GEOMETRÍA

1. Calcule el área de la región cuadrada ABCD, si Q es punto de tangencia, PA=3 u y $PQ=\sqrt{21}$ u.

- A) 16 u² C) 8 u²
- B) 12 u² D) 6 u²

Resolución:

> Teorema de la tangente

$$\sqrt{21}^{2} = (3+d)3$$

$$21 = 9+3d$$

$$12 = 3d$$

$$4 = d$$

$$A \Box = \frac{d^2}{2}$$

$$A \Box = \frac{4^2}{2} \rightarrow A \Box = 8 \text{ u}^2$$

Rpta.: 8 u²

2. En la figura, se quiere reservar una zona en forma cuadrada BDEF para la construcción de un edificio. Si AE= 5 m y CE= 10 m, halle el área de la región cuadrada.

- A) 25 m² C) 20 m²
- B) 50 m² D) 15 m²

Resolución:

Por corolario de Thales

$$\frac{AF}{FB} = \frac{5}{10}$$

AFE: Teorema de Pitágoras $k = \sqrt{5}$

Rpta.: 20 m²

3. En la figura se muestra un terreno cuyo contorno es un rectángulo, el cual se lo ha dividido en 4 regiones rectangulares.

x	8 m ²
6 m ²	4 m ²

- A) 10 m^2
- B) 12 m^2
- C) 13 m^2
- D) 14 m^2

BALOTARIO DEL EXAMEN MENSUAL N.º 3

Resolución:

oıu	cion:	d		
	С	u	1	
b	X	8 m ²	b	
a	6 m ²	4 m ²	a	
	c	d		
$ \begin{array}{c} a.c=6\\ d.b=8\\ \hline ad.bc=48\\ 4.x=48\\ x=12 \text{ m}^2 \end{array} $				

Rpta.: 12 m²

4. En un cuadrilátero ABCD, m∢ABC= m∢ADC= 90°, m∢ACD= 2(m∢BAC), AB= 6 u y CD=1 u. Calcule el área de la región cuadrangular ABCD.

A)
$$\sqrt{15}$$
 u²

B)
$$\frac{15\sqrt{2}}{7}$$
 u²

$$C) \frac{15\sqrt{7}}{2} u^2$$

D)
$$6\sqrt{7} \text{ u}^2$$

Resolución:

- ☐ ABCD inscriptible
- > Teorema de la secantes

$$(AP)(BP) = (PD)(PC)$$
$$(12)(6) = (\ell+1)\ell$$
$$72 = (\ell+1)\ell \rightarrow \ell = 8$$

ABC:
$$\ell^2 = 6^2 + BC^2$$

 $8^2 = 6^2 + BC^2$
BC = $2\sqrt{7}$

ADC:
$$\ell^2 = 1^2 + AD^2$$

 $8^2 = 1 + AD^2$
AD = $3\sqrt{7}$

[ABCD] = [ABC] + [ADC]
[ABCD] =
$$\frac{6 \times 2\sqrt{7}}{2} + \frac{1 \times 3\sqrt{7}}{2}$$

∴ [ABCD] = $\frac{15\sqrt{7}}{2}$ u²

Rpta.:
$$\frac{15\sqrt{7}}{2}$$
 u²

5. En a figura, ABCD es un romboide. Calcule el área *x*.

- A) 12 m²
- B) 13 m²
- C) 10 m^2
- D) 15 m^2

Resolución:

ightharpoonup En el trapecio ABED, por teorema $A_{\Lambda AOB} \! = \! A_{\Lambda FOD} \! = \! S$

$$A_{\Delta ABD} = A_{\Delta BCD}$$

$$S + 16 = S + 4 + x$$

$$12 \text{ m}^2 = x$$

Rpta.: 12 m²

6. Calcule el área del círculo mayor. (P y Q son puntos de tangencia)

- A) $3\pi u^2$
- B) $6\pi u^{2}$
- C) $7\pi u^2$
- D) $9\pi \text{ u}^2$

Resolución:

Del gráfico

$$SH = O_2H = a$$

PO₁HQ: rectángulo

$$\rightarrow$$
 HQ=O₁P= 3a

$$\rightarrow$$
 O₁H= PQ= $2\sqrt{2}$

O₁HO₂: Pitágoras

$$(3a)^2 = (2\sqrt{2})^2 + a^2$$

$$\rightarrow a = 1$$

→ Radio mayor

$$r = 3$$

$$S_r = \pi r^2$$

$$\therefore S_{r} = 9\pi u^{2}$$

Rpta.: $9\pi \text{ u}^2$

7. Calcule el área de la región sombreada, si \overline{AB} y \overline{AC} son diámetros, AB = 10 u y BC = 4 u

- A) $11\pi u^{2}$
- B) $12\pi u^2$
- C) $14\pi u^2$
- D) $15\pi u^2$

Resolución:

$$A_{somb} = A_{Mayor} - A_{Menor}$$

$$A_{somb} = \frac{\pi(7)^2}{2} - \frac{\pi(5)^2}{2}$$

$$A_{\text{somb}} = \frac{49\pi}{2} - \frac{25\pi}{2}$$

$$A_{somb} = 12\pi u^2$$

Rpta.: $12\pi \text{ u}^2$

8. A una placa de triplay de forma circular de centro O se hacen dos orificios como se muestra en la figura. Si P, Q y T son puntos de tangencia, mPQ = 90° y OP= 30 cm, halle el área del triplay resultante.

- A) $550\pi \text{ cm}^2$
- B) $540\pi \text{ cm}^2$
- C) $575\pi \text{ cm}^2$ D) $600\pi \text{ cm}^2$

Resolución:

R y S centro de las circunferencias

> ROS: teorema de Pitágoras

$$(15+r)^2 = 15^2 + (30-r)^2$$

$$r = 10$$

A triplay = $\pi(30)^2 - \pi(15)^2 - \pi(10)^2$ A triplay = 575π cm²

Rpta.: $575\pi \text{ cm}^2$

 Calcule el área de la corona circular si A y B son puntos de tangencia, BC=3 u y AB=√21 u.

- A) 8π u²
 C) 9π u²
- B) $7\pi u^2$
- $9\pi \text{ u}^2$ D) $4\pi \text{ u}^2$

Resolución:

> Teorema de la tangente:

$$\sqrt{21}^2 = (3 + \text{CE})3$$

 $21 = 9 + 3 \times \text{CE}$
 $12 = 3 \times \text{CE}$
 $4 = \text{CE}$

- $A_{\bigcirc} = \frac{\pi(CE)^2}{4}$
 - $A_{\bigcirc} = \frac{\pi(4)^2}{4}$
 - $A \bigcirc = 4\pi u^2$

Rpta.: $4\pi \text{ u}^2$

10. En la figura se muestra a un caballo atado en la esquina de una cabaña, con una soga de 8 m de longitud. Calcule el área máxima que puede abarcar, al tratar de comer el pasto a su alrededor.

- A) $60\pi \text{ m}^2$ C) $48\pi \text{ m}^2$
- B) $64\pi \text{ m}^2$ D) $40\pi \text{ m}^2$

Resolución:

$$A_{\text{somb}} = \frac{3}{4}.A_{\bigcirc}$$

$$A_{\text{somb}} = \frac{3}{4} \cdot \pi 8^2$$

$$A_{\text{somb}} = \frac{3}{4} . \pi 64$$

$$A_{somb} = 48\pi \text{ m}^2$$

Rpta.: $48\pi \text{ m}^2$

- 11. Se tienen los cuadrados ABCD y ABEF ubicados en planos perpendiculares; cuyos lados miden 4 u. Calcule la distancia entre los puntos medios de AD y MC (M punto medio de EF).
 - A) 5

- B) 2
- C) $\sqrt{5}$
- D) $\sqrt{13}$

Resolución:

- ➤ MN//AF
- $\rightarrow \overline{MN} \perp \overline{AB}; \overline{MN} \perp ABCD$
- $\rightarrow \overline{MN} \perp \overline{NC}$
- ➤ MNC: QH = 2 (base media)

En
$$\square$$
 ANCD
PH = $\frac{4+2}{2} \rightarrow$ PH = 3

▶ PHQ

$$x^2 = 2^2 + 3^2$$

$$\therefore x = \sqrt{13}$$

Rpta.: $\sqrt{13}$ u

12. Un ave se ubica en la parte más alta del poste perpendicular al plano H, que contiene a la circunferencia de diámetro AB, el ave observa el punto C de la circunferencia, tal que:

$$\widehat{\text{mAC}} = \widehat{\text{mCB}} \text{ y AP} = \text{AB} = 8 \text{ m}$$

Halle $\widehat{\text{m}} \subset \text{CPB}$.

- A) 37°
- B) 30°
- C) 53°
- D) 45°

Resolución:

- ➤ Como diámetro \overline{AB} y m $\angle CAB = 45^{\circ}$ $\rightarrow BC = 4\sqrt{2}$
- ➤ Por el teorema de las tres perpendiculares, m∢PCB= 90°
- ➤ PAB: notable de 45°-45°

$$\rightarrow$$
 PB= $8\sqrt{2}$

➤ PCB: notable de 30° y 60°

$$\rightarrow x = 30^{\circ}$$

Rpta.: 30°

13. En la figura se muestra una puerta, la cual al abrirse determina un ángulo diedro de medida α . Halle el valor de α si: AB=5 u, CD=11 u y AD=14 u.

Resolución:

- $(AC)^2 + (11)^2 = (14)^2 \rightarrow AC = 5\sqrt{3}$
- ➤ Por triángulos notables: $\alpha = 120^{\circ}$

Rpta.: 120°

14. Si ABCD es un cuadrado y AB= DE. Calcule el área de la región CEN.

- A) 6 u² C) 18 u²
- B) 9 u² D) 12 u²
- Resolución:

- \rightarrow MD: Mediana del \triangle AME
- \rightarrow [AMD] = [DME]

> Por teorema

$$(S_x)^2 = 4 \times 9$$
$$S_x = 6$$

Rpta.: $6 u^2$

- 15. En un círculo se trazan el diámetro \overline{AB} y la cuerda \overline{CD} , las cuales se intersectan en E. Si AE = 4 u, CE = 5 u y ED = 8 u, calcule el área del círculo.
 - A) $16\pi u^2$
- B) 25π u²
 D) 49π u²
- C) $36\pi \text{ u}^2$

Resolución:

> Teorema de las cuerdas:

$$4(EB) = 5(8)$$

 $EB = 10$

 $ightharpoonup 2R=14 \rightarrow R=7$

$$A_{\bigcirc} = \pi R^{2}$$

$$A_{\bigcirc} = \pi 7^{2}$$

$$A_{\bigcirc} = 49\pi u^{2}$$

Rpta.: $49\pi \text{ u}^2$