Compare

Name	Dharini Baskaran
Identity Key	dhba5060

	Level	Completed
O	Beginner	9
	Intermediate	6
\Q	Advanced	1
\&>	Expert	0

	Goal		
472	2	13	
572	2	15	
Total	Total Completed		
0			

Compare

CSCI 5722/4722: Computer Vision

Spring 2024

Dr. Tom Yeh

Dr. Mehdi Moghari

Compare Pixels

CSCI 5722/4722 Computer Vision

Q: Which looks like X the most? A or B?

X			
2	1	0	
0	1	3	
-3	1	2	

	Α	
2	1	3
0	1	3
4	1	-2

Count Different Pixels

{ distance | similarity }

X

2	1	0
0	1	3
-3	1	2

Α

2	1	0
0	1	3
4	1	-2

X != A

Σ

{ min | max }

В

1	1	0
2	1	4
-2	1	3

X != B

L1

a.k.a._____

{ distance | similarity }

X

2	1	0
0	1	3
-3	1	2

Α

2	1	0
0	1	3
4	1	-2

|X - A|

Σ

{ I	min	r	nax }

В

1	1	0
2	1	4
-2	1	3

|X - B|

X

0	1	2
1	1	3
3	0	2

Α

2	1	0
0	1	3
4	1	-2

Σ

В

1	1	0
2	1	4
-2	1	3

|X - B|

(0	2
1	0	
7		1

12

b

L2

{ distance | similarity }

X

a.k.a. __

2	1	0
0	1	3
-3	1	2

A

2	1	0
0	1	3
4	1	-2

 $(X - A)^2$

Σ

{ min | max }

В

1	1	0
2	1	4
-2	1	3

 $(X - B)^2$

L2 Distance

X

0	1	2
1	1	3
3	0	2

2	1	0
0	1	3
4	1	0

$$(X - A)^2$$
4 0 4
1 0 0
1 1 4

{min | max }

В

1	1	0
2	1	4
2	1	3

 $(X - B)^2$

	0	4
	Q	
1	1	1

Cosine

Cosine { distance | similarity }

{ min | max }

X

2	1	0
0	1	3
-3	1	2

Α

2	1	0
0	1	3
4	1	-2

X .* A

A .* A

В

1	1	0
2	1	4
-2	1	3

X .* B

B .* B

Cosine Similarity

X

0	1	1
2	0	2
2	1	0

3	0	3
3	0	0
0	0	3

X .* A

A .* A

9	90	
9	0	0
0	0	9

В

0	2	0
2	0	2
2	0	3

B.* B

0	4	0
4	0	4
4	0	9

Scoreboard: Who is more like X?

Metric	A	В
Diff		
L1		
L2		
Cosine		

Similarity vs. Distance

	distance	θ	cos(θ)	similar	difference
alike					
not alkie					

Compare Many Images

CSCI 5722/4722 Computer Vision

Find images similar to a query image (L1 < 3)

Time Complexity

			_				_				_				_			
0	0	1		0	1	0		1	0	0		0	1	0		1	0	0
7	1	1		2	0	0		0	1	0		2	4	0		0	1	0
1	0	1		0	1	2		0	0	1		9	1	2		0	1	1
			-				-				_				-			_
1	0	0																
0	1	0																
0	0	1																
			•								-							
											-							
											-							
								F										

✓ Find similar images by L1 < 2

0	0	1
0	1	1
1	0	1

0	1	0
0	0	0
0	1	0

0	0	1
0	1	0
0	0	0

0	1	0
0	1	0
1	0	1

1	0	1
0	1	0
1	0	0

0	0	1
0	1	0
1	0	0

9	0	0	0		l
0	0		0	(0
0	0		l	-	0

0	0	O
0	G	0
1	0	0

0		
0	Đ	0
0	0	

-	0	0
G	ß	O
0	0	0

a

Find images similar to a query image (cosine)

0	0	1
7	1	1
1	0	1

0	1	0
2	0	0
0	1	2

1	0	0
0	1	0
0	0	1

0	1	0
2	4	0
9	1	2

0	1	0	
0	3	0	
1	1	2	

1	0	0
0	1	0
0	1	1

1	0	0
0	1	0
0	0	1

Cosine similarity for many images via Matrix Multiplication

K_1^T	0	0	1	7	1	1	1	0	1
K_2^T	0	1	0	2	0	0	0	1	2
K_3^T	1	0	0	0	1	0	0	0	1
K_4^T	0	1	0	0	3	0	1	1	2
K_5^T	1	0	0	0	1	0	0	1	1

Calculate

K_1^T	0	0	1	7	1	1	1	0	1
K_2^T	0	1	0	2	0	0	0	1	2
K_3^T	1	0	0	0	1	0	0	0	1
K_4^T	0	1	0	0	3	0	1	1	2
K_5^T	1	0	0	0	1	0	0	1	1

Time Complexity

Is Q more similar to K1 or to K2? (cosine)

K ₁		
4	1	1
0	2	1
0	1	1

 K_1^T

 K_2^T

Flatten by row major, c-style

Compare Many by Features

CSCI 5722/4722 Computer Vision

Find Similar Images in the Feature Space

0	0	1
7	1	1
1	0	1

0	1	0	
2	0	0	
0	1	2	

1	0	0
0	1	0
0	0	1

0	1	0	
0	3	0	
1	1	2	

1	0	0
0	1	0
0	1	1

1	0	0
0	1	0
0	0	1

L1

Time Complexity

Cosine

Compare Moments

CSCI 5722/4722 Computer Vision

Image and Image Moments (M)

Math

 M_{20} I(x, y)

∇	∇
Δ	Δ
\overline{x}	\overline{y}

Y					_
4			1		
3	1				
2	1	1			
1				1	
	1	2	3	4	X

 M_{12} I(x, y)

∇	∇
L	\angle
\overline{x}	\overline{y}

Υ					•
4			1		
3	1				
2	1	1			
1				1	
	1	2	3	4	

73 a

$x^i y^j I(x,y)$

Y

4		1	
3	1		

1	1	1

i = 0

j = 0

j = 1 4 3

	4		80		
	3	C ^A)			
	2	0			
•	l		2		4
	'	(2	3	4

	j = 0	j = 1	
i = 0	15	()	b
i = 1	10	19	
С	M	(A)	d

$x^{i}y^{j}I(x,y)$

i = 0

j = 0

M(B)

2

3

b

d

Compare X to A and B by L1 of their 2x2 Moments

M(X)

4	8
80	3

M(A)

15	
O	19

|M(X) - M(A)|

1	3
2	6

Σ

argmin

You must solve the previous two activities to calculate M(A) and M(B) before you can solve this.

M(B)

10	0
12	23

|M(X) - M(B)|

	2
4	10

Compare Distributions

CSCI 5722/4722 Computer Vision

Pixels → Histograms → Distributions

How do we compare distributions?

P_1	P_2	P_3	P_4
0.25	0	0	0
0.25	0.5	0.5	0
0.25	0.25	0.5	0
0.25	0.25	0	1

Cross-Entropy: Definition

```
Cross-Entropy is a measure of the { similarity | difference } between two { probability distributions | log likelihoods } for a given random variable or set of events
```

Entropy

X	log ₂ ^X	
1	0	
0.5	-1	
0.25	-2	
0.125	-3	
2-32	-32	
0	NaN	

P_1	P_2	P_3	P_4
0.25	0	0	0
0.25	0.5	0.5	0
0.25	0.25	0.5	0
0.25	0.25	0	1
		<u> </u>	

Compute Entropy

X	log ₂ ^X
1	0
0.5	-1
0.25	-2
0.125	-3
2-32	-32
0	NaN

	P_1	P_2	_
	0.25	0.125	
	0.5	0.5	
	0	0.25	
	0.25	0.125	
	2	3	
			- log ₂ ^P
	X	2]
	2	3	
	0.5	0-375	
	50	0	- P log ₂ ^P
	O	(S)	_
a	0-5	0.375	b
С	1.5	1.75	$-\Sigma P \log_2^P$

Cross Entropy

X	log ₂ ^X
1	0
0.5	-1
0.25	-2
0.125	-3
2-32	-32
0	NaN

P
0.25
0.25
0.25
0.25

Q_1	Q_2	Q_3	Q_4
0.25	0	0	0
0.25	0.5	0.5	0
0.25	0.25	0.5	0
0.25	0.25	0	1
	· · · · · · · · · · · · · · · · · · ·		

Matrix Multiplication Form

Q_1	Q_2	Q_3	Q_4
0.25	0	0	0
0.25	0.5	0.5	0
0.25	0.25	0.5	0
0.25	0.25	0	1

2	32	32	32
2	1	1	32
2	2	1	32
2	2	32	0

 P^T

0.25	0.25	0.25	0.25

2	9.25	16.5	24

Find Q most similar to P by Cross Entropy

\log_2^X
0
-1
-2
-3
-32
NaN

Q_1	Q_2	Q_3	Q_4
0.25	0.25	0.5	2 ⁻³²
0.25	0.5	2 ⁻³²	1
2 ⁻³²	0.25	0.5	2 ⁻³²
0.5	2 ⁻³²	2 ⁻³²	2 ⁻³²

2	2		32
2		3	
32	2		32
-	32	32	32

0	0.5	0.5	0

 P^T

$$-\Sigma P log_2^Q$$

argmin

NumPy by Hand <u>Land</u> Rearranging

CSCI 5722/4722 Computer Vision

Transpose (1D)

1. a = np.transpose(I) a

Transpose (2D)

1. a = np.transpose(I)

Reshape 1D → 2D

```
    a = np.reshape(I,(3,2))
    b = np.reshape(I,(2,3))
    c = np.reshape(I,(2,2))
```


Reshape 2D → 2D

```
1. a = np.reshape(I,(4,2))
2. b = np.reshape(I,(2,6))
3. c = np.reshape(I,(6,-1))
```


Flatten

```
1. a = np.flatten(I)
2. b = a.copy()
```


Ravel

```
1. a = np.ravel(I)
2. b = a.copy()
```


- 1. X = np.transpose(I)
- 2. Y = np.reshape(X, (2,-1))

(Draw the shapes of X and Y, and fill in their values)

	8	3	2					
(0	1	4					
	3	4	7					
٩	9	2	-1					
{	3	0	3	9				
٢	3	(4	2				
(2	4	7	- (
	8	0	3	9	3	(
	4	2	2	4	7	-1		

NumPy by Hand <u>Land</u> Shifting

CSCI 5722/4722 Computer Vision

Negative indexing

```
1. a = I[:]
2. b = I[:-1]
3. c = I[:-2]
```


Shift Right by 1

```
1. a = np.zeros(6)
2. b = I[:-1]
3. a[1:] = b
```


Shift Right by 2

```
1. a = np.zeros(6)
2. b = I[:-2]
3. a[2:] = b
```


Shift Left by 1

```
1. a = np.zeros(6)
2. b = I[1:]
3. a[:-1] = b
```


Shift Left by 2

```
1. a = np.zeros(6)
2. b = I[2:]
3. a[:-2] = b
```


1.
$$a = np.zeros(6)$$

2.
$$a[:-3] = I[3:]$$

3.
$$b[3:] = I[:-3]$$

What are the values of a and b?

Roll (right)

```
1. a = np.roll(I,1)
2. b = np.roll(I,2)
```


Roll (left)

```
1. a = np.roll(I,-1)
2. b = np.roll(I,-2)
```


a

1.
$$X = np.roll(I, + 5)$$

or

Complete the code by filling in the blanks.

1	2	4	5	7	9	4	3	8	
7	9	4	3	8	1	2	4	5	

2.
$$b = np.roll(I, -2)$$

3.
$$c = np.reshape((3,-1))$$

What is the effect?

- (a) Roll columns left by 1
- (b) Roll columns right by 1
- (c) Roll rows up by 1
- (d) Roll rows down by 1

Answer: (C)

1 .	7						
1	4						
3	8						
5	٦	ļ	4	3	8		
(4	3	8	5	7		
l	4						
3	8						
5	7						