

Oskarshamn-2 plant, the 1999 stability event

Sean Roshan

OKG owns and operates three BWRs 30 km north of Oskarshamn

- Owned by
 - E.ON (54.5 %)
 - Fortum (45.5 %)

- BWR built by ASEA
- Start of operation: 1974
- Power uprate in early 1980s to 1800 MW (105.9 %)

Oskarshamn 2

Thermal power	MW	1800		
Operation pressure	MPa	7.0		
Steam Temperature	°C	286		
Steam flow rate	Kg/s	900		
Maximum, total Recirculation flow	Kg/s	7700		
Reactor pressure vessel				
Internal height	m	20		
Internal diameter	m	5.2		
Weight	kg	530,000		
Wall thickness	mm	134		
Core				
Equivalent core diameter	mm	3672		
Equivalent core height	mm	3712		
Number of fuel bundels		444		
Burnup	MWd/ton U	45000		
Average enrichment	% U-235	3.4		
Control rods				
Absorbing material		B4C		

Control rods are electro-hydraulically operated

Number of CR

109

Turbines and Generator				
Generator rating	MW	627		
Gross efficiency	%	35.0		
Generator net rating	MW	602		
Steam flow rate	Kg/s	900		
Moist in the primary steam	%	0.5		
Steam pressure before high pressure turbine	MPa	6.75		
Steam temperature before high pressure turbine	°C	283		
Steam pressure after high pressure turbine	MPa	0.54		
Steam temperature after high pressure turbine	°C	158		
Steam pressure in compensator	MPa	3.1		
Steam temperature in compensator	°C	30		

- 1- High pressure turbine 2- Low pressure turbine 3- Generator
- 4- Intermediate superheater

Condenser				
Coolant flow (sea water)	m ³ /s	26		
Temperature rize	°C	10. 7		
Hotwell contents	m ³	21 0		
Dumping capacity	%	11 0		
Feedwater temperature	°C	18 5		
Total number of pre- heating steps		5		
Low pressure pre-heater		3		
High pressure pre-heater		2		

Main recirculation Pumps				
Total number of pumps		4		
Nominal flow rate at nominal speed	Kg/s	1925		
Pressure	MPa	0.55		
Nominal speed	rpm	1400		
Largest pressure difference at nominal speed and nominal flow rate	m	54.5		
Nominal Hydraulic moment	Nm	6820		
Inertia	Kg/m	26		

Oskarshamn 2 event, February 25th, 1999

At 14:59 The plant was operating at full power and minimum recirculation flow

During work at the switchyard, a short (150 ms) power interruption occurred while operating a breaker. This lead to Load Rejection which was interpreted differently by the turbine and the reactor.

At that time the reactor got its' signals from the function "OFF", while the turbine got its' signal from the function "not ON".

The switch was somewhere in between ON and OFF

Load Rejection behaviour

High pr

Fast Trip (Regireuntion Pump 4.

Partial Sclam.

Pump run maining pumps

25 February 1999

Non of reactor functions did get any signal

Reactor remained at full power

Additionally, the Rundown of the Feedwater flow was too slow.

ılting

erator

Oskarshamn 2 event, February 25th, 1999

- Turbine trips, loss of pre-heaters
- While at full power, feedwater temperature decreased
- Reactor Power increases
- When reaching 108 % (signal E25) the power is automatically reduced below 108 % by pump speed reduction
- The operating point travels left after numerous such short rundowns
- Manual Partial scram because operating point is far outside the allowed area of the power-flow map
- The core gets unstable (Decay Ratio ~1.4) In about 10 oscillations the amplitude is 60%
- The reactor automatically SCRAMS at 132 % power. (SS9)

Power – Flow map

Core Flow Rate (kg/s)

OSKARSHAMN 2 EVENT, FEBRUARY25TH, 1999

SAFETY ANALYSIS

keeping the regulator happy IS the GOAL.

Level of conservatism is unknown

Results may be misleading, intentional conservatism may not lead to conservative results (unrealistic behavior predicted)

Uncertainties are not always known or responded to.

HOW SCENARIOS ARE SELECTED?

EXAMPLE: FEEDWATER TEMPERATURE TRANSIENT

Reactor at full power

Turbine trip at 73 s

Steam bypass opens at 73 s

Lost of feedwater pre-heaters at 73 s

So oC in 55 s

Reactor scrams due to high power

EXAMPLE: FEEDWATER TEMPERATURE TRANSIENT

Flow Controller

In a Swedish designed BWR main recirculation pumps are of rotation type. Hence, it is possible to by changing the revolution of the pump, change the flow rate through them and control the power of the reactor. This possibility has been used in a controller called Flow Controller. The main task of this controller is to regulate the power against a set point via controlling the main recirculation pumps' rotation speed.

The controller should be able to regulate the power in the reactor when small power changes occur without control rod movement.

OSKARSHAMN-2 1999 INSTABILITY EVENT TRACE/PARCS MODEL

OSKARSHAMN-2 1999 STABILITY EVENT CORRECTED FW TEMPERATURE BC

Decay Ratio

SIMULATION OF THE OSKARSHAMN 2 1999 SCENARIO IN A GENERIC SWEDISH BWR

intentional conservatism may not lead to conservative results

(Not taking the operational systems into account during the analysis as a conservative assumption for worst case scenario)

Actions taken after the Event

- 1. Signals changed. Same signal to the turbine and the reactor.
- 2.New unfiltrered sloped Partial-scram line.
- 3. Filter removed from Scram line (SS10)
- 4.Core Stability Monitoring (CSM) detects increasing amplitudes in APRM and LPRM signals and initiates partial-SCRAM or SCRAM automatically
- 5. Snakeskin Partial-SCRAM and SCRAM lines (ongoing)