Stabilized Mixed Finite Element Formulation

Personal Notes by Ida Ang

October 22, 2020

Definitions

F: Deformation gradient

I: second-order unit tensor

u: Displacement

J: determinant of the deformation gradient

C: Right Cauchy-Green Strain Tensor

 $\mathcal{W}(\mathbf{F})$: strain energy function

P: first Piola-Kirchhoff stress tensor

S: second PK stress tensor

 α : cracks are represented by a scalar phase-field variable

p: Lagrange multiplier, hydrostatic pressure field

 κ : bulk modulus

$$\kappa = \frac{E}{3(1 - 2\nu)} \tag{0.1}$$

 μ : shear modulus

$$\mu = \frac{E}{2(1+\nu)}\tag{0.2}$$

 λ : Lamé modulus

$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}\tag{0.3}$$

 \mathcal{E}_{ℓ} : potential energy functional $w(\alpha)$ is an increasing function representing the specific energy dissipation per unit of volume c_w is a normalization constant

1 Hyperelastic Phase-Field Fracture Models

Deformation Gradient

$$\mathbf{F} = \mathbf{I} + \nabla \otimes \mathbf{u} \tag{1.1}$$

where $J = \det \mathbf{F}$ and $\mathbf{C} = \mathbf{F}^T \mathbf{F}$.

The strain energy function $\mathcal{W}(\mathbf{F})$ is defined per unit reference volume such that the first PK and second PK

$$\mathbf{P} = \frac{\partial \mathcal{W}(\mathbf{F})}{\partial \mathbf{F}} \tag{1.2a}$$

$$\mathbf{S} = 2\frac{\partial \mathcal{W}(\mathbf{F})}{\partial \mathbf{C}} \tag{1.2b}$$

where P = FS.

1.1 Phase-Field Fracture Model

Non-modified strain energy function is the compressible Neo-Hookean:

$$\mathcal{W}(\mathbf{F}) = \frac{\mu}{2}(I_1 - 3 - 2\ln J) \tag{1.3}$$

For incompressible hyperelastic materials, the strain energy function is defined as

$$\widetilde{\mathcal{W}}(\mathbf{F}) = \mathcal{W}(\mathbf{F}) + p(J-1),$$
 (1.4)

We instead consider a damage dependent relaxation of the incompressibility constraint and the phase-field couples to the strain energy through the modified function

$$\widetilde{\mathcal{W}}(\mathbf{F}, \alpha) = a(\alpha)\mathcal{W}(\mathbf{F}) + a^3(\alpha)\frac{1}{2}\kappa (J - 1)^2$$
(1.5)

where the decreasing stiffness modulation function and $w(\alpha)$ is an increasing function representing the specific energy dissipation per unit of volume

$$a(\alpha) = (1 - \alpha)^2 \quad w(\alpha) = \alpha \tag{1.6}$$

In the code we have the following definition

$$b(\alpha) = (1 - \alpha)^3 = \sqrt{a^3(\alpha)}$$

To circumvent numerical difficulties, we resort to the classical mixed formulation and introduce the pressure-like field

$$p = -\sqrt{a^3(\alpha)}\kappa \left(J - 1\right),\tag{1.7}$$

as an independent variable along with the displacement field.

Lastly, the normalization constant is defined as:

$$c_w = \int_0^1 \sqrt{w(\alpha)} d\alpha \tag{1.8}$$

The first Piola-Kirchhoff stress tensor is given:

$$\mathbf{P} = \frac{\partial \tilde{\mathcal{W}}(\mathbf{F}, \alpha)}{\partial \mathbf{F}}
= \frac{\partial}{\partial \mathbf{F}} \left[a(\alpha) \mathcal{W}(\mathbf{F}) + a^{3}(\alpha) \frac{1}{2} \kappa (J - 1)^{2} \right]
= a(\alpha) \frac{\mathcal{W}(\mathbf{F})}{\partial \mathbf{F}} + a^{3}(\alpha) \frac{1}{2} \kappa \frac{\partial (J - 1)^{2}}{\partial \mathbf{F}}
\mathbf{P} = a(\alpha) \frac{\mathcal{W}(\mathbf{F})}{\partial \mathbf{F}} + a^{3}(\alpha) \kappa (J - 1) \frac{\partial J}{\partial \mathbf{F}} \quad \text{where } \frac{\partial J}{\partial \mathbf{F}} = J \mathbf{F}^{-T}
\mathbf{P} = a(\alpha) \frac{\mathcal{W}(\mathbf{F})}{\partial \mathbf{F}} + a^{3}(\alpha) \kappa (J - 1) J \mathbf{F}^{-T}$$
(1.9)

Note that we DO NOT consider this form of the modified functional; therefore, we do not consider this PK stress.

1.1.1 According to the rough draft

Therefore our modified function:

$$\widetilde{\mathcal{W}}(\mathbf{F}, \alpha) = a(\alpha)\mathcal{W}(\mathbf{F}) + a^{3}(\alpha)\frac{1}{2}\kappa(J-1)^{2}$$

$$= a(\alpha)\mathcal{W}(\mathbf{F}) + a^{3}(\alpha)\frac{1}{2}\frac{-p}{\sqrt{a^{3}(\alpha)}}(J-1)$$

$$= a(\alpha)\mathcal{W}(\mathbf{F}) - \sqrt{a^{3}(\alpha)}\frac{p}{2}(J-1)$$

$$\widetilde{\mathcal{W}}(\mathbf{F}, \alpha) = a(\alpha)\mathcal{W}(\mathbf{F}) - b(\alpha)\frac{p}{2}(J-1)$$

In the rough draft of the paper we have Eq. 5: energy functional of a possibly fractured elastic body with isotropic surface energy

$$\mathcal{E}_{\ell}(\boldsymbol{u},\alpha) = \int_{\Omega} \widetilde{\mathcal{W}}(\mathbf{F},\alpha) d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(\alpha)}{\ell} + \ell \|\nabla\alpha\|^2 \right) d\Omega - \int_{\partial_N \Omega} \widetilde{\mathbf{g}}_{\mathbf{0}} \cdot \mathbf{u} dA$$

$$\mathcal{E}_{\ell}(\boldsymbol{u},p,\alpha) = \int_{\Omega} \left[a(\alpha) \mathcal{W}(\mathbf{F}) - b(\alpha) \frac{p}{2} (J-1) \right] d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(\alpha)}{\ell} + \ell \|\nabla\alpha\|^2 \right) d\Omega$$

$$\mathcal{E}_{\ell}(\boldsymbol{u},p,\alpha) = \int_{\Omega} a(\alpha) \mathcal{W}(\mathbf{F}) d\Omega - \int_{\Omega} b(\alpha) \frac{p}{2} (J-1) d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(\alpha)}{\ell} + \ell \|\nabla\alpha\|^2 \right) d\Omega$$

Note that we are missing one term.

1.1.2 According to the code

In the code we have the following for the energy functional of the energy problem

$$\widetilde{W}(\mathbf{F}, \alpha) = a(\alpha)W(\mathbf{F}) - b(\alpha)p(J-1) - \frac{p^2}{2\lambda}$$

Energy functional, where we ignore the surface term

$$\mathcal{E}_{\ell}(\boldsymbol{u},\alpha) = \int_{\Omega} \widetilde{\mathcal{W}}(\mathbf{F},\alpha) d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(\alpha)}{\ell} + \ell \|\nabla \alpha\|^2 \right) d\Omega - \int_{\partial_N \Omega} \widetilde{\mathbf{g}}_{\mathbf{0}} \cdot \mathbf{u} dA$$

$$= \int_{\Omega} a(\alpha) \mathcal{W}(\mathbf{F}) d\Omega - \int_{\Omega} b(\alpha) p(J-1) d\Omega - \int_{\Omega} \frac{p^2}{2\lambda} d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(\alpha)}{\ell} + \ell \|\nabla \alpha\|^2 \right) d\Omega$$

1.1.3 According to a derivation from Bin2020 Paper

Versus Eq. 21 where we drop λ_b which is not a consideration in this formulation

$$\mathcal{E}_{\ell}(\boldsymbol{u},\alpha) = \int_{\Omega} a(\alpha) \mathcal{W}(\mathbf{F},\alpha) d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(\alpha)}{\ell} + \ell \|\nabla \alpha\|^2 \right) d\Omega$$
 (1.10)

Starting from Eq. 25 in the 2020 Li and Bouklas paper where κ is the bulk modulus

$$\mathcal{E}_{\ell}(\boldsymbol{u}, p, \Lambda, \alpha) = \mathcal{E}_{\ell}(\boldsymbol{u}, \alpha) + \int_{\Omega} \frac{p^{2}}{2\kappa} d\Omega + \int_{\Omega} \Lambda(p + \sqrt{a^{3}(\alpha)}\kappa(J - 1)) d\Omega \quad \Lambda = -p/\kappa$$

$$= \mathcal{E}_{\ell}(\boldsymbol{u}, \alpha) + \int_{\Omega} \frac{p^{2}}{2\kappa} d\Omega + \int_{\Omega} -\frac{p}{\kappa}(p + \sqrt{a^{3}(\alpha)}\kappa(J - 1)) d\Omega$$

$$= \mathcal{E}_{\ell}(\boldsymbol{u}, \alpha) + \int_{\Omega} \frac{p^{2}}{2\kappa} d\Omega - \int_{\Omega} \frac{p^{2}}{\kappa} d\Omega - \int_{\Omega} \frac{p}{\kappa} \sqrt{a^{3}(\alpha)}\kappa(J - 1) d\Omega$$

$$\mathcal{E}_{\ell}(\boldsymbol{u}, p, \alpha) = \mathcal{E}_{\ell}(\boldsymbol{u}, \alpha) - \int_{\Omega} \frac{p^{2}}{2\kappa} d\Omega - \int_{\Omega} \sqrt{a^{3}(\alpha)}p(J - 1) d\Omega$$

$$(1.11)$$

Substitute in $\mathcal{E}_{\ell}(\boldsymbol{u}, \alpha)$ and substitute Eq. 1.3

$$\mathcal{E}_{\ell}(\boldsymbol{u}, p, \alpha) = \int_{\Omega} a(\alpha) \mathcal{W}(\mathbf{F}) d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(\alpha)}{\ell} + \ell \|\nabla \alpha\|^2 \right) d\Omega - \int_{\Omega} \frac{p^2}{2\kappa} d\Omega - \int_{\Omega} \sqrt{a^3(\alpha)} p(J-1) d\Omega$$

After taking the directional derivative of the prior equation, we can introduce the stabilization term

$$-\frac{\varpi h^2}{2\mu} \sqrt{a^3(\alpha)} \sum_{e=1}^{n_{el}} \int_{\Omega^e} J\mathbf{C}^{-1} : (\nabla p \cdot \nabla q) \, dV = 0$$

1.2 Changes for 2D Plane-Stress Models

Following the code, we have the following energy functional of the energy problem

$$\widetilde{W}(\mathbf{F}, \alpha) = (a(\alpha) + k_{\ell})\mathcal{W}(\mathbf{F}) - b(\alpha)p(J - 1) - \frac{p^{2}}{2\lambda}$$

$$\widetilde{W}(\mathbf{F}, \alpha) = (a(\alpha) + k_{\ell})\frac{\mu}{2}(I_{c} - 3 - 2\ln J) - b(\alpha)p(J - 1) - \frac{p^{2}}{2\lambda}$$

Where we know k_{ℓ} is a modeling parameter, so we can list the energy functional as:

$$\widetilde{W}(\mathbf{F},\alpha) = a(\alpha)\frac{\mu}{2}(I_c - 3 - 2\ln J) - b(\alpha)p(J - 1) - \frac{p^2}{2\lambda}$$
(1.12)

Derive the 1st PK stress

$$\mathbf{P} = \frac{\partial \widetilde{W}(\mathbf{F})}{\partial \mathbf{F}}$$

$$= a(\alpha)\mu(\mathbf{F} - \mathbf{F}^{-T}) - b(\alpha)p\frac{\partial \det \mathbf{F}}{\partial \mathbf{F}}$$

$$\mathbf{P} = a(\alpha)\mu(\mathbf{F} - \mathbf{F}^{-T}) - b(\alpha)pJ\mathbf{F}^{-T}$$

Taking the third component to be zero, in the plane stress case

$$\mathbf{P}_{33} = a(\alpha)\mu(\mathbf{F}_{33} - \mathbf{F}_{33}^{-1}) - b(\alpha)pJ\mathbf{F}_{33}^{-1} = 0$$

$$(1 - \alpha)^{2}\mu(\mathbf{F}_{33} - \mathbf{F}_{33}^{-1}) - (1 - \alpha)^{3}pJ\mathbf{F}_{33}^{-1} = 0$$

$$\mu(\mathbf{F}_{33} - \mathbf{F}_{33}^{-1}) - (1 - \alpha)pJ\mathbf{F}_{33}^{-1} = 0$$

$$\mathbf{F}_{33} - \mathbf{F}_{33}^{-1} - \frac{(1 - \alpha)pJ}{\mu}\mathbf{F}_{33}^{-1} = 0$$

$$\mathbf{F}_{33}\mathbf{F}_{33} - \mathbf{F}_{33}^{-1}\mathbf{F}_{33} - \frac{(1 - \alpha)pJ}{\mu}\mathbf{F}_{33}^{-1}\mathbf{F}_{33} = 0$$

$$\mathbf{F}_{33}^{2} - 1 - \frac{(1 - \alpha)pJ}{\mu} = 0$$

This can be multiplied by its associated test function to obtain the weak form

$$\int_{\Omega} \left(\mathbf{F}_{33}^2 - 1 - \frac{(1 - \alpha)pJ}{\mu} \right) v_{F_{33}} dV = 0$$

1.2.1 Changes for 2D Discrete Crack Model

If we are considering a discrete fracture method

$$\mathcal{E}_{\ell}(\boldsymbol{u}, p, \alpha) = \int_{\Omega} a(\alpha) \mathcal{W}(\mathbf{F}) d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(\alpha)}{\ell} + \ell \|\nabla \alpha\|^2 \right) d\Omega - \int_{\Omega} \frac{p^2}{2\kappa} d\Omega - \int_{\Omega} \sqrt{a^3(\alpha)} p(J-1) d\Omega$$

$$\mathcal{E}_{\ell}(\boldsymbol{u}, p, \alpha) = \int_{\Omega} \mathcal{W}(\mathbf{F}) d\Omega - \int_{\Omega} \frac{p^2}{2\kappa} d\Omega - \int_{\Omega} p(J-1) d\Omega$$

with the stabilization term and plane stress in the weak form

$$-\frac{\varpi h^2}{2\mu} \int_{\Omega} J \mathbf{C}^{-1} : \left(\nabla p \cdot \nabla q\right) dV = 0$$
$$\int_{\Omega} \left(\mathbf{F}_{33}^2 - 1 - \frac{pJ}{\mu}\right) v_{F_{33}} dV = 0$$

where we have assumed for the energy functional

$$\widetilde{\mathcal{W}}(\mathbf{F}, \alpha) = \frac{\mu}{2} (I_c - 3 - 2 \ln J) - p(J - 1) - \frac{p^2}{2\lambda}$$

Therefore, we can calculate the 1st Piola Kirchoff Stress as:

$$\mathbf{P} = \frac{\mu}{2} (2\mathbf{F} - \frac{2}{J} J \mathbf{F}^{-T}) - p J \mathbf{F}^{-T}$$
$$= \mu (\mathbf{F} - \mathbf{F}^{-T}) - p J \mathbf{F}^{-T}$$

Taking the third component to be zero

$$P_{33} = \mu(F_{33} - F_{33}^{-1}) - pJF_{33}^{-1} = 0$$
$$= F_{33} - F_{33}^{-1} - \frac{pJ}{\mu}F_{33}^{-1} = 0$$
$$P_{33} = F_{33}^{2} - 1 - \frac{pJ}{\mu} = 0$$

1.2.2 Changes for 2D displacement formulation

Removing pressure terms

$$\mathcal{E}_{\ell}(\boldsymbol{u}, p, \alpha) = \int_{\Omega} a(\alpha) \mathcal{W}(\mathbf{F}) d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(\alpha)}{\ell} + \ell \|\nabla \alpha\|^2 \right) d\Omega - \int_{\Omega} \frac{p^2}{2\kappa} d\Omega - \int_{\Omega} \sqrt{a^3(\alpha)} p(J-1) d\Omega$$

$$\mathcal{E}_{\ell}(\boldsymbol{u}, p, \alpha) = \int_{\Omega} a(\alpha) \mathcal{W}(\mathbf{F}) d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(\alpha)}{\ell} + \ell \|\nabla \alpha\|^2 \right) d\Omega$$

with plane stress in the weak form (no need for stabilization terms)

$$\int_{\Omega} \left(a(\alpha)\mu(F_{33} - F_{33}^{-1}) \right) v_{F_{33}} dV = 0$$

We have assumed the modified energy functional

$$\widetilde{W}(\mathbf{F},\alpha) = a(\alpha)\frac{\mu}{2}(I_c - 3 - 2\ln J)$$
(1.13)

Therefore, we can calculate the 1st Piola Kirchoff Stress as:

$$\mathbf{P} = a(\alpha) \frac{\mu}{2} (2\mathbf{F} - \frac{2}{J} J \mathbf{F}^{-T})$$
$$= a(\alpha) \mu (\mathbf{F} - \mathbf{F}^{-T})$$

Taking the third component to be zero

$$P_{33} = a(\alpha)\mu(F_{33} - F_{33}^{-1}) = 0$$

2 Following Borden: Derivations of Analytical Phase Field

Note the full potential energy functional, which can also be called the lagrangian

$$\mathcal{E}_{\ell}(\boldsymbol{u}, p, \alpha) = \int_{\Omega} a(\alpha) \mathcal{W}(\mathbf{F}) d\Omega - \int_{\Omega} \frac{p^2}{2\kappa} d\Omega - \int_{\Omega} \sqrt{a^3(\alpha)} p(J-1) d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left(\frac{w(\alpha)}{\ell} + \ell \|\nabla \alpha\|^2 \right) d\Omega$$

We can use the Euler-Lagrange equations to arrive at the equations of motion by taking the derivative with respect to displacement, pressure, and the scalar damage field. Starting with displacement:

$$\frac{\partial \mathcal{E}_{\ell}}{\partial \mathbf{u}} = \int_{\Omega} a(\alpha) \frac{\partial \mathcal{W}(\mathbf{F})}{\partial \mathbf{u}} d\Omega$$

$$\frac{\partial \mathcal{E}_{\ell}}{\partial p} = -\int_{\Omega} \frac{p}{\kappa} d\Omega - \int_{\Omega} \sqrt{a^3(\alpha)} (J - 1) d\Omega$$

$$\frac{\partial \mathcal{E}_{\ell}}{\partial \alpha} = -\int_{\Omega} 2(1-\alpha) \, \mathcal{W}(\mathbf{F}) \, d\Omega + \int_{\Omega} 3p(1-\alpha)^2 (J-1) d\Omega + \frac{G_c}{c_w} \int_{\Omega} \left[\frac{1}{\ell} + 2\ell \nabla^2 \alpha \right] d\Omega$$

Therefore we have three equations:

First should be mechanical eq, second is a an equation for pressure,

$$-\frac{p}{\kappa} - \sqrt{a^3(\alpha)}(J-1) = 0$$
$$-\frac{p}{\kappa} - (1-\alpha)^3(J-1) = 0$$
$$-\kappa(J-1)(1-\alpha)^3 = p$$

Lastly,

$$-2(1-\alpha)\mathcal{W}(\mathbf{F}) + 3p(1-\alpha)^2(J-1) + \frac{G_c}{c_w} \left[\frac{1}{\ell} + 2\ell\nabla^2\alpha \right] = 0$$

Substitute second equation into third

$$-2(1-\alpha)\mathcal{W}(\mathbf{F}) - 3\kappa(1-\alpha)^5(J-1)^2 + \frac{G_c}{c_w} \left[\frac{1}{\ell} + 2\ell\nabla^2\alpha \right] = 0$$

2.1 Homogeneous Solution

Therefore, we can study the homogeneous solution by ignoring spatial derivatives of α

$$-2(1 - \alpha_{hom}) \mathcal{W}(\mathbf{F}) - 3\kappa (1 - \alpha_{hom})^5 (J - 1)^2 + \frac{G_c}{c_w \ell} = 0$$

We can expand and arrange

$$-2\mathcal{W}(\mathbf{F}) + 2\alpha_h \mathcal{W}(\mathbf{F}) - 3\kappa(J-1)^2 (1 - 5\alpha_h + 10\alpha_h^2 - 10\alpha_h^3 + 5\alpha_h^4 - \alpha_h^5) + \frac{G_c}{c_w \ell} = 0$$

$$-2\mathcal{W}(\mathbf{F}) + 2\alpha_h \mathcal{W}(\mathbf{F}) + \frac{G_c}{c_w \ell}$$

$$-3\kappa(J-1)^2 + 15\kappa(J-1)^2 \alpha_h - 30\kappa(J-1)^2 \alpha_h^2 + 30\kappa(J-1)^2 \alpha_h^3 - 15\kappa(J-1)^2 \alpha_h^4 + \kappa(J-1)^2 \alpha_h^5 = 0$$

$$-2\mathcal{W}(\mathbf{F}) - 3\kappa(J-1)^2 + \frac{G_c}{c_w \ell} + \left[2\mathcal{W}(\mathbf{F}) + 15\kappa(J-1)^2\right] \alpha_h$$

$$-30\kappa(J-1)^2 \alpha_h^2 + 30\kappa(J-1)^2 \alpha_h^3 - 15\kappa(J-1)^2 \alpha_h^4 + \kappa(J-1)^2 \alpha_h^5 = 0$$

3 Stabilized Finite Element Method

From this point, the notes haven't been revised in a long time

3.1 Gateaux Derivative

The Gateaux derivative with respect to (\boldsymbol{u}, α) in direction (\boldsymbol{v}, β) under the irreversibility condition $\dot{\alpha} \geq 0$.

$$d\mathcal{E}_{\ell}(\boldsymbol{u},\alpha;\boldsymbol{v},\beta) \ge 0. \tag{3.1}$$

Calculation of the Gateaux derivative

$$d\mathcal{E}_{\ell}(\boldsymbol{u}, \boldsymbol{v})(\alpha, \beta) = \frac{d}{d\delta} \mathcal{E}_{\ell}(\boldsymbol{u} + \delta \boldsymbol{v}, \alpha + \delta \beta) \big|_{\delta=0}$$
$$= \frac{d}{d\delta} \mathcal{E}_{\ell}(\boldsymbol{u} + \delta \boldsymbol{v}, \alpha) \big|_{\delta=0} + \frac{d}{d\delta} \mathcal{E}_{\ell}(\boldsymbol{u}, \alpha + \delta \beta) \big|_{\delta=0}$$

Starting with the first term:

$$\begin{split} \frac{d}{d\delta} \mathcal{E}_{\ell}(\boldsymbol{u} + \delta \boldsymbol{v}, \alpha) \big|_{\delta=0} &= \frac{d}{d\delta} \left[\int_{\Omega} \widetilde{\mathcal{W}} (\mathbf{I} + \nabla (\boldsymbol{u} + \delta \boldsymbol{v}), \alpha) \, d\Omega - \int_{\partial_{N}\Omega} \tilde{\boldsymbol{g}}_{0} \cdot (\boldsymbol{u} + \delta \boldsymbol{v}) \, dA \right] \Big|_{\delta=0} \\ &= \left[\int_{\Omega} \frac{d\widetilde{\mathcal{W}} (\mathbf{I} + \nabla (\boldsymbol{u} + \delta \boldsymbol{v}), \alpha)}{d\delta} \, d\Omega - \int_{\partial_{N}\Omega} \tilde{\boldsymbol{g}}_{0} \cdot \frac{d(\boldsymbol{u} + \delta \boldsymbol{v})}{d\delta} \, dA \right] \Big|_{\delta=0} \quad \text{chain rule} \\ &= \left[\int_{\Omega} \frac{d\widetilde{\mathcal{W}} (\mathbf{I} + \nabla (\boldsymbol{u} + \delta \boldsymbol{v}), \alpha)}{d(\mathbf{I} + \nabla (\boldsymbol{u} + \delta \boldsymbol{v}))} \frac{d(\mathbf{I} + \nabla (\boldsymbol{u} + \delta \boldsymbol{v}))}{d\delta} \, d\Omega - \int_{\partial_{N}\Omega} \tilde{\boldsymbol{g}}_{0} \cdot \frac{d(\boldsymbol{u} + \delta \boldsymbol{v})}{d\delta} \, dA \right] \Big|_{\delta=0} \\ &= \left[\int_{\Omega} \frac{d\widetilde{\mathcal{W}} (\mathbf{I} + \nabla \boldsymbol{u} + \delta \nabla \boldsymbol{v}, \alpha)}{d(\mathbf{I} + \nabla \boldsymbol{u} + \delta \nabla \boldsymbol{v})} \frac{d(\mathbf{I} + \nabla \boldsymbol{u} + \delta \nabla \boldsymbol{v})}{d\delta} \, d\Omega - \int_{\partial_{N}\Omega} \tilde{\boldsymbol{g}}_{0} \cdot \boldsymbol{v} \, dA \right] \Big|_{\delta=0} \\ &= \left[\int_{\Omega} \frac{d\widetilde{\mathcal{W}} (\mathbf{I} + \nabla \boldsymbol{u} + \delta \nabla \boldsymbol{v}, \alpha)}{d(\mathbf{I} + \nabla \boldsymbol{u} + \delta \nabla \boldsymbol{v})} \nabla \boldsymbol{v} \, d\Omega - \int_{\partial_{N}\Omega} \tilde{\boldsymbol{g}}_{0} \cdot \boldsymbol{v} \, dA \right] \Big|_{\delta=0} \\ &= \int_{\Omega} \frac{d\widetilde{\mathcal{W}} (\mathbf{I} + \nabla \boldsymbol{u}, \alpha)}{d(\mathbf{I} + \nabla \boldsymbol{u})} \nabla \boldsymbol{v} \, d\Omega - \int_{\partial_{N}\Omega} \tilde{\boldsymbol{g}}_{0} \cdot \boldsymbol{v} \, dA \end{split}$$

Second term:

$$\begin{split} &\frac{d}{d\delta}\mathcal{E}_{\ell}(\boldsymbol{u},\alpha+\delta\beta)\big|_{\delta=0} \\ &=\frac{d}{d\delta}\left[\int_{\Omega}\widetilde{\mathcal{W}}(\mathbf{F},\alpha+\delta\beta)\,d\Omega+\frac{\mathcal{G}_{c}}{c_{w}}\int_{\Omega}\left(\frac{w(\alpha+\delta\beta)}{\ell}+\ell\|\nabla(\alpha+\delta\beta)\|^{2}\right)dV\right]\Big|_{\delta=0} \\ &=\left[\int_{\Omega}\frac{d\widetilde{\mathcal{W}}(\mathbf{F},\alpha+\delta\beta)}{d\delta}\,d\Omega+\frac{\mathcal{G}_{c}}{c_{w}}\frac{d}{d\delta}\int_{\Omega}\left(\frac{w(\alpha+\delta\beta)}{\ell}+\ell\|\nabla(\alpha+\delta\beta)\|^{2}\right)dV\right]\Big|_{\delta=0} \\ &=\left[\int_{\Omega}\frac{d\widetilde{\mathcal{W}}(\mathbf{F},\alpha+\delta\beta)}{d(\alpha+\delta\beta)}\frac{d(\alpha+\delta\beta)}{d\delta}\,d\Omega+\frac{\mathcal{G}_{c}}{c_{w}}\frac{1}{\ell}\int_{\Omega}\frac{dw(\alpha+\delta\beta)}{d\delta}\,dV+\frac{\mathcal{G}_{c}}{c_{w}}\ell\int_{\Omega}\frac{\|\nabla(\alpha+\delta\beta)\|^{2}}{d\delta}\,dV\right]\Big|_{\delta=0} \\ &=\left[\int_{\Omega}\frac{d\widetilde{\mathcal{W}}(\mathbf{F},\alpha+\delta\beta)}{d(\alpha+\delta\beta)}\beta\,d\Omega+\frac{\mathcal{G}_{c}}{c_{w}}\frac{1}{\ell}\int_{\Omega}\frac{dw(\alpha+\delta\beta)}{d(\alpha+\delta\beta)}\frac{d(\alpha+\delta\beta)}{d\delta}\,dV+\frac{\mathcal{G}_{c}}{c_{w}}\ell\int_{\Omega}2\nabla(\alpha+\delta\beta)\frac{\nabla(\alpha+\delta\beta)}{d\delta}\,dV\right]\Big|_{\delta=0} \\ &=\int_{\Omega}\frac{d\widetilde{\mathcal{W}}(\mathbf{F},\alpha)}{d\alpha}\beta\,d\Omega+\left[\frac{\mathcal{G}_{c}}{c_{w}}\frac{1}{\ell}\int_{\Omega}\frac{dw(\alpha+\delta\beta)}{d(\alpha+\delta\beta)}\beta\,dV+\frac{\mathcal{G}_{c}}{c_{w}}\ell\int_{\Omega}2\nabla(\alpha+\delta\beta)\nabla\beta\,dV\right]\Big|_{\delta=0} \\ &=\int_{\Omega}\frac{d\widetilde{\mathcal{W}}(\mathbf{F},\alpha)}{d\alpha}\beta\,d\Omega+\frac{\mathcal{G}_{c}}{c_{w}}\frac{1}{\ell}\int_{\Omega}\frac{dw(\alpha)}{d\alpha}\beta\,dV+2\ell\frac{\mathcal{G}_{c}}{c_{w}}\int_{\Omega}\nabla\alpha\cdot\nabla\beta\,dV\\ &=\int_{\Omega}\frac{d\widetilde{\mathcal{W}}(\mathbf{F},\alpha)}{d\alpha}\beta\,d\Omega+\frac{\mathcal{G}_{c}}{c_{w}\ell}\int_{\Omega}\left[\frac{dw(\alpha)}{d\alpha}\beta\,dV+2\ell\frac{\mathcal{G}_{c}}{c_{w}}\int_{\Omega}\nabla\alpha\cdot\nabla\beta\,dV\right]\Big|_{\delta=0} \end{split}$$

First, consider Eq. 1.7

$$p = -\sqrt{a^3(\alpha)}\kappa(J-1)$$

$$\frac{p}{\kappa} = -\sqrt{a^3(\alpha)}(J-1)$$

$$0 = -\sqrt{a^3(\alpha)}(J-1) - \frac{p}{\kappa}$$

Multiplying this by test function q and integrating over volume, we obtain an equation that can be combined with the equations from the Gateaux Derivative.

$$\int_{\Omega} \frac{d\widetilde{\mathcal{W}}(\mathbf{F}, \alpha)}{d\mathbf{F}} \nabla \boldsymbol{v} \, d\Omega - \int_{\partial_{N}\Omega} \tilde{\boldsymbol{g}}_{0} \cdot \boldsymbol{v} \, dA = 0$$
 (3.2a)

$$\int_{\Omega} \left(-\sqrt{a^3(\alpha)}(J-1) - \frac{p}{\kappa} \right) q dV = 0$$
 (3.2b)

$$\int_{\Omega} \frac{d\widetilde{\mathcal{W}}(\mathbf{F}, \alpha)}{d\alpha} \beta \, d\Omega + \frac{\mathcal{G}_c}{c_w \ell} \int_{\Omega} \left[\frac{dw(\alpha)}{d\alpha} \beta + 2\ell^2 (\nabla \alpha \cdot \nabla \beta) \right] dV \ge 0 \tag{3.2c}$$

The strong form

$$Div \mathbf{P} = 0 \quad in \quad \Omega \tag{3.3a}$$

$$\mathbf{u} = \widetilde{\mathbf{u}}_0 \quad \text{in} \quad \partial_D \Omega \tag{3.3b}$$

$$[\mathbf{FS}] \, \boldsymbol{n} = \tilde{\boldsymbol{g}}_0 \quad \text{on} \quad \partial_N \Omega, \tag{3.3c}$$

where from Eq. 1.9 we can substitute Eq. 1.7

$$\mathbf{P} = a(\alpha) \frac{\mathcal{W}(\mathbf{F})}{\partial \mathbf{F}} + a^{3}(\alpha)\kappa (J - 1) \frac{\partial J}{\partial \mathbf{F}} \quad \text{where } p = -\sqrt{a^{3}(\alpha)}\kappa (J - 1)$$

$$\mathbf{P} = a(\alpha) \frac{\mathcal{W}(\mathbf{F})}{\partial \mathbf{F}} - p\sqrt{a^{3}(\alpha)} \frac{\partial J}{\partial \mathbf{F}}$$

and write the mechanical equilibrium equation in Eq. 3.3:

$$\operatorname{Div}\left[a(\alpha)\frac{\mathcal{W}(\mathbf{F})}{\partial \mathbf{F}} - p\sqrt{a^3(\alpha)}\frac{\partial J}{\partial \mathbf{F}}\right] = 0 \tag{3.4}$$

Derivation of the KKT condition equations where $\nabla \beta \cdot \nabla \alpha = \nabla (\beta \nabla \alpha) - \beta \Delta \alpha$

$$\int_{\Omega} \frac{d\mathcal{W}(\mathbf{F}, \alpha)}{d\alpha} \beta \, d\Omega + \frac{\mathcal{G}_{c}}{c_{w}\ell} \int_{\Omega} \left[\frac{dw(\alpha)}{d\alpha} \beta + 2\ell^{2}(\nabla\alpha \cdot \nabla\beta) \right] dV \geq 0$$

$$\int_{\Omega} \frac{d\widetilde{\mathcal{W}}(\mathbf{F}, \alpha)}{d\alpha} \beta \, d\Omega + \frac{\mathcal{G}_{c}}{c_{w}\ell} \int_{\Omega} \frac{dw(\alpha)}{d\alpha} \beta dV + \frac{\mathcal{G}_{c}}{c_{w}\ell} \int_{\Omega} 2\ell^{2}(\nabla\alpha \cdot \nabla\beta) \, dV \geq 0$$

$$\int_{\Omega} \frac{d\widetilde{\mathcal{W}}(\mathbf{F}, \alpha)}{d\alpha} \beta \, d\Omega + \frac{\mathcal{G}_{c}}{c_{w}\ell} \int_{\Omega} \frac{dw(\alpha)}{d\alpha} \beta dV + \frac{\mathcal{G}_{c}}{c_{w}\ell} \int_{\Omega} 2\ell^{2}(\nabla(\beta\nabla\alpha)) \, dV - \frac{\mathcal{G}_{c}}{c_{w}\ell} \int_{\Omega} 2\ell^{2}(\beta\Delta\alpha) \, dV \geq 0$$

$$\int_{\Omega} \frac{d\widetilde{\mathcal{W}}(\mathbf{F}, \alpha)}{d\alpha} \beta \, d\Omega + \frac{\mathcal{G}_{c}}{c_{w}\ell} \int_{\Omega} \frac{dw(\alpha)}{d\alpha} \beta dV - \frac{\mathcal{G}_{c}}{c_{w}\ell} \int_{\Omega} 2\ell^{2}(\beta\Delta\alpha) \, dV \geq 0$$

$$\left[\int_{\Omega} \frac{d\widetilde{\mathcal{W}}(\mathbf{F}, \alpha)}{d\alpha} \, d\Omega + \frac{\mathcal{G}_{c}}{c_{w}\ell} \int_{\Omega} \left(\frac{dw(\alpha)}{d\alpha} - 2\ell^{2}\Delta\alpha \right) dV \right] \beta \geq 0$$

$$\int_{\Omega} \frac{d\widetilde{\mathcal{W}}(\mathbf{F}, \alpha)}{d\alpha} \, d\Omega + \frac{\mathcal{G}_{c}}{c_{w}\ell} \int_{\Omega} \left(\frac{dw(\alpha)}{d\alpha} - 2\ell^{2}\Delta\alpha \right) dV \geq 0$$

Grouping terms, we obtain

$$\frac{d\widetilde{\mathcal{W}}(\mathbf{F},\alpha)}{d\alpha} + \frac{\mathcal{G}_c}{c_w \ell} \left(\frac{dw(\alpha)}{d\alpha} - 2\ell^2 \Delta \alpha \right) \ge 0 \quad \text{in} \quad \Omega$$
 (3.5a)

$$\dot{\alpha} \ge 0 \quad \text{in} \quad \Omega \tag{3.5b}$$

$$\dot{\alpha} \left[\frac{d\widetilde{\mathcal{W}}(\mathbf{F}, \alpha)}{d\alpha} + \frac{\mathcal{G}_c}{c_w \ell} \left(\frac{dw(\alpha)}{d\alpha} - 2\ell^2 \Delta \alpha \right) \right] \ge 0 \quad \text{in} \quad \Omega$$
 (3.5c)

(3.5d)

Lastly, we have the following, (Neumann?)

$$\frac{\partial \alpha}{\partial \mathbf{n}} \ge 0$$
 and $\dot{\alpha} \frac{\partial \alpha}{\partial \mathbf{n}} = 0$ on $\partial \Omega$ (3.6)

Multiply Eq. 3.4 with weighting function $\mathbf{v} + (\varpi h^2)/(2\mu)\mathbf{F}^{-T}\nabla q$

$$\int_{\Omega} \operatorname{Div} \mathbf{P} \cdot \left[\mathbf{v} + \frac{\varpi h^{2}}{2\mu} \mathbf{F}^{-T} \nabla q \right] dV = 0$$

$$\int_{\Omega} \operatorname{Div} \mathbf{P} \cdot \mathbf{v} \, dV + \int_{\Omega} \operatorname{Div} \mathbf{P} \cdot \left[\frac{\varpi h^{2}}{2\mu} \mathbf{F}^{-T} \nabla q \right] dV = 0$$

$$\int_{\Omega} \operatorname{Div} \mathbf{P} \cdot \mathbf{v} \, dV + \frac{\varpi h^{2}}{2\mu} \sum_{e=1}^{n_{el}} \int_{\Omega^{e}} \operatorname{Div} \mathbf{P} \cdot \left(\mathbf{F}^{-T} \nabla q \right) \, dV = 0$$

$$\int_{\Omega} \operatorname{Div} \mathbf{P} \cdot \mathbf{v} \, dV$$

$$+ \frac{\varpi h^{2}}{2\mu} \sum_{e=1}^{n_{el}} \int_{\Omega^{e}} \operatorname{Div} \left[p \sqrt{a^{3}(\alpha)} \frac{\partial J}{\partial \mathbf{F}} \right] \cdot \left(\mathbf{F}^{-T} \nabla q \right) \, dV = 0$$

$$"" + "" - \frac{\varpi h^{2}}{2\mu} \sum_{e=1}^{n_{el}} \int_{\Omega^{e}} \nabla \left(p \sqrt{a^{3}(\alpha)} \right) J \mathbf{F}^{-T} \cdot \left(\mathbf{F}^{-T} \nabla q \right) \, dV = 0$$

$$"" + "" - \frac{\varpi h^{2}}{2\mu} \sum_{e=1}^{n_{el}} \int_{\Omega^{e}} \nabla \left(p \sqrt{a^{3}(\alpha)} \right) J \mathbf{F}^{-1} \mathbf{F}^{-T} \cdot \left(\mathbf{F}^{-1} \mathbf{F}^{-T} \nabla q \right) \, dV = 0$$

$$"" + "" - \frac{\varpi h^{2}}{2\mu} \sum_{e=1}^{n_{el}} \int_{\Omega^{e}} \nabla \left(p \sqrt{a^{3}(\alpha)} \right) J \cdot \left(\mathbf{C}^{-1} \nabla q \right) \, dV = 0$$

$$"" + "" - \frac{\varpi h^{2}}{2\mu} \sum_{e=1}^{n_{el}} \int_{\Omega^{e}} \nabla \left(p \sqrt{a^{3}(\alpha)} \right) J \cdot \left(\mathbf{C}^{-1} \nabla q \right) \, dV = 0$$

$$"" + "" - \frac{\varpi h^{2}}{2\mu} \sum_{e=1}^{n_{el}} \int_{\Omega^{e}} J \mathbf{C}^{-1} : \left[\nabla \left(p \sqrt{a^{3}(\alpha)} \right) \cdot \nabla q \right] dV = 0$$

where $\mathbf{P} = a(\alpha) \frac{\mathcal{W}(\mathbf{F})}{\partial \mathbf{F}} - p \sqrt{a^3(\alpha)} \frac{\partial J}{\partial \mathbf{F}}$

We also want to deal with the first term where (fg)' = f'g + fg'

$$\int_{\Omega} \operatorname{Div} \mathbf{P} \cdot \mathbf{v} \, dV = \int_{\Omega} (\mathbf{F} \cdot \mathbf{v})_{,X} \, dV - \int_{\Omega} \mathbf{P} \cdot \frac{\partial \mathbf{v}}{\partial X} \, dV$$

Leaving

$$\int_{\Omega} \operatorname{Div} \mathbf{P} \cdot \boldsymbol{v} \, dV + \frac{\varpi h^2}{2\mu} \sum_{e=1}^{n_{el}} \int_{\Omega^e} \operatorname{Div} \left[a(\alpha) \frac{\mathcal{W}(\mathbf{F})}{\partial \mathbf{F}} \right] \cdot \left(\mathbf{F}^{-T} \nabla q \right) \, dV - \frac{\varpi h^2}{2\mu} \sum_{e=1}^{n_{el}} \int_{\Omega^e} J \mathbf{C}^{-1} : \left[\nabla \left(p \sqrt{a^3(\alpha)} \right) \cdot \nabla q \right] dV$$
(3.7)

(3.8)