

ATIVIDADE EXTRA-CLASSE

4 – Conversão AFε → AFND Data de Entrega: (até 08/05/2016)

E-mail: clayton.valdo@anhanguera.com

Título E-mail: [CC] LFA 4

Grupo: ≤ 4 alunos

Exemplo: Dado o Afe M=($\{a,b\}$, $\{q_0,q_1,q_2\}$, δ , $\{q_0\}$, F)

- Existe um AFND M'=($\{a,b\}$, $\{q_0,q_1,q_2\}$, δ' , $\{q_0\}$, F') equivalente.
- F' é retirado da função Fecho Vazio (Fε).
 - $F'=\{q_0, q_1, q_2\}$, pois:
 - $$\begin{split} \bullet \quad & F\epsilon(q_0) = \{q_0\} \cup \delta(q_0, \epsilon) \cup \delta(\delta(q_0, \epsilon), \epsilon) = \\ & = \{q_0\} \cup \{q_1\} \cup \{q_2\} \\ & = \{\textbf{q_0}, \textbf{q_1}, \textbf{q_2}\} \end{split}$$
 - $F\varepsilon(q_1) = \{q_1\} \cup \delta(q_1, \varepsilon) =$ = $\{q_1\} \cup \{q_2\}$ = $\{\mathbf{q_1}, \mathbf{q_2}\}$
 - $F\varepsilon(\mathbf{q}_2) = \{\mathbf{q}_2\}$
 - Como todos tem $\{q_2\}$, todos os estados são finais no AFND.
- δ' é retirado da função Programa Estendida ($\underline{\delta}$).

$$\begin{array}{ll} \bullet & \delta'(q_0,\epsilon) = \underline{\delta}(q_0,\epsilon) \\ \bullet & \delta'(q_0,a) = \underline{\delta}(q_0,a) \\ & = F\epsilon(\{r \mid r \in \delta(s,a) \ e \ s \in \underline{\delta}(q_0,\epsilon)\}) \\ & = F\epsilon(\{r \mid r \in \delta(s,a) \ e \ s \in \underline{\delta}(q_0,\epsilon)\}) \\ & = F\epsilon(\{f \mid r \in \delta(s,a) \ e \ s \in \underline{\delta}(q_0,q_1,q_2\}\}) \\ & = F\epsilon(\{\delta(q_0,a) \cup \delta(q_1,a) \cup \delta(q_2,a)\}) \\ & = F\epsilon(\{q_0 \cup \varnothing \cup q_2\}) \\ & = F\epsilon(\{q_0,q_2\}) \\ & = F\epsilon(\{q_0,q_2\}) \\ & = F\epsilon(\{q_0,\varphi_2\}) = \{q_0,q_1,q_2\} \\ \bullet & \delta'(q_0,b) = \underline{\delta}(q_0,b) \\ & = F\epsilon(\{r \mid r \in \delta(s,b) \ e \ s \in \underline{\delta}(q_0,\epsilon)\}) \\ & = F\epsilon(\{\delta(q_0,b) \cup \delta(q_1,b) \cup \delta(q_2,b)\}) \\ & = F\epsilon(\{\varnothing \cup q_1 \cup \varnothing\}) \\ & = F\epsilon(\{q_1\}) = \{q_1,q_2\} \\ \end{array}$$


```
\delta'(q_1,\varepsilon) = \underline{\delta}(q_1,\varepsilon)
                                                          = \operatorname{F}\varepsilon(q_1) = \{q_1, q_2\}
\delta'(q_1,a) = \underline{\delta}(q_1,a)
                                                          = F\varepsilon(\{r \mid r \in \delta(s, a) \text{ e } s \in \underline{\delta}(q_1, \varepsilon)\})
                                                          = \operatorname{F}\varepsilon(\{r \mid r \in \delta(s, a) \text{ e } s \in \{q_1, q_2\}\})
                                                          = \operatorname{F}\varepsilon(\{\delta(q_1, a) \cup \delta(q_2, a)\})
                                                          = \operatorname{F}\varepsilon(\{\varnothing \cup \mathsf{q}_2\})
                                                          = \operatorname{Fe}(\{q_2\}) = \{q_2\}
\delta'(q_1,b) = \underline{\delta}(q_1,b)
                                                          = F\varepsilon(\{r \mid r \in \delta(s, b) \text{ e } s \in \underline{\delta}(q_1, \varepsilon)\})
                                                          =F\epsilon(\{r\mid r\in\delta(s,\,b)\;e\;s\in\{q_1,\,q_2\}\})=
                                                          = \operatorname{F}\varepsilon(\{\delta(q_1, b) \cup \delta(q_2, b)\})
                                                          = \operatorname{F}\varepsilon(\{\mathfrak{q}_1 \cup \emptyset\})
                                                          = F\varepsilon(\{q_1\}) = \{q_1, q_2\}
\delta'(q_2,\varepsilon) = \underline{\delta}(q_2,\varepsilon)
                                                          = \operatorname{F}\varepsilon(q_2) = \{q_2\}
                                                          = \operatorname{F}\varepsilon(\{r \mid r \in \delta(s, a) \text{ e } s \in \underline{\delta}(q_2, \varepsilon)\})
\delta'(q_2,a) = \underline{\delta}(q_2,a)
                                                          = \operatorname{F}\varepsilon(\{r \mid r \in \delta(s, a) \text{ e } s \in \{q_2\}\}) =
                                                          = \operatorname{F}\varepsilon(\{\delta(q_2, a)\})
                                                          = \operatorname{F}\varepsilon(\{q_2\}) = \{q_2\}
\delta'(q_2,b) = \underline{\delta}(q_2,b)
                                                          = F\varepsilon(\{r \mid r \in \delta(s, b) \text{ e } s \in \underline{\delta}(q_2, \varepsilon)\}) =
                                                          = F\varepsilon(\{r \mid r \in \delta(s, b) \text{ e } s \in \{q_2\}\}) =
                                                          = F\varepsilon(\{\delta(q_2, b)\})
                                                          = \operatorname{Fe}(\{\emptyset\}) = \emptyset
```

• δ' equivalente:

1-) Converta os AFe's abaixo para seus equivalentes AFND's.

2-) Converta o AFE abaixo para seu AFD mínimo equivalente, se possível.

