Indian Institute of Technology, Guwahati

A
PROJECT
REPORT
ON
ANALYSIS OF LAMINATE

Submitted to:

Dr. Debabrata Chakraborty

Submitted by:

Manpreet Singh 204103313

Department of Mechanical Engineering, IITG

(ANALYSIS OF LAMINATE)

1) Input Parameters:

Following two table combined together define the properties of material of laminate plies (from Excel file)

Define Properties of Laminate								
S. No	Ply Angle in Degree	Ply Thickness in meter	Engineering Constant (GPa)				Co-efficient of Thermal Expansion (m/m/°C)	
	(O°)	t	E ₁	E ₂	V ₁₂	G ₁₂	α_1	α_2
1	0	0.000125	3.86E+10	8.27E+09	0.28	4.14E+09	8.16E-06	2.21E-05
2	45	0.000125	3.86E+10	8.27E+09	0.28	4.14E+09	8.16E-06	2.21E-05
3	-45	0.000125	3.86E+10	8.27E+09	0.28	4.14E+09	8.16E-06	2.21E-05
4	90	0.000125	3.86E+10	8.27E+09	0.28	4.14E+09	8.16E-06	2.21E-05
5	90	0.000125	3.86E+10	8.27E+09	0.28	4.14E+09	8.16E-06	2.21E-05
6	-45	0.000125	3.86E+10	8.27E+09	0.28	4.14E+09	8.16E-06	2.21E-05
7	45	0.000125	3.86E+10	8.27E+09	0.28	4.14E+09	8.16E-06	2.21E-05
8	0	0.000125	3.86E+10	8.27E+09	0.28	4.14E+09	8.16E-06	2.21E-05

Define Properties of Laminate									
S. No	Ply Angle in Degree	Moisture	cient of Expansion 'kg/kg)	Material Strength Parameters (MPa)					
	(O°)	β1	β2	$(\sigma_1)^T$ u	(σ ₁) ^C _u	$(\sigma_2)^T$ u	(σ₂) ^C _u	(τ ₁₂) _u	
1	0	0.09	0.3	1.06E+09	6.10E+08	3.10E+07	1.18E+08	7.20E+07	
2	45	0.09	0.3	1.06E+09	6.10E+08	3.10E+07	1.18E+08	7.20E+07	
3	-45	0.09	0.3	1.06E+09	6.10E+08	3.10E+07	1.18E+08	7.20E+07	
4	90	0.09	0.3	1.06E+09	6.10E+08	3.10E+07	1.18E+08	7.20E+07	
5	90	0.09	0.3	1.06E+09	6.10E+08	3.10E+07	1.18E+08	7.20E+07	
6	-45	0.09	0.3	1.06E+09	6.10E+08	3.10E+07	1.18E+08	7.20E+07	
7	45	0.09	0.3	1.06E+09	6.10E+08	3.10E+07	1.18E+08	7.20E+07	
8	0	0.09	0.3	1.06E+09	6.10E+08	3.10E+07	1.18E+08	7.20E+07	

2) Program Output:

Angle of Ply	Failed Ply	Complete degradation Failure Load (N)	Partial degradation Failure Load (N)	Mode of failure
0	4	75790	75790	TT
45	5	75790	75790	TT
-45	2	175120	131360	TT
90	3	175120	131360	TT
90	6	175120	131360	TT
-45	7	175120	131360	TT
45	1	265500	356670	LT
0	8	265500	356670	LT

3) MATAB Script:

Note: Program read data from excel sheet

Matlab code share link:

https://iitgoffice-

my.sharepoint.com/:f:/g/personal/manpreetsingh iitg ac in/EqQ5Ro
9 GzVMhWpuYzK3ssgBgC7sGAISyafmYOZNoEDz0A

```
clearvars
clc
%-----
% Failure Analysis of Laminate

% Assisgnment 6 ( Composite Materials ME 607 )

% By: Manpreet Singh
% Roll No - 204103313
%------

% Input Parameters ->

del_T = 0; % Change in temperature in degree
del_C = 0; % Change in moisture content

force vec = [100000; 0; 0; 0; 0; 0]; % Force vector N/m
```

```
% Reading input data file
data = readmatrix('Input_Data_File.xlsx');
data(:,1) = [];
%% ----- OUTER LOOP OVER DEGRADATION CRITERIA ------
for Degradation criteria = 1: 2 % 1 -> complete Degradation
                                    % 2 -> partial Degradation
% Sorting given data ---->
   angle = data(:,1);
   thickness = data(:,2);
   E long = data(:,3);
   E_tran = data(:,4);
nue12 = data(:,5);
           = data(:,6);
   alpha1 = data(:,7);
   alpha2 = data(:,8);
   beta1 = data(:,9);
beta2 = data(:,10);
   nue21 = (nue12.*E_tran)./E_long;
   % Strength Paramters
        = data(:,11);
   E1T
   E1C
            = data(:,12);
   E2T
            = data(:,13);
   E2C
            = data(:,14);
   Tau12
           = data(:, 15);
   % additional paramters -->
   [No of plies, ~] = size(angle);
                                    % Getting Number of plies in laminate
   Failure_Load = zeros(No_of_plies, 6); % to store failure load
  Failed plies order = zeros(3, No of plies); % Order of failure of plies
                                           % count of failed plies
   Failed plies count = 0;
   force vec update = 0;
                                             % to upadte failure load vector
   counter = 1;
    temporay = 1;
    %----- Reference from mid plane or datum for each ply ------
   h mid = -sum(thickness)/2; % top surface height of laminate from mid plane
   h = zeros(No of plies+1,1); % for calculation of ABD Matrix
   z = zeros(2*No of plies +1, 1); % for stress and strain at mid of each ply
   h(1) = h mid;
   z(1) = h mid;
   for i = 1: No_of_plies
       z(2*i) = h(i) + 0.5*thickness(i);
       h mid = thickness(i) + h mid;
       h(1+i) = h mid;
       z(2*i+1) = h(1+i);
    end
```

```
% ----- LOOP OVER FAILURE OF EACH PLY ---------
      while Failed plies count < No of plies % <-- Main Loop for failure of
laminate
       %======= Calculating Q and Q-bar matrix for each ply ==========
       Q = zeros(3,3,No of plies);
       Q bar = zeros(3,3,No of plies);
       for i = 1 : No of plies % Q matrix for each ply
                       % Q matrix
                       Q11 = E long(i)/(1-nue12(i)*nue21(i));
                       Q22 = E tran(i)/(1-nue12(i)*nue21(i));
                       Q12 = nue12(i) \times E tran(i) / (1-nue12(i) \times nue21(i));
                       Q21 = Q12;
                       Q33 = G(i);
                       Q(:,:,i) = [Q11 Q12]
                                                                                                                             0;
                                                                       Q21 Q22
                                                                                                                              0;
                                                                                                                      Q33];
                                                                         \cap
                                                                                                  0
                       % O bar matrix
                       theta = deg2rad(angle(i));
                       Q 11 = Q11*cos(theta)^4 + Q22*sin(theta)^4 + 2*(Q12+2*Q33)*sin(theta)^2
*cos(theta)^2;
                       Q 22 = Q11*sin(theta)^4 + Q22*cos(theta)^4 + 2*(Q12+2*Q33)*sin(theta)^2
*cos(theta)^2;
                       Q 12 = (Q11 + Q22 - 4*Q33)*sin(theta)^2 *cos(theta)^2 + Q12*(cos(theta)^4)
+ sin(theta)^4);
                       Q 33 = (Q11 + Q22 - 2*Q12 - 2*Q33)* \sin(theta)^2 *\cos(theta)^2 +
Q33*(sin(theta)^4 + cos(theta)^4);
                       Q 13 = (Q11 - Q12 - 2*Q33)*cos(theta)^3 *sin(theta) - (Q22 - Q12 - Q12
2*Q33)*cos(theta)*sin(theta)^3;
                       Q = 23 = (Q11 - Q12 - 2*Q33)*cos(theta)*sin(theta)^3 - (Q22 - Q12 - Q1
2*Q33)*cos(theta)^3 *sin(theta);
                       Q_bar(:,:,i) = [Q_11 Q_12 Q_13]
                                                                                         Q_12 Q_22 Q_23
                                                                                          Q 13 Q 23 Q 33];
       end
                       % ABD Matrix calculation -->
```

9 0 -----

```
A = zeros(3,3);
B = zeros(3,3);
D = zeros(3,3);
for i = 1 : No of plies
    A = A + Q_bar(:,:,i) * (h(i+1) - h(i));
    B = B + Q_{bar}(:,:,i) * (h(i+1)^2 - h(i)^2);
    D = D + Q_bar(:,:,i) * (h(i+1)^3 - h(i)^3);
end
Α;
B = B/2;
D = D/3;
% ABD matrix ----
ABD = [A, B]
      B, D];
         ABD\force vec;
                              % mid plane strain and curvature vector
strain =
mid strain = strain(1:3);
                            % mid plane strain
mid_curvature = strain(4:6); % mid plane curvatures
%==== Global Stress - Strains at top-mid-bottom of each ply =====
Global strain = zeros(3,3,No of plies);
Global stress = zeros(3,3,No of plies);
j = 1;
for i =1: No of plies
    height = z(j:j+2); % distance of top-mid-bottom of ply from mid plane
    for k = 1:3
        Global strain(k,:,i) = mid strain + height(k)*mid curvature;
        Global stress(k,:,i) = Q bar(:,:,i) * Global strain(k,:,i)';
    end
    j = j+2;
end
%===== Local Stress - Strains at top-mid-bottom of each ply ======
Local strain = zeros(3,3,No of plies);
Local stress = zeros(3,3,No of plies);
for i =1: No of plies
    a = angle(i);
    % Transfomation Matrix
```

```
sind(a)^2,
cosd(a)^2,
             [sind(a)^2, sind(a)^2, cosd(a)]
[sind(a)^2, cosd(a)^2, -2*sind(a)*cosd(a)]
[-sind(a)*cosd(a), sind(a)*cosd(a), cosd(a)^2 - sind(a)^2]];
             [sind(a)^2,
         for k = 1:3
             % Local Strain
             Global strain(k,3,i) = Global strain(k,3,i)/2;
             Local strain(k,:,i) = T * Global strain(k,:,i)';
             Local strain(k,3,i) = 2*Local strain(k,3,i);
             % Local Stress
             Local stress(k,:,i) = T * Global stress(k,:,i)';
         end
     end
     %======= Thermal Stress - Strains for of each ply ==========
     Global thermal coefficient = zeros(3, No of plies);
     Global thermal strain = zeros(3, No of plies);
      for i =1: No of plies
         a = angle(i);
         % Transfomation Matrix
         T = [[\cos d(a)^2, \sin d(a)^2, \cos d(a)^2,
                                                    -2*sind(a)*cosd(a) ]
                                                      2*sind(a)*cosd(a) ]
             [sind(a)*cosd(a), -sind(a)*cosd(a), cosd(a)^2 - sind(a)^2];
         Global thermal coefficient(:, i) = T * [alpha1(i); alpha2(i); 0];
         Global thermal coefficient (3, i) = 2* Global thermal coefficient (3, i);
         % Global Thermal Strain
         Global thermal strain(:,i) = del T * Global thermal coefficient(:, i);
     end
      % ----->
      % Equivalent thermal load
     Fx thermal = zeros(3,1); % Equivalent thermal Force
     for i = 1 : No of plies
         Fx thermal = Fx thermal + Q_bar(:,:,i)*(h(i+1) -
h(i))*Global thermal coefficient(:, i);
         Mx thermal = Mx thermal + Q_bar(:,:,i) * (h(i+1)^2 -
h(i)^2 *Global thermal coefficient(:, i);
     end
     Fx thermal = del T * Fx thermal;
     Mx thermal = 0.5*del T * Mx thermal;
```

2*sind(a)*cosd(a)

 $T = [[\cos d(a)^2,$

```
mid thermal strain = thermal strain(1:3);
     mid thermal curvature = thermal strain(4:6);
     %====== Moisture Stress - Strains for of each ply =========
     Global_moisture_coefficient = zeros(3, No_of_plies);
     Global moisture strain = zeros(3, No of plies);
     for i =1: No of plies
         a = angle(i);
         % Transfomation Matrix
         T = [[\cos d(a)^2,
                               sind(a)^2,
                                cosd(a)^2,
                                                  -2*sind(a)*cosd(a)
             [sind(a)^2,
                                                   2*sind(a)*cosd(a)
                                                                      1
             [sind(a)*cosd(a), -sind(a)*cosd(a), cosd(a)^2 - sind(a)^2];
         Global moisture coefficient(:, i)=T*[beta1(i); beta2(i); 0];
         Global moisture coefficient(3, i)=2*Global moisture coefficient(3, i);
         % Global moisture Strain
         Global moisture strain(:,i) = del C*Global moisture coefficient(:, i);
     end
     % ---->
     % Equivalent moisture load
     Mx moisture = zeros(3,1); % Equivalent moisture Moment
     for i = 1 : No of plies
         Fx moisture = Fx moisture + Q bar(:,:,i) * (h(i+1) - p)
h(i))*Global moisture coefficient(:, i);
         Mx moisture = Mx moisture + Q bar(:,:,i) * (h(i+1)^2 -
h(i)^2)*Global moisture coefficient(:, i);
     Fx moisture = del C * Fx moisture;
     Mx moisture = 0.5*del C * Mx moisture;
     moisture strain = ABD\[Fx moisture; Mx moisture];
     mid moisture strain = moisture strain(1:3);
     mid moisture curvature = moisture strain(4:6);
     %========= Residual Strain and stresses =====================
     Global residual strain = zeros(3, No of plies);
     Global residual stress = zeros(3, No of plies);
     Local residual stress = zeros(3, No of plies);
```

thermal strain = ABD\[Fx thermal; Mx thermal];

```
for i =1: No of plies
                       % Strain
                       Global residual strain(:,i) = (mid thermal strain + (h(i+1) - mid thermal strain + (h(i+1) 
h(i))*mid thermal curvature) + (mid moisture strain + (h(i+1) -
h(i)) *mid moisture curvature);
                       Global_residual_strain(:,i) = Global_residual_strain(:,i) -
Global thermal strain(:,i) - Global moisture strain(:,i);
                       % Stress
                       Global residual stress(:,i) = Q bar(:,:,i) *
Global residual strain(:,i);
                       a = angle(i);
                       % Transfomation Matrix
                       T = \lceil \lceil \cos d(a) ^2,
                                                                                 sind(a)^2,
                                                                                                                                 2*sind(a)*cosd(a)
                                                                                                                             -2*sind(a)*cosd(a)
                               [sind(a)^2,
                                                                                 cosd(a)^2,
                                [-sind(a)*cosd(a), sind(a)*cosd(a), cosd(a)^2 - sind(a)^2];
                       Local_residual_stress(:,i) = T*Global_residual_stress(:,i);
             end
             % Failure Strength considering residual stresses due to thermal and
             % moisture effects
             for i = 1: No of plies
                                              = E1T(i) - Local residual stress(1,i);
                       E1T(i)
                       E1C(i)
                                             = E1C(i) + Local residual stress(1,i);
                                              = E2T(i) - Local residual stress(2,i);
                       E2T(i)
                                          = E2C(i) + Local_residual_stress(2,i);
                       Tau12(i) = Tau12(i) + Local residual stress(3,i);
             end
             %============= Strength Ratio (SR) =====================
             SR = zeros(No of plies, 3);
             for i =1: No of plies
                       for j = 1: 3
                                if Local_stress(1, j, i)>0 && j == 1 % logitudinal tensile
                                          SR(i,j) = Local stress(1, j, i) / E1T(i);
                                elseif Local stress(1, j, i)<0 && j == 1 % logitudinal compressive
                                          SR(i,j) = Local stress(1, j, i) / E1C(i);
                                elseif Local stress(1, j, i)>0 && j == 2 % transverse tensile
                                          SR(i,j) = Local stress(1, j, i) / E2T(i);
```

```
elseif Local_stress(1, j, i)<0 && j == 2 % transverse compressive
            SR(i,j) = Local\_stress(1, j, i) / E2C(i);
        else
            SR(i,j) = Local stress(1, j, i) / Tau12(i); % in plane shear
        end
    end
end
%========= Failed plies and mode of failure ============
SR = round(SR, 10);
max SR = max(max(abs(SR))); % Max SR ratio
failed ply = [];
                             % Plies failed
                             % Mode of failure
failure mode = [];
for i = 1: No of plies
    for j = 1:3
        if abs(SR(i,j)) == max SR
            failed ply = [failed ply; i];
            if SR(i,j) > 0 \&\& j == 1
                failure_mode = [failure_mode; 1]; % longitudinal tensile
            elseif SR(i,j) < 0 && j ==1
                failure mode=[failure mode; 2]; % longitudinal compressive
            elseif SR(i,j) > 0 \&\& j == 2
                failure mode = [failure mode; 3]; % transverse tensile
            elseif SR(i,j) < 0 \&\& j == 2
                failure mode=[failure mode; 4]; % transverse compressive
            else
                failure mode = [failure mode; 5]; % Shear failure
            end
        end
    end
end
[s, \sim] = size(failed ply);
for i = 1 : s
    Failed plies order(1, temporay) = counter; % -> order of failure
    Failed plies order(2, temporay) = failed ply(i); % -> failed plies
    Failed_plies_order(3,temporay) =failure_mode(i); % -> mode of failure
```

```
temporay = temporay + 1;
    end
    Failed plies count = Failed plies count + numel( failed ply ); % Count
of no of failed plies
    for i = 1: s % s -> no of plies failed
       force vec update = force vec update + 1;
       Failure Load(force vec update, :)=force vec/max SR; % Failure load
vector
    end
    if Degradation criteria == 1
       [No of plies failed, ~] = size(failed ply);
       for i =1: No of plies failed
          E long(failed ply(i)) = 0;
          E tran(failed ply(i)) = 0;
          G(failed ply(i)) = 0;
       end
    else
       [No of plies failed, ~] = size(failed ply);
       for i =1: No of plies failed
          if failure mode(i) == 1 || failure mode(i) == 2 % ----> % logitudinal
             E long(failed ply(i)) = 0;
          else %-----
                       _____
                                 ----> % transverse
             E tran(failed ply(i)) = 0;
             G(failed ply(i))
                              = 0;
          end
       end
```

```
end
end %-----< end of While loop over Failure of laminate

if Degradation_criteria == 1
         disp('Failure load with complete degradation')
else
         disp('Failure load with Partial degradation')
end
disp(Failure_Load(:,1));
end %-----< end of Degradation criteria Loop</pre>
```