AIL721: Deep Learning

Instructor: James Arambam

Class Announcements

- ☐ Please use your name and official email IDs in the piazza.
 - Enrollments without actual names and official email IDs will be removed.
- ☐ Guidelines regarding the project topic.
 - Applications of deep learning (or neural networks) in problems related to your respective branches.
 - Pick an application that interests you, and explore how best to apply learning algorithms to solve it.
 - Computer Vision, Natural Language Processing, Speech Recognition, Reinforcement Learning, Healthcare etc.
- Guest Lecture (online) on Training LLMs Confirmed!

☐ IIT Delhi HPC Credit

How much for each student?

What is Deep Learning?

- ☐ Deep learning is a branch of machine learning.
- ☐ A general-purpose framework for **learning from data**.
- ☐ Based on computational models called **neural networks**.

Supervised Learning

A type of machine learning paradigm that uses labeled datasets to train algorithms to predict outcomes and recognize patterns.

Examples

Supervised Learning

Types of supervised learning:

- ☐ Regression problem: Model predicts **real values**.
- ☐ Classification problem: Model predicts **discrete values.**

Regression

Regression

$$X \longrightarrow f(x;\phi) \longrightarrow Y < y_1 >$$

A Simple Regression Problem

Linear Regression

A Simple Regression Problem

What is the simplest mathematical model to represent the function $f(x; \phi)$?

$$f(x; \boldsymbol{\phi}) = \phi_0 + \phi_1 \cdot x$$

$$f(x; \boldsymbol{w}) = w_0 + w_1 \cdot x$$

$$f(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 \cdot x$$

Linear Model

What's the limitation of such a linear model?

Linear models can only describe the input/output relationship as a line.

1.00 X

Linear function

Smooth function

Piecewise Linear Function

$$f(x) = egin{cases} -x-3 & ext{if } x \leq -3 \ x+3 & ext{if } -3 < x < 0 \ -2x+3 & ext{if } 0 \leq x < 3 \ 0.5x-4.5 & ext{if } x \geq 3 \end{cases}$$

How piecewise linear function relates to neural networks?

■ Mathematically:

$$h = \sum_{i=1}^{M} \theta_i \cdot x_i \tag{1}$$

$$y = a[h] \tag{2}$$

$$a[\cdot]$$
: Activation Function

Activation Function

Earlier motivation:

- ☐ Firing of neurons depends on the strength of the synapses.
- ☐ Rosenblatt's Perceptron, 1962

Activation function a[h] is a **step function**:

$$a[h] = \begin{cases} 0, & \text{if } h \le 0, \\ 1, & \text{if } h > 0 \end{cases}$$

Sigmoid Function

☐ Depending on the type of a[h], it can introduce **non-linearity (a key property of NN)**.

$$\mathbf{a}[z] = \mathrm{ReLU}[z] = egin{cases} 0 & z < 0 \ z & z \geq 0 \end{cases}$$

Piecewise linear function

$$h = \sum_{i=1}^{M} \theta_i \cdot x_i$$

$$y = a[h]$$

■ Mathematically:

$$h = \sum_{i=1}^{M} \theta_i \cdot x_i \tag{1}$$

$$y = a[h] \tag{2}$$

$$h = \theta_0 + \theta_1 \cdot x$$

$$y = a[h] = h$$

Linear or Nonlinear activation?

$$h = \theta_0 + \theta_1 \cdot x$$

Linear or Nonlinear $y = \phi_0 + \phi_1 \cdot a[h]$ Function?

$$y = \phi_0 + \phi_1 \cdot a[\theta_{10} + \theta_{11} \cdot x]$$

How many hidden nodes and hidden layers?

$$y = \phi_0 + \phi_1 \cdot a[\theta_{10} + \theta_{11} \cdot x]$$

$$y = \phi_0 + \phi_1 \mathbf{a}[\theta_{10} + \theta_{11}x] + \phi_2 \mathbf{a}[\theta_{20} + \theta_{21}x] + \phi_3 \mathbf{a}[\theta_{30} + \theta_{31}x]$$

$$h_1 = \mathbf{a}[\theta_{10} + \theta_{11}x]$$

$$h_2 = a[\theta_{20} + \theta_{21}x]$$

$$h_3 = a[\theta_{30} + \theta_{31}x]$$

Hidden Units

$$y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3$$

Exercise

$$y = \phi_0 + \phi_1 \mathbf{a}[\theta_{10} + \theta_{11}x] + \phi_2 \mathbf{a}[\theta_{20} + \theta_{21}x] + \phi_3 \mathbf{a}[\theta_{30} + \theta_{31}x]$$

Activation Fn:
$$\operatorname{rect}[z] = \begin{cases} 0 & z < 0 \\ 1 & 0 \le z \le 1 \\ 0 & z > 1 \end{cases}$$

Activation Fn:

$$rect[z] = \begin{cases} 0 & z < 0 \\ 1 & 0 \le z \le 1 \\ 0 & z > 1 \end{cases}$$

$$y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3$$

Activation Pattern

Shaded region:

- Unit 1 active
- Unit 2 inactive
- Unit 3 active

Piecewise linear function

How piecewise linear function relates to neural networks?

$$y = \phi_0 + \phi_1 \mathbf{a}[\theta_{10} + \theta_{11}x] + \phi_2 \mathbf{a}[\theta_{20} + \theta_{21}x] + \phi_3 \mathbf{a}[\theta_{30} + \theta_{31}x]$$

What factors influence the curve's shape?

- \square Number of model parameters/weights: $\phi_0, \phi_1, \phi_2, \phi_3, \theta_{10}, \theta_{11}, \theta_{20}, \theta_{21}, \theta_{30}, \theta_{31}$
- ☐ Type of activation function: ReLU, Sigmoid, tanh, etc.

Data

One more key factor remaining. Anyone?

How many linear regions (or segments) in the above piecewise linear function?

General Form of Neural Networks

☐ Neural Network with three hidden units:

$$y = \phi_0 + \phi_1 \mathbf{a} [\theta_{10} + \theta_{11} x] + \phi_2 \mathbf{a} [\theta_{20} + \theta_{21} x] + \phi_3 \mathbf{a} [\theta_{30} + \theta_{31} x]$$

☐ Neural Network with "D" hidden units:

$$h_d = a[\theta_{d0} + \theta_{d1}x]$$
 $y = \phi_0 + \sum_{d=1}^{D} \phi_d h_d$

How many linear regions (or segments) with "D" hidden units under ReLU activation?

General Form of Neural Networks

☐ Neural Network with three hidden units:

$$y = \phi_0 + \phi_1 \mathbf{a}[\theta_{10} + \theta_{11}x] + \phi_2 \mathbf{a}[\theta_{20} + \theta_{21}x] + \phi_3 \mathbf{a}[\theta_{30} + \theta_{31}x]$$

☐ Neural Network with "D" hidden units:

$$h_d = a[\theta_{d0} + \theta_{d1}x]$$
 $y = \phi_0 + \sum_{d=1}^{D} \phi_d h_d$

□ Matrix Form:

$$\begin{bmatrix} w_1 & w_2 & w_3 & w_4 \\ w_1 & w_2 & w_3 & w_4 \\ w_1 & w_2 & w_3 & w_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} b \\ b \\ b \end{bmatrix} = \begin{bmatrix} w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + b \\ w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + b \\ w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + b \end{bmatrix} \xrightarrow{activation} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

☐ Neural Network with three hidden units:

$$y = \phi_0 + \phi_1 \mathbf{a}[\theta_{10} + \theta_{11}x] + \phi_2 \mathbf{a}[\theta_{20} + \theta_{21}x] + \phi_3 \mathbf{a}[\theta_{30} + \theta_{31}x]$$

What the function be like if $a[z] = \psi_0 + \psi_1 \cdot z$?

Any arbitrary continuous function.

Power of Neural Network

With enough hidden units (linear regions), we can describe any 1D function with arbitrary accuracy.

Universal Approximation Theorem

"a formal proof that, with enough hidden units, a shallow neural network can describe any continuous function"

Di-input/Do-output

1-input/1-output

☐ Two Outputs

• 1 input, 4 hidden units, 2 outputs

1-input/2-output

$$h_1 = a[\theta_{10} + \theta_{11}x]$$

$$h_2 = a[\theta_{20} + \theta_{21}x]$$

$$h_3 = a[\theta_{30} + \theta_{31}x]$$

$$h_4 = a[\theta_{40} + \theta_{41}x]$$

$$y_1 = \phi_{10} + \phi_{11}h_1 + \phi_{12}h_2 + \phi_{13}h_3 + \phi_{14}h_4$$

$$y_2 = \phi_{20} + \phi_{21}h_1 + \phi_{22}h_2 + \phi_{23}h_3 + \phi_{24}h_4$$

☐ Two Inputs

2 inputs, 3 hidden units, 1 outputs

$$h_1 = a[\theta_{10} + \theta_{11}x_1 + \theta_{12}x_2]$$

$$h_2 = a[\theta_{20} + \theta_{21}x_1 + \theta_{22}x_2]$$

$$h_3 = a[\theta_{30} + \theta_{31}x_1 + \theta_{32}x_2]$$

$$y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3$$

2-input/1-output

 $f(x;\phi)$ $< x_1, x_2, ..., x_{D_i} >$

☐ Di-Inputs, D hidden units, Do-Outputs:

$$h_d = a \left[\theta_{d0} + \sum_{i=1}^{D_i} \theta_{di} x_i \right]$$
 $y_j = \phi_{j0} + \sum_{d=1}^{D} \phi_{jd} h_d$

$$y_j = \phi_{j0} + \sum_{d=1}^D \phi_{jd} h_d$$

Di-input/Do-output

• e.g., Three inputs, three hidden units, two outputs

☐ #output regions vs #hidden units vs #parameters:

□ Nomenclature:

What is this neural network called?

1. Single-layered neural network.

2. Two-layered neural network.

Two layers of learnable parameters (as per the Bishop 2024 DL Book)

3. Three-layered neural network.

Shallow Neural Networks

What happens if we add more layers?

Deep Neural Network

What's different?

Number of parameters

Deep Neural Network

☐ A network with **two layers of learnable parameters - universal approximation** capabilities.

☐ A network with **more than two layers** – can represent a given function with **far fewer parameters**.

Paper: On the Number of Linear Regions of Deep Neural Networks. Mont´ufar et al. NeurlPS-2014