Gasirea polinomului optim

Problema de regresie: pe baza lui S gaseste (invata) functia h care stabileste corespondenta u=h(x)

- foloseste h pentru predictie pentu noi valori ale lui x

Functia tinta

$$sin(2\pi x) \approx 6.28x - 41.34x^3 + 81.60x^5 - \dots$$

Spatiul de functii

$$\mathcal{H}_i = \{h(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots w_i x^i\}$$

Spatiul functiilor polinomiale (curbe) de grad i w e parametru, h e liniara in w, h e neliniara in x

$$\mathcal{H}_0 \subseteq \mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \dots$$
 functie drepte parabole constanta

Riscul empiric al unei ipoteze h:

$$R_{emp}(h) = \frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} l(u_i, h(x_i, \mathbf{w}))$$

functie cost (loss) – masoara costul pe care il implica luarea deciziei h(x_i) in loc de u_i

Functia cost

$$R_{emp}(h) = \frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} l(u_i, h(x_i, \mathbf{w}))$$

functie cost (loss) – masoara costul pe care il implica luarea deciziei $h(x_i)$ in loc de u_i

Functia cost

$$R_{emp}(h) = \frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} l(u_i, h(x_i, \mathbf{w}))$$

functie cost (loss) – masoara costul pe care il implica luarea deciziei h(x_i) in loc de u_i

Exemple de functii cost:

$$l(u_i, h(x_i, \mathbf{w})) = \sum_{i=1}^{|\mathcal{S}|} (u_i - h(x_i, \mathbf{w}))^2$$

$$l(u_i, h(x_i, \mathbf{w})) = \sum_{i=1}^{n} |u_i - h(x_i, \mathbf{w})|$$

Principiul ERM

- gaseste ipoteza h* care minimizeaza riscul empiric (eroarea de antrenare)

$$h_{\mathcal{S},\mathcal{H}}^* = arg \min_{h \in \mathcal{H}} R_{emp}(h)$$

$$R_{emp}(h) = \frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} l(u_i, h(x_i, \mathbf{w}))$$

- afla parametri w care minimizeaza riscul empiric folosind functia de cost |S|

$$l(u_i, h(x_i, \mathbf{w})) = \sum_{i=1}^{\infty} (u_i - h(x_i, \mathbf{w}))^2$$

Alegerea modelului \mathcal{H}_i si aflarea lui $h_{\mathcal{S},\mathcal{H}_i}^*$

Evolutia riscului empiric

Evaluam ipotezele pe o multime de test de 100 de exemple

Coeficientii lui $h_{\mathcal{S},\mathcal{H}_i}^*$

$$\mathcal{H}_i = \{ h(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots w_i x^i \}$$

	i = 0	i = 1	i = 6	i = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

$$sin(2\pi x) \approx 6.28x - 41.34x^3 + 81.60x^5 - \dots$$

Comportamentul unui model in functie de marimea lui S

Problema de over-fitting se elimina treptat pe masura ce creste numarul de exemple de antrenare

Metode de regularizare

$$l(u_i, h(x_i, \mathbf{w})) = \sum_{i=1}^{|\mathcal{S}|} (u_i - h(x_i, \mathbf{w}))^2 + \lambda ||w||^2$$
$$||w||^2 = w_0^2 + w_1^2 + \dots + w_i^2$$

 λ - controleaza importanta termenului de regularizare/penalitate

Impactul includerii unei termen de regularizare

Impactul includerii unei termen de regularizare

					i = 9			
	i = 0	i = 1	i = 6	i = 9		$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.19	0.82	0.31	0.35	w_0^{\star}	0.35	0.35	0.13
w_1^*		-1.27	7.99	232.37	w_1^\star	232.37	4.74	-0.05
w_2^{\star}			-25.43	-5321.83	w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}			17.37	48568.31	w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}				-231639.30	w_4^\star	-231639.30	-3.89	-0.03
w_5^{\star}				640042.26	w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}				-1061800.52	w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}				1042400.18	w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}				-557682.99	w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}				125201.43	$w_9^{\overset{\circ}{\star}}$	125201.43	72.68	0.01

$$sin(2\pi x) \approx 6.28x - 41.34x^3 + 81.60x^5 - \dots$$

Impactul includerii unei termen de regularizare

i = 9							
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$				
w_0^{\star}	0.35	0.35	0.13				
w_1^\star	232.37	4.74	-0.05				
w_2^\star	-5321.83	-0.77	-0.06				
w_3^{\star}	48568.31	-31.97	-0.05				
w_4^\star	-231639.30	-3.89	-0.03				
w_5^{\star}	640042.26	55.28	-0.02				
w_6^{\star}	-1061800.52	41.32	-0.01				
w_7^{\star}	1042400.18	-45.95	-0.00				
w_8^\star	-557682.99	-91.53	0.00				
w_{0}^{\star}	125201.43	72.68	0.01				

Alegerea modelului

Impartim datele initiale in 2 multimi: multimea de antrenare si multimea de validare.

Alegem i sau λ pe baza erorii pe multimii de validare