Le tabelle di hash

Gianpiero Cabodi e Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Finora gli algoritmi di ricerca si erano basati sul confronto.

Eccezione: tabelle ad accesso diretto dove la chiave $k \in U = \{0, 1, ..., card(U)-1\}$ funge da indice di un array st[0, 1, ..., card(U)-1]:

Limiti delle tabelle ad accesso diretto:

- |U| grande (vettore st non allocabile)
- |K| << |U| (spreco di memoria).</p>

Tabella di hash:

ADT con occupazione di spazio O(|K|) e tempo medio di accesso O(1).

La funzione di hash trasforma la chiave di ricerca in un indice della tabella.

La funzione di hash non può essere perfetta

collisione.

Funzione di hash

- La tabella di hash ha dimensione M e contiene
 |K| elementi (|K| < |U|)
- La tabella di hash ha indirizzi nell'intervallo [0 ... M-1]
- La funzione di hash h: mette in corrispondenza una chiave k in un indirizzo della tabella h(k)

h:
$$U \rightarrow \{ 0, 1, ..., M-1 \}$$

L'elemento x viene memorizzato all'indirizzo h(k) dato dalla sua chiave k (attenzione alla gestione delle collisioni!).

A.A. 2014/15 12 Le tabelle di hash

5

Progetto della funzione di hash

Funzione ideale: hashing uniforme semplice: se le chiavi k sono equiprobabili, allora valori di h(k) devono essere equiprobabili.

In pratica:

- le chiavi k non sono equiprobabili, anzi sono correlate:
 - usare tutti i bit della chiave
 - "amplificare" le differenze.

Tipologie di funzioni di hash

Metodo moltiplicativo:

chiavi: numeri in virgola mobile in un intervallo prefissato ($s \le k \le t$):

$$h(k) = \lceil (k-s) / (t-s) * M \rceil$$
#define hash(k, M)(((k-s)/(t-s))*M)

Esempio:

M = 97, s = 0, t = 1
k = 0.513870656

$$h(k) = [(0.513870656 - 0) /(1 - 0) * 97] = 50$$

8

Metodo modulare:

chiavi: numeri interi di w bit:

M numero primo

$$h(k) = k \mod M$$

#define hash(k, M)(k %M)

Esempio:

$$M = 19$$

$$k = 31$$

$$h(k) = 31 \mod 19 = 12$$

M numero primo evita:

- di usare solo gli ultimi n bit di k se $M = 2^n$
- di usare solo le ultime n cifre decimali di k se $M = 10^{n}$.

Metodo moltiplicativo-modulare

chiavi: numeri interi:

data costante 0<A<1</p>

$$A = \phi = (\sqrt{5} - 1) / 2 = 0.6180339887$$

■ $h(k) = \lfloor k \cdot A \rfloor \mod M$

Metodo modulare:

chiavi: stringhe alfanumeriche corte come interi derivati dalla valutazione di polinomi in una data base

M numero primo

 $h(k) = k \mod M$

Esempio:

```
stringa now = n'*128^2 + o'*128 + w'
= 110*128^2 + 111*128 + 119
k = 1816567
k = 1816567 M = 19
h(k) = 1816567 mod 19 = 15
```


Metodo modulare:

chiavi: stringhe alfanumeriche lunghe come interi derivati dalla valutazione di polinomi in una data base con il metodo di Horner: ad esempio

$$P_7(x) = p_7 x^7 + p_6 x^6 + p_5 x^5 + p_4 x^4 + p_3 x^3 + p_2 x^2 + p_1 x + p_0$$

= ((((((p_7 x + p_6) x + p_5) x + p_4) x + p_3) x + p_2) x + p_1) x + p_0

Come prima:

M numero primo

$$h(k) = k \mod M$$

Esempio: stringa averylongkey con base 128 (ASCII)

```
k = 97*128^{11}+118*128^{10}+101*128^{9}+114*128^{8}+121*128^{7}+108*128^{6}+111
*128^{5}+110*128^{4}+103*128^{3}+107*128^{2}+101*128^{1}+121*128^{0}
```

Ovviamente k non è rappresentabile su un numero ragionevole di bit.

Con il metodo di Horner:

4

Ma anche con il metodo di Horner k non è rappresentabile su un numero ragionevole di bit.

E' possibile però ad ogni passo eliminare i multipli di M, anziché farlo dopo in fase di applicazione del metodo modulare, ottenendo la seguente funzione di hash per stringhe con base 128 per l'ASCII:

```
int hash (char *v, int M){
  int h = 0, base = 128;
  for (; *v != '\0'; v++)
    h = (base * h + *v) % M;
  return h;
}
```


In realtà anche per stringhe ASCII non si usa 128 come base, bensì:

- un numero primo (ad esempio 127)
- numero pseudocasuale diverso per ogni cifra della chiave (hash universale)

con lo scopo di ottenere una distribuzione abbastanza uniforme (probabilità di collisione tra 2 chiavi diverse prossima a 1/M).

Funzione di hash per chiavi stringa con base prima:

```
int hash (char *v, int M) {
  int h = 0, base = 127;
  for (; *v != '\0'; v++)
    h = (base * h + *v) % M;
  return h;
}
```

Funzione di hash per chiavi stringa con hash universale:

```
int hashU( char *v, int M) {
  int h, a = 31415, b = 27183;
  for ( h = 0; *v != '\0'; v++, a = a*b % (M-1))
    h = (a*h + *v) % M;
  return h;
}
```

A.A. 2014/15

Definizione:

collisione: $h(k_i)=h(k_j)$ per $k_i \neq k_j$

Le collisioni sono inevitabili, occorre:

- minimizzarne il numero (buona funzione di hash):
- gestirle:
 - linear chaining
 - open addressing.

Linear Chaining

Più elementi possono risiedere nella stessa locazione della tabella $T \Rightarrow$ lista concatenata.

Operazioni:

- inserimento in testa alla lista
- ricerca nella lista
- cancellazione dalla lista.

Determinazione della dimensione M della tabella:

 il più piccolo primo M ≥ numero di chiavi max / 5 (o 10) così che la lunghezza media delle liste sia 5 (o 10)

Esempio

M = 5; int hash(Key v, int M) { **int** h = 0, base = 127; for (; *v != '\0'; v++) h = (base * h + *v) % M;return h;

Linear chaining

```
typedef struct STnode* link;
struct STnode { Item item; link next; } ;
struct symboltable { link *heads; int M; link z; };
Item NULLitem = EMPTYitem;
link NEW( Item item, link next)
  link x = malloc(sizeof *x);
  x->item = item;
  x->next = next;
  return x;
```

```
ST STinit(int maxN) {
  int i;
  ST st = malloc(sizeof *st) ;
  st->M = maxN/5;
  st->heads = malloc(st->M*sizeof(link));
  st->z = NEW(NULLitem, NULL);
  for (i=0; i < st->M; i++)
    st->heads[i] = st->z;
  return st;
Item searchR(link t, Key v, link z) {
  if (t == z) return NULLitem;
  if (eq(key(t->item), v)) return t->item;
  return searchR(t->next, v, z);
Item STsearch(ST st, Key v) {
  return searchR(st->heads[hash(v, st->M)], v, st->z);
```



```
void STinsert (ST st, Item item) {
  int i = hash(key(item), st->M);
  st->heads[i] = NEW(item, st->heads[i]);
link deleteR(link x, Item v) {
  if ( x == NULL ) return NULL;
  if (eq(key(x->item), key(v))) {
    link t = x-\text{next}; free(x); return t;
  x->next = deleteR(x->next, v);
  return x;
void STdelete(ST st, Item item) {
    int i = hash(key(item), st->M);
    st->heads[i] = deleteR(st->heads[i], item);
```


Ipotesi:

Liste non ordinate:

- N = |K| = numero di elementi memorizzati
- M = dimensione della tabella di hash

Hashing semplice uniforme:

h(k) ha egual probabilità di generare gli M valori di uscita.

Definizione

fattore di carico $\alpha = N/M$ (>, = o < 1)

- Inserimento: T(n) = O(1)
- Ricerca:
 - caso peggiore $T(n) = \Theta(N)$
 - caso medio $T(n) = O(1+\alpha)$
- Cancellazione:
 - •T(n) = O(1) se disponibile il puntatore ad x e la lista è doppiamente linkata
 - come la ricerca se disponibile il valore di x, oppure il valore della chiave k, oppure la lista è semplicemente linkata

Open addressing

- Ogni cella della tabella T può contenere un solo elemento.
- Tutti gli elementi sono memorizzati in T.
- Collisione: ricerca di cella non ancora occupata mediante probing:
 - generazione di una permutazione delle celle = ordine di ricerca della cella libera. Concettualmente:

\<u>\</u>≤|V √<1

Open addressing

Determinazione della dimensione M della tabella:

 il più piccolo primo M ≥ doppio del massimo numero di chiavi presenti (input dell'utente)

```
#define full(A) (neq(key(st->a[A]), key(NULLitem)))
#define null(A) (eq(key(st->a[A]), key(NULLitem)))
struct symboltable { Item *a; int N; int M;};
ST STinit(int maxN) {
  ST st; int i;
  st = malloc(sizeof(*st));
  st->N = 0; st->M = maxN;
  st->a = malloc(st->M * sizeof(Item) );
  for (i = 0; i < st->M; i++)
    st->a[i] = NULLitem;
  return st;
```

A.A. 2014/15

Funzioni di probing

- Linear probing
- Quadratic probing
- Double hashing

Un problema dell'open addressing è il **clustering**, cioè il raggruppamento di posizioni occupate contigue.

Linear probing

Insert:

- \blacksquare calcola i = h(k)
- se libero, inserisci chiave, altrimenti incrementa i di 1 modulo M
- Ripeti fino a cella vuota.

```
void STinsert(St st, Item item) {
  int i = hash(key(item), st->M);
  while (full(i))
    i = (i+1)%st->M;
  st->a[i] = item;
  st->N++;
}
```


Search:

- calcola i = h(k)
- se trovata chiave, termina con successo
- incrementa i di 1 modulo M
- ripeti fino a cella vuota (insuccesso).

```
Item STsearch(ST st, Key v) {
   int i = hash(v, st->M);
   while (full(i))
     if (eq(v, key(st->a[i])))
       return st->a[i];
     else
       i = (i+1)%st->M;
   return NULLitem;
}
```



```
M = 13;
int hash(Key v, int M) {
  int h = 0, base = 127;
  for (; *v != '\0'; v++)
    h = (base * h + *v) % M;
  return h;
}
```

cluster


```
5
    6
        R
R
    8
    9
    10
    11
```


$$A S E R C H I N G X M P$$

 $h(k) = 0 5 4 4 2 7 8 0 6 10 12 2$

A.A. 2014/15 12 Le tabelle di hash

Delete:

operazione complessa che interrompe le catene di collisione.

L'open addressing è in pratica utilizzato solo quando non si deve mai cancellare.

Soluzioni:

- sostituire la chiave cancellata con una chiave sentinella che conta come piena in ricerca e vuota in inserzione
- reinserire le chiavi del cluster sottostante la chiave cancellata

Delete A, poi reinserire le chiavi del cluster N A N A

A.A. 2014/15 12 Le tabelle di hash

```
void STdelete(ST st, Item item) {
  int j, i = hash(key(item), st->M);
  Item v;
  while (full(i))
    if eq(key(item), key(st->a[i]))
      break;
    else
     i = (i+1) \% st->M;
  if (null(i))
    return;
  st->a[i] = NULLitem;
  st->N--:
  for (j = i+1; full(j); j = (j+1)%st->M, st->N--) {
    v = st->a[j];
    st->a[j] = NULLitem;
    STinsert(st, v);
```

A.A. 2014/15

Complessità con l'ipotesi di:

- hashing semplice uniforme
- probing uniforme.

Tentativi in media di "probing" per la ricerca:

- search miss: $1/2(1 + 1/(1-\alpha))$
- search hit: $1/2(1 + 1/(1 \alpha)^2)$

α	1/2	2/3	3/4	9/10	
hit	1.5	2.0	3.0	5.5	
miss	2.5	5.0	8.5	55.5	

A.A. 2014/15 12 Le tabelle di hash

Quadratic probing Insert:

- calcola index = h(k)
- se libero, inserisci chiave, altrimenti incrementa index di c₁i + c₂i² modulo M
- ripeti fino a cella vuota.

```
#define c1 1
#define c2 1
void STinsert(ST st, Item item) {
  int i = 0;
  int index = hash(key(item), st->M);
  while (full(index)) {
    i++;
    index = (index + c1*i + c2*i*i)%st->M;
  }
  st->a[index] = item;
  st->N++;
}
```

A.A. 2014/15 }

12 Le tabelle di hash

Scelta di c₁ e c₂:

- se M = 2^K , scegliere $c_1 = c_2 = \frac{1}{2}$ per garantire che siano generati tutti gli indici tra 0 e M-1:
- se M è primo, se $\alpha < \frac{1}{2}$ i seguenti valori

$$c_1 = c_2 = \frac{1}{2}$$

$$c_1 = c_2 = 1$$

$$c_1 = 0, c_2 = 1.$$

garantiscono che, con inizialmente index = h(k) e poi index = $(index + c_1i + c_2i^2)$ modulo M si abbiano valori distinti per $1 \le i \le (M-1)/2$.

A.A. 2014/15 12 Le tabelle di hash

$$A E R C N P$$

 $h(k) = 0 4 4 2 0 2$

	0	Α			0	Α
	1				1	
	2				2	
	3				3	
	4				4	E
	0 1 2 3 4 5 6 7 8 9				0 1 2 3 4 5 6 7 8 9 10	
Α	6		E	•	6	
	7				7	
	8				8	
					9	
	10					
	11				11 12	
	11 12				12	

Funzione di quadratic probing i + i²

$$(4 + 1 + 1^2) \mod 13 = 6$$

$$A E R C N P$$

 $h(k) = 0 4 4 2 0 2$

N

$$(0 + 1 + 1^2) \mod 13 = 2$$

 $(2 + 2 + 2^2) \mod 13 = 8$

$$(2 + 1 + 1^2) \mod 13 = 4$$

 $(4 + 2 + 2^2) \mod 13 = 10$

Double hashing

Insert:

- \blacksquare calcola i = $h_1(k)$
- se posizione libera, inserisci chiave, altrimenti calcola j = h₂(k) e prova in i = (i + j) mod M
- ripeti fino a cella vuota. Ricordare che, se M = 2*max, $\alpha < 1$

Esempi di h₁ e h₂

 $h_1(k) = k \mod M \in M \text{ primo}$ $h_2(k) = (1 + (k \mod 97)) \mod M$


```
int hash1(Key v, int M) {
  int h = 0, base = 127;
  for ( ; *v != '\0'; v++)
    h = (base * h + *v) % M;
  return h;
int hash2(Key v, int M) {
  int h = 0, base = 127;
  for ( ; *v != '\0'; v++)
    h = (base * h + *v);
  h = ((h \% 97) + 1) \% M;
  return h;
```



```
void STinsert(St st, Item item) {
  int i = hash1(key(item), st->M);
  int j = hash2(key(item), st->M);
 while (full(i))
    i = (i+j)%st->M;
  st->a[i] = item;
  st->N++;
Item STsearch(ST st, Key v) {
  int i = hash1(v, st->M);
  int j = hash2(v, st->M);
  while (full(i))
    if (eq(v, key(st->a[i])))
      return st->a[i]:
    else
      i = (i+j)\%st->M;
  return NULLitem:
}
```


M = 13;

49

A S E R C H I N G X M P $h_1(k) = 0$ 5 4 4 2 7 8 0 6 10 12 2

A S E R C H I N G X M P
$$h_1(k) = 0$$
 5 4 4 2 7 8 0 6 10 12 2

Double hashing $(4 + (17 \mod 97 + 1) \mod 13) \mod 13 = 9$

A S E R C H I N G X M P $h_1(k) = 0$ 5 4 4 2 7 8 0 6 10 12 2

A.A. 2014/15

12 Le tabelle di hash

A S E R C H I N G X M P
$$h_1(k)=0$$
 5 4 4 2 7 8 0 6 10 12 2

Double hashing $(0 + (13 \mod 97 + 1) \mod 13) \mod 13 = 1$

A S E R C H I N G X M P
$$h_1(k) = 0$$
 5 4 4 2 7 8 0 6 10 12 2

G X M R

A.A. 2014/15

12 Le tabelle di hash

A S E R C H I N G X M P
$$h_1(k)=0$$
 5 4 4 2 7 8 0 6 10 12 2

Double hashing $(2 + (15 \mod 97 + 1) \mod 13) \mod 13 = 5$ $(5 + (15 \mod 97 + 1) \mod 13) \mod 13 = 8$ $(8 + (15 \mod 97 + 1) \mod 13) \mod 13 = 11$

Complessità del double hashing

Ipotesi:

- hashing semplice uniforme
- probing uniforme.

Tentativi di "probing" per la ricerca:

• search miss: $1/(1-\alpha)$

• search hit: $1/\alpha \ln (1/(1-\alpha))$

α	1/2	2/3	3/4	9/10	
hit	1.4	1.6	1.8	2.6	
miss	1.5	2.0	3.0	5.5	

Cofronto tra alberi e tabelle di hash

Tabelle di hash:

- più facili da realizzare
- unica soluzione per chiavi senza relazione d'ordine
- più veloci per chiavi semplici
- Alberi (BST e loro varianti):
- meglio garantite le prestazioni (per alberi bilanciati)
- permettono operazioni su insiemi con relazione d'ordine.

- Tabelle di hash
 - Cormen 12.1, 12.2, 12.3, 12.4
 - Sedgewick 14.1, 14.2, 14.3, 14.4