Лабораторная работа 3(ФТТ)

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ СОПРОТИВЛЕНИЯ ПОЛУПРОВОДНИКОВ ОТ ОСВЕЩЕННОСТИ

- 1. Прочитать в методичке 22-50: стр. 5-14.
- 2. Прочитать в файле: «ФТТ Лр1 Лр3»: «Лабораторная работа 3»
- 3. Пункт: «3.3. Порядок выполнения работы», начиная с пп. 3.3.4 выполнить, используя ПК и приложение Excel, в редакции, приведенной ниже.

(Самостоятельно выполненный отчет будет оценен до 4-х баллов вместо обычных 2-х.)

3.3. Порядок выполнения работы

- 3.3.1 ... 3.3.3 не изменились.
- 3.3.4. Создать в *Excel* таблицу (ячейки не объединять!):

Таблица результатов измерений и расчетов.

21в Сидоров Сидор Лр3(ФТТ)				$I_v =$		кд, $U =$		B, S , $MM^2 =$	
					x_i	y_i	$(x_i)^2$		$(\Delta y_i)^2$
№ п/п	<i>r</i> , cm	$I_{\rm cb}$, мк ${ m A}$	E, лк	R, к O м	r^2 , M^2	R, MOM	r^4 , M^4	R_{Teop} , MOM	$(\Delta R_i)^2$, MOm^2
1									
2									
3									
N									
< k > =			< k > =		MOm/m^2	$\Delta_k = \Sigma(x_i)^2 =$		$S=\Sigma(\Delta y_i)^2=$	

и внести экспериментальные данные r и $I_{\rm cB}$, а также значения $I_{\it v}$, U и S=28 мм 2 в соответствующие ячейки, выделенные желтым цветом в первой строке таблицы.

3.3.5. Вычислить E фотоэлемента по формуле:

$$E = I_{\nu} / r^2 \tag{3.2}$$

где $I_v = P$ (мощности лампы накаливания) – для экспериментальной установки №1;

 $I_v = I_{\rm CД}$ (сила света светодиода) — для экспериментальной установки №2, для чего в ячейку «1-E» (1-я строка колонки «E, лк») набрать формулу: = $I_v / r^2 / 1E - 4$ (Важно: E -латиница), где вместо I_v поставить ссылку на ячейку со значением « I_v » в первой строке таблицы (выделена желтым цветом), вместо r поставить ссылку на ячейку «1-r»; затем заполнить колонку «E», для чего «протянуть» ячейку «1-E» за нижний правый угол до жирной линии.

(Важно: ссылка на « I_{v} » должны быть набрана как фиксированная (неподвижная).)

3.3.6. Вычислить значения сопротивления фотоэлемента по закону Ома ($R = U/I_{\rm CB}$), для чего в ячейку «1-R,кОм» (1-я строка колонки «R, кОм» оливкового цвета) набрать формулу: = $U/I_{\rm CB}$ /1E–3, где вместо U поставить ссылку на ячейку со значением «U» в первой строке таблицы (выделена желтым цветом), вместо $I_{\rm CB}$ поставить ссылку на ячейку «1- $I_{\rm CB}$ »; затем заполнить колонку «R», для чего «протянуть» ячейку «1-R» за нижний правый угол до жирной линии.

(Важно: ссылка на «U» должны быть набрана как фиксированная (неподвижная).)

3.3.7. Построить график R = R(E). Для этого выделить одним прямоугольником значения двух колонок «E» и «R» (оливковый цвет), в меню «Вставка», «Диаграммы» выбрать «График», «Все типы диаграмм», «Точечная» (Точечная с гладкими кривыми и маркерами) и нажать «ОК».

- 3.3.8. Вычислить значения квадрата расстояния r^2 , для чего в ячейку «1- r^2 » (1-я строка колонки « r^2 , м 2 ») набрать формулу: = r^2 1E–4 (Важно: Е латиница), где вместо r поставить ссылку на ячейку «1-r»; затем заполнить колонку « r^2 , м 2 », «протянув» ячейку «1- r^2 , м 2 » за нижний правый угол до жирной линии. Аналогичным образом заполнить колонку «R, МОм» по формуле: = 'ссылка на ячейку «1-R, кОм»'/1E3 (Важно: Е латиница).
- 3.3.9. Построить график $R = R(r^2)$ и аппроксимировать его функцией y = k *х методом наименьших квадратов*. Для этого выделить одним прямоугольником значения двух колонок (r^2, m^2) и (R, MOm) (лиловый цвет), в меню «Вставка», «Диаграммы» выбрать «График», «Все типы диаграмм», «Точечная» (Точечная с маркерами) и нажать (OK). Навести мышку на любую точку (кружок, квадратик) точечного графика и нажать правую кнопку мыши. В выпадающем меню выбрать «Добавить линию тренда» и в открывшемся окне выбрать «Линейная» и поставить «галочки» внизу окна во всех трех квадратиках: «пересечение кривой с осью Y в точке: 0,0», «показывать уравнение на диаграмме» и «поместить на диаграмму величину достоверности аппроксимации (R^2) ». Нажать «Закрыть».
- 3.3.10. Внести в самую нижнюю строку таблицы среднее значение параметра аппроксимации $<\!k>$ (синяя ячейка), которое вычислено программой и показано на графике как коэффициент в уравнении прямой. Второе число на графике (R^2) характеризует качество проведенных измерений, его нужно указать в «Выводе» в конце «Отчета»: $R^2 > 0.99$ эксперимент выполнен качественно, $R^2 < 0.96$ эксперимент проведен небрежно, $0.96 < R^2 < 0.99$ среднее качество эксперимента.
- 3.3.11. Для вычисления погрешности параметра «*k*» необходимо сначала заполнить оставшиеся три столбца таблицы (до жирной линии):
- $-(x_i)^2$ вычислить по формуле: $=(x_i)^2$, где вместо x_i поставить ссылку на ячейку «1- r^2 »;
- $-R_{\text{теор}}$ по формуле: = k * x, где вместо «k» поставить ссылку на ячейку со средним значением «k» (синяя ячейка), а вместо «x» ссылку на ячейку « $1 r^2$ »;

(Важно: ссылка на «k» должна быть набрана как фиксированная (неподвижная).)

 $-(\Delta y_i)^2$ – по формуле: =($R-R_{\text{теор}}$)^2, где вместо R и $R_{\text{теор}}$ поставить ссылки на ячейки «1-R» и «1- $R_{\text{теор}}$ » соответственно,

затем заполнить оставшиеся 2 «зеленых» <u>ячейки</u> ($\Delta_k = \Sigma(x_i)^2$ и $\Sigma(\Delta y_i)^2$) суммами расположенных над ними N чисел, и, наконец, заполнить последние две «синие» ячейки:

- $-\Delta_k$ вычислить по формуле (19) из 22-50, а входящие в них величины уже вычислены и вставляются в формулу ссылками на «красную» и две «зеленых» ячейки;
- Δy вычисляется по формуле (44) из 22-50, а входящие в них величины уже вычислены и вставляются в формулу ссылками на третью «зеленую» ячейку ($S = \Sigma(\Delta y_i)^2$) и «красную» (N).
- 3.3.12. Справа от графика выделить рамками две строки по шесть ячеек в каждой и заполнить их по образцу:

k = (±) MOm/m ² ,	$\varepsilon_p =$	
K = (±) мкА/лм,	$\varepsilon_K =$	

3.3.13. Осталось выполнить заключительные расчеты и их результаты вписать в ячейки только что сделанных «рамочек»:

< k > - среднее значение параметра k (оно уже вычислено программой и вписано в таблицу) – вставить ссылку на «синюю» ячейку < k >;

 Δk – абсолютная погрешность, вычисляется по формуле $\Delta k = \sqrt{\frac{\sum \left(\Delta y_i\right)^2}{\Delta_k \left(N-2\right)}}$, которая получается

из формулы (25) с учетом (23) из 22-50, а входящие в них величины уже вычислены и вставляются в формулу ссылками на две «зеленых» и «красную» ячейки;

 ε_p — относительная погрешность, вычисляется по хорошо известной формуле: = Δk / < k >, а входящие в нее величины только что вписаны в ответ и вставляются в формулу в виде соответствующих ссылок; чтобы результат был представлен в процентах, нужно на вкладке «Главная» - «Число» нажать на кнопку «%»;

K – интегральная чувствительность, вычисляется по формуле $K = \frac{U}{k \, I_D \, S}$, которая выводится в

одно действие из формулы п. 3.3.7 из файла «ФТТ_Лр1 — Лр3.pdf», а входящие в нее величины вставляются ссылками на соответствующие ячейки (три «желтых» и «синюю»);

 ΔK – абсолютная погрешность, вычисляется по формуле:

$$\Delta K = K \sqrt{\left(\frac{\Delta U}{U}\right)^2 + \left(\frac{\Delta k}{k}\right)^2 + \left(\frac{\Delta I_{\upsilon}}{I_{\upsilon}}\right)^2 + \left(\frac{\Delta S}{S}\right)^2} ,$$

где $\Delta U = 0.075$ В (при $U = 7.0 \dots 7.5$ В) и $\Delta U = 1.0$ В (при $U = 30 \dots 40$ В);

 $\Delta I_v = 0.05$ кд (для светодиода) и $\Delta I_v = 0.5$ кд (для лампы накаливания);

 $\Delta S = 0.5 \text{ mm}^2;$

 ε_K — относительная погрешность, вычисляется по хорошо известной формуле: = ΔK / < K >, а входящие в нее величины только что вписаны в ответ и вставляются в формулу в виде соответствующих ссылок; чтобы результат был представлен в процентах, нужно на вкладке «Главная» - «Число» нажать на кнопку «%».

3.3.14. Результат внести в отчет, сделать вывод, в том числе о качестве проведенных измерений, используя параметр R^2 .

При сдаче отчета предъявить файл с расчетами!