

División de Ciencias Básicas e Ingeniería Licenciatura en Ingeniería Biomédica

Reporte de Proyecto Terminal

Aplicación de Estimulación Eléctrica Funcional con Biofeedback Para el Control Contralateral de la Pinza Gruesa de la Mano a Partir de sEMG

Alumno: Enrique Mena Camilo

Matrícula: 2153009451

Asesores:

Dr. Omar Piña Ramírez M. en C. Jorge Airy Mercado Gutiérrez

Marzo de 2020

Índice general

Ín	Índice de figuras									
1	Intr	roducción	1							
2	Marco teórico									
	2.1	Estimulación eléctrica funcional	4							
	2.2	Neuroprótesis	5							
	2.3	Señales de comando y retroalimentación	6							
	2.4	Esquemas de control	7							
	2.5	Algoritmos de control	8							
	2.6	Retroalimentación	9							
	2.7	Electromiografía de superficie	9							
		2.7.1 Procesamiento del sEMG	9							
		2.7.2 Descriptores de amplitud del sEMG	10							
3	Ant	Antecedentes 1								
	3.1	Desarrollos previos al proyecto	11							
		3.1.1 Plataforma de software para neuroprótesis	11							
		3.1.2 Aplicación FES en lazo abierto	11							
	3.2	Sistemas FES existentes	12							
4	Met	todología	14							
	4.1	Sistema propuesto	14							
	4.2	Adquisición de datos en Simulink	15							
	4.3	Evaluación de bloque de adquisición y decodificación	18							
	4.4	Protocolo para registro de sEMG								
	4.5									
	4.6	Sistema de control	23							
		4.6.1 Calibración	23							
		4.6.2 Validación fuera de línea	26							
		4.6.3 Validación en línea	26							
		4.6.4 Tarea objetivo	26							
5	Res	ultados	27							
	5.1	Adquisición de datos	27							
	5.2	Procesamiento de sEMG	28							

	5.3 Esquema de control	28
6	Discusión	32
Re	eferencias	35

Índice de figuras

Figura 2.1	Efecto de aplicar estimulación eléctrica en músculo	4
Figura 2.2	Estimulación directa a una neurona motora	1
Figura 2.3	Componentes generales de una neuroprótesis	6
Figura 2.4	Esquema general de control en lazo abierto y control en lazo cerrado	7
Figura 4.1	Sistema propuesto para el proyecto	14
Figura 4.2	Flujo de datos de salida del ADS1299	15
Figura 4.3	Subsistema decodificador del flujo de datos	15
Figura 4.4	Funcionamiento del subsistema decodificador del flujo de datos.	17
Figura 4.5	Banco de señales para evaluación de adquisición	18
Figura 4.6	Posicionamiento de electrodos para registro de sEMG	21
Figura 4.7	Respuesta en frecuencia de filtro pasa altas	22
Figura 4.8	Respuesta en frecuencia de filtro pasa bajas	22
Figura 4.9	Respuesta en frecuencia de filtro rechaza banda	22
Figura 4.10	Pantalla utilizada para calibración de FES	24
Figura 4.11	GUI utilizada para calibración de amplitud RMS	25
Figura 5.1	Comparación entre señal adquirida con el bloque de adquisición	
diseñac	do (rojo) y señal patrón (azul)	27
_	Ejemplo representativo del funcionamiento de los filtros diseñados los a registros de entrenamiento	28
-	Ejemplo representativo de la obtención de envolvente discreta	20
_	S en registros de entrenamiento. Arriba: Canal 1 de sEMG. Me-	
	anal 2 de sEMG. Abajo: Marcadores de acción solicitada al sujeto	
	aso (DD), cierre ligero (CL), cierre completo (CC), apertura ligera	
*	apertura completa (AC)). Las envolventes (puntos rojoss) fueron	
· /·	licadas por 2 para fines de visualización	29
_	Ejemplo exitoso representativo de las pruebas del esquema de	
_	funcionando fuera de línea con registros de calibración. Arriba:	
	rentes de sEMG (Azul: canal 1. Rojo: canal 2). Medio: Amplitudes	
	mulación resultantes del sistema de control (Azul: canal 1. Ro-	
	al 2). Abajo: Marcadores de acción solicitada al sujeto (descanso	
-	cierre ligero (CL), cierre completo (CC), apertura ligera (AL),	
	ra completa (AC))	30

Figura 5.5 Ejemplo exitoso representativo de las pruebas del esquema de	
control funcionando en línea. Arriba: Envolventes de sEMG (Azul: ca-	
nal 1. Rojo: canal 2). Medio: Amplitudes de estimulación resultantes del	
sistema de control (Azul: canal 1. Rojo: canal 2). Abajo: Señales indica-	
doras de tarea a seguir (descanso (DD), apertura de mano (AC), cierre	
de mano (CC))	31
Figura 5.6 Acercamiento a prueba representativa de las pruebas del esque-	
ma de control funcionando en línea. Se muestran las diferentes señales	
asociadas a cada movimiento una sobre otra para visualizar el retar-	
do existente. Arriba: Señales para movimiento cierre de mano. Abajo:	
Señales para movimiento apertura de mano. En azul se muestra la señal	
indicadora del movimiento a realizar. En rojo se muestra la envolvente	
de sEMG. En amarillo se muestra la amplitud de estimulación eléctrica	
(AEE) arrojada por el esquema de control	31

Capítulo 1

Introducción

Las lesiones o daños al sistema nervioso central (SNC) suelen ocasionar alteraciones en el funcionamiento de las células motoras, originando condiciones de deficiencia motriz o sensorial, atrofia muscular y espasticidad. Según sea la ubicación y el grado de la lesión, serán los efectos y probabilidades que se tengan para la recuperación del miembro afectado. En particular, una lesión al SNC puede originar hemiplejia, lo cual es un trastorno del cuerpo en el que debido a la privación de irrigación sanguínea al cerebro, la sensibilidad y movimiento de la mitad del cuerpo se pueden ver anulados o disminuidos.

Relacionado a las lesiones en las que el miembro superior se ve afectado, existen diferentes técnicas de rehabilitación, entre las cuales podemos encontrar las sesiones de fisioterapia, la terapia de movimiento inducido por restricción, la práctica mental con imaginación motora y sistemas de estimulación eléctrica.

La estimulación eléctrica funcional (FES, por sus siglas en inglés), es una técnica que, a partir de la aplicación de corriente eléctrica, permite la producción de potenciales de acción, y esto a su vez permite generar una contracción muscular que podría llegar a considerarse funcional [15]. Las neuroprótesis basadas en FES son dispositivos que sirven como puente entre el SNC y la zona afectada del cuerpo. Estos dispositivos buscan reemplazar o rehabilitar la función motriz dañada debido a una lesión en el SNC.

En la división de Investigación en Ingeniería Médica del Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra" (INR-LGII) se llevan a cabo diversos proyectos de investigación y desarrollo tecnológico, los cuales buscan desarrollar tecnología que permita aplicar nuevas técnicas de terapia de rehabilitación para personas con discapacidad motriz, o bien mejorar las técnicas ya existentes. Tal es el caso del proyecto de desarrollo de una neuroprótesis basada en FES para rehabilitación de miembro superior, que busca satisfacer las necesidades del INR-LGII en cuestiones de terapia e investigación.

Para dicho proyecto el INR-LGII desarrolló una interfaz gráfica de usuario (GUI, por sus siglas en inglés) que permite controlar los parámetros del sistema de estimulación eléctrica RehaStim 2 (HASOMED GmbH., Magdeburgo, Alemania) y el sistema de adquisición de biopotenciales Cyton Board (OpenBCI Inc., Nueva York, E.U.A.),

siendo estos tres (GUI, RehaStim 2 y Cyton Board) los principales elementos de la neuroprótesis del INR-LGII. Una primera aplicación de la neuroprótesis se encuentra funcionando y se ha utilizado con sujetos sanos y pacientes del INR-LGII, aplicándoles estimulación eléctrica para generar movimientos de miembro superior. Sin embargo, actualmente el sistema opera en lazo abierto, es decir, la secuencia de estimulación se diseña y se aplica sin considerar información relevante del movimiento generado y variables relacionadas.

La problemática que se presenta en el estado actual del proyecto del INR-LGII, es el estado en lazo abierto, en el cual los parámetros de la estimulación eléctrica son controlados por el experimentador, quien los adapta hasta obtener el patrón específico útil para el sujeto en rehabilitación, lo cual causa una dependencia del experimentador para la operación del sistema, y limita su utilidad para objetivos de rehabilitación, ya que no se consideran variables intrínsecas del paciente, como lo son: la intención de movimiento o actividad residual, que podían contribuir a la modulación de los parámetros de estimulación y el movimiento resultante.

Ante esta problemática en la que se encuentra la neuroprótesis desarrollada en el INR-LGII, donde esta se ha utilizado en aplicaciones de lazo abierto en las que los sistemas involucrados trabajan sin tener retroalimentación entre ellos, surge la necesidad de implementar alguna aplicación que permita la interacción entre sistemas y que además permita la participación del paciente de forma cuantitativa en la terapia.

Por ello, este proyecto plantea desarrollar una aplicación en lazo cerrado que permita la participación activa del paciente (a partir de señales de sEMG del brazo sano) en la terapia de rehabilitación basada en FES, llevando a cabo una modulación de la estimulación eléctrica que permita la ejecución, en el brazo afectado, de los movimientos involucrados en el agarre de un objeto (flexión y extensión de los dedos). Un sistema con estas características permitiría al sujeto tener el control sobre los movimientos de la mano contralateral, y además disminuiría la dependencia del experimentador en el proceso de la terapia.

Trabajos como los documentados en [27] [10] [25] [8], son prueba de que un control contralateral (también llamado en ocasiones como entrenamiento en espejo) basado en sEMG es útil para llevar a cabo tareas motoras funcionales basadas en FES, siendo el sEMG utilizado para iniciar algún patrón FES o bien para modular los parámetros de esta.

Otros trabajos como [20] [22] [23], muestran la posibilidad de crear sistemas en lazo cerrado que se ejecutan en tiempo real utilizando el dispositivo de estimulación eléctrica RehaStim 2 (o una versión anterior a esta), el cual es el dispositivo de estimulación eléctrica con el que cuenta la neuroprótesis del INR-LGII.

Considerando los trabajos antes mencionados, se formula la hipótesis de este proyecto de la siguiente manera: al integrar los diferentes bloques de un sistema de estimulación eléctrica funcional dentro de una plataforma de software con herramientas de tiempo real, se logrará implementar una aplicación FES en lazo cerrado que permita llevar a cabo en línea la adquisición y procesamiento de señales de sEMG, como parte de un esquema de control contralateral de movimientos de la mano.

Siendo el objetivo general de este proyecto diseñar e implementar un esquema de control contralateral para miembro superior, que permita la modulación de la amplitud de estimulación eléctrica a partir de señales de sEMG. Teniendo como objetivos particulares los siguientes:

- Desarrollar y evaluar un bloque de adquisición dentro de Simulink que permita la recepción de datos seriales de un dispositivo de multicanal de adquisición de biopotenciales.
- Desarrollar un algoritmo que permita la identificación de los movimientos de flexión y extensión de la mano a través de señales de sEMG.
- Diseñar e implementar un esquema de control que permita la modulación continua de la amplitud de la estimulación eléctrica para control del movimiento de la mano, en combinación con el algoritmo identificador de movimientos.

Capítulo 2

Marco teórico

2.1. Estimulación eléctrica funcional

La estimulación eléctrica funcional es la aplicación de corriente eléctrica a tejido excitable para suplementar o reemplazar funciones que se han perdido en individuos con daños neurológicos. El propósito de la intervención FES es habilitar funciones que se han perdido en individuos con daño al sistema nervioso mediante la sustitución o asistencia a las habilidades voluntarias de dichos individuos. En las aplicaciones FES la estimulación es requerida para lograr una función deseada, por lo tanto, los sistemas FES usualmente se diseñan para ser controlados a partir de señales relacionadas a la actividad o intención del propio usuario. Los dispositivos FES que son usados para sustituir una función neurológica que se ha perdido son comúnmente llamados neuroprótesis [15].

En la Figura 2.1 se puede observar que al aplicar estimulación eléctrica en el músculo, este responderá a dicha estimulación realizando una contracción, la cual puede ir disminuyendo durante el periodo de estimulación.

(a) Músculo sin estimulación eléctrica.

(b) Músculo con estimulación eléctrica.

Figura 2.1: Efecto de aplicar estimulación eléctrica en músculo.

2.2. Neuroprótesis

Una neuroprótesis es un dispositivo compuesto de elementos que permiten utilizar la estimulación eléctrica como interface directa con el sistema nervioso, y cuyo fin es reemplazar o asistir alguna función deteriorada del sistema nervioso, deficiencia que suele ser el resultado de una enfermedad o lesión. Las neuroprótesis comúnmente actúan como un puente entre elementos funcionales del sistema nervioso central y los nervios o músculos sobre los cuales se ha perdido control (Figura 2.2) [7] [18].

En general, existen dos tipos de neuroprótesis: a) las neuroprótesis autónomas, las cuales son sistemas autocontenidos que imitan las funciones de una contraparte biológica, y b) las neuroprótesis por comando, las cuales son sistemas que reemplazan o asisten una función sensitiva o motora que se ha perdido o disminuido. Estas últimas están compuestos por un sistema de control que interpreta la intención del usuario, utilizan sensores para detectar el estado del sistema, genera la activación del sistema motor o sensorial del usuario, y proporciona una retroalimentación al usuario [17].

Las neuroprótesis motoras, las cuales son un ejemplo de neuroprótesis por comando, son sistemas que asisten a personas que han sufrido algún tipo de lesión en la médula espinal o cerebro. Estas neuroprótesis pueden actuar directamente en el sistema nervioso central, en el sistema nervioso periférico, o bien, en una combinación de ambos, tiendo como objetivo principal realizar contracciones musculares que generen movimientos relevantes para el sujeto [17].

Figura 2.2: Estimulación directa a una neurona motora. La neurona motora (a) es la responsable de generar señales de activación que son transmitidas a la correspondiente fibra muscular (b). Posterior a un accidente cerebrovascular o una lesión de la médula espinal, el músculo queda incomunicado con el sistema nervioso central. Una neuroprótesis (c) inyecta corriente eléctrica dentro del axón de la célula (d), corriente formada por un tren de pulsos negativos y positivos (e) que producen potenciales de acción que activan la fibra muscular. Recuperado de [18].

2.3. Señales de comando y retroalimentación

Una neuroprótesis por comando requiere de dos tipos de señales esenciales para lograr su correcto funcionamiento, las cuales son las señales de comando y las señales de retroalimentación [17]. En la Figura 2.3 se pueden observar de forma general las conexiones que dichas señales realizan con el resto de los componentes de una neuroprótesis.

Figura 2.3: Componentes generales de una neuroprótesis autónoma (recuadro rojo) y por comando (recuadro negro). Adaptado de [17].

Las señales de comando son aquellas se usan para activar, desactivar o modular determinadas funciones o acciones dentro del sistema de control de la neuroprótesis. Estas señales pueden generarse de diversas formas, sin embargo, como se ilustra en la Figura 2.3, suelen ser generadas por el usuario [17]. Ejemplos de dichas señales podrían ser la acción de presionar un botón que indique a la neuroprótesis el momento de inicio y fin de la estimulación eléctrica; o bien, un conjunto de señales fisiológicas que permitan identificar la tarea que busca realizar el individuo.

En la Figura 2.3 se puede observar que la señal de retroalimentación es aquella señal que se genera como salida de la neuroprótesis, es decir, la estimulación eléctrica que se inyecta al sistema sensorial-motor del usuario; sin embargo, también se puede observar una retroalimentación dirigida hacia el usuario, la cual puede ser una contracción muscular activada por el comando del usuario o el movimiento de algún sistema robótico [17]. Esta última retroalimentación es la que suele ser relevante para el sistema de control de la neurorótesis.

Aclarado el concepto de retroalimentación que se abordará en el presente trabajo, se puede definir a las señales de retroalimentación como un tipo de señales que brindan información relacionada a la respuesta del sujeto ante un determinado comando. Dichas señales son útiles para indicar al sistema de control si la respuesta del sujeto se apega a la respuesta esperada, y en caso contrario modificar los parámetros de dicho sistema para conseguir la respuesta esperada [24]. Estas señales de retroalimentación se pueden obtener de diversas maneras, las cuales se abordan en la sección 2.6.

2.4. Esquemas de control

Existen dos tipos de control importantes dentro de las aplicaciones de una neuroprótesis, los cuales se diferencian esencialmente en los tipos de señales que ocupan. En la Figura 2.4 se ilustran a grandes rasgos las diferencias entre ambos esquemas de control.

Figura 2.4: Esquema general de control en lazo abierto y control en lazo cerrado. El control en lazo abierto se ilustra con una línea sólida. El control en lazo cerrado se lleva a cabo cuando se incluye el elemento sensor, el cual se ilustra con una línea discontinua. Adaptado de [24].

En el control en lazo abierto (línea sólida de la Figura 2.4) se genera un comando a la línea de base (estado o valor inicial del sistema), esperando que este comando produzca la salida correcta. Aquí no existe una medición de la salida generada, por lo cual tampoco existe alguna medición del error que pudiera utilizarse como mecanismo para la modulación del comando que se genera [24]. En este esquema de control, el experimentador es el encargado de modificar los parámetros del sistema hasta conseguir una salida apegada a la salida esperada.

El control en lazo cerrado (línea sólida más línea discontinua de la Figura 2.4) requiere de la inclusión de algún elemento sensor en el sistema que se desea controlar. Este control retroalimentado genera un comando a la línea de base y el elemento sensor mide la salida del sistema en respuesta al comando. Esta medición de la salida puede utilizarse para determinar diferencias entre la salida esperada y la real, generando así una señal de error que puede utilizarse como retroalimentación hacia el controlador para realizar modificaciones en los comandos generados [24].

Otro esquema de control capaz de implementarse en aplicaciones de neuroprótesis (tanto en lazo abierto como en lazo cerrado) es el control adaptativo. Este esquema de control utiliza sensores para medir la entrada y salida del sistema, utilizando dichas métricas para ajustar el controlador en respuesta a las perturbaciones en el entorno de control o el sistema controlado, buscando siempre mantener un nivel de desempeño preestablecido. Una ventaja de este tipo de control es que se pueden desarrollar estrategias de control sin requerir de un conocimiento completo del sistema que se va a controlar, sin embargo, esto provoca que los controladores adaptativos rara vez sean óptimos [24].

2.5. Algoritmos de control

Existe una gran variedad de algoritmos de control que suelen ser usados dentro de las neuroprótesis, sin embargo, para este trabajo sólo se abordaran 3 algoritmos de control.

El control on-off es un algoritmo en el que se monitorea si una determinada variable de control se encuentra por encima o por debajo de un determinado umbral, con lo cual se suelen activar o desactivar determinadas funciones del sistema de control [24]. En aplicaciones FES, este tipo de control suele utilizarse para activar una secuencia predefinida de estimulación eléctrica. Este algoritmo de control también suele utilizarse configurando dos umbrales por los cuales la variable de control puede pasar, por ejemplo, para el control de temperatura de una incubadora neonatal, en la cual se requiere que la temperatura de esta se encuentre dentro de un intervalo específico, en este caso, el control on-off podría aplicarse de la siguiente manera: si la temperatura se encuentra por encima del límite superior de temperatura, la calefacción se apaga; mientras que si la temperatura se encuentra por debajo del límite inferior de temperatura, la calefacción se enciende [2].

Una máquina de estados finitos (FSM, por sus siglas en inglés) es un modelo de sistema que puede considerarse como una implementación más compleja del control on-off. En este modelo, la medición de una variable del sistema en combinación con el estado actual de la misma, desencadenan una transición de estado, la cual a su vez genera una serie de acciones en el sistema que se está controlando. Debido a que este tipo de modelo suele ser periódico, puede ser útil para realizar transiciones de estado en respuesta al tiempo [24]. En aplicaciones FES, las acciones generadas debido a la transición de estados suelen asociar al inicio o fin de la estimulación eléctrica, los periodos de rampa en el patrón de estimulación, o bien los periodos de modulación de la estimulación eléctrica.

El control proporcional (también conocido como control P), es un tipo control en el cual se aplica una corrección a la variable de control, la cual es proporcional entre el valor deseado y el valor real. Este tipo de control es más complejo que el control on-off, pero a su vez es más simple que un control proporcional-integral-derivativo (PID). Este tipo de control suele ser útil para llevar a cabo el control de sistemas que cuentan con un tiempo de respuesta rápido. En este tipo de control, la salida es proporcional a la señal de error (diferencia entre el valor esperado y el real), proporción que está definida por la Ecuación 2.1, donde P representa la salida proporcional, K_p representa la ganancia proporcional, e(t) representa el error instantaneo en el momento t, p_0 representa la salida con cero errores [2]. En aplicaciones FES, este tipo de control se ha mostrado útil para llevar a cabo la modulación de algún parámetro de estimulación eléctrica (como puede ser la amplitud o el ancho de pulso), donde la determinación de los factores K_p y p_0 serán los responsables directos del grado de desempeño de la modulación [27].

$$P = K_p e(t) + p_0 (2.1)$$

2.6. Retroalimentación

Como se explicó en la sección 2.3, una señal de retroalimentación es aquella que brinda información al sistema sobre los efectos ante un determinado comando. Estas señales se pueden implementar de más de una forma dentro de una neuroprótesis, por ejemplo, la observación visual de la acción realizado por algún actuador robótico de una una interfaz cerebro-computadora (comúnmente conocido como neurofeedback), la adquisición de una señal bioeléctrica durante un periodo de estimulación eléctrica, o bien la medición de algún elemento sensor que proporcione información sobre el estado del efector o actuador [24].

Otro ejemplo de retroalimentación en un sistema de neuroprótesis es el biofeedback, una técnica de retroalimentación donde no se requiere de elemento sensor en el efector o actuador del sistema, ya que consiste en permitir al individuo usuario de la neuroprótesis aprender a cambiar su actividad fisiológica con el fin de mejorar el rendimiento del sistema [26].

2.7. Electromiografía de superficie

La electromiografía (EMG) se define como la detección y análisis de la señal eléctrica derivada de la actividad contráctil de los músculos. El EMG puede detectarse directamente mediante la inserción de electrodos en las fibras musculares, o de forma indirecta colocando electrodos de superficie en las zonas de la piel localizadas justo encima del tejido muscular. A este último método se le suele conocer como electromiografía de superficie (sEMG, por sus siglas en inglés), el cual, al ser un método de detección no invasivo y permitir obtener información sobre la activación muscular, como la intensidad de la contracción muscular, la manifestación de la fatiga muscular y el reclutamiento de unidades motoras, se ha convertido en un método muy popular en la investigación.

2.7.1. Procesamiento del sEMG

La actividad mioeléctrica en la superficie de la piel se encuentra dentro de un ancho de banda limitado que suele estar desde los 15 hasta los 400 Hz, con amplitudes dentro del rango de μV o mV, dependiendo de la intensidad de la contracción muscular [4].

La detección de la actividad mioeléctrica se realiza mediante el uso de un amplificador diferencial, el cual debe tener conectadas las entradas a un par de electrodos situados a lo largo de la dirección de la fibra muscular a sensar, y un tercer electrodo de referencia situado en el hueso más cercano a la fibra. Una vez detectada de forma eficaz la actividad mioeléctrica, esta debe someterse a un filtro analógico anti-aliasing y posteriorme al proceso de conversión analógico-digital que permitirá se realice el procesamiento digital de la señal [4].

Usualmente se suele utilizar un filtro pasa banda con frecuencias de corte similares a las que componen la actividad mioeléctrica (15-400 Hz), acompañado de un filtro notch

digital que permita atenuar la interferencia provocada por la línea [4].

2.7.2. Descriptores de amplitud del sEMG

Existen diferentes indicadores que pueden ser utilizados para estimar la amplitud del sEMG, tal es el caso de la amplitud pico a pico, la cual nos proporciona un valor instantáneo de la amplitud del sEMG. Sin embargo, este no es un indicador robusto de la amplitud de la señal de sEMG [4].

Los descriptores de amplitud de sEMG más comunes son la promediación de muestras rectificadas o elevadas al cuadrado de sEMG crudo a lo largo de una determinada tarea motora. Estos descriptores se conocen como el valor rectificado promedio (ARV o MAV, por sus siglas en inglés)(Ecuación 2.2) y el valor cuadrático medio (RMS, pos sus siglas en inglés)(Ecuación 2.3). Dichos descriptores suelen usarse para estimar las variaciones temporales de la amplitud del sEMG en ventanas cortas entre 250 ms o 500 ms [4].

$$ARV = \frac{1}{N} \sum_{n=1}^{N} |EMG[n]|$$
 (2.2)

$$RMS = \sqrt{\frac{1}{N} \sum_{n=1}^{N} EMG[n]^2}$$
 (2.3)

Estos descriptores de amplitud suelen proporcionar información similiar, la gran diferencia entre ellos se encuentra en la función de densidad de probabilidad (PDF, por sus siglas en inglés) que generan, donde el RMS suele ser un descriptor con PDF Gaussiana, mientras que el ARV suele ser una descriptor con PDF Laplaciana. En general, se suele utilizar el RMS debido que teóricamente la PDF de sEMG es Gaussiana, sin embargo, existen trabajos que han demostrado que en la práctica la PDF de sEMG es más cercana a una PDF Laplaciana, caso en el cual es recomendable utilizar el ARV como descriptor [5] [16].

Capítulo 3

Antecedentes

3.1. Desarrollos previos al proyecto

En el INR-LGII se han realizado trabajos previos relacionados al desarrollo de una neuroprótesis, los cuales han logrado que dicho sistema sea funcional, e incluso se ha probado con algunos pacientes del propio instituto. Estos trabajos incluyen una plataforma de software para control y configuración de la neuroprótesis [14] [9] y la implementación de una aplicación FES en lazo abierto comandada por EEG [13] [3].

3.1.1. Plataforma de software para neuroprótesis

Consiste en una GUI implementada en MATLAB®, la cual consta de 4 pantallas que en conjunto permiten: a) realizar el registro de datos de un paciente o usuario en el que se probará el dispositivo, b) realizar el entrenamiento de un clasificador de movimientos voluntarios, c) ejecutar una aplicación FES en lazo abierto, o bien d) experimentar con los parámetros del estimulador y el sistema de registro de biopotenciales para determinar el patrón de estimulación óptimo para el paciente. Esta plataforma realiza una conexión a dispositivos comerciales: RehaStim 2 para estimulación eléctrica, y Cyton Board para adquisición de biopotenciales) que permiten la integración de las funciones de la neuroprotesis [14] [9].

3.1.2. Aplicación FES en lazo abierto

La aplicación FES, que se encuentra inmersa en la plataforma de software para la neuroprótesis, está basada en una Interfaz Cerebro-Computadora. Dicha aplicación le muestra al sujeto una serie de 5 movimientos predefinidos, dentro de los cuales el sujeto debe seleccionar alguno cerrando los ojos. Una vez seleccionado y confirmado el movimiento objetivo, el sistema envía una secuencia de pulsos de estimulación eléctrica para asistir al sujeto a realizar el movimiento elegido. En esta aplicación los parámetros de estimulación eléctrica están predeterminados antes de iniciar la aplicación, los cuales

3.2. Sistemas FES existentes

En la literatura existe una diversidad de trabajos que implementan un lazo cerrado para aplicaciones FES, los cuales utilizan dispositivos de estimulación que varían entre dispositivos comerciales o prototipos, sin embargo, la revisión bibliográfica realizada para este proyecto se centró en trabajos que utilizan el dispositivo RehaStim como dispositivo de estimulación, y que además implementaran alguna aplicación para rehabilitación de miembro superior.

Trabajos como los documentados en [20] y [10], muestran la importancia de las aplicaciones que implementan una terapia por medio de un entrenamiento en espejo para facilitar la recuperación motora de miembros superiores e inferiores en pacientes con hemiplejia. Dicha importancia radica en lograr la ilusión de un movimiento sincrónico entre dos extremidades sanas, ilusión que ha demostrado puede promover la recuperación de la funcionalidad de la extremidad paralizada [6].

El trabajo documentado en [22] demuestra la gran capacidad que tienen los algoritmos implementados en una máquina de estados finitos para realizar el control de una neuroprótesis, además de demostrar que estos algoritmos permiten al experimentador una comprensión rápida sobre el funcionamiento del esquema de control.

Otros trabajos como lo son [21] y [23] son de utilidad para el proyecto debido a que demuestran que al lograr una integración de los componentes y control de una neuroprótesis se pueden realizar aplicaciones que presenten un funcionamiento en tiempo real o muy cercano a este.

El Cuadro 3.1 resume la información de los trabajos mencionados anteriormente, mostrando información como autor, año de publicación, propósito del trabajo, señales de comando y retroalimentación utilizadas, y dispositivo de estimulación. Cabe mencionar que todos estos trabajos presentan una implementación dentro de las plataformas de software MATLAB y Simulink.

Una revisión bibliográfica adicional se centró en trabajos que utilizaran señales de sEMG como señal de control, para rescatar los descriptores de amplitud comúnmente usados y los tipos de control utilizados para cada aplicación.

El Cuadro 3.2 resumen la información de los trabajos consultados para dicha revisión bibliográfica, mostrando información como aautor, año de publicación, propósito de la aplicación, descriptor de amplitud utilizado y tipo de control implementado.

Autor	Año	Propósito	Señales utilizadas	Dispositivo
Christina Sal-	2016	Entrenamiento en es-	Electromiografía y	RehaMove
chow, et al. [20]		pejo aplicado a la	movimiento de mano	Pro
		mano		
Mignxu Sun [22]	2014	Recuperación de fun-	Acelerometría	RehaStim 1
		ciones de miembro su-		
		perior		
Daniel Simon-	2017	Asistencia para aper-	Posición del objeto y	STMISOLA
sen, et al. [21]		tura y cierre de mano	posición de la mano	
Billy Woods, et	2018	Asistencia en miembro	Mecanomiografía,	RehaStim 1
al. [23]		inferior para funciones	fuerza aplicada a	
		de ciclismo	pedales y posición de	
			cigüeñal	

Cuadro 3.1: Revisión de sistemas FES reportados en la literatura con aplicaciones similares a las de este proyecto.

Autor	Año	Propósito	Descriptor	Tipo de control
			sEMG	
Yu Zhou, et al.	2018	FES contralateral para	RMS	Regresión lineal
[27]		miembro superior		
Tommaso Lenzi,	2012	Control de exoesqueleto	Envolvente li-	Proporcional
et al. [11]			neal	
Jung Hee Kim,	2015	Terapia en espejo para	RMS	On-Off
et al. [10]		recuperación de miembro		
		superior		
Gustavo Agui-	2015	Control de brazo robóti-	Amplitud	Lógica difusa
rre, et al. [1]		со		
Xin Yi, et al. [25]	2013	Cierre contralateral de	RMS	On-Off
		párpado en conejos		
Sachs NA, et al.	2006	Cierre contralateral de	Integración	On/Off
[19]		párpado en roedores		
Lucas Fonseca,	2019	Asistencia contralateral	Envolvente	FSM
et al. [8]		para cierre de mano		

Cuadro 3.2: Revisión de tipos de control y descriptores de amplitud comúnmente usados en aplicaciones de control basado en sEMG

Capítulo 4

Metodología

4.1. Sistema propuesto

Para este proyecto se planteó un sistema que implementa un control de FES en lazo cerrado utilizando la técnica de biofeedback. El sistema consiste en la adquisición de dos canales de sEMG, del brazo izquierdo, los cuales son procesados y se utilizan como entrada de un sistema de control que realiza la modulación de la amplitud de dos canales de estimulación eléctrica en el brazo derecho. Este sistema implementa un control contralateral para realizar un entrenamiento en espejo de las acciones de apertura y cierre de mano.

En la Figura 4.1 se muestra un esquema general del sistema desarrollado, en el cual se muestran en rojo los elementos implementados en este proyecto.

Figura 4.1: Sistema propuesto para el proyecto. Líneas continuas representan entes de hardwares y líneas discontinuas representan entes de software. Elementos en rojo representan zonas de trabajo del proyecto.

4.2. Adquisición de datos en Simulink

Se utilizó el sistema Cyton Board, el cual tiene una frecuencia de muestreo de 250 Hz, para realizar la adquisición de las señales de sEMG. Dicho sistema utiliza un chip ADS1299 (Texas Instruments Inc., Dallas, E.U.A.) para realizar la conversión analógico-digital de las señales, el cual codifica los datos de cada muestra, utilizando complemento a 2, en un flujo de datos de 27 bytes esquematizado en la Figura 4.2.

Figura 4.2: Flujo de datos de salida del ADS1299.

Para realizar la decodificación del flujo de datos dentro de Simulink, se diseñó un subsistema encargado de la solicitud y decodificación de datos, para esto se utilizó el bloque Query Instrument del Instrument Control Toolbox para realizar la solicitud de datos, los cuales fueron decodificados con bloques de la librería estándar de Simulink. La figura 4.3 muestra la implementación dentro de Simulink del sistema antes mencionado.

(a) Vista general del subsistema diseñado para realizar adquisición y decodificación del flujo de datos.

(b) Vista interna del subsistema encargado de la decodificación del flujo de datos.

Figura 4.3: Subsistema decodificador del flujo de datos implementado en Simulink.

El funcionamiento del subsistema responsable de la solicitud y decodificación de datos implementado dentro de Simulink se encuentra esquematizado en la Figura 4.4, y lleva a cabo el siguiente algoritmo:

- 1. Se realiza la adquisición de N muestras, lo cual generará un vector columna con dimensión $\mathbb{R}^{27*N\times 1}$ (Figura 4.4 (a)).
- 2. Se aplicar un reshape a dicho vector para obtener una matriz con dimensión $\mathbb{R}^{27\times N}$ (Figura 4.4 (b)).
- 3. Se obtiene la transpuesta de dicha matriz para obtener una matriz con dimension $\mathbb{R}^{N\times 27}$ (Figura 4.4 (c)).
- 4. Se realiza la extracción de las columnas asociadas al canal a procesar, obteniendo una matriz con dimensión $\mathbb{R}^{N\times 3}$ (Figura 4.4 (d)).
- 5. Se realiza el producto matricial de la matriz del canal a procesar con un vector ponderador que contiene el peso de cada columna (byte) para el valor de la muestra de 24 bits (Figura 4.4 (e)). El vector ponderador está compuesto por los valores 2^{16} , 2^{8} , 1. Como resultado de dicho producto se obtiene un vector de dimensión $\mathbb{R}^{N\times 1}$ (Figura 4.4 (f)).
- 6. Se extraen del vector anterior las muestras en las que se encuentren codificados, en complemento a 2, un número negativo. Esto se realiza al obtener el valor del bit 23 (bit más significativo), y si dicho bit tiene un valor de 1 implica que dicha muestra codifica un número negativo (Figura 4.4 (g)).
- 7. Se obtiene el complemento a 1 de cada muestra del vector g, se suma 1 a cada muestra y se multiplica cada muestra por -1. De esta operación se obtiene un vector con las muestras decodificadas a número negativos (Figura 4.4 (h)).
- 8. Se insertan los elementos del vector h en sus posiciones originales del vector f. De este último paso se obtiene un vector con las N muestras decodificadas a números de 24 bits con signo (Figura 4.4 (i)).

Figura 4.4: Funcionamiento del subsistema decodificador del flujo de datos.

4.3. Evaluación de bloque de adquisición y decodificación

Se llevó a cabo un procedimiento para evaluar el desempeño del subsistema diseñado en Simulink para la adquisición y decodificación de datos. En MATLAB se generó un banco de señales senoidales conformado por 5 senoidales puras de 1 Hz, 5 Hz, 10 Hz, 20 Hz y 50 Hz (4.5a), dos senoidales de 50 Hz moduladas en amplitud con una envolvente de una recta con pendiente negativa (4.5b) y una exponencial decreciente (4.5c), y una senoidal de 50 Hz modulada en amplitud con una envolvente que simula la señal sEMG correspondiente a la tarea de incrementar gradualmente una contracción muscular, mantener dicha contracción y relajar el músculo gradualmente (4.5d). Todas las señales del banco se diseñaron con una frecuencia de muestreo de 250 Hz y una duración de 5 segundos, excepto la última, que se diseñó con una duración de 15 segundos; adicionalmente, todas las señales se generaron como objetos de audio dentro de MATLAB, para poder reproducirlas como audio y a partir de la salida de audio de la computadora poder acceder a ellas.

(a) Senoidales puras a diferentes frecuencias.

(c) Senoidal de 50 Hz con atenuación exponencial.

(b) Senoidal de 50 Hz con atenuación lineal.

(d) Senoidal de 50 Hz simulando el sEMG de una contracción muscular.

Figura 4.5: Banco de señales para evaluación de adquisición.

El proceso para la evaluación del funcionamiento del subsistema de adquisición se llevó a cabo de la siguiente manera:

- 1. Se realiza la adquisición de tres tantos de todas las señales del banco de señales de prueba.
 - a) Se conecta una punta de un jack de audio de 3.5 mm (Figura NUM) a la salida de audio de la computadora. La otra punta se conectó al dispositivo de adquisición (Cyton Board) de la siguiente forma: los pines *izquierdo* y derecho se conectaron a la entrada diferencial, mientras que el pin tierra se conectó a la entrada BIAS.
 - b) Se realiza la solicitud de datos utilizando el subsistema decodificador implementado en Simulink, y al mismo tiempo se inicia el conteo de un cronómetro.
 - c) Tras haber transcurrido 2 s en el cronómetro, se procede a reproducir la señal de audio de prueba.
 - d) Tras haber transcurrido 10 s (20 s para la simulación del sEMG de una contracción), se detiene la adquisición del subsistema de Simulink y se guardan los datos de adquisición dentro de un archivo con extensión .mat.
- 2. Se cargan, dentro del workspace de MATLAB, los datos de las señales adquiridas y los datos de las señales patrón.
- 3. Se procede a calcular el coeficiente de correlación de Pearson (Ecuación 4.1) entre las señales adquiridas y su correspondiente señal patrón.
- 4. Se obtiene la media aritmética de todos los valores obtenidos al aplicar el coeficiente de correlación de Pearson. El valor obtenido se utiliza como indicador de la calidad del subsistema de adquisición y decodificación de datos.

$$r = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \tag{4.1}$$

4.4. Protocolo para registro de sEMG

Para garantizar repetibilidad en los registros de sEMG se implementó un protocolo para realizar la adquisición de dicha señal. Dicho protocolo se describe a continuación y utiliza electrodos Telectrode T718 (Bio-Protech Inc., Chino, E.U.A.):

- 1. Se configura el dispositivo de adquisición (Para el caso del Cyton Board esta configuración es la default):
 - a) Frecuencia de muestreo a 250 Hz.
 - b) Ganancia 24 para los canales de adquisición 1 y 2.
 - c) BIAS habilitado para los canales de adquisición 1 y 2.
- 2. Se prepara la zonas donde se colocaran los electrodos, limpiando con algodón y alcohol las zonas ventral y dorsal del antebrazo, así como el codo.
- 3. Se ubican los puntos para colocación de electrodos:
 - a) Para músculo flexor digitorum (4.6a):
 - 1) Se mide la distancia de codo a muñeca en el lado ventral del antebrazo.
 - 2) Se coloca una marca al $25\,\%$ de la medida obtenida.
 - b) Para músculo extensor digitorum (4.6b):
 - 1) Se mide la distancia de codo a muñeca en el lado dorsal del antebraz.
 - 2) Se coloca una marca al $75\,\%$ de la medida obtenida.
- 4. Se colocan, sobre la marca obtenida para el flexor digitorum (4.6a), dos electrodos (en dirección de la fibra muscular) separados 3 cm. Dicho par de electrodos se conecta al canal 1 del dispositivo de adquisición.
- 5. Se colocan, sobre la marca obtenida para el extensor digitorum (4.6b), dos electrodos (en dirección de la fibra muscular) separados 3 cm. Dicho para de electrodos se conecta al canal 2 del dispositivo de adquisición.
- 6. Se coloca un electrodo de referencia sobre el codo. Dicho electrodo se conecta al BIAS del dispositivo de adquisición.

4.5. Procesamiento de sEMG

Se diseñaron tres filtros digitales Butterworth orden 2 para realizar el procesamiento de sEMG: un filtro pasa altas con frecuencia de corte de 15 Hz, para eliminar las variaciones en la línea base del registro; un filtro pasa bajas con frecuencia de corte de 100 Hz, para eliminar armónicos de 60 Hz y demás interferencias de alta frecuencia; y un filtro rechaza banda centrado en 60 Hz, para reducir la interferencia de la línea.

(b) Ubicación de electrodos para extensor digitorum.

Figura 4.6: Posicionamiento de electrodos para realizar registros de sEMG. Adaptado de [4].

Todos estos filtros se diseñaron utilizando la función butter de MATLAB. Las gráficas de respuesta en frecuencia de estos filtros se muestran en las Figuras 4.7 a 4.9.

Se implementó dentro de Simulink un bloque responsable de obtener el valor RMS de ventanas de 100 ms del registro de sEMG, para utilizar dicho descriptor de amplitud como señal de control. Adicionalmente se implementó un filtro de mediana de 10 muestras (Ecuación 4.2), el cual tiene como propósito conseguir una señal de RMS suavizada.

$$y[n] = mediana(x[n] : x[n-N])$$
(4.2)

Figura 4.7: Respuesta en frecuencia de filtro pasa altas.

Figura 4.8: Respuesta en frecuencia de filtro pasa bajas.

Figura 4.9: Respuesta en frecuencia de filtro rechaza banda.

4.6. Sistema de control

A grandes rasgos, el sistema de control implementado para este proyecto consta de la combinación de una FSM y un control lineal. La FSM permite clasificar la intención de movimiento del sujeto en tres clases (descanso, pinza gruesa y apertura), mientras que el control lineal permite realizar la modulación de la amplitud de corriente eléctrica a partir de la amplitud del sEMG.

Dicho sistema requiere de un proceso de calibración para cada sesión de prueba, donde se obtienen los parámetros de configuración del sistema para que este presente el funcionamiento esperado. Posterior al proceso de calibración se realiza una validación fuera de línea, donde a partir del registro de calibración y los parámetros arrojados por esta se pone a prueba el funcionamiento del sistema. Cuando la validación fuera de línea presenta un porcentaje de acierto igual o mayor al 80% se procede a configurar el sistema para realizar una prueba en línea y posteriormente realizar la tarea objetivo y una tarea libre. Todas las etapas antes mencionadas por las que se somete el sistema de control se describen a continuación.

4.6.1. Calibración

El proceso de calibración del sistema consta a su vez de una calibración de los parámetros de estimulación eléctrica y una calibración de los valores de amplitud RMS del sEMG.

Calibración de parámetros FES

El objetivo de esta calibración es el obtener los umbrales motores y funcionales de los movimientos de apertura de mano y pinza gruesa. Para esta calibración se utiliza el sistema de colocación de electrodos de estimulación eléctrica desarrollado en el INR-LGII, el cual se encuentra descrito en [12], en conjunto con la pantalla *Experimentación* (Figura 4.10) de la GUI diseñada en el INR-LGII [9].

El proceso para la obtención de los umbrales antes mencionados consiste en realizar la colocación de los electrodos de estimulación eléctrica y realizar una exploración de la respuesta del sujeto ante diferentes valores de amplitud de corriente eléctrica que le serán proporcionados. Dichos valores exploran el rango entre 1 y 15 mA, utilizando un incremento de 1 mA. El umbral motor será el primer valor de amplitud que genere una respuesta motora en la mano del sujeto; mientras que el umbral funcional será aquél valor de amplitud en el que la respuesta motora en la mano del sujeto sea similar al movimiento que se está calibrando.

Calibración de amplitud RMS de sEMG

Para realizar esta calibración se utiliza el protocolo de registro descrito en la sección 4.4 y una pantalla de calibración diseñada para este proyecto (Figura 4.11), la cual

Figura 4.10: Pantalla utilizada para calibración de FES.

muestra indicaciones de los movimientos que debe realizar el sujeto y a la par realiza el registro de sEMG. Una vez colocados los electrodos para registro de sEMG, se le muestra al sujeto cuales son los movimientos asociados a cada una de las indicaciones que se le irán mostrando en la GUI.

Al terminar las repeticiones de los movimientos solicitados, la GUI nos arroja en la consola de MATLAB los valores de los umbrales RMS para los movimientos apertura de mano incompleta y completa, pinza gruesa incompleta y completa, y descanso, para cada canal de registro. La obtención de estos umbrales se realiza mediante la Ecuación 4.3, donde M_i representa a uno de los 5 movimientos antes mencionados, RMS_n representa al valor RMS obtenido para la n-esima ventana de registro (100 ms) asociada al movimiento M_i , y N representa la cantidad de valores RMS asociados al movimiento M_i .

$$M_i = \frac{\sum_{n=1}^{N} RMS_n}{N} \tag{4.3}$$

La GUI también proporciona un valor denominado detector de movimiento (DM), y los parámetros de las rectas que se utilizarán para llevar a cabo el control lineal.

El detector de movimiento, junto a los umbrales de movimiento incompleto, se utiliza para llevar a cabo la transición de estados de la FSM, siendo esta última la encargada de clasificar la intención de movimiento del sujeto. El detector de movimiento se obtiene utilizando la Ecuación 4.4, donde RMS_{2n} y RMS_{1n} representan el valor RMS de la n-esima ventana de registro para el movimiento de apertura incompleta en los canales 2 y 1 respectivamente, y N representa la cantidad de valores RMS existentes para el movimiento de apertura incompleta.

$$DM = \frac{\sum_{n=1}^{N} RMS_{2n} - RMS_{1n}}{N}$$
 (4.4)

Los parámetros de las rectas que arroja la GUI son la pendiente (m) y la ordenada al origen (b), donde dichas rectas son utilizadas para llevar a cabo el control lineal de los movimientos apertura de mano y pinza gruesa. Estos parámetros se obtienen a partir de las Ecuaciones 4.5 y 4.6, donde m_i y b_i representan la pendiente y ordenada al origen, respectivamente, de la i-esima recta; U_{iF} y U_{iM} representan los umbrales funcionales y motores, respectivamente, obtenidos tras la calibración de parámetros FES para el i-esimo movimiento correspondiente; M_{iC} y M_{iI} representan los umbrales de los movimientos completos e incompletos, respectivamente, del i-esimo canal de registro.

$$m_i = \frac{U_{iF} - U_{iM}}{M_{iC} - M_{iI}} \tag{4.5}$$

$$b_i = U_{iM} - m_i * M_{iI} (4.6)$$

Figura 4.11: GUI utilizada para calibración de amplitud RMS.

- 4.6.2. Validación fuera de línea
- 4.6.3. Validación en línea
- 4.6.4. Tarea objetivo

Capítulo 5

Resultados

5.1. Adquisición de datos

Tras adquirir las señales patrón para la evaluación del bloque de adquisición descritas en la metodología, se calculó la métrica de correlación entre las señales adquiridas y las patrón, buscando traslapar una sobre otra como se muestra en la Figura 5.1. Al tener el valor de correlación para cada registro se obtuvo como resultado una correlación promedio de 0.9615 ± 0.0604 , valor que sirve como indicador de la calidad del bloque diseñado para la adquisición y decodificación de datos.

Figura 5.1: Comparación entre señal adquirida con el bloque de adquisición diseñado (rojo) y señal patrón (azul)

5.2. Procesamiento de sEMG

Utilizando los registros de calibración se probaron los filtros diseñados, obteniendo como resultado notorio la estabilización de la línea base de cada registro. En la Figura 5.2 se muestra una comparación entre los registros crudos y filtrados de ambos canales adquiridos durante el entrenamiento.

Figura 5.2: Ejemplo representativo del funcionamiento de los filtros diseñados aplicados a registros de entrenamiento.

Con los registros ya filtrados se obtuvo el valor RMS a lo largo de todo el registro utilizando ventanas de 100 ms, dando como resultado una envolvente discreta de sEMG para cada canal. En la Figura 5.3 se muestran los registros de sEMG filtrados con sus respectivas envolventes discretas de RMS y marcadores de la acción solicitada al sujeto durante el entrenamiento.

5.3. Esquema de control

Previo a realizar pruebas del esquema de control en línea, este se probó fuera de línea, aprovechando los registros de calibración. Para estas pruebas se diseñó un script en MATLAB que obtiene los parámetros necesarios del esquema de control de la misma forma que los arroja la calibración. Una vez obtenidos dichos parámetros se configura con ellos al esquema de control y se realiza una prueba fuera de línea donde con cada ventana de sEMG se obtiene un valor de RMS el cuál es sometido al esquema de control y arroja un valor de amplitud para el canal asociado al movimiento detectado. Tras probar el esquema de control con tres registros distintos de calibración se obtuvo un porcentaje de acierto del 81 % en la identificación correcta de los movimientos de cierre, apertura y descanso de mano.

Figura 5.3: Ejemplo representativo de la obtención de envolvente discreta de RMS en registros de entrenamiento. Arriba: Canal 1 de sEMG. Medio: Canal 2 de sEMG. Abajo: Marcadores de acción solicitada al sujeto (descanso (DD), cierre ligero (CL), cierre completo (CC), apertura ligera (AL), apertura completa (AC)). Las envolventes (puntos rojoss) fueron multiplicadas por 2 para fines de visualización.

En la Figura 5.4 se muestra el resultado de una prueba exitosa del esquema de control fuera de línea, donde se observa que el esquema de control diseñado suele presentar errores en la identificación de los segmentos iniciales y finales de la tarea apertura de mano.

Figura 5.4: Ejemplo exitoso representativo de las pruebas del esquema de control funcionando fuera de línea con registros de calibración. Arriba: Envolventes de sEMG (Azul: canal 1. Rojo: canal 2). Medio: Amplitudes de estimulación resultantes del sistema de control (Azul: canal 1. Rojo: canal 2). Abajo: Marcadores de acción solicitada al sujeto (descanso (DD), cierre ligero (CL), cierre completo (CC), apertura ligera (AL), apertura completa (AC)).

Para la prueba en línea se configuró el modelo de Simulink con los datos obtenidos tras la calibración, y se solicitó al sujeto realizar el seguimiento de un par de señales trapezoidales que le indicarían el tipo de movimiento que tendría que lograr. Cuando la trapezoidal estuviera en cero, tendría que mantenerse en descanso; en la pendiente positiva de la trapezoidal tendría que realizar una transición de descanso hacia el movimiento completo solicitado; en la meseta de la trapezoidal tendría que mantener el movimiento completo solicitado; y en la pendiente negativa de la trapezoidal tendría que realizar una transición del movimiento completo solicitado hacia descanso.

En la Figura 5.5 se muestra un segmento de una de las pruebas exitosas realizadas en línea. En dicha figura se puede observar que existe un retardo entre la trapezoidal y la respuesta del sistema de control, el cual es la suma del retardo que genera el procesamiento de la señal, el retardo ocasionado por el esquema de control, y el tiempo de respuesta del sujeto a la indicación de la trapezoidal.

Para obtener el valor del retardo total se midió el tiempo existente entre el inicio de la pendiente positiva de la señal indicadora (trapezoidal) y la activación de la estimulación eléctrica. Al promediar los tiempos obtenidos a lo largo de las pruebas realizadas en línea se obtuvo un valor de 2.3 ± 0.3553 s.

En la Figura 5.6 se muestra un acercamiento a las señales obtenidas en una prueba representativa de las pruebas realizadas en línea. Se muestran una sobre otra para visualizar el retardo existente entre el inicio de la señal indicadora y la activación de la estimulación eléctrica.

Figura 5.5: Ejemplo exitoso representativo de las pruebas del esquema de control funcionando en línea. Arriba: Envolventes de sEMG (Azul: canal 1. Rojo: canal 2). Medio: Amplitudes de estimulación resultantes del sistema de control (Azul: canal 1. Rojo: canal 2). Abajo: Señales indicadoras de tarea a seguir (descanso (DD), apertura de mano (AC), cierre de mano (CC)).

Figura 5.6: Acercamiento a prueba representativa de las pruebas del esquema de control funcionando en línea. Se muestran las diferentes señales asociadas a cada movimiento una sobre otra para visualizar el retardo existente. Arriba: Señales para movimiento cierre de mano. Abajo: Señales para movimiento apertura de mano. En azul se muestra la señal indicadora del movimiento a realizar. En rojo se muestra la envolvente de sEMG. En amarillo se muestra la amplitud de estimulación eléctrica (AEE) arrojada por el esquema de control.

Capítulo 6

Discusión

El trabajo realizado en este proyecto se espera sea tomado en cuenta para generar mejores técnicas para rehabilitación de pacientes. Este proyecto plantea las bases para realizar una adecuada implementación de una aplicación en lazo cerrado que sea de utilidad para la rehabilitación de pacientes, y los elementos que se considera que se pueden optimizar se mencionan a continuación.

Adquisición y decodificación de datos

El subsistema diseñado para realizar la adquisición y decodificación de datos tiene la particularidad de que puede ser utilizado para cualquier dispositivo de adquisición que utilice un chip ADS1299, sólo son necesarios pequeños cambios en la selección de los bytes correspondientes a cada canal. Un problema que tiene este subsistema se encuentra en el bloque responsable de realizar la solicitud de muestras al dispositivo de adquisición, ya que es un bloque perteneciente al *Instrument Control Toolbox* de Simulink, por lo cual si no se cuenta con dicho toolbox el sistema no será funcional. Una posible mejora a este subsistema sería el diseño de un bloque responsable de la solicitud de muestras implementado en algún lenguaje de bajo nivel, esto podría hacer al sistema flexible y veloz, ya que actualmente el bloque de solicitud realiza una comunicación con MATLAB para poder establecer una conexión serial con el dispositivo de adquisición, proceso que puede estar generando algún retraso dentro de todo el sistema

Protocolo para registro de sEMG

El protocolo descrito en este proyecto se presta a errores humanos al momento de ubicar el lugar adecuado para la colocación de electrodos, por lo cual no se garantiza una repetibilidad del 100 % en los registros. Se propone realizar un estudio donde se analice la actividad mioeléctrica en distintas posiciones del brazo en diversos sujetos, buscando obtener una estandarización en el posicionamiento de electrodos para aplicaciones similares a la desarrollada en este proyecto.

Procesamiento de sEMG

Actualmente todo el procesamiento de las señales de sEMG se lleva a cabo por ventanas no traslapadas de adquisición, este proceso genera un retardo natural definido por la longitud de la ventana analizada, por lo cual el realizar un procesamiento con ventanas traslapadas o bien muestra a muestra podría diminuir este retardo natural. La implementación de un filtro de mediana móvil resultó de gran utilidad para conseguir una envolvente suave que sirviera como señal de control, sin embargo existen métodos como la regla trapezoidal que podrían arrojar resultados similares y de forma más eficaz. Un aspecto importante en el procesamiento es el hecho de que no se trabajó con señales de sEMG normalizadas, esto podría estar afectando al desempeño del sistema y sería una buena idea implementar una aplicación similiar evaluando el desempeño utilizando sEMG normalizado y no normalizado.

Esquema de control

Actualmente el esquema de control se divide en dos grandes partes: 1)Máquina de estados finitos para la identificación de movimientos; 2)Ecuación lineal para realizar el mapeo sEMG-FES.

En cuanto a la identificación de movimientos se considera que la implementación de un clasificador basado en una FSM que cambia de estado según se superen determinados valores de umbrales no es la mejor forma para realizar una clasificación, pero quizás sí una de las más fáciles. Este clasificador demostró ciertos problemas en identificar cambios de estado visualmente notorios, por ejemplo, en los movimientos ligeros de apertura o cierre existían momentos en los cuales el clasificador no identificaba el movimiento de forma adecuada a pesar de que visualmente se notara un cambio en la envolvente. Otro aspecto importante de este clasificador implementado es la imposibilidad de compensar la fatiga muscular. Implementar un clasificador robusto basado en algún algoritmo de inteligencia artificial o LDA podría ser de mayor utilidad para una aplicación que se fuera a utilizar como técnica de rehabilitación. Otro aspecto importante relacionado a la clasificación es que los umbrales pueden estar generando un retardo en el tiempo de respuesta de estimulación, ya que habrá movimientos ligeros que no logren activar la estimulación; una buena idea sería probar disminuir los umbrales para lograr la activación de la estimulación con movimientos ligeros.

En cuanto a la ecuación lineal para realizar el mapeo, esta se está obteniendo a partir de dos puntos de calibración, y considerando que el sEMG no presenta un comportamiento lineal, es muy probable que este método no pueda realizar un seguimiento preciso a los cambios de sEMG. Una mejora a esta parte sería utilizar una calibración a más de dos puntos y obtener una regresión lineal con ellos.

Cabe destacar que al final del desarrollo de este proyecto se tuvo la posibilidad de probar la utilidad del sistema dentro de una situación de la vida real. Esta prueba se realizó a un sujeto sano, al cual se le otorgó la tarea de tomar un objeto cilíndrico con su mano derecha pero utilizando solamente la corriente eléctrica modulada por su brazo izquierdo. El sujeto pudo tomar el objeto de forma eficaz, y realizando movimientos del hombro logró levantar el objeto y trasladarlo a un lugar diferente a donde tomó el objeto. Con esto se logró demostrar que aplicaciones similares a la desarrollada a este proyecto pueden ser de utilidad en terapias de rehabilitación, dando a los pacientes la posibilidad de realizar tareas comúnes de su vida diaria. Se espera que con las correctas adecuaciones, el sistema diseñado en este proyecto pueda ser de utilidad en sujetos con hemiparesia.

Referencias

- [1] AGUIRRE-VARGAS, G., FLORES-ABAD, Á., ALBA-BAENA, N., ACOSTA-GUADARRAMA, J. C., AND CANALES-VALDIVIEZO, I. Control de Señales EMG para el Movimiento de un Brazo Robótico de Tres Grados de Libertad. *Cultura Científica y Tecnológica 12*, 55 (2015).
- [2] Bequette, B. W. Process Control: Modeling, Design and Simulation, 1 ed. Prentice Hall, 2003.
- [3] CASTILLO, J. Señales de comando basadas en EEG para una neuroprótesis. Reporte de proyecto terminal, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana Unidad Iztapalapa., Enero 2019.
- [4] CAVALCANTI-GARCIA, M., AND VIERIRA, T. Surface electromyography: Why, when and how to use it. Revista Andaluza de Medicina del Deporte 4, 1 (2011), 17–28.
- [5] CLANCY, E. A., AND HOGAN, N. Probability Density of the Surface Electromyogram and Its Relation to Amplitude Detectors. *IEEE Transactions on Biomedical Engineering* 46, 6 (1999), 730–739.
- [6] DECONINCK, F. J., SMORENBURG, A. R., BENHAM, A., LEDEBT, A., FELT-HAM, M. G., AND SAVELSBERGH, G. J. Reflections on Mirror Therapy: A Systematic Review of the Effect of Mirror Visual Feedback on the Brain. *Neurorehabilitation and Neural Repair* 29, 4 (2015), 349–361.
- [7] FINN, W. E., AND LOPRESTI, P. G. Handbook of Neuroprosthetic Methods. CRC Press, 2003.
- [8] FONSECA, L., TIGRA, W., NAVARRO, B., GUIRAUD, D., FATTAL, C., BÓ, A., FACHIN-MARTINS, E., LEYNAERT, V., GÉLIS, A., AND AZEVEDO-COSTE, C. Assisted grasping in individuals with tetraplegia: Improving control through residual muscle contraction and movement. Sensors (Switzerland) 19, 20 (oct 2019), 4532.
- [9] FUENTES, J. Plataforma de control y configuración de una neuroprótesis para rehabilitación en miembro superior. Reporte de proyecto terminal, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana Unidad Iztapalapa., Agosto 2018.

- [10] Kim, J. H., and Lee, B. H. Mirror Therapy Combined With Biofeedback Functional Electrical Stimulation for Motor Recovery of Upper Extremities After Stroke: A Pilot Randomized Controlled Trial. *Occupational Therapy International* 22, 2 (2015), 51–60.
- [11] LENZI, T., DE ROSSI, S. M. M., VITIELLO, N., AND CARROZA, M. C. Intention-Based EMG Control for Powered Exoskeletons. *IEEE Transactions on Biomedical Engineering* 59, 8 (2012), 2180–2190.
- [12] Martin, A. Manga para el posicionamiento estratégico de electrodos de registro de sEMG y de estimulación eléctrica funcional en miembro superior para uso en una Neuroprótesis. Tesis de grado, Facultad de Ingeniería. Universidad La Salle A.C., 2019.
- [13] MERCADO, J., CASTILLO, J., TOLEDO, C., QUINZAÑOS, J., AND GUTIERREZ, J. A Simple Approach for EEG-FES Triggered Upper Limb Rehabilitation. Rehabweek 2019 / International Functional Electrical Stimulation Society Conference (2019).
- [14] MERCADO, J., FUENTES, J., TOLEDO, C., CASTELLANOS, N., AND GUTIE-RREZ, J. Design of a Flexible Platform for prototyping of FES-based Motor Rehabilitation Systems. 22 Annual Conference of the International Functional Electrical Stimulation Society (2018).
- [15] Peckham, P. H., and Knutson, J. S. Functional Electrical Stimulation for Neuromuscular Applications.
- [16] Phinyomark, A., Thongpanja, S., Quaine, F., and Laurillau, Y. Optimal EMG Amplitude Detectors for Muscle- Computer Interface. In 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (Krabi, Thailand, 2013), pp. 1–6.
- [17] POPOVIĆ, D. B. Principles of command and control for neuroprostheses. In *Implantable Neuroprostheses for Restoring Function*. 2015, pp. 45–58.
- [18] POPOVIC, M. R., AND THRASHER, A. T. Neuroprostheses. In *Encyclopedia of Biomaterials and Biomedical Engineering*, G. E. Wnek and G. L. Bowlin, Eds., 2 ed. 2008, ch. Neuroprost, pp. 1056–1065.
- [19] SACHS, N., CHANG, E., AND WEILAND, J. Contralateral EMG-Triggered Electrical Stimulation of the Eyelid. In 11th Annual Conference of the International FES Society (Zao, Japan, 2006), no. September, pp. 286–288.
- [20] SALCHOW, C., VALTIN, M., SEEL, T., AND SCHAUER, T. Development of a Feedback-Controlled Hand Neuroprosthesis: FES-Supported Mirror Training.
- [21] SIMONSEN, D., SPAICH, E. G., HANSEN, J., AND ANDERSEN, O. K. Design and Test of a Closed-Loop FES System for Supporting Function of the Hemiparetic

- Hand Based on Automatic Detection Using the Microsoft Kinect Sensor. IEEE Transactions on Neural Systems and Rehabilitation Engineering 25, 8 (2017), 1249–1256.
- [22] Sun, M. A Functional Electrical Stimulation (FES) Control System For Upper Limb Rehabilitation. PhD thesis, University of Salford, 2014.
- [23] Woods, B., Subramanian, M., Shafti, A., and Faisal, A. A. Mechanom-yography based closed-loop Functional Electrical Stimulation cycling system. 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) (2018), 179–184.
- [24] WRIGHT, J., MACEFIELD, V. G., VAN SCHAIK, A., AND TAPSON, J. C. A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems. Frontiers in Neuroscience 10 (2016).
- [25] YI, X., JIA, J., DENG, S., SHEN, G., XIE, Q., AND WANG, G. A Blink Restoration System With Contralateral EMG Triggered Stimulation and Real-Time Artifact Blanking. *IEEE Transactions on Biomedical Circuits and Systems* 7, 2 (2013), 140–148.
- [26] YUCHA, C. B., AND MONTGOMERY, D. Evidence-Based Practice in Biofeedback and Neurofeedback, vol. 6656. AAPB Wheat Ridge, CO, 2008.
- [27] ZHOU, Y., FANG, Y., GUI, K., LI, K., ZHANG, D., AND LIU, H. sEMG Biasdriven Functional Electrical Stimulation System for Upper-Limb Stroke Rehabilitation. *IEEE Sensors Journal* 18, 16 (2018), 6812–6821.