

List of Practical

Subject: 2305CS201 – Data Structure Faculty: Prof. Nidhi K. Chitroda

LAB	PRACTICAL
1.	Hands on practice to get familiar with basic C programming concepts
	1. Write a program to find factorial of a number using loop and recursion. [A]
	2. Write a program to find factors of a given number. [A]3. Write a program to check whether a number is prime or not. [A]
	4. Write a program to find GCD using loop and recursion. [B]
	5. Write a program to calculate power using loop and recursion. [B]
	6. Write a program to display prime numbers between two intervals. [C]
2.	Regular operations on 1-D Array Data Structure
	 Read n numbers in an array and print their sum and average. [A] Write a program to find the largest element in an array. [A]
	3. Read n numbers in an array then read two different numbers, replace 1st number with 2nd number in an
	array and print the
	final array. [A]
	4. Write a program to copy all the elements of one array to another array. [B]
	5. Read n numbers in an array and print it in reverse order. [B]
	6. Write a program to find common elements between two arrays. [C]
	7. Write a program to remove duplicates from sorted array. [C]
3.	Regular operations on 2-D Array Data Structure
	 Read two 2x2 matrices and perform addition of matrices into third matrix and print it. [A] Read two matrices, first 3x2 and second 2x3, perform multiplication operation and store result in third
	matrix and print it. [B]
	3. Write a program to find transpose of a square matrix. [C]
4.	Implementation of the Pointer concept
	1. Read n numbers in an array and print it using pointer. [A]
	2. Write a C program to swap two numbers, calling an UDF by value. [A]
	3. Write a C program to swap two numbers, calling an UDF by reference. [A]
	4. Write a program to find largest element in the array using Pointer. [B]
	5. Write a program to check if the string is a palindrome or not using Pointer. [C]
5.	Implementation of the Structure concept
	1. Create a structure Employee_Detail (Employee_id, Name, Designation, Salary). Write a program to read the detail from user
	and print it. [A]
	2. Create an array of structure Student_Detail (Enrollment_no, Name, Sem, CPI) for 5 students, scan their information and print
	it. [B]
	3. Create a structure Employee_Detail (Employee_id, Name, Designation, Salary). Write a program to read the detail from user
	and print it using Structure Pointer. [B]
	4. Write a program to add two complex numbers by passing structure to a Function. [C]
6.	Implementation of Data Structure Stack
	1. Write algorithms to perform following operations on Stack: PUSH, POP, PEEP, CHANGE and DISPLAY. [A]
	2. Write a menu driven program to perform following operations on Stack: PUSH, POP, PEEP, CHANGE and DISPLAY. [B]
	3. Write a program to reverse a string using Stack. [C]
7.	Implementation of Stack application: Converting Infix Expression to Postfix
	1. Convert the following infix expressions to postfix expressions: [A]

List of Practical

Subject: 2305CS201 – Data Structure Faculty: Prof. Nidhi K. Chitroda

- ∘ (A + B * C / D E + F / G / (H + I))
- ° (A + B) * C + D / (B + A * C) + D
- 2. Write an algorithm to convert infix to postfix notation. [A]
- 3. Write a program to convert the given infix notation to postfix notation. [B]
- 4. Write a program to convert postfix notation to infix notation. [C]

8. Implementation of Stack application: Converting Infix Expression to Prefix

- 1. Convert the following infix expressions to prefix expressions: [A]
 - ∘ (A + B * C / D E + F / G / (H + I))
 - \circ (A + B) * C + D / (B + A * C) + D
- 2. Write an algorithm to convert infix to prefix notation. [B]
- 3. Write a program to convert the given infix notation to prefix notation. [C]

9. Implementation of Stack application: Evaluating Postfix expression

- 1. Evaluate the following expressions: [A]
 - 5, 4, 6, +, *, 4, 9, 3, /, +, *
 - o 7, 5, 2, +, *, 4, 1, 1, +, /, -
- 2. Write an algorithm to evaluate post-fix expression using Stack. [A]
- 3. Write a program for evaluation of post-fix Expression having single digit operand using Stack. [B]
- 4. Write a program for evaluation of post-fix Expression having more than on digit operand using Stack. [C]

10. Implementation of Stack application: Evaluating Prefix expression

- 1. Evaluate the following expressions: [A]
 - · *, +, 6, 9, -, 3, 1
 - · +, -, *, 2, 2, 1, 16, 8, 5
- 2. Write an algorithm to evaluate pre-fix expression using Stack. [B]
- 3. Write a program for evaluation of pre-fix Expression using Stack. [C]

11. Implementation of Data Structure Simple Queue

- 1. Write algorithms to perform following operations on Queue: ENQUEUE and DEQUEUE. [A]
- 2. Write a menu driven program to perform following operations on Simple Queue: ENQUEUE, DEQUEUE and DISPLAY. [B]
- 3. Write a program to reverse the elements of Queue. [C]

12. Implementation of Data Structure Circular Queue

- 1. Write algorithms to perform following operations on Circular Queue: ENQUEUE and DEQUEUE. [A]
- 2. Implement Circular Queue using array that performs following operations: [B]
 - ENQUEUE
 - DISPLAY
 - DEQUEUE
- 3. Consider the following circular queue having 6 memory cells. Front=2, Rear=4 Queue: _, A, C, D, _, _. Describe queue as following operation take place: [C]
 - F is added to the queue
 - Two letters are deleted
 - R is added to the queue
 - S is added to the queue
 - One letter is deleted

13. Implementation of Data Structure Double Ended Queue

- 1. Write algorithms to perform following operations on Double Ended Queue: ENQUEUE and DEQUEUE. [A]
- 2. Implement Double Ended Queue that performs following operations: [B]
 - ENQUEUE Front

List of Practical

Subject: 2305CS201 – Data Structure Faculty: Prof. Nidhi K. Chitroda

- ENQUEUE Rear
- DISPLAY
- DEOUEUE Front
- DEQUEUE Rear
- 3. Consider a Deque with size 6, initially empty. Perform the following sequence of operations:
 - ENQUEUERear(10)
 - ENQUEUEFront(20)
 - ∘ ENQUEUERear(30)
 - DEQUEUEFront()
 - ENQUEUEFront(40)

What will the Deque look like after all operations? [C]

14. Implementation of Dynamic Memory Allocation concept

- 1. Explain following functions for dynamic memory allocation: [A]
 - Malloc ()
 - Calloc()
 - Realloc()
 - Free ()
- 2. Write a program to get n elements of an array from user and print those elements using pointer. [B]
- 3. Write a program to display n elements and sum of those elements using dynamic memory allocation. Also release the memory occupied after displaying [C]

15. Implementation of Data Structure Singly Linked List – Insertion

- 1. Write algorithms to perform following operations on Singly Linked List: [A]
 - Insert a node at the beginning of the linked list
 - Insert a node at the end of the linked list
- 2. Write a menu driven program to implement following operations on the singly linked list:
 - Insert a node at the beginning of the linked list [A]
 - Insert a node at the end of the linked list [A]
 - Display the list [B]
 - Count number of nodes [C]

16. Implementation of Data Structure Singly Linked List - Deletion

- 1. Write algorithms to perform following operations on Singly Linked List: [A]
 - Delete a first node
 - o Delete a last node
 - Delete a specific node
- 2. Write a menu driven program to implement following operations on the singly linked list:
 - Delete the first node of the linked list [A]
 - Delete the last node of the linked list [A]
 - Display the list [B]
 - Delete a specific node [C]

17. Implementation of Data Structure Ordered Linked List - Insertion

- 1. Write an algorithm to do ordered insertion in the Singly Linked List. [A]
- 2. Write a menu driven program to implement following operations on the Ordered Linked List. [B]
 - Insert a node such that linked list is in ascending order
 - Display the list
- 3. Write a program which allows user to insert unique node values only in ordered linked list. [C]

List of Practical

Subject: 2305CS201 – Data Structure Faculty: Prof. Nidhi K. Chitroda

18. **Implementation of Data Structure Ordered Linked List - Deletion**

- 1. Write an algorithm to do ordered deletion in the Singly Linked List. [A]
- 2. Write a menu driven program to implement following operations on the Ordered Linked List. [B]
 - Delete a specific node such that linked list is in ascending order
 - Display the list
- 3. Write a program which removes duplicate nodes from ordered linked list if any. [C]

Implementation of Stack and Queue using Linked List 19.

- 1. Write a program to implement stack using linked list. [A]
- 2. Write a program to implement queue using linked list. [B]
- 3. Write a program to implement queue using linked list. [C]

20. Implementation of Data Structure Circular Linked List - Insertion

- 1. Write algorithms to perform following operations on Circular Linked List: [A]
 - Insert a node at the beginning of the circular linked list
 - Insert a node at the end of the circular linked list
- 2. Write a menu driven program to implement following operations on the Circular Linked List.
 - Insert a node at the beginning of the circular linked list [B]
 - Insert a node at the end of the circular linked list [B]
 - Display the list [B]
 - Count the nodes [C]

Implementation of Data Structure Circular Linked List - Deletion 21.

- 1. Write algorithms to perform following operations on Circular Linked List: [A]
 - Delete a node at the beginning of the circular linked list
 - Delete a node at the end of the circular linked list
- 2. Write a menu driven program to implement following operations on the Circular Linked List.
 - Delete a node at the beginning of the circular linked list [B]
 - Delete a node at the end of the circular linked list [B]
 - Display the list [B]
 - Delete a specific node [C]

22. **Implementation of Data Structure Doubly Linked List**

- 1. Write algorithms to perform following operations on Doubly Linked List: [A]
 - Insert a node
 - Delete a node
- 2. Write a menu driven program to implement following operations on the Doubly Linked List. [B]
 - Insert a node in middle of doubly linked list
 - Delete a specific node in doubly linked list
- 3. Write a program to swap first node with last, second to second last and so on in doubly linked list. [C]

23. **Implementation of Linear Search**

- 1. Find index of searched element x for given list: [A]
 - \circ arr[] = {1, 2, 3, 4}, x = 3
 - \circ arr[] = {10, 8, 30, 4, 5}, x = 5
 - \circ arr[] = {10, 8, 30}, x = 6
- 2. Write algorithm for linear search. [A]
- 3. Write a program to implement Linear/Sequential Search. [B]
- 4. Write a program to implement Linear Search using recursion. [C]

24. **Implementation of Binary Search**

1. Write algorithm for binary search. [A]

List of Practical

Subject: 2305CS201 – Data Structure Faculty: Prof. Nidhi K. Chitroda

- 2. Write a program to implement Binary Search using loop. [B]
- 3. Write a program to implement Binary Search using recursion. [C]

25. Implementation of Bubble sort and Selection sort

- 1. Show step by step sorting using bubble sort and selection sort algorithm for given array: [A]
 - o arr[] = {38, 27, 43, 10}
 - o arr[] = {10, 80, 40, 30, 90, 40}
- 2. Write algorithm for bubble sort and selection sort. [A]
- 3. Read n numbers in an array from user and sort them in ascending order using Bubble Sort algorithm and print sorted array. [B]
- 4. Read n numbers in an array from user and sort them in ascending order using Selection Sort algorithm and print sorted array. [C]

26. Implementation of Insertion, Quick and Merge sort

- 1. Show step by step sorting using insertion sort, quick sort and merge sort algorithm for given array: [A]
 - o arr[] = {38, 27, 43, 10}
 - o arr[] = {10, 80, 40, 30, 90, 40}
- 2. Write algorithm for insertion sort, quick sort and merge sort. [A]
- 3. Read n numbers in an array from user and sort them in ascending order using Insertion Sort algorithm and print sorted array. [B]
- 4. Read n numbers in an array from user and sort them in ascending order using Quick Sort algorithm and print sorted array. [C]
- 5. Read n numbers in an array from user and sort them in ascending order using Merge Sort algorithm and print sorted array. [C]