EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

2000258805

PUBLICATION DATE

22-09-00

APPLICATION DATE

22-10-99

APPLICATION NUMBER

11301180

APPLICANT: CANON INC;

INVENTOR: KISHI ETSURO;

INT.CL.

G02F 1/167 G09F 9/37

TITLE

: ELECTROPHORETIC DISPLAY DEVICE

ABSTRACT: PROBLEM TO BE SOLVED: To embody a long-term stable memory characteristic without requiring switching control of an open state without depending upon electrode holding charges.

> SOLUTION: A colored insulative liquid 6 and colored electrostatic charge particles 7 dispersed in the colored insulative liquid 6 are held within the closed spaces enclosed by a transparent display substrate 1, a counter substrate 2 and partition walls 3. Transparent electrodes 4 are arranged on the transparent display substrate 1 of the respective closed spaces and counter electrodes 5 are arranged on the counter substrate 2. The transparent electrodes 4 and the counter electrodes 5 have fixing surfaces 13 where the colored electrostatic charge particles 7 gather thereon. Charge films 8 which stationarily electrostatically charge the surface charge of the polarity reverse from the polarity of the colored electrostatic charge particles 7 are arranged on the fixing surfaces 13.

COPYRIGHT: (C)2000,JPO

BNSDOCID: <JP____2000258805A_AJ_>

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許山東公開番号 特開2000-258805

(P2000-258805A)

(43)公開日 平成12年9月22日(2000.9.22)

(51) Int.CL7		織別記号	FI		ラーマコード(参考)
G02F	1/167		G02F	1/167	5 C 0 9 4
G09F	9/37	311	G09F	9/37	311A

密査請求 未請求 菌求項の数6 OL (全 9 頁)

(21)出職番号	特顧平11-301180	(71) 出庭人 000001007
(22)出版日	平成11年10月22日(1999, 10, 22)	キャノン株式会社 東京都大田区下丸子3丁目30番2号
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72) 宛明者 資忠 悦朗
(31)優先権主張番号	特額平11-3186	東京都大田区下丸子3丁目30番2号 キヤ
(32)優先日	平成11年1月8日(1999.1.8)	ノン株式会社内
(33)優先権主張国	日本 (J P)	(74)代理人 100089017
		非理士 進辺 徳廣
		ドターム(参考) 50094 AA22 BA75 BA84 BA93 CA01

(54) 【発明の名称】 電気泳動型表示装置

(57)【要約】

る電気泳動表示装置。

【課題】 電極保持電荷によらず、オープン状態のスイッチング制御を必要とせずに、長時間の安定なメモリー 性を実現した電気泳動表示装置を提供する。

【解決手段】 着色絕緣性液体6及び絕緣性者色液体6

中に分散された着色帯電粒子では、透明表示基板1と対向基板2及び隔壁3によって開まれた閉空間内に保持されている。各閉空間の透明表示基板1上には透明電極4、対向基板2上には対向電極5が配置され、透明電極4と対向電極5の上には着色帯電粒子でが集合する定着面13を有し、該定着面13に着色帯電粒子でと道極性の表面電荷を定常的に帯電した荷電機8が配置されてい

【特許請求の範囲】

【請求項1】 少なくとも2つの電極と、該電極間に充 追された絶縁性液体中に分散された着色帯電粒子と、該 着色帯電粒子が集合する定着面と、前記電極間に電圧を 印刷することによって前記帯電粒子を該定者面に泳動・ 定着させる手段とを備えた電気泳動型表示装置におい て、前記定者面に者色帯電粒子と逆極性の表面電荷を定 鴬的に帯電した荷電膜を有することを特徴とする電気泳

1

【請求項2】 前記荷電機が電極上の定者面に設けられ 10 ている請求項1記蔵の電気泳動型表示装置。

【請求項3】 前記荷電膜が強誘電体材料またはエレク トレット材料によって形成されている請求項1または2 記載の電気泳動型表示装置。

【語求項4】 前記絶縁性液体の体積抵抗率が1 E + 1 2Ω・cm以上の値を有する請求項1記載の電気泳動型 表示装置。

【請求項5】 前記2つの電極が対向して設けられてい る垂直移動型電気泳動表示装置である請求項1記載の電 気泳動型表示装置。

【請求項6】 前記2つの電極が同一面上に設けられて いる水平移動型電気泳動表示装置である請求項1記載の 電気泳動型表示装置。

【発明の詳細な説明】

[0001]

動型表示装置。

【発明の属する技術分野】本発明は、電気泳動型表示装 置に関するものである。

[0002]

【従来の技術】近年、情報機器の発達に伴い、低消費電 力で且つ薄型の表示装置のニーズが増しており、これら 30 ニーズに合わせた表示装置の研究、開発が盛んに行われ ている。その中で液晶表示装置は、液晶分子の配列を弯 気的に制御し液晶の光学的特性を変化させる事ができ、 上記のニーズに対応できる表示装置として活発な開発が 行われ商品化さてれいる。しかしながら、これらの液晶 表示装置では、 画面を見る角度や反射光による画面上の 文字の見づらさや、光源のちらつき・低輝度等から生じ る視覚への負担が未だ十分に解決されていない。この 為。視覚への負担の少ない表示装置の研究が盛んに検討 観点から反射型表示装置が期待されている。

【0003】その一つとして、絶縁液体中で着色帯電粒 子を移動させることによって表示を行なう電気泳動型表 示装置が知られている(例えば、米国特許第36681 スクロ音(全事) 、 図のに記せ合うをおるは治療を共和的

り 着色帯電粒子7を反対極性にバイアスされた電極上 に泳動・定着させることによって表示を行なう。表示は この着色帯電粒子7の色と染色された絶縁性液体の色に よって行われる。つまり、泳動粒子が観測者に近い第1 の電極表面に付着した場合は、弥動粒子の色が表示さ れ、逆に観測者から遠い第2の電極表面に付着した場合 は、染色された着色絶縁性液体の色が表示される。 [0005]

【発明が解決しようとする課題】しかしながら、従来の 電気泳動表示装置には以下に述べるような問題がある。 図?は、従来の表示装置の動作を示す説明図である。同 図?において、従来の電気泳動装置における表示画像保 特性能(以下、メモリー性と称す)は、電圧印刷し(図 7 (a) 参照)。電圧印加直後に回路をオープン状態に して電極に電荷を保持し、この電極保持電荷のクーロン 力で着色帯電微粒子を吸着することによって与えられる (図?(b)参照)。

【0006】しかしながら、このメモリー性は回路がシ ョートされると電極保持電荷が開放され消失する(図7 (c)参照)。したがって、マトリックス駆動によって 20 画像を書き込む場合には、それぞれの画素に半導体スイ ッチング素子を設けて、オープン状態のON/OFF制 御を独立に行なう必要がある。このようなアクティブマ トリックス制御は、構造が複雑であり製造コストが著し く増大するという問題があった。

【0007】また、回路をオープンにした状態(図7 (b)参照)でも、孫動層内部を経由する電極電荷の微 小なリークが徐々に進行するため、泳動圏の比低抗を! E+15Q・cmとしても、メモリー時間はたかだか十 数時間~数十時間であり、決して十分とはいえなかっ

【①①08】本発明は、上記問題点を解決するためにな されたものであり、電極保持電荷によらず、オープン状 騰のスイッチング制御を必要とせずに、長時間の安定な メモリー性を実現した電気泳動表示装置を提供すること を目的とする。

[0009]

【課題を解決するための手段】即ち、本発明は、少なく とも2つの電極と、該電極間に充填された絶縁性液体中 されている。特に、低消費電力、眼への負担軽減などの 40 に分散された着色帯電粒子と、該着色帯電粒子が集合す る定着面と、前記電極間に電圧を印加することによって 前記帯電粒子を該定者面に泳動・定着させる手段とを備 えた電気泳動型表示装置において、前記定着面に着色帯 電粒子と逆極性の表面電荷を定常的に帯電した荷電膜を 古子フェル大地溝上がナ帝を私私和本二性里がもフ

して設けられている垂直移動型電気泳動表示装置である のが好ましい。 前記2つの電極が同一面上に設けられて いる水平移動型電気泳動表示装置であるのが好ましい。 [0011]

【発明の実施の形態】本発明の電気泳動表示装置は、少 なくとも2つの電極と、絶縁性液体中に分散された帯電 粒子と、該帯電粒子が集合する少なくとも2つの定着面 と、前記電極間に電圧を印加することによって前記帯電 粒子を該定者面に移動・集合させる手段とを備えた表示 装置において、前記定者面に帯電粒子と逆極性の表面電 10 荷を帯電した荷電膜を備えることを特徴とする。

【()() 12】本発明の特徴である荷電膜としては、強誘 電体膜またはエレクトレット膜が挙げられる。絶縁性液 体中にはアルミナ、シリカ等の有極性イオン吸着剤が添 加されていることが望ましい。有極性イオン吸着剤の添 加によって絶縁性液体中のイオン濃度は低く抑えられて おり、体積抵抗率として1E+12~1E+15Ω·c m程度の高い絶縁性を維持している。したがってイオン 吸着による歯電膜の表面電荷の減少は無視できる。

施態様を示す概略断面図である。同図1では、表示セグ メントに対応する2つの閉空間を有する構成について示 している。電気泳動表示装置において、着色絶縁性液体 6及び絶縁性着色液体6中に分散された着色帯電位子7 は、透明表示華板1と対向華板2及び隔壁3によって囲 まれた閉空間内に保持されている。各閉空間の透明表示 基板 1 上には遠明表示電極4、対向基板2上には対向電 極5か配置され、透明表示電極4と対向電極5の上には 者色帯電粒子?が集合する定者面13を有し、該定者面 電した荷電膜8が配置されている。

【0014】以下、図3を用いて本発明の電気泳動表示 装置の動作原理を説明する。同図3におて、本発明の電 気泳動表示装置は、対向する2枚の基板1、2と、透光 性の上部透明表示基板1上に形成された表示用の透明表 示電極4と、下部対向基板2上に形成された対向電極5 と、上下電極間に充填された着色絶縁性液体6と、該着 色絶縁性液体6中に分散された着色帯電粒子7 (仮にプ ラス帯電とする)と、本発明の特徴である各電極上に形 えた荷電膜8とによって構成される。

【0015】外部回路10を図3(a)のように接続 し、透明表示電極4にマイナス電荷、対向電極5にブラ ス電荷を誘導することによって、フラスに帯電した着色 作事はファミが言いに非常、「これその方は、全体で

表示電極4上に定着された状態を維持する。 [0017]次に、この状態から外部回路10を図3 (c)のようにショート状態に切替えると、両電極の保 持電荷は開放され、その静電引力は消失する。しかし、 この状態においても、着色帯電粒子?は電極面上に形成 された荷電膜8のマイナス表面電荷の静電引力によっ

て、ひきつづき保持され、透明表示電極4上に定着した 状態を維持することができる。

【0018】したがって、単純マトリックス駆動のよう に、実効的には回路の関放状態を維持できないような制 御においても、良好なメモリー性を発現することが可能 である。また荷電膜8上の表面電荷は開放されることが ないため、長時間安定なメモリー性が実現できる。

[0019]本発明は、以上の説明で述べた機成に限定 されるものではなく、定着面を有するあらゆる構成の電 気泳動型表示装置に適用可能である。例えば図4に示す 機な特闘平9-021149号公報で開示されている表 示電極/進蔽電極型の表示装置、または図5に示す様な 特開平10-005727号公報で開示されている水平 【①①13】図1は、本発明の電気泳動表示装置の一案 20 移動型表示装置においては、上述した構成と同様に電極 24.25上に荷電膜8を形成すればよい。また、図6 に示す機な特開平!-086116号公報で関示されて いるマイクロカプセル型においても、マイクロカプセル の核膜に対して、帯電処理を施し、核膜を荷電膜とする ことによって全く同様の効果を得ることが可能である。 この場合、定着面の位置はマイクロカブセル被膜の外壁 面と定義すればよい。

【0020】本発明における前電膜は、強誘電体材料ま たはエレクトレット材料によって形成するのが好まし 13に着色帯電粒子7と道極性の表面電荷を定常的に帯 30 い。本発明に用いられる強誘電体材料としては、チタン 酸ジルコン酸鉛(P2T)、ランタン添加チタン酸ジル コン酸鉛(PLZT)、チタン酸パリウム等の無機化合 物や、ポリフッ化ビニリデン(PVDF)、フッ化ビニ リデンとトリフルオロエテレンの共重合体(PVDF/ PTrFE〉等の有機ポリマーが好適である。強誘電体 材料を用いれば100~20000mC/cm゚ の非常 に大きな表面電荷を形成することが可能である。

【()()21】本発明に用いられるエレクトレット材料と しては、ガラス等の無機材料を含む誘電体全般が挙げら 成された者色帯電粒子7とは異なる極性の表面電荷を備 40 れるが、置産性の点からは印刷プロセスに対応可能な有 機ポリマー材料がより好適である。例えば、テプロン (Teflon-FEP、Teflon-TFE)等の フッ素系樹脂が特に性能の面で優れており、その他ポリ エチレン、ポリプロピレン、ポリスチレン、ポリメチル シカルコー し おり知体レント おりゃなしいぶしつ

しく説明する。エレクトレット(電石)とは、マグネッ ト(磁石)との類似性に命名の由来があり、半永久的に 分極電荷を凍結・保持し外部に電界を形成する物質であ る.

【0023】エレクトレットの成因は、分極の形成とそ の漢緒にある。凝結可能な分極としては、

- 1. 誘電体内に含まれるイオンの微視的或いは巨視的変 位とによる電荷分離、
- 2. 極性基等によって構成される分子内永久双極子の外 部電界による異方性配向。
- 3. コロナ放電電極または電極-誘電体間の空隙で発生 するコロナ放電による電荷注入、 によるものが代表的である。

【1) () 2.4 】イオン電筒分離または双便子配向による分 極電荷は外部電界印加電極とは異なる極性のヘテロ電荷 となり、コロナ放電注入による分極電荷は同じ極性のホ モ電荷となる。熱刺激電流 (TSC) による測定によれ は、誘電体内部、特に表面近傍に存在する結晶粒界等の 不整合部分に存在する電子、ホール、イオンの深いトラ

いる。

【りり25】エレクトレットを形成するには種々の方法 がある。代表的な方法として、

- 1. 誘電体を軟化温度または溶融温度近傍まで加熱し、 高電界DCを印刷しながら冷却する方法(サーモ・エレ クトレット法)、
- 2. 誘電体表面にコロナ放電させるか、絶縁破壊電圧に 近い高電界DC(~10° V/cm)を変温で印刷する 方法(エレクトロ・エレクトレット法)、
- 線) を照射する方法(ラジオ・エレクトレット法)、
- 4. 光照射中に高電圧DCを印加する方法(フォト・エ レクトレット)、
- 5.加圧・延伸等による機械的な変形による方法(メカ ノ・エレクトレット〉、等があげられる。

[0026]

【実能例】以下実施例によって本発明の実施騰镁につい て詳しく説明する。

【0027】実施例1

本実施例では、図1に示す、最も一般的な上下電極構造 40 の電気泳動型表示装置に適用した場合について説明す る。 図1 では表示セグメントに対応する2つの閉空間を 有する構成について示している。着色絶縁性液体6、及 び着色絶縁性液体6 中に分散された着色帯電粒子では、 今日90%的世紀(1年44年代の227年時の127年) 学園金

施例では、荷電膜材料としてテフロン(Tellon-FEP)を使用し、高熱下でのコロナ放電によつてエレ クトレット処理を行なった。

【①①29】まず、透明表示基板1に透明表示電極4、 対向基板2上に対向電極5を形成した。各基板材料とし ては、可視光の透過率が高く且つ耐熱性の高い付料を使 用する。ガラス、石英等の無機材料のほか、ポリエチレ ンテレフタレート (PET)、ポリエーテルサルフォン (PES) 等のポリマーフィルムを使用することができ る。本実施例ではガラス基板を用いた。

【① 030】過明表示電極4は、パターニング可能な導 **電性材料ならどのようなものを用いてもよく、本実施例** では、酸化インジウムすず (ITO) を真型蒸着法によ って200mmの厚さに形成した。対向電極5は上記材 料の他金属材料を用いてもよく、本実施例では、AI膜 を真空蒸者法によって200nmの厚さに形成した。

【①①31】各電極上をArガスで5分間エッチングし 表面を粗すことによって表面の密着性を向上させた後、 各基板の弯極面側に、厚み5μmのテフロンーFEP透 ップ等が分極電荷凍結の原因になっていると考えられて 20 明シートを重ね合わせ、その上にガラス基板を介して加 重を加えた状態で、300℃に加熱しテフロン=FEP シートを溶融したのち除冷することによって、電極上に 厚み5μmのテフロン-FEP膜を形成した。

> 【①①32】テフロンーFEP膜の形成された電極上に セグメント形状のレジストバターンを形成し、酸素プラ ズマ、Aェプラズマによる連続エッチングを行ない、セ グメント電極バターン以外のテフロン-FEP膜及び電 極膜を除去した。

【10033】エレクトレット化処理のために、XY2変 3.絶縁体に真空中で高エネルギー放射線(電子線、γ 30 位駆動機構に取り付けられたナイフエッジ電極と、テフ ロン-FEP膜及び電極膜の形成された基板を恒温槽内 に設置した。ナイフエッジ電極が空隙を介してテフロン - F E P 膜表面と対向するように配置し、両者の距離を 200μmに調整した。恒温層内を300℃に保持した 状態で電極膜とナイフエッジ電極間に、ナイフエッジ電 極側マイナスの方向に5kVの電圧を印加し、電極間に コロナ放電を発生させた。ナイフエッジ電極に取り付け られたXY2変位駆動機構によって、ナイフエッジ電極 を基板面と水平な方向に一定速度で往復変位させる基板 全面をコロナ放電で均一に照射しながら、ドライ窒素に よって急冷しエレクトレット化処理を終了した。

> 【①①3.4】得られたテフロンーFEP膜は良好な透明 性を有しており、表面電位を測定したところ、各電極膜 に対してマイナス35V程度の表面電位の発現が認めら **次語中川名食 4 とってきむきなだっ シード 非常ほっ 火**

は別に作製した隔壁を接着する方法、或いは光透過性の 第2基板表面にモールドによって形成しておく方法等を 用いることができる。本実施例では、光感光性ポリイミ ドワニスの塗布・露光・ウエット現像プロセスを3回線 り返すことにより、50μmの高さの隔壁3を形成し

【①036】続いて、隔壁3内に着色絶縁性液体6及び 着色帯電泳動粒子7を充填した。着色絶縁性液体6に は、予め有極性イオン吸着剤であるアルミナ及びシリカ の超微粒子をそれぞれ(). 5 w t %添加した。

【①①37】絶録性着色液体6としては、シリコーンオ イル、トルエン、キシレン、高純度石油等の絶縁性液体 に染料を分散させた分散液を用いる。本実施例ではシリ コーンオイルにアントラキノン系の黒色染料を分散させ た着色絶縁性液体6を用いた。

【①①38】着色帯電粒子?としては、着色絶縁性液体 6中で帯電しうる顔料粒子あるいは顔斜粉末を樹脂に分 散させた粒子を用いる。粒子の大きさとしては、通常は 平均粒径(). 1 μm~5 () μm位のものを使用する。本 実施例ではポリエチレン。ポリスチレン等の樹脂に酸化 20 チタンの白色顔斜粉末を分散させた平均粒径(). 5 μm の白色粒子を用いた。この白色帯電粒子では上記着色絶 縁性液体6中にて正に帯電していることが確認されてい る.

【①①39】最後に、陽壁3と透明表示基板1とを接着 剤で貼り合わせ、図上に示した構成の表示装置を得た。 また比較例1として、全く同様の構成であるが、テフロ ン-FEP膜にエレクトレット処理を行なわない表示態 置も合わせて作成した。

の駆動回路によって駆動した。最初に左側のセルの透明 表示電極4に対向電極5に対して-50℃、右側のセル には+50Vの電圧をそれぞれ印加した。左側のセルで は絶縁性黒色液体6中に分散していた正帯電白色粒子7 が表示透明電極4に弥動・定者し、セルは定者帯電粒子 の色である白色を呈した。右側のセルでは正帯電白色粒 子?が対向電極らに弥動・定者し、セルは絶縁性液体6 の色である黒色を呈した。応答速度は50msecであ った。本実施例1による表示装置、および比較例1によ る表示装置ともにほぼ同様の駆動特性を示した。

【①①41】比較例1の表示装置について、この状態で 外部回路を開放状態にしても変化は見られなかった。し かしながら、5時間放置後の観察では呈色状態の明らか な変化が認められ、一部の着色帯電粒子7の定着面から う見き 生またはなるケチ そこ おてごまうじひ亡身 部回路を開放状態にしたが変化は見られなかった。更 に、この状態で50時間保持したが全く変化は見られな かった。続けて、外部回路をショートし透明表示電極4 と対向電極5を短絡状態にしたが変化は見られなかっ た。同様にこの状態で50時間保持したが全く変化は見 られず良好なメモリ性が実現されていることが確認され た。

【①①43】またこの後、 首セルに反対極性の駆動電圧 を印加したところ、50msecとの応答速度で表示色 10 が反転したことから、荷電膜による吸着の駆動特性への 影響は少ないことが確認された。

【()()44】実施例2

本実施例では、荷電膜として無機強誘電体であるランタ ン添加チタン酸ジルコン酸鉛(PLZT)を用いた。図 2に本実施例の概略構成図を示す。荷電膜以外の構成は 実施例」と全く同様である。前電膜中では、強誘電相の 各分極ドメインの双極子モーメントが墓板側に同方向に 配列しており、泳動層と接する荷電膜表面にはマイナス の表面電荷が発現している。

【① 0.4.5】以下PL2T荷電膜8の製造プロセスにつ いて説明する。荷電膜以外の製造プロセスについては実 施例1と同様であるため省略する。PL2T薄膜の形成 方法としては、ゾルーゲル法、スパッタ法、CVD法 (化学気相成長法)等が挙げられるが本実施例ではスパ ッタ法により行なった。

【① 0.4.6】まず、透明表示電極4またはP t 対向電極 5を形成した石英ガラスよりなる基板 1、2上に高周波 スパッタリング法により、PL2T(ランタン添加チタ ン酸ジルコン酸鉛) 薄膜を250 nmの厚さに堆積し [①040]とうして得られた2つの表示装置を不図示 30 た。このとき、堆積する膜の組成は、化学置論的組成比 とする。

> 【①①47】続いて、上記維誦した膜に対して、ハロゲ ンランプを用いて光を照射して(ランブ加熱)、温度5 50~650℃、1分間の熱処理をする。これにより、 基板に堆積した膜(非晶質)のみを加熱して、ペロブス カイト型結晶構造に変化させて強誘電体膜を形成した。 得られたPLZT膜の透過率は70%程度であった。 【()()48】続いて、各墓板に形成されたP2T薄膜上

に、200mmの空隙を介して平板金属電極を配置し、 46 PLZT薄膜を90℃に加熱した状態で、透明表示電極 4またはPt対向電極5に平板金属電極に対して-1k Vの電圧を印加しポーリング処理を行ない、荷電膜8を 形成した。

[0049]以下箕施例1と同様のプロセスによって、 内のひこしも無水水ウニ社歯を作む アストナ細とらも

し、セルは定着帯電粒子の色である白色を呈した。右側 のセルでは正帯電白色粒子?が対向電極5に泳動・定者 し、セルは絶縁性液体6の色である黒色を呈した。応答 速度は50msecであった。

【0050】次に本実施例の表示装置を、この状態で外 部回路を開放状態にしたが変化は見られなかった。原 に、この状態で50時間保持したが全く変化は見られな かった。続けて、外部回路をショートし、透明表示電極 4と対向電極5を短絡状態にしたが変化は見られなかっ た。同様にこの状態で50時間保持したが全く変化は見 10 られず良好なメモリ性が実現されていることが確認され た。

【0051】実施例3

本実施例では、本発明を特願平10-005727号公 報において関示された水平移動型の電気泳動表示装置に 適用した場合について説明する。

【0052】図5に本発明による表示装置の概略断面図 を示す。図5では一画素に対応する2つの閉空間を有す る構成について示している。表示基板 1 上の画素面全面 介して黒色表示電極24が画素面の一部に配置されてい る。黒色表示電極24上面、及び白色表示電極25上の 絶縁層14の上面には本発明に関わる荷電膜8が形成さ れる。表示基板 1、対向基板 2 及び隔壁 3 によって囲ま れた空間内には、透明絶縁性液体26及び黒色帯電粒子 27が充填される。水平移動型の電気泳動表示装置で は、帯電粒子27を表示基板1に対して水平に移動し、 表示基板上に形成された黒色表示電極24または白色表 示電極25の上に集めることによって表示を行う。

【0053】透明絶縁性液体26中の黒色帯電粒子27 を電極への弯圧印加によって白色表示電極25上に集め ると、観測者(対向基板側)からは、黒色帯電位子27 と黒色表示電極24が観察(表示)される。一方、電極 の極性を変えて黒色帯電粒子27を黒色表示電極24上 に集めると、白色表示電極25が露出し皇色が変化す る。黒色表示電極24に比べて白色表示電極25の面積 を大きくすれば白色表示電極25の着色が支配的な星色 を示す。白色表示電極25の星色は絶縁層14或いは白 色表示電極25或いは表示基板1等の着色によって形成

【0054】以下、本実施例による表示装置の製造方法 について説明する。表示基板 1 は、厚さ200μmの光 透過性のPETフィルムを用いた。表示基板!上に白色 表示電極25として!TOを成膜しライン状にバターニ ことでき ママ ガタサニのなって アンダムを出してて

いて説明する。本実施例では、荷駕殿村料としてポリマ 一強誘電体であるポリフッ化ビニリデン(PVDF)を 使用した。PVDFのペレットをジメタルアセトアミド (DMA) 液に溶かし、10vt%溶液を作成した後、 具色表示電極24及び白色表示電極25上の絶練層上 に、キャスト法によって競厚2μmのPVDF薄膜を形 成・パターニングした。

【①①56】表示基板上に形成されたPVDF薄膜上 に、200mの空隙を介して平板金属電極を配置し、 ポーリング (分極) 処理を行なった。即ち、PL2T薄 膜を100℃に加熱した状態で、黒色表示電極24及び 白色表示電極25に対して平板金属電極に+1kVの電 圧を約15分間印加し、15分後基板温度を室温に戻し てから電圧を解除し、PVDF薄膜内の極性基の電場配 向によると考えられる分極の形成された荷電膜8を得 tc.

【0057】次に、隔壁3を形成した。隔壁3は、光感 光性厚膜レジスト (商品名:SU-8.3M社製)を膜 厚50μmの条件で塗布した後、露光及びウエット現像 には白色表示電極25が配置され、さらに絶縁層14を 20 を行うことによって形成した。対向基板2との接合面に 熱融着性の接着層を形成した後、陽壁内に透明絶縁性液 体26及び黒色帯電粒子27を充塡した。透明絶縁性液 体26としては、シリコーンオイルを使用した。使用し たシリコーンオイル中には、予め有極性イオン吸着剤で あるアルミナ及びシリカの超微粒子をそれぞれり、5 W t%添加した。黒色帯電粒子27としては、ポリスチレ ンとカーボンの混合物で、粒子の大きさが!μm~2 μ m位のものを使用した。次に、対向基板2の表示基板1 との接着面に熱融者性の接着層パターンを形成し、表示 30 基板1の隔壁3と対向基板2の接着層の位置を合わせ加 熱状態で貼り合わせた。とうして得られた表示シートに 駆動回路を設置して表示装置を完成させた。

> 【0058】一方、比較用セルとして従来構成の表示験 置を平行して作成した。PVDF薄膜の代わりに透明ボ リイミド薄膜を2 mmの厚さに形成し、ポリイミド薄膜 に対してはボーリング処理を行なわなかった。その他の 使用材料、製造プロセスは全く同様である。

【0059】とうして得られた2つの表示装置を不図示 の駆動回路によって駆動した。白色表示電極25をコモ 40 ン電極として接地電位に設定し、最初に黒色表示電極2 4 に対して、左側の回案に-50V. 右側の回案に+5 () Vの電圧をそれぞれ£D加した。左側の回案では黒色正 帯電粒子27が黒色表示電極の上面に泳動・定着し白色 を呈した。右側の画案では黒色正帯電粒子27が白色表 二級体のものも本には、私、中央に自然を中にも、 はやは

ながら5時間放置後の観察では、一部の帯電粒子27の 定着面からの脱離・拡散が認められ呈色状態に明らかな 変化が観察された。次に、再び初期の呈色状態に戻した 後、外部回路をショートし黒色表示電極24と白色表示 電極25を短絡状態にしたところ、数分以内で呈色状態 は損なわれ、多くの帯電粒子27が液体中に脱離し、画 素内に拡散した。

【①061】次に本実施例の表示装置に対して、この状 態で外部回路を開放状態にしたが変化は見られなかっ た。更に、この状態で50時間保持したが全く変化は見 10 **られなかった。続けて、外部回路をショートし黒色表示** 電極24と白色表示電極25を短絡状態にしたが変化は 見られなかつた。 同様にとの状態で5 () 時間保持したが 全く変化は見られず良好なメモリ性が実現されているこ とが確認された。

[0062]

【発明の効果】以上説明した様に、本発明によって、単 純マトリックス駆動制御のように、実効的には回路の関 放状態を維持できないような制御においても、良好なメ モリー性を発現することができ、荷電膜上の表面電荷は 20 関放されることがないため、長時間安定なメモリー性が 実現可能な電気泳動型表示装置を実現することができ

【図面の簡単な説明】

【四1】本発明の電気採動表示装置の一実施騰穣を示す 概略断面図である。

【図2】本発明の電気泳動表示装置の他の実施態様を示 す概略断面図である。

【図3】本発明の電気旅動表示装置の動作原理を説明す※

* る説明図である。

【図4】 本発明の電気泳動表示装置の他の実施態様を示 す概略断面図である。

12

【図5】本発明の電気振動表示装置の他の実施整様を示 す概略断面図である。

【図6】本発明の電気泳動表示装置の他の実施態様を示 す概略断面図である。

【図7】従来の表示装置の動作原理を説明する説明図で ある。

- 【図8】従来の表示装置を示す機略断面図である。 【符号の説明】
 - 透明表示基板
 - 対向基板
 - 墾酮 3
 - 透明表示電極
 - 対向弯極
 - 着色绝缘性液体
 - 着色带弯粒子
 - 8.88 荷電膜
- 9 マイクロカプセル
 - 10 外部回路
 - 選光部 11
 - 12 高分子バインダー
 - 13 定者面
 - 14 絶縁層
 - 24 具色表示電極
 - 25 白色表示電極
 - 透明絕緣性液体 26
 - 27 **具色帯電粒子**

[**図**1]

[図2]

特闘2000-258805 (8) [図4] [図3] 10 外部网络 (a) 城明表示基板 1 进明表示配底 d 到此故 !! 荷略駅 8 **特色哲理粒子 7/** (6) (c) [図6] [図5] 4. 透明曲示電腦 透明检索性液体 28 2 对向基度 6金 8 6 対向電腦

http://www4.ipdl.ncipi.go.jp/tjcontentdben.ipdl?N0000=21&N0400=image/gif&N0401=/NSAPITMP/we... 9/25/2006-10000-1

(a) 特別 2 0 0 0 - 2 5 8 8 0 5

(b) (回 7) (回 8)

(c) 特別 2 0 0 0 - 2 5 8 8 0 5