Lecture 6: Sequences & Series II

September 12, 2019

Tests of Convergence: Integral Test

If f is a continuous, positive, decreasing function on $[k, \infty]$ and $a_n = f(n)$, then the series $\sum_{n=k}^{\infty} a_n$ is convergent if and only if the improper integral $\int_k^{\infty} f(x) dx$ is convergent.

- (a) $\sum_{n=1}^{\infty} \frac{1}{x^p}$ for p > 1
- (b) $\sum_{n=1}^{\infty} ne^{-n^2}$
- (c) $\sum_{n=0}^{\infty} \frac{n^2}{n^3+1}$

Tests of Convergence: Limit Comparison Test

Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms. Then

- (i) If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then either both series converge or diverge.
- (ii) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- (iii) If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges then $\sum a_n$ diverges.

- (a) Test $\sum_{n=1}^{\infty} \frac{1}{2^n-1}$ for convergence.
- (b) Test $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ for convergence.
- (c) Test $\sum_{n=3}^{\infty} \frac{e^{-n}}{n^2+2n}$ for convergence.

Tests of Convergence: Ratio Test

Let a_n be any sequence

- (i) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$ then the series $\sum a_n$ is convergent.
- (ii) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ then the series $\sum a_n$ is divergent.
- (iii) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ then the test fails.

- (a) Test $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ for convergence
- (b) Test $\sum_{n=3}^{\infty} \frac{e^{4n}}{(n-2)!}$ for convergence
- (c) Test $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{6n+7}$ for convergence

Absolute Convergence

Consider any sequence $a_1, a_2, ...$ A series $\sum_{n=1}^{\infty} a_n$ convergences absolutely if the series $\sum_{n=1}^{\infty} |a_n|$ converges.

- (a) Test $\sum_{n=1}^{\infty} \frac{(-1)^{n+2}}{n^2}$ for absolute convergence
- (b) Test $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ for absolute convergence
- (c) Test $\sum_{n=1}^{\infty} \frac{\sin n}{n^3}$ for absolute convergence

Strategies for Testing Series

Classify according to the form of the series

- (1) P-series $\sum \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$
- (2) Geometric series $\sum ar^{n-1}$ or $\sum ar^n$ is convergent if |r| < 1 and divergent if $|r| \ge 1$
- (3) If the series has the form that is similar to (1) or (2), then use the limit comparison test
- (4) If you can notice that $\lim_{n\to\infty} a_n \neq 0$ then use the test for divergence theorem
- (5) For series involving factorials or other products, use the ratio test
- (6) If $a_n = f(n)$ and $\int_k^\infty f(x) dx$ is easy to evaluate, use the integral test

Power Series

Let x be any number and $\{a_n\}$ by a sequence of numbers. A power series is any series of the form

$$\sum_{n=1}^{\infty} a_n x^n$$

with partial sums $S_n = a_0 + a_1x + a_2x^2 + ... + a_nx^n$

- (a) For what values of x does the series $\sum_{n=0}^{\infty} rx^n$ converge?
- (b) For what values of x does the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converge?

Taylor Series

Most common use is to approximate the value of functions at particular points.

Theorem (Taylor Series)

Let f be a function defined on a neighborhood of $c \in \mathbb{R}$ with n continuous derivatives. Then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n$$

is called the Taylor series of f around c.

- (a) Find the Taylor Series expansion of $f(x) = e^x$ about x = 0
- (b) Find the Taylor Series expansion of $f(x) = \ln x$ about x = 2
- (c) Find the Taylor Series expansion of $f(x) = (1 + x)^n$ about x = 0

