

CORRUPTION IN DISTRIBUTED GRAPH DATABASES Jack Waudby

Newcastle University

Common System Architecture

NoSQL Storage Backend

Graph Processing Layer

Reciprocal Consistency

An edge is represented by two physical objects that must remain reciprocally consistent

Edge Half-Corruption

Maintaining reciprocal consistency is a challenge for distributed edges

NoSQL storage backends do not provide ACID transactions

Concurrent updates can interleave and edges become half-corrupted

Database Corruption

Simulated the rate of corruption:

- Scale-free Graph Database with 1 billion nodes, 11 billion edges (30% distributed)
- 10% queries read-write transactions
- Reads-per-query geometrically distributed (mean 15)

Solution

Three-step approach:

- 1. Identified baseline isolation requirement for distributed graph databases
 - (a) Half-corruption of distributed edge occurs due to write cycles between transactions

- 2. Developed lightweight edge concurrency control mechanism: Interference free updates on a single edge
 - (a) Optimistic, non-blocking approach
 - (b) Transactions aborted when possibility of half-corruption detected
 - (c) Some transactions can be "innocently" aborted
- 3. Performance evaluation of mechanism via simulation