CMPSC 465 Data Structures and Algorithms Spring 2022

Instructor: Chunhao Wang

Flow network (Textbook Section 7.2

(Textbook, Section 7.2 Kleinberg & Tardos Section 7.1)

We need to show the following three things:

We need to show the following three things:

Running time

We need to show the following three things:

- Running time
- FORD-FULKERSON outputs a flow

We need to show the following three things:

- Running time
- FORD-FULKERSON outputs a flow
- FORD-FULKERSON outputs the max flow

For simplicity, we assume the capacities are all integers

For simplicity, we assume the capacities are all integers

Fact (Fact 1)

In every step of the algorithm, the flow and the residual capacities are all integers

For simplicity, we assume the capacities are all integers

Fact (Fact 1)

In every step of the algorithm, the flow and the residual capacities are all integers

Fact (Fact 2)

Let f be a flow in G and P be a simple s-t path in G_f . Then

For simplicity, we assume the capacities are all integers

Fact (Fact 1)

In every step of the algorithm, the flow and the residual capacities are all integers

Fact (Fact 2)

Let f be a flow in G and P be a simple s-t path in G_f . Then

$$v(f') = v(f) + \text{bottleneck}(P, f)$$

For simplicity, we assume the capacities are all integers

Fact (Fact 1)

In every step of the algorithm, the flow and the residual capacities are all integers

Fact (Fact 2)

Let f be a flow in G and P be a simple s-t path in G_f . Then

$$v(f') = v(f) + \text{bottleneck}(P, f)$$

Proof.

The first edge of P leaves s, and P doesn't revisit s again.

For simplicity, we assume the capacities are all integers

Fact (Fact 1)

In every step of the algorithm, the flow and the residual capacities are all integers

Fact (Fact 2)

Let f be a flow in G and P be a simple s-t path in G_f . Then

$$v(f') = v(f) + \text{bottleneck}(P, f)$$

Proof.

The first edge of P leaves s, and P doesn't revisit s again. Moreover, it's a forward edge. So

For simplicity, we assume the capacities are all integers

Fact (Fact 1)

In every step of the algorithm, the flow and the residual capacities are all integers

Fact (Fact 2)

Let f be a flow in G and P be a simple s-t path in G_f . Then

$$v(f') = v(f) + bottleneck(P, f)$$

Proof.

The first edge of P leaves s, and P doesn't revisit s again. Moreover, it's a forward edge. So

$$v(f') = v(f) + \text{bottleneck}(P, f)$$

Since bottleneck(P, f) ≥ 1 ,

Since bottleneck
$$(P, f) \ge 1$$
,

$$v(f') \geq v(f) + 1$$

Since bottleneck $(P, f) \ge 1$,

$$v(f') \geq v(f) + 1$$

Let $C = \sum_{e \text{ out of } s} c_e$. We have

Since bottleneck(P, f) ≥ 1 ,

$$v(f') \ge v(f) + 1$$

Let $C = \sum_{e \text{ out of } s} c_e$. We have

Corollary

The Ford-Fulkerson algorithm performs $\leq C$ iterations

Since bottleneck $(P, f) \ge 1$,

$$v(f') \ge v(f) + 1$$

Let $C = \sum_{e \text{ out of } s} c_e$. We have

Corollary

The Ford-Fulkerson algorithm performs $\leq C$ iterations

Proof.

All capacities are integers. Every iteration increase the value by ≥ 1

Since bottleneck(P, f) > 1,

$$v(f') \ge v(f) + 1$$

Let $C = \sum_{e \text{ out of } s} c_e$. We have

Corollary

The Ford-Fulkerson algorithm performs $\leq C$ iterations

Proof.

All capacities are integers. Every iteration increase the value by ≥ 1

Finding an s-t path takes O(|V| + |E|) = O(|E|) time (BFS)

Since bottleneck $(P, f) \ge 1$,

$$v(f') \ge v(f) + 1$$

Let $C = \sum_{e \text{ out of } s} c_e$. We have

Corollary

The Ford-Fulkerson algorithm performs $\leq C$ iterations

Proof.

All capacities are integers. Every iteration increase the value by $\geq 1 \quad \ \Box$

Finding an s-t path takes O(|V| + |E|) = O(|E|) time (BFS) Augmentation takes O(|V|) time

Since bottleneck(P, f) ≥ 1 ,

$$v(f') \ge v(f) + 1$$

Let $C = \sum_{e \text{ out of } s} c_e$. We have

Corollary

The Ford-Fulkerson algorithm performs $\leq C$ iterations

Proof.

All capacities are integers. Every iteration increase the value by ≥ 1

Finding an s-t path takes O(|V|+|E|)=O(|E|) time (BFS) Augmentation takes O(|V|) time

So total running time is $O(C \cdot |E|)$

Lemma

Let f' be the function obtained after augmenting. Then f' is a flow

Lemma

Let f' be the function obtained after augmenting. Then f' is a flow

Proof.

April 14, 2022

Lemma

Let f' be the function obtained after augmenting. Then f' is a flow

Proof.

Capacity constraint.

Lemma

Let f' be the function obtained after augmenting. Then f' is a flow

Proof.

Capacity constraint. It suffices to consider edges of P

Lemma

Let f' be the function obtained after augmenting. Then f' is a flow

Proof.

■ Capacity constraint. It suffices to consider edges of PLet $e = (u, v) \in P$. bottleneck(P, f) is at most the residual capacity of e

Lemma

Let f' be the function obtained after augmenting. Then f' is a flow

Proof.

- Capacity constraint. It suffices to consider edges of PLet $e = (u, v) \in P$. bottleneck(P, f) is at most the residual capacity of e
 - if e is a forward edge, then

Lemma

Let f' be the function obtained after augmenting. Then f' is a flow

Proof.

- Capacity constraint. It suffices to consider edges of PLet $e = (u, v) \in P$. bottleneck(P, f) is at most the residual capacity of e
 - if e is a forward edge, then

$$0 \le f(e) \le f'(e) = f(e) + \text{bottleneck}(P, f) \le f(e) + (c_e - f(e)) = c_e$$

Lemma

Let f' be the function obtained after augmenting. Then f' is a flow

Proof.

- Capacity constraint. It suffices to consider edges of PLet $e = (u, v) \in P$. bottleneck(P, f) is at most the residual capacity of e
 - if *e* is a forward edge, then

$$0 \le f(e) \le f'(e) = f(e) + \text{bottleneck}(P, f) \le f(e) + (c_e - f(e)) = c_e$$

So $0 \le f'(e) \le c_e$

Lemma

Let f' be the function obtained after augmenting. Then f' is a flow

Proof.

- Capacity constraint. It suffices to consider edges of PLet $e = (u, v) \in P$. bottleneck(P, f) is at most the residual capacity of e
 - if *e* is a forward edge, then

$$0 \le f(e) \le f'(e) = f(e) + \text{bottleneck}(P, f) \le f(e) + (c_e - f(e)) = c_e$$

So $0 \le f'(e) \le c_e$

• if e is a backward edge, then

Lemma

Let f' be the function obtained after augmenting. Then f' is a flow

Proof.

- Capacity constraint. It suffices to consider edges of PLet $e = (u, v) \in P$. bottleneck(P, f) is at most the residual capacity of e
 - if *e* is a forward edge, then

$$0 \le f(e) \le f'(e) = f(e) + \text{bottleneck}(P, f) \le f(e) + (c_e - f(e)) = c_e$$

So $0 \le f'(e) \le c_e$

• if e is a backward edge, then

$$c_e \ge f(e) \ge f'(e) = f(e) - \text{bottleneck}(P, f) \ge f(e) - f(e) = 0$$

Lemma

Let f' be the function obtained after augmenting. Then f' is a flow

Proof.

- Capacity constraint. It suffices to consider edges of P
 Let e = (u, v) ∈ P. bottleneck(P, f) is at most the residual capacity of e
 - if *e* is a forward edge, then

$$0 \le f(e) \le f'(e) = f(e) + \text{bottleneck}(P, f) \le f(e) + (c_e - f(e)) = c_e$$

So $0 < f'(e) < c_e$

• if e is a backward edge, then

$$c_e \geq f(e) \geq f'(e) = f(e) - \operatorname{bottleneck}(P,f) \geq f(e) - f(e) = 0$$

So
$$0 < f'(e) < c_e$$

Correctness of Ford-Fulkerson (I)

Flow and Cut

Definition

An **s-t cut** is a partition of V, (A, B) where $s \in A$ and $t \in B$

Correctness of Ford-Fulkerson (I)

Flow and Cut

Definition

An **s-t cut** is a partition of V, (A, B) where $s \in A$ and $t \in B$

Definition

The capacity of the cut is

$$c(A,B) = \sum_{e \text{ out of } A} c_e$$

Correctness of Ford-Fulkerson (I)

Flow and Cut

Definition

An **s-t cut** is a partition of V, (A, B) where $s \in A$ and $t \in B$

Definition

The capacity of the cut is

$$c(A,B) = \sum_{e \text{ out of } A} c_e$$

How does a cut help?

Flow and Cut

Definition

An **s-t cut** is a partition of V, (A, B) where $s \in A$ and $t \in B$

Definition

The capacity of the cut is

$$c(A,B) = \sum_{e \text{ out of } A} c_e$$

How does a cut help?

Flow and Cut

Definition

An **s-t cut** is a partition of V, (A, B) where $s \in A$ and $t \in B$

Definition

The capacity of the cut is

$$c(A,B) = \sum_{e \text{ out of } A} c_e$$

How does a cut help?

The flow must have a value ≤ 22

Flow and Cut

Definition

An **s-t cut** is a partition of V, (A, B) where $s \in A$ and $t \in B$

Definition

The capacity of the cut is

$$c(A, B) = \sum_{e \text{ out of } A} c_e$$

How does a cut help?

The flow must have a value ≤ 22 Capacity of a cut put a bound on the flow value

Lemma

Let f be an s-t flow, (A, B) be an s-t cut. Then $v(f) \le c(A, B)$

Lemma

Let f be an s-t flow, (A, B) be an s-t cut. Then $v(f) \le c(A, B)$

Proof.

Lemma

Let f be an s-t flow, (A, B) be an s-t cut. Then $v(f) \le c(A, B)$

Proof. Notation:

Lemma

Let f be an s-t flow, (A, B) be an s-t cut. Then $v(f) \le c(A, B)$

Proof. Notation:

$$f^{\mathrm{out}}(A) = \sum_{e \text{ out of } A} f(e)$$

Lemma

Let f be an s-t flow, (A, B) be an s-t cut. Then $v(f) \le c(A, B)$

Proof. Notation:

$$f^{ ext{out}}(A) = \sum_{e \text{ out of } A} f(e)$$
 $f^{ ext{in}}(A) = \sum_{e \text{ into } A} f(e)$

Lemma

Let f be an s-t flow, (A, B) be an s-t cut. Then $v(f) \le c(A, B)$

Proof. Notation:

$$f^{ ext{out}}(A) = \sum_{e ext{ out of } A} f(e)$$
 $f^{ ext{in}}(A) = \sum_{e ext{ into } A} f(e)$

So, $v(f) = \sum_{e \text{ out of } s} f(e) = f^{\text{out}}(s) = f^{\text{out}}(s) - f^{\text{in}}(s)$ (no edge into s)

Lemma

Let f be an s-t flow, (A, B) be an s-t cut. Then $v(f) \le c(A, B)$

Proof. Notation:

$$f^{ ext{out}}(A) = \sum_{e \text{ out of } A} f(e)$$
 $f^{ ext{in}}(A) = \sum_{e \text{ into } A} f(e)$

So, $v(f) = \sum_{e \text{ out of } s} f(e) = f^{\text{out}}(s) = f^{\text{out}}(s) - f^{\text{in}}(s)$ (no edge into s) Also, for all $v \in A - \{s, t\}$, $f^{\text{out}}(v) = f^{\text{in}}(v)$ (flow conservation)

Lemma

Let f be an s-t flow, (A, B) be an s-t cut. Then $v(f) \le c(A, B)$

Proof. Notation:

$$f^{ ext{out}}(A) = \sum_{e \text{ out of } A} f(e)$$
 $f^{ ext{in}}(A) = \sum_{e \text{ into } A} f(e)$

So, $v(f) = \sum_{e \text{ out of } s} f(e) = f^{\text{out}}(s) = f^{\text{out}}(s) - f^{\text{in}}(s)$ (no edge into s) Also, for all $v \in A - \{s, t\}$, $f^{\text{out}}(v) = f^{\text{in}}(v)$ (flow conservation) $\implies f^{\text{out}}(v) - f^{\text{in}}(v) = 0$ for all $v \neq s, t$

Lemma

Let f be an s-t flow, (A, B) be an s-t cut. Then $v(f) \le c(A, B)$

Proof. Notation:

$$f^{ ext{out}}(A) = \sum_{e ext{ out of } A} f(e)$$
 $f^{ ext{in}}(A) = \sum_{e ext{ into } A} f(e)$

So,
$$v(f) = \sum_{e \text{ out of } s} f(e) = f^{\text{out}}(s) = f^{\text{out}}(s) - f^{\text{in}}(s)$$
 (no edge into s)
Also, for all $v \in A - \{s, t\}$, $f^{\text{out}}(v) = f^{\text{in}}(v)$ (flow conservation)
 $\implies f^{\text{out}}(v) - f^{\text{in}}(v) = 0$ for all $v \neq s, t$

So

$$v(f) = \sum_{v \in A} \left(f^{\text{out}}(v) - f^{\text{in}}(v) \right)$$

$$v(f) = \sum_{v \in A} \left(f^{\text{out}}(v) - f^{\text{in}}(v) \right)$$

$$v(f) = \sum_{v \in A} \left(f^{\text{out}}(v) - f^{\text{in}}(v) \right)$$

consider every edge (v, w)

$$v(f) = \sum_{v \in A} \left(f^{\text{out}}(v) - f^{\text{in}}(v) \right)$$

consider every edge (v, w)

• if $v, w \in A$, this edge contributes 0 in the summation

$$v(f) = \sum_{v \in A} \left(f^{\text{out}}(v) - f^{\text{in}}(v) \right)$$

consider every edge (v, w)

- if $v, w \in A$, this edge contributes 0 in the summation
- if $v \in A$, $w \notin A$, this edge contributes f(e)

$$v(f) = \sum_{v \in A} \left(f^{\text{out}}(v) - f^{\text{in}}(v) \right)$$

consider every edge (v, w)

- if $v, w \in A$, this edge contributes 0 in the summation
- if $v \in A$, $w \notin A$, this edge contributes f(e)
- if $v \notin A$, $w \in A$, this edge contributes -f(e)

$$v(f) = \sum_{v \in A} \left(f^{\text{out}}(v) - f^{\text{in}}(v) \right)$$

consider every edge (v, w)

- if $v, w \in A$, this edge contributes 0 in the summation
- if $v \in A$, $w \notin A$, this edge contributes f(e)
- if $v \notin A$, $w \in A$, this edge contributes -f(e)

We rewrite the summation as

$$v(f) = \sum_{v \in A} \left(f^{\text{out}}(v) - f^{\text{in}}(v) \right)$$

consider every edge (v, w)

- if $v, w \in A$, this edge contributes 0 in the summation
- if $v \in A$, $w \notin A$, this edge contributes f(e)
- if $v \notin A$, $w \in A$, this edge contributes -f(e)

We rewrite the summation as

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) \le \sum_{e \text{ out of } A} f(e) = c(A, B)$$

The upper bound c(A, B) is achievable by Ford-Fulkerson

The upper bound c(A, B) is achievable by Ford-Fulkerson

Lemma

Let f be a flow s.t. there's no s-t path in G_f . Then there exists an s-t cut (A^*, B^*) s.t. $v(f) = c(A^*, B^*)$

The upper bound c(A, B) is achievable by Ford-Fulkerson

Lemma

Let f be a flow s.t. there's no s-t path in G_f . Then there exists an s-t cut (A^*, B^*) s.t. $v(f) = c(A^*, B^*)$

Proof.

The upper bound c(A, B) is achievable by Ford-Fulkerson

Lemma

Let f be a flow s.t. there's no s-t path in G_f . Then there exists an s-t cut (A^*, B^*) s.t. $v(f) = c(A^*, B^*)$

Proof. Let A^* be the set of vertices reachable from s in G_f . Let B^* be $V - A^*$.

The upper bound c(A, B) is achievable by Ford-Fulkerson

Lemma

Let f be a flow s.t. there's no s-t path in G_f . Then there exists an s-t cut (A^*, B^*) s.t. $v(f) = c(A^*, B^*)$

Proof. Let A^* be the set of vertices reachable from s in G_f . Let B^* be $V - A^*$. We have the follow facts

The upper bound c(A, B) is achievable by Ford-Fulkerson

Lemma

Let f be a flow s.t. there's no s-t path in G_f . Then there exists an s-t cut (A^*, B^*) s.t. $v(f) = c(A^*, B^*)$

Proof. Let A^* be the set of vertices reachable from s in G_f . Let B^* be $V - A^*$. We have the follow facts

• (A^*, B^*) is an s-t cut: $s \in A^*$, $t \in B^*$ (no s-t path in G_f)

The upper bound c(A, B) is achievable by Ford-Fulkerson

Lemma

Let f be a flow s.t. there's no s-t path in G_f . Then there exists an s-t cut (A^*, B^*) s.t. $v(f) = c(A^*, B^*)$

Proof. Let A^* be the set of vertices reachable from s in G_f . Let B^* be $V - A^*$. We have the follow facts

- (A^*, B^*) is an s-t cut: $s \in A^*$, $t \in B^*$ (no s-t path in G_f)
- for all edge $e=(v,v')\in E$ with $v\in A^*,v'\in B^*$, we have $f(e)=c_e$

The upper bound c(A, B) is achievable by Ford-Fulkerson

Lemma

Let f be a flow s.t. there's no s-t path in G_f . Then there exists an s-t cut (A^*, B^*) s.t. $v(f) = c(A^*, B^*)$

Proof. Let A^* be the set of vertices reachable from s in G_f . Let B^* be $V - A^*$. We have the follow facts

- (A^*, B^*) is an s-t cut: $s \in A^*$, $t \in B^*$ (no s-t path in G_f)
- for all edge $e = (v, v') \in E$ with $v \in A^*, v' \in B^*$, we have $f(e) = c_e$ Otherwise, (v, v') is an edge in G_f with capacity $c_e - f(e) \neq 0$.

The upper bound c(A, B) is achievable by Ford-Fulkerson

Lemma

Let f be a flow s.t. there's no s-t path in G_f . Then there exists an s-t cut (A^*, B^*) s.t. $v(f) = c(A^*, B^*)$

Proof. Let A^* be the set of vertices reachable from s in G_f . Let B^* be $V - A^*$. We have the follow facts

- (A^*, B^*) is an s-t cut: $s \in A^*$, $t \in B^*$ (no s-t path in G_f)
- for all edge $e = (v, v') \in E$ with $v \in A^*, v' \in B^*$, we have $f(e) = c_e$ Otherwise, (v, v') is an edge in G_f with capacity $c_e - f(e) \neq 0$. Forward edge. So v' is reachable from s in G_f (contradiction)

• for all edge e = (w', w) with $w' \in B^*, w \in A^*$, we have f(e) = 0

$$v(f) = \sum_{e \text{ out of } A^*} f(e) - \sum_{e \text{ into } A^*} f(e)$$
 (from the proof of $v(f) \le c(A, B)$)

$$egin{aligned} v(f) &= \sum_{e ext{ out of } A^*} f(e) - \sum_{e ext{ into } A^*} f(e) & ext{ (from the proof of } v(f) \leq c(A,B)) \ &= \sum_{e ext{ out of } A^*} f(e) - 0 \end{aligned}$$

$$v(f) = \sum_{e \text{ out of } A^*} f(e) - \sum_{e \text{ into } A^*} f(e)$$
 (from the proof of $v(f) \le c(A, B)$)
$$= \sum_{e \text{ out of } A^*} f(e) - 0$$

$$= \sum_{e \text{ out of } A^*} c_e$$

$$egin{aligned} v(f) &= \sum_{e ext{ out of } A^*} f(e) - \sum_{e ext{ into } A^*} f(e) & ext{ (from the proof of } v(f) \leq c(A,B)) \ &= \sum_{e ext{ out of } A^*} f(e) - 0 \ &= \sum_{e ext{ out of } A^*} c_e = c(A^*,B^*) \end{aligned}$$

Some consequences:

Some consequences:

■ The flow returned by Ford-Fulkerson is a maximum flow

Some consequences:

- The flow returned by Ford-Fulkerson is a maximum flow
- In every flow network, maximum value of a flow = minimum capacity of a cut

Some consequences:

- The flow returned by Ford-Fulkerson is a maximum flow
- In every flow network, maximum value of a flow = minimum capacity of a cut
- Given a flow of max value, can compute a cut of minimum capacity in O(|E|) time

Some consequences:

- The flow returned by Ford-Fulkerson is a maximum flow
- In every flow network, maximum value of a flow = minimum capacity of a cut
- Given a flow of max value, can compute a cut of minimum capacity in O(|E|) time
- If all capacities of a flow network are integers, then there is a max flow f s.t. f(e) is an integer for all e