

Please amend claim 1 as follows:

1. (once amended) [A]In a method of interventional or intraoperative MRI wherein
an invasive device is inserted into the vasculature of a human or non human
animal (e.g. mammalian, avian, or reptilian) body or through vascularised tissue
in said body and an MR image of at least a part of said body containing said
device is generated, the improvement comprising administering a contrast agent
into the vasculature of said body either by direct injection of the contrast agent
through said device or by i.v. injection of the contrast agent directly into the
patient whereby to facilitate visualisation of said device in said image.

[Please amend claim 2 as follows:]

2. (once amended) [A]The method of claim 1 wherein said contrast agent is a blood
pool contrast agent.

[Please amend claim 3 as follows:]

3. (once amended) [A]The method [as claimed in claims 1 or claim 2] of claim 1
wherein [the]a difference in at least one parameter chosen from T₁, T₂ and T₂*
between the blood and said device is utilised to generate image contrast between
the blood and said device.

[Please amend claim 4 as follows:]

4. (once amended) [A]The method [as claimed in any of claims 1 to 3]of claim 1
wherein said device is filled with a diamagnetic material or a paramagnetic
material.

[Please amend claim 5 as follows:]

5. (once amended) [A]The method [as claimed in any of claims 1 to 4]of claim 1
wherein said contrast agent enhances [the]T₁ and/or T₂* relaxation properties of
the blood relative to that of said device.

[Please amend claim 6 as follows:]

6. (once amended) [A]The method [as claimed in]of claim 5 wherein; the T₁
relaxation property of the blood is enhanced relative to that of said device; [and
wherein JT₁-weighted sequences are used; and said device is filled with
diamagnetic material so that the blood appears bright in said image, relative to
said device.

[Please amend claim 7 as follows:]

7. (once amended) [A]The method [as claimed in]of claim 5 wherein; the T₂* relaxation property of the blood is enhanced relative to that of said device; [and wherein]T₂*-weighted sequences are used; and said device is filled with paramagnetic material so that said device appears bright in said image, relative to the blood.

[Please amend claim 8 as follows:]

8. (once amended) [A]The method [as claimed in any of claims 1 to 7]of claim 2 wherein said contrast agent is magnetic iron oxide blood pool contrast agent.

[Please amend claim 9 as follows:]

9. (once amended) [A]The method [as claimed in any of claims 1 to 8]of claim 1 wherein said contrast agent comprises superparamagnetic iron oxide particles having on their surfaces degraded starch[and optionally a material which inhibits opsonization].

[Please amend claim 10 as follows:]

10. (once amended) [A]The method [as claimed in any of claims 1 to 9]of claim 1
wherein said device is [chosen]selected from the group consisting of catheters,
balloons, optical fibres, guide wires, needles, biopsy needles, electrodes, electrode
leads, implants, stents and stent grafts.

[Please amend claim 11 as follows:]

11. (once amended) [A]The method [as claimed in any of claims 1 to 10]of claim 1
wherein said device is not marked with a magnetic susceptibility agent.

[Please amend claim 12 as follows:]

12. (once amended) [The]In a method for use of a blood pool MR contrast agent for
the manufacture of a parenterally administrable MR contrast medium for use in a
method of surgery or therapy wherein an invasive device is inserted into the
vasculature of a human or non human animal body or through vascularised tissue
in said body and an MR image of at least a part of said body containing said
device is generated, [said method also]the improvement comprising administering
said contrast medium into the vasculature of said body whereby to facilitate
visualisation of said device in said image.