Theorems and Definitions

1 Definitions

1.1 Sets and Logic

1. <u>Logical Operator</u>: A logical operator is a symbol that acts on a logical statement. The operators act as follows

		Negation	Disjunction	Conjunction	Implication
P	Q	¬ P	$P \wedge Q$	$P \vee Q$	$P \implies Q$
1	1	0	1	1	1
1	0	0	0	1	0
0	1	1	0	1	1
0	0	1	0	0	1

A statement that is always true (i.e. $P \lor \neg P$) is called a Tautology. A statement that is always false (i.e. $P \land \neg P$) is called a contradiction.

An implication $P \implies Q$ is made of two parts: the hypothesis (P) and the conclusion (Q).

Additionally, statements can be quantified using the two quantifiers, the universal quantifier, for all (\forall) and the existential quantifier, there exists (\exists) .

- 2. Set: A set is a collection of objects. The objects in a set are called elements.
- 3. Empty Set: The empty set, symbolized by \emptyset is the set with no elements.
- 4. Subset: A set \mathcal{A} is a subset of a set \mathcal{B} (noted $\mathcal{A} \subset \mathcal{B}$) if for all $x \in \mathcal{A}$, $x \in \mathcal{B}$.
- 5. Power Set: The power set of a set \mathcal{A} (noted $\mathcal{P}(\mathcal{A})$) is the set of all subsets of \mathcal{A} .
- 6. The Universal Set: The universal set, \mathcal{U} is the set of which all sets are subsets.
- 7. Intersection: For sets \mathcal{A} and \mathcal{B} , the intersection $(\mathcal{A} \cap \mathcal{B})$ is the set of elements in both \mathcal{A} and \mathcal{B} .

$$\mathcal{A} \cap \mathcal{B} = \{x | x \in \mathcal{A} \land x \in \mathcal{B}\}.$$

To say that \mathcal{A} and \mathcal{B} have a trivial intersection means that $\mathcal{A} \cap \mathcal{B} = \emptyset$. This is equivalent to saying \mathcal{A} and \mathcal{B} are disjoint.

8. <u>Union</u>: For sets \mathcal{A} and \mathcal{B} , the union $(\mathcal{A} \cup \mathcal{B})$ is the set of elements in either \mathcal{A} or \mathcal{B} .

$$\mathcal{A} \cup \mathcal{B} = \{x | x \in \mathcal{A} \lor x \in \mathcal{B}\}.$$

9. Set Difference: The set difference of a set \mathcal{A} and a set \mathcal{B} ($\mathcal{A} - \mathcal{B}$) is the set of all elements in \mathcal{A} that are not in \mathcal{B} .

$$\mathcal{A} - \mathcal{B} = \{x | x \in \mathcal{A} \land x \notin \mathcal{B}\}.$$

The complement of a set \mathcal{A} in regards to \mathcal{U} is $\mathcal{U} - \mathcal{A}$.

10. Cartesian Product: For sets \mathcal{A} and \mathcal{B} , the cartesian product $(\mathcal{A} \times \mathcal{B})$ is defined to be the set of ordered pairs (a, b) such that $a \in \mathcal{A}$ and $b \in \mathcal{B}$.

$$\mathcal{A} \times \mathcal{B} = \{(a, b) | a \in \mathcal{A} \land b \in \mathcal{B}\}.$$

- 11. Axiom: An axiom is a statement whose truth value is accepted without proof.
- 12. Theorem: A theorem is a mathematical statement whose truth value can be verified through proof.
- 13. Lemma: A Lemma is a mathematical result that is used to prove other results.
- 14. Corollary: A corollary is a mathematical result that follows from another result.

1.2 Number Theory

- 1. Division: To say that a divides b ($a \mid b$) implies that $\exists x \in \mathbb{Z}$ such that b = ax.
- 2. Relation: A relation \mathcal{R} from \mathcal{A} to \mathcal{B} is a subset of $\mathcal{A} \times \mathcal{B}$. \mathcal{A} is related to \mathcal{B} ($a\mathcal{R}b$) if $(a,b) \in \mathcal{R}$ for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. The domain of \mathcal{R} is the set $\{x \mid (x,y) \in \mathcal{R}\}$. The range of \mathcal{R} is the set $\{y \mid (x,y) \in \mathcal{R}\}$. If \mathcal{R} has an inverse \mathcal{R}^{-1} , then it is $\{(y,x) \mid (x,y) \in \mathcal{R}\}$. A relation between two elements $a \in \mathcal{A}$ and $b \in \mathcal{B}$ is denoted by $a \sim b$.
- 3. Reflexive: A relation \mathcal{R} is reflexive if $x\mathcal{R}x$ for all $x \in \mathcal{A}$.
- 4. Symmetric: A relation \mathcal{R} is symmetric if $x\mathcal{R}y$ and $y\mathcal{R}x$ for all $x \in \mathcal{A}$ and $y \in \mathcal{B}$.
- 5. Transitive: A relation \mathcal{R} is transitive if $x\mathcal{R}y$ and $y\mathcal{R}z$ implies $x\mathcal{R}z$ for all $x \in \mathcal{A}, y \in \mathcal{B}$, and $z \in \mathcal{C}$.
- 6. Equivalence Relation: An equivalence relation is a relation that is reflexive, symmetric, and transitive.
- 7. Equivalence Class: For a non-empty set \mathcal{A} containing elements a and b, the equivalence class of a, noted a is the set b a.
- 8. Partition: A partition of a non-empty set A is the set of subsets where
 - (a) The union of all sets in the partition of \mathcal{A} is \mathcal{A}
 - (b) The intersection of any two different sets in the partition of \mathcal{A} is not equivalent to \emptyset .
- 9. Function: A function f from $A \to B$ is a relation from A to B that satisfies
 - (a) $(a,b) \land (a,c) \in f \implies b = c$.
 - (b) $\forall a \in \mathcal{A}, \exists b \in \mathcal{B} \text{ such that } (a, b) \in f.$
- 10. Image: The image of a function $f: A \to B$ is $\{f(a) \mid a \in A\}$.
- 11. Inverse Image: For a function $f: \mathcal{A} \to \mathcal{B}$ and sets \mathcal{B} and \mathcal{D} where $\mathcal{D} \subset \mathcal{B}$, the inverse image of \mathcal{D} , $f^{-1}(\mathcal{D})$, is defined to be $\{a \in \mathcal{A} \mid f(a) \in \mathcal{D}\}$.
- 12. Injection: A function f is injective if $\forall (a,b) \in \mathcal{X}, f(a) = f(b) \implies a = b$.
- 13. Surjection: A function f is surjective if $\forall y \in \mathcal{Y}, \exists x \in \mathcal{X} \text{ such that } f(x) = y$.
- 14. Bijection: A function f is a bijection if it is an injection and a surjection.

2 Theorems and Important Ideas

1. Division Algorithm: Suppose $a, b \in \mathbb{Z}$ and assume b > 0. Then $\exists q, r \in \mathbb{Z}$ such that a = qb + r and $0 \le r \le b$. Moreover, q and r are the only integers satisfying this property. The integer q is commonly called the quotient and r is commonly called the remainder.

Proof: Let $S = \{a - nb \mid n \in \mathbb{Z}\}$. We know that

$$\lim_{n \to -\infty} (a - nb) \to +\infty,$$

so \mathcal{S} must contain at least one positive integer. Let r be the smallest element of \mathcal{S} that is greater than zero, called the remainder. Then there is a $q \in \mathbb{Z}$ such that $r = a - qb \ge 0$, or a = qb + r for $r \ge 0$. We have shown that this r exists.

Assume $r \ge b$. Then $r - b \ge 0$, and we know r = a - qb, so $a - qb - b \ge 0$. Then $a - b(q + 1) \in \mathcal{S}$ is greater than zero but less than r, which is a contradiction since r is the smallest positive integer in \mathcal{S} . Therefore a = qr + b and $0 \le r \le b$.

Assume a = bq + r and a = bg + h where $0 \le r \le b$ and $0 \le h \le g$.