LAPORAN TUGAS KECIL 2 IF2211 Strategi Algoritma

Pembuatan Kurva Bézier Algoritma Midpoint Berbasis Divide and Conquer

Disusun Oleh : Kharris Khisunica (13522051)

PROGRAM STUDI TEKNIK INFORMATIKA SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG 2023

Daftar Isi

Daf	ftar Isi	2
1.	Ringkasan	3
1	.1. Algoritma Divide and Conquer	3
1	.2. Kurva Bézier	3
2.	Algoritma Spek Wajib	3
2	2.1. Algoritma Bruteforce	3
2	2.2. Algoritma Divide and Conquer	4
4.	Snippet Program	7
5.	Input Output	11
6.	Input Output Bonus	17
Lan	mpiran	21

1. Ringkasan

1.1. Algoritma Divide and Conquer

Algoritma Divide and Conquer adalah salah satu algoritma penyelesaian masalah yang diajarkan pada mata kuliah IF2211 Strategi Algoritma. Algoritma ini membagi permasalahan menjadi upa-upa masalah yang kemudian masing-masing upa masalah diselesaikan lalu hasilnya disatukan menjadi satu kesatuan. Algoritma ini cenderung lebih sangkil jika dibandingkan dengan algoritma Brute Force.

1.2. Kurva Bézier

Kurva Bezier adlaah kurva parametrik yang digunakan dalam grafika komputer dan bidang yang berkaitan. Kurva Bezier merupakan aplikasi grafika dari polinomial Bernstein yang telah ditemukan pada tahun 1912. Pada tahun 1960an, insinyur perancis, Pierre Bezier, mempublikasi hasil karyanya mengenai polinomial bezier yang dipakainya untuk mendesain automobil di Renault.

Kurva Bezier didefinisakan sebagai himpunan titik kontrol P_0 sampai P_n , dimana n adalah orde dari kurva tersebut. Titik pertama dan titik terakhir dari himpunan titik kontrol selalu menjadi titik ujung dari kurva tersebut, dan titik kontrol lainnya umumnya tidak terdapat dalma kurva.

Definisi eksplisit dari Kurva Bezier untuk t = [0,1]

$$\boldsymbol{B}(t) = \sum_{i=0}^{n} {n \choose i} (1-t)^{n-i} t^{i} \boldsymbol{P}_{i}$$

Dimana P_i adalah titik kontrol ke-I, $\binom{n}{i}$ adalah koefisien binomial. Untuk kasus kurva diskrit, $t = \frac{1}{iterasi}$ dan semakin banyak iterasi kurva, maka kurva yang dibentuk akan semakin mulus.

2. Algoritma Spek Wajib

2.1. Algoritma Bruteforce

Implementasi berdasarkan bentuk Bernstein Polynomial

Rumus =
$$\boldsymbol{B}(t_k) = \sum_{i=0}^{n} {n \choose i} (1 - t_k)^{n-i} (t_k)^i \boldsymbol{P_i}$$
, dimana P_i = Titik ke-i, $B(t_k)$ = Titik kurva bezier untuk iterasi ke-k

Algoritma:

1. Pilih 2 titik (x,y) jangka dan pilih 1 titik (x,y) kontrol. Misal P_0 , P_2 adalah titik jangka dan P_1 adalah titik kontrol.

- 2. Pilih berapa kali iterasi. Semakin banyak iterasi, semakin mulus kurvanya. Misal banyak iterasi adalah *t*.
- 3. Buatlah titik pembentuk kurva dengan memasukkan nilai n=2, $t_k=\frac{1}{2^t}$ ke rumus $B(t_k)$ di atas.
- 4. Ulangi langkah 3, dengan setiap iterasi nilai t_k ditambah $\frac{1}{2^t}$. Ulangi sampai didapat nilai B(1).
- 5. Sambungkan setiap titik yang dibentuk oleh langkah 3 dan langkah 4 untuk membentuk kurva bezier.

Kompleksitas:

Untuk setiap iterasi,

$$\binom{n}{i} = \frac{n!}{(n-i)! \ i!}, \ n \ge i$$

Kompleksitas koefisien binomial

Ada n-1 operasi perkalian untuk n!, (n-i-1) operasi perkalian untuk (n-i)!, dan i-1 operasi perkalian untuk i!. Dan ada satu operasi kali untuk (n-1)!i! dan 1 operasi bagi. Sehingga total operasi T(n) = n-1+n-i-1+i-1+2=2n-1.

$$(1-t_k)^{n-i}(t_k)^i \boldsymbol{P_i}$$

Kompleksitas:

Ada n-i operasi perkalian untuk $(1-t_k)$, i operasi perkalian untuk t_k , 1 operasi pengurangan $(1-t_k)$ dan 1 operasi perkalian untuk P_i .

Sehingga total operasi $T_2(n) = n - i + i + 1 + 1 = 2n + 2$

Sehingga untuk satu nilai t_k , terdapat n+1 operasi $\binom{n}{i}(1-t_k)^{n-i}(t_k)^i$ P_i sehingga total operasi untuk satu nilai t_k $T_k(n)=(n+1)\big(T_1(n)+T_2(n)\big)=(n+1)(2n-1+2n+2)=(n+1)(4n+1)=4n^2+5n+1$

Untuk iterasi sebanyak t, maka terdapat 2^t kali operasi t_k . Maka total operasi $T(t) = 2^t (4n^2 + 5n + 1)$, t > n.

Maka
$$O(t) = T(t) = O(2^t)O(4n^2 + 5n + 1) = O(2^t t^2) = O(2^n n^2)$$

2.2. Algoritma Divide and Conquer

 $dnc(p_0, p_1, p_2, t)$, Midpoint Algorithm Algoritma:

1. Untuk kasus t = 1,

SOLVE: p_0 adalah titik dalam kurva bezier.

Buat q_0 , q_1 sebagai titik tengah garis p_0p_1 dan p_1p_2 berturut-turut. Buat s_0 sebagai titik tengah garis q_0q_1 . s_0 adalah titik dalam kurva bezier. p_n adalah titik dalam kurva bezier.

- 2. Untuk kasus t > 1,
 - a) Divide: Bagi kurva bezier di titik s_i , dimana s_i adalah titik tengah garis q_iq_{i+1} dan q_i adalah titik tengah garis p_ip_{i+1} .
 - b) Conquer:

Dnc(p0,
$$q_i$$
, s_i , t-1)
Titik mid2 adalah titik dalam kurva bezier
Dnc(s_i , q_{i+1} , p2, t-1)

c) Combine:

 s_i adalah titik kurva bezier, dimana s_i adalah titik tengah garis q_iq_{i+1} dan q_i adalah titik tengah garis p_ip_{i+1} .

Kompleksitas:

Untuk kasus t=1, terdapat 3 kali operasi mencari titik tengah, dimana setiap operasi ada 1 penjumlahan dan 1 pembagian. Maka untuk kasus t=1, $T_1(n)=6$ Untuk kasus t>1, terdapat 2 cabang, yaitu kiri dan kanan. Misal t=n. Maka didapat T(n)=2T(n-1)+6 T(n)=2(2(T(n-2)+6)+6=4T(n-2)+12+6 ... $T(n)=2^{n-1}T(1)+(n-1)6=2^n+6n$ $T(n)=2^n$

3. Algoritma Spek Bonus (Orde n > 2)

3.1 Algoritma Brute Force

Implementasi berdasarkan bentuk Bernstein Polynomial

Rumus =
$$B(t_k) = \sum_{i=0}^{n} {n \choose i} (1 - t_k)^{n-i} (t_k)^i P_i$$
, P_i = Titik ke-i, $B(t_k)$ = Titik kurva bezier untuk iterasi ke-k

Algoritma:

1. Pilihlah orde dari kurva bezier. Misal orde kurva adalah n.

- 2. Pilih 2 titik (x,y) jangka dan pilih n-1 titik (x,y) kontrol. Misal P_0 , P_n adalah titik jangka dan P_1 , P_2 , ..., P_{n-1} adalah titik kontrol.
- 3. Pilih berapa kali iterasi. Semakin banyak iterasi, semakin mulus kurvanya. Misal banyak iterasi adalah *t*.
- 4. Buatlah titik pembentuk kurva dengan memasukkan nilai $t_k = \frac{1}{t}$ dan nilai n ke rumus $B(t_k)$ di atas.
- 5. Ulangi langkah 3, dengan setiap iterasi nilai t_k ditambah $\frac{1}{t}$. Ulangi sampai didapat nilai B(1). Sambungkan setiap titik yang dibentuk oleh langkah 3 dan langkah 4 untuk membentuk kurva bezier.

Kompleksitas

Untuk setiap iterasi,

$$\binom{n}{i} = \frac{n!}{(n-i)! \ i!}, \ n \ge i$$

Kompleksitas koefisien binomial

Ada n-1 operasi perkalian untuk n!, (n-i-1) operasi perkalian untuk (n-i)!, dan i-1 operasi perkalian untuk i!. Dan ada satu operasi kali untuk (n-1)!i! dan 1 operasi bagi. Sehingga total operasi T(n) = n-1+n-i-1+i-1+2=2n-1.

$$(1-t_k)^{n-i} (t_k)^i P_i$$

Kompleksitas:

Ada n-i operasi perkalian untuk $(1-t_k)$, i operasi perkalian untuk t_k , 1 operasi pengurangan $(1-t_k)$ dan 1 operasi perkalian untuk P_i .

Sehingga total operasi $T_2(n) = n - i + i + 1 + 1 = 2n + 2$

Sehingga untuk satu nilai t_k , terdapat n+1 operasi $\binom{n}{i}(1-t_k)^{n-i}(t_k)^i$ P_i sehingga total operasi untuk satu nilai t_k $T_k(n) = (n+1)\big(T_1(n)+T_2(n)\big) = (n+1)(2n-1+2n+2) = (n+1)(4n+1) = 4n^2+5n+1$

Untuk iterasi sebanyak t, maka terdapat 2^t kali operasi t_k . Maka total operasi $T(t)=2^t(4n^2+5n+1)$, t>n. Maka $O(t)=T(t)=O(2^t)O(4n^2+5n+1)=O(2^tt^2)=O(2^nn^2)$

3.2 Algoritma Divide and Conquer

dnc(pointlist, t, n) Algoritma: -

4. Snippet Program

MENU UTAMA


```
| The Cat Selection | View on Run | Terminal | Help | C | Princip| | Princip|
```

ALGORITMA BRUTE FORCE

```
## The Cott Selection View Go Run Remainal Help Cost Disease of the Cost Selection View Go Run Remainal Help Cost Disease of the Cost Selection View Go Run Remainal Help Cost Disease of the Cost Selection View Go Run Remainal Help Cost Disease of the Cost Selection View Go Run Remainal Help Cost Disease of the Cost Selection View Go Run Remainal Help Cost Disease of the Cost Selection View Go Run Remainal Help Cost Disease of the Cost Selection View Go Run Remainal Help Cost Disease of the Cost Selection View Go Run Remainal Help Cost Disease of the Cost Selection View Go Run Remainal Help Cost Disease of the Cost Selection View Go Run Remainal Help Cost Disease of the Cost Selection View Go Run Remainal Help Cost Disease of the Cost Di
```


ALGORITMA DIVIDE AND CONQUER

5. Input Output

Input ke-1 Case titik integer positif

Variabel	N (Orde)	T (iterasi)	P0 (x,y)	P1(x,y)	P2(x,y)
Input	2	4	4, 5	13, 20	1, 3

Brute Force	Waktu	1.00183 ms
Divide and Conquer	Waktu	0.0 ms
Efisiensi Divide and Conquer		-
Jumlah Titik		17

Input ke-2 Case titik rational

Variabel	N (Orde)	T (iterasi)	P0 (x,y)	P1(x,y)	P2(x,y)
Input	2	7	23, -3.2	13.28, 29.34	-13, 29

Brute Force	Waktu	0.999 ms
Divide and Conquer	Waktu	0.001 ms
Divide and Conquer Efficiency		99800%
Jumlah		129

Input ke-3 Case titik sama

Variabel	N (Orde)	T (iterasi)	P0 (x,y)	P1(x,y)	P2(x,y)
Input	2	7	2, 3	2, 3	2, 3

Brute Force	Waktu	0.507 ms
Divide and Conquer	Waktu	0.002 ms
Divide and Conquer Efficiency		25250%
Jumlah Titik		129

Input ke-4 Case titik segaris

Variabel	N (Orde)	T (iterasi)	P0 (x,y)	P1(x,y)	P2(x,y)
Input	2	5	2, 3	100, 3	50, 3

Brute Force	Waktu	0
Divide and Conquer	Waktu	0
Divide and Conquer Efficiency		0
Jumlah Titik		33

Input ke-5a Edge Case (Iterasi negatif)

Variabel	N (Orde)	T (iterasi)	P0 (x,y)	P1(x,y)	P2(x,y)
Input	2	-3	10, 30	-20, 39	1, 23

Brute Force	Waktu	-
Divide and Conquer	Waktu	-
Divide and Conquer Efficiency		-
Hasil Grafik		-

Input ke-5b Edge Case (Input titik >2)

Variabel N (V (Orde) T (iterasi)	P0 (x,y)	P1(x,y)	P2(x,y)
--------------	----------------------	----------	---------	---------

Input 2 3 10 30 30 -20, 39 1, 23

Brute Force	Waktu	-
Divide and Conquer	Waktu	-
Divide and Conquer Efficiency		-
Hasil Grafik		-

Input ke-5c Edge Case (Input titik bukan bilangan real)

Variabel	N (Orde)	T (iterasi)	P0 (x,y)	P1(x,y)	P2(x,y)
Input	2	3	A 10	-20, 39	1, 23

Brute Force	Waktu	-
Divide and Conquer	Waktu	-
Divide and Conquer Efficiency		-
Hasil Grafik		

Variabel	N (Orde)	T (iterasi)	P0 (x,y)	P1(x,y)	P2(x,y)
Input	2	7	123.239829 3, 132.12387	-23.2323 192.2323	-12.3232, 13.39483

Brute Force	Waktu	1.386 ms			
Divide and Conquer	Waktu	0.207 ms			
Divide and Conque	er Efficiency	570%			
Jumlah Titik		129			
Hasil Grafik		Bezier Curve 175 - 150 - 125 - 100 - 75 - 50 - 25 - 25 - 20 0 20 40 60 80 100 120			

6. Input Output Bonus

Input ke-1

Variabel	N (Orde)	T (iterasi)	P0 (x,y)	P1(x,y)	P2(x,y)	P3(x,y)	P4(x,y)
Input	4	7	4, 5	13, 20	1, 3	13.23, 13.23	-23, 7

Brute Force	Waktu	2.00 ms
Divide and Conquer	Waktu	ERROR
Divide and Conque	er Efficiency	ERROR
Jumlah Titik		129
Hasil Grafik		Bezier Curve 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 -20 -15 -10 -5 0 5 10 15

Input ke-2

Variabel	N (Orde)	T (iterasi)	P0 (x,y)	P1(x,y)	P2(x,y)	P3(x,y)
Input	3	20	0,0	1,2	2,2	3,0

Brute Force	Waktu	8850 ms
Divide and Conquer	Waktu	ERROR
Divide and Conquer Efficiency		ERROR
Jumlah Titik		1048577

Input ke-3

Variabel	N (Orde)	T (iterasi)	P0 (x,y)	P1(x,y)	P2(x,y)	P3(x,y)	P4(x,y)	P5(x,y)
Input	5	10	-23 23	10.232, 18.353	12.121, 34.934	0,0	-12.12, - 13.2323 42	11, 0.0232

Brute Force	Waktu	34.52 ms
Divide and Conquer	Waktu	ERROR
Divide and Conquer Efficiency		ERROR
Jumlah Titik		1025

Lampiran

Progress

•

Poin	Ya	Tidak
Program berhasil dijalankan	√	
Program dapat melakukan visualisasi kurva Bezier	✓	
3. Solusi yang diberikan program optimal.	√	
4. [Bonus] Program dapat membuat kurva untuk n titik kontrol.	√	√
5. [Bonus] Program dapat melakukan visualisasi proses pembuatan kurva.		√

Link Repository Github

https://github.com/Kharris-Khisunica/Tucil2_13522051.git