19}, Tá^{20}, Vy^{18}\}$ (s nh trên là tu i) $\forall x, y \in S$, $t \times x \sim y \Leftrightarrow x \text{ cùng tu i v i y}$. Ta có \sim là m t quan h t ng ng trên S [xem **Ví d** (4.1)]. Lúc ó $[\mathbf{An}] = \{ \mathbf{x} \in \mathbf{S} \mid \mathbf{x} \sim \mathbf{An} \} = \{ \mathbf{An}, \mathbf{T}\mathbf{u}, \mathbf{S}, \mathbf{V}\mathbf{y} \}, [\mathbf{L}\mathbf{y}] = \{ \mathbf{x} \in \mathbf{S} \mid \mathbf{x} \sim \mathbf{L}\mathbf{y} \} = \{ \mathbf{L}\mathbf{y} \}$ $[\mathbf{Hy}] = \{ x \in S \mid x \sim \mathbf{Hy} \} = \{ \mathbf{Hy}, \mathbf{Ha}, \mathbf{S} \}, [\mathbf{Ta}] = \{ x \in S \mid x \sim \mathbf{Ta} \} = \{ \mathbf{Ta}, \mathbf{V} \}.$ b) $S = \mathbb{R}$. $\forall x, y \in S$, $t \times \Re y \iff f(x) = f(y) \times i \quad f(t) = t^3 - 3t \quad \forall t \in \mathbb{R}$. Ta có \Re là m t quan h t ng ng trên S [xem Ví d (4.1)]. Ta tìm $\bar{0}$, $\bar{2}$, $-\bar{5}$ và \bar{a} v i $a \in \mathbf{R}$. $\overline{0} = \{ x \in \mathbf{R} \mid x \Re \mathbf{0} \} = \{ x \in \mathbf{R} \mid x^3 - 3x = 0 \} = \{ \mathbf{0}, \sqrt{3}, -\sqrt{3} \}.$ $\overline{2} = \{ x \in \mathbf{R} \mid x \Re \mathbf{2} \} = \{ x \in \mathbf{R} \mid x^3 - 3x - 2 = 0 \} =$ $= \{ x \in \mathbf{R} \mid (x+1)^2(x-2) = 0 \} = \{ 2,-1 \}.$ $\overline{-5} = \{ x \in \mathbf{R} \mid x \Re (-5) \} = \{ x \in \mathbf{R} \mid x^3 - 3x + 110 = 0 \} =$ $= \{ x \in \mathbb{R} \mid (x+5)(x^2-5x+22) = 0 \} = \{ -5 \}.$ $\overline{a} = \{ x \in \mathbf{R} \mid x \Re a \} = \{ x \in \mathbf{R} \mid x^3 - 3x = a^3 - 3a \} =$ $= \{ x \in \mathbb{R} \mid (x - a)(x^2 + ax + a^2 - 3) = 0 \}$. Nh v y \overline{a} có t 1 n 3 ph n t. t $g(x) = x^2 + ax + a^2 - 3$ có $\Delta = 3(4 - a^2)$ và g(a) = 3(a - 1)(a + 1). Ta có $|\bar{a}| = 3 \iff [\Delta > 0 \text{ và } g(a) \neq 0] \iff (1 \neq |a| < 2) \iff a \in (-2, -1) \cup (-1, 1) \cup (1, 2)$ Lúc ó $\overline{a} = \{ a, \frac{-a + \sqrt{3(4 - a^2)}}{2}, \frac{-a - \sqrt{3(4 - a^2)}}{2} \}.$

```
 \begin{array}{l} |\overline{a}| = 1 \iff \{ \; \Delta < 0 \; \text{hay} \; [\; \Delta = 0 \; \text{và} \; \mathbf{g}(\boldsymbol{a}) = 0 \;] \; \} \iff [\; \boldsymbol{a}^2 > 4 \; \text{hay} \; (\boldsymbol{a}^2 = 4 \; \text{và} \; \boldsymbol{a}^2 = 1) \;] \\ \iff \boldsymbol{a}^2 > 4 \; \iff \boldsymbol{a} \in (-\infty, -2) \cup (2, +\infty). \; \text{Lúc} \; \acute{o} \; \overline{a} = \{ \; \boldsymbol{a} \; \}. \\ |\overline{a}| = 2 \; \iff \{ \; [\; \Delta > 0 \; \text{và} \; \mathbf{g}(\boldsymbol{a}) = 0 \;] \; \text{hay} \; [\; \Delta = 0 \; \text{và} \; \mathbf{g}(\boldsymbol{a}) \neq 0 \;] \; \} \; \iff \\ \iff [\; (\; \boldsymbol{a}^2 < 4 \; \text{và} \; \boldsymbol{a}^2 = 1) \; \text{hay} \; (\; \boldsymbol{a}^2 = 4 \; \text{và} \; \boldsymbol{a}^2 \neq 1) \;] \; \iff \boldsymbol{a} \in \{ \; -2, \; -1, \; 1, \; 2 \;\}. \\ \text{Lúc} \; \acute{o} \; \overline{-2} = \overline{1} = \{ \; -2, \; 1 \; \} \; \text{và} \; \overline{2} = \overline{-1} = \{ \; -1, \; 2 \;\}. \\ \text{(S, $\Re)} \qquad \text{c phân ho ch thành vô h n l pt ng} \qquad \text{ng r i nhau t ng ôi m t và m i l pt ng} \qquad \text{ng có t} \; 1 \qquad n \; 3 \; \text{ph n t} \;. \\ \end{array}
```

<u>Ví d</u>:

v	Us	i	Ão		Co
Nh L	P	N	• Ig	Uc	и́М
Ĥ	Ch	Ån	B		

 $(S, \sim).$ $\overline{V} = \{ x \in S \mid x \sim V \} = \{ V, Nh, L, H \} = \overline{Nh} = \overline{L} = \overline{H}.$ $\overline{Us} = \{ x \in S \mid x \sim Us \} = \{ Us, P, Ch \} = \overline{P} = \overline{Ch}.$ $\overline{I} = \{ x \in S \mid x \sim I \} = \{ I, Ao, Ng, An, B \} = \overline{Ao} = \overline{Ng} = \overline{An} = \overline{B}.$ $\overline{Uc} = \{ x \in S \mid x \sim Uc \} = \{ Uc \} \quad \text{và} \quad \overline{Co} = \{ x \in S \mid x \sim Co \} = \{ Co, M \} = \overline{M}.$ $S = \overline{V} \cup \overline{Us} \cup \overline{I} \cup \overline{Uc} \cup \overline{Co} = \overline{Nh} \cup \overline{P} \cup \overline{Ao} \cup \overline{Uc} \cup \overline{M} = \overline{L} \cup \overline{Ch} \cup \overline{Ng} \cup \overline{Uc} \cup \overline{M}.$

S c phân họ ch thành 5 l p t ng ng r i nhau t ng ôi m t. Ta có $V \sim Nh \iff \overline{V} = \overline{Nh} \iff V \in \overline{Nh} \iff Nh \in \overline{V} \iff \overline{V} \cap \overline{Nh} \neq \emptyset$. Ng $\approx P \iff \overline{Ng} \neq \overline{P} \iff Ng \notin \overline{P} \iff P \notin \overline{Ng} \iff \overline{Ng} \cap \overline{P} = \emptyset$. b) \Re là m t quan h t ng ng trên $T = \{1, 2, 3, 4, 5, 6\}$ sao cho T c phân họ ch thành 3 l p t ng ng r i nhau t ng ôi m t là $T = \{2\} \cup \{3, 5\} \cup \{1, 4, 6\}$.

ż	ż	5	i	4	Ġ
---	---	----------	---	---	---

 $(T, \Re).$

Suy ra $\bar{2} = \{2\}$, $\bar{3} = \bar{5} = \{3,5\}$, $\bar{1} = \bar{4} = \bar{6} = \{1,4,6\}$, $T = \bar{1} \cup \bar{2} \cup \bar{3}$ và $\Re = \{(2,2), (3,3), (5,5), (3,5), (5,3), (1,1), (4,4), (6,6), (1,4), (4,1), (1,6), (6,1), (4,6), (6,4)\}$. Ta có $1 \sim 4 \Leftrightarrow \bar{1} = \bar{4} \Leftrightarrow 1 \in \bar{4} \Leftrightarrow 4 \in \bar{1} \Leftrightarrow \bar{1} \cap \bar{4} \neq \emptyset$. $2 = 3 \Leftrightarrow \bar{2} \neq \bar{3} \Leftrightarrow 2 \notin \bar{3} \Leftrightarrow 3 \notin \bar{2} \Leftrightarrow \bar{2} \cap \bar{3} = \emptyset$.

4.4/ T PH PTH NG XÁC NH B I QUAN H T NG NG:

Cho (S, \sim) .

t S/~ là t p h p t t c các l p t ng ng (xác nh b i quan h ~ trên S), ngh a là S/~ = { $\overline{x} \mid x \in S$ }. Nh v y $\forall x \in S$, ta có $\overline{x} \subset S$ và $\overline{x} \in S$ /~. Ta nói S/~ là t p h p th ng c a S xác nh b i quan h t ng ng ~.

V. QUAN H NG D TRÊN Z:

Cho s nguyên $n \ge 1$.

5.1/ T PH P Z_n:

M t s nguyên khi chia (Euclide) cho n s có s d là 0, 1, 2, ..., (n-1). $\forall a, b \in \mathbb{Z}$, t $a \sim b \Leftrightarrow a$ và b có cùng s d khi chia cho n

 \Leftrightarrow $n \mid (a - b) \Leftrightarrow n : (a - b) \Leftrightarrow \exists k \in \mathbf{Z}, a = b + nk.$

Quan h ~ là m t quan h t ng ng trên \mathbb{Z} (ki m ch ng d dàng) và ~ \mathbb{Z} g i là quan h ng d modulo n trên \mathbb{Z} . Ta c ng vi t a ~ b là \mathbb{Z} b (mod n).

t $\mathbf{Z_n} = \mathbf{Z}/\sim = \{ \overline{k} \mid k \in \mathbf{Z} \} [\underline{\text{li t}} \text{ kê } d \text{ ng t ng quát có trùng } l \text{ p}]$ = $\{ \overline{0}, \overline{1}, \overline{2}, ..., \overline{n-1} \} (*) [\underline{\text{li t}} \text{ kê } d \text{ ng chu n không trùng } l \text{ p}]$

trong $\vec{0} = \{ k \in \mathbb{Z} \mid k \text{ chia cho } n \text{ d} \mid 0 \} = \{ \text{ nt} \mid t \in \mathbb{Z} \} = n\mathbb{Z} \text{ và}$

 $\bar{r} = \{ k \in \mathbb{Z} \mid k \text{ chia cho } n \text{ d} r \} = \{ nt + r \mid t \in \mathbb{Z} \} = n\mathbb{Z} + r (1 \le r \le n - 1).$

Ta có $\mathbf{Z} = \overline{0} \cup \overline{1} \cup \overline{2} \cup ... \cup \overline{n-1} : \mathbf{Z}$ c phân ho ch thành n 1 p t ng ng r i nhau t ng ôi m t và m i 1 p có vô h n ph n t .

 $\forall k \in \mathbb{Z}$, ta có the vi te \overline{k} ved ng chu ne (*) nhe sau:

Chia Euclide $k = qn + r \ v \ i \ 0 \le r < |n| = n \ thì \ \overline{k} = \overline{r} \ v \ i \ 0 \le r \le n - 1.$

5.2/ <u>CÁC PHÉP TOÁN TRÊN Z_n:</u> Cho **Z**_n = { $\bar{k} \mid k \in \mathbf{Z}$ }(d ng t ng quát). Trên **Z**_n, ta có th nh ngh a các phép toán +, - và . m t cách t nhiên nh sau : $\forall \bar{u}, \bar{v} \in \mathbf{Z}_n$ (u, $v \in \mathbf{Z}$), t $\bar{u} \pm \bar{v} = u \pm v \in \mathbf{Z}_n$ và $\bar{u} \cdot \bar{v} = u \cdot v \in \mathbf{Z}_n$.

Ví d: Ta th c hi n các phép tính sau trong \mathbb{Z}_{12} :

$$\frac{725}{692} + \frac{548}{548} = \frac{725 + 548}{725 + 548} = \frac{1273}{1273} = \frac{1}{1273}$$

$$\frac{548}{692} - \frac{725}{725} = \frac{548 - 725}{548 - 725} = \frac{177}{725} = \frac{3}{356}$$

$$\frac{356}{885} = \frac{356(855)}{356(855)} = \frac{304380}{304380} = \frac{1}{1273}$$

 $\overline{k}' \in \mathbf{Z_n}$ that $\overline{k} \cdot \overline{k}' = \overline{1}$ g i là \overline{ph} ntanghent of \overline{k} và ta ký hi u $\overline{k}' = \overline{k}^{-1}$. Denhiên \overline{k}' cong khongh church $\overline{k}' \in \mathbf{U}(\mathbf{Z_n})$ và $\overline{k}'^{-1} = \overline{k}$.

Nh v y $U(\mathbf{Z}_n)$ là t p h p các ph n t kh ngh ch trong \mathbf{Z}_n .

Nh v y $\cup (\mathbf{Z_n})$ la t p n p cac pn n t kn ngn cn trong $\mathbf{Z_n}$.

Víd:

a) $U(\mathbf{Z_8}) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}.$ $(\overline{1}.\overline{1} = \overline{3}.\overline{3} = \overline{5}.\overline{5} = \overline{7}.\overline{7} = \overline{1} : m \text{ i ph n t } c \text{ a } U(\mathbf{Z_8}) \text{ là ngh ch } o c \text{ a chính nó}).$

b) $U(\mathbf{Z_9}) = \{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}\}$ (do $\overline{1}.\overline{1} = \overline{2}.\overline{5} = \overline{4}.\overline{7} = \overline{8}.\overline{8} = \overline{1}$ nên $\overline{1}^{-1} = \overline{1}, \overline{2}^{-1} = \overline{5}, \overline{5}^{-1} = \overline{2}, \overline{4}^{-1} = \overline{7}, \overline{7}^{-1} = \overline{4}$ và $\overline{8}^{-1} = \overline{8}$).

5.4/ M NH :

- $\overline{\mathbf{a})\ \mathbf{U}(\mathbf{Z_n}) = \{\ \overline{k} \in \mathbf{Z_n} \mid (\mathbf{k}, \mathbf{n}) = 1\} = \{\ \overline{k} \in \mathbf{Z_n} \mid 1 \le \mathbf{k} \le \mathbf{n} 1 \ \mathbf{v} \mathbf{\hat{a}} \ (\mathbf{k}, \mathbf{n}) = 1\}.$
- b) N u p là m t s nguyên $t \ge 2$ thì $U(\mathbf{Z_p}) = \mathbf{Z_p} \setminus \{\bar{0}\}.$
- c) $\forall \overline{k} \in U(\mathbf{Z}_n)$, ch n r, $s \in \mathbf{Z}$ th a rk + sn = 1 thì $\overline{k}^{-1} = \overline{r}$.

Víd:

- a) $U(\mathbf{Z_{15}}) = \{ \overline{k} \in \mathbf{Z_{15}} \mid 1 \le k \le 14 \text{ và } (k, 15) = 1 \} = \{ \overline{1}, \overline{2}, \overline{4}, \overline{7}, \overline{8}, \overline{11}, \overline{13}, \overline{14} \}.$
- b) $U(\mathbf{Z}_{11}) = \mathbf{Z}_{11} \setminus \{\overline{0}\} = \{\overline{1}, \overline{2}, \overline{3}, \dots, \overline{9}, \overline{10}\}\$ (ta có $\overline{1}.\overline{1} = \overline{2}.\overline{6} = \overline{3}.\overline{4} = \overline{5}.\overline{9} = \overline{7}.\overline{8} = \overline{10}.\overline{10} = \overline{1}$).
- c) Ta có (31)21 + (-13)50 = 1 nên (21, 50) = 1. Suy ra $\overline{21} \in U(\mathbf{Z}_{50})$ và $\overline{21}^{-1} = \overline{31}$.

5.5/ GI I PH NG TRÌNH TRÊN Z_n:

Cho \overline{a} , $\overline{b} \in \mathbf{Z_n}$. Ta tìm $\overline{x} \in \mathbf{Z_n}$ th \overline{a} $\overline{a} \cdot \overline{x} = \overline{b}$ (1).

- a) N u $\bar{a} = \bar{0} \neq \bar{b}$ thì ph ng trình $v\hat{o}$ nghi m.
- b) N u $\bar{a} = \bar{0} = \bar{b}$ thì phong trình có n nghi m là \bar{x} tùy ý thu c $\mathbf{Z_n}$.
- c) N u $\bar{a} \in U(\mathbf{Z_n})$ thì ph ng trình có nghi m duy nh t là $\bar{x} = \bar{a}^{-1}\bar{b}$.
- d) Khi $\overline{a} \neq \overline{0}$ và $\overline{a} \notin U(\mathbf{Z}_n)$: t $d = (a, n) \geq 2$, a = a'd và n = n'd.
 - * N u d không chia h t b thì n = n'd không chia h t n'b và \overline{n} '. $\overline{b} \neq \overline{0}$. Lúc ó
 - $\overline{a} \cdot \overline{x} = \overline{b} \iff \overline{a'} \cdot \overline{d} \cdot \overline{x} = \overline{b} \implies \overline{a'} \cdot \overline{n'} \cdot \overline{d} \cdot \overline{x} = \overline{n'} \cdot \overline{b} \implies \overline{a'} \cdot \overline{n} \cdot \overline{x} = \overline{0} \cdot \overline{x} = \overline{n'} \cdot \overline{b} \neq \overline{0}$: ph ng trình $v\hat{o}$ nghi m.
 - * N u d | b : vi t b = b'd. Ph ng trình (1) trong $\mathbf{Z_n}$ là \overline{d} . $\overline{a'}$. $\overline{x} = \overline{d}$. $\overline{b'}$. Ph ng trình này t ng ng v i ph ng trình $\overline{a'}$ $\overline{X} = \overline{b'}$ (2) trong $\mathbf{Z_{n'}}$. $\dot{\mathbf{y}} \ (\mathbf{a'}, \mathbf{n'}) = 1 \ \text{nên} \ \overline{a'} \in \mathbf{U}(\mathbf{Z_{n'}}) \ \text{và ph} \ \text{ng trình} \ (2) \ \text{có nghi m duy nh t}$ $\overline{X} = \overline{a'}^{-1}$. $\overline{b'}$ trong $\mathbf{Z_{n'}}$. $\mathbf{t} \ \overline{a'}^{-1}$. $\overline{b'} = \overline{c} \in \mathbf{Z_{n'}}$ thì ph ng trình (1) $c\dot{o}$ $d\acute{u}ng$ d nghi m trong $\mathbf{Z_n}$ là $\overline{x} = \overline{c + jn'}$ (0 \le j \le d 1).

Ví d:

- a) Trong \mathbb{Z}_6 : Ph ng trình $\overline{18}.\overline{x} = \overline{47} \Leftrightarrow \overline{0}.\overline{x} = \overline{5} \neq \overline{0}$ vô nghi m.
- b) Trong \mathbb{Z}_7 : Ph ng trình $\overline{35}.\overline{x} = \overline{-56} \Leftrightarrow \overline{0}.\overline{x} = \overline{0}$ có 7 nghi m (\overline{x} tùy ý $\in \mathbb{Z}_7$).
- c) Trong \mathbb{Z}_9 : Ph ng trình $\overline{22}.\overline{x} = \overline{-13} \Leftrightarrow \overline{4}.\overline{x} = \overline{5} \Leftrightarrow \overline{x} = \overline{4}^{-1}.\overline{5} = \overline{7}.\overline{5} = \overline{35} = \overline{8}$.
- d) Trong $\mathbf{Z_{18}}$: Ph ng trình $\overline{12}.\overline{x}=\overline{14}$ có $\overline{12}\notin U(\mathbf{Z_{18}})$, d=(12,18)=6 không chia h t 14 và 18=3(6). Ta có $\overline{12}.\overline{x}=\overline{14}$ \Rightarrow $\overline{3}.\overline{12}.\overline{x}=\overline{3}.\overline{14}$ \Rightarrow $\overline{0}.\overline{x}=\overline{42}=\overline{6}\neq\overline{0}$: ph ng trình vô nghi m.
- e) Ph ng trình $\overline{33}.\overline{x} = \overline{45}$ (trong \mathbf{Z}_{57}) (1) có $\overline{33} \notin \mathrm{U}(\mathbf{Z}_{57})$ do (33, 57) = 3. Do 3 | 45, 33 = 11(3) và 45 = 15(3) nên (1) t ng ng v i ph ng trình $\overline{11}.\overline{X} = \overline{15}$ (trong \mathbf{Z}_{19}) (2). Do 7(11) 4(19) = 1 nên $\overline{11} \in \mathrm{U}(\mathbf{Z}_{19})$ và $\overline{11}^{-1} = \overline{7}$. Ph ng trình (2) cho $\overline{X} = \overline{11}^{-1}.\overline{15} = \overline{7}.\overline{15} = \overline{105} = \overline{10}$ (trong \mathbf{Z}_{19}). Suy ra (1) có úng 3 nghi m trong \mathbf{Z}_{57} là $x = \overline{10}, x = \overline{10+19} = \overline{29}$ và $x = \overline{10+2(19)} = \overline{48}$.
