A Longitudinal Diagnostic Facet Status Model: Tracking the Learning Trajectory

He Ren and Chun Wang College of Education, University of Washington Supported by NSF #2300382

NCME 2025, 4/26, Denver

Outline

- > Background
- > Methods
- > Simulation Study
- > Discussions

Background: Cognitive Diagnostic Models (CDMs)

> Assess students' fine-grained learning status

	A1	A2	A3
Item 1	1	0	0
Item 2	1	0	1

:

- Each item measures certain knowledge or skills (i.e., attributes)
- > Each student has a latent attribute profile

	A1	A2	A3
STU 1	1	1	1
STU 2	1	0	0

:

> Predict students' response by linking their profiles with the attributes targeted by the item

Background: Diagnostic Facet Status Model (DFSM)

- > A CDM for multiple-choice items (Wang, 2024)
 - Build on the concept of facets rather than attributes
 - A facet is one piece or a set of several pieces of learner's understanding on certain knowledge
 - Each response option targets at certain facets and all response options are included

Background: Diagnostic Facet Status Model (DFSM)

- > Frank was thinking about the forces acting on a box at rest on his desk. Which statement do you think best represents the forces acting on the box?
 - A) No forces act on the box at rest.
 - B) The force of gravity is the only force acting on the box.
 - C) Earth pulls down and the table pushes up equally on the box.
 - D) The downward pull of gravity is larger than the upward push of the desk.

Option-	facet	mappin	ng for	the	exam	ple	item
			2377		0.000 PM	A CONTRACTOR	_

OPTION	$\alpha 1$	α2	α 3	$\beta 4$	β 5	β6
A	D.				1	1
В					1	
C	1	1	1			
D	1	1		1		

- α1 Students can identify all the relevant sources of forces on an object.
- α2 Students can correctly identify all the relevant direction a force is acting.
- α3 Students can compare the relative sizes of forces on static objects.
- β4 For an object at rest or moving horizontally, the downward force is greater than the upward force.
- β5 Passive objects cannot exert a force even though they touch another object.
- β6 Motion determines the existence of a force or forces.

Methods: DFSM

> Probability of choosing option *k*

$$\theta_{ijk} \equiv P(X_{ij} = k \mid \boldsymbol{\alpha}_i, \boldsymbol{\beta}_i, \boldsymbol{\lambda}_j)$$

$$= \frac{\exp(\lambda_{j,0} + \boldsymbol{\lambda}_{j,1}^T [\boldsymbol{h}(\boldsymbol{\alpha}_i, \boldsymbol{q}_{j,k}^g) - \boldsymbol{h}(\boldsymbol{\alpha}_i, \boldsymbol{q}_{j,K}^g)] + \boldsymbol{\lambda}_{j,2}^T \boldsymbol{h}(\boldsymbol{\beta}_i, \boldsymbol{q}_{j,k}^p))}{1 + \sum_{k=1}^{K-1} \exp(\lambda_{j,0} + \boldsymbol{\lambda}_{j,1}^T [\boldsymbol{h}(\boldsymbol{\alpha}_i, \boldsymbol{q}_{j,k}^g) - \boldsymbol{h}(\boldsymbol{\alpha}_i, \boldsymbol{q}_{j,K}^g)] + \boldsymbol{\lambda}_{j,2}^T \boldsymbol{h}(\boldsymbol{\beta}_i, \boldsymbol{q}_{j,k}^p))},$$

- α_i and β_i refer to the goal and intermediate facets, respectively
- $\lambda_{j,0}$ is the intercept
- $\lambda_{j,1}^T$ and $\lambda_{j,2}^T$ are slopes for goal and intermediate facets
- $\lambda_{j,1}^T h(\alpha_i, q_{j,k}^g)$ and $\lambda_{j,2}^T h(\beta_i, q_{j,k}^p)$ are linear combinations of main effects and interactions

 π_l : mixing proportion of latent profile l

> The marginal likelihood is

$$L(\boldsymbol{\lambda}, \boldsymbol{\pi} \mid \mathbf{X}) = \prod_{i=1}^{N} \left\{ \sum_{l=1}^{M} \pi_{l} \prod_{j=1}^{J} \prod_{k=1}^{K} \theta_{ijk}^{I(x_{ij}=k)} \right\},$$

- Lots of latent profiles are **impermissible**
- > Permissible and impermissible profile
 - With D (e.g., D = 4) facets, there are 2^D ($2^4 = 16$) possible facet profile
 - Profile: $\alpha 1 \alpha 2 \alpha 3 \beta 4$

- To shrink the $\pi_l s$ corresponding to impermissible patterns to 0, a regularized expectation maximization (REM) algorithm has been proposed
- > The penalized log likelihood is

The log-likelihood

$$\ell(\boldsymbol{\lambda}, \boldsymbol{\pi} \mid \mathbf{X}) = \sum_{i=1}^{N} \log \left\{ \sum_{l=1}^{M} \pi_{l} \prod_{j=1}^{J} \prod_{k=1}^{K} \theta_{ijk}^{x_{ij}=k} \right\} + \sum_{l=1}^{M} \log_{\rho_{N}}(\pi_{l})$$

penalty term note $\pi_l \in (0,1)$

- > EM algorithm is a popular method for model estimation with missing variable
- > E-step: Expectation of the complete data log likelihood

log likelihood of complete data (both **X** and
$$\boldsymbol{\theta}$$
) = $\log L(\lambda, \pi \mid \mathbf{X}, \boldsymbol{\theta})$ = $\log \left[L(\boldsymbol{\theta}, \lambda, \pi \mid \mathbf{X}) P(\boldsymbol{\theta} \mid \pi, \lambda) \right]$ log likelihood = $\log L(\boldsymbol{\theta}, \lambda \mid \mathbf{X}) + \log P(\boldsymbol{\theta} \mid \pi)$ of observed data

log probability of the latent profile

• The bold θ refers to the latent profile (α, β)

> E-step: Expectation with respect to the posterior of latent profile

$$\ell(\boldsymbol{\lambda}, \boldsymbol{\pi} \mid \mathbf{X}, \boldsymbol{\theta}) = \sum_{i=1}^{N} \left[\sum_{j=1}^{J} \sum_{k=1}^{K} \mathbb{I}(x_{ij} = k) \log \theta_{ijk} + \log P(\boldsymbol{\theta_i} \mid \boldsymbol{\pi}) \right]$$
log probability of the latent profile

log likelihood of observed data

$$E[l(\boldsymbol{\lambda}, \boldsymbol{\pi} \mid \mathbf{X}, \boldsymbol{\theta})] = \sum_{j=1}^{J} \left\{ \sum_{i=1}^{N} \sum_{l=1}^{M} \hat{\eta}_{il} \sum_{k=1}^{K} I(x_{ij} = k) \log \theta_{ijk} \right\} + \sum_{i=1}^{N} \sum_{l=1}^{M} \hat{\eta}_{il} \log \pi_{l} + \gamma \sum_{l=1}^{M} \log_{\rho_{N}}(\pi_{l})$$

• where $\hat{\eta}_{il}$ is the posterior of the latent profile

$$\hat{\eta}_{il} \equiv P(\boldsymbol{\alpha}_i = \boldsymbol{\alpha}_l, \boldsymbol{\beta}_i = \boldsymbol{\beta}_l \mid \boldsymbol{\lambda}, \boldsymbol{\pi}^{(r)})$$

$$= \frac{\pi_l^{(r)} \prod_{j=1}^J \prod_{k=1}^K \theta_{ijk}^{I(x_{ij}=k)}}{\sum_{l=1}^M \pi_l^{(r)} \prod_{j=1}^J \prod_{k=1}^K \theta_{ijk}^{I(x_{ij}=k)}},$$

> M-step: Maximize the expectation with respect to our parameters

$$E[l(\boldsymbol{\lambda}, \boldsymbol{\pi} \mid \mathbf{X}, \boldsymbol{\theta})] = \sum_{j=1}^{J} \left\{ \sum_{i=1}^{N} \sum_{l=1}^{M} \hat{\eta}_{il} \sum_{k=1}^{K} I(x_{ij} = k) \log \theta_{ijk} \right\} + \sum_{i=1}^{N} \sum_{l=1}^{M} \hat{\eta}_{il} \log \pi_{l} + \gamma \sum_{l=1}^{M} \log_{\rho_{N}}(\pi_{l})$$

 π_l is not involved

Due to the constrain $\sum_{l=1}^{M} \pi_l = 1$, a Lagrange multiply s was employed

$$E[l(\boldsymbol{\lambda}, \boldsymbol{\pi} \mid \mathbf{X}, \boldsymbol{\theta})]^{\boldsymbol{\pi}} = \sum_{i=1}^{N} \sum_{l=1}^{M} \hat{\eta}_{il} \log \pi_l + \gamma \sum_{l=1}^{M} \log_{\rho_N}(\pi_l) + s(1 - \sum_{l=1}^{M} \pi_l), \quad \text{Lagrange multiply}$$

Take the derivative with respect to π_l and set it to 0

$$\pi_l = \frac{\gamma + \sum_{i=1}^{N} \hat{\eta}_{il}}{\sum_{l=1}^{M} (\gamma + \sum_{i=1}^{N} \hat{\eta}_{il})}$$

Methods: Longitudinal DFSM

> The marginal likelihood for longitudinal DFSM

transition parameter

$$L(\boldsymbol{\lambda}, \boldsymbol{\pi}, \boldsymbol{\tau} \mid \mathbf{X}) = \prod_{i=1}^{N} \left\{ \sum_{l_1=1}^{M} \sum_{l_2=1}^{M} \pi_{l_1} \tau_{l_2|l_1} \prod_{t=1}^{2} \prod_{j=1}^{J_t} \prod_{k=1}^{K} \log \theta_{ijkt}^{I(x_{ijt}=k)} \right\}$$

 l_1 and l_2 are profiles at two time points

	0000	1000	1100	1101	1111	0100	
π_l	0.1	0.2	0.4	0.2	0.1	0	0

$ au_{l_2 l_1}$	0000	1000	1100	1101	1111	0100	
0000						0	
1000						0	
1100						0	
1101						0	
1111						0	
0100	0	0	0	0	0	0	0
						0	

Methods: Regularized EM for Longitudinal DFSM

REM algorithm 1 (One-stage method)

penalty term

$$\ell(\boldsymbol{\lambda}, \boldsymbol{\pi}, \boldsymbol{\tau} \mid \mathbf{X}, \boldsymbol{\theta}) = \sum_{i=1}^{N} \log \left\{ \sum_{l_1=1}^{M} \sum_{l_2=1}^{M} \pi_{l_1} \tau_{l_2|l_1} \prod_{t=1}^{2} \prod_{j=1}^{J_t} \prod_{k=1}^{K} \log \theta_{ijkt}^{I(x_{ijt}=k)} \right\} + \sum_{l=1}^{M} \log_{\rho_N}(\pi_{l1})$$

• In the r-th iteration in EM

when $\pi_{l_1^{(r)}}=0$ and set the corresponding **rows and columns** in $\tau_{l_2|l_1}^{(r)}=0$

Methods: Regularized EM for Longitudinal DFSM

- > REM algorithm 2 (Two-stage method)
 - Estimate DFSM with time point 1 responses to obtain the impermissible $\pi_l s$
 - Fix the corresponding rows in $\tau_{l_2|l_1}$ at 0
 - Estimate the longitudinal DFSM with group-wise penalty on the column of $\tau_{l_2|l_1}$

$$\ell(\boldsymbol{\lambda}, \boldsymbol{\pi}, \boldsymbol{\tau} \mid \mathbf{X}, \boldsymbol{\theta}) = \sum_{i=1}^{N} \log \left\{ \sum_{l_1=1}^{M} \sum_{l_2=1}^{M} \pi_{l_1} \tau_{l_2|l_1} \prod_{t=1}^{2} \prod_{j=1}^{J_t} \prod_{k=1}^{K} \log \theta_{ijkt}^{I(x_{ijt}=k)} \right\} + \boxed{\gamma \sum_{l_2} \log_{\rho_N} (\sum_{l_1} \tau_{l_2|l_1})}$$

penalty term

Simulation Study: Design

- > 27 items, each with 4 options
- > 8 facets (3 goal facets and 5 intermediate facets)
- > Facets relationship results in 36 permissible patterns

- > Sample size (500 vs 2,000)
- \rightarrow Learning and forgetting rate (LR = 0.8 and FR = 0.15 vs LR = 0.6 and FR = 0.2)

Simulation Study: Design

Simulation Study: Results

Table 1 Estimation results of au.

Method	Size	Learning	Sum of	Recovery Recovery		Recovery	
	DIZC		abs. bias	error of sparsity	of true zeros	of true non-zeros	
Algorithm 1	500	High	62.010	0.010	0.999	0.542	
		Low	58.575	0.010	0.999	0.543	
	2000	High	60.948	0.005	0.997	0.864	
		Low	52.904	0.005	0.997	0.884	
Algorithm 2	500	High	64.181	0.036	0.968	0.803	
		Low	60.772	0.041	0.960	0.923	
	2000	High	62.261	0.068	0.932	0.977	
		Low	55.768	0.082	0.916	1.000	

Discussion

- The proposed REM algorithms can effectively shrink proper rows and columns of the transition matrix to 0
- > Provide a valuable psychometric model that can infer how students transit across different facet profiles
- > DFSM item parameters are assumed to be known
- > A uniform distribution over the permissible facet profiles is assumed
- Exploring different hierarchical structures, and thus different sparsity structures

Thanks! heren@uw.edu

He Ren and Chun Wang College of Education, University of Washington

This study is supported by NSF #2300382

UNIVERSITY of WASHINGTON | COLLEGE OF EDUCATION

Personal Homepage

