

Lecture 6. Probabilistic Model-Based Clustering Methods

- Basic Concepts of Probabilistic Model-Based Clustering
- Mixture Models for Cluster Analysis
- Gaussian Mixture Models
- ☐ The Expectation-Maximization (EM) Algorithm (Univariate)
- The Expectation-Maximization (EM) Algorithm (Multivariate)
- Analysis of the Mixture Model Methods
- Summary

Probabilistic Model-Based Clustering: Basic Concepts

- Probabilistic model
 - Model the data from a generative process
 - Assume the data are generated by a mixture of underlying probability distributions
 - Attempt to optimize the fit between the observed data and some mathematical model using a probabilistic approach
- Probabilistic model-based clustering
 - Each cluster can be represented mathematically by a parametric probability distribution (e.g., Gaussian or Poisson distribution)
 - Cluster: Data points (or objects) that most likely belong to the same distribution
 - □ Clustering: Parameter estimation so that they will have a *maximum likelihood fit* to the model by a mixture of *K* component distributions (i.e., K clusters)
- Broad applications
 - Image segmentation, document clustering, topic modeling, etc.

Typical Probabilistic Model-Based Clustering Methods

- Mixture models
 - Assume observations to be clustered are drawn from one of several components
 - Infer the parameters of these components (i.e., clusters) and assign data points to specific components of the mixture
- The Expectation-Maximization (EM) algorithm
 - □ A general technique to find maximum likelihood estimations in mixture models
 - ☐ The EM algorithm for Gaussian mixture model
- □ **Probabilistic topic models** for text clustering and analysis (to be covered in the "Text Mining" course)
 - Probabilistic latent semantic analysis (PLSA)
 - Latent Dirichlet allocation (LDA)

Model-Based Clustering

- \square A set C of k probabilistic clusters $C_1, ..., C_k$ with probability density functions $f_1, ..., f_k$, respectively, and their probabilities $\omega_1, ..., \omega_k$
- □ Probability of an object o generated by cluster C_j is $P(o, C_j) = P(C_j)P(o|C_j) = \omega_j f_j(o)$
- □ Probability of *o* generated by the set of cluster *C* is $P(o \mid C) = \sum_{i=1}^{n} \omega_{i} f_{j}(o)$
- □ Since objects are assumed to be generated independently, for a data set $D = \sum_{k=0}^{n} a_k b_k a_k$

$$\{o_1, ..., o_n\}$$
, we have
$$P(D|\mathbf{C}) = \prod_{i=1}^n P(o_i|\mathbf{C}) = \prod_{i=1}^n \sum_{j=1}^k \omega_j f_j(o_i)$$

- \square Task: Find a set C of k probabilistic clusters so that $P(D \mid C)$ is maximized
 - ☐ Maximizing $P(D \mid C)$ is often intractable since the probability density function of a cluster can take an arbitrarily complicated form
 - □ To make it computationally feasible (as a compromise), assume the probability density functions are some parameterized distributions

Parametric Mixed Models

- □ Our task is to infer a set of K probabilistic clusters that is mostly likely to generate D
 - ☐ The values of the discrete latent variables can be interpreted as the assignments of data points to specific components (i.e., clusters) of the mixture
- □ Each cluster is mathematically represented by a parametric distribution
- □ In principle, the mixtures can be constructed with any types of components, and we could still have a perfectly good mixture model
- □ In practice, a lot of effort is given over to **parametric mixture models**, where all components are from the same parametric family of distributions but with different parameters
 - Ex. All Gaussians with different means and variances, all Poisson distributions with different means, or all power laws with different exponents
- □ Two most common mixtures: Mixture of Gaussian (continuous) and mixture of Bernoulli (discrete) distributions

Univariate and Multivariate Gaussian Distributions

Plots and contours for Gaussian distributions for various parameters

Plots of the univariate Gaussian distribution for various parameters of μ and σ

Contours of the multivariate (2-D) Gaussian distribution for various parameters of μ and Σ

Gaussian Mixture Model

 \square We assume each cluster C_i is characterized by a multivariate normal distribution

$$f_i(\mathbf{x}) = f(\mathbf{x} \mid \mu_i, \Sigma_i) = \frac{1}{\sqrt{(2\pi)^d \mid \Sigma_i \mid}} \exp\{-\frac{(\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i)}{2}\}$$

where the cluster mean μ_i and covariance matrix Σ_i are unknown parameters, and $f_i(x)$ is the probability density x attributable to cluster C_i

 \square We assume the probability density function of X is given as a Gaussian mixture model over all the k cluster normals defined as

$$f(x) = \sum_{i=1}^{k} f_i(x) P(C_i) = \sum_{i=1}^{k} f(x|\mu_i, \Sigma_i) P(C_i)$$

where the prior probabilities $P(C_i)$ (called mixture parameters) must satisfy

$$\sum_{i=1}^{k} P(C_i) = 1$$

Maximum Likelihood Estimation of Gaussian Mixture Model

- Maximum Likelihood Estimation (MLE)
 - Given the dataset D, the likelihood of the model parameters ϑ is:

$$P(\mathbf{D} \mid \boldsymbol{\theta}) = \prod_{j=1}^{n} f(\mathbf{x}_{j}) \quad \text{or written as} \quad \ln P(\mathbf{D} \mid \boldsymbol{\theta}) = \sum_{j=1}^{n} \ln f(\mathbf{x}_{j}) = \sum_{j=1}^{n} \ln \sum_{i=1}^{k} f(\mathbf{x}_{j} | \mu_{i}, \Sigma_{i}) P(C_{i})$$

- MLE is to choose parameters ϑ : $\theta^* = \arg \max_{\theta} \{P(D \mid \theta)\}$
 - \Box or maximize the log-likelihood: $\theta^* = \arg \max_{\alpha} \{ \ln P(D \mid \theta) \}$
- \square Directly maximizing the log-likelihood over ϑ is hard
- □ We can use EM approach for finding the maximum likelihood estimation for the parameters ϑ
- \square **Expectation step**: Given current estimates for ϑ , compute the cluster posterior probability $P(C_i|x_j)$ via Bayes theorem: $P(C_i|x_j) = \frac{f_i(x_j) \cdot P(C_i)}{\sum_{i=1}^{k} f_a(x_j) \cdot P(C_a)}$ **Maximization step:**
- Maximization step:
 - \square Using weight $P(C_i|x_i)$ re-estimate ϑ , i.e., re-estimate μ_i , \sum_i and $P(C_i)$ for each cluster C_i

The Expectation-Maximization Framework for K-Means and EM

- ☐ The *k*-means algorithm has two steps at each iteration
 - **Expectation Step** (E-step): Given the current cluster centers, each object is assigned to the cluster whose center is closest to the object. An object is *expected to belong to the closest cluster*.
 - **Maximization Step** (M-step): Given the cluster assignment, the algorithm *adjusts* the center for each cluster so that the sum of distance from the objects assigned to this cluster and the new center is minimized
- □ **The (EM) algorithm:** A framework to approach maximum likelihood or maximum a posteriori estimates of parameters in statistical models
 - **E-step** assigns objects to clusters according to the current parameters of probabilistic clusters
 - M-step finds the new clustering or parameters that minimize the sum of squared errors (SSE) or the expected likelihood

Expectation-Maximization for One Dimension (Univariate)

- □ Consider a dataset D consisting of a single attribute X, where each point x_i (i = 1, ..., n) is a random sample from X
- ☐ For the mixture model, we use univariate normals for each cluster

$$f_i(x) = f(x \mid \mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\{-\frac{(x - \mu_i)^2}{2\sigma_i^2}\}$$

- Initialization:
 - For each cluster C_i , with i = 1, ..., k, randomly initialize cluster parameters:
 - \square μ_i is selected uniformly at random; $\sigma_i^2 = 1$; $P(C_i) = 1/k$ (each cluster has equal prob.)
- Expectation step:
- □ Calculate the posterior probability $P(C_i|x_j)$: $P(C_i|x_j) = \frac{f(x_j|\mu_i, \sigma_i^2) \cdot P(C_i)}{\sum_{a=1}^k f(x_j|\mu_a, \sigma_a^2) \cdot P(C_a)}$ □ Maximization step:
- Compute the maximum likelihood estimates of the cluster parameters by reestimating μ_i , σ_i^2 and $P(C_i)$ for each cluster C_i

Demonstration of the EM Execution for One Dimensional Data

☐ The execution of the EM Algorithm for Univariate (Single Dimension)

The Expectation Maximization Algorithm (Multivariate)

- □ Randomly initialize μ_1, \dots, μ_k ; $\Sigma_i \leftarrow I \ \forall i = 1, \dots, k$; $P(C_i) \leftarrow 1/k \ \forall i = 1, \dots, k$ // Initialization
- Repeat

// Expectation Step: Assigns objects to clusters according to the current parameters of probabilistic clusters

 \Box for i = 1, ..., k and j = 1, ..., n do

$$w_{ij} \leftarrow \frac{f(x_j \mid \mu_i, \Sigma_i) \cdot P(C_i)}{\sum_{a=1}^k f(x_j \mid \mu_a, \Sigma_a) \cdot P(C_a)}$$
 // Calculate the posterior probability $P(C_i \mid x_j)$

// Maximization Step: Finds the new clustering or parameters that minimize SSE or the expected likelihood

 \Box for $i = 1, \ldots, k$ do

$$\mu_{i} \leftarrow \frac{\sum_{j=1}^{n} w_{ij} \cdot \mathbf{X}_{j}}{\sum_{j=1}^{n} w_{ij}} \qquad \sum_{i} \leftarrow \frac{\sum_{j=1}^{n} w_{ij} (\mathbf{X}_{j} - \mu_{i}) (\mathbf{X}_{j} - \mu_{i})^{T}}{\sum_{j=1}^{n} w_{ij}} \qquad P(C_{i}) \leftarrow \frac{\sum_{j=1}^{n} w_{ij}}{n}$$

// re-estimate mean // re-estimate covariance matrix

// re-estimate priors

 \Box Until the sum of the changes of the means across two iterations is no greater than threshold ϵ

Demonstration of the EM Execution for Two Dimensional Data

☐ The execution of the EM algorithm for a two-dimensional data set

Illustration of the EM Algorithm for Two Gaussian Components

A randomly generated data set (in blue circles). A random initialization of the mixture model: The two Gaussian components are shown as green and red circles

After the initial E-step:
Each data point is depicted
using a proportion of white
ink and black ink according
to the posterior probability
generated by the
corresponding component

After the first M-step: The means and covariances of both components have changed The results after 47 cycles of EM: Close to convergence

K-Means Can Be Considered as a Special Case of EM

□ K-means can be considered as a special case of the EM algorithm, where

$$P(\mathbf{x}_{j} | C_{i}) = \begin{cases} 1 & \text{if } C_{i} = \arg\min_{C_{a}} \{ || \mathbf{x}_{j} - \mu_{a} ||^{2} \} \\ 0 & \text{otherwise} \end{cases}$$

$$P(C_{i} | \mathbf{x}_{j}) = \begin{cases} 1 & \text{if } \mathbf{x}_{j} \in C_{i}, \text{i.e., } C = \arg\min_{C_{a}} \{ || \mathbf{x}_{j} - \mu_{a} ||^{2} \} \\ 0 & \text{otherwise} \end{cases}$$

- □ K-means can be viewed as a hard-EM: In the E-step, we take the local minimum instead of a distribution
- ☐ The Gaussian Mixture Model (GMM) is the soft version of k-means
 - We calculate the distribution instead of the most likely one in the E-step and use the weighted sum to compute the new centers in the M-step
 - GMM introduces variance to learning, whereas clusters in k-means have the same variance

Initialization and Speed-Up of Expectation-Maximization

- ☐ Hard vs. soft clustering assignments
 - □ K-Means: Hard assignment clustering—Each point can belong to only one cluster
 - Probabilistic clustering: Soft assignment of points to clusters—Each point has a probability of belonging to each cluster
- □ Compared with K-means algorithm, the EM algorithm for Gaussian mixture model (GMM) takes many more iterations to reach convergence
- □ To find a suitable initialization and speed up the convergence for a GMM:
 - □ First run the K-means algorithm, and then choose the means and covariances of the clusters and the fractions of data points assigned to the respective clusters for initializing μ_k , Σ_k and $P(C_i)$, respectively
- □ A Gaussian component collapses onto a particular data point (called: singularity)
 - When detecting a Gaussian component is collapsing, reset its mean and covariance, and then continue with the optimization

Strengths and Weaknesses of Mixture Models

- Strengths
 - Mixture models are more general than partitioning and fuzzy clustering
 - Clusters can be characterized by a small number of parameters
 - ☐ The results may satisfy the statistical assumptions of the generative models
- Weaknesses
 - Converge to local optimal (overcome: run multiple times with random initialization)
 - Computationally expensive if the number of distributions is large or the data set contains very few observed data points
 - Need large data sets
 - ☐ Hard to estimate the number of clusters

Summary: Probabilistic Model-Based Clustering Methods

- Basic Concepts of Probabilistic Model-Based Clustering
- Mixture Models for Cluster Analysis
- Gaussian Mixture Models
- The Expectation-Maximization (EM) Algorithm (Univariate)
- The Expectation-Maximization (EM) Algorithm (Multivariate)
- Analysis of the Mixture Model Methods
- Summary

Recommended Readings

- □ A. Dempster, N. Laird, and D. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. *Journal of the Royal Statistical Society.* 1977
- ☐ G. J. McLachlan and K. E. Bkasford. *Mixture Models: Inference and Applications to Clustering*. John Wiley & Sons, 1988
- □ K. Burnham and D. Anderson. *Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach*. Springer Verlag, 2002
- □ C. M. Bishop. *Pattern Recognition and Machine Learning*. Springer, 2006
- M. J. Zaki and W. Meira, Jr.. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, 2014
- ☐ H. Deng and J. Han, *Probabilistic Models for Clustering*, in (Chapter 3) C. Aggarwal and C. K. Reddy (eds.), *Data Clustering: Algorithms and Applications*. CRC Press, 2014