Instituto Politécnico Nacional Escuela Superior de Cómputo

Wavelet

Procesamiento Digital de Señales

Integrantes:

Bautista Ríos Alfredo

Cisneros Araujo Karen

Contreras Vargas Oscar Daniel

Cortés Velazquez Samuel Alejandro

Ramírez Aguirre José Alfredo

Profesor:

Flores Escobar Jose Antonio

El código implementa y grafica varias wavelets madre populares utilizando las funciones de la caja de herramientas de wavelets de MATLAB. Las wavelets madre generadas y graficadas incluyen Daubechies, Symlet, Coiflet y Mexican Hat.

Código

```
%Archivo:
                wavelet.m
%Equipo:
%Intergantes:
               Bautista Ríos Alfredo
               Cisneros Araujo Karen
                Contreras Vargas Oscar Daniel
%
                Cortés Velazquez Samuel Alejandro
                Ramírez Aguirre José Alfredo
%Descripción:
               Wavelets Madre
%Definir las wavelets madre
%en este caso definen las wavelets mas empleadas
%se empleaemplean subrutinas de generacion de waveletes de acuerdo
%a la toolbod de waveletes en matlab
%definicion de la primera wavelet madre - daubechies
%en esta wavelet se pueden explorar todas las variaciones
d = dbwavf('db8');
%defincion de la wavelet madre - symlet
%en esta wavelet se pueden explorar todas las variaciones
s = symwavf('sym6');
%Definicion de la wavelet madre - coiflet
%en esta wavelet se pueden explorar todas las variaciones
c = coifwavf('coif3');
%Definicion de la wavelet madre - mexican hat
%en esta wavelet se pueden explorar todas las variaciones
1b = -5;
ub = 5;
N = 1000;
[psi, xval] = mexihat(lb, ub, N);
```

```
%ambiente parpara graficar cada wavelet
%primera parte de wwavelet
x = [0 \ 250];
y = [-0.045 - 0.045];
%Primer grafico
subplot (3, 2, 1);
title('Haar 4');
line(x,y);
%Segunda parte del wavelet
x = [250 \ 400];
y = [-0.045 \ 0.045];
line(x,y);
%tercera parte del wavelet
x = [400 550];
y = [0.045 \ 0.045];
line(x,y);
axis([0, 600, -0.05, 0.05]);
%Segundo grafico
line(x,y);
axis([0, 600, -0.05, 0.05]);
subplot(3, 2, 2);
plot(d);
title('Daubechies - DBB');
%Tercer grafico
subplot(3, 2, 3);
plot(s);
title('Symlet - Sym6');
%Cuarto grafico
subplot(3, 2, 4);
plot(c);
title('Coiflet - coif3');
```

```
%Quinto grafico
subplot(3, 2, 5);
plot(xval, psi);
title('Mexican Hat - mexihat');
```

Ejecución

Wavelet Haar 4

La imagen muestra una versión simplificada de la wavelet Haar, compuesta de 3 partes, la primera que va de x [0, 250] que en la imagen se muestra de color azul, la segunda parte va de x [250, 400] con una inclinación en y para que quede diagonal y se muestra de color naranja; la tercera parte de la wavelet va de x [400, 550] y se muestra de color morado.

Daubechies - DBB

La segunda presenta la wavelet Daubechies de orden 8 como se explica en esta línea de código "d = dbwavf('db8');" (línea 17).

El orden de una wavelet Daubechies indica el número de momentos nulos. Los momentos nulos están relacionados con la suavidad y la longitud de la wavelet.

Symlet

La gráfica muestra la wavelet Symlet de orden 6 mostrado en el código "s = symwavf('sym6');" (línea 20), que es una versión modificada de Daubechies diseñada para tener mayor simetría.

El orden de esta wavelet es similar al de las Daubechies en cuanto a momentos nulos.

Coeiflet

Esta gráfica presenta la wavelet Coiflet de orden 3 "c = coifwavf('coif3');" (línea 23), conocida por sus propiedades de regularidad y simetría.

El orden se refiere al número de momentos nulos de la wavelet madre y la wavelet de escala (función de escala). Estas wavelets son particularmente útiles para el análisis de señales con características específicas.

Mexican Hat

La quinta gráfica muestra la wavelet Mexican Hat, que es una wavelet continua conocida por su forma de sombrero mexicano y su uso en el análisis de singularidades.

En esta wavelet se pueden explorar todas sus variaciones modificando los parametros dados en el código (líneas 26 a 28).

