Introduction to Machine Learning Lecture 8 - MNIST Example

1 Over-fitting and Cross Validation

1.1 MNIST data set

The MNIST data set contains images of digits.

Each image contains 784 pixels. $I \in \mathbb{R}^{28 \times 28}$.

1.2 Low dimensionality representation using PCA

We can project each image into \mathbb{R}^3 using PCA:

For this data set (MNIST) the linear projection using PCA does provide us with a "good" low-dimensional representation.

Over-fitting 1.3

Consider only the digits 3 and 9. Our data set contains two subsets:

1. A training set

$$\mathcal{D}_{\text{train}} = \{ \boldsymbol{x}_i, y_i \}_{i=1}^{12,080}, \quad y_i \in \{3, 9\}$$

2. A test set

$$\mathcal{D}_{\text{test}} = \{ \boldsymbol{x}_i, y_i \}_{i=1}^{2019}, \qquad y_i \in \{3, 9\}$$

The sets are disjoint.

We plot the \mathbb{R}^2 dimensional representation of the digits 3 and 9 using PCA.

The goal is to obtain a classifier (using only the training set) which minimizes the test error.

$$\begin{aligned} & \text{Train-error} = \frac{1}{|\mathcal{D}_{\text{train}}|} \sum_{i=1}^{|\mathcal{D}_{\text{train}}|} \mathbf{1} \left\{ \hat{f}\left(\boldsymbol{x}_{i}\right) \neq y_{i} \right\}, & & & & & & & & \\ & & & & & & & & \\ & \text{Test-error} = \frac{1}{|\mathcal{D}_{\text{test}}|} \sum_{i=1}^{|\mathcal{D}_{\text{test}}|} \mathbf{1} \left\{ \hat{f}\left(\boldsymbol{x}_{i}\right) \neq y_{i} \right\}, & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Test-error =
$$\frac{1}{|\mathcal{D}_{\text{test}}|} \sum_{i=1}^{|\mathcal{D}_{\text{test}}|} \mathbf{1} \left\{ \hat{f}\left(\boldsymbol{x}_{i}\right) \neq y_{i} \right\}, \qquad (\boldsymbol{x}_{i}, y_{i}) \in \mathcal{D}_{\text{test}}$$

1.3.1 Example

We train two Gaussian SVM classifiers:

• $\sigma = 0.03$:

• $\sigma = 1$:

Notes

- The classifier with $\sigma = 0.03$ has a small train-error, but its test error is much bigger. This is known as **over-fitting**.
- The classifier with $\sigma=1$ has similar train and test errors. This classifier does not over-fit the training set.

1.4 Cross validation

To circumvent over-fitting we use cross-validation.

In cross validation we split (randomly) our training set $\mathcal{D}_{\text{train}}$ into K (disjoint) subsets: $\bigsqcup_{k=1}^{K} \mathcal{D}_{k} = \mathcal{D}_{\text{train}}$.

- 1. **for** k = 1, ..., K
 - (a) Train a classifier using all subsets except the k'th subset.
 - (b) Calculate the validation (test) error on the k'th subset:

Test-error
$$(k) = \sum_{i=1}^{|\mathcal{D}_k|} \mathbf{1} \left\{ \hat{f}\left(\boldsymbol{x}_i\right) \neq y_i \right\}, \qquad \boldsymbol{x}_i \in \mathcal{D}_k$$

2. The cross-validation error is the average of all errors:

$$\text{Cross-validation Error} = \frac{1}{N} \sum_{k=1}^{K} \text{Test Error} \left(k \right)$$

Example In the previous problem, we obtained the following cross-validation errors:

From these results we can understand the the left classifier over-fit the training set; whereas the right classifier generalized well.

1.5 Confusion Matrix

1.5.1 Training

From the full MNIST data set we created two subsets:

• A training set:

$$\mathcal{D}_{ ext{train}} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{N=2,000}, \qquad \boldsymbol{x}_i \in \mathbb{R}^{784}, \, y_i \in \{0, 1, 2, \dots, 9\}$$

• A test set (which is disjoint with the training set):

$$\mathcal{D}_{\text{test}} = \{ (\boldsymbol{x}_i, y_i) \}_{i=1}^{N=2,000}, \qquad \boldsymbol{x}_i \in \mathbb{R}^{784}, y_i \in \{0, 1, 2, \dots, 9\}$$

A linear SVM and K-nn (K=3) classifiers were trained on the training set $\mathcal{D}_{\text{train}}$.

1.5.2 Testing

We apply the two classifiers on the testing set.

We plot the performance of each classifier on the test set $\mathcal{D}_{\text{test}}$ using a **confusion matrix**.

Linear SVM												
Output Class	0	176	0	3	0	0	1	3	0	1	0	95.7% 4.3%
	1	0	216	1	3	0	3	1	0	3	2	94.3% 5.7%
	2	5	1	184	4	3	2	8	3	5	3	84.4% 15.6%
	3	2	1	2	168	1	5	0	0	2	3	91.3% 8. 7 %
	4	1	1	3	1	186	2	0	3	0	4	92.5% 7.5%
	5	2	1	0	17	1	153	2	0	10	1	81.8% 18.2%
	6	1	0	1	0	0	2	190	0	1	1	96.9% 3.1%
	7	1	2	0	3	2	0	0	187	1	7	92.1% 7.9%
	8	0	2	5	5	0	1	1	2	172	1	91.0% 9.0%
	9	0	0	0	0	23	1	0	14	6	165	78.9% 21.1%
		93.6% 6.4%	96.4% 3.6%		83.6% 16.4%		90.0% 10.0%				88.2% 11.8%	
		0		2	ტ	>	か	6	1	ზ	9	
Target Class												

Some errors of the linear SVM classifier:

2 t-Distributed Stochastic Neighbor Embedding (tSNE)

Sometimes, linear dimensionality reduction might be insufficient.

For example, using only 3 principle components does not allow us to separate between the different digits in the MNIST data set:

In this case, one can try using a non-linear dimensionality reduction. There are several algorithm such as:

- Locally-linear embedding (LLE).
- Isomap.
- Laplacian eigenmaps.
- Diffuion Maps.
- etc'

For clustering purposes, the t-SNE algorithm is quite useful (we won't explain the algorithm). For example, using t-SNE on the MNIST data set provides the following \mathbb{R}^2 low dimensionality representation:

