Excercise 5.5.2

1. Let
$$\mathcal{F} = \sigma(\theta, Z_1, Z_2, \ldots) = \sigma(\theta, Y_1, Y_2, \ldots), \ \mathcal{F}_{\infty} = \sigma(Y_1, Y_2, \ldots), \ \text{and} \ \mu = E(Z_i)$$

2. Let
$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i = \frac{1}{n} \sum_{i=1}^n Z_i + \theta$$

- 3. Each \bar{Y}_n is \mathcal{F}_{∞} measurable and hence $Y = \liminf \bar{Y}_n \mu$ is \mathcal{F}_{∞} measurable
- 4. By SLLN, there exists $\Omega_0 \in \mathcal{F}$ such that $P(\Omega_0) = 1$ and $Y = \theta$ on Ω_0
- 5. $EY_{+} = EY_{+}I_{\Omega_{0}} + EY_{+}I_{\Omega_{0}^{c}} \leq E\theta_{+} + \infty P(\Omega_{0}^{c}) < \infty$ (using the standard measure theoretic convention $\infty.0 = 0$). Similarly, $EY_{-} < \infty$ and hence Y is integrable
- 6. For any $A \in \mathcal{F}_{\infty}$,

$$\begin{split} \int_A \theta dP &= \int_{A \cap \Omega_0} \theta dP + \int_{A \cap \Omega_0^c} \theta dP \\ &= \int_{A \cap \Omega_0} Y dP + \int_{A \cap \Omega_0^c} \theta dP \\ &= \int_A Y dP + \int_{A \cap \Omega_0^c} (\theta - Y) dP \\ &= \int_A Y dP \end{split}$$

where the second term vanishes as both θ and Y are integrable and $P(\Omega_0^c \cap A) = 0$

- 7. By uniqueness of conditional expectation, as $Y \in \mathcal{F}_{\infty}$, $Y = E(\theta|\mathcal{F}_{\infty})$ on some Ω_1 where $P(\Omega_1) = 1$
- 8. $\theta = E(\theta|\mathcal{F})$ on $\Omega_0 \cap \Omega_1$.