Precalculus

Find the area of a triangle from two sides and an angle between them

Todor Milev

2019

Triangle area = $\frac{1}{2}$ base · height

Let $\triangle ABC$ have side lengths a, b, c and height lengths h_a, h_b, h_c , as indicated - side a is opposite to vertex A and h_a starts at A, and so on.

Proposition (Triangle area)

$$\textit{Area}(\triangle \textit{ABC}) = \frac{1}{2}\textit{height} \cdot \textit{base} = \frac{1}{2}\textit{h}_{\textit{a}}\textit{a} = \frac{1}{2}\textit{h}_{\textit{b}}\textit{b} = \frac{1}{2}\textit{h}_{\textit{c}}\textit{c}.$$

Triangle area from two sides and angle between them

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Proof.

Area(
$$\triangle ABC$$
) = $\frac{base \cdot height}{2} = \frac{bh_b}{2}$
= $\frac{ba \sin \gamma}{2}$.

The proof of the other two cases is similar.