

COMSATS University Islamabad, Lahore Campus

Block-C, Department of Computer Science
COMSATS University Islamabad, Lahore Campus
Defence Road, Off Raiwind Road, Lahore

CSC371: Database Systems

Section: A

Assignment No. 4

Team Members Registration ID:

SP21-BCS-045-A-Abdul Hadi Farooq SP21-BCS-015-A-Muhammad Ayan SP21-BCS-065-A-Najam ul Hasan

Submitted To: Dr. Hamid Turab

Table of Contents

Abstract4	ŀ
Domain description4	Ļ
Current Situation4	-
Requirement Specification5	į
Functional Requirements5	į
Non-Functional Requirements6	<u>,</u>
Assumptions6	į
Placement6	<u>,</u>
Inventory6	į
Delivery7	7
Entity Relationship Diagram7	7
Entities & attributes	7
Customer	7
Employee8)
Order8)
Order Detail8)
Product8)
Product Details9)
Return Order9)
Expenses9)
Price History10)
Supplier10)
Category10)
Relationships & labels11	_
Customer11	_
Employee11	_
Order11	-
Product11	-
Validation11	_
Description 12)

Screenshots Of Developed Frontend\GUI	13
Login-form	13
Employee Screen	13
Product view	13
Order view	14
Customer view	14
Manager Screen	15
Product Management	16
Order Management	17
Customer Management	18
Employee Management	19
Supplier Management	19
Returned Order	20
Expense Management	20
Reports	20
Price History	20
Revenue Report	21
Profit Report	22
Expense Report	24
Sales Report	24
Employee Report	26
Customer Report	27
Stored Procedures, Views & Functions	28
Normalization Of Tables	35
Orders Table – 1NF	35
Partial Dependency	35
Order Details Table – 3NF	35
Orders Table – 3NF	36
Products Table – 2NF	36
Transitive Dependency	36
Categories Table – 3NF	36

Products Table – 3NF	36
Denormalization	37
Conclusion	37
Recommendations	38

Abstract

This proposal report is written for 'Super Shoe Store', a shoe store. This report highlights the working of the store and all of its aspects.

For managing stock, suppliers and the customers, based on all the requirements. A relational database is proposed here along with specifications and suggestions.

Domain description

Super Shoe Store is a small shoe store selling shoes to the customers for 5 years and shifted to online selling since last 2 years; the store is quite new in its online selling but they are quite experienced in on store selling. The store has following departments

- Sales Department, in Lahore;
- Stock Department, in Lahore;
- Delivery Department, in Lahore;

Whenever a customer places an order it is managed and listed by sales department which then send it to Stock department which checks the availability of the product, if the product is available in specified quantity then order is processed and order is delivered by the delivery service of store otherwise product order is not processed and unavailability is notified to the customer. The inventory supply and suppliers information is also managed in stock department. After order delivery, the cash is taken on delivery.

Current Situation

The majority of the information is now handled manually, which takes a lot of time, looks complex where it is tough to enter and retrieve data. Currently there is no proper database system, just a billing machine which prints bill of the items entered in real time. The stock and accounts are managed on paper-based register or files.

The sales department are working on one mobile phone and one laptop. On laptop the salesperson checks the orders after the order is placed, then manually the products included in the order are checked in the stock and the customer is notified whether the order is processed or the product is unavailable. If it is available, the customer gets a confirmation call and the item is set for delivery by the store. The supply by the suppliers arrives monthly and it is recorded monthly. This system is inefficient, , inaccurate and unsustainable in the long run.

Requirement Specification

To simplify the sales, stocks and delivery, they are divided into furthermore subprocesses in this study, namely:

Placement:

The process of order placement by the customer from the sales is considered as Placement for this report.

Inventory:

Once the monthly shoe stock is received it is stored accordingly in warehouse, this process is termed as Inventory throughout the report.

Delivery:

The delivery of the product is considered as delivery for this report.

Functional Requirements

Id	Function	Entity	Priority
Pla	Placement		
1	Insert/ Update/Delete/ View of the orders placed.	Order details, Order	High
2	A list of all the orders to be processed and delivered in two working days.	Orders, Order Detail	Low
Inv	Inventory		
3	Insert/Update/Delete/View of all the Inventory.	Products, Suppliers, Categories, Shippers	High

4	View the total Available Quantity of any Category present with respect to their suppliers.	Categories, Products, Suppliers	High
5	View total stock available in inventory.	Products	High
De	livery		
6	Insert/Update/Delete/View of the Orders	Orders, Order	High
	confirmed and set to delivery.	details ,Customers	

Non-Functional Requirements

- The database must be available to Sales and Stock Departments.
- Certain functions, such as insert, update, delete should only be available to the authorized staff members.
- Analytical reports shall only be available to Owner.
- Only authorized staff should be able to use the system.
- The System must be capable of coping with the projected growth of the business.

Assumptions

Placement

- All the orders placed are dealt by sales department only.
- The order and customer details are shared by sales department and delivery department, Stocks department is not concerned by it.
- The order cancellation, exchange and any refunds are dealt by sales department and delivery and stock department is updated by sales department.

Inventory

- Each category of shoes is placed in different container.
- Shoes are placed in specified storage boxes.
- All the exchanged and refunded products are added at the end of the month.

Delivery

- The delivery is performed every 4 working days.
- There is no delivery on Sundays.
- Refund at the time of delivery is not entertained.

Entity Relationship Diagram

Entities & attributes

Customer

<u>Customer-ID</u>	Varchar (5)
Contact Name	Varchar (40)
Company name	Varchar (60)
Customer address	Varchar (60)
City	Varchar (10)
phone	Varchar (15)

Customer-ID is a primary key and will be a unique code allocated to any customer. Country, city, address, postal-code and phone attributes will be used to keep information for delivery department.

Employee

Employee-ID	Integer
Last-Name	Varchar (20)
First-Name	Varchar (10)
gender	char
Birth-Date	Date
address	Varchar (60)
Hire-Date	Date

Employee will keep information relevant to employees, responsible for handling orders and those supervising other employees. Employee-ID is a primary key and will be a unique code allocated to any employee. Hire-Date attribute will allow to keep information about years of service.

Order

Order-ID	Integer
Customer-ID (FK)	Varchar (5)
Employee-ID (FK)	Integer
Order-Date	Date

Order will keep information about all orders received. Order-ID is selected as primary key. By interfacing with the database of sales department, it will allow to track any delivery up to the very detailed level of the employee who handled the order, on which order date, required date, shipped date, via which ship.

Order Detail

Order-ID (FK)	Integer
Product-ID (FK)	Integer
Color ID (FK)	Integer
Size ID (FK)	Integer
Unit-Price	Money
Quantity	Integer
Discount	Integer

Order-Detail will keep detailed information about all the orders received for one product-ID and quantity ordered. **Order-ID**, **Product-ID**, **color ID** and **size ID** will act as **composite primary key**.

Product

Product-ID	Integer	
------------	---------	--

Product-Name	Varchar (40)
Supplier-ID (FK)	Integer
Category-ID (FK)	Integer
Unit-Price-buy	Money
Uni-Price-Sale	Money
Discontinued	Bit

Product will keep information about all products, their supplier, to which category they belong, buying and selling unit price. Product-ID is a primary key and will be a unique code allocated to any product.

Product Details

Product-ID	Integer
<u>Color ID</u>	Integer
Size ID	Integer
<u>Units in stock</u>	Integer

Product Details will keep information about all products details, such as their color, size, and how many units are in stock for each and every specific products size and color. Product-ID is a primary key and will be a unique code allocated to any product. Logistics department will keep track of units-on-order, so that when units-in-stock fall below reorder-level, the system will give a notification.

Return Order

Order-ID (FK)	Integer
Product-ID (FK)	Integer
Color ID (FK)	Integer
Size ID (FK)	Integer
Quantity returned	Integer
Return date	Date

Order-Detail will keep detailed information about all the orders received for one product-ID and quantity ordered. **Order-ID**, **Product-ID**, **color ID** and **size ID** will act as **composite primary key**.

Expenses

Expense ID	Integer
Employee ID (FK)	Integer
Expense date	Date
Expense type	Varchar (20)

Amount	Money
Description	Varchar (100)

Expenses will keep information about all expenses such as any maintenance costs, bills and employee salaries. This table data is used in various reports covered later on.

Price History

Product ID	Integer
End date	Date
Changed by	Varchar (50)
New unit price buy	Money
New unit price sale	Money

Price history will keep information about the change in prices of all products due to any reason such as seasonal sales. **Product ID and End date** form a composite primary key.

Supplier

Supplier-ID	Integer
Company-Name	Varchar (40)
Address	Varchar (60)
City	Varchar (15)
Country	Varchar (15)
Phone	Varchar (24)

Supplier will keep information about all suppliers, their company name and phone number. Supplier-ID is selected as primary key and will be a unique code allocated to any supplier.

Category

<u>Category-ID</u>	Integer
Category-Name	Varchar (15)

Category will keep information about the category to which a product belongs to. Category-ID is a primary key and will be a unique code allocated to any category. Category-Name will provide information about how the products are categorized.

Relationships & labels

Customer

- A customer can *place many or no* orders.
- An order must be *placed by* a customer.

Employee

- An employee can *handle many or no* orders.
- An order must be *handled* by an employee.

Order

- An order can *have* more than one order details.
- An order detail must *belong-to* an order.
- An order can *have many* order details.
- An order detail is a *part-of* an order.

Product

- A product can *have many or no* order details.
- An order detail must *belong-to* a product.
- A supplier must *supply* a product.
- A supplier can *supply many* products
- A product must be *supplied by* a supplier.
- A category can *have many* products.
- A product must *belong-to* a category.

Validation

In accordance with the user requirements, it can be clearly seen from the above description of entities and their relationships that the model is capturing all the information that is of interest to the business; hence the completeness of the conceptual model can be validated against the set of user requirements.

Since all the M:N relationships are resolved at this stage and the structure of the data is in a natural form; also while designing the conceptual model the very factor of interfacing with other systems of delivery and sales is also taken into consideration; therefore it can be validated that there exist no conflicts in the system.

User requirements relating to storage are captured by the Products, Suppliers and Categories entities. Requirement ID 1, 2, 6 and 7 are catered by the

provision of **Order-date** of the **Orders entity**. **Requirement ID 3, 4 and 5** are catered by **units-in-stock** attributes of the **Product entity**.

Throughout the conceptual design phase Sales process has been viewed as three sub processes namely supply, categorizing products and handling orders; hence this business process break down has virtually eliminated the chances of redundancy and the repetition of any entities or concepts.

Every care has been taken to keep the data in natural form; as it is quite obvious from the use of composite primary keys instead of an artificial one. Yet again the break-down of the process into further sub processes has made the representation of the model very simple; hence it will be easy for the developer to implement resulting into a user-friendly system as a final product.

Description

Entity Relationship Diagram illustrates the structure of the Sales section of the proposed system. It can be observed from the diagram that the Super Shoe Store's Sales department is performing three main functions. Those are of receiving the products from suppliers, categorizing the products appropriately, which is handled by stocks department, and then handling orders upon the placement of an order.

On Order it is a must requirement to record the Order ID. Since any product can have many orders and there could be many products on any one order, therefore to resolve this M:N relationship an Order Detail link entity is used, once an order is placed then comes the stage of delivering it.

Since it is assumed that all products are unique, this makes the lookup for the exact available quantity and units-on-order very straightforward. This also allows the system to keep track of units in stock so that once it falls below reorder level, the system will give a notification. Therefore, the design allows for the update of the quantities stored, and ensures in-demand products always in stock.

Screenshots Of Developed Frontend\GUI

Login-form

LOGIN PAGE Login Credentials: USERNAME: PASSWORD: LOGIN

Employee Screen

Product view

This shows only necessary information in form of views implemented at backend when view products button is pressed.

Order view

This shows only necessary information in form of views implemented at backend when view orders button is pressed.

Customer view

This shows only necessary information in form of views implemented at backend when view customer button is pressed.

The rest screens are also present in manager screen.

Manager Screen

i.

Product Management

Order Management

Employee Management

Supplier Management

Returned Order

Expense Management

Reports
Price History

Profit Report

Type here to search

Expense Report

Sales Report

Activate Windows
Go to Settings to activate Windows.

Activate Windows
Go to Settings to activate Windows,

Employee Report

Customer Report

Stored Procedures, Views & Functions

Normalization Of Tables

Orders Table – 1NF Partial Dependency

<u>OID</u>	<u>CID</u>	EID	Order	<u>PID</u>	<u>Color</u>	<u>Size</u>	Unit	Qty	Discount
			Date		<u>ID</u>	<u>ID</u>	Price		

Composite Primary Key: Order ID (OID), Product ID (PID), Color ID, Size ID

In orders table, customer ID (CID), employee ID (EID) and Order date are **dependent** on only **Order ID**, which is **part of the whole primary key**.

While unit price, quantity, and discount are **dependent** on only **Product ID**, **Color ID**, **Size ID**.

This table contains partial dependency because all attributes are not dependent on the whole primary key.

To fix this we decompose the orders table into two tables.

Order Details Table – 3NF

OID	PID	Color ID	Size ID	Unit	Qty	Discount
				Price		

Composite Primary Key: Order ID (OID), Product ID (PID), Color ID, Size ID

Orders Table – 3NF

OID	CID	EID	Order Date

Primary Key: Order ID (OID)

The new tables do not contain any partial or transitive dependencies, thus they are in 3NF.

Products Table – 2NF

Transitive Dependency

<u>Product</u>	Product	Supplier	Category	Category	Unit	Discontinued
<u>ID</u>	Name	<u>ID</u>	ID	Name	Price	

Primary Key: Product ID

In products table **Category Name** is dependent on **Category ID**, both of which are **non-key attributes**. Since, neither of them is dependent on the whole **primary key**, the products table contains **transitive dependency**, because a non-key attribute is dependent on another non-key attribute.

To put the table in **3NF** form, we remove **category Name** and use **category ID** to form another table named **Categories**.

Categories Table – 3NF

Category ID	Category Name
-------------	---------------

Primary Key: Category ID

We use category ID in the products table as a foreign key.

Products Table – 3NF

Product	Product	Supplier	Category	Unit	Discontinued
<u>ID</u>	Name	<u>ID</u>	<u>ID</u>	Price	

Primary Key: Product ID

Denormalization

Conclusion

The entity model presented here seeks to model the data required in the system from the point of view of the Sales Department. When all the three views will be integrated, some of the entities and relationships might need some modification with respect to the requirements of other systems.

Recommendations

Based on the user requirements of the company it is recommended that a centralized database server be placed at any of the offices. Database should have web application interface, connecting all the remote departments through a secure connection. Taking into consideration the ease of information access with the availability of the automated system it is recommended that a security policy should be devised, limiting the system access to authorized staff only. It is anticipated that these steps will greatly improve the speed of response, accuracy of information, cost-effective transactions; hence will enhance the overall business process.