Les nageoires de baleine à bosse au service de l'aviation

Peut on améliorer les performances aérodynamiques d'une aile d'avion par biomimétisme?

- I- Étude théorique
- II- Simulations sur CAO
- III- Etude expérimentale
- IV- Analyse des résultats et comparaisons
- V- Conclusion

<u>Biomimétisme</u>

Les nageoires des baleines à bosse (avec des tubercules):

-Diminution de la trainée

Tubercules

-Augmentation de la portance

Nageoire baleine à bosse

Nageoire baleine bleu

<u>I- Étude théorique</u>

Forces aérodynamiques et zones de pressions:

Nombre de Reynolds: $R_e = \frac{V \times L}{\mu}$

 μ : viscosité cinématique de l'air (m²/s)

L: longueur caractéristique (corde)

V: vitesse du fluide

I- Étude théorique

Profil NACA n°2412:

Centre de poussée:

$$d = \frac{\int p(x). x. dx}{\int p(x). dx}$$

Centre de poussée en fonction de l'inclinaison du profil:

α (°)	-2,2	-2	-1	0	1	2	3	4	5	6	7	8	9	10
d	-	2,3	0,628	0,465	0,403	0,370	0,350	0,337	0,327	0,319	0,314	0,307	0,303	0,299

<u>Pressions (Pa) exercées sur les profils</u> (vue de dessus):

<u>Pressions (Pa) exercées sur les profils (vue de dessous)</u>:

Vitesses (m/s) [plages de couleurs]
Pressions (Pa) [isolignes] de l'air autour des profils:

Profil sans tubercules:

Profil avec tubercules:

Soufflerie type Eiffel:

Moteur et pâles

Anémomètre

Mesure de la traînée

Support pour les profils

Mesure de la portance

- : profil sans tubercules
- : profil avec tubercules

IV- Analyse des résultats et comparaisons

$$C_z = \frac{F_z}{0.5 * \rho_{air} * S * V^2}$$

Avec:
$$\rho_{air}$$
= 1,225 kg/ m^3

Pour une incidence nulle:
$$C_Z = \frac{14.10^{-3}*9.8}{0.5*1,225*30,2.10^{-4}*11,66^2} = 0,54$$

Pour une incidence de 10°:
$$C_Z = \frac{27.10^{-3}*9.8}{0.5*1,225*30,2.10^{-4}*11.66^2} = 1,05$$

Cx du profil NACA 2412 en fonction de α

$$C_x = \frac{F_x}{0.5 * \rho_{air} * S * V^2}$$

Pour une incidence nulle:
$$C_x = \frac{1,3.10^{-3}*9,8}{0,5*1,225*30,2.10^{-4}*11,66^2} = 0,023$$

Pour une incidence de 10°:
$$C_{\chi} = \frac{1,6.10^{-3}*9,8}{0,5*1,225*30,2.10^{-4}*11,66^2} = 0,03$$

V-Conclusion

- Améliorer les tubercules (formes, espacement sur le profil)
- Faire des tests dans une soufflerie de meilleure précision
- Evaluer l'influence des tubercules sur un profil entier et non pas une section