

The Delphion Integrated View

Other Views:

INPADOC | Derwent...

Title

JP11206075A2: MANUFACTURE OF RARE-EARTH RESIN MAGNET EMBEDDED ROTOR

Country

JP Japan

Kind: Inventor(s)

Α

YAMASHITA FUMITOSHI YAMAGATA YOSHIKAZU **FUJIMOTO HIROMICHI** HASHIMOTO SUNAO

<u>View</u> <u>Image</u>

1 page

Applicant/Assignee Inquire Regarding Licensing

Issued/Filed Dates

Application Number

IPC Class

Priority Number(s) Abstract

MATSUSHITA ELECTRIC IND CO LTD

News, Profiles, Stocks and More about this company

July 30, 1999 / Jan. 13, 1998

JP1998000017996

H02K 15/03; H02K 1/27;

Jan. 13, 1998 JP1998199817996

Problem to be solved: To enhance the reliability and efficiency of a motor, by filling the rotor core magnet slots with molten strands of resin magnets containing rare- earth magnet powder by injection in magnetic field, and cooling and solidifying the rare-earth powder

as is magnetized.

Solution: A metal mold is constituted of non-magnetic members 51 and magnetic members 52, and exciting coils 4 are radially placed in the slots b3 in the rotary shaft of a rotor core. The exciting coils 4 are fixed by means of non-magnetic insulating members 53. When the exciting coils 4 are energized, magnetic flux produced in the exciting coils 4 passes through electromagnetic steel plates b1 comprising the rotor core b0 to produce magnetic fields in magnet slots b2. The magnet slots b2 are filled with polyamide-12 molten strands of rare-earth magnets by injection in magnetic field. Thereafter, the polyamide-12 in the polyamide-12 plastic pellets is cooled and solidified in the magnet slots b2, and already magnetized magnet powder of boron-neodymium-iron based is turned into rare-earth magnets which remain embedded in the magnet slots.

COPYRIGHT: (C)1999,JPO

Show known family members

DERABS G1999-486133 DERABS G1999-486133

No patents reference this one

Family: Other Abstract Info.

Foreign References:

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(川)特許出顧公開番号

特開平11-206075

(43)公開日 平成11年(1999)7月30日

(51) Int.CL.*

鉄別配号

PΙ

HO2K 15/03 # H02K 1/27

501

H02K 15/03

1/27

501K

審査請求 未請求 節求項の数13 FD (全 10 頁)

(21)出蘇番号

特顧平10-17996

(22)出願日

平成10年(1998) 1 月13日

(71)出顧人 000005821

松下電器產業株式会社

大阪府門真市大学門真1006番地

(72)発明者 山下 文敏

大阪府門真市大字門真1006番地 松下電器

產業株式会社内

(72)発明者 山縣 芳和

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 藤本 弘道

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 造本 智之 (外1名)

最終頁に続く

(54) 【発明の名称】 希土類樹脂磁石埋設型回転子の製造方法

(57)【要約】

【課題】 正確に温度制御した熱間でホウ素-ネオジミ ウム-鉄系磁石粉体を高度に磁化し、との磁化したホウ 素ニネオジミウムー鉄系磁石粉体を熱可塑性樹脂の冷却 固化により、粉体間に空隙なく強固に固定する。同時に 冷却固化過程での収縮力を磁石と回転子鉄心との間に作 用させ、両者を機械的に強固に一体化する。すなわち、 接着レスで、錆やダスト対策のための表面被覆処理工 程、着磁工程などを不要とする高信頼性、高効率モータ のための希土類樹脂磁石埋設型回転子の製造方法を提供 する。

【解決手段】 ホウ素-ネオジミウム-鉄系磁石粉体を 含む樹脂磁石の溶融ストランドを、積層電磁鋼板の回転 子鉄心磁石スロット内に均質に磁場中射出充填または磁 場中押出充填し、然る後、冷却固化する。

【特許請求の範囲】

【請求項1】希土類磁石粉体を含む樹脂磁石の溶融ストランドを回転子鉄心磁石スロット内へ磁場中射出充填 し、当該希土類磁石粉体が磁化した状態で冷却固化する 希土類樹脂磁石埋設型回転子の製造方法。

【請求項2】 希土類磁石粉体を含む樹脂磁石の溶融ストランドを回転子鉄心磁石スロット内へ磁場中押出充填 し、当該希土類磁石粉体が磁化した状態で冷却固化する

希土類樹脂磁石埋設型回転子の製造方法。

【請求項3】回転子鉄心磁石スロット内に希土類磁石粉 10 体を含む溶融ストランドの磁場中充填が完了した後、充填時と同一方向の瞬間強磁界を印加して磁石スロット内の希土類磁石粉体の磁化を強める請求項1または2記載の希土類樹脂磁石埋設型回転子の製造方法。

【請求項4】希土類遜石粉体を含む樹脂避石の溶融ストランドを回転子鉄心避石スロット内へ避場中射出または押出充填する際に、溶融ストランドの吐出温度が当該希土類避石粉体のキュリー温度以上で、当該キュリー温度以下に冷却固化される段階で避石スロット内の希土類避石粉体を遊化する希土類樹脂遊石埋設型回転子の製造方 20 法。

【請求項5】 希土類磁石粉体が、ホウ素ーネオジミウムー鉄系急冷磁石粉体である請求項1.2または3記載の希土類樹脂磁石埋設型回転子の製造方法。

【請求項6】 希土領磁石粉体が、ホウ素ーネオジミウム 一鉄系異方性磁石粉体である請求項1または2記載の希 土類樹脂磁石埋設型回転子の製造方法。

【請求項7】ホウ素-ネオジミウム-鉄系異方性磁石粉体が水素分解/再結晶したホウ素-ネオジミウム-鉄系 異方性磁石粉体である請求項6記載の希土類樹脂磁石堰 30 設型回転子の製造方法。

【請求項8】溶融ストランド中の希土類磁石粉体キャリヤがポリアミド12、PPS(ポリフェニレンサルファイド)から選ばれる熱可塑性樹脂である請求項1または2記載の希土類樹脂磁石埋設型回転子の製造方法。

【請求項9】カーボンファンクショナルシラン処理した 希土類磁石粉体である請求項1または2記載の希土類樹 脂磁石埋設型回転子の製造方法。

【請求項10】回転子鉄心磁石スロット内の希土類樹脂 磁石の電気抵抗が≥10⁻¹Ωcmである請求項1または2 記載の希土類樹脂磁石埋設型回転子の製造方法。

【請求項11】回転子鉄心を精層電磁鋼板とし、磁石スロット内に磁場充填、冷却固化した希土類樹脂磁石の収縮力で機械的に一体化する請求項1または2記載の希土類樹脂磁石埋設型回転子の製造方法。

*【請求項12】回転子鉄心のスラスト (軸) 方向端部に 係合部を設け、磁石スロット内に磁場充填、冷却固化し た希土類樹脂磁石の収縮力で回転子全体の剛性を高める 請求項1または2記載の希土類樹脂磁石埋設型回転子の 製造方法。

【請求項13】回転子鉄心磁石スロットの構成が、突極 比ρ>1の逆突極性構造である請求項1または2記載の 希土類樹脂磁石埋設型回転子の製造方法。

【発明の詳細な説明】

0 [0001]

(2)

【発明の属する技術分野】本発明は、同期モータや交流 サーボモータなどの高効率化のための希土類樹脂磁石理 設型回転子の製造方法に関する。

[0002]

【従来の技術】近年、省資源、省エネルギーの観点から高信頼性、並びに高効率モータとして、精層電磁鋼板のような回転子鉄心の複数磁石スロットに磁石を埋設し、磁石トルクに加えてリラクタンストルクを利用する所謂 磁石埋設型回転子を搭載したモータが注目されている。

0 【0003】図1,図2は、回転子鉄心に磁石を埋設した構成の、所謂磁石埋設型回転子の断面図である。ここで、図1はUSP4,139,790号公報に開示された突極比ρ>1の遮突極性の磁石埋設型回転子、図2はUSP3,979,821号公報に開示された突極比ρ<1の突極性の磁石埋設型磁石回転子である。</p>

【0004】但し、図中、1,1 bはスロットに埋設した磁石、2,2 bは精層電磁鋼板などの回転子鉄心、3、3 bは回転軸スロット、4,4 bは磁気パリアスロット、5 はアルミニウム2次導体スロットである。また、ここで言う突極比々とは、q軸方向(d軸に対し電気角で90度回転した方向)のインダクタンスし q と、

は対方向(磁極の中心とロータの中心とを結ぶ方向)のインダクタンスしてとの比して、Ldである。してとして、を差があることは、永久磁石による磁石トルクとともにリラクタンストルクも発生することを意味する。ここで、磁石トルクは、鎖交磁束中に電気的に直角方向の電流 Iqを掛け合わせることで発生する。

【0005】また、リラクタンストルクはインダクタンスと電流によって発生する磁東Ld・Id、Lq・Iqに各々電気的に直角な電流Iq、Idを掛合わせることで発生する。すなわち、磁石トルクとリラクタンストルクの和であるモータの発生トルクは下記(1)式で示される。

[0006]

 $T = \psi \cdot |q + (Lq - Ld) | |q \times |d = \psi \cdot | |cos\beta \pm (|/|||)$ 0. 5 (Lq - Ld) | '×sin' \beta \cdots (1)

但し、(1)式中、Φ・I c o s βは磁石トルク。(| 電流位相、(I / | | | / | I |) 0.5 (L q - L d) | 't × s i n 'βはり タンス、L q は q 軸インラクタンストルク、Φは鎖交磁束、I は合成電流、βは 50 | l d は d 軸電流である。

電流位相、(I/||||) は符号、L d は d 軸インダクタンス、L q は q 軸 d ネス、L q は q 軸 d ネス、L d は d 軸 d 流である。

*

【0007】磁石トルクゆ・1 cosβは電流と磁石に よって発生するトルク、リラクタンストルク(【/】】 1).0.5 (Lq-Ld) I't×s in'βは電機子電 流によって生成される磁束と電機子電流との相互作用に よって得られるトルクである。そして、図1に示す突極 比ρ>1の逆突極性ではしてくしょであり、磁石トルク と同一方向のリラクタンストルクが発生する。このリラ クタンストルクを利用する方が小型。高効率モータとし て有利である。

【0008】上記、図2の逆突極性の磁石埋設型回転子 10 の製造方法として、例えば特開昭63-98108号公 報には回転子鉄心としての積層電磁鋼板に設けたスキュ 一構造の複数磁石スロットに方形棒状磁石を空隙なく挿 入する方法や、2%のエポキシ結合剤を含むUSP4, 496,396号公報に開示されたような、ホウ素ーネ オジミウムー鉄系急冷磁石粉体を粉末形態で精層電磁鋼 板の磁石スロット内に充填して強圧縮し、さらに300 Cでエポキシを重合硬化する、所謂。スロット内圧縮成 形磁石による方法が開示されている。

[0009]

【発明が解決しようとする課題】しかし、図1に示す突 極比0>1の逆突極性(Ld<La)で、磁石トルクと 同一方向のリラクタンストルクが発生する構造の磁石理 設型回転子において、固定子側の逆避界が入り込む a 輪 方向の磁束は磁石に作用し易く、磁石の減磁耐力に課題 があった。

【0010】さらに、例えば、難若磁性として知られる ホウ素-ネオジミウム-鉄系磁石の様な方形棒状磁石を 回転子鉄心に設けた磁石スロットに挿入する場合、予め 着随した磁石を挿入するのが一般的である。その際、磁 30 石の一部が機械的に欠損し、破片やダストが発生する。 と、当該モータの固定子との空隙部分や軸受部分などモ ータの摺動部に飛散して重大な事故を引起こす危険性が ある。

【0011】一方、回転子鉄心としての積層電磁鋼板に 設けた複数磁石スロット内に2%のエポキシ結合剤を含 むホウ素ーネオジミウムー鉄系急冷磁石粉体を粉末形態 で充填し、強圧縮し、さらにエポキシ結合剤を重合硬化 する。所謂、スロット内圧編成形磴石で製造する方法 は、ホウ素ーネオジミウムー鉄系急冷磁石粉体を強圧縮 40 する際に積層電磁網板が変形したり、積層電磁鋼板との 間に生じる摩擦による圧力損失により、圧縮圧力がスロ ット奥深くまで伝達せず。低い圧粉体密度と低い残留磁 化Jrの磁石しか得られない。

【0012】さらに、このような状況では僅か2%のエ ボキシ結合剤でホウ素ーネオジミウムー鉄系急冷礁石粉 体を完全に結合することはできず、当該磁石の機械的強 度が低いため磁石埋設型回転子全体の機械的強度に対す る信頼性に悪影響を及ぼす。そればかりか、遊石スロッ

磁石粉体の防錆処理やダスト対策を施して錆やダストに 対する信頼性を確保するととも困難であった。また、何 れの場合も従来からよく用いられているフェライト系磁 石に比べて着しく難着磁性であるから、ホウ素・ネオジ ミウムー鉄系急冷磁石粉体の持つ本来の磁力を十分に活 用することもできない。

[0013]

【課題を解決するための手段】本発明は、希土類礎石粉 体を含む樹脂磁石の溶融ストランドを回転子鉄心磁石ス ロット内磁場中射出充填し、当該希土類粉体が磁化した。 状態で冷却固化するので高信頼性、高効率のモータを提 供することができる。

[0014]

【発明の実施の形態】本発明は、上記欠点に鑑みてなさ れたもので、図1に示すような逆突極性(Ld<しg) で、マグネットトルクと同一方向のリラクタンストルク が発生する構造の磁石埋設型回転子において、積層電磁 銅板のような回転子鉄心に設けた磁石スロット内に希土 類樹脂磁石の溶融ストランドを射出または押出で磁場中 埋設する磁石埋設型回転子を提供する。

【0015】つまり、希土類磁石粉体を含む樹脂磁石の 溶融ストランドを回転子鉄心磁石スロット内へ磁場中射 出または押出で充填し、当該希土類磁石粉体が磁化した 状態で冷却固化する希土類樹脂磁石埋設型回転子の製造 方法である。そして、必要に応じて磁石スロット内への 充填完了後に、充填時と同一方向の瞬間強磁界を印加し たり、或いはまた、樹脂磁石の溶融ストランドの吐出温 度を当該希土類磁石粉体のキュリー点の温度差以上とし て難着磁性の希土類磁石粉体の磁化を強めることもでき る。

【0016】なお、上記希土領磁石粉体はホウ素 - ネオ ジミウムー鉄系磁石粉体、すなわち溶湯合金を急冷凝固 したボウ素ーネオジミウムー鉄系急冷磁石粉体、熱間据 込み (Die-Up-Setting)または水素分解/再結晶したホ ウ素 - ネオジミウム - 鉄系異方性遊石粉体などが、必要 に応じて適宜カーボンファンクショナルシラン処理して 使用される。

【0017】また、一方の溶融ストランド中の希土類遊 石粉体の充填キャリヤはポリアミド 12、液晶ポリマ ー: PPS (ポリフェニレンサルファイド) の群から選 ばれる熱可塑性樹脂が使用され、磁石スロット内への充 填時には、これらの熱可塑性樹脂が希土類礎石粉体のキ ャリヤとなり、磁石スロット内で冷却固化することで特 定方向に磁化した希土類磁石粉体を強固に固定化した希 土類樹脂磁石を構成する。

【0018】なお、高信頼性で、しかも高効率のモータ を提供するために1)熱可塑性樹脂で希土類磁石粉体を 電気的に絶縁し、磁石の電気抵抗を≥10⁻¹2cmとし、 一方の回転子鉄心を精層電磁鋼板とする。すると、磁石 トの奥深くに存在するホウ素-ネオジミウム-鉄系急冷 50 埋設型回転子の回転による渦電流損失低減に効果的であ

る。2)回転子鉄心の磁石スロットの構成を、突極比の >1の逆突極性構造としてマグネットトルクと同一方向 のリラクタンストルクが発生する構造の磁石埋設型回転 子とする。3) 必要に応じて回転子鉄心のスラスト

(軸) 方向端部に係合部を設けた積層電磁鋼板の回転子 鉄心とし、当該礎石スロット内に磁場充填、冷却固化し た希土類樹脂磁石の収縮力で磁石と回転子鉄心を機械的 に一体化する。すると、磁石埋設型回転子全体の剛性が 高まり高速回転での信頼性確保に効果的である。

【0019】以上のように、本発明にかかる希土類樹脂 磁石埋設型回転子の製造方法は、ホウ素-ネオジミウム ー鉄系磁石粉体の希土類元素、遷移金属元素の資源バラ ンスが有利である。また、ホウ素-ネオジミウム-鉄系 避石粉体を含む樹脂避石の溶融ストランドを、積層電遊 銅板の回転子鉄心磁石スロット内に均質に磁場中射出充 填または磁場中押出充填し、然る後、冷却固化する。す なわち正確に温度制御した熱間でホウ素ーネオジミウム -鉄系磁石粉体を高度に磁化し、この磁化したホウ素 -ネオジミウムー鉄系磁石粉体を熱可塑性樹脂の冷却固化 により、粉体間に空隙なく強固に固定するので錆とダス 20 上に強い。或いは冷却固化過程での収縮力が磁石と回転 子鉄心との間に作用して機械的に強固に一体化する。し たがって、接着レスで、錆やダスト対策のための表面被 覆処理工程、着磁工程などを不要とする高信頼性。 高効 率モータのための希土類樹脂磁石埋設型回転子を製造す るととができる。

【0020】以下、本発明をさらに詳しく説明する。本 発明で言う希土類磁石粉体とは、1-55mCo. 2-175mCoなど希土類コバルト磁石粉体や、2-17 - 3 Sm Fe Nなどの希土類 - 鉄窒化物磁石粉体も対象 30 となるが希土類元素、遷移金属元素などの合金組成から みた資源バランス、当該磁石粉体固有の磁気ポテンシャ ル、磁石埋設型回転子製造との適合性などの観点から実 質的にはホウ素-ネオジミウム-鉄系磁石粉体が好まし

【0021】とこで言う、ホウ素-ネオジミウム-鉄系 急冷磁石粉体とは、例えばJ.F.Herbest, "Rare Earth-I ron-Boron Materials ; A New Era in Permanent Magne ts"Ann.Rev.Sci、Vol-16、(1986) に記載されているよう にNd:Fe:Bを2:14:1に近い割合で含む溶湯 40 る。 合金を急冷凝固し、適宜熱処理により結晶粒径20~1 ○○nmのNd、Fe、、B相を結晶化させたもので一般 的に残留遊化Jr=8kG、固有保磁力Hっ≥8kOe で磁気的には等方性である。

【0022】さらにホウ素 - ネオジミウム - 鉄系合金を ベースに、その溶湯合金を急冷凝固した合金組成REx -Fey-Bz-Siu-Tvで示されるFe3B基末 ウ素-ネオジミウム-鉄系急冷磁石粉体も、本発明で言 うホウ素ーネオジミウムー鉄系急冷磁石粉体に含まれ

Cr. Vなどを表す。そして特表平6-505366号 公報に開示されるように、ハード磁性相とソフト磁性相 の各スピンの交換結合により構成される磁石粉体であ り、例えば、合金組成Nd¸¸¸Dy¸Fe¸,Co,Ga,B 18.1では残留磁化Jr=1.2kG.固有保磁力H。」≥ 3kOeで、しかもHcgの80%以上まで減避界を加え てもJFの70%以上の値までJFがリコイルする強い 交換スプリング磁石特性を示す。

【0023】一方、ホウ素-ネオジミウム-鉄系異方性 遊石粉体とは、例えばM.Doser,V.Panchanathan; "Pulver izing anisotropic rapidly solidified Nd-Fe-8 mater malsfor bonded magnet"; J.Appl.Phys.70(10),15(199 1)にあるように、ホウ素 - ネオジミウム - 鉄系急冷磁石 粉体をホットプレスしたフルデンス磁石を熱間据込み加 工(Den-Up-Setting) で磁気異方化したのち、このバル ク磁石を水素吸蔵粉砕した磁石粉体。或いはR.Nakayam a, T. Takeshita et al; Magnetic properties and micr ostructures of Nd-Fe-B magnet powder produced by h ydrogen treatment., J.Appl.Phys. 70(7)(1991) に記 載されているような水素分解/再結晶磁石粉体である。 例えば、合金組成Nd 12.12 D y 1.13 F e 1.1 C 0 12.12 B 。。Ga。、Zr。、では残留磁化Jr≥11.5kG、 固有保礎力Hc1 ≥ 15 k ○ e で磁気的に強い一軸異方性 を持っている。

【0024】なお、上記、ホウ素-ネオジミウム-鉄系 磁石粉体類を適度に混合しても減磁曲線に段が生じるこ となく、それぞれのJF値、日、値の中間の任意の値を 選択することができる。したがって、希土類樹脂磁石埋 設型回転子の設計思想や実使用条件に応じて高して型かり 5高H.」型とすることができる。

【0025】ホウ素ーネオジミウムー鉄系礎石粉体を熱 可塑性樹脂、例えばポリアミドー12粉体と混合し、当 該混合粉体をエクストルーダーで混練し、そのダイスへ ッドに吐出した樹脂遊石の溶融ストランドをホットカッ ターで切断したペレットを用いて積層電磁鋼板などの回 転子鉄心の磁石スロット内へ磁場中射出充填するか、或 いは直接、溶融ストランドを回転子鉄心の磁石スロット 内へ磁場中押出充填する。そして当該希土類磁石粉体が 磁化した状態で冷却固化して磁石埋設型回転子を製造す

【0026】ホウ素-ネオジミウム-鉄系磁石粉体の固 有保磁力Hcaの温度係数βは単磁区臨界寸法以上ではN d.Fe., B結晶粒子径にもよるが-0.4~-0.6 %/℃、キュリー温度Tcは310~465℃程度であ

【0027】本発明は、上記希土類磁石粉体を含む樹脂 避石の溶融ストランドを回転子鉄心の礎石スロット内へ 磁場中射出または押出しで充填し、当該希土類磁石粉体 が磁化した状態で冷却固化する希土類樹脂磁石埋設型回 る。ただし、REはNd、Prなどの希土類元素、Tは 50 転子の製造方法であり、必要に応じて磁石スロットへの

充填完了後に、充填時と同一方向の瞬間強磁界を印加したり、或いはまた、溶融ストランドの吐出温度を当該希 土類磁石粉体のキュリー温度以上として希土類磁石粉体 の磁化を強めることもできる。

【0028】この方法は、ポリアミド-12のような溶融熱可塑性樹脂がキャリヤになってホウ素-ネオジミウム-鉄系磁石粉体を積層電磁網板の回転子鉄心磁石スロット内に空隙なく充填することができる。そして熱可塑性樹脂の冷却固化の収縮力の作用により、磁石粉体を磁石スロット内で強固に固定化すると同時に、当該磁石と 10 積層電磁網板とを機械的に一体化することができる。

【0029】したがって、希土類磁石粉体を強圧縮することで待層電磁鋼板を変形させることなく、また磁石スロット内奥深くまで均質に破損なしに磁化した磁石を埋設することができる。さらに、磁石スロット内に埋設した磁石は希土類磁石粉体が、ほぼ完全に冷却固化した熱可塑性樹脂で覆われているため破損やダストが発生する危惧もなく、耐錆性確保のための特別な表面被覆も不要である。

【0030】上記、磁石を埋設する回転子鉄心の磁石ス 20 ロット形状は、本発明にかかる希土類樹脂磁石埋設型回転子を、どのような駆動方式のモータとするかで異なるが、突極比ロ>1の逆突極性(Ld<Lq)として、磁石トルクと同一方向のリラクタンストルクが発生する構成とすることは小型、高効率モータを提供するうえで重要である。

【 0 0 3 1 】次に、本発明で言う回転子鉄心は打抜き加工などで所定形状の複数磁石スロットを設けた積層電磁網板が好適である。この理由は樹脂磁石の溶融ストランドを磁石スロット内に磁場中充填した後の、冷却固化過 30程で磁石と回転子鉄心を機械的に一体化することができることと、渦電流損失低減のためである。また、図 1 、図 2 のように磁石を埋設する磁石スロット以外に回転軸スロット、磁気抵抗バリアスロット、アルミニウム 2 次導体スロットなどを設けた構造であっても差し支えない。

【0032】次に、当該回転子鉄心の複数磁石スロット内にボウ素ーネオジミウムー鉄系磁石粉体を含む樹脂磁石の溶融ストランドを磁場中射出充填または押出充填により、空隙なく均質に埋設するための好適な熱可塑性樹 40 脂としてはボリアミドー12、PPS (ボリフェニレンサルファイド)を挙げることができる。

【0033】次に、ホウ素 - ネオジミウム - 鉄系磁石粉体の表面処理に使用するカーボンファンクショナルシランとは下記(3)式で示される。

[0034] YRS $_{1}$ X,....(3)

但し、上式中Yは加水分解基、Xは有機官能基、R は脂 った。この比表面積に基づき単分子膜を形成する量 θ 肪族残基であり、 γ - グリシドキシプロピルトリエトキ - γ -

キシシランなどが好ましく用いられる。この様なカーボ ンファンクショナルシランでホウ素-ネオジミウム-鉄 系磁石粉体の表面処理を行う理由は、当該粉体の酸化を 抑制し、磁場中射出充填或いは磁場中押出充填時の熱安 定性を確保しつつ、冷却固化したホウ素-ネオジミウム -鉄系磁石粉体の固定を、より強固にするためである。 実際の表面処理では加水分解基の分解を促進させるべく 水を併用し、低級アルコール類を溶媒としてホウ素ーネ オジミウムー鉄系磁石粉体表面に単分子膜以上のカーボ ンファンクショナルシランを成膜することが好ましい。 【0035】以上のように、本発明にかかる希土類樹脂 礎石埋設型回転子の製造方法は、ホウ素-ネオジミウム - 鉄系磁石粉体の希土類元素、遷移金属元素の資源バラ ンスが有利である。また、ホウ素ーネオジミウムー鉄系 礎石粉体を含む樹脂礎石の溶融ストランドを、積層電磁 銅板のような回転子鉄心磁石スロット内に均質に磁場中 射出充填または磁場中押出充填し、然る後、冷却固化す る。すなわち正確に温度制御した熱間で高日ム型のホウ 素ーネオジミウムー鉄系磁石粉体であっても高度に磁化 することができる。また、磁化したホウ素-ネオジミウ ムー鉄系磁石粉体を熱可塑性樹脂の冷却固化により、粉 体間に空隙なく強固に固定するので錆とダストに強い。 或いは冷却固化過程での収縮力が磁石と回転子鉄心との 間に作用して機械的に磁石と回転子鉄心とが強固に一体 化する。したがって、接着レスで、錆やダスト対策のた めの表面被覆処理工程、着磁工程などを不要とする高信 類性、高効率モータのための希土類樹脂磁石埋設型回転 子を製造することができる。

【0036】以下、本発明をさらに詳しく説明する。但し、本発明は実施例に限定されるものではない。 【0037】【ペレットの製造】合金組成NdュょFe;, Cos,Bs,, および合金組成、Nd;;。Fe;, Bs,」を急冷凝固し、非晶質部分を結晶化した。この、ホウ素ーネオジミウムー鉄系急冷磁石粉体Ai, Aiの50kOeパルス着磁後のVSMによる残留磁化Jrは各々8.2.7.9kG.固有保磁力Hc,は各々9.4.16.8kOeであった。

【0038】一方、台金組成Nd_{12.12}Dy_{0.12}Fe_{60.6}Co_{12.1}B_{6.0}Ga_{0.6}Zr_{0.1}を水素分解/再結晶した ホウ素-ネオジミウム-鉄系異方性磁石粉体BのJrは 11.8kG、固有保磁力H_c,は15.2kOeであった。

【0039】上記ホウ素 - ネオジミウム - 鉄系磁石粉体 A₁, A₂ および Bを窒素雰囲気中で 105 µ mに粗粉砕 したところ、A₁, A₂ は何れも比表面積は0.05~0.07 g/m³、Bは0.08~0.09 g/m³であった。この比表面積に基づき単分子膜を形成する量の γ - アミノプロビルトリメトキシシラン (2HN - C2H - - Si [OCH,], 比重 d₂₅ **C0.94、分子量 221 3 単分子階級環面 52.2 m² / c2) 5 使 用 1

た。すなわち、磁石粉体100gに対し、アーアミノブロビルトリメトキシシラン0.0022gの一○○H。基を加水分解し、一S1○H基とするために必要なイオン交換水0.005gをエタノール0.243gで希釈し、混合した後、130℃に加熱した。すると赤外分光分析(IR)で一○○H。基の吸収スペクトル(νcn2845cm²)が消滅し、一S1○H銈(νcn3350cm²)を確認した。すなわち、本発明で言うカーボンファンクショナルシラン処理したホウ素ーネオシミウムー鉄系磁石粉体を得た。

【0040】次いで、上記ホウ素ーネオジミウムー鉄系 磁石粉体A、またはBと、ボリアミドー12粉体、ステアリン酸カルシウム粉体、ヒドラジン系酸化防止剤を、各々91:7.9:0.05:0.05(重量比)に計量し、ヘンシェルミキサーを用いて均質になるまで混合した。また、ホウ素ーネオジミウムー鉄系磁石粉体A、と、PPS粉体、ステアリン酸カルシウム粉体、ヒドラジン系酸化防止剤を、各々95:4.9:0.05:0.05(重量比)に計量し、ヘンシェルミキサーを用いて均質になるまで混合した。

【0041】次いで、スクリュー径20mmの単軸エクストルーダを用い、ボリアミドー12では280℃、PPSでは340℃で溶融混練し、ダイスヘッドから吐出したホウ素ーネオジミウムー鉄系磁石粉体を含む樹脂磁石の溶融ストランドをホットカットしてベレットを得た。【0042】【希土類樹脂磁石埋設型回転子の製造1】図3のような突極比の>1の逆突極性(Ld<Lq)で、マグネットトルクと同一方向のリラクタンストルクが発生する構造に8極のアーク状磁石スロットb2と回転軸スロットb3を設けた板厚0.5mm、外径80mmの30打接き電磁鋼板b1を用意した。そして、この電磁鋼板b1を50mmに積層して回転子鉄心b0とした。但し、この磁石スロットは幅3.5 および1.8 mmの円弧状で1極当たりが2層構造になっている。

【0043】図4は、本発明にかかる磁場中射出充填装置の要部構成図である。但し、図中1は射出スクリュー、2は加熱シリンダー、3は射出ノズル、4は1極当たり50 tumの励能コイル、5は非磁性部材と磁性部材とを組合わせた金型で励磁コイル4を内臓し、回転子鉄心り0を装填できるキャビティを備えている。6は金型 405に設けた冷却管、7は金型5の型締めと開放を行う油圧シリンダーである。さらに、直流電源81とバルス電源82は切替えスイッチを介して励磁コイル4と電気的に接続されている。

【0044】図5は、図4のA-A、断面構成図である。金型5は非磁性部材51と磁性部材52とで構成され、励磁コイル4を回転子鉄心の回転軸スロット p3に対して放射状に配置されている。そして励磁コイル4は非磁性絶縁部材53により固定している。また、冷却管6は励磁コイル4の外側に近接配置している。

【0045】そして、直流電源81またはパルス電源82から励磁コイル4に通電すると、励磁コイル4の発生 磁束は、回転子鉄心り0を構成する電磁網板り1を通過 して磁石スロットり2に磁場をつくる。

10

【0046】上記回転子鋏心りのを図4の磁場中射出充填装置の金型5のキャビティに装填し、袖圧シリンダー7で金型5を型締めした。そしてカーボンファンクショナルシラン処理したホウ素ーネオジミウムー鉄系磁石粉体A.またはBを含むボリアミドー12ペレット&1を射出スクリュー1の回転と280℃に加熱したシリンダー2からの熱伝導で可塑化したボリアミドー12ペレットa2とし、これを射出スクリュー1の後退により射出ノズル3へ移送した。

【0047】次に、直流電源81から直流電流(max 100A)を励យコイル4に通電し、回転子鉄心の磁石 スロットり2に10kOeの連続磁場を発生させた。そ して、回転停止した射出スクリュー1を射出ノズル3方 向へ前進させ、射出ノズル3から希土類磁石のポリアミ ドー12溶融ストランドを吐出した。吐出したポリアミ 20 ドー12溶融ストランドは金型5に設けたスプルー、ラ ンナー、ゲートを介して直接回転子鉄心の磁石スロット り2に磁場中射出充填した。

【0048】磁石スロットb2への磁場中射出充填の完了は射出スクリュー1の位置または圧力センサーで検知できる。ポリアミドー12可塑化ペレットa2は磁石スロットb2中でポリアミドー12が冷却固化し、既に磁化したホウ素ーネオジミウムー鉄系磁石粉体は、そのまま磁石スロットに埋設された希土類磁石a0となる。この際に磁場中射出充填したこの段階で、直流電源81から励磁コイル4への連続通電からバルス電源82のバルス通電(波高値Ip15kA)に切替える。すると、バルス通電により励磁コイル4には、磁化方向と同一の≥20kOeの瞬間強磁界が加わりホウ素ーネオジミウムー鉄系磁石粉体の磁化は、さらに高まる。

【0049】図5はホウ素-ネオジミウム-鉄系磁石粉体Aを含む希土類樹脂磁石を磁石スロットに埋設した磁石埋設型回転子と精層電磁鋼板からなる回転子鉄心との境界部分のマクロ組織をSEM(走査型電子顕微鏡)観察した断面図である。

40 【0050】図から明らかなように希土類樹脂磁石は精層電磁網板を禁圧縮により変形させることなく、当該磁石スロット奥深くまで均質に磁場中充填され、ホウ素ーネオジミウムー鉄系磁石粉体はボリアミドー12により空隙なく強固に固定されている。またボリアミドー12の冷却固化に伴う収縮力は積層電磁鋼板り2からなる回転子鉄心と希土類磁石とを機械的に強固に一体化している。したがって、磁気回路として高いバーミアンス係数を確保することができる。さらに、磁石スロット内に埋設した希土類樹脂磁石は磁石粉体が、ほぼ完全に冷却固0 化したボリアミドー12で覆われているため破損やダス

トが発生する危惧もなく、耐錆性確保のための特別な表 面被覆も不要である。

【0051】次に、上記回転子鉄心の磁石スロットに埋 設した磁化したままの希土類樹脂遊石を径5 mm高さ2 mm に切出して振動型試料磁力計:VSM (測定磁界±15 k O e)で室温の磁気特性とアルキメデス法による密度 を(表1)に示す。なお、表中日ロ欄の(%)は、磁化* *冷却固化した磁石スロット内の希土類樹脂磁石の磁化率 を示す。すなわち、磁場中射出充填と、充填後の熱間パ ルス電流による同一方向瞬間強磁界による磁石粉はへの 遊化率を、もとのホウ素-ネオジミウム-鉄系磁石粉体 の固有保磁力Harで除した。所謂、着磁率である。 [0052]

【表1】

Jr/kG Hce/kOe Her/kOs (BH)mex/MGOs 密度 g/cm³ 磁石粉体 Ai 5.5 4.3 8.9(94.6%) 6.8 5. I 磁石粉体 B 8,4 7.8 14.2(93.4%) 16.1 5.2

ホウ素ーネオジミウムー鉄系磁石粉体は磁石埋設型回転 子の加工段階で、やや遊気特性が低下するが、磁場中射 出充填と、充填後の熱間バルス電流による同一方向瞬間 強磁界による磁化で、もとの磁石粉体のH.,の95%程 度。すなわち、ホウ素ーネオジミウムー鉄系磁石粉体本 来の磁力を十分に引き出すことができる。なお、上記回 転子鉄心磁石スロット内の釜土類樹脂磁石の電気抵抗を 四探針法で測定したところ4~7×10⁻¹Ω omであっ

【0053】[希土類樹脂磁石埋設型回転子の製造2] 図6は、本発明にかかる磁場中押出充填装置の要部構成 図である。

【0054】但し、図中1は押出スクリュー、2は加熱 シリンダー、3は押出ノズル、4は1極当たり50turn の励磁コイル、5は非磁性部材と磁性部材とを組合わせ た金型で励磁コイル4を内臓し、回転子鉄心力りを装填 できるキャビティを備えている。6は金型5に設けた冷 却管、7は金型5の型締めと開放を行う袖圧シリンダー 30 である。さらに、直流電源81とバルス電源82は切替 えスイッチを介して励磁コイル4と電気的に接続されて

【0055】図5は、図6のA-A、断面構成図であ る、金型5は非磁性部材51と磁性部材52とで構成さ れ、励磁コイル4を回転子鉄心の回転軸スロット b 3 に 対して放射状に配置されている。そして励遊コイル4は 非磁性絶縁部材53により固定している。また、冷却管 6は励磁コイル4の外側に近接配置している。

【0056】そして、直流電源81またはパルス電源8 40 2から励磁コイル4に通電すると、励磁コイル4の発生 磁束は、回転子鉄心りりを構成する電磁鋼板り1を通過 して磁石スロットり2に磁場をつくる。

【0057】上記回転子鉄心り0を図4の磁場中押出充 填装置の金型5のキャビティに装填し、油圧シリンダー 7で金型5を型締めした。そしてカーボンファンクショ ナルシラン処理したホウ素-ネオジミウム-鉄系磁石粉 体A、を含むPPSペレットalを押出スクリュー1の 回転と340°Cに加熱したシリンダー2からの熱伝導で 可塑化したペレットa2とし、押出スクリュー1の後退 50 冷却固化した磁石スロット内の希土類樹脂磁石の磁化率

によりPPS可塑化ペレットa2を押出ノズル3へ移送 した。なお、ホウ素-ネオジミウム-鉄系磁石粉体A。 はコバルトフリーで、走査型熱量計 (DSC) によれ は、そのキュリー温度Tcは310℃±10degであ

【0058】次に、直流電源81から直流電流 (max 100A)を励磁コイル4に通常し、回転子鉄心の磁石 スロットD2に10kOeの連続磁場を発生させた。そ して、回転停止した押出スクリュー1を押出ノズル3方 向へ前進させて押出ノズル3から希土類磁石のPPS溶 融ストランドを吐出した。ホウ素-ネオジミウム-鉄系 磁石粉体A,のキュリー温度以上に加熱したPPS溶融 ストランドは回転子鉄心の磁石スロットり2に直接磁場 中押出充填される。なお、充填時に電磁鋼板り1に接す るPPS溶融ストランドは磁石スロット内部よりも急速 に冷却固化するもののキュリー温度以下に達するまでに 遊化することができる。

【0059】磁石スロットb2への磁場中押出充填の完 了は押出スクリュー1の位置または圧力センサーで検知 できる。PPS可塑化ペレットa2は磁石スロットb2 内で回転子鉄心の接触面から固化冷却が進み、PPSで 固定化したホウ素-ネオジミウム-鉄系礎石粉体A。の キュリー温度以下になる。すると、ホウ素ーネオジミウ ムー鉄系磁石粉体は磁石スロット内で磁化されながら回 転子鉄心の磁石スロットに埋設された希土類磁石a()と なる。この際にホウ素ーネオジミウムー鉄系磁石粉体A 2のキュリー温度以下に達した段階で直流電源81から 励磁コイル4への連続通電からパルス電源82のパルス 通電(波高値Ip15kA)に切替える。すると、バル ス通電により励磁コイル4には、磁化方向と同一の≥2

【0060】次に、上記回転子鉄心の磁石スロットに埋 設した磁化したままの希土類樹脂磁石を径5mm高さ2mm に切出して振動型試料磁力計:VSM(測定磁界±15 KOe)で室温の磁気特性とアルキメデス法による密度 を (表2) に示す。なお、表中Hca欄の (%) は、磁化

① K ○ e の瞬間強磁界が加わりホウ素ーネオジミウムー

鉄系磁石粉体の磁化は、さらに高まる。

を示す。すなわち、磁場中押出充填と、充填後の熱間バ ルス電流による同一方向瞬間強磁界による磁石粉体への 磁化率を、もとのホウ素-ネオジミウム-鉄系磁石粉体* *の固有保磁力Hc」で除した値、所謂、若磁率である。 [0061]

【表2】

	Jr/kG	H _{CB} /kOe	Hcs/kOe	[ВН]таз/МСОе	家度 g/cm ⁸
磁石粉体 As	6.1	5.7	16.5(98.2%)	7.8	5.7

ホウ素-ネオジミウム-鉄系遊石粉体は遊石埋設型回転 子の加工段階で、やや磁気特性が低下する。しかし、高 Haa型ボウ素ーネオジミウムー鉄系磁石粉体であって も、当該磁石粉体のキュリー温度以下で、連続磁場また は/および熱間バルス電流による瞬間強磁界で、もとの 磁石粉体のHc1の実に98.2%の磁化を与えることが できる。なお、上記回転子鉄心磁石スロット内の希土類 樹脂磁石の電気抵抗を四探針法で測定したところ2~5 $\times 10^{-1}\Omega$ onであった。

【0062】 [比較例1] 4-4' ジフェニルメタンジ イソシアネートの一NCO基をメチルエチルケトンオキ シムで封止したブロックイソシアネートと分子中にアル コール性水酸基を有するジグリシジルエーテルビスフェ 20 ノールA型固体エポキシとを化学当量比(NCO/OH = 1)としたアセトン溶液と、ホウ素 - ネオジミウム -鉄系磁石粉体A、とを温式混合した。その後、アセトン を揮発させ2重量%の固体エポキシバインダーを含有す るホウ素-ネオジミウム-鉄系磁石粉体A;、とした。

【0063】図3の積層電磁網板の回転子鉄心磁石スロ ットにホウ素-ネオジミウム-鉄系磁石粉体A.,を粉末 形態で充填し、6 ton/cm2の圧力で強圧縮した。ホウ素 ーネオジミウムー鉄系急冷磁石粉体Accを強圧縮すると 精層電磁網板が変形し、積層電磁網板との間に生じる摩 30 擦による圧力損失により、圧縮圧力がスロット 奥深くま で伝達せず、回転子鉄心端面から20㎜以上深いところ ではグリーン体とすることもできなかった。すなわち、 この方法は回転子鉄心とホウ素-ネオジミウム-鉄系急 冷磁石粉体A.,とを確かに空隙なく満たすけれども、ホ ウ素-ネオジミウム-鉄系急冷磁石粉体A、1自体を空隙 なく磁石スロットに充填することはできない。

【0064】また、当該磁石の機械的強度が低いため磁 石埋設型回転子全体の機械的強度に対する信頼性に悪影 響を及ぼす。そればかりか、回転子鉄心の遊石スロット 40 の奥深くに存在するホウ素・ネオジミウム・鉄系急冷磁 石粉体の防錆処理やダスト対策を施して錆やダストに対 する信頼性を確保することも困難であった。また、何れ の場合も従来からよく用いられているフェライト系磁石 に比べて着しく難着磁性であるから、ホウ素ーネオシミ ウムー鉄系急冷磁石粉体の持つ本来の磁力を十分に活用 することもできない。なお、上記回転子鉄心端面付近の 礎石スロット内の希土類樹脂礎石の電気抵抗を四探針法 で測定したところ 10°Ω cmであった。したがって、ホ ウ素-ネオジミウム-鉄系急冷磁石粉体の持つ本来の磁 50 【図7】磁場中押出充填装置の要部構成図

力を十分に活用して高信頼性、並びに高効率モータのた めの希土類樹脂磁石埋設型回転子を製造することができ 10 ない。

【0065】 [比較例2] 希土類樹脂磁石埋設型回転子 の製造2と磁場なし以外は同一条件で作成したものを、 室温で瞬間強磁界(波高値Ip15kA)で着磁した が、磁石の固有保隆力Hc」は12.5kOeしか得られ ず、着磁率では74%程度でしかなかった。したがっ て、ホウ素ーネオジミウムー鉄系急冷磁石粉体の持つ本 来の磁力を十分に活用して高信頼性、並びに高効率モー タのための希土類樹脂遊石埋設型回転子を製造すること ができない。

[0066]

【発明の効果】以上のように、本願論求項1~11、1 3記載の発明にかかる希土類樹脂磁石埋設型回転子の製 造方法は、ホウ素-ネオジミウム-鉄系磁石粉体の希土 類元素、遷移金属元素の資源バランスが有利である。ま た。ホウ素ーネオジミウムー鉄系磁石粉体を含む樹脂磁 石の溶融ストランドを、積層電磁鋼板のような回転子鉄 心磁石スロット内に均質に磁場中射出充填または磁場中 押出充填し、然る後、冷却固化する。すなわら正確に温 度制御した熱間で高日い型のホウ素-ネオジミウム-鉄 系磁石粉体であっても高度に磁化することができる。ま た。磁化したホウ素ーネオジミウムー鉄系確石粉体を熱 可塑性樹脂の冷却固化により、粉体間に空隙なく発固に 固定するので錆とダストに強い。或いは冷却固化過程で の収縮力が遊石と回転子鉄心との間に作用して機械的に 磁石と回転子鉄心とが強固に一体化する。したがって、 接着レスで、錆やダスト対策のための表面被覆処理工 程、着遊工程などを不要とする高信頼性、高効率モータ のための希土類樹脂磁石埋設型回転子を製造することが

【0067】請求項12記載の発明は、 磁石埋設型回転 子全体の剛性が高まり高速回転での信頼性が高まる。 【図面の簡単な説明】

【図1】永久磁石を埋設した構成の磁石回転子の断面図

【図2】永久磁石を埋設した構成の磁石回転子の断面図

【図3】突極比ρ>1の磁石スロットと回転軸スロット を設けた打抜き電磁網板を示す図

【図4】磁場中射出充填装置の要部構成図

【図5】磁場中射出/押出充填装置の要部断面図

【図6】磴石と積層電磁鋼板との境界部分の断面図

1 2 3 4 5 6 7 al a2 a0 A' b1 b2 81 82

[図6]

電磁鋼板 希土類樹脂磁石

0.5mm

フロントページの続き

(72)発明者 橋本 直 大阪府門真市大字門真1006番地 松下電器 産業株式会社内