TD3

Statistique Mathématique

2021/2022

Université de Sousse

Institut des Hautes Études Commerciales de Sousse Niveau: M1

Finance & Actuariat

Enseignant:

Mohamed Essaied Hamrita

mhamrita@gmail.com

https://github.com/Hamrita

Exercice 1

Soit $X_1, X_2, ..., X_n$ une séquence de variables aléatoires indépendantes telle que :

$$F_n(x) = \begin{cases} 1 - (1 - \frac{1}{n})^{nx} & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$$

Montrer que X_n converge en loi vers la loi $\mathcal{E}(1)$.

Exercice 2

Soit $X_1, X_2, ..., X_n$ une séquence de variables aléatoires indépendantes telle que : $X_n \sim \mathcal{B}(n, \frac{\lambda}{n}), n \in \mathbb{N}$ et $n > \lambda$. Montrer que X_n converge en loi vers la loi $\mathcal{P}(\lambda)$.

Exercice 3

Soit $X_n \sim \mathcal{E}(n)$, montrer que X_n converge en probabilité vers 0.

Exercice 4

Soit X une variable aléatoire et $X_n = X + Y_n$ tel que : $\mathbb{E}(Y_n) = \frac{1}{n}$ et $\mathbb{V}(Y_n) = \frac{\sigma^2}{n}$ où σ est une constante positive. Montrer que X_n converge en probabilité vers X.

Exercice 5

Soit $X_n \sim U[0, \frac{1}{n}]$. Montrer que X_n converge en moyenne et en moyenne quadratique vers 0.

1