Background	Derivatives $\frac{\partial}{\partial x}(b^{\top}x) = \frac{\partial}{\partial x}(x^{\top}b) = b$	Optimization <i>GDM:</i>	MAP: Lasso (L^1 penalty)	Causality
Linear Algebra	$\frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) = (\mathbf{A}^{\top} + \mathbf{A})\mathbf{x}$	$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla_{\theta} \mathcal{L} + \mu(\theta^{(t)} - \theta^{(t-1)})$	Penalize full β . Lasso has no closed form.	Regression models capture correlation
$\ \mathbf{x}\ _p = (\sum x_i ^p)^{1/p} \qquad \ \mathbf{x}\ _{\infty} = \max x_i $	$\frac{\partial}{\partial t}(\mathbf{c}^{\top}\mathbf{X}\mathbf{b}) = \mathbf{c}\mathbf{b}^{\top}$ $\frac{\partial}{\partial t}(\ \mathbf{X}\ _{2}^{2}) = 2\mathbf{X}$	<i>GD</i> : $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla_{\theta} \mathcal{L}$	$\beta \sim Lapl(0, \lambda^{-1}) = \frac{\lambda}{2} exp(-\lambda \beta)$	(not causality). ie, non-causal features can mislead models (<i>Spurious Correlations</i>).
$tr(\mathbf{A}\mathbf{x}\mathbf{x}^T) = \mathbf{x}^T \mathbf{A}\mathbf{x}$	$\frac{\partial f(\mathbf{x})}{\partial f(\mathbf{x})}$	SGD: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla \mathcal{L}(\theta^{(t)}, x_i, y_i)$	$\mathcal{L} = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + \lambda \sum_{i=1}^{d} \beta_i $	Iff Train Test Distribution change
$ \mathbf{A}\mathbf{B} = \mathbf{A} \mathbf{B} $ $ \mathbf{A}^m = \mathbf{A} ^m$	$\frac{\partial}{\partial \mathbf{x}} \ \mathbf{x}\ _{2} = \frac{\mathbf{x}}{\ \mathbf{x}\ _{2}} \left \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}) _{1} = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}^{T} \operatorname{sgn}(\mathbf{x})\right $	<i>NGD</i> : $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta (\nabla_{\theta}^2 \mathcal{L})^{-1} \nabla_{\theta} \mathcal{L}$	<i>y y</i>	(Domain Shift). Counterfactual Invariance: A function f is invariant
$(A+UCV)^{-}=A^{-}-A^{-}U(C^{-}+VA^{-}U)^{-}VA^{-}$	$\frac{\partial}{\partial \mathbf{x}}(\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2^2) = 2\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b})$	$\to f(x+t) \approx f(x) + tf'(x) + \frac{1}{2}f''(x)t^2 = 0$	$= (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta} _1$	10 0(77())
$(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{A}^{-1}$ $\mathbf{U}(\mathbf{V}\mathbf{U} + \mathbf{I})^{-1} = (\mathbf{U}\mathbf{V} + \mathbf{I})^{-1}\mathbf{U}$	$\frac{\partial}{\partial \mathbf{X}}(\mathbf{X}) = \mathbf{X} \cdot \mathbf{X}^{-1}, \mathbf{X} ^{-1} = \mathbf{X}^{-1} $	Parametric Density Estimation	Bayesian view: $Y (X,\beta) \sim \mathcal{N}(x^T\beta,\sigma^2I)$	reducing bias from spurious correlations.
$\mathbf{U}(\mathbf{V}\mathbf{U}+\mathbf{I})^{-1} = (\mathbf{U}\mathbf{V}+\mathbf{I})^{-1}\mathbf{U}$ $\mathbf{I} - \mathbf{A}(\mathbf{I}+\mathbf{A})^{-1} = (\mathbf{I}+\mathbf{A})^{-1}$	$\frac{\partial}{\partial \mathbf{X}} f(\mathbf{X})^{\top} = \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}^{T} \frac{\partial}{\partial \mathbf{X}} \operatorname{tr} f(\mathbf{X}) = \operatorname{tr} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$	Assume prior $\mathbb{P}(\theta)$,	d-Dim Bayesian Linear Regression	Confounding: A hidden variable
	$\frac{\partial \mathbf{X}}{\partial \mathbf{X}} f(\mathbf{X}) = \frac{\partial \mathbf{X}}{\partial \mathbf{X}} + \frac{\partial \mathbf{X}}{\partial \mathbf{X}} \mathbf{u} f(\mathbf{X}) = \mathbf{u} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$		<i>Prior</i> : $\beta \sim \mathcal{N}(\mu_0, \Lambda^{-1})$	influences both W and X , creating a
Probability	$\frac{\partial}{\partial \mathbf{X}} \det f(\mathbf{X}) = \det f(\mathbf{X}) \operatorname{tr}(f(\mathbf{X})^{-1} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}})$	^	Likelihood: $Y \beta, X, \sigma \sim \mathcal{N}(X\beta, \sigma_n^2 \mathbb{I})$	spurious correlation with Y. Selection Bias: A hidden variable S filters the training
$\operatorname{Ber}(x \theta) = \theta^{x}(1-\theta)^{1-x} 0 \le \theta \le 1$	$\frac{\partial}{\partial \mathbf{X}} f(\mathbf{X})^{-1} = -f(\mathbf{X})^{-1} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} f(\mathbf{X})^{-1}$		Posterior: $\beta \mathbf{X}, \mathbf{y} \sim \mathcal{N}(\mu, \Sigma)$	data based on W and X, inducing non-causal
$\mathbb{P}[X Y] = rac{\mathbb{P}[X,Y]}{\mathbb{P}[Y]} = rac{\mathbb{P}[Y X]\mathbb{P}[X]}{\mathbb{P}[Y]}$	Quadratic Forms	Solve $\nabla_{\theta} log P(\mathcal{X} \theta) P(\theta) = 0$	$\Sigma = (\sigma_n^{-2} \mathbf{X}^T \mathbf{X} + \Lambda)^{-1}$	associations.
	$\mathbf{x}^T A \mathbf{x} + 2 \mathbf{b}^T \mathbf{x} + c = (\mathbf{x} + A^{-1} \mathbf{b})^T A$	1-D Gaussian Bayesian learning	$\cdot \boldsymbol{\mu} = \Sigma (\Lambda \boldsymbol{\mu}_0 + \boldsymbol{\sigma}_n^{-2} \mathbf{X}^T \mathbf{y})$	If f is a counterfactually invariant predictor: In the anti-causal geometric: $f(Y) + W/V$
	$(\mathbf{x} + A^{-1}\mathbf{b}) - \mathbf{b}^T A^{-1}\mathbf{b} + c,$		Nonlinear Regression	In the anti-causal scenario : $f(X) \perp W \mid Y$. In the causal scenario (no selection but
	$ax^2 + bx + c = (x + \frac{b}{2a})^2 - (\frac{b}{2a})^2 + c$		<i>Idea:</i> Add feature space transformation,	
$\mathbb{E}_{I[X[x]]} \mathbb{E}_{I[x]} \mathbb{E}_{I[x]} \mathbb{E}_{I[x]} \mathbb{E}_{X[x]} \mathbb{E}_{X[x]} \mathbb{E}_{X[x]}$	20 20	$\theta X \sim \mathcal{N}(\mu_n, \sigma_n^2)$	kernel to compute inner product. Suppose:	
,- [0 ($H[p] = \mathbb{E}_{\mathbf{x} \sim p} [-\log p(\mathbf{x})]$	$\sigma_n^2 = \frac{\sigma^2 s_0^2}{n s_0^2 + \sigma^2}, \mu_n = \frac{n s_0^2 \overline{x} + m_0 \sigma^2}{n s_0^2 + \sigma^2}$		
	$ \begin{aligned} \mathbf{H}[p] &= \mathbb{E}_{\mathbf{x} \sim p} \left[-\log p(\mathbf{x}) \right] \\ \mathbf{H}[p q] &= \mathbb{E}_{\mathbf{x} \sim p} \left[-\log q(\mathbf{x}) \right] \end{aligned} $	Recursive Bayesian density learning	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \mathbf{X}\boldsymbol{\Lambda}^{-1}\mathbf{X}^T + \sigma_n^2 \mathbf{I}_d)$	A set of variables Z d-separates X and Y in
			Kernels	a DAG \mathcal{G} if all paths between X and Y are
T 7		$\mathcal{X}^n = x_{1:n} : p(\theta \mathcal{X}^n) = \frac{p(x_n \theta)p(\theta \mathcal{X}^{n-1})}{\int p(x_n \theta)p(\theta \mathcal{X}^{n-1})d\theta}$	Kernel: $k(x_i, x_j) = \phi(x_i) \Lambda^{-1} \phi(x_j)^T$	blocked by $Z: X \perp Y Z$. A path is blocked if: Collider: $A \rightarrow B \leftarrow C$ and neither B nor
$Cov(A\mathbf{Y} + c R\mathbf{V} + d) = ACov(\mathbf{Y} \mathbf{V})R^T$	$[q(\theta)]$	Frequentist vs Bayesian	Similarity based reasoning.	its descendants are in Z. Chain: $A \rightarrow B \rightarrow C$.
$\exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$	$KL[p q] \neq KL[q p] \ge 0$	Bayes: priors, distributions, needs efficient		
	$H[\mathbf{X}] = \mathbb{E}_{\mathbf{X} \sim p} \left[-\log p(\mathbf{X}) \right]$	integration, adds regularization term.	$k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x}) \cdot k(\mathbf{x}, \mathbf{x}')$ pos.semi-def.	
	$H[\mathbf{X} \mathbf{Y} = y] = \mathbb{E}_{\mathbf{X} \sim p(\cdot y)} \left[-\log p(\mathbf{X} y) \right]$	Frequentist: no priors, point estimate, requires only differentiation methods.		K-Means $J = \sum_{x \in \mathcal{X}} x - \mu_{c(x)} ^2$
	$H[\mathbf{X} \mathbf{Y}] = \mathbb{E}_{y} [H[\mathbf{X} \mathbf{Y} = y]]$	MLE are consistent, equivariant,	$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{A} \mathbf{x}'$	PCA proj. maximum variance subspace.
	H[X Y] = H[Y X] + H[X] - H[Y]	asymptotically normal, asymptotically	$= k_1(\mathbf{x}, \mathbf{x}') \cdot k_2(\mathbf{x}, \mathbf{x}') = c \cdot k_1(\mathbf{x}, \mathbf{x}')$	top <i>d</i> eigenv. of $S = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})(x_i - \overline{X})^T$
Conditional Gaussian	$H[\mathbf{X}, \mathbf{Y}] = \mathbb{E}_{(\mathbf{X}, \mathbf{Y}) \sim p(\cdot, \cdot)} \left[-\log p(\mathbf{X}, \mathbf{Y}) \right]$	efficient (no efficient for finite samples).	$= p(k_1(\mathbf{x}, \mathbf{x}')) = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$	EM fit GMMs $(\sum_{k=1}^{K} \pi_k \mathcal{N}(x \mu_k, \Sigma_k))$ by
	$I[X;Y] = H[X] - H[X Y] \ge 0$ $I[X,Y Z] I[X,Y Z]$	Data Types	$k(\mathbf{x}, \mathbf{x}') = \phi(x)^T \phi(x') = (1 + \mathbf{x}^T \mathbf{x}')^m$	max. likelihood. Reaches local optimum.
$(Y)^{-1}$, (Y) , $[\mu_2]$, $[\Sigma_{21} \Sigma_{22}]$	$I[\mathbf{X}; \mathbf{Y} \mathbf{Z}] = I[\mathbf{X}; \mathbf{Y}, \mathbf{Z}] - I[\mathbf{X}; \mathbf{Z}]$ $H(\Lambda(\mu, \Sigma)) = \frac{1}{2} \ln(\det(2\pi a \Sigma))$	monadic: $X: O \to \mathbb{R}^d$ dyadic: $X: O_1 \times O_2 \to \mathbb{R}^d$	$= \tanh(\alpha \mathbf{x}^T \mathbf{x}' + c)$	Latent variable: $M_{xc} = 1_c$ generated x
	$H(\mathcal{N}(\mu, \Sigma) = \frac{1}{2} \ln(\det(2\pi e \Sigma))$	\mathbb{R}^d . pairwise: $X:O_1\times O_1\to\mathbb{R}^d$ polyadic	$2 \sin(p^{-1}\pi \mathbf{x}-\mathbf{x}' _2^2)$	$P(\mathcal{X}, M \theta) = \prod_{x} \prod_{c=1}^{k} (\pi_c P(x \theta_c))^{M_{xc}}$
	$KL(\mathcal{N}(a,A) \mathcal{N}(b,B)) = \frac{1}{2}(tr(B^{-1}A) + \frac{1}{2}(tr(B^{1$			$\gamma_{xc} = \mathbb{E}[M_{xc} \mathcal{X}, \theta^{(j)}] = \frac{P(x c, \theta^{(j)})P(c \theta^{(j)})}{P(x \theta^{(j)})}$
	$(a-b)^T B^{-1}(a-b) - d + \ln(\frac{\det B}{\det A}))$	qualitative (sweet, sour), ordinal = absolute order, quantitative = numbers		$\mu_c^{(j+1)} = \frac{\sum_{c \in \mathcal{X}} \gamma_{xc} x}{\sum_{c \in \mathcal{X}} \gamma_{xc}} \qquad \pi_c^{(j+1)} = \frac{1}{ \mathcal{X} } \sum_{c \in \mathcal{X}} \gamma_{xc}$
Inequalities and Estimators	Risks	Regression	$= \exp(- \mathbf{x} - \mathbf{x}' _2^2 (2l^2)^{-1})$	
Jensen: $log(\sum_{i} \lambda_{i}^{(\geq 0)} x_{i}) \geq \sum_{i} \lambda_{i} log(x_{i})$	Expected Risk: $R(f) = P(f(X) \neq y)$	Model of data: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta}^{\star} + \boldsymbol{\varepsilon}$	RBF : $\phi_j(x) = \exp(-\frac{ x _2^2}{2}) \prod_{i=0}^d x^{j_i} (j_i!)^{-\frac{1}{2}}$	$(\sigma_c^2)^{(j+1)} = \frac{\sum_{c \in \mathcal{X}} \gamma_{xc} (x - \mu_c)^2}{\sum_{c \in \mathcal{X}} \gamma_{xc}}$
Chebyshev: $\mathbb{P}(\hat{X} - X \ge \varepsilon) \le \frac{MSE[\hat{X}]}{\varepsilon^2}$	$\mathcal{R}(f) = \sum_{y \le k} P(y) \mathbb{E}_{P(x y)} [1_{f(x) \ne y} Y = y]$	$\mathbf{X} \in \mathbb{R}^{(d+1) \times n}$ $\beta \in \mathbb{R}^{d+1}$ $\varepsilon \sim \mathcal{N}(0, \mathbb{I}\sigma^2)$	↑Lengthscale, smoother fcts.	Bias-Variance tradeoff
ϵ^2	Empirical Risk Minimizer (ERM) \hat{f} :	$\mathbf{Y} \mathbf{X}, \boldsymbol{\beta}, \sigma^2 \sim \mathcal{N}(\mathbf{Y}; \mathbf{X}^T \boldsymbol{\beta}, \mathbb{I}_{(d+1)} \sigma^2)$	Gaussian Process Regression	Bias $(\hat{f}) = \mathbb{E}[\hat{f}] - f$
Consistent: $\mathbb{P}(\hat{\theta} - \theta^* < \varepsilon) \rightarrow 0 \text{ convP}$		(' '	Applying a kernel, we get:	$Var(\hat{f}) = \mathbb{E}[f] - f$ $Var(\hat{f}) = \mathbb{E}[(\hat{f} - \mathbb{E}[\hat{f}])^2]$
Asymp Normal: $(\hat{\theta} - \theta^*)\hat{s}e^{-1} \sim \mathcal{N}(0, 1)$		MLE: Ordinary Least Squares	$\mathbf{Y} = \Phi \boldsymbol{\beta} + \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \Phi \boldsymbol{\Lambda}^{-1} \Phi^T + \boldsymbol{\sigma}_n^2 \mathbb{I}_d) =$	- 27 27 2
		OLSE is unbiased, orthogonal projection with lowest variance. differentiate wrt β .	$\mathcal{N}(\begin{bmatrix} \mathbf{y} \\ \mathbf{y}_* \end{bmatrix} 0, \begin{bmatrix} \mathbf{K} + \sigma^2 \mathbb{I} & \mathbf{k} \\ \mathbf{k}^T & k(x_*, x_*) + \sigma^2 \end{bmatrix})$	Squared Error Decomposition
Rao-Cra.: $\mathbb{E}_{x \theta}[(\theta-\hat{\theta})^2] \ge \frac{(\frac{\partial}{\partial \theta}b_{\hat{\theta}}+1)^2}{\mathbb{E}_{x \theta}[\Lambda^2]} + b_{\hat{\theta}}^2$	$K(J, \mathcal{D}) = \frac{1}{m} \sum_{i=n+1}^{m} \mathcal{L}(I_i, J(\Lambda_i))$	$\mathcal{L} = RSS(\beta) = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 = (\mathbf{y} - \mathbf{X}\beta)^2$	$\mathcal{N}\left(\begin{bmatrix} \mathbf{\hat{y}}_* \end{bmatrix} 0, \begin{bmatrix} \mathbf{k}^{\mathrm{T}} & k(x_*, x_*) + \sigma^2 \end{bmatrix}\right)$	$\mathbb{E}_D \mathbb{E}_{X,Y}[(\hat{f}(X) - Y)^2] =$
$b_{\hat{\theta}} = \mathbb{E}_{x \theta}[\hat{\theta}] - \theta$ $\Lambda = \frac{\partial}{\partial \theta} \log p(x \theta)$	Loss Fcts: $\mathcal{L}(y,z)$ $z=w^{\top}x$	Estimator: $\hat{\beta}^{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$	Gaussian Process Prediction	$\mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^2]$ (noise var)
$\mathbb{E}_{x \theta}[\Lambda] = 0 \to \mathbb{E}_{x \theta}[\Lambda\hat{\theta}] = \frac{\partial}{\partial \theta}b_{\hat{\theta}} + 1$	$\mathcal{L}^{0/i} = \mathbb{I}[\operatorname{sign}(z) \neq y]$	Prediction: $\hat{y} = (\mathbf{X} \cdot \mathbf{X}) \cdot \mathbf{X} \cdot \mathbf{y}$ Prediction: $\hat{y} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$	Given $\mathcal{GP}(\mu, K)$,	$+\mathbb{E}_{X}\mathbb{E}_{D}[(\hat{f}_{D}(X) - \mathbb{E}_{D}[\hat{f}(X)])^{2}]$ (var.)
$\rightarrow \operatorname{Cov}(\Lambda, \hat{\theta}) \rightarrow \operatorname{Cauchy}$	$\mathcal{L}_{\text{hinge}}^{\text{hinge}} = \max(0, 1 - yz)$ for SVM's		$p(y_* x_*,\mathbf{X},\mathbf{y}) = \mathcal{N}(\tilde{\mu},\tilde{\sigma}^2),$	$+\mathbb{E}_X[(\mathbb{E}_D[\hat{f}_D(X)] - \mathbb{E}_{Y X}[Y])^2]$ (bias ²)
	$\mathcal{L}^{\text{percep}} = \max(0, -yz)$ $\mathcal{L}^{\text{logistic}} = \log(1 + \exp(-yz))$	MAP: Ridge Regression (L^2 penalty)	$\tilde{\mu} = \mu(x_*) + \mathbf{k}^T (\mathbf{K} + \sigma_n^2 \mathbb{I})^{-1} (\mathbf{y} - \mu(\mathbf{X})),$	With $\mathbb{E}_{Y X}[Y]$ the expected label and
1 - 1 / / / / / / / / / / / / / / / / /	$\mathcal{L}^{\text{logistic}} = \log(1 + \exp(-yz))$ $\mathcal{L}^{\text{exp}} = \exp(-yz) \text{for AdaBoost}$	Penalize energy in β . Prior: $\beta \sim \mathcal{N}(0, \lambda^{-}\mathbb{I})$	$\tilde{\sigma}^2 = k(x_*, x_*) - \mathbf{k}^I (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}$	$\mathbb{E}_D[\hat{f}(X)]$ the expected classifier.
	aCE File I (a De (a Di	Loss: $\mathcal{L} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$	$\mathbf{K} = k(x_*, \mathbf{X}) \mathbf{K}_{ij} = k(x_i, x_j)$	Statistical Learning and Validation
(1.2) 2)	$\begin{array}{ll} \mathcal{L} & = -[y \log z + (1 - y) \log(1 - z)] \\ y' = \frac{1+y}{2}, & z' = \frac{1+z}{2} \end{array}$	Estimator: $\hat{\beta}^{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$	$\cdot \ddot{\sigma}_{ij}^2 = k(x_i, x_j) - \mathbf{k}_i^{\mathrm{I}} (\mathbf{K} + \sigma^2 \mathbb{I})^{-1} \mathbf{k}_j$	Find $f: X \to Y$ to minimize expected risk
$ y ^2 \int y$	$y - \frac{1}{2}, z = \frac{1}{2}$			by approximation with empirical risk.

Partition data Z into K equally sized, disjoint subsets: $\mathcal{Z} = \mathcal{Z}_1 \cup \mathcal{Z}_2 \cup \cdots \cup \mathcal{Z}_K, \mathcal{Z}_\mu \cap \mathcal{Z}_\nu = \emptyset$ $|\mathcal{Z}_k| \approx n \frac{K-1}{K}$ # of training samples. Learn: A

$$\hat{f}^{-\nu}(x) = \arg\min_{f \in \mathcal{F}} \frac{\sum_{i \in \mathcal{Z}_{\nu}} \mathcal{L}(y_i, f(x_i))}{|\mathcal{Z} - \mathcal{Z}_{\nu}|}$$

$$\hat{R}^{c\nu}(\mathcal{A}) = \frac{1}{n} \sum_{i \leq n} \mathcal{L}(y_i, \hat{f}^{-\kappa(i)}(x_i))$$
Underfits because smaller dataset.

K-Fold Cross Validation

Leave-one-out: K = n (unbiased but var can be large from correlated datasets) Bootstrapping Bootstrap samples: $Z^* = \{Z_1^*, \cdots Z_B^*\}$, convex8203;:contentReference[oaicite:1]index=1. **Definition** 13 (Lagrangian) The which

replacement. The chance of a sample to problem is: have appeared in the bootstrap is: $1 - (1 - \frac{1}{n}) \stackrel{n \to \infty}{\to} 1 - \frac{1}{e} \approx 0.632$. So if we $L(\lambda, \alpha, w) = f(w) + \sum_{i \le m} \lambda_i g_i(w) + \sum_{j \le n} \alpha_j M_j$ in in its for 0-1 Loss compute the ERM on \mathcal{Z} we could get 63% $\sum_{j \le n} \alpha_j M_j$ in in its for 0-1 Loss $\alpha_j M_j$ i

accuracy by memorization. Over-confident (shows too small bias)! where
$$\lambda$$
 and Leave-one-out/out of bucket error: multipliers 8203: compensates by computing the ERM Lemma 14 (Nowhere no memorization was for specific Optimal Solutions sample. E.g., for classification, like cross- μ * must satisfy:

 $0.368\hat{R}(A(Z)) + 0.632\hat{R}_{bs}$ Wald Test: $W = \frac{\hat{\theta} - \theta_0}{s.e.(\hat{\theta})}$

Wald Test:
$$W = \frac{0 - V_0}{\text{s.e.}(\hat{\theta})}$$

Bayesian Neural Networks (BNN)

NN: no uncertainty quantification, overconfident, adversarial examples, poor generalization for domain shifts. BNN: Using p(w) and p(D|w), approx. poster. by variational infer. (min rev KL). which satisfies:

$$\sigma \leftarrow \sigma - lpha_t \left(arepsilon^ op rac{\partial}{\partial w} F(w, heta) + rac{\partial}{\partial \sigma} F(w, heta)
ight)$$
 Information-based Transductive Lear.

ITL selects x_n that maximizes mutual This forms the basis of the dual information of $y_x = f_x + \varepsilon_x$ about f: $x_n = \arg\max_{x \in S} I(f_A; y_x | D_{n-1})$ If $f \sim GP(\mu, k)$, then:

$$I(f_A; y_x | D_{n-1}) = \frac{1}{2} \log \left(\frac{\operatorname{Var}[y_x | D_{n-1}]}{\operatorname{Var}[y_x | f_A, D_{n-1}]} \right)$$

Safe Bayesian Optimization

 $x_n = \arg\max_{x \in \hat{S}_n = \{x | u_n^g(x) > 0\}} u_n^J(x)$ Batch Active Learning | ProbCover

$$G=(X,E), \qquad E=\{(x,x') \mid ||x-x'|| \le \delta\}$$

$$L \leftarrow \emptyset \qquad \forall i = 1,2,\dots,b \qquad \hat{x} \leftarrow \{x \mid (x,x') \in E, x' \in X\} \mid \{x' \mid (x,x') \in E, x' \in X\} \mid \{x$$

 $L \leftarrow L \cup \{\hat{x}\} \mid E \leftarrow E \setminus (\{\hat{x}\} \times (B_{\delta}(\hat{x}) \cap X))$ Classification

Definitions and Lemmas from Chapter

Definition (Constrained This **Optimization Problem**) A constrained duality 8203; content Reference [oaicite: 6] in the $x=6\sum_{i=1}^{n} \alpha_i^* z_i y_i$

optimization problem is of the form:

A feasible solution satisfies all **Lemma 20 (Complementary Slackness)** constraints, and an optimal solution If strong duality holds, then for any optimal minimizes
$$f(w)$$
 over all feasible solution w^* : solutions8203;:contentReference[oaicite:0]index=0. **Definition 12 (Convex Optimization** $f(w^*) = L(\lambda^*, \alpha^*, w^*)$,

Problem) A constrained optimization problem is convex if $f, g_1, ..., g_m, h_1, ..., h_n$ are convex and the feasible region is of same size as original, drawn with Lagrangian of a constrained optimization constraints

accuracy by memorization. Over-confident (shows too small bias)! where
$$\lambda$$
 and α are the Lagrange Linear Classifier Leave-one-out/out of bucket error: multipliers8203;:contentReference[oaicite:2]index= \tilde{z}_i a = where no memorization was for specific Optimal Solutions) Any optimal solution $a^T \tilde{x}_i > 0 \Rightarrow y_i = 1$

Lemma 15 (Dual Function and Lower Converges if data separable. **Bound)** Given the Lagrangian $L(\lambda, \alpha, w)$ the dual function is:

$$\theta(\lambda,\alpha) = \inf_{w} L(\lambda,\alpha,w),$$

 $\hat{\mathcal{R}}(\mathcal{A}) = rac{1}{B}\sum_{b=1}^{B}\sum_{z_i
ot\in \mathcal{Z}^{*b}} rac{\mathbb{I}_{c(x_i)
ot=y_i}}{B-|\mathcal{Z}^{*b}|} \hat{R}_{0.632} = \nabla_w L(\lambda, \alpha, w) = 0, \quad g_i(w) = 0, \quad h_j(w)$ Refree Criterion

$$\max_{\lambda,\alpha\geq 0} \inf_{w} L(\lambda,\alpha,w) \leq f(w^*).$$

Definition 17 (Strong Duality) A convex $z_i g(\mathbf{y}) = z_i(\mathbf{w}^T \mathbf{y} + w_0) \ge m, \forall \mathbf{y}_i \in \mathcal{Y}$ optimization problem satisfies strong $z_i \in \{-1, +1\}$ $y_i = \phi(x_i)$

$$\theta(\lambda^*, \alpha^*) = f(w^*),$$
 w^* solves the principle.

where solves primal = $\frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum_{i=1}^n \alpha_i [z_i(\mathbf{w}^T\mathbf{y}_i + w_0) - 1]$ and (λ^*, α^*) dual8203;:contentReference[oaicite:5]index $\frac{1}{2}$ 5. Definition 18 (Slater's Condition) A $\frac{\partial L}{\partial w}$ = 0 and $\frac{\partial L}{\partial w_0}$ = 0 give us constraints convex optimization problem satisfies $\mathbf{w} = \sum_{i=1}^{n} \alpha_i z_i \mathbf{y_i}$ $0 = \sum_{i=1}^{n} \alpha_i z_i$ Slater's condition if there exists a strictly Replacing these in L we get $(\max \alpha)$ feasible point w_0 such that:

$$\forall J \leq n$$
.

 $\tilde{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j z_i z_j \mathbf{y_i}^T \mathbf{y_j}$ with $\alpha_i \geq 0$ and $\sum_{i=1}^n \alpha_i z_i = 0$ This is the dual representation. The optimal strong hyperplane is given by

satisfies Only Support Vectors $(\alpha_i \neq 0)$ contribute Slater's condition, then strong duality to the evaluation. holds 8203; content Reference [oaicite:7] ind $\mathfrak{D}_{\overline{p}}$ final Margin: $\mathbf{w}^T\mathbf{w} = \sum_{i \in SV} \alpha_i^*$ Set of estimators: $\hat{f}_1(x), \dots, \hat{f}_B(x)$ simple average: $\hat{f}(x) = \frac{1}{R} \sum_{i=1}^{B} \hat{f}_i(x)$ Discrim.: $g^*(\mathbf{x}) = \sum_{i \in SV} z_i \alpha_i \mathbf{y_i}^T \mathbf{y_i} + w_0^*$ $\operatorname{Bias}[\hat{f}(x)] = \frac{1}{B} \sum_{i=1}^{B} \operatorname{Bias}[f_i(x)]$ class = $sign(\mathbf{v}^T\mathbf{w}^* + \mathbf{w}_0^*)$ Kuhn-Tucker Conditions: only then

strong duality holds: $\alpha_i^* \geq 0$ $\alpha_i^*(z_ig^*(y_i)-1)=0, (z_ig^*(y_i)-1)\geq 0$ Introduce slack to relax constraints inactive minimize $\frac{1}{2}w^Tw + C\sum_{i=1}^n \xi_i$ with respect with weights $\{\alpha_b\}_{b=1}^B$

constraints have zero dual to $z_i(\mathbf{w}^T\mathbf{y}_i + w_0) \ge m(1 - \xi_i)$ multipliers8203;:contentReference[oaicite:8]index=8. Lagrangian: $L(\mathbf{w}, w_0, \xi, \alpha, \beta) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{1}{2$ **Baves Optimal Classifier** $\hat{c}(x) = \begin{cases} y & \mathbb{P}[y|x] > 1 - d, \exists y \\ \mathcal{D} & \mathbb{P}[y|x] < 1 - d, \forall y \end{cases}$

$g(x) = a^T \tilde{x}$ $a = (w_0, w)^T, \tilde{x} = (1, x)^T$ where no memorization was for specific **Optimal Solutions**) Any optimal solution $a^T \tilde{x}_i > 0 \Rightarrow y_i = 1, a^T \tilde{x}_i < 0 \Rightarrow y_i = 2$ Normalization: $\tilde{x}_i \rightarrow -\tilde{x}_i$ if $v_i = 2$ Find a: $a^T \tilde{x}_i > 0, \forall_i!$

problem

 $f(w^*) = L(\lambda^*, \alpha^*, w^*),$

 $\alpha_i h_i(w^*) = 0, \quad \forall j < n.$

WINNOW Algorithm

 h_i (optimization n.

Performs better when many dimensions are irrelevant. Search for 2 weight vectors and define our problem: (w is stacked) a^+, a^- (for each class). If a point is misclassified: $a_i^+ \leftarrow \alpha^{+\tilde{x}_i} a_i^+, a_i^- \leftarrow \alpha^{-\tilde{x}_i} a_i^-$ (class 1 err.) $a_i^+ \leftarrow \alpha^{-\tilde{x}_i} a_i^+, a_i^- \leftarrow \alpha^{+\tilde{x}_i} a_i^-$ (class 2 err.) Exponential update.

Support Vector Machine (SVM) Generalize Perceptron with margin and Structured SVM

problem8203;:contentReference[oaicite:4]index=4. Vectors \mathbf{v}_i are the support vectors

Functional Margin Problem: minimizes ||w|| for m=1: $L(\mathbf{w}, w_0, \alpha)=$

the where α s are Lagrange multipliers.

Soft Margin SVM

Lemma 19 (Slater's Condition $w_0^* = -\frac{1}{2}(\min_{z_i=1} \mathbf{w}^* \mathbf{y_i} + \max_{z_i=-1} \mathbf{w}^* \mathbf{y_i})$ **Ensemble Methods**

and Strong Duality) If a convex where α maximize the dual problem.

 $C\sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \alpha_{i} [z_{i}(\mathbf{w}^{T}\mathbf{y}_{i} + w_{0}) - 1 + \xi_{i}]$ C controls margin maximization vs. constraint violation Dual Problem same as usual SVM but with supplementary constraint: $C \ge \alpha_i \ge 0$ **Kuhn-Tucker Conditions:** $\alpha_i^*(z_i(w^Ty_i +$

Use kernel in discriminant function: $g(\mathbf{x}) = \sum_{i, i=1}^{n} \alpha_i z_i K(\mathbf{x_i}, \mathbf{x})$

 $(w_0) - 1 + \xi = 0, \xi_i(\alpha_i - C) = 0$

E.g solve the XOR Problem with: $K(x, y) = (1 + x_1y_1 + x_2y_2)^2$

Multiclass SVM \forall class $z \in \{1, 2, \dots, M\}$ we introduce w

Non-Linear SVM

 $min_w \frac{1}{2} w^T w = min_{\{w_z\}_{z=1}^M} \sum_{z=1}^M w_z^T w_z$ s.t. $(\mathbf{w}_{z_i}^T \mathbf{y}_i + w_{z_i,0})$ – $\max_{z \neq Z_i} (\mathbf{w}_z^T \mathbf{y}_i + w_{z,0}) \ge 1, \forall \mathbf{y}_i \in \mathcal{Y}$ classification: $\hat{z} = argmax_7(w_z^T y + w_{z,0})$

Each sample y is assigned to a structured

output label z

Output Space Representation: joint feature map: $\psi(z, y)$ Scoring function: $f_{\mathbf{w}}(z, \mathbf{y}) = \mathbf{w}^T \psi(\mathbf{z}, \mathbf{y})$ Classify: $\hat{z} = h(y) = \arg\max_{z \in \mathbb{K}} f_{\mathbf{w}(z,y)}$

SVM objective: $w^T \psi(z_i, \mathbf{y_i}) - max_{z_i \neq z} w^T \psi(z, \mathbf{y_i}) \geq m$ with margin rescaling: $min_{w,\xi>0} \frac{1}{2} w^T w$ $C\sum_{i=1}^n \xi_i$ s.t. $w^T \psi(z_i, \mathbf{y_i}) - \Delta(z, z_i)$ $w^T \psi(z, \mathbf{y_i}) \ge -\xi_i \forall z \ne z_i \forall i$

Lagrangian: let $\mathbb{K}_i = \mathbb{K} \setminus z_i$

 $\sum_{i=1}^n \sum_{z_i \in \mathbb{K}_i} \alpha_{i,j}(w^T \psi(z_i, y_i) -$

 $\Delta(z_i, z_i) - w^T \psi(z_i, y_i) + \xi_i$ -

 $\sum_{i=1}^{n} \beta_i \xi_i$ with $\alpha_{i,j} \geq 0, \beta_i \geq 0$

 $\frac{1}{2}w^{T}w + C\sum_{i=1}^{n} \xi_{i}$

AdaBoost gives large weight to samples that are hard to classify: those could be outliers. For bagging, there is a chance that imbalanced data-sets lead to bootstrap samples missing a class alltogether. Fix by making the bootstrap size large enough s.t. at least one point is included.

$\mathbb{V}[\hat{f}(x)] \approx \frac{\sigma^2}{R}$ if the estimators are uncorrelated. **Combining Classifiers**

Combining Regressors

Input: classifiers $c_1(x), \dots, c_B(x)$ Infer $\hat{c}_B(x) = \operatorname{sgn}(\sum_{b=1}^B \alpha_b c_b(x))$

Requires diversity of the classifiers.

Bagging Train on bootstrapped subsets.

Sample: $Z = \{(x_1, y_1), \dots (x_n, y_n)\}$ \mathbb{Z}^* : chose i.i.d from \mathbb{Z} w. replacement. Covariance small, variance similar, bias weakly affected. Random Forest (Bagging strategy)

Collection of uncorr. decision trees. Partition data space recursively. Grow the

tree sufficiently deep to reduce bias. (each tree on other bagged set and with random collection of features available at every node) Prediction with voting. **Boosting** Combine uncorr. weak learners in sequence.

(Weak to avoid overfitting).

Coeff. of \hat{c}_{b+1} depend on \hat{c}_b 's results AdaBoost (minimizes exp. loss) Init: $\mathcal{X} = \{(x_1, y_1), \cdots, (x_n, y_n)\}, w_i^{(1)} = \frac{1}{n}$

Fit $\hat{c}_b(x)$ to \mathcal{X} weighted by $w^{(b)}$ $\varepsilon_b = \sum_{i=1}^n w_i^{(b)} \mathbb{I}_{\{\hat{c}_b(x_i) \neq y_i\}} / \sum_{i=1}^n w_i^{(b)}$

 $\alpha_b = \log \frac{1-\varepsilon_b}{\varepsilon_b} > 0$ $w_i^{(b+1)} = w_i^{(b)} \exp(\alpha_b \mathbb{I}_{\{\hat{c}_b(x_i) \neq y_i\}})$

Best approx. at log-odds ratio. Like stagewise-additive modeling. **Difference**

return $\hat{c}_B(x) = \operatorname{sgn}(\sum_{b=1}^B \alpha_b \hat{c}_b(x))$

(1) Boosting keeps identical training data, bagging potentially varies the training data for each classifier. (2) Boosting weighs the prediction of each classifier according to its accuracy, bagging gives same importance to each. **Notes**

Logistic Regression

$$log \frac{P(y=1|x)}{P(y=-1|x)} = \sum_{b=1}^{B} c_b(x) =: F(x)$$

$$P(y=1|x) = \frac{exp(F(x))}{1 + exp(F(x))}$$

PAC learning

Function of interest

The probability of large excess error: $\mathbb{P}[misclassification|C] < \delta.$

But: could be unlucky with C, c^{Bayes} not in

hypoth. class.

$$\mathbb{P}[\mathcal{R}(\hat{c}) - \inf_{c \in \mathcal{C}} \mathcal{R}(c) > \varepsilon] < 1 - \delta.$$
Def R.H.S. = $\delta : \varepsilon = \sqrt{\frac{\log N - \log(\delta/2)}{2\pi}}$.

samples.expected error of c depends on possible). \vec{E} . \vec{g} . with stick-breaking. $1/\sqrt{n}$ and $\log N!$

for any class
$$C$$
: $\mathcal{R}_n(\hat{c}) - \inf_{c \in \mathcal{C}} \mathcal{R}(c)$ $\leq 2 \sup_{c \in \mathcal{C}} |\hat{\mathcal{R}}_n(c) - \mathcal{R}(c)|$

for finite class: $\mathbb{P}[2 \sup_{c \in \mathcal{C}} |\hat{\mathcal{R}}_n(c)|$ $|\mathcal{R}(c)| > \varepsilon| < 2|\mathcal{C}|e^{-\frac{1}{2}n\varepsilon^2}.$

Rectangle learning

Pick tight rectangle. Diff. between picked rectangle \hat{R} and true R with few examples. Rectangles are efficiently PAC learnable: runs in polynom. $1/\varepsilon$ (error param.) and $1/\delta$ (confidence val.).

Hyperplane learning

Hypothesis: $\sum_{i=1}^{d} a_i x_i + a_0$ (all possible hyperplanes through d-dim vector) has #of-possible-classifiers $2\binom{n}{d}$. In class: the classifiers c and \hat{c} differ for no more than ddata points on a plane, IF found with ERM:

$\forall_{c \in \mathcal{C}} \hat{\mathcal{R}}_n(c) \geq \hat{\mathcal{R}}_n(\hat{c}) - \frac{d}{n}$. **VC dimension**

If you can find a set of n points, so that it can be shattered by the classifier (i.e. classify all possible 2^n labelings correctly) and you cannot find any set of n+1 points that can be shattered then the VC dimension is n.

Examples: $(-\infty, a] = 1$ all intervals in R: $V_C = 2$ For unions of k intervals, $V_c = 2k$ half planes in R^2 : 3 for unit circles $V_c = 3$ convex polygons in R^2 : ∞ convex polygons in \mathbb{R}^2 with at most k vertices: 2k+1

Nonparametric Bayesian methods

Beta $(x|a,b) = B(a,b)^{-1}x^{a-1}(1-x)^{b-1}$: prob. of Bernoulli proc. after observing a-1 success and b-1 failures. Expended to multivariate case with Dirichlet distr. That will give multivar. probs, based on finite counts! But we don't know exactly which multivar. distribution works. With more data, we update the Dirichlet distribution. Is a conjugate prior.

Stick-breaking Dirichl. proc.

Repeatedly draw from Beta($x|1, \alpha$) with fixed α , but from reducing stick: $\rho_k = \beta_k (1 - \sum_{i=1}^{k-1} \rho_i)$. The prior:

$$\mathbb{P}[z_i = k | z_{-i}, \alpha] = \begin{cases} \frac{N_{k,-i}}{\alpha + N - 1} & \text{existing } k \\ \frac{1}{\alpha + N - 1} & \text{otherwise} \end{cases}$$
Final Gibbs sampler:

$$\begin{split} \mathbb{P}[z_i &= k | z_{-i}, \alpha, \mu] = \\ \begin{cases} \frac{N_{k,-i}}{\alpha + N - 1} p(x_i | x_{-i,k}, \mu) & \text{existing } k \\ \frac{N}{\alpha + N - 1} p(x_i, \mu) & \text{otherwise} \end{cases} \end{split}$$

Gibbs sampling

Init: assign all data to a cluster, with prior N =size of hypothesis class, n = num. of π_i , with $\sum_{k=1}^K \pi_i < 1$ (s.t. new clusters Then remove x from k and compute new θ_k , for any class \mathcal{C} : $\mathcal{R}_n(\hat{c}) - \inf_{c \in \mathcal{C}} \mathcal{R}(c) \leq \text{then compute Gibbs sampler prob. (CRP)}$, and sample the new cluster assignment $z_i \sim p(z_i|x_{-i},\theta_k)$. If cluster is empty, remove it and decrease K.