CAC:

Design Level

Implementation Level.

Deployment Level.

Main Challenges:

Difficult to understand gnarantees and fine-print careats.

Los Broad field, complex and rapidly evolving.

Design Level.	
Formal methods	Computational. Cryptography communication
Why? Because math is the proof of security.	he only
Current: Pen and Paper math [] L. Methods to minimize errors.	Error prone
Code based game playing L Duiversal composability St	ill extor prone.
Math proofs are hard, hence machines that can help.	

Symbolic Model.

- Primitives are black boxes.

-) Texms are atomic

=) Adv needs to know full k to
decrypt.

Symbolic security Trace properties.

Equivalence properties

What is the difference?

Computational Model.

Keys and messages are bitstrings as opposed to blackboxes in symbolic model.

Computational security Simulation based.

Computational security Sasymptotic.

Grame based. -> Grames between challengers and adversaries.

Methodology - Grame hopping [Shoup]

Simulation based _ "Real" and "Ideal"

More complicated but support composition theorems.

Concrete security —) Involves quantifying the security by bounding the success prob. (t, ϵ) - secure scheme.

Asymptotic security ->

Views run-time of adversary and success prob as fuctions of some parameter Secure scheme is one which is broken by polynomial time adv with negligible prob.

CAC has focused on game-based, concrete.
security notions.