Multidimensional Pattern mining

Based on pattern diversity pattern mining can be classified as: Basic patterns, based on abstraction levels, no of dimensions, types of values handled and based on criteria used to mine.

- Basic Patterns: Frequent pattern, closed, maximal pattern, infrequent and rare patterns.
- Frequent pattern: Pattern satisfies minimum support.
- Closed pattern: No super pattern p' with same support as p
- **Max-pattern:** If there exists no frequent superpattern of p
- **Rare patterns**: Patterns that occur rarely
- Negative patterns: Patterns have negative correlation.

Closed pattern: A pattern X is closed in a dataset D if X is frequent and there exists no proper superitemset Y such that Y has same support as X in D.

$${A}=4, {B}=2,{C}=5,{D}=4,{E}=6$$

$${AB}=1,{AC}=3,{AD}=3,{AE}=4$$

A is closed due to {AE}

Maximal Itemset: A pattern X is not a max-pattern if X is frequent and if there exists at least one superset that is frequent.

$$D={4} {A,D}=3,{C,D}=3 {D,E}=3$$

D is closed but not maximal due to {A,D}

$${ACE}=3 {ABCE}=1$$
 maxiaml frequent

Rare Patterns vs. Negative Patterns

- Rare patterns
 - Very low support but interesting (e.g., buying Rolex watches)
 - How to mine them? Setting individualized, group-based min-support thresholds for different groups of items
- Negative patterns
 - Negatively correlated: Unlikely to happen together
 - Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford Fusion are likely negatively correlated patterns

Based on abstraction levels involved in a pattern:

- Patterns or association rules may have items or concepts residing at high, low, or multiple abstraction levels.
- Suppose a set of association rules mined includes the following rules where X is a variable representing a customer:

buys(X, "computer")⇒buys(X, "printer")

buys(X, "laptop computer")⇒buys(X, "color laser printer")

- The items in the rules when referenced at different abstraction levels called as **multilevel association rules**
- If the rules do not reference items or attributes at different abstraction levels, then called as **single-level association rules**

Based on the number of dimensions involved in the rule or pattern:

- The rules can be **single-dimensional** association rules when the item or attribute refer to only one dimension Eg: buys
- If a rule/pattern references two or more dimensions, such as age, income, and buys it is a multidimensional association rule/pattern
- Example of a multidimensional rule:
- age(X, "20...29") \land income(X, "52K ... 58K") \Rightarrow buys(X, "iPad").

Based on the types of values handled in the rule or pattern:

- If a rule involves associations between the presence or absence of items, it is a **Boolean association rule.** Eg: buys(X, computer")⇒buys(X, "printer")
- If a rule describes associations between quantitative items or attributes, then it is a **quantitative association rule**
- Eg: The quantitative attributes are age and income have been discretized within range

Based on the constraints or criteria used to mine selective patterns

- The patterns or rules when satisfying a set of user-defined constraints
- **Approximate, compressed, near-match** the support count of the near or almost matching itemsets
- Top-k: the k most frequent itemsets for a user-specified value,
- **K redundancy-aware top-k**: The top-k patterns with similar or redundant patterns excluded and so on.

Pattern mining can be classified with respect to kinds of data and applications involved

Based on kinds of data and features to be mined:

- Given relational and data warehouse data, most people are interested in frequent itemsets mining.
- **Sequence pattern:** The order in which items are frequently purchased(pc, camera and memory card).
- **Structural Patterns:** Frequent substructures in a structured data set

Based on application domain-specific semantics:

Both data and applications can be diverse patterns

Mining based on the domain specific semantics

Diversity lead to different pattern mining methodologies

Based on data analysis usage:

- Pattern-based classification: Feature extraction step for classification
- Pattern-based clustering: Clustering high dimensional data
- Recommender system: Pattern used for semantic annotation or contextual analysis.

Mining Diverse Patterns

- Mining Multiple-Level Associations
- Mining Multi-Dimensional Associations
- Mining Quantitative Associations

Mining Multi level Associations

- Associations rules generated from mining data at multiple abstraction levels are called multiple-level or multilevel association rules.
- Multi level can be mined based on concept hierarchies under a support-confidence framework.
- Concept hierarchy defines a sequence of mappings from a set of low-level concepts to higher-level more general concepts.
- A top-down strategy is employed at each concept level, at each level an algorithm for discovering frequent itemsets such as Apriori and its variations is used

Mining Multi level Associations

Mining Multiple-Level Frequent Patterns (Uniform support)

whose ancestors do not have minimum support

- Threshold is high: Miss some meaningful associations occurring at low abstraction levels.
- Low threshold: Generates some uninteresting associations at high abstraction levels.

Mining Multiple-Level Frequent Patterns (Reduced Support)

- Each abstraction has it Uniform Reduced Levelupport support Milk own minimum support $min_sup = 5\%$ $min_sup = 5\%$ [support = 10%] The deeper the abstraction 2% Milk **Skim Milk** Level 2 Level 2 level the smaller min sup = 1%min_sup = [support = [support = corresponding threshold
- Almost all are considered as frequent

Multi-level Association: Flexible Support and Redundancy filtering

 Desirable to user-specific, item or group based minimal thresholds for mining multilevel rules.

Flexible min-support thresholds: Some items are more valuable but less frequent use group-based "individualized" min-support

- Use non-uniform, group-based min-support
- E.g., {diamond, watch, camera}: 0.05%; {bread, milk}: 5%; ...
- Redundancy Filtering: Some rules may be redundant due to "ancestor" relationships between items
 - Laptop computer => HP Printer [support = 8%, confidence = 70%]
 - Dell Laptop computer => HP Printer[support = 2%, confidence = 72%]

The first rule is an ancestor of the second rule

- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor
- Second rule is general rule doesn't not provide any new information pruned

Mining Multi-Dimensional Associations

- Single-dimensional rules (Rule contain single distinct predicate)
 - buys(X, "milk") \Rightarrow buys(X, "bread")
- Multi-dimensional rules (i.e., items in ≥ 2 dimensions or predicates)
 - no repeated predicates
 - age(X, "18-25") ^ occupation(X, "student") ⇒ buys(X, "coke")
 - Hybrid-dimension association rules (repeated predicates)
 - age(X, "18-25") ^ buys(X, "popcorn") ⇒ buys(X, "coke")
- Attributes can be categorical or numerical
 - Categorical Attributes (e.g., profession, product: no ordering among values and infinite number of values): Data cube for inter-dimension association
 - Quantitative Attributes: Numeric, implicit ordering among values—discretization, clustering, and gradient approaches

Data cube – Based Mining of Quantitative Attributes

- Quantitative attributes discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges
- Data cube is well suited for mining of multidimensional association rules with transformed multidimensional data
- Store aggregates in multidimensional space
- The cells of an n-dimensional cuboid correspond to store the support Counts of n-predicate sets
- Mining from data cubes can be much faster

Data cube – Based Mining of Quantitative Attributes

- Fetch the aggregate values and return the rules using rule aggregation algorithm
- Apriori property can be used to prune the search space
- If k-predicate has supp less than minimum support then the exploration of the predicate is terminated

Mining clustering based Quantitative Associations

- Quantitative association rules are generated using clustering
- Top-down Approach: Find the clusters using k-means or density based clustering algorithm
 - Examine the 2D spaces generated by combining the cluster with other cluster or nominal value of another dimension
 - Apriori property is applied if the support of the combination does not have minimum support
- Bottom down Approach: First clustering in high-dimensional space and then projecting in fewer dimensional spaces.

