МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №3

по дисциплине: «Вычислительная математика» тема: Численное интегрирование

Выполнил: ст. группы ПВ-211

Чувилко Илья Романович

Проверил:

Бондаренко Татьяна Владимировна

Вариант 23

Цель работы: изучить понятие квадратурной формулы; изучить основные способы численного интегрирования; получить практические навыки решения задачи численного интегрирования с помощью ЭВМ.

Ход работы:

Вычислить «вручную» интегралы из таблицы вариантов заданий: — точно (все 3 интеграла);

$$\frac{1}{10} \int_{0}^{1} \int_{0}^{1} (2x^{2} - 2x + 3) dx = \frac{1}{2} \int_{0}^{1} \int_{0}^{1} (2x^{2} - 2x + 3) dx = \frac{1}{2} \int_{0}^{1} \int_{0}^{1} (2x^{2} - 2x + 3) dx = \frac{1}{2} \int_{0}^{1} \int_{0}^{1} (-2x^{2} - 2x + 3) dx = \frac{1}{2} \int_{0}^{1} \int_{0}^{1} (-2x^{2} - 2x + 3) dx = \frac{1}{2} \int_{0}^{1} \int_{0}^{1} (-2x^{2} - 2x + 3) dx = \frac{1}{2} \int_{$$

формуле центральных (средних) прямоугольников, используя для оценки точности двойной просчёт при n1=8; n2=10 (интеграл 1);

_	<u>n</u>	0	1	2	3	4	5	6	7		
	X	-1,8125	-1,4375	-1,0625	-0,6875	-0,3125	0,0625	0,4375	0,8125		
ПО	У	26,33594	18,27344	11,89844	7,210938	4,210938	2,898438	3,273438	5,335938	- 1	
								Сумма:	29,78906		
										1	
	<u>n</u>	0	1	2	3	4	5	6	7	8	9
	x	-1,85	-1,55	-1,25	-0,95	-0,65	-0,35	-0,05	0,25	0,55	0,85
	y	27,24	20,52	14,88	10,32	6,84	4,44	3,12	2,88	3,72	5,64
										Сумма:	29,865

формуле трапеций при n=8 (интеграл 1 и 2);

0	1	2	3	4	5¦	6	7	8
-2	-1,625	-1,25	-0,875	-0,5	-0,125	0,25	0,625	1
31	22,09375	14,875	9,34375	5,5	3,34375	2,875	4,09375	7
					I			30,421875
					I			
0	1	2	3	4	5	6	7	8
0	0,392699082	0,785398163	1,178097245	1,570796327	1,963495408	2,35619449	2,748893572	3,141592654
0	0,353553391	0,5	0,353553391	6,12323E-17	-0,35355339	-0,5	-0,35355339	-1,22465E-16
								6,53975E-17

- по формуле парабол (Симпсона) при n=8 (интеграл 1 и 3).

0	1	2	3	4	5	6	7	8
-2	-1,625	-1,25	-0,875	-0,5	-0,125	0,25	0,625	1
31	22,09375	14,875	9,34375	5,5	3,34375	2,875	4,09375	7
							Сумма:	30
0	1	2	3	4	5	6	7	8
1	1,125	1,25	1,375	1,5	1,625	1,75	1,875	2
1,693147181	1,810930216	1,916290732	2,011600912	2,098612289	2,178654996	2,252762968	2,32175584	2,386294361
							Сумма:	2,079439224

Замечание. Для вычисления значений «вручную» рекомендуется использовать

Microsoft Excel или другую программу

Задание 2. Определить погрешность вычисления интеграла 1 по каждой из формул. Результаты представить в виде табл. 3.1.

«Погрешност∌	Формула центральных прямоугольников		Формула трапеций	Формула парабол n =	Формула Гаусса				
	n = 8	n = 10	ŋ = 8	8 ~	<u>n</u> = 1	<u>n</u> = 2	n = 3	<u>n</u> = 4	
Δ1	0,2109375	0,135	0,421875	0	12,375	0	0,0005	0,0001	
δ1	0,00703125	0,0045	0,0140625	0	0,423076923	0	1,7094E-05	3,4188E-06	
Δ2			0	0,000560776					
δ2			0	0,000269604					

Задание 3. Описать в модуле функции, которые возвращают приближенные значения интегралов от функции f(x) с оценкой точности по принципу Рунге для методов центральных прямоугольников, трапеций и парабол.

Исходными данными являются: подынтегральная функция f(x); пределы интегрирования a, b; начальное число отрезков разбиения n; точность вычисления є. Необходимые для работы значения подынтегральной функции вычисляются непосредственной подстановкой значений аргумента в вычислительную формулу функции.

Содержимое заголовочного файла integrals.h:

```
#ifndef CODE_INTEGRALS_H
#define CODE_INTEGRALS_H
#include "vector"
typedef double Function(double x);
double calculateIntegralByCentralRectangle(Function function, double lowBorder,
                      double highBorder, int nParts);
double calculateIntegralByTrapezoid(Function function, double lowBorder,
                   double highBorder, int nParts);
double calculateIntegralByParable(Function function, double lowBorder,
                  double highBorder, int nParts);
double calculateIntegralByCentralRectangleWithEps(Function function, double lowBorder,
                          double highBorder, int nParts, double &eps);
double calculateIntegralByTrapezoidWithEps(Function function, double lowBorder,
                      double highBorder, int nParts, double &eps);
double calculateIntegralByParableWithEps(Function function, double lowBorder,
                     double highBorder, int nParts, double &eps);
struct gaussCoefficient {
  double t;
  double A:
};
```

```
double calculateIntegralByGauss(Function function, double lowBorder,
                  double highBorder, int nParts);
#endif //CODE_INTEGRALS_H
Содержимое файла реализации integrals.cpp:
#include "integrals.h"
#include "utility"
#include "vector"
#include "stdlib.h"
typedef std::pair<double, double> GridElement;
typedef std::vector<GridElement> Grid;
double calculateIntegralByCentralRectangle(Function function, double lowBorder,
                        double highBorder, int nParts) {
  Grid grid(nParts);
  double step = (highBorder - lowBorder) / nParts;
  double sum = 0;
  for (int i = 0; i < nParts; i++) {
    grid[i].first = lowBorder + (i + 0.5) * step;
    grid[i].second = function(grid[i].first);
    sum += grid[i].second;
  }
  return sum * step;
double calculateIntegralByTrapezoid(Function function, double lowBorder,
                    double highBorder, int nParts) {
  Grid grid(nParts + 1);
  grid[0] = {lowBorder, function(lowBorder)};
  grid[grid.size() - 1] = {highBorder, function(highBorder)};
  double step = (highBorder - lowBorder) / nParts;
  double sum = (grid[0].second + grid[grid.size() - 1].second) / 2;
  for (int i = 1; i < nParts; i++) {
    grid[i].first = lowBorder + i * step;
    grid[i].second = function(grid[i].first);
    sum += grid[i].second;
  return step * sum;
double calculateIntegralByParable(Function function, double lowBorder,
                   double highBorder, int nParts) {
  Grid grid(nParts + 1);
  grid[0] = {lowBorder, function(lowBorder)};
  grid[grid.size() - 1] = {highBorder, function(highBorder)};
```

```
double step = (highBorder - lowBorder) / nParts;
  double sum = grid[0].second + grid[grid.size() - 1].second;
  for (int i = 1; i < grid.size() - 1; i += 2) {
    grid[i].first = lowBorder + i * step;
    grid[i].second = function(grid[i].first);
    sum += 4 * grid[i].second;
  for (int i = 2; i < grid.size() - 1; i += 2) {
    grid[i].first = lowBorder + i * step;
    grid[i].second = function(grid[i].first);
    sum += 2 * grid[i].second;
  return step / 3 * sum;
}
double calculateIntegralByCentralRectangleWithEps(Function function, double lowBorder,
                             double highBorder, int nParts, double &eps) {
  double integralValueNParts = calculateIntegralByCentralRectangle(function, lowBorder, highBorder,
  double difference = abs(integralValueNParts - calculateIntegralByCentralRectangle(function,
lowBorder,
                                                  highBorder, nParts / 2));
  eps = (double) 1/3 * difference;
  return integralValueNParts;
}
double calculateIntegralByTrapezoidWithEps(Function function, double lowBorder,
                         double highBorder, int nParts, double &eps) {
  double integralValueNParts = calculateIntegralByTrapezoid(function, lowBorder, highBorder,
nParts);
  double difference = abs(integralValueNParts - calculateIntegralByTrapezoid(function, lowBorder,
                                              highBorder, nParts / 2));
  eps = (double) 1/3 * difference;
  return integralValueNParts;
double calculateIntegralByParableWithEps(Function function, double lowBorder,
                        double highBorder, int nParts, double &eps) {
  double integralValueNParts = calculateIntegralByParable(function, lowBorder, highBorder, nParts);
  double difference = abs(integralValueNParts - calculateIntegralByParable(function, lowBorder,
                                             highBorder, nParts / 2));
  eps = (double) 1/15 * difference;
  return integralValueNParts;
```

Задание 4. Составить программу для вычисления приближенных значений интегралов согласно варианту (все функции из таблицы вариантов заданий) с использованием всех функций, описанных в модуле.

Содержимое файла main.cpp:

```
#include <iostream>
#include "libs/integrals/integrals.h"
```

```
#include "cmath"
#include "windows.h"
double f1(double x) {
 return 6 * pow(x, 2) - 2 * x + 3;
}
double f2(double x) {
return sin(x) * cos(x);
double f3(double x) {
 return 1 + \log(2 * x);
}
int main() {
  SetConsoleOutputCP(CP_UTF8);
  std::cout << "Вычисление по формуле центральных прямоугольников\n" <<
       "Интеграл 1, n = 8: " << calculateIntegralByCentralRectangle(f1, -2, 1, 8) <<
       "\пинтеграл 2, n = 8: " << calculateIntegralByCentralRectangle(f2, 0, M_PI / 3, 8)
       "\пИнтеграл 3, n = 8: " << calculateIntegralByCentralRectangle(f3, 1, 2, 8) <<
       "\n\nВычисление по формуле трапеций\n" <<
       "Интеграл 1, n = 8: " << calculateIntegralByTrapezoid(f1, -2, 1, 8) <<
       "\пИнтеграл 2, n = 8: " << calculateIntegralByTrapezoid(f2, 0, M_PI / 3, 8) <<
       "\пИнтеграл 3, n = 8: " << calculateIntegralByTrapezoid(f3, 1, 2, 8) <<
       "\n\nВычисление по формуле парабол\n" <<
       "Интеграл 1, n = 8: " << calculateIntegralByParable(f1, -2, 1, 8) <<
       "\пИнтеграл 2, n = 8: " << calculateIntegralByParable(f2, 0, M_PI / 3, 8) <<
       "\пИнтеграл 3, n = 8: " << calculateIntegralByParable(f3, 1, 2, 8);
}
```

Результат работы программы:

```
D:\BGTU\VicMat\Lab3\Example\Code\cmake-build-debug\Code.exe
Вычисление по формуле центральных прямоугольников
Интеграл 1, n = 8: 29.7891
Интеграл 2, n = 8: 0.376073
Интеграл 3, n = 8: 2.07977

Вычисление по формуле трапеций
Интеграл 1, n = 8: 30.4219
Интеграл 2, n = 8: 0.372856
Интеграл 3, n = 8: 2.07879

Вычисление по формуле парабол
Интеграл 1, n = 8: 30
Интеграл 2, n = 8: 0.37501
Интеграл 3, n = 8: 2.07944
Process finished with exit code 0
```

Задание 5. Вычислить «вручную» интеграл из столбца 1 табл. 3.1 по формуле Гаусса при n = 2. Значения узлов ti и весов Ai приведены в табл. 3.2.

$$\int_{-2}^{1} (6\chi^{2} - 2\chi + 3) dx = \underbrace{1 - (-2)}_{2} \sum_{i=0}^{1} A_{i} \cdot 5 \left(\frac{1 + (-2)}{a} + \frac{1 - (-2)}{a} \cdot t_{i} \right) =$$

$$= \frac{3}{2} \left(6 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) - \frac{1}{2} \right)^{2} - 2 \left(\frac{3}{2} \cdot \left(-\frac{1}{\sqrt{3}} \right) -$$

Задание 6. Описать в модуле функцию для вычисления приближенного значения интеграла от функции f(x) по формуле Гаусса при n=1,2,3,4. Добавить в составленную программу вычисление приближенных значений интегралов (все функции из таблицы вариантов заданий) с использованием формулы Гаусса.

```
Код программы:
struct gaussCoefficient {
 double t;
 double A:
std::vector<std::vector<gaussCoefficient>> gaussCoefficients{
 {},
 \{\{0, 2\}\},\
 \{\{-0.57735, 1\}, \{0.57735, 1\}\},\
 \{\{-0.77459, 0.55555\}, \{0, 0.88888\}, \{0.77459, 0.55555\}\},\
 \{\{-0.86114, 0.34785\}, \{-0.33998, 0.65215\}, \{0.33998, 0.65215\},
  \{0.861136, 0.34785\}\}
};
double calculateIntegralByGauss(Function function, double lowBorder,
                  double highBorder, int nParts) {
 double sum = 0;
 for (int i = 0; i < nParts; i++) {
  double value = gaussCoefficients[nParts][i].A;
  value *= function((highBorder + lowBorder) / 2 +
            (highBorder - lowBorder) / 2 *
            gaussCoefficients[nParts][i].t);
  sum += value;
 return (highBorder - lowBorder) / 2 * sum;
int main() {
 SetConsoleOutputCP(CP_UTF8);
 std::cout << "Вычисление интеграла по формуле Гаусса\n";
 for (int i = 1; i \le 4; i++) {
  std::cout << "Интеграл 1, n = " << i << ": " <<
        calculateIntegralByGauss(f1, -2, 1, i) << "\n";
 std::cout << "Интеграл 2, n = 4: " <<
      calculateIntegralByGauss(f2, 0, M_PI / 3, 4) << "\n";</pre>
 std::cout << "Интеграл 3, n = 4: " <<
      calculateIntegralByGauss(f3, 1, 2, 4) << "\n";
}
```

D:\BGTU\VicMat\Lab3\Example\Code\cmake-build-debug\Code.exe

Вычисление интеграла по формуле Гаусса

Интеграл 1, n = 1: 16.5

Интеграл 1, n = 2: 30

Интеграл 1, n = 3: 29.9995

Интеграл 1, n = 4: 29.9999 Интеграл 2, n = 4: 0.375

Интеграл 3, n = 4: 2.07944

Process finished with exit code 0

Задание 7. Заполнить значения погрешности вычисления интеграла 1 в таблице 3.1

для формулы Гаусса при n = 1, 2, 3, 4.

¶огрешност⊭	Формула центральных прямоугольников		Формула Формула трапеций парабол n =		Формула Гаусса			
1 '	n = 8	n = 10	່ <u>ກ</u> = 8		<u>n</u> = 1	<u>n</u> = 2	n = 3	<u>n</u> = 4
Δ1	0,2109375	0,135	0,421875	0	12,375	0	0,0005	0,0001
δ1	0,00703125	0,0045	0,0140625	0	0,423076923	0	1,7094E-05	3,4188E-06
							l I	
Δ2			0	0,000560776	13,5	0	0,0005	0,0001
δ2			0	0,000269604	0,45	0	1,66667E-05	3,3333E-06

Вывод: в ходе лабораторной работы мы изучили понятие квадратурной формулы; изучили основные способы численного интегрирования; получили практические навыки решения задачи численного интегрирования с помощью ЭВМ.