1. 设m=737, a=635, 利用广义欧几里得除法,求整数a', $1 \le a' < m$, 使得 $aa' \equiv 1 \pmod{m}$.

欲求
$$aa'=1 (mod m)$$
的 a' ; 即 $a'a+km=1$,求 a' ,利用广义欧几里得除法可得到 $sm+ta=(m,a)$ 737 = $1*635+102$ 635 = $6*102+23$ $102=4*23+10$ 23 = $2*10+3$ $10=3*3+1$ 3 = $3*1+0$ —共是 $n+2=6$ 项, $n=4$,(737,635) = 1 于是 $q_0=1$, $q_1=6$ …... $q_n=3$, $q_{n+1}=1$ $s_{-2}=1$, $t_{-2}=0$ $s_{-1}=0$, $t_{-1}=1$ 所以, $s_0=-q_0s_{-1}+s_{-2}=1$, $t_0=-q_0t_{-1}+t_{-2}=-1$ 进而, $s_4=193$, $t_4=-224$ 所以 $193*737-224*635=1$, $-224*a+193*737=1 (mod 737)$ $a'=-224$

2. 证明: 如果p和q是不同的素数,则 $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

由己知,
$$(p,q)=1, arphi(p)=p-1, arphi(q)=q-1$$

由欧拉定理, $p^{arphi(q)}\equiv 1 (mod\,q)$,即 $p^{q-1}\equiv 1 (mod\,q)$,对 q 同理
因此, $p^{q-1}+q^{p-1}\equiv 1 (mod\,p)$
 $p^{q-1}+q^{p-1}\equiv 1 (mod\,q)$
而 $[p,q]=rac{pq}{(p,q)}=pq$;所以原式成立

3. 证明: m是大于1的正整数,a是与m互素的整数,且(a-1,m)=1,那么 $1+a+a^2+\cdots+a^{\varphi(m)-1}\equiv 0 \pmod{m}$.

$$(a,m)=1$$
,由欧拉定理, $a^{\varphi(m)}\equiv 1 (mod\, m)$ 因而 $a^{\varphi(m)}-1=(a-1)(1+a+a^2+\ldots+a^{\varphi(m)-1})\equiv 0 (mod\, m)$ 所以 $m|a^{\varphi(m)}-1$ $m|(a-1)(1+a+a^2+\ldots+a^{\varphi(m)-1})$ 注意到, $(a-1,m)=1$ 所以,根据定理, $m|(1+a+a^2+\ldots+a^{\varphi(m)-1})$ 简要说明: 由于 $m|(a-1)(1+a+a^2+\ldots+a^{\varphi(m)-1}),$ $(m,(a-1)(1+a+a^2+\ldots+a^{\varphi(m)-1}))=m, \qquad (m,a-1)=1$,所以 $(m,(a-1)(1+a+a^2+\ldots+a^{\varphi(m)-1}))=(m,(1+a+a^2+\ldots+a^{\varphi(m)-1}))$ 所以, $m|(1+a+a^2+\ldots+a^{\varphi(m)-1})$ 原式成立

4. 证明:设p为奇素数, $a_0,a_1,...,a_{p-1};b_0,b_1,...,b_{p-1}$ 为模p的两组完全剩余系.求证: $a_0b_0,a_1b_1,...,a_{p-1}b_{p-1}$ 不是模p的完全剩余系.

5. 求一次同余方程 $6x \equiv 3 \pmod{9}$ 的所有解.

化简同余方程,(6,3,9)=3原方程等价为 $2x\equiv 1 (mod\,3)$ 步骤一:验证是否有解(2,3)=1|1;即原式的(6,9)=3|3;因此原式有解步骤二:求解简单特解(a,m)=(6,9)=3,方程左右除以3就是 $2x\equiv 1 (mod\,3)$ 解得 $x_0=2 (mod\,3)$ 步骤三:根据特解求得原解 $x\equiv x_0+t\frac{m}{(a,m)}=2+3t (mod\,9)$ $x\equiv 2,5,8 (mod\,9)$