Derivate parziali, derivate direzionali, differenziabilità

- 1. a) Calcolare le derivate direzionali e le derivate parziali in (0,1) di $f(x,y) = \sqrt[3]{x^2(y-1)} + 1$. b) Vale la formula del gradiente? f è differenziabile in (0,1)? c) Calcolare $D_{\underline{v}}f(0,1)$, dove \underline{v} è il versore individuato dalla retta $y = \sqrt{3}x$ orientato nel verso delle x crescenti. d) Calcolare $D_{\underline{v}}f(0,1)$, dove \underline{v} è il versore individuato dalla retta y = 2x orientato nel verso delle x crescenti.
- **2.** Calcolare le derivate parziali in (0,0) di $f(x,y) = \sqrt[5]{y^3 \sin^2 x}$.
- **3.** Calcolare, se esistono, le derivate parziali in (0,3) di $f(x,y) = \sqrt{|x|(x^2+y^2-4)}$.
- **4.** Sia

$$f(x,y) = \begin{cases} \frac{2x^2y}{x^4 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

Mostrare che f non è continua in (0,0), ma che ammette derivate direzionali in (0,0) lungo qualunque direzione.

- **5.** Sia $f(x,y) = \sqrt{x^2 + y^2}$. a) Disegnare il grafico di f. b) Calcolare, dove esistono, le derivate parziali di f.
- **6.** Sia $f(x,y) = x^2 + y^2$. a) Disegnare il grafico di f. b) Mostrare che f è differenziabile nel punto (1,1), utilizzando la definizione. c) Scrivere l'equazione del piano tangente al grafico di f nel punto (1,1,f(1,1)).
- 7. Sia $f(x,y) = xe^{x^2}\sqrt{y}$. a) Determinare il dominio D di f. b) Calcolare, dove esistono, le derivate parziali di f.
- **8.** Sia $f(x,y) = x\sqrt[3]{y}$. a) Determinare il dominio D di f. b) Calcolare, dove esistono, le derivate parziali di f. c) Mostrare che f è differenziabile in (0,0). d) Stabilire dove f è differenziabile.
- **9.** Sia

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- a) Calcolare le derivate parziali di f. b) Calcolare le derivate direzionali di f in (0,0). c) Vale la formula del gradiente in (0,0)? d) Mostrare che f non è differenziabile in (0,0).
- 10. Dire se la funzione

$$f(x,y) = \begin{cases} \frac{\log(1+|xy|)}{\sqrt{x^2+y^2}} + 1 & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) = (0,0) \end{cases}$$

è continua, derivabile, differenziabile in (0,0).

- 11. Calcolare la derivata della funzione $f(x,y)=(x^2-y^2)e^{x^2-y^2}$ nella generica direzione \underline{v} , nel punto (1,1).
- 12. Si consideri la funzione $f(x,y) = y^2 e^{4x}$. a) La funzione è differenziabile nel punto (0,-1)? Vale la formula del gradiente nel punto (0,-1)? Si calcolino gradiente e derivate direzionali nel punto (0,-1). b) Qual è la direzione di massima crescita di f nel punto (0,-1)? Quale quella in cui $D_v f(0,-1) = 0$?
- 13. Scrivere l'equazione del piano tangente alla superficie grafico di $f(x,y) = e^x \sin y$ in $(1,\pi)$, giustificandone l'esistenza. Calcolare poi $D_{\underline{v}}f(1,\pi)$, dove $\underline{v} = \left(\frac{3}{5}, \frac{4}{5}\right)$.
- **14.** Sia $f(x,y) = (x+1)y + \log(1+2x)$. a) Calcolare $\nabla f(0,0)$ e determinare massimo e minimo di $\nabla f(0,0) \cdot \underline{v}$, al variare di \underline{v} versore qualunque del piano x,y. b) Verificare che $\nabla f(0,0)$ è ortogonale in (0,0) alla linea di equazione $y = -\frac{\log(1+2x)}{1+x}$.
- **15.** Data la superficie S di equazione $z=x^y$, dire in quale punto di S il piano tangente è parallelo al piano x,y.
- **16.** Sia $f(x,y) = x \sin y$. Determinare lungo quale direzione $D_{\underline{v}}f(1,1) = 0$.
- 17. Sia $f(x,y)=y^4e^{3x}$. Determinare lungo quale direzione $D_{\underline{v}}f(0,-1)=1$.
- 18. Sia $f(x,y)=e^{3x}\frac{\sqrt{y}}{x}$. a) Calcolare il gradiente di f nel punto P=(1,1); b) determinare l'equazione della linea di livello C di f passante per P e calcolare il

coefficiente angolare della retta tangente a C in P; c) verificare che il gradiente di f è perpendicolare a C in P.

19. Sia $f(x,y) = ye^{-x^2y}$. a) Scrivere l'equazione del piano tangente alla superficie grafico di f nel punto $(1,2,\frac{2}{e^2})$; b) sia C la linea di livello passante per P = (1,2), scrivere l'equazione della retta tangente a C in P.

Soluzioni.

- 1. a) Se $\underline{v} = (\cos \theta, \sin \theta)$, $D_{\underline{v}} f(0,1) = \lim_{t \to 0} \frac{f(t \cos \theta, 1 + t \sin \theta) f(0,1)}{t} = \lim_{t \to 0} \frac{\sqrt[3]{t^2 \cos^2 \theta t \sin \theta}}{t} = \sqrt[3]{\cos^2 \theta \sin \theta}$. In particolare $\frac{\partial f}{\partial x}(0,1) = \frac{\partial f}{\partial y}(0,1) = 0$. b) Non vale la formula del gradiente, pertanto f non è differnziabile in (0,1). c) Si ha che $\underline{v} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, quindi $D_{\underline{v}} f(0,1) = \frac{\sqrt[6]{3}}{2}$. d) Si ha che $\underline{v} = (\cos \theta, \sin \theta)$, con $\tan \theta = 2$, quindi $\underline{v} = \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$, quindi $D_{\underline{v}} f(0,1) = \sqrt[3]{2}$.
- 2. Si ha che $\frac{\partial f}{\partial x}(x,y) = \frac{2}{5} \frac{y^3 \sin x \cos x}{\sqrt[5]{(y^3 \sin^2 x)^4}}$, dunque $\frac{\partial f}{\partial x}(0,0)$ si presenta nella forma di indecisione $\frac{0}{0}$. Calcoliamola allora con la definizione: $\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) f(0,0)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$, analogamente $\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) f(0,0)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$.
- 3. $\frac{\partial f}{\partial x}(0,3) = \lim_{h \to 0} \frac{f(h,3) f(0,3)}{h} = \lim_{h \to 0} \frac{\sqrt{|h|(h^2 + 5)}}{h} = \infty$, quindi non esiste; $\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,3+h) f(0,3)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$.
- **4.** Poiché $\lim_{x\to 0} f(x,x^2) = 1 \neq 0$, si può concludere che f non è continua in (0,0). Calcoliamo le derivate direzionali in (0,0):

$$D_{\underline{v}}f(0,0) = \lim_{t \to 0} \frac{f(t\cos\theta, t\sin\theta) - f(0,0)}{t} = \lim_{t \to 0} \frac{2t^2\cos^2\theta t\sin\theta}{(t^4\cos^4\theta + t^2\sin^2\theta)t} = 2\frac{\cos^2\theta}{\sin\theta},$$
 se $\sin\theta \neq 0$; se $\sin\theta = 0$ si ha che $D_{\underline{v}}f(0,0) = \lim_{t \to 0} \frac{f(t\cos\theta, 0) - f(0,0)}{t} = 0.$

- **5.** a) Il grafico di f è un cono circolare retto. b) $\frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$, $\frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}}$, se $(x,y) \neq (0,0)$; $\frac{\partial f}{\partial x}(0,0)$ non esiste, infatti $\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) f(0,0)}{h} = \lim_{h \to 0} \frac{|h|}{h}$ non esiste; analogamente $\frac{\partial f}{\partial y}(0,0)$ non esiste.
- **6.** a) Il grafico di f è un paraboloide. b) f è differenziabile in (1,1) infatti $\lim_{\substack{(h,k)\to(0,0)\\(h,k)\to(0,0)}} \frac{f(1+h,1+k)-f(1,1)-\frac{\partial f}{\partial x}(1,1)h-\frac{\partial f}{\partial y}(1,1)k}{\sqrt{h^2+k^2}} = \lim_{\substack{(h,k)\to(0,0)\\(h,k)\to(0,0)}} \frac{(1+h)^2+(1+k)^2-2-2h-2k}{\sqrt{h^2+k^2}} = \lim_{\substack{(h,k)\to(0,0)\\(h,k)\to(0,0)}} \frac{h^2+k^2}{\sqrt{h^2+k^2}} = 0.$ c) L'equazione del piano tangente è: $z=f(1,1)+\frac{\partial f}{\partial x}(1,1)(x-1)+\frac{\partial f}{\partial y}(1,1)(y-1)=2x+2y-2.$
- 7. a) $D = \{(x,y) \in \mathbb{R}^2 : y \ge 0\}$. b) $\frac{\partial f}{\partial x}(x,y) = \sqrt{y}e^{x^2}(1+2x^2)$, esiste in D. $\frac{\partial f}{\partial y}(x,y) = \frac{xe^{x^2}}{2\sqrt{y}}$ se $y \ne 0$; se $x \ne 0$ e y = 0, $\frac{\partial f}{\partial y}(x,0)$ non esiste; in (0,0): $\frac{\partial f}{\partial y}(0,0) = \lim_{h\to 0} \frac{f(0,h) f(0,0)}{h} = 0$. Dunque la derivata parziale di f rispetto a y esiste in D eccetto che nei punti del tipo $(x_0,0)$ con $x_0 \ne 0$.
- 8. a) $D = \mathbb{R}^2$. b) $\frac{\partial f}{\partial x}(x,y) = \sqrt[3]{y}$, esiste in \mathbb{R}^2 . $\frac{\partial f}{\partial y}(x,y) = \frac{x}{3\sqrt[3]{y^2}}$ se $y \neq 0$; se $x \neq 0$ e y = 0, $\frac{\partial f}{\partial y}(x,0)$ non esiste; in (0,0): $\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) f(0,0)}{h} = 0$. Dunque la derivata parziale di f rispetto a y esiste in \mathbb{R}^2 eccetto che nei punti del tipo $(x_0,0)$ con $x_0 \neq 0$. c) f è differenziabile in (0,0) infatti $\lim_{(h,k)\to(0,0)} \frac{f(h,k) f(0,0) \frac{\partial f}{\partial x}(0,0)h \frac{\partial f}{\partial y}(0,0)k}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{h\sqrt[3]{k}}{\sqrt{h^2 + k^2}} = \lim_{\rho\to 0} \frac{\rho\cos\theta\sqrt[3]{\rho\sin\theta}}{\rho} = 0$, qualunque sia θ . N.B. f è differenziabile in (0,0)

nonostante che in (0,0) non sia verificata la condizione sufficiente di differenziabilità. d) f è differenziabile in tutti i punti del tipo (x,y) con $y \neq 0$, perché in tali punti ammette derivate parziali e le derivate parziali sono continue in un intorno di tali punti; f è differenziabile anche in (0,0) per il punto precedente.

9. a) Se
$$(x,y) \neq (0,0)$$
, $\frac{\partial f}{\partial x}(x,y) = \frac{y^4 - x^2y^2}{(x^2 + y^2)^2}$, $\frac{\partial f}{\partial y}(x,y) = \frac{2x^3y}{(x^2 + y^2)^2}$. In $(0,0)$ si ha che $\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0$, $\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = 0$.

b)
$$D_{\underline{v}}f(0,0) = \lim_{t\to 0} \frac{f(t\cos\theta,t\sin\theta) - f(0,0)}{t} = \lim_{t\to 0} \frac{t^3\cos\theta\sin^2\theta}{t^3} = \cos\theta\sin^2\theta$$
.
c) In $(0,0)$ non vale la formula del gradiente, infatti: $D_{\underline{v}}f(0,0) = \cos\theta\sin^2\theta \neq \frac{\partial f}{\partial x}(0,0)\cos\theta + \frac{\partial f}{\partial y}(0,0)\sin\theta = 0$. d) Ovviamente f non sarà differenziabile in $(0,0)$, altrimenti varrebbe la formula del gradiente. Mostriamolo con la definizione:

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k) - f(0,0) - \frac{\partial f}{\partial x}(0,0)h - \frac{\partial f}{\partial y}(0,0)k}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{hk^2}{(h^2 + k^2)\sqrt{h^2 + k^2}}$$
$$= \lim_{\rho\to 0} \frac{\rho^3 \cos\theta \sin^2\theta}{\rho^3} = \cos\theta \sin^2\theta, \text{ dipende da } \theta, \text{ quindi non esiste.}$$

10. La funzione è continua in (0,0), infatti:

$$\lim_{(x,y)\to(0,0)}\frac{\log(1+|xy|)}{\sqrt{x^2+y^2}}+1=\lim_{\rho\to0}\frac{\log(1+\rho^2|\cos\theta\sin\theta|)}{\rho}+1=\lim_{\rho\to0}\rho|\cos\theta\sin\theta|+1$$
 = 1, qualunque sia θ . Poiché se $x=0$, oppure se $y=0$, la funzione è identicamente uguale a 1, entrambe le derivate parziali esistono nell'origine e sono nulle. Per la differenziabilità, calcoliamo il
$$\lim_{(h,k)\to(0,0)}\frac{f(h,k)-1}{\sqrt{h^2+k^2}}=\lim_{\rho\to0}\frac{\log(1+\rho^2|\cos\theta\sin\theta|)}{\rho^2}=|\cos\theta\sin\theta|;$$
 tale limite dipende da θ , quindi non esiste e f non è differenziabili in $(0,0)$.

- **11.** La funzione è di classe C^{∞} in \mathbb{R}^2 , dunque differenziabile. Applicando la formula del gradiente si trova che $D_{\underline{v}}f(1,1) = 2\cos\theta 2\sin\theta$.
- **12.** a) f è di classe C^1 in \mathbb{R}^2 , dunque è differenziabile ovunque, e vale la formula del gradiente. $\nabla f(0,-1) = (4,-2)$. $D_{\underline{v}}f(0,-1) = 4\cos\theta 2\sin\theta$.
- b) La direzione di massima crescita è quella del gradiente: $\underline{v} = \frac{(4,-2)}{2\sqrt{5}}$.

 $D_{\underline{v}}f(0,-1)=0$ se \underline{v} è perpendicolare al gradiente, cioè se $\underline{v}=\frac{(2,4)}{2\sqrt{5}}$, o $\underline{v}=\frac{(-2,-4)}{2\sqrt{5}}$.

- 13. Si ha che: $\frac{\partial f}{\partial x}(x,y) = e^x \sin y$, $\frac{\partial f}{\partial y}(x,y) = e^x \cos y$, le derivate parziali sono continue in \mathbb{R}^2 , dunque f è ovunque differenziabile. L'equazione del piano tangente in $(1,\pi)$ è: $z=f(1,\pi)+\frac{\partial f}{\partial x}(1,\pi)(x-1)+\frac{\partial f}{\partial y}(1,\pi)(y-\pi)$, cioè $z+ey=e\pi$. Poiché f è differenziabile in $(1,\pi)$, per calcolare la derivata direzionale possiamo applicare la formula del gradiente: $D_{\underline{v}}f(1,\pi)=\frac{\partial f}{\partial x}(1,\pi)\frac{3}{5}+\frac{\partial f}{\partial y}(1,\pi)\frac{4}{5}=-\frac{4}{5}e$.
- 14. a) Si ha che: $\frac{\partial f}{\partial x}(x,y) = y + \frac{2}{1+2x}$, $\frac{\partial f}{\partial y}(x,y) = x+1$, quindi $\nabla f(0,0) = (2,1)$. $\nabla f(0,0) \cdot \underline{v}$ è massimo nella direzione e verso del gradiente, cioè se $\underline{v} = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$; è minimo $\underline{v} = \left(-\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right)$. b) La curva data è tangente in (0,0) alla retta di coefficiente angolare: y'(0) = -2; si tratta quindi di mostrare che $\nabla f(0,0)$ è ortogonale a tale retta. Sia $\underline{w} = (1,-2)$, un vettore direzione della retta, poiché $\nabla f(0,0) \cdot \underline{w} = (2,1) \cdot (1,-2) = 0$, il gradiente è ortogonale alla retta y = -2x.
- **15.** Il piano tangente in P=(x,y,f(x,y)) è parallelo al piano x,y se $\frac{\partial f}{\partial x}(x,y)=\frac{\partial f}{\partial y}(x,y)=0$. Calcoliamo le derivate parziali: $\frac{\partial f}{\partial x}(x,y)=yx^{y-1}, \frac{\partial f}{\partial y}(x,y)=x^y\log x$; esse si annullano contemporaneamente per x=1,y=0, dunque il piano tangente in (1,0,1) è parallelo al piano x,y e ha equazione z=1.
- **16.** La derivata direzionale è nulla nella direzione ortogonale al gradiente. Si ha che: $\nabla f(1,1) = (\sin 1, \cos 1)$, quindi $\underline{v} = (\cos 1, -\sin 1)$ oppure $\underline{v} = (-\cos 1, \sin 1)$.
- 17. $\nabla f(0,-1) = (3,-4)$; sia $\underline{v} = (\cos \theta, \sin \theta)$; $D_{\underline{v}}f(0,-1) = 0$ se \underline{v} è ortogonale al gradiente, cioè se $3\cos \theta 4\sin \theta = 0$. Tenendo conto della relazione $\sin^2 \theta + \cos^2 \theta = 0$, si trova $\underline{v} = \pm \left(\frac{4}{5}, \frac{3}{5}\right)$.

- **18.** a) $\nabla f(1,1) = (2e^3, \frac{e^3}{2})$; b) $y = x^2 e^{6-6x}$, y'(1) = -4; c) $\nabla f(1,1) \cdot (1,-4) = 0$.
- **19.** a) $z = \frac{1}{e^2}(12 8x y)$; b) y = -8x + 10.