Powered by:

Media Partner:

TECHAD BOOTCAMP DATCH O

BATCH 8

TOPIC:

Machine Learning:
An Introduction to KNN
and Its Implementation

FARID YULI MARTIN ADIYATMA, S.T.

16 September 2023

Powered by:

Media Partner:

Introduction to Machine Learning

Module 1 16 September 2023

TECHAD BOOTCAMP BATCH 8

TOPIC:

Machine Learning: An Introduction to KNN and Its Implementation

Source:

Regression

tax	nox	Medv
296	538	24
242	469	21.6
242	469	34.7
222	458	33.4
222	458	36.2
222	458	28.7
311	524	22.9
311	524	27.1
311	524	16.5
	296 242 242 222 222 222 311 311	296 538 242 469 242 469 222 458 222 458 222 458 311 524 311 524

Target

Features

Classification

No.	Sepal Length	Sepal Width	Species
1	5.3	3.7	Setosa
2	5.1	3.8	Setosa
3	7.2	3	Virginica
4	5.4	3.4	Setosa
5	5.1	3.3	Setosa
6	5.4	3.9	Setosa
7	7.4	2.8	Virginica
8	6.1	2.8	Versicolor
9	7.3	2.9	Virginica
10	6	2.7	Versicolor
11	5.8	2.8	Virginica
12	6.3	2.3	Versicolor
13	5.1	2.5	Versicolor
14	6.3	2.5	Versicolor
15	5.5	2.4	Versicolor
			Target

Features

Regression

- Linear Regression
- Polynomial Regression
- Lasso Regression
- Ridge Regression
- Logistic Regression
- o KNN
- o SVR
- Decision Tree
- Random Forest
- Neural Network

Classification

- o KNN
- o SVM
- Naïve Bayes
- Decision Tree
- Ensemble learning
- Neural network

Al Project Cycle

Powered by:

Media Partner:

Machine learning algorithm: K-Nearest Neighbor (KNN)

Module 2 16 September 2023

TECHAD BOOTCAMP BATCH 8

TOPIC:

Machine Learning: An Introduction to KNN and Its Implementation

Overview of KNN

KNN is a pattern recognition algorithm that can be used to:

- Classification
- Regression

The most important hyperparameter in KNN is the number of neighbors (K)

KNN is sensitive to outliers

There is no structured method to find the best K

ource:

 $https://towards datascience.com/k-nearest-neighbors-knn-algorithm-23832490e3f4\#: \sim: text = This \%20 is \%20 considered \%20 as \%20 overfitting, on \%20 the \%20 test \%20 dataset \%20 also.$

Step 1 Initialization

Step 2
Calculate distance

Distance function in KNN

Euclidean distance

$$d(a,b) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

Manhattan distance

$$d(a,b) = \sum_{i=1}^{n} |a_i - b_i|$$

Minkowski distance

$$d(a,b) = \left(\sum_{i=1}^{n} |a_i - b_i|^p\right)^{1/p}$$

Step 3
Nearest Neighbors

Step 4 Vote

Simple Example of KNN

Dataset

No.	Sepal Length	Sepal Width	Species
1	5.3	3.7	Setosa
2	5.1	3.8	Setosa
3	7.2	3	Virginica
4	5.4	3.4	Setosa
5	5.1	3.3	Setosa
6	5.4	3.9	Setosa
7	7.4	2.8	Virginica
8	6.1	2.8	Versicolor
9	7.3	2.9	Virginica
10	6	2.7	Versicolor
11	5.8	2.8	Virginica
12	6.3	2.3	Versicolor
13	5.1	2.5	Versicolor
14	6.3	2.5	Versicolor
15	5.5	2.4	Versicolor

New data

No.	Sepal Length	Sepal Width	Species
1	5.2	3.1	?

KNN classification using various distance functions

Euclidean distance =
$$\sqrt{(5.2 - 5.3)^2 + (3.1 - 3.7)^2}$$

= 0.608

$$Manhattan \ distance = |5.2 - 5.3| + |3.1 - 3.7|$$

= 0.7

Minkowski distance =
$$(|5.2 - 5.3|^3 + |3.1 - 3.7|^3)^{\frac{1}{3}}$$

= 0.802

Source:

Simple Example of KNN

Distance between each datapoint and new data

		<u>-</u>		_
No.	Sepal Length	Sepal Width	Species	Distance
1	5.3	3.7	Setosa	0.608
2	5.1	3.8	Setosa	0.707
3	7.2	3	Virginica	2.002
4	5.4	3.4	Setosa	0.36
5	5.1	3.3	Setosa	0.22
6	5.4	3.9	Setosa	0.82
7	7.4	2.8	Virginica	2.22
8	6.1	2.8	Versicolor	0.94
9	7.3	2.9	Virginica	2.1
10	6	2.7	Versicolor	0.89
11	5.8	2.8	Virginica	0.67
12	6.3	2.3	Versicolor	1.36
13	5.1	2.5	Versicolor	0.6
14	6.3	2.5	Versicolor	1.25
15	5.5	2.4	Versicolor	0.75

New data

No.	Sepal Length	Sepal Width	Species
1	5.2	3.1	?

Using Euclidean Distance

Source:

ttps://medium.com/machine-learning-researcher/k-nearest-neighbors-in-machine-learning-e794014abd2a

Simple Example of KNN

Sorted dataset

No.	Sepal Length	Sepal Width	Species	Distance
5	5.1	3.3	Setosa	0.22
4	5.4	3.4	Setosa	0.36
13	5.1	2.5	Versicolor	0.6
1	5.3	3.7	Setosa	0.608
11	5.8	2.8	Virginica	0.67
2	5.1	3.8	Setosa	0.707
15	5.5	2.4	Versicolor	0.75
6	5.4	3.9	Setosa	0.82
10	6	2.7	Versicolor	0.89
8	6.1	2.8	Versicolor	0.94
14	6.3	2.5	Versicolor	1.25
12	6.3	2.3	Versicolor	1.36
3	7.2	3	Virginica	2.002
9	7.3	2.9	Virginica	2.1
7	7.4	2.8	Virginica	2.22

For k = 5

Voting

No.	Sepal Length	Sepal Width	Species
1	5.2	3.1	Setosa

5

Setosa	Versicolor	Virginica
3	1	1

Source:

https://medium.com/machine-learning-researcher/k-nearest-neighbors-in-machine-learning-e794014abd2a

Normal Distribution (Gaussian)

Data can be "distributed" (spread out) in different ways.

Normal distribution illustrated as bell curve

Three standard deviations

Source:

https://www.mathsisfun.com/data/standard-normal-distribution.html

Data Cleaning

1. Missing data

Missing data is a common issue in data analysis and machine learning, and how it is handled can significantly impact the quality and reliability of analytical results and predictive models.

Mitigation technique, e.g., Deletion, mean, median, mode, forward and backward fill, interpolation and regression

Missing data

Sepal Length	Sepal Width	Species
6.1	2.8	Versicolor
6	2.7	Versicolor
6.3		Versicolor
5.1	2.5	Versicolor
6.3	2.5	Versicolor
5.5	2.4	Versicolor

Deletion

Sepal Length	Sepal Width	Species
6.1	2.8	Versicolor
6	2.7	Versicolor
5.1	2.5	Versicolor
6.3	2.5	Versicolor
5.5	2.4	Versicolor
		· · · · · · · · · · · · · · · · · · ·

Mean

Sepal Length	Sepal Width	Species
6.1	2.8	Versicolor
6	2.7	Versicolor
6.3	2.58	Versicolor
5.1	2.5	Versicolor
6.3	2.5	Versicolor
5.5	2.4	Versicolor

Forward fill

Sepal Length	Sepal Width	Species
6.1	2.8	Versicolor
6	2.7	Versicolor
6.3	2.5	Versicolor
5.1	2.5	Versicolor
6.3	2.5	Versicolor
5.5	2.4	Versicolor

Data Cleaning

2. Outliers

Outliers are data points that significantly differ from the majority of the data and can distort statistical analyses and machine learning models.

Effective outlier mitigation is crucial to ensure the reliability and accuracy of data-driven insights and models.

Detection technique, e.g., Z-score, interquartile range (IQR)

Z-score

$$Z = \frac{x - \mu}{\sigma}$$

x = data

 $\mu = \text{mean}$

 σ = standard deviation

Imbalanced Data

Imbalanced data in machine learning refers to a dataset where the distribution of the target class is not equal.

This means that one class (the majority class) has a significantly higher number of observations than the other class (the minority class).

There are a number of techniques that can be used to handle imbalanced data in machine learning:

- 1. Oversampling: This involves creating synthetic examples of the minority class.
- 2. Undersampling: This involves removing examples of the majority class.

Feature Scaling

Feature scaling in machine learning is the process of transforming the features in a dataset so that their values share a similar scale.

Normalization rescales the values of a feature to a specific range, typically [0, 1] or [-1, 1].

Standardization does not bound values to a specific range like normalization. Instead, it scales data to have a mean of 0 and a standard deviation of 1.

Example:

Dataset

Employee	Age	Salary
1	44	7300000
2	27	4700000
3	30	5300000
4	38	6200000
5	40	5700000
6	35	5300000

New data

Age	Salary	
48	7800000	

Employee 1

Euclidean distance =
$$\sqrt{(7800000 - 7300000)^2 + (48 - 44)^2}$$

= 500000

Feature Selection

The higher the number of features, the more computational time is needed. Some features do not exhibit a strong correlation with the target.

The concept of Pearson correlation

Participant	Weight (kg)	Height (cm)
1	66.0	115.0
2	67.2	116.3
3	67.6	120.8
4	67.8	125.7
5	68.5	127.5
6	69.4	126.9
7	69.0	134.2
8	70.3	134.9
9	70.7	140.6
10	71.8	144.1

A Pearson correlation measures the strength and direction of linear correlation

Source:

https://www.youtube.com/watch?v=e4ApDqG6MGE

Correlation

Direction of correlation

Positive correlation, r > 0

Negative correlation, r < 0

Source:

https://www.youtube.com/watch?v=e4ApDqG6MGE

Correlation

Strength of correlation

Perfect positive correlation, r =1

Perfect negative correlation, r = -1

No correlation, r = 0

Evaluation Metrics

Confusion	Actually	Actually
Matrix	Positive	Negative
Predicted	True Positive	False Positive
Positive	(TP)	(FP)
Predicted	False	True Negative
Negative	Negative (FN)	(TN)

A good model has high TP and TN and low FP and FN.

Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision

$$Precision = \frac{TP}{TP + FP}$$

Recall

$$Recall = \frac{TP}{TP + FN}$$

F1 Score

$$Recall = 2 * \frac{Precision * Recall}{Precision + Recall}$$

Terima kasih ขอบคุณมาก