

Comprehensive Understanding of Energy Systems Design & Analysis

Agnes, Sapiens Al Team

Program Overview & Core Topics

Program Goal: Design & Analyze Energy Systems

This program equips participants with essential skills to model and optimize energy systems through a deep dive into thermal engineering principles for efficient energy generation, conversion, and exchange.

Thermodynamics Laws & Cycles

Fundamental Principles

Power Cycles

Study of fundamental laws governing energy, entropy, and equilibrium in physical systems.

Focus on understanding cycles (Otto,

Heat Transfer Modes & Applications

Conduction

Convection

Radiation

Exploration of heat transfer mechanisms: conduction, convection, and thermal radiation.

Understanding how thermal energy flows is

Refrigeration & AC Basics

Cooling Principles

Vapor Compression

Introduction to the fundamental principles behind refrigeration and air conditioning systems.

Focus on vapor-compression cycles and their application in climate control and

Phase 1: Foundational & Core Concepts (Online)

Duration: Months 1 & 2 (Online Learning)

Month 1 Goal: MasterThermodynamicsFundamentals & Cycles

Energy Laws

System Behavior

Efficiency

Thermodynamics Principles: Delve into the fundamental laws governing energy, entropy, and equilibrium. Understand how these principles dictate the feasibility and limits of energy conversion.

Power Cycles: Focus on analyzing various thermodynamic cycles (e.g., Rankine, Otto, Diesel). Learn their application in heat engines and heat pumps for efficient work production.

Month 2 Goal: Understand
Heat Transfer Modes &
Applications

Conduction

Convection

Radiation

Thermal Exchange

Heat Transfer Mechanisms: Explore the three primary modes of thermal energy transfer: conduction, convection, and radiation. Analyze their characteristics in real-world systems.

Engineering Applications: Apply principles to practical scenarios, including the design and optimization of heat exchangers, HVAC systems, and industrial processes where thermal exchange is critical.

Month 1: Thermodynamics Fundamentals

Goal: Master core laws, property analysis, and cycle principles.

Week 1: Introduction to Thermodynamics & Zeroth/First Law Basic Concepts Energy Balance Hands-on T₁=T₂=T_{high}

Pressure

Dive into core principles: systems, control volumes, state variables (P, T, V), and processes.

-Wout

IIadiabatic

IV adiabatic

> Explore the Zeroth Law (thermal equilibrium) and master the First Law (energy conservation, heat/work transfer).

- > Study properties of pure substances (water/steam) and learn to interpret phase diagrams (T-v, P-v).
- > Develop proficiency using Steam Tables to determine thermodynamic states and properties.
- > Understand and apply the Ideal Gas Law for analyzing

Month 1: Advanced Thermodynamics & Cycles

Deep Dive into Energy Principles & Power Generation

Week 3: Second & Third Law & Entropy

Entropy

Irreversibility

Energy Quality

Second Law: Explore its implications on heat transfer direction and the efficiency limits of thermal systems.

Entropy & Increase Principle: Understand entropy as a measure of disorder and why it increases in isolated systems during irreversible processes.

Hands-on Balance: Apply theory by performing entropy balance calculations for various thermodynamic systems in practical exercises.

Week 4: Thermodynamic Power Cycles

Carnot Cycle

Otto Cycle

Rankine Cycle

Efficiency

Cycle Overview: Introduce key cycles (Carnot, Otto, Diesel, Rankine) that convert heat into work.

Process & Efficiency Analysis: Analyze processes (isobaric, isentropic, etc.) to evaluate thermal efficiency and performance.

Month 2: Heat Transfer Modes

Goal: Understand the mechanisms of heat flow.

Month 2: Applied Heat Transfer & Project Scoping

Week 7: Radiation Heat Transfer

Blackbody Radiation

Emissivity

Combined Modes

Hands-on Calculations

Fundamentals: Explore thermal radiation as a primary mechanism of energy transfer via electromagnetic waves, crucial in forms like infrared radiation from hot objects.

Blackbody Radiation & Properties:

Delve into the concept of a blackbody as an idealized emitter/absorber. Study key properties like emissivity and absorptivity for real surfaces.

Combined Heat Transfer: Analyze scenarios where radiation occurs with conduction and convection. Engage in hands-on calculations for complex systems to prepare for real-world challenges.

Week 8: Heat Exchangers & Refrigeration/AC Basics

Heat Exchangers & Insulation

Classification

LMTD

Insulation

Learn about devices for efficient thermal transfer between fluids, including classifications like shell-and-

VCR Cycle

Cooling Systems

Project Definition

Introduce the Vapor Compression Refrigeration (VCR) Cycle. Conclude with project scoping to define objectives

Phase 2: Industry Immersion & Integrated Project (Offline)

Program Duration

Month 3

Offline Focus

Intensive

This critical phase is dedicated entirely to Month 3 of the program.

It emphasizes an immersive, full-time, offline engagement, departing from the online modules to offer a real-world work environment experience.

The Offline Capstone Project

This intensive, full-time offline phase is the culmination of theoretical learning, integrating all acquired knowledge into a real-world engineering challenge and providing unparalleled industry immersion.

System Design

Engine Analysis

Participants will undertake a project focused on either:

- **Designing a System:** A novel heat exchanger or optimized energy plant.
- Analyzing Engine Performance: Indepth evaluation of an IC engine or power cycle.

Career Readiness & Development

Month 3: Capstone Project - Setup & Implementation

Week 9: Project Kick-off & Detailed Design/Analysis Setup

Team Formation

Project Scoping

Methodology Outline

Initial Analysis

Collaborative Foundation: Participants form interdisciplinary project teams, fostering collaboration. The initial phase involves selecting a capstone project that aligns with program objectives and team interests.

Strategic Planning: Teams develop a comprehensive project plan, outlining clear objectives, defining scope, and detailing methodologies. This includes specifying system parameters and preparing analytical frameworks.

Week 10: Implementation & Iterative Analysis

Thermal System Design

Performance Optimization

Cycle Analysis

Simulation

Month 3: Project Optimization & Reporting

Project
Optimizat
& Practica
Considera

Data Visualization & Technical Reporting

Clarity

Accuracy

[Impact]

Material Selection

Fouling Mitigation

Efficiency Gains

Material Selection: Making critical decisions on materials based on thermal conductivity, corrosion resistance, and cost to ensure system performance and longevity.

Fouling & Friction: Mitigating the effects of deposit accumulation on heat transfer surfaces (fouling) and energy loss from friction, crucial for long-term operational efficiency.

Effective Data Visualization: Transforming complex thermal and performance data into clear, actionable visual insights using appropriate charts to highlight trends and comparisons.

Technical Report Generation: Structuring comprehensive reports that accurately convey project methodology, results, and conclusions, ensuring findings are clearly communicated.

Month 3: Project Showcase & Career Launchpad

Week 12: Final Project Presentation & Documentation

Methodology

Results

Insights

Technical Reporting

Comprehensive Project Presentation: Teams deliver a final, comprehensive presentation of their capstone projects, showcasing designs, analyses, and solutions to instructors and industry guests, covering detailed methodology and key findings.

In-depth Documentation: Submission of complete project documentation, including design specifications, simulation results, analytical models, and a robust discussion of insights. This serves as a tangible portfolio piece.

Q&A and Feedback: Engage in a dynamic Q&A session with experts, receiving valuable feedback on technical approaches and presentation skills to refine professional capabilities.

La Career Development Workshops

Resume Building

LinkedIn Optimization

Interview Skills

Targeted Skill Enhancement: Intensive workshops focused on crafting compelling resumes, optimizing Links die ereflee for industry, visibility, and mostoring

Networking Session with Industry Professionals

Industry Connections

Mentorship

Career Insights

Direct Industry Engagement: An exclusive session to connect with leading professionals, facilitating idea exchange, potential mentorships, and direct insights into