

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

SECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 04.01.2021

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : EEE/INSTR F242
Course Title : Control Systems
Instructor-in-Charge : Dr. B.K. Mukherjee

Instructor(s) : Dr. B.K. Mukherjee, Dr. H.O. Bansal

Tutorial/Practical Instructors: Dr. B.K. Mukherjee, Dr. H.O. Bansal, Dr. K.K. Gupta, Dr. P. Mishra,

Dr. A.R. Gautam, Mr. A. Jahagirdar

- **1. Course Description:** Modeling and classification of dynamical systems, Properties and advantages of feedback systems, time-domain analysis, frequency-domain analysis, stability and performance analysis, State space analysis, controller design.
- **2. Scope and Objective of the Course:** Feedback or automatic control is an essential feature of numerous industrial processes, scientific instruments and even commercial, social and management situations. A thorough understanding of the elementary principles of this all-embracing technology is of great relevance for all engineers and scientists in general and Electrical & Electronics engineers in particular. This course tries to bring out the basic principles of Feedback Control Systems.
- 3. Text Books: Nagrath I. J. and M. Gopal, Control Systems Engineering, New Age Publishers

4. Reference Books:

- (i) Kuo, B. C., and Golnaraghi, F., Automatic Control Systems, John Wiley & Sons, 8th Ed, 2003.
- (ii) K. Ogata, Modern Control Systems, Pearson Education, 4th Ed., 2002
- (ii) Drof, R. C., and Bishop, R. H., Modern Control Systems, Addison Wesley, 7th Ed, 1995.

5. Course Plan:

Module No.	Lecture Session	Reference	Learning outcomes
1. Introduction (Lec1-3)	Introduction; Different types of systems and signals; Various terminologies; Open loop and closed loop control; A brief history; Examples from various fields	Ch.1 of Textbook, Lecture Notes	General understanding of the concept of control systems; familiarization with various terms and their significance; familiarization with various application domains.
2. Mathematical Modelling (Lec 4-10)	Introduction to math modelling; Modelling of electrical and mechanical systems; Block diagram representation and simplification; Properties of feedback control	Ch. 2 & 3 of Textbook, Lecture Notes	Learning how to derive mathematical models and transfer functions of electrical, mechanical, electromechanical systems; Understanding block diagram representation and simplification; Mathematical

AND AND A SCHOOL OF A SCHOOL O

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

			understanding of properties of closed loop control systems	
3. Control Systems Components (Lec 11-16)	AC and DC electrical components such as armature and field controlled DC servomotors; AC servomotor; Stepper motor; Synchro; Hydraulic and pneumatic components	Ch.4 of Textbook, Lecture Notes	Learning about various control systems components and their use in various examples; Forming block diagrams and deriving transfer functions	
4. Introduction to Discrete-time Systems (Lec 17-18)	Representation of Discrete Time systems; Sampling and reconstruction.	Learning about mathematical representation of Discrete Time systems vis-a-vis Continuous Time systems		
5. Introduction to State Space Modelling (Lec 19-20)	Introduction to State Space modelling approach; Examples; Comparison with Transfer Function approach; Interconversions between transfer functions and state space models	Ch.12 of Textbook (initial parts), Lecture Notes	Learning about State Space representation of dynamic systems vis-a-vis transfer function representation	
6. Time Domain Analysis (Lec 21-28)	Stability determination using R-H criteria; Applying R-H criteria to Discrete Time systems; Various test signals and time response of 1st and 2nd order systems to them; Time domain specifications and their expressions for prototype 2nd order systems; Steady state errors; Introduction to PID and Lead/Lag type controllers	Ch. 5,6 &11 of Textbook, Lecture Notes	Learning how to carry out stability and transient response analysis of dynamic systems to different excitations; Understanding the effects of PID type controllers	
7. Root Locus Technique (Lec 29-31)	Concept of root locus; Method of drawing root locus plot; Various examples	Ch.7 of Textbook, Lecture Notes	To draw root locus for various systems and therefrom infer information on time response and stability	
8. Frequency Domain Analysis-I (Lec 32-34)	Concept of frequency domain and comparison with time domain; Frequency domain specifications; Polar plot; Gain and Phase margins	Ch.8 & 9 of Textbook, Lecture Notes	To learn how to obtain various frequency response plots of systems and how to use them for stability and performance analysis	
9. Frequency Domain Analysis-II (Lec 35-39)	Bode plot; Transfer function identification from Bode plot; Non- minimum phase systems; Nyquist stability criterion	Ch.8 & 9 of Textbook, Lecture Notes	Do	
10. Introduction to Design and Concluding Remarks (Lec 40)	Various classical control architectures; Lead, Lag controller design philosophy from Bode plot; A brief overview of further topics on Control Systems	Ch.10 of Textbook, Lecture Notes	Getting a flavour of how to design classical controllers and a flavour of more advanced aspects of the area of control engineering	

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

6. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of component (Close Book/ Open Book)
Mid-Semester Test	2 Hrs.	30%	<test_1></test_1>	OB
Comprehensive	1.5 Hr.	40%	<test_c></test_c>	OB
Examination				
Quizzes and Take	15 Min.	30%		OB
Home Assignment				

7. Chamber Consultation Hour: To be announced in the class

8. Notices: All notices will be displayed on NALANDA

9. Make-up Policy: Makeup will be granted to extremely genuine cases only.

10. Note (if any):

Instructor-in-charge Course No. EEE/INSTR F242