Pre-procesamiento de texto Curso de procesamiento de lenguaje natural

Julio Waissman

Maestría en Tecnologías de la Información Universidad Nacional de Misiones

9 de marzo de 2018

Alguna definiciones

- Un documento es una cadena de caracteres
 - Un tweet
 - Un libro
 - Un correo electrónico

- Un corpus es una colección de documentos (por lo general congruentes entre si)
- Los documentos pueden dividirse en párrafos, frases y/o palabras
 - Pueden estas anotados
 - Pueden estar asignados a una categoría
- ullet Un vocabulario es un conjunto cerrado de palabras de dimensión V

Procesamiento básico de la información

Normalmente la información en forma de texto en lenguaje natural viene en formatos complicados y trae muchos artefactos que influyen de manera muy importante en el resultado de una tarea de PLN.

Se requiere manejo de información en formatos json o xml, así como el manejo de bases de datos.

El acondicionamiento del texto es fundamental (capitalización, minúsculas, corrección, eliminación de argot . . .

Expresiones regulares

- Las expresiones regulares (regex) juegan un rol sorprendentemente importante en PLN
- ② El primer paso en una tarea de PLN seguido implica el uso de regex sofisticadas
- 3 Son difíciles de corregir
- Si quieres practicar, puedes consultar este tutorial de regex en python

Algunas expresiones regulares

Diyunciones

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

Rangos

Pattern	Matches	
[A-Z]	An upper case letter	Drenched Blossoms
[a-z]	A lower case letter	my beans were impatient
[0-9]	A single digit	Chapter 1: Down the Rabbit Hole

Algunas expresiones regulares

Negaciones

Pattern	Matches	
[^A-Z]	Not an upper case letter	Oyfn pripetchik
[^Ss]	Neither 'S' nor 's'	$\underline{\mathtt{I}}$ have no exquisite reason"
[^e^]	Neither e nor ^	Look here
a^b	The pattern a carat b	Look up <u>a^b</u> now

disyunción con

Pattern	Matches
groundhog woodchuck	
yours mine	yours mine
a b c	= [abc]
[gG]roundhog [Ww]oodchuck	

Algunas expresiones regulares

* + ? .

Pattern	Matches	
colou?r	Optional previous char	<u>color</u> <u>colour</u>
oo*h!	0 or more of previous char	oh! ooh! oooh!
o+h!	1 or more of previous char	oh! ooh! oooh!
baa+		baa baaa baaaa
beg.n		begin begun begun beg3n

Inicio y fin de cadena

Pattern	Matches
^[A-Z]	Palo Alto
^[^A-Za-z]	<pre>1 "Hello"</pre>
\.\$	The end.
.\$	The end? The end!

Vamos a la libreta

Veamos unos ejemplo no tan triviales

¿Que es una palabra?

• Una secuencia de caracteres con significado

• En español, la puntuación y los caracteres sirven para separar palabras.

• ¿Y los neologismos, los *hashtags*, las direcciones url, las fechas,...?

¿La puntuación debe de integrarse en la palabra?

Token y tokenización

Token

Unidad útil de caracteres para el procesamiento semántico. Puede ser palabras, frases, simbolos, etc.

Tokenización

Proceso de separar un documento en tokens.

- El método más popular en inglés es el Treebank tokenization
- ② En español el proceso de tokenización es relativamente simple, si no se trata con documentos especializados
- Sen idiomas como aleman, turco, japones o chino, la tokenización es un problema difícil

Veamos unos ejemplos

Regresamos a la libreta

Normalización de tokens

- Algunos métodos basados en reglas para normalizar tokens con mismo significado
 - Minúsculas en todas las palabras
 - Manejo de acrónimos (EUA, E.U.A., US, U.S., USA, U.S.A.)
 - Requiere de desarrollar muchas reglas particulares

- Encontrar el mismo token para diferentes formas con el mismo significado semántico (niños, niño, niña, niñas, ...)
 - Basado en análisis morfológico (lematización)
 - Basado en reglas heurísticas (stemming)

Lematización

 Se refiere al uso de un análisis lingüístico formal basado en un vocabulario cerrado y en reglas morfológicas.

• Difícil de hacer, requiere de mucho esfuerzo.

 Convierte el token a la forma base de la palabra, tal y como esté definido en un diccionario de referencia (lexema).

Existen pocos lematizadores en español (freeling, spacy).

Stemming

- Proceso de remover y remplazar sufijos de una palabra en varios pasos a fin de obtener la raiz de la palabra (llamada tallo, o stem)
- Método heurístico para ir recortando las palabras
- Típicamente falla en formas irregulares
- El método más típico para inglés es el Porter's stemming algorithm
- El método más típico en español es el Snowball spanish stemming algorithm