Formulario di Metodi Matematici - Analisi

Trasformata di Fourier

$$\mathcal{F}(g)(\nu) = \hat{g}(\nu) := \int_{-\infty}^{+\infty} g(t)e^{-2\pi i\nu t}dt, \qquad \nu \in \mathbb{R}.$$

Proprietà

(a)
$$\mathcal{F}(e^{2\pi i\nu_0 t}T(t))(\nu) = \mathcal{F}(T(t))(\nu - \nu_0)$$
 $(\nu_0 \in \mathbb{R})$

(b)
$$\mathcal{F}(T(t-t_0))(\nu) = e^{-2\pi i t_0 \nu} \mathcal{F}(T(t))(\nu)$$
 $(t_0 \in \mathbb{R})$

(c)
$$\mathcal{F}(T(at))(\nu) = \frac{1}{|a|} \mathcal{F}(T(t)) \left(\frac{\nu}{a}\right)$$
 $(a \in \mathbb{R} \setminus \{0\})$

(d)
$$\mathcal{F}(t^k T(t))(\nu) = \left(-\frac{1}{2\pi i}\right)^k (\mathcal{F}(T))^{(k)}(\nu)$$
 $(k \in \mathbb{N})$

(e)
$$\mathcal{F}(T^{(k)})(\nu) = (2\pi i \nu)^k \mathcal{F}(T)(\nu)$$
 $(k \in \mathbb{N})$

Tavola di trasformate (a > 0)

Distribuzione	Trasformata	Distribuzione	Trasformata
T(t)	$\left \mathcal{F}(T(t))(\nu) \right $	$\frac{\sin(at)}{t}$	$\pi p_{a/\pi}(\nu)$
$H(t)e^{-at}$	$\frac{1}{a + 2\pi i \nu}$	δ_{x_0}	$e^{-2\pi i x_0 \nu}$
$e^{-a t }$	$\frac{2a}{a^2 + 4\pi^2\nu^2}$	$e^{2\pi i x_0 t}$	$\int \delta_{x_0}$
$p_a(t)$	$\frac{\sin(a\pi\nu)}{\pi\nu}$	v.p. $\frac{1}{t}$	$-\pi i \operatorname{sign}(\nu)$
e^{-at^2}	$\sqrt{\frac{\pi}{a}}e^{-\pi^2\nu^2/a}$	sign(t)	$\frac{1}{\pi i} \text{ v.p. } \frac{1}{\nu}$
$\frac{1}{a^2 + t^2}$	$\frac{\pi}{a}e^{-2\pi a \nu }$	H(t)	$\frac{1}{2\pi i} \text{ v.p. } \frac{1}{\nu} + \frac{\delta_0}{2}$

Trasformata di Laplace

Proprietà per funzioni f con semipiano di convergenza Ω_f

(a)
$$\mathcal{L}(e^{s_0t}f(t))(s) = \mathcal{L}(f(t))(s-s_0),$$
 $s \in \Omega_f + s_0 \quad (s_0 \in \mathbb{C})$

(b)
$$\mathcal{L}(f(t-t_0)H(t-t_0))(s) = e^{-t_0s} \mathcal{L}(f(t))(s), \quad s \in \Omega_f \quad (t_0 > 0)$$

(c)
$$\mathcal{L}(f(at))(s) = \frac{1}{a}\mathcal{L}(f(t))\left(\frac{s}{a}\right),$$
 $s \in a\Omega_f \quad (a > 0)$

(d)
$$[\mathcal{L}(f(t))]'(s) = -\mathcal{L}(tf(t))(s),$$
 $s \in \Omega_f$

(e)
$$\mathcal{L}(f')(s) = s \mathcal{L}(f)(s) - f(0+),$$
 $s \in \Omega_f \cap \Omega_{f'}$

(f)
$$\mathcal{L}(\int_0^t f(\tau) d\tau)(s) = [\mathcal{L}(f(t))(s)]/s,$$
 $s \in \Omega_f, \operatorname{Re} s > 0$

(g)
$$\mathcal{L}(f(t)/t)(s) = \int_{s}^{+\infty} \mathcal{L}(f)(\sigma) d\sigma,$$
 $s \in \Omega_f \cap \mathbb{R}, \quad s > 0$

Proprietà per distribuzioni T con semipiano di convergenza Ω_T

(a)
$$\mathcal{L}(e^{s_0t}T(t))(s) = \mathcal{L}(T(t))(s-s_0),$$
 $s \in \Omega_T + s_0 \quad (s_0 \in \mathbb{C})$

(b)
$$\mathcal{L}(T(t-t_0))(s) = e^{-t_0 s} \mathcal{L}(T(t))(s),$$
 $s \in \Omega_T \quad (t_0 > 0)$

(c)
$$\mathcal{L}(T(at))(s) = \frac{1}{a}\mathcal{L}(T(t))\left(\frac{s}{a}\right), \qquad s \in a\Omega_T \quad (a > 0)$$

(d)
$$[\mathcal{L}(T(t))]'(s) = -\mathcal{L}(tT(t))(s),$$
 $s \in \Omega_T$

(e)
$$\mathcal{L}(T')(s) = s \mathcal{L}(T)(s),$$
 $s \in \Omega_T$

Tavola di trasformate

Distribuzione T(t)

$t^{k}H(t) \qquad \frac{k!}{s^{k+1}} \qquad \operatorname{Re} s > 0 \qquad (k \in \mathbb{N})$ $e^{s_{0}t}H(t) \qquad \frac{1}{s-s_{0}} \qquad \operatorname{Re} s > \operatorname{Re} s_{0} \quad (s_{0} \in \mathbb{C})$ $\cos(\omega t)H(t) \qquad \frac{s}{s^{2}+s^{2}} \qquad \operatorname{Re} s > 0 \qquad (\omega \in \mathbb{R})$

Transformata $\mathcal{L}(T(t))(s)$

$$\sin(\omega t)H(t)$$
 $\frac{\omega}{s^2+\omega^2}$ $\operatorname{Re} s>0$ $(\omega \in \mathbb{R})$

$$\cosh(\omega t)H(t)$$
 $\frac{s}{s^2+s^2}$ $\operatorname{Re} s > |\omega| \quad (\omega \in \mathbb{R})$

$$\sinh(\omega t)H(t)$$
 $\frac{\omega}{s^2-\omega^2}$ $\operatorname{Re} s > |\omega| \quad (\omega \in \mathbb{R})$

$$\delta_{x_0}^{(k)} \qquad \qquad s \in \mathbb{C} \qquad (x_0 \in \mathbb{R}, \ k \in \mathbb{N})$$