When randomness opens new possibilities: Acknowledging the stimulus sampling variability in Experimental Psychology

Ottavia M. Epifania^{1,2,3}, Pasquale Anselmi¹, Egidio Robusto¹

¹ University of Padova (IT)

² Psicostat Group, Univeristy of Padova (IT)

³ Catholic University of the Sacred Heart, Milan (IT)

Stimuli are fixed, respondents are random

Introduction

Stimuli are fixed, respondents are random

Introduction

What if

Generalized linear model for dichotomous responses

Generalized linear model for dichotomous responses

Random effects and random factors

Linear component in a (G)LM:

$$\eta = \beta X,\tag{1}$$

where β indicates the coefficients of the fixed intercept and slope(s), and X is the model-matrix.

Linear components in a (Generalized) Linear Mixed-Effects Model (GLMM):

$$\eta = \beta X Z d, \tag{2}$$

where Z is the matrix and d is the vector of the random effects (not parameters!)

Random effects and random factors

Linear component in a (G)LM:

$$\eta = \beta X,\tag{1}$$

where β indicates the coefficients of the fixed intercept and slope(s), and X is the model-matrix.

Linear components in a (Generalized) Linear Mixed-Effects Model (GLMM):

$$\eta = \beta X Z d, \tag{2}$$

where Z is the matrix and d is the vector of the random effects (not parameters!)

Best Linear Unbiased Predictors

The Rasch model

$$P(x_{ps} = 1 | \theta_p, b_s) = \frac{\exp(\theta_p - b_s)}{1 + \exp(\theta_p - b_s)}$$

where:

 θ_p : ability of respondent p (i.e., latent trait level of respondent p) b_s : difficulty of stimulus s (i.e., "challenging" power of stimulus s)

The Rasch model

$$P(x_{ps} = 1 | \theta_p, b_s) = \frac{\exp(\theta_p - b_s)}{1 + \exp(\theta_p - b_s)}$$

where:

 θ_p : ability of respondent p (i.e., latent trait level of respondent p) b_s : difficulty of stimulus s (i.e., "challenging" power of stimulus s)

$$P(x_{ps} = 1) = \frac{\exp(\theta_p - b_s)}{1 + \exp(\theta_p - b_s)}$$

$$P(x_{ps} = 1) = \frac{\exp(\theta_p + b_s)}{1 + \exp(\theta_p + b_s)}$$

The Rasch model

$$P(x_{ps} = 1 | \theta_p, b_s) = \frac{\exp(\theta_p - b_s)}{1 + \exp(\theta_p - b_s)}$$

where:

 θ_p : ability of respondent p (i.e., latent trait level of respondent p) b_s : difficulty of stimulus s (i.e., "challenging" power of stimulus s)

Standard

$$P(x_{ps} = 1) = \frac{\exp(\theta_p - b_s)}{1 + \exp(\theta_p - b_s)}$$

GLM

$$P(x_{ps} = 1) = \frac{\exp(\theta_p + b_s)}{1 + \exp(\theta_p + b_s)}$$

Experiment

Random stimuli in Experimental Psychology

Experiment

The stimuli

12 Object stimuli

White people faces

Black people faces

16 Attribute stimuli

Positive attributes

Good, laughter, pleasure, glory, peace, happy, joy, love

Negative attributes

Evil, bad, horrible, terrible, nasty, pain, failure, hate

The task

Two experimental conditions

White-Good/Black-Bad (WGBB): Black-Good/White-Bad (BGWB): 60 trials

Models

Random stimuli in Experimental Psychology

Models

Models

The expected response y for the observation $i=1,\ldots,I$ for respondent $p=1,\ldots,P$ on stimulus $s=1,\ldots,S$ in condition $c=1,\ldots,C$:

Model 1:

$$y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{\rho[i]} + \alpha_{s[i]} + \varepsilon_i) \ lpha_{
ho} \sim \mathcal{N}(0, \sigma_{
ho}^2), \ lpha_{
ho} \sim \mathcal{N}(0, \sigma_s^2).$$

Model 2:

$$y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{\rho[i]} + \beta_{s[i]}c_i + \varepsilon_i)$$

 $\alpha_{\rho} \sim \mathcal{N}(0, \sigma_{\rho}^2),$
 $\beta_s \sim \mathcal{MVN}(0, \Sigma_{sc}).$

Model 3:

$$\begin{aligned} y_i &= \textit{logit}^{-1} (\alpha + \beta_c X_c + \alpha_{s[i]} + \beta_{p[i]} c_i + \varepsilon_i) \\ &\alpha_s \sim \mathcal{N}(0, \sigma_s^2), \\ &\beta_p \sim \mathcal{MVN}(0, \Sigma_{pc}). \end{aligned}$$

Accuracy: $\epsilon \sim Logistic(0, \sigma^2)$

Models

The expected response y for the observation i = 1, ..., I for respondent p = 1, ..., Pon stimulus s = 1, ..., S in condition c = 1, ..., C:

Model 1:

$$y_i = logit^{-1}(\alpha + \beta_c X_c + \alpha_{p[i]} + \alpha_{s[i]} + \varepsilon_i)$$

 $\alpha_p \sim \mathcal{N}(0, \sigma_p^2),$
 $\alpha_s \sim \mathcal{N}(0, \sigma_s^2).$

Model 2:

$$y_{i} = logit^{-1}(\alpha + \beta_{c}X_{c} + \alpha_{p[i]} + \beta_{s[i]}c_{i} + \varepsilon_{i})$$

$$\alpha_{p} \sim \mathcal{N}(0, \sigma_{p}^{2}),$$

$$\beta_{s} \sim \mathcal{MVN}(0, \Sigma_{sc}).$$

Model 3:

$$y_{i} = logit^{-1}(\alpha + \beta_{c}X_{c} + \alpha_{s[i]} + \beta_{p[i]}c_{i} + \varepsilon_{i})$$

$$\alpha_{s} \sim \mathcal{N}(0, \sigma_{s}^{2}),$$

$$\beta_{p} \sim \mathcal{MVN}(0, \Sigma_{pc}).$$

Accuracy: $\epsilon \sim Logistic(0, \sigma^2)$

Fixed Effects

Random structure

Discussion

Discussion

Results

Random stimuli in Experimental Psychology

Results

Results

Model 2 is the least wrong model

Rasch model: Model 2

Results

Condition-specific easiness

HIGHLY CONTRIBUTING STIMULI

joy evil BGWB WGBB WGBB WGBB

LOWLY CONTRIBUTING STIMULI

- Improve generalizability of the results to other sets of stimuli
- Control for random variance in the data
- Allow for obtaining a Rasch-like parametrization of the data
- Possibility of extending the (linear) model to other dependent variables (e.g., response times)