A rigorous, closed-form characterisation of adversarial generalisation errors.

A High Dimensional Statistical Model for Adversarial Training: Geometry and Trade-Offs

Problem Setup

Binary Classification Setting:

- Training data $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n \in \mathbb{R}^d \times \{-1, +1\}$
- Probit model with noise parameter $\tau > 0$
- High-dimensional limit: $d, n \to \infty$ with fixed $\alpha = n/d$
- Structured data with block features: covariance matrices Σ_x , Σ_{δ} , Σ_{v} , Σ_{θ} are block diagonal with k blocks of sizes d_1, \ldots, d_k

Metrics of Interest:

Generalisation Error:

$$E_{\text{gen}} = \mathbb{E}_{y,x} \big[\mathbb{1}(y \neq \hat{y}(\hat{\boldsymbol{\theta}}, \boldsymbol{x})) \big]$$
 (1

Adversarial Generalisation Error:

$$E_{\text{adv}} = \mathbb{E}_{y,x} \left[\max_{\|\boldsymbol{\delta}\|_{\boldsymbol{\Sigma}_{\boldsymbol{v}}^{-1}} \leq \varepsilon_g} \mathbb{1}(y \neq \hat{y}(\hat{\boldsymbol{\theta}}, x + \boldsymbol{\delta})) \right]$$
 (2)

Boundary Error:

$$E_{\rm adv} = E_{\rm gen} + E_{\rm bnd} \tag{3}$$

where E_{bnd} are the attackable samples.

Usefulness and Robustness:

$$\mathcal{U}_{\boldsymbol{\theta}_0} = \frac{1}{\sqrt{d}} \mathbb{E}_{\boldsymbol{x}, y} [y \boldsymbol{\theta}_0^\top \boldsymbol{x}]$$
 (4)

$$\mathcal{U}_{\boldsymbol{\theta}_{0}} = \frac{1}{\sqrt{d}} \mathbb{E}_{\boldsymbol{x}, y} [y \boldsymbol{\theta}_{0}^{\top} \boldsymbol{x}]$$

$$\mathcal{R}_{\boldsymbol{\theta}_{0}} = \frac{1}{\sqrt{d}} \mathbb{E}_{\boldsymbol{x}, y} \left[\inf_{\|\boldsymbol{\delta}\|_{\boldsymbol{\Sigma}_{\boldsymbol{v}}^{-1}} \leq \varepsilon_{g}} y \boldsymbol{\theta}_{0}^{\top} (\boldsymbol{x} + \boldsymbol{\delta}) \right]$$
(5)

Adversarial ERM:

$$\sum_{i=1}^{n} g \left(y_{i} \frac{\boldsymbol{\theta}^{\top} \boldsymbol{x}_{i}}{\sqrt{d}} - \varepsilon_{t} \frac{\sqrt{\boldsymbol{\theta}^{\top} \boldsymbol{\Sigma}_{\delta} \boldsymbol{\theta}}}{\sqrt{d}} \right) + r(\boldsymbol{\theta})$$
 (6)

Main Result

Theorem: Adversarial generalization errors are provably characterized by a system of 8 order parameters $(m, q, V, P, \hat{m}, \hat{q}, \hat{V}, \hat{P})$ and an additional parameter A through:

$$E_{\rm gen} = \frac{1}{\pi} \arccos\left(m/\sqrt{(\rho + \tau^2)q}\right) \tag{7}$$

$$E_{\text{bnd}} = \int_{0}^{\varepsilon_g \frac{\sqrt{A}}{\sqrt{q}}} \operatorname{erfc}\left(\frac{-\frac{m}{\sqrt{q}}\nu}{\sqrt{2(\rho + \tau^2 - m^2/q)}}\right) \frac{e^{-\frac{\nu^2}{2}}}{\sqrt{2\pi}} \,\mathrm{d}\nu \tag{8}$$

Implications

Trade-off between Usefulness Robustness:

- Usefulness relates to generalisation error
- Robustness relates to boundary error
- Trade-off emerges when protecting useful but non-robust features

Key Bounds:

$$E_{\rm gen} \ge \frac{1}{\pi} \arccos\left(\sqrt{\frac{\pi}{2\rho}} \mathcal{U}_{\boldsymbol{\theta}_0}\right)$$
 (9)

Impact of different defense strategies on generalization (E_{gen}) and boundary (E_{bnd}) errors

- Defending robust features: Low E_{gen} but high E_{bnd}
- Uniform defense: Better balance, improves overall E_{adv}
- Defending non-robust features: Increases E_{qen} while decreasing E_{bnd}

Optimal defense

strategy depends on feature geometry

Analytical Result: For structured data with two feature blocks, we prove that protecting non-robust features:

- Always increases E_{gen} and decreases E_{bnd}
- Can improve E_{adv} when attack size is small enough

Tradeoff directions and innocuous directions

Key Insight: The geometry of features determines whether adversarial training leads to a trade-off:

- Trade-off Features (aligned with teacher):
- Fundamental trade-off between E_{gen} and E_{bnd}
- Optimal performance at specific ε_t
- Requires careful hyperparameter tuning

Data Dependent Regularisation

Key Finding: Adversarial training can be approximated as a data-dependent regularisation:

Learning curves for adversarial training (top) and its regularisation approximation (bottom)

Approximate Loss:

$$\sum_{i=1}^{n} g\left(y_{i} \frac{\boldsymbol{\theta}^{\top} \boldsymbol{x}_{i}}{\sqrt{d}}\right) + \tilde{\lambda}_{1} \sqrt{\boldsymbol{\theta}^{\top} \boldsymbol{\Sigma}_{\delta} \boldsymbol{\theta}} + \tilde{\lambda}_{2} \boldsymbol{\theta}^{\top} \boldsymbol{\Sigma}_{\delta} \boldsymbol{\theta}$$
 (11)

Key Properties:

- Not just ℓ_2 : Performance depends on ε_t even with optimal λ
- Effective Regularisation: is a directional $\sqrt{\ell_2} + \ell_2$

Kasimir Tanner Matteo Vilucchio Bruno Loureiro Florent Krzakala