Redukált gramatika, Chomsky NF

Ez az anyag 2. típusú grammatikákról szól!!!

A) Elméleti háttér

A környezetfüggetlen grammatika egy nemterminálisát **inaktívnak** vagy **nem aktívnak** nevezzük, ha nem vezethető le belőle terminális szó; egyébként **aktívnak** mondjuk.

A környezetfüggetlen grammatika egy nemterminálisát **nem elérhetőnek** nevezzük, ha nem fordul elő egyetlen olyan mondatformában sem, amely a kezdőszimbólumból levezethető; egyébként **elérhetőnek** mond- juk.

Egy nemterminálist **nem hasznosnak** mondunk, ha vagy inaktív, vagy nem elérhető, vagy mindkét tulajdonság teljesül esetében. Egy nemterminálist **hasznosnak** nevezünk, ha aktív és elérhető.

Egy környezetfüggetlen grammatika **redukált**, ha minden nemterminálisa aktív és elérhető.

Tétel: Minden környezetfüggetlen grammatikához meg tudunk konstruálni egy vele ekvivalens redukált környezetfüggetlen grammatikát.

Aktív nemterminálisok:

$$A_{1} = \{X \mid X \to u \in P, u \in T^{*}\},$$

$$A_{i+1} = A_{i} \cup \{X \mid X \to w \in P, w \in (T \cup A_{i})^{*}\}, i = 1, 2, \dots$$

$$A_{1} \subseteq A_{2} \subseteq \dots \subseteq N$$

Ha $A_k = A_{k+1}$ akkor megkaptuk az aktív nemterminálisokat.

Az inaktívakat tartalmazó szabályokat elhagyjuk.

Elérhető nemterminálisok:

$$R_1 = \{S\},\$$

 $R_{i+1} = R_i \cup \{Y \mid X \to uYw \in P, X \in R_i, u, w \in (N \cup T)^*\}, i = 1, 2, ...$
 $R_1 \subseteq R_2 \subseteq \cdots \subseteq N$

Ha $R_k = R_{k+1}$ akkor megkaptuk az aktív nemterminálisokat.

A nem elérhetőket elhagyjuk.

Chomsky normálforma

Lehetséges szabályalakok:

 $S\to\varepsilon$ $A\to BC,\,A,B,C\in N$; tovább
á $B,C\ne S,$ ha van $S\to\varepsilon$ szabály.
 $A\to a,\,A\in N,a\in T.$

Tétel: Minden környezetfüggetlen grammatikához meg tudunk konstruálni egy vele ekvivalens Chomsky NF-jú grammatikát.

Lépések:

- 1. Ha van S a jobboldalon, vezessük be $S_0 \to S$ új szabályt és S_0 legyen az új kezdőszimbólum.
- 2. Álterminálisok bevezetése: Minden, valamely szabály jobboldalán álló, de nem önmagában álló a terminálist cseréljünk le egy neki megfelelő X_a nemterminálisra és adjuk hozzá az $X_a \to a$ szabályt a grammatikához.
- 3. Hosszredukció: példa: $X\to ABCD$ helyett $X\to AZ_1,\ Z_1\to BZ_2,\ Z_2\to CD,$ ahol Z_1,Z_2 új nemterminálisok.

4. ε -mentesítés

Először konstruálunk egy $H \subseteq N$ segédhalmazt, melynek pontosan azok a nemterminálisok lesznek az elemei, melyekből (egy vagy több lépésben) levezethető ε . Ehhez ismét rekurzívan definiálunk H_i halmazokat. A H_i halmaz a H_{i-1} halmaz bővítése azon nemterminálisokkal, amelyekből közvetlenül levezethető H_{i-1}^* -beli szó. A kiindulási halmaz H_1 , azon nemterminálisok halmaza, melyekből közvetlenül levezethető ε .

Ezután képezzük az összes olyan szabályt, melynek jobboldala valamely eredeti szabály jobboldalából tetszőlegesen kiválasztott H-beli nemterminálisok elhagyásával kapható (beleértve azt az esetet is, ha nem hagyunk el semmit), a baloldal pedig az eredeti baloldal. Az ε -szabályokat elhagyjuk.

Végül ha a kezdőszimbólum H-beli, akkor adjunk a grammatikához egy rá vonatkozó ε -szabályt (ha eddig nem volt).

5. Láncmentesítés

Már csak az $A \to B$ $(A, B \in N)$ alakú szabályok nem kellő alakúak. Ezekkel ugyanúgy bánunk el, mint a 3. típus esetén.

Meghatározzuk minden nyelvtani jelhez (az adott nyelvtani jelet magát is beleértve) azon nemterminálisok H(X) halmazát, melyek mint 1 hosszúságú szó (közvetlenül, vagy közvetetten) levezethetők belőle

Minden $Y \in H(X)$ nyelvtani jelhez vesszük azon szabályokat, amelyeknek baloldalán X, jobboldalán pedig egy Y-ra vonatkozó eredeti szabály jobboldala áll, kivéve ha ez a jobboldali mondatforma csupán egyetlen nemterminálisból áll. (Azaz, a láncszabályokat elhagyjuk.)

A H(X) halmazok a szokásos rekurzív közelítéssel állíthatók elő. $H_0(X) := \{X\}$, majd ezt sorra bővítjük a lépésenként felfedezett újabb láncszabálysorozatok végpontjaival.

B) Mintapéldák:

1. példa, redukálás

$$S \to A \mid bBD$$

$$A \to AB \mid A$$

$$B \to \varepsilon \mid a \mid SS$$

$$C \to AS \mid a$$

$$D \to BB$$

Aktívak: $A_1 = \{B, C\}, A_2 = \{B, C, D\}, A_3 = A_4 = \{B, C, D, S\}$, az A-t tartalmazó szabályok elhagyhatók.

$$S \to bBD$$

 $B \to \varepsilon \mid a \mid SS$
 $C \to a$
 $D \to BB$
Elérhetők: $R_1 = \{S\}, R_2 = R_3 = \{S, B, D\}, C$ elhagyható.
 $S \to bBD$
 $B \to \varepsilon \mid a \mid SS$

Az eredmény az eredetivel ekvivalens és redukált.

2. példa: Hozzuk Chomsky NF-ra!

$$S \to AB$$

$$A \to aAa \mid C$$

$$B \to bBb \mid C$$

$$C \to Cabc \mid b \mid \varepsilon$$

Megoldás:

 $D \to BB$

1. lépés: Nincs S a jobboldalon, maradhat S a kezdőszimbólum.

$$S \to AB$$

$$A \to DAD \mid C$$

$$B \to EBE \mid C$$

$$C \to CDEF \mid b \mid \varepsilon$$

$$D \to a$$

$$E \to b$$

$$F \to c$$

$$S \to AB$$

$$A \to DZ_1 \mid C$$

$$B \to EZ_2 \mid C$$

$$C \to CZ_3 \mid b \mid \varepsilon$$

$$D \to a$$

$$E \to b$$

$$F \to c$$

$$Z_1 \to AD$$

$$Z_2 \to BE$$

$$Z_3 \to DZ_4$$

$$Z_4 \to EF$$

4. lépés:

$$H_0 = \{C\}, H_1 = \{C, A, B\}, H_2 = H_3 = \{S, A, B, C\} = H.$$

$$S \to AB \mid A \mid B \mid \varepsilon$$

$$A \to DZ_1 \mid C$$

$$B \to EZ_2 \mid C$$

$$C \rightarrow CZ_3 \mid b \mid Z_3$$

$$D \to a$$

$$E \to b$$

$$F \to c$$

$$Z_1 \to AD \mid D$$

$$Z_2 \to BE \mid E$$

$$Z_3 \to DZ_4$$

$$Z_4 \to EF$$

$$H_0(S) = \{S\}, H_1(S) = \{S, A, B\}, H_2(S) = \{S, A, B, C\}, H_3(S) = \{S, A, B, C, Z_3\} = H(S)$$
Hasonlóan $H(A) = \{A, C, Z_3\}, H(B) = \{B, C, Z_3\}, H(C) = \{C, Z_3\}, H(Z_1) = \{D, Z_1\}, H(Z_2) = \{E, Z_2\}, a$ többi csak önmagát tartalmazza.
$$S \to AB \mid DZ_1 \mid CZ_3 \mid b \mid DZ_4 \mid EZ_2 \mid \varepsilon$$

$$A \to DZ_1 \mid CZ_3 \mid b \mid DZ_4$$

$$B \to EZ_2 \mid CZ_3 \mid b \mid DZ_4$$

$$C \to CZ_3 \mid b \mid DZ_4$$

$$D \to a$$

$$E \to b$$

$$F \to c$$

$$Z_1 \to AD \mid a$$

$$Z_2 \to BE \mid b$$

$$Z_3 \to DZ_4$$

$$Z_4 \to EF$$

C) Gyakorló feladatok:

1. feladat: Határozzuk meg az alábbi $G = (\{S, A, B, C, D\}, \{a, b\}, P, S)$ környezetfüggetlen grammatika **aktív** nemterminálisait a tanult algoritmus alapján! A P szabályrendszer:

$$S \rightarrow BaB \mid DaD$$

$$A \rightarrow aBC \mid AS$$

$$B \rightarrow SbDD \mid A$$

$$C \rightarrow DSC \mid aA$$

$$D \rightarrow ab \mid AC$$

2. feladat: Hozzuk *Chomsky normálformára* a tanult algoritmus alapján az alábbi nyelvtant (S a kezdőszimbólum, S, A, B, C, D a nemterminálisok, a, b a terminálisok):

$$S \to AB \mid AC$$

$$A \to aba \mid DS$$

$$B \to DCC \mid aS$$

$$C \to bbD \mid \varepsilon$$

$$D \to SS \mid \varepsilon$$