Introdução Indução Critérios para Seleção de Atributos Exemplo Cassificação Podas da Árvore

Árvores de Decisão

SCC0244 - Mineração a partir de Grandes Bases de Dados

Rafael Geraldeli Rossi Solange Oliveira Rezende

Slides baseados em [Han et al., 2011], [Tan et al., 2005] e [Witten and Frank, 2005]

Introdução

 Uma árvore de decisão é uma estrutura na qual cada nó interno corresponde a um teste em um atributo, cada ramificação representa a saída de um teste, e cada nó folha representa um rótulo de classe

- Paradigma de aprendizado simbólico, ou seja, os padrões gerados são facilmente interpretados
- Algoritmos para a indução de árvores de decisão
 - ID3 (Iterative Dichotomiser) [Quinlan, 1986]
 - C4.5 (sucessor do ID3) [Quinlan, 1993]
 - Classification and Regression Trees (CART)
 [Breiman et al., 1984]
- Ambos os algoritmos adotam uma estratégia gulosa
 - As árvores são construídas de maneira top-down
 - Uma da estratégia de dividir e conquistar de maneira recursiva
 - o conjunto de treinamento é recursivamente particionado em subconjuntos conforme a árvore é construída

 Uma árvore de decisão gera hiperplanos de separação perpendiculares aos eixos

Figura : Exemplo da separação em hiperplanos gerada por uma árvore de decisão

 As divisões, ou testes, podem dividir o conjunto de exemplos de acordo com cada valor de um atributo (discreto), se é maior ou menor que um valor de um atributo (numérico), ou se pertence ou não a um subconjunto de valores de um atributo (discreto)

Figura : Exemplos de divisões dos nós de uma árvore

Indução

Algoritmo Gerar_árvore_decisão

- Entrada
 - D: conjunto de exemplos de treinamento
 - lista_atributos: conjunto de atributos candidatos
 - método_seleção_atributos: determina o critério de divisão que melhor particiona o conjunto de treinamento em relação às classes
- Saída: Árvore de decisão
- Método
 - crie um nó N
 - se os exemplos em D são todos da mesma classe C então
 - a retorne N como um nó folha rotulado com a classe C
 - se lista_atributos está vazia então
 - \bullet retorne N como um nó folha rotulado com a classe majoritária em D

Método

◍

- aplique Método_seleção_atributo(D, lista_atributos) para encontrar o melhor critério_divisão
- rotule o nó N com o critério_divisão
- se atributo_divisão é discreto e divisões múltiplas são permitidas então
- para cada valor j do critério_divisão
 - seja D_j os conjunto de exemplos em D que contém j
- \mathbf{Q} se D_j está vazio então
- atribua um nó folha rotulado com a classe majoritária em D ao nó N
- senão
- anexa o nó retornado por $Gerar_árvore_decis\~ao(D_j, lista_atributos)$ ao nó N
- fim para
- \mathbf{w} retorne N

- A complexidade computacional dado um conjunto de exemplos de treinamento D é $O(n \times |D| \times log(|D|))$, na qual n é o número de atributos e |D| é o número de exemplos de treinamento
- A função Método_seleção_atributo determina o critério de divisão
 - Qual atributo será utilizado como teste em um nó da árvore
 - É escolhido o atributo que melhor separa os exemplos considerando as classes
 - Idealmente, após as partições os nós folhas devem ser os mais "puros" possíveis, ou seja, devem haver apenas exemplos de um única classe
 - No caso de atributos contínuos, cada ponto de divisão deve ser considerado

Ganho de Informação Razão de Ganho Gini Index Comparação entre as medidas

Critérios para Seleção de Atributos

- Uma medida de seleção de atributos é uma heurística para selecionar um critério de divisão que melhor separa os dados considerando suas classes
- As medidas geram um ranking para os atributos, na qual o melhor atributo no ranking é escolhido como critério de divisão
- Em um cenário ideal, as partições devem ser "puras"
- O melhor critério de divisão é aquele mais próximo ao cenário ideal

- Para entender as medidas de seleção de atributos apresentadas à seguir, serão utilizados as seguintes notações
 - *D*: conjunto de treinamento
 - ullet |D|: quantidade de exemplos do conjunto de treinamento
 - C: conjunto de classes, tal que $C = (C_1, C_2, \dots, C_m)$
 - $C_{i,D}$: conjunto de tuplas da classe C_i em D
 - $|C_{i,D}|$: quantidade de exemplos da classe C_i em D

Ganho de Informação

- Usado no algoritmo ID3
- O atributo com maior ganho de informação é escolhido como atributo de divisão para um nó da árvore
- Este atributo é o que minimiza a informação necessária para classificar as tuplas nas partições resultantes – maior "pureza"
- A informação necessária para classificar uma tupla em D é dada por (Entropia)

$$Info(D) = -\sum_{i=1}^{m} p_i log_2(p_i)$$
 (1)

na qual p_i é a probabilidade, diferente de zero, de uma tupla em D pertencer a classe C_i , ou seja $|C_{i,D}|/|D|$

- Caso $p_i = 0$, assume-se que $p_i log_2(p_i) = 0$
- DICA: para quem não têm calculadora que realize cálculos com log2

$$log_2 a = \frac{log_{10}a}{log_{10}2} = \frac{log_{10}a}{0,301}$$

- Suponha que queremos particionas os exemplos em D considerando um atributo A com v valores distintos, ou seja, $A = \{a_1, a_2, \dots, a_v\}$
- Se A possui valores discretos, cada um dos valores corresponde as saídas de um nó na árvore de decisão
- O atributo A será utilizado para separar D em v partições, $\{D_1, D_2, \ldots, D_v\}$, na qual D_j contém as tuplas em D cujo valor do atributo A é a_j

 Para verificar a informação necessária para classificar um exemplo em D baseado na partição gerada pelo atributo A usa-se

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$
 (2)

- ullet O termo $rac{|D_j|}{|D|}$ age como peso para a j-ésima partição
- Quanto menor a informação "ainda" requerida, maior a puridade das partições

 O ganho de informação é definido como a diferença entre a informação original, isto é, baseada apenas nas proporções das classe, e a informação obtida após o particionamento utilizando o atributo A

$$Gain(A) = Info(D) - Info_A(D)$$
 (3)

 O atributo A que produz o maior ganho de informação (Gain(A)) é escolhido como critério de divisão para o nó N

Exemplo

• Vamos considerar o conjunto de dados Weather

Tabela: Conjunto de dados Weather [Witten and Frank, 2005].

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

info(D) = info([9, 5]) =
$$-(9/14)log_2(9/14) - (5/14)log_2(5/14) = 0,92$$

$$info_{outlook}(D) = info_{outlook}([2, 3], [4, 0], [3, 2]) = (5/14)info([2, 3]) + (4/14)info([4, 0]) + (5/14)info([3, 2])$$

$$\bullet$$
 info_{outlook}(D) = $(5/14)0$, $94 + (4/14)0 + (5/14)0$, $94 = 0$, 64

$$\bullet$$
 gain_{outlook}(D) = info(D) - info_{outlook}(D) = 0,92 - 0,64 = 0,28

•
$$infotemperature(D) = infotemperature([2, 2], [4, 2], [3, 1]) = (4/14)info([2, 2]) + (6/14)info([4, 2]) + (4/14)info([3, 1])$$

•
$$gain_{temperature}(D) = info(D) - info_{temperature}(D) = 0,92 - 0,89 = 0,03$$

$$\bullet$$
 info_{humidity}(D) = info_{humidity}([3, 4], [6, 1]) = $(7/14)$ info([3, 4]) + $(7/14)$ info([6, 1])

$$\bullet$$
 info_{humidity} $(D) = (7/14)0, 96 + (7/14)0, 58 = 0, 77$

•
$$gain_{humidity}(D) = info(D) - info_{humidity}(D) = 0,92 - 0,77 = 0,15$$

$$\bullet$$
 info_{windy} (D) = info(windy)([6, 2], [3, 3]) = (8/14)info([6, 2]) + (6/14)info[3, 3]

$$\bullet$$
 info_{windy} (D) = (8/14)0, 78 + (6/14)1 = 0, 87

$$\bullet$$
 gain_{windy} (D) = info(D) = info_{windy} = 0, 92 - 0, 87 = 0, 05

Introdução Indução Critérios para Seleção de Atributos **Exemplo** Classificação Poda da Árvore

- Portanto, o atributo outlook é selecionado como atributo de divisão
- Como não foram selecionados nós anteriormente, o atributo outlook será a raiz da árvore de decisão
- Vale ressaltar que a partição gerada por outlook = overcast gera uma partição pura, portanto, pode-se gerar um nó folha para este ramo

Tabela : Conjunto de dados Weather considerando outlook = sunny

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Tabela : Conjunto de dados Weather considerando outlook = overcast.

Outlook	Temp	Humidity	Windy	Play
Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

Tabela : Conjunto de dados Weather considerando outlook = rainy.

Outlook	Temp	Humidity	Windy	Play
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

- info(D_{outlook=sunny}) = info([2, 3]) = 0, 94
- $info_{temperature}(D_{outlook=sunny}) = info_{temperature}([0, 2], [1, 1], [1, 0]) = (2/5)info([0, 2]) + (2/5)info([1, 1]) + (1/5)info(1, 0)$
- $info_{temperature}(D_{outlook=sunnv}) = (2/5)0 + (2/5)1 + (1/5)0 = 0, 4$
- info_{humidity}(D_{outlook=sunny}) = info_{humidity}([0, 3], [2, 0])
- $info_{humiditv}(D_{outlook=sunnv}) = (3/5)info([0,3]) + (2/5)info([2,0]) = 0$
- $\qquad \text{gain}_{humidity}(D_{outlook=sunny}) = info(D_{outlook=sunny}) gain_{humidity}(D_{outlook=sunny}) = 0,94$

..

- O atributo humidity apresenta o maior ganho de informação dado outlook = sunny
- Vale ressaltar que para outlook = sunny, as divisões do atributo humidity geram partições puras, portanto, criam-se nós folhas para estes ramos

Introdução Indução Critérios para Seleção de Atributos **Exemplo** Classificação Poda da Árvore

- O atributo windy apresenta o maior ganho de informação dado outlook = rainy
- Vale ressaltar que para outlook = rainy, as divisões do atributo windy geram partições puras, portanto, criam-se nós folhas para estes ramos

Árvore de decisão final

Classificação

- Dado uma instância X, na qual a classe é desconhecida, os valores dos atributos são testado nos nós das árvore de decisão
- Um caminho é traçado da raiz à um nó folha, que representa a classe predita pela árvore de decisão

Referências Bibliográficas I

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984).

Classification and Regression Trees.

Wadsworth.

Han, J., Kamber, M., and Pei, J. (2011).

Data Mining: Concepts and Techniques.

The Morgan Kaufmann Series in Data Management Systems. Elsevier.

Quinlan, J. R. (1986). Induction of decision trees. Mach. Learn., 1(1):81–106.

Referências Bibliográficas II

Quinlan, J. R. (1993).

C4.5: programs for machine learning.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). *Introduction to Data Mining*. Addison-Wesley.

Witten, I. H. and Frank, E. (2005).

Data Mining: Practical machine learning tools and techniques.

Morgan Kaufmann, 2 edition.