IITM-CS6014: Advanced Theory of Computation Given on: Aug 28, 8am

Problem Set #2 Due on : Sep 11, 5pm

• The instructions remain the same as last problem set. Answers need not be written in LATEX. However, from Problem Set 3 onwards, this will be compulsory. No PDFs will be accepted unless it is produced from a LATEX.

- Consider the following three problems. Formulate the problems as languages and argue whether they are decidable or undecidable. (You can apply Rice's theorems wherever possible.)
 - (a) An *unused state* of a Turing machine is a state that is never entered on any input string. The problem is to determine whether a Turing machine has any useless states.
 - (b) Given a Turing machine M on input x, does the machine ever move its head left at any point during its computation on w.
 - (c) Given two Turing machines, M_1 and M_2 , check if they accept complimentary languages.
 - (d) Given a Turing machine, test whether there exist a string on which the machine runs for ever.
 - (e) Given a Turing machine, test whether it accepts at least one palindrome string.
 - (f) Given a Turing machine, test whether it accepts only palindromes.
 - (g) Given two Turing machines, M_1 and M_2 , check if they accept a common string.
- 2. Kozen 104-110, 115.
- 3. Over a singleton alphabet, describe:
 - (a) a language which is not regular, but is decidable.
 - (b) a language which is semi-decidable but not decidable.
 - (c) a language which is in Σ_2 but not in Σ_1 .
- 4. (a) View \leq_m and \leq_T as relation defined over the set of languages. Argue whether they are reflexive, symmetric and transitive.
 - (b) Show that L is decidable if and only if $L \leq_m 1^*0^*$.
- 5. Show that $FIN \leq_T REG$. Suppose you are given an oracle which will always answer questions of the form, "Is L(M) a regular set?" truthfully. Show how to use such an oracle to decide questions of the form, "Is L(M) finite?"