SINGAPORE POLYTECHNIC 2020 / 2021 Semester 1 Exam

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DARE/DBEN/DCEP/DME/DMRO

Year: 2 FT Page 1 of 5

· oui	: 2 F I	Page 1 of 5
No.	SOLUTION	Total
Α	b, a, c, c, d	10
В1а	$f(x,y) = \pi x \sin\left(y^2\right)$	10
	$f_x = \pi \sin(y^2) \qquad f_y = 2\pi xy \cos(y^2)$	
B1b	$g(x,y) = (x^2 - 2)e^{4y}$	
	$g_x = 2xe^{4y}$	
	At $(1, 0)$, $g_x(1, 0) = 2(1)e^{4(0)} = 2$	10
B2a	$u = x^5 \Rightarrow \frac{du}{dx} = 5x^4 \Rightarrow 2du = 10x^4 dx$	10
	$\int 10x^4 e^{x^5} dx = 2\int e^u du = 2e^u + C = 2e^{x^5} + C$	
B2b	$\int_{1}^{2} t \ln t dt$ Let $u = \ln t \to du = \frac{1}{t} dt$	
	$= \left(\frac{t^2}{2} \ln t\right)_1^2 - \int_1^2 \frac{1}{t} \cdot \frac{t^2}{2} dt \qquad dv = t dt \to v = \int t dt = \frac{t^2}{2}$	
	$=2\ln 2 - 0 - \frac{1}{4} \left[t^2\right]_1^2$	
	$= 2 \ln 2 - \frac{1}{4} (4 - 1) = 2 \ln 2 - \frac{3}{4} or 0.64$	
ВЗа	f(t) is neither even nor odd	10
B3b	$T = 2 \to \omega_0 = \frac{2\pi}{T} = \pi$	
	$a_0 = \frac{1}{T} \int_{-1}^{1} f(t) dt = \frac{1}{2} \int_{-1}^{1} (t+1) dt = \frac{1}{2} \left(\frac{(t+1)^2}{2} \right)_{-1}^{1} = 1$	
ВЗс	$b_n = \frac{-2}{n\pi} \cos(n\pi)$	
	$b_1 = \frac{-2}{\pi} \cos \pi = \frac{2}{\pi}, b_2 = -\frac{1}{\pi}, b_3 = \frac{2}{3\pi}$	
B3d	$f(t) = a_0 + b_1 \sin \pi t + b_2 \sin 2\pi t + b_3 \sin 3\pi t + \cdots$	
	$=1+\frac{2}{\pi}\sin \pi t - \frac{1}{\pi}\sin 2\pi t + \frac{2}{3\pi}\sin 3\pi t + \cdots$	

SINGAPORE POLYTECHNIC 2020 / 2021 Semester 1 Exam

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DARE/DBEN/DCEP/DME/DMRO

Year: 2 FT Page 2 of 5

No.	SOLUTION	Total
B4a	$\frac{dy}{dx} + \frac{2}{x}y = \frac{\sin(3x)}{x^2}$ Integrating Factor $\mu(x) = e^{\int \frac{2}{x} dx} = e^{2\ln x} = x^2$ $x^2 \frac{dy}{dx} + 2xy = \sin(3x) \rightarrow \frac{d}{dx}(x^2y) = \sin(3x)$ $x^2 y = \int \sin(3x) dx = -\frac{1}{3}\cos(3x) + C or y = \frac{1}{x^2} \left[-\frac{1}{3}\cos(3x) + C \right]$	10
B4b	$x^{2}y = -\frac{1}{3}\cos(3x) + C$ given $y(\pi) = \frac{1}{\pi^{2}}$: $\pi^{2} \cdot \frac{1}{\pi^{2}} = -\frac{1}{3}\cos(3\pi) + C \rightarrow C = \frac{2}{3}$ Thus, the particular solution is: $y = \frac{1}{3x^{2}}[2 - \cos(3x)]$	
B5a	$\mathcal{L}\left\{\frac{1}{2} - 3t^2 + e^{-t}\right\} = \frac{1}{2} \cdot \frac{1}{s} - 3 \cdot \frac{2!}{s^{2+1}} + \frac{1}{s - (-1)} = \frac{1}{2s} - \frac{6}{s^3} + \frac{1}{s+1}$	10
B5b	$\sin(2t+\pi) = \sin 2t \cos \pi + \cos 2t \sin \pi = -\sin 2t$ $\mathcal{L}\left\{\sin(2t+\pi)\right\} = -\frac{2}{s^2+2^2} = -\frac{2}{s^2+4}$	
B5c	$\mathcal{L}\{t\cos 2t\} = \frac{s^2 - 2^2}{\left(s^2 + 2^2\right)^2} = \frac{s^2 - 4}{\left(s^2 + 4\right)^2}$ $\mathcal{L}\{e^{3t} t\cos 2t\} = \frac{s^2 - 4}{\left(s^2 + 4\right)^2} \bigg _{s \to s - 3} = \frac{(s - 3)^2 - 4}{\left((s - 3)^2 + 4\right)^2}$	
B6a	$\mathcal{L}^{-1}\left\{\frac{2}{s-3} + \frac{2}{s^3} + \frac{1}{s^2+4}\right\} = \mathcal{L}^{-1}\left\{2 \cdot \frac{1}{s-3} + \frac{2!}{s^{2+1}} + \frac{1}{2} \cdot \frac{2}{s^2+2^2}\right\} = 2e^{3t} + t^2 + \frac{1}{2}\sin 2t$	10
B6b	$\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+9}\right\} = \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\} = \cos 3t$ $\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+9}\right\} = \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+9}\Big _{s\to s+1}\right\} = e^{-t}\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\} = e^{-t}\cos 3t$	

SINGAPORE POLYTECHNIC 2020 / 2021 Semester 1 Exam

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DARE/DBEN/DCEP/DME/DMRO

Year: 2 FT Page 3 of 5

No.					SOLUTIO	N				Total	ı
B7	$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 3y = 0$									10	
	a Aux. equation is: $\lambda^2 + 2\lambda - 3 = 0$										
	Thus: $(\lambda - 1)(\lambda + 3) = 0 \Rightarrow \lambda = 1, -3$										
	b : the general solution is: $y = Ae^x + Be^{-3x}$										
	$c y(x) = Ae^x + Be^{-3x} \rightarrow y'(x) = Ae^x - 3Be^{-3x}$										
	given $y(0) = 3$, i.e. $3 = A + B (1)$										
	given $y'(0) = 3$, i.e. $3 = A + B$ (1) given $y'(0) = 1$, i.e. $1 = A - 3B - (2)$										
	hend	ce <i>A</i> =	$=\frac{5}{2}$, and	$R = \frac{1}{}$							
	nen	00 71 -	2, and	2							
	Thus the particular solution is: $y(x) = \frac{5}{2}e^x + \frac{1}{2}e^{-3x}$										
C1a										11	
	<i>t</i> (s)	0	0.3	0.6	0.9	1.2	1.5	1.8			
	v (volts)	1	0.9828	0.9306	0.8409	0.7071	0.5087	0			
Ì	v^2	1	0.9659	0.8660	0.7071	0.5000	0.2588	0			
	$h = \frac{1.8 - 0}{6}$	= 0.3									
	Simpson's	rule fo	rmula gi	ves							
	$\int_0^{1.8} v^2 dt \approx \frac{1}{3} h(y_0 + y_6 + 4(y_1 + y_3 + y_5) + 2(y_2 + y_4))$										
	$= \frac{1}{3}(0.3)(1+0+4(0.9659+0.7071+0.2588)+2(0.8660+0.5000))$										
	= 1.1459										
C1b	$v_{rms} = \sqrt{\frac{1}{1.8 - 0} \int_0^{1.8} v^2 dt} = \sqrt{\frac{1.1459}{1.8}} = 0.79789 \approx 0.80 \text{ volts}$										
C2a	Let <i>T</i> be the temperature of the body							14			
	According to Newton's law of cooling,										
	$\frac{dT}{dt} = -k\left(T - T_s\right) = -k(T - 5)$										

SINGAPORE POLYTECHNIC 2020 / 2021 Semester 1 Exam

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DARE/DBEN/DCEP/DME/DMRO

Year: 2 FT Page 4 of 5

No.	SOLUTION	Total							
C2b	$\int \frac{1}{T-5} dT = \int -k dt$								
	$ \ln \left T - 5 \right = -kt + C $								
	$T(t) = 5 + e^{-kt+C} = 5 + Ae^{-kt}$								
	We know that $T(0) = 100$, $T(10) = 60$, hence								
	$100 = 5 + Ae^0 \to 95 = A$								
	$60 = 5 + Ae^{-10k} \to 55 = 95e^{-10k}$								
	$\frac{55}{95} = e^{-10k} \to k = -\frac{1}{10} \ln \left(\frac{55}{95} \right) = 0.0547$								
	$T(t) = 5 + 95e^{-0.0547t}$								
C2c	$T(t) = 5 + 95e^{-0.0547t}$								
	$T(\tau) = 20^{\circ} \mathrm{C}$								
	$20 = 5 + 95e^{-0.0547\tau} \to 15 = 95e^{-0.0547\tau}$								
	$\frac{15}{95} = e^{-0.0547\tau} \to \tau = \frac{1}{-0.0547} \ln\left(\frac{15}{95}\right) = 33.745 \text{ min}$								
	i.e. Jim need to wait for another 23.745 min.								
СЗа	$\frac{40}{(s+1)(s+4)(s^2+1)} = \frac{A}{s+1} + \frac{B}{s+4} + \frac{Cs+D}{s^2+1}, \ A = \frac{20}{3} \text{ and } C = -\frac{100}{17}$	15							
	$40 = A(s+4)(s^2+1) + B(s+1)(s^2+1) + (Cs+D)(s+1)(s+4)$								
	$s = -4: 40 = B(-3)(17) \to B = -\frac{40}{51}$								
	Constant term: $40 = 4A + B + 4D$								
	$D = \frac{1}{4} \left(40 - 4 \left(\frac{20}{3} \right) + \frac{40}{51} \right) = \frac{1}{4} \left(\frac{2040 - 1360 + 40}{51} \right) = \frac{60}{17}$								
	$\therefore \frac{40}{(s+1)(s+4)(s^2+1)} = \frac{20}{3} \cdot \frac{1}{s+1} - \frac{40}{51} \cdot \frac{1}{s+4} - \frac{100}{17} \cdot \frac{s}{s^2+1} + \frac{60}{17} \cdot \frac{1}{s^2+1}$								

SINGAPORE POLYTECHNIC 2020 / 2021 Semester 1 Exam

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DARE/DBEN/DCEP/DME/DMRO

Year: 2 FT Page 5 of 5

No.	SOLUTION	Total					
C3b	(i) $V_{in}'(t) = R\frac{di}{dt} + L\frac{d^2i}{dt^2} + \frac{1}{C}i$, $V_{in}(t) = -40\cos t$						
	$V_{in}'(t) = -40(-\sin t) = 40\sin t$						
	R = 5, $L = 1$, $C = 0.25$						
	$\therefore \frac{d^2i}{dt^2} + 5\frac{di}{dt} + 4i = 40\sin t$						
	(ii) Let $I(s) = \mathcal{L}\{i(t)\}$						
	$s^{2}I - si(0) - i'(0) + 5(sI - i(0)) + 4I = \frac{40}{s^{2} + 1}$						
	since $i(0) = i'(0) = 0$,						
	$s^{2}I + 5sI + 4I = \frac{40}{s^{2} + 1} \implies (s+1)(s+4)I = \frac{40}{s^{2} + 1}$						
	$I = \frac{40}{(s+1)(s+4)(s^2+1)}$						
	(iii) $I = \frac{40}{(s+1)(s+4)(s^2+1)}$						
	$= \frac{20}{3} \cdot \frac{1}{s+1} - \frac{40}{51} \cdot \frac{1}{s+4} - \frac{100}{17} \cdot \frac{s}{s^2+1} + \frac{60}{17} \cdot \frac{1}{s^2+1}$						
	$i(t) = \mathcal{L}^{-1} \left\{ \frac{20}{3} \cdot \frac{1}{s+1} - \frac{40}{51} \cdot \frac{1}{s+4} - \frac{100}{17} \cdot \frac{s}{s^2+1} + \frac{60}{17} \cdot \frac{1}{s^2+1} \right\}$						
	$=\frac{20}{3}e^{-t}-\frac{40}{51}e^{-4t}-\frac{100}{17}\cos t+\frac{60}{17}\sin t$						
C3c	$i_{\text{steady-state}} = \frac{60}{17}\sin t - \frac{100}{17}\cos t$						
	$i_{\text{transient-state}} = \frac{20}{3}e^{-t} - \frac{40}{51}e^{-4t}$						