EEDG/CE 6303: Testing and Testable Design

Mehrdad Nourani

Dept. of ECE Univ. of Texas at Dallas

Session 03

Test Generation for Combinational Circuits

Fault Analysis System (Review)

Test Generation Techniques

- There are two main test vector generation techniques
 - 1. Non-Structural (Analytical)
 - Analyzes the gate-level description of a circuit and implicitly enumerate all possible input combinations to find a test vector for a target fault.
 - Methods: (i) Direct Function, (ii) Boolean Difference, (iii)
 CNF (product-of-sum form), ...

2. Structural

- Analyzes the structure of a given circuit to generate a test vector for a given target fault, or declare it untestable.
- Methods: (i) D-Algorithm, (ii) PODEM, ...

Non-Structural Test Generation

Fault Detection in Combinational Circuits

- A test (vector) t detects a fault f if and only if Z_f(t) ≠ Z(t) (i.e., at least one of the outputs are different in N and N_f).
- For a single output circuit $Z_f(t) \neq Z(t)$ is equivalent to $Z_f(t) \oplus Z(t) = 1$
- Example: find tests to detect s-a-0 at x₄.

Fault Detection – Formalization I

- Fault-free output: $Z = (x_2 + x_3) \cdot x_1 + \overline{x}_1 \cdot x_4$
- Faulty output: $Z_f = (x_2 + x_3) \cdot x_1$
- $Z \oplus Z_f = [(x_2 + x_3) \cdot x_1 + \overline{x}_1 \cdot x_4] \oplus [(x_2 + x_3) \cdot x_1] = \dots = \overline{x}_1 \cdot x_4$
- Test vectors to detect s-a-0 at x_4 satisfy $\bar{x}_1x_4=1$ that are:

X_1	X_2	X_3	X_4	_	X_1	X_2	X_3	X ₄
0	X	X	1	=	0	0	0	1
					0	0	1	1
					0	1	0	1
					0	1	1	1

Boolean Difference

- Consider a Boolean function f(x) where $x=(x_1,x_2,...,x_i,...,x_n)$ is the input vector.
- Cofactors of f: $\begin{cases} \mathbf{f}_{\mathbf{x}_i} = \mathbf{f}\big|_{\mathbf{x}_i=1} = f(x_1,...,x_i=1,...,x_1) \\ \mathbf{f}_{\overline{\mathbf{x}}_i} = \mathbf{f}\big|_{\mathbf{x}_i=0} = f(x_1,...,x_i=0,...,x_1) \end{cases}$
- Shannon Expansion Theorem:

$$\begin{cases} f(x) = x_i \cdot f_{x_i} + \overline{x}_i \cdot f_{\overline{x}_i} \\ f(x) = (x_i + f_{\overline{x}_i}) \cdot (\overline{x}_i + f_{x_i}) \end{cases}$$

• Boolean Difference: $\frac{df}{dx_i} = f_{x_i} \oplus f_{\overline{x}_i}$

Fault Detection – Formalization II

Definition of Boolean difference:

$$\frac{df}{dx_i} = f_{x_i} \oplus f_{\overline{x}_i}$$

- $\frac{df}{dx_i} = 0$ means s-a-0 or s-a-1 at x_i cannot be observed at the output. In other words, s-a-f at x_i is undetectable.
- If $\frac{df}{dx_i} = 1$ then:
 - $-\frac{df}{dx_i} \cdot x_i = 1$ gives all test vectors that can detect s a 0 at x_i
 - $-\frac{df}{dx_i} \cdot \overline{x}_i = 1$ gives all test vectors that can detect s a 1 at x_i

Stimulate the fault

Boolean Difference – Formalization II (cont'd)

• Example:

$$f = \overline{ab} \cdot (a + p)$$

$$\frac{df}{dp} = f|_{p=0} \oplus f|_{p=1} = [\overline{ab} \cdot a] \oplus [\overline{ab}] = [(ab + \overline{a}) \cdot \overline{ab}] + (\overline{ab} \cdot a) \cdot ab$$

$$= ab \cdot \overline{ab} + (\overline{a} \cdot \overline{ab}) = \overline{a} \cdot (\overline{a} + \overline{b}) = \overline{a}$$

$$\Rightarrow \frac{df}{dp} \cdot p = \overline{a} \cdot b = 1 \Rightarrow ab = 01$$

 So, ab=01 is the only test vector that can detect s-a-0 at line p.

Generalization – Formalization III

 There are systematic approaches that generalize ATPG (automatic test pattern generation) analytically.

- ATPG using satisfiability requires two independent steps
 - extraction of the CNF (conjunctive normal form, i.e. AND of OR-clauses) formula
 - 2. identification of a satisfying assignment

CNF for Test Generation

- The complete CNF is made of three CNF terms corresponding to
 - 1. The fault-free circuit (CNF_g)
 - 2. Faulty circuit (CNF_f)
 - 3. Condition for fault detection in a single-output circuit (CNF_d)

ATPG Using Satisfiability

Step 1

extraction of the CNF (conjunctive normal form –
 i.e. AND of OR-clauses) formula

0. CNF for the Fault-Free Gates

Example (a 2-input AND):

$$v(c_{j}) = v(c_{i1}) \cdot v(c_{i2})$$

$$[v(c_{i1}) \cdot v(c_{i2})] \oplus v(c_{j}) = 0$$

$$\overline{v(c_{i1})} \cdot v(c_{j}) + \overline{v(c_{i2})} \cdot v(c_{j}) + v(c_{i1}) \cdot v(c_{i2}) \cdot \overline{v(c_{j})} = 0$$

$$[v(c_{i1}) + \overline{v(c_{j})}][v(c_{i2}) + \overline{v(c_{j})}][\overline{v(c_{i1})} + \overline{v(c_{i2})} + v(c_{j})] = 1$$

C _{i1}	C _{i2}	C _j	CNF (Fault-Free)
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	1

C _{i1}	C _{i2}	C	CNF (Faulty)
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	0

Table 4.4. CNF formulae for fault-free primitive gates and fanout system

Circuit element	CNF formula				
NOT	$[v(c_{i_1}) + v(c_j)][\overline{v(c_{i_1})} + \overline{v(c_j)}]$				
AND	$[v(c_{i_1}) + \overline{v(c_j)}][v(c_{i_2}) + \overline{v(c_j)}][\overline{v(c_{i_1})} + \overline{v(c_{i_2})} + v(c_j)]$				
NAND	$[v(c_{i_1}) + v(c_j)][v(c_{i_2}) + v(c_j)][\overline{v(c_{i_1})} + \overline{v(c_{i_2})} + \overline{v(c_j)}]$				
OR	$[v(c_{i_1}) + v(c_j)][v(c_{i_2}) + v(c_j)][v(c_{i_1}) + v(c_{i_2}) + \overline{v(c_j)}]$				
NOR	$[\overline{v(c_{i_1})} + \overline{v(c_j)}][\overline{v(c_{i_2})} + \overline{v(c_j)}][v(c_{i_1}) + v(c_{i_2}) + v(c_j)]$				
Fanout system	$[v(c_i) + \overline{v(c_{j_l})}][\overline{v(c_i)} + v(c_{j_l})]$, for each branch c_{j_l}				

1. CNF for the Fault-Free Circuit

Concatenate CNFs for each individual gate and fanout branches

2. CNF for the Faulty Circuit

- It includes only the clause for the faulty gate.
 - The v' variables are introduced to indicate that lines may have different values in the fault-free and faulty circuits.

$$CNF_f = [\overline{v'(c_3)} + \overline{v'(z)}][\overline{v(c_4)} + \overline{v'(z)}][v'(c_3) + v(c_4) + v'(z)]$$
 Faulty NOR G3

3. CNF for Fault Detection Condition

 We define a(c_j) as an active variable for the transitive fanout (e.g. circuit outputs) of the fault site. If a fault effect appears at c_j, then it implies the fault-free and faulty values are complement of each other and can be detected at c_j(e.g. a circuit output). Note that: (p→q)' and p.q' are equivalent.

$$a(c_{j}) \Rightarrow v(c_{j}) \neq v'(c_{j})$$

$$a(c_{j}) \Rightarrow v(c_{j}) \oplus v'(c_{j})$$

$$a(c_{j}) \cdot \overline{[v(c_{j}) \oplus v'(c_{j})]}$$

$$a(c_{j}) \cdot \overline{[v(c_{j}) \cdot v'(c_{j}) + \overline{v(c_{j})} \cdot \overline{v'(c_{j})}]}$$

$$[a(c_{j}) \cdot \overline{v(c_{j})} \cdot \overline{v'(c_{j})}] + [a(c_{j}) \cdot v(c_{j}) \cdot v'(c_{j})]$$

Finally, complementing it again:

$$CNF_a(c_j) = [\overline{a(c_j)} + v(c_j) + v'(c_j)][\overline{a(c_j)} + \overline{v(c_j)} + \overline{v'(c_j)}]$$

3. CNF for Fault Detection Condition (cont.)

 The condition under which the fault effect appears in the output z requires an active clause that says the faulty and fault-free values on z will be different.

Necessary Condition (in output
$$v(z) \# v'(z)$$
)
$$CNF_d = CNF_a(z) \cdot a(z)$$

$$= [\overline{a(z)} + v(z) + v'(z)][\overline{a(z)} + \overline{v(z)} + \overline{v'(z)}] \cdot a(z)$$

 Overall, any assignment of primary inputs that satisfies this CNF formula is a test vector for the target fault in the single-output circuit.

$$CNF_g \cdot CNF_f \cdot CNF_d$$

3. CNF for Fault Detection Condition (cont.)

- Extension to multi-output circuit is straightforward.
- The only part that needs change is CNF_d

$$CNF_d = CNF_a(z_1) \cdot CNF_a(z_2) \cdots CNF_a(z_m)[a(z_1) + a(z_2) + \cdots + a(z_m)]$$

 Again, any assignment of primary inputs that satisfies this CNF formula is a test vector for the target fault in the multi-output circuit.

$$CNF_g \cdot CNF_f \cdot CNF_d$$

A Small Example of CNF

- Consider a NOR gate (as a small circuit)
 - After collapsing, there are 3 faults: x sa0, y sa0, y sa1.
- For fault x sa0:

$$CNF_{g} = [\overline{x} + \overline{z}][\overline{y} + \overline{z}][x + y + z]$$

$$CNF_{f} = [\overline{x'} + \overline{z'}][\overline{y} + \overline{z'}][x' + y + z']$$

$$CNF_{d} = [\overline{a} + z + z'][\overline{a} + \overline{z} + \overline{z'}][a]$$

To find the pattern we need to satisfy:

$$CNF_g \cdot CNF_f \cdot CNF_d = 1$$

 Only: a=1, x=1, x'=0, y=0, z=0, z'=1 satisfies this CNF, which means there is only one pattern xy=10.

ATPG Using Satisfiability

Step 2

- identification of a satisfying assignment
- Binary Decision Diagram (BDD) is often used