Exhibits for Municipality Proliferation

April 26, 2023

Contents

1	County-Level Stacked Tables, Unweighted	4
	1.1 Incorporated Area	4
	1.2 Desegregation Plan	
	1.3 LU-ML 2010	
	1.4 Mean LU-ML, 2002-2023	
	1.5 ZIP Code Unbuildable, LS 2019 Xwalk	
	1.6 ZIP Code Unbuildable, HUD Xwalk	
	1.7 County Unbuildable, 0pct Buffer	16
2	Country I amal Charles I make a 1040 Demolation Walnut d	10
2	County-Level Stacked Tables, 1940 Population Weighted	18
	2.1 Incorporated Area	
	2.2 Desegregation Plan	
	2.4 Mean LU-ML, 2002-2023	
	2.5 ZIP Code Unbuildable, LS 2019 Xwalk	
	2.7 County Unbuildable, Opet Buffer	
	2.7 County Orbandable, open burier	30
3	School Finance Outcomes	32
•	3.1 Unweighted	
	3.2 1940 Population Weighted	
	502 1010 1 opulation (roughtout 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	00
4	county-Level Tables, og-sample	34
	4.1 Unweighted	34
	4.2 1940 Population Weighted	40
5	county-Level Tables, Per Capita, og-sample	46
	5.1 Unweighted	
	5.2 1940 Population Weighted	52
6	county-Level Tables, full-sample	58
U	6.1 Unweighted	
	6.2 1940 Population Weighted	
	0.2 1.540 Lopulation Weighted	O-I
7	county-Level Tables, Per Capita, full-sample	70
	7.1 Unweighted	70
	7.2 1940 Population Weighted	76
T	ist of Figures	
L	ist of Figures	
_		
L	ist of Tables	
	1 Effects of change in Black Migration on Number of Independent School Districts	5
	2 Effects of change in Black Migration on Number of Independent School Districts	7
	3 Effects of change in Black Migration on Number of Independent School Districts	9
	4 Effects of change in Black Migration on Number of Independent School Districts	11 13
	6 Effects of change in Black Migration on Number of Independent School Districts	15
	7 Effects of change in Black Migration on Number of Independent School Districts	17
	8 Effects of change in Black Migration on Number of Independent School Districts	19
	9 Effects of change in Black Migration on Number of Independent School Districts	21 23
	20 2new of change in Disea ingression on realised of independent school Diseases 1	20

```
Effects of change in Black Migration on Number of Independent School Districts
  Effects of change in Black Migration on Number of Independent School Districts
12
  Effects of change in Black Migration on Number of Independent School Districts
13
  Effects of change in Black Migration on Number of Independent School Districts
14
                                                                           31
  15
  16
                                                                           32
  17
  18
19
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs . . .
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
20
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  and black mig share, above median area incorporated.
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  37
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, above median area incorporated.
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, mean TRI
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, below median area incorporated.
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, mean TRI
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
   Description Table Two with y = Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs \\ . . . \\
```

```
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
63
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs . .
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
64
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, above median area incorporated.
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, mean TRI
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, below median area incorporated.
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, above median area incorporated.
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, mean TRI
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
80
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
```

- 1 County-Level Stacked Tables, Unweighted
- 1.1 Incorporated Area

Table 1: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable GM									
\widehat{GM} (rank)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77	
Panel B: Dependent Variable Numb	er of Indep	endent Sch	ool District	s					
GM (rank)	0.13*** (0.04)	0.15** (0.07)	0.14*** (0.04)	0.15*** (0.05)	-0.17 (1.27)	0.22 (1.09)	0.74*** (0.12)	0.65*** (0.13)	
Panel C: Dependent Variable GM									
\widehat{GM} (rank)	0.41*** (0.04)	0.30*** (0.04)	0.09*** (0.03)	0.08*** (0.03)	0.41*** (0.04)	0.30*** (0.04)	0.09*** (0.03)	0.08*** (0.03)	
\hat{GM} X Above Median Land Incorp	0.17*** (0.03)	0.08** (0.03)	0.35*** (0.02)	0.31*** (0.03)	0.17*** (0.03)	0.08** (0.03)	0.35*** (0.02)	0.31*** (0.03)	
F-Stat S.W. F-Stat K.P. F-Stat	164.13 178.61 90.55	40.04 69.47 34.27	242.08 57.81 26.88	167.67 45.79 21.76	164.13 178.61 90.55	40.04 69.47 34.27	242.08 57.81 26.88	167.67 45.79 21.76	
Panel D: Dependent Variable GM X	Above me	dian land I	ncorp						
\widehat{GM} (rank)	-0.22*** (0.03)	-0.27*** (0.03)	-0.25*** (0.02)	-0.25***	-0.22*** (0.03)	-0.27*** (0.03)	-0.25***	0.05***	
				(0.02)	(0.00)	(0.00)	(0.02)	-0.25*** (0.02)	
\widetilde{GM} X Above Median Land Incorp	0.95*** (0.02)	0.91*** (0.02)	0.97*** (0.01)	0.02) 0.93*** (0.02)	0.95*** (0.02)	0.91*** (0.02)	(0.02) $0.97***$ (0.01)		
GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat				0.93***	0.95***	0.91***	0.97***	(0.02) 0.93***	
F-Stat S.W. F-Stat	(0.02) 1088.34 475.63 90.55	(0.02) 941.12 493.71 34.27	(0.01) 2214.47 54.55 26.88	0.93*** (0.02) 1461.41 45.58 21.76	0.95*** (0.02) 1088.34 475.63	0.91*** (0.02) 941.12 493.71	0.97*** (0.01) 2214.47 54.55	(0.02) 0.93*** (0.02) 1461.41 45.58	
F-Stat S.W. F-Stat K.P. F-Stat	(0.02) 1088.34 475.63 90.55	(0.02) 941.12 493.71 34.27	(0.01) 2214.47 54.55 26.88	0.93*** (0.02) 1461.41 45.58 21.76	0.95*** (0.02) 1088.34 475.63	0.91*** (0.02) 941.12 493.71	0.97*** (0.01) 2214.47 54.55	(0.02) 0.93*** (0.02) 1461.41 45.58	
F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Numb	(0.02) 1088.34 475.63 90.55 er of Indeper 0.08	(0.02) 941.12 493.71 34.27 endent School	(0.01) 2214.47 54.55 26.88 cool District 0.15**	0.93*** (0.02) 1461.41 45.58 21.76	0.95*** (0.02) 1088.34 475.63 90.55	0.91*** (0.02) 941.12 493.71 34.27	0.97*** (0.01) 2214.47 54.55 26.88	(0.02) 0.93*** (0.02) 1461.41 45.58 21.76	
F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank)	(0.02) 1088.34 475.63 90.55 er of Indeperture of the second of the s	(0.02) 941.12 493.71 34.27 endent School 0.11 (0.08) 0.06*	(0.01) 2214.47 54.55 26.88 cool District 0.15** (0.08) -0.01	0.93*** (0.02) 1461.41 45.58 21.76 s 0.15* (0.09) -0.01	0.95*** (0.02) 1088.34 475.63 90.55 0.19 (1.02) -0.40	0.91*** (0.02) 941.12 493.71 34.27 0.48 (0.95) -0.35	0.97*** (0.01) 2214.47 54.55 26.88 0.46** (0.23) 0.23**	(0.02) 0.93*** (0.02) 1461.41 45.58 21.76 0.40 (0.25) 0.20*	

1.2 Desegregation Plan	1.2	Desegregation 1	Plan	
------------------------	-----	-----------------	------	--

Table 2: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable	GM								
\widehat{GM} (rank)	0.53***	0.35***	0.32***	0.28***	0.53***	0.35***	0.32***	0.28***	
	(0.03)	(0.04)	(0.03)	(0.03)	(0.03)	(0.04)	(0.03)	(0.03)	
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77	
Panel B: Dependent Variable	Number of	f Independe	ent School I	Districts					
GM (rank)	0.13***	0.15**	0.14***	0.15***	-0.17	0.22	0.74***	0.65***	
	(0.04)	(0.07)	(0.04)	(0.05)	(1.27)	(1.09)	(0.12)	(0.13)	
Panel C: Dependent Variable	GM								
\widehat{GM} (rank)	0.44***	0.28***	0.19***	0.17***	0.44***	0.28***	0.19***	0.17***	
, ,	(0.04)	(0.05)	(0.03)	(0.03)	(0.04)	(0.05)	(0.03)	(0.03)	
\hat{GM} X Desegregation Order	0.16***	0.13***	0.35***	0.31***	0.16***	0.13***	0.35***	0.31***	
	(0.03)	(0.03)	(0.02)	(0.02)	(0.03)	(0.03)	(0.02)	(0.02)	
F-Stat	162.13	49.03	362.63	254.43	162.13	49.03	362.63	254.43	
S.W. F-Stat K.P. F-Stat	188.20 94.74	65.08 32.42	84.42 37.63	67.06 31.60	188.20 94.74	65.08 32.42	$84.42 \\ 37.63$	67.06 31.60	
Panel D: Dependent Variable		ove median	land Incor	р					
\widehat{GM} (rank)	-0.17***	-0.23***	-0.11***	-0.12***	-0.17***	-0.23***	-0.11***	-0.12***	
	(0.03)	(0.04)	(0.01)	(0.02)	(0.03)	(0.04)	(0.01)	(0.02)	
\widehat{GM} X Desegregation Order	0.96***	0.95***	1.02***	1.01***	0.96***	0.95***	1.02***	1.01***	
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	
F-Stat	967.42	934.31	2033.50	1938.76	967.42	934.31	2033.50	1938.76	
S.W. F-Stat	985.51	315.39	127.67	108.69	985.51	315.39	127.67	108.69	
K.P. F-Stat	94.74	32.42	37.63	31.60	94.74	32.42	37.63	31.60	
Panel E: Dependent Variable									
GM (rank)	0.14***	0.17**	0.13**	0.14**	0.48	1.00	0.67***	0.58***	
-	(0.05)	(0.07)	(0.05)	(0.06)	(0.91)	(0.85)	(0.17)	(0.18)	
GM X Desegregation Order	-0.01 (0.03)	-0.01 (0.03)	$0.00 \\ (0.03)$	$0.00 \\ (0.03)$	-0.88 (0.74)	-0.95 (0.79)	$0.09 \\ (0.08)$	$0.08 \\ (0.08)$	
Combined Coeff	0.12***	0.15**	0.14***	0.15***	-0.39	0.05	0.75***	0.66***	
Combined SE	(0.04)	(0.07)	(0.04)	(0.04)	(1.41)	(1.19)	(0.11)	(0.12)	
Dep var mean	-9.77	-9.77	-15.41	-15.41	-55.73	-55.73	-31.35	-31.35	
Sample	Original	Original	Full	Full	Original	Original	Full	Full	
Mfg/Black Mig Controls	No	Yes	No	Yes	No	Yes	No	Yes	
Observations	714	714	1608	1608	714	714	1608	1608	

Table 3: Effects of change in Black Migration on Number of Independent School Districts

		Ra	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable GM									
\widehat{GM} (rank)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77	
Panel B: Dependent Variable Num	ber of Inde	pendent Sc	hool Distric	ets					
GM (rank)	0.13*** (0.04)	0.15** (0.07)	0.14*** (0.04)	0.15*** (0.05)	-0.17 (1.27)	0.22 (1.09)	0.74*** (0.12)	0.65*** (0.13)	
Panel C: Dependent Variable GM									
\widehat{GM} (rank)	0.59*** (0.04)	0.41*** (0.04)	0.44*** (0.03)	0.39*** (0.03)	0.59*** (0.04)	0.41*** (0.04)	0.44*** (0.03)	0.39*** (0.03)	
GM_hat_X_above_med_lu_ml_2010	-0.08** (0.03)	-0.09*** (0.03)	-0.18*** (0.03)	-0.16*** (0.02)	-0.08** (0.03)	-0.09*** (0.03)	-0.18*** (0.03)	-0.16*** (0.02)	
F-Stat S.W. F-Stat K.P. F-Stat	138.67 338.36 113.64	42.88 76.32 31.58	127.79 201.09 66.50	99.61 141.06 50.28	138.67 338.36 113.64	42.88 76.32 31.58	127.79 201.09 66.50	99.61 141.06 50.28	
Panel D: Dependent Variable GM	X Above m	edian land	Incorp						
\hat{GM} (rank)	-0.26*** (0.03)	-0.41*** (0.04)	-0.36*** (0.02)	-0.39*** (0.02)	-0.26*** (0.03)	-0.41*** (0.04)	-0.36*** (0.02)	-0.39*** (0.02)	
$GM_hat_X_above_med_lu_ml_2010$	0.84*** (0.02)	0.83*** (0.02)	0.77*** (0.02)	0.78*** (0.02)	0.84*** (0.02)	0.83*** (0.02)	0.77*** (0.02)	0.78*** (0.02)	
F-Stat S.W. F-Stat	671.35 2457.30 113.64	805.51 917.89 31.58	1060.13 797.43 66.50	1127.71 589.96 50.28	671.35 2457.30 113.64	805.51 917.89 31.58	1060.13 797.43 66.50	1127.71 589.96	
K.P. F-Stat								50.28	
Panel E: Dependent Variable Num		pendent Sc	hool Distric					50.28	
		pendent Sc. 0.17*** (0.07)	hool Distric		0.25 (0.92)	0.47 (0.91)	0.80*** (0.10)	0.71*** (0.12)	
Panel E: Dependent Variable Num	ber of Inde 0.16***	0.17***	0.16***	ets 0.17***			0.80***	0.71***	

 $1.4 \quad {\rm Mean~LU\text{-}ML},~2002\text{--}2023$

Table 4: Effects of change in Black Migration on Number of Independent School Districts

		Ra	aw			Per Capita	a(100,000)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\widehat{GM} (rank)	0.53***	0.35***	0.32***	0.28***	0.53***	0.35***	0.32***	0.28***
	(0.03)	(0.04)	(0.03)	(0.03)	(0.03)	(0.04)	(0.03)	(0.03)
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77
Panel B: Dependent Variable Numb	er of Indep	endent Sch	ool Distric	ts				
GM (rank)	0.13***	0.15**	0.14***	0.15***	-0.17	0.22	0.74***	0.65***
	(0.04)	(0.07)	(0.04)	(0.05)	(1.27)	(1.09)	(0.12)	(0.13)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.61***	0.41***	0.47***	0.42***	0.61***	0.41***	0.47***	0.42***
	(0.04)	(0.04)	(0.03)	(0.03)	(0.04)	(0.04)	(0.03)	(0.03)
$GM_hat_X_above_med_lu_ml_mean$	-0.12***	-0.10***	-0.22***	-0.19***	-0.12***	-0.10***	-0.22***	-0.19***
	(0.03)	(0.03)	(0.02)	(0.02)	(0.03)	(0.03)	(0.02)	(0.02)
F-Stat	148.35	44.24	165.73	115.75	148.35	44.24	165.73	115.75
S.W. F-Stat K.P. F-Stat	322.91 99.42	70.00 29.40	183.36 55.52	123.62 44.12	322.91 99.42	$70.00 \\ 29.40$	$183.36 \\ 55.52$	123.62 44.12
Panel D: Dependent Variable GM X								
	-0.22***	-0.40***	-0.36***	-0.41*** (0.02)	-0.22*** (0.03)	-0.40*** (0.04)	-0.36*** (0.02)	
\hat{GM} (rank)	-0.22*** (0.03)	-0.40*** (0.04)	-0.36*** (0.02)	(0.02)	(0.03)	(0.04)	(0.02)	(0.02)
\hat{GM} (rank)	-0.22*** (0.03) 0.79***	-0.40*** (0.04) 0.81***	-0.36*** (0.02) 0.70***	(0.02) $0.73***$	(0.03) $0.79***$	(0.04) $0.81***$	(0.02) $0.70***$	(0.02) 0.73***
\hat{GM} (rank) GM_hat_X_above_med_lu_ml_mean	-0.22*** (0.03) 0.79*** (0.02)	-0.40*** (0.04) 0.81*** (0.02)	-0.36*** (0.02) 0.70*** (0.02)	(0.02) 0.73*** (0.02)	(0.03) 0.79*** (0.02)	(0.04) 0.81*** (0.02)	(0.02) 0.70*** (0.02)	(0.02) 0.73*** (0.02)
\hat{GM} (rank)	-0.22*** (0.03) 0.79***	-0.40*** (0.04) 0.81***	-0.36*** (0.02) 0.70***	(0.02) $0.73***$	(0.03) $0.79***$	(0.04) $0.81***$	(0.02) $0.70***$	(0.02) 0.73*** (0.02)
GM_hat_X_above_med_lu_ml_mean F-Stat	-0.22*** (0.03) 0.79*** (0.02) 761.47	-0.40*** (0.04) 0.81*** (0.02) 908.79	-0.36*** (0.02) 0.70*** (0.02) 1047.08	(0.02) 0.73*** (0.02) 1149.16	(0.03) 0.79*** (0.02) 761.47	(0.04) 0.81*** (0.02) 908.79	(0.02) 0.70*** (0.02) 1047.08	0.73*** (0.02) 1149.16
GM (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat K.P. F-Stat	-0.22*** (0.03) 0.79*** (0.02) 761.47 2023.93 99.42	-0.40*** (0.04) 0.81*** (0.02) 908.79 632.10 29.40	-0.36*** (0.02) 0.70*** (0.02) 1047.08 362.77 55.52	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12	(0.03) 0.79*** (0.02) 761.47 2023.93	(0.04) 0.81*** (0.02) 908.79 632.10	(0.02) 0.70*** (0.02) 1047.08 362.77	(0.02) 0.73*** (0.02) 1149.16 327.51
GM (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat K.P. F-Stat	-0.22*** (0.03) 0.79*** (0.02) 761.47 2023.93 99.42	-0.40*** (0.04) 0.81*** (0.02) 908.79 632.10 29.40	-0.36*** (0.02) 0.70*** (0.02) 1047.08 362.77 55.52	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12	(0.03) 0.79*** (0.02) 761.47 2023.93	(0.04) 0.81*** (0.02) 908.79 632.10	(0.02) 0.70*** (0.02) 1047.08 362.77	(0.02) 0.73*** (0.02) 1149.16 327.51
GM (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat K.P. F-Stat	-0.22*** (0.03) 0.79*** (0.02) 761.47 2023.93 99.42	-0.40*** (0.04) 0.81*** (0.02) 908.79 632.10 29.40	-0.36*** (0.02) 0.70*** (0.02) 1047.08 362.77 55.52	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12	(0.03) 0.79*** (0.02) 761.47 2023.93 99.42	(0.04) 0.81*** (0.02) 908.79 632.10 29.40	(0.02) 0.70*** (0.02) 1047.08 362.77 55.52	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12
GM (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Numb GM (rank)	-0.22*** (0.03) 0.79*** (0.02) 761.47 2023.93 99.42 per of Indep 0.14*** (0.04) -0.03	-0.40*** (0.04) 0.81*** (0.02) 908.79 632.10 29.40 endent Sch 0.16** (0.07) -0.03	-0.36*** (0.02) 0.70*** (0.02) 1047.08 362.77 55.52 cool Distric 0.14*** (0.04) -0.02	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12 ts 0.15*** (0.04) -0.02	(0.03) 0.79*** (0.02) 761.47 2023.93 99.42 -0.57 (1.62) 0.92	(0.04) 0.81*** (0.02) 908.79 632.10 29.40 -0.06 (1.31) 1.04	(0.02) 0.70*** (0.02) 1047.08 362.77 55.52 0.79*** (0.11) -0.11*	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12 0.69*** (0.12) -0.10*
GM (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Numb GM (rank)	-0.22*** (0.03) 0.79*** (0.02) 761.47 2023.93 99.42 per of Indep 0.14*** (0.04)	-0.40*** (0.04) 0.81*** (0.02) 908.79 632.10 29.40 endent Sch 0.16** (0.07)	-0.36*** (0.02) 0.70*** (0.02) 1047.08 362.77 55.52 nool Distric 0.14*** (0.04)	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12 ts 0.15*** (0.04)	(0.03) 0.79*** (0.02) 761.47 2023.93 99.42 -0.57 (1.62)	(0.04) 0.81*** (0.02) 908.79 632.10 29.40 -0.06 (1.31)	(0.02) 0.70*** (0.02) 1047.08 362.77 55.52 0.79*** (0.11)	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12 0.69*** (0.12)
GM (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Numb GM (rank) GM_X_above_med_lu_ml_mean Combined Coeff	-0.22*** (0.03) 0.79*** (0.02) 761.47 2023.93 99.42 per of Indep 0.14*** (0.04) -0.03 (0.03) 0.11**	-0.40*** (0.04) 0.81*** (0.02) 908.79 632.10 29.40 endent Sch 0.16** (0.07) -0.03 (0.03) 0.13*	-0.36*** (0.02) 0.70*** (0.02) 1047.08 362.77 55.52 nool Distric 0.14*** (0.04) -0.02 (0.02) 0.12***	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12 ts 0.15*** (0.04) -0.02 (0.02) 0.13**	(0.03) 0.79*** (0.02) 761.47 2023.93 99.42 -0.57 (1.62) 0.92 (0.95) 0.35	(0.04) 0.81*** (0.02) 908.79 632.10 29.40 -0.06 (1.31) 1.04 (1.04) 0.98	(0.02) 0.70*** (0.02) 1047.08 362.77 55.52 0.79*** (0.11) -0.11* (0.06) 0.67***	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12 0.69*** (0.12) -0.10* (0.06) 0.59***
GM (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Numb GM (rank) GM_X_above_med_lu_ml_mean Combined Coeff Combined SE	-0.22*** (0.03) 0.79*** (0.02) 761.47 2023.93 99.42 per of Indep 0.14*** (0.04) -0.03 (0.03) 0.11** (0.05)	-0.40*** (0.04) 0.81*** (0.02) 908.79 632.10 29.40 endent Sch (0.07) -0.03 (0.03) 0.13* (0.08)	-0.36*** (0.02) 0.70*** (0.02) 1047.08 362.77 55.52 cool Distric 0.14*** (0.04) -0.02 (0.02) 0.12*** (0.05)	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12 ts 0.15*** (0.04) -0.02 (0.02) 0.13** (0.05)	(0.03) 0.79*** (0.02) 761.47 2023.93 99.42 -0.57 (1.62) 0.92 (0.95) 0.35 (0.86)	(0.04) 0.81*** (0.02) 908.79 632.10 29.40 -0.06 (1.31) 1.04 (1.04) 0.98 (0.77)	0.02) 0.70*** (0.02) 1047.08 362.77 55.52 0.79*** (0.11) -0.11* (0.06) 0.67*** (0.14)	0.02) 0.73*** (0.02) 1149.10 327.51 44.12 0.69*** (0.12) -0.10* (0.06) 0.59*** (0.15)
GM (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Numb GM (rank) GM_X_above_med_lu_ml_mean Combined Coeff Combined SE Dep var mean	-0.22*** (0.03) 0.79*** (0.02) 761.47 2023.93 99.42 per of Indep 0.14*** (0.04) -0.03 (0.03) 0.11** (0.05) -9.77	-0.40*** (0.04) 0.81*** (0.02) 908.79 632.10 29.40 bendent Sch 0.16** (0.07) -0.03 (0.03) 0.13* (0.08) -9.77	-0.36*** (0.02) 0.70*** (0.02) 1047.08 362.77 55.52 100l Distric 0.14*** (0.04) -0.02 (0.02) 0.12*** (0.05) -15.41	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12 ts 0.15*** (0.04) -0.02 (0.02) 0.13** (0.05) -15.41	(0.03) 0.79*** (0.02) 761.47 2023.93 99.42 -0.57 (1.62) 0.92 (0.95) 0.35 (0.86) -55.73	(0.04) 0.81*** (0.02) 908.79 632.10 29.40 -0.06 (1.31) 1.04 (1.04) 0.98 (0.77) -55.73	0.02) 0.70*** (0.02) 1047.08 362.77 55.52 0.79*** (0.11) -0.11* (0.06) 0.67*** (0.14) -31.35	0.02) 0.73*** (0.02) 1149.10 327.51 44.12 0.69*** (0.12) -0.10* (0.06) 0.59*** (0.15) -31.35
GM (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat	-0.22*** (0.03) 0.79*** (0.02) 761.47 2023.93 99.42 per of Indep 0.14*** (0.04) -0.03 (0.03) 0.11** (0.05)	-0.40*** (0.04) 0.81*** (0.02) 908.79 632.10 29.40 endent Sch (0.07) -0.03 (0.03) 0.13* (0.08)	-0.36*** (0.02) 0.70*** (0.02) 1047.08 362.77 55.52 cool Distric 0.14*** (0.04) -0.02 (0.02) 0.12*** (0.05)	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12 ts 0.15*** (0.04) -0.02 (0.02) 0.13** (0.05)	(0.03) 0.79*** (0.02) 761.47 2023.93 99.42 -0.57 (1.62) 0.92 (0.95) 0.35 (0.86)	(0.04) 0.81*** (0.02) 908.79 632.10 29.40 -0.06 (1.31) 1.04 (1.04) 0.98 (0.77)	0.02) 0.70*** (0.02) 1047.08 362.77 55.52 0.79*** (0.11) -0.11* (0.06) 0.67*** (0.14)	(0.02) 0.73*** (0.02) 1149.16 327.51 44.12 0.69*** (0.12) -0.10*

1.5 ZIP Code Unbuildable, LS 2019 Xwalk

Table 5: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable	e GM								
\widehat{GM} (rank)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77	
Panel B: Dependent Variable	e Number o	of Independ	ent School	Districts					
GM (rank)	0.13*** (0.04)	0.15** (0.07)	0.14*** (0.04)	0.15*** (0.05)	-0.17 (1.27)	0.22 (1.09)	0.74*** (0.12)	0.65*** (0.13)	
Panel C: Dependent Variable	e GM								
\widehat{GM} (rank)	0.45*** (0.04)	0.29*** (0.05)	0.23*** (0.03)	0.21*** (0.03)	0.45*** (0.04)	0.29*** (0.05)	0.23*** (0.03)	0.21*** (0.03)	
$GM_hat_X_above_med_ub_1$	0.13*** (0.03)	0.10*** (0.03)	0.16*** (0.03)	0.12*** (0.03)	0.13*** (0.03)	0.10*** (0.03)	0.16*** (0.03)	0.12*** (0.03)	
F-Stat S.W. F-Stat K.P. F-Stat	167.64 194.98 102.92	45.56 69.16 34.58	100.35 120.72 61.03	74.26 95.67 48.39	167.64 194.98 102.92	45.56 69.16 34.58	100.35 120.72 61.03	74.26 95.67 48.39	
Panel D: Dependent Variable	e GM X Al	oove media	n land Inco	rp					
\widehat{GM} (rank)	-0.16*** (0.03)	-0.25*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)	-0.16*** (0.03)	-0.25*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)	
$GM_hat_X_above_med_ub_1$	0.92*** (0.02)	0.91*** (0.02)	0.86*** (0.02)	0.85*** (0.02)	0.92*** (0.02)	0.91*** (0.02)	0.86*** (0.02)	0.85*** (0.02)	
F-Stat S.W. F-Stat K.P. F-Stat	1116.37 902.39 102.92	1137.68 362.73 34.58	1030.24 321.20 61.03	928.29 336.21 48.39	1116.37 902.39 102.92	1137.68 362.73 34.58	1030.24 321.20 61.03	928.29 336.21 48.39	
Panel E: Dependent Variable	e Number o	of Independ	ent School	Districts					
GM (rank)	0.06 (0.06)	0.09 (0.08)	0.07 (0.05)	0.08 (0.05)	0.69 (0.79)	1.02 (0.86)	0.58*** (0.15)	0.51*** (0.16)	
$GM_X_above_med_ub_1$	0.09*** (0.03)	0.08** (0.03)	0.08*** (0.02)	0.08*** (0.02)	-1.11 (1.09)	-1.03 (1.04)	0.19*** (0.06)	0.17*** (0.06)	
Combined Coeff Combined SE Dep var mean Sample	0.14*** (0.04) -9.77 Original	0.17*** (0.07) -9.77 Original	0.15*** (0.04) -15.41 Full	0.16*** (0.04) -15.41 Full	-0.42 (1.46) -55.73 Original	-0.01 (1.24) -55.73 Original	0.77*** (0.11) -31.35 Full	0.68*** (0.12) -31.35 Full	

1.6 ZIP Code Unbuildable, HUD Xwalk

Table 6: Effects of change in Black Migration on Number of Independent School Districts

	Raw				Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable	e GM								
\widehat{GM} (rank)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77	
Panel B: Dependent Variable	e Number o	of Independ	ent School	Districts					
GM (rank)	0.13*** (0.04)	0.15** (0.07)	0.14*** (0.04)	0.15*** (0.05)	-0.17 (1.27)	0.22 (1.09)	0.74*** (0.12)	0.65*** (0.13)	
Panel C: Dependent Variable	e GM								
\hat{GM} (rank)	0.45*** (0.04)	0.30*** (0.05)	0.23*** (0.03)	0.21*** (0.03)	0.45*** (0.04)	0.30*** (0.05)	0.23*** (0.03)	0.21*** (0.03)	
$GM_hat_X_above_med_ub_2$	0.13*** (0.03)	0.09*** (0.03)	0.16*** (0.03)	0.12*** (0.03)	0.13*** (0.03)	0.09*** (0.03)	0.16*** (0.03)	0.12*** (0.03)	
F-Stat S.W. F-Stat K.P. F-Stat	165.76 196.66 103.65	43.45 70.57 35.16	100.35 120.72 61.03	74.26 95.67 48.39	165.76 196.66 103.65	43.45 70.57 35.16	100.35 120.72 61.03	74.26 95.67 48.39	
Panel D: Dependent Variable	e GM X Al	oove media	n land Inco	rp					
\hat{GM} (rank)	-0.16*** (0.03)	-0.24*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)	-0.16*** (0.03)	-0.24*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)	
$GM_hat_X_above_med_ub_2$	0.91*** (0.02)	0.90*** (0.02)	0.86*** (0.02)	0.85*** (0.02)	0.91*** (0.02)	0.90*** (0.02)	0.86*** (0.02)	0.85*** (0.02)	
F-Stat S.W. F-Stat	1105.27 942.32 103.65	1116.78 440.29 35.16	1030.24 321.20 61.03	928.29 336.21	1105.27 942.32 103.65	1116.78 440.29 35.16	1030.24 321.20	928.29	
K.P. F-Stat		33.13	01.05	48.39	105.05	99.10	61.03	336.21 48.39	
R.P. F-Stat Panel E: Dependent Variable					103.03	33.10	61.03		
					0.72 (0.78)	1.02 (0.85)	0.58*** (0.15)		
Panel E: Dependent Variable	e Number o	of Independ	ent School 0.07	Districts 0.08	0.72	1.02	0.58***	48.39 0.51***	

1.7	County Unbuildable, 0pct Buffer								

Table 7: Effects of change in Black Migration on Number of Independent School Districts

(1) 0.53*** (0.03) 252.66 mber of In 0.13*** (0.04) 0.57*** (0.04) -0.07** (0.04)	(2) 0.35*** (0.04) 71.09 dependent 0.15** (0.07)	0.14*** (0.04)	(4) 0.28*** (0.03) 115.77 tricts 0.15*** (0.05)	(5) 0.53*** (0.03) 252.66 -0.17 (1.27)	0.35*** (0.04) 71.09 0.22 (1.09)	0.32*** (0.03) 152.75 0.74*** (0.12)	(8) 0.28*** (0.03) 115.77 0.65*** (0.13)
0.53*** (0.03) 252.66 mber of In 0.13*** (0.04) 1 0.57*** (0.04) -0.07**	(0.04) 71.09 Independent 0.15** (0.07) 0.36***	(0.03) 152.75 School Dis 0.14*** (0.04)	(0.03) 115.77 tricts 0.15***	(0.03) 252.66 -0.17	(0.04) 71.09 0.22	(0.03) 152.75 0.74***	(0.03) 115.77 0.65***
(0.03) 252.66 mber of In 0.13*** (0.04) 1 0.57*** (0.04) -0.07**	(0.04) 71.09 Independent 0.15** (0.07) 0.36***	(0.03) 152.75 School Dis 0.14*** (0.04)	(0.03) 115.77 tricts 0.15***	(0.03) 252.66 -0.17	(0.04) 71.09 0.22	(0.03) 152.75 0.74***	(0.03) 115.77 0.65***
mber of In 0.13*** (0.04) 4 0.57*** (0.04) -0.07**	0.15** (0.07) 0.36***	School Dis 0.14*** (0.04)	tricts 0.15***	-0.17	0.22	0.74***	0.65***
0.13*** (0.04) 1 0.57*** (0.04) -0.07**	0.15** (0.07)	0.14*** (0.04)	0.15***				
(0.04) 4 0.57*** (0.04) -0.07**	0.36***	(0.04)					
0.57*** (0.04) -0.07**							(0.10)
(0.04) -0.07**							
	(0.05)	0.34*** (0.03)	0.30*** (0.03)	0.57*** (0.04)	0.36*** (0.05)	0.34*** (0.03)	0.30*** (0.03)
(0.01)	-0.02 (0.03)	-0.04 (0.03)	-0.04 (0.03)	-0.07** (0.04)	-0.02 (0.03)	-0.04 (0.03)	-0.04 (0.03)
128.59 271.47 119.87	35.60 73.38 35.54	76.82 155.99 74.88	58.37 117.12 57.11	128.59 271.47 119.87	35.60 73.38 35.54	76.82 155.99 74.88	58.37 117.12 57.11
Л X Above	e median la	nd Incorp					
-0.15*** (0.02)	-0.23*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)	-0.15*** (0.02)	-0.23*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)
0.82*** (0.03)	0.84*** (0.02)	0.77*** (0.02)	0.77^{***} (0.02)	0.82*** (0.03)	0.84*** (0.02)	0.77*** (0.02)	0.77*** (0.02)
575.96 1850.85 119.87	665.22 2343.40 35.54	717.73 1916.09 74.88	663.60 1418.47 57.11	575.96 1850.85 119.87	665.22 2343.40 35.54	717.73 1916.09 74.88	663.60 1418.47 57.11
mber of In	ndependent	School Dis	tricts				
0.08** (0.04)	0.09 (0.07)	0.10*** (0.04)	0.11** (0.04)	-0.49 (1.46)	-0.22 (1.33)	0.67*** (0.12)	0.59*** (0.13)
0.11*** (0.03)	0.11*** (0.03)	0.09*** (0.02)	0.09*** (0.02)	$0.86 \\ (0.57)$	0.81 (0.53)	0.18*** (0.05)	0.17*** (0.05)
0.20*** (0.05) -9.77 Original No	0.20*** (0.07) -9.77 Original Yes	0.19*** (0.04) -15.41 Full No	0.20*** (0.05) -15.41 Full Yes	0.37 (0.95) -55.73 Original No	0.59 (0.90) -55.73 Original Yes	0.85*** (0.12) -31.35 Full No	0.76*** (0.13) -31.35 Full Yes
r	119.87 (X Above -0.15*** (0.02) 0.82*** (0.03) 575.96 1850.85 119.87 mber of Ir 0.08** (0.04) 0.11*** (0.03) 0.20*** (0.05) -9.77 Original	119.87 35.54 (X Above median la -0.15*** -0.23*** (0.02) (0.04) 0.82*** 0.84*** (0.03) (0.02) 575.96 665.22 1850.85 2343.40 119.87 35.54 mber of Independent 0.08** 0.09 (0.04) (0.07) 0.11*** 0.11*** (0.03) (0.03) 0.20*** 0.20*** (0.07) -9.77 -9.77 Original No Yes	119.87 35.54 74.88 I X Above median land Incorp -0.15*** -0.23*** -0.24*** (0.02) (0.04) (0.02) 0.82*** 0.84*** 0.77*** (0.03) (0.02) (0.02) 575.96 665.22 717.73 1850.85 2343.40 1916.09 119.87 35.54 74.88 Inber of Independent School Dis 0.08** 0.09 0.10*** (0.04) (0.07) (0.04) 0.11*** 0.11*** 0.09*** (0.03) (0.03) (0.02) 0.20*** 0.20*** 0.19*** (0.05) (0.07) (0.04) -9.77 -9.77 -15.41 Original Original Full No Yes No	In the state of sum of the state of th	I X Above median land Incorp -0.15*** -0.23*** -0.24*** -0.26*** -0.15*** (0.02) (0.04) (0.02) (0.02) (0.02) 0.82*** 0.84*** 0.77*** 0.77*** 0.82*** (0.03) (0.02) (0.02) (0.02) (0.03) 575.96 665.22 717.73 663.60 575.96 1850.85 2343.40 1916.09 1418.47 1850.85 119.87 35.54 74.88 57.11 119.87 The original original Full Full Original No Yes No 119.87 35.54 74.88 57.11 119.87	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- 2 County-Level Stacked Tables, 1940 Population Weighted
- 2.1 Incorporated Area

Table 8: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable GM									
\widehat{GM} (rank)	0.60***	0.44***	0.40***	0.38***	0.60***	0.44***	0.40***	0.38***	
	(0.06)	(0.07)	(0.09)	(0.05)	(0.06)	(0.07)	(0.09)	(0.05)	
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15	
Panel B: Dependent Variable Number	er of Indep	endent Sch	ool District	S					
GM (rank)	0.30***	0.34***	0.35***	0.30***	0.62***	0.63***	0.69***	0.54***	
_	(0.06)	(0.10)	(0.10)	(0.09)	(0.09)	(0.12)	(0.15)	(0.10)	
Panel C: Dependent Variable GM									
\widehat{GM} (rank)	0.38***	0.31***	-0.01	0.05	0.38***	0.31***	-0.01	0.05	
,	(0.09)	(0.08)	(0.07)	(0.06)	(0.09)	(0.08)	(0.07)	(0.06)	
\hat{GM} X Above Median Land Incorp	0.19***	0.13***	0.39***	0.34***	0.19***	0.13***	0.39***	0.34***	
	(0.05)	(0.04)	(0.05)	(0.05)	(0.05)	(0.04)	(0.05)	(0.05)	
F-Stat	78.97	25.62	31.92	38.80	78.97	25.62	31.92	38.80	
S.W. F-Stat K.P. F-Stat	124.86 44.65	74.02 22.86	$47.11 \\ 8.93$	58.15 25.98	124.86 44.65	74.02 22.86	$47.11 \\ 8.93$	58.15 25.98	
				0.40***	0.42***	0.40***	0.55***	0.40**	
Panel D: Dependent Variable GM X \hat{GM} (rank)	Above me -0.43*** (0.09)	dian land I -0.49*** (0.08)	-0.55*** (0.07)	-0.49*** (0.06)	-0.43*** (0.09)	-0.49*** (0.08)	-0.55*** (0.07)	-0.49*** (0.06)	
\hat{GM} (rank)	-0.43***	-0.49***	-0.55***						
\hat{GM} (rank) \hat{GM} X Above Median Land Incorp	-0.43*** (0.09) 1.10***	-0.49*** (0.08) 1.04*** (0.03) 659.95	-0.55*** (0.07) 1.07*** (0.05) 406.60	(0.06) $1.02***$	(0.09) 1.10***	(0.08) 1.04*** (0.03) 659.95	(0.07) $1.07***$	(0.06) 1.02*** (0.05) 240.69	
\hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15	-0.49*** (0.08) 1.04*** (0.03) 659.95 309.64	-0.55*** (0.07) 1.07*** (0.05) 406.60 71.80	(0.06) 1.02*** (0.05) 240.69 75.04	(0.09) 1.10*** (0.04) 906.09 314.15	(0.08) 1.04*** (0.03) 659.95 309.64	(0.07) 1.07*** (0.05) 406.60 71.80	(0.06) 1.02*** (0.05) 240.69 75.04	
\hat{GM} (rank) \hat{GM} X Above Median Land Incorp	-0.43*** (0.09) 1.10*** (0.04) 906.09	-0.49*** (0.08) 1.04*** (0.03) 659.95	-0.55*** (0.07) 1.07*** (0.05) 406.60	(0.06) 1.02*** (0.05) 240.69	(0.09) 1.10*** (0.04) 906.09	(0.08) 1.04*** (0.03) 659.95	(0.07) 1.07*** (0.05) 406.60	(0.06) 1.02*** (0.05) 240.69	
GM (rank) GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65	-0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86	-0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93	(0.06) 1.02*** (0.05) 240.69 75.04 25.98	(0.09) 1.10*** (0.04) 906.09 314.15 44.65	(0.08) 1.04*** (0.03) 659.95 309.64 22.86	(0.07) 1.07*** (0.05) 406.60 71.80 8.93	(0.06) 1.02*** (0.05) 240.69 75.04 25.98	
GM (rank) GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65	-0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86	-0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93	(0.06) 1.02*** (0.05) 240.69 75.04 25.98	(0.09) 1.10*** (0.04) 906.09 314.15	(0.08) 1.04*** (0.03) 659.95 309.64	(0.07) 1.07*** (0.05) 406.60 71.80	(0.06) 1.02*** (0.05) 240.69 75.04	
GM (rank) GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65 er of Indepe 0.03 (0.10) 0.21***	-0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86 endent School (0.12) 0.22***	-0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93 cool District 0.43** (0.18) -0.06	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 s 0.33** (0.15) -0.02	(0.09) 1.10*** (0.04) 906.09 314.15 44.65 0.29** (0.13) 0.24***	(0.08) 1.04*** (0.03) 659.95 309.64 22.86 0.27* (0.15) 0.28***	(0.07) 1.07*** (0.05) 406.60 71.80 8.93 0.37 (0.24) 0.23**	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 0.20 (0.17) 0.25***	
GM (rank) GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank) GM X Above Median Land Incorp	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65 er of Independence 0.03 (0.10) 0.21*** (0.07)	-0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86 endent School (0.12) 0.22*** (0.07)	-0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93 cool District 0.43** (0.18) -0.06 (0.07)	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 8 0.33** (0.15) -0.02 (0.06)	(0.09) 1.10*** (0.04) 906.09 314.15 44.65 0.29** (0.13) 0.24*** (0.08)	(0.08) 1.04*** (0.03) 659.95 309.64 22.86 0.27* (0.15) 0.28*** (0.08)	(0.07) 1.07*** (0.05) 406.60 71.80 8.93 0.37 (0.24) 0.23** (0.10)	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 0.20 (0.17) 0.25*** (0.08)	
GM (rank) GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank) GM X Above Median Land Incorp Combined Coeff	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65 er of Indeper 0.03 (0.10) 0.21*** (0.07)	-0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86 endent School (0.12) 0.22*** (0.07) 0.28***	-0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93 cool District 0.43** (0.18) -0.06 (0.07) 0.37***	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 s 0.33** (0.15) -0.02 (0.06) 0.31***	(0.09) 1.10*** (0.04) 906.09 314.15 44.65 0.29** (0.13) 0.24*** (0.08) 0.54***	(0.08) 1.04*** (0.03) 659.95 309.64 22.86 0.27* (0.15) 0.28*** (0.08) 0.55***	(0.07) 1.07*** (0.05) 406.60 71.80 8.93 0.37 (0.24) 0.23** (0.10) 0.60***	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 0.20 (0.17) 0.25*** (0.08) 0.45***	
GM (rank) GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank) GM X Above Median Land Incorp Combined Coeff Combined SE	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65 er of Independence 0.03 (0.10) 0.21*** (0.07)	-0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86 endent School (0.12) 0.22*** (0.07)	-0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93 cool District 0.43** (0.18) -0.06 (0.07)	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 8 0.33** (0.15) -0.02 (0.06)	(0.09) 1.10*** (0.04) 906.09 314.15 44.65 0.29** (0.13) 0.24*** (0.08)	(0.08) 1.04*** (0.03) 659.95 309.64 22.86 0.27* (0.15) 0.28*** (0.08)	(0.07) 1.07*** (0.05) 406.60 71.80 8.93 0.37 (0.24) 0.23** (0.10)	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 0.20 (0.17) 0.25*** (0.08) 0.45***	
GM (rank) GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank) GM X Above Median Land Incorp Combined Coeff Combined SE Dep var mean Sample	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65 er of Indepersion of Indepers	-0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86 endent Sche 0.06 (0.12) 0.22*** (0.07) 0.28*** (0.09) -9.91 Original	-0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93 cool District 0.43** (0.18) -0.06 (0.07) 0.37*** (0.12) -12.02 Full	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 8 0.33** (0.15) -0.02 (0.06) 0.31*** (0.10) -12.02 Full	(0.09) 1.10*** (0.04) 906.09 314.15 44.65 0.29** (0.13) 0.24*** (0.08) 0.54*** (0.09) -8.77 Original	0.08) 1.04*** (0.03) 659.95 309.64 22.86 0.27* (0.15) 0.28*** (0.08) 0.55*** (0.11) -8.77 Original	0.07) 1.07*** (0.05) 406.60 71.80 8.93 0.37 (0.24) 0.23** (0.10) 0.60*** (0.16) -11.11 Full	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 0.20 (0.17) 0.25*** (0.08) 0.45*** (0.11) -11.11 Full	
GM (rank) GM X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank) GM X Above Median Land Incorp Combined Coeff Combined SE Dep var mean	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65 er of Independence 0.03 (0.10) 0.21*** (0.07) 0.24*** (0.06) -9.91	-0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86 endent Sche 0.06 (0.12) 0.22*** (0.07) 0.28*** (0.09) -9.91	-0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93 cool District 0.43** (0.18) -0.06 (0.07) 0.37*** (0.12) -12.02	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 8 0.33** (0.15) -0.02 (0.06) 0.31*** (0.10) -12.02	(0.09) 1.10*** (0.04) 906.09 314.15 44.65 0.29** (0.13) 0.24*** (0.08) 0.54*** (0.09) -8.77	(0.08) 1.04*** (0.03) 659.95 309.64 22.86 0.27* (0.15) 0.28*** (0.08) 0.55*** (0.11) -8.77	0.07) 1.07*** (0.05) 406.60 71.80 8.93 0.37 (0.24) 0.23** (0.10) 0.60*** (0.16) -11.11	(0.06) 1.02*** (0.05) 240.69 75.04 25.98 0.20 (0.17) 0.25*** (0.08) 0.45*** (0.11) -11.11	

2.2	Desegregation	Plan
-----	---------------	------

Table 9: Effects of change in Black Migration on Number of Independent School Districts

		R	aw			Per Capita	a(100,000)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable	GM							
\widehat{GM} (rank)	0.60***	0.44***	0.40***	0.38***	0.60***	0.44***	0.40***	0.38***
D.C.	(0.06)	(0.07)	(0.09)	(0.05)	(0.06)	(0.07)	(0.09)	$\frac{(0.05)}{}$
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15
Panel B: Dependent Variable	Number of	f Independe	ent School l	Districts				
GM (rank)	0.30***	0.34***	0.35***	0.30***	0.62***	0.63***	0.69***	0.54***
	(0.06)	(0.10)	(0.10)	(0.09)	(0.09)	(0.12)	(0.15)	(0.10)
Panel C: Dependent Variable	GM							
\widehat{GM} (rank)	0.62***	0.46***	0.30***	0.28***	0.62***	0.46***	0.30***	0.28***
, ,	(0.06)	(0.07)	(0.11)	(0.07)	(0.06)	(0.07)	(0.11)	(0.07)
\hat{GM} X Desegregation Order	-0.05	-0.04	0.21***	0.16***	-0.05	-0.04	0.21***	0.16***
	(0.04)	(0.03)	(0.07)	(0.05)	(0.04)	(0.03)	(0.07)	(0.05)
F-Stat	54.55	22.72	104.66	50.27	54.55	22.72	104.66	50.27
S.W. F-Stat K.P. F-Stat	112.30 41.13	41.28 18.71	$62.36 \\ 6.14$	54.09 19.76	112.30 41.13	41.28 18.71	62.36 6.14	54.09 19.76
Panel D: Dependent Variable	GM X Ab	ove median	land Incor	.b				
Panel D: Dependent Variable \hat{GM} (rank)	-0.24***	-0.37***	-0.20***	-0.29***	-0.24***	-0.37***	-0.20***	-0.29***
\hat{GM} (rank)	-0.24*** (0.06)	-0.37*** (0.08)	-0.20*** (0.04)	-0.29*** (0.07)	(0.06)	(0.08)	(0.04)	(0.07)
	-0.24*** (0.06) 0.91***	-0.37*** (0.08) 0.92***	-0.20*** (0.04) 1.00***	-0.29*** (0.07) 1.01***	(0.06) 0.91***	(0.08) $0.92***$	(0.04) $1.00***$	(0.07) $1.01***$
\hat{GM} (rank) \hat{GM} X Desegregation Order	-0.24*** (0.06) 0.91*** (0.03)	-0.37*** (0.08) 0.92*** (0.03)	-0.20*** (0.04) 1.00*** (0.02)	-0.29*** (0.07) 1.01*** (0.02)	(0.06) 0.91*** (0.03)	(0.08) 0.92*** (0.03)	(0.04) 1.00*** (0.02)	(0.07) 1.01*** (0.02)
\hat{GM} (rank) \hat{GM} X Desegregation Order F-Stat	-0.24*** (0.06) 0.91*** (0.03) 468.68	-0.37*** (0.08) 0.92*** (0.03) 552.52	-0.20*** (0.04) 1.00*** (0.02) 1041.26	-0.29*** (0.07) 1.01*** (0.02) 1510.11	(0.06) 0.91*** (0.03) 468.68	(0.08) 0.92*** (0.03) 552.52	(0.04) 1.00*** (0.02) 1041.26	(0.07) 1.01*** (0.02) 1510.11
\hat{GM} (rank) \hat{GM} X Desegregation Order	-0.24*** (0.06) 0.91*** (0.03)	-0.37*** (0.08) 0.92*** (0.03)	-0.20*** (0.04) 1.00*** (0.02)	-0.29*** (0.07) 1.01*** (0.02)	(0.06) 0.91*** (0.03)	(0.08) 0.92*** (0.03)	(0.04) 1.00*** (0.02)	(0.07) 1.01*** (0.02)
\hat{GM} (rank) \hat{GM} X Desegregation Order F-Stat S.W. F-Stat K.P. F-Stat	-0.24*** (0.06) 0.91*** (0.03) 468.68 1032.78 41.13	-0.37*** (0.08) 0.92*** (0.03) 552.52 665.72 18.71	-0.20*** (0.04) 1.00*** (0.02) 1041.26 46.69 6.14	-0.29*** (0.07) 1.01*** (0.02) 1510.11 64.83 19.76	(0.06) 0.91*** (0.03) 468.68 1032.78	(0.08) 0.92*** (0.03) 552.52 665.72	(0.04) 1.00*** (0.02) 1041.26 46.69	(0.07) 1.01*** (0.02) 1510.11 64.83
\hat{GM} (rank) \hat{GM} X Desegregation Order F-Stat S.W. F-Stat K.P. F-Stat	-0.24*** (0.06) 0.91*** (0.03) 468.68 1032.78 41.13	-0.37*** (0.08) 0.92*** (0.03) 552.52 665.72 18.71	-0.20*** (0.04) 1.00*** (0.02) 1041.26 46.69 6.14 ent School I	-0.29*** (0.07) 1.01*** (0.02) 1510.11 64.83 19.76	(0.06) 0.91*** (0.03) 468.68 1032.78 41.13	(0.08) 0.92*** (0.03) 552.52 665.72 18.71	(0.04) 1.00*** (0.02) 1041.26 46.69 6.14	(0.07) 1.01*** (0.02) 1510.11 64.83 19.76
\hat{GM} (rank) \hat{GM} X Desegregation Order F-Stat S.W. F-Stat K.P. F-Stat	-0.24*** (0.06) 0.91*** (0.03) 468.68 1032.78 41.13	-0.37*** (0.08) 0.92*** (0.03) 552.52 665.72 18.71	-0.20*** (0.04) 1.00*** (0.02) 1041.26 46.69 6.14	-0.29*** (0.07) 1.01*** (0.02) 1510.11 64.83 19.76	(0.06) 0.91*** (0.03) 468.68 1032.78	(0.08) 0.92*** (0.03) 552.52 665.72	(0.04) 1.00*** (0.02) 1041.26 46.69	(0.07) 1.01*** (0.02) 1510.11 64.83
\hat{GM} (rank) \hat{GM} X Desegregation Order F-Stat S.W. F-Stat K.P. F-Stat	-0.24*** (0.06) 0.91*** (0.03) 468.68 1032.78 41.13 Number of 0.28***	-0.37*** (0.08) 0.92*** (0.03) 552.52 665.72 18.71	-0.20*** (0.04) 1.00*** (0.02) 1041.26 46.69 6.14 ent School I	-0.29*** (0.07) 1.01*** (0.02) 1510.11 64.83 19.76 Districts 0.25***	(0.06) 0.91*** (0.03) 468.68 1032.78 41.13	(0.08) 0.92*** (0.03) 552.52 665.72 18.71 0.61***	(0.04) 1.00*** (0.02) 1041.26 46.69 6.14 0.63***	(0.07) 1.01*** (0.02) 1510.11 64.83 19.76 0.45***
GM (rank) GM X Desegregation Order F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable GM (rank)	-0.24*** (0.06) 0.91*** (0.03) 468.68 1032.78 41.13 Number of 0.28*** (0.06)	-0.37*** (0.08) 0.92*** (0.03) 552.52 665.72 18.71 f Independe 0.33*** (0.10)	-0.20*** (0.04) 1.00*** (0.02) 1041.26 46.69 6.14 ent School I 0.32*** (0.11)	-0.29*** (0.07) 1.01*** (0.02) 1510.11 64.83 19.76 Districts 0.25*** (0.09)	(0.06) 0.91*** (0.03) 468.68 1032.78 41.13 0.57*** (0.08)	(0.08) 0.92*** (0.03) 552.52 665.72 18.71 0.61*** (0.11)	(0.04) 1.00*** (0.02) 1041.26 46.69 6.14 0.63*** (0.19)	(0.07) 1.01*** (0.02) 1510.11 64.83 19.76 0.45*** (0.10)
GM (rank) GM X Desegregation Order F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable GM (rank) GM X Desegregation Order Combined Coeff	-0.24*** (0.06) 0.91*** (0.03) 468.68 1032.78 41.13 Number of 0.28*** (0.06) 0.11*** (0.03) 0.39***	-0.37*** (0.08) 0.92*** (0.03) 552.52 665.72 18.71 f Independe 0.33*** (0.10) 0.12***	-0.20*** (0.04) 1.00*** (0.02) 1041.26 46.69 6.14 ent School I 0.32*** (0.11) 0.05 (0.05) 0.36***	-0.29*** (0.07) 1.01*** (0.02) 1510.11 64.83 19.76 Districts 0.25*** (0.09) 0.08*** (0.03) 0.32***	(0.06) 0.91*** (0.03) 468.68 1032.78 41.13 0.57*** (0.08) 0.20***	(0.08) 0.92*** (0.03) 552.52 665.72 18.71 0.61*** (0.11) 0.17*** (0.04) 0.78***	(0.04) 1.00*** (0.02) 1041.26 46.69 6.14 0.63*** (0.19) 0.08 (0.08) 0.71***	(0.07) 1.01*** (0.02) 1510.11 64.83 19.76 0.45*** (0.10) 0.11*** (0.04) 0.56***
GM (rank) GM X Desegregation Order F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable GM (rank) GM X Desegregation Order Combined Coeff Combined SE	-0.24*** (0.06) 0.91*** (0.03) 468.68 1032.78 41.13 Number of 0.28*** (0.06) 0.11*** (0.03) 0.39*** (0.07)	-0.37*** (0.08) 0.92*** (0.03) 552.52 665.72 18.71 f Independe 0.33*** (0.10) 0.12*** (0.03) 0.45*** (0.11)	-0.20*** (0.04) 1.00*** (0.02) 1041.26 46.69 6.14 ent School I 0.32*** (0.11) 0.05 (0.05) 0.36*** (0.09)	-0.29*** (0.07) 1.01*** (0.02) 1510.11 64.83 19.76 Districts 0.25*** (0.09) 0.08*** (0.03) 0.32*** (0.09)	(0.06) 0.91*** (0.03) 468.68 1032.78 41.13 0.57*** (0.08) 0.20*** (0.04) 0.77*** (0.10)	(0.08) 0.92*** (0.03) 552.52 665.72 18.71 0.61*** (0.11) 0.17*** (0.04) 0.78*** (0.13)	(0.04) 1.00*** (0.02) 1041.26 46.69 6.14 0.63*** (0.19) 0.08 (0.08) 0.71*** (0.13)	(0.07) 1.01*** (0.02) 1510.11 64.83 19.76 0.45*** (0.10) 0.11*** (0.04) 0.56*** (0.09)
GM (rank) GM X Desegregation Order F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable GM (rank) GM X Desegregation Order Combined Coeff Combined SE Dep var mean	-0.24*** (0.06) 0.91*** (0.03) 468.68 1032.78 41.13 Number of 0.28*** (0.06) 0.11*** (0.03) 0.39*** (0.07) -9.91	-0.37*** (0.08) 0.92*** (0.03) 552.52 665.72 18.71 f Independe 0.33*** (0.10) 0.12*** (0.03) 0.45*** (0.11) -9.91	-0.20*** (0.04) 1.00*** (0.02) 1041.26 46.69 6.14 ent School I 0.32*** (0.11) 0.05 (0.05) 0.36*** (0.09) -12.02	-0.29*** (0.07) 1.01*** (0.02) 1510.11 64.83 19.76 Districts 0.25*** (0.09) 0.08*** (0.03) 0.32*** (0.09) -12.02	0.06) 0.91*** (0.03) 468.68 1032.78 41.13 0.57*** (0.08) 0.20*** (0.04) 0.77*** (0.10) -8.77	0.08) 0.92*** (0.03) 552.52 665.72 18.71 0.61*** (0.11) 0.17*** (0.04) 0.78*** (0.13) -8.77	0.04) 1.00*** (0.02) 1041.26 46.69 6.14 0.63*** (0.19) 0.08 (0.08) 0.71*** (0.13) -11.11	(0.07) 1.01*** (0.02) 1510.11 64.83 19.76 0.45*** (0.10) 0.11*** (0.04) 0.56*** (0.09) -11.11
GM (rank) GM X Desegregation Order F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable GM (rank) GM X Desegregation Order Combined Coeff Combined SE	-0.24*** (0.06) 0.91*** (0.03) 468.68 1032.78 41.13 Number of 0.28*** (0.06) 0.11*** (0.03) 0.39*** (0.07)	-0.37*** (0.08) 0.92*** (0.03) 552.52 665.72 18.71 f Independe 0.33*** (0.10) 0.12*** (0.03) 0.45*** (0.11)	-0.20*** (0.04) 1.00*** (0.02) 1041.26 46.69 6.14 ent School I 0.32*** (0.11) 0.05 (0.05) 0.36*** (0.09)	-0.29*** (0.07) 1.01*** (0.02) 1510.11 64.83 19.76 Districts 0.25*** (0.09) 0.08*** (0.03) 0.32*** (0.09)	(0.06) 0.91*** (0.03) 468.68 1032.78 41.13 0.57*** (0.08) 0.20*** (0.04) 0.77*** (0.10)	(0.08) 0.92*** (0.03) 552.52 665.72 18.71 0.61*** (0.11) 0.17*** (0.04) 0.78*** (0.13)	(0.04) 1.00*** (0.02) 1041.26 46.69 6.14 0.63*** (0.19) 0.08 (0.08) 0.71*** (0.13)	(0.07) 1.01*** (0.02) 1510.11 64.83 19.76 0.45*** (0.10) 0.11*** (0.04) 0.56*** (0.09)

Table 10: Effects of change in Black Migration on Number of Independent School Districts

		R	aw			Per Capita (100,000)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable GM									
\widehat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15	
Panel B: Dependent Variable Num	ber of Inde	pendent So	hool Distric	ets					
GM (rank)	0.30*** (0.06)	0.34*** (0.10)	0.35*** (0.10)	0.30*** (0.09)	0.62*** (0.09)	0.63*** (0.12)	0.69*** (0.15)	0.54*** (0.10)	
Panel C: Dependent Variable GM									
\widehat{GM} (rank)	0.58*** (0.07)	0.45*** (0.07)	0.49*** (0.06)	0.44*** (0.05)	0.58*** (0.07)	0.45*** (0.07)	0.49*** (0.06)	0.44*** (0.05)	
GM_hat_X_above_med_lu_ml_2010	0.02 (0.04)	-0.02 (0.04)	-0.14*** (0.06)	-0.12*** (0.03)	0.02 (0.04)	-0.02 (0.04)	-0.14*** (0.06)	-0.12*** (0.03)	
F-Stat S.W. F-Stat K.P. F-Stat	49.18 136.36 49.56	22.34 50.85 19.44	70.24 89.64 7.45	46.82 51.48 17.26	49.18 136.36 49.56	22.34 50.85 19.44	70.24 89.64 7.45	46.82 51.48 17.26	
Panel D: Dependent Variable GM	X Above m	edian land	Incorp						
Tamer B. Bopondono variable on .					0.00***				
\widehat{GM} (rank)	-0.32*** (0.09)	-0.45*** (0.09)	-0.36*** (0.07)	-0.39*** (0.07)	-0.32*** (0.09)	-0.45*** (0.09)	-0.36*** (0.07)	-0.39*** (0.07)	
\widehat{GM} (rank) GM_hat_X_above_med_lu_ml_2010									
. ,	(0.09) 1.01***	(0.09) 0.97***	(0.07) $0.87***$	(0.07) $0.90***$	(0.09) $1.01***$	(0.09) $0.97***$	(0.07) $0.87***$	(0.07) $0.90***$	
GM_hat_X_above_med_lu_ml_2010 F-Stat S.W. F-Stat	(0.09) 1.01*** (0.04) 505.86 1682.69 49.56	(0.09) 0.97*** (0.03) 589.59 1872.41 19.44	(0.07) 0.87*** (0.06) 225.79 172.43 7.45	(0.07) 0.90*** (0.03) 391.85 187.42 17.26	(0.09) 1.01*** (0.04) 505.86 1682.69	(0.09) 0.97*** (0.03) 589.59 1872.41	(0.07) 0.87*** (0.06) 225.79 172.43	(0.07) 0.90*** (0.03) 391.85 187.42	
GM_hat_X_above_med_lu_ml_2010 F-Stat S.W. F-Stat K.P. F-Stat	(0.09) 1.01*** (0.04) 505.86 1682.69 49.56	(0.09) 0.97*** (0.03) 589.59 1872.41 19.44	(0.07) 0.87*** (0.06) 225.79 172.43 7.45	(0.07) 0.90*** (0.03) 391.85 187.42 17.26	(0.09) 1.01*** (0.04) 505.86 1682.69	(0.09) 0.97*** (0.03) 589.59 1872.41	(0.07) 0.87*** (0.06) 225.79 172.43	(0.07) 0.90*** (0.03) 391.85 187.42	
GM_hat_X_above_med_lu_ml_2010 F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Num	(0.09) 1.01*** (0.04) 505.86 1682.69 49.56 ber of Inde 0.41***	(0.09) 0.97*** (0.03) 589.59 1872.41 19.44 pendent Sc 0.40***	(0.07) 0.87*** (0.06) 225.79 172.43 7.45 hool Distriction	(0.07) 0.90*** (0.03) 391.85 187.42 17.26 ets 0.33***	(0.09) 1.01*** (0.04) 505.86 1682.69 49.56 0.78***	(0.09) 0.97*** (0.03) 589.59 1872.41 19.44 0.72***	(0.07) 0.87*** (0.06) 225.79 172.43 7.45 0.73***	(0.07) 0.90*** (0.03) 391.85 187.42 17.26	

 $2.4 \quad {\rm Mean~LU\text{-}ML},~2002\text{--}2023$

Table 11: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\widehat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15
Panel B: Dependent Variable Numb	er of Indep	pendent Sch	nool Distric	ts				
GM (rank)	0.30*** (0.06)	0.34*** (0.10)	0.35*** (0.10)	0.30*** (0.09)	0.62*** (0.09)	0.63*** (0.12)	0.69*** (0.15)	0.54*** (0.10)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.61*** (0.06)	0.45*** (0.07)	0.53*** (0.05)	0.48*** (0.05)	0.61*** (0.06)	0.45*** (0.07)	0.53*** (0.05)	0.48*** (0.05)
$GM_hat_X_above_med_lu_ml_mean$	-0.02 (0.04)	-0.03 (0.03)	-0.22*** (0.07)	-0.20*** (0.05)	-0.02 (0.04)	-0.03 (0.03)	-0.22*** (0.07)	-0.20*** (0.05)
F-Stat S.W. F-Stat K.P. F-Stat	51.56 130.56 45.31	24.17 49.21 19.28	111.11 87.45 5.76	60.75 47.77 13.15	51.56 130.56 45.31	24.17 49.21 19.28	111.11 87.45 5.76	60.75 47.77 13.15
Panel D: Dependent Variable GM 2	X Above me	edian land	Incorp					
Tanci D. Dependent variable GW 2								
\hat{GM} (rank)	-0.25*** (0.06)	-0.39*** (0.07)	-0.36*** (0.05)	-0.39*** (0.05)	-0.25*** (0.06)	-0.39*** (0.07)	-0.36*** (0.05)	-0.39*** (0.05)
<u> </u>								
\widehat{GM} (rank)	(0.06) $0.94***$	(0.07) $0.94***$	(0.05) $0.77***$	(0.05) $0.80***$	(0.06) $0.94***$	(0.07) $0.94***$	(0.05) $0.77***$	(0.05) $0.80***$
\widehat{GM} (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat	(0.06) 0.94*** (0.03) 528.76 2572.00 45.31	(0.07) 0.94*** (0.03) 686.62 1508.78 19.28	(0.05) 0.77*** (0.07) 231.50 25.68 5.76	(0.05) 0.80*** (0.05) 183.02 29.80 13.15	(0.06) 0.94*** (0.03) 528.76 2572.00	(0.07) 0.94*** (0.03) 686.62 1508.78	(0.05) 0.77*** (0.07) 231.50 25.68	(0.05) 0.80*** (0.05) 183.02 29.80
GM (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat K.P. F-Stat	(0.06) 0.94*** (0.03) 528.76 2572.00 45.31	(0.07) 0.94*** (0.03) 686.62 1508.78 19.28	(0.05) 0.77*** (0.07) 231.50 25.68 5.76	(0.05) 0.80*** (0.05) 183.02 29.80 13.15	(0.06) 0.94*** (0.03) 528.76 2572.00	(0.07) 0.94*** (0.03) 686.62 1508.78	(0.05) 0.77*** (0.07) 231.50 25.68	(0.05) 0.80*** (0.05) 183.02 29.80
GM (rank) GM_hat_X_above_med_lu_ml_mean F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Numb	(0.06) 0.94*** (0.03) 528.76 2572.00 45.31 per of Indep 0.36***	(0.07) 0.94*** (0.03) 686.62 1508.78 19.28 pendent School (0.38***	(0.05) 0.77*** (0.07) 231.50 25.68 5.76 nool Distric 0.36***	(0.05) 0.80*** (0.05) 183.02 29.80 13.15 ts 0.31***	(0.06) 0.94*** (0.03) 528.76 2572.00 45.31 0.69***	(0.07) 0.94*** (0.03) 686.62 1508.78 19.28	(0.05) 0.77*** (0.07) 231.50 25.68 5.76 0.69***	(0.05) 0.80*** (0.05) 183.02 29.80 13.15 0.54***

2.5 ZIP Code Unbuildable, LS 2019 Xwalk

Table 12: Effects of change in Black Migration on Number of Independent School Districts

		R	aw			Per Capita	a (100,000)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable	e GM							
\widehat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15
Panel B: Dependent Variable	e Number o	of Independ	ent School	Districts				
GM (rank)	0.30*** (0.06)	0.34*** (0.10)	0.35*** (0.10)	0.30*** (0.09)	0.62*** (0.09)	0.63*** (0.12)	0.69*** (0.15)	0.54*** (0.10)
Panel C: Dependent Variable	e GM							
\widehat{GM} (rank)	0.39*** (0.08)	0.30*** (0.07)	0.12 (0.08)	0.15*** (0.05)	0.39*** (0.08)	0.30*** (0.07)	0.12 (0.08)	0.15*** (0.05)
$GM_hat_X_above_med_ub_1$	0.20*** (0.03)	0.14*** (0.03)	0.27*** (0.03)	0.23*** (0.03)	0.20*** (0.03)	0.14*** (0.03)	0.27*** (0.03)	0.23*** (0.03)
F-Stat S.W. F-Stat K.P. F-Stat	101.17 167.17 47.61	27.90 86.78 22.74	45.78 76.83 9.15	58.92 87.91 25.98	101.17 167.17 47.61	27.90 86.78 22.74	45.78 76.83 9.15	58.92 87.91 25.98
Panel D: Dependent Variable	e GM X Al	oove media	n land Inco	rp				
\widehat{GM} (rank)	-0.37*** (0.08)	-0.44*** (0.08)	-0.56*** (0.09)	-0.53*** (0.06)	-0.37*** (0.08)	-0.44*** (0.08)	-0.56*** (0.09)	-0.53*** (0.06)
$GM_hat_X_above_med_ub_1$	1.04*** (0.02)	0.99*** (0.02)	1.06*** (0.02)	1.03*** (0.02)	1.04*** (0.02)	0.99*** (0.02)	1.06*** (0.02)	1.03*** (0.02)
F-Stat S.W. F-Stat K.P. F-Stat	1614.42 452.81 47.61	888.58 388.75 22.74	1164.47 220.79 9.15	1169.32 259.88 25.98	1614.42 452.81 47.61	888.58 388.75 22.74	1164.47 220.79 9.15	1169.32 259.88 25.98
Panel E: Dependent Variable	e Number o	of Independ	ent School	Districts				
Panel E: Dependent Variable GM (rank)	0.10 (0.08)	of Independ 0.14 (0.11)	ent School 0.12 (0.12)	Districts 0.08 (0.11)	0.06 (0.13)	0.06 (0.15)	0.20 (0.18)	0.09 (0.13)
	0.10	0.14	0.12	0.08				

 ${\bf 2.6}\quad {\bf ZIP}\ {\bf Code}\ {\bf Unbuildable},\ {\bf HUD}\ {\bf Xwalk}$

Table 13: Effects of change in Black Migration on Number of Independent School Districts

		R	aw			Per Capita	a (100,000)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable	e GM							
\widehat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15
Panel B: Dependent Variable	e Number o	of Independ	ent School	Districts				
GM (rank)	0.30*** (0.06)	0.34*** (0.10)	0.35*** (0.10)	0.30*** (0.09)	0.62*** (0.09)	0.63*** (0.12)	0.69*** (0.15)	0.54*** (0.10)
Panel C: Dependent Variable	e GM							
\widehat{GM} (rank)	0.39*** (0.08)	0.31*** (0.07)	0.12 (0.08)	0.15*** (0.05)	0.39*** (0.08)	0.31*** (0.07)	0.12 (0.08)	0.15*** (0.05)
$GM_hat_X_above_med_ub_2$	0.20*** (0.03)	0.13*** (0.03)	0.27*** (0.03)	0.23*** (0.03)	0.20*** (0.03)	0.13*** (0.03)	0.27*** (0.03)	0.23*** (0.03)
F-Stat S.W. F-Stat K.P. F-Stat	100.40 168.11 47.70	27.34 87.52 22.78	45.78 76.83 9.15	58.92 87.91 25.98	100.40 168.11 47.70	27.34 87.52 22.78	45.78 76.83 9.15	58.92 87.91 25.98
Panel D: Dependent Variable	e GM X Al	oove media	n land Inco	rp				
\widehat{GM} (rank)	-0.37*** (0.08)	-0.44*** (0.08)	-0.56*** (0.09)	-0.53*** (0.06)	-0.37*** (0.08)	-0.44*** (0.08)	-0.56*** (0.09)	-0.53*** (0.06)
$GM_hat_X_above_med_ub_2$	1.04*** (0.02)	0.99*** (0.02)	1.06*** (0.02)	1.03*** (0.02)	1.04*** (0.02)	0.99*** (0.02)	1.06*** (0.02)	1.03*** (0.02)
F-Stat S.W. F-Stat K.P. F-Stat	1597.21 457.80 47.70	863.14 397.91 22.78	1164.47 220.79 9.15	1169.32 259.88 25.98	1597.21 457.80 47.70	863.14 397.91 22.78	1164.47 220.79 9.15	1169.32 259.88 25.98
Panel E: Dependent Variable	e Number o	of Independ	ent School	Districts				
GM (rank)	0.10 (0.08)	0.14 (0.10)	0.12 (0.12)	0.08 (0.11)	0.06 (0.13)	0.07 (0.15)	0.20 (0.18)	0.09 (0.13)
$GM_X_above_med_ub_2$	0.17^{***} (0.05)	$0.17^{***} (0.05)$	0.16*** (0.05)	0.18*** (0.05)	0.45*** (0.08)	0.48*** (0.08)	0.36*** (0.06)	0.36*** (0.06)
Combined Coeff Combined SE	0.27*** (0.06) -9.91	0.31*** (0.09) -9.91	0.29*** (0.10) -12.02	0.26*** (0.09) -12.02	0.52*** (0.08) -8.77	0.54*** (0.11) -8.77	0.56*** (0.14) -11.11	0.45*** (0.10)

2.7	County Unbuildable, 0pct Buffer

Table 14: Effects of change in Black Migration on Number of Independent School Districts

		Ra	aw		Per Capita (100,000)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable G	M							
\widehat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15
Panel B: Dependent Variable N	umber of Ir	ndependent	School Dis	tricts				
GM (rank)	0.30*** (0.06)	0.34*** (0.10)	0.35*** (0.10)	0.30*** (0.09)	0.62*** (0.09)	0.63*** (0.12)	0.69*** (0.15)	0.54*** (0.10)
Panel C: Dependent Variable G	M							
\hat{GM} (rank)	0.64*** (0.06)	0.44*** (0.07)	0.48*** (0.06)	0.44*** (0.05)	0.64*** (0.06)	0.44*** (0.07)	0.48*** (0.06)	0.44*** (0.05)
$GM_hat_X_above_med_total_00$	-0.06* (0.03)	-0.01 (0.03)	-0.12* (0.07)	-0.09 (0.06)	-0.06* (0.03)	-0.01 (0.03)	-0.12* (0.07)	-0.09 (0.06)
F-Stat S.W. F-Stat K.P. F-Stat	57.41 150.98 49.73	21.11 50.38 21.47	43.92 83.65 9.22	36.44 70.34 25.25	57.41 150.98 49.73	21.11 50.38 21.47	43.92 83.65 9.22	36.44 70.34 25.25
Panel D: Dependent Variable G	M X Above	e median la	nd Incorp					
\hat{GM} (rank)	-0.19*** (0.05)	-0.30*** (0.09)	-0.33*** (0.05)	-0.35*** (0.05)	-0.19*** (0.05)	-0.30*** (0.09)	-0.33*** (0.05)	-0.35*** (0.05)
GM_hat_X_above_med_total_00	0.93***	0.96***	0.85***	0.88***	0.93***	0.96***		
	(0.03)	(0.02)	(0.06)	(0.05)	(0.03)	(0.02)	0.85*** (0.06)	0.88*** (0.05)
F-Stat S.W. F-Stat K.P. F-Stat	(0.03) 618.99 2925.98 49.73	(0.02) 823.19 1582.53 21.47	(0.06) 265.52 423.27 9.22			(0.02) 823.19 1582.53 21.47		
S.W. F-Stat	618.99 2925.98 49.73	823.19 1582.53 21.47	265.52 423.27 9.22	(0.05) 160.63 224.14 25.25	(0.03) 618.99 2925.98	823.19 1582.53	(0.06) 265.52 423.27	(0.05) 160.63 224.14
S.W. F-Stat K.P. F-Stat	618.99 2925.98 49.73	823.19 1582.53 21.47	265.52 423.27 9.22	(0.05) 160.63 224.14 25.25	(0.03) 618.99 2925.98	823.19 1582.53	(0.06) 265.52 423.27	(0.05) 160.63 224.14
S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable N	618.99 2925.98 49.73 umber of Ir 0.19***	823.19 1582.53 21.47 adependent 0.15*	265.52 423.27 9.22 School Dis 0.22***	(0.05) 160.63 224.14 25.25 tricts 0.18***	(0.03) 618.99 2925.98 49.73	823.19 1582.53 21.47	(0.06) 265.52 423.27 9.22 0.52***	(0.05) 160.63 224.14 25.25

3 School Finance Outcomes

3.1 Unweighted

Table 15: Regressing School Finance Data on Number of New School Districts

	Expenditure Per Student			Local Revenue Per Student			
Number of Local Govts	1.458	1.462	2.121	14.55***	14.94***	15.28***	
	(2.304)	(2.255)	(2.125)	(2.807)	(2.822)	(2.801)	
R-Squared	.626	.626	.658	.42	.422	.432	
Dep Var Mean	11000	11000	11000	5010.815	5010.815	5010.815	
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes	
TRI Controls	No	No	Yes	No	No	Yes	
Observations	1608	1608	1608	1608	1608	1608	

Standard errors in parentheses

Standard errors clustered at county level.

Table 16: Regressing School Finance Data on Number of New School Districts, Per Capita (100,000)

	Expen	diture Per S	tudent	Local Revenue Per Student			
Number of Local Govts	-156.8*** (25.65)	-127.8*** (26.50)	-129.8*** (27.03)	-52.64*** (10.64)	-39.37*** (11.04)	-41.04*** (11.58)	
R-Squared	.147	.264	.271	.102	.21	.225	
Dep Var Mean	24000	24000	24000	10000	10000	10000	
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes	
TRI Controls	No	No	Yes	No	No	Yes	
Observations	1608	1608	1608	1608	1608	1608	

Standard errors in parentheses

Standard errors clustered at county level.

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} p;0.10, ** p;0.05, *** p;0.01

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 17: Regressing School Finance Data on Number of New School Districts

	Expenditure Per Student			Local Revenue Per Student			
Number of Local Govts	8.740	3.630	2.885*	19.06***	17.92***	17.21***	
	(8.026)	(4.911)	(1.572)	(4.896)	(3.568)	(2.565)	
R-Squared	.454	.662	.874	.452	.564999999999999	.679	
Dep Var Mean	14000	14000	14000	6566.868	6566.868	6566.868	
Mfg/Black Mig Controls TRI Controls Observations	No	Yes	Yes	No	Yes	Yes	
	No	No	Yes	No	No	Yes	
	1608	1608	1608	1608	1608	1608	

Standard errors in parentheses

Standard errors clustered at county level.

Table 18: Regressing School Finance Data on Number of New School Districts, Per Capita (100,000)

	Expendit	ure Per S	tudent	Local Revenue Per Student		
Number of Local Govts	-121.0***	-50.47	-48.89	-44.21***	-11.56	-9.779
	(32.04)	(31.53)	(35.05)	(11.96)	(12.56)	(14.75)
R-Squared	.053	.128	.139	.043	.133	.145
Dep Var Mean	17000	17000	17000	7233.094	7233.094	7233.094
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes
TRI Controls	No	No	Yes	No	No	Yes
Observations	1608	1608	1608	1608	1608	1608

Standard errors in parentheses

Standard errors clustered at county level.

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pj0.10, ** pj0.05, *** pj0.01

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pi0.10, ** pi0.05, *** pi0.01

4 county-Level Tables, og-sample

4.1 Unweighted

Table 19: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y.L0	2SLS (4) y_L0
\hat{GM} (rank)	0.534*** (0.0336)		0.0673*** (0.0235)	
GM (rank)		0.0681*** (0.0229)		0.126*** (0.0439)
F-Stat R-squared Dep Var Mean Observations	38.517 50.286 714	.594 -9.77399999999999 714	.594 -9.77399999999999 714	-9.773999999999999 714

Standard errors in parentheses

Table 20: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.480*** (0.0508)		0.0388 (0.0332)	
GM (rank)		0.0563 (0.0374)		0.0808 (0.0681)
F-Stat	18.436			
R-squared		.68200000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

Standard errors in parentheses

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 21: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.485*** (0.0477)		0.0823** (0.0326)	
GM (rank)		0.0855*** (0.0299)		0.170** (0.0670)
F-Stat	125.285			
R-squared		.511	.511	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

Standard errors in parentheses

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 22: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.350***		0.0539**	
, ,	(0.0415)		(0.0238)	
GM (rank)		0.0564**		0.154**
		(0.0246)		(0.0683)
F-Stat	61.35			
R-squared		.594	.594	
Dep Var Mean	50.286	-9.773999999999999	-9.773999999999999	-9.773999999999999
Observations	714	714	714	714

Standard errors in parentheses

Table 23: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	$y_L L0$
\widehat{GM} (rank)	0.322***		0.0442	
, ,	(0.0544)		(0.0317)	
GM (rank)		0.0759*		0.137
		(0.0407)		(0.0951)
F-Stat	25.797			
R-squared		.68300000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

Standard errors in parentheses

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 24: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.329*** (0.0587)		0.0518 (0.0328)	
GM (rank)		0.0563** (0.0280)		0.157 (0.0991)
F-Stat	32.359			
R-squared		.515	.515	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p
i0.10, ** p
i0.05, *** p
i0.01

Table 25: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.338*** (0.0419)		0.0571** (0.0239)	
GM (rank)		0.0623** (0.0253)		0.169** (0.0712)
F-Stat	54.161			
R-squared		.595	.595	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 26: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.320**** (0.0547)		0.0448 (0.0317)	
GM (rank)		0.0769* (0.0409)		0.140 (0.0954)
F-Stat	23.381			
R-squared		.68300000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pj0.10, ** pj0.05, *** pj0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 27: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.315*** (0.0599)		0.0568* (0.0329)	
GM (rank)		0.0657** (0.0287)		0.180* (0.104)
F-Stat	29.289			
R-squared		.518	.517	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

4.2 1940 Population Weighted

Table 28: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.599*** (0.0609)	J == \$	0.182*** (0.0377)	J == 0
GM (rank)		0.174*** (0.0360)		0.304*** (0.0627)
F-Stat	42.579			
R-squared		.406	.412	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 29: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.541***		0.0367	
, ,	(0.0557)		(0.0439)	
GM (rank)		0.0740		0.0678
, ,		(0.0466)		(0.0799)
F-Stat	25.352			
R-squared		.768	.765	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

Standard errors in parentheses

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 30: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.533*** (0.0781)		0.140*** (0.0343)	
GM (rank)		0.139*** (0.0435)		0.263*** (0.0670)
F-Stat	26.221			
R-squared		.38	.386	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 31: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.437***		0.150***	
	(0.0672)		(0.0458)	
GM (rank)		0.136***		0.342***
, ,		(0.0426)		(0.0967)
F-Stat	33.446			
R-squared		.411	.417	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 32: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.339*** (0.0582)		0.0245 (0.0416)	
GM (rank)		0.0817 (0.0539)		0.0722 (0.120)
F-Stat	42.976			
R-squared		.768	.766	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 33: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.405*** (0.0763)		0.125*** (0.0370)	
GM (rank)		0.124** (0.0530)		0.308*** (0.0902)
F-Stat	16.412			
R-squared		.386	.392	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p
i0.10, ** p
i0.05, *** p
i0.01

Table 34: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.358***		0.156***	
	(0.0691)		(0.0472)	
GM (rank)		0.136***		0.435***
, ,		(0.0393)		(0.125)
F-Stat	41.944			
R-squared		.411	.418	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 35: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.322*** (0.0595)		0.0297 (0.0416)	
GM (rank)		$0.0904* \\ (0.0547)$		0.0921 (0.125)
F-Stat	38.756			
R-squared		.769	.766	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 36: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y.L0
\hat{GM} (rank)	0.336*** (0.0797)		0.134*** (0.0383)	
GM (rank)		0.127** (0.0507)		0.400*** (0.122)
F-Stat	18.223			
R-squared		.389	.395	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p
i0.10, ** p
i0.05, *** p
i0.01

5 county-Level Tables, Per Capita, og-sample

5.1 Unweighted

Table 37: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.534*** (0.0336)		-0.0921 (0.680)	
GM (rank)		0.0102 (0.753)		-0.172 (1.265)
F-Stat	38.517			
R-squared		.032	.032	
Dep Var Mean Observations	50.286 714	-55.725 714	-55.725 714	-55.725 714

Standard errors in parentheses

Table 38: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.480*** (0.0508)		0.334** (0.141)	
GM (rank)		0.504*** (0.142)		0.696** (0.285)
F-Stat	18.436			
R-squared		.475	.464	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 39: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.485*** (0.0477)		-0.410 (1.336)	
GM (rank)		-0.313 (1.533)		-0.845 (2.721)
F-Stat	125.285			
R-squared		.019	.019	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 40: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.350*** (0.0415)		0.0780 (0.383)	
GM (rank)		0.212 (0.501)		0.223 (1.087)
F-Stat	61.35			
R-squared		.034	.034	
Dep Var Mean	50.286	-55.725	-55.725	-55.725
Observations	714	714	714	714

Table 41: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.322*** (0.0544)		0.305** (0.118)	
GM (rank)		0.554*** (0.153)		0.946** (0.368)
F-Stat	25.797			
R-squared		.491	.48	
Dep Var Mean Observations	$\frac{41.804}{357}$	-55.754 357	-55.754 357	-55.754 357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 42: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.329*** (0.0587)		-0.227 (0.950)	
GM (rank)		-0.135 (1.240)		-0.688 (2.842)
F-Stat	32.359			
R-squared		.021	.021	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 43: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
0.338*** (0.0419)		$0.0600 \\ (0.406)$	
	0.179 (0.549)		0.178 (1.194)
54.161			
	.035	.034	
50.429 714	-55.754 71 <i>4</i>	-55.754	-55.754 714
	(1) GM (rank) 0.338*** (0.0419) 54.161	(1) (2) (2) (3.338*** (0.0419) (0.549) (0.549) (0.55754)	(1) (2) (3) yL0 GM (rank) yL0 yL0 0.338*** 0.0600 (0.406) 0.179 (0.549) 54.161

Table 44: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.320*** (0.0547)		0.301** (0.120)	
GM (rank)		0.550*** (0.154)		0.940** (0.372)
F-Stat	23.381			
R-squared		.491	.48	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 45: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.315*** (0.0599)		-0.253 (0.988)	
GM (rank)		-0.192 (1.328)		-0.804 (3.085)
F-Stat	29.289			
R-squared		.022	.022	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

5.2 1940 Population Weighted

Table 46: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) v_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.599*** (0.0609)		0.368*** (0.0576)	
GM (rank)		0.420*** (0.0550)		0.615*** (0.0887)
F-Stat	42.579	105	110	
R-squared	50.429	.125 -55.754	.112 -55.754	-55.754
Dep Var Mean Observations	50.429 714	-55.754 714	-55.754 714	-55.754 714

Standard errors in parentheses

Table 47: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.541*** (0.0557)		0.458*** (0.126)	
GM (rank)		0.520*** (0.111)		0.846*** (0.223)
F-Stat R-squared Dep Var Mean Observations	25.352 41.804 357	.321 -55.754 357	.308 -55.754 357	-55.754 357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 48: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.533*** (0.0781)		0.215*** (0.0454)	
GM (rank)		0.258*** (0.0478)		0.404*** (0.0796)
F-Stat	26.221			
R-squared		.064	.056	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 49: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.437*** (0.0672)		0.274*** (0.0661)	
GM (rank)		0.332*** (0.0561)		0.627*** (0.120)
F-Stat	33.446			
R-squared		.144	.138	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Table 50: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.339*** (0.0582)		0.469*** (0.116)	
GM (rank)		0.536*** (0.130)		1.386*** (0.383)
F-Stat	42.976			
R-squared		.329	.321	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 51: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	Einst Ctomo	OLS	Reduced Form	2SLS
	First Stage	0		
	(1)	(2)	(3)	(4)
	GM (rank)	$y_L L0$	y_L0	y_L0
\widehat{GM} (rank)	0.405***		0.154***	
,	(0.0763)		(0.0437)	
GM (rank)		0.202***		0.380***
, ,		(0.0440)		(0.0916)
F-Stat	16.412			
R-squared		.08	.075	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 52: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.358*** (0.0691)		0.269*** (0.0689)	
GM (rank)		0.328*** (0.0570)		0.752*** (0.162)
F-Stat R-squared	41.944	.144	.138	
Dep Var Mean Observations	50.429 714	-55.754 714	-55.754 714	-55.754 714

Table 53: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.322*** (0.0595)	·	0.471*** (0.117)	·
GM (rank)		0.544*** (0.132)		1.461*** (0.411)
F-Stat	38.756			
R-squared		.329	.321	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 54: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.336*** (0.0797)		0.147*** (0.0455)	
GM (rank)		0.196*** (0.0446)		0.437*** (0.123)
F-Stat	18.223			
R-squared		.08	.075	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p¡0.10, ** p¡0.05, *** p¡0.01

6 county-Level Tables, full-sample

6.1 Unweighted

Table 55: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.318*** (0.0257)		0.0433*** (0.0125)	
GM (rank)		0.0586*** (0.0136)		0.136*** (0.0397)
F-Stat	34.863			
R-squared		.676	.675	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 56: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.109*** (0.0350)		0.0285* (0.0167)	
GM (rank)		0.0265 (0.0207)		$0.262 \\ (0.173)$
F-Stat	15.824			
R-squared		.724	.724	
Dep Var Mean	40.238	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 57: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.407*** (0.0335)		0.0459** (0.0199)	
GM (rank)		0.0654*** (0.0204)		0.113** (0.0486)
F-Stat	31.109			
R-squared		.631	.629	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 58: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.282*** (0.0262)		0.0413*** (0.0127)	
GM (rank)		0.0583*** (0.0134)		0.146*** (0.0455)
F-Stat R-squared	39.467	.676	.675	
Dep Var Mean Observations	50.124 1608	-15.412 1608	-15.412 1608	-15.412 1608

Table 59: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.100*** (0.0362)		0.0293* (0.0174)	
GM (rank)		0.0271 (0.0206)		0.292 (0.198)
F-Stat	12.398			
R-squared		.724	.724	
Dep Var Mean Observations	$40.238 \\ 804$	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 60: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.352*** (0.0397)		0.0348* (0.0206)	
GM (rank)		0.0599*** (0.0205)		$0.0990* \\ (0.0575)$
F-Stat	36.135			
R-squared		.632	.63	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 61: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.277*** (0.0257)		0.0431*** (0.0127)	
GM (rank)		0.0657*** (0.0139)		0.156*** (0.0463)
F-Stat R-squared	38.702	.678	.676	
Dep Var Mean Observations	50.124 1608	-15.412 1608	-15.412 1608	-15.412 1608

Table 62: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.104*** (0.0357)		0.0280 (0.0173)	
GM (rank)		0.0383* (0.0216)		0.268 (0.183)
F-Stat	13.324			
R-squared		.727	.727	
Dep Var Mean Observations	40.238 804	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 63: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.343*** (0.0391)		0.0373* (0.0206)	
GM (rank)		0.0625*** (0.0207)		0.109* (0.0590)
F-Stat	32.314			
R-squared		.633	.63	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pj0.10, ** pj0.05, *** pj0.01

6.2 1940 Population Weighted

Table 64: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.397*** (0.0894)	y =110	0.138*** (0.0339)	y -120
GM (rank)		0.140*** (0.0337)		0.347*** (0.101)
F-Stat	41.192			
R-squared		.426	.426	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 65: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.139*** (0.0486)		0.0594** (0.0262)	
GM (rank)		0.0776** (0.0330)		0.427* (0.219)
F-Stat	10.483			
R-squared		.715	.714	
Dep Var Mean	40.238	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 66: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.336***		0.129***	
, ,	(0.105)		(0.0351)	
GM (rank)		0.119***		0.383***
		(0.0356)		(0.139)
F-Stat	33.529			
R-squared		.389	.394	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 67: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage	OLS	Reduced Form	2SLS
	(1) $GM (rank)$	(2) y_L0	(3) y_L0	(4) y_L0
\widehat{GM} (rank)	0.377***		0.115***	
	(0.0527)		(0.0363)	
GM (rank)		0.117*** (0.0299)		0.304*** (0.0912)
F-Stat	43.48			
R-squared		.434	.431	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Table 68: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.133*** (0.0488)		0.0605** (0.0272)	
GM (rank)		0.0786** (0.0317)		0.453* (0.236)
F-Stat	10.37			
R-squared		.715	.714	
Dep Var Mean	40.238	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 69: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2)	Reduced Form (3)	2SLS (4)
\hat{GM} (rank)	0.362*** (0.0706)	y_L0	y_L0 0.0932** (0.0432)	y_L0
GM (rank)		0.0983*** (0.0291)		0.258** (0.113)
F-Stat	24.409			
R-squared		.402	.399	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 70: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.411*** (0.0506)		0.129*** (0.0355)	
GM (rank)		0.120*** (0.0308)		0.313*** (0.0777)
F-Stat	47.508			
R-squared		.436	.436	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Table 71: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.135*** (0.0485)		0.0600** (0.0268)	
GM (rank)		0.0916*** (0.0329)		0.445** (0.226)
F-Stat	10.376			
R-squared		.72	.718	
Dep Var Mean	40.238	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 72: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.363*** (0.0623)		0.0970** (0.0405)	
GM (rank)		0.0804** (0.0313)		0.267** (0.107)
F-Stat	33.906			
R-squared		.407	.409	
Dep Var Mean Observations	60.01 804	-15.412 804	-15.412 804	-15.412 804

^{*} p;0.10, ** p;0.05, *** p;0.01

7 county-Level Tables, Per Capita, full-sample

7.1 Unweighted

Table 73: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.318*** (0.0257)		0.235*** (0.0365)	
GM (rank)		0.393*** (0.0393)		0.741*** (0.117)
F-Stat	34.863			
R-squared		.449	.427	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 74: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.109*** (0.0350)		0.120** (0.0535)	
GM (rank)		0.125* (0.0681)		1.101* (0.586)
F-Stat	15.824			
R-squared		.555	.555	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 75: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.407*** (0.0335)		0.172*** (0.0449)	
GM (rank)		0.382*** (0.0497)		0.423*** (0.106)
F-Stat	31.109			
R-squared		.404	.356	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 76: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage	OLS	Reduced Form	2SLS
	(1) $GM (rank)$	(2) y_L0	(3) y_L0	(4) y_L0
\widehat{GM} (rank)	0.282***	<i>y</i> =20	0.184***	<i>y</i> ===0
01/1 (10/11/1)	(0.0262)		(0.0360)	
GM (rank)		0.315*** (0.0373)		0.653*** (0.131)
F-Stat	39.467	(0.0010)		(0.101)
R-squared		.466	.452	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 77: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	$y_L L0$	$y_L = L0$
\widehat{GM} (rank)	0.100***		0.109**	
	(0.0362)		(0.0548)	
GM (rank)		0.114*		1.092*
, ,		(0.0667)		(0.650)
F-Stat	12.398			
R-squared		.56200000000000001	.562000000000000001	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 78: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.352*** (0.0397)		0.125*** (0.0445)	
GM (rank)		0.324*** (0.0467)		0.355*** (0.120)
F-Stat	36.135			
R-squared		.416	.384	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 79: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.277*** (0.0257)		0.187*** (0.0361)	
GM (rank)		0.330*** (0.0388)		0.676*** (0.133)
F-Stat	38.702			
R-squared		.467	.452	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 80: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	$y_L L0$	$y_L L0$	$y_L L0$
\widehat{GM} (rank)	0.104***		0.107*	
, ,	(0.0357)		(0.0549)	
GM (rank)		0.136*		1.026*
,		(0.0696)		(0.605)
F-Stat	13.324			
R-squared		.56399999999999999	.562999999999999999999999999999999999999	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 81: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.343*** (0.0391)		0.128*** (0.0448)	
GM (rank)		0.333*** (0.0469)		0.373*** (0.123)
F-Stat	32.314			
R-squared		.418	.384	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

7.2 1940 Population Weighted

Table 82: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.397*** (0.0894)		0.272*** (0.0439)	
GM (rank)		0.380*** (0.0578)		0.686*** (0.155)
F-Stat	41.192			
R-squared		.221	.173	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 83: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.139*** (0.0486)	у шо	0.177*** (0.0596)	y ±10
GM (rank)		0.273*** (0.0699)		1.274** (0.518)
F-Stat	10.483			
R-squared		.524	.518	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 84: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2)	Reduced Form (3)	2SLS (4)
\widehat{GM} (rank)	0.336*** (0.105)	y_L0	y_L0 0.158*** (0.0305)	y_L0
GM (rank)		0.228*** (0.0505)		0.472*** (0.146)
F-Stat	33.529			
R-squared		.179	.142	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 85: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.377*** (0.0527)		0.202*** (0.0448)	
GM (rank)		0.288*** (0.0458)		0.536*** (0.103)
F-Stat	43.48			
R-squared		.26	.232	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 86: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.133*** (0.0488)		0.166*** (0.0610)	
GM (rank)		0.236*** (0.0658)		1.243** (0.551)
F-Stat	10.37			
R-squared		.534	.531	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 87: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.362*** (0.0706)		0.0920*** (0.0323)	
GM (rank)		0.175*** (0.0314)		0.254*** (0.0746)
F-Stat	24.409			
R-squared		.224	.192	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 88: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.411*** (0.0506)		0.216*** (0.0440)	
GM (rank)		0.299*** (0.0463)		0.525*** (0.0859)
F-Stat R-squared	47.508	.262	.234	
Dep Var Mean Observations	50.124 1608	-31.35 1608	-31.35 1608	-31.35 1608

Table 89: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.135*** (0.0485)		0.165*** (0.0597)	
GM (rank)		0.269*** (0.0680)		1.222** (0.517)
F-Stat	10.376			
R-squared		.542	.536	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 90: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.363*** (0.0623)		0.0956*** (0.0297)	
GM (rank)		0.167*** (0.0339)		0.263*** (0.0709)
F-Stat	33.906			
R-squared		.227	.203	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01