DATA ANALYTICS

Assignment two

February 14, 2016

Assignment 2 : Fundamental concepts from statistics

- Group members:
- Yifan Zhao
- Nanxun Xie
- Using System : RStudio
- Using Programming language : R, MATLAB

preparation

STEP 1: Read Retention.txt to RStudio.

R code:

read txt file "Retention" into a data frame

Retention <- read.table("Retention.txt",header = TRUE)

STEP 2: Analyze data by fundamental statistics

Pre-requested jars:

package rJava, xlsx and xlsxjars are used to tramsform the data frame to xlsx file.

library(rJava)

library(xlsxjars)

library(xlsx)

package psych contain the "describe" function to generate descriptive statistics library(psych)

Question1:generate descriptive statistics and plot histograms for the following three columns: apret, tstsc, and salar.

descriptive statistics

R code:

create a vector "s" with three specific strings "apret", "tstsc", "salar" which we used to do some analytics

s <- c("apret","tstsc","salar")

call describe function to generate descriptive statistics of three specific colunms, and then put the result into a data frame "x"

#Retention[s] stored three specific columns of data given by vector"s"

x <- describe(Retention[s])

tramsform data frame "x" to a xlsx file "statistics.xlsx"

write.xlsx(x,"statistics.xlsx",row.names = TRUE,col.names = TRUE)

the result shown below:

	vars ‡	n [‡]	mean [‡]	sd [‡]	median [‡]	trimmed [‡]	mad [‡]	min [‡]	max [‡]	range [‡]	skew [‡]	kurtosis [‡]	se [‡]
apret	1	170	56.72108	18.077097	55.7085	56.42157	18.40944	18.750	95.25	76.500	0.08761814	-0.6018289	1.3864500
tstsc	2	170	66.16416	6.975306	64.7815	65.70476	5.93040	48.125	87.50	39.375	0.56314164	0.1185932	0.5349816
salar	3	170	61357.64706	9802.786457	61150.0000	61050.99265	9340.38000	38640.000	87900.00	49260.000	0.25334376	-0.2915902	751.8394005

* histograms

R code:

generete plot histograms for the following three colunms: apret, tstsc, and salar

call hist function to draw histograms for a given column of data.

main argument set the head name of histograms

hist(Retention\$apret, main="Histogram of apret")

hist(Retention\$tstsc, main="Histogram of tstsc")

hist(Retention\$salar, main="Histogram of salar")

the result shown below:

Histogram of apret

Histogram of tstsc

Histogram of salar

Retention\$salar

Question2: perform linear regression of apret on tstsc and salar separately and then of apret on both tstsc and salar.

linear regression of apart on tstsc

R code:

perform linear regression of apret on tstsc

call the plot function, using the "tstsc" column of countries for the horizontal axis, and the "apret" column for the vertical axis

plot(Retention\$apret ~ Retention\$tstsc)

call Im function to fit linear model, given a response variable(apret), and a predictor variable(tstsc), and put the result into a vector Retention.reg

Retention.reg <- Im(Retention\$apret ~ Retention\$tstsc, data = Retention)

call abline function to draw a line fitting the data on the plot abline (Retention.reg, col = 2, lty = 2)

call summary function to produce result summaries of the results of various model fitting functions.

summary(Retention.reg)

call anova function to compute an analysis of variance table for the linear model fits. anova(Retention.reg)

the result shown below:

summary function

from the result, we can get the linear equation:

y = 2.0271x - 77.3999

y: apret x: tstsc

anova function

Analysis of Variance Table

Response: Retention\$apret

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

plot and fitting line

linear regression of apart on salar R code:

perform linear regression of apret on salar

call the plot function, using the "salar" column of countries for the horizontal axis, and the "apret" column for the vertical axis

plot(Retention\$apret ~ Retention\$salar)

call Im function to fit linear model, given a response variable(apret), and a predictor variable(salar)

Retention.reg <- Im(Retention\$apret ~ Retention\$salar, data = Retention)

call abline function to draw a line fitting the data on the plot

abline(Retention.reg, col = 2, lty = 2)

call summary function to produce result summaries of the results of various model fitting functions.

summary(Retention.reg)

call anova function to compute an analysis of variance table for the linear model fits. anova(Retention.reg)

summary function

Call:

lm(formula = Retention\$apret ~ Retention\$salar, data = Retention)

Residuals:

Min 1Q Median 3Q Max -38.959 -10.170 0.362 11.151 33.965

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.522e+01 6.823e+00 -2.231 0.027 *
Retention\$salar 1.173e-03 1.098e-04 10.678 <2e-16 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.99 on 168 degrees of freedom Multiple R-squared: 0.4043, Adjusted R-squared: 0.4008 F-statistic: 114 on 1 and 168 DF, p-value: < 2.2e-16 from the result, we can get the linear equation:

y = 0.001173x - 15.22

y: apret x: salar

anova function

Analysis of Variance Table

Response: Retention\$apret

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 168 32898 195.8

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

plot and fitting line

Retention\$salar

linear regression of apart on tstsc and salar R code:

perform linear regression of apret on tstsc and salar

call Im function to fit linear mode, given a response variable(apret), and a predictor variable(salar+tstsc)

Retention.reg <- Im(Retention\$apret ~ Retention\$salar + Retention\$tstsc , data = Retention)

call summary function to produce result summaries of the results of various model fitting functions.

summary(Retention.reg)

call anova function to compute an analysis of variance table for the linear model fits. anova(Retention.reg)

Pr(>F)

summary function

```
Call:
lm(formula = Retention$apret ~ Retention$salar + Retention$tstsc,
   data = Retention)
                                                             from the result, we can get the
                                                             linear equation:
Residuals:
          1Q Median
   Min
                        3Q
                               Max
-29.458 -7.915 1.270 7.777 29.538
                                                             z = 0.000288y + 1.738x - 75.91
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.591e+01 8.210e+00 -9.246 <2e-16 ***
                                                             z: apret
Retention$salar 2.880e-04 1.253e-04 2.298 0.0228 *
                                                             v: salar
Retention$tstsc 1.738e+00 1.761e-01 9.868 <2e-16 ***
                                                             x: tstsc
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 11.16 on 167 degrees of freedom Multiple R-squared: 0.6237, Adjusted R-squared: 0.6192 F-statistic: 138.4 on 2 and 167 DF, p-value: < 2.2e-16

anova function

Analysis of Variance Table

```
Response: Retention$apret
                Df Sum Sq Mean Sq F value
Retention$salar 1 22328 22328.3 179.436 < 2.2e-16 ***
Retention$tstsc 1 12117 12116.9 97.375 < 2.2e-16 ***
```

Residuals 167 20781 124.4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

plot and fitting line(use MATLAB)

