Ogólna architektura systemu UMTS

Architektura logiczna

CN – Core Network

UTRAN – UMTS Terrestial Radio Access Network

UE – User Equipment

CS – Circuit Switched

PS – Packet Switched

BC - BroadCast

Interfejsy Iu wykorzystują technologię ATM. Warstwa AAL i wyższe warstwy w tym stosie są zależne od rodzaju płaszczyzny (sterowania, użytkownika) i rodzaju styku Iub, Iur, Iu-CS, Iu-PS, Iu-BC).

Na styku Iu-CS w płaszczyźnie sterowania stosuje się sygnalizację SS7 osadzoną na SAAL-NNI (klasyczne dla B-ISDN/ATM), przy czym mamy tu stos protokołów osobno dla użytkownika i osobno dla sieci. Natomiast w płaszczyźnie użytkownika jest AAL2.

Na styku Iu-PS w płaszczyźnie sterowania mamy dwa rozwiązania, jedno z sygnalizacją SS7 na SAAL-NNI, drugie to SS7 na IP tzn. M3UA na SCTP na IP na AAL5. Z kolei w płaszczyźnie użytkownika UDP na IP na AAL5.

Na styku Iu-BC mamy tylko jedną płaszczyznę, tzn. płaszczyznę usług rozsiewczych zbudowaną na TCP na IP na AAL5.

Na styku Iur mamy w płaszczyźnie sterowania podobnie jak dla styku Iu-PS, przy czym mamy tu stos protokołów osobno dla użytkownika i dla sieci. Natomiast w płaszczyźnie użytkownika jest AAL2.

Na styku Iub mamy podobnie jak dla styku Iu-CS, przy czym SAAL-UNI (klasyczne dla B-ISDN/ATM) jest nad AAL5.

Interfejs radiowy Uu

Bazuje na WCDMA – Wideband CDMA

CDMA – Code Division Multiple Access

Stosujemy WCDMA z FDD – Frequency Division Duplex

Rozpraszanie widma to DS CDMA – Direct Sequence

[©]S.Kaczmarek/2015.02/ver.2.0

Maksymalnie mamy 512 ciągów rozpraszających Długość ciągu 2560 chipów

Zastosowano modulację QPSK – Quadrature Phase Shift Keying

Pasmo w górę: 1920 – 1980 MHz Pasmo w dół: 2110 – 2170 MHz

Odstęp między kanałami w górę i w dół – 190 MHz

Pasmo na jeden kanał 5 MHz co daje 12 pasm po 5 MHz

[©]S.Kaczmarek/2015.02/ver.2.0

Kanały transportowe: wspólne i dedykowane.

Dedykowane: DPDH – Dedicated Physical Data Channel DPCCH – Dedicated Physical Control Channel

Ramka podstawowa ma czas trwania 10ms i składa się z 15 ramek elementarnych.

Zawartość ramki elementarnej jest zależna od kierunku i przeznaczenia.

Ramka	Ramka	•••••	Ramka
elementarna 0	elementarna 1		elementarna 14

Ramka elementarna: łącze w górę

- DPDCH Dane, 2560 chipów, N=10·2^k (k=0,...,6)
- DPCCH Sterowanie

Dane i sterowanie modulacja kwadraturowa (QPSK)

Ranka elementarna: łacze w dół

- DPDCH, DPCCH, DPCCH, multipleksacja tych kanałów tu Dane, 2560 chipów, N=10·2^k (k=0,...,7)

System LTE – Long Term Evolution

Ogólne cechy:

- maksymalna przepływność: 100 Mbit/s w dół, 50 Mbit/s w górę,
- wspierane pasmo w kanale: 1.25 20 MHz,
- widmo: parowane FDD, nieparowane TDD (powinno być wspierane),
- liczba abonentów na komórkę: co najmniej 200 przy paśmie 5 MHz, co najmniej 400 przy paśmie powyżej 5

MHz.

- zajmowane pasmo np. w Polsce to:
 - w górę 1710,1 1729,9 MHz
 - w dół 1805,1 1824,9 MHz
 - jest tu duża dowolność zakresów pasma
 - wykorzystuje się to co jest wolne
- struktura podziału pasma została pokazana na kolejnym rysunku

Pasmo w górę i w dół jest rozdzielone i parowane.

[©]S.Kaczmarek/2015.02/ver.2.0

Ogólna architektura systemu

eNodeB to są to węzły dostępu radiowego i zawierają w sobie funkcje stacji bazowych oraz sterowników.

Do tych węzłów mają dostęp stacje mobilne abonentów.

[©]S.Kaczmarek/2015.02/ver.2.0

Ramka łącza w dół

CP Cyclic Prefix , T_{CP} =5,2 μs dla pierwszego symbolu OFDM i T_{CP} =4,7 μs dla pozostałych

Dla normalnego CP w jednym bloku o czasie trwania jednej szczeliny (0,5 ms) nadawane są 84 elementy (12x7) na 12 podnośnych. Dla rozszerzonego CP – 72 elementy (12x6) na 12 podnośnych.

Odstępy między podnośnymi 15 kHz i blok zajmuje pasmo 180 kHz.

Ulokowanie pokazano na kolejnym rysunku.

[©]S.Kaczmarek/2015.02/ver.2.0

Nadawanie może być wieloantenowe (max. 4). Maksymalnie równolegle mogą być nadawane dwa bloki stosując multipleksację przestrzenną (spatial).

Stosowane modulacje to: QPSK, 16-QAM, 64-QAM.

Ramka łącza w dół

Ma taką sama strukturę jak w łączu w dół, z tym, że stosuje się inny przydział częstotliwości do bloku – jest to DFTS – OFDM. Nadawanie tylko

jednoantenowe.

Stosowane modulacje to: QPSK, 16-QAM, 64-QAM.

[©]S.Kaczmarek/2015.02/ver.2.0