Лабораторная работа №5

Цели и задачи:

Для трех распределений $X \sim N(a,\sigma), X \sim U(a,b)$ — и распределения Лапласа или двойного показательного — $L(a,u)=a+Exp(\lambda)-Exp\lambda$, $\lambda=1$ u (суммируемые показательные распределения независимы). Сравнить следующие оценки параметра a — математического ожидания и медианы всех распределений, выборочного среднего, медианы и полусуммы минимума и максимума вариационного ряда. Все оценки не смещены. Сравнивать оценки нужно с точки зрения квадратичного риска (т. е. для несмещенных оценок одномерного параметра — дисперсии оценки). При n=100 — объем выбороки, m=100 — количество выборок, построить 100 оценок каждого вида и сравнить их выборочные среднеквадратичные отклонения, повторить при n=10000, m=100. Сравнить с теоретическими среднеквадратичными отклонениями.

Сравнение:

$X\sim N(5,\sqrt{2}),$	mean(X)	med(X)	$(X_1+X_N)/2$
n=100, m=100			
Theoretical sigma	0.1414	0.1772	0.4168
Practical sigma	0.1417	0.1748	0.3952

$X\sim N(5,\sqrt{2}),$	mean(X)	med(X)	$(X_1+X_N)/2$
n=10000,			
m=100			
Theoretical sigma	0.014142	0.017725	0.2947
Practical sigma	0.014464	0.018143	0.2867

<i>X~U(0,</i> 10), n=100, m=100	mean(X)	med(X)	$(X_1+X_N)/2$
Theoretical sigma	0.2887	0.5000	0.070711
Practical sigma	0.2842	0.5144	0.076202

$X \sim U(0,10),$ n=10000, m=100	mean(X)	med(X)	$(X_1+X_N)/2$
Theoretical sigma	0.028868	0.050000	7.0711e-04
Practical sigma	0.029316	0.048123	6.7772e-04

<i>X~L(1,2), n=100, m=100</i>	mean(X)	med(X)	$(X_1+X_N)/2$
Theoretical sigma	0.2828	0.2000	1.8974
Practical sigma	0.3166	0.2393	1.7786

$X \sim L(1,2),$ n=10000, m=100	mean(X)	med(X)	$(X_1+X_N)/2$
Theoretical sigma	0.028284	0.020000	1.8974
Practical sigma	0.026418	0.018572	1.9055

Вывод:

Практические оценки примерно равны теоретическим, и изменяются также, как и теоретические с увеличением n . Для нормального распределения оценка матожидания имеет наименьший квадратичный риск. Для равномерного - оценка полусуммы минимума и максимума вариационного ряда. Для двойного показательного - оценка медианы.