$12a_{0669} (K12a_{0669})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -25220615118u^{37} - 125516232099u^{36} + \dots + 42034358527b - 24647116036, \\ & 60529476279u^{37} + 353049488728u^{36} + \dots + 42034358527a + 595728741584, \\ & u^{38} + 6u^{37} + \dots + 16u + 1 \rangle \\ I_2^u &= \langle b, -u^4 + u^3 - 4u^2 + a + 3u - 3, \ u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 43 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -2.52 \times 10^{10} u^{37} - 1.26 \times 10^{11} u^{36} + \dots + 4.20 \times 10^{10} b - 2.46 \times 10^{10}, \ 6.05 \times 10^{10} u^{37} + 3.53 \times 10^{11} u^{36} + \dots + 4.20 \times 10^{10} a + 5.96 \times 10^{11}, \ u^{38} + 6 u^{37} + \dots + 16 u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.44000u^{37} - 8.39907u^{36} + \dots - 114.524u - 14.1724 \\ 0.600000u^{37} + 2.98604u^{36} + \dots + 1.86170u + 0.586356 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.24000u^{37} - 7.40372u^{36} + \dots - 102.904u - 12.3103 \\ 0.400000u^{37} + 2.01396u^{36} + \dots + 2.13830u + 0.413644 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.600000u^{37} - 3.00931u^{36} + \dots - 19.7589u - 3.27576 \\ 0.400000u^{37} + 2.01396u^{36} + \dots + 2.13830u + 0.413644 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -2.04000u^{37} - 11.3851u^{36} + \dots - 116.386u - 14.7588 \\ 0.600000u^{37} + 2.98604u^{36} + \dots + 1.86170u + 0.586356 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.00434u^{37} - 5.62602u^{36} + \dots - 39.9468u - 5.08000 \\ 0.590693u^{37} + 3.54416u^{36} + \dots + 6.32424u + 0.600000 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -1.00000u^{37} - 5.60444u^{36} + \dots - 30.7482u - 4.28010 \\ 0.400000u^{37} + 2.59513u^{36} + \dots + 10.9894u + 1.00434 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_7, c_8	$u^{38} + 6u^{37} + \dots + 16u + 1$
c_2, c_6	$u^{38} - 2u^{37} + \dots + 4u - 1$
c_3, c_{11}	$u^{38} - u^{37} + \dots - 32u + 32$
c_9, c_{10}, c_{12}	$u^{38} + 6u^{37} + \dots - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_7, c_8	$y^{38} + 54y^{37} + \dots - 12y + 1$
c_2, c_6	$y^{38} - 6y^{37} + \dots - 16y + 1$
c_3, c_{11}	$y^{38} - 33y^{37} + \dots - 3584y + 1024$
c_9, c_{10}, c_{12}	$y^{38} - 42y^{37} + \dots + 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.713718 + 0.696674I		
a = 0.98664 + 1.13350I	6.26346 + 5.04642I	0 6.40435I
b = 1.355910 + 0.254773I		
u = -0.713718 - 0.696674I		
a = 0.98664 - 1.13350I	6.26346 - 5.04642I	0. + 6.40435I
b = 1.355910 - 0.254773I		
u = -0.205081 + 0.964197I		
a = -0.002810 + 0.336869I	2.26768 + 2.34844I	0 4.01424I
b = -0.045418 + 0.545182I		
u = -0.205081 - 0.964197I		
a = -0.002810 - 0.336869I	2.26768 - 2.34844I	0. + 4.01424I
b = -0.045418 - 0.545182I		
u = -0.861163		
a = 1.70659	4.20147	-0.424720
b = 1.30561		
u = -0.032507 + 1.171160I		
a = -0.645677 - 0.518349I	6.07449 + 0.14915I	0
b = 1.192870 - 0.112572I		
u = -0.032507 - 1.171160I		
a = -0.645677 + 0.518349I	6.07449 - 0.14915I	0
b = 1.192870 + 0.112572I		
u = 0.190395 + 1.187080I		
a = -0.038520 + 1.334050I	13.51030 - 3.29880I	0
b = -1.55601 + 0.43836I		
u = 0.190395 - 1.187080I		
a = -0.038520 - 1.334050I	13.51030 + 3.29880I	0
b = -1.55601 - 0.43836I		
u = -0.119477 + 1.235160I		
a = -0.083865 - 1.148000I	8.02065 + 2.76566I	0
b = 0.070500 - 1.218200I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.119477 - 1.235160I		
a = -0.083865 + 1.148000I	8.02065 - 2.76566I	0
b = 0.070500 + 1.218200I		
u = -0.223356 + 1.231840I		
a = 0.531548 - 0.533329I	5.79827 + 5.29458I	0
b = -1.185810 - 0.238140I		
u = -0.223356 - 1.231840I		
a = 0.531548 + 0.533329I	5.79827 - 5.29458I	0
b = -1.185810 + 0.238140I		
u = -0.454460 + 0.526349I		
a = 0.225842 - 0.858062I	0.14659 + 2.93637I	-1.27878 - 9.48259I
b = -0.810125 - 0.280595I		
u = -0.454460 - 0.526349I		
a = 0.225842 + 0.858062I	0.14659 - 2.93637I	-1.27878 + 9.48259I
b = -0.810125 + 0.280595I		
u = -0.383220 + 1.338060I		
a = 0.143279 + 1.122790I	12.7262 + 8.9717I	0
b = 1.48427 + 0.49972I		
u = -0.383220 - 1.338060I		
a = 0.143279 - 1.122790I	12.7262 - 8.9717I	0
b = 1.48427 - 0.49972I		
u = -0.242924 + 0.500540I		
a = -0.77914 - 2.00057I	2.34679 + 1.50207I	1.29303 - 3.53914I
b = 0.217646 - 0.715322I		
u = -0.242924 - 0.500540I		
a = -0.77914 + 2.00057I	2.34679 - 1.50207I	1.29303 + 3.53914I
b = 0.217646 + 0.715322I		
u = 0.390857 + 0.382528I		
a = -1.94196 + 2.07024I	8.43405 - 1.32281I	8.28038 + 0.36190I
b = -1.47608 + 0.13954I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.390857 - 0.382528I		
a = -1.94196 - 2.07024I	8.43405 + 1.32281I	8.28038 - 0.36190I
b = -1.47608 - 0.13954I		
u = -0.468337 + 0.127698I		
a = -0.182428 + 0.431853I	-1.073810 + 0.172026I	-9.19796 - 0.41861I
b = -0.370032 + 0.319434I		
u = -0.468337 - 0.127698I		
a = -0.182428 - 0.431853I	-1.073810 - 0.172026I	-9.19796 + 0.41861I
b = -0.370032 - 0.319434I		
u = -0.05162 + 1.71260I		
a = 0.001886 + 0.320518I	11.82160 + 3.35648I	0
b = -0.001031 + 0.619536I		
u = -0.05162 - 1.71260I		
a = 0.001886 - 0.320518I	11.82160 - 3.35648I	0
b = -0.001031 - 0.619536I		
u = -0.031423 + 0.280285I		
a = -1.24282 - 2.10298I	1.222660 - 0.148523I	6.95502 - 0.36222I
b = 0.728609 + 0.020401I		
u = -0.031423 - 0.280285I		
a = -1.24282 + 2.10298I	1.222660 + 0.148523I	6.95502 + 0.36222I
b = 0.728609 - 0.020401I		
u = -0.00837 + 1.78126I		
a = -0.528064 - 0.356522I	16.9093 + 0.3307I	0
b = 1.45222 - 0.21060I		
u = -0.00837 - 1.78126I		
a = -0.528064 + 0.356522I	16.9093 - 0.3307I	0
b = 1.45222 + 0.21060I		
u = 0.04878 + 1.78515I		
a = 0.151260 + 0.916668I	-15.0990 - 4.3588I	0
b = -1.62783 + 0.66338I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.04878 - 1.78515I		
a = 0.151260 - 0.916668I	-15.0990 + 4.3588I	0
b = -1.62783 - 0.66338I		
u = -0.05643 + 1.79298I		
a = 0.514785 - 0.362719I	16.8561 + 6.5503I	0
b = -1.44825 - 0.23847I		
u = -0.05643 - 1.79298I		
a = 0.514785 + 0.362719I	16.8561 - 6.5503I	0
b = -1.44825 + 0.23847I		
u = -0.03067 + 1.79505I		
a = -0.010921 - 0.875007I	19.1652 + 3.4491I	0
b = 0.01525 - 1.51868I		
u = -0.03067 - 1.79505I		
a = -0.010921 + 0.875007I	19.1652 - 3.4491I	0
b = 0.01525 + 1.51868I		
u = -0.10251 + 1.82008I		
a = -0.126790 + 0.897308I	-15.2648 + 11.2768I	0
b = 1.60864 + 0.67923I		
u = -0.10251 - 1.82008I		
a = -0.126790 - 0.897308I	-15.2648 - 11.2768I	0
b = 1.60864 - 0.67923I		
u = -0.150697		
a = -5.65109	1.16378	11.6280
b = 0.483736		

II. $I_2^u = \langle b, -u^4 + u^3 - 4u^2 + a + 3u - 3, u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} - u^{3} + 4u^{2} - 3u + 3 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{3} + 4u^{2} - 3u + 3 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + 2u \\ u^{4} - u^{3} + 3u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} - u^{3} + 4u^{2} - 3u + 3 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-7u^4 + 6u^3 28u^2 + 17u 12$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5	$u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1$
c_2	$u^5 - u^4 + u^2 + u - 1$
c_3, c_{11}	u^5
<i>c</i> ₆	$u^5 + u^4 - u^2 + u + 1$
c_{7}, c_{8}	$u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1$
c_9, c_{10}	$(u+1)^5$
c_{12}	$(u-1)^5$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_7, c_8	$y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1$
c_2, c_6	$y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1$
c_3, c_{11}	y^5
c_9, c_{10}, c_{12}	$(y-1)^5$

(vi) Complex Volumes and Cusp Shapes

Sol	lutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.2	33677 + 0.885557I		
a = 0.2	78580 - 1.055720I	3.46474 - 2.21397I	6.65223 + 4.39723I
b =	0		
u = 0.2	33677 - 0.885557I		
a = 0.2	78580 + 1.055720I	3.46474 + 2.21397I	6.65223 - 4.39723I
b =	0		
u = 0.4	116284		
a = 2.4	40221	0.762751	-9.55270
b =	0		
u = 0.0	5818 + 1.69128I		
a = 0.0	20316 - 0.590570I	12.60320 - 3.33174I	9.12414 + 2.18947I
b =	0		
u = 0.0	5818 - 1.69128I		
a = 0.0	20316 + 0.590570I	12.60320 + 3.33174I	9.12414 - 2.18947I
b =	0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5	$ (u5 - u4 + 4u3 - 3u2 + 3u - 1)(u38 + 6u37 + \dots + 16u + 1) $
c_2	$(u^5 - u^4 + u^2 + u - 1)(u^{38} - 2u^{37} + \dots + 4u - 1)$
c_3,c_{11}	$u^5(u^{38} - u^{37} + \dots - 32u + 32)$
c_6	$(u^5 + u^4 - u^2 + u + 1)(u^{38} - 2u^{37} + \dots + 4u - 1)$
c_7, c_8	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)(u^{38} + 6u^{37} + \dots + 16u + 1)$
c_9, c_{10}	$((u+1)^5)(u^{38}+6u^{37}+\cdots-2u-1)$
c_{12}	$((u-1)^5)(u^{38}+6u^{37}+\cdots-2u-1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_7, c_8	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)(y^{38} + 54y^{37} + \dots - 12y + 1)$
c_2, c_6	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)(y^{38} - 6y^{37} + \dots - 16y + 1)$
c_3,c_{11}	$y^5(y^{38} - 33y^{37} + \dots - 3584y + 1024)$
c_9, c_{10}, c_{12}	$((y-1)^5)(y^{38} - 42y^{37} + \dots + 6y + 1)$