1	Let A(1:8, -5:5, -10:5) be a three dimensional array. How many elements are there in the array A?						
	а	1200					
	b	1408					
	С	33					
	d	1050					
2		number of rotations required to insert a sequence of elements					
	9,6,5,	8,7,10 into an empty AVL tree is?					
	а	0					
	b	1					
	С	2					
	d	3					
3		ortunistic reasoning is addressed by which of the following					
	know	rledge representation					
	а	Script					
	b	Blackboard					
	С	Production Rules					
	d	Fuzzy Logic					
	The f	ollowing steps in a linked list					
		p = getnode()					
4		info (p) = 10					
		next (p) = list					
		list = p					
		in which type of operation? pop operation in stack					
	a	removal of a node					
	b						
	C	inserting a node					
5	d Shift	modifying an existing node					
3		reduce parsing belongs to a class of bottom up parsing					
	a b	top down parsing					
	C	recursive parsing					
	d	predictive parsing					
		· · · · · · · · · · · · · · · · · · ·					
		Which of the following productions eliminate left recursion in the productions given below:					
6	produ	S → Aa b					
		$A \rightarrow Ac \mid Sd \mid \varepsilon$					
	а	$S \rightarrow Aa \mid b$, $A \rightarrow bdA'$, $A' \rightarrow A'c \mid A'ba \mid A \mid \epsilon$					
	b	$S \rightarrow Aa \mid b$, $A \rightarrow bdA$, $A \rightarrow AC \mid Aba \mid A \mid \epsilon$ $S \rightarrow Aa \mid b$, $A \rightarrow A' \mid bdA'$ $A' \rightarrow cA' \mid adA' \mid \epsilon$					
	C	$S \rightarrow Aa \mid b$, $A \rightarrow A'c \mid A'd$ $A' \rightarrow bdA' \mid cA \mid \epsilon$					
	d	$S \rightarrow Aa \mid b$, $A \rightarrow cA' \mid adA' \mid bdA'$ $A' \rightarrow A \mid \epsilon$					

	Cons	ider the following psuedocode:
		x : integer := 1
		y : integer := 2
		www.co.duwe.co.du
		procedure add
		x := x + y
		procedure second (P: procedure)
		x : integer := 2
_		P()
7		V
		procedure first
		y : integer := 3
		second(add)
		first()
		write_integer (x)
	What	does it print if the language uses dynamic seening with does
	bindi	does it print if the language uses dynamic scoping with deep
	a	2
	b	3
	C	4
	d	5
		h logic gate is used to detect overflow in 2's complement
8		netic?
	а	OR gate
	b	AND gate
	С	NAND gate
	d	XOR gate
		array of 2N elements that is both 2-ordered and 3-ordered,
9		is the maximum number of positions that an element can be
		its position if the array were 1-ordered?
	a	2
	b	Z N/2
	d	2N-1
		frame buffer has 8 bits per pixel and 8 bits are allocated for
10		of the R, G, B components, what would be the size of the
		ip table?
	а	24 bytes
	b	1024 bytes
	С	768 bytes
	d	256 bytes

11	When two BCD numbers 0x14 and 0x08 are added what is the binary				
	repre	sentation of the resultant number?			
	а	0x22			
	b	0x1c			
	С	0x16			
	d	results in overflow			
12		h of the following sorting algorithms has the minimum running			
	time	complexity in the best and average case?			
	a	Insertion sort, Quick sort			
	b	Quick sort, Quick sort			
	С	Quick sort, Insertion sort			
	d	Insertion sort, Insertion sort			
13		number 1102 in base 3 is equivalent to 123 in which base			
	syste				
	a	4			
	b	5			
	С	6			
	d	8 cessor is fetching instructions at the rate of 1 MIPS. A DMA			
14	modu trans	lle is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ed down due to DMA activity?			
	а	9.6 ms			
	b	4.8 ms			
	С	2.4 ms			
	d	1.2 ms			
		peline P operating at 400 MHz has a speedup factor of 6 and			
15		ating at 70% efficiency. How many stages are there in the			
	pipeli				
	a	5			
	b	6			
	С	8			
	d	9			
16		much speed do we gain by using the cache, when cache is 80% of the time? Assume cache is faster than main memory.			
	а	5.27			
	b	2.00			
	~				
	c d	4.16 6.09			

17	Two eight bit bytes 1100 0011 and 0100 1100 are added. What are the values of the overflow, carry and zero flags respectively, if the arithmetic unit of the CPU uses 2's complement form?			
	a	0, 1, 1		
	b	1, 1, 0		
	С	1, 0, 1		
	d	0, 1, 0		
18		many check bits are required for 16 bit data word to detect 2 bit s and single bit correction using hamming code?		
	а	5		
	b	6		
	С	7		
	d	8		
19	What	is the maximum number of characters (7 bits + parity) that can		
		Insmitted in a second on a 19.2 kbps line. This asynchronous		
		mission requires 1 start bit and 1 stop bit.		
	а	192		
	b	240		
	C	1920		
	d	1966		
20		1394 is related to		
	а	RS-232		
	b	USB		
	С	Firewire		
	d	PCI		
21	funct	will be the cipher text produced by the following cipher ion for the plain text ISRO with key k =7. [Consider 'A' = 0, 'B' ='Z' = 25] $C_k(M) = (kM + 13) \mod 26$		
	а	RJCH		
	b	QIBG		
	C	GQPM		
	d	XPIN		
	Any s	et of boolean operators that is sufficient to represent all		
22	boole	an expressions is said to be complete. Which of the following		
	is not	complete?		
	а	{NOT, OR}		
	b	{NOR}		
	С	{AND, OR}		
	d	{AND, NOT}		

23	Which of the following is the highest isolation level in transaction					
23	management?					
	а	Serializable				
	b	Repeated Read				
	С	Committed Read				
	d	Uncommitted Read				
	Cons	ider the following relational schema:				
		Suppliers (<u>sid:integer</u> , sname:string, saddress:string)				
		Parts (<u>pid:integer</u> , pname:string, pcolor:string)				
		Catalog (<u>sid:integer, pid:integer</u> , pcost:real)				
24	What	is the result of the following query?				
		ECT Catalog.pid from Suppliers, Catalog RE Suppliers.sid = Catalog.pid)				
		MINUS				
		ECT Catalog.pid from Suppliers, Catalog				
		RE Suppliers.sname <> 'sachin' and Suppliers.sid = Catalog.sid)				
	<u>а</u>	pid of Parts supplied by all except sachin				
	b	pid of Parts supplied only by sachin				
	С	pid of Parts available in catalog supplied by sachin				
0.5	d	pid of Parts available in catalogs supplied by all except scahin				
25	Consider the following dependencies and the BOOK table in a					
	relational database design. Determine the normal form of the given					
	leiati	relation. ISBN → Title				
		ISBN → Publisher				
		Publisher → Address First Normal Form				
	a b	Second Normal Form				
		Third Normal Form				
	d d	BCNF				
26	5	Ilate the order of leaf(p _{leaf}) and non leaf(p) nodes of a B ⁺ tree				
20		d on the information given below				
		search key field = 12 bytes				
		Secord pointer = 10 bytes				
		Block pointer = 8 bytes				
		Block size = 1 KB				
	а	p _{leaf} = 51 & p = 46				
	b	$p_{leaf} = 47 \& p = 52$				
	С	$p_{leaf} = 46 \& p = 51$				
	d	$p_{leaf} = 52 \& p = 47$				

27	The physical location of a record determined by a formula that transforms a file key into a record location is			
	a	Hashed file		
	b	B-Tree file		
		Indexed file		
	d	Sequential file		
		nost simplified form of the boolean function		
28	i iie ii			
20	(expr	$x (A,B,C,D) = \Sigma (7,8,9,10,11,12,13,14,15)$ essed in sum of minterms) is?		
	a	A + A'BCD		
	b	AB + CD		
	С	A + BCD		
	d	ABC + D		
	How	many programmable fuses are required in a PLA which takes		
29	16 inp	outs and gives 8 outputs? It has to use 8 OR gates and 32 AND		
	gates			
	а	1032		
	b	776		
	С	1284		
	d	1536		
		hree stage counter, using RS flip flops what will be the value of		
30		ounter after giving 9 pulses to its input? Assume that the value		
	of counter before giving any pulses is 1.			
	а	1		
	b	2		
	С	9		
	d	10		
31		ich of the following shading models of polygons, the polation of intensity values is done along the scan line?		
	a	Gourard shading		
	b	Phong shading		
	C	Constant shading		
	d	Flat shading		
32		h of the following number of nodes can form a full binary tree?		
	а	8		
	b	15		
	С	14		
	d	13		

33	What	is the matrix transformation which takes the independent					
	vectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ and transforms them to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$						
	respectively?						
	а	$ \left[\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array}\right] $					
	b	$ \left(\begin{array}{cc} 0 & 0 \\ 0.5 & 0.5 \end{array}\right) $					
	С	$ \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} $					
	d	$\begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$					
34	In 80	86, the jump condition for the instruction JNBE is?					
	а	CF = 0 or $ZF = 0$					
	b	ZF = 0 and $SF = 1$					
	С	CF = 0 and ZF = 0					
	d	CF = 0					
		many number of times the instruction sequence below will loop re coming out of the loop?					
35		MOV AL, 00H A1: INC AL JNZ A1					
	а	1					
	b	255					
	С	256					
	d	Will not come out of the loop					
36		85 microprocessor, the ISR for handling trap interrupt is at plocation?					
	а	3CH					
	b	34H					
	С	74H					
	d	24H					

37		e voltage ranges for a logic high and a logic low in RS-232 C			
	stand	dard is			
	а	Low is 0.0V to 1.8V, High is 2.0V to 5.0V			
	b	Low is -15.0V to -3.0V, High is 3.0V to 15.0V			
	С	Low is 3.0V to 15.0V, High is -3.0V to -15.0V			
	d	Low is 2.0V to 5.0V, High is 0.0V to 1.8V			
38		Ethernet, which field is actually added at the physical layer			
		s not part of the frame			
	a	preamble			
	b	CRC			
	С	address			
	d	location			
39	Ether	net layer-2 switch is a network element type which gives			
	а	different collision domain and same broadcast domain			
	b	different collision domain and different broadcast domain			
	С	same collision domain and same broadcast domain			
	d	same collision domain and different broadcast domain			
		frame to be transmitted is 1101011011 and the CRC polynomial			
40		used for generating checksum is $x^4 + x + 1$, then what is the			
	trans	mitted frame?			
	a	11010110111011			
	b	11010110111101			
	С	11010110111110			
	d	11010110111001			
		will be the efficiency of a Stop and Wait protocol, if the			
41		ansmission time for a frame is 20ns and the propagation time is			
	30ns	·			
	a	20%			
	b	25%			
	С	40%			
40	d	66%			
42		does not support which of the following addressing modes?			
	a	unicast addressing			
	b	multicast addressing			
	С	broadcast addressing			
	d	anycast addressing			
43		is IP class and number of sub-networks if the subnet mask is 24.0.0?			
	а	class A, 3			
	b	class A, 8			
	С	class B, 3			
	d	class B, 32			

44		h algorithm is used to shape the bursty traffic into a fixed rate by averaging the data rate?					
	а	solid bucket algorithm					
	b	spanning tree algorithm					
	С	hocken helm algorithm					
	d	leaky bucket algorithm					
45	A pag	ket filtering firewall can					
	а	deny certain users from accessing a service					
	b	block worms and viruses from entering the network					
	С	disallow some files from being accessed through FTP					
	d	block some hosts from accessing the network					
46	Whic	h of the following encryption algorithms is based on the Fiestal					
40	struti	ure?					
	а	Advanced Encryption Standard					
	b	RSA public key cryptographic algorithm					
	С	Data Encryption Standard					
	d	RC4					
47	The p	protocol data unit for the transport layer in the internet stack is					
	а	segment					
	b	message					
	С	datagram					
	d	frame					
48		Guass-Seidal iterative method can be used to solve which of					
	the fo	pllowing sets?					
	а	Linear algebraic equations					
	b	Linear and non-linear algebraic equations					
	С	Linear differential equations					
	d	Linear and non-linear differential equations					
49		is the least value of the function $f(x) = 2x^2 - 8x - 3$ in the					
	inter	/al [0 , 5] ?					
	a	-15					
	b	7					
	С	-11					
	d	-3					

			g set of processe mes given in milli		nes and the		
	requi	ieu Cro-buist ti	illes given in milli	seconus.			
		Process	Arrival Time	Burst Time]		
		P1	0	4			
50		P2	2	2			
		P3	3	1			
					_		
	What	is the sequence	in which the prod	cesses are comp	oleted?		
			scheduling with a	time quantum o	of 2		
	millis	econds.					
	а	P1, P2, P3					
	b	P2, P1, P3					
	С	P3, P2, P1					
	d	P2, P3, P1					
51			the speed of da	ata transfer is	mentioned in		
<u> </u>	multi	ples of?					
	а	150 KB/s					
	b	1.38 MB/s					
	С	300 KB/s					
	d	2.40 MB/s					
	Suppose we have variable logical records of lengths of 5 bytes, 10						
52			while the physical				
			and minimum fra	agmentation see	n in bytes?		
	a	25 and 5					
	b	15 and 5					
	С	1000000					
	d	10 and 5					
53			gorithm determine				
53		of its scheduled processes. Given 'n' processes to be scheduled on one processor, how many possible different schedules are there?					
	•	,	nany possible uni	ierent Schedules	s are there?		
	a b	n ²					
	C	n!					
	d	2 ⁿ					
54	-		g are the likely ca	uses of thrashir	na?		
J-7	a	Page size was \	•	uses of tillastill	<u>'y '</u>		
	b		any users connect	ed to the system			
	C		sed policy is used		nent		
	d		policy is used for p				
	<u> </u>	1 . 1100 111 1 1100 000	pency io accarding	ago ropiacomoni	•		

	Consider a logical address space of 8 pages of 1024 words each,					•	
55		mapped onto a physical memory of 32 frames. How many bits are there in the physical address and logical address respectively?					
	a	5, 3					
	b	15, 13	10, 10				
	d	15, 15					
		64-bit machine	with 2 GB	PAM and	9 KB page s	rizo how ma	nv.
56		es will be there					ally
	а	2 ¹⁸					
	b	2 ²⁰					
	С	2 ³³					
	d	2 ⁵¹					
57	Whic	h of the follow	ing is not a	a necessary	condition f	for deadlock	(?
	а	Mutual exclus	sion				
	b	Reentrancy					
	С	Hold and wait	t				
	d	No pre-emption	on				
	Consider the following process and resource requirement of eac				each		
	proce	process.					
1							
		_	Tvn	ne 1	Tvn	ne 2	
		Process	Typ Used	oe 1 Max	Typ Used	pe 2	
58		Process P1				Max	
58				Max 2			
58		P1		Max	Used 1	Max 3	
58		P1 P2	Used 1 1	Max 2 3	Used 1 1	Max 3 2	
58		P1 P2 P3	Used 1 1 2 f this syste	Max 2 3 4 m, assumir	Used 1 1 1 1 ng that there	Max 3 2 4 e are a total	
58		P1 P2 P3 ct the state of nces of resour	Used 1 1 2 f this systemice type 1 a	Max 2 3 4 m, assumir	Used 1 1 1 1 ng that thereaces of reso	Max 3 2 4 e are a total curce type 2.	
58	insta a	P1 P2 P3 ict the state of nces of resour	Used 1 1 2 f this systemice type 1 a	Max 2 3 4 m, assumir	Used 1 1 1 1 ng that thereaces of reso	Max 3 2 4 e are a total curce type 2.	
58	insta	P1 P2 P3 Ct the state of nces of resources of state Can go to safe Safe state	Used 1 1 2 f this systemice type 1 a	Max 2 3 4 m, assumir	Used 1 1 1 1 ng that thereaces of reso	Max 3 2 4 e are a total curce type 2.	
58	insta a	P1 P2 P3 Ct the state of nces of resources of state Can go to safe state Unsafe state	Used 1 1 2 f this systemeter type 1 are or unsafe	Max 2 3 4 m, assumir	Used 1 1 1 1 ng that thereaces of reso	Max 3 2 4 e are a total curce type 2.	
58	insta a b c d	P1 P2 P3 Ct the state of nces of resources of resources of state Unsafe state Deadlock state	Used 1 2 f this systemore type 1 are or unsafe	Max 2 3 4 m, assumir and 4 instar state based	Used 1 1 1 ng that there ices of reso	Max 3 2 4 e are a total surce type 2.	
	insta a b c d A sta	P1 P2 P3 Ct the state of nces of resources of resources of state Can go to safe state Unsafe state Deadlock state rvation free jo	Used 1 1 2 f this systemete type 1 are or unsafe	Max 2 3 4 m, assumir and 4 instar state based	Used 1 1 1 ng that there oces of reso on sequence	Max 3 2 4 e are a total curce type 2.	
58	a b c d A sta indef	P1 P2 P3 ict the state of nces of resources of resources of state Can go to safe state Unsafe state Deadlock state rvation free joinitely waits for	Used 1 1 2 f this systemete type 1 are or unsafe te b scheduling a service	Max 2 3 4 m, assumir and 4 instar state based ng policy gr	Used 1 1 1 ng that there oces of reso on sequence	Max 3 2 4 e are a total curce type 2.	
	insta a b c d A sta indef schee	P1 P2 P3 Ct the state of nces of resources of resources of state Can go to safe state Unsafe state Deadlock state rvation free joinitely waits for duling policies	Used 1 1 2 f this systemate to rea type 1 a service is starvati	Max 2 3 4 m, assumir and 4 instar state based ng policy gr	Used 1 1 1 ng that there oces of reso on sequence	Max 3 2 4 e are a total curce type 2.	
	insta a b c d A sta indef schee	P1 P2 P3 Ct the state of nces of resources of resources of state Can go to safe state Unsafe state Deadlock state Tvation free joinitely waits for duling policies Priority queing	Used 1 1 2 f this systemete type 1 are or unsafe te b scheduling or a service is starvating	Max 2 3 4 m, assumir and 4 instar state based ng policy gr	Used 1 1 1 ng that there oces of reso on sequence	Max 3 2 4 e are a total curce type 2.	
	insta a b c d A sta indef schee	P1 P2 P3 Ct the state of nces of resources of resources of resources of state Can go to safe state Unsafe state Deadlock state Total policies Priority queing Shortest Job	Used 1 1 2 f this systemete type 1 are or unsafe te b scheduling or a service is starvation	Max 2 3 4 m, assumir and 4 instar state based ng policy gr	Used 1 1 1 ng that there oces of reso on sequence	Max 3 2 4 e are a total curce type 2.	
	insta a b c d A sta indef schee	P1 P2 P3 Ct the state of nces of resources of resources of state Can go to safe state Unsafe state Deadlock state Tvation free joinitely waits for duling policies Priority queing	Used 1 1 2 f this systemete type 1 are or unsafe te b scheduling or a service is starvation	Max 2 3 4 m, assumir and 4 instar state based ng policy gr	Used 1 1 1 ng that there oces of reso on sequence	Max 3 2 4 e are a total curce type 2.	

60	The state of a process after it encounters an I/O instruction is						
	а	ready					
	b	blocked					
	С	idle					
	d	running					
61	Embe	pedded pointer provides					
	а	a secondary access path					
	b	a physical record key					
	С	an inverted index					
	d	a prime key					
		ticular parallel program computation requires 100 seconds					
		executed on a single CPU. If 20% of this computation is					
62		ly sequential, then theoretically the best possible elapsed					
		for this program running on 2 CPUs and 4 CPUs respectively					
	are						
	a	55 and 45 seconds					
	b	80 and 20 seconds					
	С	75 and 25 seconds					
	d	60 and 40 seconds					
	Cons	ider the following C code.					
	щ:1	de codicate					
		de <stdio.h></stdio.h>					
		de <math.h></math.h>					
	void n	iam()					
	ĺ	double pi = 3.1415926535;					
		int $a = 1$;					
63		int $i = 1$, int i ;					
		int 1,					
		for($i=0; i < 3; i++$)					
		$if(a = \cos(pi * i/2))$					
		printf("%d",1);					
		else printf("%d ", 0);					
	}						
	What	would the program print?					
	а	000					
	b	010					
	С	101					
	d	111					

```
What is the output of the following Java program?
      Class Test
        public static void main (String [] args)
           int x = 0;
           int y = 0;
64
           for (int z = 0; z < 5; z++)
              if((++x > 2) || (++y > 2))
                 x++;
           System.out.println(x + "" + y);
         }
            82
            85
       b
            83
       d
            53
     Consider the list of page references in the time line as below:
            96234444344258685532339627
65
     What is the working set at the penultimate page reference if \Delta is 5?
            {8,5,3,2,9,6}
       b
            {4,3,6,2,5}
       С
            {3,9,6,2,7}
            {3,9,6,2}
      What is the cyclomatic complexity of a module which has seventeen
66
     edges and thirteen nodes?
       а
            5
       b
            6
       C
            7
       d
67
     Which of the following types of coupling has the weakest coupling?
            Pathological coupling
            Control coupling
       b
            Data coupling
       C
            Message coupling
       d
```

68		Which of the following testing methods uses fault simulation technique?		
	а	unit testing		
	b	beta testing		
	С	stress testing		
	d	mutation testing		
	If a p	rogram P calls two subprograms P1 and P2 and P1 can fail 50%		
69	of the	e time and P2 can fail 40% of the time, what is the failure rate of		
	progr	ram P		
	а	50%		
	b	60%		
	С	70%		
	d	10%		
70	Which of the following strategy is employed for overcoming the			
70	priority inversion problem?			
	а	Temporarily raise the priority of lower priority level process		
	b	Have a fixed priority level scheme		
	С	Implement kernel pre-emption scheme		
	d	Allow lower priority process to complete its job		
		(E) denote the probability of the occurrence of event E.		
71		A) = 0.5 and $P(B) = 1$, then the values of $P(A/B)$ and $P(B/A)$		
	respe	ectively are		
	a	0.5, 0.25		
	b	0.25, 0.5		
	С	0.5, 1		
	d	1, 0.5		
72	How many diagonals can be drawn by joining the angular points an octagon?			
	а	14		
	b	20		
	С	21		
	d	28		
	What are the final states of the DFA generated from the following			
	NFA?			
		0 () 1 () 2 ()		
73				
	S	$(q_0) \xrightarrow{\epsilon} (q_1) \xrightarrow{\epsilon} ((q_2))$		
	а	q ₀ , q ₁ , q ₂		
	b	[q ₀ , q ₁], [q ₀ , q ₂], []		
	C	q ₀ , [q ₁ , q ₂]		
	d	[q ₀ , q ₁], q ₂		
	<u> </u>	[40; 41]; 45		

74	The number of elements in the power set of the set {{A,B},C} is			
	а	7		
	b	8		
	С	3		
	d	4		
75	What is the right way to declare a copy constructor of a class if the			
	name of the class is MyClass?			
	a	MyClass (constant MyClass *arg)		
	b	MyClass (constant MyClass & arg)		
	C	MyClass (MyClass arg)		
	d —	MyClass (MyClass *arg)		
76		number of edges in a 'n' vertex complete graph is ?		
	a	n * (n-1) / 2		
	b	n^2		
	С	n * (n+1) / 2		
	d	n * (n+1)		
77	The b	pinary equivalent of the decimal number 42.75 is		
	a	101010.110		
	b	100110.101		
	C	101010.101		
	d	100110.110		
78	Which of the following is not provided as a service in cloud computing?			
	а	Infrastructure as a service		
	b	Architecture as a service		
	С	Software as a service		
	d	Platform as a service		
70	The b	puilt-in base class in Java, which is used to handle all		
79	exceptions is			
	а	Raise		
	b	Exception		
	С	Error		
	d	Throwable		
80	In graphics, the number of vanishing points depends on			
	а	the number of axes cut by the projection plane		
	b	the centre of projection		
	С	the number of axes which are parallel to the projection plane		
	d	the perspective projections of any set of parallel lines that are not parallel to the projection plane		
		parametric trio projection plane		