WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 95/01439 C12N 15/29, A01H 5/00, 5/08, C12N **A2** 5/10, 15/82 (43) International Publication Date: 12 January 1995 (12.01.95)

(21) International Application Number:

PCT/US94/07418

(22) International Filing Date:

30 June 1994 (30.06.94)

(30) Priority Data:

08/086,555 1 July 1993 (01.07.93) 08/263,480 28 June 1994 (28.06.94)

US US

(71) Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY [US/US]; Office of Patents and Licensing, 1201 East California Boulevard, Pasadena, CA 91125 (US).

(72) Inventors: MEYEROWITZ, Elliott, M.; 3600 Fairmeade Road, Pasadena, CA 91107 (US). CHANG, Caren; Apartment No. 3, 95 S. Roosevelt Avenue, Pasadena, CA 91107 (US). BLEECKER, Anthony, B.; 4022 Council Crest, Madison, WI 53711 (US).

(74) Agents: TRECARTIN, Richard, F. et al.; Flehr, Hohbach, Test, Albritton & Herbert, 4 Embarcadero Center, Suite 3400, San Francisco, CA 94111-4187 (US).

(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PLANTS HAVING MODIFIED RESPONSE TO ETHYLENE

(57) Abstract

The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

METHIONINE SAM SYNTHETASE S - ADENOSYLMETHIONINE SYNTHASE AMINOCYCLOPROPANE • 1 - CARBOXYLATE ACC OXIDASE ETHYLENE RECEPTOR COMPLEX RESPONSE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
AU	Australia	GE	Georgia	MW	Melawi
	Barbados	GN	Guinea	NE	Niger
88		GR.	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso		- -	NZ	New Zealand
BG	Bulgaria	Œ	Ireland	PL	Poland
BJ	Benin	π	Italy		
BR	Brazil	JР	Japan	PT	Portugal
BY	Belarus	KE	Keuya	RO	Romania
CA	Canada	KG	Kyrgystan .	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
· CB	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	ŞK	Slovakia
CM	Carneroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxenbourg	TG	Togo
cz	Czech Republic	LV	Latvia	TJ	Tajikistao
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	MIL	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
CA	Geboo		-	•	

WO 95/01439 PCT/US94/07418

PLANTS HAVING MODIFIED RESPONSE TO ETHYLENE

This is a continuation-in-part of application Serial No. 08/086,555 filed July 1, 1993.

The U.S. Government has certain rights in this invention pursuant to Department of Energy Contract No. DE-FG03-88ER13873.

Technical Field of the Invention

The invention generally relates to modified *ETR* nucleic acid and plants transformed with such nucleic acid which have a phenotype characterized by a modification in the normal response to ethylene.

Background of the Invention

- 10 Ethylene has been recognized as a plant hormone since the turn of the century when its effect on pea seedling development was first described. Neljubow (1901), Pflanzen Beih. Bot. Zentralb. 10:128-139. Since then, numerous reports have appeared which demonstrate that
- ethylene is an endogenous regulator of growth and development in higher plants. For example, ethylene has been implicated in seed dormancy, seedling growth,

flower initiation, leaf abscission, senescence and fruit ripening. Ethylene is a plant hormone whose biosynthesis is induced by environmental stress such as oxygen deficiency, wounding, pathogen invasion and flooding.

Recently, genes encoding some of the enzymes involved in ethylene biosynthesis have been cloned. al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86:6621-6625; Nakajima, et al. (1990) Plant Cell Phys. Physiol. 10 29:989-996; Van Der Straeten, et al. (1990) Proc. Natl. Acad. Sci U.S.A. 87:4859-4963; Hamilton, et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88:7434-7437; and Spanu, et al. (1991) EMBO J. 10:2007-2013. The pathway for ethylene biosynthesis is shown in Fig. 1. As can be seen the amino acid methionine is converted to S-15 adenosyl-methionine (SAM) by SAM synthetase which in turn is converted to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase. Adams, et al. (1979) Proc. Natl. Acad. Sci. U.S.A. 76:170-174. The ACC is then converted to ethylene by way of the enzyme ACC oxidase. Yang, et al. (1984) Annu. Rev. Plant. Physiol. 35:155-189.

A number of approaches have been taken in an attempt to control ethylene biosynthesis to thereby control fruit ripening. Oeller, et al. (1991) Science 254:437-439 report that expression of an antisense RNA to ACC synthase inhibits fruit ripening in tomato plants. Hamilton, et al. (1990) Nature 346:284-287 report the use of an antisense TOM13 (ACC oxidase) gene in transgenic plants. Picton et al. (1993) Plant Journal 3:469-481, report altered fruit ripening and leaf senesence in tomatoes expressing an antisense ethyleneforming enzyme.

In a second approach, ethylene biosynthesis was reportedly modulated by expressing an ACC deaminase in plant tissue to lower the level of ACC available for conversion to ethylene. See PCT publication No. W092/12249 published July 23, 1992, and Klee et al. (1991) Plant Cell 3:1187-1193.

While a substantial amount of information has been gathered regarding the biosynthesis of ethylene, very little is known about how ethylene controls plant 10 development. Although several reports indicate that a high affinity binding site for ethylene is present in plant tissues, such receptors have not been identified. Jerie, et al. (1979) Planta 144:503; Sisler (1979) Plant Physiol. 64:538; Sisler, et al. (1990) Plant 15 Growth Reg. 9:157-164, and Sisler (1990) "Ethylene-Binding Component in Plants", The Plant Hormone Ethylene, A.K. Mattoo and J.C. Suttle, eds. (Boston) C.R.C. Press, Inc., pp. 81-90. In Arabidopsis, several categories of mutants have been reported. In the first 20 two categories, mutants were reported which produce ** excess ethylene or reduced ethylene as compared to the wild-type. Guzman, et al. (1990) The Plant Cell 2:513-523. In a third category, mutants failed to respond to ethylene. Bleecker, et al. (1988) Science Id.; 25 241:1086-1089, Harpham, et al. (1991) Ann. of Botany 68:55-61. The observed insensitivity to ethylene was described as being either a dominant or recessive mutation. Id.

Based upon the foregoing, it is clear that the genetic

30 basis and molecular mechanism of ethylene interaction
with plants has not been clearly delineated. Given the
wide range of functions regulated by ethylene and the
pr vious attempts to control ethyl ne function by
regulating its synthesis, it would be desirable to have

35 an alternate approach to modulate growth and

development in various plant tissues such as fruits, vegetables and flowers by altering the interaction of ethylene with plant tissue.

Accordingly, it is an object of the invention to provide isolated nucleic acids comprising an ethylene response (ETR) nucleic acid.

In addition, it is an object to provide modifications to such ETR nucleic acids to substitute, insert and/or delete one or more nucleotides so as to substitute, insert and/or delete one or more amino acid residues in the protein encoded by the ETR nucleic acid.

Still further, it is an object to provide plant cells transformed with one or more modified *ETR* nucleic acids. Such transformed plant cells can be used to produce transformed plants wherein the phenotype vis-avis the response of one or more tissues of the plant to ethylene is modulated.

Summary of the Invention

In accordance with the foregoing objects, the invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell.

The invention also includes vectors capable of transforming a plant cell to alter the response to ethylene. In one embodiment, the vector comprises a modified ETR nucleic acid which causes a decrease in cellular response to ethylene. Tissue and/or temporal

specificity for expression of the modified *ETR* nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid.

5 The invention also includes methods for producing plants having a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a wild-type plant not containing such a transformed cell. The method comprises transforming at least one plant cell with a modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

Brief Description of the Drawings

15 Figure 1 depicts the biosynthetic pathway for ethylene.

Figures 2A, 2B and 2C depict the genomic nucleic acid sequence (SEQ ID NO:1) for the ETR gene from Arabidopsis thaliana.

Figures 3A, 3B, 3C and 3D depict the cDNA nucleic acid (SEQ ID NO:2) and deduced amino acid sequence (SEQ ID NO:3) for the ETR gene from Arabidopsis thaliana.

Figures 4A, 4B, 4C and 4D through Figures 7A, 7B, 7C and 7D depict the cDNA and deduced amino acid sequence for four mutant ETR genes from Arabidopsis thaliana which confer ethylene insensitivity. Each sequence differs from the wild type sequence set forth in Fig. 3 by substitution of one amino acid residue. The etrl-3 (formerly ein1-1) mutation in Fig. 4 (SEQ ID NOS:8 and 9) comprises the substitution of alanine-31 with valine. The etrl-4 mutation in Fig. 5 (SEQ ID NOS:10

and 11) comprises the substitution of isoleucine-62 with phenylalanine. The etrl-1 (formerly etr) mutation in Fig. 6 (SEQ ID NOs:4 and 5) comprises the substitution of cysteine-65 with tyrosine. The etrl-2 mutation in Fig. 7 (SEQ ID NOs:6 and 7) comprises the substitution of alanine-102 with threonine.

Figure 8 depicts the structure of the cosmid insert used to localize the ETR1 gene from Arabidopsis thaliana. The starting position for the chromosome walk is indicated by a hatched bar. The open bars give the location and length of DNA segments used as probes to detect recombination break points. The maximum number of break points detected by each probe is shown. The numbers to the right of the ETR1 gene are out of 74 for recombinants between etr1-1 and ap-1, and those to the left of the ETR-1 gene are out of 25 for recombinants between etr1-1 and clv2. Overlapping YAC clones EG4E4 and EG2G11 are also shown.

Figures 9A and 9B depict the amino acid sequence 20 alignments of the predicted ETR1 protein and the conserved domains of several bacterial histidine kinases and response regulators. Amino acids are shown in boldface type at positions where there are at least two identities with ETR1. In Fig. 9A, the deduced ETR1 amino acid sequence (SEQ ID NOs:12 and 27) (residues 326 to 562) aligned with the histidine kinase domains of E. coli BarA (SEQ ID NOs:13 and 28), P. syringae LemA (SEQ ID NOs:14 and 29) and X. campestris RpfC(SEQ ID NOs:15 and 30). Boxes surround the five conserved 30 motifs characteristic of the bacterial histidine kinase domain as compiled by Parkinson and Kofoid (Parkinson et al. (1992) Annu. Rev. Genet. 26:71). The conserved histidine residue that is the supposed site of autophosphorylation is indicated by an asterisk. Numbers and positions of amino acids not shown are 35

given in parentheses. In Fig. 9B, the deduced ETR1 amino acid sequence (residues 610 to 729) (SEQ ID NOs:15 and 31) are aligned with the response regulator domains of B. parapertussis BvgS (SEQ ID NOs:17 and 32), P. syringae LemA (SEQ ID NOs:19 and 34) and E.coli RscC (SEQ ID NOs:18 and 33). Amino acids are shown in boldface type where there are at least two identities with ETR1. Boxes surround the four highly conserved residues in bacterial response regulators. The conserved aspartate residue that is the site of 10 phosphorylation is indicated by an asterisk. and positions of amino acids not shown are given in parentheses. For alignment purposes, a gap (__) was introduced in the ETR1 sequence.

Figures 10A and 10B depict specific DNA sequences for ETR nucleic acids from tomato and Arabidopsis thaliana. Figure 10A compares the DNA sequence encoding amino acid residues 1 through 123 (SEQ ID NOS:20 and 21). Figure 10B compares the ETR nucleic acid sequence encoding amino acids 306 through 403 (SEQ ID NOS:22 and 23). The vertical lines in each figure identify homologous nucleotides.

Figures 11A and 11B compare partial amino acid sequences (using single letter designation) for an ETR protein from tomato and Arabidopsis thaliana. Figure 11A compares the amino acid sequence for the ETR protein for amino acids 1 through 123 (SEQ ID NOS:24 and 25). Figure 11B compares the amino acid sequence for the ETR protein for residues 306 through 403 (SEQ ID NOS:26 and 27). The vertical lines indicate exact sequence homology. Two vertical dots indicate that the amino acid residues are functionally conserved. One dot indicates weak functional conservation as between amino acid residues.

25

Figures 12A, 12B, 12C and 12D depict the genomic nucleic acid sequence (SEQ ID NO:45) and deduced amino acid sequence (SEQ ID NO:46) for the QITR ETR gene from Arabidopsis thaliana.

5 Figure 13 depicts the cDNA nucleic acid sequence and deduced protein sequence for the QITR ETR gene from Arabidopsis thaliana.

Figure 14 depicts the genomic nucelic acid sequence (SEQ ID NO:41) and deduced amino acid sequence (SEQ ID NO:42) for the Q8 ETR gene from Arabidopsis thaliana.

Figure 15 depicts the cDNA nucleic acid sequence (SEQ ID NO:43) and deduced amino acid sequence (SEQ ID NO:44) for the Q8 ETR gene from Arabidopsis thaliana.

Figure 16 depicts the nucleic acid sequence (SEQ ID NO:35) and deduced amino acid sequence (SEQ ID NO:36) for the TETR nucleic acid from tomato.

Figure 17 is a comparison of the amino terminal portions of the TETR and ETR1 proteins from tomato and Arabidopsis respectively. The top line is the TETR sequence and extends through amino acid residue 315. The lower line represents the ETR1 protein sequence and extends through amino acid residue 316. The vertical lines and single and double vertical dots have the same meaning as set forth in the description of Figures 11A and 11B. The percent identity between these sequence portions is 73.33%. The percent similarity is 84.76%.

Figure 18 depicts the nucleic acid (SEQ ID NO:37) and deduced amino acid sequence (SEQ ID NO:38) for the TGETR1 ETR nucleic acid from tomato.

Figure 19 depicts the nucleic acid (SEQ ID NO:39) and deduced amino acid sequence (SEQ ID NO:40) for a partial sequence of the TGETR2 ETR nucleic acid from tomato.

- 5 Figure 20 is a comparison of the amino terminal portions for the TGETR1 and ETR1 proteins from tomato and Arabidopsis respectively. The top line is the TGETR1 sequence through amino acid residue 316. The bottom line represents the ETR1 protein sequence through amino acid residue 316. The identity as between these two sequences is 91.75%. The percent similarity is 95.87%. The vertical lines and single and double dots have the same meaning as for Figures 11A and 11B.
- 15 Figure 21 is a comparison of an amino terminal portion of the TGETR2 protein with the corresponding ETR1 sequence. The top line is the TGETR2 sequence from amino acid residue 11 through amino acid residue 245. The lower line is the ETR1 sequence from amino acid residue 1 through amino acid residue 235. The sequence identity is 85.11% as between these two sequences. The sequence similarity is 92.34%. The vertical lines and single and double dots have the same meaning as for Figures 11A and 11B.
- Figure 22 depicts the nucleic acid (SEQ ID NO:50) and deduced amino acid sequence (SEQ ID NO:51) for the Nr (Never-ripe) ETR nucleic acid from Never-ripe tomato. The amino acid sequence in Figure 22 differs from the TETR sequence in Figure 16 in that the amino acid residue proline at residue 36 is replaced with leucine.

Detailed Description

The invention provides, in part, plants having cells transformed with a vector comprising an ETR nucleic acid or a modified ETR nucleic acid. Such transformed 5 plant cells have a modulated response to ethylene. a preferred embodiment, the expression of a modified ETR nucleic acid confers a phenotype on the plant characterized by a decrease in the response to ethylene for at least for those cells expressing the modified 10 ETR nucleic acid as compared to a corresponding non-Thus, for example, when the transformed plant. modified ETR nucleic acid is expressed in fruit such as tomato, the fruit ripening process is retarded thereby reducing spoilage and extending the shelf life and/or 15 harvesting season for the fruit. The invention is similarly useful to prevent spoilage of vegetative tissue and to enhance the longevity of cut flowers.

As used herein, a "plant ETR nucleic acid" refers to nucleic acid encoding all or part of a "plant ETR ETR nucleic acids can initially be 20 protein". identified by homology to the ETR nucleic acid sequences disclosed herein but can also be identified by homology to any identified ETR nucleic acid or amino acid sequence. Examples of ETR nucleic acids include ETR1, QITR and Q8 from Arabidopsis and TETR, TGETR1 and TGETR2 from tomato. ETR nucleic acids, however, are also defined functionally by their ability to confer a modulated ethylene response upon transformation into plant tissue. For example, an antisense construct of 30 an ETR nucleic acid or modified ETR nucleic acid is capable of reducing the ethylene response in plant tissue expressing the antisense or modified ETR nucleic acid. In addition, transformation with an ETR nucleic acid or modifi d ETR nucleic acid can result in co-35 suppression of the endogenous ETR alleles which in turn

modifies the ethylene response. Furthermore, ETR nucleic acids can be modified as described herein to produce modified ETR nucleic acids which when used to transform plant tissue result in varying degrees of 5 ethylene insensitivity in the tissue expressing such modified ETR nucleic acids. When evaluating a putative ETR nucleic acid for the ability of a modified form of the ETR nucleic acid to confer ethylene insensitivity, it is preferred that a codon or combination of codons encoding the amino acid residues equivalent to Ala-31, 10 Ile-62, Cys-65 or Tyr-102 in the ETR1 protein of Arabidopsis thaliana or Pro-36 in the TETR protein in tomato be modified so as to substitute a different amino acid residue such as those disclosed herein for 15 the specified residues.

Plant ETR nucleic acids include genomic DNA, cDNA and oligonucleotides including sense and anti-sense nucleic acids as well as RNA transcripts thereof. The genomic DNA sequence (SEQ ID NO:1) for the ETR1 gene from 20 Arabidopsis thaliana is shown in Figure 2. corresponding cDNA sequence (SEQ ID NO:2) and deduced ETR amino acid sequence (SEQ ID NO:3) are shown in Figure 3. An amino terminal domain (i.e., resides 1 through about 316) of the predicted ETR protein 25 sequence has no homology to known protein sequences. Approximately midway in the ETR protein (i.e., residues 295 through 313) is a putative transmembrane domain followed by a putative intracellular domain (i.e., residues 314 through 738). A substantial portion of this putative intracellular domain unexpectedly has sequence homology to the two component environmental sensor-regulators known in bacteria. families in bacteria form a conserved sensor-regulator system that allows the bacteria to respond to a broad 35 range of environmental fluctuations. It is believed that the amino terminal portion of the ETR protein

interacts either directly with ethylene or indirectly (e.g., with an ethylene binding protein or another protein) and that upon such interaction, signal transduction through the intracellular domain occurs.

An ETR nucleic acid or ETR protein can be identified by substantial nucleic acid and/or amino acid sequence homology to a known ETR sequence. Such homology can be based upon the overall nucleic acid or amino acid sequence in which case the overall homology of the 10 protein sequence is preferably greater than about 50%, preferably greater than 60%, still more preferably greater than 75% and most preferably greater than 90% homologous. Notwithstanding overall sequence homology, it is preferred that the unique amino-terminal portion 15 of an ETR protein sequence or the nucleic acid sequence encoding this portion of the molecule (i.e., the 5'terminal portion) be used to identify an ETR protein or When using this amino terminal ETR nucleic acid. sequence portion, it is preferred that the amino acid sequence homology with the known ETR sequence be 20 greater than about 55%, more preferably about 60%, still more preferably about 70%, more preferably greater than 85% and most preferably greater than 95% homologous. Homology based on nucleic acid sequence is commensurate with amino acid homology but takes into account the degeneracy in the genetic code and codon bias in different plants. Accordingly, the nucleic acid sequence homology may be substantially lower than that based on protein sequence. Thus, an ETR protein is any protein which has an amino-terminal portion which is substantially homologous to the amino-terminal domain of a known ETR protein. One such known ETR protein is the ETR1 protein (see Fig. 3) Arabidopsis thaliana. An ETR nucleic acid by analogy 35 also encodes at least the amino-terminal domain of an ETR protein.

An ETR nucleic acid from a plant species other than Arabidopsis thaliana can be readily identified by standard methods utilizing known ETR nucleic acid. For example, labelled probes corresponding to a known ETR 5 nucleic acid or encoding the unique amino-terminal domain can be used for in situ hybridization to detect the presence of an ETR gene in a particular plant In addition, such probes can be used to species. screen genomic or cDNA libraries of a different plant species or to identify one or more bands containing all 10 or part of an ETR gene by hybridization to an electrophoretically separated preparation of genomic DNA digested with one or more restriction endonucleases.

15 The hybridization conditions will vary depending upon the probe used. When a unique nucleotide sequence of an ETR nucleic acid is used, e.g., an oligonucleotide encoding all or part of the amino terminal domain, relatively high stringency, e.g., about 0.1xSSPE at 20 65°C is used. When the hybridization probe covers a region which has a potentially lower sequence homology to known ETR nucleic acids, e.g., a region covering a portion of the unique amino terminal domain and a covering portion a transmembrane domain, 25 hybridization is preferably carried out under moderate stringency conditions, e.g., about 5xSSPE at 50°C.

For example, using the above criteria, a ripening tomato cDNA library (Stratagene, LaJolla, California, Catalog No. 936004) was screened with a labeled probe comprising a nucleic acid sequence encoding an amino terminal portion of the Arabidopsis ETR protein sequence disclosed herein in Figure 3A, B, C and D. Several clones were identified and sequenced by standard techniques. The DNA sequences for this ETR nucleic acid from tomato (TETR) and Arabidopsis

thaliana (ETR1) encoding amino acid residues 1 through 123 (SEQ ID NOs:20 and 21) and amino acids 306 through 403 (SEQ ID NOs:22 and 23) are set forth in Figures 10A and 10B, respectively.

- The amino acid sequences for the ETR1 protein from Arabidopsis thaliana and tomato (TETR) for residues 1 through 123 (SEQ ID NOs:25 and 24) and 306 through 403 (SEQ ID NOs:27 and 26) are set forth in Figures 11A and 11B, respectively.
- The complete ETR nucleic acid (SEQ ID NO:35) and amino acid sequence (SEQ ID NO:36) for TETR is shown in Fig. 16. A direct comparison of the amino acid sequence between the TETR and ETR1 proteins for the amino terminal 316 amino acid residues is shown in Fig. 17.
- 15 As can be seen, there is substantial homology between these particular Arabidopsis and tomato ETR sequences both on the level of DNA sequence and amino acid sequence. In particular, the homology on the DNA level for the sequence encoding amino acids 1 through 45 is slightly greater than 72%. The homology on the amino acid level for amino acid residues 1 through 123 is approximately 79%. For the amino terminal portion (residues 1 through 316) the overall homology is approximately 73%. In the case of amino acid sequence homology, when the differences between the amino acids 25 compared and equivalent residues are differences comprise the substitution of a conserved residues which amino acid i.e., functionally equivalent, the amino acid sequence similarity rises to about 90% for the first residues. The sequence antibody for the amino terminal 316 amino acids rises to almost 85%. Such sequence similarity was determined using a Best Fit sequence program as describ d by Devereux et al. (1984) Nucl.

٠,

Acids Res. 12:387-395. Functionally equivalent (i.e., conserved) residues are identified by double and single data in the comparative sequences. Similarly, the nucleic acid sequence homology between Arabidopsis and tomato for the sequence encoding amino acid residues 306 to 403 is approximately 75%. The sequence homology on the amino acid level for identical amino acids is almost 86% whereas the similarity is almost 96%.

In addition to ETR1 from Arabidopsis (sometimes referred to TXTR) from tomato, a number of 10 other ETR nucleic acids have been identified in Arabidopsis and tomato. In Arabidopsis, the QITR and Q8 ETR nucleic acids and proteins have been identified. See Figs. 12, 13, 14 and 15 and Seq. ID Nos. 41 through 15 48. For QITR, the overall nucleic acid homology with ETR1 is approximately 69%. With regard to the amino terminal portion between residues 1 and 316, the homology is approximately 71% identical for amino acid sequence and approximately 72% identical in terms of nucleic acid sequence. With regard to Q8, the overall 20 sequence homology to ETR1 from Arabidopsis approximately 69% for the overall nucleic acid sequence as compared to approximately 81% homology for that portion of the Q8 encoding the amino terminal 316 amino acids. The homology on the amino acid level for the 25 amino terminal portion is between Q8 and ETR1 is approximatley 72%.

The other ETR nucleic acids identified in tomato include TGETR1 (SEQ ID NO:37) and TGETR2 (SEQ ID NO:39). the deduced protein sequence for TGETR1 (SEQ ID NO:38) and TGETR2 (SEQ ID NO:40) are set forth in Figures 18 and 19 respectively. The sequence of TGETR2 is incomplete. A comparison of the sequence homology for the first 316 amino acid residues of the TGETR1 protein and the ETR1 protein is shown in Fig. 20. The

35

sequence identity is just under 92%. The sequence similarity rises to almost 96% between this portion of these two proteins. With regard to TGETR2, Fig. 21 sets forth a comparison of the amino terminal portion of this molecule (through amino acid residue 245) with the corresponding portion of the ETR1 protein. The identity of sequences between these two sequence portions is approximately 85%. The sequence similarity rises to just above 92%.

The cloning and sequencing of the ETR nucleic acids 10 from Arabidopsis is described in the examples herein. given the extensive disclosure of However, sequences for these ETR nucleic acids, one skilled in the art can readily construct oligonucleotide probes, 15 perform PCR amplification or utilize other standard protocols known to those skilled in the art to isolate the disclosed genes as well as other ETR nucleic acids having homology thereto from other species. screening the same plant species, relatively moderate to high stringency conditions can be used 20 hybridization which would vary from between 55°C to When it is desirable to probe for 65°C in 5XSSPE. lower homology or in other plant species, lower stringency conditions such as 50°C at 5XSSPE can be used. Washing conditions however required 0.2XSSPE. 25

The isolation of the TETR1 ETR nucleic acid from tomato is described in the examples. The isolation of this sequence utilized the amino terminal portion of the ETR1 gene from Arabidopsis. The other tomato ETR nucleic acids disclosed herein (TGETR1 and TGETR2) were identified by probing a tomato genomic library with an ETR1 probe. The genomic library was made from EMBL 3 to which was ligated a partially Sau3A digested genomic DNA extract of tomato. Conditions were 65°C 5XSSC with washes at 2XSSC.

7

In reviewing the overall structure of the various ETR nucleic acids and proteins identified to date, it appears that at least one class of ETR protein contains a unique amino terminal portion followed by a histine-kinase domain followed by a response regulatory region. This is the ETR1 protein in Arabidopsis. A second class of ETR protein does not contain the response regulatory region. Examples of such ETR proteins include QITR in Arabidopsis and TETR in tomato. The significance of this is not understood at this time. However, as described hereinafter, mutations in the ETR nucleic acids encoding members from each class can confer a dominate ethylene insensitivity to transgenic plants containing such nucleic acids.

As described hereinafter, substitution of amino acid residues Ala-31, Ile-62, Cys-65 and Tyr-102 with a different amino acid results in modified Arabidopsis ETR nucleic acid which are capable of conferring ethylene insensitivity in a transformed plant. Each of these residues are identical as between the ETR protein of tomato (TETR) and Arabidopsis thaliana (ETR1).

Once the ETR nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire ETR nucleic acid. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the ETR nucleic acid can be further used as a probe to identify and isolate other ETR nucleic acids. It can also be used as a "precursor" nucleic acid to make modified ETR nucleic acids and proteins.

As used herein, the term "modified ETR nucleic acid" refers to an ETR nucleic acid containing the substitution, insertion or deletion of one or more

nucleotides of a precursor ETR nucleic acid. precursor ETR nucleic acids include naturally-occurring ETR nucleic acids as well as other modified ETR nucleic The naturally-occurring ETR nucleic acid from 5 Arabidopsis thaliana can be used as a precursor nucleic acid which can be modified by standard techniques, such as site-directed mutagenesis, cassette mutagenesis and the like, to substitute one or more nucleotides at a codon such as that which encodes alanine at residue 31 in the Arabidopsis ETR nucleic acid. Such in vitro 10 codon modification can result in the generation of a codon at position 31 which encodes any one of the other naturally occurring amino acid residues. Such modification results in a modified ETR nucleic acid.

15 For example, the mutation responsible for the phenotype observed in the Never-ripe mutant is disclosed in the examples. As described, a single point mutation changes the proline normally present at residue 36 in the TETR protein to leucine. This single mutation is sufficient to confer a dominant ethylene insensitivity phenotype on the wild-type plant. The transformation of tomato and other plants with this modified ETR nucleic acid is expected to confer the dominant ethylene insensitivity phenotype on such transformed plant cells.

Alternatively, the precursor nucleic acid can be one wherein one or more of the nucleotides of a wild-type ETR nucleic acid have already been modified. Thus, for example, the Arabidopsis thaliana ETR nucleic acid can be modified at codon 31 to form a modified nucleic acid containing the substitution of that codon with a codon encoding an amino acid other than alanine, e.g., valine. This modified ETR nucleic acid can also act as a precursor nucleic acid to intr duce a second modification. For example, the codon encoding Ala-102

can be modified to encode the substitution of threonine in which case the thus formed modified nucleic acid encodes the substitution of two different amino acids at residues 31 and 102.

Deletions within the ETR nucleic acid are also contemplated. For example, an ETR nucleic acid can be modified to delete that portion encoding the putative transmembrane or intracellular domains. The thus formed modified ETR nucleic acid when expressed within a plant cell produces only an amino-terminal portion of the ETR protein which is potentially capable of binding ethylene, either directly or indirectly, to modulate the effective level of ethylene in plant tissue.

In addition, the modified ETR nucleic acid can be identified and isolated from a mutant plant having a dominant or recessive phenotype characterized by an altered response to ethylene. Such mutant plants can be spontaneously arising or can be induced by well known chemical or radiation mutagenesis techniques followed by the determination of the ethylene response in the progeny of such plants. Examples of such mutant plants which occur spontaneously include the Never ripe mutant of tomato and the ethylene insensitive mutant of carnation. Thus, modified ETR nucleic acids can be obtained by recombinant modification of wild-type ETR nucleic acids or by the identification and isolation of modified ETR alleles from mutant plant species.

It is preferred that the modified ETR nucleic acid encode the substitution, insertion and/or deletion of one or more amino acid residues in the precursor ETR protein. Upon expression of the modified nucleic acid in host plant cells, the modified ETR protein thus produced is capable of modulating at least the host cell's response to ethylene. In connection with the

generation of such a phenotype, a number of codons have been identified in the ETR nucleic acid from which when modified Arabidopsis thaliana reintroduced into a wild-type plant result in a 5 decrease in the ethylene response by the transformed plant. These codons encode amino acid residues Ala-31, Ile-62, Cys-65 and Tyr-102 in the ETR protein of Arabidopsis thaliana. The ETR gene and each of these particular modified amino acid residues were identified 10 by cloning the wild-type ETR gene from Arabidopsis thaliana and chemically modified alleles from four different varieties (etr1-1, etr1-2, etr1-3 and etr1-4) of Arabidopsis thaliana (each of which exhibited a phenotype comprising insensitivity dominant 15 ethylene) and comparing the nucleotide and deduced amino acid sequences. The invention, however, is not limited to modified ETR nucleic acids from Arabidopsis thaliana as described in the examples. Rather, the invention includes other readily identifiable modified 20 ETR nucleic acids which modulate ethylene sensitivity.

The above four varieties exhibiting dominant ethylene insensitivity were generated by chemical modification of seedlings of Arabidopsis thaliana and identified by observing plant development from such seedlings with the addition of exogenous ethylene. Using a similar approach either with or without the addition of exogenous ethylene, the skilled artisan can readily generate other variants of any selected plant species which also have a modulated response to 30 ethylene. Then, using ETR probes based upon the wildtype or modified ETR nucleic acid sequences disclosed herein, other modified ETR nucleic acids can be isolated by probing appropriate genomic or cDNA libraries of the modified selected plant species. The 35 nucleotide and/or encoded amino acid sequence of such newly g nerat d modified ETR nucleic acids is then 15

٠,

preferably compared with the wild-type ETR nucleic acid from the selected plant species to determine which modifications, if any, in the ETR nucleic acid are responsible for the observed phenotype. If the wild-5 type sequence of the selected plant species is not available, the wild-type or modified ETR sequences disclosed herein for Arabidopsis thaliana or other ETR sequences which have been identified can be used for comparison. In this manner, other modifications to ETR proteins can be identified which can confer the 10 ethylene insensitivity phenotype. Such modifications include the identification of amino acids other than those disclosed herein which can be substituted at residues equivalent to Ala-31, Ile-62, Cys-65 and Ala-102 in the Arabidopsis thaliana ETR protein and the identification of other amino acid residues which can be modified by substitution, insertion and/or deletion of one or more amino acid residues to produce the desired phenotype.

- 20 Alternatively, a cloned precursor ETR nucleic acid can be systematically modified such that it encodes the substitution, insertion and/or deletion of one or more amino acid residues and tested to determine the effect of such modification on a plant's ethylene response.
- Such modifications are preferably made within that 25 portion of the ETR nucleic acid which encodes the amino-terminal portion of the ETR protein. However, modifications to the carboxy-terminal or putative transmembrane domains to modulate signal transduction
- 30 are also contemplated (e.g., modifications of the conserved histidine of the histidine kinase domain which is the supposed site of autophosphorylation or the conserved aspartate of the response regulator domain which is the supposed site of phosphorylation).
- 35 One method which may be used for identifying particular amino acid residues involved in the direct or indirect

ethylene is the sequential with interaction substitution of the codons of an ETR nucleic acid with codons encoding a scanning amino acid such as glycine or alanine (See, e.g., PCT Publication W090/04788 5 published May 3, 1990) followed by transformation of each of the thus formed modified nucleic acids into a plant to determine the effect of such sequential substitution on the ethylene response. Other approaches include random modifications or predetermined targeted 10 modifications of the cloned ETR nucleic PCT Publication No. W092/07090 published April 30, 1992) followed by transformation of plant cells and the identification of progeny having an altered ethylene The ETR nucleic acid from those plants response. 15 having the desired phenotype is isolated and sequenced to confirm or identify the modification responsible for the observed phenotype.

Amino acid residues equivalent to those specifically identified in an ETR protein which can be modified to alter the ethylene response can also be readily identified in ETR proteins from other plant species. For example, equivalent amino acid residues to those identified in the ETR protein from Arabidopsis thaliana can be readily identified in other ETR proteins. An amino acid residue in a precursor ETR protein is equivalent to a particular residue in the ETR protein of Arabidopsis thaliana if it is homologous in position in either primary or tertiary structure to the specified residue of the Arabidopsis ETR protein.

30 In order to establish homology by way of primary structure, the primary amino acid sequence of a precursor ETR protein is directly compared by alignment with the primary sequence of the ETR protein from Arabidopsis thaliana. Such alignment is preferably of the amino-terminal domain and will take into account

the potential insertion or deletion of one or more amino acid residues as between the two sequences so as to maximize the amino acid sequence homology. comparison of a multiplicity of ETR protein sequences 5 with that of Arabidopsis thaliana provides for the identification of conserved residues among sequences which conservation is preferably maintained for further comparison of primary amino acid sequence. Based on the alignment of such sequences, the skilled 10 artisan can readily identify amino acid residues in other ETR proteins which are equivalent to Ala-31, Ile-62, Cys-65, Ala-102 and other residues in Arabidopsis thaliana ETR protein. Such equivalent residues are selected for modifications analogous to those of other 15 modified ETR proteins which confer the desired ethylene responsive phenotype. Such modified ETR proteins are preferably made by modifying a precursor ETR nucleic encode the corresponding substitution, insertion and/or deletion at the equivalent amino acid 20 residue.

In addition to homology at the primary sequence level, equivalent residues can be identified based homology at the level of tertiary structure. The determination of equivalency at this level will 25 generally require three-dimensional crystal structures for an ETR protein or modified ETR protein from Arabidopsis (or crystal structure of another ETR protein having defined equivalent residues) and the crystal structure of a selected ETRprotein. Equivalent residues at the level of tertiary structure 30 are defined as those for which the atomic coordinates of two or more of the main chain atoms of a particular amino acid residue of the selected ETR protein, as compared to the ETR protein from Arabidopsis, are 35 within 0.13 nm and preferably 0.10 nm after alignment. Alignment is achieved after the best model has been

oriented and positioned to give the maximum overlap of atomic coordinates of non-hydrogen protein atoms of the ETR proteins in question.

ETR nucleic acids can be derived from any of the higher 5 plants which are responsive to ethylene. Particularly suitable plants include tomato, banana, kiwi fruit, avocado, melon, mango, papaya, apple, peach and other climacteric fruit plants. Non-climacteric species from which ETR nucleic acids can be isolated include strawberry, raspberry, blackberry, blueberry, lettuce, 10 cabbage, cauliflower, onion, broccoli, brussel sprout, cotton, canola, grape, soybean and oil seed rape. addition, ETR nucleic acids can be isolated from flowering plants within the Division Magnoliophyta angiosperms which include comprise the which 15 dicotyledons (Class Magnoliopsida and Dicotyledoneae) and monocotyledons (Class Liliopsida). Particularly preferred Orders of angiosperm according to "Taxonomy of Flowering Plants", by A.M. Johnson, The Century Co., 20 NY, 1931 include Rosales, Cucurbitales, Rubiales, Campanulatae, Contortae, Tubiflorae, Plantaginales, Diapensiales, Primulales, Ebenales, Ericales, Primulales, Plumbaginales, Opuntiales, Parietales, Myritiflorae, Umbelliflorae, Geraniales, Sapindales, Pandales, Rhoendales, Malvales, 25 Rhamnales, Sarraceniales, Ramales, Centrospermae, Santalales, Euphorbiales, Capparales, Aristolochiales, Julianiales, Urticales, Myricales, Fagales, Juglandales, Polygonales, Batidales, Balanopsidales, Proteales, 30 Salicales, Leitneriales, Garryales, Verticillatae and Piperales. Particularly preferred plants include lily, carnation, chrysanthemum, petunia, rose, geranium, violet, gladioli, orchid, lilac, crabapple, sweetgum, maple, poinsettia, locust, ash and linden tree.

~;

In addition to providing a source for ETR nucleic acids which can be modified or isolated according to the teachings herein, the foregoing plants can be used as recipients of the modified nucleic acid to produce chimeric or transgenic plants which exhibit an ethylene resistance phenotype in one or more tissue types of the transformed plant.

Once a modified ETR nucleic acid has been cloned, it is used to construct vectors for transforming plant cells. The construction of such vectors is facilitated by the 10 of a shuttle vector which use is capable manipulation and selection in both plant and a convenient cloning host such as a prokaryote. shuttle vectors thus can include an antibiotic resistance gene for selection in plant cells (e.g., kanamycin resistance) and an antibiotic resistance gene for selection in a bacterial host (e.g. actinomycin Such shuttle vectors also contain an origin of replication appropriate for the prokaryotic host used and preferably at least one 20 restriction site or a polylinker containing unique restriction sites to facilitate vector construction. Examples of such shuttle vectors include pMON530 (Rogers et al. (1988) Methods in Enzymology 153:253-25 277) and pCGN1547 (McBride et al. (1990) Plant Molecular Biology 14:269-276).

In the preferred embodiments, which comprise the best mode for practicing the invention, a promoter is used to drive expression of an ETR or a modified ETR nucleic acid within at least a portion of the tissues of a transformed plant. Expression of an ETR nucleic acid is preferably in the antisense orientation to modulate the ethylene response by reduction in translation of the endogenous ETR RNA transcript. Expression of a modified ETR nucleic acid results in the production of

a modified ETR protein which is capable of conferring ethylene insensitivity. Such promoters may be obtained from plants, plant pathogenic bacteria or plant Constitutive promoters include the 35S and viruses. 5 19S promoters of cauliflower mosaic virus (CaMV35S and CaMV19S), the full-length transcript promoter from the Figwort mosaic virus (FMV35S) (See PCT Publication No. W092/12249 published July 23, 1992) and promoters associated with Agrobacterium genes such as nopaline, 10 synthase (NOS), mannopine synthase (MOS) or octopine synthase (OCS). Other constitutive promoters include the α -1 and β -1 tubulin promoters (Silflow et al. (1987) Devel. Genet. 8:435-460), the histone promoters (Chaubet (1987) Devl. Genet. 8:461-473) and the promoters which regulate transcription of ETR nucleic 15 acids.

In some embodiments, tissue and/or temporal-specific promoters can be used to control expression of ETR and modified ETR nucleic acids. Examples of fruit specific 20 promoters include the E8, E4, E17 and J49 promoters from tomato (Lincoln et al. (1988) Mol. Gen. Genet. 212:71-75) and the 2A11, Z130 and Z70 promoters from tomato as described in U.S. Pat. Nos. 4,943,674, In addition, preferential 5,175,095 and 5,177,307. 25 expression in rapidly dividing tissue can be obtained utilizing the plant EF-1 α promoter as described in U.S. Examples of floral specific Pat. No. 5,177,011. promoters include the leafy promoter and promoters from the apetala, pistillata and agamous genes. A promoter system for targeting expression in the leaves of a transformed plant is a chimeric promoter comprising the CaMV35S promoter ligated to the portion of the ssRUBISCO gene which represses the expression of ssRUBISCO in the absence of light. In addition, 35 pollen-sp cific promoters can also be used. promoters are well known to those skilled in the art and are readily available. A example of such a promoter is Zn13 (Hamilton et al. (1992) Plant Mol. Biol. 18:211-218). This promoter was cloned from corn (Monocot) but functions as a strong and pollen-specific promoter when used in tobacco (Dicot).

Examples of inducible promoters which can be used for conditional expression of ETR nucleic acids include those from heat-shock protein genes such as the PHS1 heat-shock protein gene (Takahashi et al. (1989) Mol. Gen. Genet. 219:365-372) and light-inducible promoters including the three chlorophyll a/b light harvesting protein promoters (Leutwiler et al. (1986) Nucl. Acids. Res. 14:4051-4064) and the pre-ferredoxin promoter (Vorst et al. (1990) Plant Mol. Biol. 14:491-499).

In a further embodiment of the invention, the vector 15 used to transform plant cells is constructed to target the insertion of the ETR nucleic acid endogenous promoter within a plant cell. One type of vector which can be used to target the integration of 20 a modified ETR nucleic acid to an endogenous promoter comprises а positive-negative selection analogous to that set forth by Monsour, et al. Nature 336:348-352 (1988) which describes the targeting of exogenous DNA to a predetermined endogenous locus in 25 mammalian ES cells. Similar constructs utilizing positive and negative selection markers functional in plant cells can be readily designed based upon the identification of the endogenous plant promoter and the sequence surrounding it. When such an approach is 30 used, it is preferred that a replacement-type vector be used to minimize the likelihood of reversion to the wild-type genotype.

The vectors of the invention are designed such that the promoter sequence contained in the vector or the

promoter sequence targeted in the plant cell genome are operably linked to the nucleic acid encoding the ETR or modified ETR nucleic acid. When the positive strand of the ETR nucleic acid is used, the term "operably 5 linked" means that the promoter sequence is positioned relative to the coding sequence of the ETR nucleic acid such that RNA polymerase is capable of initiating transcription of the ETR nucleic acid from the promoter In such embodiments it is also preferred to sequence. ribosome binding appropriate 10 provide transcription initiation and termination sequences, translation initiation and termination sequences and polyadenylation sequences to produce a functional RNA transcript which can be translated into ETR protein. 15 When an antisense orientation of the ETR nucleic acid is used, all that is required is that the promoter be operably linked to transcribe the ETR antisense strand. Thus, in such embodiments, only transcription start and termination sequences are needed to provide an RNA 20 transcript capable of hybridizing with the mRNA or other RNA transcript from an endogenous ETR gene or nucleic acid contained ETR modified In addition to promoters, transformed plant cell. expression regulation sequences, such 25 enhancers, can be added to the vector to facilitate the expression of ETR nucleic acid in vivo.

Once a vector is constructed, the transformation of plants can be carried out in accordance with the essentially of the various any invention by 30 transformation methods known to those skilled in the art of plant molecular biology. Such methods are generally described in Methods and Enzymology, Vol. 153 ("Recombinant DNA Part D") 1987, Wu and Grossman, As used herein, the term Academic Press, eds. "transformation" means the alt ration of the genotype of a plant cell by the introduction of exogenous

nucleic acid. Particular methods for transformation of plant cells include the direct microinjection of the nucleic acid into a plant cell by use of micropipettes. Alternatively, the nucleic acid can be transferred into a plant cell by using polyethylene glycol (Paszkowski **EMBO** J. 3:2717-2722 (1984)).transformation methods include electroporation of protoplasts (Fromm, et al. Proc. Natl. Acad. Sci. U.S.A. 82:5824 (1985); infection with a plant specific virus, e.g., cauliflower mosaic virus (Hohn et al. "Molecular Biology of Plant Tumors", Academic Press, New York (1982), pp. 549-560) or use of transformation sequences from plant specific bacteria such Agrobacterium tumefaciens, e.g., a Ti plasmid 15 transmitted to a plant cell upon infection agrobacterium tumefaciens (Horsch et al. 233:496-498 (1984); Fraley et al. Proc. Natl. Acad. Sci. U.S.A. 80:4803 (1983)). Alternatively, plant cells can be transformed by introduction of nucleic acid contained within the matrix or on the surface of small beads or particles by way of high velocity" ballistic penetration of the plant cell (Klein et al. Nature 327:70-73 (1987)).

After the vector is introduced into a plant cell, selection for successful transformation in typically carried out prior to regeneration of a plant. Such selection for transformation is not necessary, but facilitates the selection of regenerated plants having the desired phenotype by reducing wild-type background. Such selection is conveniently based upon the antibiotic resistance and/or herbicide resistance genes which may be incorporated into the transformation vector.

Practically all plants can be regenerated from cultured 35 cells or tissues. As used herein, the term

30

35

"regeneration" refers to growing a whole plant from a plant cell, a group of plant cells or a plant part. The methods for plant regeneration are well known to those skilled in the art. For example, regeneration 5 from cultured protoplasts is described by Evans et al. "Protoplasts Isolation and Culture", Handbook of Plant Cell Cultures 1:124-176 (MacMillan Publishing Co., New York (1983); M.R. Davey, "Recent Developments in the Culture and Regeneration of Plant Protoplasts", 10 Protoplasts (1983) Lecture Proceedings, pp. (Birkhauser, Basil 1983); and H. Binding "Regeneration of Plants", Plant Protoplasts, pp. 21-73 (CRC Press, Bocaraton 1985). When transformation is of an organ part, regeneration can be from the plant callus, Such methods 15 explants, organs or parts. regeneration are also known to those skilled in the art. See, e.g., Methods in Enzymology, supra.; Methods in Enzymology, Vol. 118; and Klee et al. Annual Review of Plant Physiology 38:467-486.

20 A preferred method for transforming and regenerating petunia with the vectors of the invention is described by Horsch, R.B. et al. (1985) Science 227:1229-1231. A preferred method for transforming cotton with the vectors of the invention and regenerating plants therefrom is described by Trolinder et al. (1987) Plant Cell Reports 6:231-234.

Tomato plant cells are preferably transformed utilizing Agrobacterium strains by the method as described in McCormick et al., Plant Cell Reports 5:81-84 (1986). In particular, cotyledons are obtained from 7-8 day old seedlings. The seeds are surface sterilized for 20 minutes in 30% Clorox bleach and germinated in Plantcons boxes on Davis germination media. Davis germination media is comprised of 4.3 g/l MS salts, 20 g/l sucrose and 10 mls/l Nitsch vitamins, pH 5.8. The

Nitsch vitamin solution is comprised of 100 mg/l myo-inositol, 5 mg/l nicotinic acid, 0.5 mg/l pyridoxine HCl, 0.5 mg/l thiamine HCl, 0.05 mg/l folic acid, 0.05 mg/l biotin, 2 mg/l glycine. The seeds are allowed to germinate for 7-8 days in the growth chamber at 25°C, 40% humidity under cool white lights with an intensity of 80 einsteins m^2-s^{-1} . The photoperiod is 16 hours of light and 8 hours of dark.

Once germination occurs, the cotyledons are explanted using a #15 feather blade by cutting away the apical meristem and the hypocotyl to create a rectangular explant. These cuts at the short ends of the germinating cotyledon increase the surface area for infection. The explants are bathed in sterile Davis regeneration liquid to prevent desiccation. Davis regeneration media is composed of 1X MS salts, 3% sucrose, 1X Nitsch vitamins, 2.0 mg/l zeatin, pH 5.8. This solution was autoclaved with 0.8% Noble Agar.

The cotyledons are pre-cultured on "feeder plates" 2 composed of media containing no antibiotics. The media is composed of 4.3 g/l MS salts, 30 g/l sucrose, 0.1 g/l myo-inositol, 0.2 g/l KH_2PO_4 , 1.45 mls/l of a 0.9 mg/ml solution of thiamine HCl, 0.2 mls of a 0.5 mg/ml solution of kinetin and 0.1 ml of a 0.2 mg/ml solution This solution is adjusted to pH 6.0 with 25 of 2,4 D. KOH. These plates are overlaid with 1.5 - 2.0 mls of tobacco suspension cells (TXD's) and a sterile Whitman filter soaked in 2COO5K media. 2COO5K media is composed of 4.3 g/l Gibco MS salt mixture, 1 ml B5 30 vitamins (1000X stock), 30 g/l sucrose, 2 mls/l PCPA from 2 mg/ml stock, and 10 μ l/l kinetin from 0.5 mg/ml The cotyledons were cultured for 1 day in a growth chamber at 25°C under cool white lights with a light intensity of 40-50 einsteins m^2s^{-1} with a 35 continuous light photoperiod.

25

30

Cotyledons are then inoculated with a log phase solution of Agrobacterium containing the modified or wild type ETR nucleic acid. The concentration of the Agrobacterium is approximately 5x108 cells/ml. 5 cotyledons are allowed to soak in the bacterial solution for six minutes and are then blotted to remove excess solution on sterile Whatman filter disks and subsequently replaced to the original feeder plate where they are allowed to co-culture for 2 days. After 10 the two days, cotyledons are transferred to selection plates containing Davis regeneration media with 2 mg/l zeatin riboside, 500 μ g/ml carbenicillin, and 100 μ g/ml After 2-3 weeks, cotyledons with callus kanamycin. and/or shoot formation are transferred to fresh Davis regeneration plates containing carbenicillin kanamycin at the same levels. The experiment is scored for transformants at this time. The callus tissue is subcultured at regular 3 week intervals and any abnormal structures are trimmed so that the developing shoot buds continue to regenerate. Shoots develop 20 within 3-4 months.

Once shoots develop, they are excised cleanly from callus tissue and planted on rooting selection plates. These plates contain 0.5% MSO containing 50 μ g/ml kanamycin and 500 μ g/ml carbenicillin. These shoots form roots on the selection media within two weeks. If no roots appear after 2 weeks, shoots are trimmed and replanted on the selection media. Shoot cultures are incubated in percivals at a temperature of 22°C. Shoots with roots are then potted when roots were about 2 cm in length. The plants are hardened off in a growth chamber at 21°C with a photoperiod of 18 hours light and 6 hours dark for 2-3 weeks prior to transfer In the greenhouse, the plants are to a greenhouse. 35 grown at a temperature of 26°C during the day and 21°C

7.

during the night. The photoperiod is 13 hours light and 11 hours dark and the plants are allowed to mature.

Once plants have been regenerated, one or more plants are selected based upon a change in the ethylene 5 response phenotype. For example, when a modified ETR nucleic acid is used with its native promoter, selection can be based upon an alteration in any of one of the "triple responses" of seedlings from such plants. Guzman et al. (1990) The Plant Cell 2:523. 10 Alternatively, or when constitutive promoters are used, various other ethylene responses can be assayed and compared to the wild type plant. Such other ethylene responses include epinasty (which is observed primarily tomato), epsision, abscission, flower senescence and fruit ripening. In addition to overt changes in the ethylene response, the levels of various enzymes can be determined followed by exposure to ethylene to determine the response time for the typical increase or decrease in the level of a particular

- protein such as an enzyme. Examples of various ethylene responses which can be used to determine whether a particular plant has a decreased response to ethylene are set forth in Chapter 7, The Mechanisms of Ethylene Action in "Ethylene in Plant Biology" 2d Ed.
- F.B. Abels, P.W. Morgan and M.E. Salveit, Jr., eds., San Diego, Academic Press, Inc. (1992). When a tissue and/or temporal-specific promoter or inducible promoter is used, the determination of a modulation in the ethylene response is determined in the appropriate tissue at the appropriate time and if necessary under the appropriate conditions to activate/inactivate an inducible promoter. In each case, the ethylene response is preferably compared to the same ethylene response from a wild-type plant.

The following are particularly preferred embodiments for modulating the ethylene response in fruit. However, such embodiments can be readily modified to modulate the ethylene response in vegetative tissue and flowers.

In one approach, a modified *ETR* nucleic acid operably linked to a constitutive promoter of moderate strength is used to reduce the ethylene response. This results in a lengthening of the time for fruit ripening.

- 10 In an alternate embodiment, a modified ETR nucleic acid operably linked to a regulatable (inducible) promoter is used so that the condition that turns on the expression of the modified ETR nucleic acid can be maintained to prevent fruit ripening. The condition that turns off the expression of the modified ETR nucleic acid can then be maintained to obtain ripening. For example, a heat-inducible promoter can be used which is active in high (field) temperatures, but not in low temperatures such as during refrigeration. A further example utilizes an auxin or gibberellininduced promoter such that transformed plants can be treated with commercial auxin analogs such as 2, 4-D or with commercial gibberellin analogs such as Pro-Gibb to prevent early ripening.
- 25 Alternatively, a strong constitutive promoter can be operably linked to a modified ETR nucleic acid to prevent fruit ripening. So as to allow eventual fruit ripening, the plant is also transformed with a wild-type ETR nucleic acid operably linked to an inducible promoter. Expression of the wild-type ETR nucleic acid is increased by exposing the plant to the appropriate condition to which the inducible promoter responds. When the wild-type ETR nucleic acid expression is increased, the effect of expression of the modifi d ETR

25

nucleic acid is reduced such that fruit ripening occurs.

Particular constructs which are desirable for use in transforming plants to confer ethylene insensitivity include the CMV35S promoter operably linked to any other mutant Arabidopsis ETR genomic or cDNA clones including the corresponding modification at residue 36 to convert proline to leucine. Such constructs are expected to confer a dominant ethylene insensitivity phenotype tp cells and plants transformed with and expressing such constructs.

In addition, a preferred construct includes operably linking the FMV promoter to drive expression of the tomato TETR cDNA which has been engineered to contain a mutation analogous to any of those identified in the ETR genes from Arabidopsis as well as the Nr mutation found in the tomato ETR gene. Such constructs are expected to confer a dominant ethylene insensitivity phenotype to cells and plants which are transformed with and express such constructs.

Other preferred constructs include the operable linking the FMV promoter to ETR antisense cDNAs including TETR and ETR1. Such constructs are expected to confer a dominant ethylene insensitivity phenotype to cells and plants which are transformed with and express such constructs.

The invention can be practiced in a wide variety of plants to obtain useful phenotypes. For example, the invention can be used to delay or prevent floral senescence and abscission during growth or during transport or storage as occurs in flower beds or cotton crops (Hall, tal. (1957) Physiol. Plant 10:306-317) and in ornamental flowers (e.g., carnations, roses)

that are either cut (Halevy, et al. (1981) Hort. Rev. 3:59-143) or not cut. In addition, the invention can be practiced to delay or prevent senescence and abscission of leaves and fruits in cucumber (Jackson, 5 et al. (1972) Can. J. Bot. 50:1465-1471), legumes and other crops (Heck, et al. (1962) Texas Agric. Expt. Sta. Misc. Publ. MP 613:1-13) and ornamental plants (e.g., holly wreaths) (Curtis et al. (1952) Proc. Am. Soc. Hort. Sci. 560:104-108). Other uses include the reduction or prevention of bitter-tasting phenolic compounds (isocoumarins) which are induced by ethylene example in sweet potatoes (Kitinoja "Manipulation of Ethylene Responses in Horticulture", Reid, ed., Acta. Hort. Vol 201, 377-42) carrots (Coxon et al. (1973) Phyto. Chem. Istry. 12:1881-1885), 15 parsnip (Shattuck et al. (1988) Hort. Sci. 23:912) and Other uses include the prevention of Brassica. selective damage to reproductive tissues as occurs in oats and canola (Reid et al. (1985) in "Ethylene in Plant Development", Roberts, Tucker, eds. (London), 20 Butterworths, pp. 277-286), the loss of firmness and/or texture as occurs in stored produce such as apples and watermelons (Risse et al. (1982) Hort. Sci. 17:946-948), russet spotting (a post-harvest 25 disorder) which is ethylene induced in crisphead lettuce (Hyodo et al. (1978) Plant Physiol. 62:31-35), to promote male flower production (Jaiswal et al. (1985) Proc. Indian Acad. Sci. (Plantg Sci. 95:453-459) and to increase plant size, e.g., by delaying the formation of flowers in ornamental bromeliads (Mekers 30 et al. (9183) Acta Hortic 137:217-223). Furthermore, a decrease in ethylene response can be used to delay disease developments such as the preventing of lesions cucumbers infected senescence in Colletotrichum lagenarium and to reduc diseases in plants in which ethylene causes an increase in disease development, e.g., in barley, citrus, Douglas fir

grapefruit, plum, seedlings, rose, carnation, strawberry, tobacco, tomato, wheat, watermelon and ornamental plants. In addition, the invention can be used to reduce the effect of ethylene found in the 5 environment and indirectly the effect of various environmental stresses which result in the biosynthesis of ethylene in plant tissue. For example, ethylene exists at biologically detrimental levels in localized atmospheres due to fires, automobile exhaust and See, e.g., Chapter 8, Ethylene in the 10 industry. Environment in "Ethylene in Plant Biology", supra. addition, the invention can be used to minimize the effect of ethylene synthesized in response environmental stresses such as flooding, drought, 15 oxygen deficiency, wounding (including pressure and bruising), chilling, pathogen invasion (by viruses, bacteria, fungi, insects, nematodes and the like), chemical exposure (e.g., ozone salt and heavy metal ions) and radiation.

The following is presented by way of example and is not to be construed as a limitation on the scope of the invention. Further, all references referred to herein are expressly incorporated by reference.

EXAMPLE 1

25 <u>Cloning of the ETR1 Gene</u>

etr1-1 plants were crossed with two lines carrying the recessive visible markers ap1 and clv2 respectively. The F₁ progeny were allowed to self-pollinate. Phenotypes were scored in the F₂. The recombination percentages (using the Kosambi mapping function (D.D. Kosambi (1944) Ann. Eugen. 12:172)) were determined in

centimorgans. The ETR1 locus mapped to the lower portion of chromosome 1 between the visible genetic markers ap1 and c1v2 (6.5 +/-1.0 cM from AP1 and 2.8 +/-1.1 cM from CLV2).

5 etr1-1 was crossed to tester line W100 (ecotype Landsberg (Koornneef et al. (1987) Arabidopsis Inf. Serv. 23:46) and the F, plants were allowed to selfpollinate. Linkage of RFLP markers to the ETR1 locus was analyzed in 56 F2 plants as described in Chang, et 10 al. (1988) Proc. Natl. Acad. Sci. U.S.A. 85:6856. the RFLP markers that reside in this region of 1bAt315, completely marker, 1. one cosegregated with the etr1-1 mutant phenotype out of 112 chromosomes. The 1bAt315 clone was therefore used as a probe to initiate a chromosome walk in the ETR1 gene region. Various genomic DNA cosmid libraries were utilized. One library contained subclones of two yeast artificial chromosomes (YACs EG4E4 and EG2G11 (Grill et al. (1991) Mol. Gen. Genet. 226:484)) that hybridized to 1bAt315. To subclone the YACs, total DNA from yeast 20 cells harboring EG4E4 or EG2G11 was partially digested with Sau3AI, and cloned into the BglII site of cosmid vector pCIT30 (Ma et al. (1992) Gene 117:161). Standard cloning and screening methods were used 25 (Sambrook et al, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989)). A library from the etr1-1 mutant was similarly The wild type library was constructed in pCIT30. constructed previously (Yanofsky et al. (1990) Nature By restriction analysis and sequential 346:35). 30 hybridization to these libraries, overlapping cosmids (a contig) were obtained that spanned a distance of approximately 230 kb. See Fig. 8.

The ETR1 gen was localized to a subregion of approximately 47 kb using fine structure RFLP mapping.

To create the fine structure map, meiotic recombinants were isolated based on phenotype from the F2 selfprogeny of the above crosses between the etr1-1 mutant (ecotype Columbia) and two lines (both ecotype 5 Landsberg) carrying apl and clv2. Recombinants were identified in the F2 progeny as plants that were either wild type at both loci or mutant at both loci. was scored in dark grown seedlings (Bleecker et al. Science 241:1086). (1988)Seventy-four 10 recombinants between ETR1 and AP1 were obtained, and 25 recombinants between ETR1 and CLV2. The recombination break points were mapped using DNA fragments from the chromosome walk as RFLP probes. Given the number of recombinants isolated, the calculated average distance 15 between break points was roughly 20 kb for each cross. Over the 230 kb contig, the actual density of break points found was consistent with the calculated density on the CLV2 side (with 5 break points in approximately 120 kb). The nearest break points flanking the ETRI 20 gene defined a DNA segment of approximately 47 kb.

To search for transcripts derived from this 47 kb region, cDNA libraries were screened using DNA fragments. One cDNA clone was designated λC4 and was detected with the 4.25 kb EcoRI fragment 1 shown in Fig. 8. Because λC4 potentially represented the ETR1 gene, this clone was further characterized.

25

30

EXAMPLE 2

ETR Gene Characterization

The nucleotide sequences of the $\lambda C4$ cDNA and the corresponding genomic DNA (Figure 2) (SEQ ID NO:1) was determined using sequenase version 2.0 (United States Cleveland, Ohio) and synthetic Biochemical Co., primers having length a oligonucleotide The primer sequences were chosen from nucleotides. existing ETR1 sequences in order to extend the sequence until the entire sequence was determined. The initial 10 sequence was obtained using primers that annealed to Templates were double-stranded the cloning vector. Both strands of the genomic DNA were plasmids. sequenced, including 225 bp upstream of the presumed 15 transcriptional start site, and 90 bp downstream of the polyadenylation site. $\lambda C4$ was sequenced on a single strand.

 λ C4 was 1812 base pairs long, including a polyA tail of 18 bases. From the DNA sequences and RNA blots (described below), it was determined that λ C4 lacked approximately 1000 base pairs of the 5' end.

longer CDNAs, first strand cDNA obtain To synthesized (RiboClone cDNA Synthesis System, Promega, Madison Wisconsin) from seedling polyA+ RNA using sequence-specific primers internal to $\lambda C4$. The cDNA was then amplified by PCR (Saiki, R.K. et al. (1985) Science 230:1350) using various pairs of primers: 3' PCR primers were chosen to anneal to different exons as deduced from the cDNA and genomic DNA sequences, and 5' PCR primers were chosen to anneal to various 5' portions of genomic DNA sequences. Six different primers at the 5' end were used. The farthest upstream primer which amplified the cDNA was

primer Q (5'AGTAAGAACGAAGAAGAGTG) (SEQ ID NO:26). An overlapping primer, which was shifted twelve bases downstream, also amplified the cDNA. The cDNA could not be amplified using a 5' end primer that was 98 base 5 pairs farther upstream. Genomic DNA templates were used for PCR controls. The longest cDNA was considered to extend to the 5' end of primer Q. The amplified cDNAs were sequenced directly with Sequenase Version 2.0 as follows: after concentrating the PCR reactions by ethanol precipitation, the amplified products were separated by electrophoresis in 0.8% LMP agarose gels. The DNA fragments were excised, and a mixture of 10 ul excised gel (melted at 70°C), 1 ml 10 mM primer and 1.2 ml 5% Nonidet P-40 was heated at 90°C for two minutes to denature the DNA. The mixture was then cooled to 37°C prior to proceeding with sequencing reactions.

The longest cDNA, which was 2786 bases (not including the polyA tail), was consistent with the estimated size of 2800 bases from RNA blots, and was presumed to be close to full length. A potential TATA box (5' ATAATAATAA) lies 33 bp upstream of the 5' end in the genomic sequence. Based on comparison of the cDNA and the genomic DNA sequences, the gene has six introns, one of which is in the 5' untranslated leader. The exons contain a single open reading frame of 738 amino acids. See Fig. 3.

The determination that this gene is, in fact, ETR1 was established by comparing the nucleotide sequences of the wild type allele and the four mutant alleles. For each mutant allele, an EcoRI size-selected library was constructed in the vector lambda ZAPII (Stratagene, LaJolla, California). Clones of the 4.25 kb EcoRI fragment were isolated by hybridization with the wild type fragment. These clones were converted into plasmids (pBluescript vector) by in vivo excision

according to the supplier (Stratagene) and sequenced. Two independent clones were sequenced on a single strand for each mutant allele. The 5' ends (535 bp not contained on the 4.25 kb EcoRI fragment) were amplified by PCR and directly sequenced as previously described. Codon differences were as follows: Codon 65 TGT to TAT in etr1-1 (Figs. 6A, B, C and D), Codon 102 GCG to ACG in etr1-2 (Figs. 7A, B, C and D), Codon 31 GCG to GTG in etr1-3 (Figs. 4A, B, C and D), Codon 62 ATC to TTC in etr1-4 (Figs. 5A, B, C and D). All four mutations are clustered in the amino-terminal region of the deduced protein sequence.

The ETR1 message was examined in standard RNA electrophoresis (formaldehyde) gel blots. The 2.8 kb ETR1 transcript was present in all plant parts examined - leaves, roots, stems, flowers and seedlings (data not shown). In addition, no differences were observed between ETR1 transcripts of the wild type and the mutant alleles (data not shown). Treatment with ethylene did not detectably alter the amount of ETR1 mRNA in dark-grown wild type seedlings (data not shown).

When the ETR1 gene was hybridized to Arabidopsis genomic DNA blots at normal stringency (i.e., overnight in 5xSSPE (0.9 M NaCl, 50 mM NaH₂PO₄, 40 mM NaOH, 4.5 mM EDTA, pH 7.4 at 65°C, with the most stringent wash in 0.1xSSPE at 65°C for 30 minutes), only the expected fragments of the ETR1 locus were observed (data not shown). At reduced stringency (i.e., hybridization in 5xSSPE at 50°C and washs in 5xSSPE at 50°C.), however, numerous fragments were detected, which suggests that a family of similar genes exists in Arabidopsis.

The predict d amino terminal sequenc of ETR1 (residu s 1-316) has no similarity to sequences in the GenBank

database (version 77.0). The carboxy-terminal portion, however, is highly similar to the conserved domains of both the sensor and the response regulator of the prokaryotic two-component system of signal In bacteria, the histidine protein 5 transduction. kinase domain of the sensor is characterized by five sequence motifs arranged in a specific order with loosely conserved spacing (Parkinson (1992) Annu. Rev. Genet. 26:71). The deduced ETR1 sequence contains all five motifs with the same relative order and spacing found in the bacterial proteins (Fig. 9A). The deduced sequence is most similar to the sequences Escherichia coli Bar A (Nagasawa et al. (1992) Mol. Microbiol. 6:3011) and Pseudomonas syringae LemA 15 (Harbak et al. (1992) J. Bact. 174:3011); over the entire histidine kinase domain (the 241 amino acids from residues 336 through 566), there are 43% and 41% amino acid identities with BarA and LemA respectively, and 72% and 71% similarities respectively. function of BarA is unknown, although it was cloned based on its ability to complement a deletion in the E. coli osmotic sensor protein, EnvZ (Nagasawa, supra.). LemA is required for pathogenicity of P. syringae on bean plants (Hrabak, supra.). Other bacterial proteins 25 with sequences highly similar to this putative ETR1 domain are: Xanthomonas campestris RpfC (35% identity) which is possibly involved in host recognition for pathogenicity in cruciferous plants (Tang et al (1991) Mol. Gen. Genet. 226:409), E. coli RcsC (34% identity) 30 which is involved in regulation of capsule synthesis (Stout et al. (1990) J. Bacteriol. 172:659) and E. coli ArcB (25% identity) which is responsible for repression of anaerobic enzymes (Luchi et al. (1990) Microbiol. 4:715).

35 Adjacent to the putative histidine kinase domain, the deduced *ETR1* sequence exhibits structural

characteristics and conserved residues of bacterial Structural characteristics of response regulators. response regulators are based on the known threedimensional structure of CheY (the response regulator 5 for chemotaxis) in Salmonella typhimurium and E. coli, which consists of five parallel β -strands surrounded by five α -helices (Stock et al. (1989) Nature 337:745; (1991) J. Biol. Chem. 266:15511). al. Sequences of bacterial response regulators have been aligned to this structure based on residues that are compatible with the hydrophobic core of the CheY (Stock et al. (1989) Microbiological Rev. 53:450). deduced ETRI sequence can be similarly aligned (data At four specific positions, response not shown). regulators contain highly conserved residues - three aspartates and a lysine (Parkinson et al. (1992) Annu. Rev. Genet. 26:71; Stock et al., supra.); the three aspartates form an acidic pocket into which protrudes the side chain of the conserved lysine (Stock et al. (1989) Nature 337:745; Volz et al. (1991) J. Biol. 20 Chem. 266:15511) and the third aspartate is the receiver of the phosphate from phosphohistidine (Stock et al. (1989), supra.). Except for the conservative substitution of glutamate for the second aspartate, these conserved amino acids are found in the same positions in the deduced ETR1 sequence (Fig. 9B). The deduced sequence in this domain (a stretch of 121 amino acids from residues 609 through 729 in ETR1) is most similar to the sequences of Bordetella parapertussis 30 BvgS (29% identity, 60% similarity) which controls virulence-associated genes for pathogenicity in humans (Aricò et al. (1991) Mol. Microbiol. 5:2481), E. coli RcsC (29% identity, 64% similarity), P. syringae LemA (26% identity, 57% similarity), X. campestris RpfC (25% identity) and E. coli BarA (20% identity). All of the 35 bacterial proteins that are similar to ETR1 in sequence are also structurally similar to ETR1 in that they

WO 95/01439 PCT/US94/07418

-45-

contain both the histidine kinase domain and the response regulator domain. Although these features are shared, the sensing functions are clearly diverged.

A potential membrane spanning domain (residues 295-313) 5 exists in the deduced ETR1 sequence based on hydropathy analysis (Kyte et al. (1982) J. Mol. Biol. 157:105), is unclear whether ETR1 is actually a but it transmembrane protein since there is no clear signal There are also no N-linked glycosylation While all of the bacterial proteins to which sites. the deduced ETR1 sequence is similar have two potential membrane spanning domains flanking the amino terminal domain, a few bacterial sensors (those which lack the response regulator) do not.

EXAMPLE 3 15

10

20

An etrl Mutant Gene Confers Ethylene Insensitivity to Wild Type Plants

- 1

Dominant ethylene insensitivity was conferred to wild type Arabidopsis plants when the etr1-1 mutant gene was Agrobacterium-mediated stably introduced using transformation. The gene was carried on a 7.3 kb genomic DNA fragment (fragments 1 and 2 in Fig. 8 which approximately 2.7 kb upstream of the transcription initiation site, and approximately 1 kb downstream of the polyadenylation site). It was cloned 25 into binary transformation vector pCGN1547 obtained from Calgene, Inc., Davis, California. The vector also carried a selectable marker for kanamycin resistance in plants.

30 For the etr1-1 construct, the 4.25 kb EcoRI plasmid clone containing the etr1-1 mutation was linearized by

partial EcoRI digestion and ligated with the 3.1 kb EcoRI fragment which was agarose gel-purified from cosmid clone theta8 (a subclone of YAC EG4E4 in the walk). The resulting plasmid, containing the two EcoRI 5 fragments in the correct relative orientation, was linearized at polylinker site Asp718, the ends were filled in using Klenow enzyme, and BamHI linkers were ligated to the blunt ends. Finally, the 7.3 kb insert was removed from the plasmid at the polylinker site 10 BamHI, and ligated into the BamHI site of binary transformation vector pCGN1547 (McBride, K.E. et al. (1990) Plant Molecular Biology 14:269). For the control construct, the wild type 7.3 kb fragment was agarose gel-purified from EcoRI partially digested cosmid theta8, and subcloned into the EcoRI site of 15 pBluescript. The fragment was then removed using the BamHI and KpnI sites of the polylinker, and ligated into pCGN1547 that had been digested with BamHI and The mutant and wild type constructs were transformed into Agrobacterium (Holsters et al. (1978) 20 Mol. Gen. Genet. 163:181) strain ASE (Monsanto) (Rogers et al. (1988) Meth. Enzymol. 153:253). Arabidopsis ecotype Nossen was transformed (Valvekens, D. et al. (1988) Natl. Proc. Acad. Sci. U.S.A. 85:5536) using root-tissue cultured in liquid rather than on solid 25 medium. Triploid plants having one mutant copy of the ETR1 gene were obtained as the progeny of crosses the etr1-1 homozygote (diploid) between tetraploid wild type in ecotype Bensheim which has the same triple response phenotype as ecotype Columbia. Triploid wild type plants were similarly obtained by crossing the diploid wild type to the tetraploid. Ethylene sensitivity was assayed in dark-grown seedlings treated with either ethylene (Bleecker et al., supra.) or 0.5 mM ACC. For ACC tr atment, plants 35 were germinated and grown on Murashige and Skoog basal salt mixture (MS, Sigma), pH 5.7, 0.5 mM ACC (Sigma),

- 1% Bacto-agar (Difco). Kanamycin resistance was measured by the extent of root elongation in one week old seedlings grown on MS pH 5.7 μ g/ml Kanamycin, 1% Bacto-agar.
- Ten kanamycin resistant plants were produced. Eight of the ten exhibited ethylene insensitive self-progeny as evaluated by the dark-grown seedling response to ethylene. In each line, ethylene insensitivity cosegregated with kanamycin resistance. As a control, transformations were performed using the corresponding 7.3 kb genomic DNA fragment of the wild type from which six kanamycin resistant plants were obtained. These lines gave rise to only ethylene sensitive self-progeny which did not appear to be different from the wild type.

The etr1-1 transformants displayed different levels of : ethylene insensitivity. Thus, the wild type gene is aucapable of attenuating the mutant phenotype and the etr1-1 mutation is not fully dominant in the T. 20 transformed plants. Of the ten kanamycin resistant six gave completely dominant ethylene insensitivity, indicating the presence of multiple copies of the mutant gene. Two other lines displayed partial dominance, and two lines appeared to be wild 25 type. Reduced ethylene insensitivity was presumably due to low expression levels which can be caused by position effects (e.g., DNA methylation) or possibly by truncation of the transferred DNA.

EXAMPLE 4

Vector Constructs Containing Heterologous Promoter

This example describes the construction of a plant transformation vector containing a heterologous promoter to control expression of wild type and mutant ETR1 nucleic acids.

The cauliflower mosaic virus 35S protein promoter (Guilley et al. (1982) Cell 30:763-773; Odell, et al. (1985) Nature 313:810-812 and Sanders et al. (1987)

10 Nucl. Acids Res. 15:1543-1558) and the 3' end of the Nopaline synthase (NOS) gene were cloned into the pCGN1547 vector to create pCGN18. The 35S promoter, on a HindIII-BamHI fragment of approximately 1.6 kb, was cloned into the unique HindIII-BamHI site of pCGN1547.

15 The 1 kb BamHI-KpnI NOS fragment was cloned into the unique BamHI-KpnI site of pCGN1547.

The 4.25 kb EcoRI fragment of both the wild type and mutant ETR1-1 allele were independently cloned into the unique BamHI site of the above pCGN18 vector using BamHI linkers. This 4.25 kb EcoRI genomic fragment contains the entire coding sequence including five introns and approximately 1 kb genomic DNA downstream of the polyadenylation site. It does not contain the ETR1 promoter which is on the 3.1 EcoRI fragment 2 in Fig. 5.

These vectors were used to transform root explants as described in Example 3. Kanamycin resistant plants containing the mutant ETR1-1 gene were obtained and demonstrated an ethylene insensitivity phenotype similar to that found in Example 3. Control plants transformed with the wild type ETR1 g ne produced only ethylene sensitive self-progeny.

EXAMPLE 5

Vector Construct Utilizing Antisense ETR1

Ethylene insensitivity was conferred to wild-type Arabidopsis by expression of an ETR1 antisense nucleic 5 acid which was introduced using standard Agrobacterium root transformation procedure. Valvekens et al. (1988) Proc. Natl. Acad. Sci. U.S.A. 85:5536. The antisense nucleic acid consisted of a 1.9 kb ETR1 cDNA fragment. Expression of this fragment, which extended from the 10 MscI restriction site at nucleotide 220 to the first SmaI site at nucleotide 2176 in Figs 3A, 3B, 3C and 3D was driven in the reverse orientation by the CaMV 35S promoter. To construct the antisense nucleic acid, BamHI linkers were ligated to the ends of the 1.9 kb 15 MscI-SmaI DNA fragment and the thus formed fragment was ligated into the BamHI site of pCGN 18 transformation vector. Jack et al. (1994) Cell 76:703. The construct was transformed into Agrobacterium strain ASE as described above and then into Arabidopsis.

20 Seedlings derived from this transformation experiment were tested for sensitivity to ethylene as previously described. Seedlings containing the antisense construct were ethylene insensitive.

EXAMPLE 6

25 Identification of QITR, a Second ETR Nucleic Acid in Arabidopsis

Genomic DNA from Arabidopsis thaliana was partially digested with Sau3A and cloned into a λ GEM11 (half-site arms) obtained from Promega, Madison, Wisconsin. The

genomic digest was partial end filled prior to cloning with $\lambda GEM11$ and plated on media as suggested by the manufacturer.

The thus cloned library was screened with a 32P-labeled 5 cDNA XbaI fragment extending from nucleotides 993-2308 as set forth in Figures 3B, 3C and 3D. Hybridization conditions were 50°C and 5XSSPE. Washes were made at 50°C 0.2XSSPE. Several positively hybridizing clones were identified, replated and rescreened. hybridizing clones were digested with SacI (which cleaves within the arms of the cloning phage and within the insert). The multiple fragments obtained therefrom were subcloned into bacterial plasmids for sequencing. The genomic DNA sequence (SEQ ID NO.:45) together with the deduced amino acid sequence (SEQ ID NO.:46 and 48) is set forth in Figure 12. This ETR nucleic acid and amino acid sequence is referred to as the QITR nucleic or amino acid sequence respectively. The QITR cDNA sequence (SEQ ID NO.:47) and the QITR amino acid sequence (SEQ ID NOs:46 and 48) are shown in Figure 13. 20

By comparison to the ETR1 Arabidopsis nucleic acid and amino acid sequence (see Figures 2 and 3), the QITR protein appears to contain an amino terminal portion having a relatively high level of homology to the amino terminal portion of the ETR1 protein and a histidine kinase portion with a moderate level of homology to the same sequence in ETR1. The response regulatory region found in ETR1 is not present in the QITR protein. The overall nucleic acid homology is approximately 69%.

With regard to the amino terminal portion (i.e., between residues 1 through 316) the homology is approximately 71% identical in terms of amino acid s quence and 72% identical in t rms of nucleic acid sequence.

EXAMPLE 7

Modification of QITR Nucleic Acid to Confer Ethylene Insensitivity

An amino acid substitution was made in a 5 kb QITR 5 genomic clone which was analogous to that for the ETR1-4 mutation, namely the substitution of the isoleucine at position 62 with phenylalanine. Compare Figure 3A with Figure 5A at residue 62. As further indicated at Figures 12 and 13, residue 62 in the QITR protein is also isoleucine as in the ETR1 protein.

The amino acid substitution was made to the QITR nucleic acid using oligonucleotide-directed in vitro mutagenesis. Kunkel et al. (1987) Methods in Enzymology 154:367-382. A Muta-gene kit from Bio-Rad Laboratories, Hercules, California, was used in connection with this particular mutation. The sequence of the oligonucleotide used was 5' GGA GCC TTT TTC ATT CTC. Replacement of nucleotide A with T in the codon ATC changed the amino acid Ile at residue 62 to Phe in the deduced protein sequence.

The QITR nucleic acid spanning approximately 5 kb from the first HindIII site to the second KpnI site contained approximately 2.4 kb of nucleotides upstream from the start codon. This 5 kb fragment was ligated into the pCGN1547 transformation vector (supra.). This construct was then transformed into Agrobacterium strain ASE as described supra and then into Arabidopsis.

Seedlings derived from this transformation experiment 30 were tested for sensitivity to ethylene as previously described. Seedlings containing the QITR nucleic acid WO 95/01439 PCT/US94/07418

-52-

containing the modification at residue 62 were ethylene insensitive.

EXAMPLE 8

Identification of Arabidopsis ETR Nucleic Acid 08

5 The ETR nucleic acid Q8 (SEQ ID NOs:41 and 43) was identified by direct sequence comparison with the ETR1 nucleic acid from Arabidopsis. The Arabidopsis Q8 nucleic acid was identified in connection with a chromosome walk on chromosome 3 of Arabidopsis thaliana.

Briefly, overlapping YAC clones were generated which were thereafter subcloned into plasmids. The genomic inserts in such plasmids were extricated by digesting with restriction endonuclease and hybridized to a cDNA library from Arabidopsis floral tissue.

15

Positively hybridizing inserts were sequenced to produce the overall genomic sequence (SEQ ID NO.:41) together with the deduced amino acid sequence (SEQ ID NOs:42 and 44) as set forth in Figure 14. The cDNA sequence (SEQ ID NO:43) and deduced amino acid sequence (SEQ ID NOs:42 and 44) is set forth in Figure 15.

The overall nucleic acid homology as between the Q8 nucleic acid and the ETR1 nucleic acid is approximately 69%. With regard to the amino terminal portion extending from residues 1 through 316, the overall amino sequence homology is approximately 72% whereas the nucleic acid encoding this sequence is approximately has a sequence homology of approximately 71% as between the Q8 and ETR1 nucleic acids.

EXAMPLE 9

Isolation of the TETR cDNA

A ³²P-labeled hybridization probe was prepared by random-primer labeling of a 1.3 kb PCR fragment generated by PCR amplification of the *Arabidopsis ETR1* gene with the PCR primers "5'BamHI" (CCCGGATCCATAGTGTAAAAAAATTCATAATGG) and "3'BamHIB" (CCGGATCCGTTGAAGACTTCCATCTTCTAACC).

This probe was used to screen a cDNA library of red tomato fruit mRNA cloned in the EcoRI site of lambda ZAP II vector from Stratagene, LaJolla, CA. Twenty (20) positive primary plaques were identified that hybridized to this probe (2X SSC at 65°C wash conditions) and secondary screens were performed on these to obtain pure plaques. In vivo excision was then performed with resultant recombinant phage and 19 independent plasmid clones were obtained.

Complementary DNAs, from plasmid clones containing the largest fragments that hybridized to the ETR1 probe, 20 were sequenced and the nucleotide sequence predicted amino acid sequences of the longest tomato cDNA (TETR14, also referred to as TXTR) were compared to the ETR1 and QITR sequences. The nucleotide sequence of TETR14 predicted that the encoded peptide was more similar to the QITR peptide than the ETR1 peptide. This conclusion was based on the fact that the response regulatory domain (which is present in ETR1) is absent in both TETR14 and QITR. The sequence (or partial sequence) of several of the other cDNA 30 clones was determined and they were found to correspond to the same gene.

EXAMPLE 10

Analysis of TETR14 Gene Expression

Northern analysis was performed with mRNA from developing fruits of normal, or mutant tomato (Ripening inhibitor (rin), Non-ripening (nor) or Never-ripe (Nr)) fruit. Stages of developing fruits used were mature green, breaker, breaker plus 7 days, and mature green fruit treated with ethylene. Messenger RNA that hybridized to the TETR14 gene probe was not present at the mature green stage, but was present in breaker, breaker plus 7 days, and ethylene treated mature green fruit. Thus, it was concluded that accumulation of the ETR14 mRNA was regulated by ethylene. Accumulation of the TETR14 mRNA was attenuated in all three ripening mutants, further supporting the finding that mRNA accumulation is ethylene regulated.

EXAMPLE 11

Analysis of the TETR14 Gene from Pearson and Never-ripe DNA

20 PCR primers were obtained that would specifically amplify the N-terminal region of the TETR14 gene. The amplified portion was between Met1 and Ile214 in Figs. 16A and 16B. The primers were

(CCGGATCCATGGAATCCTGTGATTGCATTG)

and TETR4A (GATAATAGGAAGATTAATTGGC). PCR conditions (Perkin-Elmer Cetus): 1 ug of tomato genomic DNA, 40 picomole of each primer, 1 min 94°C, 2 min 45°C, 2 min 72°C, 35 cycles. PCR products, obtained with these primers, resulting from two independent amplification reactions of pearson and Nr DNA were agarose gel purified and subcloned into either the T/A vector

(Invitrogen) or digested with BamHI and XhoI and subcloned into Bluescript KS- that had been linearized with BamHI and SalI. Single stranded template DNA was prepared from the resultant plasmids and sequenced. 5 The sequence of the PCR products from the pearson DNA were identical to the sequence of the TETR14 clone. Sequence analysis revealed that the PCR fragments resulting from PCR of the Nr DNA (TETR14-Nr) were not identical to those obtained from the Pearson DNA. 10 cytosine nucleotide at position 395 of the TETR14 gene is a thymine in the gene amplified from the Nr DNA. This nucleotide substitution in TETR14-Nr changes the proline at amino acid position 36 of the predicted peptide to a leucine. See Fig. 22 and Seq. ID Nos. 49 and 50 for the overall nucleic acid and amino acid sequence respectively. This Pro-36 of the TETR14 corresponds to the Pro-36 of the ETR1 peptide and to the Pro-36 of the QITR peptide. This results indicates that a mutation in the tomato TETR14 gene confers dominant ethylene-insensitivity. And thus, it is possible to predict that other changes in the TETR14 gene and other tomato ETR1 homologues will result in ethylene insensitivity in tomato.

Having described the preferred embodiments of the invention, it will appear to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments, and that such modifications are intended to be within the scope of the invention.

All references are expressly incorporated herein by 30 reference.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Meyerowitz, Elliott M. Chang, Caren Bleecker, Anthony B.
 - (ii) TITLE OF INVENTION: PLANTS HAVING MODIFIED RESPONSE TO ETHYLENE
 - (iii) NUMBER OF SEQUENCES: 50
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Richard F. Trecartin
 - (B) STREET: 3400 Embarcadero Center, Suite 3400
 - (C) CITY: San Francisco
 - (D) STATE: California
 - (E) COUNTRY: USA (F) ZIP: 94111

 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US94/_
 - (B) FILING DATE: 01-JUL-1994
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/086,555
 - (B) FILING DATE: 01-JUL-1993
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Trecartin, Richard F.
 - (B) REGISTRATION NUMBER: 31,801 (C) REFERENCE/DOCKET NUMBER: FP57515-1RFT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (415) 781-1989
 - (B) TELEFAX: (415) 398-3249
 - (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (\bar{A}) LENGTH: 3879 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AAAGATAGTA TITGTIGATA AATATGGGGA TATTTATCCT ATATTATCTG TATTTTTCTT 60 ACCATTITTA CTCTATTCCT TTATCTACAT TACGTCATTA CACTATCATA AGATATTTGA 120

A	TGAACAAAT	TCATGCACCC	ACCAGCTATA	TTACCCTTTT	TTATTAAAAA	AAAACATCT	3 180
A	TAATAATAA	CAAAAAAATT	AGAGAAATGA	CGTCGAAAAA	AAAAGTAAGA	. ACGAAGAAG?	4 240
A	GTGTTAAAC	CCAACCAATT	TTGACTTGAA	AAAAAGCTTC	AACGCTCCCC	TTTTCTCCTT	300
C	TCCGTCGCT	CTCCGCCGCG	TCCCAAATCC	CCAATTCCTC	CTCTTCTCCG	ATCAATTCTT	360
С	CCAAGTAAG	CTTCTTCTTC	CTCGATTCTC	TCCTCAGATT	GTTTCGTGAC	TTCTTTATAT	420
A	TATTCTTCA	CTTCCACAGT	TTTCTTCTGT	TGTTGTCGTC	GATCTCAAAT	CATAGAGATT	480
G	ATTAACCTA	ATTGGTCTTT	ATCTAGTGTA	ATGCATCGTT	'ATTAGGAACT	TTAAATTAAG	540
A	TTTAATCGT	TAATTTCATG	ATTCGGATTC	GAATTTTACT	GTTCTCGAGA	CTGAAATATC	600
C	AACCTATTT	TTTCGTAATC	GTTGTGATCG	AATTCGATTC	TTCAGAATTT	ATAGCAATTI	660
Т	GATGCTCAT	GATCTGTCTA	CGCTACGTTC	TCGTCGTAAA	TCGAAGTTGA	TAATGCTATG	720
Т	GTTTGTTAC	ACAGGTGTGT	GTATGTGTGA	GAGAGGAACT	ATAGTGTAAA	AAATTCATAA	780
Т	GGAAGTCTG	CAATTGTATT	GAACCGCAAT	GGCCAGCGGA	TGAATTGTTA	ATGAAATACC	840
Α	ATACATCTC	CGATTTCTTC	ATTGCGATTG	CGTATTTTTC	GATTCCTCTT	GAGTTGATTI	900
A	CTTTGTGAA	GAAATCAGCC	GTGTTTCCGT	ATAGATGGGT	ACTTGTTCAG	TTTGGTGCTT	960
T	TATCGTTCT	TTGTGGAGCA	ACTCATCTTA	TTAACTTATG	GACTTTCACT	ACGCATTCGA	1020
G	AACCGTGGC	GCTTGTGATG	ACTACCGCGA	AGGTGTTAAC	CGCTGTTGTC	TCGTGTGCTA	1080
С	TGCGTTGAT	GCTTGTTCAT	ATTATTCCTG	ATCTTTTGAG	TGTTAAGACT	CGGGAGCTTT	1140
Т	CTTGAAAAA	TAAAGCTGCT	GAGCTCGATA	GAGAAATGGG	ATTGATTCGA	ACTCAGGAAG	1200
A	AACCGGAAG	GCATGTGAGA	ATGTTGACTC	ATGAGATTAG	AAGCACTTTA	GATAGACATA	1260
C	TATTTTAAA	GACTACACTT	GTTGAGCTTG	GTAGGACATT	AGCTTTGGAG	GAGTGTGCAT	1320
T	GTGGATGCC	TACTAGAACT	GGGTTAGAGC	TACAGCTTTC	TTATACACTT	CGTCATCAAC	1380
A	TCCCGTGGA	GTATACGGTT	CCTATTCAAT	TACCGGTGAT	TAACCAAGTG	TTTGGTACTA	1440
Gʻ	TAGGGCTGT	AAAAATATCT	CCTAATTCTC	CTGTGGCTAG	GTTGAGACCT	GTTTCTGGGA	1500
A	ATATATGCT	AGGGGAGGTG	GTCGCTGTGA	GGGTTCCGCT	TCTCCACCTT	TCTAATTTTC	1560
A	GATTAATGA	CTGGCCTGAG	CTTTCAACAA	AGAGATATGC	TTTGATGGTT	TTGATGCTTC	1620
C'	TTCAGATAG	TGCAAGGCAA	TGGCATGTCC	ATGAGTTGGA	ACTCGTTGAA	GTCGTCGCTG	1680
A'	TCAGGTTTT	ACATTGCTGA	GAATTTCTCT	TCTTTGCTAT	GTTCATGATC	TTGTCTATAA	1740
C'	TTTTCTTCT	CTTATTATAG	GTGGCTGTAG	CTCTCTCACA	TGCTGCGATC	CTAGAAGAGT	1800
C	GATGCGAGC	TAGGGACCTT	CTCATGGAGC	AGAATGTTGC	TCTTGATCTA	GCTAGACGAG	1860
A	AGCAGAAAC	AGCAATCCGT	GCCCGCAATG	ATTTCCTAGC	GGTTATGAAC	CATGAAATGC	1920
G	AACACCGAT	GCATGCGATT	ATTGCACTCT	CTTCCTTACT	CCAAGAAACG	GAACTAACCC	1980
ر.	TCAACAAAG	ACTGATGGTG	CAAACAATAC	ттаааастас	יאנייייייייייייייייייייייייייייייייייי	CC S S CHARACES	2040

TGAATGATGT CTTAGATCTT TCAAGGTTAG AAGATGGAAG TCTTCAACTT GAACTTGGGA 2100 CATTCAATCT TCATACATTA TTTAGAGAGG TAACTTTTGA ACAGCTCTAT GTTTCATAAG 2160 TTTATACTAT TTGTGTACTT GATTGTCATA TTGAATCTTG TTGCAGGTCC TCAATCTGAT 2220 AAAGCCTATA GCGGTTGTTA AGAAATTACC CATCACACTA AATCTTGCAC CAGATTTGCC 2280 AGAATTTGTT GTTGGGGATG AGAAACGGCT AATGCAGATA ATATTAAATA TAGTTGGTAA 2340 TGCTGTGAAA TTCTCCAAAC AAGGTAGTAT CTCCGTAACC GCTCTTGTCA CCAAGTCAGA 2400 CACACGAGCT GCTGACTTTT TTGTCGTGCC AACTGGGAGT CATTTCTACT TGAGAGTGAA 2460 GGTTATTATC TTGTATCTTG GGATCTTATA CCATAGCTGA AAGTATTTCT TAGGTCTTAA 2520 TTTTGATGAT TATTCAAATA TAGGTAAAAG ACTCTGGAGC AGGAATAAAT CCTCAAGACA 2580 TTCCAAAGAT TTTCACTAAA TTTGCTCAAA CACAATCTTT AGCGACGAGA AGCTCGGGTG 2640 GTAGTGGGCT TGGCCTCGCC ATCTCCAAGA GGTTTGAGCC TTATTAAAAG ACGTTTTTTT 2700 CCAACTTTTT CTTGTCTTCT GTGTTGTTAA AAGTTTACTC ATAAGCGTTT AATATGACAA 2760 GGTTTGTGAA TCTGATGGAG GGTAACATTT GGATTGAGAG CGATGGTCTT GGAAAAGGAT 2820 GCACGGCTAT CTTTGATGTT AAACTTGGGA TCTCAGAACG TTCAAACGAA TCTAAACAGT 2880 CGGGCATACC GAAAGTTCCA GCCATTCCCC GACATTCAAA TTTCACTGGA CTTAAGGTTC 2940 TTGTCATGGA TGAGAACGGG TTAGTATAAG CTTCTCACCT TTCTCTTTGC AAAATCTCTC 3000 GCCTTACTTC TTGCAAATGC AGATATTGGC GTTTAGAAAA AACGCAAATT TAATCTTATG 3060 AGAAACCGAT GATTATTTTG GTTGCAGGGT AAGTAGAATG GTGACGAAGG GACTTCTTGT 3120 ACACCTTGGG TGCGAAGTGA CCACGGTGAG TTCAAACGAG GAGTGTCTCC GAGTTGTGTC 3180 CCATGAGCAC AAAGTGGTCT TCATGGACGT GTGCATGCCC GGGGTCGAAA ACTACCAAAT 3240 CGCTCTCCGT ATTCACGAGA AATTCACAAA ACAACGCCAC CAACGGCCAC TACTTGTGGC 3300 ACTCAGTGGT AACACTGACA AATCCACAAA AGAGAAATGC ATGAGCTTTG GTCTAGACGG 3360 TGTGTTGCTC AAACCCGTAT CACTAGACAA CATAAGAGAT GTTCTGTCTG ATCTTCTCGA 3420 GCCCGGGTA CTGTACGAGG GCATGTAAAG GCGATGGATG CCCCATGCCC CAGAGGAGTA 3480 ATTCCGCTCC CGCCTTCTTC TCCCGTAAAA CATCGGAAGC TGATGTTCTC TGGTTTAATT 3540 GTGTACATAT CAGAGATTGT CGGAGCGTTT TGGATGATAT CTTAAAACAG AAAGGGAATA 3600 ACAAAATAGA AACTCTAAAC CGGTATGTGT CCGTGGCGAT TTCGGTTATA GAGGAACAAG 3660 ATGGTGGTGG TATAATCATA CCATTTCAGA TTACATGTTT GACTAATGTT GTATCCTTAT 3720 ATATGTAGTT ACATTCTTAT AAGAATTTGG ATCGAGTTAT GGATGCTTGT TGCGTGCATG 3780 TATGACATTG ATGCAGTATT ATGGCGTCAG CTTTGCGCCG CTTAGTAGAA CAACAACAAT 3840 GGCGTTACTT AGTTTCTCAA TCAACCCGAT CTCCAAAAC 3879

613

661

140

59	
(2) INFORMATION FOR SEQ ID NO:2:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2787 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1882401	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
AGTAAGAACG AAGAAGAAGT GTTAAACCCA ACCAATTTTG ACTTGAAAAA AAGCTTCAA	AC 60
GCTCCCCTTT TCTCCTTCTC CGTCGCTCTC CGCCGCGTCC CAAATCCCCA ATTCCTCCT	rc 120
TTCTCCGATC AATTCTTCCC AAGTGTGTGT ATGTGTGAGA GAGGAACTAT AGTGTAAAA	AA 180
ATTCATA ATG GAA GTC TGC AAT TGT ATT GAA CCG CAA TGG CCA GCG GAT Met Glu Val Cys Asn Cys Ile Glu Pro Gln Trp Pro Ala Asp	229 P .
GAA TTG TTA ATG AAA TAC CAA TAC ATC TCC GAT TTC TTC ATT GCG ATT Glu Leu Leu Met Lys Tyr Gln Tyr Ile Ser Asp Phe Phe Ile Ala Ile 15 20 25 30	
GCG TAT TTT TCG ATT CCT CTT GAG TTG ATT TAC TTT GTG AAG AAA TCA Ala Tyr Phe Ser Ile Pro Leu Glu Leu Ile Tyr Phe Val Lys Lys Ser 35 40 45	325 r
GCC GTG TTT CCG TAT AGA TGG GTA CTT GTT CAG TTT GGT GCT TTT ATC Ala Val Phe Pro Tyr Arg Trp Val Leu Val Gln Phe Gly Ala Phe Ile 50 55 60	373
GTT CTT TGT GGA GCA ACT CAT CTT ATT AAC TTA TGG ACT TTC ACT ACG Val Leu Cys Gly Ala Thr His Leu Ile Asn Leu Trp Thr Phe Thr Thr 65 70 75	421
CAT TCG AGA ACC GTG GCG CTT GTG ATG ACT ACC GCG AAG GTG TTA ACC His Ser Arg Thr Val Ala Leu Val Met Thr Thr Ala Lys Val Leu Thr 80 85 90	469
GCT GTT GTC TCG TGT GCT ACT GCG TTG ATG CTT GTT CAT ATT ATT CCT Ala Val Val Ser Cys Ala Thr Ala Leu Met Leu Val His Ile Ile Pro 95 100 105 110	
GAT CTT TTG AGT GTT AAG ACT CGG GAG CTT TTC TTG AAA AAT AAA GCT Asp Leu Leu Ser Val Lys Thr Arg Glu Leu Phe Leu Lys Asn Lys Ala 115 120 125	565 L

GCT GAG CTC GAT AGA GAA ATG GGA TTG ATT CGA ACT CAG GAA GAA ACC Ala Glu Leu Asp Arg Glu Met Gly Leu Ile Arg Thr Gln Glu Glu Thr

GGA AGG CAT GTG AGA ATG TTG ACT CAT GAG ATT AGA AGC ACT TTA GAT Gly Arg His Val Arg Met Leu Thr His Glu Ile Arg Ser Thr Leu Asp

150

135

130

AGA Arg	CAT His 160	ACT . Thr	ATT ' Ile	TTA . Leu	AAG Lys	ACT Thr 165	ACA Thr	CTT Leu	GTT (Val	GAG (Glu	Leu 170	GT A	GG A	CA TI Thr	CA Leu	709
GCT Ala 175	TTG Leu	GAG Glu	GAG ' Glu	TGT Cys	GCA Ala 180	TTG Leu	TGG Trp	ATG Met	CCT /	ACT I Thr 185	AGA A Arg	CT C	GG T	TA GA Leu	AG Glu 190	757
CTA Leu	CAG Gln	CTT Leu	TCT Ser	TAT Tyr 195	ACA Thr	CTT Leu	CGT Arg	CAT His	CAA Gln 200	CAT (His	Pro	Val	GAG 1	TAT AC Tyr 205	CG Thr	805
GTT Val	CCT Pro	ATT Ile	CAA Gln 210	TTA Leu	CCG Pro	GTG Val	ATT Ile	AAC Asn 215	Gln	GTG ' Val	Phe	GT ? Gly	Thr 220	AGT AG Ser	GG Arg	853
GCT Ala	GTA Val	AAA Lys 225	ATA Ile	TCT Ser	CCT Pro	AAT Asn	TCT Ser 230	Pro	GTG Val	GCT Ala	AGG 1 Arg	TTG 1 Leu 235	AGA (Arg	Pro	rt Val	901
TCT Ser	GGG Gly 240	AAA Lys	TAT Tyr	ATG Met	CTA Leu	GGG Gly 245	Glu	GTG Val	GTC Val	GCT (Ala	GTG 1 Val 250	AGG (Arg	GTT (Val	CCG C' Pro	TT Leu	949
CTC Leu 255	CAC His	CTT Leu	TCT Ser	AAT Asn	TTT Phe 260	CAG Gln	ATT Ile	AAT Asr	GAC Asp	TGG Trp 265	Pro	GAG (Glu	CTT ' Leu	TCA A	CA Thr 270	997
AAG Lys	AGA Arg	TAT Tyr	GCT Ala	TTG Leu 275	ATG Met	GTT Val	TTG Lev	ATG Met	CTT Leu 280	Pro	TCA (Asp	AGT (Ser	GCA AG Ala 285	GG Arg	1045
CAA Gln	TGG Trp	CAT His	GTC Val 290	CAT His	GAG Glu	TTG Leu	GAA Glu	CTC Let 295	GTT Val	GAA	GTC (GTC (Val	GCT (Ala 300	GAT C	AG Gln	1093
Gln	Trp	His	Val 290	His	Glu TCA	Leu	Glu GCT	CCG Ala	GTT Val	GAA Glu CTA	Val GAA (Val ' GAG	Ala 300 ICG Ser	Asp	Gln GA	1093 1141
Gln GTG Val	Trp GCT Ala	GTA Val 305 GAC Asp	Val 290 GCT Ala	His CTC Leu	TCA Ser	CAT His	GCT Ala 310 CAG	GCG Ala	GTT Val ATC Ile	GAA Glu CTA Leu GCT	GAA (GLu	Val GAG Glu 315 GAT Asp	Ala 300 FCG Ser	Asp ATG C	Gln GA Arg GA	1141
Gln GTG Val GCT Ala	GCT Ala AGG Arg 320 GAA Glu	GTA Val 305	Val 290 GCT Ala CTT Leu	His CTC Leu CTC Leu	TCA Ser ATG Met	CAT His GAG Glu 325	GCT; Ala 310 CAG	GCG AAT ASI	GTT Val	GAA Glu CTA Leu GCT Ala	GAA (Glu CTT (Leu 330 GAT	Val GAG Glu 315 GAT Asp	Ala 300 FCG . Ser CTA .	ASP ATG Co	Gln GA Arg GA Arg	1141
GIn GTG Val GCT Ala CGA Arg 335	GCT Ala AGG Arg 320 GAA Glu	GTA Val 305 GAC Asp GCA Ala	Val 290 GCT Ala CTT Leu GAA Glu	His CTC Leu CTC Leu ACA Thr	TCA Ser ATG Met GCA Ala 340 CGA Arc	CAT His GAG Glu 325	GCT: Ala 310 CAG Glr Glr G	GCC ATG	GTT Val	GAA Glu CTA Leu GCT Ala AAT J Asn 345 GCG	GAA (Glu CTT (Leu 330) GAT (ASP)	Val GAG Glu 315 GAT Asp TTC Phe	Ala 300 FCG . Ser CTA . Leu CTA .	ATG COME MET GCT A Ala	GA Arg GA Arg TT Val 350	1141 1189
GIn GTG Val GCT Ala CGA Arg 335 ATG	GCT Ala AGG Arg 320 GAA Glu AAC	His GTA Val 305 GAC Asp GCA Ala CAT His	Val 290 GCT Ala CTT Leu GAA Glu GAA Glu	CTC Leu CTC Leu ACA Thr ATG Met 355	TCA Ser ATG Met GCA Ala 340 CGA Arc	CAT His GAG Glu 325 ATC ACA Thi	GCT GCT GCAG GCAG CCGT CCGC	GCC ATG	GTT Val	GAA CTA CTA CTA AAT AAT AAT AAT AAT AAT A	GAA (Glu CTT (Leu 330 GAT (ASP) ATT	Val GAG Glu 315 GAT Asp TTC Phe ATT	Ala 300 FCG : Ser CTA : Leu CTA : Leu CTA : Ala	ASP ATG CO Met GCT A Ala GCG G Ala CTC T Leu 365 ATG G	GA Arg GA Arg TT Val 350 CT Ser	1141 1189 1237
GIN GTG Val GCT Ala CGA Arg 335 ATG Met	GCT Ala AGG Arg 320 GAA Glu AST Leu	GTA Val 305 GAC Asp GCA Ala CAT His	CTT Leu GAA Glu CAA Glu CAA Glu CAA CTT Leu CAA CTT Leu CAA CTT Leu CAA CTT Leu	CTC Leu CTC Leu ACA Thr ATG Met 355	TCA Ser ATG Met GCA Ala 340 CGA Arc	CAT His GAG Glu 325 ATC Ile GAA GAA	GCT: Ala 310 CAG CGT CCG Pro	GCC ATG	GTT Val	GAA Glu CTA Leu GCT Ala AAT J Asn 345 GCG Ala GCA	GAA (CTT (CAA) CTT (CAA) CAA CAA ACT	Val GAG Glu 315 GAT Asp TTC Phe ATT AGA Arc	Ala 300 FCG Ser CTA Leu CTA Leu CTA Leu Ala ATG	ASP ATG CO Met GCT A Ala GCG G Ala CTC T Leu 365 ATG G	GA Arg GA Arg TT Val 350 CT Ser	1141 1189 1237 1285

GGG Gly 415	Thr	TTC	TAA C ISA ∈	CTT n Leu	CAT His 420	Thi	TTA Leu	TTT Phe	AGA Arg	GAG Glu 425	ı Va]	CTC L Let	AAT 1 As	CTG A	ATA Ile 430	_
AAG Lys	CCT Pro	ATA	A GCG ∋ Ala	GTT Val 435	. Val	AAG Lys	AAA Lys	TTA Leu	CCC Pro 440) Ile	ACA Thr	CTA Let	AAT 1 As:	CTT G n Leu 445	CA Ala	1529
CCA Pro	GAT Asp	TTC	CCA Pro 450	o Glu	TTT Phe	GTT Val	GTT Val	GGG Gly 455	' Asp	GAG Glu	AAA Lys	CGG Arg	CTA J Let 46	ATG C u Met 0	AG Gln	1573
ATA Ile	ATA Ile	TTA Leu 465	ı Asr	ATA 11e	GTT Val	GGT Gly	AAT Asn 470	Ala	GTG Val	AAA Lys	TTC Phe	TCC Ser 475	Ly	CAA G s Gln	GT Gly	1621
AGT Ser	ATC Ile 480	Ser	GTA Val	ACC Thr	GCT Ala	CTT Leu 485	ı Val	ACC Thr	AAG Lys	TCA Ser	GAC Asp 490	Thr	CGA Arg	GCT G g Ala	CT Ala	1669
GAC Asp 495	TTT Phe	TTT	GTC Val	GTG Val	CCA Pro 500	ACT Thr	GGG Gly	AGT Ser	CAT His	TTC Phe 505	Tyr	TTG Leu	AGA Arg	GTG A J Val	AG Lys 510	1717
GTA Val	AAA Lys	GAC Asp	TCT Ser	GGA Gly 515	Ala	GGA Gly	ATA Ile	AAT Asn	CCT Pro 520	CAA (Gln	GAC . Asp	ATT (CCA Pro	AAG A' Lys 525	TT Ile	1765
Phe	Thr	Lys	Phe 530	Ala	Gln	Thr	Gln	Ser 535	Leu	Ala	Thr	Arg	Ser 540		Gly	1813
GGT Gly	AGT Ser	GGG Gly 545	Leu	GGC Gly	CTC Leu	GCC Ala	ATC Ile 550	TCC Ser	AAG / Lys	AGG ' Arg	Phe	Val 555	Asn	CTG AT	IG Met	1861
GAG Glu	GGT Gly 560	AAC Asn	ATT Ile	TGG Trp	ATT Ile	GAG Glu 565	AGC Ser	GAT (Asp	GGT (Gly	CTT (Leu	GGA A Gly 570	AAA (Lys	GA '	TGC AC	CG. Thr	1909
GCT Ala 575	ATC Ile	TTT Phe	GAT Asp	GTT Val	AAA Lys 580	CTT Leu	GGG Gly	ATC' Ile	TCA (Ser	GAA (Glu 585	GT T Arg	CA / Ser	AAC (Asn	GAA TO Glu	Ser 590	1957
AAA Lys	CAG Gln	TCG Ser	GGC Gly	ATA Ile 595	CCG Pro	AAA Lys	GTT Val	CCA (Pro	GCC 1 Ala 600	ATT (Pro	GA (Arg	AT :	Ser . 605	AT Asn	2005
TTC Phe	ACT Thr	GGA Gly	CTT Leu 610	AAG Lys	GTT Val	CTT Leu	GTC / Val	ATG (Met 615	GAT (Asp	GAG A	AC G Asn	GG G	TA A Val 620	AGT AG Ser	Arg	2053
ATG Met	GTG Val	ACG Thr 625	AAG Lys	GGA Gly	CTT (Leu	CTT Leu	GTA (Val 630	CAC (His	CTT (Leu	GG T	Cys	Glu 635	TG A Val	ACC AC	:G Thr	2101
GTG Val	AGT Ser 640	TCA Ser	AAC Asn	GAG Glu	GAG ' Glu	TGT Cys 645	CTC (Leu	CGA (Arg	Val	TG T Val	Ser 650	AT G His	AG C Glu	AC AA His 1	A Lys	2149
GTG Val 655	GTC Val	TTC Phe	ATG Met	GAC Asp	GTG ' Val 660	TGC Cys	ATG (Met	Pro	GG G	TC G Val 665	AA A Glu	AC I Asn	AC C Tyr	AA AT Gln	C Ile 670	2197

GCT Ala	CTC Leu	CGT Arg	ATT Ile	CAC His 675	Glu	AAA Lys	TTC Phe	ACA Thr	Lys	CAA Glr	CGC n Arg	CAC J His	CAA s Glr	CGG (Arg 685	CCA Pro	.2245
CTA Leu	CTT Leu	GTG Val	GCA Ala 690	Leu	AGT Ser	GGT Gly	AAC Asn	ACT Thr 695	Asp	AAA Lys	TCC Set	ACA r Thi	AAA r Lys 700	: Glu	AAA Lys	2293

TGC ATG AGC TTT GGT CTA GAC GGT GTG TTG CTC AAA CCC GTA TCA CTA Cys Met Ser Phe Gly Leu Asp Gly Val Leu Leu Lys Pro Val Ser Leu

GAC AAC ATA AGA GAT GTT CTG TCT GAT CTT CTC GAG CCC CGG GTA CTG Asp Asn Ile Arg Asp Val Leu Ser Asp Leu Leu Glu Pro Arg Val Leu

TAC GAG GGC ATG TAAAGGCGAT GGATGCCCCA TGCCCCAGAG GAGTAATTCC 2441 Tyr Glu Gly Met

GCTCCCGCCT TCTTCTCCCG TAAAACATCG GAAGCTGATG TTCTCTGGTT TAATTGTGTA 2501 CATATCAGAG ATTGTCGGAG CGTTTTGGAT GATATCTTAA AACAGAAAGG GAATAACAAA 2561 ATAGAAACTC TAAACCGGTA TGTGTCCGTG GCGATTTCGG TTATAGAGGA ACAAGATGGT 2621 GGTGGTATAA TCATACCATT TCAGATTACA TGTTTGACTA ATGTTGTATC CTTATATATG 2681 TAGTTACATT CTTATAAGAA TTTGGATCGA GTTATGGATG CTTGTTGCGT GCATGTATGA 2741 CATTGATGCA GTATTATGGC GTCAGCTTTG CGCCGCTTAG TAGAAC 2787

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 738 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Glu Val Cys Asn Cys Ile Glu Pro Gln Trp Pro Ala Asp Glu Leu

Leu Met Lys Tyr Gln Tyr Ile Ser Asp Phe Phe Ile Ala Ile Ala Tyr

Phe Ser Ile Pro Leu Glu Leu Ile Tyr Phe Val Lys Lys Ser Ala Val

Phe Pro Tyr Arg Trp Val Leu Val Gln Phe Gly Ala Phe Ile Val Leu

Cys Gly Ala Thr His Leu Ile Asn Leu Trp Thr Phe Thr His Ser

Arg Thr Val Ala Leu Val Met Thr Thr Ala Lys Val Leu Thr Ala Val

Val Ser Cys Ala Thr Ala Leu Met Leu Val His Ile Ile Pro Asp Leu

Leu Ser Val Lys Thr Arg Glu Leu Phe Leu Lys Asn Lys Ala Ala Glu 120 125 Leu Asp Arg Glu Met Gly Leu Ile Arg Thr Gln Glu Glu Thr Gly Arg His Val Arg Met Leu Thr His Glu Ile Arg Ser Thr Leu Asp Arg His Thr Ile Leu Lys Thr Thr Leu Val Glu Leu Gly Arg Thr Leu Ala Leu 170 Glu Glu Cys Ala Leu Trp Met Pro Thr Arg Thr Gly Leu Glu Leu Gln 180 185 190 Leu Ser Tyr Thr Leu Arg His Gln His Pro Val Glu Tyr Thr Val Pro 200 Ile Gln Leu Pro Val Ile Asn Gln Val Phe Gly Thr Ser Arg Ala Val 215 Lys Ile Ser Pro Asn Sèr Pro Val Ala Arg Leu Arg Pro Val Ser Gly Lys Tyr Met Leu Gly Glu Val Val Ala Val Arg Val Pro Leu Leu His 245 250 255 Leu Ser Asn Phe Gln Ile Asn Asp Trp Pro Glu Leu Ser Thr Lys Arg Tyr Ala Leu Met Val Leu Met Leu Pro Ser Asp Ser Ala Arg Gln Trp 280 His Val His Glu Leu Glu Leu Val Glu Val Val Ala Asp Gln Val Ala Val Ala Leu Ser His Ala Ala Ile Leu Glu Glu Ser Met Arg Ala Arg 305 310 315 320 Asp Leu Leu Met Glu Gln Asn Val Ala Leu Asp Leu Ala Arg Arg Glu 330 Ala Glu Thr Ala Ile Arg Ala Arg Asn Asp Phe Leu Ala Val Met Asn His Glu Met Arg Thr Pro Met His Ala Ile Ile Ala Leu Ser Ser Leu Leu Gln Glu Thr Glu Leu Thr Pro Glu Gln Arg Leu Met Val Glu Thr 375 Ile Leu Lys Ser Ser Asn Leu Leu Ala Thr Leu Met Asn Asp Val Leu Asp Leu Ser Arg Leu Glu Asp Gly Ser Leu Gln Leu Glu Leu Gly Thr Phe Asn Leu His Thr Leu Phe Arg Glu Val Leu Asn Leu Ile Lys Pro Ile Ala Val Val Lys Lys Leu Pro Ile Thr Leu Asn Leu Ala Pro Asp 440

Leu Pro Glu Phe Val Val Gly Asp Glu Lys Arg Leu Met Gln Ile Ile Leu Asn Ile Val Gly Asn Ala Val Lys Phe Ser Lys Gln Gly Ser Ile Ser Val Thr Ala Leu Val Thr Lys Ser Asp Thr Arg Ala Ala Asp Phe Phe Val Val Pro Thr Gly Ser His Phe Tyr Leu Arg Val Lys Val Lys Asp Ser Gly Ala Gly Ile Asn Pro Gln Asp Ile Pro Lys Ile Phe Thr Lys Phe Ala Gln Thr Gln Ser Leu Ala Thr Arg Ser Ser Gly Gly Ser Gly Leu Gly Leu Ala Ile Ser Lys Arg Phe Val Asn Leu Met Glu Gly 550 Asn Ile Trp Ile Glu Ser Asp Gly Leu Gly Lys Gly Cys Thr Ala Ile Phe Asp Val Lys Leu Gly Ile Ser Glu Arg Ser Asn Glu Ser Lys Gln Ser Gly Ile Pro Lys Val Pro Ala Ile Pro Arg His Ser Asn Phe Thr 600 Gly Leu Lys Val Leu Val Met Asp Glu Asn Gly Val Ser Arg Met Val Thr Lys Gly Leu Leu Val His Leu Gly Cys Glu Val Thr Thr Val Ser Ser Asn Glu Glu Cys Leu Arg Val Val Ser His Glu His Lys Val Val Phe Met Asp Val Cys Met Pro Gly Val Glu Asn Tyr Gln Ile Ala Leu Arg Ile His Glu Lys Phe Thr Lys Gln Arg His Gln Arg Pro Leu Leu Val Ala Leu Ser Gly Asn Thr Asp Lys Ser Thr Lys Glu Lys Cys Met Ser Phe Gly Leu Asp Gly Val Leu Leu Lys Pro Val Ser Leu Asp Asn 705 710 715 720 Ile Arg Asp Val Leu Ser Asp Leu Leu Glu Pro Arg Val Leu Tyr Glu

Gly Met

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

1	1 4 4	١,	MOLECULE	TVDE.	~DMA
١		LI	MOLECULE	TIPE:	CUNA

1	ix) FEATURE:	•

- (A) NAME/KEY: CDS (B) LOCATION: 188..2401
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

AGT	AAGA	ACG A	AAGA	AGAA	GT G	PTAA.	ACCC.	A ACC	CAAT	TTTG	ACT	rgaaz	AAA A	AGCI	TCAAC	6(
GCT	CCCC	TTT	rctc(CTTC'	TC C	STCG	CTCT	c cgo	CCGCC	GTCC	CAA	ATCCC	CA A	TTCC	TCCTC	120
TTC	TCCG.	ATC A	AATT	CTTC	CC A	AGTG	rgtg'	T ATC	STGT	GAGA	GAGG	BAACT	CAT A	GTGT	AAAAA	180
ATT	CATA	ATG Met 1	GAA Glu	GTC Val	TGC Cys	AAT Asn 5	TGT Cys	ATT : Ile	GAA Glu	CCG Pro	CAA Glr 10		CCA Pro	GCG (GAT Asp	229
GAA Glu 15	TTG Leu	TTA Leu	ATG Met	AAA Lys	TAC Tyr 20	Gln	TAC Tyr	ATC Ile	TCC Ser	GAT Asp 25	Phe	TTC Phe	ATT (GCG . Ala	ATT lle	277
GCG Ala	TAT Tyr	TTT Phe	TCG Ser	ATT Ile 35	CCT Pro	CTT Leu	GAG Glu	TTG Leu	ATT Ile 40	Tyr	TTT Phe	GTG Val	AAG . Lys	AAA ' Lys 45	Ser	325
GCC Ala	GTG Val	TTT Phe	CCG Pro 50	TAT Tyr	AGA Arg	TGG Trp	GTA Val	CTT Leu 55	Val	CAG Gln	TTT Phe	GGT Gly	GCT' Ala 60	Phe	ATC lle	373
GTT Val	CTT Leu	TAT Tyr 65	GGA Gly	GCA Ala	ACT Thr	CAT His	CTT Leu 70	Ile	AAC Asn	TTA Leu	TGG Trp	ACT Thr 75	Phe	ACT I	ACG Thr	421
CAT His	TCG Ser 80	AGA Arg	ACC Thr	GTG Val	GCG Ala	CTT Leu 85	Val	ATG Met	ACT Thr	ACC Thr	GCG Ala 90	AAG Lys	GTG 1 Val	TA A Leu	ACC Thr	469
GCT Ala 95	GTT Val	GTC Val	TCG Ser	TGT Cys	GCT Ala 100	ACT Thr	GCG Ala	TTG Leu	ATG Met	CTT Leu 105	. Val	CAT . His	ATT /	ATT (Ile	Pro 110	517
GAT Asp	CTT Leu	TTG Leu	AGT Ser	GTT Val 115	AAG Lys	ACT Thr	CGG Arg	GAG Glu	CTT Leu 120	Phe	TTG Leu	AAA . Lys	AAT / Asn	Lys 125	Ala	565
GCT Ala	GAG Glu	CTC Leu	GAT Asp 130	AGA Arg	GAA Glu	ATG Met	GGA Gly	TTG Leu 135	Ile	CGA Arg	ACT Thr	CAG (GAA (Glu 140	GAA / Glu	ACC Thr	613
GGA Gly	AGG Arg	CAT His 145	GTG Val	AGA Arg	ATG Met	TTG Leu	ACT Thr 150	His	GAG Glu	ATT Ile	AGA Arg	AGC Ser 155	ACT 1	TTA C Leu	ASP	661
AGA Arg	CAT His 160	ACT Thr	ATT Ile	TTA Leu	AAG Lys	ACT Thr 165	ACA Thr	CTT Leu	GTT Val	GAG Glu	CTT Leu 170	GGT A	AGG A Arg	CA Thr	TA Leu	709
GCT Ala	Leu	Glu	Glu	Cys	Ala	Leu	Trp	Met	CCT Pro	Thr	Arg	ACT (GC 1	TA C Leu	Glu	757

CTA Leu	CAG Gln	CTT Leu	TCT Ser	TAT Tyr 195	ACA Thr	CTT Leu	CGT Arg	CAT His	GAA (Gln 200	CAT (His	Pro	STG G Val	AG T Glu	Tyr 205	CG Thr	805
GTT Val	CCT Pro	ATT Ile	CAA Gln 210	TTA Leu	CCG Pro	GTG Val	ATT Ile	AAC Asn 215	Gln	GTG ' Val	Phe	GT A Gly	CT A Thr 220	GT A	GG Arg	853
GCT Ala	GTA Val	AAA Lys 225	ATA Ile	TCT Ser	CCT Pro	AAT Asn	TCT Ser 230	Pro	GTG (GCT . Ala	AGG 1 Arg	TTG A Leu 235	GA C Arg	CT G Pro	TT Val	901
TCT Ser	GGG Gly 240	AAA Lys	TAT Tyr	ATG Met	CTA Leu	GGG Gly 245	Glu	GTG Val	GTC (Val	GCT Ala	GTG A Val 250	AGG G Arg	TT (Val	CCG C Pro	TT Leu	949
CTC Leu 255	CAC His	CTT Leu	TCT Ser	AAT Asn	TTT Phe 260	CAG Gln	ATT Ile	AAT Asn	GAC '	TGG Trp 265	CCT (GAG C	TT 1 Leu	CA A Ser	CA Thr 270	997
AAG Lys	AGA Arg	TAT Tyr	GCT Ala	TTG Leu 275	ATG Met	GTT Val	TTG Leu	ATG Met	CTT Leu 280	Pro	TCA (Ser	AT A Asp	GT (Ser	GCA A Ala 285	GG Arg	1045
CAA Gln	TGG Trp	CAT His	GTC Val 290	His	GAG Glu	TTG Leu	GAA Glu	CTC Leu 295	. Val	GAA Glu	GTC (Val	CT C Ala 300	Asp	AG Gln	1093
GTG Val	GCT Ala	GTA Val 305	Ala	CTC Leu	TCA Ser	CAT His	GCT Ala 310	. Ala	ATC lle	CTA Leu	GAA (GAG T Glu 315	CG A	ATG C Met	GA Arg	1141
GCT Ala	AGG Arg 320	GAC Asp	CTT Leu	CTC Leu	ATG Met	GAG Glu 325	Glr	AAT n Asn	GTT Val	GCT Ala	CTT (Leu 330	Asp	TA (Leu	GCT A Ala	GA Arg	1189
CGA Arg 335	GAA Glu	GCA Ala	GAA Glu	ACA Thr	GCA Ala 340	Ile	CGT Arg	GCC J Ala	CGC Arg	AAT Ast 345	GAT Asp	TTC (Phe	CTA (Leu	GCG G Ala	Val 350	1237
ATG Met	AAC Asn	CAT His	GAA Glu	ATG Met 355	Arç	ACA Thr	CCG Pro	ATG Met	CAT His 360	: Ala	ATT lle	ATT (GCA (Ala	CTC I Leu 365	Ser	1285
TCC Ser	TTA Leu	CTC Leu	CAA Gln 370	Glu	ACG Thr	GAA Glu	CTA Let	ACC Thi 375	Pro	GAA Glu	CAA ı Gln	AGA (Arg	Leu 380	Met	TG Val	1333
GAA Glu	ACA Thr	ATA Ile 385	Leu	AAA Lys	AGT Sei	AGT Sei	AAC Ası 390	n Lei	TTG 1 Leu	GCA 1 Ala	ACT a Thr	TTG A Leu 395	Met	AAT C Asn	Asp	1381
GTC Val	TTA Leu 400	Asp	CTT Leu	TCA Sei	AGG Arg	TTA Let 405	ı Glı	GAT u Ası	GGA p Gly	AGT / Sei	CTT Leu 410	ı Gln	CTT (Leu	GAA (CTT Leu	1429
GGG Gly 415	Thr	TTC Phe	TAA :	CTI Leu	CAT His 420	s Thi	TTA r Le	TTT u Ph	AGA e Arg	GAG g Gli 42	GTC u Val	CTC . Leu	AAT Ası	CTG / Leu	ATA Ile 430	1477
AAG Lys	CCT Pro	ATA	GCG Ala	GT1 a Va: 43	l Va	AAG Ly:	AAA s Ly	TTA s Le	CCC u Pro 440	o Il	ACA e Thi	CTA Leu	AAT Ası	CTT (Leu 445	Ala	1525

Pro	Asp	Leu	Pro 450	Glu	Phe	Val	Val	G1y 455	/ Asp	GAG Glu	ı Lys	ccc Arg	Let 460	ATG (1 Met)	Gln	1573
ATA Ile	ATA Ile	TTA Leu 465	Asn	ATA Ile	GTT Val	GGT Gly	AAT Asn 470	ı Ala	GTG a Val	AAA L Lys	TTC Phe	TCC Ser 475	Lys	CAA C s Gln	GT Gly	1621
AGT Ser	ATC Ile 480	Ser	GTA Val	ACC Thr	GCT Ala	CTT Leu 485	. Val	ACC Thr	AAG Lys	TCA Ser	GAC Asp 490	Thr	CGA Arg	GCT C g Ala	CT Ala	1669
GAC Asp 495	Phe	TTT	GTC Val	GTG Val	CCA Pro 500	Thr	GGG Gly	AGT Ser	CAT His	TTC Phe 505	Tyr	TTG . Leu	AGA Arg	GTG A	AG Lys 510	1717
GTA Val	AAA Lys	GAC Asp	TCT Ser	GGA Gly 515	Ala	GGA Gly	ATA Ile	AAT Asn	CCT Pro 520	Glr	GAC n Asp	ATT (CCA Pro	AAG A Lys 525	TT Ile	1765
TTC Phe	ACT Thr	AAA Lys	TTT Phe 530	Ala	CAA Gln	ACA Thr	CAA Gln	TCT Ser 535	Leu	GCG Ala	ACG . Thr	AGA Arg	AGC Ser 540	TCG G Ser	GT Gly	1813
GGT Gly	AGT Ser	GGG Gly 545	CTT Leu	GGC Gly	CTC Leu	GCC Ala	ATC Ile 550	Ser	AAG Lys	AGG Arg	TTT (GTG Val	AAT (Asn	CTG A Leu	TG Met	1861
GAG Glu	GGT Gly 560	AAC Asn	ATT Ile	TGG Trp	ATT Ile	GAG Glu 565	Ser	GAT Asp	GGT Gly	CTT Leu	GGA 2 Gly 570	AAA (Lys	GGA ' Gly	TGC A	CG Thr	1909
Ala 575	Ile	Phe	Asp	Val	Lys 580	Leu	Gly	Ile	Ser	G1u 585	Arg	Ser	Asn	GAA T Glu	Ser 590	1957
Lys	Gln	Ser	Gly	Ile 595	Pro	Lys	Val	Pro	Ala 600	Ile	Pro	Arg	His	Ser 605	Asn	2005
Phe	Thr	Gly	Leu 610	Lys	Val	Leu	Val	Met 615	Asp	Glu	Asn	Gly	Va1 620	AGT A Ser	Arg	2053
Met	Val	Thr 625	Lys	Gly	Leu	Leu	Val 630	His	Leu	Gly	Cys	Glu 635	Val	ACC A	Thr	2101
Val	Ser 640	Ser	Asn	Glu	Glu	Cys 645	Leu	Arg	Val	Val	Ser 650	His	Glu	CAC A His	Lys	2149
Val 655	Val	Phe	Met	Asp	Val 660	Cys	Met	Pro	Gly	Val 665	Glu	Asn	Tyr	CAA A' Gln	Ile 670	2197
GCT Ala	CTC Leu	CGT Arg	ATT Ile	CAC His 675	GAG Glu	AAA Lys	TTC Phe	ACA Thr	AAA Lys 680	Gln	CGC (CAC C His	AA (GG CG Arg 685	CA Pro	2245
CTA Leu	CTT Leu	GTG Val	GCA Ala 690	CTC Leu	AGT Ser	GGT Gly	AAC Asn	ACT Thr 695	Asp	AAA ' Lys	TCC A Ser	ACA A Thr	Lys 700	GAG A	AA Lys	2293

TGC ATG AGC TTT GGT CTA GAC GGT GTG TTG CTC AAA CCC GTA TCA CTA Cys Met Ser Phe Gly Leu Asp Gly Val Leu Leu Lys Pro Val Ser Leu 705

GAC AAC ATA AGA GAT GTT CTG TCT GAT CTT CTC GAG CCC CGG GTA CTG 2389 Asp Asn Ile Arg Asp Val Leu Ser Asp Leu Leu Glu Pro Arg Val Leu

TAC GAG GGC ATG TAAAGGCGAT GGATGCCCCA TGCCCCAGAG GAGTAATTCC 2441 Tyr Glu Gly Met

GCTCCCGCCT TCTTCTCCCG TAAAACATCG GAAGCTGATG TTCTCTGGTT TAATTGTGTA 2501 CATATCAGAG ATTGTCGGAG CGTTTTGGAT GATATCTTAA AACAGAAAGG GAATAACAAA 2561 ATAGAAACTC TAAACCGGTA TGTGTCCGTG GCGATTTCGG TTATAGAGGA ACAAGATGGT 2621 GGTGGTATAA TCATACCATT TCAGATTACA TGTTTGACTA ATGTTGTATC CTTATATATG 2681 TAGTTACATT CTTATAAGAA TTTGGATCGA GTTATGGATG CTTGTTGCGT GCATGTATGA 2741 CATTGATGCA GTATTATGGC GTCAGCTTTG CGCCGCTTAG TAGAAC 2787

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 738 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Glu Val Cys Asn Cys Ile Glu Pro Gln Trp Pro Ala Asp Glu Leu Leu Met Lys Tyr Gln Tyr Ile Ser Asp Phe Phe Ile Ala Ile Ala Tyr Phe Ser Ile Pro Leu Glu Leu Ile Tyr Phe Val Lys Lys Ser Ala Val Phe Pro Tyr Arg Trp Val Leu Val Gln Phe Gly Ala Phe Ile Val Leu Tyr Gly Ala Thr His Leu Ile Asn Leu Trp Thr Phe Thr Thr His Ser

Arg Thr Val Ala Leu Val Met Thr Thr Ala Lys Val Leu Thr Ala Val

Val Ser Cys Ala Thr Ala Leu Met Leu Val His Ile Ile Pro Asp Leu

Leu Ser Val Lys Thr Arg Glu Leu Phe Leu Lys Asn Lys Ala Ala Glu

Leu Asp Arg Glu Met Gly Leu Ile Arg Thr Gln Glu Glu Thr Gly Arg

His Val Arg Met Leu Thr His Glu Ile Arg Ser Thr Leu Asp Arg His

Thr Ile Leu Lys Thr Thr Leu Val Glu Leu Gly Arg Thr Leu Ala Leu Glu Glu Cys Ala Leu Trp Met Pro Thr Arg Thr Gly Leu Glu Leu Gln 185 Leu Ser Tyr Thr Leu Arg His Gln His Pro Val Glu Tyr Thr Val Pro 200 Ile Gln Leu Pro Val Ile Asn Gln Val Phe Gly Thr Ser Arg Ala Val Lys Ile Ser Pro Asn Ser Pro Val Ala Arg Leu Arg Pro Val Ser Gly Lys Tyr Met Leu Gly Glu Val Val Ala Val Arg Val Pro Leu Leu His 245 250 255 Leu Ser Asn Phe Gln Ile Asn Asp Trp Pro Glu Leu Ser Thr Lys Arg Tyr Ala Leu Met Val Leu Met Leu Pro Ser Asp Ser Ala Arg Gln Trp 280 His Val His Glu Leu Glu Leu Val Glu Val Val Ala Asp Gln Val Ala Val Ala Leu Ser His Ala Ala Ile Leu Glu Glu Ser Met Arg Ala Arg Asp Leu Leu Met Glu Gln Asn Val Ala Leu Asp Leu Ala Arg Arg Glu Ala Glu Thr Ala Ile Arg Ala Arg Asn Asp Phe Leu Ala Val Met Asn 340 345 350 His Glu Met Arg Thr Pro Met His Ala Ile Ile Ala Leu Ser Ser Leu Leu Gln Glu Thr Glu Leu Thr Pro Glu Gln Arg Leu Met Val Glu Thr Ile Leu Lys Ser Ser Asn Leu Leu Ala Thr Leu Met Asn Asp Val Leu 395 Asp Leu Ser Arg Leu Glu Asp Gly Ser Leu Gln Leu Glu Leu Gly Thr Phe Asn Leu His Thr Leu Phe Arg Glu Val Leu Asn Leu Ile Lys Pro 420 425 430 Ile Ala Val Val Lys Lys Leu Pro Ile Thr Leu Asn Leu Ala Pro Asp Leu Pro Glu Phe Val Val Gly Asp Glu Lys Arg Leu Met Gln Ile Ile 450 455 460 Leu Asn Ile Val Gly Asn Ala Val Lys Phe Ser Lys Gln Gly Ser Ile Ser Val Thr Ala Leu Val Thr Lys Ser Asp Thr Arg Ala Ala Asp Phe 485 490 495

Phe Val Val Pro Thr Gly Ser His Phe Tyr Leu Arg Val Lys Val Lys Asp Ser Gly Ala Gly Ile Asn Pro Gln Asp Ile Pro Lys Ile Phe Thr 515 520 525 Lys Phe Ala Gln Thr Gln Ser Leu Ala Thr Arg Ser Ser Gly Gly Ser Gly Leu Gly Leu Ala Ile Ser Lys Arg Phe Val Asn Leu Met Glu Gly 545 550 560 Asn Ile Trp Ile Glu Ser Asp Gly Leu Gly Lys Gly Cys Thr Ala Ile 565 575 Phe Asp Val Lys Leu Gly Ile Ser Glu Arg Ser Asn Glu Ser Lys Gln 580 585 Ser Gly Ile Pro Lys Val Pro Ala Ile Pro Arg His Ser Asn Phe Thr Gly Leu Lys Val Leu Val Met Asp Glu Asn Gly Val Ser Arg Met Val Thr Lys Gly Leu Leu Val His Leu Gly Cys Glu Val Thr Thr Val Ser Ser Asn Glu Glu Cys Leu Arg Val Val Ser His Glu His Lys Val Val Phe Met Asp Val Cys Met Pro Gly Val Glu Asn Tyr Gln Ile Ala Leu 660 665 Arg Ile His Glu Lys Phe Thr Lys Gln Arg His Gln Arg Pro Leu Leu Val Ala Leu Ser Gly Asn Thr Asp Lys Ser Thr Lys Glu Lys Cys Met 690 695 700 Ser Phe Gly Leu Asp Gly Val Leu Leu Lys Pro Val Ser Leu Asp Asn Ile Arg Asp Val Leu Ser Asp Leu Leu Glu Pro Arg Val Leu Tyr Glu
735 Gly Met

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 188..2401

	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	10 : 6 :	1					
AGT	AAGA	ACG 2	AAGA.	AGAA	GT G	TAAI	ACCC	A ACC	AAT.	TTG	ACTT	GAAA	AA A	AGC'	TTCAA	60
GCT	cccc'	TTT :	CTC	CTTC:	rc co	TCG	TCT	CGC	CGCC	TCC	CAAA	TCCC	CA A	TTC	CTCCTC	120
TTC'	rccg.	ATC A	ATTY	CTTC	CC A	GTG	rgtg:	r atc	TGTC	AGA	GAGG	AACT	AT A	GTG	SAAA1	180
TTA	CATA										CAA Gln 10	Trp			GAT a Asp	229
															ATT a Ile 30	277
										Tyr	TTT (s Ser	325
GCC Ala	GTG Val	TTT Phe	CCG Pro 50	Tyr	AGA Arg	TGG Trp	GTA Val	CTT Leu 55	Val	CAG Gln	TTT (GGT (Gly	GCT Ala 60	Ph	ATC e Ile	373
								Ile			TGG :		Phe		ACG r Thr	421
											GCG Ala				ACC u Thr	,469
GCT Ala 95	GTT Val	GTC Val	TCG Ser	TGT Cys	GCT Ala 100	ACT Thr	ACG Thr	TTG Leu	ATG Met	CTT Leu 105		CAT A	ATT . Ile	ATT Ile	CCT Pro 110	517
GAT Asp	CTT Leu	TTG Leu	AGT Ser	GTT Val 115	AAG Lys	ACT Thr	CGG Arg	GAG Glu	CTT Leu 120	Phe	TTG :	AAA 1 Lys	AAT . Asn	AAA Ly: 125	s Ala	565 ₽.
									Ile		ACT (Gli	ACC 1 Thr	613
								His			AGA / Arg				GAT 1 A sp	661
											CTT (Leu 170				TTA r Leu	709
															GAG 1 Glu 190	757
										His	CCC (Pro				Thr	805
									Gln		TTT (Phe			Sı	AGG Arg	853

GCT Ala	GTA Val	AAA Lys 225	ATA Ile	TCT Ser	CCT Pro	AAT Asn	TCT Ser 230	CCT Pro	GTG (Val	GCT Ala	AGG 1 Arg	TTG A Leu 235	GA (Arg	CCT G Pro	TT Val	901
TCT Ser	GGG Gly 240	AAA Lys	TAT Tyr	ATG Met	CTA Leu	GGG Gly 245	GAG Glu	GTG Val	GTC (Val	GCT (Ala	GTG N Val 250	AGG G Arg	TT (Val	Pro	TT Leu	949
CTC Leu 255	CAC His	CTT Leu	TCT Ser	AAT Asn	TTT Phe 260	CAG Gln	ATT Ile	AAT Asn	GAC Asp	TGG Trp 265	Pro	GAG C Glu	TT (CA A Ser	CA Thr 270	997
AAG Lys	AGA Arg	TAT Tyr	GCT Ala	TTG Leu 275	ATG Met	GTT Val	TTG Leu	ATG Met	CTT Leu 280	Pro	TCA (Ser	AT A Asp	GT (Ser	GCA A Ala 285	.GG Arg	1045
CAA Gln	TGG Trp	CAT His	GTC Val 290	CAT His	GAG Glu	TTG Leu	GAA Glu	CTC Leu 295	Val	GAA Glu	GTC (Val	Ala 300	Asp	AG Gln	1093
GTG Val	GCT Ala	GTA Val 305	GCT Ala	CTC Leu	TCA Ser	CAT His	GCT Ala 310	Ala	ATC Ile	CTA Leu	GAA (GAG 1 Glu 315	CG : Ser	ATG C Met	GA Arg	1141
GCT Ala	AGG Arg 320	GAC Asp	CTT	CTC Leu	ATG Met	GAG Glu 325	Gln	AAT Asn	GTT Val	GCT Ala	CTT (Leu 330	Asp	TA (Leu	GCT A Ala	GA Arg	1189
CGA Arg 335	GAA Glu	GCA Ala	GAA Glu	ACA Thr	GCA Ala 340	Ile	CGT Arg	GCC Ala	CGC Arg	AAT Asn 345	Asp	TTC (Leu	GCG G Ala	Val 350	1237
ATG Met	AAC Asn	CAT His	GAA Glu	ATG Met 355	Arg	ACA Thr	CCG Pro	ATG Met	CAT His 360	Ala	ATT .	ATT (CA (Ala	CTC 1 Leu 365	CT Ser	1285
TCC Ser	TTA Leu	CTC Leu	CAA Gln 370	Glu	ACG Thr	GAA Glu	CTA Leu	ACC Thr 375	Pro	GAA Glu	CAA Gln	AGA (Arg	Leu 380	ATG (Met	TG Val	1333
GAA Glu	ACA Thr	ATA Ile 385	Leu	AAA Lys	AGT Ser	AGT Ser	AAC Ast 390	Leu	TTG Lev	GCA 1 Ala	ACT Thr	TTG I Leu 395	Met	AAT (: Asn	ASP	1381
GTC Val	TTA Leu 400	Asp	CTT	TCA Ser	AGG Arg	TTA Let 405	Glu	GAT 1 Asi	GGA Gly	AGT Sei	CTT Leu 410	Gln	CTT Leu	GAA (TT Leu	1429
GGG Gly 415	Thr	TTC Phe	AAT Asn	CTT Lev	CAT His 420	Thi	TTA Lev	TTT 1 Phe	AGA Arç	GAG Glu 42!	ı Val	CTC :	AAT Asi	CTG / Leu	ATA Ile 430	1477
AAG Lys	CCT	ATA Ile	GCG Ala	GTT Val 435	. Val	AAG Lys	AAA Lys	TTA s Lev	CCC Pro 440) Ile	ACA Thr	CTA :	AAT Asi	CTT (Leu 445	Ala	1525
CCA Pro	GAT Asp	TTG Leu	CCA Pro 450	Glu	TTT Phe	GTT Va	GTT L Va	GGG 1 G1; 45!	/ Ası	GAG Gli	AAA 1 Lys	CGG (CTA Let 460	ATG (1 Met	CAG Gln	1573
ATA Ile	ATA Ile	TTA Leu 465	Asr	ATA 11e	GTT Val	GGT L Gly	AAT AS:	n Ala	GTG a Va	AAA l Ly:	TTC s Phe	TCC Ser 475	. TA	CAA (s Glm	GGT Gly	1621

AGT Sei	11e 480	e Ser	GTA Val	ACC L Thi	GCT Ala	CTT Let 485	ı Val	ACC Thi	AAG Lys	TCA S Ser	GAC Asp 490	Th	CGA r Ar	GCT g Ala	GCT a Ala	1669
GAC Asp 495) Pue	TTT:	GTC Val	GTG Val	CCA Pro 500	Th:	GGG Gly	AGT Sei	CAT His	TTC Phe 505	: Туг	TTG Lev	AGA 1 Ar	GTG . g Val	AAG Lys 510	
GTA Val	AAA Lys	GAC Asp	TCT Ser	GGA Gly 515	/ Ala	GGA Gly	ATA / Ile	AAT Asn	CCT Pro 520	Gln Gln	GAC Asp	ATT Ile	CCA Pro	AAG A Lys 525	Ile	1765
TTC	ACT	AAA Lys	Phe 530	: Ala	CAA Glm	ACA Thr	CAA Gln	TCT Ser 535	Leu	GCG Ala	ACG Thr	AGA Arg	AGC Se: 540	TCG (r Ser)	GGT Gly	1813
GGT Gly	AGT Ser	GGG Gly 545	Leu	GGC Gly	CTC Leu	GCC Ala	ATC Ile 550	Ser	AAG Lys	AGG Arg	TTT Phe	GTG Val 555	Ası	CTG /	ATG Met	1861
GAG Glu	GGT Gly 560	Asn	ATT Ile	TGG Trp	ATT Ile	GAG Glu 565	Ser	GAT Asp	GGT Gly	CTT Leu	GGA . Gly 570	Lys	GGA Gly	TGC / Cys	ACG Thr	1909
575	TIE	Pne	Asp	VAI	580	Leu	GIA	Ile	Ser	Glu 585	Arg	Ser	Asn	Glu	Ser 590	1957
rys	GIN	ser	GIY	595	Pro	Lys	Val	Pro	Ala 600	Ile	Pro	Arg	His	TCA A Ser 605	Asn	2005
Pne	Inr	GIĀ	610	ГÀЗ	Val	Leu	Val	Met 615	Asp	Glu	Asn	Gly	Val 620		Arg	2053
met	vaı	625	Lys	GIÀ	Leu	Leu	Val 630	His	Leu	Gly	Cys	G1u 635	Val	ACC A Thr	Thr	2101
val	5er 640	Ser	Asn	GIu	Glu	645	Leu	Arg	Val	Val	Ser 650	His	Glu	CAC A His	Lys	2149
655	Val	Phe	Met	Asp	Val 660	Cys	Met	Pro	Gly	Val 665	Glu	Asn	Tyr	CAA A Gln	Ile 670	2197
GCT Ala	CTC Leu	CGT Arg	ATT Ile	CAC His 675	GAG Glu	AAA Lys	TTC I	ACA I	Lys 680	CAA C Gln	GC C Arg	AC C His	AA C	Arg 685	CA Pro	2245
Leu	Leu	Val	690	Leu	Ser	Gly	Asn	Thr 695	Asp	Lys	Ser	Thr	Lys 700	AG A	Lys	2293
.ys	Met	705	Phe	Gly	Leu	Asp	Gly 710	Val	Leu	Leu	Lys	Pro 715	Val	CA C. Ser	Leu	2341
\sp	AAC Asn 720	ATA I	AGA Arg	GAT Asp	Val	CTG 1 Leu 725	CT (Ser	ASP	TT C Leu	Leu	AG C Glu 730	CC C Pro	GG G Arg	TA CT Val	rg Leu	2389

TAC GAG GGC ATG TAAAGGCGAT GGATGCCCCA TGCCCCAGAG GAGTAATTCC 2441 Tyr Glu Gly Met

GCTCCCGCCT TCTTCTCCCG TAAAACATCG GAAGCTGATG TTCTCTGGTT TAATTGTGTA 2501 CATATCAGAG ATTGTCGGAG CGTTTTGGAT GATATCTTAA AACAGAAAGG GAATAACAAA 2561 ATAGAAACTC TAAACCGGTA TGTGTCCGTG GCGATTTCGG TTATAGAGGA ACAAGATGGT 2621 GGTGGTATAA TCATACCATT TCAGATTACA TGTTTGACTA ATGTTGTATC CTTATATATG 2681 TAGTTACATT CTTATAAGAA TTTGGATCGA GTTATGGATG CTTGTTGCGT GCATGTATGA 2741 CATTGATGCA GTATTATGGC GTCAGCTTTG CGCCGCTTAG TAGAAC

(2) INFORMATION FOR SEQ ID NO:7:

180

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 738 amino acids

 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Glu Val Cys Asn Cys Ile Glu Pro Gln Trp Pro Ala Asp Glu Leu Leu Met Lys Tyr Gln Tyr Ile Ser Asp Phe Phe Ile Ala Ile Ala Tyr 20 25 30 Phe Ser Ile Pro Leu Glu Leu Ile Tyr Phe Val Lys Lys Ser Ala Val Phe Pro Tyr Arg Trp Val Leu Val Gln Phe Gly Ala Phe Ile Val Leu Cys Gly Ala Thr His Leu Ile Asn Leu Trp Thr Phe Thr Thr His Ser 65 70 75 80 Arg Thr Val Ala Leu Val Met Thr Thr Ala Lys Val Leu Thr Ala Val Val Ser Cys Ala Thr Thr Leu Met Leu Val His Ile Ile Pro Asp Leu Leu Ser Val Lys Thr Arg Glu Leu Phe Leu Lys Asn Lys Ala Ala Glu Leu Asp Arg Glu Met Gly Leu Ile Arg Thr Gln Glu Glu Thr Gly Arg His Val Arg Met Leu Thr His Glu Ile Arg Ser Thr Leu Asp Arg His 145 Thr Ile Leu Lys Thr Thr Leu Val Glu Leu Gly Arg Thr Leu Ala L u

Glu Glu Cys Ala Leu Trp Met Pro Thr Arg Thr Gly Leu Glu Leu Gln 185

Leu Ser Tyr Thr Leu Arg His Gln His Pro Val Glu Tyr Thr Val Pro Ile Gln Leu Pro Val Ile Asn Gln Val Phe Gly Thr Ser Arg Ala Val Lys Ile Ser Pro Asn Ser Pro Val Ala Arg Leu Arg Pro Val Ser Gly 225 230 235 240 Lys Tyr Met Leu Gly Glu Val Val Ala Val Arg Val Pro Leu Leu His 245 250 255 Leu Ser Asn Phe Gln Ile Asn Asp Trp Pro Glu Leu Ser Thr Lys Arg 260 265 270 Tyr Ala Leu Met Val Leu Met Leu Pro Ser Asp Ser Ala Arg Gln Trp 280 His Val His Glu Leu Glu Leu Val Glu Val Val Ala Asp Gln Val Ala 295 Val Ala Leu Ser His Ala Ala Ile Leu Glu Glu Ser Met Arg Ala Arg 310 Asp Leu Leu Met Glu Gln Asn Val Ala Leu Asp Leu Ala Arg Arg Glu 325 330 335 Ala Glu Thr Ala Ile Arg Ala Arg Asn Asp Phe Leu Ala Val Met Asn His Glu Met Arg Thr Pro Met His Ala Ile Ile Ala Leu Ser Ser Leu Leu Gln Glu Thr Glu Leu Thr Pro Glu Gln Arg Leu Met Val Glu Thr Ile Leu Lys Ser Ser Asn Leu Leu Ala Thr Leu Met Asn Asp Val Leu 385 390 395 400 Asp Leu Ser Arg Leu Glu Asp Gly Ser Leu Gln Leu Glu Leu Gly Thr Phe Asn Leu His Thr Leu Phe Arg Glu Val Leu Asn Leu Ile Lys Pro Ile Ala Val Val Lys Lys Leu Pro Ile Thr Leu Asn Leu Ala Pro Asp 435 Leu Pro Glu Phe Val Val Gly Asp Glu Lys Arg Leu Met Gln Ile Ile 450 455 460 Leu Asn Ile Val Gly Asn Ala Val Lys Phe Ser Lys Gln Gly Ser Ile 465 470 475 480 Ser Val Thr Ala Leu Val Thr Lys Ser Asp Thr Arg Ala Ala Asp Phe 485 490 495 Phe Val Val Pro Thr Gly Ser His Phe Tyr Leu Arg Val Lys Val Lys Asp Ser Gly Ala Gly Ile Asn Pro Gln Asp Ile Pro Lys Ile Phe Thr 515 520 525

Lys Phe Ala Gln Thr Gln Ser Leu Ala Thr Arg Ser Ser Gly Gly Ser Gly Leu Gly Leu Ala Ile Ser Lys Arg Phe Val Asn Leu Met Glu Gly Asn Ile Trp Ile Glu Ser Asp Gly Leu Gly Lys Gly Cys Thr Ala Ile Phe Asp Val Lys Leu Gly Ile Ser Glu Arg Ser Asn Glu Ser Lys Gln Ser Gly Ile Pro Lys Val Pro Ala Ile Pro Arg His Ser Asn Phe Thr Gly Leu Lys Val Leu Val Met Asp Glu Asn Gly Val Ser Arg Met Val Thr Lys Gly Leu Leu Val His Leu Gly Cys Glu Val Thr Thr Val Ser Ser Asn Glu Glu Cys Leu Arg Val Val Ser His Glu His Lys Val Val Phe Met Asp Val Cys Met Pro Gly Val Glu Asn Tyr Gln Ile Ala Leu Arg Ile His Glu Lys Phe Thr Lys Gln Arg His Gln Arg Pro Leu Leu Val Ala Leu Ser Gly Asn Thr Asp Lys Ser Thr Lys Glu Lys Cys Met Ser Phe Gly Leu Asp Gly Val Leu Leu Lys Pro Val Ser Leu Asp Asn Ile Arg Asp Val Leu Ser Asp Leu Leu Glu Pro Arg Val Leu Tyr Glu 725 730 735 Gly Met

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 188..2401
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: AGTAAGAACG AAGAAGAAGT GTTAAACCCA ACCAATTTTG ACTTGAAAAA AAGCTTCAAC GCTCCCCTTT TCTCCTTCTC CGTCGCTCTC CGCCGCGTCC CAAATCCCCA ATTCCTCCTC 120

TTC	TCCG	ATC .	AATT	CTTC	CC A	AGTG!	IGIG	T ATC	TGTC	BAGA	GAGG	AACT	AT A	GTGTA	AAAA	180
ATT	CATA	ATG Met 1	Glu	GTC Val	TGC Cys	AAT Asn 5	TGT Cys	ATT : Ile	GAA Glu	CCG Pro	CAA Gln 10	Trp	CCA (GCG GA	AT Asp	229
GAA Glu 15	TTG Leu	TTA Leu	ATG Met	AAA Lys	TAC Tyr 20	Gln	TAC Tyr	ATC Ile	TCC Ser	GAT Asp 25	Phe	TTC : Phe	ATT (Ile	GCG AT Ala	TT Ile 30	277
GTG Val	TAT Tyr	TTT	TCG Ser	ATT Ile 35	Pro	CTT Leu	GAG Glu	TIG Leu	ATT Ile 40	Tyr	TTT Phe	GTG ; Val	AAG 1 Lys	Lys :	CA Ser	325
GCC Ala	GTG Val	TTT Phe	CCG Pro 50	Tyr	AGA Arg	TGG Trp	GTA Val	CTT Leu 55	Val	CAG Gln	TTT Phe	GGT (Gly	Ala 60	Phe	C Ile	373
GTT Val	CTT Leu	TGT Cys 65	GGA Gly	GCA Ala	ACT Thr	CAT His	CTT Leu 70	Ile	AAC Asn	TTA Leu	TGG . Trp	ACT : Thr 75	Phe	ACT AC	G Thr	421
CAT His	TCG Ser 80	AGA Arg	ACC Thr	GTG Val	GCG Ala	CTT Leu 85	GTG Val	ATG Met	ACT Thr	ACC (GCG Ala	Lys	GTG 7 Val	TTA AC Leu :	C Thr	469
GCT Ala 95	GTT Val	GTC Val	TCG Ser	TGT Cys	GCT Ala 100	ACT Thr	GCG Ala	TTG Leu	ATG Met	CTT (Leu 105	GTT (Val	CAT / His	TT ;	Ile i	T Pro :	517
GAT Asp	CTT Leu	TTG Leu	AGT Ser	GTT Val 115	Lys	ACT Thr	CGG Arg	GAG Glu	CTT Leu 120	TTC ' Phe	TTG : Leu	AAA / Lys	AAT A Asn	Lys 1 125	T∽ Ala	565
GCT Ala	GAG Glu	CTC Leu	GAT Asp 130	AGA Arg	GAA Glu	ATG Met	GGA Gly	TTG Leu 135	ATT Ile	CGA : Arg	ACT (Thr	CAG (Gln	Glu 140	Glu 1	Chr	613
GGA Gly	AGG Arg	CAT His 145	GTG Val	AGA Arg	ATG Met	TTG Leu	ACT Thr 150	CAT His	GAG . Glu	ATT I	AGA 1 Arg	AGC A Ser 155	CT T Thr	TA GA Leu <i>}</i>	T Asp	661
AGA Arg	CAT His 160	ACT Thr	ATT Ile	TTA Leu	AAG Lys	ACT Thr 165	ACA Thr	CTT Leu	CTT (Val	GAG (Glu	Leu 170	GT A	GG A Arg	CA TT Thr I	eu A	709
GCT Ala 175	TTG Leu	GAG Glu	GAG Glu	TGT Cys	GCA Ala 180	TTG Leu	TGG Trp	ATG Met	Pro	ACT I Thr 185	AGA 1 Arg	ACT G	GG T	TA GA Leu C	G 31u 190	757
CTA Leu	CAG Gln	CTT Leu	TCT Ser	TAT Tyr 195	ACA Thr	CTT Leu	CGT Arg	CAT His	Gln 200	CAT (His	Pro	Val	AG T Glu	AT AC Tyr 1 205	G Thr	805
GTT Val	CCT Pro	ATT Ile	CAA Gln 210	TTA Leu	CCG Pro	GTG . Val	ATT Ile	AAC Asn 215	CAA (Gln	GTG 7 Val	Phe	GT A	Thr 220	GT AG Ser A	G Arg	853
GCT Ala	GTA Val	AAA Lys 225	ATA Il	TCT Ser	CCT Pro	Asn	TCT Ser 230	Pro	GTG (Val	GCT A	AGG 1 Arg	MG A Leu 235	Arg	CT GT Pro V	T 'al	901

TCT Ser	GGG Gly 240	AAA Lys	TAT . Tyr	ATG (Met	CTA (Leu	GGG Gly 245	GAG (Glu	GTG (Val	TC (Val	GCT (Val 250	GG G Arg	T Co Val	CG CT Pro I	T Leu	949
CTC Leu 255	CAC His	CTT Leu	TCT Ser	AAT Asn	TTT (Phe 260	CAG Gln	ATT :	AAT (Asn	Asp	TGG (Trp 265	CT G Pro	AG C' Glu	T T Leu	CA AC Ser :	A Thr 270	997
AAG Lys	AGA Arg	TAT Tyr	GCT Ala	TTG Leu 275	ATG (Met	GTT Val	TTG . Leu	ATG (Met	Leu 280	CCT : Pro	rca G Ser	AT A(Asp	GT G Ser	CA AG Ala 2 285	G Arg	1045
CAA Gln	TGG Trp	CAT His	GTC Val 290	CAT His	GAG ' Glu	TTG Leu	GAA Glu	CTC (Leu 295	STT (GAA (Glu	GTC G Val	Val	CT G. Ala 300	AT CA Asp (G Gln	1093
GTG Val	GCT Ala	GTA Val 305	GCT Ala	CTC Leu	TCA Ser	CAT His	GCT Ala 310	Ala	ATC Ile	CTA (Leu	GAA G Glu	AG T Glu 315	CG A Ser	TG CG Met	Arg	1141
GCT Ala	AGG Arg 320	GAC Asp	CTT Leu	CTC Leu	ATG Met	GAG Glu 325	Gln	AAT (Asn	GTT Val	GCT Ala	CTT G Leu 330	AT C Asp	TA G Leu	CT AC	Arg	1189
CGA Arg 335	GAA Glu	GCA Ala	GAA Glu	ACA Thr	GCA Ala 340	ATC Ile	CGT Arg	GCC Ala	CGC Arg	AAT Asn 345	Asp	TC C Phe	TA G Leu	CG G1	Val 350	1237
ATG Met	AAC Asn	CAT His	GAA Glu	ATG Met 355	CGA Arg	ACA Thr	CCG Pro	ATG Met	CAT His 360	Ala	ATT A	TT G Ile	CA C Ala	TC TC Leu 365	CT Ser	1285
TCC Ser	TTA Leu	CTC Leu	CAA Gln 370	Glu	ACG Thr	GAA Glu	CTA Leu	ACC Thr 375	Pro	GAA Glu	CAA A	AGA C Arg	TG A Leu 380	TG G	rg Val	1333
GAA Glu	ACA Thr	ATA Ile 385	Leu	AAA Lys	AGT Ser	AGT Ser	AAC Asn 390	. Leu	TTG Lev	GCA 1 Ala	ACT Thr	MG A Leu 395	TG A Met	AT GI Asn	AT Asp	1381
GTC Val	TTA Leu 400	Asp	CTT Leu	TCA Ser	AGG Arg	TTA Leu 405	ı Glu	GAT Asp	GGA Gly	AGT / Sei	CTT (Leu 410	Gin	TT C	Glu	M Leu	1429
GGG Gly 415	Thr	TTC Phe	AAT Asn	CTT Leu	CAT His 420	Thi	TTA Leu	TTT 1 Phe	AGA Arg	GAG Glu 429	1 Agl	CTC # Leu	AST (TG A' Leu	TA Ile 430	1477
AAG Lys	CCT	ATA Ile	GCG Ala	GTT Val 435	. Val	AAG Ly:	AAA s Lys	TTA s Lev	CCC Pro	o Ile	ACA (CTA A	AT (Asn	Leu 445	CA Ala	1525
CCA Pro	GAT Asp	TIG	CCA Pro 450	Glu	TTT Phe	GTT Va	GTT l Va	GGG 1 Gly 455	As	GAG p Gl	AAA 1 Lys	CGG (TA Leu 460	ATG C Met	AG Gln	1573
ATA Ile	ATA	TTA Lev	ı Ası	ATA 11e	GTT Val	GGT L G1;	AAT y As:	n Ala	GTG Va	AAA 1 Ly:	TTC s Phe	TCC I Ser 475	rys	CAA G Gln	GT Gly	1621
AG1 Se1	T ATC	Sez	GTA Val	ACC L Thi	GCT Ala	CTI Le 48	u Va	ACC 1 Thi	AAG r Ly	TCA s Se	GAC r Asp 490	Thr	CGA (Arg	GCT G Ala	CT Ala	1669

	GAC Asp 495	TIT Phe	TTT Phe	GTC Val	GTG Val	CCA Pro 500	Thr	GGG Gly	AGT Ser	CAT His	TTC Phe 505		TTG . Leu	AGA (Arg	CTG : Val	AAG Lys 510	1717
	GTA Val	AAA Lys	GAC Asp	TCT Ser	GGA Gly 515	Ala	GGA Gly	ATA Ile	AAT Asn	CCT Pro 520	Gln	GAC Asp	ATT (CCA A	AAG 1 Lys 525	Ile	1765
	TTC Phe	ACT Thr	AAA Lys	TTT Phe 530	Ala	CAA Gln	ACA Thr	CAA Gln	TCT Ser 535	Leu	GCG Ala	ACG :	AGA A	AGC : Ser 540	CG (Ser	GT Gly	1813
	GGT Gly	AGT Ser	GGG Gly 545	CTT Leu	GGC Gly	CTC Leu	GCC Ala	ATC Ile 550	Ser	AAG Lys	AGG Arg	TTT (Val 555	Asn	CTG / Leu	ATG Met	1861
	GAG Glu	GGT Gly 560	AAC Asn	ATT Ile	TGG Trp	ATT Ile	GAG Glu 565	AGC Ser	GAT Asp	GGT Gly	CTT Leu	GGA 2 Gly 570	Lys	GA 1 Gly	Cys	ACG Thr	1909
	GCT Ala 575	ATC Ile	TTT Phe	GAT Asp	GTT Val	AAA Lys 580	CTT Leu	GGG Gly	ATC Ile	TCA Ser	GAA Glu 585	CGT '	TCA I Ser	AAC (Asn	GAA 1 Glu	Ser 590	1957
	AAA Lys	CAG Gln	TCG Ser	GGC Gly	ATA Ile 595	CCG Pro	AAA Lys	GTT Val	CCA Pro	GCC Ala 600	Ile	CCC (CGA (Arg	CAT T His	Ser 605		2005
	TTC Phe	ACT Thr	GGA Gly	CTT Leu 610	AAG Lys	GTT Val	CTT Leu	GTC Val	ATG Met 615	Asp	GAG Glu	AAC (Asn	GG (Val 620	GT A Ser	AGA Arg	2053
	ATG Met	GTG Val	ACG Thr 625	AAG Lys	GGA Gly	CTT Leu	CTT Leu	GTA Val 630	His	CTT Leu	GGG ' Gly	TGC (GAA (Glu 635	STG A Val	CC A	Thr	2101
•	GTG Val	AGT Ser 640	TCA Ser	AAC Asn	GAG Glu	GAG Glu	TGT Cys 645	Leu	CGA Arg	GTT Val	GTG ' Val	TCC (Ser 650	CAT (His	GAG C	AC A His	Lys	2149
•												GAA 1 Glu					2197
	GCT Ala	CTC Leu	CGT Arg	ATT Ile	CAC His 675	GAG Glu	AAA Lys	TTC Phe	ACA Thr	AAA Lys 680	CAA (Gln	CGC (Arg	CAC (His	CAA C Gln	GG C Arg 685	CA Pro	2245
•	CTA Leu	CTT Leu	GTG Val	GCA Ala 690	CTC Leu	AGT Ser	GGT Gly	AAC Asn	ACT Thr 695	Asp	AAA ' Lys	TCC / Ser	ACA A Thr	Lys 700	AG A Glu	AA Lys	2293
	TGC Cys	ATG Met	AGC Ser 705	TTT Phe	GGT Gly	CTA Leu	GAC Asp	GGT Gly 710	Val	TTG (Leu	CTC : Leu	AAA (Lys	Pro 715	TA T Val	CA C Ser	TA Leu	2341
												GAG (Glu 730					2389
•		Glu	GGC Gly		TAAA	GGCG	at G	GATC	cccc	A TG	cccc	'AGAG	GAG'	TAAT:	rcc		2441

GCTCCCGCCT TCTTCTCCCG TAAAACATCG GAAGCTGATG TTCTCTGGTT TAATTGTGTA 2501
CATATCAGAG ATTGTCGGAG CGTTTTGGAT GATATCTTAA AACAGAAAGG GAATAACAAA 2561
ATAGAAACTC TAAACCGGTA TGTGTCCGTG GCGATTTCGG TTATAGAGGA ACAAGATGGT 2621
GGTGGTATAA TCATACCATT TCAGATTACA TGTTTGACTA ATGTTGTATC CTTATATATG 2681
TAGTTACATT CTTATAAGAA TTTGGATCGA GTTATGGATG CTTGTTGCGT GCATGTATGA 2741
CATTGATGCA GTATTATGGC GTCAGCTTTG CGCCGCTTAG TAGAAC 2787

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 738 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

 Met 1
 Glu Val Cys
 Asn 5
 Cys
 Ile Glu Pro Gln Trp Pro Ala Asp Glu Leu 15
 Clu Met Lys Tyr Gln Tyr Ile Ser Asp Phe Phe Ile Ala Ile Val Tyr 30
 Asp Phe Phe Phe Ile Ala Ile Val Tyr 30
 Cys Phe Ser Ile Ala Ile Val Val Cys Lys Ser Ala Val Asp Phe Pro Tyr Arg Trp Val Leu Val Gln Phe Gly Ala Phe Ile Val Leu Cys Gly Ala Thr His Leu Ile Asn Leu Trp Thr Phe Thr Thr His Ser Ro Arg Thr Val Ala Leu Val Met Thr Thr Ala Lys Val Leu Thr Ala Val 90
 Thr Ala Lys Val Val Leu Thr Ala Leu Thr Ala Leu Met Leu Val His Ile Ile Pro Asp Leu 110
 Leu Ser Cys Ala Thr Arg Glu Leu Phe Leu Lys Asn Lys Ala Ala Ala Glu 125
 Arg Thr Glu Glu Glu Thr Gly Arg 130
 Arg Thr Leu Lys Thr Leu Val Glu Ile Arg Thr Gln Glu Glu Thr Gly Arg 140
 Arg Thr Leu Asp Arg His Glu Leu Cys Arg Thr Leu Asp Arg His 160

 Leu Ser Val Lys Thr Thr Leu Val Glu Leu Gly Arg Thr Leu Ala Leu Thr Ile Leu Cys Ala Cys Ala Cys Ala Cys Thr Leu Arg His Gln His Pro Val Glu Tyr Thr Val Pro 195

Ile Gln Leu Pro Val Ile Asn Gln Val Phe Gly Thr Ser Arg Ala Val Lys Ile Ser Pro Asn Ser Pro Val Ala Arg Leu Arg Pro Val Ser Gly Lys Tyr Met Leu Gly Glu Val Val Ala Val Arg Val Pro Leu His 245 250 250 Leu Ser Asn Phe Gln Ile Asn Asp Trp Pro Glu Leu Ser Thr Lys Arg Tyr Ala Leu Met Val Leu Met Leu Pro Ser Asp Ser Ala Arg Gln Trp His Val His Glu Leu Glu Leu Val Glu Val Val Ala Asp Gln Val Ala 290 295 300 295 Val Ala Leu Ser His Ala Ala Ile Leu Glu Glu Ser Met Arg Ala Arg Asp Leu Leu Met Glu Gln Asn Val Ala Leu Asp Leu Ala Arg Arg Glu Ala Glu Thr Ala Ile Arg Ala Arg Asn Asp Phe Leu Ala Val Met Asn 340 345 350 His Glu Met Arg Thr Pro Met His Ala Ile Ile Ala Leu Ser Ser Leu Leu Gln Glu Thr Glu Leu Thr Pro Glu Gln Arg Leu Met Val Glu Thr 370 380 Ile Leu Lys Ser Ser Asn Leu Leu Ala Thr Leu Met Asn Asp Val Leu Asp Leu Ser Arg Leu Glu Asp Gly Ser Leu Gln Leu Glu Leu Gly Thr 405 410 Phe Asn Leu His Thr Leu Phe Arg Glu Val Leu Asn Leu Ile Lys Pro Ile Ala Val Val Lys Lys Leu Pro Ile Thr Leu Asn Leu Ala Pro Asp Leu Pro Glu Phe Val Val Gly Asp Glu Lys Arg Leu Met Gln Ile Ile 450 455 460 Leu Asn Ile Val Gly Asn Ala Val Lys Phe Ser Lys Gln Gly Ser Ile Ser Val Thr Ala Leu Val Thr Lys Ser Asp Thr Arg Ala Ala Asp Phe 490 Phe Val Val Pro Thr Gly Ser His Phe Tyr Leu Arg Val Lys Val Lys Asp Ser Gly Ala Gly Ile Asn Pro Gln Asp Ile Pro Lys Ile Phe Thr 515 520 525 Lys Phe Ala Gln Thr Gln Ser Leu Ala Thr Arg Ser Ser Gly Gly Ser

 Gly 545
 Leu Gly Leu Ala Ile 550
 Ser Lys Arg Phe 555
 Val 555
 Asn Leu Met Glu 560
 Glu 560

 Asn Ile Trp Ile 565
 Glu 555
 Ser Asp Gly Leu Gly Lys Gly Lys Gly Cys Thr 575
 Ala Ile 575
 Ile 575<

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 188..2401
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

AGTAAGAACG AAGAAGAAGT GTTAAACCCA ACCAATTTG ACTTGAAAAA AAGCTTCAAC 60
GCTCCCCTTT TCTCCTTCTC CGTCGCTCTC CGCCGCGTCC CAAATCCCCA ATTCCTCCTC 120
TTCTCCGATC AATTCTTCCC AAGTGTGTGT ATGTGTGAGA GAGGAACTAT AGTGTAAAAA 180

ATT	CATA	ATG Met 1	GAA Glu	GTC Val	TGC Cys	AAT Asn 5	TGT Cys	ATT Ile	GAA Glu	Pro	CAA Glr 10	Tr	CCA Pro	GCG > Ala	GAT A Asp	229
GAA Glu 15	TTG Leu	TTA Leu	ATG Met	AAA Lys	TAC Tyr 20	Gln	TAC Tyr	ATC: Ile	TCC Sei	GAT Asp 25	Phe	TTC Phe	ATT : Ile	GCG ≥ Ala	ATT lle 30	277
GCG Ala	TAT	TTT Phe	TCG Ser	ATT Ile 35	Pro	CTT Leu	GAG Glu	TTG Leu	ATT 111e 40	Yı Tyı	TTT Phe	GTG Val	AAG Lys	AAA E Lys 45	Ser	325
GCC Ala	GTG Val	TTT Phe	CCG Pro 50	Tyr	AGA Arg	TGG	GTA Val	CTT Lev 55	· Val	CAG L Glr	TTT Phe	GGT : Gly	GCT Ala	. Phe	TTC Phe	373
GTT Val	CTT Leu	TGT Cys 65	Gly	GCA Ala	ACT Thr	CAT His	CTT Leu 70	∶Il∈	AAC Asn	TTA Leu	TGG Trp	ACT Thr 75	Phe	ACT .	ACG Thr	421
CAT His	TCG Ser 80	AGA Arg	ACC Thr	GTG Val	GCG Ala	CTT Leu 85	Val	ATG Met	ACT Thr	ACC Thr	GCG Ala 90	Lys	GTG Val	TTA ;	ACC Thr	469
GCT Ala 95	GTT Val	GTC Val	TCG Ser	TGT Cys	GCT Ala 100	ACT Thr	GCG Ala	TTG Leu	ATG Met	CTT Leu 105	Val	CAT / His	ATT . Ile	ATT (Pro	517
Asp	CTT Leu	Leu	Ser	Val 115	Lys	Thr	Arg	Glu	Leu 120	Phe	Leu	Lys	Asn	Lys 125	Ala	565
GCT Ala	GAG Glu	CTC Leu	GAT Asp 130	AGA Arg	GAA Glu	ATG Met	GGA Gly	TTG Leu 135	Ile	CGA Arg	ACT (CAG (Gln	GAA (Glu 140	Glu	ACC Thr	_{्र} 613
GGA Gly	AGG Arg	CAT His 145	GTG Val	AGA Arg	ATG Met	TTG Leu	ACT Thr 150	CAT His	GAG Glu	ATT Ile	AGA A Arg	AGC 1 Ser 155	ACT 1	TTA (ASP	661
AGA Arg	CAT His 160	ACT Thr	ATT Ile	TTA Leu	AAG Lys	ACT Thr 165	ACA Thr	CTT Leu	GTT Val	GAG Glu	Leu 170	GT / Gly	AGG / Arg	ACA T Thr	TTA Leu	709
GCT Ala 175	TTG Leu	GAG Glu	GAG Glu	TGT Cys	GCA Ala 180	TTG Leu	TGG Trp	ATG Met	CCT Pro	ACT Thr 185	AGA 1 Arg	ACT C	Gly	MTA G Leu	Glu 190	757
CTA Leu	CAG Gln	CTT Leu	TCT Ser	TAT Tyr 195	ACA Thr	CTT Leu	CGT Arg	CAT His	CAA Gln 200	His	Pro	Val	Glu	TAT A Tyr 205	CG Thr	805
GTT Val	Pro	ATT Ile	CAA Gln 210	TTA Leu	CCG Pro	GTG Val	ATT . Ile	AAC Asn 215	CAA (Gln	GTG (Phe	GT ? Gly	Thr 220	AGT A Ser	GG Arg	853
GCT Ala	GTA Val	AAA Lys 225	ATA Ile	TCT Ser	CCT Pro	AAT Asn	Ser 230	Pro	GTG (Val	GCT A	AGG 7 Arg	Leu 235	\GA (Arg	CT G Pro	TT Val	901
TCT Ser	GGG Gly 240	AAA Lys	TAT Tyr	ATG Met	CTA (Leu	GGG Gly 245	GAG Glu	GTG Val	GTC (Val	GCT (Ala	GTG 2 Val 250	Arg Arg	TT C Val	Pro	TT Leu	949

CTC	CAC	CTT	TCT	AAT	TTT (Gln	Ile	Asn	Asp	Trp	Pro	Glu	Leu	Ser Thi	•
255					260					265				270	,
AAG Lys	AGA Arg	TAT Tyr	GCT Ala	TTG Leu 275	ATG (Met	GTT ' Val	MG . Leu	ATG Met	Leu 280	Pro	CA G Ser	AT A Asp	GT C Ser	GCA AGG Ala Arg 285	1045
CAA Gln	TGG Trp	CAT His	GTC Val 290	His	GAG Glu	TTG Leu	GAA Glu	CTC Leu 295	VAI	GAA (Glu	TC G Val	TC (Val	Ala 300	GAT CAG Asp Gli	1093
GTG Val	GCT Ala	GTA Val 305	GCT Ala	CTC Leu	TCA Ser	CAT His	GCT Ala 310	Ala	ATC Ile	CTA (GAA G	AG 7 Glu 315	Ser	ATG CGA Met Ar	1141
GCT Ala	AGG Arg 320	GAC Asp	CTT Leu	CTC Leu	ATG Met	GAG Glu 325	Gln	AAT Asn	GTT Val	GCT (Leu 330	ASP	CTA (Leu	GCT AGA Ala Ar	1189 g
CGA Arg 335	GAA Glu	GCA Ala	GAA Glu	ACA Thr	GCA Ala 340	Ile	CGT Arg	GCC Ala	CGC Arg	AAT (Asn 345	Asp	TTC (Phe	CTA (Leu	GCG GTT Ala Va 35	.
Met	Asn	His	Glu	355	Arg	Thr	Pro	Met	360)	. lie	TIE	. WIS	CTC TCT Leu Se 365	
TCC Ser	TTA Leu	CTC Leu	CAA Glr 370	Glu	ACG Thr	GAA Glu	CTA Leu	ACC Thi 37	Pro	GAA Glu	CAA 2 Gln	AGA Arg	CTG Lev 380	ATG GTG 1 Met Va)	1333
GAA Glu	ACA Thr	ATA Ile 385	. Let	AAA Lys	AGT Ser	AGT Ser	AAC Ast 390	ı Lei	TTG 1 Lev	GCA 1 Ala	ACT ' Thr	TTG Leu 395	i we	AAT GAT : Asn As	1381 P
GTC Val	TTA Leu 400	Asp	CTI Lev	TCA Ser	AGG Arg	TTA Lev 405	Glu	GAT 1 As	GGA p Gly	AGT Y Sei	CTT Leu 410	GII	CTT Let	GAA CTT u Glu Le	1429 eu
GGG Gly 415	Thr	TTC	AAT ASI	CTT n Leu	CAT His 420	Thi	TTA Let	TTT 1 Ph	AGA e Ar	GAG g Glu 425	i var	CTC Lev	AAT 1 Asi	CTG ATA n Leu II 43	.e .
AAG Lys	CCI Pro	ATA Ile	GCC Ala	GTT a Val 43!	l Val	AAG L Lys	AAA Ly:	TTA s Le	CCC u Pro 44	Ò TT	ACA Thr	CTA Let	AAT 1 As:	CTT GCA n Leu Al 445	1525 la
CCA	GAT Asp	TIC Let	CCI Pro 45	o Gli	TTT u Phe	GTT Val	GTT L Va	GGG 1 G1 45	y As	GAG p Gl	AAA u Lys	CGG : Ar	CTA g Le 46	ATG CAG u Met Gi 0	1573 ln
ATA Ile	ATA : Ile	TTI Le 46	u As	r ATA n Il	GTT e Va	GGT 1 Gl	AAT Y As 47	U YI	GTG a Va	AAA 1 Ly:	TTC s Phe	TCC Se: 47	r ry	CAA GGT s Gln G	1621 ly
AG1 Set	110 480	e Se	C GT	A ACC	GCT F Ala	CTI a Le 48	u Va	ACC 1 Th	AAG Ir Ly	TCA 's Se	GAC r Ası 49	bin	CGA r Ar	GCT GCT g Ala A	1669 la
GA(As) 49!	Ph	r TT e Ph	T GT e Va	C GTY	CC) 1 Pr 50	o Th	r GGC r Gl	AG Y Se	r CAT	TTC s Ph 50	e Ty	TTG r Le	AGA u Ar	GTG AAG g Val L 5	; 1717 ys 10

GTA Val	AAA Lys	GAC Asp	TCT Ser	GGA Gly 515	Ala	GGA Gly	ATA / Ile	AAT Asn	CCT Pro 520	Glr	GAC Asp	ATT Ile	CCA Pr	AAG o Ly 52	's Ile	1765
TTC	ACT Thr	AAA Lys	Phe 530	: Ala	CAA Gln	ACA Thr	CAA Glr	TCT Ser 535	Leu	GCG Ala	ACG Thr	AGA Arg	AGC Se 54	r Se	GGT er Gly	1813
GGT Gly	AGT Ser	GGG Gly 545	Leu	GGC Gly	CTC Leu	GCC Ala	ATC 11e 550		AAG Lys	AGG Arg	TTT Phe	GTG . Val 555	As	CTG n Le	ATG Eu Met	1861
GAG Glu	GGT Gly 560	Asn	ATT	TGG Trp	ATT Ile	GAG Glu 565	Ser	GAT Asp	GGT Gly	CTT Leu	GGA Gly 570	Lys	GGA G1	TGC Y Cy	ACG s Thr	1909
GCT Ala 575	Ile	TTT	GAT Asp	GTT Val	AAA Lys 580	Leu	GGG Gly	ATC Ile	TCA Ser	GAA Glu 585	Arg	TCA Z Ser	AAC As:	GAA n Gl	TCT u Ser 590	1957
AAA Lys	CAG Gln	TCG Ser	GGC Gly	ATA Ile 595	Pro	AAA Lys	GTT Val	CCA Pro	GCC Ala 600	Ile	CCC Pro	CGA (Arg	CAT His	TCA S Se 60	r Asn	2005
TTC Phe	ACT Thr	GGA Gly	CTT Leu 610	Lys	GTT Val	CTT Leu	GTC Val	ATG Met 615	GAT Asp	GAG Glu	AAC (Asn	GGG (Gly	Va:	l Se	AGA r Arg	2053
ATG Met	GTG Val	ACG Thr 625	Lys	GGA Gly	CTT Leu	CTT Leu	GTA Val 630		CTT Leu	GGG Gly	TGC (Cys	GAA (Glu 635	STG Val	ACC l Th	ACG r Thr	2101
GTG Val	AGT Ser 640	TCA Ser	AAC Asn	GAG Glu	GAG Glu	TGT Cys 645	Leu	CGA Arg	GTT Val	GTG ' Val	TCC (Ser 650	CAT (His	GAG Glu	CAC Hi	AAA s Lys	2149
GTG Val 655	GTC Val	TTC Phe	ATG Met	GAC Asp	GTG Val 660	TGC Cys	ATG Met	CCC (Pro	GGG Gly	GTC (Val 665	GAA / Glu	AAC 1 Asn	TYI	CAA Gl:	ATC n Ile 670	2197
GCT Ala	CTC'	CGT Arg	ATT	CAC His 675	GAG Glu	AAA Lys	TTC Phe	ACA . Thr	AAA Lys 680	CAA (Gln	CGC (Arg	CAC C His	AA Glr	CGG Arg 68	g Pro	2245
CTA Leu	CTT Leu	GTG Val	GCA Ala 690	CTC Leu	AGT Ser	GGT Gly	AAC Asn	ACT (Thr 695	GAC . Asp	AAA ' Lys	ICC A Ser	ACA A Thr	Lys 700	Gli	AAA 1 Lys	2293
TGC Cys	ATG Met	AGC Ser 705	TTT Phe	GGT Gly	CTA Leu	GAC Asp	GGT Gly 710	GTG 1	ITG (Leu	CTC / Leu	AAA (Lys	Pro 715	TA ' Val	TCA Sei	CTA Leu	2341
GAC Asp	AAC Asn 720	ATA Ile	AGA Arg	GAT Asp	GTT Val	CTG Leu 725	TCT (Ser	GAT (Asp	CTT (Leu	CTC (Leu	GAG C Glu 730	CC C Pro	GG (Arg	GTA Val	CTG Leu	2389
		GGC Gly		TAAA	GGCG	AT G	GATG	CCCC.	A TG	CCCC.	agag	GAGT	TAAT	TCC		2441
GCT	CCGC	CT I	CTTC	TCCC	G TA	AAAC.	ATCG	GAAG	CTG	ATG I	TCTC	TGGT	т тл	TAF	CTGTA	2501
CATA	ATCAC	GAG A	TTGI	CGGA	G CG	TTTT	GGAT	GAT	TCT	raa a	ACAG	AAAG	G G	ATA	ACAAA	2561

ATAGAAACTC TAAACCGGTA TGTGTCCGTG GCGATTTCGG TTATAGAGGA ACAAGATGGT 2621
GGTGGTATAA TCATACCATT TCAGATTACA TGTTTGACTA ATGTTGTATC CTTATATATG 2681
TAGTTACATT CTTATAAGAA TTTGGATCGA GTTATGGATG CTTGTTGCGT GCATGTATGA 2741
CATTGATGCA GTATTATGGC GTCAGCTTTG CGCCGCTTAG TAGAAC 2787

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 738 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

 Met 1
 Glu Val
 Cys
 Ash 5
 Cys
 Ile Glu Pro Gln
 Trp Pro Ala Asp Glu Leu 15
 Ala Asp Glu Leu 15

 Leu Met Lys Tyr 20
 Gln Tyr Ile Ser Asp 25
 Phe Phe Ile Ala Ile Ala Ile Ala Tyr 30
 Ala Leu Tyr 30
 Ala Tyr 30
 Al

Lys Ile Ser Pro Asn Ser Pro Val Ala Arg Leu Arg Pro Val Ser Gly 225 230 235 240 Lys Tyr Met Leu Gly Glu Val Val Ala Val Arg Val Pro Leu Leu His 245 250 255 Leu Ser Asn Phe Gln Ile Asn Asp Trp Pro Glu Leu Ser Thr Lys Arg Tyr Ala Leu Met Val Leu Met Leu Pro Ser Asp Ser Ala Arg Gln Trp His Val His Glu Leu Glu Leu Val Glu Val Val Ala Asp Gln Val Ala Val Ala Leu Ser His Ala Ala Ile Leu Glu Glu Ser Met Arg Ala Arg 305 310 315 320 Asp Leu Leu Met Glu Gln Asn Val Ala Leu Asp Leu Ala Arg Arg Glu Ala Glu Thr Ala Ile Arg Ala Arg Asn Asp Phe Leu Ala Val Met Asn His Glu Met Arg Thr Pro Met His Ala Ile Ile Ala Leu Ser Ser Leu 360 Leu Gln Glu Thr Glu Leu Thr Pro Glu Gln Arg Leu Met Val Glu Thr 375 Ile Leu Lys Ser Ser Asn Leu Leu Ala Thr Leu Met Asn Asp Val Leu Asp Leu Ser Arg Leu Glu Asp Gly Ser Leu Gln Leu Glu Leu Gly Thr Phe Asn Leu His Thr Leu Phe Arg Glu Val Leu Asn Leu Ile Lys Pro Ile Ala Val Val Lys Lys Leu Pro Ile Thr Leu Asn Leu Ala Pro Asp Leu Pro Glu Phe Val Val Gly Asp Glu Lys Arg Leu Met Gln Ile Ile 455 Leu Asn Ile Val Gly Asn Ala Val Lys Phe Ser Lys Gln Gly Ser Ile Ser Val Thr Ala Leu Val Thr Lys Ser Asp Thr Arg Ala Ala Asp Phe 485 490 495 Phe Val Val Pro Thr Gly Ser His Phe Tyr Leu Arg Val Lys Val Lys 500 505 510 Asp Ser Gly Ala Gly Ile Asn Pro Gln Asp Ile Pro Lys Ile Phe Thr Lys Phe Ala Gln Thr Gln Ser Leu Ala Thr Arg Ser Ser Gly Gly Ser Gly Leu Gly Leu Ala Ile Ser Lys Arg Phe Val Asn Leu M t Glu Gly 555 550

Asn Ile Trp Ile Glu Ser Asp Gly Leu Gly Lys Gly Cys Thr Ala Ile Fro Asp Val Lys Glu Ser Asp Glu Arg Ser Asn Glu Ser Lys Gln Ser Gly Ile Pro Lys Val Pro Ala Ile Pro Arg His Ser Asn Phe Thr Glu Lys Val Leu Val Met Asp Glu Asn Gly Val Ser Arg Met Val Glo Glo Glu Cys Leu Arg His Ser Arg Met Val Glo Glo Glu Glu Cys Leu Arg Val Val Glu Cys Glu Val Thr Thr Val Ser G45

Phe Met Asp Val Cys Leu Arg Val Val Ser His Glu His Lys Val Val G65

Arg Ile His Glu Lys Phe Thr Lys Gln Arg His Gln Arg Pro Leu Leu G960

Arg Ile His Glu Lys Phe Thr Lys Gln Arg His Gln Arg Pro Leu Leu G960

Arg Ile His Glu Lys Phe Thr Lys Gln Arg His Gln Arg Pro Leu Leu G960

Arg Ile His Glu Lys Phe Thr Lys Gln Arg His Gln Arg Pro Leu Leu G960

Arg Phe Gly Leu Asp Gly Val Leu Leu Lys Pro Val Ser Leu Asp Asn 705

Arg Asp Val Leu Asp Gly Val Leu Leu Lys Pro Val Ser Leu Asp Asn 720

Ile Arg Asp Val Leu Rsr Asp Leu Leu Glu Pro Arg Val Leu Tyr Glu 735

Gly Met

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 155 amino acids
 - (B) TYPE: amino acid.
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Gln Asn Val Ala Leu Asp Leu Ala Arg Arg Glu Ala Glu Thr Ala Ile 1 5 10 15

Arg Ala Arg Asn Asp Phe Leu Ala Val Met Asn His Glu Met Arg Thr 20 25 30

Pro Met His Ala Ile Ile Ala Leu Ser Ser Leu Leu Gln Glu Thr Glu 35 40 45

Leu Thr Pro Glu Gln Arg Leu Met Val Glu Thr Ile Leu Lys Ser Ser 50 55 60

Asn Leu Leu Ala Thr Leu M t Asn Asp Val Leu Asp L u Ser Arg L u 65 70 75 80

Glu Asp Gly Ser Leu Gln Leu Glu Leu Gly Thr Phe Asn Leu His Thr 85 90 95

Leu Phe Arg Glu Val Leu Asn Leu Ile Lys Pro Ile Ala Val Val Lys

Lys Leu Pro Ile Thr Leu Asn Leu Ala Pro Asp Leu Pro Glu Phe Val

Val Gly Asp Glu Lys Arg Leu Met Gln Ile Ile Leu Asn Ile Val Gly 130 135 140

Asn Ala Val Lys Phe Ser Lys Gln Gly Ser Ile 145 150 155

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 155 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Gln Asn Val Glu Leu Asp Leu Ala Lys Lys Arg Ala Gln Glu Ala Ala 1 5 10 15

Arg Ile Lys Ser Glu Phe Leu Ala Asn Met Ser His Glu Leu Arg Thr 20 25 30

Pro Leu Asn Gly Val Ile Gly Phe Thr Arg Leu Thr Leu Lys Thr Glu 35

Leu Thr Pro Thr Gln Arg Asp His Leu Asn Thr Ile Glu Arg Ser Ala 50 55 60

Asn Asn Leu Leu Ala Ile Ile Asn Asp Val Leu Asp Phe Ser Lys Leu 65 70 75 80

Glu Ala Gly Lys Leu Ile Leu Glu Ser Ile Pro Phe Pro Leu Arg Ser 85 90 95

Thr Leu Asp Glu Val Val Thr Leu Leu Ala His Ser Ser His Asp Lys

Gly Leu Glu Leu Thr Leu Asn Ile Lys Ser Asp Val Pro Asp Asn Val

Ile Gly Asp Pro Leu Arg Leu Gln Gln Ile Ile Thr Asn Leu Val Gly
130 135 140

Asn Ala Ile Lys Phe Thr Glu Asn Gly Asn Ile 145 150 155

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 155 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Gln Asn Ile Glu Leu Asp Leu Ala Arg Lys Glu Ala Leu Glu Ala Ser 1 5 10 15

Arg Ile Lys Ser Glu Phe Leu Ala Asn Met Ser His Glu Ile Arg Thr

Pro Leu Asn Gly Ile Leu Gly Phe Thr His Leu Leu Gln Lys Ser Glu

Leu Thr Pro Arg Gln Phe Asp Tyr Leu Gly Thr Ile Glu Lys Ser Ala

Asp Asn Leu Leu Ser Ile Ile Asn Glu Ile Leu Asp Phe Ser Lys Ile 65 70 75 80

Glu Ala Gly Lys Leu Val Leu Asp Asn Ile Pro Phe Asn Leu Arg Asp

Leu Leu Gln Asp Thr Leu Thr Ile Leu Ala Pro Ala Ala His Ala Lys

Gln Leu Glu Leu Val Ser Leu Val Tyr Arg Asp Thr Pro Leu Ala Leu

Ser Gly Asp Pro Leu Arg Leu Arg Gln Ile Leu Thr Asn Leu Val Ser

Asn Ala Ile Lys Phe Thr Arg Glu Gly Thr Ile 145

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 149 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Arg Ala Val Arg Glu Ala Arg His Ala Asn Gln Ala Lys Ser Arg Phe

Leu Ala Asn Met S r His Glu Phe Arg Thr Pro Leu Asn Gly Leu Ser

Gly Met Thr Glu Val Leu Ala Thr Thr Arg Leu Asp Ala Glu Gln Lys 35 40 45

Glu Cys Leu Asn Thr Ile Gln Ala Ser Ala Arg Ser Leu Leu Ser Leu 50 55 60

Val Glu Glu Val Leu Asp Ile Ser Ala Ile Glu Ala Gly Lys Ile Arg 65 70 75 80

Ile Asp Arg Arg Asp Phe Ser Leu Arg Glu Met Ile Gly Ser Val Asn 85 90 95

Leu Ile Leu Gln Pro Gln Ala Arg Gly Arg Arg Leu Glu Tyr Gly Thr

Gln Val Ala Asp Asp Val Pro Asp Leu Leu Lys Gly Asp Thr Ala His 115 120 125

Leu Arg Gln Val Leu Leu Asn Leu Val Gly Asn Ala Val Lys Phe Thr 130 135 140

Glu His Gly His Val

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 66 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Leu Lys Val Leu Val Met Asp Glu Asn Gly Val Ser Arg Met Val Thr
1 5 10 15

Lys Gly Leu Leu Val His Leu Gly Cys Glu Val Thr Thr Val Ser Ser 20 25 30

Asn Glu Glu Cys Leu Arg Val Val Ser His Glu His Lys Val Val Phe 35 40 45

Met Asp Val Cys Met Pro Gly Val Glu Asn Tyr Gln Ile Ala Leu Arg 50 55 60

Ile His

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 67 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Leu Arg Val Leu Val Val Asp Asp His Lys Pro Asn Leu Met Leu Leu

Arg Gln Gln Leu Asp Tyr Leu Gly Gln Arg Val Val Ala Ala Asp Ser 20 25 30

Gly Glu Ala Ala Leu Ala Leu Trp His Glu His Ala Phe Asp Val Val

Ile Thr Asp Cys Asn Met Pro Gly Ile Asn Gly Tyr Glu Leu Ala Arg

Arg Ile Arg

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 67 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Met Ile Leu Val Val Asp Asp His Pro Ile Asn Arg Arg Leu Leu

Ala Asp Gln Leu Gly Ser Leu Gly Tyr Gln Cys Lys Thr Ala Asn Asp 20 25 30

Gly Val Asp Ala Leu Asn Val Leu Ser Lys Asn His Ile Asp Ile Val

Leu Ser Asp Val Asn Met Pro Asn Met Asp Gly Tyr Arg Leu Thr Gln 50 60

Arg Ile Arg 65

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 67 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Pro Arg Val Leu Cys Val Asp Asp Asn Pro Ala Asn Leu Leu Val Gln Thr Leu Leu Glu Asp Met Gly Ala Glu Val Val Ala Val Glu Gly Gly Tyr Ala Ala Val Asn Ala Val Gln Gln Glu Ala Phe Asp Leu Val Leu Met Asp Val Gln Met Pro Gly Met Asp Gly Arg Gln Ala Thr Glu

Ala Ile Arg

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 369 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

ATGGAATCCT GTGATTGCAT TGAGGCTTTA CTGCCAACTG GTGACCTGCT GGTTAAATAC CANTACCTCT CAGATTTCTT CATTGCTGTA GCCTACTTTT CCATTCCGTT GGAGCTTATT 120 TATTITGTCC ACAAATCTGC ATGCTTCCCA TACAGATGGG TCCTCATGCA ATTTGGTGCT 180 TTTATTGTGC TCTGCGGAGC AACACACTTT ATTAGCTTGT GGACCTTCTT TATGCACTCT 240 AAGACGGTCG CTGTGGTTAT GACCATATCA AAAATGTTGA CAGCTGCCGT GTCCTGTATC 300 ACAGCTTTGA TGCTTGTTCA CATTATTCCT GATTTGCTAA GTGTTAAAAC GCGAGAGTTG 360 TTCTTGAAA 369

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 369 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ATGGAAGTCT GCAATTGTAT TGAACCGCAA TGGCCAGCGG ATGAATTGTT AATGAAATAC CAATACATCT CCGATTTCTT CATTGCGATT GCGTATTTTT CGATTCCTCT TGAGTTGATT 120 TACTITGIGA AGAAATCAGC CGIGTITCCG TATAGAIGGG TACTIGITCA GIITGGIGCI 180

296

3 %	
TITATCGTTC TITGTGGAGC AACTCATCTT ATTAACTTAT GGACTTTCAC TACGCATTCG	240
AGAACCGTGG CGCTTGTGAT GACTACCGCG AAGGTGTTAA CCGCTGTTGT CTCGTGTGCT	300
ACTGCGTTGA TGCTTGTTCA TATTATTCCT GATCTTTTGA GTGTTAAGAC TCGGGAGCTT	360
TTCTTGAAA	369
(2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 296 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
GCTCTTTCAC ATGCTGCAAT TTTAGAAGAT TCCATGCGAG CCCATGATCA GCTCATGGAA	
CAGAATATTG CTTTGGATGT AGCTCGACAA GAAGCAGAGA TGGCCATCCG TGCACGTAAC	
GACTICCTIG CIGIGATGAA CCATGAAATG AGAACGCCCA TGCATGCAGT TATTGCTCTG	180
TGCTCTCTGC TTTTAGAAAC AGACTTAACT CCAGAGCAGA GAGTTATGAT TGAGACCATA	240
TTGAAGAGCA GCAATCTTCT TGCAACACTG ATAAATGATG TTCTAGATCT TTCTAG	296
(2) INFORMATION FOR SEQ ID NO:23:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 296 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GCTCTCTCAC ATGCTGCGAT CCTAGAAGAG TCGATGCGAG CTAGGGACCT TCTCATGGAG	
CAGAATGTTG CTCTTGATCT AGCTAGACGA GAAGCAGAAA CAGCAATCCG TGCCCGCAAT	
GATTTCCTAG CGGTTATGAA CCATGAAATG CGAACACCGA TGCATGCGAT TATTGCACTC	
TCTTCCTTAC TCCAAGAAAC GGAACTAACC CCTGAACAAA GACTGATGGT GGAAACAATA	240
CTTAAAAGTA GTAACCTTTT GGCAACTTTG ATGAATGATG TCTTAGATCT TTCAAG	296

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 123 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met Glu Ser Cys Asp Cys Ile Glu Ala Leu Leu Pro Thr Gly Asp Leu

Leu Val Lys Tyr Gln Tyr Leu Ser Asp Phe Phe Ile Ala Val Ala Tyr
20 25 30

Phe Ser Ile Pro Leu Glu Leu Ile Tyr Phe Val His Lys Ser Ala Cys

Phe Pro Tyr Arg Trp Val Leu Met Gln Phe Gly Ala Phe Ile Val Leu

Cys Gly Ala Thr His Phe Ile Ser Leu Trp Thr Phe Phe Met His Ser.

Lys Thr Val Ala Val Val Met Thr Ile Ser Lys Met Leu Thr Ala Ala

Val Ser Cys Ile Thr Ala Leu Met Leu Val His Ile Ile Pro Asp Leu 100 105 110

Leu Ser Val Lys Thr Arg Glu Leu Phe Leu Lys

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 123 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Met Glu Val Cys Asn Cys Ile Glu Pro Gln Trp Pro Ala Asp Glu Leu

Leu Met Lys Tyr Gln Tyr Ile Ser Asp Phe Phe Ile Ala Ile Ala Tyr 20 25

Phe Ser Ile Pro Leu Glu Leu Ile Tyr Phe Val Lys Lys Ser Ala Val

Phe Pro Tyr Arg Trp Val L u Val Gln Phe Gly Ala Phe Ile Val Leu 50 60

PCT/US94/07418 WO 95/01439

96

Cys Gly Ala Thr His Leu Ile Asn Leu Trp Thr Phe Thr Thr His Ser 65 70 75

Arg Thr Val Ala Leu Val Met Thr Thr Ala Lys Val Leu Thr Ala Val

Val Ser Cys Ala Thr Ala Leu Met Leu Val His Ile Ile Pro Asp Leu

Leu Ser Val Lys Thr Arg Glu Leu Phe Leu Lys 115 120

- (2) INFORMATION FOR SEQ ID NO:26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

AGTAAGAACG AAGAAGAAGT G

21

- (2) INFORMATION FOR SEQ ID NO:27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 56 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Leu Arg Val Lys Val Lys Asp Ser Gly Ala Gly Ile Asn Pro Gln Asp

Ile Pro Lys Ile Phe Thr Lys Phe Ala Gln Thr Gln Ser Leu Ala Thr

Arg Ser Ser Gly Gly Ser Gly Leu Gly Leu Ala Ile Ser Lys Arg Phe

Val Asn Leu Met Glu Gly Asn Ile 50

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 56 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Ile Glu Val Gln Ile Arg Asp Thr Gly Ile Gly Ile Pro Glu Arg Asp

Gln Ser Arg Leu Phe Gln Ala Phe Arg Gln Ala Asp Ala Ser Ile Ser

Arg Arg His Gly Gly Thr Gly Leu Gly Leu Val Ile Thr Gln Lys Leu

Val Asn Glu Met Gly Gly Asp Ile

- (2) INFORMATION FOR SEQ ID NO:29:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 56 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Leu Arg Ile Ser Val Gln Asp Thr Gly Ile Gly Leu Ser Ser Gln Asp

Val Arg Ala Leu Phe Gln Ala Phe Ser Gln Ala Asp Asn Ser Leu Ser

Arg Gln Pro Gly Gly Thr Gly Leu Gly Leu Val Ile Ser Lys Arg Leu

Ile Glu Gln Met Gly Gly Glu Ile 50 55

- (2) INFORMATION FOR SEQ ID NO:30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 56 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Leu Arg Phe Asp Val Glu Asp Thr Gly Ile Gly Val Pro Met Asp Met
1 10 15

Arg Pro Arg Leu Phe Glu Ala Phe Glu Gln Ala Asp Val Gly Leu Ser

Arg Arg Tyr Glu Gly Thr Gly Leu Gly Thr Thr Ile Ala Lys Gly Leu

Val Glu Ala Met Gly Gly Ser Il

PCT/US94/07418

98

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Pro Leu Leu Val Ala Leu Ser Gly Asn Thr Asp Lys Ser Thr Lys Glu

Lys Cys Met Ser Phe Gly Leu Asp Gly Val Leu Leu Lys Pro Val Ser

Leu Asp Asn Ile Arg Asp Val Leu Ser Asp Leu Leu 35

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Cys Ile Leu Phe Gly Phe Thr Ala Ser Ala Gln Met Asp Glu Ala His 10

Ala Cys Arg Ala Ala Gly Met Asp Asp Cys Leu Phe Lys Pro Ile Gly

Val Asp Ala Leu Arg Gln Arg Leu Asn Glu Ala Ala

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Leu Pro Val Ile Gly Val Thr Ala Asn Ala Leu Ala Glu Glu Lys Gln

Arg Cys Leu Glu Ser Gly Met Asp Ser Cys Leu Ser Lys Pro Val Thr

Leu Asp Val Ile Lys Gln Ser L u Thr Leu Tyr Ala

(2) INFORMATI	ON FOR	SEQ	ID	NO:34	:
---------------	--------	-----	----	-------	---

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Leu Pro Ile Val Ala Leu Thr Ala His Ala Met Ala Asn Glu Lys Arg

Ser Leu Leu Gln Ser Gly Met Asp Asp Tyr Leu Thr Lys Pro Ile Ser

Glu Arg Gln Leu Ala Gln Val Val Leu Lys Trp Thr 40

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2405 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS (B) LOCATION: 288..2196

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

- TTTTTTTTT GTCAAAAGCT CGATGTAAAA ATCCGATGGC CACAAGCAAA ACGACAGGTT
- CCAACTTCAC GGAGATTGTG AAAATGGAGT AGTAGTTCAG TGAAGTAGTA GATACTGAGA 120
- TCGCATTCTC CGGCGTCGTT TTTCACATCG AAATAGTCGT GTAAAAAAAT GAAAAAATTG 180
- CTGCGAGACA GGTATGTGTC GCAGCAGGAA ATAGCATCTT AAAGGAAGGA AGGAAGGAAA 240
- CTCGAAAGTT ACTAAAAATT TTTGATTCTT TGGGACGAAA CGAGATA ATG GAA TCC 296 Met Glu Ser
- TGT GAT TGC ATT GAG GCT TTA CTG CCA ACT GGT GAC CTG CTG GTT AAA 344 Cys Asp Cys Ile Glu Ala Leu Leu Pro Thr Gly Asp Leu Leu Val Lys 10
- TAC CAA TAC CTC TCA GAT TTC TTC ATT GCT GTA GCC TAC TTT TCC ATT 392 Tyr Gln Tyr Leu Ser Asp Phe Phe Ile Ala Val Ala Tyr Phe Ser Ile
- CCG TTG GAG CTT ATT TAT TTT GTC CAC AAA TCT GCA TGC TTC CCA TAC Pro Leu Glu Leu Ile Tyr Phe Val His Lys Ser Ala Cys Phe Pro Tyr 40

AGA Arg	TGG Trp	GTC (Val	CTC Leu 55	ATG Met	CAA ' Gln	TTT (Phe	GGT (Gly	GCT T Ala 60	MTT A Phe	ATT G Ile	TG C' Val	TC TG Leu C	r Go Cys (65	SA GC	Ala	488
ACA Thr	CAC His	TTT Phe 70	ATT Ile	AGC Ser	TTG Leu	TGG . Trp	ACC ' Thr 75	TTC T	Phe	ATG C Met	AC T His	CT AA Ser I 80	.G AC	G GI	C Val	536
GCT Ala	GTG Val 85	GTT Val	ATG Met	ACC Thr	ATA Ile	TCA Ser 90	AAA Lys	ATG ' Met	TTG A	ACA G	CT G Ala 95	CC GT Ala '	Val	C TO Ser	T Cys	584
ATC Ile 100	ACA Thr	GCT Ala	TTG Leu	ATG Met	CTT Leu 105	GTT Val	CAC His	ATT . Ile	ATT (Pro 110	ASP	TG CT Leu	Leu Leu	361	MT Val 115	632
AAA Lys	ACG Thr	CGA Arg	GAG Glu	TTG Leu 120	TTC Phe	TTG Leu	AAA Lys	ACT Thr	CGA Arg 125	Ara	GAA G Glu	AG C	M G	AC AI Asp 130	AG Lys	680
GAA Glu	ATG Met	GGC Gly	CTA Leu 135	Ile	ATA Ile	AGA Arg	CAA Gln	GAA Glu 140	GIU	ACT (Thr	GC A Gly	GA C Arg	AT G' His 145	TC AG Val	GG Arg	728
ATG Met	CTG Leu	ACT Thr 150	His	GAG Glu	ATA Ile	AGA Arg	AGC Ser 155	nur	CTC Leu	GAC . Asp	AGA C Arg	AC A His 160	CA A Thr	TC T	TG Leu	776
AAG Lys	ACT Thr 165	Thr	CTT Leu	GTG Val	GAG Glu	CTA Leu 170	r GTÄ	AGG Arg	ACC Thr	TTA Leu	GAC (Asp 175	CTG G Leu	CA G Ala	AA T Glu	GT Cys	824
GCT Ala 180	Leu	TGG Trp	ATG Met	CCA Pro	TGC Cys 185	Glr	GGA Gly	GGC , Gly	CTG Leu	ACT Thr 190	reu	CAA C Gln	TT T Leu	CC C Ser	AT His 195	872
AAT Asn	TTA Leu	AAC Asn	AAT Asr	CTA Lev 200	ı Ile	CCT Pro	CTG Lev	GGA 1 Gly	TCT / Set 205	r inr	GTG (CCA A Pro	TT A	AT C Asn 210	TT Leu	920
CCT	T ATI	ATC	AAT Ass 21	a Glu	ATT	TTT Pho	AGT e Se:	AGC r Set 22	r Pro	GAA o Glu	GCA . 1 Ala	ATA C	Gln 225	TT C	Pro	968
CA? His	r ACA s Thi	AAT Asr 230	ı Pro	TTG Lev	GCA 1 Ale	AGG A Ar	ATG g Me	t Ar	AAT g Asi	ACT n Thi	GTT (GGT A Gly 240	GA 1 Arg	TYT A	TT Ile	1016
CC: Pro	A CCP Pro 24!	Gli	GTA 1 Va	A GTM 1 Va	GCI 1 Al	GTI a Va 25	l Ar	GTA g Va	. CCG 1 Pr	CTT o Lev	TTA Leu 255	CAC C His	Leu	CA A Ser	AT Asn	1064
TT Ph	e Th:	r Aan	r GA(n As	r TGC p Tr	G GC1 p Al 26	a Gl	u Le	TCT u Se	ACT r Th	AGA r Ar	g ser	TAT (GCG (Ala	CTT / Val	Met 275	1112
GT Va	T CTO	G GT.	r CTC l Le	c ccc u Pr 28	o Me	AA! t As	r GGC n Gl	TTA y Le	AGA u Ar 28	â ră	TGG s Tri	CGT (GAA (CAT (His 290	GIG	1160
TT Le	A GA u Gl	A CT	r GT u Va 29	1 G1	A GT n Va	r GTY	C GC	A GAT La As 30	ib er	GTT n Va	GCT 1 Ala	GTC a Val	GCT Ala 305	. Dec	TCA Ser	1208

n.	2 VI	31	0	e Le	u GI	ı Ası	31:	r Me	t Arq	g Alá	a His	320	Gln	CTC ATG Leu Me	1256 t
GI	32	5 .	u 11	e Al	a Let	330	va.	r Ale	a Arg	g Glr	335	l Ala	Glu	ATG GCC Met Al	1304 a
340)	3 WIS	a Ar	g Asi	n Asr 345	Phe	Leu	ı Ala	a Val	350	Asn	His	Glu	ATG AGA Met Ar 35	
4111	Pro	o met	HIS	360)	. Ile	: Ala	ı Lei	365	Ser	Leu	Leu	Leu	GAA ACA Glu Th: 370	1400 r
GAC Asp	Lev	ACT Thr	CCA Pro 375	S GIL	CAG 1 Gln	AGA Arg	CTT Val	ATG Met 380	Ile	GAG Glu	ACC . Thr	ATA 1	TG A Leu 385	AG AGC Lys Se	1448
AGC Ser	TAA : Asr	CTT Leu 390	rec	GCA Ala	ACA Thr	CTG Leu	ATA Ile 395	Asn	GAT Asp	GTT (Val	CTA (Leu	GAT C Asp 400	TT I Leu	CT AGA Ser Arç	1496
CTI Leu	GAA Glu 405	LASP	GGT Gly	ATT Ile	CTT Leu	GAA Glu 410	CTA Leu	GAA Glu	AAC Asn	GGA 2 Gly	ACA Thr 415	Phe	AT C Asn	TT CAT Leu His	1544
420	116	Leu	Arg	GIU	425	Val	Asn	Leu	Ile	Lys 430	Pro	Ile	Ala	CT TTG Ser Leu 435	
AAG Lys	AAA Lys	TTA Leu	TCT Ser	ATA Ile 440	inr	CTT Leu	GCT Ala	TTG Leu	GCT (Ala 445	CTG (Leu	ASP	TA C Leu	CT A	TT CTT Ile Leu 450	1640
GCT Ala	GTG Val	GGT Gly	GAT Asp 455	GCA Ala	AAA Lys	CGT Arg	CTT . Leu	ATC Ile 460	CAA / Gln	ACT (Thr	CTC I Leu	Leu	AC G' Asn 465	TG GTG Val Val	1688
GGA Gly	AAT Asn	GCT Ala 470	GTG Val	AAG Lys	TTC Phe	ACT : Thr	AAA Lys 475	GAA (Glu	GGA (Gly	CAT A His	TT T Ile	CA A Ser 480	TT G	AG GCT Glu Ala	1736
TCA Ser	GTT Val 485	GCC Ala	AAA Lys	CCA Pro	GAG '	TAT (Tyr 490	GCG A	AGA (Arg	ASP	Cys	AT C His 495	CT CO Pro	Pro	AA ATG Glu Met	1784
TTC Phe 500	CCT Pro	ATG Met	CCA Pro	AGT Ser	GAT (Asp 505	GC (Gly	CAG 1 Gln	Phe	TAT I Tyr	TG C Leu 510	GT G Arg	TC CA	G G7	TT AGA Val Arg 515	1832
GAT Asp	ACT Thr	GGG Gly	TGT Cys	GGA Gly 520	ATT A	AGC (Ser	CA C Pro	Gln	AT A Asp 525	TA C Ile	CA C' Pro	TA GI Leu 1	Val	C ACC Phe Thr 530	1880
AAA Lys	TTT Phe	GCA Ala	GAG Glu 535	TCA Ser	CGG (Arg	CT A Pro	CG I Thr	CA A Ser 540	AT C Asn	GA A Arg	GT AG Ser	Thr (A GG Sly (G GAA Gly Glu	1928
GGT Gly	CTA Leu	GGG Gly 550	CTT (Leu	GCC Ala	ATT 1 Ile	Trp .	GA C Arg 555	GA I Arg	TT A Phe	TT C	Gln i	PT AT Leu N 560	G AA Met I	A GGT Lys Gly	1976

Asn	Ile 565	Trp	Ile	Glu	Ser	570	GIY	PIO	GIY	Ly C	575					
Phe 580	Val	Val	Lys	Leu	Gly 585	IIe	Cys	nıs	nis	590)					
CTA Leu	CCT Pro	ATG Met	CCT Pro	CCC Pro 600	Arg	GGC	AGA Arg	TTG Leu	AAC Asi 605	ولاسي	GGT . Gly	AGC (AST Asp	GAT C Asp 610	TC Leu	2120
TTC Phe	AGG Arg	TAT Tyr	AGA Arg 615	Gln	TTC Phe	CGT Arg	GGA Gly	GAT Asp 620	, waf	GGT Gly	GGG / Gly	ATG '	Ser 625	GTG A Val	AAT Asn	2168
GCT Ala	CAA Gln	CGC Arg 630	Tyr	CAA Gln	AGA Arç	AGT Sei	ATG Met	-	A TO	GACA	AAAGO	ACA	TTG	TGT		2216
GAC	AAAG	AAC :	ATTA	AATC	AT G	ACTA	GTGA	A TT	IGAG.	ATTT	CTTC	ACTG	TTC	TGTA	CACTC	2276
															CTGGA	
															AAAA	
																2405

(2) INFORMATION FOR SEQ ID NO:36:

AAAAAAAA

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 636 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Met Glu Ser Cys Asp Cys Ile Glu Ala Leu Leu Pro Thr Gly Asp Leu 1 10 15

Leu Val Lys Tyr Gln Tyr Leu Ser Asp Phe Phe Ile Ala Val Ala Tyr 20 25 30

Phe Ser Ile Pro Leu Glu Leu Ile Tyr Phe Val His Lys Ser Ala Cys 35 40

Phe Pro Tyr Arg Trp Val Leu Met Gln Phe Gly Ala Phe Ile Val Leu 50 60

Cys Gly Ala Thr His Phe Ile Ser Leu Trp Thr Phe Phe Met His Ser 65 70 75 80

Lys Thr Val Ala Val Val Met Thr Ile Ser Lys Met Leu Thr Ala Ala 85 90 95

Val Ser Cys Il Thr Ala Leu Met Leu Val His Ile Ile Pro Asp Leu 100 100 110

Leu Ser Val Lys Thr Arg Glu Leu Phe Leu Lys Thr Arg Ala Glu Glu 115 120 125

Leu Asp Lys Glu Met Gly Leu Ile Ile Arg Gln Glu Glu Thr Gly Arg His Val Arg Met Leu Thr His Glu Ile Arg Ser Thr Leu Asp Arg His Thr Ile Leu Lys Thr Thr Leu Val Glu Leu Gly Arg Thr Leu Asp Leu Ala Glu Cys Ala Leu Trp Met Pro Cys Gln Gly Gly Leu Thr Leu Gln Leu Ser His Asn Leu Asn Asn Leu Ile Pro Leu Gly Ser Thr Val Pro Ile Asn Leu Pro Ile Ile Asn Glu Ile Phe Ser Ser Pro Glu Ala Ile 210 215 220 Gln Ile Pro His Thr Asn Pro Leu Ala Arg Met Arg Asn Thr Val Gly Arg Tyr Ile Pro Pro Glu Val Val Ala Val Arg Val Pro Leu His Leu Ser Asn Phe Thr Asn Asp Trp Ala Glu Leu Ser Thr Arg Ser Tyr 260 265 270 Ala Val Met Val Leu Val Leu Pro Met Asn Gly Leu Arg Lys Trp Arg 280 Glu His Glu Leu Glu Leu Val Gln Val Val Ala Asp Gln Val Ala Val 290 295 300 Ala Leu Ser His Ala Ala Ile Leu Glu Asp Ser Met Arg Ala His Asp 305 310 315 320 Gln Leu Met Glu Gln Asn Ile Ala Leu Asp Val Ala Arg Gln Glu Ala 325 330 335 Glu Met Ala Ile Arg Ala Arg Asn Asp Phe Leu Ala Val Met Asn His 340 345 350 Glu Met Arg Thr Pro Met His Ala Val Ile Ala Leu Cys Ser Leu Leu Leu Glu Thr Asp Leu Thr Pro Glu Gln Arg Val Met Ile Glu Thr Ile 370 380 Leu Lys Ser Ser Asn Leu Leu Ala Thr Leu Ile Asn Asp Val Leu Asp 385 390 395 Leu Ser Arg Leu Glu Asp Gly Ile Leu Glu Leu Glu Asn Gly Thr Phe Asn Leu His Gly Ile Leu Arg Glu Ala Val Asn Leu Ile Lys Pro Ile 420 425 430 Ala Ser Leu Lys Lys Leu Ser Ile Thr Leu Ala Leu Ala Leu Asp Leu Pro Ile Leu Ala Val Gly Asp Ala Lys Arg Leu Il Gln Thr Leu Leu 450 455

104

Asn Val Val Gly Asn Ala Val Lys Phe Thr Lys Glu Gly His Ile Ser 465 Ile Glu Ala Ser Val Ala Lys Pro Glu Tyr Ala Arg Asp Cys His Pro Pro Glu Met Phe Pro Met Pro Ser Asp Gly Gln Phe Tyr Leu Arg Val Gln Val Arg Asp Thr Gly Cys Gly Ile Ser Pro Gln Asp Ile Pro Leu Val Phe Thr Lys Phe Ala Glu Ser Arg Pro Thr Ser Asn Arg Ser Thr Gly Gly Glu Gly Leu Gly Leu Ala Ile Trp Arg Arg Phe Ile Gln Leu 545 550 560 Met Lys Gly Asn Ile Trp Ile Glu Ser Glu Gly Pro Gly Lys Gly Thr Thr Val Thr Phe Val Val Lys Leu Gly Ile Cys His His Pro Asn Ala 590 Leu Pro Leu Leu Pro Met Pro Pro Arg Gly Arg Leu Asn Lys Gly Ser Asp Asp Leu Phe Arg Tyr Arg Gln Phe Arg Gly Asp Asp Gly Gly Met Ser Val Asn Ala Gln Arg Tyr Gln Arg Ser Met 630

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4566 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: join(763..1671, 3062..3433, 3572..3838, 3969 ..4096, 4234..4402)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

AGATOTOGTA CTACCAAAAG GTATCCAATT AATCCATGCT TGGCCTCCCA TTACAATGCC TGTAAGAAAT AATTGTTCTT TCCACCTCCA CAACTAATTG TCGAACTATT ATATCTATCT TTATTCCCTT AAATGTGAAA CGAATTACAC AGACTATTTG GCGCTACTTT TTTCCTAGAT ATATTGAAGA CCTAGTTTCT TATATTTGTG GGAAGCATTT GGAAGTTCTA TAAGAACTAT ATCATGTTCG AAAACATTCT TATAATTTTC GACAAGATTG CTGAAGGAGT GTCTTATCTT 300 TTATGTATTC TTGACTAGAG GAGTTTAATA AAAAGAAAAT AGAAAGGAAC AAAGAAACGT 360

											BAAAC							420
	CC'	TACA	TGTI	' ATG	GTTT	TAG :	TTCG'	TTAG.	AG GI	TITZ	ACAT	`ATI	`AAAT	CAG	CAAA	GTTGT	rg	480
	AC.	ATAC	ATAA	AGT	GCAT.	AAC 2	ATAA	AGATY	ga aa	TTCA	CAAT	. IIC	CTGG	ATC '	TTTI	GTG	CA.	540
	AG	GAA	CTAT	, LIT	TTAC	ACT A	ATAA	JTTA(GC TG	TTAA	TTTC	AAT	ATTG	GCT (CTTC	racac	c	600
	110	TTG	TTCT	'TGA	GTAT:	AAT 1	CTAT	TTT	SC AT	CAAA	CATA	TGT	CAGA	ACT :	TATGO	TGCA	L A	660
•	TT?	LAAT.	ATAT	TCA	GGTT	GTT 1	TAACT	CTIC	GT AC	AGCT	TGTT	ATT	CIIC'	TGA (GTC1	CATTI	nc n	720
•	CIT	CTC	CTTA	TTT	GCTA	ACT :	igtg	CTGC	AG TT	TATCT	PTCCA	TC	GTG Val 1	GAG Glu	TCA 1 Ser	rgt Cys	•	774
1	AAC Asn 5	Cy:	S ATO	C ATT	C GAC e As _l	CCA p Pro 1	D GT	TTG	CCT u Pro	GCT Ala	GAC A Asp 15	As	TTG P Let	CTA 1 Let	ATG J Met	AAG Lys 20	•	322
•	. Y ±	GII	ı IV	r 110	e se: 2:	r Ası	o Pne	e Pho	e Ile	3 Ala	a Leu	ı Ala	а Туз	Phe	TCC . Ser 35	Ile		37.0,
I	CA Pro	Va l	GAC Glu	Leu 40	7 116	. TAC ∍ Tyı	TTC Phe	GTT ≥ Va:	AAG Lys 45	Lys	TCT S Ser	GCT Ala	GTC a Val	TTT Phe	CCA '	TAT Tyr		18
A	GA Lrg	TGG	GTT Val	r Ter	'GTG ıVal	CAG Glr	TTC Phe	GGT Gly 60	Ala	TTC Phe	ATA : Ile	GTT Val	CTT Leu 65	Cys	GGA (GCA Ala	9	66
A T	CC hr	CAT His 70	. Ten	ATC	AAC Asn	TTA Leu	TGG Trp 75	TRI	TTT Phe	AAT Asn	ATG Met	CAT His 80	Thr	AGG A	AAT C Asn	STG Val	10	14
•••	CA la 85	ATA Ile	GTA Val	ATG Met	ACT Thr	ACT Thr 90	Wig	AAG Lys	GCC Ala	TTG Leu	ACT (Thr 95	GCA Ala	CTG (STG ? Val	CA I Ser	GT Cys 100	10	62
A'	TA le	ACT Thr	GCT Ala	CTC Leu	ATG Met 105	Leu	GTC Val	CAC His	ATC Ile	ATT Ile 110	Pro	GAT ' Asp	TTA 1	TA / Leu	AGT G Ser 115	TC Val	11	10
A L	AA Ys	ACT Thr	AGA Arg	GAA Glu 120	Leu	TTC Phe	TTG Leu	AAA Lys	AAG Lys 125	AAA (Lys	GCT (GCA (Ala	CAG (Gln	TT C Leu 130	Asp	GT Arg	11	58
G:	AA lu	ATG Met	GGT Gly 135	-16	ATT Ile	CGG Arg	ACT Thr	CAG Gln 140	GIU	GAG : Glu	ACA C Thr	GT / Gly	AGA C Arg 145	AT G His	TT A	GA Ar g	120	6
A: Me		CTA Leu 150	ACT Thr	CAT His	GAA Glu	ATC Ile	CGA Arg 155	AGC Ser	ACT (Thr	CTT (Leu	GAT A Asp	AGA C Arg 160	AT A His	CT A Thr	TT T	TA Leu	125	54
Ly 16	3	ACT Thr	ACA Thr	CTT Leu	GTT Val	GAG Glu 170	CTA Leu	GGA . Gly	AGA ; Arg	ACA T Thr	MG G Leu 175	CA T Ala	MG G Leu	AA G Glu	AG To Glu	GT Cys 180	130	2
G(A :	TTA Leu	TGG Trp	ATG Met	CCA Pro 185	ACA Thr	CGT Arg	ACT (Thr	GIÀ	TA C Leu 190	GAG C	TT C Leu	AG C	TT T Leu	CT TI Ser	AC Tyr	135	0

- ACT TTA CGA CAC CAA AAT CCA GTT GGA TTA ACT GTA CCC ATT CAA CTT 1398
 Thr Leu Arg His Gln Asn Pro Val Gly Leu Thr Val Pro Ile Gln Leu
 200 205 210
- CCT GTA ATC AAT CAA GTT TTC GGT ACA AAT CAT GTC GTG AAA ATA TCA 1446
 Pro Val Ile Asn Gln Val Phe Gly Thr Asn His Val Val Lys Ile Ser
 215 220 225
- CCA AAT TCT CCT GTC GCA AGA CTT CGA CCT GCT GGG AAA TAC ATG CCT 1494
 Pro Asn Ser Pro Val Ala Arg Leu Arg Pro Ala Gly Lys Tyr Met Pro
 230 240
- GGT GAG GTG GTT GCT AGG GTT CCA CTT CTG CAT CTG TCG AAC TTT 1542
 Gly Glu Val Val Ala Val Arg Val Pro Leu Leu His Leu Ser Asn Phe
 245 250 260
- CAG ATT AAT GAT TGG CCT GAA CTT TCA ACA AAG CGC TAT GCT TTA ATG 1590 Gln Ile Asn Asp Trp Pro Glu Leu Ser Thr Lys Arg Tyr Ala Leu Met 265 275
- GTT CTG ATG CTT CCT TCA GAC AGT GCA AGA CAA TGG CAT GTT CAT GAG 1638
 Val Leu Met Leu Pro Ser Asp Ser Ala Arg Gln Trp His Val His Glu
 280 285 290
- CTG GAG CTT GTT GAA GTG GTA GCT GAT CAG GTT TGATTTTTGT TATTGAAAAT 1691 Leu Glu Leu Val Glu Val Val Ala Asp Gln Val 295 300

TCCTTAATAT AATGTTAAAA TTTCTCTTTT ATATATTTTT GGGTTGAACA CAACCACGTT 1751 GACATACTGA GTTCTGGGTG TAAAATTAGA CATGGAGAAG ACCAATTACA AAAATCTGAG 1811 AATCTGCTAG CAGAATCACA AGGCTTAGTT GTTCTTAGTA TTATGGTTTT ATCCATTGGA 1871 ATTGCACAGC AGAATTGTTA TTACTGTTAT TITTTTTTAA AATTTTCAAA GATAAATCAA 1931 AAGCTGAACT ATATGACTTT TIGCATACTT CGTCTGCTGA TTGCTTTTTG GTGATGGAAT 1991 AGTTAGGCTG GGTTGTGGAT GAGTATATCA TAGTAGATTT TCTGATAGGA TCTTAACTCC 2051 TTGGCTTTTG TTTTCTATAG ATGATCCCTT GTATTAGAAG CACGGGAAAT AGGATCGATG 2111 GTATATAGAA ATATTAGGAA CAGCTTTCTG AATCATTTGA ATATTCCTTT TATGGAACAT 2171 AGAACTCTTG ACGTGTATGT AGTTTTCTTA GTACTTTTAT CATATGAAGT GAAAATAACG 2231 TTTTGCGATA ATGTATTTGA GTGTGTAAAA TTAAATACTA CTGAGTTTTA CAAAAATAAT 2291 TCTTCAACGG AAGCCATTTA TTTTTTTTAC ATATCTGGCA TCTTACTTCT CCATCAAAGA 2351 CTTTAGAGAA CTTTAACTTT TTCATTCTGT CTCTCGTAGT GTACTGTTCT CTGATGTATG 2411 TAATTAGCTC ACTGGCAAGT AGCACACCTA GTCTTTGTTT GACTTGTTTA AAAATCATGA 2471 TGTATCATCA GTTACGGTGA AGTGTCCAAG TTTTACTGCT TTTTGCTATT TGCATTGCAG 2531 AGTOTTAAAA CATTTCAGTT ATTCCTGGAT TTCTCCTGTT TATCAATGGA AAATTCAACT 2591 ATCAACTATG CCTCAATCAA TAAATGAAAC CTCTATATCT AACCACTCCA ACTCAGATCC 2651 AGAAATCAGA TITCAAAGAA ATTCATCATA ACTCAACTAT AGGATTGCTG TTAACCAAGA 2711 GTAATCCTCA TTTGTCCAGA CAGGCGACCA GCTATTATGC TTTCATTATG GGAAAAATTG 2771

ACA	ATTA	ATT	AAAG	GAAG	GA A	CAAC	TGAA	G AA	AAGA	CATC	CIIG	TCAGO	TTC	CTCTCCC	A 2831
ACC	CTTC	CCT	GAAT	'AAGA	CA A	AAAG	TTTC	TTG	GAGA	AAAC	TCTG	AATAT	T GG	TATCCAC	C 2891
TCC	TTTC	CTCC	TAAT	TTAG	GA T	GCTC	TATT	T CT	AGAC	TAT	AGGG	GAATA	C TC	TATTCTA	G 2951
TGC	TCGG	TGT	CTGG	TTGC	AA C	TAGT	TTTA	G AT	GTTT	ATAT	GTCT	TATTT	TA D	TTAATAA	G 3011
AGC	TATO	CTT	GAGT	GCCC	AA T	GTGA	ATTT.	A TC	TACG	CTTC	GGC?	TTTC		T GCT al Ala 305	3067
GTT Val	GCT Ala	CTT Leu	TCA Ser	CAT His	: Ala	GCT Ala	ATA 11e	TTA E Leu	GAA Glu 315	ı Glu	TCA . Ser	ATG A	GG G Arg	CT AGG Ala Arq 320	3115
GAT Asp	CTT Leu	CTT	ATG Met 325	Glu	CAG Glm	AAT Asr	GTG Val	GCT Ala 330	. Leu	GAT Asp	CTG (Ala	GA AG Arg 335	GA GAA Arg Glu	3163
GCA Ala	GAA Glu	ATG Met 340	Ala	GTT Val	CGT Arg	GCA Ala	CGT Arg 345	, Asn	GAT Asp	TTC Phe	TTG (GCT G' Ala 350	TT AT Val	NG AAT Met Asn	3211
CAT His	GAA Glu 355	Met	AGA Arg	ACT Thr	CCC Pro	ATG Met 360	His	GCA Ala	ATA Ile	ATT Ile	GCA (Ala 365	Leu	Ser	C TTA Ser Leu	3259
CTA Leu 370	CAA Gln	GAA Glu	ATC Ile	GAT Asp	CTA Leu 375	Thr	CCA Pro	GAG Glu	CAA Gln	CGT Arg 380	CTG A Leu	ATG GT Met	M GA Val (A ACA Glu Thr 385	
ATC Ile	CTC Leu	AAA Lys	AGC Ser	AGC Ser 390	Asn	CTT Leu	TTA Leu	GCA Ala	ACG Thr 395	Leu	ATC A Ile	AC GA Asn A	Asp '	C TTG Val Leu 100	3355
GAT Asp	CTT Leu	TCA Ser	AGG Arg 405	CTA Leu	GAG Glu	GAT Asp	GGA Gly	AGT Ser 410	Leu	CAA (Gln	CTT G Leu	Asp :	T GG Ile (115	C ACT	3403
TTC Phe	AAT Asn	CTC Leu 420	CAT His	GCT Ala	TTA Leu	TTT Phe	AGA Arg 425	GAG Glu	GTG (Val	CCCT	CATO	A CCC	TCTI	TTC	3453
TTT:	TTAC	CTT G	CAAA	ATTC1	ra ga	TTAC	CTGI	CAG	AAAA	AAA C	TGTC	ATTAC	AGA	TATTTTG	3,513
CAC	TCA	T ATA	GTŢ	CTC	G AC	CTG	TGAC	TGA	ATATA	TGT (STCTO	CTTAT	TCC	TGTAG	3571
GTC Val	CAT His	AGC Ser 430	TTA Leu	ATC Ile	AAG Lys	CCT Pro	ATT Ile 435	GCA '	TCT (Ser	CTG A	Lys	AG TC Lys S 440	T GT Ser V	T GCT Val Ala	3619
CAA Gln	CTT Leu 445	AGT Ser	TTG Leu	TCG Ser	TCA Ser	GAT Asp 450	TTG Leu	CCG (Pro	GAA : Glu	TAT C	TA A Val 455	TT GG Ile G	G GA	T GAA sp Glu	3667
AAA Lys 460	CGG Arg	TTA Leu	ATG Met	CAA Gln	ATT Ile 465	CTC Leu	TTA . Leu	AAC (Asn	GTT (Val	Val Val 470	GC A Gly	AT GC Asn A	T GT. la V	A AAG 'al Lys 475	3715
Phe	TCA Ser	AAG Lys	GAA Glu	GGC Gly 480	AAC Asn	GTA '	TCA : Ser	ATC :	Ser 485	CT 1 Ala	TT G Ph	TT GC. Val A	la L	A TCA ys Ser 90	3763

2	GAC Asp	TCT Ser	TTA Leu	AGA Arg 495	GAT Asp	Pro	AGA Arg	GCC (Pro 500	GAA : Glu	Phe	Phe	Ala	Val I 505	T AGT Pro Se	∍r	8811
0	GAA Glu	AAT Asn	CAC His 510	TTC Phe	TAT Tyr	TTA Leu	CGG Arg	GTG Val 515	CAG (Gln	GTAT.	ATTT	TT A	CAAGO	TTGA		3	3858
•	rat?	CTA	TCT T	rcgti	GGTI	'A AG	GATA	GTCA	CAA	TATA	GAT I	ATTT:	ragac	T TAT	AACTG	TC:	3918
į	AGAT	CTT	CTG 1	ITCT:	rgati	AT TI	CTA	TATI	CTA	AGTA	ATA	CITI	CTGT	AG AT	A AAA le Ly:	s	3974
	GAT Asp	ACG Thr 520	Gly	ATA Ile	GGA Gly	ATT Ile	ACA Thr 525	Pro	CAG Gln	GAT . Asp	ATT (Pro 530	Asn	TG TI Leu i	T AGC Phe S	er	4022
	AAG Lys 535	TTT	ACA Thr	CAA Gln	AGC Ser	CAA Gln 540	Ala	CTA Leu	GCA Ala	ACT Thr	ACA Thr 545	Asn	TCT G Ser	GT GO	GLY T	hr 50	4070
	GGG Gly	CTT Leu	GGT	CTT	GCA Ala 555	Ile	TGT Cys	AAG Lys	AG Ar	GTA g	.CGGG	TAC	CAGT	rcctt.	A		4116
	GTG	TTCI	LLL.	TCCG.	ACTC'	TG AT	TTT(CATTO	TAC	GTGA	ACT	TGGT.	AACTY	C TTC	CATATI	rca	4176
	ATT	TCTI	TCT	CTTA	CTGT.	AT T	racg'	YTT AT	aca	CATO	CTCC	TGAT	GGGA	CA CA	AAAAG	G	4234
	TTT Phe 560	Val	AAT Asr	CTT Leu	ATG Met	GAA Glu 565	Gly	CAT His	ATT Ile	TGG Trp	ATT 11e 570	Glu	AGT (GAA GO	GIY L 5	eu 75	4282
	GGC Gly	AAC Lys	GGG Gly	TCT Ser	ACT Thr 580	: Ala	ATA Ile	TTT Phe	ATC : Ile	ATT Ile 585	: Lys	CTT Leu	GGA (Leu	CT GG/ Pro G 590	A :ly	4330
	CGT Arg	GCA Ala	LAA A	GAA Glu 595	ı Ser	AAG Lys	CTC Lev	CCC Pro	TTT Phe 600	• Val	ACC L Thi	AAA Lys	TTG (Pro 605	CA AA! Ala A	r Lsn	4378
	CAC	ACC Th	CAG CG1: 610	n Met	AGT Ser	TTT Phe	AAG Lys	GAT S Asp 615	•	(GGTI	TT G	GTGA	TGGA'	r gag	aatgg	GT	4432
	GAC	TAC'	TATC	TGGA	cccc	TT T	ATCC	TCGA	C TC	rigi	CTTG	CCAT	CIG	TT TA	ATGAT	CCA	4492
	TCT	GAT	TGCG	TGAT	TTCI	CA T	CTTA	TATG	T AT	TGAG	CTGT	CTTA	CTCA	CT TT	ACATG	AGA	4552
	CT	\CAG'	Taat	ACT	r												4566

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 615 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

Val Glu Ser Cys Asn Cys Ile Ile Asp Pro Gln Leu Pro Ala Asp Asp 1 5 15 Leu Leu Met Lys Tyr Gln Tyr Ile Ser Asp Phe Phe Ile Ala Leu Ala 20 25 30 Tyr Phe Ser Ile Pro Val Glu Leu Ile Tyr Phe Val Lys Lys Ser Ala 35 40 45 Val Phe Pro Tyr Arg Trp Val Leu Val Gln Phe Gly Ala Phe Ile Val 50 60 Leu Cys Gly Ala Thr His Leu Ile Asn Leu Trp Thr Phe Asn Met His 65 70 75 80 Thr Arg Asn Val Ala Ile Val Met Thr Thr Ala Lys Ala Leu Thr Ala Leu Val Ser Cys Ile Thr Ala Leu Met Leu Val His Ile Ile Pro Asp 100 105 110 Leu Leu Ser Val Lys Thr Arg Glu Leu Phe Leu Lys Lys Lys Ala Ala 115 120 125 Gln Leu Asp Arg Glu Met Gly Ile Ile Arg Thr Gln Glu Glu Thr Gly 130 135 Arg His Val Arg Met Leu Thr His Glu Ile Arg Ser Thr Leu Asp Arg 145 150 155 160 His Thr Ile Leu Lys Thr Thr Leu Val Glu Leu Gly Arg Thr Leu Ala 165 170 175 Leu Glu Glu Cys Ala Leu Trp Met Pro Thr Arg Thr Gly Leu Glu Leu Gln Leu Ser Tyr Thr Leu Arg His Gln Asn Pro Val Gly Leu Thr Val 195 200 205 Pro Ile Gln Leu Pro Val Ile Asn Gln Val Phe Gly Thr Asn His Val 210 215 220 Val Lys Ile Ser Pro Asn Ser Pro Val Ala Arg Leu Arg Pro Ala Gly 225 230 235 240 Lys Tyr Met Pro Gly Glu Val Val Ala Val Arg Val Pro Leu His 245 250 255 Leu Ser Asn Phe Gln Ile Asn Asp Trp Pro Glu Leu Ser Thr Lys Arg 260 265 270 Tyr Ala Leu Met Val Leu Met Leu Pro Ser Asp Ser Ala Arg Gln Trp 275 280 285 His Val His Glu Leu Glu Leu Val Glu Val Val Ala Asp Gln Val Val Ala Val Ala Leu Ser His Ala Ala Ile Leu Glu Glu Ser Met Arg Ala Arg Asp Leu L u Met Glu Gln Asn Val Ala Leu Asp Leu Ala Arg Arg 335

Glu Ala Glu Met Ala Val Arg Ala Arg Asn Asp Phe Leu Ala Val Met Asn His Glu Met Arg Thr Pro Met His Ala Ile Ile Ala Leu Ser Ser Leu Leu Gln Glu Ile Asp Leu Thr Pro Glu Gln Arg Leu Met Val Glu Thr Ile Leu Lys Ser Ser Asn Leu Leu Ala Thr Leu Ile Asn Asp Val Leu Asp Leu Ser Arg Leu Glu Asp Gly Ser Leu Gln Leu Asp Ile Gly Thr Phe Asn Leu His Ala Leu Phe Arg Glu Val Val His Ser Leu Ile 420 425 430 Lys Pro Ile Ala Ser Val Lys Lys Ser Val Ala Gln Leu Ser Leu Ser Ser Asp Leu Pro Glu Tyr Val Ile Gly Asp Glu Lys Arg Leu Met Gln Ile Leu Leu Asn Val Val Gly Asn Ala Val Lys Phe Ser Lys Glu Gly 465 470 475 480 Asn Val Ser Ile Ser Ala Phe Val Ala Lys Ser Asp Ser Leu Arg Asp Pro Arg Ala Pro Glu Phe Phe Ala Val Pro Ser Glu Asn His Phe Tyr Leu Arg Val Gln Ile Lys Asp Thr Gly Ile Gly Ile Thr Pro Gln Asp Ile Pro Asn Leu Phe Ser Lys Phe Thr Gln Ser Gln Ala Leu Ala Thr 530 540 Thr Asn Ser Gly Gly Thr Gly Leu Gly Leu Ala Ile Cys Lys Arg Phe 545 550 555 560 Val Asn Leu Met Glu Gly His Ile Trp Ile Glu Ser Glu Gly Leu Gly Lys Gly Ser Thr Ala Ile Phe Ile Ile Lys Leu Gly Leu Pro Gly Arg Ala Asn Glu Ser Lys Leu Pro Phe Val Thr Lys Leu Pro Ala Asn His 595 600 605 Thr Gln Met Ser Phe Lys Asp

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 737 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: lin ar

(ix	FEATURE:	
---	----	----------	--

(A) NAME/KEY: CDS
(B) LOCATION: 33..719

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

AAGATAAGAG TGATTCATTA AGGAGTTTGT TC ATC ATG GAT TGT AAC TGC TTC Ile Met Asp Cys Asn Cys Ph	53 e
GAT CCA CTG TTG CCT GCC GAT GAG TTG TTA ATG AAG TAT CAG TAC ATT Asp Pro Leu Leu Pro Ala Asp Glu Leu Leu Met Lys Tyr Gln Tyr IIc	101 e
TCT GAT TTT TTC ATT GCA GTT GCT TAT TTT TCC ATC CCA ATC GAA CTG Ser Asp Phe Phe Ile Ala Val Ala Tyr Phe Ser Ile Pro Ile Glu Let 25 30 35	149
GTA TTC TTT GTC CAG AAA TCA GCT GTT TTT CCG TAT CGA TGG GTG CTT Val Phe Phe Val Gln Lys Ser Ala Val Phe Pro Tyr Arg Trp Val Leu 40 45 50 50	
GTG CAG TTT GGT GCT TTC ATA GTT CTT TGT GGA GCA ACA CAC CTT ATC Val Gln Phe Gly Ala Phe Ile Val Leu Cys Gly Ala Thr His Leu Ile 65 70	245
AAT TTG TGG ACT TCT ACT CCT CAT ACA AGG ACT GTG GCA ATG GTG ATG Asn Leu Trp Thr Ser Thr Pro His Thr Arg Thr Val Ala Met Val Met 75 80 85	293 :
ACT ACG GCG AAG TTC TCC ACT GCT GCG GTA TCA TGT GCA ACT GCT GTC Thr Thr Ala Lys Phe Ser Thr Ala Ala Val Ser Cys Ala Thr Ala Val 90 95 100	241
ATG CTT GTC GCA ATT ATT CCG GAT TTA TTA AGT GTC AAA ACT AGG GAG Met Leu Val Ala Ile Ile Pro Asp Leu Leu Ser Val Lys Thr Arg Glu 105 110 115	389
CTA TTC TTG AAA AAC AAA GCG GCG GAA CTT GAT CGT GAA ATG GGT CTT Leu Phe Leu Lys Asn Lys Ala Ala Glu Leu Asp Arg Glu Met Gly Leu 125 130 135	
ATT CGG ACA CAG GAG GAG ACG GGT AGA TAT GTT AGA ATG CTA ACA CAT Ile Arg Thr Gln Glu Glu Thr Gly Arg Tyr Val Arg Met Leu Thr His 140 145 150	485
GAA ATC AGA AGT ACT CTG GAT AGA CAT ACT ATT TTG AAG ACT ACA CTT Glu Ile Arg Ser Thr Leu Asp Arg His Thr Ile Leu Lys Thr Thr Leu 155 160 165	533
GTT GAA CTT GGA AGA GCA TTG CAA CTG GAA GAG TGT GCT TTG TGG ATG Val Glu Leu Gly Arg Ala Leu Gln Leu Glu Glu Cys Ala Leu Trp Met 170 175 180	581
Pro Thr Arg Thr Gly Val Glu Leu Gln Leu Ser Tyr Thr Leu His His 185	629
CAA AAT CCA GTT GGA TIT ACA GTA CCT ATA CAA CTC CCT GTA ATT AAT Gln Asn Pro Val Gly Ph Thr Val Pro Ile Gln Leu Pro Val Il Asn 200 215	677

CAA GTT TTC AGT GCA AAT TGT GCT GTT AAA ATT TCA CCT TAATCTGCCG Gln Val Phe Ser Ala Asn Cys Ala Val Lys Ile Ser Pro 220 225

726

TTGCAAGGCT T

737

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 228 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Ile Met Asp Cys Asn Cys Phe Asp Pro Leu Leu Pro Ala Asp Glu Leu 10 15

Leu Met Lys Tyr Gln Tyr Ile Ser Asp Phe Phe Ile Ala Val Ala Tyr 20 25 30

Phe Ser Ile Pro Ile Glu Leu Val Phe Phe Val Gln Lys Ser Ala Val 35 40 45

Phe Pro Tyr Arg Trp Val Leu Val Gln Phe Gly Ala Phe Ile Val Leu 50 55 60

Cys Gly Ala Thr His Leu Ile Asn Leu Trp Thr Ser Thr Pro His Thr 65 70 75 80

Arg Thr Val Ala Met Val Met Thr Thr Ala Lys Phe Ser Thr Ala Ala 85 90 95

Val Ser Cys Ala Thr Ala Val Met Leu Val Ala Ile Ile Pro Asp Leu 100 105 110

Leu Ser Val Lys Thr Arg Glu Leu Phe Leu Lys Asn Lys Ala Ala Glu 115 120 125

Leu Asp Arg Glu Met Gly Leu Ile Arg Thr Gln Glu Glu Thr Gly Arg 130 140

Tyr Val Arg Met Leu Thr His Glu Ile Arg Ser Thr Leu Asp Arg His 145 150 155 160

Thr Ile Leu Lys Thr Thr Leu Val Glu Leu Gly Arg Ala Leu Gln Leu 165 170 175

Glu Glu Cys Ala Leu Trp Met Pro Thr Arg Thr Gly Val Glu Leu Gln 180 185 190

Leu Ser Tyr Thr Leu His His Gln Asn Pro Val Gly Phe Thr Val Pro 195 200 205

Ile Gln Leu Pro Val Ile Asn Gln Val Phe Ser Ala Asn Cys Ala Val 210 215 220

Lys Ile Ser Pro 225

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6202 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: join(3522..5288, 5372..5926)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GAATTCGAAC TGCAATGGGA TAAACATTAT ATGCGTTTTA ATAATAGGTT GGTGAAGTTT ATAATTTACA CCATTTGAAA AGCCTTCCAA ATTTAGAAAC TACATTTTTG CAGACCCATG 120 TGAGCTCATA TGAATCAATC ATAGCCTTGA TGTTGTAAAA CAAATTATGA TTATAAAAAT 180 GTGATAGTAT ATTACATGCA TAAAAAATAA AGGAGAGTAA ATGAAAGTCA AATCTGGGTT 240 TTATGAACTG AAAGTTGAAG TTTAGAAGTA GAAGTAGCGA TCAAAGTATG ACCAGTTAAA 300 AGGCCCAATA TCATTTGGAG GTTTGATTTT TGGGTTCGTA AATTTCAAGA GCCAGATTAT 360 GATTTGCTGG GCTTAAAAAT CATGGAAAAA TTGAAATGAC GGTGTTAAAA TATATAACTC 420 AAATTAAAGA TTTTAATTGG GTGTAGTAGG CTGATTTTTT TATAAGAATC TTGTCTATAG 480 ATGCTTCAAG GTTATGCCTT ATAGTACTGG TTGTAAAACA CCACTATCTA ATTTTGAAGC 540 TGGTCAGAAC TATAAGGTAT GTTGTTGTTC GCCTTGTTGC TAATGAAGAT TATAACATTC 600 TGTTGTTGCA TTTTTTTTTT TTTTTTTGTG TTAAATATAT ATATTTTTTT TGCATATTTA 660 TTGTTGCATA TTGTGTTGCA TATTTAGTAA TGGTTACATT CCCTGTTATC GGAGACCAAG 720 ATAATACGGC TCTGTGGCAT GGACTACTAC TCCATGGATT CTTCCAAGTA ATCTTGCTTT 780 GTGTGTCAAT GCAAAGTTTG TTTATCTTAA GGTTCGTCAA CAACACTGGA AAAGTCTACA 840 TTGTTGCTGA ATCTCGGTTG TCATCGCTTC CTAGTGATAA GCCTAAGGCC GGCTTAACTA 900 ATGGAACTTA CTAGTGATAC CATAATGCGA AAGGTGCTAA TTAAGCTTGA CAGTGAAGAG 960 GATTCTTATC AAGTTTTGGA AAATTTTAAT GGAGATTCCT TGGTTGGGAA GAAGTATGAA 1020 CCTTTGTTTG ATTACTTTTA GCGATTTCTC AAGTGTGACT TTTCGACTAG TAGCAGATGA 1080 TTATGTCATG AATGATAGTG GTACTGGTAT TGTCCATTGT GCTCCTGTCT TTGGTGCAGA 1140 TGACTATCGT GTTTGTCTTG AGAACGAGAT AATTAAGAAG GTTAGATTTG ACAACATCTT 1200 CCTTATATCA CCACCTTTAA CATTAAGTTT ATTTTCTTTC TIGTTTAAGT TTACAGTATC 1260 TTCAAGAACC CATGTTCATG ACACATTTTG TTCATGTGTT GTTTAGATTG TCAGAGATTT 1320 CAAACGTCCA GATGGTTTGA AAGATACAGA GATTGATGCA GCTGTAGATA GTACATATCT 1380

TAATTAAAAA TACCACTTCT CTATGCTCTA TTGTTGAGGA AACATATAAT ATTTGCATTC 1440 GTTCATGGTT CAGATATGAT GTTATGGTAA TTCTTGATCT ACGAGAAGAT GAATCTTTGA 1500 AAAACGAAGG TGTTGCCCGT GAGGTAAATA AATGTAACCG AAGCGATTAA TGGTCATATA 1560 TAAGTTGTAT ATTTGATATA TGGGTTTCCT TCTCATTGTG CTCATGCATT GAAAAGCACC 1620 CTGTTATGAC TGTGGTTCTA GGAGAACATT TGCATTTGAC AGTCGGTGAC TAATTGTTAA 1680 GCAAGAAGAA CGCATGAGAG CCTTTTAAAG TGTTTTCTTC TAGATCGTTG CAAAAAGTTA 1740 AATGTCTCTT GAGACTITGT ACTCATTCTA TAGATAAAGA TGGGATTTAT TACAAAAACA 1800 ACAAGAAACT TIGTTACTIG TGGAAATTCA AAATTATCCG AACTAGCTTC ACAAAATATG 1860 CTCAAGAGTT TCAATGTATT TTTTTTGTT CTGTAATTGT ATGACTCCGT TTGAAGCATC 1920 AAGATTATGG TTATAGGTAG TGATGCTAAA ACTCTCTGTT GTTACAGTGA CCACTAAAAA 1980 CACCAACAAA AAAAACTTAG GTAACGTGTC GTCTAAAAAC TTCTAGGTTC AATTTCTTTA 2040 GATAGTACTA TCAATAAATA AAATAAATAT GTACAAAGGC TTTAAACAAT GATGTTTTTC 2100 AAAGATGATT GGTAGATACT AATTAGAGCT TCAATATAAA AGAACACATG CGATTCTGAC 2160 ATTCTGTGGT CTAACATGGT TTCTTCTAGA GTCAAAACCA TACAATTAAA AGTTAGGAAA 2220 GTAATAGCAA TGTGGTTTCA AATATATACT CATTACTCTT TAGATTCATG TATGGTGAAG 2280 GAAACATTAT AATAAAATCA AAGATCACAG TTTTGTAGGT CCCTCATATT AATCAACATC 2340 TTAAGGCGTT ATACATATCT TCTTTTGTA AATATTTGAC TAATTAAAAT ATCTAATTAG 2400 AGTATTAGAC TAATCTCATC AAATATCCGA CTACTTGTGT CAGTTCAAAA CACAGTGATT 2460 ACGTTAGATT TIGTGCTCTT TIGTTTATAA ACAAAGCTAA TITAAGAAAT ATATGATCTA 2520 TTTGCCTCCT TGGTCTTAAT TTTATACTTT CTTGGAATAA AACACATTTA TTAAAATAAT 2580 TTTTAGGGTC CTAGATTCAT GTCATGTGGC TTGATAGTTT CCAACAATTA TACCAATATT 2640 GATTITGATA AAATTCAGAG TACCCATTAA TTATTCTATG TTACAGCTTG TAATAAGTTA 2760 AATITATAAA ACGTACAAGT TGAGGAAATA ACAAATGTTT TCAATATTAA ATGATITATT 2820 AATACATTAG TGACCAAAAA ATTATTAAGT GTAAGAAAAA AAACACAACT CAGAAAAAAT 2880 TCAAAAGACC GTCTAAGTTC GGTTCATGTA AGAACAAGTG GGACCTCTTT AAGTTTCTAA 2940 ATCAGAGAAT AAAGAAGAAG AAAAAATCTC AAAACCTTCC TCTAAAACCA ACGGCTCCTA 3000 CCTTTACTTA CACCCTATAC ATACACTTCT CTTTTTATCC TCCATCGGCG GCTTATGGCG 3060 GTTTTCCGGC ACTAATCATC TCCGGCATAT ATAAATAAAC GTACTTCACG TTTTTTTATA 3120 TAACTTCAAA GTAGTTTCAG ATTIGTCTCT ATCTCTTCAC TTTTAAGTCT TCTGGTTTTG 3180 TCATCACCAG CTTTTTTTGT TCTCTCTCT TCTCTGTCTC TGTCTTTCTC TTTGTGTATT 3240 TTTATTCTCG TCATCGTTGT TCTTCTATGA GAGGAAGATC GGAATGTCGA AGAGAATTAG 3300

																T 3360
														CTGTT		
CTA	CTA	TAC	CCA	ATTA	AA G	TTT	GAT	LL TI	ATTI	CTCA	CTC	IGTT.	rcr :	IGTTTT:	rct	A 3480
ATT	'GCA(SAGT	ATA	ATGG/	CT)	\ AGC	ATTT	TT T	PTCT	CCGA	A G A	TG G Met '	TT A Val	AA GAA Lys Gl	u	3533
5	. VIC	. se	r iri	p Let	Let 1	111	e Le	u Se	r Me	t Va:	1 Va:	l Pho	e Va	TCT CC l Ser	Pro 20	
Val	nec	. ATC	1 116	25	GIZ	, GI	Y GI	у Ту	r Pr	o Arq 0	g Cys	s Ası	ı Cy	GAA GA s Glu , 35	Asp	3629
GIU	GIY	ASI	4 C)	Tr	Sei	r Thi	r Gli 4!	u Ası 5	n Ile	e Leu	ı Glu	Th:	-	Arg	3677
,	Ser	55	File	. Leu	116	. Als	6 ()	а Туз	r Phe	e Ser	Ile 65	Pro	ATT GA	3lu	3725
Ded	70	TYE	Pne	val	Ser	75	Ser	. Asr	ı Val	l Pro	Phe 80	Lys	Tr	GTT CT	.eu	
85	GIU	FIIE	116	WIG	90	116	vaı	. Let	ı Cys	95	Met	Thr	His		eu 00	
	Oly	110	1111	105	ser	Ala	nıs	PIC	110	Arg	Leu	Met	Met	GCG TT Ala P 115	he	3869
****	VQI	rne	120	met	Leu	inr	Ala	125	Val	Ser	Cys	Ala	Thr 130		le	3917
••••	Deu	135	Int	Leu	TIE	PTO	140	Leu	Leu	Lys	Val	Lys 145	Val	AGA GAC Arg G	lu	3965
FIIE	150	Leu	Lys	Lys	Lys	155	Hls	Glu	Leu	Gly	Arg 160	Glu	Val	GT TTC	eu	4013
ATT Ile 165	TTG Leu	ATT Ile	AAG Lys	AAA (Lys	GAG Glu 170	ACT (GGC Gly	TTT Phe	CAT (His	Val Val 175	GT A Arg	TG C Met	TT A Leu	CT CAA Thr G:	ln BO	4061
GAG . Glu	ATT Ile	CGT Arg	AAG Lys	TCT (Ser 185	ITG (Leu	GAT (Asp	CGT Arg	CAT . His	ACG I Thr 190	ATT C	TT T Leu	'AT A Tyr	CT A Thr	CT TTG Thr Le 195	eu	4109
GTT (GAG Glu	CTT Leu	TCG Ser 200	AAG 1 Lys	ACT '	TTA (Leu	Gly	TTG (Leu 205	CAG 1 Gln	AAT I Asn	GT G Cys	CG G Ala	TT T Val 210	GG ATG	et	4157

CCG Pro	AAT Asn	GAC Asp 215	GGT Gly	GGA : Gly	ACG (Thr	GAG Glu	ATG Met 220	GAT Asp	TTG Le	AC u :	Thr	His	Glu 225	TG A Leu	Arg Arg	Gly	4205
AGA Arg	GGT Gly 230	GGT Gly	TAT Tyr	GGT Gly	GGT Gly	TGT Cys 235	TCT Ser	GTT Val	TCI L Se	r Ai	TG (Met	GAG (Glu 240	TAE Asp	TG (Leu	Asp Asp	Val	4253
GTT Val 245	AGG Arg	ATT Ile	AGG Arg	GAG Glu	AGT Ser 250	GAT Asp	GAA Glu	GTG Va	AAT L As	211	TG : Val 255	766	AGT C Ser	Val	CAC Asp	Ser 260	4301
TCC Ser	ATT Ile	GCT Ala	CGA Arg	GCT Ala 265	AGT Ser	GGT Gly	GGT Gly	GGT Gl	y G.	G G ly 70	AT (Asp	GTT . Val	AGT (Ser	GAG Glu	ATT (1 lle 275		4349
GCC Ala	GTG Val	GCT Ala	GCT Ala 280	Ile	AGA Arg	ATG Met	CCG Pro	ATG Me 28	- 10	r c	GT Arg	GTT Val	TCG (Ser	ASP 290	Lile	AAT : Asn	4397
GGA Gly	GAG Glu	CTA Leu 295	Ser	TAT Tyr	GCG Ala	ATA Ile	CTT Let 300	ı va	TG 1 C	T G ys	TT Val	TTA Leu	CCG (Pro 305		GGG / Gly	ACC Thr	4445
CGT Arg	CGG Arg	Asp	TGG	ACT Thr	TAT Tyr	CAG Gl: 31	J CT	ATI 11	GA e G	G A lu	Ile	GTT Val	AAA L Lys)	GTT Val	GTG l Va	GCG l Ala	4493
GAT Asp 325	Gln	GTA Val	ACC L Thi	GTT Val	GCG Ala 330	Le	GAT u Asj	CAT p Hi	GC .s A	A C	SCG Ala 335	ı va.	CTT l Leu	GAA 1 Gl	GAG u Gl	TCT u Ser 340	4541
CAG Glm	CTI Lev	ATC	AGG Ar	GAG Glu 345	ı Ly:	CTG Le	GCG u Al	GA a Gl	lu	G In 50	AAC Asi	AGG n Ar	GCG g Ala	TTG a Le	CAG u Gl 35	, 11ec	4589
GCC Ala	AAC Lys	G AGA	A GAG g As	p Ala	TTG Lei	AGA 1 Ar	GCG g Al	a Se	c c: er C 55	AA (Sln	GCG Ala	AGG a Ar	TAA g Ası	GCG n Al 37	a PH	CAG e Gln	4637
AAI Lys	A ACC	G ATV	t Se	C GAA	GGG u Gl	ATC y Me	AGC t Ar 38	g A	T Co	CT Pro	ATG Me	CAT t Hi	TCG s Se: 38		CTC e Le	GGT u Gly	468
CT: Let	TTN Le 39	u Se	G AT	G ATT	CAC e Gl	GAG n As	Ď C1	AA u L	G T	TG Leu	AGT Se	GAC r As 40	Ď GI	CAG u Gl	AAA n Ly	ATG 's Met	473
AT 11 40	e Va	T GA 1 As	T AC	G ATC Ir Me	GTT t Va 41	1 Ly	A AC	A GG ar G	G A ly	AT Asn	GTT Va 41	T ME	TCG t Se	AAT r As	TTG in Le	GTG eu Val 420	478 L
GG G1	G GA Y As	C TC p Se	T AT	G GA' et As 42	p Va	G CC	T GA	c GG sp G	TA .	GA Arg 430	j Pr	GGT GGT	ACG Y Th	GAG ir Gi	LU PI	AAA et Ly: 35	482 5
CC Pr	G TI	T AG	T CT	G CA	T CG .s Az	T AC	G AT	Te H	AT G	GT	GCA Al	GCT La A	TGT La Cy	S 111	GCG et A	AGA la Ar	487 g

TGT TTG TGT CTA TGC AAT GGA ATT AGG TTC TTG GTT GAC GCG GAG AAG 4925 Cys Leu Cys Asn Gly Ile Arg Phe Leu Val Asp Ala Glu Lys 460 465

TC1 Ser	Leu 470	Pro	GAT Asp	AAT Asi	GTA LVa	GTA 1 Va: 47!	l Gly	GAT As	GAA Gl	AGA u Ar	AGG g Ar 48	y Va	TTT l Pho	CAA e Glr	GTG 1 Val	4 973
ATA Ile 485	Leu	CAT His	ATG	GTT Val	GGT Gly 490	/ Se	TTA r Let	GTA 1 Va:	AAG Ly:	CCT s Pro 49!	o Arg	AAA J Ly:	CGT Arg	CAA (GAA 1 Glu 500	
GGA Gly	TCT Ser	TCA Ser	TTG Leu	ATG Met 505	: Phe	AAG Lys	GTT Val	TTG Let	AAA 1 Ly: 51	s Glu	AGA 1 Arg	GGA Gly	AGC / Set	TTG (Leu 515	Asp	5069
AGG Arg	AGT Ser	GAT Asp	CAT His 520	: Arg	TGG Trp	GCT Ala	GCT Ala	TGG Trp 525	Ar	TCA g Sei	CCG Pro	GCT Ala	TCT Ser 530	TCA (Ser	GCA : Ala	5117
GAT Asp	GGA Gly	GAT Asp 535	Val	TAT Tyr	ATA Ile	AGA Arg	TTT Phe 540	: Glu	ATG Met	AAT Ast	GTA val	GAG Glu 545	ı Asr	GAT (Asp	GAT Asp	5165
TCA Ser	AGT Ser 550	Ser	CAA Gln	TCA Ser	TTT Phe	GCT Ala 555	Ser	GTT Val	TCC Sea	TCC Ser	AGA Arg 560	Asp	CAA (GAA (STT Val	5213
GGT Gly 565	Asp	GTT Val	AGA Arg	TTC Phe	TCC Ser 570	Gly	GGC Gly	TAT Tyr	GGG Gly	TTA Leu 575	Gly	CAA Glm	GAT (CTA A	AGC Ser 580	
TTT Phe	GGT Gly	GTT Val	TGT Cys	AAG Lys 585	Lys	GTG Val	GTG Val	CAG Gln	GTG!	GTTI	rcc 1	TACA	TATC	T		53.08
CTT	rcta.	AAG 1	TCC:	rgtc:	AT TA	GTC	rgagi	TTC	TGTI	TAG	GAGT	TCTT	TG AT	DTAA7	TGTG	53,68
CAG	TTG Leu 590	ATT Ile	CAT His	GGG Gly	AAT Asn	ATC Ile 595	Ser	GTG Val	GTC Val	CCT Pro	GCC Gly 600	Ser	GAT (Asp	Gly	CA Ser	5416
CCG Pro 605	GAG Glu	ACC Thr	ATG Met	TCG Ser	TTG Leu 610	CTC Leu	CTT Leu	CGG Arg	TTT Phe	CGA Arg 615	Arg	AGA (Arg	Pro	Ser	TA Ile 620	5464
TCT Ser	GTC Val	CAT His	GGA Gly	TCC Ser 625	AGC Ser	GAG Glu	TCG Ser	CCA Pro	GCT Ala 630	Pro	GAC (Asp	CAC (His	CAC G His	Ala 635	AC His	5512
CCA Pro	CAT His	TCG Ser	AAT Asn 640	TCT Ser	CTG Leu	TTA Leu	CGT Arg	GGC Gly 645	Leu	CAA (Gln	Val	Leu	Leu	TA G Val	AC Asp	5560
ACC Thr	AAC Asn	GAT Asp 655	TCG Ser	AAC Asn	CGG Arg	GCA Ala	GTT Val 660	ACA Thr	CGT Arg	AAA (Lys	CTC 1	TTA C Leu 665	Glu	AA C	TC Leu	5608
CCC																
Gly	TGC Cys 670	GAT Asp	GTA Val	ACC Thr	GCG Ala	GTT Val 675	TCC ' Ser	TCT (Ser	GGA '	TTC (Phe	ASP 680	Cys	TT A Leu	CC G	CC Ala	5656

CTT GAT CTT CAA ATG GCA GAG ATG GAC GGT TAT GAA GTG GCC ATG ACG Leu Asp Leu Gln Met Ala Glu Met Asp Gly Tyr Glu Val Ala Met Arg 710 715	5/52
ATC AGG AGT CGA TCT TGG CCG TTG ATT GTG GCG ACG ACA GTG AGC TTG Ile Arg Ser Arg Ser Trp Pro Leu Ile Val Ala Thr Thr Val Ser Leu 720 730	5800
GAT GAA GAA ATG TGG GAC AAG TGT GCA CAG ATT GGA ATC AAT GGA GTT Asp Glu Glu Met Trp Asp Lys Cys Ala Gln Ile Gly Ile Asn Gly Val 735 740 745	5848
GTG AGA AAG CCA GTG GTG TTA AGA GCT ATG GAG AGT GAG CTC CGA AGA Val Arg Lys Pro Val Val Leu Arg Ala Met Glu Ser Glu Leu Arg Arg 750 760	5896
GTA TIG TIG CAA GCT GAC CAA CTT CTC TAAGTIGTTA TCTCAACTTC Val Leu Leu Gln Ala Asp Gln Leu Leu 765	5943
TCTTCTACAT TCAAAATTTT TACACCATAG ATTTATGTCA AATATATCAA AATGAAATTT	6003
CGAAATTGTT ATTATATATA CCACCCATAT CTCTATGATT TGTACATCCT GTTTTTTTTT	6063
GTTCTTTTTC TCATTTTGAA CCCCACGAAA TTGCATTGAA TCTTAGTATT TCGTAGGGTC	6123
AAGAAGGAGT CAGTTTCGTA GTTTTTTGTT TTCTTTATGT TACGAACTTA CGAAACTGAA	6183
TATGGCATTA TAGAGTTTT	6202

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 773 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

Met Val Lys Glu Ile Ala Ser Trp Leu Leu Ile Leu Ser Met Val Val 1 5 15

Phe Val Ser Pro Val Leu Ala Ile Asn Gly Gly Gly Tyr Pro Arg Cys 20 25 30

Asn Cys Glu Asp Glu Gly Asn Ser Phe Trp Ser Thr Glu Asn Ile Leu 35 40 45

Glu Thr Gln Arg Val Ser Asp Phe Leu Ile Ala Val Ala Tyr Phe Ser 50 55 60

Ile Pro Ile Glu Leu Leu Tyr Phe Val Ser Cys Ser Asn Val Pro Phe 65 70 75 80

Lys Trp Val Leu Phe Glu Phe Ile Ala Phe Ile Val Leu Cys Gly Met 85 90 95

Thr His Leu Leu His Gly Trp Thr Tyr Ser Ala His Pro Phe Arg Leu 100 105 110

Met Met Ala Phe Thr Val Phe Lys Met Leu Thr Ala Leu Val Ser Cys Ala Thr Ala Ile Thr Leu Ile Thr Leu Ile Pro Leu Leu Leu Lys Val Lys Val Arg Glu Phe Met Leu Lys Lys Lys Ala His Glu Leu Gly Arg 150 Glu Val Gly Leu Ile Leu Ile Lys Lys Glu Thr Gly Phe His Val Arg 165 Met Leu Thr Gln Glu Ile Arg Lys Ser Leu Asp Arg His Thr Ile Leu 180 185 190 Tyr Thr Thr Leu Val Glu Leu Ser Lys Thr Leu Gly Leu Gln Asn Cys 195 200 205 Ala Val Trp Met Pro Asn Asp Gly Gly Thr Glu Met Asp Leu Thr His Glu Leu Arg Gly Arg Gly Gly Tyr Gly Gly Cys Ser Val Ser Met Glu 225 235 240 Asp Leu Asp Val Val Arg Ile Arg Glu Ser Asp Glu Val Asn Val Leu 245 250 255 Ser Val Asp Ser Ser Ile Ala Arg Ala Ser Gly Gly Gly Asp Val 260 265 Ser Glu Ile Gly Ala Val Ala Ala Ile Arg Met Pro Met Leu Arg Val Ser Asp Phe Asn Gly Glu Leu Ser Tyr Ala Ile Leu Val Cys Val Leu 290 295 300 Pro Gly Gly Thr Arg Arg Asp Trp Thr Tyr Gln Glu Ile Glu Ile Val 315 Lys Val Val Ala Asp Gln Val Thr Val Ala Leu Asp His Ala Ala Val Leu Glu Glu Ser Gln Leu Met Arg Glu Lys Leu Ala Glu Gln Asn Arg Ala Leu Gln Met Ala Lys Arg Asp Ala Leu Arg Ala Ser Gln Ala Arg Asn Ala Phe Gln Lys Thr Met Ser Glu Gly Met Arg Arg Pro Met His 370 380 Ser Ile Leu Gly Leu Leu Ser Met Ile Gln Asp Glu Lys Leu Ser Asp 385 390 395 Glu Gln Lys Met Ile Val Asp Thr Met Val Lys Thr Gly Asn Val Met Ser Asn Leu Val Gly Asp Ser Met Asp Val Pro Asp Gly Arg Phe Gly Thr Glu Met Lys Pro Phe Ser Leu His Arg Thr Ile His Glu Ala Ala

Cys Met Ala Arg Cys Leu Cys Leu Cys Asn Gly Ile Arg Phe Leu Val 450 460 Asp Ala Glu Lys Ser Leu Pro Asp Asn Val Val Gly Asp Glu Arg Arg 465 470 475 Val Phe Gln Val Ile Leu His Met Val Gly Ser Leu Val Lys Pro Arg 485 490 495 Lys Arg Gln Glu Gly Ser Ser Leu Met Phe Lys Val Leu Lys Glu Arg 500 505 Gly Ser Leu Asp Arg Ser Asp His Arg Trp Ala Ala Trp Arg Ser Pro 515 520 525 Ala Ser Ser Ala Asp Gly Asp Val Tyr Ile Arg Phe Glu Met Asn Val 530 540 Glu Asn Asp Asp Ser Ser Ser Gln Ser Phe Ala Ser Val Ser Ser Arg 545 550 555 560 Asp Gln Glu Val Gly Asp Val Arg Phe Ser Gly Gly Tyr Gly Leu Gly 565 570 575 Gln Asp Leu Ser Phe Gly Val Cys Lys Lys Val Val Gln Leu Ile His 580 585 Gly Asn Ile Ser Val Val Pro Gly Ser Asp Gly Ser Pro Glu Thr Met 595 600 605 Ser Leu Leu Leu Arg Phe Arg Arg Pro Ser Ile Ser Val His Gly Ser Ser Glu Ser Pro Ala Pro Asp His His Ala His Pro His Ser Asn 625 630 635 Ser Leu Leu Arg Gly Leu Gln Val Leu Leu Val Asp Thr Asn Asp Ser 645 650 655 Asn Arg Ala Val Thr Arg Lys Leu Leu Glu Lys Leu Gly Cys Asp Val 660 665 670 Thr Ala Val Ser Ser Gly Phe Asp Cys Leu Thr Ala Ile Ala Pro Gly 675 680 Ser Ser Ser Pro Ser Thr Ser Phe Gln Val Val Leu Asp Leu Gln Met Ala Glu Met Asp Gly Tyr Glu Val Ala Met Arg Ile Arg Ser Arg 705 710 715 720 705 Ser Trp Pro Leu Ile Val Ala Thr Thr Val Ser Leu Asp Glu Glu Met 725 730 735 Trp Asp Lys Cys Ala Gln Ile Gly Ile Asn Gly Val Val Arg Lys Pro 740 745 Val Val Leu Arg Ala Met Glu Ser Glu Leu Arg Arg Val Leu Leu Gln 755 760 765 Ala Asp Gln Leu Leu 770

(2) INFORMATIC	N FOR	SEO	ID	NO:43	:
----------------	-------	-----	----	-------	---

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2404 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..2322

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

ATG GTT AAA GAA ATA GCT TCT TGG TTA TTG ATA CTA TCA ATG GTG GTG 48 Met Val Lys Glu Ile Ala Ser Trp Leu Leu Ile Leu Ser Met Val Val THT GTT TCT CCG GTT TTA GCT ATA AAC GGC GGT GGT TAT CCA CGA TGT Phe Val Ser Pro Val Leu Ala Ile Asn Gly Gly Gly Tyr Pro Arg Cys 96 AAC TGC GAA GAC GAA GGA AAC AGT TTC TGG AGT ACA GAG AAC ATT CTA 144 Asn Cys Glu Asp Glu Gly Asn Ser Phe Trp Ser Thr Glu Asn Ile Leu GAA ACT CAA AGA GTA AGC GAT TTC TTA ATC GCA GTA GCT TAT TTC TCA Glu Thr Gln Arg Val Ser Asp Phe Leu Ile Ala Val Ala Tyr Phe Ser ATC CCT ATT GAG TTA CTT TAC TTC GTG AGT TGT TCC AAT GTT CCA TTC Ile Pro Ile Glu Leu Leu Tyr Phe Val Ser Cys Ser Asn Val Pro Phe 70 AAA TGG GTT CTC TTT GAG TTT ATC GCC TTC ATT GTT CTT TGT GGT ATG 288 Lys Trp Val Leu Phe Glu Phe Ile Ala Phe Ile Val Leu Cys Gly Met ACT CAT CTT CAT GGT TGG ACT TAC TCT GCT CAT CCA TTT AGA TTA 336 Thr His Leu Leu His Gly Trp Thr Tyr Ser Ala His Pro Phe Arg Leu 100 ATG ATG GCG TIT ACT GTT TTC AAG ATG TTG ACT GCT TTA GTC TCT TGT 384 Met Met Ala Phe Thr Val Phe Lys Met Leu Thr Ala Leu Val Ser Cys GCT ACT GCG ATT ACG CTT ATT ACT TTG ATT CCT CTG CTT TTG AAA GTT 432 Ala Thr Ala Ile Thr Leu Ile Thr Leu Ile Pro Leu Leu Lys Val 130 135 AAA GTT AGA GAG TTT ATG CTT AAG AAG AAA GCT CAT GAG CTT GGT CGT Lys Val Arg Glu Phe Met Leu Lys Lys Lys Ala His Glu Leu Gly Arg 150 155 GAA GTT GGT TTG ATT TTG ATT AAG AAA GAG ACT GGC TTT CAT GTT CGT

Glu Val Gly Leu Ile Leu Ile Lys Lys Glu Thr Gly Phe His Val Arg

ATG CTT ACT CAA GAG ATT CGT AAG TCT TTG GAT CGT CAT ACG ATT CTT Met L u Thr Gln Glu Ile Arg Lys Ser Leu Asp Arg His Thr Ile Leu

185

165

180

TAT Tyr	ACT . Thr	ACT Thr 195	TTG Leu	GTT (Val	GAG (Glu	L u	TCG Ser 200	AAG Lys	ACT '	TTA (Leu	Gly	TG C Leu 205	AG A Gln	AT TG Asn (T Cys	624
GCG Ala	GTT Val 210	TGG Trp	ATG Met	CCG A	AAT (Asn	GAC Asp 215	GGT Gly	GGA Gly	ACG Thr	GAG 2 Glu	Met 220	AT T Asp	TG A Leu	CT CA Thr	AT His	672
GAG Glu 225	TTG Leu	AGA Arg	GGG Gly	AGA Arg	GGT (Gly 230	GGT Gly	TAT Tyr	GGT Gly	GGT Gly	TGT Cys 235	Ser	TT 1 Val	CT A Ser	TG GA Met	AG Glu 240	720
GAT Asp	TTG Leu	GAT Asp	GTT Val	GTT Val 245	AGG Arg	ATT Ile	AGG Arg	GAG Glu	AGT Ser 250	wsb	GAA (STG A Val	AT G Asn	TG T Val 255	rg Leu	768
AGT Ser	GTT Val	GAC Asp	TCG Ser 260	Ser	ATT Ile	GCT Ala	CGA Arg	GCT Ala 265	Ser	GGT Gly	GGT (GT (GG G Gly 270	AT G	rr Val	816
AGT Ser	GAG Glu	ATT Ile 275	Gly	GCC Ala	GTG Val	GCT Ala	GCT Ala 280	116	AGA > Arg	ATG Met	CCG . Pro	ATG (Met 285	Leu	GT G' Arg	TT Val	864
TCG Ser	GAT Asp 290	TTT	AAT Asn	GGA Gly	GAG Glu	CTA Leu 295	Ser	TAT Ty:	GCG r Ala	ATA 11e	CTT Leu 300	VAI	Cys	Val	TA Leu	912
CCG Pro 305	Gly	GGG Gly	ACC Thr	CGT Arg	CGG Arg 310	Asp	TGG Tri	ACT Th:	TAT r Tyl	CAG Glr 31	J GIG	ATT (GAG / Glu	ATT G Ile	TT Val 320	960
AAA Lys	GTT Val	GTG Val	GCG Ala	GAT Asp 325	Gln	GTA Val	ACC L Thi	GTT Va	GCG 1 Ala 33	a re	GAT 1 Asp	CAT (GCA (Ala	Ala 335	TT Val	1008
CTT	GAA Glu	GAG Glu	TCT Ser 340	Gln	CTT Leu	ATG Met	AGG Arg	GAG g Gl 34	u Ly:	CTG s Le	GCG u Ala	GAA a Glu	CAG A Gln 350	AAC A Asn	GG Arg	1056
GCG Ala	TTG Leu	CAC Gli 35!	n Met	GCG Ala	AAG Lys	AGA Ar	GAC g As 36	ĎΥT	TTG a Le	AGA u Ar	GCG g Ala	AGC Ser 365	GID	GCG A	GG Arg	1104
AAT Asn	GCG Ala 370	Ph	CAG e Gli	AAA n Lys	ACG Thi	ATG Me 37	t Se	GAF r Gl	GGG U Gl	ATG Y Me	AGG t Arg 38	g Arg	CCT .	ATG C Met	AT His	1152
TCC Ser 385	Ile	CTC	GG7 u Gl	r CTT y Lei	TTG Lev 390	ı Se	ATG r Me	t II	CAG e Gl	GAC n As 39	Б ст.	AAG u Ly:	TTG Lev	AGT G	ASP ASP 400	1200
GAC Glu	CAC	AA h Ly	A ATO s Me	3 ATI t 110 40	e Va	GAT l As	P Th	TA S	GTT et Va 41	rt ra	ACA 's Th	GGG r Gly	AAT Y Asi	GTT / 1 Val 415	Mec	1248
TC(Set	G AAS	r TT n Le	G GTV u Va 42	1 G1	GAC Y As	TC? P Se	YAT PM T	t As	r GTC sp Va 25	CCT	GAC O As	GGT p Gl	AGA y Arg 43	TTT (g Phe	GT Gly	1296
AC:	G GAG	G AT u Me 43	t Ly	A CCC	o Ph	AG' e Se	r CTO	u H	T CG is Al	r ACC	ATC	CAT e Hi 44	S GI	GCA (GCT Ala	1344

Cys	Met 45	CAL	a Ar	Y TGT	TIG S Let	TGI CY 45	s Le	. TGC u Cy:	AAT S As	GGA n Gl	ATT Y Il 46	e Ar	TTC g Ph	TTG ie Lei	GTT u Val	1392
GAC Asp 465) ATS	G GAG	AAC u Lys	TCT S Sea	CTA Let 470	i Pro	GAT Asj	TAA ISA q	GTA Val	GTA 1 Va: 47!	l Gly	GAT Y A s	GAA p Gl	AGA u Arg	AGG J Arg 480	
GTC Val	: TTT . Phe	CAA Gli	A GTG	ATA L Ile 489	≥ Leu	CAT His	ATG Met	GTT Val	GGT Gly 490	/ Se	TTA r Leu	GTA J Va	AAG 1 Ly	CCT s Pro 495	Arg	1488
AAA Lys	CGI Arg	CAA Glr	GAA Glu 500	ı Gly	TCT Ser	TCA Sea	TTG Let	ATG Met 505	Phe	AAG Lys	GTT Val	TTG L Let	AAA 1 Ly 51	GAA . s Glu 0	AGA 1 Arg	1536
GGA Gly	AGC Ser	TTG Lev 515	l Asp	AGG Arg	AGT Ser	GAT Asp	CAT His 520	: Arg	TGG Trp	GCT Ala	GCT Ala	TGG Tri 525	Ar	TCA (g Ser	CCG Pro	1584
GCT Ala	TCT Ser 530	Ser	GCA Ala	GAT Asp	GGA Gly	GAT Asp 535	Val	TAT Tyr	ATA Ile	AGA Arg	TTT Phe 540	: Glu	ATG Me	AAT (t Asn	STA Val	1632
GAG Glu 545	Asn	GAT Asp	GAT Asp	TCA Ser	AGT Ser 550	TCT Ser	CAA Gln	TCA Ser	TTT Phe	GCT Ala 555	Ser	GTT Val	TCC Se	TCC 1 r Ser	AGA Arg 560	1680
GAT Asp	CAA Gln	GAA Glu	GTT Val	GGT Gly 565	Asp	GTT Val	AGA Arg	TTC Phe	TCC Ser 570	Gly	GGC Gly	ТАТ Туг	GGG GGG	TTA (/ Leu 575	GA Gly	1728
CAA Gln	GAT Asp	CTA Leu	AGC Ser 580	TTT Phe	GGT Gly	GTT Val	TGT Cys	AAG Lys 585	AAA Lys	GTG Val	GTG (Val	CAG ' Gln	TTG Leu 590	ATT C 1 lle	AT His	1776
GGG Gly	AAT Asn	ATC Ile 595	Ser	GTG Val	GTC Val	CCT Pro	GGC Gly 600	TCG Ser	GAT Asp	GGT ' Gly	TCA (Ser	Pro 605	GAG Glu	ACC A	TG Met	1824
TCG Ser	TTG Leu 610	CTC Leu	CTT Leu	CGG Arg	TIT Phe	CGA Arg 615	CGT Arg	AGA Arg	Pro	TCC : Ser	ATA : Ile 620	CT (Ser	STC (Val	CAT G His	GA Gly	1872
TCC Ser 625	AGC Ser	GAG Glu	TCG Ser	CCA Pro	GCT Ala 630	CCT Pro	GAC Asp	CAC (His	CAC (His	Ala 635	CAC (His	Pro	CAT ' His	TCG A Ser	AT Asn 640	1920
TCT Ser	CTG Leu	TTA Leu	CGT Arg	GGC Gly 645	TTA Leu	CAA Gln	GTT '	TTA 1 Leu	TTG (Leu 650	STA (Val	ASP	ACC # Thr	ASD ASD	ASP ASP 655	CG Ser	1968
AAC Asn	CGG Arg	GCA Ala	GTT Val 660	ACA Thr	CGT . Arg	AAA Lys	CTC ' Leu	PTA (Leu 665	GAG A	Lys	Leu	GG 1 Gly	Cys 670	ASP	TA Val	2016
ACC Thr	GCG Ala	GTT Val 675	TCC Ser	TCT Ser	GGA ' Gly	Phe	GAT ' Asp 680	IGC (Cys	CTT / Leu	Thr	SCC A Ala	TT G Ile 685	CT (Pro	GC Gly	2064
ser	TCC Ser 690	TCG S r	CCT Pro	TCT . Ser	ACT '	rcg ' Ser 695	Ph	Gln	STG (TG C Val	Val	TT G Leu	AT C	TT C	AA Gln	2112

124 ATG GCA GAG ATG GAC GGT TAT GAA GTG GCC ATG AGG ATC AGG AGT CGA 2160																
ATG Met 705	et Ala Glu Met Asp Gly Tyr Glu Val Ala Met Arg 11e Arg Ser Arg 05 715 720 CT TGG CCG TTG ATT GTG GCG ACG ACA GTG AGC TTG GAT GAA GAA ATG er Trp Pro Leu Ile Val Ala Thr Thr Val Ser Leu Asp Glu Glu Met															2160
TCT Ser	TGG Trp	CCG Pro	TTG Leu	ATT (Ile 725	GTG (Val	GCG A	ACG A Thr	CA Thr	Val	AGC I Ser	TG G Leu	AT G Asp	AA G Glu	GIU.	rg Met	2208
TGG Trp	GAC Asp	AAG Lys	TGT Cys 740	GCA Ala	CAG . Gln	ATT (GGA <i>I</i> Gly	ATC Ile 745	Asn	GA G	TT G Val	TG A Val	GA A Arg 750	AG CO Lys	CA Pro	2256
GTG Val	GTG Val	TTA Leu 755	AGA Arg	GCT Ala	ATG Met	GAG Glu	AGT C Ser 760	GAG Glu	CTC (Leu	CGA A Arg	AGA G Arg	TA T Val 765	TG T Leu	TG CI Leu	AA Gln	2304
GCT Ala	GAC Asp 770	CAA Gln	CTT Leu	CTC '	TAAG'	PIGT	TA TO	CTCA	ACTT	c TCT	TCT?	CAT	TCAA	AATT	TT	2359
TAC.	770															2404
(2)	INF	ORMA'	TÌON	FOR	SEQ	ID :	NO : 4	4 :	,							
		(i) ·	(A (B) LE	NGTH PE:	: 77 amin	ERIS' 3 am: o ac: line	ino id	: acid	s						
							rote									
							TION								•	
Met 1		Lys	Glu	Ile 5	Ala	Ser	Trp	Let	l Lev	l lle	Leu	Ser	Met	Val 15	Val	
Phe	Val	Ser	Pro 20		Leu	Ala	Ile	As: 2!	n Gly	Gly	Gly	Tyr	Pro 30	Arg	Cys	
Asn	Cys	Glu 35		Glu	Gly	Asn	Ser 40	Pho	e Trp	Ser	Thr	Glu 45	Asn	Ile	Leu	
Glu	Thi 50		Arg	Val	Ser	Asr 55	Phe	Le	ı Ile	a Ala	Val 60	Ala	Tyr	Phe	Ser	

Ile Pro Ile Glu Leu Leu Tyr Phe Val Ser Cys Ser Asn Val Pro Phe 65 70 75 80

Lys Trp Val Leu Phe Glu Phe Ile Ala Phe Ile Val Leu Cys Gly Met 85 90 95

Thr His Leu Leu His Gly Trp Thr Tyr Ser Ala His Pro Phe Arg Leu 100 105 110

Met Met Ala Phe Thr Val Phe Lys Met Leu Thr Ala Leu Val Ser Cys 115 120 125

Ala Thr Ala Il Thr Leu Ile Thr Leu Ile Pro Leu Leu Leu Lys Val 130 135 140

Lys Val Arg Glu Phe Met Leu Lys Lys Lys Ala His Glu Leu Gly Arg 145 150 155 160

Glu Val Gly Leu Ile Leu Ile Lys Lys Glu Thr Gly Phe His Val Arg Met Leu Thr Gln Glu Ile Arg Lys Ser Leu Asp Arg His Thr Ile Leu Tyr Thr Thr Leu Val Glu Leu Ser Lys Thr Leu Gly Leu Gln Asn Cys 195 200 205 Ala Val Trp Met Pro Asn Asp Gly Gly Thr Glu Met Asp Leu Thr His 210 220 Glu Leu Arg Gly Arg Gly Gly Tyr Gly Gly Cys Ser Val Ser Met Glu 225 230 235 Asp Leu Asp Val Val Arg Ile Arg Glu Ser Asp Glu Val Asn Val Leu Ser Val Asp Ser Ser Ile Ala Arg Ala Ser Gly Gly Gly Asp Val 260 265 270 Ser Glu Ile Gly Ala Val Ala Ala Ile Arg Met Pro Met Leu Arg Val 275 280 285 Ser Asp Phe Asn Gly Glu Leu Ser Tyr Ala Ile Leu Val Cys Val Leu 290 295 300 Pro Gly Gly Thr Arg Arg Asp Trp Thr Tyr Gln Glu Ile Glu Ile Val 305 310 315 320 Lys Val Val Ala Asp Gln Val Thr Val Ala Leu Asp His Ala Ala Val 325 Leu Glu Glu Ser Gln Leu Met Arg Glu Lys Leu Ala Glu Gln Asn Arg 340 345 350 Ala Leu Gln Met Ala Lys Arg Asp Ala Leu Arg Ala Ser Gln Ala Arg 355 360 365 Asn Ala Phe Gln Lys Thr Met Ser Glu Gly Met Arg Arg Pro Met His 370 380 Ser Ile Leu Gly Leu Leu Ser Met Ile Gln Asp Glu Lys Leu Ser Asp 385 390 395 Glu Gln Lys Met Ile Val Asp Thr Met Val Lys Thr Gly Asn Val Met Ser Asn Leu Val Gly Asp Ser Met Asp Val Pro Asp Gly Arg Phe Gly 420 430 Thr Glu Met Lys Pro Phe Ser Leu His Arg Thr Ile His Glu Ala Ala Cys Met Ala Arg Cys Leu Cys Leu Cys Asn Gly Ile Arg Phe Leu Val 450 455 Asp Ala Glu Lys Ser Leu Pro Asp Asn Val Val Gly Asp Glu Arg Arg 465 470 475 480 Val Ph Gln Val Ile Leu His Met Val Gly Ser Leu Val Lys Pro Arg 490

Lys Arg Gln Glu Gly Ser Ser Leu Met Phe Lys Val Leu Lys Glu Arg 500 510 Gly Ser Leu Asp Arg Ser Asp His Arg Trp Ala Ala Trp Arg Ser Pro Ser Ser Ala Asp Gly Asp Val Tyr Ile Arg Phe Glu Met Asn Val 530 540 Glu Asn Asp Asp Ser Ser Ser Gln Ser Phe Ala Ser Val Ser Ser Arg Asp Gln Glu Val Gly Asp Val Arg Phe Ser Gly Gly Tyr Gly Leu Gly 565 570 575 Gln Asp Leu Ser Phe Gly Val Cys Lys Lys Val Val Gln Leu Ile His 580 580 Gly Asn Ile Ser Val Val Pro Gly Ser Asp Gly Ser Pro Glu Thr Met 595 600 605 Ser Leu Leu Leu Arg Phe Arg Arg Pro Ser Ile Ser Val His Gly 610 620 Ser Ser Glu Ser Pro Ala Pro Asp His His Ala His Pro His Ser Asn 625 630 635 Ser Leu Leu Arg Gly Leu Gln Val Leu Leu Val Asp Thr Asn Asp Ser 645 650 655 Asn Arg Ala Val Thr Arg Lys Leu Glu Lys Leu Gly Cys Asp Val 660 665 670 Thr Ala Val Ser Ser Gly Phe Asp Cys Leu Thr Ala Ile Ala Pro Gly 675 680 685 Ser Ser Ser Pro Ser Thr Ser Phe Gln Val Val Leu Asp Leu Gln 690 700 Met Ala Glu Met Asp Gly Tyr Glu Val Ala Met Arg Ile Arg Ser Arg 705 710 715 720 Ser Trp Pro Leu Ile Val Ala Thr Thr Val Ser Leu Asp Glu Glu Met 725 730 735 Trp Asp Lys Cys Ala Gln Ile Gly Ile Asn Gly Val Val Arg Lys Pro
740 745 750 Val Val Leu Arg Ala Met Glu Ser Glu Leu Arg Arg Val Leu Leu Gln 765 765 Ala Asp Gln Leu Leu 770

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3009 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

1	ix	FEATURE	
- 1		FEATURE	Ξ

(A) NAME/KEY: CDS
(B) LOCATION: join(564..1469, 1565..1933, 2014..2280, 2359 ...2486, 2577...2748)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

ACTITIAAAA TITCTTTATT TCATTGTCAG AAAAAGAGAG CTAATAATAT TATTATITAA	60
ATGTAACAAG TAGGCCTATA ACACGTGAAC TTCCCTCTTT GCAAAAAAAA AATCATCAAA	120
AACTITIACC TCTCATTGGT TTCTTCTTTA TCACACTGTT ACGCTTGGAT TCTCATTTCT	180
TCAAGTTCAT AACGCTCGGA TCAATCAGGA AGACGAACTT GAACTTTCTT TTTTTCATCA	240
TTACCCAAAG CTATGAGGCT CACACCACCA ATACGTCCGC CGTCATGAAT CCTTCTCTTC	300
CAGGTACTGT GCCGTCTCGG GATAACAAAC TTTCTATTTA TTCTCTTCTG ATCGGATCTA	360
TCTATCGATG AAGATTGATT TCACTACTTT AGTAACATTT CATCTGATCG ATCTGTGTTG	420
TGTTATCGAG GAATCAATCT CATTTTGTAG ATTCAATTTT CTGGATAGAT TITGTATCTC	480
	540
CAACACAAGT CAGAGCTCCA AAA ATG GAG TCA TGC GAT TGT TTT GAG ACG Met Glu Ser Cys Asp Cys Phe Glu Thr 1 5	590
CAT GTG AAT CAA GAT GAT CTG TTA GTG AAG TAC CAA TAC ATC TCA GAT His Val Asn Gln Asp Asp Leu Leu Val Lys Tyr Gln Tyr Ile Ser Asp 10 20 25	638
GCG TTG ATT GCT CTT GCA TAC TTC TCA ATC CCA CTC GAG CTT ATC TAT Ala Leu Ile Ala Leu Ala Tyr Phe Ser Ile Pro Leu Glu Leu Ile Tyr 30 35 40	686
TTC GTG CAA AAG TCT GCT TTC TTC CCT TAC AAA TGG GTG CTT ATG CAG Phe Val Gln Lys Ser Ala Phe Phe Pro Tyr Lys Trp Val Leu Met Gln 45 50 55	734
PTT GGA GCC TTT ATC ATT CTC TGT GGA GCT ACG CAT TTC ATC AAC CTA Phe Gly Ala Phe Ile Ile Leu Cys Gly Ala Thr His Phe Ile Asn Leu 60 65 70	782
NGG ATG TTC TTC ATG CAT TCC AAA GCC GTT GCC ATT GTC ATG ACT ATT FITP Met Phe Phe Met His Ser Lys Ala Val Ala Ile Val Met Thr Ile 75 80 85	330
GCT AAA GTC TCT TGC GCG GTT GTG TCG TGT GCT ACC GCG TTG ATG TTG Ala Lys Val Ser Cys Ala Val Val Ser Cys Ala Thr Ala Leu Met Leu 90 95 100 105	378
FTT CAT ATT ATT CCT GAT CTT CTC AGT GTT AAG AAC AGG GAA TTG TTT 9 Val His Ile Ile Pro Asp Leu Leu Ser Val Lys Asn Arg Glu Leu Phe 110 115 120	26
TTC AAG AAG AAA GCT GAT GAG TTA GAT AGA GAA ATG GGT CTT ATT TTA 9 Leu Lys Lys Ala Asp Glu Leu Asp Arg Glu Met Gly Leu Ile Leu 125 130 135	74

ACA Thr	CAA Gln	GAG Glu 140	GAG Glu	ACT Thr	GGT Gly	AGG Arg	CAT His 145	GTT . Val	AGG . Arg	ATG (Met	CTT . Leu	ACT C Thr 150	AT G His	GA A Gly	TT	1022
AGA Arg	AGA Arg 155	ACT Thr	CTT Leu	GAT Asp	AGG Arg	CAT His 160	ACT Thr	ATT Ile	TTA Leu	AGA . Arg	ACC Thr 165	ACT (TT G Leu	TT G Val	AG Glu	1070
CTT Leu 170	GGT Gly	AAA Lys	ACT Thr	CTT Leu	TGT Cys 175	CTT Leu	GAG Glu	GAA Glu	TGT Cys	GCG Ala	Leu	TGG I	ATG C Met	CT T Pro		1118
CAA Gln	AGT Ser	GCT Gly	TTA Leu	TAT Tyr 190	TTG Leu	CAG Gln	CTT Leu	TCT Ser	CAT His 195	Thr	TTG Leu	AGT (Ser	CAT A His	Lys 200	TIG	1166
CAA Gln	GTT Val	GGA Gly	AGC Ser 205	AGT Ser	GTG Val	CCG Pro	ATA Ile	AAT Asn 210	Leu	CCG Pro	ATT Ile	ATT A	AAT C Asn 215	Glu	TC Leu	1214
TTC Phe	AAT Asn	AGC Ser 220	GCT Ala	CAA Gln	GCT Ala	ATG Met	CAC His 225	Ile	CCT Pro	CAT His	TCT Ser	TGT Cys 230	Pro	MG (SCT Ala	1262
AAG Lys	ATT Ile 235	GGG Gly	CCT Pro	CCG Pro	GTT Val	GGG Gly 240	Arg	TAT Tyr	TCA Ser	CCT Pro	CCT Pro 245	GAG (Glu	GTT (Val	CT Ser	1310
GTC Val 250	CGT Arg	GTT Val	CCT Pro	CTT	TTA Leu 255	His	CTC Lev	TCT 1 Sex	TAA 12A :	TTC Phe 260	∍ Glı	GGC n Gly	AGT (Ser	CAC 1 Asp	rgg Trp 265	1358
TCG Ser	GAT Asp	CTC Leu	TCT Ser	GGC Gly 270	Lys	GGT Gly	TAC Tyi	GCT Ala	ATC 116 275	e Met	GTC Vai	CTG l Leu	ATT (Leu 280	Pro	1406
ACC Thr	GAT Asp	GGT Gly	GCA Ala 285	Arg	AAA Lys	TGG Tri	AGA Arg	GAC Asi 29	o His	GAG S Gl	TTA 1 Le	GAG u Glu	CTT (Leu 295	Val	GAA Glu	1454
AAC Asn	GTG Val	GCG Ala 300	Asp	CAG Glr	GTC(CATC	TCT :	TTAC'	MGT	AT AT	rgtt.	rggti	GTG	TGTC	AAG	1509
TTG	CTTT	'ACC	agct	TTTA	GT G	TTT	GIII	T GT	cccc	TGAC	TCT	CACT	TCA T	TCAG	GTG Va	156°
GCT Ala	GTG Val 305	Ala	CTC Let	TCA Set	CAT His	GCI S Al	a Al	ATT a Il	TTG e Le	GAA u Gl	GAA u Gl 31	TCC u Se: 5	ATG r Met	CAC His	GCT s Ala	161
CGT Arg 320	Asp	CAG Glr	CTI Lev	' ATG	GAG G1: 32:	u Gl	AAT n As	r TTT n Ph	GCT e Al	TTA a Le 33	u As	AAG p Ly:	GCT s Ala	CGT Arg	CAA g Gln 335	166
GAC Glu	GCT Ala	GAG Glu	ATC	GCA Ala 34	a Va	CAT 1 Hi	GC7 s Al	CGA a Ar	AAT g As 34	n As	TTC p Ph	CTA e Le	GCT u Ala	GTT Va: 35	1 Wer	171

AAC CAC GAG ATG AGG ACA CCG ATG CAT GCC ATC ATC TCT CTT TCT Asn His Glu Met Arg Thr Pro Met His Ala Ile Ile Ser Leu Ser Ser 355 365

355

CTT Leu	CTC Let	CTI Leu 370	i Giu	ACT Thr	GAG Glu	CTG Let	TCT Set 375	r Pro	GAG Glu	CAA ı Glr	AGA Arg	GTT Z Val 380	ATG A Met	TC GA	AG Glu	1807
ACA Thr	ATA Ile 385	rec	AAA Lys	AGC Ser	AGC Ser	AAT Asn 390	1 Let	GTG 1 Val	GCT L Ala	ACA Thr	CTA Leu 395	ATC A Ile	GC G Ser	AC GI Asp	MT Val	1855
400	nsp	Deu	Ser	Arg	405	GIU	ASP	o GIŽ	Sei	410	Leu	Leu	Glu	Asn (A Glu 415	1903
CCA Pro	TTC Phe	AGT Ser	CTA Leu	CAA Gln 420	Ala	ATC Ile	TTT	GAA Glu	GAG Glu 425	1	CTAA	AT CC	CCCT	GATT		1953
AAC	CAGT	GAA (STCC	TTA	TA T	TGTC	TTAC	ATG	AATA	ACA '	rece	GCTT	T GA	ATCTG	CAG	2013
GTC Val	ATC	TCT Ser	TTG Leu	ATA Ile 430	AAG Lys	CCA Pro	ATC Ile	GCA Ala	TCA Ser 435	Val	AAG / Lys	AAA C Lys	TA T Leu	CA AC Ser 1	G Thr	2061
AAT Asn	CTG Leu	ATT Ile	CTG Leu 445	TCT Ser	GCA Ala	GAC Asp	TTA Leu	CCA Pro 450	Thr	TAT (GCT A Ala	Ile	GT G Gly 455	AT GA Asp C	G Slu	2109
AAA Lys	CGT Arg	CTG Leu 460	ATG Met	CAA Gln	ACA Thr	ATT Ile	CTT Leu 465	AAC Asn	ATC Ile	ATG (Met	GC A Gly	AC GO Asn 470	CT G Ala	NG AA. Val L	ys Ys	2157
TTT Phe	ACT Thr 475	AAG Lys	GAA Glu	GGC Gly	TAC Tyr	ATC Ile 480	TCC Ser	ATA . Ile	ATA (GCC 1	CT A Ser 485	TC AT	NG AJ Met	AA CCC Lys P	ro	2205
GAG Glu 490	TCC Ser	TTA Leu	CAA (Gln	GAA ' Glu	TTA Leu 495	Pro	TCT (Ser	Pro	GAA ' Glu	Phe 500	TT C Phe	CA G1 Pro '	T CI Val :	C AGT Leu S 5	r er 05	2253
GAC Asp	AGT Ser	CAC His	TTC ' Phe	TAC Tyr 510	CTA Leu	TGT (Cys	GTG (Val	CAG (Gln	GTTA	GACC	CA AI	'CTAC	TAAA		-	2300
TACT	AAAC	TA C	AAAG	TTAA	G CT	TCTT	ACTG	TGT	TCTT	ACT C	TTAT	'AATC	A TGC	TGCA	3	2358
GTG . Val . 515	AAG Lys	GAC . Asp	ACA (Thr	GG ? Gly	IGT (Cys 520	GGA / Gly	ATT (Ile	CAC / His	ACA (Thr	GAA G Gln 525	AC A' Asp	TT CC Ile i	ro I	G CTC Seu Lo	: eu 30	2406
TTT : Phe	ACC . Thr	AAA ' Lys	Pne	STA (Val 535	CAG (Gln	Pro	CGG A	ACC C Thr	GA 7 Gly 540	CT C	AG AG Gln	G AA Arg A	sn F	T TCC lis Se 545	er	2454
GGT (Gly (GGA (Gly	Gly	CTC (Leu (550	GG (CTA (Leu	GCT (Ala	CTC : Leu	Cys 555	AAA Lys	CG Arg	GTAA	CAACC	c		;	2496
AAAA	STAT	AT A	raagi	TAT	A AGO	AGAT	CCT	GTTA	CAA	ATA G	CTAAI	AAGGC	AAG'	TTTCT	CT :	2556
rgaty	G AT	GT C	rcrg	STTA(G G :	Phe	Val	GG C Gly 560	TA A Leu	ATG G Met	GA GO	Gly T	C AT Yr M 65	G TGG let Tr	rp	2607

ATA GAA AGT GAA GGC CTA GAG AAA GGC TGC ACA GCT TCG TTC ATC ATC 2655

Ile Glu Ser Glu Gly Leu Glu Lys Gly Cys Thr Ala Ser Ph Ile Ile
570 575

AGG CTT GGT ATC TGC AAC GGT CCA AGC AGT AGC AGT GGT TCA ATG GCG 2703
Arg Leu Gly Ile Cys Asn Gly Pro Ser Ser Ser Gly Ser Met Ala
585 590 595

CTA CAT CTT GCA GCT AAA TCA CAA ACC AGA CCG TGG AAC TGG TGATACTTAC2755
Leu His Leu Ala Ala Lys Ser Gln Thr Arg Pro Trp Asn Trp
600 610

GTTGGAAAGA CTTGTATTGA GGTGAGACTT TITAACTACA CAGCAGCAAG AGAAAGAAGA 2815
AAATACATGA CCGGACGGTG TGATCTAACT TATTGGATTT TGTTGGATGT AATATGTAAA 2875
ATAAAAAATCC TATATACGGG GAGAGGTACC TTATCTGTTC TCACTATATT TTATTGAACA 2935
TTACTTTAGA GAATATGTTT TGGAATTCAC TACTAAATAA ACGATATAAA TCTTCACGAA 2995
AAGAGCAACA TTTT

(2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 613 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

Met Glu Ser Cys Asp Cys Phe Glu Thr His Val Asn Gln Asp Asp Leu
1 10 15

Leu Val Lys Tyr Gln Tyr Ile Ser Asp Ala Leu Ile Ala Leu Ala Tyr 20 25

Phe Ser Ile Pro Leu Glu Leu Ile Tyr Phe Val Gln Lys Ser Ala Phe

Phe Pro Tyr Lys Trp Val Leu Met Gln Phe Gly Ala Phe Ile Ile Leu 50 55

Cys Gly Ala Thr His Phe Ile Asn Leu Trp Met Phe Phe Met His Ser

Lys Ala Val Ala Ile Val Met Thr Ile Ala Lys Val Ser Cys Ala Val 85 90 95

Val Ser Cys Ala Thr Ala Leu Met Leu Val His Ile Ile Pro Asp Leu 100 105 110

Leu Ser Val Lys Asn Arg Glu Leu Phe Leu Lys Lys Lys Ala Asp Glu 115 120 125

Leu Asp Arg Glu Met Gly Leu Ile Leu Thr Gln Glu Glu Thr Gly Arg 130 135 140

His Val Arg Met Leu Thr His Gly Ile Arg Arg Thr Leu Asp Arg His 145 150 155 160

Thr Ile Leu Arg Thr Thr Leu Val Glu Leu Gly Lys Thr Leu Cys Leu 170 175 Glu Glu Cys Ala Leu Trp Met Pro Ser Gln Ser Gly Leu Tyr Leu Gln Leu Ser His Thr Leu Ser His Lys Ile Gln Val Gly Ser Ser Val Pro Ile Asn Leu Pro Ile Ile Asn Glu Leu Phe Asn Ser Ala Gln Ala Met 215 His Ile Pro His Ser Cys Pro Leu Ala Lys Ile Gly Pro Pro Val Gly 225 230 235 Arg Tyr Ser Pro Pro Glu Val Val Ser Val Arg Val Pro Leu Leu His 245 250 255 Leu Ser Asn Phe Gln Gly Ser Asp Trp Ser Asp Leu Ser Gly Lys Gly 260 265 270 Tyr Ala Ile Met Val Leu Ile Leu Pro Thr Asp Gly Ala Arg Lys Trp
275 280 285 Arg Asp His Glu Leu Glu Leu Val Glu Asn Val Ala Asp Gln Val Ala 290 295 300 Val Ala Leu Ser His Ala Ala Ile Leu Glu Glu Ser Met His Ala Arg 305 310 315 320 Asp Gln Leu Met Glu Gln Asn Phe Ala Leu Asp Lys Ala Arg Gln Glu 330 Ala Glu Met Ala Val His Ala Arg Asn Asp Phe Leu Ala Val Met Asn His Glu Met Arg Thr Pro Met His Ala Ile Ile Ser Leu Ser Ser Leu 355 360 365 Leu Leu Glu Thr Glu Leu Ser Pro Glu Gln Arg Val Met Ile Glu Thr Ile Leu Lys Ser Ser Asn Leu Val Ala Thr Leu Ile Ser Asp Val Leu 385 390 395 Asp Leu Ser Arg Leu Glu Asp Gly Ser Leu Leu Glu Asn Glu Pro 410 Phe Ser Leu Gln Ala Ile Phe Glu Glu Val Ile Ser Leu Ile Lys Pro Ile Ala Ser Val Lys Lys Leu Ser Thr Asn Leu Ile Leu Ser Ala Asp Leu Pro Thr Tyr Ala Ile Gly Asp Glu Lys Arg Leu Met Gln Thr Ile 450 460 Leu Asn Ile Met Gly Asn Ala Val Lys Phe Thr Lys Glu Gly Tyr Ile 465 470 475 480 Ser Il Ile Ala Ser Ile Met Lys Pro Glu Ser Leu Gln Glu Leu Pro 490

Ser	Pro	Glu	Phe 500	Ph	Pro	Val	Leu	Ser 505	Asp	Ser	His	Phe	Tyr 510	Leu	Cys
Val	Gln	Val 515	Lys	Asp	Thr	Gly	Cys 520	Gly	Ile	His	Thr	Gln 525	Asp	Ile	Pro
Leu	Leu 530	Phe	Thr	Lys	Phe	Val 535	Gln	Pro	Arg	Thr	Gly 540	Thr	Gln	Arg	Asn
His 545	Ser	Gly	Gly	Gly	Leu 550	Gly	Leu	Ala	Leu	Cys 555	Lys	Arg	Phe	Val	G1y 560
Leu	Met	Gly	Gly	Tyr 565	Met	Trp	Ile	Glu	Ser 570	Glu	Gly	Leu	Glu	Lys 575	Gly
Cys	Thr	Ala	Ser 580	Phe	Ile	Ile	Arg	Leu 585	Gly	Ile	Cys	Asn	Gly 590	Pro	Ser
Ser	Ser	Ser 595	Gly	Ser	Met	Ala	Leu 600	His	Leu	Ala	Ala	Lys 605	Ser	Gln	Thr
Arg	Pro	Trp	Asn	Trp											

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2314 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS (B) LOCATION: 224..2065
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:
- AAAAAAATCA TCAAAAACTT TTACCTCTCA TTGGTTTCTT CTTTATCACA CTGTTACGCT TGGATTCTCA TTTCTTCAAG TTCATAACGC TCGGATCAAT CAGGAAGACG AACTTGAACT 120 TTCTTTTTT CATCATTACC CAAAGCTATG AGGCTCACAC CACCAATACG TCCGCCGTCA 180 TGAATCCTTC TCTTCCAGGT CAACACAAGT CAGAGCTCCA AAA ATG GAG TCA TGC
- Met Glu Ser Cys
- GAT TGT TTT GAG ACG CAT GTG AAT CAA GAT GAT CTG TTA GTG AAG TAC 283 Asp Cys Phe Glu Thr His Val Asn Gln Asp Asp Leu Leu Val Lys Tyr
- CAA TAC ATC TCA GAT GCG TTG ATT GCT CTT GCA TAC TTC TCA ATC CCA 331 Gln Tyr Ile Ser Asp Ala Leu Ile Ala Leu Ala Tyr Phe Ser Ile Pro
- CTC GAG CTT ATC TAT TTC GTG CAA AAG TCT GCT TTC TTC CCT TAC AAA Leu Glu L u Ile Tyr Phe Val Gln Lys Ser Ala Phe Phe Pro Tyr Lys 45 40

••	p va	5	s me	L GI	n Pn	e GI	6 A L	a Ph	e Il	e Il	e Le	u Cy: 6:	s Gly	GCT ACG / Ala Th	427 r
n.	7	0	e As	n Le	u Ir	7 me	5 Phe	∍ Pho	e Me	t His	5 Se:	r Lys	Ala	GTT GCC	475 a
8	5	ı me	C Th	F 11	9 A1	a Lys	va]	. Se	r Cys	s Ala 99	a Vai	l Val	. Ser	TGT GCT Cys Ala	
. 1111	. Al	a Le	u mei	10:	u va. 5	l His	Ile	· Ile	110	Asp)	Let	ı Leu	Ser	GTT AAG Val Ly: 115	571 s
ASI	ı Arç	g GI	120)	e Lev	ı Lys	Lys	125	Ala	a Asp	Glu	1 Leu	130		619 1
. Met	. 613	135	2 116	e rec	ı ını	GIN	140	Glu	Thr	Gly	' Arg	His 145	Val	AGG ATG Arg Met	667
CTI	Thr 150	urs	GGA Gly	ATT	AGA Arg	AGA Arg 155	Thr	CTT Leu	GAT Asp	AGG Arg	CAT His	Thr	ATT T	PTA AGA Leú Arg	715
ACC Thr 165	1117	Leu	GTT Val	GAG Glu	CTT Leu 170	GIA	AAA Lys	ACT Thr	CTT Leu	TGT Cys 175	Leu	GAG (Glu	GAA 1 Glu	GT GCG Cys Ala 180	
Deu	110	Mec	PIO	185	GIN	ser	GÍA	Leu	191	Leu	Gln	Leu	Ser	AT ACT His Thr 195	811
Ded	Ser	nis	200	116	Gin	val	GIÀ	Ser 205	Ser	Val	Pro	Ile	Asn 210	TC CCG Leu Pro	859
116	116	215	GIU	Leu	Pne	Asn	220	Ala	Gln	Ala	Met	His 225	Ile	CT CAT Pro His	907
TCT Ser	TGT Cys 230	CCT Pro	TTG Leu	GCT Ala	AAG Lys	ATT Ile 235	GGG (Gly	Pro	CCG (Pro	STT (Val	GG A Gly 240	AGA T Arg	AT T Tyr	CA CCT Ser Pro	955
Pro 245	GAG Glu	GTT Val	GTT Val	TCT Ser	GTC Val 250	CGT (GTT (Val	Pro	CTT 1 Leu	TA C Leu 255	AT C His	TC To Leu	CT A	AT TTC Asn Phe 260	1003
CAA Gln	GGC Gly	AGT Ser	GAC Asp	TGG Trp 265	TCG Ser	GAT (Asp	CTC 1 Leu	CT C Ser	GC A Gly 270	laa G Lys	GT 1 Gly	AC GO	Ala	TC ATG Ile Met 275	1051
GTC Val	CTG Leu	ATT Ile	CTC Leu 280	CCA Pro	ACC (GAT (Asp	GT C	CA A Ala 285	GA A Arg	AA T Lys	GG A Trp	Arg .	AC CA Asp : 290	AT GAG His Glu	1099
TTA Leu	GAG Glu	CTT Leu 295	GTA Val	GAA Glu	AAC (Asn	Val	SCG G Ala 300	AT C	AG G Gln	TG G Val	CT G Ala	TG GO Val . 305	CT CT Ala i	TC TCA L u Ser	1147

CAT GCT GCA ATT TTG GAA GAA TCC ATG CAC GCT CGT GAC CAG CTT ATG 1195 His Ala Ala Ile Leu Glu Glu Ser Met His Ala Arg Asp Gln Leu Met 315 GAG CAG AAT TTT GCT TTA GAC AAG GCT CGT CAA GAG GCT GAG ATG GCA Glu Gln Asn Phe Ala Leu Asp Lys Ala Arg Gln Glu Ala Glu Met Ala 335 GTA CAT GCT CGA AAT GAT TTC CTA GCT GTT ATG AAC CAC GAG ATG AGG 1291 Val His Ala Arg Asn Asp Phe Leu Ala Val Met Asn His Glu Met Arg ACA CCG ATG CAT GCC ATC ATC TCT CTT TCT TCT CTC CTT GAG ACT 1339 Thr Pro Met His Ala Ile Ile Ser Leu Ser Ser Leu Leu Leu Glu Thr GAG CTG TCT CCA GAG CAA AGA GTT ATG ATC GAG ACA ATA CTG AAA AGC 1387 Glu Leu Ser Pro Glu Gln Arg Val Met Ile Glu Thr Ile Leu Lys Ser 380 AGC AAT CTT GTG GCT ACA CTA ATC AGC GAC GTT CTG GAT CTT TCG AGA Ser Asn Leu Val Ala Thr Leu Ile Ser Asp Val Leu Asp Leu Ser Arg TTG GAA GAT GGG AGC TTA CTC TTG GAA AAT GAA CCA TTC AGT CTA CAA Leu Glu Asp Gly Ser Leu Leu Leu Glu Asn Glu Pro Phe Ser Leu Gln 415 410 405 GCG ATC TTT GAA GAG GTC ATC TCT TTG ATA AAG CCA ATC GCA TCA GTG 1531 Ala Ile Phe Glu Glu Val Ile Ser Leu Ile Lys Pro Ile Ala Ser Val AAG AAA CTA TCA ACG AAT CTG ATT CTG TCT GCA GAC TTA CCA ACT TAT Lys Lys Leu Ser Thr Asn Leu Ile Leu Ser Ala Asp Leu Pro Thr Tyr GCT ATT GGT GAT GAG AAA CGT CTG ATG CAA ACA ATT CTT AAC ATC ATG Ala Ile Gly Asp Glu Lys Arg Leu Met Gln Thr Ile Leu Asn Ile Met 460 GGC AAC GCT GTG AAA TTT ACT AAG GAA GGC TAC ATC TCC ATA ATA GCC Gly Asn Ala Val Lys Phe Thr Lys Glu Gly Tyr Ile Ser Ile Ile Ala 470 TCT ATC ATG AAA CCC GAG TCC TTA CAA GAA TTA CCA TCT CCA GAA TTT 1723 Ser Ile Met Lys Pro Glu Ser Leu Gln Glu Leu Pro Ser Pro Glu Phe 495 490 THT CCA GTT CTC AGT GAC AGT CAC TTC TAC CTA TGT GTG CAG GTG AAG Phe Pro Val Leu Ser Asp Ser His Phe Tyr Leu Cys Val Gln Val Lys 505 GAC ACA GGG TGT GGA ATT CAC ACA CAA GAC ATT CCT TTG CTC TTT ACC Asp Thr Gly Cys Gly Ile His Thr Gln Asp Ile Pro Leu Leu Phe Thr AAA TIT GTA CAG CCT CGG ACC GGA ACT CAG AGG AAC CAT TCC GGT GGA Lys Phe Val Gln Pro Arg Thr Gly Thr Gln Arg Asn His Ser Gly Gly GGA CTC GGG CTA GCT CTC TGT AAA CGG TTT GTC GGG CTA ATG GGA GGA 1915 Gly Leu Gly L u Ala Leu Cys Lys Arg Phe Val Gly Leu Met Gly Gly 560

TAC ATG TGG ATA GAA AGT GAA GGC CTA GAG AAA GGC TGC ACA GCT TCG Tyr Met Trp Ile Glu Ser Glu Gly Leu Glu Lys Gly Cys Thr Ala Ser 565 570 575 580	1963
TTC ATC AGG CTT GGT ATC TGC AAC GGT CCA AGC AGT AGC AGT GGT Phe Ile Ile Arg Leu Gly Ile Cys Asn Gly Pro Ser Ser Ser Gly 585 590 595	2011
TCA ATG GCG CTA CAT CTT GCA GCT AAA TCA CAA ACC AGA CCG TGG AAC Ser Met Ala Leu His Leu Ala Ala Lys Ser Gln Thr Arg Pro Trp Asn 600 605 610	2059
TGG TGATACTTAC GTTGGAAAGA CTTGTATTGA GGTGAGACTT TTTAACTACA Trp	2112
CAGCAGCAAG AGAAAGAAGA AAATACATGA CCGGACGGTG TGATCTAACT TATTGGATTT	2172
TGTTGGATGT AATATGTAAA ATAAAAATCC TATATACGGG GAGAGGTACC TTATCTGTTC	2232
TCACTATATT TTATTGAACA TTACTTTAGA GAATATGTTT TGGAATTCAC TACTAAATAA	2292
ACGATATAAA TCTTCACGAA AA	2314

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 613 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

 Met 1
 Glu Ser
 Cys Asp Scys
 Phe Glu Thr His 10
 Val Asn Gln Asp Asp Leu 15
 Leu Leu Leu 15
 Asp Asp Leu 15
 Leu Leu 15
 Asp Asp Asp Leu 15
 Leu Ala Leu Ala Leu Ala Tyr 30
 Ala Phe 35
 Ala Phe 36
 Ala Phe 3

His 145	Val	Arg	Met	Leu	Thr 150	His	Gly	Ile	Arg	Arg 155	Thr	Leu	Asp	Arg	His 160
Thr	Ile	Leu	Arg	Thr 165	Thr	Leu	Val	Glu	Leu 170	Gly	Lys	Thr	Leu	Cys 175	Leu
Glu	Glu	Cys	Ala 180	Leu	Trp	Met	Pro	Ser 185	Gln	Ser	Gly	Leu	Tyr 190	Leu	Gln
Leu	Ser	His 195	Thr	Leu	Ser	His	Lys 200	Ile	Gln	Val	Gly	Ser 205	Ser	Val	Pro
Ile	Asn 210	Leu	Pro	Ile	Ile	Asn 215	Glu	Leu	Phe	Asn	Ser 220	Ala	Gln	Ala	Met
His 225	Ile	Pro	His	Ser	Cys 230	Pro	Leu	Ala	Lys	Ile 235	Gly	Pro	Pro	Val	Gly 240
Arg	Tyr	Ser	Pro	Pro 245	Glu	Val	Val	Ser	Val 250	Arg	Val	Pro	Leu	Leu 255	His
Leu	Ser	Asn	Phe 260	Gln	Gly	Ser	Asp	Trp 265	Ser	Asp	Leu	Ser	Gly 270	Lys	Gly
Tyr	Ala	Ile 275	Met	Val	Leu	Ile	Leu 280	Pro	Thr	Asp	Gly	Ala 285	Arg	Lys	Trp
Arg	Asp 290		Glu	Leu	Glu	Leu 295	Val	Gļu	Asn	Val	Ala 300	Asp	Gln	Val	Ala
Val 305		Leu	Ser	His	Ala 310	Ala	Ile	Leu	Glu	Glu 315	Ser	Met	His	Ala	Arg 320
Asp	Gln	Leu	Met	Glu 325		Asn	Phe	Ala	Leu 330	Asp	Lys	Ala	Arg	Gln 335	Glu
Ala	Glu	Met	Ala 340		His	Ala	Arg	Asn 345	Asp	Phe	Leu	Ala	Val 350	Met	Asn
His	Glu	Met 355		Thr	Pro	Met	His 360	Ala	Ile	Ile	Ser	Leu 365	Ser	Ser	Leu
Lev	Leu 370		Thr	Glu	Leu	Ser 375	Pro	Glu	Gln	Arg	Val 380	Met	Ile	Glu	Thr
385	5	-			390	1				395	•				Leu 400
Ası	Lev	Sez	Arg	Leu 405	Glu 5) Asp	Gly	Ser	410	Leu	Leu	Glu	Asn	Glu 415	Pro
Phe	e Ser	Let	420		Ile	Phe	Glu	425	Val	Ile	Ser	Leu	11e 430	Lys	Pro
Ile	Ala	43!		Lys	: Lys	Lev	Ser 440	Thr	Asr	Leu	Ile	445	Ser	Ala	Asp
Let	450		r Tyr	: Ala	a Ile	Gly 455	Asp	Glu	. Lys	Arg	460	Met	Glr	Thr	Ile
Let		n Il	Met	: G13	/ Asi 470	Ala	val	Lys	: Phe	Th:	Lys	Glu	Gly	Tyr	11e 480

Ser	Ile	Ile	Ala	Ser 485	Ile	Met	Lys	Pro	Glu 490	Ser	Leu	Gln	Glu	Leu 495	Pro
Ser	Pro	Glu	Phe 500	Phe	Pro	Val	Leu	Ser 505	Asp	Ser	His	Phe	Tyr 510	Leu	Cys
Val	Gln	Val 515	Lys	Asp	Thr	Gly	Cys 520	Gly	Ile	His	Thr	Gln 525	Asp	Ile	Pro
Leu	Leu 530	Phe	Thr	Lys	Phe	Val 535	Gln	Pro	Arg	Thr	Gly 540	Thr	Gln	Arg	Asn
His 545	Ser	Gly	Gly	Gly	Leu 550	Gly	Leu	Ala	Ĺeu	Cys 555	Lys	Arg	Phe	Val	Gly 560
Leu	Met	Gly	Gly	Tyr 565	Met	Trp	Ile	Glu	Ser 570	Glu	Gly	Leu	Glu __	Lys 575	Gly
Cys	Thr	Ala	Ser 580	Phe	Ile	Ile	Arg	Leu 585	Gly	Ile	Cys	Asn	Gly 590	Pro	Ser
Ser	Ser	Ser 595	Gly	Ser	Met	Ala	Leu 600	His	Leu	Ala	Ala	Lys 605	Ser	Gln	Thr
Arg	Pro 610	Trp	Asn	Trp											

(2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2405 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 288..2196
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:
- TTTTTTTTT GTCAAAAGCT CGATGTAAAA ATCCGATGGC CACAAGCAAA ACGACAGGTT CCAACTTCAC GGAGATTGTG AAAATGGAGT AGTAGTTCAG TGAAGTAGTA GATACTGAGA 120 TCGCATTCTC CGGCGTCGTT TTTCACATCG AAATAGTCGT GTAAAAAAAT GAAAAAATTG 180 CTGCGAGACA GGTATGTGTC GCAGCAGGAA ATAGCATCTT AAAGGAAGGA AGGAAGGAAA 240 CTCGAAAGTT ACTAAAAATT TITGATTCTT TGGGACGAAA CGAGATA ATG GAA TCC Met Glu Ser
- TGT GAT TGC ATT GAG GCT TTA CTG CCA ACT GGT GAC CTG CTG GTT AAA 344 Cys Asp Cys Ile Glu Ala Leu Leu Pro Thr Gly Asp Leu Leu Val Lys
- TAC CAA TAC CTC TCA GAT TTC TTC ATT GCT GTA GCC TAC TTT TCC ATT Tyr Gln Tyr Leu Ser Asp Phe Phe Ile Ala Val Ala Tyr Phe S r Ile 392 30

CTG Leu	TTG Leu	GAG Glu	CTT Leu	ATT Ile 40	TAT Tyr	TTT Phe	GTC Val	CAC . His	Lys 45	Ser	Ala	Cys	Phe	Pro 50	Tyr	440
AGA Arg	TGG Trp	GTC Val	CTC Leu 55	ATG Met	CAA Gln	TTT Phe	GGT Gly	GCT Ala 60	TTT I	ATT (CTG (Val	TC 1	Cys 65	GA GO	CA Ala	488
ACA Thr	CAC His	TTT Phe 70	ATT Ile	AGC Ser	TTG Leu	TGG Trp	ACC Thr 75	Phe	TTT ? Phe	ATG (Met	CAC ? His	Ser 80	AAG 1 Lys	ACG G Thr	TC Val	536
Ala	Val 85	Val	Met	Thr	Ile	Ser 90	Lys	Met	Leu	Thr	95	AIZ	Val	CC T Ser	cys	584
Ile 100	Thr	Ala	Leu	Met	Leu 105	Val	His	Ile	Ile	110	Asp	Leu	ren	AGT G Ser	115	632
Lys	Thr	Arg	Glu	Leu 120	Phe	Leu	Lys	Thr	125	Ala	Glu	Glu	Leu	ASP 130	Lys	680
Glu	Met	Gly	Leu 135	Ile	· Ile	Arg	Gln	140	Glu	Thr	Gly	Arg	145		Arg	728
Met	Leu	Thr 150	His	Glu	Ile	Arg	Sex 155	Thr	Leu	Asp	Arg	160	Thr	ATC T	Leu	776
Lys	Thr 165	Thr	Leu	Val	. Glu	170	Gly	/ Arg	Thr	Leu	175	Let	l Ala	GAA T Glu	Cys	824
Ala 180	Leu	Trp	Met	Pro	185	Glr	Gly	/ Gl	, Leu	190	. Leu)	GI	. Let	TCC C	195	872
AAT Asn	TTA Leu	AAC Asn	AAT Asr	CTA Lev 200	ı Ile	CCT Pro	CTG Lev	GGA 1 Gly	TCT Ser 205	Thi	GTG Val	CCA Pro	ATT Ile	AAT C Asn 210	Leu	920
CCT	ATT	ATC Ile	AAT Asi 215	Gli	ATT 11e	TTT Phe	AGT Set	AGC Set 220	Pro	GAA Glu	GCA 1 Ala	ATA 11	CAA Glr 225	ATT C	CA Pro	968
CAT His	ACA Thr	AAT Asn 230	Pro	TTG Lev	GCA Ala	AGG Arg	ATG Met 23	t Arg	TAA ISA E	ACT Thi	GTT r Val	GGT Gly 24	Arg	TAT A Tyr	Ile	1016
CCA	CCA Pro 245	Glu	GTA Val	GTI Va	GCT L Ale	GIT Va. 25	LAT	GTA G Va	CCG l Pro	CTT Lev	TTA Lev 255	1 H1:	CTC s Leu	TCA A 1 Ser	AST ASD	1064
TT1 Phe 260	Thr	TAA ' Asi	GAC	TGG Tr	GCT P Ala 26	a Glu	Le CTG	TCT u Se:	ACT r Thi	AGA Arg 27	g Sei	TAT Ty:	GCG r Ala	GTT A	Met 275	1112
GTI Val	CTG Lev	GTI Val	CTC L Let	CCC Pro 28	o Me	AAT t As	GGC n Gl	TTA y Le	AGA u Arg 28	Ly	TGG s Tri	CGT Ar	GAA g Glu	CAT (His 290	GIU	116

			29	5	va	ı va	1 AI	3 C)0	in Va	1 Al	a Vaj	l Ala 305	IT TCA Leu Se	1208 r
		31	ō	- 2-	u G 1	u ns	31	5 5	t Ar	g Al	a His	320	Gln :	TC ATG Leu Me	1256 t
	32	5			a Dei	33(o, va.	T WI	a Ar	g GII	335	l Ala		Met Al	1304 a
340)	,		g no.	345	5	: Let	n WI	a va	350	Asn	His	Glu 1	G AGA Met Ar	
			- •••	360)	. 116	. WTC	r re	36	s Ser 5	Leu	Leu	3	Slu Th: 170	1400
			375	5	. 9111	Arg	Val	380)	e Glu	Thr	Ile	385	ys Sei	1448.
		390			• ••••	Deu	395	ASI	ı Ası	o val	Leu	Asp 400		er Arg	
	405	•	2			410	Deu	GIU	. ASI	ı GIŞ	415	Phe	Asn L	CAT eu His	
420			3		425		non	Deu	116	430	PTO	lle	Ala S	TTG er Leu 435	
-	•			440	****	Deu	VIG	Leu	445	Leu	Asp	Leu	Pro I	CTT le Leu 50	1640
		,	455	nau	ny s	Ary	Leu	460	GIN	Thr	Leu	Leu	465	l Val	1688
		470		2,3	*116	1111	475	GIU	GIĀ	Hls	Ile	Ser :		u Ala	1736
	485		-30	•••	0.0	490	VTG	Arg	Asp	Cys	H15 495	Pro 1	T GAA Pro Gl	u Met	1784
TTC Phe 500	CCT Pro	ATG Met	CCA . Pro	AGT (Ser	GAT O Asp 505	Gly (AG I Gln	TT 1 Phe	TYT	TG Co Leu 510	GT GT Arg '	CC CA Val (G GTT Sln Va	AGA 1 Arg 515	1832
GAT A	ACT (Thr	GGG ' Gly	Cys	GGA 1 Gly 520	ATT A Ile	GC C Ser !	CA C Pro	AA G Gln	AT A Asp 525	Ile :	CA CT Pro 1	ra Gt Leu V	A TTC Val Ph	e Thr	1880
AAA : Lys :	Phe	nia .	GAG 1 Glu 535	CA (Ser	CGG C	CT A Pro 1	inr	CA A Ser 540	AT C Asn	GA AC	T AC	Chr G	A GGG ly Gly 45	GAA / Glu	1928

G]	Y	Leu	Gly 550	Leu	Ala	IIe	Trp	555	AT 9	•		CAA C Gln	560				1976
As	sn	Ile 565	Trp	Ile	GIU	Ser	570	GIŞ	F10	017		GGA A Gly 575					2024
P)	ne B0	Val	Val	Lys	Leu	585	TIE	. Cys		, ,	590	AAT G Asn				595	2072
C'	TA eu	CCT Pro	ATG Met	CCT Pro	CCC Pro 600	Arg	GGC Gly	AGA Arg	TTG Lev	AAC neA 1 605	, -	GGT / Gly	AGC G Ser	AT G Asp	ASP 610	TC Leu	2120
T	TC he	AGG Arg	TAT	AGA Arg 615	Gin	TTC Phe	CGT Arg	GGA Gly	GAT Asi 62	, wat	GGT Gly	GGG 2 7 Gly	ATG T Met	Ser 625	TG A Val	AT Asn	2168
G	CT la	CAA Gln	CGC Arg	Tyr	CAA Glr	AGA Arg	AGT Se:	ATG r Me	L	A TO	CACA	AAAGG	ACAT	rtgg'	TGT		2216
c	ac	AAAC	SAAC	ATTA	AATC	AT G	ACTA	.gtga	A TT	TGAG	ATTT	CTTC	ACTG	rr c	CTAC	CACTC	2276
•	:AA	ATG	CAC	AGTI	TGTC	TT G	TAAC	TAAC	C TA	ATTC.	aatg	CTCG	TAAAT	ST G	AGTA(CTGGA	2336
	בידיב	יתכתי	rgaa	AATC	TAAC	TA T	CGA	TTT	AT AC	:ATCG	AGCT	TTTG	ACAA	AA A	AAAA	AAAA	2396
		AAA															2405
4	~~	******															

(2) INFORMATION FOR SEQ ID NO:50:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 636 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Met Glu Ser Cys Asp Cys Ile Glu Ala Leu Leu Pro Thr Gly Asp Leu
1 10 15 Leu Val Lys Tyr Gln Tyr Leu Ser Asp Phe Phe Ile Ala Val Ala Tyr 20 25 30 Phe Ser Ile Leu Leu Glu Leu Ile Tyr Phe Val His Lys Ser Ala Cys 35 Phe Pro Tyr Arg Trp Val Leu Met Gln Phe Gly Ala Phe Ile Val Leu 50 60 Cys Gly Ala Thr His Phe Ile Ser Leu Trp Thr Phe Phe Met His Ser 65 70 75 Lys Thr Val Ala Val Val Met Thr Ile Ser Lys Met Leu Thr Ala Ala

Val Ser Cys Ile Thr Ala Leu Met Leu Val His Ile Ile Pro Asp Leu Leu Ser Val Lys Thr Arg Glu Leu Phe Leu Lys Thr Arg Ala Glu Glu Leu Asp Lys Glu Met Gly Leu Ile Ile Arg Gln Glu Glu Thr Gly Arg 130 135 His Val Arg Met Leu Thr His Glu Ile Arg Ser Thr Leu Asp Arg His Thr Ile Leu Lys Thr Thr Leu Val Glu Leu Gly Arg Thr Leu Asp Leu Ala Glu Cys Ala Leu Trp Met Pro Cys Gln Gly Gly Leu Thr Leu Gln 180 185 190 Leu Ser His Asn Leu Asn Asn Leu Ile Pro Leu Gly Ser Thr Val Pro 200 Ile Asn Leu Pro Ile Ile Asn Glu Ile Phe Ser Ser Pro Glu Ala Ile Gln Ile Pro His Thr Asn Pro Leu Ala Arg Met Arg Asn Thr Val Gly 235 235 Arg Tyr Ile Pro Pro Glu Val Val Ala Val Arg Val Pro Leu Leu His Leu Ser Asn Phe Thr Asn Asp Trp Ala Glu Leu Ser Thr Arg Ser Tyr Ala Val Met Val Leu Val Leu Pro Met Asn Gly Leu Arg Lys Trp Arg Glu His Glu Leu Glu Leu Val Gln Val Val Ala Asp Gln Val Ala Val 290 295 300 Ala Leu Ser His Ala Ala Ile Leu Glu Asp Ser Met Arg Ala His Asp Gin Leu Met Glu Gin Asn Ile Ala Leu Asp Val Ala Arg Gin Glu Ala Glu Met Ala Ile Arg Ala Arg Asn Asp Phe Leu Ala Val Met Asn His 340 350 Glu Met Arg Thr Pro Met His Ala Val Ile Ala Leu Cys Ser Leu Leu 355 Leu Glu Thr Asp Leu Thr Pro Glu Gln Arg Val Met Ile Glu Thr Ile 370 380 Leu Lys Ser Ser Asn Leu Leu Ala Thr Leu Ile Asn Asp Val Leu Asp 385 390 395 400 Leu Ser Arg Leu Glu Asp Gly Ile Leu Glu Leu Glu Asn Gly Thr Phe Asn Leu His Gly Ile Leu Arg Glu Ala Val Asn Leu Ile Lys Pro Ile

Ala Ser Leu Lys Lys Leu Ser Ille Thr Leu Ala Leu Ala Leu Ala Leu Asp Leu 445

Pro Ile Leu Ala Val Gly Asp Ala Lys Arg Leu Ile Gln Thr Leu Leu 465

Asn Val Val Gly Asn Ala Lys Phe Thr Lys Glu Gly His Ile Ser 480

Ile Glu Ala Ser Val Ala Lys Pro Glu Tyr Ala Arg Asp Cys His Pro 490

Pro Glu Met Phe Pro Met Pro Ser Asp Gly Gln Phe Tyr Leu Arg Val 500

Gln Val Arg Asp Thr Gly Cys Gly Ile Ser Pro Gln Asp Ile Pro Leu 515

Val Phe Thr Lys Phe Ala Glu Ser Arg Pro Thr Ser Asn Arg Ser Thr 530

Gly Gly Glu Gly Leu Gly Leu Ala Ile Trp Arg Arg Phe Ile Gln Leu 545

Met Lys Gly Asn Ile Trp Ile Glu Ser Glu Gly Pro Gly Lys Gly Thr 580

Thr Val Thr Phe Val Val Lys Leu Gly Ile Cys His His Pro Asn Ala Leu Pro Leu Pro Leu Pro Met Pro Pro Arg Gly Arg Leu Asn Lys Gly Ser Asp Asp Asp Gly Gly Met 625

Asp Asp Leu Phe Arg Tyr Arg Gln Phe Arg Gly Asp Asp Gly Gly Met 625

WHAT IS CLAIMED IS:

- 1. An isolated nucleic acid comprising a plant \it{ETR} nucleic acid.
- An isolated nucleic acid comprising a modified
 plant ETR nucleic acid containing the substitution, insertion or deletion of one or more nucleotides of a precursor ETR nucleic acid.
- The nucleic acid according to Claim 2 wherein said modified ETR nucleic acid encodes a modified ETR
 protein containing the substitution, insertion or deletion of one or more amino acid residues as compared to the precursor ETR protein encoded by said precursor ETR nucleic acid.
- 4. A nucleic acid according to Claim 3 wherein said
 15 modified ETR protein comprises the substitution of at
 least one selected amino acid residue in said precursor
 ETR protein with a different amino acid and wherein
 said selected amino acid residue in said precursor ETR
 protein is equivalent to an amino acid residue selected
 20 from the group consisting of Ala-31, Ile-62, Cys-65 and
 Ala-102 in the ETR protein from Arabidopsis thaliana.
 - 5. A recombinant nucleic acid comprising a promoter operably linked to a modified plant ETR nucleic acid.
- 6. A recombinant nucleic acid according to Claim 5 wherein said modified ETR nucleic acid contains the substitution, insertion or deletion of one or more nucleotides of a precursor ETR nucleic acid and wherein said promoter is heterologous to said precursor ETR nucleic acid and capable of causing expression of said modified ETR nucleic acid in a plant cell.

PCT/US94/07418

WO 95/01439

- 7. A recombinant nucleic acid according to Claim 6 wherein said promoter comprises a tissue-specific or temporal-specific promoter.
- 8. A recombinant nucleic acid according to Claim 6 wherein said promoter is inducible.
 - 9. A plant cell transformed with the recombinant nucleic acid of Claim 6.
 - 10. A plant comprising the plant cell of Claim 9.
- 11. A plant comprising at least one plant cell transformed with a modified ETR nucleic acid and having a phenotype characterized by a decrease in the response of said at least one transformed plant cell to ethylene as compared to a corresponding wild-type plant not containing said transformed plant cell.
- 15 12. A plant according to Claim 11 wherein said modified ETR nucleic acid comprises the substitution, insertion or deletion of one or more nucleotides in a precursor ETR nucleic acid which results in the substitution, insertion or deletion of one or more amino acid residues in the modified ETR protein encoded by said modified ETR nucleic acid as compared to the precursor ETR protein encode by said precursor ETR nucleic acid.
- 13. A plant according to Claim 12 wherein the modification in said precursor ETR nucleic acid comprises the substitution of one or more nucleotides which results in the substitution of one or more selected amino acid residues in said precursor ETR protein with a different amino acid, said selected amino acid residue is equivalent to an amino acid residue selected from the group consisting of Ala-31,

WO 95/01439 PCT/US94/07418

- Ile-62, Cys-65 and Ala-102 in the ETR protein from Arabidopsis thaliana.
- 14. A plant according to Claim 12 wherein a tissue-specific promoter is operably linked to said modified5 ETR nucleic acid.
 - 15. A plant according to Claim 14 wherein said plant is fruit-bearing and said promoter comprises a fruit-specific promoter.
- 16. A plant according to Claim 15 wherein said 10 phenotype is characterized by a decrease in the rate of fruit ripening.
 - 17. Fruit from the plant according to Claim 16.
 - 18. The fruit according to Claim 18 comprising tomato.
- 19. A method for producing a plant having at least one transformed plant cell and a phenotype characterized by a decrease in the response of said at least one transformed plant cell to ethylene as compared to a plant not containing said transformed plant cell, said method comprising the steps of:
- 20 a) transforming at least one plant cell with a modified ETR nucleic acid;
 - b) regenerating plants from one or more of the thus transformed plant cells; and
- c) selecting at least one plant having said 25 phenotype.
 - 20. A method according to Claim 19 wherein said modified *ETR* nucleic acid is operably linked to a tissue-specific promoter.

AAAGATAGT.	A TTTGTTGAT	A AATATGGGGA	TATTTATCCT	ATATTATCTG	50
TATTTTTCT	r accattttt	A CTCTATTCCT	TTATCTACAT	TACGTCATTA	100
CACTATCAT	A AGATATTTG	A ATGAACAAAT	TCATGCACCC	ACCAGCTATA	150
TTACCCTTT	TTATTAAAA	AAAACATCTG	ATAATAATAA	CAAAAAATT	200
AGAGAAATG <i>I</i>	CGTCGAAAA	AAAAGTAAGA	ACGAAGAAGA	AGTGTTAAAC	250
CCAACCAATT	TTGACTTGAA	AAAAAGCTTC	AACGCTCCCC	TTTTCTCCTT	300
				CTCTTCTCCG	350
		CTTCTTCTTC			400
		ATATTCTTCA			450
		CATAGAGATT			500
		ATTAGGAACT			550
		GAATTTTACT			600
		GTTGTGATCG			650
				TCGTCGTAAA	700
		TGTTTGTTAC			750
		AAATTCATAA			800
		TGAATTGTTA			850
		CGTATTTTTC			900
		GTGTTTCCGT		•	950
		TTGTGGAGCA			1000
		GAACCGTGGC			1050
		TCGTGTGCTA			1100
		TGTTAAGACT			1150
		GAGAAATGGG			1200
				AAGCACTTTA	1250
				GTAGGACATT	1300
		TGTGGATGCC			1350
				GTATACGGTT	
				GTAGGGCTGT	1400
				GTTTCTGGGA	1450
		GTCGCTGTGA			1500
		CICCIGIGA	OGG! I CCGCI	ICICCACCTT	1550

TCTAATTTTC	AGATTAATGA	CTGGCCTGAG	CTTTCAACAA	AGAGATATGC	1600
TTTGATGGTT	TTGATGCTTC	CTTCAGATAG	TGCAAGGCAA	TGGCATGTCC	1650
ATGAGTTGGA					1700
		GTTCATGATC			1750
CTTATTATAG	GTGGCTGTAG	CTCTCTCACA	TGCTGCGATC	CTAGAAGAGT	1800
CGATGCGAGC	TAGGGACCTT	CTCATGGAGC	AGAATGTTGC	TCTTGATCTA	1850
GCTAGACGAG	AAGCAGAAAC	AGCAATCCGT	GCCCGCAATG	ATTTCCTAGC	1900
GGTTATGAAC	CATGAAATGC	GAACACCGAT	GCATGCGATT	ATTGCACTCT	1950
CTTCCTTACT	CCAAGAAACG	GAACTAACCC	CTGAACAAAG	ACTGATGGTG	2000
GAAACAATAC	TTAAAAGTAG	TAACCTTTTG	GCAACTTTGA	TGAATGATGT	2050
CTTAGATCTT	TCAAGGTTAG	AAGATGGAAG	TCTTCAACTT	GAACTTGGGA	2100
CATTCAATCT	TCATACATTA	TTTAGAGAGG		ACAGCTCTAT	2150
GTTTCATAAG	,		GATTGTCATA		2200
		AAAGCCTATA			2250
				GTTGGGGATG	2300
				TGCTGTGAAA	2350
TTCTCCAAAC	AAGGTAGTAT			CCAAGTCAGA	2400
CACACGAGCT	GCTGACTTTT			CATTTCTACT	2450
TGAGAGTGAA	GGTTATTATC			CCATAGCTGA	2500
AAGTATTTCT				TAGGTAAAAG	2550
				TTTCACTAAA	2600
				GTAGTGGGCT	2650
				ACGTTTTTT	2700
CCAACTTTTT	CTTGTCTTCT	GTGTTGTTA	A AAGTTTACT	CATAAGCGTTT	2750
				r ggattgagag	
CGATGGTCTI	GGAAAAGGA	GCACGGCTA	r ctttgatgt	r AAACTTGGGA	2850
TCTCAGAACG	TTCAAACGA	A TCTAAACAG	r cgggcatac	C GAAAGTTCCA	2900
GCCATTCCCC	GACATTCAA	A TTTCACTGG	A CTTAAGGTT	C TTGTCATGGA	
TGAGAACGG	TTAGTATAA	G CTTCTCACC	T TTCTCTTTG	C AAAATCTCTC	3000
GCCTTACTT	TTGCAAATG	C AGATATTGG	C GTTTAGAAA	A AACGCAAATT	3050
TAATCTTATO	G AGAAACCGA	T GATTATTT	G GTTGCAGGG	T AAGTAGAATG	3100

FIG. 2B

GTGACGAAG	; GACTTCTTCT	, VCVCCMMccc			
	o GACTICITGI	ACACCTTGGG	TGCGAAGTGA	CCACGGTGAG	3150
TTCAAACGA	GAGTGTCTCC	GAGTTGTGTC	CCATGAGCAC	AAAGTGGTCT	3200
TCATGGACGT	GTGCATGCCC	GGGGTCGAAA	ACTACCAAAT	CCCTCTCCC	
ATTCACCACA	. አአጥጥሮ <u>አሮ</u> አአ	7.27.2	HOHICCHAI	CGCTCTCCGT	3250
		ACAACGCCAC			3300
ACTCAGTGGT	' AACACTGACA	AATCCACAAA	AGAGAAATGC	ATGAGCTTTG	3350
GTCTAGACGG	TGTGTTGCTC	AAACCCGTAT	CACTAGACAA	CATAAGAGAT	3400
		GCCCCGGGTA			3400
6663.756	orreita	GCCCCGGGTA	CIGTACGAGG	GCATGTAAAG	3450
		CAGAGGAGTA			3500
TCCCGTAAAA	CATCGGAAGC	TGATGTTCTC	TGGTTTAATT	GTGTACATAT	3550
CAGAGATTGT	CGGAGCGTTT	TGGATGATAT	CMMN N N N C N C		3330
					3600
ACAAAATAGA	AACTCTAAAC	CGGTATGTGT	CCGTGGCGAT	TTCGGTTATA	3650
GAGGAACAAG	ATGGTGGTGG	TATAATCATA	CCATTTCAGA	ТТАСАТСТТТ	
					3700
		ATATGTAGTT			3750
ATCGAGTTAT	GGATGCTTGT	TGCGTGCATG	TATGACATTG	ATGCAGTATT	3800
ATGGCGTCAG	CTTTGCGCCG	CTTAGTAGAA	СААСААСААТ	GGCGTTACTT	
AGTTTCTCAA	TCAACCCGAT	CECCAAAA		CCCCTIACTI	3850
	- CAMCCCGAT	CTCCAAAAC			3879

FIG. 2C

AGTAAG	FAAC	G AA	GAAG	AAGI	GTI	AAAC	CCA	ACC	AATT	TTG F	ACTTO	AAA	AA.	50
AAGCTT														100
CAAATO		ים מ דמ מ	ייירכיי	יככיינ	. ጥጥር	TCC	GATC	AAT'	TCTT	CCC A	AAGTO	TGT	3T	150
ATGTG:										ATG		GTC	TGC	199
AAT TO Asn C	GT A ys I	TT (SAA (Slu)	CCG (Pro (CAA ' Gln '	rgg (Trp	CCA Pro	GCG Ala	GAT Asp	GAA ' Glu ' 15	TTG : Leu !	TTA I Leu l	ATG Met	241
AAA T. Lys T	AC C yr G 20	AA 1	rac i	ATC I	ICC (Ser	GAT Asp 25	TTC Phe	TTC Phe	ATT Ile	GCG . Ala	ATT (Ile 3	GCG Ala	TAT Tyr	283
TTT T Phe S	CG A er I	TT (CCT Pro	CTT (Leu	GAG Glu	TTG Leu	ATT Ile 40	TAC Tyr	TTT Phe	GTG Val	AAG . Lys	AAA Lys 45	TCA Ser	325
GCC G Ala V	TG T		CCG Pro 50	TAT Tyr	AGA Arg	TGG Trp	GTA Val	CTT Leu 55	GTT Val	CAG Gln	TTT Phe	GGT Gly	GCT Ala 60	367
TTT A	TC C	GTT /al	CTT Leu	TGT Cys 65	GGA Gly	GCA Ala	ACT Thr	CAT His	CTT Leu 70	ATT Ile	AAC Asn	TTA Leu	TGG Trp	409
ACT Thr F	TTC I	ACT Thr	ACG Thr	CAT His	TCG Ser 80	AGA Arg	ACC Thr	GTG Val	GCG Ala	CTT Leu 85	GTG Val	ATG Met	ACT Thr	451
ACC C	GCG Ala 1	AAG Lys	GTG Val	TTA Leu	ACC Thr	GCT Ala 95	GTT Val	GTC Val	TCG Ser	TGT Cys	GCT Ala 100	ACT Thr	GCG Ala	493
TTG A	Met .	CTT Leu 105	GTT Val	CAT His	ATT Ile	ATT Ile	CCT Pro 110	GAT Asp	CTT Leu	TTG Leu	AGT Ser	GTT Val 115	AAG Lys	535
ACT (CGG Arg	GAG Glu	CTT Leu 120	TTC Phe	TTG Leu	AAA Lys	AAT Asn	AAA Lys 125	GCT Ala	GCT Ala	GAG Glu	CTC Leu	GAT Asp 130	577
AGA (~~~	3.00	CNC	CAA	CAA	ACC	GGA	AGG	619
CAT His 145	GTG Val	AGA Arg	ATG Met	TTG Leu	ACT Thr 150	ura	GAC Glu	ATI	AGA Arg	AGC Ser 155	ACT Thr	TTA Leu	GAT Asp	661
AGA Arg	His 160	Thr	iie	Leu	гу	165	5	. 20.	•		170	-	AGG Arg	703
ACA Thr		GCT Ala 175	Leu	GAG Glu	GAG Glu	TGT Cys	GCA S Ala		G TGO	ATO Met	CCI Pro	ACT Thr 185	AGA Arg	745

FIG. 3A

ACT Thr	GG(TTA Leu	GAC Glu 190	ı Let	A CAG	CTT Leu	TCT Ser	TAT Tyr 195	Thr	CTT Leu	CGI Arg	CAT His	CAA Gln 200	787
CAT His	CCC Pro	GTG Val	GAG Glu	TAT Tyr 205	Thr	GTT Val	CCT Pro	ATT Ile	CAA Gln 210	. Leu	CCG Pro	GTG Val	ATT	829
AAC Asn 215	GII	GTG Val	TTI Phe	GGT Gly	ACT Thr 220	AGT Ser	AGG Arg	GCT Ala	GTA Val	AAA Lys 225	Ile	TCT Ser	CCT	871
AAT Asn	Ser 230	Pro	GTG Val	GCT Ala	AGG Arg	TTG Leu 235	AGA Arg	CCT Pro	GTT Val	TCT Ser	GGG Gly 240	Lvs	TAT	913
ATG Met	CTA Leu	GGG Gly 245	GAG Glu	GTG Val	GTC Val	GCT Ala	GTG Val 250	AGG Arg	GTT Val	CCG Pro	CTT Leu	CTC Leu 255	CAC His	955
CTT Leu	TCT Ser	AAT Asn	TTT Phe 260	CAG Gln	ATT Ile	AAT Asn	GAC Asp	TGG Trp 265	CCT Pro	GAG Glu	CTT Leu	TCA Ser	ACA Thr 270	997
AAG Lys	AGA Arg	TAT	GCT Ala	TTG Leu 275	ATG Met	GTT Val	TTG Leu	ATG Met	CTT Leu 280	CCT Pro	TCA Ser	GAT Asp	AGT Ser	1039
GCA Ala 285	AGG Arg	CAA Gln	TGG Trp	CAT His	GTC Val 290	CAT His	GAG Glu	TTG Leu	GAA Glu	CTC Leu 295	GTT Val	GAA Glu	GTC Val	1081
GTC Val	GCT Ala 300	GAT Asp	CAG Gln	GTG Val	GCT Ala	GTA Val 305	GCT Ala	CTC Leu	TCA Ser	CAT His	GCT Ala 310	GCG Ala	ATC Ile	1123
CTA Leu	GAA Glu	GAG Glu 315	TCG Ser	ATG Met	CGA Arg	GCT Ala	AGG Arg 320	GAC Asp	CTT Leu	CTC Leu	ATG Met	GAG Glu 325	CAG Gln	1165
AAT Asn	GTT Val	GCT Ala	CTT Leu 330	GAT Asp	CTA Leu	GCT Ala	AGA Arg	CGA Arg 335	GAA Glu	GCA Ala	GAA Glu	ACA Thr	GCA Ala 340	1207
ATC Ile	CGT Arg	GCC Ala	CGC Arg	AAT Asn 345	GAT Asp	TTC Phe	CTA Leu	GCG Ala	GTT Val 350	ATG Met	AAC Asn	CAT His	GAA Glu	1249
ATG Met 355	CGA Arg	ACA Thr	CCG Pro	ATG Met	CAT His 360	GCG Ala	ATT Ile	ATT Ile	GCA Ala	CTC Leu 365	TCT	TCC Ser	TTA Leu	1291
CTC Leu	CAA Gln 370	GAA Glu	ACG Thr	GAA Glu	CTA Leu	ACC Thr 375	CCT Pro	GAA Glu	CAA Gln	AGA Arg	CTG Leu 380	ATG Met	GTG Val	1333
GAA Glu	ACA Thr	ATA Ile 385	CTT Leu	AAA Lys	AGT . Ser	Ser	AAC Asn 390	CTT Leu	TTG Leu	GCA Ala	ACT Thr	TTG Leu 395	ATG Met	1375

FIG. 3B

AAT Asn	GAT Asp	GTC Val	TTA Leu 400	GAT Asp	CTT Leu	TCA Ser	AGG Arg	TTA Leu 405	GAA Glu	GAT Asp	GGA Gly	AGT Ser	CTT Leu 410	1417
CAA Gln	CTT Leu	GAA Glu	CTT Leu	GGG Gly 415	ACA Thr	TTC Phe	AAT Asn	CTT Leu	CAT His 420	ACA Thr	TTA Leu	TTT Phe	AGA Arg	1459
GAG Glu 425	GTC Val	CTC Leu	AAT Asn	CTG Leu	ATA Ile 430	AAG Lys	CCT Pro	ATA Ile	GCG Ala	GTT Val 435	GTT Val	AAG Lys	AAA Lys	1501
TTA Leu	CCC Pro 440	ATC Ile	ACA Thr	CTA Leu	AAT Asn	CTT Leu 445	GCA Ala	CCA Pro	GAT Asp	TTG Leu	CCA Pro 450	GAA Glu	TTT Phe	1543
GTT Val	GTT Val	GGG Gly 455	GAT Asp	GAG Glu	AAA Lys	CGG Arg	CTA Leu 460	ATG Met	CAG Gln	ATA Ile	ATA Ile	TTA Leu 465	AAT Asn	1585
ATA Ile	GTT Val	GGT Gly	AAT Asn 470	GCT Ala	GTG Val	AAA Lys	TTC Phe	TCC Ser 475	AAA Lys	CAA Gln	GGT Gly	AGT Ser	ATC Ile 480	1621
TCC Ser	GTA Val	ACC Thr	GCT Ala	CTT Leu 485	GTC Val	ACC Thr	AAG Lys	TCA Ser	GAC Asp 490	ACA Thr	CGA Arg	GCT Ala	GCT Ala	1669
GAC Asp 495	TTT Phe	TTT Phe	GTC Val	GTG Val	CCA Pro 500	ACT Thr	GGG Gly	AGT Ser	CAT His	TTC Phe 505	TAC Tyr	TTG Leu	AGA Arg	1711
GTG Val	AAG Lys 510	GTA Val	AAA Lys	GAC Asp	TCT Ser	GGA Gly 515	GCA Ala	GGA Gly	ATA Ile	AAT Asn	CCT Pro 520	CAA Gln	GAC Asp	1753
ATT Ile	CCA Pro	AAG Lys 525	ATT Ile	TTC Phe	ACT Thr	AAA Lys	TTT Phe 530	GCT Ala	CAA Gln	ACA Thr	CAA Gln	TCT Ser 535	TTA Leu	1795
GCG Ala	ACG Thr	AGA Arg	AGC Ser 540	TCG Ser	GGT Gly	GGT Gly	AGT Ser	GGG Gly 545	CTT Leu	GGC Gly	CTC Leu	GCC Ala	ATC Ile 550	1837
TCC Ser	AAG Lys	AGG Arg	TTT Phe	GTG Val 555	AAT Asn	CTG Leu	ATG Met	GAG Glu	GGT Gly 560	AAC Asn	ATT Ile	TGG Trp	ATT Ile	1879
GAG Glu 565	AGC Ser	GAT Asp	GGT Gly	CTT Leu	GGA Gly 570	Lys	GGA Gly	TGC Cys	ACG Thr	GCT Ala 575	ATC Ile	TTT Phe	GAT Asp	1921
GTT Val	AAA Lys 580	CTT Leu	GGG Gly	ATC Ile	TCA Ser	GAA Glu 585	Arg	TCA Ser	AAC Asn	GAA Glu	TCT Ser 590	тÃ2	CAG Gln	1963
TCG Ser	GGC Gly	ATA Ile 595	Pro	AAA Lys	GTT Val	CCA Pro	GCC Ala 600	тте	CCC	CGA Arg	CAT His	TCA Ser 605	AAT Asn	2005

FIG. 3C

TTC Phe	ACT Thr	GGA Gly	CTT Leu 610	ьys	GTT Val	CTT Leu	GTC Val	ATG Met 615	GAT Asp	GAG Glu	AAC Asn	GGG Gly	GTA Val 620	2047
AGT Ser	AGA Arg	ATG Met	GTG Val	ACG Thr 625	AAG Lys	GGA Gly	CTT Leu	CTT Leu	GTA Val 630	CAC His	CTT Leu	GGG Gly	TGC Cys	2089
GAA Glu 635	Val	ACC Thr	ACG Thr	GTG Val	AGT Ser 640	TCA Ser	AAC Asn	GAG Glu	GAG Glu	TGT Cys 645	CTC Leu	CGA Arg	GTT Val	2131
GTG Val	TCC Ser 650	CAT His	GAG Glu	CAC His	AAA Lys	GTG Val 655	GTC Val	TTC Phe	ATG Met	GAC Asp	GTG Val 660	TGC Cys	ATG Met	2173
CCC Pro	GGG Gly	GTC Val 665	GAA Glu	AAC Asn	TAC Tyr	CAA Gln	ATC Ile 670	GCT Ala	CTC Leu	CGT Arg	ATT Ile	CAC His 675	GAG Glu	2215
AAA Lys	TTC Phe	ACA Thr	AAA Lys 680	CAA Gln	CGC Arg	CAC His	CAA Gln	CGG Arg 685	CCA Pro	CTA Leu	CTT Leu	GTG Val	GCA Ala 690	2257
CTC Leu	AGT Ser	GGT Gly	AAC Asn	ACT Thr 695	GAC Asp	AAA Lys	TCC Ser	ACA Thr	AAA Lys 700	GAG Glu	AAA Lys	TGC Cys	ATG Met	2299
AGC Ser 705	TTT Phe	GGT Gly	CTA Leu	GAC Asp	GGT Gly 710	GTG Val	TTG Leu	CTC Leu	AAA Lys	CCC Pro 715	GTA Val	TCA Ser	CTA Leu	2341
GAC Asp	AAC Asn 720	ATA Ile	AGA Arg	GAT Asp	GTT Val	CTG Leu 725	TCT Ser	GAT Asp	CTT Leu	Leu	GAG Glu 730	CCC Pro	CGG Arg	2383
GTA Val	CTG Leu	TAC Tyr 735	GAG Glu	GGC Gly	ATG Met	TAAA	.GGCG	AT G	GATG	cccc	A			2421
TGCC	CCAG	AG G	AGTA	ATTC	C GC	TCCC	GCCT	TCT	TCTC	CCG	TAAA	ACAT	CG	2471
GAAG	CTGA	TG T	TCTC	TGGT	T TA	ATTG	TGTA	CAT	ATCA	GAG :	ATTG'	rcgg	AG	2521
CGTT	TTGG	AT G	ATAT	CTTA	A AA	CAGA	AAGG	GAA'	TAAC	AAA .	ATAG	AAAC'	TC	2571
TAAA	CCGG	TA T	GTGT	CCGT	G GC	GATT'	TCGG	TTA!	TAGA	GGA 2	ACAA	GATG	GT	2621
GGTG	GTAT	AA T	CATA	CCAT'	T TC	AGAT'	TACA	TGT	TTGA	CTA A	ATGT	rgta:	rc	2671
CTTA	TATA	TG T	AGTT	ACAT'	T CT	TATA:	AGAA	TTTC	GGAT(CGA (GTTA:	rgga:	rg	2721
CTTG	TTGC	GT G	CATG'	TATG	A CA	rtga:	TGCA	GTA	TAT	GC (GTCA	CTT	rg	2771
CGCC	GCTT	AG T	AGAA	С										2787

FIG. 3D

AGTAAGAACG AAGAAGAA	GT GTTAAACCCA	ACCAATTTTG ACTTG	AAAAA 50
AAGCTTCAAC GCTCCCCT			
CAAATCCCCA ATTCCTCC			
ATGTGTGAGA GAGGAACT			GTC TGC 199
AAT TGT ATT GAA CCG Asn Cys Ile Glu Pro	CAA TGG CCA Gln Trp Pro 10	GCG GAT GAA TTG T Ala Asp Glu Leu L 15	TA ATG 241 eu Met
AAA TAC CAA TAC ATC Lys Tyr Gln Tyr Ile	TCC GAT TTC Ser Asp Phe 25	TTC ATT GCG ATT GPhe Ile Ala Ile V	TG TAT 283 al Tyr
TTT TCG ATT CCT CTT Phe Ser Ile Pro Let 35	GAG TTG ATT Glu Leu Ile 40	TAC TTT GTG AAG A Tyr Phe Val Lys I	AA TCA 325 ys Ser 45
GCC GTG TTT CCG TAX Ala Val Phe Pro Tyx 50	AGA TGG GTA Arg Trp Val	CTT GTT CAG TTT C Leu Val Gln Phe C 55	GT GCT 367 Sly Ala 60
TTT ATC GTT CTT TG Phe Ile Val Leu Cy	GGA GCA ACT Gly Ala Thr	CAT CTT ATT AAC THIS Leu Ile Asn I	TTA TGG 409 Leu Trp
ACT TTC ACT ACG CA Thr Phe Thr Thr Hi 75	TCG AGA ACC S Ser Arg Thr 80	GTG GCG CTT GTG P Val Ala Leu Val N 85	ATG ACT 451 Met Thr
ACC GCG AAG GTG TT Thr Ala Lys Val Le 90	A ACC GCT GTT u Thr Ala Val 95	GTC TCG TGT GCT A Val Ser Cys Ala	ACT GCG 493 Thr Ala
TTG ATG CTT GTT CA Leu Met Leu Val Hi 105	T ATT ATT CCT s lle lle Pro 110	ASP Ter Ter per	GTT AAG 535 Val Lys 115
ACT CGG GAG CTT TT Thr Arg Glu Leu Ph 120	C TTG AAA AA1 e Leu Lys Asr	AAA GCT GCT GAG Lys Ala Ala Glu 125	CTC GAT 577 Leu Asp 130
AGA GAA ATG GGA TT Arg Glu Met Gly Le	n Tie Wid im	CAG GAA GAA ACC Glu Glu Thr 140	GGA AGG 619 Gly Arg
CAT GTG AGA ATG TT His Val Arg Met Le 145	G ACT CAT GAG Thr His Glu 150	G ATT AGA AGC ACT 1 Ile Arg Ser Thr 155	TTA GAT 661 Leu Asp
AGA CAT ACT ATT TO Arg His Thr Ile Le 160	A AAG ACT AC Lys Thr Th	A CTT GTT GAG CTT r Leu Val Glu Leu 170	
ACA TTA GCT TTG G Thr Leu Ala Leu G 175	AG GAG TGT GC Lu Glu Cys Al 18	A TTG TGG ATG CCT a Leu Trp Met Pro 0	ACT AGA 745 Thr Arg 185

FIG. 4A

AC'	r GGC r Gly	G TTZ y Lei	A GAG u Gli 190	и ге	A CAC ı Glr	G CT	T TCT 1 Ser	TATE TYPE 195	: Thi	A CT r Lei	r cg ı Ar	r CA' g Hi	T CAA s Gln 200	787
CAT His	CCC Pro	C GTO Val	G GAO L Glu	TA: 1 Ty: 205	Thr	GTT Val	CCI Pro	T ATT	CAA Glr 210	ı Lei	A CCC	G GTG	G ATT	829
AAC Asr 215	CAP Glr	A GTO	TTT Phe	GGT Gly	T ACT Thr 220	AGT Ser	AGG Arg	GCT Ala	GTA Val	A AAA Lys 225	A ATA	A TCT	CCT Pro	871
AA1 Asn	TCI Ser 230	Pro	GTC Val	G GCT Ala	AGG Arg	Leu 235	ı Arg	CCT Pro	GTI Val	TCT Ser	GGC G1y 240	/ Lys	A TAT	913
ATG Met	CTA Leu	GGG Gly 245	' GIU	GTC Val	GTC Val	GCT Ala	GTG Val 250	Arg	GTT Val	CCG Pro	CTI Leu	CTC Leu 255	CAC His	955
CTT Leu	TCT	AAT Asn	TTT Phe 260	Gin	ATT	AAT Asn	GAC Asp	TGG Trp 265	CCT Pro	GAG Glu	CTT Leu	TCA Ser	ACA Thr 270	997
AAG Lys	AGA Arg	TAT	GCT Ala	TTG Leu 275	Met	GTT Val	TTG Leu	ATG Met	CTT Leu 280	Pro	TCA Ser	GAT Asp	AGT Ser	1039
GCA Ala 285	AGG Arg	CAA Gln	TGG Trp	CAT His	GTC Val 290	CAT	GAG Glu	TTG Leu	GAA Glu	CTC Leu 295	GTT Val	GAA Glu	GTC Val	1081
GTC Val	GCT Ala 300	GAT Asp	CAG Gln	GTG Val	GCT Ala	GTA Val 305	GCT Ala	CTC Leu	TCA Ser	CAT His	GCT Ala 310	GCG Ala	ATC Ile	1123
CTA Leu	GAA Glu	GAG Glu 315	TCG Ser	ATG Met	CGA Arg	GCT Ala	AGG Arg 320	GAC Asp	CTT Leu	CTC Leu	ATG Met	GAG Glu 325	CAG Gln	1165
AAT Asn	GTT Val	GCT Ala	CTT Leu 330	GAT Asp	CTA Leu	GCT Ala	AGA Arg	CGA Arg 335	GAA Glu	GCA Ala	GAA Glu	ACA Thr	GCA Ala 340	1207
ATC Ile	CGT Arg	GCC Ala	CGC Arg	AAT Asn 345	GAT Asp	TTC Phe	CTA Leu	GCG Ala	GTT Val 350	ATG Met	AAC Asn	CAT His	GAA Glu	1249
ATG Met 355	CGA Arg	ACA Thr	CCG Pro	ATG Met	CAT His 360	GCG Ala	ATT Ile	ATT Ile	GCA Ala	CTC Leu 365	TCT Ser	TCC Ser	TTA Leu	1291
CTC Leu	CAA Gln 370	GAA Glu	ACG Thr	GAA Glu	CTA Leu	ACC Thr 375	CCT Pro	GAA Glu	CAA Gln	AGA Arg	CTG Leu 380	ATG Met	GTG Val	1333
GAA Glu	Inr	ATA Ile 385	CTT Leu	AAA Lys	AGT Ser	AGT Ser	AAC Asn 390	CTT Leu	TTG Leu	GCA Ala	ACT Thr	TTG Leu 395	ATG Met	1375

FIG. 4B

AAT Asn	GAT Asp	GTC Val	TTA Leu 400	GAT Asp	CTT Leu	TCA Ser	AGG Arg	TTA Leu 405	GAA Glu	GAT Asp	GGA Gly	AGT Ser	CTT Leu 410	1417
CAA Gln	CTT Leu	GAA Glu	CTT Leu	GGG Gly 415	ACA Thr	TTC Phe	AAT Asn	CT T Leu	CAT His 420	ACA Thr	TTA Leu	TTT Phe	AGA Arg	1459
GAG Glu 425	GTC Val	CTC Leu	AAT Asn	CTG Leu	ATA Ile 430	AAG Lys	CCT Pro	ATA Ile	GCG Ala	GTT Val 435	GTT Val	AAG Lys	AAA Lys	1501
TTA Leu	CCC Pro 440	ATC Ile	ACA Thr	CTA Leu	AAT Asn	CTT Leu 445	GCA Ala	CCA Pro	GAT Asp	TTG Leu	CCA Pro 450	GAA Glu	TTT Phe	1543
GTT Val	GTT Val	GGG Gly 455	GAT Asp	GAG Glu	AAA Lys	CGG Arg	CTA Leu 460	ATG Met	CAG Gln	ATA Ile	ATA Ile	TTA Leu 465	AAT Asn	1585
ATA Ile	GTT Val	GGT Gly	AAT Asn 470	GCT Ala	GTG Val	AAA Lys	TTC Phe	TCC Ser 475	AAA Lys	CAA Gln	GGT Gly	AGT Ser	ATC Ile 480	1627
TCC Ser	GTA Val	ACC Thr	GCT Ala	CTT Leu 485	GTC Val	ACC Thr	AAG Lys	TCA Ser	GAC Asp 490	ACA Thr	CGA Arg	GCT Ala	GCT Ala	1669
GAC Asp 495	Phe	TTT Phe	GTC Val	GTG Val	CCA Pro 500	ACT Thr	GGG Gly	AGT Ser	CAT His	TTC Phe 505	- 1 -	TTG Leu	AGA Arg	1711
Val	Lys 510	Val	Lys	Asp	Ser	515	MIG	GIY	110	1.01.	520	-	GAC Asp	1753
ATT Ile	CCA Pro	AAG Lys 525	ille	TTC Phe	ACT Thr	AAA Lys	TTT Phe 530	VI	CAA Gln	ACA Thr	CAA Gln	Ser 535	TTA	1795
Ala	Thr	Arc	540	Ser	. СТА	GIA	, ser	545)	. 0-,			ATC Ile 550	1837
TCC	AAC Lys	AGG Arg	TTI Phe	GTG Val	. Asn	CTC Lev	ATC Met	GAG Glu	GG7 G1y 560		ATT	TGG	ATT Ile	1879
GA(Gl: 565	ı Sei	GA:	r GGT o Gly	CTI Leu	GGA 1 Gly 570	/ Ly:	A GGA s Gly	TGC Cys	C ACC	G GCT Ala 57		TTT Phe	GAT Asp	1921
Va.	1 Lys 580	s Le	ı Gış	Å TT6	e Sei	58	5	, Je.	. 110	02	590	5	A CAG s Gln	1963
TC: Se:	G GGG	C ATA y Il 59	e Pro	G AAA	A GT s Va	r cc.	A GCC o Ala 60	<u> </u>	r cc e Pr	C CG	A CAS	T TC s Se 60	A AAT r Asn 5	2005

FIG. 4C

TT(Phe	C ACI	GGA Gly	A CTT Leu 610	ı uys	GTT Val	CTT Leu	GTC Val	ATO Met 615	Asp	GAG Glu	AAC Asn	GGG Gly	GTA Val 620	2047
AG1 Ser	AGA Arg	ATG Met	GTG Val	ACG Thr 625	$ \nu \gamma S$	GGA Gly	CTT Leu	CTT Leu	GTA Val 630	CAC His	CTT Leu	GGG Gly	TGC Cys	2089
GAA Glu 635	GTG Val	ACC Thr	ACG Thr	GTG Val	AGT Ser 640	TCA Ser	AAC Asn	GAG Glu	GAG Glu	TGT Cys 645	CTC Leu	CGA Arg	GTT Val	2131
GTG Val	TCC Ser 650	CAT His	GAG Glu	CAC His	AAA Lys	GTG Val 655	GTC Val	TTC Phe	ATG Met	GAC Asp	GTG Val 660	TGC Cys	ATG Met	2173
CCC Pro	GGG Gly	GTC Val 665	GAA Glu	AAC Asn	TAC Tyr	CAA Gln	ATC Ile 670	GCT Ala	CTC Leu	CGT Arg	ATT Ile	CAC His 675	GAG Glu	2215
AAA Lys	TTC Phe	ACA Thr	AAA Lys 680	CAA Gln	CGC Arg	CAC His	CAA Gln	CGG Arg 685	CCA Pro	CTA Leu	CTT Leu	GTG Val	GCA Ala 690	2257
CTC Leu	AGT Ser	GGT Gly	AAC Asn	ACT Thr 695	GAC Asp	AAA Lys	TCC Ser	ACA Thr	AAA Lys 700	GAG Glu	AAA Lys	TGC Cys	ATG Met	2299
AGC Ser 705	TTT Phe	GGT Gly	CTA Leu	GAC Asp	GGT Gly 710	GTG Val	TTG Leu	CTC Leu	AAA Lys	CCC Pro 715	GTA Val	TCA Ser	CTA Leu	2341
GAC Asp	AAC Asn 720	ATA Ile	AGA Arg	GAT Asp	GTT Val	CTG Leu 725	TCT Ser	GAT Asp	CTT Leu	CTC Leu	GAG (Glu 1 730	CCC Pro	CGG Arg	2383
GTA Val	CTG Leu	TAC Tyr 735	GAG Glu	GGC Gly	ATG Met	TAAA	GGCG	AT G	GATG	ccca	Ą	•		2421
TGCC	CCAG	AG G	AGTA	ATTC	C GC	TCCC	GCCT	TCT	TCTC	CCG 7	[AAA]	CAT	CG	2471
GAAG	CTGA'	TG T	TCTC	TGGT'	T TA	ATTG:	IGTA	CAT	ATCA	GAG A	ATTGI	CGG!	\G	2521
CGTT	TTGG	AT G	ATAT	CTTA	A AA	CAGA	AAGG	GAA'	TAAC	AAA A	TAGA	AACI	C.	2571
TAAA	CCGG:	ra To	GTGT	CCGT	GC	SATT	rcgg	TTA:	TAGA	GGA A	CAAG	ATGO	T	2621
GGTG	GTAT!	AA TO	CATA	CCAT	TC	AGATI	TACA	TGT	TTGAC	CTA A	TGTT	GTAI	C.	2671
CTTA!	TATAI	rg t <i>i</i>	AGTT!	ACAT	CTI	ATA	AGAA	TTTC	GGAT	CGA G	TAT	GGAT	'G	2721
CTTG					CA1	TGAI	GCA	GTAT	TAT	GC G	TCAG	CTTT	'G	2771
CGCC	SCTTA	AG TA	AGAAC											2787

FIG. 4D

AGTAA	AGAAC	G AA	GAAG	AAGT	GTI	'AAA	CCCA	ACC.	AATT'	TTG .	ACTT	JAAA	AA	50
AAGCT														100
CAAAT														150
ATGT										ATG		GTC	TGC	199
AAT TASN C	rgt <i>F</i> Cys 1	ATT (GAA C	CCG C	CAA T	rgg (rp	CCA Pro	GCG Ala	GAT Asp	GAA Glu 15	TTG Leu	TTA Leu	ATG Met	241
AAA 1 Lys 1	FAC (Fyr (CAA 1 Gln 1	rac <i>i</i> Fyr 1	ATC T	CC (Ser i	GAT Asp 25	TTC Phe	TTC Phe	ATT Ile	GCG Ala	ATT Ile 30	GCG Ala	TAT Tyr	283
TTT ? Phe :	TCG I Ser :	ATT (Ile 1 35	CCT (Pro 1	CTT (Leu (GAG ' Glu :	TTG Leu	ATT Ile 40	TAC Tyr	TTT Phe	GTG Val	AAG Lys	AAA Lys 45	TCA Ser	325
GCC (GTG '	TTT (CCG Pro	TAT Z	AGA Arg	TGG Trp	GTA Val	CTT Leu 55	GTT Val	CAG Gln	TTT Phe	GGT Gly	GCT Ala 60	367
TTT Phe	TTC Phe	GTT Val	CTT Leu	TGT Cys 65	GGA Gly	GCA Ala	ACT Thr	CAT His	CTT Leu 70	ATT Ile	AAC Asn	TTA Leu	TGG Trp	409
ACT Thr 75	TTC Phe	ACT Thr	ACG Thr	CAT His	TCG Ser 80	AGA Arg	ACC Thr	GTG Val	GCG	CTT Leu 85	GTG Val	ATG Met	ACT Thr	451
ACC Thr	GCG Ala 90	AAG Lys	GTG Val	TTA Leu	ACC Thr	GCT Ala 95	GTT Val	GTC Val	TCG Ser	TGT Cys	GCT Ala 100	ACT Thr	GCG Ala	493
TTG Leu	ATG Met	CTT Leu 105	GTT Val	CAT His	ATT Ile	ATT Ile	CCT Pro 110	GAT Asp	CTT Leu	TTG Leu	AGT Ser	GTT Val 115	AAG Lys	535
ACT Thr	CGG Arg	GAG Glu	CTT Leu 120	TTC Phe	TTG Leu	AAA Lys	AAT Asn	AAA Lys 125	GCT	GCT Ala	GAG Glu	CTC Leu	GAT Asp 130	577
					3 mm	CCR	አርጥ	CAG	CAA	GAA Glu	ACC	GGA	AGG Arg	619
His 145	Val	Arg	Met	Leu	150	nis	GIU			155)		GAT Asp	661
Arg	His 160	Thr	iie	Leu	гуз	165	5				170) -	AGG Arg	703
ACA Thr	TTA	GCT Ala 175	ьeu	GAG Glu	GAG Glu	TG1 Cys	GCA Ala 180	ישני	TGC Trp	ATO Met	CCI Pro	ACT Thr 185	AGA Arg	745

FIG. 5A

AC Th	T GG r Gl	G TT y Le	A GA u Gl 19	u ne	A CAC u Glr	CT:	T TCT 1 Ser	TAT	r Thi	A CTI r Lei	r cgi ı Arç	CA:	CAA Gln 200	787
CA' Hi	r cco	C GT	G GA	G TA: u Ty: 20:		GTT Val	CCI Pro	ATT Ile	CAA Glr 210	ı Let	A CCG	GTO Val	ATT Ile	829
AA(Asi 215	1 011	A GTO	G TT	r GG7 e Gly	T ACT Thr 220	Ser	AGG Arg	GCT Ala	GTA Val	A AAA Lys 225	: Ile	TCI Ser	CCT Pro	871
AA1 Asr	TCT Ser 230	. FI(r GTO Val	G GCT L Ala	AGG Arg	TTG Leu 235	Arg	CCI Pro	GTT Val	TCT Ser	GGG Gly 240	Lvs	TAT	913
ATC Met	CTA Lev	GG0 G13 245	/ (31)	GTG Val	GTC Val	GCT Ala	GTG Val 250	AGG Arg	GTT Val	CCG Pro	CTT Leu	CTC Leu 255	His	955
CTT Leu	TCT Ser	AAT	TTT Phe 260	: GTII	ATT Ile	AAT Asn	GAC Asp	TGG Trp 265	CCT Pro	GAG Glu	CTT Leu	TCA Ser	ACA Thr 270	997
AAG Lys	AGA Arg	TAT	GCT Ala	TTG Leu 275	ATG Met	GTT Val	TTG Leu	ATG Met	CTT Leu 280	CCT Pro	TCA Ser	GAT Asp	AGT Ser	1039
GCA Ala 285		CAA Gln	TGG	CAT His	GTC Val 290	CAT His	GAG Glu	TTG Leu	GAA Glu	CTC Leu 295	GTT Val	GAA Glu	GTC Val	1081
GTC Val	GCT Ala 300	GAT Asp	CAG Gln	GTG Val	GCT Ala	GTA Val 305	GCT Ala	CTC Leu	TCA Ser	CAT His	GCT Ala 310	GCG Ala	ATC Ile	1123
CTA Leu	GAA Glu	GAG Glu 315	TCG Ser	ATG Met	CGA Arg	GCT Ala	AGG Arg 320	GAC Asp	CTT Leu	CTC Leu	ATG Met	GAG Glu 325	CAG Gln	1165
AAT Asn	GTT Val	GCT Ala	CTT Leu 330	GAT Asp	CTA Leu	GCT Ala	AGA Arg	CGA Arg 335	GAA Glu	GCA Ala	GAA Glu	ACA Thr	GCA Ala 340	1207
ATC Ile	CGT Arg	GCC Ala	CGC Arg	AAT Asn 345	GAT Asp	TTC Phe	CTA Leu	GCG Ala	GTT Val 350	ATG Met	AAC Asn	CAT His	GAA Glu	1249
ATG Met 355	CGA Arg	ACA Thr	CCG Pro	ATG Met	CAT His 360	GCG Ala	ATT Ile	ATT Ile	GCA Ala	CTC Leu 365	TCT Ser	TCC Ser	TTA Leu	1291
CTC Leu	CAA Gln 370	GAA Glu	ACG Thr	GAA Glu	CTA . Leu	ACC Thr 375	CCT Pro	GAA Glu	CAA Gln	Arg	CTG Leu 1	ATG Met	GTG Val	1333
GAA Glu	ACA Thr	ATA Ile 385	CTT Leu	AAA Lys	AGT :	ser.	AAC Asn 390	CTT Leu	TTG Leu	GCA Ala	Thr :	TTG Leu 395	ATG Met	1375

FIG. 5B

AAT Asn	GAT Asp	GTC Val	TTA Leu 400	GAT Asp	CTT Leu	TCA Ser	AGG Arg	TTA Leu 405	GAA Glu	GAT Asp	GGA Gly	AGT Ser	CTT Leu 410	1417
CAA Gln	CTT Leu	GAA Glu	CTT Leu	GGG Gly 415	ACA Thr	TTC Phe	AAT Asn	CTT Leu	CAT His 420	ACA Thr	TTA Leu	TTT Phe	AGA Arg	1459
GAG Glu 425	GTC Val	CTC Leu	AAT Asn	CTG Leu	ATA Ile 430	AAG Lys	CCT Pro	ATA Ile	GCG Ala	GTT Val 435	GTT Val	AAG Lys	AAA Lys	1501
	CCC Pro 440	ATC Ile	ACA Thr	CTA Leu	AAT Asn	CTT Leu 445	GCA Ala	CCA Pro	GAT Asp	TTG Leu	CCA Pro 450	GAA Glu	TTT Phe	1543
GTT Val	GTT Val	GGG Gly 455	Asp	GAG Glu	AAA Lys	CGG Arg	CTA Leu 460	ATG Met	CAG Gln	ATA Ile	ATA Ile	TTA Leu 465	AAT Asn	1585
ATA Ile	GTT Val	~~m	78.78.003	GCT Ala	GTG Val	AAA Lys	TTC Phe	TCC Ser 475	AAA Lys	CAA Gln	GGT Gly	AGT Ser	ATC Ile 480	1627
TCC Ser	GTA Val	ACC Thr	C C M	CTT Leu 485	GTC Val	ACC Thr	AAG Lys	TCA Ser	GAC Asp 490	ACA Thr	CGA Arg	GCT Ala	GCT Ala	1669
GAC Asp 495	Phe	TTT Phe	GTC Val	GTG Val	CCA Pro 500	ACT Thr	GGG Gly	AGT Ser	CAT His	TTC Phe 505	- 1 -	TTG Leu	AGA Arg	1711
		Val	AAA Lys	GAC Asp	TCT Ser	GGA Gly 515	GCA Ala	GGA Gly	ATA Ile	AAT Asn	CCT Pro 520		GAC Asp	1753
ATT Ile	CCA	AAG Lys 525	: Ile	TTC Phe	ACT Thr	AAA Lys	TTT Phe 530	ALO	CAA Gln	ACA Thr	CAA Gln	TCT Ser 535	TTA Leu	1795
GCG Ala	ACC Thr			Ser	GGT Gly	GGT Gly	AGT Ser	GGG G1 y 545	Tien C	GGC Gly	CTC Leu	GCC Ala	ATC Ile 550	1837
TCC	AAC Lys	AGG Arg	g TTT g Phe	GTG Val	. Asn	CTC	ATO Met	GAC Glu	GGT Gly 560	,	ATT 11e	TGG Trp	ATT Ile	1879
GAG Glu 565	ı Sei	C GA'	r GGT p Gly	r CTT y Leu	r GGA 1 Gly 570	т Бүз	A GGA S Gly	TGC Cys	C ACC	G GCT Ala 575	`	TTT Phe	GAT Asp	1921
		s Le	T GGG	G ATO	C TCF e Ser	GAA Glu 585	T WE	TCI J Sei	A AAG c Ası	GAI	A TC: 1 Se: 590	r AAZ Ly:	A CAG s Gln	1963
TC(Se			e Pr	G AAI	A GT1 s Val	CCI L Pro	A GCG o Ala 60	<u> </u>	r cc e Pr	C CG	A CA' g Hi	T TC	A AAT r Asn 5	2005

FIG. 5C

TTC Phe	ACT Thr	GGA Gly	CTT Leu 610	Lys	GTT Val	CTT Leu	GTC Val	ATG Met 615	GAT Asp	GAG Glu	AAC Asn	GGG Gly	GTA Val 620	2047
AGT Ser	AGA Arg	ATG Met	GTG Val	ACG Thr 625	AAG Lys	GGA Gly	CTT Leu	CTT Leu	GTA Val 630	CAC His	CTT Leu	GGG Gly	TGC Cys	2089
GAA Glu 635	GTG Val	ACC Thr	ACG Thr	GTG Val	AGT Ser 640	TCA Ser	AAC Asn	GAG Glu	GAG Glu	TGT Cys 645	CTC Leu	CGA Arg	GTT Val	2131
GTG Val	TCC Ser 650	CAT His	GAG Glu	CAC His	AAA Lys	GTG Val 655	GTC Val	TTC Phe	ATG Met	GAC Asp	GTG Val 660	TGC Cys	ATG Met	2173
CCC Pro	GGG Gly	GTC Val 665	GAA Glu	AAC Asn	TAC Tyr	CAA Gln	ATC Ile 670	GCT Ala	CTC Leu	CGT Arg	ATT Ile	CAC His 675	GAG Glu	2215
AAA Lys	TTC Phe	ACA Thr	AAA Lys 680	CAA Gln	CGC Arg	CAC His	CAA Gln	CGG Arg 685	CCA Pro	CTA Leu	CTT Leu	GTG Val	GCA Ala 690	2257
CTC Leu	AGT Ser	GGT Gly	AAC Asn	ACT Thr 695	GAC Asp	AAA Lys	TCC Ser	ACA Thr	AAA Lys 700	GAG Glu	AAA Lys	TGC Cys	ATG Met	2299
AGC Ser 705	TTT Phe	GGT Gly	CTA Leu	GAC Asp	GGT Gly 710	GTG Val	TTG Leu	CTC Leu	AAA Lys	CCC Pro 715	GTA Val	TCA Ser	CTA Leu	2341
GAC Asp	AAC Asn 720	ATA Ile	AGA Arg	GAT Asp	GTT Val	CTG Leu 725	TCT Ser	GAT Asp	CTT Leu	CTC Leu	GAG Glu 730	CCC Pro	CGG Arg	2383
GTA Val	CTG Leu	TAC Tyr 735	GAG Glu	GGC Gly	ATG Met	TAAA	.GGCG	at g	GATG	cccc	A		••	2421
TGCC	CCAG	AG G	AGTA	ATTC	C GC	TCCC	GCCT	TCT	TCTC	CCG	TAAA	ACAT	CG	2471
GAAG	CTGA	TG T	TCTC	TGGT	T TA	ATTG	TGTA	CAT	ATCA	GAG .	ATTG	TCGG	AG	2521
CGTT	TTGG	AT G	TATA	CTTA	A AA	CAGA	AAGG	GAA	TAAC	AAA .	ATAG	AAAC	TC	2571
TAAA	CCGG'	TA T	GTGT	CCGT	G GC	GATT'	TCGG	TTA	TAGA	GGA .	ACAA	GATG	GT	2621
GGTG	GTAT	AA T	CATA	CCAT	T TC	AGAT'	TACA	TGT'	TTGA	CTA I	ATGT'	rgta'	TC	2671
CTTA	TATA!	TG TA	AGTT.	ACAT'	T CT	TATA	AGAA	TTT	GGAT	CGA (GTTA!	rgga'	TG	2721
CTTG'	TTGC	ST GO	CATG	TATG	A CA	rtga'	IGCA	GTA:	TTAT	GGC (GTCA	GCTT'	IG .	2771
CGCC	GCTTA	AG TA	AGAA	C										2787

FIG. 5D

AGTA	AGAA	CG A	AGAA	GAAG:	r GT	raaa(CCCA	ACC	AATT	TTG F	ACTTO	SAAA	A.A.	50
AAGC'														100
CAAA														150
ATGT										ATG		GTC	TGC	199
AAT Asn 5	TGT Cys	ATT Ile	GAA Glu	CCG Pro	CAA Gln 10	TGG Trp	CCA Pro	GCG Ala	GAT (Asp (GAA ' Glu ' 15	TTG : Leu :	TTA I Leu l	ATG Met	241
AAA Lys	TAC Tyr 20	CAA Gln	TAC Tyr	ATC Ile	TCC Ser	GAT Asp 25	TTC Phe	TTC Phe	ATT Ile	GCG A	ATT (Ile 2 30	GCG Ala	TAT Tyr	283
TTT Phe	TCG Ser	ATT Ile 35	CCT Pro	CTT Leu	GAG Glu	TTG Leu	ATT Ile 40	TAC Tyr	TTT Phe	GTG Val	AAG . Lys	AAA Lys 45	TCA Ser	325
GCC Ala	GTG Val	TTT Phe	CCG Pro 50	TAT Tyr	AGA Arg	TGG Trp	GTA Val	CTT Leu 55	GTT Val	CAG Gln	TTT Phe	GGT Gly	GCT Ala 60	367
TTT Phe	ATC Ile	GTT Val	CTT Leu	TAT Tyr 65	GGA Gly	GCA Ala	ACT Thr	CAT His	CTT Leu 70	ATT Ile	AAC Asn	TTA Leu	TGG Trp	409
ACT Thr 75	TTC Phe	ACT Thr	ACG Thr	CAT His	TCG Ser 80	AGA Arg	ACC Thr	GTG Val	GCG Ala	CTT Leu 85	GTG Val	ATG Met	ACT Thr	451
ACC Thr	GCG Ala 90	AAG Lys	GTG Val	TTA Leu	ACC Thr	GCT Ala 95	GTT Val	GTC Val	TCG Ser	TGT Cys	GCT Ala 100	ACT Thr	GCG Ala	493
TTG Leu	ATG Met	CTT Leu 105	GTT Val	CAT His	ATT Ile	ATT Ile	CCT Pro 110	GAT Asp	CTT Leu	TTG Leu	AGT Ser	GTT Val 115	AAG Lys	535
ACT Thr	CGG Arg	GAG Glu	CTT Leu 120	TTC Phe	TTG Leu	AAA Lys	AAT Asn	AAA Lys 125	GCT Ala	GCT Ala	GAG Glu	CTC Leu	GAT Asp 130	577
AGA Arg	GAA Glu	ATG Met	GGA Gly	TTG Leu 135	ATT Ile	CGA Arg	ACT Thr	CAG Gln	GAA Glu 140	GAA Glu	ACC Thr	GGA Gly	AGG Arg	619
CAT His 145	Val	AGA Arg	ATG Met	TTG Leu	ACT Thr 150	uis	GAG Glu	ATT Ile	AGA Arg	AGC Ser 155	ACT Thr	TTA Leu	GAT Asp	661
AGA Arg	CAT His 160	Thr	ATT	TTA Leu	AAG Lys	ACT Thr 165	TILL	CTT Leu	GTT Val	GAG Glu	CTT Leu 170	GGT Gly	AGG Arg	703
ACA Thr	TTA Leu	GCT Ala 175	ı Leu	GAG Glu	GAG Glu	TGI	GCA Ala 180	nec	TGG Trp	ATG Met	CCT Pro	ACT Thr 185	AGA Arg	745

FIG. 6A

ACT Thi	r GG(TT! Let	A GA0 1 Glu 190	ı Leı	A CAG 1 Gln	CTI Let	TCT Ser	TAT	Thr	A CTI	CGI Arg	CAT His	CAA Gln 200	787
CAT His	CCC Pro	GTO Val	GAC Glu	TAT Tyr 205	Thr	GTT Val	CCI Pro	ATT Ile	CAP Glr 210	ı Lev	CCG Pro	GTO Val	ATT	829
AAC Asn 215	CAA Gln	GTG Val	TTT Phe	GGI Gly	ACT Thr 220	AGI Ser	AGG Arg	GCT Ala	GTA Val	AAA Lys 225	ATA	TCT Ser	CCT	871
AAT Asn	TCT Ser 230	Pro	GTG Val	GCT Ala	AGG Arg	TTG Leu 235	Arg	CCT Pro	GTT Val	TCT Ser	GGG Gly 240	Lvs	TAT	913
ATG Met	CTA Leu	GGG Gly 245	' GLu	GTG Val	GTC Val	GCT Ala	GTG Val 250	AGG Arg	GTT Val	CCG Pro	CTT Leu	CTC Leu 255	CAC His	955
CTT Leu	TCT Ser	AAT Asn	TTT Phe 260	CAG Gln	ATT Ile	AAT Asn	GAC Asp	TGG Trp 265	CCT Pro	GAG Glu	CTT Leu	TCA Ser	ACA Thr 270	997
AAG Lys	AGA Arg	TAT	GCT Ala	TTG Leu 275	ATG Met	GTT Val	TTG Leu	ATG Met	CTT Leu 280	CCT Pro	TCA Ser	GAT Asp	AGT Ser	1039
GCA Ala 285	AGG Arg	CAA Gln	TGG Trp	CAT His	GTC Val 290	CAT His	GAG Glu	TTG Leu	GAA Glu	CTC Leu 295	GTT Val	GAA Glu	GTC Val	1081
GTC Val	GCT Ala 300	GAT Asp	CAG Gln	GTG Val	GCT Ala	GTA Val 305	GCT Ala	CTC Leu	TCA Ser	CAT	GCT Ala 310	GCG Ala	ATC Ile	1123
CTA Leu	GAA Glu	GAG Glu 315	TCG Ser	ATG Met	CGA Arg	GCT Ala	AGG Arg 320	GAC Asp	CTT Leu	CTC Leu	ATG Met	GAG Glu 325	CAG Gln	1165
AAT Asn	GTT Val	GCT Ala	CTT Leu 330	GAT Asp	CTA Leu	GCT Ala	AGA Arg	CGA Arg 335	GAA Glu	GCA Ala	GAA Glu	ACA Thr	GCA Ala 340	1207
ATC Ile	CGT Arg	GCC Ala	CGC Arg	AAT Asn 345	GAT Asp	TTC Phe	CTA Leu	GCG Ala	GTT Val 350	ATG Met	AAC Asn	CAT His	GAA Glu	1249
ATG Met 355	CGA Arg	ACA Thr	CCG Pro	ATG Met	CAT His 360	GCG Ala	ATT Ile	ATT Ile	GCA Ala	CTC Leu 365	TCT Ser	TCC Ser	TTA Leu	1291
CTC Leu	CAA Gln 370	GAA Glu	ACG Thr	GAA Glu	CTA Leu	ACC Thr 375	CCT Pro	GAA Glu	CAA Gln	AGA Arg	CTG Leu 380	ATG Met	GTG Val	1333
GAA Glu	ACA Thr	ATA Ile 385	CTT Leu	AAA Lys	AGT Ser	AGT Ser	AAC Asn 390	CTT Leu	TTG Leu	GCA Ala	ACT Thr	TTG Leu 395	ATG Met	1375

FIG. 6B

AAT Asn	GAT Asp	GTC Val	TTA Leu 400	GAT Asp	CTT Leu	TCA Ser	Arg	TTA Leu 405	GAA Glu	GAT Asp	GGA Gly	AGT Ser	CTT Leu 410	1417
CAA Gln	CTT Leu	GAA Glu	CTT Leu	GGG Gly 415	ACA Thr	TTC Phe	AAT Asn	CTT Leu	CAT His 420	ACA Thr	TTA Leu	TTT Phe	AGA Arg	1459
GAG Glu 425	GTC Val	CTC Leu	AAT Asn	CTG Leu	ATA Ile 430	AAG Lys	CCT Pro	ATA Ile	GCG Ala	GTT Val 435	GTT Val	AAG Lys	AAA Lys	1501
TTA Leu	CCC Pro 440	ATC Ile	ACA Thr	CTA Leu	AAT Asn	CTT Leu 445	GCA Ala	CCA Pro	GAT Asp	TTG Leu	CCA Pro 450	GAA Glu	TTT Phe	1543
GTT Val	GTT Val	GGG Gly 455	GAT Asp	GAG Glu	AAA Lys	CGG Arg	CTA Leu 460	ATG Met	CAG Gln	ATA Ile	ATA Ile	TTA Leu 465	AAT Asn	1585
ATA Ile	GTT Val	GGT Gly	AAT Asn 470	GCT Ala	GTG Val	AAA Lys	TTC Phe	TCC Ser 475	AAA Lys	CAA Gln	GGT Gly	AGT Ser	ATC Ile 480	1627
TCC	GTA Val	ACC Thr	GCT Ala	CTT Leu 485	GTC Val	ACC Thr	AAG Lys	TCA Ser	GAC Asp 490	ACA Thr	CGA Arg	GCT Ala	GCT Ala	1669
GAC Asp 495	TTT Phe	TTT Phe	GTC Val	GTG Val	CCA Pro 500	ACT Thr	GGG Gly	AGT Ser	CAT His	TTC Phe 505	TAC Tyr	TTG Leu	AGA Arg	1711
GTG Val	AAG Lys 510	GTA Val	AAA Lys	GAC Asp	TCT Ser	GGA Gly 515	GCA Ala	GGA Gly	ATA Ile	AAT Asn	CCT Pro 520	CAA Gln	GAC Asp	1753
ATT Ile	CCA Pro	AAG Lys 525	ATT Ile	TTC Phe	ACT Thr	AAA Lys	TTT Phe 530	GCT Ala	CAA Gln	ACA Thr	CAA Gln	TCT Ser 535	TTA Leu	1795
GCG Ala	ACG Thr	AGA Arg	AGC Ser 540	TCG Ser	GGT Gly	GGT Gly	AGT Ser	GGG Gly 545	CTT Leu	GGC Gly	CTC Leu	GCC Ala	ATC Ile 550	1837
TCC Ser	AAG Lys	AGG Arg	TTT Phe	GTG Val 555	AAT Asn	CTG Leu	ATG Met	GAG Glu	GGT Gly 560	ASII	ATT Ile	TGG Trp	ATT Ile	1879
GAG Glu 565	Ser	GAT Asp	GGT Gly	CTT Leu	GGA Gly 570	Lys	GGA Gly	TGC	ACG Thr	GCT Ala 575	TTE	TTT	GAT Asp	1921
GTT Val	AAA Lys 580	Leu	GGG Gly	ATC Ile	TCA Ser	GAA Glu 585	Arg	TCA Ser	AAC Asn	GAA Glu	Ser 590	د بر س	CAG Gln	1963
TCG Ser	GGC Gly	ATA Ile 595	Pro	AAA Lys	GTT Val	CCA	GCC Ala 600	і тте	CCC Pro	CGA Arg	CAT His	TCA Ser 605	AAT Asn	2005

FIG. 6C

TT(Phe	C ACT	GGZ Gly	A CTI / Let 610	r nys	GTT Val	CTT Leu	GTC Val	ATO Met 615	: Asp	'GAG	AAC Asn	GGG Gly	GTA Val 620	2047
AG7 Se1	r AGA Arg	ATC Met	GTG Val	ACG Thr 625	ьys	GGA Gly	CTT Leu	CTT Leu	GTA Val 630	Hls	CTT Leu	GGG Gly	TGC Cys	2089
GAA Glu 635	GTG Val	ACC	ACG Thr	GTG Val	AGT Ser 640	TCA Ser	AAC Asn	GAG Glu	GAG Glu	TGT Cys 645	CTC Leu	CGA Arg	GTT Val	2131
GTG Val	Ser 650	CAT His	GAG Glu	CAC His	AAA Lys	GTG Val 655	GTC Val	TTC Phe	ATG Met	GAC Asp	GTG Val 660	TGC Cys		2173
CCC Pro	GGG Gly	GTC Val 665	GAA Glu	AAC Asn	TAC Tyr	CAA Gln	ATC Ile 670	GCT Ala	CTC Leu	CGT Arg	ATT Ile	CAC His 675	GAG Glu	2215
AAA Lys	TTC Phe	ACA Thr	AAA Lys 680	CAA Gln	CGC Arg	CAC His	CAA Gln	CGG Arg 685	CCA Pro	CTA Leu	CTT Leu	GTG Val	GCA Ala 690	2257
CTC Leu	AGT Ser	GGT Gly	AAC Asn	ACT Thr 695	GAC Asp	AAA Lys	TCC Ser	ACA Thr	AAA Lys 700	GAG Glu	AAA Lys	TGC Cys	ATG Met	2299
AGC Ser 705	TTT Phe	GGT Gly	CTA Leu	GAC Asp	GGT Gly 710	GTG Val	TTG Leu	CTC Leu	AAA Lys	CCC Pro 715	GTA Val	TCA Ser	CTA Leu	2341
GAC Asp	AAC Asn 720	ATA Ile	AGA Arg	GAT Asp	GTT Val	CTG Leu 725	TCT Ser	GAT Asp	CTT Leu	CTC Leu	GAG (Glu : 730	CCC Pro	CGG Arg	2383
GTA Val	CTG Leu	TAC Tyr 735	GAG Glu	GGC Gly	ATG Met	TAAA	GGCG	AT G	GATG	CCCC.	A TG	ccc	AGAG	2431
GAGT	AATT	CC G	CTCC	CGCC	T TC	TTCT	CCCG	TAA	AACA	TCG (GAAGO	TGA	re	2481
	CTGG													2531
	TCTT													2581
	TCCG													2631
	ACCA!													2681
	TACA													2731
													.G	
TAGA														2787

FIG. 6D

AGTA	AGAA(CG AF	AGAAG	AAGT	GTT	'AAAC	CCA	ACCA	LTTA	TG A	CTTC	AAA	A.A.	50
AAGC'														100
			TCCT											150
			AGGAA							ATG		GTC	TGC	199
AAT Asn 5	TGT . Cys	ATT (GAA C Glu F	CG C	AA 1 Sln 1	rgg (rp l	CCA (Pro <i>l</i>	GCG (Ala A	GAT (Asp (GAA S Glu I	TTG ! Leu :	TTA Leu	ATG Met	241
AAA Lys	TAC Tyr 20	CAA ' Gln '	TAC F	ATC 1	rcc (Ser 1	GAT SASP	TTC ! Phe !	rrc Phe	ATT (GCG A	ATT (Ile . 30	GCG Ala	TAT Tyr	283
			CCT (Pro I		-7.0	TITE C	አጥጥ '	ጥልሮ	. .	GTG :	AAG .	AAA	TCA	325
GCC Ala	GTG Val	TTT Phe	CCG : Pro :	rat i	AGA Arg	TGG Trp	GTA Val	CTT Leu 55	GTT Val	CAG Gln	TTT Phe	GGT Gly	GCT Ala 60	367
TTT Phe	ATC Ile	GTT Val	CTT (TGT (Cys 65	GGA Gly	GCA Ala	ACT Thr	CAT His	CTT Leu 70	ATT Ile	AAC Asn	TTA Leu	TGG Trp	409
ACT Thr 75	TTC Phe	ACT Thr	ACG Thr	CAT His	TCG Ser 80	AGA Arg	ACC Thr	GTG Val	GCG Ala	CTT Leu 85	GTG Val	ATG Met	ACT Thr	451
ACC Thr	GCG Ala 90	AAG Lys	GTG Val	TTA Leu	ACC Thr	GCT Ala 95	GTT Val	GTC Val	TCG Ser	TGT Cys	GCT Ala 100	ACT Thr	ACG Thr	493
TTG Leu	ATG Met	CTT Leu 105	GTT Val	CAT His	ATT Ile	ATT Ile	CCT Pro 110	GAT Asp	CTT Leu	TTG Leu	AGT Ser	GTT Val 115	AAG Lys	535
ACT Thr	CGG Arg	GAG Glu	CTT Leu 120	TTC Phe	TTG Leu	AAA Lys	AAT Asn	AAA Lys 125	GCT Ala	GCT Ala	GAG Glu	CTC Leu	GAT Asp 130	577
			GGA Gly			CC3	70	CAG	CAA	GAA	ACC	GGA	AGG	619
CAT His 145	yaı	AGA Arg	ATG Met	TTG Leu	ACT Thr 150	CAT His	GAG Glu	ATT Ile	AGA Arg	AGC Ser 155	ACT Thr	TTA Leu	GAT Asp	661
Arc	160	; Tnr)	iie	reu	гуз	165					170		AGG Arg	703
AC <i>l</i> Thi	A TTA	A GCT i Ala 175	Leu	GAG Glu	GAG Glu	TGT	GCA Ala 180	. 1100	TGG Trp	ATG Met	CCI	ACT Thi	AGA Arg	745

FIG. 7A

AC! Thi	r GGG	G TT y Lei	A GAG u Glu 190	а ьег	A CAG	G CTT	r TC1 1 Ser	TA1	: Thi	A CTT	CGT Arg	CAT His	CAA Gln 200	787
CAT His	CCC Pro	C GTO Val	G GAO L Glu	TAT Tyr 205	rnr	GT1 Val	CCI Pro	ATT Ile	CAA Glr 210	ı Let	CCC Pro	GTO Val	ATT Ile	829
AAC Asn 215	I GII	A GTO	TTI Phe	GGT	ACT Thr 220	Ser	AGG Arg	GCT Ala	GTA Val	AAA Lys 225	Ile	TCT Ser	CCT Pro	871
AAT Asn	Ser 230	PIC	GTC Val	GCT Ala	' AGG Arg	TTG Leu 235	LArg	CCT	GTT Val	TCT Ser	GGG Gly 240	Lvs	TAT Tyr	913
ATG Met	CTA Leu	GGG Gly 245	, eta	GTG Val	GTC Val	GCT Ala	GTG Val 250	Arg	GTT Val	CCG Pro	CTT Leu	CTC Leu 255	CAC His	955
CTT Leu	TCT Ser	AAT Asn	TTT Phe 260	GIn	ATT Ile	AAT Asn	GAC Asp	TGG Trp 265	CCT Pro	GAG Glu	CTT Leu	TCA Ser	ACA Thr 270	997
AAG Lys	AGA Arg	TAT	GCT Ala	TTG Leu 275	ATG Met	GTT Val	TTG Leu	ATG Met	CTT Leu 280	CCT Pro	TCA Ser	GAT Asp	AGT Ser	1039
GCA Ala 285	AGG Arg	CAA Gln	TGG Trp	CAT	GTC Val 290	CAT His	GAG Glu	TTG Leu	GAA Glu	CTC Leu 295	GTT Val	GAA Glu	GTC Val	1081
GTC Val	GCT Ala 300	GAT Asp	CAG Gln	GTG Val	GCT Ala	GTA Val 305	GCT Ala	CTC Leu	TCA Ser	CAT His	GCT Ala 310	GCG Ala	ATC Ile	1123
CTA Leu	GAA Glu	GAG Glu 315	TCG Ser	ATG Met	CGA Arg	GCT Ala	AGG Arg 320	GAC Asp	CTT Leu	CTC Leu	ATG Met	GAG Glu 325	CAG Gln	1165
AAT Asn	GTT Val	GCT Ala	CTT Leu 330	GAT Asp	CTA Leu	GCT Ala	AGA Arg	CGA Arg 335	GAA Glu	GCA Ala	GAA Glu	ACA Thr	GCA Ala 340	1207
ATC Ile	CGT Arg	GCC Ala	CGC Arg	AAT Asn 345	GAT Asp	TTC Phe	CTA Leu	GCG Ala	GTT Val 350	ATG Met	AAC Asn	CAT His	GAA Glu	1249
ATG Met 355	CGA Arg	ACA Thr	CCG Pro	ATG Met	CAT His 360	GCG Ala	ATT Ile	ATT Ile	GCA Ala	CTC Leu 365	TCT Ser	TCC Ser	TTA Leu	1291
CTC Leu	CAA Gln 370	GAA Glu	ACG Thr	GAA Glu	CTA Leu	ACC Thr 375	CCT Pro	GAA Glu	CAA Gln	AGA Arg	CTG Leu 380	ATG Met	GTG Val	1333
GAA Glu	ACA Thr	ATA Ile 385	CTT Leu	AAA Lys	AGT Ser	AGT Ser	AAC Asn 390	CTT Leu	TTG Leu	GCA Ala	ACT Thr	TTG Leu 395	ATG Met	1375

FIG. 7B

AAT Asn	GAT Asp	GTC Val	TTA Leu 400	GAT Asp	CTT Leu	TCA Ser	AGG Arg	TTA Leu 405	GAA Glu	GAT Asp	GGA Gly	AGT Ser	CTT Leu 410	1417
CAA Gln	CTT Leu	GAA Glu	CTT Leu	GGG Gly 415	ACA Thr	TTC Phe	AAT Asn	CTT Leu	CAT His 420	ACA Thr	TTA Leu	TTT Phe	AGA Arg	1459
GAG Glu 425	GTC Val	CTC Leu	AAT Asn	CTG Leu	ATA Ile 430	AAG Lys	CCT Pro	ATA Ile	GCG Ala	GTT Val 435	GTT Val	AAG Lys	AAA Lys	1501
TTA Leu	CCC Pro 440	ATC Ile	ACA Thr	CTA Leu	AAT Asn	CTT Leu 445	GCA Ala	CCA Pro	GAT Asp	TTG Leu	CCA Pro 450	GAA Glu	TTT Phe	1543
GTT Val	GTT Val	GGG Gly 455	GAT Asp	GAG Glu	AAA Lys	CGG Arg	CTA Leu 460	ATG Met	CAG Gln	ATA Ile	ATA Ile	TTA Leu 465	AAT Asn	1585
ATA Ile	GTT Val	GGT Gly	AAT Asn 470	GCT Ala	GTG Val	AAA Lys	TTC Phe	TCC Ser 475	AAA Lys	CAA Gln	GGT Gly	AGT Ser	ATC Ile 480	1627
TCC Ser	GTA Val	ACC Thr	GCT Ala	CTT Leu 485	GTC Val	ACC Thr	AAG Lys	TCA Ser	GAC Asp 490	ACA Thr	CGA Arg	GCT Ala	GCT Ala	1669
GAC Asp 495	TTT Phe	TTT Phe	GTC Val	GTG Val	CCA Pro 500	ACT Thr	GGG Gly	AGT Ser	CAT His	TTC Phe 505	TAC Tyr	TTG Leu	AGA Arg	1711
GTG Val	AAG Lys 510	GTA Val	AAA Lys	GAC Asp	TCT Ser	GGA Gly 515	GCA Ala	GGA Gly	ATA Ile	AAT Asn	CCT Pro 520	CAA Gln	GAC Asp	1753
ATT Ile	CCA Pro	AAG Lys 525	ATT Ile	TTC Phe	ACT Thr	AAA Lys	TTT Phe 530	GCT Ala	CAA Gln	ACA Thr	CAA Gln	TCT Ser 535	TTA Leu	1795
GCG Ala	ACG Thr	AGA Arg	AGC Ser 540	TCG Ser	GGT Gly	GGT Gly	AGT Ser	GGG Gly 545	CTT Leu	GGC Gly	CTC Leu	GCC Ala	ATC Ile 550	1837
TCC Ser	AAG Lys	AGG Arg	TTT Phe	GTG Val 555	Asn	CTG Leu	ATG Met	GAG Glu	GGT Gly 560	AAC Asn	ATT Ile	TGG Trp	ATT Ile	1879
GAG Glu 565	. Ser	GAT Asp	GGT Gly	CTT Leu	GGA Gly 570	ьys	GGA Gly	TGC Cys	ACG Thr	GCT Ala 575	TTE	TTT	GAT Asp	1921
GTT Val	AAA Lys 580	Leu	GGG Gly	ATC Ile	TCA Ser	GAA Glu 585	Arg	TCA Ser	AAC Asn	GAA Glu	Ser 590	Try 3	CAG	1963
TCG Ser	GGC Gly	ATA	Pro	AAA Lys	GTT Val	CCA Pro	GCC Ala 600	TTC	CCC Pro	CGA Arg	CAT His	TCA Ser 605	AAT Asn	2005

FIG. 7C

TTC Phe	ACT Thr	GGA Gly	CTT Leu 610	AAG Lys	GTT Val	CTT Leu	GTC Val	ATG Met 615	GAT Asp	GAG Glu	AAC Asn	GGG Gly	GTA Val 620	2047
AGT Ser	AGA Arg	ATG Met	GTG Val	ACG Thr 625	AAG Lys	GGA Gly	CTT Leu	CTT Leu	GTA Val 630	CAC His	CTT Leu	GGG Gly	TGC Cys	2089
GAA Glu 635	GTG Val	ACC Thr	ACG Thr	GTG Val	AGT Ser 640	TCA Ser	AAC Asn	GAG Glu	GAG Glu	TGT Cys 645	CTC Leu	CGA Arg	GTT Val	2131
GTG Val	TCC Ser 650	CAT His	GAG Glu	CAC His	AAA Lys	GTG Val 655	GTC Val	TTC Phe	ATG Met	GAC Asp	GTG Val 660	TGC Cys	ATG Met	2173
CCC	GGG Gly	GTC Val 665	GAA Glu	AAC Asn	TAC Tyr	CAA Gln	ATC Ile 670	GCT Ala	CTC Leu	CGT Arg	ATT Ile	CAC His 675	GAG Glu	2215
AAA Lys	TTC Phe	ACA Thr	AAA Lys 680	CAA Gln	CGC Arg	CAC His	CAA Gln	CGG Arg 685	CCA Pro	CTA Leu	CTT Leu	GTG Val	GCA Ala 690	2257
CTC Leu	AGT Ser	GGT Gly	AAC Asn	ACT Thr 695	GAC Asp	AAA Lys	TCC Ser	ACA Thr	AAA Lys 700	GAG Glu	AAA Lys	TGC Cys	ATG Met	2299
AGC Ser 705	TTT Phe	GGT Gly	CTA Leu	GAC Asp	GGT Gly 710	GTG Val	TTG Leu	CTC Leu	AAA Lys	CCC Pro 715	GTA Val	TCA Ser	CTA Leu	2341
ASP	AAC Asn 720	ATA Ile	AGA Arg	GAT Asp	GTT Val	CTG Leu 725	TCT Ser	GAT Asp	CTT Leu	CTC Leu	GAG Glu 730	CCC Pro	CGG Arg	2383
GTA Val	CTG Leu	TAC Tyr 735	GAG Glu	GGC Gly	ATG Met	TAAA	.GGCG	AT G	GATG	cccc	A TG	cccc	AGAG	2431
GAGT	AATT	CC G	CTCC	CGCC	T TC	TTCT	CCCG	TAA	AACA	TCG	GAAG	CTGA	TG.	2481
TTCT	CTGG	TT T	AATT	GTGT	A CA	TATC	AGAG	ATT	GTCG	GAG	CGTT	TTGG	AT	2531
GATA	TCTT	AA A	ACAG	AAAG	G GA	ATAA	CAAA	ATA	GAAA	CTC	TAAA	CCGG	TA	2581
TGTG	TCCG	TG G	CGAT	TTCG	G TT.	ATAG	AGGA	ACA	AGAT	GGT	GGTG	GTAT	AA	2631
TCAT	ACCA	TT T	CAGA	TTAC	A TG	TTTG	ACTA	ATG	TTGT.	ATC	CTTA	TATA	TG	2681
TAGT	TACA	TT C	TTAT.	AAGA	A TT	TGGA	TCGA	GTT.	ATGG.	ATG	CTTG	TTGC	GT	2731
GCAT	GTAT	GA C	ATTG	ATGC.	A GT	ATTA	TGGC	GTC	AGCT	TTG	CGCC	GCTT.	AG	2781
TAGA	AC													2787

FIG. 7D

SUBSTITUTE SHEET (RULE 26)

ETRI ONVALDLARREAETAIRARNDFLAN MSHERFTPH MOTGETHLICKGELTPEGRD LERGA ANVELDLARKEAGEARIKSEFLAN MSHERFTPL MOTGETHLICKGELTPEGRD RANGEARIKSEFLAN MSHERFTPL MOTGETHLICKGELTPEGRD RANGEARIANGARFILAN MSHERFTPL MOTGETHLICKGELTPEGRD BARA HUNTIERSANLLATIMNOVLDERLEGGGGLEGTFRLHTLFFRVLANTIKPTANV BARA HUNTERSANLLATIMNOVLDERLEGGGGGLEGGTFRLHTLFFRVLANTIKPTANV BARA HUNTERSANLLATIMNOVLDERLEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	OCKL 380 OCKD 329 OCKD 311 OCKD 176 OCKD 176 OCKD 176 OCKD 176 OCKD 176 OCKD 1862 OCKD 1862 OCCD
---	---

		Met
TOMATO	ન	1 ATGGAATCCTGTGATTGCATTGAGGCTTTACTGCCAACTGGTGACCTGCT 50
ARABIDOPSIS	157	ATGGAAGTCTGCAATTGTATTGAACCGCAATGGCCAGCGGATGAATTGTT 206
	51	51 GGTTAAATACCAATACCTCTCAGATTTCTTCATTGCTGTAGCCTACTTT 100
	207	AATGAAATACCAATACATCTCCGATTTCTTCATTGCGATTGCGTATTTTT 256
	101	101 CCATTCCGTTGGAGCTTATTTTGTCCACAAATCTGCATGCTTCCCA 150
	257	CGATICCICITGAGITGATITACTITGIGAAGAAATCAGCCGIGITTCCG 306
	151	TACAGATGGGTCCTCATGCAATTTGGTGCTTTTATTGTGCTCTGCGGAGC 200
	307	
	201	AACACACTTATTAGCTTGTGGACCTTCTTTATGCACTCTAAGACGGTCG 250
	375	AACTCATCTTATTAACTTATGGACTTTCACTACGCATTCGAGAACCGTGG 406
	251	251 CTGTGGTTATGACCATATCAAAATGTTGACAGCTGCCGTGTCCTGTATC 300
	407	CGCTTGTGATGACTACCGCGAAGGTGTTAACCGCTGTTGTCTCGTGTGCT 456
	301	ACAGCTTTGATGCTTCACATTATTCCTGATTTGCTAAGTGTTAAAAC 350
	457	
	351	351 GCGAGAGTTGTTGAAA 369
	507	507 TCGGGAGCTTTCTTGAAA 525 FIG. 10A Lys 123

FIG. 10B

· 20	20	100	100		
TOMATO 1 MESCDCIEALLPTGDLLVKYOYLSDFFIAVAYFSIPLELIYFVHKSACFP 50	1 MEVCNCIEPQWPADELLMKYQYISDFFIAIAYFSIPLELIYFVKKSAVFP 50	51 YRWVLMQFGAFIVLCGATHFISLWTFFMHSKTVAVVMTISKMLTAAVSCI 100	1 YRWYLVQFGAFIVLCGATHLINLWTFTTHSRTVALVMTTAKVLTAVVSCA 100	101 TALMLVHIIPDLLSVKTRELFLK 123	101 TALMLVHIIPDLLSVKTRELFLK 123
~	-	51	51	101	101
TOMATO	RABIDOPSIS				

FIG. 11A

ALSHAAILEDSMRAHDQLMEQNIALDVARQEAEMAIRARNDFLAVMNHEM 50 arabidopsis 306 alshaaturesmrardlimeonvaldlarreaetatrarndflavmnhem TOMATO

FIG. 11B

AC	TTTT	AAAA	TTT	CTTT.	ATT	TCAT	TGTC	AG A	AAAA	GAGA	G CT.	AATA	ATAT	50
										TGAA				100
										TTGG:				150
										TTCA:				200
TC	AATC	AGGA	AGA	CGAA	CTT (GAAC!	TTTCT	rr r	rttt(CATC	A TTZ	ACCC	AAAG	250
CTA	ATGA	GGCT	CAC	ACCA	CCA A	ATAC	STCC	GC CC	TCA!	rgaa:	r cc:	rtcto	CTTC	300
CAC	GTA	CTGT	GCC	STCTO	CGG (SATA	ACAA	AC T	TCT	ATTT <i>I</i>	A TTC	CTCT	CTG	350
ATO	GGA	CTA	TCT	ATCG!	ATG A	AGAI	TGAI	T TO	CACTA	ACTTI	' AG	[AAC	TTT	400
CAI	CTG	ATCG	ATC	rgrgi	TG I	GTT	ATCGA	AG GA	ATC	ATCI	CA	TTTT	STAG	450
ATI	CAA	TTT	CTG	SATAC	AT 1	TTGI	ATCI	C TI	TTC	CATAG	CTO	TAGI	CCA	500
AAI	CTAC	STCT	CCAC	TGAT	AT C	TGAG	TTTI	G TI	'GACC	AGGI	CA	CACA	AGT	550
CAG	AGCI	CCA	AAA	ATG	GAG	TCA	TGC	GAT	TGT	TTT	GAG	ACG	CAT	593
				1	GIU	ser	Cys	Asp 5	Cys	Phe	GIu	Thr	His 10	
GTG Val	AAT Asn	CAA Gln	GAT Asp	GAT Asp 15	CTG Leu	TTA Leu	GTG Val	AAG Lys	TAC Tyr 20	CAA Gln	TAC	ATC Ile	TCA Ser	635
GAT Asp 25	GCG Ala	TTG Leu	ATT	GCT Ala	CTT Leu 30	GCA Ala	TAC	TTC Phe	TCA Ser	ATC Ile 35	CCA Pro	CTC Leu	GAG Glu	677
CTT Leu	ATC Ile 40	Tyr	TTC Phe	GTG Val	CAA Gln	AAG Lys 45	TCT Ser	GCT Ala	TTC Phe	TTC Phe	CCT Pro 50	TAC Tyr	AAA Lys	719
TGG Trp	GTG Val	CTT Leu 55	ATG Met	CAG Gln	TTT Phe	GGA Gly	GCC Ala 60	TTT Phe	ATC Ile	ATT Ile	CTC Leu	TGT Cys 65	GGA Gly	761
GCT Ala	ACG Thr	CAT His	TTC Phe 70	ATC Ile	AAC Asn	CTA Leu	TGG Trp	ATG Met 75	TTC Phe	TTC Phe	ATG Met	CAT His	TCC Ser 80	803
AAA Lys	GCC Ala	GTT Val	GCC Ala	ATT Ile 85	GTC Val	ATG Met	ACT Thr	ATT Ile	GCT Ala 90	AAA Lys	GTC Val	TCT Ser	TGC Cys	845
GCG Ala 95	GTT Val	GTG Val	TCG Ser	TGT Cys	GCT Ala 100	ACC Thr	GCG Ala	TTG Leu	ATG Met	TTG Leu 105	GTT Val	CAT His	ATT Ile	887
ATT Ile	CCT Pro 110	GAT Asp	CTT Leu	CTC	AGT Ser	GTT Val 115	AAG Lys	AAC Asn	AGG Arg	GAA Glu	TTG Leu 120	TTT Phe	CTC Leu	929
AAG Lys	AAG Lys	AAA Lys 125	GCT Ala	GAT Asp	GAG Glu	TTA Leu	GAT Asp 130	AGA Arg	GAA Glu	ATG Met	GGT Gly	CTT Leu 135	ATT Ile	971

FIG. 12A

TTA Leu	ACA Thr	CAA Gln	GAG Glu 140	GAG Glu	ACT Thr	GGT Gly	AGG Arg	CAT His 145	GTT Val	AGG Arg	ATG Met	CTT Leu	ACT Thr 150	1013
CAT His	GGA Gly	ATT Ile	אכא	AGA Arg 155	ACT Thr	CTT Leu	GAT Asp	AGG Arg	CAT His 160	ACT Thr	ATT Ile	TTA Leu	AGA Arg	1055
ACC Thr 165	ACT Thr	CTT Leu	GTT Val	GAG	CTT Leu 170	GGT Gly	AAA Lys	ACT Thr	CTT Leu	TGT Cys 175	CTT Leu	GAG Glu	GAA Glu	1097
mcm	GCG Ala 180	TTG Leu	TGG Trp	ATG Met	CCT Pro	TCT Ser 185	CAA Gln	AGT Ser	GGT Gly	TTA Leu	TAT Tyr 190	TTG Leu	CAG Gln	1139
CTT Leu	TCT Ser	CAT His 195	ACT Thr	TTG Leu	AGT Ser	CAT His	AAA Lys 200	ATA Ile	CAA Gln	GTT Val	GGA Gly	AGC Ser 205	AGT Ser	1181
GTG Val	CCG Pro	ATA Ile	AAT Asn 210	CTC Leu	CCG Pro	ATT Ile	ATT Ile	AAT Asn 215	GAA Glu	CTC Leu	TTC Phe	AAT Asn	AGC Ser 220	1223
GCT Ala	CAA Gln	GCT Ala	ATG Met	CAC His 225	ATA Ile	CCT Pro	CAT His	TCT Ser	TGT Cys 230	CCT Pro	TTG Leu	GCT Ala	AAG Lys	1265
ATT Ile 235	GGG Gly	CCT Pro	CCG Pro	GTT Val	GGG Gly 240	AGA Arg	TAT	TCA Ser	CCT	CCT Pro 245	<u> </u>	GTT Val	GTT Val	1307
mam	GTC Val 250	CGT Arg	GTT Val	CCT Pro	CTT Leu	TTA Leu 255	Hls	CTC Leu	TCT	AAT Asn	TTC Phe 260	GIII	GGC Gly	1349
AGT Ser		TGG Trp 265	TCG Ser	GAT Asp	CTC Leu	TCT	GGC Gly 270	AAA Lys	GGT	TAC Tyr	GCT Ala	ATC Ile 275	ATG Met	1391
CTC	CTC	አጥጥ	רייר ר	CCA	ACC	GAT	GGT	GCA	AGA Arg	AAA	TGG	AGA	GAC Asp 290	1433
CAT His	GAG Glu	TTA	GAG Glu	CTT Leu 295	vaı	GAA Glu	A AAC 1 Asi	GTC Val	GCG Ala 300	. voř	CAG Gln	; L		1469
CTC.	ሮ ልሞሮ	יייטייי	ጥጥልር			TGT	rTGGT	T GI	rgtgi	CAAC	TTO	CTT	CACC	1519
							CCTG							1564
				- CEC	. mc1	\ CN1	ף ככי	r GCI	ייד ב	ייי יי	GAZ	A GAZ	A TCC	1606
Val	Ala	Va. 305	L Ala	i Let	ı Sei	HIS	310) Al	7 TT	e ne	7 610	31	5	
ATG Met	CAC	GC: Ala	CGT Arg 320	I ASI	C CAC	G CT	r ATG	G GAG t Gli 32	ע טבי	G AA' n Asi	r TT: n Phe	r GC' Ala	TTA Leu 330	1648
GAC Asp	AAC Lys	G GC	r CG:	CAL G Gli 33	J GT	G GC' u Ala	T GAG a Gl	G ATO	G GC t Al 34	a va	A CA' 1 Hi	r GC' s Al	r CGA a Arg	1690

FIG. 12B

AAT Asr 345	ren	TTC Phe	CTA Leu	GCT Ala	GTT Val 350	ATG Met	AAC Asn	CAC His	GAC Glu	ATO Met 35	Arg	G ACA J Thr	CCG Pro	1732
ATO Met	CAT His 360	WI 9	ATC Ile	ATC Ile	TCT Ser	CTT Leu 365	TCT Ser	TCT Ser	CTI Leu	CT(C CTI Leu 370	ı Glu	ACT Thr	1774
GAG Glu	CTG Leu	TCT Ser 375	CCA Pro	GAG Glu	CAA Gln	AGA Arg	GTT Val 380	ATG Met	ATC Ile	GAC Glu	ACA Thr	ATA Ile 385	CTG Leu	1816
AAA Lys	AGC Ser	AGC Ser	AAT Asn 390	CTT Leu	GTG Val	GCT Ala	ACA Thr	CTA Leu 395	ATC	AGC Ser	GAC Asp	GTT Val	CTG Leu 400	1858
GAT Asp	CTT Leu	TCG Ser	AGA Arg	TTG Leu 405	GAA Glu	GAT Asp	GGG Gly	AGC Ser	TTA Leu 410	Leu	TTG Leu	GAA Glu	AAT Asn	1900
GAA Glu 415	CCA Pro	TTC Phe	AGT Ser	CTA Leu	CAA Gln 420	GCG Ala	ATC Ile	TTT Phe	GAA Glu	GAG Glu 425		ACTA	AAT	1943
CCC	CCTG	ATT A	ACCA	GTGA	AA GI	CCAI	TAT	A TA	TGTC'	TTAC	ATG	AATA	ACA	1993
TGG	GCGCI	TTT G	AATC	TGCA	NG GI Va	C AT	C TO	CT T	eu I.	TA A le L 30	AG C	CA A	rc le	2037
GCA Ala	TCA Ser 435	GTG Val	AAG Lys	AAA Lys	CTA Leu	TCA Ser 440	ACG Thr	AAT Asn	CTG Leu	ATT Ile	CTG Leu 445	TCT Ser	GCA Ala	2079
GAC Asp	TTA Leu	CCA Pro 450	ACT Thr	TAT Tyr	GCT Ala	тте	GGT Gly 455	GAT Asp	GAG Glu	AAA Lys	CGT Arg	CTG Leu 460	ATG Met	2121
CAA Gln	ACA Thr	тте	CTT Leu . 465	AAC Asn	ATC Ile	ATG Met	GGC Gly	AAC Asn 470	GCT Ala	GTG Val	AAA Lys	TTT Phe	ACT Thr 475	2163
AAG Lys	GAA Glu	GGC Gly	Tyr .	ATC Ile 480	TCC . Ser	ATA . Ile	ATA Ile	GCC Ala	TCT Ser 485	ATC Ile	ATG Met	AAA Lys	CCC Pro	2205
GAG Glu 490	TCC Ser	TTA (Leu (CAA (Gln (GLU .	TTA Leu 495	CCA '	TCT Ser	CCA Pro	GAA Glu	TTT Phe 500	TTT Phe	CCA Pro	GTT Val	2247
neu	AGT Ser 505	GAC A	AGT (Ser I	CAC '	rne :	FAC (Fyr 1	CTA Leu	TGT Cys	GTG Val	CAG Gln	GTTA	GACC	CA	2290
ATCT	ACAA	AT T	ACTA	AACT	A CA	AAGT	raag	CTT	CTTA	CTG	TGTT	CTTA	CT	2340
GTTA	TAAT	CA TO	GTG	,	GTG A Val I 515	AAG (Lys <i>I</i>	ASP	ACA Thr	GGG Gly	TGT Cys 520	GGA Gly	ATT Ile	CAC His	2385
ACA Thr	CAA (GAC A	ATT C	CT	TTG (CTC 1	TT I	ACC .	AAA	TTT	GTA	CAG	CCT	2427

FIG. 12C

CGG ACC GGA ACT CAG AGG AAC CAT TCC GGT GGA GGA CTC GGG Arg Thr Gln Arg Asn His Ser Gly Gly Gly Leu Gly 540	2469
CTA GCT CTC TGT AAA CGG TAACAACCC AAAAGTATAT ATAAGTTATA Leu Ala Leu Cys Lys Arg 555	2516
AGCAGATGGT GTTACAAATA GCTAAAAGGC AAGTTTCTGT TGATGGATGT	2566
CTCTGGTTAG G TTT GTC GGG CTA ATG GGA GGA TAC ATG TGG Phe Val Gly Leu Met Gly Gly Tyr Met Trp 560 565	2607
ATA GAA AGT GAA GGC CTA GAG AAA GGC TGC ACA GCT TCG TTC Ile Glu Ser Glu Gly Leu Glu Lys Gly Cys Thr Ala Ser Phe 570	2649
ATC ATC AGG CTT GGT ATC TGC AAC GGT CCA AGC AGT AGC AGT Ile Ile Arg Leu Gly Ile Cys Asn Gly Pro Ser Ser Ser Ser 595	2691
GGT TCA ATG GCG CTA CAT CTT GCA GCT AAA TCA CAA ACC AGA Gly Ser Met Ala Leu His Leu Ala Ala Lys Ser Gln Thr Arg 600	27.33
CCG TGG AAC TGG TGATACTTAC GTTGGAAAGA CTTGTATTGA Pro Trp Asn Trp 610	2775
GGTGAGACTT TTTAACTACA CAGCAGCAAG AGAAAGAAGA AAATACATGA	2825
CCGGACGGTG TGATCTAACT TATTGGATTT TGTTGGATGT AATATGTAAA	2875
ATAAAAATCC TATATACGGG GAGAGGTACC TTATCTGTTC TCACTATATT	2925
TTATTGAACA TTACTTTAGA GAATATGTTT TGGAATTCAC TACTAAATAA	2975
ACGATATAAA TCTTCACGAA AAGAGCAACA TTTT	3009

FIG. 12D

			TCA												50
CTO	GTTA(CGCT	TGG	ATTC	rca 1	TTC	TCA	AG TI	CATA	AACG	TC	GGAT	CAAT		100
CAC	GAAC	SACG	AACT	TGA	ACT T	TCT	TTTT	TT CA	ATCAT	TAC	CA	AAGCI	TATG		150
AGG	GCTC <i>I</i>	ACAC	CACC	CAATA	ACG 1	CCGC	CCGTC	A TO	SAATO	CTTC	TC	TCC	AGGT		200
CAA	CACA	L AGT	CAGA	AGCTO	CCA A	AA A	ATG G fet G	AG T	CA Ter C	CGC (Cys <i>P</i>	SAT TASP C	TGT 1 Cys E	TTT Phe		244
GAG Glu	ACG Thr	CAT His	s val	AAT Asn	CAA Gln	GAI Asp	GAT Asp 15	CTG Leu	TTA Leu	GTO Val	AAC Lys	TAC Tyr 20	CAA Gln		286
TAC Tyr	ATC	TCA Ser	A GAT Asp 25	GCG Ala	TTG Leu	ATT	GCT Ala	CTT Leu 30	Ala	TAC	TTC Phe	TCA Ser	ATC Ile .35		328
CCA Pro	CTC Leu	GAG Glu	CTT Leu	ATC Ile 40	- Tyr	TTC Phe	GTG Val	CAA Gln	AAG Lys 45	TCT Ser	GCT Ala	TTC Phe	TTC		370
CCT Pro 50	T A L	AAA Lys	TGG	GTG Val	CTT Leu 55	ATG Met	CAG Gln	TTT Phe	GGA Gly	GCC Ala 60	TTT Phe	ATC Ile	ATT Ile		412
CTC Leu	TGT Cys 65	GGA Gly	GCT Ala	ACG Thr	CAT His	TTC Phe 70	ATC Ile	AAC Asn	CTA Leu	TGG Trp	ATG Met 75	TTC Phe	TTC Phe	. 2	454
ATG Met	CAT	TCC Ser 80	AAA Lys	GCC Ala	GTT Val	GCC Ala	ATT Ile 85	GTC Val	ATG Met	ACT Thr	ATT Ile	GCT Ala 90	AAA Lys		496
GTC Val	TCT Ser	TGC Cys	GCG Ala 95	GTT Val	GTG Val	TCG Ser	TGT	GCT Ala 100	ACC Thr	GCG Ala	TTG Leu	ATG Met	TTG Leu 105		538
GTT Val	CAT His	ATT Ile	ATT Ile	CCT Pro 110	GAT Asp	CTT Leu	CTC Leu	AGT Ser	GTT Val 115	AAG Lys	AAC Asn	AGG Arg	GAA Glu		580
TTG Leu 120	TTT Phe	CTC Leu	AAG Lys	AAG Lys	AAA Lys 125	GCT Ala	GAT Asp	GAG Glu	TTA Leu	GAT Asp 130	AGA Arg	GAA Glu	ATG Met		622
GGT Gly	CTT Leu 135	ATT Ile	TTA Leu	ACA Thr	CAA Gln	GAG Glu 140	GAG Glu	ACT Thr	GGT Gly	AGG Arg	CAT His 145	GTT Val	AGG Arg		664
ATG Met	CTT Leu	ACT Thr 150	CAT His	GGA Gly	ATT Ile	AGA Arg	AGA Arg 155	ACT Thr	CTT Leu	GAT Asp	AGG Arg	CAT His 160	ACT Thr		706
ATT Ile	TTA Leu	AGA Arg	ACC Thr 165	ACT Thr	CTT Leu	GTT Val	GAG Glu	CTT Leu 170	GGT Gly	AAA Lys	ACT Thr	CTT Leu	TGT Cys 175		748

FIG. 13A

CTT Leu	GAG Glu	GAA Glu	TGT Cys	GCG Ala 180	TTG Leu	TGG Trp	ATG Met	CCT Pro	TCT Ser 185	CAA Gln	AGT Ser	GGT Gly	TTA Leu	790
TAT Tyr 190	TTG Leu	CAG Gln	CTT Leu	TCT Ser	CAT His 195	ACT Thr	TTG Leu	AGT Ser	CAT His	AAA Lys 200	ATA Ile	CAA Gln	GTT Val	832
GGA Gly	AGC Ser 205	AGT Ser	GTG Val	CCG Pro	ATA Ile	AAT Asn 210	CTC Leu	CCG Pro	ATT Ile	ATT Ile	AAT Asn 215	GAA Glu	CTC Leu	874
TTC Phe	AAT Asn	AGC Ser 220	GCT Ala	CAA Gln	GCT Ala	ATG Met	CAC His 225	ATA Ile	CCT Pro	CAT His	TCT Ser	TGT Cys 230	CCT Pro	916
TTG Leu	GCT Ala	AAG Lys	ATT Ile 235	GGG Gly	CCT Pro	CCG Pro	GTT Val	GGG Gly 240	AGA Arg	TAT Tyr	TCA Ser	CCT	CCT Pro 245	958
GAG Glu	GTT Val	GTT Val	TCT Ser	GTC Val 250	CGT Arg	GTT Val	CCT Pro	CTT Leu	TTA Leu 255	CAT His	CTC Leu	TCT Ser	AAT Asn	1000
TTC Phe 260	CAA Gln	GGC Gly	AGT Ser	GAC Asp	TGG Trp 265	TCG Ser	GAT Asp	CTC Leu	TCT Ser	GGC Gly 270	AAA Lys	GGT Gly	TAC Tyr	1042
GCT Ala	ATC Ile 275	ATG Met	GTC Val	CTG Leu	ATT Ile	CTC Leu 280	CCA Pro	ACC Thr	GAT Asp	GGT Gly	GCA Ala 285	AGA Arg	AAA Lys	1084
TGG Trp	AGA Arg	GAC Asp 290	CAT His	GAG Glu	TTA Leu	GAG Glu	CTT Leu 295	GTA Val	GAA Glu	AAC Asn	GTG Val	GCG Ala 300	GAT Asp	1126
CAG Gln	GTG Val	GCT Ala	GTG Val 305	GCT Ala	CTC Leu	TCA Ser	CAT	GCT Ala 310	MIG	ATT	TTG Leu	GAA Glu	GAA Glu 315	1168
TCC Ser	ATG Met	CAC His	GCT Ala	CGT Arg 320	GAC Asp	CAG Gln	CTT Leu	ATG Met	GAG Glu 325	GIN	AAT Asn	TTT Phe	GCT Ala	1210
TTA Leu 330	Asp	AAG Lys	GCT Ala	CGT Arg	CAA Gln 335	Glu	GCT Ala	GAG Glu	ATG Met	GCA Ala 340	vai	CAT His	GCT Ala	1252
CGA Arg	AAT Asn 345	Asp	TTC Phe	CTA Leu	GCT Ala	GTT Val 350	мет.	AAC Asn	CAC His	GAG Glu	ATG Met 355	. Ary	ACA Thr	1294
CCG Pro	ATG Met	CAT His 360	Ala	ATC	ATC Ile	TCT Ser	CTT Lev 365	ı ser	TCT Ser	CTI Leu	CTC Lev	CTT Leu 370	GAG Glu	1336
ACT Thr	GAG Glu	CTC Lev	TCT Ser 375	Pro	GAG Glu	CAP Glr	A AGA	GTI Val 380	. Met	ATC Ile	GAG Glu	ACA Thr	ATA Ile 385	1378

FIG. 13B

CT(Let	J AAZ 1 Lys	A AGG	C AGG	C AAT C Asi 390	л ьег	GT(G GCT L Ala	AC?	A CTA Leu 395	ı Ile	C AGC Ser	GA(Asp	C GTT Val	1420
CTO Let 400	TVOF	CT: Let	T TCO	AGA Arg	A TTG J Leu 405	l Glu	A GAT	GGG GL	AGC Ser	TTA Leu 410	ı Leu	TTC Let	GAA Glu	1462
AA1 Asn	GAA Glu 415	LEC	A TTO Phe	AGT Ser	CTA Leu	CAA Gln 420	. Ala	ATC	TTT Phe	GAA Glu	GAG Glu 425	Val	ATC Ile	1504
TCI Ser	TTG Leu	ATA Ile 430	: Lys	CCA Pro	ATC Ile	GCA Ala	TCA Ser 435	Val	AAG Lys	AAA Lys	CTA Leu	TCA Ser 440	ACG Thr	1546
AAT Asn	CTG Leu	ATT	CTG Leu 445	ser	GCA Ala	GAC Asp	TTA Leu	CCA Pro 450	Thr	TAT Tyr	GCT Ala	ATT Ile	GGT Gly 455	1588
GAT Asp	GAG Glu	AAA Lys	. CGT Arg	CTG Leu 460	ATG Met	CAA Gln	ACA Thr	ATT Ile	CTT Leu 465	AAC Asn	ATC Ile	ATG Met	GGC Gly	1630
AAC Asn 470	GCT Ala	GTG Val	AAA Lys	TTT Phe	ACT Thr 475	AAG Lys	GAA Glu	GGC Gly	TAC Tyr	ATC Ile 480	TCC Ser	ATA Ile	ATA Ile	1672
GCC Ala	TCT Ser 485	ATC Ile	ATG Met	AAA Lys	CCC Pro	GAG Glu 490	TCC Ser	TTA Leu	CAA Gln	GAA Glu	TTA Leu 495	CCA Pro	TCT Ser	1714
CCA Pro	GAA Glu	TTT Phe 500	TTT Phe	CCA Pro	GTT Val	CTC Leu	AGT Ser 505	GAC Asp	AGT Ser	CAC His	TTC Phe	TAC Tyr 510	CTA- Leu	1756
TGT Cys	GTG Val	CAG Gln	GTG Val 515	AAG Lys	GAC Asp	ACA Thr	GGG Gly	TGT Cys 520	GGA Gly	ATT Ile	CAC His	ACA Thr	CAA Gln 525	1798
GAC Asp	ATT Ile	CCT	TTG Leu	CTC Leu 530	TTT Phe	ACC Thr	AAA Lys	TTT Phe	GTA Val 535	CAG Gln	CCT Pro	CGG Arg	ACC Thr	1840
GGA Gly 540	ACT Thr	CAG Gln	AGG Arg	AAC Asn	CAT His 545	Ser	GGT Gly	GGA Gly	GGA Gly	CTC Leu 550	GGG Gly	CTA Leu	GCT Ala	1882
CTC Leu	TGT Cys 555	AAA Lys	CGG Arg	TTT Phe	GTC Val	GGG Gly 560	CTA Leu	ATG Met	GGA Gly	GGA Gly	TAC Tyr 565	ATG Met	TGG Trp	1924
ATA Ile	GAA Glu	AGT Ser 570	GAA Glu	GGC Gly	CTA Leu	GAG Glu	AAA Lys 575	GGC Gly	TGC Cys	ACA Thr	GCT Ala	TCG Ser 580	TTC Phe	1966
ATC . Ile	ATC Ile	AGG Arg	CTT Leu 585	GGT Gly	ATC Ile	TGC . Cys .	Asn	GGT Gly 590	CCA . Pro	AGC . Ser	AGT :	Ser	AGT Ser 595	2008

FIG. 13C

GGT TCA ATG GCG CTA CAT CTT GCA GCT AAA TCA CAA ACC AGA Gly Ser Met Ala Leu His Leu Ala Ala Lys Ser Gln Thr Arg 600 605	2050
CCG TGG AAC TGG TGATACTTAC GTTGGAAAGA CTTGTATTGA Pro Trp Asn Trp 610	2092
GGTGAGACTT TTTAACTACA CAGCAGCAAG AGAAAGAAGA AAATACATGA	2142
CCGGACGGTG TGATCTAACT TATTGGATTT TGTTGGATGT AATATGTAAA	2192
ATAAAAATCC TATATACGGG GAGAGGTACC TTATCTGTTC TCACTATATT	2242
TTATTGAACA TTACTTTAGA GAATATGTTT TGGAATTCAC TACTAAATAA	2292
ACGATATAAA TCTTCACGAA AA	2314

FIG. 13D

WO 95/01439 PCT/US94/07418

38 / 65

GAATTCGAA				A ATAATAGGTT	50
_			A AGCCTTCCA	A ATTTAGAAAC	100
TACATTTTTC	CAGACCCATO	TGAGCTCATA	A TGAATCAAT	ATAGCCTTGA	150
TGTTGTAAAA	A CAAATTATGA	TTATAAAAA	GTGATAGTA	TATTACATGCA	200
TAAAAAATAA	A AGGAGAGTAA	ATGAAAGTC	AATCTGGGT1	TTATGAACTG	250
AAAGTTGAAG	TTTAGAAGTA	GAAGTAGCGA	TCAAAGTATO	ACCAGTTAAA	300
AGGCCCAATA	TCATTTGGAG	GTTTGATTT	TGGGTTCGT#	AATTTCAAGA	350
GCCAGATTAT	GATTTGCTGG	GCTTAAAAAT	CATGGAAAA	TTGAAATGAC	400
GGTGTTAAAA	TATATAACTC	AAATTAAAGA	TTTTAATTGG	GTGTAGTAGG	450
CTGATTTTT	TATAAGAATC	TTGTCTATAG	ATGCTTCAAG	GTTATGCCTT	500
ATAGTACTGG	TTGTAAAACA	CCACTATCTA	ATTTTGAAGO	TGGTCAGAAC	550
TATAAGGTAT	GTTGTTGTTC	GCCTTGTTGC	TAATGAAGAT	TATAACATTC	600
TGTTGTTGCA	TTTTTTTTT	TTTTTTTGTG	TTAAATATAT	ATATTTTTT	650
TGCATATTTA	TTGTTGCATA	TTGTGTTGCA	TATTTAGTAA	TGGTTACATT	700
CCCTGTTATC	GGAGACCAAG	ATAATACGGC	TCTGTGGCAT	GGACTACTAC	750
TCCATGGATT	CTTCCAAGTA	ATCTTGCTTT	GTGTGTCAAT	GCAAAGTTTG	800
TTTATCTTAA	GGTTCGTCAA	CAACACTGGA	AAAGTCTACA	TTGTTGCTGA	850
ATCTCGGTTG	TCATCGCTTC	CTAGTGATAA	GCCTAAGGCC	GGCTTAACTA	900
ATGGAACTTA	CTAGTGATAC	CATAATGCGA	AAGGTGCTAA	TTAAGCTTGA	950
CAGTGAAGAG	GATTCTTATC	AAGTTTTGGA	AAATTTTAAT	GGAGATTCCT	1000
TGGTTGGGAA	GAAGTATGAA	CCTTTGTTTG	ATTACTTTTA	GCGATTTCTC	1050
AAGTGTGACT	TTTCGACTAG	TAGCAGATGA	TTATGTCATG	AATGATAGTG	1100
GTACTGGTAT	TGTCCATTGT	GCTCCTGTCT	TTGGTGCAGA	TGACTATCGT	1150
GTTTGTCTTG	AGAACGAGAT	AATTAAGAAG	GTTAGATTTG	ACAACATCTT	1200
CCTTATATCA	CCACCTTTAA	CATTAAGTTT	ATTTTCTTTC	TTGTTTAAGT	1250
TTACAGTATC	TTCAAGAACC	CATGTTCATG	ACACATTTTG	TTCATGTGTT	1300
GTTTAGATTG	TCAGAGATTT	CAAACGTCCA	GATGGTTTGA	AAGATACAGA	1350
GATTGATGCA	GCTGTAGATA	GTACATATCT	TAATTAAAA	TACCACTTCT	1400
CTATGCTCTA	TTGTTGAGGA	AACATATAAT	ATTTGCATTC	GTTCATGGTT	1450
CAGATATGAT	GTTATGGTAA	TTCTTGATCT	ACGAGAAGAT	GAATCTTTGA	1500
AAAACGAAGG	TGTTGCCCGT	GAGGTAAATA	AATGTAACCG	AAGCGATTAA	1550
TGGTCATATA	TAAGTTGTAT	ATTTGATATA	TGGGTTTCCT	TCTCATTGTG	1600

FIG. 14A

CTCATGCATT GAAAAGCACC CTGTTATG	AC TGTGGTTCTA GGAGAACATT	1650
	AA GCAAGAAGAA CGCATGAGAG	1700
	TG CAAAAAGTTA AATGTCTCTT	1750
	AGA TGGGATTTAT TACAAAAACA	1800
	CA AAATTATCCG AACTAGCTTC	1850
	ATT TTTTTTGTT CTGTAATTGT	1900
ATGACTCCGT TTGAAGCATC AAGATTAT	TGG TTATAGGTAG TGATGCTAAA	1950
ACTCTCTGTT GTTACAGTGA CCACTAA	AAA CACCAACAAA AAAAACTTAG	2000
	TTC AATTTCTTTA GATAGTACTA	2050
TCAATAAATA AAATAAATAT GTACAAAG	GGC TTTAAACAAT GATGTTTTTC	2100
	GCT TCAATATAAA AGAACACATG	2150
CGATTCTGAC ATTCTGTGGT CTAACATC	GGT TTCTTCTAGA GTCAAAACCA	2200
TACAATTAAA AGTTAGGAAA GTAATAG	CAA TGTGGTTTCA AATATATACT	2250
	AAG GAAACATTAT AATAAAATCA	2300
AAGATCACAG TTTTGTAGGT CCCTCAT	ATT AATCAACATC TTAAGGCGTT	2350
ATACATATCT TCTTTTTGTA AATATTT	GAC TAATTAAAAT ATCTAATTAG	2400
AGTATTAGAC TAATCTCATC AAATATC	CGA CTACTTGTGT CAGTTCAAAA	2450
CACAGTGATT ACGTTAGATT TTGTGCT	CTT TTGTTTATAA ACAAAGCTAA	2500
TTTAAGAAAT ATATGATCTA TTTGCCT	CCT TGGTCTTAAT TTTATACTTT	2550
CTTGGAATAA AACACATTTA TTAAAAT	AAT TTTTAGGGTC CTAGATTCAT	2600
GTCATGTGGC TTGATAGTTT CCAACAA	ATTA TACCAATATT TTACTCATTC	2650
ATATACAAAT AAACAAGCTT TATTCTA	ATTC TTCAGTCTCA TGATATACGG	2700
GATTTTGATA AAATTCAGAG TACCCAT	TTAA TTATTCTATG TTACAGCTTG	2750
TAATAAGTTA AATTTATAAA ACGTACA		2800
TCAATATTAA ATGATTTATT AATACAT	TTAG TGACCAAAAA ATTATTAAGT	2850
GTAAGAAAAA AAACACAACT CAGAAAA	AAAT TCAAAAGACC GTCTAAGTTC	2900
GGTTCATGTA AGAACAAGTG GGACCTC	CTTT AAGTTTCTAA ATCAGAGAAT	2950
AAAGAAGAAG AAAAAATCTC AAAACC	TTCC TCTAAAACCA ACGGCTCCTA	3000
CCTTTACTTA CACCCTATAC ATACAC	TTCT CTTTTTATCC TCCATCGGCG	3050
GCTTATGGCG GTTTTCCGGC ACTAAT	CATC TCCGGCATAT ATAAATAAAC	3100
GTACTTCACG TTTTTTTATA TAACTT	CAAA GTAGTTTCAG ATTTGTCTCT	3150
ATCTCTTCAC TTTTAAGTCT TCTGGT	TTTG TCATCACCAG CTTTTTTGT	3200
TCTCTCTCTG TCTCTGTCTC TGTCTT	TCTC TTTGTGTATT TTTATTCTCG	3250

FIG. 14B

TC	ATCGI	TGT	TCTI	CTAI	GA C	SAGGA	AGAI	C GO	AATO	TCGF	A AGA	AGAAT	TAG	3300
AAC	SATTO	TCG	TACA	TCAC	TT C	GTTG	GAAI	T TC	ACAG	GTCG	ATC	AGAG	ATC	3350
TGA	AGAAC	TGT	TTCA	TTTT	GA T	CCAA	ACTO	A TO	TCTI	TCAG	GT#	ATTCC	AAA	3400
TTT	GTCI	TTC	TCTG	TTCI	TT C	TACI	'ATTA	C CC	CAAAT	TAAA	GTI	TTGA	TTT	3450
TTP	TTTC	TCA	CTCT	GTTT	CT I	GTTT	TTCT	A AT	TGCA	GAGT	' ATA	ATGG	ACT	3500
AAG	CATT	TTT	TTTC	TCCG	AA G	ATG Met	GTT Val	AAA Lys	GAA Glu	ATA Ile 5	GCT	TCT Ser	TGG Trp	3545
TTA Leu	TTG Leu 10	ııe	. CTA Leu	TCA Ser	ATG Met	GTG Val 15	Val	TTT Phe	GTT Val	TCT Ser	CCG Pro 20	• Val	TTA Leu	3587
GCT Ala	ATA Ile	AAC Asn 25	GGC	GGT Gly	GGT Gly	TAT	CCA Pro 30	CGA Arg	TGT Cys	AAC Asn	TGC Cys	GAA Glu 35	GAC Asp	3629
GAA Glu	GGA Gly	AAC Asn	AGT Ser 40	TTC Phe	TGG Trp	AGT Ser	ACA Thr	GAG Glu 45	AAC Asn	ATT Ile	CTA Leu	GAA Glu	ACT Thr 50	3671
CAA Gln	AGA Arg	GTA Val	AGC Ser	GAT Asp 55	TTC Phe	TTA Leu	ATC Ile	GCA Ala	GTA Val 60	GCT Ala	TAT Tyr	TTC Phe	TCA Ser	3713
ATC Ile 65	CCT Pro	ATT Ile	GAG Glu	TTA Leu	CTT Leu 70	TAC Tyr	TTC Phe	GTG Val	AGT Ser	TGT Cys 75	TCC Ser	AAT Asn		37 <u>.</u> 55
CCA Pro	TTC Phe 80	AAA Lys	TGG Trp	GTT Val	CTC Leu	TTT Phe 85	GAG Glu	TTT	ATC Ile	GCC Ala	TTC Phe 90	ATT Ile	GTT Val	3797
CTT Leu	TGT Cys	GGT Gly 95	ATG Met	ACT Thr	CAT His	CTT Leu	CTT Leu 100	CAT His	GGT Gly	TGG Trp	ACT Thr	TAC Tyr 105	TCT Ser	3839
GCT Ala	CAT His	CCA Pro	TTT Phe 110	AGA Arg	TTA Leu	ATG Met	ATG Met	GCG Ala 115	TTT Phe	ACT Thr	GTT Val	TTC Phe	AAG Lys 120	3881
ATG Met	TTG Leu	ACT Thr	GCT Ala	TTA Leu 125	GTC Val	TCT Ser	TGT Cys	GCT Ala	ACT Thr 130	GCG Ala	ATT Ile	ACG Thr	CTT Leu	3923
ATT Ile 135	ACT Thr	TTG Leu	ATT Ile	CCT Pro	CTG Leu 140	CTT Leu	TTG Leu	AAA Lys	GTT Val	AAA Lys 145	GTT Val	AGA Arg	GAG Glu	3965
TTT Phe	ATG Met 150	CTT Leu	AAG Lys	AAG Lys	AAA Lys	GCT Ala 155	CAT His	GAG Glu	CTT Leu	GGT Gly	CGT Arg 160	GAA Glu	GTT Val	4007
GGT Gly	TTG Leu	ATT Ile 165	TTG Leu	ATT Ile	AAG Lys	AAA Lys	GAG Glu 170	ACT Thr	GGC Gly	TTT Phe	CAT His	GTT Val 175	CGT Arg	4049

FIG. 14C

ATG Met	CTT Leu	ACT Thr	CAA Gln 180	GAG Glu	ATT Ile	CGT Arg	Lys	TCT Ser 185	TTG Leu	GAT Asp	CGT Arg	CAT His	ACG Thr 190	4091
ATT Ile		TAT Tyr	ACT Thr	ACT Thr 195	TTG Leu	GTT Val	GAG Glu	CTT Leu	TCG Ser 200	AAG Lys	ACT Thr	TTA Leu	GGG Gly	4133
TTG Leu 205	CAG Gln	AAT Asn	TGT Cys	GCG Ala	GTT Val 210	TGG Trp	ATG Met	CCG Pro	AAT Asn	GAC Asp 215	GGT Gly	GGA Gly	ACG Thr	4175
GAG Glu	ATG Met 220	GAT Asp	TTG Leu	ACT Thr	CAT His	GAG Glu 225	TTG Leu	AGA Arg	GGG Gly	AGA Arg	GGT Gly 230	GGT Gly	TAT Tyr	4217
GGT Gly	GGT Gly	TGT Cys 235	TCT Ser	GTT Val	TCT Ser	ATG Met	GAG Glu 240	GAT Asp	TTG Leu	GAT Asp	GTT Val	GTT Val 245	AGG Arg	4259
ATT Ile	AGG Arg	GAG Glu	AGT Ser 250	GAT Asp	GAA Glu	GTG Val	AAT Asn	GTG Val 255	TTG Leu	AGT Ser	GTT Val	GAC Asp	TCG Ser 260	4301
TCC Ser	ATT Ile	GCT Ala	CGA Arg	GCT Ala 265	AGT Ser	GGT Gly	GGT Gly	GGT Gly	GGG Gly 270	GAT Asp	GTT Val	AGT Ser	GAG Glu	4343
ATT Ile 275	GGT Gly	GCC Ala	GTG Val	GCT Ala	GCT Ala 280	ATT Ile	AGA Arg	ATG Met	CCG Pro	ATG Met 285	CTT Leu	CGT Arg	GTT Val	4385
TCG Ser	GAT Asp 290	TTT Phe	AAT Asn	GGA Gly	GAG Glu	CTA Leu 295	AGT Ser	TAT Tyr	GCG Ala	ATA Ile	CTT Leu 300	GTT Val	TGT Cys	4427
GTT Val	TTA Leu	CCG Pro 305	GGC Gly	GGG Gly	ACC Thr	CGT Arg	CGG Arg 310	GAT Asp	TGG Trp	ACT Thr	TAT Tyr	CAG Gln 315	GAG Glu	4469
ATT Ile	GAG Glu	ATT Ile	GTT Val 320	AAA Lys	GTT Val	GTG Val	GCG Ala	GAT Asp 325	CAA Gln	GTA Val	ACC Thr	GTT Val	GCG Ala 330	4511
TTA Leu	GAT Asp	CAT His	GCA Ala	GCG Ala 335	GTT Val	CTT Leu	GAA Glu	GAG Glu	TCT Ser 340	CAG Gln	CTT Leu	ATG Met	AGG Arg	4553
GAG Glu 345	AAG Lys	CTG Leu	GCG Ala	GAA Glu	CAG Gln 350	AAC Asn	AGG Arg	GCG Ala	TTG Leu	CAG Gln 355	. Mec	GCG Ala	AAG Lys	4595
AGA Arg	GAC Asp 360	Ala	TTG Leu	AGA Arg	GCG Ala	AGC Ser 365	GIN	GCG Ala	AGG Arg	AAT Asn	GCG Ala 370	FILE	CAG Gln	4637
AAA Lys	ACG Thr	ATG Met 375	Ser	GAA Glu	GGG	ATG Met	AGG Arg 380	Arq	CCT Pro	ATG Met	CAT His	TCG Ser 385	ATA	4679
CTC Leu	GGT Gly	CTT Leu	TTG Leu 390	TCG Ser	ATG Met	ATT Ile	CAG Gln	GAC Asp 395	GAG Glu	AAG Lys	TTO Lev	AGI Ser	GAC Asp 400	4721

FIG. 14D

CNC		* תת	. nmc											
Glu	Gln	Lys	Met	Ile 405	· Val	Asp	Thr	Met	Val 410	Lys	ACA Thr	GGG Gly	AAT Asn	4763
GTT Val 415	met	TCG Ser	AAT Asn	TTG Leu	GTG Val 420	Gly	GAC Asp	TCT Ser	ATG Met	GAT Asp 425	Val	CCT	GAC Asp	4805
GGT Gly	AGA Arg 430	rne	GGT Gly	ACG Thr	GAG Glu	ATG Met 435	AAA Lys	CCG Pro	TTT Phe	AGT Ser	CTG Leu 440	CAT His	CGT Arg	4847
ACG Thr	ATC Ile	CAT His 445	Glu	GCA Ala	GCT Ala	TGT Cys	ATG Met 450	GCG Ala	AGA Arg	TGT Cys	TTG Leu	TGT Cys 455	CTA Leu	4889
TGC Cys	AAT Asn	GGA Gly	ATT Ile 460	AGG Arg	TTC Phe	TTG Leu	GTT Val	GAC Asp 465	GCG Ala	GAG Glu	AAG Lys	TCT Ser	CTA Leu 470	4931
CCT Pro	GAT Asp	AAT Asn	GTA Val	GTA Val 475	GGT Gly	GAT Asp	GAA Glu	AGA Arg	AGG Arg 480	GTC Val	TTT Phe	CAA Gln	GTG Val	4973
ATA Ile 485	CTT Leu	CAT His	ATG Met	GTT Val	GGT Gly 490	AGT Ser	TTA Leu	GTA Val	AAG Lys	CCT Pro 495	AGA Arg	AAA Lys	CGT Arg	5015
CAA Gln	GAA Glu 500	GGA Gly	TCT	TCA Ser	TTG Leu	ATG Met 505	TTT Phe	AAG Lys	GTT Val	TTG Leu	AAA Lys 510	GAA Glu	AGA Arg	₋ 50 5 7
GGA Gly	AGC Ser	TTG Leu 515	GAT Asp	AGG Arg	AGT Ser	GAT Asp	CAT His 520	AGA Arg	TGG Trp	GCT Ala	GCT Ala	TGG Trp 525	AGA Arg	_{.:} 5099
TCA Ser	CCG Pro	GCT Ala	TCT Ser 530	TCA Ser	GCA Ala	GAT Asp	GGA Gly	GAT Asp 535	GTG Val	TAT Tyr	ATA Ile	AGA Arg	TTT Phe 540	5141
GAA Glu	ATG Met	AAT Asn	GTA Val	GAG Glu 545	AAT Asn	GAT Asp	GAT Asp	TCA Ser	AGT Ser 550	TCT Ser	CAA Gln	TCA Ser	TTT Phe	5183
GCT Ala 555	TCT Ser	GTT Val	TCC Ser	TCC Ser	AGA Arg 560	GAT Asp	CAA Gln	GAA Glu	GTT Val	GGT Gly 565	GAT Asp	GTT Val	AGA Arg	5225
TTC Phe	TCC Ser 570	GGC Gly	GGC Gly	TAT Tyr	GGG Gly	TTA Leu 575	GGA Gly	CAA Gln	GAT Asp	CTA Leu	AGC Ser 580	TTT Phe	GGT Gly	5266
GTT Val	TGT Cys	AAG Lys 585	AAA Lys	GTG Val	GTG Val	CAG Gln	GTGA	GTTT.	CC I	TACA	TATC	T		5316
CTTT	'CTAA	AG I	TCCT	GTCA	T TA	GTCT	'GAGT	TTC	TGTT	TAG	GAGT	TCTT	'TG	5359

FIG. 14E

ATA	ATGTG	TG (I	TG A eu I 90	TT C le H	AT G	GG A	.SII I	TC T le S 95	CG G er V	TG G al V	TC C	CT ro	5401
GGC Gly 600	TCG Ser	GAT Asp	CCM	ም <i>ር</i> አ	CCG Pro 605	GAG Glu	ACC Thr	ATG Met	TCG Ser	TTG Leu 610	CTC Leu	CTT Leu	CGG Arg	5443
TTT Phe	CGA Arg 615	CGT Arg	AGA Arg	CCC Pro	TCC Ser	ATA Ile 620	TCT Ser	GTC Val	CAT His	GGA Gly	TCC Ser 625	AGC Ser	GAG Glu	5485
TCG Ser	CCA Pro	GCT Ala 630	CCT Pro	GAC Asp	CAC His	CAC His	GCT Ala 635	CAC His	CCA Pro	CAT His	TCG Ser	AAT Asn 640	TCT Ser	5527
CTG Leu	TTA Leu	CGT Arg	GGC Gly 645	TTA Leu	CAA Gln	GTT Val	TTA Leu	TTG Leu 650	GTA Val	GAC Asp	ACC Thr	AAC Asn	GAT Asp 655	5569
TCG Ser	AAC Asn	CGG Arg	GCA Ala	GTT Val 660	ACA Thr	CGT Arg	AAA Lys	CTC Leu	TTA Leu 665	GAG Glu	AAA Lys	CTC Leu	GGG Gly	5611
TGC Cys 670	GAT Asp	GTA Val	ACC Thr	GCG Ala	GTT Val 675	TCC Ser	TCT	GGA Gly	TTC Phe	GAT Asp 680	TGC Cys	CTT Leu	ACC Thr	5653
~~ <u>~</u>	ATT Ile 685	CCT	ccc	ccc	TCG	TCC	TCG	CCT	TCT	ACT	TCG	TTT	CAA	5695
GTG Val	GTG Val	GTG Val 700	Leu	GAT Asp	CTT Leu	CAA Gln	ATG Met 705	GCA Ala	GAG Glu	ATG Met	GAC Asp	GGT Gly 710	TAT Tyr	5737
GAA Glu	GTG Val	GCC Ala	ATG Met 715	AGG Arg	ATC Ile	AGG Arg	AGT Ser	CGA Arg 720	TCT	TGG Trp	CCG Pro	TTG Leu	ATT Ile 725	5779
GTG Val	GCG Ala	ACG Thr	ACA Thr	GTG Val 730	AGC Ser	TTG Leu	GAT Asp	GAA Glu	GAA Glu 735	ATG Met	TGG Trp	GAC Asp	AAG Lys	5821
Cys	GCA Ala	CAG Glr	ATT lle	GGA Gly	ATC Ile 745	ASD	GGA Gly	GTT Val	GTG Val	AGA Arg 750	AAG Lys	CCA Pro	GTG Val	5863
GT(Va)	TTA Lev 755	ı Arc	A GCT J Ala	ATG Met	GAG Glu	AGT Ser 760	CIU	CTC Leu	CGA Arg	AGA Arg	GTA Val 765	1100	TTG Leu	5905
CA! Gl:	A GCT n Ala	GAC Ast 77	C CAF	CTI Leu	CTC Lev	TAP	GTTG	TTA	TCTC	AACT	TC T	CTTC	TACAT	5953
	LAAA						TGT	A AF	TATA	ATCAP	LAA 1	GAAA	TTT	6003
	TAAF													6053
	rttt:													6103
	rtag'													6153
	CTTT													6202

FIG. 14F

ATG Met 1	GTT Val	AA Ly:	A GAZ s Gli	A ATA	A GCI e Ala	TCT Sei	T TGC	G TT	A TT(1 Let 1(ı Ile	A CTA	A TC	A ATG r Met		42
GTG Val 15	GTG Val	TT: Phe	r GTT e Val	T TCT L Sei	CCC Pro 20	va:	TTA Lev	A GC:	T ATA	A AAC Asr 25	ı Gly	GG:	r GGT Y Gly		84
TAT Tyr	CCA Pro 30	CGA	A TGI I Cys	AAC Asn	TGC Cys	GAA Glu 35	ı Asp	GA/ Glu	A GGA 1 Gly	AAC Asn	AGT Ser 40	Phe	TGG Trp		126
AGT Ser	ACA Thr	GAG Glu 45	LASI	ATT	CTA Leu	GAA Glu	ACT Thr 50	GIL	AGA Arg	GTA Val	AGC Ser	GAT Asp	TTC Phe		168
TTA Leu	ATC Ile	GCA Ala	GTA Val 60	Ala	TAT	TTC Phe	TCA Ser	ATC Ile 65	Pro	ATT Ile	GAG Glu	TTA Leu	CTT Leu 70		210
TAC Tyr	TTC Phe	GTG Val	AGT Ser	TGT Cys 75	TCC Ser	AAT Asn	GTT Val	CCA Pro	TTC Phe 80	AAA Lys	TGG Trp	GTT Val	CTC Leu		252
TTT Phe 85	GAG Glu	TTT Phe	ATC Ile	GCC Ala	TTC Phe 90	ATT Ile	GTT Val	CTT Leu	TGT Cys	GGT Gly 95	ATG Met	ACT Thr	CAT His		294
שטע	CTT Leu 100	CAT His	GGT Gly	TGG Trp	ACT Thr	TAC Tyr 105	TCT Ser	GCT Ala	CAT His	CCA Pro	TTT Phe 110	AGA Arg	TTA Leu	• .	336
ATG Met	ATG Met	GCG Ala 115	TTT Phe	ACT Thr	GTT Val	TTC Phe	AAG Lys 120	ATG Met	TTG Leu	ACT Thr	GCT Ala	TTA Leu 125	GTC Val		378
TCT Ser	TGT Cys	GCT Ala	ACT Thr 130	GCG Ala	ATT Ile	ACG Thr	CTT Leu	ATT Ile 135	ACT Thr	TTG Leu	ATT Ile	CCT Pro	CTG Leu 140		420
CTT (Leu)	TTG Leu	AAA Lys	GTT Val	AAA Lys 145	GTT Val	AGA Arg	GAG Glu	TTT Phe	ATG Met 150	CTT Leu	AAG Lys	AAG Lys	AAA Lys		462
GCT (Ala I 155	CAT His	GAG Glu	CTT Leu	GGT Gly	CGT Arg 160	GAA Glu	GTT Val	GGT Gly	TTG Leu	ATT Ile 165	TTG Leu	ATT Ile	AAG Lys		504
AAA (Lys (GAG Glu L70	ACT Thr	GGC Gly	TTT Phe	CAT His	GTT Val 175	CGT Arg	ATG Met	CTT Leu	ACT Thr	CAA Gln 180	GAG Glu	ATT Ile		546
CGT A	Jys :	TCT Ser 185	TTG Leu	GAT Asp	CGT Arg	CAT His	ACG Thr 190	ATT Ile	CTT Leu	TAT Tyr	ACT Thr	ACT Thr 195	TTG Leu		588
GTT G Val G	AG (CTT Leu	TCG Ser 200	AAG Lys	ACT Thr	TTA Leu	GGG Gly	TTG Leu 205	CAG Gln	AAT Asn	TGT Cys	GCG Ala	GTT Val 210		630
TGG A	TG (let I	CCG Pro	AAT Asn	GAC Asp 215	GGT Gly	GGA Gly	ACG Thr	GAG Glu	ATG Met 220	GAT Asp	TTG Leu	ACT Thr	CAT His		672

FIG. 15A

GAG Glu 225	TTG Leu	AGA Arg	GGG Gly	AGA (Arg (GGT (Gly (230	GGT G	TAT (Tyr (GGT Gly	GGT Gly	TGT Cys 235	TCT Ser	GTT Val	TCT Ser	714
ATG Met	GAG Glu 240	GAT Asp	TTG Leu	GAT (vaı 🗀	GTT A Val A 245	AGG A	ATT Ile	AGG Arg	GAG Glu	AGT Ser 250	GAT Asp	GAA Glu	756
GTG Val	AAT Asn	GTG Val 255	TTG Leu	AGT (Ser	GTT Val	ASD .	TCG Ser 260	TCC Ser	ATT Ile	GCT Ala	CGA Arg	GCT Ala 265	AGT Ser	798
GGT Gly	GGT Gly	GGT Gly	GGG Gly 270	GAT Asp	GTT Val	AGT Ser	GAG Glu	ATT Ile 275	GGT Gly	GCC Ala	GTG Val	GCT Ala	GCT Ala 280	840
ATT Ile	AGA Arg	ATG Met	CCG Pro	ATG Met 285	CTT Leu	CGT Arg	GTT Val	TCG Ser	GAT Asp 290	TTT Phe	AAT Asn	GGA Gly	GAG Glu	882
CTA Leu 295	AGT Ser	TAT Tyr	GCG Ala	ATA Ile	CTT Leu 300	GTT Val	TGT Cys	GTT Val	TTA Leu	CCG Pro 305	GGC Gly	GGG Gly	ACC Thr	924
CGT Arg	CGG Arg 310	GAT Asp	TGG Trp	ACT Thr	TAT Tyr	CAG Gln 315	GAG Glu	ATT Ile	GAG Glu	ATT Ile	GTT Val 320	AAA Lys	GTT Val	966
GTG Val	GCG Ala	GAT Asp 325	CAA Gln	GTA Val	ACC Thr	GTT Val	GCG Ala 330	TTA	GAT Asp	CAT His	GCA Ala	GCG Ala 335	GTT Val	1008
CTT Leu	GAA Glu	GAG Glu	TCT Ser 340	CAG Gln	CTT Leu	ATG Met	AGG Arg	GAG Glu 345	AAG Lys	CTG Leu	GCG Ala	GAA Glu	CAG Gln 350	1050
AAC Asn	AGG Arg	GCG Ala	TTG Leu	CAG Gln 355	ATG Met	GCG Ala	AAG Lys	AGA Arg	GAC Asp 360		TTG Leu	AGA Arg	GCG Ala	1092
AGC Ser 365	Gln	GCG Ala	AGG Arg	AAT Asn	GCG Ala 370	TTT Phe	CAG Gln	AAA Lys	ACG Thr	ATG Met 375		GAA Glu	GGG Gly	1134
ATG Met	AGG Arg 380	Arg	CCT Pro	ATG Met	CAT His	TCG Ser 385	ATA Ile	CTC Leu	GGT	CTT Leu	Leu 390	TCG Ser	ATG Met	1176
Ile	e Glr	395	GIU	AAG Lys	Leu	Ser	400	GIU	. 011	,		405	5	1218
Asp	Thi	r Met	410) r rās	THE	Gry	ASII	415	5				GTG Val 420	1260
Gly	y Asj	p Se	r Met	425	vaı	. PIO	, wat	, (1)	43	3			G GAG	1302
ATO Met 43	t Ly	A CCC s Pro	G TT	r AGT e Ser	CTO Lev 440	i urs	CGI Arg	T ACC	ATO	C CAS e His 445		A GCZ 1 Ala	A GCT a Ala	1344

FIG. 15B

TGI Cys	' ATO Me' 450	G GC t Al 0	G AG a Ar	A TG g Cy	T TT s Le	G TG u Cy 45	s Lei	A TG	C AA s As	Ť GG n Gl	A AT Y I1 46	e Ar	G TTC g Phe	1386
TTG Leu	GT: Val	r GA l As 46	P 7.1	G GA a Gl	G AAG u Lys	G TC' s Se:	T CTA r Let 470	ı Pr	T GA	T AA p As	T GT. n Va	A GT l Va 47	A GGT l Gly 5	1428
GAT Asp	GA/ Glu	A AG	A AGG G Arg 480	y va.	C TTT	r car e Gli	A GTO n Val	ATZ 116 485	∋ те	T CA u Hi	T ATO	G GT t Va	T GGT 1 Gly 490	1470
AGT Ser	TTA	A GTA	A AA(L Lys	G CCT S Pro 495	ALC	A AAA J Lys	A CGI s Arg	CA/	A GAZ 1 Gli 500	ı Gl	A TC' y Sei	r TC	A TTG r Leu	1512
ATG Met 505	TTT	AAC Lys	GTT Val	TTC Leu	AAA Lys 510	S GIL	A AGA Arg	GGF Gly	A AGO	TTC Let 515	ı Asp	AGO Aro	G AGT	1554
GAT Asp	CAT His 520	AGA Arg	TGO Trp	GCT Ala	GCT Ala	TGG Trp 525	AGA Arg	TCA Ser	CCC Pro	G GCT	TCT Ser 530	TCA Ser	A GCA Ala	1596
GAT Asp	GGA Gly	GAT Asp 535	, AGT	TAT	ATA Ile	AGA Arg	TTT Phe 540	GAA Glu	ATC Met	AA1 Asn	GTA Val	GAG Glu 545	AAT Asn	1636
GAT Asp	GAT Asp	TCA Ser	AGT Ser 550	TCT Ser	CAA Gln	TCA Ser	TTT	GCT Ala 555	TCT	GTT Val	TCC Ser	TCC	AGA Arg 560	1680
GAT Asp	CAA Gln	GAA Glu	GTT Val	GGT Gly 565	GAT Asp	GTT Val	AGA Arg	TTC Phe	TCC Ser 570	GGC Gly	GGC Gly	TAT Tyr	GGG Gly	1722
TTA Leu 575	GGA Gly	CAA Gln	GAT Asp	CTA Leu	AGC Ser 580	TTT Phe	GGT Gly	GTT Val	TGT Cys	AAG Lys 585	AAA Lys	GTG Val	GTG Val	1764
CAG Gln	TTG Leu 590	ATT Ile	CAT	GGG Gly	AAT Asn	ATC Ile 595	TCG Ser	GTG Val	GTC Val	CCT Pro	GGC Gly 600	TCG Ser	GAT Asp	1806
GGT S	ICA Ser	CCG Pro 605	GAG Glu	ACC Thr	ATG Met	TCG Ser	TTG Leu 610	CTC Leu	CTT Leu	CGG Arg	TTT Phe	CGA Arg 615	CGT Arg	1848
AGA (Arg I	CCC Pro	TCC Ser	ATA Ile 620	TCT Ser	GTC Val	CAT His	GGA Gly	TCC Ser 625	AGC Ser	GAG Glu	TCG Ser	CCA Pro	GCT Ala 630	1890
CCT C	SAC Asp	CAC His	CAC His	GCT Ala 635	CAC His	CCA Pro	CAT His	TCG Ser	AAT Asn 640	TCT Ser	CTG Leu	TTA Leu	CGT Arg	1932
GGC T Gly I 645	TA eu	CAA Gln	GTT Val	TTA Leu	TTG Leu 650	GTA Val	GAC Asp	ACC Thr	AAC Asn	GAT Asp 655	TCG Ser	AAC Asn	CGG Arg	1974
GCA G Ala V 6	TT A	ACA Thr	CGT Arg	AAA Lys	reu	TTA Leu 665	GAG . Glu :	AAA Lys	CTC Leu	GGG Gly	TGC Cys 670	GAT Asp	GTA Val	2016

FIG. 15C

ACC Thr	GCG Ala	GTT Val 675	TCC Ser	TCT Ser	GGA Gly	TTC Phe	GAT Asp 680	TGC Cys	CTT Leu	ACC Thr	GCC Ala	ATT Ile 685	GCT Ala	2058
CCC Pro	GGC Gly	TCG Ser	TCC Ser 690	TCG Ser	CCT Pro	TCT Ser	ACT Thr	TCG Ser 695	TTT Phe	CAA Gln	GTG Val	GTG Val	GTG Val 700	2100
CTT Leu	GAT Asp	CTT Leu	CAA Gln	ATG Met 705	GCA Ala	GAG Glu	ATG Met	GAC Asp	GGT Gly 710		GAA Glu	GTG Val	GCC Ala	2142
ATG Met 715	AGG Arg	ATC Ile	AGG Arg	AGT Ser	CGA Arg 720	TCT Ser	TGG Trp	CCG Pro	TTG Leu	ATT Ile 725	GTG Val	GCG Ala	ACG Thr	2184
ACA Thr	GTG Val 730	AGC Ser	TTG Leu	GAT Asp	GAA Glu	GAA Glu 735	ATG Met	TGG Trp	GAC Asp	AAG Lys	TGT Cys 740	GCA Ala	CAG Gln	2226
ATT Ile	GGA Gly	ATC Ile 745	AAT Asn	GGA Gly	GTT Val	GTG Val	AGA Arg 750	AAG Lys	CCA Pro	GTG Val	GTG Val	TTA Leu 755	AGA Arg	2268
GCT Ala	ATG Met	GAG Glu	AGT Ser 760	GIU	CTC Leu	CGA Arg	AGA Arg	GTA Val 765	200	TTG Leu	CAA Gln	GCT Ala	GAC Asp 770	2310
CAA Gln	CTT Leu	CTC Leu	TAA	GTTG	TTA	TCTC	AACT	TC T	CTTC	TACA	T TC	AAAA	TTTT	2259
TACACCATAG ATTTATGTCA AATATATCAA AATGAAATTT CGAAA 240												2404		

FIG. 15D

ТT	TTTT	TTTT	GTC.	AAAA	GCT (CGAT	GTAA	AA A'	TCCG.	ATGG	C CA	CAAG	CAAA	50
						GGAG2								100
TG.	AAGT.	AGTA	GAT.	ACTG	AGA 1	rcgcz	ATTC	IC C	GCG'	TCGT	r TT'	TCAC	ATCG	150
						GAAA								200
GC	AGCA	GGAA	ATA	GCAT	CTT A	AAAGO	SAAGO	SA AC	GAA	GGAAZ	A CTO	CGAA	AGTT	250
						rggg <i>i</i>								296
										Me	et GI 1	lu Se	er	230
TG: Cys	GAT S Asi	T TGC Cys	C ATT	GAC Glu	G GCT	TTA Leu 10	ı Let	CCP Pro	ACT Thr	r GGI	GAC Asp	CTC Leu	G CTG	338
GT] Val	' AAA Lys	TAC Tyr 20	CAA Glr	TAC Tyr	Leu	TCA Ser	GAT Asp 25	Phe	TTC Phe	ATI Ile	GCT Ala	GTA Val	GCC Ala	380
TAC Tyr	TTI Phe	TCC Ser	ATT Ile 35	Pro	TTG Leu	GAG Glu	CTT Leu	ATT Ile 40	Tyr	TTT Phe	GTC Val	CAC His	AAA Lys 45	422
TCT Ser	GCA Ala	TGC Cys	TTC Phe	CCA Pro 50	TAC	AGA Arg	TGG Trp	GTC Val	CTC Leu 55	Met	CAA Gln	TTT Phe	GGT Gly	464
GCT Ala 60	LIIG	ATT Ile	GTG Val	CTC Leu	TGT Cys 65	GGA Gly	GCA Ala	ACA Thr	CAC His	TTT Phe 70	ATT Ile	AGC Ser	TTG Leu	506
TGG Trp	ACC Thr 75	FILE	TTT Phe	ATG Met	CAC His	TCT Ser 80	AAG Lys	ACG Thr	GTC Val	GCT Ala	GTG Val 85	GTT Val	ATG Met	548
ACC	ATA Ile	TCA Ser 90	AAA Lys	ATG Met	TTG Leu	ACA Thr	GCT Ala 95	GCC Ala	GTG Val	TCC Ser	TGT Cys	ATC Ile 100	ACA Thr	590
GCT Ala	TTG Leu	ATG Met	CTT Leu 105	GTT Val	CAC His	ATT Ile	ATT Ile	CCT Pro 110	GAT Asp	TTG Leu	CTA Leu	AGT Ser	GTT Val 115	632
AAA Lys	ACG Thr	CGA Arg	GAG Glu	TTG Leu 120	TTC Phe	TTG Leu	AAA Lys	ACT Thr	CGA Arg 125	GCT Ala	GAA Glu	GAG Glu	CTT Leu	674
GAC Asp 130	AAG Lys	GAA Glu	ATG Met	GGC Gly	CTA Leu 135	ATA Ile	ATA Ile	AGA Arg	CAA Gln	GAA Glu 140	GAA Glu	ACT Thr	GGC Gly	716
AGA Arg	CAT His 145	GTC Val	AGG Arg	ATG Met	CTG Leu	ACT Thr 150	CAT His	GAG Glu	ATA Ile	AGA Arg	AGC Ser 155	ACA Thr	CTC Leu	758
GAC Asp	AGA Arg	CAC His 160	ACA Thr	ATC Ile	TTG Leu	AAG Lys	ACT Thr 165	ACT Thr	CTT Leu	GTG Val	GAG Glu	CTA Leu 170	GGT Gly	800

FIG. 16A

AGG Arg	ACC Thr	TTA Leu	GAC Asp 175	CTG Leu	GCA Ala	GAA Glu	TGT Cys	GCT Ala 180	TTG Leu	TGG Trp	ATG Met	CCA Pro	TGC Cys 185	842
CAA Gln	GGA Gly	GGC Gly	CTG Leu	ACT Thr 190	TTG Leu	CAA Gln	CTT Leu	TCC Ser	CAT His 195	AAT Asn	TTA Leu	AAC Asn	AAT Asn	884
CTA Leu 200	ATA Ile	CCT Pro	CTG Leu	GGA Gly	TCT Ser 205	ACT Thr	GTG Val	CCA Pro	ATT Ile	AAT Asn 210	CTT Leu	CCT	ATT Ile	926
	AAT Asn 215	GAA Glu	ATT Ile	TTT Phe	3 C M	AGC Ser 220	CCT Pro	GAA Glu	GCA Ala	ATA Ile	CAA Gln 225	ATT Ile	CCA Pro	968
CAT His		AAT Asn 230	Pro	TTG Leu	GCA Ala	AGG Arg	ATG Met 235	AGG Arg	AAT Asn	ACT Thr	GTT Val	GGT Gly 240	AGA Arg	1010
TAT Tyr	ATT Ile		~~~	GAA Glu	GTA Val	GTT Val	GCT Ala	GTT Val 250	CGT Arg	GTA Val	CCG Pro	CTT Leu	TTA Leu 255	1052
CAC His	CTC Leu	TCA Ser		TTT Phe 260	TIIT	AAT Asn	GAC Asp	TGG Trp	GCT Ala 265	GAA Glu	CTG Leu	TCT Ser	ACT Thr	1094
AGA Arg 270	Ser	TAI Tyr	GCG			Val	CTG Leu	GTT Val	CTC Leu	CCG Pro 280		AAT Asn	GGC Gly	1136
		Lys	TGG Trp	G CGT	GAA Glu	CAT His 290	GIU	TTA Leu	GAA Glu	CTT Leu	GTG Val 295	CAA Gln	GTT Val	1178
GTC Val) GII	GTT Nal	GCT Ala	GTC Val	GCT Ala 305	. 1100	TCA Ser	CAT His	GCT Ala	GCA Ala 310	ATT Ile	1220
TTA Lev	GAA Glu			r met	G CGA	GCC Ala	CAT His	GAT Asp 320	<i>,</i>	CTC Lev	ATG Met	GA <i>F</i> Glu	CAG Gln 325	1262
AAT Asi	T ATT	GC'	T TTO a Le	G GAS u Asi 33	o val	A GCT L Ala	CGA Arg	CAF Glr	A GAF A Glu 335		A GAG A Glu	ATO	GCC Ala	1304
AT0 110 340	e Ar	r GC. g Al	A CG a Ar) ETT	C CTT e Leu	GC:	r GTC a Val	ATO Met 350		CA'	r GAA s Glu	1346
		g Th	G CC r Pr	C AT	G CA' t Hi	r GCZ s Ala 36	a va.	r AT'	r GC' e Ala	r CT(a Le	G TGG u Cy: 36	TC's Se	r CTG r Leu	1388
CT Le			u Th	A GA r As	C TT. p Le	A AC u Th	T CCI r Pro 37	.	G CAG	G AG n Ar	A GT g Va	T AT 1 Me 38	G ATT t Ile 0	1430
GA Gl	G AC u Th	C AI	'A TI .e Le 38	ец ьу	G AG	C AG r Se	C AA r As	T CT n Le 39	~	T GC u Al	A AC. a Th	A CT r Le	G ATA u Ile 395	1472

FIG. 16B

AAT Asn	GAT Asp	GTT Val	CTA Leu	A GAT ASE 400) Leu	TCI Ser	AGA Arg	CTI Leu	GAA Glu 405	ı Asp	GGT Gly	ATT	CTT Leu	1514
GAA Glu 410	Leu	GAA Glu	AAC Asn	GGA Gly	ACA Thr 415	Phe	AAT Asn	CTI Leu	CAT His	GGC Gly 420	'Ile	TTA Leu	AGA Arg	1556
GAG Glu	GCC Ala 425	. vaı	' AAT Asn	TTG Leu	ATA Ile	AAG Lys 430	Pro	ATT Ile	GCA Ala	TCT Ser	TTG Leu 435	Lys	AAA Lys	1598
TTA	TCT	ATA Ile 440	Thr	CTT Leu	GCT Ala	TTG Leu	GCT Ala 445	CTG Leu	GAT Asp	TTA Leu	CCT Pro	ATT Ile 450	CTT	1640
GCT Ala	GTG Val	GGT Gly	GAT Asp 455	GCA Ala	AAA Lys	CGT Arg	CTT Leu	ATC Ile 460	Gln	ACT Thr	CTC Leu	TTA Leu	AAC Asn 465	1682
GTG Val	GTG Val	GGA Gly	AAT Asn	GCT Ala 470	GTG Val	AAG Lys	TTC Phe	ACT Thr	AAA Lys 475	GAA Glu	GGA Gly	CAT His	ATT Ile	1724
TCA Ser 480	ATT Ile	GAG Glu	GCT Ala	TCA Ser	GTT Val 485	GCC Ala	AAA Lys	CCA Pro	GAG Glu	TAT Tyr 490	GCG Ala	AGA Arg	GAT Asp	1766
TGT Cys	CAT His 495	CCT Pro	CCT Pro	GAA Glu	ATG Met	TTC Phe 500	CCT Pro	ATG Met	CCA Pro	AGT Ser	GAT Asp 505	GGC Gly	CAG Gln	1808
	TAT Tyr	TTG Leu 510	CGT Arg	GTC Val	CAG Gln	GTT Val	AGA Arg 515	GAT Asp	ACT Thr	GGG Gly	TGT Cys	GGA Gly 520	ATT	1850
AGC Ser	CCA Pro	CAA Gln	GAT Asp 525	ATA Ile	CCA Pro	CTA Leu	GTA Val	TTC Phe 530	ACC Thr	AAA Lys	TTT Phe	GCA Ala	GAG Glu 535	1892
TCA Ser	CGG Arg	CCT Pro	ACG Thr	TCA Ser 540	AAT Asn	CGA Arg	AGT Ser	ACT Thr	GGA Gly 545	GGG Gly	GAA Glu	GGT Gly	CTA Leu	1934
GGG Gly 550	CTT Leu	GCC Ala	ATT Ile	TGG Trp	AGA Arg 555	CGA Arg	TTT Phe	ATT Ile	CAA Gln	CTT Leu 560	ATG Met	AAA Lys	GGT Gly	1976
AAC Asn	ATT Ile 565	TGG Trp	ATT Ile	GAG Glu	AGT Ser	GAG Glu 570	GGC Gly	CCT Pro	GGA Gly	AAG Lys	GGA Gly 575	ACC Thr	ACT Thr	2018
GTC Val	Thr	TTT Phe 580	GTA Val	GTG Val	AAA Lys	CTC Leu	GGA Gly 585	ATC Ile	TGT Cys	CAC His	CAT His	CCA Pro 590	AAT Asn	2060
GCA Ala	TTA Leu	CCT Pro	CTG Leu 595	CTA Leu	CCT Pro	ATG Met	CCT Pro	CCC Pro 600	AGA Arg	GGC Gly	AGA Arg	TTG Leu	AAC Asn 605	2102
AAA Lys	GGT Gly	AGC Ser	GAT Asp	GAT Asp 610	CTC Leu	TTC Phe	AGG Arg	TAT Tyr	AGA Arg 615	CAG Gln	TTC Phe	CGT Arg	GGA Gly	2144

FIG. 16C

GAT GAT GGT GGG ATG TCT GTG AAT GCT CAA CGC TAT CAA AGA Asp Asp Gly Gly Met Ser Val Asn Ala Gln Arg Tyr Gln Arg 620 630	2186
AGT ATG TAA A TGACAAAAGG ACATTGGTGT GACAAAGAAC Ser Met * 635	2226
ATTAAATCAT GACTAGTGAA TTTGAGATTT CTTCACTGTT CTGTACACTC	2276
CAAATGGCAC AGTTTGTCTT GTAACTAACC TAATTCAATG CTCGTAAAGT	2326
GAGTACTGGA GTATCTTGAA AATGTAACTA TCGAATTTAT ACATCGAGCT	2376
TTTGACAAAA AAAAAAAAA AAAAAAAAA	2405

FIG. 16D

	50
TTACAATGCC TGTAAGAAAT AATTGTTCTT TCCACCTCCA CAACTAATTG	100
TCGAACTATT ATATCTATCT TTATTCCCTT AAATGTGAAA CGAATTACAC	150
AGACTATTTG GCGCTACTTT TTTCCTAGAT ATATTGAAGA CCTAGTTTCT	200
TATATTTGTG GGAAGCATTT GGAAGTTCTA TAAGAACTAT ATCATGTTCG	250
AAAACATTCT TATAATTTTC GACAAGATTG CTGAAGGAGT GTCTTATCTT	300
TTATGTATTC TTGACTAGAG GAGTTTAATA AAAAGAAAAT AGAAAGGAAC	350
AAAGAAACGT ACAAGTGTAT AAAAGGAGTT GGGGCAAAGA CATCAGAAAC	400
ATTTAGACCT ACGATTTCAT CCTACATGTT ATGGTTTTAG TTCGTTAGAG	450
GTTTTAACAT ATTAAATCAG CAAAGTTGTG ACATACATAA AGTGCATAAC	500
ATAAAGATGA AATTCACAAT TTGCTGGATC TTTTGGTGCA AGGGAACTAT	550
TTTTTACACT ATAAGTTAGC TGTTAATTTC AATATTGGCT CTTCTACACC	600
TTGTTGTTCT TGAGTATAAT TCTATTTTGC ATCAAACATA TGTCAGAACT	650
TATGCTGCAA TTAAATATAT TCAGGTTGTT TAACTCTTGT ACAGCTTGTT	700
ATTCTTCTGA GGTCTATTTC CTTCTCCTTA TTTGCTAACT TGTGCTGCAG	750
TTATCTTCCA TC GTG GAG TCA TGT AAC TGC ATC ATT GAC CCA Val Glu Ser Cys Asn Cys Ile Ile Asp Pro 1 5 10	792
CAG TTG CCT GCT GAC GAC TTG CTA ATG AAG TAT CAG TAC ATT Gln Leu Pro Ala Asp Asp Leu Leu Met Lys Tyr Gln Tyr Ile	834
CAG TTG CCT GCT GAC GAC TTG CTA ATG AAG TAT CAG TAC ATT GIN Leu Pro Ala Asp Asp Leu Leu Met Lys Tyr Gln Tyr Ile TCT GAT TTT TTC ATA GCA CTT GCT TAT TTC TCC ATT CCA GTG Ser Asp Phe Phe Ile Ala Leu Ala Tyr Phe Ser Ile Pro Val 25	834 876
Gln Leu Pro Ala Asp Asp Leu Leu Met Lys Tyr Gln Tyr 11e 15 TCT GAT TTT TTC ATA GCA CTT GCT TAT TTC TCC ATT CCA GTG Ser Asp Phe Phe Ile Ala Leu Ala Tyr Phe Ser Ile Pro Val	
Gln Leu Pro Ala Asp Asp Leu Leu Met Lys Tyr Gln Tyr 11e 15 TCT GAT TTT TTC ATA GCA CTT GCT TAT TTC TCC ATT CCA GTG Ser Asp Phe Phe Ile Ala Leu Ala Tyr Phe Ser Ile Pro Val 25 GRG TTG ATA TAG TTC CTT AAG AAG TCT GCT GTC TTT CCA TAT	876
Gln Leu Pro Ala Asp Asp Leu Leu Met Lys Tyr Gln Tyr Ile TCT GAT TTT TTC ATA GCA CTT GCT TAT TTC TCC ATT CCA GTG Ser Asp Phe Phe Ile Ala Leu Ala Tyr Phe Ser Ile Pro Val 25 GAG TTG ATA TAC TTC GTT AAG AAG TCT GCT GTC TTT CCA TAT Glu Leu Ile Tyr Phe Val Lys Lys Ser Ala Val Phe Pro Tyr 40 AGA TGG GTT CTT GTG CAG TTC GGT GCT TTC ATA GTT CTT TGT Arg Trp Val Leu Val Gln Phe Gly Ala Phe Ile Val Leu Cys	876 918
Gln Leu Pro Ala Asp Asp Leu Leu Met Lys Tyr Gln Tyr IIe TCT GAT TTT TTC ATA GCA CTT GCT TAT TTC TCC ATT CCA GTG Ser Asp Phe Phe IIe Ala Leu Ala Tyr Phe Ser IIe Pro Val 25 GAG TTG ATA TAC TTC GTT AAG AAG TCT GCT GTC TTT CCA TAT Glu Leu IIe Tyr Phe Val Lys Lys Ser Ala Val Phe Pro Tyr 40 AGA TGG GTT CTT GTG CAG TTC GGT GCT TTC ATA GTT CTT TGT Arg Trp Val Leu Val Gln Phe Gly Ala Phe IIe Val Leu Cys 60 GGA GCA ACC CAT CTT ATC AAC TTA TGG ACA TTT AAT ATG CAT Gly Ala Thr His Leu IIe Asn Leu Trp Thr Phe Asn Met His	918 960

FIG. 18A

ATO Ile	C AT:	= LT(T GAT O Asp	TTI Lev	A TTA Leu	A AGT Ser 115	: vai	AAA Lys	A ACT	AGA Arg	GAA Glu 120	Leu	TTC Phe	1128
TT(Let	AAA 1 Lys	A AAG Lys 125	AAA Lys	A GCT s Ala	GCA Ala	CAG Gln	CTI Leu 130	GAC Asp	CGT Arg	GAA Glu	ATG Met	GGT Gly 135	ATT	1170
ATT Ile	CGG Arg	ACT Thr	CAG Gln 140	r GTU	GAG Glu	ACA Thr	GGT Gly	AGA Arg 145	His	GTT Val	AGA Arg	ATG Met	CTA Leu 150	1212
ACT Thr	CAT His	GAA Glu	ATC Ile	CGA Arg 155	AGC Ser	ACT Thr	CTT Leu	GAT Asp	AGA Arg 160	CAT His	ACT Thr	ATT Ile	TTA Leu	1254
AAG Lys 165	* * * T	ACA Thr	CTT Leu	GTT Val	GAG Glu 170	CTA Leu	GGA Gly	AGA Arg	ACA Thr	TTG Leu 175	GCA Ala	TTG Leu	GAA Glu	1296
GAG Glu	TGT Cys 180	WT 4	. TTA Leu	TGG Trp	ATG Met	CCA Pro 185	ACA Thr	CGT Arg	ACT Thr	GGA Gly	CTA Leu 190	GAG Glu	CTT Leu	1338
CAG Gln	CTT Leu	TCT Ser 195	TAC Tyr	ACT Thr	TTA Leu	CGA Arg	CAC His 200	CAA Gln	AAT Asn	CCA Pro	GTT Val	GGA Gly 205	TTA Leu	1380
ACT Thr	GTA Val	CCC Pro	ATT Ile 210	CAA Gln	CTT Leu	CCT Pro	GTA Val	ATC Ile 215	AAT Asn	CAA Gln	GTT Val	TTC Phe	GGT Gly 220	1422
ACA Thr	AAT Asn	CAT His	GTC Val	GTG Val 225	AAA Lys	ATA Ile	TCA Ser	CCA Pro	AAT Asn 230	TCT Ser	CCT Pro	GTC Val	GCA Ala	1464
AGA Arg 235	CTT Leu	CGA Arg	CCT Pro	GCT Ala	GGG Gly 240	AAA Lys	TAC Tyr	ATG Met	CCT Pro	GGT Gly 245	GAG Glu	GTG Val	GTT Val	1506
GCT Ala	GTC Val 250	AGG Arg	GTT Val	CCA Pro	CTT Leu	CTG Leu 255	CAT His	CTG Leu	TCG Ser	Asn	TTT Phe 260	CAG Gln	ATT Ile	1548
AAT Asn	GAT Asp	TGG Trp 265	CCT Pro	GAA Glu	CTT Leu	TCA Ser	ACA Thr 270	LVS	CGC Arg	TAT Tyr	Ala	TTA Leu 275	ATG Met	1590
GTT Val	CTG Leu	ATG Met	CTT Leu 280	CCT Pro	TCA Ser	GAC Asp	Ser	GCA Ala 285	AGA Arg	CAA Gln	TGG (His '	GTT Val 290	1632
CAT His	GAG Glu	CTG Leu	GAG Glu	CTT Leu 295	GTT Val	GAA Glu	GTG Val	Val.	GCT Ala 300	GAT (Asp (CAG (Gln '	GTT Val	•	1671
TGAT	TTTT	GT T	ATTG	AAAA	T TC	CTTA	ATAT	AAT	GTTA	AAA 1	TTTC	rctt'	TT	1721
ATAT	ATTT	TT G	GGTT	GAAC	A CA	ACCA	CGTT	GAC	ATAC	TGA (GTTC	rggg:	T G	1771
			ATGG.											1821
CAGA	ATCA	CA A	GGCT	TAGT	T GT	TCTT.	AGTA	TTA	TGGT'	TTT A	ATCC	ATTGO	GA	1871

FIG. 18B

ATTGCACAGC	AGAATTGTTA	TTACTGTTAT	TTTTTTTAA	AATTTTCAAA	1921
GATAAATCAA	AAGCTGAACT	ATATGACTTT	TTGCATACTT	CGTCTGCTGA	1971
TTGCTTTTTG	GTGATGGAAT	AGTTAGGCTG	GGTTGTGGAT	GAGTATATCA	2021
TAGTAGATTT	TCTGATAGGA	TCTTAACTCC	TTGGCTTTTG	TTTTCTATAG	2071
ATGATCCCTT	GTATTAGAAG	CACGGGAAAT	AGGATCGATG	GTATATAGAA	2121
ATATTAGGAA	CAGCTTTCTG	AATCATTTGA	ATATTCCTTT	TATGGAACAT	2171
AGAACTCTTG	ACGTGTATGT	AGTTTTCTTA	GTACTTTTAT	CATATGAAGT	2221
GAAAATAACG	TTTTGCGATA	ATGTATTTGA	GTGTGTAAAA	TTAAATACTA	2271
CTGAGTTTTA	CAAAAATAAT	TCTTCAACGG	AAGCCATTTA	TTTTTTTTAC	2321
ATATCTGGCA	TCTTACTTCT	CCATCAAAGA	CTTTAGAGAA	CTTTAACTTT	2371
TTCATTCTGT	CTCTCGTAGT	GTACTGTTCT	CTGATGTATG	TAATTAGCTC	2421
ACTGGCAAGT	AGCACACCTA	GTCTTTGTTT	GACTTGTTTA	AAAATCATGA	2471
TGTATCATCA	GTTACGGTGA	AGTGTCCAAG	TTTTACTGCT	TTTTGCTATT	2521
TGCATTGCAG	AGTCTTAAAA	CATTTCAGTT	ATTCCTGGAT	TTCTCCTGTT	2571
TATCAATGGA	AAATTCAACT	ATCAACTATG	CCTCAATCAA	TAAATGAAAC	2621
CTCTATATCT	AACCACTCCA	ACTCAGATCC	AGAAATCAGA	TTTCAAAGAA	2671
ATTCATCATA	ACTCAACTAT	AGGATTGCTG	TTAACCAAGA	GTAATCCTCA	2721
TTTGTCCAGA	CAGGCGACCA	GCTATTATGC	TTTCATTATG	GGAAAAATTG	2771
ACAATTAATT	AAAGGAAGGA	ACAACTGAAG	AAAAGACATC	CTTGTCAGCT	2821
TCCTCTCCCA	ACCCTTGCCT	GAATAAGACA	AAAAGTTTCT	TGGAGAAAAC	2871
TCTGAATATT	GGTATCCACC	TCCTTTCTCC	TAATTTAGGA	TGCTCTATTT	2921
CTAGACATAT	AGGGGAATAC	TCTATTCTAG	TGGTCGGTGT	CTGGTTGCAA	2971
CTAGTTTTAG	ATGTTTATAT	GTCTTATTTG	ATTTAATAAG	AGCTATCCTT	3021
GAGTGCCCAA	TGTGATTTAA	TCTACGCTTC	GGCATTTCAG	GTT GCT GTT Val Ala Val 305	3070
GCT CTT TO Ala Leu Se	A CAT GCT G r His Ala A 310	CT ATA TTA	GAA GAA TCA Glu Glu Ser 315	ATG AGG GCT Met Arg Ala 320	3112
AGG GAT CT Arg Asp Le	T CTT ATG (eu Leu Met (AG CAG AAT Slu Gln Asn	GTG GCT CTT Val Ala Leu 330	GAT CTG GCA Asp Leu Ala	3154
AGA AGA GA Arg Arg GI 335	lu Ala Glu N	ATG GCT GTT Met Ala Val 340	CGT GCA CGT Arg Ala Arg 345	AAT GAT TTC Asn Asp Phe	3196

FIG. 18C

TTO Leu	GCT Ala 350	vai	ATG Met	AAT Asn	CAT His	GAA Glu 355	ATG Met	AGA Arg	ACT Thr	CCC Pro	ATG Met 360	CAT His	GCA Ala	3238
ATA Ile	ATT Ile	GCA Ala 365	CTT Leu	TCT Ser	TCC Ser	TTA Leu	CTA Leu 370	CAA Gln	GAA Glu	ATC Ile	GAT Asp	CTA Leu 375	ACT Thr	3280
CCA Pro	GAG Glu	CAA Gln	CGT Arg 380	CTG Leu	ATG Met	GTT Val	GAA Glu	ACA Thr 385	ATC Ile	CTC Leu	AAA Lys	AGC Ser	AGC Ser 390	3322
AAC Asn	CTT Leu	TTA Leu	GCA Ala	ACG Thr 395	CTC Leu	ATC Ile	AAC Asn	GAT Asp	GTC Val 400	TTG Leu	GAT Asp	CTT Leu	TCA Ser	3364
AGG Arg 405	CTA Leu	GAG Glu	GAT Asp	GGA Gly	AGT Ser 410	CTT Leu	CAA Gln	CTT Leu	GAT Asp	ATT Ile 415	GGC Gly	ACT Thr	TTC Phe	3406
AAT Asn	CTC Leu 420	nıs	GCT Ala	TTA Leu	TTT Phe	AGA Arg 425	GAG Glu	GTG Val	CCCI	TCAI	CA C	CCTC	CTTTT	C 3453
TTT'	TTTA	CTT (CAA	ATTC	ra ga	TTAC	CTGI	CAC	AAAA	AAA	GTGT	CATI	AC	3503
AGA!	TATT:	TTG (CACT	CAA	TA TO	TTTC	CTG	ACC	TGCI	GAC	TGAT	'ATAT	GT	3553
GTC:	rgc T	TAT T	CCT	STAG	GTC Val	CAT His	AGC Ser 430	TTA Leu	ATC Ile	AAG Lys	CCT Pro	ATT Ile 435	GCA Ala	3598
TCT Ser	GTG Val	AAA Lys	AAG Lys 440	TCT Ser	GTT Val	GCT Ala	CAA Gln	CTT Leu 445	AGT Ser	TTG Leu	TCG Ser	TCA Ser	GAT Asp 450	3640
TTG Leu	CCG Pro	GAA Glu	TAT Tyr	GTA Val 455	ATT Ile	GGG Gly	GAT Asp	GAA Glu	AAA Lys 460	CGG Arg	TTA Leu	ATG Met	CAA Gln	3682
ATT Ile 465	CTC Leu	TTA Leu	AAC Asn	GTT Val	GTT Val 470	GGC Gly	AAT Asn	GCT Ala	Val	AAG Lys 475	TTC Phe	TCA Ser	AAG Lys	3724
GAA Glu	GGC Gly 480	AAC Asn	GTA Val	TCA Ser	ATC Ile	TCC Ser 485	GCT Ala	TTT Phe	GTT Val	Ala	AAA Lys 490	TCA Ser	GAC Asp	-3766
TCT Ser	TTA Leu	AGA Arg 495	GAT Asp	CCT Pro	AGA Arg	Ala	CCT Pro 500	GAA Glu	TTT Phe	TTT Phe	Ala '	GTG Val 505	CCT Pro	3808
AGT Ser	GAA Glu	Asn	CAC His 510	TTC Phe	TAT Tyr	TTA Leu .	Arg '	GTG (Val (515	CAG Gln				•	3838
GTAT	ATTT	TT A	CAAG	CTTG	A TA	TACT.	ATCT	TCG	TAGGʻ	TTA I	AGGA'	ragt(CA	3888
CAAA	TATG	AT A	TTTT.	AGAC	T TA	raac'	TGTC	AGA'	TGTT	CTG '	TTCT:	rgat.	AT	3938
TTGT	AATA	TT C	TAAG	TAAT.	A CT	TTCT	GTAG							3968

FIG. 18D

ATA Ile	AAA Lys	GAT Asp	ACG Thr 520	GGG Gly	ATA Ile	GGA Gly	ATT Ile	ACA Thr 525	CCA Pro	CAG Gln	GAT Asp	ATT Ile	CCC Pro 530	4010
AAC Asn	CTG Leu	TTT Phe	AGC Ser	AAG Lys 535	TTT Phe	ACA Thr	CAA Gln	AGC Ser	CAA Gln 540	GCG Ala	CTA Leu	GCA Ala	ACT Thr	4052
ACA Thr 545	AAT Asn	TCT Ser	GGT Gly	GGC Gly	ACT Thr 550	GGG Gly	CTT Leu	GGT Gly	CTT Leu	GCA Ala 555	ATT Ile	TGT Cys	AAG Lys	4094
AG (STACO	GGT	AC CA	AGTTO	CTT	A GTO	GTTCI	TTTT	TCC	GACT	CTG			4136
ATT	TCA	TTC T	racg1	GAAC	CT TO	GTA	ACTGO	C TTC	CATA	rtca	ATT	rctt:	rct	4186
CTT	ACTG	TAT '	TAC	STATE	rg A	CACA!	CTC	C TG	ATGG(GACA	CAA	AAAG	G	4234
முரு	CTIC	יחי ע ע	CTT Leu	Δ ጥር	GAA	GGA	САТ	ATT	TGG	ATT	GAA	AGT	GAA	4276
GGT Gly	CTT Leu 575	GGC Gly	AAG Lys	GGG Gly	TCT Ser	ACT Thr 580	GCT Ala	ATA Ile	TTT Phe	ATC Ile	ATT Ile 585	AAA Lys	CTT Leu	4318
GGA Gly	CTT Leu	CCT Pro 590	GGA Gly	CGT Arg	GCA Ala	AAT Asn	GAA Glu 595	TCT Ser	AAG Lys	CTC Leu	CCC	TTT Phe 600	GTG Val	4360
ACC Thr	AAA Lys	TTG Leu	CCA Pro 605	GCA Ala	AAT Asn	CAC His	ACG Thr	CAG Gln 610	ATG Met	AGT Ser	TTT Phe	AAG Lys	GAT Asp 615	4402
TAA	AGGT	TTT	GGTG	ATGG	AT G	AGAA	TGGG	T GA	GTAC	TATC	TGG	ACCC	CTT	4452
TAT	CCTC		TCTT											4502
			TCTT									CATG		4552
														4566
CTA	CAGT	HAI	ACTT											

FIG. 18E

AA	GATA	AGAG	TGA	TTCA'	TTA Z	AGGA(GTTT(GT T	C ATO	C ATO	G GA	T TG p Cy	T AAC s Asn 5	1
TG Cy	C TTO	C GA e As	T CC	A CTO	i rei	G CC	GCC Ala	C GAT A Asp	F GAC O Glu	ı Lei	TTI Let	A AT	G AAG t Lys	89
TA' Ty: 20	i GTI	TAC Ty:	C ATT	TCT e Sei	GAT Asp 25	TTT Phe	TTC Phe	ATT Ile	GCA Ala	A GTT a Val 30	Ala	TA' a Ty:	T TTT r Phe	131
TC(Se)	C ATO	= ET(A ATO	GAA Glu	CTC Leu	GTA Val 40	. Phe	TTI Phe	GTC Val	CAC Glr	AAA Lys 45	A TC	A GCT	173
GT7 Val	TTT Phe	CCC Pro 50	ryr	CGA Arg	TGG Trp	GTG Val	CTT Leu 55	Val	CAG Gln	TTI Phe	GGT Gly	GC: Ala	TTC Phe	215
ATA Ile	GTI Val	CTI Let	TGT Cys 65	GGA Gly	GCA Ala	ACA Thr	CAC His	CTT Leu 70	. Ile	AAT Asn	TTC	TGC Trp	ACT Thr 75	257
TCT	ACT Thr	CCI Pro	CAT His	ACA Thr 80	AĞG Arg	ACT Thr	GTG Val	GCA Ala	ATG Met 85	GTG Val	ATG Met	ACT Thr	ACG Thr	299
GCG Ala 90	L y S	TTC	TCC Ser	ACT Thr	GCT Ala 95	GCG Ala	GTA Val	TCA Ser	TGT Cys	GCA Ala 100	ACT Thr	GCT Ala	GTC Val	341
ATG Met	CTT Leu 105	۷ат	GCA Ala	ATT	ATT Ile	CCG Pro 110	GAT Asp	TTA Leu	TTA Leu	AGT Ser	GTC Val 115	AAA Lys	ACT	383
AGG Arg	GAG Glu	CTA Leu 120	TTC Phe	TTG Leu	AAA Lys	AAC Asn	AAA Lys 125	GCG Ala	GCG Ala	GAA Glu	CTT Leu	GAT Asp 130	CGT Arg	425
GAA Glu	ATG Met	GGT Gly	CTT Leu 135	ATT Ile	CGG Arg	ACA Thr	CAG Gln	GAG Glu 140	GAG Glu	ACG Thr	GGT Gly	AGA Arg	TAT Tyr 145	467
GTT Val	AGA Arg	ATG Met	CTA Leu	ACA Thr 150	CAT His	GAA Glu	ATC Ile	AGA Arg	AGT Ser 155	ACT Thr	CTG Leu	GAT Asp	AGA Arg	509
CAT His 160	ACT Thr	ATT Ile	TTG Leu	AAG Lys	ACT Thr 165	ACA Thr	CTT Leu	GTT Val	GAA Glu	CTT Leu 170	GGA Gly	AGA Arg	GCA Ala	551
TTG Leu	CAA Gln 175	CTG Leu	GAA Glu	GAG Glu	TGT Cys	GCT Ala 180	TTG Leu	TGG Trp	ATG Met	CCG Pro	ACT Thr 185	CGA Arg	ACT Thr	593
GGA Gly	GTG Val	GAG Glu 190	CTT Leu	CAA Gln	CTT Leu	TCT Ser	TAC Tyr 195	ACT Thr	TTA Leu	CAT His	CAT His	CAA Gln 200	AAT Asn	635
CCA Pro	GTT Val	GGA Gly	TTT Phe 201	ACA Thr	GTA Val	CCT Pro	Ile	CAA Gln 210	CTC Leu	CCT Pro	GTA Val	ATT Ile	AAT Asn 215	677

FIG. 19A

CAA Gln	GTT Val	TTC Phe	AGT Ser	GCA Ala 220	AAT Asn	TGT Cys	GCT Ala	GTT Val	AAA Lys 225	ATT Ile	TCA Ser	CCT Pro	716
					CT T								737

FIG. 19B

	ADQVAVALSHAAILEES 316	300
299)
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		250
900	VRVPLIHLSNFOINDWPELSTKRYALMVLMLPSDSAROWHVHRIELVEV	250
249		200
249	ONPVGLTVPIQLPVINQVFGTNHVVKISPNSPVARLRP. AGKYMPGEVVA	201
199		150
200	THEIRSTIDRHTILKTTIVELGRTLALEECALWMPTRTGLELOLSYTLRH	151
149		100
150	I ITALMIVHI I PDLLSVKTRELFLKKKAAQLDREMGI IRTQEETGRHVRMI	101
66		20
100	PYRWYLVOFGAFIVLCGATHLINLWTFNMHTRNVAIVMTAKALTALVSC	51
49	1 MEVCNCI. EPQWPADELLMKYQVISDFFIAIAYFSIPLELIYFVKKSAVF	tr1
50	- VESCNCIIDPQLPADDLLMKYQVISDFFIALAYFSIPVELIYFVKKSAVF	122

7.5	11	11 IMDCNCFDPLLPADELLMKYQYISDFIAVAYFSIPIELVFFVQKSAVFP 60
	-	. :: :
!	1 5	VEWAIT VOFGAFIVE CGATHLINEWTSTPHTRIVAMVMTTAKFSTAAVSCA 110
	5 15	
	; ;	TAVMIVAIIPDLLSVKTRELFLKNKAAELDREMGLIRTQEETGRYVRMLT 160
*	101	101 TALMLYHIIPDLLSVKTRELFLKNKAAELDREMGLIRTQEETGRHVRMLT 150
	161	
	151	
	211	NPVGFTVPIOLPVINQVFSANCAVKISP*SAVARL 245
	5	201 HEAVEVEVED DE POLITION OF GRANKISPUS PURE 235

FIG. 21

TT'	TTTT'	TTTT	GTC	AAAA	GCT	CGAT	GTAA	AA A'	ICCG/	ATGG	C CA	CAAG	CAAA	50
AC	GACA	GGTT	CCA	ACTT	CAC (GGAG	ATTG	rg Ai	AAAT(GGAG	r Ag	ragt'	rcag	100
TG	AAGŢ <i>i</i>	AGTA	GATA	ACTG	AGA '	rcgc	ATTCI	rc co	GGCG1	CGT:	r TT	rcac <i>i</i>	ATCG	150
AAA	ATAG	CGT	GTA	LAAA!	AAT (GAAAA	LAATI	rg ci	rgcg <i>i</i>	AGACA	A GG	IATG:	rgtc	200
GC <i>I</i>	AGCAC	GAA	ATAC	CATO	CTT A	AAAGO	AAGO	A AC	GAAG	GAA	A CTO	CGAA	AGTT	250
ACI	AAA?	ATT	TTTC	SATTO	CTT 1	rggg <i>r</i>	ACGA	A CO	SAGAT	ra ar e	G GA et GI	AA TO Lu Se	CC TGT er Cys	299
GAI Asp	TGC	ATT Ile	GAC Glu	GCI Ala	TTA Let 10	ı Leu	CCA Pro	ACT Thr	GGT Gly	GAC Asp 15	CTC Lev	CTC Let	GTT Val	341
AAA Lys	TAC Tyr 20	CAA Glr	TAC Tyr	CTC Leu	TCA Ser	GAT Asp 25	TTC Phe	TTC Phe	ATT Ile	GCT Ala	GTA Val 30	. Ala	TAC Tyr	383
TTT Phe	TCC Ser	ATT Ile 35	Leu	TTG Leu	GAG Glu	CTT Leu	ATT Ile 40	Tyr	TTT Phe	GTC Val	CAC His	AAA Lys 45	TCT	425
GCA Ala	TGC Cys	TTC	CCA Pro 50	TAC	AGA Arg	TGG	GTC Val	CTC Leu 55	Met	CAA Gln	TTT Phe	GGT Gly	GCT Ala 60	467
TTT Phe	ATT Ile	GTG Val	CTC Leu	TGT Cys 65	GGA Gly	GCA Ala	ACA Thr	CAC	TTT Phe 70	ATT Ile	AGC Ser	TTG Leu	TGG Trp	509
ACC Thr 75	TTC Phe	TTT Phe	ATG Met	CAC His	TCT Ser 80	AAG Lys	ACG Thr	GTC Val	GCT Ala	GTG Val 85	GTT Val	ATG Met	ACC Thr	551
ATA Ile	TCA Ser 90	AAA Lys	ATG Met	TTG Leu	ACA Thr	GCT Ala 95	GCC Ala	GTG Val	TCC Ser	TGT Cys	ATC Ile 100	ACA Thr	GCT Ala	593
TTG Leu	ATG Met	CTT Leu 105	GTT Val	CAC His	ATT Ile	ATT Ile	CCT Pro 110	GAT Asp	TTG Leu	CTA Leu	AGT Ser	GTT Val 115	AAA Lys	635
ACG Thr	CGA Arg	GAG Glu	TTG Leu 120	TTC Phe	TTG Leu	AAA Lys	ACT Thr	CGA Arg 125	GCT Ala	GAA Glu	GAG Glu	CTT Leu	GAC Asp 130	677
AAG Lys	GAA Glu	ATG Met	GGC Gly	CTA Leu 135	ATA Ile	ATA Ile	AGA Arg	CAA Gln	GAA Glu 140	GAA Glu	ACT Thr	GGC Gly	AGA Arg	719
CAT His 145	GTC Val	AGG Arg	ATG Met	CTG Leu	ACT Thr 150	CAT His	GAG Glu	ATA Ile	AGA Arg	AGC Ser 155	ACA Thr	CTC Leu	GAC Asp	761
AGA Arg	CAC His 160	ACA Thr	ATC Ile	TTG Leu	AAG Lys	ACT Thr 165	ACT Thr	CTT Leu	GTG Val	GAG Glu	CTA Leu 170	GGT Gly	AGG Arg	803

FIG. 22A

ACC Thr	TTA Leu	GAC Asp 175	CTG Leu	GCA Ala	GAA Glu	Cys	GCT Ala 180	TTG Leu	TGG Trp	ATG Met	CCA Pro	TGC Cys 185	CAA Gln	845
GGA Gly	GGC Gly	CTG Leu	ACT Thr 190	TTG Leu	CAA Gln	CTT Leu	TCC Ser	CAT His 195	AAT Asn	TTA Leu	AAC Asn	AAT Asn	CTA Leu 200	887
ATA Ile	CCT Pro	CTG Leu	GGA Gly	TCT Ser 205	ACT Thr	GTG Val	CCA Pro	ATT Ile	AAT Asn 210	CTT Leu	CCT Pro	ATT Ile	ATC Ile	929
AAT Asn 215	GAA Glu	ATT Ile	TTT	AGT Ser	AGC Ser 220	CCT Pro	GAA Glu	GCA Ala	ATA Ile	CAA Gln 225	ATT Ile	CCA Pro	CAT His	971
ACA Thr	AAT Asn 230	CCT Pro	TTG Leu	GCA Ala	AGG Arg	ATG Met 235	AGG Arg	AAT Asn	ACT Thr	GTT Val	GGT Gly 240	AGA Arg	TAT Tyr	1013
ATT Ile	CCA Pro	CCA Pro 245	Glu	GTA Val	GTT Val	GCT Ala	GTT Val 250	CGT Arg	GTA Val	CCG Pro	CTT Leu	TTA Leu 255	CAC His	1055
CTC Leu	TCA Ser	AAT Asn	TTT Phe 260	Thr	AAT Asn	GAC Asp	TGG Trp	GCT Ala 265	GAA Glu	CTG Leu	TCT Ser	ACT Thr	AGA Arg 270	1097
AGT Ser	TAT Tyr	GCG Ala	GTT Val	ATG Met 275	GTT Val	CTG Leu	GTT Val	CTC Leu	CCG Pro 280	1100	AAT Asn	GGC Gly	TTA Leu	1139
AGA Arg 285	Lys	TGG	CGT Arg	GAA Glu	CAT His 290	GAG Glu	TTA Leu	GAA Glu	CTT Leu	GTG Val 295	U	GTT Val	GTC Val	1181
GCA Ala	GAT Asp 300	Gli	GTT Val	GCT Ala	GTC Val	GCT Ala 305	Then	TCA Ser	CAT His	GCT Ala	GCA Ala 310	ATI	TTA Leu	1223
GAA Glu	GAT Asp	TCC Ser 315	: Met	CGA Arg	GCC Ala	CAT His	GAT Asp 320	, GII	CTC Lev	ATG Met	GAA Glu	CAG Glr 325	AAT Asn	1265
ATT Ile	GCT Ala	TTC a Lev	GAT ASE 330	GTA Val	GCT Ala	CGA Arg	CAA Glr	GAA Glu 335	A GCA 1 Ala	A GAG a Glu	ATO Met	GCC Ala	ATC a Ile 340	1307
CGT	GCI G Ala	A CG' a Ar	T AAG g Asi	GAC Asp 345	TTC Phe	CTI Lev	GCT Ala	GTC a Val	ATO Med 35	G AAC t Asi 0	CAT His	GAZ Gli	A ATG 1 Met	1349
Arc 35	g Th: 5	r Pr	o Me	c HIS	360)	L 11,			36	5	-	G CTT u Leu	1391
TT: Le	A GA u Gl 37	u Th	A GA r As	C TT/ p Let	A ACT	CCI Pro 37	J G T	G CA	G AG n Ar	A GT' g Va	T ATO	G AT t Il 0	T GAG e Glu	1433

FIG. 22B

ACC Thr	ATA Ile	TTG Leu 385	AAG Lys	AGC Ser	AGC Ser	AAT Asn	CTT Leu 390	CTT Leu	GCA Ala	ACA Thr	CTG Leu	ATA Ile 395	AAT Asn	1475
			GAT Asp 400											1517
			GGA Gly											1559
GCC Ala 425	GTT Val	AAT Asn	TTG Leu	ATA Ile	AAG Lys 430	CCA Pro	ATT Ile	GCA Ala	TCT Ser	TTG Leu 435	AAG Lys	AAA Lys	TTA Leu	1601
TCT Ser	ATA Ile 440	ACT Thr	CTT Leu	GCT Ala	TTG Leu	GCT Ala 445	CTG Leu	GAT Asp	TTA Leu	CCT Pro	ATT Ile 450	CTT Leu	GCT Ala	1643
GTG Val	GGT Gly	GAT Asp 455	GCA Ala	AAA Lys	CGT Arg	CTT Leu	ATC Ile 460	CAA Gln	ACT Thr	CTC Leu	TTA Leu	AAC Asn 465	GTG Val	1685
GTG Val	GGA Gly	AAT Asn	GCT Ala 470	GTG Val	AAG Lys	TTC Phe	ACT Thr	AAA Lys 475	GAA Glu	GGA Gly	CAT His	ATT Ile	TCA Ser 480	1727
ATT Ile	GAG Glu	GCT Ala	TCA Ser	GTT Val 485	GCC Ala	AAA Lys	CCA Pro	GAG Glu	TAT Tyr 490	GCG Ala	AGA Arg	GAT Asp	TGT Cys	1769
			GAA Glu											-1811
TAT	TTG Leu 510	CGT Arg	GTC Val	CAG Gln	GTT Val	AGA Arg 515	GAT Asp	ACT Thr	GGG Gly	TGT Cys	GGA Gly 520	ATT Ile	AGC Ser	1853
CCA Pro	CAA Gln	GAT Asp 525	ATA Ile	CCA Pro	CTA Leu	GTA Val	TTC Phe 530	ACC Thr	AAA Lys	TTT Phe	GCA Ala	GAG Glu 535	TCA Ser	1895
CGG Arg	CCT Pro	ACG Thr	TCA Ser 540	AAT Asn	CGA Arg	AGT Ser	ACT Thr	GGA Gly 545	GGG Gly	GAA Glu	GGT Gly	CTA Leu	GGG Gly 550	1937
CTT Leu	GCC Ala	ATT Ile	TGG Trp	AGA Arg 555	CGA Arg	TTT Phe	ATT Ile	CAA Gln	CTT Leu 560	ATG Met	AAA Lys	GGT Gly	AAC Asn	1979
			GAG Glu						Lys					2021
			GTG Val											2063

FIG. 22C

THIS PAGE BLANK (USPTO)

TTA CCT CTG CTA CCT ATG CCT CCC AGA GGC AGA TTG AAC AF Leu Pro Leu Leu Pro Met Pro Pro Arg Gly Arg Leu Asn Ly 595 600	
GGT AGC GAT GAT CTC TTC AGG TAT AGA CAG TTC CGT GGA GA Gly Ser Asp Asp Leu Phe Arg Tyr Arg Gln Phe Arg Gly As 610 615	p ZII,
GAT GGT GGG ATG TCT GTG AAT GCT CAA CGC TAT CAA AGA AG Asp Gly Met Ser Val Asn Ala Gln Arg Tyr Gln Arg Se 625 630	T 2190
ATG TAA A TGACAAAAGG ACATTGGTGT GACAAAGAAC ATTAAATCAT Met * 635	2236
GACTAGTGAA TTTGAGATTT CTTCACTGTT CTGTACACTC CAAATGGCAC	2286
AGTTTGTCTT GTAACTAACC TAATTCAATG CTCGTAAAGT GAGTACTGGA	2336
GTATCTTGAA AATGTAACTA TCGAATTTAT ACATCGAGCT TTTGACAAAA	2386
АААААААА АААААААА	2405

FIG. 22D

THIS PAGE BLANK (USPTO)