Problem 1.

Which of the following functions is increasing (0,∞)?

Answers *

$$\int f(x) = 13 - x^3 \qquad \int (x) = 0 - 3 x^2 < 0 \quad \text{always decreasing}$$

$$f(x) = -4x + 1 \qquad f(x) = -4 < 0, \text{ always decreasing}$$

$$f(x) = -4x^{2} \quad f(x) = -8x, \quad \forall 0 \quad \exists f \quad x < 0 \quad \Rightarrow \text{increasing}$$

$$f(x) = -4x^{2} \quad f(x) = -8x, \quad \langle 0, 1 \neq x > 0 \quad \Rightarrow \text{decreasing}$$

$$\begin{array}{c|c}
\hline
x^2 & f(x) = 2x > 0 & on(0, \infty)
\end{array}$$

Problem 2.

Answers *

$$f(x) = 2x \qquad f(x) = 2 \quad 0 \quad f(x) = 2 \quad 0$$

$$\int f(x) = x^{1/2} \qquad \int (x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} > 0 \text{ when } \times 70$$

$$\int f(x) = x^3 + 4x^2 + x + 1 \quad f'(x) = 3x^2 + 8x + 1 = 0 \text{ when } 3L_{70} \int$$

$$f(x) \neq -2(x^{2} + 9) \qquad f(x) = -2(x^{2} + 9) = -2(2x + 0) = -4x < 0$$
When $x > 0$

Problem 3.

Let $f(x) = x^3 + 3x^2 - 45x + 4$. Then the local extrema of f(x) are f(>4) = 3x2+bx-45 @ set f(x)=0 Answers * 3x2+6x-45 = 0 A local minimum of -179 at x = 5 and a local maximum of 77 at x = -3. シャルスーちニの local minimum of -77 at x=3 and a local maximum of 179 at x=-5. (ズャケ) (アレース) この A local minimum of -179 at x = -5 and a local maximum of -77 at x = 3. = > > 1 - - 50 r 7 = 3 A local minimum of -77 at x = 3 and a local maximum of 77 at x = 5. F"(x) = (372 +676-45) = 6x+6 = 6(x+1) f"(-5) = 6(-5+1) < 0 1 f"(3) = 6(3+1) 70 **Problem 4**

For what values of x does the function $f(x) = x^3 - 9x^2 - 120x + 6$ have a local minimum?

Problem 5.

Problem 7.

Find the relative extrema for the following functions by (1) determining the critical value(s) and (2) determining whether at these critical values the function is a relative maximum or minimum (or possible inflection point).

$$f(x) = -8x^{2} + 12x + 3$$

$$\int_{0}^{1} (x) = -8x^{2} + 12x + 3$$

Problem 8.

Find the relative extrema for the following functions by (1) determining the critical value(s) and (2) determining whether at these critical values the function is a relative maximum or minimum (or possible inflection point).

Problem 9.

Optimize the following function by (1) finding the critical value(s) at which the function is optimized and (2) testing the second-order condition to distinguish between a relative maximum or minimum and (3) the values of the relative extrema for the function. For the following given function

 $f(x) = x^2 + 6x + 9$ Which if the following is correct?

$$f'(\pi) = \left[\times^2 + 6 \times + 9 \right]'$$

Problem 10.

Answers

Optimize the following function by (1) finding the critical value(s) at which the function is optimized and (2) testing the second-order condition to distinguish between a relative maximum or minimum and (3) the value(s) of the relative extrema for the function. For the following giving function

$$f(x) = x^3 + 6x^2 - 96x + 23$$

Which of the following choices is correct?

$$f'(x) = \left[x^{3} + 6x^{2} - 96x + 23 \right]'$$

= $3x^{2} + 12x - 96$

 $f'(x) = 0 \Rightarrow 3x^2 + 12x - 96 = 0$

$$x = 4$$
, relative minimum; $x = -8$, relative maximum; $f(4) = -201$ and $f(-8) = 663$

$$x = -4$$
, relative minimum; $x = 8$, relative maximum; $f(-4) = 200$ and $f(8) = -665$

$$3(x^{2}+4x-3z)=0$$

 $3(x+8)(x-4)=0$
 $x=-8 \text{ or } x=4$

$$x = 4, \text{ relative minimum; } x = 8, \text{ relative maximum; } f(4) = -201 \text{ and } f(8) = 663$$

$$= 6x + 12$$

$$= 6(x + 2)$$

$$x = 4$$
, relative minimum; $x = -8$, relative maximum; $f(4) = -154$ and $f(-8) = 653$

$$f''(-8) = 6(-8 + 2) < 0$$

$$f''(4) = 6(4 + 2) > 0$$

$$f'(4) = 4^3 + 6 \times 4^2 - 96 \times 4 + 23 = -20$$

Problem 11

Which of the following statements is true based on the given figure.

Answers *

/ 4	

A, B, and C are critical points.

C and A are inflection points.

A, B, and C are relative extrema.

Only A and C are critical points

Problem 12.

Find the critical points in the following figure at which the derivative does **not** exist.

Answers *

Points B, C, and D

Points B and C

Point D

A and D

Problem 13.

Find the intervals of concavity of the function $f(x) = 4x^3 - 3x^2 - 1$

$$f(x) = [4x^{3} - 3x^{2} - 1]'$$

$$= 12 x^{2} - 6x$$

for finding concavity we need 5"(x)=[12x2-6x]

Answers '

Concave up on
$$(\frac{1}{4}, \infty)$$
 and concave down on $(-\infty,$

by solving equation f''(x) = 0 (see the definition of concavity)

set f'(x)=0=> 74x-6=0

$$\Rightarrow \chi_{=} \frac{6}{24} = \frac{1}{4}$$

Concave up on
$$(0.5, \infty)$$
 and concave down on $(-\infty, 0.5)$

$$f'(x) = 24(x - \frac{1}{4})$$

Concave up on
$$(-\frac{\sqrt{2}}{2}, \infty)$$
 and concave down on $(-\infty, -\frac{\sqrt{2}}{2})$

Problem 14.

The local extrema of $f(x) = -x^3 + 6x^2 + 6$ occur at which of the following x-

values?

$$f(x) = (-x^2 + 6x^2 + 6x^2 + 6x^2 + 12x)$$

Set f(1) = 0 => -3x(x-4)=0 ⇒ x = 0 or 4

Answers *

local maximum at
$$x = 0$$
, local minimum at $x = 4$

$$f'(x) = \left[-3x^2 + 12x \right]' = -6x + 12$$

local minimum at
$$x = 0, 4$$

$$f''(4) = -6(4-2) = -12 < 0$$

local maximum at
$$x = 2$$

Problem 15.

What is he x-coordinate of the inflection point on the graph of

 $f(x) = -x^{3}/3 + 5x^{2} + 24$ $f'(x) = \begin{bmatrix} -\frac{2}{3} + 5x^{2} + 24 \end{bmatrix}$ Answers* $= -\frac{2}{3} + 5x^{2} + 24 \end{bmatrix}$ $= -\frac{2}{3} + \frac{2}{3} + \frac{$

-10

