Data Mining

로지스틱 회귀 (Logistic Regression)

학습 목표

• 로지스틱 회귀 모델의 개념과 구현을 알아본다.

주요 내용

- 1. 척도 조절
- 2. 선형 회귀와 분류 문제
- 3. 로지스틱 회귀
- 4. 최대 우도 추정
- 5. 경사 하강법으로 학습

1. 척도 조절

- 10장. 데이터 다루기 (Working with Data)

데이터의 척도 (Scale)

사람들의 키와 몸무게 데이터가 있을 때 체형을 군집화 한다고 해보자.

Person	Height (inches) Height (centimeters		Weight
A	63 inches	160 cm	150 pounds
В	67 inches	170.2 cm	160 pounds
С	70 inches	177.8 cm	171 pounds

키를 inch와 cm 두 단위로 측정한 값이 있다. (1 inch = 2.54 cm)

군집화를 하기 위해 데이터 간에 거리(distance)를 측정해보자.

데이터의 척도 (Scale)

어떤 척도를 사용하는지에 따라 거리가 달라진다.

A B

A는 B와 가깝다.

B는 C와 가깝다.

키를 inch 단위로 측정했을 때

```
from scratch.linear_algebra import distance

a_to_b = distance([63, 150], [67, 160])  # 10.77
a_to_c = distance([63, 150], [70, 171])  # 22.14
b_to_c = distance([67, 160], [70, 171])  # 11.40
```

키를 cm 단위로 측정했을 때

```
a_to_b = distance([160, 150], [170.2, 160])  # 14.28
a_to_c = distance([160, 150], [177.8, 171])  # 27.53
b_to_c = distance([170.2, 160], [177.8, 171])  # 13.37
```

이런 현상이 왜 일어날까?

데이터의 척도 (Scale)

키를 inch 단위로 측정했을 때

Person	Height (incl	es) Height (centimeters)	Weight
A	63 inches	160 cm	150 pounds
В	67 inches	170.2 cm	160 pounds
С	70 inches	177.8 cm	171 pounds

키를 cm 단위로 측정했을 때

Person	Height (inches	Height (cen	imeters)	Weight
A	63 inches	160 cm		150 pounds
В	67 inches	170.2 cm		160 pounds
С	70 inches	177.8 cm		171 pounds

- 키보다 몸무게의 척도가 크다.
- 몸무게가 차이가 적은 A와의 거리가 가깝다.

- 키와 몸무게의 척도가 비슷하다.
- 키의 차이가 적은 C와의 거리가 가깝다.

데이터의 척도가 크면 결과에 대한 영향이 크다!

데이터 표준화

따라서, 데이터의 척도를 같은 단위가 되도록 표준화해야 한다.

1. 최대 최소 정규화 (Min-max scaling)

$$x_{\text{normalized}} = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

- 데이터 구간의 값을 [0,1] 구간으로 정규화
- 값의 최대 최소가 정해져 있을 때 유용

2. 정규분포 표준화 (standardization)

- 데이터의 68.3%가 [-1,1] 구간으로,95.5%가 [-2,2] 구간으로,99.7%가 [-3,3] 구간으로 정규화
- 값의 구간이 [-∞,∞]일 때 유용

데이터 표준화

평균과 표준편차 구하기

• 데이터의 차원 별로 평균과 표준 편차를 구한다.

3차원 데이터에 대해 테스트

```
vectors = [[-3, -1, 1], [-1, 0, 1], [1, 1, 1]]
means, stdevs = scale(vectors)
assert means == [-1, 0, 1]
assert stdevs == [2, 1, 0]
```


각 열 단위로 평균, 표준편차

데이터 표준화

표준 정규 분포로 표준화

```
def rescale(data: List[Vector]) -> List[Vector]:
   Rescales the input data so that each position has
   mean 0 and standard deviation 1. (Leaves a position
   as is if its standard deviation is 0.)
   dim = len(data[0])
   means, stdevs = scale(data)
   # Make a copy of each vector
   rescaled = [v[:] for v in data]
   for v in rescaled:
        for i in range(dim):
           if stdevs[i] > 0:
                v[i] = (v[i] - means[i]) / stdevs[i]
   return rescaled
```

표준화 했을 때 평균과 표준편차 확인

```
means, stdevs = scale(rescale(vectors))
assert means == [0, 0, 1]
assert stdevs == [1, 1, 0]
```


$$z = rac{x - \mu}{\sigma}$$
 μ : 평균 σ : 표준 편차

tqdm

함수나 반복문에서 작업의 진행율을 막대 그래프로 보여주는 툴

import tqdm

1 %pip install tqdm 설치 후 tqdm import

for i in tqdm.tqdm(range(100)): # 오래 걸리는 연산

2 Iterable을 tqdm으로 감싸면 bar가 나타남

3612 primes: 34%|

| 33705/99997 [00:36<01:10, 935.56it/s]

완료까지 남은 시간(Time to Completion)을 표시하는 진행 상태 바(progress bar)를 보여줌

tqdm이란 이름은 아랍어로 "progress"를 나타내는 단어 taqaddum (تقدّم)에서 유래되었고 스페인어로 "I love you so much " 의 약자 te quiero demasiado이다.

tqdm

9592 primes: 100% 99997/99997 [00:19<00:00, 5161.89it/s]

© 2021 SeongJin Yoon. All Rights Reserved.

tqdm

trange 사용 예시

```
def primes_up_to(n: int) -> List[int]:
    primes = [2]

with tqdm.trange(3, n) as t:
    for i in t:
        # i is prime if no smaller prime divides it.
        i_is_prime = not any(i % p == 0 for p in primes)
        if i_is_prime:
            primes.append(i)

        t.set_description(f"{len(primes)} primes")

return primes

my_primes = primes_up_to(100_000)
```

• set_description을 사용하면 추가적인 정보를 보여줄 수 있다.

```
9592 primes: 100% 99997/99997 [00:19<00:00, 5161.89it/s] set description으로 표시한 정보
```

참고 밑줄(_) 숫자 표현 (Underscores in Numeric Literals)

PEP8에서 제안한 긴 숫자를 쉽게 읽을 수 있도록 _를 사용해서 표기 방법

amount = 10_000_000.0

10진수 : 천 단위로 그룹핑

addr = 0xCAFE_F00D

16진수 : word 단위로 그룹핑

flags = 0b_0011_1111_0100_1110

2진수 : 4 bit 단위로 그룹핑

flags = $int('0b_1111_0000', 2)$

2진수 문자열 변환

https://www.python.org/dev/peps/pep-0515/

2. 선형 회귀와 분류 문제

한 사이트에서 사용자의 경력, 소득 정보를 이용해서 유료 계정 등록을 예측하려고 한다.

선형 회귀 모델로 예측을 할 수 있을까?

유료 계정 등록 여부 $= \alpha + \beta_1$ 경력 $+ \beta_2$ 소득

© 2021 SeongJin Yoon. All Rights Reserved.

데이터셋

사용자 정보 데이터 셋

데이터

- 200명 사용자
- (경력, 소득, 유료 계정 등록 여부)

데이터셋 시각화

15

다중 선형 회귀

입력과 레이블로 분리

```
data = [list(row) for row in tuples]

xs = [[1.0] + row[:2] for row in data] # [1, experience, salary]
ys = [row[2] for row in data] # paid_account
```

선형 회귀 분석

```
from matplotlib import pyplot as plt
from scratch.working_with_data import rescale
from scratch.multiple_regression import least_squares_fit, predict
from scratch.gradient_descent import gradient_step

learning_rate = 0.001
rescaled_xs = rescale(xs)
beta = least_squares_fit(rescaled_xs, ys, learning_rate, 1000, 1)
# [0.26, 0.43, -0.43]
predictions = [predict(x_i, beta) for x_i in rescaled_xs]
```

- 입력 데이터를 표준정규분포로 표준화 (rescaled_xs)
- 선형 회귀 분석 및 예측

다중 선형 회귀

실제 y값은 0과 1로 되어 있는 명목 데이터 유로 제정 이과 \ 만 있음.

실제 값과 예측 값의 산포도

```
plt.scatter(predictions, ys)
plt.xlabel("predicted")
plt.ylabel("actual")
plt.show()
```

선형 회귀를 분류 문제에 적용할 수 없는 이유

- 예측 값이 [-∞,∞] 범위의 실수 값이므로 클래스 (0 or 1)를 정확히 예측하지 못함
- 분류 문제에서 예측 오차가 큰 편향된 모델

선형 회귀는 분류 문제에 적합하지 않다.

3. 로지스틱 회귀

이진 분류 (Binary Classification)

선형 회귀를 이용해서 이진 분류기(Binary Classifier)를 확률 모델로 만들 수 있을까?

이진 분류의 확률 모델은 베르누이 분포를 추정!

베르누이 분포 (Bernoulli Distribution)

 C_1 : 클래스 1 C_2 : 클래스 2

$$p(x; \mu) = \mu^{x} (1 - \mu)^{1 - x}$$
$$x \in \{0, 1\}$$

로지스틱회귀 (Logistic Regression)

일반화된 선형 모델(Generalized Linear Model)의 한 종류로 독립 변수의 선형 결합을 이용하여 사건의 발생 가능성을 예측하는 확률 모델

변환 함수
$$p(y=1 \mid x) = f(x; oldsymbol{eta}) = \sigma(oldsymbol{eta} \cdot x) + arepsilon$$
 클래스1의 조건부 확률

관측 오차
$$\varepsilon \sim \mathcal{N}(\epsilon \mid 0, \sigma^2)$$
 정규 분포를 따르며 평균은 0이고 분산이 σ^2

$$\sigma(x) = rac{1}{1 + e^{-x}}$$
 로지스틱 함수 (Logistic Function)

로지스틱 함수 (Logistic Function)

로지스틱 함수를 사용해서 선형 예측 결과를 확률로 변환한다.

로지스틱 함수 (Logistic Function)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- [-∞,∞] 범위의 값을 [0,1] 범위의 값으로 변환
- 실수 값을 확률로 변환할 때 사용
- 두 개의 클래스에 대한 확률 분포를 표현하는 베르누이 분포를 추정할 때 사용

• 결정 경계를 지정해서 해당 확률 보다 값이 크면 클래스 1로 분류하고 작으면 클래스 2로 분류

21

로지스틱 회귀 단계

선형 예측 결과는 로그 승률을 나타내는 로짓이 되며 이 값을 다시 확률로 변환한다.

 $p(y | x) = \sigma(x) = \frac{1}{1 + e^{-x}}$

로지스틱 함수 (Logistic Function)

로지스틱 함수

```
from matplotlib import pyplot as plt

def logistic(x: float) -> float:
    return 1.0 / (1 + math.exp(-x))
```

로지스틱 함수의 미분

```
def logistic_prime(x: float) -> float:
    y = logistic(x)
    return y * (1 - y)
```

M/ S(2)

로지스틱 함수 (Logistic Function)

4. 최대 우도 추정

최적의 모델 (Optimal Model)

최적의 모델을 어떻게 찾을 것인가?

"모델의 예측 오차를 최소화 한다."

"모델이 예측하는 관측 데이터의 확률을 최대화 한다."

표현은 다르지만 이 둘의 결과는 같은 말이다.

최적화 기반의 학습 방식

오차를 최소화 하는 문제를 가능도를 최대화하는 문제로 바꾼다면?

- 모델의 예측 값과 관측 값의 오차를 이용해서 손실 계산
- 회귀 문제 : 평균 오차 제곱 (Mean Squared Error)
- 분류 문제 : 크로스 엔트로피 (Cross Entropy)

- 손실이 최소화되도록 파라미터를 변경
- 파라미터의 최적해를 해석적으로 계산하지 못하는 경우 경사 하강법(Gradient Descent)와 같은 최적화 알고리즘을 사용
- 최적해를 향해 반복적으로 수렴하도록 최적화 문제를 풀게 됨

26

최적화 기반의 학습 방식

오차를 최소화 하는 문제를 가능도를 최대화하는 문제로 바꾼다면?

• 모델의 예측 확률 분포에서 관측 데이터의 가능도를 계산

$$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$
 Prior. A: $\frac{1}{2}$ A:

- 가능도가 최대화되도록 파라미터를 변경
- 목적 함수에 마이너스를 붙이면 최대화 문제는 최소화 문제로 풀 수 있다.

최대 가능도 추정 (Maximum Likelihood Estimate)

P(A10) P(B) ***.

가능도 (Likelihood)

- $\underline{\text{whith}} \theta = \frac{1}{2} \frac{$
- 추정된 분포가 관측 데이터의 분포를 <mark>얼마나 잘 나타내고 있는지</mark> 또는 <mark>일관된 지</mark>를 나타내는 측도

$$\mathcal{L}(\theta|x) = p(x|\theta)$$

최대 가능도 추정 (MLE : Maximum Likelihood Estimate)

• 최대 가능도(Maximum Likelihood) 즉, 관측 값의 확률을 최대화 하는 추정 분포의 파라미터 θ 를 찾는 방법

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \mathcal{L}(\theta | x)$$

추정된 확률 분포가 관측 데이터의 분포의 모양을 잘 표현해야 가능도가 최대화 될 수 있다.

최대 가능도 추정 (Maximum Likelihood Estimate)

최대 가능도 추정 문제를 표준 형태의 최적화 문제로 재정의해보자.

가능도를 음의 로그 가능도로 변환해서 최대화 문제를 최소화 문제로 만든다.

- 관측 값의 가능도
- 모델 예측한 확률 분포를 이용해서 계산
- 확률 분포에 로그 적용
- 지수족(exponential family) 확률 분포에 log를 적용하면 지수 항이 다항식으 로 변환되어 수치적으로 다루기가 쉽다.

P(9=1/2)

- 또한, 목적 함수에 log와 같은 증가 함수를 적용해도 최적해는 동일하다.
- 최대화 문제를 최소화 문제로 변경
- 로그 가능도에 마이너스 붙인 음의 로그 가능도를 목적 함수로 정의

log P = 2 by M + (FX) (log (FM)) 上 班到 生色

최대 가능도 추정 (Maximum Likelihood Estimate)

음의 로그 가능도 (NLL : Negative Log Likelihood)

판숙 네이터

$$J(\boldsymbol{\beta}) = -\log P(y | \boldsymbol{x}; \boldsymbol{\beta}) \rightarrow \mathcal{A}_{\mathcal{A}} \qquad \text{As a partial section of } \boldsymbol{\beta}$$

가능도(· 🌶)로 추정된 모델에서의 관측 데이터의 확률

$$= -\log f(\mathbf{x}; \boldsymbol{\beta})^{\mathrm{y}} (1 - f(\mathbf{x}; \boldsymbol{\beta}))^{1-\mathrm{y}}$$
ি ঘূলুণ পাক্ট μ

$$= -(y \cdot \log f(\mathbf{x}; \boldsymbol{\beta}) + (1 - y) \cdot \log(1 - f(\mathbf{x}; \boldsymbol{\beta})))$$

이진 크로스 엔트로피 (Binary Cross Entropy)

베르누이 분포 (Bernoulli Distribution)

$$p(x; \mu) = \mu^{x} (1 - \mu)^{1 - x} \quad x \in \{0, 1\}$$

- 관측 데이터 y
- y = 1 : 클래스1 (ex, 동전의 앞면)
- y = 0 : 클래스2 (ex, 동전의 뒷면)
- 모델 $f(x; \boldsymbol{\beta})$
- 베르누이 분포의 경우 확률 모델은 클래스1일 확률인 μ를 출력

NOTE

손실 함수 크로스 엔트로피

관측 데이터
$$\mathcal{D} = \{(x_i, y_i): i = 1 ... N\}$$

K = 2일 때 크로스 엔트로피를 이진 크로스 엔트로피라고 한다.

크로스 엔트로피 (Cross Entropy)

$$\min_{oldsymbol{ heta}} - \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} \cdot \log f(x_i; oldsymbol{ heta})_k$$
 $K: Class 개수$ $y_k = \begin{cases} 1, k = c \\ 0, k \neq c \end{cases}$ $c \in \{1, 2, ..., K\}$

이진 크로스 엔트로피 (Binary Cross Entropy)

$$J(\boldsymbol{\beta}) = -(\mathbf{y} \cdot \log f(\boldsymbol{x}; \boldsymbol{\beta}) + (1 - \mathbf{y}) \cdot \log(1 - f(\boldsymbol{x}; \boldsymbol{\beta})))$$

 $y = f(x; \beta)$ 인 경우에는 엔트로피는 0이 됨 (즉, y와 $f(x; \beta)$ 모두 1이거나 모두 0인 경우)

5. 경사 하강법으로 학습

손실 함수 미분

로지스틱 회귀 식

$$p(y = 1 | \mathbf{x}) = f(\mathbf{x}; \boldsymbol{\beta}) = \sigma(\boldsymbol{\beta} \cdot \mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

로지스틱 함수의 미분

$$\sigma'(x) \neq \sigma(x) \cdot (1 - \sigma(x))$$

손실 함수 (이진 크로스 엔트로피)

대일
$$J(\boldsymbol{\beta}) = -(y \cdot \log f(\boldsymbol{x}; \boldsymbol{\beta}) + (1 - y) \cdot \log(1 - f(\boldsymbol{x}; \boldsymbol{\beta})))$$

$$= -(y \cdot \log \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) + (1 - y) \cdot \log(1 - \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x})))$$

$$\beta_{j}$$
에 대해서 미분 (단, $\sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma$ 로 간단히 표기)
$$\frac{\partial J}{\partial \beta_{j}} = -\left(y \cdot \frac{1}{\sigma} \cdot \sigma \cdot (1 - \sigma) \cdot x_{j} - (1 - y) \cdot \frac{1}{(1 - \sigma)} \cdot \sigma \cdot (1 - \sigma) \cdot x_{j}\right)$$

$$= -(y \cdot (1 - \sigma) \cdot x_{j} - (1 - y) \cdot \sigma \cdot x_{j})$$

$$= -(y - y\sigma - \sigma + y\sigma) x_{j}$$

$$= -(y - \sigma)x_{j}$$

손실 함수 (loss)

$$J(\boldsymbol{\beta}) = -(y \cdot \log f(\boldsymbol{x}; \boldsymbol{\beta}) + (1 - y) \cdot \log(1 - f(\boldsymbol{x}; \boldsymbol{\beta})))$$

음의 로그 우도 (NLL: Negative Log Likelihood)

```
import math
from scratch.linear_algebra import Vector, dot

def _negative_log_likelihood(x: Vector, y: float, beta: Vector) -> float:
    """The negative log likelihood for one data point"""
    if y == 1:
        return -math.log(logistic(dot(x, beta))) - 6(x, e)
    else:
        return -math.log(1 - logistic(dot(x, beta)))
```

 $-\log\left(LG(x,\beta)\right)$ © 2021 SeongJin Yoon. All Rights Reserved.

손실 함수 (loss)

$$\min_{\boldsymbol{\beta}} - \sum_{i=1}^{N} \mathbf{y} \cdot \log f(\mathbf{x}; \boldsymbol{\beta}) + (1 - \mathbf{y}) \cdot \log(1 - f(\mathbf{x}; \boldsymbol{\beta}))$$

전체 데이터셋에 대해 NLL 합산

© 2021 SeongJin Yoon. All Rights Reserved.

그래디언트 계산 (Gradient)

β_i 에 대한 NLL 편미분

```
from scratch.linear_algebra import vector_sum
def _negative_log_partial_j(x: Vector, y: float, beta: Vector, j: int) -> float:
    The j-th partial derivative for one data pont
    here i is the index of the data point
    return -(y - logistic(dot(x, beta))) * x[j]
```

β 에 대한 그래디언트 β 測髪에 대한 Vedar 型

```
def _negative_log_gradient(x: Vector, y: float, beta: Vector) -> Vector:
    The gradient for one data point
    return [_negative_log_partial_j(x, y, beta, j)
            for j in range(len(beta))]
```

$$\frac{\partial J}{\partial \beta_j} = -(y - \sigma)x_j$$

$$\beta = \begin{pmatrix} \beta_j \\ \beta_k \end{pmatrix}$$

$$\frac{\partial J}{\partial \boldsymbol{\beta}} = -(y - \sigma)\boldsymbol{x}$$

$$= \left(\frac{\partial J}{\partial \beta_1}, \frac{\partial J}{\partial \beta_2}, \dots, \frac{\partial J}{\partial \beta_n}\right)$$

그래디언트계산 (Gradient)

전체 데이터 셋에 대해 그래디언트 합산

© 2021 SeongJin Yoon. All Rights Reserved.

경사 하강법으로 로지스틱 회귀

데이터셋 분리

```
from scratch.machine_learning import train_test_split
import random
import tqdm

random.seed(0)
x_train, x_test, y_train, y_test = train_test_split(rescaled_xs, ys, 0.33)
```

到底(些人 多地33%

초기화

```
learning_rate = 0.01
# pick a random starting point
beta = [random.random() for _ in range(3)]
```

경사 하강법 적용

```
8418613 B 3284
```

```
with tqdm.trange(5000) as t:
    for epoch in t:
        gradient = negative_log_gradient(x_train, y_train, beta)
        beta = gradient_step(beta, gradient, -learning_rate)
        loss = negative_log_likelihood(x_train, y_train, beta)
        t.set_description(f"loss: {loss:.3f} beta: {beta}")
```

高级的 1055 1 至至 9551 李代图

로지스틱 회귀 검증

원래 입력 데이터와 정규화 된 입력 데이터의 NLL 비교

```
1/5, If loss / 1/5, If loss / 1/5, If loss / 1/5, If loss / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 / 1/5 /
```

CHOCK ISE PORTER

Ellott Esthatiszel)

新居 到那

```
from scratch.working_with_data import scale
means, stdevs = scale(xs)
beta unscaled = [(beta[0]
                  - beta[1] * means[1] / stdevs[1]
                  - beta[2] * means[2] / stdevs[2]),
                 beta[1] / stdevs[1],
                 beta[2] / stdevs[2]]
# [8.9, 1.6, -0.000288]
    assert (negative log likelihood(xs, ys, beta unscaled) ==
            negative log likelihood(rescaled xs, ys, beta))
```

• 데이터셋의 평균과 표준편차를 구함

$$\mathbf{x} = (1, x_1, x_2)$$
 $\mathbf{\beta} = (\beta_0, \beta_1, \beta_2)$ $\mathbf{\beta}_{\text{unscaled}} = \left(\beta_0 - \beta_1 \frac{\bar{x}_1}{S_1} - \beta_2 \frac{\bar{x}_2}{S_2}, \frac{\beta_1}{S_1}, \frac{\beta_2}{S_2}\right)$

데이터를 표준화 했을 때 β 데이터를 표준화 하기 전 β β unscaled = [8.9, 1.6, -0.000288]

- $\beta_1 = 1.6$: 경력이 많을수록 유료 계정에 등록할 가능성이 높음
- $\beta_2 = -0.000288$: 월급이 높을수록 유료 계정에 등록할 가능성이 낮음

참고 로지스틱 회귀 모델 적용

데이터를 표준화를 해서 구한 β 를 이용해서 데이터를 표준화 하기 전의 $\beta_{unscaled}$ 를 계산할 수 있다.

유료 계정 등록 여부
$$=\sigma(\beta_0+\beta_1$$
경력 $+\beta_2$ 소득) $x_1:$ 경력, $x_2:$ 소득 $x=(1,x_1,x_2)$ $\beta=(\beta_0,\beta_1,\beta_2)$ $\beta=(\beta_0,\beta_1,\beta_2)$ 입력 데이터 표준화 데이터를 표준화 했을 때 $\beta=(\beta_0-\beta_1\frac{\bar{x}_1}{s_1}-\beta_2\frac{\bar{x}_2}{s_2})+\frac{\beta_1}{s_1}x_1+\frac{\beta_2}{s_2}x_2$ 상수항과 x_1 과 x_2 항으로 정리 따라서, β _unscaled $=\begin{pmatrix} \beta_0-\beta_1\frac{\bar{x}_1}{s_1}-\beta_2\frac{\bar{x}_2}{s_2},\frac{\beta_1}{s_1},\frac{\beta_2}{s_2} \end{pmatrix}$ 이다.

© 2021 SeongJin Yoon. All Rights Reserved.

모델성능

정밀도와 재현율 계산

```
true positives = false positives = true negatives = false negatives = 0
for x i, y i in zip(x test, y test):
    prediction = logistic(dot(beta, x i))
    if y i == 1 and prediction >= 0.5: # TP: paid and we predict paid
       true positives += 1
    elif y_i == 1:
                                        # FN: paid and we predict unpaid
        false negatives += 1
    elif prediction >= 0.5:
                                        # FP: unpaid and we predict paid
       false positives += 1
    else:
                                        # TN: unpaid and we predict unpaid
        true negatives += 1
precision = true_positives / (true_positives + false_positives)
recall = true positives / (true positives + false negatives)
assert precision == 0.75
assert recall == 0.8
```

정밀도 75%, 재현율 80%

모델 성능

실제값과 예측값 시각화

```
predictions = [logistic(dot(beta, x_i)) for x_i in x_test]
plt.scatter(predictions, y_test, marker='+')
plt.xlabel("predicted probability")
plt.ylabel("actual outcome")
plt.title("Logistic Regression Predicted vs. Actual")
plt.show()
```


결정 경계 (Decision Boundary)

로지스틱 회귀 분석 결과 결정 경계는 $\beta \cdot x = 0$ 로 정의되는 초평면이다.

Thank you!

