1.4 本章習題

- 1.請分別使用化學鍵結模型(chemical bond model)與能帶模型(energy band model)來解釋施體(donor)與受體(acceptor),並各舉一例。
- 2. 試區別本質半導體(intrinsic semiconductor)與外質半導體(extrinsic semiconductor);以及分辨本質費米能階(intrinsic Fermi level)E_i 與費米能階(Fermi level)E_e。
- 3. 何謂質量作用定律(mass-action law)?它適用在本質半導體還是外質半導體,還是都適用?
- **4.**何謂 n 型半導體與 p 型半導體。並請使用 E_c , E_v , E_i ,與 E_F 來分別畫出其典型之能帶圖(energy band diagram)。
- 5. 在溫度為 0K時,於 Si 中摻雜磷(P)原子 $10^{16}cm^{-3}$,求電子與電洞的濃度? 並請畫出能帶圖(圖中標示須包括 E_D 或 E_A)?
- 6. 在溫度為 300 K 時,於 Si 中摻雜硼(B)原子 10^{16} cm⁻³,求電子與電洞的濃度?並請畫出能帶圖(圖中標示須包括 E_D 或 E_A)?
- 7. 在室溫完全游離的情況下,於半導體 Si 中掺雜濃度為 N_A 的 boron (注意, N_A 並不一定遠大於 n_i),則請以 N_A 和 n_i 來表示此半導體中電洞的濃度。
- 8. 上題中,若摻雜 boron 的量 N_A 遠大於 n_i ,則請以 N_A 和 n_i 來表示此半導體中自由電子的濃度。
- 9. 在 300K下,若於 Si 中掺雜濃度為 N_D 的磷會使得 Fermi level 位於 Ec 下方 Eg/4之處。今若改使用摻雜硼,且使得 Fermi level 位於 Ec 下方 7Eg/8之處,則欲摻雜硼離子的濃度須等於多少?(請用 N_D 表示,並假設 E_i 恰位於 Ec 與 Ev 之中央)
- 10.考慮在溫度為 300K 時的一個n型矽半導體,假設電子濃度在 0.01cm的距離中由 1×10^{14} cm⁻³之濃度作線性增加至 5×10^{15} cm⁻³。如果電子擴散係數 D_n = 35cm²/sec,求擴散電流密度與擴散電流方向。
- 11.某個 n 型矽半導體在溫度為 300K 時之電子濃度可表示為: $n(x) = 10^{18} exp(-x/$