Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Отчёт

по лабораторной работе №3 вариант 6109

Выполнил: Тимошкин Р. В., группа Р3131

Преподаватель: Абузов Я. А.

Оглавление

Текст задания	3
Описание программы	4
Область представления	4
Область допустимых значений	4
Расположение данных в памяти	4
Адрес первой и последней выполняемой команды	4
Таблица трассировки	5
Вывод	5

Текст задания

По выданному преподавателем варианту определить функцию, вычисляемую программой, область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы, предложить вариант с меньшим числом команд. При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.

431:

432:

433:

434:

436:

437:

438:

439:

43A:

43B:

43C:

43D: 43E:

435: +

0446

0200

E000

0200

0200

EEFD

AF04

EEFA

4EF7

EEF7

ABF6 0480

F401 CE04 43F:

440:

441:

442:

443:

444:

445:

446:

447:

448:

449:

0400

AEF3

0700

EEF1

8433

CEF6

0100

7432 6436

F501

2435

Адрес	Код команды	Мнемоника	Комментарий					
431	0446	ARRAY_START	Адрес первого элемента					
432	0200	ARRAY_END	Адрес текущего элемента (начиная с последнего + 1)					
433	E000	ARRAY_LEN	Количество элементов массива					
434	0200	ODD_CNT	Результат					
435	0200	CLA	Очистка аккумулятора					
436	EEFD	ST IP-3	Запись аккумулятора в ячейку IP- 3 (434)					
437	AF04	LD #0x04	Загрузка числа 4 в аккумулятор					
438	EEFA	ST IP-6	Запись числа 4 в ячейку IP - 6 (433)					
439	4EF7	ADD IP-9	Сложение аккумулятора с содержимым ячейки IP - 9 (431)					
43A	EEF7	ST IP-9	Запись аккумулятора в ячейку IP – 9 (432)					
43B	ABF6	LD –(IP-10)	Косвенная загрузка значения из ячейки, на которую указыва ячейка IP – 10 (432) с предекрементом					
43C	0480	ROR	Циклический сдвиг вправо					
43D	F401	BCS IP+1	Если CF==1, пропустить одну инструкцию					
43E	CE04	JUMP IP+4	Безусловный переход к ячейке IP+4 (443)					
43F	0400	ROL	Циклический сдвиг влево					
440	AEF3	LD IP-13	Загрузка значения из ячейки IP – 13 (434)					
441	0700	INC	Увеличение аккумулятора на 1					
442	EEF1	ST IP-15	Запись аккумулятора в ячейку IP + 15 (434)					
443	8433	LOOP 0x433	Уменьшение значения в ячейке 433, если это значение <= 0 пропуск одной инструкции					
444	CEF6	JUMP IP-10	Безусловный переход к ячейке 43В					

445	0100	HLT	Останов
446	7432		
447	6436		Элементы массива
448	F501		
449	2435		

Описание программы

Программа находит количество нечетных элементов массива и сохраняет его в ячейку результата. Формула:

$$\mathrm{MEM}(434) = \sum_{i=1}^{MEM(433)} \begin{cases} 1, \text{если } MEM(432) \ - \ i \% \ 2 \ ! = \ 0 \\ 0, \ \mathrm{B} \ \mathrm{oстальных} \ \mathrm{случаяx} \end{cases}$$

Область представления

- ARRAY_START, ARRAY_END: 11 разрядные беззнаковые числа, адреса в БЭВМ
- ARRAY_LEN, ODD_CNT: 16 разрядные беззнаковые целые числа
- ARRAY[i]: 16 разрядные знаковые целые числа

Область допустимых значений

- ARRAY_START: $[0; 431 ARRAY_LEN] \cup [446; 7FF ARRAY_LEN]$
- ARRAY_END: [ARRAY_START; ARRAY_START + ARRAY_LEN]
- ARRAY_LEN: [0; 7F], т. к. длина загружается напрямую в аккумулятор и не может быть отрицательным числом
- ODD_CNT: [0; ARRAY_LEN]
- ARRAY[i]: [-2¹⁵; 2¹⁵ 1]

Расположение данных в памяти

- 446 449: исходные данные
- 432: промежуточный результат
- 434: итоговый результат
- 435 445: команды

Адрес первой и последней выполняемой команды

- Адрес первой команды: 435
- Адрес последней команды: 445

Таблица трассировки

Выполн		Содержимое регистров процессора после выполнения команды								Ячейка, содержимое которой изменилось после выполнения команды	
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр ес	Новый код
435	0200	436	0000	435	0200	000	0000	0000	0000		
436	EEFD	437	EEFD	434	0000	000	FFFD	0000	0000	434	0000
437	AF04	438	AF04	437	0004	000	0004	0004	0000		
438	EEFA	439	EEFA	433	0004	000	FFFA	0004	0000	433	0004
439	4EF7	43A	4EF7	431	0446	000	FFF7	044A	0000		
43A	EEF7	43B	EEF7	432	044A	000	FFF7	044A	0000	432	044A
43B	ABF6	43C	ABF6	449	2435	000	FFF6	2435	0000	432	0449
43C	0480	43D	0480	43C	0480	000	043C	121A	0011		
43D	F401	43F	F401	43D	F401	000	0001	121A	0011		
43F	0400	440	0400	43F	0400	000	043F	2435	0000		
440	AEF3	441	AEF3	434	0000	000	FFF3	0000	0100		
441	0700	442	0700	441	0700	000	0441	0001	0000		
442	EEF1	443	EEF1	434	0001	000	FFF1	0001	0000	434	0001
443	8433	444	8433	433	0003	000	0002	0001	0000	433	0003
444	CEF6	43B	CEF6	444	043B	000	FFF6	0001	0000		
43B	ABF6	43C	ABF6	448	F501	000	FFF6	F501	1000	432	0448
43C	0480	43D	0480	43C	0480	000	043C	7A80	0011		
43D	F401	43F	F401	43D	F401	000	0001	7A80	0011		
43F	0400	440	0400	43F	0400	000	043F	F501	1010		
440	AEF3	441	AEF3	434	0001	000	FFF3	0001	0000		

441	0700	442	0700	441	0700	000	0441	0002	0000		
442	EEF1	443	EEF1	434	0002	000	FFF1	0002	0000	434	0002
443	8433	444	8433	433	0002	000	0001	0002	0000	433	0002
444	CEF6	43B	CEF6	444	043B	000	FFF6	0002	0000		
43B	ABF6	43C	ABF6	447	6436	000	FFF6	6436	0000	432	0447
43C	0480	43D	0480	43C	0480	000	043C	321B	0000		
43D	F401	43E	F401	43D	F401	000	043D	321B	0000		
43E	CE04	443	CE04	43E	0443	000	0004	321B	0000		
443	8433	444	8433	433	0001	000	0000	321B	0000	433	0001
444	CEF6	43B	CEF6	444	043B	000	FFF6	321B	0000		
43B	ABF6	43C	ABF6	446	7432	000	FFF6	7432	0000	432	0446
43C	0480	43D	0480	43C	0480	000	043C	3A19	0000		
43D	F401	43E	F401	43D	F401	000	043D	3A19	0000		
43E	CE04	443	CE04	43E	0443	000	0004	3A19	0000		
443	8433	445	8433	433	0000	000	FFFF	3A19	0000	433	0000
445	0100	446	0100	445	0100	000	0445	3A19	0000		

Вывод

Во время выполнения лабораторной работы я научился работать в БЭВМ с массивами, ветвлением и циклами. Я изучил прямую и косвенную адресацию и цикл выполнения таких команд, как LOOP и JUMP.