

CHƯƠNG 2: TÍCH PHÂN BỘI

CHƯƠNG 2: TÍCH PHÂN BỘI

§1. TÍCH PHÂN PHỤ THUỘC THAM SỐ

1. Tích phân xác định phụ thuộc tham số

Định nghĩa:

```
Cho hàm số f(x,y) xác định trên [a,b] \times [c,d]. f(x,y) khả tích theo x trên [a,b] với mọi y \in [c,d]. Tích phân I(y) = \int\limits_a^b f(x,y) dx gọi là tích phân phụ thuộc tham số y.
```

Định lí: Nếu hàm số f(x,y) liên tục trên $[a,b] \times [c,d]$ thì I(y) là hàm số của y liên tục trên [c,d].

Định lí: Nếu hàm số f(x,y) liên tục trên $[a,b] \times [c,d]$

thì
$$\int_{c}^{d} I(y)dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

nghĩa là:
$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

Định lí: Nếu

- * f(x,y) liên tục theo biến x trên [a,b] với mọi $y \in [c,d]$
- * $f'_y(x, y)$ liên tục trên $[a,b] \times [c,d]$

thì
$$I'(y) = \int_a^b f_y'(x, y) dx$$

hay
$$\left(\int_{a}^{b} f(x,y)dx\right)' = \int_{a}^{b} f'_{y}(x,y)dx.$$

Ví dụ: Tính
$$I = \int_{-\infty}^{1} \frac{x^b - x^a}{1 - x^a}$$

Tính
$$I = \int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx$$
 $(0 < a < b)$

Giải:

Có
$$\frac{x^b - x^a}{\ln x} = \int_a^b x^y dy$$

Hàm số $f(x, y) = x^y$ liên tục trên $[0,1] \times [a,b]$

$$I = \int_{0}^{1} \left(\int_{a}^{b} x^{y} dy \right) dx = \int_{a}^{b} \left(\int_{0}^{1} x^{y} dx \right) dy$$

$$= \int_{a}^{b} \left(\frac{1}{y+1} x^{y+1} \Big|_{0}^{1} \right) dy = \int_{a}^{b} \frac{1}{y+1} dy$$

$$= \ln |y+1||_a^b = \ln \frac{b+1}{a+1}.$$

Ví dụ:

Tính
$$\int_{0}^{1} \frac{dx}{\left(x^{2} + y^{2}\right)^{2}} \qquad (y \neq 0)$$
Ciải:

Giải:

Xét hàm số
$$f(x, y) = \frac{1}{x^2 + y^2}$$

f(x,y) liên tục theo x trên [0,1] với mọi $y \neq 0$.

$$f'_{y} = \frac{-2y}{\left(x^{2} + y^{2}\right)^{2}}$$
 liên tục trên $[0,1] \times [c,d]$
$$\forall [c,d] \quad \text{mà } 0 \notin [c,d].$$

Có
$$I(y) = \int_{0}^{1} \frac{dx}{x^{2} + y^{2}} = \frac{1}{y} \arctan \frac{x}{y} \Big|_{0}^{1} = \frac{1}{y} \arctan \frac{1}{y}.$$

$$I'(y) = -\frac{1}{y^{2}} \arctan \frac{1}{y} - \frac{1}{y(1+y^{2})}$$

Măt khác:

$$I'(y) = \int_{0}^{1} f'_{y} dx = \int_{0}^{1} \frac{-2y}{\left(x^{2} + y^{2}\right)^{2}} dx = -2y \int_{0}^{1} \frac{dx}{\left(x^{2} + y^{2}\right)^{2}}$$

Vậy
$$\int_{0}^{1} \frac{dx}{\left(x^{2} + y^{2}\right)^{2}} = \frac{1}{2y^{3}} \arctan \frac{1}{y} + \frac{1}{2y^{2}\left(1 + y^{2}\right)}.$$

Định lí:

Xét tích phân phụ thuộc tham số $I(y) = \int f(x,y)dx$

trong đó f(x,y) xác định trên $[a,b] \times [c,d]$

$$a \le a(y) \le b$$

$$a \le b(y) \le b$$
 $\forall y \in [c,d]$

$$\forall y \in [c,d]$$

Khi đó: Nếu f(x,y) liên tục trên $[a,b] \times [c,d]$ và các hàm a(y),b(y) liên tục trên [c,d] thì I(y) liên tục trên |c,d|.

2. Tích phân suy rộng phụ thuộc tham số Định nghĩa:

Tích phân suy rộng
$$\int_a^{+\infty} f(x,y) dx$$
 được gọi là hội tụ đều đối với $y \in [c,d]$ nếu
$$\forall \varepsilon > 0, \exists B > 0 \colon \forall b > B \Rightarrow \left| \int_b^{+\infty} f(x,y) dx \right| < \varepsilon$$

$$\forall y \in [c,d]$$

(Số B chỉ phụ thuộc \mathcal{E} , không phụ thuộc y)

Nhận xét:

Nếu
$$\int_{a}^{+\infty} f(x,y)dx$$
 hội tụ đều đối với $y \in [c,d]$ thì

$$\int_{-\infty}^{\infty} f(x,y)dx \quad \text{hội tụ với } \forall y \in [c,d].$$

Định lí:

Nếu với
$$\forall (x, y) \in [a, +\infty) \times [c, d],$$

$$\left|f(x,y)\right| \leq g(x)$$
 và $\int_{a}^{+\infty} g(x)dx$ hội tụ thì $\int_{a}^{+\infty} f(x,y)dx$ hội tụ đều đối với $y \in [c,d]$.

Định lí: Nếu

* f(x,y) liên tục trên $[a,+\infty)\times[c,d]$

$$*I(y) = \int_{a}^{+\infty} f(x, y) dx$$
 hội tụ đều đối với $y \in [c, d]$

thì I(y) là hàm số liên tục trên $\begin{bmatrix} c,d \end{bmatrix}$

và

$$\int_{c}^{d} I(y)dy = \int_{c}^{d} \left(\int_{a}^{+\infty} f(x,y)dx \right) dy = \int_{a}^{+\infty} \left(\int_{c}^{d} f(x,y)dy \right) dx$$

Định lí: Nếu

* f(x,y) liên tục theo x trên $[a,+\infty)$ với $\forall y \in [c,d]$

*
$$I(y) = \int_{a}^{+\infty} f(x, y) dx$$
 hội tụ đều đối với $y \in [c, d]$

- * $f'_y(x,y)$ liên tục trên $[a,+\infty)\times[c,d]$
- * $\int_{a}^{+\infty} f'_{y}(x,y)dx$ hội tụ đều đối với $y \in [c,d]$

thì
$$I'(y) = \int_{a}^{+\infty} f'_{y}(x, y) dx.$$

Chú ý:

Các định lí trên được phát biểu tương tự cho trường hợp hàm dưới dấu tích phân có cực điểm.

Ví dụ: Tính
$$\int_{0}^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx$$
 $(0 < a < b)$

Giải:

Nhận xét:
$$\frac{e^{-ax} - e^{-bx}}{x} = \int_{a}^{b} e^{-xy} dy$$

Xét hàm số $f(x, y) = e^{-xy}$

f(x,y) liên tục trên $[0,+\infty)\times[a,b]$

$$\frac{1}{e^{xy}} \le \frac{1}{e^{ax}} \quad \text{v\'oi} \quad \forall (x, y) \in [0, +\infty) \times [a, b]$$

$$v\grave{a} \int_{0}^{+\infty} \frac{dx}{e^{ax}} = -\frac{1}{a} e^{-ax} \bigg|_{0}^{+\infty} = -\frac{1}{a} \left(\lim_{x \to +\infty} \frac{1}{e^{ax}} - 1 \right) = \frac{1}{a} \quad \text{hội tụ}$$

nên
$$\int_{0}^{+\infty} \frac{dx}{e^{xy}}$$
 hội tụ đều đối với $y \in [a,b]$.

Ta có:

$$\int_{0}^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx = \int_{0}^{+\infty} \left(\int_{a}^{b} e^{-xy} dy \right) dx = \int_{a}^{b} \left(\int_{0}^{+\infty} e^{-xy} dx \right) dy$$

$$= \int_{a}^{b} \frac{1}{y} dy = \ln y \Big|_{a}^{b} = \ln \frac{b}{a}.$$

§2. TÍCH PHÂN HAI LỚP

1. Khái niệm tích phân hai lớp

a) Bài toán tính thể tích vật thể hình trụ

Cho f(x, y) là hàm số liên tục, không âm, xác định

trên miền D đóng, bị chặn, có biên là đường kín L.

Tính thể tích vật thể hình trụ có đáy dưới là miền D,

mặt trên có PT z = f(x, y), các đường sinh tựa trên L

và song song với oz.

Chia D thành n miền $D_1, D_2, ..., D_n$ tùy ý.

Gọi $s(D_i)$ là diện tích miền D_i

 V_i là vật thể hình trụ giới hạn bởi D_i và mặt z = f(x, y)

Đặt
$$d_i = \max \left\{ d(M,N) / M, N \in D_i \right\}$$

 d_i được gọi là đường kính của miền D_i

Trên mỗi miền D_i chọn một điểm $M_i(x_i, y_i)$ tùy ý

Khi các miền D_i rất nhỏ, có thể coi mỗi hình trụ V_i có thể tích là: $f(x_i, y_i).s(D_i)$

Như vậy, thể tích vật thể cần tìm là:

$$V = \lim_{\max d_i \to 0} \sum_{i=1}^n f(x_i, y_i).s(D_i)$$

b) Định nghĩa tích phân hai lớp

Cho f(x,y) là hàm số xác định trên miền đóng, bị chặn D.

Chia D thành n miền $D_1, D_2, ..., D_n$ tùy ý.

Gọi $s(D_i)$ là diện tích miền D_i

Đặt
$$d_i = \max \left\{ d(M,N) / M, N \in D_i \right\}$$

Trên mỗi miền D_i chọn một điểm $M_i(x_i, y_i)$ tùy ý

Nếu giới hạn
$$\lim_{\max d_i \to 0} \sum_{i=1}^n f(x_i, y_i).s(D_i)$$
 tồn tại hữu hạn,

không phụ thuộc phép chia D, phép chọn các điểm $(x_i, y_i) \in D_i$ thì giới hạn này được gọi là tích phân

hai lớp của hàm f(x, y) trên miền D.

Kí hiệu: $\iint_D f(x,y)dS \quad \text{hay} \quad \iint_D f(x,y)dxdy.$

Khi đó ta nói f khả tích trên D.

c) Nhận xét:

Nếu f(x,y) liên tục trên miền đóng, bị chặn D thì f khả tích trên D.

d) Tính chất của tích phân hai lớp

Giả sử các tích phân sau tồn tại, ta có:

$$1^0$$
) $\iint_D dxdy = s(D)$ (Diện tích miền D)

$$2^{0} \iiint_{D} [f(x,y) \pm g(x,y)] dxdy =$$

$$\iint\limits_D f(x,y) \, dx \, dy \pm \iint\limits_D g(x,y) \, dx \, dy$$

$$3^{0}) \iint_{D} \lambda f(x, y) dxdy = \lambda \iint_{D} f(x, y) dxdy \qquad (\lambda \in \mathbb{R})$$

 $oxed{4}^0$) Nếu D được chia thành 2 miền D_1,D_2 không dẫm lên nhau thì

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{D_1} f(x,y)dxdy + \iint\limits_{D_2} f(x,y)dxdy$$

5°) Nếu
$$f(x,y) \le g(x,y)$$
 với $\forall (x,y) \in D$ thì $\iint_D f(x,y) dx dy \le \iint_D g(x,y) dx dy$ 6°) Nếu $m \le f(x,y) \le M$ với $\forall (x,y) \in D$

thì $mS \leq \iint f(x, y) dx dy \leq MS$

2. Cách tính tích phân hai lớp

* Tính
$$\iint_D f(x,y)dxdy$$
 (f liên tục trên D)

a) Nếu D là miền hình chữ nhật

$$D = \{(x, y) / a \le x \le b, c \le y \le d\}$$

thì
$$\iint\limits_D f(x,y)dxdy = \int\limits_a^b \left(\int\limits_c^d f(x,y)dy\right) dx \qquad = \int\limits_a^b \int\limits_c^d dx \int\limits_c^d f(x,y)dy$$

$$= \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy \qquad = \int_{c}^{d} \int_{a}^{d} f(x, y) dx$$

Chứng minh:

Giả sử f(x, y) không âm trên D.

$$\iint\limits_{D} f(x,y) dx dy = V$$

V là thể tích hình trụ đứng có đáy là miền D,

mặt trên có PT z = f(x, y).

S(x) là diện tích thiết diện tạo bởi mặt phẳng vuông góc với trục Ox tại x.

Với mỗi x cố định, ta có:

$$S(x) = \int_{c}^{d} f(x, y) dy$$

$$\iint_{D} f(x, y) dx dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

$$= \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

Công thức vẫn đúng khi f âm trên D.

* Nhận xét:

Khi
$$f(x, y) = f_1(x).f_2(y)$$
 thì

$$\iint\limits_D f(x,y)dxdy = \int\limits_a^b f_1(x)dx. \int\limits_c^d f_2(y)dy$$

Ví dụ: Tính
$$I = \iint_{D} \frac{dxdy}{(x+y)^2}$$

$$D = \{(x,y)/1 \le x \le 2, \ 0 \le y \le 1\}$$

Giải:

$$I = \int_{1}^{2} dx \int_{0}^{1} \frac{1}{(x+y)^{2}} dy = \int_{1}^{2} \left(\int_{0}^{1} \frac{1}{(x+y)^{2}} dy \right) dx =$$

$$= \int_{1}^{2} \left(-\frac{1}{x+y} \Big|_{0}^{1} \right) dx = \int_{1}^{2} \left(\frac{1}{x} - \frac{1}{x+1} \right) dx = \ln \frac{x}{x+1} \Big|_{1}^{2} = \ln \frac{4}{3}.$$

Ví dụ: Tính
$$I = \iint_D xy \, dx \, dy$$

D xác định bởi: $1 \le x \le 2$, $0 \le y \le 1$.

Giải:

$$I = \left(\int_{1}^{2} x \, dx\right) \cdot \left(\int_{0}^{1} y \, dy\right) = \left(\frac{x^{2}}{2}\Big|_{1}^{2}\right) \cdot \left(\frac{y^{2}}{2}\Big|_{0}^{1}\right) =$$

$$=\frac{3}{2}\cdot\frac{1}{2}=\frac{3}{4}$$
.

b) Nếu miền D xác định bởi:

$$\begin{cases} a \le x \le b \\ y_1(x) \le y \le y_2(x) \end{cases}$$

trong đó $y_1(x)$, $y_2(x)$ là các hàm số liên tục trên [a,b]

thì
$$\iint\limits_D f(x,y) dx dy = \int\limits_a^b \left(\int\limits_{y_1(x)}^{y_2(x)} f(x,y) dy \right) dx$$

$$= \int_{a}^{b} \int_{y_1(x)}^{y_2(x)} f(x, y) dy$$

* Tương tự, nếu miền D xác định bởi:

$$\begin{cases} c \le y \le d \\ x_1(y) \le x \le x_2(y) \end{cases}$$

trong đó $x_1(y), x_2(y)$ là các hàm số liên tục trên [c,d]

thì
$$\iint\limits_D f(x,y)dxdy = \int\limits_c^d \left(\int\limits_{x_1(y)}^{x_2(y)} f(x,y)dx\right)dy$$

$$=\int_{c}^{d} \int_{x_{1}(y)}^{x_{2}(y)} f(x,y)dx$$

Chứng minh: (Tương tự khi D là miền hình chữ nhật)

$$\iint\limits_D f(x,y)dxdy = \int\limits_a^b S(x)dx$$

S(x) là diện tích thiết diện tạo bởi mặt phẳng vuông góc với trục Ox tại x.

Với mỗi x cố định, ta có:

$$S(x) = \int_{y_1(x)}^{y_2(x)} f(x, y) dy$$

Vậy
$$\iint\limits_D f(x,y)dxdy = \int\limits_a^b \left(\int\limits_{y_1(x)}^{y_2(x)} f(x,y)dy\right) dx$$

Ví dụ: Tính tích phân sau: $I = \iint_D \frac{x^2}{y^2} dxdy$

D giới hạn bởi các đường y = x, $y = \frac{1}{x}$, x = 2.

Miền
$$D$$
 xác định bởi:
$$\begin{cases} 1 \le x \le 2 \\ \frac{1}{x} \le y \le x \end{cases}$$

$$I = \int_{1}^{2} dx \int_{\frac{1}{x}}^{x} \frac{x^{2}}{y^{2}} dy = \int_{1}^{2} \left(\int_{\frac{1}{x}}^{x} \frac{x^{2}}{y^{2}} dy \right) dx = \int_{1}^{2} \left(-\frac{x^{2}}{y} \Big|_{\frac{1}{x}}^{x} \right) dx =$$

$$= \int_{1}^{2} (x^{3} - x) dx = \left(\frac{x^{4}}{4} - \frac{x^{2}}{2}\right)\Big|_{1}^{2} = \frac{9}{4}.$$

Ví dụ: Tính
$$I = \iint_D xy \, dx \, dy$$

D là miền giới hạn bởi các đường

$$y = x$$
, $y = x + 1$, $y = 1$, $y = 3$.

Miền D xác định bởi: $\begin{cases} 1 \le y \le 3 \\ y - 1 \le x \le y \end{cases}$

$$I = \int_{1}^{3} dy \int_{y-1}^{y} xy \, dx = \int_{1}^{3} \left(\int_{y-1}^{y} xy \, dx \right) dy = \int_{1}^{3} \left(\frac{x^{2}}{2} y \Big|_{y-1}^{y} \right) dy =$$

$$= \frac{1}{2} \int_{1}^{3} \left[y^{3} - y(y-1)^{2} \right] dy = \frac{1}{2} \int_{1}^{3} \left[2y^{2} - y \right] dy$$

$$= \frac{1}{2} \left(\frac{2}{3} y^3 - \frac{y^2}{2} \right) \Big|_1^3 = \frac{20}{3}.$$

Ví dụ:

Tính tích phân sau:
$$I = \int_{0}^{2} dx \int_{0}^{4-x^2} \frac{xe^{2y}}{4-y} dy$$

$$I = \iint_{D} \frac{xe^{2y}}{4 - y} dxdy$$

$$D \text{ xác định bởi: } \begin{cases} 0 \le x \le 2 \\ 0 \le y \le 4 - x^2 \end{cases}$$

Hay
$$D$$
 xác định bởi:
$$\begin{cases} 0 \le y \le 4 \\ 0 \le x \le \sqrt{4 - y} \end{cases}$$

$$\Rightarrow I = \int_{0}^{4} dy \int_{0}^{\sqrt{4-y}} \frac{xe^{2y}}{4-y} dx = \int_{0}^{4} \left(\frac{x^{2}}{2} \frac{e^{2y}}{4-y} \Big|_{0}^{\sqrt{4-y}} \right) dy$$

$$= \int_{0}^{4} \frac{4-y}{2} \cdot \frac{e^{2y}}{4-y} dy = \frac{1}{2} \int_{0}^{4} e^{2y} dy = \frac{1}{4} e^{2y} \Big|_{0}^{4} = \frac{1}{4} (e^{8} - 1).$$

- * Nhận xét: Giả sử miền D có tính đối xứng qua trục Ox.
 - + Nếu biểu thức dưới dấu tích phân chẵn đối với y

(nghĩa là
$$f(x,y) = f(x,-y)$$
 với mọi $(x,y) \in D$)

thì
$$\iint_{D_1} f(x, y) dx dy = 2 \iint_{D_1} f(x, y) dx dy$$
$$= 2 \iint_{D_2} f(x, y) dx dy$$

 (D_1,D_2) lần lượt là nửa trên, nửa dưới của D)

+ Nếu biểu thức dưới dấu tích phân lẻ đối với y

(nghĩa là
$$f(x,y) = -f(x,-y)$$
 với mọi $(x,y) \in D$)

thì
$$\iint_D f(x, y) dx dy = 0.$$

* Nhận xét trên được phát biểu tương tự trong trường hợp miền D có tính đối xứng qua trục Oy.

Ví dụ: Tính
$$I = \iint_D \left(\frac{x}{\cos y + 2} - y \right) x^2 dx dy$$

D là miền giới hạn bởi các đường: y = 0, $y = -x^2 + 1$.

$$I = \iint_{D} \frac{x^3}{\cos y + 2} dxdy - \iint_{D} yx^2 dxdy$$

Do miền D có tính đối xứng qua trục Oy và biểu thức

$$\frac{x^3}{\cos y + 2}$$
 lẻ đối với x nên
$$\iint_D \frac{x^3}{\cos y + 2} dx dy = 0.$$

Tương tự, biểu thức yx^2 chẵn đối với x nên

$$\iint\limits_{D} yx^2 dx dy = 2\iint\limits_{D_1} yx^2 dx dy.$$

$$D_1 \quad \text{xác định bởi: } \begin{cases} 0 \le x \le 1 \\ 0 \le y \le 1 - x^2 \end{cases}$$

$$I = -2\int_{0}^{1} dx \int_{0}^{1-x^{2}} yx^{2} dy = -2\int_{0}^{1} \left(\frac{x^{2}y^{2}}{2} \Big|_{0}^{1-x^{2}} \right) dx$$

$$= -\int_{0}^{1} x^{2} (1-x^{2})^{2} dx = -\int_{0}^{1} \left(x^{6} - 2x^{4} + x^{2} \right) dx$$

$$= -\left(\frac{x^{7}}{7} - 2\frac{x^{5}}{5} + \frac{x^{3}}{3} \right) \Big|_{0}^{1} = -\frac{1}{7} + \frac{2}{5} - \frac{1}{3} = -\frac{8}{105}.$$

- 3. Công thức đổi biến số trong tích phân hai lớp
 - a) Công thức đổi biến số

Xét
$$\iint_D f(x,y)dxdy$$
 (f liên tục trên D)

- Thực hiện phép đổi biến x = x(u,v), y = y(u,v) sao cho:
 - * x(u,v), y(u,v) là các hàm số liên tục, có các đạo hàm riêng cấp một liên tục trên miền $D' \subset mp(Ouv)$
 - * Tương ứng $(u,v)\mapsto (x(u,v),\,y(u,v))$ là một song ánh từ D' lên D.

* Định thức Jacobi

$$J = \frac{D(x,y)}{D(u,v)} = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} \neq 0 \qquad \text{tại} \quad \forall (u,v) \in D'$$

Khi đó:

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{D'} f(x(u,v),y(u,v)) \big| J \big| dudv$$

Chú thích: Công thức trên vẫn đúng khi J=0 tại một số điểm $(u,v)\in D'$.

Ví dụ: Tính
$$I = \iint_D xy \, dx \, dy$$

D giới hạn bởi các đường $y^2 = x$, $y^2 = 3x$, y = x, y = 2x.

Giải:

Đặt
$$\frac{y^2}{x} = u$$
, $\frac{y}{x} = v$

Có
$$x = \frac{u}{v^2}, y = \frac{u}{v}$$

Miền D tương ứng với miền D' giới hạn bởi các đường u=1, u=3, v=1, v=2

hay D' xác định bởi: $\begin{cases} 1 \le u \le 3 \\ 1 \le v \le 2 \end{cases}$

$$\begin{cases} 1 \le u \le 3 \\ 1 \le v \le 2 \end{cases}$$

$$J = \frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{1}{v^2} & \frac{-2u}{v^3} \\ \frac{1}{v} & -\frac{u}{v^2} \end{vmatrix} = \frac{u}{v^4} > 0 \quad \text{tại } \forall (u,v) \in D'.$$

$$I = \int_{1}^{3} du \int_{1}^{2} \frac{u}{v^{2}} \cdot \frac{u}{v} \cdot \frac{u}{v^{4}} dv = \left(\int_{1}^{3} u^{3} du \right) \cdot \left(\int_{1}^{2} \frac{1}{v^{7}} dv \right) =$$

$$\left(\frac{u^4}{4}\Big|_{1}^{3}\right) \cdot \left(\frac{-1}{6v^6}\Big|_{1}^{2}\right) = \frac{105}{32}.$$

Ví dụ: Tính
$$I = \iint_D x^3 dxdy$$

D là miền giới hạn bởi các đường:

$$y = \frac{1}{x}$$
, $y = \frac{2}{x}$, $y = x^2$, $y = \frac{x^2}{2}$.

Đặt
$$u = xy$$
, $v = \frac{y}{x^2}$
Có $\frac{D(u,v)}{D(x,y)} = \begin{vmatrix} y & x \\ -\frac{2y}{x^3} & \frac{1}{x^2} \end{vmatrix} = \frac{3y}{x^2}$

$$\Rightarrow \frac{D(x,y)}{D(u,v)} = \frac{x^2}{3y} = \frac{1}{3v},$$

Có
$$x^3 = \frac{u}{v}$$

Có
$$x^3 = \frac{u}{v}$$

Miền D tương ứng với:
$$\begin{cases} 1 \le u \le 2 \\ \frac{1}{2} \le v \le 1 \end{cases}$$

$$I = \int_{1}^{2} du \int_{\frac{1}{2}}^{1} \frac{u}{v} \cdot \frac{1}{3v} dv = \frac{1}{3} \left(\int_{1}^{2} u du \right) \cdot \left(\int_{\frac{1}{2}}^{1} \frac{1}{v^{2}} dv \right) = \frac{1}{3} \cdot \frac{3}{2} \cdot 1 = \frac{1}{2}.$$

Ví dụ: Tính
$$I = \iint_D e^{\frac{x-y}{x+y}} dxdy$$

D là miền giới hạn bởi các đường x = 0, y = 0, x + y = 1.

Giải:

Đặt
$$x - y = u$$
, $x + y = v$.

$$\Rightarrow x = \frac{u+v}{2}, \ y = \frac{v-u}{2}$$

Miền D' giới hạn bởi các đường u+v=0, v-u=0, v=1

$$D'$$
 xác định bởi:
$$\begin{cases} 0 \le v \le 1 \\ -v \le u \le v \end{cases}$$

$$J = \frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{2}.$$

$$I = \iint_{D'} e^{\frac{u}{v}} \cdot \frac{1}{2} du dv = \frac{1}{2} \int_{0}^{1} dv \int_{-v}^{v} e^{\frac{u}{v}} du = \frac{1}{2} \int_{0}^{1} \left(v e^{\frac{u}{v}} \Big|_{-v}^{v} \right) dv$$

$$= \frac{1}{2} \int_{0}^{1} \left(ve - \frac{v}{e} \right) dv = \frac{1}{2} \left(e - \frac{1}{e} \right) \frac{v^{2}}{2} \Big|_{0}^{1} = \frac{1}{4} \left(e - \frac{1}{e} \right).$$

b) Tính tích phân hai lớp trong hệ tọa độ cực

* Tọa độ cực của điểm M là (r,φ) trong đó:

$$\varphi = (Ox, \overline{OM}), r = |\overline{OM}|$$

Trong cả hệ tọa độ cực: $0 \le \varphi \le 2\pi$, $r \ge 0$.

* Giả sử M có tọa độ (x, y) trong hệ trục Oxy

Ta có:
$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases}$$

$$J = \frac{D(x, y)}{D(r, \varphi)} = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r \ge 0.$$

* Công thức tính tích phân trong tọa độ cực là:

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{D'} f(r\cos\varphi, r\sin\varphi)rdrd\varphi.$$

Nhận xét:

Thường đổi biến sang tọa độ cực khi miền lấy tích phân là hình tròn hoặc một phần hình tròn.

Ví dụ: Tính
$$I = \iint_D x dx dy$$

D là một phần tư hình tròn tâm O, bán kính R, nằm trong góc phần tư thứ nhất.

Miền
$$D$$
 tương ứng với:
$$\begin{cases} 0 \le \varphi \le \frac{\pi}{2} & \text{O} \\ 0 \le r \le R \end{cases}$$

$$I = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{R} r \cos \varphi . r dr = \left(\int_{0}^{\frac{\pi}{2}} \cos \varphi d\varphi\right) . \left(\int_{0}^{R} r^{2} dr\right) =$$

$$=\left(\sin\varphi\Big|_0^{\frac{\pi}{2}}\right).\frac{R^3}{3}=\frac{R^3}{3}.$$

Ví dụ: Tính
$$I = \iint_D y dx dy$$

D là miền xác định bởi:

$$x^2 + y^2 \le 2x, \ y \ge 0.$$

*
$$x^2 + y^2 \le 2x \iff (x-1)^2 + y^2 \le 1$$

Đổi biến sang tọa độ cực

Miền D tương ứng với:

$$\begin{cases} 0 \le \varphi \le \frac{\pi}{2} \\ 0 \le r \le 2\cos\varphi \end{cases}$$

$$*x^{2} + y^{2} = 2x \Leftrightarrow r^{2} = 2r\cos\varphi$$
$$\Leftrightarrow r = 2\cos\varphi$$

$$I = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} r\sin\varphi \cdot rdr = \int_{0}^{\frac{\pi}{2}} \left(\frac{r^{3}}{3}\sin\varphi\Big|_{0}^{2\cos\varphi}\right) d\varphi$$

$$=\frac{8}{3}\int_{0}^{\frac{\pi}{2}}\cos^{3}\varphi\sin\varphi d\varphi$$

$$= \frac{8 \cos^4 \varphi}{3} \Big|_{\frac{\pi}{2}}^0 = \frac{2}{3}.$$

Ví dụ: Tính
$$I = \iint y dx dy$$

D là miền xác định bởi: $x^2 + y^2 \le 2x$, $y \ge 0$.

Cách 2:
$$*x^2 + y^2 \le 2x \Leftrightarrow (x-1)^2 + y^2 \le 1$$

Đặt
$$\begin{cases} x = 1 + r\cos\varphi \\ y = r\sin\varphi \end{cases} \begin{cases} 0 \le \varphi \le \pi \\ 0 \le r \le 1 \end{cases}$$

$$I = \int_{0}^{\pi} d\varphi \int_{0}^{1} r \sin \varphi . r dr = \left(\int_{0}^{\pi} \sin \varphi d\varphi\right) . \left(\int_{0}^{1} r^{2} dr\right) =$$

$$= \left(\cos\varphi\big|_{\pi}^{0}\right) \cdot \left(\frac{r^{3}}{3}\bigg|_{0}^{1}\right) = \frac{2}{3}$$

Ví dụ: Tính
$$I = \iint_D \sqrt{x^2 + y^2} dxdy$$

D là miền xác định bởi:

$$x^{2} + y^{2} - 2y \ge 0$$
, $x^{2} + y^{2} - 1 \le 0$, $x \ge 0$, $y \ge 0$.

*
$$x^2 + y^2 - 2y \ge 0 \Leftrightarrow x^2 + (y-1)^2 \ge 1$$

$$*x^2 + y^2 - 2y = x^2 + y^2 - 1$$

$$\Leftrightarrow y = \frac{1}{2} \Leftrightarrow \sin \varphi = \frac{1}{2} \Leftrightarrow \varphi = \frac{\pi}{6}.$$

Đổi biến sang tọa độ cực

Miền D tương ứng với:

$$\begin{cases} 0 \le \varphi \le \frac{\pi}{6} \\ 2\sin \varphi \le r \le 1 \end{cases}$$

$$*x^{2} + y^{2} - 2y = 0 \Leftrightarrow r^{2} = 2r\sin\varphi$$
$$\Leftrightarrow r = 2\sin\varphi$$

$$*x^{2} + y^{2} - 1 = 0 \Leftrightarrow r^{2} = 1$$
$$\Leftrightarrow r = 1.$$

$$I = \int_{0}^{\frac{\pi}{6}} d\varphi \int_{2\sin\varphi}^{1} r^{2} dr = \int_{0}^{\frac{\pi}{6}} \left(\frac{r^{3}}{3} \Big|_{2\sin\varphi}^{1} \right) d\varphi = \int_{0}^{\frac{\pi}{6}} \left(\frac{1}{3} - \frac{8}{3} \sin^{3}\varphi \right) d\varphi$$

$$= \frac{1}{3}\varphi \Big|_{0}^{\frac{\pi}{6}} + \frac{8}{3}\int_{0}^{\frac{\pi}{6}} (1 - \cos^{2}\varphi) d(\cos\varphi)$$

$$= \frac{1}{3} \cdot \frac{\pi}{6} + \frac{8}{3} \left[\cos \varphi - \frac{\cos^3 \varphi}{3} \right]_0^{\frac{\pi}{6}}$$

$$= \frac{\pi}{18} + \frac{8}{3} \left(\frac{\sqrt{3}}{2} - \frac{3\sqrt{3}}{24} - 1 + \frac{1}{3} \right) = \frac{\pi}{18} + \sqrt{3} - \frac{16}{9}.$$

4. Ứng dụng của tích phân hai lớp

 1^0) Tính thể tích vật thể hình trụ

Cho vật thể hình trụ có đáy là miền $D \subset mp(Oxy)$, mặt trên có phương trình z = f(x,y) ($f(x,y) \ge 0$, liên tục trên D), đường sinh tựa trên biên của D, song song với O_Z .

Thể tích vật thể là: $V = \iint_D f(x, y) dx dy$.

2°) Tính diện tích hình phẳng

Diện tích hình phẳng xác định trên miền D là:

$$S = \iint_D dx \, dy$$

3°) Tính diện tích mặt cong

Cho mặt cong S có phương trình z = f(x, y)

f(x,y) liên tục, có các đạo hàm riêng cấp một liên tục trên D.

(D là hình chiếu của S lên mặt phẳng xOy)

Diện tích mặt S là:

$$\iint\limits_{D} \sqrt{1 + f_x'^2 + f_y'^2} \, dx \, dy$$

4⁰) Ứng dụng trong cơ học

Cho bản phẳng xác định trên miền D.

Giả sử khối lượng riêng của bản phẳng tại (x, y) là $\rho(x, y)$. Khi đó:

- * Khối lượng bản phẳng là: $m = \iint_D \rho(x, y) dx dy$
- * Trọng tâm của bản phẳng là: (x_0, y_0)

trong đó:
$$x_0 = \frac{1}{m} \iint_D x \rho(x, y) dx dy$$

$$y_0 = \frac{1}{m} \iint_D y \rho(x, y) dx dy$$

* Mô men quán tính của bản phẳng đối với các trục Ox,

Oy và gốc tọa độ O lần lượt là:

$$I_{x} = \iint_{D} y^{2} \rho(x, y) dxdy$$

$$I_{y} = \iint_{D} x^{2} \rho(x, y) dxdy$$

$$I_{0} = \iint_{D} (x^{2} + y^{2}) \rho(x, y) dxdy$$

Ví dụ 1:

Tính thể tích của phần hình trụ $x^2 + y^2 = 2x$ nằm trong mặt cầu $x^2 + y^2 + z^2 = 4$.

Giải:

Phần hình trụ có tính đối xứng qua mặt phẳng z = 0.

Thể tích phần hình trụ là: $V = 2 \iint_D \sqrt{4 - x^2 - y^2} dxdy$

D là hình tròn $x^2 + y^2 \le 2x$.

Do miền D có tính đối xứng qua trục Ox và biểu thức dưới dấu tích phân chẵn đối với y

nên
$$V = 4 \iint_{D_1} \sqrt{4 - x^2 - y^2} \ dx dy$$

$$D_1$$
 xác định bởi:
$$\begin{cases} x^2 + y^2 \le 2x \\ y \ge 0 \end{cases}$$

Đổi biến sang tọa độ cực

$$\begin{cases} 0 \le \varphi \le \frac{\pi}{2} \\ 0 \le r \le 2\cos\varphi \end{cases}$$

$$V = 4 \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} \sqrt{4 - r^{2}} \cdot r \, dr$$

$$= 4 \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} (4 - r^{2})^{\frac{1}{2}} \left(-\frac{1}{2}\right) d(4 - r^{2})$$

$$=4\int_{0}^{\frac{\pi}{2}} \left(-\frac{1}{2} \cdot \frac{2}{3} \cdot (4-r^{2})^{\frac{3}{2}} \Big|_{0}^{2\cos\varphi}\right) d\varphi$$

$$= -\frac{4}{3} \int_{0}^{\frac{\pi}{2}} (8\sin^{3} \varphi - 8) d\varphi$$

$$= -\frac{32}{3} \left(\frac{2!!}{3!!} - \frac{\pi}{2} \right) = \frac{32}{3} \left(\frac{\pi}{2} - \frac{2}{3} \right) \quad (\text{dvtt})$$

Ví dụ:

Tính diện tích hình phẳng giới hạn bởi các đường:

$$(x-1)^2 + y^2 = 1$$
, $(x-2)^2 + y^2 = 4$, $y = x$, $y = 0$.

Giải:

Diện tích
$$S = \iint_D dxdy$$

$$\begin{cases} 0 \le \varphi \le \frac{\pi}{4} \\ 2\cos\varphi \le r \le 4\cos\varphi \end{cases}$$

$$S = \int_{0}^{\frac{\pi}{4}} d\varphi \int_{2\cos\varphi}^{4\cos\varphi} r dr = \int_{0}^{\frac{\pi}{4}} \left(\frac{r^2}{2} \Big|_{2\cos\varphi}^{4\cos\varphi} \right) d\varphi = 6 \int_{0}^{\frac{\pi}{4}} \cos^2\varphi d\varphi$$

$$=3\int_{0}^{\frac{\pi}{4}} (1+\cos 2\varphi)d\varphi = 3\left(\varphi + \frac{1}{2}\sin 2\varphi\right)\Big|_{0}^{\frac{\pi}{4}} = 3\left(\frac{\pi}{4} + \frac{1}{2}\right) \text{ (dvdt)}$$

Ví dụ: Tính diện tích phần mặt $z = x^2 + y^2$ nằm trong mặt trụ $x^2 + y^2 = 1$.

Giải:

Hình chiếu của phần mặt $z = x^2 + y^2$ lên mặt phẳng xOy

là miền
$$D: x^2 + y^2 \le 1$$
.

Diện tích:

$$S = \iint_{D} \sqrt{1 + z_{x}^{\prime 2} + z_{y}^{\prime 2}} \, dxdy = \iint_{D} \sqrt{1 + 4x^{2} + 4y^{2}} \, dxdy$$

Đặt
$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \qquad \begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le 1 \end{cases}$$

$$S = \int_{0}^{2\pi} d\varphi \int_{0}^{1} \sqrt{1 + 4r^{2}} \cdot r dr = \left(\int_{0}^{2\pi} d\varphi \right) \cdot \left(\int_{0}^{1} \sqrt{1 + 4r^{2}} r dr \right)$$

$$=2\pi \cdot \frac{1}{8} \int_{0}^{1} (1+4r^{2})^{\frac{1}{2}} d(1+4r^{2})$$

$$= \frac{\pi}{4} \cdot \frac{2}{3} \cdot (1 + 4r^2)^{\frac{3}{2}} \bigg|_{0}^{1} = \frac{\pi}{6} \left(5\sqrt{5} - 1 \right) \quad (\text{dvdt})$$

§3. TÍCH PHÂN BA LỚP

1. Khái niệm tích phân ba lớp

a) Định nghĩa:

Cho hàm số f(x,y,z) xác định trên miền đóng, bị chặn V.

Chia V thành n miền nhỏ $V_1, V_2, ..., V_n$ tùy ý.

Gọi ΔV_i là thể tích miền V_i d_i là đường kính miền V_i

Trên mỗi miền V_i chọn một điểm (x_i, y_i, z_i) tùy ý $(i = \overline{1, n})$

Nếu giới hạn $\lim_{\max d_i \to 0} \sum_{i=1}^n f(x_i, y_i, z_i) . \Delta V_i$ tồn tại hữu hạn,

không phụ thuộc phép chia V, phép chọn các điểm

 $(x_i, y_i, z_i) \in V_i$ thì giới hạn đó được gọi là tích phân

ba lớp của hàm f(x, y, z) trên miền V.

Kí hiệu: $\iiint\limits_V f(x,y,z)dV$ hoặc $\iiint\limits_V f(x,y,z)dxdydz$.

Khi đó ta nói f khả tích trên V.

b) Nhận xét:

Nếu f(x,y,z) liên tục trên miền đóng, bị chặn V thì f khả tích trên V.

c) Tính chất

Tích phân ba lớp có các tính chất tương tự tích phân hai lớp.

Chẳng hạn:

$$1^{0}) \iiint_{V} dxdydz = v \qquad (v \text{ là thể tích miền } V)$$

$$2^{0}) \iiint_{V} [f(x, y, z) \pm g(x, y, z)] dxdydz =$$

$$\iiint_{V} f(x, y, z) dxdydz \pm \iiint_{V} g(x, y, z) dxdydz$$
...

2) Cách tính tích phân ba lớp

a) Công thức

Cho f(x, y, z) là hàm số liên tục trên V.

Giả sử miền V xác định bởi:

$$\begin{cases} a \le x \le b \\ y_1(x) \le y \le y_2(x) \\ z_1(x, y) \le z \le z_2(x, y) \end{cases}$$

trong đó $y_1(x), y_2(x)$ liên tục trên [a,b]

 $z_1(x,y), z_2(x,y)$ là các hàm số liên tục trên D

(D là hình chiếu của V lên mặt phẳng xOy)

Khi đó:

$$\iiint\limits_V f(x,y,z)dxdydz = \iint\limits_D \left(\int\limits_{z_1(x,y)}^{z_2(x,y)} f(x,y,z)dz\right)dxdy$$

hay
$$\iiint_{V} f(x, y, z) dx dy dz = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} \left(\int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) dz \right) dy$$

$$=\int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} dy \int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz.$$

b) Ví dụ:

Tính
$$I = \iiint_V (1-x-y) dx dy dz$$

V giới hạn bởi các mặt phẳng tọa độ và mặt phẳng x + y + z = 1.

Giải:

V xác định bởi:
$$\begin{cases} 0 \le x \le 1 \\ 0 \le y \le 1 - x \end{cases}$$

$$V \text{ xác định bởi: } \begin{cases} 0 \le x \le 1 \\ 0 \le y \le 1 - x \\ 0 \le z \le 1 - x - y \end{cases}$$

$$I = \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} (1-x-y) dz = \int_{0}^{1} dx \int_{0}^{1-x} \left(\int_{0}^{1-x-y} (1-x-y) dz \right) dy$$

$$= \int_{0}^{1} dx \int_{0}^{1-x} (1-x-y)^{2} dy = \int_{0}^{1} \frac{(1-x-y)^{3}}{3} \bigg|_{1-x}^{0} dx$$

$$= \int_{0}^{1} \frac{(1-x)^{3}}{3} dx = \frac{1}{3} \cdot \frac{(1-x)^{4}}{4} \Big|_{1}^{0} = \frac{1}{12}.$$

3) Đổi biến trong tích phân ba lớp

a) Công thức đổi biến số

Xét
$$\iiint_V f(x, y, z) dx dy dz$$
 (f liên tục trên V)

Thực hiện phép đổi biến x = x(u, v, w), y = y(u, v, w),

$$z = z(u, v, w)$$
 sao cho:

- * x(u,v,w), y(u,v,w), z(u,v,w) là các hàm số liên tục,
- có các ĐHR cấp một liên tục trên miền V' trong KG Ouvw

* Tương ứng $(u,v,w) \mapsto (x(u,v,w), y(u,v,w), z(u,v,w))$

là một song ánh từ V' lên V.

* Định thức Jacobi

$$J = \frac{D(x, y, z)}{D(u, v, w)} = \begin{vmatrix} x'_u & x'_v & x'_w \\ y'_u & y'_v & y'_w \\ z'_u & z'_v & z'_w \end{vmatrix} \neq 0 \qquad \text{tại } \forall (u, v, w) \in V'$$

Khi đó:

$$\iiint_{V} f(x, y, z) dx dy dz =$$

$$\iiint_{V'} f(x(u, v, w), y(u, v, w), z(u, v, w)) |J| du dv dw.$$

Chú thích: Công thức trên vẫn đúng khi J=0 tại

một số điểm $(u, v, w) \in V'$.

b) Tính tích phân ba lớp trong hệ tọa độ trụ

 st Tọa độ trụ của điểm M

là bộ (r, φ, z) trong đó:

 (r,φ) là tọa độ cực của M'

(M') là hình chiếu của Mlên mặt phẳng Oxy

z là cao độ của M

* Trong cả hệ tọa độ trụ:

$$r \ge 0$$
, $0 \le \varphi \le 2\pi$, $-\infty < z < +\infty$

* Giả sử M có tọa độ (x, y, z) trong hệ trục Oxyz

Có
$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \\ z = z \end{cases}$$

$$\Rightarrow \frac{D(x, y, z)}{D(r, \varphi, z)} = \begin{vmatrix} \cos \varphi & -r \sin \varphi & 0 \\ \sin \varphi & r \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = r \ge 0.$$

* Công thức tính tích phân trong tọa độ trụ là:

$$\iiint\limits_V f(x,y,z)dxdydz = \iiint\limits_{V'} f(r\cos\varphi,r\sin\varphi,z)rdrd\varphi dz.$$

Nhận xét:

Thường đổi biến sang tọa độ trụ khi V có hình chiếu lên mặt phẳng Oxy là hình tròn hoặc một phần hình tròn.

Ví dụ: Tính
$$I = \iiint_V (x^2 + y^2) z \, dx dy dz$$

V là miền giới hạn bởi các mặt: $x^2 + y^2 = 1$, z = 0, z = 2.

Giải:

$$x^{2} + y^{2} = 1$$
* Đặt
$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \\ z = z \end{cases}$$

Miền
$$V$$
 tương ứng với:
$$\begin{cases} 0 \leq \varphi \leq 2\pi \\ 0 \leq r \leq 1 \\ 0 \leq z \leq 2 \end{cases}$$

$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{1} dr \int_{0}^{2} r^{2} z.rdz = \left(\int_{0}^{2\pi} d\varphi\right) \left(\int_{0}^{1} r^{3} dr\right). \left(\int_{0}^{2} zdz\right)$$

$$=2\pi \cdot \frac{1}{4} \cdot \frac{z^2}{2} \bigg|_0^2 = \pi.$$

Ví dụ: Tính
$$I = \iiint_V (x^2 + y^2 + z^2) dx dy dz$$

V là miền hình nón tròn xoay giới hạn bởi các mặt

$$z^2 = x^2 + y^2$$
, $z = a$ $(a > 0)$

Giải:

$$\begin{cases}
x = r \cos \varphi \\
y = r \sin \varphi \\
z = z
\end{cases}$$

Miền
$$V$$
 tương ứng với:
$$\begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le a \end{cases}$$
$$r \le z \le a$$

$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{a} dr \int_{r}^{a} \left(r^{2} + z^{2}\right) r dz$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{a} \left[\left(r^{3}z + r \frac{z^{3}}{3} \right) \Big|_{r}^{a} dr \right] dr = \int_{0}^{2\pi} d\varphi \int_{0}^{a} \left(r^{3}a + r \frac{a^{3}}{3} - \frac{4}{3}r^{4} \right) dr =$$

$$=2\pi \left(a\frac{r^4}{4} + \frac{a^3r^2}{6} - \frac{4}{15}r^5\right)\Big|_0^a = \frac{3\pi a^5}{10}.$$

c) Tính tích phân ba lớp trong hệ tọa độ cầu

* Tọa độ cầu của điểm M là bộ (r,θ,φ) trong đó:

$$r = |\overrightarrow{OM}|$$

$$\theta = (Oz, \overrightarrow{OM})$$

$$\varphi = (Ox, \overrightarrow{OM'})$$

 $(M^{\,\prime}\,$ là hình chiếu của $\,M\,$ lên mặt phẳng O $xy\,)\,$

* Trong cả hệ tọa độ cầu:

$$0 \le \varphi \le 2\pi$$
, $0 \le \theta \le \pi$, $r \ge 0$

* Giả sử M có tọa độ (x, y, z) trong hệ trục Oxyz

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \\ z = r \cos \theta \end{cases}$$

$$J = \frac{D(x, y, z)}{D(r, \theta, \varphi)} = \begin{vmatrix} \sin \theta . \cos \varphi & r \cos \theta . \cos \varphi & -r \sin \theta . \sin \varphi \\ \sin \theta . \sin \varphi & r \cos \theta . \sin \varphi & r \sin \theta . \cos \varphi \\ \cos \theta & -r \sin \theta & 0 \end{vmatrix}$$

$$=r^2\sin\theta\geq0.$$

Công thức tính tích phân trong tọa độ cầu là:

$$\iiint\limits_V f(x,y,z)dxdydz =$$

 $\iiint_{V'} f(r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta) r^2 \sin\theta dr d\theta d\varphi$

Nhận xét:

Thường đổi biến sang tọa độ cầu khi V là hình cầu hoặc một phần hình cầu.

Ví dụ: Tính
$$I = \iiint_V \frac{1}{\sqrt{x^2 + y^2 + z^2}} dx dy dz$$
.

V là miền giới hạn bởi hai mặt cầu:

$$x^2 + y^2 + z^2 = 1$$
, $x^2 + y^2 + z^2 = 4$.

Giải:

$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} d\theta \int_{1}^{2} \frac{1}{r} \cdot r^{2} \sin\theta dr$$

$$=2\pi.\left(\int_{0}^{\pi}\sin\theta d\theta\right).\left(\int_{1}^{2}rdr\right)$$

$$=2\pi.\left(\cos\theta\Big|_{\pi}^{0}\right).\left(\frac{r^{2}}{2}\Big|_{1}^{2}\right)=6\pi.$$

- 3. Ứng dụng của tích phân ba lớp
 - 1^0) Tính thể tích vật thể

Thể tích vật thể xác định trên miền V là:

$$\iiint\limits_V dxdydz.$$

2°) Tính khối lượng và trọng tâm của vật thể

Cho vật thể xác định trên miền V.

Giả sử vật thể có khối lượng riêng tại (x, y, z) là $\rho(x, y, z)$.

Khi đó: * Khối lượng vật thể là: $m = \iiint_V \rho(x, y, z) dx dy dz$

* Trọng tâm của vật thể là: $M_0(x_0, y_0, z_0)$

trong đó:
$$x_0 = \frac{1}{m} \iiint_V x \rho(x, y, z) dx dy dz$$

$$y_0 = \frac{1}{m} \iiint_V y \rho(x, y, z) dx dy dz, \quad z_0 = \frac{1}{m} \iiint_V z \rho(x, y, z) dx dy dz.$$

Ví dụ:

Tính thể tích vật thể chứa điểm (0,0,2) và giới hạn

bởi các mặt
$$x^2 + y^2 + z^2 = 2z$$
, $x^2 + y^2 = z^2$.

Giải:

$$x^2 + y^2 + z^2 = 2z$$

$$\Leftrightarrow x^2 + y^2 + (z-1)^2 = 1.$$

Thể tích vật thể là:
$$v = \iiint_V dx dy dz$$

Hình chiếu của vật thể lên mặt phẳng Oxy là miền

$$D: x^2 + y^2 \le 1.$$

Đổi biến sang tọa độ trụ:

$$v = \int_{0}^{2\pi} d\varphi \int_{0}^{1} dr \int_{r}^{1+\sqrt{1-r^{2}}} rdz = \int_{0}^{2\pi} d\varphi \int_{0}^{1} \left(1+\sqrt{1-r^{2}}-r\right) rdr$$

$$=2\pi \left[\frac{r^2}{2} - \frac{1}{3}(1 - r^2)^{\frac{3}{2}} - \frac{r^3}{3}\right]_0^1$$

$$=2\pi\left(\frac{1}{2} + \frac{1}{3} - \frac{1}{3}\right) = \pi$$
 (đvtt)

Ví dụ: Tính khối lượng và trọng tâm của hình lăng trụ V giới hạn bởi các mặt x=0, z=0, y=1, y=3, x+2z=3, biết khối lượng riêng $\rho(x,y,z)=1.$

Giải:

Miền V xác định bởi:

$$0 \le x \le 3$$

$$1 \le y \le 3$$

$$0 \le z \le \frac{3-x}{2}$$

* Khối lượng:

$$m = \iiint_{V} \rho(x, y, z) dx dy dz = \int_{0}^{3} dx \int_{1}^{3} dy \int_{0}^{\frac{3-x}{2}} dz = 2 \int_{0}^{3} \frac{3-x}{2} dx$$

$$=\frac{(3-x)^2}{2}\bigg|_3^0 = \frac{9}{2}.$$

* Trọng tâm: $M_0(x_0, y_0, z_0)$

trong đó

$$x_0 = \frac{1}{m} \iiint_V x dx dy dz = \frac{2}{9} \int_0^3 dx \int_1^3 dy \int_0^{\frac{3-x}{2}} x dz$$

$$= \frac{2}{9} \cdot 2 \int_{0}^{3} x \cdot \frac{3-x}{2} dx = \frac{2}{9} \int_{0}^{3} (3x - x^{2}) dx$$

$$= \frac{2}{9} \left(\frac{3}{2} x^2 - \frac{x^3}{3} \right) \Big|_{0}^{3} = 1.$$

$$y_0 = \frac{1}{m} \iiint_V y dx dy dz = \frac{2}{9} \int_0^3 dx \int_1^3 dy \int_0^{\frac{3}{2}} y dz$$

$$=\frac{2}{9}\left(\int_{1}^{3}ydy\right).\left(\int_{0}^{3}\frac{3-x}{2}dx\right)$$

$$= \frac{2}{9} \left(\frac{y^2}{2} \Big|_{1}^{3} \right) \cdot \left(\frac{(3-x)^2}{4} \Big|_{3}^{0} \right) = \frac{2}{9} \cdot 4 \cdot \frac{9}{4} = 2.$$

$$z_0 = \frac{1}{m} \iiint_V z dx dy dz = \frac{2}{9} \int_0^3 dx \int_1^3 dy \int_0^{\frac{3-x}{2}} z dz$$

$$= \frac{2}{9} \cdot 2 \cdot \int_{0}^{3} \left(\int_{0}^{\frac{3-x}{2}} z dz \right) dx = \frac{4}{9} \int_{0}^{3} \left(\frac{z^{2}}{2} \Big|_{0}^{\frac{3-x}{2}} \right) dx$$

$$= \frac{4}{9} \int_{0}^{3} \frac{(3-x)^{2}}{8} dx = \frac{4}{9} \cdot \frac{(3-x)^{3}}{24} \bigg|_{3}^{0} = \frac{4}{9} \cdot \frac{27}{24} = \frac{1}{2}.$$

Bài tập về nhà: 2.7 — 2.17

và các bài khác

