K_Means Clustering

Import Libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
plt.rcParams["figure.figsize"] = (10,6)
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
df = pd.read_csv("iris.csv")
df.head()
```

Out[2]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [3]:

```
df.species.value_counts()
```

Out[3]:

setosa 50 versicolor 50 virginica 50

Name: species, dtype: int64

In [4]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

null value yok

In [5]:

```
df.describe()
```

Out[5]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [6]:

sns.pairplot(df)
plt.show()

In [7]:

```
sns.pairplot(data=df, hue="species")
plt.show()
```


K_Means Clustering

In [8]:

Z = df.copy()

In [9]:

X = Z.drop("species", axis = 1)

```
In [10]:
```

```
X.head()
```

Out[10]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

In [11]:

X.shape

Out[11]:

(150, 4)

In [12]:

?KMeans

In [13]:

```
from sklearn.cluster import KMeans
```

K_means_model = KMeans(n_clusters=5, random_state=42)

In [14]:

```
K means model.fit(X)
```

Out[14]:

KMeans(n clusters=5, random state=42)

In [15]:

```
K_means_model.labels_
```

Out[15]:

4

3

```
In [16]:
X["Classes"] = K_means_model.labels_
In [17]:
Χ
Out[17]:
      sepal_length sepal_width petal_length petal_width Classes
   0
               5.1
                            3.5
                                         1.4
                                                      0.2
                                                                 1
               4.9
                            3.0
                                         1.4
                                                      0.2
   1
                                                                 1
   2
               4.7
                            3.2
                                         1.3
                                                      0.2
                                                                 1
               4.6
                                                      0.2
   3
                            3.1
                                         1.5
                                                                 1
               5.0
                            3.6
                                         1.4
                                                      0.2
                                                                 1
```

2.3

1.9

2.0

2.3

Choosing The Optimal Number of Clusters

5.2

5.0

5.2

5.4

Elbow metod

6.7

6.3

6.5

6.2

3.0

2.5

3.0

3.4

```
In [18]:
```

145

146

147

148

```
ssd = []  # sum of squared distance

K = range(2,10)

for k in K:
    model = KMeans(n_clusters =k, random_state=42)
    model.fit(X)
    ssd.append(model.inertia_)
```

In [19]:

```
plt.plot(K, ssd, "bo-")
plt.xlabel("Different k values")
plt.ylabel("inertia-error")
plt.title("elbow method")
plt.show()
```


In [20]:

ssd

Out[20]:

```
[297.21519904931665,
154.0945807978364,
77.4108126984127,
46.44618205128205,
39.35425513506102,
34.735520984278885,
31.117176989676995,
28.60224837662338]
```

In [21]:

```
pd.Series(ssd).diff()
```

Out[21]:

```
0 NaN
1 -143.120618
2 -76.683768
3 -30.964631
4 -7.091927
5 -4.618734
6 -3.618344
7 -2.514929
dtype: float64
```

In [22]:

```
df_diff =pd.DataFrame(-pd.Series(ssd).diff()).rename(index = lambda x : x+2)
df_diff
```

Out[22]:

	0
2	NaN
3	143.120618
4	76.683768
5	30.964631
6	7.091927
7	4.618734
8	3.618344
9	2.514929

In [23]:

```
df_diff.plot(kind='bar');
```


In [24]:

```
from yellowbrick.cluster import KElbowVisualizer

model_ = KMeans(random_state=42)
visualizer = KElbowVisualizer(model_, k=(2,9))

visualizer.fit(X)
visualizer.show();
```


Silhouette analysis

In [25]:

```
from sklearn.metrics import silhouette_score
```

In [26]:

```
range_n_clusters = range(2,9)
for num_clusters in range_n_clusters:
    # intialise kmeans
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(X)
cluster_labels = kmeans.labels_
    # silhouette score
silhouette_avg = silhouette_score(X, cluster_labels)
print(f"For n_clusters={num_clusters}, the silhouette_score is {silhouette_avg}")
```

```
For n_clusters=2, the silhouette score is 0.6302043128172005
For n_clusters=3, the silhouette score is 0.6715780817387732
For n_clusters=4, the silhouette score is 0.6117353392436371
For n_clusters=5, the silhouette score is 0.6314166907607778
For n_clusters=6, the silhouette score is 0.4981312302377309
For n_clusters=7, the silhouette score is 0.445058141055753
For n_clusters=8, the silhouette score is 0.4357498465448826
```

In [27]:

```
from sklearn.cluster import KMeans
from yellowbrick.cluster import SilhouetteVisualizer

model3 = KMeans(n_clusters=3, random_state=42)
visualizer = SilhouetteVisualizer(model3)

visualizer.fit(X)  # Fit the data to the visualizer
visualizer.poof();
```


Building the model based on the optimal number of clusters

In [28]:

```
model = KMeans(n_clusters =3, random_state=42)
model.fit_predict(X)
```

Out[28]:

In [29]:

```
model.labels_
```

Out[29]:

In [30]:

```
clusters = model.labels_
```

In [31]:

X.head()

Out[31]:

	sepal_length	sepal_width	petal_length	petal_width	Classes
0	5.1	3.5	1.4	0.2	1
1	4.9	3.0	1.4	0.2	1
2	4.7	3.2	1.3	0.2	1
3	4.6	3.1	1.5	0.2	1
4	5.0	3.6	1.4	0.2	1

In [32]:

```
X["predicted_clusters"] = clusters
```

In [33]:

Χ

Out[33]:

	sepal_length	sepal_width	petal_length	petal_width	Classes	predicted_clusters
0	5.1	3.5	1.4	0.2	1	2
1	4.9	3.0	1.4	0.2	1	2
2	4.7	3.2	1.3	0.2	1	2
3	4.6	3.1	1.5	0.2	1	2
4	5.0	3.6	1.4	0.2	1	2
145	6.7	3.0	5.2	2.3	4	1
146	6.3	2.5	5.0	1.9	3	1
147	6.5	3.0	5.2	2.0	4	1
148	6.2	3.4	5.4	2.3	4	1
149	5.9	3.0	5.1	1.8	3	1

150 rows × 6 columns

In [34]:

df.head()

Out[34]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [35]:

df["predicted_clusters"] = clusters

```
In [36]:
```

df.head()

Out[36]:

	sepal_length	sepal_width	petal_length	petal_width	species	predicted_clusters
0	5.1	3.5	1.4	0.2	setosa	2
1	4.9	3.0	1.4	0.2	setosa	2
2	4.7	3.2	1.3	0.2	setosa	2
3	4.6	3.1	1.5	0.2	setosa	2
4	5.0	3.6	1.4	0.2	setosa	2

In [37]:

```
ct = pd.crosstab(df.predicted_clusters, df.species)
ct
```

Out[37]:

species	setosa	versicolor	virginica
predicted_clusters			
0	0	0	12
1	0	49	38
2	50	1	0

Visualization Clusters

In [38]:

plt.scatter(df["sepal_length"], df["sepal_width"], c = df.predicted_clusters, cmap = "virid")

In [39]:

plt.scatter(df["sepal_width"], df["petal_length"], c = df.predicted_clusters, cmap = "virid


```
In [40]:
```

```
centers = model.cluster_centers_
centers
```

Out[40]:

```
array([[7.47500000e+00, 3.12500000e+00, 6.30000000e+00, 2.050000000e+00, 4.44089210e-16], [6.10804598e+00, 2.84137931e+00, 4.73563218e+00, 1.63103448e+00, 3.00000000e+00], [5.00784314e+00, 3.40980392e+00, 1.49215686e+00, 2.62745098e-01, 1.01960784e+00]])
```

In [41]:

```
centers[:,0] # centers of sepal_length feature
```

Out[41]:

```
array([7.475 , 6.10804598, 5.00784314])
```

In [42]:

```
centers[:,1] # centers of sepal_width feature
```

Out[42]:

```
array([3.125 , 2.84137931, 3.40980392])
```

In [43]:

```
plt.scatter(centers[:,0], centers[:,1], c = "black");
```


In [44]:

```
plt.scatter(X["sepal_length"], X["sepal_width"], c = X.predicted_clusters, cmap = "viridis"
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);
```


Remodeling according to discriminating features

In [45]:

df.head()

Out[45]:

	sepal_length	sepal_width	petal_length	petal_width	species	predicted_clusters
0	5.1	3.5	1.4	0.2	setosa	2
1	4.9	3.0	1.4	0.2	setosa	2
2	4.7	3.2	1.3	0.2	setosa	2
3	4.6	3.1	1.5	0.2	setosa	2
4	5.0	3.6	1.4	0.2	setosa	2

In [46]:

```
df.iloc[:, [0,1,2,3,5]].head()
```

Out[46]:

	sepal_length	sepal_width	petal_length	petal_width	predicted_clusters
0	5.1	3.5	1.4	0.2	2
1	4.9	3.0	1.4	0.2	2
2	4.7	3.2	1.3	0.2	2
3	4.6	3.1	1.5	0.2	2
4	5.0	3.6	1.4	0.2	2

In [47]:

```
clus_pred = df.iloc[:, [0,1,2,3,5]].groupby("predicted_clusters").mean().T
clus_pred
```

Out[47]:

predicted_clusters	0	1	2
sepal_length	7.475	6.108046	5.007843
sepal_width	3.125	2.841379	3.409804
petal_length	6.300	4.735632	1.492157
petal_width	2.050	1.631034	0.262745

In [48]:

```
sns.lineplot(data = clus_pred);
```


In [49]:

```
plt.scatter(X["petal_length"], X["petal_width"], c = X.predicted_clusters, cmap = "viridis"
plt.scatter(centers[:, 2], centers[:, 3], c='black', s=200, alpha=0.5)
```

Out[49]:

<matplotlib.collections.PathCollection at 0x1cce80a31f0>

In [50]:

X2 = X.iloc[:, [2,3]] X2

Out[50]:

	petal_length	petal_width
0	1.4	0.2
1	1.4	0.2
2	1.3	0.2
3	1.5	0.2
4	1.4	0.2
145	5.2	2.3
146	5.0	1.9
147	5.2	2.0
148	5.4	2.3
149	5.1	1.8

150 rows × 2 columns

Elbow metod

In [51]:

```
ssd = []

K = range(2,10)

for k in K:
    model3 = KMeans(n_clusters =k)
    model3.fit(X2)
    ssd.append(model3.inertia_)
```

In [52]:

```
plt.plot(K, ssd, "bo-")
plt.xlabel("Different k values")
plt.ylabel("inertia-error")
plt.title("elbow method")
```

Out[52]:

Text(0.5, 1.0, 'elbow method')

In [53]:

```
df_diff = pd.DataFrame(-pd.Series(ssd).diff()).rename(index = lambda x : x+1)
df_diff
```

Out[53]:

		U
1		NaN

- **2** 55.018861
- **3** 11.888358
- **4** 5.566092
- **5** 2.891764
- **6** 1.675506
- **7** 1.642246
- 8 1.250899

In [54]:

10

In [55]:

```
from yellowbrick.cluster import KElbowVisualizer

model_ = KMeans(random_state=42)
visualizer = KElbowVisualizer(model_, k=(2,9))

visualizer.fit(X2)  # Fit the data to the visualizer
visualizer.show();
```


Silhouette analysis

In [56]:

```
range_n_clusters = range(2,9)
for num_clusters in range_n_clusters:
    # intialise kmeans
    kmeans = KMeans(n_clusters=num_clusters, random_state=42)
    kmeans.fit(X2)
    cluster_labels = kmeans.labels_
    # silhouette score
    silhouette_avg = silhouette_score(X2, cluster_labels)
    print(f"For n_clusters={num_clusters}, the silhouette_score is {silhouette_avg}")
```

```
For n_clusters=2, the silhouette score is 0.7653904101258123 For n_clusters=3, the silhouette score is 0.6604800083974887 For n_clusters=4, the silhouette score is 0.6127580794464402 For n_clusters=5, the silhouette score is 0.5883732712110276 For n_clusters=6, the silhouette score is 0.576292818723561 For n_clusters=7, the silhouette score is 0.5640984340524555 For n_clusters=8, the silhouette score is 0.5902255624998718
```

In [57]:

```
from sklearn.cluster import KMeans

from yellowbrick.cluster import SilhouetteVisualizer

model3 = KMeans(3, random_state=42)
visualizer = SilhouetteVisualizer(model3)

visualizer.fit(X2)  # Fit the data to the visualizer
visualizer.poof();
```


Building the model based on the optimal number of clusters

```
In [58]:
```

```
final_model = KMeans(n_clusters =3, random_state=42)
final_model.fit_predict(X2)
```

Out[58]:

In [59]:

```
X2["species"] = df["species"]
```

In [60]:

```
X2["predicted_clusters"] = final_model.labels_
```

In [61]:

```
X2.head()
```

Out[61]:

	petal_length	petal_width	species	predicted_clusters
0	1.4	0.2	setosa	1
1	1.4	0.2	setosa	1
2	1.3	0.2	setosa	1
3	1.5	0.2	setosa	1
4	1.4	0.2	setosa	1

Compare results

In [62]:

```
# ct for 2 features
pd.crosstab(X2.predicted_clusters, X2.species)
```

Out[62]:

speciessetosaversicolorvirginicapredicted_clusters0024615000

0

2

4

48

```
In [63]:
```

```
# ct for all features
ct
```

Out[63]:

	species	setosa	versicolor	virginica
pre	dicted_clusters			
	0	0	0	12
	1	0	49	38
	2	50	1	0

Prediction cluster of new data

```
In [64]:
```

```
new_data = [[1.7, 0.2]]
```

In [65]:

```
final_model.predict(new_data)
```

Out[65]:

array([1])