Introduction

Data

Regression Model: Generalized

. .

Conclusions

Future

Car Crash - Logistic Regression

Arthur L. Lui

Department of Statistics Brigham Young University

March 27, 2014

Introduction

Dat

Logistic Regression Model: Generalized

Results

Conclusion

E......

Introduction

- More than 34,000 motor vehicle deaths in nation in 2012
- FHWA reponsible for improving roadway safety
- FHWA created FARS to collect relevant fatality data
- Goal: Understand relationship between independent variables and probability of fatality

Data

Regression Model:

Lincal IVIC

Results

Conclusions

Future

Data

_			
Response	Description		
Fatal	1 - death in vehicle, 2 - no death in vehicle		
Variable	Description		
Year	Year of accident		
DOW	Day of the week $(1 = Sunday)$		
Hour	Hour at the time of accident		
Mod	year Model year of vehicle involved in accident		
Height	Driver height		
Weight	Driver weight		
DWI	Number of previous DWIs of driver		
Age	Age of driver		
Car. Type	Type of vehicle		
Day	Day of the month		
Drugs	Were drugs involved?		
Drink	Had the driver been drinking?		
Light	Light condition at time of accident		
Month	Month of accident		
Belt	Type of restraint used		
Route	Type of highway		
Sex	Gender of driver		
Speed.Related	Was the accident speed related?		
Speed.Limit	Posted speed limit		
Road.Conditions	Condition of road at time of accident		
Road.Type	Road type		
Distracted	Was the driver distracted?		

Results

Conclusion

Entur

Data Cleaning

- Remove 99th hour (23)
- Remove 9999 model year (4)
- Group model years < 1987 into 1986
- Remove Year variable (all are 2012)
- Change one No-Helmet death(1) to a survive(0)

Introduction

Data

Logistic Regression Model: Generalized Linear Model

Daniela

Conclusion

E...+...v

Can't use linear model beause:

- $Y_i \in \{0,1\} \Rightarrow \mathbf{Y} | \mathbf{X} \text{ not Normal }$
- $Y_i \in \{0,1\} \Rightarrow \mathbf{Y} | \mathbf{X} \sim \mathsf{Bernoulli}(p_i)$

Logistic Regression Model: Generalized Linear Model

Conclusion

- .

Logistic Regression Model

$$Y_i \stackrel{ind}{\sim} \mathsf{Bernoulli}(p_i)$$
 $log\left(rac{p_i}{1-p_i}
ight) = \mathbf{x_i'}eta$
 $\Rightarrow p_i = rac{e^{\mathbf{x_i'}eta}}{1+e^{\mathbf{x_i'}eta}}$

where
$$p_i = P(Y_i = 1)$$

Logistic Regression Model: Generalized Linear Model

Docult

Conclusion

Futura

Model Assumptions

- Linearity of Model
- Independence between observations
- Collinearity does not heavily affect model

Result

Conclusion

Futur

Model Selection

Forward Stepwise Selection Algorithm:

- 1. Let *p* be the number of predictors.
- 2. Let \mathcal{M}_0 denote the null model, which contains no predictors.
- 3. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p-k models, and call it \mathcal{M}_K+1 . Here *best* is defined as having smallest RSS or highest R^2 .

Logistic Regression Model: Generalize

Results

Conclusions

Enture

Results

Summary Table

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	98.37	26.64	3.69	0.00
DrugsUnknown	2.53	0.23	11.02	0.00
DrugsYes (drugs involved)	0.64	0.28	2.29	0.02
BeltLap Belt Only Used	-3.02	1.65	-1.83	0.07
BeltNo Helmet	-0.45	1.75	-0.26	0.80
BeltNone Used-Motor Vehicle Occupant	-0.49	1.29	-0.38	0.71
BeltNot Applicable	-2.21	1.73	-1.28	0.20
BeltNot Reported	-3.26	1.72	-1.89	0.06
BeltOther Helmet	0.81	1.35	0.60	0.55
BeltShoulder and Lap Belt Used	-2.75	1.25	-2.20	0.03
BeltShoulder Belt Only Used	-1.79	1.87	-0.96	0.34
BeltUnknown	-2.13	1.30	-1.64	0.10
Speed.RelatedUnknown	2.11	0.51	4.11	0.00
Speed.RelatedYes	1.20	0.19	6.16	0.00
Speed.Limit	0.04	0.01	6.38	0.00
DrinkYes	1.46	0.21	7.14	0.00
LightDark - Not Lighted	0.90	0.23	3.83	0.00
LightDawn	2.21	0.55	4.02	0.00
LightDaylight	1.84	0.24	7.80	0.00
LightDusk	1.08	0.73	1.47	0.14
LightUnknown	0.19	1.50	0.13	0.90
DistractedNot Distracted	1.31	0.31	4.24	0.00
DistractedUnknown	1.67	0.32	5.15	0.00
Mod_year	-0.05	0.01	-3.83	0.00

Introduction

Data

Logistic Regression Model:

Generalized Linear Mode

Results

Conclusions

Enturo

Thresholds

Error Rates vs. Thresholds

Introduction

Date

Logistic Regression Model:

Generalized Linear Mod

Results

Conclusions

Future

Receiver Operating Characteristics (ROC) Curve

Introduction

Data

Logistic Regression Model:

Linear ivi

Results

Conclusion

Future

Variance Inflation Factors

VIF Table:

	GVIF	Df	$GVIF^{\frac{1}{2Df}}$
Drugs	1.12	2.00	1.03
Belt	1.24	9.00	1.01
Speed Related	1.16	2.00	1.04
Speed Limit	1.14	1.00	1.07
Drink	1.25	1.00	1.12
Light	1.38	5.00	1.03
Distracted	1.09	2.00	1.02
Model year	1.06	1.00	1.03

Introductio

Data

Logistic Regression Model:

Generalized Linear Mode

Results

Conclusions

Euturo

Intuition

Probability of Dying vs. Speed Limit

Generalize Linear Mo

Results

Conclusions

F.

Conclusions

- Model reduced to 8 covariates using forward selection
- AUC = 91%
- VIF < 10

Future

Future

• Look at other combinations of covariates (interaction)