Introduction

microcontroller

- microprocessor
 - Control unit
 - o data path
 - registers
 - arithmetic and logic unit
 - o memory
 - I/O

Term

- microprocessor:
 - the implementation often central processor unit runction, or a computer in a 'ingle. large scale integrated (LSI) circuit
- microcomputer:
 - o a computer built using a microprocessor and a few other components rorthe memory and 1/0
- microcontroller: -a microcomputer with its memoT)! and va integrated into a single chip.
 - o CPU
 - o ROM: program and constant data (usually)
 - o RAM: variable data
 - I/O Interface
 - timer
 - PWM

computer instruction

- operation
 - mnemonic
- operands
 - o may have a source operand and a destination operand

computer architecture

- Neumann architecture
 - o CPU: central processor unit
 - o memory (ROM and RAM)
 - I/O interface
 - o Buses (data, address, control)
- Harvard architecture (DSP)
 - o data memory
 - o program memory

I/O synchronizatino

• wait ~ ready

AVR Programming

stack

- last in first out
- usually grows from higher address to lower address
- default value of SP is 0x21FF

function

- easy to design(top-down design)
- modularity(readability and maintainability)
- for reuse
- save code size and memory space

function call

- rule 1
 - o using stack(if need to be saved in several places) or register for parameter passing
- rule 2
 - o parameter can be passed by value or reference(efficient, may be changed in subroutine)
- rule 3
 - o callee saves conflict register
- rule 4
 - o local variables and parameter need to be stored contiguously on the stack

calling conventions

- C calling convention
 - o caller cleans up the stack
- Pascal convention
 - o callee cleans up the stack
- fast calling convention
 - o using register to pass parameters
 - o callee cleans up the stack

stack frame

- return address
- conflict register
- local variable
- parameter

- reserve space for local variable

```
; prologue
in YL, SPL
in YH, SPH
sbiw Y, 8
out SPH, YH
out SPL, YL
std Y+1, r22
std Y+2, r23
std Y+3, r20
std Y+4, r21
; function body
ldd r21, Y+4
ldd r20, Y+3
ldd r17, Y+2
ldd r16, Y+1
; epilogue
adiw Y,8
out SPH, yH
out SPL, YL
...
ret
```

assembly program structure

• assembler directive

```
.def symbol=register
.equ symbol=expression
.set symbol=expression ; re-definable
.dseg ; data memory
lable: .byte expr ; a number of byte for variable
ld
lds
sts
 .cseg ; code memory
in code memory
lable: .db ; one byte
lable: .dw ; two byte(little endian)
lpm ; address in code memory is word address, however, lpm is byte address
ldi ZH, high(table_1 <<1)
ldi ZL, low(table_1 <<2)
lmp r16, Z</pre>
```

assembler expression

```
low()
high()
```

• macro

assembly

- pass one
 - o syntax errors
 - o expand macro
 - o record all label in a symbol table
- pass two
 - o substitute for symbols
 - o assemble each instruction
- absolute assembly
- relocatable assembly
 - o generate object file, with some address may not be resolved
 - o a linker program is needed to resolve all unresolved address

Memory access

Assembly process

memory

- Program memory(flash, 16bits)
 - o Interrupt Vectors
 - o program
- Data memory(SRAM, 8bits)

Name	Address	Comments
32 Registers	0-1F	
64 I/O	20~5F	IN/OUT/SBI/CBI/SBIC/SBIS
	60~1FF	ST/STS/STD/LD/LDS/LDD

8192 Internal SRAM 0200-21FF External SRAM 2200-FFFF optional

• EEPROM

Parallel I/O

- I/O addressing (two byte address)
 - o memory-mapped I/O
 - advantage
 - simple design
 - no special instruction
 - scalable
 - disadvantage
 - reduce the memory space
 - decode the full address bus
 - o separate I/O (one byte address)
 - less expensive address decoder
 - special I/O instruction are required

Interrupt

External interrupts

Internal interrupts (Timer, counters)

- timer
- o counting time periods
- counter
 - o counting the events or sth of this nature
- CPU interaction with I/O
 - Polling
 - software queries I/O devices
 - no extra hardware needed
 - not efficient
 - Interrupt
 - I/O devices generate signals to request services from CPU
 - need hardware
 - efficient
- Interrupt Services
 - o Global interrupt enable is cleared and all interrupt are disabled
 - o I-bit is set when returned
 - $\circ \;\;$ it will always execute one more instruction before any pending interrupt is served
- ISR structure
 - Prologue
 - push stack
 - Body
 - o epilogue
 - pop stack
 - return
- REset in AVR
 - o power-on reset
 - o external reset o watchdog reset
 - brown-out reset
 - JTAG AVR reset

I/O devices

switch

- switch bounce(5 to 10 ms):
 - NAND latch denouncer o software denouncer
 - - wait and see(wait 20 to 100ms and test if it is still low)
 - counter-based approach
 - initialize counter to 10
 - check every ms, if it is low ,decrease otherwise increase the counter
 - poll the switch if the counter is 0 or 20

keypad

LCD

Analog I/O

Analog output

- PWM
 - o digitally encoding analog signal level
 - o duty cycle(pulse width / period)
- DAC
 - o signal conditioning block
 - filter

- isolation
- buffer and amplification
- resolution
 - o number of bits in the digital value
- DAC structure
 - o binary-weighted D/A converter
 - R-2R ladder D/A converter
- DAC specification
 - o resolution
 - linearity
 - o setting time
 - o glitches
 - change from 1-0 faster than 0-1
 - sample and hold
- A/D conversion
 - o transducer
 - o conditioner
 - isolation and buffering
 - amplification
 - bandwidth limiting
 - o ADC
- processor
- Shannon's sampling theorem
 - when a signal is to be sampled, the minimum sampling frequency must be twice the signal frequency. Nyquist rate.
- ADC structure
 - o successive approximation converter
 - from MSB to LSB
 - if D/Ais lower than input, the bit remains set
 - o parallel A/D convertor
 - 2^N 1 comparators
 - o two-stage parallel A/D convertor
- ADC specifications
 - o conversion time
 - resolution
 - o accuracy
 - the smallest signal can me measured
 - o linearity
 - best 1/2 LSB
 - o aperture time

Analog input

Serial Communication

serial I/O VS parallel I/O

- Parallel I/O need one wire for each bit, the cable can be expensive
- susceptible to reflection and noise

structure

• source -> transmit data buffer -> parallel in/ serial out shift register -> serial in/parallel out shift register -> received data buffer -> destination

synchronous VS asynchronous

- synchronous
 - o faster
 - o need extra hardware

UAET data formates

- start
- data
- parity
- stop

communication system type

- simplex system
 - o data are sent in one direction only
 - o simple: sender are slower than receiver, no handshaking are required
- full-duplex system
 - o data are transmitted in two directions
- half-duplex system
 - $\circ \;\;$ data are transmitted in two directions with only one pair of signal lines

Error detection

- frame error
 - o first stop bit
- parity error
- data overrun error
 - o if any data is yet read but is overwritten by incoming data frame