Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

> Отчёт по лабораторной работе №3 по дисциплине «Математическая статистика»

> > Выполнил студент: Самутичев Евгений Романович группа: 3630102/70201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1	Постановка задачи					
2	Teo 2.1	Ория Выбросы 2.1.1 Определение 2.1.2 Доля выбросов Боксплот Тьюки 2.2.1 Описание	3 3 3 3 3			
3	Pea	2.2.2 Построение	3 4			
4	Pe3 4.1 4.2 4.3	вультаты Боксплоты	5 5 8			
5	Обо	суждение	9			
6	Прі	иложения	10			
C	пис	сок иллюстраций				
	1 2 3 4 5	Нормальное распределение	5 5 6 6 7			
C	пис	сок таблиц				
	1 2	Теоретическая вероятность выбросов	8			

1 Постановка задачи

Для каждого из 5 распределений:

- 1. Нормального N(x, 0, 1)
- 2. Коши C(x, 0, 1)
- 3. Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- 4. Пуассона P(k, 10)
- 5. Равномерного $U(x, -\sqrt{3}, \sqrt{3})$

сгенерировать выборки размера 20 и 100, построить боксплот Тьюки. Определить долю выбросов экспериментально (сгенерировав выборку каждого размера 1000 раз) и сравнить с результатами полученными теоретически.

2 Теория

2.1 Выбросы

2.1.1 Определение

Результат измерения, выделяющийся из выборки называется *выбросом*. Простейший критерий основан на межквартильном расстоянии, выбросами считаются элементы выборки лежащие вне диапазона $[X_1, X_2]$:

$$X_1 = LQ - \frac{3}{2}(UQ - LQ), X_2 = UQ + \frac{3}{2}(UQ - LQ)$$
(1)

, где LQ, UQ - выборочные нижний и верхний квартили.

Теоретическая вероятность выбросов для непрерывных распределений:

$$P_{outlier} = P(x < X_1) + P(x > X_2) = F(X_1) + (1 - F(X_2))$$
(2)

, а для дискретных с учетом возможного скачка

$$P_{outlier} = F(X_1) - (F(X_1 +) - F(X_1)) + (1 - F(X_2))$$
(3)

2.1.2 Доля выбросов

Проведем следующий эксперимент 1, ..., i, ..., N раз: сгенерируем выборку размера n и подсчитаем число выбросов k_i , используя определение (1), но с выборочными квартилями. Тогда доля выбросов в i-м эксперименте:

$$P_i = \frac{k_i}{n} \tag{4}$$

Собственно долей выбросов будем называть величину

$$P = \frac{1}{N} \sum_{i=1}^{N} P_i \tag{5}$$

, с дисперсией

$$D = \frac{1}{N} \sum_{i=1}^{N} P_i^2 - P^2 \tag{6}$$

2.2 Боксплот Тьюки

2.2.1 Описание

Боксплот (англ. box plot) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей: в удобной форме показывает медиану, нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы. [2]

2.2.2 Построение

Границами ящика служат LQ и UQ, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов): X_1 и X_2 (1).

3 Реализация

Работа выполнена с использованием языка **Python** в интегрированной среде разработки **PyCharm**, были задействованы библиотеки:

- NumPy вычисление квартилей для дальнейшего подсчета выбросов
- \bullet \mathbf{SciPy} модуль \mathbf{stats} для генерации данных по распределениям
- Matplotlib построение боксплотов

Исходный код работы приведен в приложении.

4 Результаты

4.1 Боксплоты

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Распределение Пуассона

Рис. 5: Равномерное распределение

4.2 Теоретическая вероятность выбросов

Подсчитана для каждого распределения при помощи модуля stats библиотеки SciPy (см. Реализация):

Распределение					
$P_{outlier}(2),(3)$	0.007	0.156	0.0625	0.008	0.0

Таблица 1: Теоретическая вероятность выбросов

4.3 Доля выбросов

Распределение	normal	cauchy	laplace	poisson	uniform
n=20					
P(5)	0.025	0.147	0.070	0.022	0.0023
D(6)	0.002085	0.005248	0.004219	0.001801	0.0002
n = 100					
P	0.0105	0.156	0.0658	0.0108	0.0
D	0.000185	0.001068	0.0009	0.000236	0.0

Таблица 2: Доля выбросов

5 Обсуждение

Из полученных таблиц видно что доля выбросов близка к теоретической. Наибольшая при этом у распределения Коши, что также видно по боксплоту Тьюки (рис. 2). Вторая по величине у распределения Лапласа. Для остальных выборок доля выбросов не превосходит 95%, а значит можно считать что они соответствуют гипотетическим распределениям.

6 Приложения

1. Исходный код лабораторной https://github.com/zhenyatos/statlabs/tree/master/Lab3

Список литературы

- [1] Н. И. Чернова, Математическая статистика: Учеб. пособие. Новосиб. гос. ун-т. Новосибирск, 2007. 148 стр.
- [2] Ящик с усами // Википедия. [2020—2020]. Дата обновления: 12.01.2020. URL: https://ru.wikipedia.org/?oldid=104502300 (дата обращения: 12.01.2020)