HARMONICS OF THIN PIPES

In wind instruments the air is oscillating in a tube. The sound waves are reflected on both ends, thereby producing a superposition of standing waves.

The harmonics can easily be found for thin pipes. At the mouth the air's oscillation has a maximum, i.e. there is an anti-node. The other end is either a node (closed pipe) or an anti-node (open pipe).

Draw the standing waves in the figure below, express their wavelength and frequency as a function of the pipe's length and the speed of sound and find a general expression for the ith harmonic.

	open pipe	closed pipe
1 st harmonic (fundamental)		
λ_i		
f_i		
2 nd harmonic (1 st overtone)		
λ_2		
f_z		
3 rd harmonic (2 nd overtone)		
λ_3		
f_3		
4 th harmonic (3 rd overtone)		
λ_4		
f_4		
λ_i		
f_i		