Universidad Nacional Autónoma de México Facultad de Ciencias Complejidad Computacional

Tarea 3

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

17 de Septiembre 2019

- 1. Seleccione **uno** de los siguientes dos ejerccios:
 - a) Defina un programa M para una MTD que acepte el siguiente lenguaje:

$$\mathcal{L} = \{0(0+1)^*0 + 1(0+1)^*1\}$$

Lo primero que se hará por cuestiones de facilidad es crear un autómata finito no determinista (NFA) y después pasarlo a una MTD.

Recordando la definición de MT que es:

$$M = (Q, \Sigma, \Gamma, \delta, s, B, F)$$

Donde tenemos que:

- $Q = \{q_0, q_1, q_2, q_3, q_4\}$ $\Sigma = \{0, 1\}$
- $\Gamma = \{0, 1, \#\}$
- δ dada por:

Estado	0	1	#
q_0	$(q_1, 1, R)$	$(q_2,1,R)$	_
q_1	$(q_3, 0, R)$	$(q_1,1,R)$	_
q_2	$(q_2, 0, R)$	$(q_4,1,R)$	_
q_3	$(q_1, 0, R)$	$(q_1, 1, R)$	$(q_3, \#, R)$
q_4	$(q_2,0,R)$	$(q_2,1,R)$	$(q_4, \#, R)$

- $s = q_0$
- B = #
- $F = \{q_3, q_4\}$
- b) Defina un programa M para una MTD que acepte el siguiente lenguaje:

$$\mathscr{L} = \{1^n 0^m | n, m \ge 0 \land 2 | (n+m)\}$$

Hint:

$$\mathcal{L} = \{(11)^*(00)^* + 1(11)^*0(00)^*\}$$

1

- 2. Definir formalmente, en términos de problemas y en términos de lenguajes, las clases:
 - CoP
 - En términos de problemas:

$$\operatorname{co-P} = \{\Pi^c : \Pi \in P\}$$

• En términos de lenguajes:

Sea Π un problema en P codificado en un alfabeto Σ y decimos que hay una cadena s que es aceptado, por otro lado, sea Π^c un problema en P decimos que hay una cadena w que es aceptada.

- CoNP
 - En términos de problemas:

$$co-NP = \{\Pi^c : \Pi \in NP\}$$

• En términos de lenguajes:

 $\text{co-NP} = \{\Sigma^* - L : L \text{ es es una lenguaje sobre el alfabeto } \Sigma \text{ y } L \in NP\}$

- 3. Seleccionar dos de los siguientes problemas en la clase \mathbf{P} , plantearlos como problemas de decisión y enunciar sus complementos.
 - Problema Flujo Máximo
 - Problema de Ruta más corta.

Ejemplar: Dada un gráfica G = (V, E), un peso en cada arista w(e), y un número k. **Pregunta:** ¿Existe un camino de u a v de a lo más k (la suma del peso de sus aristas)?

Complemento:

Ejemplar: Dada un gráfica G = (V, E), un peso en cada arista w(e), y un número k. **Pregunta:** ¿Para todo camino de u a v es mayor que k?

Problema Apareamiento en gráficas bipartitas

Ejemplar: Dada una gráfica bipartita G = (U, V, E), un apareamiento M y un número k.

Pregunta: ¿Existe un apareamiento bipartito que sea por lo menos de tamaño k?

Complemento:

Ejemplar: Dada una gráfica bipartita G = (U, V, E), un apareamiento M y un número L

Pregunta: ¿Para todo apareamiento bipartito es de tamaño menor a k?

- 4. Seleccionar dos de los siguientes problemas en la clase **NP**, plantearlos como problemas de decisión y enunciar sus complementos.
 - Problema de Coloración en Gráficas.
 - Problema del Clan:

Ejemplar: Gráfica G, entero positivo K.

Pregunta: ¿La subgráfica completa más grande en G contiene exactamente K vértices?

Complemento:

Ejemplar: Gráfica G, entero positivo K. Pregunta: K es el tamaño del clan máximo? Problema Conjunto Independiente

Ejemplar: Sea una gráfica G=(V,E) no dirigida y sea $I\subseteq V$. Decimps que I es un conjunto independiente si cualesquirra $i,j\in I$ entonces no hya una arista entre i y j **Pregunta:** Sea una gráfica G=(V,E) no dirigida y una meta k, ¿hay un conjunto independiente I con |I|=k?

Complemento:

Ejemplar: Sea una gráfica G = (V, E) y un entero positivo $k \leq |V|$.

Pregunta: (De hecho el complemento del conjunto independiente es $Vertex\ cover$). Existe una cubierta de vértices de tamaño k o menor para G, es decir, un subconjunto $V' \subseteq V$ tal que $|V'| \le k$ y, que para arista $\{u,v\} \in E$, al menos una de u y v pertenezca a V'?

5. Para uno de los problemas presentados en el ejercicio 3, digamos Π , muestre que tanto Π como Π^c están en P.

¿Siempre sucede esto? Es decir, $\partial P = CoP$? Demuestre.

Primero se revisará el Teorema 16.1[4], que dice que si un problema A es un problema en P, entonces el complemento \bar{A} de A está también en P.

Demostración. Como A está en P, entonces hay un algoritmo polinomial que resuelve A. Un algoritmo polinomial para resolver el complemento de A es exactamente el mismo algoritmo, solo con la substitución de un no en vez de un si cuando fue reportado, y viceversa.

6. ¿La intersección de NP y coNP es vacía? Justifica tu respuesta.

Figura 1: La intersección no es vacía

Por que los problemas P están en la intersección de ambos.

7. Ejercicio Adicional (Puntos Adicionales) $\dot{\delta}NP=coNP$? ¿Quién está contenido en cuál? Justifica tu respuesta.

Como todos los problemas en NP pueden ser reducidos a un problema de desición, se sigue que para cada problema en NP podemos construir una máquina de Turing no determinista que decide su complemento en tiempo polinomial, es decir, $NP \subseteq coNP$. De esto se sigue que que el conjunto de complemento de problemas en coNP, es decir, $coNP \subseteq NP$. Por lo tanto coNP = NP. La prueba de que ningun problema coNP pueda estar en NP si $NP \neq coNP$ e simétrica.

Bibliografía

- [1] co-np wikipedia. https://en.wikipedia.org/wiki/Co-NP. (Accessed on 09/17/2019).
- [2] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
- [3] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
- [4] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.