Chapter 2. Network Models

- 1. Layered Tasks
- 2. The OSI Model
- 3. Layers in the OSI Model
- 4. TCP/IP Protocol Suite
- 5. Addressing

Layered Model: Sending a Letter

OSI Model

• ISO is the organization. OSI is the model

Interaction between layers in the OSI model

Layer and interface

An exchange using the OSI model

• Encapsulation with header and possibly trailer

Physical Layer

- The physical layer is responsible for movements of individual bits from one hop (node) to the next
- Mechanical and electrical specification, the procedures and functions

Physical Layer: Duties

- Physical characteristics of interfaces and media
- Representation of bits
- Data rate
- Synchronization of bits
- Line configuration
- Physical topology
- Transmission mode

Data Link Layer

- The data link layer is responsible for moving frames from one hop (node) to the next
- Transform the physical layer to a reliable (error-free) link

Data Link Layer: Duties

- Framing
- Physical addressing
- Flow control
- Error control
- Access control

Hop-to-Hop Delivery

Network Layer

• The network layer is responsible for the delivery of packets from the source host to the destination host

Network Layer: Duties

Logical addressing and routing

Transport Layer

• The transport layer is responsible for delivery of a message from one process to another

Transport Layer: Duties

- Service-point (port) addressing
- Segmentation and reassembly
- Connection control
- Flow control
- Error control

Reliable Process-to-Process Delivery of a Message

Session Layer

Session layer is responsible for dialog control and synchronization

Presentation Layer

• Presentation layer is responsible for translation, compression, and encryption

Application Layer

 Application layer is responsible for providing services to the user

Application Layer: Services

- Network virtual terminal
- Mail services
- File transfer, access, and management
- Directory services

Summary of Layers

TCP/IP and OSI Model

TCP/IP Protocol Suite

- Host-to-network: Physical and data link layer
 - No specific protocol
- Network layer
 - IP(Internet Protocl), ARP(Address Resolution Protocol),
 RARP(Reverse ARP), ICMP(Internet Control Message Protocol),
 IGMO(Internet Group Message Protocol)
- Transport layer
 - TCP(Transmission Control Protocol), UDP(User Datagram Protocol),
 SCTP(Stream Control Transmission Protocol),
- Application Layer
 - Combined session, presentation, and application layers

Addressing

- Four levels of addresses in TCP/IP protocols
- Physical (link), logical (IP, network), port, and specific addresses

Relationship of Layers and Addresses

Physical Address

• A node with physical address 10 sends a frame to a node with physical address 87. The two nodes are connected by a link (bus topology LAN). As the figure shows, the computer with physical address 10 is the sender, and the computer with physical address 87 is the receiver.

07:01:02:01:2C:4B

A 6-byte (12 hexadecimal digits) physical address.

Logical (IP) Address

• The physical addresses will change from hop to hop, but the logical addresses usually remain the same

Port Address

• The physical addresses change from hop to hop, but the logical and port addresses usually remain the same

Specific Address

- Some application have user-friendly addresses that are designed for that specific address
- Example 1: e-mail address: kchung@kw.ac.kr
 - Defines the recipient of an e-mail
- Example 2: URL (Universal Resource Locator): <u>www.kbs.co.kr</u>
 - Used to find a document on the WWW