数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn

同步时序逻辑电路设计方法

利用触发器设计同步时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表

- (6) 电路实现 (7) 检查无关项

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- 时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

例1: 利用T触发器设计一个同步模8可逆计数器

确定T₃: 看Q₃ⁿ→Q₃ⁿ⁺¹

确定T₂: 看Q₂ⁿ→Q₂ⁿ⁺¹

确定T₁: 看Q₁ⁿ→Q₁ⁿ⁺¹

[→] X=0: 加法; X=1: 减法

Z:进位及借位

1. 原始状态图及状态表

需要3个T触发器

T触发器驱动表

输入 端T	次态 Q _{n+1}
0	\mathbf{Q}_{n}
1	$\bar{\mathbf{Q}}_{n}$

2. 状态转换真值表

_											
	输	λ	顼	迩		次态			输入	,	输出
	X	Q_3^n	Q_2^n	\mathbf{Q}_{1}^{n}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	T_3	T ₂	T ₁	Z
	0	0	0	0	0	0	1	0	0	1	0
	0	0	0	1	0	1	0	0	1	1	0
	0	0	1	0	0	1	1	0	0	1	0
	0	0	1	1	1	0	0	1	1	1	0
	0	1	0	0	1	0	1	0	0	1	0
	0	1	0	1	1	1	0	0	1	1	0
	0	1	1	0	1	1	1	0	0	1	0
	0	1	1	1	0	0	0	1	1	1	1
	1	0	0	0	1	1	1	1	1	1	1
	1	0	0	1	0	0	0	0	0	1	0
	1	0	1	0	0	0	1	0	1	1	0
	1	0	1	1	0	1	0	0	0	1	0
	1	1	0	0	0	1	1	1	1	1	0
	1	1	0	1	1	0	0	0	0	1	0
	1	1	1	0	1	0	1	0	1	1	0
	1	1_	1	1	1	1	0	0	0	1	0

3. 卡诺图化简

4. 电路实现

$$T_3 = \overline{X} Q_2^n Q_1^n + X \overline{Q_2^n} \overline{Q_1^n}$$

$$T_2 = \overline{X}Q_1^n + XQ_1^n$$

$$T_1 = 1$$

 $Z = X \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n} + \overline{X} Q_3^n Q_2^n Q_1^n$

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- ■自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

例2: 利用D触发器设计一个自动售卖机

- 只接收硬币: 0.5 ¥ , 1 ¥
- 每次投币只接收一枚硬币
- 机器收到1.5 ¥,给出一瓶饮料
- 机器收到2.0 字,给出一瓶饮料,找回0.5 字

 $X_1 X_{0.5} = 00: 0$

 $X_1 X_{0.5} = 01: 0.5 Y$

 $X_1 X_{0.5} = 10: 1 Y$

Y=1/0: 给/不给 饮料

Z=1/0: 找零/不找零

1. 原始状态图及状态表

① 状态设定

 S_0 —初始状态,无投币

S₁—机器收到0.5 ¥

S2—机器收到1.0 Y (2个 0.5 Y, or 1个1.0 Y)

Solution 1:

Mealy circuit

if (机器又收到1个0.5 Y)

then Y=1,且 Z=0, 回到 S₀

Else If (机器又收到1个1 ¥)

then Y=1, 且Z=1,回到S₀

② 状态转换分析

Solution 1: Mealy circuit

③ Mealy 状态图

④ 状态表

现态	S ⁿ⁺¹ /Z								
Sn	$X_1X_{0.5}=00$	X ₁ X _{0.5} =01	X ₁ X _{0.5} =10	$X_1X_{0.5}=11$					
S ₀	S ₀ / 00	S ₁ / 00	S ₂ / 00	X/ XX					
S₁	S ₁ / 00	S ₂ / 00	S ₀ / 10	X/XX					
S ₂	S ₂ / 00	S ₀ / 10	S ₀ / 11	X/XX					

④ 状态表

现态		S ⁿ⁺¹ / Z									
Sn	$X_1X_{0.5}=00$	X ₁ X _{0.5} =01	X ₁ X _{0.5} =10	X ₁ X _{0.5} =11							
S ₀	S ₀ / 00	S ₁ / 00	S ₂ / 00	X/ XX							
S ₁	S ₁ / 00	S ₂ / 00	S ₀ / 10	X/XX							
S ₂	S ₂ / 00	S ₀ / 10	S ₀ / 11	X/XX							

2. 状态化简

3. 状态分配

 $S_0 - 00$ $S_1 - 01$ $S_2 - 10$ $\begin{array}{c|cccc}
 & 0 & 1 \\
 & S_0 & S_1 \\
 & S_2 &
\end{array}$

需要2个D触发器

4. 状态转换真值

	<u> </u>	·N/V	ידיט				/				_
	辅	入	现	态	次	态	输.	λ	辅	出	
	X ₁	$X_{0.5}$	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	D_2	D_1	Υ	Z	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	1	0	1	0	1	0	0	
	0	0	1	0	1	0	1	0	0	0	
$\left(\right)$	0	0	1	1	Х	Χ	Χ	Χ	Х	Х	\prod
,	0	1	0	0	0	1	0	1	0	0	ľ
	0	1	0	1	1	0	1	0	0	0	
	0	1	1	0	0	0	0	0	1	0	
	0	1	1	1	Χ	Χ	Χ	Х	Х	Х	N
	1	0	0	0	1	0	1	0	0	0	ľ
	1	0	0	1	0	0	0	0	1	0	
	1	0	1	0	0	0	0	0	1	1	
$\left(ight]$	1	0	1	1	Х	Х	Х	Х	Х	Х	\prod
7	1	1	0	0	Х	Х	X	Χ	Х	Х	N
	1	1	0	1	X	Χ	X	X	Х	Х	
	1	1	1	0	X	Χ	X	X	Х	Х	
	1	1	1	1	Χ	Χ	Χ	Χ	X	X	IJ

确定D₂: 看Q₂ⁿ⁺¹ 确定D₁: 看Q₁ⁿ⁺¹

5. 卡诺图化简

$$D_2 = \overline{X}_1 \overline{X}_{0.5} Q_2^n + Q_1^n X_{0.5} + X_1 \overline{Q}_1^n \overline{Q}_2^n$$

$$D_1 = \overline{X}_1 \overline{X}_{0.5} Q_1^n + X_{0.5} \overline{Q}_1^n \overline{Q}_2^n$$

$$Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$$

Q_2	nQ ₁ n			
$X_1X_{0.5}$	00	01	11	10
00	0	0	X	0
01	0	0	Х	0
11	Χ	X	Х	X
10	0	0	Х	1

$$Z = X_1Q_2^n$$

6. 电路实现

7. 检查无关项

无关状态: Q₂ⁿQ₁ⁿ =11 X₁X_{0.5}分别为 00 ,01,10时,带入计算 $\bigcap_{2} \mathbf{Q}_{2}^{n+1} = \mathbf{D}_{2} = \overline{\mathbf{X}}_{1} \overline{\mathbf{X}}_{0.5} \mathbf{Q}_{1}^{n} + \mathbf{Q}_{1} \mathbf{X}_{0.5} + \mathbf{X}_{1} \overline{\mathbf{Q}}_{1}^{n} \overline{\mathbf{Q}}_{2}^{n}$ $\begin{cases} \mathbf{Q}_1^{n+1} = \mathbf{D}_1 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^n + \mathbf{X}_{0.5} \overline{\mathbf{Q}}_1^n \overline{\mathbf{Q}}_2^n \end{cases}$ $Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$ $Z = X_1Q_2^n$ $X_1X_{0.5}/YZ$ 01/00 10/10 非自 10/00 01/10 01/00 启动 10/1 01110 00/00 00/00

电路需要预置

1. 原始状态图及状态表

① 状态设定(标记收到的钱数)

 S_0 —初始状态,机器收到0 Y

S₁—机器收到0.5 ¥

S2—机器收到1.0 Y

S3—机器收到1.5 ¥

S₄—机器收到2.0 ¥

Solution 2:

Moor circuit

③ Moor 状态表

现态		输出		
S _n	$X_1X_2=00$	$X_1 X_2 = 01$	$X_1 X_2 = 10$	YZ
S ₀	S ₀	S ₁	S ₂	00
S ₁	S ₁	S ₂	S ₃	00
S ₂	S ₂	S ₃	S ₄	00
S ₃	S ₀	S ₁	S ₂	10
S₄	S ₀	S₁	S ₂	11

② Moor 状态图

2. 状态化简

3. 状态分配

$Q_2^nQ_1^n$									
Q_3^n	00	01	11	10					
0	S ₀	S ₃		S ₁					
1	S ₄			S ₂					

需	要3	个	D触	发	器
---	----	---	----	---	---

$S_1 -$	000 010 110
	001

 $S_3 - - 001$

S₄ — 100

4. 状态转换真值表

辅	介入		现	态		次态		输	λ		输	出
X_1	$X_{0.5}$	Q_3^n	\mathbf{Q}_{2}^{n}	$\mathbf{Q_1}^{n}$	Q_3^{n+1}	$\mathbf{Q_2}^{n+1}$	Q_1^{n+1}	D_3	D_2	D_1	Υ	Z
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	1	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	1	1	0	1	1	0	1	1	0	0	0
0	1	1	1	0	0	0	1	0	0	1	0	0
0	1	0	0	0	0	1	0	0	1	0	0	0
0	1	0	1	0	1	1	0	1	1	0	0	0
0	1	0	0	1	0	1	0	0	1	0	1	0
0	1	1	0	0	0	1	0	0	1	0	1	1
1	0	0	0	0	1	1	0	1	1	0	0	0
1	0	0	1	0	0	0	1	0	0	1	0	0
1	0	1	1	0	1	0	0	1	0	0	0	0
1	0	0	0	1	1	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0	1	1	0	1	1
1	1	X	X	X	X	X	X	X	X	X	X	X

5. 卡诺图化简

Q _o	nQ₁n	X_1	=0	
$X_{0.5}Q_3$	00	01	11	10
00	0	0	X	0
01	0	X	Х	0
11	0	Х	X	1
10	0	0	Х	0
•				
.Qa	nQ ₁ n	X	Հ₁ =1	i
$X_{0.5}Q_3^{n}$	00	01	11	10
00	0	0	X	1
01	0	X	Х	0
11	Х	Х	Х	Х
10	X	Х	X	X

$$D_3 = \overline{X}_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_{0.5}Q_2^n + X_1\overline{Q}_2^n$$

$$D_2 = \overline{X}_{0.5}Q_3^n + \overline{Q}_2^n X_{0.5} + X_1 \overline{Q}_2^n + \overline{X}_1 \overline{X}_{0.5}Q_2^n$$

$$D_1 = X_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_1Q_2^n$$

$$Y = \overline{Q}_2^n Q_3^n + Q_1^n$$

X

X

$$Z = \overline{Q}_2^n Q_3^n$$

$$D_{3} = \overline{X}_{0.5}Q_{3}^{n}Q_{2}^{n} + \overline{Q}_{3}^{n} X_{0.5}Q_{2}^{n} + X_{1}\overline{Q}_{2}^{n}$$

$$D_{2} = \overline{X}_{0.5}Q_{3}^{n} + \overline{Q}_{2}^{n} X_{0.5} + X_{1}\overline{Q}_{2}^{n} + \overline{X}_{1}\overline{X}_{0.5}Q_{2}^{n}$$

$$D_{1} = X_{0.5}Q_{3}^{n}Q_{2}^{n} + \overline{Q}_{3}^{n} X_{1}Q_{2}^{n}$$

$$Y = \overline{Q}_{2}^{n}Q_{3}^{n} + Q_{1}^{n}$$

$$Z = \overline{Q}_{2}^{n}Q_{3}^{n}$$

- 6. 电路实现(略)
- 7. 检查无关项(略)

Moor型电路与Mealy型电路比较

- ▶ Moor型电路中的状态总数相对要多一些,需要使用较多的触发器资源。
- Moor型电路的输出只与状态有关, 输出没有毛刺。

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- 时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- ※更复杂的同步时序逻辑设计

例3: 利用JK触发器设计一个时序锁

- □ 输入: X₁X₂, 输出: Z
- □该锁内部有四个状态R、B、C、E
- □ 依次输入00、01、11, 时序锁从状态 R→B→C, 并开锁(Z=1)
- □ 不是上述序列,进入状态 E (error)
- □任何时候只要输入00,都将返回状态 R

1. 原始状态图及状态表

① 状态设定

R—初始状态、输入00

B-输入00后, 再输入01

C-输入00、01后, 再输入11, 且Z=1

E—错误状态

现态		次态S _{n+1}					
S _n	$X_1X_2=00$	$X_1 X_2 = 01$	$X_1 X_2 = 11$	$X_1 X_2 = 10$	Z		
R	R	В	E	E	0		
В	R	E	С	E	0		
С	R	E	E	E	1		
E	R	E	E	E	0		

现态	次态 <i>S</i> _{n+1}					
S _n	$X_1 X_2 = 00$ $X_1 X_2 = 01$ $X_1 X_2 = 11$ $X_1 X_2 = 10$				Z	
R	R	В	E	E	0	
В	R	E	С	E	0	
С	R	E	E	E	1	
E	R	E	E	E	0	

2. 状态化简

3. 状态分配 需要2个JK触发器

R: 00, B: 01

E: 10, C: 11

							\supset			
输	<u>λ</u>	<u> </u>	<u>!态_</u>	<u></u> 次	.态		<u>输</u>	<u>λ</u> _		输出
X ₁	X_2	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	J ₂	K ₂	J ₁	K ₁	Z
0	0	0	0	0	0	0	Х	0	Х	0
0	0	0	1	0	0	0	X	X	1	0
0	0	1	0	0	0	X	1	0	X	0
0	0	1	1	0	0	X	1	X	1	1
0	1	0	0	0	1	0	X	1	Х	0
0	1	0	1	1	0	1	X	X	1	0
0	1	1	0	1	0	X	0	0	Х	0
0	1	1	1	1	0	X	0	X	1	1
1	0	0	0	1	0	1	X	0	Х	0
1	0	0	1	1	0	1	X	X	1	0
1	0	1	0	1	0	X	0	0	X	0
1	0	1	1	1	0	X	0	X	1	1
1	1	0	0	1	0	1	X	0	Х	0
1	1	0	1	1	1	1	X	X	0	0
1	1	1	0	1	0	X	0	0	Х	0
1	1	1	1	1	0	X	0	X	1	1

5. 卡诺图化简

$$J_2 = X_2 Q_1^n + X_1$$

$$K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1$$

$$K_2 = \overline{X}_2 \overline{X}_1$$

Q_2	nQ₁n			
X_1Q_2	ⁿ Q ₁ ⁿ 00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

$$Z = Q_2^n Q_1^n$$

Q_2	$^{n}Q_{1}^{n}$			
X_1X_2	00	01	11	10
00	0	X	X	0
01	1	X	X	0
11	0	Χ	X	0
10	0	X	X	0
•				

 $J_1 = \overline{X}_1 X_2 \overline{Q}_2^n$

6. 电路实现

$$\begin{cases}
J_2 = X_2 Q_1^n + X_1 \\
K_2 = \overline{X}_2 \overline{X}_1 \\
J_1 = \overline{X}_1 X_2 \overline{Q}_2^n \\
K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1 \\
Z = Q_2^n Q_1^n
\end{cases}$$

密码锁

- ■一维开锁:密码正确
- ■二维开锁:有限时间+密码正确
- ■三维开锁:

有限时间+有限按键次数+密码正确

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

例4:利用JK触发器设计一个同步二进制串行加法器

- 1. 原始状态图及状态表
 - ① 设加法器内部状态

a—— 无进位

b---- 有进位

② Mealy 状态图

③ Mealy 状态表

现态	Q ⁿ⁺¹ / Z				
Qn	$X_1X_2 = 00$	$X_1X_2=01$	$X_1X_2=10$	$X_1X_2=11$	
а	a/ 0	a/1	a/1	b/0	
b	a/1	b/0	b/0	b/1	

- 2. 状态化简 3. 状态分配 a=0, b=1
- 4. 状态转换真值表

输入 现态			次态	辅	入	输出
X ₁	X ₂	Qn	Qn+1	J	K	Ζ
0	0	0	0	0	X	0
0	0	1	0	X	1	1
0	1	0	0	0	X	1
0	1	1	1	X	0	0
1	0	0	0	0	X	1
1	0	1	1	X	0	0
1	1	0	1	1	X	0
1	1	1	1	X	0	1

5. 卡诺图化简

 $Z = X_1 \oplus X_2 \oplus Q^n$

6. 电路实现

方案2: 如何用一位全加器实现?

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- 时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

例5:用D触发器设计一个串行输入的8421BCD码误码检测器要求:

- 8421BCD码低位在前、高位在后串行地加到检测器的输入端。
- 电路每接收一组代码,即在收到第4位代码时判断。若是错误代码,则 输出为1,否则输出为0,电路又回到初始状态并开始接收下一组代码。

1. 原始状态图及状态表

现态	Qn+	¹ / Z	
Qn	X=0	X=1	
Α	B/0	C/0	
В	D/0	E/0	
С	F/0	G/0	
D	H/0	1/0	
Е	J/0	K/0	
F	L/0	M/0	
G	N/0	P/0	
+	A/0	A/ 0	
	A/0-	A/1	Ļ
J	A/ 0	Α/1	Ļ
K	A/0	A/ 1	-
	A/0	A/0	_
M	A/0-	A/1	L
Ņ_	A/Q_	A/1	Ļ
P	A/0	A/1	Ļ

2. 状态化简

	现态	Qn+		
	Qn	X=0	X=1	
>	Α	B/0	C/0	
	В	D/0	E/0	
	С	F/0	G/0	
_	D	-H/0-	- I/ 0	
_		170	1/0	
_	F	- H / O-	- I / 0 -	
	G	1/0	7	
	Н	A/0	A/0	
	ı	A/0	A / 1	
				-

现态	Q ⁿ⁺¹ / Z		
Q n	X=0	X=1	
Α	B/0	C/0	
В	D/0	E/0	
С	D/0	E/0	
D	H/0	1/0	
Е	1/0	1/0	
H	A/0	A/0	
	A/0	A/1	

2. 状态化简

现态	Q ⁿ⁺¹ / Z		
Qn	X=0 X=1		
Α	B/0	B/0	
В	D/0	E/0	
D	H/0	1/0	
E	1/0	1/0	
Н	A/0	A/0	
	A/0	A / 1	

3. 状态分配

'规则1:次态相同,现态编码应相邻

HI, DE 应相邻

规则2: 同一现态对应的次态应给予相邻编码

DE, HI 应相邻

规则3:输出相同,现态编码应相邻

ABDEH应相邻

A: 000; B: 001 D: 011; I: 010 E: 111; H: 110

确定D₃: 看Q₃ⁿ⁺¹ 确定D₂: 看Q₂ⁿ⁺¹ 确定D₄: 看Q₄ⁿ⁺¹

4.	状态转换真值表	确定D ₂ : 确定D ₁ :
	•	

				4. 1	人心心	łマ 1大	、大山	11%			備足L)₁ <u>: </u>	\mathbf{Q}_1^{n+1}	')
$Q_2^nQ_1^n$:	输入	ひ 现れ	<u>;</u>		次态			输入	输	出
$Q_3^n 00$	01 11			X	Q_3^n	$\mathbf{Q_2}^{n}$	$\mathbf{Q_1}^{\mathbf{n}}$	Q_3^{n+1}	$\mathbf{Q_2}^{n+1}$	Q_1^{n+1}	D_3	D ₂	D ₁	Z
0 A	B D	+:-		0	0	0	0	0	0	1	0	0	1	0
'	-	Н		0	0	0	1	0	1	1	0	1	1	0
				0	0	1	0	0	0	0	0	0	0	0
			1	0	0	1	1	1	1	0	1	1	0	0
现态		⁻¹ / Z		0	1	0	0	X	X	X	X	X	X	X
Qn	X=0	X=1		0	1	0	1	X	X	X	Х	X	X	X
Α	B/0	B/0		0	1	1	0	0	0	0	0	0	0	0
В	D/0	E/0		0	1	1	1	0	1	0	0	1	0	0
D	H/0	1/0		1	0	0	0	0	0	1	0	0	1	0
E	1/0	1/0		1	0	0	1	1	1	1	1	1	1	0
Н	A/0	A/0		1	0	1	0	0	0	0	0	0	0	1
I	A / 0	A / 1		1	0	1	1	0	1	0	0	1	0	0
				1	1	0	0	X	X	X	X	X	X	X
				1	1		_				X	X	X	
					1 4	0	1	X	X	X	\ \ \	\ \ \	\ \ \	X
				1 7	7	7				- 11				

10

5. 卡诺图化简

$$D_3 = \overline{Q_3^n} Q_2^n Q_1^n \overline{X} + X \overline{Q_2^n} Q_1^n$$

	D_2	$=Q_1^n$
$Q_2^nQ_1^n$	01	11

$$D_1 = \overline{Q_2^n}$$

 $Z = X Q_3^n Q_2^n Q_1^n$

6. 电路实现

7. 无关项检查

将无关状态 $Q_3^nQ_2^nQ_1^n=100和101分别代入次态方程和输出方程计算$

电路可以自启动

利用触发器设计时序逻辑——实例

- 模8可逆计数器
- 自动售卖机
- 时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

例6: 利用T触发器设计一个串行输入的奇校验检测器

② Moor 状态图

③状态表

现态	次态	输出	
Qn	X=0	X=1	Z
So	So	S₁	0
S ₁	S ₁	S ₀	1

1. 原始状态图及状态表

① 状态设定

S₀——表示收到偶数个"1",初始为0个"1"

S₁——表示收到奇数个"1"

2. 状态化简

3. 状态分配

 $S_0: 0; S_1: 1$

4. 状态转换真值表

输入	现态	次态	输入	输出
X	Qn	Qn+1	T	Z
0	0	0	0	0
0	1	1	0	1
1	0	1	1	0
1	1	0	1	1

5. 卡诺图化简

 $T=X; Z=Q^n$

6. 电路实现

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- 时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

更复杂的同步时序设计_例7

例7:利用D触发器设计一个同步时序的码制转换器,将串行输入的8421BCD码转换为余3码。

■ 转换器的输入和输出都是最低位优先

X Input (BCD)					<i>Z</i> Outp exces	out	
t_3	t_2	t ₁	t_0	t ₃	t_2	t ₁	t_0
			0				1
			1				0
			0				1
			1				0
			0				1
			1				0
			0				1
			1				0
			0				1
			1				0

更复杂的同步时序设计_例7

- □ t₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

t ₁ t ₀ 时刻 输入	<i>t₁ t₀时刻</i> 输出
00	1 1
01	00
10	0 1
11	1 0

t ₂ t ₁ t ₀ 时刻 输入	t ₂ t ₁ t ₀ 时刻 输出
000	011
001	10 0
010	101
011	110
100	111
101	000
110	001
111	010

t ₃ t ₂ t ₁ t ₀ 时刻 输入	t ₃ t ₂ t ₁ t ₀ 时刻 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	110 0

		X			Z	•	
	- In	nput		(Out	put	
		BCD)				ss-3)	
t_3	t_2	t_1	t_0	t_3	t_2	t_1	t_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

更复杂的同步时序设计_例7

1. 原始状态图及状态表

- □ t₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

<i>t₁ t₀</i> 时刻	<i>t₁ t₀时刻</i>
输入	输出
00	11
01	00
10	01
11	10

t ₂ t ₁ t ₀ 时刻 输入	<i>t₂t₁t₀时刻</i> 输出
000	011
001	10 0
010	101
011	110
100	111
101	000
110	001
111	010

	$t_0 = 0$	12	
$t_1 \begin{array}{c} t_1 \\ \end{array}$	1/0	%	1/1
$t_2 = 0$	0/1 1/0	9 ₁ 1 ₀	0/1/0
$t_3 0 1 0 0$		$ \begin{array}{c c} & M \\ & \downarrow 0 \\ & \downarrow 1 \\ & \downarrow 0 \\ & \downarrow 1 \end{array} $	K P

t ₃ t ₂ t ₁ t ₀ 时刻 输入	<i>t₃ t₂ t₁ t₀时刻</i> 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1 100

2. 状态化简

		•			1	
	Input Sequence				_	
	Received				Preser	
	(Least Significant	Present	Next Sta	ate	Output	(Z)
Time	Bit First)	State	X = 0	1	X = 0	1
t_0	reset	A	В	\mathcal{C}	1	0
_	0	В	D	F	1	0
<i>t</i> ₁	1	C	E	G	0	1
	00	D	Н	L	0	1
_	01	E	1	M	1	О
t_2	10	F	J	N	1	0
	11	G	K	Ρ	1	0
	000	Н	A	A	0	1
	001	1	A	A	0	1
	010	J	A	_	0	_
_	011	K	A	_	0	_
t_3	100	L	A	_	0	_
	101	M	A	_	1	_
	110	N	A	_	1	_
	111	P	Α	_	1	

		Next		Present	
	Present	State		Output	(Z)
Time	State	X = 0	1	X = 0	1
t_0	Α	В	C	1	0
t_1	В	D	Ε	1	0
	С	Ε	Ε	0	1
t_2	D	Н	Н	0	1
	Ε	Н	Μ	1	0
t_3	Н	Α	Α	0	1
	М	Α	_	1	_

3. 状态分配

		Next		Present	
	Present	Stat	e	Output	(Z)
Time	State	X = 0	1	X = 0	1
t_0	Α	В	С	1	0
t_1	В	D	Ε	1	0
	С	Ε	Ε	0	1
t_2	D	Н	Н	0	1
	Ε	Н	Μ	1	0
t_3	Н	Α	Α	0	1
	М	Α	_	1	

4. 状态转换真值表

		$Q_1^+Q_2^+Q_3^+$		Z	
	$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	<i>X</i> = 1
A	000	100	101	1	0
В	100	1 1 1	110	1	0
C	101	1 1 0	110	0	1
D	111	0 1 1	0 1 1	0	1
Ε	110	0 1 1	010	1	0
Η	0 1 1	000	000	0	1
Μ	010	000	X X X	1	Х
_	0 0 1	XXX	XXX	Х	Х

4. 状态转换真值表

		$Q_1^+Q_2^+Q_3^+$		Z	
	$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	<i>X</i> = 1
Α	000	100	101	1	0
В	100	1 1 1	110	1	0
C	101	110	110	0	1
D	111	0 1 1	0 1 1	0	1
Ε	110	0 1 1	010	1	0
Н	0 1 1	000	000	0	1
Μ	010	000	X X X	1	Х
_	0 0 1	XXX	XXX	х	Х

5. 卡诺图化简

$$D_2 = Q_2^+ = Q_1$$

$$D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2'$$

$$Z = X'Q_3' + XQ_3$$

6. 电路实现

7. 无关项检查

 $\begin{cases} D_1 = Q_1^+ = Q_2' \\ D_2 = Q_2^+ = Q_1 \\ D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2' \\ Z = X' Q_3' + X Q_3 \end{cases}$

将无关状态 $Q_3Q_2Q_1=100$ 代入次态方程和输出方程计算

电路可以自启动

例8: 迭代电路设计——利用D触发器设计一个比较器,能对两个n位

1. 原始状态图及状态表

对于第 i 个单元,设状态——

 $S_0: X = Y$ 时

S₁: X > Y 时

S₂: X < Y 时

Z₂、Z₃、Z₁分别取值为1

- □由n个比较子单元(cell)构成
- □ 从高位到低位,逐位对应比较,并将前一位比 较的结果传送给下一位
- □ 第i个单元的比较结果: X = Y, X > Y, or X < Y.

1. 原始状态图及状态表

			S_{i+}	1		
	S_i	$x_i y_i = 00$	01	11	10	$Z_1 Z_2 Z_3$
X = Y	S_0	<i>S</i> ₀	S ₂	S_0	S ₁	0 1 0
X > Y	S_1	S ₁	S_1	S_1	S_1	0 0 1
X < Y	S_2	S_2	S_2	S_2	S_2	1 0 0

在第i 个(前一个)单元 有比较结果的前提下,根据输入取值,可以确定第 i+1个单元的比较结果

对于第 i 个单元, 设状态

S₀: X = Y时 S₁: X > Y时 S₂: X < Y时

Z, 、Z, 、Z, 分别取值为1

2. 状态化简

3. 状态分配

 $S_0: 00$

 $S_1: 01$

需要两个触发器, 用 a,b来表示

 $S_2:10$

4. 状态转换真值表

	$a_{i+1}b_{i+1}$						
a _i b _i 0 0	$x_i y_i = 00$	01	11	10	$Z_1 Z_2 Z_3$		
0 0	00	10	00	01	0 1 0		
0 1	01	01	01	01	0 0 1		
1 0	10	10	10	10	1 0 0		

5. 卡诺图化简

第 i 个子单元的电路实现

6. 电路实现

7. 无关项检查 (略)

例9:利用D触发器设计一个同步时序电路,当输入序列以010或1001 结尾时(允许重叠检测),输出Z为1,否则Z=0.

1. Mealy型原始状态图构建

(1) 子序列010检测的状态设定

S₀——初始复位状态,表示没有任何输入

S₁──表示序列以"0"结束

S。——表示序列以 "01" 结束

S₃——表示序列以"010"结束,此时输出标志 Z=1。

(1) 010检测的局部状态图

(2) 子序列1001检测的状态设定

 S_0 —初始复位状态,表示没有任何输入

S₁——表示序列以 "0" 结束

S。——表示序列以 "01" 结束

S₃——表示序列以"010"结束,此时输出标志 Z=1。

S。——表示接收到1001序列的第一个"1"

S。——表示序列以"100"结束。

重叠检测: 010中的10

可以被1001检测重用

重叠检测: 010中的10

可以被1001检测重用

- (2)子序列1001检测的状态设定
 - S₀——初始复位状态,表示没有任何输入
 - 表示序列以"0"结束
 - 表示序列以"01"结束
 - -表示序列以"010"结束,此时输出标志 Z=1。
 - -表示接收到1001序列的第一个"1"
 - -表示序列以"100"结束。

- 2. 状态化简(略)
- 3.状态分配(略)
- 4.状态转换真值表(略)
- 5.卡诺图化简(略)
- 6. 电路实现(略)

重叠检测: 1001中的 01可以被010检测重用

(3)010及1001检测的完整状态图

例10:某同步时序电路如下所示,按图接线后,试验得到如下的循环状态。经检查:触发器工作正常,试分析故障所在。

1. 获得正确状态图

① 输入方程

$$J_0 = \overline{Q_2}^n$$
, $K_0 = 1$
 $J_1 = K_1 = Q_0^n$
 $J_2 = Q_0^n Q_1^n$, $K_2 = 1$

② 次态方程

$$Q_0^{n+1} = \overline{Q_0}^n \overline{Q_2}^n$$

$$Q_1^{n+1} = Q_1^n \oplus Q_0^n$$

$$Q_2^{n+1} = Q_0^n Q_1^n \overline{Q_2}^n$$

③ 正确的状态转换图

④ 电路功能:模5加法计数器,可自启动

2. 故障分析

① 触发器工作正常: 说明——电源和地线接触良好、时钟信号CP正常送入 故障只可能在进位链或驱动回路中

 $Q_2^{n+1} = Q_0^n Q_1^n Q_2^n$

② 分析各触发器状态: $Q_0^{n+1} = \overline{Q_0^n} \overline{Q_2^n}$ 触发器FF1 $Q_1^{n+1} = Q_1^n \oplus Q_0^n$ $Q_2^{n+1} = Q_1^n \oplus Q_0^n$ $Q_1^{n+1} = Q_1^n \oplus Q_0^n$ $Q_2^{n+1} = Q_1^n \oplus Q_0^n$

2. 故障分析

② 分析各触发器状态:

结论:

2. 故障分析

③ 针对触发器0分析:

?

K₀接触不良?

J₀接触不良?

TTL电路管脚悬空 等效为高电平1

—Q₂没有接入, J₀悬 空等效为高电平1 <mark>→ K₀没问题</mark>

触发器变成T', 符合故障现象

Q2没有

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计