Mishra 1

COSC 312

Homework Assignment 4

Submission Format: docx, tex or pdf to Canvas

Points: 10 per proof; total = 40

Name: Swasti Mishra NetID: smishr11

1. Prove that $C = \{w | w \text{ has an equal number of 0s and 1s} \}$ is not regular. Consider the string $s=0^p1^p$.

Assume that C is regular and let p be the pumping length of C.

Choose $s = 0^p 1^p \in C$ so that $|0^p 1^p| > p$. According to the Pumping Lemma, s can be partitioned into s = xyz, such that for all $i \ge 0$, there is $xy^iz \in C$. By condition 3 of the Pumping Lemma, we should have $|xy| \le p$. Therefore, y must contain 0s and $xy^iz \ne C$ and $xz \ne C$. This means that there would be an unequal number of 0s in the string as 1s. Hence, s cannot be pumped and due to this contradiction, we can conclude that C is not regular.

2. Prove that $F = \{ww | w \text{ is a string from } \{0,1\}^*\}$ is not regular. Consider the string $s=0^p10^p1$. Note that $\{0,1\}^*$ is any string (including the empty string) containing any number of 0s and 1s (in any order).

Assume that F is regular and let p be the pumping length of F.

Choose $s = 0^p 10^p 1 \in F$ so that $|0^p 10^p 1| > p$. According to the Pumping Lemma, s can be partitioned into s = xyz, such that for all $i \ge 0$, there is $xy^iz \in F$. By condition 3 of the Pumping Lemma, we should have $|xy| \le p$. Therefore, y must contain 0s and $xy^iz = xy^2z \ne F$. This means that the first part of s (substring w) is not the same as the 2^{nd} part of s. Hence, s cannot be pumped due to condition 1 of the Pumping Lemma, and due to this contradiction, we can conclude that F is not regular.

3. Prove that $A = \{www|w \text{ is a string from } \{a,b\}^*\}$ is not regular. Consider the string $s=a^pba^pba^pb$.

Assume that A is regular and let p be the pumping length of A.

Choose $s = a^p b a^p b a^p b \in A$ so that $|a^p b a^p b a^p b| > p$. According to the Pumping Lemma, s can be partitioned into s = xyz, such that for all $i \ge 0$, there is $xy^iz \in A$. By condition 3 of the Pumping Lemma, we should have $|xy| \le p$. Therefore, y must only contain as and $xy^iz = A$. This means that there would be more as at the start of the string than any other part. Hence, s cannot be pumped and due to this contradiction, we can conclude that a is not regular.

4. Prove that $L = \{0^n 1^m 0^n | m, n \ge 0\}$ is not regular. Consider the string $s = 0^p 10^p$.

Assume that L is regular and let p be the pumping length of L.

Choose $s = 0^p 10^p \in L$ so that $|0^p 10^p| > p$. According to the Pumping Lemma, s can be partitioned into s = xyz, such that for all $i \ge 0$, there is $xy^iz \in L$. By condition 3 of the Pumping Lemma, we should have $|xy| \le p$. Therefore, y must only contain θ s and $xy^iz = L$. This means that there would be more θ s in the first part of the string than any subsequent part. Hence, s cannot be pumped and due to this contradiction, we can conclude that L is not regular.