

CS/SE 3340 Computer Architecture

Floating Point Arithmetic

Adapted from "Computer Organization and Design, 4th Ed." by D. Patterson and J. Hennessy

Questions

- How to do FP addition?
- How to build a FP adder in H/W?
- How to do FP multiplication?
- How does MIPS do FP arithmetic?
- What are FP instructions in MIPS?

Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- Step 1: Align decimal points
 - Shift number with smaller exponent
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1}$
- Step 2: Add significands
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- Step 3: Normalize result & check for over/underflow
 - 1.0015 × 10²
- Step4: Round and renormalize if necessary
 - -1.002×10^{2}

Addition - cont'd

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}$
- Step 1: Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- Step 2: Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- Step 3: Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- Step 4: Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change)

5

FP Adder Hardware

- Much more complex than integer adder
- Operations take too long for one clock cycle
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined
 - Exploit <u>sub-instruction</u> level parallelism

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- Step 1: Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- Step 2: Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^5$
- Step 3: Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- Step 4: Round and renormalize if necessary
 - 1.021 × 10⁶
- Step 5: Determine sign of result from signs of operands
 - +1.021 × 10⁶

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2}$
- Step 1: Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- Step 2: Multiply significands
 - $1.000_2 \times 1.110_2 = 1.110_2 \implies 1.110_2 \times 2^{-3}$
- Step 3: Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- Step 4: Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- Step 5: Determine sign
 - $-1.110_2 \times 2^{-3}$

9

FP Multiplier Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3,...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions

11

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - -e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - -e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - -c.xx.s, c.xx.d (xx is eq, lt, le, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bclt, bclf
 - e.g., bclt TargetLabel

FP Example: °F to °C

• C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1 $f16, const5($gp)
    lwc1 $f18, const9($gp)
    div.s $f16, $f16, $f18
    lwc1 $f18, const32($gp)
    sub.s $f18, $f12, $f18
    mul.s $f0, $f16, $f18
    jr $ra
```

13

FP Example: Array Multiplication

```
\bullet X = X + Y × Z
```

- All 32 × 32 matrices, 64-bit double-precision elements

• C code:

FP Example: Array Multiplication

MIPS code:

```
1i
         $t1, 32
                       # $t1 = 32 (row size/loop end)
    lί
         $s0, 0
                       # i = 0; initialize 1st for loop
L1: li
         $s1, 0
                       # j = 0; restart 2nd for loop
L2: 1i
         $s2, 0
                       \# k = 0; restart 3rd for loop
        $t2, $s0, 5
                       # $t2 = i * 32 (size of row of x)
   addu t2, t2, s1 # t2 = i * size(row) + j
        $t2, $t2, 3  # $t2 = byte offset of [i][j]
   addu t2, a0, t2 # t2 = byte address of <math>x[i][j]
        $f4, 0($t2)
                       # f4 = 8 bytes of x[i][j]
L3: s11
        $t0, $s2, 5
                       # $t0 = k * 32 (size of row of z)
    addu t0, t0, s1 # t0 = k * size(row) + j
        $t0, $t0, 3  # $t0 = byte offset of [k][j]
    addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
    1.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```

15

FP Example: Array Multiplication

```
$t0, $s0, 5
                       # $t0 = i*32 (size of row of y)
addu $t0, $t0, $s2
                       # $t0 = i*size(row) + k
      $t0, $t0, 3
                       # $t0 = byte offset of [i][k]
addu $t0, $a1, $t0
                       # $t0 = byte address of y[i][k]
                       # $f18 = 8 bytes of y[i][k]
      $f18, 0($t0)
mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]
add.d $f4, $f4, $f16
                       # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1
                       # kkk + 1
                       # if (k != 32) go to L3
bne
      $s2, $t1, L3
      $f4, 0($t2)
                       \# x[i][j] = $f4
s.d
                       # $j = j + 1
addiu $s1, $s1, 1
                       # if (j != 32) go to L2
      $s1, $t1, L2
addiu $s0, $s0, 1
                       # $i = i + 1
      $s0, $t1, L1
                       # if (i != 32) go to L1
```

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

17

x86 FP Instructions

Data transfer A	Arithmetic	Compare	Transcendental
FISTP mem/ST(i) FIFLDPI FILDI FILDI FILDI FILDI FILDI FILDI FI	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

- Optional variations
 - I: integer operand
 - P: pop operand from stack
 - R: reverse operand order
 - But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - -4×32 -bit single precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

19

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

21

Interpretation of Data

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

MIPS Design Principles

- Simplicity favors regularity
 - fixed size instructions
 - small number of instruction formats
 - opcode always the first 6 bits
- · Smaller is faster
 - limited instruction set
 - limited number of registers in register file
 - limited number of addressing modes
- Make the common case fast
 - arithmetic operands from the register file (load-store machine)
 - allow instructions to contain immediate operands
- Good design demands good compromises
 - three instruction formats