数学2D演習第8回

担当: 加藤 康之 2020年6月10日

[1] (復習)

留数定理を用いて以下の複素積分を計算せよ. ただしnは非負整数とする.

(1)

$$\int_{|z|=1} \frac{1}{\sin z} dz$$

(4)

$$\int_{|z|=7} \frac{e^{1/z}}{z} dz$$

(2)

$$\int_{|z|=5} \cot z dz$$

(5)

$$\int_{|z|=10} \left(z + \frac{1}{z}\right)^{2n} dz$$

(3)

$$\int_{|z|=2} \frac{e^{-z}}{z(z-1)(z-3)} dz$$

(6)

$$\int_{|z|=10} \left(z + \frac{1}{z}\right)^{2n+1} dz$$

[2]

右図の積分経路上で、 $f(z)=\exp(-z^2)$ を積分することにより、以下の積分の値を求めよ.

$$I_1 = \int_0^\infty dx \cos(x^2), \quad I_2 = \int_0^\infty dx \sin(x^2).$$

- (1) 積分路 C_3 の e^{-z^2} の積分 $(R \to \infty)$ と I_1 と I_2 の関係を明記せよ.
- (2) 積分路 C_2 に関する積分が 0 になることを,その絶対値の上限を 0 で抑えることで証明せよ.
- (3) I_1 と I_2 の値を求めよ.

[3] (和の公式)

(1) いたるところで正則な関数 f(z) に対して,

$$I_1 = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{e^z - 1} dz = \sum_{n = -\infty}^{\infty} f(2n\pi i), \quad I_2 = -\frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{e^z + 1} dz = \sum_{n = -\infty}^{\infty} f((2n + 1)\pi i),$$

を示せ、ただし積分経路 C は z=0 を中心とした一辺 2R の正方形を反時計回りに回るもので, $R\to\infty$ の極限をとったものを考えると便利である.

(2) (1)の結果を参考に,

$$\lim_{\eta \to +0} \sum_{n=-\infty}^{\infty} \frac{e^{i\omega_n \eta}}{i\omega_n - x} = \begin{cases} -\frac{1}{e^x - 1} & \text{when} \quad \omega_n = 2n\pi\\ \frac{1}{e^x + 1} & \text{when} \quad \omega_n = (2n+1)\pi \end{cases},$$

を示せ. ただし x は実数. (無限小の η を導入することは, $R \to \infty$ での収束因子になっていることを確認せよ.)

図の曲線 $C(R \to \infty)$ に沿う積分 $\int_C \frac{dz}{1+z^n}$, (n: 2以上の整数) を計算することにより,次の実積分の値を求めよ.

$$I = \int_0^\infty \frac{dx}{1 + x^n}.$$

[5] (Γ関数の漸近展開)

(1) Γ 関数 (x > 0 として)

$$\Gamma(x+1) = \int_0^\infty e^{-t} t^x dt = \int_0^\infty e^{-t+x \ln t} dt$$

について、 $t = x\tau$ と変数変換することにより $\Gamma(x+1)$ を

$$\Gamma(x+1) = x^{x+1} \int_0^\infty e^{f(\tau)x} d\tau \tag{1}$$

の形に書き直し、 $f(\tau)$ を求めよ.

- (2) $f(\tau)$ が最大値をとる $\tau(\equiv \tau_0)$ を求め, $f(\tau)$ を $\tau = \tau_0$ の周りで $\tau \tau_0$ の 2 次まで展開せよ.また,2 次までの展開式を式 (1) に代入し, τ 積分を実行することにより,x が大きいときの $\Gamma(x+1)$ の近似式を求めよ.
- (3) (2) で得た近似式を用いて n! の近似式 (Stirling の公式) を求めよ. ただし $\Gamma(n+1) = n!$ は 既知として良い(導出は次回).
- (4) (2) の近似式の高次項を得たい. $f(\tau) = -1 \xi^2$ と変数変換し, ξ による積分を実行することにより,(2) の近似式の最低次の補正を求めよ.

ヒント: $f(\tau) = -1 - \xi^2$ の両辺を τ で微分し、ベキの形($\tau = a_0 + a_1 \xi + a_2 \xi^2 + \cdots$)を想定して代入。その後両辺 $\xi = 0$ の周りで展開し各次数の係数を比べて a_i を求める。

[6] (d次元球の表面積・体積)

座標 (x_1, x_2, \dots, x_d) で貼られる d 次元空間において, $x_1^2 + x_2^2 + \dots + x_d^2 < r^2$ を満たす領域のことを半径 r の d 次元球と呼ぶ.半径 R の d 次元球の体積 $V_d(r)$ 及び表面積 $S_d(r)$ を以下の手順に従って求めよ.

(1) d 重積分

$$I = \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_2 \cdots \int_{-\infty}^{\infty} dx_d \ e^{-a(x_1^2 + x_2^2 + \dots + x_d^2)}$$

を求めよ. a は正の実数とする.

(2) $x_1^2+x_2^2+\cdots+x_d^2=r^2$ とおいて d 次元の極座標表示をとることを考える.この時,(1) で求めた積分 I の被積分関数は $e^{-a(x_1^2+x_2^2+\cdots+x_d^2)}=e^{-ar^2}$ とr の関数として書けるので,I は

$$I = \int_0^\infty dr \ S_d(r) e^{-ar^2}$$

と、表面積 $S_d(r)$ を含んだ表式を用いて書くことが出来る.また,d 次元では表面積は r^{d-1} に比例し, $S_d(r)=s_dr^{d-1}(s_d$ は r を含まない)と書くことができる.(例えば 2,3 次元を例として考えてみよ.) これらの事を用いて I を s_d 及び Γ 関数を用いて表せ.

ヒント: $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, $\Gamma(1) = 1$, $\Gamma(z+1) = z\Gamma(z)$ (導出は次回) は既知として良い.

- (3) (1), (2) を用いて表面積 $S_d(r)$ を求めよ.
- $(4) V_d(r)$ を求めよ.
- (5) d = 2,3 の時, $S_d(r)$, $V_d(r)$ はどのようになるか?