Klotski Solver

b11901148 李承彥 b11901091 鄭淳芸 b11901003 方嘉麟

Table of Content

- 1. Objective
- 2. Algorithm
- 3. Architecture
- 4. Testing
- 5. Implementation

Objective

Objective

Algorithm

1	2	

1	2	
		4

1	2	3
		4

1	2	3
		4

1	2	3	4

1	2	3	4
5	6		

1	2	3	4
5	6		
			8

1	2	3	4
5	6		7
			8

1	2	3	4
5	6		7
			8

1	2	3	4
5	6	7	8

1	2	3	4
5	6	7	8
			13

1	2	3	4
5	6	7	8
9			13

1	2	3	4
5	6	7	8
9	13		

1	2	3	4
5	6	7	8
9			
13			

1	2	3	4
5	6	7	8
9			
13			14

1	2	3	4
5	6	7	8
9			
13	10		14

1	2	3	4
5	6	7	8
9			
13	10	14	

1	2	3	4
5	6	7	8
9	10		
13	14		

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Problem Formulation

- Instead of moving blocks, considering to move the blank.
- The blank has 4 possible moves.
- Divide and conquer by bottom-up method.

Bottom-Up Method

Move Blank

- 4 possible directions.
- Blocks at correct positions can't not be moved.
 - -> Using mask to freeze blocks.

	В
	1

	В -	→ 1

	1	
	В	

Move Number: Issue 1

• The blank may move through The target number

Move Number: Sol 1

• Freeze the target.

Move Number: Sol 1-1

• Freeze the target. Then unfreeze it.

	B =	→ 1

Move Number: Sol 1-1

• Freeze the target. Then unfreeze it.

	1	В

Move Number: Issue 2-1

• Mask may hinder other blocks.

1**	2**	3**	4
5**	6	7**	X
			X B
			8

Move Number: Sol 2-1

Preserve space for others.

Move Number: Issue 2-2

• Blocks may be captured.

1**	2**	3**	4
5**	6	8	7*
		8 * B	

Move Number: Sol 2-2

• Prevent the target blocks to be captured.

1	2**	3**	4
5**	6**		7 [※]
			8

Move Number: Issue 3

 At least two not frozen rows are needed for moving numbers.

1	2**	3**	4
5**	6	7**	8
9**	10**		
11 >	(• 13	

Move Number: Sol 3

• Sort columns first.

1**	2**	3**	4
5 攀	6**	7**	8
9**	•		
13**	10	- 14	

Solver

- From 1 to 15.
- Reuse "Move Number".

3	12	9	5
7	13	14	1
15	4	6	2
10	11	8	

Architecture

Architecture

Finite State Machine

Time Flow

Testing

Workflow

Python Submodule Top Module FPGA

Use python to simulate the algorithm.

Use several testbenches to check the function.

Python approach

```
# run "python solver.py for 1000 times"
for i in {1..1000}
do
    python solver.py
done
```

```
def main():
    # generate a random klotski
    klotski = np.random.permutation(16).reshape(4, 4)
    solve(klotski)
    print(klotski)

if __name__ == "__main__":
    main()
```

Implementation

Hardware Resources

Hardware Resources

Klotski

Hardware Resources

電磁鐵

Function of Motor

- 1. Receive start block & end block from solver
- 2. Route Planning(avoid intervention between different movement)
- 3. Signal conversion
- 4. Excess tow & Rest
- 5. Automatic movement calibration S_DONE

klotski

Issue 1: Rotation of cube when moving

Solve 1: Moving along the rail

Issue 2: Cubes stuck with each other

Solve 2: Corner rounded,

Sense whether a movement is correctly executed

Block Sensing

Issue:

Relative color is sensitive to relative brightness

- Use black and white to encode
 4 sample points in a session to increase accuracy
- Shift before Addition to reduce required register

Block Sensing

- Use black and white to decode
- Bayer pattern -> RGB
 Read Green signal to represent the block
- Use **blue arrow**, and thus no interference

Novelty

- We proposed the algorithm for klotski.
- To handle failed moves, we use VGA to check if the position of the number is correct after every move.

參考資料

- DE2-115 User
 - Manual: https://www.terasic.com.tw/attachment/archive/502/DE2 115 User manual.pdf
- TRDB-D5M User Manual
 - : Https://www.terasic.com.tw/attachment/archive/281/TRDB D5M UserGuide.pdf
- A4988驱动NEMA步进电机(42步进电机)
 机)http://www.taichi-maker.com/homepage/reference-index/motor-reference-index/arduino-a4988-nema-stepper-motor/
- Arduino控制電磁鐵繼電器正確使用 | 智慧工廠專題 https://www.youtube.com/watch?v=A4OWrg6dQNA
- Real-Time-Image-Video-Dehazing
 https://github.com/DCLAB08/Real-Time-Image-Video-Dehazing/tree/main
- alhaitham-hardware https://github.com/aabdelfattah/alhaitham-hardware
- [Arduino 範例] 繼電器(Relay)的使用<u>https://blog.jmaker.com.tw/arduino-relay/</u>