Otimização Não Linear

CM106/CMM204/CMI043

Tópico 02 - Funções Quadráticas

Abel Soares Siqueira - UFPR 2020/s1

Notação

 $oldsymbol{\cdot}$ $x \in \mathbb{R}^n$ quer dizer x é um vetor, mas também pode ser visto como

uma matriz
$$n \times 1$$
. $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$

- O produto interno entre x e y é denotado por $x^Ty = \sum_{i=1}^n x_iy_i$.
- · A norma (norma 2) de x é dada por $\|x\| = \|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$.

Notação

ullet Se $f:\mathbb{R}^n o \mathbb{R}$, então o gradiente e a Hessiana de f são

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \quad \mathbf{e} \quad \nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 x_n} \\ \frac{\partial^2 f}{\partial x_2 x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n x_1} & \frac{\partial^2 f}{\partial x_n x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

• Se $F:\mathbb{R}^n \to \mathbb{R}^m$ é uma função vetorial, então existem m funções $F_i:\mathbb{R}^n \to \mathbb{R},\, i=1,\ldots,m$, tais que F e sua Jacobiana J são dadas por

$$F(x) = \begin{bmatrix} F_1(x) \\ F_2(x) \\ \vdots \\ F_m(x) \end{bmatrix} \quad \text{e} \quad J = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \frac{\partial F_m}{\partial x_2} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \\ \nabla F_m^T \end{bmatrix}$$

- Em 1d $f(x) = ax^2 + bx + c$ A curvatura de f é dada pelo sinal de a.
- Em 2 variáveis, com rotações e translações pode ser escrita como $f(x)=\alpha_1x_1^2+\alpha_2x_2^2$ α_1 e α_2 definem a quadrática
- Em n variáveis, $f(x) = \frac{1}{2}x^TAx b^Tx + c$ $c \in \mathbb{R}, b \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}, A$ simétrica.
- A forma da f depende de A.
- · A ideia de vértice têm que ser estendida.

- De uma maneira geral, podemos rotacionar e transladar f para obter $f(x) = \alpha_1 x_1^2 + \dots + \alpha_n x_n^2$.
- \cdot Esses valores são os autovalores de A. As rotações vêm dos autovetores.
- · Se todos os autovalores forem positivos, existe um único minimizador.
- Se todos forem positivos ou nulos, pode ser que existam infinitos ou nenhum.
- · Se algum for negativo, existe um direção que decresce infinitamente.

Def.: Uma matriz simétrica A é dita definida positiva se $x^TAx>0$ para todo $x\neq 0$.

Def.: Uma matriz simétrica A é dita semi-definida positiva se $x^TAx \geq 0$ para todo x.

Def.: Uma matriz simétrica A é dita indefinida se existem x e y tais que $x^TAx>0$ e $y^TAy<0$.

Teo.: Seja A simétrica. Os autovalores de A dizem a definição de A.

Dem.: Como A é simétrica vale o Teo. espectral: existe base $\{v_1,\dots,v_n\}$ ortonormal de autovetores. Sejam λ_i os autovalores associados, i.e., $Av_i=\lambda_iv_i$. Tome $x\in\mathbb{R}^n$, existem α_1,\dots,α_n tais que $x=\alpha_1v_1+\dots+\alpha_nv_n$. Logo,

$$x^TAx = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j v_i^TAv_j = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \lambda_j v_i^Tv_j = \sum_{i=1}^n \alpha_i^2 \lambda_i v_i^Tv_i = \sum_{i=1}^n \alpha_i^2 \lambda_i.$$

As relações entre os sinais de λ_i e o sinal de x^TAx fica evidente.

Minimizador, vértice e pontos críticos

- No caso de A definida positiva, o minimizador de $f(x)=\frac{1}{2}x^TAx-b^Tx+c$ é a única solução de Ax=b.
- Se A é definida negativa, a solução de Ax = b é um maximizador.
- ullet Se A é indefinida, a solução é chamada de ponto de sela.
- ullet Se A é singular, pode ser que Ax=b tenha zero ou infinitas soluções.

- Hipótese A definida positiva.
- · Se x_k é o minimizador, temos $Ax_k=b$, isto é, $\nabla f(x_k)=0$.
- Direções de descida: d tal que $d^T \nabla f(x_k) < 0$

- $\cdot \ \min_{d} d^T \nabla f(x_k) : \ \|d\| = 1 \text{?} \ d = -\alpha \nabla f(x_k).$
- · Método do Gradiente Descendente:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) = x_k - \alpha_k (Ax_k - b).$$

- α_k constante funciona se o valor for pequeno o suficiente. Tradicional para Machine Learning.
- Cauchy: e se α_k for escolhido para que $f(x_{k+1})$ seja o menor possível?

$$\cdot \ \alpha_k = \frac{(Ax_k - b)^T (Ax_k - b)}{(Ax_k - b)^T A (Ax_k - b)}$$

- Considere duas direções linearmente independentes v_1 e v_2 , e um ponto inicial x_0 .
- Vamos definir x_1 como o minimizador de $f(x_0+\alpha_1v_1)$ em função de $\alpha_1.$
- · Vamos definir x_2 como o minimizador de $f(x_0+\beta_1v_1+\beta_2v_2)$ em função de β_1 e β_2 .
- ullet Note que em geral, minimizar $x_1+lpha_2v_2$ não dará $x_2.$
- $\cdot x_1$ minimiza numa reta, e x_2 num plano.
- Note que minimizar num plano é melhor que minimizar numa reta e depois noutra reta (em geral).
- Note que minimizar no plano é mais caro, mas e se v_2 puder ser escolhida para facilitar?

- Definimos dois vetores v e w como A-conjugados se $v^TAw = 0$ para A definida positiva.
- A partir de x_0 , definimos $v_1 = b Ax_0 = r_0$ e as sequências

$$\begin{split} \alpha_k &= \arg\min_{\alpha} f(x_{k-1} + \alpha v_k) = \frac{v_k^T r_{k-1}}{v_k^T A v_k} \\ x_k &= x_{k-1} + \alpha_k v_k \\ r_k &= b - A x_k \\ v_{k+1} &= r_k - \sum_{i=1}^k \frac{v_i^T A r_k}{v_i^T A v_i} v_i \end{split}$$

- · Várias melhorias e resultados para este método.
- **Teo.:** $r_{k+1}^Tv_i=0$ para $i=1,\ldots,k$ e x_k é minimizador de f(x) no conjunto $x_0+\mathrm{span}\{v_1,\ldots,v_k\}.$

$$\cdot \ v_{k+1} = r_k - \sum_{i=1}^{k-1} \frac{v_i^T A r_k}{v_i^T A v_i} v_i = r_k + \beta_{k+1} v_k \ \text{com} \ \beta_{k+1} = -\frac{v_k^T A r_{k+1}}{v_k^T A v_k}.$$

$$\cdot \ r_k = b - Ax_k = b - A(x_{k-1} + \alpha_k v_k) = r_{k-1} - \alpha_k Av_k$$

$$\bullet$$
 Teo.: $r_k^T r_i = 0$ e $v_{k+1}^T A v_{i+1} = 0$ para $i = 0, \ldots, k-1.$

- Teo.:
$$\operatorname{span}\{r_0,r_1,\dots,r_k\}=\operatorname{span}\{r_0,Ar_0,\dots,A^kr_0\}=\operatorname{span}\{v_1,\dots,v_{k+1}\}.$$

$$\cdot \ \alpha_k = \frac{r_{k-1}^T r_{k-1}}{v_k^T A v_k} \ \mathbf{e} \ \beta_{k+1} = \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}}.$$

- 1. Dados A e b.
- **2**. Defina $r_0 = b Ax_0$, $v_1 = r_0$, k = 1.

3.
$$\alpha_k = \frac{r_{k-1}^T r_{k-1}}{v_k^T A v_k}$$

4.
$$x_k = x_{k-1} + \alpha_k v_k$$

5.
$$r_k = r_{k-1} - \alpha_k A v_k$$

6. Se $r_k = 0$, FIM.

7.
$$\beta_{k+1} = \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}}$$

8.
$$v_{k+1} = r_k + \beta_{k+1} v_k$$

9. Incremente k e volte ao passo 3.

Quadrados Mínimos

- Dados: $\Omega = \{(x_i,y_i), \ i=1,\ldots,n\} \subset \mathbb{R}^n \times \mathbb{R}.$
- Ajuste $y \approx X\beta + \epsilon$, onde $\epsilon \in \mathbb{R}^m$ e $\beta \in \mathbb{R}^n$.
- $\cdot \ \min_{\beta} \ \tfrac{1}{2} \|X\beta y\|^2.$

Quadrados Mínimos

$$f(x) = \tfrac{1}{2} \|Ax - b\|^2 = \tfrac{1}{2} x^T A^T A x - x^T A^T b + \tfrac{1}{2} b^T b$$

- Quadrados mínimos é uma função quadrática.
- $\nabla f(x) = A^T(Ax b)$, e sempre existe x tal que $\nabla f(x) = 0$.
- $\nabla^2 f(x) = A^T A$, é semi-definida ou definida positiva.

Sumário

- Uma função quadrática pode ser definida pelo seu "vértice", onde $\nabla f(x)=0$, e sua concavidade dada por $\nabla^2 f(x)$.
- A concavidade é definida pelo sinal dos autovalores.
- Se a concavidade é estritamente positiva, i.e. a quadrática é estritamente convexa, sempre temos solução única.
- O método de Cauchy é uma maneira computacional de encontrar esse método.
- · O método dos Gradientes Conjugados é um método melhor.
- · Quadrados mínimos é um caso de programação quadrática.

FIM