통계학 개론

제7장 통계적 비교

7.1 두 모집단의 비교

두 모평균의 비교는 각 모집단에서 추출된 표본이 서로 독립적으로 추출되었을 경우(독립표본)와 아닌 경우(대응표본)에 따라 검정방법이 다르다.

- 1) 두 독립표본의 평균 비교 두 모평균에 대한 가설검정 유형
- ① H_0 : $\mu_1 \mu_2 = D_0$ H_0 : $\mu_1 - \mu_2 > D_0$
- ② H_0 : $\mu_1 \mu_2 = D_0$ H_0 : $\mu_1 - \mu_2 < D_0$
- ③ H_0 : $\mu_1 \mu_2 = D_0$ H_0 : $\mu_1 - \mu_2 \neq D_0$

모집단에서 서로 독립적으로 표본을 추출했을 때 모평균의 차 μ_1 - μ_2 의 추정량은 표본평균의 차 \overline{X}_1 - \overline{X}_2 이며, 모든 가능한 표본평균의 차는 표본이 충분히 클 경우 근사적으로 평균이 μ_1 - μ_2 이고, 분산이 (σ_1^2/n_1) + (σ_2^2/n_2) 인 정규분포를 따르게 된다.

$$\overline{X}_1 - \overline{X}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

1-1) 두 모집단의 분산 σ_1^2 , σ_2^2 를 모르고, 두 모분산이 같은 경우 자유도가 n1+n2-2인 t분포를 따르는 통계량 T를 사용한다.

❖ (표본이 서로 독립적으로 추출되었으며, 두 모집단이 정규분포를 따르고, 두 모 분산이 같은 경우) 두 모평균의 가설검정

가설의 종류	선택기준
$H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 > D_0$	$T>t_{n_1+n_2-2,lpha}$ 이면 H_0 기각
$H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 < D_0$	$T{<}{-}t_{n_1+n_2-2,lpha}$ 이면 $H_{\it 0}$ 기각
$H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 \neq D_0$	$\mid T \mid > t_{n_1 + n_2 - 2, lpha/2}$ 이면 $H_{\mathcal{O}}$ 기각

1-2) 두 모집단의 분산 σ_1^2 , σ_2^2 를 모르고, 두 모분산이 다른 경우 자유도가 ϕ 인 t 분포를 따르는 통계량 T를 사용한다.

$$T = \frac{(\overline{X}_1 - \overline{X}_2) - D_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_{\phi,\alpha} \quad \text{and} \quad \phi = \frac{\left[S_1^2/n_1 + S_2^2/n_2\right]^2}{\frac{S_1^2/n_1}{n_1 - 1} + \frac{S_2^2/n_2}{n_2 - 1}}$$

❖ (표본이 서로 독립적으로 추출되었으며, 두 모집단이 정규분포를 따르고, 두 모 분산이 다른 경우) 두 모평균의 가설검정

가설의 종류	선택기준
$H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 > D_0$	$T{>}t_{\phi,lpha}$ 이면 $H_{\it 0}$ 기각
$H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 < D_0$	$T{<}{-}t_{\phi,lpha}$ 이면 $H_{\it 0}$ 기각
$H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 \neq D_0$	$\mid T \mid > t_{\phi, lpha/2}$ 이면 $H_{\mathcal{O}}$ 기각

2) 대응표본의 평균 비교

대응비교(paired comparison): 비슷한 성질의 대응표본을 사용하여 두 모집단의 평균을 비교하는 가설검정

대응비교 일 때는 먼저 다음과 같이 관찰된 n쌍의 차(D_i)를 계산해서 평균(\overline{D})과 표준편차(S_D)를 구한다.

❖ 대응표본의 차, 평균, 분산

Di의 평균
$$\overline{D}=\sum D_i/n$$
 Di의 분산 $s_D^2=\sum (D_i-\overline{D})^2/(n-1)$

모집단 1의 표본(X _{i1})	모집단 2의 표본(X _{i2})	$D_i = X_{i1} - X_{i2}$
X ₁₁	X ₁₂	$D_1 = X_{11} - X_{12}$
X ₂₁	X ₂₂	$D_2 = X_{21} - X_{22}$
:	:	:
X _{n1}	X _{n2}	$D_n = X_{n1} - X_{n2}$

두 모집단이 모평균이 같은 정규분포일 때 $\frac{\overline{D}}{s_D/\sqrt{n}}$ 는 자유도가 $\mathrm{n}\text{--}1$ 인 t 분포를 따른다.

$$rac{\overline{D}}{s_D/\sqrt{n}} \sim t_{n-1,lpha}$$

◆ (모집단이 정규분포이고 두 표본이 쌍으로 추출되었을 경우) 두 모평균의 가설 검정

가설의 종류	선택기준
$H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 > D_0$	$\dfrac{\overline{D}-D_o}{s_D/\sqrt{n}} > t_{n-1,lpha}$ 이면 $H_{\mathcal{O}}$ 기각
$H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 < D_0$	$\dfrac{\overline{D}-D_o}{s_D/\sqrt{n}}\!<\!-t_{n-1,lpha}$ 이면 H_0 기각
$H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 \neq D_0$	$\left rac{\overline{D}-D_o}{s_D/\sqrt{n}} ight >t_{n-1,lpha/2}$ 이면 $H_{\mathcal{O}}$ 기각

3) 두 모분산 가설검정

두 모집단의 분산(σ_1^2 , σ_2^2)을 비교하는 경우, 분산의 비($\sigma_1^{2/}\sigma_2^2$)를 계산한다 통계량 $\frac{(S_1^2/\sigma_1^2)}{(S_2^2/\sigma_2^2)}$ 은 두 모집단이 각각 정규분포를 따를 경우 분자자유도 n_1 -1, 분모자유도 n_2 -1인 F분포를 따른다.

$$\frac{(S_1^2/\sigma_1^2)}{(S_2^2/\sigma_2^2)} \sim F_{n_1-1,n_2-1,\alpha}$$

❖ (두 모집단이 정규분포인 경우) 두 모분산의 가설검정

가설의 종류	선택기준		
$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$	$\dfrac{(S_1^2/\sigma_1^2)}{(S_2^2/\sigma_2^2)}$ > $F_{n_1-1,n_2-1,lpha/2}$ 이면 H ₀ 기각 ※ ${\sf S_1}^2 > {\sf S_2}^2$		

7.2 세 개 이상 다수 모집단의 비교

요인(factor): 실험결과에 영향을 주는 무수히 많은 원인 중에서 실험에서 직접 취급되어 관리되는 것

랜덤화(randomization): 요인의 각 수준에서 실험단위의 배정 또는 실험순서를 임의로 배정하는 것

실험계획법(design of experiments): 실험을 합리적으로 설계하는 방법

1) 분산분석의 개념

분산분석(analysis of variance):

- ① 세 개 이상의 평균비교에 대한 검정방법
- ② 특성값의 변동을 제곱합으로 나타내고, 이것을 실험과 관련된 요인의 제곱합과 오차의 제곱합으로 분해하여 오차에 비해 영향이 큰 요인이 무엇인가를 찾아내는 분석방법
- ③ 각 요인의 평균제곱을 구하고, 이 값이 오차의 분산에 비해 얼마나 큰가를 검토. 요인의 평균제곱값이 오차의 분산보다 매우 크다면 그 요인은 특성값의 변동을 유의하게 설명해 주는 요인임
 - ※ 요인의 평균제곱: 요인의 제곱합을 요인의 자유도로 나눈 값

2) 일원배치법

(1) 일원배치법의 개념

일원배치법(one-way factorial design): 어떤 관심이 있는 특성값에 대하여 하나의 요인의 영향을 조사하기 위하여 쓰는 실험계획법

일원배치법에서는 반복수가 다르더라도 특별한 수정 없이 그대로 분석할 수 있다.

실험의 완전 랜덤화는 일원배치법에서 매우 중요한 특징이기 때문에 일원배치법을 완전확률화법(completely randomized design)이라고도 한다.

(2) 데이터의 구조

❖ 일원배치법 데이터의 배열

구분	인자의 수준	
	$A_1 A_2 \cdots A_l$	
실험의 반복	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
합계	T_1 . T_2 . \cdots T_l .	T
평균	\overline{x}_1 . \overline{x}_2 . \cdots \overline{x}_l .	$={x}$

$$T_{i.} = \sum_{j=1}^{m} X_{ij} \quad \overline{x_{i.}} = \frac{T_{i.}}{m} \quad (i = 1, 2, \dots, l)$$

$$T = \sum_{i=1}^{l} T_{i.} \quad \overline{\overline{x}} = \frac{T}{lm}$$

 A_i 수준에서의 j번째 데이터 x_{ij} 는 A_i 수준에서 특성값의 모평균 μ_i 를 중심으로 오차 ϵ_{ii} 를 가진 변량으로 일반화하면

$$x_{ij} = \mu_i + \epsilon_{ij}$$
 $(i = 1, 2, \dots, l, j = 1, 2, \dots, m)$

실험 전체의 모평균 µ는

$$\mu = \sum_{i=1}^{l} \frac{\mu_i}{l}$$

요인 A_i의 주효과(main effect) α_i는

$$\alpha = \mu_i - \mu$$

이를 정리하면

$$\begin{aligned} x_{ij} &= \mu_i + \epsilon_{ij} \\ &= \mu + (\mu_i - \mu) + \epsilon_{ij} \\ &= \mu + \alpha_i + \epsilon_{ij} \end{aligned}$$

주효과 α_i의 합은 항상 0이다.

❖ 일원배치법의 데이터 구조식

$$\begin{aligned} x_{ij} &= \mu + \alpha_i + \epsilon_{ij} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ P(x_{ij} \cap \epsilon_{ij}) = P(x_{ij}) P(\epsilon_{ij}), \quad \sum_{i=1}^l \alpha_i = 0 \end{aligned}$$

데이터 x_{ij} 는 공통적인 평균 μ , 요인 A의 효과 α_{ij} 와 A 요인으로 설명할 수 없는 오차 ϵ_{ij} 로 구성되어 있다.

(3) 분산분석표의 작성

❖ 일원배치법의 분산분석표

요인	제곱합	자유도	평균제곱	F
А	$S_A = \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{x}_i \cdot - \overline{\overline{x}})^2$	$\phi_A=l-1$	$V_A = \frac{S_A}{\phi_A}$	$F = rac{V_A}{V_B}$
Е	$S_E = S_T - S_A$	$\phi_E = l(m-1)$	$V_E = rac{S_E}{\phi_E}$	$\Gamma = \frac{1}{V_B}$
Т	$S_T = \sum_{i=1}^{l} \sum_{j=1}^{m} (x_{ij} - \overline{x})^2$	$\phi_T = lm - 1$		

$$S_T = S_E + S_A$$

데이터의 총변동(S_T)은 요인수준의 변화에 따른 변동(S_A)과 수준 내의 오차변동 (S_E)이라는 두 개의 요인으로 분해된다.

F 통계량의 값은 평균제곱 V_A 와 V_E 의 비로 계산되는데, 이것을 통해 요인 A의 l 수준의 모평균이 동일하다는 가설을 검정하게 된다.

H0: $\mu_1 = \mu_2 = \cdots = \mu_l$

H1: *µ*_i가 모두 같지는 않다.

이 때 F 값이 커지면 요인 A에 의한 변동이 오차에 의한 변동보다 커지므로 요인 A에 의한 변동이 유의하다고 판단한다.

F 통계량은 귀무가설하에서 자유도 ϕ_{A_i} ϕ_{E} 인 F분포를 따른다.

F 통계량의 값이 $F \geq F(\phi_A, \phi_E : \alpha)$ 이면 유의수준 α 에서 귀무가설이 기각된다.

(4) 모평균의 추정

① 각 수준의 모평균 추정

요인 A의 i수준에서의 모평균 $\mu_i = \mu + \alpha_i$

요인 A의 i수준에서 m개의 데이터 $\mathbf{x}_{ij}(\mathbf{j}=1,\ 2,\ \cdots,\ \mathbf{m})$ 는 정규분포 $N(\mu_i,\sigma_E^2)$ 에서 얻어진 크기 m의 확률표본이다.

표본분포의 성질을 다시 보면,

기댓값
$$E(\overline{X}) = \mu, Var(\overline{X}) = \frac{\sigma^2}{n}$$

이를 적용하면 $\mu_i = \mu + \alpha_i$ 의 점추정량은 \overline{x}_1 .

 $ar{x}_1$. 의 분산은 $Var(ar{x}_i)=rac{\sigma_E^2}{m}$ μ 의 100(1-lpha)% 신뢰구간은 $\left[ar{x}_i - t(\phi_E;rac{lpha}{2})\sqrt{rac{V_E}{n}}\,,\,\,ar{x}_i + t(\phi_E;rac{lpha}{2})\sqrt{rac{V_E}{n}}
ight]$ 여기서 $t(\phi_E)$ 는 자유도 $\phi_E=l(m-1)$ 인 t분포

② 각 수준의 모평균차의 추정과 검정

요인 A의 두 수준 i와 i'에서의 모평균 차이는 요인 A의 수준효과의 차이

$$\mu_i - \mu_{i'} = (\mu + \alpha_i) - (\mu + \alpha_{i'}) = \alpha_i - \alpha_{i'}$$

여기에서 $\mu_{i} - \mu_{i'} = \alpha_{i} - \alpha_{i'}$ 은 다음과 같이 두 수준의 표본평균의 차이로 추정된다.

$$\hat{\mu_i} - \hat{\mu_{i'}} = \hat{\alpha_i} - \hat{\alpha_{i'}} = \overline{x_i} \cdot - \overline{x_{i'}}$$
.

이 추정값의 분산은 A_i 수준의 데이터와 $A_{i'}$ 수준의 데이터가 서로 독립이므로 다음과 같다.

$$\begin{split} &Var(\overline{x}_{i}..-\overline{x}_{i^{'}}..) = Var(\overline{x}_{i}..) + Var(\overline{x}_{i^{'}}..) - 2Cov(\overline{x}_{i}..,\overline{x}_{i^{'}}..) \\ &= \frac{\sigma_{E}^{2}}{m} + \frac{\sigma_{E}^{2}}{m} = \frac{2\sigma_{E}^{2}}{m} \end{split}$$

따라서, $\sigma_E^2 = V_E$ 를 사용하여 $\mu_i - \mu_{i'}$ 의 $100(1-\alpha)$ % 신뢰구간을 구할 수 있다

$$\left[(\overline{x}_{i \, \cdot \cdot} - \overline{x}_{i' \, \cdot \cdot}) - t(\phi_E; \frac{\alpha}{2}) \sqrt{\frac{2 \, V_E}{n}} \, , \ (\overline{x}_{i \, \cdot \cdot} - \overline{x}_{i' \, \cdot \cdot}) + t(\phi_E; \frac{\alpha}{2}) \sqrt{\frac{2 \, V_E}{n}} \right]$$

만약 $|\bar{x}_{i}. - \bar{x}_{i'}.| \ge t(\phi_{E}; \frac{\alpha}{2})\sqrt{\frac{2V_{E}}{m}}$ 이면, 두 수준 A_{i} , $A_{i'}$ 의 모평균은 유의수준 α 에서 유의하게 차이가 있다.

여기에서, $t(\phi_E; \frac{\alpha}{2})\sqrt{\frac{2V_E}{n}}$ 을 최소유의차(least significant difference: LSD)라고한다.

따라서, LSD를 먼저 구해 놓고, 모든 수준 간의 표본평균의 차이 $|\bar{x}_i| - \bar{x}_{i'}|$ 를 구하여 이 값이 LSD보다 크면 두 수준 간의 차이가 유의하고, 이것이 LSD보다 작으면 두 수준간의 차이는 유의하지 않다고 결론지을 수 있다.

- 3) 이원배치법
- (1) 이원배치법의 개념

이원배치법: 문제가 되는 요인을 두 개 취하여 행하는 실험

(2) 데이터의 구조

$$x_{ij} = \mu + \alpha_i + \beta_i + \epsilon_{ij}$$

$$\epsilon_{ij} \sim N(0, \sigma_E^2) \ \,$$
이고 서로 독립

$$i = 1, 2, \dots, l$$
 $j = 1, 2, \dots, m$

❖ 반복이 없는 이원배치법의 자료배열

요인 A 요인 B	$A_1 \ A_2 \ \cdots \ A_l$	하 임	평균
$egin{array}{c} B_1 \ B_2 \ dots \ B_m \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$T_{\cdot \ 1}$ $T_{\cdot \ 2}$ \vdots $T_{\cdot \ m}$	$ \frac{\overline{x}}{x} \cdot 1 $ $ \frac{\overline{x}}{x} \cdot 2 $ $ \vdots $ $ \overline{x} \cdot m $
합 평균	$egin{array}{cccccccccccccccccccccccccccccccccccc$	Т	$= \frac{1}{x}$

(3) 분산분석표의 작성

이원배치법에서 데이터 x_{ij} 와 총평균 x의 차이는 다음과 같이 나눌 수 있다

$$(x_{ij} - \overline{\overline{x}}) = (\overline{x}_i \cdot - \overline{\overline{x}}) + (\overline{x}_{\cdot j} - \overline{\overline{x}}) + (x_{ij} - \overline{x}_i \cdot - \overline{x}_{\cdot j} + \overline{\overline{x}})$$

양변을 제곱한 후에 모든 i, j에 대하여 합하면 다음과 같다.

$$\sum_{i=1}^{l} \sum_{j=1}^{m} (x_{ij} - \overline{x})^{2} = \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{x}_{i} - \overline{x})^{2} + \sum_{i=1}^{l} \sum_{j=1}^{m} (\overline{x}_{i} - \overline{x})^{2} + \sum_{i=1}^{l} \sum_{j=1}^{m} (x_{ij} - \overline{x}_{i} - \overline{x}_{i} - \overline{x}_{i} - \overline{x}_{i})^{2}$$

$$S_{T} = S_{A} + S_{B} + S_{E}$$

❖ 반복이 없는 이원배치법의 분산분석표

요인	S	ϕ	V	F
A	S_{A}	$\phi_A=l-1$	V_{A}	V _A /V _E
В	S_B	$\phi_B = m - 1$	V_{B}	$V_{\rm B}/V_{\rm E}$
E	S_{C}	$\phi_E = (l-1)(m-1)$	$V_{\rm E}$	
Т	S_{T}	lm-1		

$$F = V_A/V_E \geq F(\phi_A, \phi_E \; ; \alpha)$$
이면 $H_0: \; \alpha_1 = \alpha_2 = \cdots = \alpha_l = 0 \; \; \text{이 유의수준 α에서 기각}$
$$F = V_B/V_E \geq F(\phi_B, \phi_E \; ; \alpha)$$
이면 $H_0: \; \beta_1 = \beta_2 = \cdots = \beta_l = 0 \; \; \text{이 유의수준 α에서 기각}$

(4) 모평균의 추정

① 요인 A의 모평균의 추정

$$\hat{\mu}(\alpha_i) = \hat{\mu} + \hat{\alpha_i} = \overline{x}_i.$$

 $\mu(\alpha_i)$ 의 100(1- α)% 신뢰구간은

$$\left[\overline{x}_{i+} - t(\phi_E; \frac{\alpha}{2}) \sqrt{\frac{V_E}{m}} \,, \ \overline{x}_{i+} + t(\phi_E; \frac{\alpha}{2}) \sqrt{\frac{V_E}{m}} \right]$$

② 요인 B의 모평균의 추정

$$\hat{\mu}(\beta_j) = \hat{\mu} + \hat{\beta_j} = \overline{x}_{.j}$$

μ(β_i)의 100(1-α)% 신뢰구간은

$$\left[\overline{x}_{+j} - t(\phi_E; \frac{\alpha}{2}) \sqrt{\frac{V_E}{l}} \,, \ \overline{x}_{+j} + t(\phi_E; \frac{\alpha}{2}) \sqrt{\frac{V_E}{l}} \right]$$

③ 두 요인의 수준을 조합한 조건에서의 모평균의 추정

A 요인의 i 수준과 B 요인의 j 수준에서 모평균의 점추정량은 다음과 같다.

$$\begin{split} \hat{\mu}(\alpha_i\beta_j) &= \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j \\ &= \hat{\mu} + \hat{\alpha}_i + \hat{\mu} + \hat{\beta}_j - \hat{\mu} \\ &= \overline{x}_i \; . \; + \overline{x} \; . \; _j - \overline{x} \end{split}$$

이 때 점추정량의 분산은 다음과 같다.

$$Var(\overline{x}_{i}. + \overline{x}_{.j} - \overline{\overline{x}}) = \frac{\sigma_{E}^{2}}{lm/(l+m-1)} = \frac{\sigma_{E}^{2}}{n_{e}}$$

st 유효반복수 $n_e = \frac{lm}{l+m-1}$

 $\mu(\alpha_i\beta_j)$ 의 100(1- α)% 신뢰구간은

$$\left[(\overline{x}_{i\,\cdot\,} + \overline{x}_{\,\cdot\,j} - \overline{\overline{x}}) - t(\phi_E; \frac{\alpha}{2})\sqrt{\frac{V_E}{n_e}}\,,\;\; (\overline{x}_{i\,\cdot\,} + \overline{x}_{\,\cdot\,j} - \overline{\overline{x}}) + t(\phi_E; \frac{\alpha}{2})\sqrt{\frac{V_E}{n_e}}\right]$$