Геометричне означення імовірності

1 Теоретичні відомості

Формулювання на пальцях Розглянемо деяке геометричне тіло Ω . Стохастичний експеримент полягає у тому, що навмання кидається точка на тіло Ω . Візьмемо деяку міру λ на Ω – довжина / площа / об'єм в залежності від того що за тіло Ω розглядається. Тоді якщо тіло $A \subset \Omega$ можна виміряти за λ , тоді імовірністю попадання точки в A є число $P(A) = \lambda(A)/\lambda(\Omega)$.

Конкретизація Розглянемо в \mathbb{R}^d деяку борельову множину Ω та міру Лебега λ_d в \mathbb{R}^d (інтерпретується як довжина / площа / об'єм / ...). Вважаємо, що $\lambda_d(\Omega) < \infty$.

Стохастичний експеримент полягає в тому, що навмання кидається точка на тіло Ω .

Нехай $A \subset \mathcal{B}(\Omega)$ — випадкова подія, тоді імовірність цієї події є число

$$P(A) = \frac{\lambda_d(A)}{\lambda_d(\Omega)}.$$

Описана модель по суті задає рівномірний розподіл на Ω .

2 Задачі

2.1 Задача 1

Стрижень довжини l розламали в навмання обраній точці на дві частини. З якою ймовірністю довжина меншої частини не більша l/3?

Розв'язання

По суті ми навмання кидаємо точку ξ на відрізок $\Omega = [0, l]$. В якості міри береться довжина $\lambda_1, \lambda_1(\Omega) = l$. Тоді $P(A) = \lambda_1(A)/l$ для $A \in \mathcal{B}([0, 1])$. Перезапишемо умову на довжину меншої частини через ξ :

$$\max(\xi, l - \xi) < l/3 \Leftrightarrow \begin{cases} \xi < l/3, \\ \xi > 2l/3. \end{cases}$$

Отже маємо подію $A = \{\omega \in \Omega \mid \max(\xi, l - \xi) < l/3\} = [0, l/3] \cup [2l/3, l]$. Обчислимо імовірність цієї події:

$$P(A) = \lambda_1(A)/l = \lambda_1([0, l/3] \cup [2l/3, l])/l = (l/3 + l/3)/l = 2/3.$$

2.2 Задача 2

Два судна повинні підійти до одного й того ж причалу. Їхні появи – незалежні випадкові події, що рівноможливі протягом доби. Знайдіть імовірність того, що одному з суден доведеться чекати звільнення причалу, якщо час стоянки першого судна – одна година, а другого – дві години.

Розв'язання

Нехай X_i — час прибуття i-го судна до причалу в годинах, i=1,2. Геометрично час появи кожного з суден можна описати так: навмання підкидається точка у квадрат $\Omega=[0,1]^2$. Координати цієї точки запишемо через (X_1,X_2) . В задачі цікавить імовірність тощо, що два судна 'зустрінуться' — один буде на причалі, інший чекатиме біля того причалу.

Одне з суден чекатиме інше, якщо час прибуття одного судна попадає в час перебування іншого:

$$\begin{cases} X_1 \le X_2 \le X_1 + 1/24, \\ X_2 \le X_1 \le X_2 + 2/24 \end{cases}$$

Відповідно випадкову подію можна подати у вигляді

$$A = \{(x, y) \in [0, 1]^2 \mid x \le y \le x + 1/24\} \cup \{(x, y) \in [0, 1]^2 \mid y \le x \le y + 2/24\} =: A_y \cup A_x.$$

Рис. 1: Зображення події A на Ω . Синім зображено A_x , червоним – A_y .

Імовірність можна виразити через трикутники, що утворилися побудованою смугою. Позначивши через S^1 та S^2 площі верхнього та нижнього трикутників відповідно, маємо

$$S^1 = (1 - 1/24)^2/2, \ S^1 = (1 - 2/24)^2/2 \Rightarrow S^1 + S^2 = ((1 - 1/24)^2 + (1 - 2/24)^2)/2$$

Тоді імовірність дорівнює $P(A) = 1 - P(\overline{A}) = 1 - ((1 - 1/24)^2 + (1 - 2/24)^2)/2$.

2.3 Задача 3

У квадрат з вершинами (0,0), (0,1), (1,0), (1,1) навмання кинули точку. Нехай (X,Y) – її координати. Показати, що для всіх $0 \le u, v \le 1$: P(X < u, Y < v) = uv = P(X < u)P(Y < v).

Знайдіть: P(|X - Y| < z), $P(\max(X, Y) < z)$, $P(\min(X, Y) < z)$.

Розв'язання

Простором елементарних подій є квадрат $\Omega = [0,1]^2$. Мірою на квадраті визначимо площу λ_2 . Тоді $\lambda_2(\Omega) = 1$ і для $A \in \mathcal{B}([0,1]^2)$: $P(A) = \lambda_2(A)/\lambda_2(\Omega) = \lambda_2(A)$. Через (X,Y) позначимо координати навмання кинутої точки у квадрат.

Нехай $(u,v) \in \Omega$. Події

$$A_{uv} = \{ \omega \in \Omega \mid X < u, Y < v \} = [0, u) \times [0, v)$$

$$A_{u1} = \{ \omega \in \Omega \mid X < u \} = [0, u) \times [0, 1]$$

$$A_{1v} = \{ \omega \in \Omega \mid Y < v \} = [0, 1] \times [0, v)$$

геометрично задають прямокутники.

Рис. 2: Зображення подій A_{uv} , A_{u1} , A_{1v} на Ω відповідно.

Тоді
$$P(A_{uv}) = uv, P(A_{u1}) = u, P(A_{1v}) = v$$
 і

$$P(X < u, Y < v) = P(A_{uv}) = uv = P(A_{u1})P(A_{1v}) = P(X < u)P(Y < v).$$

Розберемося з наступними імовірностями. Подію $B_z = \{\omega \in \Omega \mid |X-Y| < z\}$ можна перезаписати у вигляді:

$$B_z = \{ \omega \in \Omega \mid Y - z < X < Y + z \} = \{ (x, y) \in [0, 1]^2 \mid y - z < x < y + z \}$$

Геометрично B_z задає смугу (див. рисунок нижче). Площу B_z можна порахувати через доповнення, тобто суму подібних трикутників:

$$P(B_z) = 1 - P(\overline{B}_z) = 1 - (1 - z)^2$$
.

Рис. 3: Зображення події B_z на Ω .

Тепер перейдемо до $C_z = \{\omega \in \Omega \mid \max(X,Y) < z\}$. Припустимо, що C_z виконується. Тоді координати задовольняють нерівність $\max(X,Y) < z$, а звідси X < z,Y < z. Значить геометрично $C_z = [0,z)^2$ задає квадрат. Отже $P(C_z) = z^2$.

Для $D_z=\{\omega\in\Omega\mid\min(X,Y)< z\}$ розглянемо доповнення $\overline{D}_z=\{\omega\in\Omega\mid\min(X,Y)\geq z\}.$ Якщо \overline{D}_z виконується, тоді $\min(X,Y)\geq z,$ а звідси $X\geq z,Y\geq z.$ Значить геометрично $\overline{D}_z=[z,1]^2$ задає квадрат. Отже $P(D_z)=1-P(\overline{D}_z)=1-(1-z)^2.$

Рис. 4: Зображення подій C_z , \overline{D}_z на Ω відповідно (позначено синім). На рисунку для C_z зеленим позначено $\{X < z\}$, фіолетовим — $\{Y < z\}$. Навпаки, на рисунку для \overline{D}_z — їхні доповнення.

2.4 Задача 4

У квадрат з вершинами (0,0), (0,1), (1,0), (1,1) навмання кинули точку. Нехай (A,B) – її координати. Знайдіть імовірність того, що корені рівняння $x^2 + Ax + B = 0$:

- 1. дійсні,
- 2. додатні.

Розв'язання

По суті це продовження задачі 3, тому і тут простором елементарних подій є $\Omega = [0,1]^2$, мірою є площа λ_2 . Тоді $\lambda_2(\Omega) = 1$ і для $A \in \mathcal{B}([0,1]^2)$: $P(A) = \lambda_2(A)/\lambda_2(\Omega) = \lambda_2(A)$.

Знайдемо імовірність того, що корені рівняння є дійсними. Отримаємо умову на A, B через дискримінант:

$$D = B^2 - 4A \ge 0 \Leftrightarrow A \le B^2/4.$$

Отже, подія матиме вигляд $R = \{(x, y) \in [0, 1]^2 \mid x \le y^2/4\}.$

Рис. 5: Зображення події R на Ω .

Тоді

$$P(R) = \lambda_2(R) = \int_0^1 \frac{t^2}{4} dt = \frac{1}{12}.$$

Тепер знайдемо імовірність того, що всі корені рівняння додатні, відповідну подію позначимо через D. Беремо довільні $(A,B)\in\Omega$. Тоді для всіх x>0

$$x^2 + Ax + B > 0$$

Тобто для всіх $(A,B)\in \Omega$ неможливо отримати додатні корені рівняння. Звідси P(D)=0.

2.5 Задача 5

(Задача Бюффона.) Площина розграфлена паралельними прямими, які знаходяться одна від одної на відстані 2a.

- 1. На площину навмання кидають голку довжиною $2l\ (l < a)$. Знайдіть імовірність того, що голка перетне яку-небудь пряму.
- 2. На площину навмання кидають монету, діаметр якої менший, ніж 2a. Яка ймовірність того, що монета перетне одну з прямих?

Розв'язання

Розберемося з першим пунктом. Нас по суті цікавить, чи перетнула голка (відрізок) пряму чи ні. Розглянемо якусь найближчу пряму, біля якої впала голка. Відстань від центра голки до прямої буде $\rho \in [0,a]$, а нахилом голки через $\varphi \in [0,\pi)$. Отже можна ввести $\Omega = [0,a] \times [0,\pi)$ та λ_2 – площа.

Рис. 6: Зображення ситуації.

Визначимо умову, коли голка перетинає пряму. Зауважимо, що якщо голка дотикається прямої, тоді утворєються прямокутний трикнутник з гіпотенузою l і катетом ρ . Значить,

$$\sin(\varphi) = \frac{\rho}{l} \Rightarrow \rho = l\sin(\varphi)$$

Значить, умовою перетнути голкою пряму є нерівність $\rho \leq l \sin(\rho)$. Позначимо через A випадкову подію, що відповідає першому пункту задачі. Тоді

$$A = \{(\rho, \varphi) \in [0, a] \times [0, \pi) \mid \rho \le l \sin(\varphi)\}$$

Рис. 7: Нехай $a=2,\,l=1.$ На рисунку зображено Ω та A.

Знаходимо $\lambda_2(A)$:

$$\lambda_2(A) = \int_0^\pi \int_0^{l\sin(\varphi)} d\rho d\varphi = \int_0^\pi l\sin(\varphi)d\varphi = -l\cos(\varphi)\Big|_0^\pi = (-l)(\cos(\pi) - \cos(0)) = 2l$$

Отже
$$P(A) = \lambda_2(A)/\lambda_2(\Omega) = 2l/(a\pi)$$
.

Розглянемо другий пункт задачі, відповідну випадкову подію позначимо через B. По суті подію можна інтерпретувати так: голка довжиною 2l (l < a) впала на площину так, що описане наколо трикутника коло (його центр є центр голки) перетинає пряму. Очевидно, якщо брати до увагу підхід з попереднього пункту, тоді умова перетину кола з прямою зводиться до умови через радіус: $\rho \leq l$. Тоді

$$B = \{ (\rho, \varphi) \in [0, a] \times [0, \pi) \mid \rho \le l \} = [0, l] \times [0, \pi)$$

Знаходимо $\lambda_2(B)$:

$$\lambda_2(B) = l\pi$$

Отже
$$P(B) = \lambda_2(B)/\lambda_2(\Omega) = l\pi/(a\pi) = l/a$$
.