

IIIA O.

NIIII/EN ON

Children of Chiller

NIIN THE PROPERTY SERVICES

rallytel of

WHAFT OF

Linux DMAC 开发指南

"HALA"

rullyth of

Willy the Or

Willy EN OU

White Out

NIIII ON

rully the of

CHAFT OF

rally the of

版本号: 2.2

发布日期: 2020.04.15

NIIN EN ON

NIIII PA

CHAFT OF

July EX O

rully the of

White Of

HON WHATH OF

o, unhty?

NUMPET C

版本历史

NIIN EN ON

版本号。	日期	制/修订人	内容描述
1.1	2020.06.29	AWA1440	1. 初版
2.0	2020.11.19	AWA1527	1.for linux-5.4
2.1	2021.04.08	XAA0190	1. 添加 linux-5.4 配置信息
			2. 添加 linux-5.4 device tree 源码结
			构关系
2.2	2020.04.15	XAA0190	1. 修改格式

RUMPER ST. RUMPER ST.

nully feld !

NIIII PAR

NIIN THE

NIIN EN ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

Market O Kartelling

CHINEY

录 目

0	1	概述 o	0
INSTANCY		概述 1.1 编写目的	1
2,		1.2%适用范围	1
		1.3 相关人员	1
	2	DMA Engine 框架	2
	_	2.1 基本概述	2
		2.1.1 术语约定	2
			2
		2.2 基本结构	3
		2.3 源码结构	3
		2.4 模块配置	4
		2.4.1 kernel menuconfig 配置	4
		2.4.2 device tree 源码结构和路径	
		2.4.3 device tree 对 dma 控制器的通用配置	7
JINYEN ON			0
IIII, S		2.4.4 device tree 对 dma 申请者的配置	, ,
		2.5.1 内存拷贝	7
		2.5.1 内针线火	8
		2.5.2 散列表	8
		2.5.3 個坏级仔	C
	3	模块接口说明 1	10
		3.1 dma_request_channel	10
		3.2 dma_request_chan	
		3.3 dma_release_channel	
		3.4 dmaengine_slave_config	
		3.5 dmaengine_prep_slave_sg	
		3.6 dmaengine prep_dma_cyclic	
		3.7 dmaengine_submit	
IIIAEA ON		3.8 dma async issue pending	14
IIIA		3.8 dma_async_issue_pending	14
		3.10 dmaengine pause	
		3.11 dmaengine_resume	
		3.12 dmaengine tx status	
	_		
	4	3	16
		4.1 基本流程	
		4.2 注意事项	16
	5	使用范例 1	17
	-		17
	6	FAQ 1	19

文档密级: 秘密

6.1	dma debug 宏						19
6.2	2 常见问题调试方法						21
6.3	3 利用 sunxi_dum	p 读写相应智	寄存器 👌		. 6		21
RIWIN	Rully Rull	KN	MINARY	RILL	SEN!	Rullytid	MINITA

RUMPHY OF RUMPHY

CHINEY!

NIII/E

版权所有 © 珠海全志科技股份有限公司。保留一切权利

Ully EX

插图

~	-1 DMA Engine 框架图	3
INFEX ON	-2 内核 menuconfig 根菜单	
	-3 内核 menuconfig 根菜单	5
		5
	5	6
	5	7
		8
	2-8 DMA Engine 散列拷贝示意图 (master 与 master)	
	2-9 DMA Engine 循环拷贝示意图	
	-1 DMA Engine 使用流程	
	i-1 内核 menuconfig 根菜单	
	i-2 内核 menuconfig 根菜单	0
	5-3 内核 menuconfig 根菜单	0
0		5
HILY	11/4EZ 11	
,		

NIINEY ON

Willy 12 O

NIIII ON

rilly EX ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

iv killyfith iv

CHAIN TO STANKE

STIMEN OF

1 概述

E CONTROL OF THE PROPERTY OF T

Mrzy O1

114 j

JINY

1.1 编写目的

介绍 DMA Engine 模块及其接口使用方法:

- 1. dma driver framework
- 2. API 介绍
- 3. 使用范例及注意事项

Rully LY O

1.2 适用范围

WHAT O

列表 Manual Of Control Of Control

MINTEN!

表 1-1: 适用产品列表

内核版本	驱动文件
Linux-4.9	sunxi-dma.c
Linux-5.4	sun6i-dma.c

1.3 相关人员

• DMA

DMA 模块使用者

• 驱动模块负责人

· KIN

MEN O.

11417

MALA

WEN ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

KIN HINE

ON THE PARTY OF

DMA Engine 框架

ampted Ou

2.1 基本概述

DMA Engine 是 linux 内核 dma 驱动框架,针对 DMA 驱动的混乱局面内核社区提出了一个全新的框架驱动,目标在统一 dma API 让各个模块使用 DMA 时不用关心硬件细节,同时代码复用提高。并且实现异步的数据传输,降低机器负载。

2.1.1 术语约定

THY S. THINKEY S

表 2-1: DMA 模块相关术语介绍

MINTEN

术语	解释说明
SUNXI	Allwinner 一系列 SOC 硬件平台
DMA	Direct Memory Access(直接内存存取)
Channel	DMA 通道
Slave	从通道,一般指设备通道
Master	主通道,一般指内存

2.1.2 功能简介

DMA Engine 向使用者提供统一的接口,不同的模式下使用不同的 DMA 接口,降低使用者过多对硬件接口的关注。

30

版权所有 © 珠海全志科技股份有限公司。保留一切权利

_ 2

2.2 基本结构

rully EN ON

rullyft y O'

图 2-1: DMA Engine 框架图

2.3 源码结构

```
linux4.9
        2
        3
              drivers
                `-- dma
        4
        5
                     |-- Kconfig
                    |-- Makefile
        6
                     |-- dmaengine.c
                     |-- dmaengine.h
                     |-- of-dma.c
10 milyty 11
                     -- virt-dma.c
                     -- virt-dma.h
                     -- sunxi-dma
       14
              include
                `-- linux
       15
       16
                    |--sunxi
       17
                     | `---dma-sun*.h
       18
                     -- dma
       19
                         `-- sunxi-dma.h
       20
       21
           linux5.4
       22
            -- drivers
       23
       24
                `-- dma
       25
                     |-- Kconfig
       26
                     |-- Makefile
       27
                     |-- dmaengine.c
       28
                     |-- dmaengine.h
```


2.4 模块配置

ALLWIMER

2.4.1 kernel menuconfig 配置

在命令行中进入 linux 目录,执行 make ARCH=arm64 menuconfig(32 位系统为 make ARCH=arm menuconfig) 进入配置主界面 (Linux-5.4 内核版本在 longan 目录下执行: ./build.sh menuconfig, 在最后的配置中选择 Allwinner A31 SoCs DMA support),并按以下步骤操作。

```
interval of the control of the cont
```

图 2-2: 内核 menuconfig 根菜单

选择 DMA Engine support, 进入下级配置,如下图所示:

版权所有 ⑥ 珠海全志科技股份有限公司。保留一切权利

Unillis

MARTH

KZ3.

UNINTER

图 2-3: 内核 menuconfig 根菜单

linux-4.9 选择 Sunxi SOC DMA support 和 Support sunxi SOC DMA to access 4G address,如下图所示:

```
DMA Engine support

er> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features.

WMA Engine debugging

*** DMA Engine support

| MA Engine debugging

*** Sunxi SOC DMA Support
| MA Engine debugging

*** Sunxi SOC DMA Support
| Ma Engine support
| Ma Engine debugging

*** Sunxi SOC DMA Support
| Ma Engine support
| Ma Engine support
| Ma Engine support
| MA Engine debugging

*** Sunxi SOC DMA Support
| Ma Engine sup
```

图 2-4: linux-4.9 内核 menuconfig dma drivers 菜单

linux-5.4 选择 Allwinner A31 SoCs DMA support, 如下图所示:

版权所有 © 珠海全志科技股份有限公司。保留一切权利

IIII

Jany Colonia

Kitelli

Unilly,

MINTEN

图 2-5: linux-5.4 内核 menuconfig dma drivers 菜单

WHY S

2.4.2 device tree 源码结构和路径

- 设备树文件的配置是该 SoC 所有方案的通用配置,对于 ARM64 CPU 而言,设备树的路径为: kernel/{KERNEL_VERSION}/arch/arm64/boot/dts/sunxi/sun*.dtsi。
- 设备树文件的配置是该 SoC 所有方案的通用配置,对于 ARM32 CPU 而言,设备树的路径为: kernel/{KERNEL VERSION}/arch/arm/boot/dts/sun*.dtsi。
- 板级设备树 (board.dts) 路径: /device/config/chips/{IC}/configs/{BOARD}/board.dts

linux4.9 device tree 的源码结构关系如下:

```
board.dtsd |---sun*.dtsi |----sun*-pinctrl.dtsi |-----sun*-clk.dts
```

linux5.4 device tree 的源码结构关系如下:

```
1 board.dts |-----sun*.dtsi
```

JUHYEY ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

111/12/6

文档密级: 秘密

2.4.3 device tree 对 dma 控制器的通用配置

在 sun*.dtsi 文件中,配置了该 SoC 的 dma 控制器的通用配置信息, 驱动维护者维护。

```
dma0:dma-controller@03002000 {
      compatible = "allwinner,sun50i-dma";
2
                                             //兼容属性,用于驱动和设备绑定
3
      reg = <0x0 0x03002000 0x0 0x1000>;
                                         //寄存器基地址0x03002000和范围0x1000
      interrupts = <GIC_SPI 42 IRQ_TYPE_LEVEL_HIGH>; //dma控制器对应的gic硬中断号和触发类型
4
5
      clocks = <&clk_dma>;
                                   //dma使用的时钟,linux4.9配置在sun*-clk.dtsi中,linux5.4配置
      在sun*.dtsi中
      \#dma-cells = <1>;
6
                                   //用于通过dts配置dma,目前没有使用
```

2.4.4 device tree 对 dma 申请者的配置

在 sun*.dtsi 文件中,配置了 SoC dma 控制器的申请者信息。

```
spi0: spi@5010000 {
2
3
                                               //dma 通道号,参考dma
       dmas = <\&dma 22>, <\&dma 22>;
       dma-names = "tx", "rx";
                                           //dma 通道名字, 与驱动对应
4
5
```

2.5 模式

2.5.1 内存拷贝

纯粹的内存拷贝,即从指定的源地址拷贝到指定的目的地址。传输完毕会发生命个中断,并调用 回调函数。

图 2-6: DMA Engine 内存拷贝示意图

2.5.2 散列表

散列模式是把不连续的内存块直接传输到指定的目的地址。当传输完毕会发生一个中断,并调用 回调函数。

图 2-7: DMA Engine 散列拷贝示意图 (slave 与 master)

上述的散列拷贝操作是针对于 Slave 设备而言的,它支持的是 Slave 与 Master 之间的拷贝,还有另一散列拷贝是专门对内存进行操作的,即 Master 与 Master 之间进行操作,具体形式图如下:

图 2-8: DMA Engine 散列拷贝示意图 (master 与 master)

2.5.3 循环缓存

循环模式就是把一块 Ring buffer 切成若干片,周而复始的传输,每传完一个片会发生一个中断,同时调用回调函数。

版权所有 © 珠海全志科技股份有限公司。保留一切权利

JIIN TO

mem to device: NIIII ON device to mem: Rullyte O Ring Device

图 2-9: DMA Engine 循环拷贝示意图

NIII PER C

NIIN KHON

3.1 dma request channel

- 原 型: struct dma_chan *dma_request_channel(const dma_cap_mask_t *mask, dma_filter_fn fn, void * fn_param)
- 作用:申请一个可用通道,返回 dma 通道操作句柄 (在 linux-5.4 上请使用 dma request chan)。
- 参数:
 - mask: 所有申请的传输类型的掩码。
 - fn:DMA 驱动私有的过滤函数,可以为 NULL。
 - fn param:DMA 驱动私有的过滤函数,传入的私有参数,可以为 NUL
- 返回:
 - 成功,返回 dma 通道操作句柄。
 - 失败,返回 NULL。

3.2 dma request chan

- 原型: struct dma_chan *dma_request_chan(struct device *dev, const char *name)
- −个可用通道,返回 dma 通道操作句柄。
- - dev: 指向 dma 申请者的指针。
 - name: 通道名字,与设备树的 dma-names 对应。
- 返回:
 - 成功,返回 dma 通道操作句柄。
 - 失败,返回 NULL。

3.3 dma_release_channel

● 原型: void dma_release_channel(struct dma_chan *chan)

• 作用: 释放指定的 dma 通道。

• 参数:

• chan: 指向要释放的 dma 通道句柄。

• 返回:

• 无返回值

3.4 dmaengine slave config

• 原型: int dmaengine_slave_config(struct dma_chan *chan, struct dma_slave_config *config)

作用: 配置 dma 通道的 slave 信息。

• 参数:

• chan: 指向要操作的 dma 通道句柄。

• config:dma 通道 slave 的参数。

• 返回:

成功,返回 0。

失败,返回错误码。

🔰 说明

dma_slave_config 结构说明如下:

Kir

HYLY

```
struct dma_slave_config {
 2
              enum dma_transfer_direction direction;
 3
              dma_addr_t src_addr;
              dma_addr_t dst_addr;
              enum dma slave buswidth src addr width;
              enum dma_slave_buswidth dst_addr_width;
              u32 src_maxburst;
 8
              u32 dst maxburst;
9
              bool device_fc; ``
10
              unsigned int slave_id;
11
          };
12
13
    direction: 传输方向,取值MEM_TO_DEV DEV_TO_MEM MEM_TO_MEM DEV_TO_DEV
```

UNINATA D.

版权所有 © 珠海全志科技股份有限公司。保留一切权利

W/V 11

المتاليات


```
src_addr:
                 源地址,必须是物理地址
   15
   16
                 目的地址,必须是物理地址
   17
      dst_addr:
  81%
M 19
       src_addr_width:
                        源数据宽度, byte整数倍, 取值1, 2, 4, 8
   20
   21
                        目的数据宽度,取值同上
      dst_addr_width:
   22
   23
                     源突发长度,取值1,4,8
       src_max_burst:
   24
   25
      dst max burst:
                     目的突发长度,取值同上
   26
      slave_id: 从通道id号,此处用作DRQ的设置,使用sunxi_slave_id(d, s)宏设置,具体取值参照include/linux/
          sunxi-dma.h和include/linux/dma/sunxi/dma-sun*.h里使用。
```

📙 说明

传输描述符介绍:

```
struct dma_async_tx_descriptor {
        2
                dma_cookie_t cookie;
                enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
        3
rullyky of 4
                dma_addr_t phys;
                struct dma_chan *chan;
                dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
        7
                dma_async_tx_callback callback;
        8
                void *callback_param;
        9
              };
       10
                       本次传输的cookie,在此通道上唯一
       11
           cookie:
       12
       13
                            本次传输的提交执行函数
           tx submit:
       14
                           传输完成后的回调函数
       15
           callback:
       16
       17
           callback_param:
                           回调函数的参数
```

3.5 dmaengine_prep_slave_sg

● 原型:>>>

struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(struct dma_chan *chan, struct scatterlist *
sgl, unsigned int sg_len, enum dma_transfer_direction dir, unsigned long flags, void *context)

- 作用:准备一次单包传输。
- 参数:
 - chan: 指向要操作的 dma 通道句柄。
 - sql: 散列表地址,此散列表传输之前需要建立。

1147

MINTER

CHINEY

- sg len: 散列表内 buffer 的个数。
- dma_transfer_direction dir: 传输方向,此处为 DMA_MEM_TO_DEV,DMA_DEV_TO_MEM。
- flags: 传输标志。
- 返回:
 - 成功,返回一个传输描述符指针。
 - 失败,返回 NULL。

3.6 dmaengine prep dma cyclic

● 原型:

struct dma_async_tx_descriptor *dmaengine_pre_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr , size_t buf_len, size_t period_len, enum dma_transfer_direction_dir, unsigned long flags) ...ed

- 作用:准备一次环形 buffer 传输。
- 参数:
 - chan: 指向要操作的 dma 通道句柄。
 - buf addr: 目的地址。
 - buf len: 环形 buffer 的长度。
 - period len: 每一小片 buffer 的长度。
 - dma_transfer_direction dir: 传输方向,此处为 DMA_MEM_TO_DEV, DMA_DEV TO MEM。
 - flags: 传输标志。
- 返回:
 - 成功,返回一个传输描述符指针。
 - 失败,返回 NULL。

3.7 dmaengine submit

- 原型: dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
- 作用:提交已经做好准备的传输。
- 参数:
 - desc: 指向要提交的传输描述符。

- 返回:
 - 成功,返回一个大于 0 的 cookie。
 - 失败,返回错误码。

o ulay?

HYPA

Milital O

3.8 dma_async_issue_pending

- 原型: void dma_async_issue_pending(struct dma_chan *chan)
- 作用:启动通道传输。
- 参数:
 - chan: 指向要使用的通道。
- 返回:
 - 无返回值。

Rullytty 9

ATH OT RUNKTY

Wille

3.9 dmaengine_terminate_all

- 原型: int dmaengine_terminate_all(struct dma_chan *chan)
- 作用: 停止通道上的所有传输。
- 参数:
 - chan: 指向要终止的通道。
- 返回:
 - 成功,返回 0。
 - 失败,返回错误码。

▲ 警告

此功能会丢弃未开始的传输。

MYTH

MATTA

HYPHI

111/24

3.10 dmaengine_pause

- 原型: int dmaengine_pause(struct dma_chan *chan)
- 作用: 暂停某通道的传输。
- 参数:
 - chan: 指向要暂停传输的通道
- 返回:

of the state of th

版权所有 © 珠海全志科技股份有限公司。保留一切权利

14 1.

- 成功,返回 0。
- 失败,返回错误码。

NIIII O

3.11 dmaengine_resume

- 原型: int dmaengine_resume(struct dma_chan *chan)
- 作用:恢复某通道的传输。
- 参数:
 - chan: 指向要恢复传输的通道。
- 返回:
 - 成功,返回 0。
 - 失败,返回错误码。

UNINETY D.

3.12 dmaengine_tx_status

White !

- 原 型: enum dma_status dmaengine_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *state)
- 作用: 查询某次提交的状态。
- 参数:
 - chan: 指向要查询传输状态的通道。
 - cookie:dmaengine_submit 接口返回的 id。
 - state: 用于获取状态的变量地址。
- 返回:
 - DMA SUCCESS,表示传输成功完成。
 - DMA_IN_PROGRESS,表示提交尚未处理或处理中。
 - DMA PAUSE,表示传输已经暂停。
 - DMA ERROR,表示传输失败。

401

Kifell

279

版权所有 © 珠海全志科技股份有限公司。保留一切权利

15 III

MIN EN

WHALLY ON

rullyty of

4 DMA Engine 使用流程。

Hay or number of

本章节主要是讲解 DMA Engine 的使用流程,以及注意事项

4.1 基本流程

rullyft y O'

4.2 注意事项

- 回调函数里不允许休眠,以及调度
- 回调函数时间不宜过长
- Pending 并不是立即传输而是等待软中断的到来,cyclic 模式除外
- 对于 linux-4.9, 在 dma slave config 中的 slave id 对于 devices 必须要指定

WEX ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

16

CIMPLE STATE

WHYEN ON

5 使用范例

Att of Limited

CINACION ON

RIHATA

5.1 范例

```
struct dma_chan *chan;
        2
               dma_cap_mask_t mask;
        3
               dma_cookie_t cookie;
        4
               struct dma_slave_config config;
        5
               struct dma_tx_state state;
        6
               struct dma_async_tx_descriptor *tx = NULL;
        7
               void *src_buf;
        8
               dma_addr_t src_dma;
Rullyty 010
        9
                dma_cap_zero(mask);
                dma_cap_set(DMA_SLAVE, mask);
                dma_cap_set(DMA_CYCLIC, mask);
       13
       14
                /* 申请一个可用通道 */
                chan = dma_request_channel(dt->mask, NULL, NULL);
if (!chan){
       15
       16
                if (!chan){
       17
                    return -EINVAL;
       18
       19
               src_buf = kmalloc(1024*4, GFP_KERNEL)
       20
       21
               if (!src_buf) {
       22
                   dma_release_channel(chan);
       23
                   return -EINVAL;
       24
               }
       25
               /* 映射地址用DMA访问 */
       26
               src_dma = dma_map_single(NULL, src_buf, 1024*4, DMA_T0_DEVICE);
       27
       28
     29
                config.direction = DMA_MEM_TO_DEV;
       30
                config.src_addr = src_dma;
       31
                config.dst_addr = 0x01c;
                config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
       32
       33
                config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
       34
                config.src_maxburst = 1;
       35
                config.dst maxburst = 1;
       36
                config.slave_id = sunxi_slave_id(DRQDST_AUDIO_CODEC, DRQSRC_SDRAM);
       37
       38
                dmaengine slave config(chan, &config);
       39
               tx = dmaengine_pre_dma_cyclic(chan, scr_dma, 1024*4, 1024, DMA_MEM_T0_DEV,
                                   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
       41
       42
       43
               /* 设置回调函数 */
       44
               tx->callback = dma_callback;
               tx->callback = NULL;
       45
       46
               /* 提交及启动传输 */
       47
```

Ullyty Or

文档密级: 秘密

48 cookie = dmaengine_submit(tx); 49 dma_async_issue_pending(chan);

NIIN/EN ON

Rully 12 Or

rully fel O1

NIIII/EN ON

rully fel O1

rully fel O1

NIIII PAR

nully the

NIIN KHON

NIINEY ON

rullyft JOY

Number of State of St

NIIII/EN ON

NIIII/EN ON

nully to you

NIIII ON

NIIII ON

WHAT OF

NIINTH ON

NUMPET C

NIIN EN ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

NIII/EX

6.1 dma debug 宏

在内核的 menuconfig 菜单项中使能该选项后,在 dma 传输时,会打印 dma 描述符,寄存器和 其他一些 debug 信息,有助于我们进行 debug。该菜单配置项的打开方式如下:

在命令行中进入内核根目录 (kernel/linux-4.9),执行 make ARCH=arm64(arm) menuconfig 进入配置主界面,并按以下步骤操作: 首先,选择 Device Drivers 选项进入下一级配置,如下图所示:

选择 DMA Engine support, 进入下级配置,如下图所示:

版权所有 © 珠海全志科技股份有限公司。保留一切权利

MINTEN

MINITA

JIIYEY

图 6-2: 内核 menuconfig 根菜单

选择 DMA Engine debugging, 如下图所示:

图 6-3: 内核 menuconfig 根菜单

把 CONFIG_DMADEVICES_DEBUG 这个配置打开后,在使用 dma 时,会有一些对应的打印调试信息,方便我们定位问题

版权所有 © 珠海全志科技股份有限公司。保留一切权利

NJHY^T

Lilyft)

Kity

UNITAGE.

6.2 常见问题调试方法

6.3 利用 sunxi_dump 读写相应寄存器

Hylling .

```
cd /sys/class/sunxi dump/
   1. 查看一个寄存器
 3
    echo 0x03002000 > dump; cat dump
 4
 5
   结果如下:
 6
   cupid-p1:/sys/class/sunxi_dump # echo 0x03002000 > dump ;cat dump
   0x00000022
 8
 9
   2.写值到寄存器上
 10
    echo 0x03002000 0x1 > write ; cat write
 11
 12
   3. 查看一片连续寄存器
 13
    echo 0x03002000,0x03002fff > dump; cat dump
 14
0,15
   cupid-p1:/sys/class/sunxi_dump # echo 0x03002000,0x03002fff > dump;cat dump
'16
 17
   0 \times 000000003002000: 0 \times 000000022 0 \times 00000000 0 \times 00000000 0 \times 000000000
 19
   0x000000003002020: 0x000000ff 0x00000000 0x00000007 0x00000000
 20
   21
   22
   0 \times 0000000003002060: 0 \times 000000000 0 \times 000000000 0 \times 000000000 0 \times 000000000
   0 \times 0000000003002070: 0 \times 000000000 0 \times 000000000 0 \times 000000000 0 \times 000000000
 25
 26
   0 \times 000000003002080: 0 \times 00000000 0 \times 00000000 0 \times 00000000 0 \times 000000000
 27
   28
   29
   30
 31
   32
   0x000000003002100: 0x00000000 0x00000000 0xfc0000e0 0x83460240
%35
   0x000000003002110: 0xfc106500 0x05096020 0x00000b80 0x00010008
   0x000000003002120: 0x00000000 0x00000000 0x0000000c 0xfc0000c0
36
 37
   0 \times 000000003002130: 0 \times 000000000 0 \times 000000000 0 \times 000000000 0 \times 000000000
   0x000000003002140: 0x00000000 0x00000000 0xfc0001e0 0x83430240
 38
 39
   0x000000003002150: 0xfc506200 0x05097030 0x00000e80 0x00010008
 40
   0x000000003002160: 0x00000000 0x00000000 0x0000000c 0xfc0001c0
 41
   42
   43
   44
   0 \\ \times 00000000030021 \\ a0: 0 \\ \times 000000000 \ 0 \\ \times 000000001 \ 0 \\ \times 000000000 \ 0 \\ \times 000000000
   46
   47
   48
   49
 50
   0 \times 000000003002210: 0 \times 000000000 0 \times 000000000 0 \times 000000000 0 \times 000000000
```

CHINEY ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

Mr., 21

%66 $0 \\ \times 0000000003002260 \\ : 0 \\ \times 000000000 \\ 0 \\ \times 000000001 \\ 0 \\ \times 000000000 \\ 0 \\ \times 000000000 \\$ $0 \times 0000000003002290$: 0×000000000 0×000000000 0×000000000 0×000000000 $0 \times 00000000030022e0$: 0×000000000 0×000000001 0×000000000 0×000000000 $0 \times 0000000003002310$: 0×000000000 0×000000000 0×000000000 0×000000000 $0 \times 0000000003002320$: 0×000000000 0×000000001 0×000000000 0×000000000

通过上述方式,可以查看,从而发现问题所在。

Thinkey of thinkey of thinkey of thinkey of thinkey of thinkey of thinkey of

版权所有 ⑥ 珠海全志科技股份有限公司。保留一切权利

ININE

HYZY S

KA

著作权声明

版权所有 © 2022 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。

11/12/01