GENOTYPE AND PHENOTYPE DIFFERENCES IN CADASIL AN ASIAN PERSPECTIVE

Jordan Clemsen

CADASIL

- Constituent of Dementia
- Progressive ministrokes
- Comorbidities
- Symptoms
- Tests
- NOTCH3

QUESTIONS ABOUT CADASIL?

True or false; CADASIL may cause manic episodes.

NOTCH3

- 19p13.12
- Exon 2-23
- Exon 25-33
- EGFr contains six cysteine residues that form three pairs of disulfide bonds to maintain the normal NOTCH3 protein's tertiary structure

SPECTRUM OF MUTATIONS IN BIOPSY-PROVEN CADASIL IMPLICATIONS FOR DIAGNOSTIC STRATEGIES

- 125 German patients
- Skin biopsy
- Central dogma
- 54 distinct mutations
- 96% missense, with some frameshift
- EGF protein 4 = 32.5%

xom	Nucleotide Exchange	AA Exchange	EGF Repeat	Frequency of Mutation	Mutations per Exon No. (%)*
2	205T>G	C43G	1	2	6 (5.0)
	224G>T	C49F	1	1	
	257C>G	S60C	1	1	
	272G>C	C65S	1	2	
3	306T>G	C76W	1	1	13 (10.8)
	317_331del	D80_S84del	2	1	
	337T>C	C87R	2	1	
	346C>T	R90C	2	6	
	356G>T	C93F	2	1	
	401G>A	G108Y	2	1	
	406C>T	R110C	2	2	
4	428G>T	C117F	2	1	70 (58.3)
	446G>T	G123F	3	2	
	475C>T	R133C	3	11	
	480C>G	C134W	3	1	
	499C>T	R141C	3	4	
	509G>C	G144S	3	1	
	509G>A	C144Y	3	1	
	523G>T	G149C	3	1	
	527A>G	Y150C	3	1	
	535C>T	R153C	3	6	
	537_545del	R153_C155del	3	.1	
	583C>T	R169C	4	11	
	598T>C	C174R	4	2	
	599G>A 622C>T	G174Y R182G	4	2	
	625T>A	C183S	4	20	
	6251 > A 626G>T	C1835	4	1	
	631T>C	G185R	4	1	
	659G>T	C194F	4	i	
	697C>T	R207C	5	i	
5	776G>A	C233Y	5	i	5 (4.2)
5	797G>C	G240S	6	i	5 (4.2)
	811T>C	G245R	6	i	
	857G>A	C260Y	6	i	
	792 836del	D239 D253del	6	i	
6	1033_1034GC>TG	A319C	8	i	9 (7.5)
	1072C>T	R332C	8	3	5 (1.5)
	1082C>G	S335C	8	2	
	1088A>G	Y337C	8	3	
7	1214G>C	C379S	9	1	2 (1.7)
	1261T>C	C395R	10	i	2 (1.17)
8	1339C>T	R421C	10	1	4 (3.3)
-	1361G>A	C428Y	10	2	4 (0.0)
	1396T>C	G440R	11	1	
9	1529G>T	C484F	12	1	2 (1.7)
	1562G>A	C495Y	12	1	- 4 7
10	1609T>C	C511R	13	1	1 (0.8)
11	1724G>A	G549Y	14	1	2 (1.7)
	1750C>T	R558C	14	1	-,,
14	2260C>T	R728C	18	1	1 (0.8)
15	2402G>C	C775S	20	1	1 (0.8)
18	3031C>T	R985C	25	3	3 (2.5)
23	3860G>A	C1261Y	32	1	1 (0.8)

Abbreviations: AA, amino acid; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; EGF, epidermal grow factor.

CLINICAL FEATURES AND SPECTRUM OF NOTCH3 VARIANTS IN FINNISH PATIENTS WITH CEREBRAL AUTOSOMAL DOMINANT ARTERIOPATHY WITH SUBCORTICAL INFARCTS AND LEUKOENCEPHALOPATHY (CADASIL)

- 294 patients
- Clinical recordings and gene testing from 1996 to 2019
- p.Arg133Cys (68%)
- Different alleles within Finland
- Different clinical symptoms

	p.Arg133Cys (n = 200)	p.Tyr1069Cys (n = 52)	Other (n = 42)	p-value (p.Arg133Cys vs. other)	p-value (p.Tyr1069Cys vs. other)
Sex (F/M)	104/96	28/24	23/19		
Family history	118 (59%)	29 (56%)	26 (62%)		
Predictive cases	16 (8%)	7 (13%)	3 (7%)		
Age at the time of predictive testing, mean ± SD	33±10.8	43±10.8	41±18.0		
Clinical features					
Clinical information available	142 (71%)	35 (67%)	40 (95%)		
Age at onset, mean ± SD	46±12.5 (n = 68)	$53 \pm 5.7 (n = 8)$	49 ± 9.2 (n = 27)	.208	.235
Risk factors ^a	32/142 (23%)	6/35 (17%)	13/40 (33%)	.216	.184
Migraine/headache	48/142 (34%)	8/35 (23%)	21/40 (52%)	.042	.010
schemic stroke/TIA	59/142 (42%)	8/35 (23%)	23/40 (58%)	.105	.004
СН	1/142 (1%)	2/35 (6%)	5/40 (13%)	.002	.438
Epilepsy	6/142 (4%)	1/35 (3%)	5/40 (13%)	.066	.206
Psychiatric symptom	15/142 (11%)	3/35 (9%)	7/40 (18%)	.272	.321
Cognitive impairment	44/142 (31%)	11/35 (31%)	15/40 (38%)	.449	.633
GOM detected in skin biopsy ^b	11/142 (8%)	1/35 (3%)	7/40 (18%)	.078	.061

POPULATION-SPECIFIC SPECTRUM OF NOTCH3 MUTATIONS, MRI FEATURES AND FOUNDER EFFECT OF CADASIL IN CHINESE

- 21 patients
- qPCR
- 9 different heterozygous point mutations
- Haplotypes with other studies

Table 2	Comparison of the mutational spectrum	of NOTCH3 MPI foatures	and initial manifestations of CADASII
rapie 3	Comparison of the mutational spectrum	OF NOTCHS, MIKE leadures	, and initial manifestations of CADASIL

Study	Number of patients (male/female)	Age of onset (± SD)	Mutational spectrum of NOTCH3	T2 weighted MRI features of diffuse WMA	Initial clinical manifestations					
					Ischemic events	Cognitive impairment	Psychiatric syndrome	Headaches	Seizures	
This study	21 (16/5)	48.6 ± 13.8 (range 20–77)	Exon 2–6: 28.6 % Exon 10: 4.8 % Exon 11 (R544C): 47.6 % Exon 18 (C977S): 19 %	Anterior temporal: 42 % External capsule: 95.2 % ICH: 23.8 %	52.4%	4.8%	9.5 %	4.8%	4.8 %	
Markus et al., 2002 [11]	48 (25/23)	35.9 ± 14.6 (range 5–66)	Exon 2–6: 93.8 % Exon 8, Exon 18, Exon 22: 2.1 % each	Anterior temporal: 89 % External capsule: 93 % ICH: not specified	29.2%	2.1%	8.3 %	54.2%	4.2%	
Desmond et al., 1999 [23]	105 (55/50)	36.7 ± 12.9 (range 10–59)	Not specified	Not specified	42.9%	5.7%	8.6%	40 %	2.9%	
Choi et al., 2007 [7]	20 (9/11)	57.2 ± 10.2 (range 43–85)	Exon 2–6: 10 % (R75P) Exon 11: 85 % (R544C: 75 %)	Anterior temporal: 20 % External capsule: 90 % ICH: 25 %	55 %	15%	0	10 %	0	

SD standard deviation; WMA white matter abnormalities; ICH intracerebral hemorrhage

SPECTRUM OF NOTCH3 MUTATIONS IN KOREAN PATIENTS WITH CLINICALLY SUSPICIOUS CEREBRAL AUTOSOMAL DOMINANT ARTERIOPATHY WITH SUBCORTICAL INFARCTS AND LEUKOENCEPHALOPATHY

- 156 patients clinically suspicious
- p.R544C most prevalent (8)
- p.R75P (7)
- Jeju Island

GENOTYPIC AND PHENOTYPIC SPECTRUM OF CADASIL IN JAPAN: THE EXPERIENCE AT A REFERRAL CENTER IN KUMAMOTO UNIVERSITY FROM 1997 TO 2014

- 215 patients skin biopsy
- Allele by region
- Different features in MRI
- Different features in immunostaining
- Arg133Cys more WMH

QUESTIONS ABOUT THE GENETIC SECTION?

What does EGFr stand for?

DIFFERENCES BY REGION

- Exons 2-6 Europe 60-80%
- Exon 4 = Germany, United Kingdom and France
- Exon 4 = Italy 20%
- Exon 11 = 40-85%
- Exon 11 mutation rare in Japan
- 70 CADSIL, 0 EXON 11 mutations
- Japan variant produces greater disease severity.

FOUNDER EFFECT

- Genetic variability decreases heterogeneous disorder increases
- California Condor
- California Cougar
- Isolated islands in Asia

QUESTIONS ABOUT POPULATION ECOLOGY SECTION?

Jordan catches Metagross that are shiny, is this an example of the founder effect why or why not?

CLINICAL AND GENETIC ASPECTS OF CADASIL

- 34 EGFrs
- Missense mutations typical
- Excess "NOTCH" protein
- Nonsense mutations differ
- frameshift mutations since 2007
- Third cleavage S3 cleavage: γsecretase-dependent intramembrane proteolysis

CHARACTERIZATION OF CADASIL AMONG THE HAN CHINESE IN TAIWAN: DISTINCT GENOTYPIC AND PHENOTYPIC PROFILES

- 112 patients
- Exons 2 to 24
- R544C mutation is associated with lower frequency of anterior temporal involvement, later age at onset and higher frequency of cognitive dysfunction.
- CMBs were detected in 87.5% of patients, which were most frequently observed in thalami (62.5%), followed by infratentorium regions (46.9%) and basal ganglia (43.8%), and least frequently in corona radiata (31.3%)

IMAGING DIFFERENCES

- Asian lower ATP and EC with WMH
- 89% and 93% Europe and Korea 45%
- Suggested area of mutation and WMH

QUESTIONS ABOUT MRI SECTION?

What CADASIL MRI biomarkers are different between Germany to Japan?