Lectures 10-11 Partial Derivatives-limits and Continuity, Total differentiation and Derivatives

Dr. Mahesha Narayana

Intended Learning Outcomes

At the end of this lecture, student will be able to:

- Illustrate the principals of limit and continuity of functions of two variables
- Illustrate the principal of partial derivatives of functions of two variables
- Apply the concepts of total derivatives in errors and approximations

Topics

- Partial derivatives of a function
- Limit and continuity of a function
- Clairaut's theorem
- Total differentiation

Limit of a Function

• Let z=f(x,y) be a function of two variables defined in a domain D . Let $P(x_0,y_0)$ be a point in D. If for a given real number $\epsilon>0$, however small, we can find real number $\delta>0$ such that for every point (x,y).

In the δ -neighborhood of $p(x_0, y_0)$

$$|f(x,y)-L|<\epsilon$$
 whenever $0<\sqrt{(x-x_0)+(y-y_0)^2}<\delta$

• The function f(x,y) may or may not be defined at (x_0,y_0) . If f(x,y)

is not defied at $p(x_0, y_0)$ then we write

 $|f(x,y)-L|<\epsilon$ whenever $0<\sqrt{(x-x_0)+(y-y_0)^2}<\delta$ This definition is called $\delta-\epsilon$ approach to study the existence of limits

Limit of a function

- Notice that:
- |f(x, y) L| is the distance between the numbers f(x, y) and L
- $\sqrt{(x-a)^2 + (y-b)^2}$ is the distance between the point (x, y) and the point (a, b).
- It does not refer to the direction of approach.
- the distance between f(x, y) and L can be made arbitrarily small by making the distance from (x, y) to (a, b) sufficiently small (but not 0).

Limit of a function

- If any small interval $(L \varepsilon, L + \varepsilon)$ is given around L, then we can find a disk D_{δ} with center (a, b) and radius $\delta > 0$ such that:
- f maps all the points in D_{δ} [except possibly (a, b)] into the interval $(L \varepsilon, L + \varepsilon)$.

Example 1

Using $\delta - \epsilon$ approach , show that $\lim_{(x,y) \to (2,1)} (3x + 4y) = 10$.

Solution: Given that f(x,y) = 3x + 4y is defined at (2,1), we have

$$|f(x,y) - 10| = |3x + 4y - 10|$$

= $|3(x-2) + 4(y-1) - 10| \le 3|x-2| + 4|y-1|$

If we take $|x-2|<\delta$ and $|y-1|<\delta$, we get $|f(x,y)-10|<7~\delta<\epsilon$, which is satisfied when $\delta<\frac{\epsilon}{7}$

Example 2

Using $\delta - \epsilon$ approach , show that $\lim_{(x,y)\to(1,1)} (x^2 + 2y) = 3$.

Solution: Given that
$$f(x,y) = (x^2 + 2y)$$
 is defined at (1,1). We have $|f(x,y) - 3| = |x^2 + 2y - 3| = |(x - 1 + 1)^2 + 2(y - 1 + 1) - 3|$ $= |(x - 1)^2 + 2(x - 1) + 2(y - 1)|$ $\leq |(x - 1)^2| + 2|x - 1| + 2|y - 1|$

If we take $|x-1| < \delta$ and $|y-1| < \delta$, we get

$$|f(x,y)-3|<\delta^2+4\delta<\epsilon\quad\text{which is satisfied when}$$

$$(\delta+2)^2<\epsilon+4\quad\text{or }\delta<\sqrt{\epsilon+4}$$
-2

Continuity

- A function z = f(x, y) is said to be continuous at a point (x_0, y_0) , If (i) f(x, y) is defined at the point (x_0, y_0)
 - (ii) $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ exists, and
 - (iii) $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$
- If any one of the above conditions is not satisfied, then the function is said to be discontinuous at the point (x_0, y_0)
- A function f(x, y) is continuous at (x_0, y_0) if $|f(x,y)-L|<\epsilon \quad \text{whenever} \ 0<\sqrt{(x-x_0)+(y-y_0)^2}<\delta$

Continuity

- The intuitive meaning of continuity is that, if the point (x,y) changes by a small amount, then the value of f(x,y) changes by a small amount
- This means that a surface that is the graph of a continuous function has no hole or break
- Using the properties of limits, you can see that sums, differences, products, quotients of continuous functions are continuous on their domains

Example 1

Show that the following functions are continuous at the point (0,0)

$$f(x) = \begin{cases} \frac{2x^4 + 3y^4}{x^2 + y^2}, & (x, y) \neq 0\\ 0, & (x, y) = (0, 0) \end{cases}$$

Solution: $x = rcos\theta$, $y = rsin\theta$. Then

$$r = \sqrt{x^2 + y^2} \neq 0 \text{ we have}$$

$$|f(x,y) - f(0,0)| = \left| \frac{2x^4 + 3y^4}{x^2 + y^2} \right| = \left| \frac{r^4 (2\cos^4\theta + 3\sin^4\theta)}{r^2 (\cos^2\theta + 2\sin^2\theta)} \right|$$

$$< r^2 2|\cos^4\theta| + 3|\sin^4\theta| < 5 r^2 < \epsilon$$

Example1 (Cont.)

$$r = \sqrt{x^2 + y^2} \le \sqrt{\epsilon \backslash 5}$$

If we choose $\delta \leq \sqrt{\epsilon \backslash 5}$, we find that

$$|f(x,y) - f(0,0)| \le \epsilon$$
, whenever $0 \le \sqrt{x^2 + y^2} \le \delta$

Therefore
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(0,0) = 0$$

Hence f(x, y) is continuous at (0,0)

Partial Derivatives of a Function of Two Variables

Definition of Partial Derivatives of a Function of Two Variables

If z = f(x, y), then the **first partial derivatives** of f with respect to x and y are the functions f_x and f_y defined by

$$f_x(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$f_y(x, y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

provided the limits exist.

Notation for First Partial Derivatives

Notation for First Partial Derivatives

For z = f(x, y), the partial derivatives f and f are denoted by

$$\frac{\partial}{\partial x}f(x,y) =$$

and

$$\frac{\partial}{\partial y}f(x,y) =$$

The first partials evaluated at the point (a, b) are denoted by

$$\frac{\partial z}{\partial x}\Big|_{(a,b)} = f_x(a,b)$$
 and $\frac{\partial z}{\partial y}\Big|_{(a,b)} = f_y(a,b).$

Alternative Notations for Partial Derivative

$$f_x(x, y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x, y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

$$f_{y}(x, y) = f_{y} = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x, y) = \frac{\partial z}{\partial y} = f_{2} = D_{2}f = D_{y}f$$

Alternative Notations for Partial Derivative

The **second partial derivatives** of f. If z=f(x, y), we use the following notation:

$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 z}{\partial y \partial x}$$

$$(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 z}{\partial x \partial y}$$

$$(f_y)_y = f_{yy} = f_{22} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}$$

Clairaut's Theorem

• Suppose f is defined on a disk D that contains the point (a, b).

If the functions f_{xy} and f_{yx} are both continuous on D, then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

Total Differential

For a differentiable function of two variables, z= f (x ,y), we define
the differentials dx and dy to be independent variables; that is,
they can be given any values. Then the differential dz, also called
the total differential, is defined by

$$dz = f_x(x, y)dx + f_y(x, y)dy = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

Total Differentials

For such functions the linear approximation is

$$f(x, y, z) \approx f(a, b, c) + f_x(a, b, c)(x - a) + f_y(a, b, c)(y - b) + f_z(a, b, c)(z - c)$$

- and the linearization L (x, y, z) is the right side of this expression.
- If w=f (x, y, z), then the **increment** of w is

$$\Delta w = f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)$$

• The **differential dw** is defined in terms of the differentials dx, dy, and dz of the independent variables by

$$dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy + \frac{\partial w}{\partial a} dz$$

The chain rule (general version)

Suppose that u is a differentiable function of the n variables x_1 , x_2 , x_1 , x_2 , x_3 , and each x_j is a differentiable function of the m variables t_1 , t_2 , x_3 , x_4 , x_5 , x_6 Then u is a function of t_1 , t_2 , x_5 , x_6 , x_6 and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{dx_1}{dt_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{dt_i} + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i} + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

for each i=1,2,•••,m.

Tangent plane

FIGURE 1

The tangent plane contains the tangent lines T₁ and T₂

Linearization

1. Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z=f(x, y) at the point P (x_o, y_o, z_o) is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

The linear function whose graph is this tangent plane, namely

- 2. $L(x, y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$ is called the **linearization** of f at (a, b) and the approximation
- 3. $f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$ is called the **linear approximation** or the **tangent plane** approximation of f at (a,b)

Example on total derivative

If
$$u = e^x \sin(yz)$$
, where $x = t^2$, $y = t - 1$, $z = 1/t$, find du/dt at $t = 1$

Solution:
$$\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial u}{\partial z} \frac{dz}{dt} \qquad(i)$$

From the given u, x, y, z, we get
$$\frac{\partial u}{\partial x} = e^x \sin yz$$
, $\frac{\partial u}{\partial y} = e^x z \cos yz$, $\frac{\partial u}{\partial z} = e^x y \cos yz$
 $\frac{dx}{dt} = 2t$, $\frac{dy}{dt} = 1$, $\frac{dz}{dt} = \frac{-1}{t^2}$

Putting these into (i), we get

$$\frac{du}{dt} = e^{t^2} \left[2t \sin(1 - 1/t) \right] + (1/t^2) \cos(1 - 1/t)$$

At
$$t = 1$$
, this becomes $\frac{du}{dt} = e$

Examples

1. Find the differentials of the function $f(x, y) = x \cos y - y \cos x$

Solution:
$$\frac{\partial f}{\partial x} = \cos y + y \sin x$$
, $\frac{\partial f}{\partial y} = -x \sin y - \cos x$

Therefore, the differential of f is

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = (\cos y + y\sin x)dx - (x\sin y + \cos x)dy$$

2. Find the differentials of the function
$$f(x, y, z) = e^{xyz}$$

Solution: $\frac{\partial f}{\partial x} = e^{xyz}yz$, $\frac{\partial f}{\partial y} = e^{xyz}zx$, $\frac{\partial f}{\partial z} = e^{xyz}xy$, The differential of f is

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz = e^{xyz}(yzdx + zxdy + xydz)$$

Summary

The general definition of the total derivative is:

$$df(x,y) = \frac{\partial f(x,y)}{\partial x} dx + \frac{\partial f(x,y)}{\partial y} dy$$

- The general rule, with a function of several variables is:
 - Calculate the partial derivatives for each of the variable, keeping the other variables constant
 - Add them up to get the total derivative