

Neural Networks Overview

Neural Network Representation

Neural Network Representation

Neural Network Representation learning

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

Vectorizing across multiple examples

One hidden layer Neural Network

Explanation for vectorized implementation

Recap of vectorizing across multiple examples

Pros and cons of activation functions

One hidden layer **Neural Network**

Why do you need non-linear activation functions?

Activation function

$$C_{13} = \rho_{13} \left(\frac{\rho_{13}}{\rho_{13}} + \rho_{13} \right) + \rho_{13}$$

$$\Rightarrow \int z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = g^{[1]}(z^{[1]}) \geq^{C(1)}$$

$$\Rightarrow z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$\Rightarrow a^{[2]} = y^{[2]}(z^{[2]}) \geq^{c_2}$$

$$g(z)=z$$

$$= \frac{\omega'}{\omega'}$$
incorrection
$$g(z)=z$$
function
$$g(z)=z$$

Derivatives of activation functions

Sigmoid activation function

Tanh activation function

ReLU and Leaky ReLU

Gradient descent for neural networks

Gradient descent for neural networks

Parameters:
$$(\sqrt{12})$$
 $(\sqrt{12})$ $(\sqrt$

Formulas for computing derivatives

For well population:

$$Z^{CI)} = L_{CI}^{CI)} \times + L_{CI}^{CII}$$

$$A^{CI)} = g^{CI)} (Z^{CI)} \times + L_{CI}^{CII} \times + L_{CII}^{CII} \times +$$

Backpropagation intuition (Optional)

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

Vectorized Implementation:

$$Z^{(1)} = \left(\begin{array}{c} U \\ X \\ X \\ Y \end{array} \right) = \left(\begin{array}{c} U \\ Y \end{array} \right) = \left(\begin{array}{c} U$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[2]} = dz^{[2]}$$

$$dz^{[2]}$$

Random Initialization

deeplearning.ai

What happens if you initialize weights to zero?

Andrew Ng

Random initialization

