UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa Cálculo III

29	de	Setembro	de	2016

1	
2	
3	
4	
5	
Total	

Aluno(a):

- (1) Calcule a integral dupla $\int_0^{\ln(2)} \int_0^1 xye^{y^2x} dydx$.
- (2) Calcule a integra tripla $\iiint_B 2y \operatorname{sen}(xy) \ dV$, onde B é a região delimitada pelos planos $x=\pi$, $y = \frac{\pi}{2}$, $z = \frac{\pi}{3}$ e pelos planos coordenados.
- (3) Utilizando coordenadas polares, calcule o volume do sólido delimitado por z = 0 e $z = 1 x^2 y^2$.
- (4) Calcule o trabalho realizado pelo campo $F(x,y) = (ye^{xy}, xe^{xy})$ ao mover uma partícula do ponto (-1,1) até o ponto (2,0) ao longo do segmento de reta que liga esses dois pontos.
- (5) Sejam $F(x,y)=\left(\frac{-y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$ um campo vetorial definido para $(x,y)\neq (0,0),\ C$ o círculo unitário de centro na origem e D a região delimitada pela curva C.

 - (a) Mostre que $\int_C P \ dx + Q \ dy = 2\pi$. (b) Mostre que $\iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial x}\right) \ dA = 0$.
 - (c) Por que os itens acima não contradizem o Teorema de Green?

Boa Prova!