

The Caterra Project

Caterra's agricultural robot

Goal of Caterra:

Develop an autonomous agricultural robot with a laser module for weed removal

My goal:

Develop a robust crop rows detection algorithm using computer vision

State of the art

- Excess green Index
- Hough transform [1]
- Deep Learning [2]

- [1]: Real Time Tracking of Plant Rows Using a Hough Transform, John.A Marchant and Renaud Brivot
- [2]: "From plants to landmarks: Time-invariant plant localization that uses deep pose regression in agricultural fields", Kraemer et al.

Algorithm

→ Use of temporal information : a crop should be in the same region in two sequential frames

Sky Removal

ETH ZÜRİCh ## # Autonomous Systems Lab

Vegetation Segmentation

main clustered colours

Advantages:

- Threshold independent
- Robust to shadows and colour variation

Original Image

Vegetation segmented

Canny Edges Detector

Constrained Hough Transform

Image

Constrained

Hough

Transform

Image Pre-

processing

VP

Calculation

Constrained

RANSAC

Next

Image

Vanishing Point Calculation

Vanishing point = point described by main sinusoidal in Hough Space

Hough Transformation of a set of lines that intersect in a single point [1]

[1]: Vanishing Point Detection in the Hough Transform Space, Andrea Matessi and Luca Lombardi

Masking per crop

Vegetation Image

Mask

Crop Row masked

Each previously detected line is used to create the mask that will isolate the pixels corresponding to a single crop row in the next image

Lines found with Hough

Lines found with RANSAC

RANSAC Lines

Detection with Hough Transform:

- Every K frames
- If distance between crop row too small
- If angle too close to the horizon angle
 - If too few points for RANSAC

Evaluation

$$CRDA = \frac{1}{m(h-v_0)} \sum_{v=v_0}^{h-1} \sum_{i=1}^{m} s(u_{v,i}^*, u_{v,i}, d_v^*),$$

$$s(u^*,u,d) = \max\left(1 - \left(\frac{u^* - u}{\sigma d}\right)^2, 0\right),$$

Values [1]:

m – number of crop tbd

v0 – first line where evaluation starts

h – height of the image

u* – ground truth point on line v

u – my results of point on line v

d – distance between crops

 σ – desired accuracy needed, 0.25 in my case

[1]: Method proposed by Vidovic et al., http://www.etfos.unios.hr/r3dvgroup/index.php?id=crd_dataset

Results (1):

Results (2):

On complete dataset: average score of 0.92 for non bushy images, 0.6 for bushy images

Results (3)

Result of Caterra's Dataset

Failure Cases

- Detection of curved crop rows
- Very bushy crops

Future Work

- Optimize the code
- Test it on different datasets : different soils and weather conditions
- Calibration process

Conclusion

- Robust to different illuminations, points of view
- Generalisable : not limited to one kind of plants
- Accurate for straight crop row
- Bushes can be a problem
- Too slow, not yet able to work in real time

Thank you!

