NTNU 影像處理 HW11

廖家緯

2020.5.27

1. Prove $\overline{A \oplus B} = \overline{A}\Theta \widehat{B}$.

Proof:

$$\overline{A \oplus B} = \overline{\{x | (\widehat{B})_x \cap A \neq \emptyset\}} \text{ (by definition)}$$

$$= \{x | (\widehat{B})_x \cap A = \emptyset\}$$

$$= \{x | (\widehat{B})_x \subseteq \overline{A}\}$$

$$= \overline{A} \ominus \widehat{B} \text{ (by definition)}$$

2. Prove $\overline{A \circ B} = \overline{A} \bullet \widehat{B}$.

Proof:

$$\overline{A \circ B} = \overline{(A \Theta B) \oplus B} \text{ (by definition)}$$

$$= \overline{(A \Theta B)} \Theta \widehat{B} \text{ (by 1.)}$$

$$= (\overline{A} \oplus \widehat{B}) \Theta \widehat{B} \text{ (by property)}$$

$$= \overline{A} \bullet \widehat{B} \text{ (by definition)}$$

3. Prove if $A \subseteq C$, then $(A \circ B) \subseteq (C \circ B)$.

Proof:

Let $x \in (A \circ B)$. By definition, $x \in (A \ominus B) \oplus B$.

Then x = p + q for some $p \in (A\Theta B)$ and $q \in B$

Note that

 $p \in (A\Theta B)$... by definition, $p \in A$ and $B_p \subseteq A$

Moreover, $A \subseteq C$ $\therefore p \in C$ and $B_p \subseteq C \Longrightarrow p \in (C \ominus B)$

Hence x = p + q for some $p \in (C\Theta B)$ and $q \in B$

 $\implies x \in (C\Theta B) \oplus B$ (by definition)

 $\implies x \in (C \circ B)$ (by definition)

Therefore, $(A \circ B) \subseteq (C \circ B)$.

4. Prove if $A \subseteq C$, then $(A \bullet B) \subseteq (C \bullet B)$.

Lemma.

If $A \subseteq C$, then $(A \oplus B) \subseteq (C \oplus B)$.

Proof:

Let $x \in (A \oplus B)$. Then x = p + q for some $p \in A$ and $q \in B$

 $\therefore A \subseteq C$ $\therefore p \in C$ and $q \in B$ $\Longrightarrow x = p + q$ for some $p \in C$ and $q \in B$.

Hence $x \in (C \oplus B)$. Therefore, $(A \oplus B) \subseteq (C \oplus B)$

Proof:

Let $x \in (A \bullet B)$. By definition, $x \in (A \oplus B)\Theta B$.

Then $x \in (A \oplus B)$ and $B_x \subseteq (A \oplus B)$

Moreover, $A \subseteq C$ \therefore by Lemma, $x \in (C \oplus B)$ and $B_x \subseteq (C \oplus B)$

 $\Longrightarrow x \in (C \oplus B)\Theta B$. (by definition)

 $\implies x \in (C \bullet B)$ (by definition)

Therefore, $(A \bullet B) \subseteq (C \bullet B)$.