Cooling Tower Performance Curves

David Kayanan Version 1.1 April 7, 2020

Introduction

The ambient air and loading performance plots show the output characteristics of a 1000-kW cooling tower under various ambient conditions and heat loads, respectively. The cooling tower has the following specifications:

Feature	Rating
Capacity	1000 kW
Hot Water Temperature (HWT)	38.0 °C
Cold Water Temperature (CWT)	32.8 °C
Design Wet Bulb Temperature	29.73 °C
Approach	3.07 C°
Range	5.2 C°
Water flow rate	46.0 kg/s
Evaporation Loss	0.78%
Air flow rate	22.8 kg/s
Exhaust relative humidity	95%
Fan diameter	2.2 m
Water flow limits	20% - 120%

Whereas in the exhaust air speed plots, the largest unit per fan diameter is shown. These are the units attaining the highest exhaust speeds in their respective category.

Control Modes

Two control modes specify the performance of the cooling tower:

Flow-limited pump control	This control maintains the HWT at nominal values, except	
	when the water flow limits are reached.	
Continuous speed fan control	This control maintains the exhaust temperature equal to the	
	HWT by adjusting the air flow over a continuous speed band.	

List of plots

Figure 1 – Exhaust dry bulb temperature vs. ambient conditions	Figure 5 – Exhaust humidity ratio vs. loading
	Figure 6 – Air mass flow vs. loading
Figure 2 – Exhaust humidity ratio vs. ambient	
conditions	Figure 7 – Exhaust air speed of largest unit per fan
	diameter, mean ambient conditions
Figure 3 – Air mass flow vs. ambient conditions	
	Figure 8 – Exhaust air speed of largest unit per fan
Figure 4 – Exhaust dry bulb temperature vs. loading	diameter, hot and humid conditions

1 Ambient Air Performance

The ambient air performance curves are derived at full load operation, with varying ambient dry bulb temperatures and relative humidity.

Figure 1 Exhaust dry bulb temperature vs. ambient conditions

Figure 2 Exhaust humidity ratio vs. ambient conditions

Figure 3 Air mass flow vs. ambient conditions

2 Loading Performance

The loading curves plot the cooling tower performance at different load levels at three representative ambient air conditions: a) cool and dry; b) mean conditions; and c) hot and humid. These conditions progressively limit the extent that evaporative cooling can be done, impeding tower performance.

Figure 4 Exhaust dry bulb temperature vs. load

Figure 5 Exhaust humidity ratio vs. load

Figure 6 Air mass flow vs. load

3 Exhaust Air Speed

The exhaust air speed plots are shown for the largest cooling tower at the given fan size, under two representative ambient conditions: a) mean; and b) hot and humid.

Figure 7 Exhaust air speed of largest unit per fan diameter, mean conditions

Figure 8 Exhaust air speed of largest unit per fan diameter, hot and humid conditions