પ્રશ્ન 1(અ) [3 ગુણ]

ઇલેક્ટ્રોમેગ્નેટિક તરંગોના કોઈપણ ત્રણ ગુણધર્મો લખો

જવાબ:

ઇલેક્ટ્રોમેગ્નેટિક તરંગોના ગુણધર્મો

- 1. EM તરંગો નિર્વાત અથવા પદાર્થ માધ્યમમાં પ્રવાસ કરી શકે છે
- 2. EM તરંગો ફ્રી સ્પેસમાં પ્રકાશની ગતિએ પ્રવાસ કરે છે (3×10⁸ m/s)
- 3. EM તરંગો દોલનશીલ વીજળી અને ચુંબકીય ક્ષેત્રો સાથે આડી લાક્ષણિકતાઓ દર્શાવે છે

મેમરી ટ્રીક: "VTS" - Vacuum travel, Transverse nature, Speed of light

પ્રશ્ન 1(બ) [4 ગુણ]

વ્યાખ્યા લખો: (1) રેડિયેશન રેઝિસ્ટન્સ (2) ડાયરેક્ટિવિટી (3) ગેઈન

જવાબ:

કાભ્દ	વ્યાખ્યા
રેડિયેશન રેઝિસ્ટન્સ	તે સમકક્ષ અવરોધ છે જે એન્ટેના ઇનપુટ કરંટની બરાબર હોય ત્યારે એન્ટેના દ્વારા વિકિરણ કરવામાં આવતી ઊર્જા જેટલી જ ઊર્જા વેડફે છે
ડાયરેક્ટિવિટી	ચોક્કસ દિશામાં મહત્તમ વિકિરણ તીવ્રતા અને બધી દિશાઓમાં સરેરાશ વિકિરણ તીવ્રતાનો ગુણોત્તર
ગેઈન	નિર્દિષ્ટ દિશામાં રેડિયો તરંગોમાં ઇનપુટ પાવરને કેટલી કાર્યક્ષમતાથી રૂપાંતરિત કરે છે તે માપતા ડાયરેક્ટિવિટી અને રેડિયેશન એફિશિયન્સીનો ગુણાકાર

મેમરી ટ્રીક: "RDG" - Resistance dissipates power, Direction concentration, Gain includes efficiency

પ્રશ્ન 1(ક) [7 ગુણ]

ઇલેક્ટ્રોમેગ્નેટિક તરંગોના નિર્માણની ભૌતિક ખ્યાલ સુઘડ રેખાકૃતિ સાથે સમજાવો

જવાબ:

ઇલેક્ટ્રોમેગ્નેટિક તરંગો ત્યારે ઉત્પન્ન થાય છે જ્યારે ઇલેક્ટ્રિક ચાર્જ પ્રવેગ કરે છે અથવા દોલન કરે છે, જે અવકાશમાં પ્રસરિત થતા યુગ્મિત દોલનશીલ ઇલેક્ટ્રિક અને ચુંબકીય ક્ષેત્રો બનાવે છે.

ડાયગામ: ડાયપોલ એન્ટેના EM તરંગ ઉત્પાદન

- મૂળભૂત ખ્યાલ: જ્યારે AC કરંટ એન્ટેનામાં વહે છે, ત્યારે ઇલેક્ટ્રોન ઉપર અને નીચે પ્રવેગ કરે છે
- ઇલેક્ટ્રિક ફિલ્ડ: એન્ટેનામાં ચાર્જ વિભાજનથી બને છે
- મેગ્નેટિક ફિલ્ડ: કરંટ પ્રવાહથી ઉત્પન્ન થાય છે, ઇલેક્ટ્રિક ફિલ્ડને લંબરૂપે
- પ્રસરણ: ફિલ્ડ એન્ટેનાથી અલગ થઈને પ્રકાશની ગતિએ બહારની તરફ પ્રસરે છે
- સ્વ-ટકાઉ: તરંગ પ્રવાસ કરતાં દરેક ફિલ્ડ ઘટક અન્ય ઘટકને પુનર્જીવિત કરે છે

મેમરી ટ્રીક: "COMAP" - Current Oscillations Make Alternating Propagations

પ્રશ્ન 1(ક) OR [7 ગુણ]

435 MHZ આવૃત્તિ માટે 4 એલિમેન્ટ વાળુ યાગી ઉદા એન્ટેના ની ડિઝાઇન બનાવો.

જવાબ:

435 MHz માટે 4-એલિમેન્ટ યાગી-ઉદા એન્ટેના માટે:

એલિમેન્ટ	લંબાઈ ફોર્મ્યુલા	અંતર ફોર્મ્યુલા	ગણતરી કરેલ મૂલ્ય
રિફ્લેક્ટર	0.5λ × 1.05	-	36.2 cm
ડ્રાઇવન એલિમેન્ટ	0.5λ	-	34.5 cm
ડાયરેક્ટર 1	0.45λ	ડ્રાઇવનથી 0.2λ	31.0 cm, 13.8 cm અંતર
ડાયરેક્ટર 2	0.43λ	ડાયરેક્ટર 1થી 0.25λ	29.6 cm, 17.2 cm અંતર

વપરાયેલા સૂત્રો:

- તરંગલંબાઈ: λ = c/f = 3×10⁸/435×10⁶ = 0.69 મીટર
- હાફ-વેવ ડાયપોલ: L = 0.5λ = 34.5 cm
- એલિમેન્ટ અંતર: S = 0.15λ થી 0.25λ

મેમરી ટ્રીક: "RDDS" - Reflector Driven Directors Shrink

પ્રશ્ન 2(અ) [3 ગુણ]

લુપ એન્ટેના આકૃતિની મદદથી સમજાવો

જવાબ:

લુપ એન્ટેના એક વાહક ને લુપ આકારમાં બનાવીને વિકિરણ ઘટક બનાવવામાં આવે છે.

- **નાના લુપ**: પરિઘ < λ/10, રેડિએશન પેટર્ન મેગ્નેટિક ડાયપોલ જેવા
- **મોટા લુપ**: પરિઘ ≈ તરંગલંબાઈ, દ્વિદિશાત્મક રેડિએશન પેટર્ન
- ઉપયોગો: દિશા શોધવી, AM રેડિયો રિસેપ્શન, RFID ટેગ્સ

મેમરી ટ્રીક: "SLC" - Size affects Loop Characteristics

પ્રશ્ન 2(બ) [4 ગુણ]

નોન રેઝોનેંટ વાયર એન્ટેના સમજાવો

જવાબ:

લક્ષણ	વર્ણન
વ્યાખ્યા	એવા આવૃત્તિઓ પર કાર્ય કરતા એન્ટેના જ્યાં તેની ભૌતિક લંબાઈ અર્ધ-તરંગલંબાઈના ગુણાંક નથી
ઇમ્પીડન્સ	જટિલ, રેઝિસ્ટિવ અને રિએક્ટિવ બંને ઘટકો સાથે
સ્ટેન્ડિંગ વેવ્સ	એન્ટેનાની લંબાઈ પર હાજર
ઉદાહરણ	રોમ્બિક એન્ટેના, અંતમાં અવરોધથી ટર્મિનેટ કરેલ
ફાયદો	વાઇડબેન્ડ ઓપરેશન, મલ્ટીપલ ફ્રીક્વન્સી માટે યોગ્ય

મેમરી ટ્રીક: "NITRO" - Non-resonance Incurs Termination for Resistance and Operation

પ્રશ્ન 2(ક) [7 ગુણ]

હાફ વેવ ડાયપોલ એન્ટેના નું રેડિયેશન રેઝીસ્ટંસ કેટલું હોય છે? $\lambda/2$, λ અને $\lambda/4$ લમ્બાઇ ના એન્ટેના રેડિયેશન ની પેટર્ન દોરો

જવાબ:

હાફ-વેવ ડાયપોલનું રેડિયેશન રેઝીસ્ટંસ આશરે 73 ઓહ્ય હોય છે.

રેડિયેશન પેટર્ન:

ડાયપોલ લંબાઈ	પેટર્ન લક્ષણો
λ/2 ડાયપોલ	ફિગર-8 પેટર્ન; એન્ટેના અક્ષને લંબરૂપે મહત્તમ વિકિરણ; HPBW = 78°
λ ડાયપોલ	મલ્ટી-લોબ્ડ પેટર્ન; એન્ટેના અક્ષ પર કોણે ચાર મુખ્ય લોબ
λ/4 ડાયપોલ	λ/2 કરતાં વધુ વિશાળ પેટર્ન; સમતુત્ય ડાયપોલ પૂર્ણ કરવા માટે ગ્રાઉન્ડ પ્લેનની જરૂર

મેમરી ટ્રીક: "SHORT" - Smaller Half-dipole Offers Rounded-Transmissions

પ્રશ્ન 2(અ) OR [3 ગુણ]

ફોલ્ડેડ ડાઇપોલ એન્ટેના આકૃતિની મદદથી સમજાવો

જવાબ:

ફોલ્ડેડ ડાયપોલ એ હાફ-વેવ ડાયપોલનો એક પ્રકાર છે જેમાં છેડાઓને પાછા વાળીને લૂપ બનાવવા માટે જોડવામાં આવે છે.

- ઇનપુટ ઇમ્પીડન્સ: આશરે 300 ઓહ્ય (સામાન્ય ડાયપોલના 4 ગણા)
- બેન્ડવિડ્થ: સામાન્ય ડાયપોલ કરતાં વધારે
- **ઉપયોગો**: TV રિસેપ્શન, FM રેડિયો, બેલેન્સ્ડ ટ્રાન્સમિશન લાઇન્સ

મેમરી ટ્રીક: "FIB" - Folded Increases Bandwidth

પ્રશ્ન 2(બ) OR [4 ગુણ]

રોમ્બિક એન્ટેના આકૃતિની મદદથી સમજાવો

જવાબ:

રોમ્બિક એન્ટેના એક રોમ્બસ અથવા હીરા આકારમાં ગોઠવાયેલા ચાર તારોનો બનેલો હોય છે.

લક્ષણ	વર્ણન
આકાર	ડાયમંડ/રોમ્બસ, દૂરના છેડે ટર્મિનેટિંગ રેઝિસ્ટર સાથે
ઓપરેશન	નોન-રેઝોનન્ટ ટ્રાવેલિંગ-વેવ એન્ટેના
ડાયરેક્ટિવિટી	ઉચ્ચ ગેઇન, યુનિડાયરેક્શનલ પેટર્ન
બેન્કવિડ્થ	ખૂબ વિશાળ આવૃત્તિ શ્રેણી
ઉપયોગો	HF કમ્યુનિકેશન્સ, પોઇન્ટ-ટુ-પોઇન્ટ લિંક્સ

મેમરી ટ્રીક: "TREND" - Terminated Rhombic Enables Numerous Directions

પ્રશ્ન 2(ક) OR [7 ગુણ]

આકૃતિની મદદથી એન્ડ ફાયર અને બ્રોડ સાઇડ એન્ટેના નો તફાવત સમજાવો

પેરામીટર	બ્રોડસાઇડ એરે	એન્ડ ફાયર એરે
મહત્તમ વિકિરણની દિશા	એરે અક્ષને લંબરૂપે	એરે અક્ષ સાથે
એલિમેન્ટ ફેઝિંગ	સમાન ફેઝ (0°)	પ્રગતિશીલ ફેઝ શિફ્ટ
એલિમેન્ટ અંતર	સામાન્ય રીતે 1⁄2	સામાન્ય રીતે λ/4
રેડિયેશન પેટર્ન	ફેન-આકારનો બીમ	પેન્સિલ-આકારનો બીમ
ઉપયોગો	બ્રોડકાસ્ટિંગ, બેઝ સ્ટેશન્સ	પોઇન્ટ-ટુ-પોઇન્ટ લિંક્સ

ડાયાગ્રામ સરખામણી:

મેમરી ટ્રીક: "PAPER" - Perpendicular And Parallel Emission Respectively

પ્રશ્ન 3(અ) [3 ગુણ]

આકૃતિની મદદથી ઇન્વર્ટેડ વી એન્ટેના સમજાવો

જવાબ:

ઇન્વર્ટેડ V એન્ટેના એ ડાયપોલ છે જેની બાહુઓ નીચેની તરફ વળેલી હોય છે, ઉલટા "V" જેવી દેખાય છે.

- ખૂણો: બાહુઓ સામાન્ય રીતે 90°-120° ખૂણો બનાવે છે
- ઇમ્પીડન્સ: આશરે 50 ઓહ્ય, આડા ડાયપોલ કરતાં ઓછું
- પેટર્ન: સર્વવ્યાપી, આડા ડાયપોલ કરતાં થોડું વધુ વિશાળ
- ઉપયોગો: એમેચ્યોર રેડિયો, શોર્ટવેવ કમ્યુનિકેશન્સ

મેમરી ટ્રીક: "AVS" - Angle Varies Signal

પ્રશ્ન 3(બ) [4 ગુણ]

આકૃતિની મદદથી પેરાબોલિક રીફ્લેક્ટર એન્ટેના સમજાવો

ยวร	รเช้
પેરાબોલિક રિફ્લેક્ટર	આવતા સિગ્નત્સને એકત્રિત કરે છે અને કેન્દ્રિત કરે છે અથવા ટ્રાન્સમિટ થયેલા સિગ્નલોને નિર્દેશિત કરે છે
ફ્રીડ એલિમેન્ટ	પેરાબોલાના ફોકલ પોઇન્ટ પર સ્થિત, સિગ્નલ્સને એકત્રિત/પ્રસારિત કરે છે
ફોકલ લેન્થ	વર્ટેક્સથી ફોકસ સુધીનું અંતર, બીમની લાક્ષણિકતાઓ નક્કી કરે છે
ઉપયોગો	સેટેલાઇટ કમ્યુનિકેશન, રડાર, રેડિયો એસ્ટ્રોનોમી, માઇક્રોવેવ લિંક્સ

મેમરી ટ્રીક: "FOLD" - Focus Of Large Dish

પ્રશ્ન 3(ક) [7 ગુણ]

HF, VHF અને UHF માટેની આવૃત્તિની રેન્જ લખો. માઇક્રોસ્ટ્રીપ એન્ટેના વિશે ટૂંક નોંધ લખો.

જવાબ:

ફ્રિક્વન્સી બેન્ડ	રેન્જ
HF (હાઇ ફ્રિક્વન્સી)	3 MHz - 30 MHz
VHF (વેરી હાઇ ફ્રિક્વન્સી)	30 MHz - 300 MHz
UHF (અલ્ટ્રા હાઇ ફ્રિક્વન્સી)	300 MHz - 3 GHz

માઇક્રોસ્ટ્રીપ એન્ટેના:

• રચના: ડાયલેક્ટ્રિક સબસ્ટ્રેટ પર ગ્રાઉન્ડ પ્લેન સાથે કન્ડક્ટિવ પેચ

• ફ્રીડિંગ મેથડ્સ: માઇક્રોસ્ટ્રીપ લાઇન, કોએક્સિયલ પ્રોબ, એપર્યર-કપલ્ડ

• **ફાયદા**: લો પ્રોફાઇલ, હળવા વજનના, સરળ ફેબ્રિકેશન, PCB સાથે સુસંગત

• મર્યાદાઓ: સાંકડી બેન્ડવિડ્થ, ઓછો ગેઇન, ઓછી પાવર હેન્ડલિંગ

• **ઉપયોગો**: મોબાઇલ ડિવાઇસ, RFID, GPS, સેટેલાઇટ કમ્યુનિકેશન્સ

મેમરી ટ્રીક: "PATCH" - Planar Antenna That's Cheaply Handled

પ્રશ્ન 3(અ) OR [3 ગુણ]

"LINE OF SIGHT" શબ્દ માટે મોર્સ કોડ લખો

જવાબ:

અક્ષર	મોર્સ કોડ
L	
1	
N	
E	
(સ્પેસ)	1
0	
F	
(સ્પેસ)	1
S	
1	
G	
Н	
Т	-

"LINE OF SIGHT" મોર્સ કોડમાં:

.-.. .. -. . / --- ..-. / --. -

મેમરી ટ્રીક: "Listen In Now, Every Other Frequency Supports Immediate Global Heightened Transmission"

પ્રશ્ન 3(બ) OR [4 ગુણ]

આકૃતિની મદદથી ટર્નસ્ટાઇલ અને સુપર ટર્નસ્ટાઇલ એન્ટેના સમજાવો

ટર્નસ્ટાઇલ એન્ટેના:

સુપર ટર્નસ્ટાઇલ એન્ટેના:

уѕіг	લક્ષણો
ટર્નસ્ટાઇલ	કાટખૂણે બે આડા ડાયપોલ, 90° ફેઝ શિફ્ટ સાથે ફીડ કરેલ
સુપર ટર્નસ્ટાઇલ	લંબચોરસ લૂપ્સ બનાવતા મલ્ટીપલ એલિમેન્ટ્સ સાથે સુધારો
પેટર્ન	આડા પ્લેનમાં સર્વવ્યાપી, ઊભા પ્લેનમાં ફિગર-8
પોલરાઇઝેશન	આડું અથવા સર્ક્યુલર પોલરાઇઝેશન
ઉપયોગો	TV બ્રોડકાસ્ટિંગ, FM બ્રોડકાસ્ટિંગ, સેટેલાઇટ કમ્યુનિકેશન્સ

મેમરી ટ્રીક: "TOPS" - Turnstile Offers Perpendicular Symmetry

પ્રશ્ન 3(ક) OR [7 ગુણ]

પોલરાઇઝેશન શું છે? આકૃતિની મદદથી હેલીકલ એન્ટેના સમજાવો

જવાબ:

પોલરાઇઝેશન એ અવકાશમાં પ્રસરણ કરતી વખતે ઇલેક્ટ્રોમેગ્નેટિક તરંગના ઇલેક્ટ્રિક ફિલ્ડ વેક્ટરનું અભિગમન છે.

હેલીકલ એન્ટેના:

પેરામીટર	นต์า
રચના	ગ્રાઉન્ડ પ્લેન પર હેલિકલ આકારમાં વાયર વીંટાળેલો
વ્યાસ	સામાન્ય રીતે λ/π
પિચ	વીંટાળા વચ્ચેનું અંતર, સામાન્ય રીતે λ/4
વીંટાળા	ગેઇન જરૂરિયાતો આધારિત 3-10 વીંટાળા
મોડ્સ	નોર્મલ મોડ (બ્રોડસાઇડ) અથવા એક્સિયલ મોડ (એન્ડ-ફાયર)
પોલરાઇઝેશન	એક્સિયલ મોડમાં સર્ક્યુલર પોલરાઇઝેશન
ઉપયોગો	સેટેલાઇટ કમ્યુનિકેશન્સ, સ્પેસ ટેલિમેટ્રી, ટ્રેકિંગ

મેમરી ટ્રીક: "HASP" - Helical Antenna Supports Polarization

પ્રશ્ન 4(અ) [3 ગુણ]

ટ્રોપોસ્ફેરિક સ્કેટર્ડ પ્રોપોગેશન સમજાવો

જવાબ:

પાસું	વર્ણન
મિકેનિઝમ	રેડિયો સિગ્નલ્સ ટ્રોપોસ્ફિયરિક અનિયમિતતાઓ અને રિફ્રેક્ટિવ ઇન્ડેક્સ વેરિએશન્સથી વિખેરાય છે
ફિક્વન્સી	સામાન્ય રીતે VHF, UHF (100 MHz - 10 GHz)
રેન્જ	100-800 km, લાઇન-ઓફ-સાઇટથી આગળ
વિશ્વસનીયતા	લાઇન-ઓફ-સાઇટ કરતાં હવામાનથી ઓછી અસરગ્રસ્ત; આયનોસ્ફેરિક કરતાં વધુ વિશ્વસનીય
ઉપયોગો	મિલિટરી કમ્યુનિકેશન્સ, દૂરસ્થ વિસ્તારો જ્યાં અન્ય સિસ્ટમ્સ વ્યવહારિક નથી

મેમરી ટ્રીક: "STRIP" - Scatter Through Refractive Index Patterns

પ્રશ્ન 4(બ) [4 ગુણ]

વ્યાખ્યા લખો: (1) વર્ચ્યુઅલ હાઇટ (2) મેક્સિમમ યુઝેબલ ફ્રિક્વન્સી - MUF (3) ક્રિટિકલ ફ્રિક્વન્સી

જવાબ:

કાલ્€	વ્યાખ્યા
વર્ચ્યુઅલ હાઇટ	આયનોસ્ફિયરનું આભાસી ઊંચાઈ જે પૃથ્વી પર પાછા પરાવર્તિત થયેલા રેડિયો સિગ્નલના સમય વિલંબથી ગણવામાં આવે છે, જાણે કે પરાવર્તન એક જ બિંદુએ થયું હોય
મેક્સિમમ યુઝેબલ ફ્રિક્વન્સી (MUF)	નિર્દિષ્ટ પાથ અને સમય માટે આયનોસ્ફિયરિક પરાવર્તન દ્વારા વિશ્વસનીય કમ્યુનિકેશન માટે ઉપયોગ કરી શકાય તેવી ઉચ્ચતમ ફ્રિક્વન્સી
ક્રિટિકલ ફ્રિક્વન્સી	ઊભી દિશામાં આયનોસ્ફિયર તરફ પ્રસારિત થયા પછી પાછી પરાવર્તિત થઈ શકે તેવી ઉચ્ચતમ ફ્રિક્વન્સી (જ્યારે આપાત કોણ 90° હોય)

મેમરી ટ્રીક: "VMC" - Virtual height Measures Critical reflection

પ્રશ્ન 4(ક) [7 ગુણ]

ઇલેક્ટ્રો મેગ્નેટીક વેવ પર ગ્રાઉંડની અસરો સમજાવો

અસર	વર્ણન
ગ્રાઉન્ડ રિફ્લેક્શન	સિગ્નલ ગ્રાઉન્ડ પરથી પરાવર્તિત થાય છે, જેનાથી મલ્ટીપાથ રિસેપ્શન થાય છે
ગ્રાઉન્ડ એબ્સોર્પશન	સિગ્નલ ઊર્જાનો એક ભાગ ભૂમિ દ્વારા શોષાય છે, જેથી સિગ્નલ શક્તિ ઘટે છે
ગ્રાઉન્ડ ડિફ્રેક્શન	તરંગો અવરોદ્યોની આસપાસ વળે છે, લાઇન-ઓફ-સાઇટથી આગળ કવરેજ વધારે છે
પૃથ્વીની વકતા	એન્ટેનાની ઊંચાઈના આધારે લાઇન-ઓફ-સાઇટ અંતરને મર્યાદિત કરે છે
ગ્રાઉન્ડ કન્ડક્સ્ટિવિટી	ઉચ્ચ કન્ડક્ટિવિટી (પાણી, ભીની માટી) નબળા કન્ડક્ટર્સ (સૂકા, ખડકાળ ભૂમિ) કરતાં વધુ સારો પ્રસરણ મંજૂરી આપે છે

તરંગ વર્તન સમીકરણ:

• રેન્જ (km) ≈ 4.12(√h₁ + √h₂) જ્યાં h₁, h₂ એન્ટેનાની મીટરમાં ઊંચાઈ છે

મેમરી ટ્રીક: "RADAR" - Reflection Absorption Diffraction Affect Range

પ્રશ્ન 4(અ) OR [3 ગુણ]

ડક્ટ પ્રોપોગેશન સમજાવો

જવાબ:

ડક્ટ પ્રોપોગેશન ત્યારે થાય છે જ્યારે રેડિયો તરંગો વિશેષ રિફ્રેક્ટિવ ગુણધર્મો સાથેના વાતાવરણીય સ્તરોમાં ફસાઈ જાય છે.

Normal atmosphere

Temperature inversion layer

O TX

O RX

Normal atmosphere

- **ફોર્મેશન**: તાપમાન વિપરીતતા અથવા ભેજ ગ્રેડિયન્ટ વાતાવરણીય ડક્ટ બનાવે છે
- અસર: સિગ્નલ્સ ડક્ટની અંદર ફસાય છે, સામાન્ય રેન્જથી ઘણી દૂર સુધી પ્રસરણની મંજૂરી આપે છે
- ફિક્વન્સી: UHF અને માઇક્રોવેવ બેન્ડમાં સૌથી સામાન્ય
- ઉપયોગો: વિસ્તારિત ઓવર-વોટર કમ્યુનિકેશન્સ, રડાર એનોમલીઝ

મેમરી ટ્રીક: "TIDE" - Trapped In Ducting Environment

પ્રશ્ન 4(બ) OR [4 ગુણ]

આઇનોસ્ફીયર ના જુદા જુદા સ્તરો સમજાવો

સ્તર	ઊંચાઈ	લક્ષણો
D ક્લર	60-90 km	દિવસના સમયે HF તરંગોને શોષે છે, રાત્રે ગાયબ થઈ જાય છે
E s ds	90-150 km	10 MHz સુધીની આવૃત્તિઓને પરાવર્તિત કરે છે, સ્પોરેડિક E ઘટના
F1 સ્તર	150-210 km	દિવસ દરમિયાન હાજર, રાત્રે F2 સાથે ભળી જાય છે
F2 સ્તર	210-400+ km	મુખ્ય પરાવર્તન સ્તર, ઉચ્ચતમ ઇલેક્ટ્રોન ઘનતા, દિવસ અને રાત હાજર

મેમરી ટ્રીક: "DEAF" - D absorbs, E reflects, All merge, F2 persists

પ્રશ્ન 4(ક) OR [7 ગુણ]

ગ્રાઉડ વેવ અને સ્કાય વેવ પ્રોપોગેશન સમજાવો

જવાલ:

ગ્રાઉન્ડ વેવ પ્રોપોગેશન:

- **ફિક્વન્સી रेन्જ**: LF, MF (30 kHz 3 MHz)
- ઘટકો: ડાયરેક્ટ, ગ્રાઉન્ડ-રિફલેક્ટેડ, સરફેસ વેવ્સ
- રેન્જ: આવૃત્તિ, ગ્રાઉન્ડ કન્ડક્ટિવિટી, ટ્રાન્સમીટર પાવર પર નિર્ભર
- **ઉપયોગો**: AM બ્રોડકાસ્ટિંગ, નેવિગેશન સિસ્ટમ્સ, મેરીટાઇમ કમ્યુનિકેશન્સ

સ્કાય વેવ પ્રોપોગેશન:

- મિકેનિઝમ: આયનોસ્ફિયર દ્વારા તરંગો પૃથ્વી પર પાછા વળે છે
- ફ્રિક્વન્સી: મુખ્યત્વે HF (3-30 MHz)

• **રેન્જ**: 100-10,000+ km, મલ્ટીપલ હોપ્સ શક્ય

• વેરિએબિલિટી: દિવસનો સમય, ઋતુ, સૌર પ્રવૃત્તિ, આવૃત્તિ

• ઉપયોગો: આંતરરાષ્ટ્રીય પ્રસારણ, એમેચ્યોર રેડિયો, લશ્કરી

મેમરી ટ્રીક: "GIST" - Ground-Interface Surface Transmission vs Ionospheric Sky Transmission

પ્રશ્ન 5(અ) [3 ગુણ]

ત્રણ જુદી જુદી જાતના ઉપગ્રહો સમજાવો

જવાબ:

ઉપગ્રહ પ્રકાર	લક્ષણો
LEO (લો અર્થ ઓર્બિટ)	ઊંચાઈ: 160-2,000 km, અવધિ: 90 મિનિટ, ઉપયોગો: પૃથ્વી નિરીક્ષણ, કમ્યુનિકેશન્સ
MEO (મીડિયમ અર્થ ઓર્બિટ)	ઊંચાઈ: 2,000-35,786 km, અવધિ: 2-24 કલાક, ઉપયોગો: નેવિગેશન (GPS)
GEO (જિઓસ્ટેશનરી ઓર્બિટ)	ઊંચાઈ: 35,786 km, અવધિ: 24 કલાક, ઉપયોગો: TV બ્રોડકાસ્ટિંગ, હવામાન નિરીક્ષણ

મેમરી ટ્રીક: "LMG" - Low Medium Geostationary

પ્રશ્ન 5(બ) [4 ગુણ]

સ્માર્ટ એન્ટેના શું છે? તેના બે ઉપયોગો જણાવો

જવાબ:

સ્માર્ટ એન્ટેના એવી એન્ટેના સિસ્ટમ છે જે સ્પેશિયલ સિગ્નેચર્સને ઓળખવા અને ડાયનેમિકલી રેડિએશન પેટર્ન એડજસ્ટ કરવા માટે ડિજિટલ સિગ્નલ પ્રોસેસિંગ એલ્ગોરિદ્યમનો ઉપયોગ કરે છે.

ફીચર	นต์า
પ્રકારો	સ્વિચ્ડ બીમ સિસ્ટમ્સ, એડેપ્ટિવ એરે સિસ્ટમ્સ
ઓપરેશન	બદલાતી પરિસ્થિતિઓને અનુકૂળ થવા માટે મલ્ટીપલ એન્ટેના એલિમેન્ટ્સ અને સિગ્નલ પ્રોસેસિંગનો ઉપયોગ કરે છે
લાલો	ક્ષમતા વધારી, કવરેજમાં સુધારો, દખલમાં ઘટાડો

ઉપયોગો:

- 1. મોબાઇલ સેલ્યુલર નેટવર્ક્સ (4G, 5G) ક્ષમતા અને કવરેજ વધારવા માટે
- 2. સુધારેલા થ્રૂપુટ અને ઘટાડેલા દખલગીરી માટે વાયરલેસ LAN

મેમરી ટ્રીક: "SMART" - Signal Manipulation And Response Technology

પ્રશ્ન 5(ક) [7 ગુણ]

ઉપગ્રહ આદ્યારિત સંદેશા વ્યવહાર શું છે? ડેટા કમ્યુનિકેશન વિશે સમજાવો.

સેટેલાઇટ કમ્યુનિકેશન એ પૃથ્વી પરના વિવિધ બિંદુઓ વચ્ચે કમ્યુનિકેશન લિંક્સ પ્રદાન કરવા માટે કૃત્રિમ ઉપગ્રહોનો ઉપયોગ છે.

ઉપગ્રહ દ્વારા ડેટા કમ્યુનિકેશન:

ยะร	รเข้
અર્થ સ્ટેશન	ઉપગ્રહોને/થી સિગ્નલ્સ ટ્રાન્સમિટ/રિસીવ કરે છે
ટ્રાન્સપોન્ડર	અલગ-અલગ આવૃત્તિઓ પર સિગ્નલ્સ પ્રાપ્ત કરે છે, એમ્પલિફાય કરે છે અને ફરીથી પ્રસારિત કરે છે
એક્સેસ મેથડ્સ	FDMA, TDMA, CDMA મલ્ટિપલ યુઝર્સને ઉપગ્રહ ક્ષમતા શેર કરવાની મંજૂરી આપે છે
પ્રોટોકોલ્સ	સેટેલાઇટ લેટેન્સી, સ્પેશિયલાઇઝ્ડ પ્રોટોકોલ્સ માટે TCP/IP એડેપ્ટેશન
ઉપયોગો	ઇન્ટરનેટ બેકહોલ, VSAT નેટવર્ક્સ, IoT, કોર્પોરેટ નેટવર્ક્સ
ફાયદા	વિશાળ કવરેજ વિસ્તાર, ટેરેસ્ટ્રિયલ ઇન્ફ્રાસ્ટ્રક્ચરથી સ્વતંત્રતા
પડકારો	સિગ્નલ ડિલે (લેટેન્સી), પાવર મર્યાદાઓ, હવામાન અસરો

મેમરી ટ્રીક: "UPDATA" - Uplink Provides Data Access To All

પ્રશ્ન 5(અ) OR [3 ગુણ]

કેપલરના ઉપગ્રહ વિશેના નિયમો લખો

કેપલરના નિયમો	વર્ણન
પ્રથમ નિયમ	ઉપગ્રહો ઇલિપ્ટિકલ પાથમાં ભ્રમણ કરે છે જેમાં પૃથ્વી એલિપ્સના એક ફોકસ પર હોય છે
બીજો નિયમ	ઉપગ્રહ અને પૃથ્વીને જોડતી રેખા સમાન સમયમાં સમાન ક્ષેત્રફળ પસાર કરે છે (એન્ગ્યુલર મોમેન્ટમ સંરક્ષણ)
ત્રીજો નિયમ	કક્ષીય અવધિનો વર્ગ કક્ષાના અર્ધ-મેજર અક્ષના ઘનફળના સમપ્રમાણમાં હોય છે

મેમરી ટ્રીક: "ESP" - Elliptical orbits, Sweep equal areas, Period-distance relation

પ્રશ્ન 5(બ) OR [4 ગુણ]

બેઝ સ્ટેશન અને મોબાઇલ સ્ટેશન એન્ટેના વિશે સમજાવો

જવાબ:

બેઝ સ્ટેશન એન્ટેના:

- પ્રકારો: ઓમ્નિડાયરેક્શનલ, સેક્ટર, પેનલ એન્ટેના
- **ગેઇન**: સામાન્ય રીતે 10-18 dBi
- માઉન્ટિંગ: ટાવર અથવા છત પર ઇન્સ્ટોલેશન
- ફીચર્સ: ડાઉનટિલ્ટ ક્ષમતા, મલ્ટીપલ ફ્રિક્વન્સી બેન્ડ

મોબાઇલ સ્ટેશન એન્ટેના:

- પ્રકારો: ઇન્ટરનલ PIFA, પેચ, મોનોપોલ એન્ટેના
- **ગેઇન**: લો ગેઇન (0-3 dBi)
- સાઇઝ: કોમ્પેક્ટ, ઘણી વખત ડિવાઇસની અંદર એકીકૃત
- **લક્ષણો**: ઓમ્નિડાયરેક્શનલ પેટર્ન, મલ્ટીપલ બેન્ડ

મેમરી ટ્રીક: "BIMS" - Base stations Install Multiple Sectors, Mobile stations Stay small

પ્રશ્ન 5(ક) OR [7 ગુણ]

DTH રીસીવર સિસ્ટમ વિસ્તારથી સમજાવો

જવાબ:

DTH (ડાયરેક્ટ-ટુ-હોમ) રિસીવર સિસ્ટમ ઉપગ્રહ દ્વારા સીધા વપરાશકર્તાઓને ટેલિવિઝન સિગ્નલ્સ પહોંચાડે છે.

ยรร	รเช็
ડિશ એન્ટેના	ઉપગ્રહ સિગ્નલ્સ એકત્રિત કરવા માટે પેરાબોલિક રિફ્લેક્ટર (45-90 cm સામાન્ય વ્યાસ)
LNB (લો નોઇઝ બ્લોક)	કોએક્સિયલ કેબલ દ્વારા ટ્રાન્સમિશન માટે ઉચ્ચ-આવૃત્તિના ઉપગ્રહ સિગ્નલ્સને નીચી આવૃત્તિઓમાં રૂપાંતરિત કરે છે
કોએક્સિયલ કેબલ	LNBથી સેટ-ટોપ બોક્સ સુધી સિગ્નલ્સ લઈ જાય છે
સેટ-ટોપ બોક્સ	સિગ્નત્સને ડીકોડ/ડીમોક્યુલેટ કરે છે, યુઝર ઇન્ટરફેસ, કન્ડિશનલ એક્સેસ પ્રદાન કરે છે
કન્ડિશનલ એક્સેસ મોક્યુલ	સુરક્ષા અને સબ્સ્ક્રિપ્શન મેનેજમેન્ટ પ્રદાન કરે છે
ફીચર્સ	ઇલેક્ટ્રોનિક પ્રોગ્રામ ગાઇડ, રેકોર્ડિંગ, ઇન્ટરેક્ટિવ સર્વિસીસ

મેમરી ટ્રીક: "DISCS" - Dish Intercepts Signals, Converter Sends to Set-top box