2.4. Objectifs de l'enseignement technologique en langue vivante étrangère (ETLV)

- dans le prolongement du cours d'anglais, poursuivre le travail sur les activités langagières en les appliquant au domaine professionnel spécifique à la section et aux gestes techniques en contexte;
- assurer une veille documentaire par la fréquentation de la presse ou de sites d'informations scientifiques ou généralistes en langue anglaise et placer ainsi le domaine professionnel de la section dans une perspective complémentaire : celle de la culture professionnelle et de la démarche scientifique (parallèle ou concurrente) des pays anglophones.

S10 - MATHEMATIQUES

L'enseignement des mathématiques dans les sections de techniciens supérieur de Conception de produits industriels se réfère aux dispositions figurant aux annexes I et II de l'arrêté du 4 juin 2013 fixant les objectifs, les contenus de l'enseignement et le référentiel des capacités du domaine des mathématiques pour les brevets de technicien supérieur.

Les dispositions de cet arrêté sont précisées pour ce BTS de la façon suivante.

I - Lignes directrices

Objectifs spécifiques à la section

L'étude de phénomènes continus issus des sciences physiques et de la technologie constitue un des objectifs essentiels de la formation des techniciens supérieurs en productique mécanique. Ils sont décrits mathématiquement par des fonctions obtenues le plus souvent comme solutions d'équations différentielles.

Une vision géométrique des problèmes doit imprégner l'ensemble de l'enseignement car les méthodes de la géométrie jouent un rôle capital en analyse et dans leurs domaines d'intervention : apports du langage géométrique et des modes de représentation.

Enfin la connaissance de quelques méthodes statistiques pour contrôler la qualité d'une fabrication est indispensable dans cette formation.

Organisation des contenus

C'est en fonction de ces objectifs que l'enseignement des mathématiques est conçu ; il peut s'organiser autour de cinq pôles :

- une étude des *fonctions usuelles*, c'est-à-dire exponentielles, puissances et logarithme dont la maîtrise est nécessaire à ce niveau ;
- la résolution d'équations différentielles dont on a voulu marquer l'importance, en relation avec les problèmes d'évolution;
- la résolution de *problèmes géométriques* rencontrés dans les divers enseignements, y compris en conception assistée par ordinateur ;
- une initiation au *calcul des probabilités*, suivie de notions de *statistique inférentielle* débouchant sur la construction des tests statistiques les plus simples utilisés en contrôle de qualité ;
- une valorisation des *aspects numériques et graphiques* pour l'ensemble du programme, une initiation à quelques méthodes élémentaires de *l'analyse numérique* et l'utilisation à cet effet des *moyens informatiques* appropriés : calculatrice programmable à écran graphique, ordinateur muni d'un tableur, de logiciels de calcul formel, de géométrie ou d'application (modélisation, simulation,...).

Organisation des études

En première et en deuxième année, l'horaire hebdomadaire est de 2 heures en classe entière (dont une demiheure en co-intervention) + 1 heure de travaux dirigés.

II - Programme

Le programme de mathématiques est constitué des modules suivants :

Fonctions d'une variable réelle, à l'exception des paragraphes « *Approximation locale d'une fonction* » et « *Courbes paramétrées* ».

Calcul intégral, à l'exception du paragraphe « Formule d'intégration par parties ».

Équations différentielles.

Statistique descriptive.

Probabilités 1.

Probabilités 2, à l'exception du paragraphe « Exemples de processus aléatoires ».

Statistique inférentielle

Configurations géométriques.

Calcul vectoriel.

III - Programme complémentaire

Le programme complémentaire ne fait pas l'objet d'une évaluation et peut être enseigné durant les heures d'accompagnement personnalisé de deuxième année.

Cet apport est un approfondissement qui peut être utile aux étudiants souhaitant des compléments spécifiques de modélisation géométrique et de calcul matriciel.

Modélisation géométrique

Calcul matriciel

S11 – PHYSIQUE - CHIMIE

✓ Préambule

L'enseignement de la physique-chimie en STS **Conception de Produits Industriels**, s'appuie sur la formation scientifique acquise dans le second cycle. Il vise à renforcer la maîtrise de la démarche scientifique afin de donner à l'étudiant l'autonomie nécessaire pour réaliser les tâches professionnelles qui lui seront proposées dans son futur métier et agir en citoyen responsable. Cet enseignement vise l'acquisition ou le renforcement chez les futurs techniciens supérieurs des connaissances, des modèles physiques et des capacités à les mobiliser dans le cadre de leur exercice professionnel. Il doit leur permettre de faire face aux évolutions technologiques qu'il rencontrera dans sa carrière et s'inscrire dans le cadre d'une formation tout au long de la vie.

Les compétences propres à la démarche scientifique doivent permettre à l'étudiant de prendre des décisions éclairées et d'agir de manière autonome et adaptée. Ces compétences nécessitent la maîtrise de capacités qui dépassent largement le cadre de l'activité scientifique :

- confronter ses représentations avec la réalité ;
- observer en faisant preuve de curiosité;
- mobiliser ses connaissances, rechercher, extraire et organiser l'information utile fournie par une situation, une expérience ou un document ;
- raisonner, démontrer, argumenter, exercer son esprit d'analyse.

Le programme de physique-chimie est organisé en deux parties :

- dans la première partie sont décrites les compétences que la pratique de la démarche expérimentale permet de développer. Ces compétences et les capacités associées seront exercées et mises en œuvre dans des situations variées tout au long des deux années en s'appuyant sur les domaines étudiés décrits dans la deuxième partie du programme. Leur acquisition doit donc faire l'objet d'une programmation et d'un suivi dans la durée;
- dans la deuxième partie sont décrites les connaissances et capacités qui sont organisées en deux colonnes : à la première colonne « notions et contenus » correspond une ou plusieurs « capacités exigibles » de la deuxième colonne. Celle-ci met ainsi en valeur les éléments clefs constituant le socle de connaissances et de capacités dont l'assimilation par tous les étudiants est requise.

Le programme indique les objectifs de formation à atteindre pour tous les étudiants. Il ne représente en aucun cas une progression imposée. Le professeur doit organiser son enseignement en respectant quatre grands principes directeurs :

- la mise en activité des élèves : l'acquisition des connaissances et des capacités sera d'autant plus efficace que les étudiants auront effectivement mis en œuvre ces capacités. La démarche expérimentale et