Fractal Dynamics of Spectral Density Calculations

Edgar Dobriban*

April 14, 2015

Contents

1	Introduction	1
2	Contents	1
	2.1 ./Fixed Point Method	1
	2.2 /Newton Method	2

1 Introduction

This folder contains supplementary information on the complex dynamics of methods for solving the Silverstein-Marchenko-Pastur equation.

We provide scripts to compute the Julia sets of iterative methods for this problem. These scripts are written in the language UltraFractal.

- Version: 0.0.1
- Requirements: UltraFractal (tested on 5.04)
- Author: Edgar Dobriban
- License: GPL-3

2 Contents

There are two folders, corresponding to the Fixed Point and Newton Methods.

2.1 ./Fixed Point Method

- ./MP_Iter_Sol.ufm This contains an UltraFractal formula. It programs the fixed point iteration method for a population spectrum $H = \frac{1}{2}(\delta_1 + \delta_{10})$.
- ./MP_Iter_Julia_Set.png This is a picture showing the Julia set of the dynamical system. The Julia set (white) belongs to the negative complex half-lane $\{z: im(z) < 0\}$, which confirms empirically that the method converges for z with positive imaginary part.

^{*}Department of Statistics, Stanford University, dobriban@stanford.edu

Figure 1: Julia set of Fixed Point Method.

Figure 2: Julia set of Newton Method.

2.2 ./Newton Method

- ./MP_newton.ufm This contains an UltraFractal formula. It programs Newton's method for a population spectrum $H = \delta_1$.
- ./high_resolution_MP_null.png This is a picture showing the Julia set of the dynamical system. The Julia set is now a complicated-looking fractal. This provides empirical support for our claims in the accompanying paper that Newton's method is numerically sensitive.