Particle spectrograph

Wave operator and propagator

${\tau_1^\#}^2_\alpha$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2k^2}{(1+2k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0 $\frac{\sqrt{2}}{t_1 + 2k^2t_1}$		$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$r_1^{\#1} + \alpha \beta$	$r_1^{\#2} + \alpha \beta$	$_{1}^{\#1}$ $\dagger^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

Quadratic (free) action
$S_{F} == \iiint (\frac{1}{6} (-6t_{1} \omega_{\kappa \alpha}^{\alpha \prime} \omega_{\kappa \alpha}^{\kappa} - 6t_{1} \omega_{\kappa \lambda}^{\kappa \lambda} \omega_{\kappa \lambda}^{\prime} + 6f^{\alpha \beta} \tau_{\alpha \beta} + 6\omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} +$
$4 r_2 \partial^\beta \omega^{\theta \alpha}_{ \kappa} \partial_\theta \omega_{\alpha\beta}^{ \kappa} - 2 r_2 \partial_\theta \omega_{\alpha\beta}^{ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} - 4 r_2 \partial_\theta \omega_{\alpha\beta}^{ \kappa} \partial_\kappa \omega^{\theta\alpha\beta} -$
$3t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_\alpha^{\ \theta} - 3t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_\alpha^{\ \theta} - 3t_1\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\alpha\lambda} + 6t_1\ \omega_{\kappa\alpha}^{\ \alpha}\partial^\kappa f'_{\ \ \prime} +$
$6t_1\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^\kappa f^{\prime}_{\;\;\prime}+12t_1\partial^\alpha f_{\;\kappa\alpha}\;\partial^\kappa f^{\prime}_{\;\;\prime}-6t_1\partial_\kappa f^\lambda_{\;\;\lambda}\partial^\kappa f^{\prime}_{\;\;\prime}+12t_1\;\omega_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$
$6t_1\ \omega_{,\alpha}^{\ \alpha}\ \partial^\kappa f'_{\ \kappa} - 6t_1\ \omega_{,\lambda}^{\ \lambda}\ \partial^\kappa f'_{\ \kappa} + 3t_1\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\lambda\alpha} + 3t_1\partial_\kappa f_{\ \theta}^{\ \lambda}\partial^\kappa f_{\lambda}^{\ \theta} +$
$3t_1\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta}-6t_1\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa}+2r_2\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta}+4r_2\partial_\kappa \omega^{\theta\alpha\beta}\partial^\kappa \omega_{\alpha\beta\theta}-$
$4 r_2 \partial^{eta} \omega_{_{l}}^{\ lpha \lambda} \partial_{\lambda} \omega_{_{lpha eta}}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

		$\sigma_0^{\#1}$		$\tau_{0}^{\#1}$		$ au_{0}^{\#2}$	c	$J_0^{\#1}$				
$\sigma_{0}^{\#1}$	+ - (1+	$\frac{1}{(-2k^2)^2}$	$\frac{}{t_1} \left \frac{}{} \right $	<i>i</i> √2 k +2 k ²) ²	$\frac{}{t_1}$	0		0				$J_{2}^{\#1}\alpha\beta$
$ au_{0}^{\#1}$	† - 	$i \sqrt{2} k$ $-2 k^2)^2$		$-\frac{2k^2}{(1+2k^2)^2t_1}$		0		0	$\sigma_2^{\#}$	‡†α ^μ		2 -2 k ²) ²
$ au_{0}^{\#2}$		0		0		0		0	$ au_2^{\#1} \dagger^{lpha}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2}$	
$\sigma_0^{\#1}$	+	0		0		0	$\frac{1}{k^2}$	$\frac{1}{r_2-t_1}$	$\sigma_2^{\#1}$	$\dagger^{\alpha\beta\lambda}$	(0
$f_{1}^{#2}$	0	0	0	$i k t_1$	c		0	0				
$f_{1^-}^{\#1} \alpha$	0	0	0	0	U	,	0	0				
$\omega_{1^{-}}^{\#2}{}_{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	С)	0	0				
$\omega_{1^-}^{\#1}{}_{lpha}$ (0	0	0	- [1]	t1	٧2	0	$-ikt_1$	$\omega_{0}^{\#1}$	0	0	0
									$f_{0}^{#2}$	0	0	0
$f_1^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	C		0	0	f	t_1	.1	
$\omega_{1}^{\#2}_{+lphaeta}\;f_{1}^{\#1}_{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	C	>	0	0	$f_{0}^{\#1}$	$i\sqrt{2}\ kt_1$	$-2 k^2 t_1$	0
$\omega_1^{\#1}{}_+^{lpha}$	$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	C		0	0	$\omega_{0}^{\#1}$	-t ₁	$\sqrt{2} kt_1$	0
	$+^{\alpha \beta}$	$\dagger^{\alpha \beta}$	$\dagger^{\alpha \beta}$	$+^{\alpha}$	+α	- `	- + _α	+α			<u> –</u>	
	$\omega_1^{\#1}$ \dagger	$\omega_1^{\#2}$ †	$f_{1}^{\#1}$ †	$\omega_{1}^{\#1} +^{\alpha}$	$a^{*2} + \alpha$	3	$f_{1}^{\#1}$	$f_{1}^{#2}$		$\omega_{0}^{\#1} \dagger$	$f_{0}^{\#1}$ †	$f_{0}^{#2}$ †

$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$				
0	$_{2^{-}}^{\#1}\alphaeta\chi$	0	0	<u>t1</u> 2
0	$\alpha eta $	اري ا	1	
$\frac{2}{t_1}$	$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
t_1	$\omega_{2+}^{\#1}_{\alpha\beta} \ f_{2+}^{\#1}_{\alpha\beta} \ \omega_{2-}^{\#1}_{\alphaeta\chi}$	2 2	$\frac{ikt_1}{\sqrt{2}}$	0
		$\lambda_{2}^{\#1} + \alpha \beta$	$_{2}^{r\#1}$ $\dagger^{\alpha\beta}$	$_{2}^{#1}$ $+^{\alpha\beta\chi}$

 $au_2^{\#1}{}_{lphaeta}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{4k^2}{(1+2k^2)^2t_1}$

0

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\tau_{0+}^{#2} == 0$	1				
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1				
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	3				
$\tau_{1}^{\#1\alpha} == 0$	3				
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3				
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 ik\sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5				
Total constraints:	16				

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$