MATH 6320 - Modern Algebra Homework 7

Joel Sleeba

November 4, 2024

1. **Solution:** Since p is a prime and P is a subgroup of S_p of order p, we notice that P is a cyclic subgroup with p-1 elements of P having order p. Now let $g \in S_p$ and $h \in P$ with |h| = p. Then we claim that $|ghg^{-1}| = p$.

Since $(ghg^{-1})^p = e$, we see that $|ghg^{-1}||p$. Since p is a prime the only possibilities are $|ghg^{-1}| = 1$ or p. If $|ghg^{-1}| = 1$, this would force gh = g and h = e, contradicting our assumption. Hence we see that $|ghg^{-1}| = p$. Therefore, we see that conjugation with elements of S_p , preserves the order of elements of P.

Moreover, we know that since P is a subgroup, every conjugate gPg^{-1} must also be a subgroup of S_p with p elements. (That gPg^{-1} has p elements may be seen by assuming $ghg^{-1} = gkg^{-1}$ and showing h = k, by left and right multiplication with g^{-1} and g respectively). Since we know that conjugation preserves the order of elements, we know that each conjugate of P has p-1 p-cycles.

Also, each of the distinct conjugate groups gPg^{-1} intersect only at the identity, otherwise if $e \neq x \in gPg^{-1} \cap hPh^{-1}$, since gPg^{-1}, hPh^{-1} are cyclic groups of order p, we'll get $gPg^{-1} = \langle x \rangle = hPh^{-1}$.

If $\tau \in S_p$, we know that

$$\tau(1 \ 2 \ 3 \dots p)\tau^{-1} = (\tau(1) \ \tau(2) \ \dots \tau(p))$$

Hence we see that any p cycle can be written as a conjugate of any other p-cycle if we carefully choose τ . Thus conjugates of P contain all the p-cycles of S_p . We know that the number of p-cycles of in S_p is (p-1)!. Moreover we

know that the number of the conjugates of P is the index of $N_{S_p}(P)$. Hence

$$(p-1)! = (p-1)|S_p : N_{S_p}(P)|$$

$$= (p-1)\frac{|S_p|}{|N_{S_p}|(P)|}$$

$$= (p-1)\frac{p!}{|N_{S_n}(P)|}$$

which on simplification gives $|N_{S_p}(P)| = p(p-1)$

- 2. **Solution:** Since $r \in D_8$, has order 4, if $\phi : D_8 \to D_8$ is any automorphism, then $\phi(r)$ must also have the same order. Hence the possible $\phi(r)$ are $r, r^{-1} \in D_8$. Similarly since |s| = 2, $\phi(s)$ also must have order 2, which gives $\phi(s) \in \{s, r^2, sr, sr^2, sr^3\}$. But since $\phi(r) \in \{r, r^3\}$, if $\phi(s) = r^2$, $\phi(D_8) = \langle r \rangle$, and ϕ will not be an automorphism. Hence $\phi(s) \in \{s, sr, sr^2, sr^3\}$. Since s, r generate D_8 , and each of them have 4 and 2 possible options, by the counting argument, $\operatorname{Aut}(D_8)$ can have at most 8 elements.
- 3. **Solution:** Since $D_8 \leq D_{16}$, we see that $\phi: D_{16} \to \operatorname{Aut}(D_8): g \to \phi_g$, where $\phi_g: h \to ghg^{-1}$ is a well defined map. Since

$$\phi_g \phi_{g'}(h) = \phi_g(g'h(g')^{-1})$$

$$= gg'h(g')^{-1}g^{-1}$$

$$= (gg')h(gg')^{-1}$$

$$= \phi_{gg'}(h)$$

we see that ϕ is a group homomorphism. Moreover, we know that $\operatorname{Ker}(\phi) = C_{D_{16}}(D_8) = \langle r^4 \rangle = \{r^4, e\}$. Hence by the first isomorphism theorem, we see that $\phi(D_{16}) = \frac{D_{16}}{\langle r^4 \rangle} \cong D_8$. Hence D_8 is isomorphic to a subgroup of $\operatorname{Aut}(D_8)$. But from the previous exercise, we see that $\operatorname{Aut}(D_8)$ can have atmost 8 elements. Since D_8 has 8 elements, this forces $D_8 \cong \operatorname{Aut}(D_8)$.

- 4. **Solution:** From what we proved in the class, we know that if $H \leq G$, then $N_G(H)/C_G(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$. Hence in the question, we know that $N_{S_p}(P)/C_{S_p}(P)$ is isomorphic to a subgroup of $\operatorname{Aut}(P)$.
 - Since P is a cyclic group of order $p, P \cong \mathbb{Z}/p\mathbb{Z}$ and hence the number of automorphisms of P are precisely p-1.

Also $C_{S_p}(P) = P$. Since P is cyclic, it is clear that $P \subset C_{S_p}(P)$. Conversely, without loss of generality, assume that $(1\ 2\ 3..p) \in P$. If $\tau \in S_p$, then

$$\tau(1\ 2\ 3\dots p)\tau^{-1} = (\tau(1)\ \tau(2)\ \dots \tau(p)) = (1\ 2\ 3\ \dots p)$$

if and only if $(\tau(1) \ \tau(2) \dots \tau(p))$ is a rotation of the $1, 2, \dots p$, preserving the order. This happens only when $\tau = (1 \ 2 \ 3 \dots p)^k$ for some k. Hence we see that $C_{S_p}(P) = P$.

Moreover, we know that $|N_{S_p}(P)| = p(p-1)$. Therefore, we see that

$$\left| \frac{N_{S_p}(P)}{C_{S_p}(P)} \right| = \frac{|N_{S_p}(P)|}{|C_{S_p}(P)|} = \frac{p(p-1)}{p} = p - 1$$

Therefore we see that $N_{S_p}(P)/C_{S_p}(P) \cong \operatorname{Aut}(P)$.

5. Solution: Let $(1,k) \in C_K(H)$. Then for any $(h,1) \in G$,

$$(h,k) = (h\varphi(1)(1),k) = (h,1)(1,k) = (1,k)(h,1) = (1\varphi(k)(h),k)$$

forces $\varphi(k)(h) = h$. Since this is true for all $h \in H$, we see that $\varphi(k)$ is the trivial automorphism of H. Hence $k \in \text{Ker}(\varphi)$.

Conversely, if $k \in \text{Ker}(\phi)$, then $\phi(k)(h) = h$ for all $h \in H$. Then for any $(h, 1) \in H$ (identified as a subgroup of G)

$$(h,1)(1,k) = (h\varphi(1)(1),k) = (h,k) = (\phi(k)(h),k) = (1,k)(h,1)$$

shows that $(1,k) \in C_K(H)$. Hence $C_K(H) = \operatorname{Ker}(\varphi)$.

- 6. **Solution:** We know that $Hol(H) = H \rtimes_{\varphi} Aut(H)$, where $\varphi : Aut(H) \to Aut(H)$ is the identity map.
 - (a) We notice that $H = Z_2 \times Z_2 \cong V_4$, the Klein 4 group. Therefore, by a slight abuse of notation, let $H = V_4 = \{1, a, b, c\}$. Since we know that any two of a, b, c generate the group V_4 we see that any permutation of a, b, c will be a group automorphism. Hence we see that $\operatorname{Aut}(H) \cong S_3$. Hence we see that $\operatorname{Hol}(Z_2 \times Z_2) \cong H \rtimes K$, where $H = Z_2 \times Z_2$ and $K \cong S_3$. Also, $|H \rtimes K| = |H \times K| = |H| \times |K| = 4 \times 6 = 24$
 - (b) Let $G = H \rtimes K$ act on the left cosets of $K, \ \tilde{K} = \{K, aK, bK, cK\}$ as

$$(h,k)(gK) = hk(g)K$$

Since every element in the coset gK is of the form (g, k) for some $k \in K$, well defineness of the map follows. Moreover,

$$(h_1, k_1)((h_2, k_2)(gK)) = (h_1, k_1)(h_2k_2(g)K)$$

$$= h_1k_1(h_2k_2(g))K$$

$$= h_1k_1(h_2)k_1(k_2(g))K$$

$$= (h_1k_1(h_2), k_1k_2)(gK)$$

$$= ((h_1, k_1)(h_2, k_2))(gK)$$

and

$$(e_H, e_K)(gK) = e_H e_K(g)K = K$$

shows that the above defined map is indeed an action.

Consider $\varphi: H \rtimes K \to S_{\tilde{K}}$, the associated permutation representation of the above action. Once we show that φ is bijective, since $|\tilde{K}| = 4$, this will show that $H \rtimes K \cong S_4$.

Let $(h,k) \in \text{Ker}(\varphi)$. Then (h,k)gK = hk(g)K = gK for all $g \in H$. This implies hk(g) = g for all $g \in H$ (This is because hk = (h,1)(1,k) = (h,k) as H,K are identified as subgroup of G). Now let $g = e_H$. Since $k \in K$ is an automorphism, this forces $k(e_H) = e_H$. Then we see that $h = e_H$. Substituting for h in (h,k), we see that k(g) = g for all $g \in H$, which forces $k \in \text{Aut}(H)$ to be the trivial automorphism. Hence we see that $\text{Ker}(\varphi) = \{(e_H, e_K)\}$ and φ is injective, hence an isomorphism. Thus $H \rtimes K \cong S_4$.

7. **Solution:** We know that since $75 = 3 \times 5^2$, the fundamental theorem for Abelian groups immediately gives two groups $Z_3 \times Z_{5^2} \cong Z_{75}$ and $Z_3 \times Z_5 \times Z_5$.

Now, to find a non-Ableian group of order 75, consider the map $\varphi: Z_5 \to \operatorname{Aut}(Z_{15})$ defined as

$$\varphi(r) = (1\ 2\ 3\ 4\ 5)^r$$

Clearly φ is an injective homomorphism. Then define $G = Z_{15} \rtimes_{\varphi} Z_5$. We note that G is not Abelian since

$$(1,1)(1,2) = (\varphi(1)(1),2) = (2,2) \neq (3,2) = (\varphi(2)(1),2) = (1,2)(1,1)$$

Since $75 = 15 \times 5$, we see that |G| = 75.

8. Solution: Let A be the given matrix. Then

$$A^{5} = \begin{pmatrix} 0 & -1 \\ 1 & 4 \end{pmatrix}^{5} = \begin{pmatrix} -1 & -4 \\ 4 & 15 \end{pmatrix}^{2} \begin{pmatrix} 0 & -1 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

shows that |A| = 5. Now define a map $\varphi: Z_5 \to \operatorname{Aut}(Z_{19} \times Z_{19})$ as

$$\varphi(r)(x,y) = A^r \begin{bmatrix} x \\ y \end{bmatrix}$$

Since $A \in GL_2(\mathbb{F}_2)$, $A^r \in GL_2(\mathbb{F}_2)$ for each $r \in Z_5$ and hence is a bijection. Moreover matrix multiplication preserves additivity, we see that it is an isomorphism of $Z_{19} \times Z_{19}$. Hence $\varphi(r) \in \text{Aut}(Z_{19} \times Z_{19})$.

Now consider the group $G = (Z_{19} \times Z_{19}) \rtimes_{\varphi} Z_5$. Then

$$((1,1),1) \times ((1,2),2) = ((1,1)A(1,2),2) = ((1,1)(-2,9),2) = ((-1,10),2)$$

but

$$((1,2),2) \times ((1,1),1) = ((1,2)A^2(1,1),2) = ((1,2)(-5,19),2) = ((-4,2),2)$$

shows that G is not Abelian. And it is evident that $|G| = 19 \times 19 \times 5 = 1805$. Moreover, the fundamental theorem of Abelian groups gives us two other groups, $Z_{1805} \cong Z_5 \times Z_{361}$ and $Z_5 \times Z_{19} \times Z_{19} \cong Z_{95} \times Z_{19}$ of order 1805.

9. **Solution:** If $\phi: Z_2 \to \operatorname{Aut}(Z_{2^n})$ is a homomorphism, then it is completely determined by $\phi(1)$, since 1 generate Z_2 . Moreover, since 1 has order 2 in Z_2 , $\phi(1)$ has to divide 2. Then the only possibilities for $\phi(1)$ are either the trivial automorphism or $\phi(1)$ must have order 2.

We also see that the automorphisms of Z_{2^n} are also completely characterized by the image of 1 for the same reason. Hence if $\sigma \in \text{Aut}(Z_{2^n})$ is an automorphism with $\sigma(1) = k$, we see that

$$\sigma^{2}(r) = \sigma(\sigma(r))$$

$$= \sigma(r\sigma(1))$$

$$= \sigma(rk)$$

$$= rk\sigma(1)$$

$$= rk^{2}$$

If $\sigma^2 = e$, then $\sigma^2(r) = r$ for all $r \in \mathbb{Z}_{2^n}$. This forces $k^2 \equiv 1 \mod 2^n$. We can show that the only choices for such $k \in \mathbb{Z}_{2^n}$ are $\{1, 2^{n-1} - 1, 2^{n-1} + 1, 2^n - 1\}$.

That $1, 2^n - 1$ satisfies the above equation is evident. To see if there are any other, Let $k = 2^{n-1} + r$, then

$$(2^{n-1} + r)^2 = 2^{2(n-1)} + r2^n + r^2$$
$$\equiv 2^n 2^n - 2 + r^2$$
$$= r^2$$

Thus we see that $r = \pm 1$ gives another solution for k.

Hence there are exactly 4 homomorphisms from $Z_2 \to \operatorname{Aut}(Z_{2^n})$. We'll denote each of these 4 homomorphisms by $\phi_1, \phi_2, \phi_3, \phi_4$, and the their corresponding images $\phi_i(1) \in \operatorname{Aut}(Z_{2^n})$ by $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ where each σ_i send 1 to $1, 2^{n-1} - 1, 2^{n-1} + 1, 2^n - 1$ respectively.

Clearly, we see that each $Z_{2^n} \rtimes_{\phi_i} Z_2$ contains 2^{n+1} elements. Since ϕ_1 is the trivial morphism, we see that $Z_{2^n} \rtimes_{\phi_1} Z_2 \cong Z_{2^n} \times Z_2$ by the representation theorem and hence Abelian. By the same reasoning none of the other direct products are Abelian.