WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

ATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07D 498/04, A61K 31/535, 31/44, 31/425, 31/54, 31/415, C07D 471/04, 513/04, 487/04, C07F 7/18, A61K 31/695 // (C07D 498/04, 265:00, 257:00) (C07D 498/04, 265:00)

(11) Internationale Veröffentlichungsnummer:

WO 99/40094

(43) Internationales

Veröffentlichungsdatum:

12. August 1999 (12.08.99)

(21) Internationales Aktenzeichen:

PCT/EP99/00518

A1

(22) Internationales Anmeldedatum: 27. Januar 1999 (27.01.99)

(30) Prioritätsdaten:

198 05 117.4

9. Februar 1998 (09.02.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): RADDATZ, Siegfried [DE/DE]; Jakob-Böhme-Strasse 21, D-51065 Köln (DE). BARTEL, Stephan [DE/DE]; Margarethenhöhe 7, D-51465 Bergisch Gladbach (DE). GUARNIERI, Walter [IT/DE]; Wiesenstrasse 3, D-53909 Zülpich (DE). ROSENTRETER, Ulrich [DE/DE]; Obere Rutenbeck 6, D-42349 Wuppertal (DE). RUPPELT, Martin [DE/DE]; Von-der-Goltz-Strasse 7, D-42329 Wuppertal (DE). WILD, Hanno [DE/DE]; Ausblick 128, D-42113 Wuppertal (DE), ENDERMANN, Rainer [DE/DE]; In den Birken 152 a, D-42113 Wuppertal (DE). KROLL, Hein-Peter [DE/DE]; Pahlkestrasse 96, D-42115 Wuppertal (DE). HENNINGER, Kerstin [DE/DE]; Katernbergerstrasse 96, D-42115 Wuppertal (DE).

BAYER AKTIENGE-(74) Gemeinsamer Vertreter: SELLSCHAFT; D-51368 Leverkusen (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: NEW OXAZOLIDINONES WITH AZOL-CONTAINING TRICYCLES
- (54) Bezeichnung: NEUE OXAZOLIDINONE MIT AZOLHALTIGEN TRICYCLEN
- (57) Abstract

The present invention relates to new oxazolidinones with azol-containing tricycles, to methods for producing the same as well as to the use thereof as drugs, in particular as anti-bacterial drugs.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft neue Oxazolidinone mit azolhaltigen Tricyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel, insbesondere als antibakterielle Arzneimittel.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	ТJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	$\mathbf{U}\mathbf{Z}$	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	$\mathbf{z}\mathbf{w}$	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

WO 99/40094 - 1 - PCT/EP99/00518

Neue Oxazolidinone mit azolhaltigen Tricyclen

Die vorliegende Erfindung betrifft neue Oxazolidinone mit azolhaltigen Tricyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel, insbesondere als antibakterielle Arzneimittel.

Aus den Publikationen US-5 254 577, US-4 705 799, EP-311 090, EP-312 000 und C.H. Park et al., J. Med. Chem. <u>35</u>, 1156 (1992) sind N-Aryloxazolidinone mit antibakterieller Wirkung bekannt. Außerdem sind 3-(Stickstoff-substituierte)phenyl-5-beta-amidomethyloxazolidin-2-one aus der EP-609 905-A1 sowie Oxazolidinone mit 4-Azolylphenylresten aus WO 96/23 788 und WO 97/31917 bekannt.

Ferner sind in der EP-609 441 und EP-657 440 Oxazolidinonderivate mit einer Monoaminoxidase-inhibitorischen Wirkung und in der EP-645 376 mit Wirkung als Adhäsionsrezeptor-Antagonisten publiziert.

Die vorliegende Erfindung betrifft neue Oxazolidinone mit azolhaltigen Tricyclen der allgemeinen Formel (I)

20

25

5

10

15

$$A \longrightarrow N \longrightarrow O \qquad (I),$$

in welcher

A für Reste der Formeln

$$E^{D} = D'$$

$$C' = D'$$

$$C$$

worin

5 R², R² und R² gleich oder verschieden sind und Wasserstoff oder Halogen bedeuten,

D, D' und D'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR³ bedeuten,

worin

R³ Wasserstoff, Trifluormethyl, Halogen, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen oder einen Rest der Formel -NR⁴R⁵ bedeutet,

worin

R⁴ und R⁵ gleich oder verschieden sind und Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen bedeuten,

E, E' und E'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR⁶ bedeuten,

10

15

20

25

worin

 R^6

5

Wasserstoff, Trifluormethyl, Nitro, Cyano oder Halogen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Benzyl bedeutet, die gegebenenfalls durch Hydroxy oder durch geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert sind, oder Aryl mit 6 bis 10 Kohlenstoffatomen oder einen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die Ringsysteme gegebenenfalls bis zu 3-fach gleich oder verschieden durch Halogen, Hydroxy, Nitro, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder Trifluormethyl substituiert sind, oder

15

R⁶ Reste der Formeln O-R⁷, -CO-R⁸ oder -NR⁹R¹⁰ bedeutet,

worin

20

R⁷ Wasserstoff, Benzoyl, geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen, Benzyl oder Aryl mit 6 bis 10 Kohlenstoffatomen oder einen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet,

25

R⁸ Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen, Benzyl oder Aryl mit 6 bis 10 Kohlenstoffatomen oder einen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet,

30

oder

R⁸ eine Gruppe der Formel -NR¹¹R¹² bedeutet,

5

worin

10

R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen,
Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,

15

R⁹ und R¹⁰ gleich oder verschieden sind und Wasserstoff,
Benzyl, Aryl mit 6 bis 10 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder eine Gruppe der Formel -CO₂R¹³ oder
-CM-NR¹⁴R¹⁵ bedeuten,

worin

20

R¹³ geradkettiges oder verzweigtes Alkyl mit bis zu
 6 Kohlenstoffatomen, Benzyl oder Phenyl bedeutet,

25

M ein Sauerstoff- oder Schwefelatom bedeutet,

R¹⁴ und R¹⁵ gleich oder verschieden sind und die oben angegebene Bedeutung von R⁴ und R⁵ haben,

30

oder

R⁹ Wasserstoff bedeutet

und

5

R¹⁰ einen Rest der Formel

worin

10

R¹⁶ und R¹⁶ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder Benzyl bedeuten,

15

20

R¹⁷ und R¹⁸ gleich oder verschieden sind und geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Phenyl oder Benzyl bedeuten,

L, L' und L'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR¹⁹ bedeuten,

worin

25

R¹⁹ Wasserstoff, Trifluormethyl, Nitro, Cyano, Halogen oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenyl oder durch einen Rest der Formel -OR²⁰ substituiert ist,

5		R ²⁰	Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlen- stoffatomen oder Benzyl bedeutet,
	oder		
	R ¹⁹	Reste	der Formeln -OR ²¹ , -COR ²² oder -NR ²³ R ²⁴ bedeutet,
10		worin	
15		R ²¹	Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen bedeutet,
		R ²²	die oben angegebene Bedeutung von R ⁸ hat und mit dieser gleich oder verschieden ist,
20		R ²³ un	ad R ²⁴ die oben angegebene Bedeutung von R ⁴ und R ⁵ haben und mit diesen gleich oder verschieden sind,
		oder	
25		R^{23}	Wasserstoff bedeutet
		und	
30		R^{24}	Cyano oder einen Rest der Formel -CO-NR ²⁵ R ²⁶ oder -CS-NR ²⁷ R ²⁸ bedeutet,
			worin

 R^{25} , R^{26} , R^{27} und R^{28} gleich oder verschieden sind und die oben angegebene Bedeutung von R^4 und R^5 haben,

5

oder

10

R²³ und R²⁴ gemeinsam mit dem Stickstoffatom einen 5- bis 6gliedrigen, gesättigten Heterocyclus bilden, der noch ein weiteres Heteroatom aus der Reihe S, O oder einen Rest der Formel -NH enthalten kann,

Q ein Sauerstoff- oder Schwefelatom oder Reste der Formeln SO₂, SO, C=O oder CR²⁹R³⁰ bedeutet,

15

worin

R²⁹ und R³⁰ gleich oder verschieden sind und Wasserstoff oder Halogen bedeuten,

20

T einen Rest der Formel CR³¹R³² bedeutet,

worin

25

R³¹ und R³² gleich oder verschieden sind und Wasserstoff, Halogen, Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen oder Benzyloxy bedeuten,

30

oder

R³¹ und R³² gemeinsam Reste der Formeln =O, =S,

$$= \begin{array}{c} R^{33} \\ \hline \\ R^{34} \end{array} \qquad \text{oder} \qquad = N - R^{35} \qquad \text{bilden,}$$

worin

5

R³³ und R³⁴ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Benzyl bedeuten,

10

oder

R³³ und R³⁴ gemeinsam einen 3- bis 6-gliedrigen, gesättigten oder partiell ungesättigten Carbocyclus bilden,

15

und

R³⁵ Wasserstoff, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen bedeutet,

20

25

- V ein Sauerstoffatom, ein Schwefelatom oder einen Rest der Formel SO oder SO₂ bedeutet,
- W ein Sauerstoff- oder Schwefelatom bedeutet, oder

 Reste der Formeln C=O, C=S, SO, SO₂, NR³⁶ oder CR³⁷R³⁸ bedeutet,

			die oben angegebene Bedeutung von R ³⁵ hat und mit dieser gleich oder verschieden ist,
5			R ³⁸ gleich oder verschieden sind und Wasserstoff, Halogen, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Benzyl bedeuten,
		oder	
10		R ³⁷	Wasserstoff bedeutet
		und	
		R^{38}	einen Rest der Formel -OR ³⁹ bedeutet,
15		,	worin
20)	Wasserstoff, geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen oder Benzyl bedeutet,
	Y	einen R	est der Formel C=O oder -CR ⁴⁰ R ⁴¹ bedeutet,
2.5		worin	
25]	R ⁴¹ gleich oder verschieden sind und Wasserstoff, Halogen, Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,
30		oder	· -

WO 99/40094

 R^{45}

einen Rest der Formel

 R^{40} Wasserstoff bedeutet und Hydroxy, Benzyloxy oder geradkettiges oder verzweigtes Alk-5 R^{41} oxy mit bis zu 6 Kohlenstoffatomen bedeutet, oder W und Y gemeinsam für die Gruppe -CH=CH- stehen, 10 für Azido oder für einen Rest der Formel -OR 42 , -O-SO $_2$ -R 43 oder -NR 44 R 45 \mathbb{R}^1 steht, 15 worin R^{42} Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 6 Kohlenstoffatomen bedeutet, R^{43} geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen 20 oder Phenyl oder Nitro-substituiertes Phenyl bedeutet, R⁴⁴ und R⁴⁵ Wasserstoff bedeuten. 25 oder R^{44} Wasserstoff bedeutet. und 30

$$-C = R^{46}$$
 oder $-P(O)(OR^{47})(OR^{48})$ bedeutet,

worin

5

Z ein Sauerstoff- oder Schwefelatom bedeutet,

10

R⁴⁶ Wasserstoff oder geradkettiges oder verzweigtes Alkoxy mit bis zu 8 Kohlenstoffatomen, Benzyloxy oder Trifluormethyl bedeutet, oder

Cycloalkyl mit 3 bis 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Halogen oder Aryl mit 6 bis 10 Kohlenstoffatomen substutiert ist, oder

15

Aryl mit 6 bis 10 Kohlenstoffatomen oder einen 5- bis 6-gliedrigen gesättigten oder aromatischen Heterocylcus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die unter R⁴⁶ aufgeführten Ringsysteme gegebenenfalls bis zu 2-fach gleich oder verschieden durch Halogen, Cyano, Nitro, Hydroxy oder Phenyl substituiert sind,

20

oder

25

R⁴⁶ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenoxy, Benzyloxy, Carboxyl, Halogen oder geradkettiges oder verzweigtes Alkoxycarbonyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch einen 5-bis 6-gliedrigen Heterocylcus aus der Reihe S, N und/oder O substituiert ist,

oder

R⁴⁶ einen Rest der Formel -NR⁴⁹R⁵⁰ bedeutet,

worin

5

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff,
Phenyl, Pyridyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, das gegebenenfalls durch über N-gebundenes Morpholin substituiert ist,

10

20

25

 R^{47} und R^{48} gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

und deren Salze und N-Oxide.

Die erfindungsgemäßen Verbindungen können in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere), oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfindung betrifft sowohl die Enantiomeren oder Diastereomeren oder deren jeweilige Mischungen. Die Racemformen lassen sich ebenso wie die Diastereomeren in bekannter Weise in die stereoisomer einheitlichen Bestandteile trennen.

Folgendes Formelschema veranschaulicht die entsprechend gekennzeichneten Schreibweisen für enantiomerenreine und racemische Formen:

(A) (Racemat)

(B) (Enantiomer)

Das Enantiomer B weist bevorzugt die S-Konfiguration auf.

Im Rahmen der Erfindung kann das Oxazolidingerüst über die im folgenden Schema mit 2 bis 3 bezifferten Positionen angebunden werden:

zum Beispiel

Besonders bevorzugt wird das Oxazolidinongerüst in der Position 3 angebunden.

Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen können Salze der erfindungsgemäßen Stoffe mit Mineralsäuren, Carbonsäuren oder Sulfonsäuren sein. Besonders bevorzugt sind z.B. Salze mit Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Propionsäure, Milchsäure, Weinsäure, Zitronensäure, Fumarsäure, Maleinsäure oder Benzoesäure.

15

20

10

5

Als Salze können Salze mit üblichen Basen genannt werden, wie beispielsweise Alkalimetallsalze (z.B. Natrium- oder Kaliumsalze), Erdalkalisalze (z.B. Calcium- oder Magnesiumsalze) oder Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen wie beispielsweise Diethylamin, Triethylamin, Ethyldiisopropylamin, Prokain, Dibenzylamin, N-Methylmorpholin, Dihydroabietylamin, 1-Ephenamin oder Methyl-piperidin.

Cycloalkyl steht im allgemeinen für einen cyclischen Kohlenwasserstoffrest mit 3 bis 8 Kohlenstoffatomen. Bevorzugt ist der Cyclopropyl-, Cyclopentan- und der Cyclohexanring. Beispielsweise seien Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl genannt.

5

10

Aryl steht im allgemeinen für einen aromatischen Rest mit 6 bis 10 Kohlenstoffatomen. Bevorzugte Arylreste sind Phenyl und Naphthyl.

Alkoxy steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Niedrigalkoxyrest mit 1 bis 4 Kohlenstoffatomen. Beispielsweise seien genannt: Methoxy, Ethoxy, Propoxy, Isopropoxy, tert.Butoxy, n-Pentoxy und n-Hexoxy.

- Acyl steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten Acylrest mit 1 bis 6 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Niedrigacylrest mit 1 bis 4 Kohlenstoffatomen. Bevorzugte Acylreste sind Acetyl und Propionyl.
- Alkyl steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Niedrigalkylrest mit 1 bis 4 Kohlenstoffatomen. Beispielsweise seien genannt: Methyl, Ethyl, Propyl, Isopropyl, tert.Butyl, n-Pentyl und n-Hexyl.
- Heterocyclus steht im Rahmen der Erfindung für einen 5- bis 7-gliedrigen aromatischen Ring, der als Heteroatome bis zu 3 Sauerstoff-, Schwefel- und/oder Stickstoffatome enthalten kann. Beispielsweise werden genannt: Pyrrolyl, Imidazolyl, Furyl, Thienyl, Thiazolyl, Oxazolyl, Isothiazolyl, Isoxazolyl, Pyridyl, Pyrimidyl oder Pyrazinyl. Bevorzugt sind Pyrrolyl, Pyridyl, Imidazolyl, Furyl, Thienyl, Isothiazolyl, Thiazolyl, Isoxazolyl und Oxazolyl.

Ein 5- bis 6-gliedriger, gesättigter Heterocyclus steht im Rahmen der Erfindung beispielsweise für einen Morpholinyl-, Piperidinyl- und Pyrrolidinylring. Bevorzugt ist ein Morpholinylring.

5 Bevorzugt sind Verbindungen der allgemeinen Formel (I),

in welcher

A für Reste der Formeln

10

15

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

oder R^{2"} steht,

worin

 R^2 , R^2 und R^2 gleich oder verschieden sind und Wasserstoff oder Fluor bedeuten,

D, D' und D'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR³ bedeuten,

	\mathbb{R}^3	Wasserstoff, Trifluormethyl, Fluor, Chlor, Hydroxy,
		geradkettiges oder verzweigtes Alkoxy mit bis zu 4
		Kohlenstoffatomen bedeutet,
5	E, E' und E''	gleich oder verschieden sind und ein Stickstoffatom oder einen
		ler Formel CR ⁶ bedeuten,
	worin	
10	R^6	Wasserstoff, Trifluormethyl, Nitro, Cyano, Fluor oder Chlor bedeutet, oder
		geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoff-
		atomen oder Benzyl bedeutet, die gegebenenfalls durch Hy- droxy substituiert sind, oder
15		Phenyl, Naphthyl, Pyridyl, Pyrimidyl, Pyrazinyl, Thienyl oder
		Furyl bedeutet,
	oder	
20	R^6	Reste der Formeln O-R ⁷ , -CO-R ⁸ oder -NR ⁹ R ¹⁰ bedeutet,
		worin
		R ⁷ Wasserstoff, geradkettiges oder verzweigtes Alkyl oder
25		Acyl mit jeweils bis zu 4 Kohlenstoffatomen, Benzyl
		oder Phenyl bedeutet,
		R ⁸ Hydroxy, geradkettiges oder verzweigtes Alkyl oder
		Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, Benzyl
30		oder Phenyl bedeutet, oder

 R^8 eine Gruppe der Formel -N $R^{11}R^{12}$ bedeutet,

worin

5

R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

10

R⁹ und R¹⁰ gleich oder verschieden sind und Wasserstoff, Benzyl, Phenyl, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder eine Gruppe der Formel -CO₂R¹³ bedeuten,

15

worin

R¹³ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen, Benzyl oder Phenyl be-

deutet,

20

L, L' und L'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR¹⁹ bedeuten,

worin

25

R¹⁹ Wasserstoff, Trifluormethyl, Nitro, Cyano, Fluor, Chlor oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenyl oder durch einen Rest der Formel -OR²⁰ substituiert ist,

30

5		R ²⁰	Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen, Phenyl oder Benzyl bedeu- tet,
3	od	er	
	\mathbb{R}^1	9 Reste	der Formeln -OR ²¹ , -COR ²² oder -NR ²³ R ²⁴ bedeutet,
10		worin	
15		R ²¹	Wasserstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet,
13		R ²²	die oben angegebene Bedeutung von R ⁸ hat und mit dieser gleich oder verschieden ist,
20		R ²³ un	nd R ²⁴ die oben angegebene Bedeutung von R ⁴ und R ⁵ haben und mit diesen gleich oder verschieden sind,
		oder	
25		R ²³ ur	nd R ²⁴ gemeinsam mit dem Stickstoffatom einen Piperi- dinyl- oder Morpholinylring bilden,
		a Sauerstof er CR ²⁹ R ³⁰	f- oder Schwefelatom oder Reste der Formeln SO ₂ , C=O bedeutet,
30	wo	orin	

		R ²⁹ und R ³⁰ gleich oder verschieden sind und Wasserstoff oder Fluor bedeuten,
5	Т	einen Rest der Formel CR ³¹ R ³² bedeutet,
		worin
10		R ³¹ und R ³² gleich oder verschieden sind und Wasserstoff, Fluor, Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen bedeuten,
		oder
15		R ³¹ und R ³² gemeinsam Reste der Formeln =O oder =S bilden,
	V	ein Sauerstoffatom, ein Schwefelatom oder einen Rest der Formel SO ₂ bedeutet,
20	W	ein Sauerstoff- oder Schwefelatom bedeutet, oder
20		Reste der Formel C=O, C=S, SO, SO ₂ , NR ³⁶ oder CR ³⁷ R ³⁸ bedeutet,
		worin
25		R ³⁶ Wasserstoff, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet,
		R ³⁷ und R ³⁸ gleich oder verschieden sind und Wasserstoff, Fluor, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder Benzyl bedeuten,
30	Y	einen Rest der Formel C=O oder CR ⁴⁰ R ⁴¹ bedeutet,

worin

R⁴⁰ und R⁴¹ gleich oder verschieden sind und Wasserstoff, Fluor,

Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4

Kohlenstoffatomen bedeuten,

oder

10 W und Y gemeinsam für die Gruppe -CH=CH- stehen,

R¹ für Azido oder für einen Rest der Formel -OR⁴², -O-SO₂-R⁴³ oder -NR⁴⁴R⁴⁵ steht,

15 worin

R⁴² Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen bedeutet,

20 R⁴³ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder Phenyl bedeutet,

R⁴⁴ und R⁴⁵ Wasserstoff bedeuten,

25 oder

30

R⁴⁴ Wasserstoff bedeutet,

und

R⁴⁵ einen Rest der Formel

worin

 R^{46}

5

Z ein Sauerstoff- oder Schwefelatom bedeutet,

10

bis zu 6 Kohlenstoffatomen oder Trifluormethyl bedeutet, oder Cyclopropyl, Cyclopentyl, Cycloheptyl, Cyclobutyl oder Cyclohexyl bedeutet, die gegebenenfalls durch Fluor, Chlor oder Phenyl substituiert sind, oder Phenyl, Naphthyl, Pyridyl, Thienyl, Oxazolyl, Furyl, Imidazolyl, Pyridazolyl oder Pyrimidyl bedeutet, wobei die unter R⁴⁶ aufgeführten Ringsysteme gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Cyano,

Wasserstoff oder geradkettiges oder verzweigtes Alkoxy mit

15

oder

20

R⁴⁶ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenoxy, Benzyloxy, Carboxyl, Fluor, Chlor, Brom oder geradkettiges oder verzweigtes Alkoxycarbonyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch Pyridyl, Thienyl, Furyl oder Pyrimidyl substituiert ist,

Nitro, Hydroxy oder Phenyl substituiert sind.

25

oder

R⁴⁶ einen Rest der Formel -NR⁴⁹R⁵⁰ bedeutet,

5

10

worin

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff, Phenyl, Pyridyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten, das gegebenenfalls durch über N-gebundenes Morpholin substituiert ist,

R⁴⁷ und R⁴⁸ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

und deren Salze und N-Oxide.

15 Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I)

in welcher

A für Reste der Formeln

20

$$\begin{bmatrix}
P' = D' \\
C & C
\end{bmatrix}$$
oder
$$\begin{bmatrix}
P' = D' \\
C & C
\end{bmatrix}$$

$$\begin{bmatrix}
P' = D' \\
C & C
\end{bmatrix}$$

steht,

5

10

15

20

25

30

R^2 ,	R^{2}	und	\mathbb{R}^{2}	gleich	oder	verschieden	sind	und	Wasserstoff	oder	Fluor
		bedei	uten,								

D, D' und D'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR³ bedeuten,

worin

R³ Wasserstoff, Trifluormethyl, Fluor, Chlor, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen bedeutet,

E, E' und E'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR⁶ bedeuten,

worin

R⁶ Wasserstoff, Trifluormethyl, Nitro, Cyano, Fluor, Chlor, geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen oder Benzyl bedeutet, die gegebenenfalls durch Hydroxy substituiert sind, oder Phenyl, Naphthyl, Pyridyl, Pyrimidyl, Pyrazinyl, Thienyl oder Furyl bedeutet,

R⁶ Reste der Formeln O-R⁷, -CO-R⁸ oder -NR⁹R¹⁰ bedeutet,

worin

R⁷ Wasserstoff, geradkettiges oder verzweigtes Alkyl oder
 Acyl mit jeweils bis zu 4 Kohlenstoffatomen, Benzyl oder Phenyl bedeutet

 R^8 Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen, Benzyl oder Phenyl bedeutet, oder 5 eine Gruppe der Formel -NR¹¹R¹² bedeutet, R^8 worin R11 und R12 gleich oder verschieden sind und Was-10 serstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, R9 und R10 gleich oder verschieden sind und Wasserstoff, Ben-15 zyl, Phenyl, geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen oder eine Gruppe der Formel -CO₂R¹³ bedeuten, 20 worin R^{13} geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen, Benzyl oder Phenyl bedeutet, 25 L, L' und L'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR¹⁹ bedeuten.

 R^{19} Wasserstoff, Trifluormethyl, Nitro, Cyano, Fluor, Chlor oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenyl oder durch einen Rest der Formel -OR²⁰ substituiert ist, 5 worin R^{20} Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen, Phenyl oder Benzyl bedeu-10 tet, oder R^{19} Reste der Formeln -OR²¹, -COR²² oder -NR²³R²⁴ bedeutet. 15 worin R^{21} Wasserstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 3 Koh-20 lenstoffatomen bedeutet, R^{22} die oben angegebene Bedeutung von R8 hat und mit dieser gleich oder verschieden ist, $R^{23}\mbox{ und }R^{24}\mbox{ die oben angegebene}$ Bedeutung von $R^4\mbox{ und }R^5$ 25 haben und mit dieser gleich oder verschieden sind, ein Sauerstoff- oder Schwefelatom oder Reste der Formel
n $\mathrm{SO}_2,~\mathrm{C=}\mathrm{O}$ Q oder CR²⁹R³⁰ bedeutet, 30

R²⁹ und R³⁰ gleich oder verschieden sind und Wasserstoff oder Fluor bedeuten, einen Rest der Formel -CR31R32 bedeutet, 5 T worin R31 und R32 gleich oder verschieden sind und Wasserstoff, Fluor, Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy 10 mit jeweils bis zu 3 Kohlenstoffatomen bedeuten, oder R³¹ und R³² gemeinsam Reste der Formeln =O oder =S bilden, 15 V ein Sauerstoffatom, ein Schwefelatom oder einen Rest der Formel SO2 bedeutet, 20 W ein Sauerstoff- oder Schwefelatom bedeutet, oder Reste der Formel C=O, C=S, SO, SO₂, -NR³⁶ oder -CR³⁷R³⁸ bedeutet, worin Wasserstoff, Benzyl oder geradkettiges oder verzweigtes Alkyl 25 R^{36} oder Acyl mit jeweils bis zu 3 Kohlenstoffatomen bedeutet, R³⁷ und R³⁸ gleich oder verschieden sind und Wasserstoff, Fluor, geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoff-30 atomen oder Benzyl bedeuten,

Y einen Rest der Formel C=O oder -CR⁴⁰R⁴¹ bedeutet,
worin

R⁴⁰ und R⁴¹ gleich oder verschieden sind und Wasserstoff, Fluor,
Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3
Kohlenstoffatomen bedeuten,

oder

10

W und Y gemeinsam für die Gruppe -CH=CH- stehen,

R¹ für Azido oder für einen Rest der Formel -OR⁴², -O-SO₂-R⁴³ oder -NR⁴⁴R⁴⁵ steht,

15

worin

 R^{42} Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 3 Kohlenstoffatomen bedeutet,

20

 R^{43} geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen oder Phenyl bedeutet,

R⁴⁴ und R⁴⁵ Wasserstoff bedeuten.

25

oder

R⁴⁴ Wasserstoff bedeutet,

30

und

R⁴⁵ einen Rest der Formel

$$-C-R^{46}$$
 bedeutet,

worin

5 Z ein Sauerstoff- oder Schwefelatom bedeutet,

und

Phenyl, Naphthyl, Pyridyl, Thienyl, Oxazolyl, Furyl, Imidazolyl, Pyridazolyl oder Pyrimidyl bedeutet, wobei die unter R⁴⁶ aufgeführten Ringsysteme gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Cyano, Nitro, Hydroxy oder Phenyl substituiert sind,

20 oder

R⁴⁶ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenoxy, Benzyloxy, Carboxyl, Fluor, Chlor, Brom oder geradkettiges oder verzweigtes Alkoxycarbonyl oder Acyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch Pyridyl, Thienyl, Furyl oder Pyrimidyl substituiert ist,

oder

25

10

15

R⁴⁶ einen Rest der Formel -NR⁴⁹R⁵⁰ bedeutet,

worin

5

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff,
Phenyl, Pyridyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, das gegebenenfalls durch über N-gebundenes Morpholin substituiert ist,

10

und deren Salze und N-Oxide.

Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel (I),

in welcher

A für Reste der Formeln

WO 99/40094 - 30 - PCT/EP99/00518

worin

5

10

n eine Zahl 0, 1 oder 2 bedeutet,

 R^2 , R^2 und R^2 gleich oder verschieden sind und Wasserstoff oder Fluor bedeuten,

 R^3 und R^{19} gleich oder verschieden sind und Wasserstoff oder für Methyl stehen,

R⁶ für Wasserstoff, Halogen, Cyano, Trifluormethyl, Phenyl oder geradkettiges oder verzweigtes Alkyl, Alkoxycarbonyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen steht,

5 R³⁶ Wasserstoff oder Methyl bedeutet,

und

R¹ für einen Rest der Formel -NH-R⁴⁵ steht,

10

worin

R⁴⁵ einen Rest der Formel

15

worin

Z ein Sauerstoff- oder Schwefelatom bedeutet,

20

25

und

R⁴⁶ Wasserstoff oder geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, oder einen Rest der Formel -NR⁴⁹R⁵⁰ bedeutet,

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten.

5 und deren Salze.

Außerdem wurde ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) gefunden, dadurch gekennzeichnet, daß man

10 [A] Verbindungen der allgemeinen Formel (II)

 $A-NO_2$ (II)

in welcher

15

A die oben angegebene Bedeutung hat,

zunächst durch eine Reduktion in die Verbindungen der allgemeinen Formel (III)

 $A-NH_2 \hspace{1.5cm} (III)$

in welcher

A die oben angegebene Bedeutung hat,

überführt,

25

30

in einem nächsten Schritt mit Chlorameisensäurebenzylester die Verbindungen der allgemeinen Formel (IV)

 $A-NH-CO_2-CH_2-C_6H_5 \qquad (IV)$

in welcher

A die oben angegebene Bedeutung hat,

herstellt,

und abschließend mit Basen in inerten Lösemitteln und nachfolgender Umsetzung mit (R)-(-)-Glycidylbutyrat die Verbindungen der allgemeinen Formel (Ia)

10

5

$$A-N$$
 O OH (Ia)

in welcher

A die oben angegebene Bedeutung hat,

15

herstellt,

und/oder

20 [B] durch Umsetzung mit (C₁-C₆)-Alkyl- oder Phenylsulfonsäurechloriden in inerten Lösemitteln und in Anwesenheit einer Base in die entsprechenden Verbindungen der allgemeinen Formel (Ib)

$$A \longrightarrow N \longrightarrow O$$

$$OSO_2R^{43}$$
(Ib)

in welcher

A und R⁴³ die oben angegebene Bedeutung haben,

5 überführt,

anschließend mit Natriumazid in inerten Lösemitteln die Azide der allgemeinen Formel (Ic)

$$A \longrightarrow N \longrightarrow O \qquad (Ic)$$

10

in welcher

A die oben angegebene Bedeutung hat,

15

20

herstellt,

in einem weiteren Schritt durch Umsetzung mit (C₁-C₄-O)₃-P oder Ph₃P, vorzugsweise (CH₃O)₃P in inerten Lösemitteln, und mit Säuren oder durch katalytische Hydrierung in die Amine der allgemeinen Formel (Id)

$$A \longrightarrow N \longrightarrow O$$

$$NH_2$$
(Id)

in welcher

PCT/EP99/00518

A die oben angegebene Bedeutung hat,

überführt,

5

und durch Umsetzung mit Acetanhydrid, Acetylchlorid oder anderen Acylierungsmitteln der allgemeinen Formel (V)

$$Y-CO-R^{46}$$
 (V)

10

in welcher

R⁴⁶ die oben angegebene Bedeutung hat

15 und

Y für Halogen, vorzugsweise für Chlor oder für den Rest -OCOR⁴⁸ steht,

in Gegenwart einer Base in inerten Lösemitteln die Verbindungen der allgemeinen 20 Formel (Ie)

$$A \longrightarrow N \longrightarrow O$$

$$NH-CO-R^{46}$$
(Ie)

in welcher

25

A und R⁴⁶ die oben angegebene Bedeutung haben,

herstellt,

WO 99/40094 - 36 - PCT/EP99/00518

oder

[C] im Fall
$$R^1 = -NH-CO-R^{46}$$

5

Verbindungen der allgemeinen Formel (III) direkt mit enantiomerenreinen oder racemischen Verbindungen der allgemeinen Formel (VI)

$$\begin{array}{c}
O \\
NH-CO-R^{46}
\end{array}$$
(VI)

in welcher

R⁴⁶ die oben angegebene Bedeutung hat,

in inerten Lösemitteln und in Anwesenheit eines Hilfsmittels zu enantiomerenreinen oder racemischen, substituierten Hydroxy-Amiden umsetzt, die mit Carbonyl-diimidazol in inerten Lösemitteln zu enantiomerenreinen oder racemischen Verbindungen der allgemeinen Formel (Ie) cyclisiert werden,

oder

20

15

[D] im Fall der Imidazobenzthiazole

Verbindungen der allgemeinen Formel (VII)

$$H_2N$$
 S N O $NH-R^{45'}$ (VII)

25

in welcher

R² die oben angegebene Bedeutung hat,

und

5 R⁴⁵ die oben angegebene Bedeutung von R⁴⁵ hat und mit dieser gleich oder verschieden ist, vorzugsweise für Acetyl steht,

mit Verbindungen der allgemeinen Formel (VIII)

$$R^{6} \xrightarrow{Q} R^{3}$$
 (VIII)

10

in welcher

R³ und R⁶ die oben angegebene Bedeutung haben,

15 und

R⁵¹ für Halogen, vorzugsweise für Chlor oder Brom steht,

in Alkoholen, vorzugsweise Ethanol, unter Rückfluß umsetzt,

20

und im Fall der S-Oxide eine Oxidation mit m-Chlorperbenzoesäure anschließt

und gegebenenfalls eine Λ lkylierung nach üblichen Methoden durchführt.

Die erfindungsgemäßen Verfahren können durch folgende Formelschemata beispielhaft erläutert werden:

[A]

- 1. Butyllithium
- 2. (R)-(-)-Glycidylbutyrat

Die Reduktionen können im allgemeinen durch Wasserstoff in Wasser oder in inerten organischen Lösemitteln wie Alkoholen, Ethern oder Halogenkohlenwasserstoffen oder Ammoniumformiat oder deren Gemischen mit Katalysatoren wie Raney-Nickel, Palladium, Palladium auf Tierkohle oder Platin oder mit Hydriden oder Boranen in inerten Lösemitteln, gegebenenfalls in Anwesenheit eines Katalysators, durchgeführt werden.

10

5

Als Lösemittel eignen sich hierbei alle inerten organischen Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Alkohole wie Methanol, Ethanol, Propanol oder Isopropanol oder Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether oder Amide wie Hexamethylphosphorsäuretriamid oder Dimethylformamid oder Essigsäure. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden. Besonders bevorzugt ist Methanol.

5

Die Umsetzung mit Chlorameisensäurebenzylester erfolgt in einer der oben aufgeführten Ether, vorzugsweise mit Tetrahydrofuran.

10

Als Basen eignen sich im allgemeinen Natriumhydrogencarbonat, Natriummethanolat, Hydrazinhydrat, Kaliumcarbonat oder Caesiumcarbonat. Bevorzugt ist Natriumhydrogencarbonat.

Die Base wird in einer Menge von 1 mol bis 10 mol, bevorzugt von 1 mol bis 3 mol bezogen auf 1mol der Verbindungen der allgemeinen Formel (III), eingesetzt.

15

Die Umsetzung erfolgt im allgemeinen in einem Temperaturbereich von -30°C bis +30°C, vorzugsweise bei 0°C.

20

Die Cyclisierung zu Verbindungen der allgemeinen Formel (Ia) erfolgt im allgemeinen in einem der oben aufgeführten Ether, vorzugsweise in Tetrahydrofuran.

Als Basen eignen sich für diesen Schritt im allgemeinen Lithiumalkylverbindungen oder Lithium-N-silylamide, wie beispielsweise n-Butyllithium, Lithiumdiiso-propylamid oder Lithium-bistrimethylsilylamid, vorzugsweise Lithium-bistrimethylsilylamid oder n-Butyllithium.

25

Die Base wird in einer Menge von 1 mol bis 10 mol, bevorzugt von 1 mol bis 3 mol bezogen auf 1 mol der Verbindungen der allgemeinen Formel (IV), eingesetzt.

30

Im allgemeinen wird in einem Temperaturbereich von -78°C bis -50°C, vorzugsweise bei -78°C gearbeitet.

Alle Umsetzungen werden im allgemeinen bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt (z.B. 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

5

10

15

20

25

30

Als Lösemittel für das Verfahren [B] eignen sich die üblichen Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Alkohole wie Methanol, Ethanol, Propanol oder Isopropanol oder Ether wie Diethylether, Dioxan, 1,2-Dimethoxyethan, Tetrahydrofuran, Glykoldimethylether oder tert.-Butylmethylether oder Ketone wie Aceton oder Butanon, oder Amide wie Dimethylformamid oder Hexamethyl-phosphorsäuretriamid, oder Kohlenwasserstoffe wie Hexan, Benzol, Dichlorbenzol, Xylol oder Toluol oder Dimethylsulfoxid, Acetonitril, Essigester oder Halogenkohlenwasserstoffe wie Methylenchlorid, Chloroform oder Tetrachlorkohlenstoff oder Pyridin, Picolin oder N-Methylpiperidin. Ebenso können Gemische der genannten Lösemittel verwendet werden.

Als Basen eignen sich in Abhängigkeit von den einzelnen Verfahrensschritten für das Verfahren [B] die üblichen anorganischen oder organischen Basen. Hierzu gehören bevorzugt Alkalihydroxide wie beispielsweise Natrium- oder Kaliumhydroxid oder Alkalicarbonate wie Natrium- oder Kaliumcarbonat oder Alkalialkoholate wie beispielsweise Natrium- oder Kaliummethanolat oder Natrium- oder Kaliumethanolat oder organische Amine wie Ethyldiisopropylamin, Triethylamin, Picolin, Pyridine oder N-Methylpiperidin, oder Amide wie Natriumamid oder Lithiumdiisopropylamid oder Lithium-N-silylalkylamide, wie beispielsweise Lithium-N-(bis)triphenysilylamid oder Lithiumalkyle wie n-Butyllithium.

Alle Umsetzungen werden im allgemeinen bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt (z.B. 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

WO 99/40094 - 43 - PCT/EP99/00518

Als Lösemittel für das Verfahren [C] eignen sich die üblichen Lösemittel. Bevorzugt sind Dichlormethan und Chloroform für die Umsetzung mit dem Epoxid und THF für den Ringschluß.

Als Hilfsmittel zur Umsetzung mit dem Epoxid eignen sich schwach saure Katalysatoren, z.B. Kieselgel oder Reaktionsführung unter Druck.

10

15

20

25

30

Als Dehydratisierungsreagenzien eignen sich Carbodiimide wie beispielsweise Diisopropylcarbodiimid, Dicyclohexylcarbodiimid oder N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimid-Hydrochlorid oder Carbonylverbindungen wie Carbonyldiimidazol oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5-phenyl-1,2-oxazolium-3-sulfonat oder Propanphosphorsäureanhydrid oder Isobutylchloroformat oder Benzotriazolyl-oxy-tris-(dimethylamino)phosphonium-hexyfluorophosphat oder Phosphonsäurediphenylesteramid oder Methansulfonsäurechlorid, gegebenenfalls in Anwesenheit von Basen wie Triethylamin oder N-Ethylmorpholin oder N-Methylpiperidin oder Dicyclohexylcarbodiimid und N-Hydroxysuccinimid. Bevorzugt ist Carbonyldiimidazol (CDI).

Im allgemeinen wird in einem Temperaturbereich von -78°C bis +50°C, vorzugsweise bei Raumtemperatur, gearbeitet. Beim Ringschluß mit CDI liegt die Reaktionstemperatur zwischen Raumtemperatur und dem Siedepunkt des Tetrahydrofurans.

Alle Umsetzungen werden im allgemeinen bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt (z.B. 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

Als Lösemittel für das Verfahren [D] eignen sich Alkohole wie beispielsweise Methanol, Ethanol, Propanol oder Isopropanol. Bevorzugt ist Ethanol.

Das Verfahren [D] erfolgt im allgemeinen in einem Temperaturbereich von -50°C bis zum jeweiligen Siedepunkt des Lösemittels, bevorzugt von -20°C bis +90°C.

Die Oxidationen erfolgen im allgemeinen in einem der oben aufgeführten Lösemittel, vorzugsweise in Methylenchlorid mit Oxidationsmitteln wie beispielsweise Metachlorperbenzoesäure, Wasserstoffperoxid oder Peressigsäure, vorzugsweise mit Magnesiummonoperoxyphthalinsalz in einem Temperaturbereich von 0°C bis 80°C, bevorzugt von 0°C bis 40°C.

Als Lösemittel für die Alkylierung eignen sich übliche organische Lösemittel, die 10 sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Hexan, Cyclohexan oder Erdölfraktionen oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, 15 Tetrachlormethan, Dichlorethylen, Trichlorethylen oder Chlorbenzol oder Essigester oder Triethylamin, Pyridin, Dimethylsulfoxid, Dimethylformamid, Acetonitril, Aceton oder Nitromethan. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden. Bevorzugt sind Dichlormethan, Dimethylsulfoxid und Dimethylformamid.

20

5

Die Alkylierung wird in den oben aufgeführten Lösemitteln bei Temperaturen von 0°C bis +150°C, vorzugsweise bei Raumtemperatur bis +100°C, bei Normaldruck durchgeführt.

Die Verbindungen der allgemeinen Formel (II) sind größtenteils bekannt oder als Species neu und können dann im Fall der 4H-Pyrrolo[1,2][1,4]-benzoxazine in Analogie zu bekannten Publikationen M. Kato, Chem. Pharm. Bull. Jpn. 43, 1995, 1358-63, im Fall der substituierten oder unsubstituierten 4H-1,2,4-Triazolo[3,4-c][1,4]-benzoxazinen zu den Publikationen L. Garanti, J, Het. Chem. 13, 1976, 1339-41; B.P. Medaer, Tetrahedron 52, 1996, 8813-26; B.P. Medaer, Tetrahedron 35, 1994, 9767-9776 und im Fall der 4H-Pyrazolo[5,1-c][1,4]benzoxazinen W.-D.

WO 99/40094 - 45 - PCT/EP99/00518

Rudorf, J. Prakt. Chem. 329, 1987, 55-61 und 348; im Fall der 4H-Imidazo-[2,1-c][1,4]-benzoxazine in Analogie zu H. Bartsch, J. Het. Chem. 26, 1989, 205-7 hergestellt werden.

Im Fall der 4,5-Dihydro-imidazo[1,2-a]-chinaline werden zunächst die entsprechenden Nitro-3,4-dihydro-1H-chinolin-2-one durch Umsetzung mit Schwefelsäure und Kaliumnitrat bei -15°C in die 2-(2-Dimethoxyethylamino)-nitro-3,4-dihydro-chinoline umgesetzt, in einem zweiten Schritt in Analogie zu der Publikation T. Jen, J. Med. Chem. 16, 1973, 633-7 mit Triethyloxonium-tetrafluorborat in Dichlormethan und Aminoacetaldehyd-dimethylacetat und abschließend mit Salzsäure versetzt.

Außerdem können die Verbindungen hergestellt werden in Analogie zu Reaktionen, die beschrieben sind in Comprehensive Heterocyclic Chemistry (A.R. Katritzky) Vol. 3, Seiten 995 - 1037 und Vol. 5, Seiten 305-345, 631-639, 660-668, 882-890. Desweiteren sei auf folgende Handbuchserien verwiesen: The Chemistry of Heterocyclic Compounds (A. Weissberger), Progress in Heterocyclic Chemistry (G.W. Gribble) und Advances in Heterocyclic Chemistry (A.R. Katritzky).

20 Die Verbindung der Formel (IIa)

$$O_2N$$
 (IIa)

ist neu und kann hergestellt werden,

25

15

indem man zunächst durch Umsetzung von 2-Amino-5-nitrobenzylalkohol und Thioharnstoff mit HBr unter Rückfluß und anschließender Alkalisch-Stellung 2-Amino-6nitro-4H-benz-1,3-thiazin herstellt, und abschließend durch Erhitzen mit Chloracetaldehydlösung das Imidazol aufbaut.

Der erste Schritt der Umsetzung erfolgt in einem Temperaturbereich von 80 bis 110°C, vorzugsweise bei 100°C.

Die Umsetzung mit der Aldehydlösung erfolgt in einem Temperaturbereich von 60°C bis 90°C, vorzugsweise bei 80°C.

Die Umsetzung mit Chloracetaldehydlösung erfolgt in Dimethylformamid oder Ethanol in einem Temperaturbereich von 30°C bis 100°C, vorzugsweise bei 70°C.

Alle Reaktionsschritte werden bei Normaldruck durchgeführt.

5

20

25

Die Verbindungen der allgemeinen Formel (III) sind größtenteils neu und können wie unter [A] beschrieben durch Reduktion der entsprechenden Nitroverbindungen der allgemeinen Formel (II) hergestellt werden.

Die Verbindungen der allgemeinen Formel (IV) sind neu und können dann beispielsweise wie oben unter [A] beschrieben hergestellt werden.

Die Verbindungen der allgemeinen Formel (VII) sind teilweise bekannt oder als Species neu und können beispielsweise wie oben beschrieben und in Analogie zu den Vorschriften der Publikation EP 738726 hergestellt werden.

Die Verbindungen der allgemeinen Formel (V) sind an sich bekannt oder nach publizierten Verfahren herstellbar.

Die Verbindungen der allgemeinen Formeln (VI) und (VIII) sind an sich bekannt oder nach üblichen Methoden herstellbar.

WO 99/40094 - 47 - PCT/EP99/00518

Die Verbindungen der allgemeinen Formeln (Ia) - (Ie) sind neu und können wie oben beschrieben hergestellt werden.

Die MHK-Werte wurden mit Hilfe der Mikrodilutionsmethode in BH-Medium bestimmt. Jede Prüfsubstanz wurde im Nährmedium gelöst. In der Mikrotiterplatte wurde durch serielle Verdünnung eine Konzentrationsreihe der Prüfsubstanzen angelegt. Zur Inokulation wurden Übernachtkulturen der Erreger verwandt, die zuvor im Nährmedium 1:250 verdünnt wurden. Zu 100 ml der verdünnten, wirkstoffhaltigen Nährlösungen wurden je 100 ml Inokulationslösung gegeben.

10

5

Die Mikrotiterplatten wurden bei 37°C bebrütet und nach ca. 20 Stunden oder nach 3 bis 5 Tagen abgelesen. Der MHK-Wert (mg/ml) gibt die niedrigste Wirkstoffkonzentration an, bei der kein Wachstum zu erkennen war.

MHK-Werte (mg/ml):

BspNr.	S. aureus 133	M. smegmatis DSM 43465
1	4	1
2	32	4
3	1	1
4	8	8
5	0,5	0,5
6	<0,5	<0,5
7	0,5	0,5
8	<0,5	0,5
9	1	1
10	4	>32
11	8	4
12	2	2
13	8	16
14	4	16
15	4	16
16	<0,5	2
17	32	32
18	0,5	0,5
19	<0,5	<0,5
20	8	8
21	0,5	0,5
23	4	8

Die erfindungsgemäßen Verbindungen der allgemeinen Formeln (I), (Ia), (Ib), (Ic),

(Id) und (Ie) weisen bei geringer Toxizität ein breites antibakterielles Spektrum, speziell gegen gram-positive Keime und einige spezielle gram-negative Bakterien sowie

Mycobacterien, Corynebakterien, Haemophilus Influenzae, Mycoplasmen und anaerobe Keime auf. Diese Eigenschaften ermöglichen ihre Verwendung als chemotherapeutische Wirkstoffe in der Human- und Tiermedizin.

Die erfindungsgemäßen Verbindungen sind gegen ein breites Spektrum von Mikroorganismen wirksam. Mit ihrer Hilfe können gram-positive Keime und gramnegative Bakterien und bakterienähnliche Mikroorganismen wie Mycoplasmen
bekämpft sowie die durch diese Erreger hervorgerufenen Erkrankungen verhindert,
gebessert und/oder geheilt werden.

10

5

Besonders wirksam sind die erfindungsgemäßen Verbindungen gegen Bakterien und bakterienähnliche Mikroorganismen. Sie sind daher besonders gut zur Prophylaxe und Chemotherapie von lokalen und systemischen Infektionen in der Human- und Tiermedizin geeignet, die durch solche Erreger hervorgerufen werden.

15

20

30

Zur vorliegenden Erfindung gehören pharmazeutische Zubereitungen, die neben nicht-toxischen, inerten, pharmazeutisch geeigneten Trägerstoffen eine oder mehrere erfindungsgemäße Verbindungen enthalten, oder die aus einem oder mehreren erfindungsgemäßen Wirkstoffen bestehen, sowie Verfahren zur Herstellung dieser Zubereitungen.

Der oder die Wirkstoffe können gegebenenfalls in einem oder mehreren der oben angegebenen Trägerstoffe auch in mikroverkapselter Form vorliegen.

Die therapeutisch wirksamen Verbindungen sollen in den oben aufgeführten pharmazeutischen Zubereitungen vorzugsweise in einer Konzentration von etwa 0,1 bis 99,5, vorzugsweise von etwa 0,5 bis 95 Gew.-% der Gesamtmischung, vorhanden sein.

Die oben aufgeführten pharmazeutischen Zubereitungen können außer den erfindungsgemäßen Verbindungen auch weitere pharmazeutische Wirkstoffe enthalten.

WO 99/40094 - 50 - PCT/EP99/00518

Im allgemeinen hat es sich sowohl in der Human- als auch in der Veterinärmedizin als vorteilhaft erwiesen, den oder die erfindungsgemäßen Wirkstoffe in Gesamtmengen von etwa 0,5 bis etwa 500, vorzugsweise 5 bis 100 mg/kg Körpergewicht je 24 Stunden, gegebenenfalls in Form mehrerer Einzelgaben, zur Erzielung der gewünschten Ergebnisse zu verabreichen. Eine Einzelgabe enthält den oder die erfindungsgemäßen Wirkstoffe vorzugsweise in Mengen von etwa 1 bis etwa 80, insbesondere 3 bis 30 mg/kg, Körpergewicht.

Die erfindungsgemäßen Verbindungen können zum Zweck der Erweiterung des Wirkungsspektrums und um eine Wirkungssteigerung zu erreichen, auch mit anderen
Antibiotika kombiniert werden.

5

Ausgangsverbindungen

Beispiel I

5 2-(Pyrrol-1-yl)-5-nitrophenol

Analog M. Kato, Chem. Pharm. Bull. 43, 1995, 1358-63 werden 5 g (32,4 mmol) 2-Amino-5-nitrophenol und 5,36 g (40,55 mmol) 2,5-Dimethoxytetrahydrofuran in 50 ml Eisessig gelöst und unter Argonatmosphäre 2 h auf 60° C erwärmt. Anschließend wird die Essigsäure i.V. abdestilliert, der Rückstand mit Wasser ausgerührt und der Rest säulenchromatographisch getrennt (Kieselgel 60, Laufmittel: Toluol/Essigester = 9/1); $R_f = 0,55$.

fbl. Kristalle, Fp.: 105°C

15 Ausbeute: 2,8 g (42,3 % d.Th.)

Beispiel II

1-Acetoxy-2-(pyrrol-1-yl)-5-nitrobenzol

$$O_2N$$
 O
 CH_3

20

25

10

1,3 g (6,37 mmol) der obigen Verbindung aus Beispiel I werden analog M. Kato, Chem. Pharm. Bull. 43, 1995, 1358-63 in 10 ml abs. Dichlormethan gelöst, mit 1,33 ml (1,3 g = 16,434 mmol) Pyridin versetzt, auf 0°C abgekühlt, tropfenweise mit 1,2 ml (1,3 g = 12,734 mmol) Essigsäureanhydrid versetzt und über Nacht gerührt, wo-

WO 99/40094 - 52 - PCT/EP99/00518

bei die Temperatur auf RT ansteigt. Man dampft i.V. die Lösemittel ab, rührt mit wenig Wasser aus und trennt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan); $R_f = 0.7$.

fbl. Kristalle, Fp.: 104°C

Ausbeute: 1 g (63,8 % d.Th.)

Beispiel III

1-Acetoxy-2-(2-formyl-pyrrol-1-yl)-5-nitrobenzol

10

5

Die Titelverbindung wird in Analogie zur Vorschrift von M. Kato, Chem. Pharm. Bull. 43, 1995, 1358-63 hergestellt.

15

20

In einem mit Eisbad gekühlten Kolben mit 0,18 ml (0,17 g = 2,32 mmol) DMF tropft man unter Argonatmosphäre 0,22 ml (0,36 g = 2,32 mmol) Phophoroxychlorid. Nach 10 min Rühren im Eisbad und 15 min bei RT kühlt man erneut auf 0°C und läßt langsam 0,44 g (1,79 mmol) der Verbindung aus Beispiel II in 7 ml abs. Dichlorethan zutropfen. Man rührt anschließend 20 min bei RT und erhitzt 1 h auf 70°C. Nach Zusatz von 1,32 g (16,1 mmol) Natriumacetat in 10 ml Wasser erhitzt man 20 min auf 60°C und extrahiert nach dem Abkühlen mit Dichlormethan. Nach Trocknen mit Natriumsulfat wird im Vakuum zur Trockne eingedampft und der Rückstand säulenchromatographisch getrennt (Kieselgel 60, Dichlormethan/Essigester = 100/1); $R_f = 0,4$.

25 0,4.

gelbes Öl; Ausbeute: 64 mg (13,1 % d. Th.).

Beispiel IV

2-(2-Formyl-pyrrol-1-yl)-5-nitrophenol

5

30 mg (0,11 mmol) der Verbindung aus Beispiel III werden in 0,38 ml Ethanol und 0,3 ml THF gelöst, mit 0,02 ml einer 28 %-igen Natriummethylat-Lösung in Methanol versetzt und 30 min bei RT gerührt. Man neutralisiert mit Eisessig/Wasser (1:1), dampft i. V. alles zur Trockne ein und trennt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Essigester = 100/2).

gelbe Kristalle, Fp: 147 °C

 R_f (Dichlormethan/Essigester = 100/1) = 0,1

Ausbeute 19 mg (74,8 % d. Th.)

15

10

Beispiel V

2-(2-Hydroxymethyl-pyrrol-1-yl)-5-nitrophenol

20

0,7 g (3,015 mmol) der Verbindung aus Beispiel IV werden in 7,5 ml Ethanol und 7,5 ml THF gelöst, im Eisbad gekühlt und unter Rühren innerhalb einer Stunde in mehreren Portionen mit 0,21 g (6,03 mmol) Natriumboranat versetzt. Man läßt über

Nacht bei RT nachrühren, dampft vorsichtig i. V. auf ein kleines Volumen ein und rührt mit wenig Wasser aus. Man säuert vorsichtig mit Oxalsäure/Wasser an, und aus der zunächst klaren Lösung fallen nach und nach gelbe Kristalle aus; Fp: 114 °C.

 R_f (Dichlormethan/Methanol = 100/3) = 0,1

Ausbeute: 0,5 g (70,8 % d. Th.)

Beispiel VI

7-Nitro-4H-pyrrolo[2.1-c][1,4]-benzoxazin

$$O_2N$$

10

15

20

25

5

60 mg (0,256 mmol) der Verbindung aus IV werden unter Argonatmosphäre in 1 ml THF gelöst, mit 90 mg (0,36 mmol) Triphenylphosphan versetzt, im Eisbad gekühlt und mit 60 mg (0,36 mmol) Azodicarbonsäuediethylester versetzt. Man rührt 14 h, wobei die Temperatur auf RT ansteigt. Nach Zugabe von 2 ml Wasser extrahiert man mit Dichlormethan, trocknet die organische Phase mit Natriumsulfat, engt i.V. zur Trockne ein und trennt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/5). Die Titelsubstanz läuft vorne, Triphenylphosphanoxid mit einem R_f -Wert von 0,5. Der Vorlauf wird i.V. eingedampft und erneut säulenchromatographisch gereinigt (Kieselgel 60, Laufmittel: Dichlormethan/Cyclohexan = 3/2); R_f = 0,5.

Man erhält gelbe Kristalle.

Ausbeute: 4 mg (7,2 % d. Th.)

Beispiel VII

7-Amino-4H-pyrrolo[2.1-c][1,4]-benzoxazin

30 mg (0,116 mmol) der Verbindung aus Beispiel VI werden in 15 ml THF/Methanol (1:1) gelöst, mit 30 mg Palladium-Katalysator auf Kohle (5 %-ig) versetzt und 3 h bei 2,5 atm Wasserstoffdruck hydriert. Nach Abfiltrieren des Katalysators und Einengen i. V. erhält man ein dunkles Öl.

Ausbeute: 20 mg (77,4 % d. Th.) roh

Beispiel VIII

5

N-(R)-2-Hydroxy-3-{4H-pyrrolo[2.1-c][1,4]-benzoxazin-7-yl)-amino}-propylacetamid

20 mg (0,017 mmol) der Verbindung aus Beispiel VII und 10 mg (0,129 mmol) (S)-Acetyl-aminomethyl-oxiran werden in 10 ml Chloroform gelöst, mit 60 mg (1,07 mmol) Kielselgel versetzt und i.V. zur Trockne eingedampft. Das so beschichtete Kieselgel läßt man unter Argonatmosphäre 48 h stehen, eluiert mit Dichlormethan und Methanol, dampft i.V. zur Trockne ein und trennt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/7); R_f = 0,4.

fbl. Schaum

Ausbeute: 12 mg (37,1 % d. Th.)

Beispiel IX

7-Nitro-4H-benz-1,4-oxazin-3-on

5

10

Die Herstellung erfolgt in Analogie zur Vorschrift von D.R. Shridhar et al., OPPI, 14(3), 1982, 195-7 aus 1 Äquivalent 2-Amino-5-nitrophenol, 1,15 Äquivalenten Chloracetylchlorid und 2,3 Äquivalenten Natriumhydrogencarbonat in einem 1:1-Gemisch von Isobutylmethylketon und Wasser bei Rückflußtemperatur (3 h). Der Ringschluß erfolgt durch Zugabe von 1 Äquivalent Triethylamin über 2 h unter Rückfluß. fbl. Kristalle, Fp.: 232°C (Zers.)

Ausbeute: ca. 80 % d.Th.

15 Beispiel X

7-Nitro-4H-benz-1,4-oxazin-3-thion

Die Herstellung erfolgt in Analogie zur Vorschrift von H. Bartsch et al., Monatsheft für Chemie, 119, 1988, 1439-44. Dabei werden 6,15 g (31,68 mmol) der Verbindung aus Beispiel IX und 6,406 g (15,84 mmol) Lawesson's Reagenz in 160 ml abs. THF gerührt. Aus dem anfangs heterogenen Gemisch entsteht nach 2 h Rühren bei RT eine klare, gelbe Lösung. Man läßt über Nacht rühren, versetzt mit einer Spatelspitze Lawesson's Reagenz und rührt erneut über Nacht. Man fällt das Thion, indem man die Lösung unter Rühren in einen großen Überschuß Wasser einfließen läßt. Der

Niederschlag wird abfiltriert (Gestank) und luftgetrocknet, das Filtrat ausgiebig mit Überschuß einem an Chlorlauge behandelt. Die Reinigung erfolgt säulenchromatographisch an Kieselgel 60 mit dem Gemisch Dichlormethan/Essigester = 100/5.

5 R_f (Dichlormethan/Essigester = 100/5) = 0.65 gelbe Kristalle, Fp. 221°C (Zers.)

Ausbeute: 5,5 g (82,7 % d.Th.)

Beispiel XI

10

3-Methylsulfanyl-7-nitro-2H-benzo-1,4-oxazin

$$O_2N$$
 $S-CH_3$

15 In Analogie zur Vorschrift von M. Mazharuddin et al., Tetrahedron 25, 1969, 517-525 werden 125 mg (0,5 mmol) der Verbindung aus Beispiel X in 5 ml Aceton gelöst, mit 106 mg (0,75 mmol) Methyljodid und 138 mg (1 mmol) Kaliumcarbonat versetzt und 2 h bei RT gerührt. Anschließend wäscht man mit wenig Wasser und trennt den Rückstand säulenchromatograhisch (Kieselgel 60, 20

Dichlormethan); R_f (Dichlormethan) = 0.9.

gelbe Kristalle, Fp.: 153°C

Ausbeute: 77 mg (57,8 % d.Th.)

Beispiel XII

25

7-Nitro-4H-imidazo[2,1-c][1,4]-benzoxazin

WO 99/40094 - 58 - PCT/EP99/00518

$$O_2N$$

In Analogie zur Vorschrift von H. Bartsch, J. Heterocycl. Chemistry 26, 1989, 205-7, werden 0,4 g (1,784 mmol) der Verbindung aus Beispiel XI in 10 ml abs. Ethanol gelöst, mit 0,28 g (2,68 mmol) Aminoacetaldehyd-dimethylacetal versetzt und 8 h zum Sieden erhitzt (vollständige Umsetzung, DC-Kontrolle mit Dichlormethan/Essigester = 4/1). Man dampft alles zur Trockne ein, versetzt mit 6 ml Methanol und 6 ml konz. Salzsäure und erhitzt 2 h zum Sieden. Man neutralisiert mit ges. NaHCO₃-Lösung, filtriert, wäscht mit Wasser und trennt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/5), $R_f = 0,5$.

gelbliche Kristalle, Fp.: 209°C (Zers.)

Ausbeute: 220 mg (56,9 % d.Th.)

15 Beispiel XIII

a) N-(7-Nitro-2H-1,4-benzoxazin-3-yl)-aminoacetaldehyd-dimethylacetal

20

5

10

3,88 g (0,02 mmol) des Benzoxazinons aus Beispiel IX werden nach D. Achakzi, Chem. Ber. 114, 1981, 3188-94 ins Imidchlorid überführt, das in situ mit Aminoacetaldehyddimethylacetal zum obigen Amidin reagiert. Das Benzoxazinon aus Beispiel IX wird in 160 ml abs. THF gelöst, unter Rühren

mit 6,29 g (0,024 mol) Triphenylphosphin und 5,68 g (0,024 mol) Hexachloräthan versetzt. Man erwärmt 30 min auf 40°C, versetzt tropfenweise mit 3,32 ml (2,43 g = 0,024 mol) Triethylamin und erwärmt 1 h zum Sieden. Nach dem Abkühlen versetzt man unter Eiskühlung mit 6,30 g (0,06 mol) Aminoacetaldehyd-dimethylacetal. Man rührt über Nacht bei RT nach, engt i.V. ein und trennt das Gemisch säulenchromatographisch an Kieselgel 60 mit Essigester/Toluol = 7/3 als Laufmittel; $R_f = 0,6$.

gelbe Kristalle, Fp: 147°C

Ausbeute: 3,9 g (69 % d.Th.)

10

15

5

b) In Analogie zur Vorschrift von H. Bartsch, J. Heterocycl. Chem. 26, 1989, 205-7 werden 3,35 g (11,91 mmol) der obigen Verbindung aus Beispiel XIIIa 4 h mit 40,2 ml Methanol und 40,2 ml konz. Salzsäure zum Sieden erhitzt. Man neutralisiert anschließend mit gesättigter NaHCO₃-Lösung, filtriert und wäscht neutral. Der Rückstand wird aus Essigester rekristallisiert.

Man erhält die Verbindung aus Beispiel XII.

fbl. Kristalle, Fp.: 209°C (Zers.)

Ausbeute: 2,15 g (83,1 % d.Th.)

20 Beispiel XIV

7-Amino-4H-imidazo[2,1-c][1,4]-benzoxazin

25

50 mg (0,23 mmol) der Verbindung aus Beispiel XII werden in 20 ml Methanol/THF = 1/1) gelöst, mit 50 mg Katalysator (Pd/C, 5%ig) versetzt und 1 atm (H₂) Wasser-

stoff hydriert. Die säulenchromatographische Trennung erfolgt an Kieselgel 60 mit Dichlormethan/Essigester = 4/1 als Laufmittel; $R_f = 0.2$.

fbl. Kristalle, Fp.: 187-194°C

Ausbeute: 40 mg (92,8 % d.Th.)

5

Beispiel XV

 $N-(R)-2-Hydroxy-3-\{(4H-imidazo[2,1-c][1,4]-benzoxazin-7-yl)-amino\} propyl-acetamid$

10

15

65 mg (0,347 mmol) der Verbindung des Beispiels XIV werden analog F. Bennett, Synlett, 1993, 703-4 in 7 ml Chloroform gelöst, mit 40 mg (0,347 mmol) (S)-Acetylaminomethyl-oxiran versetzt und anschließend mittels Ultraschall mit 0,6 g Kieselgel 60 suspendiert. Man dampft alles i.V. zur Trockne ein und läßt 48 h stehen. Das Kieselgel wird mit Dichlormethan und Methanol eluiert, die Lösemittel vereinigt, i.V. auf ein kleines Volumen eingeengt und säulenchromatographisch getrennt (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 9/1); $R_f = 0,3$.

fbl. Schaum

Ausbeute: 22 mg (20,0 % d.Th.)

Beispiel XVI

2,2-Dimethyl-7-nitro-4H-benz-1,4-oxazin-3-on

20

PCT/EP99/00518

Die Herstellung erfolgt analog Beispiel IV aus 20 g (0,13 mol) 2-Amino-5-nitrophenol, 34,3 g (0,15 mol) 2-Brom-isobuttersäurebromid und 26,16 (0,31 mol) Natriumhydrogencarbonat in je 70 ml Wasser und Isobutylmethylketon mit 13,13 g \cong 18 ml (0,13 mol) Triethylamin.

gelbe Kristalle, Fp: 216 °C

Ausbeute: 16,5 g (57,2 % d. Th.)

Beispiel XVII

10

5

N-(2,2-Dimethyl-7-nitro-2H-1,4-benzoxazin-3-yl)-aminoacetaldehyd-dimethylacetal

$$O_2N$$
 O_2N
 O_2N
 O_3
 O_3
 O_4
 O_4
 O_5
 O_4
 O_5
 O_6
 O_7
 O_8
 O

- Die Herstellung erfolgt analog Beispiel XIII (Vorschrift a) aus 5 g (22,5 mmol) der Verbindung aus Beispiel XVI, 7,08 g (27 mmol) Triphenylphosphan, 6,30 g (27 mmol) Hexachlorethan und 2,73 g ≈ 3,704 ml (27 mmol) Triethylamin und anschließender Umsetzung des entstandenen Imidchlorids mit 7,1 g (67,5 mmol) Aminoacetaldehyd-dimethylacetal.
- 20 gelbe Kristalle, R_f (Dichlormethan/Methanol = 100/3) = 0,8 Ausbeute: 5,56 g (79,5 % d. Th.)

Beispiel XVIII

25 2,2-Dimethyl-7-nitro-4H-imidazo[2.1-c][1.4]-benzoxazin

$$O_2N$$
 O_2N
 O_2N
 O_3
 O_4
 O_4
 O_5
 O_4
 O_5
 O_5
 O_7
 O_8
 O

Die Synthese gelingt analog Beispiel XII aus 5,56 g (ca. 18 mmol) der Verbindung aus Beispiel XVII durch 4-stündiges Erhitzen zum Sieden mit 60 ml Methanol und 60 ml konzentrierter Salzsäure.

5 gelbe Kristalle, Fp: 155-8 °C

 $R_f(Dichlormethan/Methanol = 100/3) = 0.64$

Ausbeute: 4,2 g (95,3 % d. Th.)

Beispiel XIX

10

2,2-Dimethyl-7-amino-4H-imidazo[2.1-c][1.4]-benzoxazin

$$H_2N$$
 O
 CH_3

Die Reduktion erfolgt analog Beispiel XIV aus 2,6 g (12,08 mmol) der Verbindung aus Beispiel XVIII und 0,85 Pd/C, 5 %-ig mit 2 bar Wasserstoffdruck in 200 ml Methanol.

fbl. Produkt, R_f (Dichlormethan/Methanol = 100/3) = 0,6

Ausbeute: 2,1 g (90,6 %-ig), 83,4 % d. Th.

20

Beispiel XX

 $N-(R)-2-Hydroxy-3-\{2,2-dimethyl-4H-imidazo[2.1-c][1.4]-benzoxazin-7-yl)-amino\}-propyl-acetamid$

Die Umsetzung mit dem Oxiran erfolgt analog Beispiel XV aus 0,4 g (1,86 mmol) der Verbindung aus Beispiel XIX, 0,26 g (2,23 mmol) (S)-Acetyl-aminomethyloxiran an 4 g Kieselgel.

fbl. Schaum, R_f (Dichlormethan/Methanol = 9/1) = 0.48

Ausbeute: 129 mg (21,0 % d. Th.) und 215 mg (53,8 %) Edukt

Beispiel XXI

10

5

3-Propargylamino-7-nitro-2H-benz-1,4-oxazin

$$O_2N$$
 N
 N
 N
 N
 N
 N

Analog V. Ambrogi, Eur. J. Med. Chem. 30, 1995, 429-37 gibt man 0,5 g (2,23 mol) 3-Methylsulfanyl-7-nitro-2H-benzo-1,4-oxazin (Beispiel XI), 0,22 g (2,45 mmol) Propargylaminhydrochlorid und 0,2 g (2,45 mmol) Natriumacetat zusammen in 5 ml abs. Ethanol und erhitzt 8 h zum Sieden. Man dampft i.V. das Lösemittel ab, rührt den Rückstand mit wenig Wasser aus und trennt ihn säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Essigester = 9/1); R_f = 0,6.

gelbl. Kristalle, Fp.: 198°C (Zers.)

Ausbeute: 0,46 g (85,3 % d.Th.)

3,9 g (20,09 mmol) 7-Nitro-4H-benz-1,4-oxazin-3-on (Beispicl IX) werden in 160 ml abs. Dichlormethan gelöst, mit 6,32 g (24,105 mmol) Triphenyl-phosphin und 5,71 g (24,105 mmol) Hexachlorethan versetzt und 30 min auf 40°C erwärmt. Dazu tropft man 3,34 ml = 2,44 g (24,105 mmol) Triethylamin und erhitzt 1 h zum Sieden. Man läßt abkühlen und tropft unter Eiskühlung 5,52 g (60,26 mmol) Propargylaminhydrochlorid und 8,35 ml = 6,1 g (60,26 mmol) Triethylamin zu. Anschließend läßt man über Nacht bei RT weiterreagieren. Im DC (Essigester/Toluol = 7/3) ist ein neuer, gelber Fleck zu sehen. Man dampft alles i.V. bis zur Trockne ein, rührt mit wenig Wasser aus und trennt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Essigester = 9/1); R_f = 0,6.

gelbl. Kristalle, Fp.: 198°C (Zers.)

Ausbeute: 2,7 g (58,1 % d.Th.)

15

10

5

Beispiel XXII

b)

1-Methyl-7-nitro-4H-imidazo[2,1-c][1,4]benzoxazin

20

25

Analog V. Ambrogi, Eur. J. Med. Chem. 30, 1995, 429-437 werden 0,1 g (0,43 mmol) der Verbindung aus Beispiel XXI in 2 ml Eisessig suspendiert und unter Argonatmosphäre in einem 120°C heißen Ölbad 6 h erhitzt. Anschließend destilliert man i.V. den Eisessig ab und trennt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Essigester = 9/1), $R_f = 0,15$.

gelbe Kristalle, Fp.: 145°C

Ausbeute: 35 mg (35 % d.Th.)

Beispiel XXIII

1-Methyl-7-amino-4H-imidazo[2,1-c[[1,4]-benzoxazin

5

0,3 g (1,125 mmol) der obigen Verbindung aus Beispiel XXII werden in 100 ml Methanol gelöst und mit 0,2 g Pd-C-Katalysator, 5%ig, versetzt und 4 h mit 2 atm Wasserstoff hydriert. Nach Abfiltrieren des Katalysators und Einengen zur Trockne wird der Rückstand säulenchromatographiert (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/7); $R_f = 0,4$.

fbl. Kristalle, Fp.: 193°C

Ausbeute: 157°C (60,15 % d.Th.)

15

10

Beispiel XXIV

 $N-(R)-2-Hydroxy-3-\{(1-methyl-4H-imidazo[2,1-c][1,4]-benzoxazin-7-yl)-amino\}-propyl-acetamid$

80 mg (0,4 mmol) der Verbindung aus Beispiel XXIII werden in 3 ml Chloroform gelöst, mit 50 mg (0,4 mmol) (S)-Acetylaminomethyl-oxiran versetzt, im Ultraschallbad mit 0,8 g Kielselgel behandelt, i.V. zur Trockne eingedampft und über Nacht bei RT stehen gelassen. Man eluiert mit Dichlormethan und Methanol und trennt säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 9/1); $R_f = 0,3$.

fbl. Schaum

Ausbeute: 37 mg (29,4 % d.Th.)

10 Beispiel XXV

7-Nitro-4H-benzo-1,4-thiazin-3-on

15

20

5

11,6 g (0,064 mmol) 6-Nitrobenzthiazol werden in 23,2 ml Ethanol und 23,2 ml Hydrazinhydrat gelöst und 2 h unter Rühren auf 80°C erwärmt. Bei Raumtemperaur gibt man 6,64 g (0,07 mol) Chloressigsäure und 6,95 g (0,174 mol) Natriumhydroxid in 70 ml Wasser zu und erhitzt 1 h zum Sieden. Anschließend stellt man im Eisbad mit konzentrierter Salzsäure sauer und rührt 30 min bei 50°C (DC-Kontrolle mit Dichlormethan/Methanol = 100/3). Der ausgefallene Niedeschlag wird abgesaugt, neutral gewaschen und getrocknet.

gelbes Festprodukt

 R_f (Dichlormethan/Methanol = 100/3) = 0.27

25 Ausbeute: 11,14 g (82,3 % d.Th.)

MS (EI): 210

Beispiel XXVI

7-Nitro-4H-benzo-1,4-thiazin-3-thion

5

10

100 mg (0,48 mmol) der Verbindung aus Beispiel XXV und 96,2 mg (0,24 mmol) Lawesson's Reagenz werden in 3 ml abs. THF gelöst und 2 Tage bei RT gerührt (DC-Kontrolle mit Petrolether/Essigester = 7/3). Man versetzt noch einmal mit 96,2 mg (0,24 mmol) Lawesson's Reagenz und läßt weitere 2 Tage bei RT rühren. Obwohl noch Edukt vorhanden ist, bricht man die Reaktion ab durch Zusatz von 20 ml Wasser. Man extrahiert mehrfach mit Dichlormethan, wäscht mit gesättigter Kochsalzlösung, trocknet mit Magnesiumsulfat und dampt alles i. V. zur Trockne ein.

15

gelbes, kristallines Produkt, R_f (Petrolether/Essigester = 7/3) = 0.7 Ausbeute: 198,5 mg roh (theor. Ausbeute quantitativ: 107,6 mg)

Beispiel XXVII

3-Methylsulfanyl-7-nitro-2H-benzo-1,4-thiazin

25

198,5 mg des Rohproduktes aus Beispiel XXVI werden in 5 ml Aceton gelöst, mit 131,4 mg (0,951 mmol) Kaliumcarbonat und 101,25 mg (0,713 mmol) Methyljodid versetzt und über Nacht bei RT gerührt (DC-Kontrolle mit Petrolether/Essigester = 7/3 als Laufmittel). Da noch Edukt vorhanden ist, versetzt man noch einmal mit

WO 99/40094 - 68 - PCT/EP99/00518

131,4 mg (0,951 mmol) Kaliumcarbonat und 101,25 mg (0,713 mmol) Methyljodid und läßt weiter rühren. Nach 3 h ist das Edukt verschwunden. Man versetzt mit Wasser und extrahiert mit Dichlormethan. Die organische Phase wird mit gesättigter Kochsalzlösung gewaschen, mit Magnesiumsulfat getrocknet und i. V. zur Trockne eingedampft.

gelbes, kristallines Produkt, R_f (Petrolether/Essigester = 7/3) = 0,82 Ausbeute: 164,3 mg roh (theor. Ausbeute quantitativ: 115,2 mg)

Beispiel XXVIII

10

5

N-(7-Nitro-2H-1,4-benzthiazin-3-yl)-aminoacetaldehyd-dimethylacetal

164,3 mg des Rohproduktes aus Beispiel XXVII und 75 mg (0,714 mmol) Aminoacetaldehyd-dimethylacetal werden in 3 ml Ethanol gelöst und über Nacht gerührt
(DC-Kontrolle mit Petrolether/Essigester = 1/1 als Laufmittel). Anschließend
versetzt man mit Wasser, extrahiert mit Dichlormethan, wäscht die organische Phase
mit gesättigter Kochsalzlösung, trocknet mit Magnesiumsulfat und engt i. V. zur

Trockne ein. Man erhält ein gelbes, kristallines Rohprodukt (235,4 mg). Die
Reinigung erfolgt säulenchromatographisch (Kieselgel 60, Laufmittel:
Petrolether/Essigester = 3/2).

 R_f (Petrolether/Essigester = 1/1) = 0,23 gelbe Kristalle

Ausbeute: 107,3 mg (75,2 % d. Th., bezogen auf die Verbindung aus Beispiel XXVI)

WO 99/40094 - 69 - PCT/EP99/00518

Beispiel XXIX

7-Nitro-4H-imidazo[2.1-c][1.4]-benzthiazin

5

10

15

97,8 mg (0,33 mmol) der Verbindung aus Beispiel XXVIII werden mit 1,2 ml Methanol und 1,2 ml konz. Salzsäure versetzt und 2,5 h zum Sieden erhitzt (DC-Kontrolle mit Petroether/Essigester = 1/1 als Laufmittel). Nach dem Abkühlen stellt man mit verdünnter Natronlauge pH = 2 ein und extrahiert mit Dichlormethan. Man wäscht mit gesättigter Kochsalzlösung, trocknet mit Magnesiumsulfat und dampft i. V. zur Trockne ein. Der Rückstand (85,4 mg) wird säulenchromatographisch getrennt (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/3).

gelbe Kristalle, (Dichlormethan/Methanol = 100/5) = 0.37

Ausbeute: 56,8 mg (74,05 % d. Th.)

Beispiel XXX

7-Amino-4H-imidazo[2.1-c][1.4]-benzthiazin

20

25

10 mg (0,043 mmol) der Nitro-Verbindung aus Beispiel XXIX werden in 1 ml Methanol gelöst, unter Argonatmosphäre mit 27,03 mg (0,43 mmol) Ammoniumformiat und 1 mg Palladium-Kohlenstoff-Katalysator (10 %-ig) versetzt

und zum Sieden erhitzt. Nach 8 h ist kein Edukt mehr vorhanden (DC-Kontrolle mit Dichlormethan/Methanol = 100/5 als Laufmittel). Nach Abfiltrieren des Katalysators wird i. V. eingeengt und der Rückstand säulenchromatographisch gereinigt (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/3).

farbloser Schaum, R_f (Dichlormethan/Methanol = 10/1) = 0,475 Ausbeute: 5,7 mg (65,4 % d. Th.)

Beispiel XXXI

15

20

N-(R)-2-Hydroxy-3-{(4H-imidazo[2.1-c][1.4]-benzthiazin-7-yl)-amino}-propylacetamid

25,5 mg (0,125 mmol) des Amins aus Beispiel XXX und 14,44 mg (0,125 mol) (S)-Acetylaminomethyl-oxiran werden in 5 ml abs. Dichlormethan gelöst und mit 22,61 mg (0,376 mmol) Kielselgel (40 - 60 μM) versetzt. Man dampft i. V. zur Trockne ein und läßt über Nacht bei RT stehen. Laut DC-Kontrolle (Laufmittel: Dichlormethan/Methanol = 10/1) ist noch Edukt vorhanden. Man versetzt nach dem Auflösen in 5 ml Dichlormethan mit weiteren 0,5 Equivalenten Oxiran, engt i. V. zur Trockne hin und wiederholt die Prozedur nach weiteren 3 h erneut mit 0,5 Equivalenten Oxiran. 2 h später wird das Kieselgel mit 10 ml Dichlormethan/Methanol = 5/1 eluiert, das Lösungsmittel i. V. eingeengt und der Rückstand säulenchromatographisch gereinigt (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/3 bis 100/8).

WO 99/40094 - 71 - PCT/EP99/00518

fbl. Schaum, R_f (Dichlormethan/Methanol = 10/1) = 0,25

Ausbeute: 10 mg (25,0 % d. Th.)

Zusätzlich werden 14,9 mg (58,4 %) Edukt zurückgewonnen.

Beispiel XXXII

6-Nitro-3,4-dihydro-1H-chinolin-2-on

10

15

20

5

9,45 g (0,074 mol) 3,4-Dihydro-1H-chinolin-2-on werden in 36 ml 95%iger Schwefelsäure gelöst, auf -15°C abgekühlt und nach und nach mit 7,04 g (0,08 mol) Kaliumnitrat versetzt. Man rührt bei -20°C unter ständiger DC-Kontrolle (alle 15 min) nach; Laufmittel: Chloroform/Methanol = 100/3 und Dichlormethan/Methanol = 100/3. Nach 3 h zeigt sich noch etwas Ausgangsprodukt und eine Spur des Dinitro-Produktes. Der Reaktionsansatz wird nochmals portionsweise mit 0,95 g (ca. 10 mmol) Kaliumnitrat versetzt und weiter bei -15C gerührt. Nach 4 h rührt man alles in 500 ml Wasser ein, filtriert den ausgefallenen Niederschlag und wäscht ihn neutral. Nach dem Trocknen wird das Rohprodukt säulenchromatographisch gereinigt (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/1). Die geeignete Fraktion wird i.V. zur Trockne eingedampft, mit Diethylether ausgerührt, filtriert und bei 60°C getrocknet.

gelbe Kristalle

Ausbeute: 9,1 g (73,7 % d.Th.)

25 MS (DCI): 193 (M+H)

Beispiel XXXIII

N-(6-Nitro-3,4-dihydro-chinolin-2-yl)-aminoacetaldehyd-dimethylacetal

- 72 -

5

10

8,07 g (0,042 ml) der Verbindung aus Beispiel XXXII werden in 240 ml abs. Dichlormethan gelöst, mit 48,3 ml (0,048 mmol) einer 1 molaren Lösung von Triethyloxonium-tetrafluoroborat in Dichlormethan versetzt und 9 h bei Raumtemperatur gerührt. Anschließend gibt man 13,25 g (0,126 mol) Aminoacetaldehyd-dimethylacetal (über CaH destilliert bei 20 mbar und 341°C) zu und rührt 3 h bei Raumtemperatur. Nach 3 h findet laut DC-Kontrolle keine weitere Umsetzung mehr statt (ca. 50 %). Man engt das Reaktionsgemisch i.V. auf ca. 50 ml ein, versetzt mit Wasser und extrahiert mehrmals mit Dichlormethan. Nach Waschen der organischen Phase mit Dichlormethan und Trocknen mit Magnesiumsulfat wird das Lösemittel i.V. abgedampft. Es verbleibt ein gelbliches Festprodukt.

Ausbeute: 10,1 g (86,1 % d.Th.).

Beispiel XXXIV

20

25

15

7-Nitro-4,5-dihydro-imidazo[1,2-a]chinolin

10,49 g der Verbindung aus Beispiel XXXIII werden in 126 ml Methanol gelöst, mit 126 ml konz. Salzsäure versetzt und 2,5 h zum Sieden erhitzt (DC-Kontrolle mit Petrolether/Essigester = 1/1 als Laufmittel). Nach dem Abkühlen stellt man durch Zugabe von 1 n Natronlauge einen pH von 2 ein und extrahiert mehrfach mit

Dichlormethan. Man wäscht die organische Phase mit gesättigter Kochsalz-Lösung, trocknet sie mit Magnesiumsulfat und dampft i.V. das Lösemittel ab; Rückstand 8,11 g. Nach der säulenchromatographischen Trennung (Kieselgel 60, Laufmittel: Petrolether/Essigester = 1/1 und Dichlormethan/Methanol = 100/2) erhält man gelbe

Kristalle; $R_f = 0.08$ (Petrolether/Essigester = 1/1).

Ausbeute: 1,25 g (13,3 % d.Th.)

MS (DCI): 216 (M+H)

Beispiel XXXV

10

5

7-Amino-4,5-dihydro-imidazo[1,2-a]chinolin

17 mg (0,079 mmol) der Verbindung aus Beispiel XXXIV werden unter Argonatmosphäre in 1 ml Methanol gelöst und mit 1,7 mg 10%iger Palladiumkohle versetzt. Nach Zugabe von 50 m Ammoniumformiat erhitzt man zum Sieden. Laut DC-Kontrolle (Dichlormethan/Methanol = 100/5) ist die Reduktion nach 2 h beendet. Die Reinigung erfolgt dünnschichtchromatographisch (Kieselgel 60, Laufmittel:

Dichlormethan/Methanol = 100/1).

fbl. Festprodukt; R_f (Dichlormethan / Methanol = 10/1) = 0.175

Ausbeute: 13 mg (88,9 % d. Th.)

MS (DCI): 186 (M+H)

25 **Beispiel XXXVI**

7-Nitro-3-hydrazono-3,4-dihydro-2H-benz-1,4-oxazin

WO 99/40094 - 74 - PCT/EP99/00518

$$O_2N$$
 N
 N
 N
 N
 N

Analog D.R. Shridhar, Indian J. Chem. Sect. B, 23, 1984, 1279-83 und H. Bartsch, Monatsh. Chem. 120, 1989, 81-84 werden 0,5 g (2,36 mmol) der Verbindung aus Beispiel X und 0,15 g (3,063 mol) Hydrazinhydrat in abs. Ethanol über Nacht bei RT gerührt. Nach dem Abdestillieren des Ethanols i.V. rührt man den gelborangenen Rest mit Wasser aus, filtriert und wäscht mit Wasser nach. $R_{\rm f}$ (Dichlormethan/Methanol = 100/3) = 0,2.

gelborange Kristalle, Fp.: >250°C (Zers.)

10 Ausbeute: 0,48 g (97 % d.Th.)

Beispiel XXXVII

7-Nitro-1,2,4-triazolo[3,4-c][1,4]-benzoxazin

15

20

5

Analog S. Mantegani 29, 1992, 455-459, werden 0,5 g (2,4 mmol) der Verbindung aus Beispiel XXXVI mit 3,56 g (24 mmol) Orthoameisensäuretriethylester 3 h zum Sieden erhitzt (ca. 150°C). Nach dem Eindampfen i.V. rührt man den Rückstand mit wenig Ethanol aus und filtriert.

gelbe Kristalle, Fp. >230°C (Zers.)

Ausbeute: 0,43 g (82,1 % d.Th.)

WO 99/40094 - 75 - PCT/EP99/00518

Beispiel XXXVIII

7-Amino-1,2,4-triazolo[3,4-c][1,4]-benzoxazin

5

0,41 g (1,88 mmol) der Verbindung aus Beispiel XXXVII werden in 190 ml Methanol/THF (1/1) gelöst, mit 0,1 g Pd/C, 5%ig, versetzt und unter 1 bar Wasserstoffdruck 2 h hydriert. Nach Filtration des Katalysators dampft man i.V. zur Trockne ein.

fbl. Schaum

Ausbeute: 0,34 g (96,2 % d.Th.)

Beispiel XXXIX

15

10

 $N-(R)-2-Hydroxy-3-\{(1,2,4-triazolo[3,4-c][1,4]-benzoxazin-7-yl)amino\} propylacetamid$

20

Man löst 0,14 g (0,74 mmol) der Verbindung aus Beispiel XXXVIII in 5 ml Chloroform und verrührt im Ultraschallbad mit 2,3 g Kieselgel 60 und 0,12 g (1,04 mmol) (S)-Acetylaminomethyl-oxiran. Man dampft alles i.V. zur Trockne ein und läßt 2 h

bei RT stehen. Man eluiert das Kieselgel mit Dichlormethan und Methanol, dampft i.V. zur Trockne ein und trennt den Rest säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 9/1); $R_f = 0.22$.

fbl. Schaum

5 Ausbeute: 75 mg (33,2 % d.Th.)

Zusätzlich werden 50 mg des Amins (35,7 %) zurückgewonnen.

Beispiel XL

10 1-Methyl-7-nitro-1,2,4-triazolo[3,4-c][1,4]-benzoxazin

Die Titelverbindung wird in Analogie zur der Vorschrift des Beispiels XXXVII aus 0,83 g (4 mmol) der Verbindung aus Beispiel XXXVI und 6,5 g (40 mmol) Orthoessigsäuretriethylester gewonnen. Das Gemisch wird mit 1,67 g Kieselgel 60 und 15 ml abs. Toluol versetzt und 3 h zum Sieden erhitzt.

 R_f (Dichlormethan/Methanol = 100/3) = 0,44

gelbes, amorphes Produkt, Fp.: >230°C (Zers.)

20 Ausbeute: 0,7 g (75,6 % d.Th.)

Beispiel XLI

1-Methyl-7-amino-1,2,4-triazolo[3,4-c][1,4]benzoxazin

Die Titelverbindung wird in Analogie zur Vorschrift des Beispiels XXXVIII aus 0,5 g (2,15 mmol) der Verbindung aus Beispiel XL und 0,3 g Pd-C-Katalysator, 5%ig, in 300 ml Methanol 3 h bei 2 bar Wasserstoffdruck hergestellt.

fbl. Kristalle, Fp.: 222°C (Zers.)

Ausbeute: 0,43 g (98,8 % d.Th.)

Beispiel XLII

10

5

 $N-(R)-2-Hydroxy-3-\{(1-methyl-1,2,4-triazolo[3,4-c][1,4]-benzoxazin-7-yl)amino\}-propyl-propionamid$

Die Titelverbindung wird in Analogie zur Vorschrift des Beispiels XXXIX aus 0,23 g (1,11 mol) der Verbindung aus Beispiel XLI, 0,17 g (1,335 mmol) (S)-Propionylaminomethyloxiran und 4 g Kieselgel 60 in 5 ml Chloroform hergestellt.

 R_f (Dichlormethan/Methanol = 9/1) = 0,33

fbl. Schaum

20 Ausbeute: 90 mg (23,9 % d.Th.)

Beispiel XLIII

 $N-(R)-2-Hydroxy-3-\{4,5-dihydroxy-imidazo[1,2-a]chinolin-7-yl-amino\}-propylacetamid$

5

10

0,5 g (2,7 mmol) der Verbindung aus Beispiel XXXV und 310,8 mg (2,7 mmol) (S)-Acetylaminomethyl-oxiran werden in 20 ml abs. Dichlormthan gelöst, mit 5 g Kieselgel (40 - 63 μ m) versetzt und i.V. zur Trockne eingedampft. Man läßt das beschichtete Kieselgel zwei Tage stehen und eluiert dann mit Dichlormethan und Methanol. Nach Eindampfen i.V. wird der Rückstand säulenchromatographisch getrennt (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = $100/5 \rightarrow Fraktion 1 = Ausgangsamin$; Laufmittel: Dichlormethan/Methanol = $10/1,5 \rightarrow Fraktion 2 = substit.$ Acetamid).

15 fbl. Festprodukt

 R_f (Dichlormethan/Methanol = 10/1) = 0.12

Ausbeute: 316,7 mg (39,0 % d.Th.)

+ 303,7 mg Amin (60,7 % d.Th.)

20 **Beispiel XLIV**

7-Nitro-4H-imidazo[5.1-c][1.4]-benzoxazin-3-carbonsäure-ethylester

5

10

15

Analog H. Bartsch, J. Heterocycl. Chemistry 26, 1989, 205-7, wird zunächst eine Mischung aus 207,9 mg (1,82 mmol) und 216,2 mg (1,82 mmol) Isocyanessigsäureethylester in 1,5 ml DMF hergestellt. Beim Zusammengeben der beiden Komponenten tritt eine deutliche Wärmeentwicklung auf. Man kühlt diese Lösung auf 0°C ab. Dann löst man 235 mg (1,21 mmol) der Verbindung aus Beispiel IX in 1,5 ml abs. DMF (hellgelbe Lösung) und versetzt mit 138 mg (1,21 mmol) Kaliumtert.-butylat (braune Lösung). Die entstandene Lösung kühlt man auf 0°C und versetzt mit 430,6 mg (2,42 mmol) Phosphorsäurediethylesterchlorid. Diese Lösung tropft man bei 0°C langsam in die erste Lösung, wobei sich die Lösung dunkelrot verfärbt und sofort das gewünschte Endprodukt entsteht. Man rührt noch 2 h bei RT und gießt dann auf 5 ml Eisessig. Nach Verdünnen mit Wasser fällt ein heller Niederschlag aus, der sich schlecht filtrieren läßt. Aus diesem Grunde extrahiert man das gesamte heterogene Gemisch mehrfach mit Essigester. Die organische Phase wird getrocknet und anschließend i.V. zur Trockne eingeengt, wobei man möglichst auch die letzten Spuren von DMF entfernt. Man nimmt in 5 ml Aceton auf, filtriert vom Ungelösten ab und dampft erneut i. v. zur Trockne ein. Den Rückstand rührt man mit 3 ml Essigester/Petrolether aus. Der Rückstand ist das gewünschte Produkt.

fbl. Kristalle, R_f (Essigester) = 0,4

Ausbeute: 125 mg (35,7 % d. Th.)

20

Beispiel XLV

7-Amino-4H-imidazo[5.1-c][1.4]-benzoxazin-3-carbonsäure-ethylester

25

144 mg (0,5 mmol) der Nitroverbindung aus Beispiel XLIV werden in 2 ml Ethanol gelöst, mit 129,5 mg (2 mmol) Ammoniumformiat und einer Spatelspitze Pd/C- Katalysator (10 %-ig) versetzt und in einem 80°C heißen Bad 5 min erhitzt. Nach dem Erkalten wird der Katalysator über Kieselgur abfiltriert und das Filtrat i. V. eingedampft. Der Rückstand wird säulenchromatographisch gereinigt (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/1 bis 100/5).

 $R_f(Dichlormethan/Methanol = 10/1) = 0.57$

fbl. Produkt

Ausbeute: 15,5 mg (12,0 % d. Th.)

Beispiel XLVI

10

5

N-(R)-2-Hydroxy-3-{(3-ethoxycarbonyl-4H-imidazo[5.1-c][1.4]-benzoxazin-7-yl)-amino}-propyl-acetamid

15

20

22 mg (0,08 mmol) des Amins aus Beispiel XLV werden in 1 ml Dichlormethan gelöst, mit 11,7 mg (0,1 mmol) (S)-Acetylaminomethyloxiran und 51 mg (0,85 mol) Kielselgel versetzt und i.V. zur Trockne eingedampft. Man läßt über Nacht stehen, versetzt mit Dichlormethan und weiteren 7 mg (0,06 mmol) Oxiran, dampft i. V. zur Trockne ein und läßt einen weiteren Tag stehen. Man eluiert das beschichtete Kieselgel mit 10 ml Dichlormethan/Methanol = 7/3, engt i. V. auf ein kleines Volumen ein und trennt den Rückstand auf einer Dickschichtplatte; Laufmittel: Dichlormethan/Methanol = 10/1; Eluens: Methanol.

fbl. Schaum, R_f (Dichlormethan/Methanol = 10/1) = 0,435

WO 99/40094 - 81 - PCT/EP99/00518

Ausbeute: 6,2 mg (19,5 % d. Th.)

Zusätzlich werden 4,9 mg (22,3 %) Edukt zurückgewonnen.

Beispiel XLVII

5

7-Nitro-4H-imidazo[5.1-c][1.4]-benzoxazin-3-carbonsäure

180 mg (0,62 mmol) des Esters aus Beispiel XLIV werden in 5 ml Ethanol suspendiert und mit 6,3 ml (0,63 mmol) 1n Natronlauge versetzt (Braunfärbung) und 15 min bei 80°C gerührt. Man verdünnt mit 5 ml Wasser und säuert das Gemisch mit 1n Salzsäure an. Nach und nach fallen farblose Kristalle aus.

 R_f (Dichlormethan/Methanol = 10/1) = 0.07

15 Ausbeute: 97 mg (59,9 % d. Th.)

Beispiel XLVIII

7-Nitro-4H-imidazo[5.1-c][1.4]-benzoxazin

20

25

54 mg (0,21 mmol) der Carbonsäure aus Beispiel XLVII werden 10 min mit 2 ml Diphenylether im auf 250°C erhitzten Bad erhitzt. Nach dem Abkühlen gibt man alles auf eine Kieselsäule, wäscht den Diphenylether mit Dichlormethan heraus und WO 99/40094 - 82 - PCT/EP99/00518

eluiert das Produkt mit Dichlormethan/Methanol = 100/5. Nach dem Einengen erhält man farblose Kristalle.

Rf (Dichlormethan/Methanol = 20/1) = 0,34

Ausbeute: 36,7 mg (80,5 % d. Th.)

5

Beispiel IL

7-Amino-4H-imidazo[5.1-c][1.4]-benzoxazin

10

15

28,5 mg (131 μmol) der Nitroverbindung aus Beispiel XLVIII werden in 0,5 ml Ethanol gelöst, mit 34,1 mg (0,525 mmol) Ammoniumformiat und einer Spatelspitze Pd/C-Katalysator (10 %-ig) versetzt und in einem auf 80°C vorgeheizten Bad 7 min erhitzt. Nach Abfiltrieren des Katalysators dampft man das Lösungsmittel zur Trockne ein.

farbloses, amorphes Produkt, Rf (Dichlormethan/Methanol = 10/1) = 0,43 Ausbeute, roh: 20,1 mg (82,0 % d. Th.)

20 Beispiel L

 $N-(R)-2-Hydroxy-3-\{(4H-imidazo[5.1-c][1.4]-benzoxazin-7-yl)-amino\}-propylacetamid$

WO 99/40094 - 83 - PCT/EP99/00518

20 mg (0,11 mmol) des Amins aus Beispiel IL werden in 1 ml Dichlormethan gelöst, mit 14,76 mg (0,13 mmol) (S)-Acetylaminomethyloxiran und 64,2 mg (1,07 mmol) Kieselgel versetzt und i. V. zur Trockne eingedampft. Nach 1 Tag Stehen löst man die Edukte wieder (kaum Produkt!) in Dichlormethan, versetzt mit 1,2 weiteren Equivalenten Oxiran, dampft i. V. zur Trockne ein und läßt einen weiteren Tag stehen. Anschließend eluiert man mit Dichlormethan/Methanol (7/3), engt i. V. ein und trennt den Rückstand auf einer Dickschichtplatte; Laufmittel: Dichlormethan/Methanol = 10/1; Eluens: Methanol.

fbl. Produkt, R_f (Dichlormethan/Methanol = 10 / 1) = 0,185 Ausbeute: 12 mg (36,1 % d. Th.)

Beispiel LI

15

10

5

1-(2,2-Dimethoxyethyl)-5-nitro-indol-2-carbonsäure-ethylester

$$\begin{array}{c|c} O_2N & O \\ & \parallel \\ & C-OC_2H_5 \\ & OCH_3 \\ & OCH_3 \end{array}$$

5 g (21,35 mmol) 5-Nitro-indol-2-carbonsäure-ethylester (Herst. nach A. Guy, SYNTHESIS 3, 1980, 222-3) werden in 50 ml DMSO gelöst und bei RT mit 3,6 g

(32 mmol) Kalium-tert.-butylat und 3,9 ml (5,58g = 32 mmol) Bromacctaldehyddimethylacetal versetzt. Man crhitzt über Nacht auf 120°C, gießt nach dem Abkühlen auf Eiswasser und extrahiert mehrfach mit Diethylether. Man wäscht neutral, trocknet mit Magnesiumsulfat, engt i. V. zur Trockne ein und kristallisiert durch Ausrühren mit Ethanol.

fbl. Kristalle, R_f (tert.-Butyl-methylether/Cyclohexan = 1/1) = 0,51 Ausbeute: 3,5 g (50,9 % d. Th.)

Beispiel LII

10

5

1-(2,2-Dimethoxyethyl)-5-nitro-indol-2-carbonsäure

- 3,5 mg (10,55 mmol) des Esters aus dem Beispiel LI werden in 50 ml THF gelöst, mit 25 ml 1n Natronlauge versetzt und bei 60 °C gerührt. Nach 2 h ist die Verseifung beendet. Man dampft das Lösemittel ab und extrahiert die verbliebene, dunkelbraune Lösung 3 x mit Diethylether. Mit 6n Salzsäure stellt man die wäßrige Lösung schwach sauer, wobei nach und nach die gewünschte Carbonsäure ausfällt.
- hellbraune Kristalle, R_f (Dichlormethan/Methanol = 7/3) = 0,54 Ausbeute: 2,9 g (93,5 % d. Th.)

Beispiel LIII

25

1-(2,2-Dimethoxyethyl)-5-nitro-indol-2-carbonsäure-azid

WO 99/40094 - 85 - PCT/EP99/00518

$$\begin{array}{c|c} O_2N & O \\ & \\ & \\ OCH_3 \end{array}$$

Eine auf -10 °C abgekühlte Suspension von 2,7 g (9,18 mmol) der Carbonsäure aus Beispiel LII in 30ml abs. THF wird mit 2,6 ml (1,85 = 18,35 mmol) Triethylamin versetzt und 10 min gerührt. Anschließend tropft man 4,1 ml (5,2 g = 18,35 mmol) Diphenylphosphorylazid zu und läßt das Reaktionsgemisch über Nacht im Kühlschrank. Dann engt man i. V. auf etwa die Hälfte des Volumens ein, versetzt mit verdünnter NaHCO₃-Lösung und extrahiert mehrfach mit Dichlormethan. Nach Waschen mit Wasser und Trocknen mit Magnesiumsulfat engt man i. V. ein.

 R_f (Dichlormethan) = 0,78

5

Ausbeute, roh: 2,9 g (quantitativ)

Beispiel LIV

15 1-(2,2-Dimethoxyethyl)-2-tert.butyl-oxycarbonyl-amino-5-nitroindol

2,9 g des Rohproduktes aus Beispiel LIII werden in 100 ml Toluol aufgenommen, mit 60 ml tert.Butanol versetzt und 2 Stunden zum Sieden erhitzt (DC-Kontrolle mit Dichlormethan oder Petrolether/Essigester = 1/1). Man engt i. V. zur Trockne ein und reinigt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Petrolether = 7/3).

WO 99/40094 - 86 -

 R_f (Dichlormethan) = 0,45

Ausbeute: 1,4 g (42,2 % d. Th.)

Beispiel LV

5

7-Nitro-9H-imidazo[1.2-a]indol

PCT/EP99/00518

1,16 g (3,17 mmol) der Substanz aus Beispiel LIV werden mit 10 ml Methanol/konz. Salzsäure (1:1) versetzt und 1 Stunde zum Sieden erhitzt. Man neutralisiert mit gesättigter NaHCO₃-Lösung und extrahiert mit Essigester. Nach dem Einengen i.V. wird der Rückstand säulenchromatographisch gereinigt (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/5).

15 R_f (Dichlormethan/Methanol = 10/1) = 0,59

Ausbeute: 0,5 g (78,4 % d. Th.)

Beispiel LVI

20 7-Amino-9H-imidazo[1.2-a]indol

500 mg (2,49 mmol) der Nitro-Verbindung aus Beispiel LV werden in 100 ml 25 Ethanol gelöst, mit 626 mg (9,94 mmol) Ammoniumformiat und 370 mg (3,48 mmol) Pd/C-Katalysator (10 %-ig) versetzt und 30 min zum Sieden erhitzt. Nach dem Abfiltrieren des Katalysators wird das Lösungsmittel i.V. abgedampft und der Rückstand säulenchromatographisch gereinigt (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/5).

farbloses Produkt

 R_f (Dichlormethan/Methanol = 10/1) = 0,44

5 Ausbeute: 178 mg (41,8 % d. Th.)

Nebenprodukt: Hydrazin-Verbindung

Beispiel LVII

N-(R)-2-Hydroxy-3-{(9H-imidazo[1.2-a]indol-7-yl)-amino}-propyl-acetamid

150 mg (0,88 mmol) des Amins aus Beispiel LVI, 121 mg (1,05 mmol) (S)-Acetyl-15 aminomethyl-oxiran und 526 mg (8,75 mmol) Kieselgel werden in 10 ml Chloroform aufgeschlämmt und i. V. zur Trockne eingedampft. Man läßt das so beschichtete Kieselgel über Nacht stehen, eluiert mit 10 ml Dichlormethan/Methanol = 10/1, dampft i.V. zur Trockne ein und reinigt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 4/1).

 R_f (Dichlormethan/Methanol = 10/1) = 0,5

fbl. Schaum

Ausbeute: 95mg (37,9 % d. Th.)

37 mg (24,7 % d. Th.) Edukt werden zurückgewonnen.

Beispiel LVIII

7-Nitro-5H-imidazo[1.2-a][3,1]-benzthiazin

5

10

15

25

9 g (53 mmol) 2-Amino-5-nitro-benzylalkohol und 5,3 g (70 mmol) Thioharnstoff werden in 180 ml 48%iger HBr 18 h unter Rückfluß erhitzt. Dann wird eingeengt, mit Na₂CO₃-Lösung alkalisch gestellt und das Produkt filtriert. Waschen mit Wasser und Trocknen ergibt 9,6 g 2-Amino-6-nitro-4H-benz-1,3-thiazin. Diese werden in 200 ml DMF mit 9,3 ml (64,5 mmol) 45%iger wäßriger Chloracetaldehydlösung versetzt, und es wird 2 h auf 70°C erhitzt. Es werden nochmals 3 ml der Aldehydlösung zugefügt und 4 h auf 80°C erhitzt. Dann wird mit Eiswasser verdünnt, mit Bicarbonat schwach basisch gestellt und das Produkt abfiltiert. Nach Reinigung über Kieselgel (CH₂Cl₂/ MeOH = 100/2,5) erhält man 5 g der Titelverbindung (40,1 % d. Th.).

fbl. Festprodukt, R_f (Dichlormethan/Methanol 10/1) = 0,34

Beispiel LIX

7-Amino-5H-imidazo[1.2-a][3.1]-benzthiazin

125 mg (0,535 mmol) der Nitro-Verbindung aus Beispiel LVIII werden in 50 ml Ethanol und 2 ml Dichlormethan gelöst, mit 300 mg Palladium/Kohle-Katalysator (10%-ig) versetzt und 2 h mit Wasserstoff hydriert. Man filtriert den Katalysator über

Kieselgel ab, engt i.V. ein und trennt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/3).

fbl. Schaum, R_f (Dichlormethan/Methanol = 10/1) = 0.65

Ausbeute: 85 mg (78,3 % d. Th.)

5

Beispiel LX

 $N-(R)-2-Hydroxy-3-\{(5H-imidazo[1.2-a][3.1]-benzthiazin-7-yl)-amino\} propylacetamid$

10

15

85 mg (0,42 mmol) des Amins aus Beispiel LIX werden in 5 ml abs. Dichlormethan gelöst, mit 58 mg (0,5 mmol) (S)-Acetyl-aminomethyl-oxiran und 250 mg (4,2 mmol) Kieselgel versetzt und i.V. zur Trockene eingedampft. Man läßt über Nacht bei RT stehen. Dann löst man in wenig Dichlormethan, versetzt mit 33 mg (0,29 mmol) Oxiran und dampft erneut i.V. zur Trockene ein. Nach 2 h Stehen eluiert man das Kieselgel mit 5 ml Dichlormethan/Methanol = 4/1, engt i.V. ein und trennt den Rückstand säulenchromatogaphisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/5).

fbl. Schaum, R_f (Dichlormethan/Methanol = 10/1) = 0.3

20 Ausbeute: 43 mg (32,3 % d. Th.)

Beispiel LXI

7-Nitro-4H-tetrazolo[5,1-c][1,4]-benzoxazin

Analog B. Medaer, Tetrahedron Letters 35, 1994, 9767-70 und D. Achakzi, Chem. Ber. 144, 1981, 3188-94 wurden 3,88 g (0,02 mmol) 7-Nitro-4H-benz-1,4-oxazin-3-on in 160 ml abs. Dichlormethan gelöst, mit 6,29 g (0,024 mol) Triphenylphosphin und 5,68 g (0,024 mol) Hexachlorethan versetzt und 60 min zum Sieden erhitzt. Nach dem Abkühlen tropft man 3,32 ml (2,43 g \cong 0,024 mol) Triethylamin zu und erhitzt eine weitere Stunde zum Sieden. Nach dem Abkühlen setzt man 1,82 g (0,028 mol) Natriumazid in DMF zu und rührt über Nacht bei Raumtemperatur. Man dampft die organischen Lösemittel ab, rührt mit wenig Wasser aus und trennt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Essigester = 9/1); $R_f = 0,8$.

gelbliche Kristalle, Fp: 171°C

Ausbeute: 3 g (68,5 % d. Th)

15 Beispiel LXII

5

10

7-Amino-4H-tetrazolo[5,1-c][1,4]-benzoxazin

1 g (4,563 mmol) der Verbindung aus Beispiel LXI werden in wenig Methanol gelöst, mit 0,3 g Pd/C (5 %-ig) versetzt und mehrere Stunden bei 2 bar Druck Wasserstoff hydriert. Nach Abfiltrieren des Katalysators wird i.V. zur Trockne eingedampft.

 $R_f(Dichlormethan/Methanol = 100/3) = 0.69$

fbl. Kristalle, Fp: >250° (Zers.)

25 Ausbeute: 0,784 g (90,8 % d. Th.)

Beispiel LXIII

2-Amino-5-nitro-benzylalkohol

5

10

15

25g (0.14 mol) 2-Amino-5-nitro-benzoesäure werden in 800 ml abs. THF gelöst und unter Eiskühlung langsam mit 38,7 g (0.45 mol) ≜ 450 ml BH₃ x THF-Komplex versetzt. Während der ersten Stunde des Zutropfens (ca. 180 ml des BH₃ x THF-Komplexes) erfolgt eine heftige Gasentwicklung. Danach versetzt man mit dem Rest und läßt über Nacht bei RT rühren. Anschließend tropft man 100 ml Wasser zu (äußerst heftige Gasentwicklung während der ersten 20 Minuten!) und dann 50 ml 1 N Salzsäure. Man rührt noch 1 h bei RT nach, versetzt mit 25 ml 1 molarer Kalium-carbonat-Lösung und dampft i.V. bei 30°C das THF ab. Hierbei fällt das gewünschte Produkt aus. Es wird abfiltriert, gut mit Wasser gewaschen und im Hochvakuum getrocknet.

gelbe Kristalle

Ausbeute: 19,7 g (85.4% d. Th.)

Beispiel LXIV

20

6-Nitro-1,4-dihydro-2H-3,1-benzoxazin-2-on

10 g (0.06 mol) des Benzylalkohols aus Beispiel LXIII werden in 100 ml Dioxan gelöst, mit 11 g (0.07 mol) CDI versetzt und 3 h bei RT gerührt. Man erwärmt noch 1 h auf 50°C, dampft i.V. das Lösungsmittel ab, säuert mit 1 N Salzsäure schwach an, neutralisiert mit verdünnter NaHCO $_3$ -Lösung und extrahiert mit Essigester. Der eingedampfte Extrakt wird säulenchromatographisch getrennt. (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100 / 5).

gelbe Kristalle

Ausbeute: 2,7 g (23.4% d. Th.)

10 Beispiel LXV

5

6-Nitro-1,4-dihydro-2H-3,1-benzoxazin-2-thion

2,7 g (0.014 mol) der Verbindung aus Beispiel LXIV werden in 200 ml Dioxan gelöst, mit 6,4 g (0.016 mol) Lawesson's Reagenz versetzt und 3 h zum Sieden erhitzt. Nach dem Abkühlen dampft man i.V. das Lösungsmittel ab, versetzt mit Methanol, rührt 10 Minuten, kühlt auf 0°C ab und filtriert.

gelbe Kristalle, Fp: 206- 208°C (Zers.)

20 Ausbeute: 2,3 g (78.7% d. Th.)

Beispiel LXVI

25

2-Methylsulfanyl-6-nitro-4H-3,1-benzoxazin

WO 99/40094

2,3 g (10.9 mmol) des Thions aus Beispiel LXV werden in 50 ml Aceton gelöst, mit 1,82 g (13.1 mmol) Kaliumcarbonat und 0.75 ml ≜ 1.71 g (12 mmol) Methyljodid versetzt und 2 h bei RT gerührt. Man dampft i.V. zur Trockne ein, rührt kurz mit wenig Wasser aus und filtriert.

gelbes Festprodukt

Ausbeute: 2,1 g (85.6% d.Th.)

Beispiel LXVII

10

15

20

5

N-(6-Nitro-4H-3,1-benzoxazin-2-yl)-aminoacetaldehyd-dimethylacetal

2,1 g (9.4 mmol) der Verbindung aus Beispiel LXVI werden in 150 ml Ethanol gelöst, mit 2,1 ml ≜ 1,97 g (18.7 mmol) Aminoacetaldehyd-dimethylacetal versetzt und über Nacht auf 70-80°C erhitzt. Laut DC-Kontrolle (Laufmittel: Dichlormethan/Metanol = 100 / 5) ist noch Edukt vorhanden. Man versetzt noch einmal mit der gleichen Menge des Acetals und erhitzt weitere 4 h zum Sieden. Danach dampſt man alles i.V. zur Trockne ein, rührt mit wenig verdünnter NaHCO₃-Lösung aus und filtriert das gewünschte Produkt ab.

gelbes Festprodukt

Ausbeute: 2,37 g (90.0% d.Th.)

Beispiel LXVIII

5 7-Nitro-4H-imidazo-[1,2-a][3,1]-benzoxazin

1,98 g (7.04 mmol) der Verbindung aus Beispiel LXVII werden in 40 ml THF gelöst, vorsichtig mit 20 ml konz. Schwefelsäure so versetzt, daß die Temperatur 50°C nicht übersteigt und anschließend 15 Minuten bei RT gerührt. Zur Vervollständigung des Ringschlusses erhitzt man noch 1 h auf ca. 80°C. Man gießt das Reaktionsgemisch nach dem Abkühlen vorsichtig auf Eis, stellt mit 180 ml 4 N Natronlauge alkalisch und dampft i.V. das THF ab. Der gelbliche Niederschlag wird abfiltriert, mit Wasser neutral gewaschen und im Hochvakuum getrocknet.

15 Rf: (Dichlormethan/Methanol = 1/1) = 0.42

Ausbeute: 1,28 g (83.7% d. Th.)

Beispiel LXIX

10

20 7-Amino-4H-imidazo-[1,2-a] [3,1]-benzoxazin

1,28 g (5.89 mmol) der Nitroverbindung aus Beispiel LXVIII werden in 200 ml Ethanol suspendiert, mit 400 mg Pd/C (10 %ig) versetzt und bei RT unter Normaldruck mit Wasserstoff hydriert. Man filtriert den Katalysator ab, wäscht gut mit Ethanol und Methanol, dampft das Filtrat i.V. auf ein kleines Volumen ein und reinigt den Rückstand säulenchromatographisch (Kieselgel 40-60 μ m, Laufmittel: Dichlormethan/Methanol = 100 / 1)

farbloses Festprodukt

Rf: (Dichlormethan/Methanol = 10 / 1) = 0,88

Ausbeute: 200 mg (18.1% d. Th.)

10

5

Beispiel LXX

N-(R)-2-Hydroxy-3-{(4H-imidazo-[1,2-a][3,1]-benzoxazin-7-yl)-amino}-propylacetamid

15

20

47,9 mg (0.26 mmol) des Amins aus Beispiel LXIX werden in 10 ml Dichlormethan gelöst, mit 35,35 mg (0.31 mmol) (S)-Acetyl-aminomethyl-oxiran und 154 mg (2.56 mmol) Kieselgel 60 versetzt. Man dampft alles i.V. zur Trockne ein und läßt über Nacht stehen. Man eluiert mit 15 ml Dichlormethan/ Methanol = 7 / 3, engt etwas ein und reinigt den Rückstand auf einer Dickschichtplatte (Laufmittel: Dichlormethan/Methanol = 10 / 1, Eluens: Methanol).

farbloses Festprodukt

Rf: (Dichlormethan/Methanol = 10 / 1) = 0,26

Ausbeute: 23,2 mg (30.0% d. Th.)

Zusätzlich wurden 11,4 mg (23.8% d. Th.) Edukt zurückgewonnen.

5 Beispiel LXXI

2-Tert.butyloxycarbonylamino-7-nitro-4H-imidazo-[2,1-c][1,4]-benzoxazin

600 mg (3.11 mmol) 3-Amino-7-nitro-2H-1,4-benzoxazin werden in 10 ml abs. DMF gelöst, mit 2,2 g (9.32 mmol) Bromacetylcarbaminsäure-tert.butylester und 50 Körnchen Molsieb von 3Å versetzt und 4 h bei 60°C gerührt. Nach dem Abkühlen gießt man auf Eiswasser, filtriert und trennt den rotbraunen Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100 / 2).

15 Ausbeute: 361 mg (35.0% d. Th.)

Beispiel LXXII

2-Tert.butyloxycarbonylamino-7-amino-4H-imidazo-[2,1-c][1,4]-benzoxazin

50 mg (0.15 mmol) der Verbindung aus Beispiel LXXI werden in 10 ml Dichlor-methan/Methanol (7/3) gelöst, mit 25 mg Pd/C-Katalysator (10%-ig) versetzt und mit Wasserstoff bei RT innerhalb von 3 h hydriert. Man filtriert den Katalysator über Kieselgur ab, dampft das Filtrat i.V. ein und verreibt den Rückstand mit Diethylether. farbloses Festprodukt

Ausbeute: 30 mg (65.9% d. Th.)

10 Beispiel LXXIII

5

15

N-(R)-2-Hydroxy-3-{(2-tert.butyloxycarbonylamino-4H-imidazo-[2,1-c][1,4]-benz-oxazin-7-yl)-amino}-propyl-acetamid

10 mg (30 µmol) der Verbindung aus Beispiel LXXII werden in 1 ml Dichlormethan gelöst und mit 4,57 mg (40 µmol) (S)-Acetylaminomethyl-oxiran und 19,9 mg (~0.33 mmol) Kieselgel versetzt. Nachdem man alles gut durchgeschüttelt hat, dampft man i.V. zur Trockne ein und läßt alles über Nacht stehen. Am nächsten Tag (laut DC, Laufmittel: Dichlormethan/Methanol = 10 / 1, ist noch Edukt vorhanden) schlämmt man in wenig Dichlormethan auf, versetzt mit weiteren 4 mg (35 µmol) Oxiran und 10 mg (0.16 mmol) Kieselgel, dampft i.V. ein und läßt wieder über Nacht reagieren. Nach dem Ausrühren mit wenig Dichlormethan/Methanol (4/1) und Filtration dampft man das Filtrat auf ein kleines Volumen ein und reinigt es auf einer Dickschichtplatte (Laufmittel: Dichlormethan/Methanol = 10 / 1; Rf = 0,45; Eluens: Methanol).

farbloser Schaum

Ausbeute: 4,7 mg (34.0% d. Th.)

15 Beispiel LXXIV

5

10

1-(N²-Nitromethylen-hydrazinyl)-2-propinoxy-4-nitrobenzol

Herstellung einer 0,2 M Nitromethan-Natrium-Lösung: 100 mg NaOH (2.5 mmol) werden in 490 μl Wasser gelöst, auf 0°C abgekühlt und tropfenweise mit einer Lösung aus 134 μl (61 g/mol ≅ 1,13 g/ml ≅ 1 eq.) Nitromethan in 930 μl Ethanol versetzt. Die erhaltene Suspension füllt man mit Eiswasser auf 12,2 ml auf, wobei eine klare Lösung entsteht.

WO 99/40094 - 99 - PCT/EP99/00518

30 mg (0.13 mmol) 2-Propinoxy-4-nitroanilinhydrochlorid werden in 300 μ l 2 N Salzsäure suspendiert, auf 0°C abgekühlt und mit einer Lösung von 9,6 mg Natriumnitrit in 39 μ l Wasser versetzt. Dabei erhält man eine gelbe Suspension. Mit kalter 2 N Salzsäure stellt man pH 5 ein (bleibt gelbe Suspension) und versetzt dann mit 650 μ l der oben hergestellten 0,2 M Nitromethan-Natrium-Lösung. Hierbei färbt sich die Suspension rotbraun. Man läßt noch ca. 1 h bei 0°C nachrühren und extrahiert dann mit einer Mischung aus 0,5 N Salzsäure und Essigester (1/1). Die organische Phase wird abgetrennt, mit Magnesiumsulfat getrocknet und i.V. auf ein kleines Volumen eingeengt. Die Reinigung erfolgt mittels Dickschichtchromatographie; Laufmittel: Toluol/Aceton = 10 / 1; Eluens: Ethanol. Man erhält ein oranges Festprodukt.

Rf (Toluol/Ethanol = 1/1) = 0,76

Ausbeute: 25 mg (72.1% d. Th.)

Beispiel LXXV

15

20

10

5

7-Nitro-4H-pyrazolo-[1,5-d][1,4]-benzoxazin

0,57 g (2.16 mmol) der Verbindung aus Beispiel LXXIV werden mit 15 ml o-Xylol versetzt und über Nacht zum Sieden erhitzt. Nach dem Erkalten versetzt man mit Petrolether, filtriert, destilliert vom Filtrat i.V. den Petrolether ab und reinigt den Rückstand säulenchromatographisch; Kieselgel 60, Laufmittel: Petrolether/Dichlormethan = 2 / 1 bis 1 / 2. Man erhält ein gelbes Festprodukt.

Rf (Petrolether/Dichlormethan = 1/1) = 0,67

25 Ausbeute: 48 mg (10.2% d. Th.)

Beispiel LXXVI

7-Amino-4H-pyrazolo-[1,5-d][1,4]-benzoxazin

5

10

50 mg (0.23 mmol) der Verbindung aus Beispiel LXXV werden in 5 ml Ethanol unter Argonatmosphäre vorgelegt, mit 10 mg Pd/C-Katalysator (10%-ig) versetzt und bei RT und Normaldruck hydriert. Nach Abfiltrieren des Katalysators dampft man i.V. auf ein kleines Volumen ein und reinigt den Rest mittels einer Dickschicht-chromatographie; Laufmittel: Dichlormethan/Methanol = 100 / 2; Eluens: Methanol. Man erhält ein farbloses Festprodukt

Rf (Dichlormethan/Methanol = 100 / 2) = 0,11

Ausbeute: 26 mg (60.3% d. Th.)

15 **Beispiel LXXVII**

 $N-(R)-2-Hydroxy-3-\{(4H-pyrazolo-[1,5-d][1,4]-benzoxazin-7-yl)-amino\}-propylacetamid$

26 mg (0.14 mmol) der Verbindung aus Beispiel LXXVI werden in 1 ml Dichlormethan gelöst, mit 19,2 mg (0.17 mmol) (S)-Acetylaminomethyl-oxiran und 83,45 mg (1.39 mmol) Kieselgel versetzt, gut durchgeschüttelt und i.V. zur Trockne eingedampft. Man läßt über Nacht reagieren. Nach Ausrühren mit 2 ml Dichlormethan gibt man weitere 0.6 eq. Oxiran zu, dampft i.V. ein und läßt 4 h stehen. Man eluiert durch Ausrühren mit 5 ml Dichlormethan/Methanol (4/1), filtriert, engt das Filtrat i.V. auf ein kleines Volumen ein und trennt den Rückstand mittels Dickschichtchromatographie; Laufmittel: Dichlormethan/Methanol = 10 / 1; Eluens: Methanol. Man erhält einen farblosen Schaum.

10 Rf (Dichlormethan/Methanol = 10 / 1) = 0,51 Ausbeute. 20,7 mg (49.3% d. Th.) und 5,2 mg (20 %) Edukt

Beispiel LXXVIII

5

N-(R)-2-Hydroxy-3-{(4H-imidazo[2,1-c][1,4]-benzoxazin-7-yl)-amino}-propyl-carbaminsäure-tert.butylester

Hergestellt analog Beispiel XV aus 1 g (5.34 mmol) der Verbindung aus Beispiel XIV und 1,11 g (6.41 mmol) (S)-tert.Butyloxycarbonylaminomethyl-oxiran. farbloser Schaum

Rf (Dichlormethan/Methanol = 100 / 5) = 0.25

Ausbeute: 625 mg (32.5% d. Th.)

WO 99/40094 - 102 - PCT/EP99/00518

Beispiel LXXIX

(5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-aminomethyl-oxazolidin-2-on

5

10

20

100 mg (0.26 mmol) der Verbindung aus Beispiel LXXVIII werden in Dioxan suspendiert, mit etwas Methanol versetzt, bis man eine klare Lösung erhält und über Nacht mit 2 ml einer 4 N Dioxan x HCl-Lösung gerührt. Man neutralisiert mit verdünnter NaHCO₃-Lösung, trocknet mit Magnesiumsulfat und engt i.V. zur Trockne ein. Der Rückstand wird dünnschichtchromatographisch aufgetrennt; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 4 / 1, Rf = 0,25

farbloses Festprodukt

15 Ausbeute: 37 mg (49.7% d. Th.)

Beispiel LXXX

2-Bromdifluoracetylamino-5-nitrophenol

WO 99/40094 - 103 - PCT/EP99/00518

7 g (45.4 mmol) 2-Amino-5-nitrophenol werden in 160 ml DMF gelöst, mit 5,3 g (52.2 mmol; 7,24 ml) Triethylamin versetzt, im Eisbad auf 0°C bis 5°C gekühlt und unter Rühren tropfenweise mit 10,1 g (52.2 mmol) Bromdifluoracetylchlorid versetzt. Nach der Zugabe des Säurechlorids läßt man noch 1 h bei RT nachrühren. Dann dampft man i.V. alles zur Trockne ein, nimmt in 250 ml Dichlormethan/Wassser (1/1) auf (ausrühren), trennt die organische Phase ab und wäscht die organische Phase noch zweimal mit je 100 ml Dichlormethan. Die vereinigten organischen Phasen werden mit Natriumsulfat getrocknet, i.V. auf ein kleines Volumen eingeengt und säulenchromatographisch getrennt; Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester = 100 / 3, Rf = 0,52.

gelbes Festprodukt

Ausbeute: 6,4 g (45.3% d. Th.)

15 Beispiel LXXXI

2,2-Difluor-7-nitro-4H-benz-1,4-oxazin-3-on

20

5

10

20~mg (64 μ mol) der Verbindung aus Beispiel LXXX werden in 0,5 ml DMF (oder DMSO!) gelöst, mit 7,22 mg (64 μ mol) Kaliumtert.butylat versetzt und 6 h bei 50°C

gerührt. Man dampft alles i.V. zur Trockne ein, rührt 10 Minuten mit 10 ml Eiswasser aus, filtriert und trocknet den Rückstand im Hochvakuum;

gelbes Festprodukt, Rf (Dichlormethan/Essigsäureethylester = 100 / 3) = 0,35 Ausbeute: 13,5 mg (91.2% d. Th.)

5

Beispiel LXXXII

N-(2,2-Difluor-7-nitro-2H-1,4-bezoxazin-3-yl)-aminoacetaldehyddimethylacetal

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

10

15

20

Man löst 2 g (8.7 mmol) der Verbindung aus Beispiel LXXXI in 80 ml Dichlormethan, versetzt mit 2,74 g (10.4 mmol) Triphenylphosphin und 2,47 g (10.4 mmol) Hexachlorethan und erwärmt 30 Minuten (!) auf 40°C. Nach dem Abkühlen läßt man unter Rühren 1,45 ml (1,06 g; 10.4 mmol) Triethylamin zutropfen und crwärmt 2 h auf 40°C. Nach dem Abkühlen tropft man unter Rühren bei Raumtemperatur 2,84 ml (2,74g; 26.07 mmol) Aminoacetaldehyddimethylacetal zu. Nach 1 h Rühren gibt man 80 ml Wasser zu, trennt die organische Phase ab, schüttelt die wäßrige Phase noch zweimal mit je 50 ml Dichlormethan aus und vereinigt die organischen Phasen. Nach dem Trocknen mit Natriumsulfat und Einengen i.V. auf ein kleines Volumen erfolgt eine säulenchromatographische Trennung, Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester =9 / 1, Rf = 0,77;

gelbes Festprodukt

Ausbeute: 2,1 g (76.2% d. Th.)

Beispiel LXXXIII

4,4-Difluor-7-nitro-4H-imidazo-[2,1-c][1,4]-benzoxazin

5

10

1,4 g (4.4 mmol) der Verbindung aus Beispiel LXXXII werden unter Argonatmosphäre (Kolben vorher ausheizen!) in 20 ml abs. Dioxan gelöst, mit 2 g Molsieb (4Å) und 5,13 g (22.1 mmol) Campher-10-sulfonsäure versetzt und auf 100°C erwärmt. Nach spätestens 10 Minuten (Dunkelfärbung) ist der Ringschluß erfolgt. Man läßt abkühlen, neutralisiert mit festem Natriumhydrogencarbonat und versetzt mit soviel Wasser, daß man eine klare Lösung erhält. Das gewünschte Produkt gewinnt man durch mehrfaches Ausschütteln mit Essigsäureethylester und nachfolgende säulenchromatographische Trennung; Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester = 100 / 5 Rf = 0.42

15 ethylester = 100 / 5, Rf = 0,42.

gelbes Festprodukt

Ausbeute: 0,77 g (68.9% d. Th.)

Beispiel LXXXIV

20

4,4-Difluor-7-amino-4H-imidazo-[2,1-c][1,4]-benzoxazin

$$H_2N$$
 O
 F

80 mg (0.32 mmol) der Nitroverbindung aus Bsp. LXXXIII werden in 40 ml Methanol gelöst, mit 50 mg Pd/C-Katalysator (10%-ig) versetzt und 1 h bei 2 bar Wasserstoffdruck hydriert. Anschließend wird der Katalysator abgesaugt und das Filtrat zur Trockne eingedampft. Der Rückstand wird mit wenig Diethylether ausgerührt, filtriert und im Hochvakuum getrocknet.

Rf (Dichlormethan/Methanol = 100 / 1) = 0.19

fbl. Festprodukt

Ausbeute: 65 mg (92.2% d. Th.)

10 Beispiel LXXXV

5

 $N-(R)-2-Hydroxy-3-\{(4,4-difluor-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-amino\}-propyl-acetamid$

15

20

110 mg (0.49 mmol) des Amins aus Bsp. LXXXIV, 70 mg (0.59 mmol) (S)-Acetylaminomethyl-oxiran und 0,3 g Kieselgel 60 werden in 5 ml abs. Chloroform aufgeschlämmt, im Ultraschallbad behandelt und i.V. zur Trockne eingedampft. Man läßt über Nacht bei RT stehen. Nach Elution mit 10 ml warmem Chloroform filtriert man, dampft das Filtrat ein und reinigt den Rest säulenchromatographisch; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 9 / 1, Rf = 0,54.

fbl. Festprodukt

Ausbeute: 9 mg (5.4% d. Th.)

Zusätzlich werden 90 mg (81.8%) Edukt zurückgewonnen.

Beispiel LXXXVI

5 4,4-Difluor-7-benzyloxycarbonylamino-4H-imidazo-[2,1-c][1,4]-benzoxazin

0,5 g (2.24 mmol) des Amins aus Bsp. LXXXIV werden in 3,1 ml Dioxan gelöst, mit 4,44 ml gesättigter Natriumhydrogencarbonat-Lösung versetzt und im Eisbad auf 0°C abgekühlt. Unter Rühren tropft man 0,35 ml (0.42 g; 2,46 mmol) Chlorameisensäurebenzylester zu. Anschließend läßt man noch 30 Minuten bei RT nachrühren. Man versetzt mit 20 ml Wasser und filtriert, wäscht mit Wasser nach und trocknet den Rückstand im Hochvakuum.

Rf (Dichlormethan/Methanol = 100 / 3) = 0.6

fbl. Kristalle

Ausbeute: 0,73 g (91.2% d. Th.)

Beispiel LXXXVII

(5S)-3-(4,4-Difluor-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-hydroxymethyloxazolidin-2-on

5

10

15

0,35 g (0.98 mmol) der Verbindung aus Bsp. LXXXVI werden unter Argonatmosphäre in 1,5 ml Dimethylacetamid gelöst, auf 0°C abgekühlt und unter Rühren mit einer auf -20°C gekühlten Lösung aus 2,5 molarer Butyllithium-Lösung in n-Hexan (2.1 mmol) und 0,35 ml tert. Amylalkohol (3.16 mmol) versetzt. Man läßt 15 Minuten bei 0°C nachrühren und versetzt mit 0,17 ml (0,18 g; 1.22 mmol) (R)-(-)-Glycidylbutyrat. Nach Rühren über Nacht bei RT versetzt man mit einer Lösung aus 3,1 ml Wasser, 3,1 ml Methanol und 0,19 ml Essigsäure. Anschließend dampft man alles i.V. zur Trockne ein und trennt den Rückstand säulenchromatographisch; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100 / 7, Rf = 0,34.

fbl. Festprodukt

Ausbeute: 142 mg (44.8% d. Th.)

Beispiel LXXXVIII

(5S)-3-(4,4-Difluor-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-(3-nitrophenylsul-fonyloxymethyl)-oxazolidin-2-on

5

10

15

20

50 mg (0.155 mmol) des Alkohols aus Bsp. LXXXVII werden unter Argonatmosphäre in 1 ml Dichlormethan gelöst, mit 31,3 mg (0.31 mmol) Triethylamin versetzt, auf 0°C abgekühlt und unter Rühren mit 51,4 mg (0.23 mmol) 3-Nitrobenzolsulfonsäurechlorid versetzt. Nach 12 h Rühren bei 0°C versetzt man mit 5 ml 1 N Natronlauge, filtriert den ausgefallenen Niederschlag ab, wäscht mit Wasser und trocknet ihn im Hochvakuum.

Rf (Dichlormethan/Methanol = 100/3) = 0.5

fbl. Kristalle

Ausbeute: 55,3 mg (70.3% d. Th.)

Beispiel LXXXIX

(5S)-3-(4,4-Difluor-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-aminomethyl-oxazolidin-2-on

WO 99/40094 - 110 - PCT/EP99/00518

0,27 g (0.53 mmol) der Verbindung aus Bsp. LXXXVIII werden in 2,6 ml Isopropanol und 4,8 ml DMF gelöst, mit 4 ml (ca. 53 mmol) einer gesättigten, wäßrigen Ammoniaklösung versetzt und über Nacht bei 40°C gerührt (Suspension). Man versetzt mit 1,3 ml Isopopanol, 2,4 ml DMF und 2 ml der obigen Ammoniaklösung und läßt weitere 5 h bei 40°C nachrühren. Man engt etwas i.V. ein, filtriert den Niederschlag ab, wäscht mit wenig Wasser nach und trocknet ihn im Hochvakuum.

Rf (Dichlormethan/Methanol = 9/1) = 0,11

fbl. Festprodukt

Ausbeute: 130 mg (76.0% d. Th.)

10

5

Beispiel XC

7-Benzyloxycarbonylamino-4H-tetrazolo-[5,1-c][1,4]-benzoxazin

15

Hergestellt analog Bsp. LXXXVI aus 0,73 g (3.86 mmol) der Verbindung aus Bsp. LXII, 7,3 ml gesättigter Natriumhydrogencarbonatlösung und 0,72 g (4.245 mmol) Chlorameisensäurebenzylester.

Rf (Dichlormethan/Methanol = 100 / 1) = 0.54

fbl. Kristalle

Ausbeute: 1,2 g (96.2% d. Th.)

Beispiel XCI

(5S)-3-(4H-Tetrazolo-[5,1-c][1,4]-benzoxazin-7-yl)-5-hydroxymethyl-oxazolidin-2-on

5

Hergestellt analog Bsp. LXXXVII aus 0,1 g (0.323 mmol) der Verbindung aus Bsp. XC, 0,1 ml (0.09 g; 1.044 mmol) tert. Amylalkohol, 0.28 ml (0.04 g; 0.7 mmol) einer 2,6 molaren Butyllithium-Lösung in n-Hexan, 0,06 ml (0.06 g; 0,4 mmol) (R)-(-)-Glycidylbutyrat und 0,06 ml Essigsäure in 0,5 ml Dimethylacetamid.

10 Rf (Dichlormethan/Methanol = 100 / 3) = 0,25

fbl. Festprodukt

Ausbeute: 30 mg (32.1% d. Th.)

Beispiel XCII

15

(5S)-3-(4H-Tetrazolo-[5,1-c][1,4]-benzoxazin-7-yl)-5-(3-nitrophenylsulfonyloxymethyl)-oxazolidin-2-on

Hergestellt analog Bsp. LXXXVIII aus 100 mg (0.35 mmol) des Alkohols aus Bsp. XCI, 0,1 ml (0.07 g; 0.69 mmol) Triethylamin und 100 mg (0.43 mmol) 3-Nitrobenzolsulfonsäurechlorid.

Rf (Dichlormethan/Methanol = 100 / 3) = 0,48

fbl. Festprodukt

Ausbeute: 55 mg (33.5% d. Th.)

10 Beispiel XCIII

(5S)-3-(4H-Tetrazolo-[5,1-c][1,4]-benzoxazin-7-yl)-5-aminomethyl-oxazolidin-2-on

15

5

Hergestellt analog Bsp. LXXXIX aus 50 mg (0.105 mmol) des Alkohols aus Bsp. XCII und 0,8 ml (~10.5 mmol) einer gesättigten (ca. 25%-ig), wäßrigen Ammoniaklösung.

Rf (Dichlormethan/Methanol = 9/1) = 0.15

fbl. Festprodukt

Ausbeute: 21,3 mg (70.1% d. Th.)

5 Beispiel XCIV

2-Ethoxycarbonyl-7-nitro-4H-imidazo-[2,1-c][1,4]-benzoxazin

2,7 g (10 mmol) 3-Amino-7-nitro-2H-benz-1,4-oxazin werden in 10 ml abs. DMF gelöst, mit 3,03 g (1,95 ml; 10 mmol) Brombenztraubensäureethylester versetzt und 1 h unter Argonatmosphäre auf 80 °C erhitzt. Nach dem Erkalten wird das DMF abdestilliert (Kugelrohr), der Rückstand mit Wasser/Dichlormethan ausgerührt, die organische Phase abgetrennt, getrocknet und säulenchromatographisch gereinigt;

Laufmittel: Cyclohexan/Essigsäureethylester = 1 / 1 bis Essigsäureethylester pur.

Rf (Essigsäureethylester) = 0.48

orange Kristalle

Ausbeute: 0,9 g (22.7% d. Th.)

Zusätzlich gewinnt man 0,84 g (31.1%) Edukt zurück und aus der wäßrigen Phase ca.

20 1 g (37%) 7-Nitro-4H-benz-1,4-oxazin-3-on (Bsp. IX).

Beispiel XCV

2-Hydroxymethyl-7-nitro-4H-imidazo-[2,1-c][1,4]-benzoxazin

5

235 mg (0.58 mmol) der Verbindung aus Bsp. XCIV werden in 15 ml abs. THF gelöst, auf 0°C abgekühlt, mit 0,58 ml (0.58 mmol) einer 1 molaren Lösung von Lithiumalanat in THF versetzt und 1 h bei RT gerührt. Man versetzt mit 10 ml Methanol, dampft i.V. alles zur Trockne ein und reinigt den Rückstand säulenchromatographisch; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100 / 5, Rf = 0.15. gelbe Kristalle, Fp: 197°C

Ausbeute: 65 mg (45.4% d. Th.)

Beispiel XCVI

15

10

2-Tert.-butyldimethylsilyloxymethyl-7-nitro-4H-imidazo-[2,1-c][1,4]-benzoxazin

220 mg (0.89 mmol) des Alkohols aus Bsp. XCV werden in 20 ml abs. Dichlormethan vorgelegt, mit 0,16 ml (144,5 mg, 1.33 mmol) 2,6-Lutidin versetzt und auf -50°C abgekühlt. Dann werden 0,22 ml (252 mg, 0.93 mmol) Trifluormethansulfonsäure-tert.butyldimethylsilylester zugegeben. Man läßt zunächst 30 Minuten bei -50°C, dann 4 h bei RT reagieren. Dann versetzt man mit 5 ml Wasser und extrahiert mit Dichlormethan. Nach dem Trochnen mit Magnesiumsulfat und Filtration wird das Filtrat i.V. zur Trockne eingedampft und der Rückstand säulenchromatographisch gereinigt; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100 / 0.5, Rf = 0,65.

10 gelblicher Schaum

5

20

Ausbeute: 297 mg (92.3% d. Th.)

Beispiel XCVII

2-Tert.butyldimethylsilyloxymethyl-7-amino-4H-imidazo-[2,1-c][1,4]-benzoxazin

293 mg (0.81 mmol) der Nitroverbindung aus Bsp. XCVI werden unter Argonatmosphäre in 20 ml Methanol gelöst, mit 29,3 mg Pd/C-Katalysator (10%-ig) und 511 mg (8.1 mmol) Ammoniumformiat versetzt und 2 h zum Sieden erhitzt. Nach dem Erkalten filtriert man den Katalysator ab, wäscht mit Methanol nach und dampft das Filtrat i.V. zur Trockne ein. Der Rückstand wird säulenchromatographisch aufgetrennt; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100 / 2.

Rf (Dichlormethan/Methanol = 100 / 5) = 0.32

hellbraune Kristalle, Fp: 92 -95°C

Ausbeute: 222 mg (82.6% d. Th.)

Beispiel XCVIII

5

 $N-(R)-2-Hydroxy-3-\{(2-tert.butyldimethylsilyloxymethyl-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-amino\}-propyl-acetamid$

222 mg (0.67 mmol) des Amins aus Bsp. XCVII werden in 10 ml Dichlormethan gelöst, mit 80,8 mg (0.7 mmol) (S)-Acetyl-aminomethyl-oxiran und 2 g Kieselgel 60 versetzt und i.V. zur Trockne eingedampft. Nach 24 h haben sich ca. 30% Edukt umgesetzt. Man gibt noch 1.05 eq. des Oxirans zu und wiederholt die obige Prozedur. Nach weiteren 3 h eluiert man mit Chloroform, engt das Eluat i.V. auf ein kleines Volumen ein und trennt es säulenchromatographisch auf; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100 / 3 bis 100 / 6.

Rf (Dichlormethan/Methanol = 10 / 1) = 0,44

gelblicher Schaum

Ausbeute: 152,1 mg (51.0% d. Th.)

WO 99/40094 - 117 - PCT/EP99/00518

Zusätzlich werden ca. 100 mg (45%) Edukt zurückgewonnen.

Beispiel IC

5 (5S)-3-(2-tert.butyldimethylsilyloxymethyl-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-acetylaminomethyl-oxazolidin-2-on

Unter Argonatmosphäre werden 148 mg (0.33 mmol) der Verbindung aus Bsp. XCVIII in 5 ml abs. Dioxan vorgelegt, mit 54 mg (0.33 mmol) CDI versetzt und zum Sieden erhitzt (klare Lösung). Man versetzt mit weiteren 54 mg CDI und läßt über Nacht bei Siedetemperatur reagieren. Nach dem Erkalten versetzt man mit 2 ml Wasser und 10 ml Dichlormethan, trennt die organische Phase ab, schüttelt die wäßrige Phase noch zweimal mit 5 ml Dichlormethan aus, trocknet die vereinigten organischen Phasen mit Magnesiumsulfat, dampft i.V. zur Trockne ein und trennt den Rückstand säulenchromatographisch; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100 / 3.

Rf (Dichlormethan/Methanol = 100 / 5) = 0,2

fbl. Schaum

10

15

20 Ausbeute: 141 mg (90.0% d. Th.)

Beispiel C

7-Nitro-imidazo-[1,2-a]-chinolin

5

2,2 g (10.55 mmol) 2-Chlor-6-nitrochinolin werden gut mit 1,09 g (15.82 mmol) 1II-1,2,3-Triazol vermischt und unter Argonatmosphäre kurz auf 150°C erhitzt (langsam hochheizen). Nach dem Erkalten rührt man 1 h mit 100 ml Dichlormethan, wäscht zweimal mit Wasser, trocknet die organische Phase mit Magnesiumsulfat, engt i.V. ein und trennt den Rückstand säulenchromatographisch; Kieselgel 60, Laufmittel:Dichlormethan/Methanol = 100 / 1.

Rf (Essigsäureethylester) = 0,15 gelbe Kristalle

Ausbeute. 1,39 g (61.8% d. Th.)

15

10

Beispiel CI

7-Amino-imidazo-[1,2-a]-chinolin

20

200 mg (0.94 mmol) der Nitroverbindung aus Bsp. C werden unter Argonatmosphäre in 5 ml Methanol vorgelegt, mit 20 mg Pd/C-Katalysator (10 %ig) und 592 mg (9.4 mmol) Ammoniumformiat versetzt und 25 Minuten in einem 75°C heißen Ölbad erwärmt. Nach dem Erkalten filtriert man den Katalysator ab, wäscht gut mit Metha-

WO 99/40094 - 119 - PCT/EP99/00518

nol nach und engt i.V. zur Trockne ein. Der Rückstand wird säulenchromatographisch gereinigt; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100 / 5.

Rf (Dichlormethan/Methanol = 10 / 1) = 0,33

fbl.Schaum, leicht grau

5 Ausbeute: 128,6 mg (74.8% d. Th.)

Beispiel CII

 $N-(R)-2-Hydroxy-3-\{(imidazo-[1,2-a][1,2-a]-chinolin-7-yl)-amino\}-propyl-acetamid$

10

15

128,6 mg (0.7 mmol) des Amins aus Bsp. CI und 81,1 mg (0.7 mmol) (S)-Acetylaminomethyl-oxiran werden in 10 ml Dichlormethan gelöst. Es werden 127 mg (2.11 mmol) Kieselgel 60 zugesetzt, und alles wird nach guter Durchmischung i.V. zur Trockne eingedampft. Nach 24 h wird alles mit 10 ml Dichlormethan eluiert und erneut mit 1 eq. Oxiran versetzt. Die Weiterreaktion auf der festen Phase (analog obiger Prozedur) wird nach 5 h abgebrochen. Das Kieselgel wird mit 20 ml Chloroform eluiert und das Eluat säulenchromatographisch getrennt; Kieselgel 60, Laufmittel:Dichlormethan/Methanol = 100 / 5 bis 100 / 15.

Rf (Dichlormethan/Methanol = 10/2) = 0.42

fbl. Schaum

Ausbeute: 74 mg (35.3% d. Th.)

Zusätzlich werden 83 mg (64.5 %) Edukt zurückgewonnen.

Herstellungsbeispiele

Beispiel 1

5 (5S)-3-(1,2,4-Triazolo[3,4-c][1,4]-benzoxazin-7-yl)-5-acetylaminomethyloxazolidin-2-on

Man löst 130 mg (0,43 mmol) der Verbindung aus Beispiel XXXIX in 9,5 ml abs. THF, versetzt mit 100 mg Carbonyldiimidazol und erwärmt 3 h in einem 90°C warmen Ölbad. Man dampft i.V. zur Trockne ein, rührt mit Wasser aus und filtriert. fbl. amorphes Produkt; Fp: >250°C (Zers.)

Ausbeute: 34 mg (24,1 % d.Th.)

Beispiel 2

15

10

(5S)-3-(1-Methyl-1,2,4-triazolo[3,4-c][1,4]-benzoxazin-7-yl-5-propionylamino-methyl-oxazolidin-2-on

In Analogie zur Vorschrift des Beispiels 1 wird die Titelverbindung aus 90 mg (0,27 mmol) der Verbindung aus Beispiels XLII und 70 mg (0,41 mmol) Carbonyldiimidazol in 5ml abs. THF über Nacht bei 60°C hergestellt. WO 99/40094 - 121 - PCT/EP99/00518

 $R_f(Dichlormethan/Methanol = 9/1) = 0.64$

fbl. Schaum

Ausbeute: 9 mg (9,3 % d.Th.)

5 Beispiel 3

(5S)-3-(4,5-Dihydro-imidazo[1,2-a]chinolin-7-yl)-5-acetylaminomethyl-oxazolidin-2-on

307 mg (0,814 mmol) der Verbindung aus Beispiel XLIII werden unter Argonatmosphäre in 10 ml abs. Tetrahydrofuran gelöst, mit 298,3 mg (1,84 mmol) frischem Carbonyldiimidazol versetzt und zum Sieden erhitzt (DC-Kontrolle mit dem Laufmittel Dichlormethan/Methanol = 10/1). Über Nacht wird bei Raumtemperatur nachgerührt, dann mit Dichlormethan und Kieselgur versetzt. Nach säulenchromatographischer Trennung an Kieselgel 60 mit Dichlormethan/Methanol = 100/5 als Laufmittel erhält man ein farbloses Festprodukt.

 R_f (Dichlormethan/Methanol = 10/1) = 0.33

Ausbeute: 206 mg (61,8 % d.Th.)

20 Beispiel 4

(5S)-3-(1-Methyl-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-acetaminomethyloxazolidin-2-on

WO 99/40094 - 122 - PCT/EP99/00518

40 mg (0,111 mmol) des substituierten Acetamids aus Beispiel XXIV werden analog der Vorschrift des Beispiels 1 in 1 m abs. THF gelöst, mit 50 mg (0,332 mmol) Carbonyldiimidazol versetzt und 8 h auf 40°C erwärmt. Man dampft i.V. zur Trockne ein, rührt mit wenig Wasser aus und reinigt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/7); $R_f = 0,2$.

gelbliches Öl

Ausbeute: 8 mg (18,5 % d.Th.)

10

5

Beispiel 5

(5S)-3-(2-Methyl-4H-imidazo[2,1-c][1,4]-benzoxazin-7-yl)-5-acetylaminomethyloxazolidin-2-on

15

20

In Analogie zur Vorschrift des Beispiels 1 wird die Titelverbindung aus 0,3 g (1,388 mol) der Verbindung aus Beispiel XI und 0,24 g 2-Aminopropionaldehyddimethylacetal und analog der Sequenz der Beispiele XII, XIII, XIV und XV hergestellt.

fbl. Kristalle, Fp: 205°C (Zers.) $R_{\rm f} ({\rm Dichlormethan/Methanol} = 9/1) = 0.5$

Beispiel 6

5

(5S)-3-(4H-Imidazo[2,1-c][1,4]-benzoxazin-7-yl)-5-acetylaminomethyl-oxazolidin-2-on

20 mg (0,063 mmol) der Verbindung aus Beispiel XV und 15 mg (0,095 mmol)

Carbonyldiimdazol (CDI) werden in 2 ml abs. THF gelöst und 3 h erwärmt (Ölbad, 50°C). Man versetzt noch mit einer Spatelspitze CDI und erwärmt erneut. Nach dem Erkalten fällt man das Produkt mit Wasser aus und reinigt es säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 9/1); R_f = 0,35 fbl. Kristalle, Fp.: 205°C (Zers.)

15 Ausbeute: 7 mg (33,6 % d.Th.)

Beispiel 7

20

(5S)-3-(4H-Imidazo[2,1-c][1,4]benzoxazin-7-yl)-5-propionylaminomethyloxazolidin-2-on

Analog der Vorschrift des Beispiels XV aus 0,2 g (1 mmol) der Verbindung aus Beispiel XIV und 0,37 g (2 mmol) (S)-Propionylaminomethyl-oxiran und anschließendem Ringschluß mit Carbonyldiimidazol.

fbl. Kristalle, Fp.: 236°C (Zers.)

5 R_f (Dichlormethan/Methanol = 9/1) = 0,5

Beispiel 8

10

15

25

(5S)-3-(4H-Imidazo[2,1-c][1,4]-benzoxazin-7-yl-5-methoxycarbonylaminomethyloxazolidin-2-on

Analog der Vorschrift der Beispiels XV aus 0,29 g (1,53 mmol) der Verbindung des Beispiels XIV und 0,2 g (1,53 mmol) (S)-Methoxycarbonylaminomethyl-oxiran und anschließendem Ringschluß mit Carbonyldiimidazol.

fbl. Kristalle, Fp.: 223°C (Zers.)

 R_f (Dichlormethan/Methanol = 9/1) = 0.6

20 <u>Allgemeine Arbeitsvorschrift zur Herstellung der Imidazobenzthiazole</u> (Beispiele 9 - 15)

1 mmol (5S)-3-(2-Aminobenzthiazol-6-yl)-5-acetylaminomethyl-oxazolidin-2-on (vgl. EP 738 726) in 6 ml Ethanol wird mit 1,5 mmol des entsprechenden Chlor- oder Brom-ketons bzw. -aldehyds (R⁶-CO-CHR³ Cl/Br) versetzt und über Nacht unter

WO 99/40094 - 125 - PCT/EP99/00518

Rückfluß erhitzt. Anschließend wird eingedampft und das Produkt durch präparative Dünnschichtchromatographic (Dichlormethan/Methanol = 20/1) gereinigt.

Tabelle 1:

5

BspNr.	R ⁶	R ³	Ausbeute	$R_{f} (CH_{2}Cl_{2}/MeOH = 10/1)$	MS
9	Н	Н	16	0,38	331 (DCI/NH ₃)
					M+H
10	C ₆ H ₅	Н	8	0,5	407 (DCI/NH ₃)
					M+H
11	CO ₂ C ₂ H ₅	Н	18	0,4	403, 425 (ESI)
					M+H
12	CH ₃	Н	7	0,4	345 (ESI)
					M+H
13	CF ₃	Н	8	0,65	399 (DCI/NH ₃)
					M+H
14	CH ₃	CH ₃	11	0,5	359 (DCI/NH ₃)
					M+H
15	CF ₃	CH ₃	16	0,59	413 (DCI/NH ₃)
					M+H

(5S)-3-(4H-Pyrrolo[2.1-c][1,4]-benzoxazin-7-yl)-5-acetylaminomethyl-oxazolidin-2-on

5

10

15

Die Herstellung erfolgt analog Herstellungsbeispiel 1 aus 10 mg (0,04 mmol) der Verbindung aus Beispiel VIII und 10 mg (0,06 mmol) Carbonyldiimidazol in 0,5 ml abs. THF 6 h bei 40°C. Man engt i. V. ein, nimmt mit wenig Essigester auf, fällt das Produkt mit Wasser aus und filtriert den Niederschlag. Nach dem Trocknen erhält man einen amorphen, farblosen Rückstand.

 R_f (Dichlormethan/Methanol = 100/7) = 0.5

Ausbeute: 8 mg (73,7 % d. Th.)

Beispiel 17

(5S)-3-(2,2-Dimethyl-4H-imidazo[2.1-c][1.4]-benzoxazin-7-yl)-5-acetylaminomethyl-oxazolidin-2-on

Die Herstellung erfolgt analog dem obigen Beispiel 1 aus 120 mg (0,363 mmol) der Verbindung aus Beispiel XX und 90 mg (0,545 mmol) CDI in 5 ml THF über Nacht bei 50°C.

fbl. Schaum, R_f (Dichlormethan/Methanol = 100/7) = 0,41

Ausbeute: 86 mg $(98.8 \% - ig) \cong 65.7 \% d$. Th.

Beispiel 18

10

15

5 (5S)-3-(4H-Imidazo[2.1-c][1.4]-benzthiazin-7-yl)-5-acetylaminomethyl-oxazolidin-2-on

10 mg (0,031 mmol) des substituierten Acetamids aus Beispiel XXXI werden in 2ml abs. THF gelöst, mit 10,19 mg (0,063 mmol) CDI versetzt und zum Sieden erhitzt (DC-Kontrolle mit Dichlormethan/Methanol = 10/1 als Laufmittel). Nach 3 h wird nur eine geringe Umsetzung festgestellt. Man versetzt mit weiteren 10,19 mg (0,063 mmol) CDI, dampft i. V. das Lösungsmittel ab, löst alles in 2 ml Dioxan und erhitzt über Nacht zum Sieden. Es läßt sich kein Edukt mehr nachweisen. Man engt i. V. zur Trockne ein und reinigt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/5).

fbl. Schaum, R_f (Dichlormethan/Methanol = 10/1) = 0.32

Ausbeute: 7,2 mg (66,5 % d. Th.)

(5S)-3-(5H-Imidazo[1,2-a][3.1]-benzthiazin-7-yl)-5-acetyl-aminomethyl-oxazolidin-2-on

5

43 mg (0,14 mmol) des substituierten Acetamids aus Beispiel LX werden in 5 ml abs. THF und einigen Tropfen abs. DMF gelöst, mit 33 mg (0,2 mmol) CDI versetzt und 1 h zum Sieden erhitzt. Es findet kaum eine Umsetzung statt. Man dampft i.V. das THF ab, nimmt mit 2ml DMF auf und erhitzt 2,5 h auf 100°C. Man versetzt mit Wasser, extrahiert mit Essigester und dampft i.V. ein. Der Rückstand wird mittels Dünnschichtplatte an Kieselgel getrennt; Laufmittel: Dichlormethan/Methanol = 10/3, $R_f = 0.72$.

fbl. Schaum, R_f (Dichlormethan/Methanol = 10/1) = 0,52 Ausbeute: 17,3 mg (37,2 % d. Th.)

15

10

Beispiel 20

(5S)-3-(3-Ethoxycarbonyl-4H-imidazo[5.1-c][1.4]-benzoxazin-7-yl)-5-acetylamino-methyl-oxazolidin-2-on

20

6.2~mg (16,56 μ M) des substituierten Acetamids aus Beispiel XLVI werden in 0.2~ml abs. DMF gelöst, auf 100° C aufgeheizt und mit 4.03~mg (24,84 μ M) CDI in 0.2~ml

DMF versetzt und auf 100° C gehalten. Nach 3 h versetzt man noch mit weiteren 4,03 mg CDI und erhitzt weitere 2 h auf 100° C. Nach dem Eindampfen i. V. trennt man den Rückstand auf einer Dickschichtplatte, Laufmittel: Dichlormethan/Methanol = 10/1) = 0,44.

PCT/EP99/00518

5 Ausbeute: 18 mg (27,1 % d. Th.)

$$MS (ESI) = 401 (M + H); 423 (M + Na)$$

Zusätzlich werden 3 mg (48,4 %) Edukt zurückgewonnen.

Beispiel 21

10

(5S)-3-(4H-imidazo[5.1-c][1.4]-benzoxazin-7-yl)-5-acetylaminomethyl-oxazolidin-2-on

- 10,8 mg (35,7 μmol) des substituierten Acetamids aus Beispiel L und 8,7 mg (53,6 μmol) CDI werden in 0,3 ml abs. DMF gelöst und 1 h bei 100°C gerührt. Dann gibt man weitere 5 mg (30,8 μmol) CDI zu und erhitzt 1 h bei 100°C. Man engt alles i. V. zur Trockne ein und trennt den Rückstand auf einer Dickschichtplatte; Laufmittel: Dichlormethan/Methanol = 10/1; Eluens: Methanol.
- 20 fbl. Schaum, R_f (Dichlormethan/Methanol = 10/1) = 0.32Ausbeute: 4.2 mg (35.8 % d. Th.) und 4.4, mg (40.7 %) EduktMS (DCI) = 329 (M + H)

Beispiel 22

25

(5S)-3-(Imidazo[1.2-a]indol-7-yl)-5-acetyl-aminomethyl-oxazolidin-2-on

5

60 mg (0,21 mmol) des substituierten Acetamids aus Beispiel LVII werden in 6 ml abs. THF gelöst, mit 41 mg (0,25 mmol) CDI versetzt und auf 70°C erhitzt. Nach 1 h gibt man erneut 16 mg (0,1 mmol) CDI zu und läßt weitere 2 h bei 70°C reagieren. Man dampft alles zur Trockne ein, nimmt den Rückstand in wenig Dichlormethan/Methanol = 4/1 auf und trennt das Gemisch auf einer Dickschichtplatte (Laufmittel: Dichlormethan/Methanol = 4/1; $R_f = 0,65$).

fbl. Schaum

10 Ausbeute: 21 mg (32,1 % d. Th.)

MS (DCI) = 313 (M + H)

Beispiel 23

15 (5S)-3-(Imidazo[1.2-a]indol-7-yl)-5-acetyl-aminomethyl-oxazolidin-2-on-hydrochlorid

21 mg (67,2 μmol) der Verbindung aus Beispiel 22 werden in wenig Methanol
 20 gelöst, mit Diethylether/Chlorwasserstoff versetzt und i. V. zur Trockne eingedampft.
 Der Rückstand wird mit Diethylether ausgerührt und der Niederschlag filtriert.

fbl. Produkt

Ausbeute: 8 mg (31,1 % d. Th.)

(5S)-3-(4H-Imidazo-[1,2-a][3,1]-benzoxazin-7-yl)-5-acetylaminomethyl-oxazolidin-2-on

5

18,5 mg (61.2 μ mol) der Verbindung LXX werden in 200 μ l DMF gelöst, auf 80°C erwärmt und mit 14,9 mg (91.8 μ mol) CDI in 100 μ l DMF versetzt. Man läßt alles bei 80°C reagieren. Nach 1,5 h versetzt man mit weiteren 7,4 mg (45.6 μ mol) CDI und erwärmt 4 h auf 100°C. Man engt alles i.V. auf ein kleines Volumen ein und reinigt den Rest mittels Dickschichtchromatographie; Laufmittel: Dichlormethan/Methanol = 10/1, Eluens: Methanol.

fbl. Schaum, Rf (Dichlormethan/Methanol = 10/1) =0,44

Ausbeute: 9,1 mg (45.3% d. Th.)

15

10

Beispiel 25

(5S)-3-(2-Tert.butyloxycarbonylamino-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-acetylaminomethyl-oxazolidin-2-on

$$H_3C$$
 CH_3
 O
 N
 N
 O
 CH_3
 O
 CH_3
 O
 CH_3

10 mg (24 µmol) der Verbindung aus Bsp. LXXIII werden in 0,5 ml abs. THF gelöst, mit 6 mg (35.9 µmol) CDI versetzt und über Nacht zum Sieden erhitzt. Die Reinigung erfolgt mittels einer Dickschichtplatte; Laufmittel: Dichlormethan/Methanol = 10/2, Eluens: Methanol

fbl. Festprodukt

Ausbeute: 1,9 mg (17.9 % d. Th.)

10 Beispiel 26

5

(5S)-3-(4H-Pyrazolo-[1,5-d][1,4]-benzoxazin-7-yl)-5-acetylaminomethyl-oxazolidin-2-on

20 mg (66.15 μmol) der Verbindung aus Bsp. LXXVII, gelöst in 0,4 ml abs. Dioxan, werden mit 16,09 mg (99.2 μmol) CDI versetzt und 3 h bei 90°C unter Argonatmosphäre gerührt. Man versetzt mit weiteren 8 mg (49 μmol) CDI und erhitzt noch 1,5 h auf 90°C. Nach dem Abkühlen versetzt man mit Wasser, dampft i.V. das Dioxan weitgehend ab und eluiert ausgiebig mit Essigester. Die vereinigten Essigesterphasen werden mit Magnesiumsulfat getrocknet, eingeengt und mittels Dickschichtchromatographie gereinigt; Laufmittel: Dichlormethan/Methanol = 10/1, Eluens: Methanol.

Man erhält einen farblosen Schaum.

Rf (Dichlormethan/Methanol = 10/1) = 0,49

Ausbeute: 14,8 mg (68.1% d. Th.)

Beispiel 27

5

15 (5S)-3-(5H-Imidazo-[1,2-a][3,1]-benzthiazinoxid-7-yl)-5-acetylaminomethyloxazolidin-2-on

5 mg (0.015 mmol) der Verbindung aus Bsp. 19 werden in 1 ml Dichlormethan gelöst, mit 3,5 mg (0.01 mmol) 3-Chlorperoxybenzoesäure versetzt und 2 h bei RT gerührt. Man schüttelt mit verdünnter Sodalösung aus, trocknet mit Magnesiumsulfat und reinigt mittels Dickschichtchromatographie; Laufmittel: Dichlormethan/Methanol = 10/1, Rf = 0,23, Eluens: Methanol.

fbl. Schaum

Ausbeute: 1,8 mg (34.4% d. Th.)

Beispiel 28

5 (5S)-3-(5H-Imidazo-[1,2-a][3,1]-benzthiazindioxid-7-yl)-5-acetylaminomethyloxazolidin-2-on

20 mg (58 μmol) der Verbindung aus Bsp. 19 werden in 4 ml Dichlormethan gelöst, mit 33 mg (0.13 mmol) 3-Chlorperoxybenzoesäure versetzt und über Nacht bei RT gerührt. Man wäscht mit verdünnter Sodalösung, trocknet mit Magnesiumsulfat und reinigt mittels Dickschichtchromatographie; Laufmittel: Dichlormethan/Methanol = 10/1, Rf = 0,48, Eluens: Methanol.

fbl. Schaum

10

15 Ausbeute: 9,6 mg (43.9% d. Th.)

(5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-tert.butyloxycarbonylaminomethyl-oxazolidin-2-on

5

Hergestellt analog Bsp. 8 aus 0,3 g (0.83 mmol) der Verbindung aus Bsp. LXXVIII und 0,2 g (1.25 mmol) CDI.

fbl. Schaum

Rf (Dichlormethan/Methanol = 100/5) = 0,4

Ausbeute: 310 mg (80.4% d. Th.)

Beispiel 30

15 (5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-aminomethyl-oxazolidin-2-on-hydrochlorid

0,31 g (0.8 mmol) der Verbindung aus Bsp. 29 werden 2 h bei RT mit 2 ml 4 N Dioxan x HCl-Lösung gerührt. Der ausgefallene, farblose Niederschlag wird filtriert, mit Dichlormethan gewaschen und im Exsikkator über P_4O_{10} getrocknet.

fbl. Kristalle, Fp: > 200°C (Zers.)

Ausbeute: 0,25 g (92.2% d. Th.)

Beispiel 31

5

15

(5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-chloracetylaminomethyl-

10 oxazolidin-2-on

50 mg (0.175 mmol) der Verbindung aus Bsp. LXXIX werden in 1 ml Dichlormethan gelöst, mit 21,7 mg (15,3 μl; 0.19 mmol) Chloracetylchlorid versetzt und auf 0°C abgekühlt. Hierzu gibt man unter Rühren tropfenweise 38,9 mg (53,3 μl; 0.38 mmol) Triethylamin. Anschließend läßt man die Temperatur auf RT ansteigen, wäscht mit verdünnter Sodalösung und extrahiert mit Dichlormethan. Nach dem Trocknen mit Magnesiumsulfat dampft man i.V. zur Trockne ein, rührt mit Diethylether aus, filtriert und trocknet im Hochvakuum.

Rf (Dichlormethan/Methanol = 10/1) = 0,4

fbl. Festprodukt

Ausbeute: 33 mg (52.1% d. Th.)

(5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-dichloracetylaminomethyloxazolidin-2-on

5

10

50 mg (0.155 μmol) der Verbindung aus Bsp. 30 werden mit 1 ml Dichlormethan und 34,5 mg (47,2 μl; 0.34 mmol) Triethylamin versetzt. Man kühlt auf 0°C ab und versetzt tropfenweise mit 25,1 mg (17,7 μl; 0.15 mmol) Dichloracetylchlorid. Nach Ansteigen der Temperatur auf RT wäscht man mit verdünnter Sodalösung und extrahiert mit Dichlormethan. Man trocknet mit Magnesiumsulfat, dampft i.V. zur Trockne ein, rührt mit Diethylether aus, filtriert und trocknet im Hochvakuum.

Rf (Dichlormethan/Methanol = 10/1) = 0,48

fbl. Festprodukt

15 Ausbeute:

Ausbeute: 20 mg (32.5% d. Th.)

(5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-trichloracetylaminomethyloxazolidin-2-on

5

10

50 mg (0.155 mmol) der Verbindung aus Bsp. 30 werden mit 2 ml Dichlormethan und 34,5 mg (47,2 μl; 0.34 mmol) Triethylamin versetzt. Man kühlt auf 0°C ab und versetzt tropfenweise mit 31 mg (17,7 µl; 0.17 mmol) Trichloracetylchlorid und läßt über Nacht rühren. Nachdem die Temperatur auf RT angestiegen ist, wäscht man mit verdünnter Sodalösung und extrahiert mit Dichlormethan. Man trocknet mit Magnesiumsulfat, engt das Filtrat auf ein kleines Volumen ein und trennt den Rest mittels Dickschichtchromatographie; Laufmittel: Dichlormethan/Methanol = 10/1, Eluens:

Dichlormethan/Methanol = 7/3

15 Rf (Dichlormethan/Methanol = 10/1) = 0.51

fbl. Festprodukt

Ausbeute: 5,8 mg (8.7% d. Th.)

(5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-thiocarbamoylaminomethyloxazolidin-2-on

5

10

15

2 g (7 mmol) der Verbindung aus Bsp. LXXIX werden in 30 ml Chloroform gelöst, auf 0°C abgekühlt und mit 30 ml Wasser, 2,1 g (21 mmol) Calciumcarbonat und 0,83 ml (1,24 g; 10.48 mmol) Thiophosgen versetzt. Man läßt über Nacht bei RT stark rühren. Dann trennt man die organische Phase ab und extrahiert die wäßrige Phase noch dreimal mit Chloroform. Die vereinigten organischen Phasen werden i.V. etwas eingeengt und mit 10 ml einer 2 N methanolischen Ammoniaklösung in 20 ml Methanol versetzt. Nach Reaktion über Nacht wird alles i.V. zur Trockne eingedampft und säulenchromatographisch getrennt; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 10/1, Rf = 0,41.

fbl. Festprodukt

Ausbeute: 0,7 g (29.0% d. Th.)

(5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-methylthiocarbamoylaminomethyl-oxazolidin-2-on

5

10

Hergestellt analog Bsp. 34 aus 0,3 g (1.05 mmol) der Verbindung aus Bsp. LXXIX, 186,3 mg (123,6 μ l; 1.57 mmol) Thiophosgen, 314,6 mg (3.14 mmol) Calciumcarbonat und 15 ml einer methanolischen Methylamin-Lösung; Säulenchromatographische Trennung mit Kieselgel 60 und dem Laufmittel: Dichlormethan/Methanol = 100/3, Rf = 0,5.

fbl. Festprodukt

Ausbeute: 135 mg (35.8% d. Th.)

(5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-carbamoylaminomethyloxazolidin-2-on

5

10

20 mg (0.07 mmol) der Verbindung aus Bsp. LXXIX werden in 0,5 ml Wasser vorgelegt, mit 10 mg (0.07 mmol) Kaliumcyanat und 0,07 ml 1 N Salzsäure versetzt und 2 h in einem auf 100°C erhitzten Ölbad erhitzt. Nach dem Abkühlen wird der farblose Niederschlag filtriert, mit Wasser gewaschen und im Hochvakuum getrocknet.

fbl. Kristalle, Fp: 246°C (Zers.)

Ausbeute: 18 mg (77.9% d. Th.)

15 **Beispiel 37**

(5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-formylaminomethyl-oxazolidin-2-on

20 mg (0.07 mmol) der Verbindung aus Bsp. LXXIX und 0,5 ml (0,46 g; 6.15 mmol) Ameisensäureethylester werden über Nacht in einem 40°C warmen Ölbad zur Reaktion gebracht. Nach dem Abkühlen erfolgt eine dünnschichtchromatographische Trennung; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 4/1, Rf = 0,15.

5 fbl. Schaum

Ausbeute: 10 mg (37.7% d. Th.)

Beispiel 38

10 (5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-thioacctylaminomethyloxazolidin-2-on

20 mg (0.07 mmol) der Verbindung aus Bsp. LXXIX und 50 mg (0.4 mmol) Dithioessigsäureethylester in 0,05 ml Dioxan werden 2 h in einem 60°C heißen Ölbad erwärmt. Nach dem Erkalten wird alles dünnschichtchromatographisch gereinigt; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 9/1. Man erhält einen fbl. Schaum.

Rf (Dichlormethan/Methanol = 4/1) = 0,6

20 Ausbeute: 8 mg (24.8% d. Th.)

15

(5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-methoxythiocarbonylaminomethyl-oxazolidin-2-on

5

10

50 mg (0.15 mmol) des Amin-Hydrochlorids aus Bsp. 30 werden unter Argonatmosphäre in 1 ml abs. THF aufgeschlämmt und mit 37,7 mg (1,5 ml; 0.34 mmol) Hünig-Base versetzt. Man gibt unter Rühren 18,8 mg (0.17 mmol) Chlorthiocarbonsäure-Omethylester hinzu und läßt über Nacht reagieren. Nach weiterer Zugabe eines halben Äquivalents des Chlorthiocarbonsäure-Omethylesters und Weiterrühren über 12 h wird alles i.V. zur Trockne eingedampft und säulenchromatographisch gereinigt; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/2. Man erhält ein amorphes, blaßgelbes Festprodukt.

15 Rf (Dichlormethan/Methanol = 100/5) = 0,31

Fp: 161°C

Ausbeute: 25,4 mg (45.5% d. Th.)

(5S)-3-(4H-Imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-ethoxythiocarbonylaminomethyl-oxazolidin-2-on

5

10

20 mg (62 μ mol) des Amin-Hydrochlorids aus Bsp. 30 werden in 1 ml Methanol aufgeschlämmt, mit 0,12 ml (0.124 mmol) 1 N Natronlauge und 9,78 mg (65.1 μ mol) Dimethylthiolothionocarbonat versetzt und über Nacht bei RT gerührt. Es wird alles zur Trockne eingeengt und auf Kieselgelplatten aufgetrennt; Laufmittel: Dichlormethan/Methanol = 10/1, Rf = 0,55. Man crhält ein blaßgelbes, amorphes Festprodukt.

Ausbeute: 4,6 mg (19.8% d. Th.)

(5S)-3-(1-Brom-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-acetylaminomethyloxazolidin-2-on

Beispiel 42

5

10

15

(5S)-3-(1,2-Dibrom-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-acetylaminomethyloxazolidin-2-on

50 mg (0.152 mmol) der Verbindung aus Bsp. 6 und 20 mg Brom in 5 ml Dichlormethan werden 3 Tage bei RT gerührt. Nach dem Einengen i.V. zur Trockne erfolgt eine säulenchromatographische Trennung; Kieselgel 60, Laufmittel: Dichlor-

methan/Methanol = 100/7. Es werden zwei farblose Produkte gewonnen, mono- und dibromiertes Edukt, Beispiel 41 und Beispiel 42.

Beispiel 41: Rf (Dichlormethan/Methanol = 100/7) = 0.5

Ausbeute: 5 mg (7.0% d. Th.)

Beispiel 42: Rf ((Dichlormethan/Methanol = 100/7) = 0,6

Ausbeute: 10 mg (13.1% d. Th.)

Beispiel 43

10 (5S)-3-(4,4-Difluor-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-acetylaminomethyloxazolidin-2-on

- a) Unter Argonatmosphäre werden 35 mg (96 μ mol) der Verbindung aus Bsp. LXXXV in 1 ml THF gelöst, mit 23,4 mg (0.144 mmol) CDI versetzt und 3 h bei 50°C gerührt. Anschließend gibt man noch einmal 23,4 mg CDI zu und rührt über Nacht bei 50°C. Dann dampft man i.V. zur Trockne ein und trennt den Rest säulenchromatographisch; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 100/7, Rf = 0,4.
- 20 fbl. Festprodukt
 Ausbeute: 4 mg (11.4% d. Th.)

15

b) 50 mg (0.155 mmol) des Amins aus Bsp.LXXXIX werden in 1 ml DMF gelöst, auf 0°C abgekühlt und tropfenweise mit 0.03 ml (25 mg; 0.25 mmol) Tricthylamin

und 0.02 ml (22,2 mg; 0.22 mmol) Essigsäureanhydrid versetzt. Man läßt 1 h bei RT nachrührren, dampft i.V. zur Trockne ein und reinigt den Rückstand säulenchromatographisch (s.o.).

Ausbeute: 18 mg (31.8% d. Th.)

5

Beispiel 44

(5S)-3-(4,4-Difluor-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-methoxythiocarbonylaminomethyl-oxazolidin-2-on

10

15

20

50 mg (0.155 mmol) des Amins aus Bsp. LXXXIX werden in 2 ml Methanol gelöst, mit 0,07 ml Hünig-Base und 37,9 mg (0.31 mmol) Dimethylthiolothionocarbonat versetzt und über Nacht bei RT gerührt. Man dampft alles i.V. zur Trockne ein und trennt den Rückstand säulenchromatographisch; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 9/1, Rf = 0.57

fbl. Festprodukt

Ausbeute: 15 mg (24.4% d. Th.)

Beispiel 45

7-Benzyloxycarbonylamino-4H-1,2,4-triazolo-[3,4-c][1,4]-benzoxazin

Die Herstellung erfolgt analog Beispiel LXXXVI aus 0,28 g (1,49 mmol) der Verbindung aus Beispiel XXXVIII, 0,3 g (1,785 mmol) Chlorameisensäurebenzylester und 3 ml gesättigter Natriumhydrogencarbonat-Lösung in 2,1 ml Dioxan;

fbl. Festprodukt

 R_f (Dichlormethan / Methanol = 9 / 1) = 0.7

Ausbeute: 0,4 g (83,3 % d. Th.)

10 Beispiel 46

5

(5S)-3-(4H-1,2,4-Triazolo-[3,4-c][1,4]-benzoxazin-5-yl-5-hydromethyl-oxazolidin-2-on

15

Die Herstellung erfolgt analog Beispiel LXXXVII aus 0,4 g (1,235 mmol) der obigen Verbindung (Beispiel 45), 0,35 g (4 mmol) tert.-Amylalkohol, 0,17 g (2,655 mmol) einer 2,5 molaren Butyllithium-Lösung in n-Hexan, 0,22 g (1,543 mmol (R)-(-)-Glycidylbutyrat und 0,24 g (4,076 mmol) Essigsäure in 1,9 ml Dimethylacetamid;

fbl. Festprodukt

 R_f (Dichlormethan / Methanol = 9 / 1) = 0.6

Ausbeute: 70 mg (19,7 % d. Th.)

(5S)-3-(4H-1,2,4-Triazolo-[3,4-c][1,4]-benzoxazin-7-yl-5-(3-nitrophenylsulfonyl)-oxymethyl-oxazolidin-2-on

Die Herstellung erfolgt analog Beispiel LXXXVIII aus 85 mg (0,295 mmol) der obigen Verbindung (Beispiel 46), 59,7 mg, (0,59 mmol) Triethylamin und 98 mg (0,442 mmol) 3-Nitrobenzolsulfonsäurechlorid in 2 ml Dichlormethan;

fbl. Festprodukt (roh)

 R_{f} . (Dichlormethan / Methanol = 10 / 7) = 0,4

Ausbeute: 75 mg (53,7 % d. Th.)

15

Beispiel 48

(5S)-3-(4H-1,2,4-Triazolo-[3,4-c][1,4]-benzoxazin-7-yl-5-aminomethyl-oxazolidin-2-on

Die Herstellung erfolgt analog Beispiel LXXXIX aus 75 mg (0,158 mmol) der obigen Verbindung (Beispiel 47) und 1,2 ml gesättigter Ammoniaklösung im wenig Isopropanol;

5 fbl. Festprodukt (roh)

4-(Dichlormethan/Methanol = 4/1) = 0.47

Ausbeute: ~ quantitativ

Beispiel 49

10

(5S)-3-(4H-1,2,4-Triazolo-[3,4-c][1,4]-benzoxazin-7-yl)-5-methoxythiocarbonyl-aminomethyl-oxazolidin-2-on

15

Hergestellt analog Bsp. 44 aus 40 mg (0.14 mmol) der Verbindung aus Beispiel 48, 0,06 ml (0,04 g; 0.35 mmol) Hünig-Base und 30 mg (0.28 mmol) Dimethylthiolothionocarbonat.

Rf (Dichlormethan/Methanol = 100/7) = 0,55

blaßgelbes Festprodukt

Ausbeute: 10 mg (19.9% d. Th.)

(5S)-3-(4H-Tetrazolo-[5,1-c][1,4]-benzoxazin-7-yl)-5-acetylaminomethyloxazolidin-2-on

5

15

Hergestellt analog Bsp. 43 b aus 10 mg (35 μ mol) des Amins aus Bsp. XCIII, 5 mg (50 μ mol) Essigsäureanhydrid und 0,01 ml (5,6 mg; 56 μ mol) Triethylamin.

Rf (Dichlormethan/Methanol = 9/1) = 0.24

fbl. Festprodukt

10 Ausbeute: 2,8 mg (24.4% d. Th.)

Beispiel 51

(5S)-3-(2-Hydroxymethyl-4H-imidazo-[2,1-c][1,4]-benzoxazin-7-yl)-5-acetylamino-methyl-oxazolidin-2-on

56 mg (0.12 mmol) der Verbindung aus Bsp. IC werden unter Argonatmosphäre in 9 ml abs. THF aufgenommen, auf 0°C abgekühlt und mit 113,1 μl einer 1,1 molaren Tetrabutylammoniumfluorid-Lösung in abs. THF (0.12 mmol) versetzt. Nach 3 h Rühren bei 0°C gibt man 3 ml einer 10%-igen Zitronensäure zu und trennt alles mittels Säulenchromatographie; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 10/1, Rf = 0,48.

fbl., amorphe Substanz, Fp: > 300°C (Zers.)

Ausbeute: 26,2 mg (61.7% d. Th.)

10 Beispiel 52

5

(5S)-3-(Imidazo-[1,2-a]-chinolin-7-yl)-5-acetylaminomethyl-oxazolidin-2-on

Unter Argonatmosphäre werden 70 mg (0.23 mmol) der Verbindung aus Bsp. CII in 2 ml abs. Dichlormethan vorgelegt, mit 38,2 mg (0.23 mmol) CDI versetzt und zum Sieden erhitzt. Sobald die Reaktionslösung klar ist, versetzt man erneut mit 38,2 mg CDI und erwärmt weitere 5 h zum Sieden. Nach dem Erkalten nimmt man in 10 ml Dichlormethan auf, schüttelt zweimal mit Wasser aus, trocknet die organische Phase mit Magnesiumsulfat, engt i.V. zur Trockne ein und trennt den Rückstand säulenchromatographisch; Kieselgel 60, Laufmittel: Dichlormethan/Methanol = 10/1.

Rf (Dichlormethan/Methanol = 10/2) = 0,29

beiges, amorphes Produkt, Fp: 208°C

Ausbeute: 55,8 mg (71.4% d. Th.)

Patentansprüche

1. Oxazolidinone mit azolhaltigen Tricyclen der allgemeinen Formel (I)

$$A - N O R^1$$
 (I),

5

10

in welcher

A für Reste der Formeln

L' N R²

oder

worin

- R², R²' und R²'' gleich oder verschieden sind und Wasserstoff oder Halogen bedeuten,
 - D, D' und D'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR³ bedeuten,

20

15

worin

R³ Wasserstoff, Trifluormethyl, Halogen, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen oder einen Rest der Formel -NR⁴R⁵ bedeutet,

worin

5

R⁴ und R⁵ gleich oder verschieden sind und Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen bedeuten,

10

E, E' und E'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR⁶ bedeuten,

15

worin

20

R⁶ Wasserstoff, Trifluormethyl, Nitro, Cyano oder Halogen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Benzyl bedeutet, die gegebenenfalls durch Hydroxy oder durch geradkettiges oder ver-

zweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen sub-

25

Aryl mit 6 bis 10 Kohlenstoffatomen oder einen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die Ringsyste-

me gegebenenfalls bis zu 3-fach gleich oder verschie-

den durch Halogen, Hydroxy, Nitro, geradkettiges oder

verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder

Trifluormethyl substituiert sind, oder

stituiert sind, oder

30

30

	R^6	Reste	der Formeln O-R ⁷ , -CO-R ⁸ oder -NR ⁹ R ¹⁰ be-
		deutet,	,
5		worin	
		R ⁷	Wasserstoff, Benzoyl, geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen, Benzyl oder Aryl mit 6 bis
			10 Kohlenstoffatomen oder einen aromatischen
10			Heterocyclus mit bis zu 3 Heteroatomen aus der
			Reihe S, N und/oder O bedeutet,
15		R ⁸	Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen, Benzyl oder Aryl mit 6 bis 10 Kohlenstoffatomen oder einen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet,
20		oder	
		R ⁸	eine Gruppe der Formel -NR ¹¹ R ¹² bedeutet,
			worin
25			R ¹¹ und R ¹² gleich oder verschieden sind und Wasserstoff, Aryl mit 6 bis 10 Kohlen- stoffatomen, Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6

Kohlenstoffatomen bedeuten,

R⁹ und R¹⁰ gleich oder verschieden sind und Wasserstoff, Benzyl, Aryl mit 6 bis 10 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder eine Gruppe der Formel -CO₂R¹³ oder -CM-NR¹⁴R¹⁵ bedeuten,

worin

R¹³ geradkettiges oder verzweigtes Alkyl mit
 bis zu 6 Kohlenstoffatomen, Benzyl oder
 Phenyl bedeutet,

15

5

10

M ein Sauerstoff- oder Schwefelatom bedeutet,

 R^{14} und R^{15} gleich oder verschieden sind und die oben angegebene Bedeutung von R^4 und R^5 haben,

20

oder

R⁹ Wasserstoff bedeutet

25

und

R¹⁰ einen Rest der Formel

worin

R¹⁶ und R¹⁶ gleich oder verschieden sind und
Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder Benzyl bedeuten,

R¹⁷ und R¹⁸ gleich oder verschieden sind und geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Phenyl oder Benzyl bedeuten,

L, L' und L'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR¹⁹ bedeuten,

worin

R¹⁹ Wasserstoff, Trifluormethyl, Nitro, Cyano, Halogen oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenyl oder durch einen Rest der Formel -OR²⁰ substituiert ist,

worin

R²⁰ Wasserstoff, geradkettiges oder verzweigtes Al kyl mit bis zu 6 Kohlenstoffatomen, Aryl mit 6
 bis 10 Kohlenstoffatomen oder Benzyl bedeutet,

oder

10

5

15

20

25

	R ¹⁹	Reste deutet,	der Formeln -OR ²¹ , -COR ²² oder -NR ²³ R ²⁴ be-
5		worin R ²¹	Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen bedeutet,
10		R ²²	die oben angegebene Bedeutung von R ⁸ hat und mit dieser gleich oder verschieden ist,
15		R ²³ uno	R ⁵ haben und mit diesen gleich oder verschieden sind,
		oder	
20		R^{23}	Wasserstoff bedeutet
		und	
25		R ²⁴	Cyano oder einen Rest der Formel -CO-NR ²⁵ R ²⁶ oder -CS-NR ²⁷ R ²⁸ bedeutet,
			worin
30			R ²⁵ , R ²⁶ , R ²⁷ und R ²⁸ gleich oder verschieden sind und die oben angegebene Bedeutung von R ⁴ und R ⁵ haben,

oder

5

R²³ und R²⁴ gemeinsam mit dem Stickstoffatom einen 5- bis 6-gliedrigen, gesättigten Hetero-cyclus bilden, der noch ein weiteres Heteroatom aus der Reihe S, O oder einen Rest der Formel -NH enthalten kann,

10

Q ein Sauerstoff- oder Schwefelatom oder Reste der Formeln SO₂, SO, C=O oder CR²⁹R³⁰ bedeutet,

worin

15

 R^{29} und R^{30} gleich oder verschieden sind und Wasserstoff oder Halogen bedeuten,

T

einen Rest der Formel CR³¹R³² bedeutet,

20

worin

25

R³¹ und R³² gleich oder verschieden sind und Wasserstoff,
Halogen, Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen oder Benzyloxy bedeuten,

oder

R³¹ und R³² gemeinsam Reste der Formeln =O, =S,

$$= \begin{array}{c} R^{33} \\ \\ R^{34} \end{array} \quad \text{oder} \quad = N - R^{35} \quad \text{bilden},$$

worin

R³³ und R³⁴ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Benzyl bedeuten,

oder

10

R³³ und R³⁴ gemeinsam einen 3- bis 6-gliedrigen, gesättigten oder partiell ungesättigten Carbocyclus bilden,

15

und

R³⁵ Wasserstoff, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu
 6 Kohlenstoffatomen bedeutet,

20

- V ein Sauerstoffatom, ein Schwefelatom oder einen Rest der Formel SO oder SO₂ bedeutet,
- W ein Sauerstoff- oder Schwefelatom bedeutet, oder

 Reste der Formeln C=O, C=S, SO, SO₂, NR³⁶ oder CR³⁷R³⁸
 bedeutet,

worin

30

R³⁶ die oben angegebene Bedeutung von R³⁵ hat und mit dieser gleich oder verschieden ist,

5	R ³⁷ und R ³⁸ gleich oder verschieden sind und Wasserstoff, Halogen, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Benzyl bedeuten,
	oder
	R ³⁷ Wasserstoff bedeutet
10	und
	R ³⁸ einen Rest der Formel -OR ³⁹ bedeutet,
16	worin
15	R ³⁹ Wasserstoff, geradkettiges oder verzweigtes Al- kyl oder Acyl mit jeweils bis zu 6 Kohlenstoff- atomen oder Benzyl bedeutet,
20 Y	einen Rest der Formel C=O oder -CR ⁴⁰ R ⁴¹ bedeutet,
	worin
25	R ⁴⁰ und R ⁴¹ gleich oder verschieden sind und Wasserstoff, Halogen, Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,
	oder
30	R ⁴⁰ Wasserstoff bedeutet

WO 99/40094

und

R⁴¹ Hydroxy, Benzyloxy oder geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen bedeutet,

5

oder

W und Y gemeinsam für die Gruppe -CH=CH- stehen,

10

 R^1 für Azido oder für einen Rest der Formel -OR 42 , -O-SO $_2$ -R 43 oder -NR 44 R 45 steht,

worin

15

R⁴² Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis
 zu 6 Kohlenstoffatomen bedeutet,

R⁴³ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Phenyl oder Nitro-substituiertes Phenyl bedeutet,

20

R⁴⁴ und R⁴⁵ Wasserstoff bedeuten,

oder

25

R⁴⁴ Wasserstoff bedeutet,

und

 R^{45}

einen Rest der Formel

30

 $-C = R^{46}$ oder $-P(O)(OR^{47})(OR^{48})$ bedeutet,

worin

Z ein Sauerstoff- oder Schwefelatom bedeutet,

5

R⁴⁶ Wasserstoff oder geradkettiges oder verzweigtes Alkoxy mit bis zu 8 Kohlenstoffatomen, Benzyloxy oder Trifluormethyl bedeutet, oder

10

Cycloalkyl mit 3 bis 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Halogen oder Aryl mit 6 bis 10 Kohlenstoffatomen substutiert ist, oder

15

Aryl mit 6 bis 10 Kohlenstoffatomen oder einen 5- bis 6-gliedrigen gesättigten oder aromatischen Heterocylcus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die unter R⁴⁶ aufgeführten Ringsysteme gegebenenfalls bis zu 2-fach gleich oder verschieden durch Halogen, Cyano, Nitro, Hydroxy oder Phenyl substituiert sind,

20

oder

25

R⁴⁶ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenoxy, Benzyloxy, Carboxyl, Halogen oder geradkettiges oder verzweigtes Alkoxycarbonyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch einen 5-bis 6-gliedrigen Heterocylcus aus der Reihe S, N und/ oder O substituiert ist.

30

oder

R⁴⁶ einen Rest der Formel -NR⁴⁹R⁵⁰ bedeutet,

worin

5

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff, Phenyl, Pyridyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, das gegebenenfalls durch über Ngebundenes Morpholin substituiert ist,

10

R⁴⁷ und R⁴⁸ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

und deren Salze und N-Oxide.

2. Oxazolidinone mit azolhaltigen Tricyclen der allgemeinen Formel (I)

$$A \longrightarrow N \longrightarrow R^1$$
 (I),

in welcher

A für Reste der Formeln

$$E^{D} N$$

$$L' = D'$$

$$R^{2}$$

$$L' = N$$

oder

worin

R², R² und R²" gleich oder verschieden sind und Wasserstoff oder Halogen bedeuten,

D, D' und D'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR³ bedeuten,

worin

R³ Wasserstoff, Trifluormethyl, Halogen, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoffatomen oder einen Rest der Formel -NR⁴R⁵ bedeutet,

worin

R⁴ und R⁵ gleich oder verschieden sind und Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen bedeuten,

E, E' und E'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR⁶ bedeuten,

worin

10

5

15

20

25

stoffatomen oder einen aromatischen Heterocyc-

 R^6 Wasserstoff, Trifluormethyl, Nitro, Cyano oder Halogen bedeutet, oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Benzyl bedeutet, die gegebenen-5 falls durch Hydroxy oder durch geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen substituiert sind, oder Aryl mit 6 bis 10 Kohlenstoffatomen oder einen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der 10 Reihe S, N und/oder O bedeutet, wobei die Ringsysteme gegebenenfalls bis zu 3-fach gleich oder verschieden durch Halogen, Hydroxy, Nitro, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder Trifluormethyl substituiert sind, oder 15 R^6 Reste der Formeln O-R7, -CO-R8 oder -NR9R10 bedeutet, worin 20 R^7 Wasserstoff, Benzoyl, geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen, Benzyl oder Aryl mit 6 bis 10 Kohlenstoffatomen oder einen aromatischen 25 Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, R^8 Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen, Benzyl oder Aryl mit 6 bis 10 Kohlen-30

lus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet,

oder

5

R⁸ eine Gruppe der Formel -NR¹¹R¹² bedeutet,

worin

10

R¹¹ und R¹² gleich oder verschieden sind und
Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl oder geradkettiges
oder verzweigtes Alkyl mit bis zu 6
Kohlenstoffatomen bedeuten,

15

R⁹ und R¹⁰ gleich oder verschieden sind und Wasserstoff, Benzyl, Aryl mit 6 bis 10 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder eine Gruppe der Formel -CO₂R¹³ oder -CM-NR¹⁴R¹⁵ bedeuten,

20

worin

25

R¹³ geradkettiges oder verzweigtes Alkyl mit
 bis zu 6 Kohlenstoffatomen, Benzyl oder
 Phenyl bedeutet,

30

M ein Sauerstoff- oder Schwefelatom bedeutet, R^{14} und R^{15} gleich oder verschieden sind und die oben angegebene Bedeutung von R^4 und R^5 haben,

5

oder

R⁹

Wasserstoff bedeutet

und

10

R¹⁰ einen Rest der Formel

worin

15

R¹⁶ und R¹⁶ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder Benzyl bedeuten,

20

R¹⁷ und R¹⁸ gleich oder verschieden sind und geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, Phenyl oder Benzyl bedeuten,

25

L, L' und L'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR¹⁹ bedeuten,

worin

5	R ¹⁹	oder g Kohlei	rstoff, Trifluormethyl, Nitro, Cyano, Halogen eradkettiges oder verzweigtes Alkyl mit bis zu 6 nstoffatomen bedeutet, das gegebenenfalls durch l oder durch einen Rest der Formel -OR ²⁰ subrit ist,
		worin	
10		R ²⁰	Wasserstoff, geradkettiges oder verzweigtes Al- kyl mit bis zu 6 Kohlenstoffatomen, Aryl mit 6 bis 10 Kohlenstoffatomen oder Benzyl bedeutet,
	oder		
15	R ¹⁹	Reste deutet	der Formeln - OR^{21} , - COR^{22} oder - $NR^{23}R^{24}$ be-
		worin	
20		R ²¹	Wasserstoff, Aryl mit 6 bis 10 Kohlenstoffatomen, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen bedeutet,
25		R ²²	die oben angegebene Bedeutung von R ⁸ hat und mit dieser gleich oder verschieden ist,
		R ²³ ur	nd R ²⁴ die oben angegebene Bedeutung von R ⁴ und
30			R ⁵ haben und mit diesen gleich oder verschieden sind,

	oder
	R ²³ Wasserstoff bedeutet
5	und
	R ²⁴ Cyano oder einen Rest der Formel -CO-NR ²⁵ R ²⁶ oder -CS-NR ²⁷ R ²⁸ bedeutet,
10	worin
15	R ²⁵ , R ²⁶ , R ²⁷ und R ²⁸ gleich oder verschieden sind und die oben angegebene Bedeutung von R ⁴ und R ⁵ haben,
15	oder
20	R ²³ und R ²⁴ gemeinsam mit dem Stickstoffatom einen 5- bis 6-gliedrigen, gesättigten Hetero-cyclus bilden, der noch ein weiteres Heteroatom aus der Reihe S, O oder einen Rest der Formel -NH enthalten kann,
25	Q ein Sauerstoff- oder Schwefelatom oder Reste der Formeln SO ₂ , SO, C=O oder CR ²⁹ R ³⁰ bedeutet,
	worin
30	R ²⁹ und R ³⁰ gleich oder verschieden sind und Wasserstoff oder Halogen bedeuten,

T einen Rest der Formel CR³¹R³² bedeutet,

worin

5

R³¹ und R³² gleich oder verschieden sind und Wasserstoff,
Halogen, Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 6 Kohlenstoffatomen oder Benzyloxy bedeuten,

10

oder

R³¹ und R³² gemeinsam Reste der Formeln = O, = S,

$$= \begin{matrix} R^{33} \\ \\ R^{34} \end{matrix}$$
 oder $= N - R^{35}$ bilden,

15

worin -

R³³ und R³⁴ gleich oder verschieden sind und Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Benzyl bedeuten,

20

oder

25

R³³ und R³⁴ gemeinsam einen 3- bis 6-gliedrigen, gesättigten oder partiell ungesättigten Carbocyclus bilden,

und

		 R³⁵ Wasserstoff, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen bedeutet,
5	V	ein Sauerstoffatom, ein Schwefelatom oder einen Rest der Formel SO oder SO ₂ bedeutet,
10	W	ein Sauerstoff- oder Schwefelatom bedeutet, oder Reste der Formeln C=O, C=S, SO, SO ₂ , NR ³⁶ oder CR ³⁷ R ³⁸ bedeutet, worin
15		R ³⁶ die oben angegebene Bedeutung von R ³⁵ hat und mit dieser gleich oder verschieden ist,
20		R ³⁷ und R ³⁸ gleich oder verschieden sind und Wasserstoff, Halogen, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder Benzyl bedeuten, oder
25		R ³⁷ Wasserstoff bedeutet
30		R ³⁸ einen Rest der Formel -OR ³⁹ bedeutet, worin
20		

				R ³⁹	Wasserstoff, geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen oder Benzyl bedeutet,
5		Y	einen F	Rest dei	Formel C=O oder -CR ⁴⁰ R ⁴¹ bedeutet,
			worin		
10			R ⁴⁰ un	Haloge	gleich oder verschieden sind und Wasserstoff, en, Benzyl oder geradkettiges oder verzweigtes mit bis zu 6 Kohlenstoffatomen bedeuten,
			oder		
15			R ⁴⁰	Wasse	erstoff bedeutet
			und		
20			R ⁴¹	-	xy, Benzyloxy oder geradkettiges oder verzweig- koxy mit bis zu 6 Kohlenstoffatomen bedeutet,
	R ¹		zido od R ⁴⁵ steh		einen Rest der Formel -OR ⁴² , -O-SO ₂ -R ⁴³ oder
25		worin			
		R ⁴²			oder geradkettiges oder verzweigtes Acyl mit bis toffatomen bedeutet,
30		R ⁴³	_	-	oder verzweigtes Alkyl mit bis zu 6 Kohlenstoff- nyl bedeutet,

R⁴⁴ und R⁴⁵ Wasserstoff bedeuten.

oder

5

 R^{44} Wasserstoff bedeutet.

und

 R^{45}

einen Rest der Formel

oder $-P(O)(OR^{47})(OR^{48})$

bedeutet,

worin

Z

15

20

10

ein Sauerstoff- oder Schwefelatom bedeutet,

 R^{46}

geradkettiges oder verzweigtes Alkoxy mit bis zu 8 Kohlenstoffatomen oder Trifluormethyl bedeutet, oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Halogen oder Aryl mit 6 bis 10 Kohlenstoffatomen substituiert ist, oder

Aryl mit 6 bis 10 Kohlenstoffatomen oder einen 5- bis 6-gliedrigen gesättigten oder aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, wobei die unter R46 aufgeführten Ringsysteme gegebenenfalls bis zu 2-fach gleich oder verschieden durch Halogen, Cyano, Nitro, Hydroxy

oder Phenyl substituiert sind,

25

oder

R⁴⁶ geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenoxy, Benzyloxy, Carboxyl, Halogen oder geradkettiges oder verzweigtes Alkoxycarbonyl oder Acyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch einen 5-bis 6-gliedrigen Heterocylcus aus der Reihe S, N und/ oder O substituiert ist,

oder

10

5

R⁴⁶ einen Rest der Formel -NR⁴⁹R⁵⁰ bedeutet,

worin

15

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff, Phenyl, Pyridyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen bedeuten, das gegebenenfalls durch über Ngebundenes Morpholin substituiert ist,

20

- R⁴⁷ und R⁴⁸ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,
- 25 und deren Salze und N-Oxide.
 - 3. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 oder 2,

in welcher

30

A für Reste der Formeln

oder

steht,

worin

5

- R^2 , $R^{2^{\prime}}$ und $R^{2^{\prime\prime}}$ gleich oder verschieden sind und Wasserstoff oder Fluor bedeuten,
- D, D' und D'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR³ bedeuten,

10

worin

15

R³ Wasserstoff, Trifluormethyl, Fluor, Chlor, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen bedeutet,

E, E' und E'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR⁶ bedeuten,

20

worin

R⁶ Wasserstoff, Trifluormethyl, Nitro, Cyano, Fluor oder
 Chlor bedeutet, oder

geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder Benzyl bedeutet, die gegebenenfalls durch Hydroxy substituiert sind, oder Phenyl, Naphthyl, Pyridyl, Pyrimidyl, Pyrazinyl, Thienyl oder Furyl bedeutet,

5

oder

10

R⁶ Reste der Formeln O-R⁷, -CO-R⁸ oder -NR⁹R¹⁰ bedeutet,

worin

15

R⁷ Wasserstoff, geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen, Benzyl oder Phenyl bedeutet,

20

- R⁸ Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, Benzyl oder Phenyl bedeutet, oder
- R^8 eine Gruppe der Formel -NR 11 R 12 bedeutet,

worin

25

R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

30

R⁹ und R¹⁰ gleich oder verschieden sind und Wasserstoff, Benzyl, Phenyl, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder eine Gruppe der Formel -CO₂R¹³ bedeuten,

5

worin

10

R¹³ geradkettiges oder verzweigtes Alkyl mit
 bis zu 4 Kohlenstoffatomen, Benzyl oder
 Phenyl bedeutet,

L, L' und L'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR¹⁹ bedeuten,

15

worin

20

R¹⁹ Wasserstoff, Trifluormethyl, Nitro, Cyano, Fluor, Chlor oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenyl oder durch einen Rest der Formel -OR²⁰ substituiert ist,

worin

25

R²⁰ Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen, Phenyl oder Benzyl bedeutet,

oder

	R ¹⁹	Reste der Formeln -OR ²¹ , -COR ²² oder -NR ²³ R ²⁴ bedeutet,
5		worin
		R ²¹ Wasserstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet,
10		R ²² die oben angegebene Bedeutung von R ⁸ hat und mit dieser gleich oder verschieden ist,
		R ²³ und R ²⁴ die oben angegebene Bedeutung von R ⁴ und
15		R ⁵ haben und mit diesen gleich oder verschieden sind,
		oder
20		R ²³ und R ²⁴ gemeinsam mit dem Stickstoffatom einen Piperidinyl- oder Morpholinylring bilden,
	-	Sauerstoff- oder Schwefelatom oder Reste der Formeln 2, C=O oder CR ²⁹ R ³⁰ bedeutet,
25	wor	rin
	R ²⁹	und R ³⁰ gleich oder verschieden sind und Wasserstoff oder Fluor bedeuten,
30	T ein	nen Rest der Formel CR ³¹ R ³² bedeutet,

30

worin

R³¹ und R³² gleich oder verschieden sind und Wasserstoff, Fluor, Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen 5 bedeuten, oder R³¹ und R³² gemeinsam Reste der Formeln =O oder =S bilden, 10 Vein Sauerstoffatom, ein Schwefelatom oder einen Rest der Formel SO₂ bedeutet, ein Sauerstoff- oder Schwefelatom bedeutet, oder 15 W Reste der Formel C=O, C=S, SO, SO₂, NR³⁶ oder CR³⁷R³⁸ bedeutet, worin 20 R^{36} Wasserstoff, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen bedeutet, R³⁷ und R³⁸ gleich oder verschieden sind und Wasserstoff, 25 Fluor, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder Benzyl bedeuten, einen Rest der Formel C=O oder CR40R41 bedeutet, Y

worin

R⁴⁰ und R⁴¹ gleich oder verschieden sind und Wasserstoff, Fluor, Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,

5

oder

W und Y gemeinsam wahlweise für die Gruppe -CH=CH- stehen,

10

 R^1 für Azido oder für einen Rest der Formel -OR⁴², -O-SO₂-R⁴³ oder -NR⁴⁴R⁴⁵ steht,

worin

15

R⁴² Wasserstoff oder geradkettiges oder verzweigtes Acyl mit bis zu 4 Kohlenstoffatomen bedeutet,

R⁴³ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen oder Phenyl bedeutet,

20

R⁴⁴ und R⁴⁵ Wasserstoff bedeuten,

oder

25

R⁴⁴ Wasserstoff bedeutet,

und

R⁴⁵ einen Rest der Formel

 $-C = R^{46}$ oder $-P(O)(OR^{47})(OR^{48})$ bedeutet,

worin

Z ein Sauerstoff- oder Schwefelatom bedeutet.

5

R⁴⁶ geradkettiges oder verzweigtes Alkoxy mit bis zu 6
 Kohlenstoffatomen oder Trifluormethyl oder wahlweise
 Wasserstoff bedeutet, oder
 Cyclopropyl, Cyclopentyl, Cycloheptyl, Cyclobutyl

10

Cyclopropyl, Cyclopentyl, Cycloheptyl, Cyclobutyl oder Cyclohexyl bedeutet, die gegebenenfalls durch Fluor, Chlor oder Phenyl substituiert sind, oder

15

Phenyl, Naphthyl, Pyridyl, Thienyl, Oxazolyl, Furyl, Imidazolyl, Pyridazolyl oder Pyrimidyl bedeutet, wobei die unter R⁴⁶ aufgeführten Ringsysteme gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Cyano, Nitro, Hydroxy oder Phenyl substituiert sind,

oder

20

R⁴⁶ geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenoxy, Benzyloxy, Carboxyl, Fluor, Chlor, Brom oder geradkettiges oder verzweigtes Alkoxycarbonyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen oder durch Pyridyl, Thienyl, Furyl oder Pyrimidyl substituiert ist,

25

oder

30

R⁴⁶ einen Rest der Formel -NR⁴⁹R⁵⁰ bedeutet,

PCT/EP99/00518

worin

5

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff, Phenyl, Pyridyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten, das gegebenenfalls durch über Ngebundenes Morpholin substituiert ist,

10

R⁴⁷ und R⁴⁸ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,

und deren Salze und N-Oxide.

15

4. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 oder 2,

in welcher

20

A für Reste der Formeln

oder

steht,

worin

5

10

15

20

25

R², R²' und R²'' gleich oder verschieden sind und Wasserstoff oder Fluor bedeuten, D, D' und D" gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR3 bedeuten, worin \mathbb{R}^3 Wasserstoff, Trifluormethyl, Fluor, Chlor, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 3 Kohlenstoffatomen bedeutet, E, E' und E'' gleich oder verschieden sind und ein Stickstoffatom oder einen Rest der Formel CR⁶ bedeuten, worin R^6 Wasserstoff, Trifluormethyl, Nitro, Cyano, Fluor, Chlor, geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen oder Benzyl bedeutet, die gegebenenfalls durch Hydroxy substituiert sind, oder Phenyl, Naphthyl, Pyridyl, Pyrimidyl, Pyrazinyl, Thienyl oder Furyl bedeutet, Reste der Formeln O-R7, -CO-R8 oder -NR9R10 bedeu- R^6 tet, worin

	R ⁷	Wasserstoff, geradkettiges oder verzweigtes Al- kyl oder Acyl mit jeweils bis zu 4 Kohlenstoff- atomen, Benzyl oder Phenyl bedeutet,
5	R ⁸	Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoff- atomen, Benzyl oder Phenyl bedeutet, oder
10	R ⁸	eine Gruppe der Formel -NR ¹¹ R ¹² bedeutet,
		worin
15		R ¹¹ und R ¹² gleich oder verschieden sind und Wasserstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten,
	R ⁹ un	nd R ¹⁰ gleich oder verschieden sind und Wasser-
20		stoff, Benzyl, Phenyl, geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen oder eine Gruppe der Formel -CO ₂ R ¹³ bedeuten,
		worin
25		R ¹³ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen, Benzyl oder Phenyl bedeutet,
30	· -	n oder verschieden sind und ein Stickstoffatom oder der Formel CR ¹⁹ bedeuten,

worin

R¹⁹ Wasserstoff, Trifluormethyl, Nitro, Cyano, Fluor, Chlor oder geradkettiges oder verzweigtes Alkyl mit bis zu 3

Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenyl oder durch einen Rest der Formel -OR²⁰ substituiert ist,

worin

10

R²⁰ Wasserstoff, geradkettiges oder verzweigtes Al kyl mit bis zu 3 Kohlenstoffatomen, Phenyl
 oder Benzyl bedeutet,

15 oder

R¹⁹ Reste der Formeln -OR²¹, -COR²² oder -NR²³R²⁴ be-

deutet,

20

worin

R²¹ Wasserstoff, Phenyl, Benzyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 3 Kohlenstoffatomen bedeutet,

25

R²² die oben angegebene Bedeutung von R⁸ hat und mit dieser gleich oder verschieden ist,

 R^{23} und R^{24} die oben angegebene Bedeutung von R^4 und R^5 haben und mit dieser gleich oder verschieden sind,

	Q	ein Sauerstoff- oder Schwefelatom oder Reste der Formeln SO ₂ , C=O oder CR ²⁹ R ³⁰ bedeutet,
5		worin
		R ²⁹ und R ³⁰ gleich oder verschieden sind und Wasserstoff oder Fluor bedeuten,
10	T	einen Rest der Formel -CR ³¹ R ³² bedeutet,
		worin
15		R ³¹ und R ³² gleich oder verschieden sind und Wasserstoff, Fluor, Hydroxy, geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen bedeuten,
20		oder
		R ³¹ und R ³² gemeinsam Reste der Formeln =O oder =S bilden,
25	V	ein Sauerstoffatom, ein Schwefelatom oder einen Rest der Formel SO_2 bedeutet,
	W	ein Sauerstoff- oder Schwefelatom bedeutet, oder Reste der Formel C=O, C=S, SO, SO ₂ , -NR ³⁶ oder -CR ³⁷ R ³⁸ bedeutet,
30		worin

WO 99/40094 PCT/EP99/00518 - 188 -

		R ³⁶ Wasserstoff, Benzyl oder geradkettiges tes Alkyl oder Acyl mit jeweils bis zu atomen bedeutet,	
5		R ³⁷ und R ³⁸ gleich oder verschieden sind un Fluor, geradkettiges oder verzweigtes / 3 Kohlenstoffatomen oder Benzyl bedeu	Alkyl mit bis zu
10		Y einen Rest der Formel C=O oder -CR ⁴⁰ R ⁴¹ bede	utet,
		worin	
15		R ⁴⁰ und R ⁴¹ gleich oder verschieden sind un Fluor, Benzyl oder geradkettiges oder kyl mit bis zu 3 Kohlenstoffatomen bede	verzweigtes Al-
		oder	
20		W und Y gemeinsam wahlweise für die Gruppe -CH=0	CH- stehen,
20	R¹	für Azido oder für einen Rest der Formel - OR^{42} , - $NR^{44}R^{45}$ steht,	O-SO ₂ -R ⁴³ oder
		worin	
25		R ⁴² Wasserstoff oder geradkettiges oder verzweig zu 3 Kohlenstoffatomen bedeutet,	tes Acyl mit bis
30		R ⁴³ geradkettiges oder verzweigtes Alkyl mit bi stoffatomen oder Phenyl bedeutet,	s zu 3 Kohlen

R⁴⁴ und R⁴⁵ Wasserstoff bedeuten,

oder

5

R⁴⁴ Wasserstoff bedeutet,

und

 R^{45}

einen Rest der Formel

 $-\overset{\text{II}}{\mathsf{C}}-\mathsf{R}^{46}$

bedeutet.

worin

Z ein Sauerstoff- oder Schwefelatom bedeutet,

15

20

10

und

R⁴⁶ geradkettiges oder verzweigtes Alkoxy mit bis zu 4
 Kohlenstoffatomen oder Trifluormethyl oder wahlweise
 Wasserstoff bedeutet, oder

Cyclopropyl, Cyclopentyl, Cycloheptyl, Cyclobutyl oder Cyclohexyl bedeutet, die gegebenenfalls durch Fluor, Chlor oder Phenyl substituiert sind, oder

Phenyl, Naphthyl, Pyridyl, Thienyl, Oxazolyl, Furyl, Imidazolyl, Pyridazolyl oder Pyrimidyl bedeutet, wobei die unter R⁴⁶ aufgeführten Ringsysteme gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Cyano, Nitro, Hydroxy oder Phenyl substituiert sind,

25

30

oder

R⁴⁶ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Phenoxy, Benzyloxy, Carboxyl, Fluor, Chlor, Brom oder geradkettiges oder verzweigtes Alkoxycarbonyl oder Acyl mit jeweils bis zu 3 Kohlenstoffatomen oder durch Pyridyl, Thienyl, Furyl oder Pyrimidyl substituiert ist,

10 oder

R⁴⁶ einen Rest der Formel -NR⁴⁹R⁵⁰ bedeutet,

worin

15

5

R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff, Phenyl, Pyridyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, das gegebenenfalls durch über Ngebundenes Morpholin substituiert ist,

20

und deren Salze und N-Oxide.

5. Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1,

25

in welcher

A für Reste der Formeln

$$R^{g} \longrightarrow R^{g} \longrightarrow R^{g$$

5 worin

R², R² und R²" gleich oder verschieden sind und Wasserstoff oder Fluor bedeuten,

5

R3 und R19 gleich oder verschieden sind und Wasserstoff oder für Methyl stehen,

 R^6 für Wasserstoff, Halogen, Cyano, Trifluormethyl, Phenyl oder geradkettiges oder verzweigtes Alkyl, Alkoxycarbonyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen steht,

10

 R^{36} Wasserstoff oder Methyl bedeutet,

und

15

für einen Rest der Formel -NH-R⁴⁵ steht, R^1

worin

20

 R^{45} einen Rest der Formel

$$-C-R^{46}$$

bedeutet,

worin

25

Z ein Sauerstoff- oder Schwefelatom bedeutet,

und

 R^{46} geradkettiges oder verzweigtes Alkoxy mit bis zu 4 Kohlenstoffatomen bedeutet, oder

5

10

15

20

6.

geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, oder einen Rest der Formel -NR⁴⁹R⁵⁰ bedeutet, worin R⁴⁹ und R⁵⁰ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeuten, Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel (II) A-NO₂ (II)

in welcher

[A]

und deren Salze.

Α die in den Ansprüchen 1 bis 5 angegebene Bedeutung hat,

zunächst durch eine Reduktion in die Verbindungen der allgemeinen Formel (III)

> A-NH₂ (III)

in welcher

30

25

Α die in den Ansprüchen 1 bis 5 angegebene Bedeutung hat, überführt,

in einem nächsten Schritt mit Chlorameisensäurebenzylester die Verbindungen der allgemeinen Formel (IV)

$$A-NH-CO_2-CH_2-C_6H_5 \qquad (IV)$$

in welcher

10

5

A die in den Ansprüchen 1 bis 5 angegebene Bedeutung hat,

herstellt,

und abschließend mit Basen in inerten Lösemitteln und nachfolgender Umsetzung mit (R)-(-)-Glycidylbutyrat die Verbindungen der allgemeinen Formel (Ia)

$$A-N$$
 OH (Ia)

in welcher

A die in den Ansprüchen 1 bis 5 angegebene Bedeutung hat,

herstellt,

25

und/oder

[B] durch Umsetzung mit (C₁-C₆)-Alkyl- oder Phenylsulfonsäurechloriden in inerten Lösemitteln und in Anwesenheit einer Base in die entsprechenden Verbindungen der allgemeinen Formel (Ib)

$$A \longrightarrow N \longrightarrow O$$

$$OSO_{2}R^{43}$$
(Ib)

5

in welcher

A und R⁴³ die in den Ansprüchen 1 bis 5 angegebene Bedeutung haben,

10 überführt,

anschließend mit Natriumazid in inerten Lösemitteln die Azide der allgemeinen Formel (Ic)

$$A \longrightarrow N \longrightarrow O$$

$$N_3$$
(Ic)

15

in welcher

A die in den Ansprüchen 1 bis 5 angegebene Bedeutung hat,

20 herstellt,

in einem weiteren Schritt durch Umsetzung mit (C₁-C₄-O)₃-P oder Ph₃P, vorzugsweise (CH₃O)₃P in inerten Lösemitteln, und mit Säuren oder durch katalytische Hydrierung in die Amine der allgemeinen Formel (Id)

$$A \longrightarrow N \longrightarrow O$$

$$NH_2$$

$$(Id)$$

in welcher

A die in den Ansprüchen 1 bis 5 angegebene Bedeutung hat,

5

überführt,

und durch Umsetzung mit Acetanhydrid, Acetylchlorid oder anderen Acylierungsmitteln der allgemeinen Formel (V)

10

$$Y-CO-R^{46} \qquad \qquad (V)$$

in welcher

15

R⁴⁶ die in den Ansprüchen 1 bis 5 angegebene Bedeutung hat

und

20

Y für Halogen, vorzugsweise für Chlor oder für den Rest -OCOR⁴⁸ steht,

in Gegenwart einer Base in inerten Lösemitteln die Verbindungen der allgemeinen Formel (Ie)

$$A \longrightarrow N \longrightarrow O$$

$$NH-CO-R^{46}$$
(Ie)

25

in welcher

A und R⁴⁶ die in den Ansprüchen 1 bis 5 angegebene Bedeutung haben,

PCT/EP99/00518

herstellt,

5 oder

[C] im Fall
$$R^1 = -NH-CO-R^{46}$$

Verbindungen der allgemeinen Formel (III) direkt mit enantiomerenreinen oder racemischen Verbindungen der allgemeinen Formel (VI)

in welcher

15 R⁴⁶ die in den Ansprüchen 1 bis 5 angegebene Bedeutung hat,

in inerten Lösemitteln und in Anwesenheit eines Hilfsmittels zu enantiomerenreinen oder racemischen, substituierten Hydroxy-Amiden umsetzt, die mit Carbonyl-diimidazol in inerten Lösemitteln zu enantiomerenreinen oder racemischen Verbindungen der allgemeinen Formel (Ie) cyclisiert werden,

oder

[D] im Fall der Imidazobenzthiazole

25

20

Verbindungen der allgemeinen Formel (VII)

$$H_2N$$
 S N O $NH-R^{45}$ (VII)

in welcher

R² die in den Ansprüchen 1 bis 5 angegebene Bedeutung hat,

und

5

10

R⁴⁵ die in den Ansprüchen 1 bis 5 angegebene Bedeutung von R⁴⁵ hat und mit dieser gleich oder verschieden ist, vorzugsweise für Acetyl steht,

mit Verbindungen der allgemeinen Formel (VIII)

$$R^6$$
 R^3
(VIII)

in welcher

15

R³ und R6 die in den Ansprüchen 1 bis 5 angegebene Bedeutung haben,

und

20

25

R⁵¹ für Halogen, vorzugsweise für Chlor oder Brom steht,

in Alkoholen, vorzugsweise Ethanol, unter Rückfluß umsetzt,

und im Fall der S-Oxide eine Oxidation mit m-Chlorperbenzoesäure anschließt

und gegebenenfalls eine Alkylierung nach üblichen Methoden durchführt.

WO 99/40094 - 199 - PCT/EP99/00518

- 7. Verwendung der Verbindungen gemäß den Ansprüchen 1 bis 5 zur Herstellung von Arzneimitteln.
- 8. Arzneimittel enthaltend Verbindungen gemäß den Ansprüchen 1 bis 5.

INTERNATIONAL SEARCH REPORT

Int tional Application No PCT/FP 99/00518

		rci/Er 9:	7, 00310	
IPC 6	FICATION OF SUBJECT MATTER C07D498/04 A61K31/535 A61K31/ A61K31/415 C07D471/04 C07D513 A61K31/695 //(C07D498/04,265:00	3/04 C07D487/04 C07F 0,257:00),(C07D498/04,26	7/18	
	SEARCHED	icanon and ii C		
	ocumentation searched (classification system followed by classification	ation symbols)		
IPC 6	CO7D CO7F A61K			
Documental	tion searched other than minimum documentation to the extent tha	such documents are included in the fields	searched	
F-1. A				
Electronic a	ata base consuited during the international search (name of data t	oase and, where practical, search terms use	a)	
	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.	
Α	WO 97 19089 A (PHARMACIA) 29 May see claims 1,9	/ 1997	1,7	
	ner documents are listed in the continuation of box C.	X Patent family members are lister	d in annex.	
Special ca	tegories of cited documents :	"T" later document published after the into or priority date and not in conflict with	ernational filing date	
	ent defining the general state of the art which is not lered to be of particular relevance	cited to understand the principle or t invention		
"E" earlier of filling of	document but published on or after the international late	"X" document of particular relevance; the		
"L" docume	ont which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered novel or cannot involve an inventive step when the d	ocument is taken alone	
citatio	n or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an i	nventive step when the	
"O" document referring to an oral disclosure, use, exhibition or other means document is combined with one or more other such documents, such combination being obvious to a person skilled				
	ent published prior to the international filing date but nan the priority date claimed	in the art. "&" document member of the same pater	t family	
Date of the	actual completion of the international search	Date of mailing of the international s	earch report	
2	2 June 1999	01/07/1999	-	
Name and r	nailing address of the ISA European Patent Office. P.B. 5818 Patentiaan 2	Authorized officer		
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Alfaro Faus, I		

INTERNATIONAL SEARCH REPORT

Int tional Application No PCT/EP 99/00518

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 235:00),(C07D498/04,265:00,249:00 (C07D513/04,277:00,235:00),(C07D4),(C07D471/04,235:00,221:00), 98/04,265:00,209:00)				
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification	ion symbols)				
Documentation searched other than minimum documentation to the extent that	such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data b	ase and, where practical, search terms used)				
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category ° Citation of document, with indication, where appropriate, of the re	levant passages Relevant to claim No.				
Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.				
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "Date of the actual completion of the international search "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered not involve or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report					
22 June 1999					
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Alfaro Faus, I				

INTERNATIONAL SEARCH REPORT

information on patent family members

Intr ional Application No PCT/EP 99/00518

Patent document		Publication	F	atent family		Publication
wo 9719089	Α	date 29-05-1997	AU	7665196	Δ	date 11-06-1997
WO 3/13003	٨	29-05-1997	EP	0874852	A	04-11-1998

INTERNATIONALER RECHERCHENBERICHT

In ationales Aktenzeichen PCT/FP 99/00518

	101/21 33/00310				
	44 A61K31/425 A61K31/54				
A61K31/415 C07D471/04 C07D513/	/04 C07D487/04 C07F7/18				
A61K31/695 //(C07D498/04, 265:00	· · · · · · · · · · · · · · · · · · ·				
Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Kla B. RECHERCHIERTE GEBIETE	SSIIIKALION UNG GETIPK				
Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbolismund Klassifikationsymbolismund Klassifi	ole)				
IPK 6 C07D C07F A61K					
Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	oweit diese unter die recherchierten Gebiete fallen				
•					
Während der internationalen Recherche konsultierte elektronische Datenbank (N	Name der Datenbank und evti. verwendete Suchbegriffe)				
C. ALS WESENTLICH ANGESEHENE UNTERLAGEN					
Kategorie° Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	e der in Betracht kommenden Teile Betr. Anspruch Nr.				
A WO 97 19089 A (PHARMACIA) 29. Mai siehe Ansprüche 1,9	i 1997 1,7				
Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie				
 Besondere Kategorien von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, 	"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der				
aber nicht als besonders bedeutsam anzusehen ist	Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden				
"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist	Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung				
"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- scheinen zu lassen, oder durch die das Veröffentlichung datum einer aufgrund dieser Veröffentlichung nicht als neu oder auf					
anderen im Recherchenbericht genannten Veröffentlichung belegt werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung					
ausgeführt) kann nicht als auf erfinderischer i atigkeit berunend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen					
eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht diese Verbindung für einen Fachmann naheliegend ist					
dem beanspruchten Prioritätsdatum veröffentlicht worden ist	"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist				
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts				
22. Juni 1999	01/07/1999				
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter				
Europäisches Patentamt, P.B. 5818 Patentlaan 2					
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Alfaro Faus, I				

INTERNATIONALER RECHERCHENBERICHT

tionales Aktenzeichen PCT/EP 99/00518

	101/21 33/00010
A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 235:00),(C07D498/04,265:00,249:0 (C07D513/04,277:00,235:00),(C07D	
Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen	Klassifikation und der IPK
B. RECHERCHIERTE GEBIETE	
Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssy	mbole)
Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichunger	n, soweit diese unter die recherchierten Gebiete fallen
Während der internationalen Recherche konsultierte elektronische Datenban	ık (Name der Datenbank und evtl. verwendete Suchbegriffe)
C. ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie® Bezeichnung der Veröffentlichung, soweit erforderlich unter An	gabe der in Betracht kommenden Teile Betr. Anspruch Nr.
Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
 Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft escheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werd soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der internationalen Recherche 	erfinderischer Tätigkeit beruhend betrachtet werden den "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindur kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelliegend ist
22. Juni 1999 Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fay: (-31-70) 340-3016	Alfaro Faus, I

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Intra ronales Aktenzeichen
PCT/EP 99/00518

im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitg Pat	lied(er) der entfamilie	Datum der Veröffentlichung
WO 9719089 A	29-05-1997	AU EP	7665196 A 0874852 A	11-06-1997 04-11-1998