Last bine:

- Finished Ch3 - Stanted Ch4 } HW3 posted

Today :

- Ting bit of Chy, devices

- Lab discussion

- Devices continued

not really used in power electronics

The Insulated Gate Bipolar Trans (IGBT) & BJT

The MOSFET

* 2 quadrant device

* usually for "low power" applications

PWM Controller UC3525

The UC3525 PWM Control IC

Key functions:

- Oscillator (sawtooth wave generator)
- PWM comparator and latch
- Error amplifier
- 5.1 V reference
- Pulse-steering logic
- Output drivers
- Shutdown and softstart circuitry

How a pulse-width modulator works

How a pulse-width modulator works

AAAAA

For a linear sawtooth waveform:

$$d(t) = \frac{v_c(t)}{V_M} \quad for \ 0 \le v_c(t) \le V_M$$

So d(t) is a linear function of $v_c(t)$.

Sawtooth (ramp) oscillator

Simplified diagram of oscillator

* Need a way to adjust Ts=fs-1

Blanking pulse causes driver outputs to be low, so that $dT_s \le t_c$ Increasing R_D reduces maximum allowed duty cycle D_{max}

PWM comparator and latch

- PWM comparator "Comp"
- PWM latch is reset by oscillator during blanking interval, which starts the DTs interval
- PWM latch is set by PWM comparator, which ends the DTs interval
- The PWM latch prevents noise in the analog input from causing multiple switching during a switching period

* latch acts on first edge, & ignores other spurious transitions.

Error amplifier

Transconductance amplifier

Bypass buffer & add divider ckt for adjustable D

The error amplifier is connected as a unity-gain stage: $v_{comp} = v_{in}$

The duty cycle D can be adjusted by the external pot.

Outputs of the UC3525A

Outputs A and B can be OR-ed to restore the PWM pulses at the oscillator frequency.

Soft start and shutdown

The shutdown pin (10) turns off the chip outputs. Ground this pin to ensure that the outputs are not shut down.

A capacitor can be connected to the soft start pin (8). The voltage on this pin limits the maximum duty cycle. At turn on, the capacitor will start at 0V, and then will charge from the $50~\mu\text{A}$ current source. This overrides the feedback loop and starts the converter gently.

OR-ing the outputs

A cheap way to OR the outputs of the UC3525

The + 5 V can be obtained from the 5 V reference of the UC3525

Bypass the + 5 V so that the switching EMI of this circuit does not disrupt the internal control circuitry of the UC3525, which also uses the + 5 V.

More UC3525 tips:

- You will need to ground the SHUTDOWN pin. Otherwise the UC3525 will shut down.
- R_T must be greater than 2 k Ω ; otherwise the UC3525 oscillator will not work
- R_D is usually a few hundred Ohms; R_D must be substantially smaller than R_T .

Gate Driver IRS2184

The IRS2184 driver

Internal structure of typical driver

Example circuit... not our exact IC

Driver logic inputs

- Vcc power supply primarily used to power output
- IN pin accepts 3.3 V and 5 V logic
- IN pin connected to PWM IC output

Boostrap circuit to power high-side output

