Theorem: 4.2

extends to an infinite number of A_i and even an uncountable collection.

Corollary

Suppose that $A_{11}, A_{12}, \ldots, A_{21}, A_{22}$ are independent events. Let \mathcal{F}_i be the σ -field generated by the *i*th row. Then $\mathcal{F}_1, \mathcal{F}_2, \ldots$ are independent.

Proof

Define \mathcal{A}_i as the collection of all finite intersections of A_{i1}, A_{i2}, \ldots Note that \mathcal{A}_i is a π -system and $\sigma(\mathcal{A}_i) = \mathcal{F}_i$.

Lemma: The Borel-Cantelli Lemmas

- 1) Let $A_1, A_2, \ldots \in \mathcal{F}$. If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\limsup_n A_n) = 0$.
- 2) Let $A_1, A_2, \ldots \in \mathcal{F}$. If $\sum_{n=1}^{\infty} = \infty$ and if the A_n s are independent, then $P(\limsup_n A_n) = 1$.

Proof: 1

Suppose the sum is finite. Note that the "tail sums" $infsum : P(A_n) \to 0$ as $n \to \infty$.

$$P(\limsup_{n} A_{n}) = P\left(\bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_{k}\right)$$

$$\leq P\left(\bigcup_{k=m}^{\infty} A_{k}\right) \quad \text{monotonicity}$$

 $\leq infsum: kmP(A_k) \rightarrow 0$ as $m \rightarrow \infty$ countable subadditivity

$$P(\limsup_n A_n) = \lim_{m \to \infty} P(\limsup_n A_n) \le \lim_{m \to \infty} \inf sum : km P(A_k) = 0.$$

Proof: 2

Let $A = \limsup_n A_n = \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_k$. Want to show P(A) = 1 and will show $P(A^c) = 0$.

Note. A_1, A_2 independent $\Rightarrow A_1^c and A_2^c$ independent. Also $\Rightarrow A_1$ and A_2^c are independent.

Also,
$$A^c = \bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty} A_k^c$$
.

Also. $e^{-x} \ge 1 - x$ for $x \ge 0$.

For fixed m,

$$P\left(\bigcap_{k=m}^{\infty} A_k^c\right) \le P\left(\bigcap_{k=m}^{m+l} A_k^c\right)$$

$$= \prod_{k=m}^{m+1} P(A_k^c) \quad \text{by independence}$$

$$= \prod_{k=m}^{m+l} (1 - P(A_k))$$

$$\le \prod_{k=m}^{m+l} e^{-P(A_k)}$$

$$= e^{-\sum_{k=m}^{m+l} P(A_k)} \to 0 \text{ as } l \to \infty$$

Since $\sum_{n=1}^{\infty} P(A_n) = \infty$. So

$$\begin{split} P(A^c) &= P(\bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty} A_k^c) \\ &\leq \sum_{m=1}^{\infty} P(\bigcap_{m=1}^{\infty} P\left(\bigcap_{k=m}^{\infty} A_k^c\right)) \qquad \leq \sum_{m=1}^{\infty} e^{-\sum_{k=m}^{m+l} P(A_k)} \end{split}$$

So

$$P(A^c) = \lim_{l \to \infty} P(A^c) \leq \lim_{l \to \infty} \sum e^{\sum}.$$

Example (of why we need independence). Given (Ω, \mathcal{F}, P) . Take any $A \in \mathcal{F}$ with 0 < P(A) < 1. Define $A_n = A$ for all n so it's not independent. Then

$$\sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{\infty} P(A) = \infty$$

But

$$P(A_n i.o.) = .$$