Regulation-induced Interest Rate Risk Exposure

Maximilian Huber

NYU Student Macro Lunch

November 1, 2021

• How exposed are life insurers to interest rate risk?

- How exposed are life insurers to interest rate risk?
- Naturally exposed through their business:
 - ► Liabilities: long-term mortality insurance policies and retirement savings vehicles ⇒ 7% of household financial assets

- How exposed are life insurers to interest rate risk?
- Naturally exposed through their business:
 - ► Liabilities: long-term mortality insurance policies and retirement savings vehicles ⇒ 7% of household financial assets
 - ▶ Assets: bonds and mortgages \Rightarrow more than 25% of corporate bonds

- How exposed are life insurers to interest rate risk?
- Naturally exposed through their business:
 - ► Liabilities: long-term mortality insurance policies and retirement savings vehicles ⇒ 7% of household financial assets
 - \blacktriangleright Assets: bonds and mortgages \Rightarrow more than 25% of corporate bonds
- Maturity matching?

- How exposed are life insurers to interest rate risk?
- Naturally exposed through their business:
 - ► Liabilities: long-term mortality insurance policies and retirement savings vehicles ⇒ 7% of household financial assets
 - \blacktriangleright Assets: bonds and mortgages \Rightarrow more than 25% of corporate bonds
- Maturity matching? Potential for risk-shifting

- How exposed are life insurers to interest rate risk?
- Naturally exposed through their business:
 - ► Liabilities: long-term mortality insurance policies and retirement savings vehicles ⇒ 7% of household financial assets
 - \blacktriangleright Assets: bonds and mortgages \Rightarrow more than 25% of corporate bonds
- Maturity matching? Potential for risk-shifting ⇒ statutory regulation

• Quantification:

- Quantification: when interest rates fall by one-percentage-point...
 - life insurers realize a capital loss of \$121 billion or 26% of capital in 2019.
 Regulatory micro data ⇒ how long-term are the liabilities compared to assets?

- Quantification: when interest rates fall by one-percentage-point...
 - life insurers realize a capital loss of \$121 billion or 26% of capital in 2019.
 Regulatory micro data ⇒ how long-term are the liabilities compared to assets?
 - 2. life insurers earn a half percentage point lower spread on newly issued policies.

 Incomplete pass-through from bond market interest rates to annuity interest rates

- Quantification: when interest rates fall by one-percentage-point...
 - life insurers realize a capital loss of \$121 billion or 26% of capital in 2019.
 Regulatory micro data ⇒ how long-term are the liabilities compared to assets?
 - 2. life insurers earn a half percentage point lower spread on newly issued policies.

 Incomplete pass-through from bond market interest rates to annuity interest rates
- Two exposures do not offset each other!

- Quantification: when interest rates fall by one-percentage-point...
 - life insurers realize a capital loss of \$121 billion or 26% of capital in 2019.
 Regulatory micro data ⇒ how long-term are the liabilities compared to assets?
 - 2. life insurers earn a half percentage point lower spread on newly issued policies.

 Incomplete pass-through from bond market interest rates to annuity interest rates
- Two exposures do not offset each other! Explanation:

- Quantification: when interest rates fall by one-percentage-point...
 - life insurers realize a capital loss of \$121 billion or 26% of capital in 2019.
 Regulatory micro data ⇒ how long-term are the liabilities compared to assets?
 - life insurers earn a half percentage point lower spread on newly issued policies.Incomplete pass-through from bond market interest rates to annuity interest rates
- Two exposures do not offset each other! Explanation:
 - 3. Model of a life insurer featuring statutory regulation

- Quantification: when interest rates fall by one-percentage-point...
 - life insurers realize a capital loss of \$121 billion or 26% of capital in 2019.
 Regulatory micro data ⇒ how long-term are the liabilities compared to assets?
 - life insurers earn a half percentage point lower spread on newly issued policies.
 Incomplete pass-through from bond market interest rates to annuity interest rates
- Two exposures do not offset each other! Explanation:
 - 3. Model of a life insurer featuring statutory regulation ⇒ statutory hedging motives overpower economic hedging motives!

- Quantification: when interest rates fall by one-percentage-point...
 - life insurers realize a capital loss of \$121 billion or 26% of capital in 2019.
 Regulatory micro data ⇒ how long-term are the liabilities compared to assets?
 - life insurers earn a half percentage point lower spread on newly issued policies.
 Incomplete pass-through from bond market interest rates to annuity interest rates
- Two exposures do not offset each other! Explanation:
 - 3. Model of a life insurer featuring statutory regulation \Rightarrow statutory hedging motives overpower economic hedging motives!
 - Empirical evidence, policy recommendations, learnings

0. Preliminaries

• Value V of a risk-free bond:

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

• Contemplate a level shift

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r}$$

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r} = \frac{1}{V} \sum_{h=1}^{\infty} h \cdot e^{-h \cdot r_h} \cdot b_h$$

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

• Contemplate a level shift \Rightarrow Duration:

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r} = \frac{1}{V} \sum_{h=1}^{\infty} h \cdot e^{-h \cdot r_h} \cdot b_h$$

• Duration of a 10-year zero-coupon bond?

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

• Contemplate a level shift \Rightarrow Duration:

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r} = \frac{1}{V} \sum_{h=1}^{\infty} h \cdot e^{-h \cdot r_h} \cdot b_h$$

• Duration of a 10-year zero-coupon bond? 10 years.

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r} = \frac{1}{V} \sum_{h=1}^{\infty} h \cdot e^{-h \cdot r_h} \cdot b_h$$

- Duration of a 10-year zero-coupon bond? 10 years.
- \bullet Value E of a life insurer:

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r} = \frac{1}{V} \sum_{h=1}^{\infty} h \cdot e^{-h \cdot r_h} \cdot b_h$$

- Duration of a 10-year zero-coupon bond? 10 years.
- \bullet Value E of a life insurer:

$$E =$$

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r} = \frac{1}{V} \sum_{h=1}^{\infty} h \cdot e^{-h \cdot r_h} \cdot b_h$$

- Duration of a 10-year zero-coupon bond? 10 years.
- \bullet Value E of a life insurer:

$$E = \underbrace{A - L}_{\text{net assets}} +$$

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r} = \frac{1}{V} \sum_{h=1}^{\infty} h \cdot e^{-h \cdot r_h} \cdot b_h$$

- Duration of a 10-year zero-coupon bond? 10 years.
- \bullet Value E of a life insurer:

$$E = \underbrace{A - L}_{\text{net assets}} + \underbrace{F}_{\text{franchise}}$$

 \bullet Value V of a risk-free bond:

$$V = \sum_{h=1}^{\infty} e^{-h \cdot \mathbf{r}_h} \cdot b_h$$

where b_h is the cash flows in h years and r_h is the corresponding Treasury yield.

• Contemplate a level shift \Rightarrow Duration:

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r} = \frac{1}{V} \sum_{h=1}^{\infty} h \cdot e^{-h \cdot r_h} \cdot b_h$$

- Duration of a 10-year zero-coupon bond? 10 years.
- Value *E* of a life insurer:

$$E = \underbrace{A - L}_{\text{net assets}} + \underbrace{F}_{\text{franchise}}$$

• Duration:

$$D_E = \frac{A - L}{E} D_{A-L} + \frac{F}{E} D_F$$

1. Net Assets A - L

Duration of Net Assets

• Duration of net assets D_{A-L} and duration gap G:

$$D_{A-L} = -\frac{1}{A-L} \frac{\partial (A-L)}{\partial r} = \frac{A}{A-L} \left(\underbrace{D_A - \frac{L}{A} D_L}_{=G} \right) \geq 0$$

Duration of Net Assets

• Duration of net assets D_{A-L} and duration gap G:

$$D_{A-L} = -\frac{1}{A-L} \frac{\partial (A-L)}{\partial r} = \frac{A}{A-L} \left(\underbrace{D_A - \frac{L}{A} D_L}_{=G} \right) \geq 0$$

• Estimate D_A from the transparent data on the assets.

Duration of Net Assets

• Duration of net assets D_{A-L} and duration gap G:

$$D_{A-L} = -\frac{1}{A-L} \frac{\partial (A-L)}{\partial r} = \frac{A}{A-L} \left(\underbrace{D_A - \frac{L}{A} D_L}_{=G} \right) \geq 0$$

- Estimate D_A from the transparent data on the assets.
- Estimate D_L from the statutory accounting data on the liabilities.

Actuarial and Reserve Value of a Liability

 \bullet Actuarial (fair) V and reserve value \hat{V} of a liability:

Actuarial and Reserve Value of a Liability

• Actuarial (fair) V and reserve value \hat{V} of a liability:

$$V_t = \sum_{h=1}^{\infty} e^{-h \cdot r_{t,h}} \cdot \mathbb{E}_t ig[b_{t+h} ig]$$

Actuarial and Reserve Value of a Liability

• Actuarial (fair) V and reserve value \hat{V} of a liability:

$$V_t = \sum_{h=1}^{\infty} e^{-h \cdot r_{t,h}} \cdot \mathbb{E}_tig[m{b}_{t+h}ig] \qquad \hat{V_t} = \sum_{h=1}^{\infty} ig(1 + \hat{m{r}}_{\mathcal{S}}ig)^{-h} \cdot \hat{m{b}}_{t+h}$$

where \hat{r}_s is the reserve discount rate and \hat{b} are reserve cash flows specific to a valuation standard S prescribed by regulation.

Actuarial and Reserve Value of a Liability

• Actuarial (fair) V and reserve value \hat{V} of a liability:

$$V_t = \sum_{h=1}^{\infty} e^{-h \cdot r_{t,h}} \cdot \mathbb{E}_tig[m{b}_{t+h}ig] \qquad \hat{V_t} = \sum_{h=1}^{\infty} ig(1 + \hat{m{r}}_{\mathcal{S}}ig)^{-h} \cdot \hat{m{b}}_{t+h}$$

where \hat{r}_s is the reserve discount rate and \hat{b} are reserve cash flows specific to a valuation standard S prescribed by regulation.

Actuarial and Reserve Value of a Liability

• Actuarial (fair) V and reserve value \hat{V} of a liability:

$$V_t = \sum_{h=1}^{\infty} e^{-h \cdot r_{t,h}} \cdot \mathbb{E}_t ig[oldsymbol{b}_{t+h} ig] \qquad \hat{V_t} = \sum_{h=1}^{\infty} ig(1 + \hat{oldsymbol{r}}_{\mathcal{S}} ig)^{-h} \cdot \hat{oldsymbol{b}}_{t+h}$$

where \hat{r}_s is the reserve discount rate and \hat{b} are reserve cash flows specific to a valuation standard S prescribed by regulation.

• Pseudo-actuarial value:

$$\tilde{V}_t = \sum_{h=1}^{\infty} e^{-h \cdot r_{t,h}} \cdot \hat{b}_{t+h}$$

Actuarial and Reserve Value of a Liability

• Actuarial (fair) V and reserve value \hat{V} of a liability:

$$V_t = \sum_{h=1}^{\infty} e^{-h \cdot oldsymbol{r}_{t,h}} \cdot \mathbb{E}_t ig[oldsymbol{b}_{t+h} ig] \qquad \hat{V_t} = \sum_{h=1}^{\infty} ig(1 + \hat{oldsymbol{r}}_S ig)^{-h} \cdot \hat{oldsymbol{b}}_{t+h}$$

where \hat{r}_s is the reserve discount rate and \hat{b} are reserve cash flows specific to a valuation standard S prescribed by regulation.

• Pseudo-actuarial value:

$$\tilde{V}_t = \sum_{h=1}^{\infty} e^{-h \cdot r_{t,h}} \cdot \hat{b}_{t+h}$$

• Popular policies: $\tilde{V}_t \approx V_t$ and $\tilde{D}_t \approx D_t!$ • Examples

 \bullet Need $\hat{\boldsymbol{b}}$ for the pseudo-actuarial value and duration!

- Need \hat{b} for the pseudo-actuarial value and duration!
- Back out from reserve values \hat{V} :

$$\hat{V}_{i,t,S} = \left(1 + \hat{r}_S\right)^{-1} \hat{b}_{i,t+1,S} + \left(1 + \hat{r}_S\right)^{-1} \hat{V}_{i,t+1,S}$$

- Need \hat{b} for the pseudo-actuarial value and duration!
- Back out from reserve values \hat{V} :

$$\hat{V}_{i,t,S} = \left(1 + \hat{r}_S\right)^{-1} \hat{b}_{i,t+1,S} + \left(1 + \hat{r}_S\right)^{-1} \hat{V}_{i,t+1,S}$$

- "Exhibit 5 Aggregate Reserves for Life Contracts":
 - \triangleright at the end of year t from 2001 to 2020
 - ▶ for each life insurer i out of 900

1	2
Valuation Standard	Total
Life Insurance:	
0100001. 58 CSO - NL 2.50% 1961-1969	243,73
I I	1
0100025. 80 CSO - CRVM 4.50% 1998-2004	306,242,66
I	1
0100037. 01CSO CRVM - ANB 4.00% 2009	
0199997. Totals (Gross)	
0199998, Reinsurance ceded	339,424,8
0199999. Totals (Net)	126,717,43
Annuities (excluding supplementary contracts with life contingencies):	
0200001, 71 IAM 6.00% 1975-1982 (Imm)	359,80
The state of the s	1
0200028. 83 IAM 7.25% 1986 (Def)	188,675,61
0200043. Annuity 2000 4.75% 2004 (Def)	206,817,83
0200047. Annuity 2000 4.50% 2010 (Def)	1 731 459 7
0299997. Totals (Gross).	
0299998. Reinsurance ceded	
UZ99999. Totals (Net)	9,669,485,5
9999999. Totals (Net) - Page 3, Line 1	9.804.893.9

Exhibit 5 of the Great American Life Insurance Company in 2010

- Need \hat{b} for the pseudo-actuarial value and duration!
- Back out from reserve values \hat{V} :

$$\hat{V}_{i,t,S} = \left(1 + \hat{r}_S\right)^{-1} \hat{b}_{i,t+1,S} + \left(1 + \hat{r}_S\right)^{-1} \hat{V}_{i,t+1,S}$$

- "Exhibit 5 Aggregate Reserves for Life Contracts":
 - \triangleright at the end of year t from 2001 to 2020
 - ▶ for each life insurer *i* out of 900
 - ▶ aggregated to valuation standard S (mortality table, reserve discount rate \hat{r} , issue years)

1	2	
Valuation Standard	Total	
Life Insurance:		
0100001, 58 CSO - NL 2.50% 1961-1969	243,737	
0100025. 80 CSO - CRVM 4.50% 1998-2004	306,242,662	
0100037. 01CSO CRVM - ANB 4.00% 2009	869.698	
0199997. Totals (Gross)		
0199998. Reinsurance ceded.	339,424,855	
0199999. Totals (Net)	126,717,430	
Annuities (excluding supplementary contracts with life contingencies):		
0200001. 71 IAM 6.00% 1975-1982 (Imm)	359,802	
0200028. 83 IAM 7.25% 1986 (Def)	188,675,689	
0200043. Annuity 2000 4.75% 2004 (Def)	206,817,839	
0200047. Annuity 2000 4.50% 2010 (Def)	1,731,459,797	
0299997. Totals (Gross)	9,676,901,276	
0299998. Reinsurance ceded		
0299999. Totals (Net)	9,669,485,517	
1	-	
9999999. Totals (Net) - Page 3, Line 1	9,804,893,998	

Exhibit 5 of the Great American Life Insurance Company in 2010

Evolution of selected reserve positions

• Reserve decay has life-cycle pattern:

$$\frac{\hat{b}_{i,t,S}}{\hat{V}_{i,t-1,S}} = \Psi_{t-\tau,S} + \epsilon_{i,t,S}$$

Evolution of selected reserve positions

• Reserve decay has life-cycle pattern:

$$\frac{\hat{b}_{i,t,S}}{\hat{V}_{i,t-1,S}} = \Psi_{t-\tau,S} + \epsilon_{i,t,S}$$

Estimated reserve decay

• Reserve decay has life-cycle pattern:

$$\frac{\hat{b}_{i,t,S}}{\hat{V}_{i,t-1,S}} = \Psi_{t-\tau,S} + \epsilon_{i,t,S}$$

estimated by least squares weighted by $\hat{V}_{i,t-1,S}$.

• Estimated model yields predictions for \hat{b} . • Richer Models

Estimated reserve decay

• Reserve decay has life-cycle pattern:

$$\frac{\hat{b}_{i,t,S}}{\hat{V}_{i,t-1,S}} = \Psi_{t-\tau,S} + \epsilon_{i,t,S}$$

- Estimated model yields predictions for \hat{b} . Richer Models
- Calculate pseudo-actuarial duration D_I .

Estimated reserve decay

• Reserve decay has life-cycle pattern:

$$\frac{\hat{b}_{i,t,S}}{\hat{V}_{i,t-1,S}} = \Psi_{t-\tau,S} + \epsilon_{i,t,S}$$

- Estimated model yields predictions for \hat{b} . Richer Models
- Calculate pseudo-actuarial duration D_{l} .

Duration of liabilities

• Reserve decay has life-cycle pattern:

$$\frac{\hat{b}_{i,t,S}}{\hat{V}_{i,t-1,S}} = \Psi_{t-\tau,S} + \epsilon_{i,t,S}$$

- Estimated model yields predictions for \hat{b} . Richer Models
- Calculate pseudo-actuarial duration D_{l} .
- Duration gap:

$$G=D_A-\frac{L}{A}D_L$$

Duration of liabilities

Net assets

Duration of Net Assets

2. Funding Franchise

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{a} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{a} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{a} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• When interest rates fall...

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.
 - 2. life insurers earn a lower spread on newly issued policies.

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.
 - 2. life insurers earn a lower spread on newly issued policies.
- What would make them to amplify rather than hedge these two exposures after 2010?

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.
 - 2. life insurers earn a lower spread on newly issued policies.
- What would make them to amplify rather than hedge these two exposures after 2010?
 - \blacktriangleright Towers Watson Life Insurance CFO Survey #30 June 2012

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.
 - 2. life insurers earn a lower spread on newly issued policies.
- What would make them to amplify rather than hedge these two exposures after 2010?
 - ► Towers Watson Life Insurance CFO Survey #30 June 2012
 - * "Almost all (97%) respondents consider interest rate risk a significant exposure for their company."

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.
 - 2. life insurers earn a lower spread on newly issued policies.
- What would make them to amplify rather than hedge these two exposures after 2010?
 - ► Towers Watson Life Insurance CFO Survey #30 June 2012
 - * "Almost all (97%) respondents consider interest rate risk a significant exposure for their company."
 - * "When considering interest rate exposure, respondents cited the level of statutory capital and earnings as the primary metrics for concern."

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{A} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{A} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• How does the reserve discount rate react to a change of Treasury market interest rates?

$$\Delta \hat{r}_{t}^{A} = \alpha_{h} + \hat{\beta}_{h} \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{A} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• How does the reserve discount rate react to a change of Treasury market interest rates?

$$\Delta \hat{r}_t^A = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^T + \epsilon_{t,h}$$

Estimates $\hat{\beta} \approx 0.15$.

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{A} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• How does the reserve discount rate react to a change of Treasury market interest rates?

$$\Delta \hat{r}_t^A = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^T + \epsilon_{t,h}$$

Estimates $\hat{\beta} \approx 0.15$.

• Interest rates rise, economic spreads rise: $1 - \beta > 0$, statutory spreads falls: $\hat{\beta} - \beta < 0$.

3. Model

• Partial equilibrium model of a life insurer:

- Partial equilibrium model of a life insurer:
 - ▶ chooses the duration of net assets

- Partial equilibrium model of a life insurer:
 - ▶ chooses the duration of net assets
 - ▶ is subject to variation in economic earnings from issuing new policies

- Partial equilibrium model of a life insurer:
 - chooses the duration of net assets
 - ▶ is subject to variation in economic earnings from issuing new policies
- Two reduced form financial frictions:

- Partial equilibrium model of a life insurer:
 - chooses the duration of net assets
 - ▶ is subject to variation in economic earnings from issuing new policies
- Two reduced form financial frictions:
 - cost of operating with a volatile economic capital

- Partial equilibrium model of a life insurer:
 - chooses the duration of net assets
 - ▶ is subject to variation in economic earnings from issuing new policies
- Two reduced form financial frictions:
 - cost of operating with a volatile economic capital
 - cost of operating with a volatile statutory capital

- \bullet Static problem with exogenous, stochastic bond market interest rate r
- Life insurer issues annuity, pays interest rate r^A , and earns the spread $r r^A$

- \bullet Static problem with exogenous, stochastic bond market interest rate r
- Life insurer issues annuity, pays interest rate r^A , and earns the spread $r r^A$
- ullet Life insurer chooses the duration of the legacy capital D:

$$\max_{D} \quad \mathbb{E}\Big[r - r^{A} - C(R_{K}) - \hat{C}(R_{\hat{K}})\Big]$$

with reduced form costs $C(R_K) = \frac{\chi}{2} R_K^2$ and $\hat{C}(R_{\hat{K}}) = \frac{\hat{\chi}}{2} R_K^2$.

- \bullet Static problem with exogenous, stochastic bond market interest rate r
- Life insurer issues annuity, pays interest rate r^A , and earns the spread $r r^A$
- ullet Life insurer chooses the duration of the legacy capital D:

$$\max_{D} \quad \mathbb{E}\left[r - r^{A} - C(R_{K}) - \hat{C}(R_{\hat{K}})\right]$$

with reduced form costs $C(R_K) = \frac{\chi}{2} R_K^2$ and $\hat{C}(R_{\hat{K}}) = \frac{\hat{\chi}}{2} R_K^2$.

• Economic capital return:

$$R_K = \underbrace{-D(r - \mathbb{E}[r])}_{\text{return on legacy capital}} + \underbrace{r - r^A}_{\text{economic earnings}}$$

- \bullet Static problem with exogenous, stochastic bond market interest rate r
- Life insurer issues annuity, pays interest rate r^A , and earns the spread $r r^A$
- Life insurer chooses the duration of the legacy capital D:

$$\max_{D} \quad \mathbb{E}\Big[r - r^{A} - C(R_{K}) - \hat{C}(R_{\hat{K}})\Big]$$

with reduced form costs $C(R_K) = \frac{\chi}{2} R_K^2$ and $\hat{C}(R_{\hat{K}}) = \frac{\hat{\chi}}{2} R_K^2$.

• Economic capital return:

$$R_K = \underbrace{-D(r - \mathbb{E}[r])}_{\text{return on legacy capital}} + \underbrace{r - r^A}_{\text{economic earnings}}$$

• Statutory capital return:

$$R_{\hat{K}} = \underbrace{-\psi D(r - \mathbb{E}[r])}_{\text{return on legacy statutory capital}} + \underbrace{\hat{r} - r^A}_{\text{statutory earnings}}$$

• First-order condition:

$$D = \frac{\chi(1-\beta) + \hat{\chi}\psi(\hat{\beta} - \beta)}{\chi + \psi^2\hat{\chi}}$$

• First-order condition:

$$D = \frac{\chi(1-\beta) + \hat{\chi}\psi(\hat{\beta} - \beta)}{\chi + \psi^2\hat{\chi}}$$

• Without the regulatory friction $\hat{\chi} = 0$, the economic hedging motives prevail:

$$D = 1 - \beta > 0$$

• First-order condition:

$$D = \frac{\chi(1-\beta) + \hat{\chi}\psi(\hat{\beta} - \beta)}{\chi + \psi^2 \hat{\chi}}$$

• Without the regulatory friction $\hat{\chi} = 0$, the economic hedging motives prevail:

$$D=1-\beta>0$$

• Without the economic friction $\chi = 0$, the statutory hedging motives prevail:

$$D = \frac{\hat{\beta} - \beta}{\psi} < 0$$

• First-order condition:

$$D = \frac{\chi(1-\beta) + \hat{\chi}\psi(\hat{\beta} - \beta)}{\chi + \psi^2 \hat{\chi}}$$

• Without the regulatory friction $\hat{\chi} = 0$, the economic hedging motives prevail:

$$D = 1 - \beta > 0$$

• Without the economic friction $\chi = 0$, the statutory hedging motives prevail:

$$D = \frac{\hat{\beta} - \beta}{\psi} < 0$$

• The annuity interest rate reacts more to the bond market interest rate than the reserve discount rate does!

$$D = rac{\chi(1-eta) + \hat{\chi}\psi(\hat{eta} - eta)}{\chi + \psi^2\hat{\chi}}$$

$$D = \frac{\chi(1-\beta) + \hat{\chi}\psi(\hat{\beta} - \beta)}{\chi + \psi^2\hat{\chi}}$$

• Reserve discount varies by policy type: $\hat{\beta}^{\text{life}} < \hat{\beta}^{\text{annuity}}$:

$$FL_{i,t} = \frac{(\text{Liabilities in Life Insurance Policies})_{i,t}}{(\text{Liabilities})_{i,t}}$$

$$D = \frac{\chi(1-\beta) + \hat{\chi}\psi(\hat{\beta} - \beta)}{\chi + \psi^2\hat{\chi}}$$

• Reserve discount varies by policy type: $\hat{\beta}^{\text{life}} < \hat{\beta}^{\text{annuity}}$:

$$\mathit{FL}_{i,t} = \frac{(\text{Liabilities in Life Insurance Policies})_{i,t}}{(\text{Liabilities})_{i,t}}$$

• Higher statutory leverage increases $\hat{\chi}$.

$$Lev_{i,t} = \frac{(\text{Statutory Assets})_{i,t}}{(\text{Statutory Equity})_{i,t}}$$

$$D = \frac{\chi(1-\beta) + \hat{\chi}\psi(\hat{\beta} - \beta)}{\chi + \psi^2\hat{\chi}}$$

• Reserve discount varies by policy type: $\hat{\beta}^{\text{life}} < \hat{\beta}^{\text{annuity}}$:

$$\mathit{FL}_{i,t} = \frac{(\text{Liabilities in Life Insurance Policies})_{i,t}}{(\text{Liabilities})_{i,t}}$$

• Higher statutory leverage increases $\hat{\chi}$.

$$Lev_{i,t} = \frac{(\text{Statutory Assets})_{i,t}}{(\text{Statutory Equity})_{i,t}}$$

• Larger life insurers have better access to capital and lower χ :

$$Log A_{i,t} = log ((Market Value of Assets)_{i,t})$$

Evidence

• What explains the cross section of the duration gaps?

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},t} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

Evidence

• What explains the cross section of the duration gaps?

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},t} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

	(1)
FL	-12.323***
Lev	-0.020***
LogA	-0.135***
Mutual	-1.510***
MktLev	-0.000
Year FE	Yes
Life Insurer FE	
N	5,871
R^2	0.332

Evidence

• What explains the cross section of the duration gaps?

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_t + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},t} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

• What explains the panel of the duration gaps?

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{i}} + \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},t} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

	(1)	(2)
FL	-12.323***	-8.868***
Lev	-0.020***	0.002
LogA	-0.135***	0.826
Mutual	-1.510***	
MktLev	-0.000	-0.000
Year FE	Yes	Yes
Life Insurer FE		Yes
N	5,871	5,867
R^2	0.332	0.804

Evidence: Ex-ante Exposure

• What explains the dynamics of the duration gaps?

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{i}} + \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},2008} \times \textit{Post}_{\textit{t}} + \\ & \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},2008} \times \textit{Post}_{\textit{t}} + \\ & \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},2008} \times \textit{Post}_{\textit{t}} + \epsilon_{\textit{i},\textit{t}} \end{aligned}$$

where $Post_t = 1$ after 2010.

Evidence: Ex-ante Exposure

• What explains the dynamics of the duration gaps?

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{i}} + \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},2008} \times \textit{Post}_{\textit{t}} + \\ & \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},2008} \times \textit{Post}_{\textit{t}} + \\ & \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},2008} \times \textit{Post}_{\textit{t}} + \epsilon_{\textit{i},\textit{t}} \end{aligned}$$

where $Post_t = 1$ after 2010.

	(1)
FL × Post	-3.670**
Lev imes Post	0.004
LogA imes Post	0.056
mutual	-0.416
MktLev	-0.003
Life Insurer FE	Yes
Year FE	Yes
N	3,839
R^2	0.751

• Annuity reserve discount rate changed in 2018 with "VM-22":

- Annuity reserve discount rate changed in 2018 with "VM-22":
 - ightharpoonup replaced formula with 7 pages of text and formulas

- Annuity reserve discount rate changed in 2018 with "VM-22":
 - replaced formula with 7 pages of text and formulas
 - based on the Treasury yields over previous quarter or even day

- Annuity reserve discount rate changed in 2018 with "VM-22":
 - replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day \Rightarrow higher $\hat{\beta}$!

- Annuity reserve discount rate changed in 2018 with "VM-22":
 - replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day \Rightarrow higher $\hat{\beta}$!
- Life insurance policies reserve discount rate changed in 2020 with "VM-20":

- Annuity reserve discount rate changed in 2018 with "VM-22":
 - replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day \Rightarrow higher $\hat{\beta}$!
- Life insurance policies reserve discount rate changed in 2020 with "VM-20":
 - based on yields on assets and prescribed mean reversion interest rate set by the state insurance commissioners

- Annuity reserve discount rate changed in 2018 with "VM-22":
 - replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day \Rightarrow higher $\hat{\beta}$!
- Life insurance policies reserve discount rate changed in 2020 with "VM-20":
 - based on yields on assets and prescribed mean reversion interest rate set by the state insurance commissioners
 - \triangleright $\hat{\beta}$ depends on insurance commissioners

- Annuity reserve discount rate changed in 2018 with "VM-22":
 - replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day \Rightarrow higher $\hat{\beta}$!
- Life insurance policies reserve discount rate changed in 2020 with "VM-20":
 - based on yields on assets and prescribed mean reversion interest rate set by the state insurance commissioners
 - $\hat{\beta}$ depends on insurance commissioners \Rightarrow make it responsive and be transparent about it!

Literature Review

- Interest rate risk in banking: Begenau, Piazzesi, and Schneider (2020), Drechsler, Savov, and Schnabl (2017, 2021), Di Tella and Kurlat (forthcoming)
- Financial frictions and risk taking of life insurers: Becker and Ivashina (2015), Koijen and Yogo (2021)
- Risk management and accounting: DeMarzo and Duffie (1992), Heaton, Lucas, and McDonald (2010), Sen (2019)
- Overcoming balance sheet opacity: Gomez, Landier, Srear, and Thesmar (2021), Möhlmann (2021), Tsai (2009)
- Stability of life insurance liabilities: Chodorow-Reich, Ghent, and Haddad (2020), Ozdagli and Wang (2019)

Conclusion

When interest rates fall:

1. life insurers realize a capital loss on their net assets

Conclusion

When interest rates fall:

- 1. life insurers realize a capital loss on their net assets
- 2. life insurers earn a lower spread on newly issued policies

Conclusion

When interest rates fall:

- 1. life insurers realize a capital loss on their net assets
- 2. life insurers earn a lower spread on newly issued policies
- 3. life insurers want to hedge statutory earnings rather than economic earnings because of statutory regulation

Thank you!

mjh635@nyu.edu

• Life insurers provide insurance against mortality and retirement saving vehicles.

- Life insurers provide insurance against mortality and retirement saving vehicles.
- Assets: transparent!
 - ▶ Life insurance companies own assets of about \$7 trillion
 - ▶ 37% of life insurer's assets are invested in corporate and foreign bonds
 - ▶ Corporate and foreign bond debt \$15 trillion of which 22% are held by life insurers

- Life insurers provide insurance against mortality and retirement saving vehicles.
- Assets: transparent!
 - ▶ Life insurance companies own assets of about \$7 trillion
 - ▶ 37% of life insurer's assets are invested in corporate and foreign bonds
 - ▶ Corporate and foreign bond debt \$15 trillion of which 22% are held by life insurers
- Liabilities: opaque!
 - ▶ Household financial assets of \$105 trillion: 13% deposits, 43% securities, 30% pension entitlements and life insurance
 - ▶ Guaranteed by state guaranty funds in the case of default

- Life insurers provide insurance against mortality and retirement saving vehicles.
- Assets: transparent!
 - ▶ Life insurance companies own assets of about \$7 trillion
 - $\,\blacktriangleright\,$ 37% of life insurer's assets are invested in corporate and foreign bonds
 - Corporate and foreign bond debt \$15 trillion of which 22% are held by life insurers
- Liabilities: opaque!
 - ▶ Household financial assets of \$105 trillion: 13% deposits, 43% securities, 30% pension entitlements and life insurance
 - ▶ Guaranteed by state guaranty funds in the case of default
- Equity: many public/private stock companies, few large mutual companies

Reserves

Reserves

Composition of annuity reserves and the evolution of the A2000 6% Immediate reserve position of the Delaware Life Insurance Company

Empirics of Reserve Decay

 \bullet Insurer-specific weighted-average decay $\hat{\lambda}_{i,t,S} = \frac{\hat{b}_{i,t,S}}{\hat{V}_{i,t-1,S}}$:

$$\hat{\lambda}_{i,t,S} = \alpha_i + \epsilon_{i,t,S}$$

weighted by the previous size of the reserve position.

• Life-cycle model of average reserve decay:

$$\hat{\lambda}_{i,t,S} = \Psi(t-\tau,S) + \epsilon_{i,t,S}$$

where Ψ is as fixed effect which captures the average decay of a $t - \tau$ year old reserve position of type S.

Asset duration and average decay across life insurance companies

Life-Cycle Reserve Decay

	Rate of Decay $\lambda_{i,t,S, au}$					
Decade		0.000	-0.001	-0.010***	-0.000	-0.007***
$\Delta r_{t, au,10}^{T}$			0.171***	0.227***		
$\Delta r_{t,t-1,10}^T$					-0.147***	-0.113***
Life-cycle FE	Yes	Yes	Yes		Yes	
Finer Life-cycle FE				Yes		Yes
N	97,712	97,712	94,707	94,227	97,712	97,120
R^2	0.286	0.286	0.286	0.350	0.286	0.349

Decay

Life-Cycle Reserve Decay

Duration Gap under constant Interest Rates

Duration gap under constant 2004 interest rates $G = D_A - \frac{L}{A}D_L$

return

Net Assets of publicly-traded Life Insurers

return

	$n_{ m t}^L$					
	Full	Before	After	Full	Before	After
r_{t}^{T}	0.492**	0.017	-0.672**	0.407**	-0.109	-0.658***
	(0.234)	(0.176)	(0.336)	(0.163)	(0.132)	(0.170)
$r \times_t^{\mathbf{M}}$				1.588***	0.751***	1.543***
				(0.096)	(0.071)	(0.095)
Intercept	0.004**	0.002**	0.001	-0.001	0.000	-0.000
	(0.002)	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)
N	257	140	92	257	140	92
R^2	0.017	0.000	0.042	0.525	0.447	0.757

Regressions on FOMC days

	κ_{t}^{L}					
	Full	Before	After	Full	Before	After
rx_t^{T}	-0.388**	0.293	-0.839**	-0.467***	-0.155	-0.677***
	(0.178)	(0.207)	(0.329)	(0.120)	(0.156)	(0.191)
$r x_t^{\mathrm{M}}$				1.332***	0.836***	1.491***
				(0.063)	(0.078)	(0.096)
Intercept	0.003***	0.002**	0.003*	-0.000	0.000	0.000
	(0.001)	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)
N	243	133	78	249	134	83
R^2	0.019	0.015	0.079	0.660	0.467	0.787

Regressions on FOMC days excluding outliers

	After 2009	After 2010	After 2011		After 2010	
		Until 2021		Until 2019	Until 2020	Until 2021
$r x_t^{\mathrm{T}}$	0.307	-0.658***	-0.855***	-0.526***	-0.552***	-0.658***
	(0.256)	(0.170)	(0.186)	(0.165)	(0.165)	(0.170)
$r x_t^{\mathrm{M}}$	2.127***	1.543***	1.547***	1.520***	1.478***	1.543***
	(0.177)	(0.095)	(0.095)	(0.107)	(0.105)	(0.095)
Intercept	0.001	-0.000	-0.001	-0.001	-0.001	-0.000
	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
N	100	92	84	72	80	92
R^2	0.603	0.757	0.780	0.750	0.728	0.757

Regressions on FOMC days with different cut-off dates

	n_{t}^{L}					
	Full	Before	After	Full	Before	After
$r x_t^{\mathrm{T}}$	1.044***	0.842**	-0.782*	0.869***	0.262	-1.048***
	(0.349)	(0.347)	(0.463)	(0.329)	(0.286)	(0.302)
$r x_t^{\mathrm{M}}$				0.504	0.689***	1.051***
				(0.400)	(0.169)	(0.395)
Intercept	0.003*	0.001	0.001	0.002	-0.000	-0.000
	(0.002)	(0.001)	(0.002)	(0.002)	(0.001)	(0.001)
N	241	139	76	241	139	76
R^2	0.008	0.016	0.011	0.277	0.414	0.630

Regressions on FOMC days with different cut-off dates

Calculating the Yield Curve

• What term structure of interest rates r rationalizes the observed prices of a menu of policies?

$$V_n^{term} = \sum_{h=1}^n e^{-h \cdot r_{t,h}} \cdot 1 \quad V_{age}^{\textit{life}} = \sum_{h=1}^\infty e^{-h \cdot r_{t,h}} \cdot b_{age,h}$$

• Parametrize $r_{i,t,h}$ by imposing a B-spline on the forward rates for every insurer i, time t, and policy j:

$$P_{i,i,t} = V_{i,i,t} + \epsilon_{i,i,t}$$

√ back

 How does the reserve discount rate react to a change of bond market interest rates?

$$\hat{r}_t = 0.03 + 0.8 \cdot \left(\bar{r}_{\textit{June}(t)-12,\textit{June}(t)}^{\text{NAIC}} - 0.03 \right)$$

 How does the reserve discount rate react to a change of bond market interest rates?

$$\hat{r}_t = 0.03 + 0.8 \cdot \left(\bar{r}_{June(t)-12,June(t)}^{\mathrm{NAIC}} - 0.03 \right)$$

• Changes over the 1-vear time interval:

$$\Delta r_{t,h}^a = \alpha_h + \beta_h \cdot \Delta r_{t,h}^b + \epsilon_{h,t}$$

$$\Delta \hat{r}_t = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^b + \epsilon_{h,t}$$

• How does the reserve discount rate react to a change of bond market interest rates?

$$\hat{r}_t = 0.03 + 0.8 \cdot \left(\bar{r}_{June(t)-12,June(t)}^{\mathrm{NAIC}} - 0.03 \right)$$

• Changes over the 1-vear time interval:

$$\Delta r_{t,h}^a = \alpha_h + \beta_h \cdot \Delta r_{t,h}^b + \epsilon_{h,t}$$

$$\Delta \hat{r}_t = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^b + \epsilon_{h,t}$$

Pass-through to reserve discount rates

• How does the reserve discount rate react to a change of bond market interest rates?

$$\hat{r}_t = 0.03 + 0.8 \cdot \left(\overline{r}_{June(t)-12,June(t)}^{\mathrm{NAIC}} - 0.03 \right)$$

• Changes over the 1-vear time interval:

$$\Delta r_{t,h}^a = \alpha_h + \beta_h \cdot \Delta r_{t,h}^b + \epsilon_{h,t}$$

$$\Delta \hat{r}_t = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^b + \epsilon_{h,t}$$

• Annuities:

$$0.5 = \beta > \hat{\beta} = 0.13$$

Pass-through to reserve discount rates

Incomplete Pass-Through: lower at lower rates?

• How does the annuity interest rate react to a change of bond market interest rates?

$$\Delta r_{t,h}^{a} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{b} + \gamma_h \cdot \Delta r_{t,h}^{b} \cdot r_{t,h}^{b} + \epsilon_{h,t}$$

Pass-through to annuity rates at higher interest rates

√ return

Incomplete Pass-Through

Market Concentration and Pass-Through

	Annuity Spread					
	Lev	els s	Chan	ges Δs		
r · HHI	0.022*** (0.001)	0.033*** (0.001)				
$\Delta r \cdot \mathrm{HHI}$			0.060*** (0.006)	0.082*** (0.006)		
Horizon FE Rating FE	Yes	Yes Yes	Yes	Yes Yes		
N R ²	13,290 0.916	$13,290 \\ 0.931$	13,290 0.319	13,290 0.333		

Cross-sectional pass-through related to a proxy for the insurance company specific market power: the average of Herfindahl-Hirschman indices of U.S. states weighted by the share of the collected premiums from a state to overall premiums. The regression specification is: $s_{i,t,h} = \gamma \cdot r_{t,h} + \text{HHI}_{i,t-1} + \beta_h \cdot r_{t,h} + \text{Rating}_{i,t} \cdot r_{t,h} + \epsilon_{i,t,h}$

Spread affects future Net Gain from Operations

The annuity spreads $s_{i,t,h}$ predicts the future net gain of operations:

$$NetGain_{i,t+h} = Spread_{i,t} + \epsilon_{i,t}$$

A higher annuity spread implies larger future profits!

✓ return

Actuarial vs. Reserve vs. Pseudo-Actuarial

Valuation and duration at issuance for a life annuity for a 65-year-old male

▶ Cash flows and Life-cylce

Actuarial vs. Reserve vs. Pseudo-Actuarial

Valuation and duration at issuance for a life annuity for a 65-year-old male

▶ Cash flows and Life-cylce

Actuarial vs. Reserve vs. Pseudo-Actuarial

Comparison of cash flows and and valuations after issuance in December 1989 for a life annuity for a 65-year-old male

Indirect Evidence: Supplemental Information

- New York-based life insurance companies have to file the "Analysis of Valuation Reserves" supplement to the annual statement
 - ► How well does the annual income align with the predicted cash flow?

			To	tal
1		Location in		
1		last year's		
1		analysis of		
1		valuation	Annual	
1	VALUATION STANDARD	reserves	Income(a)	_
		Line No.	(000 Omitted)	Reserve
0200014.	83 Table 'A'; 9.50%; Imn.; 1981	200015	56	106,355
0200015.	83 Table 'A'; 7.65%; Imn.; 1984	200017	457	1,634,586
0200016.	83 Table 'A'; 7.65%; Im.; 1985		1,850	10,263,129
0200017.	83 Table 'A'; 7.65%; Imn.; 1986	200019	1,696	7, 104, 998
0200018.	83 Table 'A'; 7.65%; Imn.; 1987	200020	2,307	9,379,066
0200019.	83 Table 'A'; 7.65%; Imn.; 1988	200021	2,566	10,575,657
0200020.	83 Table 'A'; 7.65%; Imn.; 1989		3,913	16,526,073
0200021.	83 Table 'A'; 7.65%; Imn.; 1990		4,933	22,012,788
0200022.	83 Table 'A'; 7.50%; Imn.; 1991		2,169	10,523,236
0200023.	83 Table 'A'; 7.00%; Imn.; 1992	200025	2,426	10,323,403
0200024.	83 Table 'A'; 6.00%; Imn.; 1993		2,559	10,382,114
0200025.	83 Table 'A'; 6.50%; Imn.; 1994		4,363	20,934,023
0200026.	83 Table 'A'; 6.50%; Imn.; 1995		5,904	32,589,468
0200027.	83 Table 'A'; 6.00%; Imn.; 1996	200029	5.559	29.913.379

Supplement of the New York Life Insurance Company in 2011

return

Effect of Market Rates on Policyholder Behaviour

• Model with policyholder behaviour:

$$\bar{b}_{i,t,S} = \Psi(t-\tau,S) + \delta \cdot \Delta r_{t,\tau,10} + \epsilon_{i,t,S}$$

- The change in the market interest rate since the issuance of the policy may make the outside option more or less attractive.
- A one-percent increase leads to a 0.16 percent higher rate of decay.
- The policyholder behavior has a marginal effect on the duration of the liabilities!

	$(1) \qquad (2)$		
t in decades	0.003***	0.003***	
	(0.000)	(0.000)	
$\Delta r_{t, au,10}^{ extit{Treasury}}$	-0.008		
	(0.022)		
$\Delta r_{t, au,10}^{HQM}$		-0.017	
-7-7-		(0.024)	
N	90,954	90,954	
R^2	0.355	0.355	

Evidence under Constant Interest Rates

- Omitted variable bias: falling interest rates mechanically increase the duration of life insurance policies!
- Evaluate all objects under constant 2004 interest rates.

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_t + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},t} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{i}} + \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},2008} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

Evidence under Constant Interest Rates

- Omitted variable bias: falling interest rates mechanically increase the duration of life insurance policies!
- Evaluate all objects under constant 2004 interest rates.

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},t} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{i}} + \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},2008} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

	(1)	(2)
FL	-6.260***	-4.577**
Lev	-0.022***	-0.005
LogA	-0.057	1.002
mutual	-1.356***	
MktLev	-0.021**	-0.003
Year FE	Yes	Yes
Life Insurer FE		Yes
N	5,868	5,864
R^2	0.298	0.758