第十四章Pólya计数

- 4.1 置换群与对称群
- 4.2 Burnside定理
- 4.3 Pólya计数

■ 组合计数问题中的两类困难

- □ 问题通解的表达式: 生成函数
- □ 区分所讨论的问题中哪些应该看成相同的,哪 些是不同的
 - ✓ 在计算过程中避免重复或遗漏

George Poly (1887-1985) 匈牙利裔美国数学家

在前人研究同分异构体计数问题的基础上,波利亚在1937年以《关于群、图与化学化合物的组合计算方法》(Kombinatorische Anzahlbestimmungen fr Gruppen,Graphen und Chemische Verbindungen)为题,发表了长达110页、在组合数学中具有深远意义的著名论文。

"波利亚计数定理"

(Polya's enumeration theorem)

例(正方形着色问题):用红、蓝两种颜色给一个正方形的4个顶点着色,试问存在多少种不同的着色方法数。

(1) 正方形位置固定: 16种

(2) 允许正方形转动: 6种

例(正方形着色问题):用红、蓝两种颜色给一个正方形的4个顶点着色,试问存在多少种不同的着色方法数。

(1) 正方形位置固定: 16种

(2) 允许正方形转动: 6种

• 把16种方法分成 6部分,同一部分中的两种着色被视为等价

例(正方形着色问题):用红、蓝两种颜色给一个正方形的4个顶点着色,试问存在多少种不同的着色方法数。

- (1) 正方形位置固定: 16种
- (2) 允许正方形转动: 6种
 - 把16种方法分成 6部分,同一部分中的两种着色被视为等价

$$1+4+4+2+4+1=16$$
 种

- 本章目的:建立和阐明在对称情形下计算非等价着色的技术
 - □明确给出两种着色方案异同的数学定义
 - □ 如果规定了每种颜色出现的次数,对着色方案数给出统一的表达式

■ 着色 c_1 与 c_2 等价: c_1 可通过一个置换转化为 c_2

考虑两个着色在一个置换群下的等价性

主要内容

- 4.1 置换群与对称群
- 4.2 Burnside定理
- 4.3 Pólya计数

W

主要内容

- 4.1 置换群与对称群
- 4.2 Burnside定理
- 4.3 Pólya计数

W

群的基本知识

给定集合 G 和 G 上的二元运算 "•",如果以下四个条件满足,则称代数结构(G,•)为群:

- (1) 封闭性: "•"运算在 G 上是封闭的,即对于任意 $a,b\in G$,都有 $a\bullet b\in G$;
- (2) 结合律成立: "•"运算满足结合律,即 对于任意 $a,b,c \in G$,都有 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ 。
- (3) 存在单位元:存在 $e \in G$,对于任意 $a \in G$,满足 $e \bullet a = a \bullet e = a$,e 称为G的单位元:
- (4) **存在逆元**: 对于任意 $a \in G$, 存在 $a^{-1} \in G$, 满足 $a \cdot a^{-1} = a^{-1} \cdot a = e$, a^{-1} 称为a的逆元。

Ŋė.

群的基本知识

- *a•b* 可简记为 *ab*。
- 由于结合律成立, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,记为abc; 推广到n个元素乘积 $a_1 a_2 \dots a_n$,等于任意一种结合。
- 当 $a_1 = a_2 = ... = a_n = a$ 时, $a_1 a_2 ... a_n$ 可简记为 a^n 。

例: 1. $G=\{1,-1\}$ 在乘法运算下是一个群。

- 2. 整数集 Z 在加法运算下是一个群。
- 3. 二维欧几里得空间的刚体旋转变换集合 $T = \{T_{\alpha}\}$ 构成群,其中

$$T_{\alpha}$$
: $\binom{x_1}{y_1} = \binom{\cos \alpha & \sin \alpha}{-\sin \alpha & \cos \alpha} \binom{x}{y}$

群的基本知识

- 有限群: 如果 G 是有限集合,则称 G 为有限群。
- 群的阶:有限群 G 的元素个数称为群的阶,记为 |G|。
- 循环群的与生成元: 在群(G,•)中,若存在 $a \in G$,G中任任意元素 b均可以表示成 a 的方幂,则
 - \square 称 G 为循环群,
 - □ a 称为该群的生成元。

置換

- 设X是一个有限集。不失一般性,取X为包含前n个正整数的集合X={1, 2, ..., n}。
- X 的每个置换 $i_1, i_2, ..., i_n$ 可视为 X 到其自身的一个一对一(one-to-one)的函数 $f: X \to X$ (即单射), 其中,

$$f(1) = i_1, f(2) = i_2, \dots, f(n) = i_n \circ$$

根据鸽巢原理, $f: X \to X$ 为满射,因此f 为双射。可以用如下 $2 \times n$ 阵列来表示置换:

$$\begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$
 1, 2, ..., n 一个排列

- 集合 $X=\{1,2,...,n\}$ 的置换个数为 n!。
- 将 X 的所有n!个置换构成的集合记为 S_n 。

例: {1, 2, 3}的 3!=6个置换为:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

- S_3 是由上述6个置换构成的集合
- 置换是函数,因此可以合成。

置换的合成(composition)

合成运算: 设f和g为{1,2,...,n}上的两个置换:

$$f = \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & \cdots & n \\ j_1 & j_2 & \cdots & j_n \end{pmatrix}$$

f与g的合成按照先f后g的顺序放置得到一个新的置换:

$$g \circ f = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$

其中 $(g \circ f)(k) = g(f(k)) = j_{i_k}$. $(j_{i_1}, j_{i_2}, ..., j_{i_n})$ 是 $\{1, 2, ..., n\}$ 的一个排列

■ 函数的合成定义了 S_n 上的一个二元运算:

如果 f 和 g属于 S_n ,则 $g \circ f$ 也属于 S_n 。

■ 二元运算。的性质:

- ✓ 满足结合律: $(f \circ g) \circ h = f \circ (g \circ h)$
- ✓ 通常不满足交换律

例:
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$
 $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$

$$g \circ f = f \circ g =$$

■ 二元运算。的性质:

- ✓ 满足结合律: $(f \circ g) \circ h = f \circ (g \circ h)$
- ✓ 通常不满足交换律

例:
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$
 $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$

$$g \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \quad f \circ g =$$

■ 二元运算。的性质:

- ✓ 满足结合律: $(f \circ g) \circ h = f \circ (g \circ h)$
- ✓ 通常不满足交换律

例:
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$
 $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$

$$g \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \quad f \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

Ŋ.

几种特殊置换

■ 自身合成运算:

$$f^1 = f, f^2 = f \circ f, f^3 = f \circ f \circ f, ..., f^k = f \circ f \circ ... \circ f(k \uparrow f)$$

■ 恒等置换: 各整数对应到它自身的置换

$$\iota(k) = k$$
, 对所有 $k = 1, 2, ..., n$

等价于

$$i = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$$
 单位元

✓ 恒等置换性质:

 $\iota \circ f = f \circ \iota = f$, 对 S_n 中的所有置换 f 均成立。

Ŋė.

几种特殊置换

■ 逆置换: S_n 中的每个置换f是一对一的函数,所以存在逆函数 $f^{-1} \in S_n$,满足:

如果f(s) = k, 那么 $f^{-1}(k) = s$ 。

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 3 & 2 & 4 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix} \Rightarrow f^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$

交换 2×n 矩阵的 第一行与第二行 重新排列列使得第一行的整数 以自然顺序 1, 2, ..., n 出现

- □ 性质1: 恒等置换的逆是它自身: ι⁻¹= ι。
- □ 性质2: 任意置换与它的逆满足: $f \circ f^{-1} = f^{-1} \circ f = 1$.

置换群

令 S_n 为 $X = \{1, 2, ..., n\}$ 的所有n! 个置换构成的集合。设 $G \not = S_n$ 的非空子集,(G, \circ)是否是群?

如果 S_n 的非空子集 G 满足如下四个性质,则定义 G 为 X 的一个置换的群,简称置换群:

- (1) 封闭性:对G中任意置换f与g,f $\circ g$ 也属于G。
- (2) 满足结合律:对G中任意置换 $f,g,h,(f \circ g) \circ h = f \circ (g \circ h)$
- (3) 存在单位元: S_n 中的恒等置换 ι 属于G。
- (4) 存在逆元:对G中的每一个置换f,它的逆 f^{-1} 也属于G。

re.

置换群

- $X=\{1,2,...,n\}$ 的所有置换的集合 S_n 是一个置换群,称为 n 的对称群。
- 仅含恒等置换的集合 $G=\{1\}$ 是一个置换群。
- 每个置换群满足消去律: $f \circ g = f \circ h$,则 g = h

例: 设 n 是一个正整数, ρ_n 表示 $\{1, 2, ..., n\}$ 的置换:

$$\rho_n = \begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ 2 & 3 & 4 & \dots & n & 1 \end{pmatrix}$$

即 当 i=1,2,...,n-1时,有 $\rho_n(i)=i+1$ 且 $\rho_n(n)=1$ 。

把1, 2, ..., n 均等地放到 圆周上或正n角形上(n=8):

ρ_n按照顺时针方向将各整数传到随后的整数。

$$\rho_n = \begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ 2 & 3 & 4 & \dots & n & 1 \end{pmatrix}$$

ρ₈: 顺时针 旋转45度

ρ₈: 顺时针 旋转45度

ρ₈: 顺时针 旋转45度

$$\rho_8^8 = \iota$$

$$ho_8^9$$
= ho_8^1

$$ho_8^{10} =
ho_8^2$$

····· ρ₈: 顺时针 ····· 旋转45度

ρ₈: 顺时针 旋转45度

ρ₈: 顺时针 旋转45度

例: 设 n 是一个正整数, ρ_n 表示 $\{1, 2, ..., n\}$ 的置换:

$$\rho_n = \begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ 2 & 3 & 4 & \dots & n & 1 \end{pmatrix}$$

即 当 i=1,2,...,n-1时,有 $\rho_n(i)=i+1$ 且 $\rho_n(n)=1$ 。

把1, 2, ..., n 均等地放到 圆周上或正n角形上:

- ρ_n 按照顺时针方向将各整数传到随后的整数。
- 可将置换 ρ_n 视为圆的 360/n度 的旋转,

 ρ_n^2 视为圆的 $2 \times (360/n)$ 度的旋转, ...,

 ρ_n^k 视为圆的 $k \times (360/n)$ 度 的旋转:

$$\rho_n^k = \begin{pmatrix} 1 & 2 & \dots & n-k & n-k+1 & \dots & n \\ k+1 & k+2 & \dots & n & 1 & & k \end{pmatrix} \quad \rho_n^k(i) = (i+k) \bmod n$$

例如: 当 n = 4时,有

$$\rho_4^0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

$$\rho_4^1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$
有等置换
3

$$\rho_4^1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$\rho_4^2 = \rho_4^1 \circ \rho_4^1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \implies$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

$$\rho_4^3 = \rho_4^1 \circ \rho_4^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

$$\rho_4^4 = \rho_4^1 \circ \rho_4^3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \rho_4^0$$

$$\rho_4^4 = \rho_4^1 \circ \rho_4^3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \rho_4^0$$

$$\rho_4^5 = \rho_4^1 \circ \rho_4^4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \rho_4^1$$

$$\rho_4^6 = \rho_4^1 \circ \rho_4^5 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \rho_4^2$$

$$\rho_4^7 = \rho_4^1 \circ \rho_4^6 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \rho_4^3$$

$$\rho_4^8 = \rho_4^1 \circ \rho_4^7 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \rho_4^0$$

 $\rho_4^k = \rho_4^r$, 其中 $k = r \mod 4$

$$\rho_n^k = \begin{pmatrix} 1 & 2 & \dots & n-k & n-k+1 & \dots & n \\ k+1 & k+2 & \dots & n & 1 & & k \end{pmatrix}$$

性质: 设 $0 \le k \le n-1$, $r \ge n$, 如果 $k=r \mod n$, 则 $\rho_n^k = \rho_n^r$ 。

■ 仅有 ρ_n 的n个不同的幂,即

$$\rho_n^0 = \iota, \rho_n, \rho_n^2, ..., \rho_n^{n-1}$$

 $\rho_n^k \circ \rho_n^{n-k} = \rho_n^n = 1, \quad k=0,1,...,n-1, \quad 得$ $(\rho_n^k)^{-1} = \rho_n^{n-k}, \quad k=0,1,...,n-1$

结论: $C_n = \{ \rho_n^0 = \iota, \rho_n^1, \rho_n^2, ..., \rho_n^{n-1} \}$ 是一个置换群。 \checkmark C_n 是一个循环群。

$$\rho_n^k = \begin{pmatrix} 1 & 2 & \dots & n-k & n-k+1 & \dots & n \\ k+1 & k+2 & \dots & n & 1 & & k \end{pmatrix}$$

性质: (C_n, \circ) 是一个置换群,其中 $C_n = \{\rho_n^0 = \iota, \rho_n^1, \rho_n^2, ..., \rho_n^{n-1}\}$ 。

证明:置换群的四个条件:合成运算的封闭性,满足结合律,存在单位元和逆元。

(1) 设 ρ_n^i 和 ρ_n^j ($0 \le i, j \le n$ -1)是 C_n 中的任意两个置换,则有

$$\rho_n^i \circ \rho_n^j = \rho_n^{i+j} ,$$

✓如果 $0 \le i + j \le n-1$,则 $\rho_n^{i+j} \in C_n$;

✓如果 $n \le i + j$,则一定存在 $k (0 \le k \le n-1)$,满足

$$k = (i+j) \mod n$$
,所以, $\rho_n^{i+j} = \rho_n^k \in C_n$ 。

(2) 置换的合成满足结合律。

$$(3) \rho_n^0 = \iota \in C_n \circ$$

(4) 对于任意 $\rho_n^k \in C_n$, $(\rho_n^k)^{-1} = \rho_n^{n-k}$ 。 因此, (C_n, \circ) 是置换群。

小结

- 群 (G,•)
 - □ 封闭性、存在单位元与逆元
- 置換 $i_1, i_2, ..., i_n$: $\begin{pmatrix} 1 & 2 & ... & n \\ i_1 & i_2 & ... & i_n \end{pmatrix}$
- ■置换群
 - $\Box (C_n, \circ)$ 是一个置换群,其中 $C_n = \{ \rho_n^0 = \iota, \rho_n^1, \rho_n^2, ..., \rho_n^{n-1} \}$, 其中 $\rho_n^k = \begin{pmatrix} 1 & 2 & ... & n-k & n-k+1 & ... & n \\ k+1 & k+2 & ... & n & 1 & k \end{pmatrix}$
 - □ 可将置换 ρ_n^k 视为圆的 $k \times (360/n)$ 度 的旋转
- 隐含了用于计算把 *n*个不同的对象安置到一个圆周上的方法数

M

几何图形的对称

- N称:设Ω是一个几何图形, Ω到它自身的一个 (几何)运动(motion)或全等(congruence) 称为 Ω的一个对称。
- 考虑的几何图形是由角点(顶点)、边、及三维 情形下的面(或侧面)所构成_______
 - ✓ 如正方形、四面体、立方体等

围绕正方形中心90°角旋转

$$\rho_4^1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

几何图形的对称

- N 对称:设Ω是一个几何图形, Ω 到它自身的一个 (几何)运动(motion)或全等(congruence) 称为 Ω的一个对称。
- 考虑的几何图形是由角点(顶点)、边、及三维 情形下的面(或侧面)所构成
 - ✓ 如正方形、四面体、立方体等
- 每个对称可以看作是顶点、边以及三维情形下的面上的一个置换。
 - ✓ 两个对称的合成仍得一个对称
 - ✓ 一个对称的逆也是一个对称
 - ✓ 使所有对象固定不动的运动也是一个对称,即恒等对称

几何图形的对称

- 对称:设Ω是一个几何图形,Ω到它自身的一个 (几何)运动或全等 称为Ω的一个对称。
- 考虑的几何图形是由角点(顶点)、边、及三维 情形下的面(或侧面)所构成
 - ✓ 如正方形、四面体、立方体等
- 对称构成置换群,称为Ω的对称群
 - \checkmark 顶点对称群: Ω 的角点上的置换群 $G_{\mathbb{C}}$
 - \checkmark 边对称群: Ω 的边上的置换群 G_E
 - \checkmark 面对称群: Ω 是三维情形下的面上的置换群 G_F

例:考虑如右图所示正方形 Ω :

角点: 1, 2, 3, 4

边: a, b, c, d

$$\rho_4^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \longrightarrow_{\boldsymbol{b}}^{\boldsymbol{a}} \qquad \begin{array}{c} \boldsymbol{c} & \boldsymbol{4} \\ \boldsymbol{b} & \boldsymbol{a} & \boldsymbol{a} \end{array}$$

例:考虑如右图所示正方形 Ω :

角点: 1, 2, 3, 4

边: a, b, c, d

 Ω 的对称: 两种类型

(2) 4个反射:对角点连线 (2个)、对边中点连线 (2个)

b

- 依连线进行"翻转";
- •运动是在空间进行,"翻转"正方形需要离开它所在的平面。

NA.

例:考虑如右图所示正方形 Ω :

角点: 1, 2, 3, 4

边: a, b, c, d

(2) 4个反射:对角点连线(2个)、对边中点连线(2个)

$$\tau_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

b

$$\tau_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

NA.

例:考虑如右图所示正方形 Ω :

角点: 1, 2, 3, 4

边: a, b, c, d

(2) 4个反射:对角点连线 (2个)、对边中点连线 (2个)

 \boldsymbol{a}

$$\tau_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

M

例: 考虑如右图所示正方形 Ω : 顶点1, 2, 3, 4, 边 a, b, c, d。

作用在角点上的两类对称:

(1) 4个平面对称:

$$\rho_4^0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \quad \rho_4^1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \quad \rho_4^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \quad \rho_4^3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

(2) 4个反射:

$$\tau_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \quad \tau_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \quad \tau_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \quad \tau_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

- 以上8个对称定义了顶点对称群 G_c
 - □封闭性、结合律、存在单位元和逆元

ΝA

例: 考虑如右图所示正方形 Ω : 顶点1, 2, 3, 4, 边 a, b, c, d。

作用在角点上的两类对称:

(1) 4个平面对称:

$$\rho_4^0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \quad \rho_4^1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \quad \rho_4^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \quad \rho_4^3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

(2) 4个反射:

$$\tau_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \quad \tau_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \quad \tau_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \quad \tau_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

■ $G_c = \{ \rho_4^0 = \iota, \rho_4^1, \rho_4^2, \rho_4^3, \tau_1, \tau_2, \tau_3, \tau_4 \}$ 称为Ω的顶点对称群。

Ω的顶点对称群: $G_c = \{ \rho_4^0 = \iota, \rho_4^1, \rho_4^2, \rho_4^3, \tau_1, \tau_2, \tau_3, \tau_4 \}$

可验证: $au_3=
ho_4^1\circ au_1$, $au_2=
ho_4^2\circ au_1$, $au_4=
ho_4^3\circ au_1$

因此, $G_c = \{ \rho_4^0 = \iota, \rho_4^1, \rho_4^2, \rho_4^3, \tau_1, \rho_4^2 \circ \tau_1, \rho_4 \circ \tau_1, \rho_4^3 \circ \tau_1 \}$

7

■ 正方形的顶点对称群:

$$G_c = \{ \rho_4^0 = \iota, \rho_4^1, \rho_4^2, \rho_4^3, \tau_1, \tau_2, \tau_3, \tau_4 \}$$

例:推广至任意正n角形对称群 $(n \ge 3)$

(1)
$$n$$
个旋转: $\rho_n^0 = \iota, \rho_n, \rho_n^2, ..., \rho_n^{n-1}$

(2)
$$n$$
个反射: $\tau_1, \tau_2, ..., \tau_n$

 $\frac{n}{2}$ 个关于对角点的反射

 $\frac{n}{2}$ 个关于对边中点连线的反射

• n为奇数: n个关于角点与其对边中点的连线的反射所以,关于 $\{1, 2, ..., n\}$ 的2n个置换形成的群:

$$D_n = \{ \rho_4^0 = \iota, \rho_n^1, \rho_n^2, ..., \rho_n^{n-1}, \tau_1, \tau_2, ..., \tau_n \}$$
是一个阶为 $2n$ 的二面体群的一个实例。

M

例(10阶二面体群):考虑顶点标以

1, 2, 3, 4, 5的正五角形。

■ 5个旋转:

$$\rho_5^0 = \iota = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}, \quad \rho_5^1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

$$\rho_5^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}, \quad \rho_5^3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}$$

$$\boldsymbol{\rho_5^4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$

M

例(10阶二面体群):考虑顶点标以

1, 2, 3, 4, 5的正五角形。

它的(角点)对称群 D_5 包含5个旋转和5个反射。

■ 5个反射 (5为奇数: 5个关于角点与其对边中点的连线的反射)

$$\tau_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 3 & 2 \end{pmatrix} \quad \tau_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix} \quad \tau_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix} \\
\tau_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix} \quad \tau_{5} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{pmatrix}$$

例:12阶二面体群:考虑顶点标以1,2,3, 4,5,6的正六角形。

它的(角点)对称群 D₅ 包含6个旋转和6个反射。

$$\tau_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 5 & 4 & 3 & 2 \end{pmatrix}$$

$$\tau_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 5 & 4 & 3 & 2 \end{pmatrix} \quad \tau_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 6 & 5 & 4 \end{pmatrix} \quad \tau_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6 \end{pmatrix}$$

$$\tau_3 = \binom{1\ 2\ 3\ 4\ 5\ 6}{5\ 4\ 3\ 2\ 1\ 6}$$

3个关于对边中点连线的反射

$$\tau_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 5 & 4 & 3 \end{pmatrix} \quad \tau_5 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 1 & 6 & 5 \end{pmatrix} \quad \tau_6 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$

$$\tau_6 = \binom{1\ 2\ 3\ 4\ 5\ 6}{6\ 5\ 4\ 3\ 2\ 1}$$

例: 考虑如右图所示正方形 Ω : 顶点1, 2, 3, 4, 边 a, b, c, d。

作用在边上的两类对称:

(1) 4个平面对称:

$$\rho_4^0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

$$\rho_4^1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$\rho_4^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

$$\rho_4^3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

$$\begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix}$$

$$\begin{pmatrix} a & b & c & d \\ b & c & d & a \end{pmatrix}$$

$$\begin{pmatrix} a & b & c & d \\ c & d & a & b \end{pmatrix}$$

$$\begin{pmatrix} a & b & c & d \\ d & a & b & c \end{pmatrix}$$

例: 考虑如右图所示正方形 Ω : 顶点1, 2, 3, 4, 边 a, b, c, d。

作用在边上的两类对称:

(1) 4个反射:

$$\tau_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

$$\tau_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

$$\tau_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b & c & d \\ d & c & b & a \end{pmatrix}$$

$$\begin{pmatrix} a & b & c & d \\ b & a & d & c \end{pmatrix}$$

$$\begin{pmatrix} a & b & c & d \\ a & d & c & b \end{pmatrix}$$

$$\begin{pmatrix} a & b & c & d \\ c & b & a & d \end{pmatrix}$$

NA.

例: 考虑如右图所示正方形 Ω : 顶点1, 2, 3, 4, 边 a, b, c, d。

作用在边上的两类对称:

(1) 4个平面对称:

$$\begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix} \quad \begin{pmatrix} a & b & c & d \\ b & c & d & a \end{pmatrix} \quad \begin{pmatrix} a & b & c & d \\ c & d & a & b \end{pmatrix} \quad \begin{pmatrix} a & b & c & d \\ d & a & b & c \end{pmatrix}$$

(2) 4个反射:

$$\begin{pmatrix} a & b & c & d \\ d & c & b & a \end{pmatrix} \qquad \begin{pmatrix} a & b & c & d \\ b & a & d & c \end{pmatrix} \qquad \begin{pmatrix} a & b & c & d \\ a & d & c & b \end{pmatrix} \qquad \begin{pmatrix} a & b & c & d \\ c & b & a & d \end{pmatrix}$$

以上8个置换关于合成构成了一个转换群,称为Ω的边对称群, 记为 G_E 。

小结

- ■几何图形的对称构成的置换群
- 正n角形角点对称群
 - □ n个旋转、n个反射

W

置换群与着色

例:用红、蓝两种颜色给正方形的顶点着色,有多少种着色方法?

- (1) 位置固定: 24=16种
- (2) 位置不固定: 6种(依据每种颜色的顶点个数判断)

- "不同"着色实际是 等价的
- 一个着色可由一个对称(即置换)得到与 其等价的另一个着色

Ω的顶点对称群:

$$G_c = \{ \; oldsymbol{
ho}_4^0 = \iota, \; oldsymbol{
ho}_4^1, \, oldsymbol{
ho}_4^2, \, oldsymbol{
ho}_4^3, \ au_1, \, au_2, \, au_3, \, au_4 \; \}$$

假设集合 $X=\{1, 2, ..., n\}$, 及 X 的置换群 G,

- X的一种着色 c 是对 X 的每一个元素指定一种颜色的方案
- 令 c 表示 X 的一种着色,c(i) 表示 i 的颜色 (i=1,2,...,n)

假设集合 $X=\{1, 2, ..., n\}$, 及 X 的置换群 G,

- X的一种着色 c 是对 X 的每一个元素指定一种颜色的方案
- 令 c 表示 X 的一种着色,c(i) 表示 i 的颜色 (i=1,2,...,n)

令 C 表示 X 的所有着色的集合。

要求 G 按以下方法把 C 中一种着色对应到 C 中另一种着色:

定义 f*c 是使 i_k 具有颜色 c(k) 的着色, $k \stackrel{f}{\Longrightarrow} i_k \stackrel{c}{\Longrightarrow} c(i_k) = c(k), k \in X$

即: $f \ltimes k$ 变 到 i_k , 则 k的颜色c(k) 移到 $f(k)=i_k$ 并且成为 i_k 的颜色。

假设集合 $X=\{1, 2, ..., n\}$, 及 X 的置换群 G,

- X的一种着色 c 是对 X 的每一个元素指定一种颜色的方案
- 令 c 表示 X 的一种着色,c(i) 表示 i 的颜色 (i=1,2,...,n)

令 C 表示 X 的所有着色的集合。

要求 G 按以下方法把 C 中一种着色对应到 C 中另一种着色:

定义 f*c 是使 i_k 具有颜色 c(k) 的着色, $k \stackrel{f}{\Longrightarrow} i_k \stackrel{c}{\Longrightarrow} c(i_k) = c(k), k \in X$

$$\mathbb{P} (f*c)(i_k) = c(k), (k=1, 2, ..., n)$$
 (1)

即: $f \ltimes k$ 变 到 i_k , 则 k的颜色c(k) 移到 $f(k)=i_k$ 并且成为 i_k 的颜色。

■ 若 $i_k = l$, 式 (1)可写作:

$$(f*c)(l) = c(f^{-1}(l))$$

$$f = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix} \in G, \quad c \in C, \quad (f*c)(i_k) = c(k), \quad (k = 1, 2, \dots, n)$$

■ 着色集 C 需要具备如下性质:

对于G中任意置换f 和 C 中任意着色 c, f*c仍属于 C。

即: f把 C中的每一个着色移动到C中的另一种着色(可以是相同的着色)

例如: 令 C 是相对于给定的颜色集,对集合X 的所有着色的集合。如用红色和蓝色对集合 $X=\{1,2,...,n\}$ 进行着色,则共有 2^n 种着色。

$$f = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix} \in G, \quad c \in C, \quad (f*c)(i_k) = c(k), \quad (k = 1, 2, \dots, n)$$

■ 结论: $(g \circ f) * c = g * (f * c)$

证明:对任意的 $k \in \{1, 2, ..., n\}$,

 $(g\circ f)*c(k)$ 是用 k 的颜色对 $(g\circ f)(k)$ 进行着色,

而 g*(f*c)(k) 是用 k 的颜色给f(k)进行着色,然后再用 f(k) 的颜色给 g(f(k)) 进行着色,即用 k 的颜色给g(f(k)) 进行着色。

由合成运算的定义,有 $(g\circ f)(k) = g(f(k))$,

所以, $(g \circ f) * c = g * (f * c) \circ$

100

例:用红、蓝两种颜色给右图所示的正方形 Ω 的4个顶点着色。已知:

 $G_c = \{ \rho_4^0 = 1, \rho_4^1, \rho_4^2, \rho_4^3, \tau_1, \tau_2, \tau_3, \tau_4 \}$ 是 Ω 的顶点对称群,4 c 3 C是 Ω 的角点1,2,3,4 颜色为红色或蓝色的所有着色的集合,此时, $|G_C| = 8$,|C| = 16

问题:有多少种"非等价"的着色方法数?

例如: 4个"等价"的着色:

$$G_C = \left\{ \rho_4^0 = \iota, \rho_4, \rho_4^2, \rho_4^3, \tau_1, \tau_2, \tau_3, \tau_4 \right\}$$

问题:有多少种"不等价"的着色方法数?

- 置换不会改变一个着色中各颜色的角点个数。
 - ✓ 正方形中红色的角点个数可以为: 0, 1, 2, 3, 4
- 两种着色等价的一个必要条件是它们包含相同数目的红色 角点和相同数目的蓝色角点。
 - ✓ 但一般情况下不是充分条件

B •	2 B
B 4	3 B

G_C 中的置换	作用在着色(B, B, B, B) 上的结果
$oldsymbol{ ho_4^0}=$ ı	(B, B, B, B)
$oldsymbol{ ho_4^1}$	(B, B, B, B)
$\boldsymbol{\rho_4^2}$	(B, B, B, B)
$\boldsymbol{\rho_4^3}$	(B, B, B, B)
$ au_1$	(B, B, B, B)
$ au_2$	(B, B, B, B)
$ au_3$	(B , B , B , B)
$ au_4$	(B, B, B, B)

1种着色, 出现8次

G _c 中的置换	作用在着色(R, B, B, B) 上的结果				
$oldsymbol{ ho_4^0}=$ ι	(R, B, B, B)				
$oldsymbol{ ho}_4^1$	(B, R, B, B)				
$ ho_4^2$	(B, B, R, B)				
$ ho_4^3$	(B, B, B, R)				
τ_1	(R, B, B, B)				
τ ₂	(B, B, R, B)				
τ ₃	(B, R, B, B)				
τ ₄	(B, B, B, R)				

- 4种着色,每种 出现2次
- 这4种着色是等价的

G _C 中的置换	作用在着色 (R, B, B, R) 上的结果
$ ho_4^0 = \iota$	(R, B, B, R)
$ ho_4^1$	(R, R, B, B)
$oldsymbol{ ho_4^2}$	(B, R, R, B)
$ ho_4^3$	(B, B, R, R)
τ_1	(R, R, B, B)
τ_2	(B, B, R, R)
$ au_3$	(B, R, R, B)
τ_4	(R, B, B, R)

- ✓ 4种着色,每种 出现两次
- ✓ 这4种着色是等 价的

G _C 中的置换	作用在着色(R, B, R, B)上的 结果				
$oldsymbol{ ho_4^0}=$ ι	(R, B, R, B)				
$\boldsymbol{\rho_4^1}$	(B, R, B, R)				
$oldsymbol{ ho}_4^2$	(R, B, R, B)				
$oldsymbol{ ho_4^3}$	(B, R, B, R)				
τ_1	(R, B, R, B)				
$ au_2$	(R, B, R, B)				
$ au_3$	(B, R, B, R)				
$ au_4$	(B, R, B, R)				

不等价:不存在 G_C 中的置换 使得其中一个变为另一个

$$G_C = \left\{ \rho_4^0 = \iota, \rho_4, \rho_4^2, \rho_4^3, \tau_1, \tau_2, \tau_3, \tau_4 \right\}$$

G _c 中的置换	作用在着色(B,R,R,R) 上的结果				
$oldsymbol{ ho_4^0}=$ ι	(B,R,R,R)				
$\boldsymbol{\rho_4^1}$	(R , B , R , R)				
$oldsymbol{ ho_4^2}$	(R,R,B,R)				
$ ho_4^3$	(R,R,R,B)				
τ_1	(B , R , R , R)				
τ ₂	(R , R , B)				
τ ₃	(R,B,R,R)				
τ ₄	(R , R , B)				

G _c 中的置换	作用在着色(R, R, R, R) 上的结果
$oldsymbol{ ho_4^0}$ =1	(R, R, R, R)
$\boldsymbol{\rho_4^1}$	(R, R, R, R)
$oldsymbol{ ho_4^2}$	(R, R, R, R)
$oldsymbol{ ho_4^3}$	(R, R, R, R)
$ au_1$	(R, R, R, R)
$ au_2$	(R, R, R, R)
$ au_3$	(R, R, R, R)
$ au_4$	(R, R, R, R)

✓ 1种着色,出 现8次

例:用红、蓝两种颜色给右图所示的正方形 Ω 的4个顶点着色。已知:

 $G_C = \{ \rho_4^0 = \iota, \rho_4, \rho_4^2, \rho_4^3, \tau_1, \tau_2, \tau_3, \tau_4 \}$ 是 Ω 的顶点对称群,C C是 Ω 的角点 C1, C3, C4 颜色为红色或蓝色的所有着色的集合,此时, $|C_C| = 8$ 1, |C| = 16

在 G_c 作用下,用两种颜色对 Ω 进行着色,非等价的着色方法共有6种:

红色顶点数	0	1	2		3	4	总数
非等价着色方法数	1	1	2		1	1	6
代表的着色方法数	1	4	4	2	4	1	16

等价类

NA.

着色等价关系

- 令 G 是作用在集合 $X=\{1,2,...,n\}$ 上的一个置换群, C 为 X 的一个着色集合,使得对于 G 中的任意置换 f
- 和 C 中任意着色 c, X 的着色 f*c 仍属于C。
- 定义 C 中的关系 \sim : 设 c_1 与 c_2 是 C 中的任意两种着色,
 - \checkmark 如果存在G中的一个置换 f,使得 $f*c_1 = c_2$,则称 c_1 等价于 c_2 ,记为 $c_1 \sim c_2$,反之
 - ✓如果在G中不存在置换使得它们相等,则称 c_1 与 c_2 不等价
- 关系~ 满足:

~是C上的等价关系

- ✓ 自反性: 对于任意c, $c\sim c$ 。
- ✓ 对称性: 如果 $c_1 \sim c_2$,则 $c_2 \sim c_1$ 。
- ✓ 传递性: 如果 $c_1 \sim c_2$, $c_2 \sim c_3$, 则 $c_1 \sim c_3$ 。

100

着色等价关系

- 令 G 是作用在集合 $X=\{1,2,...,n\}$ 上的一个置换群, C 为 X 的一个着色集合,使得对于 G 中的任意置换 f 和 C 中任意着色 C, X 的着色 f*c 仍属于C。
- 定义 C 中的关系 \sim : 设 c_1 与 c_2 是 C 中的任意两种着色,
 - \checkmark 如果存在G中的一个置换 f,使得 $f*c_1 = c_2$,则称 c_1 等价于 c_2 ,记为 $c_1 \sim c_2$,反之
 - ✓如果在G中不存在置换使得它们相等,则称 c_1 与 c_2 不等价
- ~是 C 上的等价关系
 - ✓ C 关于~的每个等价类是 C 的一个由等价着色构成的子集。

问题:如何计算非等价的着色数? Burnside定理、Polya计算公式

等价类:与c等价的着色集合 { $f*c \mid f \in G$ }