実習 B 通信システム設計演習

三軒家 佑將 1026-26-5817

1 目的

アナログ無線受信機の3方式、すなわち、ストレート受信機、スーパーへテロダイン2乗検波受信機、同期検波受信機について、National Instruments 社のシュミレーションソフト LabVIEW を用いて受信回路を作成し、特性を解析する。

2 方法

2.1 LabVIEW の使い方

教科書の例に習い、OOK 信号を出力する回路を作成した。

2.2 用いる素子の特性解析

2.2.1 LPF

与えられたファイル (whistler.vi) とホイッスラー音声ファイル (whistler.wav) を用いて、LPF の動作を確認した。

また、与えられたファイル(chirp.vi)を用いて、LPF による劣化量 ϵ が最小になるようなカットオフ周波数を数値的に求めた。ここで、劣化量 ϵ は、

$$\epsilon = \sqrt{\frac{\sum_{i=1}^{N} \left(S_{org} - S_{rec}\right)^2}{NS_{org}^2}}$$

によって定めた。

2.2.2 Amp

Amp ブロックに Sin 波を入力し、出力波形を観察した。また、Dist ブロックにより歪み率を測定して、増幅度による波形劣化の様子を調べた。

2.3 アナログ信号受信時の特性解析

2.3.1 アナログ送信波の構成

異なる搬送波周波数の3つのAM変調波と、適当な最大雑音振幅をもつがウス雑音を足し合わせ、アナログ送信波を構成した。3つのAM変調波のパラメーターは以下の通りとした。

所望波

搬送波周波数 1400kHz 変調周波数 1000Hz

変調度 40%

妨害波 1

搬送波周波数 1350kHz

変調周波数 1100Hz

変調度 40%

妨害波 2

搬送波周波数 1450kHz

変調周波数 900Hz

変調度 40%

また、この送信波回路と BPF、Amp を用いて、高周波増幅を行ない、BPF の Q 値によって、妨害波の抑圧度 α がどう変化するかを調べた。ここで、妨害度 α は、

$$\alpha = P_D - \max\left(P_{I1}, P_{I2}\right) \tag{1}$$

によって定めた。ただし、 P_D は所望波の出力 (dB) を、 P_{I1}, P_{I2} はそれぞれ妨害波 1,2 の出力 (dB) を表している。

2.3.2 受信機の作成

教科書を参考に、ストレート受信機、スーパーへテロダイン 2 乗検波受信機、同期検波受信機の 回路を作成した。

2.3.3 受信機の特性

ストレート受信機とスーパーへテロダイン2乗検波受信機にて、信号の受信を行い、さらに Dist ブロックを用いて各受信機のひずみ率を計算した。

ただし、受信時のパラメーターは以下のようである。

ストレート受信機

LPF **のカットオフ周波数** 1000Hz

BPF **の** Q 100

図1 OOK 信号出力回路

BPF **の中心周波数** 1400kHz

スーパーヘテロダイン 2 乗検波受信機

1段目の BPF **の** Q 100

1段目の BPF **の中心周波数** 1400kHz

2段目の BPF **の** Q 100

2段目の BPF **の中心周波数(中間周波数)** 450kHz

LPF **のカットオフ周波数** 1500Hz

また、ストレート受信機の特性測定時のみ、誤って送信波に含まれるホワイトノイズの最大振幅を 1とした(スーパーヘテロダイン 2 乗検波受信機の場合は最大振幅 0 とした)。

2.4 デジタル信号受信時の特性解析

- 2.4.1 デジタル送信波の構成
- 2.4.2 ストレート受信機の特性
- 2.4.3 スーパーヘテロダイン 2 乗検波受信機の特性
- 2.4.4 同期検波受信機の特性

3 結果

3.1 LabVIEW の使い方

図1のように回路を作成した。

図2 LPF の動作

3.2 用いる素子の特性解析

3.2.1 LPF

LPF を用いてホイッスラー音声ファイルを加工したときの、音声波形と周波数スペクトルをグラフにしたのが図2である。また、LPF を用いて雑音の入った疑似ホイッスラー音声ファイルを加工したときの、音声波形と周波数スペクトルをグラフにしたのが図3である。

これらの図において、左の2つの図が音声波形であり、右の2つの図が周波数スペクトルである。また、上の2つの図がLPFの加工の前の音声についてのグラフであり、下の2つの図がLPFによる加工の後の音声についてのグラフである。

図2の周波数スペクトルを表す2つの図から、LPFによりカットオフ周波数(6000Hz)より大きい周波数成分がカットされている事がわかる。

劣化量 ϵ が最小になるカットオフ周波数 f_c を探索したところ、図 3 のとおり、 $f_c=9000(Hz)$ 周辺にて劣化量が最小($\epsilon=5.75$)となった。

図3 LPF による劣化

3.2.2 Amp

実験のミスにより、データが保存されていなかった。

3.3 アナログ信号受信時の特性解析

3.3.1 アナログ送信波の構成

Q値	Pd(dB)	PI1(dB)	PI2(dB)	α (dB)
10	0.054	0.027	0.027	0.027
50	0.116	0	0	0.116
100	0.116	0	0	0.116

表1 Q値ごとの妨害度

図4が、作成した回路である。この回路図の前段がアナログ送信機の回路であり、後段が高周波 増幅回路である。

また、表1は、BPFのQ値と、その時の妨害波の抑圧度である。これを見ると、Q値が大きく

図4 アナログ送信機と高周波増幅回路

図5 ストレート受信機

なると抑圧度が大きくなる事がわかる。

3.3.2 受信機の作成

図 5、図 6、図 7 がそれぞれ、ストレート受信機、スーパーヘテロダイン 2 乗検波受信機、同期 検波受信機の回路図である。

図 6 スーパーヘテロダイン 2 乗検波受信機

図7 同期検波受信機

3.3.3 受信機の特性

図 8、図 9 がそれぞれ、ストレート受信機、スーパーヘテロダイン 2 乗検波受信機によって復号された信号の波形である。また、歪み率はそれぞれ、0.087% と 0.356% となった。

図8 ストレート受信機の受信波形

図9 スーパーヘテロダイン2乗検波受信機の受信波形

3.4 デジタル信号受信時の特性解析

- 3.4.1 デジタル送信波の構成
- 3.4.2 ストレート受信機の特性
- 3.4.3 スーパーヘテロダイン 2 乗検波受信機の特性
- 3.4.4 同期検波受信機の特性

4 考察

4.1 課題 5

8

式(1)の、抑圧度としての妥当性を検討する。

まず、抑圧度 α を、所望波の出力 A_D と、妨害波の出力 A_I を用いて、

$$\alpha = 10\log\left(\frac{A_D}{A_I}\right)$$

で定義する。ところで、パワースペクトルの値(所望波 P_D 、妨害波 P_I)は、LabVIEW が表示するグラフ上ではデシベル単位で表示されているため、

$$P_D - P_I = 10\log\left(\frac{A_D}{A_0}\right) - 10\log\left(\frac{A_I}{A_0}\right)$$
$$= 10\log\left(\frac{A_D}{A_I}\right)$$

である。ただし、 A_0 は、デシベルの基準値である。これより、

$$\alpha = P_D - P_I$$

となる。ところで、実験の設定では、妨害波が2つある。実際にはどちらもほとんど同じ値を示したため、式(1)では適当に、2つの妨害波のうち、より大きい値を示したものを P_I として採用するようにした。

4.2 課題 6

二段目の BPF に入力される信号の式は、次のようになる。

$$(A(1+m\sin(\omega))\sin(\omega_1) + \sin(\omega + \omega_m))^2 = \frac{1}{8}(A^2m^2\cos(2\omega - 2\omega_1) + A^2m^2\cos(2\omega + 2\omega_1) - 4A^2m\sin(\omega - 2\omega_1) - 4A^2m\sin(\omega + 2\omega_1)...(\mathbb{K}))$$

ただし、

$$\omega = 2\pi t \times$$
 搬送波周波数
 $\omega_1 = 2\pi t \times$ 信号周波数
 $\omega_m = 2\pi t \times$ 中間周波数

である。この式から、 ω_m 周辺の周波数の項のみを取り出すと、

$$-\frac{1}{2}A\sin(\omega_m - \omega_1) + \frac{1}{2}A\sin(\omega_1 + \omega_m) = A\cos(\omega_m)\sin(\omega_1)$$

となる。これをストレート受信機と同様に検波することにより、 $\sin(2\pi f_1 t)$ の信号が取り出せる。

4.3 課題 7

LPF に入力される信号の式は次のようになる。

$$(1 + m\sin(\omega_1))\sin(\omega)\sin(\omega + \phi) = \frac{1}{4}(Am\sin(\omega_1 - \phi) + Am\sin(\omega_1 + \phi) - Am\sin(-2\omega + \omega_1 - \phi) - Am\sin(2\omega + \omega_1 + \phi) - 2A\cos(2\omega + \phi) + 2A\cos(\phi))$$

図 10 $\phi = 0$ のときの波形

ただし、

 $\omega = 2\pi t \times$ 搬送波周波数

 $\omega_1 = 2\pi t \times$ 信号周波数

φ = 掛け合わせる正弦波の位相

である。

この信号から、低周波成分のみを取り出すと、

$$\frac{1}{4}(Am\sin(\omega_1 - \phi) + Am\sin(\omega_1 + \phi) + 2A\cos(\phi)) = \frac{1}{2}Am\sin(\omega_1)\cos(\phi) + \frac{1}{2}A\cos(\phi)$$

となる。 $\phi = 0$ のとき、この信号の直流成分を除くことで、 $\frac{1}{2}Am\sin(\omega_1)$ が得られる。

また、 $\phi \neq 0$ のとき、得られる信号は $\frac{1}{2}Am\sin(\omega_1)\cos(\phi)$ となるため、信号の出力が $\cos(\phi)$ 倍 されることになる。

実際に位相 ϕ の値を変化させると、図 10~図 13 のように、 $\cos(\phi)$ に従って振幅が変化していることがわかる。

4.4 課題8

まず、各受信機の BPF の Q 値および LPF のカットオフ周波数、中間周波数の、選択度への寄与を検討する。

ストレート受信機については、BPF の Q 値の寄与が大きい。これは、選択を行っている素子が BPF のみだけだからである。LPF は、選択された信号から、低周波成分を抜き出すのに使われて いるだけである。

図 11 $\phi = 0.9$ のときの波形

図 12 $\phi = 1.5$ のときの波形

スーパーへテロダイン2乗検波受信機については、後段の BPF の Q 値の寄与が大きい。これは、選択を行っているのが後段の BPF だからである。前段の BPF は無くても動くが、これがないと Amp への入力が大きくなり、Amp での歪みが大きくなってしまう。LPF については、ストレート受信機と同様である。また、中間周波数については、小さくしたほうが同じ Q 値の BPF を使ったとしても高い選択度を実現できるため、これも重要である。

同期検波受信機については、BPF の Q 値はほとんど寄与しない。これは、選択に使われているのは BPF ではなく、受信波に掛けられる正弦波の周波数だからである。また、LPF のカットオフ

図 13 $\phi = 3$ のときの波形

図 14 ストレート受信機 (Q=10)

周波数は、取り出したい信号の周波数より大きければ、ほとんど寄与しない。

以上のことから、ストレート受信機については BPF が、スーパーへテロダイン 2 乗検波受信機については後段の BPF が最も支配的なフィルタであると考えられる。同期検波受信機については、どのフィルタも選択度に対しては支配的でないと考えられる。

実際に、BPF の Q 値を変えて、歪み率を計算した結果が図 14~図 20 である。図には示していないが、LPF の値は歪み率には寄与しなかった。

図 14~図 16 を見るとわかるように、ストレート受信機においては、BPF の Q 値が強く歪み値に寄与している。また、図 17~図 19 を見るとわかるように、 Q_2 が低いときに顕著に歪み率が低

図 15 ストレート受信機 (Q=20)

図 16 ストレート受信機 (Q=30)

下することから、スーパーへテロダイン 2乗検波受信機においては、後段のほうが大きく歪み率に寄与していることがわかる (Q_1,Q_2) はそれぞれ、前段の BPF と後段の BPF の Q 値である)。また、図 20 を見るとわかるように、低い Q 値においても低い歪み率であることから、同期検波受信機においては、BPF の Q 値は歪み率に寄与しないことがわかる。

図 17 スーパーヘテロダイン 2 乗検波受信機($Q_1=5,Q_2=5$)

図 18 スーパーヘテロダイン 2 乗検波受信機 $(Q_1=1,Q_2=5)$

図 19 スーパーヘテロダイン 2 乗検波受信機 $(Q_1 = 5, Q_2 = 1)$

図 20 同期検波受信機(Q=1)