Math 733 – Fall 2020

Homework 5

Due: 10PM, November 22, 2020. Please upload your work in Canvas. Late homework will not be accepted.

1. Suppose that X_1, X_2, \ldots are i.i.d. with $E[X_k] = 0$, $E[X_k^2] = 1$. Let $S_n = X_1 + \cdots + X_n$. Show that $\limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} = \infty$ a.s.

Hint: use the Kolmogorov 0-1 law and the CLT.

(Note that we have seen already that for any $\alpha > 0$ we have $\frac{S_n}{n^{1/2+\alpha}} \stackrel{P}{\to} 0$.)

- 2. Let X_1, X_2, \ldots be independent random variables with $E[X_k] = E[X_k^2] = 1$, and set $S_n = X_1 + \cdots + X_n$. Show that $\sqrt{S_n} \sqrt{n}$ converges in distribution, and find the limit.
- 3. Let X_1, X_2, \ldots be independent random variables, and set $S_n = X_1 + \cdots + X_n$. Assume that almost surely $|X_i| \leq M$ for all $i \geq 1$ with a given constant $M < \infty$. Show that if $\operatorname{Var} S_n \to \infty$ then $\frac{S_n ES_n}{\sqrt{\operatorname{Var} S_n}} \Rightarrow N(0, 1)$.
- 4. Let X_1, X_2, \ldots be i.i.d. random variables with distribution function F and a continuous PDF f. We have proved that $F_n(x) := \frac{1}{n} \sum_{k=1}^n 1(X_k \leq x)$ converges uniformly to F(x) with probability one. Now we will look at the empirical distribution on a finer scale. Let $c \in \mathbb{R}$ be a number with f(c) > 0 and consider $N_n(a,b) = \sum_{k=1}^n 1(X_k \in (c + \frac{a}{n}, c + \frac{b}{n}))$. Show that $N_n(a,b)$ converges in distribution for any a < b and find the limit.
- 5. Let X_1, X_2, \ldots be random variables. Assume that for every $k \geq 1$ we have $E[X_n^k] \rightarrow m_k \in \mathbb{R}$ for some m_1, m_2, \ldots
 - (a) Show that for any subsequential limit in distribution $X_{n_m} \Rightarrow Y$ we must have $E[Y^k] = m_k$ for all $k \geq 1$.
 - (b) Assume further that the random variables satisfy $|X_n| \leq C$ with a deterministic C > 0. Show that X_1, X_2, \ldots converges in distribution.

You can use the Piazza page to ask for clarifications about a specific problem, but please don't discuss explicit solutions before the deadline. Handing in plagiarized work, whether copied from a fellow student or off the web, is not acceptable and will lead to sanctions.

Bonus problem.

Find independent random variables X, Y and Z so that Y and Z do not have the same distribution, but $X + Y \stackrel{d}{=} X + Z$.

Bonus problems are not graded, and you don't need to submit them. They are provided as an extra challenge for those who are interested.