Algoritmia y optimización Grado en Ingeniería en Inteligencia Artificial

La sucesión de Fibonacci

La sucesión de Fibonacci viene definida tal que:

$$F(n) = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ F(n-1) + F(n-2) & \text{si } n > 1 \end{cases}$$

La sucesión de Fibonacci

```
función fibonacci(n)
 si n <= 1
     devuelve n
 si no
     devuelve fibonacci(n-1) + fibonacci(n-2)</pre>
```

$$F(n) \in \mathcal{O}(2^n)$$

¿Dónde está el problema?

Esquema general

Esquema general

- Idea general: descomposición del problema en subproblemas solapados.
- La eficiencia se consigue almacenando los resultados de los subproblemas, de manera que sólo se resuelven una única vez.

Principio de optimalidad

- Para que se pueda aplicar programación dinámica es esencial que se cumpla el principio de optimalidad.
- Un problema tiene una subestructura óptima si una solución óptima puede construirse eficientemente a partir de las soluciones óptimas de sus subproblemas.

Esquema general

Tipos de programación dinámica:

- Memoización (programación dinámica recursiva): Se almacenan los resultados de las llamadas recursivas realizadas.
- Tabulación (programación dinámica iterativa): Los resultados de subproblemas más pequeños se almacenan en una estructura, utilizándose para resolver los problemas más grandes

El número de Fibonacci (con memoización)

```
función fib(n, memo)
 si n <= 1
     devuelve n
 si n en memo
     devuelve memo[n]
 si no
     memo[n] := fib(n-1, memo) + fib(n-2, memo)
     devuelve memo[n]</pre>
```

$$T(n) \in \mathcal{O}(n)$$

El número de Fibonacci (con tabulación)

```
función fib(n, memo)
 si n <= 1
     devuelve n
 tabla[0] := 0
 tabla[1] := 1
 para i desde 2 hasta n:
     tabla[i] := tabla[i-1] + tabla[i-2]
 devuelve tabla[n]</pre>
```

$$T(n) \in \mathcal{O}(n)$$

Comparación con Divide y vencerás

Divide y vencerás	Programación dinámica		
Divide el problema en subproblemas independientes	Divide el problema en subproblemas independientes		
Los subproblemas se resuelven por separado	Los subproblemas se resuelven una vez y se almacenan		
Combina los resultados de los subproblemas después de resolverlos	Reutiliza subproblemas previamente resueltos para construir la solución		

El problema de la mochila

El problema de la mochila

- El problema de la mochila (knapsack problem) es un problema clásico en teoría de algoritmos y computación.
- Consiste en seleccionar un subconjunto de elementos, cada uno con un peso y un valor, de manera que se maximice el valor total sin exceder el peso máximo permitido.
- Muchos problemas reales pueden reducirse a una instancia del problema de la mochila.

El problema de la mochila

- Existen varias versiones del problema de la mochila.
 - Problema de la mochila discreta (programación dinámica): los pesos son enteros.
 - Problema de la mochila continua (algoritmo voraz): los objetos se pueden fraccionar.
 - Problema de la mochila general (algoritmos de vuelta atrás): los pesos no se pueden fraccionar

El problema de la mochila

Instancia

Valores
$$(v_1,v_2,\ldots,v_n)$$
 Peso máximo (w_1,w_2,\ldots,w_n)

$$\arg\max_{\mathbf{x}\in\{0,1\}^n}\sum_{i=1}^n v_ix_i$$
 s.t.
$$\sum_{i=1}^n w_ix_i \leq W \qquad w_i \in \mathbb{N}$$

Problema (versión discreta)

El problema de la mochila (discreta)

Instancia:

- **Valores**: $\vee = (6, 6, 2, 1)$
- **Pesos**: w = (3, 2, 1, 1)
- Capacidad: W = 5

Valor máximo: 12

Solución: x = (1, 1, 0, 0)

El problema de la mochila (discreta)

¿Cómo se puede resolver recursivamente?

 La mejor opción entre coger el objeto i-ésimo o no cogerlo cuando aún hay capacidad W.

$$K(i, W) = \begin{cases} 0 & \text{si } i = 0 \text{ o } W = 0 \\ K(i - 1, W) & \text{si } w_i > W \\ \max(K(i - 1, W), v_i + K(i - 1, W - w_i)) & \text{si } w_i \le W \end{cases}$$

El problema de la mochila (discreta)

Solución recursiva

¿Qué complejidad tiene este algoritmo?

El problema de la mochila (discreta)

¿Cómo convertimos a Programación dinámica?

¿Qué complejidad tienen estas soluciones?

La distancia de edición

La distancia de edición

- La distancia de edición (o distancia de Levenshtein) es una métrica que indica cuán similares son dos cadenas de texto.
- La distancia se define como el número mínimo de operaciones necesarias para transformar una cadena en otra.
 - Las operaciones permitidas son la inserción, eliminación y sustitución de caracteres.
- Esta métrica es fundamental en diversas aplicaciones de la inteligencia artificial

La distancia de edición

Consideremos el ejemplo d("casa", "costa"):

- Sustituimos 'o' por la primera 'a': "cosa"
- Insertamos 't' después de 's': "costa"
- Distancia total: 2

Distancia de edición: planteamiento recursivo

Dada la cadena origen y destino, se comparan los últimos caracteres:

- Si es el mismo, la solución es la misma que para sus subcadenas.
- Si es diferente:
 - Consideramos la operación de menor coste entre:
 - Insertar el carácter de la cadena destino.
 - Sustituir el carácter de la cadena origen por el de la cadena destino.
 - Eliminar el carácter de la cadena origen.
 - Y llamar recursivamente a las subcadenas correspondientes.

Distancia de edición: planteamiento recursivo

Dada la cadena s1 (de tamaño i) y la cadena s2 (de tamaño j):

$$d(i,j) = \begin{cases} j & \text{si } i = 0 \\ i & \text{si } j = 0 \\ d(i-1,j-1) & \text{si } s1[i-1] = s2[j-1] \\ 1 + \min\{d(i-1,j), d(i,j-1), d(i-1,j-1)\} & \text{si } s1[i-1] \neq s2[j-1] \end{cases}$$

Distancia de edición: solución recursiva

Distancia de edición

```
función distancia edición(s1, s2)
 n,m := |s1|, |s2|
 DP := matriz de tamaño (n+1, m+1)
 DP[i][0] := i para i desde 0 hasta n
 DP[0][j] := j para j desde 0 hasta m
para i desde 1 hasta n:
     para j desde 1 hasta m:
        si s1[i-1] = s2[j-1]
          DP[i][j] := DP[i-1][j-1]
        si no
          DP[i][j] := 1 + min(DP[i-1][j], DP[i][j-1], DP[i-1][j-1])
 devuelve DP[n][m]
```

Recuperación de soluciones

Recuperación de soluciones

- En los ejemplos anteriores hemos calculado los valores óptimos:
 - Máximo valor de la mochila
 - Distancia mínima de edición
- No proporcionamos las soluciones (qué objetos, qué operaciones de edición...)
- ¿Cómo podemos calcular las soluciones (eficientemente)?

Recuperación de soluciones

d("casa","costa")

		С	0	S	t	а
-	0	1	2	3	4	5
С	1	0	1	2	3	4
а	2	1	1	2	3	3
S	3	2	2	1	2	3
а	4	3	3	2	2	2

Recuperación de soluciones

d("casa","costa")

		С	0	S	t	а
-	0	1	2	3	4	5
С	1	0	1	2	3	4
а	2	1	1	2	3	3
S	3	2	2	1	2	3
а	4	3	3	2	2	2

Orden inverso:

- cost**a** ← cas**a** ('a' con 'a')
- cost ← cas (insertar 't')
- cos ← cas ('s' con 's')
- co ← ca ('a' por 'o')
- **c** ← **c** ('c' con 'c')
- ←

Ejercicios

Ejercicio: búsqueda de soluciones

- Dada una matriz PD[·][·] utilizada para calcular la distancia de edición entre dos cadenas, escribe el algoritmo que recupera las operaciones de edición a realizar.
- Dada una matriz PD[·] utilizada para calcular el valor óptimo que cabe en una mochila, escribe el algoritmo que recupera qué objetos se han añadido.

Ejercicio: venta de oro

- Una empresa compra piezas de oro de $\bf n$ onzas y las trocea en piezas de $\bf i$ onzas (i=1,2,...,n) que luego vende.
- El corte le sale gratis.
- El precio de venta de una pieza de i onzas es vi
- ¿Cual es la forma óptima de trocear una pieza de n onzas para maximizar el precio de venta acumulado?

Ejercicio: cesta de la compra

- Queremos minimizar el coste de comprar N productos, que pueden adquirirse en cualquiera de K supermercados de la ciudad.
- Se conoce el coste c_k de desplazarse hasta el sitio s_k y los precios $p_{k_1}, p_{k_2}, \ldots, p_{k_N}$ de cada producto en s_k .
- El gasto ck sólo se suma al coste total (una sola vez) si se adquiere,
 al menos, un producto en sk.
- ¿Cómo se calcula el coste mínimo de la compra?