Session: Fundamentals of Optimization

Course Title: Computational Intelligence
Course Code: 19CSE422A

Course Leader: Dr. Vaishali R. Kulkarni

Assistant Professor, Department of Computer Science and Engineering Faculty of Engineering and Technology Ramaiah University of Applied Sciences, Bengaluru Email: vaishali.cs.et@msruas.ac.in

Tel: +91-804-906-5555 Ext:2325 Website: www.msruas.ac.in/staff/fet_cse#Vaishali

I wish to:

1. Introduce and define global optimization

- 1. Introduce and define global optimization
- 2. Give examples of various types of optimization

- 1. Introduce and define global optimization
- 2. Give examples of various types of optimization
- 3. Introduce combinatorial optimization

- 1. Introduce and define global optimization
- 2. Give examples of various types of optimization
- 3. Introduce combinatorial optimization
- 4. Give examples of combinatorial optimization

- 1. Introduce and define global optimization
- 2. Give examples of various types of optimization
- 3. Introduce combinatorial optimization
- 4. Give examples of combinatorial optimization
- 5. Discuss pros and cons of deterministic approaches to optimization

- 1. Introduce and define global optimization
- 2. Give examples of various types of optimization
- 3. Introduce combinatorial optimization
- 4. Give examples of combinatorial optimization
- 5. Discuss pros and cons of deterministic approaches to optimization
- 6. Introduce heuristic approaches to optimization and

- 1. Introduce and define global optimization
- 2. Give examples of various types of optimization
- 3. Introduce combinatorial optimization
- 4. Give examples of combinatorial optimization
- 5. Discuss pros and cons of deterministic approaches to optimization
- 6. Introduce heuristic approaches to optimization and
- 7. Discuss bio-inspired CI approaches to optimization

At the end of this session, the student will be able to:

1. Formulate optimization mathematically

- 1. Formulate optimization mathematically
- 2. Exemplify various types of optimization

- 1. Formulate optimization mathematically
- 2. Exemplify various types of optimization
- 3. List the deterministic approaches to optimization

- 1. Formulate optimization mathematically
- 2. Exemplify various types of optimization
- 3. List the deterministic approaches to optimization
- **4.** Discuss relative advantages of deterministic approaches to optimization and

- 1. Formulate optimization mathematically
- 2. Exemplify various types of optimization
- 3. List the deterministic approaches to optimization
- **4.** Discuss relative advantages of deterministic approaches to optimization and
- 5. Summarize bio-inspired CI approaches to optimization

1. Ingredients: Water, Tea-powder, Sugar and Milk

- 1. Ingredients: Water, Tea-powder, Sugar and Milk
- 2. Assumption: Taste of the tea depends only on ingredients

- 1. Ingredients: Water, Tea-powder, Sugar and Milk
- 2. Assumption: Taste of the tea depends only on ingredients
- 3. How much of each ingredient do we use per cup of tea?

- 1. Ingredients: Water, Tea-powder, Sugar and Milk
- 2. Assumption: Taste of the tea depends only on ingredients
- 3. How much of each ingredient do we use per cup of tea?
- 4. Desired Outcome: Excellent taste!

Two knobs: H and C

- Two knobs: H and C
- Knob settings θ_h and θ_c

- Two knobs: H and C
- Knob settings θ_h and θ_c
- What should be the right settings of θ_h and θ_c ?

- Two knobs: H and C
- Knob settings θ_h and θ_c
- What should be the right settings of θ_h and θ_c ?
- Desired Outcome: Very comfortable shower!

 In mathematics, computer science and economics, optimization refers to choosing the best element from a set of available alternatives

- In mathematics, computer science and economics, optimization refers to choosing the best element from a set of available alternatives
- The objective of optimization is to maximize(or minimize) a real function by systematically choosing the values of variables from an allowed set

- In mathematics, computer science and economics, optimization refers to choosing the best element from a set of available alternatives
- The objective of optimization is to maximize(or minimize) a real function by systematically choosing the values of variables from an allowed set
- Mathematically, an optimization problem can be represented as:
 Given: a function f: A⊆ ℝ^N → ℝ
 Sought: an element x* in A such that
 f(x*) ≥ f(x) ∀x ∈ A and f(x*) ≠ ∞

- In mathematics, computer science and economics, optimization refers to choosing the best element from a set of available alternatives
- The objective of optimization is to maximize(or minimize) a real function by systematically choosing the values of variables from an allowed set
- Mathematically, an optimization problem can be represented as:
 Given: a function f: A⊆ ℝ^N → ℝ
 Sought: an element x* in A such that f(x*) ≥ f(x) ∀x ∈ A and f(x*) ≠ ∞
- The function f is called the **objective function**

- In mathematics, computer science and economics, optimization refers to choosing the best element from a set of available alternatives
- The objective of optimization is to maximize(or minimize) a real function by systematically choosing the values of variables from an allowed set
- Mathematically, an optimization problem can be represented as: Given: a function $f:A\subseteq\mathbb{R}^N\to\mathbb{R}$ Sought: an element \mathbf{x}^* in A such that $f(\mathbf{x}^*)\geq f(\mathbf{x}) \ \forall \mathbf{x}\in \ A$ and $f(\mathbf{x}^*)\neq \infty$
- The function f is called the **objective function**
- It is commonly referred to as the **cost function**, health function or **fitness function**

 An engineer wants to design a cylindrical can to hold 200 ml of a soft drink

- An engineer wants to design a cylindrical can to hold 200 ml of a soft drink
- The can will be made from aluminum sheet

- An engineer wants to design a cylindrical can to hold 200 ml of a soft drink
- The can will be made from aluminum. sheet
- Radius r and height h are the optimization variables

- An engineer wants to design a cylindrical can to hold 200 ml of a soft drink
- The can will be made from aluminum sheet
- Radius r and height h are the optimization variables
- What are the values of r* and h* that result in the minimum surface area?

- An engineer wants to design a cylindrical can to hold 200 ml of a soft drink
- The can will be made from aluminum sheet
- Radius r and height h are the optimization variables
- What are the values of r* and h* that result in the minimum surface area?
- This is a two-dimensional problem

- An engineer wants to design a cylindrical can to hold 200 ml of a soft drink
- The can will be made from aluminum sheet
- Radius r and height h are the optimization variables
- What are the values of r* and h* that result in the minimum surface area?
- This is a two-dimensional problem
- The objective function to minimize is $A = 2\pi rh + 2(\pi r^2)$

- An engineer wants to design a cylindrical can to hold 200 ml of a soft drink
- The can will be made from aluminum sheet
- Radius r and height h are the optimization variables
- What are the values of r* and h* that result in the minimum surface area?
- This is a two-dimensional problem
- The objective function to minimize is $A = 2\pi rh + 2(\pi r^2)$
- This is a relatively easy problem

Example 4: Time Management

• A student has registered for N courses C_i , $i = 1, 2, \cdots, N$

- A student has registered for N courses C_i , $i = 1, 2, \dots, N$
- The number of hours she spends studying course i is H_i

- A student has registered for N courses C_i , $i = 1, 2, \dots, N$
- The number of hours she spends studying course i is H_i
- She expects to get M_i marks in course i

- A student has registered for N courses C_i , $i = 1, 2, \cdots, N$
- The number of hours she spends studying course i is H_i
- She expects to get M_i marks in course i
- The objective is to earn as many total marks as possible, $\sum_{i=1}^{N} M_i$

- A student has registered for N courses C_i , $i = 1, 2, \dots, N$
- The number of hours she spends studying course i is H_i
- She expects to get M_i marks in course i
- The objective is to earn as many total marks as possible, $\sum_{i=1}^{N} M_i$
- What are the best values of H_i^* , $i = 1, 2, \dots, N$?

- A student has registered for N courses C_i , $i = 1, 2, \cdots, N$
- The number of hours she spends studying course i is H_i
- She expects to get M_i marks in course i
- The objective is to earn as many total marks as possible, $\sum_{i=1}^{N} M_i$
- What are the best values of H_i^* , $i = 1, 2, \dots, N$?
- Discrete optimization!

L Lecturer

AP Assistant Professor

ASP Associate Professor

A department seeks to appoint N faculty members from four cadres:

L Lecturer

AP Assistant Professor

ASP Associate Professor

P Professor

• The number of faculty members in these cadres is N_L , N_{AP} , N_{ASP} and N_P , respectively

A department seeks to appoint N faculty members from four cadres:

L Lecturer

AP Assistant Professor

ASP Associate Professor

- The number of faculty members in these cadres is N_L , N_{AP} , N_{ASP} and N_P , respectively
- The objective is to pay as low salary as possible, but to get the best possible quality

A department seeks to appoint N faculty members from four cadres:

L Lecturer

AP Assistant Professor

ASP Associate Professor

- The number of faculty members in these cadres is N_L , N_{AP} , N_{ASP} and N_P , respectively
- The objective is to pay as low salary as possible, but to get the best possible quality
- What are the best numbers N_L^* , N_{AP}^* , N_{ASP}^* and N_P^* ?

A department seeks to appoint N faculty members from four cadres:

L Lecturer

AP Assistant Professor

ASP Associate Professor

- The number of faculty members in these cadres is N_L , N_{AP} , N_{ASP} and N_P , respectively
- The objective is to pay as low salary as possible, but to get the best possible quality
- What are the best numbers N_L^* , N_{AP}^* , N_{ASP}^* and N_P^* ?
- Multi-objective integer optimization!

- Let $\mathbf{x} = \{x_1, x_2, \dots, x_N\}, x_i \in [-5.12, 5.12]$
- $f(\mathbf{x}) = 10N + \sum_{i=1}^{N} [x_i^2 10\cos(2\pi x_i)]$

- Let $\mathbf{x} = \{x_1, x_2, \dots, x_N\}, x_i \in [-5.12, 5.12]$
- $f(\mathbf{x}) = 10N + \sum_{i=1}^{N} [x_i^2 10\cos(2\pi x_i)]$
- The objective is to find the point \mathbf{x}^* such that $f(\mathbf{x}^*)$ is minimum

- Let $\mathbf{x} = \{x_1, x_2, \dots, x_N\}, x_i \in [-5.12, 5.12]$
- $f(\mathbf{x}) = 10N + \sum_{i=1}^{N} [x_i^2 10\cos(2\pi x_i)]$
- The objective is to find the point \mathbf{x}^* such that $f(\mathbf{x}^*)$ is minimum
- The fitness landscape is as shown:

- Let $\mathbf{x} = \{x_1, x_2, \dots, x_N\}, x_i \in [-5.12, 5.12]$
- $f(\mathbf{x}) = 10N + \sum_{i=1}^{N} [x_i^2 10\cos(2\pi x_i)]$
- The objective is to find the point \mathbf{x}^* such that $f(\mathbf{x}^*)$ is minimum
- The fitness landscape is as shown:

• Solution is $x_i^* = 0, i = 1, 2, \dots, N$

- Let $\mathbf{x} = \{x_1, x_2, \dots, x_N\}, x_i \in [-5.12, 5.12]$
- $f(\mathbf{x}) = 10N + \sum_{i=1}^{N} [x_i^2 10\cos(2\pi x_i)]$
- The objective is to find the point \mathbf{x}^* such that $f(\mathbf{x}^*)$ is minimum
- The fitness landscape is as shown:

- Solution is $x_i^* = 0, i = 1, 2, \dots, N$
- Multimodal landscape. Global optimization!

The Traveling salesman problem

13

14

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

A Sudoku Puzzle

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	m	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

A Solved Sudoku Puzzle

The Rubik's Cube Puzzle

• Search spaces are huge

- Search spaces are huge
- The model of the problem is difficult to design

- Search spaces are huge
- The model of the problem is difficult to design
- The quality of solutions varies with time

- Search spaces are huge
- The model of the problem is difficult to design
- The quality of solutions varies with time
- Search spaces are highly constrained

- Search spaces are huge
- The model of the problem is difficult to design
- The quality of solutions varies with time
- Search spaces are highly constrained
- Objective functions may be non-differentiable, non-linear, noisy, or may have many local minima

- Search spaces are huge
- The model of the problem is difficult to design
- The quality of solutions varies with time
- Search spaces are highly constrained
- Objective functions may be non-differentiable, non-linear, noisy, or may have many local minima

Deterministic Approaches to Optimization

- Linear Programming
- Nonlinear Programming
- Dynamic Programming
- Multi-Criteria Decision Making

✓ They are the first option to solve optimization problems

- √ They are the first option to solve optimization problems
- ✓ If there is a match between the features of the problem and the conditions required by the method, the results are very competitive

- √ They are the first option to solve optimization problems
- ✓ If there is a match between the features of the problem and the conditions required by the method, the results are very competitive
- ✓ Under certain conditions, the computational cost can be low

- √ They are the first option to solve optimization problems
- ✓ If there is a match between the features of the problem and the conditions required by the method, the results are very competitive
- ✓ Under certain conditions, the computational cost can be low
- √ They produce the same results always

Disadvantages

In some problems, these techniques are either difficult to apply or they may take considerable time to reach to an acceptable solution

Disadvantages

- In some problems, these techniques are either difficult to apply or they may take considerable time to reach to an acceptable solution
- **X** These techniques suffer from the curse-of-dimensionality

Disadvantages

- In some problems, these techniques are either difficult to apply or they may take considerable time to reach to an acceptable solution
- **X** These techniques suffer from the curse-of-dimensionality
- The application of these methods may require a transformation of the original model of the problem

Disadvantages

- In some problems, these techniques are either difficult to apply or they may take considerable time to reach to an acceptable solution
- **X** These techniques suffer from the curse-of-dimensionality
- The application of these methods may require a transformation of the original model of the problem
- X Some methods are difficult to use

Heuristic Search: Hill Climbing

Start with a random solution.

Heuristic Search: Hill Climbing

Take incremental steps in each dimension. Choose the best position as the solution.

Heuristic Search: Hill Climbing

Repeat this for a large number of steps, or until no more improvement takes place

Bio-Inspired Optimization

Bio-inspired optimization is the group of optimization algorithms whose behaviors are based on **biological phenomena**

Why Biology?

- Biology is a source of adaptive mechanisms where intelligent behavior emerges in changing and complex environments
- These mechanisms are capable of:
 - 1. Learning
 - 2. Generalizing
 - 3. Abstracting
 - 4. Discovering
 - 5. Associating
- These are studied under the title CI
- The five dominant paradigms of CI are:
 - 1. Artificial Immune Systems
 - 2. Artificial Neural Networks
 - 3. Evolutionary Computing
 - 4. Fuzzy Logic
 - 5. Swarm Intelligence

1. Global optimization: Choosing the best values of independent variables in such a way that the value of a dependent variable is minimum (or maximum)

- 1. Global optimization: Choosing the best values of independent variables in such a way that the value of a dependent variable is minimum (or maximum)
- Combinatorial optimization consists of finding an optimal object from a finite set of objects

- 1. Global optimization: Choosing the best values of independent variables in such a way that the value of a dependent variable is minimum (or maximum)
- 2. Combinatorial optimization consists of finding an optimal object from a finite set of objects
- 3. Deterministic approaches to optimization include linear programming, integer programming, nonlinear programming, dynamic programming, etc

- 1. Global optimization: Choosing the best values of independent variables in such a way that the value of a dependent variable is minimum (or maximum)
- 2. Combinatorial optimization consists of finding an optimal object from a finite set of objects
- 3. Deterministic approaches to optimization include linear programming, integer programming, nonlinear programming, dynamic programming, etc
- 4. Curse of dimensionality is a major shortcoming of the deterministic methods

- 1. Global optimization: Choosing the best values of independent variables in such a way that the value of a dependent variable is minimum (or maximum)
- 2. Combinatorial optimization consists of finding an optimal object from a finite set of objects
- 3. Deterministic approaches to optimization include linear programming, integer programming, nonlinear programming, dynamic programming, etc
- 4. Curse of dimensionality is a major shortcoming of the deterministic methods
- 5. This has motivated the development of many biologically inspired metaheuristics for solving optimization problems

- 1. Global optimization: Choosing the best values of independent variables in such a way that the value of a dependent variable is minimum (or maximum)
- 2. Combinatorial optimization consists of finding an optimal object from a finite set of objects
- 3. Deterministic approaches to optimization include linear programming, integer programming, nonlinear programming, dynamic programming, etc
- 4. Curse of dimensionality is a major shortcoming of the deterministic methods
- 5. This has motivated the development of many biologically inspired metaheuristics for solving optimization problems

Any Questions?

Chank You

