第4章 概率密度函数的非参数估计

刘家锋

哈尔滨工业大学

第4章 概率密度函数的非参数估计

- 1 4.1 非参数估计
- 2 4.2 Parzen窗方法
- 3 4.3 近邻分类器
- 4 End

4.1 非参数估计

4.1 非参数估计

•00000

• 概率密度估计的简单方法

o 将特征空间划分为一系列的区域(bin),统计每个区域内训练 样本出现的频率,作为概率密度的粗糙近似;

4.1.非参数估计

000000

• 非参数估计的一般性描述

o 令R是包含样本点 \mathbf{x} 的一个区域,体积为V; n个训练样本中有k个落在区域R中,可对 \mathbf{x} 的概率密度作出估计;

$$p(\mathbf{x}) \approx \frac{k/n}{V}$$

- \circ 此估计以区域R内的平均概率密度近似 \mathbf{x} 点的密度;
- o 如果假设区域R内每一点的概率密度均为 $p(\mathbf{x})$,则新的采样点 \mathbf{x} ′落在R内的概率为:

$$P(\mathbf{x}' \in R) = \int_{R} p(\mathbf{x}) d\mathbf{x} = p(\mathbf{x}) \int_{R} d\mathbf{x} = V p(\mathbf{x}) \approx k/n$$

估计的有效性

000000

• 给定样本数n

- o 区域R的体积V影响估计的效果;
- o 区域过大,每一点的概率密度值差异大,以平均值近 似 $p(\mathbf{x})$ 不够精确;
- o 区域过小,可能导致区域内的采样点少,甚至k=0;

有效性

 \circ 非参数估计的有效性取决于样本数n,以及与其相适应的区 域体积V:

• 非参数估计的收敛性

o 构造一系列包含 \mathbf{x} 的区域 R_1, R_2, \cdots ,对应 $n = 1, 2, \cdots$,对 $p(\mathbf{x})$ 有一系列的估计:

$$p_n(\mathbf{x}) = \frac{k_n/n}{V_n}, \quad n = 1, 2, \dots$$

o 当满足下列条件时, $\lim_{n\to\infty} p_n(\mathbf{x}) = p(\mathbf{x})$:

$$\lim_{n \to \infty} V_n = 0$$

$$\lim_{n \to \infty} k_n = \infty$$

$$\lim_{n \to \infty} \frac{k_n}{n} = 0$$

区域选定的两个途径

Parzen 窗法

o 区域体积V是样本数n的函数,例如:

$$V_n = \frac{1}{n}$$

- K-近邻法
 - o 落在区域R内的样本数k是总样本数n的函数,例如:

$$k_n = \sqrt{n}$$

4.2 Parzen窗方法

• 窗函数

- o Parzen窗法使用窗函数来划定区域R;
- o 超立方体窗函数:

$$\varphi(\mathbf{u}) = \begin{cases} 1, & |u_i| \le \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$

窗函数的位置和尺度

o 以x为中心, 边长为 h_n 的窗函数:

$$\varphi\left(\frac{\mathbf{u} - \mathbf{x}}{h_n}\right) = \begin{cases} 1, & |u_i - x_i| \le \frac{h_n}{2} \\ 0, & \text{otherwise} \end{cases}$$

窗函数(超立方体)的体积:

$$V_n = h_n^d$$

判断样本x;是否在超立方体R之内

$$\varphi\left(\frac{\mathbf{x}_i - \mathbf{x}}{h_n}\right) = \begin{cases} 1, & \mathbf{x}_i \in R\\ 0, & \mathbf{x}_i \notin R \end{cases}$$

• 超立方体内的样本数

$$k_n = \sum_{i=1}^{n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

窗函数是中心对称的,因此可以互换x和x_i的位置;

• 概率密度函数的估计

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

对Parzen窗的理解

- o 概率密度的估计是n个窗函数的叠加平均;
- o 也可以理解为是n个以训练样本为中心的窗函数,对概率密 度函数的插值逼近;

窗函数的选择

• 更多的窗函数

- o Parzen窗函数估计概率密度,距离 \mathbf{x} 近的样本 \mathbf{x}_i 对估计结果的 贡献大,距离远的贡献小;
- o 超立方体窗函数是不连续的,估计结果是用"阶梯"函数来 逼近概率密度函数;
- o 使用平滑的窗函数可以得到平滑的概率密度函数;

• 窗函数的条件

o 满足如下条件的函数,均可以作为窗函数:

$$\varphi(\mathbf{u}) \ge 0, \quad \int \varphi(\mathbf{u}) d\mathbf{u} = 1$$

o 最常使用的窗函数是Gauss函数:

窗函数的选择

• 方形窗和高斯窗函数

窗函数的选择

• 不同的窗函数宽度

Algorithm 1 Parzen窗识别

Input: 训练集D, 窗函数 $\varphi(\mathbf{x})$, 窗函数宽度h

Output: 待识别模式x所属类别

1: 保存每个类别的训练样本集 $D_i = \{\mathbf{x}_1^i, \cdots, \mathbf{x}_{n_i}^i\}$;

2: for i = 1 to c do

3: 计算 ω_i 类的概率密度函数值:

$$p(\mathbf{x}|\omega_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_j^i}{h}\right)$$

4: end for

5: 最小错误率贝叶斯判别;

概率神经网络

神经元模型

- o 1943年McCulloch和Pitt模仿生物的神经系统提出了人工神经 元模型, 是现代人工神经网络的基础;
- 很多模式识别方法都可以采用神经网络的方式实现,包 括Parzen 窗法:

• 简化的神经元模型

- o 输入: $\mathbf{x} = (x_1, \dots, x_d)^t$
- o 权值: $\mathbf{w} = (w_1, \dots, w_d)^t$
- o 净输入: $net = \mathbf{w}^t \mathbf{x}$
- o 输出: $y = f(net) = f(\mathbf{w}^t \mathbf{x})$, f称为激活函数

• Gauss窗函数的神经元表示

o 输入样本的长度归一化:

$$\mathbf{x} \leftarrow \frac{\mathbf{x}}{\|\mathbf{x}\|}, \quad \mathbf{x}_i \leftarrow \frac{\mathbf{x}_i}{\|\mathbf{x}_i\|}$$

o 设置神经元的权值为训练样本:

$$\mathbf{w}_i = \mathbf{x}_i, \quad \|\mathbf{w}_i\|^2 = \mathbf{w}_i^t \mathbf{w}_i = 1$$

o 窗函数可以用神经元实现:

$$\varphi\left(\frac{\mathbf{x} - \mathbf{w}_i}{\sigma}\right) \propto \exp\left[-\frac{(\mathbf{x} - \mathbf{w}_i)^t(\mathbf{x} - \mathbf{w}_i)}{2\sigma^2}\right]$$
$$= \exp\left(-\frac{\mathbf{x}^t\mathbf{x} + \mathbf{w}_i^t\mathbf{w}_i - 2\mathbf{w}_i^t\mathbf{x}}{2\sigma^2}\right)$$
$$= \exp\left(\frac{net_i - 1}{\sigma^2}\right) = f(net_i)$$

Probabilistic Neural Networks(PNN)

PNN的学习算法

Algorithm 2 PNN Training

Input: 属于c个类别的训练集 $D = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$

Output: 模式层权值 $\{\mathbf{w}_1,\cdots,\mathbf{w}_n\}$, 类别层权值 $\{\mathbf{a}_1,\cdots,\mathbf{a}_c\}$

- 1: 初始化: $\mathbf{a}_j = \mathbf{0}, j = 1, \dots, c$
- 2: for i = 1 to n do
- 3: 归一化样本长度: $\mathbf{x}_i \leftarrow \mathbf{x}_i/\|\mathbf{x}_i\|$
- 4: 学习模式层权值: $\mathbf{w}_i = \mathbf{x}_i$
- 5: if $\mathbf{x}_i \in \omega_i$ then
- 6: 学习类别层权值: $a_{ji} \leftarrow 1$
- 7: end if
- 8: end for

PNN的分类算法(类别先验概率相等)

Algorithm 3 PNN Classification

Input: PNN的权值 $\{\mathbf{w}_1,\cdots,\mathbf{w}_n\}$, $\{\mathbf{a}_1,\cdots,\mathbf{a}_c\}$

Output: 待识别模式x所属类别

1: 归一化样本长度: $\mathbf{x} \leftarrow \mathbf{x}/\|\mathbf{x}\|$

2: 初始化网络输出: $y_j = 0, j = 1, \dots, c$

3: for i = 1 to n do

4: 计算模式层净输入: $net_i = \mathbf{w}_i^t \mathbf{x}$

5: if $a_{ji} = 1$ then

6: 累加类别层输出: $y_j \leftarrow y_j + \exp\left(\frac{net_i-1}{\sigma^2}\right)$

7: end if

8: end for

9: **return** $\arg \max_{1 \leq j \leq c} [y_j]$

4.3 近邻分类器

End

近邻分类器

• 最小错误率分类的3个途径

- o 条件概率判别: $\max_i p(\mathbf{x}|\omega_i)P(\omega_i)$
- o 联合概率判别: $\max_i p(\mathbf{x}, \omega_i)$
- o 后验概率判别: $\max_i p(\omega_i|\mathbf{x})$

Parzen窗和近邻分类

- o Parzen窗法估计的是每个类别的条件概率 $p(\mathbf{x}|\omega_i)$;
- o 近邻法估计的是每个类别的后验概率 $p(\omega_i|\mathbf{x})$;

• 后验概率的估计

- o 构造一个以待识别模式x为中心的区域R,体积为V;
- o 所有类别的n个训练样本中有k个处于区域R内,其中 k_i 个样本属于 ω_i 类;
- ο $ω_i$ 类联合概率的估计:

$$p(\mathbf{x}, \omega_i) \approx \frac{k_i/n}{V}$$

ο $ω_i$ 类后验概率的估计:

$$p(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}, \omega_i)}{p(\mathbf{x})} = \frac{p(\mathbf{x}, \omega_i)}{\sum_{j=1}^c p(\mathbf{x}, \omega_j)} \approx \frac{k_i}{\sum_{j=1}^c k_j} = \frac{k_i}{k}$$

K-近邻分类算法

Algorithm 4 KNN: k-Nearest Neighbor

Input: 训练集 $D = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$,参数k

Output: 待识别模式x所属类别

- 1: 计算待识别模式与每个训练样本的距离: $D(\mathbf{x}, \mathbf{x}_i)$
- 2: 选择距离最小的前k个样本,统计其中包含各个类别的样本 数 k_i ;
- 3: **return** $\arg \max_{1 \le i \le c} [k_i]$

K-近邻分类算法

k = 5的近邻分类

• 距离度量

- o 距离是数学上的一个重要概念;
- o 满足如下条件的函数均可称为距离:
 - 1. 非负性: $D(\mathbf{x}, \mathbf{y}) \ge 0$
 - 2. 自反性: $D(\mathbf{x}, \mathbf{y}) = 0$ 当且仅当 $\mathbf{x} = \mathbf{y}$
 - 3. 对称性: $D(\mathbf{x}, \mathbf{y}) = D(\mathbf{y}, \mathbf{x})$
 - 4. 三角不等式: $D(\mathbf{x}, \mathbf{z}) + D(\mathbf{y}, \mathbf{z}) \ge D(\mathbf{x}, \mathbf{y})$
- o 具体应用中,需要根据情况选择合适的距离度量;

常用的距离度量

• Eucidean距离:对应矢量的lo范数

$$D(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2 = \left[\sum_{i=1}^d (x_i - y_i)^2\right]^{\frac{1}{2}}$$

• Manhattan距离:对应矢量的l₁范数

$$D(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_1 = \sum_{i=1}^{d} |x_i - y_i|$$

常用的距离度量

• Minkowski距离:对应矢量的 l_p 范数

$$D(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_p = \left[\sum_{i=1}^d |x_i - y_i|^p\right]^{\frac{1}{p}}$$

• 等距面: 不同p值对应的"单位球面"

• 相似度

- o 在某些应用以相似度来代替距离, 距离越小相似度越大;
- o 相似度的定义比距离函数灵活、宽松;

• 角度相似性

$$D(\mathbf{x}, \mathbf{y}) = \cos \theta = \frac{\mathbf{x}^t \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

其中, θ 是矢量x和y之间的夹角;

最近邻分类

- o 分类规则: 在训练样本集中寻找与待识别样本x距离最近的 样本 \mathbf{x}' ,将 \mathbf{x} 分类到 \mathbf{x}' 所属的类别:
- o 最近邻分类相当于k=1的k-近邻分类,其分类界面可以 用Voronoi网格表示:
- o 每个网格包含一个训练样本, 网格区域内的点以该样本为最 近邻:

最近邻分类的简化

• 最近邻分类的错误率

o 可以证明,当训练样本数 $n \to \infty$ 时,最近邻分类错误率P与贝叶斯分类错误率P*之间的关系满足:

$$P^* \le P \le P^* \left(2 - \frac{c}{c - 1} P^* \right)$$

 \circ 一般来说,训练样本数n越大,最近邻分类的性能越好;

• 最近邻分类的计算复杂度

- o 时间复杂度和空间复杂度均为: O(dn), d为特征维数
- o 最近邻分类的简化: 部分距离法, 预分类法, 剪辑近邻法

最近邻分类的简化

• 部分距离法

o 定义部分距离:

$$D_r(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^r (x_i - y_i)^2\right)^{\frac{1}{2}}$$

- o $D_r(\mathbf{x}, \mathbf{y})$ 是r的单调不减函数;
- o 令 D_{min} 为当前搜索到的最近邻距离;
- o 如果 $D_r(\mathbf{x}, \mathbf{x}_i) > D_{min}$, 则 $D_d(\mathbf{x}, \mathbf{x}_i) > D_{min}$;
- o \mathbf{x}_i 不是 \mathbf{x} 的最近邻,无需继续计算 $D_d(\mathbf{x},\mathbf{x}_i)$;

ο 预分类

- 选择*m*个代表样本点,各 代表一部分样本;
- o 待识别模式x在代表样本 中寻找最近邻,然后在 其代表的样本集中寻找 实际的最近邻;
- o 这种方法是一个次优的 搜索算法:

Algorithm 5 最近邻剪辑算法

Input: 训练集D

Output: 简化的Voronoi图

1: 构造训练集D的完整Voronoi图:

2: **for** i = 1 to n **do**

寻找样本 \mathbf{x}_i 在Voronoi图上的所有邻居; 3:

如果邻居中存在与 \mathbf{x}_i 不同类别的样本,则标记 \mathbf{x}_i ; 4:

5: end for

6: 样本集中删除未被标记的样本;

7: 用剩余的样本重新构造Voronoi图:

剪辑近邻法

靠近分类边界的样本被保留,远离的样本被剪辑

剪辑前

剪辑后

• 最近邻分类也可以采用神经网络实现

RCE网络的学习

Algorithm 6 RCE Training

Input: 训练集 $D = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$,最大半径 λ_m ,距离裕量 ϵ

Output: 模式层权值 $\{\mathbf{w}_i\}$, 半径 $\{\lambda_i\}$, 类别层权值 $\{\mathbf{a}_j\}$

- 1: 初始化类别层权值: $\mathbf{a}_{j} = \mathbf{0}, j = 1, \dots, c$
- 2: for i = 1 to n do
- 3: 学习模式层权值: $\mathbf{w}_i = \mathbf{x}_i$
- 4: 如果 $\mathbf{x}_i \in \omega_j$,则类别层权值 $a_{ji} = 1$;
- 5: 寻找非 ω_j 类的最近邻: $\hat{\mathbf{x}} = \arg \max_{\mathbf{x}' \notin \omega_j} D(\mathbf{x}_i, \mathbf{x}')$
- 6: 设置半径: $\lambda_i = \min [D(\mathbf{x}_i, \hat{\mathbf{x}}) \epsilon, \lambda_m]$
- 7: end for

RCE网络

RCE网络对空间的划分,空白区域无法判别

RCE网络的分类

Algorithm 7 RCE Classification

Input: 模式层权值 $\{\mathbf{w}_i\}$, 半径 $\{\lambda_i\}$, 类别层权值 $\{\mathbf{a}_j\}$

Output: 待识别模式x的类别

1: 初始化类别层输出: $y_j = 0$, $j = 1, \dots, c$

2: 计算模式层输出: $z_i = \begin{cases} 1, & D(\mathbf{x}, \mathbf{w}_i) < \lambda_i \\ 0, & \text{otherwise} \end{cases}$, $i = 1, \dots, n$

3: 计算类别层输出: $y_j = \mathbf{a}_j^t \mathbf{z} = \sum_{i=1}^n a_{ji} z_i$, $j = 1, \dots, c$

4: if 存在 $y_k \neq 0$,而 $y_i = 0, \forall j \neq k$ then

5: 判别: $\mathbf{x} \in \omega_k$;

6: else

7: 无法判别;

8: end if

End