Section 6.2 22.

Foliation:
$$\int_{0}^{\infty} e^{-4x^{2}} dx$$

$$= \lim_{\alpha \to \infty} \int_{0}^{\infty} e^{-4x^{2}} dx$$

$$= \lim_{\alpha \to \infty} \int_{0}^{\infty} e^{-4x^{2}} dx$$

$$= \lim_{\alpha \to \infty} \int_{0}^{\infty} e^{-4x^{2}} dy$$

$$= \lim_{\alpha \to \infty} \int_{0}^{\infty} e^{-4x^{2}} dx$$

$$= \lim_{\alpha \to \infty} \int_{0}$$

Section 6.3.

Bedien 6.3.
4. Average of
$$f(x,y) = e^{-x+y}$$
 over triangle $(o, 0)$, $(o, 1)$, $(1, 0)$

Solution :

Average of
$$f$$
 over Δ

$$\int \int_{\Delta} f(x,y) dx dy$$

$$= \int_{0}^{1-y} \int_{0}^{1-y} e^{x+y} dx dy$$

Rubric: 3 pts for correct formulation + Change of variables
2 pts for consumer.

Section 7.1. 4.
$$\frac{(\chi-2)^2}{4} + \frac{(y-3)^2}{9} = 1$$
Solution:
$$\left(\frac{\chi-2}{2}\right)^2 + \left(\frac{y-3}{3}\right)^2 = 1$$
Let
$$\frac{\chi-2}{2} = \cos\theta, \quad \frac{y-3}{3} = \sin\theta.$$
We have
$$\begin{cases} \chi = 2\cos\theta + 2 \\ y = 3\sin\theta + 3 \end{cases}$$

$$4 = \frac{1}{2} \cos\theta + \frac{1}{2} \cos\theta +$$

Rubric: 3 pts for finding the form & 2pts for answer.

10 (a)
$$\int_{C} (x+y+z) ds \qquad C : t \to (s'_{int}, cost, t),$$

$$t \in [c, z_{i}]$$

$$= \int_{0}^{2\pi} (s'_{int} + cost + t) \int_{0}^{2\pi} cost^{2} + s'_{int} + t dt$$

$$= \int_{0}^{2\pi} \int_{0}^{s_{int}} t cost + t dt.$$

$$= \int_{0}^{s_{int}} \int_{0}^{s_{int}} t cost + t dt.$$

$$= \int_{0$$

$$z4.$$

$$\int_{y=e^{x}, |ex|} y^{2} ds$$

Solution: we parametrize
$$y=e^{x}$$
 by (t,e^{t}) , $\omega t \leq 1$
then $\int_{\mathcal{Z}} y^{2} ds$

then
$$= \int_{0}^{2} e^{2t} \sqrt{1 + e^{2t}} dt$$

$$= \int_{0}^{1} e^{2t} \sqrt{1 + e^{2t}} dt$$

$$= \frac{1}{3} \left((1 + e^{2})^{\frac{3}{2}} - 2\sqrt{2} \right)$$

Rubric = 2 pts for parametrizing the curve and 1 pt for the formulation of integral 2 pts for final consider.