MATH597 Analysis II

Pingbang Hu

February 7, 2022

Abstract

Notice that since in this course, the cross-referencing between theorems, lemmas, and propositions are quite complex and hard to keep track of, hence in this note, whenever you see a ! over =, like $\stackrel{!}{=}$, then that ! is clickable! It will direct you to the corresponding theorem, lemma, or proposition.

Notice that there are some proofs is **intended** left as assignments, and for completeness, I put them in Appendix A, use it in your **own risks!** You'll lose the chance to practice and really understand the materials.

Additionally, we'll use [FF99] as our main text, while using [Tao13] and [Axl19] as supplementary references.

Contents

Lecture 1: σ -algebra

	Mea	asure			
	1.1	σ -algebras	3		
	1.2	Measures	6		
	1.3	Outer Measures	10		
	1.4	Hahn-Kolmogorov Theorem	16		
	1.5	Borel Measures on $\mathbb R$	21		
	1.6	Lebesgue-Stieltjes Measure on $\mathbb R$	26		
		1.6.1 Cantor Function	28		
	1.7	Regularity Properties of Lebesgue-Stieltjes Measures	29		
	Inte	Integration			
	2.1	Measurable Function	32		
	2.2	Integration of Nonnegative Functions	37		
	2.3	Integration of Complex Functions	43		
_	Add	Additional Proofs			
	A.1	Measure	48		
	A.2	Integration	51		

05 Jan. 11:00

1 Measure

Example. Before we start, we first see some examples.

1. Let $X = \{a, b, c\}$. Then

$$\mathcal{P}(X) \coloneqq \{\varnothing, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\},\$$

which is the *power set* of X. We see that

$$\#X = n \implies \#\mathcal{P}(X) = 2^n$$

for $n < \infty$.

2. If $n = \infty$, say $X = \mathbb{N}$, then

$$\mathcal{P}(\mathbb{N})$$

is an uncountable set while $\mathbb N$ is a countable set. We can see this as follows. Consider

$$\phi \colon \mathcal{P}(\mathbb{N}) \to [0,1], \quad A \mapsto 0.a_1 a_2 a_3 \dots \text{(base 2)},$$

where

$$a_i = \begin{cases} 1, & \text{if } i \in A \\ 0, & \text{if } i \notin A, \end{cases}$$

and for example, A can be $A=\{2,3,6,\ldots\}\subseteq\mathbb{N}.$ Note that ϕ is surjective, hence we have

$$\#\mathcal{P}(\mathbb{N}) \ge \# [0,1]$$
.

But since [0,1] is uncountable, so is $\mathcal{P}(\mathbb{N})$.

We like to *measure* the *size* of subsets of X. Hence, we are intriguing to define a map μ such that

$$\mu \colon \mathcal{P}(X) \to [0, \infty]$$
.

Example. We first see some examples.

- 1. Let $X = \{0, 1, 2\}$. Then we want to define $\mu \colon \mathcal{P}(X) \to [0, \infty]$, we can have
 - $\mu(A) = \#A$. Then we have

$$-\mu(\{0,1\})=2$$

$$- \ \mu(\{0\}) = 1$$

• $\mu(A) = \sum_{i \in A} 2^i$. Then we have

$$-\ \mu(\{0,1\})=2^0+2^1=3$$

- 2. Let $X = \{0\} \cup \mathbb{N}$. Then we want to define $\mu \colon \mathcal{P}(\mathbb{N}) \to [0, \infty]$, we can have
 - $\mu(A) = \#A$. Then we have

$$-\mu(\{2,3,4,5,\ldots\}) = \infty = \mu(\{\text{even numbers}\})$$

• $\mu(A) = e^{-1} \sum_{i \in A} \frac{1}{i!}$. Then we have

$$-\mu(\{0,2,4,6,\ldots\}) = e^{-1}\left(1 + \frac{1}{2!} + \frac{1}{3!} + \ldots\right)$$

•
$$\mu(A) = \sum_{i \in A} a_i$$

- 3. Let $X = \mathbb{R}$. Then we want to define $\mu \colon \mathcal{P}(\mathbb{R}) \to [0, \infty]$, we can have
 - $\mu(A) = \#A$
 - $\mu((a,b)) = b a$.

Problem. Can we extend this map to all of $\mathcal{P}(\mathbb{R})$?

Answer. No!

• $\mu((a,b)) = e^b - e^a$.

Problem. Can we extend this map to all of $\mathcal{P}(\mathbb{R})$?

Answer. No!

We immediately see the problems. To extend our native measure method into \mathbb{R} is hard and will cause something counter-intuitive! Hence, rather than define measurement on *all* subsets in the power set of X, we only focus on *some* subsets. In other words, we want to define

$$\mu \colon \mathcal{P}(\mathbb{R}) \supset \mathcal{A} \to [0, \infty]$$
.

1.1 σ -algebras

We start from the definition of the most fundamental element in measure theory.

Definition 1.1 (σ -algebra). Let X be a set. A collection \mathcal{A} of subsets of X, i.e., $\mathcal{A} \subset \mathcal{P}(X)$ is called a σ -algebra on X if

- $\varnothing \in \mathcal{A}$.
- \mathcal{A} is closed under complements. i.e., if $A \in \mathcal{A}$, $A^c = X \setminus A \in \mathcal{A}$.
- \mathcal{A} is closed under countable unions. i.e., if $A_i \in \mathcal{A}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

Remark. There are some easy properties we can immediately derive.

- $X \in \mathcal{A}$ from $X = X \setminus \underbrace{\varnothing}_{\in \mathcal{A}}$ and \mathcal{A} is closed under complement.
- $\bigcap_{i=1}^{\infty} A_i = \left(\bigcup_{i=1}^{\infty} A_i^c\right)^c$, namely \mathcal{A} is <u>closed under countable intersections</u>.
- $A_1 \cup A_2 \cup \ldots \cup A_n = A_1 \cup A_2 \cup \ldots \cup A_n \cup \emptyset \cup \emptyset \cup \ldots$, hence A is closed under finite unions and intersections.

An immediate definition can be given. We now define so-called Borel set.

¹https://en.wikipedia.org/wiki/Banach-Tarski_paradox

Definition 1.2 (Borel set). Given a topological space X, a *Borel set* is any set in X that can be formed from open sets through the operations of countable union, countable intersection and relative complement.

Lecture 2: Measure

07 Jan. 11:00

Example. Again, we first see some examples.

- 1. Let $\mathcal{A} = \mathcal{P}(X)$, which is the power σ -algebra.
- 2. Let $\mathcal{A} = \{\emptyset, X\}$, which is a trivial σ -algebra.
- 3. Let $B \subset X$, $B \neq \emptyset$, $B \neq X$. Then we see that $\mathcal{A} = \{\emptyset, B, B^c, X\}$ is a σ -algebra.

Lemma 1.1. Let \mathcal{A}_{α} , $\alpha \in I$, be a family of σ -algebra on X. Then

$$\bigcap_{\alpha\in I}\mathcal{A}_{\alpha}$$

is a σ -algebra on X.

Remark. Notice that I may be an uncountable intersection.

Proof. A simple proof can be made as follows. Firstly, $\emptyset \in \mathcal{A}_{\alpha}$ for every α clearly. Moreover, closure under complement and countable unions for every \mathcal{A}_{α} implies the same must be true for $\bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$. Hence, $\bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$ is a σ -algebra.

The above allows us to give the following definition.

Definition 1.3 (Generation of σ -algebra). Given $\mathcal{E} \subset \mathcal{P}(X)$, where \mathcal{E} is not necessarily a σ -algebra. Let $\langle \mathcal{E} \rangle$ be the intersection of all σ -algebras on X containing \mathcal{E} , then we call $\langle \mathcal{E} \rangle$ the σ -algebra generated by \mathcal{E} .

Remark. Clearly, $\langle \mathcal{E} \rangle$ is the smallest σ -algebra containing \mathcal{E} , and it is unique. To check the uniqueness, we suppose there are two different $\langle \mathcal{E} \rangle_1$ and $\langle \mathcal{E} \rangle_2$ generated from \mathcal{E} . It's easy to show

$$\langle \mathcal{E} \rangle_1 \subseteq \langle \mathcal{E} \rangle_2$$
,

and by symmetry, they are equal.

Example. We see that $\{\emptyset, B, B^c, X\} = \langle \{B\} \rangle = \langle \{B^c\} \rangle$.

Lemma 1.2. We have

- 1. Given \mathcal{A} a σ -algebra, $\mathcal{E} \subset \mathcal{A} \subset \mathcal{P}(X) \implies \langle \mathcal{E} \rangle \subset \mathcal{A}$
- 2. $\mathcal{E} \subset \mathcal{F} \subset \mathcal{P}(X) \implies \langle \mathcal{E} \rangle \subset \langle \mathcal{F} \rangle$

Proof. We'll see that after proving the first claim, the second follows smoothly.

- 1. The first claim is trivial, since we know that $\langle \mathcal{E} \rangle$ is the smallest σ -algebra containing \mathcal{E} , then if $\mathcal{E} \subset \mathcal{A}$, we clearly have $\langle \mathcal{E} \rangle \subset \mathcal{A}$ by the definition.
- 2. The second claim is also easy. From the first claim and the definition, we have

$$\mathcal{E} \subset \mathcal{F} \subset \langle \mathcal{F} \rangle \implies \langle \mathcal{E} \rangle \subset \langle \mathcal{F} \rangle.$$

At this point, we haven't put any specific structure on X. Now we try to describe those spaces with good structure, which will give the space some nice properties.

Definition 1.4 (Borel σ -algebra). For a topological space X, the *Borel* σ -algebra on X, denotes as $\mathcal{B}(X)$, is the σ -algebra generated by the collection of all open sets in X.

Example. We see that $\mathcal{B}(\mathbb{R})$ contains

- $\mathcal{E}_1 = \{(a, b) \mid a < b; a, b \in \mathbb{R}\}.$
- $\mathcal{E}_2 = \{ [a, b] \mid a < b; a, b \in \mathbb{R} \} \text{ since } [a, b] = \bigcap_{n=1}^{\infty} (a \frac{1}{n}, b + \frac{1}{n}).$
- $\mathcal{E}_3 = ((a, b] \mid a < b; a, b \in \mathbb{R}) \text{ since } (a, b] = \bigcap_{n=1}^{\infty} (a, b + \frac{1}{n}).$
- $\mathcal{E}_4 = ([a,b) \mid a < b; a, b \in \mathbb{R}) \text{ since } [a,b) = \bigcap_{n=1}^{\infty} (a \frac{1}{n}, b).$
- $\mathcal{E}_5 = ((a, \infty) \mid a \in \mathbb{R}) \text{ since } (a, \infty) = \bigcup_{n=1}^{\infty} (a, a+n).$
- $\mathcal{E}_6 = ([a, \infty) \mid a \in \mathbb{R}) \text{ since } [a, \infty) = \bigcup_{n=1}^{\infty} [a, a+n).$
- $\mathcal{E}_7 = ((-\infty, b) \mid b \in \mathbb{R}) \text{ since } (-\infty, b) = \bigcup_{n=1}^{\infty} (b n, b).$
- $\mathcal{E}_8 = ((-\infty, b] \mid a \in \mathbb{R}) \text{ since } (-\infty, b] = \bigcup_{n=1}^{\infty} (b n, b].$

Proposition 1.1. $\mathcal{B}(\mathbb{R}) = \langle \mathcal{E}_i \rangle$ for each i = 1, ..., 8.

Proof. Firstly, we see that $\mathcal{E}_i \subset \mathcal{B}(\mathbb{R}) \implies \langle \mathcal{E}_i \rangle \subset \mathcal{B}(\mathbb{R})$ by Lemma 1.2. Secondly, by definition, $\mathcal{B}(\mathbb{R}) = \langle \mathcal{E} \rangle$ where

$$\mathcal{E} = \{ O \subseteq \mathbb{R} \mid O \text{ is open in } \mathbb{R} \}.$$

It's enough to show $\mathcal{E} \subset \langle \mathcal{E}_i \rangle$ since if so, $\langle \mathcal{E} \rangle \subseteq \langle \mathcal{E}_i \rangle$, and clearly $\langle \mathcal{E} \rangle \supseteq \langle \mathcal{E}_i \rangle = \mathcal{B}(\mathbb{R})$, then we will have $\langle \mathcal{E} \rangle = \langle \mathcal{E}_i \rangle$. Let $O \subset \mathbb{R}$ be an open set, i.e., $O \in \mathcal{E}$. We claim that every open set in \mathbb{R} is a countable union of disjoint open intervals.²

$$O = \bigcup_{j=1}^{\infty} I_j,$$

where I_j open interval with the form of $(a, b), (-\infty, b), (a, \infty), (-\infty, \infty)$.

For example, \mathcal{E}_1 is trivially true, and

$$(a,b) = \bigcup_{n=1}^{\infty} \underbrace{\left[a + \frac{1}{n}, b - \frac{1}{n}\right]}_{\in \mathcal{E}_2}$$

shows the case for \mathcal{E}_2 and

Thus,

$$(a,\infty) = \bigcup_{k=1}^{\infty} (a, a+k)$$

shows the case for \mathcal{E}_5 . It's now straightforward to check open intervals are in $\langle \mathcal{E}_i \rangle$ for every i.

Now, to put a structure on a space, we define the following.

Definition 1.5 (Measurable space). (X, \mathcal{A}) is called a *measurable space*, and $E \in \mathcal{A}$ is called an \mathcal{A} -measurable set.

1.2 Measures

With the definition of measurable space, we now can refine our measure function μ as follows.

Definition 1.6 (Measure). Given a measurable space on (X, \mathcal{A}) , a *measure* is a function μ such that

$$\mu \colon \mathcal{A} \to [0, \infty]$$

with

1.
$$\mu(\emptyset) = 0$$

2. $\mu\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mu(A_i)$ if $A_1,A_2,\ldots\in\mathcal{A}$ are **disjoint**. We call this Countable additivity.

We denote (X, \mathcal{A}, μ) a measure space.

²https://math.stackexchange.com/questions/318299/any-open-subset-of-bbb-r-is-a-countable-union-of-disjoint-open-intervals

Notation. We denote $[0, \infty] := [0, \infty) \cup \{\infty\}$.

Remark. The motivation of why we only want *countable additivity* but not uncountable additivity can be seen by the following example. We'll consider the most intuitive measure on $\mathbb{R}, \mathcal{B}(\mathbb{R})$.

Since we have

$$(0,1] = \left(\frac{1}{2},1\right] \cup \left(\frac{1}{4},\frac{1}{2}\right] \cup \left(\frac{1}{8},\frac{1}{4}\right] \cup \dots$$

and also

$$(0,1] = \bigcup_{x \in (0,1]} \{x\}.$$

Specifically, in the first case, we are claiming that

$$1 = \underbrace{\frac{1}{2}}_{\mu((\frac{1}{2},1])} + \underbrace{\frac{1}{4}}_{\mu((\frac{1}{4},\frac{1}{2}])} + \underbrace{\frac{1}{8}}_{\mu((\frac{1}{8},\frac{1}{4}])} + \dots;$$

while in the second case, we are claiming that

$$1 = \sum_{x \in (0,1]} 0$$

since $\mu(x) = 0$ for $x \in \mathbb{R}$, which is clearly not what we want.

Example. We see some examples.

- 1. For any (X, \mathcal{A}) , we let $\mu(A) := \#A$. This is called *counting measure*.
- 2. Let $x_0 \in X$. For any (X, \mathcal{A}) , the Dirac measure at x_0 is

$$\mu(A) = \begin{cases} 1, & \text{if } x_0 \in A; \\ 0, & \text{if } x_0 \notin A. \end{cases}$$

3. For $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$,

$$\mu(A) = \sum_{i \in A} a_i,$$

where $a_1, a_2, \ldots \in [0, \infty)$.

Lecture 3: Construct a Measure

10 Jan. 11:00

Note. If $A, B \in \mathcal{A}$ and $A \subset B$, then

$$\mu(B \setminus A) + \mu(A) = \mu(B) \implies \mu(B \setminus A) = \mu(B) - \mu(A) \text{ if } \mu(A) < \infty.$$

Theorem 1.1. Given (X, \mathcal{A}, μ) be a measure space.

- 1. (monotonicity) $A, B \in \mathcal{A}, A \subset B \implies \mu(A) \leq \mu(B)$.
- 2. (countable subadditivity) $A_1, A_2, \ldots \in \mathcal{A} \implies \mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \mu(A_i)$
- 3. (continuity from below/ monotone convergence theorem (MCT) for sets)

$$\begin{cases} A_1, A_2, \dots \in \mathcal{A} \\ A_1 \subset A_2 \subset A_3 \subset \dots \end{cases} \implies \mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mu(A_n).$$

4. (continuity from above)

$$\begin{cases} A_1, A_2, \dots \in \mathcal{A} \\ A_1 \supset A_2 \supset A_3 \supset \dots \implies \mu \left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mu(A_n). \\ \mu(A_1) < \infty \end{cases}$$

Proof. We prove this theorem one by one.

1. Since $A \subset B$, hence we have

$$\mu(B) = \mu\left(\underbrace{(B \setminus A)}_{\text{disjoint}} \cup \underline{A}\right) \stackrel{!}{=} \underbrace{\mu(B \setminus A)}_{\geq 0} + \mu(A) \geq \mu(A).$$

2. This should be trivial from countable additivity with the fact that $\mu(A) \ge 0$ for all A

DIY!

3. Let $B_1 = A_1$, $B_i = A_i \setminus A_{i-1}$ for $i \geq 2$, then

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$$

are a disjoint union and $B_i \in \mathcal{A}$, hence we see that

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(B_i).$$

With $\mu\left(\bigcup_{i=1}^n B_i\right) = \mu(A_n)$, we have

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(B_i) = \lim_{n \to \infty} \mu\left(\bigcup_{i=1}^{n} B_i\right) = \lim_{n \to \infty} \mu(A_n).$$

4. Let $E_i = A_1 \setminus A_i \implies E_i \in \mathcal{A}, E_1 \subset E_2 \subset \dots$ We then have

$$\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} (A_1 \setminus A_i) = A_1 \setminus \left(\bigcap_{i=1}^{\infty} A_i\right),$$

which implies

$$\bigcap_{i=1}^{\infty} A_i = A_1 \setminus \left(\bigcup_{i=1}^{\infty} E_i\right) \implies \mu\left(\bigcap_{i=1}^{\infty} A_i\right) = \mu(A_1) - \mu\left(\bigcup_{i=1}^{\infty} E_i\right)$$

since $\mu\left(\bigcup_{i=1}^{\infty} E_i\right) \leq \mu(A_1) < \infty$. Then from continuity from below, we further have

$$\mu\left(\bigcap_{i=1}^{\infty} A_i\right) = \mu(A_1) - \lim_{n \to \infty} \mu(E_n) = \mu(A_1) - \lim_{n \to \infty} (\mu(A_1) - \mu(A_n)).$$

From monotonicity, we see that $\mu(A_n) \leq \mu(A_1) < \infty$, hence we can split the limit and further get

$$\mu\left(\bigcap_{i=1}^{\infty} A_i\right) = \mu(A_1) - \mu(A_1) + \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \mu(A_n).$$

Example. Given $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \text{ counting measure})$. Then we see

- $A_n = \{n, n+1, n+2, \ldots\} \implies \mu(A_n) = \infty$
- $A_1 \supset A_2 \supset A_3 \supset \dots$
- $\bullet \bigcap_{i=1}^{\infty} A_i = \varnothing \implies \mu \left(\bigcap_{i=1}^{\infty} A_i \right) = 0$

Remark. We see that in this case, since $\mu(A_1) \not< \infty$, hence continuity from above doesn't hold.

We now try to characterize some properties of a measure space.

Definition 1.7 (μ -null, μ -subnull, Complete measure space). Given (X, \mathcal{A}, μ)

- $A \subset X$ is a μ -null set if $A \in \mathcal{A}$ and $\mu(A) = 0$.
- $A \subset X$ is a μ -subnull set if $\exists \mu$ -null set B such that $A \subset B$. Note that A is not necessarily A-measurable.
- (X, \mathcal{A}, μ) is a *complete* measure space if every μ -subnull set is \mathcal{A} -measurable.

There are some useful terminologies we'll use later relating to μ -null.

Definition 1.8 (Almost everywhere). Given (X, \mathcal{A}, μ) , a statement $P(x), x \in X$ holds μ -almost everywhere (a.e.) if the set

$$\{x \in X : P(x) \text{ does not hold}\}\$$

is μ -null.

It's always pleasurable working with finite rather than infinite, hence we give the following definition.

Definition 1.9 (finite measure). Given (X, \mathcal{A}, μ)

- μ is a finite measure if $\mu(X) < \infty$.
- μ is a σ -finite measure if $X = \bigcup_{n=1}^{\infty} X_n, X_n \in \mathcal{A}, \mu(X_n) < \infty$.

Exercise. Every measure space can be **completed**. Namely, we can always find a bigger σ -algebra to complete the space.

1.3 Outer Measures

We start by giving a definition.

Definition 1.10 (Outer measure). An outer measure on X is a map

$$\mu^* \colon \mathcal{P}(X) \to [0, \infty]$$

such that

- $\mu^*(\varnothing) = 0$
- (monotonicity) $\mu^*(A) \leq \mu^*(B)$ if $A \subset B$
- (countable subadditivity) $\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) \leq \sum_{i=1}^{\infty} \mu^*(A_i)$ for every $A_i \subset X$.

Example. For $A \subset \mathbb{R}$,

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} (b_i - a_i) \colon \bigcup_{i=1}^{\infty} (a_i, b_i) \supset A \right\}$$

is an outer measure due to the Proposition 1.2 we're going to show.

Remark. We see that an outer measure need not be a measure. Check the Definition 1.6 for a measure function.

Proposition 1.2. Let $\mathcal{E} \subset \mathcal{P}(X)$ such that $\emptyset, X \in \mathcal{E}$. Let

$$\rho \colon \mathcal{E} \to [0, \infty]$$

such that $\rho(\emptyset) = 0$. Then

$$\mu^*(A) := \inf \left\{ \sum_{i=1}^{\infty} \rho(E_i) : \bigvee_{i \in \mathbb{N}} E_i \in \mathcal{E}, \bigcup_{i=1}^{\infty} E_i \supset A \right\}$$

is an outer measure on X.

Note. Recall the Tonelli's Theorem³ for series:

If $a_{ij} \in [0, \infty], \forall i, j \in \mathbb{N}$, then

$$\sum_{(i,j)\in\mathbb{N}^2} a_{ij} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$

Specifically, in [Tao13] Theorem 0.0.2.

Lecture 4: Carathéodory extension Theorem

12 Jan. 11:00

As previously seen. We now prove the Proposition 1.2.

Proof. We need to prove

- μ^* is well-defined. i.e., inf is taken over a non-empty set. This is trivial since $X \in \mathcal{E}$ and $X \supset A$ for any $A \in \mathcal{E}$.
- $\mu^*(\varnothing) = 0$. Since $\varnothing \in \mathcal{E}$ and

$$\mu^*(\varnothing) = \inf \left\{ \sum_{i=1}^{\infty} \rho(E_i) : \bigvee_{i \in \mathbb{N}} E_i \in \mathcal{E}, \bigcup_{i=1}^{\infty} E_i \supset \varnothing \right\} = 0$$

since $\rho(\varnothing) = 0$ for all i and further, by Squeeze Theorem⁴, we see that $\lim_{n \to \infty} \sum_{i=1}^{n} \rho(\varnothing) = 0$.

• $A \subset B \implies \mu^*(A) \leq \mu^*(B)$. We simply show this by contradiction. Suppose $A \subset B$ and $\mu^*(A) > \mu^*(B)$, then by definition of μ^* , we have

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \rho(E_i) : \bigvee_{i \in \mathbb{N}} E_i \in \mathcal{E}, \bigcup_{i=1}^{\infty} E_i \supset A \right\}$$
$$> \inf \left\{ \sum_{i=1}^{\infty} \rho(E_i) : \bigvee_{i \in \mathbb{N}} E_i \in \mathcal{E}, \bigcup_{i=1}^{\infty} E_i \supset B \right\} = \mu^*(B).$$

Now, let $B =: (B \setminus A) \cup A$, then we have

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \rho(E_i) \colon \bigvee_{i \in \mathbb{N}} E_i \in \mathcal{E}, \bigcup_{i=1}^{\infty} E_i \supset A \right\}$$
$$> \inf \left\{ \sum_{i=1}^{\infty} \rho(E_i) \colon \bigvee_{i \in \mathbb{N}} E_i \in \mathcal{E}, \bigcup_{i=1}^{\infty} E_i \supset (B \setminus A) \cup A \right\} = \mu^*(B).$$

Now, since $B \backslash A \supseteq \varnothing$, then this inequality can't hold, hence a contradiction $\not \downarrow$.

³https://en.wikipedia.org/wiki/Fubini%27s_theorem

⁴https://en.wikipedia.org/wiki/Squeeze_theorem

• Countable subadditivity. Let $A_1, A_2, \ldots \in X$. If one of $\mu^*(A_n) = \infty$, then result holds. So we may assume $\mu^*(A_n) < \infty$ for all $n \in \mathbb{N}$. Now, fix any $\epsilon > 0$, we will show that

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} \mu^* (A_n) + \epsilon.$$

For each $n \in \mathbb{N}$, $\exists E_{n,1}, E_{n,2}, \ldots \in \mathcal{E}$ such that

$$\bigcup_{k=1}^{\infty} E_{n,k} \supset A_n$$

and

$$\mu^*(A_n) + \frac{\epsilon}{2^n} > \sum_{k=1}^{\infty} \rho(E_{n,k}).$$

Then we see that

$$\bigcup_{k=1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} E_{k,n} = \bigcup_{(n,k) \in \mathbb{N}^2} E_{k,n},$$

which implies

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{(n,k) \in \mathbb{N}^2} \rho \left(E_{k,n} \right) \stackrel{!}{=} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \rho(E_{k,n}) \le \sum_{n=1}^{\infty} \left(\mu^*(A_n) + \frac{\epsilon}{2^n} \right)$$

from the inequality just derived. Now, since the last term is just

$$\sum_{n=1}^{\infty} \left(\mu^*(A_n) + \frac{\epsilon}{2^n} \right) = \sum_{n=1}^{\infty} \mu^*(A_n) + \epsilon,$$

hence we finally have

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} \mu^*(A_n) + \epsilon$$

for arbitrarily small fixed $\epsilon > 0$, hence the subadditivity is proved.

Definition 1.11 (Carathéodory measurable). Let μ^* be an outer measure on X. We say $A \subset X$ is Carathéodory measurable (C-measurable) with respect to μ^* if

$$\forall E \subset X, \ \mu^*(E) = \mu^* \left(E \cap A \right) + \mu^* \left(E \setminus A \right).$$

 $^{^5{\}rm This}$ is an important trick!!

Lemma 1.3. Let μ^* be an outer measure on X. Suppose B_1, \ldots, B_N are disjoint C-measurable sets. Then,

$$\forall E \subset X, \ \mu^* \left(E \cap \left(\bigcup_{i=1}^N B_i \right) \right) = \sum_{i=1}^N \mu^* \left(E \cap B_i \right).$$

Proof. Since we have

$$\mu^* \left(E \cap \left(\bigcup_{i=1}^N B_i \right) \right) = \mu^* \left(E' \cap B_1 \right) + \mu^* \left(E' \setminus B_1 \right)^6$$

$$= \mu^* \left(E \cap \left(\bigcup_{i=1}^N B_i \cap B_1 \right) \right) + \mu^* \left(E \cap \left(\bigcup_{i=1}^N B_i \right) \cap B_1^c \right)$$

$$= \mu^* (E \cap B_1) + \mu^* \left(E \cap \left(\bigcup_{i=2}^N B_i \right) \right)$$

where the equality comes from the fact that B_1 is C-measurable and disjoint from B_i , $i \neq 1$. Then, we simply iterate this argument and have the result.

Remark. This implies that if we restrict an outer measure on a C-measurable set, then it becomes <u>finite additive</u>.

Theorem 1.2 (Carathéodory extension Theorem). Let μ^* be an outer measure on X. Let \mathcal{A} be the collection of C-measurable sets (with respect to μ^*). Then,

- 1. \mathcal{A} is a σ -algebra on X.
- 2. $\mu = \mu^*|_{\mathcal{A}}$ is a measure on (X, \mathcal{A}) .
- 3. (X, \mathcal{A}, μ) is a complete measure space.

Proof. We divide the proof in several steps.

- 1. We show \mathcal{A} is a σ -algebra by showing
 - (a) $\varnothing \in \mathcal{A}$. To show this, we simply check that \varnothing is C-measurable. We see that

$$\bigvee_{E\subset X}\mu^*(E)=\mu^*(E\cap\varnothing)+\mu^*(E\setminus\varnothing)=\mu^*(E),$$

which just shows $\emptyset \in \mathcal{A}$.

(b) \mathcal{A} closed under complements. This is equivalent to say that if A is C-measurable, so is A^c . We see that if A is C-measurable, then for every $E \subset X$,

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A).$$

⁶Here, $E' := E \cap \left(\bigcup_{i=1}^{N} B_i\right)$ for the simplicity of notation.

Observing that
$$E \cap A = E \setminus A^c$$
 and $E \setminus A = E \cap A^c$, hence
$$\mu^*(E) = \mu^*(E \setminus A^c) + \mu^*(E \cap A^c).$$

We immediately see that above implies $A^c \in \mathcal{A}$.

(c) \mathcal{A} closed under countable unions.

Note. To show \mathcal{A} closed under countable unions, we show that \mathcal{A} is closed under:

finite unions $\stackrel{\text{then}}{\Longrightarrow}$ countable disjoint unions $\stackrel{\text{then}}{\Longrightarrow}$ countable unions.

• We show A is closed under finite unions.

Claim.
$$A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$$
.

Fix $E \subset X$ arbitrary. We need to show that

$$\mu^*(E) = \mu^*(E \cap (A \cup B)) + \mu^*(E \setminus (A \cup B)),$$

i.e.,

$$\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2 \cup 3) + \mu^*(4)$$

given $A, B \in \mathcal{A}$.

- Since A is C-measurable,
 - * $\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2) + \mu^*(3 \cup 4)$
 - * $\mu^*(1 \cup 2 \cup 3) = \mu^*(1 \cup 2) + \mu^*(3)$
- Since B is C-measurable,
 - * $\mu^*(3 \cup 4) = \mu^*(3) + \mu^*(4)$

Hence, we have

$$\begin{split} \mu^*(1 \cup 2 \cup 3 \cup 4) &= \mu^*(1 \cup 2) + \mu^*(3 \cup 4) \\ &= \mu^*(1 \cup 2) + \mu^*(3) + \mu^*(4) \\ &= \mu^*(1 \cup 2 \cup 3) + \mu^*(4). \end{split}$$

We show A is closed under countable <u>disjoint</u> unions.
 Let A₁, A₂, . . . ∈ A and <u>disjoint</u>. Fix E ⊂ X arbitrary. Since μ* is countably subadditive,

$$\mu^*(E) \le \mu^* \left(E \cap \bigcup_{i=1}^{\infty} A_i \right) + \mu^* \left(E \setminus \bigcup_{i=1}^{\infty} A_i \right),$$

hence we only need to show another way around.

Fix $N \in \mathbb{N}$, we have $\bigcup_{n=1}^{N} A_n \in \mathcal{A}$ since N is finite, and

$$\mu^{*}(E) = \mu^{*} \left(E \cap \left(\bigcup_{n=1}^{N} A_{n} \right) \right) + \mu^{*} \left(E \setminus \left(\bigcup_{n=1}^{N} A_{n} \right) \right)$$

$$\geq \sum_{n=1}^{N} \mu^{*}(E \cap A_{n}) + \mu^{*} \left(E \setminus \bigcup_{n=1}^{\infty} A_{n} \right).$$

$$\stackrel{!}{=} \mu^{*} \left(E \cap \left(\bigcup_{n=1}^{N} A_{n} \right) \right) \leq \mu^{*} \left(E \setminus \left(\bigcup_{n=1}^{N} A_{n} \right) \right)$$

Now, take $N \to \infty$ then we are done.

• We show A is closed under countable unions.

DIY

The proof will be continued...

Lecture 5: Hahn-Kolmogorov Theorem

14 Jan. 11:00

Firstly, we see a stronger version of Lemma 1.3 we have seen before.

Lemma 1.4. Let μ^* be an outer measure on X. Suppose B_1, B_2, \ldots are disjoint C-measurable sets. Then,

$$\forall E \subset X, \ \mu^* \left(E \cap \left(\bigcup_{i=1}^{\infty} B_i \right) \right) = \sum_{i=1}^{\infty} \mu^* \left(E \cap B_i \right).$$

Proof.

$$\sum_{n=1}^{\infty} \mu^*(E \cap B_i) \ge \mu^* \left(E \cap \bigcup_{n=1}^{\infty} B_n \right) \ge \mu^* \left(E \cap \left(\bigcup_{n=1}^{N} B_n \right) \right) \stackrel{!}{=} \sum_{n=1}^{N} \mu^* \left(E \cap B_n \right).$$

Now, we just take $N \to \infty$ (or note that $N \in \mathbb{N}$ is arbitrary, we then get the result according to Squeeze Theorem⁷).

Let's continue the proof of Theorem 1.2.

2. Since from Definition 1.6, we need to show

⁷https://en.wikipedia.org/wiki/Squeeze_theorem

- $\mu(\varnothing) = 0$. This means that we need to show $\mu^*|_{\mathcal{A}}(\varnothing) = 0$. Since $\varnothing \in \mathcal{A}$ and μ^* is an outer measure, hence from the property of outer measure, it clearly holds.
- Countable additivity of μ^* on \mathcal{A} follows from the Lemma 1.4 with E=X
- 3. The proof is given in Theorem A.1.

1.4 Hahn-Kolmogorov Theorem

We see that we can start with any collection of open sets \mathcal{E} and any ρ such that it assigns measure on \mathcal{E} , then induces an outer measure by Proposition 1.2, finally complete the outer measure by Theorem 1.2.

Specifically, we have

$$(\mathcal{E}, \rho) \xrightarrow{\text{Proposition 1.2}} (\mathcal{P}(X), \mu^*) \xrightarrow{\text{Theorem 1.2}} (\mathcal{A}, \mu)$$

To introduce this concept, we see that we can start with a more general definition compared to σ -algebra we are working on till now.

Definition 1.12 (Algebra). Let X be a set. A collection \mathcal{A} of subsets of X, i.e., $\mathcal{A} \subset \mathcal{P}(X)$ is called an *algebra on* X if

- $\varnothing \in \mathcal{A}$.
- \mathcal{A} is closed under complements. i.e., if $A \in \mathcal{A}$, $A^c = X \setminus A \in \mathcal{A}$.
- \mathcal{A} is closed under **finite** unions. i.e., if $A_i \in \mathcal{A}$, then $\bigcup_{i=1}^n A_i \in \mathcal{A}$ for $n < \infty$.

Remark. The only difference between an algebra and a σ -algebra is whether they closed under **countable** unions in the definition.

Now, we can look at a more general setup compared to an outer measure.

_

Definition 1.13 (Pre-measure). Let A_0 be an algebra on X. We say

$$\mu_0 \colon \mathcal{A}_0 \to [0, \infty]$$

is a pre-measure if

- 1. $\mu_0(\emptyset) = 0$
- 2. (finite additivity) $\mu_0\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mu_0(A_i)$ if $A_1, \ldots, A_n \in \mathcal{A}_0$ are disjoint.
- 3. (countable additivity within the algebra) If $A \in \mathcal{A}_0$ and $A = \bigcup_{n=1}^{\infty} A_n$, $A_n \in \mathcal{A}_0$, disjoint, then

$$\mu_0(A) = \sum_{n=1}^{\infty} \mu_0(A_n).$$

Lemma 1.5. $(1) + (3) \implies (2)$ in Definition 1.13.

Proof. It's easy to see that since μ_0 is monotone.

Theorem 1.3 (Hahn-Kolmogorov Theorem). Let μ_0 be a pre-measure on algebra \mathcal{A}_0 on X. Let μ^* be the outer measure induced by (\mathcal{A}_0, μ_0) in Proposition 1.2. Let \mathcal{A} and μ be the Carathéodory σ -algebra and measure for μ^* , then (\mathcal{A}, μ) extends (\mathcal{A}_0, μ_0) . i.e.,

$$\mathcal{A} \supset \mathcal{A}_0, \quad \mu|_{\mathcal{A}_0} = \mu_0.$$

Proof. We prove this theorem in two parts.

• We first show $A \supset A_0$. Let $A \in A_0$, we want to show $A \in A$, i.e., A is C-measurable, i.e.,

$$\forall E \subset X \ \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

We first fix an $E \subset X$. From countable subadditivity of μ^* , we have

$$\mu^*(E) \le \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Hence, we only need to show another direction. If $\mu^*(E) = \infty$, then $\mu^*(E) = \infty \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$ clearly. So, assume $\mu^*(E) < \infty$.

Fix $\epsilon > 0$. By the Proposition 1.2 of μ^* , $\exists B_1, B_2, \ldots \in \mathcal{A}_0$, $\bigcup_{n=1}^{\infty} B_n \supset E$ such that

$$\mu^*(E) + \epsilon \stackrel{!}{\geq} \sum_{n=1}^{\infty} \mu_0(B_n) = \sum_{n=1}^{\infty} \left(\mu_0(\underbrace{B_n \cap A}_{\in \mathcal{A}_0}) + \mu_0(\underbrace{B_n \cap A^c}_{\in \mathcal{A}_0}) \right)$$

1 MEASURE

by the finite additivity of μ_0 . Note that

$$\begin{cases} \bigcup_{n=1}^{\infty} (B_n \cap A) \supset E \cap A \\ \bigcup_{n=1}^{\infty} (B_n \cap A^c) \subset E \cap A^c \end{cases} \Longrightarrow \mu^*(E) + \epsilon \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

since

$$\mu^*(E \cap A) \le \mu^* \left(\bigcup_{n=1}^{\infty} (B_n \cap A) \right) \le \sum_{n=1}^{\infty} \mu^*(B_n \cap A)$$

and

$$\mu^*(E \cap A^c) \le \mu^* \left(\bigcup_{n=1}^{\infty} (B_n \cap A^c) \right) \le \sum_{n=1}^{\infty} \mu^*(B_n \cap A^c).$$

We then see that for any $\epsilon > 0$, the inequality

$$\mu^*(E) + \epsilon > \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

holds, hence so does

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^c),$$

which implies $A \supset A_0$.

The proof will be continued...

Lecture 6: Hahn-Kolmogorov Theorem and Extension.

18 Jan. 11:00

Let's continue the proof of Theorem 1.3.

• Let $A \in \mathcal{A}_0$, we want to show that

$$\mu(A) = \mu_0(A).$$

- Firstly, let

$$B_i = \begin{cases} A, & \text{if } i = 1\\ \varnothing, & \text{if } i \ge 2 \end{cases} \in \mathcal{A}_0,$$

hence $\bigcup_{i=1}^{\infty} B_i = A$, then we see that

$$\mu^*(A) \le \sum_{i=1}^{\infty} \mu_0(B_i) = \mu_0(A)$$

from the definition of μ^* and countable additivity within the algebra of μ_0 .

– Secondly, let $B_i \in \mathcal{A}_0$, $\bigcup_{i=1}^{\infty} B_i \supset A$ be arbitrary. Let $C_1 = A \cap B_1 \in \mathcal{A}_0$, $C_i = A \cap B_i \setminus \left(\bigcup_{j=1}^{i-1} B_j\right) \in \mathcal{A}_0$ for $i \geq 2$ since the operations are finite. Then we see

$$A = \bigcup_{i=1}^{\infty} C_i \in \mathcal{A}_0$$

are disjoint countable unions, by countable additivity within the algebra, we therefore have

$$\mu_0(A) = \sum_{i=1}^{\infty} \mu_0(C_i) \le \sum_{i=1}^{\infty} \mu_0(B_i) \implies \mu_0(A) \le \mu^*(A)$$

by taking the infimum from the definition of μ^* .

Combine these two inequality, we see that

$$\mu^*(A) = \mu_0(A),$$

for every $A \in \mathcal{A}_0$, which implies

$$\mu(A) = \mu_0(A)$$

for every $A \in \mathcal{A}_0$ from Theorem 1.2, where we extend μ^* to μ respect to \mathcal{A}_0 .

Definition 1.14 (HK extension). (A, μ) obtained from Theorem 1.3 is the *Hahn-Kolmogorov extensions* of (A_0, μ_0) .

We can show the uniqueness of HK extension.

Theorem 1.4 (Uniqueness of HK extension). Let \mathcal{A}_0 be an algebra on X, μ_0 be a pre-measure on \mathcal{A}_0 . Let (\mathcal{A}, μ) be the HK extension of (\mathcal{A}_0, μ_0) . Let (\mathcal{A}', μ') be another extension of (\mathcal{A}_0, μ_0) . Then if μ_0 is σ -finite, $\mu = \mu'$ on $\mathcal{A} \cap \mathcal{A}'$.

Note. Notice that $A_0 \subset A$, A' since they both extend A_0 .

Proof. Let $A \in \mathcal{A} \cap \mathcal{A}'$, we need to show

$$\underbrace{\mu(A)}_{\mu^*(A)} = \mu'(A).$$

Firstly, it's easy to show that $\mu^*(A) \ge \mu'(A)$ by choosing the arbitrary cover of A and using the definition of μ^* .

Secondly, we will show that $\mu(A) \leq \mu'(A)$.

1 MEASURE

19

• Assume $\mu(A) < \infty$, and fix $\epsilon > 0$. Then there exists $B_i \in \mathcal{A}_0$ with $B := \bigcup_{i=1}^{\infty} B_i \supset A$ such that

$$\mu(A) + \epsilon = \mu^*(A) + \epsilon \stackrel{!}{\geq} \sum_{i=1}^{\infty} \mu_0(B_i) \stackrel{!}{=} \sum_{i=1}^{\infty} \mu(B_i) \geq \mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \mu(B).$$

This implies that

$$\mu(B \setminus A) = \mu(B) - \mu(A) \le \epsilon$$

where the first equality comes from $A \subset B$ and $\mu(A) < \infty$. On the other hand,

$$\mu(B) = \lim_{N \to \infty} \mu\left(\bigcup_{i=1}^{N} B_i\right) = \lim_{N \to \infty} \mu'\left(\bigcup_{i=1}^{N} B_i\right) = \mu'(B),$$

hence,

$$\mu(A) \le \mu(B) = \mu'(B) = \mu'(A) + \mu'(B \setminus A) \stackrel{9}{\le} \mu'(A) + \mu(B \setminus A) \le \mu'(A) + \epsilon$$
 for arbitrary ϵ , so we conclude $\mu(A) \le \mu'(A)$.

• Assume $\mu(A) = \infty$. Since μ_0 is σ -finite, so we know $X = \bigcup_{n=1}^{\infty} X_n$ for some $X_n \in \mathcal{A}_0$ such that

$$\mu_0(X_n) < \infty.$$

Replacing X_n by $X_1 \cup \ldots \cup X_n \in A_0$, we may assume that

$$X_1 \subset X_2 \subset \dots$$

Then,

$$\bigvee_{n \in \mathbb{N}} \mu(A \cap X_n) < \infty \stackrel{!}{\Longrightarrow} \mu(A \cap X_n) \le \mu'(A \cap X_n).$$

From the continuity of measure, we then have

$$\mu(A) = \lim_{n \to \infty} \mu(A \cap X_n) \le \lim_{n \to \infty} \mu'(A \cap X_n) = \mu'(A).$$

 $^{^8\}mu = \mu' \text{ on } \mathcal{A}_0$

⁹From the first part.

Corollary 1.1. Let μ_0 be a pre-measure on algebra \mathcal{A}_0 on X. Suppose μ_0 is σ -finite, then

 $\exists!$ measure μ on $\langle \mathcal{A}_0 \rangle$ that extends \mathcal{A}_0 .

Furthermore,

- The completion of $(X, \langle A_0 \rangle, \mu)$ is the HK extension of (A_0, μ_0) .
- μ

$$\mu(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(B_i) \mid B_i \in \mathcal{A}_0, \forall \bigcup_{i \in \mathbb{N}} \sum_{i=1}^{\infty} B_i \supset A \right\}$$

for all $A \in \langle \bar{\mathcal{A}}_0 \rangle$.

Lecture 7: Borel Measures

21 Jan. 11:00

1.5 Borel Measures on \mathbb{R}

We first introduce so-called distribution function.

Definition 1.15 (Distribution function). An increasing a function

$$F: \mathbb{R} \to \mathbb{R}$$

and right-continuous. F is then a distribution function.

Example. Here are some examples of right-continuous functions.

- 1. F(x) = x.
- 2. $F(x) = e^x$.
- 3. Define

$$F(x) = \begin{cases} 1, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0. \end{cases}$$

4. Let $\mathbb{Q} := \{r_1, r_2, \ldots\}$. Define

$$F_n(x) = \begin{cases} 1, & \text{if } x \ge r_n \\ 0, & \text{if } x < r_n, \end{cases}$$

and

$$F(x) := \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n}.$$

Then F is a distribution function (hence right-continuous). This is shown in Lemma A.1.

^aHere, increasing means $F(x) \leq F(y)$ for x < y.

Note. If F is increasing, and

$$F(\infty)\coloneqq \lim_{x\nearrow\infty} F(x), \quad F(-\infty)\coloneqq \lim_{x\searrow\infty} F(x)$$

exist in $[-\infty, \infty]$.

In probability theory, cumulative distribution function (CDF) is a distribution function with $F(\infty) = 1$, $F(-\infty) = 0$.

Now, we can define a *Borel measure* on $(X, \mathcal{B}(\mathbb{R}))$.

Definition 1.16 (Borel messure). A Borel measure is any measure μ defined on the σ -algebra of Borel sets.

Definition 1.17 (Locally finite). Let X be a Hausdorff topological space, μ on $(X, \mathcal{B}(X))$ is called *locally finite* if $\mu(K) < \infty$ for every compact set $K \subset X$.

Note. Some authors will require a Borel measure equipped with the locally finite property. But formally, this is not so common.

Lemma 1.6. Let μ be a locally finite Borel measure on \mathbb{R} , then

$$F_{\mu}(x) = \begin{cases} \mu((0, x]), & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -\mu((x, 0]), & \text{if } x < 0 \end{cases}$$

is a distribution function.

Proof. To show F_{μ} is increasing, consider x < y such that

$$F_{\mu}(x) \leq F_{\mu}(y)$$

by considering

• x > 0: Then $F_{\mu}(x) = \mu((0, x])$ and

$$F_{\mu}(y) = \mu((0, y]) = \mu((0, x] \cup (x, y]) \ge \mu((0, x]) = F_{\mu}(x).$$

• x = 0: Then $F_{\mu}(x) = 0$ and

$$F_{\mu}(y) = \mu((0, y]) \ge 0 = F_{\mu}(0)$$

since y > 0.

• x < 0: Follows the same argument with x > 0.

¹⁰There are distributions [FF99] Ch9., but these are different from distribution functions.

Now, we need to show F_{μ} is right-continuous. Firstly, assume that $x \geq 0$, then we see that

$$F_{\mu}(x) = \mu((0, x]) = \mu((0, x^{+}])$$

from the fact that a measure is right-continuous.¹¹ Now, if $x \leq 0$, the same argument follows since multiplying -1 will not change the fact that a measure is continuous.

Definition 1.18 (Half intervals). We call

$$\varnothing$$
, $(a, b]$, (a, ∞) , $(-\infty, b]$, $(-\infty, \infty)$

half-intervals.

Lemma 1.7. Let \mathcal{H} be the collection of finite disjoint unions of half-intervals. Then, \mathcal{H} is an algebra on \mathbb{R} .

Proof. We see that

- $\emptyset \in \mathcal{H}$. Clearly.
- ullet To show ${\mathcal H}$ is closed under complements, we have

$$- \varnothing^c = \mathbb{R} = (-\infty, \infty) \in \mathcal{H}.$$

$$-(a,b]^c = (-\infty, a] \cup (a, \infty) \in \mathcal{H}^{12}$$

$$-(a,\infty)^c = (-\infty, a] \in \mathcal{H}.$$

$$-(-\infty,b]^c = (b,\infty) \in \mathcal{H}.$$

$$- (-\infty, \infty)^c = \varnothing \in \mathcal{H}.$$

• \mathcal{H} is closed under finite unions, clearly.

¹¹Actually, a measure is always continuous.

 $^{^{12}\}mathrm{Since}$ it's a two disjoint union of half intervals.

Proposition 1.3 (Distribution function defines a pre-measure). Let $F: \mathbb{R} \to \mathbb{R}$ be a distribution function. For a half interval I, define

$$\ell(I) := \ell_F(I) = \begin{cases} 0, & \text{if } I = \emptyset; \\ F(b) - F(a), & \text{if } I = (a, b]; \\ F(\infty) - F(a), & \text{if } I = (a, \infty]; \\ F(b) - F(-\infty), & \text{if } I = (-\infty, b]; \\ F(\infty) - F(-\infty), & \text{if } I = (-\infty, \infty). \end{cases}$$

Define $\mu_0 := \mu_{0,F}$ as

$$\mu_{0,F} \colon \mathcal{H} \to [0,\infty]$$

by

$$\mu_0(A) = \sum_{k=1}^{N} \ell(I_k) \text{ if } A = \bigcup_{k=1}^{N} I_k,$$

where A is a finite disjoint union of half intervals I_1, \ldots, I_N . Then, μ_0 is a pre-measure on \mathcal{H} .

Proof. We see that

- 1. μ_0 is well-defined.
- 2. $\mu_0(\emptyset) = 0$.
- 3. μ_0 is finite additive.
- 4. μ_0 is countable additive within \mathcal{H} .

Suppose $A \in \mathcal{H}$ where $A = \bigcup_{i=1}^{\infty} A_i$ is a countable disjoint union. It is enough to consider the case that A = I, $A_k = I_k$ are all half-intervals.¹³ Focus on the case I = (a, b]. Let

$$(a,b] = \bigcup_{n=1}^{\infty} (a_n, b_n],$$

which is a disjoint union. Then we only need to check

$$F(b) - F(a) = \sum_{n=1}^{\infty} (F(b_n) - F(a_n)).$$

• Since $(a, b] \supset \bigcup_{n=1}^{N} (a_n, b_n]$ for any fixed $N \in \mathbb{N}$, hence

$$\bigvee_{N \in \mathbb{N}} F(b) - F(a) \ge \sum_{n=1}^{N} \left(F(b_n) - F(a_n) \right).$$

¹³Since \mathcal{H} is only a collection of *finite* disjoint half intervals, hence after considering A=I, we can apply the same argument iteratively and stop in finite steps. Formally, we can consider $H \in \mathcal{H}$, $H = \bigcup_{i=1}^{\infty} A^i$, where A^i being a half interval. Then by the above argument, we have $A^i = I^i$ and so on.

By letting $N \to \infty$, we have

$$F(b) - F(a) \ge \sum_{n=1}^{\infty} (F(b_n) - F(a_n)).$$

• Fix $\epsilon > 0$. Since F is right-continuous, $\exists a' > a$ such that

$$F(a') - F(a) < \epsilon$$
.

For each $n \in \mathbb{N}$, $\exists b'_n > b_n$ such that

$$F(b_n') - F(b_n) < \frac{\epsilon}{2^n}.$$

Then, we have

$$[a',b] \subset \bigcup_{n=1}^{\infty} (a_n,b'_n),$$

hence

$$\underset{N\in\mathbb{N}}{\exists} [a',b] \subset \bigcup_{n=1}^{N} (a_n,b'_n),^{14}$$

which is only finitely many unions now. In this case, we have

$$F(b) - F(a') \le \sum_{n=1}^{N} F(b'_n) - F(a_n).$$

Finally, we see that

$$F(b) - F(a) \le F(b) - F(a') + \epsilon$$

$$\le \sum_{n=1}^{\infty} (F(b'_n) - F(a_n)) + \epsilon$$

$$\le \sum_{n=1}^{\infty} \left(F(b_n) - F(a_n) + \frac{\epsilon}{2^n} \right) + \epsilon$$

$$= \sum_{n=1}^{\infty} (F(b_n) - F(a_n)) + 2\epsilon$$

for any fixed $\epsilon > 0$, hence

$$F(b) - F(a) \le \sum_{n=1}^{\infty} (F(b_n) - F(a_n)).$$

Combine these two inequalities, we have

$$F(b) - F(a) = \sum_{n=1}^{\infty} (F(b_n) - F(a_n))$$

as we desired.

¹⁴This essentially follows from the fact that open sets are closed under countable unions, hence the equality will not hold, even after taking the limit.

Remark. It's again the $\frac{\epsilon}{2^n}$ trick we saw before!

Lecture 8: Lebesgue-Stieltjes Measure on \mathbb{R}

24 Jan. 11:00

To classify all measures, we now see this last theorem to complete the task.

Theorem 1.5 (Locally finite Borel measures on \mathbb{R}). We have

1. $F: \mathbb{R} \to \mathbb{R}$ a distribution function, then there exists a **unique** locally finite Borel measure μ_F on \mathbb{R} satisfying

$$\mu_F((a,b]) = F(b) - F(a)$$

for every a < b.

2. Suppose $F, G: \mathbb{R} \to \mathbb{R}$ are distribution functions. Then,

$$\mu_F = \mu_G$$

on $\mathcal{B}(\mathbb{R})$ if and only if F - G is a constant function.

Proof.

Remark. Theorem 1.5 simply states that given a distribution function, if we restrict our attention on locally finite measures on \mathbb{R} following our usual convention, then it defines the measure on $\mathcal{B}(\mathbb{R})$ uniquely up to a *constant shift*.

1.6 Lebesgue-Stieltjes Measure on \mathbb{R}

We see that

F distribution function $\stackrel{!}{\Longrightarrow} \mu_F$ on Carathéodory σ -algebra $\mathcal{A}_{\mu_F} \supset \mathcal{B}(\mathbb{R})$.

Furthermore, we have

$$(\mathcal{A}_{\mu_F}, \mu_F) = \overline{(\mathcal{B}(\mathbb{R}), \mu_F)}.$$

Definition 1.19 (Lebesgue-Stieltjes measure). Given a distribution function F, we say μ_F on \mathcal{A}_{μ_F} is called the *Lebesgue-Stieltjes measure* corresponding to F.

Definition 1.20 (Lebesgue measure). From Definition 1.19, if F(x) = x, then the induced $(\mathcal{A}_{\mu_F}, \mu_F)$ is denoted as (\mathcal{L}, m) , where \mathcal{L} is called Lebesgue σ -algebra, and m is called Lebesgue measure.

Remark. Recall that \mathcal{L} is induced by Theorem 1.2, namely given m, for all $A \subset \mathbb{R}$, we have

$$\mathcal{L} := \left\{ A \subset \mathbb{R} \mid \bigvee_{E \subset \mathbb{R}} m(A) = m(A \cap E) + m(A \setminus E) \right\}$$

Note. We see that since F is right-continuous and increasing, hence

$$F(x^{-}) \le F(x) = F(x^{+}).^{15}$$

Example. We first see some examples.

- 1. $\mu_F((a,b]) = F(b) F(a)$. Then
 - $\mu_F(\{a\}) = F(a) F(a^-)$
 - $\mu_F([a,b]) = F(b) F(a^-)$
 - $\mu_F((a,b)) = F(b^-) F(a)$
- 2. We define

$$F(x) = \begin{cases} 1, & \text{if } x \ge 0; \\ 0, & \text{if } x < 0. \end{cases}$$

Then

- $\mu_F(\{0\}) = 1$
- $\mu_F(\mathbb{R}) = 1$
- $\mu_F(\mathbb{R}\setminus\{0\})=0$. This is easy to see since $\mathbb{R}\setminus\{0\}=(-\infty,0)\cup(0,\infty)$, hence

$$\mu_F(\mathbb{R} \setminus \{0\}) = \mu_F((-\infty, 0) \cup (0, \infty))$$

$$= \underbrace{\mu_F((-\infty, 0))}_{0-0} + \underbrace{\mu_F((0, \infty))}_{1-1} = 0.$$

We call that μ_F is the *Dirac measure* at 0.

3. Denote $\mathbb{Q} = \{r_1, r_2, \ldots\}$, and we define

$$F(x) = \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n} \text{ where } F_n(x) = \begin{cases} 1, & \text{if } x \ge r_n; \\ 0, & \text{if } x < r. \end{cases}$$

Then

- $\mu_F(\lbrace r_i \rbrace) > 0$ for all $r_i \in \mathbb{Q}$.
- $\mu_F(\mathbb{R} \setminus \mathbb{Q}) = 0$.

¹⁵Some text will use x- and x+ instead of x^- and x^+ , respectively. ¹⁶It follows from $F(0^-) - F(-\infty) = 0 - 0 = 0$.

¹⁷It follows from $F(\infty) - F(0) = 1 - 1 = 0$.

This is shown in Lemma A.2.

- 4. If F is continuous at a, then $\mu_F(\{a\}) = 0$.
- 5. F(x) = x, then recall that we denote $\mu_F := m$, and we have

•
$$m((a,b]) = m((a,b)) = m([a,b]) = b - a$$
.

- 6. $F(x) = e^x$
 - $\mu_F((a,b]) = \mu_F((a,b)) = e^b e^a$.

Remark. We see that the first two examples are discrete measures.

Example (Middle thirds Cantor set). Let $C := \bigcap_{n=1}^{\infty} K_n$, where we have

$$K_0 := [0, 1]$$

$$K_1 := K_0 \setminus \left(\frac{1}{3}, \frac{2}{3}\right)$$

$$K_2 := K_1 \setminus \left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right)$$

$$\vdots$$

$$K_n := K_{n-1} \setminus \bigcup_{k=1}^{3^n - 1} \left(\frac{3k+1}{3^{n+1}}, \frac{3^{k+2}}{3^{n+1}}\right).$$

We see that C is uncountable and with m(C) = 0. And observe that $x \in C$ if and only if $x = \sum_{n=1}^{\infty} \frac{a_n}{3}$ for some $a_n \in \{0, 2\}$. Hence, we can instead formulate K_n by

$$K_n = \bigcup_{\substack{a_i \in \{0,2\}\\1 \le i \le n}} \left[\sum_{i=1}^{\infty} \frac{a_i}{3^i}, \sum_{i=1}^{\infty} \frac{a_i}{3^i} + \frac{1}{3^n} \right].$$

Figure 1: The top line corresponds to K_0 , and then K_1 , etc.

The proof of m(C) = 0 is given in Lemma A.3.

1.6.1 Cantor Function

Consider F as follows. We define a function F to be 0 to the left of 0, and 1 to the right of 1. Then, define F to be $\frac{1}{2}$ on $\left(\frac{1}{3},\frac{2}{3}\right)$, $\frac{1}{4}$ on $\left(\frac{1}{9},\frac{2}{9}\right)$, $\frac{3}{4}$ on $\left(\frac{7}{9},\frac{8}{9}\right)$ and so on. This is so-called *Cantor Function*. We can show F is continuous and increasing, which makes F a distribution function. Also, we see that the measure this F induced is called *Cantor measure*.

Figure 2: Cantor Function (Devil's Staircase).

We see that F is *continuous* and increasing. Furthermore,

Cantor Measure μ_F		Lebesgue Measure m
$\mu_F(\mathbb{R} \setminus C) = 0$ $\mu_F(C) = 1$ $\mu_F(\{a\}) = 0$	\iff	$m(\mathbb{R} \setminus C) = \infty > 0$ m(C) = 0 $m(\{a\}) = 0$

Remark. μ_F and m are said to be singular to each other.

1.7 Regularity Properties of Lebesgue-Stieltjes Measures

We first see a lemma.

Lemma 1.8. Let μ be Lebesgue-Stieltjes measure on \mathbb{R} . Then we have

$$\mu(A) \stackrel{!}{=} \inf \left\{ \sum_{i=1}^{\infty} \mu((a_i, b_i)) \mid \bigcup_{i=1}^{\infty} (a_i, b_i) \supset A \right\}$$
$$= \inf \left\{ \sum_{i=1}^{\infty} \mu((a_i, b_i)) \mid \bigcup_{i=1}^{\infty} (a_i, b_i) \supset A \right\}$$

for every $A \in \mathcal{A}_{\mu}$

Proof. The second equality follows from the continuity of the measure.

Remark. This is similar to

$$(a,b) = \bigcup_{n=1}^{\infty} (a,b-1/n], \quad (a,b] = \bigcap_{n=1}^{\infty} (a,b+1/n].$$

Lecture 9: Properties of Lebesgue-Stieltjes measure

26 Jan. 11:00

As previously seen. Let $X \subset [0, \infty]$. Recall that

1 MEASURE

29

•

$$\alpha = \sup X < \infty \iff \begin{cases} \bigvee_{x \in X} \alpha \geq x \\ \bigvee_{\epsilon > 0} \underset{x \in X}{\exists} x + \epsilon \geq \alpha. \end{cases}$$

$$\alpha = \sup X = \infty \iff \bigvee_{L>0} \underset{x \in X}{\exists} x \ge L.$$

This should be useful latter on.

Theorem 1.6. Let μ be Lebesgue-Stieltjes measure. Then, for all $A \in \mathcal{A}_{\mu}$,

- 1. (outer regularity) $\mu(A) = \inf \{ \mu(O) \mid O \supset A, O \text{ is open} \}$
- 2. (inner regularity) $\mu(A) = \sup{\{\mu(K) \mid K \subset A, K \text{ is compact}\}}$

Proof. We check them separately.

1.

DIY

- 2. Let $s := \sup\{\mu(K) \mid K \subset A, K \text{ is compact}\}$, then by monotonicity, we have $\mu(A) \geq s$. To show the other direction, we consider
 - A is a bounded set.

Then $\overline{A} \in \mathcal{B}(\mathbb{R}) \subset \mathcal{A}_{\mu}$, \overline{A} is also bounded $\Longrightarrow \mu(\overline{A}) < \infty$. Fix $\epsilon > 0$, then by outer regularity, there exists an open $O \supset \overline{A} \setminus A$, and $\mu(O) - \mu(\overline{A} \setminus A) = \mu(O \setminus (\overline{A} \setminus A)) \le \epsilon$. Let $K := \underbrace{A \setminus O}_{K \subset A} = \underbrace{\overline{A} \setminus O}_{\text{compact}}$, we

show that

$$\mu(K) \ge \mu(A) - \epsilon$$
.

DIY

• A is an unbounded set with $\mu(A) < \infty$.

Let $A = \bigcup_{n=1}^{\infty} A_n$, $A_n = A \cap [-n, n]$ where $A_1 \subset A_2 \subset ...$, then

$$\lim_{n\to\infty}\mu(A_n)=\mu(A)<\infty.$$

• A is an unbounded set with $\mu(A) = \infty$.

We can show that

$$\lim_{n \to \infty} \mu(A_n) = \mu(A) = \infty.$$

Fix L > 0, then $\exists N$ such that $\mu(A_N) \geq L$.

Definition 1.21 (G_{δ} -set, F_{σ} -set). Let X be a topological space. Then

- A G_{δ} -set is $G = \bigcap_{i=1}^{\infty} O_i$, O_i open.
- A F_{σ} -set is $F = \bigcup_{i=1}^{\infty} F_i$, F_i closed.

Theorem 1.7. Let μ be a Lebesgue-Stieltjes measure. Then $TFAE^a$:

- 1. $A \in \mathcal{A}_{\mu}$
- 2. $A = G \setminus M$, G is a G_{δ} -set, M is a μ -null set.
- 3. $A = F \setminus N$, F is a F_{σ} -set, N is a μ -null set.

^a TFAE: The following are equivalent.

Proof. We see that $(2.) \implies (1.)$ and $(3.) \implies (1.)$ are clear.

- \bullet (1.) \Longrightarrow (3.)
 - Assume $\mu(A) < \infty$. From the inner regularity, we have

 $\forall n \in \mathbb{N} \exists \text{compact } K_n \subset A \text{ such that } \mu(K_n) + \frac{1}{n} \geq \mu(A).$

Let $F = \bigcup_{n=1}^{\infty} K_n$, then $N = A \setminus F$ is μ -null.

Check!

– Assume $\mu(A) = \infty$. Let $A = \bigcup_{k \in \mathbb{Z}} A_k$, $A_k = A \cap (k, k+1]$. From what we have just shown above,

$$\forall k \in \mathbb{Z} \ A_k = F_k \cup N_k, \ A = \underbrace{\left(\bigcup_k F_k\right)}_{F_{\sigma}\text{-set}} \cup \underbrace{\left(\bigcup_k N_k\right)}_{\mu\text{-null}}.$$

• $(1.) \implies (2.)$

We see that

$$A^c = F \cup N, \quad A = F^c \cap N^c = F^c \setminus N.$$

Proposition 1.4. Let μ be a Lebesgue-Stieltjes measure, and $A \in \mathcal{A}_{\mu}$, $\mu(A) < \infty$. Then we have

$$\forall \epsilon > 0 \ \exists I = \bigcup_{i=1}^{N(\epsilon)} I_i$$

disjoint open intervals such that $\mu(A \triangle I) \leq \epsilon$.

1 MEASURE

31

Proof. Using outer regularity and the fact that every open set is $\bigcup_{i=1}^{\infty} I_i$, where I_i are disjoint open intervals.

We now see some properties of Lebesgue measure.

Theorem 1.8. Let $A \in \mathcal{L}$, then we have $A + s \in \mathcal{L}$, $rA \in \mathcal{L}$ for all $r, s \in \mathbb{R}$. i.e.,

$$m(A+s) = m(A), \quad m(rA) = |r| \cdot m(A).$$

Proof.

Example. We now see some examples.

1. Let $\mathbb{Q} =: \{r_i\}_{i=1}^{\infty}$ which is dense in \mathbb{R} . Let $\epsilon > 0$, and

$$O = \bigcup_{i=1}^{\infty} \left(r_i - \frac{\epsilon}{2^i}, r_i + \frac{\epsilon}{2^i} \right).$$

We see that O is open and dense¹⁸ in \mathbb{R} . But we see

$$m(O) \le \sum_{i=1}^{\infty} \frac{2\epsilon}{2^i} = 2\epsilon.$$

Furthermore, $\partial O = \overline{O} \setminus O$, $m(\partial O) = \infty$

- 2. There exists uncountable set A with m(A) = 0.
- 3. There exists A with m(A) > 0 but A contains no non-empty open intervals.
- 4. There exists $A \notin \mathcal{L}$. e.g. Vitali set.¹⁹
- 5. There exists $A \in \mathcal{L} \setminus \mathcal{B}(\mathbb{R})$.

Lecture 10: Integration

26 Jan. 11:00

2 Integration

2.1 Measurable Function

We start with a definition.

Definition 2.1 (Measurable space). A measurable space or Borel space is a tuple of a set X and a σ -algebra A on X, denoted by (X, A).

¹⁸https://en.wikipedia.org/wiki/Dense_set

¹⁹https://en.wikipedia.org/wiki/Vitali_set

Definition 2.2 (Measurable function). Suppose $(X, \mathcal{A}), (Y, \mathcal{B})$ are measurable spaces. Then we say $f: X \to Y$ is $(\mathcal{A}, \mathcal{B})$ -measurable if

$$\bigvee_{B \in \mathcal{B}} f^{-1}(B) \in \mathcal{A}.$$

Remark. If \mathcal{A} and \mathcal{B} are given, we'll sometimes say f is measurable if it'll not cause any confusions.

Lemma 2.1. Given two measurable spaces (X, \mathcal{A}) and (Y, \mathcal{B}) , and suppose $\mathcal{B} = \langle \mathcal{E} \rangle$ for some $\mathcal{E} \subset Y$. Then,

$$f\colon X\to Y \text{ is } (\mathcal{A},\mathcal{B})\text{-measurable} \iff \bigvee_{E\in\mathcal{E}} f^{-1}(E)\in\mathcal{A}.$$

Proof. We see that the *only if* part (\Longrightarrow) is clear. On the other direction, we consider the following. Let $\mathcal{D} = \{E \subset Y \mid f^{-1}(E) \in \mathcal{A}\}$, then

- $\mathcal{E} \subset \mathcal{D}$ by assumption
- \mathcal{D} is a σ -algebra

Check!

hence, we see that $\langle \mathcal{E} \rangle = \mathcal{B} \subset \mathcal{D}$ from Lemma 1.2. The result then follows from the definition of $(\mathcal{A}, \mathcal{B})$ -measurable.

Note. Recall that

- $f^{-1}(E^c) = f^{-1}(E)^c$
- $f^{-1}\left(\bigcup_{\alpha} E_{\alpha}\right) = \bigcup_{\alpha} f^{-1}(E_{\alpha})$

Definition 2.3 (\mathcal{A} -measurable). Let (X, \mathcal{A}) be a measurable space. Then,

$$\begin{array}{l} f\colon X\to\mathbb{R}\\ f\colon X\to\overline{\mathbb{R}}\\ f\colon X\to\mathbb{C} \end{array} \text{ is } \mathcal{A}\text{-}\textit{measurable} \text{ if } \begin{cases} f\text{ is } (\mathcal{A},\mathcal{B}(\mathbb{R}))\text{-}\text{measurable}\\ f\text{ is } (\mathcal{A},\mathcal{B}(\overline{\mathbb{R}}))\text{-}\text{measurable}\\ \Re f,\Im f\colon X\to\mathbb{R} \text{ are } \mathcal{A}\text{-}\text{measurable}. \end{cases}$$

Notation. Notice that

- $\overline{\mathbb{R}} = [-\infty, \infty]$
- $\mathcal{B}(\overline{\mathbb{R}}) = \{ E \subset \overline{\mathbb{R}} \mid E \cap \mathbb{R} \in \mathcal{B}(\mathbb{R}) \}.$
- $\Re f$ is the real part of f, while $\Im f$ is the imaginary part of f.

Example. We see that

- $\mathcal{A} = \mathcal{P}(X) \implies$ Every function is \mathcal{A} -measurable.
- $\mathcal{A} = \{\emptyset, X\} \implies$ The only \mathcal{A} -measurable functions are constant functions.

Definition 2.4 (Lebesgue measurable). A Lebesgue measurable function f is a measurable function

$$f: (\mathbb{R}, \mathcal{L}) \to (\mathbb{C}, \mathcal{B}(\mathbb{C})).$$

Lemma 2.2. Given $f: X \to \mathbb{R}$, TFAE.

- 1. f is A-measurable
- 2. $\forall a \in \mathbb{R}, f^{-1}((a, \infty)) \in \mathcal{A}$
- 3. $\forall a \in \mathbb{R}, f^{-1}([a, \infty)) \in \mathcal{A}$
- 4. $\forall a \in \mathbb{R}, f^{-1}((-\infty, a)) \in \mathcal{A}$
- 5. $\forall a \in \mathbb{R}, f^{-1}((-\infty, a]) \in \mathcal{A}$

Proof. The result follows from Lemma 2.1 we just saw.

Remark (Operations preserve A-measurability). Given $f, g: X \to \mathbb{R}$ and is A-measurable, then

1. $\phi: \mathbb{R} \to \mathbb{R}$, \mathcal{A} -measurable²⁰, then

$$\phi \circ f \colon X \to \mathbb{R}$$

is A-measurable.

- 2. -f, 3f, f^2 , |f| are all \mathcal{A} -measurable, and $\frac{1}{f}$ is \mathcal{A} -measurable if $f(x) \neq 0, \forall x \in X$.
- 3. f + g is \mathcal{A} -measurable. We see this from

$$(f+g)^{-1}((a,\infty)) = \bigcup_{r \in \mathbb{Q}} (f^{-1}((r,\infty)) \cap g^{-1}((a-r,\infty)))$$

with Lemma 2.2.

4. $f \cdot g$ is \mathcal{A} -measurable. We see this from

$$f(x)g(x) = \frac{1}{2} \left((f(x) + g(x))^2 - f(x)^2 - g(x)^2 \right).$$

5. We see that

$$(f \vee g)(x) := \max\{f(x), g(x)\}\$$
and $(f \wedge g)(x) := \min\{f(x), g(x)\}\$

are A-measurable.

6. Let $f_n \colon X \to \overline{\mathbb{R}}$ be A-measurable. Then

$$\sup_{n\in\mathbb{N}} f_n, \ \inf_{n\in\mathbb{N}} f_n, \ \limsup_{n\to\infty} f_n, \ \liminf_{n\to\infty} f_n$$

are A-measurable.

 $^{^{20}}$ In this case, we also call it Borel measurable.

Proof. Consider $\sup_{n\in\mathbb{N}} f_n =: g$, then

$$g^{-1}((a,\infty]) = \bigcup_{n \in \mathbb{N}} f_n^{-1}((a,\infty])$$

for $\sup_{n \in \mathbb{N}} f_n(x) = g(x) > a$. A similar argument can prove the case of checking f_n .

And notice that $\limsup_{n\to\infty} f_n = \inf_{k\in\mathbb{N}} \sup_{n\geq k} f_n$, then the similar argument also proves this case.

- 7. If $\lim_{n\to\infty} f_n(x)$ converges for every $x\in X$, then f is \mathcal{A} -measurable.
- 8. If $f: \mathbb{R} \to \mathbb{R}$ is continuous
 - $\implies f$ is Borel measurable
 - $\implies f$ is Lebesgue measurable

since the preimage of an open set of a continuous function is open, then we consider $f^{-1}((a,\infty))$.

Definition 2.5 (f^+, f^-) . For $f: X \to \overline{\mathbb{R}}$, let $f^+ := f \vee 0$ and $f^- := (-f) \vee 0$.

^ai.e.,
$$f^+(x) = \max\{f(x), 0\}, \quad f^-(x) = \min\{-f(x), 0\}$$

Remark. If $\operatorname{supp} f^+ \cap \operatorname{supp} f^- = \emptyset$ and $f(x) = f^+(x) - f^-(x)$, then

$$f$$
 is A -measurable $\iff f^+, f^-$ are A -measurable.

Notation. supp f means the support of f, which is the set of domain which makes f being non-zero.

Definition 2.6 (Characteristic (Indicator) function). For $E \subset X$, the *characteristic (indicator) function* of E is

$$\mathcal{X}_{E}(x) = \mathbb{1}_{E}(x) = \begin{cases} 1, & \text{if } x \in E; \\ 0, & \text{if } x \in E^{c}. \end{cases}$$

Remark. We see that $\mathbb{1}_E$ is \mathcal{A} -measurable $\iff E \in \mathcal{A}$.

Definition 2.7 (Simple function). Let (X, \mathcal{A}) be a measurable space. Then a *simple function* $\phi: X \to \mathbb{C}$ that is \mathcal{A} -measurable and takes only finitely many values.

Remark. We see that if

$$\phi(X) = \{c_1, \dots, c_N\},\$$

then

$$E_i = \phi^{-1}(\{c_i\}) \in \mathcal{A} \implies \phi = \sum_{i=1}^N \underbrace{c_i}_{\neq \pm \infty} \mathbb{1}_{\underbrace{E_i}}.$$

Lecture 11: Integration of nonnegative functions

31 Jan. 11:00

As previously seen. For a simple function ϕ , c_i can actually be in \mathbb{C} .

Theorem 2.1. Given a measurable space (X, \mathcal{A}) and let $f: X \to [0, \infty]$, the following is equivalent.

- 1. f is A-measurable function.
- 2. There exists simple functions $0 \le \phi_1(x) \le \phi_2(x) \le \ldots \le f(x)$ such that

$$\forall \lim_{x \in X} \lim_{n \to \infty} \phi_n(x) = f(x)$$

i.e., f is a pointwise upward limit of simple functions.

Proof. We'll prove both directions.

- It's clear that (2.) \implies (1.) from the fact that $f(x) = \sup_n \phi_n(x)$ and the remark.
- We want to show that (1.) \Longrightarrow (2.). Assume f is \mathcal{A} -measurable, and fix $n \in \mathbb{N}$.

Let
$$F_n = f^{-1}([2^n, \infty]) \in \mathcal{A}$$
. Also, for $0 \le k \le 2^{2n} - 1$, $E_{n,k} = f^{-1}(\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]) \in \mathcal{A}$.

Then, define ϕ_n be

$$\phi_n = \sum_{k=0}^{2^{2n}-1} \frac{k}{2^n} \mathbb{1}_{E_{n,k}} + 2^n \mathbb{1}_{F_n},$$

we have

$$-0 \le \phi_1(x) \le \phi_2(x) \le \ldots \le f(x)$$
 for every $x \in X$

$$- \forall x \in X \setminus F_n$$
, we have $0 \le f(x) - \phi_n(x) \le \frac{1}{2^n}$

Furthermore, we see that

$$F_1 \supset F_2 \supset \dots, \quad \bigcap_{n=1}^{\infty} F_n = f^{-1}(\{\infty\}),$$

then

$$-x \in f^{-1}([0,\infty]) = X \setminus \bigcap_{n=1}^{\infty} F_n \implies \lim_{n \to \infty} \phi_n(x) = f(x)$$
$$-x \in f^{-1}(\{\infty\}) = \bigcap_{n=1}^{\infty} F_n \implies f_n(x) \ge 2^n \implies \lim_{n \to \infty} \phi_n(x) = \infty =$$
$$f(x)$$

Corollary 2.1. If f is bounded on a set $A \subset \mathbb{R}$, i.e., $\exists b > 0$ such that

$$\forall_{x \in A} |f(x)| \le L,$$

then $\phi_n \to f$ uniformly on A.

Proof.

 $\blacksquare \vdash DIY$

Corollary 2.2. If $f: X \to \mathbb{C}$ is a measurable function if and only if there exists simple functions $\phi_n: X \to \mathbb{C}$ such that

$$0 \le |\phi_1(x)| \le |\phi_2(x)| \le \ldots \le |f(x)|$$

with

$$\forall_{x \in X} \lim_{n \to \infty} \phi_n(x) = f(x).$$

Proof.

2.2 Integration of Nonnegative Functions

We start with our first definition about integral.

Definition 2.8 (Integration of nonnegative function). Let (X, \mathcal{A}, μ) be a measure space, and $\phi \colon X \to [0, \infty]$ such that

$$\phi = \sum_{i=1}^{N} c_i \mathbb{1}_{E_i}$$

be a simple function. Define

$$\int \phi = \int \phi \, \mathrm{d}\mu = \int_X \phi \, \mathrm{d}\mu = \sum_{i=1}^N c_i \mu(E_i).$$

Furthermore, for $A \in \mathcal{A}$,

$$\int_A \phi = \int_A \phi \, \mathrm{d}\mu = \int \phi \mathbb{1}_A \, \mathrm{d}\mu.$$

Note. Note that

- In the expression $\sum_{i=1}^{N} c_i \mu(E_i)$, we're using the convention $0 \cdot \infty = 0$.
- The function $\phi \mathbb{1}_A$ is also a simple function since both ϕ and $\mathbb{1}_A$ are simple function.

Proposition 2.1. Suppose we have $\phi, \psi \geq 0$ be two simple functions. Then,

- Definition 2.8 is well-defined.
- $\int c\phi = c \int \phi \text{ for } c \in [0, \infty).$
- $\int \phi + \psi = \int \phi + \int \psi$.
- $\phi(x) \ge \psi(x)$ for all $x \implies \int \phi \ge \int \psi$.
- $\nu(A) = \int_A \phi \, d\mu$ is a measure on (X, \mathcal{A}) .

Proof.

DIY

Definition 2.9 (Generalization of Integration of nonnegative function). Given (X, \mathcal{A}, μ) with $f: X \to [0, \infty]$ be \mathcal{A} -measurable. Define

$$\int f = \int f \, \mathrm{d}\mu = \sup \left\{ \int \phi \colon 0 \le \phi \le f \text{ such that } \phi \text{ is simple} \right\}.$$

Note. Note that

- If f is a simple function, the Definition 2.8 and Definition 2.9 of $\int f$ are the same.
- $\int cf = c \int f$ for $c \in [0, \infty)$.
- If $f \ge g \ge 0 \implies \int f \ge \int g$.
- But $\int f + g = \int f + \int g$ is not trivial.

Theorem 2.2 (Monotone Convergence Theorem (MCT)). Given (X, \mathcal{A}, μ) be a measure space. Then if

- $f_n: X \to [0, \infty]$ be \mathcal{A} -measurable for every $n \in \mathbb{N}$;
- $0 \le f_1(x) \le f_2(x) \le \dots$ for every $x \in X$;
- $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in X$,

we have

$$\lim_{n \to \infty} \int f_n = \int f.$$

Proof. Note that if $\lim_{n\to\infty} \int f_n$ exists, then it's equal to $\sup_n \int f_n$.

Then

- $f_n \le f \implies \int f_n \le \int f \implies \lim_{n \to \infty} \int f_n \le \int f$.
- Fix a simple function $0 \le \phi \le f$, then it's enough to show $\lim_{n \to \infty} \int f_n \ge \int \phi$.

We first fix $\alpha = (0, 1)$, then it's also enough to show

$$\lim_{n \to \infty} \int f_n \ge \alpha \int \phi.$$

Let $A_n := \{x \in X \mid f_n(x) \ge \alpha \phi(x)\}$, then since f_n is measurable,

$$-A_n \in \mathcal{A}$$

$$-A_1 \subset A_2 \subset A_3 \subset \dots$$

$$-\bigcup_{n=1}^{\infty} A_n = X \underline{\hspace{1cm}}$$

Check!

We then have

$$\int f_n \ge \int f_n \mathbb{1}_{A_n} \ge \int \alpha \phi \mathbb{1}_{A_n} = \alpha \int_{A_n} \phi = \alpha \nu(A_n)$$

where $\nu(A) = \int_A \phi$ is a measure. This implies

$$\lim_{n \to \infty} \int f_n \ge \alpha \lim_{n \to \infty} \nu(A_n) \stackrel{21}{=} \alpha \nu(X) = \alpha \int \phi.$$

Corollary 2.3 (Linearity of nonnegative integral). Let $f, g \ge 0$ be measurable, then

$$\int f + g = \int f + \int g.$$

Proof. There exists simple functions ϕ_n and ψ_n such that

- $0 \le \phi_1 \le \phi_2 \le \dots$ and $\phi_n \to f$ pointwise
- $0 \le \psi_1 \le \psi_2 \le \dots$ and $\psi_n \to f$ pointwise

Then,

$$\int (f+g) \stackrel{!}{=} \lim_{n \to \infty} \int (\phi_n + \psi_n) = \lim_{n \to \infty} \int \phi_n + \int \psi_n \stackrel{!}{=} \int f + \int g.$$

Lecture 12: Fatou's Lemma

2 Feb. 11:00

We start with a useful corollary.

Corollary 2.4 (Tonelli's theorem for nonnegative series and integrals). Given $g_n \geq 0$ for every $n \in \mathbb{N}$ and let g_n be measurable, then

$$\int \sum_{n=1}^{\infty} g_n = \sum_{n=1}^{\infty} \int g_n.$$

²¹This follows from the continuity of measure from below

Remark. Recall that we have seen two series case before. We'll later see two integrals cases.

Proof. Let $f_N := \sum_{n=1}^N g_n$ such that $\lim_{N \to \infty} f_N \sum_{n=1}^\infty g_n =: f$, then since $g_n \ge 0$, we have $0 \le f_1 \le f_2 \le \dots$ with

$$\lim_{N \to \infty} f_N(x) = \sum_{n=1}^{\infty} g_n(x).$$

By Theorem 2.2, we have

$$\lim_{N \to \infty} \int \underbrace{\sum_{n=1}^{N} g_n}_{f_N} = \int \underbrace{\sum_{n=1}^{\infty} g_n}_{f}.$$

Now, since the terms in the limit on the left-hand side is just a finite sum, by Corollary 2.3, we have

$$\underbrace{\lim_{N \to \infty} \sum_{n=1}^{N} \int g_n = \lim_{N \to \infty} \int \sum_{n=1}^{N} g_n = \int \sum_{n=1}^{\infty} g_n,}_{\sum_{n=1}^{\infty} g_n}$$

hence

$$\int \sum_{n=1}^{\infty} g_n = \sum_{n=1}^{\infty} \int g_n.$$

Theorem 2.3 (Fatou's Lemma). Suppose $f_n \geq 0$ and measurable, then

$$\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n.$$

Remark. Recall that

$$\liminf_{n\to\infty} f_n := \lim_{k\to\infty} \inf_{n\geq k} f_n = \sup_{k\in\mathbb{N}} \inf_{n\geq k} f_n$$

and

$$\exists \lim_{n \to \infty} a_n \iff \limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n.$$

Proof. Let $g_k = \inf_{n \geq k} f_n$, then g_k is measurable and $0 \leq g_1 \leq g_2 \leq \ldots$ Now, from Theorem 2.2, we have

$$\int \lim_{k \to \infty} g_k = \lim_{k \to \infty} \int g_k.$$

Notice that the left-hand side is just $\int \liminf_{n \to \infty} f_n$, while the right-hand side is just $\lim_{k \to \infty} \int \inf_{n \ge k} f_n$, i.e.,

$$\int \liminf_{n \to \infty} f_n = \lim_{k \to \infty} \int \inf_{n \ge k} f_n.$$

We see that we want to take the inf outside the integral on the right-hand side. Observe that

$$\bigvee_{m \geq k} \inf_{n \geq k} f_n \leq f_m \implies \bigvee_{m \geq k} \int \inf_{n \geq k} f \leq \int f_m \implies \int \inf_{n \geq k} f_n \leq \inf_{m \geq k} \int f_m.$$

Then, we have

$$\int \liminf_{n \to \infty} f_n = \lim_{k \to \infty} \int \inf_{n \ge k} f_n \le \lim_{k \to \infty} \inf_{m \ge k} \int f_m = \liminf_{m \to \infty} \int f_m.$$

Example. Given $(\mathbb{R}, \mathcal{L}, m)$.

- 1. Escape to horizontal infinity. Let $f_n := \mathbb{1}_{(n,n+1)}$. We immediately see that
 - $f_n \to 0$ pointwise
 - $\int f_n = 1$ for every n
 - $\int f = 0$

From Theorem 2.3, we have a strict inequality

$$0 = \int \liminf_{n \to \infty} f_n, \liminf_{n \to \infty} \int f_n = 1.$$

- 2. Escape to width infinity. Let $f_n := \frac{1}{n} \mathbb{1}_{(0,n)}$.
- 3. Escape to vertical infinity. Let $f_n := n \mathbb{1}_{(0,\frac{1}{n})}$.

Lemma 2.3 (Markov's inequiality). Let $f \ge 0$ be measurable. Then

$$\mathop{\forall}_{c \in (0,\infty)} \mu\left(\left\{x \mid f(x) \geq c\right\}\right) \leq \frac{1}{c} \int f.$$

Proof. Denote $\{x \mid f(x) \geq c\} =: E$, then

$$f(x) \ge c \mathbb{1}_E(x) \implies \int f \ge c \int \mathbb{1}_E = c \cdot \mu(E).$$

Remark. Notice that $E = f^{-1}([c, \infty])$, hence E is measurable.

Proposition 2.2. Let $f \ge 0$ be measurable. Then,

$$\int f = 0 \iff f = 0 \text{ a.e.}.$$

i.e.,

$$\int f \, d\mu = 0 \iff \begin{cases} \mu(A) = 0 \\ A = \{x \mid f(x) > 0\} = f^{-1}((0, \infty]). \end{cases}$$

Proof. Firstly, assume that $f = \phi$ is a simple function. We may write

$$\phi = \sum_{i=1}^{N} c_i \mathbb{1}_{E_i}$$

where E_i are disjoint and $c_i \in (0, \infty)$. Then,

$$\int \phi = \sum_{i=1}^{N} c_i \mu(E_i) = 0$$

$$\iff \mu(E_1) = \dots = \mu(E_N) = 0$$

$$\iff \mu(A) = 0, \ A = \bigcup_{i=1}^{N} E_i.$$

Now, assume that f is a general function where $f \geq 0$ is the only constraint.

1. Assume $\mu(A)=0$ (i.e., f=0 a.e.). Let $0\leq \phi \leq f,$ where ϕ is simple. Then

$$\bigvee_{x \in A^c} \phi(x) = 0$$

since $f(x)=0, \forall x\in A^c$. This implies that $\phi=0$ a.e. since $\mu(A)=0$, so $\int \phi=0$. We then have

$$\int f = 0$$

from Definition 2.9.

- 2. Assume $\int f = 0$. Let $A_n = f^{-1}\left(\left[\frac{1}{n}, \infty\right]\right)$. Then we see that
 - $A_1 \subset A_2 \subset \dots$

$$\bullet \bigcup_{n=1}^{\infty} A_n = f^{-1} \left(\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, \infty \right] \right) = f^{-1}((0, \infty)) = A.$$

We then have

$$\mu(A_n) = \mu\left(\left\{x \mid f(x) \ge \frac{1}{n}\right\}\right) \stackrel{!}{\le} n \int f = 0,$$

which further implies

$$\mu(A) = \lim_{n \to \infty} \mu(A_n) = 0$$

from the continuity of measure from below.

Corollary 2.5. If $f,g \geq 0$ are both measurable and f=g a.e., then

$$\int f = \int g.$$

Proof. Let $A = \{x \mid f(x) \neq g(x)\}^{22}$. Then by assumption, $\mu(A) = 0$, hence

$$f \mathbb{1}_A = 0$$
 a.e., $g \mathbb{1}_A = 0$ a.e..

This further implies that

$$\begin{split} \int f &= \int f(\mathbbm{1}_A + \mathbbm{1}_{A^c}) \\ &\stackrel{!}{=} \int f\mathbbm{1}_A + \int f\mathbbm{1}_{A^c} \\ &= \int f\mathbbm{1}_{A^c} = \int g\mathbbm{1}_{A^c} \\ &= \int g\mathbbm{1}_{A^c} + \int g\mathbbm{1}_A = \int g. \end{split}$$

Corollary 2.6. Let $f_n \geq 0$ be measurable. Then

1

$$\begin{cases}
0 \le f_1 \le f_2 \le \dots \le f \text{ a.e.} \\
\lim_{n \to \infty} f_n = f \text{ a.e.}
\end{cases} \implies \lim_{n \to \infty} \int f_n = \int f.$$

2. $\lim_{n \to \infty} f_n = f$ a.e. $\Longrightarrow \int f \le \liminf_{n \to \infty} \int f_n$.

Proof.

 $\blacksquare \vdash DIY$

Remark. Almost all the theorems we've proved can be replaced by theorems dealing with almost every condition.

Lecture 13: Integration of Complex Functions

4 Feb. 11:00

2.3 Integration of Complex Functions

As usual, we start form a definition.

 $^{^{22}}A$ is measurable indeed.

Definition 2.10 (Integrable). Let (X, \mathcal{A}, μ) be a measure space and let $f: X \to \overline{\mathbb{R}}$ and $g: X \to \mathbb{C}$ be measurable.^a

Then f, g are called *integrable* if $\int |f| < \infty$, and we define

$$\int f = \int f^{+} - \int f^{-}, \quad \int g = \int \Re g + i \int \Im g.$$

Furthermore, for $f: X \to \overline{\mathbb{R}}$, we define

$$\int f = \begin{cases} \infty, & \text{if } \int f^+ - \infty, \int f^- < \infty; \\ -\infty, & \text{if } \int f^+ < \infty, \int f^- = \infty. \end{cases}$$

^aRecall that for a complex-valued function like g, this means that both $\Re g$ and $\Im g$ are measurable.

We now see a lemma.

Lemma 2.4. Let $f, g: X \to \overline{\mathbb{R}}$ or \mathbb{C} integrable. Assume that f(x) + g(x) is well-defined for all $x \in X$.

Then we have

- 1. f + g, cf for all $c \in \mathbb{C}$ are integrable.
- 2. $\int f + g = \int f + \int g$. This is not trivial since $(f+g)^+ \neq f^+ + g^+$.
- 3. $\left| \int f \right| \leq \int |f|$.

^aThat is, we never see $\infty + (-\infty)$ or $(-\infty) + \infty$.

Proof. Check [FF99] page 53.

Lemma 2.5. Let (X, \mathcal{A}, μ) be a measure space and let f be an integrable function on X. Then

- 1. f is finite a.e., i.e., $\{x \in X \mid |f(x)| = \infty\}$ is a null set.
- 2. The set $\{x \in X \mid f(x) \neq 0\}$ is σ -finite.

Proof.

HW 5
- Q8 by
Lemma 2.3

Proposition 2.3. Let (X, \mathcal{A}, μ) be a measure space, then

1. If h is integrable on X, then

$$\bigvee_{E\in\mathcal{A}}\int_{E}h=0\iff\int|h|=0\iff h=0\ a.e.$$

2. If f, g are integrable on X, then

$$\underset{E\in\mathcal{A}}{\forall}\ \int_{E}f=\int_{E}g\iff f=g\ \textit{a.e.}$$

Proof. We prove this one by one.

1. We see that the second equivalence is done in Proposition 2.2, hence we prove the first equivalence only. Since we have

$$\int |h| = 0 \implies \left| \int_E h \right| \leq \int_E |h| \leq \int |h| = 0,$$

which shows one implication. Now assume that $\int_E h = 0$ for all $E \in \mathcal{A}$, then we can write h as

$$h = u + iv = (u^{+} - u^{-}) + i(v^{+} - v^{-}).$$

Let $B := \{x \in X \mid u^+(x) > 0\}$, then by assumption, we have

$$0 = \int_{B} h = \Re \int_{B} h = \int_{B} u = \int_{B} u^{+} = \int_{B} u^{+} + \int_{B^{c}} u^{+} = \int u^{+},$$

hence $u^+ = 0$ almost everywhere. Similarly, we have u^-, v^+, v^- are all zero almost everywhere. This gives us that h is zero almost everywhere as desired.

-

DIY

Theorem 2.4 (Dominated Convergence Theorem). Let (X, \mathcal{A}, μ) be a measure space, and

- Let f_n be integrable on X.
- $\lim_{n\to\infty} f_n(x) = f(x)$ almost everywhere.
- There is a $g: X \to [0, \infty]$ such that g is integrable and

$$\bigvee_{n \in \mathbb{N}} |f_n(x)| \le g(x) \text{ a.e.}$$

Then we have

$$\lim_{n \to \infty} \int f_n = \int f = \int \lim_{n \to \infty} f_n.$$

Proof. Let F be the countable union of null set on which the three conditions may fail. Then we see that after modifying the definition of f_n , f and g on F, we may assume that all three conditions hold everywhere since modifying on a null set does not change the integral.

We now consider the $\overline{\mathbb{R}}$ -valued case only. Note that the second and the third conditions imply that f is integrable since $|f| \leq g(x)$. We then see that $g + f_n \geq 0$ and $g - f_n \geq 0$ because $-g \leq f_n \leq g$. From Theorem 2.3, we have

Check
C-valued
case

$$\int g + f \le \liminf_{n \to \infty} \int g + f_n, \quad \int g - f \le \liminf_{n \to \infty} \int g - f_n.$$

From the linearity of integral, we have

$$\int g + \int f \le \int g + \liminf_{n \to \infty} \int f_n, \quad \int g - \int f \le \int g - \liminf_{n \to \infty} \int f_n.$$

Now, since $\int g < \infty$, we can cancel it, which gives

$$\int f \le \liminf_{n \to \infty} \int f_n, \quad -\int f \le \liminf_{n \to \infty} \int -f_n = -\limsup_{n \to \infty} \int f_n,$$

which implies

$$\int f \le \liminf_{n \to \infty} f_n \le \limsup_{n \to \infty} \int f_n \le \int f.$$

This shows that the limit exists, and the desired result indeed holds.

Corollary 2.7 (Tonelli's theorem for series and integrals). Suppose f_n are integrable functions such that

$$\sum_{n=1}^{\infty} \int |f_n| < \infty,$$

then we have

$$\int \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int f_n.$$

Proof. Take G(x) to be

$$G(x) := \sum_{n=1}^{\infty} |f_n(x)|,$$

then we see

$$G(x) \ge |F_N(x)|$$

where

$$F_N(x) := \sum_{n=1}^N f_n(x).$$

By Corollary 2.4, we have

$$\int G(x) = \sum_{n=1}^{\infty} |f_n(x)| < \infty.$$

Lastly, from Theorem 2.4, the result follows.

Remark. Compare to Corollary 2.4, we see that we further generalize the result!

Lecture 14 7 Feb. 11:00

Appendix

A Additional Proofs

A.1 Measure

This section gives all additional proofs in Section 1.

Theorem A.1 (Theorem 1.2 3.). Under the setup of Theorem 1.2, (X, \mathcal{A}, μ) is a complete measure space.

Proof. We see this in two parts.

1. Claim: If $A \subset X$ satisfies $\mu^*(A) = 0$, then A is Carathéodory measurable with respect to μ^* .

Proof. If $A \subset X$ and $\mu^*(A) = 0$, where μ^* is an outer measure on X, we'll show that A is Carathéodory measurable with respect to μ^* .

Equivalently, we want to show that for any $E \subset X$,

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A).$$

Firstly, noting that $(E \cap A) \subset A$, and by monotonicity of μ^* , we see that

$$\mu^*(E \cap A) \le \mu^*(A) = 0,$$

and since $\mu^* \geq 0$, hence $\mu^*(E \cap A) = 0$. Now, we only need to show that

$$\mu^*(E) = \mu^*(E \setminus A).$$

Since $E \setminus A = E \cap A^c$, and hence we have $E \cap A^c \subset E$, so

$$\mu^*(E) \ge \mu^*(E \setminus A).$$

To show another direction, we note that

$$\mu^*(E) \le \mu^*(E \cup A) = \mu^*((E \setminus A) \cup A) \le \mu^*(E \setminus A),$$

hence we conclude that A is Carathéodory measurable with respect to μ^* if $\mu^*(A) = 0$.

2. Claim: If A is μ -subnull, then $A \in \mathcal{A}$.

Proof. Let \mathcal{A} denotes the Carathéodory σ -algebra, and $\mu := \mu^*|_{\mathcal{A}}$. We want to show if A is μ -subnull, then $A \in \mathcal{A}$.

Firstly, if A is μ -subnull, then there exists a $B \in \mathcal{A}$ such that $A \subset B$ and $\mu(B) = 0$. But since from the monotonicity of μ^* , we further have

$$0 = \mu(B) = \mu^*(B) \ge \mu^*(A),$$

hence $\mu^*(A) = 0$.

From the first claim, we immediately see that A is Carathéodory measurable with respect to μ^* , which implies A is in Carathéodory σ -algebra, hence $A \in \mathcal{A}$.

We see that the second claim directly proves that (X, \mathcal{A}, μ) is a complete measure space.

Lemma A.1. The function F defined in this example is a distribution function

Proof. We define

$$F_n(x) = \begin{cases} 1, & \text{if } x \ge r_n; \\ 0, & \text{if } x < r_n \end{cases}$$

where $\{r_1, r_2, \ldots\} = \mathbb{Q}$, and

$$F(x) = \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n} = \sum_{n: r_n \le x} \frac{1}{2^n}$$

is both increasing and right-continuous.

• Increasing. Consider x < y. We see that

$$F(x) = \sum_{n; r_n \le x} \frac{1}{2^n} \le \sum_{n; r_n \le y} \frac{1}{2^n} = F(y)$$

clearly.23

• Right-continuous. We want to show $F(x^+) = F(x)$. Let $x^+(\epsilon) := x + \epsilon$ with $\epsilon > 0$, we'll show that

$$\lim_{\epsilon \to 0} F(x^+(\epsilon)) = \lim_{\epsilon \to 0} F(x + \epsilon) = F(x).$$

Firstly, we have

$$F(x^{+}(\epsilon)) - F(x) = \sum_{n; r_n \le x + \epsilon} \frac{1}{2^n} - \sum_{n; r_n \le x} \frac{1}{2^n} = \sum_{n: x < r_n \le x + \epsilon^{24}} \frac{1}{2^n},$$

and we want to show

$$\lim_{\epsilon \to 0} F(x^+(\epsilon)) - F(x) = \lim_{\epsilon \to 0} \sum_{n; x < r_n \le x + \epsilon} \frac{1}{2^n} = 0.$$

Before we show how we choose ϵ , ²⁵ we see that

$$\sum_{n=k}^{\infty} \frac{1}{2^n} = 2^{1-k}.$$

²³This is trivial since we're always going to sum more strictly positive terms in F(y) than in F(x).

²⁴The strict is crucial to show the result, since if $x = r_k$ for some fixed k, then we can't make the summation arbitrarily small.

²⁵To be precise, how ϵ depends on r_n .

Now, we observe that

$$\sum_{n; x < r_n \le x + \epsilon} \frac{1}{2^n} \le \sum_{n = \arg\min_{k} x < r_k \le x + \epsilon}^{\infty} \frac{1}{2^n} = 2^{1-k}.$$

With this observation, it should be fairly easy to see that we can choose ϵ based on how small we want to make 2^{1-k} be, 26 and we indeed see that

$$\lim_{k \to \infty} 2^{1-k} = 0,$$

which implies that F is right-continuous by squeeze theorem.

Lemma A.2. The function F defined in this example satisfies

- $\mu_F(\lbrace r_i \rbrace) > 0$ for all $r_i \in \mathbb{Q}$.
- $\mu_F(\mathbb{R} \setminus \mathbb{Q}) = 0$

given in this example.

Proof. We prove them one by one. And notice that F is indeed a distribution function as we proved in Lemma A.1.

1. To show $\mu_F(\{r\}) > 0$ for every $r \in \mathbb{Q}$, we first note that $\{r\} = \bigcap_{a-1 \le x < r} (x, r]$. Then, we see that

$$\mu_F(\lbrace r \rbrace) = \mu_F \left(\bigcap_{a-1 \le x < a} (x, r] \right),$$

where each $(x,r] \in \mathcal{A}$ and $(x,r] \supset (y,r]$ whenever $r-1 \le x \le y < r$. Notice that we implicitly assign the order of the index by the order of x. Then, we see that $\mu_F(r-1,r] < \infty$.²⁷ Then, from continuity from above, we see that

$$\mu_F(\lbrace r \rbrace) = \lim_{i \to \infty} \mu_F((x_i, r]),$$

where we again implicitly assign an order to x as the usual order on \mathbb{R} by given index i. It's then clear that as $i \to \infty$, $x_i \to r$. From the definition of F, we see that

$$F((x_i, r]) = F(r) - F(x_i) = \sum_{n; r_n \le r} \frac{1}{2^n} - \sum_{n; r_n \le x_i} \frac{1}{2^n} = \sum_{n; x_i < r_n \le r} \frac{1}{2^n}.$$

It's then clear that since $r \in \mathbb{Q}$, there exists an i' such that $r_{i'} = r$. Then, we immediately see that no matter how close $x_i \to r$, this sum is at least

$$\frac{1}{2^{i'}}$$

for a fixed i'. Hence, we conclude that $\mu_F(\{r\}) > 0$ for every $r \in \mathbb{Q}$.

²⁶We're referring to $\epsilon - \delta$ proof approach.

²⁷This will be $\mu(A_1)$ in the condition of continuity from above. Furthermore, since \mathbb{Q} is countable, hence $F(x) < \infty$ is promised.

2. Now, we show $\mu_F(\mathbb{R} \setminus \mathbb{Q}) = 0$. Firstly, we claim that

$$\mu_F(\mathbb{Q}) = 1$$

and

$$\mu_F(\mathbb{R}) = 1$$

as well. Since $\mu_F(\mathbb{Q}) = 1$ is clear, we note that the second one essentially follows from the fact that we can write

$$\mathbb{R} = \lim_{N \to \infty} \bigcup_{i=1}^{N} (a - i, a + i]$$

for any $a \in \mathbb{R}$, say 0. From continuity from below, we have

$$\mu_F\left(\bigcup_{i=1}^{\infty} (-i, +i]\right) = \lim_{n \to \infty} \mu_F((-n, n]) = \sum_{n; r_n \in \mathbb{Q}} \frac{1}{2^n} = 1.$$

Given the above, from countable additivity of μ_F , we have

$$\mu_F(\mathbb{R}\setminus\mathbb{Q}) + \underbrace{\mu_F(\mathbb{Q})}_{1} = \underbrace{\mu_F(\mathbb{R})}_{1} \implies \mu_F(\mathbb{R}\setminus\mathbb{Q}) = 0$$

as we desired.

Lemma A.3 (Cantor set has measure 0). Let C denotes the middle thirds Cantor set, then the Lebesgue measure of C is 0. i.e.,

$$m(C) = 0.$$

Proof. Since we're removing $\frac{1}{3}$ of the whole interval at each n, we see that the measure of those removing parts, denoted by r, is

$$m(r) = \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n = 1.$$

Then, by countable additivity of m, we see that

$$m(C) = m([0,1]) - m(r) = 1 - 1 = 0.$$

A.2 Integration

References

- [Axl19] S. Axler. Measure, Integration & Real Analysis. Graduate Texts in Mathematics. Springer International Publishing, 2019. ISBN: 9783030331429. URL: https://books.google.com/books?id=8hCDyQEACAAJ.
- [FF99] G.B. Folland and G.B.A. FOLLAND. Real Analysis: Modern Techniques and Their Applications. A Wiley-Interscience publication. Wiley, 1999. ISBN: 9780471317166. URL: https://books.google.com/books?id=uPkYAQAAIAAJ.
- [Tao13] T. Tao. An Introduction to Measure Theory. Graduate studies in mathematics. American Mathematical Society, 2013. ISBN: 9781470409227. URL: https://books.google.com/books?id=SPGJjwEACAAJ.