Due: March 2nd, 2023 ${
m CMSC/PHYS}$ 457, Introduction to Quantum Computing Date: March 3, 2023 Spring 2023, University of Maryland

Assignment 2

Please submit it electronically to ELMS. This assignment is 6% in your final grade. For the simplicity of the grading, the total number of points for the assignment is 60.

Problem 1. Circuit identities.

1. (5 points) Show that the following circuit swaps two qubits:

Answer:

Figure 1: Swap Circuit: T_1 : 1st dotted line, T_2 : 2nd dotted line

Qubit	Input	T_1	T_2	Output
q[0]	0	0	0	0
q[1]	0	0	0	0
q[0]	0	0	1	1
q[1]	1	1	1	0
q[0]	1	1	0	0
q[1]	0	1	1	1
q[0]	1	1	1	1
q[1]	1	0	0	1

Table containing the 4 cases for inputs and the value at each signifigant time stamp as well as input showing that input swapped

2. (5 points) Verify the following circuit identity:

Answer:

Left-Hand Side:

$$LHS = I \otimes H * CNOT * I \otimes H$$

$$LHS = 1/\sqrt{2} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} * 1/\sqrt{2} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

$$LHS = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$RHS = H \otimes I * R - CNOT * H \otimes I$$

$$RHS = 1/\sqrt{2} \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} * 1/\sqrt{2} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

$$RHS = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 Therefore, LHS == RHS

3. (5 points) Verify the following circuit identity:

$$= \begin{array}{c} -H \\ -H \\ -H \\ -H \end{array}$$

Answer:

Give an interpretation of this identity: The identity shows us that if we apply the H gate to both qubits on either side of our reversed CNOT gate we can flip it back to a CNOT gate, allowing us to switch which qubits are the control and target and vice versa

Problem 2. Swap test.

1. (5 points) Let $|\psi\rangle$ and $|\phi\rangle$ be arbitrary single-qubit states (not necessarily computational basis states), and let SWAP denote the 2-qubit gate that swaps its input qubits (i.e., SWAP $|x\rangle|y\rangle = |y\rangle|x\rangle$ for any $x, y \in \{0, 1\}$). Compute the output of the following quantum circuit:

Answer: $\frac{1}{2}(|0\rangle|\psi\rangle|\phi\rangle + |1\rangle|\psi\rangle|\phi\rangle + |0\rangle|\phi\rangle|\psi\rangle - |1\rangle|\phi\rangle|\psi\rangle)$

2. (5 points) Suppose the top qubit in the above circuit is measured in the computational basis. What is the probability that the measurement result is 0?

Answer: $\frac{1}{2}(1+\langle \phi||\psi\rangle^2)$

3. (3 points) If the result of measuring the top qubit in the computational basis is 0, what is the (normalized) post-measurement state of the remaining two qubits?

Answer: $\frac{M_i|\phi\rangle}{\sqrt{p(i)}} M_i == I$ $\frac{1}{\sqrt{2}}(|\phi\rangle|\psi\rangle + |\psi\rangle|\phi\rangle$

4. (2 points) How do the results of the previous parts change if $|\psi\rangle$ and $|\phi\rangle$ are n-qubit states, and SWAP denotes the 2n-qubit gate that swaps the first n qubits with the last n qubits?

Answer: The only thing that changes is adding the qubits to the state, the probability of the system will stay the same.

Problem 3. The Hadamard gate and qubit rotations

1. (5 points) Suppose that $(n_x, n_y, n_z) \in {}^3$ is a unit vector and $\theta \in .$ Show that

$$e^{-i\frac{\theta}{2}(n_xX + n_yY + n_zZ)} = \cos(\frac{\theta}{2})I - i\sin(\frac{\theta}{2})(n_xX + n_yY + n_zZ).$$

Answer:

If we set $A = (n_x X + n_y Y + n_z Z)$ We know $A^2 == I$ because $X^2, Y^2, Z^2 == I$ and $(n_x, n_y, n_z) \in {}^3$ is a unit vector. Then by using the Taylor series of e we have

$$\sum_{k=0}^{\infty} \frac{1}{k!} (-i\frac{\theta}{2}A)^k = e^{\frac{-i\theta}{2}A}$$

Even Odd Term Split: $\sum_{k=0}^{\infty} \frac{1}{2k!} (-i\frac{\theta}{2})^{2k} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} (-i\frac{\theta}{2})^{2k+1} A$

Then we apply the Taylor series of $\cos(\mathbf{x})$ and $\sin(\mathbf{x})$ to get $\cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}A = \cos\frac{\theta}{2}I - \sin\frac{\theta}{2}(n_xX + i\sin\frac{\theta}{2}A)$ $n_{y}Y + n_{z}Z$

2. (5 points) Find a unit vector $(n_x, n_y, n_z) \in {}^3$ and numbers $\phi, \theta \in {}^3$ so that

$$H = e^{i\phi} e^{-i\frac{\theta}{2}(n_x X + n_y Y + n_z Z)}.$$

where H denotes the Hadamard gate. What does this mean in terms of the Bloch sphere?

Answer:

$$e^{i\phi}e^{-i\frac{\theta}{2}(n_xX+n_yY+n_zZ)} = e^{i\phi}\begin{pmatrix} \cos\frac{\theta}{2} - i\sin\frac{\theta}{2}n_z & -in_x\sin\frac{\theta}{2} - n_y\sin\frac{\theta}{2} \\ -in_x\sin\frac{\theta}{2} - n_y\sin\frac{\theta}{2} & \cos\frac{\theta}{2} - i\sin\frac{\theta}{2}n_z \end{pmatrix}$$
if $\theta = \pi$, then $e^{i\phi}\begin{pmatrix} -in_z & -in_x - n_y \\ -in_x + n_y & in_z \end{pmatrix}$
if $(n_x, n_y, n_z) = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$, then $\begin{pmatrix} -i\frac{1}{\sqrt{2}} & -i\frac{1}{\sqrt{2}} \\ -i\frac{1}{\sqrt{2}} & i\frac{1}{\sqrt{2}} \end{pmatrix}$
If $\phi = \frac{\pi}{2}, e^{i\frac{\pi}{2}} = i$
So we get $i\begin{pmatrix} -i\frac{1}{\sqrt{2}} & -i\frac{1}{\sqrt{2}} \\ -i\frac{1}{\sqrt{2}} & i\frac{1}{\sqrt{2}} \end{pmatrix}$ - i , $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -i\frac{1}{\sqrt{2}} & i\frac{1}{\sqrt{2}} \end{pmatrix}$ - i , H, therefore $u = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}), \phi = \frac{\pi}{2}$,

So we get
$$i\begin{pmatrix} -i\frac{1}{\sqrt{2}} & -i\frac{1}{\sqrt{2}} \\ -i\frac{1}{\sqrt{2}} & i\frac{1}{\sqrt{2}} \end{pmatrix}$$
 - $i\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ - $i\begin{pmatrix} H, \text{ therefore } u=(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}), \phi=\frac{\pi}{2}, \theta=\pi$
In the Bloch sphere we can conclude $H=\cos\frac{\pi}{2}|0\rangle+(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})\sin\frac{\pi}{2}|1\rangle=i|1\rangle$

3. (5 points) Write the Hadamard gate as a product of rotations about the x and y axes. In particular, find $\alpha, \beta, \gamma, \phi \in \text{such that } H = e^{i\phi} R_y(\gamma) R_x(\beta) R_y(\alpha)$.

Answer:
$$e^{i\phi}R_y(\gamma)R_x(\beta)R_y(\alpha) = e^{i\phi}\begin{pmatrix}\cos\frac{\gamma}{2} & -\sin\frac{\gamma}{2}\\\sin\frac{\gamma}{2} & \cos\frac{\gamma}{2}\end{pmatrix}\begin{pmatrix}\cos\frac{\beta}{2} & -i\sin\frac{\beta}{2}\\-i\sin\frac{\beta}{2} & \cos\frac{\beta}{2}\end{pmatrix}\begin{pmatrix}\cos\frac{\alpha}{2} & -\sin\frac{\alpha}{2}\\\sin\frac{\alpha}{2} & \cos\frac{\alpha}{2}\end{pmatrix}$$
 If you plug in $\gamma = -\frac{\pi}{4}$, $\beta = \pi$, $\alpha = \frac{\pi}{4}$ and simplify, you get:
$$i\begin{pmatrix}-i\frac{1}{\sqrt{2}} & -i\frac{1}{\sqrt{2}}\\-i\frac{1}{\sqrt{2}} & i\frac{1}{\sqrt{2}}\end{pmatrix}$$

Which simplifies to H (same as in the earlier part)

Problem 4. Universality of gate sets. Prove that each of the following gate sets either is or is not universal. You may use the fact that the set $\{CNOT, H, T\}$ is universal.

1. $(5 points) \{H, T\}$

Answer: This set isn't universal (for non 1-bit) because there is no entangling gate within the set

2. $(5 points) \{CNOT, T\}$

Answer: This set isn't universal because we do not have two rotational gate's over two non-parallel axes (T rotates but C-NOT does not)

3. $(5 points) \{CNOT, H\}$

Answer: This set isn't universal because we do not have two rotational gate's over two non-parallel axes (H rotates but C-NOT does not)

4. (Bonus: 10 points) $\{CNOT, H, T^2\}$

Answer: This set isn't universal because while the set does rotate around two non-parallel axes and have an entangling gate, T^2 simplifies to the S gate which rotates the Z-Axis but does not cover the irrational numbers so the set isn't universal

4