CompTIA Network+ Exam N10-008

## Lesson 7

## Configuring and Troubleshooting Routers

#### **Objectives**

- Compare and contrast routing concepts
- Compare and contrast dynamic routing concepts
- Install and troubleshoot routers



### Topic 7A

# Compare and Contrast Routing Concepts

#### **Routing Tables and Path Selection**

- Protocol
  - Source of the route
- Destination
  - Network/host address and prefix
- Interface
  - Outgoing interface
- Gateway/next hop
  - Address of next router along the path

#### **Static and Default Routes**

- Categories of routing table entries
  - Directly connected
  - Paths to remote networks
  - Host routes
  - Default route

- Directly connected routes
  - IP network/subnet for each active interface
- Static routes
  - Added manually by administrator
- Default route
  - Static route used if no other match
  - 0.0.0.0/0 or ::/0

#### **Routing Table Example**

| Router B Routing Table |           |           |  |  |  |
|------------------------|-----------|-----------|--|--|--|
| Network                | Interface | Source    |  |  |  |
| 10.0.1.0/24            | G0        | Static    |  |  |  |
| 10.0.2.0/24            | G0        | Connected |  |  |  |
| 10.0.3.0/24            | G1        | Connected |  |  |  |
| 10.0.4.0/24            | G1        | Static    |  |  |  |



| Router A Routing Table |           |           |  |  |
|------------------------|-----------|-----------|--|--|
| Network                | Interface | Source    |  |  |
| 10.0.1.0/24            | G0        | Connected |  |  |
| 10.0.2.0/24            | G1        | Connected |  |  |
| 10.0.3.0/24            | G1        | Static    |  |  |
| 10.0.4.0/24            | G1        | Static    |  |  |

| Router C Routing Table |           |           |  |  |
|------------------------|-----------|-----------|--|--|
| Network                | Interface | Source    |  |  |
| 0.0.0.0/0              | G0        | Static    |  |  |
| 10.0.3.0/24            | G0        | Connected |  |  |
| 10.0.4.0/24            | G1        | Connected |  |  |

#### **Packet Forwarding**



- Encapsulation for interface data link protocol
- Hop count
- Time to Live (TTL)

#### **Fragmentation**

- IP is unreliable, connectionless delivery mechanism
- Packets might be lost, delivered out of sequence, duplicated, or delayed
- ID, flags, and fragment offset fields record sequence and fragmentation
  - Fragmentation to fit layer 2 frame maximum transmission unit (MTU)
  - MTU path discovery

#### Review Activity: Routing Concepts

- Routing Tables and Path Selection
- Static and Default Routes
- Routing Table Example
- Packet Forwarding
- Fragmentation



### Assisted Lab: Configure Static Routing

- Lab types
  - Assisted labs guide you step-by-step through tasks
  - Applied labs set goals with limited guidance
- Complete lab
  - Submit all items for grading and check each progress box
  - Select "Grade Lab" from final page
- Save lab
  - Select the hamburger menu and select "Save"
  - Save up to two labs in progress for up to 7 days
- Cancel lab without grading
  - Select the hamburger menu and select "End"



### **Topic 7B**

# Compare and Contrast Dynamic Routing Concepts

#### **Dynamic Routing Protocols**

- Build routing information base
- Share information with other routers (learned routes)
- Topology and metrics
  - Distance vector versus link state
  - Metrics assess similar routes for use of least-cost path in IP routing table
  - Algorithm determines nature of metrics
- Convergence
  - All routers agree on network topology

#### **Interior versus Exterior Gateway Protocols**

- Interior Gateway Protocol (IGP)
  - Routing within an autonomous system (AS)
- Exterior Gateway Protocol (EGP)
  - Routing between autonomous systems
- Classless versus classful protocols
- IPv6 support

| Protocol                                                 | Туре                      | Class | Transport                |
|----------------------------------------------------------|---------------------------|-------|--------------------------|
| Routing Information<br>Protocol (RIP)                    | Distance Vector           | IGP   | UDP (port 520 or<br>521) |
| Enhanced Interior<br>Gateway Routing<br>Protocol (EIGRP) | Distance<br>Vector/Hybrid | IGP   | Native IP (88)           |
| Open Shortest Path<br>First (OSPF)                       | Link State                | IGP   | Native IP (89)           |
| Border Gateway<br>Protocol (BGP)                         | Path Vector               | EGP   | TCP (port 179)           |

#### Routing Information Protocol (Slide 1 of 2)

- Distance vector
  - Next hop (vector)
  - Hop count (distance)
- Slow convergence and inefficient updates
- Maximum hop count of 15

| 2 2 2 4 0   | G0 | G1 | 10000     | G0 | G1 |  |
|-------------|----|----|-----------|----|----|--|
| 10.0.4.0/24 | G1 | 1  | RIP       |    |    |  |
| 10.0.3.0/24 | G1 | 0  | Connected |    |    |  |
| 10.0.2.0/24 | G0 | 0  | Connected |    |    |  |
|             |    |    |           |    |    |  |

RIP

Router B Routing Table
Interface | Metric | Source

Router B

Network Int 10.0.1.0/24 G0

| Router A Routing Table |           |        |           |  |  |  |
|------------------------|-----------|--------|-----------|--|--|--|
| Network                | Interface | Metric | Source    |  |  |  |
| 10.0.1.0/24            | G0        | 0      | Connected |  |  |  |
| 10,0,2,0/24            | G1        | 0      | Connected |  |  |  |
| 10.0.3.0/24            | G1        | 1      | RIP       |  |  |  |
| 10.0.4.0/24            | G1        | 2      | RIP       |  |  |  |

Router A

| Router C Routing Table |           |        |           |  |  |
|------------------------|-----------|--------|-----------|--|--|
| Network                | Interface | Metric | Source    |  |  |
| 10.0.1.0/24            | G0        | 2      | RIP       |  |  |
| 10.0.2.0/24            | G0        | 1      | RIP       |  |  |
| 10.0.3.0/24            | G0        | 0      | Connected |  |  |
| 10.0.4.0/24            | G1        | 0      | Connected |  |  |

Router C

#### Routing Information Protocol (Slide 2 of 2)



| Router A Routing Table |           |        |          |           |  |
|------------------------|-----------|--------|----------|-----------|--|
| Network                | Interface | Metric | Via      | Source    |  |
| 10.0.1.0/24            | G0        | 0      |          | Connected |  |
| 10.0.2.0/24            | G1        | 0      |          | Connected |  |
| 10,0,2,0/24            | G2        | 2      | 10,0,4,0 | RIP       |  |
| 10.0.3.0/24            | G1        | 1      | 10.0.2.0 | RIP       |  |
| 10,0,3,0/24            | G2        | 2      | 10.0.4.0 | RIP       |  |
| 10.0.4.0/24            | G2        | 0      |          | Connected |  |
| 10.0.5.0/24            | G1        | 2      | 10.0.2.0 | RIP       |  |
| 10.0.5.0/24            | G2        | 1      | 10.0.4.0 | RIP       |  |



|   | Router A Routing Table |           |        |          |           |  |  |
|---|------------------------|-----------|--------|----------|-----------|--|--|
|   | Network                | Interface | Metric | Via      | Source    |  |  |
|   | 10.0.1.0/24            | G0        | 0      |          | Connected |  |  |
| × | 10.0.2.0/24            | G1        | 0      |          | Connected |  |  |
|   | 10,0,2,0/24            | G2        | 2      | 10.0.4.0 | RIP       |  |  |
| × | 10.0.3.0/24            | G1        | 1      | 10.0.2.0 | RIP       |  |  |
|   | 10,0,3,0/24            | G2        | 2      | 10,0,4,0 | RIP       |  |  |
|   | 10.0.4.0/24            | G2        | 0      |          | Connected |  |  |
| × | 10.0.5.0/24            | G1        | 2      | 10.0.2.0 | RIP       |  |  |
|   | 10,0,5,0/24            | G2        | 1      | 10,0,4,0 | RIP       |  |  |

#### **RIP Versions**

- RIPv1
  - Classful and uses broadcasts over UDP/520
- RIPv2
  - Classless and uses more efficient multicasts
- RIPng
  - IPv6 support over UDP/521

#### **Enhanced Interior Gateway Routing Protocol**

- Update to Interior Gateway Protocol to support classless addressing
- Advanced distance vector/hybrid with administrator weighted metric
  - Bandwidth
  - Delay
- Best convergence performance
- Runs over IP directly (protocol number 88) using multicasts

#### **Open Shortest Path First**

- Link state interior gateway protocol suited to complex private networks
- Group related networks by area hierarchy
- Supports classless addressing
- Runs over IP directly (protocol number 89) using multicasts



#### **Border Gateway Protocol**

- Classed as hybrid or path vector
- Usually deployed as an Exterior Gateway Protocol
- Supports routing on the Internet
  - Autonomous Systems (ASes) hide internal network complexity from Internet routers
  - Autonomous System Number (ASN)
  - BGP routers exchange AS path data between Autonomous Systems
- Supports classless addressing
- Runs over TCP on port 179

#### **Administrative Distance**

| Source                             | AD  |
|------------------------------------|-----|
| Local interface/Directly connected | 0   |
| Static route                       | 1   |
| BGP                                | 20  |
| EIGRP                              | 90  |
| OSPF                               | 110 |
| RIP                                | 120 |
| Unknown                            | 255 |
|                                    |     |

- Longer prefixes preferred for path selection
- Protocols add one route per destination prefix to global IP routing table
- Routing protocol uses metric to determine least-cost path
- Router uses administrative distance to prefer paths to same destination learned by different protocols

#### **Classless Inter-Domain Routing**



Interior

Exterior



#### **Variable Length Subnet Masks**

- Use address space in IPv4 network more efficiently
- Rather than use the same mask for all subnets, use different mask lengths according to host numbers per subnet



#### **VLSM Design**

| Office/Subnet               | Required<br>Number of IP<br>Addresses | Mask Bits | Actual<br>Number of IP<br>Addresses | Prefix |
|-----------------------------|---------------------------------------|-----------|-------------------------------------|--------|
| Main Office 1<br>(Router A) | 80                                    | 7         | 126                                 | /25    |
| Main Office 2<br>(Router A) | 30                                    | 5         | 30                                  | /27    |
| Main Office 3<br>(Router A) | 8                                     | 4         | 14                                  | /28    |
| Branch Office<br>(Router B) | 12                                    | 4         | 14                                  | /28    |
| Branch Office<br>(Router C) | 12                                    | 4         | 14                                  | /28    |
| Router A –<br>Router B      | 2                                     | 2         | 2                                   | /30    |
| Router A –<br>Router C      | 2                                     | 2         | 2                                   | /30    |
| Router B –<br>Router C      | 2                                     | 2         | 2                                   | /30    |



#### Review Activity: Dynamic Routing Concepts

- Interior versus Exterior Gateway Protocols
- Routing Information Protocol
- RIP Versions
- Enhanced Interior Gateway Routing Protocol
- Open Shortest Path First
- Border Gateway Protocol
- Administrative Distance
- Classless Inter-Domain Routing
- Variable Length Subnet Masks and VLSM Design



#### Review Activity: Design VLSM Subnets





### Assisted Lab: Configure Dynamic Routing

- Lab types
  - Assisted labs guide you step-by-step through tasks
  - Applied labs set goals with limited guidance
- Complete lab
  - Submit all items for grading and check each progress box
  - Select "Grade Lab" from final page
- Save lab
  - Select the hamburger menu and select "Save"
  - Save up to two labs in progress for up to 7 days
- Cancel lab without grading
  - Select the hamburger menu and select "End"



### Topic 7C

#### Install and Troubleshoot Routers

#### **Edge Routers**

- Placement
  - Hosts in same IP network/subnet must not be separated by a router
  - Hosts in different IP networks/subnets must be separated by router
- Edge routers on network perimeter
  - Customer edge (CE) to provider edge (PE)
  - L1/L2 type (metro-optical, leased line, DSL, cable)
- SOHO-class routers versus enterprise routers



#### **Internal Routers**



- Implement subnets and internal borders/areas
- Subinterfaces
  - Split single physical connection to per-VLAN subinterfaces
- Layer 3 switches
  - Hardware optimized to forward between VLANs

#### **Router Configuration**

- Management interface
  - Console port
  - Loopback interface
- Configure router interfaces
  - IP configuration
  - L2 configuration
- Configure static routes and routing protocols
- show route

```
vyos@vyos:~$ conf
[edit]
vyos@vyos# set protocols rip interface eth0
vyos@vyos# set protocols rip interface eth1
[edit]
vyos@vyos# set protocols rip redistribute connected
[edit]
vyos@vyos# commit && save && exit
Saving configuration to '/config/config.boot'...
Done
exit
vyos@vyos:~$ show ip rip
Codes: R - RIP, C - connected, S - Static, O - OSPF, B - BGP
Sub-codes:
      (n) - normal, (s) - static, (d) - default, (r) - redistribute,
      (i) - interface
     Network
                        Next Hop
                                         Metric From
                                                                 Tag Time
R(n) 10.0.0.1/32
                        10.0.2.254
                                               2 10.0.2.254
                                                                   0 02:57
C(r) 10.0.0.2/32
                        0.0.0.0
                                               1 self
R(n) 10.0.1.0/24
                        10.0.2.254
                                               2 10.0.2.254
                                                                   0 02:57
                                              1 self
    10.0.2.0/24
                        0.0.0.0
                                              1 self
                        0.0.0.0
```

#### route

```
PS C:\Windows\system32> route print
Interface List
 9...00 15 5d 00 65 31 .....Microsoft Hyper-V Network Adapter
 1.....Software Loopback Interface 1
IPv4 Route Table
Active Routes:
Network Destination
                         Netmask
                                         Gateway
                                                      Interface Metric
         0.0.0.0
                         0.0.0.0
                                     10.1.24.254
                                                     10.1.24.101
       10.1.24.0
                   255.255.255.0
                                        On-link
                                                     10.1.24.101
                                                                   271
     10.1.24.101 255.255.255.255
                                                     10.1.24.101
                                        On-link
     10.1.24.255 255.255.255.255
                                        On-link
                                                     10.1.24.101
                                                                   271
       127.0.0.0
                       255.0.0.0
                                        On-link
                                                      127.0.0.1
       127.0.0.1 255.255.255.255
                                        On-link
                                                       127.0.0.1
 127.255.255.255 255.255.255.255
                                        On-link
                                                       127.0.0.1
       224.0.0.0
                                       On-link
                       240.0.0.0
                                                       127.0.0.1
       224.0.0.0
                       240.0.0.0
                                        On-link
                                                     10.1.24.101
                                                                   271
 255.255.255.255 255.255.255
                                        On-link
                                                       127.0.0.1
 255.255.255.255 255.255.255.255
                                        On-link
                                                     10.1.24.101
Persistent Routes:
 None
TPv6 Route Table
Active Routes:
If Metric Network Destination
                                 Gateway
       31 ::/0
                                 fe80::215:5dff:fe00:6510
      331 ::1/128
                                 On-link
      271 fdf0:2413:6d1c:30:997b:634e:5b90:7e/128
                                 On-link
```

- Troubleshoot Windows and Linux hosts
- Verify default gateway
- Add static route

#### tracert and traceroute

- traceroute
  - UDP probes to identify each hop in a path
  - Increments TTL with each iteration
  - Outputs number of hops, the IP address of the ingress interface of the router or host, and time taken in milliseconds (ms)
- tracert
  - Windows
  - Uses ICMP

#### **Missing Route Issues**

- Use ping and traceroute/tracert to identify where network path fails
- Check routing table
  - Missing static route
  - Dynamic protocol failure
- Device configuration review

#### **Routing Loop Issues**



- Incorrect path information causes packet to circulate until TTL is exhausted
- Use traceroute to diagnose

#### **Asymmetrical Routing Issues**

- Return path different to forward path
- Issues
  - Inconsistent latency
  - Security appliances dropping return packets
- Analyze traceroute output and investigate routing tables

#### **Low Optical Link Budget Issues**

- Consider PHY/data link layer issues when routing across WANs
- Poor connectivity across fiber link
- Loss budget expresses amount of loss from attenuation, connectors, and splices measured in dB
- Loss budget must be less than power budget (transceiver transmit power and receive sensitivity)

#### Review Activity: Router Installation and Troubleshooting

- Edge Routers
- Internal Routers
- Router Configuration
- route
- tracert and traceroute
- Missing Route Issues
- Routing Loop Issues
- Asymmetrical Routing Issues
- Low Optical Link Budget Issues



#### Review Activity: Design a Branch Office Internetwork





### Applied Lab: Troubleshoot IP Networks (Parts A and B)

- Lab types
  - Assisted labs guide you step-by-step through tasks
  - Applied labs set goals with limited guidance
- Complete lab
  - Submit all items for grading and check each progress box
  - Select "Grade Lab" from final page
- Save lab
  - Select the hamburger menu and select "Save"
  - Save up to two labs in progress for up to 7 days
- Cancel lab without grading
  - Select the hamburger menu and select "End"

#### CompTIA Network+ Exam N10-008

## Lesson 7

### Summary