2.
$$\frac{n}{(a)}\sum_{k=0}^{\infty}\lambda^{3} = \left[\frac{n(n+1)}{2}\right]^{2} = \frac{n^{4}+2n^{3}+n^{2}}{4}$$
 $C_{1}n^{4} = \frac{n^{4}+2n^{3}+n^{2}}{4} = C_{2}n^{4}$
 $\Rightarrow C_{1} \leq \frac{1}{4} + \frac{1}{2n} + \frac{1}{4n^{2}} \leq C_{2}$

when $n_{0} \geq 1$. $\frac{1}{4} + \frac{1}{2} + \frac{1}{4} = 1$. $C_{1} \leq \frac{1}{4}$. $C_{2} \geq 1$ fix 1 .

 $\frac{1}{4} \leq \frac{1}{4} + \frac{1}{2} + \frac{1}{4} \leq 1$.

 $\frac{1}{4} \leq \frac{1}{4} + \frac{1}{2} + \frac{1}{4} \leq 1$.

 $\frac{1}{4} \leq \frac{1}{4} + \frac{1}{2} + \frac{1}{4} \leq 1$.

(h)
$$\lim_{n\to\infty} \frac{n^2+62^n}{z^{2^n}} = 0$$
 $\lim_{n\to\infty} \frac{n^2+62^n}{z^{2^n}} = 0$
 $\lim_{n\to\infty} \frac{n^2+62^n}{z^{2^n}} = 0$

(c)
$$33n^3 + 4n^2 = \Omega(n^2)$$

 $f(n) = \Omega(g(n)) \Rightarrow g(n) = n^3$
取 $C = 33$.
 $f(n) \ge Cg(n)$
 $\Rightarrow 33n^3 + 4n^2 \ge 33n^3$
 $\Rightarrow 4n^2 \ge 0$. 超真.
 $IRROW IN (IRROW IN EXAMPLE)$
 $IRROW IN EXAMPLE (IRROW IN EXAMPLE)$
 $IRROW$

3.

(a)
$$n^2 \log n = \Theta(n^2)$$
,

 $n^2 \log n \leq Cn^2$. $\forall n \geq N_0$.

 $\Rightarrow \log n \leq C$.

 $\lim_{n\to\infty} \log n = \infty$.

1: $7\sqrt{3} = C = 0$.

8. A*B*C (Coperand) pop

Soperator

Boperand / pop

**Boperand / pop A (*CB) operand \ pop

**Soperator* > push **CBA-*.

**A operand / pop