Purely greedy exploitation

- •Algorithm: Toss the coin having the maximum empirical reward
- Consider two coins:
 - Coin 1 with probability of head 0.4
 - Coin 2 with probability of head 0.6
- •With probability 0.24, Coin 1 gives head and Coin 2 gives tail in the first toss
- The algorithm then sticks to the sub-optimal Coin 1
- •Overall regret is atleast $0.048 \times T$ which is linear !!

Having sub-linear regret

Can we get sub-linear regret i.e.
$$\lim_{T\to\infty}\frac{\operatorname{Regret}_T}{T}=0$$
?

Recall that:

$$\frac{1}{T} \times$$
 Expected total reward till time $T =$ Mean reward of best arm $(\mu^*) - \frac{\text{Regret}}{T}$

Thus having
$$\frac{\text{Reg}_T}{T} \to 0$$
 implies:

$$\frac{1}{T}$$
Expected total reward \rightarrow Mean of best arm (μ^*)