Samuel

is a finite set of vectors in v.

We call 2 v, v2, -- , vn } a basis for V if

and only if

(1) { v, vz, ---, us is timeanly independent.

(ii) 2 v,, v2, --- Vh3 spans V.

example: (1.0,0,...0), (0,10,:...0), --- (0,0,0,---1)}
example: (1.0,0,...0), (0,10,:...0), ---- (0,0,0,---1)}
standaned basis.

of a finite dimensional vector space(v) is called Dimension.

or, equivalently, the dimension of a vector space is equal to the maximum number of linearly independent vectors contained in it.

** Let U be the subspace of 123 spanned by the vectors (1,2,1), (0,-1,0) and (20,2). Find basis and the dimension of U.

He som: Form the matrix whose rows are given vectors and reduce the matrix to row-echelon form.

\[\begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 0 \\ 2 & 0 & 2 \end{pmatrix} \]

we multiply first row by 2 and then Substruct from the third row.

$$\left(\begin{array}{c|cccc} 1 & 2 & 1 \\ 0 & -1 & 0 \\ 0 & -4 & 0 \end{array}\right)$$

we multiply second row by 4 and subtract from the third row.

we multiply second row by 2 and add with the first row.

we multiply seemed row by E1.

This matrix is in echelon form and the non-zero rows in the matrix are (1,0,1) and (0,1,0). These non-zero rows form a basis of the row space. and Consequently a basis of U; that is easis of $U = \frac{1}{2}(1,0,1), (0,1,0)$ and dim U = 2.

* Find the Basis and Dimension of the vector set S={(-1,2,-1,0),(0,3,1,2),(1,1,-2,2),(2,40,-1)}

Form the matrix whose rows are given vectors and reduce the matrix to row-echelon form.

This matrix is in echelon from and the mon-zero rows in the matorix are (-1, 2,-1,0), (0,3,1,2), (0,0,-4,0) and (0,0,0,-52). These non-zero rows form a basis of the row space_ and consequently a basis of S; that is Darsis of 3 = 3(-1,2,-1,0), (0,3,1,2), (0,0,-4,0), (0,0,9-52) and dims = 4.

1) Find the basis and dimension of the vector DAK * (a) V= {(1,-2,4,1), (2,-3,9,-1), (1,0,6,-5), (2,-5,7,5)} DAK B W = } (1,2,1), (3,1,2), (1,-3,4)} A.R \otimes S = \{(1,-2,0,0,3),(2,-5,-3,-2,6),(0.5,15,10,0), (2,6, 18,8,6)4 D.A.K @ T = 3(1,-2,5,-3), (2,3,1,4), (3,8,-3,-5)} (2) OU= {(1,1,1), (1,2,3), (3,4,5)}

SANTE THE SHARE A PROPERTY AND A PROPERTY AND A PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF

The state of the s

* Determine a basis and the dimension for the solution space of the homogeneous system.

. E - W 10 68 - 104 L

x-3y+2=0 22 - 64 + 27 = 0 32 - 9y + 32 = 0

西 solution:

$$2x - 3y + 2z = 0$$
 $2x - 6y + 2z = 0$
 $3x - 9y + 3z = 0$

Reduce the system to echelon form. we multiply first equation by 2 and 3 and then subtract from the second and third equations suspectively. 1. Then we get

$$x-3y+2=0$$
 $0=0$
 $0=0$

ie 2-34+7=0

The system is in echelon form and has only one non-zero equation in three unknowns. So the system has 3-1=2 free variable which one y and 2, Hence the dimension of the solution

set (1) 4=1, 2=0@ y=0, 2=1, to obtain the Solution.

Solutions V1 = (3,1,0), 1/2 = (-1,0,1).

a basis of Hence the set 2(3,1,0,(-1,0,1) 4 the solution space.

Find the dimension and a basis of the solution.

A.a. Space of the following homogeneous system. 2+2y-4+3s-t=0 2x+2y-2z+2s+t=0 2x+4y-2z+3s+4t=0

Ans: dim = 3. Banis: \(\frac{1}{2}, \frac{1}{5}, \frac{5}{0}, \frac{2}{1}, \frac{1}{5}, \frac{1

OF STATES

of or style with some and

THE COUNTY BY S AST

home homeson's with overet

TAR DIAL MANUEL

D.AX (B) 7+4-t=0 2+4-t=0 2+24+37=0 2x+34+32+t=0

Ans. dim=2 , basis:

Ang. dim = 2. Banis:

12 2000 1 1 1000 19 10 10 1 100 vat 25 100 14