Шаблон отчёта по лабораторной работе

5

-01-23

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	16
Список литературы		17

Список иллюстраций

3.1	открытый тс	7
3.2	создание каталога	8
3.3	перемещение между директориями	8
3.4	редактирование файла	9
3.5	компиляция файла, передача на обработку компоновку и исполне-	
	ние файла	9
3.6	скачанный и копирование файла	10
3.7	копирование файла	11
3.8	редактирование файла	11
3.9	исполнение файла	12
3.10	отредактированный файл	12
3.11	исполнение файла	12
3.12	копирование файла	13
3.13	редактирование файла	13
3.14	исполнение файла	14
3.15	копирование файла	14
3.16	редактирование файла	14
3.17	исполнение файла	15

Список таблиц

1 Цель работы

• Целью данной лабораторной работы является приобретение практических навыков работы в Midnight Commander, освоение инструкций языка ассемблера mov и int.

2 Задание

- 1. Основы работы с тс
- 2. Структура программы на языке ассемблера NASM
- 3. Подключение внешнего файла
- 4. Выполнение заданий для самостоятельной работы

3 Выполнение лабораторной работы

- 1. Основы работы с тс
- Открываю Midnight Commander, введя в терминал mc. (рис. 3.1).

Рис. 3.1: открытый тс

• Перехожу в каталог ~/work/study/2022-2023/Архитектура Компьютера/archрс, используя файловый менеджер mc. И с помощью функциональной клавиши F7 создаю каталог lab05.(рис. 3.2).

Рис. 3.2: создание каталога

• Переходу в созданный каталог. (рис. 3.3).

Рис. 3.3: перемещение между директориями

• В строке ввода прописываю команду touch lab5-1.asm, чтобы создать файл, в котором буду работать

- 2. Структура программы на языке ассемблера NASM
- С помощью функциональной клавиши F4 открываю созданный файл для редактирования в редакторе nano. Ввожу в файл код программы для запроса строки у пользователя (рис. [3.4]). Далее выхожу из файла (Ctrl+X), сохраняя изменения (Y, Enter). (рис. 3.4).

```
mc [zlbembo@fedora]:-/work/arch-pc/lab05

Q =

GNU nano 7.2 /home/zlbembo/work/arch-pc/lab05/lab5-1.asm

SECTION .data; Секция инициированных данных

msg: D8 'Bведите строку:',10; сообщение плюс
; символ перевода строки

msgten: EQU $-msg; Длина переменной 'msg'

SECTION .bss; Секция не инициированных данных

bufl: RESB 80; Буфер размером 80 байт

SECTION .text; Код программы

sloBAL _start; Начало программы

mov eax, 4; Системный вызов для записи (sys_write)

mov eex, msg; Адрес строки 'msg' в 'ecx'

mov edx,msglen; Размер строки 'msg' в 'ecx'

int 80h; Вызов ядра

mov eax, 3; Системный вызов для чтения (sys_read)

mov ex, 3; Системный вызов для чтения (sys_read)

mov ex, 0; Дескриптор файла 0 - стандартный ввод

mov ecx, bufl; Адрес буфера под вводимую строку

mov edx, 80; Длина вводимой строки

int 80h; Вызов ядра

mov eax, 1; Системный вызов для выхода (sys_exit)

mov ebx, 0; Выход с кодом возврата 0 (без ошибок)

int 80h; Вызов ядра
```

Рис. 3.4: редактирование файла

•Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-1.asm. Создался объектный файл lab5-1.o. Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab5-1 lab5-1.o. Создался исполняемый файл lab5-1. И Запускаю исполняемый файл. Программа выводит строку "Введите строку:" и ждет ввода с клавиатуры, я ввожу свои ФИО, на этом программа заканчивает свою работу. (рис. 3.5).

```
[zlbembo@fedora ~]$ mc

[zlbembo@fedora lab05]$ nasm -f elf lab5-1.asm

[zlbembo@fedora lab05]$ ld -m elf_1386 -o lab5-1 lab5-1.o

[zlbembo@fedora lab05]$ ./lab5-1

BBequre crpoky:

BEMBO JOSE LUMINGU
```

Рис. 3.5: компиляция файла, передача на обработку компоновку и исполнение файла

• 3. Подключение внешнего файла

• Скачиваю файл in_out.asm со страницы курса в ТУИС. Он сохранился в каталог "Загрузки". С помощью функциональной клавиши F5 копирую файл in_out.asm из каталога Загрузки в созданный каталог lab05 (рис. 3.6).

Рис. 3.6: скачанный и копирование файла

• С помощью функциональной клавиши F5 копирую файл lab5-1 в тот же каталог, но с другим именем, для этого в появившемся окне mc прописываю имя для копии файла. (рис. 3.7).

Рис. 3.7: копирование файла

• Изменяю содержимое файла lab5-2.asm во встроенном редакторе nano (рис. [3.8]), чтобы в программе использовались подпрограммы из внешнего файла in_out.asm. (рис. 3.8).

Рис. 3.8: редактирование файла

• Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-2.asm. Создался объектный файл lab5-2.o. Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab5-2 lab5-2.o Создался исполняемый файл lab5-2. Запускаю исполняемый файл. (рис. 3.9).

```
[zlbembo@fedora lab05]$ nasm -f elf lab5-2.asm
[zlbembo@fedora lab05]$ ld -m elf_i386 -o lab5-2 lab5-2.o
[zlbembo@fedora lab05]$ ./lab5-2
BBeдMre cTpoxy;
BEMBO JOSE LUMINGU
```

Рис. 3.9: исполнение файла

• Открываю файл lab5-2.asm для редактирования в nano функциональной клавишей F4. Изменяю в нем подпрограмму sprintLF на sprint. Сохраняю изменения и открываю файл для просмотра, чтобы проверить сохранение действий. (рис. 3.10).

```
| Islambo@fedora:~/work/arch-pc/lab05—mcedit lab5-2.asm | Islambo@fedora:~/work/arch-pc/lab05—mcedit lab6-2.asm | Islambo@fedora:~/work/arch-
```

Рис. 3.10: отредактированный файл

• Снова транслирую файл, выполняю компоновку созданного объектного файла, запускаю новый исполняемый файл. (рис. 3.11).

```
[zlbembo@fedora lab05]$ nasm -f elf lab5-2.asm
[zlbembo@fedora lab05]$ ld -m elf_i386 -o lab5-2-2 lab5-2.o
[zlbembo@fedora lab05]$ ./lab5-2-2
Введите строку:
ВEMBO JOSE LUMINGU
[zlbembo@fedora lab05]$
```

Рис. 3.11: исполнение файла

- Разница между первым исполняемым файлом lab5-2 и вторым lab5-2-2 в том, что запуск первого запрашивает ввод с новой строки, а программа, которая исполняется при запуске второго, запрашивает ввод без переноса на новую строку, потому что в этом заключается различие между подпрограммами sprintLF и sprint.
- 4. Выполнение заданий для самостоятельной работы

• а) Создаю копию файла lab5-1.asm с именем lab5-1-1.asm с помощью функциональной клавиши. (рис. 3.12).

Рис. 3.12: копирование файла

• С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку. (рис. 3.13).

Рис. 3.13: редактирование файла

 b) Создаю объектный файл lab5-1-1.о, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-1-1, запускаю полученный исполняемый файл. Программа запрашивает ввод, ввожу свои ФИО, далее программа выводит введенные мною данные. (рис. 3.14).

```
[zlbembo@fedora lab05]$ nasm -f elf lab5-1-1.asm
[zlbembo@fedora lab05]$ ld -m elf_i386 -o lab5-1-1 lab5-1.o
[zlbembo@fedora lab05]$ ./lab5-1-1
Введите строку:
ВЕМВО JOSE LUMINGU
```

Рис. 3.14: исполнение файла

• c) Создаю копию файла lab5-2.asm c именем lab5-2-1.asm c помощью функциональной клавиши F5. (рис. 3.15).

Рис. 3.15: копирование файла

• С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку. (рис. 3.16).

```
GNU nano 7.2

%include 'in_out.asm'; подключение внешнего файла

SECTION .data; Секция инициированных данных

выfi RESE 80; Буфер размером 80 байт

SECTION .text; Код программы

GLOBAL_start; Начало программы

_start; Точка входа в программу

mov eax, msg; запись адреса выводимого сообщения в `EAX`

call sprintLF; вызов подпрограммы печати сообщения

mov ecx, buff; запись адреса переменной в `EAX`

mov edx, 80; запись длины вводимого сообщения в `EBX

call sread; вызов подпрограммы завершения

call quit; вызов подпрограммы завершения
```

Рис. 3.16: редактирование файла

• d) Создаю объектный файл lab5-2-1.o, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-2-1, запускаю полученный исполняемый файл. Программа запрашивает ввод без переноса на новую строку, ввожу свои ФИО, далее программа выводит введенные мною данные. (рис. 3.17).

```
[zlbembo@fedora lab05]$ nasm -f elf lab5-2-1.asm
[zlbembo@fedora lab05]$ ld -m elf_i386 -o lab5-2-1 lab5-2-1.o
[zlbembo@fedora lab05]$ ./lab5-2-1
Введите строку:
ВЕМВО JOSE LUMINOU
```

Рис. 3.17: исполнение файла

4 Выводы

• При выполнении данной лабораторной работы я приобрела практические навыки работы в Midnight Commander, а также освоила инструкции языка ассемблера mov и int.

Список литературы