Bitwise Operators in C

Dr Bhanu

Operator	Description	Example
&	Binary AND Operator copies a bit to the result if it exists in both operands.	(A & B) = 12, i.e., 0000 1100
I	Binary OR Operator copies a bit if it exists in either operand.	(A B) = 61, i.e., 0011 1101
٨	Binary XOR Operator copies the bit if it is set in one operand but not both.	(A ^ B) = 49, i.e., 0011 0001
~	Binary One's Complement Operator is unary and has the effect of 'flipping' bits.	(~A) = ~(60), i.e,. 1100 0011
<<	Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.	A << 2 = 240 i.e., 1111 0000
>>	Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.	A >> 2 = 15 i.e., 0000 1111

Decimal to Binary Conversion

Circuit Globe

Dec to Bin conversion process

- Successively divide the number by 2
- Collect the reminders from bottom to top
- Continue until the quotient becomes 0

Decimal to Binary to Decimal

Power of 2	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Value	256	128	64	32	16	8	4	2	1
Binary Number				0	0	1	1	0	1
Binary Number			0	1	1	1	1	0	0

$$001101 = 8 + 4 + 1 = 13$$

 $0111100 = 32 + 16 + 8 + 4 = 60$

Decimal to Binary

Power of 2	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Value	256	128	64	32	16	8	4	2	1
Binary Number									
Binary Number									

126? =

75? =

Binary to Decimal

Power of 2	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Value	256	128	64	32	16	8	4	2	1
Binary Number	0	0	0	0	0	0	0	0	0
Binary Number	0	0	0	0	0	0	0	0	0

0111001 =

1000101 =

Shifting operations - decimal

Shift the number left by one digit \rightarrow Multiply the number by $10^1 = 10$

Shift the original number left by two digits \rightarrow Multiply the number by $\frac{10^2}{10^2} = 100$

Ī	6	5	0	0	← Shift left
- 1					

Note: Base of decimal system is 10

Left Shift Operation

Power of 2	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
Value	256	128	64	32	16	8	4	2	1	
Binary Number				0	0	1	1	0	1	
Shift left(1)			0	0	1	1	0	1	0	← Shift left
Shift left(2)		0	0	1	1	0	1	0	0	← Shift left

Shift left by one bit \rightarrow Multiply by 2^{1} . \rightarrow 13 became 26 Shift left by two bits \rightarrow Multiply by 2^{2} \rightarrow 13 became 52

Note: Base of binary system is 2

Operator	Description	Example
&	Binary AND Operator copies a bit to the result if it exists in both operands.	(A & B) = 12, i.e., 0000 1100
I	Binary OR Operator copies a bit if it exists in either operand.	(A B) = 61, i.e., 0011 1101
٨	Binary XOR Operator copies the bit if it is set in one operand but not both.	(A ^ B) = 49, i.e., 0011 0001
~	Binary One's Complement Operator is unary and has the effect of 'flipping' bits.	(~A) = ~(60), i.e,. 1100 0011
<<	Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.	A << 2 = 240 i.e., 1111 0000
>>	Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.	A >> 2 = 15 i.e., 0000 1111

Bit-wise AND operation

2 Input AND gate							
Α	В	A.B					
0	0	0					
0	1	0					
1	0	0					
1	1	1					

	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Value	256	128	64	32	16	8	4	2	1
Α		0	0	1	1	1	1	0	0
В		0	0	0	0	1	1	0	1
A & B		0	0	0	0	1	1	0	0

$$A = 60$$

$$B = 13$$

$$A\&B = 12$$

Operator	Description	Example
&	Binary AND Operator copies a bit to the result if it exists in both operands.	(A & B) = 12, i.e., 0000 1100
I	Binary OR Operator copies a bit if it exists in either operand.	(A B) = 61, i.e., 0011 1101
٨	Binary XOR Operator copies the bit if it is set in one operand but not both.	(A ^ B) = 49, i.e., 0011 0001
~	Binary One's Complement Operator is unary and has the effect of 'flipping' bits.	(~A) = ~(60), i.e,. 1100 0011
<<	Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.	A << 2 = 240 i.e., 1111 0000
>>	Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.	A >> 2 = 15 i.e., 0000 1111

Bit-wise OR operation

2 Input OR gate							
4	В	A+B					
0	0	0					
0	1	1					
1	0	1					
1	1	1					

	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Value	256	128	64	32	16	8	4	2	1
Α		0	0	1	1	1	1	0	0
В		0	0	0	0	1	1	0	1
A B		0	0	1	1	1	1	0	1

$$A = 60$$

$$B = 13$$

Operator	Description	Example
&	Binary AND Operator copies a bit to the result if it exists in both operands.	(A & B) = 12, i.e., 0000 1100
I	Binary OR Operator copies a bit if it exists in either operand.	(A B) = 61, i.e., 0011 1101
٨	Binary XOR Operator copies the bit if it is set in one operand but not both.	(A ^ B) = 49, i.e., 0011 0001
~	Binary One's Complement Operator is unary and has the effect of 'flipping' bits.	(~A) = ~(60), i.e,. 1100 0011
<<	Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.	A << 2 = 240 i.e., 1111 0000
>>	Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.	A >> 2 = 15 i.e., 0000 1111

Bit-wise XOR operation

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Value	256	128	64	32	16	8	4	2	1
Α		0	0	1	1	1	1	0	0
В		0	0	0	0	1	1	0	1
A ^ B		0	0	1	1	0	0	0	1

$$A = 60$$

$$B = 13$$

$$A^B = 49$$

Operator	Description	Example
&	Binary AND Operator copies a bit to the result if it exists in both operands.	(A & B) = 12, i.e., 0000 1100
I	Binary OR Operator copies a bit if it exists in either operand.	(A B) = 61, i.e., 0011 1101
٨	Binary XOR Operator copies the bit if it is set in one operand but not both.	(A ^ B) = 49, i.e., 0011 0001
~	Binary One's Complement Operator is unary and has the effect of 'flipping' bits.	(~A) = ~(60), i.e,. 1100 0011
<<	Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.	A << 2 = 240 i.e., 1111 0000
>>	Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.	A >> 2 = 15 i.e., 0000 1111

Bit-wise NOT operation

NOT (gate
A	Ā
0	1
1	0

	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Value	256	128	64	32	16	8	4	2	1
Α		0	0	1	1	1	1	0	0
~A		1	1	0	0	0	0	1	1

$$A = 60$$

Operator	Description	Example
&	Binary AND Operator copies a bit to the result if it exists in both operands.	(A & B) = 12, i.e., 0000 1100
I	Binary OR Operator copies a bit if it exists in either operand.	(A B) = 61, i.e., 0011 1101
٨	Binary XOR Operator copies the bit if it is set in one operand but not both.	(A ^ B) = 49, i.e., 0011 0001
~	Binary One's Complement Operator is unary and has the effect of 'flipping' bits.	(~A) = ~(60), i.e,. 1100 0011
<<	Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.	A << 2 = 240 i.e., 1111 0000
>>	Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.	A >> 2 = 15 i.e., 0000 1111

Left shift operation

	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Value	256	128	64	32	16	8	4	2	1
Α		0	0	1	1	1	1	0	0
A << 2	0	1	1	1	1	0	0	0	0

$$A = 60$$

Operator	Description	Example
&	Binary AND Operator copies a bit to the result if it exists in both operands.	(A & B) = 12, i.e., 0000 1100
I	Binary OR Operator copies a bit if it exists in either operand.	(A B) = 61, i.e., 0011 1101
٨	Binary XOR Operator copies the bit if it is set in one operand but not both.	(A ^ B) = 49, i.e., 0011 0001
~	Binary One's Complement Operator is unary and has the effect of 'flipping' bits.	(~A) = ~(60), i.e,. 1100 0011
<<	Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.	A << 2 = 240 i.e., 1111 0000
>>	Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.	A >> 2 = 15 i.e., 0000 1111

Right shift operation

	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Value	256	128	64	32	16	8	4	2	1
Α		0	0	1	1	1	1	0	0
A >> 2				0	0	1	1	1	1