MA 200: Multivariable Calculus

Naman Mishra

August 2024

Contents

1	Sth																9	3
	1.1	st.								_	_						:	3

The course

Grading

• Homework: 20%

• Quizzes: 20%

• Midterm: 20%

• Final: 40%

Textbooks

•

Lecture 1. Friday
August 02

Chapter 1

Sth

1.1 st

Definition 1.1 (homogeneous function). Let V be a vector space over \mathbb{R} . A function $f: V \setminus \{0\} \to \mathbb{R}$ is called a homogeneous function of degree k if

$$f(rx) = r^k f(x)$$

for each $x \in V \setminus \{0\}$ and r > 0.

Remarks.

- If f and g are homogeneous functions of degree k and l respectively, then $f \cdot g$ is homogeneous of degree k + l and f/g is homogeneous of degree k l (provided g is never zero).
- $f \equiv 0$ is homogeneous of any degree.

Definition 1.2 (norm). Let V be a vector space over \mathbb{R} . A norm $\|\cdot\|$ on V is a function from V to \mathbb{R} that satisfies

- (N1) (Positivity) $||x|| \ge 0$ for any $x \in V$.
- (N2) (Definiteness) ||x|| = 0 iff x = 0.
- (N3) (Homogeneity) ||rx|| = |r|||x|| for any $x \in V$ and $r \in \mathbb{R}$.
- (N4) (Triangle inequality) $||x+y|| \le ||x|| + ||y||$ for any $x, y \in V$.

Definition 1.3 (normed linear space). A vector space V equipped with a norm $\|\cdot\|$ is called a *normed linear space*.

Remark. Any normed linear space $(V, \|\cdot\|)$ can be given a metric space structure by defining the distance d(x, y) between $x, y \in V$ as $\|x - y\|$.

The set $B(x,r) := \{y \in V \mid ||x-y|| < r\}$ is called the open ball of radius r centered at x.

The set $S(x,r) \coloneqq \{y \in V \mid ||x-y|| = r\}$ is called the sphere of radius r centered at x.

Exercise 1.4 (reverse triangle inequality). Let V be a normed linear space. Show that

$$|||x|| - ||y||| \le ||x - y||$$

for any $x, y \in V$.

This shows that $f = x \mapsto ||x||$ is a (Lipschitz) continuous function on V.

Definition 1.5 (continuity). Let (X, d) and (Y, ρ) be metric spaces. A function $f: X \to Y$ is called *continuous* at $a \in X$ iff

$$x_n \to a \implies f(x_n) \to f(a)$$
, or $d(x_n, a) \to 0 \implies \rho(f(x_n), f(a)) \to 0$

Exercise 1.6 (product metric spaces). Let (X_1, d_1) and (X_2, d_2) be metric spaces. Let $d: X_1 \times X_2 \to \mathbb{R}$ be defined by

$$d((x_1, x_2), (y_1, y_2)) := d_1(x_1, y_1) + d_2(x_2, y_2).$$

Show that d is a metric on $X_1 \times X_2$.

Let $(z_n)_{n\in\mathbb{N}} = ((x_n, y_n))_{n\in\mathbb{N}}$ be a sequence in $X_1 \times X_2$. Show that $z_n \to (x, y)$ iff $x_n \to x$ and $y_n \to y$.

Remark. \tilde{d} given by

$$\widetilde{d}((x_1, x_2), (y_1, y_2)) := \min\{d_1(x_1, y_1), d_2(x_2, y_2)\}\$$

is not a metric on $X_1 \times X_2$.

It disobeys definiteness.

Exercise 1.7. Let $(V, \|\cdot\|)$ be a normed linear space.

- The addition map $(x,y) \mapsto x+y$ is a continuous map from $V \times V$ to V.
- The scalar multiplication map $(\alpha, x) \mapsto \alpha x$ is continuous from $\mathbb{R} \times V$ to V.

Examples.

• $(\ell^p \text{ norm}) \mathbb{R}^n \text{ with } p \in [1, \infty] \text{ and }$

$$||x||_p := (|x_1|^p + \dots + |x_n|^p)^{1/p}$$

where

$$||x||_{\infty} \coloneqq \max\{|x_1|,\ldots,|x_n|\}$$

is the limit of the l^p norms as $p \to \infty$.

Exercise 1.8. Check that $\|\cdot\|_p$ is a norm on \mathbb{R}^n , and that its limit as $p \to \infty$ is $\|\cdot\|_{\infty}$.

1.1. st

Definition 1.9 (norm equivalence). Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be two norms on V. We say that $\|\cdot\|_a$ and $\|\cdot\|_b$ are *equivalent* if these exist $c_1, c_2 > 0$ such that

$$c_1 ||x||_a \le ||x||_b \le c_2 ||x||_a$$

for all $x \in V$. We write $\|\cdot\|_a \sim \|\cdot\|_b$.

Exercise 1.10. Check that \sim is an equivalence relation.