Shape-from-silhouettes réfracté

Plan

- 1. Introduction
 - 1.1. MVS classique / réfracté
 - 1.2. SFS classique
- 2. SFS "inverse"
 - 2.1. Principe/méthode
 - 2.2. Mise en œuvre
- 3. Résultats
- 4. Conclusion
- 5. Perspectives

Plan

- 1. Introduction
 - 1.1. MVS classique / réfracté
 - 1.2. SFS classique
- 2. SFS "inverse"
 - 2.1. Principe/méthode
 - 2.2. Mise en œuvre
- 3. Résultats
- 4. Conclusion
- 5. Perspectives

Introduction

Espèces fragiles conservées dans un milieu transparent

Reconstruction 3D d'un insecte piégé dans de la résine

MVS classique

• Entrée:

- Images/Masques
- Poses (RT)
- Caméras calibrées (K,f)

• Sortie:

• Une fonction de profondeur

MVS réfracté

Déprojection

Loi de Snell-Descartes:

$$n_1 \sin i_1 = n_2 \sin i_2$$

Projection

Plage de valeurs "plausibles":

Discrétisation du rayon

Plus court chemin:

Discrétisation du dioptre

MVS réfracté

Shape-from-silhouettes classique

- Définition d'une boîte englobante large de l'objet.
- Connaissance des poses caméra.
- Définition des matrices de transformation du volume aux coordonnées monde.
- Calcul du score d'occupation pour chaque voxel.

Shape-from-silhouettes classique

Plan

- 1. Introduction
 - 1.1. MVS classique / réfracté
 - 1.2. SFS classique
- 2. SFS "inverse"
 - 2.1. Principe/méthode
 - 2.2. Mise en œuvre
- 3. Résultats
- 4. Conclusion
- 5. Perspectives

Adaptation possible du problème pour prendre en compte la réfraction

Préparation des données

Mise en œuvre

coordonnées pixel

puis vers le repère monde

$$R^T(P_{camera} - t)$$

lancement d'un rayon depuis le pixel du masque passant par le centre de

la caméra

Plan

- 1. Introduction
 - 1.1. MVS classique / réfracté
 - 1.2. SFS classique
- 2. SFS "inverse"
 - 2.1. Principe/méthode
 - 2.2. Mise en œuvre
- 3. Résultats
- 4. Conclusion
- 5. Perspectives

Enveloppe voxélisée

Enveloppe voxélisée résolution de 0.1

Enveloppe voxélisée résolution de 0.05

Résultats (vidéos)

Enveloppe voxélisée résolution de 0.1

Enveloppe voxélisée résolution de 0.05

Plan

- 1. Introduction
 - 1.1. MVS classique / réfracté
 - 1.2. SFS classique
- 2. SFS "inverse"
 - 2.1. Principe/méthode
 - 2.2. Mise en œuvre
- 3. Résultats
- 4. Conclusion
- 5. Perspectives

Conclusion

Plan

- 1. Introduction
 - 1.1. MVS classique / réfracté
 - 1.2. SFS classique
- 2. SFS "inverse"
 - 2.1. Principe/méthode
 - 2.2. Mise en œuvre
- 3. Résultats
- 4. Conclusion
- 5. Perspectives

Problème possible

2 types d'erreurs

Pas grâve

vérité terrain

Grâve!

Solution possible

Intersection des voxels traversés par les rayons du masque

vérité terrain

Complémentaire de l'union des voxels traversés par les rayons en dehors du masque

Merci pour votre attention