

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1430 Alexandra, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/539,762	06/20/2005	Eun-Jeong Choi	HI-0189	5901
34610 7550 1029/2008 KED & ASSOCIATES, LLP P.O. Box 221200 Chantilly, VA 20153-1200			EXAMINER	
			CHEMPAKASERIL, ANN J	
			ART UNIT	PAPER NUMBER
			2166	
			MAIL DATE	DELIVERY MODE
			10/29/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/539,762 CHOI, EUN-JEONG Office Action Summary Examiner Art Unit ANN J. CHEMPAKASERIL 2166 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 18 August 2008. 2a) ☐ This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 30-61 is/are pending in the application. 4a) Of the above claim(s) _____ is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 30-61 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.

1) Notice of References Cited (PTO-892)

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Information Disclosure Statement(s) (FTO/S5/08)
 Paper No(s)/Mail Date _______.

Attachment(s)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

Notice of Informal Patent Application

Application/Control Number: 10/539,762 Page 2

Art Unit: 2166

DETAILED ACTION

1. Claims 30-58 are pending in the action.

Response to Arguments

Applicant's arguments have been considered but are moot in view of the new ground(s) of rejection.

Applicant's arguments regarding amended claims are addressed in the rejection below.

Applicant argues that Sahota does not disclose the word parser includes an attribute parser configured to recognize at least one of a name of an attribute or a value of the attribute. The Web Design Group comments fail to overcome the deficiencies of Sahota, as it merely cited for allegedly teaching the comments feature

Examiner is entitled to give claim limitations their broadest reasonable interpretation in light of the specification. See MPEP 2111 [R-1]

Interpretation of Claims-Broadest Reasonable Interpretation

During patent examination, the pending claims must be 'given the broadest reasonable interpretation consistent with the specification.' Applicant always has the opportunity to amend the claims during prosecution and broad interpretation by the examiner reduces the possibility that the claim, once issued, will be interpreted more broadly than is justified. In re Prater, 162 USPQ 541,550-51 (CCPA 1969).

In response to Applicants argument Sahota does not disclose the word parser includes an attribute parser configured to recognize at least one of a name of an

Art Unit: 2166

attribute or a value of the attribute. Sahota teaches the tree structure is shown along the web page. By viewing the tree structure, attributes of the HTML tree structure can be filtered out. [0095], also see web page content capturing [0104-0135] on recognizing at least one of attribute names and/or values.

In response to Applicants argument that the Web Design Group comments fail to overcome the deficiencies of Sahota, as it merely cited for allegedly teaching the comments feature. The Web Design Group teaches one of the different tokens, a comment.

Claim Rejections - 35 USC § 101

35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

<u>Claims 30, 37, 38, 44, and 58</u> is rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter.

To be statutory, a claimed computer-related process must either: (A) result in a physical transformation outside the computer for which a practical application is either disclosed in the specification or would have been known to a skilled artisan, or (B) be limited to a practical application with useful, concrete and tangible result.

The claimed subject is rejected under 35 USC 101 for being "software per se".

The claimed invention is addressed to "a system" that can be interpreted as referring to lines of programming within the computer system, rather than referring to

Art Unit: 2166

the system as a physical object. The claimed invention is also addressed to "a word parser", "a token table", "a contents model" and "a syntax parser"," that are not a hardware system but is a software. Corresponding "structure" in the disclosure is not automatically and inherently limited to hardware-inclusive embodiments. Accordingly, the claim becomes nothing more than sets of software instructions which are "software per se".

"Software per se" is non-statutory under 35 USC 101 because it is merely a set instructions without any defined tangible output or tangible result being produced. The requirement for tangible result under 35 USC 101 is defined in *State Street Bank & Trust Co. v. Signature Financial Group Inc.*, 149 F.3d 1368, 47USPQ2d 1596 (Fed. Cir. 1998)

Claim Rejections - 35 USC § 112

4. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims 30-34 and 38-43, rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Claims 30 and 38 recite "a word parser that separates a token on the basis of markup and non-markup by referring to a token table for all markup data necessary for a kind of document to be supported..." and "each different token is generated by a corresponding parser". It is unclear to the examiner exactly what the applicant is trying to claim. The same string of the web document has a different token depending on

Art Unit: 2166

whether it is a markup or a non-markup. Then each different token is **generated** by a corresponding parser. The word parser separates a token it has for a document based on markup and markup. The token being generated "each different token" is the same as the token that is already in the document "same string of the web document has a different token".

Dependant claims are also rejected because they inherit the deficiencies of the base claim.

Claim Rejections - 35 USC § 103

- 5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 30-34, 38, 39, 40-45, 46-49, 50-54, 57-59 are rejected under 35 U.S.C. 102(a) as being anticipated by U.S. Patent Application Publication 2001/0056460 issued to Sahota et al. (hereinafter "Sahota") and further in view of Mackie et al. (US PGPub 2004/0054535; hereinafter "Mackie")

As per <u>claims 30 and 38</u>, Sahota discloses parsing a web-document based on elements, which is provided to an application of a handheld terminal when the system calls the web-document to provide it to the handheld terminal (HTML parser engine 217

Art Unit: 2166

can parse an HTML web page from Internet content and web sites 213 [0065] based on elements [0104] which is provided as a template to for a mobile device such as a wireless telephone or personal data assistant (PDA) [0040] when access to a web page is requested [0044]), comprising:

a word parser that separates a token on the basis of markup and non-markup by referring to a token table for all markup data necessary for kind of a document to be supported, wherein a same string of the web document has a different token depending on whether it is a markup on a non-markup. (HTML parser engine 217 can parse an HTML web page from Internet content and web sites 213 on the basis of markup and non-markup such as selected tags, styles, and content are either replaced or removed from the HTML page [0065], Sahota explains that content harvest and conversion platform 130 can be used to extract pure data can be extracted from the web page such as, for example, the HTML tags and attributes. [0041] If pure data can be extracted and the data us separated from the attribute while using html, then there is inherently an identifier for identifying comments and markup language.),

Sahota does not explicitly disclose wherein each different token is generated by a corresponding parser.

Mackie teaches the claimed each different token is generated by a corresponding parser (The parser rule knowledge base includes a predetermined set of parser rules in which each parser rule defines a complex constituent according to a predetermined pattern of tokens and/or simplex constituents and/or complex constituents. Thus, the

Art Unit: 2166

complex constituent spans a sequence of at least one token in the tokenized text. [0024-0025])

Sahota and Mackie are analogous art because they relate to structured text processing.

It would have been obvious to one of ordinary skill in the art at the time of the invention was made to modify the system as taught by Sahota to teach that each different token is generated by a corresponding parser as taught by Mackie.

Modification would allow an interpretation of the message elements of the corresponding structured text for a useful purpose. [Abstract]

Sahota teaches the claimed a syntax parser that parses a contents model on the basis of document type definition (DTD) of each document, parses each syntax on the basis of the result of parsing the contents model, and generates a tree-based object on the basis of graphic user interface (GUI) of the terminal (XML files or documents that are created can be used by content harvest and conversion platform 130 and syndication server 110 and can be defined for specific types of applications and audiences using document type definitions (DTDs). DTD defines the way an XML document should be constructed and generating a tree –based object [0095] on the basis of graphic user interface (GUI) of the terminal [Figure 9b])

As per <u>claims 31, 40, 45, 51</u>, Sahota teaches the system of claim 30(HTML parser engine 217 can parse an HTML web page from Internet content and web sites 213 on the basis of markup and non-markup such as selected tags, styles, and content are either replaced or removed from the HTML page [0065])

Art Unit: 2166

Sahota does not explicitly teach, "a comment parser for processing a comment and a space; a markup start parser for recognizing a markup start tag and generating a token; an attribute parser for parsing an attribute and generating a token; and a parsed character data analyzer for analyzing parsed character data and generating a token" as claimed.

Mackie teaches the claimed a comment parser that processes a comment and a space (A predetermined parser rule such as the comment parser processes a word of structured text delimited by whitespace [0024-0025]);

a markup start parser that recognizes a markup start tag and generates a token (A token is generated when the markup starter parser recognizes a start label [0029]);

an attribute parser that parses an attribute and generates a token (an attribute parser that parses an attribute and generates a token [0042-0043]; see example [0045]):

and a parsed character data analyzer that analyzes parsed character data and generates a token, (parsing character data and generating a token [0045]).

Sahota and Mackie are analogous art because they relate to structured text processing.

It would have been obvious to one of ordinary skill in the art at the time of the invention was made to modify the system as taught by Sahota to use content parsers and generate a token based on the context as taught by Mackie in order to make a more precise decision regarding action to be taken on token. (Mackie, [Abstract]).

Art Unit: 2166

Modification would allow an interpretation of the message elements of the corresponding structured text for a useful purpose. [Abstract]

Sahota teaches the claimed wherein the attribute parser is configured to recognize a name of an attribute or to recognize a value of an attribute (The "@<attribute name>" function, e.g., @SRC - Starting from the first , retrieves the value for SRC , =http://image.weather.com/pics/blank.gif. The "All" function, starting from the first , retrieves one long string containing all elements, attributes and text, as shown below. [0133])

As per <u>claim 32, 43, 47 and 53</u>, Sahota discloses the syntax parser comprises: an XML verifier that verifies whether a corresponding document is composed suitable for each DTD on the basis of the token generated by the word parser (HTML converter 208 converts existing HTML type content into clean well-formed documents (XHTML) for conversion into XML service specific schemas and data files. An XML schema offers an XML centric means to constrain XML documents. [0059] ML files or documents that are created can be used by content harvest and conversion platform 130 and syndication server 110 and can be defined for specific types of applications and audiences using document type definitions (DTDs) [0136; Sahota]);

and a terminal GUI-based object generator that matches the analyzed markup and a GUI of the terminal (By generating a standardized data stream from the capture templates, content can be displayed on multiple types of platforms [0025]).

As per <u>claim 33</u>, Sahota discloses the parsing system integrally parses a webdocument composed on the basis of any one of SGML and XML related to HTML,

Art Unit: 2166

XHTML, mHTML, cHTML, WML and HDML (Parsing a web-document composed of XML related to HTML [0026], WML [0006], XHTML [0059])

As per <u>claim 34</u>, Sahota discloses the parsing system can be applied to any handheld terminal and select a kind of an element to be parsed according to specification of each of the terminals (The parsing system can be applied to multiple platforms or formats such as, for example, HTML, portable document format (PDR), Postscript, or other like formats and architectures such as, for example, a personal computer or an electronic portable device. [0034])

As per <u>claim 39</u>, Sahota discloses the token table comprises: tokens defined in an XML document (HTML converter 208 creates XML data files 208a based on the conversion rules in the repository and creates XML data files and streams;

keywords defined in DTD for all documents provided to the handheld terminal (Creates XML data files and streams that are used by content converter 204 and content generator 203 subsystems);

a list of elements which can be supported by each terminal (create dynamically content for specific platforms and device frameworks. [0059])

As per claim 41, 46, and 52, Sahota discloses the word parser comprises a token generator and an XML well-formedness verifier, receives the supplied document character by character, recognizes a token of the document on the basis of the token table, and extracts the token by using the token generator and the XML well-formedness verifier (HTML converter 208 converts existing HTML type content into clean well-formed documents (XHTML) for conversion into XML service specific

Art Unit: 2166

schemas and data files. An XML schema offers an XML centric means to constrain XML documents. The conversion logic and process is stored in a content acquisition and conversion rules repository 207a. HTML converter 208 creates XML data files 208a based on the conversion rules in the repository and creates XML data files and streams that are used by content converter 204 and content generator 203 subsystems to create dynamically content for specific platforms and device frameworks. [0059])

As per <u>claim 42</u>, Sahota discloses the contents model means a hierarchy of elements and an attribute list, and is defined in DTD for all documents provided to the handheld terminal. (DTD establishes a set of constraints for an XML file or document. That is, a DTD defines the way an XML document should be constructed. [0136] A hierarchy of elements and attribute list is defined depending on the type of DD; see Table 2.)

As per claim 44, 50, and 54, Sahota discloses parsing web-document based on elements, comprising: a token table comprising tokens defined in an XML document, keywords defined in document type definition (DTD) for documents provided to a handheld terminal, and a list of elements, which can be supported by each terminal (HTML converter 208 creates XML data files 208a based on the conversion rules in the repository and creates XML data files and streams that are used by content converter 204 and content generator 203 subsystems to create dynamically content for specific platforms and device frameworks. [0059];

a word parser for extracting and separating tokens of the web-document supplied to the terminal regardless of kind of a markup language used to compose the web-

Art Unit: 2166

document by referring to the token table, wherein the word parser includes an attribute parser configured to recognize at least one of a name of an attribute or a value of an attribute (HTML parser engine 217 can parse an HTML web page from Internet content and web sites 213 on the basis of markup and non-markup such as selected tags, styles, and content are either replaced or removed from the HTML page [0065], Sahota explains that content harvest and conversion platform 130 can be used to extract pure data can be extracted from the web page such as, for example, the HTML tags and attributes. [0041] If pure data can be extracted and the data us separated from the attribute while using html, then there is inherently an identifier for identifying comments and markup language. The tree structure is shown along the web page. By viewing the tree structure, attributes of the HTML tree structure can be filtered out. [0095], also see web page content capturing [0104-0135]);

a contents model determined by DTDs for the documents provided to the terminal that includes a hierarchy of elements and an attribute list (DTD establishes a set of constraints for an XML file or document. That is, a DTD defines the way an XML document should be constructed. [0136] A hierarchy of elements and attribute list is defined depending on the type of DD; see Table 2.);

a syntax parser for parsing syntax for the tokens extracted and separated by the word parser on the basis of the contents model, and generating an object on the basis of GUI of the terminal through the parsed syntax (XML files or documents that are created can be used by content harvest and conversion platform 130 and syndication server 110 and can be defined for specific types of applications and audiences using

Art Unit: 2166

document type definitions (DTDs). DTD defines the way an XML document should be constructed and generating a tree –based object [0095] on the basis of graphic user interface (GUI) of the terminal [Figure 9b])

As per claims 48, 49, 57, and 58, Sahota discloses,

an integral parser that parses a web-document composed of a predetermined markup language supplied from a web-server (HTML parser engine 217 can parse an HTML web page from Internet content and web sites 213. In one embodiment, selected tags, styles, and content are either replaced or removed from the HTML page. Such a modification can be displayed in a browser to see the changes. [00651);

a memory that stores information parsed by the integral parser (Furthermore, the following embodiments describe simple to use application tools for acquiring content and for creating templates to transform the content. The templates can be stored in a file or a database for later, which allows content to be edited such that other types of content can be added to provide new "look and feel" content. [0027]); and

an application program using information extracted from the integral parser, wherein the integral parser includes a word parser that extracts and separates tokens of the web-document supplied to the terminal regardless of a kind of a markup language used to compose the web-document by referring to the token table, and wherein the word parser includes an attribute parser configured to recognize at least one of a name of an attribute or a value of the attribute (HTML parser engine 217 can parse an HTML web page from Internet content and web sites 213 on the basis of markup and non-markup such as selected tags, styles, and content are either replaced or removed from

Art Unit: 2166

the HTML page [0065], Sahota explains that content harvest and conversion platform 130 can be used to extract pure data can be extracted from the web page such as, for example, the HTML tags and attributes. [0041] If pure data can be extracted and the data us separated from the attribute while using html, then there is inherently an identifier for identifying comments and markup language. The tree structure is shown along the web page. By viewing the tree structure, attributes of the HTML tree structure can be filtered out. [0095], also see web page content capturing [0104-0135])

As per claim 59, Sahota teaches the claimed wherein the attribute parser includes a first attribute parser configured to recognize a name of an attribute and a second attribute parser configured to recognize a value of the attribute (The "@<attribute name>" function, e.g., @SRC - Starting from the first , retrieves the value for SRC , =http://image.weather.com/pics/blank.gif. The "All" function, starting from the first , retrieves one long string containing all elements, attributes and text, as shown below. [0133])

As per <u>claim 60</u>, Sahota does not explicitly teach, "if the value of the attribute is a keyword the first attribute parser recognizes the name and the value of the attribute at once without distinguishing the name from the value" as claimed.

Mackie teaches the claimed wherein if the value of the attribute is a keyword the first attribute parser recognizes the name and the value of the attribute at once without distinguishing the name from the value (. Header elements (e.g. SENT 706, DATE 708, SENDER 710, RECIPIENT 712, SUBJECT 714). The syntax of e-mail messages includes certain lines that may be reliably identified by their format; e.g., the set of lines

Art Unit: 2166

prefixed by keywords such as "From" 716, "To:" 718, "Subject:" 720 combine to form the header of an e-mail message [0066])

Sahota and Mackie are analogous art because they relate to structured text processing.

It would have been obvious to one of ordinary skill in the art at the time of the invention was made to modify the system as taught by Sahota have syntax of e-mail messages include certain lines that may be reliably identified by their format; e.g., the set of lines prefixed by keywords such as "From" as taught by Mackie. Modification would allow an interpretation of the message elements of the corresponding structured text for a useful purpose. [Abstract]

Claims 35, 36, 37, and 55-56 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sahota and Mackie, and further in view of Chadha et al. (US PGPub 2003/0184552; hereinafter "Chadha").

As per <u>claims 35, 37 and 55</u>, Sahota discloses parsing a called web-document of a web-server (An HTML web page is parsed. A user can access a particular web page on web server. The content from the web page is then parsed [0044]), the method comprising

reading a token from the web-document and parsing the token (reading a token from the webpage and parsed for tokens such as tags [0036]);

if the token is not a defined start tag or if the token is a comment or a space as result of the reading, ignoring the token, and when the defined start tag is read, parsing an attribute of an element from the token (A token is generated when the markup starter

Art Unit: 2166

parser recognizes a start label. A predetermined parser rule such as the comment parser processes a word of structured text delimited by whitespace [0024-0025; Mackiel);

parsing the attribute of the element from the token, storing GUI-related information of the element, and parsing contents of the element (content harvest and conversion platform 130 can be used to extract pure data from the web page such as, for example, the HTML tags and attributes. [0041; Sahota]);

Sahota teaches the claimed as the result of the parsing, if the contents of the element are parsed character data, storing GUI-related information of the contents, and if the contents of the element are not the parsed character data, reading data until an end tag appears (HTML parser engine 217 can parse an HTML web page from Internet content and web sites 213 on the basis of markup and non-markup such as selected tags, styles, and content are either replaced or removed from the HTML page [0065], Sahota explains that content harvest and conversion platform 130 can be used to extract pure data can be extracted from the web page such as, for example, the HTML tags and attributes. [0041] If pure data can be extracted and the data us separated from the attribute while using html, then there is inherently an identifier for identifying comments and markup language. The tree structure is shown along the web page. By viewing the tree structure, attributes of the HTML tree structure can be filtered out. [0095], also see web page content capturing [0104-0135]);

Chadha teaches the claimed in the case that the contents of the element are not the parsed character data, if the end tag corresponding to the defined start tag appears,

Art Unit: 2166

terminating, and if the end tag corresponding to the defined start tag does not appear, ignoring and returning (If the tag is not a geometry-based tag (and therefore not a text-based, GUI-based or geometry-based tag), the tag is ignored at step 418 and the process is returned to 402 to get the next tag. [0035]).

Sahota, Mackie, and Chadha are analogous art because they relate to structured text processing.

It would have been obvious to one of ordinary skill in the art at the time of the invention having the teachings Sahota, Mackie, and Chadha to read parsed character data (paragraph [0035]) till the end tag appears. Modification would process the object entries of each of the object types to generate display data corresponding to the object entries.

As per <u>claims 36 and 56</u>, Sahota discloses wherein the parsing comprises the steps of:

if the read token does not include a defined start tag, reading the data continuously until the end tag appears, and if the end tag corresponding to the defined start tag does not appear, thereby ignoring the token (If the tag is not a geometry-based tag (and therefore not a text-based, GUI-based or geometry-based tag), the tag is ignored at step 418 and the process is returned to 402 to get the next tag. [0035]);

reading a new token (The process starts by parsing the next markup language tag in the markup file at step 402. A check is made to determine if there is a tag left at step 416. If there is a tag left, a check is made to determine if the tag is a text-based tag

at step 404. The process ends when there is no markup language tag left to process. [0035])

<u>Claim 61</u> is rejected under 35 U.S.C. 103(a) as being unpatentable over Sahota and further in view of Web Design Group (HTML comments)

As per <u>claim 61</u>, Sahota discloses wherein the different tokens are as follows: html">>ahtml">>a>ahtml">>a>a<a h

Sahota does not explicitly disclose the comment feature.

Web design group teaches the claimed <!—html--> represents a comment (A comment declaration starts with <!, followed by zero or more comments, followed by >. A comment starts and ends with "--", and does not contain any occurrence of "--".)

Web design group and Sahota are analogous art because they are in the same field of endeavor of representing the different tokens

It would have been obvious to use the feature taught by Web Design group and include it as a token for parsing. Modification provides the following simple rule to compose valid and accepted comments.

Contact Information

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Ann J. Chempakaseril whose telephone number is 571-272-9767. The examiner can normally be reached on Monday through Thursday, 9-4.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Hosain Alam can be reached on (571) 272-3978. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Ann J Chempakaseril/ Examiner, Art Unit 2166 October 26, 2008

/Hosain T Alam/ Supervisory Patent Examiner, Art Unit 2166