제 4 교시

과학탐구 영역(생명과학 II)

수험 번호 성명

제[]선택

1. 그림은 생명 과학자들의 주요 성과 【~Ⅲ을 시간 순서에 따라 나타낸 것이고, 표는 I~Ⅲ을 순서 없이 나타낸 것이다. A~C는 다윈, 하비, 플레밍을 순서 없이 나타낸 것이다.

주요 성과([∼Ⅲ)
• A는 ¬에서 페니실린을 발견함
• B는 자연 선택에 의한 진화의 원리를 설명함

• C는 인체에서 혈액이 순환한다는 사실을 알아냄

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

---<보 기>-

- ㄱ. 은 대장균이다.
- L. B는 다윈이다.
- C. I은 'C는 인체에서 혈액이 순환한다는 사실을 알아냄'이다.
- ① ¬
 - (2) L

- 37, 5 4 4, 5 5 7, 4, 5
- 2. 표는 식물의 구성 단계 일부와 예를 나타낸 것이다. A~C는 기관, 세포, 조직계를 순서 없이 나타낸 것이고, ③과 ⑥은 각각 뿌리와 관다발 조직계 중 하나이다.

구성 단계	예
A	①, 잎
В	(L)
С	?

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>-

- ㄱ. A는 기관이다.
- ㄴ. ▷을 통해 물질이 이동한다.
- 다. 체관 세포는 C의 예이다.
- ① ¬
- (2) L
- 37, 54, 57, 6, 5
- 3. 표는 효소 A와 B의 작용을, 그림은 효소 ①에 의한 반응을 나타낸 것이다. A와 B는 전이 효소와 이성질화 효소를 순서 없이 나타낸 것이다.

효소	작용
Λ	기질의 작용기를 떼어 다른
A	분자에 전달한다.
В	기질 내의 원자 배열을 바꾸어
D	이성질체로 전환시킨다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

----<보 기>-

- ¬. A는 이성질화 효소이다.
- ∟. ⑦은 B에 해당한다.
- 다. 세포 호흡의 해당 과정에서 A가 작용한다.
- ① ¬

저장액에 넣었을 때 세포의 부피에 따른 A와 B를 나타낸 것이다. A와 B는 각각 팽압과 삼투압 중 하나이다.

<보기>에서 있는 대로 고른 것은?

----<보 기>-

- ㄱ. B는 팽압이다.
- \cup . X의 흡수력은 V_2 일 때가 V_1 일 때보다 크다.
- \Box . V_3 일 때 X는 원형질 분리가 일어난 상태이다.
- ① ¬
- (2) L
- ③ ⊏
- ④ ¬, □ ⑤ ∟, □
- 5. 그림은 생명 공학 기술을 이용하여 복제 동물 X를 얻는 과정을 나타낸 것이다. 동물 A, B, C는 같은 종이고, 유전적으로 서로 다른 개체이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.) [3점]

-----<보 기>---

- □. 핵치환 기술이 사용되었다.
- L. ⑦의 세포에 있는 모든 유전자는 B의 체세포에 있는 모든 유전자와 염기 서열이 동일하다.
- C. X는 A를 복제한 동물이다.
- ① ¬
- ② L

생

명

과

- 6. 다음은 생물 $A \sim C$ 에 대한 자료이다. $A \sim C$ 는 최초의 원핵생물, 최초의 다세포 진핵생물, 최초의 단세포 진핵생물을 순서 없이 나타낸 것이다.
 - A와 B는 모두 핵막을 갖는다.
 - A~C 중 A가 가장 나중에 출현하였다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ¬. 최초의 광합성 세균은 A보다 먼저 출현하였다.
- ㄴ. 코아세르베이트는 B에 해당한다.
- 다. C는 최초의 원핵생물이다.

2 (생명과학 Ⅱ)

과학탐구 영역

7. 다음은 엽록체의 ATP 합성에 대한 실험이다.

[실험 과정 및 결과]

- (가) 시금치를 갈아 엽록체를 분리하여 pH가 ⑦인 수용액이 들어 있는 시험관 A와 pH가 (과인 수용액이 들어 있는 시험관 B에 각각 넣고, 틸라코이드 내부의 pH가 수용액의 pH와 같아질 때까지 둔다. ⑦와 따는 3.8과 8.0을 순서 없이 나타낸 것이다.
- (나) pH가 7.0인 수용액이 들어 있는 플라스크 ①~②을 준비 하고, ¬~② 각각에 A의 엽록체, B의 엽록체, 물질 X, 물질 Y를 표와 같이 첨가한 후 암실로 옮긴다. X는 틸라코이드의 전자 전달계에서 전자가 광계 I로 이동하는 것을 차단하는 물질이고, Y는 틸라코이드 막에 있는 인지질을 통해 H⁺을 새어 나가게 하는 물질이다.
- (다) (나)의 ①~② 각각에 ADP와 P;를 첨가한 후, ATP 합성량을 측정한 결과는 표와 같다.

플라스크	9	Ĺ)	Œ	2
첨가한 엽록체, 물질	A의 엽록체	A의 엽록체, X	A의 엽록체, Y	B의 엽록체
ATP 합성량 (상댓값)	10	?	a	0

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, X, Y, ADP, P,는 충분히 첨가되었으며, 제시된 조건 이외의 다른 조건은 동일하다.) [3점]

----<보 기>-

- ㄱ. ��는 3.8이다.
- L. @는 10보다 작다.
- ㄷ. (다)의 ⓒ에서 화학 삼투에 의한 인산화가 일어났다.
- \bigcirc
- (2) L

- 37, 5 4 4, 5 57, 4, 5
- 8. 대장균과 장미에서 광합성이 일어나는 세포에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>-

- □. 대장균은 원형 DNA를 갖는다.
- ㄴ. 장미에서 광합성이 일어나는 세포는 세포벽을 갖는다.
- ㄷ. 대장균과 장미에서 광합성이 일어나는 세포는 모두 rRNA를 갖는다.
- \bigcirc

- 9. 그림은 어떤 식물에서 ①과 광 기 있음 ①의 조건을 달리했을 때 시간에 ^성 따른 광합성 속도를 나타낸 로 것이다. ¬과 ℃은 빛과 CO₂를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 빛과 CO₂ 이외의 조건은 동일하다.)

----<보 기>---

- ㄱ. ⑦은 빛이다.
- ∟. 구간 I에서 CO₂ 고정이 일어난다.
- \Box . 스트로마에서 NADPH의 농도는 t_1 일 때가 t_2 일 때보다 낮다.
- \bigcirc
 - (2) L
- 37, 54, 57, 6, 5

- 10. 다음은 동물 A~C에 대한 자료이다. A~C는 플라나리아, 해삼, 희충을 순서 없이 나타낸 것이고, ⊙과 ○은 선구동물과 후구동물을 순서 없이 나타낸 것이다.
 - A와 B는 모두 ¬에 속하고, C는 ⓒ에 속한다.
 - A는 탈피동물에 속한다.
 - 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>--

- ㄱ. ⑦은 원구가 항문이 되는 동물이다.
- L. B는 편형동물에 속한다.
- 다. C는 척삭을 갖는다.

- 11. 다음은 이중 가닥 DNA X에 대한 자료이다.
 - X는 서로 상보적인 단일 가닥 X₁과 X₂로 구성되어 있다.
 - \circ X에서 $\frac{\bigcirc + \bigcirc}{\bigcirc + \bigcirc} = \frac{3}{4}$ 이고, 염기 간 수소 결합의 총개수는 170 개이다. ¬~ㄹ은 아데닌(A), 사이토신(C), 구아닌(G), 타이민(T)을 순서 없이 나타낸 것이다. ①은 퓨린 계열 염기 이고, ()은 피리미딘 계열 염기이다.
 - $\circ X_1$ 에서 $\frac{\bigcirc}{\bigcirc} = \frac{2}{3}$ 이고, $\frac{\bigcirc}{\bigcirc} = \frac{3}{5}$ 이며, $\frac{G}{A} = \frac{4}{5}$ 이다.
 - 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.)

----<보 기>-

- ¬. X에서 뉴클레오타이드의 총개수는 140 개이다.
- ㄴ. ⓒ은 타이민(T)이다.
- □. X₂에서 □의 개수는 18 개이다.

- **12.** 다음은 3 역 6 계 분류 체계에 따라 분류한 6 종의 생물 A~F에 대한 자료이다.
 - A~F는 2개의 역으로 분류된다.
 - A와 C는 서로 다른 ①에 속하고, A와 D는 서로 다른 Û에 속한다. ③과 ⓒ은 역과 계를 순서 없이 나타낸 것이다.
 - A와 F는 서로 같은 ⑤에 속하고, C와 E는 서로 같은 ⑤에 속한다.
 - B와 D는 서로 같은 Û에 속하고, E와 F는 서로 같은 Û에 속한다.
 - 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

----<보 기>-

- ㄱ. ①은 역이다.
- L. A~F는 3개의 계로 분류된다.
- C. A와 E는 모두 진핵생물역에 속한다.
- ① ¬
- ② L
- ③ ⊏
- 47, 5 5 4, 5

과학탐구 영역

생명과학Ⅱ 3

13. 그림은 세포 호흡이 일어나고 있는 미토콘드리아의 TCA 회로 에서 물질 전환 과정 Ⅰ~Ⅲ을, 표는 Ⅰ~Ⅲ에서 생성되는 물질 ⑦~C 중 2개의 분자 수를 더한 값을 나타낸 것이다. A~D는 시트르산, 4탄소 화합물, 5탄소 화합물, 옥살아세트산을 순서 없이 나타낸 것이고, ①~ⓒ은 CO₂, FADH₂, NADH를 순서 없이 나타낸 것이다. 1 분자당 $\frac{A 의 탄소 수}{B 의 탄소 수 + D 의 탄소 수} = \frac{3}{4}$ 이다.

	С
$B \longrightarrow I$	D
$D \longrightarrow [$	A

과정	분지	나 수를 더힌	: 값
10	7+0	9+E	Û+Ē
I	2	?	1
П	?	1	2
Ш	0	?	?

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>--

- ㄱ. ¬은 CO2이다.
- ㄴ. Ⅲ에서 ATP가 생성된다.
- C. TCA 회로에서 1분자의 C가 1분자의 D로 전환되는 과정 에서 생성되는 ①의 분자 수는 2이다.

① ¬

2 L

37, 54, 57, 6, 5

14. 다음은 어떤 동물의 세포 Ⅰ과 Ⅱ에서 유전자 (가), (나), (다)의 전사 조절에 대한 자료이다.

○ (가)~(다)의 프로모터와 전사 인자 결합 부위 A~D는 그림과 같다.

-	A	C	프로모터	유전자(가)
-		C D	프로모터	유전자(나)
	AB	D	프로모터	유전자(다)

- 유전자 w, x, y, z는 각각 전사 인자 W, X, Y, Z를 암호화하며, W~Z는 (가)~(다)의 전사 촉진에 관여한다. W~Z는 각각 A~D 중 서로 다른 한 부위에만 결합한다.
- (가)의 전사는 전사 인자가 A와 C 중 적어도 한 부위에 결합 했을 때 촉진되고, (나)의 전사는 전사 인자가 C와 D 중 적어도 한 부위에 결합했을 때 촉진되며, (다)의 전사는 전사 인자가 A, B, D 중 적어도 두 부위에 결합했을 때 촉진된다.
- \circ І 과 І에서 $w\sim z$ 의 제거 여부에 따른 $(\gamma)\sim (\Gamma)$ 의 전사 결과는 표와 같다. 제거된 유전자가 없는 I 에서는 W~Z 중 2 가지만 발현되고, 제거된 유전자가 없는 Ⅱ에서는 W~Z 중 3가지만 발현된다.

제거된 유전자		I			П	
유전자	(가)	(나)	(다)	(가)	(나)	(다)
없음	0	0	0	0	0	0
w	0	0	0	0	0	×
х	0	0	0	×	0	0
У	0	×	(a)	0	0	×
z	×	0	×	0	?	0

(○: 전사됨, ×: 전사 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

-----<보 기>---

- ㄱ. @는 '×'이다.
- ㄴ. W의 결합 부위는 C이다.
- □. 제거된 유전자가 없는 I 에서는 X가 발현된다.

 \bigcirc

(2) L

③ ⊏

4) 7. L (5) L. L

15. 다음은 이중 가닥 DNA x와 제한 효소에 대한 자료이다.

- o x는 42 개의 염기쌍으로 이루어져 있고, x 중 한 가닥의 염기 서열은 다음과 같다. ①~ ⓒ은 각각 6개의 염기로 구성되어 있다.
- 5'-CTCAT © CCGGT © TCCACGA © ATGGACC-3'
- 그림은 제한 효소 BamH I, Kpn I, Nde I, Pvu I이 인식하는 염기 서열과 절단 위치를 나타낸 것이다.
- 5'-GGATCC-3' 5'-GGTACC-3' 5'-CATATG-3' 5'-CGATCG-3' 3'-CCTAGG-5' 3'-CCATGG-5' 3'-GTATAC-5' 3'-GCTAGC-5' BamH I Pvu I Kpn I Nde I

: 절단 위치

○ x를 시험관 I~V에 넣고 제한 효소를 첨가하여 완전히 자른 결과 생성된 DNA 조각 수와 각 DNA 조각의 염기 수는 표와 같다. ⓐ~ⓓ는 BamH I, Kpn I, Nde I, Pvu I을 순서 없이 나타낸 것이고, V에 첨가한 제한 효소는 @~d 중 2 가지이다.

시험관	I	П	Ш	IV	V
첨가한 제한 효소	(a)	b	c	(d)	?
생성된 DNA 조각 수	2	2	3	3	4
생성된 각 DNA	?	32, 52	20, 24, 40	10, 14, 60	14, 20,
조각의 염기 수	•	92, 92			24, 26

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

----<보 기>--

- ㄱ. ⑦의 3′ 말단 염기는 아데닌(A)이다.
- L. I 에서 염기 개수가 26개인 DNA 조각이 생성된다.
- ㄷ. V에 첨가한 제한 효소는 Nde I과 Pvu I이다.

① ¬

② L

③ ⊏

47, 6, 5, 6, 6

16. 다음은 동물 종 P의 세 집단 I~Ⅲ에 대한 자료이다.

- I~Ⅲ은 각각 하디·바인베르크 평형이 유지되는 집단이다. Ⅰ과 Ⅱ를 구성하는 개체 수는 서로 같고, Ⅱ와 Ⅲ을 구성하는 개체 수는 서로 다르다.
- P의 유전 형질 (가)는 상염색체에 있는 대립유전자 A와 A*에 의해 결정된다. A와 A* 사이의 우열 관계는 분명하고, 유전자형이 AA*인 개체에게서 (가)가 발현된다.
- 유전자형이 ⑦인 개체들을 제외한 나머지 개체들을 합쳐서 구한 A*의 빈도는 I 에서 $\frac{4}{5}$ 이고, II에서 $\frac{1}{10}$ 이다. \bigcirc 은 AA와 AA* 중 하나이다.
- (가)가 발현된 개체들을 합쳐서 구한 ⓐ의 빈도는 I에서가 Ⅱ에서의 2배이다. ②는 A와 A* 중 하나이다.
- Ⅲ에서 (가)가 발현된 개체 수 = 3이다. Ⅱ에서 @의 수
- Ⅱ와 Ⅲ의 개체들을 모두 합쳐서 (가)가 발현된 개체의 비율을 구하면 <u>13</u>이다.

Ⅲ에서 임의의 암컷이 임의의 수컷과 교배하여 자손(F₁)을 낳을 때, 이 F₁에게서 (가)가 발현될 확률은? (단. I~Ⅲ에서 각각 암컷과 수컷의 개체 수는 같다.)

 $2\frac{7}{16}$ $3\frac{5}{9}$ $4\frac{3}{4}$ $5\frac{15}{16}$

4 (생명과학 Ⅱ)

과학탐구 영역

17. 표 (가)는 진화의 요인 A~C에서 특징 ①과 ①의 유무를 나타낸 것이고, (나)는 ¬과 □을 순서 없이 나타낸 것이다. A~C는 병목 효과, 자연 선택, 창시자 효과를 순서 없이 나타낸 것이다.

특징 진화 요인	9	(L)
A	×	0
В	×	×
С	0	0
(0:	있음, >	(: 없음)

특징 (①, 心)
• 유전적 부동의 한 현상이다.
• 자연재해에 의해 집단의 크기가
급격히 감소할 때 대립유전자의
빈도가 달라지는 현상이다.

(가)

(나)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ¬. B는 창시자 효과이다.
- ㄴ. ①은 '유전적 부동의 한 현상이다.'이다.
- 다. C는 유전자풀에 새로운 대립유전자를 제공한다.

18. 다음은 어떤 진핵생물의 유전자 x와, x에서 돌연변이가 일어난 유전자 v의 발현에 대한 자료이다.

- *x*와 *y*로부터 각각 폴리펩타이드 X와 Y가 합성된다.
- X는 8개의 아미노산으로 구성되고, X의 아미노산 서열은 다음과 같다.

메싸이오닌-세린-글루탐산-히스티딘-트레오닌-류신-발린-타이로신

- *y*는 *x*의 DNA 이중 가닥 중 전사 주형 가닥에서 @ 피리미딘 계열에 속하는 연속된 2개의 서로 다른 염기가 1회 결실되고, 다른 위치에 ⓐ가 1회 삽입된 것이다.
- y의 DNA 이중 가닥 중 전사 주형 가닥의 염기 서열은 (가)-(나)-(다) 순이며, 표의 I~Ⅲ은 (가)~(다)를 순서 없이

구분	염기 서열
I	3'-5707525052
П	3'-EEEJLELEJE
Ш	3'-LLJZLJLLJJ

- 나타낸 것이다. ①~②은 A, C, G, T를 순서 없이 나타낸 것이다. ○ Y에는 아미노산 ②가 2개 있다.
- X와 Y의 합성은 개시 코돈 AUG에서 시작하여 종결 코돈 에서 끝나며, 표는 유전부호를 나타낸 것이다.

*****			*****
UUU 페닐알라는	UCU	UAU HAC 타이로신	UGU UGC 시스테인
UUC Maadi	UCC 세린	UAC COLL	UGC ALL
UUA 류신	UCA AIE	UAA 종결 코돈	UGA 종결 코돈
UUG ^{π™}	UCG	UAG 종결 코돈	UGG 트립토판
CUU	CCU	CAU	CGU
CUC	CCC 프롤린	CAC OCCIO	CGC CGA 아르지닌
CUA ^{류신}	CCA ==	CAA CAG 글루타민	CGA ^{아르지닌}
CUG	CCG	CAG 글루다인	CGG
AUU	ACU	AAU AAC ^{아스파라진}	AGU 세린
AUC 아이소류신	ACC ACA 트레오닌	AAC	AGC 세인
AUA	ACA EGISE	AAA 라이신	AGA AGG 아르지닌
AUG 메싸이오년	ACG	AAG	
GUU	GCU	GAU GAC	GGU
GUC 발린	GCC 알라닌	GAC GALLE	GGC 글리신
GUA ^{말린}	GCA SIFE	GAA 글루탐산	GGA ^{클리진}
GUG	GCG	GAG 글루딤션	GGG

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 핵산 염기 서열 변화는 고려 하지 않는다.) [3점]

----<보 기>---

- ㄱ. ①은 아데닌(A)이다.
- ㄴ. ⑦는 세린이다.
- 다. X와 Y가 합성될 때 사용된 종결 코돈의 염기 서열은 같다.

19. 그림은 세포 호흡과 발효에서 일어나는 과정 I~IV를, 표는 과정 I, (가), (나), (다)에서 생성되는 물질 □~<

리의 분자 수를 나타낸 것이다. (가)~(다)는 Ⅱ~Ⅳ를 순서 없이 나타낸 것이고, ①~②은 ATP, CO₂, NAD⁺, NADH를 순서 없이 나타낸 것이다.

과당 2인산 <u> </u>
피루브산 ────────────────────────────────────
피루브산 ──➤ 젖산
피루브산 · 에탄올

물질 과정	9	©.	E	2
I	0	(a)	2	?
(가)	?	0	0	1
(나)	1	?	1	0
(다)	1	?	0	(b)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

---<보 기>-

- ㄱ. (나)는 Ⅱ이다.
- ㄴ. ①은 NAD⁺이다.
- \Box . (a)+(b) = 5이다.

20. 다음은 어떤 세포에서 복제 중인 이중 가닥 DNA의 일부에 대한 자료이다.

- (가)와 (나)는 복제 주형 가닥이고, 서로 상보적이며, 각각 90개의 염기로 구성된다.
- ⓐ, ⓑ, ⓒ는 새로 합성된 가닥이다. ᄀ, ⓒ, ♨은 프라이머이며, 염기 개수는 서로 같다. 🏻 과 🖸 의 염기 개수의 합과 🗗 과 🗗 의 염기 개수의 합은 각각 45이다.
- 표는 ¬~비에서 G+C 함량을 나타낸 것이다. I~Ⅲ은 ①, ②, ⑪을 순서 없이 나타낸 것이다.

ſ	구분	9	Œ	Ш	I	П	Ш		
ſ	G+C 함량	80 %	40 %	?	40 %	55 %	60 %		

○ (가)와 ⓐ 사이의 염기 간 수소 결합의 총개수와 (가)와 ⓑ 사이의 염기 간 수소 결합의 총개수는 같다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.)

- ㄱ. ⓑ가 ⓐ보다 먼저 합성되었다.
- ㄴ. Ⅲ은 ⑪이다.
- ㄷ. (나)에서 아데닌(A)의 개수와 타이민(T)의 개수의 합은 38이다.

① ¬

② L

37, 5 4 4, 5 5 7, 4, 5

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인