

Figura 7.11

Descomposición de la transformación lineal

$$T = \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

en una sucesión de cortes expansiones y reflexiones:

- a) Se comienza con ese vector.
- b) Vector obtenido por el corte a lo largo del eje x con c = 2.
- c) Vector obtenido al expandir a lo largo del eje ycon c=2.
- d) Vector obtenido al reflejar respecto al eje x.
- e) Vector obtenido por el corte a lo largo del eje y con c = 3.

RESUMEN 7.3

• Matriz de transformación

Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ una transformación lineal. Entonces existe una matriz única de $m \times n$, A_T , tal que

$$T\mathbf{x} = A_T\mathbf{x}$$
 para toda $\mathbf{x} \in \mathbb{R}^n$

La matriz A_T se llama matriz de transformación de T.

• Sea A_T la matriz de transformación correspondiente a una transformación lineal T. Entonces

i) im T = im
$$A = C_{A_T}$$

ii)
$$\rho(T) = \rho(A_T)$$

iii) nu
$$T = N_A$$

iv)
$$\nu(T) = \nu(A_T)$$

· Representación matricial de una transformación lineal

Sea V un espacio vectorial real de dimensión n, W un espacio vectorial real de dimensión m y $T: V \to W$ una transformación lineal. Sean $B_1 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ una base para V y B_2 $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ una base para W. Entonces existe una matriz única A_T de $m \times n$, tal que

$$(T\mathbf{x})_{B_1} = A_T(\mathbf{x})_{B_1}$$

 A_T se denomina representación matricial de T respecto a las bases B_1 y B_2 .

• Sean Vy W dos espacios vectoriales de dimensión finita con dim V = n. Sea $T: V \to W$ una transformación lineal y sea A_T una representación matricial de T. Entonces

i)
$$\rho(T) = \rho(A_T)$$

ii)
$$\nu(T) = \nu(A_T)$$

iii)
$$\nu(T) + \rho(T) = n$$