Active Statistical Inference

By Tijana Zrnic & Emmanuel J. Candès

Problem Setting

- ▶ We have a collection of n values $X_1, X_2, \ldots, X_n \sim_{iid} \mathbb{P}_X$. Each X_i has a corresponding label Y_i which is unobserved, with $Y_i \sim \mathbb{P}_{Y|X}$.
- We want to perform inference on some parameter θ^* (e.g. the mean label $\mathbb{E}\left[Y_i\right]$) which is a functional of

$$\mathbb{P}_{(X,Y)} := \mathbb{P}_X \times \mathbb{P}_{Y|X}.$$

- θ^{\star} is an element of some parameter space Θ .
- In particular, the authors focus on hypothesis tests and/or constructing confidence intervals for the parameter θ^* .
- ▶ We have a budget of $n_b \ll n$ labels which we can collect.
 - The goal is to have the expected number of collected labels $(n_{\rm lab})$ be less than n_b
- We have some (often black-box) model f for predicting Y_i given X_i .

Loss Function

- ▶ To perform inference on the parameter θ^* , we utilize a loss function $\ell_{\theta}(X,Y)$ which is **convex** w.r.t θ .
- Possible examples of this loss are:
 - $\ell_{\theta}(x,y) = \frac{1}{2}(y-\theta)^2$, target is $\theta^{\star} = \mathbb{E}\left[Y\right]$
 - $\ell_{\theta}(x,y) = \frac{1}{2}(y x^{\top}\theta)^2$, target is linear regression coefficients
 - $\ell_{\theta}(x,y) = (1-q)(\theta-y)\mathbf{1}\{y \leq \theta\} + q(y-\theta)\mathbf{1}\{y > \theta\}$, target is q^{th} quantile of Y for 0 < q < 1
- For Bayesian Optimization, we want to find x^* which maximizes $g(x^*)$ for the unknown function g. In a scenario with zero observational noise, this is effectively the $1.00^{\rm th}$ quantile of Y.

Batch and Sequential Settings

- ► The authors propose two versions of their algorithm; the *batch* and *sequential* setting.
- ▶ In the *batch* setting, we have a pre-existing predictive model f and simultaneously decide whether or not to acquire Y_i .
 - \bullet This version is conceptually easier but reliant on a good model f.
- In the *sequential* setting, we instead acquire Y_i one point at a time and update the predictive model f in accordance with the new data.
 - This is more in line with Bayesian optimization, but from a more frequentist angle.
 - The sequential setting also allows us to train a model f "from scratch", which is similar to starting with an uninformative prior for $Y_i \mid X_i$ and doing posterior updates.

Sequential Sampling

- ▶ To choose the next label to collect in the *sequential* setting, the authors create a sampling rule $\pi: \mathcal{X} \to [0,1]$ and collect the label Y_i with probability $\pi(X_i)$.
 - The value of $\pi(X_i)$ is based on the uncertainty of $f(X_i)$, with $\pi(X_i) \approx 1$ when $f(X_i)$ is uncertain and $\pi(X_i) \approx 0$ when $f(X_i)$ has high certainty.
 - The uncertainty is measured as a function $u(\cdot)$, where $\pi(\cdot) \propto u(\cdot)$ is scaled to ensure $\mathbb{E}\left[n_{\mathsf{lab}}\right] \leq n_b$.
- At each step $t \in \{1, 2, ..., n\}$, we observe $X_t \in \mathcal{X}$ and collect the label Y_t with probability $\pi_t(X_t)$.
 - $\pi_t(\cdot)$ is a **scaled** measure of the uncertainty of f after collecting the labelled dataset $\{(X_i, Y_i)\}_{i=1}^n$.

Sequential Sampling (cont.)

ightharpoonup For general convex M-estimation problems, the sequential estimator is

$$\hat{\theta}^{\pi_n} = \arg\min_{\theta \in \Theta} L^{\pi_n}(\theta)$$

► In the equation above, we define

$$L^{\pi_n}(\theta) = \frac{1}{n} \sum_{t=1}^n \left[\ell_{\theta,t}^{f_t} + (\ell_{\theta,t} - \ell_{\theta,t}^{f_t}) \frac{\xi_t}{\pi_t(X_t)} \right]$$

▶ Under the **Lindeberg condition**, we find that $\hat{\theta}^{\pi_n}$ is asymptotically Normal, and this can be used to construct $1 - \alpha$ confidence intervals for θ^* .

Similarities to BayesOpt

- ► The batch setting is fairly reliant on the existence of a pre-trained model f, but the sequential setting has several similarities to BayesOpt.
- The overall methodology of the sequential setting is quite similar to Bayesian Optimization as the method involves sequential data collection and updating our "beliefs" (the function f_t) in accordance with new data.
- ▶ The uncertainty function $u(\cdot)$ **acts** similarly to a utility function used for guiding data collection.
 - The primary difference is that $u(\cdot)$ is mostly reliant on uncertainty regarding the predicted value of $Y_i \mid X_i$ instead of depending on the loss function and/or the target θ^* .

Differences from BayesOpt

- ► The proposed active inference method is suited for M-estimation problems, and Bayesian optimization does not (really) fall under this category.
- ▶ The active inference method involves an initial sample of points $X_1, X_2, \ldots, X_n \sim_{\text{iid}} \mathbb{P}_X$ where we can choose to acquire the corresponding labels, as opposed to BayesOpt, which does not need to fix the data points a priori.
- ▶ The sequential setting seems particularly useful when the features of X are categorical/discrete because BayesOpt requires a compact space \mathcal{X} .