1 Úvod

Poznámka (Historie)

- První formalizace pojmu algoritmus Ada, Countess of Lovelace 1852.
- Intenzivnější vývoj s rozvojem počítačů ve 2. čtvrtině 20. století.
- Co stroje umí a co ne? Church, Turing, Kleene (konečné automaty / neuronové sítě), Post, Markov, Chomsky (zásobníkové automaty a formální teorie konečných automatů, zkoumal Angličtinu).

Poznámka (Cíl)

Osvojit si abstraktní model počítače, vnímat jak drobné změny v definici vedou k velmi rozdílným důsledkům. Zažít skutečnost alg. nerozhodnutelných problémů a připravit se na přednášku o složitosti a NP-úplnosti.

Poznámka (Praktické využití)

Korektnost algoritmů, zpracování přirozeného jazyka, lexikální a syntaktická analýza v překladačích. Návrh, popis a verifikace hardwaru (automaty, integrované obvody, stroje). Vyhledávání v textu atd.

2

Definice 2.1 (Deterministický konečný automat (DFA))

Deterministický konečný automat $A=(Q,\Sigma,\delta,q_0,F)$ sestává z: konečné množiny stavů (Q), konečné neprázdné množiny vstupních symbolů (abecedy, Σ), přechodové funkce, tj. zobrazení $Q\times\Sigma\to Q$ (značí se hranami grafu, δ), počátečního stavu (vede do něj šipka 'odnikud', $q_0\in Q$) a neprázdné množiny (přijímajících) stavů (značí se dvojitým kruhem / šipku 'ven', $F\subseteq Q$).

 $\acute{U}mluva$

Přidáváme 0-2 stavy: fail (pokud je nějaký přechod nedefinován, vede sem a všechno z fail vede do fail) a final (pokud je F prázdné, všechny šipky z něj vedou zpět do něj).

Definice 2.2 (Slovo, jazyk)

Mějme neprázdnou množinu symbolů Σ . Slovo je konečná (i prázdná) posloupnost symbolů $s \in \Sigma$, prázdné slovo se značí λ nebo ε .

Množinu všech slov v abecedě Σ značíme Σ^* a množinu všech neprázdných Σ^+ .

Definice 2.3 (Operace: zřetězení, mocnina, délka slova)

Nad slovy Σ^* definujeme operace: Zřetězení slov u.v nebo uv, mocnina (počet opakování) u^n ($u^0 = \lambda, u^1 = u, u^{n+1} = u^n.u$), délka slova |u| ($|\lambda| = 0, |auto| = 4$), počet výskytů $s \in \Sigma$ ve slově u značíme $|u|_s$ ($|zmrzlina|_z = 2$).

Definice 2.4 (Rozšířená přechodová funkce)

Mějme přechodovou funkci $\delta: Q \times \Sigma \to Q$. Rozšířenou přechodovou funkci $\delta^*: Q \times \Sigma^* \to Q$ (tranzitivní uzávěr δ) definujeme induktivně: $\delta^*(q, \lambda) = q$ a $\delta^*(q, wx) = \delta(\delta^*(q, w), x)$ pro $x \in \Sigma$ a $w \in \Sigma^*$.

Definice 2.5 (Jazyky rozpoznatelné konečnými automaty, regulární jazyky)

Jazykem rozpoznávaným (akceptovaným, přijímaným) konečným automatem A nazveme jazyk $L(A) = \{w | w \in \Sigma^* \land \delta^*(q_0, w) \in F\}.$

Jazyk je rozpoznatelný konečným automatem, jestliže existuje konečný automat A takový, že L=L(A).

Třídu jazyků rozpoznatelných konečnými automaty označíme $\mathcal F$ a nazveme ji regulární jazyky.

Věta 2.1 (!Iterační (pumpin) lemma pro regulární jazyky)

Mějme regulární jazyk L. Pak existuje konstanta $n \in \mathbb{N}$ (závislá na L) tak, že každé $w \in L; |w| \geq n$ můžeme rozdělit na tři části, w = xyz, že $y \neq \lambda \wedge |xy| \leq n \wedge \forall k \in \mathbb{N}_0$, slovo xy^kz je také v L.

 $D\mathring{u}kaz$

Mějme regulární jazyk L, pak existuje DFA A s n stavy, že L = L(A). Vezmeme libovolné slovo $a_1 a_2 \ldots a_n \ldots a_m = w \in L$ délky $m \geq n$, $a_i \in \Sigma$. Následně definujeme $\forall i : p_i = \delta^*(q_0, a_1 a_2 \ldots a_i)$. Platí $p_0 = q_0$. Z Dirichletova principu se některý stav opakuje. Vezmeme první takový, tj. $(\exists i, j)(0 \leq i < j \leq n \land p_i = p_j)$.

Definujeme $x=a_1a_2\ldots a_i,\ y=a_{i+1}a_{i+2}\ldots a_j$ a $z=a_{j+1}a_{j+2}\ldots a_m,$ tj. w=xyz, $y\neq\lambda,\ |xy|\leq n.$

Definice 2.6 (Kongruence, konečný index)

Mějme konečnou abecedu Σ a relaci ekvivalence \sim na Σ^* . Potom \sim je pravá kongruence, jestliže $\forall u, v, w \in \Sigma^* : u \sim v \implies uw \sim vw$. \sim je konečného indexu, jestliže rozklad Σ^*/\sim má konečný počet tříd.

Třídu kongruence \sim obsahující slovo u značíme $[u]_{\sim}$, resp. [u].

Věta 2.2 (Myhill-Nerodova věta)

Nechť L je jazyk nad konečnou abecedou Σ . Potom L je rozpoznatelný konečným automatem právě tehdy, když existuje pravá kongruence \sim konečného indexu nad Σ^* tak, že L je sjednocením jistých tříd rozkladu Σ^*/\sim .

Důkaz

 \implies definujeme $u \sim v \equiv \delta^*(q_0, u) = \delta^*(q_0, v)$. Zřejmě je to ekvivalence. Je to pravá kongruence (z definice δ^*) a má konečný index (jelikož automat má konečně mnoho stavů).

$$L = \{w | \delta^*(q_0, w) \in F\} = \bigcup_{q \in F} [w | \delta^*(q_0, w) = q]_{\sim}.$$

 \Rightarrow abeceda automatu bude Σ . Stavy budou třídy rozkladu Σ^*/\sim . Počáteční stav je $q_0 = [\lambda]_{\sim}$. Koncové stavy $F = \{c_1, \ldots, c_n\}$, kde $L = \bigcup_{i \in [n]} c_i$. Přechodová funkce $\delta([u], x) = [ux]$ (korektní z definice pravé kongruence).

Příklad

 $L = \{u|u = a^+b^ic^i \wedge u = b^ic^j \wedge i, j \in \mathbb{N}_0\}$ není regulární, ale vždy lze pumpovat první písmeno.

Důkaz (Sporem)

Předpokládejme, že L je regulární. Pak existuje pravá kongruence \sim konečného indexu m, L je sjednocení některých tříd Σ^*/\sim . Vezmeme množinu slov $S=\{ab,abb,abbb,\ldots,ab^{m+1}\}$. Existují dvě slova (Dirichletův princip) $i\neq j$, která padnou do stejné třídy. $ab^i\sim ab^j\Leftrightarrow ab^ic^i\sim ab^jc^i$, ale $ab^ic^i\in L\wedge ab^jc^i\notin L$. 4.

Definice 2.7 (Dosažitelné stavy)

Mějme DFA $A=(Q,\Sigma,\delta,q_0,F)$ a $q\in Q$. Řekneme, že stav q je dosažitelný, jestliže existuje $w\in \Sigma^*$ takové, že $\delta^*(q_0,w)=q$.

Poznámka (Hledání dosažitelných stavů)

'Hloupé' prohledávání do šířky.

Definice 2.8 (Automatový homomorfismus)

Nechť A_1, A_2 jsou DFA se standardním označením a shodnou abecedou. Řekněme, že zobrazení $h: Q_1 \to Q_2$ je automatovým homomorfismem, jestliže $h(q_{10}) = q_{20}, h(\delta_1(q, x)) = \delta_2(h(q), x)$ a $q \in F_1 \Leftrightarrow h(q) \in F_2$.

Definice 2.9 (Ekvivalence automatů)

Dva konečné automaty nad stejnou abecedou jsou ekvivalentní, jestliže rozpoznávají stejný jazyk.

Věta 2.3 (O ekvivalenci automatů) Existuje-li homomorfismus konečných automatů, pak jsou tyto automaty ekvivalentní. Důkaz Triviální.

Definice 2.10 (Ekvivalence stavů)

Dva stavy jsou ekvivalentní, pokud pro všechna slova dojdeme z obou stavů buď do nepřijímajících, nebo do přijímajících stavů. Pokud dva stavy nejsou ekvivalentní, říkáme, že jsou rozlišitelné.

Poznámka (Algoritmus pro nalezení eqvivalentních stavů)

Vytvořím tabulku dvojic stavů a zaškrtám zřejmě rozlišitelné dvojice (přijímající + nepřijímající). Potom pro každou dvojici zkusím všechna písmena a pokud nějaké z nich posune ze stavů do rozlišitelné, pak i tato dvojice je rozlišitelná. Opakuji, dokud se něco mění.

Definice 2.11 (Redukovaný DFA, redukt)

DFA je redukovaný, pokud nemá nedosažitelné stavy a žádné dva stavy nejsou ekvivalentní. DFA B je reduktem A, jestliže B je redukovaný a B a A jsou ekvivalentní.

Poznámka (Algoritmus na testování ekvivalence reg. jazyků)

Najdeme jeden a druhý DFA rozpoznávající jeden a druhý jazyk. BÚNO jsou stavy disjunktní. Vytvoříme DFA sjednocením (za počáteční stav vezmeme libovolný z 2 počátečních stavů našich DFA). Potom jsou jazyky ekvivalentní, když jsou ekvivalentní počáteční stavy našich DFA.

3 NFA

Definice 3.1 (Nederministický konečný automat (NFA))

NFA je DFA, kde přechodová funkce je funkce do potenční množiny stavů. A počáteční stav může být také množina, ale existují obě alternativy.

Definice 3.2 (Rozšířená přechodová funkce)

Pro přechodovou funkci δ NFA je rozšířená přechodová funkce $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$ definovaná indukcí: $\delta^*(q, \lambda) = \{q\}$ a $\delta^*(q, wx) = \bigcup_{p \in \delta^*(q, w)} \delta(p, x)$.

Definice 3.3 (Jazyk přijímaný NFA)

Mějme NFA $A=(Q,\Sigma,\delta,S_0,F)$, pak $L(A)=\{w|\exists q_0\in S_0:\delta^*(q_0,w)\cap F\neq\emptyset\}$ je jazyk přijímaný automatem A.

Poznámka (Algoritmus: podmnožinová konstrukce)

Začínáme s NFA $N=(Q_N,\Sigma,\delta_N,S_0,F_N)$. Cílem je popis deterministického DFA $D=(Q_D,\Sigma,\delta_D,S_0,F_D)$, pro který L(N)=L(D).

 Q_D je množina podmnožin Q_N $(Q_D = \mathcal{P}(Q_n))$. Počáteční stav DFA označený S_0 je prvek Q_D . $F_D = \{S | S \in \mathcal{P}(Q_n) \land S \cap F_N \neq \emptyset\}$. Přechodová funkce je $(S \in Q_D, a \in \Sigma)$:

$$\delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a).$$

 $D\mathring{u}kaz$

Triviální, indukcí dokážeme shodné chování d*.

Definice 3.4 (λ -NFA)

 $\lambda\text{-NFA}$ (NFA s λ přechody) je NFA, kde δ je definována pro $Q\times(\Sigma\cup\{\lambda\}).$

Definice 3.5 (λ -uzávěr)

Pro $q \in Q$ definujeme λ -uzávěr stavu q (v těchto poznámkách značeno \overline{q}) rekurzivně: $q \in \overline{q}$. Je-li $p \in \overline{q}$ a $r \in \delta(p, \lambda)$, pak i $r \in \overline{q}$.

Pro $S \subseteq Q$ definujeme $\overline{S} = \bigcup_{q \in S} \overline{q}$.

Definice 3.6 (Rozšířená přechodová funkce)

$$\delta^*(q,\lambda) = \overline{q}. \ \delta^*(q,wa) = \overline{\bigcup_{\delta^*(q,w)} \delta(p,a)}.$$

Věta 3.1

Jazyk je rozpoznatelný λ -NFA $\Leftrightarrow L$ regulární.

 $D\mathring{u}kaz$

 $\Leftarrow:$ triviální. $\Longrightarrow:$ přes podmnožinovou konstrukci.

4 Množinové operace nad jazyky

Definice 4.1 (Množinové operace nad jazyky)

Mějme jazyky L, M. Definujeme následující operace:

- binární (konečné) sjednocení $L \cup M = \{w | w \in L \lor w \in M\},$
- průnik $L \cap M = \{w | w \in L \land w \in M\},\$
- rozdíl $L M = \{w | w \in L \land w \notin M\},\$
- doplněk (komplement) $\overline{L} = -L = \{w | w \notin L\} = \Sigma^* L.$

Věta 4.1 (Uzavřenost na množinové operace)

Regulární jazyky jsou uzavřené na 4 operace výše.

Důkaz

Doplněk: doplníme všechny přechody (doplníme FAIL stav). Potom prohodíme přijímající a nepřijímající stavy.

Průnik sjednocení a rozdíl přes tzv. součinový automat $(Q_1 \times Q_2, \Sigma, \delta', (q_0, q_1), F)$, kde $\delta'((p_1, p_2), x) = (\delta_1(p_1, x), \delta_2(p_2, x))$ a F je podle toho, zda řešíme průnik, sjednocení nebo rozdíl, $F_1 \times F_2$, $(F_1 \times Q_2) \cup (Q_1 \times F_2)$ nebo (po doplnění) $F_1 \times (Q_2 - F_2)$.

Definice 4.2 (Řetězcové operace nad jazyky)

Mějme jazyky L, M. Definujeme následující operace:

- zřetězení $L.M = \{uv | u \in L \land v \in M\},\$
- mocninu $L^0 = \{\lambda\}, L^{i+1} = L^i.L,$
- pozitivní iteraci $L^+ = \bigcup_{i \ge 1} L^i$,
- obecnou iteraci $L^* = \bigcup_i L^i$,
- otočení (zrcadlový obraz, reverze) $L^R = \{u^R | u \in L\}, (x_1 x_2 \dots x_n)^R = x_n \dots x_2 x_1,$
- levý kvocient $M \setminus L = \{v | uv \in L \land u \in M\},$
- levá derivace $\partial_w L = \{w\} \setminus L$,
- pravý kvocient $L/M = \{u|uv \in L \land v \in M\},$

• pravá derivace $\partial_w^R L = L/\{w\}$.

Věta 4.2 (Uzavřenost regulárních jazyků na řetězcové operace)

Regulární jazyky jsou uzavřené na 10 operací výše.