cs5340: Tutorial 4

Asst. Prof. Harold Soh

TAs: Eugene Lim

Course Schedule (Tentative)

Week	Date	Lecture Topic	Tutorial
1	16 Jan	Introduction to Uncertainty Modeling + Probability Basics	Introduction-
2	23 Jan	Simple Probabilistic Models	Introduction and Probability Basics
3	30 Jan	Bayesian networks (Directed graphical models)	More Basic Probability
4	6 Feb	Markov random Fields (Undirected graphical models)	DGM modelling and d-separation
5	13 Feb	Variable elimination and belief propagation	MRF + Sum/Max Product
6	20 Feb	Factor graphs	Quiz 1
-	-	RECESS WEEK	
7	5 Mar	Mixture Models and Expectation Maximization (EM)	Linear Gaussian Models
8	12 Mar	Hidden Markov Models (HMM)	Probabilistic PCA
9	19 Mar	Monte-Carlo Inference (Sampling)	Linear Gaussian Dynamical Systems
10	26 Mar	Variational Inference	MCMC + Langevin Dynamics
11	2 Apr	Inference and Decision-Making	Diffusion Models + Sequential VAEs
12	9 Apr	Gaussian Processes (optional)	Quiz 2
13	16 Apr	Project Presentations	Closing Lecture

CS5340 :: Harold Soh

Administrative Issues

- Project Groups:
 - Abstracts due: 4 March 2024
- Quiz 1
 - Next week: 20 Feb 2024
 - Covers everything up to variable elimination and belief propagation
 - Last Year's quiz has been uploaded to Canvas.
- Survey online:

https://forms.gle/FKSZ5MbtPXPnC8Mv6

Questions?

https://pollev.com/haroldsohsoo986

CS5340 :: Harold Soh

4. Label Errors

4.c. Bayesian Network with Label Errors

4. Label Errors

4.d. New MLE that accounts for label errors.

$$\frac{1}{2} \log \left(\frac{1}{2} p(2i|yi) p(yi|xi, w) \right)$$

$$\frac{1}{2} \log p(2i|xi, w).$$

$$= \frac{1}{2} \log p(2i|xi, w).$$

$$= \frac{1}{2} \log p(2i|yi|) p(yi|xi, w)$$

$$= \frac{1}{2} \log p(2i|yi|) p(yi|xi, w)$$

$$= \frac{1}{2} \log p(2i|yi|) p(yi|xi, w) + p(2i|yi|2i) p(yi|2i|xi, w)$$

$$= \frac{1}{2} \log p(2i|yi|2i) p(yi|2i|xi, w) + p(2i|yi|2i) p(yi|2i|xi, w)$$

$$= \frac{1}{2} \log p(2i|yi|2i) p(yi|2i|xi, w) + p(2i|yi|2i) p(yi|2i|xi, w)$$

$$= \frac{1}{2} \log p(2i|xi, w) + p(2i|yi|2i) p(yi|2i|xi, w)$$

$$= \frac{1}{2} \log p(2i|xi, w) + p(2i|xi|xi, w)$$

$$= \frac{1}{2} \log p(2i|xi|xi, w) + p(2i|xi|xi, w)$$

$$= \frac{1}{2} \log p(2i|xi|xi, w) + (1-2i) \log p(2i|xi|xi, w).$$

cs5340: Tutorial 4

Asst. Prof. Harold Soh

TAs: Eugene Lim

1. Simpson's Paradox

1.a. There are two potential drug treatments (A and B).

Dr. Homer Simpson wants to compare the outcome of patients after receiving either treatment A or B, to determine the better drug.

Draw a PGM for the scenario above.

Seems like Drug A is better

Ĩ	Ł	p(T=+)	1500
Ţ	A	0.73	1500 + 550
	В	0.27	
		1	

		•	
	t	r	p(R=17=t)
ے	A	0	0.16
7	Α	١	0.84
	B	0	0.19
2	B	1	0.81
			

Conclition on the condition (5), treatment B is better
$$A_p(R=1|T=A, (=0) = \frac{11.90}{1400} = 0.85$$

Simpson's Paradox, $(R=1|T=A, (=1) = \frac{70}{100} = 0.7$
 $A_p(R=1|T=A, (=1) = \frac{45}{100} = 0.9$
 $A_p(R=1|T=B, (=1) = \frac{45}{500} = 0.9$

1.b. The data seems to indicate that treatment A is more effective. Can Homer confirm this just from the data?

Questions?

https://pollev.com/haroldsohsoo986

CS5340 :: Harold Soh

You are given the following *pairwise* undirected graphical model which models the activity (low or high) at 12 MRT stations. Each node represents a random variable indicating whether the activity at a particular station is low (0) or high (1). $x_i \mid \psi(x_i) \mid$

Unary Factors

0

10

x_i	x_j	$\psi(x_i,x_j)$
0	0	20
0	1	5
1	0	5
1	1	20

2.a. Compute $p(x_{12} = 1 | x_1 = 0, x_7 = 0, x_9 = 1, x_{10} = 0)$.

x_i	$\psi(x_i)$
0	10
1	2

Unary Factors

x_i	x_j	$\psi(x_i,x_j)$
0	0	20
0	1	5
1	0	5
1	1	20

2.a. Compute
$$p(x_{12} = 1 | x_1 = 0, x_7 = 0, x_9 = 1, x_{10} = 0)$$

$$p(x_{12} = 1 | x_1 = 0, x_7 = 0, x_9 = 1, x_{10} = 0)$$

= $p(x_{12} = 1 | x_{10} = 0)$

2.a. Compute
$$p(x_{12} - 1 | x_1 = 0, x_7 = 0, x_9 = 1, x_{10} = 0)$$

$$p(x_{12} = 1 | x_1 = 0, x_7 = 0, x_9 = 1, x_{10} = 0)$$

$$= p(x_{12} = 1 | x_{10} = 0)$$

x_i	$\psi(x_i)$
0	10
1	2

Unary Factors

x_i	x_j	$\psi(x_i,x_j)$
0	0	20
0	1	5
1	0	5
1	1	20

x_i	$\psi(x_i)$
0	10
1	2

Unary Factors

$P(X_{12} \mid X_{10}) = P(X_{12}, X_{10})$	$oxed{x_i}$	x_{j}	$\psi(x_i,x_j)$
$P(X_{12} \mid X_{10}) = \frac{1}{P(X_{10})}$	0	0	20
	0	1	5
$\frac{p(X_{12} \mid X_{10})}{p(X_{10}) \cdot p(X_{12})} \psi(X_{11}, X_{20}) = \frac{1}{p(X_{10}, X_{12})} \psi(X_{11}, X_{20}) = \frac{1}{p(X_{10}, X_{12})} \psi(X_{11}, X_{20}) = \frac{1}{p(X_{10}, X_{12})} \psi(X_{10}, X_{12}) \psi(X_{10}, X_{12})$	1	0	5
$\rho(X_1, X_{10}) = \sum_{i=1}^{n} \psi(X_i) \psi(X_i) \cdots \psi(X_{12}) \psi(X_i, X_i)$	1	1	20

$$\rho(\mathbf{x}_{12}, \mathbf{x}_{10}) = \sum_{\mathbf{x}_{10}, \mathbf{x}_{10}} \frac{1}{\mathbf{x}_{10}} \frac{1}{\mathbf{x}$$

$$P(X_{12}, X_{13}) = \frac{1}{2} M(X_{10}) \Psi(X_{10}) \frac{1}{2} \Psi(X_{12}) \Psi(X_{10}, X_{12}).$$

$$P(X_{12}, X_{13}) = \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2 \times 5}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2}{2} \frac{1}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2}{2} M(X_{10}) \Psi(X_{10}) \Psi(X_{10}) \Psi(X_{10}) \Psi(X_{10}, X_{12}) = \frac{2}{2} M(X_{10}) \Psi(X_{10}) \Psi$$

2.c. Compute
$$p(x_{10} = 1 | x_9 = 1, x_{12} = 1, x_2 = 0)$$

$$p(x_{10} | X_1, X_{12}, X_2) = p(X_{10} | X_9, X_{12})$$

$$= p(X_{10} | X_9, X_{12})$$

$$= p(X_{10} | X_9, X_{12})$$

$$= p(X_9, X_{12})$$

2.c. Compute $p(x_{10} = 1 \mid x_9 = 1, x_{12} = 1, x_2 = 0)$

Unary Factors

x_i	x_j	$\psi(x_i,x_j)$
0	0	20
0	1	5
1	0	5
1	1	20

p (X10 (X1, X12) =	p(X10, X1, X12)4
1 '	p(X9, X12) 5

$oxed{x_i}$	$\psi(x_i)$
0	10
1	2

Unary Factors

$$\rho(x_{q_{1}}x_{lo}, x_{1i}) = \sum_{\substack{X_{11} \\ X_{11}}} \rho(x_{q_{1}}x_{lo}, x_{li_{1}}x_{lo}),$$

$$= \sum_{x_{11}} \sum_{\substack{X_{11} \\ X_{12}}} \psi(x_{1}) \psi(x_{0}) \psi(x_{0}) \psi(x_{1}) \psi(x_{1}, x_{0}) \dots \psi(x_{lo}, x_{12})$$

$$= \sum_{x_{11}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}) \psi(x_{0}) \psi(x_{1}) \psi(x_{1}, x_{0}) \psi(x_{1}, x_{0}) \psi(x_{1}, x_{12})$$

$$= \sum_{x_{11}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}, x_{1}) \psi(x_{1}, x_{1}) \psi(x_{1}, x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{11}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}, x_{1}) \psi(x_{1}, x_{1}) \psi(x_{1}, x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{11}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}, x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{11}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}, x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{12}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{12}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{12}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{12}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{12}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{12}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}) \psi(x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{12}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{12}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}, x_{1})$$

$$= \sum_{x_{12}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{12}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}) \psi(x_{1}, x_{1})$$

$$= \sum_{x_{12}} \sum_{\substack{X_{12} \\ X_{12}}} \psi(x_{1}, x_{1})$$

$$= \sum_{x_{$$

x_i	$\psi(x_i)$
0	10
1	2

Unary Factors

$$\frac{p(X_{10}, X_{1}, X_{12})}{p(X_{1}, X_{12})} = \frac{\psi(X_{10}) \psi(X_{1}, X_{10}) \psi(X_{10}, X_{12}) \sum_{\mathbf{X}_{11}} \psi(X_{11}) \psi(X_{11}, X_{11})}{\sum_{\mathbf{X}_{10}} \psi(X_{11}, X_{10}) \psi(X_{11}, X_{11}) \sum_{\mathbf{X}_{11}} \psi(X_{11}) \psi(X_{11}, X_{11})} \frac{x_{i}}{2} \psi(X_{11}) \psi(X_{11}, X_{11}) \sum_{\mathbf{X}_{11}} \psi(X_{11}, X_{11}) \psi(X_{11}, X_{11}) \sum_{\mathbf{X}_{11}} \psi(X_{11}, X_{11}) \psi(X_{11}, X_{11}$$

=
$$\frac{20 \times 20 \times 2 (10 \times 5 + 2 \times 20)}{124,500} = \frac{44}{128} \approx 0.5783$$
. Pairwise Factors

2.d. Compute
$$p(x_6 = 0 \mid x_4 = 1, x_8 = 1, x_{10} = 0)$$

x_i	$\psi(x_i)$
0	10
1	2

Unary Factors

2.d. Compute $p(x_6 = 0 \mid x_4 = 1, x_8 = 1, x_{10} = 0)$

Questions?

https://pollev.com/haroldsohsoo986

CS5340 :: Harold Soh

21

Denoising

• Let's move to the Jupyter notebook.

model energy functions.

Tenery -> I probable

Lenery -> T probable

Xij	Yij \	Xij Yij	ψ(xij, Yij) = -«Xij Yij
<u>-</u> 1	-1	41	- d
-1	41	-(+d
41	4	-1	+4
41	41	+1	-d

			Ψ(x _j , x _j ,
Xij	×"j	Xij · Xij	$= -\beta x_{ij} x_{ij}^*$
-1	-1	41	- ß
-1	41	-1	t B
41	-1	-1	+B
4)	+)	+1	- ß.

Questions?

https://pollev.com/haroldsohsoo986

CS5340 :: Harold Soh

24

Homework. ©

- Spend 5 minutes now filling up this survey:
- https://forms.gle/FKSZ5M
 btPXPnC8Mv6
- Watch the lecture videos and prep for quiz!

CS5340 :: Harold Soh