Cryptography: Homework 9

(Deadline: Nov 29, 2018)

- 1. (20 points) Determine whether the following encryption schemes are IND-CPA secure.
 - (a) Fix $IV = 0^n$ in the CBC mode of encryption.
 - (b) Let F be a length-preserving PRP ($|k| = |x| = |F_k(x)|$). Let $\langle i \rangle$ be the n-bit representation of any integer $0 \le i < 2^n$. In order to encrypt any message $m = m_1 m_2 \cdots m_t$, where $m_i \in \{0,1\}^n$ for every i, choose a uniform value $\operatorname{ctr} \leftarrow \{0,1\}^n$, compute $c_i = F_k(\operatorname{ctr} \oplus \langle i \rangle \oplus m_i)$ for all i, and output the ciphertext $c = (\operatorname{ctr}, c_1, \ldots, c_t)$.
- 2. (30 points) Let F be a pseudorandom function. Show that each of the following MACs is not EUF-CMA. (Let $\langle i \rangle$ denote an n/2-bit encoding of the integer i.)
 - (a) A fixed-length MAC that authenticates messages of 3n/2 bits.
 - $Gen(1^n)$: choose $k \leftarrow \{0,1\}^n$ uniformly as the secret key.
 - $\mathsf{Mac}(k,m)$: To authenticate a message $m=m_1m_2m_3$, where $m_i\in\{0,1\}^{n/2}$ for every $i\in\{1,2,3\}$, compute and output the tag

$$t = F_k(\langle 1 \rangle || m_1) \oplus F_k(\langle 2 \rangle || m_2) \oplus F_k(\langle 3 \rangle || m_3).$$

- Vrfy(k, m, t): for a message $m = m_1 m_2 m_3 \in \{0, 1\}^{3n/2}$ and a tag $t \in \{0, 1\}^n$, output 1 if and only if $t = F_k(\langle 1 \rangle || m_1) \oplus F_k(\langle 2 \rangle || m_2) \oplus F_k(\langle 3 \rangle || m_3)$.
- (b) A fixed-length MAC that authenticates messages of n/2 bits.
 - $Gen(1^n)$: choose $k \leftarrow \{0,1\}^n$ uniformly as the secret key.
 - $\mathsf{Mac}(k,m)$: To authenticate a message $m \in \{0,1\}^{n/2}$, choose $r \leftarrow \{0,1\}^n$ uniformly, compute $s = F_k(r) \oplus F_k(\langle 1 \rangle || m)$, output the tag t = (r,s).
 - Vrfy(k, m, t): for a message $m \in \{0, 1\}^{n/2}$ and a tag t = (r, s), output 1 if and only if $s = F_k(r) \oplus F_k(\langle 1 \rangle || m)$.