

North South University Department of Electrical & Computer Engineering

LAB REPORT

Course Name: CSE231L

Experiment No: 05

Experiment Name: Binary Arithmetic

Experiment Date: 08 December 2020

Report Submission Date: 14 December 2020

Section: 05

Student Name: Md. Masruf Jaman	Score
Student ID: 1813625642	
Remarks:	

LAB-05: Binary Arithmetic

Objectives:

- 1. Understand the concept of binary addition and subtraction.
- 2. Learn about half and full binary adders.
- 3. Perform binary addition and subtraction using IC7483.
- 4. Understand the concept of BCD addition and implement a BCD adder using IC7483

Apparatus:

- > 2 x IC 7483 4-bit binary adder
- ➤ 1 x IC 7486 quadruple 2-Input XOR gates
- > 1 x IC 7408 quadruple 2-Input AND gates
- ➤ 1 x IC 4075, 3-Input OR gates

Theory:

Digital computers play out an assortment of data handling tasks. Among the capacities experienced are the different arithmetic operations. The most essential number crunching activity is the addition of two binary digits. This straightforward addition comprises of four potential rudimentary activities: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10. The initial three activities produce a sum of one digit, yet when both augend and numbers to be added bits are equivalent to 1, the binary sum comprises of two digits. The higher significant bit of this outcome is known as a carry. At the point when the augend and numbers to be added numbers contain more significant digits, the carry acquired from the addition of two bits is added to the next higher order pair of significant bits. A combinational circuit that performs the addition of two bits is called a half adder. One that performs the addition of three bits is a full adder. The names of the circuits come from the way that two half adders can be utilized to execute a full adder.

Circuit Diagram:

Attach the following Circuit Diagrams Screenshots. (*After Discussion*)

- 1. **E.1 Report** Simulate a 4-bit adder in Logisim **using basic logic gates**. Provide a screenshot of the Logisim circuit schematic and truth table with your report
- 2. **E.1 Report** Construct the 4-bit adder-subtractor circuit of **Figure D.1.1**. Using **logic IC's**
- 3. **E.2 Report** Draw the **IC** logic diagram for the 8-bit ripple-through-carry adder using logic **ICs**.
- 4. **E.3 Report** Derive the circuit for the BCD adder

Data Tables:

Operation	М	Α	В	C4	S4 S3 S2 S1
7+5	0	0111	0101	0	1100
4+6	0	0100	0110	0	1010
9 + 11	0	1001	1011	1	0100
15 + 15	0	1111	1111	1	1110
7 – 5	1	0111	0101	1	0010
4 – 6	1	0100	0110	1	1110
11 – 2	1	1011	0010	1	1001
15 – 15	1	1111	1111	1	0001

F.1 Experimental Data (Binary Adder-Subtractor):

F.2 Experimental Data (Ripple-Through-Carry Adder):

Operation	A	В	Overflow Carry	Sum
7 + 5	00000111	00000101	0	00001100
18 + 19	00010010	00010011	0	00100101
72 + 83	01001000	01010011	0	10011011
129 + 255	10000001	11111111	1	10000000

Table F.2.1

F.3 Experimental Data (BCD Adder):

Decimal		Binary Sum				BCD SUM				
Value	K	Z ₃	Z ₂	Z ₁	Z ₀	С	S ₃	S ₂	S ₁	S ₀
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	1
2	0	0	0	1	0	0	0	0	1	0
3	0	0	0	1	1	0	0	0	1	1
4	0	0	1	0	0	0	0	1	0	0
5	0	0	1	0	1	0	0	1	0	1
6	0	0	1	1	0	0	0	1	1	0
7	0	0	1	1	1	0	0	1	1	1
8	0	1	0	0	0	0	1	0	0	0
9	0	1	0	0	1	0	1	0	0	1
10	0	1	0	1	0	1	0	0	0	0
11	0	1	0	1	1	1	0	0	0	1
12	0	1	1	0	0	1	0	0	1	0
13	0	1	1	0	1	1	0	0	1	1
14	0	1	1	1	0	1	0	1	0	0
15	0	1	1	1	1	1	0	1	0	1
16	1	0	0	0	0	1	0	1	1	0
17	1	0	0	0	1	1	0	1	1	1
18	1	0	0	1	0	1	1	0	0	0
19	1	0	0	1	1	1	1	0	0	1

Table F.3.1

Operation	A (In Binary)	B (In Binary)	Overflow Carry	Sum (In Binary)	SUM (Decimal)
9+0	1001	0000	0	1001	9
9+1	1001	0001	1	0000	0
9 + 2	1001	0010	1	0001	1
9+3	1001	0011	1	0010	2
9 + 4	1001	0100	1	0011	3
9+5	1001	0101	1	0100	4
9+6	1001	0110	1	0101	5
9+7	1001	0111	1	0110	6
9+8	1001	1000	1	0111	7
9+9	1001	1001	1	1000	8

Table F.3.2

Question Answering:

• Comment on the use of the XOR gates and the M bit of the 4-bit addersubtractor.

Discussion:

The name of our experiment was Binary Arithmetic. We covered the topic Half adder and Full adder in this experiment. we used an apparatus IC 7483. In first experiment we implement a 4-bit adder subtractor. And our second experiment was Ripple Through Carry Adder. We implement here an 8-bit Ripple Through Carry Adder. Third and last experiment was BCD Adder.

No 1:

No 2:

No 3:

No 4:

