Logistics

First two recitations (this week and the next week)

- ⇒Python basics (installation, basic syntax, basic programming), optional
- ⇒ Making models for 3D printing w/ Blender, optional
- ⇒Will announce details through Sakai per recitation
- ⇒PTL: Han, Shuai (<u>shuai.han@rutgers.edu</u>)
- ⇒For recitation related questions, direct them to Han, Shuai

Regarding Python level necessary for the course

- ⇒First of all, Python is SIMPLE!
- ⇒We will only use basic Python features and basic/math/plotting libraries
- ⇒We will not do heavy GUI programming

TAs and office hours (office hours held at Hill 275):

- ⇒Feng, Siwei (siwei.feng@rutgers.edu), office hour: Thu 1-3pm
- ⇒ Huang, Baichuan (baichuan.huang@Rutgers.edu), office hour: Tue 9-11am

CS 460/560 Introduction to Computational Robotics Fall 2019, Rutgers University

Lecture 02 Math. Foundations I

Instructor: Jingjin Yu

Outline

- Sets, functions, and cardinality of Sets
- Open sets and continuous functions
- Group theory concepts
- Topological space concepts

Some notes:

- ⇒We will discuss how some of the concepts are useful in the context of computational robotics: you will see most of these if you study further or work with robotics computations!
- ⇒But, as an introductory course, we will not extensively use these advanced concepts
- □ In terms of course work, these will mainly appear in HWs; midterm will cover only some basic definitions

Set, Set Operations, and Venn Diagram

A **set** is a collection of elements. Examples:

- \Rightarrow {1, a, cup, π , } elements do need not be of the same type
- \Rightarrow Natural numbers (an infinite set), $\mathbb{N} = \{0, 1, 2, ...\}$
- $\Rightarrow n$ -dimensional Euclidean spaces, \mathbb{R}^n (e.g., \mathbb{R}^3 is the 3-dimensional space)

Set operations

such that

- \Rightarrow Union: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- \Rightarrow Intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$
- \Rightarrow Complement: $\overline{A} = \{x \mid x \in U \land x \notin A\}$

 $A \cup B$

- \Rightarrow Difference: $A B = \{x \mid x \in A \land x \notin B\}$ (or $A \setminus B$)
- \Rightarrow Symmetric difference: $A \ominus B = A \cup B A \cap B$

Venn diagram

What is an element here?

E.g.,
$$U = \{1, ..., 10\}$$
,
 $A = \{2, 3, 5, 6, 7\}$,
 $B = \{3,4,7,8,9\}$

More Sets and Functions

Subset (\subset): $B \subset A \Leftrightarrow \forall x \in B, x \in A$

Superset $(\supset): A \supset B \Leftrightarrow B \subset A$

Powerset: $\mathcal{P}(S) = \{A \mid A \subset S\}$, example:

$$\Rightarrow S = \{1,2\}$$

$$\Rightarrow \mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\$$

 $B \subset A$

Functions

 \Rightarrow To fully specify a function, we write $f: X \to Y, x \mapsto f(x)$ $\Rightarrow x \in X, f(x) \in Y$

 \Rightarrow For f to be a valid function, $\forall x \in X, f(x) \in Y$ must be uniquely defined

 \Rightarrow Ex: for $f_1(x) = x^2$, we may write $f_1: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$

 \Rightarrow A function is **surjective** if f(X) = Y. Ex: $f_2: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}, x \mapsto x^2$

 \Rightarrow A function is **injective** if $\forall x_1 \neq x_2$, $f(x_1) \neq f(x_2)$

Q: Is f_1 surjective?

 \Rightarrow Ex: $f_3: \mathbb{N} \to \mathbb{N}$, $x \mapsto x^2$ Q: Is f_1 injective? What about f_2 ? Is f_3 surjective?

⇒A function is **bijective** if it is both surjective and injective

 \Rightarrow Ex: f_4 : $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^3$

Q: Are f_1 - f_3 bijective? How can you make $x \mapsto x^2$ bijective?

Cardinality of Sets

Cardinality: essentially the "size" of a set

```
\Rightarrow |\emptyset| = 0 Q: What about |\{\emptyset\}|?
```

$$\Rightarrow |\{1,2\}| = 2$$

$$\Rightarrow |\mathcal{P}(\{1,2\})| = |\{\emptyset, \{1\}, \{2\}, \{1,2\}\}| = 4$$

$$\Rightarrow$$
In general, $|\mathcal{P}(S)| = 2^{|S|}$

$$\Rightarrow |\mathbb{N}| = \aleph_0$$
 - the "smallest" infinite (cardinal) number, read "Aleph 0"

$$\Rightarrow |\mathbb{R}| = \aleph_1$$
 - there are "more" real number than natural numbers

Measuring the relative cardinality of sets

$$\Rightarrow |A| \leq |B|$$
 if there exists an injective function $f: A \to B$

$$\Rightarrow$$
If $|A| \leq |B|$ and $|B| \leq |A|$, then $|A| = |B|$

 \Rightarrow This means there is a **bijective function** between A and B

\Rightarrow Cardinality of rational numbers, \mathbb{Q} ?

- \Rightarrow Same as the set of natural numbers $\mathbb N$
- Q: How to prove this?
- ⇒ We call this "size" as "countably infinite"
- ⇒Cardinality of real numbers?
 - ⇒ "Uncountably infinite" (Cantor's diagonalization argument)

Q: How does this work?

A (Related) Fun Result

Can all problems be solved by algorithms?

Algorithm (roughly): a (Python) program that takes in a (finite) input

 \Rightarrow E.g., a program deciding whether a number n is prime

Problem: a parametrized question that also has a (finite) input

 \Rightarrow E.g., is n a prime number?

Not all problems can be solved by algorithms

- ⇒The number of programs is countable (i.e., as many as the natural numbers)
- ⇒But there are "more" problems!
- ⇒The number of parametrized questions is uncountable
 - ⇒ This can be shown via contradiction using Cantor's diagonalization argument
- ⇒One algorithm can solve one problem
- ⇒Therefore, some (actually, most) questions do not have algorithmic solutions!

Geeky friend: I can solve all problems with computer algorithms! You: yeah, like that's mathematically possible...

Why Sets?

Sets (and related concepts) are the cornerstones of mathematics Formalize mathematical study, i.e., making things more precise

An example in the context of computer science: **set cover**

 $\Rightarrow U$: the finite universe with n elements [e.g., $U = \{1, 2, ..., 20\}$]

e.g.,
$$U = \{1, 2, ..., 20\}$$

$$\Rightarrow S = \{s_1, s_2, \dots, s_m\}, \text{ each } s_i \subset U$$

$$\Rightarrow S = \{s_1, s_2, ..., s_m\}, \text{ each } s_i \subset U$$
 e.g., $s_1 = \{1, 3, 14, 18\}, s_2 = \{3, 6, 11\}, ...$

- \Rightarrow Question: find the smallest collection from $s_1, s_2, ..., s_m$ whose union is U
- ⇒Turns out this problem is very hard for computers NP-hard

Connection to robotics: Minimum Constraint Removal

- \Rightarrow A robot wants to go from q_s to q_g
- ⇒There are multiple obstacles blocking the way
- \Rightarrow Q: remove the least number of obstacles to go to q_a
- ⇒Turns out this is as hard as set cover
- ⇒So, yeah, robotics problems can be hard...

Open Sets, Closed Set, Boundary on \mathbb{R}^n

In **Euclidean spaces**, by convention, a set X is **open** if for all $x \in X$, there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subset X$.

- \Rightarrow Ex: \mathbb{R} is open, $\forall a, b \in R, a < b, (a, b)$ is open
- \Rightarrow Ex: The set $\{(x,y) \mid x^2 + y^2 < 1\} \subset \mathbb{R}^2$ is open
- ⇒The union of any number of open set is open

A set is **closed** if its complement is open

- \Rightarrow A set may be both open and closed, e.g., \mathbb{R} Why?
- \Rightarrow A set may be neither open nor closed, e.g., (a, b]

The closure of a set is the set plus all its limit points not in the set

- \Rightarrow The closure of a set is closed, e.g. Cl(S) is always closed \Rightarrow Also, Cl(S) = Cl(Cl(S))
- The **interior** of a set S, denoted S^o , is the union of all open sets in S. The **boundary** of a set S, denoted ∂S , is $Cl(S) S^o$.

Continuous Functions

A function $f: \mathbb{R} \to \mathbb{R}$ is continuous around $x_0 \in R$ if $\forall \varepsilon > 0$, $\exists \delta > 0$, s.t. $\forall x \in B(x_0, \delta), f(x) \in (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$.

 \Rightarrow Readily generalize to $f: \mathbb{R}^n \to \mathbb{R}$

$$f_2 = \begin{cases} 1, & x < 2 \\ 2, & x \ge 2 \end{cases}$$

$$f_2$$
 is not continuous at $x = 2$: let $\varepsilon = 0.1$, $\forall \delta > 0$, $f_2\left(2 - \frac{\delta}{2}\right) = 1 \notin (2 - 0.1, 2 + 0.1)$

Why Open/Closed Sets and Continuous Functions?

Open and closed sets: for precisely describing and solving a problem

- ⇒Obstacles are generally modeled as closed sets (not always)
- ⇒The free space (the space with obstacles removed) is then open
- ⇒If our robot stays in the free space, then no collisions

Robot trajectories are mostly continuous functions

 \Rightarrow E.g., in 2D, $f:[0,t] \rightarrow \mathbb{R}^2$

If not, your robot may be teleporting...

Group Theory Concepts

A **set** G together with a **binary operation** \cdot is a **group** if the following group axioms are satisfied

```
\Rightarrow Closed: \forall a, b \in G, a \cdot b \in G
```

- \Rightarrow Associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- \Rightarrow Identity: $\exists e \in G, \forall a \in G, a \cdot e = e \cdot a = a$
- \Rightarrow Inverse: $\forall a \in G$, $\exists b \in G$ s.t. $a \cdot b = b \cdot a = e$

Examples?

- ⇒The set of integers under addition
- ⇒The set of positive rational numbers under multiplication

Why Groups?

A mathematical field full of sad (but curious) stories!

- ⇒ Niels Henrik Abel (Norwegian, 1802-1829)
 - ⇒ Invented group theory!
 - ⇒ Proved no explicit algebraic solutions for quintic polynomials
 - ⇒ And many other fundamental contributions...
 - ⇒ Very unlucky!
 - ⇒ Sent group theory paper to Gauss, Gauss tossed it into garbage...
 - ⇒ Sent another seminal paper to Cauchy, Cauchy "misplaced" it...
 - ⇒ Died at the age of 26...
 - ⇒ Then he got a letter appointing him Professor at the University of Berlin
 - ⇒ Abel Prize is basically the Nobel Prize in math
- ⇒Évariste Galois (French, 1811-1832)
 - ⇒ Also invented group theory (independently, no internet then)
 - ⇒ Galois theory (more general than Abel's work)
 - ⇒ Also many, many other important work...
 - ⇒ But this guy was very passionate
 - ⇒ Political activist, went to prison
 - ⇒ Then chose to dual with an army officer and died...
 - ⇒ 20 years old...

Niels Henrik Abel

Évariste Galois Images from wikipedia

Why Groups? Seriously...

Many types of discrete and continuous spaces are also groups!

⇒Ex: The Rubik's cube

"God's number": http://cube20.org

⇒ It's a planning problem! The "configurations" form a graph

 \Rightarrow Ex: \mathbb{R} under addition

⇒Ex: The unit circle under rotation

⇒Can also do this using matrix multiplication | Matrices are also groups

$$\begin{bmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$$

⇒ More on this when we do coordinate transformations

