David M. Kroenke and David J. Auer Database Processing:

Fundamentals, Design, and Implementation

Chapter Six:

Transforming Data Models into

Database Designs

Chapter Objectives

- Understand how to transform conceptual model into logical model
 - AKA: Map conceptual model to logical model
- Understand how to represent 1:1, 1:N, and N:M relationships as tables (relations)
- Understand purpose and use of referential integrity constraints

Create a Table for Each Entity

EMPLOYEE (<u>EmployeeNumber</u>, EmployeeName, Phone, Email, HireDate, ReviewDate, EmpCode)

EmployeeNumber

EmployeeName

Phone

Email

HireDate

ReviewDate

EmpCode

(a) EMPLOYEE Entity

EMPLOYEE

EmployeeNumber

EmployeeName

Phone

Email

HireDate

ReviewDate

EmpCode

(b) EMPLOYEE Table

Primary key is designated by the key symbol

Note shadow-less table. Do not need to make shadows for course.

Select the Primary Key

- The ideal primary key is short, numeric, and fixed.
- Surrogate keys meet the ideal, but have no meaning to users.

EMPLOYEE

EmployeeName

Phone

Email

HireDate

ReviewDate

EmpCode

Specify Candidate (Alternate) Keys

- The terms candidate key and alternate key are synonymous.
- Candidate keys are alternate identifiers of unique rows in a table.
- Will use AKn.m notation, where n is the number of the alternate key, and m is the column number in that alternate key.

Specify Candidate (Alternate) Keys

EMPLOYEE

EmployeeNumber

EmployeeName

Phone

Email (AK1.1)

HireDate

ReviewDate

EmpCode

CUSTOMER

CustomerNumber

Name (AK1.1)

City (AK1.2)

Phone

Email (AK2.1)

Indicates that composite key (name, city) can be used as a key.

Email is in the first (and only column of the second alternative key.

Specify Column Properties: Null Status

Null status indicates whether or not the value of the column can be NULL.

What does null mean exactly? (Important concept)

EMPLOYEE

EmployeeNumber: NOT NULL

EmployeeName: NOT NULL

Phone: NULL

Email: NULL (AK1.1) HireDate: NOT NULL ReviewDate: NULL EmpCode: NULL

Specify Column Properties: Data Type

- Generic data types:
 - Char(n), Nchar(n)
 - Varchar(n), Nvarchar(n)
 - Date
 - Time
 - Integer
 - Decimal(m,n)
 - Numeric(m,n)
 - Money(m,n)

EMPLOYEE

EmployeeName: Varchar(50)

Phone: Char(15)

Email: Nvarchar(100) (AK1.1)

HireDate: Date ReviewDate: Date EmpCode: Char(18)

Specify Column Properties: Data Type + Null Status

EMPLOYEE

EmployeeNumber: int NOT NULL

EmployeeName: char(50) NOT NULL

Phone: char(15) NULL

Email: char(50) NULL (AK1.1) HireDate: datetime NOT NULL ReviewDate: datetime NULL

EmpCode: char(18) NULL

Check Oracle Syntax: VarChar2(50) See appendix posted under Oracle.

Specify Column Properties: Data Constraints

- Data constraints are limitations on data values:
 - Domain constraint—column values must be in a given set of specific values.
 - Range constraint—column values must be within a given range of values.
 - Intrarelation constraint—column values are limited by comparison to values in other columns in the same table.
 - Interrelation constraint—column values are limited by comparison to values in other columns in *other* tables (referential integrity constraints on foreign keys).

Create Relationships: 1:1 Strong Entity Relationships I

Place the **primary key** of one entity in the other entity as a **foreign key**.

- Either design will work
- Minimum cardinality considerations may be important.

Relationships: 1:1 Strong Entity Relationships II

(a) With Foreign Key in LOCKER

(b) With Foreign Key in CLUB_MEMBER

Relationships: 1:N Strong Entity Relationships I

 Place the primary key of the table on the one side of the relationship into the table on the many side of the relationship as the foreign key.

Relationships: 1:N Strong Entity Relationships II

(a) 1:N Relationship Between Strong Entities

(b) Placing the Primary Key of the Parent in the Child as a Foreign Key

Relationships: N:M Strong Entity Relationships I

- In an N:M strong entity relationship there is no place for the foreign key in either table.
 - A COMPANY may supply many PARTs.
 - A PART may be supplied by many COMPANYs.

Relationships: N:M Strong Entity Relationships II

- The solution is to create a new table that stores data about the corresponding rows from each entity.
- The table consists only of the primary keys of each table which form a composite primary key.
- Each table's primary key becomes a foreign key linking back to that table.

COMPANY_PART_INT (CompanyName, PartNumber)

New key is "concatenation" or joining together of keys of involved entities.

Relationships: N:M Strong Entity Relationships III

COMPANY_PART_INT (<u>CompanyName</u>, <u>PartNumber</u>)

Subtype Relationships

Highline University Data Model

Highline University Database Design

Conclusion

- Relational data model
 - Requirements for design?
- Transformation of conceptual model (e.g., ER with crow's foot notation) to logical model (relational)
 - Set of rules for performing the transformation
 - Specification of data types (for implementation)