Задание 9 (на 31.10.13)

 $\mathbf{CC47.}$ Докажите, что если $\mathbf{NP} \subseteq \mathbf{BPP}$, то $\mathbf{NP} = \mathbf{RP}$.

СС48. Пусть ZPP — это класс языков, которые принимаются вероятностной машиной Тьюринга без ошибки, математическое ожидание времени работы которых полиномиально. а) Докажите, что $L \in \text{ZPP}$ тогда и только тогда, когда существует полиномиальная по времени вероятностная машина Тьюринга M, которая выдает $\{0,1,?\}$, что для всех $x \in \{0,1\}^*$ с вероятностью 1, $M(x) \in \{L(x),?\}$ и $\Pr[M(x)=?] \leq \frac{1}{2}$. б) Докажите, что $\operatorname{ZPP} = \operatorname{RP} \cap \operatorname{coRP}$.

CC49. BPL — это класс языков, для которых существует вероятностная машина Тьюринга M, которая использует логарифмическую память, останавливается при всех последовательностях случайных битов и для всех x выполняется, что $\Pr[M(x) = L(x)] \ge \frac{2}{3}$. Покажите, что $\Pr[D(x) = L(x)] \ge \frac{2}{3}$.

[CC 9.] Машина Тьюринга называется забывчивой, если положение головки в любой момент времени зависит только от длины входа. Докажите, что любую машину Тьюринга, работающую время T(n) можно промоделировать за время $O(T^2(n))$ на забывчивой одноленточной машине. б) А на забывчивой двухленточной за время $O(T(n)\log T(n))$.

[CC 23.] Покажите, что каждый язык, который принимается k-ленточной недетерминированной машиной Тьюринга за время f(n) может быть принят 2-ленточной недетерминорованной машиной за время O(f(n)).

СС 34. Докажите, что а) $DSpace[n^2] \subsetneq DSpace[n^3]$; б) $NSpace[n^2] \subsetneq NSpace[n^3]$.

СС 43. Докажите, что $DSpace[n] \neq NP$.

СС 45. Докажите, что если унарный язык NP-полный, то P = NP.

[CC 46.] Обозначим UCYCLE множество всех неориентрованных графов, в которых есть цикл. Докажите, что UCYCLE принадлежит классу L.