**DEF'N:** If a vector v can be written in terms of a basis set  $v_1, ..., v_n$  as

$$\mathbf{V} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

then the set of coefficients  $c_1, c_2, ..., c_n$  are called the coordinates of  $\mathbf{v}$  with respect to the ordered basis  $\mathcal{B} = [\mathbf{v}_1, ..., \mathbf{v}_n]$ , and the  $n \times 1$  column vector

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

is called the coordinate vector of  $\mathbf{v}$  with respect to the ordered basis  $\mathcal{B} = [\mathbf{v}_1, ..., \mathbf{v}_n]$ .

**Ex:** vector  $\mathbf{x} = (x_1, x_2)^T$  in  $\mathbb{R}^2$  can be written in terms of the standard basis vectors  $\mathbf{e}_1, \mathbf{e}_2$  as

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

 $x_1$  and  $x_2$  are the coordinates of x with respect to the standard basis  $\{e_1, e_2\}$ . We can also write x as a linear combination of any other basis vectors in  $\mathbb{R}^2$ , i.e., any two linearly independent vectors y, z:

$$x = \alpha y + \beta z$$

 $\alpha, \beta$  are then the coordinates of x with respect to the basis  $C = \{ y, z \}$ . If we order the vectors y, z (y being the 1st vector in the basis and z the 2nd) and denote the ordered basis by:

$$C=[y,z]$$

then  $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = (\alpha, \beta)^T$  is the coordinate vector of  $\mathbf{x} = [x_1, x_2]^T$  with respect to  $[\mathbf{y}, \mathbf{z}]$ ,  $[\mathbf{x}]_C = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ .

So the coordinate vector of x with respect to  $[e_1,e_2]$  is  $[x_1,x_2]^T$ , but this will not be true for any other basis set [y,z].

**EXAMPLE:** In  $R^2$ , let:  $u_1 = [2, 1]^T$  and  $u_2 = [1, 4]^T$ 

( Since  $\mathbf{u}_1$  and  $\mathbf{u}_2$  are linearly independent, they form a basis for  $\mathbb{R}^2$ .) The vector

$$\mathbf{x} = [7, 7]^T = 7\mathbf{e}_1 + 7\mathbf{e}_2$$

can also be written:

$$x = 3u_1 + u_2$$

and so the coordinate vector of  $\mathbf{x}$  with respect to  $[\mathbf{u}_1, \mathbf{u}_2]$  is  $[\mathbf{3}, \mathbf{1}]^T$ :



**EXAMPLE:** In  $P_4$ , let:  $p(x) = 2 - 3x + x^2 - x^3/2$ 

and let  $B = [p_0, p_1, p_2, p_3]$  be the standard basis:

$$p_0(x) = 1$$
;  $p_1(x) = x$ ;  $p_2(x) = x^2$ ;  $p_3(x) = x^3$ 

...Then  $p = 2p_0 - 3p_1 + p_2 - (1/2)p_3$ 

...and so the coordinate vector of p with respect to  $[p_0, p_1, p_2, p_3]$  is:

$$[p]_{\mathbf{B}} = \begin{bmatrix} 2 \\ -3 \\ 1 \\ -1/2 \end{bmatrix}$$

Example. Consider  $\mathcal{B} = \{b_1, b_2\}$  and  $\mathcal{C} = \{c_1, c_2\}$  for a vector space V, such that

 $b_1 = 4c_1 + c_2$  and  $b_2 = -6c_1 + c_2$ .

Suppose  $[x]_B = [3, 1]^T$ . Find  $[x]_{C}$ .

Example. Find the coordinate vector of  $\mathbf{u} = (4, 5)$  relative to  $\mathbf{\mathcal{B}} = \{(1, 0), (0, 1)\}$  and  $\mathbf{\mathcal{B}}' = \{(2, 1), (-1, 1)\}.$ 

Theorem. Let  $\mathcal{B} = \{ \mathbf{u_1}, \mathbf{u_2}, \dots \mathbf{u_n} \}$  and  $\mathcal{B}' = \{ \mathbf{u_1}', \mathbf{u_2}', \dots \mathbf{u_n}' \}$  be bases for a vector space U. If  $\mathbf{u}$  is a vector in U, having coordinate vectors  $\mathbf{u_B}$  and  $\mathbf{u_{B'}}$ .

Then  $\mathbf{u}_{\mathcal{B}}' = P \mathbf{u}_{\mathcal{B}}$ , where P is the transition matrix from  $\mathcal{B}$  to  $\mathcal{B}'$ .  $P = [[u_1]_{\mathcal{B}'} \quad [u_2]_{\mathcal{B}'} \dots [u_n]_{\mathcal{B}'}]$ 

Example. Consider the bases  $\mathcal{B} = \{(1, 2), (3, -1)\}, \mathcal{B}' = \{(1, 0), (0, 1)\}.$  If  $\mathbf{u}$  is a vector such that  $\mathbf{u}_{\mathcal{B}} = (3, 4)^{T}$ . Find  $\mathbf{u}_{B'}$ 

Example . Consider Bases  $\mathcal{B} = \{(1, 2), (3, -1)\}, \mathcal{B}' = \{(3, 1), (5, 2)\}$  on  $\mathbb{R}^2$ . Find the transition matrix from  $\mathcal{B}$  to  $\mathcal{B}'$ . If  $\mathbf{u}$  is a vector such that  $\mathbf{u}_{\mathcal{B}} = (2, 1)^T$ . Find  $\mathbf{u}_{\mathbb{B}^3}$ 

$$\mathbf{u}_{\mathcal{B}'} = P \ \mathbf{u}_{\mathcal{B}} \quad \text{and} \quad \mathbf{u}_{\mathcal{B}} = Q \ \mathbf{u}_{\mathcal{B}'}$$

$$\implies \mathbf{u}_{\mathcal{B}'} = P \ \mathbf{u}_{\mathcal{B}} = PQ \ \mathbf{u}_{\mathcal{B}'} \quad \text{and} \quad \mathbf{u}_{\mathcal{B}} = Q \ \mathbf{u}_{\mathcal{B}'} = Q \ P \ \mathbf{u}_{\mathcal{B}}$$

$$\implies PQ = I = QP$$

$$\implies Q = P^{-1}$$

Theorem. Let  $\mathcal{B} = \{ u_1, u_2, \dots u_n \}$  and  $\mathcal{B}' = \{ u_1', u_2', \dots u_n' \}$  be two bases for  $R^n$ . The transition matrix  $\mathcal{B}$  to  $\mathcal{B}'$  can be found by using Gauss-Jordan elimination on the n x2n matrix.

$$[\mathcal{B}':\mathcal{B}] \Longrightarrow [I:P]$$

Example . Consider Bases Consider Bases  $\mathcal{B} = \{(1,2),(3,-1)\}$ ,  $\mathcal{B}' = \{(3,1),(5,2)\}$  on  $R^2$ . Find the transition matrix from  $\mathcal{B}$  to  $\mathcal{B}'$ . If  $\mathbf{u}$  is a vector such that  $\mathbf{u}_{\mathcal{B}} = (2,1)^T$ . Find  $\mathbf{u}_{B'}$ 

Example. Let  $u_1 = (1, 0, 0)$ ,  $u_2 = (0, 1, 0)$ ,  $u_3 = (0, 0, 1)$   $\mathcal{B} = \{u_1, u_2, u_3\}$   $c_1 = (1, 0, 1)$ ,  $c_2 = (0, -1, 2)$   $c_3 = (2, 3, -5)$ , and  $\mathcal{B}' = \{c_1, c_2, c_3\}$ 

Find the transition matrix from  $\mathcal{B}$  to  $\mathcal{B}'$ .