Exercices de préparation aux oraux À présenter en classe

I. Algèbre

Exercice 1 ($\bigstar \bigstar \circlearrowleft$) Soient $A_1, \ldots, A_n \in \mathscr{M}_n(\mathbb{C})$ telles que $\forall i \in [1, n]$, $\exists p \in [1, n]$, $A_i^p = 0$ et $\forall i, j \in [1, n]$, $A_i A_j = A_j A_i$. Montrer que $\prod_{n} A_i = 0$.

Le résultat est-il encore vrai si l'on ne suppose plus que les A_i sont nilpotentes mais seulement non inversibles ?

Exercice 2 ($\bigstar \stackrel{\hookrightarrow}{\bowtie} \stackrel{\hookrightarrow}{\bowtie}$) Soient A et B dans $\mathscr{M}_n(\mathbb{R})$. On suppose que AB = BA et qu'il existe $p \in \mathbb{N}^*$ tel que $B^p = 0$. Montrer que $\det(A + B) = \det(A)$.

Exercice 3 ($\bigstar \stackrel{\wedge}{\propto} \stackrel{\wedge}{\propto}$)

- 1) Soit $P \in \mathbb{C}[X]$ un polynôme non constant. Montrer que, pour tout $n \in \mathbb{N}^*$, il existe $M \in \mathcal{M}_n(\mathbb{C})$ telle que P(M) = 0.
- 2) Soit $Q \in \mathbb{R}[X]$ un polynôme de degré 2 . Montrer qu'il existe $M \in \mathcal{M}_2(\mathbb{R})$ telle que Q(M) = 0.

Exercice 4 ($\bigstar \stackrel{\sim}{x} \stackrel{\sim}{x}$) Soit $C \in \mathcal{M}_n(\mathbb{C})$ une matrice de rang r.

- 1) Montrer qu'il existe $P, Q \in GL_n(\mathbb{R})$ telles que $C = PJ_rQ$ où $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.
- 2) Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ telles que AC = CB. Montrer que A et B possèdent r valeurs propres communes en tenant compte des multiplicités.
- 3) Que peut-on dire quand r = n?

Exercice 5 ($\bigstar \stackrel{\sim}{\bowtie} \stackrel{\sim}{\bowtie}$) Soit $A \in GL_n(\mathbb{R})$ telle que $A^2 + A^T = I_n$.

- 1) Montrer que $A^4 2A^2 + A = 0$.
- 2) Montrer que 1 n'est pas valeur propre de A.
- 3) Montrer que A est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$ et déterminer l'expression des A possibles.

Exercice 6 (★★☆)

Soient $P \in \mathbb{C}[X] \setminus \{0\}$, $n \in \mathbb{N}^*$ tels que P^n divise $P \circ P$. Montrer que X^n divise P.

Exercice 7 (
$$\bigstar \stackrel{\wedge}{\times} \stackrel{\wedge}{\times}$$
)

Soit
$$P_n = X^{4n} + X^{3n} + X^{2n} + X^n + 1$$
.

- 1) Trouver les racines de P_1 .
- 2) Trouver les entiers n tels que P_1 divise P_n .

Exercice 8 ($\star \star \dot{\approx}$)

- 1) On considère n+1 nombres complexes deux à deux distincts x_0, \ldots, x_n et 2n+2 nombres complexes $y_0, y'_0, \ldots, y_n, y'_n$. Montrer qu'il existe un unique polynôme $H \in \mathbb{C}_{2n+1}[X]$ vérifiant $\forall k \in \{0, \ldots, n\}, \ H(x_k) = y_k$ et $H'(x_k) = y'_k$.
- **2)** Trouver les $P \in \mathbb{C}_3[X]$ tels que $P(j) = P'(j^2) = j^2$ et $P(j^2) = P'(j) = j$.

Exercice 9 ($\star \star \dot{\approx}$)

Soient (E, \langle , \rangle) un espace euclidien, (x_1, \ldots, x_n) des vecteurs de E. Montrer que le rang de la matrice $(\langle x_i, x_j \rangle)_{1 \leqslant i,j \leqslant n}$ est égal au rang de la famille (x_1, \ldots, x_n) .

Exercice 10 ($\star \star \updownarrow$)

Soit (E, \langle , \rangle) un espace préhilbertien réel. On dit qu'une suite $(x_n)_{n\in\mathbb{N}}$ de vecteurs de E converge faiblement vers $x\in E$ si $\forall y\in E, \lim_{n\to+\infty}\langle x_n-x,y\rangle=0$.

- 1) On suppose que E est de dimension finie. Montrer que (x_n) converge faiblement vers x si et seulement si $\lim_{n\to+\infty} ||x_n-x|| = 0$.
- 2) Montrer que cette équivalence est fausse en dimension infinie.

Exercice 11 ($\star \star \dot{\approx}$ $\dot{\approx}$)

Soient $(E, \langle \ , \ \rangle$ un espace euclidien, F et G deux sous-espaces vectoriels de E, et p et q les projecteurs orthogonaux sur F et G.

- 1) Montrer que $p \circ q \circ p$ est symétrique.
- **2)** Montrer que E est somme directe orthogonale de $(\operatorname{Im} p + \operatorname{Ker} q)$ et de $(\operatorname{Ker} p \cap \operatorname{Im} q)$.
- **3)** Montrer que $p \circ q$ est diagonalisable.

Exercice 12 (★★☆)

Soient E un espace euclidien et $u \in \mathcal{L}(E)$. On suppose que u est 1-lipschitzienne. Montrer que $E = \operatorname{Ker}(u - \operatorname{Id}_E) \stackrel{\perp}{\oplus} \operatorname{Im}(u - \operatorname{Id}_E)$. Indication : Pour $x \in \operatorname{Ker}(u - \operatorname{Id}) \cap \operatorname{Im}(u - \operatorname{Id})$, soit y tel que x = u(y) - y. Déterminer $u^k(y)$.

Exercice 13 ($\bigstar \stackrel{\wedge}{\propto} \stackrel{\wedge}{\propto}$)

Dans \mathbb{R}^3 canoniquement euclidien, donner la matrice dans la base canonique de la projection orthogonale sur la droite D dirigée par u=(a,b,c), avec $(a,b,c)\neq (0,0,0)$, et la matrice de la projection orthogonale sur D^{\perp} .

Exercice 14 ($\star\star\star$

- 1) Trouver les $P \in \mathbb{R}[X]$ tels que, pour tout $n \in \mathbb{N}^*$ et toute matrice $A \in \mathscr{A}_n(\mathbb{R})$, P(A) soit antisymétrique.
- **2)** Trouver les $P \in \mathbb{R}[X]$ tels que, pour tout $n \in \mathbb{N}^*$ et toute matrice $O \in \mathcal{O}_n(\mathbb{R})$, P(O) soit orthogonale.

Exercice 15 ($\star \star \updownarrow$)

Déterminer les $A \in \mathcal{M}_n(\mathbb{R})$ nilpotentes et antisymétriques.

II. Analyse

Exercice 16 ($\bigstar \stackrel{\sim}{\bowtie} \stackrel{\sim}{\bowtie}$ Soit $(x_n)_{n \in \mathbb{N}^*}$ une suite de réels positifs et, pour $n \geqslant 1, y_n = \sqrt{x_1 + \sqrt{x_2 + \dots + \sqrt{x_n}}}$.

- 1) Étudier la convergence de la suite (y_n) lorsque la suite (x_n) est constante.
- 2) Étudier la convergence de la suite (y_n) lorsque $x_n = ab^{2^n}$ avec a > 0 et b > 0.
- 3) Montrer que la suite (y_n) converge si et seulement si la suite $(x_n^{1/2^n})$ est bornée.

Exercice 17 ($\star \star \updownarrow$)

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$. On suppose que $u_n \to \ell \in \mathbb{R}$. On pose, pour $n \in \mathbb{N}$, $v_n = \frac{1}{n^2} \sum_{k=0}^n k u_k$. Montrer que (v_n) converge et exprimer sa limite en fonction de ℓ .

Exercice 18 ($\star \star \updownarrow$)

Soit (u_n) définie par $u_0 > 0$ et, pour $n \in \mathbb{N}$, $u_{n+1} = u_n + u_n^2$.

- 1) Déterminer la limite éventuelle de (u_n) .
- 2) Montrer que la suite de terme général $2^{-n} \ln(u_n)$ est convergente. On note λ sa limite.
- 3) Montrer, pour $n \in \mathbb{N} : 0 < \lambda \frac{\ln(u_n)}{2^n} < \frac{1}{2^n u_n}$.
- 4) En déduire qu'il existe $\mu \in]1, +\infty[$ tel que $u_n \sim \mu^{2^n}$ quand $n \to +\infty$.

Exercice 19 ($\bigstar \bigstar \circlearrowleft$) Soit $f : \mathbb{R}^+ \to \mathbb{R}$ continue et surjective. Montrer que tout $y \in \mathbb{R}$ admet une infinité d'antécédents par f.

Exercice 20 ($\bigstar \bigstar \bigstar$) Soit f une application continue de \mathbb{R} dans \mathbb{R} telle que $f \circ f = 2f - \mathrm{id}$.

- 1) Montrer que f est une bijection strictement croissante de \mathbb{R} dans \mathbb{R} .
- 2) On pose $f_0 = f$ et, pour $n \in \mathbb{N}$, $f_{n+1} = f \circ f_n$. Montrer que $\left(\frac{1}{n}f_n\right)$ admet une limite, que l'on précisera.
- 3) Déterminer f.

Exercice 21 ($\bigstar \stackrel{\wedge}{\Rightarrow} \stackrel{\wedge}{\Rightarrow}$)

Soit $f \in \mathcal{C}^1([a,b],\mathbb{R})$ telle que f'(a) = f'(b) = 0. Montrer qu'il existe $c \in [a,b[$ tel que $f'(c) = \frac{f(c)-f(a)}{c-a}$.

Exercice 22 ($\star \star \updownarrow$)

- 1) Soit $f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R}_+^*)$. On suppose que $\frac{f'(x)}{f(x)}$ tend vers $\ell < 0$ quand x tend vers $+\infty$. Quelle est la nature de la série de terme général f(n)?
- 2) Soit $f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R}_+^*)$. On suppose qu'il existe a < 0 tel que $\frac{f'(x)}{f(x)} \sim \frac{a}{x}$ quand x tend vers $+\infty$. Quelle est la nature de la série de terme général f(n)?

Exercice 23 ($\bigstar \stackrel{\land}{\sim} \stackrel{\land}{\sim}$)

Existence et calcul de $\sum_{n=0}^{\infty} \frac{1}{(3n)!}$.

Exercice 24 ($\star \star \dot{\approx}$ $\dot{\approx}$)

On pose, pour $x \in \mathbb{R}$, $D_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos(kx)$.

- 1) Montrer que $\forall x \in \mathbb{R} \setminus 2\pi\mathbb{Z}, \ D_n(x) = \frac{\sin((n+\frac{1}{2})x)}{2\sin(\frac{x}{2})}.$
- 2) Montrer que $\forall \varphi \in \mathscr{C}^1([0,\pi],\mathbb{R}), \lim_{\lambda \to +\infty} \int_0^{\pi} \varphi(x) \sin(\lambda x) dx = 0.$
- 3) Exprimer $\int_0^\pi x D_n(x) dx$ sous forme d'une somme et en déduire la valeur de $\sum_{k=1}^{+\infty} \frac{1}{k^2}$.

Exercice 25 ($\star \star \stackrel{\land}{\star} \stackrel{\land}{\rtimes}$)

- 1) Calculer $S = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.
- 2) On pose, pour $n \in \mathbb{N}$, $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{2k+1}$. Montrer que la série de terme général R_n converge et déterminer sa somme.

Exercice 26 ($\star \star \updownarrow$)

Soit $f \in \mathcal{C}^1([1, +\infty[, \mathbb{R}). \text{ On suppose que } (f')^2 \text{ est intégrable sur } [1, +\infty[. \text{ Montrer que } t \mapsto \frac{f(t)^2}{t^2} \text{ est intégrable sur } [1, +\infty[.$

Exercice 27 ($\bigstar \bigstar \stackrel{\land}{\Rightarrow}$)

Soit $f \in \mathscr{C}^0(\mathbb{R}_+, \mathbb{R}_+)$ décroissante.

- 1) Si f est intégrable, montrer que $xf(x) \to 0$ quand $x \to +\infty$.
- 2) La réciproque est-elle vraie ?

Exercice 28 ($\star \star \stackrel{\cdot}{\star} \stackrel{\cdot}{\approx}$)

- 1) Soit $(u_n)_{n\geqslant 0}$ dans $(\mathbb{R}_+)^{\mathbb{N}}$. On suppose que la série de terme général u_n converge. Montrer que la série de terme général u_n^2 converge.
- 2) Soit $f \in \mathscr{C}^0(\mathbb{R}_+, \mathbb{R})$. On suppose f intégrable sur \mathbb{R}_+ . La fonction f^2 est-elle intégrable sur \mathbb{R}_+ ?

Exercice 29 ($\bigstar \stackrel{\hookrightarrow}{\bowtie} \stackrel{\hookrightarrow}{\bowtie}$)

Soit, pour $n \ge 1$: $I_n = \int_0^{+\infty} \frac{dx}{(1+x^4)^n}$.

- 1) Démontrer l'existence de I_n et trouver sa limite quand $n \to \infty$.
- 2) En posant $u = \frac{1}{x}$, montrer que $I_1 = \frac{1}{2} \int_0^{+\infty} \frac{1+u^2}{1+u^4} du$. Puis, en posant $v = u \frac{1}{u}$, calculer I_1 .
- 3) Calculer I_n .

Exercice 30 ($\star \star \dot{\approx}$)

Soit E l'espace vectoriel des fonctions $f \in \mathscr{C}^0(\mathbb{R})$ telles que pour tout $k \in \mathbb{N}$, $t \mapsto t^k f(t)$ soit intégrable sur \mathbb{R} .

- 1) Montrer que la fonction $t \mapsto \exp(-t^2/2)$ appartient à E.
- **2)** Soient $f \in E$ et $g: x \mapsto \int_{\mathbb{R}} e^{itx} f(t) dt$. Montrer que $g \in \mathscr{C}^{\infty}(\mathbb{R})$.
- 3) On pose $\alpha_k = \int_{\mathbb{R}} |t^k f(t)| dt$. Montrer que g est développable en série entière sur un intervalle]-A,A[à préciser.

Exercice 31 (★★☆)

Soit $F: x \mapsto \int_0^{+\infty} \frac{\arctan(tx)}{t(1+t^2)} dt$.

- 1) Déterminer le domaine de définition D de F.
- **2)** Montrer que F est \mathscr{C}^1 sur \mathbb{R} .
- 3) Exprimer F sur D.
- 4) En déduire la valeur de $\int_0^{+\infty} (\frac{\arctan t}{t})^2 dt$.

Exercice 32 (★★☆)

Soit $f \in \mathscr{C}^0(\mathbb{R}_+, \mathbb{R}_+)$ telle que, pour tout x > 0, 0 < f(x) < x. On définit la suite $(f_n)_{n \ge 1}$ par $f_1 = f$ et, pour $n \in \mathbb{N}^*$, $f_{n+1} : x \in \mathbb{R}_+ \mapsto f \circ f_n(x)$. Montrer la convergence simple de (f_n) . A-t-on convergence uniforme sur [0, a]? Sur $[a, +\infty[$?

Exercice 33 ($\bigstar \bigstar \stackrel{\land}{\Rightarrow}$)

Soit $S: x \in \mathbb{R}_+^* \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(x+n)}$.

- 1) Montrer que S est définie et de classe \mathscr{C}^1 sur \mathbb{R}_+^* .
- 2) Étudier les variations de S et préciser les limites de S en 0 et $+\infty$.
- 3) Montrer que $\forall x \in \mathbb{R}_+^*, \ xS(x) S(x+1) = \frac{1}{e}$.
- 4) Trouver un équivalent de S en 0 et en $+\infty$.

Exercice 34 ($\star \star \dot{\approx}$ $\dot{\approx}$)

Pour $n \in \mathbb{N}$, on pose $u_n = \int_0^{+\infty} \frac{(x+ne^{-x})(x^3+1)}{e^x+n} dx$. Déterminer la limite de (u_n) .

Exercice 35 ($\star \star \dot{\approx}$ $\dot{\approx}$)

Soit $I = \int_0^1 \frac{t(\ln t)^2}{2(1-t)^2} dt$.

- 1) Montrer que I est convergente.
- 2) Développer en série entière $x \mapsto \frac{1}{(1-x)^2}$.
- 3) En déduire que $I = \sum_{n=1}^{+\infty} \frac{1}{n^2} \sum_{n=1}^{+\infty} \frac{1}{n^3}$.

Exercice 36 ($\star \star \Rightarrow \Leftrightarrow$)

Soient $a = (a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ et $S_a : x \mapsto \sum_{n=0}^{+\infty} a_n x^n$.

- 1) On suppose que la série de terme général a_n est convergente de somme $A \neq 0$.
 - a) Montrer que $\sum_{n\geqslant 0} a_n x^n$ est de rayon de convergence supérieur ou égal à 1.
 - **b)** Soit $g: x \in]-1, 1[\mapsto \frac{S_a(x)}{1-x}$. Montrer que g est développable en série entière et en déduire, pour tout $n \in \mathbb{N}$, la valeur de $g^{(n)}(0)$.
 - c) Montrer que $g(x) \sim_{1^{-}} \frac{A}{1-x}$ et en déduire $\lim_{x\to 1^{-}} S_a(x)$.
- 2) On suppose ici que la suite a est positive, telle que la série entière $\sum_{n\geqslant 0} a_n x^n$ soit de rayon de convergence supérieur ou égal à 1 et la série de terme général a_n soit divergente. Que peut-on dire de $\lim_{x\to 1^-} S_a(x)$?
- 3) Si, pour tout $n \in \mathbb{N}$, $a_n = (-1)^n$, montrer que $\lim_{x\to 1^-} S_a(x)$ est finie.
- 4) Énoncer le résultat démontré dans cet exercice.

Exercice 37 ($\bigstar \bigstar \circlearrowleft$) Soit U un ouvert de \mathbb{R}^2 et $g: U \to \mathbb{R}$. g est harmonique ssi elle admet des dérivées partielles secondes et $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial u^2} = 0$.

- 1) Trouver 2 réels a, b tels que $\forall t \in]-1, 1[, \frac{1}{1-t^2} = \frac{a}{1-t} + \frac{b}{1-t}.$
- 2) Résoudre sur]-1,1[l'équation différentielle $(1-t^2)y''(t)-2ty'(t)=0$.
- 3) Soit $F = f \circ g$ avec $f : \mathbb{R} \to \mathbb{R}$ \mathscr{C}^2 et g harmonique sur \mathbb{R}^2 . Déterminer les dérivées partielles de F à l'ordre 2 (en fonction de celles de g).
- 4) Montrer, à la condition que f'' ne s'annule pas sur \mathbb{R} , que F est harmonique ssi g est constante.
- **5)** Déterminer l'ensemble des fonctions $h:]-1,1[\to \mathbb{R}$ telles que $G: (x,y) \mapsto h\left(\frac{\cos(x)}{\cosh(y)}\right)$ soit harmonique sur \mathbb{R}^2 .

Exercice 38 ($\star \star \updownarrow$)

Soit $f: (x, y) \mapsto x^3 + y^3 - 3xy$.

- 1) Déterminer les points critiques de f.
- 2) En (0,0), la fonction f admet-elle un extremum local? Global?
- 3) Montrer que f n'admet pas un extremum global en (1,1).

III. Topologie

Exercice 39 ($\star \star \dot{\approx}$) Soient E un \mathbb{R} espace vectoriel, N_1 et N_2 deux normes sur E.

- 1) Soit (u_n) une suite qui converge dans (E, N_1). On suppose que N_1 et N_2 sont équivalentes. Montrer que (u_n) converge dans (E, N_2).
- 2) On suppose qu'une suite (u_n) converge dans (E, N_1) si et seulement si (u_n) converge dans (E, N_2) . Montrer que N_1 et N_2 sont équivalentes.
- 3) On prend $E = \mathbb{R}[X]$ et, pour $a \in \mathbb{R}$, $N_a(P) = |P(a)| + \int_0^1 |P'(t)| dt$. Montrer que, si $a, b \in [0, 1]$, N_a et N_b sont équivalentes.
- 4) Soit, pour $n \in \mathbb{N}$, $P_n = \frac{X^n}{2^n}$. Trouver les valeurs de a telles que (P_n) converge pour N_a et déterminer alors la limite.
- 5) En déduire que N_a et N_b ne sont pas équivalentes si $0 \le a < b$ et b > 1.

Exercice 40 ($\bigstar \bigstar \circlearrowleft$ Soit $(E, \|.\|)$ un espace vectoriel normé. Une suite $(u_n) \in E^{\mathbb{N}}$ est de Cauchy si $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n, m \geqslant N, \|u_n - u_m\| \leqslant \varepsilon$.

- 1) Montrer que toute suite convergente est de Cauchy.
- 2) Dans $E = \mathbb{R}[X]$ muni de la norme $\left\|\sum a_k X^k\right\| = \max |a_k|$, montrer que la suite (P_n) de terme général $P_n = 1 + \sum_{k=1}^n \frac{X^k}{k}$ est de Cauchy sans être convergente.
- 3) Montrer que toute suite de Cauchy est bornée.
- 4) Montrer que, si (u_n) est de Cauchy et possède une suite extraite convergente, alors (u_n) est convergente.
- 5) On admet le théorème de Bolzano-Weierstrass dans \mathbb{R} . Montrer que si E est de dimension finie, alors la suite (u_n) est convergente si et seulement si elle est de Cauchy.

Exercice 41 ($\star\star\star$)

Soit $E = \{ f \in \mathcal{C}^2([0,1], \mathbb{R}), \ f(0) = f'(0) = 0 \}.$

- 1) Montrer que $||f|| = ||f + 2f' + f''||_{\infty}$ définit une norme sur E.
- 2) Montrer qu'il existe C > 0 tel que $||f||_{\infty} \leq C||f||$ pour toute $f \in E$. Trouver le plus petit C vérifiant la relation précédente.
- 3) Les normes $\| \|$ et $\| \|_{\infty}$ sont-elles équivalentes ?

Exercice 42 ($\star \star \updownarrow$)

Soient E l'espace vectoriel des suites réelles bornées et F l'espace vectoriel des suites réelles dont la série associée est absolument convergente. Si $u \in E$, on pose $N_E(u) = \sup_{n \in \mathbb{N}} |u_n|$; si $v \in F$, on pose $\widetilde{N}_F(v) = \sum_{n=0}^{+\infty} |v_n|$.

- 1) Quelle est la relation d'inclusion entre E et F? Ces espaces sont-ils de dimension finie ?
- 2) On note pour $v \in F$, $T_v : \xi \in E \mapsto \sum_{n=0}^{+\infty} \xi_n v_n \in \mathbb{R}$ et pour $u \in E$, $\tilde{T}_u : \tilde{\xi} \in F \mapsto \sum_{n=0}^{+\infty} \tilde{\xi}_n u_n \in \mathbb{R}$. Montrer que ces applications sont bien définies, linéaires et lipschitziennes.

Exercice 43 ($\star \star \updownarrow$)

- 1) Soit $P \in \mathbb{R}[X]$ unitaire de degré n. Montrer que P est scindé sur \mathbb{R} si, et seulement si, pour tout $z \in \mathbb{C}$, $|P(z)| \ge |\operatorname{Im} z|^n$.
- 2) Montrer que l'adhérence de l'ensemble des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{R})$ est l'ensemble des matrices trigonalisables.

IV. Probabilités

Exercice 44 ($\star\star$) Soit X,Y deux variables aléatoires indépendantes suivant la même loi géométrique de paramètre p.

- 1) Déterminer la loi de $Z = \frac{X}{Y}$.
- 2) Calculer l'espérance de Z.
- 3) Montrer que E(Z) > 1.

Exercice 45 ($\bigstar \bigstar </table-container>$ On lance 6 dés et on relance ceux qui n'ont pas donné 6 jusqu'à obtenir que des 6.

On note X la variable aléatoire comptant le nombre de lancers nécessaires.

- 1) Donner la loi de X. On pourra commencer par $P(X \leq k)$.
- $\mathbf{2}$) X admet-elle une espérance finie ?

Exercice 46 ($\bigstar \stackrel{,}{\bowtie} \stackrel{,}{\bowtie}$) On dispose d'une pièce équilibrée et d'une urne contenant une boule blanche. On répète l'opération suivante :

- si on fait face, on ajoute une boule noire dans l'urne ;
- si on fait pile, on tire une boule dans l'urne et on arrête les tirages.

On note X la v.a. du rang d'arrêt de l'expérience.

- 1) Déterminer la loi de X.
- 2) Quelle est la probabilité de tirer une boule blanche après le dernier lancer ?

Exercice 47 ($\bigstar \stackrel{\triangleright}{\bowtie} \stackrel{\triangleright}{\bowtie}$) Soit (U, V) un couple de v.a. indépendantes et suivant la même loi binomiale de paramètres (2, 1/2).

- 1) Soit $T = (U-1)^2 + (V-1)^2$. Donner la loi de T.
- **2)** Soit S = (U-1)(T-1) + 1.
 - a) Calculer E(T(S-1)).
 - **b)** Donner la loi de S.
 - c) Calculer Cov(S, T).
 - d) S et T sont-elles indépendantes ?

Exercice 48 ($\bigstar \stackrel{\land}{\propto} \stackrel{\land}{\propto}$)

Soit X_1, X_2 deux v.a. indépendantes suivant $\mathcal{B}(n, \frac{1}{2})$ et : $M = \begin{pmatrix} X_1 & 1 \\ 0 & X_2 \end{pmatrix}$.

On admet pour l'instant que $: \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$.

- 1) Calculer la probabilité $P(X_1 = X_2)$.
- $\mathbf{2}$) Donner la probabilité que M soit diagonalisable.
- 3) En développant $(1+X)^{2n}$ de deux manières différentes, montrer l'égalité admise.

Exercice 49 ($\bigstar \stackrel{\hookrightarrow}{\bowtie} \stackrel{\hookrightarrow}{\bowtie}$) Soit X et Y deux v.a. indépendantes telles que $X \hookrightarrow \mathscr{P}(\lambda)$ et $Y \hookrightarrow \mathscr{P}(\mu)$. On note Z = X + Y.

- 1) Montrer que $Z \hookrightarrow \mathscr{P}(\lambda + \mu)$.
- 2) Trouver la loi de X sachant (Z = n).

Exercice 50 ($\bigstar \stackrel{\sim}{\bowtie} \stackrel{\sim}{\bowtie}$) Soit X,Y deux v.a. à valeurs dans \mathbb{N} , et $p \in]0,1[$, telles que :

$$P(X = k, Y = n) = \begin{cases} \binom{n}{k} \frac{1}{2^n} p(1-p)^n & \text{si } k \leq n \\ 0 & \text{sinon} \end{cases}$$

- 1) Déterminer la loi de Y.
- 2) Donner le developpement en série entière de $\frac{1}{1-x}$. Montrer que :

$$\sum_{n=k}^{+\infty} \binom{n}{k} x^{n-k} = \frac{1}{(1-x)^{k+1}}$$

et en déduire la loi de X.

3) Est-ce que X et Y sont indépendantes ?

Exercice 51 ($\bigstar \bigstar \circlearrowleft$ **)** Soit $(X_n)_n$ une suite de v.a. mutuellement indépendantes et suivant toutes la même loi $\mathscr{B}(p)$. On note $Y_n = \frac{1}{2}(X_n + X_{n+1})$.

- 1) Énoncer la loi faible des grands nombres.
- 2) Les Y_n sont-ils indépendants ?
- 3) On note $M_n = \frac{Y_1 + Y_2 + \dots + Y_n}{n}$. Calculer $E(M_n)$ et $V(M_n)$.
- **4)** Montrer que, pour tout $\varepsilon > 0$, $P(|M_n p| \ge \varepsilon) \le \frac{p(1-p)(2n-1)}{2n^2\varepsilon^2}$.

Exercice 52 ($\star \star \updownarrow$)

- 1) Soit X une variable aléatoire réelle centrée et vérifiant p.s. $|X| \leq 1$, soit $t \in \mathbb{R}$.
 - a) Montrer que $E\left[e^{tX}\right] \leqslant \operatorname{ch}(t)$.
 - **b)** En déduire que $E\left[e^{tX}\right] \leqslant \exp\left(\frac{t^2}{2}\right)$.
- 2) En déduire l'inégalité de Hoeffding, qui s'énonce comme suit. Soit (X_n) une suite de variables aléatoires indépendantes et centrées. On suppose qu'il existe (c_n) vérifiant : pour tout $n \in \mathbb{N}$, $c_n > 0$ et p.s. $|X_n| \leq c_n$. Notons $S_n = X_1 + \cdots + X_n$. Alors pour tout $\varepsilon > 0$:

$$P(|S_n| > \varepsilon) \le 2 \exp\left(-\frac{\varepsilon^2}{2\sum_{i=1}^n c_i^2}\right).$$

Exercice 53 ($\bigstar \stackrel{\land}{\Rightarrow} \stackrel{\land}{\Rightarrow}$)

Soit a>0. Une variable aléatoire X a pour loi $\forall n\in\mathbb{N}^*,\ P(X=n)=\frac{a}{n(n+1)}$. Déterminer a. La variable X admet-elle une espérance ? Une variance ? Expliciter la fonction génératrice de X.

Exercice 54 ($\star \star \Rightarrow \Rightarrow$)

Soient a > 0 et X une variable aléatoire telle que E(X) = V(X) = a.

- 1) Donner un exemple de variable aléatoire vérifiant cette condition.
- **2)** Montrer que $P(X \ge 2a) \le P((X a + 1)^2 \ge (a + 1)^2)$.
- 3) Montrer que $P(X \ge 2a) \le \frac{1}{a+1}$.

Exercice 55 ($\star \star \updownarrow$)

Soient X,Y,Z trois variables aléatoires indépendantes. On suppose que $X \sim \mathcal{P}(2), Y \sim \mathcal{P}(2)$ et $\forall n \in \mathbb{N}, \ P(Z=n) = \frac{1}{2^{n+1}}$.

- 1) Calculer E(Z) et V(Z).
- 2) Déterminer l'espérance et la variance de X + Y.
- 3) Soit T = X + Z. Déterminer la fonction génératrice de T. Calculer E(T) et V(T).