Introduction to R program

เอกสารนี้จัดทำขึ้นเพื่อใช้เป็นสื่อการสอนในงาน RNA-seq analysis workshop ซึ่งมีจุดประสงค์ขึ้นเพื่อแนะนำการใช้ R เบื้องต้น เพื่อนำไปใช้ในการวิเคราะห์ข้อมูลของ RNA-seq

ในการใช้ R เพื่อทำการวิเคราะห์ RNA-seq นั้น ผู้ใช้งานจำเป็นจะต้องมีความรู้เรื่อง basic R ต่างๆ เล็กน้อย เพื่อที่จะได้ใช้งานได้อย่างไม่ติดขัด

Online version: https://tmrc.psu.ac.th/RNAseg/ book/index.html

R installation

R console

ผู้ที่ต้องการใช้ R สามารถดาวน์โหลดโปรแกรม ได้ที่นี่ https://cran.r-project.org/bin/windows/base/ โดยตัว R console จะมีหน้าตาดังภาพ

Rstudio

อย่างไรก็ตาม การใช้งาน R ด้วยโปรแกรมนี้จะใช้งานค่อนข้างยาก โดยส่วนใหญผู้ใช้การจะต้องดาวน์โหลด IDE (integrated development environment) มาอำนวยความสะดวกในการเขียนคำสั่ง ซึ่ง IDE ที่ได้รับความนิยมมากที่สุด คือ Rstudio สามารถดาวน์โหลดได้ที่ https://posit.co/download/rstudio-desktop/

นี่คือหน้าต่าง default ของ Rstudio โดยส่วนประกอบหลักคือ

- 1. Text editor มุมซ้ายบน คือ ที่ๆ เราจะเขียน script ไว้เพื่อ run
- 2. Environment มุมขวาบน คือ ส่วนที่เก็บข้อมูล variable ต่างๆ ที่เรา assign
- 3. R console มุมซ้ายล่าง คือ ส่วนที่ R ทำงานจริงๆ ซึ่งก็คือ ตัว R console ที่เราโหลดมาตอนแรกนั่นเอง
- 4. **ส่วน Output** ที่จะมีไว้แสดงที่อยู่ของไฟล์ รูปภาพที่ render ออกมา และ อื่นๆ ตามที่เราจะปรับแต่ง

เราสามารถเขียนไว้ script ไว้ที่ text editor และกด run คำสั่งแต่ละบรรทัดได้โดยการกด Ctrl + Enter ยินดีด้วย! เท่านี้ท่านก็สามารถเริ่มใช้งาน R ได้แล้ว

Basic R

Basic operation

เราสามารถใช้ R ในการคำนวณต่างๆ ได้ เช่น บวก ลบ คูณ หาร ยกกำลัง เป็นต้น

```
3+2
## [1] 5
3-2
## [1] 1
3*2
## [1] 6
3/2
## [1] 1.5
3^2
## [1] 9
log(3)
## [1] 1.098612
sqrt(3)
## [1] 1.732051
3==3 # ตรวจสอบว่าข้อมูลเหมือนกันหรือไม่
## [1] TRUE
```

Variable

Variable assignment

R สามารถเก็บข้อมูลต่างๆ ไว้ในตัวแปรได้ เพื่อที่สามารถนำมาใช้ในภายหลัง โดยการเก็บตัวแปรนั้นจะใช้เครื่องหมาย <-

```
x <- 2
x
## [1] 2
```

```
y <- 3
y
## [1] 3
x+y # เราสามารถนำด้วนปรมาทำ operation ได้ตามปกติ
## [1] 5
x*y
## [1] 6
x <- 5 # การลงข้อมูลในตัวแปรเดิมจะเป็นการลบตัวแปรเก่า
x
## [1] 5
hellothisisRNAseqworkshop <- (x+y)^(x-y) # สามารถตั้งชื่ออะไรก็ได้ตราบใดที่ไม่เว้นวรรค
hellothisisRNAseqworkshop
## [1] 64</pre>
```

Type of variable

R นั้นสามารถรองรับตัวแปรต่างๆ ได้หลากหลาย ซึ่งเป็นได้ทั้ง ตัวเลข หรือตัวอักษร หรือแม้กระทั่งเก็บหลายข้อมูลภายในตัวแปรเดียวได้

```
x <- "Hello world" # ตัวอักษร
Х
## [1] "Hello world"
y <- c(1,2,3,4) # เก็บหลายตัวข้อมูลในตัวแปรเดียว
## [1] 1 2 3 4
z <- list(c(1,2,3), 4, c("hello world", "I love R")) # เก็บข้อมูลในรูปแบบ list
Z
## [[1]]
## [1] 1 2 3
##
## [[2]]
## [1] 4
##
## [[3]]
## [1] "hello world" "I love R"
class(x) # เราสามารถเซ็คชนิดของตัวแปรได้โดยใช้ function class()
## [1] "character"
```

ลักษณะตัวแปรต่างๆ ใน R มีดังนี้

ชนิด	ตัวอย่าง	คำอธิบาย
numeric	1, 2.3, 5	จำนวนจริง รวมทศนิยม
integer	1, 2, 3	จำนวนเต็ม เป็น subset ของ numeric
complex	1i	จำนวนเชิงซ้อน
character	"สวัสดี", "Hello world"	ตัวอักษร ต้องอยู่ในเครื่องหมาย " "
factor	"a", "b", "c"	คล้าย character แต่มีจำนวนตัวแปรจำกัด
logical	TRUE, FALSE	ตามหลักตรรกศาสตร์
vector	c(1,2,3)	หลายข้อมูลใน 1 ตัวแปร โดยต้องเป็นตัวแปรชนิดเดียวกัน
list	list(1, c(1,3,4), "Hello")	หลายข้อมูลใน 1 ตัวแปร โดยไม่จำเป้นต้องเป็นตัวแปรชนิดเดียวกัน
dataframe	data.frame(x=3, y=2)	ตาราง

Matrix and Dataframe

เนื่องจาก R นั้นเป็นโปรแกรมที่ส่วนมากใช้ในการวิเคราะห์ทางสถิติ ซึ่งเกี่ยวข้อมูลส่วนใหญ่จะถูกเก็บในรูปของตาราง R จึงมีตัวแปรที่เก็บข้อมูลในรูปของตารางโดยเฉพาะ เรียกว่า matrix และ dataframe ซึ่งเราจะใช้เป็นหลักในการวิเคราะห์ข้อมูลใน R

```
mat <- matrix(c(1,2,3,4), nrow=2)
mat

## [,1] [,2]
## [1,] 1 3
## [2,] 2 4

class(mat)

## [1] "matrix" "array"

df <- data.frame(x=c(3,4),y=c(2,5),z=c(4,7))
df

## x y z
## 1 3 2 4
## 2 4 5 7

class(df)

## [1] "data.frame"</pre>
```

โดยตารางนั้นจะประกอบด้วยสองส่วนหลักๆ คล้าย excel spreadsheet ได้แก่

- Column (คอลัมน์): คือ ข้อมูลในแนวตั้ง ซึ่งแถวบนสุดจะเป็นชื่อ column นั้นๆ
- Row (แถว): คือ ข้อมูลในแนวนอน

โดย matrix นั้น สามารถเก็บ variable ในรูปแบบเดียวกันได้เท่านั้น แต่ dataframe สามารถเก็บข้อมูลต่างชนิดร่วมกันได้ โดยมีข้อแม้ว่า column เดียวกัน จะต้องเป็นข้อมูลชุดเดียวกัน

Subset

เราสามารถดึงข้อมูลแค่บางส่วนออกมาจาก vector, list, matrix หรือ dataframe ได้ เรียกว่าการ subset

```
x <- c("a","b","c","d")
x[3] # subset โดยระบุตำแหน่ง
## [1] "c"

x[1:3] # subset หลายตำแหน่ง
## [1] "a" "b" "c"

x[c(1,3)] # subset หลากหลายตำแหน่งแบบจำเพาะ
## [1] "a" "c"

y <- list(c(1,2,3), c("a","b","c"))
y[1] # subset List ตามตำแหน่ง (จะได้ List ย่อยออกมา)
## [[1]]
## [1] 1 2 3

y[[1]] # ดึงข้อมูลที่อยู่ใน List ออกมา
## [1] 1 2 3</pre>
```

ในส่วนของ matrix และ dataframe นั้น เราสามารถ subset ตามตำแหน่งได้ โดยการระบุ row และ column ตามลำดับ

```
mat
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4

mat[1,2] # 1st row, 2nd column
## [1] 3
```

```
df
## x y z
## 1 3 2 4
## 2 4 5 7

df[1,3] # 1st row, 3rd column
## [1] 4
```

ในส่วนของ dataframe นั้น เราสามารถ subset ได้โดยใช้ชื่อของ column อีกด้วย

R function

function (ฟังก์ชัน) คือ ชุดของคำสั่งที่จะสั่งการให้ R ทำงานตามจุดประสงค์ที่เราตั้งไว้ โดยตัว function นั้น จะประกอบไปด้วย

- function ที่มีมาพร้อมกับ R ตั้งแต่ต้น (base R function)
- function ที่ผู้นิพนธ์ท่านอื่นเขียนไว้ และรวบรวมมาเป็น ชุดของ function เรียกว่า package
- function ที่เราเขียนขึ้นมาเอง

Anatomy of function

function นั้นประกอบด้วย 4 ส่วน คือ 1. Function name (ชื่อฟังก์ชัน) 2. Argument (รายละเอียดของฟังก์ชัน)

3. Function body (รายละเอียดของฟังก์ชัน) 4. Return (ผลลัพธ์ของฟังก์ชัน)

ยกตัวอย่างฟังก์ชันหา ค่าเฉลี่ยของข้อมูล

```
find_mean <- function(x, y){
    (x + y)/2
}
find_mean(2, 3)
## [1] 2.5
find_mean(3, 5)
## [1] 4</pre>
```

จะเห็นว่า function นี่รับข้อมูล 2 ตัวแปร คือ x และ y ซึ่งเราจะต้องแทนค่าที่เราต้องการลงไปใน function หลังจากนั้น function จะทำการประมวลผลและส่งผลลัพธ์กลับมา

ในผู้เริ่มต้น ส่วนใหญ่เรามักจะไม่ใช้ function ที่เขียนขึ้นมาเองมากนัก เนื่องจาก basic operation ส่วนใหญ่จะมีผู้นิพนธ์ขึ้นมาให้แล้ว

Base R function

Base R function คือ function ที่ติดกับ R มาตั้งแต่แรก ซึ่งเราสามารถเรียกใช้ได้เลยโดยไม่ต้องทำการเรียก package ขึ้นมาก่อน

```
max(c(1,2,4,5,5,68)) # find max value
```

```
## [1] 68
min(c(1,4,5,6,-20)) # find min value
## [1] -20
mean(c(1,2,3,4)) # find mean
## [1] 2.5
median(c(1,2,5,3,4)) # find median
## [1] 3
unique(c(1,1,1,1,2,2,4,5,5,6,7,8)) # display only unique values
## [1] 1 2 4 5 6 7 8
```

ในส่วนของการ manipulate dataframe นั้น คำสั่งต่างๆ ที่น่ารู้มีดังนี้

```
df \leftarrow data.frame(x=c(3,3,6,7,8,9),y=c(2,5,8,1,2,3),z=c(4,7,9,4,7,8))
df
## x y z
## 1 3 2 4
## 2 3 5 7
## 3 6 8 9
## 4 7 1 4
## 5 8 2 7
## 6 9 3 8
head(df, 5) # ดู 5 แถวแรก
## x y z
## 1 3 2 4
## 2 3 5 7
## 3 6 8 9
## 4 7 1 4
## 5 8 2 7
tail(df , 5) # ดู 5 แถวล่าง
## x y z
## 2 3 5 7
## 3 6 8 9
## 4 7 1 4
## 5 8 2 7
## 6 9 3 8
rowMeans(df) # หาค่า mean แต่ละแถว
## [1] 3.000000 5.000000 7.666667 4.000000 5.666667 6.666667
```

```
colMeans(df) # หาค่า mean แต่ละ columns

## x y z
## 6.0 3.5 6.5

rownames(df) # ชื่อแถว

## [1] "1" "2" "3" "4" "5" "6"

colnames(df) # ชื่อ column

## [1] "x" "y" "z"
```

สามารถดู base R function ทั้งหมดได้ที่ https://stat.ethz.ch/R-manual/R-devel/library/base/html/00Index.html

ถ้าเราต้องการดูว่า function นั้นใช้งานอย่างไร ให้ใส่เครื่องหมาย? หน้า function นั้น

Tidyverse

Tidyverse เป็น package ซึ่งนิพนธ์โดย Haley Wickham และคณะ โดย function ส่วนใหญ่ใน tidyverse นั้นเกี่ยวข้องกับการปรับแต่งข้อมูลจาก dataframe

ซึ่งจะอำนวยความสะดวกให้เราสามารถทำงานได้มากขึ้นกว่าการใช้ base R ข้อเสียของ tidyverse นั้น อาจจะทำให้ run ช้ากว่า และมีปรับแต่งให้ตรงกับการใช้งานจำเพาะได้ยากกว่า แต่สำหรับผู้ที่ไม่ใช่ R hardcore นั้น tidyverse ถือว่าเป็น package ที่อำนวยความสะดวกได้อย่างดีเยี่ยม โดย tidyverse นั้นจะเป็น package ใหญ่ และจะแบ่งเป็นหลาย package ย่อยๆ ได้อีก โดยเราสามารถเรียกใช้ ทั้งหมดได้ หรือ เรียกใช้แค่ package ย่อย

dplyr

dplyr คือ package ย่อยของ tidyverse ซึ่งทำหน้าที่ในส่วน dataframe manipulation ทำให้เราสามารถดึงตารางออกมาได้อย่างอิสระ

การใช้งาน package ข้างนอกนั้นจะต้อง install ก่อน และเมื่อใช้งาน จะต้องใช้คำสั่ง library

```
# install.packages("tidyverse") รันคำสั่งนี้ก่อนถ้ายังไม่เคย install library(dplyr) # ต้อง run ทุกครั้งที่จะใช้งาน
```

ในกรณีนี้จะใช้ข้อมูลตัวอย่าง iris เพื่อสาธิตการใช้ dplyr โดย iris เป็นข้อมูลของความยาวกลีบของพันธุ์ดอกไม้ต่างๆ

รูปจาก: https://www.datacamp.com/tutorial/machine-learning-in-r

```
df <- iris # โหลด dataframe ตัวอย่างที่ติดมากับ base R
head(df, 5)
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
               5.1
                            3.5
                                          1.4
                                                      0.2 setosa
               4.9
## 2
                            3.0
                                          1.4
                                                       0.2 setosa
               4.7
## 3
                            3.2
                                          1.3
                                                      0.2 setosa
## 4
               4.6
                            3.1
                                          1.5
                                                       0.2 setosa
               5.0
## 5
                            3.6
                                          1.4
                                                      0.2 setosa
```

function หลักๆ ของ dplyr จะเกี่ยวข้องกับ data manipulation เป็นส่วนใหญ่ ในที่นี้จะแนะนำที่จำเป็นต้องใช้ในบทอื่น

• glimpse() มีไว้ดูภาพรวมข้อมูล

• select() เลือก column ที่ต้องการโดยใช้ตำแหน่งหรือชื่อ column ก็ได้

```
df %>% select(Species) %>% head(5) # เลือก column "Species"
     Species
##
## 1 setosa
## 2 setosa
## 3 setosa
## 4 setosa
## 5 setosa
df %>% select(2) %>% head(5) # เลือก column ที่ 2
##
     Sepal.Width
## 1
              3.5
## 2
              3.0
              3.2
## 3
## 4
              3.1
## 5
              3.6
df %>% select(1:2) %>% head(5) # เลือก 2 column
     Sepal.Length Sepal.Width
##
## 1
               5.1
                            3.5
## 2
               4.9
                            3.0
               4.7
## 3
                            3.2
## 4
               4.6
                            3.1
## 5
               5.0
                            3.6
```

• filter() กรองแถว (row) ที่ต้องการ โดยต้องระบุ ว่าต้องการข้อมูล ที่ column ไหน และต้องการกรองค่าที่เท่าไร

```
# เลือกแถวที่ Species == virginica
df %>% filter(Species == "virginica") %>% head(5)
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                             Species
## 1
              6.3
                           3.3
                                         6.0
                                                      2.5 virginica
               5.8
                           2.7
## 2
                                         5.1
                                                      1.9 virginica
## 3
              7.1
                           3.0
                                         5.9
                                                      2.1 virginica
## 4
              6.3
                           2.9
                                         5.6
                                                      1.8 virginica
## 5
              6.5
                           3.0
                                         5.8
                                                      2.2 virginica
# เลือกแถวที่ Species = setosa, Sepal.Length = 5.4
df %>%
  filter(Species == "setosa" & Sepal.Length == 5.4) %>% head(5)
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
               5.4
                           3.9
                                         1.7
                                                      0.4 setosa
               5.4
## 2
                           3.7
                                         1.5
                                                      0.2 setosa
## 3
               5.4
                           3.9
                                         1.3
                                                      0.4
                                                           setosa
## 4
               5.4
                           3.4
                                         1.7
                                                      0.2
                                                           setosa
                                                      0.4 setosa
## 5
               5.4
                           3.4
                                         1.5
# เลือกแถวที่ Sepal.Lenght = 5.1 หรือ 4.9
df %>% filter(Sepal.Length == 5.1 | Sepal.Length == 4.9) %>% head(10)
##
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
                5.1
                             3.5
                                          1.4
                                                       0.2 setosa
                            3.0
## 2
               4.9
                                          1.4
                                                       0.2 setosa
               4.9
                                          1.5
## 3
                             3.1
                                                       0.1 setosa
## 4
                                                       0.3 setosa
                5.1
                            3.5
                                          1.4
                                                       0.3 setosa
## 5
                5.1
                             3.8
                                          1.5
## 6
                5.1
                             3.7
                                          1.5
                                                       0.4 setosa
## 7
                5.1
                             3.3
                                          1.7
                                                       0.5 setosa
## 8
               4.9
                             3.1
                                          1.5
                                                       0.2 setosa
## 9
               4.9
                             3.6
                                          1.4
                                                       0.1 setosa
## 10
                5.1
                             3.4
                                          1.5
                                                       0.2 setosa
```

สังเกตว่าจะเห็นเครื่องหมาย %>% ซึ่งใน R เราจะเรียกว่า "pipe operator" เป็นสิ่งที่เป็นเอกลักษณ์ใน R ซึ่งส่งผลให้สามารถ run operation ได้ต่อๆ กัน เพื่อให้อ่านได้ง่าย

```
# เลือกแถวที่ Species = setosa คอลัมน์ Sepal.Length
df %>%
  filter(Species == "setosa") %>%
  select(Sepal.Length) %>% head(5)
     Sepal.Length
##
## 1
                5.1
               4.9
## 2
## 3
               4.7
## 4
               4.6
## 5
                5.0
# เหมือนกับข้างบน แต่ไม่ใช้ pipe operator จะทำความเข้าใจได้ยากกว่า
select(filter(df, Species == "setosa"), Sepal.Length) %>% head(5)
```

```
Sepal.Length
## 1
               5.1
              4.9
## 2
## 3
              4.7
## 4
              4.6
## 5
              5.0
# ใช้แค่ base R solution จะไม่สามารถดึงออกมาเป็น dataframe ได้
df[df["Species"] == "setosa", "Sepal.Length"]
   [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4 5
.1 5.7
## [20] 5.1 5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5.0 5
.5 4.9
## [39] 4.4 5.1 5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0
```

บรรทัดสุดท้าย สำหรับ dataframe จะไม่สามารถดึงมาทั้ง column ได้ ซึ่งจะต้องใช้ข้อมูลอีกแบบ (tibble) แต่จะไม่พูดถึง ณ ที่นี่

Note: การ subset โดย dplyr นั้นสามารถทำใน dataframe/tibble เท่านั้น ไม่สามารถทำใน matrix ได้ (ต้องใช้วิธีของ base R)

• ในส่วนการเรียงข้อมูลนั้นจะใช้ function arrange()

```
df %>%
  arrange(Sepal.Length) %>% head(5) # เรียง Sepal.Length จากน้อยไปมาก
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
                           3.0
## 1
              4.3
                                                      0.1
                                         1.1
                                                            setosa
## 2
              4.4
                           2.9
                                         1.4
                                                      0.2 setosa
## 3
              4.4
                           3.0
                                         1.3
                                                      0.2 setosa
## 4
              4.4
                           3.2
                                         1.3
                                                      0.2
                                                            setosa
## 5
              4.5
                           2.3
                                         1.3
                                                      0.3 setosa
  arrange(desc(Sepal.Length)) %>% head(5) # เรียง Sepal.Length จากมากไปน้อย
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                             Species
## 1
              7.9
                           3.8
                                         6.4
                                                      2.0 virginica
              7.7
## 2
                           3.8
                                          6.7
                                                      2.2 virginica
## 3
              7.7
                           2.6
                                          6.9
                                                      2.3 virginica
              7.7
## 4
                           2.8
                                          6.7
                                                      2.0 virginica
## 5
              7.7
                           3.0
                                         6.1
                                                      2.3 virginica
```

• เราสามารถจัดกลุ่มตัวแปรได้โดยใช้ group_by() โดยมักจะใช้คู่กับ summarize()

```
df %>%
group_by(Species) %>% #จัดกลุ่มตาม Species
```

```
summarize(Sepal.Length = sum(Sepal.Length), Sepal.Width = sum(Sepal.Width))
#รวมความยาวทั้งหมด
## # A tibble: 3 × 3
                Sepal.Length Sepal.Width
     Species
##
     <fct>
                        <dbl>
                                     <dbl>
## 1 setosa
                         250.
                                      171.
## 2 versicolor
                         297.
                                      138.
## 3 virginica
                         329.
                                      149.
```

ggplot2

ggplot2 คือ package ย่อยอีกตัวของ tidyverse ซึ่งใช้สำหรับการ plot graph

Anatomy of ggplot

```
ggplot(data = data, aes(x = x, y = y, col = col, fill = fill)) +
  geom_xxx() +
  theme_xxx()
```

- aes คือ aesthetic ซึ่งหมายถึงการ map ข้อมูลของเราเข้ากับตำแหน่งของกราฟ
 - x = แกน x, y = แกน y
 - col = สี, fill = สีพื้นหลัง
- geom xxx() คือ การกำหนดว่าเราต้องการที่จะ plot กราฟอะไร
 - geom_point() = scatterplot
 - geom_line() = lineplot
 - geom_boxplot() = boxplot
- theme xxx() คือ การกำหนด theme ของกราฟ เช่น theme bw(), theme classic()
- และยังมีการปรับแต่งอื่นๆ ได้อีกมาก สามารถศึกษาได้ที่ https://ggplot2.tidvverse.org/reference/

Scatterplot

```
# install.packages("tidyverse") รันคำสั่งนี้ก่อนถ้ายังไม่เคย install
library(ggplot2)
ggplot(df, aes(x = Sepal.Width, y = Sepal.Length, col = Species)) + geom_poin
t()
```


Barchart

ใช้สำหรับนับจำนวนของ column นั้น ไม่มีค่า y

```
ggplot(df, aes(x = Species, fill = Species)) + geom_bar() # fill ไว้สำหรับแบ่งสีใน barchart
```


ส่วน geom_col() จะรับค่า y ด้วย โดยข้อมูล x ที่ซ้ำกันจะถูกนำมารวมกัน (สามารถปรับแต่งได้เพิ่มเติม)

```
ggplot(df, aes(x = Species, y = Sepal.Width, fill = Species)) + # fill ไว้สำหรับแบ่
งสีใน barchart
geom_col()
```


Boxplot

ทำการสร้าง box plot

```
ggplot(df, aes(x = Species, y = Sepal.Width, fill = Species)) +
  geom_boxplot()
```


RNA-seq data analysis

What is differential gene expression?

Differential gene expression คือ การหาความแตกต่างของการแสดงออกของ gene ระหว่างกลุ่มตัวอย่างสองกลุ่มขึ้นไป เพื่อให้ได้ผลลัพธ์ว่ามี gene ตัวใดตัวหนึ่งแสดงออกมากหรือน้อยกว่าผิดปกติ เมื่อเทียบกับกลุ่มอื่นๆ โดยค่าที่นำมาใช้เปรียบเทียบนั้น จะได้มาจากขั้นตอน quantification

Differential gene expression workflow

หลังจากเราได้ข้อมูล Gene expression quantification จาก StringTie แล้ว เราจะนำข้อมูลมาผ่านกระบวนการต่างๆ เพื่อหาความแตกต่างของ gene แต่ละกลุ่ม

Import data

ในการที่จะนำไฟล์ RNA analysis เข้าสู่ R นั้น จำเป็นที่จะต้องเตรียมข้อมูลให้เหมาะกับ function ที่เราจะใช้ในการอ่านข้อมูล โดยในแต่ละ sample นั้น จะประกอบด้วยไฟล์ .gtf และ .ctab ที่ได้จากการวิเคราะห์ก่อนหน้านี้

N 1	12/02/2023 16:10	File folder	
◎ N2	12/02/2023 16:10	File folder	
N3	12/02/2023 16:10	File folder	
◎ T1	12/02/2023 16:10	File folder	
፩ T2	12/02/2023 16:10	File folder	
፩ T3	12/02/2023 16:10	File folder	
Merge_full.gtf	12/02/2023 17:34	GTF File	394,439 KB
<pre>e_data.ctab</pre>	12/02/2023 09:03	CTAB File	55,704 KB
₩ e2t.ctab	12/02/2023 09:03	CTAB File	28,337 KB
ExNC02.gtf	12/02/2023 09:03	GTF File	384,988 KB
₩ i_data.ctab	12/02/2023 09:04	CTAB File	17,932 KB
₩ i2t.ctab	12/02/2023 09:04	CTAB File	22,511 KB
₩ t_data.ctab	12/02/2023 09:04	CTAB File	37,902 KB

Import quantification

โดยเราจะใช้ function importisoformExpression ในการนำข้อมูลเข้าให้อยู่ในรูปของ dataframe

```
stringTie_quant <- importIsoformExpression(</pre>
 parentDir = "./Source/bladder",
 addIsofomIdAsColumn = FALSE,
 readLength = 150
## Step 1 of 3: Identifying which algorithm was used...
##
      The quantification algorithm used was: StringTie
##
      Found 6 quantification file(s) of interest
## Step 2 of 3: Reading data...
## reading in files with read_tsv
## 1 2 3 4 5 6
## Step 3 of 3: Normalizing abundance values (not counts) via edgeR...
head(stringTie_quant$abundance, 10)
##
                          N1
                                     N2 N3
                                                    T1
                                                              T2
T3
## MSTRG.24.1
                   00
## MSTRG.24.2
                   0.0000000 1.669273712 0 0.000000000 0.00000000 0.0000000
00
## MSTRG.24.4
                   0.0000000 0.493513530 0 0.000000000 0.00000000 0.0000000
```

```
00
## MSTRG.24.5
                     0.0000000 0.006439551
                                            0 0.000000000 0.00000000 0.000000
00
                     0.3298251 1.521147453
                                            0 0.004002289 0.00000000 0.000000
## MSTRG.24.3
00
## MSTRG.24.6
                     1.7884048 1.259405992
                                            0 0.000000000 0.01820757 0.000000
## ENST00000456328.2 0.5592946 0.131153423
                                            0 0.049252195 0.01158960 0.000000
## ENST00000450305.2 0.0000000 0.000000000
                                            0 0.00000000 0.00000000 0.000000
00
## MSTRG.26.1
                     0.0000000 0.000000000
                                            0 1.063266717 0.18918203 0.424279
10
## MSTRG.26.4
                     0.0000000 0.000000000
                                            0 0.000000000 0.04498711 0.094081
83
```

จะเห็นว่าในไฟล์นั้นประกอบด้วย ส่วนแถว ซึ่งเป็นชื่อ isoform ของ RNA นั้นๆ และ ส่วนคอลัมน์ ซึ่งเป็นชื่อของ sample ที่เราศึกษา โดยข้อมูลแต่ละจุดคือ ค่าของ expression ที่ได้จากการวิเคราะห์

Make a design matrix

หลังจากนั้น เราต้องสร้าง condition matrix ซึ่งประกอบด้วย แต่ละ sample ที่ต้องการศึกษา และ condition ของตัวอย่างนั้น ซึ่งในที่นี้เราจะแบ่งเป็นสองกลุ่ม ก็คือ Normal และ Tumor

```
design <- data.frame(</pre>
  sampleID = colnames(stringTie_quant$abundance),
  condition = gsub(".{1}$", "", colnames(stringTie_quant$abundance)) # Remove
number
design
     sampleID condition
##
## 1
           N1
## 2
           N2
                       N
## 3
           Ν3
                       N
           T1
                       Τ
                       Τ
## 5
           T2
           T3
## 6
```

Create a list of files

หลังจากนั้นเราจะต้องรวมไฟล์เข้ากันกับ annotation file ซึ่งจะทำการ annotate ชื่อ gene นั้น จาก Ensemble format เป็น gene id

```
switch_analyze_Rlist <- importRdata(</pre>
  isoformCountMatrix = stringTie quant$counts,
  isoformRepExpression = stringTie_quant$abundance,
  designMatrix
                       = design,
  isoformExonAnnoation = "./Source/bladder/BCaMerge.gtf",
)
     comparison estimated genes with dtu
                             4768 - 7948
         N vs T
## 1
names(switch_analyze_Rlist)
## [1] "isoformFeatures"
                              "exons"
                                                      "conditions"
## [4] "designMatrix"
                                                      "isoformCountMatrix"
                              "sourceId"
## [7] "isoformRepExpression" "runInfo"
                                                      "isoformRepIF"
```

สังเกตว่าภายใน 1 list นั้นจะประกอบด้วยหลายหัวข้อ ซึ่งเราสามารถดึงออกมาใช้ได้ด้วย operator \$

Extract gene count matrix

ต่อไปเราจะใช้แค่ gene count matrix จาก list ที่เราสร้างขึ้นมา

```
gene_count <- extractGeneExpression(</pre>
  switch_analyze_Rlist,
  extractCounts = TRUE # set to FALSE for abundances
)
head(gene count, 10)
                                                                            Т
##
                 gene_id gene_name
                                           N1
                                                       N2
                                                                 N3
1
## 1
      ENSG00000000003.15
                            TSPAN6 1616.16632
                                                 5.323296 0.000000 2892.3669
8
## 2 ENSG00000000419.14
                              DPM1 534.33260 373.409670 2.438447 1344.5619
3
## 3 ENSG00000000457.14
                             SCYL3
                                    134.55807
                                               141.880574 2.312303
                                                                     306.1116
5
## 4
      ENSG00000000460.17
                         Clorf112
                                     68.44894
                                                47.264863 17.260795
                                                                     117.6624
5
## 5
      ENSG00000000938.13
                               FGR
                                     40.13006 3177.326075 62.927494
                                                                      10.9845
1
## 6
     ENSG00000000971.16
                               CFH 801.43355
                                                 8.169078 5.188639 1304.6613
5
## 7
      ENSG00000001036.14
                             FUCA2 246.33240 104.995451 5.653375 1192.9117
6
      ENSG00000001084.13
                              GCLC 374.82061
                                                77.947080
                                                           6.817594 4565.3556
## 8
4
## 9 ENSG00000001167.15
                              NFYA 128.75396 215.173089 0.000000
                                                                     526.5242
```

```
27.359621 3.458716
## 10 ENSG00000001460.18
                            STPG1 105.25642
                                                                   253.4063
9
##
             T2
## 1
      5050.6964 1935.65287
## 2
      3887.3732 3857.84694
## 3
       320.5272 269.31308
       207.5864
                 72.52807
       192.8986 109.53769
## 5
## 6 13678.3377 2457.62369
## 7 3405.1256 1728.34830
## 8
      1549.1920 3010.92600
## 9
       783.7322 664.80964
## 10
       370.8472 179.81425
```

จะเห็นว่าขณะนี้เรามีทั้ง gene id และ gene name แล้ว

Filter out lncRNA

ต่อไป เราจะนำรายชื่อของ RNA ที่เราไม่สนใจออกไป ซึ่งในที่นี้คือ long-noncoding RNA ซึ่งมักจะไม่ถูกเปลี่ยนไปเป็นโปรตีน แต่จะใช้สำหรับ function อื่นๆ ในร่างกาย

ก่อนอื่น เราต้อง import file ที่มีการ annotate ชนิดของ RNA เข้ามาใน R ก่อน โดยใช้ function rtracklayer::import()

```
V38.gtf <- rtracklayer::import("./Source/gencode.v38.annotation.gtf")</pre>
unique(V38.gtf$gene type)
    [1] "transcribed unprocessed pseudogene" "unprocessed pseudogene"
##
  [3] "miRNA"
                                               "lncRNA"
##
                                               "processed_pseudogene"
## [5] "protein_coding"
##
   [7] "snRNA"
                                               "transcribed processed pseudogen
e"
                                               "TEC"
## [9] "misc_RNA"
## [11] "transcribed unitary pseudogene"
                                               "snoRNA"
## [13] "scaRNA"
                                               "rRNA pseudogene"
## [15] "unitary_pseudogene"
                                               "polymorphic_pseudogene"
## [17] "pseudogene"
                                               "rRNA"
## [19] "IG_V_pseudogene"
                                               "scRNA"
## [21] "IG_V_gene"
                                               "IG_C_gene"
## [23] "IG_J_gene"
                                               "sRNA"
                                               "translated_processed_pseudogene
## [25] "ribozyme"
                                               "TR C_gene"
## [27] "vault RNA"
## [29] "TR_J_gene"
                                               "TR V gene"
                                               "translated unprocessed pseudoge
## [31] "TR_V_pseudogene"
ne"
## [33] "TR_D_gene"
                                               "IG_C_pseudogene"
```

```
## [35] "TR_J_pseudogene" "IG_J_pseudogene" 
## [37] "IG_D_gene" "IG_pseudogene" 
## [39] "Mt_tRNA" "Mt_rRNA"
```

จะเห็นว่ามีชนิดของ RNA มากมายหลายชนิดในไฟล์นี้ เราจะทำการเลือกชื่อ RNA ที่เราไม่สนใจ ซึ่งก็คือ IncRNA มากรองข้อมูลในส่วนที่เราไม่ต้องการออกในไฟล์ต้นฉบับของเรา

หลังจากนั้นเราจะนำ column gene_id ออก และเปลี่ยน gene_name ให้เป็นชื่อแถว

Note: ในที่ข้อมูลนี้เราจะทำการตัด RNA ที่มีชื่อซ้ำออกไป เพื่อให้ง่ายแก่การสอน ซึ่งในการวิเคราะห์จริงอาจจะต้องใช้วิธีอื่นในการวิเคราะห์ชื่อ RNA ที่ซ้ำกันใน sample เดียวกัน

```
lncRNA_subset <- V38.gtf$gene_type == "lncRNA"</pre>
lncRNA <- V38.gtf[lncRNA_subset]$gene_name</pre>
gene_count_no_lncRNA <- gene_count %>% filter(!(gene_name %in% unique(lncRNA)
))
head(gene_count_no_lncRNA, 10)
##
                                                                               Τ
                 gene_id gene_name
                                            N1
                                                         N2
                                                                   N3
1
## 1
      ENSG00000000003.15
                             TSPAN6 1616.16632
                                                   5.323296
                                                            0.000000 2892.3669
8
## 2
      ENSG00000000419.14
                               DPM1
                                     534.33260 373.409670
                                                             2.438447 1344.5619
3
## 3
      ENSG00000000457.14
                              SCYL3
                                     134.55807
                                                141.880574
                                                             2.312303
                                                                        306.1116
5
## 4
      ENSG00000000460.17
                           Clorf112
                                      68.44894
                                                  47.264863 17.260795
                                                                        117.6624
5
## 5
      ENSG00000000938.13
                                FGR
                                      40.13006 3177.326075 62.927494
                                                                        10.9845
1
      ENSG00000000971.16
                                CFH
                                     801.43355
                                                   8.169078 5.188639 1304.6613
## 6
5
## 7
      ENSG00000001036.14
                              FUCA2 246.33240
                                                104.995451 5.653375 1192.9117
6
## 8
      ENSG0000001084.13
                               GCLC
                                     374.82061
                                                  77.947080
                                                             6.817594 4565.3556
4
## 9
      ENSG00000001167.15
                               NFYA
                                     128.75396
                                                215.173089
                                                             0.000000
                                                                        526.5242
2
## 10 ENSG00000001460.18
                              STPG1 105.25642
                                                  27.359621 3.458716
                                                                       253.4063
9
##
              T2
                          T3
## 1
       5050.6964 1935.65287
## 2
       3887.3732 3857.84694
## 3
        320.5272
                  269.31308
## 4
        207.5864
                   72.52807
## 5
        192.8986 109.53769
    13678.3377 2457.62369
```

```
## 7
      3405.1256 1728.34830
## 8
      1549.1920 3010.92600
## 9
       783.7322 664.80964
## 10
       370.8472
                179.81425
## Get only count matrix
count_matrix <- gene_count_no_lncRNA %>%
 distinct(gene_name, .keep_all = TRUE) %>% # Remove duplicate gene_name
 column_to_rownames("gene_name") %>%
 select(-gene id) %>%
 as.matrix
head(count_matrix, 10)
##
                   N1
                               N2
                                         Ν3
                                                    T1
                                                               T2
## TSPAN6
           1616.16632
                         5.323296 0.000000 2892.36698
                                                        5050.6964 1935.65287
## DPM1
            534.33260
                       373.409670 2.438447 1344.56193
                                                        3887.3732 3857.84694
## SCYL3
            134.55807 141.880574 2.312303
                                             306.11165
                                                         320.5272 269.31308
## C1orf112
                       47.264863 17.260795
                                                         207.5864
             68.44894
                                            117.66245
                                                                    72.52807
## FGR
             40.13006 3177.326075 62.927494
                                              10.98451
                                                         192.8986 109.53769
## CFH
            801.43355 8.169078 5.188639 1304.66135 13678.3377 2457.62369
## FUCA2
            246.33240 104.995451 5.653375 1192.91176 3405.1256 1728.34830
## GCLC
            374.82061 77.947080 6.817594 4565.35564 1549.1920 3010.92600
## NFYA
            128.75396 215.173089 0.000000
                                             526.52422
                                                         783.7322 664.80964
## STPG1
            105.25642
                        27.359621 3.458716 253.40639
                                                         370.8472 179.81425
```

เมื่อลองนำข้อมูลมาสร้าง boxplot อย่างง่าย จะพบว่ามีหลาย gene ที่มีความแตกต่างกัน ซึ่งต่อไปเราจะนำมาเข้าสู่กระบวนการหา differential gene expression เพื่อดูว่ามี gene ใดบ้างที่มีความแตกต่างกันระหว่างสองกลุ่มอย่างมีนัยสำคัญ

```
count_matrix %>%
  edgeR::cpm(log=TRUE) %>%
  head(20) %>%
  t %>%
  as.data.frame() %>%
  rownames_to_column("type") %>%
  tidyr::pivot_longer(-type) %>%
  mutate(type = gsub("\\d", "", type)) %>%
  ggplot(aes(x = name, y =value, fill = type)) + geom_boxplot() +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))
```


Differential gene expression analysis

ก่อนที่เราจะทำการ visualize ข้อมูลนั้น เราจะต้องทำการวิเคราะห์ก่อนว่า RNA ไหนที่มีการแสดงออกระหว่างสองกลุ่มที่แตกต่างอย่างมีนัยสำคัญ

โดยเราจะเริ่มจากการสร้าง design matrix ซึ่งบ่งบอกว่าใครอยู่กลุ่มไหน

สิ่งที่เราเห็นคือ design matrix ของกลุ่มที่เราต้องการ โดยหมายเลข 1 คือตัวบ่งบอกว่า sample เราอยู่ในกลุ่มนั้นๆ โดยในที่นี่ sample 1-3 จะอยู่ในกลุ่ม Normal ส่วน sample 4-6 จะอยู่ในกลุ่ม Tumor

Normalization

หลังจากนั้น เราจะต้องทำการ normalize ค่าการแสดงออกของ RNA เนื่องจากการ run RNA seq ในแต่ละ sample นั้น สภาวะของเครื่องอาจจะมีความแตกต่างกันบ้างเล็กน้อย ส่งผลให้ค่า signal intensity พื้นหลังนั้นมีไม่เท่ากัน

```
dge <- DGEList(counts=count_matrix, group=group)
keep <- filterByExpr(dge, group=group,min.count=2, min.prob=0.5)

dge <- dge[keep,]

# Calculate normalization factor
genexp <- calcNormFactors(dge)

# GLM Common dispersion
genexp <- estimateGLMCommonDisp(dge, diff_design)

# Estimate GLM trended dispersions
genexp <- estimateGLMTrendedDisp(genexp, diff_design)

# Tagwise dispersion of each gene
genexp <- estimateGLMTagwiseDisp(genexp, diff_design)

plotBCV(genexp)</pre>
```


he	head(genexp\$counts)										
nead (Benezh deannea)											
##		N1	N2	N3	T1	T2	Т3				
##	TSPAN6	1616.16632	5.323296	0.000000	2892.36698	5050.6964	1935.65287				
##	DPM1	534.33260	373.409670	2.438447	1344.56193	3887.3732	3857.84694				
##	SCYL3	134.55807	141.880574	2.312303	306.11165	320.5272	269.31308				
##	C1orf112	68.44894	47.264863	17.260795	117.66245	207.5864	72.52807				
##	FGR	40.13006	3177.326075	62.927494	10.98451	192.8986	109.53769				
##	CFH	801.43355	8.169078	5.188639	1304.66135	13678.3377	2457.62369				

หลังจาก normalize แล้ว เราจะทำการวิเคราะห์ differential gene expression โดยการใช้การวิเคราะห์ทางสถิติที่เรียกว่า negative binomial generalized log-linear model ซึ่งโดยสรุปคร่าวๆ คือการเปรียบเทียบ average log RNA expression ระหว่างสองกลุ่ม แต่ซับซ้อนกว่าเพื่อลด ผลบวกลวง

Note: package ที่นิยมใช้ในปัจจุบัน ได้แก่ limma, edgeR, และ DEseq โดยจะมีความแตกต่างกันเล็กน้อยในส่วนของการวิเคราะห์ทางสถิติ สำหรับผู้ที่สนใจสามารถศึกษาเพิ่มเติมได้ที่ https://www.biostars.org/p/284775/

หลังจากนั้นเราจะใช้ funtion topTags() เพื่อทำการดึงตารางผลของ differential RNA expression ออกมา

fit <- glmQLFit(genexp, diff_design)</pre>

```
genediff <- glmQLFTest(fit, contrast=c(-1,1))</pre>
# All genes
all_gene <- topTags(genediff, n = Inf, p.value = 1, adjust.method = "fdr")</pre>
all gene$table %>%
  rownames_to_column("gene_name") %>%
readr::write_csv("all_gene.csv")
# Only significant value
sig_gene <- topTags(genediff, n = Inf, p.value = 0.05,</pre>
                    adjust.method = "fdr", sort.by = "logFC")
# Total differentiated gene
summary(decideTests(genediff))
          -1*groupN 1*groupT
## Down
                        1792
## NotSig
                       17504
## Up
                         939
# Summary table
(sig_gene$table)
##
                                      logCPM
                                                              PValue
                          logFC
FDR
                     -18.273967 9.562807862 46.650297 8.545057e-12 1.729092e
## HBD
-07
## ENSG10010139367.1 -17.649666 8.938617764 45.143875 1.842839e-11 1.864493e
-07
                     -15.704149 7.349606642 40.412758 2.066846e-10 1.099827e
## AQP9
-06
                     -14.963082 6.252996881 39.713938 2.955267e-10 1.099827e
## CXCR1
-06
## MEFV
                     -14.752717 6.042819257 39.573130 3.176099e-10 1.099827e
-06
## FPR2
                     -14.641776 5.931976369 39.521492 3.261161e-10 1.099827e
-06
## ADGRE3
                     -13.942470 5.233551274 39.032417 4.188918e-10 1.210896e
-06
                     -13.895256 8.159710331 36.205749 1.783055e-09 2.405342e
## ALAS2
-06
## ADGRG3
                     -13.615974 4.907601442 38.336422 5.982575e-10 1.451147e
-06
                     -13.564091 5.955987834 36.981569 1.197829e-09 1.897911e
## PROK2
-06
                     13.558617 13.119447847 32.113716 1.458995e-08 7.380690e
## MT-ATP8
-06
## GLT1D1
                     -13.536189 4.828029253 38.087774 6.795202e-10 1.451147e
-06
## FCAR
                     -13.505521 4.797405480 37.982573 7.171468e-10 1.451147e
```

```
-06
## FCGR3B -13.473789 8.385197697 35.019121 3.277923e-09 3.158513e
-06
...
```

โดยจากตาราง จะพบว่ามีการแสดงค่าต่างๆ โดยที่เราสนใจมักจะเป็น

- logFC ซึ่งก็คือ fold change ของ RNA expression ระหว่างกลุ่ม Normal vs Tumor
- pvalue โดยเรามักจะต้องปรับผลเพื่อลดภาวะผลบวกลวงออกไปด้วย เราจึงใช้ column FDR ไม่ใช่ PValue

Data Visualization

Principal Component Analysis (PCA)

PCA คือการลดมิติของปริมาณข้อมูลลงเพื่อทำให้เกิดความง่ายขึ้นในการวิเคราะห์ โดยใช้หลักการรวมข้อมูลแบบ linear combination ที่มีความแปรปรวนใกล้เคียง ซึ่งโดยทั่วไปแล้ว จะนำมาใช้ในการดูความแตกต่างกันของลักษณะข้อมูลในแต่ละกลุ่มแบบคร่าวๆ หรือใช้ในการค้นหาความผิดปกติของข้อมูลที่เกินจากสภาวะที่ต่างกัน (batch effect) โดยที่ข้อมูลที่มีลักษณะใกล้เคียงกันจะอยู่ในตำแหน่งที่ใกล้เคียงกัน

ฐปจาก: https://en.wikipedia.org/wiki/Principal_component_analysis

Requirement

- ข้อมูลควรมีการถูก normalized โดยอาจจะ centered (ทำให้ scale เริ่มต้นที่ 0) หรือไม่ก็ได้
- ต้องไม่มี missing value

library(PCAtools)

Loading required package: ggrepel

```
##
## Attaching package: 'PCAtools'
## The following objects are masked from 'package:stats':
##
       biplot, screeplot
##
# Calculate log-counts-per-million
logcpm <- cpm(dge, prior.count = 2, log = TRUE)</pre>
# Create a metadata table
metadata <- data.frame(row.names = colnames(logcpm),</pre>
                        group = c(rep(1,3), rep(2,3)))
(metadata)
##
      group
## N1
          1
## N2
          1
## N3
          1
## T1
          2
          2
## T2
## T3
```

โดยการแปลผล PCA นั้น ควรดูไล่ไปทีละแกน (มิติ 1 -> มิติ 2 ไม่ใช่ดู 2 มิติพร้อมกัน)

```
# Perform PCA analysis
pc <- pca(logcpm, metadata = metadata, removeVar = 0.1)
## -- removing the lower 10% of variables based on variance
# Create PCA plot
biplot(pc, colby = "group")</pre>
```


จะเห็นได้ว่า ในส่วนของ T1, T2 และ T3 นั้นค่อนข้างเกาะกลุ่มกัน แต่ N นั้น มีความแตกต่างกันพอสมควรในทั้งสองมิติ

แม้ว่าในกราฟจะมีแค่ 2 มิติ แต่โดยที่จริงแล้วมิตินั้นจะโดนลดลงเหลือ n มิติ

pairsplot(pc)

ซึ่งเราสามารถดูความมากน้อยของผลกระทบของในแต่ละมิติได้โดยใช้ Scree plot โดยมิติแรกจะมีผลมากกว่ามิติหลังเสมอ

screeplot(pc)

SCREE plot

ในส่วนของข้อมูลเชิงลึกของ PCA สามารถศึกษาเพิ่มเติมได้ในเอกสารแนบ: http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

ตัวอย่างการใช้งานเพิ่มเติม:

https://www.bioconductor.org/packages/release/bioc/vignettes/PCAtools/inst/doc/PCAtools.html

Heatmap

Heatmap คือการเปลี่ยนข้อมูลที่มีให้อยู่ในรูปของสี ซึ่งจะแสดงความแตกต่างตามค่าที่มากหรือน้อย โดยการสร้าง heatmap นั้นจะใช้ข้อมูลดิบ (ก่อนทำ differential expression) ซึ่งจะทำให้เห็นภาพรวมของข้อมูลแต่จะไม่ให้ข้อมูลความแตกต่างทางด้านสถิติมากนัก

ซึ่งโดยปกติถ้านำข้อมูลทั้งหมดมาสร้าง heatmap จะทำให้รูปมีขนาดใหญ่เกินไป ดังนั้น เรามักจะกรองข้อมูลที่เราต้องการจะนำเสนอก่อนที่จะนำมาสร้าง

ตัวอย่างการใช้งานเพิ่มเติม: https://jokergoo.github.io/ComplexHeatmap-reference/book/

Volcano plot

Volcano plot คือกราฟที่แสดงความแตกต่างของการแสดงออกของ RNA ระหว่างสองกลุ่ม โดยมีแกน x คือ log fold change และ y คือ -log10(p-value) เหตุผลที่แกน y ต้องเป็น -log10(p-value) เพื่อที่จะปรับค่า p-value ที่เป็นทศนิยมนั้นให้อยู่ในหลักจำนวนเต็ม ซึ่งจะทำให้ได้กราฟที่มีรูปร่างคล้ายภูเขาไฟหัวกลับ

RNAseq workshop

EnhancedVolcano

ค่าที่ cut-off ที่เราสนใจนั้นมักจะเป็นที่ logFC > 1-2, และ -log10(p-value) > 1.3-2 (p-value < 0.01-0.05)

ตัวอย่างการใช้งานเพิ่มเติม:

https://bioconductor.org/packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html