AUTOMATIC CLASSIFICATION OF 102 SPECIES OF FLOWERS

OBJECTIVE

 Identify a combination of features and an effective and efficient model that is able to disinguish between very similar flowers.

DATA

- 8189 images of 102 species of flowers
 - 6149 train
 - 1020 test
 - 1020 validation

Segmented images

IMAGE SEGMENTATION GREEN-REMOVAL METHOD

- Every color is approximated to the closest 'pure' RGB color. (i.e. (0,0,255), (0, 255,255), (255,0,0) ...)
- Remove green (0,255,0)

Approximation to approximated to the closest 'pure' RGB color

Green-removal method applied on 3 images

- ✓ PRO: Flower is well-identified
- X CONTRO: noisy background
 - what if background is not green?

IMAGE SEGMENTATION GRABCUT METHOD

GrabCut: Iterative method that determines if a pixel belongs to background or foreground

PROBLEM: not good behavoiur with bottom parts of some images.

GrabCut on original image; GrabCut on rotated image brought back to the original orientation; Overlap

SOLUTION: apply grabCut on the original image and on the same one with a 180° rotation

IMAGE SEGMENTATION COMPARE METHODS

Original images

GrabCut method

IMAGE SEGMENTATION COMPARE METHODS

Original images

Green-removal method

GrabCut method

CLASSIFICATION

- Hand Crafted Features approach
- Transfer Learning approach
 - Fine-tuning
 - CNN as features extractor

HAND CRAFTED FEATURES APPROACH

 Color: After every color has been approximated to the closest 'pure' RGB color, red, green and blue percentages have been extracted

• LBP: extraction of Local Binary Patterns

• SURF/SIFT: extraction of keypoints e their descriptors

♠ PROBLEM: variable dimensionality

HAND CRAFTED FEATURES APPROACH

 Color: After every color has been approximated to the closest 'pure' RGB color, red, green and blue percentages have been extracted

• LBP: extraction of Local Binary Patterns

• **SURF/SIFT**: extraction of keypoints e their descriptors

• **HoG**: estrazione Histograms of Gradients

SVM

TRANSFER LEARNING APPROACH FINE-TUNING

- MobileNetV2
- EfficientNetB0
- EfficientNetB2

```
x = base_net.output
x = keras.layers.Dropout(0.5) (x)
pred = keras.layers.Dense(102, activation='softmax')(x)
```

Starting Net

```
x = base_net.output

x = keras.layers.BatchNormalization()(x)
x = keras.layers.ReLU()(x)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.Dense(128, activation = 'relu', kernel_regularizer=regularizers.12(0.0005))(x)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.Dropout(0.5)(x)

pred = keras.layers.Dense(102, activation='softmax')(x)
```

Complete Net

TRANSFER LEARNING APPROACH CNN AS FEATURES EXTRACTOR

 Features extracted from pre-trained CNN

 Combination between CNN-features and hand crafted features

Approach	Features	Train Accuracy	Test Accuracy
	colors+HoG	0.30	0.28
SVM with hand-crafted features	colors+HoG+LBP	0.15	0.12
	EfficientNetB2 - Complete Net	0.87	0.85
	MobileNetV2 – Complete Net	0.85	0.79
Fine-tuning	EfficientNetB0 - Complete Net	0.89	0.90
	EfficientNetB0 – Starting Net	0.93	0.91
	EfficientNetB0	0.95	0.89
SVM with CNN features + hand-crafted features	EfficientNetB0+colors+HoG	0.95	0.84
	EfficientNetB0+colors+HoG+LBP	0.20	0.17

Approach	Features	Train Accuracy	Test Accuracy
	colors+HoG	0.30	0.28
SVM with hand-crafted features	colors+HoG+LBP	0.15	0.12
	EfficientNetB2 - Complete Net	0.87	0.85
Fine-tuning	MobileNetV2 – Complete Net	0.85	0.79
	EfficientNetB0 - Complete Net	0.89	0.90
	EfficientNetB0 – Starting Net	0.93	0.91
	EfficientNetB0	0.95	0.89
SVM with CNN features + hand-crafted features	EfficientNetB0+colors+HoG	0.95	0.84
	EfficientNetB0+colors+HoG+LBP	0.20	0.17

Approach	Features	Train Accuracy	Test Accuracy
SVM with hand-crafted features	colors+HoG	0.30	0.28
	colors+HoG+LBP	0.15	0.12
	EfficientNetB2 - Complete Net	0.87	0.85
Fine-tuning	MobileNetV2 – Complete Net	0.85	0.79
	EfficientNetB0 - Complete Net	0.89	0.90
	EfficientNetB0 – Starting Net	0.93	0.91
	EfficientNetB0	0.95	0.89
SVM with CNN features + hand-crafted features	EfficientNetB0+colors+HoG	0.95	0.84
	EfficientNetB0+colors+HoG+LBP	0.20	0.17

Features Train Accuracy Test Accuracy EfficientNetB0 - Starting Net 0.93 0.91

Features	Train Accuracy	Test Accuracy	
EfficientNetB0 – Complete Net	0.89	0.90	

RISULTATI

'EfficientNetB0 – Starting Net' shows an overfitting phenomenon.
Therefore it's been preferred to use 'EfficientNetB0 – Complete Net'

Approach	Features	Train Accuracy	Test Accuracy
	colors+HoG	0.30	0.28
SVM with hand-crafted features	colors+HoG+LBP	0.15	0.12
	EfficientNetB2 - Complete Net	0.87	0.85
	MobileNetV2 – Complete Net	0.85	0.79
Fine-tuning	EfficientNetB0 - Complete Net	0.89	0.90
	EfficientNetB0 – Starting Net	0.93	0.91
	EfficientNetB0	0.95	0.89
SVM with CNN features + hand-crafted features	EfficientNetB0+colors+HoG	0.95	0.84
	EfficientNetB0+colors+HoG+LBP	0.20	0.17

Top: Original images to be classified. Bottom: classification results obtained from the 2 best models. (Bottom images are examples images of the predicted species of flowers)

CONCLUSIONS AND FUTURE DEVELOPMENTS

- A good segmentation system it's crucial for this purpose
- The use of the features related to color and Histogram of Gradients alone is not useful for classification
- LBP seems to be not useful to any model. A future development could concern the search for optimal parameters
- Transfer learning is effective and EfficientNetB0 turns out to be the best pretrained CNN

https://drive.google.com/file/d/1F LhDM5KcPDUODutrK5HOdYhoKZIwAlm/view?usp=sharing

THANK YOU