Final Review

Mark

Groups

Tools

 $\varphi(n)$, Euler's Phi Function, "totient function," is the number of natural numbers $a \leq n$ such that (a, n) = 1

$$\varphi(ab) = \varphi(a)\varphi(b) \text{ if } (a,b) = 1$$

$$\varphi(p^a) = p^a - p^{a-1}$$
 for prime p

 p^a candidates $\frac{p^a}{p} = p^{a-1}$ are divisible by p (10/2 yield # numbers \leq 10 divisble by 2)

example:
$$\varphi(15) = \varphi(5)\varphi(3) = 4 * 3 = 12$$
, since $gcd(3, 5) = 1$.

Fun: last digit of a number is the remainder when dividing by 10, aka mod 10 (for last three digits use mod 1000)

To compute a^{-1} mod n: For gcd(a, n) = 1, use euclidean algo, to find ax + ny = 1, meaning $ax = 1 \mod n$. Thus, x is a^{-1}

Dihedral D_{2n} , Z_n and S_n

 D_{2n}

The **elements** of D_{2n} are $\{1, r, ..., r^{n-1}, s, sr, ..., sr^{n-1}\}$.

Orders of elements are $|s| = |sr^i| = 2$ and |r| = n

Property: $r^i s = s r^{-i}$

 D_{2n} can be described by

$$\langle r, s : r^n = 1 = s^2, rs = sr^{-1} \rangle$$

Which elements commute with all of D_{2n} ? (aka center)

$$Z(D_{2n}) = \begin{cases} 1 & \text{for } n \text{ odd} \\ 1, r^{n/2} & \text{for } n \text{ even} \end{cases}$$

Symmetric Groups, S_n

Permutations of $\{1, 2, 3, ..., n\}$

each uniquely written as a product of disjoint cycles

idea of proof is to write any permutation $(a_1, ..., a_n)$ by closing once a loop is reached; this is guaranteed to happen since permutation is a bijective function!

order, $|S_n| = n!$

- cycle order is the lcm lengths of disjoint unique cycles
- an element has **order p**, prime, in S_n if and only if its cycle decomposition if a **product of p-cyles**. from homework, section 1.3 problem 14

can think of any permutation in S_n as acting on polynomial:

$$S_4: (x_1-x_2)(x_1-x_3)(x_1-x_4)(x_2-x_3)(x_2-x_4)(x_3-x_4)$$

(123) sends x_1 to x_2 and so on; then, rewrite so each subscript i < j.

If, (-1) is present, the permutation is **odd**. **Sign** of (12) is -1; sign of (123) is 1.

^{*}least common multiple is found by writing down the multiples of two numbers and finding the first common match.

Conjugating in S_n

 $\sigma = (12)(345)(6789)$ and $\tau = (1357)(2468)$,

$$\tau \sigma \tau^{-1} = (\tau(1)\tau(2))(\tau(3)...) = (3 \ 4)(5...$$

hence two elements are conjugates only if they have the same cycle type.

Any element of S_n can be written as a **product of 2-cycles** (not uniquely!!) Whether the number of transpositions is odd or even, though, is unique!

Alternating, A_n

set of even permutations

$$|A_n| = \frac{n!}{2}$$

 A_n is simple for all $n \geq 5$.

 A_n is the kernel of $\varphi: S_n \to \{\pm 1\}$

 S_5 is not solvable (by looking at composition series)

Curiosities

Fermat's Little Theorem: $a^p \equiv a \mod p$

Cyclic, Z_n

 $Z_3 = \{0, 1, 2\}$ is a group with $+ \mod 3$

What are the **generators**? find a generator $\langle a \rangle$,

all others are $\langle a^i \rangle$ such that (i, n) = 1

example: $Z_8 = <1> = <3> = <5> = <7>$

For |a| = n,

$$|a^k| = \frac{n}{(n,k)}$$

What are **subgroups** of Z_n ? subgroups are $\langle a^i \rangle$ for each i a divisor of n else, i is relatively prime, hence generates entire group

How many elements of order k in \mathbb{Z}_n ?

$$\varphi(k)$$
, if $k|n$

elements of order k generate a cyclic group of order k. Thus, the number of generators is $\varphi(k)$.

Isomorphisms

To show two groups are not isomorphic consider:

- abelian?
- elements have the same orders

For φ a homomorphism,

Ker
$$\varphi = 1 \iff \varphi$$
 is **injective**

Curious isomorphic groups: $D_6 \cong S_4$

Precisely 2 groups of order 4: V_4 and Z_4

Exercises

1. How many 3-cycles in S_4 ?

count options for a*b*c=4*3*2, which can be written in 3 ways. So, total is $\frac{4*3*2}{3}=8$

2. Elements of order 8 in $Z_{8,000,000}$?

there are only 4 elements, since $\varphi(8) = 4$ Note, < 1m > is an element of order 8. Thus, the others < 1m > raised to 3, 5, 7 (relatively prime to 8)

3. Find the lattice of Z_{p^2q} subgroups: $Z_p, Z_q, Z_{p^2}, Z_{pq}$

4. Number of divisors of 45?

$$45 = 3^2 5$$

divisors = (2+1)(1+1) = 6(add 1 to powers and multiply)

- 5. For A, B subgroups of $G, A \cap B$ is a subgroup too.
- 6. Show σ^2 is even for all permutations σ look at the $\varphi: S_n \to \{\pm 1\}$; $\varphi(\sigma^2) = \varphi(\sigma)^2 = 1$, thus σ^2 is in the kernel of φ hence in A_n .
- 7. Show S_n is generated by $\{(1 \ i) : i \leq n\}$. every permutation can be written as a transposition; use fact that $(ij) = (1 \ i)(1 \ j)(1 \ i)$.

 $\ ^{*}$ to check homomorphism it sufficies to check generators and relations are preserved

 $GL_n(F)$: set of all invertible (det $\neq 0$) with entries $\in F$, a field.

Quotient Groups

Cosets

For $H \leq G$,

cosets of H (gH for $g \in G$) **partition** G, each containing the same number of elements.

e.g., $\mathbb{Z}/\mathbb{k}\mathbb{Z}$ partitions the integers into three cosets.

How?

Notice,

1. If $a \in bH$, aH = bH.

For all $x \in aH$, $x = ah_1 = bh_2h_1$ $\rightarrow x \in bH$.

2. aH, bH are disjoint or precisely the same.

Suppose $x \in aH \cap bH$. Then,

 $x = ah_1 = bh_2$

 $\rightarrow a \in bH$

Thus, aH = bH.

3. Every element of G is in some coset.

trivially, aH, for any $a \in G$.

4. |H| = |aH| for any $a \in G$.

consider function f(h) = ah, for any $a \in G$.

f is bijective, meaning all cosets have the same number of elements.

Lagrange: for $H \leq G$,

$$|G| = |H| \ [G:H]$$

The **order** of any **element** has to divide the order of the group. consider subgroup generated by the element, whose order then has to divide that of G.

Any **group of prime** order is cyclic (any element generates entire group).

Any group of order $2p \cong Z_{2p}$ or D_p $(Z_{2p} \text{ if it contains an element of order } 2p)$

Normality

Can cosets be a group?

For $H \leq G$, define operation: aHbH = abH (for $a, b \in G$). *operation is on cosets

Key question: when is aHbH = abH well-defined?

need to check whether two representatives from a coset, say a and a' (and b, b'), produce the same result under the operation.

Does aHbH = a'Hb'H? If gHg^{-1} , then yes!

precisely when $H \leq G$.

Thus, a subgroup N is **normal** in G if

$$gNg^{-1} \in N$$
 for all $g \in G$ equivalently, $gNg^{-1} = N$

A subgroup with index 2 is normal only two cosets reasoning...

An element of order 2 a,

$$\langle a \rangle \trianglelefteq G \iff a \in Z(G)$$

 $\langle a \rangle \leq G$, so xax^{-1} is e or a can't be e if $a \neq e$.

If G/Z(G) is cyclic, G is abelian. section 3.1 problem 36

Exercises

1. Show $H=<(1\ 2)>\leq S_3$, but not normal. If $H \leq S_3$, then

$$N_{S_3}(H) = S_3.$$

But,

$$(13)(12)(13)^{-1} = (23) \notin H$$

2. Show S_4 has no normal subgroup of order 8 Suppose $H \leq S_4$ with |H| = 8.

Then, S_4/H has order 3, meaning

$$(gH)^3 = H$$
, for all g

thus, $g^3 \in H$ for all $g \in G$.

all elements of order 2 raised to the third are themselves; thus, all elements of order 2 are in H, too many.

3. If G/Z(G) is cyclic, show G is abelian. Let xZ(G) be a generator of G/Z(G) for some $x \in G$.

Then for $a, b \in G$,

 $a = x^n c_a$ for some $c_a \in Z(G)$

 $b = x^m c_b$

Since c_a, c_b commute with any element, $ab = x^n c_a x^m c_b = ba$.

Cauchy's Theorem

p divides the order of G, then G has an element of order p. proof later

HK in G

note HK need not be a subgroup; when is it?

$$H, K \leq G$$
 and $K \leq G$, then
$$HK \leq G$$

$$e \in HK.$$
 For $a = h_1k_1 \in HK$, $\mathbf{a}^{-1} = k_1^{-1}h_1^{-1} \in HK$

a set A normalizes K if it's a subset of $N_G(K)$.

What's the order of HK?

$$|HK| = \frac{|H||K|}{|H \cap K|}$$

For $H, K \leq G$,

HK is a subgroup $\iff HK = KH$.

If $H, K \leq G$, finite, with relatively prime orders,

$$H \cap K = 1$$

(problem 8 section 3.2) proof: look at orders of elements in H and K

Isomorphism Theorems

For φ a homomorphism:

$$\varphi:G\to H$$

Fundamental Homomorphism

$$G/Ker(\varphi) \cong \varphi(G)$$

"cosets of ker isomorphic to image"

Diamond Iso

 $A, B \leq G$ and $A \leq N_G(B)$

$$\begin{array}{ccc}
 & AB \\
A & & \leq B \\
 & A \cap B
\end{array}$$

$$AB/B \cong A/(A \cap B)$$

Lattice Iso

 $N \leq G$

The structure of the subgroups of G/N is exactly the same as the structure of the subgroups of G containing N, with N collapsed to the identity element. "G/N is all subgroups of G above N in lattice."

Composition Series

For a group G, construct

$$1 \le N_1 \le N_2 \le \dots \le G$$

with $N_i \leq N_{i+1}$ and N_{i+1}/N_i is **simple**

*simple: no non-trivial normal subgroups Then,

each N_{i+1}/N_i "composition factor" is **unique**

as is the number of N_i

*factorization is not necessarly unique

G is solvable if each N_{i+1}/N_i is abelian. $*N_{i+1}/N_i$ need not be simple

Group Actions

a group G acting on a set A is

Two conceptions:

operation such that

- a) 1a = a
- b) g_1g_2a is assocaitive

a homo map $G \to S_{|A|}$ (from G to the symmetries of A).

an action if faithful if its kernel is the identity

Conjugates of an element

There is a 1-to-1 correspondence between

conjugacy class of $a* \in G$ and cosets of $C_a(G)$ (centralizer of a in G)

Note $xax^{-1} = yay^{-1} \iff xC_a(G) = yC_a(G)$ since this implies $y^{-1}x \in C_a$ Consider $f: xC_a \to \text{conjugate of a, defined}$

```
f(xC_a) = xax^{-1}
injective: by above.
surjective: for any yay^{-1}, there is yC_a producing it.
```

Thus, number of conjugates of a equals the index of C_a in G.

conjugates of
$$a = [G:C_a]$$

*conjugacy class of a means the set xax^{-1} as x ranges over G.

Class Equation

see chp 24 in Gali For $H \leq G$, there is a 1-to-1 correspondence between

conjugates of H and cosets of N

note, for
$$a \in N(H)$$
, $aHa^{-1} = H$

$$aHa^{-1} \subseteq H$$
since for $h \in H$, $aha^{-1} \in H$.
$$H \subseteq aHa^{-1}$$
since aHa^{-1} contains as many elements as H why?

By previous result, number of conjugacy classes

= size of orbits = index of stabilizer = index of normalizer. (for any element, the number of conjugates = index of its centralizer)

|G| = |Z(G)| + sum elements in each conjugacy class

Orbits

Orbit of $a \in A$ by is $\{ga : g \in G\}$. "Hit a with all $g \in G$ ", "spin a"

Orbits create equivalence classes in A

$$G_a =$$
stabilizer of a in G

"elements of G such that ga = a"

size of
$$Orb(a) = [G:G_a]$$
 = different $g\{G_a\}$

= index of stabilizer

Ker of action on set aH "coset" = largest normal subgroup of G contained in H

Cayley's Theorem

any finite group G is isomorphic to a subgroup of S_n .

Consider function, $\pi_a(x)$ for $a \in G$ by ax. This function is bijective, hence permutes G. Therefore, we consider composition of functions π to see the permutations form a subgroup of S_n .

For p the smallest prime dividing |G|, any subgroup of index $p \leq G$.

Fundamental Theorem of finitely generated abelian groups

"FTFGAG"

every FGAG is the direct product of cyclic groups

aka,
$$G \cong \underbrace{\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}}_{r} \dots \underbrace{\frac{\mathbb{Z}}{n\mathbb{Z}} \times \dots \times \frac{\mathbb{Z}}{n\mathbb{Z}}}_{invariant}$$

invariants: $n_1|n_2...|n_k$

r is called **rank invariant factors** are unique

recall, any cyclic group is isomorphic to:

• \mathbb{Z} is $(\mathbb{Z}, +)$ which is infinite

or

•
$$\frac{\mathbb{Z}}{n\mathbb{Z}}$$
 over + is finite

So, r = 0 if G is finite.

Two FGA groups are isomorphic \iff same rank and invariant factors

e.g.,
$$|G| = 8$$

possible expression as cyclic groups:

 $\frac{\mathbb{Z}}{8\mathbb{Z}}$

$$\begin{array}{c} \frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{4\mathbb{Z}} \\ \frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}} \end{array}$$

Chinese Remainder Theorem

$$\frac{\mathbb{Z}}{mn\mathbb{Z}} \cong \frac{\mathbb{Z}}{m\mathbb{Z}} \times \frac{\mathbb{Z}}{n\mathbb{Z}}$$
 \iff

$$(m,n)=1$$

Traditionally written as $x \equiv a \mod n$ and $x \equiv b \mod m$ implies there is only one solution to $x \mod mn$. direct congurence proof

Hence, any group G can also be written in elementary divisor form:

$$G \cong \mathbb{Z}^r \times \prod \frac{\mathbb{Z}}{p_i^a \mathbb{Z}}$$

- *elementary divisors are not invariant factors!
- * $Z_2 \times Z_2 \neq Z_4$ (different invariant factors)

Sylow's Theorem

G has order $p^{\alpha}m$, with p not dividing m, then G has a subgroup of order p^{α} . Further,

- any 2 sylow p-groups are conjugate
- n_p the number is Sylow p-groups: $n_p \equiv 1 \mod p$ and $n_p | m$

• a unique Sylow p-group is **normal**

For
$$|G = 5*7|$$
, often **useful** to consider **quotients**: G/P_7 (G mod a Sylow 7-subgroup) **subgroup**: $H = P_7P_5$

Exercises

1. Show G with |G| = pq is cyclic

number of Sylow p groups: $n_p \equiv 1 \mod p$ and $n_p|q$

$$\rightarrow n_p = 1$$

Similarly, $n_q \equiv 1$. Thus, the unique p and q subgroups are abelian, as they're of prime order.

Further, both are normal \rightarrow commutes.

2. Determine groups of order 99

unique Sylow 11-subgroup and Sylow 3-subgroup. Thus, can show group is abelian, hence is Z_{99} or $Z_3 \times Z_{33}$

3. Find the invariant factors of all abelian groups of order $270 (= 2 * 3^3 * 5)$

First find elementary divisors:

$$Z_2 imes Z_{3^3} imes Z_5$$

$$Z_2 imes Z_3 imes Z_{3^2} imes Z_5$$

$$Z_2 imes Z_3 imes Z_3 imes Z_3 imes Z_3 imes Z_5$$

Then, for each abelian group, write powers in descending order:

Each row yields an invariat factor. Here it's: \mathbb{Z}_{270}

For

$$Z_2 \times Z_3 \times Z_{3^2} \times Z_5$$

,

p=3	p=2	p=5
3^{2}	2	5
3	1	1
1	1	1

the invariant factors are $Z_{90} \times Z_3$.

4. G with |G| = 105 has a normal Sylow 5-subgroup 105 = 3*5*7 so $n_5 \equiv 1 \mod 5$ and $n_5|3*7$ meaning $n_5 = 21$ or 1...

Rings

an abelian group with multiplication such that

- * is associative and closed
- Distribution

a ring with multiplicative inverses (for non-zero elements) is called a "Division Ring" (or Skew field)

*field is a commutative division ring

u is a **unit** of R if there exists v such that uv = vu = 1. u is a **zero divisor**" if there exists v such that uv = 0 or vu = 0.

In $\mathbb{Z}/n\mathbb{Z}$ an element is a unit (if relatively prime to n) or a zero divisor.

 R^* is the set of all units of R.

an Integral Domain Ring is a ring with

- unit
- commutative
- no zero divisors

e.g., \mathbb{Q} , $\mathbb{Z}/n\mathbb{Z}$ if n is prime

Quotient Rings

a ring homomorphism φ preserves + and *

 $Ker(\varphi) = elements mapping to 0$

Ideals

analogous to normal subgroups. a subgring I is an **ideal** of R if

$$ir \in I$$
 and $ri \in I$ for all $r \in R$ and $i \in I$

Thus, we defined a **quotient ring** as sets r + I, for r in ring with operations:

$$(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$$
 and $(r_1 + I) * (r_2 + I) = (r_1 r_2) + I$ any ideal I is the **Ker** of homo $\varphi(r) = rI$.

Ker of φ is always an ideal.

prototypical example of ideal: \mathbb{Z} with ideals $n\mathbb{Z}$

For I, J ideals of R,

- $I \cap J$ is an ideal
- IJ is defined as $\{ \text{ finite sums } ij \}$

only ideals of a field are trivial for $a \in I$, there is $a^{-1} \in F$, so that $1 \in I$.

Lattice Isomorphism also preserves ideals between ring and quotient.

Special Ideals

an ideal is **principle** if it's generated by **one element**.

(using both + and *)

For R a commutative ring with unit,

an ideal M is **maximal** in R if

no other proper ideal contains M

$$M$$
 is maximal $\iff R/M$ is a field

 $\boxed{M \text{ is maximal} \iff R/M \text{ is a field}}$ R/M is field means no ideals; by lattice iso, no ideals between R and M

(again assume commutative ring with unit) a proper ideal is **prime** if $ab \in P$, then a or $b \in P$.

P is a prime ideal $\iff R/P$ is an integral domain apparently follows from def, but unclear

Thus, max ideal \rightarrow prime ideal (filed is an integral domain)

*monic polynomial means leading coefficient is 1

Finite Fields

For p(x) irreducible in F[x],

$$F[x] / (p(x))$$
 is a field

quadratics and cubics are reducible only if reduction contains linear factor.

only irreducible quartics:

$$x^{4} + x + 1$$
$$x^{4} + x^{3} + 1$$
$$x^{4} + x^{3} + x^{2} + x + 1$$

characteristic of a field F is the smallest integer n such that

$$1^n = 1 + \dots + 1 = 0$$

the characteristic of a field is either 0 or p.

All finite fields have order p^n for some prime p.

Exercises

- 1. Given an exmaple of a division ring that's not a field Quaternions \mathbb{H} , since $ij \neq ji$, hence not abelian; is a division ring since * inverses exist (complicated looking fraction)
- 2. What are the ideals of \mathbb{Z} ? $n\mathbb{Z}$ for $n \in \mathbb{Z}$: $0, \mathbb{Z}, 2\mathbb{Z}$
- 3. What are the max ideals of \mathbb{Z} ? $n\mathbb{Z}$ is maximal when $\mathbb{Z}/n\mathbb{Z}$ is a field, meaning n prime.
- 4. What the prime ideals of \mathbb{Z} ? all of the above AND 0

Curiosities

Compose bijective functions bijection

This explains why composing cycles produces a cycle, aka a perumtation. prove directly by thinking about steps of composition.

Open Questions

Open Questions

P is a prime ideal $\iff R/P$ is an integral domain

why?