Вопрос 5

Термодинамическая система и её параметры. Постулаты термодинамики. Внутренняя энергия. Распределение энергии по степеням свободы. Количество теплоты. Работа в термодинамике. Первое начало термодинамики.

Термодинамика — раздел физики, в котором изучаются свойства тел без учета молекулярного строения тел.

Термодинамическая система — одно или несколько макроскопических тел.

Макроскопическое тело — тело, состоящее из довольно большого числа атомов или молекул. Макроскопическое тело обладает макроскопическими (термодинамическими) параметрами.

Макроскопические параметры — величины, характеризующие состояние ТС без учета молекулярного строения тел.

Основные макропараметры — объем, давление, температура.

Состояние системы тел может быть неравновесным (т. е. не во всех точках системы макропараметры равны) и равновесным (т. е. во всех точках макропараметры равны). Если система находится в неравновесном состоянии, то при изоляции системы наступит равновесное состояние. Процесс перехода из одного равновесного состояния в другое равновесное состояние есть последовательность неравновесных состояний, а, следовательно, является неравновесным. Если же переход очень медленный, то он состоит из последовательности равновесных состояний, то есть является равновесным (квазистатическим).

Классификация ТДС:

- 1. Открытая может обмениваться с внешней средой энергией и веществом
- 2. Закрытая
 - 1) Адиабатная может обмениваться с внешней средой только энергией за счет совершения работы
 - 2) Замкнутая не может обмениваться с внешней средой веществом
- 3. Изолированная не может обмениваться с внешней средой энергией и веществом.

Постулаты термодинамики:

- 1. Любая ТДС, представленная сама себе с течением времени, обязательно придет в состояние ТД равновесия.
- 2. Любая ТДС, лишенная адиабатических перегородок и находящаяся в ТД равновесии, имеет общую для всей системы характеристику состояния температуру.
- 3. Все внутренние параметры любой ТДС, находящейся в ТД равновесии, есть функции от внешних параметров и температуры.

Полная энергия системы состоит из полных энергий ее элементов, внутренняя энергия — сумма кинетической энергии хаотичного движения микрочастиц и потенциальной энергии их взаимодействия. Микрочастицы: молекулы, атомы, ионы. Потенциальная энергия взаимодействия кварков, атомов, ядер, электронов, протонов, нейтронов.

Внутренняя энергия зависит только от начального и конечного состояния, не зависит от процесса перехода из одного состояния в другое. Из этого следует, что изменение внутренней энергии при циклическом процессе равно нулю.

Вычислить внутреннюю энергию нет практической возможности из-за огромного числа взаимодействующих и непрерывного изменения. Простое решение такая задача имеет для случая ИГ.

Идеальный газ — физическая модель, включающая в себя:

- 1) молекулы газа материальные точки
- 2) молекулы хаотично и непрерывно двигаются, причем между столкновениями скорости не меняются
- 3) столкновения носят упругий характер без потерь механической энергии
- 4) силы взаимодействия между молекулами проявляются лишь при столкновении

Движение молекул такого газа подчиняется законам Ньютона.

Внутренняя энергия ИГ — сумма кинетической энергии хаотичных движений микрочастиц.

Теорема о равномерном распределении энергии по степеням свободы — на каждую степень свободы молекулы в среднем приходится кинетическая энергия, равная $\frac{KT}{2}$.

Число степеней свободы тела (i) — число независимых координат, с помощью которых можно однозначно задать положение тела. Тогда $\bar{E}_k = \frac{i}{2}KT$.

Газ		Средняя кинетическая энергия молекулы	Полная внутренняя энергия газа	
Одноатомный	Может перемещаться в пространстве по трем направлениям, следовательно три координаты. Вращение не учитывается, так как это материальная точка.	$\bar{W}_k = \frac{3}{2}KT$	$U = \frac{3}{2}NKT$	
Двухатомный	Может перемещаться в пространстве по трем координатам. Может вращаться в двух направлениях. Вращения вдоль оси нет.	$\bar{W}_k = \frac{5}{2} KT$	$U = \frac{5}{2}N K T$	
Трехатомный	Может перемещаться в пространстве по трем координатам. Может вращаться в трех направлениях.	$\overline{W}_k = 3 K T$	U=3KT	

Преобразование формулы энергии $U=rac{i}{2}NKT\cdotrac{N_A}{N_A}=rac{i}{2}v\ RT=rac{i}{2}PV$.

Тогда изменение внутренней энергии газа $_{\Delta}U=\frac{i}{2}v\,R_{\Delta}T$

Способы изменения внутренней энергии

- 1. Совершение механической работы
- 2. Теплопередача (излучение, конвенция, теплопроводность)

Работа газа

Процесс		
Изохорный	$A_{ extit{внеш.cun}}=\vec{F}\cdot \Delta\vec{r}=0\;;\;\;A_{ extit{casa}}^{'}=\vec{F}_{ extit{ynp}}\cdot \Delta\vec{r}=0$ Работа в изохорном процессе равна нулю.	F,
Изобарный	$A_{_{\it внеш. cun}}=\vec{F}\cdot_{\Delta}\vec{r}= F \cdot _{\Delta}r \cdot\cos2\pi=-F_{\Delta}r\cdot\frac{s}{s}=-p_{\Delta}V$ $A_{_{\it easa}}^{'}=\vec{F}_{_{\it ynp}}\cdot_{\Delta}\vec{r}= F \cdot _{\Delta}r \cdot\cos0=F_{\Delta}r=p_{\Delta}V=v$ $R_{\Delta}T$ Работа в изобарном процессе равна произведению давления на изменение объема. Модуль работы равен площади подграфика давления от объема.	\vec{F}_{y} \vec{F}
Изотермический	Разобьем работу на малые участки, где давление постоянно. Тогда малая работа на одном участке равна $_{\Delta}A'=p_{\Delta}V=vRT\frac{\Delta V}{V}$. $A'=\sum_{i}_{\Delta}A_{i}_{\Delta V\to 0}\int\limits_{V_{1}}^{V_{2}}vRT\frac{dV}{V}=vRT\cdot\ln\frac{V_{2}}{V_{1}}$	

Величина работы зависит не только от начального и конечного состояния, но и от процесса.

Количество теплоты — количественная мера изменения энергии при теплопередаче.

Теплопередача — процесс изменения внутренней энергии тел.

Горячее тело передает прикасающемуся к нему холодному телу часть своей внутренней энергии, часть энергии хаотического движения частиц горячего тела переходит в энергию хаотического движения холодного тела. В результате температуры тел выравниваются.

	Уравнение теплового баланса - количество теплоты, отданное телами, равно количеству теплоты,		
$Q_{\text{\tiny Harp}} = c m \Delta t$	полученное телами. $\sum Q_i = 0$		
$Q_{nnas} = \lambda m$	Удельная теплоемкость — скалярная физическая величина, численно равная количеству теплоты,		
$Q_{con} = q m$	которое нужно сообщить единице массы вещества, чтобы изменить его температуру на 1 градус.		
$Q_{nap} = L m$	Молярная теплоемкость — скалярная физическая величина, численно равная количеству теплоты,		
Rap 2	которое нужно сообщить 1 молю вещества, чтобы изменить его температуру на 1 градус.		

Первый закон термодинамики

Количество теплоты, переданное системе при переходе из одного состояния в другое, равно сумме работы внешних сил и изменения внутренней энергии.

$$Q = \Delta U + A'_{casa} = \Delta U - A_{\text{внеш. сил}}$$

Применение первого закона термодинамики

T=const	$Q = \Delta U + A'; \Delta U = \frac{i}{2} \nu R \Delta T = 0 \Rightarrow Q = A'$
P=const	$Q_p = \Delta U + A'; \Delta U = \frac{i}{2} v R \Delta T; A' = v R \Delta \Rightarrow Q_p = \frac{i+2}{2} v R \Delta T = \frac{i+2}{2} p \Delta V$
V=const	$Q_V = \Delta U + A'; \Delta U = \frac{i}{2} v R \Delta T; A' = 0 \Rightarrow Q_V = \frac{i}{2} v R \Delta T$
Q=0 Адиабатный	$Q = \Delta U + A' \Rightarrow \Delta U = -A'$