

Amendments to the Specification:

Please replace the paragraph on page 1, line 4, with the following amended paragraph:

This application claims the benefit of U.S. provisional applications Serial Nos. 60/396,904 filed July 18, 2002; 60/413,622, filed September 25, 2002; 60/414,199, filed September 26, 2002; 60/423,750, filed November 5, 2002; 60/432,093, filed December 10, 2002; 60/432,962, filed December 12, 2002; 60/442,109, filed January 23, 2003; 60/449,791, filed February 24, 2003; and 60/479,016, filed June 16, 2003, and 10/_____, ~~filed July 3, 2003 (attorney docket No. 1662/60606~~, the contents of all of which are incorporated herein by reference.

Please amend page 8, line 6 as follows:

Figure 58 is a DSC thermogram of nateglinide Form $\gamma\delta$.

Please amend page 8, line 7, as follows:

Figure 59 is a DSC thermogram of nateglinide Form $\delta\epsilon$.

Please amend page 8, line 8 as follows:

Figure 60 is a DSC thermogram of nateglinide Form $\epsilon\gamma$.

Please replace page 9, the chart, with the following amended chart:

G	14.4, 15.3, 19.3, 20.3 (Fig. 6)
I	5.5, 7.4, 16.8 (Fig. 7)
J	8.0, 11.2, 12.0, 15.9, 16.1, 17.7, 28.1 (Fig. 8)
K	9.5, 15.4, 17.1, 21.2 (Fig. 9)
L	17.6, 17.9, 19.6 (Fig. 10)
M	16.2, 16.4, 17.0, 17.8, 18.6, 19.4, 19.6 (Fig.11)
N	5.3, 5.5, 8.9, 9.9, 20.4, 21.1 (Fig. 12)
O	4.4, 5.2, 15.7, 16.6 (Fig. 13)

P	4.0, 4.6, 13.4, 13.9, 19.1 (Fig. 14)
Q	5.1, 5.6, 16.2, 19.8 (Fig. 15)
T	7.2, 7.9, 8.3, 10.7 (Fig. 16)
U	4.7, 7.4, 13.8, 17.0 (Fig. 17)
V	4.5, 5.8, 11.4, 16.4 (Fig. 18)
Y	6.1, 14.2, 15.1, 18.7 (Fig. 19)
Z	4.7, 5.3, 13.5, 13.9, 15.1, 15.7, 16.1, 18.7, 19.5, 21.5 (Fig. 20)
α	4.8, 5.1, 19.0, 19.4, 27.7, 28.9, 31.2 (Fig. 21)
β	4.6, 9.4, 13.9, 18.8 (Fig. 22)
γ	4.4, 8.9, 18.4, 18.8, 19.5 (Fig. 23)
δ	5.6, 14.5, 18.2, 18.9, 19.5 (Fig. 24)
ε	4.2, 13.0, 13.6, 14.3, 16.2, 16.7, 19.6 (Fig. 25)
θ	4.8, 7.8, 15.5, 17.7 (Fig. 26 <u>27</u>)
σ	5.5, 6.1, 6.7, 14.3 (Fig. 27 <u>26</u>)
Ω	4.5, 7.8, 15.5, 16.9, 17.8, 19.2, 19.7 (Figure 63)

Please replace page 10, the chart, with the following amended chart:

A (Fig 36)	70	98	138	-
D (Fig 37)	66	130	-	-
E (Fig. 38)	75	86	104	129
F (Fig 39)	53	103	128	-
G (Fig 40)	106	127	-	-
I (Fig 41)	46	121	-	-
J (Fig 42)	49	105	168	-
K (Fig 43)	79	105	145	170
L (Fig 44)	131	138	-	-
M (Fig 45)	90	102	128	-
N (Fig 46)	77	100	130	137
O (Fig 47)	106	126	137	-
P (Fig 48)	106	113 (exotherm)	128	-
Q (Fig 49)	102	126	-	-
T (Fig 50)	68	106	130	-
U (Fig 51)	128	138	-	-
V (Fig 52)	81	139	-	-
Y dichloromethane solvate (Fig 54)	122	130	-	-
Z (Fig. 53 <u>55</u>)	90	95	-	-
α (Fig 56)	129	-	-	-
β (Fig 57)	91	100	-	-
γ (Fig 58 <u>60</u>)	93	136	-	-
δ (Fig 59 <u>58</u>)	100	107 (exotherm)	130	-
ε (Fig 60 <u>59</u>)	64	108	129	-
σ (Fig 61)	-	-	-	127
θ (Fig 62)	70	104	115 (exo)	130

Please replace page 13, paragraph 1 with the following amended paragraph:

The anhydrate forms and the hydrated Form Z, are also characterized by their FTIR spectrum. Form Z is characterized by a FTIR spectrum (Figure 31 32) with peaks at about 699, 1542, 1645, 1697, 2848, 2864, 2929, 3269 and 3504 cm⁻¹. The more characteristic peaks are observed at about 1645, 1697, 3279 and 3504 cm⁻¹. Characteristic FTIR peaks are for the anhydrates, specifically Forms L, U, P, α , δ and σ are disclosed in the following table.

Please replace page 13, below line 7, the chart, with the following amended chart:

nateglinide form	Characteristic FTIR Peaks
Form Alfa:	3283, 1711, 1646, 1420, 1238 cm ⁻¹ (Fig. 32 <u>33</u>)
Form L:	1741, 1726, 1621, 1600, 1538, 1211, 1191 cm ⁻¹ (Fig. 28 <u>29</u>)
Form U:	3350, 1711 <u>1701</u> , 1646, 1291 cm ⁻¹ (Fig. 30 <u>31</u>)
Form δ :	3306, 1729, 1704, 1275 cm ⁻¹ (Fig. 34)
Form σ	3303, 1705, 1640 cm ⁻¹ (Fig. 35)
Form P:	3309, 1748, 1589 cm ⁻¹ (Fig. 29 <u>30</u>)