Semaine du 13/05 au 17/05

1 Cours

Séries numériques

Généralités Définition, sommes partielles. Nature d'une série, somme. Si $\sum u_n$ converge, alors (u_n) converge vers 0. Divergence grossière. Nature et somme d'une série géométrique. Reste d'une série convergente. Opérations sur les séries.

Comparaison à une intégrale Encadrement de $\sum f(n)$ où f est monotone. Nature d'une série de Riemann.

Séries à termes positifs Une série à terme positif converge ou diverge vers $+\infty$. Si $0 \le u_n \le v_n$, lien entre la convergence ou la divergence des séries $\sum u_n$ et $\sum v_n$. Absolue convergence. La convergence absolue implique la convergence. Relations de comparaison : lien entre domination/négligeabilité/équivalence et convergence/divergence des séries.

Matrices

Matrices à coefficients dans \mathbb{K} Définition d'une matrice à n lignes et p colonnes. Structure de \mathbb{K} -espace vectoriel de $\mathcal{M}_{n,p}(\mathbb{K})$. Base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$. Produit matriciel : bilinéarité et associativité. Transposition : linéarité, involutivité , transposée d'un produit. Matrices définies par blocs et produit de telles matrices.

Matrices carrées à coefficients dans \mathbb{K} Structure d'anneau de $\mathcal{M}_n(\mathbb{K})$. Élément neutre I_n . Matrices inversibles. Groupe linéaire $GL_n(\mathbb{K})$. Inverse d'un produit de matrices inversibles. Inverse d'une transposée de matrice inversible.

Matrices particulières de $\mathcal{M}_n(\mathbb{K})$ Matrices triangulaires supérieures et inférieures. Structure de sous-espace vectoriel et de sous-anneau de $\mathcal{T}_n^+(\mathbb{K})$ et $\mathcal{T}_n^-(\mathbb{K})$.

2 Méthodes à maîtriser

- ▶ Établir la convergence d'une série et calculer sa somme par télescopage.
- ▶ Utiliser une décomposition en éléments simples pour déterminer par télescopage la somme d'une série $\sum F(n)$ où F est une fraction rationnelle.
- ► Comparer la somme partielle ou le reste d'une série à une intégrale.
- ▶ Déterminer un équivalent de la somme partielle d'une série divergente ou du reste d'une série convergente par comparaison à une intégrale.
- ▶ Comparer à une série de Riemann ou une série géométrique pour déterminer la nature d'une série.
- ▶ Calculer une puissance de matrice grâce à un polynôme annulateur ou à la formule du binôme de Newton.
- Calculer l'inverse d'une matrice à l'aide d'un polynôme annulateur ou à l'aide du pivot de Gauss.
- ▶ Écrire la matrice d'une application linéaire dans des bases ou d'un endomorphisme dans une base.
- ► Traduire matriciellement des informations sur des applications linéaires ou des endomorphismes et inversement.
- ► Calculer une puissance de matrice grâce à un polynôme annulateur ou à la formule du binôme de Newton.
- Calculer l'inverse d'une matrice à l'aide d'un polynôme annulateur ou à l'aide du pivot de Gauss.

3 Questions de cours

- ▶ Equivalent d'une somme partielle A l'aide d'une comparaison série/ntégrale, déterminer un équivalent de la somme partielle de la série $\sum_{n \in \mathbb{N}^*} \frac{1}{\sqrt{n}}$.
- ▶ Equivalent d'un reste A l'aide d'une comparaison série/intégrale, déterminer un équivalent du reste de la série $\sum_{n \in \mathbb{N}^*} \frac{1}{n\sqrt{n}}$.

Remarque. J'autorise les étudiants à utiliser des intégrales impropres (i.e. à borne infinie).

- ▶ Série alternée Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante de limite nulle. Montrer que la série $\sum_{n\in\mathbb{N}} (-1)^n u_n$ converge.
- ▶ **Prolongement** \mathscr{C}^1 Montrer que la fonction $f: x \in \mathbb{R}^* \mapsto \frac{\sin x}{x}$ peut se prolonger sur \mathbb{R} en une fonction de classe \mathscr{C}^1 .

- ► Calcul de puissance Soit $a \in \mathbb{R}^*$. On pose $A = \begin{pmatrix} 0 & a & a^2 \\ \frac{1}{a} & 0 & a \\ \frac{1}{a^2} & \frac{1}{a} & 0 \end{pmatrix}$. Calculer A^n pour tout $n \in \mathbb{N}$.
- ▶ Matrices triangulaires Montrer que le produit de deux matrices triangulaires supérieures de $\mathcal{M}_n(\mathbb{K})$ est une matrice triangulaire supérieure et que les coefficients diagonaux du produit sont les produits des coefficients diagonaux.