Theoretische Informatik HS24

Nicolas Wehrli

Übungsstunde 08

12. November 2024

ETH Zürich nwehrl@ethz.ch

Heute

- 1 Feedback
- 2 Reduktion
- **3** How To Reduktion
- 4 Reduktion continued
- **5** Satz von Rice

Feedback

Reduktion

Things

Reduktionen sind klassische Aufgaben an dem Endterm. Ein bisschen wie Nichtregularitätsbeweise.

Ist aber auch nicht so schlimm.

R-Reduktion

Definition 5.3

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ zwei Sprachen. Wir sagen, dass L_1 auf L_2 rekursiv reduzierbar ist, $L_1 \leq_R L_2$, falls

$$\textit{L}_2 \in \mathcal{L}_R \implies \textit{L}_1 \in \mathcal{L}_R$$

Bemerkung:

Intuitiv bedeutet das " L_2 mindestens so schwer wie L_1 " (bzgl. algorithmischen Lösbarkeit).

4

EE-Reduktion

Definition 5.4

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ zwei Sprachen. Wir sagen, dass $\mathbf{L_1}$ auf $\mathbf{L_2}$ EE-reduzierbar ist, $\mathbf{L_1} \leq_{\mathsf{EE}} \mathbf{L_2}$, wenn eine TM M existiert, die eine Abbildung f_M : $\Sigma_1^* \to \Sigma_2^*$ mit der Eigenschaft

$$x \in L_1 \iff f_M(x) \in L_2$$

für alle $x \in \Sigma_1^*$ berechnet. Wir sagen auch, dass die TM M die Sprache L_1 auf die Sprache L_2 reduziert.

5

EE-Reduktion

Wir sagen, dass M eine Funktion $F: \Sigma^* \to \Gamma^*$ berechnet, falls für alle $x \in \Sigma^*$: $q_0 x \mid_{M}^* q_{\text{accept}} x \mid_{M}^* q_{\text{accept}}$

Abbildung 1: Abbildung 5.7 vom Buch

Verhältnis von EE-Reduktion und R-Reduktion

Lemma 5.3

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ zwei Sprachen.

$$L_1 \leq_{\mathrm{EE}} L_2 \implies L_1 \leq_{\mathrm{R}} L_2$$

Beweis:

$$L_1 \leq_{\text{EE}} L_2 \implies \exists \text{TM } M. \ x \in L_1 \iff M(x) \in L_2$$

Wir zeigen nun $L_1 \leq_R L_2$, i.e. $L_2 \in \mathcal{L}_R \implies L_1 \in \mathcal{L}_R$.

Sei $L_2 \in \mathcal{L}_R$. Dann existiert ein Algorithmus A (TM, die immer hält), der L_2 entscheidet.

Verhältnis von EE-Reduktion und R-Reduktion

Wir konstruieren eine TM B (die immer hält) mit $L(B) = L_1$

Für eine Eingabe $x \in \Sigma_1^*$ arbeitet B wie folgt:

- (i) B simuliert die Arbeit von M auf x, bis auf dem Band das Wort M(x) steht.
- (ii) B simuliert die Arbeit von A auf M(x). Wenn A das Wort M(x) akzeptiert, dann akzeptiert B das Wort x. Wenn A das Wort M(x) verwirft, dann verwirft B das Wort x.

A hält immer $\implies B$ hält immer und somit gilt $L_1 \in \mathcal{L}_R$

L und L^{\complement}

Lemma 5.4

Sei Σ ein Alphabet. Für jede Sprache $L\subseteq \Sigma^*$ gilt:

$$L \leq_{\mathbf{R}} L^{\mathbf{C}}$$
 und $L^{\mathbf{C}} \leq_{\mathbf{R}} L$

Beweis:

Es reicht $L^{\complement} \leq_{\mathbb{R}} L$ zu zeigen, da $(L^{\complement})^{\complement} = L$ und somit dann $(L^{\complement})^{\complement} = L \leq_{\mathbb{R}} L^{\complement}$.

Sei M' ein Algorithmus für L, der immer hält ($L \in \mathcal{L}_R$). Dann beschreiben wir einen Algorithmus B, der L^{\complement} entscheidet.

B übernimmt die Eingaben und gibt sie an M' weiter und invertiert dann die Entscheidung von M'. Weil M' immer hält, hält auch B immer und wir haben offensichtlich L(B) = L.

9

Anwendung vom Lemma 5.4

Korollar 5.2

$$(L_{\mathrm{diag}})^{\complement} \notin \mathcal{L}_{\mathrm{R}}$$

Beweis:

Aus Lemma 5.4 haben wir $L_{\text{diag}} \leq_{\mathbb{R}} (L_{\text{diag}})^{\complement}$. Daraus folgt $L_{\text{diag}} \notin \mathcal{L}_{\mathbb{R}} \implies (L_{\text{diag}})^{\complement} \notin \mathcal{L}_{\mathbb{R}}$. Da $L_{\text{diag}} \notin \mathcal{L}_{\text{RE}}$ gilt auch $L_{\text{diag}} \notin \mathcal{L}_{\mathbb{R}}$. Folglich gilt $(L_{\text{diag}})^{\complement} \notin \mathcal{L}_{\mathbb{R}}$.

10

Beweise

$$L_H \leq_{\rm EE} L_U$$

wobei

$$L_H = \{ \operatorname{Kod}(M) \# w \mid M \text{ h\"alt auf } w \wedge w \in (\Sigma_{\operatorname{bool}})^* \}$$

und

$$L_U = \{ \operatorname{Kod}(M) \# w \mid M \text{ akzeptiert } w \wedge w \in (\Sigma_{\operatorname{bool}})^* \}$$

Wir wollen $L_H \leq_{\rm EE} L_U$ zeigen. Wir geben die Reduktion zuerst als Zeichnung an.

Abbildung 2: EE-Reduktion von L_H auf L_U

Wir definieren eine Funktion M(x) für ein $x \in \{0, 1, \#\}^*$, so dass

$$x \in L_H \iff M(x) \in L_U$$
 (1)

Falls x nicht die richtige Form hat, ist $M(x) = \lambda$, sonst ist $M(x) = \operatorname{Kod}(M') \# w$ wobei M' gleich aufgebaut ist wie M, ausser dass alle Transitionen zu q_{reject} zu q_{accept} umgeleitet werden. Wir sehen, dass M' genau dann w akzeptiert, wenn M auf w hält.

Dieses M(x) übergeben wir dem Algorithmus für L_U .

Wir beweisen nun $x \in L_H \iff M(x) \in L_U$:

(i) $x \in L_H$ Dann ist x = Kod(M) # w von der richtigen Form, und M hält auf w. Das heisst die Simulation von M auf w endet entweder in q_{reject} oder in q_{accept} . Folglich wird M' w immer akzeptieren, da alle Transitionen zu q_{reject} zu q_{accept} umgeleitet wurden.

$$x \in L_H \implies M(x) \in L_U$$

(ii) $x \notin L_H$

Dann unterscheiden wir zwischen zwei Fällen:

(a) x hat nicht die richtige Form, i.e. $x \neq \text{Kod}(M) \# w$. Dann ist $M(x) = \lambda$ und da es keine Kodierung einer Turingmaschine M gibt, so dass $\text{Kod}(M) = \lambda$, gilt $\lambda \notin L_U$.

- (i) $x \in L_H$ done above.
- (ii) $x \notin L_H$
 - (a) **falsche Form** *done above.*
 - (b) x = Kod(M) # w hat die richtige Form. Dann haben wir M(x) = Kod(M') # w.

Da aber $x \notin L_H$, hält M nicht auf w. Da M nicht auf w hält, erreicht es nie q_{reject} oder q_{accept} in M und so wird w von M' nicht akzeptiert.

$$\implies M(x) \notin L_U$$

So haben wir mit diesen Fällen (a) und (b) $x \notin L_H \implies M(x) \notin L_U$ bewiesen. Aus indirekter Implikation folgt $M(x) \in L_U \implies x \in L_H$

Aus (i) und (ii) folgt

$$x \in L_H \iff M(x) \in L_U$$
 (1)

Somit ist die Reduktion korrekt.

Sei

$$L_{\text{infinite}} = \{ \text{Kod}(M) \mid M \text{ hält auf keiner Eingabe} \}$$

Zeige
$$(L_{infinite})^C \notin \mathcal{L}_R$$

Wir zeigen, dass $(L_{\text{infinite}})^{C} \notin \mathcal{L}_{R}$ mit einer geeigneten Reduktion.

Wir beweisen $L_H \leq_R (L_{\text{infinite}})^C$

Um dies zu zeigen nehmen wir an, dass wir einen Algorithmus A haben, der $(L_{\text{infinite}})^{C}$ entscheidet. Wir konstruieren einen Algorithmus B, der mit Hilfe von A, die Sprache L_{H} entscheidet.

Wir betrachten folgende Abbildung:

Abbildung 3: R-Reduktion von L_H auf $(L_{infinite})^C$

- I. Für eine Eingabe $x \in \{0, 1, \#\}^*$ berechnet das Teilprogramm C, ob x die richtige Form hat(i.e. ob x = Kod(M) # w für eine TM M).
- II. Falls nicht, verwirft *B* die Eingabe *x*.
- III. Ansonsten, konstruiert C eine Turingmaschine M', die Eingaben ignoriert und immer M auf w simuliert. Wir sehen, dass M' genau dann hält, wenn M auf w hält.
- IV. Folglich hält M' entweder für jede Eingabe (M hält auf w) oder für keine (M hält nicht auf w).
- V. Da A genau dann akzeptiert, wenn die Eingabe keine gültige Kodierung ist(ausgeschlossen, da C das herausfiltert) oder wenn die Eingabe $M(x) = \operatorname{Kod}(M')$ und M' für mindestens eine Eingabe hält, akzeptiert A M(x) genau dann, wenn $x = \operatorname{Kod}(M) \# w$ die richtige Form hat und M auf w hält.

Folglich gilt

$$x \in L_H \iff M(x) \in (L_{\text{infinite}})^C$$

$$\implies L_H \leq_R (L_{\text{infinite}})^C$$

Also folgt die Aussage

$$(L_{\text{infinite}})^C \in \mathcal{L}_R \implies L_H \in \mathcal{L}_R$$

Da wir $L_H \notin \mathcal{L}_R$ (**Satz 5.8**), folgt per indirekter Implikation:

$$(L_{\text{infinite}})^C \notin \mathcal{L}_R$$

How To Reduktion

$L \in \mathcal{L}_{\mathbf{R}}$

Wir kennen zwei Methoden um dies zu beweisen:

I. Reduktion

- (a) Wir finden eine Sprache $L' \in \mathcal{L}_R$ (entweder schon in Vorlesung bewiesen oder selbst beweisen).
- (b) Zeige die Reduktion $L \leq_R L'$ (folgt trivial aus Lemma 5.4 für $L' = L^{\complement}$).

II. Direkter Beweis: TM Konstruktion

- (a) Beschreibung einer TM (bzw. ein Algorithmus) M mit L(M) = L. Dabei kann man eine schon bekannte TM A verwenden, die immer hält (i.e. $L(A) \in \mathcal{L}_R$).
- (b) Beweise L(M) = L und dass die TM M immer hält.

$L \notin \mathcal{L}_{\mathbf{R}}$

Wir kennen hier auch 3 Arten:

- Trivial

Folgt sofort aus $L \notin \mathcal{L}_{RE}$, da $\mathcal{L}_{R} \subset \mathcal{L}_{RE}$.

- Reduktion

- (a) Finde eine Sprache L', so dass $L' \notin \mathcal{L}_R$ (muss bewiesen werden, falls nicht im Buch).
- (b) Beweise $L' \leq_{R/EE} L$.
- (c) Geeignete Sprachen als L' sind: $L_{empty}^{\complement}, L_{diag}^{\complement}, L_{\rm H}, L_{\rm U}, L_{{\rm H},\lambda}$. (Alle im Buch bewiesen)

- Satz von Rice

Anwendung von Satz von Rice

Für den Satz von Rice:

- Wir können mit diesem Satz nur $L \notin \mathcal{L}_R$ beweisen!
- Wir haben folgende Bedingungen:
 - i. $L \subseteq KodTM$
 - ii. $\exists \text{ TM } M: \text{Kod}(M) \in L$
 - iii. $\exists \text{ TM } M: \text{Kod}(M) \notin L$
 - iv. $\forall \text{ TM } M_1, M_2: L(M_1) = L(M_2) \implies (\text{Kod}(M_1) \in L \iff \text{Kod}(M_2) \in L)$

Für den letzten Punkt (4) muss man überprüfen, ob in der Definition von $L = \{ \text{Kod}(M) \mid M \text{ ist TM und } ... \}$ überall nur L(M) vorkommt und nirgends M direkt.

Beziehungsweise reicht es, wenn man die Bedingung so umschreiben kann, dass sie nur noch durch L(M) beschrieben ist.

$L \in \mathcal{L}_{RE}$

- I. Wir beschreiben eine TM M mit L(M) = L, die nicht immer halten muss.
- II. Meistens muss die TM eine Eigenschaft, für alle möglichen Wörter prüfen.
- III. Bsp: $L = \{ \text{Kod}(M_1) \mid \text{Kod}(M_1) \in L_{\text{H}}^{\complement} \}$: Wir gehen alle Wörter durch, um dasjenige zu finden, für das M_1 hält.
- IV. Wir verwenden oft einen von den folgenden 2 Tricks, um dies zu tun:
 - Da es für jede NTM M', eine TM M gibt, so dass L(M') = L(M), können wir eine solche definieren, für die L(M') = L gilt.
 - Die andere Variante, ist die parallele Simulation von Wörtern, bei dem man das Diagonalisierungsverfahren aus dem Buch verwendet. (Bsp: Beweis $L_{\text{empty}} \in \mathcal{L}_{\text{RE}}$, S. 156 Buch)

Hier haben wir 2 mögliche (offizielle) Methoden:

- Diagonalisierungsargument mit Widerspruch, wie beim Beweis von $L_{\rm diag} \notin \mathcal{L}_{\rm RE}.$
- Widerspruchsbeweis mit der Aussage $L \in \mathcal{L}_{RE} \wedge L^{\complement} \in \mathcal{L}_{RE} \implies L \in \mathcal{L}_{R}$ (Aufgabe 5.22, muss begründet werden!).

Inoffiziell könnten wir auch die EE-Reduktion verwenden, wird aber weder in der Vorlesung noch im Buch erwähnt.

EE- und R-Reduktionen: Tipps und Tricks

- Die vorgeschaltete TM ${\cal A}$ muss immer terminieren! I.e. sie muss ein Algorithmus sein.
- Die Eingabe sollte immer zuerst auf die Richtige Form überprüft werden! Auch im Korrektsheitsbeweis, sollte dieser Fall als erstes abgehandelt werden.
- Für Korrektheit müssen wir immer $x \in L_1 \iff A(x) \in L_2$ beweisen.
- Wir verwenden meistens folgende 2 Tricks:
 - i. Transitionen nach q_{accept} oder q_{reject} umleiten nach q_{reject}/q_{accept} oder einer **Endlosschleife**.
 - ii. TM *M'* konstruieren, die ihre Eingabe ignoriert und immer dasselbe tut (z.B. eine TM dessen Kodierung gegeben ist, auf ein fixes Wort simuliern).
- Die Kodierung einer TM generieren, dessen Sprache gewisse Eigenschaften hat(z.B. sie akzeptiert alle Eingaben, läuft immer unendlich etc.)

Klassifizierung verschiedener Sprachen

Begrifflichkeiten

Für eine Sprache *L* gilt folgendes

$$L$$
 regulär $\iff L \in \mathcal{L}_{EA} \iff \exists EA \ A \ mit \ L(A) = L$
 L rekursiv $\iff L \in \mathcal{L}_{R} \iff \exists Alg. \ A \ mit \ L(A) = L$
 L rekursiv aufzählbar $\iff L \in \mathcal{L}_{RE} \iff \exists TM \ M. \ L(M) = L$

"Algorithmus" = TM, die immer hält.

L rekursiv = L entscheidbar

L rekursiv aufzählbar = L erkennbar

Reduktion continued

Lemma 5.5

$$\textit{L}_{diag}^{\complement} \in \mathcal{L}_{RE}$$

Beweis

Direkter Beweis: Wir beschreiben eine TM A mit $L(A) = L_{\text{diag}}^{\complement}$.

Eingabe: $x \in (\Sigma_{bool})^*$

- (i) Berechne i, so dass $w_i = x$ in kanonischer Ordnung
- (ii) Generiere $Kod(M_i)$.
- (iii) Simuliere die Berechnung von M_i auf $w_i = x$.

Lemma 5.5 Beweis continued

- Falls $w_i \in L(M_i)$ akzeptiert, akzeptiert A die Eingabe x.
- Falls M_i verwirft (hält in q_{reject}), dann hält A und verwirft $x = w_i$ auch.
- Falls M_i unendlich lange arbeitet, wird A auch nicht halten und dann folgt auch $x \notin L(A)$.

Aus dem folgt $L(A) = L_{\text{diag}}^{\complement}$.

Korollar 5.3

 $L_{\text{diag}}^{\complement} \in \mathcal{L}_{\text{RE}} \setminus \mathcal{L}_{\text{R}}$ und daher $\mathcal{L}_{\text{R}} \subsetneq \mathcal{L}_{\text{RE}}$.

Universelle Sprache

Sei

$$L_U := \{ \operatorname{Kod}(M) \# w \mid w \in (\Sigma_{\operatorname{bool}})^* \text{ und } M \text{ akzeptiert } w \}$$

Satz 5.6

Es gibt eine TM U, universelle TM genannt, so dass

$$L(U) = L_U$$

Daher gilt $L_U \in \mathcal{L}_{RE}$.

Beweis

Direkter Beweis: Konstruktion einer TM.

Siehe Buch/Vorlesung.

Satz 5.7

Satz 5.7

$$L_U \notin \mathcal{L}_R$$

Beweis

Wir zeigen $L_{\mathrm{diag}}^{\complement} \leq_{\mathrm{R}} L_{U}$.

Siehe Buch/Vorlesung.

Halteproblem

Sei

$$L_H = \{ Kod(M) \# w \mid M \text{ h\"alt auf } w \}$$

Satz 5.8

 $L_H \notin \mathcal{L}_R$

Beweis

Wir zeigen $L_U \leq_R L_H$.

Siehe Buch/Vorlesung.

Parallele Simulation vs Nichtdeterminismus

Sei

$$L_{\text{empty}} = \{ \text{Kod}(M) \mid L(M) = \emptyset \}$$

und

$$L_{\mathrm{empty}}^{\complement} = \{ \mathrm{Kod}(M) \mid L(M) \neq \emptyset \} \cup \{ x \in \{0,1,\#\} \mid x \notin \mathbf{KodTM} \}$$

Lemma 5.6

$$L_{ ext{empty}}^{\complement} \in \mathcal{L}_{ ext{RE}}$$

Nichtdeterminismus

Beweis

Da für jede NTM M_1 eine TM M_2 existiert mit $L(M_1) = L(M_2)$, reicht es eine NTM M_1 mit $L(M_1) = L_{\text{empty}}^{\complement}$ zu finden. Eingabe: $x \in \{0, 1, \#\}$

- (i) M_1 prüft deterministisch, ob x = Kod(M) für eine TM M. Falls x keine TM kodiert, wird x akzeptiert.
- (ii) Sonst gilt x = Kod(M) für eine TM M und M_1 wählt nichtdeterministisch ein Wort $y \in (\Sigma_{\text{bool}})^*$.
- (iii) Dann simuliert M_1 die TM M auf y deterministisch und übernimmt die Ausgabe.

Nichtdeterminismus

Wir unterscheiden zwischen 3 Fällen

- I x = Kod(M) und $L(M) = \emptyset$ Dann gilt $x \notin L_{\text{empty}}^{\complement}$ und da es keine akzeptierende Berechnung gibt, auch $x \notin L(M_1)$.
- II x = Kod(M) und $L(M) \neq \emptyset$ Dann gilt $x \in L^{\complement}_{\text{empty}}$ und da es eine akzeptierende Berechnung gibt, auch $x \in L(M_1)$.
- III x kodiert keine TM Wir haben $x \in L^{\complement}_{empty}$ und wegen Schritt (i) auch $x \in L(M_1)$.
- Somit gilt $L(M_1) = L_{\text{empty}}^{\complement}$.

Parallele Simulation

Alternativer Beweis

Wir konstruieren eine TM A mit L(A) = L direkt. Eingabe: $x \in \{0, 1, \#\}$

- I. Falls *x* keine Kodierung einer TM ist, akzeptiert *A* die Eingabe.
- II. Falls x = Kod(M) für eine TM M, arbeitet A wie folgt
 - Generiert systematisch alle Paare $(i,j) \in (\mathbb{N} \setminus \{0\}) \times (\mathbb{N} \setminus \{0\})$. (Abzählbarkeit)
 - Für jedes Paar (i,j), generiert A das kanonisch i-te Wort w_i und simuliert j Berechnungsschritte der TM M auf w_i .
 - Falls *M* an ein Wort akzeptiert, akzeptiert *A* das Wort *x*.

Parallele Simulation

Falls $L(M) \neq \emptyset$ existiert ein $y \in L(M)$. Dann ist $y = w_k$ für ein $k \in \mathbb{N} \setminus \{0\}$ und die akzeptierende Berechnung von M auf y hat eine endliche Länge l.

Das Paar (k, l) wird in endlich vielen Schritten erreicht und somit akzeptiert A die Eingabe x, falls $L(M) \neq \emptyset$.

Somit folgt $L(A) = L_{\text{diag}}^{\complement}$.

20

Aufgabe 5.22

Wir zeigen

$$L \in \mathcal{L}_{RE} \wedge L^{\complement} \in \mathcal{L}_{RE} \iff L \in \mathcal{L}_{R}$$

 (\Longrightarrow) :

Nehmen wir $L \in \mathcal{L}_{RE} \wedge L^{\complement} \in \mathcal{L}_{RE}$ an.

Dann existiert eine TM M und M_C mit L(M) = L und $L(M_C) = L^{\complement}$.

Wir konstruieren eine TM A, die für eine Eingabe w die beiden TM's M und M_C parallel auf w simuliert.

A akzeptiert w, falls M das Wort akzeptiert und verwirft, falls M_C das Wort akzeptiert.

Aufgabe 5.22

Bemerke, dass $L(M) \cap L(M_C) = \emptyset$ und $L(M) \cup L(M_C) = \Sigma^*$.

Da $w \in L(M)$ oder $w \in L(M_C)$, hält A immer.

Da A genau dann akzeptiert, falls $w \in L(M)$, folgt L(A) = L(M) = L.

Demnach gilt $L \in \mathcal{L}_R$.

 (\longleftarrow) :

Nehmen wir $L \in \mathcal{L}_R$ an. Per Lemma 5.4 gilt $L^{\complement} \leq_R L$ und daraus folgt auch $L^{\complement} \in \mathcal{L}_R$.

Da $\mathcal{L}_{R} \subset \mathcal{L}_{RE}$, folgt $L \in \mathcal{L}_{RE} \wedge L^{\complement} \in \mathcal{L}_{RE}$.

41

Weitere Erkenntnisse

Lemma 5.7

$$L_{empty}^{\complement} \notin \mathcal{L}_{R}$$

Beweis

Wir zeigen $L_U \leq_{\text{EE}} L_{\text{empty}}^{\complement}$.

Siehe Buch/Vorlesung.

Weitere Erkenntnisse

Korollar 5.4

$$L_{\text{empty}} \notin \mathcal{L}_{R}$$

Korollar 5.5

$$L_{\text{EQ}} \notin \mathcal{L}_{\text{R}}$$

$$\text{für } L_{EQ} = \{ \text{Kod}(M) \# \text{Kod}(\overline{M}) \mid L(M) = L(\overline{M}) \}.$$

Satz von Rice

Spezialfall des Halteproblems

Wir definieren $L_{H,\lambda} = \{ Kod(M) \mid M \text{ hält auf } \lambda \}.$

Lemma 5.8

$$L_{\mathrm{H},\lambda} \notin \mathcal{L}_{\mathrm{R}}$$

Beweis:

Wir zeigen $L_H \leq_{\rm EE} L_{H,\lambda}$. Wir beschreiben einen Algorithmus B, so dass $x \in L_H \iff B(x) \in L_{H,\lambda}$.

Lemma 5.8 - Beweis continued

Für jede Eingabe arbeitet *B* wie folgt:

Falls x von der falschen Form, dann $B(x) = M_{inf}$, wobei M_{inf} unabhängig von der Eingabe immer unendlich läuft.

Sonst x = Kod(M) # w: Dann B(x) = M', wobei M' die Eingabe ignoriert und immer M auf w simuliert.

Wir sehen, dass M' genau dann auf λ hält, wenn $x \in L_H$.

Daraus folgt $x \in L_H \iff B(x) \in L_{H,\lambda}$.

Satz von Rice

Satz 5.9

Jedes semantisch nichttriviale Entscheidungsproblem über Turingmaschinen ist unentscheidbar.

```
'über Turingmaschinen' = L \subseteq \mathbf{KodTM}.
```

'nichttrivial' = $\exists M_1 : \text{Kod}(M_1) \in L \text{ und } \exists M_2 : \text{Kod}(M_2) \notin L$

'semantisch' = Für A, B mit L(A) = L(B) gilt $Kod(A) \in L \iff Kod(B) \in L$.

Verwendung des Satz von Rice

Wir definieren

$$L_{\text{all}} = \{ \text{Kod}(M) \mid L(M) = (\Sigma_{\text{bool}})^* \}.$$

Zeige

$$L_{\text{all}} \notin \mathcal{L}_{R}$$
.