Data Structures and Algorithms CS245-2012S-03 Recursive Function Analysis

David Galles

Department of Computer Science University of San Francisco

03-0: Algorithm Analysis

```
for (i=1; i<=n*n; i++)
  for (j=0; j<i; j++)
    sum++;</pre>
```

03-1: Algorithm Analysis

Running Time: $O(n^4)$

03-2: Algorithm Analysis

```
for (i=1; i<=n*n; i++)
  for (j=0; j<i; j++)
    sum++;</pre>
```

Exact # of times sum++ is executed:

$$\sum_{i=1}^{n^2} i = \frac{n^2(n^2+1)}{2}$$

$$= \frac{n^4+n^2}{2}$$

$$\in \Theta(n^4)$$

03-3: Recursive Functions

```
long power(long x, long n) {
  if (n == 0)
    return 1;
  else
    return x * power(x, n-1);
}
```

03-4: Recurrence Relations

T(n) = Time required to solve a problem of size n

Recurrence relations are used to determine the running time of recursive programs – recurrence relations themselves are recursive

- T(0) = time to solve problem of size 0
 - Base Case
- T(n) = time to solve problem of size n
 - Recursive Case

03-5: Recurrence Relations

```
\begin{array}{lll} & \text{long power(long x, long n) } \{ & \text{if (n == 0)} \\ & \text{return 1;} & \\ & \text{else} & \\ & \text{return x * power(x, n-1);} \} & \\ & T(0) = c_1 & \text{for some constant } c_1 \\ & T(n) = c_2 + T(n-1) & \text{for some constant } c_2 \end{array}
```

03-6: Solving Recurrence Relations

$$T(0) = c_1$$

 $T(n) = T(n-1) + c_2$

$$T(n) = T(n-1) + c_2$$

03-7: Solving Recurrence Relations

$$T(0) = c_1$$

 $T(n) = T(n-1) + c_2$

$$T(n) = T(n-1) + c_2$$
 $T(n-1) = T(n-2) + c_2$
= $T(n-2) + c_2 + c_2$
= $T(n-2) + 2c_2$

03-8: Solving Recurrence Relations

$$T(0) = c_1$$

 $T(n) = T(n-1) + c_2$

$$T(n) = T(n-1) + c_2 T(n-1) = T(n-2) + c_2$$

$$= T(n-2) + c_2 + c_2$$

$$= T(n-2) + 2c_2 T(n-2) = T(n-3) + c_2$$

$$= T(n-3) + c_2 + 2c_2$$

$$= T(n-3) + 3c_2$$

03-9: Solving Recurrence Relations

$$T(0) = c_1$$

 $T(n) = T(n-1) + c_2$

$$T(n) = T(n-1) + c_2 T(n-1) = T(n-2) + c_2$$

$$= T(n-2) + c_2 + c_2$$

$$= T(n-2) + 2c_2 T(n-2) = T(n-3) + c_2$$

$$= T(n-3) + c_2 + 2c_2$$

$$= T(n-3) + 3c_2 T(n-3) = T(n-4) + c_2$$

$$= T(n-4) + 4c_2$$

03-10: Solving Recurrence Relations

$$T(0) = c_1$$

 $T(n) = T(n-1) + c_2$

$$T(n) = T(n-1) + c_2 T(n-1) = T(n-2) + c_2$$

$$= T(n-2) + c_2 + c_2$$

$$= T(n-2) + 2c_2 T(n-2) = T(n-3) + c_2$$

$$= T(n-3) + c_2 + 2c_2$$

$$= T(n-3) + 3c_2 T(n-3) = T(n-4) + c_2$$

$$= T(n-4) + 4c_2$$

$$= \dots$$

$$= T(n-k) + kc_2$$

03-11: Solving Recurrence Relations

$$T(0) = c_1$$

 $T(n) = T(n-k) + k * c_2$ for all k

If we set k=n, we have:

$$T(n) = T(n - n) + nc_2$$

$$= T(0) + nc_2$$

$$= c_1 + nc_2$$

$$\in \Theta(n)$$

03-12: Building a Better Power

```
long power(long x, long n) {
  if (n==0) return 1;
  if (n==1) return x;
  if ((n % 2) == 0)
    return power(x*x, n/2);
  else
    return power(x*x, n/2) * x;
}
```

03-13: Building a Better Power

```
long power(long x, long n) {
  if (n==0) return 1;
  if (n==1) return x;
  if ((n \% 2) == 0)
    return power(x*x, n/2);
  else
    return power(x*x, n/2) * x;
T(0) = c_1
T(1) = c_2
T(n) = T(n/2) + c_3
(Assume n is a power of 2)
```

03-14: Solving Recurrence Relations

$$T(n) = T(n/2) + c_3$$

03-15: Solving Recurrence Relations

$$T(n) = T(n/2) + c_3$$
 $T(n/2) = T(n/4) + c_3$
= $T(n/4) + c_3 + c_3$
= $T(n/4)2c_3$

03-16: Solving Recurrence Relations

$$T(n) = T(n/2) + c_3$$
 $T(n/2) = T(n/4) + c_3$
 $= T(n/4) + c_3 + c_3$
 $= T(n/4)2c_3$ $T(n/4) = T(n/8) + c_3$
 $= T(n/8) + c_3 + 2c_3$
 $= T(n/8)3c_3$

03-17: Solving Recurrence Relations

$$T(n) = T(n/2) + c_3$$
 $T(n/2) = T(n/4) + c_3$
 $= T(n/4) + c_3 + c_3$
 $= T(n/4)2c_3$ $T(n/4) = T(n/8) + c_3$
 $= T(n/8) + c_3 + 2c_3$
 $= T(n/8)3c_3$ $T(n/8) = T(n/16) + c_3$
 $= T(n/16) + c_3 + 3c_3$
 $= T(n/16) + 4c_3$

03-18: Solving Recurrence Relations

$$T(n) = T(n/2) + c_3 T(n/2) = T(n/4) + c_3$$

$$= T(n/4) + c_3 + c_3$$

$$= T(n/4)2c_3 T(n/4) = T(n/8) + c_3$$

$$= T(n/8) + c_3 + 2c_3$$

$$= T(n/8)3c_3 T(n/8) = T(n/16) + c_3$$

$$= T(n/16) + c_3 + 3c_3$$

$$= T(n/16) + 4c_3 T(n/16) = T(n/32) + c_3$$

$$= T(n/32) + c_3 + 4c_3$$

$$= T(n/32) + 5c_3$$

03-19: Solving Recurrence Relations

$$T(n) = T(n/2) + c_3 \qquad T(n/2) = T(n/4) + c_3$$

$$= T(n/4) + c_3 + c_3$$

$$= T(n/4)2c_3 \qquad T(n/4) = T(n/8) + c_3$$

$$= T(n/8) + c_3 + 2c_3$$

$$= T(n/8)3c_3 \qquad T(n/8) = T(n/16) + c_3$$

$$= T(n/16) + c_3 + 3c_3$$

$$= T(n/16) + 4c_3 \qquad T(n/16) = T(n/32) + c_3$$

$$= T(n/32) + c_3 + 4c_3$$

$$= T(n/32) + 5c_3$$

$$= \dots$$

$$= T(n/2^k) + kc_3$$

03-20: Solving Recurrence Relations

$$T(0) = c_1$$

 $T(1) = c_2$
 $T(n) = T(n/2) + c_3$
 $T(n) = T(n/2^k) + kc_3$

We want to get rid of $T(n/2^k)$. Since we know T(1) ...

$$n/2^k = 1$$

$$n = 2^k$$

$$\lg n = k$$

03-21: Solving Recurrence Relations

$$T(1) = c_2$$

 $T(n) = T(n/2^k) + kc_3$

Set $k = \lg n$:

$$T(n) = T(n/2^{\lg n}) + (\lg n)c_3$$

$$= T(n/n) + c_3 \lg n$$

$$= T(1) + c_3 \lg n$$

$$= c_2 + c_3 \lg n$$

$$\in \Theta(\lg n)$$

03-22: Power Modifications

```
long power(long x, long n) {
  if (n==0) return 1;
  if (n==1) return x;
  if ((n % 2) == 0)
    return power(x*x, n/2);
  else
    return power(x*x, n/2) * x;
}
```

03-23: Power Modifications

```
long power(long x, long n) {
  if (n==0) return 1;
  if (n==1) return x;
  if ((n % 2) == 0)
    return power(power(x,2), n/2);
  else
    return power(power(x,2), n/2) * x;
}
```

This version of power will not work. Why?

03-24: Power Modifications

```
long power(long x, long n) {
  if (n==0) return 1;
  if (n==1) return x;
  if ((n % 2) == 0)
    return power(power(x,n/2), 2);
  else
    return power(power(x,n/2), 2) * x;
}
```

This version of power also will not work. Why?

03-25: Power Modifications

```
long power(long x, long n) {
  if (n==0) return 1;
  if (n==1) return x;
  if ((n % 2) == 0)
    return power(x,n/2) * power(x,n/2);
  else
    return power(x,n/2) * power(x,n/2) * x;
}
```

This version of power does work.

What is the recurrence relation that describes its running time?

03-26: Power Modifications

```
long power(long x, long n) {
  if (n==0) return 1;
  if (n==1) return x;
  if ((n \% 2) == 0)
    return power(x,n/2) * power(x,n/2);
  else
    return power(x,n/2) * power(x,n/2) * x;
T(0) = c_1
T(1) = c_2
T(n) = T(n/2) + T(n/2) + c_3
      =2T(n/2)+c_3
(Again, assume n is a power of 2)
```

03-27: Solving Recurrence Relations

$$T(n) = 2T(n/2) + c_3$$

$$= 2[2T(n/4) + c_3]c_3$$

$$= 4T(n/4) + 3c_3$$

$$= 4[2T(n/8) + c_3] + 3c_3$$

$$= 8T(n/8) + 7c_3$$

$$= 8[2T(n/16) + c_3] + 7c_3$$

$$= 16T(n/16) + 15c_3$$

$$= 32T(n/32) + 31c_3$$
...
$$= 2^kT(n/2^k) + (2^k - 1)c_3$$

$$T(n/2) = 2T(n/4) + c_3$$

$$T(n/4) = 2T(n/8) + c_3$$

03-28: Solving Recurrence Relations

$$T(0) = c_1$$

$$T(1) = c_2$$

$$T(n) = 2^k T(n/2^k) + (2^k - 1)c_3$$
Pick a value for k such that $n/2^k = 1$:
$$n/2^k = 1$$

$$n = 2^k$$

$$\lg n = k$$

$$T(n) = 2^{\lg n} T(n/2^{\lg n}) + (2^{\lg n} - 1)c_3$$

$$= nT(n/n) + (n-1)c_3$$

$$= nC_2 + (n-1)c_3$$

$$\in \Theta(n)$$

03-29: Recursion Trees

- We can also do this substitution visually, leads to Recursion Trees
- Consider:

$$T(n) = 2T(n/2) + Cn$$

$$T(1) = C_2$$

$$T(0) = C_2$$

03-30: Recursion Trees

Start with the recursive definition

$$T(n) = Cn + 2T(n/2)$$

03-31: Recursion Trees

Move the equation around a bit to get:

• Repalce each occurance of T(n/2) with T(n/4) + T(n/4) + C(n/2)

03-32: Recursion Trees

• Replace again, using T(n) = 2T(n/2) + Cn

03-33: Recursion Trees

If we continue replacing ...

03-34: Recursion Trees

03-35: Recursion Trees

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

03-36: Recursion Trees

$$T(0) = C_1$$

$$T(1) = C_1$$

$$T(n) = T(n/2) + C_2$$

03-37: Substitution Method

 We can prove that a bound is correct using induction, this is the substituion method

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

Show: $T(n) \in O(?)$

03-38: Substitution Method

 We can prove that a bound is correct using induction, this is the substituion method

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

Show: $T(n) \in O(n)$, that is: $T(n) \leq C * n$ for all $n > n_0$, for some pair of constants C, n_0

03-39: Substitution Method

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

Show: $T(n) \in O(n)$, that is, $T(n) \leq C * n$

• Base case: $T(1) = C_1 \le C*1$ for some constant C

This is true as long as $C \ge C_1$.

03-40: Substitution Method

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

Show: $T(n) \in O(n)$, that is, $T(n) \leq C * n$

Recursive case:

$$T(n) = T(n-1) + C_2$$
 Recurrence definition

03-41: Substitution Method

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

Show: $T(n) \in O(n)$, that is, $T(n) \leq C * n$

• Recursive case:

$$T(n) = T(n-1) + C_2$$
 Recurrence definition $\leq C(n-1) + C_2$ Inductive hypothesis

03-42: Substitution Method

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

Show: $T(n) \in O(n)$, that is, $T(n) \leq C * n$

• Recursive case:

$$T(n) = T(n-1) + C_2$$
 Recurrence definition $\leq C(n-1) + C_2$ Inductive hypothesis $\leq Cn + (C_2 - C)$ Algebra $\leq Cn$ If $C > C_2$

This is true as long as $C \ge C_1$.

03-43: Substitution Method

 We can prove that a bound is correct using induction, this is the substituion method

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

Show: $T(n) \in \Omega(n)$ $T(n) \geq C*n \text{ for all } n>n_0,$ for some pair of constants C,n_0

03-44: Substitution Method

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

Show: $T(n) \in \Omega(n)$, that is, $T(n) \geq C * n$

• Base case: $T(1) = C_1 \ge C * 1$ for some constant C

This is true as long as $C \leq C_1$.

03-45: Substitution Method

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

Show: $T(n) \in \Omega(n)$, that is, $T(n) \geq C * n$

• Recursive case:

$$T(n) = T(n-1) + C_2$$
 Recurrence definition

03-46: Substitution Method

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

Show: $T(n) \in \Omega(n)$, that is, $T(n) \geq C * n$

Recursive case:

$$T(n) = T(n-1) + C_2$$
 Recurrence definition $\geq C(n-1) + C_2$ Inductive hypothesis

03-47: Substitution Method

$$T(1) = C_1$$

$$T(n) = T(n-1) + C_2$$

Show: $T(n) \in \Omega(n)$, that is, $T(n) \geq C * n$

Recursive case:

$$T(n) = T(n-1) + C_2$$
 Recurrence definition $\geq C(n-1) + C_2$ Inductive hypothesis $\geq Cn + (C_2 - C)$ Algebra $\geq Cn$ If $C \leq C_2$

This is true as long as $C \leq C_1$.

03-48: Substitution Method

$$T(0) = C_2$$

 $T(1) = C_2$
 $T(n) = 2T(n/2) + C_1 n$

Show: $T(n) \in O(n \lg n)$, that is, $T(n) \leq C * n \lg n$

03-49: Substitution Method

$$T(0) = C_2$$

$$T(1) = C_2$$

$$T(n) = 2T(n/2) + C_1 n$$

Show: $T(n) \in O(n \lg n)$, that is, $T(n) \leq C * n \lg n$

- Base cases:
 - $T(0) = C_1 \le C * 0 \lg 0$ for some constant C
 - $T(1) = C_1 \le C * 1 \lg 1$ for some constant C

Hmmm....

03-50: Substitution Method

$$T(0) = C_2$$

 $T(1) = C_2$
 $T(n) = 2T(n/2) + C_1 n$
Show: $T(n) \in O(n \lg n)$, that is, $T(n) \leq C * n \lg n$

- Only care about $n > n_0$. We can pick 2, 3 as base cases (why?)
 - $T(2) = C_1 \le C * 2 \lg 2$ for some constant C
 - $T(3) = C_1 \le C * 3 \lg 3$ for some constant C

03-51: Substitution Method

$$T(0) = C_2$$

$$T(1) = C_2$$

$$T(n) = 2T(n/2) + C_1 n$$

$$T(n) = 2T(n/2) + C_1 n$$
 Recurrence Definition

03-52: Substitution Method

$$T(0) = C_2$$

 $T(1) = C_2$
 $T(n) = 2T(n/2) + C_1 n$
 $T(n) = 2T(n/2) + C_1 n$ Recurrence Definition $\leq 2C(n/2)\lg(n/2) + C_1 n$ Inductive hypothesis

03-53: Substitution Method

$$T(0) = C_2$$
 $T(1) = C_2$
 $T(n) = 2T(n/2) + C_1n$
 $T(n) = 2T(n/2) + C_1n$ Recurrence Definitio
$$\leq 2C(n/2)\lg(n/2) + C_1n \quad \text{Inductive hypothesis}$$

$$\leq Cn\lg n/2 + C_1n \quad \text{Algebra}$$

$$\leq Cn\lg n - Cn\lg 2 + C_1n \quad \text{Algebra}$$

$$\leq Cn\lg n - Cn + C_1n \quad \text{Algebra}$$

03-54: Substitution Method

$$T(0) = C_2$$

$$T(1) = C_2$$

$$T(n) = 2T(n/2) + C_1n$$

$$T(n) = 2T(n/2) + C_1n$$

$$\leq 2C(n/2)\lg(n/2) + C_1n$$
Recurrence Definition
$$\leq 2C(n/2)\lg(n/2) + C_1n$$
Inductive hypothesis
$$\leq Cn\lg n/2 + C_1n$$
Algebra
$$\leq Cn\lg n - Cn\lg 2 + C_1n$$
Algebra
$$\leq Cn\lg n - Cn + C_1n$$
Algebra
$$\leq Cn\lg n$$
If $C > C_1$

03-55: Master Method

Recursion Tree for: $T(n) = 2T(n/4) + C_2$

03-56: Master Method

levels in the tree

 $\log_4 n$

leaves in the tree

Totals for each <u>level</u> in the tree:

03-57: Master Method

Recursion Tree for: $T(n) = 2T(n/2) + n^2$

03-58: Master Method

03-59: Master Method

Recursion Tree for: $T(n) = 4T(n/4) + n^2$

03-60: Master Method

levels in the tree

 $\log_2 n$

 n^2 $\lg n$

= n^2 leaves in the tree

03-61: Master Method

Recursion Tree for: T(n) = aT(n/b) + f(n)

03-62: Master Method

03-63: Master Method

$$T(n) = aT(n/b) + f(n)$$

- 1. if $f(n) \in O(n^{\log_b a \epsilon})$ for some $\epsilon > 0$, then $T(n) \in \Theta(n^{\log_b a})$
- 2. if $f(n) \in \Theta(n^{\log_b a})$ then $T(n) \in \Theta(n^{\log_b a} * \lg n)$
- 3. if $f(n) \in \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some c < 1 and large n, then $T(n) \in \Theta(f(n))$

03-64: Master Method

$$T(n) = 9T(n/3) + n$$

03-65: Master Method

$$T(n) = 9T(n/3) + n$$

- a = 9, b = 3, f(n) = n
- \bullet $n \in O(n^{2-\epsilon})$

$$T(n) = \Theta(n^2)$$

03-66: Master Method

$$T(n) = T(2n/3) + 1$$

03-67: Master Method

$$T(n) = T(2n/3) + 1$$

- a = 1, b = 3/2, f(n) = 1
- $n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$
- $1 \in O(1)$

$$T(n) = \Theta(1 * \lg n) = \Theta(\lg n)$$

03-68: Master Method

$$T(n) = 3T(n/4) + n \lg n$$

03-69: Master Method

$$T(n) = 3T(n/4) + n \lg n$$

- $a = 3, b = 4, f(n) = n \lg n$
- $\bullet \ \eta^{\log_b a} = \eta^{\log_4 3} = \eta^{0.792}$
- $n \lg n \in \Omega(n^{0.792+\epsilon})$
- $3(n/4)\lg(n/4) \le c * n \lg n$

$$T(n) \in \Theta(n \lg n)$$

03-70: Master Method

$$T(n) = 2T(n/2) + n \lg n$$

03-71: Master Method

$$T(n) = 2T(n/2) + n \lg n$$

- $a = 2, b = 2, f(n) = n \lg n$
- $\bullet \ n^{\log_b a} = n^{\log_2 2} = n^1$

Master method does not apply! $n^{1+\epsilon}$ grows faster than $n\lg n$ for any $\epsilon>0$ Logs grow *incredibly* slowly! $\lg n\in o(n^{\epsilon})$ for any $\epsilon>0$