

AFWAL-TR-87-3091

HEAT TRANSFER RATES ON AN ANALYTIC FOREBODY IN THE AFWAL MACH 3 HIGH REYNOLDS NUMBER WIND TUNNEL

AD-A199 523

FRACHT AFRONAUTEAL

Comparison of Test Results with Predictions from STAPAT (A Specific Thermal Analyzer Program for Aircraft Transparencies)

Charles A. Babish III and James R. Hayes

Aircrew Protection Branch
Vehicle Subsystems Division

High Speed Aero Performance Branch
Aeromechanics Division

April 1988

Final Report for the Period October 1984 - September 1986

Approved for public release; distribution unlimited.

FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

		(REPORT (OCUMENTATIO	N PAGE Form Approved OMB No. 0704-0188			
	SECURITY CLAS SIFIED	SIFICATI	ON		16. RESTRICTIVE N	MARKINGS A	*	<u></u>
2a. SECURITY CLASSIFICATION AUTHORITY N/A			······································		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution			
2b DECLASS	FICATION / DOV	VNGRA	DING SCHEDU	LE	is unlimit	-	Cicago	, diversion
4. PERFORMI	A NG ORGANIZAT	TION RE	PORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	IMBER(S)
AFWAL-	TR-87-309	l			İ			
	PERFORMING			6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	NITORING ORGAN	NIZATION	
Flight AFWAL	Dynamics AFSC	Labo	ratory	(If applicable) AFWAL/FIER				
1	(City, State, ar		-	5/22 /552	7b. ADDRESS (Cit	y, State, and ZIP (ode)	
Wright-Patterson AFB, Ohio 45433-6553								
			<u> </u>					
8a. NAME OF ORGANIZ	FUNDING / SPO ATION	ÖNSÖRI	NG	8b. OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
8c. ADDRESS (City, State, and ZIP Code)			10. SOURCE OF FUNDING NUMBERS					
PROGRAM PROJECT TASK W			WORK UNIT ACCESSION NO					
			62201F	2402	03	50		
11 TITLE (Include Security Classification)								
Heat Transfer Rates on an Analytic Forebody in the AFWAL Mach 3 High Reynolds Number Wind Tunnel - Comparison of Test Results with Predictions from STAPAT								
12 PERSONAL AUTHOR(S)								
Babish, Charles A. III and Hayes, James R.								
13a TYPE OF Final	REPORT		136 TIME CO	OVERED Oct _{TO} 86 Sep	14. DATE OF REPORT	RT (Year, Month, I c. 22	Day) 15	PAGE COUNT 123
16. SUPPLEMENTARY NOTATION								
17.	COSATI	CODES		18 SUBJECT TERMS (Continue on reverse	if necessary and	identify i	by block number)
FIELD	Aerodynamic Heating Computer Programs							
20	01	ļ		Wind Tunnel T				sonic Speeds
		reverse	if necessary	and identify by block no d tunnel test p	umber)			· · · · · · · · · · · · · · · · · · ·
) Inis we're used	report de	escri heat	bes a win transfor	d tunnel test p rates on an and	rogram and the	ne STAPAT co	mputer 3 O	program which
Specific	Thermal Ar	nalyz	er Progra	m for Aircraft	Transparencie	es. defines	aerodv	
environme:	nts over w	indsl	hields an	d canopies of h	igh-speed air	craft. As	a chec	k of its
validity,	STAPAT pr	edic	tions wer	e compared with	measurements	on an anal		
snape is	representa	itive	of the f	orward fuselage	of an aircra	ift. The me		ents were
at high R	evnolds no	mber	s and enu reverobed	experimental to ersonic speeds	ecnnique for	determining	neat	transier rates
technique	incorpora	ited a	a means f	or raising the	temperature d	of the outer	surfa	ce of the
technique incorporated a means for raising the temperature of the outer surface of the analytic forebody above the recovery temperature of the tunnel which was operated at stagna-				ated at stagna-				
tion temperatures near atmospheric. This technique			ique required	l establishm	ent of	steady state		
wall to d	s and use etermine +	or a	special	three-wire, coar	xial thermoco	ouple probe	insert	ed in the model
flow, and	the tempe	ratu	re of the	e of the outer : backface, which	suriace, which h was in cont	n was in co act with ci	ntact roulst	ing hot water
20 DISTRIBUT	ION / AVAILAB	LITY OF	ABSTRACT		21. ABSTRACT SEC	URITY CLASSIFICA		and the water.
	SIFIED/UNLIMIT F RESPONSIBLE			PT. DTIC USERS	UNCLASSIFI		122	
	A. BABISH		JUAL		226 TELEPHONE (III (513) 255-50			L/FIER
DD Form 147	73, JUN 86			Previous editions are o	obsolete.		LASSIFICA	ATION OF THIS PAGE
						UNCLAS	SIFIED	J

Sylver them

19 continued.

Heat transfer rates were significantly influenced by tunnel stagnation temperatures, gage surface temperatures and water temperatures. Use of a nondimensional heat transfer coefficient, the Stanton number, effectively eliminated heat transfer rate dependency upon these temperatures and therefore was shown to be the best way to evaluate heat transfer rates over the analytic forebody. There was very good agreement between the measured and STAPAT-calculated Stanton number relationships with tunnel stagnation pressure and angle of attack. Both showed slight but general decreases in Stanton number with increasing pressure and angle of attack. The magnitudes of the measured heat transfer rates, their distribution over the analytic forebody and their good agreement with STAPAT calculations combined to provide validations of both the STAPAT program and the experimental technique for heat transfer testing in cold flow wind tunnels.

ion For	
GRARI TAB bunged Tigation	
ibution/	Codes
Avail a	
	GRAPI TAB Sunced Fication Ibution/ lubility Avail a

FOREWORD

This report describes a cooperative in-house program between the Aircrew Protection Branch (AFWAL/FIER) of the Vehicle Subsystems Division (AFWAL/FIE) and the High Speed Aero Performance Branch (AFWAL/FIMG) of the Aeromechanics Division (AFWAL/FIM). Both Branches are part of the Flight Dynamics Laboratory at the Air Force Wright Aeronautical Laboratories (AFWAL), Wright-Patterson Air Force Base, Ohio 45433-6553. The program was documented under Project 2402, "Vehicle Equipment Technology," Task 03, "Aerospace Vehicle Recovery and Escape Subsystems," Work Unit 50, "Analysis of Aircraft Transparencies."

The work reported herein was performed during the period October 1984 to September 1986, under the direction of the authors, Mr Charles A. Babish III (AFWAL/FIER) and Mr James R. Hayes (AFWAL/FIMG). The report was released by the authors in September 1987.

The authors wish to thank Mr Max E. Hillsamer of the AFWAL Wind Tunnel Facilities for his contributions to the successful operation of the Mach 3 wind tunnel. Special acknowledgement is made to Mr M. Joseph Rakolta, a student at the University of Cincinnati, for his assistance in STAPAT operation during the periods he served as an engineering aid at AFWAL.

The tunnel interference effects models were fabricated by the Fabrication/Modification Division of the 4950th Test Wing at Wright-Patterson Air Force Base, Ohio. The heat transfer rate test model was designed by Sverdrup Technology, Inc and fabricated by Schmiede Machine and Tool Corporation, both of Tullahoma, Tennessee. The support given by all personnel at these organizations is especially appreciated.

TABLE OF CONTENTS

SECTI	ON		PAGE			
Ī	INT	RODUCTION	1			
ΙI	DES	CRIPTION OF THE TEST PROGRAM	2			
	1.	Technique for Heat Transfer Testing in Cold Flow Wind Tunnels	2			
	2.	AFWAL Mach 3 High Reynolds Number Wind Tunnel Test Facility	2			
	3.	Analytic Forebody Wind Tunnel Models	4			
		a. Analytical Description of the Surface Shape	4			
		b. Tunnel Interference Effects Models	8			
		c. Heat Transfer Rate Model	8			
	4.	Model Support System	13			
	5.	Instrumentation and Data Gathered	14			
		a. Heat Transfer Rate Gage Temperatures	14			
		b. Instrumentation for Other Data	14			
	6.	Test Procedures	16			
	7.	Data Reduction and Precision	16			
		a. Data Reduction Methods and Equations	18			
		(1) Wind Tunnel Flow Conditions	18			
		(2) Model Characteristics and Heat Loads	18			
		b. Precision of the Data	22			
	8.	Run Summary	25			
III	DES	DESCRIPTION OF THE STAPAT PROGRAM				
	1.	General Characteristics of STAPAT	27			
	2.	STAHET Capabilities and Limitations	27			
	3.	STAHET Modifications	28			
		a. Nonwedge Shaped Wind Tunnel Models	28			
		(1) Code Changes	28			
		(2) STAHET Model of the Analytic Forebody	29			
		b. Nonzero Pressure Coefficients in Shadow Regions	29			
		(1) Correlation Equation	31			
		(2) Comparisons With Experimental Data	32			
		(3) Code Changes	36			
		c. Nonzero Angles of Attack	36			
	4.	Forms of the STAPAT Results	37			

AFWAL-TR-87-3091

TABLE OF CONTENTS (Concluded)

SECT	ION			PAGE
١٧	RES	SULTS,	DISCUSSION, AND COMPARISONS	39
	1.	Form	of the Test Data	39
	2.	Flow	Field	39
		a. S	chlieren Photographs	39
		b. 5	TAPAT Predictions of Boundary Layer Edge Conditions	42
			urface Pressures	46
	3.	Heat	Transfer Rates	49
		a. T	ypical Distributions From Wind Tunnel Data	49
		b. T	ypical Distributions From STAPAT Predictions	49
		c. E	ffect of STAPAT Input Variables	53
		d. Te	emperature Fffects	55
		()	1) Ratio, T-S/TO	55
		(2	2) Water Temperature, T-WATER	58
		(:	B) Tunnel Stagnation Temperature, TO	60
		(4) Adiabatic Wall Temperature, T _{AW}	60
		(5		s 62
		e. Et	fect of Tunnel Stagnation Pressure	63
		(1) Stanton Number Distributions	63
		(2	?) Boundary Layer Type	63
		f. Sp	panwise Gradients	65
		(1	.) Stanton Number Distributions	65
		(2) Strong Influence of Surface Pressures	65
	4.	Angle-	of-Attack Effects	67
		a. He	at Transfer Rates	67
		b. F1	ow Field	67
V	CONC	LUSTONS	AND RECOMMENDATIONS	73
	1.	Conclu	sions	73
	2.	Recomm	endations	75
REFER	ENCES			76
	OF SY			79
APPEN	DIX -	WIND T	UNNEL TEST DATA TABULATIONS	85

LIST OF FIGURES

FIGURE		PAGF
1	Perspective View of the AFWAL Mach 3 High Reynolds Number Wind Tunnel Test Facility (From Reference 4)	3
2	Sketches of the AFWAL Mach 3 High Reynolds Number Wind Funnel Test Facility (From Reference 4)	5
	a. Sketch of the Operating Process	5
	b. Sketch of the Test Section	5
3	Surface Shape of the Analytic Forebody (From Reference 6, Forebody 4)	6
4	Photograph of the 8- and 10-inLong Wind Tunnel Interference Effects Models	9
5	Photograph of the 10-inLong Interference Effects Model in the AFWAL Mach 3 Wind Tunnel	9
6	Sketches, Photographs and Coordinates of the Heat Transfer Rate Model	10
7	Cross Section of the Heat Transfer Rate Gages Showing General Construction	15
8	Typical Temperature-Time History From One Heat Transfer Rate Gage	17
9	Typical Time History of the Difference in Gage Surface and	17

AFWAL-TR-87-3091

FIGURE		PAGE
	LIST OF FIGURES (Continued)	
10	Parameters Associated With the Heat Transfer Rate Gages	19
11	Four Views of the STAPAT Model of the Analytic Forebody	30
1?	Correlation Equation Relationships for Shadow Region Pressure Coefficients	33
13	Variation of Body Slope Angle Along the Top Centerline of the Analytic Forebody	34
14	Variation of Pressure Coefficient Along the Top Centerline Shadow Region of the Analytic Forebody	35
15	Sample of Part of the STAPAT Tabular Output — for Wind Tunnel Test Run 0657.	38
16	Typical Data Table — From Wind Tunnel Test Run 0657	40
17	Schlieren Photographs of the Flow Field Over the Analytic Forebody	41
18	STAPAT Predictions of Flow Field Properties	43
	a. Isolines of Mach Number	43
	b. Isolines of Static Temperature	43
	c. Isolines of Static Pressure	44
	d. Isolines of Pressure Coefficient	44

LIST OF FIGURES (Continued)

19	Comparison of STAPAT Predictions of Pressure Coefficient	45
	in the Shadow Region	
	a. Unmodified STAHET Code	45
	b. Modified STAHET Code	45
20	STAPAT Predictions of Streamline Distributions	47
	a. Streamlines Over the Entire Forebody	47
	b. Streamlines Over the Canopy-Like Hump	47
21	Comparisons of Measured and Predicted Surface Pressures	48
	a. Cp Versus Axial Location	48
	b. Cp Versus Radial Location	48
22	Typical Measured Heat Transfer Rate Distributions	50
	a. QDOT Versus Axial Location	50
	b. ST Versus Axial Location	50
23	Typical STAPAT Predictions of Heat Transfer Rate Distributions	51
	a. Isolines of ODOT	51
	b. Isolines of ST	51
24	STAPAT Predictions of Stanton Number Distribution — Typical Fine Grid of Isolines	52
25	Effect of Input Variables on STAPAT Predictions of Heat Transfer Rates	54
	a QDOT Versus Axial Location	54
	h ST Versus Avial Location	E A

AFWAL-TR-87-3091

LIST OF FIGURES (Continued)

FIGURE		PAGE
26	Effect of the Ratio T-S/TO on STAPAT Predictions of Heat Transfer Rates	5ń
	a. ODOT Versus Axial Location	56
	b. ST Versus Axial Location	56
27	Comparison of Heat Transfer Rates for Exact Ratios of T-S/TO	57
	a. QDOT Versus Axial Location	57
	h. ST Versus Axial Location	57
28	Effect of Water Temperature on Measured Heat Transfer Rates	59
	a. QDOT Versus Axial Location	59
	b. ST Versus Axial Location	59
29	Effect of Tunnel Stagnation Temperature on Heat Transfer Rates	61
	a. ODOT Versus Axial Location	61
	b. ST Versus Axial Location	61
30	Effect of Tunnel Stagnation Pressure on Heat Transfer Rates	64
31	Spanwise Distribution of Heat Transfer Rates	66
32	Effect of Angle of Attack on Heat Transfer Rates	68
33	STAPAT Predictions of Heat Transfer Rate Distributions	69
	for -3° Angle of Attack	
	a. Isolines of ODOT	69
	b. Isolines of ST	69

AFWAL-TR-87-300.

LIST OF FIGURES (Concluded)

FIGURF			PAGE
34	STAPAT	Predictions of Flow Field Properties for -3°	70
	Angle o	of Attack	
	a. Iso	olines of Mach Number	70
	b. Iso	olines of Static Temperature	70
	c. Iso	olines of Static Pressure	71
	d. Iso	olines of Pressure Coefficient	71

LIST OF TABLES

TABLE		PAGE
1	Precision of the Data	23
2	Test Run Summary	26

SECTION I

INTRODUCTION

This report describes and documents the results from a wind tunnel test program and the STAPAT* computer program which were used to study aerodynamic heat transfer rates on an analytic forebody at Mach 3.0.

Air Force aircraft can be expected to operate at supersonic speeds where aerodynamic heating significantly affects the design and performance characteristics of their transparent windshield and canopy systems. STAPAT was developed to provide a valuable tool for the aerothermodynamic analysis of these transparency systems. A three-dimensional, external-forced convection module, STAHET, is included in STAPAT to define aerodynamic heating environments over forward fuselage sections of aircraft. During STAPAT development, a preliminary wind tunnel test program was accomplished to acquire heat transfer rate data for comparison with predictions from a generalized form of the STAHET code. This preliminary test program applied a newly developed experimental technique for obtaining heat transfer rate data at supersonic Mach numbers and high Reynolds numbers, but at ambient stagnation temperatures; i.e., in a "cold flow" wind tunnel. Because of problems with the heat transfer rate gages, only a limited amount of data was acquired. As a result of lessons learned during the preliminary test program, we recommended that the tests be reaccomplished using more suitable heat transfer rate gages to acquire data that could be used for comparison with predictions from the final form of the STAHET code. This report includes the information relative to the test program which incorporated the recommended gages.

Sections II and III present descriptions of the wind tunnel test program and the STAPAT computer program, respectively. Results from the programs, discussions of their significance, and comparisons of the wind tunnel data with STAPAT predictions are presented in Section IV.

^{*} STAPAT is an acronym for Specific Thermal Analyzer Program for Aircraft Transparencies. STAPAT is documented in References 1 and 2.

SECTION IT

DESCRIPTION OF THE TEST PROGRAM

1. TECHNIQUE FOR HEAT TRANSFER TESTING IN COLD FLOW WIND TUNNELS

A newly developed experimental technique for heat transfer testing in cold flow wind tunnels was used to acquire the data needed for this program. Standard heat transfer testing techniques require the use of wind tunnel test facilities where stagnation temperatures, and therefore recovery (adiabatic wall) temperatures, are significantly greater than ambient temperatures. These facilities do not provide desired Reynolds number ranges at supersonic speeds. Facilities that do provide high Reynolds numbers at supersonic speeds are cold flow facilities which operate at stagnation temperatures less than or equal to ambient temperatures. To use cold flow facilities for heat transfer testing required development of a new experimental technique. Such a technique was developed and is documented in Reference 3.

Basically, this experimental technique incorporates a means for raising the model outer wall temperature above the tunnel recovery temperature by means of hot water flow along the inner wall of the model. The temperatures of the outer and inner walls are measured after steady state conditions have been achieved. During this "steady state" heat transfer condition and for a homogeneous wall material of constant thermal conductivity, a linear temperature distribution exists through the model wall. From these temperatures and the properties of the wall material, the conductive heating rate can be determined. Because steady state conditions have been established, the forced convective heat transfer rate from the surface of the model into the air flow is equated to the conductive heat transfer rate through the wall.

2. AFWAL MACH 3 HIGH REYNOLDS NUMBER WIND TUNNEL TEST FACILITY

All tests were accomplished in the Mach 3 High Reynolds Number Wind Tunnel Test Facility at the Air Force Hright Aeronautical Laboratories (AFWAL), Wright-Patterson Air Force Base, Ohio. A perspective view of the facility is presented in Figure 1. The facility is an intermittent, cold flow wind tunnel that operates in a blowdown

Figure 1. Perspective View of the AFUAL Mach 3 High Reynolds Number Mind Tunnel Test Facility (From Reference 4)

mode using dry compressed air which is exhausted to the atmosphere through silencers. A diagram of the operating process is shown in Figure 2a. The tunnel has a constant area rectangular test section 8.0-in. wide and 8.2-in. high, with a test rhombus 23-in. long (Figure 2b). One set of test section side walls is furnished with 8-in.-diameter windows. These 2-in.-thick glass windows were used with the shadowgraph and schlieren systems for flow visualization.

The tunnel can be operated at stagnation pressures from approximately 70 to 570 psia for stagnation temperatures in the range from 400 to 560 R depending upon ambient conditions. The corresponding free-stream unit Reynolds numbers range from 13 to 140 million per ft.

Detailed descriptions of the AFWAL Mach 3 High Reynolds Number Wind Tunnel Test Facility can be found in References 4 and 5.

- 3. ANALYTIC FOREBODY WIND TUNNEL MODELS
 - a. Analytical Description of the Surface Shape

The developed cross-sections model (Forebody 4) of Reference 6 was selected for the shape of the wind tunnel models used in this test program. A sketch of Forebody 4 from Reference 6 is reproduced in Figure 3. Also shown in Figure 3 are the locations of the orifices which were used to obtain surface pressures during the test program reported in Reference 6. As required for verification of STAPAT (Reference 2), this shape is representative of the forward fuselage of an aircraft (with a canopy-like hump) and has sufficient surface curvature to induce three-dimensional flow and variable edge entropy effects.

a. Sketch of the Operating Process (Symbols are Defined in Reference 4)

b. Sketch of the Test Section

Figure 2. Sketches of the AFWAL Mach 3 High Reynolds Number Wind Tunnel Test Facility (From Reference 4)

LOCATIONS OF THE SURFACE PRESSURE ORIFICES (Reference 6)

2

Figure 3. Surface Shape of the Analytic Forebody (From Reference 6, Forebody 4)

AFUAL-TR-87-3091

The surface of the analytic forebody is described parametrically by the following equations (Reference 6):

$$\frac{y}{r_1} = \left[1 + \left(1.35 \frac{r}{r_1} - 1\right) \sin^2\left(\frac{\pi x}{\ell}\right)\right] \sin \theta \tag{1}$$

$$\frac{z}{r_1} = \left[1 + \left(1.35 \frac{r}{r_1} - 1 + \frac{0.35}{\cos \theta}\right) \sin^2\left(\frac{\pi x}{\ell}\right)\right] \cos \theta \tag{2}$$

lihere.

$$\frac{r}{r_1} = \frac{1}{1.25 - 0.25 \cos 2\theta + 0.13174 (\cos \theta - \cos 3\theta)}$$
 (3)

and

$$\frac{r_1(x)}{\ell} = \left(1 - \frac{x}{2\ell}\right)\left(\frac{x}{\ell}\right) \tan 20^{\circ} \tag{4}$$

Note that the radial distances r and r_1 , and the polar angle θ are not the same as the polar coordinates R and ϕ of the analytic forebody cross section. (See Section III paragraph 3a(2).)

Since surface pressure data is available in Reference 6 for this analytic forebody, the scope of the wind tunnel program was reduced considerably by the elimination of the requirement for pressure measurements.

b. Tunnel Interference Effects Models

Determination of the model size for the tests was based on a compromise between selecting a large-size model, to provide high Reynolds numbers and room for instrumentation, and selecting a small-size model, to minimize wind tunnel interference effects such as those caused by reflected shock waves and solid blockage or tunnel choking. Selection of model size was aided by conducting wind tunnel tests using uninstrumented models of the analytic forebody. Two tunnel interference effects models were fabricated from aluminum and stainless steel, one 8-in. long and one 10-in. long (Figure 4). The interference models were placed in the wind tunnel (Figure 5) and tested over a range of Reynolds numbers and angles of attack. Based on observations of tunnel wall pressures and schlieren photographs of shock waves, we concluded that analytic forebody models as long as 10 in. could be tested at angles of attack from -5 to +5° with negligible interference effects.

The 10-in.-long model (not including the sting support) presents a frontal area of approximately 11 in. 2 at 0° angle of attack. This area is 16.8 percent of the physical cross-sectional area of the test section and is well below the solid blockage limit of 28 percent recommended in Reference 4.

c. Heat Transfer Rate Model

With the shape and size of the heat transfer rate model determined, a method for providing hot water flow to the inner wall of the model and a means for measuring the temperature of the inner and outer walls had to be incorporated into the model design. The approach taken is illustrated in the sketches and photographs presented in Figure 6.

The model consists of four sections; an upper body, a lower body, a central plug and a sting mounting adaptor. The upper body forms the inner and outer walls (0.125 in. nominal wall thickness) that are instrumented for temperature measurements. Twenty locations were selected for measurement; eight along the top centerline of the model ($\phi = 0^{\circ}$) and six each along the $\phi = 30^{\circ}$ and $\phi = 60^{\circ}$ rays. Temperature measurement (gage) locations are spaced at 1.0-in. intervals. (The photographs in Figure 6 show macor (glass) cylinders inserted in the gage location holes. These inserts were used in the preliminary test program (Reference 2) and

Figure 4. Photograph of the 8- and 10-in.-Long Wind Tunnel Interference

Figure 5. Photograph of the 10-in.-Long Interference Effects Model in the AFWAL Mach 3 Wind Tunnel

STATION		1 PACHES	HES	2 INCHES	(HES
L INCHES	, DICRIES	THEORETICAL	MEASURED	IMEORETICAL	MEASURED
7000	156 92	636	96110	0 6641	1.899.0
	2,040	0.5196	51.75.0	0.1908	0.1936
	146.578	0.4655	0.3683	-0.5539	40.55₿0
4000	81177	04.795	1190	14541	 3
	70.809	10594	100	0.4687	0.1704
	141.257	065.0	179_0	11 4460	8696 0-
0004	981 67	0 826.2	0.8282	0514.1	19196
	-0804	1061	1.3950	0 4K 19	0.4855
	141,257	74660	16660	-1,2416	-12454
. 00	76 921	\$00k F	87060	9	5
	060 %	14190	14430	10421	1,0449
	H46.57B	0.9748	1,60	Ę	-1,4809
900 01	9000	56060	9104	15760	5.51
}	000 09	09.51	15.45	66060	811.6
	1,0000		5	04.51	56.51

Sketches, Photographs and Coordinates of the Heat Transfer Rate Model Figure 6.

10

LOWER BODY ASSEMBLY

Figure 6. (Continued)

Figure 6. (Concluded)

PLUG ASSEMBLY

were replaced with the new heat transfer rate gages described in Section II paragraph 5.) The upper and lower bodies form the external shape of the analytic forebody and are joined with five cap screws. The central plug is used to form the water flow channels along the inner wall of the gages. The nominally 0.125-in.—thick cavity between the upper body and the central plug was first filled with a room temperature vulcanizing (RTV) silicone sealer. Then sections of the RTV sealer were cut away to form 0.50-in.—wide channels along the centerlines of the rows of gages. The design allows for water flow into the rear of the model, through the interior of the central plug toward the nose of the model, back through the RTV sealer channels, and out the rear of the model. The central plug is joined to the lower body with two cap screws. The sting mounting adaptor is fastened to the lower body with four cap screws.

The heat transfer rate model was designed by Sverdrup Technology, Inc and fabricated from aluminum and stainless steel by Schmiede Machine and Tool Corporation of Tullahoma, Tennessee. The as-built shape of the analytical forebody was very close to the desired (theoretical) shape. Differences between measured and theoretical coordinates did not exceed 0.0050 in., with an average difference of 0.00307 in. and a standard deviation of ± 0.00115 in. (as obtained from the values presented in Figure 6).

4. MODEL SUPPORT SYSTEM

The model support system consisted of a hydraulically actuated pitch sector mounted in the test section downstream of the test rhombus. A linear potentiometer attached to the actuator arm was used to determine sting pitch angle. The output of the potentiometer was fed to a display in the control room and used to manually set sting pitch angle (and hence the model angle of attack) before each run. Calibration of the potentiometer was accomplished with an inclinometer placed on the pitch sector head. The calibration was performed at the beginning of each test day and is accurate to within 0.01° between -8 and +8° angle of attack.

5. INSTRUMENTATION AND DATA GATHERED

Different types of instrumentation were used to gather the data which was needed for comparison with STAPAT predictions. General descriptions of the instrumentation are given below; additional information can be found in the references cited.

a. Heat Transfer Rate Gage Temperatures

The primary data gathered was the temperature of the outer wall of the analytic forebody (the outer surface temperature) and the temperature of the inner wall (the backface temperature). These temperatures were measured at various locations on the analytic forebody using one heat transfer rate gage at each location (see Figure 6).

Fach gage incorporated a three-wire, coaxial thermocouple probe swaged in a stainless steel cylindrical "button" as shown in Figure 7. The coaxial thermocouple probe consisted of a constantan center wire which was coated with a 0.0005-in. thickness of ceramic insulation and swaged in a tube of Chrome material. The thermocouple was then swaged in the cylindrical button and its length cut to the thickness of the button. The thermocouple junction at the outer surface of the analytic forebody was formed by filing the probe/button to the contour of the forebody so that metallic slivers of the constantan and Chromel materials bridged the insulation. The thermocouple junction on the backface of the probe/button was formed at the juncture of a second constantan wire and the Chromel tube. Additional information on the coaxial thermocouple probes can be found in References 7 and 8.

b. Instrumentation for Other Data

The data needed to determine the free-stream flow conditions for the AFWAL Mach 3 wind tunnel was tunnel stilling chamber (stagnation) pressure,

Registered - Hoskins Manufacturing Co

Figure 7. <u>Cross Section of the Heat Transfer Rate Gages Showing General Construction</u>

PO, and tunnel stilling chamber (stagnation) temperature, TO. The stagnation pressure was measured using a 600-psia transducer and the stagnation temperature was measured using a Type J (iron vs constantan) thermocouple. Model angle of attack was obtained from the linear potentiometer which was attached to the pitch sector actuator arm. Axial station and circumferential locations of the heat transfer rate gages were determined during the machining of the model surface contours. Model inlet and outlet water temperatures were measured with type K (chromel vs alumel) thermocouples located in the water line attachment points at the base of the model.

A video camera was used to photograph the model during the tests. This camera was mounted on the schlieren system and was connected to a monitor and video recorder in the control room.

6. TEST PROCEDURES

Before each run the model was brought to a uniform and constant temperature by circulating water through the internal passages. The water temperature was requlated by a 10 gal hot water heater and was held at approximately 600 R. When all gage outputs indicated a constant temperature (both surface and backface measurements) the data acquisition system was started and then the tunnel was started. Several gages were selected for display on strip chart recorders and these were monitored during the run. Data were taken until these gages indicated that the surface to backface temperature difference was constant. The time to reach this steady state heating condition was approximately 15 s. The data acquisition rate was one sample per second and data were taken for about 30 s after the steady state condition was established.

Figure 8 shows a typical temperature-time history for one gage. The surface to backface temperature difference is shown in Figure 9. This figure shows that the steady state condition was reached in 12 s and maintained through the rest of the run. The heat transfer rate was computed from the average of the temperature difference during the steady state portion of the run.

7. DATA REDUCTION AND PRECISION

Figure 8. <u>Typical Temperature-Time History From One Heat Transfer Rate Gage</u>

Figure 9. <u>Typical Time History of the Difference in Gage Surface and Backface Temperatures</u>

a. Data Reduction Methods and Equations

The data reduction methods, equations, symbols, and constants used during this test program are summarized below.

(1) Wind Tunnel Flow Conditions

The calibrated wind tunnel Mach number, M, the measured stagnation (settling chamber) pressure, PO, and the measured stagnation temperature, TO, were used to calculate the remaining free-stream wind tunnel flow conditions. The equations given in Reference 9 were applied. Static pressure, P-INF, and static temperature, T-INF, were calculated using the equations for perfect gas, isentropic expansion from the settling chamber to the test section. Static density, RHO-INF, was calculated using the thermal equation of state and the derived values for static pressure and temperature. Velocity, V-INF, was calculated using the equation for the speed of sound, the definition of Mach number and values for calibrated Mach number and derived static temperature. Absolute viscosity, MU-INF, was calculated using Sutherland's equation and the derived value for static temperature. Free-stream unit Reynolds number, RE-INF, was calculated based on the derived static density, velocity and absolute viscosity values.

(2) Model Characteristics and Heat Loads

Model heat load parameters at each measured axial, X, and circumferential, PHI, gage location were determined for various measured model angles of attack, ALPHA, and average inlet and outlet water temperatures, T-WATER.

Heat transfer rate, QDOT, was calculated based on the measured gage backface and surface temperatures, T-BF and T-S, using the data reduction method.

The heat transfer rate gages were placed in the wall of the upper body of the analytic forebody. During the wind tunnel tests, hot water was passed along the backface of the wall and air was passed over the outer surface (see Figure 10). This situation was maintained until a "steady state" condition was reached for all gages; i.e., until the difference between gage temperatures, T-BF and T-S, had stabilized. For this steady state condition, the rate of heat flow per unit area

Figure 10. Parameters Associated With the Heat Transfer Rate Gages

(heat flux or heat transfer rate) through the gage from the backface to the surface, $\hat{0}_{COND}$, was assumed equal to the heat transfer rate from the gage surface to the airflow, $-\hat{0}_{CONV}$.* That is,

$$-\dot{Q}_{CONV} = \dot{Q}_{COND} \tag{5}$$

These heat transfer rates (see Reference 10) can be expressed as follows:

$$\dot{n}_{COND} = k [(T-BF) - (T-S)] / D$$
 (6)

$$\hat{Q}_{CONV} = h \left[T_{AW} - (T-S) \right] \tag{7}$$

Where k is the thermal conductivity of the gage and D its thickness; h is the forced convection heat transfer coefficient; and T_{AW} is the adiabatic wall temperature of the flow over the gages.

^{*}Since the thermophysical properties of the gage and model materials were similar, lateral heat transfer rates were considered negligible. Expected differences in thermal conductivities of the gage materials were included in the heat transfer rate uncertainty estimates. Radiation from the model surface to the tunnel walls was estimated to be an order of magnitude less than the uncertainty and was neglected.

AFWAL-TR-87-3091

For the purposes of this test program, then, the forced convection heat transfer rate can be obtained from

$$\dot{Q}_{CONV} = -k \left[(T-BF) - (T-S) \right] / D \tag{8}$$

To obtain values for 0_{CONV} , values for k, D, T-BF, and T-S must be known. The value for k was determined based on reported properties of the gage materials for the material temperature range encountered during this test program (References 8 and 11). Reported values for constantan and Chromel materials ranged from 0.0027 to 0.0039 Btu/(ft's'R) for temperatures from 470 to 580 R. An average value of 0.0033 Btu/(ft's'R) was used for all gages. Because each gage was inserted in the model wall and then filed to the surface contour of the model, the value of D was slightly reduced from its measured initial nominal value of 0.125 in. A thickness of 0.120 in. was chosen for each gage. Gage temperatures T-BF and T-S were obtained from gage thermocouple measurements and their differences were averaged over the steady state period. Values for the heat transfer rate, then, were calculated using the following equation:

QDOT =
$$\dot{\eta}_{CONV}$$
 = (-0.33) [(T-BF) - (T-S)]_{AVE} (9)

A forced convection heat transfer coefficient, $H(.9\ T0)\approx h$, was calculated from Equation 7 using a measured-surface temperature, T-S, the derived value of heat transfer rate, QDOT, and an adiabatic wall temperature, T_{AW} , equal to 90 percent of the measured-stagnation temperature, TO. That is,

$$H(.9 T0) = ODOT / [(0.9)(T0) - (T-S)]$$
 (10)

A Stanton number, ST, was calculated based on the derived values of heat transfer coefficient, free-stream static density, RHO-INF, and free-stream velocity, V-INF, and a value of 6006 $\rm ft^2/(s^2\cdot R)$ for the specific heat of air at constant pressure, c_n (Reference 9) using the following equation:

ST =
$$(778) H(.9 T0) / [(RHO-INF) (V-INF) (c_p)]$$
 (11)

b. Precision of the Data

The maximum uncertainty in the specific heat of air at constant pressure, c_p , was conservatively estimated at $\pm 300~\rm{ft}^2/(s^2\cdot R)$ (i.e., $\pm 5~\rm{percent}$ of $6006~\rm{ft}^2/(s^2\cdot R)$), the value used). This was to account for the general lack of data reported in the literature for the low temperatures and pressures encountered during these tests.

The estimated maximum uncertainty in Mach number was based on the results of aerodynamic tunnel calibration measurements made to determine the lateral and longitudinal Mach number distributions in the test rhombus (Reference 4).

The maximum uncertainties in the measured parameters were based on estimates, quoted instrument limits of error, and checks against secondary standards. (The maximum uncertainty in gage thickness, D, was conservatively estimated at ± 0.005 in. to account for unknown thickness changes due to filing of the gages to match the contour of the model.)

The estimated maximum uncertainty in gage thermal conductivity was taken as two-thirds of the range of values reported for the materials used and the temperature range encountered.

Maximum uncertainties in the derived data parameters were estimated by propagating the maximum uncertainties in the material property, calibrated, and measured parameters through the applicable relationships among the parameters. The method applied makes use of the Taylor's series and is described in detail in Reference 12.

The estimated maximum uncertainties of all measured and derived data parameters are listed in Table 1.

TABLE 1. Precision of the Data

Data Parameter, Symbol, Units	Typical <u>Value</u>	Maximum Uncertainty (+ and -)
WIND TUNNEL FLOW CONDITIONS		
Material Property Parameter		
Specific heat of air, c_p , $ft^2/(s^2 \cdot R)$	6006	5%*
Calibrated Parameter		
Mach number, M	3	0.075
Measured Parameters		
Stagnation pressure, PO, psia	300.09	0.15
Stagnation temperature, TO, R	497.74	1.8
Derived Parameters		
Static pressure, P-INF, psia	2.80	11.2%
Static temperature, T-INF, R	179.29	3.2%
Static density, RHO-INF, slug/ft ³	0.3940E-02	11.6%
Velocity, V-TNF, ft/s	1955.8	3.0%
Absolute viscosity, MU-INF, lbf's/ft ²	0.14421E-06	6.4%
Reynolds number, RE-INF, ft ⁻¹	0.5344E+08	13.2%
MODEL CHARACTERISTICS AND HEAT LOADS		
Material Property Parameter		
<pre>Gage thermal conductivity, k, Btu/(ft's'R)</pre>	0.33E-02	0.4E-03

^{* %} means percent of value

TABLE 1. Precision of the Data — Continued

Measured Parameters		
Angle of attack, ALPHA, deg	-0.01	0.01
Gage thickness, D, in.	0.120	0.005
Gage axial station location, X, in.	2.75	0.05
Gage circumferential location, PHI, deg	60.0	0.5
Backface temperature, T-BF, R	552.60	1.8
Surface temperature, T-S, R	524.61	1.8
Water temperature, T-WATER, R	600.83	1.3
Derived Parameters		
Ratio T-S and TO, T-S/TO	1.054	0.5%
Heat transfer rate, ODOT, Btu/(ft ² ·s)		
a. NDOT <u>≤</u> -5.000	-9.320	0.54 + 10%
b. QDOT > -5.000	-2.656	0.79 + 5%
Heat transfer coefficient, H(.9 TO), Btu/(1	ft ² ·s·R)	
a. H(.9 TO) < 0.7000E-01	0.5538E-01	0.63E-02 + 11%
b. $H(.9 T0) \ge 0.7000E-01$	0.1216E+00	20%
Stanton number, ST		
a. ST < 0.1000E-02	0.3644E-03	0.10E-03 + 14%
b. ST > 0.1000E-02	0.2044E-02	24%

8. RUN SUMMARY

Fifty-one wind tunnel test runs were made in support of this program. Table 2 presents a chronological summary of the test runs in terms of selected parameters of the test matrix.

The tests were accomplished over a period of days and hence for different atmospheric conditions. Essentially, the outside air temperature fixed the temperature of the high-pressure air supply and therefore the tunnel stagnation temperature, TO. Values for TO ranged from approximately 450 to 498 R. Test were also accomplished at tunnel stagnation pressures, PO, of nominally 100, 200, 300 and 400 psia. Since all tests were conducted at a free-stream Mach number of 3.0, these tunnel conditions provided a range of free-stream unit Reynolds numbers, RF-INF, from approximately 16 million to 76 million per ft.

To assure different levels of heat transfer rates for given free-stream conditions, the temperature of the water flowing along the backface of the outer wall of the analytic forebody, T-WATER, was adjusted to provide nominal T-WATER values of 580, 590, 600 and 610 R.

Tests at model angles of attack, ALPHA, of -4, -3, 0, +3 and +4° were accomplished to determine the effect of variations in this parameter on flow field properties and heat transfer rates over the analytic forebody.

TABLE 2. Test Run Summary

A N	ALPHA (deg)	pn (psia)	(R)	T-WATER (R)	RUN	ALPHA (deg)	pn (psia)	T0 (R)	T-WATER (R)
1			407	601	0677	+	100	459	265
	> c	000	76 4	601	0678	m +	200	460	501
	= 0	300 5	490	600	6290	က	100	457	591
	>	Ì	:		0890	ဗ	200	461	290
	c	001	111	601	0681	-4	100	4 58	589
	> c) C	4/4	501	0682	4-	200	462	588
	Ξ,	000	? t	100	0683	+4	100	460	588
	c	300	475	601	0684	+4	200	462	587
	- C	400	477	009					G L
	>	9			0685	c	100	466	583
	~	100	468	009	9890	C	200	461	583
) (200	471	009					Ċ
) *	100	469	601	0687	۲,	100	458	285
	+ <	200	474	601	0688	1 3	200	459	585
	j .			•	0689	ņ	100	457	585
	c	100	493	610	0690	ņ	20u	459	582
	- c	000	405	119	0691	4-	10 20	456	585
	-	007	7		2690	4-	200	459	581
	V	100	491	611	0693	+4	100	458	581
	7 7	200	493	611	0694	+4	200	461	580
	- <	001	490	611					,
	† -	200	491	611	0695	+4	100	463	611
	, ,	100	488	611	9690	+4	200	456	610
	ו	200	490	610	1690	+3	200	454	6 10
	ر د د	007	497	611	8690	+3	100	451	609
	င် င်	001	08.5	ָרָנָץ בויי					
	+3	007	† 04	770	0690	c	100	451	609
	,		101		0700	c	200	453	609
	<u>_</u>	00I	\ c + 0	243	(March	-			
	C	200	463	269	1070	۳,	200	452	809
					2070	; (4	100	450	809
					0703	C V	100	451	809
			,		5070	† ~	200	454	809
< <	All values	are	nominal values.	ues.	\$ 0.0	t i		•	

SECTION III

DESCRIPTION OF THE STAPAT PROGPAM

1. GENERAL CHARACTERISTICS OF STAPAT

STAPAT is a Specific Thermal Analyzer Program for Aircraft Transparencies. The code merges state-of-the-art technology with functional and accuracy requirements, resulting in an efficient aerothermodynamic analytical technique that is specifically applicable to the study of high-temperature resistant transparencies for high-speed aircraft. STAPAT is a modular software package consisting of four discrete program modules. The STAHET module is used for generation of the forced, external convection environment surrounding a body for specific points within a wind tunnel or flight mission. The TAP module is a transient, three-dimensional, finite element thermal analyzer program that generates temperature-time histories within a transparency system. The STABLD module is a preprocessor program that allows interactive generation of the finite-element grid. The STAPLT module is an interactive, postprocessor program that provides visual display of the STAHET and TAP solution results. Peferences 1 and 2 provide general descriptions of the STAPAT computer program and its development; Reference 2 also includes the users manuals and sample problems.

2. STAHET CAPABILITIES AND LIMITATIONS

The STAHET module is a modified version of the Delarnette heating code as described in References 13 through 15. For flight mission environments, at subsonic and low-to-moderate supersonic speeds, STAHET provides solutions for sharp-nose forebody configurations at zero angles of attack and yaw. For the specific applications intended, nonzero angles of attack and yaw were not required to be included in STAPAT. A streamline tracing approach is used to define the heat transfer and flow field parameter variations along specified streamlines traced from a point near the forebody nose. Only one-half of the forebody (divided along its plane of symmetry) is used in STAHET. Pressure distributions are based on application of the modified Newtonian theory with pressure coefficient values set to

zero in shadow regions of the forebody. Input data required for implementation of STAHET includes control parameters, forebody and transparency system coordinates, Mach number, altitude, atmosphere type (standard, high- or low-temperature atmospheres), and ratios of body surface (wall) temperature to tunnel stagnation temperature.

For wind tunnel mission environments, STAHET includes routines to compute heating rate and flow field parameter variations over two-dimensional, wedge-shaped configurations. Input data includes control parameters and time histories of wedge angle of attack and tunnel Mach number, pressure, and temperature.

Output from STAHET consists of heating rate and flow field parameter distributions over the body for all conditions specified in the input data stream, and at two specified wall temperature conditions.

3. STAHET MODIFICATIONS

a. Nonwedge Shaped Wind Tunnel Models

Because the thermal performance of aircraft transparency system materials are often evaluated in high speed wind tunnels on wedge-shaped test fixtures (References 16 through 24), STAHET includes the capability to calculate the forced, external convection environment surrounding those type configurations during wind tunnel tests. However, and in keeping with the scope of the STAPAT development program, STAHET does not provide a capability for computing the convection environment over nonwedge shaped wind tunnel models.

(1) Lode Changes

For the purpose of this test program, STAHET was modified to provide solutions for the analytic forebody at constant wind tunnel conditions. This was accomplished with minimal code changes by combining flight and wind tunnel mission capabilities. Conceptually, the problem was treated as one where the analytic forebody was in a flight mission environment at free-stream conditions equal to the wind tunnel flow conditions.

(2) STAHET Model of the Analytic Forebody

A model of the analytic forebody was prepared for use in the STAHET module of STAPAT. STAHET requires a description of the geometry of the forebody in terms of the polar coordinates R and ϕ at each axial station X. The required coordinate data file was obtained using Equations 1 through 4 which describe the forebody surface parametrically, and the following geometric relationships:

$$R = (y^2 + z^2)^{\frac{1}{2}} \tag{12}$$

$$\phi = \cos^{-1} (7/R) \tag{13}$$

Figure 11 shows four views of the analytic forebody used in STAHET as generated by the STAPAT postprocessor. The model has 20 axial stations over its 10-in. length and 20 circumferential stations over half its circumference. (A model using 10 axial and 10 circumferential stations was also tried but the grid was apparently too coarse since the curve fit in STAHET yielded pressures which were not sufficiently close to the desired full modified Newtonian pressures.)

b. Nonzero Pressure Coefficients in Shadow Regions

STAHET calculations of the inviscid surface streamlines and heating rates are dependent upon surface pressure distributions. These distributions were determined from a modified Newtonian pressure coefficient relationship (Reference 2), that is

$$C_{p} = C_{p_{S}} \sin^{2} \delta \tag{14}$$

where

$${}^{C}P_{\varsigma} \equiv \left(P_{t_{2}} - P_{\infty}\right) / \left(0.5 \cdot P_{\infty} M_{\infty}^{2}\right)$$
(15)

and

$$C_{p} = \left(P - P_{\infty}\right) / \left(0.5 \gamma P_{\infty} M_{\infty}^{2}\right)$$
 (16)

igure 11. Four Views of the STAPAT Model of the Analytic Forebody

In shadow regions of the forebody (where $\delta \leq 0.0^\circ$) the surface pressure, P, is set equal to the free-stream static pressure, P_∞ , that is, $C_{p} = 0.0$.

(1) Correlation Equation

To investigate the effects of this feature, STAHET was modified to include nonzero pressure coefficients in shadow regions. Rather than incorporating flow expansion type calculation techniques which would require extensive code modifications, a correlation equation for pressure coefficient, C_p , in terms of Mach number M_{∞} , and body slope, δ , was sought which would

- 1. be continuous in M $_{\infty}$ for 0 $\ \leq$ M $_{\infty}$ \le $_{\infty}$,
- 2. be continuous in δ for -90 $\leq \delta \leq 0^{\circ}$,
- 3. yield negative $\mathbf{C}_{\mathbf{p}}$ values for negative δ values,
- 4. yield larger negative $C_{\boldsymbol{p}}$ values for larger negative δ values,
- 5. yield Cp values that follow the general trend of, and are bounded by, the Cp (i.e., Cp for P = 0) versus M $_{\infty}$ relationship for M $_{\infty}$ > 1.0, and
- 6. yield C_p values that agree reasonably well with available data in terms of magnitude and variation with M_∞ .

Figure 12 shows the relationships among C_{p} , M_{∞} and δ which were SHADOW

obtained using the correlation equation derived for use in STAHET. The shadow region pressure coefficient correlation equation selected was

$$c_{PSHADOW} = -AR (0.7) M^{1/2} sin^{1/3} (-\delta)$$
 (17)

for $-90 \le \delta \le 0^{\circ}$ and where

$$AR = 1 / [(1 - M_{\infty}^{2})^{2} + M_{\infty}^{2}]^{1/2}$$
 (18)

Also shown on Figure 12 are test data and the curve for the minimum pressure coefficient for supersonic flow, that is, for

$$C_{p_{MIN}} = -2 / (\Upsilon M_{\infty}^{2})$$
 (19)

as evaluated for γ = 1.4. Basically, the derivation of the correlation equation was based on the application of a magnification ratio, AR (Reference 25), to the C_p curve so that a reasonable fit to the available data would be obtained, MIN especially at M_∞ = 3.0.

(2) Comparisons With Experimental Data

Evaluation of the shadow region pressure coefficients using the correlation equation (Equation 17) requires values for the slope of the body surface at each point of interest. Since the surface of the analytic forebody is described by a set of parametric equations, surface slopes are readily obtained by differentiation, especially along the plane of symmetry (e.g., along the top centerline where $\phi = 0$). This variation of body slope angle along the top centerline of the analytic forebody is shown in Figure 13.

Comparisons of experimental and calculated pressure coefficients in the shadow region of the analytic forebody can be obtained from Figure 14. The

Figure 12. <u>Correlation Equation Relationships for Shadow Region Pressure Coefficients</u>

Figure 13. Variation of Body Slope Angle Along the Top Centerline of the Analytic Forebody

Figure 14. <u>Variation of Pressure Coefficient Along the Top Centerline Shadow Region of the Analytic Forebody</u>

experimental data was taken from Reference 6. The calculated values were determined using the correlation equation evaluated at the body slope angles presented in Figure 13. Agreement is very good at Mach numbers of 4.5 and 3.95, and becomes progressively worse for the lower Mach numbers of 2.5 and 1.7. The calculated pressure coefficient values are nearly symmetrical about a forebody length ratio of $\chi/L = 0.8$ at all Mach numbers since the body slope angle is almost symmetrical (see Figure 13). The experimental data does not show this symmetry at the lower Mach numbers.

(3) Code Changes

The STAHET module was modified to incorporate the shadow region pressure coefficient correlation equation so that nonzero pressure coefficients would be obtained on regions of the analytic forebody where the body slope angle, s, was less than zero.

c. Nonzero Angles of Attack

During the development of STAHET, a number of modifications were made to the DeJarnette code to meet the objective and functional requirements of STAPAT. One modification was the elimination of the angle-of-attack input option. The STAHET code, however, still includes angle of attack, ALPD, as a variable in the equations. The modification apparently only removed ALPD as an input variable from NAMELIST FLTIN, leaving ALPD always equal to its default value of 0.0° .

In an attempt to provide calculated values for comparison with wind tunnel data acquired at nonzero angles of attack, STAHET was first modified to once again read ALPD from NAMELIST FLTIN and then run for angles of attack from -3.0 to $+3.0^{\circ}$. STAHET only ran successfully for zero and negative angles of attack. It is postulated that either (1) other modifications made during the conversion from the Delarnette code to the STAHET code (such as the change from blunt to sharp-nose forebodies) eliminated the full angle of attack capability or (2) the correct combination of body mesh size, step size and number of smoothing operations was never found for the particular body shape and test conditions tried.

4. FORMS OF THE STAPAT RESULTS

Nutput from the STAHET module of STAPAT was provided in the forms of tables of values for listing and a file of values for postprocess plotting. A sample of part of the STAPAT tabular output is shown in Figure 15; STAPAT plots are given in the next section of the report. Definitions of the symbols listed in Figure 15 are as follows:

> ΡØ = Free-stream stagnation pressure, psia

MACH = Free-stream Mach number

NSL = Number of streamlines used in the calculation

MIT = Free-stream static temperature, R

= Free-stream static pressure, 1bf/ft² PIN RHOTN = Free-stream static density, slug/ft³

PR = Prandt1 number

TW1/T0 = Ratio of wall temperature, TW, and free-stream stagnation temperature, TØ, for TW less than the expected local adiabatic wall temperature, TAW (temperatures in degrees Rankine)

TW2/TØ = Ratio of wall temperature, TW, and free-stream stagnation temperature, TØ, for TW greater than the expected local adiabatic wall temperature, TAW (temperatures in degrees Rankine)

X = Axial location along a streamline, in.

= Circumferential angle location along a streamline, deg PHI = Local, boundary layer edge, static density, slug/ft³ RHOE TE

= Local, boundary layer edge, static temperature, R

MACHE = Local, boundary layer edge. Mach number

REC FACT = Local recovery factor

STAN NO = Local Stanton number, ST, based on free-stream conditions

That is

$$ST = ODOT / \Gamma (RHOIN) (UIN) (CP) (TAH - TW) 7 (20)$$

where

ODOT = Local heat transfer rate, lbf/(ft's)

UIN = Free-stream velocity, ft/s

= Specific heat of air at constant pressure, $ft^2/(s^2 \cdot R)$ CP

PØ psia	MACH	NSL	TIN deg R	PIN 1bf/ft ²	RHOIN Slug,	/ft ³ PR	TW1/TØ	TW2/ TØ
100	3.00	10	169.30	392.00	Ø.1349E-	02 0.752	1.143	1.200
X	РНІ deg	RH(DE/RHOIN	TE/TIN	MACHE	REC FACT	STAN NO	TW/TØ
1n. Ø.097	0.000		1.754	1.289	2.421	0.852	Ø.2448E-	
0.118	0.000		1.753	1.289	2.422	0.852	Ø.2228E-	
0.138	0.000		1.753	1.289	2.422	0.852	Ø.2059E-	
Ø.157	0.000		1.752	1.289	2.423	0.852	Ø.1923E~	
Ø.197	0.000		1.752	1.288	2.423	0.852	Ø.1718E-	
Ø.237	0.000		1.752	1.288	2.423	Ø.852	Ø.1569E- Ø.1454E-	
0.277	0.000		1.753	1.289	2.422	Ø.852 Ø.852	Ø.1454E-	
Ø.314	0.000		1.755	1.289	2.421 2.421	Ø.854	Ø.1495E-	
Ø.316	0.000		1.755	1.289 1.289	2.421	Ø.868	Ø.2298E-	
0.321	0.000		1.755 1.758	1.289	2.422	0.894	Ø.3787E-	
Ø.331	Ø.000 Ø.000		1.761	1.287	2.426	0.898	Ø.3948E-	
Ø.349 Ø.387	0.000		1.765	1.286	2.427	Ø.898	Ø.3729E-	·Ø2
0.462	0.000		1.773	1.287	2.425	0.898	Ø.3475E-	-02
0.499	0.000		1.778	1.288	2.424	0.898	Ø.3393E-	
0.574	0.000		1.788	1.290	2.419	Ø.898	Ø.3273E-	
0.723	0.000		1.813	1.297	2.407	Ø.898	Ø.3134E-	
Ø.957	0.000	,	1.867	1.312	2.381	0.898	Ø.3045E-	
1.073	0.000	•	1.900	1.322	2.386	0.898	0.3034E-	
1.305	0.000		1.976	1.342	2.331	Ø.898	Ø.3050E- Ø.3099E-	
1.534	0.000		2.060	1.385	2.294	Ø.898 Ø.898	Ø.3165E	
1.762	0.000		2.145	1.388	2.257	Ø.898	Ø.3235E	
1.987	0.000		2.228	1.4Ø9 1.428	2.222 2.192	Ø.898	Ø.33Ø1E	
2.211	0.000		2.3Ø3 2.365	1.445	2.166	Ø.898	Ø.3356E	
2.433 2.653	0.000 0.000		2.413	1.457	2.147	Ø.898	Ø.3395E	
2.872	0.000		2.442	1.486	2.134	0.898	Ø.3413E	
2.982	0.000		2.449	1.488	2.130	0.898	Ø.3413E	-02
3.201	0.000		2.446	1.470	2.128	Ø.898	Ø.3394E	-02
3.420	0.000		2.420	1.466	2.134	0.898	Ø.3347E	-02
3.639	0.000	ð	2.370	1.457	2.148	Ø.898	Ø.327ØE	
3.861	0.00	3	2.294	1.441	2.173	0.898	Ø.3161E	
4.085	0.00		2.190	1.417	2.209	Ø,898	Ø.3Ø17E	
4.311	0.00		2.061	1.386	2.259	0.898	Ø.2838E	
4.541	0.00		1.908	1.347	2.323	Ø.898 Ø.898	Ø.2626E Ø.2384E	
4.774	0.00		1.736	1.299	2.404 2.504	Ø.898	Ø.2117E	
5.012 5.253	Ø.00 Ø.00		1.547 1.354	1.242 1.179	2.623	Ø.898	Ø.1839E	_
5.498	0.00		1.192	1.121	2.737	Ø.898	Ø.1599E	
5.745	0.00		1.086	1.082	2.819	Ø.898	Ø.1434E	
5.994	0.00		0.985	1.041	2.907	Ø.898	Ø.1275E	-02
6.244	0.00	Ø	0.836	Ø.975	3.081	0.898	Ø.1054E	
8.494	0.00	Ø	0.690	0.902	3.245	Ø.898	Ø.8436E	
6.742	0.00		Ø.618	Ø.863	3.352	0.898	Ø.7328E	
6.989	0.00		0.592	Ø.849	3.391	Ø.898	Ø.6841E	
7.235	0.00		0.570	0.836	3.427	Ø.898	Ø.6388E	
7.479	0.00		Ø.549	Ø.824	3.484	Ø.898 Ø.898	Ø.5954E Ø.5636E	
7.722 7.964	0.00 0.00		Ø.537 Ø.533	Ø.817 Ø.815	3.484 3.489	Ø.898 Ø.898	Ø.541ØE	
8.206	0.00		Ø.535	Ø.817	3.488	Ø 898	Ø.5232E	
8.448	0.00		0.542	Ø.821	3.471	Ø.898	Ø.5098E	
8.691	0.00		Ø.557	Ø.831	3.443	Ø.898	Ø.5007E	
8.936	0.00		0.577	0.843	3.407	0.898	Ø.4912E	-03
9.182	0.00		0.601	Ø.857	3.366	0.898	Ø.4744E	
9.430	8.00		0.841	0.881	3.301	0.898	0.44718	
9.554	0.00	Ø	Ø.673	0.899	3.262	0.898	Ø.4129E	-03

Figure 15. Sample of Part of the STAPAT Tabular Output — for Wind Tunnel Test Run 0657

SECTION IV

RESULTS, DISCUSSION, AND COMPARISONS

1. FORM OF THE TEST DATA

Wind tunnel test results which were used to evaluate the heat transfer rates on the analytic forebody were presented in the forms of schlieren photographs and data tabulations. One data table was generated for each of the 51 test runs and they are presented in the Appendix. Figure 16 shows a typical data table, the one for Test Run 0657. The tabulated data consisted of a heading and columns of data. The heading listed the tunnel conditions, model angle of attack, and water temperature. The data columns listed the locations, temperatures and heat transfer rates associated with each working gage on the model. (Gage numbers 4, 10, 11, and 20 malfunctioned and yielded no useable data.)

Note that the backface (inner wall) temperature T-BF, was not the same for each heat transfer rate gage. For Test Run 0657, T-BF ranged from 529 to 573 R. This shows the importance of having a backface thermocouple junction to determine T-BF for this technique of heat transfer testing in cold flow wind tunnels — rather than relying on a single value of T-BF for all gages which may be obtained from measurement of inlet and/or outlet water temperature(s).

2. FLOW FIELD

a. Schlieren Photographs

A qualitative assessment of the flow field over the analytic forebody can be obtained from the schlieren photographs presented in Figure 17. The photographs clearly show the strong bow shock waves which eminated from the sharp nose of the model at the various angles of attack. The bow shock waves, while asymmetric, were essentially conical in shape. The 8-in.-diameter schlieren windows almost enclose the 8.2-in.-high tunnel walls. The bow shock waves can be seen to intersect the top and bottom walls, with reflected shock waves trailing downstream. The intersections of the bow shock waves with the schlieren windows can also be discerned; they would produce trailing shock waves similar to those from the top and bottom walls. It is

MACI	H 3 CAN	OPY TE	ST R	UN= 0657				
	T-INF P-INF 170.80 2.80 deg R psia		2.80	RHO-INF O.1376E-O2 slug/ft ³		V-INF 1908.9 ft/s	ALPHA -O.O7 deg	
	TO 474.16 deg R			MU-INF 0.13717E- lbf·s/ft	.06 O.	RE-INF 1915E+08 1/ft	T-WATER 600.83 deg R	
GAGE	X in.	PHI deg	T-BF Geg R	T-S deg R	T-S/T0	QDOT Btu/ (ft ² ·s)	H(.9 TO) Btu/ (ft ² ·s·R)	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17	2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50 3.50 4.50	60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0 0.0	572.80 558.30 563.29 555.14 557.25 533.83 528.66 542.42 568.24 572.19 565.44 555.01 556.59 548.57	555.31 548.47 554.29 548.10 550.75 517.84 515.00 523.09 564.81 569.83 562.86 538.90 541.31 540.73	1.171 1.157 1.169 1.156 1.162 1.092 1.086 1.103 1.191 1.202 1.187 1.137 1.142 1.140	-5.769 -3.242 -2.969 -2.321 -2.147 -5.277 -4.509 -6.381 -1.133 -0.779 -0.853 -5.317 -5.044 -2.587	0.4487E-01 0.2664E-01 0.2328E-01 0.1913E-01 0.1731E-01 0.5793E-01 0.5109E-01 0.6624E-01 0.8201E-02 0.5441E-02 0.6267E-02 0.4741E-01 0.4403E-01 0.2270E-01	0.2213E-02 0.1314E-02 0.1148E-02 0.9-35E-03 0.8538E-03 0.2857E-02 0.2520E-02 0.3267E-02 0.4045E-03 0.2683E-03 0.3091E-03 0.2338E-02 0.2171E-02 0.1120E-02
18 19	5.50 6.50	30.0 30.0	548.82 552.69	542.62 544.44	1.144	-2.045 -2.721	0.1764E-01 0.2311E-01	0.8702E-03 0.1140E-02

Figure 16. Typical Data Table — From Wind Tunnel Test Run 0657

Figure 17. Schlieren Photographs of the Flow Field Over the Analytic Forebody

clear that the reflected how shock waves did not interfere with the flow over the model at any of the angles of attack tested.

The bright areas surrounding the silhouette of the model highlight the boundary layers along the top and bottom centerlines of the analytic forebody. Boundary layer type, either laminar, transitional or turbulent, cannot be absolutely determined. A definite change in the flow field can be seen near the surface along the top centerline as the flow expands into the shadow region.

Based on analysis of the schlieren photographs, the flow fields surrounding the analytic forebody during the tests were free from anomalies which would invalidate the data.

b. STAPAT Predictions of Boundary Layer Edge Conditions

STAPAT predictions of the flow field properties at the edge of the boundary layer over the analytic forebody at zero angle of attack are shown in Figure 18. Isolines of Mach number, static temperature, static pressure and pressure coefficient are shown from near the nose to near the base for radial locations from the top centerline, $\phi = 0^{\circ}$, to approximately $\phi = 100^{\circ}$. Mach numbers behind the bow shock wave were less than the Mach 3.00 free-stream value as expected, with a minimum value of Mach 2.13 located on the top centerline at an axial location of approximately 3 in. Local Mach numbers increased to the free-stream value at an axial location of approximately 6 in. and increased further to a value of Mach 3.49 after the flow expanded into the shadow region. Static temperatures and pressures followed an opposite pattern. They were greater than free-stream values behind the bow shock wave, decreased to free-stream values near an axial location of 6 in., and decreased further in the expansion region.

Figure 19 is presented to show the effect of modification of the STAHET module of STAPAT to allow nonzero pressure coefficient, C_p , values in the shadow region. The results from the unmodified code, Figure 19a, show C_p values of approximately 0.0 in all areas of the forebody aft of an axial location of 6.0 in. The results from the modified code, Figure 19b, show negative C_p values in the shadow region and both axial and radial C_p gradients aft of an axial location of 6.0 in.

a. Isolines of Mach Number

Figure 18. STAPAT Predictions of Flow Field Properties

c Isolines of Static Pressure

Figure 18. STAPAT Production, of Claw Cell Properties Cancilles

a. Unmodified STAHET Code

b. Modified STAHET Code

Figure 19. Comparison of STAPAL Predictions of Pressure seefficient in the Shadow Region

Figure 20 is presented for information only to show a more complete picture of the distribution of streamlines over the analytic forebody. The streamlines in these two plots can be combined with those plotted in Figure 18a to give a total of at least 27-separate streamlines over the whole forebody. Figure 20b clearly shows how the streamlines wrap around the canopy-like hump of the analytic forebody (i.e., how they turn back toward the top centerline). Review of the other two plots shows that the streamline wraparound only takes place in this region of the forebody.

c. Surface Pressures

Figure 21 is presented to provide comparisons of measured and predicted pressures on the surface of the analytic forebody at zero angle of attack. Figure 21a shows plots of C_p values as functions of axial location for three-radial locations and Figure 21b shows C_p values as functions of radial location at an axial station of 4 in. The measured C_p values were obtained from the data presented in Reference 6 for the analytic forebody. Values for ϕ = 30 and 60° were obtained using linear interpolation of the values for ϕ = 20 and 35° and ϕ = 50 and 70°, respectively. Interpolations for Mach number, M, were not made; C_p data for both M = 2.5 and 3.95 are plotted.

Also shown along the bottom of the figure (and on most subsequent figures) is a sketch of the top half of the analytic forebody with the heat transfer rate gage numbers and their approximate locations included. The symbols help locate the circumferential angles, the circles are for $\phi = 0^{\circ}$, the squares for $\phi = 30^{\circ}$, and the triangles for $\phi = 60^{\circ}$. The cross section shape of the analytic forebody at an axial distance of 4 in. is also shown.

In general, STAPAT adequately predicted the pressure distribution over the surface of the analytic forebody. Both the data and predictions showed a sharp rise in pressure along the centerline from the nose to a maximum value near an axial station of 3.3 in. This was followed by sharp decreases in pressure in both the axial and radial directions to levels which produced negative C_p values near the base of the forebody. STAPAT under-predicted the pressure levels on the forward portion of the forebody (axial stations less than 4 in.) but showed good agreement with the measured values for axial stations greater than 4 in. (STAPAT predictions are expected to be good in the shadow region, because the data from Reference 6

a Streamlines Over the Entire Forebody

b. Streamlines Over the Canopy-Like Hump

Figure 20. STAPAT Predictions of Streamline Distributions

ringre ?! ...umparisons of Meussred and Predicted Surface Pressures

..5

influenced the development of the shadow region pressure coefficient correlation equation used in the STAHET module of STAPAT.)

3. HEAT TRANSFER RATES

a. Typical Distributions From Wind Tunnel Data

The tabulated data from Figure 16 (for Run 0657) is plotted in Figure 22 to show typical heat transfer rate distributions over the analytical forebody. The heating rate values are in terms of QDOT and ST and include symbolic representations of the estimated maximum uncertainties listed in Table 1. While the uncertainties were relatively large, they did not mask the overall level of heat transfer rates nor their relationships with axial and radial locations.

The distributions for ODOT and ST were similar. The highest heating rates occurred on the top centerline of the forebody at axial locations from 2 in. to 4 in. and the lowest occurred in the shadow region. Heating rates along the $\phi=30^\circ$ and $\phi=60^\circ$ radial locations were generally characterized by gradual decreases in heating rates with increasing axial locations. These relationships of heat transfer rates with axial and radial locations followed the same relationship just presented for the measured and predicted surface pressures (Figure 21). Therefore, the measured heat transfer rates were strongly dependent upon surface pressures.

b. Typical Distributions from STAPAT Predictions

STAPAT predictions of heat transfer rate distributions over the analytic forebody for the typical test, Run 0657, are presented in Figures 23 and 24. Figure 23 shows isolines of QDOT and ST over the top half of the analytic forebody. Figure 24 incorporates a finer grid of isolines to show more details of the Stanton number distribution.

These STAPAT-predicted distributions were similar to both the measured heat transfer rate distributions and to the measured and predicted surface pressure distributions. Strong gradients in heat transfer rates were predicted along the axial direction for all radial locations, and significant gradients were predicted along the radial direction for axial locations from 2 in. to 4 in. and from 7 in. to 9 in.

figure 22. Tipical Measured Heat Transfer Rate Distributions

a. Isolines of QDOT

b. Isolines of ST

Figure 23. Typical STAPAT Predictions of Heat Ir nsfer Rate Distributions

Figure 24. SIAPAI Predictions of Stanton Yumber Distribution ... Impical

c. Effect of STAPAT Input Variables

For heat transfer rate calculations, operation of the STAHET module of STAPAT allows user selection of values for a number of input variables. Three that may influence results for this program are the amount of forebody smoothing (input variable ISMO), the streamline type (KP) and the skin friction law (KCF). The degrees of influence of these variables on heat transfer rate, ODOT, and Stanton number, ST, were evaluated by repeating STAPAT predictions for Run 0657 using different values for the variables. ISMO values of 1 (no body smoothing, the default value), 2 (intermediate body smoothing), and 3 (smoothing to a cone-like body) were used. KP values of 0 (simplified streamlines) and 1 (modified Newtonian streamlines, the default value) were used. KCF values of 0 (Spalding ~ Chi), 1 (Van Driest I), 2 (Van Driest II, the default value), and 3 (White and Christoper) were used.

STAPAT predictions showed essentially no differences due to body smoothing (ISMO) and no differences due to streamline type (KP) up to an axial location of 6 in. After this (in the shadow region), the simplified streamlines (KP = 0) gave slightly larger QDOT and ST values than did the modified Newtonian streamlines (KP = 1). The type of skin friction law had a slight influence on heat transfer rates. The KCF = 0 value yielded the smallest QDOT and ST values, with KCF = 2, KCF = 1, and KCF = 3 yielding successively larger QDOT and ST values.

The results from this evaluation are summarized in Figure 25. The STAPAT predictions of ODOT and ST values for all variations in input variables are contained between the two solid lines (except in the shadow region where values obtained using simplified streamlines deviated from the other values). These bands represent very small variations in heat transfer rate from the mean values, approximately ± 0.4 Btu/(ft²·s) for ODOT and ± 0.0002 for ST. These variations are well below the estimated uncertainties in the measured ODOT and ST values.

For these reasons, the default values for these three-input variables were selected for all subsequent STAPAT runs. Predictions for Run 0657 using the default values are given by the dashed lines in the figure and show that using the default values yielded ODOT and ST values that were near the means.

Figure 25. Iffect of Input Variables on 512. AT Predictions of Peat Induster Date.

5;

(Computer run times were influenced by selection of values for the input variables. Run times on the Digital Equipment Corporation, VAX 8650 computer using a KP value of 0 (simplified streamlines) ranged from 54 CPU s to 57 CPU s for all values of forebody smoothing (ISMO) and skin friction law (KCF). Run times using KP = 1 (modified Newtonian streamlines) ranged from 89 CPU s to 94 CPU s, a 65 percent increase in run times over the run times for KP = 0.)

d. Temperature Effects

As indicated by the equations used for wind tunnel data reduction and for STAPAT calculations, the heat transfer rate (in terms of ODOT and ST) at each gage location is dependent upon the values of, and the relationship between, a number of temperatures. Measured-ODOT values are proportional to differences between gage surface and backface temperatures. These temperatures are influenced by the temperature of the water flowing through the model and by the adiabatic wall temperature. STAPAT-calculated ODOT values are proportional to differences between gage surface and adiabatic wall temperatures. Measured and STAPAT-calculated ST values are dependent upon surface, adiabatic wall, and tunnel stagnation temperatures. The tunnel stagnation temperature was used to nondimensionalize other temperatures.

(1) Ratio, T-S/TO

The effects of variations in the ratio of gage surface temperature to tunnel stagnation temperature, T-S/TO, on STAPAT-calculated heat transfer rates were evaluated by repeating STAPAT predictions for Run 0657 using all 16 tabulated values for T-S/TO. The results from this evaluation are summarized in Figures 26 and 27.

The STAPAT predictions of QDOT and ST values using minimum, average and maximum values of T-S/TO are shown in Figure 26. There were large variations in QDOT with T-S/TO. For example, at an axial location of 3 in. on the top centerline, QDOT varied from approximately 4.3 Btu/ $(ft^2$'s) at a T-S/TO ratio of 1.086 to approximately 7.5 Btu/ $(ft^2$'s) at a T-S/TO ratio of 1.202. STAPAT predictions of QDOT using the average value of T-S/TO ratio were midway between the QDOT values predicted using the minimum and maximum values of T-S/TO. There were very small

Figure 26. Effect of the Ratio 7-5/10 on STAPA! Predictions of Heat Transfer Rates

figure .7. Companison of Heat Trans'er Rates for Exact Ratios of L-110

AFNAL-TR-87-3091

variations in ST with T-S/TO; the predicted Stanton numbers were essentially independent of the ratio of gage surface temperature to tunnel stagnation temperature.

Also shown on Figure 26 are the measured values of ODOT and ST with their associated uncertainty estimates. The STAPAT-predicted values of ODOT essentially bounded the measured values and generally followed the trends indicated by the measured values. The STAPAT-predicted values of ST showed good agreement with the magnitude of the measured values and with their distribution over the upper surface of the analytic forebody.

Figure 27 shows that there was little to gain by using exact T-S/TO values for STAPAT calculations of ODOT and ST for a particular gage. Using the exact T-S/TO ratio gave no closer agreement with the measured values than using any value (greater than 1.0) for the temperature ratio T-S/TO. All subsequent STAPAT runs were made with a single value for T-S/TO, equal to 1.143.

(2) Water Temperature, T-WATER

The effects of variations in backface temperatures on measured heat transfer rates were evaluated by adjusting the temperature of the water circulating through the internal passages of the model. Hot water heater temperatures were varied to vield average inlet to exit water temperature, T-WATER, values of nominally 580, 590, 600, and 610 R. Typical results from this evaluation are summarized in Figure 28.

Measured values of QDOT and ST are shown in the figure for a T-WATER value of 583 R (Test Run 0686) and a T-WATER value of 609 R (Test Run 0700). For a funnel stagnation pressure of 200 psia and zero angle of attack, these temperatures were near the minimum and maximum values tested and represented the outer bounds of the test data. The QDOT and ST data from the intermediate T-WATER temperatures were between the values plotted. (The tunnel stagnation temperatures, TO, for Runs 0686 and 0700 were 461 R and 453 R, respectively. This small difference effectively eliminated TO as an influencing parameter for these two test runs.) Also plotted in the Figure are STAPAT-calculated ODOT and ST values for these runs for comparison.

59

Figure 19. (from 0 Water Jemperature on Measured Proj Transfer Rates

(Only one set of curves each for ODOT and ST are presented since T-WATER is not a variable in STAPAT calculations.)

Measured-ODOT values were significantly influenced by backface water temperature. For a given gage, ODOT increased with increasing T-WATER except in the shadow region where ODOT values were essentially the same. Measured-ST values were independent of backface water temperature for the range of temperatures studied. This means that the use of the nondimensional heat transfer coefficient, the Stanton number, effectively eliminated T-WATER as an influencing parameter.

(3) Tunnel Stagnation Temperature, TO

The effects of variations in tunnel stagnation temperatures, TO, on measured and STAPAT-calculated heat transfer rates were evaluated by studying tests run with values of TO from 453 R to 495 R, Runs 0658, 0666, 0676, and 0700. Typical results from this evaluation are summarized in Figure 29.

Measured and STAPAT-calculated values of ODOT and ST are shown in the Figure for a TO value of 453 R (Test Run 0700) and a TO value of 495 R (Test Run 0666). The ODOT and ST values from intermediate TO temperatures were between the values plotted. (The backface temperature, in terms of T-WATER, for Runs 0700 and 0666 were essentially the same (610 R), thus eliminating T-WATER as an influencing parameter for these two test runs.)

For a given gage, both the measured and STAPAT-calculated ODOT values increased with decreasing tunnel stagnation temperature except in the shadow region where ODOT values were essentially the same. The measured increases in ODOT were slightly larger than the increases calculated by STAPAT. Both the measured and calculated-ST values were independent of tunnel stagnation temperature for the range of temperatures studied. Agreement was good between the measured and the STAPAT-calculated Stanton numbers.

(4) Adiabatic Wall Temperature, T_{AW}

The effects of uncertainties in adiabatic wall temperature, T_{AM} , on measured-Stanton numbers were evaluated by consideration of the differences among

Figure 23. Iffect of Turnel Stannation Temperature on Meat Transfer Wates

theoretical, calculated, and experimentally determined values of T_{AW}. The adiabatic wall (or recovery) temperature is the equilibrium surface temperature that would be reached, in the case of a high-velocity gas flow past a surface, when the rate-of-heat input by frictional dissipation equals the rate-of-heat convection away from the surface (Reference 10). Adiabatic wall temperatures can be calculated (estimated) using boundary layer edge flow conditions and a recovery factor whose value is determined from experimentally derived correlations involving flow conditions which are usually expressed in terms of the Prandtl number. Adiabatic wall temperatures can also be obtained experimentally by measuring the wall temperature (T-S in the case of these tests) when the heat transfer rate (CDOT in this case) equals zero.

The measured Stanton number, ST, values tabulated herein were determined using a (somewhat arbitrary and constant) theoretical value of T_{AN} equal to 0.90 TO. For wind tunnel Test Run 0700 and using a T-S/TO value of 1.143, STAPAT calculated T_{AN} values equal to 0.94 TO for gages 7, 8 and 9 (at axial locations of 2, 3 and 4 in., respectively). Gross extrapolations of data plots of heat transfer rate, QDOT, versus gage surface temperature, T-S, were made for Runs 0686 and 0700 from the QDOT and T-S values measured to the T-S value where QDOT would be zero. This yielded experimentally determined T_{AW} values of approximately 0.94 TO, 0.96 TO and 0.98 TO for gages 7, 9, and 8, respectively.

This means that the STAPAT-calculated value of T_{AW} equal to 0.94 TO is closer to the experimentally determined values of from 0.94 TO to 0.98 TO than to the theoretical value of 0.90 TO which was used to determine the measured-ST values. Use of a larger theoretical value, say 0.94 TO, would yield measured Stanton number values that are approximately 20 percent larger than the values tabulated. While this might give closer agreement between measured and STAPAT-calculated Stanton numbers, the differences fall within the band of estimated uncertainty and therefore do not justify making any correction to the tabulated data.

(5) Use of Stanton Number to Eliminate Temperature Effects

The measured values of heat transfer rate, ODOT, were shown to be influenced by test dependent temperatures T-WATER and TO. The STAPAT-calculated values of ODOT

were shown to be influenced slightly by the test dependent temperature TO and significantly by the unknown (apriori) surface (outer wall) temperature, T-S. Even though the measured Stanton number (based on free-stream conditions) was dependent on the unknown (not measured) temperature TAW and the STAPAT-calculated Stanton number (also based on free-stream conditions) was dependent on the unknown temperatures TAW and T-S, the use of this nondimensional heat transfer coefficient, the Stanton number, ST, was shown to be the best way to evaluate heat transfer rates over the analytic forebody for these tests. It effectively eliminated heat transfer rate dependency upon temperatures that were test dependent and/or unknown. Therefore, all subsequent test evaluations and comparisons were made using only the Stanton number.

e. Effect of Tunnel Stagnation Pressure

(1) Stanton Number Distributions

The effects of variations in tunnel stagnation pressures, PO, on measured and STAPAT-calculated Stanton numbers were evaluated by studying Test Runs 0657, 0658, 0659, and 0660 which were conducted at nominal PO values of 100, 200, 300 and 400 psia, respectively. Typical results from this evaluation are summarized in Figure 30.

Measured and STAPAT-calculated values of ST are shown in the figure for PO values of 100 and 400 psia. The STAPAT-calculated ST values from intermediate PO pressures were between the values plotted. The measured-ST values for PO values of 300 and 400 psia were essentially the same; the measured ST values for a PO of 200 psia were approximately midway between the values plotted.

Both the measured and STAPAT-calculated Stanton numbers decreased with increasing tunnel stagnation pressure, except for the measured Stanton numbers in the shadow region where the values were essentially the same. STAPAT predicted slightly larger Stanton number decreases with increasing stagnation pressure than were measured. Overall, there was very good agreement between measured and STAPAT-calculated Stanton numbers for all stagnation pressures tested.

Figure 30. Effect of Tunnel Stagnation Pressure on Heat Transfer Rates

(2) Roundary Layer Type

The relatively large variation in tunnel stagnation pressure, which was accompanied by a correspondingly large free-stream unit Reynolds number variation of from 16 to 76 million per ft, did not affect the general distribution of Stanton number over the analytic forebody. This result, coupled with the good agreement between the measured values and the values calculated by STAPAT (which assumes a turbulent boundary layer), leads to the conclusion that the boundary layer over the analytic forebody was turbulent throughout the test program.

f. Spanwise Gradients

(1) Stanton Number Distributions

As the typical distributions from STAPAT calculations showed (Figures 23 and 24), STAPAT predicted large spanwise gradients in Stanton number over the forward portion of the analytic forebody. This variation is also illustrated in Figure 31 for Run 0657 at an axial location of 4 in. Stanton number decreased from a value of 0.0030 on the top centerline where $\phi=0$, to a value of approximately 0.0016 for $40 \leq \phi \leq 90^{\circ}$. Also shown on the figure are the measured values of ST. The values at $\phi=30$ and 60° were obtained from linear interpolation of the values from the gages on either side of X = 4 in. There was very good agreement between the measured and STAPAT-calculated spanwise distributions of Stanton number.

(2) Strong Influence of Surface Pressures

In STAPAT calculations, Stanton numbers are directly proportional to surface Mach numbers, static pressures and static temperatures. Figure 18 shows that the Mach number can be expected to increase in the spanwise direction while the static pressures and temperatures decrease. The increase in Mach number and the decrease in static temperature were relatively small and effectively cancelled out each other. The decrease in static pressure was large, approximately 47 percent, and is almost equal to the spanwise decrease in Stanton number. Therefore, the magnitudes of the Stanton number values and their distributions over the analytic forebody were primarily dependent on surface pressures for these tests.

Figure 31. Spanwise Distribution of Heat Transfer Rates

4. Angle-of-Attack Effects

To study the effects of angle of attack, ALPHA, on heat transfer rates and other flow field properties, wind tunnel tests and STAPAT calculations were accomplished at zero and nonzero angles of attack of the analytic forebody. Angles of attack of -4, -3, 0, +3 and $+4^{\circ}$ were tested for various combinations of backface water temperature, tunnel stagnation pressure and tunnel stagnation temperature. Since STAPAT would only operate at negative nonzero angles of attack, calculations were made at ALPHA = -3° for comparison with (1) measured-heat transfer rate data, (2) zero angle-of-attack predictions, and (3) surface pressure data reported in Reference 6.

a. Heat Transfer Rates

The effects of variations in angle of attack of the analytic forebody on measured and STAPAT-calculated Stanton numbers were evaluated by studying Test Runs 0670, 0672, 0666, 0674, and 0668 which were conducted at values of -4, -3, 0, +3 and +4°, respectively. Typical results from this evaluation are summarized in Figure 32.

Measured values of Stanton number are shown in the figure for ALPHA values of -3 and $+3^{\circ}$. Measured Stanton numbers for ALPHA values of -4 and $+4^{\circ}$ were essentially the same as the ST values for ALPHA values of -3 and $+3^{\circ}$, respectively. Measured-ST values for ero angle of attack were between the values plotted. STAPAT-calculated values of Stanton number for ALPHA = -3° were obtained from the heat transfer rate distributions shown in Figure 33.

Both the measured and STAPAT-calculated Stanton numbers decreased only slightly with increasing angle of attack. Agreement was good between the measured and the STAPAT-calculated Stanton numbers for variations in angle of attack.

b. Flow Field

The effects of variations in angle of attack of the analytic forebody on flow field properties were determined by comparison of the streamline and isoline

Figure 32. Effect of Angle of Attack on Heat Transfer Rates

a Isolines of QDOT

b. Isolines of ST

Figure 33. STAPAL Predictions of Heat Tran for Pa a histributions for -3^0 Angle of Attack

a. Isolines of Mach Number

b. Isolines of Static Temperature

Figure 34. (ARA) Prefuction, follow post Property (Co., Angle of Milack

c Isolines of Static Pressure

d. Isolines of Pressure Coefficient

Figure 4 (Concluded)

contours presented in Figure 34 for ALPHA = -3° with those in Figure 18 for ALPHA = 0° . The effects of ALPHA variations on surface pressures were determined by comparison of the pressure values in these figures with those values reported in Reference 6.

Most striking was the effect angle-of-attack variations had on the shape of the streamlines. At zero angle of attack, Figure 18, the streamlines came off the nose with essentially zero slope in the ϕ , X plane, while at an angle of attack of -3° , Figure 34, the radial location of a given streamline increased significantly with increasing axial location.

Overall, the shapes of the distributions of Mach number, temperature and pressure were independent of angle of attack for the two angles studied. A slight difference was in the axial location where the pressure coefficient, C_p , decreased to zero. On the top centerline the axial location where C_p equaled zero was suppreximately 6.0 in. for zero angle of attack and slightly greater than 6.0 in. for an angle of attack of -3° .

While the distributions were similar, the magnitudes of the values were different. Along the top centerline and at axial location of 3 in. for example, the STAPAT-calculated values of Mach number, static temperature, and static pressure for SCPHA = -3° were approximately 6 percent lower, 5 percent higher, and 14 percent higher, respectively, than those calculated for zero angle of attack. This CLAPAT-calculated increase in static (surface) pressure of 14 percent at this location agreed very well with the approximately 16-percent increase in surface pressure which was reported in Reference 6.

SECTION V

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

Based on results from tests with the tunnel interference effects models and from analysis of schlieren photographs taken during the test program, the flow fields surrounding the analytic forebody were determined to be free from anomalies which would invalidate the data.

The wide range of measured-backface temperatures showed that a separate thermocouple junction on the backface of each heat transfer rate gage was required for application of the technique for heat transfer testing in cold flow wind tunnels using the analytic forebody.

The boundary layer over the analytic forebody was determined to be turbulent throughout the test program.

While the estimated maximum uncertainties of the heat transfer data were relatively large, they did not mask the overall level of heat transfer rates nor their relationships with axial and radial locations over the analytic forebody.

Variations in values for input variables of forebody smoothing, streamline type, and skin friction law had negligible effect on STAPAT-calculated heat transfer rates. However, computer run times for runs using modified Newtonian streamlines were 65 percent longer than for runs using simplified streamlines. Forebody smoothing and skin friction law variations had negligible effects on computer run times.

In general, STAPAT correctly predicted the pressure distribution over the surface of the analytic forebody. STAPAT under-predicted the pressure levels on the foreward portion of the forebody but showed very good agreement with the data elsewhere. The magnitudes of the Stanton number values and their distributions over the analytic forebody were primarily dependent on surface pressures.

Both measured and STAPAT calculations showed strong gradients in pressure and heat transfer rates along the axial direction for all radial locations and significant gradients along the radial direction for axial locations from 2 in. to 4 in. and from 7 in. to 9 in.

Heat transfer rates, in terms of ODOT, were significantly influenced by tunnel stagnation temperatures, gage surface temperatures and backface (water) temperatures. Use of the nondimensional heat transfer coefficient, the Stanton number, ST, effectively eliminated heat transfer rate dependency upon temperatures that were test dependent and/or unknown and therefore was shown to be the best way to evaluate heat transfer rates over the analytic forebody for these tests.

Agreement was very good between the measured and STAPAT-calculated Stanton number relationships with tunnel stagnation pressure. Both showed a slight but general decrease in Stanton number with increasing pressure.

Stanton number decreased only slightly with increasing angle of attack: Agreement was good between the measured and STAPAT-calculated Stanton numbers for variations in angle of attack.

The STAPAT computer program, as modified in the STAHET module to include nonwedge shaped wind tunnel models, nonzero pressure coefficients in shadow regions and nonzero angles of attack, has been shown to predict surface pressures and heat transfer rates over the analytic forebody that are in good agreement with experimental data.

The magnitudes of the measured-heat transfer rates, their distribution over the analytic forebody and their good agreement with STAPAT calculations combined to provide validations of both the STAHET module of the STAPAT program and the experimental technique for heat transfer testing in cold flow wind tunnels.

2. RECOMMENDATIONS

All copies of the STAHET module of STAPAT should be modified to include nonwedge shaped wind tunnel models, nonzero angles of attack and nonzero pressure coefficients in body shadow regions. For calculation of pressures in body shadow regions, the correlation equation given in Section III should be considered for use.

When running STAHET, the user should verify that the STAPAT-predicted surface pressures are sufficiently close to the desired modified Newtonian pressures using known values for free-stream conditions and body surface slope angles. If the pressures are not close enough, the number of axial and/or circumferential stations of the forebody model should be adjusted (increased).

When selecting test methods and facilities for simulation of aerothermodynamics at supersonic speeds, the experimental technique for heat transfer rate testing in cold flow wind tunnels as described in this report should be considered for use.

REFERENCES

- 1. Varner, M.O., and Babish III, C.A., <u>Status of a New Aerothermodynamic Analysis Tool for High-Temperature Resistant Transparencies</u>, a paper published in Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio 45433, AFWAL-TR-83-4154, "Conference on Aerospace Transparent Materials and Enclosures," edited by S.A. Marolo, December 1983.
- Varner, M.O., et al., Specific Thermal Analyzer Program for High-Temperature Resistant Transparencies for High-Speed Aircraft (STAPAT), Volume I - Methodology, Volume II - Users Manual, Main Text and Volume III - Appendices of Sample Problems, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio 45433, AFWAL-TR-84-3086, (AD B089 497, AD B090 894L and AD B090 895L), October 1984.
- 3. Hayes, J.R., A Water Heated Platinum Thin-Film Heat Transfer Gage For Use In Cold Flow Wind Tunnels, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio 45433, AFWAL-TM-83-158 FIMG, November 1982.
- 4. Fiore, A.W., et al., <u>Design and Calibration of the ARL Mach 3 High</u>
 <u>Reynolds Number Facility</u>, <u>Aerospace Research Laboratories</u>,
 <u>Wright-Patterson Air Force Base</u>, <u>Ohio</u> 45433, <u>ARL TR 75-0012</u>, <u>January</u> 1975.
- 5. Scaggs, N., The Mach 3, Mach 6 High Reynolds Number and the 20 Inch Hypersonic Wind Tunnels Information for Users, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio 45433, Internal Report, August 1977.
- 6. Townsend, J.C., et al., <u>Surface Pressure Data on a Series of Analytic Forebodies at Mach Numbers From 1.70 to 4.50 and Combined Angles of Attack and Sideslip</u>, National Aeronautics and Space Administration, <u>Langley Research Center</u>, Hampton, Virginia 23365, NASA Technical Memorandum 80062, (N79-29145), June 1979.
- 7. Anon, Measure Surface Temperature With a Response Time as Little as 1 Microsecond, Medtherm Corporation, Huntsville, Alabama 35804, Bulletin 500.
- 8. Anon, <u>Application Notes for Medtherm CO-AXTM Thermocouple Probes</u>, Medtherm Corporation, Huntsville, Alabama 35804, MEDTHERM AN-TCS-1.
- Ames Research Staff, <u>Equations</u>, <u>Tables</u>, <u>and Charts for Compressible Flow</u>, National Advisory Committee for Aeronautics, <u>Report 1135</u>, 1953.
- 10. Chapman, A.J., <u>Heat Transfer</u>, The Macmillan Company, New York, New York, 1960.

- 11. Tauloukian, Y.S. (Director), et al., Thermophysical Properties of Matter, Volume I, Thermal Conductivity Metallic Elements and Alloys, The TPRC (Thermophysical Properties Research Center) Data Series, IFI/Plenum, New York, New York, 1970.
- 12. Beers, Y., <u>Introduction to the Theory of Error</u>, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, June 1962.
- 13. DeJarnette, F.R., Calculation of Inviscid Surface Streamlines and Heat Transfer on Shuttle Type Configurations, Part I Description of Basic Method, National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia 23365, NASA CR-111921, (N71-36186), August 1971.
- 14. DeJarnette, F.R. and Jones, M.H., <u>Calculation of Inviscid Surface Streamlines and Heat Transfer on Shuttle Type Configurations, Part II Description of Computer Program, National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia 23365, NASA CR-111922, (N72-11828), August 1971.</u>
- 15. DeJarnette, F.R., Calculation of Heat Transfer in Shuttle-Type Configurations Including the Effects of Variable Edge Entropy at Boundary Layer Edge, National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia 23365, NASA CR-112180, (N73-13958), October 1972.
- 16. Babish III, C.A., <u>Aerothermodynamic Evaluation of a Section of an Enhanced Aircraft Windshield at Simulated Supersonic Flight Speeds Up to Mach 3.5</u>, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio 45433, AFWAL-TR-84-3019, (AD B085 795L), July 1984.
- 17. Hartman, A.S., and Nutt, K.W., <u>Wind Tunnel Test of Windshield Material</u> for a Mach 3.5 <u>Supersonic Aircraft</u>, <u>Arnold Engineering Development Center</u>, <u>Arnold Air Force Station</u>, <u>Tennessee</u> 37389, <u>AEDC-TSR-82-V17</u>, <u>June 1982</u>.
- 18. Wilson, V.E., <u>Design Analysis of High Temperature Transparent</u>
 <u>Windshields for High Performance Aircraft</u>, Air Force Wright
 <u>Aeronautical Laboratories</u>, <u>Wright-Patterson Air Force Base</u>, Ohio 45433,
 <u>AFWAL-TR-81-3126</u>, (AD-B063 076L), November 1981.
- 19. Stallings, D.W., Hartman, A.S., <u>Wind Tunnel Testing of a Windshield Material for Supersonic Aircraft</u>, <u>Arnold Engineering Development Center</u>, <u>Arnold Air Force Station</u>, <u>Tennessee</u> 37389, <u>AEDC-TSR-81-V</u> 18, May 1981.
- 20. Hoffman, J.B., Evaluation of Aircraft Windshield Materials in a Simulated Supersonic Flight Environment, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio 45433, AFFDL-TR-79-3058, June 1979.

- 21. Carver, D.B., Aerothermodynamic Evaluation of Windshield Materials at Simulated Flight Speeds of Mach Number 2.4 to 3.0, Arnold Engineering Development Center, Arnold Air Force Station, Tennessee 37389, AEDC-TSR-78-V33, (AD B032 471L), October 1978.
- 22. Hoffman, J.B., Evaluation of Windshield Materials Subjected to Simulated Supersonic Flight Environments, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio 45433, AFFDL-TR-77-92, (AD-A049 981), September 1977.
- 23. Carver, D.B., <u>Aerothermodynamic Evaluation of Windshield Material in a Simulated Supersonic Flight Environment</u>, <u>Arnold Engineering Development Center</u>, <u>Arnold Air Force Station</u>, <u>Tennessee</u> 37389, <u>AEDC-TR-77-68</u>, (AD B019 653L), June 1977.
- 24. Carver, D.B., Experimental Aerothermodynamic Evaluation of Laminated Plastic Windshield Materials at Supersonic Speeds, Arnold Engineering Development Center, Arnold Air Force Station, Tennessee 37389, AEDC-TR-74-11, (AD-921 097L), July 1974.
- 25. Wylie Jr., C.R., Advanced Engineering Mathematics, McGraw-Hill Book Company, Inc., New York, New York, 1951.
- 26. Todd, C., Computation of the Flow Around the F-16 Forehody with an Inlet Using a Three-Dimensional Euler Code (ARO-1), Arnold Engineering Development Center, Arnold Air Force Station, Tennessee 37389, AEDC-TR-81-27, (AD B068 119L), September 1982.

LIST OF SYMBOLS

AA thru HH, NN and PP	Temporary computer code variables
ALPD	Angle of attack, deg
ALPHA	Angle of attack, deg
AR	Amplification Ratio
CPII	Central Processor Unit
c _p	Specific heat of air at constant pressure, $ft^2/(s^2 R)$
$C_{\mathbf{p}}$	Pressure coefficient
C _P MIN	Minimum pressure coefficient for supersonic flow
c _p s	Pressure coefficient based on stagnation (total) pressure downstream of a normal shock wave
C _P SHADOW	Pressure coefficient in the shadow region of a body
n	Thickness of the gage, in.
FLT	STAPAT input variable - indicates flight case
h	Convection heat transfer coefficient
н(.9 тп)	Heat transfer coefficient based on an adiabatic wall temperature equal to 0.9 TO, Rtu/(ft ² ·s·R)

LIST OF SYMBOLS (Continued)

ISMO	STAPAT input variable - forebody smoothing
k	Thermal conductivity of the gage, Btu/(ft·s·R)
KCF	STAPAT input variable - skin friction law
KODE	STAPAT input variable - atmospheric model indicator
KP	STAPAT input variable - streamline type
¿, L	Length of the analytic forebody, in.
М	Free-stream Mach number
MU-INF	Free-stream absolute viscosity, 1bf.s/ft?
M _∞	Free-stream Mach number
p	Body surface pressure
p	Local static pressure
PHI	Cross-sectional polar coordinate angle of the STAPAT model of the analytic forebody, deg
PHI	Gage circumferential angle location, deg
PINF	Free-stream static pressure
P-INF	Free-stream static pressure, psia

LIST OF SYMBOLS (Continued)

Pt. 2	Total (stagnation) pressure downstream of a normal shock wave
$P_{_{\infty}}$	Free-stream static pressure
ODOT	Heat transfer rate, Btu/(ft ² s)
OINE	Free-stream dynamic pressure
OCOND	Conduction heat transfer rate
ⁿ conv	Convection heat transfer rate
R	Cross-sectional radial polar coordinate of the STAPAT model of the analytic forebody, in.
r, r ₁	Radial distances used in describing the analytic forebody, in.
RE-INF	Free-stream unit Reynolds number, ft ⁻¹
RHO-INF	Free-stream static density, 1bf.s ² /ft ⁴
ST	Stanton number based on free-stream conditions
T	Local static temperature
T-BF	Backface (inner wall) temperature, R
TINF	Free-stream static temperature
T-INF	Free-stream static temperature, R
то	Tunnel stagnation temperature, R

LIST OF SYMBOLS (Concluded)

T-S	Surface (nuter wall) temperature, R
T-S/TN	Ratio, T-S and TO
T-WATER	Average value of the inlet and outlet water temperatures, f
T _{AW}	Adiabatic wall temperature
V-INF	Free-stream velocity, ft/s
X	Gage axial station location, in.
x, y, z X, Y, Z	Coordinates along the X, Y and 7 axes of the analytic forebody, in.
Υ	Ratio of specific heats
5	Body slope angle; the angle between the free-stream flow direction and the tangency plane of a point on a body, deg
ф	Cross-sectional polar coordinate angle of the STAPAT model of the analytic forebody, deg
θ	Polar angle used in describing the analytic forebody, rad
Subscript	•
AVE	Average value of differences between backface and surface temperatures

NOTES: For those data reduction parameters (such as free-stream static temperature) listed in the tabulated output (see the Appendix), the symbols presented in the List of Symbols and in the equations, figures, and text of the report are the same as the nonstandard symbols (such as T-INF) used in the tabulated output. Standard and nonstandard symbols in plots from the STAPAT postprocessor were used unchanged in this report. Symbols for other parameters used in this report are presented in more convertional notation.

For those symbols where no units are given, any consistent set of units apply.

APPENDIX

WIND TUNNEL TEST DATA TABULATIONS

Copies of tabulations of the data from all 51 wind tunnel tests of the analytic forebody are presented in this Appendix.

MACH	3 CAN	OPY TES	ST RI	N 9054				
1	T-INF 78.92 deg R		INF 5.63 ia	RHO-IN 0.2639E slug/ft	02	V INF 1953-7 ft/s	ALPHA - O Ob	
	TO 196 : 68 deg : R	2 0 ps	PO XO:53 ia	MU-LNF 0.14390L 1bf·s/ft?	υ6 o	RE DI 3582E-08 17f1	T WATER 601 44 dog P	
GAGE	X in.	PHI deg	T-BF deg R	T.S. ieg.P	T S/TO	QDOT Stuj (ft?·s)	H (.9 TO: Btu/ (ft?-5-R)	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18 19	2.75 3.75 4.78 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50 3.50 4.50 6.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	561 99 544 65 556 38 545 58 547 71 526 29 519 85 534 70 560 68 567 85 547 55 549 12 537 72 536 96 580 85	538.47 544.76 541.05 534.02 538.47 508.36 505.51 512.57 555.02 562.54 553.94 553.94 529.73 528.00 528.71 580.79	1 084 1 097 1 095 1 075 1 084 1 018 1 032 1 117 1 133 1 11,5 1 062 1 067 1 063 1 169	7, 759 0, 036 4, 071 3, 815 2, 849 5, 915 4, 733 7, 302 1, 867 1, 250 1, 290 6, 649 6, 396 3, 207 2, 723 0, 019	0 8484E 01 0 3685E 03 0 4196E 01 0 4385E 01 0 3115E 01 0 9642E 01 0 1114E+00 0 1728E 01 0 1082E-01 0 1206E-01 0 8271E 01 0 7732E 01 0 3959E 01 0 1422E 03	0 2132E 02 0 9259E 05 0 1054E-02 0 1102E 02 0 7828E 03 0 2423E 02 0 2034E 02 0 2799E 02 0 4343E-03 0 2718E-03 0 3031E-03 0 2078E-02 0 1943E 02 0 9949E 03 0 8376E-03
1	T INF 79.29 deq #	۶	INF 3 42	RHO-IN O 3940F slug/ft	05	V TNF 1955 > ft '.	ALPHA O OF fen	
	10 197-74 deg R		P0 XO 09 sia	MU INF O 14421E bf·s/ft		RE INF .5344E-08 1. ft	T WATER 600 12 104 F	
GAGE	X in.	PHI deg	T RF deg P	T-S deg F	т влю	UNOT Otar (ft (s)	H 9 TO Star (ft Teses)	~T
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 9.00 9.00 2.50 3.50 4.50 6.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	553.56 531.88 545.93 532.45 533.63 515.23 508.25 523.78 544.68 557.26 545.71 538.22 524.66 522.87	524 61 532.03 530.49 518.07 522.91 495.36 492.65 498.86 542.16 552.06 541.46 513.29 515.16 513.00 512.99	1 109 1.088 1.031 1.035	5.096 4.746 3.537 5.150 8.222 0.830 1.717 1.730 7.884 7.608 -3.845 3.261	0 1246E+00 0 5890E 03 0.6174E 01 0 6769E 01 0 4718E 01 0 1383E+00 0 1153E+00 0 1615E+00 0 1649E 01 0 1649E 01 0 1207E+00 0 1132E+00 0 5911E 01 0 6971E 03	0.2095E 02 -0.9900E-05 0.1038E 02 0.1138E 02 0.7931E 03 0.2325E 02 0.1938E 02 0.2715F 02 0.1494E 03 0.2772E-03 0.3109E-03 0.2029E 02 0.1903E-02 0.9937E-03 0.8430E-03 0.1172E 04

	MACH 3	CANOPY	TEST	RUN-	0656
--	--------	--------	------	------	------

	T · LNF	P	- INF	RHO INF	r	V INF	ALPHA.	
	178.97	1	1. 2 5	0.5274E-	-02	19 54 . 0	0.07	
	deg R	p:	sia	slug/ft	3	ft/s	deg	
	T O		P0	M. INF		RE INF	T WATER	
	496.83	40	00.94	0.14394E	06 0	. 7 1⊱9E+08		
	deg R	p	sia	lbf·s/ft		1/ft	qed g	
GAGI	X	PHI	T-BF	T-S	T S/TO	COCIU	H(.9 TO)	ST
	in.	deg	deg R	deg R		Btu/	Bto 1	
		,	,	,		(ft2·s)		
1	2.75	60.0	546.13	512.66	1.032	-11.045	0 1686E+00	0.2120E 02
2	3.75	60.0	521 09	521.24	1.049	0.047	-0.6365E-03	-0.8001E-05
3	4.75	60.0	536.99	518.90	1.044	-5. 967	0 8316E-01	0 1045E-02
5	6.75	60.0	520 53	504.12	1.015	5.413	0.9501E-01	0.1194E-02
6	7.75	60.0	521.96	509.57	1.026	-4.087	0.6548E-01	0.8231E-03
7	2.00	0.0	506.11	484 76	0.976	7.047	0.1874E+00	0.2356E-02
8	3.00	0.0	498.68	482.19	0.971	5 442	0.1553E+00	0.1952E-02
9	4.00	0.0	514.73	487 . 81	0.982	8.885	0.2186E+00	0.2747E-02
12	7.00	0.0	540.50	530.97	1.069	-3.145	0.3752E-01	0.4716E-03
13	8.00	0.0	548.87	542.28	1.091	- 2 .1 7 5	0.2286E-01	0.2873E-03
14	9.00	0.0	537.22	530.78	1.068	2.128	0.2544E-01	0.3198E-03
15	2.50	30.0	528.37	501.47	1.009	-8.877	0.1634E+00	0.2054E-02
16	3.50	30.0	528.62	502.85	1.012	-8.506	0.1527E+00	0.1920E-02
17	4.50	30.0	514.19	500.90	1.008	-4.383	0.8154E-01	0.1025E-02
18	5.50	30.0	511. 6 5	500.43	1.007	-3.703	0.6950E-01	0.8736E-03
19	6.50	30.0	571.21	570.67	1.149	-O.177	0.1437E-02	0 1806E 04

MACH 3 CANOPY TEST RUN= 0657

	T-INF 170.80 deg R		- INF 2.80 sia	RHO-INF 0.1376E- slug/ft	02	V INF 1908.9 ft/s	ALPHA -0 07 deg	
_	TO 174.16		P0 99.83	MU INF 0.13717E-	ne n	RE: INF 1915E+08	T WATER 600.83	
	leq R		nsia	lbf·s/ft		1/ft	deq R	
GAGE	Х	PHI	T-BF	T-S	T-S/T0	QDOT	H(9 TO)	ST
	in.	deq	deg R	d e g R		Btu/ (ft ² ·s)	Btu/	
1	2.75	60.0	572 80	555.31	1.171	5.769	(ft [?] 's'R) 0. 4487E -01	0.2213E 02
2	3.75	60.0	558.30	548.47	1.157	-3.242	0.4487E-01	0 1314E-02
3	4.75	60.0	563.29	554.29	1 169	-2.969	0.2328E-01	0.1148E-02
5	6.75	60.0	555.14	548.10	1.156	-2.321	0.1913E-01	0.9435E 03
6	7.75	60.0	557.25	550.7 5	1.162	2.147	0.1731E-01	0.8538E-03
7	2.00	0.0	5 3 3.83	517.84	1.092	-5. 277	0.5793E-01	0 2857E-02
8	3.00	0.0	528.66	515.00	1.086	4.509	0.5109E-01	0 2520E 02
8	4.00	0.0	542.42	523.09	1.103	-6.381	0.6624E-01	0.3267E 02
12	7.00	0.0	568.24	564.81	1.191	-1.133	0.8201E-02	0.4045E-03
13	8.00	0.0	572.19	569.83	1.202	-0.779	0.5441E-02	0.2683E-03
14	9.00	0.0	565 . 44	5 62 . 8 6	1.187	-0.853	0.6267E-02	0.3091E-03
15	2.50	30.0	555.01	538 .90	1 137	-5.317	0.4741E-01	0.2338E-02
16	3.50	30.0	556.59	541.31	1.142	-5.044	0 4403E-01	0.2171E-02
17	4.50	30.0	548.57	540.73	1.140	2.587	O.2270E-01	0.1120E-02
18	5.50	30.0	548.82	542.62	1.144	-2.04 5	0.1764E 01	0 8702E-03
19	6.50	30.0	552.69	544 . 4 4	1.148	-2.721	0.2311E-01	0 1140E-02

MACH	3 CAN	OPY TEST	r RUN	l·· 0658				
1	T INF 70.50 eq R	-		RHO INF 0.2753E 0 slug/ft ³	2 1	/ INF 1907 : 2 t /s	ALPHA O O1 deq	
	TO 73.31 eg R			MU 1NF 0.13692E O bf·s/ft?	6 θ. ·	RF 15F \$83. 5-08 171t	TWATER Fakt 74 dea R	
GAGE	X in.	PHП deg	T BF deg R	T-S deg P	T-S/T0	QDOT Btu/	H(9 TO) Btu/	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18 19	2.75 3.75 4.75 6.75 7.75 2.00 3.00 7.00 8.00 9.00 2.50 3.50 4.50 6.50	60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0 0.0	563.48 541.49 548.67 535.65 537.88 513.16 506.41 523.06 554.14 560.70 550.78 538.53 539.82 527.53 526.92 532.59	536.51 526.18 534.31 524.68 527.73 492.33 488.83 496.96 547.70 556.39 546.08 514.68 517.33 516.02 517.55 519.84	1.134 1.112 1.129 1.109 1.115 1.040 1.033 1.050 1.157 1.176 1.154 1.087 1.093 1.093 1.099	/ft ² ·s) 8.901 -5.053 -4.740 -3.620 -3.340 -6.974 5.801 -8.614 -2.126 -1.423 -1.549 -7.872 -7.421 -3.797 -3.091 -4.207	(ft ¹ ·s·R) 0.8052E 01 0.5043E-01 0.4375E-01 0.3091E 01 0.1056E+00 0.9230E-01 0.1214E+00 0.1747E-01 0.1091E-01 0.1290E-01 0.8875E-01 0.8123E-01 0.4217E-01 0.3375E-01 0.4482E-01	0.1987E 02 0.1244E 02 0.1079E-02 0.9049E-03 0.8120E 03 0.2605E-02 0.2994E 02 0.4309E-03 0.3182E-03 0.3182E-03 0.2190E-02 0.2004E-02 0.1040E-02 0.8327E-03 0.1106E-02
	T INF 171 17 deq		- INF - 8.41 sia	.N= 0640 RHO IN 0.4123E sluq/ft	02	V INF 1911 O ft/s	ALPHA O OF	
	TO 475.18 deq P		P0 99-76 sia	MU INF 0.13748E 1bf+s/ft ³	06 υ	RE INF 5731E+08 1/11	T WATER 600 K7 deg P	
GAGE	X in.	PHI dea	T RIF dea R	T-S deg P	T S/TO	"tu/	H(9 TO)	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	2.75 3.75 4.75 6.75 7.75 2.00 4.00 7.00 8.00 9.00 2.50 3.50 4.50 6.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	555.70 531.09 539.30 523.00 524.85 502.89 495.41 512.92 544.38 552.64 540.57 528.97 529.87 514.87 513.23 521.72	522.49 512.10 521.25 509.54 512.42 479.48 476.48 483.74 535.59 546.78 534.39 500.80 502.95 501.09 501.94	1.100 1.078 1.097 1.072 1.078 1.009 1.003 1.018 1.127 1.151 1.125 1.054 1.058 1.056	5 .955 4 .442 -4 .103 7 .725 6 .250 9 .629 2 .900 1 .935 2 .040 9 .298 8 .816 4 .549 3 .728	(ft².s.R) 0 1156E+00 0.7420E-01 0.6363E-01 0.5425E-01 0.4841E 01 0.1491E+00 0.1717E+00 0.2687E 01 0.1625E-01 0.1911E-01 0.1271E+00 0.1171E+00 0.6196E-01 0.5019E 01 0.7432E-01	0 . 4419E -03 0 . 2672E -03 0 . 3143E -03

MACH	3 CAN	OPY TRES	r RU	N= 0660				
1	T- INF 72.00 eg R		INF .21 ia	RHO INF 0.5471E 0 slug/ft ³		V-INF 1915 6 ft/s	ALPHA 0.08 deg	
	T O 77 . 4 9 eg R			MU-INF 0.13817E (1bf·s/ft?)6 0.	RE INF 7585E+08 1/ft	T WATER 600.30 deq R	
GAGE	X in.	PHI dea	TrBF deaR	T-S dea R	T-S/TU	QDOT Btu/	H(.9 170) Btu/	ST
1	2.75	60.0	546.28	511.37	1.071	(ft ² ·s) 12.510	(ft ² ·s·R) 0.153 3 E+ 0 0	0.1894E-02
2 3	3.75 4.75	60.0 60.0	521.89 530.70	500.19 510.02	1.048	-7.161 -6.822	0.1017E+00 0.8498E-01	0 .1256E -02 0 .1050E-02
5	f. 75	60.0	512.87	497 48	1.042	5.079	0.7499E-01	0.9269E-03
6 7	7.75 2.00	60.0 0.0	514.03 494.79	499.80 469.99	1.047 0.984	4.697 -8.186	0.6705E-01 0.2034E+00	0.8288E-03 0.2514E-02
8	3.00	0.0	486.98	467 . 2 6	0.979	-6.5 08	0.1735E+00	0.2144E-02
9 12	4.00 7.00	0.0 0.0	504.76 534.86	473.66 523.86	0.992	-10.261 -3.631	0.2337E+00 0.3858E-01	0.2888E-02 0.4769E-03
13	8.00	0.0	544.42	537 14	1.125	-2.401	0.2235E-01	0.2763E-03
14 15	9.00 2.50	0.0 3 0.0	531.11 520.82	523.69 489.49	1.097	-2.447 -10.340	0.2605E-01 0.1731E+00	0.3219E-03 0.2139E-02
16	3.50	30.0	520.71	49 1 . 1 5	1.029	-9.754	0.15 89 E+00	0 1964E-02
17 18	4.50 5.50	30 .0	504.42 501.96	489.09 489.41	1.024	- 5 . 059 4 . 143	0. 8526E-01 0.69 44 E-01	
19	6.50	30.0	509.44	491.72	1.030		0.9437E-01	0 1166E 02
1	3 CANO T-INF 68.71 eg R		INF 2.80	N= 0661 RHO-INF 0.1394E-(slug/ft ³	02	V DW 1897.2 ft/s	ALPIIA 3.08 deg	
	то		PO	MU-INF		RE INF	T-WATER	
	68.35		99.91	0.13543E-0	06 0	.1953E+08 17ft	600 41	
đ	eg R	ţ	osia	IDT·S/TC		1/11	deq B	
GAGE	X in.	Р Н Т deg	T-BF deg R	T-S deg R	T-S/TO	QDOT Btu/ (ft^-s)	H(9 TO) Btu/ (ft^-5-R)	ST
1	2.75	60.0	566.05	547.55	1 169		0.4844E-01	0.2373E 02
2 3	3.75 4.75	60.0 60.0	555.69 560.74	545.23 551.08	1.164 1.177		0.2791E-01 0.2461E-01	0.1367E-02 0.1205E-02
5	6.75	60.0	552.48	544.95	1.164	-2.4 8 6	0 2014E-01	0 9864E-03
6 7	7.75 2.00	60.0 0.0	554.32 528.82	547-30 511.66	1.169 1.092		0.1841E-01 0.6282E-01	0.9018E-03 0.3077E-02
8	3.00	0.0	523.68	509.24	1.087	-4.767	0.5434E-01	0.2661E-02
9 12	4.00 7.00	0.0 0.0	537.85 564.13	517.07 559.75	1.104 1.195		0.7176E-01 0.1046E-01	0.3514E-02 0.5124E-03
13	8.00	0.0	568.97	5 66 . 07	1.209	-0.958	0.6631E-02	0.3248E-03
14 15	9.00 2.50	0.0 3 0.0	563.16 551.81	560.34 534.53	1.196 1.141		0.6699E-02 0.5045E-01	0.3281E-03 0.2471E-02
16	3.50	3 0.0	55 3 . 53	537.31	1.147	-5. 353	0.4623E-01	0.2264E-02
17	4.50 5.50	30 .0 3 0.0	545.04 544.56	536.82 537.87	1.146 1.148		0.2351E-01 0.1897E-01	0.1151E-02 0.9291E-03
18 19	6.50	3 0.0	551.50		1 155		0.2946E-01	0.1443E-02

MACH	3 CAN	OPY TES	r Rui	N 0662				
10	T-INF 69.89 eq R		INF .60	RHO LNF 0.2768E-0 slug/ft'	2 1	FINE 903-8 175	ALPHA 3 00 deq	
	7 0 71.63 eg R			MULINF D.13641E O bfrs/ft"		RE 1NF 8864E+08 17ft	T WATER 600.34 deg	
GAGE	X in.	PH1 deg	T HF deg P	T S đeg P	T S/TO	TCKIQ \u+8	H(9 TO) Btu/	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18 19	2.75 3.75 4.75 6.75 7.75 2.00 3.00 7.00 8.00 9.00 2.50 4.50 5.50 6.50	60.0 60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.	558.76 539.36 546.26 533.64 535.25 509.75 503.25 519.72 549.25 556.80 548.93 535.85 536.98 524.57 523.13 532.32	529 .32 523 .54 531 .40 522 .39 524 .71 488 .06 485 .50 492 .99 541 .54 551 .81 544 .13 541 .27 514 .01 512 .77 513 .39 516 .74	1 122 1 110 1 127 2 108 1 113 1 035 1 029 1 045 1 148 1 170 1 154 1 084 1 090 1 087 1 089 1 096	(ft ² -s) 9.057 5.221 4.903 3.714 3.477 7.156 -5.856 -8.821 -2.544 -1.645 1.586 8.110 7.580 -3.894 3.214 -5.142	(ft ⁷ ·s·R) 0 8638E 01 0 5270E 01 0 4586E-01 0 .3793E 01 0 .1125E-00 0 .9595E-01 0 .1287E+00 0 .1291E 01 0 .1326E-01 0 .9343E-01 0 .8465E-01 0 .4410E-01 0 .3614E-01 0 .5573E-01	0.2123E 02 0.1295E 02 0.127E 02 0.9323E 03 0.8524E 03 0.2765E 02 0.2358E 02 0.3164E 02 0.5341E 03 0.3174E-03 0.3258E 03 0.2296E 02 0.2081E 02 0.1084E 02 0.8883E 03 0.1370E 02
	T INF 169 12 deg R		INF 2.81 sia	RHO-INF O 1393E slug/ft ¹	02	V INF 1899 5 1674	ALPHA 2 91 Jen	
	TU 469.50 deg R	1	P0 00.04 sia	MU-INF 0.13577E- 1bf·s/ft ²		RE INF 1948E+08 1 ft	T WATER 600.96 deg R	
GAGE	X in.	PHI deg	T-BF degR	T⋅S den R	т ѕ/10	QDOT Btu/	H(9 TO)	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50 3.50 4.50 6.50	0.0 0.0 0.0 0.0 0.0 30.0 30.0 30.0	567 .82 557 .94 563 .35 555 .79 558 .07 533 .99 528 .51 542 .20 569 .01 572 .74 564 .72 554 .81 556 .27 548 .33 548 .91 552 .39	550.17 548.16 554.54 548.97 551.77 518.09 514.96 523.26 567.24 570.42 561.57 538.57 540.82 540.49 542.62	1.172 1.168 1.181 1.169 1.175 1.103 1.097 1.114 1.208 1.21' 1.196 1.147 1.152 1.151 1.150	(†1°-s) 5 823 -3 226 2 905 2 249 2 078 -5 246 4 474 6 251 0 881 0 786 -1 039 -5 357 -5 097 -2 586 -2 275	(f1 ² -5-P) 0.4562E 01 0.2568E 01 0.2201E-01 0.1779E-01 0.1608E-01 0.5491E 01 0.6207E 01 0.6207E 01 0.6085E-02 0.5180E 02 0.7473E 02 0.4617E-01 0.4309E-01 0.1729E-01 0.1850E 01	0 2234E 02 0.1258E 02 0.1078E-02 0 8715E 03 0.7876E-03 0.2689E-02 0.3040E-02 0.2980E-03 0.2537E-03 0.2537E-03 0.261E-02 0.1074E-02 0.8468E-03 0.9061E-03

CANOPY	TEST I	NUN≈ 0664				
.75	P~INF 5.61 psia	RHO INF 0.2757E-02 slug/ft ³	2	V INF 1908.6 ft/s	ALPHA 2.95 deg	
.00	PO 199.96 psia	MU INP 0.13712E OF Ubf-s/ft ²	6 o	RE INF 3837E+08 1/ft	T WATER 600.79 den R	
			rs/Tru	Btu/	H(.9 TO) Btu/	ST
.75 60 75 60 .75 60 .75 60 .00 0 .00 0 .00 0 .00 0 .00 0 .50 30 .50 30 .50 30	0.0 542.2; 0.0 549.3; 0.0 537.4; 0.0 539.8; 0.0 508.1; 0.0 557.0; 0.0 550.2; 0.0 550.2; 0.0 540.4; 0.0 528.6; 0.0 528.2; 0.0 528.2; 0.0 528.2; 0.0 534.2;	2 527.29 4 535.53 8 526.95 9 530.19 494.13 8 490.98 9 499.50 9 551.74 6 558.39 7 544.93 5 516.21 518.30 4 517.30 9 519.12	1.112 1.130 1.112 1.119 1.042 1.036 1.054 1.164 1.178 1.150 1.089 1.091	-8.741 4.927 -4.560 -3.477 3.202 6.846 -5.675 -8.379 -1.766 -1.307 -1.763 7.702 -7.305 -3.743 -3.027	0.832E-01 0.4893E-01 0.4186E-01 0.3465E-01 0.3091E-01 0.1014E+00 0.8814E-01 0.1150E+00 0.i411E-01 0.9918E-02 0.1490E-01 0.8595E-01 0.7966E-01 0.4127E-01 0.3272E-01	0.2049E 02 0.1205E-02 0.1031E-02 0.8531E-03 0.7610E-03 0.2496E-02 0.2170E-02 0.2830E-02 0.3473E-03 0.2442E-03 0.3668E-03 0.2116E-02 0.1961E-02 0.1016E-02 0.8055E-03
4 5	P-INF 2.80 psia	RHO-INF 0.1325E-02 slug/ft ³		1945.7	ALPHA 0.05 deg	
61	PO 99.86 psia	MU-INF 0.14269E-06 lbf+s/ft ²	0.	RE- INF 1 807E +08 1/ft	T-WATER 610.31 deg R	
n. dec 75 60. 75 60. 75 60. 75 60. 75 60. 00 0. 00 0. 00 0. 00 0. 00 0. 50 30. 50 30.	deg R 586.57 578.75 578.75 5583.23 576.43 578.10 553.78 5548.60 562.36 5588.48 592.15 5585.86 574.89 569.49	deg P 569 .39 569 .13 574 .29 569 .76 571 .86 537 .82 535 .00 543 .16 585 .18 589 .89 583 .17 559 .00 562 .13 561 .38 563 .34	1 .156 1 .155 1 .166 1 .157 1 .160 1 .092 1 .086 1 .103 1 .188 1 .197 1 .184 1 .135 1 .141	QDOT Btu/ (ft ² ·s) -5.667 -3.176 -2.950 -2.200 -2.127 -5.269 -4.509 -6.335 -1.091 0.746 -0.891 -5.246 -5.246 -2.549 -2.032 -2.611	II(.9 TI) Btg/ (ft2···R) 0.4496E 01 0.2525E-01 0.2253E-01 0.1741E-01 0.1658E-01 0.4920E-01 0.347E-01 0.7691E-02 0.5090E-02 0.4536E-01 0.4247E-01 0.2159E-01 0.1694E-01 0.2132E-01	ST 0 2260E -02 0 1269E-02 0 1132E-02 0 8747E-03 0 8331E-03 0 2803E-02 0 2472E-02 0 3189E-02 0 3865E-03 0 22558E-03 0 3200E-03 0 2279E-02 0 2134E-02 0 1085E-02 0 8510E-03 0 1071E-02
	INF (1) .75 R (1) .00 R X Pin75 60 .75 60 .75 60 .30 .50 30 .5	INF P-INF 175 5.61 R psia 0 190 100 199.96 R psia X PHI T BF in. deq deg R 175 60.0 539.86 100 0.0 539.86 100 0.0 539.86 100 0.0 554.86 100 0.0 550.27 100 0.0 562.33 100 0.0 562.33 100 0.0 562.33 100 0.0 539.86 100 0.0 539.86 100 0.0 539.86 100 0.0 539.86 100 0.0 539.86 100 0.0 539.86 100 0.0 539.86 100 0.0 539.86 100 0.0 539.86 100 0.0 539.86 100 0.0 539.86 100 0.0 539.86 100 0.0 583.23 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48 100 0.0 588.48	INF P-INF RHO INF .75	INF P-INF RHO INF 1.75 5.61 0.2757E-02 R psia slua/ft3 O PO MU INF 1.00 199.96 0.13712E 06 0 R psia 1bf-s/ft2 X PHI T BF T-S T S/T0 in. deq deg R deg R 1.75 60.0 542.22 527.29 1.112 75 60.0 542.22 527.29 1.112 75 60.0 549.34 535.53 1.130 1.75 60.0 537.48 526.95 1.112 75 60.0 539.89 530.19 1.119 0.00 0.0 514.87 494.13 1.042 0.00 0.0 514.87 494.13 1.042 0.00 0.0 558.18 490.98 1.036 0.00 0.0 557.09 551.74 1.164 0.00 0.0 557.09 551.74 1.164 0.00 0.0 550.27 544.93 1.150 0.50 30.0 539.55 516.21 1.089 0.50 30.0 539.55 516.21 1.089 0.50 30.0 528.64 517.30 1.091 0.50 30.0 528.64 517.30 1.091 0.50 30.0 534.27 522.21 1.102 0.00 0.0 534.27 522.21 1.102 0.00 0.0 578.75 569.13 1.155 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.0 588.48 585.18 1.188 0.00 0.00 588.48 585.18 1.188 0.00 0.00 588.48 585.18 1.188 0.00 0.00 588.48 585.18 1.188 0.00 0.00 588.48 585.18 1.188 0.00 0.00 588.48 585.18 1.188 0.00 0.00 588.48 585.18 1.188 0.00 0.00 588.48 585.18 1.188 0.00 0.00 588.48 585.18 1.188 0.00 0.00 588.48 585.18 1.188 0.00 0.00 588.48 585.18	INF P-INF RHO INF V INF 175 5.61 0.2757E-02 1908.6 R psia slug/ft3 ft/5 0 IVI MU INF RE INF 00 199.96 0.13712E 06 0.3837E-08 1/ft X PHI T BF T-S T S/TU QDOT 175 60.0 549.34 535.53 1.130 -4.560 549.34 535.53 1.130 -4.560 0.0 549.34 535.53 1.130 -4.560 0.0 544.89 499.50 1.054 -8.379 0.0 0.0 554.89 499.50 1.054 -8.379 0.0 0.0 550.27 544.93 1.150 -1.763 0.0 0.0 550.27 544.93 1.150 -1.763 0.0 0.0 539.85 55 516.21 1.089 7.702 0.50 30.0 539.85 516.21 1.089 7.702 0.50 30.0 539.85 519.12 1.093 -7.305 0.50 30.0 528.29 519.12 1.095 -3.027 0.50 30.0 539.55 516.21 1.089 7.702 0.50 30.0 528.29 519.12 1.096 -3.027 0.50 30.0 534.27 522.21 1.102 3.982 0.00 0.0 534.87 69.38 1.150 -1.763 0.00 0.0 539.55 516.21 1.089 7.702 0.50 30.0 539.55 516.21 1.089 7.702 0.50 30.0 539.55 516.21 1.089 7.702 0.50 30.0 539.55 516.21 1.089 7.702 0.50 30.0 539.55 516.21 1.089 7.702 0.50 30.0 539.55 516.21 1.089 7.702 0.50 30.0 539.55 516.21 1.089 7.702 0.50 30.0 539.55 516.21 1.089 7.702 0.50 30.0 539.55 516.21 1.089 7.702 0.50 30.0 540.44 518.30 1.091 -3.743 0.50 30.0 540.44 518.30 1.091 -3.743 0.50 30.0 528.29 519.12 1.096 -3.027 0.50 30.0 534.27 522.21 1.102 3.982 0.50 30.0 534.27 522.21 1.102 3.982 0.50 30.0 534.27 522.21 1.102 3.982 0.50 30.0 576.43 569.76 1.155 -3.176 0.50 30.0 576.43 569.76 1.157 -2.200 0.558.32 574.29 1.166 -2.950 0.00 0.0 558.86 583.78 571.86 1.160 -2.127 0.00 0.0 558.86 583.78 571.86 1.160 -2.127 0.00 0.0 558.86 583.78 537.82 1.092 -5.269 0.00 0.0 558.86 583.78 537.82 1.092 -5.269 0.00 0.0 588.84 585.18 1.188 -1.091 0.00 0.0 588.84 585.18 1.188 -1.091 0.00 0.0 558.84 585.18 1.188 -1.091 0.00 0.0 558.84 585.18 1.184 -0.891 0.00 0.0 558.84 585.18 1.188 -1.091 0.00 0.0 558.84 585.18 1.188 -1.091 0.00 0.0 558.84 585.18 1.184 -0.891 0.00 0.0 558.84 585.18 1.144 -2.250 0.00 0.0 556.49 583.34 1.144 -2.250 0.00 0.0 556.49 583.34 1.144 -2.250 0.00 0.0 556.49 583.34 1.144 -2.250 0.00 0.0 556.49 583.34 1.144 -2.250 0.00 0.00 556.49 583.34 1.144 -2.250 0.00 0.00 556.49 583.34 1.144 -2.250 0.00 0.00 556.49 583.34 1.144 -2.250 0.00 0	INF P-INF DO NO DOT 1998.6 2.95 R psia slug/ft3 ft/s den 0 PO MU INF RE INF GOO 79 R psia 1999.96 0.13712E 06 0.3837E.08 1/ft 600 79 R psia 15-5.61 0.2757E-02 1998.6 2.95 R psia 15-5.61 0.3712E 06 0.3837E.08 600 79 den R X PHI T BF T-S T S/TU QDOT H(.9 TU) in. deq deg R deg R Btu/ (ft²-s) (ft²-s-R) 7.5 60.0 542.22 527.29 1.112 4.927 0.4893E-01 7.5 60.0 549.34 535.53 1.130 -4.560 0.4186E-01 7.5 60.0 537.48 526.95 1.112 -3.477 0.3465E-01 7.5 60.0 539.89 530.19 1.119 3.202 0.3091E-01 00 0.0 514.87 494.13 1.042 6.846 0.1014E-00 00 0.0 508.18 490.98 1.036 5.675 0.8814E-01 00 0.0 508.18 490.98 1.036 5.675 0.8814E-01 00 0.0 557.09 551.71 1.164 1.766 0.411E-01 00 0.0 557.35 558.39 1.178 -1.307 0.9918E-02 00 0.0 550.27 544.93 1.150 -1.763 0.1490E-01 00 0.0 552.25 518.21 1.089 7.702 0.8595E-01 550 30.0 539.55 518.21 1.089 7.702 0.8595E-01 550 30.0 528.64 517.30 1.093 -7.305 0.7966E-01 550 30.0 528.64 517.30 1.091 3.743 0.4156E-01 560 30.0 528.64 517.30 1.093 -7.305 0.7966E-01 560 30.0 528.65 57 569.39 1.166 -5.667 0.4496E-01 560 30.0 528.64 517.30 1.091 3.743 0.4157E-01 560 30.0 538.57 569.39 1.166 -2.950 0.2525E-01 575 60.0 588.23 574.29 1.166 -2.950 0.2525E-01 575 60.0 588.32 57.82 1.092 -5.269 0.2525E-01 575 60.0 588.32 57.82 1.092 -5.269 0.2525E-01 575 60.0 588.57 569.39 1.166 -2.950 0.2525E-01 575 60.0 588.88 8585.18 1.188 -1.091 0.7691E-02 577 60.0 588.88 8585.18 1.188 -1.091 0.7691E-02 577 60.0 588.88 585.18 1.188 -1.091 0.7691E-02 577 60.0 588.88 585.18 1.188 -1.091 0.7691E-02 577 60.0 588.88 585.18 1.188 -1.091 0.7691E-02 577 60.0 588.89 589.90 1.176 -2.200 0.1741E-01 575 60.0 588.89 589.90 1.176 -2.200 0.1751E-01 577 60.0 578.70 578.80 579.41 562.13 1.141 -5.044 0.4247E-01 578 60.0 569.49 569.34 1.1144 -5.044 0.4247E-01 578 60 0.0 56

	~	a man		T31 B 1	comme.
MACH	3	CANOPY	TEST	RUN-	0666

	T-INF	, ,	P- INF	RHO- INF			V- INF	ALPHA	
	178.28		5.59	0.2633E			1950.2	-0 03	
	dey R	þ	isia	slug/ft ³			ft/s	deq	
	***		ne				DI 1.12	Ø 1114 Ø 1710	
	10		P0	MU-INF	Λe.	0	RE INF	T WATER	
	494.91		199.40	0.14337E	OO,	U	3582E+08	610-51 deg R	
	deg R	1	psia	101.2.17			,,,,	and K	
GAG	E X	PHI	T BF	TS	TS	S/TO	TUQQ	H(9 Tu)	ST
	in,	deg	deg R	deg P			Btu/	Rtu/	
	2.75	- 60 A	= 7 0 6 4	553.50	,	110	(ff?+3))(ft ¹ s⋅R) Ο 7975E- Ο 1	0.2012E-02
1 2	3.78		579.64 563.50			.118 108		0.4774E-01	0 1204E 02
3	4.75		570.00			123	4.641	0 4199E 01	0 1059E-02
5	6.75		558.82			.108		0.3315E-01	0.8363E 03
6	7.75		560.4 9			. 113		0.3102E 01	0.7825E-03
7	2.00		534.69			.038		0.1003E+00	
8	3.00		528.18			032		0.8723E-01	0 2201E-02
9 12	4.00 7.00		544.85 5 7 5.37			. 049 . 150		0.1146E+00 0.1663E-01	0. 2892E-0 2 0.4196E-03
13	8.00		581.49			. 167 . 167	-1.354	0.1026E-01	0.2587E-03
14	9.00		572.34			. 147	1.549	0.1267E-01	0.3197E-03
15	2.50		559.65		1	.084	- 7 .650	0.8402E-01	0.2120E-02
16	3.50	30.0	562.00	539.83	1	.091	7.316	0.7749E-01	0.1955E-02
17	4.50		549.60			.088		0.4009E-01	0.1011E-02
18	5.50		549.24			.091	-3.058	0.3234E-01	0.815 8E-03
19	6.50	30.0	555.14	543.09	1	. 097	-3.977	0 4072E- 0 1	0.1027E 02
MACH	3 CAN	OPY TES	ST RU	N= 0667					
	T-INF		INF	RHO-INF			/- INF	A LPHA	
	76.97		2.79	0.1322E 0	2		1943.1	3.97	
ď	leg R	ps	Sia	slug/ft ³		1	ft 's	đeq	
	TO		P0	MU- INF			RE IN	T WATER	
4	91.28	Ę		0.14229E-0	6	0.1	1806E+08	610 67	
d	eg R	p		1bf∙s/ft²			1/f1	den b	
GAGE	Х	РНІ	T-BF	T-S	T S	TY	UDOT	UZ C TO)	ST
GAGD	ìn.	deg	deg R	1-3 deg R	1 3/	10	QDOT Btu∕	H(.9 70) Btu/	21
		deg	deg K	пед к			(ft '.s)	(ft ² ·s·R)	
j	2.75	60.0	586.87	570.10	1.1	60	5.537	0.4328E-01	0.2182E 02
2	3.75	60.0	579.75	57 0 . 51	1.1		-3.048	0.2375E 01	0.1197E 02
3	4.75	60.0	584 42	575.81	1.1		2.841	0.2126F-01	0.1072E-02
5 6	6.75 7.75	60.0 60.0	578.00 579.85	571.70 573.80	1 1		~2.078 1.998	0.1604E-01	0.8086E-03 0.7651E-03
7	2.00	0.0	556 45	541.13	1.1		-5. 05 5	0.1518E-01 0.5108E 01	0.7651E-03 0.2575E-02
8	3.00	0.0	551.17	538.02	1.0		4.338	0.4525E 01	0 2281E-02
9	4.00	0.0	564.78	546.58	1.1		-6.006	0.5752E 01	0.2900E-02
12	7.00	0.0	591.50	589 .23	1.1	88	-0.750	0.5100E-02	0.2571E 03
13	8.00	0.0	593.56	591.42	1.2		-0.706	0.4731E-02	0.2385E-03
14	9.00	0.0	585.89 576.28	582.92	1.1		-0.979	0.6958E-02	0.3508E-03
15 16	2.50 3.50	30.0 30.0	575.28 578.49	560.8 5 583.4 0	1.1		-5.0 9 2 -4.980	0.4290E-01 0.4107E-01	0 2163E -02 0 2071E -02
17	4.50	30.0	570.38	562.82	1.1		2.494	0.4107E-01 0.2067E-01	0.1042E-02
18	5.50	30.0	571.2 6	565.24	1.1		-1.985	0.1613E 01	0.8131E-03
19	6.50	30.0	57 5.86	568.60	1.1		-2.395	0.1894E-01	0.9550E 03

MACI	H 3 CAN	OPY TE	ST R	UN≕ 0668				
	T-INF 177.56 leg R		-INF 5.59 sia	RHO-INF 0. 2641E -0 slug/ft ³	02	V-INF 1946.3 ft/s	ALPHA 3.91 deg	
	TO 492.93 deg R		P0 99.22 sta	MU-INF 0.14278E-0 1bf·s/ft ²	9 6 0	RE INF .3600E+08 1/ft	T WATER 610.70 deg R	
GAGE	X in.	PHI deg	T-BF deg R	T~S deg R	T-S/TO	Btu/	H(.9 TO) Btu/	ST
,	0.75	60.0	E 70 25	552 40	1 102	(ft ² 's)	(ft ⁻ '·s·R)	0.10645.00
1 2	2.75 3.75	60.0 60.0	579.35 564.29		1.123		0.7795E-01 0.4574E-01	0.1964E-02 0.1153E-02
3	4.75	60.0	570.58		1.129		0.4033E-01	0.1016E-02
5	6.75	60.0	559.81		1.115		0.3159E-01	0.7961E-03
6	7.75	60.0	562.10	552.58	1.121	-3.143	0.2885E-01	0.7271E-03
7	2.00	0.0	5 3 6.32		1.046		0. 944 6E-01	0.2380E-02
8	3.00	0.0	529 .54		1.039		0.8238E-01	0.2076E-02
8	4.00	0.0	546.55		1.058		0.1060E+00	0.2670E-02
12 13	7.00 8.00	0.0	579.30		1.165		0 1230E-01 0.9083E-02	0.3101E-03
13	9.00	0.0 0.0	583.64 571.66		1.149		0.1402E-01	0.2289E-03 0.3533E-03
15	2.50	30.0	560.68		1.091		0.8028E-01	0.2023E-02
16	3.50	30.0	562.61		1 096		0.7546E-01	0.1901E-02
17	4.50	30.0	550.45		1.094	-3.701	0 3872E-01	0.9757E 03
18 19	5.50 6.50	30 .0 30 .0	550.88 557.18		1.099		0.3037E-01 0.3676E-01	0.7652E-03 0.9263E-03
MACH	3 CAN	OPY TES	T RI	JN= 0669				
	T-INF		INF	RHO INF		V- INF	ALPHA	
	76.3 5		2.80	0 1331E -0	2	1939.7	4 05	
a (eg R	ps	ıa	slug/ft3		ft/s	deg	
	TO		PO	MC INF		RE INF	T WATER	
4	89.56		9.73	0.14178E-0	5 0	1821E+08	610 74	
de	eg R	b	sia	lbf-s/ft?		1/ft	deg R	
GAGE	X	РНІ	T-BF	_	T-S/TO	QDOT	H(.9 TO)	ST
	in.		deg R	d e g R		Btu/	B†u/	
1		deg	ueg n	deg n			/ r 2 c (D)	
	2.75	_	-	_	1 163		(ft2.c.R)	0. 2318E-02
	2.75 3.75	60.0 60.0	587.30 578.61	569.29 568.22	1.163	(ft ² ·s) 5. 94 5	(ft ^{2.<-} ?) 0. 4620E -01	0.2318E-02 0.1348E-02
2 3		60.0	587.30	569.29	1.163 1.161 1.170		(ft2.c.R)	
2 3 5	3.75 4.75 6.75	60.0 60.0 60.0 60.0	587.30 578.61 582.49 575.32	569.29 568.22 572.94 568.18	1.161 1.170 1.161	(ft ² ·s) 5.945 -3.430 -3.150 -2.357	(ft ^{2.s.R}) 0.4620E-01 0.2688E-01 0.2380E-01 0.1848E-01	0.1348E-02 0.1194E-02 0.9271E-03
2 3 5 6	3.75 4.75 6.75 7.75	60.0 60.0 60.0 60.0	587.30 578.61 582.49 575.32 576.87	569.29 568.22 572.94 568.18 569.90	1.161 1.170 1.161 1.164	(ft ² ·s) 5.945 -3.430 -3.150 -2.357 -2.300	(ft ^{2.s.R}) 0.4620E-01 0.2688E-01 0.2380E-01 0.1848E-01 0.1779E-01	0.1348E-02 0.1194E-02 0.9271E-03 0.8925E-03
2 3 5 6 7	3.75 4.75 6.75 7.75 2.00	60.0 60.0 60.0 60.0 60.0	587.30 578.61 582.49 575.32 576.87 550.81	569.29 568.22 572.94 568.18 569.90 533.60	1.161 1.170 1.161 1.164 1.090	(ft ² ·s) 5.945 -3.430 -3.150 -2.357 -2.300 -5.682	(ft ^{2.s.} ?) 0.4620E-01 0.2688E-01 0.2380E-01 0.1848E-01 0.1779E-01 0.6110E-01	0.1348E-02 0.1194E-02 0.9271E-03 0.8925E-03 0.3065E-02
2 3 5 6 7 8	3.75 4.75 6.75 7.75 2.00 3.00	60.0 60.0 60.0 60.0 60.0 0.0	587.30 578.61 582.49 575.32 576.87 550.81 545.88	569.29 568.22 572.94 568.18 569.90 533.60 531.43	1.161 1.170 1.161 1.164 1.090 1.086	(ft ² -s) 5.945 -3.430 -3.150 -2.357 -2.300 -5.682 -4.769	(ft ² .<-R) 0.4620E-01 0.2688E-01 0.2380E-01 0.1848E-01 0.1779E-01 0.6110E-01 0.5251E-01	0.1348E-02 0.1194E-02 0.9271E-03 0.8925E-03 0.3065E-02 0.2634E-02
2 3 5 6 7 8 9	3.75 4.75 6.75 7.75 2.00 3.00 4.00	60.0 60.0 60.0 60.0 60.0 0.0 0.0	587.30 578.61 582.49 575.32 576.87 550.81 545.88 559.93	569.29 568.22 572.94 568.18 569.90 533.60 531.43 539.28	1.161 1.170 1.161 1.164 1.090 1.086 1.102	(ft ² ·s) 5.945 3.430 -3.150 -2.357 -2.300 -5.682 -4.769 -6.814	(ft ² .<-R) 0.4620E-01 0.2688E-01 0.2380E-01 0.1848E-01 0.1779E-01 0.6110E-01 0.5251E-01 0.6905E-01	0.1348E-02 0.1194E-02 0.9271E-03 0.8925E-03 0.3065E-02 0.2634E-02 0.3464E-02
2 3 5 6 7 8	3.75 4.75 6.75 7.75 2.00 3.00	60.0 60.0 60.0 60.0 60.0 0.0	587.30 578.61 582.49 575.32 576.87 550.81 545.88	569. 29 568. 22 572. 94 568. 18 569. 90 533. 60 531. 43 539. 28 581. 49	1.161 1.170 1.161 1.164 1.090 1.086 1.102 1.188	(ft ² -s) 5.945 3.430 -3.150 -2.357 -2.300 -5.682 -4.769 -6.814 -1.477	(ft ² .<-R) 0.4620E-01 0.2688E-01 0.2380E-01 0.1848E-01 0.1779E-01 0.6110E-01 0.5251E-01	0.1348E-02 0.1194E-02 0.9271E 03 0.8925E-03 0.3065E-02 0.2634E-02 0.3464E-02 0.5260E 03
2 3 5 6 7 8 9	3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0	587.30 578.61 582.49 575.32 576.87 550.81 545.88 559.93 585.96	569.29 568.22 572.94 568.18 569.90 533.60 531.43 539.28	1.161 1.170 1.161 1.164 1.090 1.086 1.102	(ft ² ·s) 5.945 3.430 -3.150 -2.357 -2.300 -5.682 -4.769 -6.814	(ft ² .s·R) 0.4620E-01 0.2688E-01 0.2380E-01 0.1848E-01 0.1779E-01 0.6110E-01 0.5251E-01 0.6905E-01 0.1049E-01	0.1348E-02 0.1194E-02 0.9271E-03 0.8925E-03 0.3065E-02 0.2634E-02 0.3464E-02
2 3 5 6 7 8 9 12 13 14	3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	587.30 578.61 582.49 575.32 576.87 550.81 545.88 559.93 585.96 590.59 585.32 573.70	569.29 568.22 572.94 568.18 569.90 533.60 531.43 539.28 581.49 587.71 582.36 556.56	1.161 1.170 1.161 1.164 1.090 1.086 1.102 1.188 1.200 1.190 1.137	(ft ² ·s) 5.945 3 430 -3.150 -2.357 -2.300 -5.682 -4.769 -6.814 -1.477 -0.949 0.977 -5.654	(ft ² .<.R) 0.4620E-01 0.2688E-01 0.2380E-01 0.1779E-01 0.6110E-01 0.5251E-01 0.6905E-01 0.1049E-01 0.6893E-02 0.4876E-01	0.1348E-02 0.1194E-02 0.9271E 03 0.8925E-03 0.3065E-02 0.2634E-02 0.3464E 02 0.5260E 03 0.3235E-03 0.3458E-03 0.2446E-02
2 3 5 6 7 8 9 12 13 14 15	3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50 3.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	587.30 578.61 582.49 575.32 576.87 550.81 545.88 559.93 585.96 590.59 585.32 573.70 576.41	569.29 568.22 572.94 568.18 569.90 533.60 531.43 539.28 581.49 587.71 582.36 556.56 560.13	1.161 1.170 1.161 1.164 1.090 1.086 1.102 1.188 1.200 1.190 1.137	(ft ² ·s) 5.945 3 430 -3.150 -2.357 -2.300 -5.682 -4.769 -6.814 -1.477 -0.949 0.977 -5.654 5.373	(ft ² .<-R) 0.4620E-01 0.2688E-01 0.2380E-01 0.1779E-01 0.6110E-01 0.5251E-01 0.6905E-01 0.1049E-01 0.6449E-02 0.4876E-01 0.4496E-01	0.1348E-02 0.1194E-02 0.9271E 03 0.8925E-03 0.3065E-02 0.2634E-02 0.3464E-02 0.5260E 03 0.3235E-03 0.3458E-03 0.2446E-02 0.2255E-02
2 3 5 6 7 8 9 12 13 14	3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	587.30 578.61 582.49 575.32 576.87 550.81 545.88 559.93 585.96 590.59 585.32 573.70	569.29 568.22 572.94 568.18 569.90 533.60 531.43 539.28 581.49 587.71 582.36 556.56	1.161 1.170 1.161 1.164 1.090 1.086 1.102 1.188 1.200 1.190 1.137	(ft ² ·s) 5.945 3 430 -3.150 -2.357 -2.300 -5.682 -4.769 -6.814 -1.477 -0.949 0.977 -5.654	(ft ² .<.R) 0.4620E-01 0.2688E-01 0.2380E-01 0.1779E-01 0.6110E-01 0.5251E-01 0.6905E-01 0.1049E-01 0.6893E-02 0.4876E-01	0.1348E-02 0.1194E-02 0.9271E 03 0.8925E-03 0.3065E-02 0.2634E-02 0.3464E 02 0.5260E 03 0.3235E-03 0.3458E-03 0.2446E-02

1.153

0.1834E-01 0.9201E-03 0.2249E-01 0.1128E-02

MACH 3 CANOPY	TEST	RUN=	0670
---------------	------	------	------

1' de 4'	T-INF 76.73 29. R TO 90.61	5 ps 19	PO 19.55	RHO INF 0.2658E- slug/ft ³ MU-INF 0.14209E- lbf·s/ft ²	02	1	7 INF 1941 7 Et/s RE INF 3632E+08 1/+t	ALPHA -4 00 deg T WATER 610 50 deg R	
	•								
GAGE	Х	PHI	T BF	TS	T-S/	MI	TOOL	H(9-170)	ST
	in.	deg	deg R	deg R			Btu/	Btu/ (ft?·∵R)	
1	2.75	60.0	574.61	547 .15	1.1	15	- (fi *+-) - 9-062	O.8581E-01	0.2154E 02
2	3.75	60.0	561.89	545.99	1.1		-5.247	0.5024E-01	0.1261E-02
3	4.75	60.0	568.00	553.06	1.1		4.933	0 4424E-01	0 1110E 02
5	6.75	60.0	556.06	545.07	1.1		-3.627	0.3504E-01	0.8793E 03
6	7.75	60.0	557.48	546.92	1.1		3.486	6.3308E-01	0 8303E 03
7	2.00	0.0	530.77	508.71	1.0		-7.278	0.1084E+00	0 2720E 02
8	3 00	0.0	524.47	506.42	1 0		-5 957	0.9184E-01	0 2305E 02
9	4.00	0.0	541.35	514.27	1.0		-8 936	0.1229E-00	0.3084E 02
12	7.00	0.0	570 26	562.28	1.1		2 635	0.2183E-01	0.5478E-03
13	8.00	0.0	577.61	572.51	1.1		1.686	0.1287E 01	0.3230E 03
14	9.00	0.0	570.24	565.32	1.1		1 623	0.1311E-01	0.3291E-03
15	2.50	36.0	557.02	532.46	1.0		-8.106	0 8916E-01	0.2238E-02
16	3.50	30.0	559.47	536.06	1.0		7.725	0.8174E-01	0.2051E-02
17	4.50	30.0	546.46	534.67	1.0		3.891	0.4178E-01	0.1049E-02
18	5 50	30.0	545.14	535.32	1.0		-3.242	0.3457E-01	0.8676E-03
19	6.50	30.0	552.30	539.73	1.1		-4.149	0.4226E-01	0.1061E-02
19	0.30	30.0	332.30	038.13	1.1	00	-4.140	U.4220E-U1	0.1001E=02
MAC	H 3 CA	NOPY TF	EST F	RUN≃ 0671 RHO-IN			V INF	ALPHA	
	175.68		2.82	0.1348E			1936.0	3 03	
	deg R		sia	slug/ft			ftis		
	ang in	۲		stury to			11 5	qëq	
	TO		P0	MU INF			RF INF	T-WATER	
	487.71	1	100.57	0.14123E		O	1847E-08	610.71	
	dea R		osia	1hf·s/ft ²		·	1/f1	deg P	
	ac.t v	,	, ο ι α	1011-3/10			1, 11	ucy (
GAGE	X in.	PHI deg	T BF deg R	TS deg R	TS	7 T O	QDOT Btn/ (ft ² -s)	H(9 TO) Stu/ (ft ² ·s·R)	ST

MACH	3 CAN	OPY TE ST	r Run	0672				
11	T INF 76.34	P 5 psi	61 (RHO-INF 0.2669E (slug/ft ⁽)2	V-INF 1939.6 ft/s	ALPHA 3.06 de ₀	
	TU 89.54 ag R			MU 1NF 14177E (bf·s/ft ²	06 0	RE IN 3651E-08 1/ft	T WATTER 610:35 deg R	
GAGE	X in.	PHI deg	T-BF deg R	T-S deg R	TS/TO	QDOT Btu/	H(.9 TU) Btu/	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18 19	2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50 4.50 5.50 6.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	573.41 580.34 566.54 554.82 556.26 529.70 523.30 540.30 569.82 576.96 568.76 555.80 5558.06 544.76 543.53 550.31	545.96 544.54 551.74 543.90 545.81 507.75 505.29 513.32 562.22 572.15 564.07 531.28 534.63 532.91 533.71 537.39	1 .115 1 .112 1 .127 1 .111 1 .115 1 .037 1 .049 1 .148 1 .169 1 .152 1 .085 1 .092 1 .089 1 .098	(ft ² ·s) 9.057 -5.213 -4.885 -3.602 -3.449 -7.246 -5.942 -8.903 -2.509 -1.585 -1.547 -8.093 -7.731 -3.912 -3.242 4.262	(ft ² ·s·R) 0.8595E-01 0.5015E-01 9.4395E-01 0.3487E-01 0.1079E+00 0.9184E-01 0.1224E+00 0.2063E-01 0.1205E-01 0.8924E-01 0.8924E-01 0.8221E-01 0.4238E-01 0.3481E-01 0.4403E-01	0.2151E-02 0.1255F-02 0.1100E-02 0.8725E-03 0.8201E 03 0.2700E-02 0.2298E-02 0.3064E-02 0.3016F-03 0.3135E-03 0.2233E-02 0.2057E-02 0.1060E-02 0.8710E-03 0.1102E-02
	T LNI 175 31 deg R	7	P-INF 2.77 sia	RHO- II 0.1326E slug/ft	€ 02	V INF 1934 2 ft/s	ALFHA 3.00 deg	
	TO 486.8 3 deg R	3	P() 98.80 psia	MU- LNF 0.14097F 1bf·s/ft	E 06	RE-INF 0.1820E+00 1/ft	T WATER 610.59 deg R	₹
GAGI	E X	PHI d e g	T-BF deg R	T-S deg	Ť S/T	Btu/	H(.9 TO) Btu/	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 9.00 2.50 3.50 4.50 6.50	5 60.0 6 60.0 6 60.0 6 60.0 0 0.0 0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0 0.0 0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	585 .30 578 .98 583 .43 576 .77 578 .79 554 .24 548 .62 562 .70 590 .50 592 .94 585 .22 574 .87 577 .576 568 .96 569 .84 574 .62	567 .91 569 .27 574 .42 570 .23 572 .52 538 .28 534 .95 543 .75 587 .97 590 .75 582 .15 558 .78 561 .62 561 .19 563 .51	7 1 16 2 1 18 3 1 17 2 1 17 6 1 10 6 1 09 6 1 11 7 1 20 6 1 19 6 1 15 6 1 15 7 1 15 7 1 15 8 1 15 9 1 15	9 -3 206 0 2.973 1 -2.157 6 -2.067 6 -5.267 9 -4.509 7 -6.255 8 -0.835 3 -0.722 6 -1.012 8 -5.310 4 -5.091 3 -2.564 8 -2.087) (ft ² ·s·R) 0.4424E-01 0.2445E-01 0.2182E-01 0.1539E-01 0.1539E-01 0.5260E-01 0.4658E-01 0.5923E-01 0.575E-02 0.4730E-02 0.402E-01 0.4123E-01 0.1665E-01 0.1947E-01	0.1235E-02 0.1102E-02 0.8247E 03 0.7769E-03 0.2656E-02 0.2352E-02 0.2991E-02 0.2815E-03 0.2388E-03 0.3549E-03 0.2223E-02 0.2082E-02 0.8406E-03

MACH 3 CA	NOPY TES	ST RI	JN 0674				
T INF 176.27 deg R	5	EU 5.60 1a	RHO INF 0.2666E slug/fl ³		V INF 1939.2 ft/s	ALPHA 2.97 dea	
T() 489 .35 deg R		P0 99-64 sia	MU INF 0.14172E Tbf-s/ft ²		RE INF 3648F+08 1/ft	T WATER 610,58 deg 3	
GAGE X	PHI d e g	T RF de ; R	TS deg R	T S TO	UNOT Btu/ (ft²·s)	H(.9 TU) Btu: (fti-s-R)	ST
1 2 75 2 3.75 3 4.75 5 6.75 6 7 75 7 2 00 8 3.00 9 4.00 12 7 00 13 8 00 14 9.00 15 2.50 16 3.50 17 4.50 18 5.50 19 6.50	0.0 0.0 30.0 30.0 30.0 30.0	575.76 563.48 570.06 558.66 561.01 534.41 527.39 544.61 578.10 582.99 571.19 559.50 561.60 549.09 549.27 555.65	548.23 555.71 548.15 551.15 513.18 509.74 518.93 572.80 579.06 565.93 535.91 538.83 537.60 539.89	1.122 1.136 1.120 1.126 1.049 1.042 1.060 1.171 1.183 1.157 1.095 1.10i 1.099 1.103	8 836 5 034 4 736 3 467 3 254 7 007 5 827 -8 473 1 750 1 295 1 736 7 786 -7 514 -3 790 3 097	0.8139E.01 0.4670E-01 0.4108E.01 0.3219E.01 0.2939E-01 0.9629E-01 0.8406E-01 0.1079E-00 0.1322E-01 0.9342E-02 0.1383E-01 0.8153E.01 0.7636E-01 0.3899E-01 0.3775E.01	0 2039E 02 0 1170E 02 0 1029E 02 0 8064E 03 0 7362E 03 0 2412E 02 0 2106E 02 0 2704E 02 0 3311E 03 0 2341E 03 0 2348E 03 0 2043E 02 0 1913E 02 0 9769E 03 0 7800E 03
T-INF 168.27 deg R		INF 84	RHO-INF 0.1418E slug/ft ³		V 1MF 1894-7 ft/s	ALPHA O 04 de t	
T() 4 67 14 deg R		P0 1- 39 ia	MU INF 0.13506E lbf-s/ft ²	0 6 0	RE TNF 1990E (08 171t	T WATER Star 98 June R	
GAGE X	РНІ de у	T BF deg R	T-S deq R	T S. TO	UDOT Blu'	H(.9 T0) Btu/	ST
1 2.75 2 3.75 3 4.75 5 6.75 6 7.75 7 2.00 8 3.00 9 4.00 12 7.00 13 8.00 14 9.00 15 2.50 16 3.50 17 4.50 18 5.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	551.44 543.31 547.50 541.05 542.33 519.97 514.75 526.93 534.22 549.43 550.10 540.03 540.79 533.53 533.86	534.67 533.84 538.77 534.40 536.13 504.79 501.84 508.63 533.31 547.34 547.31 524.45 526.22 526.10 527.80	1 145 1 143 1 153 1 144 1 148 1 081 1 074 1 089 1 142 1 172 1 172 1 123 1 126 1 130	(ft2,) 5-533 -3.128 2.881 2.195 -2-043 -5-011 -4.260 6.040 -0.301 -0.690 -0.922 -5.140 -4.805 -2.451 -2.000	(firs, R) 0.4843E-01 0.2758E-01 0.2434E-01 0.1925E-01 0.1766E-01 0.5941E-01 0.5233E-01 0.6848E-01 0.2669E-02 0.7264E-02 0.4942E-01 0.4542E-01 0.2319E-01 0.1863E-01	0.2334E-02 0.1329E-02 0.1173E-02 0.9281E-03 0.8512E-03 0.2863E-02 0.2522E-02 0.3301E-03 0.2622E-03 0.3501E-03 0.2382E-02 0.2189E-02 0.1118E-02 0.8978E-03

MACH 3 CANOPY TEST RUN= 067	IOPY TEST RUN= 0676
-----------------------------	---------------------

	T-INF 166.71 deg R TO 162.79 deg R	ps 19	- INF 5.59 fa - P0 99.15	RHO-INF 0.2812E-02 slug/ft MU-INF 0.13375E 06 lbf·s/ft ²	0	V-INF 1885.9 ft/s RE INF .3965E-08 1/ft	ALPHA -0.01 deg T WATER 592.20 deg R	
GAGE	X in.	PHI deg	17⊹BHF deg R	TS T deg R	S/TU	QIXIT Btu/ (ft ² -s)	H(9 TU) Btu/ (ft²·::R)	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	2. 75 3. 75 4. 75 6. 75 7. 75 2. 00 4. 00 7. 00 8. 00 9. 00 9. 00 2. 50 4. 50 5. 50 6. 50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	539 33 526 03 531 76 519 58 521 2 499 03 492 06 506 97 537 81 544 41 534 58 523 13 523 06 511 84 510 23 515 47	511.15 517.92 509.05 511.66 478.81 475.53 482.38 531.50 539.90 529.86 500.19 501.69 500.75 501.40	1.109 1.104 1.106 1.035 1.028 1.042 1.148 1.167 1.145 1.081 1.082 1.083	8.636 4.911 -4.536 -3.473 -3.155 -6.673 -5.458 -8.113 -2.082 -1.489 -1.556 -7.569 -7.053 -3.659 -2.917	0 8934E 01 0 5189E-01 0 4503E-01 0 3753E-01 0 3316E-01 0 19249E-01 0 1232E+00 0 1811E 01 0 1207E-01 0 1373E-01 0 9045E-01 0 8281E-01 0 4344E-01 0 3436E-01 0 4496E 01	0.2182E 02 0.1267E 02 0.1100E 02 0.9167E 03 0.8100E-03 0.2616E-02 0.2259E-02 0.3008E-02 0.4422F 03 0.2948E-03 0.3353E-03 0.2009E-02 0.1061E-02 0.8392E-03 0.1098E-02
	3 CANO	P:	r RUN INF	S= 0677 RHO INF		V INF	AFLIA	
16	35.42 leg R		.81	G.1426E 02 slug/ft		1878.6 ft/s	2 96 deg	
	. TO 59 : 21 leg : R			MU-INF 0.1 3267E -06 1bfrs/ft ²	O .	RE INF 2020E+08 1/ft	T WATER 591.72 de / R	
GAGE	X in.	PHI deg	T-BF degR	T-S T-S deg R	s," T O	QDOT Btu/	H(.9 TO) Btu/	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	2.75 3.75 4.75 6.75 7.75 2.00 4.00 7.00 8.00 9.00 2.50 4.50 7.50 6.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	548.74 540.50 544.90 537.45 539.37 517.65 512.30 524.80 551.83 554.89 546.79 537.60 538.01 530.65 530.53 534.59	531.05 1 536.18 1 530.85 1 533.34 1 502.48 1 499.27 1 506.55 1 549.20 1 552.42 1 543.83 1 521.82 1 523.14 1 524.65 1	158 156 168 156 161 094 087 103 196 203 184 136 139 139 143	(fff.4s) -5.643 -3.117 -2.879 -2.178 -1.990 -5.007 -4.300 -6.020 -0.867 -0.814 -0.977 -5.208 -4.880 -2.477 -1.941 -2.466	(ft ² ·s·R) 0.4768te-01 0.2646E-01 0.2343E-01 0.1855E-01 0.5614E-01 0.5001E-01 0.6455E-01 0.6376E-02 0.5851E-02 0.7483E-02 0.4799E-01 0.4439E-01 0.1743E-01 0.2166E-01	0 2305L 02 0.1279E-02 0.1133E-02 0.8957E 03 0.8012E-03 0.2714E-02 0.2418E-02 0.3121E-02 0.3083E-03 0.2829E-03 0.2320E-02 0.2146E-02 0.1090E-02 0.8425E-03 0.1047E-02

MACH	3	CANOPY	TECT	DIN'-	0678
MACH	3	CANUPI	ILOI	RUN-	UO/A

30.0

30.0

524.45

528.81

4.50 5.50 6.50

18

16	: INF 85.76 eg R		INF . 59 a	RHO-INF 0.2832E-02 slug/ft ³	2 1	INF 850.5 ft/s	ALPHA 2 94 deq	
46	TO SO. 17 eg. R		P0 9.39 - 0	MU INF 0.13296E-06 1bf·s/ft		RE INI 005E+0≻ 17ft	T WATER 591 07 1-1 R	
GAGE	Х 1п.	PHI deg	T-BF deg R	TS 1	° S/TO	opor Btu,	H(9 T(1) Btu/ (ft ·s·R)	ST
3 5	2.75 3.75 4.75 6.75	60.0 60.0 60.0 60.0	536.49 523.16 529.17 517.27	510 68 508,59 515 64 507,02	1.110 1.105 1.121 1.102	(ft (s) 8 515 4 807 4 464 3 383	0.8821E 01 0.5091E=01 0.4398E 01 0.3642E 01	0 2146E 02 C 1238E-02 O 1070E-02 0 8860E 03
6 7 8 9	7.75 2.00 3.00 4.00 7.00	60.0 0.0 0.0 0.0	519.28 497.12 490.06 504.99 537.41	510.02 477.16 473.68 481.00 532.10	1.108 1.037 1.029 1.045 1.156	-3.058 6.586 5.406 -7.917 -1.754	0 3190E-01 0 1045E-00 0 9083E-01 0 1184E+00 0 1487E-01	0.7759E 03 0.2543E-02 0.2210E-02 0.2881E 02 0.3617E-03
13 14 15 16	8.00 9.00 2.50 3.50	0.0 0.0 30.0 30.0	542.89 530.93 520.78 520.22	538.68 525.83 497.99 498.93	1.171 1.143 1.082 1.084	-1.390 -1.686 -7.522 -7.028	0.1116E 01 0.1510E-01 0.8973E-01 0.8291E-01	0.2714E-03 0.3672E-03 0.2183E-02 0.2017E-02
17 18 19	4.50 5.50 6.50	30.0 30.0 30.0	509.34 508.12 513.42	498.38 499.38 502.01	1 083 1.085 1.091	-3.618 -2.885 -3.763	0.4295E-01 0.3386E-01 0.4283E-01	0.1045E-02 0.8236E-03 0.1042E-02
MACT	F 3 CA	NOPY TE	ST BI	N 06 79				
	T INF 164.61 deg R		INF 2.80 sia	RHO INF O 1429E (slug/ft ³	02	V INF 1874 O ft/s	ALPHA -3.04 jes	
	T O 1 56 9 7 deg P		PD 99 . 89 Jiu	MU INF 0.13199E (lbf-s/ft		RE INF 2028E+08 1 111	1 WATER 590,55 deg R	
GAGE	λ in.	PHI deg	T-BF deg R	T S deg K	T S TO	QDOT Btu; (117)	H(9 TO) Stu/ } (112.5.8)	ST
1 2 3 5 6 7 8 9 12 13 14 15	2.75 3.75 4.76 6.75 7.75 2.00 4.00 7.00 8.00 9.00 2.50 3.50	0.0 0.0 0.0 0.0 0.0 30.0	545.36 536.55 540.58 532.67 534.04 511.29 506.18 518.68 544.32 549.27 543.25 533.02	527 59 526 46 531 42 525 52 527 43 495 08 492 60 499 12 540 06 546 20 540 46 516 32 518 01	1.155 1.152 1.163 1.150 1.154 1.083 1.078 1.092 1.182 1.195 I.183 1.130	5 861 3 331 3 020 2 358 -2 180 -5 348 -4 480 6 454 -1 406 1 014 -0.923 -5.510	0 5039E 01 0 2892E 01 0 2515E 01 0 2063E-01 0 1877E 01 0 6382E-01 0 5509E-01 0 7348E-01 0 7514E-02 0 71 40E-02 0 5245E-01	0 2438E 02 0 1349E 02 0 1217E 02 0 9985E 03 0 9084E-03 0 3088E-02 0 2666E-02 0 3555E-02 0 5283E-03 0 3636E-03 0 2538E-02 0 2320E-02

518.11

520.53

1.134

1.139

-2.091 -2.732

0.1957E-01 0.9472E-03

0.2501E-01 0.1210E 02

MACH	3 CAN	OPY TES	T RU	N≈ 0680				
1	T-INF 65.92 deg R		INF 0.60	RHO-INF 0.2832E-0 slug/ft?)2	V-INF 1881.4 ft/s	ALPhA 3.03 ժeյ	
	710 160:60 teg R	1 9	PO 99 : 63 i a	MU 1NF 0.13309E-0 lbf·s/ft ²		RE INF .4004E+08 1/ft	T WATER 5 89 72 deg R	
GAGE	X ın.	Р Н Ц deg	T BF deg R	TS deg R	T -S/TO	QDOT Btu/ (ft ² ·s)	H(.9 TM) 8tu/ (ft ² ·s·R)	ST
1 2 3 5 6 7 8	2 75 3.75 4.75 6.75 7.75 2.00 3.00	60.0 60.0 60.0 60.0 60.0 0.0	533 05 519 78 525 20 512 96 514 17 492 62 486 05	506 .89 504 .81 511 .38 502 .37 504 .46 472 .46 469 .70	1.101 1.096 1.110 1.091 1.095 1.026 1.020	-8.633 -4.941 -4.561 -3.495 -3.204 -6.652 -5.398	0.9348E-01 0.5474E-01 0.4710E-01 0.3979E-01 0.3563E-01 0.1148E+00 0.9788E-01	0.2272E-02 0.1331E-02 0.1145E-02 0.9672E-03 0.8662E-03 0.2792E-02 0.2379E-02
9 12 13 14 15 16 17	4.00 7.00 8.00 9.00 2.50 3.50 4.50 5.50	0.0 0.0 0.0 30.0 30.0 30.0 30.0	500 .25 528 .51 536 .12 528 .16 516 .68 516 .03 505 .05 502 .44	475 68 521 02 530 92 523 54 493 46 494 76 493 94 493 60	1.033 1.131 1.153 1.137 1.071 1.074 1.072 1.072	-8.105 -2.469 -1.716 -1.526 -7.664 -7.020 -3.668 2.915	0 1326E+00 0 2319E-01 0 1474E-01 0 1400E-01 0 9712E-01 0 8752E-01 0 4619E-01 0 3686E-01	0.3222E-02 0.5637E-03 0.3584E-03 0.3403E-03 0.2361E-02 0.2127E-02 0.1123E-02 0.8960E-03
19 MACE	6 50 13 CAN	30 0 OPY TES	508 26 ST RI	496.35 JN≈ 0681	1 078	-3.933	0.4807E-01	0.116 8 E- 02
1	T INF 64 .92 deg R	2	INF 2.81 sia	RHO-INF 0.1430E-0 slug/ft ³	02	V INF 1875 8 ft/s	ALPHA 4.05 deg	
4	TO 157 : 84 deg P		PO XX.19 sia	MU INF 0.13226E- 16f-s/ft		RE-LNF . 20 28E+0 8 1/ft	T-WATER 589.48 deg R	
GAGE	X in,	PH1 deg	17 HAF deg R	T S deg P	T S/TO	QIXI)T Btu; (ft ² -s)	H(9 T 0) Blu/ (ft ² -s-	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 2.50 3.50 4.50 5.50 6.50	60 0 60 0 60 0 60 0 60 0 0 0 0 0 0 0 0 0	543 07 534 88 538 66 530 93 532 51 509 37 504 29 516 21 541 78 546 92 541 55 530 82 531 33 523 95 522 62 527 26	525 74 524 93 529 65 523 92 525 80 493 37 490 90 496 94 537 36 543 75 538 78 514 29 516 05 516 26 516 48 519 11	1 148 1 147 1 157 1 144 1 178 1 072 1 085 1 174 1 188 1 177 1 123 1 127 1 128 1 128 1 128		0.5029E-01 0.2911E-01 0.2530E-01 0.2068E-01 0.1889E-01 0.5604E-01 0.7491E-01 0.1163E-01 0.7949E-02 0.7210E-02 0.5336E-01 0.4848E-01 0.1941E-01 0.2513E-01	0.2428E 02 0.1406E-02 0.122E-02 0.9988E-03 0.9123E-03 0.3137E-02 0.2706E-02 0.3617E-02 0.5617E-03 0.3838E-03 0.2577E-02 0.2341E-02 0.9375E 03 0.1213E-02

масн з	CANO	OPY TES	r RU	N= 0882				
T-: 166 deg		5	INF .60 sia	RHO-INF 0.2822E-0 slug/ft ³	2	V- INF 1 884 . 4 ft/s	ALPHA 4.09 deg	
T1 462 deq	.07	19	P0 9.54 sia	MU INF 0.13353E-0 lbf·s/ft ²	6 0.	RE-INF 3983L+08 1/ft	T WATER 588 48 Jeg R	
GAGE	X in.	PHI dea	T B JF deg R	T S deg R	T S/TO	QDOT Rtu/ (ft?-s)	H(.9 TO\ Btu/ (ft?.s-R)	ST
2 3 4 5 6 6 7 7 2 8 9 4 12 7 13 8 14 9 15 2 16 3 17 4 18 5 19 6	.75 .75 .75 .75 .75 .00 .00 .00 .00 .50 .50 .50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	531 . 24 518 . 32 523 . 45 511 . 52 512 . 62 491 . 80 485 . 36 498 . 94 525 . 67 533 . 47 526 . 16 515 . 15 514 . 45 503 . 70 500 . 85 506 . 61	505 78 503.73 509.96 501.18 503.08 472.22 469.56 475.07 518.02 528.10 521.59 492.39 492.39 492.39 492.17 494.95	1 095 1 090 1 104 1 085 1 089 1 022 1 016 1 028 1 121 1 143 1 129 1 066 1 068 1 067	8.404 4.814 -4.451 -3.411 3.146 6.461 -5.215 7.875 -2.523 1.772 -1.511 7.509 6.880 -3.557 2.865 3.847	0.9347E 01 0.5478E 01 0.4730E-01 0.3998E-01 0.3607E-01 0.1146E+00 0.9713E-01 0.1330E+00 0.2470E-01 0.1429E-01 0.9812E-01 0.8851E-01 0.4616E-01 0.3754E-01 0.4864E-01	0. 2277F. 02 0. 1334E 02 0. 1152E 02 0. 9738E-03 0. 8785E-03 0. 2792E-02 0. 2366E-02 0. 3240E-02 0. 6016E-03 0. 3845E-03 0. 2390E 02 0. 2156E-02 0. 1124E-02 0. 9145E-03 0. 1185E-02
T- 165 den			INF 1.80	RHO-INF 0.1422E-0 slug/ft ²	2	V-INF 1879.2 ft/s	ALPHA 3.97	
TY 459 de g	. 53			MU-INF 0.13277E 0 lbf-s/ft ²	-	RE INF 2013E+08 1/ft	T WATER 588-14 deg k	
GAGE	X in.	PHI den	T-BF deg R	T·S deq R	т ѕ/то	QDOT Btu/	H(9 TO) 8tu/	ST
2 3 4 5 6 6 7 7 2 8 3 9 4 12 7 13 8 14 9 15 16 3 17 18 5	.75 .75 .75 .75 .75 .00 .00 .00 .00 .50 .50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	542.03 534.25 538.16 531.45 533.27 513.16 507.84 519.86 545.41 548.07 539.86 531.72 531.48 524.57 524.39 528.37	526.05 525.34 530.11 525.21 527.62 499.02 495.84 502.51 543.07 545.62 537.08 516.81 517.40 517.47 518.81 521.32	1 .145 1 .143 1 .154 1 .143 1 .148 1 .086 1 .079 1 .182 1 .187 1 .169 1 .125 1 .126 1 .126 1 .129	(ft ² · ₃) -5 272 2 .940 -2.656 -2 058 -1 .866 4 .667 -3 .962 5 .521 -0 .771 -0 .806 -0 .915 4 .922 -4 .646 -2 .345 1 .841 2 .327	0 4687E-01 0 2630E 01 0 2279E 01 0 1844E-01 0 1636E-01 0 5462E 01 0 6208E 01 0 5958E-02 0 6105E-02 0 4768E-01 0 4474E-01 0 2257E-01 0 1750E-01	0 2272E-02 0 1275E 02 0 1105E 02 0 8939E-03 0 7932E 03 0 2648E-02 0 3355E-02 0 3009E-02 0 2889E-03 0 2960E 03 0 3592E-03 0 2169E-02 0 1094E-02 0 1094E-02

MACH 3	CANDPY	TEST	RUN	0684
--------	--------	------	-----	------

	T INF 1 66.4 5 deg R		INF 5.61 osia	RHO INF O 2826E slug/ft ³	02	V INE 1884.4 ft/s	ALPHA 4 04 deg	
	T O		P0	MU-INF		RE IN	T WATER	
	162 . 08	-	99.81	0.13354E-		39881:+08	5 87 30 leg 11	
	deg R	Þ	is i a	lbf·s/ft	•	1/f+	1119 1.	
GAGE	Х	PHI	T BF	T S	T-S/TU	⊎ DOT	H(.9 T0)	TS
	in.	deg	deg R	deg R		Btu.∕	Btu/	
		•				(ft -5)	(ft?-s-	۲)
1	2.75	60.0	5 3 0.53	506.51	1.096	7.927	0 8747E-01	0.2128E 02
2	3.75	60.0	518.22	504.66	1.092	4.474	0.5039E~01	0.1 226 E 02
3	4.75	60.0	5 23 . 55		1.106	-4.111	0 4317E 01	0 1050E-02
5	6.75	60.0	512.48	502.85	1.088	- 3 . 176	O 3652E 01	0. 8883E-0 3
6	7.75	60.0	514.43	505.76	1.095	2.861	0.3183E-01	0 7742E 03
7	2.00	0.0	494.26	475.87	1.030	6.067	0.1011E+ 0 0	0 2460E 02
8	3.00	0.0	487 . 45	472.40	1.022	4.969	0 8792E-01	0 2139 E 02
9	4.00	0.0	501.30		1.037	7.292	0.1151E+00	0.2801E 02
12	7.00	0.0	532.13	527.36	1.141	1 577	O 1415E-01	0.3441E-03
13	8.00	0.0	537.01	532 . 9 5	1.153	1.339	0 1143E-01	0.2781E-03
14	9.00	0.0	524.96	520.07	1.125	1.615	O 1550E 01	0.3771E 03
15	2.50	30.0	516.11	494.90	1.071	6.997	0.8854E 01	0.2154E 02
16	3.50	30.0	515.05	495.11	1.071	6.581	0.8306E-01	O.2020E02
17	4.50	30.0	504.89	494.69	1.071	-3. 3 66	0.4270E-01	0.1039E-02
18	5.50	30.0	503 57	495.51	1.072	-2. 6 59	O 3339E-01	O 8122E 03
19	6.50	30.0	508 66	498 14	1 078	3.470	0.4219E 01	0.1026E 02

MACH 3 CANOPY TEST RUN- 0685

1	T INF 67.70		INF 2.80	RHO- INF 0.1399E-	02	V INF 1891 5	ALPHA O 01	
	deg R	<i>(1)</i> 5	ia	·lug/ft3		f1/s	Levi	
	T ()		PO	MU INF		RE INF	T WATER	
4	65.55		99.65	0.13458E	06 0	1966b+08	582.99	
	đeg R	p s	14	lbf.s/f	† 2	1/ft	deq R	
GAGE	Х	РНІ	T BF	тѕ	T S/TO	TOCIQ	H _U 9 TO)	ST
0.1013	in.	deg	deg R	deg R	. 627.10	Btu/	Stu/	
		3		,		(ft ² -s)	(ft ² ·s	·R)
1	2.75	60.0	533 13	518.33	1 113	4.881	0 4913E 01	0.2406E 02
2	3.75	60 .0	525.83	517.50	1 112	2.748	0.2790E-01	0.1366E-02
3	4.75	60.0	529.17	521.77	1.121	2.443	O.2377E-01	0.1164E-02
5	6.75	60.0	522.57	516. 63	1 110	1 961	O.2008E-01	0.9832E-03
6	7.75	60.0	524 .01	518 .55	1.114	1.804	0.1812E-01	0.8870E 03
7	2.00	0.0	505.88	492.72	1 058	4.343	0.5891E-01	0.2884E 02
8	3.00	0.0	501.01	489.89	1.052	3.669	0.5176E-01	0.2534E-02
8	4.00	0.0	511.01	495.31	1.064	5.183	0.6792E 01	0.3325E 02
12	7.00	0.0	534.01	531.04	1.141	0.980	0.8745E-02	0.4281E-03
13	8.00	0.0	538.21	5 3 5. 74	1.151	0.815	0.6985E-02	0 3420E 03
14	9.00	0.0	532.00	529.76	1.138	0.739	0.6668E-02	0.3265E 03
15	2.50	30.0	523.30	509.53	1.094	4.544	O 5019E 01	0.2457E-02
16	3.50	30.0	523.07	510.25	1.096	4.233	0.4639E-01	0.2271E 02
17	4.50	30.0	516.85	510.30	1.096	2 162	0.2368E-01	0.1160E 02
18	5.50	30.0	51 5. 97	510.81	1.097	1 703	0.1855E 01	0.9081E 03
19	6.50	30.0	518.99	512.07	1.100	2.284	0.2453E 01	0.1201E-02

MACH	3 CANE	OPY TEST	RUN	0686				
16	Γ- INF 56.17 leg R	P I 5. psi	61 (RHO INF 0 2835 E 02 slug/ft ³	: 18	1NF 882.8 t/s	ALPHA () 02 d(-)	
	770 B) 30 leq 8			MU-1NF 13330E-09 161-57117	() 4	RC INF 004F+08 ₇ H	T WATER SBC SO Stop P	
GAGE	X in.	PHI deq	T HH den R	T.S. *deg R	rs/To	UDUT Ētu/ (ft²·s)	H(9 TU) Rt1' (f:2-s-R	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18 19	2.75 3.75 4.75 6.75 7.75 2.00 3.00 7.00 8.00 9.00 2.50 3.50 4.50 5.50 6.50	60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0 0.0	521 58 509 72 514.45 503.48 304.82 487.13 480.56 492.84 519.77 526.41 517.09 507.83 506.61 496.74 494.31 498.68	498.43 496.59 502.60 494.11 496.33 469.56 466.41 471.71 513.90 522.06 512.97 487.52 487.78 486.96 486.74 488.09	1.080 1.077 1.090 1.071 1.076 1.018 1.011 1.023 1.114 1.132 1.112 1.057 1.056 1.055 1.058	7.640 4.331 3.912 -3.093 2.800 5.797 4.671 6.975 1.937 1.438 1.363 6.704 6.214 -3.226 2.409 3.497	0.9177F 01 0.5319E 01 0.4475E 01 0.3918E 01 0.3450E 01 0.1066E+00 0.9117E-01 0.1234E+00 0.1963E 01 0.1345E 01 0.1345E 01 0.1393E 01 0.9266E 01 0.8559E 01 0.4493E 01 0.3491E 01 0.4796E 01	0 2227E 02 0.1291E 02 0.1086E 02 0.9509E 03 0.8374E 03 0.2587E 02 0.2213E-02 0.2213E-02 0.4763E-03 0.3382E 03 0.3382E 03 0.2249E 02 0.2077E 02 0.1091E 02 0.8473E-03 0.1164E 02
	T LNF 164.95 deg	<u> </u>	INF 2.81 psia	RHO INF 0.1431E, slug/ft		V INF 1875 9 ft/s	ALPHA 2 98 deq	
	170 457 : 92 deg 1		P0 00 30 psia	MU INF 0.13228E- 1bf-s/ft	9 6 0	RE INF 2030E+08 1/f*	T WATTER 581 96 Jeg R	
GACI	X 111	PHI . deg	T III deg R	T.S. deg P	7 8 70	υροι Βιαί (112.4		5-1 1-3
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	4.50 5.50	6 60.0 6 60.0 6 60.0 6 60.0 0 0.0 0 0 0 0.0 0 0 0 0 0.0 0 0 0 0 0 0.0 0 0 0 0 0 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	530 79 522.92 526.59 519.97 521.60 503.38 498.15 508.65 533.11 536.40 528.52 520.80 520.24 513.77 512.99 516.37	507.04 507.02 507.79	1 126 1 124 1 134 1 127 1 1070 1 063 1 076 1 159 1 166 1 149 1 107 1 107 1 107 1 107	6 038 2 777 2 480 1 972 1 781 -4 401 3 706 5 220 -0 814 0 792 -0 846 -4 646 -4 359 2 227 1 717	0 48/3E 01 0 2713E 01 0 2319E 01 0 1936E 01 0 1711E-01 0 5648E-01 0 6468E-01 0 6468E-02 0 6493E-02 0 7428E-02 0 4592E-01 0 2346E-01 0 1795E-01 0 2298E 01	0 23.1E 02 0 1309E 02 0 1118E-02 0 9341E-03 0 8256E-03 0 2724E-02 0 2390E-02 0 315E-03 2 0 3132E-03 2 0 3583E-03 0 2369E-02 0 0 2215E-02 0 1132E-02 0 8658E 03

MACH	3	CANOPY	TEST	RUN=	0699
MALA		CANUFI	I East	RUNN=	UDOS

	T- INF 165 . 39 deg R		INF 5.60 ia	RHO - INF O. 2843E - slug/ft ³	02	V INF 1878 4 ft/s	ALPHA 2. 99 deq	
	70		PO	MUL INF		RE INF	T WATER	
	459 13	19	99.76	0 13265E	06 0	4027E+08	581.82	
	deq R		ia	lbf·s/ft		1/ft	deg P	
	acy	,				17.10	,	
GAGE	: x	РНП	T BF	ΤS	T 8/TO	UDAT	H(.9 T0)	ST
	in.	deg	deg R	den R		Btu/	Btu/	
	••••	acg	,	4.4		(ft ² ·5)	(ft ² ·s·R)
1	2.75	6 0 0	519 90	497.00	1 082	7 559	0 9023E 01	U.2188E 02
2	3.75	60.0	507 88	495.01	1.078	4 246	O 5491E OF	0.1259E-02
3	4 75	60.0	512.74	501.10	1.091	3 839	0.4368E 01	0.1059E 02
5	6.75	60.0	502.03	492.83	1.073	3.036	0.3813E-01	0 9248E-03
6	7.75	60.0	503.60	49 5 . 3 5	1.079	2.724	0 3317E 01	0 8045E-03
7	2.00	0.0	486 22	468.90	1.021	-5.718	0.1027E+00	O 2491E 02
- 8	3.00	0.0	479.44	465.43	1.014	-4.624	0.8858E-01	0.2148E 02
8	4.00	0.0	492.06	471.26	1.026	-6. 86 2	0 1182E-00	0 2867E 02
12	7.00	0.0	520.28	515.37	1.122	-1.622	0.1588E-01	0 3851E 03
13	8.00	0.0	525.80	521.71	1.136	-1.349	0.1243E-01	0 3016E 03
14	9.00	0.0	514.31	509.83	1.110	-1.480	0 1532E-01	0.3716E-03
15	2.50	30.0	506.51	486.48	1.060	6.609	0.9021E-01	0 2188E-02
16	3.50	30.0	504.82	486.19	1.059	-6.146	0.8421E-01	0.2042E-02
17	4.50	30.0	495 . 35	48 5.67	1.058		0.4411E-01	0.1070E-02
18	5.50	30.0	493 22	48 5.71	1.058	2.478	0.3418E 01	0.8291E 03
19	6.50	30.0	497 60	487 . 48	1.062	-3.341	0 4499 E-01	0 1091E -02
MAG	OH 3 CAN	IOPY TE	ST RI	UN≃ 0 68 9				
	T TATE	n	TME	מומ מומ		1/ INT	41 FW1.4	
	T-INF	-	- INF	RHO INF		V- INF	ALPHA	
	164.53		2 80	0.1427E		1873.5	3.07	

	teg R		sia .	slug/ft ³		16/3.5 11/s	deq	
	T () 56 . 7 5 leg R		PO 99.70 sia	MU-INF 0.13193E- lbf+s/ft		RE INF 2026E+0× 1/ft	T WATER 582 12 deg ft	
GAGE	X in.	PH1 deg	T RIF deg R	T S deg R	T S/T0	QDOT Btu/ (ft-s)	H(9 TU) Btu/ (ft²-s-	ST
1	2 75	60.0	529.46	513 . 4 5	1.124	5.283	0.5161E-01	0. 2502E-0 2
2	3.75	60.0	521.15	512.10	1.121	2 987	0.2956E-01	0.1433E-02
3	4.75	60.0	524.57	516.53	1.131	-2.654	0.2517E 01	O 1220E 02
5	6.75	60.0	517.35	510.85	1.118	-2 144	0.2150E 01	0.1042E-02
6	7.75	60.0	518.49	512.49	1 122	-1.978	0.1951E 01	0 9456E-03
7	2.00	0.0	499.50	48 5.17	1.062	-4.728	0.6381E-01	0.3093E-02
8	3.00	0.0	494.53	482.64	1.057	-3.923	0.5483E-01	0.2657E-02
9	4.00	0.0	505.00	487 .83	1.068	5 66 6	0.7382E-01	0.3578E-02
12	7.00	0.0	528.05	524.12	1.147	- 1 . 299	0.1149E-01	0.5570E-03
13	8.00	0.0	533.12	530.08	1.161	1.001	0.8415E-02	0 4079E-03
14	9.00	0.0	527.13	524.66	1.149	-0.815	0.7174E-02	0 3477E-03
15	2.50	30.0	518.53	503.58	1.103	-4.933	0.5334E-01	0.2585E-02
16	3.50	30.0	518.15	504.25	1.104	4.588	0.4925E 01	0.2387E-02
17	4.50	30.0	511.18	504.10	1.104	-2.338	0.2513E-01	0.1218E-02
18	5.50	30.0	509.39	503.78	1.103	1.852	0.1998E-01	0.9683E-03
19	6.50	30.0	513.06	505.53	1.107	2.486	0.2632E 01	0.1276E-02

MACH	3 CAN	OPY TES	r RUN	0690				
16	r- INF 35-22 eg R	5	FNF 5-61 (RHO INF 0 2851E 02 slug/ft3	2 18	INF 877 4 U/s	ALPHA 3 OB deq	
	T (1 58 66 eg R		PO 10.05 0 sia	MU INF 13250E Ot 1bf·s/tt ²	0 40	Œ 1NF 039F+08 /ft	T WATER 582 15 deq R	
GAGE	X in.	PHI deg	T BF deg R	TS 1		QIXOT 3tu/ (112.5)	H(9 TO) Btu/ (117-5-8)	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18 19	2 75 3 75 4 75 6 75 7 75 2 00 3 00 4 00 7 00 8 00 9 00 2 50 3 50 4 50 5 50 6 50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	518 62 506 17 510 64 499 31 500 26 483 29 476 57 488 77 513 89 521 37 513 28 504 26 502 70 492 55 489 29 494 22	494.86 492.60 498.39 489.62 491.43 465.25 462.19 467.04 506.88 516.28 509.07 483.45 482.46 481.38 483.39	1.079 1.074 1.087 1.067 1.071 1.014 1.008 1.008 1.105 1.126 1.110 1.054 1.054 1.052 1.050 1.054	7 839 1 480 4 042 3 197 2 913 5 950 4 746 7 171 2 314 1 680 1 392 6 918 6 918 3 332 2 612 3 573	0 9552E 01 0 5615E 01 0 4723E 01 0 4762E 01 0 370.E-01 0 113°E-00 0 9608E 01 0 1322E-00 0 2459E 01 0 1624E-01 0 1445E-01 0 .8992E 01 0 4783E-01 0 3808E-01 0 .5061E-01	0 2312E 02 0 1359E 02 0 1143E 02 0 1007E 02 0 8968E-03 0 2746E 02 0 2326E 02 0 3201E 02 0 3931E 03 0 3931E 03 0 3498E 03 0 2375E-02 0 2177E 02 0 1158E 02 0 9218E 03 0 1225E-02
	T- IN 164 . 2 deg R	8	P INF 2.80 psia	RHO IN 0.1432F slug/ft	- 02	V INF 1872 1 ft/s	ALI'HA 4 OX deg	
	70 456.0 deg l		PO 99-92 psia	MU INF 0.13172E lbf·s/f		RE INF 2035E-09 1/ft	T WATE 581 57 deg R	
GAGI		PH n. deg		TS de ₄ R	T S/TO	ODOT Stuz (** .	11 9 1m 	
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	3.0 4.0 7.0 8.0 9.0 2.5 3.5 4.5 5.5	55 60.055 60.055 60.055 60.005 0.000	519.24 522.58 515.31 516.49 497.49 0 492.50 0 502.87 0 525.60 0 530.86 0 525.04 0 516.56 0 516.11 0 509.18	510.18 514.48 508.86 510.46 480.65 485.60 521.44 527.65 522.54 501.53 502.20 502.12	1 .119 1 .128 1 .116 1 .119 1 .059 1 .065 1 .143 1 .157 1 .146 1 .100 1 .101	5.255 -2.990 -2.672 -2.131 -1.975 -4.754 -3.913 -5.700 -1.374 -1.058 -0.827 -4.961 -4.590 -2.330 -1.876	0 5200E 0 2998E 0 0 2968E 0 0 2166E 0 0 1975E 0 0 6546E 0 0 5574E 0 0 7586E 0 0 1238E 0 0 7577E 0 0 55447E 0 0 5003E 0	01 0 2513E 02 01 0.1449E 02 01 0.1241E 02 01 0.1047E 02 01 0.9544E 03 01 0.3163E 02 01 0.3666E-02 01 0.3666E-02 01 0.3666E 03 02 0.4363E 03 02 0.3565E 03 01 0.2632E-02 01 0.2632E-02 01 0.953E-03

MACH 3 CANOPY TEST	RUN	0692
--------------------	-----	------

	T-I 165. deg	32	P-INF 5.61 psia	RH O 0.28- slug	INF 47E_02		V- INF 1878.0 ft/r	ALPHA 4 03 deg	
	T0 458 . deg		P0 199.95 psia		INF 6 9E -06 s/ft?	Ο.	RE INF 4033E+00 1/ft	T-WATE 580.98 deq 8	₹
GAC	E ir		HI T eg de	BUF 17.5 gR deg		S/T0	QDOT Btu/ (ft2-)	H(.9 T0) btu/ s) (ft2·s	ST
1 2 3 5 6 6 7 7 8 9 12 13 14 15 16 17	3. 4. 6. 6. 7. 2. 3. 4. 7. 8. 9. 9. 2. 3. 4. 3. 5.	75 60 75 60 75 60 75 60 00 0 00 0 00 0 00 0 00 0 50 30 50 30 50 30	5.0 517 5.0 505 5.0 509 5.0 498 6.0 499 6.0 482 6.0 511 6.0 519 6.0 501 6.0 501 6.0 501 6.0 482 6.0 504 6.0	.34 491 .73 497 .58 489 .40 490 .63 464 .05 461 .91 466 .90 504 .66 514 .35 508 .12 482 .80 481 .33 480	.92 1 .64 1 .01 1 .65 1 .96 1 .98 1 .54 1 .68 1 .40 1 .50 1 .50 1 .51 1	.076 .072 .084 .065 .069 .013 .007 .017 .100 .121 .107 .051 .050	7 717 -4 427 -3 991 3 157 2 885 5 830 -4 644 -7 051 2 382 1 737 -1 105 -6 804 -6 246 -3 263 -2 569	0.9535E-0 0.5614E-0 0.4719E-0 0.4157E-0 0.3719E-0 0.1319E-0 0.2600E-0 0.1714E-0 0.1778E-0 0.9798E-0 0.4740E-0 0.3807E-0	1 0.1360E-02 1 0.1143E-02 1 0.1007E-02 1 0.9009E-03 0 0.2721E-02 1 0.2300E-02 0 0.3194E-02 1 0.6298E-03 1 0.4152E-03 1 0.3581E-03 1 0.2374E-02 1 0.2177E-02 1 0.1148E-02 1 0.9223E-03
19).0 493			. 052	-3.506	0.50 29E 0	1 0.1218E-02
MACH	3 CA	NOPY T	est f	tun: 0693	}				
	T INF 65.07		P-INF 2.80	RHO-IN 0.1422E			INF 76.6	ALPHA 4.02	
C	leg R	ţ	osia	slug/ft	3	ft	/s	deg	
	110 58 : 24 leg R	ţ	P0 99.73 osia	MU-INF 0.13238F 16f-s/f	06	0 20	E INF 161-08 /11	T WATER SBO 63 Jeg 11	
GAGE	X in.	PHI deg	TRF deg F	TS degi	T S/7	ro i	UDOT Btu/ (ft²-s)	H(.9 TO)	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50 4.50 6.50	60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0 30.0 3	519 80 502 33 497 06 506 93 531 45 534 26 526 42 519 26 511 43	2 512.86 1 517.27 2 512.4(5 514.53 6 489.50 6 486.30 8 491.80 6 529.30 8 531.84 2 523.77 505.44 6 505.44 6 505.43 6 505.44	3 1.1 7 1.1 9 1.1 1 1.1 1 1.1 1 1.0 1 1.0 1 1.0 1 1.1 1	19 - 29 18 - 23 - 68 - 61 73 65 - 61 - 43 03 03 - 05 -	(167.37) 4.862 2.687 2.400 1.922 1.739 4.235 3.553 4.993 0.710 0.805 0.876 4.477 4.231 2.149 1.673 2.133	0.4797E-01 0.2675E-01 0.2289E-01 0.1922E 01 0.1703E-01 0.5494E-01 0.5499E-01 0.6073E-02 0.6743E-02 0.7867E-02 0.4812E-01 0.2306E-01 0.1781E 01 0.2221E 01	0.2328E.02 0.1298E.02 0.1111E.02 0.9327E-03 0.8267E-03 0.2667E-02 0.2334E-02 0.3053E-02 0.3053E-03 0.3272E-03 0.3818E-03 0.2336E-02 0.21119E-02 0.8643E-03 0.1078E-02

MACH 3 CANOPY TEST RUN	0694
------------------------	------

	T-INF 166.02 deg R TO 460.89 deg R	5 ps 19	P0	RHO INF O 2830E O slug/ft ³ MU-INF O 13318E O lbf-s/ft ²)2)6 0.:	V INF 1882.0 ft/s RE INF 3999E+08	ALPHA 3.97 deg T WATER 580.31 leg E	
	deg k	۲	5 . u			2,		
GAGE	X in.	P₩1 deq	T-BF deg R	T S deg R	T S/TO	ODOT Blu/ [ft ² ·s]	H1.9 T0) (ft ² -s-k	ST
1 2 3 5 6 7 8 9 12 13 14 15	2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50 3.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	517 93 506 48 511 00 500 82 502 37 485 85 479 08 490 94 519 24 524 12 512 52 505 16 503 26	496.05 494.16 499.87 491.94 494.40 469.25 465.65 471.16 514.72 520.15 508.03 485.96 485.36	1.076 1.072 1.085 1.087 1.073 1.018 1.010 1.022 1.117 1.129 1.102 1.054 1.053	7, 220 4, 066 3, 671 2, 933 2, 630 5, 478 4, 432 6, 528 1, 492 1, 309 1, 480 -6, 335 5, 908	0.8886E 01 0.5125E 01 0.4315E 01 0.3803E 01 0.3905E 01 0.1006E 00 0.8717E 01 0.1158E+00 0.1243E 01 0.1588E-01 0.8904E-01 0.8373E 01	0 2161E 02 0 1247E 02 0 1050E 02 0 9251E 03 0 8038E 03 0 2447E 01 0 2120E 02 0 2817E 02 0 3631E 03 0 3024E 03 0 362E 03 0 2166E 02 0 2037E 02
17 18 19	4.50 5.50 6.50	30.0 30.0 30.0	494 . 29 492 . 34 496 . 75	485.02 485.13 487.12	1.052 1.053 1.057	-3.060 2.379 -3.177	0 4358E-01 0 3383E-01 0 4394E-01	0.1060E 02 0.8227E 03 0.1069E-02
MAC	T TNF 166.82 deq R	P	ST RO INF 2.81 Sia	Na 0695 RHO INF 0 1413E - slug/ft3	02	V INF 1886 5 1175	ALPIA 3-79 469	
	T0 463 11 deg R		-P0 00:16 sia	MU INF O 13385E lbf-s/ft		RE INF 1992E+08 1/f†	T WATER 611 39 Jeg R	
GAGE	X in.	i'iii deg	T HF deg R	T S deg R	ተ ዓ/ተፀ	QDOT Btu/	H(9 TO: Btu/	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50 4.50 5.50 6.50	60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0 0.0	584 . 45 575 . 29 581 . 12 575 . 03 575 . 58 547 . 30 541 . 03 556 . 94 571 . 35 584 . 02 583 . 10 570 . 82 573 . 91 566 . 37 573 . 84	564 .37 564 .10 570 .58 567 .52 568 .53 528 .64 525 .03 535 .06 570 .52 583 .39 579 .45 552 .05 555 .63 555 .00 558 .82 565 .39	1 219 1 218 1 232 1 225 1 228 1 142 1 155 1 232 1 260 1 251 1 192 1 200 1 198 1 207 1 221	(f(?-)) 6,628 3,692 3,478 2,479 2,326 6,156 5,278 7,219 0,274 0,208 -1,207 -6,194 -6,033 -3,003 -2,493 2,789	(ff2 s) 0.4492E 01 0.2507E-01 0.2262E-01 0.1645E-01 0.1533E-01 0.5504E-01 0.4876E 01 0.1780E 02 0.1248E 02 0.7424E 02 0.4580E 01 0.4346E-01 0.2173E 01 0.1756E 01 0.1877E 01	R) 0.2182E 02 0.1218E 02 0.1099E-02 0.7990F 03 0.7448E 03 0.2674E-02 0.2369E 02 0.8645E 04 0.6063E 04 0.3606E 03 0.225E-02 0.1056E-02 0.8529E-03 0.9118E 03

MACH :	CANOPY	TEST	RUN=	0696
--------	--------	------	------	------

Z	T- INF 164.31 deg R TO 156.12 deg R	, t ps	-INF 5.60 1a PO PO GO	RHO-INF 0.2861E-0 slug/ft3 MU-INF 0.13174E-0 lbf+s/ft2		V-1NF 1872.3 ft/s RE 1NF 400GE-08 1/ft	ALPHA 4:04 deq T WATER 610 20 deq R	
GAGE	X in.	P HI deg	T-BF deg R	T S deg R	T S/TU	QDOT Btu/ (ft²-s)	H(.9 T 0) Btu/ (ft²·s·R	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	2.75 3.75 4.75 6.75 7.75 2.00 4.00 7.00 8.00 9.00 2.50 4.50 5.50 6.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	569.66 552.04 560.20 547.19 548.35 510.01 530.21 572.18 576.49 562.00 547.87 550.49 535.46 536.53 544.10	537.72 533.88 542.89 534.73 536.87 492.64 488.52 499.34 566.29 573.42 555.48 519.53 522.98 521.64 525.22 530.32	1.179 1.170 1.190 1.172 1.177 1.080 1.071 1.095 1.242 1.257 1.218 1.134 1.144 1.151 1.163	-10.540 -5.992 -5.713 -4.114 -3.787 -8.485 -7.090 -10.185 -1.943 1.012 -2.153 -9.355 -9.079 4.560 3.732 4.548	0.8285E 01 0.4857E 01 0.4315E-01 0.3312E 01 0.2997E-01 0.1033E-00 0.9089E-01 0.1147E+00 0.1247E-01 0.6215E-02 0.1485E-01 0.8073E-01 0.8073E-01 0.3253E 01 0.3796E-01	0.2004E 02 0.1175E 02 0.1044E-02 0.8011E 03 0.7248E-03 0.2499E 02 0.2198E 02 0.2773E-02 0.3016E-03 0.1503E-03 0.3591E-03 0.2075E-02 0.1952E-02 0.9925E 03 0.7868E 03 0.9182E-03
MACH	3 CAN	DPY TE S	T RU	N 0697				
1	T- INF 63.64 deg R		INF . 60 i a	RHD~INF 0. 2872 E-02 slug/ft ³		V INF 1868 4 ft/s	ALPHA 2.94 deq	
	TO 54.26 deg R			MU-INF 0.13117E-0 1bf·s/ft ²	3 0.	RE: INF 4091E+08 1/ft	T WATER 609 55 deg R	
GAGE	X in.	FHI deg	T BF deg R	T⊹S deg R	1 S/T()	QIXOT Btu/ (ft²⋅s)	H(9 TO) Btu/ (ft²·s·R)	ST
1 2 3 5 6 7 8 9 12 13 14 15 16 17 18	2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50 4.50 5.50 6.50	60.0 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0	570.56 551.01 559.31 548.16 547.19 516.20 507.85 528.09 570.20 575.30 561.55 546.19 549.09 534.17 534.98 542.45	538.29 532.49 541.68 533.55 535.61 490.10 486.11 496.81 563.93 572.14 555.14 517.48 521.38 520.24 523.45 528.39	1.185 1.172 1.192 1.175 1.179 1.070 1.094 1.241 1.259 1.222 1.139 1.148 1.145 1.152	-10.650 -6.111 -5.819 4.162 -3.822 -8.612 -7.172 10.321 -2.068 -1.043 -2.115 9.474 9.145 -4.597 -3.806 -4.643	0 8227E-01 0.4942E 01 0.4381E-01 0.3338E-01 0.3015E-01 0.1060E+00 0.9282E-01 0.1173E+00 0.1333E-01 0.6384E-02 0.1446E-01 0.8721E-01 0.8126E-01 0.4126E-01 0.3321E-01 0.3883E-01	0.198GE 02 0.1193E-02 0.1057E-02 0.8057E-03 0.7279E-03 0.255E-02 0.2241E-02 0.2832E-02 0.3219E-03 0.1541E-03 0.3491E-03 0.2105E-02 0.9961E-03 0.8017E-03 0.9374E-03

MACH 3 CANO	OPY TEST	RUN -	0698
-------------	----------	-------	------

	T- LNF		INF	RHO-INF		V INF	ALPHA	
	162.49 deg R		2. 8 1 ia	0.1452E -02 slug/ft ³		1861.9 ft/s	3.01 deq	
	TO 451 O7 dea R		P0 00.24 ia	MU-INF 0.13021E-06 16fts/ft	0	RE 1NF :2077E+08 1 ft	T WATER GOS 18 F F	
GAGE	X in.	PIII deg	T BF deg R	TS T deg R	SZTO	ស្គ¥TT Btu/ (ft?+s)	H(9 TO) Ptu/ /ft²-s-R	SI
1 2 3 5	2.75 3.75 4.75 6.75	60.0 60.0 60.0	579.21 568.79 574.64 566.70	556 .87 1 563 .42 1	237 235 249 238	7 043 3 934 3 704	0 4637E-01 0 2607E-01 0 2352E-01 0 1739E 01	0.2221E 02 0.1249E 02 0.1127E 02 0.8329E 03
6 7 8 9	7.75 2.00 3.00 4.00	60.0 0.0 0.0	567.91 539.20 532.86 549.24	519.55 1 515.96 1 526.09 1	242 152 144 166	2.470 6.486 5.578 7.640	0.1599E-01 0.5711E-01 0.5071E-01 0.6360E-01	0.7660E-03 0.2736E 02 0.2429E 02 0.3047E-02
12 13 14 15 16	7.00 8.00 9.00 2.50 3.50	0.0 0.0 0.0 30.0 30.0	583.95 586.14 576.75 564.34 567.24	584 87 1 572 97 1 544 45 1	288 297 270 207 215	1 025 0 420 1 246 -6 564 -6 311	0 5858E-02 0 2348E-02 0 7458E-02 0 4740E 01 0 4440E-01	0.2807E 03 0.1125E 03 0.3573E 03 0.2271E 02 0.2127E 02
17 18 19	4.50 5.50 6.50	30.0 30.0 30.0	556.88 558.30 563.85	547.33 1 550.51 1	.213 .220 .230	-3.151	0.2229E-01 0.1778E-01 0.2015E-01	0.1068E 02 0.8520E 03 0.9653E-03
MACH	3 CANO	DPY TES	r RU	N= 0699				
1	T INF 62 55 deg R		INF . 8 0	RHO INF 0.1447E-02 slug/ft ³		V INF 1862.2 ft/s	ALPHA O. 13 fe:j	
1	62 55	2 psi	.80 3 90 9.88 (0.1447E-02		1862.2	0.13	
1	62 55 deg R TO 51 24	2 ps i 9	.80 3 90 9.88 (0.1447E-02 slug/ft ³ MU-INF 0.13026E-06 lbf·s/ft ²		1862.2 ft/s RE INF 2068E+08 1/ft UDOT Btu	O 13 teg T WATTER 609 23 deq R H(9 T0) Stu/	ST
4	62 55 deg R TO 51 24 deg R	2 psi 9 psi PHI	.80 d P0 9.88 d T-BF	0.1447E-02 slug/ft ³ MU-INF 0.13026E-06 lbf*s/ft ² T-S T 3 deg R 555.51 1 555.61 1 562.22 1 556.86 1 358.28 1 515.73 1 512.31 1 522.28 1 576.78 1 583.18 1 573.35 1 542.09 1 546.38 1 545.55 1	O.	1862.2 ft/s RE INF 2068E+08 1/ft	O 13 fe j T WATER 609 23 deq R	

MACH 3	CANOPY	TEST	RUN.	0700

	T-INF		INF	RHO INF		INF	ALPHA	
	. 63 . 13 deg R	5 psi	. 61 a	0. 2885 E-02 51ug/ft ³		, 86 5.5 t/s	0. 01 deg	
	,						-	
	T 0 152 : 85 -		P0 9. 9 0 0	MU-INF 0.13075E 06	0.4	RE INF 1116E+08	T WATER 608 80	
	deg R	psi		1bf·s/1t ²		1/ft	deg P	
	•							
GAGE	х	PHI	T-BF	T-S T-	-S/ T 0	QDOT	H(.9 TO)	ST
	in.	deg	deg P	deg R	, -	Btu/ (ft²·s)	`Btu/	
1	2.75	60.0	564.42	5 31.46	1.174 -	-10.877	•	0.2113E 02
2	3 . 7 5	60.0	548.09	5 29 .11	1.168	-6.263	0.5153E-01	0 1240E 02
3 5	4.75 6.75	60.0 60.0	556.07 541.99		1 . 188 1 . 168	5.939 4.285	0.4551E-01 0.3529E-01	0 1095E-02 0 8494E-03
6	7.75	60.0	542.74		1.172	4 001	0.3325E 01	0 7827E 03
7	2.00	0.0	511.88	48 5 . 2 5	1.072	-8.787	0.1131E-00	0 2723E 02
8	3.00	0.0	503.52		1.063	7.288	0.9868E-01	0.2375E-02
9 12	4.00 7.00	0.0 0. 0	523.63 564.29		1.085 1. 229	10.611 2.510	0.1265E+00 0.1683E+01	0.3044E 02 0.4051E-03
13	8.00	0.0	570.98		1 253	-1.180	0 7381E 02	0 1777E 03
14	9.00	0.0	559 53		1.223	1.943	0.1330E 01	0 3202E 03
15 16	2.50 3.50	30.0 30.0	542.74 545.70		1 . 133 1 . 1 43	-9.721 9.246	0.9195E-01 0.8396E-01	0.2213E 02 0.2021E-02
17	4.50	30.0	530.26		1.140	4.681	0.4314E-01	0.1038E-02
18	5.50	30.0	530.17		1.145	3.906	0.3526E-01	0.8487E 03
19	6.50	30.0	537.65	522.80	1.154	4.901	0.4253E-01	0.1024E 02
MAC	H 3 CAN	OPY TES	ST RU	N= 0701				
	T- INF	Р	INF	RHO-1NF		V INF	ALPHA	
	162.98		5 . 61	0.2888E-02	2	1864.7	3.10	
	deg P	ps	ia				.4.	
			-	slug/ft ³		ft/s	$d\phi_A$	
	TO		P0	MU LNF		RE INF	T WATER	
	452 44		P0 99 : 9 4	MU LNF 0.13062E-06	5 0.	RE INF .4123E+08	T WATTER 60≿ 44	
			P0	MU LNF	5 O.	RE INF	T WATER	
a. 05	452 44 deg R	ps	. P0 99 . 94 .ia	MU INF 0.13062E-00 lbf-s/ft ²		RE INF .4123E+08 1/ft	T WATTER 60≿ 44 de ₄ R	ርጥ
GAGF	452 44 deg R	ps PHI	PO 99-94 ia T-BF	MU INF 0.13062E-00 lbf-s/ft ²	5 0 . T-S/TU	RE INF .4123E+08 1/ft QDOT	T WATTER 60≿ 44	ST
GAGF	452 44 deg R	ps	. P0 99 . 94 .ia	MU INF 0.13062E-00 lbf-s/ft ²		RE INF .4123E+08 1/ft	T WATER 50% 44 den R H(.9 T0) Btu/	R)
1	452 44 deg R X in. 2.75	ps PHI deg 60.0	PO 99: 94 ia T-BF deg R 563:37	MU INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91	T S/TO 1.171	RE INF 4123E+08 1/ff QDUT 8tu/ (ft -s) -11.041	T WATER 60% 44 den R H(.9 T0) 8tu/ (ft2-s- 0.8898E-01	R) O. 2164E O2
1 2	452 44 deg R X in. 2.75 3.75	PHI deg 60.0 60.0	PO 99-94 ia T-BF deg R 563.37 546.36	MU INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91 526.92	T S/TU 1.171 1.165	RE INF 4123E+08 1/ft QDUT 8tu/ (ft -s) -11.041 -6.416	T WATER 60% 44 den R H(.9 T0) Btu/ (ft2-s- 0.8998E-01 0.5359E-01	R) 0.2164E 02 0.1289E-02
1 2 3	452 44 deg R X in. 2.75	ps PHI deg 60.0	PO 99: 94 ia T-BF deg R 563:37	MU INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91	T S/TO 1.171	RE INF 4123E+08 1/ft QDUT 8tu/ (ft s) -6.416 -6.048	T WATER 60% 44 den R H(.9 T0) 8tu/ (ft2-s- 0.8898E-01	R) O. 2164E O2
1 2	452 44 deg R X in. 2.75 3.75 4.75 6.75 7.75	PHI deg 60.0 60.0 60.0 60.0 60.0	PO 99. 94 ita T-BF deg R 563.37 546.36 554.17 539.49 539.91	MU INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91 526.92 535.84 526.15 527.35	1.171 1.165 1.184 1.163 1.166	RE INF. 4123E+08 1/ft QDOT 8tu/ (ft -s) -11.041 -6.416 -6.048 4.403 -4.143	T WATER 60% 44 den R H(.9 T0) 8tu/ (ft ² ·s· 0.8998E-01 0.5359E-01 0.4702E-01 0.3702E-01 0.3448E-01	R) 0.2164E 02 0.1289E-02 0.1131E-02 0.8904E-03 0.8294E-03
1 2 3 5 6 7	452 44 deg R X in. 2.75 3.75 4.75 6.75 7.75 2.00	PHI deg 60.0 60.0 60.0 60.0 60.0	PO 99. 94 ia T-BF deg R 563.37 546.36 554.17 539.49 539.91 509.09	MU INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91 526.92 535.84 526.15 527.35 481.93	1.171 1.165 1.184 1.163 1.166 1.065	RE INF. 4123E+08 1/ft QDOT 8tu/ (ft -s) -11.041 -6.416 -6.048 4.403 -4.143 -8.963	T WATER 60% 44 den R H(.9 T0) Btu/ (ft2-s-0.8898E-01 0.5359E-01 0.3702E-01 0.3448E-01 0.1199E+00	R) 0.2164E 02 0.1289E-02 0.1131E-02 0.8904E-03 0.8294E-03 0.2885E-02
1 2 3 5 6 7 8	452 44 deg R X in. 2.75 3.75 4.75 6.75 7.75 2.00 3.00	PHI deg 60.0 60.0 60.0 60.0 0.0 0.0	PO 99.94 ia T-BF deg R 563.37 546.36 554.17 539.49 539.91 509.09 501.26	MU INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91 526.92 535.84 526.15 527.35 481.93 478.92	1.171 1.165 1.184 1.163 1.166 1.065	RF INF 4123E+08 1/ft QDUT 8tu/ (ft -5) 11.041 -6.416 -6.048 4.403 -4.143 -8.963 -7.372	T WATER 60% 44 den R H(.9 T0) 8tu/ (ft ² ·s· 0.8998E-01 0.5359E-01 0.4702E-01 0.3702E-01 0.3448E-01	R) 0.2164E 02 0.1289E-02 0.1131E-02 0.8904E-03 0.8294E-03
1 2 3 5 6 7	452 44 deg R X in. 2.75 3.75 4.75 6.75 7.75 2.00	PHI deg 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.	PO 99. 94 ita T-BF deg R 563.37 546.36 554.17 539.49 539.91 509.09 501.26 520.88 559.23	MU: INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91 526.92 535.84 526.15 527.35 481.93 478.92 487.96 550.08	1 . 171 1 . 165 1 . 184 1 . 163 1 . 1065 1 . 065 1 . 078 1 . 078	RE INF 4123E+08 1/ft QDUT 8tu/ (ft -s) -11.041 -6.416 -6.048 4.403 -4.143 -8.963 -7.372 -10.863 -3.022	T WATER 60% 44 den R H(.9 T0) 8tu/ (ft²-s. 0.8998E-01 0.5359E-01 0.4702E-01 0.3702E-01 0.3448E-01 0.1199E+00 0.1028E+00 0.1345E+00 0.2115E-01	R) 0.2164E 02 0.1289E-02 0.1131E-02 0.8904E-03 0.8294E-03 0.2885E-02 0.2473E-02 0.3236E-02 0.5087E 03
1 2 3 5 6 7 8 9 12	452 44 deg R X in. 2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 8.00	PHI deg 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0 0.0	PO 99. 94ia T-BF deg R 563.37 546.36 554.17 539.49 539.91 509.09 501.26 520.88 559.23 567.13	MU INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91 526.92 535.84 526.15 527.35 481.93 478.92 487.96 550.08 562.68	1 . 171 1 . 165 1 . 184 1 . 163 1 . 166 1 . 065 1 . 059 1 . 078 1 . 216	RE INF. 4123E+08 1/ft QDUT 8tu/ (ft -s) -11.041 -6.416 -6.048 4.403 -4.143 -8.963 -7.372 -10.863 -3.022 -1.471	T WATER 60% 44 den R H(.9 T0) Btu/ (ft2-s-0.8998E-01 0.5359E-01 0.3702E-01 0.3148E-01 0.1199E+00 0.1028E+00 0.1345E+00 0.2115E-01 0.9459E-02	R) 0.2164E 02 0.1289E-02 0.1131E-02 0.8904E-03 0.8294E-03 0.2885E-02 0.2473E-02 0.3236E-02 0.5087E 03 0.2275E-03
1 2 3 5 6 7 8 9 12 13	452 44 deg R X in. 2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00	PHI deg 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0 0.0	PO 94 94 i.i.a T-BF deg R 563.37 546.36 554.17 539.49 539.91 509.09 501.26 520.88 559.23 567.13 557.60	MU INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91 526.92 535.84 526.15 527.35 481.93 478.92 487.96 550.08 562.68 551.76	1.171 1.185 1.184 1.163 1.166 1.065 1.059 1.078 1.216 1.244 1.220	RE INF. 4123E+08 1/ft QDUT 8tu/ (ft -s) 11.041 -6.416 -6.048 4.403 -4.143 -8.963 -7.372 -10.863 -3.022 -1.471 -1.927	T WATER 60% 44 den R H(9 T0) Btu/ (ft2·s·0.8998E-01 0.5359E-01 0.4702E-01 0.3702E-01 0.1199E+00 0.1028E+00 0.2115E-01 0.9459E-02 0.1333E-01	R) 0.2164E 02 0.1289E-02 0.1131E-02 0.8904E-03 0.8294E-03 0.2885E-02 0.2473E-02 0.3236E-02 0.5087E 03 0.2275E 03 0.3207E-03
1 2 3 5 6 7 8 9 12 13 14	452 44 deg R X in. 2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 8.00	PHI deg 60.0 60.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0	PO 99. 94ia T-BF deg R 563.37 546.36 554.17 539.49 539.91 509.09 501.26 520.88 559.23 567.13	MU INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91 526.92 535.84 526.15 527.35 481.93 478.92 487.96 550.08 562.68	1 . 171 1 . 165 1 . 184 1 . 163 1 . 166 1 . 065 1 . 059 1 . 078 1 . 216	QDUT 8tu/ (ft -s) 11.041 -6.416 -6.048 4.403 -4.143 -8.963 -7.372 -10.863 -3.022 1.471 -1.927 -9.914	T WATER 60% 44 den R H(.9 T0) Btu/ (ft2-s-0.8998E-01 0.5359E-01 0.3702E-01 0.3148E-01 0.1199E+00 0.1028E+00 0.1345E+00 0.2115E-01 0.9459E-02	R) 0.2164E 02 0.1289E-02 0.1131E-02 0.8904E-03 0.8294E-03 0.2885E-02 0.2473E-02 0.3236E-02 0.5087E 03 0.2275E-03
1 2 3 5 6 7 8 9 12 13	452 44 deg R X in. 2.75 3.75 4.75 6.75 7.75 2.00 3.00 4.00 7.00 8.00 9.00 2.50 4.50	PHI deg 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0 0.0	P0 99. 94 ita T-BF deg R 563. 37 546. 36 554. 17 539. 49 539. 91 509. 09 501. 26 520. 88 559. 23 567. 13 557. 60 540.70 543.87	MU: INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91 526.92 535.84 526.15 527.35 481.93 478.92 487.96 550.08 562.68 551.76 510.66 515.20 513.50	1 . 171 1 . 165 1 . 184 1 . 163 1 . 166 1 . 065 1 . 078 1 . 216 1 . 224 1 . 129 1 . 139 1 . 139	RE INF 4123E+08 1/ft QDUT 8tu/ (ft -s) -11.041 -6.416 -6.048 4.403 -4.143 -8.963 -7.372 -10.863 -3.022 1.471 -1.927 -9.914 -9.464 -4.766	T WATER 60% 44 den R H(9 T0) Btu/ (ft2-s. 0.8998E-01 0.5359E-01 0.3702E-01 0.3702E-01 0.3448E-01 0.1199E+00 0.1028E+00 0.1345E+00 0.2115E-01 0.9459E-02 0.1333E-01 0.9583E-01 0.8763E-01 0.4484E-01	R) 0.2164E 02 0.1289E-02 0.1131E-02 0.8904E-03 0.8294E-03 0.2885E-02 0.2473E-02 0.3236E-02 0.5087E 03 0.2275E-03 0.3207E-03 0.3205E-02 0.1079E-02
1 2 3 5 6 7 8 9 12 13 14 15	452 44 deg R X in. 2.75 3.75 4.75 6.75 7.75 7.75 2.00 4.00 7.00 8.00 9.00 9.00 3.50 3.50	PHI deg 60.0 60.0 60.0 60.0 0.0 0.0 0.0 0.0 0.0	P0 99.94 ia T-BF deg R 563.37 546.36 554.17 539.49 509.09 501.26 520.88 559.23 567.13 557.60 540.70	MU INF 0.13062E-00 1bf-s/ft ² T S deg R 529.91 526.92 535.84 526.15 527.35 481.93 478.92 487.96 550.08 562.68 551.76 510.66 515.20	1 . 171 1 . 165 1 . 184 1 . 163 1 . 166 1 . 065 1 . 078 1 . 216 1 . 224 1 . 224 1 . 129 1 . 139	RE INF. 4123E+08 1/ft QDUT 8tu/ (ft -s) -11.041 -6.416 -6.048 4.403 -4.143 -8.963 -3.022 1.471 -1.927 -9.914 -9.464 -4.766 -3.952	T WATER 60% 44 den R H(.9 T0) Btu/ (ft2-s- 0.8998E-01 0.5359E-01 0.4702E-01 0.3702E-01 0.1199E+00 0.1028E+00 0.1345E+00 0.2115E-01 0.9459E-02 0.1333E-01 0.9583E-01 0.8763E-01	R) 0.2164E 02 0.1289E-02 0.1131E-02 0.8904E-03 0.8294E-03 0.2885E-02 0.2473E-02 0.3236E-02 0.5087E-03 0.2275E-03 0.2275E-03 0.2305E-02 0.2108E-02

MACH 3 CANOPY TEST RUN=	0702	02
-------------------------	------	----

	T-INF 162.13		INF 2.82	RHO-I 0.1458			V INF 1859-8		PHA .08		
	deg R	ps	ia	slug/f	+3		tt/s	30	1		
	TO 450.09	10	PO 20.40	MU-IN 0.12991		0:	RE INF 2087E-0		ATER 33		
	d e g R	ps	ia	lbt·s/	112		1'f'	14	, P		
GAGE		РНП	T-BF	T-S	TS	/T0	TIKIQ	H(9	T():	ST	
	in.	d e g	deg R	deg R			Btu. (ft ² ∙s	3 t.u.	<u>/</u> 5-R)		
1	2.75	60.0	574.90			228	7.335	0.4970	E-01 O	.2374E	
2	3.75	60.0	564.76			226	4.197			1364E	
3 5	4.75 6.75	60.0 60.0	5 70 . 41 561 . 01			241 227	-3 898 -2 853			. 1213E - - 9254E	
6	7.75	60.0	562.27			231	2.750			8826E	
7	2.00	0.0	531 56			134	7.017			3187E	
8	3.00	0.0	525 . 52			128	-5.913			2756E-	
9	4.00	0.0	542 23			149	8.340			.3562E-	
12 13	7.00 8.00	0.0	575.69 580.30			268 285	-1.679 -0.624			. 4846E . 1720E-	
14	9.00	0.0	573.58			267	-1 161			3361E	
15	2.50	30.0	559.18			195	6.967			. 2503E-	
16	3.50	30.0	562 27			205	6 552			.2279E	
17 18	4.50 5.50	30.0 30.0	551.71 551.76			204 208	3 280 2 705			. 1146E- . 93 32E	
19	6.50	30 .0	557.92			217	3 304			1105E	
	MAC	H 3 CAN	OPY TES	T RU	N 070	03					
		T-INF	P	INF	RHO	INF		V INF	ALT	ΉA	
		162.59	2	.80	0 1448 slug!			1862 4		13	
		deq R	t, e	ia	slug!	f į 3		1 E /	ŋe c	9	
		T()		PO	MU - IJ	N.T.		RE INF	T WA	CTU1	
		451.35			0 13029		. 0				
		deg R	ps		lhf.s	/ft2		2069E+08 17ft	608 de	41.	
	GAGE	X in.	РНП deq	T BF deg R	T S deg		r sz r o	QDOT Stu/	म ्छ ी Bt		ST
								(ft ² ·s)	(f	t?·s·R)	
	1	2.75	60.0	574.90	552.8		1 225	7.281	0 4965F		.2386E 02
	2 3	3.75 4.75	60.0 60.0	565.48 571.05	552.7 55 9 .7		1 225 1 239	4 189 3.880	0 2858F 0 2541F		0.13 73 E 02 0.1 221E 02
	5	6.75	60.0	561.71	55 3 .		1.225	2.836	0 1931E) 9277E 03
	6	7.75	60.0	562.93	554.		1.229	2.753	0 1855F		.8914E-03
	7	2.00	0.0	531.60	510.		1.130	7.048	0 6775F		.3255E-02
	8 9	3.00	0.0	525.73	507.		1.125	5 938	0.5848		2810E-02
	12	4.00 7.00	0.0 0.0	542.23 575.30	516.1 569.8		1.145 1.263	-8.398 1.799	0.7595E 0.1100E).3649E 02).52 84E 03
	13	8.00	0.0	580.18	578.		1.281	0.686	0.3989E		0.32 64E 03
	14	9.00	0.0	573.91	570.3		1.264	1.163	0.7082E		3403 E-03
	15	2.50	30.0	559.40	538.		1.192	6 994	0.5 299 F		.2546E 02
	16 17	3.50 4.50	30.0 30.0	562.85 552.12	542.1 542.1		1.203	6.626	0.4852F		0.2331E-02
	18	5.50	30.0	551.89	542.		1.201 1.205	3.276 2.698	0.2409E 0.1962E).1157E-02).9426E-03
	19	6.50	30.0	558.28	548.		1.215	3.316	0.2335E		0.1122E-02

MACH	3 CAN	OPY TES	ST RU	JN= 0704				
	T-INF 63.51 deg R		INF 5.60 sia	RHO-INF 0. 287 5E- slug/ft	ρ2	V-INF 1867.7 ft/s	ALPHA - 3.97 deg	
4	T O 153.93 deg R		P0 99.68 sia	MU-INF O.13107E- lbf·s/ft		RE-INF .4097E+08 1/ft	T-WATER 608.02 deg R	
GAGE	Х	РН□	T-BF	T-S	T-S/T0	QDOT	H(.9 TO)	ST
	in.	de g	deg R	deg R		Btu/ (ft ² ·s)	Btu∕ (ft²⋅s⋅F	₹)
1	2.75	60.0	561.04	527.89	1.163	•	0.9167E-01	0.2212E-02
2	3.75	60.0	544.75	525.54	1.158	6.342	0.5420E-01	0.1308E-02
3	4.75	60.0	552.40	534 .15	1.177	-6.022	0.4794E-01	0.115 7 E-02
5	6.75	60.0	537.59	5 24 . 54	1.156	- 4 307	0.3713E-01	0.8957E 03
6	7.75	60.0	538.26	525.74	1.158	-4.129	0.3523E-01	0.8499E 03
7	2.00	0.0	507.77	480.81	1.059	-8.897	0.1231E+00	0 2970E 02
8	3.00	0.0	500.07	477.99	1.053	-7 . 289	0.1050E+00	0.2532E-02
8	4.00	0.0	519.58	486.72	1.072	-10. 84 5	0.1387E+00	0.3347E-02
12	7.00	0.0	556.38	546.91	1.205	-3.126	0.2260E-01	0.5451E-03
13	8.00	0.0	564.49	559.81	1.233	-1.544	O . 1021E -01	0.2463E-03
14	9.00	0.0	555. 38	549 .55	1.211	-1.923	0.1 364E -01	0.3290E-03
15	2.50	3 0.0	539.08	509 . 2 0	1.122	-9.863	0. 9798 E-01	0.2364E-02
16	3.50	30.0	541.77	513.47	1.131	-9. 33 9	0.8900E-01	0.2147E-02
17	4.50	30.0	526.13	511.83	1.128	-4.719	0.4569E-01	0.1102E-02
18	5.50	30.0	524.84	512.93	1.130	-3.930	0.3765E-01	0.9083E -03
19	6.50	30.0	533.03	518.05	1.141	-4.943	0.4514E-01	0.1089E-02