Example 79: As shown in Figure 3, there is a point P inside \triangle ABC, which satisfies $\angle PBA + \angle PCA = \angle PBC + \angle PCB$. Prove that: B, C, P, and I share a circle, and I is the center of \triangle ABC.

Proof:
$$\left(\frac{\frac{P-C}{P-B}}{\frac{I-C}{I-B}} \right)^2 = \frac{\frac{B-I}{B-C}}{\frac{B-A}{B-I}} \frac{\frac{C-B}{C-I}}{\frac{C-I}{C-A}} \left(\frac{\frac{B-A}{B-P}}{\frac{B-P}{C-A}} \frac{C-B}{B-C} \right).$$