

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
IČO:	47813121
Projekt:	OP VK 1.5
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost
Typ šablony klíčové aktivity:	V/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol (32 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	STT IV
Popis sady vzdělávacích materiálů:	Strojírenská technologie IV, 4. ročník
Sada číslo:	I-04
Pořadové číslo vzdělávacího materiálu:	07
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_52_INOVACE_I-04-07
Název vzdělávacího materiálu:	Úhlová příložka
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Hynek Palát

Úhlová příložka

- Součástí ustavovacích přípravků pro vnější válcové plochy.
- Upínací síly musí být velké.
- Upínací síla zajišťuje obrobek proti otáčení.
- F_u je závislá především na součiniteli smykového tření $f = 0,12 \div 0,18$.
- Při upínání za obrobenou plochu kontrolujeme měrný tlak mezi obrobkem a upínačem.

Schéma úhlové příložky

Středová a povrchová odchylka

$$\sin \frac{\alpha}{2} = \frac{\frac{T}{2}}{\Delta S} \Rightarrow$$
 středová odchylka:

$$\Delta s = \frac{\frac{T}{2}}{\sin \frac{\alpha}{2}}$$

nebo:

$$\Delta s = \sqrt{\left(\frac{T^2}{2}\right) + \left(\frac{T^2}{2}\right)}$$

povrchová odchylka:

$$\Delta p = T$$

T – výrobní tolerance hřídele.

Výpočet upínací síly

Výpočet upínací síly

$$F_u = F_s$$

$$F_N = ?$$

$$\cos \alpha = \frac{F_u}{F_N} \implies F_N = \frac{F_u}{\cos \alpha}$$

$$F_{v} = ?$$

$$\tan \alpha = \frac{F_v}{F_u} \Rightarrow F_v = \tan \alpha \cdot F_u$$

$$F_u = F_s$$

$$F_N = ?$$

$$\cos \alpha = \frac{F_u}{F_N} \implies F_N = \frac{F_u}{\cos \alpha}$$

$$F_{v} = ?$$

$$\tan \alpha = \frac{F_v}{F_u} \Rightarrow F_v = \tan \alpha \cdot F_u$$

Podmínka bezpečného upnutí

$$\begin{aligned} M_{tr} > M_{r} \\ F_{tr celk} \cdot R &= k \cdot F_{r} \cdot R \\ \Sigma F_{tr} &= k \cdot F_{r} \\ F_{t1} + F_{t2} + F_{t3} &= k \cdot F_{r} \\ F_{N} \cdot f + F_{v} \cdot f + F_{s} \cdot f &= k \cdot F_{r} \\ \frac{F_{u}}{\cos \alpha} \cdot f + tg \alpha \cdot F_{u} \cdot f + F_{u} \cdot f &= k \cdot F_{r} \end{aligned}$$

$$F_{u} = \frac{k \cdot F_{\check{r}}}{f\left(\frac{1}{\cos\alpha} + tg \alpha + 1\right)}$$

Příklad upnutí pomocí úhlové příložky

Na obrázku je znázorněn přípravek pro současné upnutí dvou obrobků – hřídelů, tyčí. Bezpečného upnutí je docíleno upínkou a šroubem.

- Jaká je podmínka bezpečného upnutí?
- Odvoďte vzorec pro výpočet upínací síly a středové a povrchové odchylky.
- Uveďte příklad použití úhlové příložky.

Seznam použité literatury

- Řasa, J., Haněk, V., Kafka, J. Strojírenská technologie 4, 1. vyd.
 Praha: Scientia, 2003. ISBN 80-7183-284-7.
- Dillinger, J. a kol. *Moderní strojírenství pro školu a praxi,* Praha: Europa Sobotáles, 2007. ISBN 978-80-86706-19-1.