

### KERJA PRAKTIK

## SISTEM SAMPLING PADA SAMPLE NEGATIVE TEMPERATURE COEFFICIENT (NTC) & APPLICATION OF DIGITAL POTENTIOMETER FOR VOLTAGE MONITORING

Oleh:

I Made Aditya Rama Putra

NRP. 4120600021

**Dosen Pembimbing** 

Farida Gamar, S.T., M.T., NIP. 199204272019032023

PROGRAM STUDI TEKNIK MEKATRONIKA DEPARTEMEN TEKNIK MEKANIKA DAN ENERGI POLITEKNIK ELEKTRONIKA NEGERI SURABAYA 2023

## HALAMAN PENGESAHAN KERJA PRAKTIK

# SISTEM SAMPLING PADA SAMPLE NEGATIVE TEMPERATURE COEFFICIENT (NTC) & APPLICATION OF DIGITAL POTENTIOMETER FOR **VOLTAGE MONITORING**

PT. Manufaktur Batam, Kepulauan Riau

Tanggal: 07 Januari – 07 Juli 2023

Oleh:

I Made Aditya Rama Putra NRP. 4120600021

Batam, 07 Juli 2023

Menyetujui:

Dosen Pembimbing

Koordinator Kerja Praktik

Farida Gamar S.T., MT NIP. 199011292019031015 Zaqiatud Darojah, S.Si., M.Si NIP. 199204272019032023

#### Mengetahui:

Ketua Program Studi Teknik Mekatronika

Mohamad Nasyir Tamara, S.ST., M.T. NIP. 198508072015041003

# HALAMAN PENGESAHAN KERJA PRAKTIK

#### MODUL I-SENSE, ROTARY PICK AND PLACE, DAN MINI CONVEYOR SEBAGAI MODUL PEMBELAJARAN

PT. xxxx Batam, Kepulauan Riau

Tanggal: 07 Januari – 07 Juli 2023

Oleh:

I Made Aditya Rama Putra

NRP. 4120600021

Batam, 07 Juli 2023

Menyetujui:

Pembimbing Kerja Praktik

**Syaifudin Muchlis** 

 $Employee\ number: BT05255$ 

#### Mengetahui:

Koordinator Recruitment, Training & Development, Internship Human Resource Departement PT. xxx

**Intan Purba** 

Employee number: BT06437

iii

(Halaman ini sengaja dikosongkan)

#### **ABSTRAK**

Dalam rangka mempersiapkan generasi Indonesia di masa depan, maka Politeknik Elektronika Negeri Surabaya (PENS) menempatkan kerja praktek sebagai mata kuliah wajib dan harus dilaksanakan di Program Studi Teknik Mekatronika. Kegiatan kerja praktek dilakukan di PT. XXX vang bergerak dibidang manufaktur sensor suhu (NTC), sensor untuk otomotif dan peralatan rumah tangga. NTC atau Negative Temperature Coefficient adalah resistor dengan koefisien suhu negatif, yang berarti resistansi menurun dengan meningkatnya suhu. Dalam setiap pembuatan produk baru NTC, diperlukan mekanisme sampling/uji lab yang baik agar menjamin kualitas NTC yang dihasilkan sesuai dengan permintaan pasar. Pada kerja praktek ini, kami berfokus pada pembuatan aplikasi yang terintegrasi dengan multimeter untuk melakukan sampling pada NTC yang diuji secara periodik dan kalkulasi temperatur pada masing masing sampel menggunakan persamaan Steinhart. Dibutuhkan minimal 39 sample untuk melakukan pengujian satu produk baru NTC. Dalam proses pengambilan data, digunakan digital multimeter (DMM) Keithley dengan fasilitas rear slot. Untuk Komunikasi antara Aplikasi dan DMM Keithley digunakan protokol GPIB (IEEE 488) dengan 24 pin konektor. Protokol GPIB dapat menghubungkan hingga 16 perangkat DMM Keithley dan interkoneksi perangkat hingga 20m. Selain itu terdapat berapa project tambahan antara lain adalah pembuatan sebuah alat untuk mengatur resistance dan monitoring voltage. Sistem tersebut menggunakan Mikrokontroler Raspberry Pi model 4B sebagai Processor utama dan menggunakan module IC MCP23017 sebagai external pin untuk mengatur digital potensio sebanyak 200 buah dan IC MCP4131 sebagai IC potensio yang akan diatur nantinya, sehingga diharapkan nantinya dapat menghemat dalam proses pembuatan sampel yang akan di tes juga memudahkan untuk adjustment resistance dan monitoring voltage menggunakan HMI.

Kata kunci :NTC, DMM, IEEE 488, Raspberry Pi, IC MCP23017, IC MCP4131, HMII

# **DAFTAR ISI**

| Judul                                        | 1  |
|----------------------------------------------|----|
| HALAMAN PENGESAHAN KERJA PRAKTIK             | 2  |
| HALAMAN PENGESAHAN KERJA PRAKTIK             | 3  |
| ABSTRAK                                      | 5  |
| DAFTAR ISI                                   | 6  |
| DAFTAR GAMBAR                                | 8  |
| DAFTAR TABEL                                 | 9  |
| KATA PENGANTAR                               | 10 |
| BAB 1 PENDAHULUAN                            | 12 |
| 1.1 Latar Belakang                           | 12 |
| 1.2 Perumusan masalah                        | 13 |
| 1.3 Tujuan dan Manfaat                       | 14 |
| 1.3.1. Tujuan                                | 14 |
| 1.3.2. Manfaat                               | 14 |
| 1.4 Ruang Lingkup pembahasan                 | 15 |
| 1.5 Sistematika Penulisan                    | 16 |
| BAB 2 GAMBARAN UMUM PERUSAHAAN               | 17 |
| 2.1 Sejarah Singkat Perusahaan               | 17 |
| 2.4 Lokasi Perusahaan                        | 20 |
| 2.5 Kesehatan dan Keselamatan Kerja (K3)     | 20 |
| 2.6 Etika Profesi                            | 21 |
| BAB 3 HASIL KEGIATAN PRAKTIK                 | 22 |
| 3.1. Bidang Kegiatan                         | 22 |
| 3.2. Kontribusi                              | 35 |
| 3.3. Korelasi kegiatan KP dengan mata kuliah | 36 |

| 1. Workshop Pemrograman                                   | 36 |
|-----------------------------------------------------------|----|
| BAB IV                                                    | 38 |
| 4.1 Kesimpulan                                            | 38 |
| 4.2 Saran                                                 | 38 |
| DAFTAR PUSAKA                                             | 40 |
| LAMPIRAN                                                  | 41 |
| Lampiran 1: Rekap Monitoring Kegiatan KP yang Telah Diver |    |
| Lampiran 2: Rekapitulasi Monitoring Kegiatan KP           |    |

# **DAFTAR GAMBAR**

| Gambar 3. 1 Wiring Diagram                                          | 27 |
|---------------------------------------------------------------------|----|
| Gambar 3. 2 Schematic I-sense                                       | 29 |
| Gambar 3. 3 Layout PCB I-sense                                      | 29 |
| Gambar 3. 4 Routing PCB I-sense                                     | 30 |
| Gambar 3. 5 3D I-sense                                              | 30 |
| Gambar 3. 6 Hasil Perakitan I-sense                                 | 31 |
| Gambar 3. 7 Referensi desain pick and place machine                 | 31 |
| Gambar 3. 8 Motion part pick and place machine                      | 34 |
| Gambar 3. 9 Kerangka dan motion part pick and place machine         | 34 |
| Gambar 3. 10 Pick and place machine                                 | 35 |
| Gambar 3. 11 Pick and place machine                                 | 35 |
| Gambar 3. 12 Pick and place machine                                 | 36 |
| Gambar 3. 13 Skema perhitungan Belt                                 | 37 |
| Gambar 3. 14 Kerangka Aluminium Mini Conveyor                       | 38 |
| Gambar 3. 15 Pemasangan Roller pada Kerangka Aluminium              | 39 |
| Gambar 3. 16 Hasil akhir Desain 3D Mini Conveyor                    | 39 |
| Gambar 3. 17 Hasil Render Desain 3D Mini Conveyor                   | 40 |
| Gambar 3. 18 Ilustrasi cara kerja Mini Conveyor sebelum dijalankan  | 40 |
| Gambar 3. 19 Ilustrasi cara kerja Mini Conveyor setelah dijalankan. | 41 |

# **DAFTAR TABEL**

| Tabel 3. 1 Plotting Pin                                   | 28 |
|-----------------------------------------------------------|----|
| Tabel 3. 2 Bill of Material Pick and Place                |    |
| Tabel 3. 3 List komponen Mini Conveyor dengan spesifikasi | 37 |