[LE,RO]1 [LO] [RE] plain

Lois générales dans le cadre de l'approximation des régimes quasi-permanents

Table des matières

1	Dét	inition	S	
	1.1	Appro	eximation des regimes quasi-permanents A.R.Q.P	
	1.2	Coura	nt électrique	
		1.2.1	Définition	
		1.2.2	Types de courants	
		1.2.3	Effets de courants	
		1.2.4	Intensité du courant i(t)	
2	Lois de Kirchhoff			
	2.1	Carac	téristiques d'un circuit électrique	
	2.2		le Kirchhoff en regime permanent	
			Lois des Noeuds	
		2.2.2	Loi des mailles	
3	Classification des dipôles électrocinétiques			
	3.1	Aspec	t énergétique	
		3.1.1		
		3.1.2	Puissance électrique P	
		3.1.3	Convention recepteur ou générateur	
	3.2	Carac	téristique tension courant d'un dipôle	
		3.2.1	Définition	
		3.2.2	Caractéristique statique ou dynamique	
	3.3	Dipôle	e actif ou passif	
	3.4	_	e linéaire	
		-		

Lors de l'étude des circuits éléctriques ,nous rencontrons :

• Régimes permanents : La grandeur physique G ne varie pas dans le temps :

$$G(t+dt) = G(t) \Rightarrow \frac{\partial G}{\partial t} = 0$$

 \bullet Régimes variables : La grandeur physique G varie en fonction du temps

$$G(t+dt) \neq G(t)$$

donc on doit préciser la grandeur G en un point M du circuit G(M,t) On s'interesse dans ce chapitre aux régimes lentement variables, ou quasi-permanent .

1 Définitions

1.1 Approximation des regimes quasi-permanents A.R.Q.P

Il consiste à négliger le temps de propagation devant un temps cractéristique de la variation du signal .

• Exemples : Un circuit de longueur L = 1m

Le temps de propagation est de l'ordre de : $\tau = \frac{L}{C} = \frac{1}{3.10^8} = 3.10^{-9} s$ Pour rester dans L'A.R.Q.P,la période du signal doit être $T >> \tau \Rightarrow f << 300 MHz$

Pour rester dans L'A.R.Q.P, la période du signal doit être $T >> \tau \Rightarrow f << 300 MHz$ Donc pour des circuits aux laboratoires (quelques dizaines de cm) et pour des signaux de fréquence de quelques MHz on est dans L'A.R.Q.P. Donc on peut appliquer à chaque instant à un R.Q.P les lois démontrées en R.P .

1.2 Courant électrique

1.2.1 Définition

Il s'agit d'un déplacement d'ensemble ,ordonée de particules chargées,par convention le sens de courant est le sens de déplacement des charges positives .

1.2.2 Types de courants

On peut distinguer entre trois types de courant :

- Courant particulaire : Particules chargées se déplaçant dans le vide (faisceau électronique dans un tube cathodique) .
- Courant de conduction : mouvement des particules chargées dans un milieu matériel sans déplacement du milieu
- Exemples
- électrons libres dans les conducteurs métalliques .
- électrons libres et lacunes (|e|) dans les semi-conducteurs.
- anions et cations dans les électrolytes (eau salée : Na^+, Cl^-)
- Courant de convection : Déplacement des charges provoqué par le mouvement du milieu .

1.2.3 Effets de courants

On peut distinguer entre les :

- ► Effet thermique (effet Joule)
- ► Effet magnétique (Champ magnétique produit par un circuit)
- ► Effet chimique (électrolyse)

1.2.4 Intensité du courant i(t)

On appelle intensité du courant électrique traversant la section (S) d'un conducteur , la quantité d'électricité dq traversant (S) par unité du temps dt.

$$i(t) = \frac{dq}{dt}$$
 en ampère (A)

2 Lois de Kirchhoff

2.1 Caractéristiques d'un circuit électrique

▶ Dipôle électrocinétique : Il s'agit d'un composant électrique comportant dex bornes , l'une d'entrée et l'autre de sortie du courant .

 U_{AB} est la différence de potentiel aux bornes du dipôle

- ▶ Noeud : Borne commune à plus de deux dipôles $(N_1, N_2..)$.
- ightharpoonup Branche: portion de circuit entre deux noeuds consécutifs (N_1N_2) .
- ▶ Maille : ensemble de branches successives définissant un circuit fermé qui passe une seule fois par les noeuds rencontrés $(N_1, N_2, N_3...)$.

2.2 Lois de Kirchhoff en regime permanent

2.2.1 Lois des Noeuds

Considérons un conducteur filiforme de longueur trés grand devant son diamètre se sépare au noeud N en deux autres conducteurs filiformes :

La conservation de la charge entre les instant t et t+dt se traduit par :

$$dq_e = dq_s \Rightarrow dq = dq_1 + dq_2 \Rightarrow \frac{dq}{dt} = \frac{dq_1}{dt} + \frac{dq_2}{dt}$$

$$i = i_1 + i_2$$

• Généralisation au cas de N conducteurs : Loi de Kirchhoff

$$\sum_{k=1}^{N} \varepsilon_k i_k = 0$$

 $\varepsilon_k = +1$ pour un courant arrivant vers N $\varepsilon_k = -1$ pour un courant s'éloignant de N

2.2.2 Loi des mailles

Considérons la maille suivante :

$$V_{N_3} - V_{N_1} + V_{N_1} - V_{N_2} + V_{N_2} - V_{N_3} = 0 \Rightarrow -U_3 + U_1 + U_2 = 0$$

• Généralisation : Loi de Kirchhoff relative à une maille

$$\sum_{k} \varepsilon_{k} U_{k} = 0$$

 $\varepsilon_k=+1$ pour U_k orientée dans le sens de la maille $\varepsilon_k=-1$ pour U_k orientée dans le sens inverse de la maille

• Remarque : Les lois de Kirchhoff sont valables en A.R.Q.P en remplaçant i_k et u_k par $i_k(t)$ et $u_k(t)$.

3 Classification des dipôles électrocinétiques

3.1 Aspect énergétique

3.1.1 Convention algébrique thermodynamique

En thermodynamique par convention on compte positivement l'énergie reçue par un système d'étude et négativement l'énergie cédée par le système au milieu extérieur .

3.1.2 Puissance électrique P

La puissance électrique algébriquement reçue par un dipôle D est :

$$P = u_{AB}.i_{AB} \text{ en (W)}$$

En peut distinguer entre deux types de dipôles :

- ▶ Dipôle recepteur : $P = u_{AB}.i_{AB} > 0$ le courant et la différence de potentiel ont un sens inverse (car le sens réel du courant est celui des potentiels décroissant) le dipôle reçoit alors de l'énergie électrique .
- ▶ Dipôle générateur : $P = u_{AB}.i_{AB} < 0$ le courant et la différence de potentiel ont le même sens , le dipôle fourni de l'énergie .

3.1.3 Convention recepteur ou générateur

► Convention recepteur : $P = u_{AB}.i_{AB} > 0$

▶ Convention générateur : $P = u_{AB}.i_{AB} < 0$

3.2 Caractéristique tension courant d'un dipôle

3.2.1 Définition

Soit un dipôle (D) quel conque étudié en convention recepteur . On appelle caractéristique courant tension du dipôle D la courbe representant les variations du courant i en fonction de la tension u

Tout point $M(u_M, i_M)$ de la caractéristique est un point de fonctionnement du dipôle D

3.2.2 Caractéristique statique ou dynamique

- ► Caractéristique statique : L'ensemble des points (u,i) obtenus en régime continu (permanent).
 - Si la courbe obtenue est symétrique par rapport à l'origine le dipôle est dit symétrique (on peut permuter ses bornes de connexion).
 - Si la courbe obtenue est dissymetrique par rapport à l'origine ,le dipôle est dit non symétrique ou polarisée.

➤ Caractéristique dynamique : l'ensemble des points (u,i) obtenus en régime variable . En général elle ne correspond pas au déplacement du point de fonctionnement sur la caractéristique statique .

3.3 Dipôle actif ou passif

- ▶ Dipôle actif : sa caractéristique statique ne passe pas par l'origine (pile,alimentation stabilisée...)
- ▶ Dipôle passif : Sa caractéristique statique passe par l'origine (toujours recepteur).

3.4 Dipôle linéaire

Un dipôle est linéaire si la tension u(t) entre ses bornes et le courant qui le traverse i(t) sont liées par une équation différentielle à coéfficients constants :

$$\sum_{n=0}^{N} a_n \frac{d^n u(t)}{dt^n} + \sum_{m=0}^{M} b_m \frac{d^m i(t)}{dt^m} = F(t)$$

En regime continu

$$a_0u + b_0i = F$$

C'est une relation affine entre u et i \Rightarrow la caractéristique statique d'un dipôle linéaire est une droite .

Exemples:

▶ Ordre 0 : Résistance U(t) = R.i(t)

► Ordre 1 : Condensateur
$$i(t) = c \frac{du(t)}{dt}$$

Bobine $u(t) = L \frac{di(t)}{dt}$