Internship weekly report

Mathis Embit

MILES, LAMSADE

August 2, 2024

Introduction

This week: code update, wandb logs and report beginning.

Code update

In the discrete optimization we should not forget to reevaluate each batch with the KL as \mathcal{L} : $x_{1:n} := \tilde{x}_{1:n}^{(b^{\star})}$, where $b^{\star} = \arg\min_{b} \mathcal{L}(\tilde{x}_{1:n}^{(b)})$

We also train on a whole dataset rather than on an example.

At the beginning:

- model name
- user_prompt
- adv_string_init
- target
- epochs
- Ir
- w ce
- w_at
- w_nl
- w_en

But also:

- matrix to matrix cosine similarity mean
- matrix to matrix dot product mean
- matrix to matrix L2 distance mean

And:

- generation before opt, with target
- generation before opt, without target

For the continuous optimization:

For each iteration:

- loss
- cross entropy loss
- attraction loss
- negative log likelihood
- entropy
- attack success

And:

- iterate norms
- iterate metric with closest embedding for metric in metrics
- iterate metric closest embedding norms for metric in metrics

And at the end:

- generation after cont opt, with target
- generation after cont opt, without target,

For the discrete optimization:

- disc_num_steps
- batch_size
- topk

At each iteration:

current_loss

And at the end:

generation after discrete opt, without target

Report

Structure of the report:

- Introduction and Problem Statement
 - Context in LLMs
 - In-Context Learning
 - Opening Parameter-Efficient Fine-Tuning
 - Prompt Optimization
- State-of-the-Art Study
 - Attributing Output to Input Features
 - ② Discrete Prompting
 - Continuous Prompting
- Internship Contribution
 - Prompt Optimization Methods Comparison
 - Analysis of the Embedding Space
 - From Continuous Embeddings to Discrete Tokens
 - Toward a Probabilistic Characterization of LLMs
- Conclusion and Perspectives