INFORMATION SECURITY (CA724)

Dr. Ghanshyam S. BopcheAssistant Professor
Dept. of Computer Applications

February 3, 2022

Assets, Vulnerabilities, Threats, and Adversaries

SYLLABUS

- Implementation of Classical Encryption Algorithms
- Implementation of symmetric and public key encryption algorithms.
- Implementation of Hashing algorithms and study of their applications.
- Implementation of authentication algorithms.
- Implementation of Digital Signature using available standards.
- Simulation of various network security issues.
- Simulation of various application security issues.
- Study of well-known vulnerabilities and threats.

Information Security

Protection of data or information

- at rest
- in transit

Security Attributes

Confidentiality

- The property of non-public information remaining accessible only to authorized parties, whether stored (at rest) or in transit (in motion).
- Asset should not be disclosed to unauthorized individuals, entities, and processes.
- Achieved by means of data encryption (use of keyed cryptographic algorithms).

Integrity

- The property of data, software or hardware remaining unaltered, except by authorized parties.
- Maintaining the accuracy and completeness of the asset over its entire life-cycle.
- Achieved by means of error detection and error correction codes (use of cryptographic checksum).

Security Attributes (cont.)

Availability

- The property of information, services and computing resources remaining accessible for authorized use.
- Requires protection from intentional deletion and disruption, including denial of service attacks aiming to overwhelm resources.

Authentication

- Assurance that a principal (users, communicating entities, or system processes), data, or software is genuine relative to expectations arising from appearances or context.
- Entity authentication: provides assurances that the identity of a principal involved in a transaction is as asserted.
- Data origin authentication: provides assurances that the source of data or software is as asserted.

Cryptology

 ${\sf Cryptology} = {\sf Cryptography} + {\sf Cryptnalysis}$

• Cryptography: Devising Cipher

• Cryptnalysis: Breaking Cipher

Traditional Model of Cryptography

Classical Excryption Algorithms

- 1. Caesar Cipher (K-shift method)
- 2. Double Transposition Cipher
- Monoalphabetic substitutional algorithm (use of mapping table)
- 4. Polyalphabetic substitutional algorithm (E.g. Vigenere Cipher)

1) Caesar Cipher

a Alphabets

- b. key = k = 0 − y =
 - @ plaintext = moHOGRAM

2) Double Transposition Cipher

Pouble Transposition Cipher permute the rows and columne of plaintent matrix according to specified permutationes matrix a t t a - Plaintent: attackatdown matrix size= 3x4 | c k a t Ros permutation (11213) -> (31211) Chams permutating (1121314) -> (4121113) Plaintext matrix

2) Double Transposition Cipher (cont.)

3) Monoalphabetic substitutional algorithm

4) Polyalphabetic substitutional algorithm

Goal: Even though plaintext characters are repeated, the ciphertext characters should not be repeated. Hence, the concept of key is introduced, for the first time in the world of information/network security.

4) Polyalphabetic substitutional algorithm (cont.)

Problems based on Caesar Cipher

1. Given that Caesar's cipher is used, find the plaintext from the following ciphertext:

VSRQJHEREVTXDUSHDQWU

2. Find the plaintext and the key from the ciphertext CSYEVIXIVQMREXIH given that the cipher is a simple substitution of the shift-by-n variety.

5) Transpositional Cipher

Goal: Position is required to be disturbed.

Key: MEGABUCK

Plaintext Message: WE ARE DISCUSSING NWS IN ROOM NO

410

5) Transpositional Cipher (cont.)

0	^
Ency	مهرجه
011071	4, J

<u>'</u>											
М	E	G	Α	В	U	С	K				
7	4	5	1	2	8	3	6				
W	Е	Α	R	Е	D	I .	S				
С	U	S	S	- 1	N	G	N				
W	S	- 1	N	R	0	0	M				
N	0	#	4	1	0	-	-				

•	1 ^
Dung	^L'/_^
WWY	ひかつい
νυ. Ι	ווו א

	,												
М	E	G	Α	В	U	С	K						
7	4	5	1	2	8	3	6						
W	Е	Α	R	Е	D	- 1	S						
С	U	S	S	- 1	N	G	N						
W	S	- 1	N	R	0	0	М						
N	0	#	4	1	0	-	-						

6) One-time Pad

	Letter e	h	j	k	1	r	s	t							
	Binary 00	001	010	011	100	101	110	111							
	Plaint	mh:	heil	llif	le.	,							7	2	
	Plaint Bit stri	ng:	001	٥٥٥	011	D 6	00	o1 o	10 111	100	000	101		Sende Nony	01-
Ex-ox.	Onetime	ful:	, 111	(0	l l	16	101	111	(· / /	צייוו
opsubby -			110	10		ФО	اوه	110	116		001	110	101		
1		→	ళ		8	人	h	5	٤ کي	t	لما	ح	8	1	a (
Soon (Cipherter	H	Ho) () ([Ф0	80	j (1	10 110	111	00) U	0 1	۱۰ ۲	Rey
good -	5)				٠.			ا اه	111 10	0 00	0 1	011	100	000	\5
oncuben	One-him	e flest	411	1 (0	111	, (٠, ١							130
17.47		•	٥٥		000	۱٥	D	100	100	010	[1]	loo	000	10]-	الاير
	plantext		→ L	,	e	4	·	1	h	i	t	1	و	8	

Symmetric vs Non-symmetric Key Crypto

Symmetric Key Cryptosystem

Types of Symmetric Encryption

 Stream Cipher: a cryptographic key and algorithm are applied to each binary digit in a data stream, one bit at a time.

$$P = P_1 P_2 P_3, ... \qquad C = C_1 C_2 C_3, ... \qquad K = (k_1, k_2, k_3, ...)$$

$$C_1 = E_{k1}(P_1) \qquad C_2 = E_{k2}(P_2) \qquad C_3 = E_{k3}(P_3) ...$$

$$Plaintext \\ p \ 1 \ a \ i \ n \qquad K = (k_1, k_2, k_3, k_4, k_5) \qquad S \ O$$

$$D = E_{k3} \ (a)$$

Examples: A5/1 (used by GSM/3G Cell Phones, hardware implementation), RC4 (software implementation), etc.

A5/1 Algorithm

Useful Links: A5/1 Algorithm, A5/1 Encryption Algorithm

RC4

- RC4 produces keystream byte at each step.
- Uses a lookup table containing a permutation of the 256-byte values (self-modifying lookup table).
- Applications: SSL, WEP, WPA, etc.
- Important Liks: RC4 Basics, RC4 Encryption Algorithm, Attack on RC4.

• **Block Cipher**: a cryptographic key and algorithm are applied to blocks of data rather than individual bits in a stream.

Examples: DES, 3DES, AES, etc.

Public/Assymetric Key Cryptosystem

