0/1 Knapsack Problem Solved With FIFO Branch and Bound

by Dr.Jayashree Katti

Objective Function

Maximize profit..... $\sum p_i x_i$

Coverted to minimization problem i.e $-\sum p_i x_i$

Bound Algorithm to calculate C

```
Algorithm Bound(cp ,cw, k)
//cp=current profit; cw=current weight;k=index of last
removed item; m is knapsack size;//
 b=cp; c=cw;
  for i=k+1 to n do
       c=c+w[i];
       if(c<m) then
              b=b+p[i];
       else
       return b+ (1- (c-m)/w[i] ) *p[i]
return b;
```

Ubound Algorithm to calculate u

```
Algorithm Uboud(cp ,cw, k ,m)
//cp=current profit; cw=current weight;k=index of last
removed item; m is knapsack size;//
 b=cp; c=cw;
  for i=k+1 to n do
     if(c+w[i]<=m) then
        c=c+w[i];b=b-p[i];
return b;
```

Example

- n=4
- P=[10,10,12,18]
- W=[2,4,6,9]
- m=15

Upper=-32

In FIFO search, first we will take E-node as a node 1.

List of live nodes	1				
--------------------	---	--	--	--	--

Upper=-32 $x_{1} = 1$ C=-38; u=-32 $x_{1} = 0$ C(2)=-38; U(2)=-32; U(2)=-32; U(3)=-22

Next we generate the children of node 1.

They are placed in the queue. —

List of live	2	3		
nodes				

Upper bound doesn't change and no node is deleted.

We will place the generated children of E-node(Node 2)

in the Queue i.e Node 4 and 5

We will place the generated children of E-node(Node 3) in the Queue i.e Node 6 and 7.

Since c(7)>global upper bound it is killed.

List of live nodes	4	5	6		
--------------------	---	---	---	--	--

We will place the generated children of E-node(Node 4) in the Queue i.e Node 8 and 9.

List of live nodes	5	6	8	9	
--------------------	---	---	---	---	--

Global upper bound will be changed to -38.

The nodes 5 and 6 will be killed as c(5),c(6)>upper bound.

List of live nodes	8	9			
-----------------------	---	---	--	--	--

We will now kill nodes 11 and 13.

List of live nodes	10	12			
--------------------	----	----	--	--	--

The only feasible node is node 12.

Since node 12 is the solution.

$$x_1 = 1$$
 $x_2 = 1$ $x_3 = 0$ $x_4 = 1$

Solution vector X = [1,1,0,1]