Wojskowa Akademia Techniczna Wydział Elektroniki

Projektowanie aplikacji sieciowych

Zadania laboratoryjne

Opracował: ppłk dr inż. Jarosław Krygier mgr inż. Sebastian Szwaczyk mgr inż. Jakub Banaszek

Spis treści

S	ois treści	2
Р	rzygotowanie do ćwiczeń laboratoryjnych:	3
1.	Laboratorium 1 (4 godz.) – gniazdo typu RAW	4
	Zadanie 1. Operacje na gnieździe typu RAW	4
	Zadanie 2. Sniffer (+ Zadanie 1.)	4
	Zadanie 3. Generator (+ Zadanie 1. + Zadanie 2.)	5
2.	Laboratorium 2 (4 godz.) – opcje wspomagające wykorzystanie gniazd	6
	ZADANIE 1. Gniazdo nieblokowane	6
	ZADANIE 2. Wykorzystanie serwera DNS (+ Zadanie 1.)	6
	ZADANIE 3. Komunikacja międzyprocesowa (+ Zadanie 1. + Zadanie 2.)	6
3.	Laboratorium 3 (4 godz.) – Serwer TCP z wykorzystaniem funkcji select	7
	ZADANIE 1. Serwer TCP	7
	ZADANIE 2. Serwer TCP – funkcja select (+ Zadanie 1.)	7
	ZADANIE 3. Serwer TCP – broadcast (+ Zadanie 1. + Zadanie 2.)	7
4.	Zadanie projektowe - seminarium (8 godz.)	8
	4.1. Przygotowanie do ćwiczenia:	8
	4.2. Realizacja ćwiczenia:	8
	Projekt serwera i klienta UDP	8
	Projekt serwera i klienta TCP	8
	Projekt serwera i klienta UDP oraz serwera i klienta TCP	9
	4.3 Wymagania:	9

Przygotowanie do ćwiczeń laboratoryjnych:

- 1. Pobrać, zainstalować i zapoznać się z oprogramowaniem Eclipse.
- 2. Zapoznać się z materiałami z wykładów samodzielnie przećwiczyć zadania dodatkowe.
- 3. Zapoznać się z podstawowymi poleceniami systemu pomocy Linux.

1. Laboratorium 1 (4 godz.) – gniazdo typu RAW

Celem ćwiczenia jest zapoznanie studentów z wykorzystaniem gniazd typu RAW, zarówno do odbioru jak i nadawania ramek Ethernet.

(ocena 3)

Zadanie 1. Operacje na gnieździe typu RAW

- 1. Utworzyć nowy projekt dla języka C w IDE Eclipse typu "Hello world ANSI C Project".
- Utworzyć gniazdo typu RAW w domenie AF_INET: socket(AF_INET, SOCK_RAW, IPPROTO ICMP);
- 3. Za pomocą funkcji setsockopt() i opcji SO_BINDTODEVICE, przypisać gniazdo do zadanego interfejsu.
- 4. W pętli wypisywać a) liczbę odbieranych bajtów za pomocą funkcji recvfrom(), b) wartości HEX odebranych danych. Których protokołów nagłówki odebrano?
- 5. Przetestować działanie gniazda RAW w domenie AF_INET dla protokołów IPPROTO_UDP, IPPROTO_TCP, IPPROTO_RAW.
- 6. Utworzyć gniazdo typu RAW w domenie AF_PACKET: socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL)).
- 7. Za pomocą funkcji setsockopt() i opcji SO_BINDTODEVICE, przypisać gniazdo do zadanego interfejsu.
- 8. W pętli wypisywać a) liczbę odbieranych bajtów za pomocą funkcji recvfrom(), b) wartości HEX odebranych danych. Których protokołów nagłówki odebrano?
- Utworzyć gniazdo typu RAW w domenie AF_INET6: socket(AF_INET6, SOCK_RAW, IPPROTO_ICMPV6);
- 10. Za pomocą funkcji setsockopt() i opcji SO_BINDTODEVICE, przypisać gniazdo do zadanego interfejsu.
- 11. W pętli wypisywać a) liczbę odbieranych bajtów za pomocą funkcji recvfrom(), b) wartości HEX odebranych danych. Których protokołów nagłówki odebrano?

(ocena 4)

Zadanie 2. Sniffer (+ Zadanie 1.)

Zadanie ma na celu odebranie i wyświetlenie zawartości ramki Ethernet.

- 12. Utworzyć nowy projekt dla języka C w IDE Eclipse typu "Hello world ANSI C Project".
- 13. Utworzyć gniazdo typu RAW pozwalające na odbiór wszystkich ramek Ethernetowych z interfejsu zadanego przez prowadzącego.
- 14. Przygotować struktury pozwalające na przechowanie nagłówków Ethernet i IPv4.
- 15. Zadeklarować pętlę nieskończoną, w której:
- a. Odbierać kolejne pakiety z interfejsu sieciowego;
- b. Filtrować tylko pakiety IPv4;
- c. Odwzorować odebrany ciąg bajtów na utworzone wcześniej struktury;
- d. Wypisać zawartość struktur;

(ocena 5)

Zadanie 3. Generator (+ Zadanie 1. + Zadanie 2.)

Zadanie ma na celu wygenerowanie dowolnej ramki.

- 1. Utworzyć nowy projekt dla języka C w IDE Eclipse typu "Hello world ANSI C Project".
- 2. Utworzyć gniazdo typu RAW pozwalające na wysłanie dowolnie sformatowanej ramki.
- 3. Uzupełnić struktury stworzone w zadaniu nr 1, tak aby nadawana ramka była pakietem IPv4.
- 4. Jako dane w ramce IPv4 wpisać tekst podany przez prowadzącego.
- 5. Wysłać ramkę do interfejsu podanego przez prowadzącego.
- 6. Przechwycić wysłany pakiet w wiresharku i porównać czy przechwycone wartości zgadzają się z wartościami ustawionymi w strukturach.

2. Laboratorium 2 (4 godz.) - opcje wspomagające wykorzystanie gniazd

Celem laboratorium jest zapoznanie studentów z dodatkowymi opcjami i funkcjami wspomagającymi pracę z gniazdami.

(ocena 3)

ZADANIE 1. Gniazdo nieblokowane

- 1. Utworzyć nowy projekt dla języka C w IDE Eclipse typu "Hello world ANSI C Project".
- 2. Stworzyć program klient TCP
- 3. Klient ma zestawiać połączenia do serwera na zdefiniowany numer portu serwera i mieć możliwość wysyłania komunikatów do serwera
- 4. Wykorzystaj funkcje socket(), connect(), send(), read(), write() i close()
- 5. Stworzyć plik serwera TCP
- 6. Serwer ma odbierać wiadomości przesłane od klienta
- 7. Wykorzystaj funkcje socket() bind() listen () write () read () i close() serwer ma oczekiwać na połączenie z klientem, akceptować nowe połączenia i blokować po zamknięciu połączenia z klientem
- 8. Zmodyfikować odpowiednio utworzone gniazda wykorzystują funkcje fcntl(deskryptor gniazda, przeprowadzona operacja, argument), tak aby gniazdo było nieblokowalne, przykład:

```
ifcntl(sock, F_GETFL),
ifcntl(sock, F SETFL, O NONBLOCK)
```

(ocena 4)

ZADANIE 2. Wykorzystanie serwera DNS (+ Zadanie 1.)

- 1. Utworzyć nowy projekt dla języka C w IDE Eclipse typu "Hello world ANSI C Project".
- 2. Program ma wysłać zapytanie DNS, wykorzystaj w tym celu funkcje gethostbyname() / getaddrinfo()
- 3. Program musi być odpowiednio zabezpieczony, jeżeli adres podany jest blednie powinien wyświetlić odpowiedni komunikat
- 4. Finalnym wynikiem ma być wyświetlony w konsoli adres IP podanej strony

(ocena 5)

ZADANIE 3. Komunikacja międzyprocesowa (+ Zadanie 1. + Zadanie 2.)

- 1. Utworzyć nowy projekt dla języka C w IDE Eclipse typu "Hello world ANSI C Project".
- 2. Utworzyć proces
- 3. Utworzyć proces potomny do wcześniej wywołanego procesu
- 4. Do komunikacji miedzy procesami wykorzystaj mechanizm pamięci dzielonej:
 - a. tworzenie obszaru
 - b. ustalanie rozmiaru
 - c. odwzorowanie pamięci
 - d. odłączenie się od segmentu
- 5. Utwórz trzy przykładowe komunikaty miedzy procesem potomnym a rodzicem

3. Laboratorium 3 (4 godz.) – Serwer TCP z wykorzystaniem funkcji select Celem laboratorium jest zapoznanie studentów z działaniem funkcji select na przykładzie serwera TCP.

(ocena 3)

ZADANIE 1. Serwer TCP

- 1. Utworzyć nowy projekt dla języka C w IDE Eclipse typu "Hello world ANSI C Project".
- 2. Otworzyć gniazdo pozwalające na komunikację TCP
- 3. Nasłuchiwać połączeń na wybranym porcie
- 4. Po nawiązaniu połączenia wysłać wiadomość powitalną do klienta
- 5. Oczekiwać na informacje od klienta i odpowiadać echem

Poprawność działania serwera należy zwerifkować za pomocą klienta telnet.

(ocena 4)

ZADANIE 2. Serwer TCP – funkcja select (+ Zadanie 1.)

1. Do projektu stworzonego w zadaniu 1, dodać możliwość obsługi wielu klientów naraz, za pomocą funkcji select

Poprawność działania serwera należy zweryfikować za pomocą kilku jednoczesnych połączeń klientów telnet.

(ocena 5)

ZADANIE 3. Serwer TCP - broadcast (+ Zadanie 1. + Zadanie 2.)

- 1. Do projektu stworzonego w zadaniu 2, dodać możliwość wysłania wiadomości do wszystkich aktualnie podłączonych klientów.
- 2. Należy jednocześnie oczekiwać na dane od klientów (i odpowiadać im echem) jak i na dane wprowadzone do konsoli serwera.
- 3. Po wykryciu wprowadzania danych w konsoli serwera, należy odebraną wiadomość przesłać do wszystkich aktualnie podłączonych klientów.

Poprawność działania serwera należy zweryfikować za pomocą kilku jednoczesnych połączeń klientów telnet.

4. Zadanie projektowe - seminarium (8 godz.)

Celem zadania projektowego jest stworzenie klienta i wieloprocesowego serwera TCP.

4.1. Przygotowanie do ćwiczenia:

W ramach przygotowania do ćwiczenia należy zapoznać się ze sposobem tworzenia zarówno aplikacji klienckich jak i serwerów, opartych o protokół TCP i UDP, w języku C.

4.2. Realizacja ćwiczenia:

(ocena 3)

Projekt serwera i klienta UDP

- 1. Każdy ze studentów realizuje projekt samodzielnie.
- 2. Program serwera UDP ma realizować następujące funkcje:
 - a. możliwość podania z linii poleceń portu, na, którym ma nasłuchiwać;
 - b. możliwość rozpoznawania wielu klientów;
 - c. dla każdego z klientów serwer tworzy listę wiązaną, w której przechowuje kolejne wartości liczb całkowitych przesłane przez klienta;
 - d. na żądanie klienta serwer wykonuje jedną z operacji:
 - i. sumowanie przesłanych liczb
 - ii. odejmowanie przesłanych liczb
 - iii. uszeregowanie rosnąco
 - iv. uszeregowanie malejąco

i wysyła odpowiedź do klienta;

- e. po wykonaniu operacji lista wiązana powinna być kasowana.
- f. po wysłaniu odpowiedzi serwer czeka na kolejne informacje od klienta
- 3. Program klienta ma pozwalać na realizację następujących funkcji:
 - a. możliwość podania z linii poleceń adresu IP i portu, na którym nasłuchuje serwer
 - b. możliwość przesłania liczb wprowadzonych przez użytkownika do serwera
 - c. możliwość żądania wykonania przez serwer jednej z podanych w punkcie 2.d operacji
 - d. wyświetlenie odebranego wyniku
 - e. możliwość podjęcia decyzji przez użytkownika o zakończeniu lub dalszym działaniu programu

(ocena 4)

Projekt serwera i klienta TCP

- 4. Każdy ze studentów realizuje projekt samodzielnie.
- 5. Program serwera TCP ma realizować następujące funkcje:
 - a. możliwość podania z linii poleceń portu, na, którym ma nasłuchiwać;
 - b. możliwość obsługi wielu klientów jednocześnie poprzez wykorzystanie procesów potomnych;

- c. dla każdego z klientów serwer tworzy listę wiązaną, w której przechowuje kolejne wartości liczb całkowitych przesłane przez klienta;
- d. na żądanie klienta serwer wykonuje jedną z operacji:
 - i. sumowanie przesłanych liczb
 - ii. odejmowanie przesłanych liczb
 - iii. uszeregowanie rosnąco
 - iv. uszeregowanie malejąco

i wysyła odpowiedź do klienta;

- e. po wysłaniu odpowiedzi serwer czeka na kolejne informacje od klienta
- f. po zakończeniu połączenia przez klienta proces obsługujący go powinien zostać zamknięty
- 6. Program klienta ma pozwalać na realizację następujących funkcji:
 - a. możliwość podania z linii poleceń adresu IP i portu, na którym nasłuchuje serwer
 - b. możliwość nawiązania połączenia TCP z serwerem
 - c. możliwość przesłania liczb wprowadzonych przez użytkownika do serwera
 - d. możliwość żądania wykonania przez serwer jednej z podanych w punkcie 2.d operacji
 - e. Wyświetlenie odebranego wyniku
 - f. możliwość podjęcia decyzji przez użytkownika o zakończeniu lub dalszym działaniu programu

(ocena 5)

Projekt serwera i klienta UDP oraz serwera i klienta TCP

4.3. Wymagania:

1. Historia prowadzenia i dokumentacja projektu powinna znajdować się na platformie github.com (lub innej obsługującej system kontroli wersji git).