ESP8266-14 WiFi 模块用户手册 V1.0

ESP8266-14

	▲ 术语和:	缩写	Δ
1.		介	
٠.		· · · · · · · · · · · · · · · · · · ·	
		产品特性	
	1.1.2	模块封装	
	1.1.2		
		WITE	
	, ,	ft 刃 细	
	· ·	脚说明	
	• • •	IFI功耗	
	_	斯指标	
		⁹⁹⁾	
2.	• •	7 ア 価 田 爻	
۷.		要功能	
		作模式 用领域	
		用视域	
2 1		Cloud	
3. F		指令	
		カル	
		选择WiFi应用模式:AT+CWMODE	
	3.2.2		
		加入接入点:AT+CWJAP	
		加八安八点:AT+CWJAF	
	3.2.5	•	
		IP AT指令IP AT指令	
	3.3.1	建立TCP/UDP连接: AT+CIPSTART	
	3.3.2	获得TCP/UDP连接状态: AT+CIPSTATUS	
		启动多连接: AT+CIPMUX	
	3.3.4	发送数据: AT+CIPHOX	
	3.3.5	关闭TCP/UDP连接: AT+CIPCLOSE	
	3.3.6	获取本地IP地址: AT+CIFSR	
	3.3.7	配置为服务器:	
	3.3.7	癿且Ŋ版分益: 选择TCPIP应用模式: AT+CIPMODE	
	3.3.9	设置服务器主动断开的超时时间: AT+CIPSTO	
	3.3.10		
2	产品 法用	、 XEIX刊十: AI I CIODAOD	24

表格目录

表格	1	术语和缩写		4
表格	2	模块技术规格	错误	! 未定义书签。
表格	3	Pin 脚定义	错误	! 未定义书签。
表格	4	功耗数据		10
表格	5	射频指标		11
			图目录	
图 2		模块管脚排列图	错误	! 未定义书签。
图 3		尺寸图	错误	! 未定义书签。
图 4		WiFi 射频参考电路图	错误	! 未定义书签。
图 5		推荐回流曲线图		12
図 6		全 功能测试板板正面视图	巻 埕	未定义共体

◆ 术语和缩写

缩写	描述	
WiFi	Wireless Fidelity	
UART	Universal Asynchronous Receiver & Transmitter	
DTIM	Delivery Traffic Indication Message	
soc	System-On-Chip	
P2P	Point to Point	
ТСР	Transmission Control Protocol	
IP	Internet Protocol	
STBC	Space-Time Block Coding	
МІМО	Multiple Input Multiple Output	
MPDU	MAC Protocol Data Unit	
MSDU	MAC Server Data Unit	
IEEE	Institute Of Electrical And Electronics Engineers	
bps	Bits Per Second	
ССК	Corporate Control Key	
DQPSK	Differential Quadrature Phase Shift Keying	
DBPSK	Differential Binary Phase Shift Keying	
QAM	Quadrature Amplitude Modulation	
OFDM	Orthogonal Frequency Division Multiplexing	
WPA	Wi-Fi Protected Access	
WPS	Wi-Fi Protected Setup	
TKIP	Temporal Key Integrity Protocol	
WAPI	Wlan Authentication And Privacy Infrastructure	
WEP	Wired Equivalent Privacy	
CRC	Cyclic Redundancy Check	

表格 1 术语和缩写

1.产品简介

1.1. 概述

ESP8266-14是一款低成本WIFI-MCU通讯/控制模块,内置ESP8266 WIFI通讯IC和STM8003单片机,拥有业内极富竞争力的封装尺寸和超低能耗技术,可广泛应用于智能家居和物联网网领域, 用于将用户的物理设备连接到Wi-Fi 无线网络上,进行互联网或局域网通信,实现联网控制功能。

该模块内置了一个功能强大的STM8003的芯片,所有管脚全部接出来,其串口与ESP8266的串口相连,用户可以编写STM8程序,通过AT指令控制ESP8266的实现绝大部分智能灯家居和WIFI物联网功能。更多资料,请访问安信可开源社区 www.ai-thinker.com

1.1.1 产品特性

内置STM8003 MCU和ESP8266 WIFI芯片

WIFI 特性

- WIFI支持无线802.11 b/g/n 标准
- 支持STA/AP/STA+AP 三种工作模式
- 内置TCP/IP协议栈,支持多路TCP Client连接
- 内置STM8003单片机与ESP8266进行串口通讯
- 支持UART/GPIO数据通信接口
- 支持Smart Link 智能联网功能
- 支持远程固件升级(OTA)
- 内置32位MCU,可兼作应用处理器
- 超低能耗,适合电池供电应用
- 电压范围为2.8V~3.6VDC,推荐使用3.3V 单电源供电
- STM8 MCU通过AT指令可以操作IOT的绝大部分
- STM8003F3P6功能可以参考ST公司相关资料。

1.1.2 模块封装

ESP8266-14同时支持贴片和DIP插件两种方式,采用2.0的间隔,其具体尺寸如下图所示:

图表 1 模块尺寸图

1.1.3 WIFI 基本参数

₩ Li-	型号	ESP8266-14
模块	主芯片	ESP8266
	无线标准	IEEE 802.11b/g/n
	频率范围	2.412GHz-2.484GHz
		802.11b: +16 +/-2dBm (@11Mbps)
	发射功率	802.11g: +14 +/-2dBm (@54Mbps)
无线参数		802.11n: +13 +/-2dBm (@HT20, MCS7)
儿头罗奴		802.11b: -93 dBm (@11Mbps ,CCK)
	接收灵敏度	802.11g: -85dBm (@54Mbps, OFDM)
		802.11n: -82dBm (@HT20, MCS7)
	工件以子	外置: 邮票孔接口
	天线形式 	内置:板载PCB 天线
	硬件接口	UART, IIC, PWM, GPIO, ADC, SPI
	工作电压	3.3V
	GPIO驱动能力	Max: 15ma
硬件参数	工作电流	ESP8266的技术参数如下: 持续发送下=> 平均值: ~70mA,峰值: 200mA 正常模式下=> 平均: ~12mA,峰值: 200mA 待机: <200uA,
	工作温度	-40℃~125℃
	存储环境	温度: <40℃,相对湿度: <90%R.H.
	尺寸	24.0mm*16.0mm*1mm;
AT比及添在	传输速率	110-921600bps
AT指令透传	TCP Client	5个
	无线网络类型	STA/AP/STA+AP
	安全机制	WEP/WPA-PSK/WPA2-PSK
软件参数	加密类型	WEP64/WEP128/TKIP/AES
	固件升级	本地串口,OTA远程升级
	网络协议	IPv4, TCP/UDP/FTP/HTTP
	用户配置	AT+指令集, Web 页面 Android/iOS 终端, Smart Link 智能配置APP

1.2. 硬件介绍

ESP8266-14 硬件把所有 STM8003 全部引出来,可以作为完整的 STM8003 的单片机使用。

1.2.1 管脚定义

管脚定义如下图所示:

图表 2

1.2.2 引脚说明

引脚 号	引脚名称	描述	
1	M_PC5	STM8 PC5□	
2	M_PC6	STM8 PC6 🗆	
3	M_PC7	STM8 PC7□	
4	GND	GND	
5	M_PD3	STM8 PD3□	
6	M_PD4	STM8 PD4□	
7	M_NRST	STM8 NRST□	
8	GND	公共地	
9	M_PD2	STM8 PD2□	
10	M_PD5	STM8 PD5□	
11	M_PD6	STM8 PD6□	
12	M_PA1	STM8 PA1口或晶振输入口	
13	M_PA2	STM8 PA2口或晶振输出口	
14	E_GPIO0	ESP8266 GPIO0口: 1) 默认WiFi Status: WiFi工作状态指示灯控制信号; 2) 工作模式选择: 上拉: Flash Boot, 工作模式; 下拉: UART Download, 下载模式;	
15	M_VCAP	STM8 VCAP□	
16	M_VDD	STM8供电脚	
17	E_VDD	ESP8266供电脚	
18	M_PA3	STM8 PA3 🗆	
19	M_PB5	STM8 PB5□	
20	M_PB4	STM8 PB4□	
21	M_PC3	STM8 PC3□	
22	M_PC4	STM8 PC4 🗆	

1.3. WIFI 功耗

下列功耗数据是基于3.3V的电源、25°的环境温度下测得。

- [1] 所有测量均在天线接口处完成。
- [2] 所有发射数据是基于 90% 的占空比,在持续发射的模式下测得的。

模式	最小值	通常	最大值	单位
传送 802.11b,CCK 1Mbps,Pout=+19.5dBm		215		mA
传送 802.11b,CCK 11Mbps,Pout=+18.5dBm		197		mA
传送 802.11g,OFDM54 Mbps,Pout=+16dBm		145		mA
传送 802.11n,MCS7,Pout=+14dBm		135		mA
接收 802.11b,包长 1024 字节,-80dBm		100		mA
接收 802.11g,包长 1024 字节,-70dBm		100		mA
接收 802.11n,包长 1024 字节,-65dBm		102		mA
系统待机模式		70		mA
关机		0.5		μΑ

表格 4 功耗数据

1.4. 射频指标

以下数据是在室内温度下, 电压为 3.3V 时测得。

描述	最小值	通常	最大值	单位	
输入频率	2412		2484	MHz	
输入电阻		50		Ω	
输入反射			-10	dB	
72.2Mbps 下,PA 的输出功率	14	15	16	dBm	
802.11b 模式下,PA 的输出功率	17.5	18.5	19.5	dBm	
灵敏度	灵敏度				
CCK 1Mbps		-98		dBm	
CCK 11Mbps		-91		dBm	
6Mbps(1/2BPSK)		-93		dBm	
54Mbps(3/4 64-QAM)		-75		dBm	
HT20, MCS7 (65Mbps, 72.2Mbps)		-71		dBm	
邻频抑制					
OFDM, 6Mbps		37		dB	
OFDM, 54Mbps		21		dB	
HT20, MCS0		37		dB	
HT20, MCS7		20		dB	

表格 5 射频指标

注:

- 1) 72.2Mbps是在802.11n模式下, MCS=7, GI=200uS时测得;
- 2) 802.11b模式下最高可达+19.5dBm的输出功率;

1.5. 推荐炉温曲线

Refer to IPC/JEDEC standard; Peak Temperature : <250°C; Number of Times: ≤2 times;

图 1 推荐回流曲线图

2. 功能描述

2.1. 主要功能

ESP8266-14 可以通过 STM8S 单片机编程,使用 AT 指令 ESP8266 进行控制。AT 指令请参考本公司 AT 指令使用说明书《4A-ESP8266__AT Instruction Set__CN》。

2.2. 工作模式

ESP8266 模块支持 STA/AP/STA+AP 三种工作模式。

- ◆ STA 模式: ESP8266 模块通过路由器连接互联网,手机或电脑通过互联网实现对设备的远程控制。
- ◆ AP 模式: ESP8266 模块作为热点,实现手机或电脑直接与模块通信,实现局域网无线控制。
- ◆ STA+AP 模式:两种模式的共存模式,即可以通过互联网控制可实现无缝切换,方便操作。

2.3. 应用领域

- ◆ 智能家居控制、智能家电控制;
- ◆ 智能开关、插座控制
- ◆ 智能灯控;

2.4. AiCloud

AiCloud 为安信可科技(Ai-Thinker)推出的互联网云平台服务。用户可以在平台上对设备进行监控和管理,实现大数据管理和分析,使设备真正实现智能化。

AiCloud 可将打包全套的服务器解决方案,为客户省去成本,加快开发进度。

AiCloud 可接受客户的定制化需求,Web 页面配置,Android/iOS 平台 App 均可支持。

3.AT 指令介绍

3.1 基础 AT 指令

语法规则:

命令类型	语法	返回和说明
执行命令	AT	OK

3.2 WiFi 功能 AT 指令

3.2.1 选择 WiFi 应用模式: AT+CWMODE

语法规则:

命令类型	语法	返回和说明
设置命令	AT+CWMODE = <mode></mode>	ОК
区里明マ	ATTCWMODE = < mode>	此指令需重启后生效(AT+RST)
		+CWMODE: < mode>
查询命令	AT+CWMODE?	ОК
		当前处于哪种模式?
		+CWMODE:(<mode>取值列表)</mode>
测试命令	AT+CWMODE?	ОК
		当前可支持哪些模式?

参数	定义	取值	对取值的说明
<mode></mode>	WiFi 应用模式	1	Station模式
		2	AP模式

3	3	AP+Station模式
---	---	--------------

3.2.2 列出当前可用接入点:AT+CWLAP

语法规则:

命令类型	语法	返回和说明
		+CWLAP: <ecn>,<ssid>,<rssi>[,<mode>]</mode></rssi></ssid></ecn>
执行命令	AT+CWLAP	OK
		此指令返回AP列表

参数定义:

参数	定义	取值	对取值的说明
		0	OPEN
		1	WEP
<ecn></ecn>	加密方式	2	WPA_PSK
		3	WPA2_PSK
		4	WPA_WPA2_PSK
<ssid></ssid>	接入点名称		字符串参数
<rssi></rssi>	信号强度		
<mode></mode>	连接模式	0	手动连接
	.	1	自动连接

3.2.3 加入接入点:AT+CWJAP

语法规则:

命令类型	语法	返回和说明
设置命令	AT+CWJAP= <ssid>,<pwd></pwd></ssid>	OK 或 ERROR
以且叫マ		加入该AP成功则返回OK,失败则返回ERROR
		+CWJAP: <ssid></ssid>
查询命令	AT+CWJAP?	OK
		返回当前选择的AP

参数	定义	取值	对取值的说明
<ssid></ssid>	接入点名称		字符串型
<pwd></pwd>	密码		字符串型,最长64字节,ASCII编码

3.2.4 退出接入点:AT+CWQAP

语法规则:

命令类型	语法	返回和说明
执行命令	AT+CWQAP	ОК
		表示成功退出该AP
测试命令	AT+CWQAP=?	ОК
		查询该命令是否支持

3.2.5 设置 AP 模式下的参数:AT+CWSAP

语法规则:

命令类型	语法	返回和说明
设置命令	AT I CWCAD - cocids courds cobbs cocos	ОК
以且叩づ	AT+CWSAP= <ssid>,<pwd>,<chl>, <ecn></ecn></chl></pwd></ssid>	设置参数成功
查询命令	AT L CINC A DO	OK
互响叩会	AT+CWSAP?	查询当前AP参数

参数	定义	取值	对取值的说明
		0	OPEN
		1	WEP
<ecn></ecn>	加密方式	2	WPA_PSK
		3	WPA2_PSK
		4	WPA_WPA2_PSK
<ssid></ssid>	接入点名称		字符串参数
<pwd></pwd>	密码		字符串型,最长 64 字节, ASCII 编码
<chl></chl>	通道号		

3.3 TCPIP AT 指令

3.3.1 建立 TCP/UDP 连接: AT+CIPSTART

语法规则:

命令类型	语法	返回和说明
		如果格式正确,返回:
		ОК
设置命令	单路连接(+CIPMUX=0)时: AT+CIPSTART= <type>,<addr>,<port> 多路连接(+CIPMUX=1)时: AT+CIPSTART=<id>,<type>,<addr>,<port></port></addr></type></id></port></addr></type>	否则返回: +CME ERROR: invalid input value 连接成功,返回: CONNECT OK (CPIMUX=0) <id>, CONNECT OK (CIPMUX=1) 如果连接已经存在,返回: ALREADY CONNECT 连接失败返回: CONNECT FAIL (CIPMUX=0) <id>, CONNECT FAIL (CIPMUX=1)</id></id>

参数定义:

> xxxcx.			
参数	定义	取值	对取值的说明
<id></id>	Link No.	0~4	表示连接序号 0号连接可client或server连接,其他id只能用于连接远 程server
<type></type>	连接类型	"TCP"/"UDP"	
<addr></addr>	远程服务器 IP 地址		字符串型
<port></port>	远程服务器端口号		

3.3.2 获得 TCP/UDP 连接状态: AT+CIPSTATUS

语法规则:

命令类型	语法	返回和说明
执行命令	AT+CIPSTATUS	如果是单路连接(AT+CIPMUX=0),返回: OK
		STATE: <sl_state></sl_state>
		如果是多路连接 (AT+CIPMUX=1), 返回:

		STATE: < ml_state >
		如果配置为服务器:
		STATE:IP STATUS
		S: <sid>,<port>,<server state=""></server></port></sid>
		C: <cid>, <tcp udp="">, <ip address="">, <port>, <client state=""></client></port></ip></tcp></cid>
测试命令	测试命令 AT+CIPSTATUS=?	返回:
松叶叶之	AITCIFSIAIUS-!	ОК

参数定义:

参数	定义	取值	对取值的说明
		IP INITIAL	初始化
		IP STATUS	获得本地 IP 状态
		TCP	
<sl state=""></sl>	 单连接状态	CONNECTING/UDP	TCP 连接中/UDP 端口注册中
<si_state></si_state>	平足按扒芯	CONNECTING	
		CONNECT OK	连接建立成功
		TCP CLOSING/UDP	正在关闭 TCP 连接,正在注销 UDP 端口
		CLOSING	正任天内 TCF 足按,正任在相 ODF 编口
<ml state=""></ml>	多链接状态	IP INITIAL	初始化
<iii_state></iii_state>		IP STATUS	获得本地 IP 状态
<sid></sid>	服务器 id	0~1	取值为0和1
	服务器状态	OPENING	正在打开
<server state=""></server>		LISTENING	正在监听
		CLOSING	正在关闭
<cid></cid>	客户端 id	0~4	取值为0,1,2,3,4
<ip address=""></ip>	IP 地址	-	字符串参数(字符串需要加引号)
<port></port>	服务器监听端口号	-	整数型
<client state=""></client>	岁 白ሥ壮太	CONNECTED	已连接
<cli>client State></cli>	客户端状态	CLOSED	已美闭

3.3.3 启动多连接: AT+CIPMUX

语法规则:

命令类型	语法	返回和说明
		ок
设置命令	AT+CIPMUX= <mode></mode>	如果已经处于多连接模式,则返回 Link is builded
		启动多连接成功
查询命令	AT+CIPMUX?	+CIPMUX: <mode></mode>

OK
查询当前是否处在多连接模式

参数定义:

参数	定义	取值	对取值的说明
	<mode> 是否处在多连接模式</mode>	0	单连接模式
<mode></mode>		1	多连接模式

3.3.4 发送数据: AT+CIPSEND

语法规则:

命令类型	语法	返回和说明	月
设置命令	单路连接(+CIPMUX=0)时: AT+CIPSEND= <length> 多路连接(+CIPMUX=1)时: AT+CIPSEND=<id>,<length></length></id></length>	响应	模块收到指令后先换行返回">",然后开始接收串口数据,当数据长度满length时发送数据如果未建立连接或连接被断开,返回ERROR如果数据发送成功,返回SEND OK
	ATTEMBERS Stary Storigans	说明	发送指定长度的数据
测试指令	AT+CIPSEND?	响应	单路连接(AT+CIPMUX=0)返回: +CIPSEND: <length> OK 多路连接(AT+CIPMUX=1)返回: +CIPSEND: <0-7>,<length></length></length>
执行命令	AT+CIPSEND	说明	AT+CIPMODE=1并且作为客户端模式下,进入透传模式(需要支持硬件流控,否则大量数据情况下会丢数据)模块收到指令后先换行返回">",然后会发送串口接收到的数据。

参数定义:

参数	定义	取值	对取值的说明
<length></length>	数据长度		单位:字节
<id></id>	Link No.	0~4	连接序号

3.3.5 关闭 TCP/UDP 连接: AT+CIPCLOSE

语法规则:

命令类型 语法 返回和说明	
---------------	--

71. PR A. A	单路连接时 AT+CIPCLOSE= <id></id>	返回: CLOSE OK
设置命令	多路连接时 AT+CIPCLOSE= <n>[,<id>]</id></n>	返回: <n>,CLOSE OK</n>
执行命令	AT+CIPCLOSE	如果关闭成功,返回: CLOSE OK 如果关闭失败,返回: ERROR
测试命令	AT+CIPCLOSE?	返回: OK
注意事项	 执行命令只对单链接有效,多链接模式下返回ERROR 执行命令AT+CIPCLOSE 只有在TCP/UDP CONNECTING或CONNECT OK状态下才会关闭连接, 否则会认为关闭失败返回ERROR 单路连接模式下,关闭后的状态为IP CLOSE 	

参数定义:

参数	定义	取值	对取值的说明
とは、	<u>0</u>	慢关 (缺省值)	
<iu></iu>	<id> 关闭模式</id>	1	快关
<n></n>	Link No.	0~7	整数型,表示连接序号

3.3.6 获取本地 IP 地址: AT+CIFSR

语法规则:

命令类型	语法	响应和说明	
执行命令	AT+CIFSR	响应	+ CIFSR: <ip address=""> OK 或者 ERROR</ip>
测试命令	AT+CIFSR=?	响应	ОК

参数	定义	取值	对取值的说明
<ip address=""></ip>	本机目前的 IP 地址(station)		

3.3.7 配置为服务器:

如何使用 AT 指令与服务器交互

简介:该服务器是 UDP 中转服务器,提供广域网的 UDP 中转服务。用户无需在局域网内进行端口映射操作,NAT 会自动完成这一切。用户使用以下方法,可以在世界上任何可以连接公网的地方,进行一对一的UDP 通信。

服务器为免费测试版本,域名或 IP 地址随时可能会发生变更。如果用户需要自己部署服务器,请联系安信可科技。

基本概念:

1:注册用户

A 发送

{"type":"signin", "name": "UserNameA", "password": "12345"}

B 发送

{"type":"signin", "name": "UserNameB", "password": "54321"}

2:进入透传模式

A 发送

{"type":"connect", "from": "UserNameB", "to": "UserNameA", "password": "12345"}

或者 B 发送

{"type":"connect", "from": "UserNameA", "to": "UserNameB", "password": "54321"}

任意一人发送,两个人将会同时进入透传模式,期中 password 是对方的密码。

此时双方都可以得到对方的 IP 地址,建议此时进行 UDP 打洞,若打洞失败,请使用服务器转发。

如果不了解 P2P, 此时可以直接使用服务器透传而无需考虑如何 P2P.

3.断开服务器连接

A、B 任意一人发送

{"type":"disconnect"}

两个人将会同时退出透传模式。

4.注销用户

A 发送

{"type":"signout", "name": "UserNameA", "password": "12345"}

B 发送

{"type":"signout","name":"UserNameB","password":"54321"}

5.服务器地址

iot.ai-thinker.com:5001

使用方法:

1.连接就近的一个可以访问公网的 Wi-Fi 路由器

具体操作步骤如下:

第一步:进入 STA 模式 (CWMODE=1)或者 AP+STA 模式 (CWMODE=3),此时以 STA 模式为例子:

AT+CWMODE=1

第二步:列出周围的 AP SSID (可选):

AT+CWLAP

第三步:连接 AP 接入公网:

AT+CWJAP="SSID", "PASSWORD"

2.使用 AT 指令操作服务器

具体操作步骤如下:

第一步: 查看是否获得 IP 地址:

AT+CIFSR

第二步: 打开一个 UDP 连接 (方法不仅限于此,仅供参考):

ping iot.ai-thinker.com,得到 IP地址 114.215.154.114(这个 IP 可能会变).

(下个版本不需要这样做,固件将会完成 DNS 解析)

AT+CIPSTART="UDP","114.215.154.114",5001

第三步: 开启透传模式:

AT+CIPMODE=1

第四步:开始传输数据:

AT+CIPSEND

第五步:注册服务器

{"type":"signin", "name": "ai-thinker", "password": "12345"}

第六步:发起网际连接

{"type":"connect","from":"ai-thinker","to":"anyone","password":"anyonePassword"}

第七步:开始网际透传

若连接成功此时发送任意数据(除了{"type":"disconnect"}),接收方会收到发送的数据。

第八步:断开网际连接 {"type":"disconnect"} 第九步:注销用户

{"type": "signout", "name": "ai-thinker", "password": "12345"}

3.3.8 选择 TCPIP 应用模式: AT+CIPMODE

语法规则:

命令类型	语法	返回
设置命令	AT+CIPMODE= <mode></mode>	ОК
查询命令	AT+CIPMODE?	+CIPMODE: <mode></mode>

参数定义:

参数	定义	取值	对取值的说明
<mode> TCPIP 应用模式</mode>	TCDID 应用增土	<u>0</u>	非透明传输模式,缺省模式
	1	透明传输模式	

3.3.9 设置服务器主动断开的超时时间: AT+CIPSTO

命令类型	语法	返回和说明
设置命令	AT+CIPSTO= <server timeout=""></server>	ОК
查询命令	AT+CIPSTO?	+ CIPSTO: <server timeout=""></server>

参数定义:

参数	定义	取值	对取值的说明
<server timeout=""></server>	用来设置服务器主动断	<u>0</u> ~28800(s	用本命令设置好超时时间后,服务器到时间就断开
	开连接的超时时间)	连接。

3.3.10 设置波特率: AT+CIOBAUD

语法规则:

命令类型	语法	返回和说明
设置命令	AT+CIOBAUD= <rate></rate>	返回:
	ATTCIODAUD= <tale></tale>	ОК

默认波特率是9600

参数定义:

参数	定义	取值	对取值的说明
		<u>0</u>	自适应波特率
		110	
		300	
		1200	
		2400	
		4800	
		9600	
	波特率,	14400	
< rate > 単	单位 bps	19200	
		28800	
		38400	
		57600	
		115200	
		230400	
		460800	
		921600	

4 产品试用

(1)淘宝店铺: 深圳市安信可科技(2)技术讨论 QQ 群: 185323735

(3) 技术支持论坛: 物联世界