Introduction to Linear Algebra

ÁLGEBRA LINEAL

- ∘ El Álgebra Lineal son las matemáticas de los datos. Se usa la aritmética en vectores y matrices. También es el estudio de líneas y planos, espacios vectoriales y mapeos para las transformaciones lineales.
- Podemos expresar un sistema de ecuaciones con uno o más términos no conocidos. Por ejemplo:

 $y = 0.1x_1 + 0.4 x_2$ $y = 0.3x_1 + 0.9 x_2$ $y = 0.2x_1 + 0.3 x_2$

 $\mbox{$\sigma$}$ A la columna de valores y la podemos tomar como un vector columna lleno de outputs. Las dos columnas de valores enteros se pueden tomar como una matriz A. Los valores desconocidos, en este caso las x_i , son tomados junto con los coeficientes de las ecuaciones y juntos forman un vector $\mbox{$b$}$ de valores desconocidos a resolver.

$y = A \cdot b$

ÁLGEBRA LINEAL NUMÉRICA

- o El Álgebra Lineal Numérica es la aplicación del Álgebra Lineal en la computadora.
- O Algunas librerías importantes en Python para el ALN son:
 - Linear Algebra Package
 - Basic Linear Algebra Subprograms
 - Automatically Tuned Linear Algebra Software

ÁLGEBRA LINEAL Y ESTADÍSTICA

© En Estadística, el Álgebra Lineal tiene las siguientes aplicaciones:

- Uso de notación vectorial y matricial, sobre todo en la Estadístico multivariada
- Solución de mínimos cuadrados, como en Regresión Lineal.
- Estimar la media y varianza de datos matriciales, así como también obtener la covarianza en distribuciones Gaussianas multinomiales.
- Análisis de Componentes Principales para la disminución de datos

APLICACIONES DEL ÁLGEBRA LINEAL

O Matrices en ingeniería, gráficas y redes, matrices de Markov, programación lineal, series de Fourier, estadística y probabilidad y gráficas.

- O La factorización de matrices se usa para realizar operaciones más complejas, como para obtener la inversa de una matriz.
- Con el Álgebra Lineal podemos resolver sistemas de ecuaciones donde hay más ecuaciones que variables desconocidas.
- Al no existir una única solución, se utiliza el método de mínimos cuadrados lineales para resolver este tipo de sistemas.
- O Los problemas con mínimos cuadrados lineales pueden resolverse usando

DATASET Y DATOS

 Lo ideal es que los datos estén en un formato de matriz donde cada fila represente una observación y cada columna una característica de dicha obs.

IMÁGENES Y FOTOGRAFÍAS

• Cada imagen que vemos puede ser representada por una tabla pues ésta cuenta con longitud y altura, además de que cuenta con un valor de pixel en cada celda para el caso de las imágenes en blanco y negro, o bien, tres valores de pixel para imágenes de colores.

ONE HOT ENCODING

- · Es un método utilizado para codificar variables categóricas.
- Se tiene una tabla que representa la variable con una columna por categoría y una fila para cada ejemplo en el dataset.
- o Un valor de "I" se agrega en la columna correspondiente dada una fila y se agrega el valor"0"en cualquier otro caso, teniendo así un vector binario.
- O Por ejemplo, si tenemos la iguiente variable color con tres filas:

1 red ≥green

3 blue

Se codificaría como:

red, green, blue 1 0 0 0 1 0

REGRESIÓN LINEAL

- o La regresión lineal describe la relación entre variables.
- O Se ocupa en Machine Learning para predecir valores numéricos.
- O Se debe encontrar un conjunto de coeficientes que, cuando multipliquen cada una de las variables de entrada y éstas se sumen, resulte en la mejo predicción de la variable de salida.
- La mejor manera de resolver este problema es mediante el método de Mínimos Cuadrados, ocupando la descomposición LU o la Descomposición de Valores Singulares.

REGULARIZACIÓN

- Los modelos simples se caracterizan por modelos que tienen pocos coercientes o variables.
- O La regularización es uno de los métodos más comunes para minimizar el número de coeficientes o variables. También se incluye la regularización L¹y L².

ANÁLISIS DE COMPONENTES PRINCIPALES

- O Para reducir el número de columnas a ocupar de un conjunto de datos, se utilizan métodos para reducir la dimensión. Uno de los métodos más populares es el PCA
- o Éste ocupa el método de factorización de matrices, aunque también puede ser ocupado el método de eigendescomposición.

DESCOMPOSICIÓN DE VALORES SINGULARES

 También conocido como SVD. Es una factorización de matrices usado para la selección de características, reducción de ruido y más.

LATENT SEMANTIC ANALYSIS

- O En Machine Learning es común que, al trabajar con text data, se represente a los documentos como grandes matrices de word occurrences.
- o Por ejemplo, las columnas serían las filas serían las palabras conocidas y las columnas las oraciones, párrafos, páginas o documentos de texto. Las celdas de la matriz indicarán la frecuencia de las veces en que apareció x palabra.
- o Al usar métodos de factorización para preparar este tipo de datos, como SVD, se le conoce como Latent Semantic Analusis (LSA).

RECOMMENDER SYSTEM

- o Se usan para crear los sistemas que recomiendan productos.
- O Un ejemplo es calcular la similitud entre el comportamiento de los clientes usando vectores y verificando la distancia que existe entre ellos.

DEEP LEARNING

- Es el resurgimiento del uso de las Redes Neuronales con nuevos y más rápidos métodos que permiten el desarrollo y entrenamiento de redes más profundas para bases de datos más grandes.
- o Trabaja con vectores, matrices e incluso tensores de entradas y coecicientes
- O Un tensor es una matriz con más de 2 dimensiones (cada columna es una coordenada y cada fila, un punto).