UNCLASSIFIED AD NUMBER AD814022 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; MAR 1967. Other requests shall be referred to Air Force Materials Lab., Attn; MAAM, Research and

Technology Division, Wright-Patterson AFB, OH 45433. This document contains export-controlled technical data.

AUTHORITY

AFML ltr dtd 12 Jan 1972

AFML-TR-67-41

MECHANICAL AND THERMAL PROPERTIES OF HIGH-TEMPERATURE TITANIUM ALLOYS

Clifford L. Dotson Southern Research Institute Birmingham, Alabama 35205

Technical Documentary Report AFML-TR-67-41
April 1967

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the AF Materials Laboratory (MAAM), Research and Technology Division, Wright-Patterson AFB, Ohio 45433.

Air Force Materials Laboratory Research and Technology Division Air Force Systems Command Wright-Patterson Air Force Base, Ohio

NOTICES

When Government drawings, specifications or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

MECHANICAL AND THERMAL PROPERTIES OF HIGH-TEMPERATURE TITANIUM ALLOYS

Clifford L. Dotson Southern Research Institute Birmingham, Alabama 35205

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the AF Materials Laboratory (MAAM), Research and Technology Division, Wright-Patterson AFB, Ohio 45433.

FOREWORD

This report was prepared by Southern Research Institute under USAF Contract No. AF 33-(615)-2266 on a program to evaluate the mechanical and thermal properties of high-temperature titanium alloys. This contract was initiated under Project No. 7381, "Materials Applications", Task No. 738106, "Materials Information Development". The work was administered by the Air Force Materials Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. Lt. D. C. LaGrone and Mr. D. C. Watson were the project engineers. The period covered by this report is December 1, 1964, through August 31, 1966. The manuscript was released by the author in December, 1966, for publication as an RTD Technical Report.

The mechanical-property evaluations were performed by the Metallurgy Department of Southern Research Institute under the direction of Clifford L. Dotson, Head of the Metals Evaluation Section. Assistance was provided by P. C. Jenkins, P. G. Adams, O. V. Rogers, J. K. Legg and L. F. Ferguson of the Metals Evaluation Section. The thermal property determinations were performed by D. J. Thornburgh of the Thermodynamics Section under C. M. Pyron, Head.

This technical report has been reviewed and is approved.

D. A. Shinn

Chief, Materials Information Branch

Materials Application Division

AF Materials Laboratory

PAGES NOT FIDNED ARE BLANK

ABSTRACT

The purpose of this program was to obtain preliminary mechanical-and thermal-property design data on some of the newer titanium alloys. Three sheet alloys (Ti-5Al-5Sn-5Zr, Ti-5Al-5Sn-5Zr-1Mo-1V, and Ti-6Al-2Sn-4Zr-2Mo) and two bar alloys (Ti-5Al-5Sn-5Zr and Ti-679) were studied. Tests were performed to obtain data on the following properties: tensile, compression, bearing, shear, thermal exposure, creep, axial fatigue, fracture toughness, stress corrosion, impact, dynamic modulus, thermal conductivity, thermal expansion, and specific heat. In general these properties were determined over the temperature range from 70 to 1000° F, with most properties being measured at 70, 400, 600, 800 and 1000° F.

Results of the tests show that the new Ti-6Al-2Sn-4Zr-2Mo sheet alloy has well-balanced properties; with short-time strength at all temperatures comparable to or higher than those of other alpha-beta alloys and higher long-time strength (creep) than other alpha-beta alloys to which it was compared. The Ti-679 bar alloy also exhibited generally high strength over the temperature range at which properties were studied.

This abstract is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the AF Materials Laboratory (MAAM), Research and Technology Division, Wright-Patterson AFB, Ohio 45433.

TABLE OF CONTENTS

																		Page
INTR	ODUC	TION	•	•			•		•	•	•				•	•		1
SCOP	PE.			•					•			•				•	•	1
EXP	ERIME	ENTAL	AL	LO	YS		•		•	•		•		•		•	•	3
	Selec	tion		J				•	•			•		•	•		•	3
	Proc	essing		•							•				•			4
		Treatr		t														6
	Prop	erties	of A	ls-l	Rec	eiv	ed :	Mat	eri	als	•	•	•	•	•	•	•	9
EQUI	PME	T & T	ESI	PF	ROC	ED	UR	ES	•	•		•	•	•		٠		17
	Tens	ile, Co	mp	res	sio	n,]	Bea	rin	g &	She	ar		1					17
	Cree							•	•									27
		Fatig	18															27
	Impa	_			o		•	•						-				30
	•	ture To						·				•				•		30
		s Corr	_					•		•		•	•	•	•		•	38
		ic - Mo						:				•	•	•	•	•	•	41
		mal Co			•	-		•		•		•	•	•	•	•	•	42
		mal Ex			•		•	3	•	•	•	•	•	•	•	•	•	45
		Capaci	-			•	•	•	•	•	•	•	•	•	•	•	0	45
	neat	Capac.	ııy	•	•	•	•	•	•	•	t	•	•	•	•	•	•	70
RESU	JLTS (OF ME	CH.	ANI	CA	L-I	PRC	PE	RT	ΥT	'ES'	rs	•	٠	•	•	٠	48
	Sheet	Alloy	3	•	•		•	•	•	•	۰	•	•	•	•	•	•	48
		Tensi	le				•		•						•		ī	48
		Comp	res	sio	n	•		3	•	•	•			•			r	66
		Beari	ng						•									75
		Shear	Ū														•	75
		Therr		Ex	pos	ure												91
		Creep																98
		Fatig								•								98
		Fract		To	ugh	ines	is	•	•	•	•		•	•	•			129
		Stres					_	•	•					•	•			129
		Dynar		_			•	•	•	•	•	•						132
		27 2241		2410			•	•	•	•	•	•	•	•	•	•	•	

TABLE OF CONTENTS (Cont'd)

																	Page
Bar A	lloys	•	•	•	•	٠	•	٠	•	•	•	1.	•	•	•		144
	Tensil	le		•	•	•				•		•	•	•	•	•	144
	Compi	res	sio	n		•	•		•		•	•		•	•	• •	163
	Shear													•	•		163
	Thern	nal	Ex	pos	ure						•	•	•			•	163
	Creep			•													170
•	Impac	t															170
	Fatigu						•							•			170
	Fracti		-						·				•	•	Ť	•	194
	Dynam			_					·	•	•	•	•	•	•	•	194
		•				•	•	•	•	•	•	•	•	•	•	•	
RESULTS C	F THE	ERM	MA:	L-F	PRC	PE	RTY	T	EST	rs	•	•	•	•	•	•	198
	Therm	al	Со	ndu	cti	vity					•		•			•	198
	Therm	nal	Ex	pan	sio	n								•		•	198
	Specif	ic]	Hea	it							,					•	214
	•															_	
CONCLUSIO	ONS .		•		•	.	ε	•	•	•	•	•		•	•	•1	221
REFERENC	ES .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	226
																	,
APPENDIX	_	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	227
Mech	anical-	Pr	ope	rty	Te	st	Data	l									
APPENDIX	TT																315
	nal-Pr	ope	ert	y To	• est	Dat	ta.	•	•	•	•	•	•	•	•	•	010
		•	•														
APPENDIX	III .	•	•	•	•	•	•	•	•	•	•	•	•	•	•		335
Summ	ary of	Pr	opo	erty	E	valu	atio	ns									

LIST OF TABLES

Number			Page
1	Alloys and Product Forms Evaluated		1
2	Summary of Evaluations for Sheet and Bar	•	2
3	Summary of Heat Treatments for the Experimental Alloys	•	6
4	Quantity and Identification of Materials Procured for the Program	•	10
5	Certified Chemical Analysis of Materials	•	11
6	Room-Temperature Tensile Data Supplied by TMCA for the Experimental Materials		12
7	Results of Hardness Tests on Bar Materials as Received	•	13
8	Results of Hardness Tests on Sheet Materials as Received		14
9	Summary of Averages and Standard Deviations for the Tensile Properties of the Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures	•	49
10	Summary of Averages and Standard Deviations for the Tensile Properties of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures		50
11	Summary of Averages and Standard Deviations for the Tensile Properties of the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures		51
12	Precision Modulus of Elasticity of the Sheet Alloys in the Longitudinal Direction at Room Temperature		61
13	Summary of Averaged Notched Tensile Strength of the Sheet Alloys		62
14	Summary of Averages and Star and Deviations for the Compression Properties at Different Temperatures of Three Titanium Alloys in the Form of Forty-Mil Sheet.		67

Number		Page
15	Averaged Bearing Properties of the Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures	76
16	Averaged Bearing Properties of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures	76
17	Averaged Bearing Properties of the Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures	77
18	Summary of Averages and Standard Deviations for the Ultimate Shear Strength at Different Temperatures of Three Titanium Alloys in the Form of Forty-Mil Sheet	86
19	Summary of Apparent Fracture Toughness of the Sheet Alloys	130
20	Results of Preliminary Tests to Establish the Susceptibility Temperature for NaCl Stress-Corrosion for the Sheet Alloys.	131
21	The Dynamic Moduli of Elasticity at Different Temperatures of Three Titanium Alloys in the Form of Forty-Mil Sheet	143
22	Summary of the Averages and Standard Deviations for the Tensile Properties of the Ti-5Al-5Sn-5Zr Alloy Bar at Different Temperatures	145
23	Summary of the Averages and Standard Deviations for the Tensile Properties of the Ti-679 Alloy Bar at Different Temperatures	146
24	Precision Modulus of Elasticity of the Bar Alleys at Room Temperature	156
25	Summary of Averaged Notched Tensile Strength of the Bar Alloys	157
26	Summary of Averages and Standard Deviations for the Compression Properties at Different Temperatures of the Ti-5Al-5Sn-5Zr and Ti-679 Alloys in Bar Form	158
27	Summary of Averages and Standard Deviations for the Ultimate Shear Strength at Different Temperatures of Two Titanium Alloys, Bar Form	164

Number		Page
28	Averaged Impact Strength for the Ti-5Al-5Sn-5Zr Bar Alloy	181
29	Averaged Impact Strength for the Ti-679 Bar Alloy	182
30	Summary of Apparent Fracture-Toughness of the Bar Alloys	195
31	The Dynamic Moduli of Elasticity at Different Temperatures of the Ti-5Al-5Sn-5Zr and Ti-679 Alloys in Bar Form	196
32	Design Mechanical and Physical Properties for Ti-5A1-5Sn-5Zr	222
33	Design Mechanical and Physical Properties for Ti-5Al-5Sn-5Zr-1Mo-1V	223
34	Design Mechanical and Physical Properties for Ti-6Al-2Sn-4Zr-2Mo	224
35	Design Mechanical and Physical Properties for Ti-679	225
	APPENDIX I - Mechanical Property Test Data	
36	Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Sheet from Heat No. D-8060 at Different Temperatures	228
37	Tensile Properties of Ti-5A1-5Sn-5Zr Alloy Sheet from Heat No. D-1793 at Different Temperatures	2 31
38	Tensile Properties of Ti-5A1-5Sn-5Zr-1Mo-1V Alloy Sheet from Heat No. V-2957 at Different Temperatures	234
39	Tensile Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet from Heat No. V-1991 at Different Temperatures	237
40	Tensile Properties of Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet from Heat No. V-3016 at Different Temperatures	240
41	Tensile Properties of Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet from Heat No. V-3076 at Different Temperatures	243

Number		Page
42	Notched Tensile Properties of the Sheet Alloys	246
43	Compression Properties of Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures	247
44	Compression Properties of Ti-5Al-5Sn-52r-1Mo-1V Alloy Sheet at Different Temperatures	248
45	Compression Properties of Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures	249
46	Bearing Properties of Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures	250
47	Bearing Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures	252
48	Bearing Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures	254
49	Untimate Shear Strength of Ti-5A1-5Sn-5Zr Alloy Sheet from Heat No. D-8060 at Different Temperatures	256
50	Ultimate Shear Strength of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet from Heat No. V-2957 at Different Temperatures	257
51	Ultimate Shear Strength of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet from Heat No. V-3016 at Different Temperatures	258
5 2	Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures	259
53	Ultimate Shear Strength of the Ti-5Al-5Sn-5Zr Alloy Forty- will Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures	261
54	Tensile Properties of the Ti-5Al-5Sn-5Zr-1V-1Mo Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures.	262

Number		Page
55	Ultimate Shear Strength of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Expo- sures	264
56	Tensile Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures	265
57	Ultimate Shear Strength of the Ti-6Al-2Sn-4Zr-2Mo Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures	267
58	Rockwell C Hardness of Sheet Alloys after Exposure at Different Temperatures and Times	268
59	Creep Data for the Ti-5Al-5Sn-5Zr Alloy Sheet	26 9
60	Creep Data for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet	270
61	Creep Data for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet	271
62	Fatigue Data for the Ti-5Al-5Sn-5Zr Alloy Sheet	272
63	Fatigue Data for the Ti-5Al-5Sn-1Mo-1V Sheet	275
64	Fatigue Data for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet	277
65	Data for Calculation of the Stress Intensity Factor for Sheet Alloys	2 80
66	Data for Calculation of the Apparent $K_{\mathbf{C}}$ for Sheet Alloys	283
67	Average Tensile Properties of the Ti-5Al-5Sn-5Zr Alloy Sheet after Dry-Salt Stress Corrosion at Different Stress- es, Temperatures, and Times	286
68	Average Tensile Properties of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheat after Dry-Salt Stress Corrosion Exposure at Different Stresses, Temperatures and Times	287

Number		Page
69	Average Tensile Properties of the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet after Dry-Salt Stress Corrosion Exposure at Different Stresses, Temperatures, and Times	288
70	Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Bar from Heat No. D-8060 at Different Temperatures	2 89
71	Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Bar from Heat No. D-1793 at Different Temperatures	291
72	Tensile Properties of Ti-679 Alloy Bar from Heat No. D-7274 at Different Temperatures	293
73	Tensile Properties of Ti-679 Alloy Bar from Heat No. D-8427 at Different Temperatures	295
74	Notched Tensile Properties of the Bar Alloys	297
75	Compression Properties of Ti-5Al-5Sn-5Zr Alloy Bar at Different Temperatures	298
76	Compression Properties of Ti-679 Alloy Bar at Different Temperatures	255
77	Ultimate Shear Strength of Ti-5A1-5Sn-5Zr Alloy Bar from Heat No. D-8060 at Different Temperatures	300
78	Ultimate Shear Strength of Ti-679 Alloy Bar from Heat No. D-7242 at Different Temperatures	301
79	Rockwell C Hardness of Bar Alloys After Exposure at Different Temperatures and Times	302
80	Tensile Properties of the Ti-5Al-5Sn-5Zr Alloy Bar at Room Temperature and at the Exposure Temperature after Different Thermal Exposures	303

Number		Page
81	Tensile Properties of the Ti-679 Alloy Bar at Room Temperature and at the Exposure Temperature after Different Thermal Exposures	305
82	Creep Data for the Ti-5Al-5Sn-5Zr Alloy Bar	307
83	Creep Data for the Ti-679 Alloy Bar	308
84	Impact Strength of Ti-5Al-5Sn-5Zr Alloy	309
85	Impact Strength of Ti-679 Alloy Bar at Different Temperatures	309
86	Fatigue Data for the Ti-5Al-5Sn-5Zr Alley Bar	310
87	Fatigue Data for the Ti-679 Alloy Bar	312
88	Data for Calculation of the Stress Intensity Factor for Bar Alloys	314
	APPENDIX II - Thermal-Property Test Data	
89	The Thermal Conductivity of the Titanium Sheet Alloy, Ti-5Al-5Sn-5Zr Using the Comparative Rod Apparatus with 316 Stainless Steel References	316
90	The Thermal Conductivity of the Titanium Sheet Alloy, Ti-5Al-5Sn-5Zr-1Mo-1V Using the Comparative Rod Apparatus with 316 Stainless Steel References	317
91	The Thermal Conductivity of the Titanium Sheet Alloy, Ti-6Al-2Sn-4Zr-2Mo Using the Comparative Rod Apparatus with 316 Stainless Steel References	319
92	The Thermal Conductivity of the Titanium Bar Alloy, Ti-5Al-5Sn-5Zr Using the Comparative Rod Apparatus with 316 Stainless Steel References	320

Number		Page
93	The Thermal Conductivity of the Titanium Bar Alloy, Ti-679. Using the Comparative Rod Apparatus with 316 Stainless Steel References	321
94	The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr in Sheet Form Parallel to the Rolling Direction Using a Quartz Dilatometer	322
95	The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr in Sheet Form Transverse to the Rolling Direction Using a Quartz Dilatometer	323
96	The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr-1Mo-1V in Sheet Form Parallel to the Rolling Direction Using a Quartz Dilatometer	324
97	The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr-1Mo-Iv in Sheet Form Transverse to the Rolling Direction Using a Quartz Dilatometer	325
98	The Thermal Expansion of the Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo in Sheet Form Parallel to the Rolling Direction Using a Quartz Dilatometer	326
99	The Thermal Expansion of the Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo in Sheet Form Transverse to the Rolling Direction Using a Quartz Dilatometer	327
100	The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr in Bar Form Parallel to the Rolling Direction Using a Quartz Dilatometer	323
101	The Thermal Expansion of the Titanium Alloy 'Ti-679 in Bar Form Parallel to the Rolling Direction Using a Quartz Dilatometer	329
102	The Enthalpy of the Titanium Alloy Ti-679 in Bar Form Using the Adiabatic Calorimeter	330

Number		Page
103	The Enthalpy of the Titanium Alloy Ti-5Al-5Sn-5Zr in Bar Form Using the Adiabatic Calorimeter	331
104	The Enthalpy of the Titanium Alloy Ti-5Al-5Sn-5Zr in Sheet Form Using the Adiabatic Calorimeter	332
105	The Enthalpy of the Titanium Alloy Ti-5Al-5Sn-5Zr-1Mo-1V in Sheet Form using the Adiabatic Calorimeter	333
106	The Enthalpy of the Titanium Alloy Ti-6Al-2Sr-4Zr-2Mo in Sheet Form Using the Adiabatic Calorimeter	334
	APPENDIX III - Summary of Property Evaluations	
107	Summary of Evaluations for Ti-5Al-5Sn-5Zr-1Mo-1V, Ti-5Al-5Sn-5Zr, and Ti-6Al-2Sn-4Zr-2Mo Alloys in Sheet Form	336
108	Summary of Evaluations for Ti-5Al-5Sn-5Zr and Ti-679 Alloys in Bar Form	337
109	Summary of Thermal Conductivity, Thermal Expansion, and Specific Heat Determinations	338

LIST OF ILLUSTRATIONS

Number		Page
1	The Effect of Annealing Temperature on the Room- Temperature Tensile Properties of Ti-5Al-5Sn-5Zr-1Mo- 1V Alloy Sheet from Two Heats	7
2	The Effect of Annealing Temperature on the Room- Temperature Tensile Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet	8
3	Microstructures of the Two Bar Alloys	15
4	Microstructure of the Three Sheet Alloys	16
5	Specimens for Tensile, Creep, Exposure-Tensile and Stress-Corrosion for Sheet and Bar Materials	18
6	Compression Specimens for Sheet and Bar Materials	19
7	Bearing Specimen	20
8	Shear Specimen for Sheet and Bar Materials	21
9	Compression-Test Fixture	23
10	Cross-Section of Compression Furnace and Fixture	24
11	Apparatus for Bearing Tests	25
12	Shear-Test Fixture for Bar Materials	26
13	Schematic Drawing of Axial-Loading Fatigue Machine	28
14	Axial-Fatigue Machines and Related Apparatus	29
15	Unnotched Entique Specimens for Ban and Sheet Materials	21

Number		Pa	age
16	Notched Section of Fatigue Specimens for Sheet and Bar Materials		32
17	Load Linkage Assembly and Furnace for Axial-Fatigue Tests at Elevated Temperatures on Bar Specimens		33
18	Load-Linkage Assembly for Fatigue Tests on Sheet Alloys.		34
19	Charpy V-Notch Impact Specimen		35
20	Fracture-Toughness Specimen and Compliance Gage for Sheet Alloys		36
21	Fracture Toughness Specimen Used for Bar Alloys	•	37
22	Reproduction of Load-Extension Curve for Center-Cracked Sheet Fracture-Toughness Specimens	•	39
23	Self-Stressed Corrosion Specimen		40
24	General View of Apparatus for Determination of Dynamic Modulus of Elasticity of Bar Specimens	•	43
25	Furnace and Excitation Frame of Dynamic-Modulus Apparatus		44
26	Configuration and Orientation of Thermal Conductivity Specimens	•	46
27	The 0.2%-Offset Yield Strength and Tensile Strength of Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures	•	52
28	The Percent Elongation and Modulus of Elasticity in Tension of $\text{Ti-}5\text{Al-}5\text{Sn-}5\text{Zr}$ Alloy Sheet at Different Temperatures .	•	53
29	The Effect of Temperature on the Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Sheet		54

Number	r -	-
30	The 0.2%-Offest Yield Strength and Tensile Strength of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet in the Longitudinal and Transverse Orientations.	Page
31	The Percent Elongation and Modulus of Elasticity in Tension of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet in the Longitudinal and Transverse Orientations.	5ó
32	The Effect of Temperature on the Tensile Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet	56 57
33	The 0.2%-Offset Yield Strength and Tensile Strength of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures .	58
34	The Percent Elongation and Modulus of Elasticity in Tension of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures	
35	The Effect of Temperature on the Tensile Properties of Ti-6Al-2Sn-(Zr-2Mo Alloy Sheet	59 60
36	Comparison of the 0.2%-Offset Yield Strength of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for other Titanium Alloys	63
37	Comparison of the Ultimate Tensile Strength of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys.	64
38	Comparison of Elongation and Modulus of Elasticity in Tension of Titanium Sheet Alloys Evaluated in this Frogram with Data from the Literature for Other Titanium Alloys	65
39	The 0.2%-Offset Yield Strength and Modulus of Elasticity in Compression of Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures	68

Number	·	Page
40	Effect of Temperature on the Compressive Properties of Ti-5Al-5Sn-5Zr Alloy Sheet	69
41	The 0.2%-Offset Yield Strength and Modulus of Elasticity in Compression of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures	70
42	Effect of Temperature on the Compressive Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet	71
43	The 0.2%-Offset Yield Strength and Modulus of Elasticity in Compression of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures	72
44	Effect of Temperature on the Compressive Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet	73
45	Comparison of the Compressive Properties of Titanium Alloy Sheet Evaluated in this Program with Data from the Literature for other Titanium Alloys	74
46	Bearing-Strength Properties of the Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures	78
47	Effect of Temperature on the Bearing Properties of Ti-5Al-5Sn-5Zr Alloy Sheet	79
48	Bearing-Strength Properties of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures	80
49	Effect of Temperature on the Bearing Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet	81
50	Bearing-Strength Proporties of the Ti-6Al-2Sn-4Zr-2Mo Allog Sheet at Different Temperatures	y 82
51	Effect of Temperature on the Bearing Properties of Ti-6Al-2Sn-4Zr-2Mo Allov Sheet	83

Number	<u>Pa</u>	age
5 2	Comparison of the Bearing Strength (e/D = 2.0) of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys	84
53	Comparison of the Bearing Strength ($e/D = 1.5$) of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for other Titanium Alloys	85
54	The Ultimate Shear Strength of Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures	87
55	The Ultimate Shear Strength of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures	87
56	The Ultimate Shear Strength of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures	88
57	The Effect of Temperature on the Ultimate Shear Strength of Three Titanium Alloys	89
58	Comparison of Ultimate Shear Strength of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys	90
59	Effect of Thermal Exposure on the Tensile-Strength Properties of Ti-5Al-5Sn-5Zr Alloy Sheet at Room Temperature (above) and at the Exposure Temperature (below)	92
60	Effect of Thermal Exposure on the Tensile-Strength Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Room Temperature (above) and at the Exposure Temperature (below)	93
61	Effect of Thermal Exposure on the Tensile-Strength Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Room Temperature (above) and at the Exposure Temperature (below)	94
62	The Effect of Thermal Exposure on the Ultimate Shear Strength of Ti-5Al-5Sn-5ZrAlloy Sheet at Room Temperature (above) and at the Exposure Temperature (below)	95

Number		Page
63	The Effect of Thermal Exposure on the Ultimate Shear Strength of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Room Temperature.	96
64	The Effect of Thermal Exposure on the Ultimate Shear Strength of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Room Temperature (above) and at the Exposure Temperature (below)	n 97
65	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr Alloy Sheet at 900°F	99
66	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr Alloy Sheet at 1000°F.	100
67	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr Alloy Sheet at 1050°F	101
68	Minimum Creep Rate of Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures	102
69	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at 600 7	103
70	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at 800°F	104
71	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at 900°F.	105
72	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at 1000°F	106

Number		Page
73	Minimum Creep Rate of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperature	107
74	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at 800°F	108
75	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-6Al-2Sn-4Zr-2Lo Alloy Sheet at 900°F	109
76	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at 1000°F	110
77	Minimum Creep Rate of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures	111
78	Comparison of Creep Strength at 0.1% Creep Deformation of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys	112
79	Comparison of Creep Strength at 0.5% Creep Deformation of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys	113
80	S-N Curves for the Ti-5Al-5Sn-5Zr Alloy Sheet at 70°F in the Notched and Unnotched Conditions	114
81	S-N Curves for the Ti-5Al-5Sn-5Zr Alloy Sheet at 400°F in the Notched and Unnotched Conditions	115
82	S-N Curves for the Ti-5Al-5Sn-5Zr Alloy Sheet at $800^{\circ}F$ in the Notched and Unnotched Conditions	116
83	Constant-Life Fatigue Diagram for the Ti-5Al-5Sn-5Zr	117

Number		Page
84	Constant-Life Fatigue Diagram for the Ti-5Al-5Sn-5Zr Alloy Sheet (Notched K_t = 3) at Different Temperatures	118
65	S-N Curves for the Ti-5Al-5Sn-5Zr-1V-1Mo Alloy Sheet at 70°F in the Notched and Unnotched Conditions	119
86	S-N Curves for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at 400°F in the Notched and Unnotched Conditions	120
87	S-N Curves for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at 800°F in the Notched and Unnotched Conditions	121
88	Constant-Life Fatigue Diagram for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet (Unnotched) at Different Temperatures.	122
89	Constant-Life Fatigue Diagram for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet (Notched K _t = 3) at Different Temperatures	123
90	S-N Curves for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at 70°F in the Notched and Unnotched Conditions	124
91	S-N Curves for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at 400°F in the Notched and Unnotched Conditions	125
92	S-N Curves for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at 800°F in the Notched and Unnotched Conditions	126
93	Constant-Life Fatigue Diagram for the Ti-6Al-2Sn-4Zr-2 Mo Alloy Sheet (Unnotched) at Different Temperatures	127
94	Constant-Life Fatigue Diagram for the Ti-6/1-2Sn-4Zr-2Mo Alloy Sheet (Notched K_t = 3) at Different Temperatures .	128
95	Tensile Properties at Room Temperature of Ti-5Al-5Sn-5Zr Alloy Sheet after Stress-Corrosion Exposure at Different Times, Temperatures and Stresses to Dry Salt	133

Number	_1	Page
96	Ductility of the Ti-5Al-5Sn-5Zr Alloy Sheet After Stress-Corrosion Exposure at Different Times, Temperature and Stresses to Dry Salt	134
97	Stress-Corrosion Damage in the T1-5A1-5Sn-5Zr Alloy Sheet after Exposure to Different Temperature-Time- Stress Conditions	135
98	Tensile Properties at Room Temperature of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet after Stress-Corrosion Exposure at Different Times, Temperatures and Stresses to Dry Salt	136
99	Ductility of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet after Stress-Corrosion Exposure at Different Times, Temperatures and Stresses to Dry Salt	137
100	Stress-Corrosion Damage in the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet after Exposure to Different Temperature-Time- Stress Conditions	138
101	Tensile Properties at Room Temperature of the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet after Stress-Corrosion Exposure at Different Times, Temperatures and Stresses to Dry Salt.	139
102	Ductility of the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet After Stress-Corrosion Exposure at Different Times, Temperatures and Stresses to Dry Salt	140
103	Stress-Corrosion Damage to the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet after Exposure to Different Temperature-Time-Stress Conditions	141
104	The Effect of Temperature on the Moduli of Elasticity of the Titanium Sheet Alloys under Dynamic Loading Conditions	142
105	The 0.2%-Offset Yield Strength, Tensile Strength and the Modulus of Elasticity in Tension of Ti-5Al-5Sn-5Zr Alloy Bar	147

xxiii

Number		Page
196	The Elongation and Reduction of Area of Ti-5Al-5Sn-5Zr Alloy Bar	148
107	The Effect of Temperature on the Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Bar	149
108	The 0.2% -Offset Yield Strength, Tensile Strength and the Modulus of Elasticity in Tension of Ti-679 Alloy Bar	150
109	The Elongation and Reduction of Area of Ti-679 Alloy Bar	151
110	The Effect of Temperature on the Tensile Properties of Ti-679 Alloy Bar	152
111	Comparison of the 0.2%-Offset Yield Strength of Titanium Bar Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys	153
112	Comparison of the Ultimate Tensile Strength of Titanium Bar Alloys Evaluated in this Program with Data from The Literature for other Titanium Alloys	154
113	Comparison of Elongation and Modulus of Elasticity in Tension of Titanium Bar Alloys Evaluated in this Program with Data from the Literature for other Titanium Alloys.	155
114	The 0 2%-Offset Yield Strength and Modulus of Elasticity in Compression of Ti-5Al-5Sn-5Zr and Ti-679 Alloys in Bar Form at Different Temperatures	159
115	Effect of Temperature on the Compressive Properties of Ti-5Al-5Sn-5Zr Alloy Bar	160
116	Effect of Temperature on the Compressive Properties of Ti-679 Alloy Bar	161

Number		Page
117	Comparison of the Compressive Properties of Titanium Alloy Bar Evaluated in this Program with Data from the Literature for Other Titanium Alloys	162
118	The Ultimate Shear Strength of Ti-5Al-5Sn-5Zr Alloy Bar at Differet Temperatures	165
119	The Ultimate Shear Strength of Ti-679 Alloy Bar at Different Temperatures	165
120	The Effect of Temperature on the Ultimate Shear Strength of Two Titanium Alloys	166
121	Comparison of Ultimate Shear Strength of Titanium Bar Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys	167
122	Effect of Thermal Exposure on the Tensile-Strength Properties of Ti-5Al-5Sn-5Zr Alloy Bar at Room Temperature (above) and at the Exposure Temperature (below).	168
123	Effect of Thermal Exposure on the Tensile-Strength Properties of Ti-679 Alloy Bar at Room Temperature (above) and at the Exposure Temperature (below)	169
124	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr Alloy Bar at 800°F	171
125	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr Alloy Bar at 900°F	172
126	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr Alloy Bar at 1000°F	173
127	Minimum Creep Rate of Ti-5Al-5Sn-5Zr Alloy Bar at Different Temperatures	174

Number		Page
128	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-679 Alloy Bar at 800°F	175
129	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-679 Alloy Bar at 900°F	176
130	Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-679 Alloy Bar at 1000°F	177
131	Minimum Creep Rate of Ti-679 Alloy Bar at Different Temperatures	178
132	Comparison of Creep Strength at 0.1% Creep Deformation of Titanium Bar Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys	179
133	Comparison of Creep Strength at 0.5% Creep Deformation of Titanium Bar Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys	180
134	The Effect of Temperature on the Impact Strength of the Ti-5Al-5Sn-5Zr and Ti-679 Bar Alloys	183
135	S-N Curves for the Ti-5Al-5Sn-5Zr Alloy Bar at 70°F in the Notched and Unnotched Conditions	184
136	S-N Curves for the Ti-5Al-5Sn-5Zr Alloy Bar at 400°F in the Notched and Unnotched Conditions	185
137	S-N Curves for the Ti-5Al-5Sn-5Zr Alloy Bar at 800°F in the Notched and Unnotched Conditions	186
138	Constant-Life Fatigue Diagram for the Ti-5Al-5Sn-5Zr Alloy Bar (Unnotched) at Different Temperatures	187
139	Constant-Life Fatigue Diagram for the Ti-5Al-5Sn-5Zr Alloy Bar (Notched K ₊ = 3) at Different Temperatures	188

Number		Page
140	S-N Curves for the Ti-679 Alloy Bar at 70°F in the Notched and Unnotched Conditions	189
141	S-N Curves for the Ti-679 Alloy Bar at 400°F in the Notched and Unnotched Conditions	190
142	S-N Curves for the Ti-679 Alloy Bar at 800°F in the Notched and Unnotched Conditions	191
143	Constant-Life Fatigue Diagram for the Ti-579 Alloy Bar (Unnotched) at Different Temperaturs	192
144	Constant-Life Fatigue Diagram for the Ti-679 Alloy Bar (Notched K_t = 3) at Different Temperatures	193
145	The Effect of Temperature on the Moduli of Elasticity of the Titanium Bar Alloys under Conditions of Dynamic Loading	197
146	The Thermal Conductivity of the Titanium Sheet Alloy, Ti-5Al-5Sn-5Zr, Parallel to Rolling Direction	199
147	The Thermal Conductivity of the Titanium Sheet Alloy, Ti-5Al-5Sn-5Zr-1Mo-1V Parallel to Rolling Direction	200
148	The Thermal Conductivity of the Titanium Sheet Alloy, Ti-6Al-2Sn-4Zr-2Mo Parallel to Rolling Direction	201
149	The Thermal Conductivity of the Titanium Bar Alloy, Ti-5Al-5Sn-5Zr Transverse to the Rolling Direction	202
150	The Thermal Conductivity of the Titanium Bar Alioy, Ti-679 Transverse to Rolling Direction	203
151	The Thermal Conductivities of Some Titanium Alloys	204
152	The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr in Sheet Form Parallel to the Rolling Direction	2 05

Number		Page
153	The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr in Sheet Form Transverse to the Rolling Direction	206
154	The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr-1Mo-1V in Sheet Form Parallel to the Rolling Direction	207
155	The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr-1Mo-1V in Sheet Form Transverse to the Rolling Direction	208
156	The Thermal Expansion of the Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo in Sheet Form Parallel to the Rolling Direction	209
157	The Thermal Expansion of the Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo in Sheet Form Transverse to the Rolling Direction.	210
158	The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr in Bar Form Parallel to the Rolling Direction	211
159	The Thermal Expansion of the Titanium Alloy Ti-679 in Bar Form Parallel to the Rolling Direction	212
160	The Thermal Expansion of Four Titanium Alloys	213
161	The Enthalpy and Heat Capacity of the Titanium Alloy Ti-5Al-5Sn-5Zr in Bar and Sheet Form	215
162	The Enthalpy and Heat Capacity of the Titanium Alloy Ti-5Al-5Sn-5Zr-1Mo-1V in Sheet Form	216
163	The Enthalpy and Heat Capacity of the Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo in Sheet Form	217
164	The Enthalpy and Heat Capacity of the Titanium Alloy Ti-679 in Bar Form	218
165	The Heat Capacities of Four Titanium Alloys	219

SYMBOLS

a, b, c, β	Constants
A	Ratio of alternating to mean stress in fatigue
a	Crack length at maximum load or at pop-in in fracture-toughness tests
a _o	Half length of fatigue crack in fracture-toughness tests
В	Thickness of fracture-toughness specimen
e	Elongation
E	Dynamic modulus of elasticity
$\mathbf{E_c}$	Modulus of elasticity in compression
Et	Modulus of elasticity in tension
e/D	Ratio of distance-to-edge to bearing-hole diameter
€	Strain
f	Frequency
°F	Degrees Fahrenheit
F_{Cy}	Yield strength in compression at 0.2% offset
$F_{ extbf{bry}}$	Bearing yield stress
$F_{\mathtt{bru}}$	Ultimate bearing stress
F_{su}	Ultimate shear stress
Fty	Yield strength in tension at 0.2% offset
F tu	Ultimate tensile strengu.
g	Gravitational constant
h ₈₅	Enthalpy above reference temperature of 85° F

SYMEOLS (Cont'd)

of

HC	Heat capacity
k	Radius of gyration
K _c	Critical stress intensity factor associated with initiation of unstable plane-stress fracturing
K_{Ic}	Critical stress-intensity factor associated with initiation of plane-strain fracturing
K _t	Stress concentration factor
ksi	Kips (1000 pounds) per square inch
1	Length
L	Longitudinal
ν .	Poisson's ratio
P	Lead
ρ	Density
π	3. 1416
R	Ratio of minimum stress to maximum stress in fatigue
R.A.	Reduction of area
R_c	Hardness on Rockwell C scale
ī	Gross stress at maximum load or at pop-in in fracture-toughness tests
5	Stress
r	Transverse or degrees Rankine
	Time or thickness
,	Width of fracture-toughness specimen
	37777

MECHANICAL AND THERMAL PROPERTIES OF HIGH-TEMPERATURE TITANIUM ALLOYS

INTRODUCTION

Recent titanium-alloy development programs have resulted in several alloys that seem to have superior properties at elevated temperatures to other titanium alloys that have been commercially available in recent years. The potential of these new alloys for airframe and engine applications needs to be more thoroughly evaluated by determinations of mechanical and thermal properties over the temperature range of potential applications. Such evaluation programs will further establish the limiting time-temperature conditions and provide design data for maximum utilization of the alloys. As a step toward accomplishment of these objectives, the Air Force initiated a program at Southern Research Institute to evaluate the mechanical and thermal properties up to 1000° F for three titanium alloys in sheet form and two alloys in bar form.

SCOPE

The alloys that were selected for evaluation in sheet and bar form are shown in Table 1. The considerations involved in the selection of each of these alloys will be discussed in a subsequent section of this report.

Table 1

Alloys and Product Forms Evaluated

Bar	Sheet
Ti-5A1-5Sn-5Zr	Ti-5Al-5Sn-5Zr
Ti-679	Ti-5Al-5Sn-5Zr-1Mo-1V
	Ti-6Al-2Sn-4Zr-2Mo

The experimental program was designed for a comprehensive evaluation of properties from one heat of each alloy-product form combination and for

evaluation of the tensile properties from an additional heat of each alloyproduct form. Table 2 summarizes the evaluations that were performed on the sheet and bar forms of the alloys.

Table ${f 2}$ Summary of Evaluations for Sheet and Bar

Property	Product Form	Temperatures, ° F
Tensile Compression Shear Exposure-tensile Exposure-shear Over exposure-tensile Creep Axial fatigue Dynamic modulus Fracture toughness Impact Stress corrosion Thermal conductivity Thermal expansion	Sheet and Bar	Temperatures, F RT to 1000 RT to 1000 RT to 1000 600, 800, 1000 600, 800, 1000 1100, 1150, 1200 600 to 1050 RT, 400, 800 RT to 1000 RT, -110, 40C RT, 400, 600, 800 500 to 900 RT to 1000 RT to 1000 RT to 1000
Specific heat	Sheet and Bar	RT to 1000

a. Determined at different temperatures for different alloys.

Tables 107 and 108, in Appendix III, give additional details of the mechanical-property evaluations for the sheet and bar alloys respectively. Table 109, also in Appendix III, shows a summary of the thermal properties that were determined. These tables show the orientations evaluated, additional details concerning the test conditions, and the number of specimens evaluated at different temperatures and under different conditions.

EXPERIMENTAL ALLOYS

Selection

Since the primary interest of this program was in titanium alloys for applications at high temperatures, only the super-alpha alloys were considered for the program. The original choice of alloys for evaluation was as follows:

- (1) Ti-5A1-5Sn-5Zr
- (2) Ti-5Al-5Sn-5Zr-1Mo-1V
- (3) Ti-679

with all three allows scheduled for evaluation in sheet form and the Ti-5Al-5Sn-5Zr and Ti-679 all ys additionally scheduled for evaluation in bar form.

Although the Ti-5Al-5Sn-5Zr alloy has been evaluated in previous investigations, there was a twofold purpose for including this alloy in the present program. First, since the alloy is established as a good high-temperature alloy, inclusion of the alloy in this program provided reference properties against which the properties of the new alloys could be compared in the same product form and under the same experimental conditions. Second, although data have been obtained on the tensile and creep properties of the Ti-5Al-5Sn-5Zr alloy, many of the other properties that were studied in this program had not been determined for the alloy.

The third sheet alloy originally scheduled for evaluation was the Ti-679 alloy. This alloy was introduced by Imperial Metal Industries, Ltd., in Britain as IMI 679. Its nominal composition is 2.2% Al, 11% Sn, 5% Zr, 1% Mo and 0.2% Si. The microstructure contains a dispersion of titaniumsilicide particles after solution annealing at 1650° F and aging at 930° F, which is thought to contribute to the high strength of the alloy. The principal use of the alloy in Britain has been for forgings. Titanium Metals Corporation of America (TMCA) obtained a license for producing the alloy in this country and have continued its development. Preliminary data showed that the alloy also had good high-temperature strength in sheet form, which was the primary reason for including it in the original selection of sheet alloys for this program. Additional data that became available at the time the alloys were being selected showed that the Ti-679 alloy had relatively poor fracture toughness in sheet form. For this reason the Ti-679 sheet was eliminated from the program. The alloy selected to replace the sheet form of Ti-679 was a very new composition which TMCA suggested after a preliminary evaluation. The nominal composition of the replacement alloy was Ti-6Al-2Sn-4Zr-2Mo. The preliminary data showed that the Ti-6Al-2Sn-4Zr-2Mo had comparable tensile strength to the Ti-5Al-5Sn-5Zr-1Mo-1V alloy from room temperature to 1000° F which, at all temperatures, is significantly higher than the tensile

strength of the basic Ti-5Al-5Sn-5Zr composition. Also, from preliminary tests the Ti-6Al-2Sn-4Zr-2Mo composition seemed to have creep strength comparable to the high creep strength of the Ti-5Al-5Sn-5Zr alloy. Tensile tests at room temperature on specimens which were exposed at 800, 1000, and 1100° F for 150 hr in creep tests in the early evaluations suggested that the alloy had good thermal stability.

In the original program schedule, experimental materials of each alloy and product form were to be procured from two producers. However, most of the alloys were not available from more than one producer except from small ingots that would have to be produced especially for the program. After considering the cost for these special heats and the undesirability of using material from small ingots in the program, we recommended that the material representing two heats of each alloy-form be procured from a single producer, Titanium Metals Corporation of America.

Processing

The processing sequence for each experimental material is summarized in the following paragraphs.

A. Ti-5Al-5Sn-5Zr Sheet (Heats D-8060 and D-1793)

- 1. Ingots were press forged 16-in. square from 2050° F and to 3×12 -in. sheet bars from 1950° F. The slabs were conditioned and ultrasonically inspected.
- 2. Sheet bars were cut and rolled to intermediate size from 1880 1900° F, descaled, acid pickled, and the surfaces conditioned to remove defects.
- 3. The material was finish rolled from 1750° F, descaled and acid pickled, anneal-flattened at 1350° F (8 hr), and rough ground.
- 4. Sheets were final annealed at 1650° F (1/2 hr) A.C., descaled, finish ground, acid pickled, and tested as 0.040-in. gage.

B. <u>Ti-5Al-5Sn-5Zr-1Mo-1V</u> Sheet (Heats V-2957 and V-1991)

- 1. Ingots were press forged to 7×11 -inch sections from 2050° F and to 3×12 -inch slabs from 1950° F, conditioned, and ultrasonically inspected.
- 2. Sheet bars were cut and rolled to intermediate size from 1860° F, descaled, acid pickled, and the surfaces conditioned to remove defects.

- 3. The material was finish rolled from 1700° F, descaled and acid pickled, anneal-flattened at 1350° F (8 hr), and rough ground.
- 4. Sheets were annealed at 1550° F (1/2 hr) A.C., descaled and rough ground, annealed at 1400° F, (1/4 hr) A.C., descaled, finish ground, acid pickled, and tested at 0.040-inch gage.

C. Ti-6Al-2Sn-4Zr-2Mo Sheet (Heats V-3016 and V-3076)

- 1. Ingots were press forged to 7×11 -inch section (V-3016) or directly to 3×12 -inch slab (V-3076) from 2050° F, and in the case of V-3016 to 3×12 -inch slab from 1950° F, conditioned, and ultrasonically inspected.
- 2. Sheet bars were cut and rolled to intermediate size from 1790 1800° F, descaled, acid pickled, and the surfaces conditioned to remove defects.
- 3. The material was finish rolled from 1750° F, descaled and acid pickled, anneal-flattened at 1350° F (8 hr), and rough ground.
- 4. Sheets were annealed at 1650° F (1/2 hr) A.C., descaled and rough ground, annealed at 1450° F (1/4 hr), A.C., descaled, finish ground, acid pickled, and tested at 0.040-inch gage.

D. Ti-5A1-5Sn-5Zr Bar (Heats D-8060 and D-1793)

- 1. Ingots were press forged 16-inch square from 2050° F, and to 4-inch square billets from 1950° F.
- 2. Billets were thoroughly conditioned and ultrasonically inspected.
- 3. Billets (4-inch square) re-cogged to 2-1/2-inch square from 1950° F (2" x 6" x 16" pieces of D-1793 pressed slab were hammer forged to 2-1/2-inch square from 1950° F), conditioned, rolled to 1/2 x 1-1/8-inch bars from 1925° F, and descaled.
- 4. Rolled bars were annealed-straightened at 1650° F, 2 hr, A.C., descaled, and tested.

E. Ti-679 Bar (Heats D-7274 and D-8427)

1. Billet stock (D-7274 - 8" round and D-8427 - 12" octagon) were press forged to 4-inch square billets from 1675° F, conditioned, and ultrasonically inspected.

- 2. Billets (4-inch square) were re-cogged to 2-1/2-inch square from $1675-1700^{\circ}$ F, conditioned, rolled to $1/2 \times 1-1/8$ -inch bars from 1675° F, and descaled.
- 3. Rolled bars were annealed-straightened at 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C., descaled, and tested.

Heat Treatment

The selection of the final heat treating cycle for each sheet and bar alloy was based primarily on recommendations by TMCA. These recommendations were made on the basis of production experience with some of the alloys and on preliminary laboratory data for other alloys. Table 3 shows a summary of the final heat treatments for all the experimental materials.

Table 3
Summary of Heat Treatments for the Experimental Alloys

Alloy	Form	Heat Treatment
Ti-5A1-5Sn-5Zr	Sheet	1650° F, 1/2 Hr, A.C.
Ti-5Al-5Sn-5Zr-1Mo-1V	Sheet	1550° F, 1/2 Hr, A.C. + 1400° F, 1/4 Hr, A.C.
Ti-6Al-2Sn-4Zr-2Mo	Sheet	1650° F, 1/2 Hr, A.C. + 1450° F, 1/4 Hr, A.C.
Ti-5Al-5Sn-5Zr Ti-679	Bar Bar	1650° F, 2 Hr, A.C. 1650° F, 2 Hr, A.C. + 930° F

As this table shows, the all-alpha alloy, Ti-5Al-5Sn-5Zr, was evaluated in the solution-annealed condition. Of the alpha-beta alloys, the two sheet materials were solution-annealed and then held for 1/4 hr at 1400° F (Ti-5Al-5Sn-5Zr-1Mo-1V) or 1450° F (Ti-6Al-2Sn-4Zr-2Mo). This final treatment was to simulate the hot-sizing operation that is usually used in forming titanium-alloy-sheet-parts to achieve the final dimensions of the part. It is recognized that higher strength could be achieved by aging the Ti-5Al-5Sn-5Zr-1Mo-1V and Ti-6Al-2Sn-4Zr-2Mo alloys at about 1100° F after either the solution-anneal or after the hot-sizing thermal treatments (1/4 hr at 1400-1450° F), as may be seen from preliminary data supplied by TMCA¹ and shown in Figures 1 and 2. The two alpha-beta alloy sheet materials were evaluated in the annealed + hot sizing treated condition because it was anticipated that this would be the condition in which most of the sheet would be used.

¹ Superscript figures indicate references.

Figure 1. The Effect of Annealing Temperature on the Room Temperature Tensile Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet from Two Heats. Samples Annealed 1/2 hr at Temperatures Shown and Air Gooled. All Specimens from the Longitudinal Orientation.

Figure 2. The Effect of Annealing Temperature on the Room-Temperature Tensile Properties of Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet. All Specimens from the Longitudinal Orientation.

The Ti-679 alloy was evaluated in the solution-treated-plus-aged condition which is normally used for the alloy.

Properties of As-Received Materials

The quantity and identification of the sheet and bar alloys that were procured for the program is shown in Table 4. As mentioned previously, material from two heats was procured for each sheet and bar alloy in sufficient quantities for the determination of all properties from one heat (A) and for determination of only the tensile properties from the secondary heat (B). The Ti-5Al-5Sn-5Zr alloy sheet and bar were from the same heat. Table 5 shows the composition (furnished by TMCA) for all the experimental alloys.

The results of tensile tests performed by TMCA on each alloy are given in Table 6. The strength and ductility properties as given in this table for each heat are in reasonable agreement with results we obtained in tensile tests at room temperature.

The hardness of each bar and sheet were checked, for which results are given in Tables 7 and 8. On the bar alloys the hardness was checked at one end of each as-received length of the bars, and on the sheets the hardness was checked at locations shown in Table 8. The hardness of the bar and sheet were found to be uniform within normal limits of variation. In addition to the hardness measurements, the microstructures were examined of each as-received length of the bar materials and each sheet at the five locations where hardness measurements were made. Figures 3 and 4 show typical microstructures for each bar and sheet alloy. The microstructure was found to be uniform at all locations for both product forms.

Table 4

Quantity and Identification of Materials

Procured for the Program

Item No.	Primary or Secondary Heat	Description	Heat No.
1	Α .	Ti-5Al-5Sn-5Zr, 2 pcs 36 in. x 96 in. x 0.040 in. sheet	D-8060
2	В	Ti-5Al-5Sn-5Zr, 1 pc, 36 in, x 48 in, x 0.040 in, sheet	D-1793
3	Α	Ti-5Al-5Sn-5Zr-1Mo-1V, 2 pcs, 36 in. x 96 in. x 0.040 in. sheet	v - 2957
4	В	Ti-5Al-5Sn-5Zr-1Mo-1V, 1 pc 36 in. x 48 in. x 0.040 in. sheet	V-199i
5	A	Ti-6Al-2Sn-4Zr-2Mo, 2 pcs. 36 in. \times 96 in. \times 0.040 in. sheet	V-3016
6	В	Ti-6Al-2Sn-4Zr-2Mo, 1 pc, 36 in. \times 48 in. \times 0.040 in. sheet	V-3076
7	Α	Ti-5Al-5Sn-5Zr, 70 lin ft, $1/2$ in. x 1-1/8 in. bar	D-8060
8	В	Ti-5Al-5Sn-5Zr, 16 lin ft, $1/2$ in. x 1-1/8 in. bar	D-1793
9	A	Ti-679, 70 lin ft, $1/2$ in. x 1-1/8 in. bar	D-7274
10	В	Ti-679, 16 lin ft, $1/2$ in. x 1-1/8 in. bar	D-8427

A and B denote primary heat (all evaluations) and secondary heat (tensile evaluations only) respectively of each alloy.

Certified Chemical Analysis of Materials 2, b

ie II	Alloy	Form	Heat	U	F)	AI	>	Mo	Zr	Sn	Si	0	×	z
	Ti-5Al-5Sn-5Zr	Sheet	D-8060	0.025	0.02	5.3	,	,	5.3	5.1	١,	0.10	0.005	0.011
~	Ti-5A1-5Sr-5Zr	Sheet	D-1793	0.027	0.04	5.0	,	1	4.9	8.4		0.08	0.007	0.012
	Ti-5Ai-5Sn-5Zr-1Mo-1V		V-2957	0.031	0.12	4.9	1.0	1.0	4.7	4.7		0.08	0.012	0.012
_	Ti-5Al-5Sn-5Zr-1Mo-1V		V-1991	0,023	0.11	5.2	0.98	1.1	8.	5, 0		0.08	0.007	0.010
	Ti-6AI-2Sn-4Zr-2Mo		V-3016	0.022	0.05	6.2		2.0	4.2	2.0		0.08	0.005	0.006
_	Ti-6A1-2Sn-4Zr-2Mo		V-3076	0.025	0.05	6.0	ı	2.1	4.1	2.2		•	1	0.010
_	Ti-5AI-5Sn-5Zr	Bar	D-8060	0,025	0.05	5.3	•	•	ۍ د.	5.1	,	0.10	9,010	0,011
_	T1-5A1-5Sn-5Zr	Bar	D-1793	0.027	0.04	5.0	,		6.9	8.	•	_	0.510	0.012
	T1-679	Bar	D-7274	0.023	0.08	2.4	•	76.0	4,7	10.8	0.33	0.127	0.007	0.012
0	T1-679	Bar	D-8427	0.023	0.08	9:0	ı	1.0	4.6	11.2	0.24	0.123	0.005	e. 308

a Certified by TMCA.

b Analytical results given as percent by weight,

Table 6

Room-Temperature Tensile Data Supplied by TMCA for the Experimental Materials

Item	Alloy	Form	Heat	Direction	Ftyksi	Ftu ksi	0 %	R. A.	Hardness
ď	Ti-5Al-5Sn-5Zr	Sheet	D-8060	리단	113, 3	126.6 124.6	16.5 16.7		33.3
7	Ti-5Al-5Sn-5Zr	Sheet	D-1793	J F	113.1 114.9	124, 1 120, 2	16.0	1 1	31.0
g 0	Ti-5Al-5Sn-5Zr-1Mo-1V	Sheet	V-2957	J F	137.8 140.5	151.5 150.6	10.0	1 4	35,0
4	Ti-5Al-5Sn-5Zr-1Mo-1V	Sheet	V-1991	J F	150.7 133.8	155.5 155.6	13.0		33.3
co g	Ti-6Al-2Sn-4Zr-2Mo	Sheet	V-3016	14	138.5 137.5	146.2 145.3	12.3	1 11	34.3
9	Ti-6Ai-2Sn-4Zr-2Mo	Sheet	V-3076	J F	137.5 133.5	150.7 145.9	13.0	11.1	34°3°
-2	Ti-5Al-5Sn-5Zr	Bar	D-8060	ı	121.0	131.0	18.0	41	31.5
ω	Ti-5Al-5Sn-5Zr	Bar	D-1793	J	117.5	125.0	15.0	37	30.0
6	Ti-679	Ear	D-7274	J	136.5	149.0	18.0	39	36.1
10	Ti-679	Bar	D-8427	J	127.0	142.0	15.0	32	36.0

a. Average of two values reported for both longitudinal and transverse orientations. b. Determined by Southern Research Institute.

Table 7

Results of Hardness Tests on Bar Materials as Received

				Rocky	rell C H	ardness	#		
	Heat			B	r Num	ber			
Alloy	No.	-	2 3 4 5 6 7 Avg.	8	4	co.	9	7	Avg.
Ti-5Al-5Sn-5Zr	D-8060	32.0	32.0 31.0 31.5 31.1 31.8 32.0 31.8 31.5	31.5	31.1	31.8	32.0	31.8	31.5
Ti-5A1-5Sn-5Zr	D-1793	30°0	,			•	•	•	30.0
Ti-679	D-7274 36.1	36.1	36.0	35.6	36.0 35.6 35.0 34.0 36.3 36.2 35.6	34.0	36,3	36, 2	35.6
Ti-679	D-8427 36.0	36.0	•	ı	ı	•		•	36.0

a. Average of three hardness readings at each location,

Table 8

Results of Hardness Tests on Sheet Materials as Received

	100	9		Rock	Rockwell C Hardness	fardness	٠_	
Alloy	No	Sheet		3	Location in Sheet	Sheet		
	140.	No.	-	.7	67	4	c	AVR
Ti-5AI-5Sn-5Zr	D-8060	- 8	34.0	34.0 32.5	34.0	33.0	34.0	33.8
Ti-5Al-5Sn-5Zr	D-1783	-	31.0	31.0	30, 6	31.3	31.0	31.0
Ti-5Al-5Sn-5Zr-1Mo-1V	V-2957	~ 0	35.0 35.0	35.0 35.0	35.0	35.0 35.0	35.0	35.0 84.0
Ti-5A1-5Sn-5Zr-1Mo-1V	V-1991	-	33.3	33,3	33.3	33.3	33.4	33.3
Ti-6Al-2Sn-4Zr-2Mo	V-3016	- 8	35.0 34.5	35.0 33.0	34.0	35.0 34.5	34.0	34.6
Ti-6Al-2Sn-4Zr-2Mo	V-3076	7	35.0	34,5	34.0	33.5	34.5	34.3

a. Average of three readings at each location on 30-N scale converted to Rc.

Approximate location of hardness specimens in sheet.

Heat No. D-7274

Heat No. D-8427

Ti-679 Alloy

Heat No. D-8060

Heat No. D-1793

Fishant: 1 ml HF + 2 ml HNO₃ + 98 ml H₂O Magnification: 250X

Heat No. D-8060

Heat No. D-1793

Ti-5Al-5Sn-5Zr Alloy

Heat No. V-2957

Heat No. V-1991

Ti-5Al-5Sn-5Zr-1Mo-1V Alloy

Heat No. V-3016

Heat No. V-3076

Ti-6Al-2Sn-4Zr-2Mo Alloy

Figure 4. Microstructure of the Three Sheet Alloys. Etchant: 1 ml HF + 2 ml HNO₃ + 98 ml H₂O Magnification: 250X

EQUIPMENT AND PROCEDURES

Tensile, Compression, Bearing and Shear

Except for the tensile tests on notched specimens, all the tensile, compression, bearing and shear evaluations as well as tensile tests on thermal-exposure, stress-corrosion, and fracture-toughness specimens were performed on 120,000-psi capacity universal testing machines. These machines have different load ranges from 0 - 3000 up to their full capacity. The calibration of each load range is checked and, if necessary, adjusted to bring the indicated error to within 1% on a 12-month-interval schedule. Both machines are equipped with differential-transformer strain sensing and recording equipment capable of strain magnifications of 100X to 1000X, depending upon the extensometer used with the system. Extensometers were used to record load-strain curves in the tensile tests and load-deformation curves in the bearing tests. In the elevated-temperature tensile tests the extensometers were used with a frame which extended into the furnace and was attached to the gage points of the specimen.

A split muffle furnace, which was heated by Nichrome elements, was used for all of the elevated-temperature tensile, bearing, and shear evaluations. Because of their size, the bar and sheet fracture-toughness specimens tested at 400 F were heated by quartz-tube, tungsten-element radiation lamps. The fracture-toughness specimens tested at -110° F were cooled in a cryostat by gaseous nitrogen which was cooled by passage through a copper coil that was submerged in liquid nitrogen. The flow of gaseous nitrogen was regulated to maintain the specimen at -110° F. Chromel-alumel thermocouples and a direct-reading milivolt potentiometer were used to measure and control the temperature of the specimens at all elevated and low temperatures. Specimens were heated to temperature in approximately 15 min and held at temperature 15 min before starting the tests. In these tests the indicated temperature was normally maintained within 5° F of the nominal test temperature.

Figures 5 - 8 show the specimens that were used for the tensile, compression, bearing, and shear evaluations respectively. Except for the compression and bearing tests and the shear tests on the bar alloys, conventional pin-and-clevis or threaded grips were used for sheet and bar specimens.

The notched tensile tests, which were not scheduled in the original scope of the program, were performed by the Air Force Materials Laboratory to obtain data for use in the constant life fatigue diagrams. All of these tests except the elevated-temperature tests on the bar alloys, were performed with a Model TT-C Instron testing machine. A Baldwin FGT machine was used to test the bar samples at elevated temperatures. During the tests the crosshead rate was controlled at 0.02 in./min. The temperature of the notched

Figure 5. Specimens for Tensile, Creep, Exposure-Tensile and Stress-Corrosion (sheet only) for Sheet and Bar Materials.

Figure 6. Compression Specimens for Sheet and Bar Materials.

Figure 7. Bearing Specimen.

Figure 8. Shear Specimen for Sheet (a) and Bar (b) Materials

specimens was measured by calibrated chromel-alumel thermocouples which were wired to the specimen at the notch and at positions 0.5 in. above and below the notch. The maximum temperature gradient measured in these tests was less than \pm 3° F of the nominal control temperature. Smooth tensile specimens, shown in Figure 5, were notched for these tests to produce a stress concentration factor, K_t = 3. The sheet specimens were notched 45° to a minimum width of 0.375 in. and root radius of 0.025 in. The bar specimens were notched 45° to a minimum diameter of 0.187 in. and a root radius of 0.010 in.

Special fixtures were used for the compression and bearing tests and for the shear tests on the bar alloys as shown in Figures 9 - 12. The subpress for the compression tests on sheet and bar specimens, shown in Figures 9 and 10, was designed to the requirements of ASTM Specification E 9-61. The specimen is deformed by round (for bar) or flat (for sheet) platens th t extend into the nickel-support blocks which provide bending restraint for the specimens and serve to conduct heat to the specimen from the cartridge heaters. Strain was sensed at the platens by opposite straingage extensometers that were located outside the furnace. The signal from the extensometer was recorded against that from a strain-gage load cell (after suitable amplification) on an X-Y recorder to obtain the usual load-deformation curve. The bearing fixture, which meets the general requirements of ASTM E 238-64T, is shown in Figure 11. Deformation of the bearing hole was sensed by the differential-transformer extensometer and recorded against load with a conventional autographic recorder. The special fixture for the shear tests on specimens of the bar alloys is shown in Figure 12. With this fixture, the specimen is sheared by tool-steel inserts in the fixture.

Tensile tests were performed at a strain rate of approximately 0.005 min⁻¹ to about 0.6%-offset and at 0.05 min⁻¹ to failure. In the compression tests, specimens were strained at approximately 0.005 min⁻¹ to 0.6%-offset, at which point the tests were discontinued. Bearing and shear tests were performed at a crosshead rate of approximately 0.005 in. min⁻¹.

Figure 9. Compression-Test Fixture

Figure 10. Cross-Section of Compression Furnace and Fixture.

Figure 11. Apparatus for Bearing Tests

Figure 12. Shear-Test Fixture for Bar Materials

Creep

The creep tests were performed with Satec creep machines of 6000, 12000, or 16000 lb capacity. These machines are equipped with 3-zone m. Hie furnaces by means of which temperature gradients in the specimens can be minimized. Chromel-alumel thermocouples were used to control and monitor the temperature of the specimens. Besides the control thermocouple for the furnace, monitoring couples were attached at top, middle, and bottom locations of the specimen gage length. A direct reading milivolt potentiometer was used to measure temperatures periodically during each test. Specimens were heated to temperature and equalized in 2 to hr before application of load. The indicated temperature was normally maintained within 5° F of the nominal test temperature. In all tests of 100-hr or longer anticipated duration, and in all tests on sheet specimens, strain was measured either by platinum-strip extensometers and a 50X filar microscope or by an extensometer frame and a dial gage. When the anticipated duration of tests on bar-alloy specimens was less than 100 hr, or when the anticipated deformation was large, strain was sensed from the pull rods with dial gages.

Axial Fatigue

Axial fatigue apparatus of the resonating beam type was used in the evaluation of the fatigue properties and to fatigue crack the fracture-toughness specimens from the sheet alloys. Figure 13 is a schematic drawing of the equipment and Figure 14 shows a general view of the two machines, and related apparatus, used in the program. With this equipment a sinusoidal cyclic stress is applied to the specimen by the adjustable eccentric flywheel that is attached to one side of the resonating H-frame. The amplitude of the cyclic stress is controlled by the speed and eccentricity of the flywheel. The mean axial load is applied by the load bar and springs located near the top of the resonating frame. A strain-gage load cell, which is in series with the specimen, is used to measure the mean and cyclic stresses. A nul-balance potentiometric instrument is used in conjunction with the load cell to set the mean stress, and an oscilloscope is used to set and monitor the alternating stress.

The equipment can be used to obtain fatigue data under most mean-to-alternating-stress relationships that are of interest to designers. Completely reversed loading $(A = \infty \text{ or } R = -1)^n$ can be achieved or combined stress loading can be achieved under conditions where the magnitude of the alternating load does not exceed the mean load $(A = 1 \text{ or less, or } R = 0 \text{ or greater})^n$.

A A Alternating Stress
Mean Sivess

R - Minimum Stress
Maximum Stress

Figure 13. Schematic Drawing of Axial-Loading Fatigue Machine.

Figure 14. Axial-Fatigue Machines and Related Apparatus.

men.

Figure 15 shows the design of the bar- and sheet-type specimens to which all specimens were machined early in the program. The notched ends of the bar specimens were machined to fit grips that had been used previously with the fatigue equipment for other materials. In early tests in this program numerous failures occurred in the reduced section of the shoulders which necessitated a change in the method of gripping the bar specimen. The method adapted was a simple friction grip which was clamped to the cylindrical shoulder surfaces of the specimens. For both the sheet and bar specimens, aluminum shims were used between the grip-specimen interface. After the shoulder-failure problem was encountered, the scope of the program was revised to use half of the avail able fatigue specimens to determine the fatigue properties of the alloys at a stress concentration, K_t , of 3. Notches, as shown in Figure 16, were machined in approximately half of the unnotched specimens for these evaluations.

The method of gripping and heating the bar and sheet specimens is illustrated in Figures 17 and 18. For the evaluations at 400 and 800° F, temperature was measured and controlled by thermocouples that were held in contact with the surface of the specimens by a spring clamp. Two variable transformers and a controller were used to achieve partial on-off control of the temperature. With this system the indicated temperature was controlled to within 5° F of the nominal test temperature. Stresses were selected to establish S-N curves from 10^4 to 10^7 cycles. Tests in which the specimen did not fracture within 10^7 cycles were discontinued.

Impact

A STATE OF THE PARTY OF THE PAR

A Sonntag impact machine with range capacities of 0-25, 0-60, 0-100, and 0-240 fc-lb was used for the impact tests. Figure 19 shows the dimensions of the standard Charpy V-notch specimen that was used. For evaluations at 400, 600, and 800° F specimens were heated in a small electric muffle furnace. They were heated to 10° F above the desired temperature at impact to compensate for the decrease in temperature during transfer from the furnace to the testing machine, which required less than 5 seconds.

Fracture Toughness

Fracture-toughness was determined for the sheet alloys from centernotched, fatigue-cracked specimens, shown in Figure 20, and for the bar alloys from edge-notched, fatigue-cracked specimens, shown in Figure 21. An axialfatigue machine, described previously in this report, was used to fatigue crack the sheet specimens. The bar specimens were fatigue cracked by a motordriven eccentric cam that flexed the free end of the specimen. The specimen

Figure 15. Unnotched Fatigue Specimens for Bar (above) and Sheet (below) Materials

Figure 16. Notched Section of Fatigue Specimens for Sheet (above) and Bar (below) Materials.

Figure 17. Load Linkage Assembly and Furnace for Axial-Fatigue Tests at Elevated Temperatures on Bar Specimens,

Figure 18. Load-Linkage Assembly for Fatigue Tests on Sheet Alloys

Figure 19. Charpy V-Notch Impact Specimen.

Figure 20. Fracture-Toughness Specimen and Compliance Gage for Sheet Alloys

Figure 21. Fracture Toughness Specimen Used for Bar Alloys

was supported as a cantilever beam such that the notched edge of the specimen was loaded in tension as the free end was deflected. A universal testing machine, suitably instrumented, was used to perform the fracture-toughness tests. Quartz-tube, tungsten-element lamps were used to heat the specimens for tests at 400° F. For the tests at -110° F, the specimens were cooled in a gas cryostat by gaseous nitrogen that was refrigerated by passage through a copper coil immersed in a flask of liquid nitrogen. The gaseous nitrogen was metered into the cryostat through a solenoid valve that was actuated by the signal from a thermocouple in contact with the specimen at the notch.

A compliance gage, which has been described in detail in another report³, was used with both sheet and bar specimens to determine the load at which crack extension occurred. Figure 20 shows the compliance gage attached to a sheet specimen. The sensitive elements of the compliance gage are resistance strain gages which were bonded to the flexure spring of the compliance gage. The signal from the compliance gage was recorded against load on an X-Y recorder. An acoustical pick-up was attached to the specimen near the crack in an attempt to detect "pop-in." The signal from this pick-up was recorded against deformation on another X-Y recorder. Figure 22 is a reproduction of a load-extension curve for a sheet specimen on which the quantities measured for calculation of the fracture toughness are noted.

The plane-strain fracture toughness of the bar and sheet alloys and the plane-stress fracture toughness for the sheet alloys were calculated from formulae which are discussed in the literature^{4, 7}. The symbols in these formulae are given on pages xxix and xxx of this report.

(Bar alloys)
$$K_{IC}$$
 (or K_{nC}) = $\sqrt{\frac{(P/B)^2 \ 1/w[\ 7.59 \ a/w - 32 \ (a/w)^2 + 117 \ (a/w)^3]}{(1 - \nu^2)}} + \frac{eP}{Bw^{3/2}} \sqrt{\frac{139 \ (a/w) - 221 \ (a/w)^2 + 783 \ (a/w)^3}}$ (1)

(Sheet Alloys)
$$K_{IC}$$
 (or K_{nC}) $= \sqrt{\frac{\sigma^2 w \tan \pi a_0/w}{1 - \nu^2}}$ (2)

(Sheet Alloys)
$$K_c = \sqrt{\sigma^2 w \tan \pi a/w}$$
 (3)

Stress-Corrosion

The stress-corrosion work on the sheet alloys was performed in two stages: A, to determine the minimum susceptibility for stress-corrosion of each sheet alloy and, B, to determine the degradation in tensile properties of the sheet alloys after exposure of dry-salt-coated specimens at different time-temperature-stress parameters. The self-stressed specimen developed by NASA² was selected for the preliminary tests. Figure 23 shows the details

Figure 22, Reproduction of Load-Extension Curve for Center-Cracked Sheet Fracture-Toughness Specimens

(a) Machined strip.

(b) Strip with ends bent.

(c) Completed specimen.

Figure 23. Self-Stressed Corrosion Specimen

of the specimens. The bend angle of the ends of the strip was selected to produce a nominal maximum stress of 100,000 psi at room temperature. After coating the center one inch of each strip specimen with a super-saturated solution of NaCl in water, the specimens were dried and exposed at selected temperatures for different times. The criterion for embrittlement was the loss of bend ductility, which was determined by compressing the specimen along its lengitudinal axis and measuring the relative displacement of the ends at fracture. If the specimen fractured before the ends were compressed into contact, the specimen was judged to have Leen embrittled by stress-corrosion.

In the second phase of the stress-corrosion work, the gage section of tensile specimens (Figure 5) was coated with NaCl, by the procedure given earlier, and stressed at 40, 60, and 80% of the tensile 0.2%-offset yield strength for 10 to 1000 hours at four different temperatures for each alloy. The exposure temperatures were from 500 to 900° F. Tensile tests were performed on the exposed specimens to determine the effect of exposure under different stress-time-temperature parameters on the residual properties. The specimens were exposed under stress in creep machines. The microstructures of selected specimens were examined after testing to determine the severity of corrosion.

Elastic-Moduli

The dynamic moduli of elasticity of the sheet and bar alloys were determined at 70, 400, 600, 800 and 1000° F, and the static moduli were determined at room temperature.

Resistance strain gages were employed to measure strain in tests to determine the moduli under static conditions. The specimens were loaded to different stress levels by calibrated weights acting through a 20:1 lever system of a creep frame. Strain at stresses through approximately 6000 psi were read from which the modulus of elasticity was calculated by Hooke's law:

$$E = \frac{s}{\epsilon} \tag{4}$$

The determination of the elastic modulus under dynamic conditions was accomplished by the vibrating-reed technique in which the natural frequency is used to calculate the dynamic modulus from -

$$E = \frac{4 \rho \, 1^4 \, f^2}{\pi^2 \, k^2 \, g \, \beta^4} \tag{5}$$

The symbols in this expression are identified on pages xxix and xxx. The end

correction factor, β , was 0.597. The fixed end of the 0.250-in.-wide x 6-in.-long reed was clamped in a massive iron block and the reed was plucked to excite it at its natural frequency. A stroposcope was used to determine the frequency. For the evaluations at elevated temperatures the block-and-reed assembly was heated in a split-tube furnace. The end of the reed was illuminated by the stroboscope through a pyrex window in one end of the furnace. Three thermocouples that were flash welded to the surface of an extra specimen, clamped in the block parallel to the test specimen, provided reference for control of the temperature level and uniformity by manual adjustment of variable transformers.

The apparatus used to determine the dynamic modulus of elasticity of the bar alloys was of the electrostatic type in which the specimen is driven into longitudinal resonance by a variable voltage acting across an air gap between one end of the specimen and a flat electrode of the apparatus. Figures 24 and 25 show two views of the apparatus. The variable voltage is applied by a signal generator and a power amplifier. The other end of the specimen and a plate serve to indicate resonance in the specimen by maxima in the alternating voltage between these elements at the resonating frequency. An oscilloscope is used to detect resonance and to observe the wave form. The resonant frequency is read from a frequency counter. The modulus of elasticity was calculated from -

$$E - \frac{4 l^2 \rho i^2}{g n^2}$$
 (6)

where "n" is the number of half wave lengths in the bar and the other notation is the same as in Equation 5. Three 20-gage iron-vs-constantan thermocouples, positioned near each end and the middle of the specimen, were used as temperature references for manual adjustment of the power to the three zones of the furnace for control of the level and uniformity of the temperature of the specimen.

Thermal Conductivity

The thermal conductivities of the alloys were measured using a comparative rod apparatus with AISI 316 steel conductivity references. The determination of thermal conductivity was accomplished by measuring both the heat flux density flowing axially through the cylindrical specimen and the temperature gradient along a known axial gage length. The heat flux density was determined with two heat meters or references of known conductivity placed coaxially at the top and bottom of the specimen, and the temperature gradient was measured by thermocouples installed in the specimens. Radial losses were carefully controlled with guard heaters. The uncertainty for this equipment is about ±5%. This apparatus is described and discussed fully in Technical Report No. AFML-TR-65-1335.

Figure 24. General View of Apparatus for Determination of Dynamic Modulus of Elasticity of Bar Specimens

Figure 25. Furnace and Excitation Frame of Dynamic-Modulus Apparatus

44

The conductivities were measured transverse to the rolling direction of the bar materials and parallel to the rolling direction of the sheet. The specimen configurations are snown in Figure 26. To make the sheet specimens, squares of 0.040-inch-thick sheets were tightly clamped together to form small cubes. Single welds perpendicular to the sheets were made at opposite ends of the cubes using an inert-gas arc welder. The specimens were then machined as shown in Figure 26. Most of the weld area was removed in machining, and the thermocouple holes were placed outside the heat-affected zone of the veld. Three thermocouples were placed in small holes on the periphery of the specimen to detect any nonuniform temperature distribution.

Thermal Expansion

The thermal expansions of the alloys were determined using a quartztube dilatometer with mechanical dial gages graduated in 0.0001 in. divisions. Specimens machined from bar stock were 1/2 in, x 5/8 in, x 3 inches long. Specimens from the sheet stock were made by rolling the sheet into cylinders of about 3/4 in. diameter x 3 inches long and tack welding the joint in two places. The specimens were fitted with end caps made from Ti-5Al-5Sn-5Zr bar stock. These end caps added only about 1/8 inch to the total length of the specimen. The thermal expansions measured for the sheet alloys included those of both the specimen and end caps. The data were corrected for the expansion of the end caps, but this correction was not significant since the expansions of the specimen and end caps were almost identical, and the total length of the end caps was only $\frac{1}{24}$ the length of the specimen. The data were also corrected for the expansion of the quartz dilatometer. Thermocouples were flash welded to the specimen surfaces to monitor temperature. At least two thermocouples, and usually three, were located at different points along the axis of the specimen to detect any gradients.

The dilatometers and the experimental procedures are fully described in Technical Report No. AFML- $TR-65-133^5$.

Heat Capacity

The heat capacities of the alloys were determined using an adiabatic calorimeter. With this apparatus the heated specimen was dropped into a thermally guarded, calibrated cup, and specimen enthalpy was measured as a function of the increase in temperature of the cup. Specimens from the bar stock were one-half-inch cubes, and the sheet specimens consisted of about three or four small pieces. The heat capacities were determined from the slopes of the enthalpy versus temperature curves. Heat capacity was determined

Note: Prior to machining, sheets were welded together at each end using tungsten inert-gas are welds

Figure 26. Configuration and Orientation of Thermal Conductivity Specimens

graphically and also by using the least squares method to fit the enthalpy data to an equation of the form

$$h_{85} = aT + bT^2 + cT^{-1} + d$$
 (7)

The derivative of this equation was adjusted to agree with the graphically determined heat capacity at 150° F to obtain an equation for heat capacity

$$HC = a + 2bT - c * T^{-2}$$
 (8)

This apparatus and the procedures used are also fully discussed in Technical Report No. AFML-TR-65-133 5 . The overall uncertainty of this apparatus was established at \pm 5%.

RESULTS OF MECHANICAL-PROPERTY TESTS

Sheet Alloys

Tensile

Results of tensile tests on the sheet alloys may be found in the following figures and tables:

Alloy	Figures	Tables		
Ti-5Al-5Sn-5Zr	27, 28, 29, 36, 37, 38	9, 12, 13, 36, 37, 42		
Ti-5Al-5Sn-5Zr-1Mo-1V	30, 31, 32, 36, 37, 38	10, 12, 13, 38, 39, 42		
Ti-6Al-2Sn-4Zr-2Mo	33, 34, 35, 36, 37, 38	11, 12, 13, 40, 41, 42		

Tables with numbers underlined are in Appendix I.

Tabulated tensile-property data in Tables 9, 10, and 11 and plotted data in Figures 27 - 35 represent averages of ten determinations at each temperature and orientation. No significant differences were detected in the tensile properties between the two heats of each sheet alloy. Likewise, there was not a significant difference in the tensile properties between the longitudinal and transverse orientations for the sheet alloys, with the exception of the possible lower strength of Heat No. V-3076 with respect to Heat V-3016 of the Ti-6Al-2Sn-4Zr-2Mo alloy as shown in Table 11.

Results of the precision-modulus of elasticity determinations on the sheet alloys are given in Table 12. The modulus-of-elasticity data obtained in the conventional tensile tests are in good agreement with these data, except the value for the modulus of elasticity in the longitudinal direction of the Ti-5Al-5Sn-5Zr-1Mc-1V alloy from Heat V-2957 in the tensile tests was low relative to the value obtained from the measurements with the resistance strain gages.

Figures 36 - 38 show the tensile properties of the three sheet alloys evaluated in this investigation relative to each other and relative to the properties of one all-alpha alloy (Ti-5Al-2.5Sn) and one alpha-beta alloy (Ti-6Al-4V), for which data were available as referenced in the figures. Averaged properties for the two heats and two orientations for the three alloys evaluated in this program are shown in these figures. As these figures show, the tensile strength properties of the two alpha-beta alloys, Ti-5Al-5Sn-5Zr-1Mo-1V and Ti-6Al-2Sn-4Zr-2Mo, were higher at all test temperatures than the properties of the Ti-6Al-4V alphabeta alloy. The rate of decrease of tensile strength with respect to temperature

Table 9

Summary of Averages and Standard Deviations for the Tensile Properties of the Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures a, b, c

				t No. D-8					
Temp		F _{ty} ,	ksi	F _{tu} , ksi		e, %		Et, 106 psi	
° F	Orientation	Avg.	5	Avg.	8	Avg.	s	Avg.	S
70	L	118.6	1.0	128.5	0.8	14.1	1.0	16.1	0.5
400	L	79.2	0.6	97.5	0.5	18.4	0.9	13.9	0.7
600	L	66.3	0.7	89.6	0.7	18.4	1.3	12.2	1.1
800	L	61.1	2.2	83.5	1.1	23.1	1.6	12.1	1.4
1000	L	59.0	1.1	79.4	0.8	21.2	1.1	11.1	1.6
70	Т	118.5	0.7	127.0	0.7	14.9	0.6	16.6	0.7
400	T	78.6	0.6	93.3	0.4	20.2	0.6	14.4	1.3
600	T	65.5	0,4	85.0	0.6	26.2	1.1	13.5	1.1
800	T	60.1	0.8	79.6	0.9	26.6	2.4	12.8	1.2
1000	T	57, 9	0.4	75.1	0.6	24.3	1.1	11.9	0.8

			Hear	No. D-1	793				
Te/p		F _{ty} ,	ksi	Ftu	ksi	e, %		E _t , 10 ⁸ psi	
°F	Orientation	Avg.	8	Avg.	S	Avg.	s	Avg.	S
70	L	116.2	0.8	124.5	0.6	17.2	1.3	15.4	0.6
400	L	80.8	2.2	96.9	1.2	18.6	0.8	13.8	1.5
600	L	68.3	3.3	91.0	0.6	23.7	1.4	12.9	1.0
800	L	62.6	1.0	84.7	0.7	23.4	0.8	12.1	0.6
1000	L	62.4	0.4	82, 1	0.7	23.8	1.1	10.5	0.5
70	T	115.4	0.6	122, 1	0.7	17.9	0.6	15.5	0.5
400	T	79.9	0.9	92.8	0.9	20.2	0.2	13.4	C., 8
600	T	67.9	0.8	86.4	0.8	24.5	1.6	13.6	0.4
800	T	62, 5	9.9	81.3	0.6	26.4	1.0	13.4	0.9
1000	T	61.5	0.7	78.1	0.6	25.3	1.5	11.3	0.8

a Averages and standard deviations are based on 10 evaluations at each temperature for each orientation.

b Heat treatment: 1650° F, 1/2 hr, A.C.

c Sheet thickness: 40 mils.

Table 10

Summary of Averages and Standard Deviations for the Tensile Properties of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures a, b, c

Heat No. V-2957

				t No. V-2						
Temp		F _{ty} ,	ksi	F _{tu} ,	F _{tu} , ksi		%	E _t , 10° psi		
° F	Orientation	Avg.	s	Avg.	8	Avg.	8	Avg.	8	
70	L	136.8	1.1	146.8	1.2	10.6	0.7	14.6	0.2	
400	L	105.9	1.3	123.1	1.5	9.5	0.4	13.2	0.5	
600	L	97.6	0.6	120.2	1.0	9.8	0.6	12.3	0.5	
800	L	92.8	0.9	120.2	1.4	12.3	0.7	12, 2	0.5	
1000	L	83.3	0.5	108.2	1.1	12.5	1.0	12.0	0.6	
70	Т	137.9	1,7	147.0	0.7	10.2	1.1	15.8	9.5	
400	${f T}$	109.6	1.6	122.6	1.7	8.3	0.4	13, 9	0.5	
600	${f T}$	101.5	1.1	117.9	0.7	8, 0	0.4	13.4	0.5	
800	${f T}$	95.8	0.7	117.3	1.1	11.7	0.8	13.3	0.6	
1000	> T	87.3	1.3	107.5	9.0	10.8	0.9	12.2	0.7	

			Heat	t No. V-1	991					
Temp				F _{tu} ,	F _{tu} , ksi		e, %		E _t , 10 ⁸ psi	
°F	Orientation	Avg.	s	Avg.	8	Avg.	S	Avg.	s	
70	L	138.1	1.9	149.5	1.8	12.3	0.7	15.3	0.6	
400	L	106.6	1.3	124.2	0.7	11.0	1.6	13.4	0.7	
600	L	98.6	0.8	119.8	1, 2	11.0	0.8	12.7	1.0	
800	L	92.8	0.5	117.6	0.9	12.0	0.7	12.0	0.5	
1000	L	81.6	2.7	104.9	1.8	12.5	1.0	11,3	0.7	
70	Т	138.1	1.9	146.8	2.1	11.7	0.8	16.1	0.5	
400	${f T}$	109.1	1.2	122.0	1.5	8.6	0.5	14.4	0.5	
600	${f T}$	99.9	1.6	115.4	1.6	9.4	0.7	12.3	0.6	
800	${f T}$	94.8	1,3	114.0	1.4	12.7	1.2	12.7	0.8	
1000	T	84.6	1.7	102.3	1.8	11.5	0.8	11.4	0.4	

Averages and standard deviations are based on 10 evaluations at each tempera-

ture for each orientation.

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Sheet thickness: 40 mils

Table I1 Summary of Averages and Standard Deviations for the Tensile Properties of the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures a, b, c

				at No. V						
Temp		F _{ty} ,	ksi	F _{tu} ,	F _{tu} , ksi		e, %		E _t , 10 ⁶ psi	
° F	Orientation	Avg.	S	Avg.	S	Avg.	<u>s</u>	Avg.	S	
70	L	142.2	2.7	147.7	3.3	12.2	1.3	16.2	0.4	
400	L	106.9	2,5	121.2	3.3	11.1	0.9	14.4	0.9	
600	L	95.9	1.8	115.0	2.2	9.1	1.5	13.3	1.1	
800	L	91.7	3.1	113.8	3.6	11.2	1.8	13.7	1.1	
1000	L	85.0	2.9	105.8	3.8	13.1	2.0	11.5	0.9	
70	Т	139.1	1, 2	144.4	1.6	11.6	2, 1	15.9	0.3	
400	T	104.6	1.6	118.2	2.6	11.4	1.3	14.8	1.2	
600	${f T}$	93.2	1.8	112.0	2.3	10.2	0.8	13.7	0.9	
800	T	88.7	1.6	111.3	1.6	11.8	1.4	12.3	0.7	
1000	\mathbf{T}_{-}	83.7	2.1	105.1	2.3	13.9	0.9	11.5	0.8	

				at No. V	-3076				
Temp		F _{ty} ,	ksi	F _{tu} ,	F _{tu} , ksi		%	E _t , 10 ⁶ psi	
°F	Orientation	Avg.	S	Avg.	s	Avg.	s	Avg.	s
70	L	141,9	1.9	151.1	3.0	10.8	0.6	16,6	0.4
400	I,	109.7	1.7	126.2	1.8	9.8	0.8	14.5	0.6
600	L	98.9	2.1	119.3	2.3	7.6	0.7	14.7	0.8
800	L	93.7	1.9	116.6	2.5	8.8	0.9	13.7	1.3
1000	L	83.5	2,1	108.0	3.2	13.3	2.2	13.2	0.9
- 70	T	134.7	1.0	145,5	1.4	11, 4	0.7	15.6	0.4
400	\mathbf{T}	102.8	0.6	120.9	0.8	10.9	0.8	14,4	1.7
600	${f T}$	92.4	0.6	115.5	0.6	9.1	0.1	13.2	0.8
800	T	87.8	0.8	113.8	0.9	10.8	1.0	12.5	0.8
1000	T	79.8	1.3	103.2	0.9	13.8	1.8	11.1	0.3

Averages and standard deviations are based on 10 evaluations at each temperature for each orientation. Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Sheat thickness: 40 mils.

Figure 27. The 0. 2%-Offset Yield Strength and Tensile Strength of Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures.

Heat treatment: 1650° F, 1/2 hr, A.C.

Figure 28. The Percent Elongation and Modulus of Elasticity in Tension of Ti-5AI-5Sn-5Zr Alloy Sheet at Different Temperatures.

Heat treatment: 1650° F, 1/2 hr, A.C.

The Effect of Temperature on the Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Sheet Figure 29.

Figure 30. The 0.2%-Offset Yield Strength and Tensile Strength of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet in the Longitudinal and Transverse Orientations.

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 31. The Percent Elongation and Modulus of Elasticity in Tension of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet in the Longitudinal and Transverse Orientations.

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

The Effect of Temperature on the Tensile Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet Sheet thickness: 40 mils
Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C. Figure 32.

Figure 33. The 0.2%-Offset Yield Strength and Tensile Strength of Ti-6A1-2Sn-4Zr-2 Mo Alloy Sheet At Different Temperatures.

Sheet thickness: 40 mils Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 34. The Percent Elongation and Modulus of Elasticity in Tension of Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures.

Heat treatment: 1650° F, 1/2 hr, A.C., 1450° F, 1/4 hr, A.C.

The Effect of Temperature on the Tensile Properties of Ti-6A1-2Sn-4Zr-2Mo Alloy Steet Figure 35.

Sheet thickness: 40 mils Heat treatment: 1650°F, 1/2 hr, A.C. + 1450°F, 1/4 hr, A.C

Table 12

Precision Modulus of Elasticity of the Sheet Alloys in the Longitudinal Direction at Room Temperature^{a, b, c}

Alloy	Modulus of Elasticity, 10 ⁶ psi
Ti-5Al-5Sn-5Zr	15. 929
Ti-5Al-5Sn-5Zr-1Mo-1V	16. 080
Ti-6Al-2Sn-4Zr-2Mo	16. 295

a Sheet thickness: 40 mil

b Heat Nos: Ti-5Al-5Sn-5Zr, D-8060

Ti-5Al-5Sn-5Zr-1Mo-1V, V-2957

Ti-6A1-2Sn-4Zr-2Mo, V-3016

c Heat treatments:

Ti-5Al-5Sn-4Zr, 1650° F, 1/2 hr, A.C.

Ti-5Al-5Sn-5Zr-1Mo-1V, 1550° F, 1/2 hr, A.C.

+ 1400° F, 1/4 hr, A.C. Ti-6Al-2Sn-4Zr-2Mc, 1650° F, 1/2 hr, A.C. +

1450° F, 1/4 hr, A.C.

Table 13 Summary of Averaged Notched Tensile Strength of the Sheet Alloys a, b, c, d

Alloy	70	Temperature,	
m: 511 52		400	800
Ti-5Al-5Sn-5Zr	166.8	121.1	105.4
Ti-5Al-5Sn-5Zr-1Mo-1V	165.4	131.5	130.9
Ti-6Al-2Sn-4Zr-2Mo			200. 3
TI VAI-ZDII-4Zr-ZMo	170.1	137.7	132. 5

Thickness: 40 mil а

Ti-5Al-5Sn-5Zr, 1650° F, 1/2 hr, A.C.

Ti-5Al-5Sn-5Zr-1Mo-1V, 1550° F, 1/2 hr, A.C. +

 1400° F, 1/4 hr, A.C.

Ti-6Al-2Sn-4Zr-2Mo, 1650° F, 1/2 hr, A.C. +

1450° F, 1/4 hr, A.C.

Heat treatment: b

Notched 45° , 0.025 in. radius, 0.375 minimum width to С produce K_t = 3.

All tests in longitudinal direction. d

Figure 36. Comparison of the 0.2%-Offset Yield Strength of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for other Titanium Alloys.

Referenced data

a - MILHDBK 5, p 5.4.6.2.1 (b) b - MILHDBK 5, p 5.3.1.2.1 (b)

Figure 37. Comparison of the Ultimate Tensile Strength of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys.

Referenced Data

a - MILHDBK 5, p 5.4.6.2,1 (a) b · MILHDBK 5, p 5.3.1.2.1 (a)

Figure 38. Comparison of Elongation and Modulus of Elasticity in Tension of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys.

Referenced Data MILHOBK 5, p 5.3.1.2.4 MILHOBK 5, p 5.4.6.2.4 above 800° F was also lower for the Ti-5Al-5Sn-5Zr-1Mo-1V and Ti-6Al-2Sn-4Zr-2Mo alloys than for the Ti-6Al-4V alloy. The yield strength of the Ti-5Al-5Sn-5Zr all-alpha alloy was comparable to that of the Ti-5Al-2.5Sn alloy at all test temperatures, but the tensile strength of the Ti-5Al-5Sn-5Zr alloy was higher at the elevated temperatures than for the Ti-5Al-2.5 Sn alloy. Figure 38 shows that the elongation of the higher-strength alpha-beta alloys was generally lower than that of the all-alpha alloys.

Compression

All data for the compression tests are given in the following tables and figures:

Alloy	Figures	Tables
Ti-5Al-5Sn-5Zr Ti-5Al-5Sn-5Zr-1Mo-1V Ti-6Al-2Sn-4Zr-2Mo	39, 40, 45 41, 42, 45 43, 44, 45	$ \begin{array}{c} 14, \ 43 \\ 14, \ \overline{44} \\ 14, \ \overline{45} \end{array} $

a Tables with numbers underlined are in Appendix I.

Results of the compression tests in Table 14 and Figures 39 - 44 represent averages of five determinations for each temperature and orientation of the major heat of the sheet alloys. At most temperatures the compressive yield strength was approximately equal to the tensile yield strength for each alloy. The modulus of elasticity in compression was generally slightly lower than the modulus in tension, which is probably due to very slight bending of the compression test specimens even though they were restrained by a special fixture in testing.

Figure 4t shows the comparative yield strength and modulus of elasticity in compression for the three sheet alloys evaluated in this program, and similar data for an all-alpha alloy, Ti-5Al-2.5Sn, and an alpha-beta alloy, Ti-6Al-4V. The compressive yield strength of the alpha-beta alloys (Ti-5Al-5Sn-5Zr-1Mo-1V and Ti-6Al-2Sn-4Zr-2Mo) was higher than the compressive strength of the Ti-6Al-4V alloy selected for comparison. The compressive yield strength of the all-alpha Ti-5Al-5Sn-5Zr alloy was slightly lower than that for the Ti-5Al-2.5Sn alloy. The comparative modulus-of-elasticity data in Figure 45 shows that the values for the three sheet alloys evaluated in this program were lower than for the reference alloys. However, since MIL-HDBK-5°, from which the referenced data were obtained, does not differentiate between tensile and compressive moduli, the comparative curves in Fig. 45 would be in closer agreement if an average value of the tensile and compressive moduli were shown instead of only the modulus in compression.

Table 14

Summary of Averages and Standard Deviations for the Compression Properties at Different Temperatures of Three Titanium Alloys in the Form of Forty-Mil Sheet

Ti-5A1-5Sn-5Zr (Heat No. D-8060)

		Longit	udinal		Transverse					
Temp	Fcy,			psi	F _C ,	ksi	E _c , 10° psi			
• F	Avg.	8	Avg.	8	Avg.	8	Avg.	8		
70	119.0	1.9	14.4	0.3	125.8	1.6	15. 1	0.2		
400	80.2	0.5	12.0	0.3	82.3	0,5	12.8	0.1		
600	66.7	1.2	10.9	0.8	68.4	0.8	12. 1	0.3		
800	60.3	1.2	10.6	0.3	62.8	0.4	11.6	0.3		
1000	58.0	0.8	9.7	0.2	59.8	0.9	10.3	0.2		

Heat treatment: 1650° F, 2 hr, A.C.

Ti-5Al-53n-5Zr-1Mo-1V (Heat No. V-2957)

		Longi	tudinai	Transverse						
Temp	Fcy,	Fcy, ksi Ec		E _c ,10 ⁶ psi		ksi	E _c , 10	s psi		
F	Avg.	8	Avg.	8	Avg.	S	Avg.	s		
70	141.9	2.3	14.3	0.3	154.1	2.4	15.3	0.2		
400	103.7	5.5	12.7	0.1	113.7	1.2	13.3	0.5		
500	97.8	2.8	11.6	0.3	103.3	1.1	12. 2	0.3		
800	93.3	1.8	11, 1	0.1	99.2	2.1	11.9	0.3		
1000	83.8	1.8	10.1	0.3	88.9	1.4	10.6	0.2		

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Ti-6Al-2Sn-4Zr-2Mo (Heat No. V-3016)

Longitudinal					Transverse			
Temp	F _{CV} , ksi		$E_{\rm C}$, 10^8 psi		F _{CV} , ksi		E _C , 10 ⁸ psi	
* F	Avg.	8	Avg.	8	Avg.	8	Avg.	8
70	149.6	4.5	14.3	0.6	144.4	4.7	14.5	0.3
400	111.3	4.2	12.7	0.3	105.9	2.3	12.5	0.3
600	92.7	3.9	12.1	0.2	95.5	4.1	11.4	0.2
800	96.5	5.9	11.3	0.6	88.0	2.6	11.0	0.3
1000	85.3	4.4	10.6	0.5	82.3	3.2	10.2	0.2

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

The 0.2%-Offset-Yield Strength and Modulus of Elasticity in Compression of Ti-5A1-5Sn-5Zr Alloy Sheet at Different Temperatures. Figure 39.

Heat No. D-8060 Sheet thickness: 40 mil Heat treatment: 1650° F, 1/2 hr, A.C.

Figure 40. Effect of Temperature on the Compressive Properties of Ti-5Al-5Sn-5Zr Alloy Sheet.

Sheet thickness: 40 mils
Heat treatment: 1650° F, 1/2 hr, A.C.

Figure 41. The 0.2%-Offset Yield Strength and Modulus of Elasticity in Compression of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures.

Sheet thickness: 40 mils
Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 42. Effect of Temperature on the Compressive Properties of Ti-5A1-5Sn-5Zr-1Mo-1V Alloy Sheet.

Sheet thickness: 40 mils

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

The 0.2%-Offset Yield Strength and Modulus of Elasticity in Compression of Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet at Figure 43. Different Temperatures.

Sheet thickness: 40 mils
Heat treatment: 1650°F, 1/2 hr. A. C. + 1450°F, 1/4 hr, A. C.

Figure 44. Effect of Temperature on the Compressive Properties of Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet.

Sheet thickness: 40 mils

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 45. Comparison of the Compressive Properties of Titanium Alloy Sheet Evaluated in this Program with Data from the Literature for other Titanium Alloys.

Referenced Data

a - MILHDBK 5, p 5. 3. 1. 2. 2 (a)

b - MILHDBK 5, p 5.4.6.2.2 c - MILHDBK 5, p 5.3.1.2.4 d - MILHDBK 5, p 5.4.6.2.4

Bearing

Results of bearing tests on the sheet alloys are given in the following tables and figures:

Alloy	Figures	Tables
Ti-5Al-5Sn-5Zr Ti-5Al-5Sn-5Zr-1Mo-1V Ti-6Al-2Sn-4Zr-2Mo	46, 47, 52, 53 48, 49, 52, 53 50, 51, 52, 53	15, $\frac{46}{47}$ 17, $\frac{48}{48}$

Tables with numbers underlined are in Appendix I.

The data tabulated in Tables 15 - 17 and plotted in Figures 46 - 51 represent averages of three determinations for each temperature, orientation and e/D ratio combination. The bearing yield strength in the longitudinal and transverse orientations were generally comparable at each e/D ratio strength level. However, the bearing ultimate strength was generally higher in the transverse direction than in the longitudinal direction for the Ti-5Al-5Sn-5Zr and the Ti-5Al-5Sn-5Zr-1Mo-1V alloys and equal in both orientations for the Ti-6Al-2Sn-4Zr-2Mo alloy.

Comparative plots of the bearing properties for the three sheet alloys and the Ti-5Al-2.5Sn and Ti-6Al-4V alloys are shown in Figures 52 and 53 in which the bearing strength of the three alloys evaluated in this program is represented by the average for the two orientations. At both e/D ratios the bearing strength of the Ti-5Al-5Sn-5Zr-1Mo-1V and the Ti-6Al-2Sn-4Zr-2Mo alloys are comparable at all test temperatures and exceed the bearing strength of the comparative alloy, Ti-6Al-4V. The bearing strength of the Ti-5Ai-5Sn-5Zr is greater at all temperatures than for the Ti-5Al-2.5Sn all-alpha alloy and approximately equal to the Ti-6Al-4V alloy.

Shear

Data for all the shear tests on the sheetalloys appear in the following tables and figures:

Alloy	Figures	Tables
Ti-5Al-5Sn-5Zr Ti-5Al-5Sn-5Zr-1Mo-1V Ti-6Al-2Sn-4Zr-2Mo	54, 57, 58 55, 57, 58 56, 57, 58	18, $\frac{49}{50}$ 18, $\frac{51}{51}$

Tables with numbers underlined are in Appendix I.

Table 15 Averaged Bearing Properties of the Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperaturesa, b, c, d

Temp,	Orientation	e/D F _{by} , ksi	F _{bu} , ksi	e/D F _{hy} , ksi	= 2.0 F _{bu} , ksl
70 400 600 800 1000	L L L L	180.3 132.5 115.9 107.2 102.4	202.2 156.5 140.9 133.5 125.3	205.3 156.2 142.7 127.7 119.2	251. 4 196. 8 180. 7 171. 3 163. 9
70 400 600 800 1000	T T T T	184.3 135.2 118.5 108.9	218.3 167.4 152.0 143.2 137.1	215.9 162.8 142.4 134.1 127.1	272.0 217.4 198.0 188.6 176.7

a Average of triplicate tests.

Averaged Bearing Properties of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures a, b, c, d

Table 16

Temp,	Orientation	e/D : F _{by} , ksi	F _{bu} , ksi	e/D <u>=</u> F _{hy} , ksi	2.0 F _{bu} , ksi
70 400 600 800 1000	L L L L	202.8 165.7 160.3 157.5 150.7	220.3 185.5 178.4 171.2 173.0	243.1 199.5 190.0 184.1 171.7	280.5 234.9 221.8 209.0 201.4
70 400 600 800 1000	T T T T	209.7 171.1 164.5 156.9 153.1	235, 2 202, 2 195, 3 186, 3 179, 9	270.8 207.9 194.6 194.4 183.5	287. 2 233. 4 213. 7 202. 7 201. 4

a Average of triplicate tests.

b Heat treatment: 1650° F, 1/2 hr, A.C.

c. Sheet thickness: 40 mils

d Heat No. D-8060

b Heat treatment: 1550° F, 1/2 hr, A.C + 1400° F, 1/4 hr, A.C.

c Sheet thickness: 40 mils

d Heat No. V-2957

Table 17 Averaged Bearing Properties of the Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures a, b, c, d

Temp,	Orientation		1.5	e/D =	
	Of Tentation	Fby, ksi	F _{bu} , ksi	F _{by} , ksi	F _{bu} , ksi
70	L	200.8	234.1	236.9	292.4
400	L	157.9	187.8	193.6	243.3
300	L	146.8	179.3	176.9	245. 3 225. 4
800	\mathbf{L}_{t}	142.6	174.2	177.3	
1000	L	141.5	165.1	169.2	217.2 211.4
70	T	198.6	232.1	237.5	287.8
400	<u>T</u>	160.3	189. 8	189.5	240.7
600	T	142.3	172.6	172.3	225.5
800	T	145.5	174.6	171.8	204.4
1000	T	140.8	164.5	167.1	205.1

a Average of triplicate tests.

b Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

c Sheet thickness: 40 mils d Heat No. V-3016

Figure 46. Bearing-Strength Properties of the Ti-5A1-5Sn-5Zr Alloy Sheet at Different Temperatures.

Sheet thickness: 40 mils
Heat treatment: 1650°F, 1/2 hr, A. C.

Figure 47. Effect of Temperature on the Bearing Properties of Ti-5Al-5Sn-5Zr Alloy Sheet.

Sheet thickness: 40 mil

Heat treatment: 1650° F, 1/2 hr, A.C.

Bearing-Strength Properties of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures. Figure 48.

Sheet thickness: 40 mil Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 49. Effect of Temperature on the Bearing Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet.

Sheet thickness: 40 mil

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F,

1/4 hr, A.C.

Figure 50. Bearing-Strength Properties of the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures.

Sheet thickness: 40 mil

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 51. Effect of Temperature on the Bearing Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet.

Heat No. V-3016
Sheet thickness 40 mil
Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 52. Comparison of the Bearing Strength (e/D = 2.0) of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys.

Referenced data

a - MILHDBK 5, p 5.3.1.2.3 (b) b - MILHDBK 5, p 5.4.6.2.3 (b)

Figure 55. Comparison of the Bearing Strength (e/D = 1.5) of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for other Titanium Alloys

Referenced data

a - MILHOBK 5, p 5, 3, 1, 2, 3 (b) b - MILHOBK 5, p 5, 4, 6, 2, 3 (b)

Table 18

Summary of Averages and Standard Deviations for the Ultimate Shear Strength at Different Temperatures of Three Titanium Alloys in the Form of Forty-Mil Sheet.

Ti-5A1-5Sn-5Zr

17-0011-051				
	Longitudinal		Transv	rerse
Temp.	F _{su} ,	ksi	Fsu	ksi
° F	Avg.	8	Avg.	s
70	87.7	0.9	94, 2	1. 4
400	68.1	1.2	72.9	2.1
600	62.4	1.1	67.0	1.2
800	59.6	1.6	66.2	1.2
1000	56.2	1.0	62.8	0.8

Heat treatment: 1650° F, 1/2 hr, A.C.

Ti-5A1-5Sn-5Zr-1Mo-1V

,	Longitu	ıdinal	Trans	verse
Temp.	F _{su} ,	ksi	F _{su} ,	ksi
° F	Avg.	s	Avg.	8
70	105.1	1.5	109.8	1.2
400	85.6	2.1	90.6	1.4
600	82.4	1.7	86.7	1.2
800	81.5	1.0	85.2	1.6
1000	72.9	1.8	77.6	0.8

Heat treatment: 1550° F, 1/2 hr, A, C. + 1400° F, 1/4 hr, A.C.

Ti-6A1-2Sn-4Zr-2Mo

	Longitudinal		Transverse	
Temp.	F _{su} ,	ksi	F _{su} ,	ksi
* F	Avg.	s	Avg.	5
70	97.8	3.0	95.5	1.9
400	31.8	1.9	78.6	1.3
600	79.1	2.5	75.5	2.0
800	76.5	2.7	72.6	2.0
1000	68.9	2.0	67.2	1.5

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 54. The Ultimate Shear Strength of Ti-5A1-5Sn-5Zr Alloy Sheet at Different Temperatures

Sheet thickness: 40 mils

Heat treatment: 1650° F, 1/2 hr, A.C.

Figure 55. The Ultimate Shear Strength of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures.

Heat No. V-2957

Sheet thickness: 40 mils

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 56. The Ultimate Shear Strength of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures.

Sheet thickness: 40 mils
Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 57. The Effect of Temperature on the Ultimate Shear Strength of Three Titanium Alloys.

Sheet thickness: 40 mils

Heat treatment: As shown for each alloy.

Figure 58. Comparison of Ultimate Shear Strength of Titanfum Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys.

Referenced Data

a MIL HDBK 5, p 5.4.6.2.3 (b) b MIL HDBK 5, p 5.3.1.2.2 (a)

The shear strength of the Ti-5Al-5Sn-5Zr and Ti-5Al-5Sn-5Zr-1Mo-1V alloys was slightly higher in the transverse direction than in the longitudinal direction, and approximately equal for both directions of the Ti-6Al-2Sn-4Zr-2Mo sheet. The shear strength for all the sheet alloys was 0.65 to 0.70 of the respective tensile strength at comparable temperatures, which is normal for most materials. The comparative data plotted in Figure 58 shows that the shear strength of the Ti-5Al-5Sn-5Zr-1Mo-1V alloy is higher at all test temperatures than the other alpha-beta alloy (Ti-6Al-2Sn-4Zr-2Mo) evaluated in the program as well as the comparative alloy, Ti-6Al-4V. The shear strength of the Ti-5Al-5Sn-5Zr sheet was greater than the comparative all-alpha alloy (Ti-5Al-2.5Sn) and the Ti-6Al-4V alloy at all test temperatures.

Thermal-Exposure

The results of mechanical-property tests on longitudinally oriented specimens of the sheet alloys after thermal exposure from 600 to 1200° F for times from 10 to 1000 hr are given in the following tables and figures:

Alloy	Figures	Tables
Ti-5Ai-5Sn-5Zr	59, 62	52, 53, 58
Ti-5Al-5Sn-5Zr-1Mo-1V	60, 63	54, 55, 58
Ti-6Al-2Sn-4Zr-2Mo	61, 64	56, 57, 58

Tables with numbers underlined are in Appendix I

Figures 59 - 61 and 62 - 64 show the tensile and shear strength properties of the sheet alloys after thermal exposure. The top graph of each figure shows the strength property at room temperature as a function of the exposure temperature; the bottom graph of each figure shows the property at the exposure temperature as a function of the exposure temperature. Thermal exposure had no deleterious effect on the strength of the alloys. The curves of shear strength and tensile strength at room temperature as functions of exposure temperature show a promounced increase in strength of the Ti-5Al-5Sn-5Zr-1Mo-1V and Ti-6Al-2Sn-4Zr-2Mo alpha-beta alloys after exposure to 600, 800, and 1000° F; however this increase in strength is probably due to aging. Above 800° F over-aging occurred in long-time exposure, which caused a decrease in the strength properties.

Figure 58. Comparison of Ultimate Shear Strength of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys.

Referenced Data

a MIL HDBK 5, p 5.4.6.2.3 (b)

b MIL HDBK 5, p 5.3.1.2.2 (a)

Figure 59. Effect of Thermal Exposure on the Tensile-Strength Properties of Ti-5Al-5Sn-5Zr Alloy Sheet at Room Temperature (above) and at the Exposure Temperature (below).

Sheet thickness: 40 mil Heat treatment: 1650° F, 1/2 hr, A.C.

Figure 60. Effect of Thermal Exposure on the Tensile-Strength Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Room Temperature (above) and at the Exposure Temperature (below).

Heat No. V-2957 Thickness: 40 mil

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 61. Effect of Thermal Exposure on the Tensile-Strength Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Room Temperature (above) and at the Exposure Temperature (below).

Sheet thickness: 40 mil Heat treatment: 1850° F, 1/2 hr, A.C. + 1450″ F, 1/4 hr, A.C.

Figure 62. The Effect of Thermal Exposure on the Ultimate Shear Strength of Ti-5Al-5Sn-5Zr Alloy Sheet at Room Temperature (above) and at the Exposure Temperature (below).

Sheet thickness: 40 mil

Heat treatment: 1650° F, 1/4 hr, A.C.

Figure 64. The Effect of Thermal Exposure on the Ultimate Shear Strength of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Room Temperature (bove) and at the Exposure Temperature (below).

Sheet thickness: 40 mil

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 63. The Effect of Thermal Exposure on the Ultimate Shear Strength of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Size at Room Temperature (above) and at the Exposure Temperature (below).

Heat No. V-295?

Sheet thickness: 40 mil

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Creep

Creep strain data for the longitudinal orientation of the sheet alloys are shown in the following tables and figures:

Alloy	Figures	Tables
Ti-5Al-5Sn-5Zr Ti-5Al-5Sn-5Zr-1Mo-1V Ti-6Al-2Sn-4Zr-2Mo	65, 66, 67, 68, 78, 79 69, 70, 71, 72, 73, 78, 79 74, 75, 76, 77, 78, 79	$\frac{59}{60}$ $\underline{61}$

Tables with numbers underlined are in Appendix 1.

The comparative creep strength of the three sheet alloys evaluated in this program with two other titanium alloys for which data were available is shown in Figures 78 and 79. The basis for comparison is the stress for 0, 1% creep strain (Figure 78) and 0.5% creep strain (Figure 79) as a function of the Larson-Miller time-temperature parameter. As these figures show, the Ti-5Al-5Sn-5Zr alloy has higher creep strength than the alpha-beta alloys, particularly at higher temperatures. The Ti-6Al-2Sn-4Zr-2Mo alloy had higher creep strength than the Ti-5Al-5Sn-5Zr-1Mo-1V alloy. Both the alpha-beta alloys and the all-alpha alloy evaluated in this program exhibited higher creep strength than the respective comparative alpha-beta (Ti-6Al-4V) and the all-alpha (Ti-5Al-2.5Sn) alloys.

Fatigue

Data on the fatigue properties of the three sheet alloys in the longitudinal orientation may be found in the following figures and tables:

Alloy	Figures	Tables
Ti-5Al-5Sn-5Zr Ti-5Al-5Sn-5Zr-1Mo-1V Ti-6Al-2Sn-4Zr-2Mo	80, 81, 82, 83, 84 85, 86, 87, 88, 89 90, 91, 92, 93, 94	$\frac{62}{63}$ $\underline{64}$

Tables with numbers underlined are in Appendix I.

The effect of temperature on the fatigue strength at 10^7 cycles was not as great as might be expected from the tensile properties of the alloys. In some instances the maximum-stress for 10^7 cycle endurance was greater at 400° F than at 70° F. In general, the order of decreasing fatigue strength of the sheet alloys in the unnotched condition was (a) Ti-6Al-2Sn-4Zr-2Mo, (b) Ti-5Al-5Sn-5Zr-1Mo-1V, and (c) Ti-5Al-5Sn-5Zr.

Figure 65, Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr Alloy Sheet at 900° F. Heat No. D-8060 Sheet thickness: 40 inils Heat treatment: 1650° F, 1/2 hr, A.C.

Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr Alloy Sheet at 1000° F. Figure 66.

Heat No. D-8063 Sheet thickness: 40 mils Heat treatment: 1650° F, 1/2 hr, A.C.

Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5A1-5Sn-5Zr Alloy Sheet at 1050° F. Figure 67.

Heat No. D-8060 Sheet thickness: 40 mils Heat treatment: 1650°F, 1/2 hr, A.C.

Figure 68. Minimum Creep Rate of Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures.

Heat No. D-8060 Sheet thickness: 40 mils Heat treatment: 1650° F, 1/2 hr, A.C.

Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5A1-5Sn-5Zr-1Mo-1V Alloy Sheet at 600° F. Figure 69.

Heat thickness: 40 mils Heat treatment: 15 10° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 70. Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at 800° F.

Heat No. V-2957 Sheet thickness: 40 mils Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 71. Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at 900° F.

Heat No. V-2957 Sheet thickness: 40 mils Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at 1000° F. Figure 72.

Sheet thickness: 40 mils Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 73. Winimum Creep Rate of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet at Different Temperatures.

Heat No. V-2957 Sheet thickness: 40 mils Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 74. Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet at 800° F.

Heat No. V-3016 Sheet thickness: 40 mils Heat treatment: 1650° F, 1/2 hr., A.C. + 1450° F, 1/4 hr., A.C.

Figure 75. Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet at 900° F.

Heat No. V-3016 Sheet thickness: 40 mils Hoat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet at 1000° F. Figure 76.

Heat No. V-3016 Sheet thickness: 40 mils Heat treatment: 1650°F, 1/2 hr, A.C. + 1450°F, 1/4 hr, A.C.

Figure 77. Minimum Creep Rate of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at Different Temperatures.

Heat No. V-3016 Sheet thickness: 40 mils Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 78. Comparison of Creep Strength at 0.1% Creep Deformation of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys.

Referenced Data

a - Aerospace Hdbk, Vol II, Code 3701, p 13 Properties of Ti-6A1-4V, TMCA

b - Aerospace Hdbk, Vol II, Code 3706, p 7

Figure 79. Comparison of Creep Strength at 0.5% Creep Deformation of Titanium Sheet Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys.

Referenced Data

- a Aerospace Hdbk, Vol II, Code 3707, p 13 Properties of Ti-6A1-4V, TMCA
- b Aerospace Hdbk, Vol II, Code 3706, p 7

Figure 80. S-N Curves for the Ti-5AI-5Sn-5Zr Alloy Sheet at 70°F in the Notched and Unnotched Conditions.

Heat No. D-8060
Sheet thickness: 40 mils
Heat treatment: 1650°F, 1/2 hr, A. C.
Alternating Stress
Mean Stress

Figure 81. S-N Curves for the Ti-5Al-5Sn-5Zr Alloy Sheet at $400^{\circ}\mathrm{F}$ in the Notched and Unnotched Conditions .

Sheet thickness: 40 mils Heat treatment: 1650°F, 1/2 hr, A. C.

A = Alternating Stress Mean Stress

Figure 82. S-N Curves for the Ti-5A1-5Sn-5Zr Alloy Sheet at 890°F in the Notched and Unnetched Conditions

Sheet thickness: 40 mils Heat treatment: 1650°F, 1/2 hr, A. C.

 $A = \frac{Alternating Stress}{Mean Stress}$

Figure 83. Constant-Life Fatigue Diagram for the Ti-5Al-5Sn-5Zr Alloy Sheet (Unnotched) at Different Temperatures

Heat No. D-8060 Sheet thickness: 40 r

Sheet thickness: 40 mil Heat treatment: 1650° F, 1/2 hr, A.C.

Figure 85. S-N Curves for the Ti-5Al -5Sn-5Zr-1V-1Mo Alloy Sheet at 70°F in the Notched and Unnotched Conditions

Sheet thickness: 40 mils Heat treatment: 1550°F, 1/2 hr, A. C. + 1400°F, 1/4 hr, A. C.

Alternating Stress Mean Stress

Figure 86. S-N Curves for the Ti-5A1-5Sn-5Zr-1Mo-1V Alloy Sheet at $490^{\circ}F$ in the Notched and Unnotched Conditions.

Heat No. V-2957 Sheet thickness: 40 mils Heat treatment: 1550°F, 1/2 hr, A. C. + 1400°F, 1/4 hr, A. C.

Alternating Stress
Mean Stress

Figure 87. S-N Curves for the Ti-5Al-5Sn 5Zr-1Mo-1V Alloy Sheet at 800°F in the Notched and Unnotched Conditions.

Sheet thickness: 40 mils Heat treatment: 1550°F, 1/2 hr, A. C. + 1406°F, 1/4 hr, A. C.

A = Alternating Stress
Mean Stress

gure 88. Constant-Life Fatigue Diagram for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet (Unnotched) at Different Temperatures

Sheet thickness: 40 mil Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Constant-Life Fatigue Diagram for the Ti-5A1-5Sn-5Zr-1Mo-1V Alloy Sheet (Notched K_t = 3) at Different Temperatures

Heat No. V-2957
Sheet thickness: 40 mil
Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 90. S-N Curves for the Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet at 70°F in the Notched and Unnotched Conditions.

Sheet thickness: 40 mils

Heat treatment: 1650°F, 1/2 hr, A. C. + 1450°F, 1/4 hr. A. C.

A = Alternating Stress
Mean Stress

Figure 91. S-N Curves of the Ti-6Ai-2Sn-4Zr-2Mo Alloy Sheet at 400°F in the Notched and Unnotched Conditions.

Heat No. V-3016
Sheet thickness: 40 mils
Heat treatment: 1650°F, 1/2 hr, A. C. + 1450°F, 1/4 hr, A. C.

Alternating Stress
Mean Stress

Figure 92, S-N Curves for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet at 800°F in the Notched and Unnotched Conditions

Sheet thickness: 40 mils Heat treatment: 1650° F, 1/2 hr, A. C. + 1450° F, 1/4 hr, A. C.

A = Alternating Stress Mean Stress

(Unnotched) at Different Temperatures

Heat No. V-3016

Sheet thickness: 40 mil

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

.

Figure 94. Constant-Life Fatigue Diagram for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet (Notched, K_t = 3) at Different Temperatures

Sheet thickness: 40 mil

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Fracture Toughness

Fracture-toughness data for the sheet alloys are given in the following tables:

Alloy	Tables			
Ti-5Ai-5Sn-5Zr Ti-5Al-5Sn-5Zr-1Mo-1V Ti-6Al-2Sn-4Zr-2Mo	19, $\frac{65}{65}$, $\frac{66}{66}$ 19, $\frac{65}{65}$, $\frac{66}{66}$			

Tables with numbers underlined are in Appendix I

In most of the tests on the titanium sheet alloys, gross yielding occurred across the supporting section of the specimen in advance of the extension of the crack. Calculation of the fracture toughness parameters— $K_{\rm C}$ or $K_{\rm L}$ —in such instances leads to invalid results in that the values obtained from these calculations considerably underestimate the true fracture toughness of the material. This is so because the crack-tip plastic zone size is actually much larger than that provided for in the calculation for the fracture toughness parameters. A plastic zone correction term, which would not appreciably alter the results obtained, was not included in the equations for calculation of the fracture toughness. One criterion that has been used to judge the validity of fracture toughness measurements is the ratio of the net stress (calculated from the load used in the fracture toughness calculation) to the yield strength. According to this criterion, the ratio (σ net/ $F_{\rm ty}$) should not exceed 0.8 for the calculated factor to be valid. As shown in Tables 65 and 66 the ratio was generally greater than 0.8 for the sheet a $^{-1}$ oys.

Stress-Corrosion

Data relating to the stress corrosion of the sheet alloys may be found in the following tables and figures:

Alloy	ligures	Tables		
Ti-5Al-5Sn-5Zr Ti-5Al-5Sn-5Zr-1Mo-1V Ti-6Al-2Sn-4Zr-2Mo	95, 96, 97 98, 99, 100 101, 102, 103	20, $\frac{67}{68}$ 20, $\frac{69}{69}$		

Tables with numbers underlined are in Appendix I

Results of the preliminary stress-corrosion tests to determine the minimum temperature at which stress corrosion would occur are summarized in Table 20. As this table shows, the lowest temperature at which stress-corrosion

Table 19
Summary of Apparent Fracture Toughness of the Sheet Alloys

Notice: Gross yielding occurred in tests at 400 and 70° F, and to some extent at -110° F, such that the true fracture toughness is not represented by data given in this table.

	Orien-	Temp.,	K _{nc} a	K _e b_
Alloy	tation	° F	ksi √in.	ksi Jin.
Ti-5Al-5Sn-5Zr	L	400	35.9	x
Ti-5A1-5Sn-5Zr	L	70	51.3	x
Ti-5Al-5Sn-5Zr	L	-110	61.5	118.2
Ti-5Al-5Sn-5Zr	${f T}$	400	35, 7	X
Ti-5Al-5Sn-5Zr	T	70	48.9	x
Ti-5Al-5Sn-5Zr	${f T}$	-110	60.6	125.7
Ti-5Al-5Sn-5Zr-1Mo-1V	L	400	44.5	x
Ti-5Al-5Sn-5Zr-1Mo-1V	L	70	57.2	97. 5
Ti-5A1-5Sn-5Zr-1Mo-1V	L	-110	64.8	109.0
Ti-5Al-5Sn-5Zr-1Mo-1V	Т	400	46.3	x
Ti-5A1-5Sn-5Zr-1Mo-1V	Ť	70	56.0	95.6
Ti-5A1-5Sn-5Zr-1Mo-1V	T	-110	52. 7	107. 9
11-021-0311-021-1140-14	1	-110	<i>JZ</i> . 1	101. 9
Ti-6Al-2Sn-4Zr-2Mo	L	400	48.6	x
Ti-6A1-2Sn-4Zr-2Mo	L	70	59. 1	106.5
Ti-6A1-2Sn-4Zr-2Mo	L	-110	63.3	114.3
				•
Ti-6A1-2Sn-4Zr-2Mo	T	400	41.5	x
Ti-6Al-2Sn-4Zr-2Mo	${f T}$	70	55, 8	99.7
Ti-6A1-2Sn-4Zr-2Mo	${f T}$	-110	62.6	107.9
	_	-		

a Stress intensity factor reported as K_{nc} , rather than as K_{Ic} , because pop-in was not observed and calculation was based on load deviation from linearity.

b "x" denotes that K_c could not be calculated because of gross slow crack extension of the specimen.

Poble 20

Results of Preliminary Tests to Establish the Susceptibility Temperature for NaCl Stress-Corrosion for the Sheet Alloys

1 3	3					
Mo Alloy	N O O O	No o	Nc	Yes	Yes	
Ti-6Al-2Sn-4Zr-2Mo Alloy sure Exposure Francis	100 200 457	457 457	0010	265 265	100	
Ti-6Al Exposure Temp, F	450 450 450	450 450	500 500 500	200	550 550	
IV Alloy Embrittled	No No No	No o	Yes	Yes		
Ti-5Al-5Sn-5Zr-1Mo-1V Alloy posure Exposure mp, °F Time, ir Embritt	100 200 457	457	100	100		
Ti-5Al-5 Exposure Temp, ° F	450 450 450	450	200	550 550		
Alloy	No No No	OOZ	No No	o o ;	No Yes Yes	Yes
Ti-5Al-5Sn-5Zr Alloy re Exposure F Time, hr Em	100 457 457	160 100 505	987 987	120 120 333	009	100
Ti-5 Exposure Temp, ° F	450 450 450	550 550 550	550 550	600 600 600	009	650 650

embrittlement occurred was 500° F for the Ti-5Al-5Sn-5Zr-1Mo-1V and Ti-6Al-2Sn-4Zr-2Mo alloys and 600° F for the Ti-5Al-5Sn-5Zr alloy.

The residual yield and tensile strength of the Ti-5Al-5Sn-5Zr-1Mo-1V and Ti-6Al-2Sn-4Zr-2Mo alpha-beta alloys are summarized in Figures 98 and 101, where these properties are shown as a function of the time-temperature parameter, $T(20 + \log t) \cdot 10^{-3}$, in which T is the exposure temperature in degrees Rankine and t is the exposure time in hours. This parameter was arbitrarily chosen for presentation of the data on the logic that stress-corrosion is a temperature-time rate phenomenon. As these figures show, the strength properties of these alloys did not decrease as a direct function of the severity of the stress-corrosion environment (time-temperature) except in those instances (shown by shaded data points on the graphs) where the stress-corrosion attack was so severe that fracture in thetensile tests occurred at very low deformation levels. The data in Figures 98 and 101 indicate that the residual yield strength of the Ti-5A1-5Sn-5Zr-1Mo-1V and Ti-6A1-2Sn-4Zr-2Mo alloys decreased as a function of the exposure stress. In contrast, both the yield and tensile strengths of the all-alpha alloy decreased appreciably with the more severe exposure conditions and there was no apparent relationship between the residual strength and the exposure stress, as may be seen in Figure 95. As Figures 96, 99, and 102 show, the residual tensile ductility decreased as the stress-corrosion time and temperature increased. The photomicrographs in Figures 97, 100 and 103 show representative examples of the corrosive attack on each alloy at different stress-corrosion conditions. Photomicrographs were not obtained for conditions where visible evidence of corrosion was not found in microscopic examination of samples.

Dynamic Modulus

Figure 104 and Table 21 show the average dynamic moduli for longitudinal and transverse directions of the sheet alloys as functions of temperature. The dynamic moduli decreased with temperature to about the same level observed in the tensile tests (11 x 10^6 psi to 12×10^6 psi at 1000° F).

Tensile Properties at Room Temperature of Ti-5Al-5Sn-5Zr Alloy Sheet after Stress-Corrosion Exposure at Different Times, Temperatures and Stresses to Dry Sait Figure 95.

Heat No. D-8060 Sneet thickness: 40 mil Heat treatment: 1650° F, 1/2 hr, A.C.

Figure 96. Ductility of the Ti-5A1-5Sn-5Zr Alloy Sheet
After Stress-Corrosion Exposure at Different
Times, Temperature and Stresses to Dry Salt

Sheet thickness: 40 mils

Heat treatment: 1650°F, 2 hr, A. C.

Figure 97. Stress-Corrosion Damage in the Ti-5Al-5Sn-5Zr Alloy Sheet after Exposure to Different Temperature-Time-Stress Conditions

Heat No. D-8060 Sheet thickness: 40 mils Heat treatment: 1650° F, 1/2 hr, A.C. All samples etched in 1 ml Hf + 2 ml HNO₃ + 98 ml H₂O and photographed at 250X.

Tensile Properties at Room Temperature of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet after Stress-Corrosion Exposure at Different Times, Temperatures and Stresses to Dry Salt Figure 98.

Sheet thickness: 40 mil Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 99. Ductility of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet after Stress-Corrosion Exposure at Different Times, Temperatures, and Stresses to Dry Sait.

Sheet thickness: 40 mils

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

700° F, 100 hr, 60% Fty

800° F, 100 hr, 60% Fty

Figure 100, Stress-Corrosion Damage in the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet after Exposure to Different Temperature-Time-Stress Conditions

Heat No. V.2957 Sheet thickness: 40 mils

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C. All samples etched in 1 ml Hf + 2 ml HNO₈ + 98 ml H₂O and photographed at 750K.

Tensile Properties at Room Temperature of the Ti-6AI-2Sn-4Zr-2Mo Alloy Sheet after Stress-Corrosion Exposure at Different Times, Temperatures and Stresses to Dry Salt Figure 101.

Heat No. V-3016 Thickness: 40 mil

Thickness: 40 mil Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A. C.

Figure 102. Ductility of the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet After Stress-Corrosion Exposure at Different Times, Temperatures, and Stresses to Dry Salt.

Sheet thickness: 40 mils Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

600° F, 100 hr, 60% F_{ty}

600° F, 1000 hr, 40% F_{ty}

 700° F, 100 hr, 60% F $_{ty}$

800° F, 100 hr, 60% F_{ty}

Figure 103. Stress-Corrosion Damage to the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet after Exposure to Different Temperature-Time-Stress Conditions

Sheet thickness: 40 mils

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C. All specimens etched in 1 ml Hf + 2 ml HNO₃ + 98 ml H₂O

and photographed at 750X.

142

Table 21 The Dynamic Moduli of Elasticity at Different Temperatures of Three Titanium Alloys in the Form of Forty-Mil Sheet

Alloy	268	Е,			
Alloy	70° F	400° F	800° F	≁ 800° F	1000° F
Ti-5Al-5Sn-5Zr ^a	14,45	13.25	13.32	11.76	10.92
Ti-5Al-5Sn-5Zr-1Mo-1V ^b	14.52	13, 16	12.42	11.86	11.07
Ti-6Al-2Sn-4Zr-2Mo	15.46	14.39	13.75	13.14	12, 58

24

a Heat No. D-8050, Heat treatment: 1650° F, 1/2 hr, A.C. b Heat No. V-2957, Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C. + 1450° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Bar Alloys

Tensile

The following tables and figures show results of tensile tests on the bar alloys:

Alloy	Figures	Tables			
'Fi-5A1-5Sn-5Zr	105, 106, 107, 111, 112, 113	22, 24, 25, 70, 71, 74			
Ti-679	108, 109, 110, 111, 112, 113	23, 24, 25, 72, 73, 74			

Tables with numbers underlined are in Appendix I

As Figures 111 and 112 show, the tensile strength properties of the alphabeta Ti-679 alloy are considerably higher than those of the all-alpha Ti-5Al-5Sn-5Zr alloy bar up to 1000° F. The strength properties of the Ti-679 alloy were also greater than those of the comparative alpha-beta alloy (Ti-6Al-4V), and the Ti-5Al-5Sn-5Zr alloy bar had higher strength than the comparative all-alpha alloy (Ti-5Al-2.5Sn).

Table 24 shows the results of the precision-modulus-of-elasticity measurements on the bar alloys at room temperature. The results of these tests and the modulus of elasticity as measured from the recorded stress-strain curves in the tensile tests indicate that the modulus of elasticity of the Ti-679 alloy at room temperature may be slightly higher than that of the Ti-5Al-5Sn-5Zr alloy.

Results of notched tensile tests on the bar alloys are given in Table 25.

Compression

The tables and figures listed below show data on the compression properties of the two bar alloys:

Alloy	Figures	Tables		
Ti-5Al-5Sn-5Zr	114, 115, 117	26, <u>75</u>		
Ti-679	114, 116, 117	26, <u>76</u>		

Tables with numbers underlined are in Appendix I

Compression data given in Figure 117 for the two bar alloys evaluated in this program show that the Ti-679 bar has higher compressive strength than the Ti-6Al-4V alloy selected for comparison.

Table 22

Summary of the Averages and Standard Deviations for the Tensile Properties of the Ti-5Al-5Sn-5Zr Alloy Bar at Different Temperatures a, b, c

				Hea	t No. D-8	3060		3		
Temp.	F _{tv} ,	ksi	F _{tu} ,	ksi	е, %		R.A., %		E _t , 10 ⁶ psi	
°F_	Avg.	8	Avg.	<u>s</u>	Avg.	s	Avg.	8	Avg.	s
70	122.0	0.9	130.1	1.4	16.0	0.9	38.6	2.4	16.5	0.5
400	80.4	0.7	94.8	0.9	20.5	1.6	44.6	1.8	15.4	0.9
600	67.8	1.6	86.2	0.9	21.1	2, 1	46.8	2.3	14.6	1.6
800	59.8	1.9	79.9	0.9	28.4	1.5	51.1	1.7	13.3	0.8
1000	58.1	1.6	75.8	0.8	22.8	1.1	51.2	1.5	11.9	0.6

Heat	No.	D-1	7	93
110		~ -		

	`					
_u , ksi e,	% R.A.,	%c	Et, 10s psi			
s Avg.	B Avg.	8	Avg. s			
	4.0 40.4	4.0				
		-	6.6 0.2			
5 0.3 21.3	0.5 45.8	0.8 1	6.7 1.6			
8 0.6 23.3	0.5 49.1	0.7 1	4.5 1.1			
4 0.5 27.3	0.5 52.2	0.8 1	4.5 1.1			
7 0.4 22.7	0.7 52.5	0.9 1	2.1 1.0			
	7 1.2 17.1 5 0.3 21.3 8 0.6 23.3 4 0.5 27.3	7 1.2 17.1 1.2 40.1 5 0.3 21.3 0.5 45.8 8 0.6 23.3 0.5 49.1 4 0.5 27.3 0.5 52.2	7 1.2 17.1 1.2 40.1 1.0 1 5 0.3 21.3 0.5 45.8 0.8 1 8 0.6 23.3 0.5 49.1 0.7 1 4 0.5 27.3 0.5 52.2 0.8 1			

a Averages and standard deviations are based on 10 evaluations at each temperature.

b Heat treatment: 1650° F, 2 hr, A.C. c Section size: 1/2 in. x 1-1/8 in.

Table 23

Summary of the Averages and Standard Deviations for the Tensile Properties of the Ti-679 Alloy Bar at Dif-ferent Temperatures^{a, b, c}

Heat No. D-	.7	73	74
-------------	----	----	----

neat No. D-1212											
Temp.		Fty, kei		F _{tu} , ksi		e, %		R.A., %		Et, 10s psi	
	<u> </u>	Avg.	8	Avg.	8	Avg.	8	Avg.	8	Avg.	S
	70	138.6	2. 4	148.6	1.9	14.4	0.5	42.9	2.4	15.2	0.3
	400	100.3	2.4	121.5	2,3	15.7	1.2	48.8	1.9	14.6	0.8
	600	89.8	1.7	114.1	1.9	13.9	0.7	48.9	3.4	13.7	0.6
	800	83.1	1.8	108.8	1.7	15.4	0.9	49.2	2.1	13.3	0.4
	1000	77.4	2.0	99.7	1.9	17.3	0.7	56.5	4. 2	12.3	0.7

Heat No.	D-842?
----------	--------

11040 1101 15 0 121											
Temp.	F _{ty} , ksi		F _{iu} . ksi		e, %		R.A., %		E _t , 10 ⁶ psi		
<u> </u>	Avg.	8	Avg.	8	Avg.	8	Avg.	3	Avg.	s	
70	131.0	1.9	142.9	1.5	12, 2	υ.4	42.4	2.5	15.3	0.1	
400	96.5	2.4	116.7	1.6	13.8	0.6	48.7	2.4	14.0	0.6	
600	85.7	2, 2	108.3	1.7	13.1	0.6	48.2	3.1	13.9	0.6	
800	81.5	2.1	104.6	1.8	14.3	1.2	50.3	3. 5	13.0	0,4	
1000	74.0	1.9	97.2	1.1	15, 5	0.7	54.3	3.0	12.3	0.9	

a Averages and standard deviations are based on 10 evaluations at each temperature. b Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C. c Section size: 1/2 in. x 1-1/8 in.

Figure 105. The 0.2%-Offset Yield Strength, Tensile Strength and the Modulus of Elasticity in Tension of Ti-5A1-5Sn-5Zr Alloy Bar

Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C.

Figure 106. The Elongation and Reduction of Area of Ti-5A1-5Sn-5Zr Alloy Bar

Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C.

Figure 107, The Effect of Temperature on the Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Bar Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C.

Figure 108. The 0.2%-Offset Yield Strength, Tensile Strength and the Modulus of Elasticity in Tension of Ti-679 Alloy Bar

Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C. + 930₂F, 24 hr, A.C.

Figure 109. The Elongation and Reduction of Area of Ti-679 Alloy Bar

Section size: 1/2 in. $\times 1-1/8$ in.

Heat treatment: 1650° F, 2 hr, A.C., 930° F, 24 hr, A.C.

Figure 110. The Effect of Temperature on the Tensile Properties of Ti-679 Alloy Bar

Se tion size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Figure 111. Comparison of the 0.2%-Cifset Yield Strength of Titanium Bar Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys

Referenced data

a - MILHDBK 5, p 5.4.6.2.1 (b) b - MILHDBK 5, p 5.3.1.2.1 (b)

Figure 112. Comparison of the Ultimate Tensile Strength of Titanium Bar Alloys Evaluated in this Program with Data from the Litera-ture for other Titanium Alloys

Referenced data

a - MILHDBK 5, p 5.4.6.2.1 (a) b - MILHDBK 5, p 5.3.1.2.1 (a)

Figure 113. Comparison of Elongation and Modulus of Elasticity in Tension of Titanium Bar Alloys Evaluated in this Program with Data from the Literature for other Titanium Alloys

Referenced Data

a - MILHDBK 5, p 5.4.6.2.4 b - MILHDBK 5, p 5.3.1.2.4

Table 24

Precision Modulus of Elasticity of the Bar Alloys at Room Temperature^{a,b,c}

Alloy	Modulus of Elasticity, 10 ⁶ psi
Ti-5Al-5Sn-5Zr	16.563
Ti-679	15.806

- a Section size: 1/2 in. x 1-1/8 in.
- b Heat Nos.

Ti-5A1-5Sn-5Zr: D-8060

Ti-579: D-7274

c Heat treatment:

Ti-5Al-5Sn-5Zr: 1650° F, 2 hr, A.C.

Ti-679: 1650° F, 2 hr, A.C. +

930° F, 24 hr, A.C.

Table 25

Summary of Averaged Notched Tensile Strength of the Bar Alloys a, b, c

		Temperature, ° F	
	70	400	800
Ti-5Al-5Sn-5Zr	199.0	140.6	115.6
Ti-679	218.7	175.6	164.8

- a Section size: 1/2 in. $\times 1-1/8$ in.
- b Heat treatment: Ti-5Al-5Sn-5Zr, 1650°F, 2 hr, A.C. Ti-679, 1650°F, 2 hr, A.C. + 930°F, 24 hr, A.C.
- c Notched 45°, 0.010 in. radius, 0.187 in. minimum diameter to produce $K_t = 3$.

Table 26

Summary of Averages and Standard Deviations for the Compression Properties at Different Temperatures of the Ti-5Al-5Sn-5Zr and Ti-679 Alloys in Bar Form

Ti-5Al-5Sn-5Zr (Heat No. D-8060)

F _{CV} , ksi		ksi	E_{c} , 10	s pai
Temp, F	Avg.	8	Avg.	8_
70	126.9	3.1	15.4	0.3
400	86, 9	2.5	14.2	0.1
600	73.5	2.8	13.3	0.2
800	64.8	3.0	12.6	0. 2
1000	64.3	2.5	11.8	0.2

Heat treatment: 1650° F, 2 hr, A.C.

Ti-679 (Heat No. D-7274)

	F _{CV} ,	ksi	E _C , 10	psi
Temp, F	Avg.	<u>s</u>	Avg.	S
70	140.2	1.7	14.5	0.2
40C	104.4	3.8	13.8	0.2
600	93.3	1.0	12.9	0.2
800	87.0	1.5	12.0	0.1
1000	80.2	1.1	11.5	0.2

Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Section size: 1/2 in. $\times 1-1/8$ in.

Figure 114. The 0.2%-Offset Yield Strength and Modulus of Elasticity in Compression of Ti-5Al-5Sn-5Zr and Ti-679 Alloys in Bar Form at Different Temperatures.

	Ti-5A1-5Sn-5Zr	Ті-679
Heat No.	D-8060	D-7274
Heat treatment:	1650° F, 2 hr, A.C.	1650°F, 2 hr, A.C. + 930°F, 24hr, A.C.
Section size:	1-1/8 in. x 1/2 in.	1-1/8 in. x 1/2 in.

Figure 115. Effect of Temperature on the Compressive Properties of Ti-5Al-5Sn-5Zr Alloy Bar

Heat No. D-8060

Section size: 1-1/8 in. $\times 1/2$ in. Heat treatment: 1650° F, 2 hr, A,C.

Figure 116. Effect of Temperature on the Compressive Properties of Ti-679 Alloy Bar

Heat No. D-7274

Section size: 1-1/8 in. x 1/2 in. Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Figure 117. Comparison of the Compressive Properties of Titanium Alloy Bar Evaluated in this Program with Data from the Literatur for Other Titanium Alloys,

Referenced data a - MILHDBK 5, p 5.4.6.2.2. (a) b - MILHDBK 5, p 5.4.6.2.4

Shear

Data on the shear strength of the Ti-679 and Ti-5Al-5Sn-5Zr bar alloys are given in tables and figures as shown below:

Alloy	Figures	Tables
Ti-5Al-5Sn-5Zr	118, 120, 121	27, <u>77</u>
Ti-679	119, 120, 121	27, <u>78</u>

Tables with numbers underlined are in Appendix I

The ultimate shear strengths of the bar alloys were about 0.7 to 0.8 of their respective tensile strengths at room and elevated temperatures.

Thermal Exposure

Data for tensile and hardness tests subsequent to thermal exposure are given in tables and figures as shown below:

Alloy	Figure	Tables
Ti-5Al-5Sn-5Zr Ti-679	122 123	$\frac{79}{79}$, $\frac{80}{81}$

Tables with numbers underlined are in Appendix I

No significant change in tensile properties was observed, either in tests at room temperature or at the exposure temperature, which indicates that the tensile properties of the bar alloys were not adversely affected by thermal exposure.

Table 27

Summary of Averages and Standard Deviations for the Ultimate Shear Strength at Different Temperatures of Two Titanium Alloys, Bar Form^{a, b}

Temp.	Ti-5A1-5		Ti-	679 ksi
° F	Avg.	s	Avg.	s
70 400 600 800 1000	102.9 76.7 70.2 65.3 61.5	3.9 1.7 2.6 1.3 0.3	106.5 85,6 80.8 77.4 72.3	3.8 3.8 1.5 1.6 2.6

a Section size: 1-1/8 in. x 1/2 in.

Ti-5Al-5Sn-5Zr, 1650° F, 2 hr, A.C.

Ti-679, 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

b Heat treatments:

Figure 118. The Ultimate Shear Strength of Ti-5Al-5Sn-5Zr Alloy Bar at Different Temperatures.

Heat No. D-8060

Section size: 1-1/8 in. x 1/2 in. Heat treatment: 1650° F, 2 hr, A.C.

Figure 119. The Ultimate Shear Strength of Ti-679 Alloy Bar at Different Temperatures.

Heat No. D-7274

Section size: 1-1/8 in. x 1/2 in.

Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Figure 120. The Effect of Temperature on the Ultimate Shear Strength of Two Titanium Alloys

Section size: 1/2 in. x 1-1/8 in.

Heat treatment: As shown for each alloy.

Figure 121. Comparison of Ultimate Shear Strength of Titanium Bar Alleys Evaluated in this Program with Data from the Literature for Other Titanium Alloys.

Referenced Data

a MIL HDBK 5, p 5. 4. 6. 2. 2 (a) b MIL HDBK 5, p 5. 3. 1. 2. 2 (a)

Figure 122. Effect of Thermal Exposure on the Tensile-Strength Properties of Ti-5Al-5Sn-5Zr Allog Bar at Room Temperature (above) and at the Exposure Temperature (below).

Heat No. D-8060

Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F. 2 h. A.C.

Figure 123. Effect of Thermal Exposure on the Tensile-Strength Properties of Ti-679 Alloy Bar at Room Temperature (above) and at the Exposure Temperature (below)

Heat No. D-7274

Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C., 330° F, A.C.

Creep

The results of creep tests on the bar alloys are given in the tables and figures as shown below:

Alloy	Figures	Tables
Ti-5Ai-5Sn-5Zr	124, 125, 120, 127, 132, 133	82
Ti-679	128, 129, 130, 131, 132, 133	83

Tables shown are in Appendix I

Comparative creep data at the 0.1% and 0.5% deformation, in Figures 132 and 133 respectively, show that the creep strength of the Ti-679 alloy is superior to that of the Ti-5Al-5Sn-5Zr alloy at low parameter values, but the relative creep strength of the two alloys reversed for higher values of the time-temperature parameter. Both bar alloys evaluated in this program had higher creep strength than the comparative alloys for which data are shown in Figures 132 and 133.

Impact

Data for the impact tests on the two bar alloys are given in Tables 28 and 29 and Figure 134. The results of individual tests are shown in Tables 84 and 85 in Appendix I. The impact strength of the alloys was comparable at room temperature, but at elevated temperatures the Ti-5Al-5Sn-5Zr had higher impact strength than the Ti-679 alloy.

Fatigue

Results of the fatigue tests on unnotched and notched specimens of the two bar alloys are shown in the following tables and figures:

Alloy	Figures	Tables
Ti-5Al-5Sn·5Zr	135, 136, 137, 138, 139	86
Ti-679	140, 141, 142, 143, 144	87

Tables are in Appendix I

Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5Al-5Sn-5Zr Alloy Bar at 800° F. Figure 124.

Heat No. D-8060 Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C.

Figure 125. Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-5A1-5Sn-5Zr Alloy Bar at 900° F.

Heat No. D-8060 Section Fize: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C.

Figure 126, Stress for Different Amounts of Creep Deformation as a Function of Time for the . Ti-5Al-5Sn-5Zr Alloy Bar at 1000° F.

Heat No. D-8060 Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C.

Heat treatment: 1650° F, 2 hr, A.C.

Figure 128, Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-679 Alloy Bar at 800° F.

Heat No. D-7274 Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Figure 129. Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-679 Alloy at 900° F.

Heat No. D7274 Section size: 1-1/8 in. x 1/2 in. Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Figure 130, Stress for Different Amounts of Creep Deformation as a Function of Time for the Ti-679 Alloy Bar at 1000° F.

Heat No. D-7274 Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Figure 131. Minimum Creep Rate of Ti-679 Alloy Bar at Different Temperatures

Heat No. D-7274
Section Size: 1/2 in. x 1-1/8 in.
Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Figure 132. Comparison of Creep Strength at 0.1% Creep Deformation of Titanium Bar Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys

Referenced Data

a - Aerospace Hdbk, Vol II, Code 3707, p 13 Properties of Ti-6Al-4V, TMCA

b - Aerospace Hdbk, Vol II, Code 3706, p 7

Figure 133. Comparison of Creep Strength at 0.5% Creep Deformation of Titanium Bar Alloys Evaluated in this Program with Data from the Literature for Other Titanium Alloys

Referenced Data

- a Aerospace Hdbk, Vol II, Code 3707, p 13 Properties of Ti-6Al-4V, TMCA
- b Aerospace Hdbk, Vol II, Code 3706, p 7

Table 28

Averaged Impact Strength for the Ti-5Al-5Sn-5Zr Bar Alloy a, b, c

Temp., °F	Impact Strength _ft-lb
70	11.5
400	21.7
600	30.8
800	42.7

Heat No. D-8060 a

b

Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C.

Table 29

Averaged Impact Strength for the Ti-679 Bar Alloy a, b, c

Temp.,	Impact Strength ft-lb
70 400	14.3
	17.6
600	24.5
800	30. 1

a Heat No. D-7274

b Section size: 1/2 in. x 1-1/8 in. c Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Figure 134. The Effect of Temperature on the Impact Strength of the Ti-5A1-5Sn-5Zr and Ti-679 Bar Alloys

Heat treatment and heat number

Ti-5A-5Sn-5Zr: 1650°F, 2 hr, A. C., D-8060 Ti-679: 1650°F, 2 hr, A. C. + 930°F + 24 hr, A.C., D-7274 Section: 1/2 in. x 1 1/8 in.

Figure 135, S-N Curves for the Ti-5Al -5Sn-5Zr Alloy Bar at 70°F in the Notched and Unnotched Conditions

Heat No. D-8060 Section size: 1 1/8 in. x1/2 in. Heat treatment: 1650°F, 2 hr, A. C.

A = Alternating Stress

Figure 136. S-N Curves for the Ti-5Al-5Sn-5Zr Alloy Bar at 400° F in the Notched and Unnotched Conditions

Section size: 1-1/8 in. x 1/2 in. Heat treatment: 1650° F, 2 hr, A.C.

A - Alternating Stress
Mean Stress

Figure 137. S-N Curves for the Ti-5Al-5Sn-5Zr Alloy Bar at 800° F in the Notched and Unnotched Conditions

Section size: 1-1/8 in. x 1/2 in. Heat treatment: $1650_{\odot}F$, 2 hr, A.C.

A = Alternating Stress
Mean Stress

Constant-Life Fatigue Diagram for the Ti-5Al-5Sn-5Zr Alloy Bar (Unnotched) at Section size: 1-1/8 in, x 1/2 in, Heat treatment: 1650° F, 2 hr, A.C. Different Temperatures Heat No. D-8060 Figure 138.

Figure 139. Constant-Life Fatigue Diagram for the Ti-5Al-5Sn-5Zr Alloy Bar (Notched $\rm K_t$ = 3) at Different Temperatures

Heat No. D-8060 Section size: 1-1/8 in, x 1/2 in, Heat treatment: 1650°F, 2 hr, A.C.

Figure 140. S-N Curves for the Ti-679 Alloy Bar at 70° F in the Notched and Unnotched Conditions.

Section size: 1-1/8 in. x 1/2 in. Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Alternating Stress Mean Stress

Figure 141. S-N Curves for the Ti-679 Alloy Bar at 400° F in the Notched and Unnotched Conditions.

Section size: 1-1/8 in. x 1/2 in. Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Alternating Stress Mean Stress

Figure 142. S-N Curves for the Ti-679 Alloy Bar at 800° F in the Notched and Unnotched Conditions.

Section size: 1-1/8 in. x 1/2 in. Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Alternating Stress Mean Stress

Figure 143, Constant-Life Fatigue Diagram for the Ti-679 Alloy Bar (Unnotched) at Different Section size: 1-1/8 in. x 1/2 in. Heat treatment: 1650° F, 2 hr, A. C. + 930° F, 24 hr, A.C. Heat No. D-7274 Temperatures

Figure 144. Constant-Life Fatigue Diagram for the Ti-679 Alloy Bar (Notched Kt = 3) at Different Temperatures

Section size: 1-1/8 in. x 1/2 in. Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

The constant-life fatigue diagrams (Figures 135 and 140) show that the Ti-679 alloy had higher fatigue strength than the Ti-5Al-5Sn-5Zr alloy in the unnotched condition. Figures 136 and 141 show that the fatigue strength of the Ti-679 bar was also slightly higher than that of the Ti-5Al-5Sn-5Zr bar in the notched condition.

Fracture Toughness

Values of the apparent fracture toughness for the bar alloys are given in Table 30 and Table 88 (Appendix I). As was the case for the sheet alloys, gross plastic yielding in advance of the crack occurred, which prevented calculation of the true fracture toughness. Tables 30 and 88 are clearly marked to indicate that the calculated values represented only the apparent fracture toughness. The criterion that has been used to judge the validity of the calculated plane-strain fracture toughness for a single-edge-notched specimen is that the nominal stress at the crack tip (σ nom) should not exceed the yield strength. As Table 88 shows, σ nom/Fty was generally greater than 1.0, indicating that the calculated values are not representative of the true fracture toughness of the bar alloys.

Dynamic Modulus of Elasticity

The dynamic moduli of elasticity of the bar alloys is shown by data in Table 31 and Figure 145.

These data are in agreement with the precision modulus of elasticity determinations and the moduli as determined from the tensile stress-strain curves, in that the modulus of the Ti-679 alloy appears to be slightly lower than that of the Ti-5Al-5Sn-5Zr bar at most temperatures.

Table 30

Summary of Apparent Fracture-Toughness of the Bar Alloys

Notice: Gross yielding occurred in tests at 400 and 70° F, and to some extent at -110° F, such that the true fracture toughness is not represented by data given in this table.

Alloy	Temp.,	K _{nc} a ksi √in.
Ti-5A1-5Sn-5Zr	400	49.4
Ti-5Al-5Sn-5Zr	70	69.1
Ti-5Al-5Sn-5Zr	-110	55.7
Ti-679	400	54.8
Ti-679	70	60.8
Ti-679	-110	52.7

a Stress intensity factor reported as K_{nc} , rather than K_{Ic} , because pop-in was not observed and calculation was based on load deviation from linearity.

Table 31 The Dynamic Moduli of Elasticity at Different Temperatures of the Ti-5Al-5Sn-5Zr and Ti-679 Alloys in Bar Form

		- Grown Indon	E, 10 ⁶ psi		
Alloy	70° F	400° F	600° F	800° F	1000° F
Ti-5A1-5Sn-5Zr ^b	16.88	15.56	14.65	13.75	12.75
Ti-679 ^b	15.37	14.09	13.47	12.64	11.91

⁸ Section size: 1/2 in. $\times 1-1/8$ in.

Ti-5Al-5Sn-5Zr: 1650° F, 2 hr, A.C. Ti-679: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

b Heat treatments:

Figure 145. The Effect of Temperature on the Moduli of Elasticity of the Titanium Bar Alloys under Conditions of Dynamic Loading

RESULTS OF THERMAL-PROPERTY TESTS

Thermal Conductivity

The thermal conductivities of the titanium alloys are shown in Figures 146 through 150; the data are given in Tables 89 through 93 in Appendix II, and the conductivities of all the alloys are shown in a composite plot in Figure 151. The conductivities increased with increased temperature from about 52 to 57 Btu/hr/ft²/° F/in. at 100° F to from 88 to 93 Btu/hr/ft²/° F/in. at 1000° F. The conductivity of Ti-679, as seen in Figure 150, agrees well above 500° F with a curve from the Titanium Metals Corporation of America Increature but is higher at the lower temperatures. Also shown in Figure 151 is the range of data for seven titanium alloys containing from 4% to 8% aluminum plus small percentages of various other elements as compiled by the Armour Research Foundation and reported in WADC-TR-58-476. The conductivities of these four alloys were within the range shown except at above 900° F, where they were slightly lower. There was no difference in the conductivity of the Ti-5Al-5Sn-5Zr in bar and sheet form.

Thermal Expansion

The thermal expansions of the alloys are shown in Figures 152 through 159 and the data are given in Tables 94 through 101 in Appendix II. No differences in thermal repansion were detected between the alloy Ti-5Al-5Sn-5Zr in bar form and in sheet form, and no differences were detected in the expansions parallel and transverse to the rolling direction of the sheet materials. The total thermal expansion of all the materials from room temperature to 1000° F was about 5×10^{-3} in./in. and the coefficients of thermal expansion near 700° F were from 5.5 to 5.8×10^{-6} in./in./° F. A composite plot of the thermal expansions of the four alloys is given in Figure 160.

Literature values for the coefficients of thermal expansion from room temperature to about 500° F of similar alloys range generally from 5 to 5.7 \times 10^{-6} in./in./ $^\circ$ F.

Ti-5Al-5Sn-5Zr, Parallel to Rolling Direction, Sheet thickness: 40 mil Heat treatment: 1650° F, 1/2 hr, A.C. Heat No. D-8060

Figure 147, The Thermal Conductivity of the Titanium Sheet Alloy, Ti-5Al-5Sn-5Zr-1Mo-1V Parallel to Rolling Direction.

Sheet thickness: 40 mil

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 148. The Thermal Conductivity of the Titanium Sheet Alloy, Ti-8Al-2Sn-4Zr-2Mo Parallel to Rolling Direction

Heat No. V-3016 Sheet trickness: 40 mil Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 149, The Thermal Conductivity of the Titanium Bar Alloy, Ti-5Al-5Sn-5Zr Transverse to the Rolling Direction. Heat No. D-80%0 Section size: 1/2 in. x 1-1/8 in.

Heat treatment: 1650° F, 2 hr, A.C.

202

Figure 150, The Thermal Conductivity of the Titanium Bar Alloy, Ti-679 Transverse to Rolling Direction Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C. Section size: 1/2 in. x 1-1/2 in. Heat No. D-7274

Figure 151. The Thermal Conductivities of Some Titanium Alloys.

Figure \52. The Thermal Expansion of the Titanium Alloy Ti-5A1-5Sn-5Zr in Sheet Form Parallel to the Rolling Direction.

Heat No. D-8060 Sheet thickness: 40mil

Heat Treatment: 1650° F, 1/2 hr, A.C.

Figure 153. The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-57r in Sheet Form Transverse to the Rolling Direction

Sheet thickness: 40 mils

Heat treatment: 1650° F, 1/2 hr, A.C.

Figure 154. The Thermal Expansion of the Tianium Alloy Ti-5Al-5Sn-5Zr-1Mo-1V in Sheet Form Parallel to the Rolling Direction.

Sheet thickness: 40 mil

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 155. The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr-1Mo-1V in Sheet Form Transverse to the Rolling Direction.

Sheet thickness: 40 mil

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 156. The Thermal Expansion of the Titanium Alloy Ti-6A1-2Sn-4Zr-2Mo in Sheet Form Parallel to the Rolling Direction.

Sheet thickness: 40 mil

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 157. The Thermal Expansion of the Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo in Sheet Form Transverse to the Rolling Direction.

Sheet thickness: 40 mil

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 158. The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-57r in Bar Form Parallel to the Rolling Direction.

Section size: 1/2 in. x 1-1/8 in. Heat treatment: 1650° F, 2 hr, A.C.

Figure 159. The Thermal Expansion of the Titanium Alloy Ti-679 in Bar Form Parallel to the Rolling Direction.

Heat No. D-7274
Section size: 1/2 in. x 1-1/2 in.
Heat treatment: 1850° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Figure 160. The Thermal Expansions of Four Titanium Alloys.

Specific Heat

The enthalpies and heat capacities of the four alloys are given in Figures 161 through 164 and the data are given in Tables 102 through 106 in Appendix II. A composite plot of the heat capacities is given in Figure 165. The heat capacities of the four alloys ranged from about 0.12 to 0.13 Btu/lb/°F from 100°F to 500°F, increasing slightly above 500°F. At 1000°F the heat capacity of the Ti-679, Ti-5Al-5Sn-5Zr, and Ti-5Al-5Sn-5Zr-1Mo-1V ranged from 0.14 to 0.15 Btu/lb/°F and the heat capacity of the Ti-5Al-2Sn-4Zr-2Mo was about 0.17 Btu/lb/°F.

The heat capacities at room temperature for the four alloys as calculated from heat capacities and the weight percentages of the alloying elements agreed well with the measured values. The calculated heat capacities were as follows: Ti-679, 0.115 Btu/lb/° F; Ti-5Al-5Sn-5Zr, 0.122 Btu/lb/° F; Ti-5Al-5Sn-5Zr-1Mo-1V, 0.122 Btu/lb/° F; Ti-6Al-2Sn-4Zr-2Mo, 0.125 Btu/lb/° F. These values all fall in the range of measured heat capacities from 0.12 to 0.13 Btu/lb/° F.

The enthalpy and heat capacity curves shown represent the best fit of the data by the graphical and least squares methods. The equations for the four alloys are given below.

1. Alloy: <u>Ti-679</u>

$$h_{85} = 117 \times 10^{-3} T + 71.3 \times 10^{-7} T^2 + 30.8 \times 10^{2} T^{-1} - 71.8$$

 $HC = 117 \times 10^{-3} + 142.6 \times 10^{-7} T - 22.9 \times 10^{2} T^{-2}$

2. Alloy: <u>Ti-5A1-5Sn-5Zr</u>

$$h_{85} = 1.46 \times 10^{-3} T + 501 \times 10^{-7} T^2 - 285 \times 10^2 T^{-1} + 36.4$$

 $HC = 1.46 \times 10^{-3} + 1002 \times 10^{-7} T + 251 \times 10^2 T^{-2}$

3. Alloy: $\underline{\text{Ti-5Al-5Sn-5Zr-1Mo-1V}}$

$$h_{85} = -71.8 \times 10^{-3} T + 732 \times 10^{-7} T^2 - 488 \times 10^2 T^{-1} + 107$$

 $HC = -71.8 \times 10^{-3} + 1464 \times 10^{-7} T + 426 \times 10^2 T^{-2}$

4. Alloy: Ti-6A1-2Sn-4Zr-2Mo

$$h_{85} = -143 \times 10^{-3} T + 1078 \times 10^{-7} T^2 - 575 \times 10^2 T^{-1} + 151$$

 $HC = -143 \times 10^{-3} + 2156 \times 10^{-7} T + 519 \times 10^2 T^{-2}$

Figure 161. The Enthalpy and Heat Capacity of the Titanium Alloy Ti-5Al-5Sn-5?r in Bar and Sheet Form

Bar Section: 1/2 in. x 1-1/2 in.

Sheet thickness: 40 mil

Heat treatment:

Sheet - 1650° F, 1/2 hr, A.C. Bar - 1650° F, 2 hr, A.C.

Figure 162. The Enthalpy and Heat Capacity of the Titanium Alloy Ti-5Al-5Sn-5Zr-1Mo-1V in Sheet Form

Sheet thickness: 40 mils

Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Figure 163. The Enthalpy and Heat Capacity of the Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo in Sheet Form

Sheet thickness: 40 mil

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Figure 164. The Enthalpy and Heat Capacity of the Titanium Alloy Ti-679 in Bar Form

Section size: 1/2 in. $\times 1-1/2$ in.

Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Figure 165. The Heat Capacities of Four Titanium Alloys

The temperatures (T) in these equations are in degrees Rankine, and the equations are limited to a temperature range from about 150° F to about 900° F. The enthalpies and heat capacities calculated using these equations are also plotted in Figures 161 through 164 at several temperatures.

CONCLUSIONS

The data developed in this investigation were analyzed by the normal statistical techniques used to establish mechanical-property design allowables for MIL-HDBK 5^6 and the results of these computations are given in tables 32-35 for the different alloys. It is recognized that the numbers of tests and heats upon which these computations are based is not sufficient for inclusion of these data sheets in MIL-HDBK 5 and these values may change as additional data become available. These values are intended to serve as a means for comparing these alloys with competitive alloys presently in MIL-HDBK 5 on the most realistic basis possible.

In all of the mechanical strength properties for which data are given in Tables 32 - 35, the strength of the alpha-beta sheet alloys (Ti-5Al-5Sn-5Zr-1Mo-1V and Ti-6Al-2Sn-4Zr-2Mo) are, as expected, higher than those of the all-alpha alloy (Ti-5Al-5Sn-5Zr). The derived design allowable for the ultimate bearing strength at e/D = 1.5 of the Ti-5Al-5Sn-5Zr alloy sheet is, however, comparable to the two alpha-beta alloys. In general, the apparent design allowables of the Ti-5Al-5Sn-5Zr-1Mo-1V sheet were slightly higher than those of the Ti-6Al-2Sn-4Zr-2Mo.

Among the other properties not included in Tables 32 - 35 for which significant differences in the sheet were noted were creep, axial fatigue, and stress corrosion. The all-alpha alloy sheet, Ti-5A1-5Sn-5Zr, had superior creep strength to the two alpha-beta alloys. However, the creep strength of the Ti-6A1-2Sn-4Zr-2Mo alloy was high relative to the Ti-5A1-5Sn-5Zr-1Mo-1V alloy. The fatigue strength of the Ti-6A1-2Sn-4Zr-2Mo alloy was, in general, slightly higher than for the other alloys. In stress-corrosion the preliminary tests indicated that the susceptibility temperature for stress-corrosion of the Ti-5A1-5Sn-5Zr alloy (600° F) was about 100° F higher than for the alpha-beta alloys (500° F). However, results of residual tensile tests on the sheet alloys showed that the tensile strength properties of the Ti-5A1-5Sn-5Zr alloys were depreciated to a greater extent by stress-corrosion exposure than were the properties of the alpha-beta alloys.

Of the bar alloys, the Ti-679 alpha-beta alloy had generally higher properties, as shown in Tables 32 and 35, than the Ti-5Al-5Sn-5Zr bar. However, at high temperatures the creep strength of the Ti-5Al-5Sn-5Zr bar was higher than that of the Ti-679 alloy.

There were no significant differences in the thermal properties (thermal conductivity, thermal expansion, and specific heat) of the four titanium alloys evaluated.

Table 32

Design Mechanical and Physical Properties for Ti-5Al-5Sn-5Zr

Solution annealed					
		1/2 x	1-1/8		
A b	в	A b	Вb		
194	195	122	124		
122	123	122	124		
	410				
115	116	116	117		
110 115	111 116	117	119		
84 90	85 91	86	87		
4.50					
200 214	202 216				
140	140				
164	165				
169 192	171 194				
14		13			
		16.1			
	~~~	15.0			
η		0.12 between 3	100 - 500° F		
	124 122 115 115 110 115 84 90 188 201 200 214 148 164 169 192	124 125 122 123 115 116 110 111 115 116 84 85 90 91 188 189 201 203 200 202 214 216 148 149 164 165 169 171 192 194	Ab       Bb       Ab         124       125       122         122       123       116         115       116       116         110       111       117         115       116       117         84       85       86         90       91       86         188       189       201         200       202       214         214       216       148         148       149       164         164       165       169         171       192       194         12       13         14       15.0		

a Heat treatment: Sheet, 1650° F, 1/2 hr, A.C. Bar, 1650° F, 2 hr, A.C.

b Tentative A and B values not approved for MIL-HDBK-5. For comparison purposes only.

Table 33 Design Mechanical and Physical Properties for Ti-5A1-5Sn-5Zr-1Mo-1V

Form		Sheet					
Condition		Solution-annealed and hot-sized					
Thickness or dia,	in.	0.0	940				
Pasis		A b	Bp				
Mechanical propert	ties:						
F _{tu} , ks:	L T	143 141	145 144				
F _{ty} , ksi	L T	132 132	134 134				
F _{cy} , ksi	L T	131 138	133 141	,*			
F _{su} , ksi	L T	102 104	193 106				
F _{bru} , ksi (e/D = 1.5)	L T	208 213	211 216				
(e/D = 2.0)	L T	198 2 <b>49</b>	202 254				
F _{bry} , ksi (e/D = 1.5)	L T	186 180	192 184				
(e/D = 2.0)	L	143 210	146 214				
e, per cent In 2 in.	L T	9 8					
E, 10 ⁶ psi E _c , 10 ⁶ psi		1	5. 0				
Physical properties	:		Market and the second second second				
C, Btu/(lb)(°F) Κ, Btu/(hr)(fr) α, 10 ⁻⁶ in./in.	) (°F)/ftj /°F	(4	.12 between 100 .3 at 100° F .7 between 200				

a Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C. b Tentative A and B values not approved for MIL HDBK-5. For comparison purposes only.

Table 34 Design Mechanical and Physical Properties for Ti-6A1-2Sn-4Zr-2Mo

Form		Sheet	
Condition		Solution-a	nnealed and hot-sized
Thickness or dia, i	n.	0.0	)40
Basis		A b	Вр
Mechanical propert	ies:		
F _{tu} , ksi	L	139	143
	T	140	142
T _{ty} , ksi	L	134	137
	T	133	135
F _{cy} , ksi	L	127	130
	T	117	132
F _{su} , ksi	L	85	87
	T	95	87
F _{bru} , ksi	L	193	200
(e/D = 1.5)	T	192	195
(e/D = 2, 0)	L	253	262
	T	225	229
F _{bry, ksi} (e/D = 1.5)	L	174	178
	T	148	150
(e/D = 2.0)	L	201	206
	T	206	209
e, per cent In 2 in.	L T	- <mark>8</mark> 6	
E, $10^6$ psi ${ m E_C}$ , $10^6$ psi			3.1
Physical properties	:		
C, Btu/(1b)(°F) Κ, Btu/[(hr)(f) α, 10 ⁻⁶ in./in.	)	0.	12 between 100 and 500° F
	t ² )(°F)/ftj	4.	7 at 100° F
	/°F	5.	5 between 200 and 1000° I

a Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1,4 hr, A.C. b Tentative A and B values not approved for MIL-HDEK-5. For comparison purposes only.

Table 35

Design Mechanical and Physical Properties for Ti-679

Form		Bar				
Condition		Solution-a	Solution-annealed and aged			
Thickness or dia,	in.	1/2 x 1-1/	18			
Basis		A ^e	В ^c			
Mechanical proper	rties:					
F _{tu} , ksi	L	140	142			
F _{ty} , ^{ksi}	L	128	133			
F _{cy} , ksi	Ĺ	124	129			
F _{su} , ksi	L	88	89			
e, per cent						
In 2 in.		12				
E, $10^6\mathrm{psi}$ E _c , $10^6\mathrm{psi}$		15 14				
Physical propertic	es:					
C, Btu/(lb)(°: Κ, Btu/[ (hr)(α, 10 ⁻⁶ in./in	F) (ft²)(°F)/ft]	4	.7 at 100	en 100 and 500° F ° F en 200 and 1000° F		

a Nominal composition: 2-1/4% Al, 11% Sn, 5% Zr, 1% Mo, 0.20% Si

b Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

c Tentative A and B values not approved for MIL-HDBK-5. For comparison purposes only,

## REFERENCES

- 1. Private communication with TMCA, June 17, 1965.
- 2. Braski and Heimerl, "The Relative Susceptibility of Four Commercial Titanium Alloys to Salt Stress Corrosion at 550° F," NASA Technical Note D-2011.
- 3. Morrison, J. D., Jenkins, P. C. and Kattus, J. R., "An Investigation of the Crack Propagation Resistance of High-Strength Alloys and Heat-Resistant Alloys," Summary Technical Report on Naval Bureau of Weapons Contract No. NOw 61-6392-d, November 21, 1962.
- 4. Campbell, J. E., "Current Methods of Fracture-Toughness Testing of High-Strength Alloys with Emphasis on Plane Strain," Defense Metals Information Center Report No. 207, August 31, 1964.
- 5. Engelke, W. T., C. D. Pears and J. D. Thornburgh, "The Thermal and Mechanical Properties of Five Ablative Reinforced Plastics from Room Temperature to 750° F," AFML-TR-65-133, U. S. Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. Prepared by Southern Research Institute, Birmingham, Alabama, under Contract No. AF 33(657)-8594, Modification 3, April, 1965, p. 14.
- 6. Military Handbook—Metallic Materials and Elements for Flight Vehicle Structures, Department of Defense, Washington 25, D. C., August, 1962. (With dated supplements.)
- 7. Gross, Benard and Srawley, John E., "Stress Intensity Factors for Single-Edge-Notch Specimens in Bending or Combined Bending and Tension by Boundary Collocation of a Stress Function," NASA TN D-2603, National Aeronautics and Space Administration, Washington, D. C., January, 1965.
- 8. Srawley, John E. and Brown, William F., "Fracture Toughness Testing." NASA TN D-2599, National Aeronautics and Space Administration, Washington, D. C., January, 1965.

## APPENDIX I

Mechanical Property Test Data
(Tables No. 36 - 88)

Table 36

Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Sheet from Heat No. D-8060 at Different Temperatures^{a, b}

0				it rempera	nures	
Specimen	Temp.,		$\mathbf{F}_{\mathbf{ty}}$	$F_{tu}$	e	$\mathbf{E_{t}}$
No.	°F	Orientation	ksi	ksi		$10^6 \text{ psi}$
5 A 1 T	<b>50</b>				<u>%</u>	10 psi
5A-1L	70	L	120.1	127.7	14	16.4
5A-6L	70	L	118.8	128.7	12	16.0
5A-11L	70	L	116.3	127.0	14	15.5
5A-16L	70	L	118.2	127.9	14	16.0
5A-21L	70	L	118.7	128.6	14	15.7
5A-26L	70	L	119.1	129.5	14	
5A-31L	70	L	118.5	128.6	16	16.3
5A-36L	70	L	118.0	128.4	14	17.3
5A-41L	70	L	119.0	129.4	15	15.7
5A-46L	70	L	118.8	128.8		15.6
F. 4			220.0	220.0	14	16. 2
5A-1T	70	${f T}$	119.4	127.3	14	16 7
5A-6T	70	${f T}$	119.4	127.3	14	16.7
5A-11T	70	${f T}$	118.5	128.2	15	16.4
5A-16T	70	${f T}$	118.3	126.3		16.5
5A-21T	70	T	118.0	126.3	15	16.4
5A-26T	70	$\overline{\mathbf{T}}$	118.5	126.7	16	16.9
5A-31T	70	Ť	117.9	126.4	15	16.3
5A-36T	70	Ť	117.9	125. <b>9</b>	15	16.7
5A-41T	70	T	119.0	127.1	15	16.4
5A-46T	70	T	118.5		15	17.0
C . O.		•	110.0	127.4	15	16.6
5A-2L	400	L	80.6	98.3	17	15.2
5A-7L	460	L	79.7	97.7	18	
5A-12L	400	L	78.7	96.7	18	12.5
5A-17L	400	L	79.3	97.8	20	13.9
5A-22L	400	L	79.0	98.0	19	13.9
5A-27L	400	L	78.9	97.9	18	14.1
5A-32L	400	L	78.7	97.0	18	13 5
5A-37L	400	L	79.6	96.8		14. 1
5A-42L	400	L	78.9	97.4	19	14.1
5A-47L	400	L	78.9	97.4	19	14.1
F 4 0				01.1	18	13.4
5A-2T	400	$\mathbf{T}$	78.8	93.8	20	13.4
5A-7T	400	${f T}$	79.4	93.9	21	
5A-12T	400	$\mathbf{T}$	77.9	92.8	20	13.7
5A-17T	400	$\mathbf{T}$	3.5	93.3	20	15.0
5A-22T	400	$\mathbf{T}$	79.3	93.7	19	13.3
5A-27T	400	T	78.5	93.3	20	13.0
5A-32T	400	T	78.4	93.9	21	14.0
57 <b>37</b> T	400	T	79.3	93.3		17.3
5A-42T	400	T	77.7	92.7	20	13.8
5A-47T	400	$\tilde{ ext{T}}$	78. 2	93.6	21	16.0
		<del>-</del>	10.2	30. U	20	14.3

Table 36 (Continued)

No.   Formal   Fig.   Fig.	C- '-			(	indea,		
No.   *F   Orientation   Kei   kei   %   106 psi	Specimen	Temp.,		F	ਜ		
5A-3L         600         L         67.7         91.0         18         11.9           5A-8L         600         L         67.7         91.0         18         11.9           5A-13L         600         L         66.4         89.3         18         12.6           5A-18L         600         L         66.0         89.0         17         11.4           5A-23L         600         L         66.4         89.7         19         11.4           5A-38L         600         L         66.0         89.8         19         14.9           5A-38L         600         L         66.0         89.8         19         14.9           5A-38L         600         L         66.3         89.6         20         12.4           5A-48L         600         L         66.5         89.9         17         12.2           5A-3T         600         T         65.5         84.3         21         13.1         2           5A-21         600         T         65.5         84.3         21         13.1         1           5A-28T         600         T         65.7         85.5         20         12	No.		Orientation	le of	* tu		$\mathbf{E_t}$
5A-8L         600         L         67.7         91.0         18         11.9           5A-13L         600         L         66.4         89.3         18         12.6           5A-18L         600         L         66.0         89.0         17         11.6           5A-23L         600         L         66.0         89.0         17         12.4           5A-28L         600         L         66.0         89.2         21         10.4           5A-33L         600         L         66.0         89.8         19         14.9           5A-3BL         600         L         66.3         89.8         19         14.9           5A-48L         600         L         66.3         89.8         19         14.9           5A-4BL         600         T         65.5         84.3         21         13.1           5A-3T         600         T         65.5         84.3         21         13.1           5A-13T         600         T         65.5         84.3         21         13.1           5A-28T         600         T         65.7         85.5         10         13.7           <	E 4 0-			KSI	ksi	%	10 ⁶ psi
5A-13L         600         L         66.4         89.3         18         11.9           5A-13L         600         L         65.0         88.2         17         11.6           5A-23L         600         L         66.0         89.0         17         12.4           5A-28L         600         L         66.0         89.2         21         10.4           5A-38L         600         L         66.0         89.2         21         10.4           5A-38L         600         L         66.3         89.6         20         12.4           5A-48L         600         L         66.3         89.9         17         12.2           5A-3T         600         T         65.5         89.9         17         12.2           5A-3T         600         T         65.5         84.3         21         13.1           5A-2BT         600         T         65.5         84.6         22         14.0           5A-23T         600         T         65.5         84.6         22         14.0           5A-28T         600         T         65.7         85.5         20         12.9           <			L	67 7	01.0		
5A-18L         600         L         65.0         88.2         17         11.6           5A-23L         600         L         66.0         89.0         17         12.4           5A-28L         600         L         66.0         89.2         21         10.4           5A-38L         600         L         66.0         89.2         21         10.4           5A-38L         600         L         66.0         89.8         19         14.9           5A-48L         600         L         66.3         89.6         20         12.4           5A-48L         600         L         66.5         89.9         17         12.2           5A-3T         600         T         65.5         84.3         21         13.1           5A-13T         600         T         65.7         85.5         15         13.7           5A-28T         600         T         65.7         85.5         20         14.0           5A-28T         600         T         66.2         84.6         22         14.0           5A-28T         600         T         65.7         85.5         20         14.0		600					11.9
5A-18L       600       L       66.0       89.0       17       11.6         5A-28L       600       L       66.4       89.7       19       11.4         5A-33L       600       L       66.0       89.8       19       14.9         5A-38L       600       L       66.3       89.6       20       12.4         5A-48L       600       L       66.3       89.9       17       12.2         5A-3T       600       T       65.5       89.9       17       12.2         5A-8T       600       T       65.5       84.3       21       13.1         5A-13T       600       T       65.7       85.5       19       13.7         5A-13T       600       T       65.7       85.5       19       13.7         5A-18T       600       T       65.7       85.5       19       13.7         5A-18T       600       T       65.7       85.5       20       12.9         5A-33T       600       T       65.8       85.5       20       12.9         5A-34BT       600       T       65.8       85.5       20       12.9         5		600				18	12.6
5A-23L         600         L         66.4         39.7         19         11.4           5A-33L         600         L         66.0         89.2         21         10.4           5A-38L         600         L         66.0         89.8         19         14.9           5A-38L         600         L         66.3         89.6         20         12.4           5A-43L         600         L         66.3         89.6         20         12.4           5A-3T         600         L         66.5         89.9         17         12.2           5A-3T         600         T         65.5         84.3         21         13.1         13.1           5A-13T         600         T         65.7         85.5         19         12.7           5A-28T         600         T         65.7         85.5         19         13.7           5A-18T         600         T         65.7         85.5         20         12.9           5A-38T         600         T         65.8         85.5         20         12.9           5A-38T         600         T         65.8         85.5         20         15.9 </td <td></td> <td>600</td> <td></td> <td></td> <td></td> <td>17</td> <td></td>		600				17	
5A-28L         600         L         66.0         89.2         21         11.4           5A-33L         600         L         66.0         89.8         19         14.9           5A-43L         600         L         66.3         89.6         20         12.4           5A-48L         600         L         66.4         90.0         18         12.4           5A-48L         600         L         66.5         89.9         17         12.2           5A-3T         600         T         65.5         84.3         21         13.1           5A-8T         600         T         65.5         84.6         22         14.0           5A-28T         600         T         65.7         85.5         19         13.7           5A-23T         600         T         65.0         84.6         22         14.0           5A-28T         600         T         65.7         85.5         20         12.9           5A-28T         600         T         65.8         85.5         20         14.0           5A-38T         600         T         65.8         85.5         20         15.0           <		600				17	
5A-33L       600       L       66.0       89.2       21       10.4         5A-38L       600       L       66.3       89.6       20       12.4         5A-48L       600       L       66.3       89.9       19       12.4         5A-48L       600       L       66.5       89.9       17       12.2         5A-3T       600       T       65.5       84.3       21       13.1       1         5A-13T       600       T       65.7       85.5       19       13.7       13.7       13.7       13.7       13.1       1       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.1       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7       13.7	5A-28L					19	
5A-38L       600       L       66.0       89.8       19       14.9         5A-43L       600       L       66.3       89.6       20       12.4         5A-48L       600       L       66.5       89.9       17       12.2         5A-3T       600       T       65.5       84.3       21       13.1         5A-13T       600       T       65.7       85.5       19       13.7         5A-18T       600       T       65.2       84.6       22       14.0         5A-23T       600       T       65.7       85.5       20       12.9         5A-28T       600       T       65.7       85.5       20       12.9         5A-33T       600       T       65.8       85.5       20       15.0         5A-38T       600       T       65.8       85.5       20       15.0         5A-34BT       600       T       64.6       84.3       20       15.2         5A-4BT       600       T       65.4       84.5       18       13.2         5A-4L       800       L       59.7       61.2       22       12.8         5	5A-33L						
5A-43L       600       L       66.3       89.6       20       12.4         5A-48L       600       L       66.4       90.0       18       12.4         5A-3T       600       T       65.5       89.9       17       12.2         5A-8T       600       T       65.7       85.5       19       13.7         5A-13T       600       T       65.7       85.5       19       13.7         5A-18T       600       T       66.0       85.0       20       14.0         5A-23T       600       T       65.7       85.5       20       12.9         5A-28T       600       T       65.8       85.5       20       12.9         5A-38T       600       T       65.8       85.5       20       12.9         5A-38T       600       T       65.8       85.5       20       15.0         5A-48T       600       T       65.4       84.3       20       15.2         5A-48T       600       T       65.7       85.3       24       11.4         5A-9L       800       L       67.2       85.3       24       15.4         5A-	5A-38L				89.8		
5A-48L       600       L       66.5       89.9       17       12.4         5A-3T       600       T       65.5       84.3       21       13.1         5A-8T       600       T       65.7       85.5       19       13.7         5A-13T       600       T       65.2       84.6       22       14.0         5A-23T       600       T       66.0       85.0       20       14.0         5A-28T       600       T       65.7       85.5       20       12.9         5A-33T       600       T       65.8       85.5       20       12.9         5A-38T       600       T       65.8       85.5       20       12.9         5A-38T       600       T       65.0       84.6       21       11.4         5A-4BT       600       T       65.7       85.8       21       12.9         5A-4BT       600       T       65.7       85.8       21       12.9         5A-4L       800       L       67.2       85.3       24       15.4         5A-14L       800       L       59.5       82.7       24       12.4         5A-				<b>66.3</b>			
5A-3T       600       T       65.5       89.9       17       12.2         5A-8T       600       T       65.7       85.5       19       13.7         5A-13T       600       T       65.7       85.5       19       13.7         5A-18T       600       T       65.2       84.6       22       14.0         5A-23T       600       T       66.0       85.0       20       14.0         5A-28T       600       T       65.7       85.5       20       12.9         5A-33T       600       T       65.8       85.5       20       12.9         5A-38T       600       T       65.0       84.6       21       11.4         5A-43T       600       T       64.6       84.3       20       15.2         5A-48T       600       T       65.4       84.5       18       13.2         5A-9L       800       L       67.2       85.3       24       15.4         5A-9L       800       L       59.7       81.2       22       12.9         5A-14L       800       L       59.5       82.7       24       12.4         5A-2				66.4			
5A-3T       600       T       65.5       84.3       21       13.1         5A-13T       600       T       65.7       85.5       19       13.7         5A-18T       600       T       65.2       84.6       22       14.0         5A-23T       600       T       65.7       85.5       20       12.9         5A-28T       600       T       65.8       85.5       20       12.9         5A-33T       600       T       65.8       85.5       20       12.9         5A-38T       600       T       65.0       84.6       21       11.4         5A-43T       600       T       65.0       84.6       21       11.4         5A-48T       600       T       65.4       84.5       18       13.2         5A-4BT       600       T       65.7       85.8       21       12.9         5A-4BT       800       L       67.2       85.3       24       15.4         5A-14L       800       L       59.7       61.2       22       12.9         5A-24L       800       L       59.5       82.7       24       12.4         5	-11 101	000	L	66.5			
5A-8T       600       T       65.5       84.3       21       13.1         5A-13T       600       T       65.7       85.5       19       13.7         5A-18T       600       T       65.2       84.6       22       14.0         5A-23T       600       T       66.0       85.0       20       14.0         5A-28T       600       T       65.7       85.5       20       12.9         5A-33T       600       T       65.8       85.5       20       15.0         5A-38T       600       T       65.0       84.6       21       11.4         5A-48T       600       T       65.4       84.3       20       15.2         5A-48T       600       T       65.4       84.5       18       13.2         5A-9L       800       L       67.2       85.8       21       12.9         5A-14L       800       L       59.7       61.2       22       12.8         5A-19L       800       L       59.7       61.2       22       12.9         5A-29L       800       L       60.6       83.8       22       10.1         5A	5A-3T	600	~			<b>1</b> 8	12.2
5A-13T       600       T       65.7       85.5       19       13.7         5A-18T       600       T       65.2       84.6       22       14.0         5A-23T       600       T       66.0       85.0       20       14.0         5A-28T       600       T       65.7       85.5       20       12.9         5A-33T       600       T       65.8       85.5       20       15.0         5A-38T       600       T       65.0       84.6       21       11.4         5A-4ST       600       T       65.4       84.3       20       15.2         5A-4BT       600       T       65.4       84.5       18       13.2         5A-4BT       600       T       65.7       85.8       21       12.9         5A-4BT       800       L       67.2       85.3       24       15.4         5A-14L       800       L       59.7       61.2       22       12.8         5A-19L       800       L       59.5       82.7       24       12.4         5A-29L       800       L       60.6       83.8       22       10.1				<b>6</b> 5.5	84.3	21	10 1
5A-18T       600       T       65.2       84.6       22       14.0         5A-23T       600       T       66.0       85.0       20       14.0         5A-28T       600       T       65.7       85.5       20       12.9         5A-33T       600       T       65.8       85.5       20       15.0         5A-38T       600       T       65.0       84.6       21       11.4         5A-43T       600       T       65.4       84.5       18       13.2         5A-48T       600       T       65.7       85.8       21       12.9         5A-4L       800       L       67.2       85.3       24       15.4         5A-9L       800       L       59.7       61.2       22       12.8         5A-19L       800       L       59.5       82.7       24       12.4         5A-24L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.6       83.8       22       10.1         5A-34L       800       L       60.6       84.4       25       11.5         5A				65.7			
5A-23T       600       T       66.0       85.0       20       14.0         5A-28T       600       T       65.7       85.5       20       12.9         5A-33T       600       T       65.8       85.5       20       15.0         5A-38T       600       T       65.0       84.6       21       11.4         5A-38T       600       T       64.6       84.3       20       15.2         5A-48T       600       T       65.4       84.5       18       13.2         5A-4BT       600       T       65.7       85.8       21       12.9         5A-4BT       800       L       67.2       85.3       24       15.4         5A-9L       800       L       59.7       61.2       22       12.8         5A-19L       800       L       59.5       82.7       24       12.4         5A-24L       800       L       60.6       83.8       22       10.1       1         5A-29L       800       L       60.6       84.4       25       11.5       1.5         5A-39L       800       L       60.6       84.4       25       11.5				65.2			
5A-28T       600       T       65.7       85.5       20       14.0         5A-33T       600       T       65.8       85.5       20       15.0         5A-38T       600       T       65.0       84.6       21       11.4         5A-43T       600       T       64.6       84.3       20       15.2         5A-48T       600       T       65.4       84.5       18       13.2         5A-4BT       800       L       65.7       85.8       21       12.9         5A-4L       800       L       67.2       85.8       21       12.9         5A-9L       800       L       59.7       61.2       22       12.8         5A-14L       800       L       59.7       61.2       22       12.8         5A-14L       800       L       59.5       82.7       24       12.4         5A-29L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.7       84.0       23       11.8         5A-39L       800       L       60.6       64.4       25       11.5         5A							
5A-33T       600       T       65.8       85.5       20       15.0         5A-38T       600       T       65.0       84.6       21       11.4         5A-43T       600       T       65.4       84.3       20       15.2         5A-48T       600       T       65.4       84.5       18       13.2         5A-4L       800       L       65.7       85.8       21       12.9         5A-9L       800       L       59.7       81.2       22       12.8         5A-14L       800       L       59.7       81.2       22       12.8         5A-19L       800       L       60.6       83.8       22       10.1         5A-24L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.6       84.4       25       11.5         5A-39L       800       L       60.6       84.4       25       11.5         5A-39L       800       L       60.6       84.4       25       11.5         5A-44L       800       L       60.4       83.5       24       11.1         5A			${f T}$				
5A-38T       600       T       65.0       84.6       21       11.4         5A-43T       600       T       64.6       84.3       20       15.2         5A-48T       600       T       65.4       84.5       18       13.2         5A-4L       800       L       65.7       85.8       21       12.9         5A-9L       800       L       59.7       61.2       22       12.8         5A-14L       800       L       59.5       82.7       24       12.4         5A-24L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.6       83.8       22       10.1         5A-34L       300       L       60.6       84.4       25       11.5         5A-39L       800       L       60.4       83.5       24       11.1         5A-44L       800       L       60.4       83.5       24       11.1         5A-49L       800       L       60.8       82.8       25       12.9         5A-49L       800       L       60.8       83.6       22       11.0         5A			T				
5A-43T       600       T       64.6       84.3       20       15.2         5A-48T       600       T       65.4       84.5       18       13.2         5A-4E       800       L       65.7       85.8       21       12.9         5A-9L       800       L       59.7       85.3       24       15.4         5A-14L       800       L       59.7       81.2       22       12.8         5A-19L       800       L       59.5       82.7       24       12.4         5A-24L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.6       84.4       25       11.5         5A-39L       800       L       60.6       84.4       25       11.5         5A-39L       800       L       60.4       83.5       24       11.1         5A-44L       800       L       59.8       82.8       25       12.9         5A-49L       800       L       60.8       83.6       22       11.0         5A-24T       800       T       59.8       79.0       24       14.8         5A	_		${f T}$				
5A-43T       600       T       65.4       84.5       18       13.2         5A-48T       600       T       65.7       85.8       21       12.9         5A-4L       800       L       67.2       85.3       24       15.4         5A-9L       800       L       59.7       61.2       22       12.8         5A-14L       800       L       59.5       82.7       24       12.4         5A-19L       800       L       60.6       83.8       22       10.1         5A-24L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.6       84.4       25       11.8         5A-34L       300       L       60.4       83.5       24       11.1         5A-39L       800       L       59.8       82.8       25       12.9         5A-44L       800       L       60.4       83.5       24       11.1         5A-49L       800       L       60.8       83.6       22       11.0         5A-47       800       T       59.8       79.0       24       14.8         5A-			${f T}$				11.4
5A-48T       600       T       65.7       85.8       21       13.2         5A-4L       800       L       67.2       85.8       21       12.9         5A-9L       800       L       59.7       61.2       22       15.4         5A-14L       800       L       59.7       61.2       22       12.8         5A-19L       800       L       59.5       82.7       24       12.4         5A-24L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.6       84.4       25       11.8         5A-39L       800       L       60.6       84.4       25       11.5         5A-39L       800       L       59.8       82.8       25       12.9         5A-44L       800       L       59.8       82.8       25       12.9         5A-49L       800       L       60.8       83.6       22       11.0         5A-4T       800       T       59.6       79.0       24       14.8         5A-14T       800       T       58.8       78.7       26       14.2         5A-		600					15.2
5A-4L       800       L       67.2       85.3       24       15.4         5A-9L       800       L       59.7       61.2       22       12.8         5A-14L       800       L       59.5       82.7       24       12.4         5A-19L       800       L       60.6       83.8       22       10.1         5A-24L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.6       84.4       25       11.5         5A-39L       800       L       60.6       84.4       25       11.5         5A-39L       800       L       60.4       83.5       24       11.1         5A-44L       800       L       60.8       83.6       22       11.0         5A-49L       800       L       60.8       83.6       22       11.0         5A-4T       800       T       59.6       79.0       24       14.8         5A-9T       800       T       59.6       79.0       24       14.8         5A-2T       800       T       58.8       78.7       26       14.2         5A-2T	5A-48T	600					13.2
5A-4L       800       L       67.2       85.3       24       15.4         5A-9L       800       L       59.7       61.2       22       12.8         5A-14L       800       L       59.5       82.7       24       12.4         5A-19L       800       L       60.6       83.8       22       10.1         5A-24L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.6       84.4       25       11.5         5A-39L       800       L       60.4       83.5       24       11.1         5A-39L       800       L       59.8       82.8       25       12.9         5A-44L       800       L       60.8       83.6       22       11.0         5A-49L       800       L       60.8       83.6       22       11.0         5A-9T       800       T       59.6       79.0       24       14.8         5A-14T       800       T       58.8       78.7       27       11.5         5A-24T       800       T       59.6       79.4       29       11.3         5A-	<b>5</b>		•	05.7	85.8	21	
5A-9L       800       L       59.7       61.2       22       12.8         5A-14L       800       L       59.5       82.7       24       12.4         5A-19L       800       L       60.6       83.8       22       10.1         5A-24L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.6       84.4       25       11.5         5A-39L       800       L       60.4       83.5       24       11.1         5A-44L       800       L       59.8       82.8       25       12.9         5A-49L       800       L       60.8       83.6       22       11.0         5A-9T       800       T       59.8       79.0       24       14.8         5A-14T       800       T       59.6       79.0       24       14.8         5A-19T       800       T       58.8       78.7       27       11.5         5A-24T       800       T       58.8       78.7       30       12.2         5A-24T       800       T       59.6       79.4       29       11.3         5A		800	L	67 9	0		
5A-14L       800       L       59.5       82.7       24       12.4         5A-19L       800       L       60.6       83.6       22       10.1         5A-24L       800       L       60.6       83.6       22       10.1         5A-29L       800       L       60.6       84.4       25       11.5         5A-34L       300       L       60.4       83.5       24       11.1         5A-39L       800       L       59.8       82.8       25       12.9         5A-44L       800       L       60.8       83.6       22       11.0         5A-49L       800       L       60.8       83.6       22       11.0         5A-47       800       T       59.6       79.0       24       14.8         5A-9T       800       T       59.6       79.0       24       14.8         5A-14T       800       T       58.8       78.7       27       11.5         5A-24T       800       T       58.8       78.7       30       12.2         5A-24T       800       T       59.6       79.4       29       11.3         5A		800					15.4
5A-19L       800       L       60.6       83.8       22       10.1         5A-24L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.7       84.0       23       11.8         5A-34L       300       L       60.6       84.4       25       11.5         5A-39L       800       L       59.8       82.8       25       11.5         5A-44L       800       L       60.8       83.6       22       11.0         5A-49L       800       L       60.8       83.6       22       11.0         5A-47       800       T       59.6       79.0       24       14.8         5A-9T       800       T       59.6       79.0       24       14.8         5A-14T       800       T       58.8       78.7       27       11.5         5A-24T       800       T       58.8       78.7       30       12.2         5A-24T       800       T       59.6       79.4       29       11.3         5A-24T       800       T       59.6       79.4       29       11.3         5A		800				22	
5A-24L       800       L       60.6       83.8       22       10.1         5A-29L       800       L       60.7       84.0       23       11.8         5A-34L       300       L       60.6       84.4       25       11.5         5A-39L       800       L       60.4       83.5       24       11.1         5A-44L       800       L       59.8       82.8       25       12.9         5A-49L       800       L       60.8       83.6       22       11.0         5A-49L       800       T       60.8       83.8       20       12.4         5A-9T       800       T       59.6       79.0       24       14.8         5A-9T       800       T       58.8       78.7       27       11.5         5A-14T       800       T       58.8       78.7       30       12.2         5A-24T       800       T       59.6       79.4       29       11.3         5A-24T       800       T       59.6       79.4       29       11.3         5A-56T       800       T       59.3       78.4       28       13.5         5A						24	
5A-29L       800       L       60.7       84.0       23       11.8         5A-34L       300       L       60.6       84.4       25       11.5         5A-39L       800       L       60.4       83.5       24       11.1         5A-44L       800       L       59.8       82.8       25       12.9         5A-49L       800       L       60.8       83.6       22       11.0         5A-4T       800       T       59.6       79.0       24       14.8         5A-9T       800       T       60.8       79.7       27       11.5         5A-14T       800       T       58.8       78.7       26       14.2         5A-24T       800       T       59.6       79.4       29       11.3         5A-24T       800       T       59.6       79.4       29       11.3         5A-54T       800       T       59.3       78.4       28       13.5         5A-54T       800       T       60.8       80.7       25       12.6         5A-44T       800       T       60.8       80.2       25       12.6         5A	5A-24L				83.8	22	
5A-34L       300       L       60.6       84.4       25       11.5         5A-39L       800       L       60.4       83.5       24       11.1         5A-44L       800       L       59.8       82.8       25       12.9         5A-49L       800       L       60.8       83.6       22       11.0         5A-4T       800       T       59.6       79.0       24       14.8         5A-9T       800       T       60.8       79.7       27       11.5         5A-14T       800       T       58.8       78.7       26       14.2         5A-24T       800       T       59.6       79.4       29       11.3         5A-29T       800       T       59.6       79.4       29       11.3         5A-54T       800       T       59.3       78.4       28       13.5         5A-56T       800       T       60.8       80.7       25       13.9         5A-44T       800       T       60.8       80.2       25       12.5         5A-49T       800       T       59.7       80.2       25       12.5	5A-29L				84.0		
5A-39L       800       L       60.4       83.5       24       11.1         5A-44L       800       L       59.8       82.8       25       12.9         5A-49L       800       L       60.8       83.6       22       11.0         5A-4T       800       T       59.6       79.0       24       14.8         5A-9T       800       T       60.8       79.7       27       11.5         5A-14T       800       T       58.8       78.7       26       14.2         5A-19T       800       T       60.2       78.7       26       14.2         5A-24T       800       T       59.6       79.4       29       11.3         5A-29T       800       T       59.3       78.4       28       13.5         5A-54T       800       T       59.3       78.4       28       13.5         5A-44T       800       T       60.8       80.7       25       13.9         5A-44T       800       T       60.8       80.7       25       13.9         5A-44T       800       T       59.7       80.2       25       12.5					84.4		
5A-44L       800       L       59.8       82.8       25       12.9         5A-49L       800       L       60.8       83.6       22       11.0         5A-4T       800       T       59.6       79.0       24       14.8         5A-9T       800       T       60.8       79.7       27       11.5         5A-14T       800       T       58.8       78.7       26       14.2         5A-19T       800       T       60.2       78.7       26       14.2         5A-24T       800       T       59.6       79.4       29       11.3         5A-29T       800       T       59.3       78.4       28       13.5         5A-54T       800       T       60.7       81.0       29       12.6         5A-44T       800       T       60.8       30.7       25       13.9         5A-44T       800       T       59.7       80.2       25       12.5							
5A-49L       800       L       60.8       83.6       22       11.0         5A-4T       800       T       59.6       79.0       24       14.8         5A-9T       800       T       60.8       79.7       27       11.5         5A-14T       800       T       58.8       78.7       26       14.2         5A-24T       800       T       59.6       79.4       29       11.3         5A-29T       800       T       59.3       78.4       28       13.5         5A-54T       800       T       59.3       78.4       28       13.5         5A-56T       800       T       60.7       81.0       29       12.6         5A-44T       800       T       60.8       80.7       25       13.9         5A-49T       800       T       59.7       80.2       25       12.5				59.8			
5A-4T       800       T       59.6       79.0       24       14.8         5A-9T       800       T       60.8       79.7       27       11.5         5A-14T       800       T       58.8       78.7       26       14.2         5A-19T       800       T       60.2       78.7       26       14.2         5A-24T       800       T       59.6       79.4       29       11.3         5A-29T       800       T       59.3       78.4       28       13.5         5A-54T       800       T       60.7       81.0       29       12.6         5A-44T       800       T       60.8       80.7       25       13.9         5A-49T       800       T       61.0       70.6       25       12.5				60.8			
5A-4T       800       T       59.6       79.0       24       14.8         5A-9T       800       T       60.8       79.7       27       11.5         5A-14T       800       T       58.8       78.7       30       12.2         5A-19T       800       T       60.2       78.7       26       14.2         5A-24T       800       T       59.6       79.4       29       11.3         5A-54T       800       T       59.3       78.4       28       13.5         5A-56T       800       T       60.7       81.0       29       12.6         5A-44T       800       T       60.8       80.7       25       13.9         5A-49T       800       T       61.0       70.6       25       12.5	101	000	L	61.7			
5A-9T       800       T       59.6       79.0       24       14.8         5A-14T       800       T       60.8       79.7       27       11.5         5A-19T       800       T       58.8       78.7       30       12.2         5A-24T       800       T       60.2       78.7       26       14.2         5A-29T       800       T       59.6       79.4       29       11.3         5A-54T       800       T       59.3       78.4       28       13.5         5A-56T       800       T       60.7       81.0       29       12.6         5A-44T       800       T       60.8       80.7       25       13.9         5A-49T       800       T       61.0       70.6       25       12.5	5A-4T	800	~			20	12.4
5A-14T       800       T       60.8       79.7       27       11.5         5A-19T       800       T       58.8       78.7       30       12.2         5A-24T       800       T       60.2       78.7       26       14.2         5A-29T       800       T       59.6       79.4       29       11.3         5A-54T       800       T       59.3       78.4       28       13.5         5A-56T       800       T       60.7       81.0       29       12.6         5A-44T       800       T       60.8       80.7       25       13.9         5A-49T       800       T       59.7       80.2       25       12.5				59.8	79.0	24	14.0
5A-19T       800       T       58.8       78.7       30       12.2         5A-24T       800       T       60.2       78.7       26       14.2         5A-29T       800       T       59.6       79.4       29       11.3         5A-54T       800       T       60.7       81.0       29       12.6         5A-56T       800       T       60.8       80.7       25       13.9         5A-44T       800       T       59.7       80.2       25       13.9         5A-49T       800       T       61.0       70.6       20.2       12.5				60.8			
5A-24T       800       T       60.2       78.7       26       14.2         5A-29T       800       T       59.6       79.4       29       11.3         5A-54T       800       T       59.3       78.4       28       13.5         5A-56T       800       T       60.7       81.0       29       12.6         5A-44T       800       T       60.8       80.7       25       13.9         5A-49T       800       T       59.7       80.2       25       12.5				58.8			
5A-29T     800     T     59.6     79.4     29     11.3       5A-29T     800     T     59.3     78.4     28     13.5       5A-54T     800     T     60.7     81.0     29     12.6       5A-44T     800     T     60.8     80.7     25     13.9       5A-49T     800     T     59.7     80.2     25     12.5				60.2			
5A - 54T     800     T     59.3     78.4     28     13.5       5A - 56T     800     T     60.7     81.0     29     12.6       5A - 44T     800     T     60.8     80.7     25     13.9       5A - 49T     800     T     59.7     80.2     25     12.5							
5A-56T 800 T 60.7 81.0 29 12.6 5A-44T 800 T 60.8 80.7 25 13.9 5A-49T 800 T 59.7 80.2 25 12.5			T				
5A-56T 800 T 60.8 80.7 25 13.9 5A-49T 800 T 61.0 70.6 25 12.5			T				
5A-44T 800 T 59.7 80.2 25 13.9 59.7 81.0 70.6							
5A-49T 800 T 61.0 70.6 25 12.5							13.9
79.8 23 11.5	5A-49T	800					12.5
			_	01.0	79.8	23	11.5

Table 36 (Continued)

Specimen No.	Temp.,	Orientation	F _{ty}	F _{tu}	e %	Et 10 ⁶ psi
5A-5L 5A-10L 5A-15L 5A-20L 5A-25L 5A-30L 5A-174L 5A-40L 5A-45L 5A-50L	1000 1000 1000 1000 1000 1000 1000 100	L L L L L L L	60. 0 58. 0 58. 2 60. 6 60. 2 57. 8 60. 0 58. 6 58. 6	80. 0 79. 7 78. 7 80. 6 80. 4 78. 8 80. 3 78. 6 78. 7	21 23 22 22 19 21 21 21 22	11.1 13.2 10.5 10.4 10.2 9.8 13.0 10.2 11.0
5A-5T 5A-10T 5A-15T 5A-20T 5A-25T 5A-35T 5A-35T 5A-40T 5A-45T 5A-50T	1000 1000 1000 1000 1000 1000 1000 100	T T T T T T T	58. 0 57. 9 58. 6 57. 2 58. 2 57. 8 57. 6 57. 4 57. 8 58. 2 58. 2	78. 4 74. 6 75. 4 74. 6 75. 6 76. 4 75. 0 74. 5 74. 7 75. 3 74. 4	26 25 25 25 24 25 24 23 23 23	11.1 12.2 11.1 11.3 13.3 12.3 11.4 12.2 11.1

a Thickness: 40 mils
b Heat treatment: 1650°F, 1/2 hr, A.C.

Table 37

Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Sheet from Heat No. D-1793 at Different Temperatures^{2, b}

Specimen No.	Temp.,	Orientation	F _{ty}	F _{tu} ksi	e %	E _t 10 ⁶ psi
5B-1L	70	L·	115.6	123.9	18	14.4
5B-6L	70	L	115.3	124.3	17	14. 1
5B-11L	70	L	116.6	<b>124</b> . 5	17	16. 1
5B-16L	70	L	117. 2	126. 1	19	15.3
5B-21L	70	L	117.0	124.6	18	15.0
5B-26L	70	L	118.9	124. 3	16	15.2
5B-31L	70	L	115.5	124.6	17	15.5
5B-36L	70	L	117.0	124.5	18	15.9
5B-41L	70	L	116.3	124.6	13	15.6
5B-46L	70	L	115. 2	123.8	16	15.4
5B-1T	70	T	116.5	122.8	18	16. 1
5B- <b>6</b> T	70	${f T}$	115.4	122. 5	18	16. <b>2</b>
5B-11T	70	${f T}$	116. 2	122. 5	19	14.8
5B-16T	70	${f T}$	115. 1	122.3	18	15.3
5B-21T	70	${f T}$	114.8	121.6	18	14.9
5B-26T	<b>7</b> 0	${f T}$	115.8	122.6	18	15.8
5B-31T	70	${f T}$	115.8	122. 4	18	15.9
5B-36T	70	${f T}$	115.5	121.8	17	15.4
5B-41T	70	${f T}$	114. 4	120.6	17	15. <b>2</b>
5B-46T	70	T	115.0	121.8	18	15.0
5B-2L	400	L	78.1	96.3	17	12.8
5B-7L	400	L	78.2	96.4	18	12. 5
5B-12L	400	L	82.0	98.5	17	17.5
5B-17L	400	L	81.0	97.7	19	13.9
5B- <b>22</b> L	400	L	79.5	95.8	19	13.6
5B-27L	400	L	80.2	<b>96</b> . 8	19	13.2
5B-32L	400	L	84.8	94.8	19	13.0
5B-37L	400	L	83.7	98.6	18	13.9
5B- <b>42</b> L	400	L	79.4	96.3	18	14.7
5B-47L	400	L	81.4	97.7	19	12. 5
5B-2T	400	T	80.6	93.6	20	14. 1
5B-7T	400	${f T}$	80.9	93.9	20	12.8
5B-12T	400	${f T}$	80.7	93.8	20	13.4
5B-17T	400	T	80.3	92.9	20	12.5
5B-22T	400	$\mathbf{r}$	79.8	92.8	20	13.6
5B-27T	400	$\mathbf{T}$	78.4	91.1	20	12.8
5B-32T	400	T	78.8	91.5	20	14.9
5B-37T	400	<b>T</b>	79.6	92.7	20	13.2
5B-47T	400	$\frac{\mathbf{T}}{}$	79.4	92. 4	20	13.8
5B-57T	400	T	80.7	93.1	20	12.6

Table 37 (Continued)

			-	,		
Specimen	Temp.,		$F_{ty}$	$F_{tu}$	e	$\mathbf{E}_{t}$
No.	°F	Orientation	ksi	ksi	<u>%</u>	10 ⁶ psi
5D 2r	000				-/0	10 psi
5B-3L 5B-8L	600	L	<b>6</b> 8. <b>4</b>	91.2	24	13.4
	600	L	67.9	90.4	25	13.0
5B-13L	600	L	68.6	91.0	22	12.9
5B-18L	600	L	68.6	91.4	23	15. 1
5B-23L	600	L	68.1	90.0	21	13.2
5B-28L	600	L	69.0	91.8	23	12.4
5B-33L	600	L	68.4	90.8	25	11.4
5B-38L	600	L	68.0	91.7	25	12. 8
5B-43L	600	L	68.1	90.7	24	11.8
5B-48L	600	L	€8. 1	91.2	24	13.0
5B-3T	600	т	67.8	06.4	0.1	
5B-8T	600	T	68.0	86.4	21	13.9
5B-13T	600	T	67.4	87.3	27	13.5
5B-18T	600	T	67.4	86.6	25	13.3
5B-23T	600	T	67. <del>4</del> 67. 5	86.6	26	13.6
5B-28T	600	T	68.9	85.9	25	13.5
5B-33T	600	${f T}$		87.0	24	14.4
5B-38T	600	Ť	68.6	86.2	24	13.8
5B-43T	600	T	69.0	86.4	23	14.1
5B-48T	600	$\overset{1}{\mathbf{T}}$	68.4	86.9	25	13.0
	.,00	1	66.3	84.3	25	13.3
5B-4L	800	L	64.2	84.7	25	10.1
5B-9L	800	L	63.4	85.4	25	12. 1
5B-14L	800	L	62. 4		23	11.6
5B-19L	608	L	62. 3	84.7	22	12.4
5B-24L	800	Ĺ	62.0	83.5	23	13.0
5B-29L	800	L	62. 1	83.6	24	12.6
5B-34L	800	L	63.3	84.6	23	12.7
5B-39L	800	L		84.9	23	11.3
5B-44L	800	Ľ	61.7	85.4	24	12. 1
5B-49L	800	L	61.0	84.7	23	11.5
102	000	L	<b>64</b> . 0	85.7	24	12.0
5B-4T	800	${f T}$	62.3	81.7	0.5	
5B-9T	800	T	63.2		25	14.5
5B-14T	800	T	63.1	81.7	25	12.3
5B-19T	800	T	62.7	81.6	26	14.4
5B-24T	800	T	63.5	81.4	27	13.3
5B-29T	800	T		81.5	27	13.3
5B-34T	800	T	62. 4 62. 8	81.4	27	14.6
5 -39T	800	T		81.7	26	12.7
5B-44T	800	T	62.9	81.2	27	13.8
5B-49T	800	$\mathbf{T}$	61.1	80.9	28	12.7
	000	1	60.8	.9.7	26	12.4

Table 37 (Continued)

Specimen No.	Temp.,	Orientation	F _{ty} ksi	F _{tu} ksi	e %	E _t
5B-5L	1000	L	62.3	82.8	22	11. 6
5B-10L	∄000	L	62.4	82.5	24	10.9
5B-15L	1000	L	62.7	83. 0	24	10. 5 10. 5
5B-20L	1000	L	62.3	80.8	24	10. 3
5B-25L	1000	L	61.4	81.3	23	10. 4
5B-30L	1000	L	62.4	81.7	25	10. 2
5B-35L	1090	L	62. 2	82.0	24	10. 6
5B-40L	1000	L	62.8	82. <b>2</b>	23	
5B-45L	1000	L	<b>62</b> . 5	82.3	23	10.5
5B-5 <b>0</b> L	1000	L	62.6	82. 0	26	10.7
				02.0	20	9.8
5B-5T	1000	${f T}$	61.3	78.3	25	11.8
5B-10T	1000	${f T}$	61.3	78.8	26	10. 9
5B-15T	1000	T	61.3	73.0	26	10. 9
5B- <b>20</b> T	1000	T	61.7	79. 2	25	10. 8 12. 9
5B-25T	1000	${f T}$	63.4	77.8	25	11.3
5B-30T	1000	${f T}$	61.3	77. 9	27	11. 0
5B-35T	1000	${f T}$	61.7	78. 2	24	10.5
5B-40T	1000	T	61.4	77.5	22	
5B-45T	1000	$\overline{\mathbf{T}}$	61.2	78. 2	26	11.7
5B-50T	1000	$\overline{\mathbf{T}}$	60.8	77.0	27	10.4
				11.0	<b>4</b>	<b>12</b> . 0

a Thickness: 40 mils.
b Heat treatment: 1650°F, 1/2 hr, A.C.

Table 38

Tensile Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet from Heat No. V-2957 at Different Temperatures^a, b

Specime	_=			r chiperatur	esa, s	
Specimen	,		$F_{ty}$	$F_{tu}$		
No.	<u> </u>	Orientation	ksi		e	Et
1 4 1 -				ksi	<u></u> %	10 ⁶ psi
1A-1L	70	L	137.5	140 1		
1A-6L	70	L	135.3	148.1	11	15.0
1A-11L	70	L		146.6	11	14.5
1A-16L	70	L	136.3	145.4	10	14.5
1A-21L	70	L.	137.1	146.5	11	14.6
1A-26L	70		138.1	145.4	12	14.5
1A-31L	70	L	137.9	149.0	10	14.5
1A-36L	70	L	135.2	146.6	10	14.5
1A-41L		L	136.2	146.5	11	
1A-46L	70 70	L	136.1	146. 1	11	14.5
-21 101	70	L	138.3	148.1	11	14.4
1A-1T	70			210.1	11	14. 5
1A-6T	70	T	138.4	146.4	8	15 5
1A-11T		T	137.8	147.1	10	15.5
1A-16T	70	T	140.5	147.6	11	16.0
1A-21T	70	T	138.2	145.9		16.0
	70	${f T}$	140.0	148.0	11	15.7
1A-26T	<b>7</b> 0	${f T}$	137.5		10	14.5
1A-31T	70	T	136.4	48.0	10	16.3
1A-36T	70	$ar{ extbf{T}}$		147.4	12	15.8
1A-41T	70	T	139.2	146.8	10	15.7
1A-46T	70	$\overset{\mathtt{1}}{\mathbf{T}}$	136.2	147. 1	<b>11</b>	15.9
		1	134.9	146.4	11	16. 2
1A-2L	400	L	105.0			*O. L
1A-7L	400		105.3	123.3	10	13.4
1A-12L	400	L	106.8	124.5	11	13.1
1A-17L	400	<u>x</u> _	105.5	123.1	10	14.3
1A-22L	400	L	104.8	120.4	9	
1A-27L		L	105.2	122.5	10	12.8
1A-32L	400	L	108.5	125.4	10	13.4
1A-37L	400	L	106.9	124. 1		12.5
	400	L	106.5	123. 1	9	13.3
1A-42L	400	L	104.1	121.0	10	13.3
1A-47汇	400	L	106.3		10	12.6
1A-2T	400		100.0	123.1	10	13. 1
1A-7T	400	T	111.3	123.8	ø	
	400	$\mathbf{T}$	108.3	121.8	8	13.4
1A-12T	400	${f T}$	108.9	120.7	9	14.0
1A-17T	400	T	108.4		9	13.6
1A-22T	400	$\mathbf{T}$	107.2	121.5	9	14.8
1A-27T	400	$\overline{\mathbf{T}}$		119.6	8	14.7
1A-32T	400	T	111.1	122.9	8	14.3
1A-37T	400	$\overset{1}{\mathbf{T}}$	111.0	123.9	8	13.9
1A-42T	400	T	107.8	119.6	8	13.6
1A-47T	400	${f T}$	110.6	123.5	9	13.1
		1	111.2	123.3	9	14. 0
						4 1. U

Table 38(Continued)

Specimen No.	Temp., _°F	Orientation	F _{ty} ksi	F _{tu} ksi	e ø	Et
LA-3L	600			KSI	%	10 ⁶ psi
1A-8L	600 600	L	97.2	119.5	10	12.6
1A-13L	600	L	97.6	120.3	10	12.4
1A-18L	600	i.	98. 1	119.0	10	12. 1
1A-23L	600	Ļ	97.5	126.7	10	11.5
1A-176	600	L	96.5	119.0	10	12.7
1A-33L	600	L	98.4	121.5	10	12.5
1A-38L	600	L	98.2	121.5	11	12. 1
1A-43L	600	L	97.9	119.5	10	11.7
1A-48L	600	L L	97.3	120. 2	9	13.1
	000	L	97.8	121. 1	10	12.0
1A-5T	600	${f T}$	100.7	117.4	8	10 0
1A-8T	600	${f T}$	101.0	117.7	8	13.0
1A-13T	600	T	100.0	116.9	9	13.5
1A-18T	600	${f T}$	101.5	117.6	8	13.8
1A-23T	600	${f T}$	100.2	117.5	9	12.6
1A-28T	600	${f T}$	103.1	118.9	8	13. 1 14. 1
1A-33T	600	${f T}$	103.0	119. 1	8	13.9
1A-38T	600	T	101.2	117.7	8	13.8
1A-43T	600	${f T}$	101.5	118.5	8	12.9
1A-48T	600	${f T}$	132.5	117.7	8	13. 0
1A-4L	800	L	01 5	410		
1A-9L	800	L	91.7 $92.3$	119.4	13	12.1
1A-14L	800	L	93.3	117.4	12	11.7
1A-19L	800	L	93.3	119.7	11	12.4
1A-24L	800	L	92.8	122.2 $121.3$	13	12.6
1A-29L	800	Ĺ	93.9	121.3	13	12.5
1A-34L	800	L	93.3	119.9	13	11. ′
1A-39L	800	L	91.9	121.8	13 13	11.
1A-44L	800	L	91.5	119.3	13	13.1
1A-49L	800	L	93.8	121.1	12	12.6 11.7
1A-4T	800	T .	05.0			11. 1
1A-9T	800	T	95.0	117.6	13	14.0
1A-14T	800	T	96.4	117.4	12	12.9
1A-19T	800	T	95.0	116.8	12	12.3
1A-24T	800	T	95.5	118.6	11	14.3
1A-29T	800	T	95.9 95.8	118.6	13	13.1
1A-34T	800	$^{\mathtt{T}}$		115.7	12	12.9
1A-39T	800	T	95. 8 95. 2	115.5	12	12.9
1A-44T	800	${f T}$	95. <i>2</i> 96. 4	116.3	12	13.7
1A-49T	800	$\dot{\mathbf{r}}$	97.3	118.3	11	13.6
		•	01.0	117.8	11	13.5

Table 38 (Continued)

				•		
Specimen No.	Temp.,	Orientation	F _{ty} _ksi_	F _{tu} ksi	e %	$rac{\mathcal{E}_{ ext{t}}}{10^6  ext{ psi}}$
1A-5L 1A-10L 1A-15L 1A-20L 1A-25L 1A-30L 1A-35L 1A-40L 1A-45L 1A-50L	1000 1000 1000 1000 1000 1000 1000 100	L L L L L L L	81.7 81.8 83.5 81.8 83.3 84.9 81.9 85.2 85.5	106. 7 107. 7 107. 8 109. 2 108. 9 109. 1 107. 5 108. 2 106. 7 110. 1	14 12 14 12 11 12 13 12 12 12	11. 6 12. 7 11. 7 13. 1 11. 6 11. 3 12. 5 11. 7 12. 1
1A-5T 1A-10T 1A-15T 1A-20T 1A-25T 1A-30T 1A-35T 1A-40T 1A-45T 1A-50T	1000 1000 1000 1000 1000 1000 1000 100	T T T T T T T	85. 8 88. 7 87. 4 88. 0 88. 8 87. 3 88. 8 85. 5 86. 0 86. 4	107. 6 108. 4 107. 1 108. 0 108. 7 106. 9 106. 4 107. 8 106. 6	13 16 11 10 10 11 11 11 11 10	11. 7 12. 4 12. 0 12. 3 11. 3 13. 0 11. 0 12. 8 12. 6 12. 9

a Thickness: 40 mils. b Heat treatment: 1550°F, 1/2 hr, A.C. + 1400°F, 1/4 hr, A.C.

Table 39

Tensile Properties of Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet from Heat No. V-1991 at Different Temperatures^a, b

				- omperating	C 8	
Specimen	Temp.,		$\mathbf{F_{ty}}$	$F_{tu}$	6	Б.
No.	°F	Orientation	ksi	ksi	€ %	Et 10 ⁶ psi
1B-1L	70	L	135.8	140.0		ps1
1B-6L	70	Ĺ	136.0	149. 2	12	14.7
1B-11L	70	L	139.0	149.5	13	14.9
1B-16L	70	L		149.5	13	14.6
1B-21L	70	L	136.0 137.0	148.0	13	15.0
1B-26L	70	L		149.0	13	15.7
1B-31L	70	Ľ	140.0	151.0	13	15.3
1B-36L	70	Ĺ	140.0	150.0	11	14.8
1B-41L	70	Ĺ	139.0	150.0	13	16.5
1B-46L	70	L	137.0	149.5	12	15.9
1		L	141.0	149.0	13	15.4
1B-1T	70	${f T}$	138. C	147.0	12	4- 0
1B-6T	70	${f T}$	139.0	147.8		15.3
1B-11T	70	${f T}$	138.5	147.0	12	17.0
1B-16T	70	${f T}$	138.0	146.0	11	16.6
1B-21T	70	${f T}$	138.0		11	16. 2
1B-26T	70	${f T}$	138.5	147.0	13	16. 2
1B-31T	70	T	140.0	147.0	13	<b>16.</b> 0
1B-36T	70	$ar{ extbf{T}}$	133.0	148.5	13	16.5
1B-41T	70	$ar{ extbf{T}}$	139.0	141.5	11	15. 9
1B-46T	70	$ar{ extbf{T}}$	139.5	148.0	11	16.0
113 97		-	109.5	148.0	11	16.0
1B-2L	400	L	105.0	123.0	11	10 0
1B-7L	400	L	107.5	125.0	9	13.8
1B-12L	400	L	106.5	125.0	12	13.6
1B-17L	400	L	107.0	124. 5	10	13.5
1B-22L	400	L	108.5	124. 2	11	12.3
1B-27L	400	L	108.5	124. 2		13.6
1B-32L	400	L	106. 2	123.5	11	13.0
1B-37L	400	L	106. 1	123.9	11	14. 4
1B-42L	400	L	105.5	124.9	11	13.6
1B-47L	400	L	104.8	123.7	10	14. 1
1B-2T	400		202.0	125. [	15	14.6
1B-7T	400	${f T}$	107.5	121.7	8	15.0
1B-12T	400	${f T}$	108.5	121.8	8	
1B-17B	400	$\mathbf{T}$	109.0	122.6	9	14.9
	400	T	111.0	122.5	9	14.4
1B-22T	400	$\mathbf{T}$	108.0	120.0	10	14.6
1B-27T	400	T	110.5	122.3	9	14. 2
1B-32T	400	${f T}$	107.5	120.3	8	13.6
1B-42T	400	${f T}$	109.7	122.0	9	14.3
1B-47T	400	${f T}$	110.0	125.7		13.7
1B-56T	400	T	109.7	121.6	9	14.6
			2001	121.0	9	14.6

Table 39 (Continued)

Specimen No.	Temp.,	Orientation	Fty ksi	F _{ţu} ksi	e %	E _t 10 ⁶ psi
1B-3L	600	L	97.2	121. 1	11	12.9
1B-8L	300	L	95 3	121.4	13	13.0
1B-13L	30C	L	96.8	119.0	12	11. 1
1B-18L	600	$\mathbf L$	97.2	120.6	11	13.9
1B-23L	600	${f L}$	95.5	120.4	11	13.6
1B-28L	600	L	96.8	119.8	11	11. 1
1B-33L	600	L	95.8	117.9	10	12.9
1B-38L	600	L	97.8	120.7	11	13.8
1B-43L	600	L	97.0	119.3	, 11	12.7
15-48L	600	L	96.5	118.3	10	12.3
1E 2T	600	T	98.3	114.0	9	12.6
1B-oT	600	T	99.3	114.3	10	11.6
1B-13T	600	T	101.9	117.2	9	12. 2
1B-18T	600	T	102. 2	117.4	9	12.0
1B-23T	600	T	99. 3	114.1	9	12.4
1B-28T	600	T	100.0	114.7	10	11.9
1B-33T	600	T	100.9	117.5	9	13.5
1B-38T	600	T	100.8	116. 1	11	12.6
1B-43T	600	T	98.8	115.3	10	11.7
1B-48T	600	T	97.3	113.2	11	12.8
1B-9L	800	L	92.7	118.3	12	11.5
1B-14L	800	L	93.4	118.4	13	12. 1
1B-19L	800	L	92.8	117.6	12	11.8
1B-24L	800	${f L}$	92.0	117.0	13	12. 2
1B-29L	800	L	92.6	117.9	12	11.7
1B-34L	800	L	93.6	117. 2	11	11.9
1B-39L	800	L	92.8	116.2	12	13.2
1B-44L	800	L	92.8	116.2	12	11.5
<b>1</b> B- <b>49</b> L	800	L	92.4	118.3	13	12.2
1B-58L	800	L	93.2	118.8	12	12.1
1B-4T	800	T	93.7	113.6	15	13.7
1B-9T	800	T	94.8	113.8	11	13 1
1B-14T	800	T	96.4	116. 4	13	13. 1
1B-19T	800	T	92.4	113.3	11	14.3
1B-24T	800	T	94.7	114.9	13	13.0
1B-29T	800	T	94.2	111. 6	13	11.8
1B-34T	800	T	96.7	113.9	12	11.8
1B-39T	800	T	95.8	115.2	13	12.6
1B-44T	800	T	95.6	114.6	13	11.8
1B-49T	800	T	94.0	112.4	14	12.2

Table 39 (Continued)

No.  1B-15L 1B-20I 1B-25L 1B-30L 1B-35L 1B-40L 1B-45L 1B-50L 1B-52L 1B-53L	Temp.,  °F  1000 1000 1000 1000 1000 1000 1000	Orientation  L  L  L  L  L  L  L  L  L	Fty ksi 79.7 83.2 78.3 85.0 84.1 81.7 84.6 77.8 78.8	102.3 105.9 103.5 106.6 107.8 102.7 105.1 104.1	e % 14 12 12 11 12 14 12 13 13	Et 10 ⁶ psi 11. 2 11. 3 12. 2 11. 2 12. 0 11. 3 10. 4 10. 8 12. 2
1B-5T 1B-10T 1B-15T 1B-20T 1B-25T 1B-30T 1B-35T 1B-40T 1B-45T 1B-50T	1000 1000 1000 1000 1000 1000 1000 100	T T T T T T T	83.4 86.9 84.8 83.7 82.8 84.5 85.7 87.6 84.5 83.1 82.2	106. 8 104. 5 101. 9 102. 4 102. 5 101. 2 105. 4 103. 8 101. 4 101. 1 99. 2	13 12 11 12 12 12 13 10 12 12 12	10. 1 11. 7 11. 9 11. 3 11. 4 10. 7 10. 8 11. 9 11. 0 11. 7 11. 2

^a Thickness: 40 mils.

b Heat treatment: 1550°F, 1/2 hr, A. C. + 1400°F, 1/4 hr, A. C.

Table 40

Tensile Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet from Heat No. V-3016 at Different Temperatures^{a, b}

Company of the company	<b>(T)</b>		F.	F _{tu}		F.
Specimen No.	Temp., °F	Orientation	F _{ty} ksi	ksi	e %	${ m E_t} \ { m 10^6~ps_1}$
110.		Of lentation		<u> </u>	%	10 psi
2A-1L	70	L	143.0	150.3	12	16.1
2A-6L	70	L	143.9	149.6	11	16.6
2A-11L	70	L	146.2	152.2	13	16.2
2A-16L	70	L	144.7	148.4	11	16.7
2A-21L	70	L	143.8	149.2	12	19.7
2A - 26L	70	L	141.8	145.9	13	16.0
2A-31'	70 70	L	142.6	148.9	11	16. 1
2A-36L	70	Ļ	138.5	142.5	15	16.0
2A-41L	70 70	L	137.3	142.2	11	15.7
2A-46L	70	L	140.6	147.5	13	15.9
2A - 1T	70	T	137.8	144.5	12	15.9
2A-6T	70	$\mathbf{T}$	139.5	143.5	13	15.9
2A-11T	70	${f T}$	138.0	145 6	12	15.5
2A-16T	70	T	138.0	144.6	13	16. 1
2A-21T	70	T	140.2	146. 5	6.	16. 5
2A-26T	70	<u>T</u>	141. 2	144.6	12	16. 1
2A-31T	70 70	T	139.5	145.5	12	16.0
2A-36T	70	T	138.0	141.4	13	15.4
2A-41T	70	T	138.4	142.3	11	15.7
2A-46T	70	Т	140.4	145.4	12	15.8
2A-2()	400	L	109.8	124.6	11	15.1
2A-7L	400	L	108.2	<b>122</b> . 8	11	15.3
2A-12L	400	L	110.2	124.6	11	14.7
2A-17L	400	L	109.8	125.3	11	14.6
2A-22L	400	L	107.7	122.8	10	15.4
2A-27L	400	٠.	103.9	116.6	11	14.0
2A-32L	400	L	105.2	121.1	10	14.4
2A-37L	400	L	104.5	117.0	13	13.1
2A-42L	400	L	104.5	117.5	12	15.1
2A-47L	400	L	104.9	120.0	11	12,6
2A-2T	400	${f T}$	103.9	119.5	12	16.0
2A-7T	400	${f T}$	102.9	115.0	12	16.2
2A-12T	400	T	106.8	121.8	11	14.9
2A-17T	40C	$\mathbf{T}$	106.0	120.5	11	16.1
2A - 22T	400	T	107.0	120.0	8	14.5
2A-27T	400	$\mathbf{T}$	103.4	.116.6	12	15.0
2A-3?Γ	400	$\mathbf{T}$	104.0	118.5	11	15.2
2A-37T	400	${f T}$	102.1	113.8	13	12.6
2A-42T	400	T	104.5	116.0	12	14.1
2A-47T	400	T	104.0	119.5	12	13.3
		_				

Table 40 (Continued)

Specimen No.	Temp.,	Orientation	F _{ty} ksi	F _{tu} ksi	e %	E _t 10 ⁶ psi
2A-3L	600	T	00.0	***************************************		20 051
2A-8L	600	L	0.38	116.5	7	13.4
2A-13L	600	Ľ	96.8	116.0	8.	15.9
2A-18L	600	L	97.3	117.0	9.	13.8
2A -23L	600	L	97.5	117.3	7.	12.4
2A-28L	600	L	96.6	116.0	8	13.5
2A-33L	600	L	93.5	111.7	10	13.0
2A-38L	600	L.	96.6	116.5	10	<b>13</b> . 0
2A-43L	600	L	95. 2	114. 2	10	12.1
2A-48L	600	L	92.8	111.3	11	13. 2
571 10 <u>D</u>	000	L	94.4	113.4	11	12.4
2A-3T	600	${f T}$	94.6	113.0	10	14.5
2A-8T	600	${f T}$	93.5	110.0	10	14.5
2A-13T	600	T	96.3	115.5	9	12.4
2A-18T	600	$\mathbf{T}$	94.3	114.0	10	13. 1
2A - <b>23</b> T	600	${f T}$	92.4	111.8	10	13. 5
2A-28T	600	$\mathbf{T}$	92.9	112.4	10	13. 9
2A-33T	600	${f T}$	94.0	114.0	10	
<b>FA-38T</b>	600	T	90.2	108. 2	10	13.7
<b>2</b> A - <b>43</b> T	600	T	92.3	111.5	12	12.0
2A-48T	600	$\mathbf{T}$	91.0	109. 5	11	13.8 14.9
2A-4L	900	_				14. 9
2A-9L	800	L	94.6	114.9	10	13.0
2A-14L	800	L	95.5	118, 0	10	15.7
2A-19L	800	L	94.4	116. 1	10	13.1
2A-24L	800	L	94.4	116.6	9	14.4
2A-29L	800	L	93.0	116.6	12	13.5
2A-34L	800	L	87.7	110.0	12	13.8
2A-39L	800	L	86.8	106.5	15	11.6
2A-44L	800	L	90.7	114.8	11	15.1
2A-49L	800	L	89.6	112.4	13	13.3
2H-49L	800	${f L}$	90.0	112.0	10	13.6
2A-4T	800	${f T}$	88.7	109.8	11	10.0
2A-9T	800	$ar{ extbf{T}}$	89.7	110.8	10	10.9
2A-14T	800	Ť	91.6	114.5	12	12.5
2A - 19'f	800	T	90.3	113.2		12.9
2A-24T	800	Ĩ,	89.8	113. 2	11	12.6
<b>2</b> A - <b>29</b> T	800	Ť	88.3	112. 1	10	11.7
2A-34T	800	Ť	88.5		11	11.6
2A-39T	800	Ť	86.8	110.9 109.8	13	12.7
2A-44T	800	T	87.0		14	12.3
2A-49T	800	Ť	86.7	109.8	13	12.9
		•	00. 1	111.4	13	13.3

Table 40 (Continued)

Specimen No.	Temp.,	Orientation	F _{ty} ksi	F _{tu} ksi	e %	$\frac{\mathrm{E_{t}}}{\mathrm{10^{6}\ psi}}$
2A-10L 2A-15L 2A-20L 2A-25L 2A-36L	1000 1000 1000 1000	L L L L	90. 4 85. 8 87. 8 86. 8	112.7 108.0 110.5 110.0	11 14 11 11	12.3 11.0 10.9 11.7
2A-35L 2A-40L 2A-45L 2A-50L 2A-168L	1000 1000 1000 1000 1000 1000	L L L L L	85. 7 82. 0 85. 2 82. 3 81. 3	107. 2 101. 0 107. 8 104. 0 102. 5	12 16 12 16 14	9.9 10.7 12.5 11.2 12.6
2A-5T 2A-10T 2A-15T 2A-20T 2A-25T	1000 1000 1000 1000 1000	T T T	83. 0 83. 2 85. 6 87. 3 85. 6	104. 0 107. 8 108. 8 107. 8	14 13 14 14 12	11. 8 11. 0 12. 5 12. 0 11. 8
2A-30T 2A-35T 2A-40T 2A-45T 2A-50T	1000 1000 1000 1000 1000	T T T T T	84.6 83.3 80.0 82.5 81.9 82.8	105. 5 104. 3 102. 4 102. 8 102. 8 104. 4	14 14 14 15 15	10. 2 11. 4 12. 9 10. 9 11. 6 11. 1

 $^{^{\}rm a}$  Thickness: 40 mils  $^{\rm b}$  Heat treatment: 1650°F, 1/2 hr, A C., 1450°F, 1/4 hr, A.C.

Table 41

Tensile Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet from Heat No. V-3076 at Different Temperatures^a, b

	2,0,	v ooro at j	merent Te	emperature	sa, b	
Specimen	Temp.,		$F_{ty}$	77		
No.	°F	Orientation	- ty	${ m F_{tu}}$	e	${f E}_{f t}$
0p 4-		or rentation	ksi	ksi	%	10° psi
2B-1L	70	L	143.8	150.		
2B-6L	70	L	140.0	152. 2		17.0
2B-11L	70	Ĺ		148.5	11	16.5
2B-16L	70	Ĺ	139.5	147. 5	10	16.2
2B-21L	70	Ĺ	138.6	149.0	11	15.8
2B- <b>26</b> L	70		142.0	146. 2	11	16.5
2B-31L	70	L	144.0	155.0	11	17. 1
2B-36L	70	L.	142.5	153.8	10	16.7
2B-41L	70	L	141.9	152.8	12	
2B-46L	70	L	143, 9	153.2	10	16.5
	70	L	142.6	152. 2	11	17.0
$2\mathrm{B}\text{-}1\mathrm{T}$	70	-			11	16.9
$2\mathrm{B} ext{-}6\mathrm{T}$	70	${f T}$	134.4	145.9	11	15 4
2B-11T	70	${f T}$	134.0	145.4	11	15.4
2B-16T	70	$\mathbf{T}$	134.8	145.2	12	15.1
2B-21T		${f T}$	135.3	147.5	13	16.0
2B-26T	70	${f T}$	135.7	146.5		15.5
2B-31T	70	${f T}$	136.3	147.1	11	15.7
$2\mathrm{B} ext{-}36\mathrm{T}$	70	${f T}$	133.5	144.5	11	15.7
2B-41T	70	${f T}$	133.2		11	15.2
2B-46T	70	${f T}$	135.4	145.0	11	16.0
7B-40T	70	${f T}$	134.2	147.2	11	16.3
2B- <b>2</b> L	400		-01.2	145.5	12	15.1
2B-7L	400	L	108.5	124.4	4.0	
	400	L	108.5	124.4	10	14.9
2B-12L	400	L	107. 2	124.4	11	14.0
2B-17L	400	L	108.5	123.4	10	14.3
2B-22L	400	L	111.8	126.0	11	15.7
2B-27L	400	L 3		125.4	9	14.2
2F-32L	400	Ĺ	109.9	128.4	9	15.6
2B-37L	400	Ĺ	110.8	129. 2	9	14.7
2B-42L	400	Ĺ	109.5	127.6	10	15.2
2B-47L	400	L	112.9	126.3	10	15.1
0		1.7	109. 1	126.5	9	13.9
2B-2T	400	${f T}$	100 0			10.0
2B-7T	400	T	102.6	120.8	10	13.7
2B-12T	400	${f T}$	103.2	121.2	10	14.3
2B-17T	400	T	103.7	121.9	12	13.9
2B- $22T$	400	T	102.1	119.7	10	14.0
2B-27T	400		102.7	120.3	12	18.5
$2\mathrm{B} ext{-}32\mathrm{T}$	400	T	102.4	120.0	11	12.8
2B-37T	100		102.9	120.7	10	
2B-42T	400		102.0	120.7	11	13.4
2B-47T	400		103.4	121.7	11	12.8
	100	T	103. 2	121.9	12	15.3
		243			14	15.6

Table 41 (Continued)

Specimen	Temp.,		$\mathbf{F}_{\mathbf{ty}}$	$\mathbf{F}_{\mathrm{tu}}$		En .
No.	_ °F	Orientation	ksi	lu	e	$\mathbf{E}_{t}$
0			11.01	ksi	%	. 10° psi
2B-3L	600	L	97.7	117.5	7	10.0
2B-8L	600	L	95.6	115. 2	7	13.6
<b>2</b> B- <b>13</b> L	600	L	95.3	116: 4	9	14.4
<b>2</b> B- <b>18</b> L	600	L	98.8		8	14.3
2B-23L	600	L	102. 2	119.6	8	13.2
2B-28L	600	Ĺ	100.0	122. 1	8	15.€
2B-33L	600	Ĺ	100. 5	121.0	7	14.9
2B-38L	600	Ĺ	99.3	122.0	7	15.8
2B-43L	<b>6</b> 00	L		119.6	7	15.3
2B-48L	600	L	99.3	119.6	7	14.9
_		L	100.0	119.8	. 8	14.7
2B-3T	600	Т	92.3	114 0		
2B-8T	600	T	91.8	114.6	9	11.5
2B-13T	600	T	91. 6 92. 6	115.2	9	14.4
$2\mathrm{B}\text{-}18\mathrm{T}$	600	T	91. 6	115.7	9	15.3
<b>2</b> B- <b>23</b> T	600	T	92.4	115.0	9	<b>12</b> .5
2B-23T	600	T	92.4	115.8	10	14.1
2B-33T	600	T		116.4	9	13.8
<b>2</b> B-3 <b>8</b> T	600	T	9 <b>2</b> . 0	114.8	9	12.9
2B-43T	600	T	92. 2	115.7	9	12.9
<b>2</b> B-48T	600	${f T}$	93.2	116.4	9	13.6
	000	1	<b>92</b> . 0	115.0	9	13.2
2B-4L	800	L	93.7	110 =		
2B-9L	800	L	89. 7	116.5	9	13.9
2B-14L	800	L		112. 2	10	12.8
2B-19L	800	L	92.4	113.4	9	13.2
2B-24L	800	L	93.0	114.5	9	12.0
2B-29L	800	L	96.4	119.0	9	13.6
2B-34L	800	I,	95.7	117. 9	7	14.5
<b>2</b> B- <b>39</b> L	800	L	94.4	118.5	9	14.6
2B-44L	800		93.7	119.6	8	16.5
2B-49L	800	L L	95.6	117.8	8	13.2
		L	94.6	116.9	10	12.6
2B-4T	800	${f T}$	86.8	110		
<b>2</b> B- <b>9</b> T	800	$\overset{f r}{ ext{T}}$	87.3	113.7	12	11.4
2B-14T	800	$\overset{\mathtt{T}}{\mathbf{T}}$		113. 2	10	12.9
2B-19T	800	T	88. 2	114.4	10	12.1
2B-24T	800	$\overset{1}{\mathbf{T}}$	87.0	113.2	11	12.6
2B-29T	800	T	88.3	115.8	13	13.6
2B-34T	800	T	89.2	114. 2	10	13.0
2B-39T	300	T	87.3	112.4	11	11.1
2B-44T	800	T	86.8	113.8	10	13.2
2B-49T	800	T	88.3	113.2	11	11 8
			88.3	114.2	10	13.3
		24	14			

Table 41 (Continued)

Specimen No.	Temp., F	Ominutati	$\mathbf{F}_{\mathbf{t}\mathbf{y}}$	$F_{tu}$	e	$\mathbf{E_t}$
2101		Orientation	ksi	ksi	%	10 ⁶ psi
2B-5L	1900	L	79. 0	105. 2		
2B-10L	1000	L	80.8		17	14.4
2B-15L	1000	Ĺ		103.0	13	12.8
2B-20L	1000		82.3	103.6	14	11.4
2B-25L	1000	L	83.8	109.7	11	13.6
2B-30L		L	<b>85.</b> 0	111.8	12	14.3
2B-35L	1600	L	90.3	112.5	10	12.6
	1000	L	82.8	108.2	13	13.5
2B-40L	1000	L	85.0	109.0	13	
2B-45L	1000	L	84.2	107.8		12.5
2B-50L	1000	L	84.6		12	13.0
		-	04.0	108.9	12	13.8
2B- <b>5T</b>	1000	${f T}$	79.7	100 0		
2B-10T	1000	T	80. 2	102. 2	14	11.5
2B-15T	1000	T		103. 1	14	11.3
2B-20T	1000		78.4	102.6	15	11.2
2B-25T		T	79. 7	103.7	15	10 7
2B-30T	1000	${f T}$	81.8	104. 4	14	11.7
	1000	${f T}$	80.2	102. 2	15	10.9
2B-35T	1000	${f T}$	77.7	102.2	14	10. 7
2B-40T	1000	${f T}$	80.7	104. 2	15	
2B-45T	1000	T	81.0	104. 2		10.8
2B-50T	1000	$ar{ extbf{T}}$	78.5		13	10.9
			10. 9	103.2	9	11.1

a Thickness: 40 mils b Heat treatment: 1650°F, 1/2 hr, A.C., 1450°F, 1/4 hr, A.C.

Table 42 Notched Tensile Properties of the Sheet Alloysa, b, c, d

Specimen No.	Temp., ° F	Notched Tensile Strength, ksi
5B-52L	70	166.7
5B-53L	70	166.8
5B-51L	400	120. 2
5B-54L	400	122. 0
5B-56L	800	104. 9
5B-57L	800	105. 8
1A-173L	70	165. 0
1A-174L	70	165. 8
1A-163L	400	132. 0
1A-165L	400	131. 0
1A-161L	800	133. 2
1A-168L	800	130. 9
1A-171L	800	128. 6
2B-51L	70	171. 5
2B-52L	70	168. 7
2B-53L	400	137. 4
2B-54L	400	138. 0
2B-55L	800	133. 8
2B-56L	800	131. 2
	5B-52L 5B-53L 5B-51L 5B-54L 5B-56L 5B-57L 1A-173L 1A-174L 1A-163L 1A-165L 1A-165L 1A-161L 1A-168L 1A-171L 2B-51L 2B-52L 2B-52L 2B-54L 2B-55L	5B-52L 70 5B-53L 70  5B-51L 400 5B-54L 400  5B-56L 8C0 5B-57L 800  1A-173L 70 1A-174L 70  1A-163L 400 1A-165L 400  1A-165L 800  1A-161L 800 1A-168L 800 1A-171L 800  2B-51L 70  2B-52L 70  2B-53L 400 2B-54L 400  2B-55L 800

Thickness: 40 mils

Ti-5Al-5Sn-5Zr, 1650° F, 1/2 hr, A.C. Ti-5Al-5Sn-5Zr-1Mo-1V, 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Ti-6Al-2Sn-4Zr-2Mo,  $1650^{\circ}$  F, 1/4 hr, A.C.  $\div$ 1450° F, 1/4 hr, A.C.

b Heat treatment:

Notched  $45^{\circ}$ , 0.025 in. radius, 0.375 in. minimum C width to produce  $K_t = 3$ 

All tests in longitudinal direction

Table 43

Compression Properties of Ti-5Al-5Sn-5Zr Alloy Sheet at Different Temperatures a, b, c

	Longitud	inal Ori	entation	Transve	rse Ori	entation
Temp.,	Specimen	F _c y,	Ec	Specimen	F _{cy} ,	E _c
° F	Number	ksi	10 ⁶ psi	Number	ksi	10 ⁶ psi
					W91	To psi
70	5A-370	120.6	14.9	5A-117	123.7	14.0
70	5A-351	116.5	14.3	5A-122	124.4	14.9
70	5A-356	117.8	14. 2	5A-127		15.0
70	5A-361	121.0	14, 5	5A-132	126.8	15.3
70	5A-366	119.0	14. 1		127. 2	15.1
		-10,0	A	5A-137	126.8	15.2
400	5A-347	79.7	12.3	E4 440	00 -	
400	5A-353	80. 9	11.6	5A-118	82.7	13.0
400	5A-357	80. 3		5A-123	82.7	12.8
400	5A-382	79.8	12.0	5A-128	82.7	12.8
400	5A-367		12.1	5A-133	81.6	12.8
100	0W-901	80, 2	12.2	5A-138	82.0	12.8
600	5A-348	67.5	11.3	EA 110	0 P. O	
600	5A-353	64.6	11.1	5A-119	67. 3	12.5
600	5A-358	66.8	11. 9	5A-124	68.7	11.6
600	5A-333	67.7		5A-129	68.2	12.0
600	5A-368	66.8	10.1	5A-134	69.4	12.2
	0A-000	00.0	10.1	5A-139	68.6	12.3
800	5A-349	59.3	10.2	5A-120	CO 1	44.0
800	5A-354	60.0	10.6	5A-125	63.1	11.9
800	5A-359	59.3	10.7		62. 2	11.1
800	5A-364	60.7	10.4	5A-130	62.5	11.8
800	5A-369	62, 2	11.0	5A-135	63.1	11.7
	011-000	02. 2	11.0	5A-140	63.1	11.4
1000	5A-350	58, 2	9. 9	5A-121	60 0	10 1
1000	5A-355	57.8	9. 5	5A-126	60.9	10.1
1000	5A-360	57.6	9.6		58.6	10.3
1000	5A-365	57. 2	9.6	5A-131	60.4	10.4
1000	5A-346	59.3	10.0	5A-136	59.7	10.3
		00,0	10, 0	5A-141	59.5	10, 5

a Heat No. D-8060.

b Thickness: 40 mils.

c Heat treatment: 1650° F, 1/4 hr, A.C.

Table 44

Compression Properties of Ti-5Al-5Sn-5Zr-1Mc-1V
Alloy Sheet at Different Temperatures a, b, c

	Longitudi	nal Orie	ntation	Transver	se Orie	ntation
Temp.,	Specimen	F _{cy} ,	Ec	Specimen	F _{cy} ,	Ec
°F	Number	ksi	10 ⁶ psi	Number	ksi	10 ⁸ psi
70	1A-371	144.0	14.6	1A-117	150.5	14.9
70	1A-351	141.0	14.1	1A-122	156.3	15.4
70	1A-356	138.5	14.8	1A-127	153.7	15.4
70	1A-361	144.1	14.5	1A-132	153.7	15.4
70	1A-366	142.0	14.3	1A-137	156.2	15.2
400	1A-347	94.3	12.7	1A-118	112. 2	13.7
400	1A-352	106.5	12.8	1A-123	113.5	13.7
400	1A-357	103.4	12,5	1A-128	113.0	13.4
400	1A-362	108.0	12.8	1A-133	114.5	13.7
400	1A-367	106.5	12.6	1A-138	115, 1	12.4
600	1A-348	101.0	12.0	1A-119	103.0	12.4
600	1A-353	93.2	11.4	1A-124	103, 5	12.4
600	1A-358	98.3	11.3	1A-129	102.5	11.8
600	1A-363	98.7	11.3	1A-134	105.1	12.6
600	1A-368	97.8	11.8	1A-139	102.3	12.0
800	1A-349	93. 3	11.2	1A-120	98.5	12.2
800	1A-354	90.4	11.1	1A-125	97.3	11.4
800	1A-359	93.5	11.2	1.4-130	102.6	12.1
800	1A-364	93.6	11.0	1A-135	99.7	11.9
800	1A-369	95.5	11.2	1A-140	97. 9	11.8
1000	1A-350	81.4	10.4	1A-121	88.9	10.7
1000	1A-355	84.4	10.1	1A-126	86.7	10.5
1000	1A-360	83.5	10.4	1A-131	89,8	10.5
1000	1A-365	86.3	9.6	1A-136	90.4	10.8
1000	1A-370	83.3	9. 9	1A-141	88.5	10.3

a Heat No. V-2957.

b Thickness: 40 mils.

c Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

Table 45

Compression Properties of Ti-6Al-2Sn-4Zr-2Mo
Alloy Sheet at Different Temperatures^{a,b,c}

	Longitudi	nal Orie	ntation	Transver	Transverse Orientation			
Temp.,	Specimen	Fcy,	$E_{c}$	Specimen	F _{cy} ,	Ec		
<u>° F</u>	Number	ksi	10° psi	Number	kši	10 ⁶ psi		
70	2A-345	144. 7	13.1	2A-117	142.7	14.6		
70	2A - 351	151.6	14.3	2A-122	148.9	14.7		
70	2A - 356	<b>154.</b> 3	14.8	2A-127	148.5	14.6		
70	2A - 361	144.5	14.4	2A-132	137.4	14.0		
70	2A-366	<b>152.</b> 8	14.6	2A-137	144.6	14.6		
400	2A - 347	116.8	12.9	2A-118	107.1	12.0		
400	2A-352	114.0	12.9	2A-123	107.5	12.6		
400	2A-357	107.4	12.8	2A-128	107.5	12.7		
400	2A-362	111,4	12.7	2A-133	102.0	12.5		
400	2A-370	107.1	12.3	2A-138	105.6	12.9		
600	2A - 348	96, 1	12.2	2A-119	93.3	11.2		
600	2A - 353	106.4	12.2	2A-124	94.6	11.3		
600	2A-358	99.3	11.9	2A-129	100.3	11.8		
600	2A-363	97.8	11.8	2A-134	90.3	11.6		
600	2A-368	98. 9	12.2	2A-139	98.8	11.6		
800	2A-349	104.5	11.8	2A-120	96.0	10.7		
800	2A-354	94.8	11.9	2A-125	90.0	11.6		
800	2A-359	97.6	11.1	2A - 130	83.8	10.9		
800	2A-364	88.0	10.3	2A-135	86.9	11.1		
800	2A-369	97. 6	11.4	2A-140	89.1	10.8		
1000	2A - 350	88.4	10.8	2A-121	84.5	10.3		
1000	2A-355	89.9	11.4	2A-126	84.5	10.4		
1000	2A-360	84.0	10.5	2A-131	77, 4	10.0		
1000	2A-365	78.5	10.1	2A-136	84.5	10.2		
1000	2A-346	85.8	10.3	2A-141	80.7	10.0		

a Heat No. V-3016.

b Thickness: 40 mils.

c Heat treatment:  $1650^{\circ}$  F, 1/2 hr, A.C. +  $1450^{\circ}$  F, 1/4 hr, A.C.

Table 46

Bearing Properties of Ti-5A1-5Sn-5Zr Allcy Sheet
At Different Temperatures a, b, c

Temp.		e/i Specimen	D = 1.5	e/.	D = <b>2.0</b>	
°F	Orientation	No.	F _{by} F _{bu}	Specimen	F _{by} F _{by}	-
70			ksi ksi	No.	<u>ksi</u> ksi	<u>.</u>
70	L	5A-314L	176.8 200.0	5A-313L	200.5 239	_
70	L L	5A-322L	180.3 205.2	5A-325L	•	
.0	L	5A-332L	183.7 201.5	5A-335L	211.0 259. 204.5 255.	
70	T	5A-86T	186.1 215.5	_		Ü
70	T	5A-93T		5A-85T	220.5 280.	8
70	T	5A-106T	,	5A-95T	215.5 273.	8
		2001	182.0 220.5	5A-105T	211.6 261.	5
400	L	F. 0.00				
400	L	5A -316L	132.3 158.1	5A-315L	153.6 190.	5
400	L	5A-324L	131.0 154.7	5A-327L	159.0 200.0	
	L	5A-334L	134.3 156.8	5A-336L	156.1 200.0	
400						
400	T	5A-88T	132.8 165.7	5A-87T	154 5 014 0	
400	T T	5A-98T	136.4 168.7	5A-97T	154.5 214.3 168.1 218.3	
100	1	5A-108T	136.3 167.8	5A-107T	168.1 218.3 165.8 219.6	
600	L	5A-318L	115.2 140.4			
600	L	5A-326L	115.2 140.4 116.1 141.3	5A-317L	140.3 179.0	
600	$\mathbf{L}$	5A-339L	116.4 140.9	5A-329L	143.9 177.5	
			110.4 140.9	5A-337L	143.8 185.5	
600	Т	E 4 000				
600	T	5A-90T 5A-100T	117.3 154.0	5A-89T	140.4 199.0	
600	T	5A-100T 5A-110T	116.7 150.4	5A-99T	143.2 199.3	
	-	5A-1101	121.4 151.7	5A-109T	143.5 195.8	
800	<b>.</b>					
800	L	5A-320L	104.1 130.5	5A-319L	125.2 174.2	
800	L L	5A-328L	112.0 134.3	5A-331L		
- 50	L	5A-340L	105.5 135.8	5A-338L	126.8 167.1 131.2 172.5	
				0002	101.2 112.0	

Table 46 (Continued)

Temp.  *F	Orientation	Specimen No.	F _{by}	F bu ksi	Specimen No.	F by ksr	F ksi
800	T	5A-92T	109.1		5A-91T	132.2	189.2
800	T	5A-102T	108.3		5A-101T	138.0	191.2
800	T	5A-112T	109.2		5A-111T	132.2	185.5
1000	L	5A-321L	99.4	123.1	5A-323L	116.0	163, 1
1000	L	5A-330L	103.6	126.3	5A-333L	118.3	163, <b>6</b>
1000	L	5A-342L	104.3	126.4	5A-341L	123.4	165, 0
1000	T	5A-94T	105.4	136.5	5A-93T	122.6	177.3
1000	T	5A-104T	106.3	140.0	5A-103T	130.2	175.5
1000	T	5A-114T	106.3	134.7	5A-113T	128.6	177.3

aHeat No. D-8060

b Thickness: 40 mils

C Heat Treatment: 1650°F, ½ hr, A. C.

Table 47

Bearing Properties of Ti-5A1-5Sn-5Zr-1Mo-1V Alloy Sheet

At Different Temperatures a, b, c

Temp.	Specime		) = 1.5		e/D = 2.0		
°F	Orientstion	No.	F _{by}	F _{bu}	Specimen No.	F ksi	F _{bu}
70	L	1A-323L	202.	5 221.0	1A-314L	224.9	<u> </u>
70	L	1A-343L	201.		1A-324L	266.5	
70	L	1A-313L	204.		1A-334L	238.0	
70	T	1A-95T	211.0	231.5	1A-106T	276 5	000 0
70	T	1A-85T	211.0		1A-1001	276.5	
70	Т	1A-105T	207.0		1A-116T	275.0 261.0	
400	T	4. 0.0					
400	L	1A-316L	164.1		1A-315L	198.9	228.0
400	L L	1A-326L	168.1		1A-325L	202.5	240.5
100	L	1A-336L	165.0	180.3	1A-335L	197.2	236.2
400	Т	1A-88T	167 0	100.0	4 10 14 10 10		
400	T	1A-98T	167.0	199.8	1A-87T	205.0	240.0
400	$\overline{\mathbf{T}}$	1A-108T	172.9	204.3	1A-97T	207.0	224.0
	_	177-1001	173.5	202.5	1A-107T	211.6	236.2
600	L	1A-318L	159.5	177.8	14 0477		
600	L	1A-328L	161.9	176.5	1A-317L	186.1	221.0
600	L	1A-338L	159.5	180.8	1A-327L	197.3	224.0
		0002	100,0	100.0	1A-337L	186.7	220.5
000	T	1 4 00-					
600	T	1A-90T	164.8	194.0	1A-89T	199.8	216.0
600	T	1A-100T	161.8	195.2	1A-99T	192.6	220.0
	1	1A-110T	166.8	196.6	1A-109T		205.0
800	L	1A-320L	104 7	484 -			
800	L	1A-320L	161.7	174.2	1A-319L	197.4	217.8
800	L	1A-340L	156.4	171.3	1A-329L	179.5	206.3
	_	177-340L	154.5	168.1	1A-339L		202.8

Table 47 (Continued)

Temp.			e/D = 1.5			e/D = 2.0		
°F	Orientation	Specimen No.	F _{by} ksi	F _{bu} ksi	Specimen No.	F _{by}	F _{bu} ksi	
800	T	1A-92T	157.7	187.2	1A-91T	196.0	202.5	
800	T	1A-102T	157.7		1A-101T	189.6	195.5	
800	T	1A-112T	155.3		1A-111T	197.7	210.0	
1000	L	1A-322L	155.1	176.3	1A-321L	179.5	205, 0	
1000	L	1A-332L	147.8	172.6	1A-331L	162.0	196, 7	
1000	L	1A-342L	149.2	170.0	1A-341L	172.6	202, 5	
1000	T	1A-94T	155.2	177.5	1A-93T	190.4	202.5	
1000	T	1A-104T	150.5	180.5	1A-103T	181.7	205.1	
1000	T	1A-114T	153.5	181.6	1A-113T	178.3	196.7	

aHeat No. V-2957

bThickness: 40 mils

CHeat Treatment: 1550°F, \(\frac{1}{2}\) hr, A. C. + 1400°F, \(\frac{1}{4}\) hr, A. C.

Table 48

Bearing Properties of Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet
At Different Temperatures a, b, c

Temp.		$\frac{e/D = 1.5}{Sneed = 1.5}$			e/D = 2.0		
°F	Orientation	Specimen No.	F _{by}	F bu	Specimen	Fby	Fbu
<del></del>		110.	ksi	ksi	No.	ksi	ksi
70	L	2A-314L	203.0	1 120 A	04 040-		
70	L	2A-324L	198.3		2A-313L	236.7	
70	L	2A-332L	201.2	,	2A-323L	240.0	
		0022	201.2	230.0	2A-335L	234.0	291.0
70	T	2A-86T	201.2	2 236.3	2A-85T	005.0	
70	T	2A-96T	199.8		2A-031 2A-97T	235.0	
70	T	2A-106T	194.8		2A-971 2A-107T	245.5	
				<i>M2</i> 0.0	2A-10/1	232.1	287.8
400	1.0						
400	L	2A-316L	157.5	188.0	2A-315L	198.4	050 0
400	L	2A-325L	159.0		2A-326L	194.8	•
400	L	2A-334L	157.2	, _	2A-337L	187.5	239.5
					-11 0011	101.5	240.2
400	rm.						
400	T	2A-88T	159.6	190.8	2A-89T	184.3	232.0
400	T T	2A-98T	164.3	192.9	2A-99T	195.1	246.2
100	1	2A-108T	157.1	186.0	2A-109T	189.2	244.0
						200,2	211.0
600	L	04 040-					
600	L	2A-318L	149.8	185.3	2A-317L	181.7	223.8
600	L	2A-327L	148.7	181.0	2A-329L	171.2	228.0
	L	2A-336L	141.8	171.7	2A-340L	177.7	224.5
600	Т	2A-90T	144 5		_		
600	T	2A-100T	144, 5	177.5	2A-91T	174.8	231.6
600	T	2A-110T	143.1	172.5	2A-101T	165.5	222.5
		PH-IIOI	139.3	167.9	2A-111T	176.6	222.5
800	L	2A-320L	151.7	181.6	0.4.045		
800	L	2A-328L	139.6	173.2	2A-319L		219.5
800	L	2A-338L	136.5	167.8	2A-331L		212.0
			200.0	101.0	2A-341L	178.3	220.0

Table 48 (Continued)

		· e/I	e/D	/D = 2.0			
Temp.		Specimen	F _{by}	Fbu	Specimen	Fby	F _{bu}
<u> </u>	Orientation	No.	<u>ksí</u>	ksi	No.	ksi	ksi
800	T	2A-92T	148.7	177.4	2A-93T	172.4	202.0
800	T	2A-102T	142.5	171.4	2A-103T	172.5	208.2
800	Т	2A-112T	145.4	175.0	2A-113T	170.4	203.0
1000	_	0.4.000-	140.0	105.0	0.4 0.01 7	107.0	000 5
1000	L	2A-322L	149.3	165.0	2A-321L	167.2	208.5
1000	L	2A-330L	136.4	165.0	2A-333L	167.0	214.3
1900	L	2A-342L	138.8	165.2	2A-343L	173.3	211.5
1000	Т	<b>2</b> A- <b>94</b> T	140.0	170.0/	2A-95T	161.0	205.9
1000	Т	2A-104T	143.3	162.6	2A-105T	167.2	204.5
1000	T	2A-114T	139.2	161.0	2A-115T	173.2	205.0

^aHeat No. V-3016

bThickness: 40 mils

CHeat Treatment: 1650°F,  $\frac{1}{2}$  hr, A. C. + 1450°F,  $\frac{1}{4}$  hr, A. C.

Table 49 Ultimate Shear Strength of Ti-5Al-5Sn-5Zr Alloy Sheet from Heat No. D-8060 at Different Temperatures^{a, b}

_	Longitudinal	Orientation	<b>m</b>	
Temp.,	Specimen	Fsu	Transverse (	Prientation
°F	No.		Specimen	Fisu
	170.	<u>ksi</u>	No.	ks.
70	5A-245L	00 -		110,
70		88.7	5A-57T	95.7
70	5A-250L	88.7	5A-62T	95. <b>2</b>
<b>7</b> 0	5A-255L	87. 5	5A-67T	
	5A-260L	86.8	5A - 72T	92.7
70	5A-265L	86.8		92.7
400			5A-77T	94.7
400	5A-246L	67.3	5 4 FO-	
400	5A-251L	68. 0	5A-58T	73.8
400	5A-256L		5A-63 _T	71.0
400	5A-261L	67. 6	5 <u>A-6</u> 8T	70.6
400	_	67.3	5A-73T	73.3
	5A-266L	70.2	5A-78T	75.8
600	5 A 9 A 87 -			10. e
600	5A-247L	<b>62.</b> 2	5A-59T	60 0
600	5A-252L	61.7	5A-64T	68.8
	5A-257L	62.2	5A-69T	65. 9
600	5A- <b>26</b> 2L	61.7		66. 1
600	5A-267L	64. 4	5A-74T	66. 7
		V3. 3	5A-79T	67.5
800	5A-248L	61.8	<b>-</b>	
800	5A-253L	_	5A -战0T	66. 5
800	5A-258L	58. 5	5A-65T	64.6
800	5A-263L	<b>57.</b> 8	5A-70T	65.8
800		59.3	5A-75T	65.9
	5A-268L	60.7	5A-80T	68. 0
1000	E 4 240-			00.0
1000	5A-249L	<b>55.</b> 0	5A-61T	<b>62</b> . 2
1000	5A-254L	55.8	5A-66T	_
1000	5A-259L	55.8	5A-71T	62.5
	5A- <b>264</b> L	56.4		62.5
1000	5A-269L	57.8	5A-76T	<b>62</b> . 9
	- <del>-</del>	01.0	5A-81r	64.3

Thickness: 40 mils b Heat treatment: 1650°F, 1/2 hr, A.C.

Table 50 Ultimate Shear Strength of Ti-5Al-5Sn-5Zr-1V-1Mo Alloy Sheet from Heat No. V-2957 at Different Temperatures^{a, b}

	Longitudinal C	rientation	Transverse O	
Temp.,	Specimen	Fsu	Specimen	Fsu
<u>°F</u>	No.	ksi	No.	ksi
70	1A-245L	106. 2	1A-57T	108. 2
70	1A-250L	107.0	1A-62T	111.0
70	1A-255L	105. 0	1A-67T	111.0
70	1A-230L	104. 2	1A-72T	109.0
<b>7</b> 0	1A-265L	103.3	1A-77T	110.0
400	1A-246L	87.0	1A-58T	91.5
400	1A-251L	88.5	1A-63T	89. 2
400	1A-256L	8 <b>4.</b> 0	1A-68T	92.2
400	1A-261L	<b>83</b> .8	1A-73T	89. <b>0</b>
400	1A-266L	<b>84. 6</b>	1A-73T	91.1
600	1A-247L	80.3	1A-59T	88.3
600	1A-252L	81.0	1A-64T	87.0
J <b>00</b>	1A-257L	84. 1	1A-69T	85.8
600	1A-262L	83.5	1A-74T	85.3
600	1A-267L	83.2	1A-79T	87.0
800	1A-248L	81.0	1A -60T	86.2
800	1A-253L	8 <b>2</b> . 5	1A-65T	84. <b>6</b>
800	1A-258L	82.5	1A-707	8 <b>2</b> . 6
800	1A-263L	81. 1	1A-75T	85.6
800	1A-263L	80.3	1A-8 <b>0</b> T	86.8
1000	1A-249L	75.1	1A-61T	<b>76</b> . 8
1000	1A-254L	74.3	1A-66T	76.8
1000	1A 259L	72.8	1A-71T	77.4
1000	1A-264L	71.6	1A-76T	78.0
1000	1A-2691	70.8	1A-81T	78.8

a Thickness: 40 mils
b Heat treatment: 1550°F, 1/2 hr, A.C. + 1400°F, 1/4 hr, A.C.

Table 51 Ultimate Shear Strength of Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet from Heat No. V-3016 at Different Temperatures^{a, b}

	Longitudinal Orie	entation	Transverse Orientation	
Temp.,	Specimen	$F_{su}$	Specimen	Fsu
${}^{\circ}\mathbf{F}^{^{-}}$	No.	ksi	No.	ksi
	<del></del>			
70	2A-245L	99.5	2A-57T	95.7
70	2A-250L	101.3	2A-62T	98. 5
<b>7</b> 0	<b>2</b> A- <b>25</b> 5L	98.8	2A-67T	95.8
70	2A-260L	93.8	2A-72T	93.8
70	2A-265L	95.8	2A-77T	93.7
400	2A-246L	82.5	2A-58T	78.1
400	2A-251L	82.5	2A-63T	80.8
400	2A-256L	84.3	2A-68T	78.5
400	2A-261L	79.4	2A-73T	78.1
400	2A-266L	80.5	2A-78T	77.3
		•		
600	2A-247L	80.7	<b>2</b> A- <b>59</b> T	75.5
600	2A-252L	81. 2	2A-64T	76.8
600	2A-257L	80.8	2A-69T	77.4
600	2A-262L	76. 1	2A-74T	75.5
600	2A-267L	76.8	2A-79T	72.3
800	2A-248L	80.0	2A-60T	74.2
806	2A-253L	78.7	2A-65T	74.8
800	2A-258L	74.0	2A-70T	70.7
800	2A-263L	74.0	2A-75T	72.8
800	2A-268L	76.0	2A-80T	70.5
1000	2A-249L	70.0	2A-61T	66.5
1000	2A-254L	71.7	2A-66T	69.7
1000	2A-259L	66. 5	2A-71T	67.6
1000	2A-264L	68.4	2A-76T	65.9
100C	<b>∠A-269</b> ₺	67.8	2A-81T	66.5

^a Sheet thickness: 40 mils b Heat treatment: 1650°F, 1/2 hr, A.C. + 1450°F, 1/4 hr, A.C.

Table 52

Tensile Properties of Ti-5A1-5Sn-5Zr Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures a, b

	Conditions				F _{tv} , ksi			
Temp.	Time			Test T	emperatu	170 BE		
° F	Hr	70	600	800	1000	1100	1150	1200
70		118.6						
600	0.25	_	66.3					
600	1000	114.2	63.8					
800	0.25		_	61.1				
800	100	118.0		63. 2				
800	1000	121.1	-	66.9				
1000	0. 25		_		59.0			
1000	10	120.4	_	-	_			
1000	100	120. 2	_	_	61.0			
1000	1000	120.3	-	-	62.8 63.8			
1100	10	118.9	-			62.8	-	
1150	10	116.5			-		FF 0	
1200	10	119.1	Ē	-	-	-	55. 2 -	53,3

Conditions				F., ksi			
Time	<u></u>				ire or		
Hr	70	600	800				1200
						2100	1200
-	128.5						
0. 25		80 <i>8</i>					
	122.2						
1000	124.2	85.4					
0, 25	-	_	23 3				
	123 7						
		_					
1000	120.0	-	80.9				
0, 25	-	_	_	70.4			
	126 6		•	_			
		-	-				
		-	-				
1000	120, 2	-	-	83.0			
10	126 3						
			-	-	82.7		
		-	-	-	-	76.3	
10	127.0	-	-	-	-	-	70.2
	Conditions Time Hr  - 0. 25 1000 0. 25 100 1000 0. 25 10 100 100 1000 1000	Time Hr 70  - 128.5  0.25 1000 122.2  0.25 1000 123.7 1000 126.6  0.25 10 126.6 100 125.8 1000 128.2	Time Hr 70 600  - 128.5  0.25 - 89.6 1000 122.2 85.4  0.25	Time Hr 70 600 128.5  0.25 1000 122.2 85.4  0.25 100 123.7 84.1 1000 126.6 - 100 125.8 - 100 126.3 - 10 124.9 -	Time Hr 70 600 800 1000  - 128.5  0.25 - 89.6 1000 122.2 85.4  0.25 - 83.5 100 123.7 - 84.1 1000 126.6 - 86.9  0.25 - 10 126.6 - 80.2 100 125.8 - 81.7 1000 126.3 - 10 126.3 - 10 124.9	Time Hr  70  600  Test Temperature, F  800  1000  128.5  0.25  0.25  100  123.7  84.1  1000  126.6  - 86.9  0.25  10  126.6  100  128.2  - 83.5  100  126.3  - 82.7  10  124.9  10  127.0	Time Hr 70 600 Test Temperature, F 800 1100 1150  - 128.5  0.25 - 89.6 1000 122.2 85.4  0.25 - 83.5 100 123.7 - 84.1 1000 126.6 - 86.9  0.25 - 79.4 10 126.6 - 80.2 100 125.8 - 81.7 1000 128.2 - 83.0  10 126.3 - 82.7 10 124.9 - 76.3

Table 52 (Continued)

Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures^{a, b}

Conditions				e, %			
Time			Test	Temperat	ure, F		
Hr	70	600	800	1000	1100	1150	1200
-	14						
0.25	•	18					
1000	18	20					
0, 25	_	-	23				
	18	-					
1000	18	-	24				
0, 25	_	-	_	21			
	16	-	-				
		_	-				
1000	15	-	-	18			
10	=	_	_	9	21		
	15		_	••		26	
10	14	_	-	-	-	-	33
	Time Hr - 0. 25 1000 0. 25 100 1000 0. 25 10 1000 1000	Time Hr 70  - 14  0.25 - 1000 18  0.25 - 100 18 1000 18  0.25 - 10 16 100 16 1000 15	Time Hr 70 600  - 14  0,25 - 18 1000 18 20  0,25 100 18 - 1000 18 - 100 16 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000 15 - 1000	Time Hr 70 600 800  - 14  0.25 - 18 1000 18 20  0.25 - 23 100 18 - 25 1000 18 - 24  0.25	Time Hr 70 600 800 1000  - 14  0.25 - 18 1000 18 20  0.25 - 23 100 18 - 25 1000 18 - 24  0.25 21 100 16 - 24 100 16 - 22 1000 15 - 18	Time Hr 70 600 800 1000 1100  - 14  0.25 - 18 1000 18 20  0.25 - 23 100 18 - 25 1000 18 - 24  0.25 21 100 16 - 24 100 16 - 22 1000 15 - 18  10 - 21 10 10 21 10 15 21 10 15 21	Time Hr 70 800 800 1000 1100 1150  - 14  0.25 - 18 1000 18 20  0.25 - 23 100 18 - 25 1000 18 - 24  0.25 21 100 16 - 24 100 16 - 22 1000 15 - 18  10 - 26

a. Heat treatment: 1650° F, 1/2 hr, A.C.

b. Results are averages of duplicate tests except those for single specimens exposed and tested at 1100, 1150, and 1200° F.

Table 53

Ultimate Shear Strength of the Ti-5Al-5Sn-5Zr Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature After Different Thermal Exposures

Exposure	Conditions				
Temp.	Time,	m	o e t m		
°F	Hr	70	est Tem	perature 800	, °F
70	-	87.7			
600	0, 25				
600	1000	0.6	62.4		
	2000	86.4	62.9		
800	0.75				
800	100	85.8	-	59.6	
800	1000	86. 2	-	59.5	
	2000	00. 2	-	62.1	
1000	0.25	-			
1000	10	85.4	-	-	56.2
1000	100	85.0	-	-	56.5
1000	1000	84.6	-	-	57.2
		ο <del>1</del> , υ	-	-	57.9

a. Heat treatment: 1650° F, 1/2 hr, A.C.

b. All results shown are averages of two tests.

Table 54

Tensile Properties of the Ti-5Al-5Sn-5Zr-1V-1Mo Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures^a, b

Exposure	Conditions			I	ty, ksi			
Temp.	Time			Test T	emperatu	re, F	*****	
* F	Hr	70	600	800	1000	1100	1150	1200
70	-	136.8						
600	0.25	-	97.6					
600	1000	145.5	103.4					
800	0.25	-	-	92.8				
800	100	150.5	-	98.0				
800	1000	155.1	-	102.1				
1000	0, 25	_	-	-	83.3			
1000	10	150.2	_	-	88.4			
1000	100	150.6	-	-	81.8			
1000	1000	153.7	-	-	83.3			
1100	10	146, 2	_	**	-	68.3		
1150	10	146.6	• >	_	_	-	59, 2	
1200	10	144.7	-	-	-		-	58.1

Exposure	Conditions				F _{bi} , ksi			
Temp.	Time			Test T	emperatu			
° F	Hr	70	600	800	1000	1100	1150	1200
70	71	146.8						
600	0. 25	-	120.2					
600	1000	159.5	127.7					
800	0, 25	_	_	120.2				
800	100	163.0	-	124.3				
800	1000	164.5	-	125.6				
1000	0, 25	_	-	_	108.2			
1000	10	161.0	-	_	108.5			
1000	100	160.3	-	-	99.1			
1000	1000	160.7	-	-	100.5			
1100	10	155.2	s	_	-	88.6		
1150	10	156.2	-	-	-	-	81.8	
1200	10	153.5	-	-	-	-	-	73.8

Table 54 (Continued)

Tensile Properties of the Ti-5Al-5Sn-5Zr-1V-1Mo Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures^{a, b}

Temp.	Conditions Time		<del></del>		e, %	TO F				
remp.		ro.	Test Temperature, °F							
° F	Hr	70	600	800	1000	1100	1150	1200		
70	-	11								
600	0.25	_	10							
600	1000	10	8							
800	0.25	-	_	12						
800	100	12	-	8						
800	1000	12	-	10						
1000	0.25	-	-	-	12					
1000	10	12	-	-	12					
1000	100	11	-	-	14					
1000	1000	4	-	121	14					
1100	10	12	-	_	_	16				
1150	10	12	-	_	_	-	24			
1200	10	10	_	_	_	-		18		

a. Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

b. Results are averages of duplicate tests except those for single specimens exposed and tested at 1100, 1150 and 1200° F.

Table 55

Ultimate Shear Strength of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures^{a, b}

Exposure	Conditions				
Temp.	Time,	Te	st Temp	erature,	°F
<u>° F</u>	Hr	70	600	800	1000
70	-	105.1			
600	0.25	_	82.4		
600	1000	109.6	87.6		
800	0.25	_	-	81.5	
800	100	113.6	-	82.4	
800	1000	113.1	-	81.7	
1000	0.25	-	-	-	72.9
1000	10	110.7	-	-	73.7
1000	100	110.4	-	-	71.0
1000	1000	108.6	-	1-3	71.6

a. Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

b. All results shown are averages of two tests.

Table 56

Tensile Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposuresa, b

Temp.	Time	·		Togs T	F _{ty} , ksi			
°F	Hr	70	600	300	emperati 1000		4480	
	***************************************			_000	1000	1100	1150	1200
70	-	142.2						
600	0.25	•	95.9					
600	1000	151.2	100.6					
800	0, 25	•	_	91.7				
800	160	152, 2	_	96.3				
800	1000	153.7	-	96.7				
1000	0.25	-	_		05 A			
1000	10	152.0	_	-	85.0 85.3			
1000	100	155.8	_	-	89.9			
1000	1000	156.6	-	_	87.1			
1100	10	151.4						
1150	10	147.9	•	-	-	79.5	III STEP SOLD	
1200	10	143.9	•	-		-	66.4	
	10	129.0	-	-	-	-	-	56.4

Temp.	Conditions Time	F _{tu} , ksi									
° F			Test Temperature, F								
	Hr	70	800	800	1000	1100	1150	1200			
70	-	147.7									
600	0.25	_	115.0								
600	1000	160.8	122.9								
800	0.25			440.0							
800	100	163.3	-	113.8							
800	1000		-	126.3							
	1000	163.4	-	124.2							
1000	0.25	_			100.0						
1000	10	160.8	-	-	106.8						
1000	100	163,3	-	-	105.8						
1000	1000		***	-	109.3						
2000	1000	160.9	-	-	105.0						
1100	10	155 1									
1150		155.1	-	-	-	94.5					
1200	10	155.5	~	-	_	_	79.6				
1200	10	150.8	-	_	•	-		70.5			

Table 56 (Continued)

Tensile Properties of Ti-6Al-2Sn-4Zr-2Mo Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures^{a, b}

Exposure	Conditions		e, %								
Temp.	Time			Test T	'emperatu	re, F					
° F	Hr	70	600	800	1000	1100	1150	1200			
70	-	12									
600	0.25	-	9	٠							
600	1900	11	10								
800	0, 25	_	_	11							
800	100	11	-	9							
800	1000	12	-	10							
1000	0. 25	-	•	-	13						
1000	10	12	_	_	14						
1000	100	12	-	•	14						
1000	10 5	12	-	-	15						
1100	10	12	_	ø.		19					
1150	10	12	-	-		-	27				
1200	10	13	-	-	_	-	-	33			

a. Heat treatment: 1650° F, 1/2 hr, A.C., + 1450° F, 1/4 hr, A.C.

Results are averages of duplicate tests except those for single specimens exposed and tested at 1100, 1150, and 1200° F.

Table 57

Ultimate Shear Strength of the Ti-6Al-2Sn-4Zr-2Mo Alloy Forty-Mil Sheet at Room Temperature and at the Exposure Temperature after Different Thermal Exposures², b

	Conditions				
Temp.	Time,	Te	st Temp	erature,	o <u>r</u> r
°F	Hr	70	600	800	1000
70	-	97.8			
600	0.25	_	79.1		
600	1000	102.4	82.8		
800	0.25	-	_	76.5	
800	100	110.3		82.0	
800	1000	108.1	-	81.2	
1000	0.25	-	_		68. 9
1000	10	107.2	_	_	69. 0
1000	100	110.3	**	_	72.8
1000	1000	103.5	-	-	69.3

a. Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

b. All results shown are averages of two tests.

Table 58 Rockwell C Hardness of Sheet Alloys after Exposure at Different Temperatures and Times

		P.c. Hardness							
Exposure	Exposure	Ti-5A1-5Sn-	Ti-5A1-55n-	Ti-6A1-2Sn-					
Temp, ° F	Time, hr	5Zrb, c	5Zr-1Mo-1V	, c 4Zr-2Mo b, c					
RT	-	33,4	34. 9	34.3					
600	1000	30.7	38.5	35.8					
800	100	30.5	38.0	36.4					
800	1000	31.8	38.5	35.3					
1000	10	34.0	36.8	35.5					
1000	100	31.8	35.5	36. 2					
1000	1000	31.8	37,5	35.6					
1100	10	33.3	35.3	34.8					
1150	10	31. 2	37.5	34.7					
1200	10	31.3	33, 5	33.0					

a Hardness measured on 30-N scale and converted to  $R_{\rm c}$ .

b 40 mil sheet

c Heat treatments:

Ti-5Al-5Sn-5Zr sheet, 1650° F. 1/2 hr, A.C. Ti-5Al-5Sn-5Zr-1Mo-1V sheet, 1550° F, 1/2 hr, A.C. + 14Co' F, 1/4 hr, A.C. Ti-5Al-2Sn-4Zr-2Mo sheet, 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Table 59 Creep Do's for the Ti-5Al-5Sn-5Zr Alloy Sheet a, b, c

Specimen		•	T	ime to cr	eep defo	rmation	hr	Min Con-
Number	°F	ksi	0.05%	0.1%	0.2%	0.5%	2.0%	Min. Creep Rate, % hr-1
5A-105L	800	60.0	_					1tate, 70 H
5A-118L	800	60.0	8	d	d	d	d	$< 1.0 \times 10^{-5}$
5A-107L	800	65.0	290	d	d	d	d	$8.0 \times 10^{-5}$
5A-117L	800	69.0	160	d	d	d	d	$4.0 \times 10^{-5}$
5A-119L		71.0	20	480	d	d	d	$7.5 \times 10^{-5}$
ON-119L	800	75.0	Deform	ed exces	ssively or	loading		-
5A-113L	900	59.0						
5A-166L	900		50	200	d	d	d	$3.0 \times 10^{-4}$
5A-160L	900	60.0	110	170	410	ď	d	$6.0 \times 10^{-4}$
5A-168L		63,0	5	11	27	72	d	$2.8 \times 10^{-3}$
5A-97L	900	63.0	19	38	80	220	d	$1.8 \times 10^{-3}$
5A-31L	900	63.0	2	5	15	51	d	$1.9 \times 10^{-3}$
_	900	65.0	1	18	45	120	620	$2.4 \times 10^{-3}$
5A-120L	900	68.0	1	4	9	39	312	$5.4 \times 10^{-3}$
5A-99L	900	70.0	-	6	13	30	100	$2.3 \times 10^{-2}$
5A-115L	900	70.0	2	5	14	42	243	
5A-106L	900	72.0	-	-	3	9	46	$6.6 \times 10^{-2}$
F4 180-						U	10	$5.1 \times 10^{-2}$
5A-176L	1000	28.0	115	350	d	d	d	0.0.10-4
5A-112L	1000	30.0	25	70	370	d		$2.0 \times 10^{-4}$
5A-16aL	1000	35, 0	19	100	305	d	d	$3.0 \times 10^{-4}$
5A-114L	1000	35.0	45	70	170	494	d	$5.5 \times 10^{-4}$
5A-111L	1000	40.0	10	25	55	315	d	$3.0 \times 10^{-4}$
5A-171L	1000	40.0	5	21	185	215	d	$7.6 \times 10^{-4}$
5A-109L	1000	45.0	3	17	50	135	d 205	$1.3 \times 10^{-3}$
5A-104L	1000	47.5	1	11	35		285	$3.2 \times 10^{-3}$
5A-103L	1000	50.0	1	2	3	83	184	$3.3 \times 10^{-3}$
5A-102L	1000	50.0	1	3	13	9	97	$8.0 \times 10^{-3}$
	7 E		_	U	13	38	71	$8.1 \times 10^{-3}$
5A-116L	1050	25.0	10	47	155	014		
5A-96L	1050	26.0	24	68	165	314	d	$9.5 \times 10^{-4}$
5A-101L	1050	28.0	24	68		284	ä	$1.1 \times 10^{-3}$
5A-123L	1050	30.0	10	29	165	284	d	$1.1 \times 10^{-3}$
5A-110L	1050	32.0	8	29 25	82 65	155	d	$1.9 \times 10^{-3}$
			U	40	65	171	215	$2.0 \times 10^{-3}$
						,46		

a Heat No. D-8060.

b Sheet thickness: 40 mils. c Heat treatment: 1650° F, 1/2 hr, A.C.

d Denotes that test was discontinued.

Table 60

Creep Data for the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet^a, b, c

Specimen	Temp.	Stress,	Tir	ne to cre	ep defori	mation,	hr	Min. Creep
Number	°F	<u>ksi</u>	0.05%	0.1%	C. 2%	0.5%	2.0%	Rate, % hr-1
1A-122L	600	90.0	-					
1A-97L		80.0	5	14	55	d	ď	$2.0 \times 10^{-4}$
	600	85.0	-	8	22	65	d	$1.8 \times 10^{-4}$
1A-112L	600	87.0		***	13	36	d	$4.4 \times 10^{-4}$
1A-98L	600	90.0	1	10	15	d	d	$3.4 \times 10^{-4}$
1A-111L	600	90.0	-	***	10	27	d	$4.6 \times 10^{-4}$
1A-100L	600	95.0	-	-	6	10	d	$3.4 \times 10^{-4}$
1A-115L	600	100.0	₹.	-	-	4	d	$5.4 \times 10^{-4}$
1A-95L	800	44.0	1.0	0.5	010			
1A-33L	800	49.5	13	35	210	d	d	$3.1 \times 10^{-3}$
1A-111L		•	10	25	170	d	ď	$1.3 \times 10^{-4}$
_	800	65.0	7	17	50	990	d	$1.0 \times 10^{-4}$
1A-123L	800	77.0	5	15	75	250	d	$3.0 \times 10^{-4}$
1A-106L	800	77.0		5	27	d	d	$4.5 \times 10^{-4}$
1A-116L	800	<b>82.</b> 0	1	3	21	<b>250</b>	d	$1.7 \times 10^{-3}$
1A-103L	800	88.0	-	2	5	28	d	$1.2 \times 10^{-3}$
1A-113	900	25.0	7	18	145	440		F F 40-4
1A-167L	900	30.0	3	10	70	440	d	$7.7 \times 10^{-4}$
1A-164L	900	35. 0	3			340	d	$1.02 \times 10^{-3}$
1A-175L	900	40.0	1	10	42	210	1100	$1.65 \times 10^{-3}$
121-1101	300	40.0	1	3	20	165	700	$2.0 \times 10^{-3}$
1A-119L	1000	<b>5.</b> 0	40	105	185	665	d	$6.8 \times 10^{-4}$
1A-104L	1000	8.0	15	31	65	201	d	$1.6 \times 10^{-3}$
1A-105L	1000	10.0	10	35	80	195	885	
1A-99L	1000	11.5	9	18	39	114	575	$1.4 \times 10^{-3}$
1A-107L	1000	13.0	5	15	35	93		$3.8 \times 10^{-3}$
1A-94L	1000	15.0	3	6	16		500	$2.7 \times 10^{-3}$
1A-110L	1000	15.0	4	8	21	65	265	$6.7 \times 10^{-3}$
		4U, V	7	O	41	75	340	$5.8 \times 10^{-3}$

a Heat No. V-2957.

b Sheet thickness: 40 mils.

c Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, A.C.

d Denotes that test was discontinued.

Table 61 Creep Data for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheeta, b, c

Temp.,	Stress,						
	~,	Tir	ne to cre	en defe	ormation	lo m	
<u>°F</u>	ksi	0.05%	0 1%	0 20			Min. Cre
			- 10	0. 2	0.5%	2.0%	Rate, % h
-	60.0	10	40	550	•		
800	60.0						$1.0 \times 10$
800	70.0	5					$5.0 \times 10$
800	78.0	5					$1.2 \times 10$
800		2					$2.6 \times 10$
800			5				$2.6 \times 10$
800		9	ე 			d	$4.0 \times 10^{\circ}$
		2	Э			d	$7.2 \times 10^{\circ}$
		- 2				d	$7.4 \times 10^{\circ}$
	02, 0	2	Э	15	105	ď	$1.7 \times 10^{-1}$
900	40 0	5	00				
					d	d	$2.0 \times 10^{-1}$
					d	d	
						d	5. 4 x 10
						d	$1.3 \times 10^{-}$
						d	$9.8 \times 10^{-}$
			3			d	$1.3 \times 10^{-}$
			2			d	$2.2 \times 10^{-1}$
		1	2			d	$2.9 \times 10^{-}$
	00.0	-	-	4	<b>52</b>	d	$2.5 \times 10^{-}$
1000	12 0	0	00				
					1010	d	1.6 x 10-
_					d	d	6. 4 x 10
					330	980	$2.0 \times 10^{-4}$
					d	d	$1.0 \times 10^{-3}$
					220	d	$1.7 \times 10^{-3}$
		2			145	d,	$2.2 \times 10^{-3}$
				26	190		$1.4 \times 10^{-3}$
				26	250		$3.3 \times 10^{-3}$
				18	290		5. 4 x 10 ⁻⁴
1000	3U. U	1	5	15	74		$4.1 \times 10^{-3}$
							4, 1 X 10
	800 800 800	800 60.0 800 60.0 800 70.0 800 78.0 800 83.0 800 85.0 800 85.0 800 88.0 800 92.0 900 40.0 900 40.0 900 55.0 900 55.0 900 60.0 900 65.0 900 65.0	800 60.0 10 800 60.0 5 800 70.0 5 800 78.0 5 800 83.0 2 800 85.0 3 800 85.0 2 800 88.0 - 800 92.0 2  900 40.0 5 900 40.0 11 900 50.0 7 900 55.0 3 900 55.0 7 900 60.0 1 900 65.0 1 900 65.0 1 900 65.0 1 900 65.0 1 900 65.0 1 900 65.0 1 900 65.0 1 900 65.0 1 900 65.0 1 900 65.0 1 900 65.0 1 900 65.0 1 900 65.0 5 1000 20.0 4 1000 20.0 3 1000 25.0 3 1000 25.0 3 1000 25.0 3 1000 25.0 3	F         ksi         0.05%         0.1%           800         60.0         10         40           800         60.0         5         30           800         70.0         5         17           800         78.0         5         13           800         83.0         2         7           800         85.0         3         5           800         85.0         2         5           800         88.0         -         -           800         88.0         -         -           800         80.0         -         -           800         88.0         -         -           800         80.0         -         -           900         40.0         5         20           900         40.0         11         31           900         55.0         7         17           900         55.0         7         15           900         65.0         1         2           900         65.0         1         2           900         65.0         1         2           900	*F         ksi         0.05%         0.1%         0.23           800         60.0         10         40         550           800         60.0         5         30         127           800         70.0         5         17         105           800         78.0         5         13         55           800         83.0         2         7         38           800         85.0         3         5         25           800         85.0         2         5         18           800         85.0         2         5         18           800         88.0         -         -         2           800         92.0         2         5         15           900         40.0         5         20         160           900         40.0         11         31         100           900         50.0         7         17         73           900         50.0         7         15         41           900         65.0         1         2         10           900         65.0         1         2         1	S	851         0.05%         0.1%         0.2%         0.5%         2.0%           800         60.0         10         40         550         d         d           800         60.0         5         30         127         d         d           800         70.0         5         17         105         d         d           800         78.0         5         13         55         d         d         d           800         83.0         2         7         38         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d         d

Heat No. V-3016.

b

Sheet thickness: 40 mils.

Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

Denotes that test was discontinued. С

Table 62
Fatigue Data for the Ti-5Al-5Sn-5Zr Alloy Sheet^{a, b, c, d}

Specimen No.	Temp.	<u>A</u>	<u>K</u> ,	Max Stress, ksi	Mean Stress, ksi	Cycles to Fracture
5A-177L	70	0.67	1	100.2	60.0	188,900
5A-199L	70	0.67	1	91.9	55.0	151,300
5A-184L	70	0.67	1	83.5	<b>50.</b> 0	1,451,400
5A-237L	70	0.67	1	80.1	48.0	5,080,700
5A-201L	70	0.67	1	78.5	47.0	3,083,000
5A-182L	70	0.67	1	78.0	46.7	3,866,700
5A-190L	70	0.67	1	76.0	45.5	4, 168, 590+ ^f
5A-240L	70	0.67	1	76.0	45.5	1,983,200
EA 101AT	770	0.00	-	05.0	40.0	100 000
5A-191AL	70	0.98	1	85.0	43.0	182,800
5A-178L	70	0.98	1	79.8	40.3	195,000
5A-179L	70	0.98	1	78.6	39.7	3,805,100
5A-202L	70	0.98	1	74.5	37.5	533,800
5A-192L	70	0.98	1	72.2	36.7	3,366,500
5A-191L	70	0.98	1	68.3	34.6	14,194,800+
5A-207L	400	0.67	1	85.0	50.9	181,200
5A-195L	400	0.67	1	80.0	47.9	126,200
5A-197L	400	0.67	1	80.0	47.9	804,100
5A-200L	400	0.67	1	75.0	45.0	2,561,200
5A-204L	400	0.67	1	70.0	41.9	11,132,100+
EA 000-	400	0.00		00.0	40.4	
5A-209L	400	0.98	1	80.0	40.4	668,200
5A-198L	400	0.98	1	80.0	40.4	232,200
5A-193L	400	0.98	1	75.0	39.7	1,723,800
5A-194L	400	0.98	1	70.0	35.4	7,564,600
5A-180L	800	0.67	1	80.0	48.0	31,000
5A-187L	800	0.67	ī	<b>75.</b> 0	45.0	93,200
5A-183L	800	0.67	1	75.0	45.0	853,000
5A-189L	800	0.67	î	75.0	45.0	180,000
5A-185L	800	0.67	1	70.0	42.0	10,624,700+
	•	14	_			, , , , , , ,

Table 62 (Continued)

Fatigue Data for the Ti-5Al-5Sn-5Zr Alloy Sheet

Specimen	Temp.			Max Stress,	Mean Stress,	Cycles to
No.	°F	A	Kt	ksi	ksi	Fracture ^e
110.			124	ROL	701	Fracture
5A-239L	800	0.98	1	70.0	35.3	173,000
5A-188L	800	0.98	1	68.0	34.4	995,500
5A-186L	890	0.98	1	65.0	32.8	3,660,000
5A-203L	800	0.98	1	60.0	30.3	3,185,000
5A-206L	800	0.98	1	50.0	25.3	10,042,800+
5A-218L	70	0.67	3	45.0	26.9	111,900
5A-217L	70	0.67	3	40.9	23.9	157,200
5A-243L	70	0.67	3	37.5	22.4	10,000,000+
5A-215L	70	0.67	3	35.0	21.0	658,900
5A-219L	70	0.67	3	30.0	17.5	10,800,000+
5A-244L	70	0.98	3	47.8	24.2	74,000
5A-213L	70	0.98	3	42.5	21.6	143,500
5A-212L	70	0.98	3	37.2	18.7	3,677,600
5A-211L	70	0.98	3	34.5	17.4	2,029,800
5A-210L	70	0.98	3	31.9	16.1	10,000,000+
5A-221L	400	0.67	3	43.0	25.8	165,800
5A-216L	400	0.67	3	40.5	17.0	99,700
5A-214L	<b>4</b> 00	0.66	3	40.5	17.0	1,012,700
5A-242L	400	0.67	3	38.0	22.7	4,370,900
5A-220L	400	0.67	3	33.0	14.4	11,900,000+
5A-228L	400	0.98	3	43.0	21.7	50,000
5A-229L	400	0.98	3	40.0	20.2	91,000
5A-236L	400	0.98	3	38.0	19.2	270,300
5A-235L	400	0.98	3	35.0	17.7	2,484,000
5A-234L	400	0.98	3	30.0	15.2	10,304,400+

'Table 62 (Continued) Fatigue Data for the Ti-5Al-5Sn-5Zr Alloy Sheeta, b, c, d

Specimen No.	Temp.	_A_	<u>K</u>	Max Stress, ksi	Mean Stress, ksi	Cycles to Fracture
5A-241L 5A-223L 5A-225L 5A-226L 5A-224L	800 800 800 800 800	0.67 0.67 0.67 0.67 0.67	3 3 3 3	30.0 30.0 28.0 26.0 25.0	18.0 18.0 16.7 15.5 15.0	143,900 162,500 1,464,100 8,954,700 11,570,000+
5A-233L 5A-230L 5A-231L 5A-222L 5A-232L	800 800 800 800	0.98 0.98 0.98 0.98 0.98	3 3 3 3 3	40.0 35.0 30.0 25.0 20.0	20.2 17.7 15.1 12. 10.1	20,700 33,900 163,000 4,205,800 10,432,000+

a Heat No. D-8060.

b Thickness: 40 mils.

c Heat treatment: 1650° F, 1/2 hr, A.C.

d All specimens from longitudinal orientation.

e Plus (+) denotes that test was discontinued.

f Shoulder failure.

Table 63

Fatigue Data for the Ti-5Al-5Zr-5Sn-1Mo-1V Sheet³, b, c, d

Cassimon	m			Max.	Mean	
Specimen	Temp.,			Stress,	Stress,	Cycles to
Number	• F	_A_	$K_{t}$	ksi	ksi	Fracture
1A-238L	70	0 67		100.0		
1A-237L	70	0.67	1	100. 2	60.0	77,600
1A-187L	70	0.67	1	91. 8	55.0	172, 700
1A-229L	70	0.67	1	81.0	48.5	2,745,500
1A-222L		0.67	1	77.0	46.1	3,946,500
	70	0.67	1	73.0	43.7	7,501,900
1A-230L	70	0.98	1	85.0	43.0	145 000
1A-240L	70	0.98	1	79.8	40.3	145,000
1A-191L	70	0.98	1	74.5	37. 6	139,600
1A-186L	70	0.98	1	69.0	34.9	6,344,500
1A-223L	70	0.98	ī	67.0	33.8	7,448,200
			_	00	00.0	6, 959, 300
1A-195L	400	0.67	1	98.0	58.7	114 400
1A-192L	400	0.67	1	95. 0	56. 8	114,400
1A-196L	400	0.67	ī	92, 5	55. 4	207, 700
1A-239L	400	0.67	1	90.0	53. 9	167,300
1A-241L	400	0.67	î	85.0		4,179,400
			_	00.0	51.0	10,000,300+
1A-215L	400	0.98	1	79.6	40. 2	47 000
1A-194L	400	0.98	1	79.6	40. 2	47,000
1A-213L	400	0.98	1	77. 2	39.0	521,400
1A-218L	400	0.98	1	75.0	37.8	805, 300
1A-214L	400	0.98	1	70.3	35. 5	3,516,400
				.0.0	55. 5	10,000,000+
1A-242L	800	0.67	1	80.0	47.8	110 400
1A-204L	800	0.67	1	73.0	43.7	116,400
1A-203L	800	0.67	1	70.0	41.8	4,400,800
1A-219L	800	0.67	1	70.0	41, 8	413,400
1A-206L	800	0.67	1	65.0		10,542,800+
			-	00.0	39.0	10,448,100+
1A-205L	800	0.98	1	80.0	40.2	05.000
1A-231L	800	0.98	ī	75. 0	40.3	35, 300
1A-201L	800	0.98	i	75.0	37. 9	55,700
1A-202L	300	0.98	î	70.0	37, 9	147, 500
1A-200L	800	0.98	î	65.0	35.3	10,099,500+
		-, -,	•	00.0	32.8	10, 376, 300+

Table 63 (Continued)

Specimen Number	Temp.,	_A_	_K _t _	Max. Stress, ksi	Mean Stress, ksi	Cycles toe Fracture
1A-182L	70	0.67	3	45.0	26. 9	133,900
1A-181L	70	0.67	3	45.0	26. 9	146,700
1A-236L	70	0.67	3	40.0	23.9	6,048,600
1A-193L	70	0.67	3	37.5	22.5	3,751,900
1A-232L	70	0.67	3	35.0	21.9	9, 568, 800
1A-235L	70	0. 98	3	45.0	22.7	40,000
1A-234L	70	0.98	3	45, 0	22.7	47,000
1A-244L	70	0.98	3	40.0	20.2	48,300
1A-243L	70	0.98	3	38.0	19.2	11, 372, 400+
1A-228L	70	0.98	3	35.0	17. 7	9, 255, 400
1A <b>-212</b> L	400	0.67	3	45.0	26. 9	82, 200
1A-226L	400	0.67	3	42.5	25.5	89,100
1A-184L	400	0.67	3	40.0	23.9	93,700
1A-225L	400	0.67	3	40.0	23.9	730, 800
1A-227L	400	0.67	3	35.0	21.0	10,045,100+
1A-211L	400	0. 98	3	45.0	22.7	65,000
1A-209L	400	0.98	3	42.5	21.5	69,000
1A-190L	400	0.98	3	40.0	20.2	127,000
1A-220L	400	0.98	3	40.0	20. 2	1,773,100
1A-221L	400	0.98	3	37.5	18. 9	8, 997, 100
1A-208L	800	0.67	3	45.0	26.8	90,000
1A-179L	800	0.67	3	45.0	26.8	806,700
1A-210L	800	0.67	3 3	40.0	24.0	130,000
1A-207L	800	0.67	3	38, 0	22.7	7,980,000
1A-189L	800	0.67	3	<b>35.</b> 0	21, 0	10,600,000+
1A-180L	800	0.98	3	40.0	20. 2	63,700
1A-185L	800	0.98	3	40.0	20. 2	247,000
1A-188L	800	0.98	3	39.0	19.7	49,100
1A-178L	008	0.98	3	38.0	19.1	4,217,500
1A-177L	800	0.98	3	35.0	19.7	10,600,000+

a Heat No. V-2957.

b Thickness: 40 mils.

c Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C.

d All tests in longitudinal orientation.

e Plus (+) denotes that test was discontinued.

Table 64

Fatigue Data for the Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet^a, b, c, d

Specimen No.	Temp,	A	_K _t	Max Stress, ksi	Mean Stress, ksi	Cycles to Fracture
2A-209L	70	0.67	1	108.5	65.0	FCC 400
2A-210L	70	9.67	1	100.2	60.0	566,400
2A-213L	70	0.67	1	97.0		3,299,100
2A-215L	70	0.67	1	94.0	58.1	4,732,000
2A-212L	70	0.67	ī	91.8	56.3	7,986,600
			1	31.0	55. 0	11,913,700+
2A-223L	70	0.98	1	100 0	50 F	
2A-222L	70	0.98	1	100.0	50.5	1,058,500
2A-233L	70	0.98	1	95.0	48.0	2,886,100
2A-216L	70	0.98	1	90.0	45.4	4,357,000
	• •	0. 30	1	85.0	42.9	10,498,900+
2A-221L	400	0.67	1	110 0		
2A-227L	400	0.67	1	113.0	67.5	24,700
2A-224L	400	0.67	1	110.0	65.5	18,000
2A-220L	400	0.67	1.	108.0	64.8	28,500
2A-228L	400	0.67	1	103.0	61.8	4,396,700
2A-243L	400	0.67	1 1	98.0	<b>58. 7</b>	5,800,000
	100	0.07	1	94.0	56.1	6,593,700
2A-226L	400	0.98	1	103.0	<b>50</b> 0	
2A-225L	400	0.98	i	100.0	<b>52.0</b>	46,300
2A-230L	400	0.98	1	-	50.5	2,096,500
2A-231L	400	0.98	1	95.0 05.0	48.0	677,100
2A-234L	400	0.98	1	95.0	48.0	1,175,500
	200	<b>0.</b> 50	1	90.0	45.5	10,006,000+
2A-236L	800	0.67	1	95.0	F. 0	
2A-241L	800	0.67	1		57.0	432,200
2A-384L	800	0.67	1	90.0	53.8	237,800
2A-242L	800	0.67	1	90.0	53.8	269,200
2A-383L	800	0.67		85.0	50.9	1,078,500
_		0.01	1	80" G	48.0	11,225,000+

Table 64 (Continued)

Fatigue Data for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet^{a, b, c, d}

Specimen No.	Temp,	A	_K _t	Max Stress, ksi	Mean Stress, ksi	Cycles to Fracture
2A-390L	800	0.98		400		
2A-389L	800		1	100.0	<b>50.</b> 5	36,400
2A-386L	800	0.98	1	95.0	48.1	136,000
2A-235L	800	0.98	1	90.0	45.5	8,400,000
2A-385L	800	0.98	1	80.0	40.4	3,150,400
	000	0.98	1	75.0	37.9	12,000,000+
2A-198L	70	0.67		450		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2A-195L	70	0.67	3	47.9	28.7	100,000
2A-196L	70	0.67	3	45.8	27.5	122,200
2A-197L	70	0.67	3	42.6	25.6	3,665,800
		0.07	3	37.2	22.3	10,329,800+
2A-199L	70	0.98	9	40.0		•
2A-237L	70	0.98	3	42.6	21.5	55,300
2A-201L	70	0.98	3	40.0	20.2	174,000
2A-189L	70	0.98	3 3	38.3	19.4	5,868,100
		0. 50	3	37.3	18.8	10,300,000+
2A-202AL	400	0.67	3	EO 0		
2A-238L	400	0.67	3	50.0	29.9	290,600
2A-203L	400	0.67		47.5	28.4	66,700
2A-204L	400	0.67	3	45.0	26.9	383,900
2A-200L	400	0.67	3	42.5	25.4	3,054,900
2A-202L	400	0.67	3 3	41.0	24.5	5,640,000
_	100	0.01	3	40.0	24.0	10,301,300+
2A-188L	400	0.98	9	45 -		
2A-206L	400	0.98	3	47.5	24.0	29,500
2A-239L	400	0.98	3	45.0	22.7	64,900
2A-240L	400	-	3	45.0	22.7	6,331,000
2A-187L	400	0.98	3	40.0	20.2	6,659,700
	200	0.98	3	37.5	18.9	10,000,000+

Table 64 (Continued) Fatigue Data for the Ti-6Al-2Sn-4Zr-2Mo Alloy Sheet a, b, c, d

No.  2A-185L 2A-177L 2A-180L 2A-184L 2A-186L	Temp, *F  800 800 800 800 800	A 0. 67 0. 67 0. 67 0. 67 0. 67	3 3 3 3 3	Max Stress ksi 45.0 45.0 44.0 42.5 40.0	Mean Stress, ksi 27.0 27.0 26.3 25.5 24.0	Cycles to Fracture ^e 22,100 34,200 31,600 8,016,700 11,339,700+
2A-183L 2A-179L 2A-181L 2A-190L 2A-182L	800 800 800 800 800	0.98 0.98 0.98 0.98 0.98	3 3 3 3	40.0 38.0 38.0 37.0 35.0	20.2 19.2 19.2 18.7 17.6	93,700 45,600 410,900 131,000 10,000,000+

a Heat No.: V-3016.

b Thickness: 40 mils.

c Heat treatment: 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

d All specimens from longitudinal orientation.

e Plus (+) denotes that test was discontinued.

Table 65

Data for Calculation of the Stress Intensity Factor for Sheet Alloys

NOTICE

Gross yielding occurred in tests at 400 and  $70^{\circ}$  F, and to some extent at  $-110^{\circ}$  F, such that the true fracture toughness is not represented by data given in this table.

			Prici III I	IIIP PADIC.				
Alloy	Specimen Number	Temp.,	Gross Area	P _{dev-lin} a	2 _{ao} In.	Kne kne Vin.	σ net ^c ksi	σ net
	5A-377L 5A-376L 5A-378L	70 70 70	. 0382 . 0383 . 0385	2540 2940 2840	. 2738 . 2605 . 2805	4. 74 5. 32 5. 34	91. 4 103. 5 102. 2	0.8 0.9 0.9
Zr	5A-381T 5A-380T	70 70	.0366	2390 2740 2330	. 2799 . 2906 . 2321	4. 26 5. 54 4. 29	93. 4 105. 4 85. 7	0.8 C.9 0.7
Ti-5Al-5Sn-52	5A-381L 5A-380L 5A-384L	400 400 400	.0381 .0383 .0375	2130 1830 1830	. 2553 . 2867 . 2661	3.84 3.51 3.42	75. 0 66. 8 66. 3	1.0 0.8 0.8
	5A-382T 5A-385T 5A-384T	400 400 400	.0369 .0378 .0396	1830 1830 2140	. 2623 . 2611 . 2804	3.46 3.33 3.92	67. 0 65. 4 75. 1	0.9 0.8 1.0
	5A-383L 5A-382L 5A-379L	-110 -110 -110	.0374 .0379 .0389	3050 3050 3250	. 3000 . 3020 . 2963	6. 14 6. 08 6. 24	-	-
1	5A-388T 5A-383T 5A-386T	-110 -110 -110	.0375 .0397 .0380	3340 3340 2640	. 2875 . 3382 . 3402	6. 54 6. 03 5. 63	-	-

Table 65 (Cont'd)

Alloy	Specimen Number	Temp.,	Gross	P _{dev-lin} a	2a ₀	K _{nc} b_	σ c net	σ net
7	Number	F	Area	<u>Ib</u>	ln.	104 psi vin.	ksi	Fty
	1A-375L	70	.0350	2860	. 2737	5.82	112.2	0.8
	1A-378L	70	. 0351	2850	. 2648	5. 69	110.0	
	1A-376L	70	.0356	2900	. 2601	5. 65	100.0	8.0
	4. 000					3.00	109.0	0.8
5	1A-382T	70	.0359	2790	. 2577	5.36	104.5	0.8
÷	1A-379T	70	.0353	2740	. 2774	5.58	107.0	0.8
Λo	1A-381T	70	.0359	3040	. 2596	5.87	114.3	0.8
·1Mo-1V	1A-382L	400	05.00	2442				
	1A-381L	400	.0369	2440	. 2800	4.77	91.7	0.9
52	1A-384L	400	0362	2030	. 2773	4.03	88.9	0.8
Ti-5Al-5Sn-5Z2	1H-304L	400	.0365	2340	. 2702	4.55	87. 6	0.8
3	1A-385T	400	. 0376	2440	0000			
A	1A-387T	400	.0373	2440 2650	. 2882	4.77	91.0	0.9
5	1A-386T	400	. 0376	2340	. 2564	4. 90	95.3	0.9
Ë	0001	100	. 0010	2340	. 2505	4.23	83.0	0.8
	1A-379L	-110	.0370	3050	. 3559	6.89		
	1A-380L	-110	. 0374	3050	. 2916	6.04	_	
	1A-377L	-110	.0343	3240	. 2588	6. 53	<del></del>	-
				0210	. 2000	0. 55		
	1A-383T	-110	.0374	3050	. 2607	5.66	~	· _
	1A-388T	-110	. 0370	2540	. 2911	5.07	-	_
ı	1A-380T	-110	.0358	2540	. 2758	5.09	•	_
	•							
1	2A-376L	70	. 0406	3600	0410			
- 1	2A-377L	70	.0407	3350	. 2413	5. 90	116, 5	0.8
	2A-378L	70	. 0404	3450	. 2660	5. 78	112.0	0.8
4Zr-2Mo	0.02		.0404	3430	. 2711	6.06	116.9	0.8
-2	2A-382T	70	.0411	3240	. 3220	6. 20	116.1	0.0
Zr	2A-379T	70	.0409	2540	. 3151	4.82	90.4	8.0
4-	2A-380T	70	. 0410	3460	. 2490	5. 72	112. 3	0.6
r l						0. 12	112, 5	0.8
-2	2A-384L	400	.0412	3050	. 2495	5.02	98.4	0.9
A	2A-383L	400	. 0410	2850	2958	5. 19	98.6	0.9
Ti-6A1-2S	2A-380L	400	. 0400	2540	. 2560	4.38	85. 2	0.8
Fi	24 2000	400		-				0.0
	2A-393T	400	. 0413	2540	. 2590	4.26	82.7	0.8
	2A-394T	400	. 0408	2340	. 2769	4.13	79.0	0.8
ı	2A-391T	400	.0413	2410	. 2614	4.07	78.7	0.8

Table 65 (Cont'd)

Alloy	Specimen Number	Temp.,	Gross Area	P _{dev-lin} lb	2a ₀ In.	10⁴ psi √in.	σ net ^c ksi	$\frac{\sigma_{\text{net}}}{F_{\text{ty}}}$
2Mo		•						
2	2A-379L	-110	. 0408	3560	. 2710	6. 19		_
4Zr	2A-381L	-110	.0417	3560	. 2763	6. 12	_	-
4	2A-382L	-110	. 0418	3870	. 2806	6.70	_	_
2Sn-								
Ř	2A-381T	-110	.0411	3560	. 2856	6. 34	_	_
4	2A-395T	-110	. 0404	3450	. 2850	6.25	-	_
-6A1	2A-392T	-110	. 0416	3260	. 3254	6.19		_
Ė	16							

a Load at deviation in linearity in compliance-gage-output vs load curve.

b Stress intensity factor reported as  $K_{nc}$ , rather than  $K_{Ic}$ , because pop-in was not observed and calculations were based on load at deviation from linearity.

c Calculated from load at deviation from linearity.

Table 66

Data for Calculation of the Apparent  $K_{\mathbb{C}}$  for Sheet Alloys

## NOTICE

Gross yielding occurred in tests at 400 and 70° F, and to some extent at -110° F, such that the true fracture toughness is not represented by data given in this table.

o net	000	1.0 1.0 0.9	2	 	1.1.1	1 1 1
σ net ksi	124.5 115.8 115.8	116.2 122.3 109.4	91. 9 90. 5 88. 7	90.1 91.7 90.5	111	1 1 1
K _c ksi Jin.	× × ×	<b>*</b> * *	* * *	× × ×	120.9 113.8 119.9	136. 9 123. 1 117. 2
V _f 10-s	9.40 10.10 9.56	9.36 8.90 9.37	11.70 11.70 11.28	13.10 12.30 13.65	8.98 3.55 9.18	9.38 8.59 7.81
2a ₀ In.	. 2738 . 2605 . 2805	. 2799 . 2906 . 2321	. 2553 . 2867 . 2661	.2628 .2611 .2804	.3020 .3020 .2963	. 2875 . 3382 . 3402
V ₀ 10-3	6.45 6.76 6.83	5.98 6.25 6.05	5.47 5.47 5.74	5.47 5.35 5.39	7.11 7.00 7.35	6.95 6.53 6.17
σ max ksi	90. 57 85. 90 83. 63	83.80 86.88 84.04	68.50 64.75 65.33	66.67 67.99 65.15	98. 13 98. 15 102. 06	102. 67 97. 73 93. 68
Pmax 1b	3460 3290 3220	2975 3180 2975	2610 2480 2450	2460 2570 2580	3670 3720 3970	3840 3880 3560
Gross	.0382 .0383 .0385	. 0355 . 0366 . 0354	. 0381 . 0383 . 0375	. 0369 . 0378 . 0396	. 0374 . 0379 . 0389	. 0375 . 0397 . 0380
Temp.,	70 70 70	70 70 70	400 400 400	400 400 400	-110 -110 -110	-110 -110 -110
Specimen	5A-377L 5A-376L 5A-378L	5A-379T 5A-381T 5A-380T	5A-381L 5A-380L 5A-384L	5A-382T 5A-385T 5A-384T	5A-383L 5A-382L 5A-379L	5A-388T 5A-383T 5A-386T
Alloy			aZg-nZg∙			

Table 66 (Cont'd)

o net	0.0	1.0	1.0	1.0	1 1 1	1 1 1	
o net ksi	122. 3 127. 8 125. 4	131. 1 127. 3 132. 7	105.6 103.8 107.5	106.7 108.6 112.4	111	111	
Kc ksi (in.	92.4 105.5 94.6	97.2 100.3 89.3	× × ×	× × ×	104.7 121.3 101.0	119. 2 102. 8 101. 8	
Vf 10-3	8.40 8.90	8.00 8.11 8.01	3.40 8.05 8.67	8.45 9.14 8.40	8. 10 8. 60 8. 66	8.60 7.50 7.62	
2a° In.	. 2648 . 2648 . 2601	. 2577 . 2774 . 2596	. 2800 . 2773 . 2702	. 2564 . 2564 . 2505	. 2916 . 2588	. 2911 . 2911 . 2758	
V _o 10-3	7.30 7.42 7.23	6.87 6.84 7.04	6.56 6.17 6.72	6.49 6.76 6.16	6.60 6.72 7.82	6.99 6.45 6.48	
o max ksi	89.14 94.30 92.98	97.49 92.35 98.33	76. 15 75. 14 78. 63	76.06 80.96 84.31	94.05 100.26 108.75	108. 29 99. 19 101. 40	
P max	3120 3310 3310	3500 3260 3530	2810 2720 2870	2860 3020 3170	3480 3750 3730	4050 3670 3630	
Gross	.0350 .0351 .0356	.0359 .0353 .0359	. 0369 . 0362 . 0365	.0376	. 0370 . 0374 . 0343	.0374 .0370 .0358	
Temp.,	07 07 07	70 70 70	400 400 400	400 400 400	-110 -110 -110	-110 -110 -110	
Specimen Number	1A-375L 1A-378L 1A-376L	1A-382T 1A-379T 1A-381T	1A-382L 1A-381L 1A-384L	1A-385T 1A-387T 1A-386T	1A-379L 1A-380L 1A-377L	1A-383T 1A-388T 1A-380T	
Volia	VI-oMI-TS3-nS3-IA3-iT						

"x" denotes that K_c could not be calculated because of extensive slow-crack growth. Calculated from maximum load, a a

Table 67

Average Tensile Properties of the Ti-5Al-5Sn-5Zr Alloy Sheet after Dry-Salt Stress Corrosion at Different Stresses, Temperatures, and Times^a, b

Exras	Exposure Conditions		Room-T	Room-Temperature Tensile				
Temp,	Time,	Stress,	Properti	es After Ex	posure			
° F	hr	% of Fty	Fiy, ksi	F _{tu} , ksi	е, %			
- U	nexpose	d -	118.6	128.5	14			
600	10	60	116.8	126. 1	16			
600	10	80	112.8	125.9	14			
600	100	40	116.3	126.5	14			
600	100	60	118.4	128.1	4			
600	1000	40	110.3	117.5	4			
700	10	60	109.3	121.0	6			
700	10	80	109.6	121.0	5			
700	100	40	108.0	111.6	2			
700	100	60	110.6	118.3	6			
700	1000	40	74.0	76.8	1			
800	10	60	104.6	114.1	4			
800	10	80	108.0°	103.8 ^c	2			
800	100	40	_d	71.8	0			
800	100	60	Failed d	uring stress	=	exposure		
900	10	60	94.7°	78.2°	0			
900	10	80	94 4°	84.9 ^c	0			
900	100	40	Failed d	ining stars				
900	100	60		uring stress uring stress				

a 40 mil sheet. Heat No. D-8060.

b Heat treatment: 1650° F, 1/2 hr, A.C.

c The reported value for  $F_{ty}$  if high relative to  $F_{tu}$  because one of the duplicate specimens fractured before the 0.2% offset. Value shown for  $F_{ty}$  is for one specimen whereas reported  $F_{tu}$  is average for duplicate tests.

d One specimen fractured during stress-corrosion exposure. The duplicate specimen fractured in the tensile test after exposure before 0.2% offset.

Table 88

Average Tensile Properties of the Ti-5Al-5Sn-5Zr-1Mo-1V Alloy Sheet After Dry-Salt Stress Corrosion Exposure at Different Stresses, Temperatures, and Times^a, b

Ex	osure C	onditions	Room.	r _{om} ,	_
Temp	, Time	Stress,	D	Temperature	Tensile
•F	hr	% of Fty	Proper	ties After Ex	posure
		WOLL	Fty, ksi	Ftu, ksi	e, %
•	- Unexpo	sed -	136.8	146.8	11
500	10	60	131.0	450	
500	10	80		152.4	10
			126.0	151.0	10
500	100	40	142 0		
500	100	60	143.3	159.0	10
		00	134.6	159.5	10
500	1000	40	144.0		
		10	141.0	159.5	8
600	10	69	400.0		
660	10	03	132.2	155.0	10
	10	eo.	126.8	156.8	10
600	100	40			
600	100	40	142.8	157.7	10
000	100	60	142, 2	161.8	8
600	1000	-	•		Ū
000	1000	40	_c	84.7	0
700	4.0				v
	10	60	132.0	158.5	0
700	10	80	127.1	155.5	9
700			<b></b>	100.0	3
700	100	40	146.0	168, 2	•
700	100	60	139, 5 ^d	127.3 ^d	8
			200.0	121.3	4
800	10	60	139.6 ^d	132.5 ^d	
800	10	80	135.5 ^d	132.5	0.5
			100, 5	142.4 ^d	1
800	100	40	_c	440	
800	100	60		110.0	1
		- •	134.9	154.1	2

a 40 mil sheet, Heat V-2957

b Heat treatment: 1550° F, 1/2 hr, A.C. + 1400° F, 1/4 hr, A.C. c Fractured before the 0.2% offset.

d The reported value for Fty if high relative to Ftu because one of the duplicates fractured before the 0.2% offset. Value shown for  $F_{ty}$  is for one specimen whereas reported  $F_{tu}$  if average for du-

Table 69

Average Tensile Properties of the Ti-6A1-2Sn-4Zr-2Mo Alloy Sheet after Dry-Salt Stress Corrosion Exposure at Different Stresses, Temperatures, and Times^{a, b}

		onditions		Room-Temperature Tensile Properties After Exposure			
Temp,	Time,						
°F	hr	% of Fty	Fty, ksi	F _{tu} , ksi	e, %		
-	Unexpo	sed -	142.2	147.7	12		
500	10	60	138.0	149.2	12		
500	10	80	133.5	149.8	12		
500	100	40	149.1	155.0	12		
500	100	60	139.6	151.6	12		
500	1000	40	144.8	154.8	13		
600	10	60	138.0	153.0	11		
600	10	80	131.2	155.4	6		
600	100	40	141.8	152.4	10		
600	100	60	136.8	153.4	6		
600	1000	40	_c	94.7	0		
700	10	60	132.2	154.4	7		
700	10	80	128.4	152.5	6		
700	100	40	144. 2	157.8	8		
700	100	60	138.3	156.9	4		
800	10	60	135, 2	147.9	3		
800	10	80	127.0	130.1	1		
800	100	40	138.7	148.2	4		
800	100	60	a	117.5	0		

a 40 mil sheet, Heat No. V-3016

b Heat treatments 1650° F, 1/2 hr, A.C. + 1450° F, 1/4 hr, A.C.

c Fractured before 0.2% offset.

d One specimen fractured during stress-corrosion exposure. The duplicate specimen fractured in the tensile test after exposure before 0.2% offset.

Table 70

Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Bar from Heat No. D-8060 at Different Temperatures^{a, b}

	- Temperatures							
Specimen	Temp.,	$\mathbf{F}_{\mathbf{t}\mathbf{y}}$	E.					
No.	°F	ksi	$\mathbf{F_{tu}}$	e	R. A.	$\mathbf{E_t}$		
		KSI	ksi	%		10° psi		
5A-1	75	122. 1	100 4					
5A-8	75	124. 2	132.1	16	42	17.1		
5A-12	75	122. 0	133.2	15	40	16.8		
5A-15	<b>7</b> 5		130.0	17	38	15.9		
5A-18	75	121. 7 121. 8	130.0	15	39	15.9		
5A-23	75	_	129.5	16	38	16.7		
5A-25	75	121.0	129.0	17	40	13. 8		
5A-40	75	122.0	129. 2	17	33	16.1		
5A-43	75	122.0	130.0	17	38	17.5		
5A-56	75	122.1	129.8	15	38	16.0		
	10	120.8	128.5	15	40	16.3		
5A-2	400	80.7	05.0					
5A-14	400	81.0	95.9	18	47	15.0		
5A-17	400	81.0	95.5	19	42	15.4		
5A-26	400		94.0	20	46	16.9		
5A-32	400	79.0	94. 1	21	47	13.9		
5A-34	400	80.0	94.1	20	42	16.6		
5A-37	400	81.0	95.3	20	45	15.1		
5A-41	400	80.0	95.0	24	43	15. 1		
5A-48	400	81.0	95.5	21	45	14.6		
5A -53	400	81.0	95.0	20	44	16.1		
-11. 00	400	80.0	93.2	22	45	15.5		
5A-3	600	60 4	00.4			-0.0		
5A-7	600	68.4	86.1	17	50	17.4		
5A-9	600	71.5	88.0	18	40	14.2		
5A-13	600	67. 8	86.8	21	43	14.0		
5A-19	600	68.5	87.2	20	44	13.0		
5A-28	600	67. 1	85. 1	23	49	17.5		
5A-33	600	65. 7	85.6	<b>2</b> 3	47	13.8		
5A-42	600	66.9	85.9	23	46	14.9		
5A-47	600	66. 4	86.2	22	46	12.6		
5A-52	600	67. 2	86.3	22	46	14.2		
	000	68. 7	84.9	22	47	14.7		
5A-4	800	63.3	00 =			•		
5A-16	800	61.7	80.7	26	54	13.2		
5A-21	800	60.0	81.3	27	49	13.7		
5A-24	800		78.8	29	<b>52</b>	13.2		
5A-27	800	57. 5	80.0	29	53	14.0		
5A-31	800	60.8	80.3	30	48	13.3		
5A-35	800	59.4	79.7	20	50 *	13.8		
5A-44	800	60.8	80.3	29	50	12.0		
5A-49	800	56. 8	80.5	26	50	12.0		
5A-55	800	58.8	79.5	29	52	14.2		
	000	59.3	78.4	30	52	14.0		
		2	289					

289

Table 70 (Continued)

Specimen No.	Temp.,	F _{ty} ksi	F _{tu} ksi	e %	R. A.	$\frac{E_t}{10^6 \text{ psi}}$
5A-10	1000	58.8	75.9	24	49	11.4
5A-11	1000	60.4	76.5	23	49	11.9
5A-20	1000	57.9	75.5	23	54	12.4
5A-30	1000	58.3	75.7	23	51	12.4
5A-36	1000	57.8	75.3	23	51	12.0
5A-39	1000	58.8	76.3	24	51	12.4
5A-45	1000	58.5	76.9	21	52	11.5
5A-46	1000	59.2	76.5	22	51	11.4
5A- <b>5</b> 0	1000	57.2	75.1	24	51	12.5
5A-51	1000	<b>54.</b> 3	74.4	21	53	10.6

a Section size: 1/2 in. x 1-1/8 in. b Heat treatment: 1650° F, 2 hr, A. C.

Table 71

Tensile Properties of Ti-5Al-5Sn-5Zr Alloy Bar from Heat No. D-1793 at Different Temperatures^a, b

				•		
Specimen	Temp.,	$\mathbf{F}_{\mathbf{ty}}$	$F_{tu}$	е	R. A.	$\mathbf{E}_{t}$
No.	- F.	ksi	ksi	%	%	10 ⁶ psi
5B-1	ME	110 0	100.0			
5B-8	75 75	113.0	120.0	18	40	16.4
5B-11	75	118.0	123.0	17	38	16.5
5B-16	75 75	116.0	1 <b>22</b> . 0	17	40	16.8
5B-24	75	116.0	123.0	19	39	16.4
5B-27	75	117.0	122. 0	19	40	16.7 *
	75	116.0	<b>123.0</b>	16	40	<b>16</b> .8
5B-35	75	117.0	<b>123.0</b>	16	41	16.6
5B-42	<b>75</b>	117.0	<b>123.0</b>	16	41	16.4
5B-48	75	118.0	<b>124</b> . 0	16	41	16.5
5B-51	<b>7</b> 5	117.0	124.0	17	41	<b>16</b> . 9
5B-2	400	82.0	<b>95</b> . 8	22	47	13.8
5B-5	400	81.8	95.7	21	45	16.6
5B-14	400	81.1	95.0	21	46	16.6
5B-17	400	<b>80.6</b>	95.5	21	45	15.2
5B-28	400	80.9	95.4	21	46	17.2
5B-32	400	80.9	95.7	22	46	16.7
5B-39	400	81.0	95.0	21	45	15.8
5B-43	400	81.8	96.2	21	46	17.1
5B-47	400	81.7	95.7	22	45	19.3
5B-54	400	81.3	95.6	21	47	19.0
5B-3	600	67.3	87.4	23	40	
5B-10	600	67.6	88. 1	23	49	13.9
5B-13	600	<b>6</b> 8. 5	88. <b>5</b>	23	49	16.9
5B-20	600	68.5	88.3	23 23	48	14.5
5B-23	600	67.7	87.8		48	15.6
5B-30	600	67.7	81.9	23	49	13.8
5B-31	600	67.7	87. 9	23	49	13.8
5B-33	600	67. 2		24	50	14.8
5B-45	600	66.6	87.1	23	49	14.3
5B-52	600	67.7	86.7	24	5 <b>0</b>	14.5
	000	61.1	87.9	24	- 50	13.2
5B-4	8 00	61.7	82.2	28	51	14.8
5B-7	800	61.8	81.7	27	53	13.8
5B-18	800	61.6	81.3	28	52	13.5
5B-19	800	61.7	81.8	27	53	15.0
5B-29	800	61.3	81.3	28	51	14.2
5B-34	800	61.8	81.4	27	53	13.8
5B-41	800	60.8	80.8	27	52.	
5B-4 <b>6</b>	800	61.6	81.3	27	52. 52	13.8
5B-49	800	61.7	80.5	27	52	13.6
5B-53	800	62. 1	82.0	27	53	17.1
			02.0	21	55	15.4

291

Table 71 (Continued)

Specimen No.	Temp., °F	F _{ty} ksi	F _{tu} ksi	e %	R. A. %	E _t 10 ⁶ osi
NO.	<u> </u>	ROI	W21		70	10° psi
5B-6	1000	59.3	77.8	22	52	11.7
5B-9	1000	59.8	77. 0	23	54	13.0
5B-12	1000	60.0	77.4	22	53	12.9
5B-15	1000	60. 2	<b>78.4</b>	22	53	11.6
5B-21	1000	59. 2	77.8	23	52	10.4
5B-22	1000	59.3	77.8	23	51	11.1
5B-25	1000	60. 2	77. 7	23	53	11.5
5B- <b>26</b>	1000	60.2	78.0	24	<b>52</b>	13.4
5B-33	1000	59.9	77.8	23	53	12.8
5B-50	1000	60.5	77. 7	22	52	12.4

Section size: 1/2 in. x 1-1/8 in.

b Heat treatment: 1650°F, 2 hr, A. C.

Table 72

Tensile Properties of Ti-679 Alloy Bar from Heat No. D-7274

at Different Temperatures^{a, b}

			-			
Specimen	Temp.,	$\mathbf{F}'\mathbf{ty}$	$\mathbf{F}_{\mathbf{tu}}$	е	R. A.	Et
No.	°F	ksi	ksi	<u>%</u>	.% .	10 ⁶ psi
	<del></del>				<del></del>	
9A-1	75	140.0	<b>150</b> , 0	15	44	15.3
9A-5	75	134.0	149.0	14	44	15. 2
9A-9	75	138.0	149.0	15	45	15.6
9A-41	<b>7</b> 5	138. 0	146.0	15	46	15. 1
9A -55	75	140.0	149.0	14	44	15. Ü
9A-107	<b>7</b> 5	140.0	150.0	14	45	15.0
9A-115	75	137.0	146.0	15	39	15.3
9A- <b>121</b>	75	137.0	146.0	14	41	14.6
9A - <b>12</b> 9	75	142.0	151.0	14	40	15.6
9A-133	75	140.0	150.0	14	41	15.6
9A-13	400	103.0	124. 0	18	<b>4</b> 9	14.4
9A-17	400	102.0	124.0	17	50	15.6
9A-59	400	103.0	124.0	15	50	14.4
9A - <b>63</b>	400	102.0	<b>122</b> . 0	15	45	14.5
9A-108	400	100.0	121.0	17	<b>51</b> .	13.6
9A-113	400	100.0	<b>122</b> . 0	16	51	12.9
9A-116	400	96.8	118.0	17	48	14.8
9A-122	400	96.3	118.0	16	47	15.0
9A-130	400	99.0	120.0	14	48	15.6
9A-134	400	101.0	122.0	14	49	15.1
9A - <b>2</b> 9	600	88.7	115.0	14	46	13.0
SA-33	600	90.8	114.0	13	51	13.8
9A -53	600	90.1	114.0	15	51	14.4
9A - 67	600	90.9	116.0	14	48	13.3
9A-71	600	90.5	115. J	13	50	14.4
9A-109	600	91.0	116.0	15	56	12.7
9A-117	600	87.5	112.0	14	47	14. 2
9A-123	600	87.8	112.0	14	44	13.1
9A-131	600	92.6	116.0	13	46	14.3
9A - <b>1</b> 35	600	88.0	111.0	14	50	15.8
0. 01	006	00.4	445.0	4.0	1.0	10.4
9A-21	800	82. 1	110.0	16	48	13.6
9A-25	800	84.0	110.0	14	51	13.1
9A-75	800	85.6	110.0	16	49	12.8
9A-79	800	82.5	110.0	14	49	13.3
9A-83	800	84,9	110.0	15	51	13.6
9A-110	800	80. 1	108.0	17	52	12.7
9A-118	800	82.5	106.0	15	49	13.0
9A - <b>124</b>	800	81.0	106.0	16	45	13.3
9A-132	800	84.7	110.0	15	47	13.8
9A-13 <b>6</b>	800	<b>83.</b> 5	108.0	16	51	13.3
			202			

Table 72 (Continued)

No.  9A - 37  9A - 45  9A - 87  9A - 91  9A - 111  9A - 112  9A - 119  9A - 125  9A - 126  9A - 127	Temp.,  °F  1000 1000 1000 1000 1000 1000 1000	F _{ty} ksi  78. 2 78. 5 79. 1 79. 5 80. 0 75. 6 76. 1 76. 0 73. 7 77. 6	99. 5 101. 0 101. 0 103. 0 99. 5 97. 9 99. 1 96. 2 98. 6	e	R. A. % 61 62 61 5) 55 57 54 51 53 52	Et 10 ⁶ psi 13.0 13.3 12.8 11.8 11.0 11.9 12.2 12.5 12.6
-----------------------------------------------------------------------------------------------------	------------------------------------------------	----------------------------------------------------------------------------------	----------------------------------------------------------------------------------	---	---------------------------------------	---------------------------------------------------------------------------------------------------

a Section size: 1/2 in. x 1-1/8 in. b Heat treatment: 1650°F, 2 hr, A. C. + 930°F, 24 hr, A. C.

Table 73

Tensile Properties of Ti-679 Alloy Bar from Heat No. D-8427 at Different Temperatures^{a, b}

Specimen	Temp.,	$\mathbf{F_{ty}}$	$\mathbf{F_{tu}}$	е	R. A.	Et
No.	<u> </u>	ksi	<u>ksi</u>	%	%	10 ⁶ psi
9B-1	75	133.0	145.0		0.0	
9B-8	<b>7</b> 5	132. 0	143.0	13	38	15. 1
9B-11	75	132.0	142. 5	12	40	15.5
9B-16	<b>7</b> 5	131.3	143.2	12	43.	15.4
9B-24	75	131. 3 128. 0		12	44	15.4
9B-27	<b>7</b> 5	129.5	140.7	13	44	15. 2
9B-35	75		141.0	12	46	15.2
9B-42		130.5	142.0	12	45	15. 2
9B-48	<b>7</b> 5	131.5	143.5	12	42	15.4
9B- <b>51</b>	75 75	128.4	142.5	12	42	15.3
3D-01	75	134.0	145.5	12	40	<b>15.2</b>
9B-2	400	99. 2	119.0	14	50	14. 6
9B-5	400	91.8	118.0	15	46	14. 4
9B-14	400	96.9	116. C	14	50	13.8
9B-17	400	93.0	117.0	13	46	13.9
9B-28	400	95.2	114.0	14	51	13. 4
9B-32	400	96.2	115.0	14	50	15.3
9B-39	400	96. 2	116.0	13	50	14.1
9B-43	400	95. 2	116.0	14	<b>52</b>	13.9
9B-47	400	99.6	119.0	13	46	
9B-54	400	97. 2	117.0	14	46	13.4 14.0
9B-3	600	06.0	110.0	**		
9B-10	600	86.8	110.0	13	41	14. 2
9B-13	600	88.8	111.0	12	46	14.6
9B-20	600	88.8	108.0	13	49	14.6
9B-23	600	84.9	108.0	13	49	13.7
9B-30	600	85.0	107.0	13	48	13.6
9B-31	600	81.6	106.0	13	<b>52</b>	13.2
9B-38		83.9	106.0	14	5 <b>2</b>	14.4
9B-45	600	85.0	108.0	14	48	14.1
9B-52	600	86.5	110.0	13	48	13.3
3D. 32	600	85.7	109.0	13	49	13.3
9B-4	800	84.8	106.0	13	47	12. 9
9B-7	800	83.4 ,	107.0	14	44	13.0
9B-18	800	82.3	105.0	14	51	13.0
9B-19	800	80.0	103.0	15	53	12.3
3B-29	800	80.3	103.0	17	53	12.9
9B-34	800	79.9	103.0	15	56	
9B-41	800	80. 1	104.0	15	52	13.2
9B-46	800	78.3	102.5	14	50	13.4
9B-49	800	82.5	106.0	13	50 50	13.2
9B-53	008	84.0	107.0	13	47	13.7
		29		10	.z.(	13.2

295

Table 73 (Continued)

Specimen	Temp.,	Fty	$\mathbf{F}_{\mathbf{tu}}$	е	R. A.	Et
Nc.	°F	ksi	ksi	%	%	10 ⁶ psi
9B-6	1000	77.5	99.0	14	51	12.6
9B-9	1000	74.4	98.0	15	51	13.0
9B-12	1000	75.2	98.7	16	55	12.9
9B- <b>15</b>	1000	74.3	97.5	16	55	12.3
9B-21	1000	73.0	95.8	16	57	13.4
9B-22	1000	71.7	95.6	16	57	12.8
9B-25	1000	74.8	96.5	15	53	12. 1
9B- <b>26</b>	1000	74.8	97.2	15	50	10.4
9B-33	1000	73.9	96.7	16	55	10.9
9B- <b>50</b>	1900	70.8	97.2	16	59	12.3

^a Section size: 1/2 in.  $\times$  1-1/8 in. ^b Heat treatment: 1650°F, 2 hr, A. C. + 930°F, 24 hr, A. C.

Table 74 Notched Tensile Properties of the Bar Alloys a, b, c

Alloy	Specimen No.	Temp., ° F	Notched Tens. Str., ksi
1-5Zr	5A-29	70	200. 0
	5A-114	70	197. 9
Ti-5Al-5Sn-5Zr	5A-38	400	137.6
	5A-102	400	143.7
Ti-6	5A-6 5A-22	3 800 800	115.3 116.0
	9A-95	70	219. 8
	9A-1 <b>28</b>	70	217. 6
Ti-679	9A-99	400	178.6
	9A-120	400	172.6
	9A-47	800	162. 0
	9A-48	800	167. ′

Section size: 1/2 in.  $\times 1-1/8$  in. a

Ti-679, 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C. Ti-5Al-5Sn-5Zr, 1650° F, 2 hr, A.C.

b Heat treatment:

Notched  $45^{\circ}$ , 0.010 in. radius, 0.187 minimum diameter С to produce  $K_t = 3$ 

Table 75

Compression Properties of Ti-5Al-5Sn-5Zr Alloy Bar at Different Temperatures^a, b, c

Temp.,	Specimen	Fcy	$\mathbf{E}_{\mathbf{c}}$
°F	Number	ksi	10 ⁶ psi
70	E4 044		
	5A-244	128.5	15.6
70 70	5A-243	121.5	15.3
70	5A-236	129.1	15.3
70	5A-225	128.3	14.9
70	5A-245	127.0	15.7
400	5A-227	90, 4	14.0
400	5A-247		14.0
400	5A-238	86.0	14, 2
400	5A-229	83.6	14, 1
400	5A-220	86.3	14.2
100	JA-229	88. 2	14.5
600	5A-231	71, 7	13. 2
600	5A-222	77. 7	13.6
600	5A-242	72.8	13. 2
600	5A-233	70.7	13. 4
600	5A-224	74.7	12. 9
			14, 0
800	5A-235	63.5	12.3
800	5A-226	69.5	12.3
800	5A-246	65.1	12.9
800	5A-237	64.6	12.7
800	5A-228	61.3	12, 7
1000	5A-239	00.0	
1000		63, 6	11.8
1000	5A-230	62.3	11, 8
1000	5A-221	68, 6	12.1
1000	5A-241	<b>64</b> , <b>3</b>	11.2
1000	5A-232	62.7	12.1
	_		

a Heat No. D-8060.

b Section size: 1-1/8 in.  $\times 1/2$  in.

c Heat treatment: 1650° F, 2 hr, A.C.

Table 76

Compression Properties of Ti-679 Alloy Bar at Different Temperatures a, b, c

~			
Temp.	Specimen Number	- CV	Ec
2007-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	- Tamber	ksi	10 ⁶ psi
70	QA 220	56000	
70	9A-228	142. 9	14.7
70	9A - 211	138. 4	14.3
70	9A-217	139. 5	- 2. 0
70	9A - 223	140.8	
	9A-229	139. 3	- 4. 0
400			14.6
	9A - 206	110.5	2 20 200
400	9A-212	110. 5	14. 2
400	9A-218	100.5	13.6
400	9A-224	102.5	14.0
400	9A-230	105.5	13.7
	511-200	103.2	13.7
600	9A-207		
600	0A-207	92.8	12. 7
600	9A-213	92.8	12.7
600	9A-219	92.7	12. 3
600	9A-225	95.0	
000	9A-231	93. 3	13. 2
800			13. 2
800	9 <u>4 - 208</u>	86.5	12 20 000
-	9A-214	85.3	12. 1
800	9A-220		12. 3
300	9A-226	87.0	12. 1
800	9A-232	89.4	12.1
1	-02	87.0	12. 1
1000	9A-209		
1000	9A-215	79.6	11.2
1000	9A-221	78.6	11.5
1000	04 200	80. 2	11.4
1000	9A-227	81.0	12. 1
	9A-233	81.4	
			11.4

Heat No. D-7274. a

Section size: 1/2 in.  $\times 1-1/8$  in. b

Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Table 77

Ultimate Shear Strength of Ti-5Al-5Sn-5Zr Alloy Bar from Heat No. D-8060 at Different Temperatures  $^{\rm a},\,^{\rm b}$ 

E.	Fsu ksi	61.9	61.6	61.7	61.0	61.6
1000°	Specimen Fsu No. ksi	5A-253			5A-277	
	n Fsu ksi	86.8	65.8	65.8	63.2	65.1
80C · F	Specimen F No.	5A-251	5A-252	5A-260	5A-268	5A-276
	Fsu ksi	70.3	73.2	67.4	67.3	71.9
€000 E	Specimen Fsu No. ksi	5A-250	5A-258	5A-259	5A - 267	5A - 275
400°F	Specimen Fsu No. ksi	5A-249				
	Fsu ksi	99.2	104.2	102.3	99.8	109.0
70° F	Specimen Fsu No. ksi	5A-248	5A-256	5A-264	5A-272	5A-Z73
						30

^a Section size: 1/2 in. x 1-1/8 in. b Heat treatment: 1650°F, 2 hr, A.C.

Table 78

Ultimate Shear Strength of Ti-679 Alloy Bar from Heat No. D-7242 at Different Temperatures^a, b

Ę,	Fsu ksi	72.	70.	73. (	76.	70.
1000	Specimen F	9A-240	9A-248	9A - 256	9A-264	9A-265
ر	Fsu ksi	77.8	77.4	74.9	77.7	79.3
800° F	Specimen Fsu No. ksi	9A-241	9A-239	9A-247	9A-255	9A-263
	Fsuksi	80.3	82.7	81.6	78.6	80.7
600° F	Specimen Fsu No. ksi	9A-237	9A-245	9A-246	9A - 254	9A-262
	Fsu ksi	81.5	88.5	82.1	85.9	90.0
400° F	Specimen No.	9A-236	9A-244	9A-252	9A-253	9A-261
	Fsu ksi	102.5	107.5	110.0	110.0	102.4
70°F	Specimen Fsu No. ksi	5A-235	9A-243	9A-251	9A-259	9A-260

C C 8 5 1

a Section size: 1/2 in. x 1-1/8 in. b Heat treatment: 1650°F, 2 hr, A.C. +930°F, 24 hr, A.C.

Table 79 Rockwell C Hardness of Bar Alloys After Exposure at Different Temperatures and Times

Exposure	Exposure	R _C Hardnes	
Temp., ° F	Time, hr	$Ti-5Al-5Sn-5Zr^{a,b}$	Ti-679 ^{a, b}
RT	-	31.5	35.6
600	1000	31.0	36. 3
800 800	100	31, 6	38.5
000	1000	32, 5	36. 4
1000 1000 1000	10 100 1000	31, 1 32, 5	37. 8 37. 2
1100	10	32. 0 30. 4	36. 8 36. 9
1150	10	<b>32.</b> 5	37.0
1200	10	31.6	35. 7

a Section size: 1/2 in. x 1-1/8 in.

Ti-5Al-5Sn-5Zr bar, 1650° F, 2 hr, A.C. Ti-679, 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

b Heat treatments:

Table 80

Tensile Properties of the Ti-5Al-5Sn-5Zr Alloy Bar at Room Temperature and at the Exposure Temperature after Different Thermal Exposures a, b, c

Exposure	Conditions				F _{tv} , ksi	jū.		
Temp.	Time				emperatu			
* F	Hr	70	600	800	1000	1100	1150	1200
70	-	122. 0						
600	0.25	-	67.8					
600	1000	121.9	69.4					
800	0.25	-	-	59.8				
800	100	124.4	-	62.1				
800	1000	128.9	-	65.2				
1000	0, 25	-	_	· <u>-</u>	58.1			
1000	10	125.0	-	-	59.0			
1000	100	128.0	-	-	59.9			
1000	1000	128.0	-	-	60.0			
1100	10	122.8	-	-	_	56.2		
1150	10	122.5	-	-	-	-	55.3	
1200	10	123.4	_	-	-	-	-	50.3

Exposure	Exposure Conditions Temp. Time				b _i , ksi			
Temp.	Time			Test Te	emperatu	re, °F		
° F	Hr	_70_	600	800	1000	1100	1150	1200
70	-	130. 1						
600	0.25	-	88. 2				•	
600	1000	129, 3	89.0					
800	0.25	_	_	79.9				
800	100	131.6	-	80.5				
800	1000	133.9	-	83.6				
1000	0. 25	•	-	-	75.8			
1000	10	131.0	-	-	75.6			
1000	100	134.5	-	-	76.4			
1000	1000	135.0	•	•	78.6			
1100	10	130.8	_	••	-	76.8		
1150	10	130.2	-	_	_	-	75.8	
1200	10	131.6	-	-	•	-	•	69.6

Table 80 (Cont'd)

Tensile Properties of the Ti-5Al-5Sn-5Zr Alloy Bar at Room Temperature and at the Exposure Temperature after Different Thermal Exposures  $^{\rm a}$ ,  $^{\rm b}$ ,  $^{\rm c}$ 

Exposure Temp.	Time			Test "	e, % Cemperati	ire F		
F	Hr	70	600	008	1000	1100	1150	1200
70	-	16						
600	0.25	-	21					
600	1000	17	22					
800	0.25	-	-	28				
800	100	16	-	28				
800	1000	12	-	27				
1000	0.25	-	_	-	23			
1000	10	14	-	-	22			
1000	100	12	-	-	21			
1.000	1000	12	-	-	22			
1100	10	16	-	-	-	21		
1150	10	16	-	-	-	-	29	
1200	10	16	-		-		-	39

	Conditions				R.A., % Cemperate			
Temp.	Time	110	600		emperau		4450	4000
°F	Hr	<u></u>	600	800	1000	1100	1150	1200
39	-	39						
600	0.25	-	47					
600	100C	42	43					
800	0.25	-	-	51				
800	100	41	-	52				
800	1000	20	-	49				
1000	0.25	_	-	-	51			
1000	10	37	-	_	52			
1000	100	32	-	-	49			
1000	1000	31	-	-	49			
1100	10	38	_	_	-	50		
1150	10	38	<b>Lan</b>	-	-	_	48	
1200	10	40	-	_	-	-	444	45

a. Heat treatment: 1650° F, 2 hr, A.C.

b. Section: 1/2 in. x 1-1/8 in.

c. Results are averages of duplicate tests except those for single specimens exposed and tested at 1100, 1150, and 1200° F.

Table 81

Tensile Properties of the Ti-679 Alloy Bar at Room Temperature and at the Exposure Temperature after Different Thermal Exposures a, b, c

Conditions				Ftv, ksi			
Time							
Hr	70_	600	500	1000	1100	1150	1200
-	138.6	89.8					
0.25	-	89.8			74		
1000	139.1	94.1					
0, 25	-	-	83.1				
100	137.0						
1000	141.4	-	86.3				
0, 25	-	_	_	77.4			
10	137.5	-	-				
100	138.0	_	•				
1000	143.5	-	-	78.3			
10	138.1	-	-	-	70.8		
		-	_	-	-	66.2	
10	137.4	-	-	-	-	-	59.2
	Time Hr - 0.25 1000 0.25 100 1000 0.25 10 1000	Time Hr 70  - 138.6  0.25 - 1000 139.1  0.25 - 100 137.0 1000 141.4  0.25 - 10 137.5 100 138.0 1000 143.5	Time Hr 70 600  - 138.6 89.8  0.25 - 89.8 1000 139.1 94.1  0.25 100 137.0 1000 141.4 - 0.25 10 137.5 - 100 138.0 - 1000 143.5  10 138.1 - 10 137.7 -	Time Hr 70 600 500  - 138.6 89.8  0.25 - 89.8 1000 139.1 94.1  0.25 - 83.1 100 137.0 88.2 1000 141.4 - 86.3  0.25 10 137.5 100 138.0 1000 143.5 10 138.1 10 137.7	Time Hr 70 600 500 1000  - 138.6 89.8  0.25 - 89.8 1000 139.1 94.1  0.25 - 83.1 100 137.0 88.2 1000 141.4 - 86.3  0.25 - 77.4 10 137.5 - 78.6 100 138.0 - 80.2 1000 143.5 - 78.3	Time Hr 70 600 500 1000 1100  - 138.6 89.8  0.25 - 89.8 1000 139.1 94.1  0.25 - 83.1 100 137.0 88.2 1000 141.4 - 86.3  0.25 - 77.4 10 137.5 - 81.6 100 138.0 - 80.2 1000 143.5 - 78.3	Time Hr 70 600 500 1000 1100 1150  - 138.6 89.8  0.25 - 89.8 1000 139.1 94.1  0.25 - 88.2 1000 141.4 - 86.3  0.25 - 77.4 10 137.5 - 77.4 10 138.0 - 80.2 1000 143.5 - 78.3

Exposure	Conditions			1	F _{tu} , ksi			
Temp.	Time			Test Te	mperatur	e, F		
° F	Hr	70	600	800	1000	1100	1150	1200
70	-	148.6						
600	0, 25	-	114.1					
600	1000	149.9	118.0					
800	0.25	_	-	108, 8				
800	100	148.2	_	111.9				
800	1000	149.4	-	111.8				
1000	0, 25	_	_	_	99.7			
1000	10	147.0	_	_	104.5			
1000	100	149.0	-	_	102.5			
1000	1000	149.0	-	-	96.6			
1100	10	145, 2	-	_	_	88.1		
1150	10	144.7	-	1	-	•	83.1	
1200	10	143.8	-	-	-	_	_	73.9

Table 81 (Cont'd)

Tensile Properties of the Ti-679 Alloy Bar at Room Temperature and at the Exposure Temperature after Different Thermal Exposures^{a, b, c}

Exposure	Conditions				e, %			
Temp.	Time			Test T	emperati	ire, F		
° F	Hr	70	600	800	1000	1100	1150	1200
76	·	14						
€00	0.25	-1	14					
600	1000	15	14					
800	0,25	-	-	15				
800	100	16	-	14				
800	1000	14	-	14				
1000	0.25	-	-	_	17			
1000	10	14	-	_	15			
1000	100	14	•	_	18			
1000	1000	10	-	-	18			
1100	10	11	_	_	_	22		
1150	10	13	_	_	_	-	27	
1200	10	14	-	-	-	-	-	35

Exposure	Conditions			F	R.A., %			
Temp.	Time			Test T	emperatu	re, F		
° F	Hr	70	600	800	1000	1100	1150	1200
70	-	43						
600	0.25	-	49					
600	1000	44	50					
800	0.25	L	_	49				
800	100	46	-	50				
800	1000	40	-	51				
1000	0.25	_		~	56			
1000	10	42	-	-	57			
1000	100	38	-	-	58			
1000	1000	14	-	-	50			
1100	10	21	_	_	_	64		
1150	10	33	-	-	-	-	72	
1200	10	30	-	-	-	-	-	83

a. Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

b. Section: 1/2 in. x 1-1/8 in.

c. Results are averages of duplicate tests except those for single specimens exposed and tested at 1100, 1150, and 1200° F.

Table 82

Creep Data for the Ti-5Al-5Sn-5Zr Alloy Bar a, b, c

Spec. No.	Temp.,	Stress, ksi	Tim 0.05%	e to cre 0.1%	ep defo 0.2%	rmatio 0.5%		Min. Creep Rate, % hr
5A-110	600	75.0	No one	on in 9E	7 1 1			
5A-110A		90.0	Failed	ep in 25 on load	in-	, disco	ntinued.	-
			raneu	on road	ing.			-
5A- <b>9</b> 9	800	59.0	60	350	d	3	,	4 6
5A-133	800	70.0	23	195	d	વે	d	$4.0 \times 10^{-3}$
5A-104	800	70.0	20	d	d	d	d	$1.7 \times 10^{-4}$
5A-106	800	70.0	5	29	695	d	d	$8.0 \times 10^{-5}$
5A-111	800	75.0	6	15	70	d	d	$1.0 \times 10^{-4}$
5A-127	800	75.0	ĭ	5	270	d d	d	$1.0 \times 10^{-4}$
5A-115	800	77.0		on loadi		a	d	$1.4 \times 10^{-4}$
5A-117	800	80.0	Failed	on loadi	ng.			-
			~ 0, 11 C G	on roadi	ng.			-
5A-109	900	50.0	0.1	0.3	d	د		0.55
5A-120	900	50.0	70	d d	d	d d	d	$2.5 \times 10^{-5}$
5A-113	900	55.0	3	10	44	ď	d	$5.0 \times 10^{-5}$
5A-124	900	60.0	-	-	17	d 160	d	$2.8 \times 10^{-4}$
5A-105	900	60.0	2	10	48	162	d	$1.8 \times 10^{-3}$
5A-116	<b>\$00</b>	64.0	12	25	53	215	d	$1.7 \times 10^{-3}$
5A-122	900	68.0	4	10	22	160	d	$3.6 \times 10^{-4}$
5A-119	900	71.0	-	-		60	430	$3.0 \times 10^{-3}$
5A-123	900	71.0	_	-	8	19	83	$2.6 \times 10^{-2}$
5A-107	900	73.0	_	1	5 3	30	190	$7.5 \times 10^{-3}$
			-	ī	3	16	88	$1.5 \times 10^{-2}$
5A-108	1000	18.0	Did not	onoon i	. 165 4			
5A-101	1000	22.0	Did not	45	430	nr, on		
5A-130	1000	30.0	20	100	260	ď	d	$2.0 \times 10^{-4}$
5A-131	1000	30.0	30	160	<b>d</b>	d	d	$2.7 \times 10^{-4}$
5A-118	1000	36.0	9	25	72	d	d Od 1	$2.2 \times 10^{-4}$
5A-126	1000	38.0	5	12	25	210	915	$1.9 \times 10^{-3}$
5A-112	1000	41.0	8	14	31	95 05	694	$2.2 \times 10^{-3}$
5A-128	1000	43.0	1	2	8	95 25	565	$3.2 \times 10^{-3}$
5A -125	1000	46.0	1	2	3	25 16	186	$8.5 \times 10^{-3}$
5A-132	1000	55.0	-		3 1	16 3	150	$2.8 \times 10^{-3}$
		•		_	1	3	17	$1.4 \times 10^{-2}$

a Heat No. D-8060.

b Section size: 1-1/3 in.  $\times 1/2$  in.

c Heat treatment: 1650° F, 2 hr, A.C.

d Denotes that test was discontinued.

Table 83

Creep Data for the Ti-679 Alloy Bara, b, c

Spec.	Temp.,	Stress ksi	0.05%	me to c	reep de 0.2%	formati 0.5%	on, hr 2.0%	Min. Creep Rate, % hr-1
9A-40 9A-40A	600 600	110.0 115.0		ep in 128 on loadi	-	discont	inued	
9A-89	800	70.0	25	215	1000	d	d	$8.0 \times 10^{-5}$
9A-105	800	85.0	5	20	65	d	d	$1.6 \times 10^{-4}$
9A-90	800	90,0	5	12	45	630	d	$1.4 \times 10^{-4}$
9A - 85	800	94.0	1	6	35	650	d	$2.0 \times 10^{-4}$
9A-43	800	94.0	1	2	5	12	d	$3.4 \times 10^{-4}$
9 4-100	800	96.0	1	5	22	260	d	$7.6 \times 10^{-4}$
9A-52	800	100.0	1	3	6.	40	d	$1.1 \times 10^{-3}$
9A-104	800	100.0	1	2	6	35	d	$1.4 \times 10^{-3}$
9A-93	900	55.0	5	50	₹50	d	d	$1.5 \times 10^{-4}$
9A - 34	900	60.0	-	3	47	d	d	$2.0 \times 10^{-4}$
9A - 96	900	60.0	5	50	d	d	d	$8.0 \times 10^{-5}$
9A - 54	900	65.0	4	10	38	d	d	$3.2 \times 10^{-4}$
9A - 45	900	72.0	2	3	16	295	d	$7.0 \times 10^{-4}$
9A-101	900	74.0	4	12	32	d	d	$1.6 \times 10^{-4}$
9A-44	900	77.0	5	10	26	115	d	$1.3 \times 10^{-3}$
9A - 51	900	79. J	1	2	4	64	500	$2.4 \times 10^{-3}$
9A - 42	900	83.0	0.5	1	2	24	452	$2.9 \times 10^{-3}$
9A-98	900	85.0	0.5	1	2	13	115	$1.2 \times 10^{-2}$
9A-102	1000	12.0	20	120	275	950	d	$3.6 \times 10^{-4}$
9A - 36	1000	16.0	10	39	170	370	d	$6.0 \times 10^{-4}$
9A - 103	1000	20.0	35	145	215	415	d	$1.4 \times 10^{-3}$
9A-86	1000	25.0	22	50	112	230	887	$2.2 \times 10^{-3}$
9A - 94	1000	29.0	5	15	45	132	585	$3.4 \times 10^{-3}$
9A-50	1000	33.0	18	35	62	120	380	$5.6 \times 10^{-3}$
9A-92	1000	38.0	6	17	42	150	323	$2.5 \times 10^{-3}$
9A-88	1000	40.0	1	4	12	65	268	$7.4 \times 10^{-3}$
9A-31	1000	42.0	3	8	22	90	265	$3.0 \times 10^{-3}$
9A-32	1000	42.0	1	2	6	75	286	$3.0 \times 10^{-3}$

a Heat No. D-7274.

b Section size: 1-1/8 in.  $\times 1/2$  in.

c Heat treatment: 1650° F, 2 hr, A.C., 930° F, 24 hr, A.C.

d Denotes that test was discontinued.

Table 84 Impact Strength of Ti-5Al-5Sn-5Zr Alloy at Different Temperatures a, b, c

Temperature

70°	100 1		600°	F	800° F		
Spec. No.	Ft-lb	Spec. No.	Ft-lb	Spec. No.	Ft-lb	Spec. No.	Ft-lb
5A-206 5A-210 5A-214	13.0 11.0 10.5	5A-207 5A-211 5A-215	21. 0 22. 0 22. 0	5A-208 5A-212 5A-216	33, 5 30, 5 28, 5	5A-209 5A-213 5A-217	44. 0 44. 0 40. 0

a Heat No. D-8060

Table 85 Impact Strength of Ti-679 Alloy Bar at Different Temperatures a, b, c

Temperature

				erature				
70°	F	400°	400° F		F	800° F		
Spec. No.	Ft-lb	Spec. No.	Ft-lb	Spec. No.	Ft-lb	Spec. No.	Ft-lb	
9A-189	14.5	9A-190	20.5	9A- <b>19</b> 1	23.0	9A-192	<b>33.</b> 0	
9A-193	12.0	9A-194	16.0	9A-195	19.5	9A-196	24.5	
9A-197	16.5	9A-198	14.5	9A-199	30.0	9A - 200	37.0	
		9A - 201	19.5	9A - 203	29.0	9A - 204	26.0	
				9A-202	21.0			

a Heat No. D-7274

b Section size: 1-1/8 in.  $\times 1/2$  in.

c Heat treatment: 1650° F, 2 hr, A.C.

b Section size: 1-1/8 in. x 1/2 in.

c Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Table 84

Impact Strength of Ti-5Al-5Sn-5Zr Alloy at Different Temperatures a, b, c

Temperature 70° F 400° F 600° F 800° F Ft-lb Ft-Ib Ft-lb Ft-lb Spec. No. Spec. No. Spec. No. No. Spec. 5A-207 21,0 5A-208 33.5 5A-209 14.0 5A-206 13.0 22.0 5A-210 5A-211 5A-212 30.5 5A-213 44.0 11.0 5A-215 5A-216 28.5 5A-217 40.0 5A-214 10.5 22.0

Table 85

Impact Strength of Ti-679 Alloy Bar at Different Temperatures a, b, c

Temperature 70° F 400° F 600° F 800° F Ft-lb Spec. No. Ft-lb Spec. No. Ft-lb Spec. No. Ft-lb Spec. No. 23,0 33.0 9A-189 14.5 9A-190 20.5 9A-191 9A-192 9A-193 12.0 9A-194 16.0 9A-195 19.5 9A-196 24.5 9A-200 37.0 9A-197 16.5 9A-198 14.5 9A-199 30.0 9A-201 29.0 9A-204 26.0 19.5 9A - 2039A-202 21.0

a Heat No. D-8060

b Section size: 1-1/3 in. x 1/2 in.

c Heat treatment: 1650° F, 2 hr, A.C.

a Heat No. D-7274

b. Section size: 1-1/8 in. x 1/2 in.

c Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

Table 86 Fatigue Data for the Ti-5Al-5Sn-5Zr Alloy Bar a, b, c

Specimen Number	Temp.,	<u>A</u>	K _t	Max. Stress, ksi	Mean Stress, ksi	Cycles to d
5A-147	70	0.67	1	105.9	63.4	709,600
5A-153	70	0.67	1	100.6	60.2	1, 526, 200
5A-159	70	0.67	1	95.3	57.0	748,700
5A-189	70	0.67	1	94.0	56.4	2,043,600
5A-177	70	0.67	1	93.6	56.0	15,833,900+
5A-183	70	0.67	1	92.3	55.3	14,056,600+
5A-171	70	0.67	1	91.7	54.9	11,698,300+
5A-165	70	0.67	1	88.2	52.8	11,748,100+
<i>3</i> 1 2 3 3			-	00,2	92.0	11, 110, 100
5A-137	70	œ	1	60.0	0	65,900
5A- <b>139</b>	70	00	1	50.0	0	110,300
5A- <b>156</b>	70	90	1	45.0	0	357,800
5A- <b>160</b>	70	90	1	45.0	0	1,407,800
5A- <b>202</b>	70	00	1	40.0	0	11,580,000+
5 4 104	400	0 05	·a	05.0	50.0	45 400
5A- <b>164</b>	400	0.67	1	95.0	56.8	15,400
5A-180	400	0.67	1	85.0	50.9	38,900
5A-175	400	0.67	1	85.0	50.9	29,500
5A- <b>196</b>	400	0.67	1	80.0	47.9	53,700
5A- <b>168</b>	400	0.67	1	70.0	40.8	240,000
5A <b>-192</b>	400	0.67	1	60.0	35.9	377, 000
5A- <b>172</b>	400	0.67	1	55.0	33.0	10,003,000+
5A- <b>201</b>	400	0.67	1	50.0	29.9	10,023,500+
5A- <b>191</b>	400	••	1	50 <b>.0</b>	0	79,800
5A-182	400	00	1	45.0	0	583, 200
5A-138	400	œ	1	40.0	0	345,400
5A-197	400	<b>∞</b>	1	40.0	0	170,500
5A- <b>198</b>	400	es)	1	35.0	0	9,569,000
JA-100	400	∞	1	33.0	U	9,009,000
5A-186	800	0.67	1	70.0	40.8	19,400
5A-183	800	0.67	1	65.0	38.9	85,400
5A-193	<b>80</b> 0	0.67	1	<b>6</b> 0.0	35.9	261,200
5A-166	000	0.67	1	55.0	33.0	2,788,000
5A-157	800	0.67	1	50.0	29.9	13,800,100
5A- <b>174</b>	800	20	1	50.0	0	10,000
5A- <b>149</b>	8 <b>0</b> 0	00	1	45.0	0	20,500
5A-199	800	90	1	41.0	0	100,100
5A- <b>145</b>	800	90	1	38.0	0	8,000,600
5A-203	800	oc	1	38.0	0	10,757,000+
				<b>31</b> 0		

Table 86 (Cont'd)

Fatigue Data for the Ti-5Al-5Sn-5Zr Alloy Bar a, b, c

Specimen Number	Temp.	_ <u>A</u>	_ K _t	Max. Stress, ksi	Mean Stress, ksi	Cycles to Fracture
5A-179	70	0.67	3	40.0	23.9	100 100
5A-162	70	0.67	3	-35.0	21.0	180, 200
5A-144	70	0.67	3	30.0	18.0	213,700
5A-152	70	0.67	3	30.0	18.0	10,145,100+
5A-154	70	0.67	3	25.0	15.0	331,900
			•	20.0	13.0	13,019,400+
5A-181	70	<b>∞</b>	3	30.0	0	40, 000
5A-167	70	90	3 3	27.0	0	49,300
5A-146	70	90	3	25.0		100,000
5A-173	70	90	3	25.0	0	172,000
5A-155	70	<b>0</b> 0	3	20.00	0	269,700
			Ū	20.00	0	10,062,600+
5A-151	400	0.67	3	40.0	22.0	040 0
5A-200	400	0.67	3	37.5	23.9	213,600
5A-185	400	0.67	3	37.5 37.5	22.4	153,500
5A-150	400	0.67	3	37. 3 35. 0	22.4	454,900
5A-194	400	0.67	3		21.0	415,500
		V. U.	J	30.0	18.0	8,217, d00+
5A-187	400	00	9	25.0	•	
5A-148	400		3	25.0	0	95,000
5A-170	400	∞	3 3	22.0	0	267,000
5A-161	400	<b>∞</b>	ა ე	20.0	0	393,500
5A-143	400	<b>00</b>	3 3	20.0	0	484,300
	100	<b>∞</b>	3	15.0	0	9,220,200+
5A-176	800	0.67	9	05.0		
5A-178	800	0.67	3	35.0	21.0	<b>§1,000</b>
5A-190	800	0.67	3 3	35.0	21.0	158,100
5A-195	800		3	30.0	18.0	120,700
5A-158	800	0.67	3	30.0	18.0	6,201,000
011 100	000	0.67	3	25.0	15,0	9,667,5004
5A-142	800		•			
5A-134	800	90	3	25.0	0	66,000
5A-136	800	00	3 3 3 3	20.0	0	39,400
5A-163		∞	3	20.0	0	180,200
5A-167	800	00	3	18.0	0	539,600
	800	00	3	15.0	0	9,194,000

a Heat No. D-8060.

b Section size: 1/2 in, x 1-1/8 in.

c Heat treatment: 1650° F, 2 hr, A.C.

d Plus (+) denotes that test was discontinued.

Table 87

Fatigue Data for the Ti-679 Alloy Bara, b, c

		-		-2-	3.4	
				Max.	Mean	Charles to
Specimen	Temp.,		• •	Stress,	Stress,	Cycles to Fracture ^d
Number	° F	A	$K_{t}$	ksi	ksi	Fracture
0 4 140	70	0 67	1	130.6	78.2	45,400
9A-148 9A-154	70	0.67	i	127.0	76.1	72,300
9A-158	70	0.67	î	119.9	71.8	518, 200
9A-136 9A-164	70	0.67	1	110.8	66.4	74,800
9A-168	70	0.67	1	109.2	65.4	1,587,800
9A-174	70	0.67	1	109.2	65.4	1,107,900
9A-178	70	0.67	1	100.0	59.8	3,506,000
9A-281	70	0.67	î	100.0	59.8	3,220,500
9A-165	70	0.67	î	90.0	58.7	12,176,000+
3H-103	.0	0.01	•	00.0		,
9A-279	70	œ	1	84.5	0	28,000
0A-273	70	00	1	82.5	0	34,500
9A-277	70	00	1	82.5	0	39,800
9A- <b>269</b>	70	<b>∞</b>	1	75.4	0	57,400
9A- <b>140</b>	70	∞	1	68.4	0	313,700
9A-156	70	00	1	55.0	0	10,029,500+
9A-184	400	0.67	1	100.0	60.0	51,400
9A - 149	400	0.67	1	95.0	<b>56.</b> 9	129,800
9A-167	400	0.67	1	90.0	53.8	1,541,600
9A - 137	400	0.67	1	85.0	51.0	8,650,000
9A-177	400	0.67	1	80.0	48.0	10,001,000+
					_	
9A-268	400	∞	1	60.0	0	46,000
9A-139	400	•	1	60.0	0	65,000
9A - 162	400	w	1	57.0	0	877,300
9A-141	400	•	1	55.0	0	5,493,360
9A- <b>184</b>	400	00	1	55.0	0	10,000,000+
0 . 400	000	0.05	4	05.0	51 0	14,000
9A- <b>169</b>	800	0.67	1	85.0	51.0 48.0	31,200
9A-159	860	0.67	1	80.0	48.0	635,800
9A-181	800	0.67	1	80.0	45.0	473,500
9A-274	800	0.67	1	75.0	38.9	10,207,400
9A-282	800	0.67	1	65.0	30.9	10,201,400
9A- <b>278</b>	800	~~	1	60.0	0	36,100
9A-276 9A-172	800	∞	1	55.0	Ö	309,100
9A-172 9A- <b>157</b>	800	∞	1	50.0	Ö	374,600
9A-157 9A-153	800	<b>0</b> 0	1	45.0	Ö	6,871,000
9A-153	800	<b>&amp;</b>	1	40.0	Ö	10,000,300+
% <b>™-100</b>	500	•	219	10,0	-	

Table 87 (Cont'd)

Fatigue Data for the Ti-679 Alloy Bar^{a, b, c}

Specimen Number	Temp.,	A	K _t	Max. Stress, ksi	Mean Stress, <u>ksi</u>	Cycles to Fracture ^d
9A-271	70	0.67	3	45.0	26.9	102,600
9A-161	70	0.67	3	42.5	25.4	1,418,100
9A-182	70	0.67	3	42.5	25.4	164,800
9A-151	70	0.67	3	40.0	23.9	3,057,300
9A-180	<b>7</b> 0	0.67	3	35.0	20.0	10, 324, 300+
9A-152	70	∞	3	<b>3</b> 0.0	0	61,000
9A-183	70	<b>∞</b>	3	25.0	0	1 <b>6</b> 6,600
9A-163	70	<b>•</b>	3	25.0	0	149,000
9A-176	70	<b>∞</b>	3	23.0	0	544,500
9A-270	70	∞	3	20.0	0	10,000,000+
9A-275	400	0.67	3	45.0	26.9	99,500
9A-185	400	0.67	3	42.5	25.4	147,100
9A-166	400	0.67	3	40.0	23.9	80,300
9A-147	400	0.67	3	40.0	23.9	305,900
9A-170	400	0.67	3	35.0	20.9	11, 188, 700+
9A-270	400	<b>∞</b>	3	30.0	0	29,500
9A-175	400	co	3	30.0	0	90,000
9A - 276	400	<b>∞</b>	3	25.0	0	341,700
9A-146	400	œ	3	20.0	0	<b>652,000</b>
9A-179	400	<b>∞</b>	3	20.0	0	10,422,700+
9A-272	800	0.67	3	45.0	27.0	40,800
9A-150	800	0.67	3	40.0	23.9	81,400
9A-160	800	0.67	3	38.0	22.7	44,900
9A-267	800	0.67	3	38.0	22.7	7,048,600
9A-155	800	0.67	3	35.0	20.9	12,718,200+
9A-171	800	<b>∞</b>	3 3	30.0	0	58,100
9A - 1.43	008	90		25.0	0	88,100
9A-173	800	00	3	25.0	0	101,600
9A-145	800	00	3	23.0	0	946,000
9A-280	800	00	3	20.0	0	10,404,000+

a Heat No. D-7274.

b Section size, 1/2 in. x 1-1/8 in.

c Heat treatment: 1650° F, 2 hr, A.C. + 930° F, 24 hr, A.C.

d Plus (+) denotes that test was discontinued.

Table 88

Data for Calculation of the Stress Intensity Factor for Bar Alloys.

## NOTICE

Gross yielding occurred in tests at 400 and 70° F, and to some extent at -110° F, such that the true fracture toughness is not represented by data given in this table.

Alloy	Specimen	Temp.,	В	а	w	р, "а	K o	σ nom	σ nom
Ą:	•	° F				P _{dev-lin}	Knc		- 110111
_	Number	r	In.	In.	In	<u>lb</u>	ksi vin.	ksi	F _{ty}
	5A-249	70	. 252	. 317	1.00	8625	75.6	147.3	1. 2
	5A-248	70	. 250	. 372	1.00	6100	65.7		
Se	i							130.9	1.1
52r	5A - 250	70	. 251	. 259	1.00	9400	66.0	129. 2	1.1
Ti-5Al-5Sn-	5A-253	400	. 248	. 298	1.00	6200	E1 0	70 4	1.0
SS	4						51.8	78.4	1.0
Ϋ́	5Λ-254	400	. 250	. 299	1.00	5900	48.6	<b>94.6</b>	1. 2
A	5A-251	400	. 251	. 308	1.00	5830	47.9	96.7	1.2
L S	4.= .								
Ė	5A-255	-110	. 249	. 304	1.00	6860	56, 0	_	
	5A - 252	-110	. 251	. 306	1.00	6950	57.2		_
	5A-256	-110	. 247	. 305	1.00	6480	53.8	_	
			• — —	•	-, -,		30.0		_
i	9A-286	70	. 250	. 362	1.00	5580	55.4	116 1	0.0
								115.1	0.8
	9A - 284	70	. 251	. 269	1.00	8940	<b>62.</b> 8	126, 1	0.9
	9A-285	J	. 248	. 376	1.00	5160	62.1	113.7	0.8
<u></u>	9A-290	400	. 251	. 293	1.00	7350	57.7	114.9	1 1
Ti-679		400							1.1
-	9A-287		. 251	. 305	1.00	6520	53.6	106.7	1.1
Н	9A-289	400	. 251	. 305	1.00	6450	53.1	105.6	1.1
	9A-283	-110	. 250	. 288	1.00	7190	55.8	_	_
	9A-291	-110	. 250	. 316	1.00	5550			
	9A - 268	-110	. 251	. 291	1.00	6600	47.6	_	-
ı	∂n-200	-110	. 401	. 231	1.00	0000	51.7	-	_

a Load at deviation from linearity in compliance-gage-output vs load curve.

b Stress intensity factor reported as  $K_{\text{nc}}$ , rather than as  $K_{\text{Ic}}$ , because pop-in was not observed and calculation was based on load deviation from linearity.

 $c = \frac{P}{B(W-a)} + \frac{3P(W+a-2D)}{B(W-a)^2}$ 

## APPENDIX II

Thermal-Property Test Data (Tables No. 89-106)

Table 89

The Thermal Conductivity of the Titanium Sheet Alloy, Ti-5Al-5Sn-5Zr Using the Comparative Rod Apparatus with 316 Stainless Steel References

Mean	Thermal Conductivity	ΔT	Mean Temperature	Thermal Conductivity of Lower	AT through Lower	Mean Tempera- ture of	Thermal Conductivity of Upper	AT through Upper
of Specimen	Kg Btu/hr/ft²/°F/in.	Specimen	Reference	K ₁ K ₁ Btu/hr/ft²/°F/in.	AT.	Upper Reference	K ₂ K ₂ Btu/hr/ft²/°F/in.	AT ₂
Run 1 on Specimen	cimen 1							
110	59.1 57.5	6.67	100	107	4.30	121	108	6.67
351	65.9	39.7	230	117	29.3	417	123	36.0
0	0.6	:	0001	171	* ?	n T	557	T .
Run 2 on Specimen	cimen 1							<u> </u>
112	55.9	8.75	8.66	109	7.90	126	108	7.90
223	5, 4	19.6	193	112	13.7	254	115	16.0
350	79	33.0	300	117	22.9	403	112	29.0
Run 3 on Specimen	cimen 1							
97	58.9	8.90	82.6	106	6.75	114	103	7.90
619	71.2	77.8	491	127	68.2	745	139	6.99
809	74.6	77.4	482	126	65.6	733	139	66.5
649	76.4	74.7	529	129	61.5	771	141	65.5
765	81.3	85.7	631	134	68.7	906	147	79.5
1032	91.0	83.0	904	147	65.5	1171	161	80.8
840		80.5	816	143	72.4	1074	156	71.9
828	89. 2	84.5	817	143	0.92	1088	156	75.5

Table 90

The Thermal Conductivity of the Titanium Sheet Alloy, Ti-5Al-5Sn-5Zr-1Mo-1V Using the Comparative Rod Apparatus with 316 Stainless Steel References

	Thermal		Mean	Thermal Conductivity	AT through	Mean Tempera-	Thermal Conductivity	ΔT through
Mean	Conductivity of Specimen	AT through	Temperature of Lower	of Lower Reference	Lower Reference	Upper	of Upper Reference	Upper
of Specimen	, XI	Specimen	Reference	×	AT,	Reference	K,	ΔT
•F	Btu/hr/fts/°F/in.	न -	(E)	Btu/hr/ft2/ºF/in.	(z,	• (F)	Btu/hr/ft2/.F/in.	Ŀ
1 0								
aun Lon Specimen	T ueu T							
110	53.0	6.43	100	101	3.70	121	108	5.80 .
376	66.0	24.7	337	119	16.4	420	123	23.8
Run 2 on Specimen 1	imen 1							
139	54.8	14.2	117	108	9.50	163	110	11.9
166	56.5	15.0	143	109	10.7	191	112	12.3
178	57.7	14.9	154	110	11.3	202	112	12.0
288	6.09	34.0	235	114	24.5	340	119	28.7
302	61.7	34.6	241	114	25.2	363	120	29. 2
653	74.2	55.2	266	130	46.3	738	139	45.0
644	75.6	48.0	569	130	40.8	720	138	40.4
645	75.8	46.8	571	131	39.2	719	138	40.0
200	77.9	46.0	627	134	39.7	772	141	38.8
109	76.4	46.5	635	134	40.5	781	141	39.0
801	83.0	54.1	716	138	46.7	888	147	48.0
846	86.3	53.0	160	140	47.0	932	149	47.9
938	88.6	53.0	852	145	47.4	1022	153	47.1
1037	93.9	56.5	945	149	50.8	1129	159	52.5
1066	96.0	55.1	976	151	51.0	1156	160	51.0

Table 90 (Continued)

AT through Upper Reference	ΔT ₂	19.2 16.0 34.0 34.0 38.5
Thermal Conductivity of Upper Reference	Btu/hr/ft²/°F/in.	117 118 126 142 145 152
Mean Tempera- ture of Upper Reference	ţ.	284 318 474 804 866 998 1090
ΔT through Lower Reference ΔT,	Œ,	18.8 27.0 29.0 34.8 39.3
Thermal Conductivity of Lower Reference K ₁	Btu/hr/ft*/°F/in.	112 115 120 137 139 144
Mean Temperature of Lower Reference	£4	204 251 352 700 739 848 953
ΔT through Specimen	•	25.0 21.0 37.5 32.7 40.0 46.5
Thermal Conductivity of Specimen Ka Btu/hr/fts/ep/in	imen 1	58.0 59.2 66.9 79.8 81.5 88.1
Mean Temperature of Specimen	Run 3 on Specimen 1	243 284 410 752 802 920 1020

Table 91

The Thermal Conductivity of the Titanium Sheet Alloy, Ti-6A1-2Sn-4Zr-2Mo Using the Comparative Rod Apparatus with 316 Stainless Steel References

AT Temperature through of Lower Specimen Reference
of Lower Reference
teference
• F.
166
171
409
737
710
946
127
290
516
557
191
872
894
968

Table 92

The Thermal Conductivity of the Titanium Bar Alloy, Ti-5Al-5Sn-5Zr Using the Comparative Rod Apparatus with 316 Stainless Steel Ferences

AT through Upper Reference AT ₂		10.2	54.0	55.2		65.3		9.00	94. 5		5.95	30.83	38. 2	68.8	4.02	81.0
Thermal Conductivity of Upper Reference K ₂ Btu/hr/(t²/°F/in.		110	120	121	132	131	2 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	152	158		108	100	124	142	142	155
Mean Tempera- ture of Upper Reference		147	349	379	595	584	715	686	1124		128	120	441	7.62	608	1062
ΔT through Lower Reference ΔT ₁		10.1	47.0	51.4	61.7	57.4	75.7	84.3	104		5.97	34.03	36.4	73.0	74.6	102
Thermal Conductivity of Lower Reference K ₁ Btu/hr/ft²/*F/in.		108	113	114	124	124	128	140	146		108	1.00 0.11	119	132	132	144
Mean Temperature of Lower Reference		118	206	229	429	426	512	761	871		111	316	333	593	909	832
AT through Specimen °F		6.45	33.5	34.8	38.4	36.6	51.2	50.8	56.9		3.92	23.4	23.7	43.2	43.9	50.9
Thermal Conductivity of Specimen  Ka Btu/nr/ft²/°F/in.	imen 1	57.2	58.5	60.1	70.9	70.4	2.37	84.2	88.1	imen 1	54. S	64.2	63.9	74.8	75.6	89.0
Mean Temperature of Specimen	Run 1 on Specimen	132	276	303	511	503	753	873	1001	Run 2 on Specimen	120	368	387	695	711	949

Table 93

The Thermal Conductivity of the Titanium Bar Alloy, Ti-679, Using the Comparative Rod Apparatus with 316 Stainless Steel References

Mean Temperature of Specimen	Thermal Conductivity of Specimen Kg Btu/hr/ft²/*F/in.	AT through Specimen	Mean Temperature of Lower Reference	Conductivity of Lower Reference K ₁ Btu/hr/ft²/*F/in.	through Lower Reference $\Delta T_1$	Tempera- ture of Upper Reference	Conductivity of Upper Reference K ₄ Btu/hr/ft²/•F/in.	through Upper Reference
i Run 1 cn Specimen	imen i							
108	58.4	4. 48	99.0	107	6.72	118	108	7.90
229	60.9	23.1	181	121	32.3	283	116	41.7
444	68.9	32.1	371	121	54.3	516	128	52.5
587	74.8	41.2	492	127	77.1	682	136	69. 7
622	76.0	41.7	527	128	72.2	718	138	70.6
634	76.5	41.1	539	129	71.6	728	139	59.3
366	82.8	42.0	899	136	74.0	865	145	17
957	87.2	58.3	821	143	106	1088	156	98.0
1031	89.	63. 7	883	146	116	1174	161	107
Run 2 on Specimen	imen 1							
1037	88.0	63.7	887	146	116	1174	161	103
685	75.9	43.8	583	131	75.4	784	141	71.2
442	67.8	36.0	362	120	57.4	526	128	60.4
438	67.4	35.8	360	120	57.0	520	128	59.5
291	62. 7	17.2	252	115	28.9	333	119	26. 5
185	60.2	12.2	157	110	20.0	213	113	19.5
133	58.0	6.60	119	108	10.6	149	110	10.6
76	57, 2	3,30	86.4	106	4.89	102	107	5 47

Table 94

The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr in Sheet Form Parallel to the Rolling Direction Using a Quartz Dilatometer

Temperature °F	Time	Observed Total Flongation 10 ⁻³ in.	Observed Unit Elongation 10 ⁻³ in./in.	Unit Elongation Correction for Dilatometer Motion	Corrected Specimen Unit Elongation
Run 2 on	1		1,	10-3 in./in.	10 ⁻³ in./in.
Specimen 1			l .		
75.0	7:55	0.0			
218	8:50	1.6	· 00	0.0	• •
266 309	9:27	2. 2	0. 51	0.04	0.0
404	9:47	2.9	0.70	0.06	0. 55
518	10:30	4.4	0.92	0. 07	0.76
622	11:20	6.1	1.40	0.10	0.99
710	12:20	7.9	1.94	0.14	1.50 2.08
735	1:13	9.2	2. 51	0.17	2. 68
842	1:56	9.6	2.92	0. 20	3.12
928	3:00	11.4	3. 05 3. 62	0. 20	3. 25
999	3:37	12.8	4. 08	0. 24	3. 86
1013	4:25	14.1	4. 48	0. 26	4. 34
70.0	4:50	14.4	4. 57	0. 28	4. 76
	10:50am	0.0	0.00	0. 29 0. 00	4. 86
Specimen	gth of specime length = 3.00;	en and end cap n and end caps 3 in.	s = 3.150 in. = 3.150 in.		
n 3 on				1	
pecimen 1		İ	!		
78.0	9:58	1	1	1	
231	10:20	0.0	0.00	0.0	
374	10:40	1.8	0.57	0.05	0.0
505	11:05	4.2	1.34	0.09	0. 62
565	11:20	6.4	2. 04	0.13	1.43
590	11:25	7.4	2. 35	0.15	2.17
799	12:00	11.1	2. 42	0.16	2. 50
924	1:15	13.5	3. 53	0 22	2. 58
999	1:35	14.9	4. 29	0. 26	3. 75
426 284	2:35	4.6	4. 74	0. 28	4. 55 5. 02
	3:10	2.6	1.47	0.11	1.57
16.1	8:00	0.0	0. 83	0.06	0. 89
	*			0.0	0. 0
Initial length	of specimen a	nd end caps = :		1	national and
rinal length o	of specimen an gth = 3.003 inc	nd end caps = ; d end caps = ;	143 inch		ili
		"apk # .	. IAI inch	1	

Table 95

The Thermal Expansion of the Titanium Ailoy Ti-5Al-5Sn-5Zr in Sheet Form Transverse to the Rolling Direction Using a Quartz Dilatometer

		Observed Total	Observed Unit	Unit Flongation Correction for Dilatometer	Corrected Specimen Unit
Temperature °F	Time	Elongation 10 ⁻³ in.	Elongation 10 ⁻³ in./in.	Motion 10 ⁻³ in./in.	Elongation $10^{-3}$ in./in.
Run 1 on					
Specimen 1				1	
76.0	10:30	0.0	ა. 00	0.0	0. 0
160	11:00	1.0	0. 32	0.03	0. 35
217	11:15	1.9	0. 61	0.04	0. <del>u</del> 5
240	11:30	2. 2	0.70	0.05	0. 75
415	12:30	4.7	1.50	0.11	1.61
600	1:45	7.6	2. 43	0.16	2. 59
766	2:35	10.2	3. 26	. 0. 21	3. 47
919	3:10	12.4	3.96	0.26	4.22
1012	4:05	14.0	4. 47	0.29	4. 76
1021	4:15	14.1	4. 51	0. 29	4. 80
1026	4:15	14.1	4. 51	0. 29	4. 80
930	4:55	12.6	4.03	0.26	4. 29
777	5:15	10.0	3. 20	G. 22	3. 42
650	5:30	7.8	2. 52	0.18	2. 70
570	5:40	6.4	2. 04	9.15	2. 19
522	5:48	5.6	1.79	0.14	1.93
80.7	7:50am	-0.8	-0.26	0.0	-0. 26
Notes Initial lan	ath of encol-	non and and a	200 - 2 120 4-		
Final leng Specimen Run 2 on		en and end ca	aps = 3.128 in		
Final leng Specimen	gth of specim	en and end ca			
Final leng Specimen Run 2 on	gth of specim	en and end ca 75 in.	aps = 3.128 in		0.0
Final leng Specimen Run 2 on Specimen 1	gth of specim length = 2.9	en and end ca 75 in.	aps = 3.128 in		0. 0 0. 58
Final leng Specimen Run 2 on Specimen 1 80.2	gth of specim length = 2.9	en and end ca 75 in.	aps = 3.128 in	0. 0	
Final leng Specimen Run 2 on Specimen 1 80. 2 208 408 585	gth of specim length = 2.9 2:35 3:00	0.0 1.7 4.7	0.00 0.54	0. 0 0. 0 0. 04	0. 58
Final leng Specimen Run 2 on Specimen 1 80. 2 208 408 585 810	2:35 3:00 3:30	0.0 1.7 4.7	0.00 0.54 1.51	0.0 0.04 0.10	0. 58 1. 61
Final leng Specimen  Run 2 on Specimen 1  80.2 298 408 585 810 1005	2:35 3:00 3:45	0.0 1.7 4.7	0.00 0.54 1.51 2.50	0.0 0.04 0.10 0.16	0. 58 1. 61 2. 66
Final leng Specimen Run 2 on Specimen 1 80. 2 208 408 585 810	2:35 3:00 3:45 4:05 4:25 5:15	0.0 1.7 4.7 7.8	0.00 0.54 1.51 2.50 3.68	0. 0 0. 04 0. 10 0. 16 0. 26	0. 58 1. 61 2. 66 3. 94
Final leng Specimen  Run 2 on Specimen 1  80.2 298 408 585 810 1005	2:35 3:00 3:45 4:25	0.0 1.7 4.7 7.8 11.5	0.00 0.54 1.51 2.50 3.68 4.80	0. 0 0. 04 0. 10 0. 16 0. 26 0. 29	0. 58 1. 61 2. 66 3. 94 5. 09
Final leng Specimen Run 2 on Specimen 1	gth of specim length = 2.9	en and end ca 75 in.	aps = 3.128 in		0.0

Table 96

The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-57r-1Mo-1V in Sheet Form Parallel to the Rolling Direction Using a Quartz Dilatometer

Temperature °F	Time	Observed Total Elongation 10 ⁻³ in.	Observed Unit Elongation 16 ⁻³ in./in.	Unit Elongation Correction for Dilatometer Motion 10 ⁻³ in./in.	Corrected Specimen Unit Elongation 10 ⁻³ in./in.
			0.0 0.44 1.52 2.35 3.49 4.54 2.67 1.14 -0.19 aps = 3.149 in. ps = 3.149 in.		0. 0 0. 48 1. 63 2. 51 3. 71 4. 82 2. 86 1. 24 -0. 19
	length = 2.9				
Final len		nen and end ca	0.0 0.60 1.56 2.61 3.66 4.84 3.85 3.15 1.98 0.06		0. 0 0. 64 1. 66 2. 78 3. 88 5. 12 4. 08 3. 35 2. 01 0. 06

Table 97

The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr-1 Mo-1V in Sheet Form Transverse to the Rolling Direction Using a Quartz Dilatometer

*F Time 10 ⁻³ in. 10 ⁻³ in./in. 10 ⁻³ in./in. 10 ⁻³ in./in. 10 ⁻³ in./in.  Run 1 on Specimen 1 75.5 8:00 0.0 0.0 0.0 0.05 0.75 421 9:05 4.9 1.56 0.11 1.67 503 9:28 6.2 1.98 0.14 2.12 576 9:45 7.3 2.33 0.16 2.49 704 10:15 9.4 3.00 0.20 3.20 847 10:40 11.7 3.73 0.24 3.97 1007 11:10 14.6 4.65 0.28 4.93 789 11:25 10.6 3.38 0.22 3.60 365 12:20 3.5 1.12 0.09 1.21 77.0 8:00 -0.5 -0.16 0.0	0. 0       0. 0       0. 0         0. 70       0. 05       0. 75         1. 56       0. 11       1. 67         1. 98       0. 14       2. 12         2. 33       0. 16       2. 49         3. 00       0. 20       3. 20         3. 73       0. 24       3. 97         4. 65       0. 28       4. 93         3. 38       0. 22       3. 60         1. 12       0. 09       1. 21
Specimen 1         8:00         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""><td>0. 70     0. 05     0. 75       1. 56     0. 11     1. 67       1. 98     0. 14     2. 12       2. 33     0. 16     2. 49       3. 00     0. 20     3. 20       3. 73     0. 24     3. 97       4. 65     0. 28     4. 93       3. 38     0. 22     3. 60       1. 12     0. 09     1. 21       -0. 16     0. 0     -0. 16</td></th<>	0. 70     0. 05     0. 75       1. 56     0. 11     1. 67       1. 98     0. 14     2. 12       2. 33     0. 16     2. 49       3. 00     0. 20     3. 20       3. 73     0. 24     3. 97       4. 65     0. 28     4. 93       3. 38     0. 22     3. 60       1. 12     0. 09     1. 21       -0. 16     0. 0     -0. 16
75.5         8:00         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 </td <td>0. 70     0. 05     0. 75       1. 56     0. 11     1. 67       1. 98     0. 14     2. 12       2. 33     0. 16     2. 49       3. 00     0. 20     3. 20       3. 73     0. 24     3. 97       4. 65     0. 28     4. 93       3. 38     0. 22     3. 60       1. 12     0. 09     1. 21       -0. 16     0. 0     -0. 16</td>	0. 70     0. 05     0. 75       1. 56     0. 11     1. 67       1. 98     0. 14     2. 12       2. 33     0. 16     2. 49       3. 00     0. 20     3. 20       3. 73     0. 24     3. 97       4. 65     0. 28     4. 93       3. 38     0. 22     3. 60       1. 12     0. 09     1. 21       -0. 16     0. 0     -0. 16
233         8:35         2.2         0.70         0.05         0.75           421         9:05         4.9         1.56         0.11         1.67           503         9:28         6.2         1.98         0.14         2.12           576         9:45         7.3         2.33         0.16         2.49           704         10:15         9.4         3.00         0.20         3.20           847         10:40         11.7         3.73         0.24         3.97           1007         11:10         14.6         4.65         0.28         4.93           789         11:25         10.6         3.38         0.22         3.60           365         12:20         3.5         1.12         0.09         1.21	0. 70     0. 05     0. 75       1. 56     0. 11     1. 67       1. 98     0. 14     2. 12       2. 33     0. 16     2. 49       3. 00     0. 20     3. 20       3. 73     0. 24     3. 97       4. 65     0. 28     4. 93       3. 38     0. 22     3. 60       1. 12     0. 09     1. 21       -0. 16     0. 0     -0. 16
421         9:05         4.9         1.56         0.11         1.67           503         9:28         6.2         1.98         0.14         2.12           576         9:45         7.3         2.33         0.16         2.49           704         10:15         9.4         3.00         0.20         3.20           847         10:40         11.7         3.73         0.24         3.97           1007         11:10         14.6         4.65         0.28         4.93           789         11:25         10.6         3.38         0.22         3.60           365         12:20         3.5         1.12         0.09         1.21	1.56       0.11       1.67         1.98       0.14       2.12         2.33       0.16       2.49         3.00       0.20       3.20         3.73       0.24       3.97         4.65       0.28       4.93         3.38       0.22       3.60         1.12       0.09       1.21         -0.16       0.0       -0.16
503         9:28         6.2         1.98         0.14.         2.12           576         9:45         7.3         2.33         0.16         2.49           704         10:15         9.4         3.00         0.20         3.20           847         10:40         11.7         3.73         0.24         3.97           1007         11:10         14.6         4.65         0.28         4.93           789         11:25         10.6         3.38         0.22         3.60           365         12:20         3.5         1.12         0.09         1.21	1.98     0.14     2.12       2.33     0.16     2.49       3.00     0.20     3.20       3.73     0.24     3.97       4.65     0.28     4.93       3.38     0.22     3.60       1.12     0.09     1.21       -0.16     -0.16
576         9:45         7.3         2.33         0.16         2.49           704         10:15         9.4         3.00         0.20         3.20           847         10:40         11.7         3.73         0.24         3.97           1007         11:10         14.6         4.65         0.28         4.93           789         11:25         10.6         3.38         0.22         3.60           365         12:20         3.5         1.12         0.09         1.21	2. 33     0. 16     2. 49       3. 00     0. 20     3. 20       3. 73     0. 24     3. 97       4. 65     0. 28     4. 93       3. 38     0. 22     3. 60       1. 12     0. 09     1. 21       -0. 16     -0. 16
704         10:15         9.4         3.00         0.20         3.20           847         10:40         11.7         3.73         0.24         3.97           1007         11:10         14.6         4.65         0.28         4.93           789         11:25         10.6         3.38         0.22         3.60           365         12:20         3.5         1.12         0.09         1.21	3. 00     0. 20     3. 20       3. 73     0. 24     3. 97       4. 65     0. 28     4. 93       3. 38     0. 22     3. 60       1. 12     0. 09     1. 21       -0. 16     -0. 16
1007     11:10     14.6     4.65     0.28     4.93       789     11:25     10.6     3.38     0.22     3.60       365     12:20     3.5     1.12     0.09     1.21	4. 65     0. 28     4. 93       3. 38     0. 22     3. 60       1. 12     0. 09     1. 21       -0. 16     0. 0     -0. 16
789         11:25         10.6         3.38         0.22         3.60           365         12:20         3.5         1.12         0.09         1.21	3.38     0.22     3.60       1.12     0.09     1.21       -0.16     0.0     -0.16
789         11:25         10.6         3.38         0.22         3.60           365         12:20         3.5         1.12         0.09         1.21	3.38     0.22     3.60       1.12     0.09     1.21       -0.16     0.0     -0.16
	-0.18 0.0 -0.16
77.0 8:00 -0.5 -0.18 0.0 -0.16	
	ps = 3.137 in.
Run 2 on Specimen 1	
opcomion =	
78.5 9:25 0.0 0.0 0.0	
206 9:55 1.7 0.54 0.04 0.58	0.54 0.04 0.58
206 9:55 1.7 0.54 0.04 0.58 406 10:20 4.7 1.49 0.10 1.59	0.54 0.04 0.58 1.49 0.10 1.59
206     9:55     1.7     0.54     0.04     0.58       406     10:20     4.7     1.49     0.10     1.59       578     10:45     7.6     2.42     0.16     2.58	0.54     0.04     0.58       1.49     0.10     1.59       2.42     0.16     2.58
206         9:55         1.7         0.54         0.04         0.58           406         10:20         4.7         1.49         0.10         1.59           578         10:45         7.6         2.42         0.16         2.58           716         11:00         10.1         3.21         0.20         3.41	0.54     0.04     0.58       1.49     0.10     1.59       2.42     0.16     2.58       3.21     0.20     3.41
206         9:55         1.7         0.54         0.04         0.58           406         10:20         4.7         1.49         0.10         1.59           578         10:45         7.6         2.42         0.16         2.58           716         11:00         13.1         3.21         0.20         3.41           812         11:15         11.7         3.72         0.23         3.95	0.54     0.04     0.58       1.49     0.10     1.59       2.42     0.16     2.58       3.21     0.20     3.41       3.72     0.23     3.95
206         9:55         1.7         0.54         0.04         0.58           406         10:20         4.7         1.49         0.10         1.59           578         10:45         7.6         2.42         0.16         2.58           716         11:00         13.1         3.21         0.20         3.41           812         11:15         11.7         3.72         0.23         3.95           1007         12:40         15.2         4.83         0.28         5.11	0.54     0.04     0.58       1.49     0.10     1.59       2.42     0.16     2.58       3.21     0.20     3.41       3.72     0.23     3.95       4.83     0.28     5.11
206         9:55         1.7         0.54         0.04         0.58           406         10:20         4.7         1.49         0.10         1.59           578         10:45         7.6         2.42         0.16         2.58           716         11:00         10.1         3.21         0.20         3.41           812         11:15         11.7         3.72         0.23         3.95           1007         12:40         15.2         4.83         0.28         5.11           714         1:05         9.7         3.08         0.20         3.28	0.54     0.04     0.58       1.49     0.10     1.59       2.42     0.16     2.58       3.21     0.20     3.41       3.72     0.23     3.95       4.83     0.28     5.11       3.08     0.20     3.28
206         9:55         1.7         0.54         0.04         0.58           406         10:20         4.7         1.49         0.10         1.59           578         10:45         7.6         2.42         0.16         2.58           716         11:00         13.1         3.21         0.20         3.41           812         11:15         11.7         3.72         0.23         3.95           1007         12:40         15.2         4.83         0.28         5.11	0.54     0.04     0.58       1.49     0.10     1.59       2.42     0.16     2.58       3.21     0.20     3.41       3.72     0.23     3.95       4.83     0.28     5.11       3.08     0.20     3.28       1.91     0.13     2.04

Table 98

The Thermal Expansion of the Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo in Sheet Form Parallel to the Rolling Direction Using a Quartz Dilatometer

0:00	0. 0 0. 60 0. 0 0. 57 1. 52 2. 35 3. 77 4. 54 2. 66 1. 68	0. 0 0. 05 0. 0 0. 04 0. 11 0. 16 0. 23 0. 28 0. 19	0. 0 0. 65 0. 0 0. 61 1. 63 2. 51 4. 00 4. 82
0:35     1.9       1:00     0.0       1:38     1.8       2:10     4.8       2:35     7.4       3:05     11.9       3:55     14.3       4:20     8.4       4:40     5.3	0.60 0.0 0.57 1.52 2.35 3.77 4.54 2.66	0. 05 0. 0 0. 04 0. 11 0. 16 0. 23 0. 28	0. 65 0. 0 0. 61 1. 63 2. 51 4. 00
0:35     1.9       1:00     0.0       1:38     1.8       2:10     4.8       2:35     7.4       3:05     11.9       3:55     14.3       4:20     8.4       4:40     5.3	0.60 0.0 0.57 1.52 2.35 3.77 4.54 2.66	0. 05 0. 0 0. 04 0. 11 0. 16 0. 23 0. 28	0. 65 0. 0 0. 61 1. 63 2. 51 4. 00
1:00     0.0       1:38     1.8       2:10     4.6       2:35     7.4       3:05     11.9       3:55     14.3       4:20     8.4       4:40     5.3	0.60 0.0 0.57 1.52 2.35 3.77 4.54 2.66	0. 05 0. 0 0. 04 0. 11 0. 16 0. 23 0. 28	0. 0 0. 61 1. 63 2. 51 4. 00
1:00     0.0       1:38     1.8       2:10     4.6       2:35     7.4       3:05     11.9       3:55     14.3       4:20     8.4       4:40     5.3	0. 0 0. 57 1. 52 2. 35 3. 77 4. 54 2. 66	0. 0 0. 04 0. 11 0. 16 0. 23 0. 28	0. 0 0. 61 1. 63 2. 51 4. 00
1:38	1.52 2.35 3.77 4.54 2.66	0. 11 0. 16 0. 23 0. 28	1.63 2.51 4.00
2:35 7.4 3:05 11.9 3:55 14.3 4:20 8.4 4:40 5.3	2. 35 3. 77 4. 54 2. 66	0. 16 0. 23 0. 28	2. 51 4. 00
3:05 11.9 3:55 14.3 4:20 8.4 4:40 5.3	3.77 4.54 2.66	0. <b>23</b> 0. 28	4.00
3:55 14.3 4:20 8.4 4:40 5.3	4. 54 2. 66	0. 28	
4:20 8.4 4:40 5.3	2.66		4.82
4:40 5.3		0.19	
	1.68		2. 85
8:00 0.0		0. 13	1.81
	0.0	0.0	0.0
. 2 0, 001 m			
0.45			C. 0
			0. 62 1. 59
	- 1 27	1	2. 57
1.10		0.10	3. 85
1.45 11.4			
1:45 11.4			
1:45 11.4 2:20 15.1 1:05 6.9	4. 80 2. 19	0. 28 0. 14	5. 08 2. 33
1	0:45 0:20 0:50 1:15	0:45 0.0 0.0 0:20 1.8 0.57 0:50 4.7 1.49 1:15 7.6 2.41	9:45 0.0 0.0 0.0 9:20 1.8 0.57 0.05 9:50 4.7 1.49 0.10 1:15 7.6 2.41 0.16

Table 99

The Thermal Expansion of the Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo in Sheet Form Transverse to the Rolling Direction Using a Quantz Dilatometer

		Observed	Observed	Unit Elongation Correction for	Corrected Specimen
		Total	Unit	Dilatometer	Unit
Temperature		Elongation	Elongation	Motion	Elougation
°F	Time	10 ⁻³ in.	10 ³ in./in.	10 ⁻³ in./in.	10 ⁻³ in./in.
Run 1 on					
Specimen 2					
77.5	8:00	0.0	0.0	0.0	0. 0
244	8:35	2. 2	0.70	0.05	0. 75
404	9:10	4.7	1.50	0.10	1.60
610	9:47	8.0	2.55	0.17	2. 72
793	10:10	10.4	3. 31	0. 22	2. 53
1001	11:16	13.7	4. 37	0. 28	4. 65
781	11:35	10.1	3. 22	0. 22	3. 44
337	12:37	3.0	0.96	0.08	1.04
90.3	1:20	0.0	0.0	0.0	0.0
Run 2 on Specimen 1					
80.0	10:25	0.0	0.0	0.0	0.0
217	10:55	1.7	0.54	0.04	0. 58
410	11:15	4.8	1.53	0.10	1.63
581	11:35	7.6	2. 42	0.16	2. 58
796	12:25	11.1	3. 53	0. 22	3. 75
1004	1:00	14.7	4. 67	0. 28	4. 95
686	1:25	9.5	3.02	0.19	3. 21
374	2:00	5.0	1.59	0.09	1.68
77.5	8:00	-0.2	0.06	0.0	0.06
	i .	1	1	1	
Note: Initial len	gth of specia	men and end c	aps = 3.144 inc	ch	
Final leng	th of specin	nen and end ca	ps = 3.144 inc	ch	
Specimen	length = 3.0	01 inch			

Table 100

The Thermal Expansion of the Titanium Alloy Ti-5Al-5Sn-5Zr in Bar Form Parallel to the Rolling Direction Using a Quartz Dilatometer

		1	T	Unit Elongation	Corrected
		Observed	Observed	Correction for	Specimen
		Totai	Unit	Dilatometer	Unit
Temperature		Eiongation	Eiongation	Motion	Elongation
*F	Time	10 ⁻³ in.	10 ⁻³ in./in.	10-3 in./in.	10 ⁻³ in./in.
D 1					
Run 1 on Specimen 1		1			
•	1 00			0.0	
83.5	1:05	0.0	0.0	0.0	0. 0
265 330	2:15	2.0	0.67	0.06	0. 73
	2:30	3.0	1.00	0.08	1.08
388	3:00	4.0	1.33	0.10	1.43
436 530	3:07	4.7	1.57	0.11	1.68
	3:25	6. 1	2. 03	0.14	2. 17
593	3:35	7.7	2.37	0.16	2. 53
649	3:45	8. 0	2. 67	0.18	2. 85
736	3:57	9.5	3.17	0. 20	3. 37
809	4:08	10.6	3.53	0. 22	3.75
852	4:14	11.2	3.73	0. 24	3.97
394	4:22	11.9	3.96	0. 25	4. 21
938	4:28	12.7	4.23	0. 26	4. 49
1009	4:35	14.0	4.66	0. 29	4.95
305	4:50	3.5	1.17	0. 07	1.24
278	4:51	2.9	0.97	0.06	1.03
91.0	5:25	0.2	0.07	0.01	0.08
71.8	6:15	0.0	0.0	0. 0	0. 0
Run 2 on Specimen 1					
76. 0					
147	1:20	0.0	0.0	0.0	0.0
189	1:52	0.9	0.30	0.02	0.32
286	2:05	1.5 2.9	0. 50 0. 97	0. 04 0. 06	0.54 1.03
404	2:30 3:00	4.5	1 50	0.10	1.60
503	3:45	6.1	2.03	0.10	2.16
511	3:45	6. 2	2.06	0.15	2. 19
70	10:26	-0.1	-0.03	0.13	-0. 03
70	8:40	0.0	0.0	0.0	0.0
144	9:05	0.7	0.23	0.02	0. 25
187	9:40	1.5	0.50	0.04	0. 54
258	10:00	2.5	V. 83	9.06	0.89
398	12:20	4.4	1.47	U. 10	1.57
577	10:35	7.4	2, 47	0.15	2. 62
698	10:50	9.3	3.10	0.19	3. 29
790	11:08	10.6	3.53	0. 22	3. 75
910	11:23	12.5	4.17	0. 26	4. 43
974	11:33	13.7	4.57	0. 28	4. 85
1004	11:44	14.1	4.70	0. 28	4. 98
772	12:00	10. 2	3.40	0. 21	3. 61
638	12:20	8.0	2.67	0.17	2. 84
502	12:35	5.6	1.87	0.13	2.00
458	12:55	5.1	1.70	0.12	1.82
85	3:45	0.0	0.0	0.0	0. 0
		1	1		
Note: Initial spec		= 3.001 inch = 3.001 inch			

Table 101

The Thermal Expansion of the Titanium Alloy Ti-679
in Bar Form Parallel to the Rolling Direction Using a Quartz Dilatometer

Temperature	est.	Observed Total Elongation	Observed Unit Elongation	Unit Elongation Correction for Dilatometer Motion	Corrected Specimen Unit Elongation
*F	Time	10 ⁻³ in.	19 ⁻³ in./in.	10 ⁻³ in./in.	10 ⁻³ in./in.
Run 2 on					
Specimen 1					
74.5	3:45	0.0	0.0	0.0	0.0
148	4:07	0.9	0.30	0.02	0. 32
210	4:25	1.9	0.63	0.04	0. 67
296	4:47	3.1	1.03	0.07	1. 10
408	5:12	4.7	1.57	0.10	1. 67
503	5:40	6.1	2. 03	0.13	2.16
593	6:00	7.6	2.53	0.16	2. 69
704	6:35	9.5	3.17	0. 20	3. 37
815	6:50	11.3	3.76	0. 23	3.99
890	7:10	12.5	4.16	0. 25	4.41
998	7:25	14.5	4.83	0. 28	5. 11
72	8:00	0.2	0.07	0.0	0. 07
Final spe Run 3 on Specimen 1	cimen length	= 3.001 in.	ı		
80.3	12:20	0.0	0.0	0.0	0.0
212	1:10	1.8	0.60	0.04	0.0
406	1:35	4.8	1.60	0.04	1.70
599	1:55	7.9	2.63	0.16	2. 79
797	2:15	11.4	3.80	0. 22	4. 02
998	2:40	14.8	4.93	0. 28	5. 21
774	3:00	10.8	3.60	0. 22	3.82
485	3:30	5. 9	1.97	0.13	2.10
312	4:10	3.2	1.07	0.07	1.14
78.0	8:00	0.2	0.06	0.0	0.06
Note: Initial spec Final spec		= 3.001 inch = 3.001 inch			

Table 102

The Enthalpy of the Titanium Alloy Ti-679 in Bar Form Using the Adiabatic Calorimeter

Enthalpy Above 85°F Reference Btu/lb	3.17 12.8 48.7 65.3 86.0 100	45.9 63.5 117 96.9
Enthalpy $h_{\overline{M}_{S}}^{K}(t_{2}-t_{1})$ Btu/lb	3.97 13.5 48.6 63.9 86.3 99.2	45.9 63.3 116 96.7
Final Wt. of Sample gm	9. 7059 9. 7057 9. 7054 9. 7054 9. 7054 9. 7054	9. 9125 9. 9125 9. 9125 9. 9130
Initial Wt. of Sample gm	9. 7559 9. 7059 9. 7057 9. 7054 9. 7054 9. 7054	9, 9125 9, 9125 9, 9125 9, 9127
Time to Temp. Min	10 25 35 31 45 60	4 6 6 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9
Initial Sample Temp.	115 194 477 627 766 875	461 602 977 857
Change in Cup Temp.	0.32 1.09 3.92 5.15 6.96 8.00	3.78 5.21 9.56 7.96
Final Cup Temp.	77. 45 79. 13 85. 61 96. 50 90. 74	83.41 86.95 94.91 86.87
Initial Cup Temp.	en 1 77. 13 76. 04 81. 69 91. 35 80. 26 82. 74 87. 61	en 2 79.63 81.74 85.35 78,91
Run No.	Specimen 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Specimen 9 7 9 10 8 11 8 11 7

Note: Each degree of temperature change of the cup represents a specimen enthalpy above the final cup temperature of 0.2654 Btu per pound.

Table 103

The Enthalpy of the Titanium Alloy Ti-5Al-5Sn-5Zr in Bar Form Using the Adiabatic Calorimeter

Enthalpy Above 85°F Reference Btu/lb	5.80 16.8 31.7 52.5 70.8 90.9 102 124
Enthalpy $h^{*}\frac{K}{W_{\mathbf{S}}}(t_{\mathbf{z}}-t_{\mathbf{t}})$ $Btu/lb$	6.81 17.7 32.0 52.9 69.8 90.9 123 123
Final Wt. of Sampie gm	8. 3030 8. 3022 8. 3022 8. 3010 8. 3010 8. 3010 8. 3015 8. 3015
Initial Wt. of Sample gm	8.3026 8.3020 8.3022 8.3022 8.3010 8.3010 8.3010
Time to Temp. Min	118 20 33 42 42 52 57 69
Initial Sample Temp.	133 212 336 478 636 764 858 995
Change in Cup Temp.	0.47 1.22 2.21 3.65 4.83 6.27 7.00 8.50
Final Cup Temp.	76. 69 78. 04 82. 56 81. 82 91. 69 85. 09 88. 00
Initial Cup Temp.	ten 1 76. 22 76. 82 80. 35 78. 17 86. 87 78. 82 82. 35 79. 50 84. 65
Run No.	Specimen 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Note: Each degree of temperature change of the cup represents a specimen enthalpy above the final cup temperature of 0.2654 Btu per pound.

Table 104

The Enthalpy of the Titanium Alloy Ti-5Al-5Sn-5Zr in Sheet Form Using the Adiabatic Calorimeter

py	15°F	nce	16		0										
Enthalpy	Above 85°F	Reference	Btu/1b		2.8	24.2	30.6	51.4	67.2	95.1	110	130		24.8	116
Enthalpy	2,	Ws	Btu/lb		3.64	25.4	31.3	52.4	6.99	96.0	110	131		25.5	116
-	Wt. of	Sample	gm		1.6553	1.6553	1.6555	1.6555	1.6555	1.6555	1.6553	1.6555		2, 9690	2, 1412
Initial	Wt. of	Sample	gm		1,6555	1.6553	1.6553	1.6555	1.6555	1.6555	1.6555	1.6553		2, 9690	2. 1412
Time	to	Temp.	Min		20	43	30	48	30	49	32	51		37	64
Initial	Sample	Temp.	٠ تا		110	245	316	472	627	765	893	666		259	962
Change	in Cup	Temp.	• F		0.05	0.35	0.43	0.72	0.92	1.32	1. 52	1.80		0.63	2.07
Final	Cup	Temp.	• F		77.50	76.78	80.43	73.04	87.74	78.82	82.65	79.43		79.63	85.48
Initial	Cup	Temp.	• F	en 1	77.45	76.43	30.00 30.00	1,7.32	86.82	77.50	31, 13	77.63	en 2		83. 41
		Run	No.	Specimen	-1	7	က	4	വ	9	2	<b>®</b>	Specimen 2	6	10

Note: Each degree of temperature change of the cup represents a specimen enthalpy above the final cup temperature of 0.2654 Btu per pound.

Table 105

The Enthalpy of the Ttanium Alloy Ti-5Al-5Sn-5Zr-1Mo-1v in Sheet Form using the Adiabatic Calorimeter

Enthalpy	Above 85°F	Reference	Btu/lb		13	3.0	9.2	4.2	1.5	66.2	4.6	110	=		t	-	65.6	6.		,	9a. G
	-	}			_	_	T-1			_			- 12			_	_	= _			.,
	X	Wg	Btu/1b		100	14.5	20. 2	36.3	51.5	66.0	89.2	111	121			20. GZ	65.6	119			59.3
Final		Sample	m M			1.8232	1.8231	1.8231	1.8231	1.8227	1.8227	1.8230	1.8230					3.1738			4. 9969
Initial	Wt. of	Sample	gm			1.8233	1.8232	1.8231	1.8231	1.8231	1.8227	1.8227	1.8230		1	3.1738	3.1738	3.1738			4. 9969
Time	to	Temp.	Min		!	35	48	80	42	52	41	55	848		ļ	45	61	84	~~		46
Initial	Sample	Temp.	면.		1	165	215	312	474	619	766	873	1003			248	586	950			220
Change	in Cup	Temp.	*F		;	0.22	0.31	0.55	0.78	1.00	1.25	1.68	1.82		(	0.68		3. 15			2.46
Final	Cup	Temp.	٠ ټ			75. 78	76.13	79.59	85.00	86.43	87.04	79, 54	90.56		9	. 8. CO	84.91	77.41			87. 90
Initial	Cup	Temp.	े नि	50	en 1	75. 56	75.82		84. 22	85.43	85.69	77.86	88.74	,	en 2	77.32	83, 18	80, 56		ien 3	85. 44
		Run	No.		Specimen		N	က	4	വ	9	_	80	_	Specimen 2	<i>-</i> ග	10	11		Specimen 3	12

Note: Each degree of temperature change of the cup represents a specimen enthalpy above the final cup temperature of 0.2654 Btu per pound.

Table 106

The Enthalpy of the Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo in Sheet Form Using the Adiabatic Calorimeter

Enthalpy Above 85°F Reference Btu/lb	19.4 33.9 48.4 69.5 112 133	13.0 63.8	119
Enthalpy $h = \frac{K}{\sqrt{3}}, (t_2 - t_1)$ Btu/lb	20.8 34.6 48.4 69.2 90.0 113	13.9	119
Final Wt. of Sample gm	1.7396 1.7394 1.7394 1.7389 1.7396 1.7396	7. 1800	7. 1798 7. 1798
Initial Wt. of Sample	1. 7396 1. 7396 1. 7394 1. 7394 1. 7394 1. 7398		7, 1802
Time to Temp. Min	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ස ය ග අ	330
Initial Sample Temp.	203 337 457 646 771 880 994	189 555	936
Change in Cup Temp.	0. 30 0. 70 0. 70 1. 00 1. 30 1. 63	3.83	5.97 7.10
Final Cup Temp.	76. 43 80. 04 85. 61 86. 95 88. 17 81. 17	78.87 83.05	80.06 84.81
Initial Cup Temp.	en 1 76.13 79.54 84.91 85.95 86.87 79.54	en 2 78.04 79.23 en 3	74.09
Run No.	Specimen 3 77 77 88 88 77 77 88 77 77 77 77 77 77	Specimen 2 9 78.0 10 79.3 Specimen 3	122

Note: Each degree of temperature change of the cup represents a specimen enthalpy above the final cup temperature of 0.2654 Btu per pound.

## APPENDIX III

Summary of Property Evaluations

(Tables No. 107-109)

Table 107

Summary of Evaluations for Ti-5Al-5Sn-5Zr-1Mo-1V, Ti-5Al-5Sn-5Zr, and Ti-6Al-2Sn-4Zr-2Mo Alloys in Sheet Form

		Temp	eratire and	Temperature and Spacings Chartite	1			
Test	-110° F	BT	400° F	600° F	800° F	1000° F	Tests /Allow	Total Teats
Teneion							20000	Total Iesus
		10L-10T	10L-10T	10L-10T	10110T	101 133	a cos	
Compression		5L- 5T	T. 5.	-		101	208	3
Shear (Single)		T. 7.	, T		or- o.i.	Tc -Jc	20	150
Bearing e/D = 1.5		20 - 25	21. 31	3F - 2T	5L- 5T	5L- 5T	ଛ	150
Bearing e/D = 2.0		2L- 31	3L- 3T	3L- 3T	3L- 3T	3L- 3T	30	6
Exposure-Tensileb		To -To	31 3.L	3L- 3T	3L- 3T	3L- 3T	30	6
1000 hr				ŧ	ļ			
190 hr				8 L	61.	βĽ	18	34
10 hr					6L	19	13	36
Exposure-Shear	ě	Same of Denominal Property	£	4		4.	❤*	12
Over-Exposure-Tensile		dva ca amac	oante-Teusi	le tests			34	102
To hr		3L at each te	outitor and on the	4 1100 1150		° ₁	,	
Creep			יייי ליכו שוחו ב	1200, and 1200, and 1200		<b>X</b> 4	ത	22
Axial Fatigue				101	10L	10L	30	8
A . 1.0		101	101		Ġ			
A - 0 67		101	101		10L		30	8
Dynamic Modulus		É	101		101		30	6
Fracture Toughness	75 27	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	or all five temperatures	mperatures			~	9
Strees Corrector	10.70	יוני יוני	31- 31				18	7
		Three specin	pesodxe sueu	Three specimens exposed under 9 temperature-stress conditions	erature-str	esscondition		10g
								204

L - Longitudinal direction T - Transverse direction

a - Two heats per alloy tested in tension
 b - Duplicate specimens tested at room temperature and the exposure temperature after the exposure period
 c - One specimen per group tested at the exposure temperature

Table 108

Summary of Evaluations for Ti-5Al-5Sn-5Zr and Ti-679 Alloys in Bar Form

		T	Temperature and Specimen Quantity	Specimen	Quantity			
Test	~110° F	RT	400° F	800° F	800° F	1000° F	Tests/Alloy	Total Tests
Tension		10L	101	10L	10L	10T	100a	200
Compression		5L	51,	5L	51	5L	25	20
Shear (Double)		2F	5L	5L	5L	SI.	25	50
Exposure-Tennile								
1000 hr				9	8L	8L	18	36
100 hr					4L	41.	90	<b>9</b> 2
10 hr						41	-4"	00
Over-Exposure-Tensile						•		
10 hr		3L at	3L at each temperature of 1100, 1150, and 1200° F	re of 1100,	1150, and 13	300° F	0	13
Creep				10L	10L	10L	30	9
Axial Fatigue								
A = 8		10L	10L		10L		30	90
A = 0.67		10L	10L		10L		30	ప్ల
Dynamic Modulus		1L for a	1L for all five temperatures	tures				8
Impact		3L	3L	3	31		12	24
Fracture Toughness	3L	3F	31				G	18

L - Longitudinal direction a - Two heats per alloy tested in tension b - Duplicate specimens tested at room temperature and the exposure temperature after the exposure period c - One specimen per group tested at the exposure temperature

Table 109

Summary of Thermal Conductivity, Thermal Expansion, and Specific Heat Determinations

Alloy	Form	Temperature Range - ° F	Total Tests for Each Property
Ti-5Al-5Sn-5Zr	Sheet and Bar	RT to 1000	6
Ti-5Al-5Sn-5Zr-1Mo-1V	Sheet	RT to 1000	3
Ti-6Al-2Sn-4Zr-2Mo	Sheet	RT to 1000	3
Ti-679	Bar	RT to 1000	3

a Thermal expansion determined for both transverse and longitudinal orientations for the alloys in sheet form

DD .50RM. 1473

Security Classification					
DOCUMENT CO	NTROL DATA - R&D				
(Security classification of title, body of abstract and index					
1. ORIGINATING ACTIVITY (Corporate author)	20. R		SECURITY CLASSIFICATION		
Southern Research Institute			classified		
2000 Ninth Avenue, South	26 6	ROUP			
Birmingham, Alabama 35205					
3. REPORT TITLE					
Mechanical and Thermal Properties	of High-Temperatu	re T	itanium Alloys		
R. C.			·		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)					
Final Report, December 1, 1964 - A	uenc+ 21 1066				
5. AUTHOR(S) (Lest name, first name, initial)	ugust 31, 1900				
5. AU (NUR(S) (Lest name, Itret name, Initial)					
Dotson, Clifford L.					
botson, chilloid b.					
S. REPORT DATE	74. TOTAL NO. OF PAGES	- 1	75. NO. OF REFS		
March 1967	338	Ţ	TO NO. OF HER		
Se. CONTRACT OR GRANT NO.		411112	~ ~ (2)		
AF 33(615)-2266	Sa. ORIGINATOR'S REPORT NUMBER(S)				
à PROJECT NO.	AFML-TR-67-4	1			
		_			
7381	Sh OTHER REPORT HO(\$)	(A av a	ther numbers that may be enabled		
^c Task Nr. 738106	Sb. OTHER REPORT NO(\$) (Any other numbers that may be seeighed this report)		net limited and may so see Side		
d.					
10 AVAILABILITY/LIMITATION NOTICES This docum	ent is subject to	SDE	cial export controls		
and each transmittal to foreign go					
made only with prior approval of t					
Wright-Patterson AFB, Ohio 45433.		-502	(12.11.7)		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY	ACTIV	ITY		
	Air Force Materials Laboratory				
	Research & Technology Division Air Force Systems Command				
	Wright-Patters	on A	FB. Ohio		
13. ABSTRACT					
The purpose of this program w	as to obtain prel	imin	arv mechanical- and		
thermal-property design data on so					
sheet alloys (Ti-5Al-5Sn-5Zr, Ti-5					
2Mo) and two bar alloys (Ti-5Al-5S					
were performed to obtain data on t					
pression, bearing, shear, thermal					
toughness, stress corrosion, impac					
thermal expansion, and specific he					
determined over the temperature ra					
ties being measured at 70, 400, 60			, with most proper		
they being measured at 70, 100, 00	0, 000 0 2000 .	•			
Results of the tests show tha	t the new Ti-6Al-	2Sn⊶	42r-2Mo sheet allow		
has well-balanced properties; with					
comparable to or higher than those		_			
long-time strength (creep) than ot					
compared. The Ti-679 bar alloy al					
the temperature range at which pro					
This abstract is subject to spec					
foreign governments or foreign nations	als may be made or	nly v	vith prior approval		
of the AF Materials Laboratory (MAA)					
Wright-Patterson AFB, Ohio 45433.	.,		GV		

UNCLASSIFIED

Security Classification

LINK A		LINK B		LINK C	
ROLE	wt	ROLE	WT	ROLE	WY
				ļ	
	<b></b>	<del></del>	<del></del>	<b></b>	

## INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) Issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Dats" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200. IO and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, snnual, or final. Give the inclusive dates when a specific reporting period is
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first tame, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- REPORT DAT Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
- 7s. TOTAL NUMBER OF PAGES: The total page count ahould follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES. Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was writters.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9s. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(\$): If the report has been assigned any other report numbers (either by the originator or by the aponaor), siso enter this number(s).
- IO. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign sanouncement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, Indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory aponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual aummary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 156 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.