PROVA (PARTE 2)

Universidade Federal de Goiás (UFG) - Regional Jataí Jataí Bacharelado em Ciência da Computação

Teoria da Computação Esdras Lins Bispo Jr.

29 de agosto de 2016

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- ullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + EB$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- P é a pontuação obtida na prova, e
- $-\ EB$ é a pontuação total dos exercícios-bônus.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (3) Problemas Decidíveis, (4) Problemas Indecidíveis, (5) Complexidade de Tempo e (6) NP-Completude.

Nome:		
Assinatura:		

Terceiro Teste

1. (5,0 pt) Seja \mathcal{B} o conjunto de todas as sequências infinitas sobre $\{0,1\}$. Mostre que \mathcal{B} é incontável, usando uma prova por diagonalização.

Prova: Vamos supor por um momento que \mathcal{B} seja contável. Se \mathcal{B} for contável, então existe uma bijeção entre \mathcal{B} e \mathbb{N} . Ora, é possível construir $x \in \mathcal{B}$ de forma que x não participe desta bijeção. x pode ser construído da seguinte forma:

- Seja f(n) a suposta bijeção existente (em que $n \in \mathbb{N}$);
- Se 0 é o valor de um dígito, então 1 é o seu valor oposto; e se 1 é o valor de um dígito, então 0 é o seu valor oposto;
- Seja a n-ésima correspondência de f(n) o par $\langle n, f(n) \rangle$;
- Construa x de forma que, para todos os seus dígitos, seu n-ésimo dígito seja formado pelo valor oposto do n-ésimo dígito de f(n) da n-ésima correspondência.

Assim, $x \in \mathcal{B}$, mas não participa da bijeção. Isto é absurdo. Logo, esta bijeção não existe. Por isso, \mathcal{B} é incontável

2. (5,0 pt) Esta fórmula é satisfazível?

$$\neg x \land (y \lor z) \land (\neg y \lor x)$$

Justifique a sua resposta.

Sim, é satisfazível. Basta atribuirmos para x,y e z os valores 0, 0 e 1, respectivamente. Esta valoração garante à fórmula o valor 1, tornando-a satisfazível.

Quarto Teste

3. (5,0 pt) Seja CONEXO = $\{\langle G \rangle \mid G \text{ \'e um grafo simples conexo }\}$. Mostre que CONEXO está em **P**.

Prova: Se CONEXO \in **P**, então é possível construir uma máquina de Turing simples que a decide em tempo polinomial. Construiremos M que decide CONEXO:

M = "Sobre a entrada $\langle G \rangle$, a codificação de um grafo G:

- (a) Selecione o primeiro nó de G e marque-o.
- (b) Repita o seguinte estágio até que nenhum novo nó seja marcado:
 - i. Para cada nó em G, marque-o se ele está ligado por uma aresta a um nó que já está marcado.
- (c) Faça uma varredura em todos os nós de G para determinar se eles estão todos marcados.
- (d) Se eles estão, aceite; caso contrário, rejeite".

O tempo de execução t de M é igual a soma do tempo de execução dos passos (a), (b), (c) e (d). Logo, $t = O(1) + O(n) \times O(n^3) + O(n) + O(1) = O(n^4)$. 4 é um número natural e CONEXO \in TIME (n^5) . Logo, podemos afirmar que CONEXO \in **P**

4. (5,0 pt) Mostre que **NP** é fechada sob operação de intersecção.

Prova: Sejam A e B duas linguagens decidíveis em NP. Sejam M_A e M_B duas máquinas de Turing não-determinísticas que decidem as linguagens A e B, respectivamente (pois se uma linguagem é decidível, então uma máquina de Turing a decide). Como A e B são decidíveis em tempo polinomial não-determinístico, A e B pertencem a NTIME (n^k) e NTIME (n^l) respectivamente (em que k e l são números naturais). Iremos construir a máquina de Turing não-determinística M_{aux} , a partir de M_A e M_B , que decide $A \cap B$ em tempo polinomial não-determinístico. A descrição de M_{aux} é dada a seguir:

 M_{aux} = "Sobre a entrada ω , faça:

- (a) Rode M_A sobre ω .
- (b) Rode M_B sobre ω .
- (c) Se M_A e M_B aceitam, aceite.
- (d) Caso contrário, rejeite".

O tempo de execução t de M_{aux} é igual a soma do tempo de execução dos passos (a), (b), (c) e (d). Logo, $t = O(n^k) + O(n^l) + O(1) + O(1) = O(n^{\max(k,l)})$.

Seja c = max(k, l). Temos assim, $t = O(n^c)$. Como c é um número natural, $A \cap B \in \text{NTIME}(n^c)$ e, consequentemente, $A \cap B \in NP$. Logo, podemos afirmar que NP é fechada sob a operação de intersecção

Teoremas Auxiliares

Definição 1.16: Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Teorema 1.25: A classe de linguagens regulares é fechada sob a operação de união.

Teorema 1.26: A classe de linguagens regulares é fechada sob a operação de concatenação.

Teorema 1.26.1: A classe de linguagens regulares é fechada sob a operação de complemento.

Teorema 1.39: Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.49: A classe de linguagens regulares é fechada sob a operação estrela.

Teorema 1.49.1: A classe de linguagens regulares é fechada sob a operação de intersecção.

Teorema 1.54: Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Definição 3.5: Chame uma linguagem de Turing-reconhecível se alguma máquina de Turing a reconhece.

Definição 3.6: Chame uma linguagem de Turing-decidível ou simplesmente decidível se alguma máquina de Turing a decide.

Teorema 3.13: Toda máquina de Turing multifita tem uma máquina de Turing que lhe é equivalente.

Teorema 3.16: Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Teorema 3.21: Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Teorema 4.1: A_{AFD} é uma linguagem decidível.

Teorema 4.2: A_{AFN} é uma linguagem decidível.

Teorema 4.3: A_{EXR} é uma linguagem decidível.

Teorema 4.4: V_{AFD} é uma linguagem decidível.

Teorema 4.5: EQ_{AFD} é uma linguagem decidível.

Teorema 4.9: Toda linguagem livre-de-contexto é decidível.

Teorema 4.11: A_{MT} é uma linguagem indecidível.

Definição 4.14: Um conjunto A é contável se é finito ou tem o mesmo tamanho que N.