Pufferfish Privacy Mechanisms for Correlated Data

Shuang Song, Yizhen Wang, Kamalika Chaudhuri University of California, San Diego

Sensitive Data with Correlation

- Data from social networks,
- eg. Spreading of flu

- ▶ Time series data,
- eg. Exercise per week

Why Does Correlation Make Privacy Protection Hard?

▶ $D = \{X_1, ..., X_n\}, X_i = 1 \text{(person } i \text{ has flu)}$

▶ Goal:

- Publish (approximately) # of people w/ flu
- Prevent anyone from knowing if a specific person has flu or not
- Correlation makes privacy protection hard:
 - \blacktriangleright Knowing information about your social network \rightarrow inferring information about you

Previous Solution 1

- Differential Privacy:
 - Hide the effect of single individual
- \blacktriangleright # of infected people + noise w/ std \sim 1
 - Assuming best case: everyone is independent
- There can be large connect groups and the disease can be highly contagious
- No enough protection!

Previous Solution 2

- Group-Differential Privacy:
 - Hide the effect of the entire group
- # of infected people + noise w/ std ~Group_Size
 - Assuming worst case: complete correlation within group
- Group size can be large
- Poor utility!

The Hope for a Better Solution

Dbservation: most real problems have low average correlation

Pufferfish Privacy

— a framework with correlation taken into consideration

3 Components of Pufferfish Privacy:

- 1. Secrets S: set of information need to be protected
 - eg. Alice has flu, Bob was sleeping at 10am
- 2. Secret pair $Q \subseteq S \times S$: set of pairs of secrets need to be indistinguishable
 - eg. (Alice has flu, Alice is healthy), (Bob was sleeping at 10am, Bob was exercising at 10am)
- 3. Θ: a set of data distributions that plausibly generate the data (where correlation is captured)
 - eg. Flu is passed w.p. 0.2, Bob exercises only if he gets up before 8am

ϵ -Pufferfish Privacy

A privacy mechanism M is ϵ -Pufferfish private with Pufferfish parameters (S,Q,Θ) if $\forall w \in \text{Range}(M), \forall (s_i,s_i) \in Q, \forall \theta \in \Theta$ with $X \sim \theta$

$$e^{-\epsilon} \le \frac{p_{X,M}(M(X) = w|s_i, \theta)}{p_{X,M}(M(X) = w|s_j, \theta)} \le e^{\epsilon}$$

when $P(s_i|\theta) \neq 0$, $P(s_j|\theta) \neq 0$.

 ϵ measures privacy level: smaller $\epsilon \rightarrow$ more privacy.

Pufferfish Privacy

- Allows correlation
- Generalizes differential privacy
 - \blacktriangleright DP is a special case where Θ contains all independent distributions

How to achieve Pufferfish privacy?

Algorithms for Pufferfish Privacy

Algorithms for special Pufferfish instantiations: [KM12, HMD12]

- Our contribution:
 - Wasserstein Mechanism (completely general)
 - Markov Quilt Mechanism (Bayesian network)
- Concurrent work: [GK17]

Outline

- Pufferfish privacy definition
- Our algorithms:
 - ▶ Wasserstein Mechanism (Please come to our poster for detail ⊕)
 - Markov Quilt Mechanism
- Experimental results

Markov Quilt Mechanism (MQM)

Bayesian network:

- $X = \{X_1, ..., X_n\} + \mathsf{DAG}\ G = (X, E)$
- ▶ E represents parent-child relationship

MQM on Markov Chain

- ▶ Θ : Markov Chains $\{X_1, ..., X_n\}, X_i \in [K]$
- $S = \{X_i = s : i \in [n], s \in [K]\}$
- $Q = \{(X_i = s, X_i = t) : i \in [n], s, t \in [K], s \neq t\}$
- f: 1-Lipschitz function
 - E.g. count
 - Extend to any Lipschitz function

Markov Quilt Mechanism Intuition

Markov Quilt Mechanism Intuition

3. How much noise to add for X_N ?

1. Formalizing "Separation"

- Markov Quilt X_Q for X_i :
 - ▶ Deleting X_Q breaks graph into X_N and $X_R, X_i \in X_N$
 - Given X_Q , X_i and X_R are independent

2. "Small Correction Factor" for Remote

▶ Max-influence of X_i on any set X_A under Θ :

$$e(X_A|X_i) = \max_{s,t,x_A,\theta} \log \frac{P(X_A = x_A|X_i = s,\theta)}{P(X_A = x_A|X_i = t,\theta)}$$

- ▶ Lower max-influence → less correlated
- ▶ Correction term for $X_R \cup X_Q : e(X_R \cup X_Q | X_i) = e(X_Q | X_i)$

3. Noise for Neighbor

- $ightharpoonup \epsilon e(X_Q|X_i)$ budget left
- Treat as worst case:
 - Group-DP: X_N changes as a group
 - ▶ 1-Lipschitz function changes by at most $|X_N|$
- Final std of noise:

$$\frac{|X_N|}{\epsilon - e(X_Q|X_i)}$$

Putting Together Everything

- Repeat for all X_i :
 - Repeat for all X_0 s

- noise(
$$X_i$$
) = $\min_{X_Q} \frac{|X_N|}{\epsilon - e(X_Q|X_i)}$

- noise(D) = $\max_{i \in [n]}$ noise(X_i)
- Output f(D) + Noise w/ std \sim noise(D)

▶ Theorem: MQM guarantees ϵ -Pufferfish privacy.

Outline

- Pufferfish privacy definition
- Our algorithms:
 - Wasserstein Mechanism
 - Markov Quilt Mechanism
- Experimental results

Experiments: Privacy-Utility Trade-off

- Data: Markov chains
- Query function f: histogram of states
- Compare four algorithms:
 - Group-DP
 - ▶ [GK17]
 - MQM-Approx
 - MQM-Exact

On Physical Activity Data

- ▶ 36 overweight subjects, 16 older subjects, 40 cyclists
- ~ every 12 s, ~7 days during daytime (7 chains each of length ~3000)
- ▶ 4 states: active, standing still, standing moving, sedentary
- ▶ Q: {(activity a at time t, activity b at time t)}
- Θ: obtained from data

Aggregate histograms over each group of subjects

- $\epsilon = 1$
- Four algorithms:
 - MQM-Exact
 - MQM-Approx
 - Group-DP
 - ▶ [GK17]: does not apply

On Electricity Power Data

- ▶ Electricity power meter reading (Watt) in a single household in the greater Vancouver area, BC, Canada
- ▶ Every 1 min, \sim 2 years (1 chain of length \sim 1,000,000)
- Divided into 200:200:10000W (51 states)
- Q: {(power level a at time t, power level b at time t)}
- Θ: obtained from data

Makonin, S., Ellert, B., Bajić, I.V., & Popowich, F. (2016). Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Scientific data, 3.

Running Time

▶ Running time in second:

	Overweight	Older	Cyclist	Power Data
MQM-Approx	0.0028	0.0060	0.0064	0.0567
MQM-Exact	0.6299	1.2786	1.5186	282.2273

Use MQM-Approx when

- State space is large
- ▶ Enough data to mitigate the effect of the approximation

Summary

Privacy definition:

Pufferfish privacy framework

Our contributions:

- Wasserstein Mechanism for general Pufferfish instantiations
- Markov Quilt Mechanism for Bayesian network
- Experimental results

Questions?

Wasserstein Mechanism

▶ How sensitive is the query function wrt to secret pair (s_i, s_j) ?

- $p(f(X)|s_i,\theta) \text{ vs. } p(f(X)|s_j,\theta)$
 - Need a right distance measurement for distributions

Wasserstein distance

∞-Wasserstein Distance

▶ Two random variables $X \sim \mu$, $Y \sim \nu$

$$W_{\infty}(\mu, \nu) = \inf_{\gamma \in \Gamma(\mu, \nu)} \max_{(x, y) \in A_{\gamma}} |x - y|$$

- $\Gamma(\mu, \nu)$: all possible joint distributions of *X*, *Y*
- ▶ A_{γ} : the support of $\gamma \in \Gamma(\mu, \nu)$
- ▶ The minimum "effort" needed to convert μ to ν .

Wasserstein Mechanism

- Given any query function f,
- For any secret pair $(s_i, s_j) \in Q$, any $\theta \in \Theta$:

$$-\mu_{i,\theta} = p(f(X)|s_i,\theta), \mu_{j,\theta} = p(f(X)|s_j,\theta)$$

$$-W_{i,j,\theta}=W_{\infty}(\mu_{i,\theta},\mu_{j,\theta})$$

$$-W = \sup_{s_i, s_j, \theta} W_{i,j,\theta}$$

$$-M(D) = f(D) + \text{Lap}(W/\epsilon)$$

 \blacktriangleright Theorem: Wasserstein Mechanism guarantees ϵ -Pufferfish privacy

Always Better than Group-DP

▶ N:# of infected people

	N = 0	N = I	N = 2	N = 3	N = 4
$P(N X_i=0)$	0.2	0.225	0.5	0.075	0
$P(N X_i=1)$	0	0.075	0.5	0.225	0.2

- ▶ Wasserstein Mechanism: noise w/ sd ~2
- Group-DP: noise w/ sd ~ 4
- Wasserstein Mechanism always no worse than Group-DP