La simulation de Monte Carlo des processus de diffusion

Les méthodes stochastiques dans les sciences de la gestion 6-640-93

Geneviève Gauthier

Dernière mise à jour : 23 juin 2003

La simulation de Monte Carlo

Soit X, une variable aléatoire construite sur l'espace porbabilisé (Ω, \mathcal{F}, P) . Nous pouvons déterminer la loi de X en considérant sa fonction de répartition

$$F_X(x) = P[X \le x], \ \forall x \in \mathbb{R}.$$
 (1)

Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction. Nous voulons estimer l'espérance de g(X):

$$E\left[g\left(X\right)\right].\tag{2}$$

Exemple: S_T représente le prix d'un actif risqué au temps T. Nous voulons déterminer le prix d'une option d'achat dont le prix d'exercice est K et la date d'échéance est T. Nous savons que ce prix est

$$E_Q\left[\max\left(S_T-K,\mathbf{0}\right)\right]$$

où Q est la mesure neutre au risque.

Dans ce cas, notre variable aléatoire est S_T et la fonction est g(x) = $\max(x-K,0)$.

Plan de la présentation

- La simulation de Monte Carlo
- La simulation du mouvement brownien
- Simulation Excel et Simulation Matlab
- La simulation d'un mouvement brownien multidimensionnel
- La simulation d'une équation différentielle stochastique

La simulation de Monte Carlo (suite)

À l'aide d'un ordinateur, nous allons réaliser une suite de tirages de la variable aléatoire X selon la loi F_X en utilisant le générateur de nombres pseudo-aléatoires. Si X_i représente le résultat du i ième tirage et que l'on effectue n tirages, alors

$$g(X_1), g(X_2), ..., g(X_n)$$
 (3)

représente un échantillon aléatoire simple.

Supposons que

$$Var\left[q\left(X\right)\right]<\infty.$$

Dans ce cas, la loi forte des grands nombres nous permet de conclure que

$$\frac{1}{n}\sum_{i=1}^{n}g\left(X_{i}\right)\to E\left[g\left(X\right)\right] \text{ presque sûrement lorsque }n\to\infty.$$

La simulation de Monte Carlo (suite)

De plus, le théorème central limite stipule que la loi de

$$(n)^{\frac{1}{2}} \frac{\frac{1}{n} \sum_{i=1}^{n} g(X_i) - E[g(X)]}{Var[g(X)]}$$
(4)

converge vers une distribution normale centrée et réduite lorsque $n \to \infty$. Nous sommes donc en mesure de calculer un intervalle de confiance pour $E\left[g\left(X\right)\right]$:

$$\left[\frac{1}{n}\sum_{i=1}^{n}g\left(X_{i}\right)-z_{\frac{\alpha}{2}}\left(\frac{Var\left[g\left(X\right)\right]}{n}\right)^{\frac{1}{2}};\frac{1}{n}\sum_{i=1}^{n}g\left(X_{i}\right)+z_{\frac{\alpha}{2}}\left(\frac{Var\left[g\left(X\right)\right]}{n}\right)^{\frac{1}{2}}\right]$$

pourvu que le nombre de trajectoires simulées soit suffisamment grand.

Lorsque $Var\left[g\left(X\right)\right]$ n'est pas connue, ce qui est généralement le cas, nous l'estimons par la variance échantillonnale.

La simulation du mouvement brownien (suite)

La discrétisation du temps. Pour simuler le mouvement brownien qui est un processus à temps continu, il faut d'abord discrétiser le temps. Soit Δt la longueur d'une période de temps. Nous simulerons le mouvement brownien au temps $0, \Delta t, 2\Delta t, 3\Delta t, \dots$

La propriété (MB2) de la définition du mouvement brownien implique que

$$\left\{W_{k\Delta t} - W_{(k-1)\Delta t} : k \in \mathbb{N}\right\}$$

est une suite de variables aléatoires indépendantes et identiquement distribuées, toutes de loi N (0, Δt).

La simulation du mouvement brownien

Définition. Un mouvement brownien standard $\{W_t : t \geq 0\}$ est un processus stochastique adapté construit sur un espace probabilisé filtré $(\Omega, \mathcal{F}, \mathbb{F}, P)$ tel que

(MB1)
$$\forall \omega \in \Omega, \ W_0(\omega) = 0,$$

$$(MB2) \quad \begin{array}{c} \forall 0 \leq t_0 < t_1 < ... < t_k, \text{ les variables aléatoires} \\ W_{t_1} - W_{t_0}, \ W_{t_2} - W_{t_1}, \ ..., \ W_{t_k} - W_{t_{k-1}} \text{ sont indépendantes,} \end{array}$$

(
$$MB3$$
) $\forall s,t \geq 0$ tels que $s < t$, la variable aléatoire $W_t - W_s$ est de distribution $N\left(0,t-s\right)$.

(MB4)
$$\forall \omega \in \Omega$$
, la trajectoire $t \to W_t(\omega)$ est continue.

En général, la filtration utilisée est $\mathbb{F}=\{\mathcal{F}_t:t\geq 0\}$ où $\mathcal{F}_t=\sigma\{W_s:0\leq s\leq t\}$ est la plus petite tribu pour laquelle les variables aléatoires $\{W_s:0\leq s\leq t\}$ sont mesurables.

La simulation du mouvement brownien (suite)

Pour simuler une trajectoire du mouvement brownien jusqu'à l'instant $m\Delta t$, il suffit de générer m variables aléatoires indépendantes

$$\{Z_k: k \in \{1, 2, ..., m\}\}$$

de loi normale centrée et réduite. Puisque

$$W_0 \equiv 0 \text{ et } W_{k\Delta t} \stackrel{\mathcal{L}}{=} W_{(k-1)\Delta t} + (\Delta t)^{\frac{1}{2}} Z_k, \ k \in \{1, 2, ..., m\}.$$
 (5)

Nous simulerons

$$\widehat{W}_0 \equiv 0 \text{ et } \widehat{W}_{k\Delta t} \equiv \widehat{W}_{(k-1)\Delta t} + (\Delta t)^{\frac{1}{2}} Z_k, \ k \in \{1, 2, ..., m\}.$$
 (6)

Nous pouvons montrer par induction que

$$\widehat{W}_{k\Delta t} = (\Delta t)^{\frac{1}{2}} \sum_{i=1}^{k} Z_k, \ k \in \{1, 2, ..., m\}.$$
 (7)

Évidemment, plus la longueur de l'intervalle de temps Δt est petite, meilleure sera notre approximation.

La précision de notre approximation discrète

Cette façon de simuler le mouvement brownien est appelée la *méthode* d'Euler aléatoire.

On peut mesurer la qualité de notre approximation de la façon suivante :

- ullet pour mettre l'emphase sur le fait que notre approximation dépend de Δt , nous la noterons $\widehat{W}^{(\Delta t)}$
- pour définir notre approximation sur tout l'intervalle de temps, nous poserons

$$\widehat{W}_{t}^{(\Delta t)} \equiv \widehat{W}_{k\Delta t} \text{ pour tout } t \in [k\Delta t; (k+1)\Delta t).$$
 (8)

•

$$E_P \left[\sup_{0 \le t \le T} \left| \widehat{W}_t^{(\Delta t)} - W_t \right|^2 \right] \le C_T \Delta t \tag{9}$$

 \mathcal{C}_T étant une constante dépendant uniquement de T.

Lamberton et Lapeyre, pages 149-150.

La simulation du mouvement brownien (suite)

```
%Programme matlab brownien2.m
%Simulation de plusieurs trajectoires du mouvement brownien
clear all:
          %le nombre de trajectoires simulées
m = 10000
             %le nombre de périodes de temps
Delta_t = 0.0001
                      %la longueur d'une période de temps
Z = normrnd(0,1,m,n);
                            %vecteur colonne composé de m v.a. iid N(0,1)
W = zeros(m+1,n);
                       %initialisation: trajectoires du mouvement brownien
temps = zeros(m+1,1);
for i = 1 : m
W(i+1,:) = W(i,:) + sqrt(Delta_t)*Z(i,:);
temps(i+1,1) = temps(i,1) + Delta_t;
end
plot(temps,W);
```

EXÉCUTER brownien.xls

EXÉCUTER brownien2.m

Simulation d'un mouvement brownien multidimensionnel

Soit $W = \left(W^{(1)},...,W^{(d)}\right)$ un mouvement brownien de dimension d dont les composantes sont indépendantes entre elles. Soit Γ une matrice de corrélations de dimension $d \times d$. Nous voulons construire un mouvement brownien $B = \left(B^{(1)},...,B^{(d)}\right)$ de dimension d tel que

$$Corr\left(B_t^{(i)}, B_t^{(j)}\right) = \rho_{ij}, \ \forall t$$

où ρ_{ij} est l'élément de Γ situé à l'intersection de la i ième ligne et de la j ième colonne.

Simulation d'un mouvement brownien multidimensionnel

La décomposition de Choleski. Lorsque la matrice Γ est définie positive, alors il existe une matrice triangulaire supérieure C telle que $C'C = \Gamma$.

La matrice de variances-covariances de vecteurs aléatoires. Si $X_{d\times 1}$ est un vecteur aléatoire dont la matrice de variances-covariances est Σ_X et que $A_{d\times d}$ est une matrice de constantes alors, la matrice Σ_Y de variances-covariances du vecteur aléatoire $Y_{d\times 1}=A_{d\times d}X_{d\times 1}$ est

$$\Sigma_{Y} = A \Sigma_{X} A^{\prime}. \tag{10}$$

Posons $B_{d\times 1}=C_{d\times d}'W_{d\times 1}$. Comme la matrice de corrélations de $W_{d\times 1}$ est la matrice identité, $\Gamma_W=I_{d\times d}$, alors la matrice de corrélations de $B_{d\times 1}$ satisfait

$$\Gamma_B = C'_{d \times d} I_{d \times d} C_{d \times d} = C'_{d \times d} C_{d \times d} = \Gamma_W. \tag{11}$$

La matrice de variances-covariances de B_t est $\Sigma_B = t\Gamma_B$.

Simulation d'un mouvement brownien multidimensionnel

```
clear all;
```

```
n=10000\, %le nombre de trajectoires simulées m=10000\, %le nombre de périodes de temps
```

Delta_t = 0.0001 %la longueur d'une période de temps

d = 3; %dimension du mouvement brownien multidimensionnel

%Matrice de corrélation des mouvements browniens

Gamma = [1 0.2 0.8; 0.2 1 0.5; 0.8 0.5 1]; choleski_G = chol(Gamma);

%Création du vecteur temps

temps = zeros(m+1,1); %initialisation

for i = 1 : m

temps(i+1,1) = temps(i,1) + Delta_t;

end

%Création d'une matrice qui recueillera les résultats de chaque des trajectoires resultats = zeros(n,?)

%Simulation de chaque trajectoire du mouvement brownien multidimensionnel

for j = 1 : n

%Matrice composée de mxd variables aléatoires iid N(0,1)

%Chaque colonne contient les N(0,1) servant à construire une des composantes du brownien

Z = normrnd(0,1,m,d);

%CRÉATION D'UN MOUVEMENT BROWNIEN AVEC COMPOSANTES INDÉPENDANTES

%Chacune des colonnes de cette matrice contiendra une composante du mouvement brownien

W = zeros(m+1,d); %initialisation

for i = 1 : m

W(i+1,:) = W(i,:) + sqrt(Delta_t)*Z(i,:);

end

Simulation d'un mouvement brownien multidimensionnel RÉSULTATS brownien3.m

Nous avons calculé les matrices de variances-covariances et de corrélations échantillonnales de $W_{m\Delta t}$ et de $B_{m\Delta t}$ où la longueur d'un intervalle de temps était $\Delta t=0,001$ et le nombre de périodes de temps était m=1000. Rappelons que le nombre de trajectoires simulées est de n=10000. Nous avons obtenu

$$\widehat{\Sigma}_W = \left(egin{array}{cccc} 1.0140 & -0.0004 & -0.0010 \ -0.0004 & 0.9758 & 0.0047 \ -0.0010 & 0.0047 & 0.9903 \end{array}
ight)$$

et

$$\widehat{\Sigma}_B = \left(egin{array}{cccc} 1.0140 & 0.2024 & 0.8106 \ 0.2024 & 0.9758 & 0.4959 \ 0.8106 & 0.4959 & 0.9903 \ \end{array}
ight)$$

Simulation d'un mouvement brownien multidimensionnel RÉSULTATS brownien3.m

Nous avons simulé 10 000 trajectoires d'un mouvement brownien de dimension 3 dont la matrice de corrélations entre ses composantes est

$$\Gamma_W = \left(egin{array}{ccc} 1 & 0.2 & 0.8 \ 0.2 & 1 & 0.5 \ 0.8 & 0.5 & 1 \end{array}
ight).$$

La décomposition de Cholevski de cette matrice est

$$C_{\mathsf{\Gamma}} = \left(egin{array}{cccc} 1 & 0.2 & 0.8 \ 0 & 0.9798 & 0.3470 \ 0 & 0 & 0.4895 \end{array}
ight).$$

Vérification:

$$\left(\begin{array}{cccc} 1 & 0 & 0 \\ 0.2 & 0.9798 & 0 \\ 0.8 & 0.3470 & 0.4895 \end{array} \right) \left(\begin{array}{cccc} 1 & 0.2 & 0.8 \\ 0 & 0.9798 & 0.3470 \\ 0 & 0 & 0.4895 \end{array} \right) = \left(\begin{array}{cccc} 1 & 0.2 & 0.8 \\ 0.2 & 1.0000 & 0.5000 \\ 0.8 & 0.5000 & 1.0000 \end{array} \right).$$

Simulation d'une équation différentielle stochastique

Considérons une équation différentielle stochastique de la forme

$$dX_t = b(t, X_t) dt + a(t, X_t) dW_t, X_0 = x_0.$$
 (12)

La première étape consiste à s'assure qu'il existe bien une solution à cette équation différentielle stochastique. Que simulerez-vous si cette solution n'existe pas ?

Simulation d'une équation différentielle stochastique

Rappel

$$dX_t = b(t, X_t) dt + a(t, X_t) dW_t, X_0 = x_0.$$
 (13)

Nous appliquerons la méthode d'Euler aléatoire.

$$\widehat{X}_{0} \equiv X_{0}$$

$$\widehat{X}_{(k+1)\Delta t} \equiv \widehat{X}_{k\Delta t} + b\left(k\Delta t, \widehat{X}_{k\Delta t}\right) \Delta t$$

$$+a\left(k\Delta t, \widehat{X}_{k\Delta t}\right) \left(\widehat{W}\left(k+1\right)\Delta t - \widehat{W}_{k\Delta t}\right) \quad (14)$$

Exemple : le mouvement brownien géométrique

Nous voulons simuler le mouvement brownien géométrique :

$$dS_t = \mu S_t dt + \sigma S_t dW_t, \qquad S_0 = s_0. \tag{16}$$

Dans ce cas-ci, deux méthodes peuvent être utilisées.

Première méthode : Si nous avons seulement besoin de S_T comme cela est le cas lors de la tarification de plusieurs droits contingents, alors nous allons profiter du fait que nous connaissons la solution de cette équation différentielle stochastique :

$$S_{T} = s_{0} \exp\left(\left(\mu - \frac{\sigma^{2}}{2}\right)T + \sigma W_{T}\right)$$

$$\stackrel{\mathcal{L}}{=} s_{0} \exp\left(\left(\mu - \frac{\sigma^{2}}{2}\right)T + \sigma T^{1/2}Z\right). \tag{17}$$

Nous ne simulerons donc que la valeur de ${\cal S}$ au temps ${\cal T}$ et non pas toute sa trajectoire.

La précision de notre approximation discrète méthode d'Euler aléatoire

- pour mettre l'emphase sur le fait que notre approximation dépend de Δt , nous la noterons $\widehat{X}^{(\Delta t)}$
- pour définir notre approximation sur tout l'intervalle de temps, nous poserons

$$\widehat{X}_{t}^{\left(\Delta t\right)}\equiv\widehat{X}_{k\Delta t}$$
 pour tout $t\in\left[k\Delta t;\left(k+1\right)\Delta t\right)$.

•

$$E_P \left[\sup_{0 \le t \le T} \left| \widehat{X}_t^{(\Delta t)} - X_t \right|^2 \right] \le C_T \Delta t \tag{15}$$

 C_T étant une constante dépendant uniquement de T. Lamberton et Lapeyre, pages 149-150.

Exemple : le mouvement brownien géométrique

Deuxième méthode : Si nous devons connaître la trajectoire de S comme c'est le cas pour la tarification de l'option à barrière, alors nous utiliserons la $m\acute{e}thode$ d'Euler stochastique :

$$\hat{S}_{0} \equiv s_{0}
\hat{S}_{(k+1)\Delta t} \equiv \hat{S}_{k\Delta t} + \mu \hat{S}_{k\Delta t} \Delta t
+ \sigma \hat{S}_{k\Delta t} \left(\widehat{W} (k+1) \Delta t - \widehat{W}_{k\Delta t} \right).$$
(18)

Exemple : le mouvement brownien géométrique

```
%Simulation de plusieurs trajectoires du mouvement brownien (géométrique méthode 2)

clear all;

n = 80 %le nombre de trajectoires simulées

m = 10000 %le nombre de périodes de temps

Delta_t = 0.001 %la longueur d'une période de temps

mu = 0.1 %taux d'intérêt instantané annuel

sigma = 0.2 %volatilité

Szero = 1 %valeur initiale

Z = normrnd(0,1,m,n); %matrice composée de mxn variables aléatoires iid N(0,1)

%initialisation de la matrice contenant les trajectoires du mouvement brownien

%chacune des colonnes de cette matrice contiendra une trajectoire du brownien

W = zeros(m+1,n); %initialisation
```

```
%initialisation de la matrice contenant les trajectoires de S
%chacune des colonnes de cette matrice contiendra une trajectoire de S
S = zeros(m+1,n); %initialisation
S(1,:) = Szero * ones(1,n); %valeur initiale de S

temps = zeros(m+1,1); %initialisation du vecteur temps
%Approximation du mouvement brownien géométrique
for i = 1 : m
W(i+1,:)=W(i,:) + sqrt(Delta_t)*Z(i,:);
S(i+1,:)=S(i,:) + mu*S(i,:)*Delta_t +
(sigma*S(i,:)).*(W(i+1,:)-W(i,:));
temps(i+1,1)=temps(i,1) + Delta_t;
end
plot(temps,S);
```

EXÉCUTER mbg.m

Exemple : le mouvement brownien géométrique Tarification d'une option d'achat selon la première méthode

```
clear all;
n = 100000; %le nombre de trajectoires simulées
%Paramètres du titre sous-jacent
r = 0.1; %taux d'intérêt sans risque annuel
sigma = 0.2; %volatilité
Szero = 100; %valeur initiale
%Paramètre de l'option d'achat
K = Szero*1; %prix d'exercice
T = 90/365; %temps avant l'échéance, en années
d1 = (log(Szero/K) + (r+(sigma^2)/2)*T) / (sigma*sqrt(T));
d2 = d1 - sigma*sqrt(T);
PrixTheorique = Szero*normcdf(d1,0,1) - K*exp(-r*T)*normcdf(d2,0,1)
```

```
%Simulation du mouvement brownien géométrique à la date T

Z = normrnd(0,1,1,n); %vecteur ligne n variables aléatoires iid N(0,1)

ST = Szero*exp( (r-(sigma^2)/2)*T + sigma*sqrt(T)*Z);

%Calcul de la valeur actualisée du "payoff" de l'option pour chaque trajectoire payoffAct = exp(-r*T)*max(ST-K*ones(1,n),zeros(1,n));

%Les résultats

PrixSimule = mean(payoffAct')

%Calcul de l'intervalle de confiance de niveau 95%

borneInf95 = PrixSimule - 1.96*sqrt(var(payoffAct')/n)

borneInf95 = PrixSimule + 1.96*sqrt(var(payoffAct')/n)
```

EXÉCUTER mbgCall1.m EXÉCUTER mbgCall2.m

Références

Damien Lamberton et Bernard Lapeyre (1991). *Introduction au calcul stochastique appliqué à la finance*, Ellipses.

Peter E. Kloeden, Eckhard Platen et Henri Schurz (1997). *Numerical* solution of SDE through computer experiments, Springer.

fin