Automazione Industriale Ferrarini

ESERCIZIO 3

Si consideri la rete di Petri riportata in figura, che rappresenta il modello di una sequenza di operazioni O1 e O2 che usano rispettivamente la risorsa R1 e la risorsa R2. Si noti che l'operazione O1 non può essere attivata finchè non arriva un pezzo da lavorare (tale condizione è rilevata dal segnale PEZZO_IN). Analogamente, al termine dell'operazione O2, la risorsa R2 rimane ancora occupata finchè il pezzo lavorato non viene asportato manualmente (tale condizione è rilevata dal segnale PEZZO_OUT). I segnali di misura e di attuazione sono riportati nella tabella a lato.

COMANDI	MISURE
O1_BEGIN	O1_END
O2_BEGIN	O2_END
	PEZZO_IN
	PEZZO_OUT

3.1) Modellizzare il processo in SFC, in modo che il comportamento del modello sia identico a quello della rete di Petri considerata. Rappresentare esplicitamente lo stato delle risorse R1 e R2, utilizzando le variabili logiche interne R1_DISP e R2_DISP.

SOLUZIONE

