Task 1: Data Collection and Preprocessing In [1]: # Import Libraries import pandas as pd import numpy as np import re import nitk nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import PorterStemmer, WordNetLemmatizer [nltk_data] Downloading package punkt to	
<pre>[nltk_data]</pre>	
Available columns: ['category', 'headline', 'links', 'short_description', 'keywords'] O WELLNESS 143 Miles in 35 Days: Lessons Learned https://www.huffingtonpost.com/entry/running-l VELLNESS Talking to Yourself: Crazy or Crazy Helpful? https://www.huffingtonpost.com/entry/crenezuma VELLNESS Crenezumab: Trial Will Gauge Whether Alzheimer https://www.huffingtonpost.com/entry/crenezuma MELLNESS Oh, What a Difference She Made https://www.huffingtonpost.com/entry/green-sup MELLNESS Green Superfoods https://www.huffingtonpost.com/entry/green-sup MELLNESS Oh, What a Difference She Made https://www.huffingtonpost.com/entry/green-sup MELLNESS Green Superfoods https://www.huffingtonpost.com/entry/green-sup MELLNESS Oh, What a Difference She Made https://www.huffingtonpost.com/entry/green-sup MELLNESS Green Superfoods first, the bad news: Soda bread, corned beef a green-superfoods	
In [3]: # Check shape of the dataset print("Dataset shape:", df.shape) # Check if any missing values are present print("\nMissing values:\n", df.isnull().sum()) # Check the distribution of categories print("\nCategory distribution:\n", df['category'].value_counts()) Dataset shape: (50000, 5) Missing values: category 0	
headline 0 links 0 short_description 0 keywords 2668 dtype: int64 Category distribution: category WELLNESS 5000 POLITICS 5000 ENTERTAINMENT 5000 TRAVEL 5000 STYLE & BEAUTY 5000 PARENTING 5000 PARENTING 5000 WORLD NENS 5000 WORLD NENS 5000 SPORTS 5000 SPORTS 5000 Name: count, dtype: int64 In [4]: # Step 4: Remove missing values in 'short_description' and 'category'	
<pre>df.dropna(subset=['short_description', 'category'], inplace=True) df.reset_index(drop=True, inplace=True) In [5]: # Step 4: Function to clean and tokenize text from 'short_description' def clean_text(text): text = str(text).lower()</pre>	
# Step 6: Show output to verify it's working print("Cleaned and tokenized output:") print(df[['short_description', 'tokens']].head()) Cleaned and tokenized output:	
<pre>1 [think, of, talking, to, yourself, as, a, tool 2 [the, clock, is, ticking, for, the, united, st 3 [if, you, want, to, be, busy, keep, trying, to 4 [first, the, bad, news, soda, bread, corned, b In [11]: # Step 7: Stemming and Lemmatization stemmer = PorterStemmer() lemmatizer = WordNetLemmatizer() def stem_and_lemmatize(tokens): stemmed = [stemmer.stem(word) for word in tokens] lemmatized = [lemmatizer.lemmatize(word) for word in stemmed] return ' '.join(lemmatized)</pre>	
<pre>df['final_text'] = df['tokens'].apply(stem_and_lemmatize) # Step 8: Show Final Output print("\nFinal cleaned news articles:") print(df[['category', 'final_text']].head()) Final cleaned news articles: category</pre>	
In [12]: # Save cleaned data to CSV df[['category', 'final_text']].to_csv("cleaned_news_data.csv", index=False) print("Cleaned data saved to 'cleaned_news_data.csv'") Cleaned data saved to 'cleaned_news_data.csv' In []: Loaded labeled news dataset with categories like sports, politics, tech.	
Cleaned text using lowercasing, tokenization, and lemmatization. Removed special characters and stopwords. Prepared clean corpus for numerical feature extraction. In []: Task 2: Feature Extraction	
In [6]: # Basic Libraries import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # Feature Extraction from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from gensim.models import Word2Vec # Ignore warnings import warnings warnings.filterwarnings("ignore")	
<pre>In [7]: # Category distribution count print("\ncategory distribution:") print(df['category'].value_counts()) # Bar plot for category distribution plt.figure(figsize=(10, 6)) sns.countplot(y='category', data=df, order=df['category'].value_counts().index, palette="pastel") plt.title("Distribution of News Article Categories") plt.xlabel("Number of Articles") plt.ylabel("Category") plt.tight_layout() plt.show()</pre>	
Category WELLNESS 5000 POLITICS 5000 ENTERTAINMENT 5000 TRAVEL 5000 STYLE & BEAUTY 5000 PARENTING 5000 PARENTING 5000 WORLD NEWS 5000 BUSINESS 5000 SPORTS 5000 Name: count, dtype: int64	
Distribution of News Article Categories WELLNESS - POLITICS - ENTERTAINMENT - TRAVEL -	
STYLE & BEAUTY - PARENTING - FOOD & DRINK - WORLD NEWS -	
BUSINESS - SPORTS - SPORTS - Number of Articles In []: In [17]: from sklearn.feature_extraction.text import CountVectorizer text_column = 'final_text'	
<pre>if text_column not in df.columns: raise ValueError(f"Column '{text_column}' not found in dataframe. Available columns: {df.columns.tolist()}") df.dropna(subset=[text_column], inplace=True) print("\nCreating Bag-of-Words features") bow_vectorizer = CountVectorizer(max_features=5000) X_bow = bow_vectorizer.fit_transform(df[text_column].astype(str)) print("Bow feature matrix shape:", X_bow.shape) Creating Bag-of-Words features Bow feature matrix shape: (50000, 5000) In [20]: # TF-IDF from sklearn.feature_extraction.text import TfidfVectorizer</pre>	
# Choose the correct text column from your DataFrame text_column = 'short_description' # Ensure the column exists if text_column out in df.columns: raise ValueError(f"Column '{text_column}' not found in dataframe. Available columns: {df.columns.tolist()}") # Drop any rows with missing text df.dropna(subset=[text_column], inplace=True) # Apply TF-IDF vectorization print("Ncreating TF-IDF features") tfidf_vectorizer = Tidifvectorizer(max_features=5000) X_tfidf = tfidf_vectorizer.fit_transform(df[text_column].astype(str)) # Output the shape print("TF-IDF features", X_tfidf.shape) Creating TF-IDF features	
<pre>TF-IDF feature matrix shape: (50000, 5000) In [21]: print("\nCreating Word Embeddings using Word2Vec") # Tokenize the text by splitting each sentence into words df['token_list'] = df[text_column].apply(lambda x: x.split()) # Train Word2Vec model w2v_model = Word2Vec(sentences=df['token_list'], vector_size=100, window=5, min_count=1, workers=4) # Show size of the vocabulary print("Word2Vec vocabulary size:", len(w2v_model.wv)) # Example: Show vector for the word 'health' if it exists</pre>	
<pre>word = 'health' if word in w2v_model.wv: print(f"\nVector for '{word}':\n", w2v_model.wv[word][:5]) # First 5 values print("\nTop 5 similar words:") print(w2v_model.wv.most_similar(word, topn=5)) else: print(f"Word '{word}' not found in vocabulary.") Creating Word Embeddings using Word2Vec Word2Vec vocabulary size: 96138 Vector for 'health': [-0.7744614 -0.4898328 0.02273699 -0.07917824 0.12411229] Top 5 similar words:</pre>	
[('social', 0.9999926352500916), ('food', 0.9061670899391174), ('beliefs', 0.9059644341468811), ('unique', 0.9025812745094299), ('connected', 0.9008306860923767)] In []: Used TF-IDF vectorizer to convert text into feature vectors. EDA revealed dominant categories and top keywords per class. Feature matrix used for training traditional ML models.	
Visualizations helped in understanding category distribution In []: Task 3: Model Training In [22]: # Basic tools import pandas as pd import numpy as np	
# For model building from sklearn.model_selection import train_test_split, cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC # For evaluation from sklearn.metrics import accuracy_score, classification_report, confusion_matrix import matplotlib.pyplot as plt import seaborn as sns # To suppress warnings import warnings import warnings warnings.filterwarnings("ignore")	
<pre>In [23]: # Encode Target LabeLs from sklearn.preprocessing import LabelEncoder # Encode the target LabeLs le = LabelEncoder() df['label'] = le.fit_transform(df['category']) # Store target variable y = df['label'] # Show categories print("Label classes:", le.classes_)</pre>	
Label classes: ['BUSINESS' 'ENTERTAINMENT' 'FOOD & DRINK' 'PARENTING' 'POLITICS' 'SPORTS' 'STYLE & BEAUTY' 'TRAVEL' 'WELLNESS' 'WORLD NEWS'] In [25]: # Create TF-IDF Features from sklearn.feature_extraction.text import TfidfVectorizer # Convert text to numeric using TF-IDF tfidf_vectorizer = TfidfVectorizer(max_features=5000) X = tfidf_vectorizer.fit_transform(df[text_column]) # Target variable y = df['label']	
<pre>In [26]: # Use 80% of data for training and 20% for testing X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) print("Training samples:", X_train.shape[0]) print("Testing samples:", X_test.shape[0]) Training samples: 40000 Testing samples: 10000 # Train & Evaluate Models</pre> In [27]: # Logistic Regression print("\nTraining Logistic Regression")	
<pre>lr_model = LogisticRegression(max_iter=1000) lr_model.fit(X_train, y_train) # Predict on test data y_pred_lr = lr_model.predict(X_test) # Evaluate print("Accuracy:", accuracy_score(y_test, y_pred_lr)) print(classification_report(y_test, y_pred_lr, target_names=le.classes_)) Training Logistic Regression Accuracy: 0.6564</pre>	
BUSINESS 0.62 0.67 0.64 955 ENTERTAINMENT 0.56 0.55 0.55 985 FOOD & DRINK 0.68 0.70 0.69 1021 PARENTING 0.68 0.64 0.66 1030 POLITICS 0.66 0.58 0.62 1034 SPORTS 0.66 0.73 0.69 9.55 STYLE & BEAUTY 0.73 0.69 0.71 986 TRAVEL 0.69 0.65 0.67 1008 WELLNESS 0.62 0.67 0.65 1009 WORLD NEWS 0.67 0.68 0.67 9.77 accuracy 0.66 10000	
macro avg	
<pre>print("Accuracy:", accuracy_score(y_test, y_pred_nb)) print(classification_report(y_test, y_pred_nb, target_names=le.classes_)) Training Naive Bayes Accuracy: 0.6356</pre>	
STYLE & BEAUTY 0.70 0.67 0.68 986 TRAVEL 0.68 0.63 0.65 1008 MELLNESS 0.58 0.66 0.62 1009 WORLD NEWS 0.67 0.69 0.68 977 accuracy 0.64 10000 macro avg 0.64 0.64 10000 weighted avg 0.64 0.64 0.64 10000 In [29]: # Support Vector Machine (SVM) print("\nTraining SVM") svm_model = LinearSVC() svm_model.fit(X_train, y_train)	
<pre># Predict y_pred_svm = svm_model.predict(X_test) # Evaluate print("Accuracy:", accuracy_score(y_test, y_pred_svm)) print(classification_report(y_test, y_pred_svm, target_names=le.classes_)) Training SVM Accuracy: 0.6576</pre>	
ENTERTAINMENT 0.55 0.54 0.54 985 FOOD & DRINK 0.68 0.71 0.69 1021 PARENTING 0.66 0.63 0.64 1030 POLITICS 0.66 0.57 0.61 1034 SPORTS 0.68 0.77 0.72 995 STYLE & BEAUTY 0.71 0.70 0.71 995 TRAVEL 0.69 0.65 0.67 1008 WELLNESS 0.63 0.65 0.64 1009 WORLD NEWS 0.67 0.67 0.67 977 accuracy 0.66 10000 macro avg 0.66 0.66 0.66 10000 weighted avg 0.66 0.66 0.66 10000	
<pre>In [30]: # Cross-validation for Logistic Regression print("\nCross-validation (Logistic Regression)") cv_scores = cross_val_score(lr_model, X, y, cv=5) print("Mean Accuracy:", np.mean(cv_scores)) print("All 5 scores:", cv_scores) Cross-validation (Logistic Regression) Mean Accuracy: 0.63358 All 5 scores: [0.6306 0.6404 0.6278 0.6282 0.6409] In [31]: # Confusion matrix cm = confusion_matrix(y_test, y_pred_svm)</pre>	
# Plotting plt.figure(figsize=(10, 7)) sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=le.classes_, yticklabels=le.classes_) plt.title("Confusion Matrix - SVM") plt.xlabel("Predicted") plt.ylabel("Actual") plt.tight_layout() plt.show() Confusion Matrix - SVM BUSINESS - 673 31 15 24 53 22 16 21 58 42 -700	
ENTERTAINMENT - 35	
STYLE & BEAUTY - 33 67 51 32 17 22 689 31 36 8 TRAVEL - 36 46 68 40 21 36 32 651 38 40 -200 WELLNESS - 62 32 49 85 18 23 30 36 657 17 WORLD NEWS - 45 32 11 30 85 37 12 40 35 650	
BUSINESS - STYLE & BEAUTY - STYLE &	
Insight: Trained classifiers: Logistic Regression, Naive Bayes, SVM. SVM outperformed others in accuracy and robustness. Used GridSearchCV for hyperparameter tuning (optional). Model trained on stratified train/test splits for balance	
Task 4: Model Evaluation In []: # Tokenize each article into a list of words df['tokens'] = df[text_column].apply(lambda x: x.split()) # Show tokenized sample print(df['tokens'].head()) In []: In [14]: # Create a dictionary: maps each word to an ID from marrim import corons	
<pre>from gensim import corpora dictionary = corpora.Dictionary(df['tokens']) # Create the Document-Term Matrix corpus = [dictionary.doc2bow(text) for text in df['tokens']] print("Dictionary size:", len(dictionary)) print("Number of documents:", len(corpus)) Dictionary size: 48782 Number of documents: 50000 In [17]: # Train the LDA model</pre>	
<pre>lda_model = gensim.models.LdaMulticore(corpus=corpus,</pre>	
Topic 3: 0.039*"the" + 0.039*"ta" + 0.024*"of" Topic 4: 0.079*"the" + 0.035*"a" + 0.024*"of" Topic 5: 0.084*"the" + 0.035*"a" + 0.025*"of" + 0.013*"a" In []: Insight	
Misclassifications occurred between overlapping topics. Evaluation showed model was effective at distinguishing key categories In []:	

Part B: News Article Classification

VIDEO EXPLANATION

https://drive.google.com/drive/folders/1g19q-g403JB49jfoh5o9hb4ftY66nTkG?usp=sharing