ICOMEX

ICOsahedral-grid Models for EXascale Earth system simulations

G8 Call 2011-2014, ~1M€ mostly for workforce

Günther Zängl (Deutscher Wetterdienst)
Hirofumi Tomita (RIKEN/AICS)
Masaki Satoh (U. Tokyo)
Thomas Ludwig (U. Hamburg)
Leonidas Linardakis(MPI-M)
John Thuburn(U. Exeter/MetOffice)
Thomas Dubos (IPSL/École Polytechnique)

- Members of the consortium and participating models
- General goals and approach of the project
- Specific workpackages
 - · Model intercomparison and evaluation
 - · Abstract model description scheme
 - · Feasibility study for using GPUs
 - · Implicit solvers for massively parallel computing platforms
 - Parallel internal postprocessing
 - · Parallel I/O
 - · Collaboration with hardware vendors

Members of the consortium and participating models

All groups have developed / are developing dynamical cores on icosahedral grids. However they differ in terms of numerics and grid structuredness.

• NICAM : Hirofumi Tomita (RIKEN/AICS), Masaki Satoh(U. Tokyo)

Development started ~10 years ago Special care of moist energy budget Structured A-grid

- ICON: Gunther Zaengl (DWD), Marco Giorgetta (MPI-M)
 Development started ~10 years ago
 Unstructured triangular C-grid
- MPAS: John Thuburn (U. Exeter)
 Development started a few years ago
 Special care of energy and vorticity budgets
 Unstructured hexagonal C-grid
- DYNAMICO: T. Dubos (IPSL/École Polytechnique)
 Work really started only a year ago
 Spatial discretization very similar to MPAS, except transport
 Structured hexagonal C-grid

General goals and approach

ICOMEX is not about merging the participating models together...

It is about identifying/adressing roadblocks towards exascale computing:

- Identifying bottlenecks in existing models and platforms

 Model intercomparison and evaluation

 Parallel I/O
- Adressing common, known bottlenecks/challenges, present and future
 Abstract model description scheme (domain-specific language)
 Feasibility study for using GPUs
 Implicit solvers for massively parallel computing platforms
 Parallel internal postprocessing
- Initiating a dialogue with hardware vendors (co-design)

 Collaboration with hardware vendors

Solutions are developed within a specific model but should benefit all partners

Model intercomparison and evaluation M. Satoh, H. Tomita

Sequence of experiments of increasing length, physical complexity, and relevance to climate modelling

Deterministic test case

No physics Baroclinic wave (Jablonowski & Williamson, 2006) Identify/solve implementation (efficiency) issues

Statistical test cases

Full physics Radiatively-forced general circulation (Held & Suarez, 1994) Multi-year aquaplanet experiments (Neale and Hoskins, 2000) Check conservation, spectra, wave activity, ...

30-year AMIP run

Experiment 3.3 of the CMIP5 experimental design Huge amount of I/O 'Flagship experiment'

- Experiments to be performed with all participating models on the K-computer in Tokyo (~10Pflops, 100 000 CPUs)
- Resolution to be defined based on model performance.

Abstract model description scheme for eff cient use of memory bandwidth on a variety of platforms L. Linardakis

Motivation

- Architectures: wider spectrum, requiring not only different structures but even different languages
- Models: increasing number of software components and code complexity (ICON: Atmo + Ocean, triangle+hexagon, (non-)hydrostatic, nesting, machine specific coding, vectorization, complex orderings,...)
- Not easy to develop/modify/adapt.
- How to create code: a. Compatible and Efficient on different architectures b. Well Engineered

ICON Domain-specific language *L. Linardakis*

Proposed Approach May look like

```
DEFINE OPERATOR div(out value, in value, div coeff)
 REAL, EDGES, 3D, INTENT(in) :: in value
 REAL, CELLS, 3D, INTENT(inout) :: out value
 REAL, CELLS.EDGES, 2D, INTENT(in):: div coeff
                            :: cell
  INDEX, CELLS, 3D
  INDEX, CELLS.EDGES, 3D :: edge
  FOR cell IN out value.cells
   out value(cell) =
     SUM FOR edge IN cell.edges
        (edge value(edge) * div coeff(edge))
     END SUM
  END FOR
END DEFINE div
```

ICON Domain-specific language *L. Linardakis*

Proposed Approach

- The actual data structures are hidden inherited by the grid structure
- Allows translation to different structures by the parser
- Attach static and dynamic metadata to the variables, so that parser and the code know the variable properties
- Object-oriented flavor produces cleaner code

Feasibility for using GPUs for atmospheric models *T. Dubos, Y. Meurdesoif*

- Stack many 'light' cores together
- •Probable precursor of exascale building block
- Lock-step execution of 'warps'
- Hates if/else
- Complex memory hierarchy
- Very expensive access to global memory
- Need high compute/data ratio
- Try and reuse data but very little local memory

CUDA Hierarchy of threads, blocks, and grids, with corresponding per-thread private, per-block shared, and per-application global memory spaces.

Feasibility for using GPUs for atmospheric models *T. Dubos, Y. Meurdesoif*

- Data stored in rectangular arrays
- •Direct access to neighbours via constant offsets
- •No special case for pentagons (handled by metrics)

ENDDO

Feasibility for using GPUs for atmospheric models *T. Dubos, Y. Meurdesoif*

Computing with GPUs : programming models

Low-level

- •CUDA, CUDA Fortran
- Explicit access to hardware features
- Many optimization opportunities
- Specialized language
- •Rapid obsolescence of fine-tuned code due evolving hardware

High-level

- PGI Accelerator, HMPP
- •Insert directives in normal Fortran
- •Let compiler exploit GPU or similar hardware

How much performance can a low-level approach extract?

How much of this is lost when using a higher-level approach?

Which programming patterns can help high-level approaches to perform well?

2012 : Shallow-water model - low-level vs high-level implementation, tuning and benchmarking

2013: 3D hydrostatic core

2014 : Introduce (simplified) physics ?

Massively parallel multigrid solvers *J. Thuburn*

The scientific case

- All models in ICOMEX currently use some form of explicit or split explicit time integration schemes (perhaps with some vertical terms treated implicitly)
- These are complicated and typically require several ad-hoc damping mechanisms to obtain stability
- Implicit or semi-implicit time integration can have better stability properties and allow much longer time steps...
- ...but require the solution of a global elliptic problem.

Can we do this efficiently and scalably?

Massively parallel multigrid solvers *J. Thuburn*

Geometric multigrid:

iterative, well-understood, optimal solution of elliptic problems

Built around V-cycle = sequence of related elliptic problems posed on grids of increasing, then decreasing mesh size

If massively parallel, there may not be enough work to share on the coarsest grid => limit to scalability

If the elliptic problem comes from semiimplicit time integration, then

L~c.dt

where c is the fastest wave phase speed

The V-cycle can stop when resolution ~ L without loss of efficiency

=> possibly enough work to share!

$$\nabla^2 \Phi - \frac{1}{L^2} \Phi = R$$

Massively parallel multigrid solvers *J. Thuburn*

 Standard icosahedral grids provide a natural hierarchy for geometric multigrid (but what about locally refined grids?)

Parallel post-processing server J. Thuburn, T. Dubos

Why do we need on-line post-processing?

- •Scientific work will typically not use native model grids but more user-friendly grids (lat-lon)
- •In many cases fine-scale detail is not analyzed, only temporal /spatial statistics
- •The correct interpolation/averaging operations depend on the model numerics
- Part of the post-processing needs to be developed along the model
- •Then, why not do (some of) it on-line?

Potential benefits:

•Reduce the I/O bottleneck, during and/or after the model runs

Approach:

- Extend XML-I/O server (XIOS) to icosahedral grids
- Develop adequate, scalable horizontal/vertical interpolation/averaging operations
- XIOS already provides a parallel framework, high-level description of outputs and basic temporal statistics

Parallel post-processing server J. Thuburn, T. Dubos

Parallelism in XIOS

Client/server approach
 Non-blocking call : computation can proceed immediately

Parallel NetCDF
 All I/O servers access a single file, removing the need to for post-simulation « rebuild » (merging of per-process files).

Parallel post-processing server J. Thuburn, T. Dubos

XML description of outputs

- •Associates *properties* to items
- Concept of inheritance

```
<field id="toce" long_name="temperature (Celcius)" unit="degC" grid_ref="Grid_T" />
<field id="toce_K" field_ref="toce" long_name="temperature (Kelvin)" unit="degK" />
```

Hierarchical organization

```
<field definition/>
  <field group id="grid T" domain ref="grid T">
    <field id="toce" long_name="temperature" unit="degC" axis_ref="deptht"
                                                                              />
    <field id="soce" long name="salinity"
                                              unit="psu" axis ref="deptht"
                                                                              />
    <field id="sst"
                     long name="sea surface temperature" unit="degC"
    <field id="sst2" long name="square of sea surface temperature" unit="degC2" />
    <field id="|sstgrad|" long_name="module of sst gradient" unit="degC/m" />
  </field group>
</field_definition>
<file definition>
  <file id="1d" name="out_1day" output_freq="1day" enabled=".TRUE." />
     <field group field group ref="grid T" />
  </file>
</file definition>
```

- Avoids repetition
- Compact, flexible and human-readable

Parallel I/O T. Ludwig

- •I/O expected to become a major bottleneck for exascale computing Even if model uses parallel I/O :
- Bottlenecks main remain in the low-level libraries (e.g. NetCDF, MPI-I/O) and file system
- Usage of low-level libraries by models may be suboptimal

Plan:

- Analyze the current temporal and spatial I/O access patterns of the application layer, and the resulting low level accesses performed by the intermediate I/O libraries.
- Create a benchmark resembling typical I/O access patterns of the model. This benchmark should scale to exaflop systems.
- Benchmark currently deployed file systems in the consortiums compute facilities
- Determine the bottlenecks in hardware or software environment.
- Evaluate different access patterns by using NetCDF, HDF5 and Grib, and compare the peak performance with the performance obtained by the model I/O benchmark. This will reveal optimization potential of current model access patterns.
- Compare performance of the I/O library to peak performance of parallel f le system to reveal whether the intermediate I/O library is capable to extract raw performance from the f le systems.
- Feedback promising optimization strategies to vendors / developers (e.g. to the NetCDF community to create a new on-disk f le format).

Collaboration with hardware vendors *T. Ludwig*

- Experts from Cray, Fujitsu, IBM and NEC are associated to the project
- Participate to project meetings and mailing list
- Gain insight into the structure of computation and I/O performed by our models
- Gain insight into the development process of the models
- Provide guidance for implementation strategies
- Provide hints about possible/impossible future directions of hardware/software
- Specif c time devoted to discussions during project meetings

Questions?