■ NetApp

시스템: **NVMe** 설정 SANtricity 11.6

NetApp February 12, 2024

This PDF was generated from https://docs.netapp.com/ko-kr/e-series-santricity-116/sm-settings/nvme-overview.html on February 12, 2024. Always check docs.netapp.com for the latest.

목차

시	스템: NVMe 설정 · · · · · · · · · · · · · · · · · ·	1
	개념	•
	방법	3
	FAQ 를 참조하십시오	Į

시스템: NVMe 설정

개념

NVMe 개요

일부 컨트롤러에는 패브릭을 통해 NVMe(비휘발성 메모리 익스프레스)를 구현하기 위한 포트가 포함되어 있습니다. NVMe를 사용하면 호스트와 스토리지 어레이 간에 고성능 통신이 가능합니다.

NVMe란 무엇입니까?

NVM_은 "비휘발성 메모리"를 나타내며 다양한 유형의 저장 장치에 사용되는 영구 메모리입니다. _NVMe(NVM Express)는 NVM 장치와의 고성능 다중 대기열 통신을 위해 특별히 설계된 표준 인터페이스 또는 프로토콜입니다.

NVMe over Fabrics란?

NVMe over Fabrics (NVMe-oF) _ 는 NVMe 메시지 기반 명령 및 데이터가 네트워크를 통해 호스트 컴퓨터와 스토리지 간에 전송되도록 하는 기술 사양입니다. Fabric을 사용하는 호스트에서 NVMe 스토리지 어레이(_subsystem)에 액세스할 수 있습니다. NVMe 명령은 호스트 측과 하위 시스템 측 모두에서 전송 추상화 계층에서 활성화 및 캡슐화됩니다. 이를 통해 고성능 NVMe 인터페이스 엔드 투 엔드를 호스트에서 스토리지로 확장하고 명령 세트를 표준화하여 단순화합니다.

NVMe-oF 스토리지는 호스트에 로컬 블록 스토리지 디바이스로 표시됩니다. 다른 블록 스토리지 디바이스와 마찬가지로 볼륨(namespace)을 파일 시스템에 마운트할 수 있습니다. REST API, SMcli 또는 SANtricity System Manager를 사용하여 필요에 따라 스토리지를 프로비저닝할 수 있습니다.

NVMe 적격 이름(NQN)이란 무엇입니까?

NVMe 정규화된 이름(NQN)은 원격 스토리지 타겟을 식별하는 데 사용됩니다. 스토리지 배열의 NVMe 정규화된 이름은 항상 서브시스템에 의해 할당되며 수정할 수 없습니다. 전체 어레이에 대해 하나의 NVMe 정규화된 이름만 있습니다. NVMe 적격 이름은 223자로 제한됩니다. iSCSI 정규화된 이름과 비교할 수 있습니다.

네임스페이스 및 네임스페이스 ID란 무엇입니까?

네임스페이스는 SCSI의 논리 유닛과 동일하며 어레이의 볼륨과 관련이 있습니다. NSCID(Namespace ID)는 SCSI의 LUN(Logical Unit Number)과 동일합니다. 네임스페이스 생성 시 NSID를 만들고 1에서 255 사이의 값으로 설정할 수 있습니다.

NVMe 컨트롤러란 무엇입니까?

호스트 이니시에이터에서 스토리지 시스템의 타겟으로 연결되는 경로를 나타내는 SCSI I_T Nexus와 마찬가지로, 호스트 연결 프로세스 중에 생성된 NVMe 컨트롤러는 스토리지 어레이의 네임스페이스와 호스트 간의 액세스 경로를 제공합니다. 호스트의 NQN 및 호스트 포트 식별자는 NVMe 컨트롤러를 고유하게 식별합니다. NVMe 컨트롤러는 단일호스트에만 연결될 수 있지만 여러 네임스페이스에 액세스할 수 있습니다.

SANtricity System Manager를 사용하여 호스트에 대한 네임스페이스 ID를 설정하고 네임스페이스에 액세스할 수 있는 호스트를 구성할 수 있습니다. 그런 다음 NVMe 컨트롤러가 생성되면 NVMe 컨트롤러에서 액세스할 수 있는 네임스페이스 ID 목록을 생성하여 허용 가능한 연결을 구성하는 데 사용합니다.

NVMe 관련 용어

NVMe 용어가 스토리지 어레이에 어떻게 적용되는지 알아보십시오.

기간	설명
InfiniBand	IB(InfiniBand)는 고성능 서버와 스토리지 시스템 간의 데이터 전송을 위한 통신 표준입니다.
네임스페이스	네임스페이스는 블록 액세스를 위해 포맷된 NVM 스토리지입니다. 스토리지 배열의 볼륨과 관련된 SCSI의 논리 유닛과 유사합니다.
네임스페이스 ID입니다	네임스페이스 ID는 네임스페이스에 대한 NVMe 컨트롤러의 고유 식별자이며 1에서 255 사이의 값으로 설정할 수 있습니다. SCSI의 LUN(Logical Unit Number)과 유사합니다.
NQN	NVMe 정규화된 이름(NQN)은 원격 스토리지 대상(스토리지 어레이)을 식별하는 데 사용됩니다.
NVM	NVM(비휘발성 메모리)은 다양한 유형의 스토리지 장치에서 사용되는 영구 메모리입니다.
NVMe를 참조하십시오	NVMe(비휘발성 메모리 익스프레스)는 SSD 드라이브와 같은 플래시 기반 스토리지 장치를 위해 설계된 인터페이스입니다. NVMe는 이전 논리 장치 인터페이스와 비교하여 I/O 오버헤드를 줄이고 성능 개선을 포함합니다.
NVMe - oF	NVMe-oF(Non-Volatile Memory Express over Fabrics)는 NVMe 명령 및 데이터가 호스트와 스토리지 간의 네트워크를 통해 전송되도록 하는 사양입니다.
NVMe 컨트롤러	호스트 연결 프로세스 중에 NVMe 컨트롤러가 생성됩니다. 스토리지 배열의 네임스페이스와 호스트 간의 액세스 경로를 제공합니다.
NVMe 전담팀	큐는 NVMe 인터페이스를 통해 명령 및 메시지를 전달하는 데 사용됩니다.
NVMe 하위 시스템	NVMe 호스트 연결이 있는 스토리지 어레이
RDMA 를 참조하십시오	RDMA(Remote Direct Memory Access)를 사용하면 네트워크 인터페이스 카드(NIC) 하드웨어에 전송 프로토콜을 구현하여 서버 내외부로 데이터를 더욱 직접 이동할 수 있습니다.
RoCE	RoCE(RDMA over Converged Ethernet)는 이더넷 네트워크를 통한 RDMA(Remote Direct Memory Access)를 지원하는 네트워크 프로토콜입니다.
SSD를 지원합니다	SSD(Solid-State Disk)는 데이터를 영구적으로 저장하기 위해 솔리드 스테이트 메모리 (플래시)를 사용하는 데이터 스토리지 장치입니다. SSD는 기존의 하드 드라이브를 에뮬레이트하며 하드 드라이브에서 사용하는 것과 동일한 인터페이스로 사용할 수 있습니다.

방법

InfiniBand 포트를 통해 NVMe를 구성합니다

컨트롤러에 InfiniBand 연결을 통한 NVMe가 포함된 경우 시스템 페이지에서 NVMe 포트 설정을 구성할 수 있습니다.

시작하기 전에

- 컨트롤러에서 NVMe over InfiniBand 호스트 포트를 포함해야 합니다. 그렇지 않으면 System Manager에서 NVMe over InfiniBand 설정을 사용할 수 없습니다.
- 호스트 연결의 IP 주소를 알아야 합니다.

NVMe over InfiniBand 설정 및 기능은 스토리지 어레이 컨트롤러에 NVMe over InfiniBand 포트가 포함된 경우에만 표시됩니다.

단계

- 1. 메뉴: 설정 [시스템] * 을 선택합니다.
- 2. InfiniBand를 통한 NVMe 설정 * 에서 * InfiniBand 포트를 통한 NVMe 구성 * 을 선택합니다.
- 3. 구성할 NVMe over InfiniBand 포트가 있는 컨트롤러를 선택합니다. 다음 * 을 클릭합니다.
- 4. 드롭다운 목록에서 구성할 HIC 포트를 선택한 다음 IP 주소를 입력합니다.

200GB 사용 HIC를 포함하는 EF600 스토리지 어레이를 구성하는 경우 이 대화 상자에 물리적 포트(외부)용 IP 주소 필드와 가상 포트(내부)용 IP 주소 필드가 2개 표시됩니다. 두 포트에 대해 고유한 IP 주소를 할당해야 합니다. 이러한 설정을 통해 호스트는 각 포트 간에 경로를 설정하고 HIC는 최대 성능을 달성할 수 있습니다. IP 주소를 가상 포트에 할당하지 않으면 HIC는 약 절반 수준의 속도로 실행됩니다.

- 5. 마침 * 을 클릭합니다.
- 6. Yes * 를 클릭하여 NVMe over InfiniBand 포트를 재설정합니다.

NVMe over RoCE 포트를 구성합니다

컨트롤러에 NVMe over RoCE(RDMA over Converged Ethernet)에 대한 연결이 포함되어 있는 경우 시스템 페이지에서 NVMe 포트 설정을 구성할 수 있습니다.

시작하기 전에

- 컨트롤러에 NVMe over RoCE 호스트 포트가 포함되어야 합니다. 그렇지 않으면 System Manager에서 NVMe over RoCE 설정을 사용할 수 없습니다.
- 호스트 연결의 IP 주소를 알아야 합니다.

단계

- 1. 메뉴: 설정 [시스템] * 을 선택합니다.
- 2. NVMe over ROCE 설정 * 에서 * Configure NVMe over ROCE ports * 를 선택합니다.
- 3. 구성할 NVMe over RoCE 포트가 있는 컨트롤러를 선택합니다. 다음 * 을 클릭합니다.
- 4. 드롭다운 목록에서 구성할 HIC 포트를 선택합니다. 다음 * 을 클릭합니다.

5. 포트 설정을 구성합니다.

모든 포트 설정을 보려면 대화 상자 오른쪽에 있는 * 추가 포트 설정 표시 * 링크를 클릭합니다.

필드 세부 정보

포트 설정	설명
이더넷 포트 속도를 구성했습니다	포트에서 SFP의 속도 기능과 일치하는 속도를 선택합니다.
IPv4 사용/IPv6 사용	IPv4 및 IPv6 네트워크에 대한 지원을 활성화하려면 하나 또는 두 옵션을 모두 선택하십시오. TE 액세스를 비활성화하려면 두 확인란을 모두 선택 취소합니다.
MTU 크기(* 추가 포트 설정 표시 * 를 클릭하여 사용 가능)	필요한 경우 MTU(Maximum Transmission Unit)에 대한 새 크기를 바이트 단위로 입력합니다. 기본 MTU(Maximum Transmission Unit) 크기는 프레임당 1,500바이트입니다. 1500에서 9000 사이의 값을 입력해야 합니다.

IPv4 사용 * 을 선택한 경우 * 다음 * 을 클릭하면 IPv4 설정을 선택할 수 있는 대화 상자가 열립니다. IPv6 사용 * 을 선택한 경우 * 다음 * 을 클릭하면 IPv6 설정을 선택할 수 있는 대화 상자가 열립니다. 두 옵션을 모두 선택한 경우 IPv4 설정에 대한 대화 상자가 먼저 열리고 * 다음 * 을 클릭하면 IPv6 설정에 대한 대화 상자가 열립니다.

1. IPv4 및/또는 IPv6 설정을 자동 또는 수동으로 구성합니다.

필드 세부 정보

포트 설정	설명
자동으로 구성을 가져옵니다	구성을 자동으로 가져오려면 이 옵션을 선택합니다.
수동으로 정적 설정을 지정합니다	이 옵션을 선택한 다음 필드에 정적 주소를 입력합니다. (필요한 경우 주소를 잘라내어 필드에 붙여 넣을 수 있습니다.) IPv4의 경우 네트워크 서브넷 마스크 및 게이트웨이를 포함합니다. IPv6의 경우 라우팅 가능한 IP 주소와 라우터 IP 주소를 포함합니다. 200GB 사용 HIC를 포함하는 EF600 스토리지 어레이를 구성하는 경우 이 대화 상자에 네트워크 매개 변수에 대한 두 개의 필드 세트가 물리적 포트(외부)에 대해, 가상 포트(내부)에 대해 하나씩 표시됩니다. 두 포트에 대해 고유한 매개 변수를 할당해야 합니다. 이러한 설정을 통해 호스트는 각 포트 간에 경로를 설정하고 HIC는 최대 성능을 달성할 수 있습니다. IP 주소를 가상 포트에 할당하지 않으면 HIC는 약 절반 수준의 속도로 실행됩니다.

2. 마침 * 을 클릭합니다.

NVMe over Fabrics 통계 보기

스토리지 어레이에 대한 NVMe over Fabrics 연결에 대한 데이터를 볼 수 있습니다.

이 작업에 대해

System Manager에는 이러한 유형의 NVMe over Fabrics 통계가 표시됩니다. 모든 통계는 읽기 전용이며 설정할 수 없습니다.

- * NVMe 하위 시스템 통계 * NVMe 컨트롤러 및 해당 대기열에 대한 통계를 표시합니다. NVMe 컨트롤러는 스토리지 배열의 네임스페이스와 호스트 간의 액세스 경로를 제공합니다. 연결 실패, 재설정 및 종료 같은 항목에 대한 NVMe 하위 시스템 통계를 검토할 수 있습니다.
- RDMA 인터페이스 통계 * RDMA 인터페이스의 모든 NVMe over Fabrics 포트에 대한 통계를 제공하며, 여기에는 각 스위치 포트에 연결된 성능 통계 및 링크 오류 정보가 포함됩니다. 이 탭은 NVMe over Fabrics 포트를 사용할 수 있을 때만 나타납니다.

각 통계를 원시 통계 또는 기준 통계로 볼 수 있습니다. 원시 통계는 컨트롤러가 시작된 이후 수집된 모든 통계입니다. 기준 통계는 기준 시간을 설정한 후 수집된 시점 통계입니다.

단계

- 1. 메뉴: 설정 [시스템] * 을 선택합니다.
- 2. View NVMe over Fabrics Statistics * 를 선택합니다.
- 3. * 선택 사항: * 기준선을 설정하려면 * 새 기준선 설정 * 을 클릭합니다.

기준을 설정하면 통계 수집에 대한 새로운 시작 지점이 설정됩니다. 모든 NVMe 통계에 동일한 기준선이 사용됩니다.

FAQ 를 참조하십시오

NVMe over Fabrics 통계를 어떻게 해석합니까?

NVMe over Fabrics 통계 보기 대화 상자에는 NVMe 하위 시스템과 RDMA 인터페이스에 대한 통계가 표시됩니다. 모든 통계는 읽기 전용이며 설정할 수 없습니다.

- * NVMe 하위 시스템 통계 * NVMe 컨트롤러 및 해당 대기열에 대한 통계를 표시합니다. NVMe 컨트롤러는 스토리지 배열의 네임스페이스와 호스트 간의 액세스 경로를 제공합니다. 연결 실패, 재설정 및 종료 같은 항목에 대한 NVMe 하위 시스템 통계를 검토할 수 있습니다. 이러한 통계에 대한 자세한 내용을 보려면 * 표 제목에 대한 범례 보기 * 를 클릭하십시오.
- RDMA 인터페이스 통계 * RDMA 인터페이스의 모든 NVMe over Fabrics 포트에 대한 통계를 제공하며, 여기에는 각 스위치 포트에 연결된 성능 통계 및 링크 오류 정보가 포함됩니다. 이 탭은 NVMe over Fabrics 포트를 사용할 수 있을 때만 나타납니다. 통계에 대한 자세한 내용을 보려면 * 표 제목에 대한 범례 보기 * 를 클릭합니다.

각 통계를 원시 통계 또는 기준 통계로 볼 수 있습니다. 원시 통계는 컨트롤러가 시작된 이후 수집된 모든 통계입니다. 기준 통계는 기준 시간을 설정한 후 수집된 시점 통계입니다.

InfiniBand를 통해 NVMe를 구성하거나 진단하려면 어떻게 해야 합니까?

다음 표에는 InfiniBand를 통해 NVMe를 구성하고 관리하는 데 사용할 수 있는 System

Manager 기능이 나와 있습니다.

NVMe over InfiniBand 설정은 스토리지 어레이 컨트롤러에 NVMe over InfiniBand 포트가 포함된 경우에만 사용할 수 있습니다.

InfiniBand를 통한 NVMe 구성 및 진단

조치	위치
InfiniBand 포트를 통해 NVMe를 구성합니다	1. 하드웨어 * 를 선택합니다. 2. Show back of shelf * 를 선택합니다. 3. 컨트롤러를 선택합니다. 4. Configure NVMe over InfiniBand ports * 를 선택합니다. 또는 1. 메뉴: 설정 [시스템] * 을 선택합니다.
	2. 아래로 스크롤하여 * NVMe over InfiniBand settings * 로 이동한 다음 * Configure NVMe over InfiniBand Ports * 를 선택합니다.
InfiniBand를 통한 NVMe 통계 보기	 메뉴: 설정 [시스템] * 을 선택합니다. 아래로 스크롤하여 * NVMe over InfiniBand settings * 를 선택한 다음 * View NVMe over Fabrics Statistics * 를 선택합니다.

NVMe over RoCE를 구성 또는 진단하려면 어떻게 해야 합니까?

하드웨어 및 설정 페이지에서 NVMe over RoCE를 구성 및 관리할 수 있습니다.

NVMe over RoCE 설정은 스토리지 어레이의 컨트롤러에 NVMe over RoCE 포트가 포함된 경우에만 사용할 수 있습니다.

NVMe over RoCE를 구성하고 진단합니다

조치	위치
NVMe over RoCE 포트를 구성합니다	1. 하드웨어 * 를 선택합니다.
	2. Show back of shelf * 를 선택합니다.
	3. 컨트롤러를 선택합니다.
	4. RoCE 포트를 통한 NVMe 구성 * 을 선택합니다.
	또는
	1. 메뉴: 설정 [시스템] * 을 선택합니다.
	2. 아래로 * NVMe over RoCE 설정 * 으로 스크롤한 다음 * Configure NVMe over RoCE Ports * 를 선택합니다.
NVMe over Fabrics 통계	1. 메뉴: 설정 [시스템] * 을 선택합니다.
보기	2. 아래로 * NVMe over RoCE 설정 * 으로 스크롤한 다음 * NVMe over Fabrics 통계보기 * 를 선택합니다.

하나의 물리적 포트에 대해 두 개의 IP 주소가 있는 이유는 무엇입니까?

EF600 스토리지 어레이에는 2개의 HIC, 즉 외부 스토리지와 내부 HIC를 각각 하나씩 포함할 수 있습니다.

이 구성에서는 외부 HIC를 내부 보조 HIC에 연결합니다. 외부 HIC에서 액세스할 수 있는 각 물리적 포트에는 내부 HIC에서 연결된 가상 포트가 있습니다.

최대 200GB 성능을 얻으려면 호스트가 각 포트에 연결을 설정할 수 있도록 물리적 포트와 가상 포트 모두에 대해고유한 IP 주소를 할당해야 합니다. IP 주소를 가상 포트에 할당하지 않으면 HIC는 약 절반 수준의 속도로 실행됩니다.

물리적 포트 하나에 대해 두 개의 매개 변수 세트가 있는 이유는 무엇입니까?

EF600 스토리지 어레이에는 2개의 HIC, 즉 외부 스토리지와 내부 HIC를 각각 하나씩 포함할 수 있습니다.

이 구성에서는 외부 HIC를 내부 보조 HIC에 연결합니다. 외부 HIC에서 액세스할 수 있는 각 물리적 포트에는 내부 HIC에서 연결된 가상 포트가 있습니다.

최대 200GB 성능을 얻으려면 호스트가 각 포트에 대한 연결을 설정할 수 있도록 물리적 포트와 가상 포트 모두에 대해 매개 변수를 할당해야 합니다. 가상 포트에 매개 변수를 할당하지 않으면 HIC는 약 절반 수준의 속도로 실행됩니다.

저작권 정보

Copyright © 2024 NetApp, Inc. All Rights Reserved. 미국에서 인쇄됨 본 문서의 어떠한 부분도 저작권 소유자의 사전 서면 승인 없이는 어떠한 형식이나 수단(복사, 녹음, 녹화 또는 전자 검색 시스템에 저장하는 것을 비롯한 그래픽, 전자적 또는 기계적 방법)으로도 복제될 수 없습니다.

NetApp이 저작권을 가진 자료에 있는 소프트웨어에는 아래의 라이센스와 고지사항이 적용됩니다.

본 소프트웨어는 NetApp에 의해 '있는 그대로' 제공되며 상품성 및 특정 목적에의 적합성에 대한 명시적 또는 묵시적 보증을 포함하여(이에 제한되지 않음) 어떠한 보증도 하지 않습니다. NetApp은 대체품 또는 대체 서비스의 조달, 사용불능, 데이터 손실, 이익 손실, 영업 중단을 포함하여(이에 국한되지 않음), 이 소프트웨어의 사용으로 인해 발생하는 모든 직접 및 간접 손해, 우발적 손해, 특별 손해, 징벌적 손해, 결과적 손해의 발생에 대하여 그 발생 이유, 책임론, 계약여부, 엄격한 책임, 불법 행위(과실 또는 그렇지 않은 경우)와 관계없이 어떠한 책임도 지지 않으며, 이와 같은 손실의 발생 가능성이 통지되었다 하더라도 마찬가지입니다.

NetApp은 본 문서에 설명된 제품을 언제든지 예고 없이 변경할 권리를 보유합니다. NetApp은 NetApp의 명시적인 서면 동의를 받은 경우를 제외하고 본 문서에 설명된 제품을 사용하여 발생하는 어떠한 문제에도 책임을 지지 않습니다. 본 제품의 사용 또는 구매의 경우 NetApp에서는 어떠한 특허권, 상표권 또는 기타 지적 재산권이 적용되는 라이센스도 제공하지 않습니다.

본 설명서에 설명된 제품은 하나 이상의 미국 특허, 해외 특허 또는 출원 중인 특허로 보호됩니다.

제한적 권리 표시: 정부에 의한 사용, 복제 또는 공개에는 DFARS 252.227-7013(2014년 2월) 및 FAR 52.227-19(2007년 12월)의 기술 데이터-비상업적 품목에 대한 권리(Rights in Technical Data -Noncommercial Items) 조항의 하위 조항 (b)(3)에 설명된 제한사항이 적용됩니다.

여기에 포함된 데이터는 상업용 제품 및/또는 상업용 서비스(FAR 2.101에 정의)에 해당하며 NetApp, Inc.의 독점 자산입니다. 본 계약에 따라 제공되는 모든 NetApp 기술 데이터 및 컴퓨터 소프트웨어는 본질적으로 상업용이며 개인 비용만으로 개발되었습니다. 미국 정부는 데이터가 제공된 미국 계약과 관련하여 해당 계약을 지원하는 데에만 데이터에 대한 전 세계적으로 비독점적이고 양도할 수 없으며 재사용이 불가능하며 취소 불가능한 라이센스를 제한적으로 가집니다. 여기에 제공된 경우를 제외하고 NetApp, Inc.의 사전 서면 승인 없이는 이 데이터를 사용, 공개, 재생산, 수정, 수행 또는 표시할 수 없습니다. 미국 국방부에 대한 정부 라이센스는 DFARS 조항 252.227-7015(b)(2014년 2월)에 명시된 권한으로 제한됩니다.

상표 정보

NETAPP, NETAPP 로고 및 http://www.netapp.com/TM에 나열된 마크는 NetApp, Inc.의 상표입니다. 기타 회사 및 제품 이름은 해당 소유자의 상표일 수 있습니다.