Universidade de São Paulo escola de engenharia de são carlos

Projeto de Circuitos Integrados Analógicos - SEL0618

Projeto 9

Aluno: Lucas A. M. Magalhães

N'umero~USP:~7173347

Aluno: Luiz H. G. Patire Número USP: 7126667

SUM'ARIO

Sumário

R	elatório																						2
	Questão 1																						2
	Questão 2																						3
	Questão 3																						
	Questão 4																						5
	Questão 5																						5
	Questão 6																						6
	Questão 7																						7
	Questão 8						_																Ö

Relatório

Questão 1

Considere o circuito da **Figura 1** (circuito *prescaler*).

Figura 1: Prescaler 32/33.

Desenhe o circuito completo do esquemático da Fig. 1 utilizando as células **DF1**, **NAND23**, **NOR23** e **NAND40**. Como sinais de entrada ele deve ter o clocke SM; como sinal de saída, $saida32_33$ (divide o clockpor 32 ou 33)

O esquemático do circuito é apresentado na Figura 2.

Figura 2: Circuito Prescaler 32/33.

Questão 2

Faça o ${f LVS}$ entre o layout e o esquemático. Só devem ocorrer warnings. Inclua no relatório o layout feito e corrigido.

O layout do circuito da Figura 2 é apresentado na Figura 3

Figura 3: Layout do circuito Prescaler 32/33.

Questão 3

Considere o circuito da **Figura 4** (não tem função alguma, servindo apenas para ilustração). Desenhe o esquemático desse circuito utilizando a célula **NAND23** e o prescaler anterior (faça as devidas checagens).

Figura 4: Circuito utilizando o Prescaler.

 ${\cal O}$ esquemático do circuito é apresentado na Figura 5 .

Figura 5: Esquemático do circuito utilizado *Prescaler*, feito no ICStúdio

Questão 4

Termine as conexões, adicione ports, faça o **DRC** e o **LVS**. Inclua no relatório o layout feito.

O layout do circuito da Figura 4 é apresentado na Figura 6.

Figura 6: Layout do circuito utilizado Prescaler, feito no ICStúdio

Questão 5

Modifique o circuito adicionando um transistor na saída como indicado na **Figura 7**. Novamente gere o *layout*, adicione *ports*, faça o **DRC** e o **LVS**. Quais são os valores da saída quando o *gate* do transistor está "Alto" e quando está "Baixo". Inclua no relatório o *layout* feito.

O layout do circuito da Figura 7 é apresentado na Figura 8.

Figura 7: Circuito utilizando *Prescalers* e transistor.

Figura 8: Layout do Circuito com Transistor na Saída.

A adição de um transistor na saída do circuito modifica os estados de saída que o circuito gera. Quando o sinal de gate do transistor está em "Alto", o circuito joga 0V na saída; quando o gate está em "Baixo", o circuito gera um estado de alta impedância na saída (Z).

Questão 6

Voltando ao circuito da **Figura 1**, extrair a partir do esquemático o *netlist* e determinar a máxima velocidade para os modelos **típico** e **worstspeed** (o circuito deve dividir o *clock* por 32, para SM = "0", ou por 33, para SM = "1"). Use o comando *measure*, compare as freqüências obtidas nos dois modelos e comente os resultados.

Para encontrar a máxima frequência do circuito foram utilizados os comandos de simulação mostrados no *Listing* 1.

Listing 1: "Simulação para a máxima frequência"

```
.param f = 500MEG , T='1/f', ts='0.01*T' , td = ts

VSM SM 0 0V
```

```
VD VDD 0 3V
VS VSS 0 0V
VCLK CLK 0 PULSE( 0 3V 0 ts td '0.5*T-0.5*ts-0.5*td' T )

.tran 0 300n 0 100p SWEEP f 1G 1.4G 10MEG
.meas tran periodo TRIG V(OUT) val=1.5 fall=3 targ V(OUT) val=1.5 fall=4
.meas tran outFreq PARAM='1/periodo'
.meas tran rel PARAM='f/outFreq'
.probe tran V(CLK) V(OUT)
```

Assim, ao avaliarmos o gráfico apresentado na Figura 9, que mostra a relação entre a frequência da onda de entrada (f) pela frequência da onda de saída (outFreq), vemos que para frequências acima de 1.14GHz o circuito para de funcionar dividindo a frequência de entrada por valores maiores.

Figura 9: Layout do Circuito com Transistor na Saída.

Para encontrar os valores de máxima frequência dos exercícios 12 e 13 da prática, a mesma técnica foi utilizada. No entanto, foram usadas as respectivas entradas de SM, para fazer o divisor por 33 ou 32. Além disso, foram respeitadas as extrações necessárias de cada questão. A tabela 3 mostra os resultados de máxima frequência para todos os casos.

Questão 7

A partir do datasheet dos blocos que compõe o prescaler estime o máximo clock que o circuito poderia suportar.

O circuito *Prescaler* é composto por basicamente uma parte síncrona e uma assíncrona. A parte assincrona do circuito não irá influenciar significativamente no clock do circuito isso porqueo valor de MC é usádo no próximo clock o que da tempo suficiente do sinal da parte síncrona ser propagado na porta *NOR*. A parte sincrona do circuito é basicamente um circuito divisor 4/5, nele existem quatro caminhos críticos para o cálculo do *Clock*. Eles estão indicados pelos números de 1 a 4 na Figura 10:

Figura 10: Divisor 4/5 - Sinais Críticos e Componentes

Os tempos totais de cada caminho estão representados nas equações de 1 a 4, nas quais t_{DX} é o tempo de delay do componente X do circuito:

$$T_1 = t_{DB} \tag{1}$$

$$T_2 = t_{DC} + t_{DD} \tag{2}$$

$$T_3 = t_{DC} + t_{DA} \tag{3}$$

$$T_4 = t_{DE} + t_{DA} \tag{4}$$

Os tempos de *delay* de cada componente é calculado utilizando os dados presentes na ficha técnica de cada bloco do circuito (que permitem encontrar a relação linear entre a carga de saída e o atraso do bloco) e a carga de saída resultante de cada bloco. Os valores encontrados para cada bloco se encontra na Tabela 1.

Tabela 1: Tempo de Atraso de Cada Bloco do Circuito

Bloco	Carga	Atraso
A	$0,005~\mathrm{pF}$	0,083 ns
В	$0,005~\mathrm{pF}$	0,680 ns
С	0,041 pF	0.864 ns
D	$0,005~\mathrm{pF}$	0.073 ns
D	$0,020~\mathrm{pF}$	0,757 ns

Os tempos resultantes de cada caminho se encontra na Tabela 2:

Tabela 2: Tempo de Atraso de Cada Caminho

Caminho	Atraso Total
1	0,680 ns
2	0.937 ns
3	0.947 ns
4	$0.840 \; \mathrm{ns}$

Como o caminho com o maior atraso total é o caminho 3, com um atraso de 0,947~ns, ele assume posição como limitante do clock do sistema inteiro. Assim, o valor máximo do clock é de 1,05~GHz.

Questão 8

Monte uma tabela com os resultados obtidos nos exercícios 11, 12, 13 e 14. Compare e comente os resultados.

Tabela 3: Máxima frequência do circuito para várias simulações diferentes

Fonte	Modelo	Divisor	Máxima Frequência
	Típico	32	1,14 GHz
Netlist	1 ipico	33	1,05 GHz
redist	Worst Speed	32	760 MHz
	Worst Speed	33	700 MHz
	Típico	32	890 MHz
$\mathrm{C}\mathrm{+CC}$	Tipico	33	840 MHz
	Worst Speed	32	600 MHz
	Worst Speed	33	580 MHz
	Típico	32	820 MHz
R+C+CC	Tipico	33	790 MHz
	Worst Speed	32	560 MHz
	Worst Speed	33	540 MHz
Teórico		32	1,05 GHz
1601100	_	33	1,05 GHz

Pelos resultados presentes na Tabela 3, pode-se observar que as frequências calculas pelo *Netlist* se aproximam do cálculo teórico, e apresentam valores maiores do que as outras simulações.

As outras simulações (C+CC e R+C+CC) apresentam valores significativamente menores do que o cálculo pelo *Netlist*. Isso acontece devido ao fato dessas simulações levarem em consideração componentes parasitas presentes no circuito, o que diminui as velocidades de operação. Quantos mais elementos forem considerados, pior os resultados da simulação.

Em todas as simulações realizadas, a utilização do modelo Worst Speed reduz as frequências em cerca de $300 \ MHz$, fato condizente com a propsta do modelo.