Auxiliar # 2: Mecánica - FI2001-2

Profesor de Cátedra: Gonzalo Palma Q. Auxiliares: Felipe Isaule - José Zolezzi

Viernes, 22 de Marzo de 2013

Problema 1

La aceleración de un bloque es $\vec{a} = k\sqrt{x}\,\hat{i}$, con k > 0 y condiciones iniciales v(t=0) = 0 y x(t=0) = 0. Determine la aceleración, velocidad y posición en función del tiempo.

Problema 2

Una cuerda inextensible de largo 2L tiene sus extremos fijos en los puntos O y Q, separados entre sí una distancia L como muestra la figura. Una partícula P desliza por el borde interior de la cuerda, manteniendo a ésta siempre tensa.

a) Muestre que la trayectoria de P descrita con el sistema polar de la figura está dada por:

$$r(\theta) = \frac{3L/2}{2 - \cos(\theta)}$$

b) Si la partícula se mueve con rapidez constante v_0 , determine los valores de \dot{r} y $\dot{\theta}$ para $\theta = \pi/2$.

Problema 3

Considere un sistema de dos bloques, A y B, unidos por una cuerda inextensible de largo L que desliza sobre un cilindro de radio R, el cual está fijo a una superficie horizontal como se muestra en la figura. El bloque B es forzado a moverse sobre la superficie horizontal con rapidez constante v_0 . Para el instante cuando $\theta = \pi/3$, determine:

a) Velocidad angular $\dot{\theta}$ en ese instante.

- b) Rapidez del movimiento vertical del bloque A en ese instante.
- c) ¿Se puede obtener $\dot{\theta}$ para cualquier instante?

Problema 4

La partícula P_1 y el anillo P_2 están unidos por una cuerda ideal, de largo L > 3R, que pasa por una polea fija en A. La partícula P_1 puede moverse por una trayectoria rectilínea perpendicular a la recta \overline{AO} . El anillo P_2 puede moverse por un aro circular de centro O y radio R. La polea está ubicada a una distancia R del aro, como se indica en la figura. Suponiendo que la cuerda se mantiene siempre tensa, se pide:

- a) Si el anillo P_2 es movido con velocidad angular $\theta = \omega_0 > 0$ constante, en el intervalo $0 < \theta < \pi$ determine la rapidez máxima de P_1 .
- b) Si a partir de la condición en que $\theta = \pi/2$ la partícula P_1 es alejada de la polea A con rapidez v_0 constante, determine la velocidad de P_2 cuando $\theta = \pi/3$.

