

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ
Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής
Εργαστήριο Ηλεκτρονικής

Ηλεκτρονική Ι

40 Εξάμηνο, Ακαδημαϊκό Έτος 2020-2021

2η Σειρά Ασκήσεων

Καθ. Παύλος-Πέτρος Σωτηριάδης

9 Μαΐου 2021

Μελέτη: Από το βιβλίο Μικροηλεκτρονικά Κυκλώματα του Sedra Smith, 7^{η} έκδοση το 4° κεφάλαιο (Δίοδοι). Από το 6° κεφάλαιο (Τρανζίστορ BJT) τις υποενότητες 6.1, 6.2 και 6.3. Από το 7° κεφάλαιο (ανάλυση μικρού σήματος) τις υποενότητες που αφορούν το τρανζίστορ BJT.

Διευκρινίσεις:

- Οι ασκήσεις είναι ατομικές και παραδίδονται **ηλεκτρονικά** στη σελίδα του μαθήματος στο mycourses, έως και την Δευτέρα, **24 Μαϊου** 2021. Η μορφή του αρχείου να είναι **PDF**
- Κάθε επιστημονικά τεκμηριωμένη λύση θα θεωρηθεί ορθή.
- Όλες οι ασκήσεις της σειράς βαθμολογούνται ισοδύναμα
- Ορθή επίλυση όλων των σειρών ασκήσεων που θα δοθούν μέσα στο εξάμηνο προσδίδει βαθμολογική ενίσχυση ως και 1 μονάδα στον τελικό βαθμό. Η παράδοσή τους δεν είναι υποχρεωτική.

Λσκηση 1^η

- A) Στο παραπάνω σχήμα, δίνονται V_{BB} =10V, V_{CC} =10V, R_E =4kΩ, V_{BE} =0.7V, β =50. Βρείτε την τιμή της αντίστασης R_B (που βρίσκεται σε σειρά με τη V_{BB}), ούτως ώστε να ισχύσει V_{CE} =5V.
- B) Για την τιμή της R_B που βρήκατε, υπολογίστε το κέρδος τάσης μικρού σήματος $A=v_{out}/e_s$. Οι πυκνωτές να θεωρηθούν «άπειρης» χωρητικότητας. Επίσης να αγνοηθεί το φαινόμενο Early.

Ασκηση 2^η

 Στο κύκλωμα του παραπάνω σχήματος δίνονται: $R_{B1}\!\!=\!\!15k\Omega,\,R_{B2}\!\!=\!\!20k\Omega$, $R_{E}\!\!=\!\!1k\Omega$, $V_{EB}=0.7V$, $\beta=100$, $V_{CC}=10V$.

- A) Υπολογείστε την DC τάση στη βάση του PNP transistor.
- Β) Για Z_s =100 Ω , R_L =1 $k\Omega$, «άπειρες» χωρητικότητες πυκνωτών και αγνοώντας το φαινόμενο Early, να υπολογιστεί το κέρδος τάσης μικρού σήματος A=v_o/v_s.

Υπόδειξη: Πρόκειται για PNP transistor συνδεδεμένο σε αρνητική τροφοδοσία.

Ασκηση 3^η

Στο κύκλωμα του παραπάνω σχήματος δίνεται β=100, V_{BE} =0.7V. Να αγνοηθεί το φαινόμενο Early.

- A) Βρείτε τις παραμέτρους του μικρού σήματος (g_m, r_e, r_π) , και υπολογίστε το κέρδος τάσης μικρού σήματος $A{=}u_o/u_{sig}$.
- Β) Επαναλάβετε για ανοιχτοκυκλωμένο πυκνωτή C_B .
- $\Gamma)$ Βρείτε την αντίσταση εισόδου R_{in} , και για τις 2 παραπάνω περιπτώσεις.

Για το κύκλωμα του παραπάνω σχήματος, δίνονται r_{ac} =3k Ω , R_{EU} =100 Ω , R_{EB} =100 Ω , R_{L} =6k Ω , r_{g} =100 Ω , R_{1} = R_{2} =20k Ω , V_{BE} =0.7V, V_{CC} =10V και β =100. Επίσης το φαινόμενο Early αγνοείται.

Να βρείτε το κέρδος τάσης του ενισχυτή, λαμβάνοντας την έξοδο στα άκρα της αντίστασης $r_{ac}.$

Λσκηση 5^η

Σχήμα 5

Για το κύκλωμα του παραπάνω σχήματος, υπολογίστε τις αναγραφόμενες DC τάσεις θεωρώντας $|V_{BE}|$ =0.7V και A) β άπειρο, B) β=100.

Ασκηση 6^η

Σχήμα 6

Για το κύκλωμα του παραπάνω σχήματος, υπολογίστε τις DC τάσεις σε όλους τους κόμβους θεωρώντας $|V_{BE}|$ =0.7V, V_{D} =0.7V και A) β άπειρο, B) β=100.

Υπόδειξη: Αφού βρείτε τις V_{B1} , V_{E1} , εκφράστε την τάση V_{C1} του συλλέκτη του Q_1 , μέσω του ρεύματος I_{C1} , ως $V_{C1}{=}A_1{+}B_1V_{C2}$ και την τάση V_{C2} , του συλλέκτη του Q_2 , μέσω του ρεύματος I_{C2} , ως $V_{C2}{=}A_2{+}B_2V_{C1}$.

Άσκηση 7

Σχήμα 7

Στα κυκλώματα του σχήματος 7, βρείτε τις τιμές I και V εάν A) Οι δίοδοι είναι ιδανικές και B) Παρουσιάζουν πτώση τάσης 0.7V.

Ασκηση 8

Σχήμα 8

Στο κύκλωμα του σχήματος 8, να βρεθεί και να σχεδιαστεί η χαρακτηριστική συνάρτηση μεταφοράς $u_o=f(u_i)$. Δίνεται ότι οι δίοδοι D_1 και D_2 είναι όμοιες με τάση αγωγής 0.7V, και η zener έχει τάση διάσπασης 8.6V.