

Description

The VSM30P03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

V_{DS} =-30V,I_D =-30A

 $R_{DS(ON)}$ <18m Ω @ V_{GS} =-10V

 $R_{DS(ON)}$ <30m Ω @ V_{GS} =-4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- High side switch for full bridge converter
- DC/DC converter for LCD display

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM30P03-T2	VSM30P03	TO-252	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	-30	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	-30	А
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	-21.2	Α
Pulsed Drain Current	I _{DM}	-120	Α
Maximum Power Dissipation	P _D	60	W
Derating factor		0.4	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	169	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	R _{eJC}	2.5	°C/W	
--	------------------	-----	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250µA	-30	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-30V, V_{GS} =0V	-	-	-1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1.2	-1.6	-2.5	V
Drain Source On State Decistance	В	V _{GS} =-10V, I _D =-20A	-	13	18	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-15A	-	22	30	mΩ
Forward Transconductance	g FS	V _{DS} =-5V,I _D =-20A	-	25	-	S
Dynamic Characteristics (Note4)			•	•		
Input Capacitance	C _{lss}	V _{DS} =-15V,V _{GS} =0V,	-	1363	-	PF
Output Capacitance	Coss		-	250	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	210	-	PF
Switching Characteristics (Note 4)			•	•		
Turn-on Delay Time	t _{d(on)}		-	9	-	nS
Turn-on Rise Time	t _r	V_{DD} =-30V, R_L =3 Ω , V_{GS} =-10V, R_G =2.5 Ω	-	10	-	nS
Turn-Off Delay Time	t _{d(off)}		-	50	-	nS
Turn-Off Fall Time	t _f		-	20	-	nS
Total Gate Charge	Qg	V _{DS} =-15,I _D =-15A,	-	31.2		nC
Gate-Source Charge	Q _{gs}		-	3.2		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =-10V	-	9.2		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-15A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-20	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =- 15A	-	24		nS
Reverse Recovery Charge	Qrr	$di/dt = -100A/\mu s^{(Note3)}$	-	16		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition: $Tj=25^{\circ}C$, $V_{DD}=-15V$, $V_{G}=-10V$,L=0.5mH, $Rg=25\Omega$, $I_{AS}=-26A$

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 8 Safe Operation Area

Figure 10 ID Current Derating

Figure 11 Normalized Maximum Transient Thermal Impedance