Analyze the effect of the step (size grid size) h for the following finite difference formulas to calculate the first derivative of

$$f(x) = Sin(e^x - 2)$$
 at $x_i = 0.9$

$$\left(\frac{df}{dx}\right)_{i} = \frac{1}{12h} \left(-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2}\right) + O(h^{4})$$

$$\left(\frac{df}{dx}\right)_{i} = \frac{1}{h}\left(f_{i+1} - f_{i}\right) + O(h)$$

Error Table

h	Error (1st Order)	Error (4 th Order)
10-1	8.67541 x 10 ⁻²	5.74867 x 10 ⁻⁵
10-2	8.26649 x 10 ⁻³	5.58038 x 10 ⁻⁹
10 ⁻³	8.22587 x 10 ⁻⁴	5.57554 x 10 ⁻¹³
10 ⁻⁴	8.22181 x 10 ⁻⁵	3.35509 x 10 ⁻¹³
10 ⁻⁵	8.22139 x 10 ⁻⁶	4.10538 x 10 ⁻¹²
10 ⁻⁶	8.22042 x 10 ⁻⁷	6.99095 x 10 ⁻¹¹
10 ⁻⁷	8.07461 x 10 ⁻⁸	3.00165 x 10 ⁻¹⁰
10 ⁻⁸	9.18195 x 10 ⁻⁹	9.18195 x 10 ⁻⁹
10 ⁻⁹	1.20204 x 10 ⁻⁷	4.61894 x 10 ⁻⁸
10 ⁻¹⁰	1.23043 x 10 ⁻⁶	2.4987 x 10 ⁻⁷

Comment: As expected, the reduction in error is consistent with the order of each method. The round-off error becomes important at small mesh sizes, so the error starts to increase after a certain grid size for each method. The optimal grid size for the first order approximation is approximately 10⁻⁸ whereas the optimal grid size for the fourth order is around 10⁻³ (see also the plots in the next two pages).

Error vs. Step Size (1st Order Approximation)

Error vs. Step Size (4th Order Approximation)

