Applied Biostatistics

https://moodle.epfl.ch/course/view.php?id=15590

- Course organization
- Quiz
- Reproducible Research
- Hypothesis testing review of basic notions

Organisation

- Instructor : Darlene Goldstein (me)
- Assistants : Francesco Spadaro (+ a few others, I hope)
- Course meeting time: Monday 8.15 10.00, CM 1 120 (here)
- Lab/Exercice session : Go to one meeting per week :
 - Monday 10.15 12.00, CM 0 11, OR
 - Tuesday 10.15 12.00 in CH B3 30
- Course note :
 - 2 short reports \sim 5 pages (1/6 each) : 1 data analysis, 1 article review
 - 1 longer report~ 15 pages (2/3) : data analysis report
- Software: R Statistical Software. http://cran.r-project.org/

Reproducible research principle

- Claerbout: 'An article about computational science in a scientific publication is **not** the scholarship itself, it is merely advertising of the scholarship. The actual scholarship is the complete software development environment and the complete set of instructions which generated the figures.'
- Wavelet community, Stanford University
 - Buckheit and Donoho: 'When we publish articles containing figures which were generated by computer, we also publish the complete software environment which generates the figures.'
- Anecdotes
 - 'Final' versions of figs for publication
 - Lost or stolen work
 - Communication
 - Applying old/existing methods on new data
 - Reconstructing work of others

Steps leading to a report

- Data entry and storage
- Data **cleaning** check, resolve, correct data entry errors
- Prepare data for analysis transform/recode variables, create new variables, etc.
- Carry out statistical analyses
- Save desired results/graphs
- Write the results report, which may include documentation text, tables and/or graphs

Report preparation

- A common approach is to write the report around the results
- Results commonly obtained via 'point and click' approach (e.g. MS Excel, SPSS,)
- Then copy/paste or worse type by hand the results into the word processor used to create the report
- NOT A GOOD METHOD DON'T DO THIS!!!!:
 - no documentation on how the results were obtained, how missing data are handled, etc.
 - unreliable results

Problems with this approach: examples

- You need to run an additional analysis; when you re-run the primary analysis, the results don't match what you have in your manuscript
- You go to the project folder to run additional analyses and find multiple data files, multiple analysis files, multiple results files and can't remember which ones are relevant
- You have spent a week running your analysis and creating a results report (including tables and graphs) to present to your collaborators; you then receive an email from your PI asking you to regenerate the report based on a subset of the original data set and including an additional set of analyses AND she would like it by tomorrow's meeting!!

Problems with this approach: specifics

- With point and click programs, *no way to record/save* the steps that generated the documented results
- Common to keep analysis code, results, reports as separate files and save various versions of each of these separately; after several modifications, unclear which version corresponds to the desired analysis/results
- Every time analyses and/or results change, have to regenerate the results report by hand *wastes time*!!
- Easy to introduce *human error* into report typing in results by hand, copying/pasting the wrong tables/graphs, *etc.*

Research practice

- Discipline in software building
- From the start, expect it to be made available to others as part of the publication of their work
- Avoid copy/paste/editing in a way that is not reproducible
- (Also think in terms of program re-use)

Literate Programming

- Donald Knuth
- Combining the use of a text formatting language (such as TeX) and a conventional programming language (like C or R) so as to maintain documentation and source code together, the art of writing computer programs for the human reader
- may use inverse comment convention
- A kind of literate programming where the program code is marked to distinguish it from the text, rather than the other way around as in normal programs
- Literate programming paradigm :
 - 1 parse the source document and separate code from narrative
 - 2 execute source code and return results
 - 3 mix results from the source code with the original narrative

WEB (not www)

- WEB (Donald Knuth), noweb (Norman Ramsey)
- a WEB system consists of two processors, called WEAVE and TANGLE
 - WEAVE "weaves" the document for a human reader, producing TeX output
 - TANGLE "tangles" the document for a computer, producing a plain programming language file to be compiled, linked and executed
- WEB (and variants) are not the only environments for Literate Programming
- We will focus on using knitr with R

Good/bad practices (1)

- Manage all source files under the same directory and use relative path names whenever possible – absolute paths can break code/reproducibility
- Do not change the working directory after computing started; if necessary, set at beginning of R session, and if absolutely unavoidable then restore the directory later
- Compile documents in a 'clean' R session : existing objects in a current session may contaminate the code
- (OK to do interactive data analysis while checking results for code chunks, but at end, compile report in batch mode with a new R session so that all results are freshly generated from code)

Good/bad practices (2)

- Avoid commands that need human interaction, since human input can be unpredictable (and therefore not reproducible); instead, explicitly code for the required input
- Avoid environment variables for data analysis; if you need to set up options, do it *inside* the source document
- Attach sessionInfo() and instructions on how to compile the document

Barriers to reproducible research

- Huge data
- Data confidentiality issues
- Software version and configuration changing versions/availability
- Competition

Tools in R

- CRAN Task Views :
 https://cran.r-project.org/web/views/
- Reproducible research in R :
 https://cran.r-project.org/web/views/
 ReproducibleResearch.html
- Compendium concept
 - dynamic document
 - data
 - auxiliary software

Editor

- Could use ANY text editor with the knitr package, since the documents are plain text files
- Special text editors are more useful:
 - input R code chunks more easily
 - more convenient to call R and knitr to compile source documents to pdf/html within an editor, as well as sending R code chunks to R from within the editor directly
- Several editors available, e.g. :
 - RStudio has the most comrehensive support for knitr (and Sweave)
 - LyX front end for LaTeX with a GUI to help with document writing
 - Emacs/ESS (Emacs Speaks Statistics) supports statistical software packages, including R

PAUSE

Statistical hypothesis testing - review

Definition: A (statistical) **hypothesis** is a *statement about a* population **parameter**

- 2 competing hypotheses
 - *H* : (or *H*₀ the *NULL hypothesis*, usually more conservative
 - A (or H_A): the *ALTERNATIVE hypothesis*, the one we are actually interested in
- Examples of NULL hypothesis :
 - The coin is fair
 - This new drug is no better (or worse) than a placebo
 - There is no difference in weight between two given strains of mice
- Examples of Alternative hypothesis :
 - The coin is biased (either towards tail or head)
 - The coin is biased towards tail
 - The coin has probability 0.6 of landing on tail
 - The drug is better than a placebo

Test statistic

- In order to decide between the hypotheses, we need to measure how far the observed value is from what we expect to see if the NULL H is true – that is, we need a **test statistic** (TS) T.
- The statistic *T* is chosen so that 'unusual' values (too big and/or too small) suggest that the NULL *H* is false
- T is computed based on the sample; we denote the observed value as t_{obs}

Example

On 25 farms in a particular county, the effect of spraying against a bug was evaluated by measuring crop yields (bushels per acre) on sprayed and unsprayed strips in a field on each farm.

Data:

sample mean difference = 4.7 bushels per acre sample SD of differences = 6.5 bushels per acre

Assume that a gain of 2 bushels per acre would pay for the cost of spraying. Does the sample furnish strong evidence that spraying is profitable ??

Steps in hypothesis testing (I)

- Identify the population parameter being tested
 - \blacksquare Here, the parameter being tested is the population mean difference in yield μ
- 2 Formulate the NULL and ALT hypotheses
 - $H: \mu = 2 \text{ (or } \mu \leq 2)$ $A: \mu > 2$
- Compute the TS
 - $t_{obs} = (4.7 2)/(6.5/\sqrt{25}) = 2.08$

Hypothesis truth vs. decision

Decision Truth	not rejected	rejected
true H	\odot	X
	specificity	Type I error (False +) α
false H	X	<u></u>
	Type II error (False -) β	Power 1 - β; sensitivity

Some terminology

- The chance of rejecting a NULL which is *true* is α ; this type of mistake is called a *Type I error* or *false positive*
- The chance of *NOT* rejecting a NULL which is *false* is β ; this type of mistake is called a *Type II error* or a *false negative*
- In other contexts, these quantities are sometimes referred to with other terminology :
 - The *specificity* of a test is the chance that the test result is negative given that the subject is negative; this is just $1-\alpha$
 - The *sensitivity* of a test is the chance that the test result is positive given that the subject is positive; this is just 1β , also called *power*

p-value

- We decide on whether or not to reject the NULL hypothesis H based on the chance of obtaining a value of T as or more extreme (as far away from what we expected or even farther, in the direction of the ALT) than the one we got, ASSUMING THE NULL IS TRUE
- This chance is called the observed significance level, or p-value p_{obs}
- The smaller the value of p_{obs} , the more doubt that H is true
- A TS with a p-value less than some pre-specified false positive level (or size) α is said to be 'statistically significant' at that level
- **Note** : statistical significance ≠ practical significance ≠ scientific significance

p-value interpretation

- In particular, the p-value does NOT tell us the probability that the NULL hypothesis is true
- The *p*-value represents the chance that we would see a difference as big as we saw (or bigger) **IF** there were really nothing happening other than chance variability

Steps in hypothesis testing (II)

- 4 Compute the *p*-value Here, $p_{obs} = P(Z > 2.08) = 0.02$
- **5** (Optional) *Decision Rule*: REJECT H if $p_{obs} \le \alpha$ (This is a type of argument by contradiction)

A typical value of α is 0.05, due mainly to historical reasons. In practice, you should choose a value of α appropriate to the situation.

Here, if we use $\alpha=0.05$, the decision here will be REJECT H; if we instead use $\alpha=0.01$, the decision is DO NOT REJECT H

Example - Spinning a 5 Fr coin

Does P(Heads) = 0.5 when we *spin* the coin? 200 trials : $x_{obs} = 115$ when spinning; $x_{obs} = 105$ when tossing.

Is the coin/process fair ??

Null distribution for the coin

Interpretation of p_{obs}

- The smaller the p-value (p_{obs}), the more we doubt the NULL hypothesis H
- There are 2 possibilities :
 - H is TRUE, and a rare event has occurred
 - H is FALSE
- The decision about whether or not to REJECT H depends on our judgement of the importance of the two types of possible errors:
 - **Type I error** : *H* is TRUE, but we REJECT it
 - Type II error : *H* is FALSE, but we DO NOT REJECT it
- The choice depends on the consequences of the two types of errors, and therefore on *the context of the problem*

Unilateral vs. bilateral tests

- The choice of hypotheses influences the conclusion
- If the ALTis "la coin is biased", we haven't specified the direction of the bias
- Here we would carry out a bilateral test
- If α is, e.g. 0.05, then we have $\alpha/2$ (0.025) for bias towards HEADS and $\alpha/2$ (0.025) for bias towards TAILS
- If the 'ALT is "the coin is biased towards HEADS", we have specified the direction and the test is unilateral

Test unilatéral vs. bilatéral

Power of a test

- Not only do you want to have a low FALSE positive rate, but you would also like to have a high TRUE positive rate – that is, high power, the chance to find an effect (or difference) if it is really there
- Statistical tests will not be able to detect a true difference if the sample size is too small compared to the effect size of interest
- To compute or estimate power of a study, you need to be able to specify the α level of the test, the sample size n, the effect size d, and the SD σ (or at least an estimate s)

Power

Rejection region in direction of ALT

Large-sample tests : CLT

■ Central Limit Theorem (CLT) : Suppose X_1, X_2, \ldots are independent and identically distributed (iid) such tat $E[X_i] = \mu < infty$ and $Var(X_i) = \sigma^2 < \infty$ exist. Then the distribution of

$$\frac{X_1+\cdots+X_n-n\mu}{\sigma\sqrt{n}}$$

approaches a normal distribution as $n \to \infty$.

- This means that for *n* 'sufficiently large', *the distribution of the sum (or the mean)* is approximately normal
- A test based on the CLT is called a z-test
- Power calculations for the z-test are straightforward (distribution of T under the ALT hypothesis is normal)

Test for a single mean or proportion

lacktriangle Testing a population mean μ :

$$H: \mu = \mu_H$$

$$A_1: \mu \neq \mu_H \quad \text{or} \quad A_2: \mu > \mu_H \quad \text{or} \quad A_3: \mu < \mu_H,$$
 with $T = \frac{\hat{\mu} - \mu_H}{\sigma/\sqrt{n}}$.

■ Testing a population proportion *p* :

$$H: p = p_H$$

$$A_1: p \neq p_H \quad \text{ou} \quad A_2: p > p_H \quad \text{ou} \quad A_3: p < p_H,$$
with $T = \frac{\hat{p} - p_H}{\sqrt{\frac{p_H(1 - p_H)}{2}}}$.

Two-sample tests

- Above, we have been interested in a single population; Often, however, we are interested in comparing two (independent) populations
- In this case, we carry out a *two-sample test*
- When comparing two *means* (or *proportions*) the basic idea is the same as above : for *T* we use the *standardized difference* of the sample difference in means (or proportions)
- \blacksquare T for difference of independent means : $\frac{\overline{X}_1 \overline{X}_2}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$

(use s instead of σ if σ is unknown)

■ T for difference of independent proportions :

$$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{p^*(1-p)^*\left(\frac{1}{n_1+\frac{1}{n_2}}\right)}}$$
, where $p^* - \frac{X_1 + X_2}{n_1 + n_2}$

What about small samples?

- The z-test that we have covered assumes the sampling distribution of the test statistic T is normal, either exactly or by the CLT
- However, if the population SD is not known and the sample size is small (less than about 30, say) then the true sampling distribution of T has heavier tails than the normal distribution in this case, we use the t-test
- The test statistic for the t-test is also the standardized sample mean (using the estimated SD in the denominator), and in the one-sample case follows a t-distribution with n-1 degrees of freedom

Student (= William Sealy Gosset)

W. S. Gosset

t-test for a single mean

- For small samples of normally distributed observations with σ unknown, the CLT is not applicable there is additional uncertainty introduced into the null distribution due to variability of the estimator $S = \frac{\sum_{i=1}^{n} (X_i \overline{X})^2}{n-1}$
- In the case where :
 - (1) the observations are normally distributed
 - (2) σ is unknown, and
 - (3) n is small,

the standardized mean $T = \frac{\overline{X}}{s/\sqrt{n}} \sim t_{n-1}$

lacktriangle Testing a population mean μ :

$$\begin{split} H: \mu &= \mu_H \\ A_1: \mu \neq \mu_H \quad \text{or} \quad A_2: \mu > \mu_H \quad \text{or} \quad A_3: \mu < \mu_H, \\ \text{with} \quad T &= \frac{\hat{\mu} - \mu_H}{s/\sqrt{n}} \ . \end{split}$$

Distribution t de Student

Two-sample *t*-test

T for difference of independent means, when the observations are normally distributed, σ is the *same* for both populations (but unknown), and sample sizes are small:

$$T = \frac{\overline{X}_1 - \overline{X}_2}{s\sqrt{1/n_1 + 1/n_2}}, \text{ where } s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}.$$

Under the null, $T \sim t_{n_1+n_2-2}$.

■ When the population variances are different (Welch test), then

$$T = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}},$$

in which case the null distribution is t_{ν} , where

$$\nu = \left(\frac{c}{n_1 - 1} + \frac{(1 - c)^2}{n_2 - 1}\right)^{-1}, \text{ with } c = \frac{s_1^2/n_1}{s_1^2/n_1 + s_2^2/n_2}.$$

Paired observations

- When there are 2 measures for each subject, then the observations are not independent, but are instead paired
- Here, we consider the differences between observations for each individual
- The most typical NULL in this case is that the mean difference is $0: H: \mu = 0$.
- In this case, $T = \frac{\overline{d}}{s/\sqrt{n}} \sim t_{n-1}$, where \overline{d} is the mean difference between the paired measurements and s is its standard deviation (the standard deviation of the differences of paired measures)

Power of the *t*-test

- Power of the *t*-test is based on the *non-central t distribution*
- Difficult to calculate 'by hand'
- Use software (R) to do power calculations

By Skbkekas - Own work, CC BY 3.0,

https://commons.wikimedia.org/w/index.php?curid=9745650

Review – Steps in hypothesis testing

- 1 Identify the population parameter being tested
- 2 Formulate the NULL and ALT hypotheses
- Compute t_{obs}
- Compute the p-value (the chance of obtaining a value of T as or more extreme (as far away from what we expected or even farther, in the direction of the ALT) than the one we got, ASSUMING THE NULL IS TRUE)
- [5] (Optional) Decision Rule: REJECT H_0 if $p_{obs} \le \alpha$ (This is a type of argument by contradiction)

Pitfalls in hypothesis testing

There are a few things we need to watch out for in hypothesis testing

- Difficulties of interpreting tests on nonrandom samples and observational data
 - in practice, most samples nonrandom
 - p-values computed on such samples are generally not very meaningful; should be viewed only as rough indicators of significance
- Statistical vs. practical significance
 - Was the difference important a small p-value can come from a very small deviation from the null if the sample size is very large
- Perils of searching for significance
- Ignoring lack of significance

Hypothesis testing summary

- We use statistical tests to assess whether data y_1, \ldots, y_n support a hypothesis
- There are 3 key components to a test :
 - a NULL hypothesis H, that constrains the model for how the data arise; we usually also have an ALTERNATIVE hypothesis A
 - a **test statistic** T, with observed value t_{obs} ; 'unusual' values of T suggest that y_1, \ldots, y_n are not compatible with H
 - an **observed significance level** (*p*-value) *p*_{obs}, such that small values suggest (but cannot *prove*) that *H* is false