Fitting in BornAgain using graphical user interface

Gennady Pospelov Jülich Centre for Neutron Science at MLZ

BornAgain school and user meeting Garching, December 2018

Basic concept

Finding the best set of parameter values for a model function to represent the data according to some criteria

Data	Set of (x,y) points
Model	$p_1*sinc(p_2*x)$
Fit criteria	minimum of χ^2

Basic concept

Finding the best set of parameter values for a model function to represent the data according to some criteria

Data	Set of (x,y) points
Model	$p_1*sinc(p_2*x)$
Fit criteria	minimum of χ^2

Fitting in BornAgain

Finding the values of sample parameters that best represent the data obtained in scattering experiment

Fitting in BornAgain

Finding the values of sample parameters that best represent the data obtained in scattering experiment

Necessary components

- Experimental data
 - File with intensities measured in detector channels
- Numerical model
 - Working GISAS simulation with instrument and sample defined
 - Good knowledge of experimental setup
 - Idea about sample structure and expected values of sample parameters
 - · Good guess what to fit
- Objective function
- Minimizer

Knowledge of experimental setup

Knowledge of experimental setup

Detector orientation

- Normal **n** to the detector plane in sample coordinate system
- \circ (u₀, v₀) of intersection of **n** and the detector plane in local detector coordinates

Objective function

- Provides similarity metric for experimental/simulated images
- GUI uses simple chi2

$$\chi^2 = \frac{1}{d} \cdot \sum \frac{(f(I_{exp}) - f(I_{sim}))^2}{\sigma^2}$$

Sum over all unmasked detector channels

Three options for intensity functions

$$f(I) = I, \quad f(I) = \sqrt{I}, \quad f(I) = \log(I)$$

Two options for residual error

$$\sigma = 1, \quad \sigma = \sqrt{\max(\epsilon, f(I))}$$

Fit Parameters	Minimizer
Name	Value
Minimizer	Minuit2
Algorithms	Migrad
Strategy	1
ErrorDef	1.000
Tolerance	0.010
Precision	-1.000
MaxFunct	0
Intensity fun	None
Variance	Simulation value based
epsilon	1.000

Objective function

O Minimum of the function corresponds to optimal sample parameters

R=5nm length=10nm

Objective function converged $\chi^2(\mathbf{p})$ 10⁹ 10⁸ 10⁷ 10⁶ 10⁵ 10⁴ 10³ 10^{2} 2 12 10 8 [nm] 10 sphere radius, [nm]

 Minimum of the function corresponds to optimal sample parameters

Available minimizers

GUI contains collection of minimizers from ROOT and GSL libraries

Two most useful

- Minuit2
- Genetic

Fit Parameters	Minimizer
Name	Value
Minimizer	Minuit2
Algorithms	Migrad
Strategy	1
ErrorDef	1.000
Tolerance	0.010
Precision	-1.000
MaxFunct	0
	None
Variance	Simulation value based
epsilon	1.000

Minimizer name	Algorithm	Description
Minuit2	Migrad	According to the tutorial, best minimizer for nearly all functions, variable-metric method with inexact line search, a stable metric updating scheme, and checks for positive-definiteness.
	Simplex	Simplex method of Nelder and Mead usually, slower than Migrad, rather robust with respect to gross fluctuations in the function value, gives no reliable information about parameter errors.
	Combined	Minimizes with Migrad, but switches to Simplex if Migrad fails to converge.
	Scan	Not intended to minimize, just scans the function, one parameter at a time, retains the best value after each scan.
	Fumili	Optimized method for least square and log likelihood minimizations.
GSLMultiMin	ConjugateFR	Fletcher-Reeves conjugate gradient algorithm.
	ConjugatePR	Polak-Ribiere conjugate gradient algorithm.
	BFGS	Broyden-Fletcher-Goldfarb-Shanno algorithm
	BFGS2	Improved version of BFGS.
	SteepestDescent	Follows the downhill gradient of the function at each step.
GSLLMA		Levenberg-Marquardt Algorithm
GSLSimAn		Simulated Annealing Algorithm
Genetic		Genetic Algorithm

Task

Fitting spheres at hexagonal lattice ~/talks/day_1/gui_basics_3_G SpheresAtHexLattice_task

experimental_data.txt.gz

Spheres at hexagonal lattice

SpheresAtHexLattice_task
experimental_data.txt.gz

- 3 layers system, known materials
- Perfectly defined instrument
- Unknown lattice length and sphere radius, may be something else?

Expected sample structure

Experimental image

Task: simulate and fit experimental image

Start from opening GUI project and loading experimental file