Le misure in psicologia sono significanti? Il caso del test della Torre di Londra.

Ottavia M. Epifania, Luca Stefanutti, Pasquale Anselmi, Andrea Brancaccio, Debora de Chiusole

Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia Applicata, Università di Padova

Convegno AIP-Sezione Sperimentale 2023 Simposio: Crisi di replicabilità o crisi di validità? L'importanza delle misure

19 Settembre 2023

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

In the measurement of lengths, the ratio between the measures of two fixed lengths a and b is constant and independent of the measurement unit:

$$\frac{\varphi(a)}{\varphi(b)} = \frac{\varphi'(a)}{\varphi'(b)},$$

where φ and φ' are two different scales of measurement of length.

Meaningful comparisons

The comparison between a and b is meaningful if it is invariant under all the unit transformations.

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

Goal configuration

- ...

Problem difficulty influenced by:

- Number of minimum moves to reach the goal configuration
- Number of alternative paths for reaching the goal configuration
- Hierarchy of the starting/goal configuration

The Tower of London Test (ToL Test) Shallice (1982)

- 12 problems
- Same starting configuration

Problem	Minimum moves	Alternative paths
Example	2	1
1	2	1
2	2	1
3	3	2
4	3	1
5	4	2
6	4	1
7	4	1
8	4	1
9	5	2
10	5	1
11	5	1
12	5	2

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

Scoring	Attempts	Response times	Item score	Total score
Shallice 1	✓	✓	0-1	0-12
Shallice 2	×	\checkmark	0-3	0-36
Anderson et al.	\checkmark	\checkmark	0-9	0-108
Kirkorian et al.	✓	×	0-3	0-36

		ſ			
Scoring	Attempts	Response times	Item score	Total score	
Shallice 1	√	$\overline{}$	0-1	0-12	
Shallice 2	×	\checkmark	0-3	0-36	
Anderson et al.	\checkmark	\checkmark	0-9	0-108	
Kirkorian et al.	\checkmark	×	0-3	0-36	
Shallice	$2-\mathrm{SH}2$		Anderso	$\overline{\text{n et al.} - A}$	Ν

For each of the 12 items:

Assign	if time is
3	< 15 s
2	< 30 s
1	$< 60 \mathrm{\ s}$
0	$\geq 60 \text{ s}$

For each of the 12 items:

Assign	if time is
9	$< 6 \mathrm{\ s}$
8	6 - 10 s
7	11 - 20 s
6	21 - 40 s
5	41 - 60 s
0	$> 60 \mathrm{\ s}$
	9 8 7 6

Subtract the number of unsuccessful attempts

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

Raw data

Response times

Is it really bad...?

Respondent $i, j \in \{1, \dots N\}$

• AN Comparison (Δ_{AN}): The standardized AN score of each subject i is compared against the standardized AN score of every other subject j

$$\Delta_{\mathrm{AN}_{ij}} = z_{\mathrm{AN}_i} - z_{\mathrm{AN}_j}$$

• SH2 Comparison (Δ_{SH2}): The standardized SH2 score of each subject i is compared against the standardized SH2 score of every other subject j

$$\Delta_{\mathrm{SH2}_{ij}} = z_{\mathrm{SH2}_i} - z_{\mathrm{SH2}_j}$$

 $\Delta_{\rm AN} > 2 \& \Delta_{\rm SH2} \approx 0$

	$z_{\rm AN}$	z_{SH2}	Accuracy	Time (sd)
sbj1	-1.55	0.43	0.75	24.10 (15.60)
sbj2	0.55	0.20	0.75	10.51 (3.36)

	Δ_{AN}	Δ_{SH2}
sbj2 - sbj1	2.10	-0.23

$\Delta_{\rm AN} \approx 0 \& \Delta_{\rm SH2} > 2$

	$z_{\rm AN}$	$z_{\rm SH2}$	Accuracy	Time (sd)
sbj3	-0.15	1.55	0.75	11.14 (4.96)
$_{ m sbj4}$	0.20	-0.70	0.58	10.72 (8.60)

	Δ_{AN}	Δ_{SH2}
sbj3 - sbj4	-0.15	2.25

- 1 Meaningfulness
- 2 The case in point
 - Tower of London
 - Scoring systems
- 3 Real data application
- 4 Final remarks

Highlights

- Different scoring systems → The focus is shifted: Fast and furious or slow and steady?
- Different scoring systems might favor a cognitive theory over a contrasting one (raising also replicability issues)

But

What if the performance of the respondents could suggest the most appropriate scoring system? Currently underway

Meaningfulness ⊢Final remarks

Live long and prosper