Lecture 2

Simple Linear Regression II

Reading: Chapter 11

STAT 8020 Statistical Methods II August 25, 2020

> Whitney Huang Clemson University

Agenda

- Parameter Estimation
- Residual Analysis
- Confidence/Prediction Intervals
- 4 Hypothesis Testing

Notes	
-------	--

Notes

Estimation: Method of Least Square

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

We also need to $\mathbf{estimate}\ \sigma^2$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$$
, where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

riegression
CLEMS#N
Parameter Estimation
Confidence/Prediction Intervals

Simple Linear

Notes			

Properties of Least Squares Estimates

- Gauss-Markov theorem states that in a linear regression these least squares estimators
 - Are unbiased, i.e.,
 - $\bullet \ E[\hat{\beta}_1] = \beta_1; E[\hat{\beta}_0] = \beta_0$
 - $E[\hat{\sigma}^2] = \sigma^2$
 - Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_i

Simple Linear Regression II
Parameter Estimation
Confidence/Prediction Intervals

Notes			

Example: Maximum Heart Rate vs. Age

The maximum heart rate ${\tt MaxHeartRate}$ of a person is often said to be related to age ${\tt Age}$ by the equation:

$$MaxHeartRate = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset":

whitneyhuang83.github.io/STAT8010/Data/
maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Compute the fitted values
- \odot Compute the estimate for σ

Notes

Estimate the	Parameters	β_1 ,	β_0 ,	and	σ^2

 Y_i and X_i are the Maximum Heart Rate and Age of the i^{th} individual

- To obtain $\hat{\beta}_1$
 - Ompute $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$, $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
 - ② Compute $Y_i \bar{Y}$, $X_i \bar{X}$, and $(X_i \bar{X})^2$ for each observation
 - **3** Compute $\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})$ divived by $\sum_{i=1}^{n} (X_i \bar{X})^2$
- $\hat{\beta}_0$: Compute $\bar{Y} \hat{\beta}_1 \bar{X}$
- - Ocompute the fitted values: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i, \quad i = 1, \dots, n$
 - ② Compute the **residuals** $e_i = Y_i \hat{Y}_i, \quad i = 1, \dots, n$
 - © Compute the **residual sum of squares (RSS)** = $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$ and divided by n-2 (why?)

Simple Linear Regression II
CLEMS N
Parameter Estimation
Confidence/Prediction Intervals

Notes			

Let's Do the Calculations

$$\bar{X} = \sum_{i=1}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$

$$\bar{Y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.27$$

$$I = \sum_{i=1}^{\infty} \frac{15}{15} = 180.27$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = -0.7977$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 210.0485$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{15} (Y_i - \hat{Y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$$

Notes

Let's Double Check

Output from Studio

Parameter Estimation Residual Analysis Confidence/Prediction

Notes

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

Parameter Estimation Residual Analysis Confidence/Prediction

Confidence/Prediction Intervals Hypothesis Testing Notes

Residuals

 The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

where
$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i$$

- ullet e_i is NOT the error term $arepsilon_i = Y_i \mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $Var[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Simple Linear Regression II
CLEMS#N N I V E R S I T Y
Residual Analysis
Confidence/Prediction Intervals

Notes

Maximum Heart Rate vs. Age Residual Plot: ε vs. X

Notes			

Interpreting Residual Plots

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Simple Linear Regression II
CLEMS#N
Residual Analysis
Confidence/Prediction Intervals

Notes			

How (Un)certain We Are?

Can we formally quantify our estimation uncertainty?

 \Rightarrow We need additional (distributional) assumption on ε

Notes

Normal Error Regression Model

Recall

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Further assume $\varepsilon_i \sim \mathrm{N}(0,\sigma^2) \Rightarrow Y_i \sim \mathrm{N}(\beta_0 + \beta_1 X_i,\sigma^2)$
- With normality assumption, we can derive the sampling distribution of $\hat{\beta}_1$ and $\hat{\beta}_0 \Rightarrow$

$$\begin{split} & \bullet \quad \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\hat{\beta}_1}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_1} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}} \\ & \bullet \quad \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\hat{\beta}_0}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_0} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{\bar{N}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)} \end{aligned}$$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom

Notes

-			
-			
-			

Confidence Intervals

• Recall $\frac{\hat{\beta}_1-\beta_1}{\hat{\sigma}_{\hat{\beta}_1}}\sim t_{n-2},$ we use this fact to construct **confidence intervals (CIs)** for β_1 :

$$\left[\hat{\beta}_1 - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_1}, \hat{\beta}_1 + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_1}\right],$$

where α is the **confidence level** and $t_{\alpha/2,n-2}$ denotes the $1-\alpha/2$ percentile of a student's t distribution with n-2 degrees of freedom

• Similarly, we can construct CIs for β_0 :

$$\left[\hat{\beta}_0 - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}, \hat{\beta}_0 + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}\right]$$

Regression II	
CLEMS#N	
NIVERSITY	

Residual Analysis
Confidence/Prediction
ntervals

ypothesis Testing

Notes			
-			

Interval Estimation of $E(Y_h)$

- We often interested in estimating the **mean** response for a particular value of predictor, say, X_h . Therefore we would like to construct CI for $E[Y_h]$
- We need sampling distribution of \hat{Y}_h to form CI:
 - $\bullet \quad \frac{\hat{Y}_h Y_h}{\hat{\sigma}_{\hat{Y}_h}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{Y}_h} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum_{i=1}^n (X_i \bar{X})^2}\right)}$
 - CI:

$$\left[\hat{Y}_h - t_{\alpha/2,n-2}\hat{\sigma}_{\hat{Y}_h}, \hat{Y}_h + t_{\alpha/2,n-2}\hat{\sigma}_{\hat{Y}_h}\right]$$

• Quiz: Use this formula to construct CI for β_0

Notes		

Prediction Intervals

- Suppose we want to predict the response of a future observation given $X = X_h$
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $Y_{\text{h(new)}} = \mathrm{E}[Y_h] + \varepsilon_h$)
- $\bullet \text{ Replace } \hat{\sigma}_{\hat{Y}_h} \text{ by } \hat{\sigma}_{\hat{Y}_h(\text{new})} = \hat{\sigma} \sqrt{\left(1 + \frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum_{i=1}^n (X_i \bar{X})^2}\right)} \text{ to }$ construct CIs for $Y_{\text{h(new)}}$

Notes			

Maximum Heart Rate vs. Age Revisited

The maximum heart rate ${\tt MaxHeartRate}$ (${\tt HR}_{\it max}$) of a person is often said to be related to age ${\tt Age}$ by the equation:

$$HR_{max} = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

Age 18 23 25 35 65 54 34 56 72 19 23 42 18 39 37 HR_{max} 202 186 187 180 156 169 174 172 153 199 193 174 198 183 178

- ullet Construct the 95% CI for eta_1
- \bullet Compute the estimate for mean <code>MaxHeartRate</code> given <code>Age = 40</code> and construct the associated 90% CI
- $\hbox{\bf Onstruct the prediction interval for a new observation given $\tt Age=40$ }$

	Simple Linear Regression II
	CLEMS N
	Confidence/Prediction Intervals
37 178	

Notes			

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

- **1** $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{\sigma}_{\hat{\beta}_1}} = \frac{-0.7977}{0.06996} = -11.40$

$$t^* = \frac{\hat{\beta}_1 - 0}{\hat{\sigma}_{\hat{\beta}_1}} = \frac{-0.7977}{0.06996} = -11.40$$

- **o** Compute **P-value**: $P(|t^*| \ge |t_{obs}|) = 3.85 \times 10^{-8}$
- $\textcircled{ } \textbf{ Compare to } \alpha \textbf{ and draw conclusion:}$

Reject H_0 at α = .05 level, evidence suggests a negative linear relationship between MaxHeartRate and Age

Simple Linear Regression II	
Confidence/Prediction	or

Notes		

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

- **1** $H_0: \beta_0 = 0$ vs. $H_a: \beta_0 \neq 0$
- Oompute the test statistic: $t^* = \frac{\hat{\beta}_0 - 0}{\hat{\sigma}_{\beta_0}} = \frac{210.0485}{2.86694} = 73.27$
- **③** Compute **P-value**: $P(|t^*| \ge |t_{obs}|) \simeq 0$
- **③** Compare to α and draw conclusion:

Reject H_0 at $\alpha = .05$ level, evidence suggests evidence suggests the intercept (the expected ${\tt MaxHeartRate} \ \text{at age 0) is different from} \ 0$

Notes

Hypothesis Tests for $\beta_{\text{age}} = -1$

$$H_0: eta_{\mathsf{age}} = -1 \ \mathsf{vs.} \ H_a: eta_{\mathsf{age}}
eq -1$$

Test Statistic:
$$\frac{\hat{eta}_{age}-(-1)}{\hat{\sigma}_{\hat{eta}_{age}}}=\frac{-0.79773-(-1)}{0.06996}=2.8912$$

P-value: $2 \times \mathbb{P}(t^* > 2.8912) = 0.013$, where $t^* \sim t_{df=13}$

Notes			

Summary

In this lecture, we reviewed

- Simple Linear Regression: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Method of Least Square for parameter estimation
- Residual analysis to check model assumptions
- ullet statistical inference for eta_0 and eta_1
- Confidence/Prediction Intervals and Hypothesis Testing

Next time we will talk about

- Analysis of Variance (ANOVA) Approach to Regression
- $\textbf{ @ Correlation } (r) \textbf{ & Coefficient of Determination } (R^2)$

Simple Linear Regression II
Parameter Estimation Residual Analysis Confidence/Prediction
Intervals Hypothesis Testing
2.22

Notes			
Notes			
Notes			