INF115 Oblig 2 ofo002

Oppgave 1

Oppgave 2

i) Gene, Isoform, Exon, Isoform_exon

iί

Oppgave 3

i)

Publications, Gene

ii)

iii)

Gene_symbol(#{Gene_sym, Official_name}, Synonym, Chromosome_name, Chromose_length, Start_cor, End_cor) Reference(#{Reference_id, Gene_symbol}, Title, Author, Journal, Year_published)

Med denne utføringen oppfyller tabbellene førstegrads normanlisering, men ikke andregrads. Dette fordi det fortsatt er partielle avhengigheter mellom tabellene.

iv)

Gene(#{Gene_symbol, Official_name}, Synonym*,
Chromosome name*)

Chromosome(#Chromosome_name, Chromosome_length, Start_cor, End cor)

Synonyme(#Synonyme, Gene_symbol*)

Publications(#Reference_id, Authors*, Title, Journal, Year_published)
Author(#{Reference_id*, Author})

Oppgave 4

Oppgave 5

i)

Problemet med denne løsningen er det at vi ikke vet hvilke biler som er ledig, og vi har heller ikke tilgang til å finne ut hvilken container som er på hvilken bil. Dette er også et problem fordi en bil blir stående som opptatt til gjennomføringen av assignmenten er ferdig, selv om den har vært ledig lenger. For å løse dette problemet kan vi utvide truck med Container Number. Dette gir oss muligheten til å vite om en bil er ledig eller ikke.

ii)

Ut i fra Registration_number kan vi finne Registration_year, Model, Maximun_weight og Assignment_number. Model bestemmer Maxumum weight.

iii)

Den minste supernøkkelen her er Registration_number og derfor kandidatnøkkel.

iv)

Container type(#Type_id, Type_name, Max_weight, Cubic_quantity, Nightly_rate)

Container(#Container_number, Type_id*)

Customer(#Telephone_number, Address)

Assignment(#Assignment_number, Telephone_number*,

Container number*, Start date, End date)

Truck(#Registration_number, Registration_year, Model*,

Assignment number*)

TruckModel(#Model, Max weight)