FlauBERT: Unsupervised Language Model Pre-training for French

Hang Le¹ Loïc Vial¹ Jibril Frej¹ Vincent Segonne² Maximin Coavoux¹ Benjamin Lecouteux¹ Alexandre Allauzen³ Benoît Crabbé² Laurent Besacier¹ Didier Schwab¹

¹Univ. Grenoble Alpes, CNRS, LIG ²Université Paris Diderot ³E.S.P.C.I, CNRS LAMSADE, PSL Research University

Outline

- Unsupervised pre-trained language models
- PlauBERT
 - Models and architectures
 - Pre-training
 - Training data
 - How to use FlauBERT
- FLUE benchmark
- FlauBERT performance on FLUE

Unsupervised pre-trained language models Principles

Unlabeled text data is used as a supervision signal

- \rightarrow also called *self-supervised* learning.
 - Word embeddings: learn a feature vector for each word.
 - Feed-forward network (Bengio et al. 2003), convolutional network (Collobert and Weston 2008).
 - word2vec (Mikolov et al. 2010), GloVe (Pennington et al. 2014).
 - Contextual embeddings: output representation is a function of entire input sequence.
 - Recurrent neural network: (Dai and Le 2015), ELMo (Peters et al. 2018), ULMFiT (Howard and Ruder 2018), MultiFiT (Eisenschlos et al. 2019).
 - Transformer-based: GPT (Radford et al. 2018), BERT (Devlin et al. 2019), XLNet (Yang et al. 2019), XLM (Lample and Conneau 2019), RoBERTa (Liu et al. 2019), ALBERT (Lan et al. 2019), T5 (Raffel et al. 2019).

Unsupervised pre-trained language models Advantages

- Leverage large amount of freely available unlabeled text.
- Facilitate transfer learning in NLP.
- Yield state-of-the-art results on a wide range of NLP tasks.
- Save time and computational resources.

FlauBERT: models and architectures

Based on the Transformer (Vaswani et al. 2017):

FlauBERT follows BERT (Devlin et al. 2019): only the encoder is used.

FlauBERT: models and architectures

Two different FlauBERT models:

- FlauBERT_{BASE}: L = 12, H = 768, A = 12.
- FlauBERT_{I ARGF}: L = 24, H = 1024, A = 16.

where:

- H: hidden size,
- L: number of Transformer blocks,
- A: number of self-attention heads.
- ightarrow Number of parameters: FlauBERT_{BASE} has 138M, FlauBERT_{LARGE} has 373M.

FlauBERT: pre-training

Following the **BERT** (Devlin et al. 2019) paradigm.

- Masked Language Model: learn to predict randomly masked input tokens.
- **Next Sentence Prediction**: learn to predict if *B* is the next sentence to *A*, given an input pair (*A*, *B*). (Not used in FlauBERT.)

FlauBERT: pre-training

Training details

	BERT	RoBERTa	FlauBERT
Language Training objectives Tokenizer	English NSP and MLM WordPiece 30K	English MLM BPE 50K	French MLM BPE 50K

- Training configurations: following Roberta (Liu et al. 2019).
- Implementation: based on XLM library (Conneau et al. 2019).
- FlauBERT was trained using the new CNRS Jean Zay supercomputer:
 - FlauBERT_{BASE}: trained on 8 nodes (32 GPUs).
 - FlauBERT_{LARGE}: trained on 32 nodes (128 GPUs).

FlauBERT: pre-training

Training data

Figure 1: Training data.

- CommonCrawl: 43.4 GB
- NewsCrawl: 9.2 GB
- Wikipedia: 4.2 GB
- Wikisource: 2.4 GB
- EU Bookshop: 2.3 GB

Figure 2: Text preprocessing pipeline.

- MultiUN: 2.3 GB
- GIGA: 2.0 GB
- PCT: 1.2 GB
- Project Gutenberg: 1.1 GB
- OpenSubtitles: 1.1 GB
- And others: 1.8 GB.

How to use FlauBERT

Feature extraction

FlauBERT can be used to extract embedding vectors for input tokens or sentences.

```
import torch
from transformers import FlaubertModel,
     Flaubert Tokenizer
# Load pretrained model and tokenizer
modelname = 'flaubert-base-cased'
flaubert, log = FlaubertModel.
     from_pretrained (modelname,
     output_loading_info=True)
flaubert tokenizer = FlaubertTokenizer.
     from pretrained (modelname, do lowercase
     =False)
# Sample sentence
sentence = "Le chat mange une pomme."
token ids = torch.tensor([flaubert tokenizer
     .encode(sentence)1)
# Get embeddings for all tokens
last laver = flaubert(token ids)[0]
# Get sentence embeddings
cls embedding = last layer[:, 0, :]
```


How to use FlauBERT

Fine-tuning on downstream tasks

Append the task-specific layers to FlauBERT \rightarrow Train on target tasks. Pre-trained weights can be freezed or not freezed.

```
import numpy as np
import torch
from transformers import FlaubertTokenizer.
    FlaubertForSequenceClassification
# Load pretrained model and tokenizer
tokenizer = FlaubertTokenizer.from pretrained('
     flaubert-base-cased')
model = FlaubertForSequenceClassification.
     from pretrained ('flaubert-base-cased')
# 1. Train model on target labeled data
train(model)
# https://github.com/huggingface/transformers/tree
# 2. Make predictions
input_ids = torch.tensor(tokenizer.encode("Le chat
      mange une pomme.", \
            add special tokens=True)).unsqueeze(0)
labels = torch.tensor([1]).unsqueeze(0)
# Get prediction label
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
preds = logits.detach().cpu().numpy()
preds = np.argmax(preds, axis=-1)
```

Train on specific tasks

Make predictions on new data

FLUE benchmark

Text Classification

Paraphrasing

Natural Language Inference (NLI)

Parsing and Part-of-Speech Tagging

Word Sense Disambiguation Tasks

Dataset		Domain	Train	Dev	Test
	Books		2000	-	2 000
CLS-FR	DVD	Product reviews	1 999	-	2000
	Music		1 998	-	2000
PAWS-X-FR		General domain	49 401	1 992	1 985
XNLI-FR		Diverse genres	392 702	2 4 9 0	5 0 1 0
French Treebank		Daily newspaper	14759	1 235	2 541
Verb WSD		Diverse genres	55 206	-	3 199
Noun Sense Disambiguation		Diverse genres	818 262	-	1 445

Table 1: Descriptions of the datasets included in our FLUE benchmark.

FlauBERT performance on FLUE

Task Section	Classification Books DVD Music		Paraphrasing	NLI	Constituency		Dependency		Disambiguation Nouns Verbs		
Measure	Acc.	Acc.	Acc.	Acc.	Acc.	F ₁	POS	UAS	LAS	F ₁	F ₁
State-of-the-art	91.25 ^c	89.55 ^c	93.40 ^c	66.20 ^d	80.1/ 85.2 ^e	87.4 ^a		89.19 ^b	85.86 ^b	-	43.0 ^h
Without pre-training	-	-	-			83.9	97.5	88.92	85.11	50.03	-
FastText	-	-	-			83.6	97.7	86.32	82.04	49.41	34.90
mBERT	86.15 ^c	86.9 ^c	86.65 ^c	89.30 ^d	76.9 ^f	87.5	98.1	89.50	85.86	56.47	49.83
CamemBERT	92.30	93.00	94.85	90.14	81.2	88.4	98.2	91.37	88.13	56.06	50.02
FlauBERT _{BASE}	93.10	92.45	94.10	89.49	80.6	89.1	98.1	91.56	88.35	54.74	43.92
FlauBERT _{LARGE}	95.00	94.10	95.85	89.34	83.4	88.6	98.2	91.61	88.47	57.85	50.48

Table 2: Final results on FLUE. ^a(Kitaev et al. 2019). ^b(Constant et al. 2013). ^c(Eisenschlos et al. 2019). ^d(Chen et al. 2017). ^e(Conneau et al. 2019). ^f(Martin et al. 2019). ^h(Segonne et al. 2019).

Thank you for your attention!

Code and data are available:

- FlauBERT: https://github.com/getalp/Flaubert.
- FLUE: https://github.com/getalp/Flaubert/tree/master/flue.

Acknowledgements:

- GENCI (Grand Equipment National de Calcul Intensif) for computing resources.
- Our code is based on Facebook's XLM and HuggingFace's Transformers libraries.