Tarefa Básica - Teorema do Binômio

01)
$$(1+2x^2)^6$$

 $\binom{n}{k} = \binom{6}{k} \binom{6}{k} \binom{6}{k} \binom{2}{k} \binom{2}{k}$

02)
$$(14x - 13y)^{237}$$

 $x=1$ $(141 - 131)^{237}$
 $y=1$ $(14 - 13)^{237}$
 $(1)^{237}$ $2:8$

Tk+1 = (41) x11-4 ak = 1386 x5	Ta = 11 a6 - 1346
(4)	6:2
11-k=5	T7 = 11.10 9 8 7 61 06 - 1386
[k=6]	6'54821'
	Ta = 55440 06 + 1386
T6+1 = (11) x 11-6 Q6 = 1386 x 5	120
(6)	462 a 6 = 1386
Ta = (41) x5 a6 = 4366 x5	96-1386
(6)	462
	a.6 = 3
	1 a= 13, RA

$$\frac{\partial A}{(x+1)} \left(\begin{array}{c} x + 1 \\ x^{2} \end{array} \right)^{q}$$

$$\frac{\partial A}{(x+1)} \left(\begin{array}{c} x + 1 \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{k} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{k} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{k} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{k} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{k} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c} x \\ x^{2} \end{array} \right)^{q} = 0 \quad A^{q-k} \left(\begin{array}{c}$$

$$T_4 = \begin{pmatrix} q \\ 3 \end{pmatrix} \times \begin{pmatrix} q \\ 4 \end{pmatrix} \times \begin{pmatrix} q \\ 4 \end{pmatrix} \times \begin{pmatrix} q \\ 29 \end{pmatrix} \times \begin{pmatrix} q \\ 4 \end{pmatrix} \times \begin{pmatrix} q \\ 3 \end{pmatrix} \times \begin{pmatrix} q \\ 4 \end{pmatrix}$$

$$T_4 = \begin{pmatrix} q \\ 3 \end{pmatrix}^6 + \begin{pmatrix} 1 \\ 1 \end{pmatrix}^6$$

	$(21+1.1)^5$
=1	(2+1)5
	(3)5 = \243\ R:C1