

Roberto Todeschini, Viviana Consonni

Handbook of Molecular **Descriptors**

Methods and Principles in Medicinal Chemistry

Volume 11

Edited by R. Mannhold, H. Kubinyi, H. Timmerman ms, derived to distances g the diago-obtained by fields in gridely positive-resulting in is that their 193b; van de

3] [Zakarya 996] [Patterd Legendre,

autocorrela-

on density)

on density)

Balaban dis-

ptors (O elec-

ın)

ectron density)

ptors

es

B

backward Fukui function → quantum-chemical descriptors (⊙ Fukui function)

Balaban centric Indices → centric indices

Balaban distance connectivity index - Balaban distance connectivity indices

Balaban distance connectivity Indices

The formerly proposed and the most important of this series of topological indices is the Balaban distance connectivity index J (also called distance connectivity index or average distance sum connectivity). It is one of the most discriminating \rightarrow molecular descriptors and its values do not increase substantially with molecule size or number of rings; it is defined in terms of sums over each lth row of the \rightarrow distance matrix D, i.e. the \rightarrow vertex distance degree o [Balaban, 1982; Balaban, 1983a]. It is defined as:

$$J = \frac{B}{C+1} \cdot \sum_{b} (\sigma_{l} \cdot \sigma_{j})_{b}^{-1/2} = \frac{1}{C+1} \cdot \sum_{b} (\tilde{\sigma}_{i} \cdot \tilde{\sigma}_{j})_{b}^{-1/2}$$

where σ_i and σ_j are the vertex distance degrees of two adjacent atoms, and the sum runs over all the molecular bonds b; B is the number of bonds in the molecular graph G, and C, called the \rightarrow cyclomatic number, the number of rings. The denominator C+1 is a normalization factor against the number of rings in the molecule. $\tilde{\sigma}_i = \sigma_i/B$ is the average vertex distance degree; it was observed that within an isomeric series the average distance degrees are low in the more branched isomers.

To further improve the discriminant power of the Balaban index I, a set of new LOVIs was defined as:

$$r_i = \frac{\sigma_i}{\delta_i}$$

where δ_i is the *i*th \rightarrow vertex degree. Therefore, the J_i index was defined as:

$$J_{e} = \frac{B}{C+1} \cdot \sum_{b} (t_{i} \cdot t_{j})_{b}^{-1/2}$$

The idea behind these LOVIs is that usually the vertices with the highest distance sums have the lowest vertex degrees, thus enhancing the intramolecular differences [Balaban, 1994a].

The J index for multigraphs is calculated by the distance sums of the \rightarrow multigraph distance matrix where the distances are obtained by weighting each edge with the inverse of its \rightarrow conventional bond order (\rightarrow relative topological distance); the sum runs over all pairs of adjacent vertices and B is the number of edges in the graph without accounting for their multiplicity.

Example: 2-methylpentane

Distance matrix D

Vertex	degrees
--------	---------

Atom	1	2	3	4	5	6	σ_i
1	0	1	2	3	4	2	12
2	1	0	1	2	3	1	8
3	2	1	0	1	2	2	8
4	3	2	1	0	1	3	10
5	4	3	2	1	0	4	14
6	2	1	2	3	4	0	12

Atom	δ,	£ _i
1	1	12
2	3	2.667
3	2	4
4	2	5
5	1	14
6	i	12

$$J = \frac{B}{C+1} \cdot \left[(\sigma_1 \cdot \sigma_2)^{-1/2} + (\sigma_6 \cdot \sigma_2)^{-1/2} + (\sigma_2 \cdot \sigma_3)^{-1/2} + (\sigma_3 \cdot \sigma_4)^{-1/2} + (\sigma_4 \cdot \sigma_5)^{-1/2} \right] =$$

$$= 5 \cdot \left[(12 \cdot 8)^{-1/2} + (12 \cdot 8)^{-1/2} + (8 \cdot 8)^{-1/2} + (8 \cdot 10)^{-1/2} + (10 \cdot 14)^{-1/2} \right] = 2.6272$$

$$J_c = \frac{B}{C+1} \cdot \left[(t_1 \cdot t_2)^{-1/2} + (t_6 \cdot t_2)^{-1/2} + (t_2 \cdot t_3)^{-1/2} + (t_3 \cdot t_4)^{-1/2} + (t_4 \cdot t_5)^{-1/2} \right] =$$

$$= 5 \cdot \left[(12 \cdot 2.667)^{-1/2} + (12 \cdot 2.667)^{-1/2} + (2.667 \cdot 4)^{-1/2} + (4 \cdot 5)^{-1/2} + (5 \cdot 14)^{-1/2} \right] = 5.0141$$

Box B-1.

In order to account for both bond multiplicity and heteroatoms, Balaban modified distance connectivity indices J^{\times} and J^{\vee} were proposed [Balaban, 1986a; Balaban et al., 1990a]. These are defined in the same way as the Balaban distance connectivity index but derived from the \rightarrow multigraph distance matrix $^{\circ}$ D instead of the original distance matrix D:

$$J^{X} = \frac{B}{C+1} \cdot \sum_{b} \left({}^{*}\sigma_{i}^{X} \cdot {}^{*}\sigma_{j}^{X} \right)^{-1/2}$$

$$J^{Y} = \frac{B}{C+1} \cdot \sum_{b} \left({}^{*}\sigma_{i}^{Y} \cdot {}^{*}\sigma_{j}^{Y} \right)^{-1/2} \cdot$$

where B is the bond number, C is the cyclomatic number, and the sum runs over all bonds b in the graph, each being weighted by the inverse square root of the product of the \rightarrow multigraph distance degree of the incident vertices. The distance degrees are calculated as:

020 7240 7258

23

Balaban distance connectivity indices

$${}^*\sigma_l^X = X_i \cdot {}^*\sigma_l = X_i \cdot \sum_{j=1}^A [{}^*\mathbf{D}]_{ij}$$
 and $X_i = 0.4196 - 0.0078 \cdot Z_i + 0.1567 \cdot L_i$

$$\sigma_i^Y = Y_i \cdot \sigma_i = Y_i \cdot \sum_{i=1}^{A} [^*\mathbf{D}]_{ij}$$
 and $Y_i = 1.1191 + 0.0160 \cdot Z_i - 0.0537 \cdot L_i$

where of is the vertex distance degree calculated on multigraph distance matrix $^{\circ}$ D, the quantities X and Y are recalculated atomic Sanderson electronegativities and covalent radii relative to carbon atom, obtained as a function of the atomic number Z_t and the principal quantum number L_t of the atom; for atoms different from B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, and I the X and Y values are set at one. X and Y indices account for the presence of heteroatoms in the molecule.

Another generalization of the Balaban index I, so as to account for heteroatoms in the molecule, is the \rightarrow Barysz index calculated on the \rightarrow Barysz distance matrix.

→ II indices derived from the → Wiener matrix were proposed as a generalization of the Balaban index in analogy with the Kier-Hall → connectivity indices.

The 3D-Balaban index 3D1 was derived from the - geometry matrix G as:

$3D$
J = $I\mathcal{B}(G) = \frac{\mathcal{B}}{C+1} \cdot \sum_{b} \left(^{G}\sigma_{i} \cdot ^{G}\sigma_{j} \right)_{b}^{-1/2}$

where IB is the \rightarrow Ivanciuc-Balaban operator, σ_{0i} and σ_{0j} are the \rightarrow geometric distance degree of the two vertices incident with the b bond [Mihalic et al., 1992a].

A Balaban-type index DJ [Balaban and Diudea, 1993] was defined as:

$$DJ = \sum_{l=1}^{A} dj_{l} = \sum_{i=1}^{A} \sum_{j \in V_{i1}} \left(\frac{\sigma_{l}}{w_{i}(1+f_{i})} \cdot \frac{\sigma_{j}}{w_{j}(1+f_{j})} \right)^{-1/2}$$

where A is the \rightarrow atom number, f is the \rightarrow multigraph factor, w is a weighting factor accounting for heteroatoms, and the inner sum runs over all vertices j at distance 1 from the ith atom, i.e. vertices bonded to the ith atom; dj are local vertex invariants accounting for heteroatoms and bond multiplicity. When the factor w is equal to one and the multigraph factor is equal to zero then the index DJ is related to the Balaban index J by the following:

$$DJ = 2 \cdot J \cdot \frac{C+1}{R}$$

[Balaban and Quintar, 1983] [Barysz et al., 1983a] [Balaban and Filip, 1984] [Balaban et al., 1985e] [Sabljic, 1985] [Mekenyan et al., 1987] [Balaban and Ivanciuc, 1989] [Balaban et al., 1990b] [Balaban et al., 1992a] [Nikolic et al., 1993a] [Guo and Randic, 1999]

Balaban ID number → ID numbers

Balaban modified distance connectivity indices - Balaban distance connectivity indices

Balaban-type index - Balaban distance connectivity indices

Bartell resonance energy - resonance indices

barycentre : centre of mass - centre of a molecule

Barysz Index → weighted matrices

Barysz distance matrix - weighted matrices

0141

22

dified et al.,

index tance

er all uct of s are Kier shape descriptors (x)

Kekulé structure count : Kekulé number

Kellog and Abraham Interaction field → molecular interaction fields (O hydrophobic fields)

Kier alpha-modified shape descriptors - Kier shape descriptors

Kier bond rigidity index → flexibility indices

Kier-Hall connectivity Indices: connectivity indices of mth order - connectivity indices

Kier-Hall connectivity matrix - weighted matrices

Kier-Hall electronegativity - vertex degree

Kier-Hall solvent polarity Index - electric polarization descriptors

Kier molecular flexibility index - flexibility indices

Kler steric descriptor → steric descriptors

Kler shape descriptors (k)

Topological shape descriptors "k defined in terms of the number of graph vertices A and the number of paths mP with length m (m = 1,2,3) in the $\rightarrow H$ -depleted molecular graph, according to the following:

$${}^{1}\kappa = 2 \cdot \frac{{}^{1}P_{\max} \cdot {}^{1}P_{\min}}{({}^{1}P)^{2}} = \frac{A(A-1)^{2}}{({}^{1}P)^{2}} \qquad {}^{2}\kappa = 2 \cdot \frac{{}^{2}P_{\max} \cdot {}^{2}P_{\min}}{({}^{2}P)^{2}} = \frac{(A-1)(A-2)^{2}}{({}^{2}P)^{2}}$$

$${}^{3}\kappa = 4 \cdot \frac{{}^{3}P_{\max} \cdot {}^{3}P_{\min}}{{(}^{3}P)^{2}} = \begin{cases} \frac{(A-3)(A-2)^{2}}{{(}^{3}P)^{2}} & \text{for even } A \ (A>3) \\ \frac{(A-1)(A-3)^{2}}{{(}^{3}P)^{2}} & \text{for odd } A \ (A>3) \end{cases}$$

where ${}^{m}P_{min}$ and ${}^{m}P_{mex}$ are the minimum and maximum m th order \rightarrow path count in the molecular graphs of molecules with the same \rightarrow atom number A [Kier, 1985; Kier, 1986b]. These extremes are obtained from two reference structures chosen in an isomeric series and, for the ith molecule, is therefore:

$${}^{m}P_{\min} \leq {}^{m}P_{l} \leq {}^{m}P_{\max}$$

The reference structure for 1Pmin is the - linear graph while for 1Pmax it is the - complete graph in which all stoms are bonded to each other, their numerical values are calculated as follows:

$${}^{1}P_{\min} = A - 1$$
 ${}^{1}P_{\max} = \frac{A(A-1)}{2}$

The scaling factor of 2 in the numerator of 1 k index formula makes the value $^{1}\kappa = A$ when there are no cycles in the graph of the molecule. Monocyclic molecules have a lower value and bicyclic structures have an even lower value. The structural information encoded in 1k is related to the complexity, or more precisely, the number

The reference structure for ${}^2P_{\min}$ is the linear graph, while for ${}^2P_{\max}$ it is the \rightarrow state graph, in which all atoms but one are adjacent to a central atom; their numerical val ues are calculated as follows;

$${}^{2}P_{\min} = A - 2$$
 ${}^{2}P_{\max} = \frac{(A-1)(A-2)}{2}$

249

where A is the total number of vertices in the graph. The scaling factor of 2 in the numerator of $^2\kappa$ index formula makes the value $^2\kappa = A - 1$ for all linear graphs. The information encoded by $^2\kappa$ index is related to the degree of star graph-likeness and linear graph-likeness, i. e. $^2\kappa$ encodes information about the spatial density of atoms in a molecule.

The reference structure for ${}^{3}P_{\min}$ is the linear graph while for ${}^{3}P_{\max}$ it is the twin star graph; their numerical values are calculated as follows:

$${}^{3}P_{\min} = A - 3$$
 ${}^{3}P_{\max} = \begin{cases} \frac{(A-2)^{2}}{4} & \text{for even } A \\ \frac{(A-1)(A-3)}{4} & \text{for odd } A \end{cases}$

The scaling factor of 4 is used in the numerator of ${}^3\kappa$ index to bring ${}^3\kappa$ onto approximately the same numerical scale as the other kappa indices. The ${}^3\kappa$ values are larger when \rightarrow molecular branching is nonexistent or when it is located at the extremities of a graph; ${}^3\kappa$ encodes information about the centrality of branching.

To take into account the different shape contribution of heteroatoms and hybridization slaves. Kier alpha-modified shape descriptors m_{κ_0} (m = 1,2,3) were proposed Ker 1986a by the following:

ertices A

 $-2)^{2}$

an new jelj e kommune

Section.

count in 185; Kier, in an iso-

it is the

the value noiecules structural, e number

the sally

020 7240 7258

Kier shape descriptors (x)

250

$${}^{1}\kappa_{\alpha} = \frac{(A+\alpha)(A+\alpha-1)^{2}}{({}^{1}P+\alpha)^{2}} \qquad {}^{2}\kappa_{\alpha} = \frac{(A+\alpha-1)(A+\alpha-2)^{2}}{({}^{2}P+\alpha)^{2}}$$

$${}^{3}\kappa_{\alpha} = \begin{cases} \frac{(A+\alpha-3)(A+\alpha-2)^{2}}{({}^{3}P+\alpha)^{2}} & \text{for even } A \ (A>3) \\ \frac{(A+\alpha-1)(A+\alpha-3)^{2}}{({}^{3}P+\alpha)^{2}} & \text{for odd } A \ (A>3) \end{cases}$$

where α is a parameter derived from the ratio of the \rightarrow covalent radius R_i of the *i*th atom relative to the sp³ carbon atom (R_{COS}):

$$\alpha = \sum_{i=1}^{A} \left(\frac{R_i}{R_{Cop^2}} - 1 \right)$$

The only non-zero contributions to α are given by heteroatoms or carbon atoms with a valence state different from sp³ (Table K-1).

Table K-1. Covalent radius R and a parameter values.

	-					
R(Â)	a	Atom / Hybrid	R (Å)	α		
	0	P _{etO3}	1.10	0,43		
	-0.13	1	1.00	0.30		
	-0.22	1	1.04	0.35		
	-0.04		0.94	0.22		
	-0.20	ı.	0.72	-0.07		
		a	0.99	0.29		
		Br	1.14	0.48		
		I	1.33	0.73		
	R (Å) 0.77 0.67 0.60 0.74 0.62 0.55 0.74 0.62	0.77 0 0.67 -0.13 0.60 -0.22 0.74 -0.04 0.62 -0.20 0.55 -0.29 0.74 -0.04	0.77 0 P _{sg3} 0.87 -0.13 P _{sg2} 0.60 -0.22 S _{vp3} 0.74 -0.04 S _{vp2} 0.62 -0.20 F 0.55 -0.29 Cl 0.74 -0.04 Br	0.77 0 P _{ag3} 1.10 0.67 -0.13 P _{bg2} 1.00 0.60 -0.22 S _{vp3} 1.04 0.74 -0.04 S _{uc2} 0.94 0.62 -0.29 Cl 0.99 0.74 -0.04 Br 1.14		

Kappa indices can also be calculated for molecular fragments and functional groups X. The calculation of these indices for groups was performed using a "pseudo-molecule" X-X: two fragments X of the same kind are linked together, kappa values are calculated for the pseudo-molecule and this is then divided by two.

In order to quantify the shape of the whole molecule, Kier proposed a linear combination of the above defined k indices, each representing a particular shape attribute of the molecule:

shape =
$$b_0 \cdot {}^0 \kappa + b_1 \cdot {}^1 \kappa + b_2 \cdot {}^2 \kappa + b_3 \cdot {}^3 \kappa$$

where ok is the - Kier symmetry index used to encode the shape contributions due to symmetry.

Specific combinations of κ indices were also proposed as indices of molecular flexibility (\rightarrow Kier molecular flexibility index) and steric effects (\rightarrow Kier steric descriptor).

[Kier, 1986c] [Kier, 1987a] [Kier, 1987b] [Kier, 1987c] [Gombar and Jain, 1987a] [Mokrosz, 1989] [Kier, 1990] [Hall and Kier, 1991] [Skvortsova et al., 1993] [Kier, 1997] [Hall and Vaughn, 1997b]

Kier symmetry Index → symmetry descriptors

Kz index - Hosoya Z matrix

520

Appendix C. Software

Some packages explicitly related to the calculation of the molecular descriptors for QSAR/QSPR are collected below, in alphabetic order.

General programs for computational quantum-chemistry, molecular modelling and logP calculations are not explicitly considered in this list. An extended list of computational chemistry programs can be found at the WebSite http://www.netsci.org/ Resources/Software.

Kesources/Softwa		
ADAPT	Prof. P.C. Jurs, PennState University, University Park, PA 16802, USA	
Description	A QSAR toolkit with descriptor generation (topological, geometrical, clectronic, and physicochemical descriptors), variable selection, regression and artificial neural network modelling.	
Reference	[Jurs et al., 1979]	
WebSite:	http://zeus.chem.psu.edu/	
ASP	Oxford Molecular Ltd., Oxford Science Park, Oxford OX4 4GA, UK	
Description:	Calculates a quantitative measure of molecular similarity based on molecule alignment, shape and electronic properties. Within TSAR 3D package.	
WebSite:	http://www.oxmol.com/	
CERIUS	Molecular Simulations Inc 9685 Scranton Road, San Diego, CA 92121-7352, USA	
Description:	C2-Descriptors+ provides a range of generic descriptors, describing topological, electronic, and structural features.	
WabSite:	http://www.msi.com/life/products/cerius2/modules/descriptor.html	
CODESSA	Semichem Inc 7204 Mullen, Shawnee, KS 66216, USA	
Description:	: Calculation of several topological, geometrical, constitutional, thermodynamic electrostatic, and quantum-chemical descriptors, including tools for regression modelling and variable selection.	
Reference:	[Katritzky et al., 1995]	
WebSite:	http://www.semichem.com/	
DRAGON	Prof. R. Todeschini - distributed by Talete sri, via Pisani 13, 20124 Milano, Italy	
Description:	Calculation of several sets of molecular descriptors from molecular geometries (topological, geometrical, WHIM, 3D-MoRSE, molecular profiles, etc.).	
WebSite:	http://www.disst.unimib.lu/chm/	
GRIN/GRID	Molecular Discovery Ltd West Way House, Elms Parade, Oxford OX2 9LL, UK	
Description:	Calculates the GRID empirical force field at grid points Last release: V.11 - 1993	
Reference:	[Goodford, 1985]	

020 7240 7258 Appendix C. Software 522 HQSAR Tripos Inc. - 1699 South Hanley Rd., St. Louis, MO 63144-2913. USA Description: A part of the SYBYL environment providing hologram descriptors. WebSite: http://www.tripos.com/ HYBOT-PLUS Prof. O. Raevsky - Russian Academy of Science, IPAC. Description: Calculation of hydrogen bond and free energy factors. [Raevsky, 1997] Reference: WebSite: http://www.ipac.ac.ru/qsar/index.htm HYPERCHEM 6 Hypercube, Inc. - 1115 NW 4th Street, Gainsville, FL 32601, USA Description: Calculation of optimized geometries with several computational methods, also providing total surface area, molecular volume, molar refractivity, log P. polarizability and atomic charges. Last roleasa; 6 WebSite: http://www.hyper.com/ MOLCONN-Z Prof. L.H. Hall - 2 Davis Street, Quincy, MA 02170, USA Successor of MOLCONN-X, MOLCONN-Z calculates the most well-known Description: topological descriptors, including electrotopological and orthogonalized indices Last rejease: 3.0 WebSite: http://www.esic.vabiotech.com/molcono/manuals/310s/preface1.html

MULTICASE Multicase Inc. - PO 22517, Beachwood, OH 44122, USA Description: Prediction of biological activities by substructure descriptors. Reference: [Klopman, 1992] hnp://www.multicase.com/ WebSite:

OASI5 Prof. O. Mekenyan - Bourgas University, 8010 Bourgas, Bulgaria Description: Calculation of steric, electronic, and hydrophobic descriptors. Reference: [Mckenyan et al., 1990a] WebSite: http://omega.btu.bg/-omekenys/

PETRA Molecular Networks GmbH - Langemarckplatz 1, D-91054 Erlangen (Germany) Description: Empirical methods for the calculation of charges and bond energies for use in OSAR. [Gasteiger, 1988; Low and Saller, 1988] Reference:

POLLY Prof. S. Basak - Minnesota University of Duluth, 5013 Miller Trunk Highway, Duluth, MN 55811, USA Description: Calculation of topological connectivity indices. Last release: 2.3 Reference: Basak et al., 1988a]

522

hods,

ty, log P,

ll-known ized indices

n (Gormany)

ik Highway,

020 7240 725

523 Appendix C. Software SciQSAR 2D SciVision - 200 Wheeler Road, Burlington, MA 01803, USA Calculation of several topological molocular descriptors (connectivity, shape, Description: clootrotopological descriptors). WebSite: http://www.scivision.com/ Tripos Inc. - 1699 South Hanley Rd., St. Louis, MO 63144-2913, USA SYBYL/QSAR SYBYL module for the calculation of EVA descriptors, CoMFA and CoMSIA Description: fields, also including several QSAR tools. Last release: 6.1 WebSite: http://www.tripos.com/ TSAR Oxford Molecular Ltd., Oxford Science Park, Oxford OX4 4GA, UK Statistical and database functions with molecular and substituent property Description: calculations. Within TSAR 3D package. Reference: http://www.oxmol.com/