

РАДИОЛЮБИТЕЛЮ О МИКРОПРОЦЕССОРАХ И МИКРО-ЗВМ

модуль сопряжения

Для долговременного хранения информации в ЭВМ используют самые различные устройства. Наиболее распространенными являются устройства, в которых для записи и хранения информации применяют магнитные носители: магнитные ленты, магнитные диски и т. д. Обычно эти устройства из-за своей сложности имеют высокую стоимость, поэтому с появлением дешевых микро-ЭВМ для долговременного хранения информации стали все чаще и чаще использовать кассетные магнитофоны. Для этой цели были разработаны как специализированные цифровые магнитофоны, так и устройства сопряжения с бытовыми кассетными маг-

В этой статье вы познакомитесь с описанием модуля сопряжения бытового кассетного магнитофона с микро-ЭВМ. Модуль позволяет записывать и считывать и иформацию со скоростью 1500 бит/с. Плотность записи при этом составляет около 32 бит на миллиметр. Совместно с модулем авторы используют кассетный магнитофон «Романтик-306» и кассеты МК-60-2, однако возможно использование любого другого близкого по параметрам монофонического или стереофонического кассетного магнитофона.

При указанной скорости записи и чтения данных на одну кассету МК-60-2 с двух сторон можно записать до 600 килобайт информации.

Как и всегда, при разработке устройств, работающих совместно с микропроцессором, необходимо решить задачу распределения выполняемых функций между программой и аппаратурой. Мы стремились максимально использовать «программируемость» микропроцессора, чтобы упростить аппаратуру и еще раз подчеркнуть универсальность микропроцессора как электронного компонента. При этом оказалось возможным программно реализовать весь алгоритм работы модуля, возложив на аппаратуру только задачу электрического согласования.

Запись информации на ленту производится последовательно бит за битом по методу двухфазного кодирования. На рис. 1 приведены временные диаграммы, поясняющие принцип работы модуля сопряжения. На днаграмме «А» показан байт Е6Н (его двоичное представление имеет вид 11100110). преобразованный в последовательную форму. Отдельные разряды байта следуют с периодом $T_{\text{след}}$, причем запись байта начинается со старшего разряда, т. е. сначала должен быть записан разряд D7, затем D6, D5 и т. д. Однако непосредственно записать такой сигнал на магнитную ленту нельзя, так как частотная характеристика магнитофона не соответствует спектру записываемого сигнала. Это происходит потому, что в потоке данных неравномерно чередуется количество нулей и единиц, а следовательно, имеется постоянная составляющая, которая не может быть записана на обычный магнитофон. Для того чтобы записать такой поток данных, обычно применяют один из известных способов модуляции несущей частоты - по амплитуде, частоте или

Используя метод двухфазного кодирования, можно так преобразовать (закодировать) поток данных, что он не будет содержать постоянной составляющей. Это позволит записывать данные (двухфазные коды) на магнитную ленту непосредственно без предварительной модуляции.

На диаграмме «Б» (см. рис. 1) показан двухфазный код байта данных **Еб Н**, записываемый на ленту. Этот код формируется следующим образом. Всегда в середине передаваемого бита (моменты времени Т_с) происходит изменение его значения на противоположное, причем изменение с «1» на «0» означает,

Рис. 1

Рис. 2

что передан бит, равный «0», а обратное изменение, с «0» на «1»— бит, равный «1».

На границе двух одинаковых по значению смежных битов (моменты времени T_r) также всегда происходит изменение значения двухфазного кода. На границе разных по значению смежных битов изменение двухфазного кода не происходит.

Подобным образом должны быть закодпрованы все биты информации, записываемые на ленту. Период времени Т_{след} выбран равным 0,666 мс. При этом скорость записи-считывания равна 1500 бит/с. Опыт показал, что при такой скорости можно обеспечить надежное, практически безошибочное считывание информации.

Рассмотрим теперь, каким образом при чтении происходит декодирование двухфазных кодов. Предположим, что считывание данных началось в момент времени, обозначенный на рис. 2 t₀. Подпрограмма чтения, которая будет описана ниже, позволяет считывать и распознавать информацию примерно 1 раз в 15 мкс. Начиная с момента времени to, подпрограмма считывания производит чтение информации и ее анализ (момент времени t_a на рис. 2) до тех пор, пока не произойдет изменение уровня сигнала по сравнению с предыдущим считанным значением. На рис. 2 эти моменты времени обозначены t₆. Уровень сигнала, считанный в момент времени t₆, рассматривается как полезная информация и поэтому запоминается.

После распознавания и запоминания принятого бита происходит задержка в работе программы, равная 0,75 Т_{след}, и весь процесс считывания информации начинается вновь.

Рассмотрим, каким образом описанный алгоритм работы модуля сопряжения реализован аппаратурно и программно.

На рис. 3 приведена принципиальная электрическая схема блока сопряжения кассетного магнитофона с микро-ЭВМ. Шинный формирователь D1 связывает блок с младшим разрядом шины данных ШД [0]. На элементах D2 и D3. I собран дешифратор адреса устройства. При наличии на младших восьми разрядах шины адресов адреса 01 Н он формирует низкий уровень на входе «выбор модуля» (ВМ) микросхемы D1, разрешая тем самым работу шинного формирователя. На вход ВШ шинного формирователя поступает сигнал **ЧТВВ** с шины управления микро-ЭВМ. Если на входе ВШ низкий уровень, то информация со входа DI1 поступает на линию ШД[0] шины данных.

При записи на магнитную ленту на D-триггере D4 очередной бит данных хранится до прихода следующего сигнала записи в устройство с адресом 01 H. С выхода триггера D4 через инвертор D3.3 и фильтр нижних частот закодированный бит данных поступает на вход «запись с звукоснимателя» кассетного магнитофона.

При воспроизведении сигнал с линейного выхода магнитофона через фильтр нижних частот поступает на вход о перационного усилителя А1. На выходе усилителя формируются прямоугольные импульсы амплитудой ±5 В. Диод V1 срезает отрицательнудю составляющую сигнала. Далее считанный и сформированный сигнал через микросхему D1 поступает на шину данных микро-ЭВМ.

Итак, описанный модуль сопряжения позволяет записать на магнитную лен-

*****	*****	*****	*****	************************
! #AP.! KDA !	METKA !	MHEM. !	DITEPAHA	! KOMMEHTAPWA
! 1 ! 2 !	3 !	4 !	5	. 6
*****	*****	******	*****	**************
F100 C5	3NMAF:	PUSH	B	; СОХРАНИТЬ СОДЕРЖИМОЕ ВС
F101 D5		PUSH	D ;	COXPAHUTE COAEPWUNDE DE
F102 F5		PUSH	PSW	; СОХРАНИТЬ СОДЕРЖИМОЕ РЅЫ
F103 57		MOV		D = ЗАПИСИВАЕМОМУ БАЙТУ
F104 0E08		MVI	C,8 ;	C=8 (CYETYNK BUTOB B BANTE)
F106 7A	зпчкл:	MOV	A,D	; А = ЗАПИСЫВАЕМОНУ БАЙТУ
F107 07		RLC	;	: MЛ. РАЗРЯА A = ЗАПИС. ВИТУ
F108 57		MOV	D,A ;	; D = ЗАПИСЫВАЕМОМУ ВАЙТУ
				; ФОРМИРОВАНИЕ АВУХФАЗН. КОДА
F109 3E01		MVI	A,1 ;	; MA. PA3PAA A = 1
F10B AA		XRA	D ;	"ИСКЛ. ИЛИ" С ЗАПИС. БИТОМ
F10C D301		OUT	01 . ;	BUBDA PESYNETATA
F10E CD21F1		CALL	3AAPO5	ЗАДЕРЖКА ПОЛПЕРИОДА ТСЛЕД.
F111 3E00		MVI	A,0	; Мл. РАЗРЯД А = О
F113 AA		XRA	D ;	"ИСКЛ. ИЛИ" С ЗАПИС. ВИТОМ
F114 D301		OUT	01	; BUBDA PE3YALTATA
F116 CD21F1		CALL	3AAP05	; ЗААЕРЖКА ПОЛПЕРИОДА ТСЛЕД.
F119 OD		DCR	C	BCE BUTH JANUCAHN?
F11A C206F1		JNZ	зпчкл ;	ЕСЛИ НЕТ, ТО ПОВТОРИТЬ
F11D F1		POP	PSW	; BOCCTAHOBUTS COAEP#. PSW
F11E D1		POP	D ;	BUCCTAHOBNTS COAEP#. DE
F11F C1		POP	B ;	ВОССТАНОВИТЬ СОАЕРЖ. ВС
F120 C9		RET	;	возврат в основную прогр.
F121 0628	3AAPO5:			; В = КОНСТАНТЕ ЗАДЕРЖКИ
F123 05	3AAPSS:		В ;	8 = 8 - 1
F124 C223F1		JNZ	3AAP55	: ЕСЛИ В НЕ РАВНО О, ТО ПОВТОР
F127 C9		RET	:	ВОЗВРАТ ИЗ ПОАПРОГ. ЗААРОБ

Рис. 4

ту информацию с младшего разряда шины данных, а считанный с ленты сигнал подать на тот же разряд шины данных. Конечно, два этих процесса не могут идти одновременно.

Программное обеспечение блока сопряжения выполняет следующие функции:

— при записи данных сначала производит преобразование записываемого байта из параллельного в последовательный вид, т. е. все биты одного записываемого байта последовательно заносятся в триггер D4;

- затем каждый записываемый бит кодирует в соответствии с методом двухфазного кодирования, который был описан выше:
- и чаконец, формирует соответствующие временные интервалы.

На рис. 4 представлен текст подпрограммы записи ЗПМАГ. Эта подпрограмма производит запись одного байта информации. Для записи последовательности байтов необходимо несколько раз обратиться к этой подпрограмме. Для этого основная программа помещает байт информации, который необ-

ходимо записать, в регистр А и после этого вызывает подпрограмму по команде CALL ЗПМАГ.

Перед началом своей работы подпрограмма «сохраняет» содержимое всех регистров микропроцессора в стеке, а по окончании - восстанавливает содержимое регистров. Параллельно-последовательное преобразование происходит при выполнении команды циклического сдвига содержимого аккумулятора ---RLC. При этом в младший разряд аккумулятора при каждом выполнении этой команды оказывается записанным очередной бит данных, начиная со старшего бита записываемого байта данных.

Двухфазное кодирование реализовать очень просто, если использовать операцию «исключающее ИЛИ» над содержимым аккумулятора и какого-либо внутреннего регистра микропроцесcopa.

Напом ним. что при выполнении операции «исключающее ИЛИ» над двумя битами в результате будет «1» в том и только в том случае, если входные величины имеют разные значения. Первые полпериода (0,5 Телед), а этот временной интервал формирует специальная подпрограмма «ЗАДР05», выполняется операция «исключающее ИЛИ» над передаваемым битом и «1», вторые полпериода аналогичная операция выполняется с «0».

Теперь несколько слов о подпрограмме «ЗАДР05». При обращении к этой подпрограмме в работе основной программы происходит временная задержка (в нашем случае полпериода тактовой частоты), длительность которой определяется числом, помещенным в регистр При частоте тактовых сигналов С1 и С2 микропроцессора, равной 2 МГц, это число равно 40. При любой другой (меньшей) частоте задающего генератора эта величина может быть пересчитана по формуле:

константа =
$$40 \cdot \frac{F_{\text{такт}}}{2}$$
.

где $F_{\text{такт}}$ — в МГц.

В поле комментариев приведены соответствующие разъяснения для каждой команлы

Подпрограмма чтения сложнее подпрограммы записи и вот по каким причинам. Во-первых, информация записывается на ленту в виде сплошного потока битов, а нам важно выделить из этого потока отдельные байты, так как разрядность микро-ЭВМ равна 8 битам, т. е. 1 байту, поэтому для достижения байтовой синхронизации должны быть предусмотрены дополнительные меры. Во-вторых, общая проблема при использовании метода двухфазного кодирования -это задача распознавания: не является ли считанный сигнал инвертированным (в магнитофоне сигнал может

***	*****	*****	*****	**********
! AAP.! KDA !	METKA !	MHEM. !	DNEPAHA	! KOMMEHTAPUN !
! 1 ! 2 !	3 !			! 6 !
******	****	*****	*****	*******
F128 C5	YTMAC:	PUSH	В	; СОХРАНИТЬ СОДЕРЖИМОЕ ВС
F129 D5		PUSH		СОХРАНИТЬ СОДЕРЖИМОЕ DE
F12A 0E00		MVI	C.0	B HAYANE PESYNETAT = 0
F12C 57		MOV		D= ПРИЗНАКУ: БЫЛА ЛИ СИН-
1220 0,				ХРОНИЗАЦИЯ АОСТИГНУТА РАНЕЕ
F12D DB01		IN		ВВОА С МАГНИТОФОНА
F12F 5F		MOV		E = NPUHRTOMS ENTS
F130 79	ЧКЛЧТ:	MOV		A = PE39AbTAT9
F131 E67F	41(7) 111	ANI		СТАРШИЙ БИТ = 0
		RLC		: САВИГ РЕЗУЛЬТАТА ВЛЕВО
F133 07		MOV		
F134 4F	измсиг:		01	: ЗАМЕНИТЬ РЕЗУЛЬТАТ : ВВЕСТИ БИТ ДАННЫХ
· F135 D801	namuni :			
F137 BB		CMP	Ε ;	ТАКОИ ЖЕ КАК И ПРЕДЫ-
		1.		; АЧШИИ СЧИТАННЫЙ ВИТ?
F138 CA35F1		JZ		; АА> ПОВТОРИ ВВОА
F13B E601		ANI	1 ;	только младший вит
F13D B1		ORA	C ;	ОВЪЕДИНИТЬ С ПРЕДЫД. РЕЗ.
F13E 4F		MOV	C,A ;	НОВЫЙ РЕЗУЛЬТАТ
F13F CD6EF1		CALL	3AAP75	ЗАДЕРЖКА НА 0,75 ТСЛЕД.
F142 DB01		IN		; BBDA BUTA
F144 5F		MOV	E.A	СОХРАНИТЬ ПРИНЯТЫЙ БИТ
F145 7A		MOV		: А = ПРИЗНАКУ ДОСТИМ. СИНХР.
F146 B7		ORA	A	СИНХРОНИЗАЦИЯ АОСТИГНУТА?
F147 F263F1		JP		AA> NEPEXDA HA CTAPT
F14A 79		MOV		A= PE3YALTATY
F14B FEE6		CPI		СРАВНИТЬ С БАИТОМ СИНХР. ЕЕН
F14D C257F1		JNZ	пинвс	ПОПРОВОВАТЬ СРАВНЕНИЕ С
1140 020/		0112		NHBEPCHUM BANTOM CHHXP.
F150 AF		XRA	Α	DYNCTUTE AKKYMYNATOP
F151 3200F2		STA		: УСТАНОВИТЬ ПРИЗНАК ИНВЕРСИИ
F151 3200F2 F154 C361F1		JMP	CTAPT1	; эстиновить признак инверсии
	DULIDO			
F157 FE19	пинвс:	CPI	19H ;	СРЯВНИТЬ С ИНВЕРСИ. БЯИТОМ
E1 50 503051		W4.100		; СИНХРОНИЗЯЦИИ
F159 C230F1		JNZ	измсиг ;	HET> NOBTOP
F15C 3EFF		MVI		А = ПРИЗНАКУ ИНВЕРСИИ
F15E 3200F2		STA	UHBEPC ;	ЗАПОМНИТЬ ЕГО
F161 1609	CTAPT1:		D,9	; D = 0 BUT + 1
F163 15	CTAPT:	DCR	D	; D = D - 1
F164 C230F1		JNZ	измсиг	ECAN # 0> NOBTOP
F167 3A00F2		LDA ·	HBEPC :	A = NPN3HAKY NHBEPCNN
F16A A9		XRA	C '	"ИСКЛИЧ. ИЛИ" С РЕЗУЛЬТАТОМ
F16B D1		POP	D	BUCCTAHOBUTE COMEPHUNDE DE
F16C C1		POP	8	ВОССТАНОВИТЬ СОДЕРЖИМОЕ ВС
F16D C9		RET		возврат в основную прогр.
				ПОАПРОГРАММА ЗААЕРЖКИ
			į	HA 0,75 REPUDAR TOREA.
F16E 063C	3AAP75:	MUT		
F170 05	3AAP77:		B .	B = KOHCTAHTE BAAEPWKM
F170 03 F171 C270F1	UIMC//;	JNZ	3AAP77	8 = 9 - 1
F174 C9		RET	SHAP//	B = 03
F174 C7	MARERC		0517511	
F1/3 *	HBEPC	EQU	0F175H ;	ЯЧЕЙКЯ ДЛЯ ПРИЗНАКА ИНВЕРСИИ

PHC. 5

инвертироваться как четное, так и нечетное число раз). Обе эти задачи решены следующим образом. Перед записью блока информации на ленту сначала записывают специальный байт синхронизации. Его значение в данном случае Е6Н. При чтении программа прежде всего определяет, равен ли считанный байт байту синхронизации. Возврат в основную программу не происходит, пока на ленте не будет обнаружен либо байт синхронизации, либо его инверсное значение (19Н). Если обнаруженный байт синхронизации инвертирован, то перед возвратом из подпрограммы инвертируются и все остальные считываемые байты.

Текст подпрограммы чтения «ЧТМАГ» приведен на рис. 5. Основная программа вызывает подпрограмму «ЧТМАГ», помещая в аккумулятор величину FFH, что «говорит ей» о необходимости поиска байта синхронизации. или величину **08Н** — указатель того, что синхронизация уже была достигнута ранее. Подпрограмма «ЧТМАГ» не изменяет содержимого регистров микропроцессора, за исключением содержимого регистра А, в котором при возврате из подпрограммы находится байт информации, считанный с ленты. Подпрограмма производит считывание информации с ленты бит за битом, пока не будут «накоплены» все 8 битов од-

***	*****	****	****	*****	*****
! AAP	.! KOA !		! MHEM.	! ОПЕРАНА !	КОММЕНТАРИЯ .
		3	; 4	! 5 !	6 !
F000 F003 F006	31FFF0 110020 3E00		LXI LXI MVI	SP,0F0FFH; D,2000H ; A.00H :	НАСТРОИКА ЧКАЗАТЕЛЯ СТЕКА DE = КОЛИЧ. ЗАПИСЫВ. БАИТОВ "ПЧСТОИ" ВИИТ ПЕРЕД СИНХРО
FOOB FOOD	CDOOF 1 3EE6 CDOOF 1		CALL MVI CALL	3ПМАГ ; A,0E6H ; 3ПМАГ ;	ЗАПИСЬ БАИТА БАИТ СИНХРОНИЗАЦИИ ЗАПИСЬ БАИТА
F010 F012 F015	3E22 CD00F1	3AN22:	MVI CALL DCX	A,22H 3NHAF D	"ТЕСТ" БАИТ ЗАПИСЬ БАИТА ЧМЕНЬШИТЬ СЧЕТЧИК БАИТОВ
F016 F017 F018 F018	7A B3 C210F0 76		MOV ORA JNZ HLT	A,D ; E ; 34022 ;	POBEPKA HA D = E = O POBTOP 3ANUCH 22H KOHEU PABOTN PPOPPAMAN
F100	#	SUMAL	EQU	OF100H ;	MAPEC NOANPOLEAMMN SAUNCH

Рис. 6

~~~~~		****		~~~~~~	**********************
! AAP.!	KDA !	METKA !	HHEM. !	DNEPAHA !	KOMMEHTAPHA !
****	****	****	****	*****	****
###### F01C F01F F022 F024 F027 F029 F02C F02D F02E F02F F031 F034	####### 31FFF0 110020 3EFF CD28F1 FE22 C239F0 18 7A B3 3E08 C224F0 3E81	**************************************	####### LXI LXI HVI CALL CPI JNZ HOV ORA HVI JNZ HVI	SP,0F0FFH; D,2000H; A,0FFH; TMARF; 22H; DWBK; D, A,D; E,08H; TM,08H; TM,08H;	*************************************
F036 F038 F039 F03B F03D F128	D300 76 3EOF D300 76	омък:	OUT HLT HVI OUT HLT EQU	00H; A,0FH; 00H; 0F128H;	ВМВОА НА СВЕТОАИОАМ КОНЕЦ РАБОТМ СООБЩЕНИЕ ОБ ОМИБКЕ ЧТЕНИЯ ВМВОА НА СВЕТВАИОАМ КОНЕЦ РАБОТМ ААРЕС ПОАПРОГРАММЫ ЧТМАГ

PHC. 7

ного байта. Для временного хранения результата использован регистр С, в который первоначально записывают величину 00 Н. В начале работы подпрограммы «ЧТМАГ» происходит считывание информации из порта 01Н до тех пор, пока не произойдет изменение сигнала из «0» в «1» или наоборот из «1» в «0». После этого выполняется операция логического сложения (ИЛИ) считанного бита и предыдущего результата, находящегося в регистре С, содержимое которого предварительно должно быть сдвинуто влево, для освобождения места для нового бита. Далее происходит задержка работы программы на 0,75 Т_{след} (подпрограмма «ЗАДР75»). Это необходимо для уверенного считывания данных в середине «полубита».

После декодирования принятого бита программа всегда проверяет: была ли синхронизация достигнута или нет. Об этом можно узнать по содержимому аккумулятора, которое определяется основной программой, как было

описано выше. Если синхронизация не достигнута, то после приема каждого бита происходит сравнение результата с байтом синхронизации (Е6Н) или его инверсией (19Н) до тех пор, пока байт синхронизации не будет принят. Если он инвертирован, то в специально отведенную ячейку памяти «ИНВЕРС» записывается величина FFH - признак инверсии, в противном случае в эту ячейку записывается 00 Н. Если синхронизация уже достигнута и в ячейке «ИНВЕРС» записан код FFH, то «собранный» в аккумуляторе байт перед возвратом в основную программу инвертируется. Напомним, что константу, определяющую время работы подпрограммы «ЗАДР75», необходимо изменить, если частота сигналов С1 и С2 отличается от 2 МГц. Дополнительные разъяснения по программе даны в поле комментариев.

Подпрограммы «ЧТМАГ» и «ЗПМАГ» входят в состав основной управляющей программы микро-ЭВМ. Приведенные на рис. 4 и 5 под-

программы специально оттранслированы для работы в той области адресов памяти, где в нашей микро-ЭВМ находится ОЗУ. Подпрограммы можно ввести в ОЗУ с помощью описанного ранее отладочного модуля и использовать для тестирования модуля сопряжения. Кроме этих подпрограмм, нам потребуются еще две небольшие программы. На рис. 6 приведена программа, позволяющая записать на ленту длинную серпю байтов, имеющих значение 22 Н. С помощью этой програмы можно получить «тест-ленту» для проверки модуля сопряжения.

Если в магнитофоне отсутствует АРУЗ, уровень записи необходимо установить по индикатору так же, как п при записи музыки. Допускается несколько превысить номинальный уровень записи. Уровень записи устанавливают при неподвижной ленте после запуска в работу программы, приведенной на рис. 6. Затем программу запускают вновь и производят запись. После записи ленту перематывают на начало записи и магнитофон включают в режим воспроизведения. Щуп осциллографа подключают к выходу усилителя A1. Резистором R1 устанавливают уровень входного сигнала, при котором на экране осциллографа видны прямоугольные импульсы с крутыми фронтами и плоской вершиной.

После этого ленту опять перематывают в начало, запускают в работу программу, приведенную на рис. 7, и включают в магнитофоне режим «Воспроизведение». Программа сравнивает считанный с ленты байт с байтом 22 Н. Если будет обнаружено несоответствие, то на светодиодах D0-D7 отладочного модуля появится комбинация 0FH — сообщение об ошибке и работа программы прекратится. Если при считывании не будет обнаружено ни одной ошибки, то после прочтения всей записи на светодиодах отладочного модуля появится комбинация 81Н - сообщение о верном считывании.

При работе с основной управляющей программой микро-ЭВМ информация на ленту записывается в определенном формате. Кроме полезной информации, на ленту записываются и специальные служебные байты. Форматтаких записей будет подробно рассмотрен при описании основной управляющей программы микро-ЭВМ.

Описанный модуль сопряжения отличают простота, высокая достоверность и большая скорость записисчитывания информации.

Г. ЗЕЛЕНКО, В. ПАНОВ, С. ПОПОВ