I Définition et propriétés algébriques

Définition n°1. Fonctions exponentielles de base a.

Soit *a* un réel strictement positif.

On appelle fonction exponentielle de base a, la fonction $x \rightarrow a^x$

Exemple n°1.

Les fonctions
$$f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 5^x \end{cases}$$
, $f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 2,55^x \end{cases}$, $f_3: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 1,57^x \end{cases}$, $f_4: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 1,22^x \end{cases}$, $f_5: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 1^x = 1 \end{cases}$, $f_6: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 0,8^x \end{cases}$, $f_7: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 0,56^x \end{cases}$ et $f_7: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 0,17^x \end{cases}$ sont des fonctions exponentielles de bases respectives :

5; 2,55, 1,57; 1,22; 1; 0,8; 0,56 et 0,17.

Cliquez sur la figure

Remarque n°1.

Pour
$$a=0$$
 , on a la fonction $f: \begin{cases}]0 ; +\infty[\to \mathbb{R} \\ x \to 0 \end{cases}$

EXERCICE N°1

Soit la fonction g définie pour tout réel x par $g(x)=0.5^x$. Calculer l'image de $\frac{2}{3}$ par g .

EXERCICE N°2

Soit la fonction h définie pour tout réel x par $h(x) = (\sqrt{3})^x$ Calculer h(1,5) et $h(\pi)$.

EXERCICE N°3 Le lien avec les suites géométriques

Rémi place $500 \in$ au taux annuel de 4,5 % pendant n années avec 0 < n < 18. Soit u_n le capital à l'année n.

- 1) Montrer que (u_n) est une suite géométrique.
- 2) Quel est le capital de Rémi au bout de 3 ans ? De 17 ans ?
- 3) Soit f la fonction définie pour tout réel x par : $f(x) = 500 \times 1,045^x$
- **3.a)** Calculer f(1,5) et $f\left(\frac{7}{3}\right)$
- **3.b)** Interpréter concrètement les résultats précédents.

- 1) Représenter par un nuage de points les 5 premiers termes de la suite géométrique u de raison $r_1 = \frac{3}{2}$ et de premier terme $u_0 = 1$.
- 2) Représenter par un nuage de points les 5 premiers termes de la suite géométrique v de raison $r_2=1,5$ et de premier terme $v_0=-2$.

- 1) Tracer la représentation graphique de $f: \begin{cases}]-2 \ ; \ 5[\to \mathbb{R} \\ x \to 1,5^x \end{cases}$ sur $]-2 \ ; \ 5[$.

 2) Tracer la représentation graphique de $f: \begin{cases}]-2 \ ; \ 5[\to \mathbb{R} \\ x \to -2 \times 1,5^x \end{cases}$ sur $]-2 \ ; \ 5[$.

EXERCICE N°6

Soit a un réel strictement positif et f la fonction définie pour tout réel x par : $f(x) = -3 \times a^x$ Expliquer pourquoi 2 n'a pas d'antécédent par la fonction f.

Propriété n°1. Propriétés algébriques (admises)

Soit a et b deux réels strictement positifs.

Pour tous rées x et tout réel y:

$$a^x \times a^y = a^{x+y}$$

$$(a^x)^y = a^{x \times y}$$

$$a^{-x} = \frac{1}{a^x}$$

$$\boxed{\frac{a^x}{a^y} = a^{x-y}}$$

$$a^x \times b^x = (a \times b)^x$$

$$\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$$

Exemple n°2.

•
$$1,3^{2,3} \times 1,3^{0,7} = 1,3^{2,3+0,7} = 1,3^3 = 2,197$$
 ;
• $5^{-2} = \frac{1}{5^2}$;
• $(4,37^{2,1})^3 = 4,37^{2,1\times3} = 4,37^{6,3}$;
• $\frac{5,2^{3,1}}{5,2^{1,7}} = 5,2^{3,1-1,7} = 5,2^{1,4}$;
• $\frac{9,31^{4,3} \times 9,31^{-2,7} \times 9,31^{1,1}}{9,31^{-3}} = 9,31^{(4,3-2,7+1,1)-(-3)} = 9,31^{5,7}$.

EXERCICE N°1

Simplifier les expressions suivantes :

$$A = 0.89^{1.5} \times 0.89 \times 0.89^{-3.2} \qquad B = 3.5^{2.2} \times 2^{2.2} \times 0.5^{2.2} \qquad C = \frac{4.1^{2.5} \times 4.1^{-5.2}}{4.1^{-4.8} \times 4.1^{2.7}}$$

$$D = \pi^{2,8} \times (\pi^{-1,5})^2 \qquad E = \left(\left(\frac{9}{4} \right)^3 \times 2,25^{-1,5} \right)^{-1}$$

- 1) Montrer que : $\frac{2^{2.5} \times 2^{-1.5}}{(2^{-3.5})^{-1.5}} = 2^{-4.25}$
 - 2) Montrer que : $5.5^{-1.2} \times \sqrt{5.5} = 5.5^{-0.7}$
- 3) Soit a un réel strictement positif. Montrer que : $\left(\frac{a^{1+0,25x}}{a^{1-0,25x}}\right)^2 = a^x$

EXERCICE N°3

On donne $f(x) = 2,1^x$. Simplifier le calcul : $f(1) \times f(-2,5) \times f(3)$

EXERCICE N°4

Soit a un réel strictement positif.

Écrire avec une seule base a l'expression : $(a^{0.8} \times a^{-1.3} \times a^{2.5})^3$

Sens de variation II

(admise) Propriété n°2.

Soit a un réel strictement positif, et $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to a^x \end{cases}$

- Si a > 1 alors f est strictement croissante,
 si a = 1 alors f est constante,
- si 0 < a < 1 alors f est strictement décroissante.

Propriété n°3. (admise)

```
Soit a un réel strictement positif, k un réel non nul et :

g:\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to k \times a^x \end{cases}

Si k > 0 et :

\begin{array}{c} \circ \text{si } a > 1 \text{ alors } g \text{ est strictement croissante,} \\ \circ \text{si } a = 1 \text{ alors } g \text{ est strictement décroissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement décroissante.} \\ \bullet \text{si } a > 1 \text{ alors } g \text{ est strictement décroissante,} \\ \bullet \text{si } a = 1 \text{ alors } g \text{ est constante,} \\ \bullet \text{si } a = 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } g \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } 0 \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } 0 \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } 0 \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } 0 \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } 0 \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } 0 \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } 0 \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } 0 \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } 0 \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } 0 \text{ est strictement croissante.} \\ \bullet \text{si } 0 < a < 1 \text{ alors } 0 \text{ e
```

Remarque n°2.

On peut résumer cette dernière propriété de la façon suivante :

• Si k > 0 alors $x \rightarrow k \cdot a^x$ se comporte comme $x \rightarrow a^x$ et . • Si k < 0 alors $x \rightarrow k \cdot a^x$ se comporte à l'inverse de $x \rightarrow a^x$.

Remarque n°3.

Si k=0 alors la fonction $x \to k \cdot a^x$ est la fonction nulle...

Exemple n°3.

Étudions les variations des fonctions suivantes définies pour tout réel x par :

$f_1(x) = 3,1^x$	$f_1(x) = a^x$ avec $a=3,1 > 1$. Donc f_1 est strictement croissante.
$f_2(x) = 0.23^x$	$f_2(x) = a^x$ avec $a=0.23$ et $0 < a < 1$ Donc f_2 est strictement décroissante.
$f_3(x) = 4 \times 3,1^x$	$f_3(x) = k \times a^x$ avec $k > 0$ et $a > 1$ Donc f_3 est strictement croissante.
$f_4(x) = -5 \times 3,1^x$	$f_4(x) = k \times a^x$ avec $k < 0$ et $a > 1$ Donc f_4 est strictement décroissante.
$f_5(x) = 4 \times 0.23^x$	$f_5(x) = k \times a^x$ avec $k > 0$ et $0 < a < 1$ Donc f_5 est strictement décroissante.
$f_6(x) = -5 \times 0,23^x$	$f_6(x) = k \times a^x$ avec $k < 0$ et $0 < a < 1$ Donc f_6 est strictement croissante.
$f_7(x) = \frac{-0.23^x}{5}$	$f_7(x) = k \times a^x$ avec $k < 0$ et $0 < a < 1$ Donc f_7 est strictement croissante. ($k = -1/5$)

EXERCICE N°1

Dans chaque cas, déterminer le sens de variation de la fonction f définie pour tout x par :

1)
$$f(x) = 2.21^x$$

2)
$$f(x) = 0.94^x$$

3)
$$f(x) = 0.99^{-x}$$

4)
$$f(x) = 1,001^{-x} \circ \bigcirc \bigcirc \bigcirc \boxed{a^{-x} = \frac{1}{a^x}} = 1$$

$$a^{-x} = \frac{1}{a^x} = \left(\frac{1}{a}\right)^x$$

5)
$$f(x) = 0.005 \times 2.4^x$$

6)
$$f(x) = 4500 \times 0.99^x$$

7)
$$f(x) = -3.2 \times 2.4^x$$

8)
$$f(x) = -6.1 \times 0.4^{x}$$

 $f(x) = 0.5(5.4)^{x}$

9)
$$f(x) = 2.3(5.4)^x$$

10)
$$f(x) = 0.5(5.4)^{-1}$$

EXERCICE N°2

Soit la fonction f définie pour tout réel x par : $f(x) = 2 \times (0.75)^x$.

- 1) Calculer l'image par f de -1.5 puis f(0).
- 2) Étudier le sens de variation de f.

EXERCICE N°3

Soient k et a deux réels.

On donne ci-contre la représentation graphique d'une fonction f définie pour tout réel x par : $f(x)=k a^x$.

Quelle est l'expression de f parmi les 4 propositions suivantes. Justifier.

•
$$f_2(x) = -3 \times 0.8^3$$

•
$$f_3(x) = -3 \times 1,2^x$$

•
$$f_1(x) = 3 \times 0.8^x$$

• $f_2(x) = -3 \times 0.8^x$
• $f_3(x) = -3 \times 1.2^x$
• $f_4(x) = -3 \times 1.2^{-x}$

EXERCICE N°4

Soient k et a deux réels.

On donne ci-contre la représentation graphique d'une fonction f définie pour tout réel x par : $f(x)=k a^x$.

Quelle est l'expression de f parmi les 4 propositions suivantes. Justifier.

•
$$f_2(x) = -2(0.7)^x$$

•
$$f_1(x) = 2(0,7)^x$$

• $f_2(x) = -2(0,7)^x$
• $f_3(x) = -2(0,7)^{-x}$
• $f_4(x) = 2(0,7)^{-x}$

•
$$f_A(x) = 2(0.7)^{-1}$$

III Moyenne géométrique

Définition n°2.

Soit n un entier naturel non nul et a_1 , a_2 , ..., a_{n-1} , a_n des réels strictement positifs.

On appelle moyenne géométrique des a_1 , a_2 , ..., a_{n-1} , a_n le nombre :

$$(a_1 \times a_2 \times ... \times a_{n-1} \times a_n)^{\frac{1}{n}}$$

Exemple n°4.

La moyenne géométrique de 0,5 ; 0,78 ; 1,3 et 1,78 vaut :

$$(0.5 \times 0.78 \times 1.3 \times 1.78)^{\frac{1}{4}} \approx 0.9747$$
 à 0.0001 près

Méthode n°1. Calculer un taux moyen d'évolution

Soit n un entier naturel non nul.

Si CM est le coefficient multiplicateur global sur n évolutions alors le taux moyen d'évolution est le réel $t = CM^{\frac{1}{n}} - 1$

Exemple n°5.

On donne 5 taux d'évolutions et on veut calculer t, le taux moyen d'évolution équivalent à ces 5 évolutions.

Une hausse de 30 % (
$$t_1$$
=0,3 et CM_1 =1,3)
Une hausse de 15 % (t_2 =0,15 et CM_2 =1,15)
Une baisse de 5 % (t_3 =-0,05 et CM_3 =0,95)
Une hausse de 10 % (t_4 =0,1 et CM_4 =1,1)
Une baisse de 20 % (t_5 =-0,2 et CM_5 =0,8)

On calcule le Coefficient Multiplicateur global CM:

$$CM = CM_1 \times CM_2 \times CM_3 \times CM_4 \times CM_5 = 1,24982$$

Ainsi:

$$t = CM^{\frac{1}{5}} - 1$$

 $t = 1,24982^{\frac{1}{5}} - 1 \approx 0,0456$ à 0,0001 près

Soit une hausse d'environ 4,56 %

- Calculer le coefficient multiplicateur global correspondant à 5 hausses de 3 %.
 Quel est le taux d'évolution moyen équivalent à 5 augmentations de 3 %?

- Calculer le coefficient multiplicateur global correspondant à 20 augmentations de 0,5 %.
 Calculer le coefficient multiplicateur global correspondant à 3 baisses de 2 %.

- 1) Calculer le coefficient multiplicateur global correspondant à une hausse de $1\,\%$ et une baisse de $2\,\%$.
- 2) Calculer le coefficient multiplicateur global correspondant à 2 baisses de 3 % suivies d'une baisse de 2 %.

- 1) Déterminer le taux moyen équivalent à 2 augmentations de 3 % suivies de 2 diminutions de 1 %.
- 2) Déterminer le taux moyen équivalent à 3 baisses de 2% suivies de 3 hausses de 3 %.

EXERCICE N°1

Une entreprise fabrique des vaccins contre la grippe. Le 1^{er} janvier 2019, elle en produit 2 000. Sa production journalière P, en milliers d'unités, augmente de façon continue de 3 % chaque mois à partir de cette date.

Au bout de n mois écoulés, on a donc la suite (P_n) définie pour tout entier naturel n par : $P_n = 2 \times 1.03^n$.

Si le nombre de mois n'est pas un entier, on a la fonction P définie pour tout réel x par : $P(x)=2\times1,03^x$.

On considère qu'un mois dure 30 jours.

Au bout de 6 jours, la production sera ainsi de P(0,2) et au bout de 15 jours P(0,5).

- 1) Quelle est la nature de la suite (P_n) . Préciser ses éléments caractéristiques.
- 2) Si on veut calculer la production au bout d'un an et demi, peut-on utiliser la suite ?
- 3) Calculer la production le 1^{er} février 2020, le 15 mars 2021 et le 5 janvier 2024.
- 4) À l'aide de la calculatrice, préciser la date à partir de laquelle le nombre de vaccins dépassera 4500 par jour.

EXERCICE N°2

Alissa a placé une certaine somme sur un compte épargne à 5 % d'intérêts annuels et a un solde de 992 euros à ce jour.

- 1) Elle souhaite fermer son compte dans deux ans, trois mois et quatre jours.
- (1 an = 365 jours et 1 mois = 31 jours), quel sera alors le solde son compte?
- 2) Le compte a été créé il y a 10 ans 3 mois et 20 jours. Combien Alissa avait-elle placé initialement?
- 3) Combien de jours devrait-elle attendre au minimum pour son compte atteigne 2 000 euros ?

EXERCICE N°3

Suite à une infection, le nombre de bactéries contenues dans un organisme en fonction du temps (en heures) peut être modélisé par la fonction f définie pour tout $x \in [0;8]$ par : $f(x)=25\,000\times1,1^x$.

- 1) À l'aide de la calculatrice, donner un arrondi au millier près du nombre de bactéries après 2 h puis après 4 h 30.
- 2) Déterminer les variations de f sur [0; 8].
- 3) À l'aide de La calculatrice, déterminer au bout de combien de temps le nombre de bactéries aura doublé.

EXERCICE N°4

Le niveau de l'eau d'une rivière a baissé de 11 % pendant 4 ans puis a augmenté de 8% pendant 6 ans.

Quel est le taux moyen annuel d'évolution?

EXERCICE N°5

En 2000, le nombre d'habitants d'un pays était de 11 millions. Depuis, ce nombre a augmenté de 3,5 % par an pendant 10 ans successivement puis a baissé de 1 % jusqu'en 2020.

- 1) Quelle est sa population en 2020 ?
- 2) Calculer le taux annuel moyen d'évolution.

EXERCICE N°6

On injecte à un patient 2 mL d'un médicament. Son organisme en assimile 30 % toutes les heures.

- 1) Quelle est la quantité de médicament dans l'organisme au bout de 3 h ? Au bout d'un jour ?
- 2) Donner l'expression de la fonction exponentielle de base a.
- 3) Au bout de combien de temps le médicament sera-t-il totalement assimilé?

EXERCICE N°7

Dans un pays entre 2014 et 2019, les prix ont baissé de 25 %. L'indice des prix (base 100) est modélisé par la fonction f définie pour tout réel positif t par : $f(t)=100(0,994)^t$ où t est le temps en mois à partir de janvier 2014.

- 1) Calculer l'indice le 1^{er} janvier 2015 puis le 1^{er} mai 2017.
- 2) Calculer le taux moyen annuel après 5 baisses.