

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160200104

FCC REPORT

(WIFI)

Applicant: YiHang Technologys Co.,Ltd.

Address of Applicant: 4/F, PuSheng Building, GaoXin 6th Road, Hi-Tech District,

Xi'an, Shaanxi, P.R.C

Equipment Under Test (EUT)

Product Name: GSM/WCDMA Multi-mode On-board equipment

Model No.: TREQr-5

Trade mark: OBC

FCC ID: 2AHEC-TREQR-5

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 17 Feb., 2016

Date of Test: 17 Feb., to 09 Mar., 2016

Date of report issued: 09 Mar., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Reviewed by:

Version No.	Date	Description
00	09 Mar., 2016	Original

Test Engineer

Carey Chen Tested by: Date: 09 Mar., 2016

09 Mar., 2016

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3	3 CONTENTS	3
4	4 TEST SUMMARY	4
5		
_		
	5.1 CLIENT INFORMATION	
	5.3 Test environment and mode	
	5.4 LABORATORY FACILITY	
	5.5 LABORATORY LOCATION	
	5.6 DESCRIPTION OF SUPPORT UNITS	
	5.7 TEST INSTRUMENTS LIST	8
6	6 TEST RESULTS AND MEASUREMENT DATA	9
	6.1 ANTENNA REQUIREMENT:	9
	6.2 CONDUCTED OUTPUT POWER	10
	6.3 OCCUPY BANDWIDTH	15
	6.4 POWER SPECTRAL DENSITY	
	6.5 BAND EDGE	
	6.5.1 Conducted Emission Method	
	6.5.2 Radiated Emission Method	
	6.6 SPURIOUS EMISSION	
	6.6.1 Conducted Emission Method	
7	7 TEST SETUP PHOTO	64
R	8 FUT CONSTRUCTIONAL DETAILS	65

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	YiHang Technologys Co.,Ltd.	
Address of Applicant:	4/F, PuSheng Building, GaoXin 6th Road, Hi-Tech District, Xi'an, Shaanxi, P.R.C	
Manufacturer:	YiHang Technologys Co.,Ltd.	
Address of Manufacturer:	4/F, PuSheng Building, GaoXin 6th Road, Hi-Tech District, Xi'an, Shaanxi, P.R.C	

5.2 General Description of E.U.T.

Product Name:	GSM/WCDMA Multi-mode On-board equipment
Model No.:	TREQr-5
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.71dBi
Power supply:	DC 12V

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz				
		5	2432MHz	8	2447MHz				
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCISE160200104

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 7 of 65

Report No: CCISE160200104

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
GS Japan	Lead-acid battery	55D26R-MFZ	8362810610	N/A

5.7 Test Instruments list

Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
8	Spectrum analyzer 9k-30GHz	i Rohde & Schwarz I		CCIS0023	03-28-2015	03-28-2016			
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016			
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.71 dBi.

6.2 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Ма	ximum Conduct	Limit(dBm)	Result			
1631 011	802.11b	802.11g	Limit(dBin)	Nesuit			
Lowest	16.51	15.68	15.81	15.16			
Middle	15.69	13.32	13.89	15.40	30.00	Pass	
Highest	15.70	13.63	13.49	14.34			

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.3 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH		6dB Emission	Limit(kHz)	Result			
1031011	802.11b	802.11g	Liiiii(Ki iz)	Nesult			
Lowest	8.24	16.56	17.76	36.16			
Middle	7.68	16.64	17.84	35.84	>500	Pass	
Highest	7.76	16.56	17.52	35.52			

Test CH		99% Occupy	Limit(kHz)	Result		
1031 011	802.11b	802.11g	Liiiii(Ki iz)	result		
Lowest	12.24	16.96	18.08	36.00		N/A
Middle	11.76	16.72	17.84	36.32	N/A	
Highest	11.28	16.72	17.84	36.00		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 24.FEB.2016 22:09:02

Lowest channel

Date: 24.FEB.2016 22:11:10

Middle channel

Date: 24.FEB.2016 22:12:23

Highest channel

Date: 24.FEB.2016 22:14:27

Lowest channel

Date: 24.FEB.2016 22:15:41

Middle channel

Date: 24.FEB.2016 22:18:20

Highest channel

Test mode: 802.11n(H20)

Date: 24.FEB.2016 22:21:05

Lowest channel

Date: 24.FEB.2016 22:21:51

Middle channel

Date: 24.FEB.2016 22:25:30

Highest channel

Test mode: 802.11n(H40)

Date: 25.FEB.2016 19:02:56

Lowest channel

Date: 24.FEB.2016 22:28:50

Middle channel

Date: 24.FEB.2016 22:32:58

Highest channel

99% OBW

Test mode: 802.11b

Date: 24.FEB.2016 22:09:47

Lowest channel

Date: 24.FEB.2016 22:10:25

Middle channel

Date: 24.FEB.2016 22:13:01

Highest channel

Test mode: 802.11g

Date: 24.FEB.2016 22:13:46

Lowest channel

Date: 24.FEB.2016 22:16:21

Middle channel

Date: 24.FEB.2016 22:19:01

Highest channel

Test mode: 802.11n(H20)

Date: 24.FEB.2016 22:20:20

Lowest channel

Date: 24.FEB.2016 22:22:35

Middle channel

Date: 24.FEB.2016 22:26:21

Highest channel

Test mode: 802.11n(H40)

Date: 24.FEB.2016 22:27:07

Lowest channel

Date: 24.FEB.2016 22:29:28

Middle channel

Date: 24.FEB.2016 22:31:54

Highest channel

6.4 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2				
Limit:	8dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH		Power Spec	Limit(dBm)	Result			
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesuit	
Lowest	4.64	0.73	0.74	-4.74			
Middle	3.52	0.03	-0.10	-3.99	8.00	Pass	
Highest	4.52	1.31	1.22	-3.17			

Test plot as follows:

Date: 24.FEB.2016 23:01:55

Lowest channel

Date: 24.FEB.2016 23:02:22

Middle channel

Date: 24.FEB.2016 23:02:54

Highest channel

Date: 24.FEB.2016 23:03:41

Lowest channel

Date: 24.FEB.2016 23:04:08

Middle channel

Date: 24.FEB.2016 23:04:37

Highest channel

Test mode: 802.11n(H20)

Date: 24.FEB.2016 23:05:17

Lowest channel

Date: 24.FEB.2016 23:05:42

Middle channel

Date: 24.FEB.2016 23:06:05

Highest channel

Test mode: 802.11n(H40)

Date: 24.FEB.2016 23:06:39

Lowest channel

Date: 24.FEB.2016 23:07:16

Middle channel

Date: 24.FEB.2016 23:07:53

Highest channel

6.5 Band Edge

6.5.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer				
	E.U.T				
	Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

802.11b

Date: 24.FEB.2016 23:00:48

Lowest channel

Date: 24.FEB.2016 22:58:53

Highest channel

Date: 24.FEB.2016 22:50:04

Lowest channel

Date: 24.FEB.2016 22:57:24

Highest channel

802.11n(H20)

Date: 24.FEB.2016 22:51:19

Lowest channel

Date: 24.FEB.2016 22:55:50

Highest channel

802.11n(H40)

Date: 24.FEB.2016 22:52:50

Lowest channel

Highest channel

Date: 24.FEB.2016 22:54:11

6.5.2 Radiated Emission Method

0.5.2	L Natiated Lillission Method							
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
	Test Method:	ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1						
	Test Frequency Range:	2.3GHz to 2.5GHz						
	Test site:	Measurement D	Measurement Distance: 3m					
	Receiver setup:							
		Frequency	Detector	RBW	VBW	Remark		
		Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value		
	Limit:		KIVIS	TIVITZ	SIVITIZ	Average Value		
	LIIIII.	Freque	ency	Limit (dBuV/	/m @3m)	Remark		
		Above 1		54.0		Average Value		
				74.0		Peak Value e 0.8 meters above		
	Test setup:	to determing the EUT wantenna, wanten Both horizon make the resure and to find the standard for the test-resure specified E. 5. The test-resure specified E. 6. If the emission the limit specified EUT have 10dB	ne the position was set 3 meto which was more than the ight is various to determine that and verture as well and verture the antendent the antendent the rota table maximum reasonable with the color of the color of the color of the would be reparagin would the set of the margin would was set of the color	n of the highesers away from unted on the to aried from one the maximum ical polarizations. I ssion, the EU na was tuned to was turned fiding. In was set to Poh Maximum Hone EUT in peakesting could boorted. Otherwood be re-tested	eak Detect old Mode. k mode was estopped a rise the emi one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a		
	Test setup:	SOCIAL TO	EUT Green Test Received	Horn Ante	Antenna To	wer Wer		
	Test Instruments:	Refer to section	5.6 for detail	S				
	Test mode:	Refer to section 5.3 for details						
	Test results:	Passed						

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Vehicle Module : TREQr-5 Model

Test mode

: 802.11b-L Mode

Power Rating : DC 12V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK :

m_{Λ}	n :								
			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	$\overline{}\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
	2390.000							-25.13	
	2390.000	7.25	23.68	6.63	0.00	37.56	54.00	-16.44	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCISE1602001

Page 33 of 65

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Vehicle Module EUT Model : TREQr-5 : 802.11b-L Mode Test mode

Power Rating : DC 12V

Environment : Temp:25.5°C Huni:55%

Test Engineer: YT REMARK :

Freq	ReadAntenna eq Level Factor								
MHz	dBu₹	-dB/m	₫B	<u>dB</u>	dBuV/m	dBu√/m	dB		
2390.000									
2390.000	7.31	23.68	6.63	0.00	37.62	54.00	-16.38	Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Vehicle Module

: TREQr-5 Model Test mode

: 802.11b-H Mode

Power Rating : DC 12V

Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK :

ы	Mr.								
		Read	ReadAntenna		Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>qp</u>	
	2483.500	19.18	23.70	6.85	0.00	49.73	74.00	-24.27	Peak
	2483.500	7.71	23.70	6.85	0.00	38.26	54.00	-15.74	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Vehicle Module Condition

EUT

Model : TREQr-5

Test mode : 802.11b-H Mode Power Rating : DC 12V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK :

			Antenna Factor						
10	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Vehicle Module Condition

EUT

Model : TREQr-5

Test mode : 802.11G-L Mode

Power Rating : DC 12V Environment : Temp:25.5°C Huni:55%

Test Engineer: YT REMARK :

Freq		Antenna Factor						
MHz	dBu₹	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Vehicle Module

Model : TREQr-5 Test mode : 802.11G-L Mode Power Rating : DC 12V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK

	Read	Ant enna	Cable	Preamp		Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBu₹	dB/m	dB	dB	dBu√/m	dBuV/m	dB		
2390.000									
2300 000	7 21	23 68	6 63	0 00	38 12	54 00	-15 88	Úmerade	

Remark:

2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Vehicle Module

Model : TREQr-5 : 802.11g-H Mode Test mode

Power Rating : DC 12V

Environment: Temp:25.5°C Huni:55% Test Engineer: YT REMARK:

nica1/		Read	Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	24.19	23.70	6.85	0.00	54.74	74.00	-19.26	Peak
2	2483.500	8.08	23.70	6.85	0.00	38.63	54.00	-15.37	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Vehicle Module

Model

: TREQr-5 : 802.11g-H Mode Test mode

Power Rating : DC 12V

Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK :

u_{1}									
	Eroc		Antenna Factor						
	rreq	rever	ractor	LUSS	ractor	rever	Line	LIMIT	Kemark
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	dB	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500	27.23	23.70	6.85	0.00	57.78	74.00	-16.22	Peak
	2483, 500	8, 36	23, 70	6, 85	0.00	38, 91	54,00	-15.09	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Vehicle Module

Model : TREQr-5

Test mode : 802.11n20-L Mode

Power Rating: DC 12V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK

шпо		Read	Antenna	Cabla	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000 2390.000					50.24 37.98			Peak Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Vehicle Module

Model : TREQr-5

: 802.11n20-L Mode Test mode

Power Rating: DC 12V

Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK :

α	ar .								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBu√/m	dB	
	2390.000	24.48	23.68	6.63	0.00	54.79	74.00	-19.21	Peak
	2390 000	7 87	23 68	6 63	0.00	38 18	54 00	-15 82	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Vehicle Module

: TREQr-5 Model

Test mode : 802.11n20-H Mode Power Rating : DC 12V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK

	Freq MHz		Antenna Factor						
-		MHz dBuV	—dB/m —dB	<u>ab</u>	dBuV/m	dBuV/m	dB		
	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Vehicle Module Condition

EUT

Model : TREQr-5

Test mode : 802.11n20-H Mode Power Rating : DC 12V Environment Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK :

FIICH			Antenna Factor						Remark
	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Vehicle Module

Model : TREQr-5

Test mode : 802.11n40-L Mode
Power Rating : DC 12V
Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

REMARK

	55 L-TA		Antenna Factor						Remark
	MHz	dBu∜	dB/m	d <u>B</u>	dB	dBu√/m	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000					54.34 38.34			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Vehicle Module

Model : TREQr-5

Test mode : 802.11n40-L Mode

Power Rating: DC 12V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT

REMARK

	Freq		Antenna Factor					Over Limit	
	MHz	—dBu₹	$\overline{-dB/m}$	āB	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
2	2390.000 2390.000								

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Vehicle Module Model : TREQr-5

: 802.11n40-H Mode Test mode

Power Rating: DC 12V Environment: Temp:25.5°C Huni:55%

Test Engineer: YT REMARK :

ωv	n :								
	200		Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
3	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
	2483.500	30.80	23.70	6.85	0.00	61.35	74.00	-12.65	Peak
	2483, 500	8, 40	23, 70	6, 85	0.00	38, 95	54,00	-15.05	Average

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Vehicle Module

Model TREQr-5

Test mode : 802.11n40-H Mode

Power Rating : DC 12V

Environment : Temp:25.5°C Huni:55% Test Engineer: YT

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
(<u>4</u>	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		
1	2483.500									
2	2483.500	8.99	23.70	6.85	0.00	39.54	54.00	-14.46	Average	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.6 Spurious Emission

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
Toot Instruments	Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: 802.11b Lowest channel

Date: 25.FEB.2016 19:04:36

30MHz~25GHz

Middle channel

Date: 25.FEB.2016 19:05:11

30MHz~25GHz

Highest channel

Date: 25.FEB.2016 19:05:48

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 25.FEB.2016 19:06:40

30MHz~25GHz

Middle channel

Date: 25.FEB.2016 19:07:00

30MHz~25GHz

Highest channel

Date: 25.FEB.2016 19:07:23

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 25.FEB.2016 19:08:00

30MHz~25GHz

Middle channel

Date: 25.FEB.2016 19:08:43

30MHz~25GHz

Highest channel

Date: 25.FEB.2016 19:09:28

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 25.FEB.2016 19:10:49

30MHz~25GHz

Middle channel

Date: 25.FEB.2016 19:12:21

30MHz~25GHz

Highest channel

Date: 25.FEB.2016 19:11:25

30MHz~25GHz

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	09 and 15.205	5					
Test Method:	ANSI C63.10:2	009							
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
·	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value								
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above 1GHz	RMS	1MHz	3MHz	Average Value				
Limit:	Freque	ncy	Limit (dBuV/	/m @3m)	Remark				
	30MHz-8		40.0)	Quasi-peak Value				
	88MHz-216MHz 43.5 Quasi-peak Value								
	216MHz-9	60MHz	46.0)	Quasi-peak Value				
	960MHz-	1GHz	54.0		Quasi-peak Value				
	Above 1	GH ₇	54.0		Average Value				
			74.0		Peak Value				
Test Procedure:	the ground degrees to antenna, we tower. 3. The anten the ground Both horiz make the reach so case and to find the specified I for the emister of the EUT have 10dE	d at a 3 meters determine the was set 3 meters which was more and height is was more and height is was measurement and the rota tab maximum respected embers and width with sion level of the rota tab maximum respected to the r	r chamber. The position of the position of the position of the ters away from punted on the formal of the maximum tical polarization. The EU na was turned ading. In was set to Find the EUT in peatesting could be ported. Otherwood of the position of the ported. Otherwood of the position of the positi	e table was he highest in the interference of a varie meter to fund a value of the constant of the analysis of the enterference of the constant of the constan	radiation. rence-receiving able-height antenna our meters above ne field strength. Intenna are set to nged to its worst from 1 meter to 4 rees to 360 degrees				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : Vehicle Module Condition

EUT Model : TREQr-5

Test mode : WIFI Mode Power Rating : DC 12V

Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK :

мини	•	D J	A	C-11-	D		T 3 - 3 4	0		
	F		Antenna				Limit	Over		
	rreq	rever	Factor	LOSS	ractor	rever	Line	Limit	Remark	
-	MHz	dBu₹	-dB/m	₫B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		
1	54.261	52.73	13.06	1.34	29.80	37.33	40.00	-2.67	QP	
1 2 3	81.212	58.54	6.73	1.69	29.63	37.33	40.00	-2.67	QP	
3	135.506	56.36	11.98	2.35	29.30	41.39	43.50	-2.11	QP	
4 5 6	176.269	56.92	9.40	2.70	29.00	40.02	43.50	-3.48	QP	
5	189.739	57.17	9.70	2.79	28.90	40.76	43.50	-2.74	QP	
6	244.232	56.71	11.84	2.82	28.57	42.80	46.00	-3.20	QP	

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : Vehicle Module Condition

EUT

Model : TREQr-5 Test mode : WIFI Mode Power Rating : DC 12V

Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK :

	Freq		Antenna Factor						
-	MHz	dBu₹	$\overline{-}\overline{dB}/\overline{m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	dB	
1	67.675	47.61	7.50	1.46	29.74	26.83	40.00	-13.17	QP
2	81.212	57.10	6.73	1.69	29.63	35.89	40.00	-4.11	QP
3	148.963	44.15	10.77	2.51	29.23	28.20	43.50	-15.30	QP
4	216.783	51.48	11.18	2.85	28.73	36.78	46.00	-9.22	QP
5	244.232	51.44	11.84	2.82	28.57	37.53	46.00	-8.47	QP
6	271.325	47.47	12.11	2.86	28.50	33.94	46.00	-12.06	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	45.60	36.12	10.60	40.22	52.10	74.00	-21.90	Vertical
4824.00	46.49	36.12	10.60	40.22	52.99	74.00	-21.01	Horizontal
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	35.98	36.12	10.60	40.22	42.48	54.00	-11.52	Vertical
4824.00	36.39	36.12	10.60	40.22	42.89	54.00	-11.11	Horizontal

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.02	36.32	10.64	40.15	51.83	74.00	-22.17	Vertical
4874.00	45.41	36.32	10.64	40.15	52.22	74.00	-21.78	Horizontal
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.81	36.32	10.64	40.15	42.62	54.00	-11.38	Vertical
4874.00	35.98	36.32	10.64	40.15	42.79	54.00	-11.21	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.85	36.51	10.69	40.08	51.97	74.00	-22.03	Vertical
4924.00	44.48	36.51	10.69	40.08	51.60	74.00	-22.40	Horizontal
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	34.16	36.51	10.69	40.08	41.28	54.00	-12.72	Vertical
4924.00	34.97	36.51	10.69	40.08	42.09	54.00	-11.91	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.31	36.12	10.60	40.22	52.81	74.00	-21.19	Vertical
4824.00	45.02	36.12	10.60	40.22	51.52	74.00	-22.48	Horizontal
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	36.25	36.12	10.60	40.22	42.75	54.00	-11.25	Vertical
4824.00	35.78	36.12	10.60	40.22	42.28	54.00	-11.72	Horizontal

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.26	36.32	10.64	40.15	52.07	74.00	-21.93	Vertical
4874.00	46.95	36.32	10.64	40.15	53.76	74.00	-20.24	Horizontal
Test mode: 80	02.11g		Test char	nel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.68	36.32	10.64	40.15	42.49	54.00	-11.51	Vertical
4874.00	36.01	36.32	10.64	40.15	42.82	54.00	-11.18	Horizontal

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	45.18	36.58	10.70	40.08	52.38	74.00	-21.62	Vertical
4924.00	46.32	36.58	10.70	40.08	53.52	74.00	-20.48	Horizontal
Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	35.06	36.58	10.70	40.08	42.26	54.00	-11.74	Vertical
4924.00	36.14	36.58	10.70	40.08	43.34	54.00	-10.66	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	45.37	36.12	10.60	40.22	51.87	74.00	-22.13	Vertical
4824.00	46.95	36.12	10.60	40.22	53.45	74.00	-20.55	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	35.27	36.12	10.60	40.22	41.77	54.00	-12.23	Vertical
4824.00	36.02	36.12	10.60	40.22	42.52	54.00	-11.48	Horizontal

Toot model 0	02.445/U20\		Toot obor	nalı Middla		Domorki Doo	.lz	
Test mode: 8	<u>02.1111(H2U)</u>		rest char	nel: Middle		Remark: Pea	ıĸ	,
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	i olar.
4874.00	46.13	36.32	10.64	40.15	52.94	74.00	-21.06	Vertical
4874.00	45.25	36.32	10.64	40.15	52.06	74.00	-21.94	Horizontal
Test mode: 8	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage	
Fraguency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
Frequency	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polar.
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)	
4874.00	36.84	36.32	10.64	40.15	43.65	54.00	-10.35	Vertical
4874.00	35.27	36.32	10.64	40.15	42.08	54.00	-11.92	Horizontal

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.32	36.58	10.70	40.08	53.52	74.00	-20.48	Vertical
4924.00	45.81	36.58	10.70	40.08	53.01	74.00	-20.99	Horizontal
Test mode: 802.11n(H20)			Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.14	36.58	10.70	40.08	43.34	54.00	-10.66	Vertical
4924.00	35.78	36.58	10.70	40.08	42.98	54.00	-11.02	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	46.21	36.19	10.61	40.19	52.82	74.00	-21.18	Vertical
4844.00	45.78	36.19	10.61	40.19	52.39	74.00	-21.61	Horizontal
Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	36.87	36.19	10.61	40.19	43.48	54.00	-10.52	Vertical
4844.00	35.26	36.19	10.61	40.19	41.87	54.00	-12.13	Horizontal

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.12	36.25	10.64	40.17	52.84	74.00	-21.16	Vertical
4874.00	45.78	36.25	10.64	40.17	52.50	74.00	-21.50	Horizontal
Test mode: 802.11n(H40)			Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.21	36.25	10.64	40.17	42.93	54.00	-11.07	Vertical
4874.00	35.78	36.25	10.64	40.17	42.50	54.00	-11.50	Horizontal

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	46.25	36.51	10.69	40.10	53.35	74.00	-20.65	Vertical
4904.00	45.87	36.51	10.69	40.10	52.97	74.00	-21.03	Horizontal
Test mode: 802.11n(H40)			Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	36.79	36.51	10.69	40.10	43.89	54.00	-10.11	Vertical
4904.00	35.25	36.51	10.69	40.10	42.35	54.00	-11.65	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.