CSI - 3105 Design & Analysis of Algorithms Course 13

Jean-Lou De Carufel

Fall 2020

Chapter 5: Dynamic Programming

Section 5.1: Shortest Paths in Acyclic Graphs

Let G = (V, E) be a directed acyclic graph, where each edge (u, v) has a weight wt(u, v) > 0.

Topological sorting: vertices are numbered $v_1, v_2, ..., v_n$ such that for each edge (v_i, v_j) , we have i < j.

Let $s = v_1$ and $t = v_n$.

How do we compute the shortest path from s to t?

Chapter 5: Dynamic Programming

Section 5.1: Shortest Paths in Acyclic Graphs

Let G = (V, E) be a directed acyclic graph, where each edge (u, v) has a weight wt(u, v) > 0.

Topological sorting: vertices are numbered $v_1, v_2, ..., v_n$ such that for each edge (v_i, v_j) , we have i < j.

Let $s = v_1$ and $t = v_n$.

How do we compute the shortest path from s to t?

Can we do better than Dijkstra algorithm, using the topological ordering of *G*?

Let $u_1, u_2, ..., u_k$ be all the vertices that have an edge to t.

Let $u_1, u_2, ..., u_k$ be all the vertices that have an edge to t.

The last edge on the shortest path from s to t is (u_i, t) for some $1 \le i \le k$.

If we know this index i, then the shortest path from s to t is equal to

Let $u_1, u_2, ..., u_k$ be all the vertices that have an edge to t.

The last edge on the shortest path from s to t is (u_i, t) for some $1 \le i \le k$.

If we know this index i, then the shortest path from s to t is equal to path from s to u_i followed by the edge (u_i,t)

Let $u_1, u_2, ..., u_k$ be all the vertices that have an edge to t.

The last edge on the shortest path from s to t is (u_i, t) for some $1 \le i \le k$.

If we know this index i, then the shortest path from s to t is equal to

path from s **to** u_i followed by the edge (u_i, t)

Let $u_1, u_2, ..., u_k$ be all the vertices that have an edge to t.

The last edge on the shortest path from s to t is (u_i, t) for some $1 \le i \le k$.

But we do not know the index i!

Let $u_1, u_2, ..., u_k$ be all the vertices that have an edge to t.

The last edge on the shortest path from s to t is (u_i, t) for some 1 < i < k.

But we do not know the index i!

So the length of the shortest path from s to t is equal to

 $\min_{1 \le i \le k} \{ (\text{length of the shortest path from } s \text{ to } u_i) + wt(u_i, t) \}$

Let $u_1, u_2, ..., u_k$ be all the vertices that have an edge to t.

The last edge on the shortest path from s to t is (u_i, t) for some 1 < i < k.

But we do not know the index i!

So the length of the shortest path from s to t is equal to

$$\min_{1 \leq i \leq k} \{ (\text{length of the shortest path from } s \text{ to } u_i) + wt(u_i, t) \}$$

In other words, the shortest path from s to t contains the shortest path from s to one of $u_1, u_2, ..., u_k$.

Step 2: Set Up a Recurrence for the Optimal Solution

Step 2: Set Up a Recurrence for the Optimal Solution

For j = 1, 2, ..., n, define

 $d(v_j) = \text{length of a shortest path from } s \text{ to } v_j$

Since $v_n = t$, we want to compute $d(v_n)$.

Step 2: Set Up a Recurrence for the Optimal Solution

For j = 1, 2, ..., n, define

 $d(v_j) = \text{length of a shortest path from } s \text{ to } v_j$

Since $v_n = t$, we want to compute $d(v_n)$.

Recurrence:

- $d(v_1) = 0$
- For $2 \le j \le n$,

$$d(v_j) = \min_{(v_i,v_j)\in E} \{d(v_i) + wt(v_i,v_j)\}$$

First idea: To compute $d(v_n) = d(t)$, take all edges $(u_1,t), (u_2,t), ..., (u_k,t)$, and recursively compute $d(u_1), d(u_2), ..., d(u_k)$. From this, compute $d(v_n)$ as $d(v_n) = \min_{1 \le i \le k} \{d(u_i) + wt(u_i,t)\}.$

First idea: To compute $d(v_n) = d(t)$, take all edges $(u_1,t), (u_2,t), ..., (u_k,t)$, and recursively compute $d(u_1), d(u_2), ..., d(u_k)$. From this, compute $d(v_n)$ as $d(v_n) = \min_{1 \le i \le k} \{d(u_i) + wt(u_i,t)\}.$

Example:

First idea: To compute $d(v_n) = d(t)$, take all edges $(u_1,t), (u_2,t), ..., (u_k,t)$, and recursively compute $d(u_1), d(u_2), ..., d(u_k)$. From this, compute $d(v_n)$ as $d(v_n) = \min_{1 \le i \le k} \{d(u_i) + wt(u_i,t)\}.$

EXAMPLE:

Récursion tree:

 $d(v_1)$ is computed 4 times

 $d(v_2)$ is computed 2 times

In general, this leads to exponential running time.

 $d(v_1)$ is computed 4 times

 $d(v_2)$ is computed 2 times

In general, this leads to exponential running time.

Better: compute in this order:

$$d(v_1), d(v_2), ..., d(v_n).$$

When computing $d(v_j)$, we already know $d(v_1), d(v_2), ..., d(v_{j-1})$. From these values, we obtain $d(v_j)$ without recursive calls.

 $d(v_1)$ is computed 4 times

 $d(v_2)$ is computed 2 times

In general, this leads to exponential running time.

Better: compute in this order:

$$d(v_1), d(v_2), ..., d(v_n).$$

When computing $d(v_i)$, we already know $d(v_1), d(v_2), ..., d(v_{i-1})$. From these values, we obtain $d(v_i)$ without recursive calls.

Do you remember Fibonacci?

Algorithm:

- $d(v_1) = 0$
- For j = 2 to n:
 - $k = indegree(v_j)$
 - Let $u_1, u_2, ..., u_k$ be all the vertices that have an edge to v_j .
 - $d(v_i) = \infty$
 - For i = 1 to k
 - $\bullet \ d(v_j) = \min\{d(v_j), d(u_i) + wt(u_i, v_j)\}$
- return $d(v_n)$

Algorithm:

- $d(v_1) = 0$
- For j = 2 to n:
 - $k = indegree(v_j)$
 - Let $u_1, u_2, ..., u_k$ be all the vertices that have an edge to v_j .
 - $d(v_i) = \infty$
 - For i = 1 to k
 - $d(v_j) = \min\{d(v_j), d(u_i) + wt(u_i, v_j)\}$
- return $d(v_n)$

Running time

$$O\left(\sum_{j=1}^{n}\left(1+indegree(v_{j})
ight)
ight)=O(|V|+|E|)$$