Aproximação Geométrica

Aula 4

Tópicos:

- Lemas de Empacotamento
- Busca de Região

IMPA – Verão 2009 Guilherme D. da Fonseca

Lemas de Empacotamento

- Lema de empacotamento: define quantos objetos disjuntos podem interceptar uma determinada região.
- No nosso caso, os objetos são sempre caixas quadtree com diâmetro pelo menos δ.
- Veremos 2 lemas de empacotamento.

Lema 1: Se S é um conjunto de caixas quadtree disjuntas, cada uma com diâmetro mínimo δ , que interceptam uma região de diametro Δ , então

$$|S| = O\left(1 + \left(\frac{\Delta}{\delta}\right)^d\right).$$

Prova:

- Basta considerarmos a grade, pois toda caixa quadtree de diâmetro mínimo δ contém alguma célula da grade.
- No máximo $1+\Delta/\delta$ caixas em cada direção.

Lema 2: Se S é um conjunto de caixas quadtree disjuntas, cada uma com diâmetro mínimo δ , que interceptam a borda de uma região convexa de diametro Δ , então

$$|S| = O\left(1 + \left(\frac{\Delta}{\delta}\right)^{d-1}\right).$$

Prova:

- Particionar a borda usando a face do cubo de direções apontada pela normal.
- Cada partição intercepta no máximo 2 células na direção normal a face do cubo correspondente.

Busca de Região

- Deseja-se preprocessar um conjunto de pontos para poder contar quantos pontos estão em uma região de consulta.
- Soluções exatas ineficientes para muitos tipos de região. Por exemplo, simplexos:
- Tamanho: O(n).
- Consulta: $O(n^{1-1/d})$.

Busca de Região Aproximada

- Seja Δ o diâmetro da região de consulta.
- Pontos a uma distância $\varepsilon \Delta$ da borda da região podem ser contados ou não.
- Hipótese do custo unitário:

Dada uma caixa quadtree Q, é possível determinar em tempo O(1) se $R \cap Q = \emptyset$, $Q \subseteq R$ ou nenhum dos dois.

Regiões Arbitrárias

- Consideramos uma região de consulta R qualquer satisfazendo a hipótese do custo unitário.
- A estrutura de dados é uma quadtree compactada com índice, portanto:
- Tamanho: O(n).
- Construção: $O(n \log n)$.
- Cada vértice armazena o número de pontos na célula.

Consulta

- Usando busca de célula, localizamos em tempo $O(\log n)$ as 2^d caixas quadtree de diâmetro aproximadamente Δ que contém R.
- Respondemos a consulta separadamente para cada caixa Q destas caixas e somamos as respostas.

Consulta

- Se $R \cap Q = \emptyset$ ou Q está vazia, então retorne 0.
- Se o diâmetro de Q é menor que $\varepsilon \Delta$, então tanto faz retornar 0 ou o número de pontos em Q.
- Caso contrário, faça chamadas recursivas para as subdivisões de Q.

Consulta

- Se $R \cap Q = \emptyset$ ou Q está vazia, então retorne 0.
- Se o diâmetro de Q é menor que $\varepsilon\Delta$, então retorne o número de pontos em Q.
- Caso contrário, faça chamadas recursivas para as subdivisões de Q.

• Complexidade de tempo desta fase:
$$\sum_{i=0}^{\log(\Delta/\delta)} \left(\frac{\Delta}{2^i \delta}\right)^d = O\left(\left(\frac{1}{\varepsilon}\right)^d\right)$$

• Tempo total da consulta: $O(\log n + 1/\varepsilon^d)$

Regiões Convexas

- Se $R \cap Q = \emptyset$ ou Q está vazia, então retorne 0.
- → Se $Q \subseteq R$, então retorne o número de pontos em Q.
- Se o diâmetro de Q é menor que $\varepsilon \Delta$, então retorne o número de pontos em Q.
- Caso contrário, faça chamadas recursivas para as subdivisões de Q.
- Tempo: $O(\log n + 1/\varepsilon^{d-1})$

Resumo Até Agora

- Vimos estruturas com:
- Tamanho: O(n).
- Construção: $O(n \log n)$.
- Consulta geral: $O(\log n + 1/\varepsilon^d)$.
- Consulta convexa: $O(\log n + 1/\varepsilon^{d-1})$.
- Veremos como acelerar a consulta para esferas usando mais espaço.

Estrutura de Semicaixas

- Uma semicaixa é a insterseção de uma caixa com um semiespaço.
- Podemos aproximar qualquer semicaixa da caixa unitária com erro ε e $O(1/\varepsilon)$ semicaixas.

Semicaixas

• Podemos aproximar uma esfera com $O(1/\varepsilon^{(d-1)/2})$ semicaixas.

Quadtree de Semicaixas

- Seja γ entre 1 e $1/\sqrt{\varepsilon}$ um parâmetro para controlar a relação espaço/tempo.
- Para cada célula com diâmetro δ da quadtree compactada, criamos uma estrutura de semicaixas com erro δ/γ .
- Tamanho: $O(n\gamma^d)$.

Consulta de Esferas

- Se $R \cap Q = \emptyset$ ou Q está vazia, então retorne 0.
- Se $Q \subseteq R$, então retorne o número de pontos em Q.
- Se o diâmetro de Q é menor que $\gamma \varepsilon \Delta$, então aproxime a borda com uma semicaixa.
- Caso contrário, faça chamadas recursivas para as subdivisões de Q.
- Tempo: $O\left(\log n + 1/(\gamma \varepsilon)^{d-1}\right)$

Construção

- Construção ingênua da quadtree de semicaixas leva tempo $O(n^2 \gamma^d)$.
- Porém, podemos começar a construção das folhas e construir cada semicaixa para os nós internos com 2^d consultas nos filhos.
- Construção: $O(n \gamma^d + n \log n)$.

Resumo das Complexidades

- Vimos estruturas com:
- Tamanho: O(n).
- Construção: $O(n \log n)$.
- Consulta geral: $O(\log n + 1/\varepsilon^d)$.
- Consulta convexa: $O(\log n + 1/\varepsilon^{d-1})$.
- Para γ entre 1 e $1/\sqrt{\varepsilon}$:
- Tamanho: $O(n\gamma^d)$.
- Consula esférica: $O(\log n + 1/(\gamma \varepsilon)^{d-1})$.
- Construção: $O(n \gamma^d + n \log n)$.

Referências

- Sunil Arya and David M. Mount. Approximate range searching.
 Comput. Geom. Theory Appl., 17(3-4):135-152, 2000.
- Sunil Arya, Guilherme D. da Fonseca, and David M. Mount. SIBGRAPI 2008.
 - http://www.cos.ufrj.br/~fonseca/tradeoffs-sibgrapi.pdf