Estadística Inferencial

Capítulo X - Ejercicio 09

Aaric Llerena Medina

Se ha determinado que el tiempo en horas de operación de un sistema entre una falla y la siguiente tiene distribución exponencial con parámetro β . Para probar la hipótesis nula H_0 : $\beta = 1/10$ cada cierto tiempo se hace una medición del tiempo X entre dos fallas consecutivas y se decide que si X < 9 se rechazará H_0 , de otro modo se aceptará H_0 .

- a) Calcule el nivel de significación de la prueba.
- b) Determine la probabilidad de error tipo II cuando $\beta = 1/8$.

Solución:

Se debe recordar la distribución del tiempo entre fallas, que es exponencial con parámetro β . La función de densidad (CDF) de una distribución exponencial con parámetro β es:

$$f(x) = \beta e^{-\beta x}, \quad x \ge 0$$

a) El nivel de significación α es la probabilidad de rechazar H_0 cuando H_0 es verdadera. Dado que H_0 , se tiene que $\beta = \frac{1}{10}$. Así, la prueba rechaza H_0 si X < 9, por lo que:

$$\alpha = P\left(X < 9 \mid \beta = \frac{1}{10}\right)$$

Ya que X sigue una distribución exponencial con $\beta = \frac{1}{10}$, la CDF es:

$$f(x) = \frac{1}{10}e^{-\frac{1}{10}x}$$

La probabilidad de que X < 9 es:

$$P(X < 9) = \int_0^9 \frac{1}{10} e^{-\frac{1}{10}x} dx$$

Resolviendo la integral se obtiene:

$$P(X < 9) = \left[-e^{-\frac{1}{10}x} \right]_{0}^{9} = -e^{-\frac{9}{10}} + e^{0} = 1 - e^{-\frac{9}{10}}$$

Por lo tanto, el nivel de significación de la prueba (α) es $1-e^{-\frac{9}{10}}\approx 0.5934$.

b) La probabilidad de error tipo II es la probabilidad de aceptar la hipótesis nula cuando es falsa. En este caso, la hipótesis nula es falsa cuando $\beta=\frac{1}{8}.$

La probabilidad de aceptar H_0 es la probabilidad de que $X \ge 0$ cuando $\beta = \frac{1}{8}$:

$$P(X \ge 9 \mid \beta = \frac{1}{8}) = \int_{9}^{\infty} \frac{1}{8} e^{-\frac{1}{8}x} dx$$

Resolviendo la integral:

$$P(X \ge 9) = \left[-e^{-\frac{1}{8}x} \right]_{9}^{\infty} = 0 + e^{-\frac{9}{8}} = e^{-\frac{9}{8}}$$

Por lo tanto, la probabilidad de error tipo II es $e^{-\frac{9}{8}} \approx 0.3247$.

