EDA + Logistic Regression + PCA

Table of Contents

The contents of this kernel is divided into various topics which are as follows:-

- -The Curse of Dimensionality
- -Introduction to Principal Component Analysis
- -Import Python libraries
- -Import dataset
- -Exploratory data analysis
- -Split data into training and test set
- -Feature engineering
- -Feature scaling
- -Logistic regression model with all features
- -Logistic Regression with PCA
- -Select right number of dimensions
- -Plot explained variance ratio with number of dimensions
- -Conclusion
- -References

Import python Liberaries

```
In [1]: ► import numpy as np
import pandas as pd
```

import liberaries for plotting

Ignore warning

```
In [3]: | import warnings
warnings.filterwarnings("ignore")
```

import dataset

Exploratory Data Analysis

check the dataset

there are 32561 instances and 15 attribute in the dataset

preview data

```
In [6]: ► df.head()
```

Out[6]:

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationsh
0	90	?	77053	HS-grad	9	Widowed	?	Not-in-farr
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-farr
2	66	?	186061	Some- college	10	Widowed	?	Unmarri
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarri
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-ch
4								>

View summary of dataframe

```
In [7]: ► df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
Column

#	Column	Non-Null Count	Dtype			
0	age	32561 non-null	int64			
1	workclass	32561 non-null	object			
2	fnlwgt	32561 non-null	int64			
3	education	32561 non-null	object			
4	education.num	32561 non-null	int64			
5	marital.status	32561 non-null	object			
6	occupation	32561 non-null	object			
7	relationship	32561 non-null	object			
8	race	32561 non-null	object			
9	sex	32561 non-null	object			
10	capital.gain	32561 non-null	int64			
11	capital.loss	32561 non-null	int64			
12	hours.per.week	32561 non-null	int64			
13	native.country	32561 non-null	object			
14	income	32561 non-null	object			
dtynes: int64(6) object(0)						

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

Summary of the dataset shows that there are no missing values. But the preview shows that the dataset contains values coded as ? . So, I will encode ? as NaN values.

Encode? as NaNs

```
In [8]:
           df[df == "?"] = np.nan
In [9]:
           df.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 32561 entries, 0 to 32560
            Data columns (total 15 columns):
            #
                Column
                                Non-Null Count Dtype
                -----
                                -----
             0
                age
                                32561 non-null int64
             1
                workclass
                                30725 non-null object
                                32561 non-null int64
             2
                fnlwgt
             3
                education
                                32561 non-null object
             4
                education.num
                                32561 non-null int64
             5
                marital.status 32561 non-null object
             6
                                30718 non-null object
                occupation
             7
                relationship
                                32561 non-null object
             8
                                32561 non-null object
                race
             9
                sex
                                32561 non-null object
             10
                capital.gain
                                32561 non-null int64
                capital.loss
                                32561 non-null int64
                hours.per.week 32561 non-null int64
            13 native.country 31978 non-null object
             14 income
                                32561 non-null object
            dtypes: int64(6), object(9)
            memory usage: 3.7+ MB
```

impute missing values with code

check again for missing value

```
In [11]:
              df.isnull().sum()
    Out[11]: age
                                 0
              workclass
                                 0
                                 0
              fnlwgt
              education
                                 0
              education.num
                                 0
              marital.status
                                 0
              occupation
                                 0
              relationship
                                  0
              race
                                  0
                                 0
              capital.gain
                                 0
              capital.loss
                                 0
              hours.per.week
                                 0
              native.country
                                 0
                                 0
              income
              dtype: int64
```

now there is no missing value

Setting feature vector and target variable

Split data into separate train and test dataset

Feature Engineering

Encode categorical variables

Feature Scaling

In [22]: ▶ pd.DataFrame(scaler.transform(x_test), columns = x.columns)

Out[22]:

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	
0	1.273263	-0.090641	0.798307	-1.107252	-1.980744	2.255673	1.232533	
1	-1.436476	-0.090641	0.448823	0.184396	-0.423425	0.926666	- 0.278542	
2	-1.143531	-0.090641	-0.608164	1.217715	-0.034095	0.926666	0.225150	
3	-0.118225	-2.781760	-1.332357	-0.332263	1.133894	-0.402341	0.728841	
4	0.760610	-0.090641	2.202540	0.442726	1.523223	-0.402341	1.232533	
9764	-0.118225	1.703439	-1.518569	0.184396	-0.423425	-0.402341	-0.530388	
9765	-0.923823	-0.090641	-0.228829	0.184396	-0.423425	-0.402341	1.232533	
9766	-0.997059	-0.090641	-0.312141	1.217715	-0.034095	0.926666	0.728841	
9767	-0.337933	-0.090641	-0.393536	0.184396	-0.423425	0.926666	-0.026696	
9768	0.833846	-0.090641	-0.901761	-0.590592	0.355234	-0.402341	-1.034080	
9769 rows × 14 columns								

In [23]: ► x_train.head()

Out[23]:

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	re
0	0.101484	2.600478	-1.494279	-0.332263	1.133894	-0.402341	-0.782234	
1	0.028248	-1.884720	0.438778	0.184396	- 0.423425	-0.402341	-0.026696	
2	0.247956	-0.090641	0.045292	1.217715	-0.034095	0.926666	-0.782234	
3	-0.850587	-1.884720	0.793152	0.184396	-0.423425	0.926666	-0.530388	
4	-0.044989	-2.781760	-0.853275	0.442726	1.523223	-0.402341	-0.782234	
4)	

Logistic Regression Model with all Features

Logistic Regression with PCA

lets get to the PCA implementation

We can see that approximately 97.25% of variance is explained by the first 13 variables.

- -Only 2.75% of variance is explained by the last variable. So, we can assume that it carries little information.
- -So, I will drop it, train the model again and calculate the accuracy.

Logistic Regression with first 13 feature

```
  | x = df.drop(["income", "native.country"], axis=1)

In [34]:
             y = df["income"]
In [35]:
In [36]:
          x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)
          | categorical = ['workclass', 'education', 'marital.status', 'occupation',
In [37]:
             for feature in categorical:
                 le = preprocessing.LabelEncoder()
                 x_train[feature] = le.fit_transform(x_train[feature])
                 x test[feature] = le.transform(x test[feature])
          x_train = pd.DataFrame(scaler.fit_transform(x_train), columns = x.columns)
In [38]:
In [39]:

▼ | x_test = pd.DataFrame(scaler.transform(x_test), columns = x.columns)

             logreg = LogisticRegression()
In [40]:
In [41]:
             logreg.fit(x train, y train)
   Out[41]:
              ▼ LogisticRegression
             LogisticRegression()
In [42]:
          y pred = logreg.predict(x test)
In [43]:
          ▶ print('Logistic Regression accuracy score with the first 13 features: {0:€
             Logistic Regression accuracy score with the first 13 features: 0.8213
```

Logistic Regression WITH FIRST 12 feature

```
In [47]:
          | categorical = ['workclass', 'education', 'marital.status', 'occupation',
             for feature in categorical:
                 le = preprocessing.LabelEncoder()
                 x train[feature] = le.fit transform(x train[feature])
                 x test[feature] = le.transform(x test[feature])
In [48]:
          ▶ x train = pd.DataFrame(scaler.fit transform(x train), columns = x.columns
In [49]:

▼ | x_test = pd.DataFrame(scaler.transform(x_test), columns = x.columns)

In [50]:
          ▶ logreg.fit(x_train, y_train)
   Out[50]:
              ▼ LogisticRegression
              LogisticRegression()
          y_pred = logreg.predict(x_test)
In [51]:
In [52]:
          ▶ print('Logistic Regression accuracy score with the first 13 features: {0:€
             Logistic Regression accuracy score with the first 13 features: 0.8227
```

Logistic Regression WITH FIRST 11 feature

```
  | x = df.drop(["income","native.country", "hours.per.week", "capital.loss"]
  | x = df.drop(["income","native.country", "hours.per.week", "hours.pe
In [53]:
                                            y = df["income"]
In [54]:
                                            | x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)
In [55]:
                                                        categorical = ['workclass', 'education', 'marital.status', 'occupation',
In [56]:
                                                        for feature in categorical:
                                                                         le = preprocessing.LabelEncoder()
                                                                         x_train[feature] = le.fit_transform(x_train[feature])
                                                                         x_test[feature] = le.transform(x_test[feature])
In [57]:

| x_train = pd.DataFrame(scaler.fit_transform(x_train), columns = x.columns)
                                            | x_test = pd.DataFrame(scaler.transform(x_test), columns = x.columns)
In [58]:
```

:-We can see that accuracy has significantly decreased to 0.8187 if I drop the last three features.

-Our aim is to maximize the accuracy. We get maximum accuracy with the first 12 features and the accuracy is 0.8227.

Select right number of dimentions

```
| x = df.drop(["income"], axis=1)
In [62]:
             y = df["income"]
In [63]:
In [64]:
          M | x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)
             categorical = ['workclass', 'education', 'marital.status', 'occupation',
In [65]:
             for feature in categorical:
                 le = preprocessing.LabelEncoder()
                 x_train[feature] = le.fit_transform(x_train[feature])
                 x_test[feature] = le.transform(x_test[feature])
In [66]:
          x_train = pd.DataFrame(scaler.fit_transform(x_test), columns = x.columns)
In [67]:
             pca = PCA()
             pca.fit(x_train)
             cumsum = np.cumsum(pca.explained_variance_ratio_)
             dim = np.argmax(cumsum >= 0.90) + 1

▶ print("The numnber of dimensions required to preserve 90% of variance is")

In [68]:
```

The numnber of dimensions required to preserve 90% of variance is 12

plot explained variance ratio with number of dimensions

Conclusion

- -In this kernel, I have discussed Principal Component Analysis the most popular dimensionality reduction technique.
- -I have demonstrated PCA implementation with Logistic Regression on the adult dataset.
- -I found the maximum accuracy with the first 12 features and it is found to be 0.8227.
- -As expected, the number of dimensions required to preserve 90 % of variance is found to be 12.
- -Finally, I plot the explained variance ratio with number of dimensions. The graph confirms that approximately 90% of variance is explained by the first 12 components.

In []: **M**