# Reto Modelo y Refinamiento

Juan Pablo Castañeda Serrano A01752030 Aldo Daniel Villaseñor Fierro A01637907 José Alfredo García Rodríguez A00830952 Francisco Castorena Salazar A00827756

## Contexto de la problemática y objetivos

Monitoreo de asistencias y participaciones de alumnos en un salón de clases por medio de herramientas y técnicas de Computer Vision, principalmente con face recognition y pose detection.

Esto para automatizar y tener un mejor control de asistencia, garantizar una participación activa y tener datos cuantitativos y estadísticas relevantes sobre los alumnos.

# Flujo de trabajo



## Estado del arte

Alternativas de solución



## Yolov8 (You Only Look Once)

- Es un sistema de detección de objetos en imágenes y videos.
- Este ha sido destacado por su velocidad y precisión.
- Utiliza CNN para predecir la ubicación e identificar tipos de objetos simultaneamente, la arquitectura de esta red está hecha de tal forma que permite identificar objetos en diferentes escalas.



## Yolov8 (You Only Look Once)

- Yolo fue desarrollado y entrenado utilizando Darknet, un framework escrito en C y CUDA para el desarrollo de redes neuronales.
- Originalmente Yolo se entrenó con el conjunto de datos de COCO (Common Objects in Context) que contiene una amplia variedad de imágenes etiquetadas con múltiples clases de objetos.





## face-recognition

 Esta biblioteca proporciona una interfaz sencilla para detectar rostros en imágenes, reconocer rostros y extraer características faciales. Utiliza otras bibliotecas populares como dlib y OpenCV en su implementación. Dlib usa ResNet como arquitectura.

#### **ResNet50 Model Architecture**



### VGG-16 Face

 Es un modelo de reconocimiento facial desarrollado en la Universidad de Oxford. Este modelo se basa en la arquitectura VGGNet, utilizando capas convolucionales y capas completamente conectadas para aprender representaciones discriminatorias de las imágenes.



### Google - FaceNet

 Es un modelo de reconocimiento facial desarrollado en la Universidad de Oxford. Este modelo se basa en la arquitectura VGGNet, utilizando capas convolucionales y capas completamente conectadas para aprender representaciones discriminatorias de las imágenes.



### ArcFace

 Se basa en la arquitectura de CNN y es conocido por su capacidad para generar embeddings altamente discriminativas y robustas. Este método fue introducido para mejorar la precisión y la confiabilidad del reconocimiento facial, en situaciones en las que las variaciones de iluminación, expresiones faciales y ángulos de visión son comunes.



## Facebook (Meta) - DeepFace

 Es un sistema de reconocimiento facial desarrollado por Facebook que utiliza una CNN para analizar imágenes faciales. Fue creada para mejorar la precisión del reconocimiento facial en condiciones desafiantes.



### OpenFace

 Es una biblioteca de código abierto desarrollada por Carnegie Mellon University que utiliza técnicas de aprendizaje profundo para analizar imágenes faciales y extraer características significativas de las caras. Esta librería ha sido diseñada para ser fácilmente accesible y utilizada por desarrolladores y científicos.



### Reconocimiento de Rostros

#### face-recognition

Esta biblioteca proporciona una interfaz sencilla para detectar rostros en imágenes, reconocer rostros y extraer características faciales. Utiliza otras bibliotecas populares como dlib y OpenCV en su implementación.

#### VGG16-Face

Es un modelo de reconocimiento facial desarrollado en la Universidad de Oxford. Este modelo se basa en la arquitectura VGGNet, utilizando capas convolucionales y capas completamente conectadas para aprender representaciones discriminatorias de las imágenes.

#### FaceNet

Es un modelo desarrollado para el reconocimiento facial que se destaca por su capacidad para generar representaciones precisas y compactas de las caras humanas. Fue desarrollado por investigadores de Google en 2015. FaceNet utiliza una arquitectura de red neuronal conocida como siamesa.

### Reconocimiento de Rostros

#### ArcFace

Se basa en la arquitectura de CNN y es conocido por su capacidad para generar embeddings altamente discriminativas y robustas. Este método fue introducido para mejorar la precisión y la confiabilidad del reconocimiento facial, en situaciones en las que las variaciones de iluminación, expresiones faciales y ángulos de visión son comunes.

#### DeepFace

Es un sistema de reconocimiento facial desarrollado por Facebook que utiliza una CNN para analizar imágenes faciales. Fue creada para mejorar la precisión del reconocimiento facial en condiciones desafiantes.

### OpenFace

Es una biblioteca de código abierto desarrollada por Carnegie Mellon University que utiliza técnicas de aprendizaje profundo para analizar imágenes faciales y extraer características significativas de las caras. Esta librería ha sido diseñada para ser fácilmente accesible y utilizada por desarrolladores y científicos.

### Reconocimiento de Posturas

 El reconocimiento de posturas en nuestro caso será hecho con MediaPipe.
Esta utiliza modelos de redes neuronales pre-entrenadas para comprender y predecir la posición de las articulaciones del cuerpo humano.



## Almacenamiento y Acceso a Datos



### Interfaz Web



## Transfer Learning YOLOv8 nano

Entrenamiento de la Arquitectura de YOLO

Box\_loss=0.9382

Reentrenamiento de YOLO 10 épocas

Reentrenamiento de YOLO 20 épocas