You must show and explain your work! The following formulas may, or may not, be useful.

1. (10 points)

a. (2 pts) Circle all of the following expression which are **linear** differential equations.

(i)
$$y''' - y'' + y = 0$$

(iii)
$$ln(y') - y = x cos(x)$$

(ii)
$$(y')^3 = y^2$$

(iv)
$$e^x y^{(7)} - (x^2 - 3) y = \sin(x^2)$$

b. (2 pts) Circle all of the following expression which are linear **nonhomogeneous** differential equations.

(i)
$$y''' - y'' = y - x^2 \sin(x)$$

(iii)
$$y^{(3)} - \sec(x)y' - y = e^x$$

(ii)
$$t^2 \frac{d^3 f}{dt^3} + t \frac{df}{dt} + t^5 = t^5$$

(iv)
$$y^{(3)} - x^5y' - 2x^2 = 0$$

c. (3 pts) Compute $\mathcal{L}\left\{e^{5t}\sin(3t)\right\}$.

d. (3 pts) Compute
$$\mathcal{L}^{-1} \left\{ \frac{9}{s+2} + \frac{3}{s^2+16} \right\}$$
.

 ${\bf 2.}\;\;$ (10 points) Solve the following differential equations.

a. (5 pts)
$$e^y dx + (2y + xe^y) dy = 0$$

b. (5 pts) $y' - \frac{3}{x+1}y = (x+1)^4$

 $\bf 3.~$ (20 points) Solve the following differential equations. Your answers should be written as real general solutions.

a. (5 pts)
$$y'' - 4y' + 13y = 0$$

b. (5 pts) $x^2y'' + 5xy' + 4y = 0$

c. (10 pts) $y'' - 8y' + 15y = 8\cos(x) - 14\sin(x)$

4. (10 points) Use the Laplace Transform to solve the initial value problem y'' = 2 + 3t with initial conditions y(0) = 0, y'(0) = 0. (You must use the method of Laplace Transform for credit.)