

### September 27, 2024

## Contents

| C | ontents                              | i |
|---|--------------------------------------|---|
| 1 | Numbering Systems                    | 1 |
| 2 | Representations of Logical Functions | 3 |
|   | 2.1 Helpfull Stuff                   | 3 |
|   | 2.2 Definitions                      | 4 |
|   | 2.3 Problems                         | 4 |

## Chapter 1

# Numbering Systems

## Helpfull Stuff

| D 1 1   | D.     | TT 1 . 1    |
|---------|--------|-------------|
| Decimal | Binary | Hexadecimal |
| 0       | 0000   | 0           |
| 1       | 0001   | 1           |
| 2       | 0010   | 2           |
| 3       | 0011   | 3           |
| 4       |        | 4           |
| 5       | 0101   | 5           |
| 6       |        | 6           |
| 7       |        | 7           |
| 8       | 1000   | 8           |
| 9       |        | 9           |
| 10      | 1010   | A           |
| 11      |        | В           |
| 12      | 1100   | С           |
| 13      | 1101   | D           |
| 14      |        | E           |
| 15      | 1111   | F           |

| i     | 0 | 1 | 2 | 3 | 4  | 5  | 6  | 7   | 8   | 9   |
|-------|---|---|---|---|----|----|----|-----|-----|-----|
| $2^i$ | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 |

```
\begin{array}{l} 1110101011_2 = \\ 1*2^9 + 1*2^8 + 1*2^7 + 0*2^6 + 1*2^5 + 0*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 = \\ 2^8(0*2^3 + 0*2^2 + 1*2^1 + 1*2^0) + 2^4(1*2^3 + 0*2^2 + 1*2^1 + 0*2^0) + 2^0*(1*2^3 + 0*2^2 + 1*2^1 + 1*2^0) = \\ 2^8(0011_2) + 2^4(1010_2) + 2^0(1011_2) = \\ 2^{4*2}(0011_2) + 2^{4*1}(1010_2) + 2^{4*0}(1011_2) = \\ 16^2(0011_2) + 16^1(1010_2) + 16^0*(1011_2) = \\ 16^2(03) + 16^1(04) + 16^0*(B) = \\ 3AB_{16} \end{array}
```



## Chapter 2

## Representations of Logical Functions

## 2.1 Helpfull Stuff

| A | В | A*B | A | В | A+B |    |   |     |
|---|---|-----|---|---|-----|----|---|-----|
| 0 | 0 | 0   | 0 | 0 | 0   | _A |   | A'_ |
| 0 | 1 | 0   | 0 | 1 | 1   | 0  | ) | 1   |
| 1 | 0 | 0   | 1 | 0 | 1   | 1  |   | 0   |
| 1 | 1 | 1   | 1 | 1 | 1   |    |   |     |



|                 | Regular Algebra         | Boolean Algebra |
|-----------------|-------------------------|-----------------|
| Performed First | Parenthesis             | Parenthesis     |
|                 | Exponents               | Not             |
|                 | multiplication/division | And             |
| Performed Last  | addition/subtraction    | Or              |

| Axiom | Primary              | Dual                    |
|-------|----------------------|-------------------------|
| 1.    | x+0=x                | x*1=x                   |
| 2.    | x+1=1                | x*0=0                   |
| 3.    | x+x=x                | $x^*x=x$                |
| 4.    | x"=x                 |                         |
| 5.    | x+x'=1               | x*x'=0                  |
| 6.    | x+y=y+x              | x*y=y*x                 |
| 7.    | x+(y+z)=(x+y)+z      | $x^*(y^*z) = (x^*y)^*z$ |
| 8.    | $x^*(y+z)=x^*y+x^*z$ | x+(y*z)=(x+y)*(x+z)     |
| 9.    | (x+y)'=x'*y'         | (x*y)'=x'+y'            |

### 2.2 Definitions

Define each of the following. Some of the definitions should use terms you've defined.

### Minterm

### Maxterm

### Minterm Trick

### **Expansion Trick**

### 2.3 Problems

Solve the following problems in the space provided.

1. Given the circuit diagram below, produce the corresponding truth table.



 $2.\,$  Given the symbolic expression below, produce the corresponding circuit diagram.

$$F(A,B,C)=AB'+A(B'+C)$$

3. Given the symbolic expression below, produce the corresponding circuit diagram.

$$F(A,B,C,D)=A(BC+A(C'+D)')' + B'CD'$$

4. Given the symbolic expression below, produce the corresponding truth table.

$$F(A,B,C) = AB' + A(B'+C)$$

| _A | В | $\mathbf{C}$ | F(A,B,C) |
|----|---|--------------|----------|
| 0  | 0 | 0            |          |
| 0  | 0 | 1            |          |
| 0  | 1 | 0            |          |
| 0  | 1 | 1            |          |
| 1  | 0 | 0            |          |
| 1  | 0 | 1            |          |
| 1  | 1 | 0            |          |
| 1  | 1 | 1            |          |

5. Given the symbolic expression below, produce the corresponding truth table.

$$F(A,B,C,D){=}A(BC{+}A(C'{+}D)')' + B'CD'$$

| A | В | $\mid C \mid$ | D |  |  | F(A,B,C,D) |
|---|---|---------------|---|--|--|------------|
| 0 | 0 | 0             | 0 |  |  |            |
| 0 | 0 | 0             | 1 |  |  |            |
| 0 | 0 | 1             | 0 |  |  |            |
| 0 | 0 | 1             | 1 |  |  |            |
| 0 | 1 | 0             | 0 |  |  |            |
| 0 | 1 | 0             | 1 |  |  |            |
| 0 | 1 | 1             | 0 |  |  |            |
| 0 | 1 | 1             | 1 |  |  |            |
| 1 | 0 | 0             | 0 |  |  |            |
| 1 | 0 | 0             | 1 |  |  |            |
| 1 | 0 | 1             | 0 |  |  |            |
| 1 | 0 | 1             | 1 |  |  |            |
| 1 | 1 | 0             | 0 |  |  |            |
| 1 | 1 | 0             | 1 |  |  |            |
| 1 | 1 | 1             | 0 |  |  |            |
| 1 | 1 | 1             | 1 |  |  |            |

6. Given the truth table below, produce the corresponding symbolic expression.

| A | В | $\mid C \mid$ | F(A,B,C) | $\min term$ | $\max$ term |
|---|---|---------------|----------|-------------|-------------|
| 0 | 0 | 0             | 0        |             |             |
| 0 | 0 | 1             | 1        |             |             |
| 0 | 1 | 0             | 1        |             |             |
| 0 | 1 | 1             | 1        |             |             |
| 1 | 0 | 0             | 1        |             |             |
| 1 | 0 | 1             | 0        |             |             |
| 1 | 1 | 0             | 0        |             |             |
| 1 | 1 | 1             | 1        |             |             |

7. Given the word state below, produce the corresponding truth table. Design a circuit with two 2-bit inputs called  $A = a_1 a_0$  and  $B = b_1 b_0$  The single bit output F should equal 1 when A+B>6, otherwise F should equal 0.

| $a_1$ | $a_0$ | $b_1$ | $ b_0 $ | A | В | $F(a_1, a_0, b_1, b_0)$ |
|-------|-------|-------|---------|---|---|-------------------------|
| 0     | 0     | 0     | 0       |   |   |                         |
| 0     | 0     | 0     | 1       |   |   |                         |
| 0     | 0     | 1     | 0       |   |   |                         |
| 0     | 0     | 1     | 1       |   |   |                         |
| 0     | 1     | 0     | 0       |   |   |                         |
| 0     | 1     | 0     | 1       |   |   |                         |
| 0     | 1     | 1     | 0       |   |   |                         |
| 0     | 1     | 1     | 1       |   |   |                         |
| 1     | 0     | 0     | 0       |   |   |                         |
| 1     | 0     | 0     | 1       |   |   |                         |
| 1     | 0     | 1     | 0       |   |   |                         |
| 1     | 0     | 1     | 1       |   |   |                         |
| 1     | 1     | 0     | 0       |   |   |                         |
| 1     | 1     | 0     | 1       |   |   |                         |
| 1     | 1     | 1     | 0       |   |   |                         |
| 1     | 1     | 1     | 1       |   |   |                         |