Objetivos a cubrir

Código: MAT-CDI.6

- Teorema del valor intermedio.
- Límite del cociente incremental.

Ejercicios resueltos

Ejemplo 1: Dado que $f(x) = x^5 + 2x - 7$. Demuestre que hay un número c, tal que f(c) = 50.

Solución : Observe que la función f es continua en todo su dominio, ya que, f es una función polinómica.

Consideremos el intervalo [2, 3], como

$$f(2) = (2)^5 + 2(2) - 7 = 29,$$
 y $f(3) = (3)^5 + 2(3) - 7 = 242$

y se cumple que

$$f(2) = 29 < 50 < 242 = f(3)$$
,

por el teorema del valor intermedio, existe un valor c en el intervalo [2,3], por lo tanto, en todo \mathbb{R} , tal que,

$$f(c) = 50.$$

 \star

Ejemplo 2: Demuestre que la ecuación $2x^7 = 1 - x$ tiene una solución en [0,1].

Solución : Demostrar que la ecuación $2x^7 = 1 - x$ tiene una solución en [0, 1], es equivalente a demostrar que

$$2x^7 - 1 + x = 0$$

en [0,1], es decir, debemos encontrar la(s) raíz(ces) de la ecuación en dicho intervalo.

Consideremos la función

$$f\left(x\right) = 2x^7 - 1 + x$$

así, debemos demostrar que existe, al menos, un valor c en [0,1], tal que, f(c)=0.

Observemos que la función f es continua en [0,1], ya que, f es una función polinómica, además

$$f(0) = 2(0)^7 - 1 + (0) = -1,$$
 y $f(1) = 2(1)^7 - 1 + (1) = 2,$

así,

$$f(0) = -1 < 0 < 2 = f(1),$$

por el teorema del valor intermedio, existe un valor c en el intervalo [0,1], tal que, f(c) = 0, luego, la ecuación

 $2x^7 = 1 - x$ tiene una solución en [0, 1].

 \star

Ejemplo 3 : Calcular el siguiente límite,

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

si es que existe, para la función

$$f\left(x\right) = \sqrt[3]{x}$$

Solución: Tenemos que

$$\lim_{h\to 0} \frac{f\left(x+h\right) - f\left(x\right)}{h} = \lim_{h\to 0} \frac{\sqrt[3]{x+h} - \sqrt[3]{x}}{h}.$$

Calculamos el límite, el cual es una indeterminación $\frac{0}{0}$

$$\lim_{h \to 0} \frac{\sqrt[3]{x+h} - \sqrt[3]{x}}{h} = \lim_{h \to 0} \frac{\left(\sqrt[3]{x+h} - \sqrt[3]{x}\right)}{h} \frac{\left(\sqrt[3]{(x+h)^2} + \sqrt[3]{x+h} \sqrt[3]{x} + \sqrt[3]{x^2}\right)}{\left(\sqrt[3]{(x+h)^2} + \sqrt[3]{x+h} \sqrt[3]{x} + \sqrt[3]{x^2}\right)}$$

$$= \lim_{h \to 0} \frac{\sqrt[3]{(x+h)^3} - \sqrt[3]{x^3}}{h\left(\sqrt[3]{(x+h)^2} + \sqrt[3]{x+h} \sqrt[3]{x} + \sqrt[3]{x^2}\right)}$$

$$= \lim_{h \to 0} \frac{(x+h) - x}{h\left(\sqrt[3]{(x+h)^2} + \sqrt[3]{x+h} \sqrt[3]{x} + \sqrt[3]{x^2}\right)}$$

$$= \lim_{h \to 0} \frac{h}{h\left(\sqrt[3]{(x+h)^2} + \sqrt[3]{x+h} \sqrt[3]{x} + \sqrt[3]{x^2}\right)}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt[3]{(x+h)^2} + \sqrt[3]{x+h} \sqrt[3]{x} + \sqrt[3]{x^2}} = \frac{1}{\sqrt[3]{(x+(0))^2} + \sqrt[3]{x+(0)} \sqrt[3]{x} + \sqrt[3]{x^2}}$$

$$= \frac{1}{\sqrt[3]{x^2} + \sqrt[3]{x}} \frac{1}{\sqrt[3]{x} + \sqrt[3]{x^2}} = \frac{1}{\sqrt[3]{x^2} + \sqrt[3]{x^2}} = \frac{1}{\sqrt[3]{x^2}},$$

luego,

$$\lim_{h \to 0} \frac{\sqrt[3]{x+h} - \sqrt[3]{x}}{h} = \frac{1}{3\sqrt[3]{x^2}}.$$

 \star

Ejemplo 4 : Calcular el siguiente límite,

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

si es que existe, para la función

$$f\left(x\right) = \frac{2x+3}{x-1}$$

Solución: Tenemos que

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{2(x+h) + 3}{(x+h) - 1} - \frac{2x + 3}{x - 1}}{h}.$$

Calculamos el límite, el cual es una indeterminación $\frac{0}{0}$

$$\lim_{h \to 0} \frac{\frac{2(x+h)+3}{(x+h)-1} - \frac{2x+3}{x-1}}{h} = \lim_{h \to 0} \frac{\frac{(x-1)(2x+2h+3) - (x+h-1)(2x+3)}{(x+h-1)(x-1)}}{h}$$

$$\lim_{h \to 0} \frac{\frac{2(x+h)+3}{(x+h)-1} - \frac{2x+3}{x-1}}{h} = \lim_{h \to 0} \frac{(x-1)(2x+2h+3) - (x+h-1)(2x+3)}{h(x+h-1)(x-1)}$$

$$= \lim_{h \to 0} \frac{2x^2 + 2hx + 3x - 2x - 2h - 3 - (2x^2 + 3x + 2xh + 3h - 2x - 3)}{h(x+h-1)(x-1)}$$

$$= \lim_{h \to 0} \frac{2x^2 + 2hx + 3x - 2x - 2h - 3 - 2x^2 - 3x - 2xh - 3h + 2x + 3}{h(x+h-1)(x-1)}$$

$$= \lim_{h \to 0} \frac{-2h - 3h}{h(x+h-1)(x-1)} = \lim_{h \to 0} \frac{-5h}{h(x+h-1)(x-1)}$$

$$= \lim_{h \to 0} \frac{-5}{(x+h-1)(x-1)} = -\frac{5}{(x-1)^2},$$

$$\lim_{h \to 0} \frac{2(x+h)+3}{(x+h)-1} - \frac{2x+3}{x-1} = -\frac{5}{(x-1)^2}.$$

luego,

Ejemplo 5 : Calcular el siguiente límite,

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

si es que existe, para la función

$$f(x) = \operatorname{sen}(2x)$$

Solución: Tenemos que

$$\lim_{h\to 0} \frac{f\left(x+h\right) - f\left(x\right)}{h} = \lim_{h\to 0} \frac{\operatorname{sen}\left(2\left(x+h\right)\right) - \operatorname{sen}\left(2x\right)}{h}.$$

Calculamos el límite, el cual es una indeterminación $\frac{0}{0}$

$$\lim_{h \to 0} \frac{\sec (2(x+h)) - \sec (2x)}{h} = \lim_{h \to 0} \frac{\sec (2x+2h) - \sec (2x)}{h}$$

$$= \lim_{h \to 0} \frac{\sec (2x) \cos (2h) + \cos (2x) \sec (2h) - \sec (2x)}{h}$$

$$= \lim_{h \to 0} \frac{[\cos (2h) - 1] \sec (2x) + \cos (2x) \sec (2h)}{h}$$

$$= \lim_{h \to 0} \frac{[\cos (2h) - 1] \sec (2x) + \lim_{h \to 0} \frac{\cos (2x) \sec (2h)}{h}}{h}$$

$$= \sec (2x) \lim_{h \to 0} \frac{\cos (2h) - 1}{h} + \cos (2x) \lim_{h \to 0} \frac{\sec (2h)}{h},$$

donde,

$$\lim_{h \to 0} \frac{\operatorname{sen}(2h)}{h} = \lim_{h \to 0} \frac{2\operatorname{sen}(2h)}{2h},$$

haciendo el cambio de variable

$$u = 2h,$$
 \Longrightarrow si $h \to 0$ entonces $u \to 2(0) = 0$

obtenemos,

$$\lim_{h \to 0} \frac{\sin(2h)}{h} = \lim_{h \to 0} \frac{2\sin(2h)}{2h} = 2\lim_{h \to 0} \frac{\sin u}{u} = 2(1) = 2,$$

mientras que,

$$\lim_{h \to 0} \frac{\cos(2h) - 1}{h} = \frac{0}{0} \quad \longleftarrow \quad \text{Indeterminado}$$

aplicamos conjugada trigonométrica

$$\lim_{h \to 0} \frac{\cos(2h) - 1}{h} = \lim_{h \to 0} \frac{(\cos(2h) - 1)}{h} \frac{(\cos(2h) + 1)}{(\cos(2h) + 1)} = \lim_{h \to 0} \frac{\cos^2(2h) - 1}{h (\cos(2h) + 1)} = \lim_{h \to 0} \frac{-\sin^2(2h)}{h (\cos(2h) + 1)}$$
$$= \lim_{h \to 0} \frac{-\sin(2h)}{h} \frac{\sin(2h)}{\cos(2h) + 1} \stackrel{?}{=} -\lim_{h \to 0} \frac{\sin(2h)}{h} \lim_{h \to 0} \frac{\sin(2h)}{\cos(2h) + 1}$$

como

$$\lim_{h\to 0} \frac{\operatorname{sen}\left(2h\right)}{h} = \lim_{h\to 0} \frac{2\operatorname{sen}\left(2h\right)}{2h} = 2\lim_{h\to 0} \frac{\operatorname{sen}u}{u} = 2\left(1\right) = 2,$$

haciendo el cambio de variable,

$$u = 2h,$$
 \Longrightarrow si $h \to 0$ entonces $u \to 2(0) = 0$

У

$$\lim_{h \to 0} \frac{\sin(2h)}{\cos(2h) + 1} = \frac{\sin(2(0))}{\cos(2(0)) + 1} = \frac{\sin(0)}{\cos(0) + 1} = \frac{0}{1+1} = \frac{0}{2} = 0,$$

entonces,

$$\lim_{h \to 0} \frac{\cos(2h) - 1}{h} = -(2)(0) = 0,$$

por lo tanto,

$$\lim_{h\to 0}\frac{\operatorname{sen}\left(2\left(x+h\right)\right)-\operatorname{sen}\left(2x\right)}{h}=\left(0\right)\ \operatorname{sen}\left(2x\right)+\left(2\right)\ \cos\left(2x\right)=2\cos\left(2x\right),$$

luego

$$\lim_{h \to 0} \frac{\operatorname{sen}(2(x+h)) - \operatorname{sen}(2x)}{h} = 2\operatorname{cos}(2x)$$

Ejercicios

 \star

1. Verifique el teorema del valor intermedio para f en el intervalo dado. Encuentre un valor c en el intervalo para el valor indicado de N.

Función	Intervalo	N	Función	Intervalo	N
$f\left(x\right) =x^{2}-2x,$	[1,5];	8	$f\left(x\right) =x^{3}-2x+1,$	$\left[-2,2\right] ;$	1
$f\left(x\right) = \frac{10}{x^2 + 1},$	[0,1];	8	$f\left(x\right) =x^{2}+x+1,$	[-2, 3];	6

- 2. Dado que f es continua en [a,b] y f(a) = 5 y f(b) = 20. Demuestre que hay un número c en [a,b], tal que f(c) = 10.
- 3. Dado que $f(x) = x^5 + 2x 7$. Demuestre que hay un número c, tal que f(c) = 50.

- 4. Dado que $f(x) = x^5 + x 1$. Demuestre que hay un número c, tal que f(c) = 0.
- 5. Dado que f y g son continuas en [a, b], tales que f(a) > g(a) y f(b) < g(b). Demuestre que hay un número c en (a,b), tal que f(c) = g(c).
- 6. Utilice el teorema del valor intermedio para demostrar que $x^3 + 3x 2 = 0$ tiene una solución real entre 0 y 1.
- 7. Utilice el teorema del valor intermedio para demostrar que $t^3 \cos t + 6 \sin^5 t 3 = 0$ tiene una solución real entre 0 y 2π .
- 8. Demuestre que la ecuación $2x^7 = 1 x$ tiene una solución en [0, 1].
- 9. Demuestre que la ecuación $x^5 + 4x^3 7x + 14 = 0$ tiene al menos una soiución real.
- 10. Demuestre que la ecuación

$$\frac{x^2+1}{x+3} + \frac{x^4+1}{x-4} = 0$$

tiene una solución en el intervalo (-3,4).

11. Calcular el siguiente límite, si es que existe,

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

para las siguientes funciones

$$1. \quad f(x) = k$$

$$2. \quad f(x) = 3$$

3.
$$f(x) = x^{2}$$

$$4. f(x) = x^3$$

1.
$$f(x) = k$$
 2. $f(x) = x$ 3. $f(x) = x^2$ 4. $f(x) = x^3$ 5. $f(x) = x^4$

6.
$$f(x) = x^{-1}$$

7.
$$f(x) = x^{-2}$$

6.
$$f(x) = x^{-1}$$
 7. $f(x) = x^{-2}$ 8. $f(x) = x^{-3}$ 9. $f(x) = \sqrt{x}$ 10. $f(x) = \sqrt[3]{x}$

$$f\left(x\right) = \sqrt{x}$$

10.
$$f(x) = \sqrt[3]{x}$$

11.
$$f(x) = \sqrt[4]{x}$$

$$12. \quad f(x) = \sin x$$

13.
$$f(x) = \cos x$$

11.
$$f(x) = \sqrt[4]{x}$$
 12. $f(x) = \sin x$ 13. $f(x) = \cos x$ 14. $f(x) = \tan x$

15.
$$f(x) = \sec x$$

$$16. \quad f\left(x\right) = \csc x$$

15.
$$f(x) = \sec x$$
 16. $f(x) = \csc x$ 17. $f(x) = \cot x$ 18. $f(x) = -4$

18.
$$f(x) = -$$

$$19. \quad f(x) = 2$$

$$20. \quad f(x) = -3x$$

$$21. \quad f\left(x\right) = \frac{x}{\sqrt{3}}$$

$$22. \quad f\left(x\right) = 2x^2$$

19.
$$f(x) = 2$$
 20. $f(x) = -3x$ 21. $f(x) = \frac{x}{\sqrt{3}}$ 22. $f(x) = 2x^2$ 23. $f(x) = \frac{5}{\sqrt{x}}$

24.
$$f(x) = 5x - 3$$

25.
$$f(x) = 7 - 4x$$

26.
$$f(x) = x^2 - 1$$

24.
$$f(x) = 5x - 3$$
 25. $f(x) = 7 - 4x$ 26. $f(x) = x^2 - 1$ 27. $f(x) = 3 - 2x^2$

28.
$$f(x) = 4x^2 - 3x$$

29.
$$f(x) = \frac{x}{3} - 5x^2$$

$$30. \quad f\left(x\right) = \frac{6}{\sqrt[3]{x}}$$

28.
$$f(x) = 4x^2 - 3x$$
 29. $f(x) = \frac{x}{3} - 5x^2$ 30. $f(x) = \frac{6}{\sqrt[3]{x}}$ 31. $f(x) = \sqrt{2x+1}$

32.
$$f(x) = \sqrt[3]{5x-7}$$
 33. $f(x) = \frac{1}{4-x}$ 34. $f(x) = \frac{2}{3x+1}$ 35. $f(x) = \frac{x+1}{x-1}$

33.
$$f(x) = \frac{1}{4-x}$$

34.
$$f(x) = \frac{2}{3x+1}$$

35.
$$f(x) = \frac{x+1}{x-1}$$

36.
$$f(x) = \frac{2+x}{x^2-x}$$
 37. $f(x) = \frac{6}{x^2+1}$ 38. $f(x) = \frac{2x-1}{1-x}$ 39. $f(x) = \frac{\sin x}{x}$

37.
$$f(x) = \frac{6}{x^2 + 1}$$

38.
$$f(x) = \frac{2x-1}{1-x}$$

$$39. \quad f(x) = \frac{\sin x}{x}$$

40.
$$f(x) = \frac{-2}{4 - x^2}$$

41.
$$f(x) = \frac{x}{1 - 2x}$$

40.
$$f(x) = \frac{-2}{4 - x^2}$$
 41. $f(x) = \frac{x}{1 - 2x}$ 42. $f(x) = \frac{1}{\sqrt{x + 1}}$ 43. $f(x) = \frac{x}{x^2 - 3}$

43.
$$f(x) = \frac{x}{x^2 - 3}$$

44.
$$f(x) = \frac{4}{3x} - \sin x$$
 45. $f(x) = \sin 2x$ 46. $f(x) = \sin 3x$ 47. $f(x) = \sin kx$

$$45. \quad f(x) = \sin 2x$$

$$46. \quad f(x) = \sin 3x$$

$$47. \quad f(x) = \sin kx$$

$$48. \quad f(x) = \cos 2x$$

$$49. \quad f(x) = \cos 3x$$

$$50. \quad f\left(x\right) = \cos kx$$

48.
$$f(x) = \cos 2x$$
 49. $f(x) = \cos 3x$ 50. $f(x) = \cos kx$ 51. $f(x) = \sec 2x$

52.
$$f(x) = \sqrt{x^3 - x}$$
 53. $f(x) = \sec^2 x$ 54. $f(x) = \frac{\sec x}{1 - x}$ 55. $f(x) = \csc 3x$

$$53. \quad f(x) = \sin^2 x$$

5

$$54. \quad f\left(x\right) = \frac{\sin x}{1 - x}$$

$$55. \quad f(x) = \csc 3x$$

$$56. \quad f(x) = \cot 3x$$

56.
$$f(x) = \cot 3x$$
 57. $f(x) = \frac{\sqrt[3]{x-1}}{\sqrt{x}+1}$ 58. $f(x) = \cos x^2$ 59. $f(x) = \tan 3x^2$

$$58. \quad f(x) = \cos x^2$$

$$59. \quad f(x) = \tan 3x^2$$

60.
$$f(x) = \sqrt{2x + x^2 - 3}$$

12. Demuestre que el límite

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

no existe cuando x = 0 y la función es f(x) = |x|.

13. Calcule

$$\lim_{h \to 0} \frac{f\left(0+h\right) - f\left(0\right)}{h}$$

para f(x) = x|x|.

Respuestas: Ejercicios

$$11.1. \ \ 0; \qquad 11.2. \ \ 1; \qquad 11.3. \ \ 2x; \qquad 11.4. \ \ 3x^2; \qquad 11.5. \ \ 4x^3; \qquad 11.6. \ \ -\frac{1}{x^2}; \qquad 11.7. \ \ -\frac{2}{x^3}; \qquad 11.8. \ \ -\frac{3}{x^4}; \qquad 11.9. \ \ \frac{1}{2\sqrt{x}};$$

$$11.10. \ \ \frac{1}{3\sqrt[3]{x^2}}; \qquad 11.11. \ \ \frac{1}{4\sqrt[4]{x^3}}; \qquad 11.12. \ \cos x; \qquad 11.13. \ -\sin x; \qquad 11.14. \ \sec^2 x; \qquad 11.15. \ \sec x \tan x; \qquad 11.16. \ -\csc x \cot x;$$

$$11.17. - \csc^2 x; \qquad 11.18. \ 0; \qquad 11.19. \ 0; \qquad 11.20. \ -3; \qquad 11.21. \ \frac{\sqrt{3}}{3}; \qquad 11.22. \ 4x; \qquad 11.23. \ \frac{-5}{2x^{\frac{3}{2}}}; \qquad 11.24. \ 5;$$

$$11.25. \ \ -4; \qquad 11.26. \ \ 2x; \qquad 11.27. \ \ -4x; \qquad 11.28. \ \ 8x-3; \qquad 11.29. \ \ -10x+\frac{1}{3}; \qquad 11.30. \ \ -\frac{2}{x\sqrt[3]{x}}; \qquad 11.31. \ \ \frac{1}{\sqrt{2x+1}};$$

$$11.32. \ \ \frac{5}{3\sqrt[3]{(5x-7)^2}}; \qquad 11.33. \ \ \frac{1}{(4-x)^2}; \qquad 11.34. \ \ -\frac{6}{(3x+1)^2}; \qquad 11.35. \ \ -\frac{2}{(x-1)^2}; \qquad 11.36. \ \ \frac{2-x^2-4x}{\left(x^2-x\right)^2}; \qquad 11.37. \ \ -\frac{12x}{\left(x^2+1\right)^2};$$

11.38.
$$(x-1)^{-2}$$
; 11.39. $\frac{1}{x}\cos x - \frac{1}{x^2}\sin x$; 11.40. $-\frac{4x}{(4-x^2)^2}$; 11.41. $\frac{1}{(2x-1)^2}$; 11.42. $-\frac{1}{2(x+1)^{\frac{3}{2}}}$;

$$11.43. \quad -\frac{x^2+3}{\left(x^2-3\right)^2}; \qquad 11.44. \quad -\cos x - \frac{4}{3x^2}; \qquad 11.45. \quad 2\cos 2x; \qquad 11.46. \quad 3\cos 3x; \qquad 11.47. \quad k\cos kx; \qquad 11.48. \quad -2\sin 2x; \qquad 11.49. \quad -2\sin 2x; \qquad -2\cos 2x; \qquad -2\cos$$

11.49.
$$-3 \sec 3x$$
; 11.50. $-k \sec kx$; 11.51. $2 \sec 2x \tan 2x$; 11.52. $\frac{3x^2-1}{2\sqrt{x^3-x}}$; 11.53. $\sec 2x$; 11.54. $\frac{\cos x}{1-x} + \frac{\sin x}{(1-x)^2}$;

11.55.
$$-3\csc 3x \cot 3x$$
; 11.56. $-3\csc^2 3x$; 11.57. $\frac{1}{3(x-1)}\frac{\sqrt[3]{x-1}}{\sqrt[3]{x}} - \frac{1}{2\sqrt{x}}\frac{\sqrt[3]{x-1}}{\left(\sqrt{x}+1\right)^2}$; 11.58. $-2x \sec x^2$;

11.59.
$$6x \sec^2 3x^2$$
; 11.60. $\frac{x+1}{\sqrt{2x+x^2-3}}$; 13. 0;

Bibliografía

- 1. Purcell, E. Varberg, D. Rigdon, S.: "Cálculo". Novena Edición. PEARSON Prentice Hall.
- 2. Stewart, J.: "Cálculo". Grupo Editorial Iberoamericano.

Farith Briceño

Última actualizacón: Septiembre 2010

e-mail: farith_72@hotmail.com