Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ"

		_	_	_		_			
•	· ·	1)		HD.	\ / •	1 .		1/1	١.
v	•	к	н.	М	ж	/	\boldsymbol{A}	Ю	,

Руководитель ОП	
проф. Парфенов В. Г.	
	2019 г.

ЗАДАНИЕ НА ВЫПУСКНУЮ КВАЛИФИКАЦИОННУЮ РАБОТУ

Студенту <i>Самарину А.О.</i>	Группа <u>М3437</u> Факультет <u>ИТиП</u>
Руководитель <u>Чивилихин Даниил Сергеевич., к.т.н., У</u>	ниверситет ИТМО, ФИТиП, научный
1 Наименование темы: <u>Разработка автоматизирован</u> алгоритмов для квантового компьютера	
Направление подготовки (специальность) <u>01.03.02 Пр</u>	икладная математика и информатика
Квалификация Бакалавр	
2. Срок сдачи студентом законченной работы	6 мая 2019 г.
3. Техническое задание и исходные данные к работе	
1) Изучить существующие подходы решения задача	и поиска энергии основного состояния
2) Изучить эволюционные алгоритмы	
3) Разработать несколько вариантов метода, н Quantum Eigensolver с использованием эволюционных алг	- · · · · · · · · · · · · · · · · · · ·
4) Оценить и сравнить эффективность методов	

5) Выбрать из методов наилучший

4 Содержание выпускной работы (перечень подлежащих разработке вопросов)

- 1. Глава 1: обзор квантовых вычислений, задачи поиска энергии основного состояния молекулы и существующих ее решений, эволюционных алгоритмов
- 2. Глава 2: Разработка метода настройки квантовой схемы в алгоритме Variational Quantum Eigensolver с использованием эволюционного подхода
- 3. Глава 3: Выбор параметров метода, сравнение с существующими решениями

5 Перечень графического материала (с указанием обязательного материала)

т	7 1						_			`		
- /	nam	ΙϤΡΓΚΊΙΡ	Mame	ทนสหม	11 U	ертежи	nano	$m \alpha u$	$\mu\rho \nu$	าทคก	vcmom	ทคนน
-	ραφι	i iccniic	manic	pumioi	u	cpricoica	puodi	nou !		$\mu \nu \nu$	y Cori Olli	penoi

6 Исходные материалы и пособия

- 1. Cao Y. [u δp.]. Quantum Chemistry in the Age of Quantum Computing // arXiv:1812.09976 [quant-ph]. 2018.
- 2. Буздалов М.В. Генерация тестов для определения неэффективных решений олимпиадных задач по программированию с использованием эволюционных алгоритмов: диссертация ... кандидата технических наук. Университет ИТМО, Санкт-Петербург, 2014.
- 3. Kandala A. [u ∂p.]. Hardware-efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets // Nature. 2017. № 7671 (549). C. 242–246.

7 Дата выдачи задания « <u>18</u> » до	екабря 2018г.
Руководитель ВКР	
Задание принял к исполнению	
	«18» декабря 2018г.