

Overview of the module

- $\ensuremath{\mathsf{Day}}\ 1$ Networks, the matching problem and the maximum flow problem
- Day 2 Data clustering and representation

Organisation of the module

- Course and exercises in python 3
- ► Small coding exercises, also paper + pen
- Project : explained tomorrow
- Please clone the following repository https://github.com/nlehir/ALGO2

Introductory example 1 : Max Flow

Figure: Problem 1: transporting merchandise through a network

Introductory example 2: Optimal allocation

Figure: Problem 2 : Building the largest possible number of teams of 2 persons.

Introductory example 2

Figure: Problem 2: not optimal allocation

Introductory example 2

Figure: Problem 2: optimal allocation

Introductory example 2: allocation

Figure: Problem 2: not that easy if the dataset is big!

Other examples

Assigning students to internships

Other examples

- Assigning students to internships
- ► Assigning machines to a task (no analogy intended !)

Introduction

We will see that these problems (flow and allocation) are **related**, and under some restrictions, **equivalent**!

Day 1

The matching problem

Definition of the problem Experimental solutions Greedy algorithm

The Maximum flow problem

Presentation of the problem Solution with the Ford-Fulkerson algorithm Connection with the matching problem More results on the two problems

► A graph is defined by ?

▶ A graph is defined by set of vertices *V* and a set of edges *E*.

Figure: Simple graph (graphviz demo)

▶ It can be **undirected**, as this one :

Figure: Simple graph (graphviz demo)

Reminders on graphs Undirected graph

Or directed, as this one. (it is then called a digraph)

Figure: Digraph (graphviz demo)

Useful tool: graphviz

- A tool to visualize graphs
- Several generator programs : dot, neato

(a) Image generated with dot

(b) Image generated with neato

Warm up question

Given an **unoriented** graph with n nodes, how many edges can we build ?

Notation of a graph : G(V, E)

V : set of n vertices

► *E* : set of edges

Warm up question

Given an **unoriented** graph with n nodes, how many edges can we build ?

Notation of a graph : G(V, E)

- V : set of n vertices
- ▶ E: set of edges, maximum size: $\frac{n(n-1)}{2} = \binom{n}{2} = \frac{n!}{2!(n-2)!}$

Back to our problem

Given a graph G = (V, E), we want a **matching** M, which means:

▶ A subset of edges $M \subset E$

Figure: Non optimal allocation

Back to our problem

Given a graph G = (V, E), we want a **matching**, which means:

- ▶ A subset of edges $M \subset E$
- Such that no pairs of edges of M are incident
- Equivalently, each node in the graph has at most one edge connected

Figure: Non optimal allocation

Back to our problem

Given a graph G = (V, E), we want a **matching**, which means:

- A subset of edges M ⊂ E
- Equivalently, each node in the graph has at most one edge connected
- Such that no pairs of edges of M are incident
- Of Maximum size (maximum number of edges)

Figure: snippet

Figure: Is this a matching?

Figure: Is this a matching?

Figure: Is this an optimal matching?

Figure: With neato

Experiments

How would you code a graph?

Experiments

How would you code a graph?

- list of sets of size 2 (for an undirected graph)
- a dictionary of successors

Coding a graph: as a list

$$g1 = [\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{1,4\}]$$

Coding a graph: as a dictionary

$$g1 = \{ 1:\{2,3,4\}, 2:\{1,3\}, 3:\{1,2,4\}, 4:\{1,3\} \}$$

Exercise 1

- cd other_graphs and please use random_graph to build a graph with 20 vertices and 50 edges.
- ► You will need to install graphviz

Exercise 2

- cd other_graphs and please use random_graph to build a graph with 20 vertices and 50 edges.
- You will need to install graphviz
- ▶ Please manually find an optimal matching in your graph

Algorithms

- ▶ We now have an idea of what the problem is.
- ▶ When the size of the problem is large, is it possible to find an optimal matching manually ?

Algorithms

- We now have an idea of what the problem is.
- When the size of the problem is large, is it possible to find an optimal matching manually?
- ▶ When the size of the problem is large, is it possible to find an optimal matching by trying all possible matching ?

- ► What would be the necessary time to enumerate all possible matchings ?
- ► Formally : if the graph has *n* nodes, what is the worst case **complexity** of the exhaustive seach ?

Algorithms

- ▶ To find an optimal solution, we want to have an algorithm.
- ▶ Thus, let us introduce some theoretical notions.

Notion of maximal and maximum matching

We will say that a matching M of cardinality |M| is:

► **Maximum** if is had the maximum possible number of edges (is is thus optimal)

Notion of maximal and maximum matching

We will say that a matching M of cardinality |M| is:

- Maximum if is had the maximum possible number of edges (is is thus optimal)
- ▶ Maximal if the set of edges obtained by adding any edge to it is **not** a **matching**. This means that $M \cup \{e\}$ is not a matching for any $e \notin M$.

Question

Exercise: is being **Maximal** the same thing has beeing **Maximum**?

Maximum implies maximal

Let us show that a maximum matching is maximal.

Counter Example

However, a matching that is maximal is not necessary Maximum.

Counter Example

However, a matching that is maximal is **not necessary Maximum**. Can you find an example ?

(a) A maximal matching not maximum

(b) A maximum matching

Can you propose a greedy algorithm to address the maximum matching problem ?

```
Result: Matching M M \leftarrow \emptyset; for e \in E do | if M \cup \{e\} is a matching then | M \leftarrow M \cup \{e\} end | end | Algorithm 0: Greedy algorithm to find a matching
```

- ► What is the type of matching algorithm returned by this algorithm ?
- ▶ What is the complexity of this algorithm ?

- ► The greedy algorithm returns a **maximal** matching (proof)
- ▶ Its complexity is $\mathcal{O}(n^2)$

► We will implement the greedy algorithm to find a maximal matching.

cd matching_greedy and use generate_graph to build a graph with a least 30 nodes.

- We will use the functions written in matching_functions from the file match_graphs
- edit the lines below "CHANGE HERE" to pergorm the greedy algorithm.

► Can you think of an example where the greedy algorithm gives a matching of the size **half** the size of an optimal matching?

Changing the problem (for now)

We temporarily leave the maximum matching problem to focus on another problem : the **Maximum flow problem**

Max flow

Figure: Optimizing the quantity of something transported from one place to another, under constraints

Example

Figure: Optimizing the quantity of something transported from one place to another, under constraints

What do we need to define the problem ?

▶ A Directed graph G = (E, V)

- ▶ A Directed graph G = (E, V)
- ▶ Each edge (u, v) must have a **capacity** $c(u, v) \ge 0$

- ▶ A Directed graph G = (E, V)
- ▶ Each edge (u, v) must have a **capacity** $c(u, v) \ge 0$
- ▶ We define two special nodes : a **source** s and a **sink** t.

- ▶ A Directed graph G = (E, V)
- ▶ Each edge (u, v) must have a **capacity** $c(u, v) \ge 0$
- We define two special nodes : a source E and a sink S.

Figure: A transport graph with a capacities

- ▶ A Directed graph G = (E, V)
- ▶ Each edge (u, v) must have a **capacity** $c(u, v) \ge 0$
- ▶ We define two special nodes : a **source** E and a **sink** S.
- ▶ A flow f is a function $f(u, v) \le c(u, v)$ (+ additional constraints)

- ▶ Each edge (u, v) must have a **capacity** $c(u, v) \ge 0$
- A flow f is a function $f(u, v) \le c(u, v)$ (+ additional constraints)

Figure: A non optimal flow

- ▶ Each edge (u, v) must have a **capacity** $c(u, v) \ge 0$
- A flow f is a function $f(u, v) \le c(u, v)$ (+ additional constraints)

Figure: An optimal flow

Conservation of the flow

We must have :

- ▶ antisymetry : f(v, u) = -f(u, v)
- ▶ flow conservation : $\sum_{w \in V} f(u, w) = 0$ for $u \notin \{E, S\}$ (somme des flux entrant et sortant est nulle)
- equivalently : $\sum_{v \in V} f(v, u) = \sum_{w \in V} f(u, w)$

Maximum flow

- ▶ The value of the flow, noted |f|, is $\sum_{v \in S} f(E, v)$
- ▶ The problem is that of finding a flow with maximum value

Figure: Max flow

Solution

▶ How would you solve this with an algorithm ?

Ford Fulkerson algorithm

We will introduce an algorithm to solve the problem. This algorithm :

- terminates
- is correct
- is polynomial

Ford Fulkerson algorithm

We will introduce an algorithm to solve the problem. This algorithm :

- terminates
- ▶ is correct
- ▶ is polynomial

So it's great.

Residual graph

▶ Given a graph with capacities c(u, v) and a flow f(u, v), we will define its **residual graph** that has a capacity $c_r(u, v)$:

$$c_r(u,v) = c(u,v) - f(u,v)$$
 (1)

Example of residual graph

Initial Flow network

Example of residual graph

Flow Algorithm step: 1 flow value: 1

Example of residual graph

Residual graph Algorithm step: 2

Residual graph

Figure: A transport graph with a flow

Residual graph

Figure: Residual graph

An augmenting path is a path in the **residual graph** from the source to the sink with capacities > 0.

augmenting path: [0, 1, 11] Algorithm step: 1 path capacity: 1.0

An augmenting path is a path in the **residual graph** from the source to the sink with capacities > 0.

Figure: Residual graph

An augmenting path is a path from the source to the sink with capacities > 0.

The Ford-Fulkerson algorithm uses augmenting paths until there are no more augmenting paths.

Figure: Residual graph

Ford Fulkerson algorithm

Can you deduce the algorithm from the previous remarks?

Ford Fulkerson algorithm

```
Result: Flow f for (u,v) \in E do | f(u,v) = 0 end while \exists \rho augmenting path do | augment g with \rho end return f Algorithm 1: Ford Fulkerson algorithm
```

Ford

Let's do an example

Ford Fulkerson algorithm

▶ We will implement the Ford Fulkerson algorithm (1956)

- ▶ We will implement the Ford Fulkerson algorithm (1956)
- cd ford_fulkerson and edit generate_flow_network to generate a flow network.

Algorithm

- We will now use the functions contained in ford_functions and call them from apply_ford _fulkerson
- We will do it step by step.
- Let's look at the algorithm.

- We will now use the functions contained in ford_functions and call them from apply_ford _fulkerson
- We will do it step by step.
- edit the function show_residual in order to plot the residual graph.

Modify find_augmenting_paths in order to find the augmenting paths.

now edit augment_flow

finally, edit the computation of the value of the flow

Now the algorithm should be able to run

Complexity

What is the complexity of Ford Fulkerson?

Complexity

What is the complexity of Ford Fulkerson?

$$\mathcal{O}(|f^*| \times |E|) \tag{2}$$

Modification of Ford Fulkerson

What would we an intuitive and potentially faster modification of the algorithm ?

Edmonds Karp

What would we an intuitive and potentially faster modification of the algorithm ?

Use the shortest augmenting path with positive capacity.

Termination

► When the capacities are **real numbers** or **rational numbers** Ford Fulkerson terminates.

Termination

- When the capacities are integer numbers or rational numbers Ford Fulkerson terminates.
- ► However, when the capacities are general **real numbers**, the algorithm might not temrinate.

Link with the matching problem

- We now go back to the matching problem, in the case of a bipartite graph.
- We will show that in that case, we can connect the two problems.

Link with the matching problem

- We now go back to the matching problem, in the case of a bipartite graph.
- ▶ We will show that in that case, we can connect the two problems.
- ► how?

Matching problem

We now go back to the matching problem, in the case of a **bipartite graph**.

Figure: Bipartite graph

Equivalence between matching and flow

Figure: Introduce two more nodes. All edges have capacity 1. We consider **flows with integer values**

Ford Fulkerson for matching

Figure: Non optimal solution

Ford Fulkerson for matching

Figure: Optimal solution

- We will transpose Ford Fulkerson to a bipartite graph in order to find an optimal matching.
- cd ford_matching
- edit generate_matching_problem in order to generate an instance of the problem.

- ► Apply the algorithm on an example generated by the previous function.
- ▶ Apply the algorithm to as an instance of your choice.

Famous theorem

The maximum flow theorem is equivalent to another famous problem, the **minimum cut** theorem.

Perfect matching

In the case of a bipartite graph, what is the best matching possible ?

Perfect matching

In the case of a bipartite graph, what is the best matching possible ?

A matching where **all nodes are allocated**. It is called a **perfect** matching.

We obviously must have that the two parts of the graph are of same cardinalty.

Hall's marriage theorem

A theorem gives a condition that is necessary and sufficient for the existence of a perfect matching in a bipartite graph: the "marriage condition".

If G = (U, V, E) is bipartite, the condition means that :

$$\forall X \subset U, |N_G(X)| \ge |X| \tag{3}$$

where $N_G(X)$ is the set of neighbors of X in G.

Conclusion

Ford Fulkerson and its variants (Edmonds-Karp) are polynomial. As a result thay can run on datasets that are way bigger than exhaustive search algotirhms.

See you tomorrow