Han Nguyen

CSC 527 – Homework 2

1. Problem 1

a. If the bias/threshold value (b_k) is 0, x_1 is the excitatory signal, and x_2 is the inhibitory signal then the outcome of y_k neuron (table 01)

Table $01 - Outcome of y_k with b_k = 0$

X ₁	X ₂	b _k	y k
0	0	0	1
1	0	0	1
0	-1	0	0
1	-1	0	1

As shown in table 01, y_k will be fire (activate) whenever $x_1 = 1$ or $x_2 = 0$

b. If the bias/threshold value (b_k) is 1, x_1 is the excitatory signal, and x_2 is the inhibitory signal then the outcome of y_k neuron (table 02)

Table 02 – Outcome of y_k with $b_k = 1$

X ₁	X ₂	b _k	Уk
0	0	1	1
1	0	1	1
0	-1	1	1
1	-1	1	1

As shown in table 02, y_k will always be fire (activate) because $b_k = 1 > 0$

c. With only 2-input signals in Eq.1, there are 3 possible combinations:

Excitatory and Excitatory

X ₁	X ₂
0	0
0	1
1	0
1	1

- Inhibitory and Inhibitory

X ₁	X ₂
0	-1
-1	0
-1	-1

- Excitatory and Inhibitory

X ₁	X ₂
-1	1
1	-1

- **d.** With respect to b_k , the possible thresholds could be any value with real number (but it does not guarantee the outcome y_k will always be activate).
- **e.** As shown on the table 01 & table 02, since the 2-input signals does not change, then we could observe that the outcome of y_k are depending on the threshold value (b_k) . Thus, if we plan to implement the MP neuron model in Eq.1 to has difference outcome, then we could change b_k value with respects x_1 is the excitatory signal, and x_2 is the inhibitory signal then:
 - If $b_k = 0$ and $(x_1 = 1 \text{ or } x_2 = 0)$, then the outcome $y_k = 1$
 - If $b_k = -1$ and $(x_1 = -1 \text{ or } x_2 = -1)$, then the outcome $y_k = 0$
 - If $b_k \le -2$, x_1 and x_2 could be any number, then the outcome $y_k = 0$
 - If $b_k >= 1$, x_1 and x_2 could be any number, then the outcome $y_k = 1$

2. Problem 2

a. Assume that all the input signals are excitatory, then all combinations of 2-input MP neuron to activate $y_k = 1$:

X ₁	X ₂	b _k	Уk
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	0

b. No, it is impossible to implement this neuron using the Python program in Hw1. Because in the Hw1, its condition is that any value of $b_k > -1$ the MP neuron will always be in the firing state $(y_k = 1)$ including the scenario when $x_1 = x_2 = 1$, and it this problem, the condition for MP neuron will activate is either $(x_1 \text{ or } x_2) = 1$ but not both. The results from hw1 with $b_k = 1$ is shown below (figure 03).

Figure 03 - Question 2b

c. Assume one input signal is excitatory and the other input signal is inhibitory **All possible combinations:**

X ₁	X ₂	b _k	y k
0	0	0	0
1	0	0	1
0	-1	0	0
1	-1	0	1

No, it is impossible to implement this neuron using the Python program in Hw1. Because in this problem, the condition for MP neuron will activate is either $(x_1 \text{ or } x_2) = 1$ but not both. However, if we import these input signals then the hw1 will give the outcome as:

X ₁	X ₂	b _k	y k
0	0	0	1
1	0	0	1
0	-1	0	0
1	-1	0	1

- **d.** Yes. It is possible to create a network of 2-input MP neurons that will activate if one but not both input signals has a value of 1.
 - Let us assume that all input is excitatory signal (0,1), then we will create a condition that if $(x1 = 1 \mid | x2 = 1)$, yk = 1, else yk = 0.