

Vetores

Vetores

Vamos definir vetores?

"Desenhando" um vetor

Módulo de um vetor

Alguns resultados

Vamos definir vetores?

Vamos definir vetor como um conjunto ordenado, cujos seus elementos serão denominados de coordenadas. Nomeamos um vetor com uma letra minúscula do alfabeto e vamos, inicialmente, representá-lo com suas coordenadas dispostas entre parênteses e separados por vírgulas.

Exemplos:

$$0 u = (1,4)$$

$$\circ$$
 $v = (3, 4, 5)$

$$\circ$$
 $v = (x, y, z)$

$$u = (u_1, u_2, u_3, u_4)$$

"Desenhando" Vetores

Vetores com duas ou três coordenadas podem ser representados geometricamente. Vetores de 2 coordenadas serão representados no plano cartesiano, enquanto vetores de 3 coordenadas serão representados no espaço tridimensional.

Plano Cartesiano

Espaço Tridimensional

"Desenhando" Vetores

Exemplos:

$$(2, 3) \rightarrow \begin{cases} \text{Coordenada } x = 2\\ \text{Coordenada } y = 3 \end{cases}$$

$$(3, 2) \rightarrow \begin{cases} \text{Coordenada } x = 3\\ \text{Coordenada } y = 2 \end{cases}$$

Embora os valores numéricos sejam os mesmos, as coordenadas em cada vetor são diferentes. Temos então:

$$(2,3) \neq (3,2)$$

"Desenhando" Vetores

$$(3,2,1) \rightarrow \begin{cases} \text{Coordenada } x = 3 \\ \text{Coordenada } y = 2 \\ \text{Coordenada } z = 1 \end{cases}$$

$$(2,1,3) \rightarrow \begin{cases} \text{Coordenada } x = 2 \\ \text{Coordenada } y = 1 \\ \text{Coordenada } z = 3 \end{cases}$$

Embora os valores numéricos sejam os mesmos, as coordenadas em cada vetor são diferentes. Temos então:

$$(3,2,1) \neq (2,1,3)$$

Considere o vetor $u = (u_1, u_2)$ e suas respectivas coordenadas representadas no plano cartesiano ao lado.

Denotaremos por ||u||, o **módulo** do vetor u, que geometricamente é o comprimento deste vetor.

Observemos que o módulo de u (|u|) é a hipotenusa de um triângulo retângulo cujos catetos são u_1 e u_2 .

Aplicando o Teorema de Pitágoras neste triângulo retângulo teremos:

$$||u||^2 = (u_1)^2 + (u_2)^2$$

$$||u|| = \sqrt{(u_1)^2 + (u_2)^2}$$

O resultado é análogo para vetores que possuem três coordenadas o seu módulo será dado por:

$$||u||^2 = (u_1)^2 + (u_2)^2 + (u_3)^2$$

$$||u|| = \sqrt{(u_1)^2 + (u_2)^2 + (u_3)^2}$$

Geometricamente podemos representar, apenas vetores com dois e três coordenadas. Como comprimento é uma grandeza geométrica, para vetores com quatro ou mais coordenadas esta fórmula não retorna um valor que determine uma medida linear. Contudo, vetores com quatro ou mais coordenadas possuem **módulo**.

$$u = (u_1, u_2, u_3, \dots, u_n)$$

$$||u|| = \sqrt{(u_1)^2 + (u_2)^2 + (u_3)^2 + \dots + (u_n)^2}$$

$$||u|| = \sqrt{\sum (u_i)^2}$$

Vamos responder algumas perguntas sobre módulo de um vetor. Para isso, usaremos vetores de duas coordenadas, não perdendo e vista que para vetores com três ou mais coordenadas o raciocínio é análogo.

1) Se dobrarmos as coordenadas de um vetor, o módulo do novo vetor também será dobrado?

Resolução:
$$v = (2u_1, 2u_2)$$
 $||v|| = \sqrt{(2u_1)^2 + (2u_2)^2}$
 $||v|| = \sqrt{4u_1^2 + 4u_2^2}$
 $||v|| = \sqrt{4(u_1^2 + u_2^2)}$
 $||v|| = 2\sqrt{u_1^2 + u_2^2}$
 $||v|| = 2|u|$

Podemos observar que o módulo do vetor também dobra quando dobramos o valor de suas coordenadas. De modo análogo se multiplicarmos as coordenadas de um vetor por um número real k o seu módulo também será multiplicado por k.

2) Se somarmos 2 unidades às coordenadas de um vetor, o módulo do novo vetor também terá seu valor adicionado de 2 unidades?

Resolução:

$$v = (u_1 + 2, 2u_2 + 2)$$

$$||v|| = \sqrt{(u_1 + 2)^2 + (u_2 + 2)^2}$$

$$||v|| = \sqrt{u_1^2 + 4u_1 + 4 + u_2^2 + 4u_2 + 4}$$

$$||v|| = \sqrt{(u_1^2 + u_2^2) + 4(u_1 + u_2) + 8}$$
 [1]
$$||v|| = \sqrt{u_1^2 + u_2^2} + 2$$
 [2] Igualando [1] e [2] temos:
$$\sqrt{(u_1^2 + u_2^2) + 4(u_1 + u_2) + 8} = \sqrt{u_1^2 + u_2^2} + 2$$
 igualando os quadrados de ambos os membros da igualdade, temos:
$$(u_1^2 + u_2^2) + 4(u_1 + u_2) + 8 = (u_1^2 + u_2^2) + 4\sqrt{u_1^2 + u_2^2} + 4$$

$$4(u_1 + u_2) + 4 = 4\sqrt{u_1^2 + u_2^2}$$

$$\sqrt{u_1^2 + u_2^2} = (u_1 + u_2) + 1$$

2) Se somarmos 2 unidades às coordenadas de um vetor, o módulo do novo vetor também terá seu valor adicionado de 2 unidades?

Resolução:

$$\sqrt{{u_1}^2 + {u_2}^2} = (u_1 + u_2) + 1$$

Podemos construir um gráfico que represente esta igualdade.

2) Se somarmos 2 unidades às coordenadas de um vetor, o módulo do novo vetor também terá seu valor adicionado de 2 unidades?

Os pontos sobre a curva azul fazem parte da solução da equação

$$\sqrt{{u_1}^2 + {u_2}^2} = (u_1 + u_2) + 1$$

Podemos concluir que, somente alguns vetores satisfazem a condição proposta no exemplo 2.

EXERCÍCIOS