Recursively defined cpo algebras

Ohad Kammar and Paul Blain Levy

July 8, 2018

Outline

Bilimit compact categories

2 Modelling recursive types

3 Recursively defined cppo algebras

Bilimit compact categories

An axiomatization of a category of domains.

A Cpo-enriched category is a category $\mathcal C$ whose homsets are cpos, such that composition is continuous.

It is bilimit compact when

- ullet each homset $\mathcal{C}(A,B)$ is pointed
- composition is bistrict
- C has a zero object (both initial and terminal)
- Every ω -chain $(A_n, e_n, p_n)_{n \in \mathbb{N}}$ in $\mathcal{C}^{\mathsf{ep}}$ has a bilimit, i.e. a cocone $V, (u_n, r_n)_{n \in \mathbb{N}}$ such that $\bigsqcup_{n \in \mathbb{N}} u_n \cdot r_n = \mathsf{id}_V$.

Examples

- ullet The category \mathbf{Cpo}^{\perp} of cppos and strict continuous maps.
- The opposite of a bilimit compact category.
- A product of bilimit compact categories.

Bifree algebras (Freyd)

Let C be a bilimit compact category.

Any locally continuous functor $H \colon \mathcal{C} \to \mathcal{C}$

has a bifree algebra (A,θ)

i.e. $\theta \colon HA \cong A$ is both an initial algebra and a final coalgebra.

In particular, the zero object is a bifree algebra of the identity functor.

The notion of bifree algebra extends to mixed variance functors.

Call-by-push-value

We want to apply this to the modelling of recursive types.

We'll use call-by-push-value, which subsumes call-by-value and call-by-name typed λ -calculus.

A value type A denotes a cpo. Call-by-value type.

A computation type \underline{B} denotes a cppo. Call-by-name type.

Type syntax, including recursive types:

$$\begin{array}{llll} A,A' & ::= & U\underline{B} \ | \ 1 \ | \ A \times A' \ | \ 0 \ | \ A + A' \ | \ \sum_{i \in \mathbb{N}} A_i \ | \ \mathbf{X} \ | \ \mathrm{rec} \ \mathbf{X}.A \\ \underline{B},\underline{B}' & ::= & FA \ | \ A \to \underline{B} \ | \ 1_\Pi \ | \ \underline{B} \ \Pi \ \underline{B}' \ | \ \prod_{i \in \mathbb{N}} \underline{B}_i \ | \ \underline{\mathbf{X}} \ | \ \mathrm{rec} \ \underline{\mathbf{X}}.\underline{B} \end{array}$$

Semantics of types:

$$[\![U\underline{B}]\!] = [\![\underline{B}]\!] \qquad \qquad [\![FA]\!] = [\![A]\!]_\perp$$

Recursive types

Recursive value type

$$\begin{array}{ccc} D & \stackrel{\mathrm{def}}{=} & \mathtt{rec} \; \mathtt{X}.A \\ D & \cong & A[D/\mathtt{X}] \end{array}$$

Should denotes an isomorphism in Cpo.

Recursive computation type $\underline{D} \stackrel{\text{def}}{=} \operatorname{rec} \underline{\mathbf{X}}.\underline{B}$

$$\underline{D} \stackrel{\text{def}}{=} \operatorname{rec} \underline{X}.\underline{B} \\
\underline{D} \cong \underline{B}[\underline{D}/\underline{X}]$$

Should denote an isomorphism in \mathbf{Cpo}^{\perp} .

Recursive types

Recursive value type

$$\begin{array}{ccc} D & \stackrel{\text{def}}{=} & \operatorname{rec} \mathbf{X}.A \\ D & \cong & A[D/\mathbf{X}] \end{array}$$

Should denotes an isomorphism in Cpo.

Recursive computation type $\underline{D} \stackrel{\text{def}}{=} \operatorname{rec} \underline{\mathbf{X}}.\underline{B}$

$$\begin{array}{ccc} \underline{D} & \stackrel{\text{def}}{=} & \operatorname{rec} \underline{\mathbf{X}}.\underline{B} \\ D & \cong & B[D/\mathbf{X}] \end{array}$$

Should denote an isomorphism in \mathbf{Cpo}^{\perp} .

But Cpo is not bilimit compact—it has no zero object.

Solution: expand the category

Let \mathcal{B} be a Cpo-enriched category.

A bilimit compact expansion of $\mathcal B$ is a bilimit compact Cpo-enriched category $\mathcal C$ containing $\mathcal B$ as a subcategory such that

- ullet $\mathcal{B}(A,B)$ is an admissible subset of $\mathcal{C}(A,B)$
- given
 - chains $(A_n,e_n,p_n)_{n\in\mathbb{N}}$ and (A'_n,e'_n,p'_n) in $\mathcal{C}^{\mathsf{ep}}$
 - bilimits $V, (u_n, r_n)_{n \in \mathbb{N}}$ and $V', (u'_n, r'_n)_{n \in \mathbb{N}}$
 - ullet a map $lpha_n\colon A_n o A_n'$ commuting with e_n and with p_n

the join of $e'_n \cdot \alpha_n \cdot p_n$ is in $\mathcal{B}(V, V')$.

Examples

- The category **pCpo** of cpos and partial continuous maps is a bilimit compact expansion of **Cpo**.
- Preserved by $\mathcal{C} \mapsto \mathcal{C}^{\mathsf{op}}$.
- Preserved by product.

The recipe

We seek an fixpoint of a mixed variance functor H on \mathcal{B} .

Take a bilimit compact expansion C of B.

Extend H to C.

Obtain a fixpoint of H on C.

Every isomorphism in C is an isomorphism in B.

Kripke models

To model a language with dynamic generation (of names, references, etc.), a value type denotes an object of $[\mathbb{I}, \mathbf{Cpo}]$ a computation type denotes an object of $[\mathbb{I}, \mathbf{Cpo}^{\perp}]$,

Theorem

- $[\mathbb{I}, \mathcal{C}]$ is bilimit compact if \mathcal{C} is.
- Let $\mathcal B$ have bilimit compact expansion $\mathcal C$. Then $[\mathbb I,\mathcal B]$ has bilimit compact expansion, as follows: a map $A\to B$ is a map in $[\mathbb I,\mathcal C]$.

① If programs either terminate or diverge, $[\![\underline{B}]\!]$ is a cppo.

- **1** If programs either terminate or diverge, $[\![\underline{B}]\!]$ is a cppo.
- ② Suppose programs can crash. Then $[\![\underline{B}]\!]$ is a cppo A with a "crash" element.

- ① If programs either terminate or diverge, $[\![B]\!]$ is a cppo.
- ② Suppose programs can crash. Then $[\![\underline{B}]\!]$ is a cppo A with a "crash" element.
- **③** Suppose programs can peform I/O, described by a functor $H: \mathbf{Cpo}^{\perp} \to \mathbf{Cpo}$. Then $\llbracket \underline{B} \rrbracket$ is a cppo A with a map $HA \to A$.

- **①** If programs either terminate or diverge, $[\![B]\!]$ is a cppo.
- ② Suppose programs can crash. Then $[\![\underline{B}]\!]$ is a cppo A with a "crash" element.
- ③ Suppose programs can peform I/O, described by a functor $H \colon \mathbf{Cpo}^{\perp} \to \mathbf{Cpo}$. Then $\llbracket \underline{B} \rrbracket$ is a cppo A with a map $HA \to A$.
- \bullet Suppose programs can lookup and update memory, and S is the set of states. Then $[\![B]\!]$ is a cppo A with maps

satisfying some equations.

Recursive computation types with effects

We need to form

- a recursive crash-cppo
- a recursive cppo-H-algebra
- a recursive cppo lookup/update algebra.

But the categories of crash-cppos, cppo- $H\mbox{-}{\rm algebras}$, and cppo lookup/update algebras are not bilimit compact, as they have no zero object.

Recursive computation types with effects

We need to form

- a recursive crash-cppo
- a recursive cppo-H-algebra
- a recursive cppo lookup/update algebra.

But the categories of crash-cppos, cppo- $H\mbox{-}{\rm algebras}$, and cppo lookup/update algebras are not bilimit compact, as they have no zero object.

Solution: expand the categories.

Crash cppos

The category of crash cppos and strict homomorphisms lacks a zero object.

Crash cppos

The category of crash cppos and strict homomorphisms lacks a zero object.

The expanded category: a morphism $f:(A,c)\to (B,d)$ is a lax homomorphism, a strict map such that $f(c)\leqslant d$.

H-algebras

The category of cppo-H-algebras and strict homomorphisms lacks a zero object.

H-algebras

The category of cppo-H-algebras and strict homomorphisms lacks a zero object.

The expanded category: a morphism $f\colon (A,c)\to (B,d)$ is a lax homomorphism, a strict map such that

$$HA \xrightarrow{Hf} HB$$

$$\downarrow c \qquad \qquad \downarrow d$$

$$A \xrightarrow{f} B$$

Bilimit compactness was proved by Fiore.

Summary

- Computation types denote cppo-algebras.
- The category of cppo-algebras is not bilimit compact.
- We interpret recursive computation types using the bilimit compact expansion in which a morphism is a lax homomorphism.
- ullet The appropriate functors (e.g. o) can be extended to this category.
- Caveat We conjecture this model is computationally adequate, but proving it is work in progress.