NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING

ACADEMIC YEAR 2020-2021 SEMESTER 2

EE3019 INTEGRATED ELECTRONICS

TUTORIAL 3

1. Consider a CMOS inverter fabricated in a 0.25 µm process as depicted in Figure 3.1. Based on the parameters given below, calculate the dynamic power dissipation of inverter 1 when the inverter is clocked at 500MHz:

nMOS: C_{gsn} = 0.7875 fF, C_{gdn} = 0.1125 fF, C_{sbn} = 1 fF, C_{dbn} = 1 fF, pMOS: C_{gsp} = 2.3625 fF, C_{gdp} = 0.3375 fF, C_{sbp} = 1 fF, C_{dbp} = 1 fF, Interconnect capacitance: C_{int} =0.2 fF, Supply Voltage, V_{DD} =2.5V

Figure 3.1 [Answer: $19.5 \mu W$]

- 2. Consider the logic gate given in Figure 3.2.
 - (a) What is the logic function implemented by this CMOS transistor network?
 - (b) Label the sizes of nMOS and pMOS devices such that the gate has the same drive as the inverter with W_n = 0.25 μ m and W_p = 0.5 μ m.

- 3. The transmission gate of Figure 3.2(a) and 3.2(b) is fabricated using a CMOS process technology for which $\mu_n C_{ox} = 50 \mu \text{A/V}^2$ and $\mu_p C_{ox} = 20 \mu \text{A/V}^2$. $V_{tn} = |V_{tp}|$, $V_{t0} = 1 \text{ V}$ $\gamma = 0.5 \text{ V}^{**}$, $2\varphi_f = 0.6 \text{ V}$, and $V_{DD} = 5 \text{ V}$. Let Q_N and Q_P be the minimum size possible with this process, $(W/L)_n = (W/L)_p = 4 \mu \text{m}/2 \mu \text{m}$. The total capacitance at the output node is 70fF.
 - (a) Find $i_{DN(0)}$, $i_{DP(0)}$, $i_{DN(tPLH)}$, $i_{DP(tPLH)}$, and t_{PLH} for Figure 3.3(a).
 - (b) Find $i_{DN(0)}$, $i_{DP(0)}$, $i_{DN(tPHL)}$, $i_{DP(tPHL)}$, and t_{PHL} for Figure 3.3(b). At what value of v_0 will Q_P turn off?
 - (c) Find t_p .

Figure 3.3

[Answer: 0.24ns, 0.19ns, 1.6V, 0.215ns]