PHILIPS TECHNICAL REVIEW

VOLUME 34 1974 Philips Technical Review is published by the Research Laboratories of N.V. Philips' Gloeilampenfabrieken, Eindhoven, Netherlands, and is devoted to the investigations, processes and products of the laboratories and plants which form part of or cooperate with enterprises of the Philips group of companies. In the articles the associated technical problems are treated along with their physical or chemical background. The Review covers a wide range of subjects, each article being intended not only for the specialist in the subject but also for the non-specialist reader with a general technical or scientific training.

The Review appears in three editions: English, Dutch and German, all identical in contents. There are twelve numbers per volume, each of about 32 pages. A yearly index is given for each volume and an index covering ten volumes appears every five years (the latest one was included in the last issue of Volume 30, 1969).

Editors: Drs J. W. Miltenburg, Editor-in-chief

Dr J. W. Broer Ir D. van Dalen Dr E. Fischmann

Drs K. J. Groenewolt

Ir J. A. Klaassen Dr J. Ubbink

M. B. Verrijp, assistant editor

English edition: D. A. E. Roberts, B.Sc., M.Inst.P., A.I.L. (Redhill, Surrey)

German edition: Dipl.-Phys. R. Dockhorn (Hamburg)

© N.V. Philips' Gloeilampenfabrieken, Eindhoven, Netherlands, 1975. Articles may be reproduced in whole or in part provided that the source 'Philips Technical Review' is mentioned in full; photographs and drawings for this purpose are available on request. The editors would appreciate a complimentary copy.

Subject index, Volume 34, 1974

	Dogo		
Air pollution: monitors for ozone, NO and NO2	Page 73	mana amartus and 1: 1 to 1: 1: 1 to 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	Page
Aircraft guidance equipment MADGE	225	mass-spectrographic determination of C, O and	
ANS:	223	N in semiconductors	344
onboard computer	1	stoichiometric analysis of gallium selenide	350
UV experiment (Groningen University)	33	determining the content of active oxygen in	
observation of cosmic X-ray sources (Utrecht	33	oxides	356
University)	12	surface analysis (e.g. LEED; Auger electron	
reaction wheels	43	spectroscopy; ESCA; ion scattering at sur-	
sun sensors	106	faces; SIMS)	357
horizon sensor	208	electron microprobe	370
star sensor	213	Ion scattering at surfaces	362
Auger electron spectroscopy	218	IR phosphors	24
Bearings, grease-lubricated helical-groove, of	359	LEED (elastic scattering of low-energy electrons)	358
plastic	102	Levitated magnets	67
plastic	103	LOCMOS	19
Capacitor motors, supply-voltage speed control	100	MADGE, microwave aircraft digital guidance	
for	180	equipment	225
Chemiluminescence, application for ozone, NO		Magnets, permanent, materials research for	193
and NO detectors	72	Mass-spectrographic determination of C, O	244
and NO ₂ detectors	73	and N	344
COD meter	123	Mathieu equation, stability diagram for	61
Complementary MOS sirguits technology for	96	Microchannel plates, investigation of, by scan-	270
Complementary MOS circuits, technology for .	19	ning electron microscopy	270
Computers:	1	Microprobe, electron	370
onboard computer for ANS	122	Microprogram control of P1000 family of com-	122
microprogram control of P1000	132	puters	132
in analysing emission spectra	322	MOS circuits, complementary, technology for .	19
in neutron activation analysis	330	Motors, see Electric motors, small	220
Data display, polychrome, using a single TITUS	129	Neutron activation analysis	330
tube	129		73
	73	NO_x detector	257
luminescence	13	Opthycograph	356
torque measurements on induction motors		Oxides, determining active-oxygen content in . Ozone detectors	73
using Hall generators or measuring windings	153	PD contact-lead patterns, solderable, for ICs-on-	13
speed-controlled d.c. motor for washing ma-	133	tape	85
chine	163	Permanent magnets, materials research for	193
high-speed solid-rotor induction motors	170	Phosphors for converting infrared radiation into	173
supply-voltage speed control for capacitor	170	visible light	24
motors	180	Phototitus optical converter	274
Emission spectrometry, see Inorganic chemical	100	Plasma torch, heating quartz glass with	60
analysis		Satellite ANS, see ANS	
Environment:		Silicon and germanium, dislocation-free, vacancy	
ozone, NO and NO ₂ detectors	73	clusters in	244
monitoring the quality of surface water	113	SIMS (secondary-ion mass spectrometry)	366
measuring the oxygen demand of water	123	Speed control for capacitor motors	180
ESCA (electron spectroscopy for chemical anal-		Stabilization by oscillation	61
ysis)	361	Stoichiometric analysis of gallium selenide	350
Frequency-analog measurement and control	288	Surface analysis	357
Gallium selenide, stoichiometric analysis of	350	Surface water, monitoring the quality of	113
Germanium and silicon, dislocation-free, vacancy		Titrimetric determination of gallium selenide .	353
clusters in	244	TITUS tube, single, in polychrome data display	129
Helical-groove bearings, grease-lubricated, of		Torque measurements on induction motors	153
plastic	103	UV experiment with ANS	33
ICs-on-tape	85	Vacancy clusters in dislocation-free silicon and	
Inorganic chemical analysis:		germanium	244
survey	298	Washing machine, speed-controlled d.c. motor	
multielement analysis by optical emission spec-		for	163
trometry	305	Water, see Environment	
automatically analysing photographically re-		Windows, double-glazed, with very good thermal	
corded emission spectra	322	insulation	242
neutron activation analysis	330	X-ray experiment with ANS	43
line-intensity calculations for X-ray fluores-			339
cence analysis	339	X-ray fluorescence analysis	353

Author index, Volume 34, 1974

	Page		Page
Aalders, J. W. G., R. J. van Duinen and P. R. Wesselius		Heusden, S. van Air-pollution monitors based on chemiluminescence.	73
The Groningen ultraviolet experiment with the Netherlands astronomical satellite (ANS)	33	Hoogeveen, L. P. J., see Butzelaar, P. F.	,,
Alcock, R. N., D. A. Lucas and R. P. Vincent		Jager, C. de, see Brinkman, A. C.	
'MADGE', a microwave aircraft digital guidance equip-	225	Jansen, J. A. J., see Witmer, A. W.	
ment, I. General principles and angle-measuring units	225	Kamerbeek, E. M. H. Torque measurements on induction motors using Hall	
Arink, G. J. A. The onboard computer of the Netherlands astronomical		generators or measuring windings	153
satellite (ANS)	1	Klerk, M. The electron microprobe	370
Bastings, L. C., see Bruninx, E. Boumans, P. W. J. M.		Klostermann, F. T., see Bouwer, A. G.	0,0
Multielement analysis by optical emission spectrometry		Knippenberg, W. F.	200
— rise or fall of an empire?	305	Inorganic chemical analysis	298
Bouwer, A. G., R. H. Bruel, H. F. van Heek, F. T. Klostermann and J. J. 't Mannetje		Vacancy clusters in dislocation-free silicon and germa-	
The Opthycograph	257	nium	244
Brandt, B. B. M., W. Steinmaier and A. J. Strachan LOCMOS, a new technology for complementary MOS		Köstlin, H. Double-glazed windows with very good thermal insula-	
circuits	19	tion	242
Bril, A., see Sommerdijk, J. L.		Kroon, D. J. and M. Q. Mengarelli	112
Brinkman, A. C., J. Heise and C. de Jager Observation of cosmic X-ray sources with the Nether-		Monitoring the quality of surface water	113
lands astronomical satellite (ANS)	43	Lakerveld, H. G.	
Brongersma, H. H., F. Meijer and H. W. Werner		High-speed solid-rotor induction motors	170
Surface analysis, methods of studying the outer atomic layers of solids		Lucas, D. A., see Alcock, R. N. Mannetje, J. J. 't, see Bouwer, A. G.	
Brouwer, G., see Witmer, A. W.		Marie, G., see Donjon, J.	
Bruel, R. H., see Bouwer, A. G.		Meijer, F., see Brongersma, H. H.	
Bruninx, E. and L. C. Bastings Stoichiometric analysis of gallium selenide	350	Mengarelli, M. Q., see Kroon, D. J. Millett, E. J., see Clegg, J. B.	
Butzelaar, P. F. and L. P. J. Hoogeveen		Polaert, R. and J. Rodière	
A new method of measuring the oxygen demand of water	123	Investigation of microchannel plates by scanning electron microscopy	270
Christis, W. J.	123	Rademakers, A., see Drift, A. van der	210
The optical sensors of the Netherlands astronomical		Raes, R. and J. Schellekens	162
satellite (ANS), III. The star sensor	218	A speed-controlled d.c. motor for a washing machine. Remmers, G.	163
The determination of carbon, oxygen and nitrogen in		Grease-lubricated helical-groove bearings of plastic	103
semiconductors by spark-source mass spectrography. Crucq, J.	344	Rennicke, K.	100
The reaction wheels of the Netherlands satellite ANS.	106	Supply-voltage speed control for capacitor motors Rodière, J., see Polaert, R.	180
Dijk, P. van		Rossier, D., see Dumont, F.	
The optical sensors of the Netherlands astronomical satellite (ANS), II. The horizon sensor	213	Schellekens, J., see Raes, R. Smets, A. J.	
Dinklo, J. A. and E. B. de Vries	213	The optical sensors of the Netherlands astronomical	
The microprogram control of the Philips P1000 family	122	satellite (ANS), I. The sun sensors	208
of computers	132	Sommerdijk, J. L. and A. Bril Phosphors for the conversion of infrared radiation into	
Polychrome data display using a single TITUS tube	129	visible light	24
Drift, A. van der, W. G. Gelling and A. Rademakers Integrated circuits with leads on flexible tape	85	Streehen A. I. see Brandt, B. B. M.	
Duinen, R. J. van, see Aalders, J. W. G.	0.5	Strachan, A. J., see Brandt, B. B. M. Verheijke, M. L.	
Dumont, F., J. P. Hazan and D. Rossier	274	Neutron activation analysis	330
The Phototitus optical converter	274	Verheijke, M. L. and A. W. Witmer Line-intensity calculations for X-ray fluorescence analysis	220
Gool, G. H. van, see Witmer, A. W.		Vincent, R. P., see Alcock, R. N.	339
Gossel, D. The frequency-analog signal as a basis for measurement		Vries, E. B. de, see Dinklo, J. A.	
and control	288	Werner, H. W., see Brongersma, H. H. Wesselius, P. R., see Aalders, J. W. G.	
Hansen, P. and JP. Krumme		Witmer, A. W., J. A. J. Jansen, G. H. van Gool and	
The compensation wall	96	G. Brouwer	
Heek, H. F. van, see Bouwer, A. G.		A system for the automatic analysis of photographically recorded emission spectra	322
Heide, H. van der		Witmer, A. W., see Verheijke, M. L.	JEL
Stabilization by oscillation	61	Zijlstra, H. Materials research for permanent magnets	100
		reactions resourch for permanent magnets	193