SIMULAZIONE - appello 15 dicembre 2021 (teorie)

nome: cognome:

- Scrivere in modo CHIARO. Elaborati illegibili non saranno considerati.
- NON si contano le BRUTTE copie.
- Si ricorda di ESPLICITARE l'uso della regola dello scambio sia a destra che a sinistra del sequente.
- Si ricorda di ETICHETTARE LE DERIVAZIONI CON LE REGOLE USATE (se non lo fate perdete punti!)
- Si esplicitino le eventuali regole derivate usate che non sono menzionate nel foglio allegato al compito.
- ATTENZIONE: se si risolvono correttamente TUTTI gli esercizi con il segno ++ si prende il voto 30 independentemente dall'avere o meno un bonus accumulato.
- non si supera l'appello operando solo formalizzazioni a meno che non sia siano completati correttamete il primo e terzo esercizio qui di seguito.
- (31 punti) Sia T_{dan} la teoria ottenuta estendendo LC= con la formalizzazione dei seguenti assiomi:
 - Eleonora danza solo se Alice non danza.
 - Se Eleonora danza oppure il primo ballerino danza allora Alice danza.
 - Se Alice non danza, allora pure il primo ballerino non danza ma Gertrude danza.
 - Se Gertrude danza allora ciascuno o danza o non danza.
 - Eleonora oppure il primo ballerino danzano, se Alice danza.
 - Se il primo ballerino non danza allora pure Gertrude non danza.

Si consiglia di usare:

D(x) = x danza,

e=Eleonora p=il primo ballerino a=Alice g=Gertrude

Formalizzare le seguenti affermazioni e dedurne la validità in T_{dan} :

- (6 punti) Alice danza.
- (4 punti) Eleonora non danza.
- (5 punti) Il primo ballerino danza.
- (4 punti) Se Gertrude danza anche Alice danza.
- (5 punti) Qualcuno danza ma non tutti.

- (++ 60 punti) Sia T_{ch} la teoria ottenuta estendendo LC₌ con la formalizzazione dei seguenti assiomi:
 - (3 punti) Se uno chiama un secondo e questo secondo chiama un terzo allora il primo non chiama il terzo.

m= Mila

- (2 punti) Piero non chiama nessuno.
- (2 punti) Se uno chiama un secondo, questo secondo chiama il primo.
- (3 punti) Veronica chiama Mila e soltanto lei.
- (2 punti) Non si dà il caso che esista qualcuno che Luca non chiami.

si consiglia di usare:

C(x,y)=x chiama y

l=Luca p= Piero, v= Veronica,

Dopo aver formalizzato le frase seguenti mostrarne una derivazione nella teoria in T_{ch} :

- (6 punti) Piero non chiama Luca.
- (6 punti) Luca chiama Piero.
- (12 punti) Mila chiama Veronica.
- (12 punti) Nessuno chiama se stesso.
- (12 punti) Mila è diversa da Veronica.
- (++) : Dall'affermazione

Ip D'inverno non tutti non vanno a sciare.

si dica quali delle seguenti affermazioni si possono dedurre (la classificazione di ciascuna vale 8 punti se è deducibile e 14 punti se NON lo è):

- A Se è inverno qualcuno va a sciare e qualcuno non ci va.
- B Se è inverno qualcuno va a sciare oppure qualcuno non ci va.
- C Se tutti vanno a sciare non è inverno.

Si giustifichi la risposta corretta producendo una sua derivazione nella teoria predicativa

$$\mathbf{T_{Ip}} = \mathbf{LC_{=}} + \mathbf{Ip}$$

dopo aver formalizzato ciascuna affermazione utilizzando:

S(x) = x va a sciare

I=è inverno

Inoltre si giustifichi le risposte "affermazione X" non corrette classificando in $\mathbf{LC}_=$ il sequente $\mathbf{Ip} \vdash$ "affermazione X" .

Logica classica con uguaglianza- LC₌

TAUTOLOGIE CLASSICHE

associatività \vee	$(A \lor B) \lor C$	\leftrightarrow	$A \lor (B \lor C)$
associatività &	(A&B)&C	\leftrightarrow	A&(B&C)
commutatività \vee	$A \vee B$	\leftrightarrow	$B \vee A$
commutatività &	A&B	\leftrightarrow	B&A
distributività \vee su &	$A \lor (B\&C)$	\leftrightarrow	$(A \lor B)\&(A \lor C)$
distributività & su \vee	$A\&(B\lor C)$	\leftrightarrow	$(A\&B)\lor(A\&C)$
idempotenza \vee	$A \lor A$	\leftrightarrow	A
idempotenza &	A&A	\leftrightarrow	A
leggi di De Morgan	$\neg (B \lor C)$	\leftrightarrow	$\neg B \& \neg C$
	$\neg (B\&C)$	\leftrightarrow	$\neg B \vee \neg C$
legge della doppia negazione	$\neg \neg A$	\leftrightarrow	A
implicazione classica	$(A \rightarrow C)$	\leftrightarrow	$\neg A \lor C$
disgiunzione come antecendente	$(A \lor B \to C)$	\leftrightarrow	$(A \rightarrow C) \& (B \rightarrow C)$
congiunzione come antecendente	$(A\&B \rightarrow C)$	\leftrightarrow	$(A \rightarrow (B \rightarrow C))$
legge della contrapposizione	$(A \rightarrow C)$	\leftrightarrow	$(\neg C \rightarrow \neg A)$
legge del modus ponens	$A \& (A \rightarrow C)$	\rightarrow	C
legge della NON contraddizione	$\neg (A\& \neg A)$		
legge del terzo escluso	$A \vee \neg A$		
leggi di De Morgan	$\neg (\exists x \ A(x))$	\leftrightarrow	$\forall x \ \neg A(x)$
	$\neg (\forall x \ A(x))$	\leftrightarrow	$\exists x \ \neg A(x)$

Regola di composizione

$$\frac{\vdash \mathtt{fr} \qquad \qquad \Gamma, \mathtt{fr}, \Gamma' \vdash \nabla}{\Gamma, \Gamma' \vdash \nabla} \ \mathrm{comp}$$

Regole per velocizzare derivazioni in $LC_{=}$

si ricorda che $t \neq s \, \equiv \, \neg t = s$

$$\begin{array}{cccc}
 & \neg \cdot \operatorname{ax}_{sx1} & \neg \cdot \operatorname{ax}_{sx2} \\
 & \Gamma, A, \Gamma', \neg A, \Gamma'' \vdash C & \Gamma, \neg A, \Gamma', A, \Gamma'' \vdash C \\
 & \neg \cdot \operatorname{ax}_{dx1} & \neg \cdot \operatorname{ax}_{dx2} \\
 & \Gamma \vdash \Sigma, A, \Sigma', \neg A, \Sigma'' & \Gamma \vdash \Sigma, \neg A, \Sigma', A, \Sigma'' \\
 & \frac{\Gamma, A \vdash \Delta}{\Gamma, \neg \neg A \vdash \Delta} \neg \neg - \operatorname{S} & \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash \neg \neg A, \Delta} \neg \neg - \operatorname{D} \\
 & \frac{\Gamma, \Gamma'' \vdash \Sigma}{\Gamma, \Gamma', \Gamma'' \vdash \Sigma} & \operatorname{in}_{\operatorname{sx}} & \frac{\Gamma \vdash \Sigma, \Sigma''}{\Gamma \vdash \Sigma, \Sigma', \Sigma''} & \operatorname{in}_{\operatorname{dx}} \\
 & \frac{\Gamma, A(t) \vdash \Delta}{\Gamma, \forall x \ A(x) \vdash \Delta} & \forall - \operatorname{S}_{v} & \frac{\Gamma \vdash A(t), \Delta}{\Gamma \vdash \exists x \ A(x), \Delta} & \exists - \operatorname{D}_{v}
\end{array}$$