explicharr¹

Kuan Yu kuanyu@uni-potsdam.de

Maya Angelova maya.angelova@protonmail.com

Philipp Schoneville schoneville@uni-potsdam.de

Sonu Rauniyar rauniyar@uni-potsdam.de

June 27, 2018

¹explicare: to explain, to unfold; char: character; arr: array. () ()

data²

aligned sentences

- source: standard english wikipedia
- target: simple english wikipedia

²http://ssli.ee.washington.edu/tial/projects/simplification/

character-level modelling

consider only the top 256 characters out of ~3000

- more robust
 - rare characters make up only 0.03% of the text
 - no special treatment for large numbers and named entities
 - may learn morphology
- less preprocessing
- easier applicable to other languages

neural network translator

$$S$$
: source alphabet T : target alphabet $m: S^* \to T^*$
$$= S^* \to T^*_{0...i} \to T^*_{i+1}$$

$$= T^*_{0...i} \xrightarrow{S^*} T^*_{i+1}$$

autoregressive network

growing number of arrows means

- growing number of parameters
 - parameter sharing (convolution, recurrent, attention)
- growing number of inputs
 - ▶ limit input field (convolution)
 - input aggregating (recurrent)
 - input averaging (attention)

transformer³

all attention

- no limited input field
- no information bottleneck
- no hidden to hidden connection
 - can be trained with teacher forcing
 - highly parallelizable

³https://arxiv.org/abs/1706.03762

current status

done

- ► data cleanup
- model implementation

todo

- introspection
- optimization

results

- ► ~200k training instances
- ▶ ~2k validation instances
- ► ~90% training accuracy (teacher forcing)
- ► ~29% blue score (autoregressive)

good results

```
output: They are different things .
source: In more recent years ,
        he has played a metal saxophone .
target: Now he plays a metal saxophone .
output: He has played a metal saxophone .
source: With one huge blow from his olive-wood club ,
        Hercules killed the watchdog .
target: Herakles killed her .
output: Hercules killed the watchdog .
```

source: In fact, they are different things.

that are a little different .

target: These words mean things

mystery

- ~88% of output sentences are exact copies of source sentences
 - only when used autoregressively
 - target and source don't share character inventory
 - target and source don't share time steps

dual mystery

a deeper model completely ignores the source sentences

- unable to condition on the source
- becomes an autoencoder for the target (teacher forcing)
- always produces the same output (autoregressive)

future plan

- attention visualization
 - to solve the mystery
 - to understand what the model does
- autoregressive training
 - training with its own output
 - backprop through time
 - mean field approximation
- encoder pretraining
 - to solve the dual mystery
- decoding
 - beam search
 - soft predictions