

SEQUENCE LISTING

Stashenko, Philip Okamatsu, Yoshimura Sasaki, Hajime Battaglino, Richard Spaete, Ulrike

- <120> Expressed Genes that Define the Osteoclast Phenotype
- <130> 25669-003
- <140> 10/734,692
- <141> 2003-12-11
- <150> 60/432,700
- <151> 2002-12-11
- <160> 50
- <170> PatentIn version 3.2
- <210> 1
- <211> 22
- <212> DNA
- <213> Mus musculus
- <400> 1

gtgttcatca ttggagtggt gg

22

- <210> 2
- <211> 23
- <212> DNA
- <213> Mus musculus
- <400> 2

ggttgaacag gtagatgctg gtc

23

360

- <210> 3
- <211> 1118
- <212> DNA
- <213> Mus musculus
- <400> 3

gggccagctg ggtctgccca ctaagaagat gaagcctttt catactgccc tctccttcct 60 cattcttaca actgctcttg gaatctgggc ccagatcaca catgcaacag agacaaaaga 120 agtccagagc agtctgaagg cacagcaagg gcttgaaatt gaaatgtttc acatgggctt 180 tcaagactct tcagattgct gcctgtccta taactcacgg attcagtgtt caagatttat 240 aggttatttt cccaccagtg gtgggtgtac caggccgggc atcatcttta tcagcaagag 300

ggggttccag gtctgtgcca accccagtga tcggagagtt cagagatgca ttgaaagatt

qqaqaaaaac tcacaaccac qqacctacaa acaataacat ttgctttaga gaagggtgtg 420 aactgccage tactttettt ggtetteece agtgaccace taagtggete taagtgttta 480 tttttatagg tatataaaca tttttttttt ctgtttccac tttaaagtgg catatctggc 540 tttqtcacaq aqqqqaaact tqtctqtqcc aaccccaqtc atctgaaaac tcagatgcct 600 qqqaaqqtct qaaqctqacc tcaatqacta cacataatat ttgattgaga taaatgggca 660 aggtetggag agatggettg gtggttaaga geacetgetg etetteeaga ggaeetgggt 720 tcaattccca cttagatggc agctcaaact atctataatt ccaattccaa agaaaactga 780 tgccctattt tgccccttta gttagtagta tttacagtat tctttataaa ttcaccttga 840 catgaccatc ttgagctaca gccatcctaa ctgcctcaga atcactcaag ttcttccact 900 cggtttccca gcggatttta agtggataaa ctgtgagagt ggtctgtggg actttggaat 960 gtgtctggtt ctgatagtca cttatggcaa cccaggtaca ttcaactagg atgaaataaa 1020 ttctgcctta gcccagtagt atgtctgtgt ttgtaaggac ccagctgatt ttcccaccac 1080 ccctccatca gtccgccact aataaagtgc atctatgc 1118

<210> 4

<211> 122

<212> PRT

<213> Mus musculus

<400> 4

Met Lys Pro Phe His Thr Ala Leu Ser Phe Leu Ile Leu Thr Thr Ala 1 5 10 15

Leu Gly Ile Trp Ala Gln Ile Thr His Ala Thr Glu Thr Lys Glu Val 20 25 30

Gln Ser Ser Leu Lys Ala Gln Gln Gly Leu Glu Ile Glu Met Phe His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Met Gly Phe Gln Asp Ser Ser Asp Cys Cys Leu Ser Tyr Asn Ser Arg 50 55 60

Ile Gln Cys Ser Arg Phe Ile Gly Tyr Phe Pro Thr Ser Gly Gly Cys 70 75 80

Thr Arg Pro Gly Ile Ile Phe Ile Ser Lys Arg Gly Phe Gln Val Cys 85 90 95 Ala Asn Pro Ser Asp Arg Arg Val Gln Arg Cys Ile Glu Arg Leu Glu 105 100

Lys Asn Ser Gln Pro Arg Thr Tyr Lys Gln

<210> 5

<211> 2156

<212> DNA

Homo sapiens

<400> 5

60 qqcacqaqcc caqaaacaaa qacttcacqq acaaaqtccc ttggaaccaq agagaagccq ggatggaaac tccaaacacc acagaggact atgacacgac cacagagttt gactatgggg 120 atgcaactcc gtgccagaag gtgaacgaga gggcctttgg ggcccaactg ctgcccctc 180 240 tgtactcctt ggtatttgtc attggcctgg ttggaaacat cctggtggtc ctggtccttg 300 tgcaatacaa gaggctaaaa aacatgacca gcatctacct cctgaacctg gccatttctg acctgctctt cctgttcacg cttcccttct ggatcgacta caagttgaag gatgactggg 360 tttttggtga tgccatgtgt aagatcctct ctgggtttta ttacacaggc ttgtacagcg 420 480 agatettttt cateateetg etgaegattg acaggtaeet ggeeategte caegeegtgt 540 ttgccttgcg ggcacggacc gtcacttttg gtgtcatcac cagcatcatc atttgggccc tggccatctt ggcttccatg ccaggcttat acttttccaa gacccaatgg gaattcactc 600 accacactg cagcetteac ttteeteacg aaageetacg agagtggaag etgttteagg 660 ctctqaaact qaacctcttt qqqctqqtat tgcctttgtt ggtcatgatc atctgctaca 720 caqqqattat aaaqattctg ctaagacgac caaatgagaa gaaatccaaa gctgtccgtt 780 tgatttttgt catcatgatc atctttttc tcttttggac cccctacaat ttgactatac 840 900 ttatttctgt tttccaagac ttcctgttca cccatgagtg tgagcagagc agacatttgg acctggctgt gcaagtgacg gaggtgatcg cctacacgca ctgctgtgtc aacccagtga 960 1020 tctacgcctt cgttggtgag aggttccgga agtacctgcg gcagttgttc cacaggcgtg 1080 tggctgtgca cctggttaaa tggctcccct tcctctccgt ggacaggctg gagagggtca gctccacatc tccctccaca ggggagcatg aactctctgc tgggttctga ctcagaccat 1140 aggaggecaa cecaaaataa geaggegtga eetgeeagge acaetgagee ageageetgg 1200 ctctcccage caggttctga ctcttggcac agcatggagt cacagccact tgggatagag 1260 agggaatgta atggtggcct ggggcttctg aggcttctgg ggcttcagtc ttttccatga 1320 acttctcccc tggtagaaag aagatgaatg agcaaaacca aatattccag agactgggac 1380 taagtgtacc agagaagggc ttggactcaa gcaagatttc agatttgtga ccattagcat 1440 ttgtcaacaa agtcacccac ttcccactat tgcttgcaca aaccaattaa acccagtagt 1500 ggtgactgtg ggctccattc aaagtgagct cctaagccat gggagacact gatgtatgag 1560 gaatttetgt tetteeatea cetececee eeegecaeee teeeaetgee aagaaettgg 1620 aaatagtgat ttccacagtg actccactct gagtcccaga gccaatcagt agccagcatc 1680 tgcctcccct tcactcccac cgcaggattt gggctcttgg aatcctgggg aacatagaac 1740 tcatgacgga agagttgaga cctaacgaga aatagaaatg ggggaactac tgctggcagt 1800 ggaactaaga aagcccttag gaagaatttt tatatccact aaaatcaaac aattcaggga 1860 gtgggctaag cacgggccat atgaataaca tggtgtgctt cttaaaatag ccataaaggg 1920 gagggactca tcatttccat ttacccttct tttctgacta tttttcagaa tctctcttct 1980 tttcaagttq qqtqatatqt tqqtaqattc taatqqcttt attqcaqcqa ttaataacaq 2040 gcaaaaggaa gcagggttgg tttcccttct ttttgttctt catctaagcc ttctggtttt 2100 2156

<210> 6

<211> 355

<212> PRT

<213> Homo sapiens

<400> 6

Met Glu Thr Pro Asn Thr Thr Glu Asp Tyr Asp Thr Thr Thr Glu Phe 1 5 10 15

Asp Tyr Gly Asp Ala Thr Pro Cys Gln Lys Val Asn Glu Arg Ala Phe 20 25 30

Gly Ala Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe Val Ile Gly 35 40 45

Leu Val Gly Asn Ile Leu Val Val Leu Val Leu Val Gln Tyr Lys Arg 50 55 60

Leu Lys Asn Met Thr Ser Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp 65 70 75 80

Leu Leu Phe Leu Phe Thr Leu Pro Phe Trp Ile Asp Tyr Lys Leu Lys Asp Asp Trp Val Phe Gly Asp Ala Met Cys Lys Ile Leu Ser Gly Phe Tyr Tyr Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Arg Ala Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Ile Ile Trp Ala Leu Ala Ile Leu Ala Ser Met Pro Gly Leu Tyr Phe Ser Lys Thr Gln Trp Glu Phe Thr His His Thr Cys Ser Leu His Phe Pro His Glu Ser Leu Arg Glu Trp Lys Leu Phe Gln Ala Leu Lys Leu Asn Leu Phe Gly Leu Val Leu Pro Leu Leu Val Met Ile Ile Cys Tyr Thr Gly Ile Ile Lys Ile Leu Leu Arq Arg Pro Asn Glu Lys Lys Ser Lys Ala Val Arg Leu Ile Phe Val Ile Met Ile Ile Phe Phe Leu Phe Trp Thr Pro Tyr Asn Leu Thr Ile Leu Ile Ser Val Phe Gln Asp Phe Leu Phe Thr His Glu Cys Glu Gln Ser Arg His Leu Asp Leu Ala Val Gln Val Thr Glu Val Ile Ala Tyr Thr His Cys Cys Val Asn Pro Val Ile Tyr Ala Phe Val

Gly Glu Arg Phe Arg Lys Tyr Leu Arg Gln Leu Phe His Arg Arg Val 305 310 315 320

Ala Val His Leu Val Lys Trp Leu Pro Phe Leu Ser Val Asp Arg Leu 325 330 335

Glu Arg Val Ser Ser Thr Ser Pro Ser Thr Gly Glu His Glu Leu Ser 340 345 350

Ala Gly Phe 355

<210> 7 <211> 2156

<212> DNA

<213> Homo sapiens

<400> 7

ggcacgagcc cagaaacaaa gacttcacgg acaaagtccc ttggaaccag agagaagccg 60 ggatggaaac tccaaacacc acagaggact atgacacgac cacagagttt gactatgggg 120 atgcaactcc gtgccagaag gtgaacgaga gggcctttgg ggcccaactg ctgcccctc 180 tgtactcctt ggtatttgtc attggcctgg ttggaaacat cctggtggtc ctggtccttg 240 tgcaatacaa gaggctaaaa aacatgacca gcatctacct cctgaacctg gccatttctg 300 acctgctctt cctgttcacg cttcccttct ggatcgacta caagttgaag gatgactggg 360 tttttqqtqa tqccatqtqt aaqatcctct ctqqqtttta ttacacaggc ttqtacagcg 420 agatettttt cateateetg etgacgattg acaggtacet ggecategte caegeegtgt 480 ttgccttgcg ggcacggacc gtcacttttg gtgtcatcac cagcatcatc atttgggccc 540 tggccatctt ggcttccatg ccaggcttat acttttccaa gacccaatgg gaattcactc 600 accacactg cagcetteac tttecteacg aaageetacg agagtggaag etgttteagg 660 ctctgaaact gaacctcttt gggctggtat tgcctttgtt ggtcatgatc atctgctaca 720 780 caqqqattat aaaqattctg ctaaqacgac caaatgagaa gaaatccaaa gctgtccgtt tgatttttgt catcatgatc atcttttttc tcttttggac cccctacaat ttgactatac 840 ttatttctqt tttccaaqac ttcctqttca cccatqaqtq tqaqcaqaqc aqacatttqq 900 acctggctgt gcaagtgacg gaggtgatcg cctacacgca ctgctgtgtc aacccagtga 960 tctacgcctt cgttggtgag aggttccgga agtacctgcg gcagttgttc cacaggcgtg 1020 tggctgtgca cctggttaaa tggctcccct tcctctccgt ggacaggctg gagagggtca 1080 gctccacatc tccctccaca ggggagcatg aactctctgc tgggttctga ctcagaccat 1140 aggaggecaa eccaaaataa geaggegtga eetgeeagge acaetgagee ageageetgg 1200 ctctcccagc caggttctga ctcttggcac agcatggagt cacagccact tgggatagag 1260 agggaatgta atggtggcct ggggcttctg aggcttctgg ggcttcagtc ttttccatga 1320 actteteece tggtagaaag aagatgaatg agcaaaacca aatatteeag agactgggae 1380 taagtgtacc agagaagggc ttggactcaa gcaagatttc agatttgtga ccattagcat 1440 ttqtcaacaa aqtcacccac ttcccactat tqcttqcaca aaccaattaa acccaqtaqt 1500 ggtgactgtg ggctccattc aaagtgagct cctaagccat gggagacact gatgtatgag 1560 gaatttetgt tettecatea cetececee ecegecacee teccaetgee aagaaettgg 1620 aaataqtgat ttccacagtg actccactct gagtcccaga gccaatcagt agccagcatc 1680 tgcctcccct tcactcccac cgcaggattt gggctcttgg aatcctgggg aacatagaac 1740 tcatgacgga agagttgaga cctaacgaga aatagaaatg ggggaactac tgctggcagt 1800 qqaactaaqa aaqcccttaq qaaqaatttt tatatccact aaaatcaaac aattcaqqqa 1860 gtgggctaag cacgggccat atgaataaca tggtgtgctt cttaaaatag ccataaaggg 1920 gagggactca tcatttccat ttaccettct tttctgacta tttttcagaa tctctcttct 1980 tttcaagttq qqtqatatqt tqqtaqattc taatqqcttt attqcaqcqa ttaataacaq 2040 gcaaaaggaa gcagggttgg tttcccttct ttttgttctt catctaagcc ttctggtttt 2100 2156

<210> 8

<211> 355

<212> PRT

<213> Homo sapiens

<400> 8

Met Glu Thr Pro Asn Thr Thr Glu Asp Tyr Asp Thr Thr Thr Glu Phe 1 5 10 15

Asp Tyr Gly Asp Ala Thr Pro Cys Gln Lys Val Asn Glu Arg Ala Phe 20 25 30

Gly Ala Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe Val Ile Gly 35 40 45

Leu Val Gly Asn Ile Leu Val Val Leu Val Leu Val Gln Tyr Lys Arg Leu Lys Asn Met Thr Ser Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Leu Phe Leu Phe Thr Leu Pro Phe Trp Ile Asp Tyr Lys Leu Lys Asp Asp Trp Val Phe Gly Asp Ala Met Cys Lys Ile Leu Ser Gly Phe Tyr Tyr Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Arg Ala Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Ile Ile Trp Ala Leu Ala Ile Leu Ala Ser Met Pro Gly Leu Tyr Phe Ser Lys Thr Gln Trp Glu Phe Thr His His Thr Cys Ser Leu His Phe Pro His Glu Ser Leu Arg Glu Trp Lys Leu Phe Gln Ala Leu Lys Leu Asn Leu Phe Gly Leu Val Leu Pro Leu Leu Val Met Ile Ile Cys Tyr Thr Gly Ile Ile Lys Ile Leu Leu Arg Arg Pro Asn Glu Lys Lys Ser Lys Ala Val Arg Leu Ile Phe Val Ile Met Ile Ile Phe Phe Leu Phe Trp Thr Pro Tyr Asn Leu Thr Ile Leu Ile Ser Val Phe Gln Asp Phe Leu Phe Thr His Glu

Cys Glu Gln Ser Arg His Leu Asp Leu Ala Val Gln Val Thr Glu Val 275 280 285	
Ile Ala Tyr Thr His Cys Cys Val Asn Pro Val Ile Tyr Ala Phe Val 290 295 300	
Gly Glu Arg Phe Arg Lys Tyr Leu Arg Gln Leu Phe His Arg Arg Val 305 310 315 320	
Ala Val His Leu Val Lys Trp Leu Pro Phe Leu Ser Val Asp Arg Leu 325 330 335	
Glu Arg Val Ser Ser Thr Ser Pro Ser Thr Gly Glu His Glu Leu Ser 340 345 350	
Ala Gly Phe 355	
<210> 9 <211> 309 <212> DNA <213> Homo sapiens	
<400> 9 accatgaagg teteegegge ageceteget gteateetea ttgetaetge cetetgeget 60	0
cctgcatctg cctccccata ttcctcggac accacacct gctgctttgc ctacattgcc 120	0
cgcccactgc cccgtgccca catcaaggag tatttctaca ccagtggcaa gtgctccaac 180	0
ccagcagtcg tctttgtcac ccgaaagaac cgccaagtgt gtgccaaccc agagaagaaa 240	0
tgggttcggg agtacatcaa ctctttggag atgagctagg atggagagtc cttgaacctg 300	0
aacttacac 309	9
<210> 10 <211> 91 <212> PRT <213> Homo sapiens	
<400> 10	
Met Lys Val Ser Ala Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala 1 5 10 15	
Leu Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser Asp Thr Thr Pro	

Cys	Cys	Phe 35	Ala	Tyr	Ile	Ala	Arg 40	Pro	Leu	Pro	Arg	Ala 45	His	Ile	Lys	
Glu	Tyr 50	Phe	Tyr	Thr	Ser	Gly 55	Lys	Cys	Ser	Asn	Pro 60	Ala	Val	Val	Phe	
Val 65	Thr	Arg	Lys	Asn	Arg 70	Gln	Val	Cys	Ala	Asn 75	Pro	Glu	Lys	Lys	Trp 80	
Val	Arg	Glu	Tyr	Ile 85	Asn	Ser	Leu	Glu	Met 90	Ser						
<210 <211 <212	.> : !> :	11 10 DNA Homo	gan	iens												
<400)> :	11	sap.	rens												
acto	att	aat														10
<210		12														
<211		10														
<212 <213		ANC Homo	sapi	iens												
			-													
<400 acto		12 aac														10
<210		13														
<211		10														
<212		DNA														
<213		Homo	sapi	iens												
<400		1 3														
gctc																10
<210)> :	14														
<211		10														
<212		ANC														
<213	>]	Homo	sapi	iens												
< 400)> :	14														
gctc	att	aac														10
<210		15														
<211		0														
<212		ANC		*	7 . + -											
<213	> 1	No Se	:quer	rce r	Jaca											

<400>	15	
<210><211><211><212><213>	16 18 DNA Homo sapiens	
<400> cacago	16 tcat taacgcgc	18
<210><211><212><212><213>	17 18 DNA Homo sapiens	
<400> gtgtcg	17 agta attgcgcg	18
<210><211><212><212><213>	18 22 DNA Homo sapiens	
<400> gccaac	18 ctca agatcccggg cg	22
<210><211><211><212><213>		
<400> ccagtt	19 tctc ggcgatggcg gc	22
<210><211><211><212><213>	20 20 DNA Homo sapiens	
<400> cacggt	20 ggtg tccactccgg	20
<210><211><211><212><213>	21 20 DNA Homo sapiens	
<400>	21	20

<210> <211>	22 28	
<212> <213>	DNA Homo sapiens	
<400>	22	
ggccat	gaac gccaagcagc ctttcggc	28
<210>	23	
<211>	28	
<212>	DNA Homo sapiens	
(213)	nono sapiens	
<400>	23	
gcgccta	agat gatgcgggtg gatctgcg	28
<210>	24	
<211>	21	
<212>	DNA	
<213>	Homo sapiens	
<400>	24	
	ttct ccaagcacga c	21
<210>	25	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
-400-		
<400>	25 eggt getgttgtag	20
005050		
<210> <211>	26	
<211>	18 DNA	
<213>	Homo sapiens	
<400>	26	
cacage	tcat taacgcgc	18
<210>	27	
<211>		
<212>		
<213>	Homo sapiens	
<400>	27	
gcgcgt	taat gagctgtg	18
<210>	28	
<211>	18	

```
<212> DNA
<213> Artificial
<220>
<223> Primer to Generate Mutated Sequence
<400> 28
                                                                      18
gcgcgttgct gagctctg
<210> 29
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Primer to Generate Mutated Sequence
<400> 29
                                                                      18
cagageteag caaegege
<210>
      30
<211> 2160
<212> DNA
<213> Mus sp.
<400> 30
gagcagtgcg agcgagcgca cgctcgggac ggaggccggg cgagccggcg tgcgcacttt
                                                                      60
                                                                     120
gccgcggact ttgcgagtgt tttgtggatt tttacatgcc aaggcgccaa gatgatgtcc
                                                                     180
atgaacagca agcagcctca ctttgccatg catcccaccc tccctgagca caagtacccg
tegetgeact ceageteega ggecateegg egggeetgee tgeecaegee geeggtaage
                                                                     240
                                                                     300
geoceaegee geggeeeegg teeeggeeeg egegetegee eeeteeegeg teegegggtg
geggeagetg eccegggegg etcegggeeg etcgegggeg ggaetgetet tagagggate
                                                                     360
ccgctgccag gcacgcgtgg cccggggccg ctggaggccc gggtcccatc cgcctgtgcc
                                                                     420
                                                                     480
tetgtecage geetgecate egeggggage tetegggeeg eggetgtega ettggeteca
                                                                     540
ctttgtcggt taattttacg cctgcacaag gcgatctctg ctcgctcgct cgctcgctcg
                                                                     600
ctcgctcgct cgctttctcg ttcgggtgtg tggcacgggt ccttagcttc gagtgacatc
                                                                     660
tecatttett ettittette ttettttege tettttttgt egteteceae tgtetteece
ggaatgtgtt teegtgtgeg teecetteta eeetteeetg geeetgtgee teteeeette
                                                                     720
                                                                     780
tatttccccc accccggcat gttctcaaat cgtcccccgg tcctccgttg accctgctct
tcccacccc cgttgttatt ttggtcgctt tgtgttttgc cttttgcccg tgctttcctg
                                                                     840
cttgtgtgtt tgttttgtgg tttctttggt gtttgtcccc ccttttttct tttttttct
```

900

ttttctttct tcttttttt ttctttcctt ttctttttgg tttggtttgt gtcgcctgca 960 gctgcagagc aacctcttcg ccagcctgga cgagacgctg ctggcgcggg ccgaggcgct 1020 ggcggccgtg gacatcgcgg tgtcccaggg caagagccac cctttcaagc cggacgccac 1080 1140 gtaccacacg atgaatagcg tgccctgcac gtccacgtcc accgtgccgc tggcgcacca 1200 ccaccaccac caccaccacc accaggeget cgageceggt gacetgetgg accacatete gtegeegteg etegegetea tggeeggege agggggegea ggegeggegg gaggeggegg 1260 cggcgcccac gacggccccg ggggcggagg cggaccgggg ggcggcggtg gcccgggcgg 1320 eggeggeece gggggtggeg geggeggegg eggeeegggg ggeggeggeg gegeeeeggg 1380 eggegggete ttgggegget eggegeatee geaceegeae atgeaeggee tgggeeacet 1440 1500 gtegeaceee geggeggegg eggeeatgaa catgeegtee gggetgeege ateeeggget 1560 cgtggccgcg gcggcgcacc acggcgcggc ggcggcagcg gcggcggcgg cggcggggca ggtggcggcg gcgtcggccg cggcggcggt ggtgggcgcg gcgggcctgg cgtccatctg 1620 cgactcggac acggacccgc gcgagctcga ggcgttcgcc gagcgcttca agcagcggcg 1680 1740 catcaagctg ggcgtgacgc aggccgacgt gggctcggcg ctggccaacc tcaagatccc 1800 gggcgtgggc tcgctcagcc agagcaccat ctgcaggttc gagtcgctca cgctctcgca caacaacatg ategegetea ageceateet geaggegtgg etggaggagg eegagggege 1860 1920 gcagcgtgag aaaatgaaca agccggagct cttcaacggc ggcgagaaga agcgcaagcg 1980 gacttccatc gccgcgcccg agaagcgctc cctcgaggcc tattttgccg tacaaccccg gccctcgtct gagaagatcg ccgccatcgc cgagaaactg gacctcaaaa agaacgtggt 2040 gcgggtgtgg ttttgcaacc agagacagaa gcagaagcgg atgaaattct ctgccactta 2100 ctgaggaggg tgtgagacgc cgggtggggc acactgggga gctgaggggt gcgtttctgg 2160

Met Met Ser Met Asn Ser Lys Gln Pro His Phe Ala Met His Pro Thr 1 5 10 15

Leu Pro Glu His Lys Tyr Pro Ser Leu His Ser Ser Ser Glu Ala Ile 20 25 30

<210> 31

<211> 421

<212> PRT

<213> Mus sp.

<400> 31

Arg Arg Ala Cys Leu Pro Thr Pro Pro Leu Gln Ser Asn Leu Phe Ala Ser Leu Asp Glu Thr Leu Leu Ala Arg Ala Glu Ala Leu Ala Ala Val Asp Ile Ala Val Ser Gln Gly Lys Ser His Pro Phe Lys Pro Asp Ala Thr Tyr His Thr Met Asn Ser Val Pro Cys Thr Ser Thr Ser Thr Val Pro Leu Ala His His His His His His His His Gln Ala Leu Glu Pro Gly Asp Leu Leu Asp His Ile Ser Ser Pro Ser Leu Ala Leu Met Ala Gly Ala Gly Gly Ala Gly Ala Gly Gly Gly Gly Ala His Asp Gly Pro Gly Gly Gly Gly Gly Gly Gly Pro Gly Gly Gly Gly Gly Ala Pro Gly Gly Gly Leu Leu Gly Gly Ser Ala His Pro His Pro His Met His Gly Leu Gly His Leu Ser His Pro Ala Ala Ala Ala Ala Met Asn Met Pro Ser Gly Leu Pro His Pro Gly Leu Val Ala Ala Ala Ala His His Gly Ala Ala Ala Ala Ala Ala Ala Ala Ala Gly Gln Val Ala Ala Ala Ser Ala Ala Ala Val Val Gly Ala Ala Gly

Leu	Ala	Ser	11e 260	Cys	Asp	Ser	Asp	Thr 265	Asp	Pro	Arg	Glu	Leu 270	Glu	Ala	
Phe	Ala	Glu 275	Arg	Phe	Lys	Gln	Arg 280	Arg	Ile	Lys	Leu	Gly 285	Val	Thr	Gln	
Ala	Asp 290	Val	Gly	Ser	Ala	Leu 295	Ala	Asn	Leu	Lys	Ile 300	Pro	Gly	Val	Gly	
Ser 305	Leu	Ser	Gln	Ser	Thr 310	Ile	Cys	Arg	Phe	Glu 315	Ser	Leu	Thr	Leu	Ser 320	
His	Asn	Asn	Met	Ile 325	Ala	Leu	Lys	Pro	Ile 330	Leu	Gln	Ala	Trp	Leu 335	Glu	
Glu	Ala	Glu	Gly 340	Ala	Gln	Arg	Glu	Lys 345	Met	Asn	Lys	Pro	Glu 350	Leu	Phe	
Asn	Gly	Gly 355	Glu	Lys	Lys	Arg	Lys 360	Arg	Thr	Ser	Ile	Ala 365	Ala	Pro	Glu	
Lys	Arg 370	Ser	Leu	Glu	Ala	Tyr 375	Phe	Ala	Val	Gln	Pro 380	Arg	Pro	Ser	Ser	
Glu 385	Lys	Ile	Ala	Ala	Ile 390	Ala	Glu	Lys	Leu	Asp 395	Leu	Lys	Lys	Asn	Val 400	
Val	Arg	Val	Trp	Phe 405	Cys	Asn	Gln	Arg	Gln 410	Lys	Gln	Lys	Arg	Met 415	Lys	
Phe	Ser	Ala	Thr 420	Tyr												
<21: <21: <21:	l> : 2> !	32 123 DNA Homo	sapi	iens												
<400 atg		32 cca t	tgaad	cagca	aa go	cagco	ctcad	c ttt	gcca	atgc	atco	ccaco	cct o	ccct	gagcac	60
aag	tacco	cgt (cgct	gcact	c ca	agcto	ccga	g gco	catco	egge	ggg	cctg	cct (gccca	acgccg	120
ccg																123

- <210> 33 <211> 1149 <212> DNA <213> Homo sapiens
- <400> 33 ctgcagagca acctcttcgc cagcctggac gagacgctgc tggcgcgggc cgaggcgctg 60 120 geggeegtgg acategeegt gteecaggge aagageeate ettteaagee ggaegeeaeg 180 taccacacga tgaacagcgt gccgtgcacg tccacttcca cggtgcctct gcggcaccac caccaccacc accaccacca ccaggegete gaacceggeg atetgetgga ccacatetee 240 300 360 ggcggcggcg gcgcccacga cggcccgggg ggcggtggcg gcccgggcgg cggcggcggc 420 ccgggcggcg gcggccccgg gggaggcggc ggtggcggcc cggggggcgg cggcggcggc 480 ccgggcggcg ggctcctggg cggctccgcg caccctcacc cgcatatgca cagcctgggc 540 cacctgtcgc accccgcggc ggcggccgcc atgaacatgc cgtccgggct gccgcacccc gggctggtgg cggcggcgc gcaccacggc gcggcagcgg cagcggcggc ggcggcgcc 600 gggcaggtgg cagcggcatc ggcggcggcg gccgtggtgg gcgcagcggg cctggcgtcc 660 720 atctgcgact cggacacgga cccgcgcgag ctcgaggcgt tcgcggagcg cttcaagcag cggcgcatca agctgggcgt gacgcaggcc gacgtgggct cggcgctggc caacctcaag 780 atcccgggcg tgggctcact cagccagagc accatctgca ggttcgagtc gctcacgctc 840 tegeacaaca acatgatege geteaageee atcetgeagg egtggetega ggaggeegag 900 ggcgcccagc gcgagaaaat gaacaagcct gagctcttca acggcggcga gaagaagcgc 960 aagcggactt ccatcgccgc gcccgagaag cgctccctcg aggcctactt cgccgtgcag 1020 ccccggccct cgtccgagaa gatcgccgcc atcgccgaga aactggacct caaaaagaac 1080 gtggtgcggg tgtggttttg caaccagaga cagaagcaga agcggatgaa attctctgcc 1140 1149 acttactga
- <210> 34 <211> 423
- <212> PRT
- <213> Homo sapiens
- <400> 34

Met Met Ser Met Asn Ser Lys Gln Pro His Phe Ala Met His Pro Thr 10

Leu Pro Glu His Lys Tyr Pro Ser Leu His Ser Ser Ser Glu Ala Ile Arg Arg Ala Cys Leu Pro Thr Pro Pro Leu Gln Ser Asn Leu Phe Ala Ser Leu Asp Glu Thr Leu Leu Ala Arg Ala Glu Ala Leu Ala Val Asp Ile Ala Val Ser Gln Gly Lys Ser His Pro Phe Lys Pro Asp Ala Thr Tyr His Thr Met Asn Ser Val Pro Cys Thr Ser Thr Ser Thr Val Pro Leu Arg His His His His His His His His Gln Ala Leu Glu Pro Gly Asp Leu Leu Asp His Ile Ser Ser Pro Ser Leu Ala Leu Met Ala Gly Ala Gly Gly Ala Gly Ala Gly Ala Ala Gly Gly Gly Gly Ala His Asp Gly Pro Gly Gly Gly Gly Pro Gly Gly Gly Gly Pro Gly Gly Gly Pro Gly Gly Gly Gly Gly Gly Pro Gly Gly Gly Gly Gly Pro Gly Gly Gly Leu Leu Gly Gly Ser Ala His Pro His Pro His Met His Ser Leu Gly His Leu Ser His Pro Ala Ala Ala Ala Ala Met Asn Met Pro Ser Gly Leu Pro His Pro Gly Leu Val Ala Ala Ala Ala His His Gly Ala Gly Gln Val Ala Ala Ala Ser Ala Ala Ala Ala Val Val Gly Ala 245 250 Ala Gly Leu Ala Ser Ile Cys Asp Ser Asp Thr Asp Pro Arg Glu Leu 265 Glu Ala Phe Ala Glu Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val 280 275 Thr Gln Ala Asp Val Gly Ser Ala Leu Ala Asn Leu Lys Ile Pro Gly 290 295 Val Gly Ser Leu Ser Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr 315 Leu Ser His Asn Asn Met Ile Ala Leu Lys Pro Ile Leu Gln Ala Trp 325 330 Leu Glu Glu Ala Glu Gly Ala Gln Arg Glu Lys Met Asn Lys Pro Glu Leu Phe Asn Gly Gly Glu Lys Lys Arg Lys Arg Thr Ser Ile Ala Ala

355 360 365

Pro Glu Lys Arg Ser Leu Glu Ala Tyr Phe Ala Val Gln Pro Arg Pro 370 380

Ser Ser Glu Lys Ile Ala Ala Ile Ala Glu Lys Leu Asp Leu Lys Lys 385 390 395 400

Asn Val Val Arg Val Trp Phe Cys Asn Gln Arg Gln Lys Gln Lys Arg 405 410 415

Met Lys Phe Ser Ala Thr Tyr 420

<210> 35 <211> 1091

<212> DNA

<213> Mus musculus

<400> 35

tttcaggatc actgtcatta ttattatttt aacgttctgg gaatgctgta ggcacggtgg

eggtqqcqaq ccctqqqccq qqqqcttccq qagagagcgc tcacaattcc ctgctgagcg 120 taatgtgtgc cttctactta caattgcaga gcaatatatt cggcgggctg gatgagagtc 180 tgctggcccg tgccgaggct ctggccgccg tggacatcgt ctcccagagt aagagccacc 240 accaccatcc geceaccac ageceettea ageeggaege caettaccae accatgaaca 300 ccatecoqtq cacqtcqqca qcctcctctt cttctqtqcc catctcqcac ccqtccqctc 360 tgqctqqcac ccatcaccac caccaccacc accatcacca ccatcaccag ccgcaccagg 420 cgctggaggg cgagctgctt gagcacctaa gccccgggct ggccctggga gctatggcgg 480 gccccgacgg cacggtggtg tccactccgg ctcacgcacc acacatggcc accatgaacc 540 ccatqcacca aqcaqccctq aqcatqqccc acqcacatqq gctqccctca cacatqqgct 600 gcatgagcga cgtggatgca gacccgcggg acctggaggc gttcgccgag cgtttcaagc 660 agegaegeat caagetggga gtgaeceagg cagatgtggg eteggegetg gecaacetea 720 780 agateceggg egtgggeteg eteagecaga geaceatetg eaggtttgag teteteaege tgtcacacaa caacatgatc gcgctcaagc ccatcctgca ggcgtggctg gaggaagctg 840 aqaaatccca ccgcqaqaag ctcactaagc cggagctctt caatggcgcg gagaagaagc 900 qcaaqcqcac qtccatcqcq qcqccqqaqa agcgctctct ggaaqcctac ttcgccatcc 960 agccaaggcc ctcctcggag aagatcgcgg ccatcgccga aaagctggat ctcaagaaaa 1020 atgtggtgcg cgtctggttc tgcaaccaga ggcagaaaca gaagaaggtg aaatactctg 1080 1091 ccggcattta g

<210> 36

<211> 322

<212> PRT

<213> Mus musculus

<400> 36

Met Cys Ala Phe Tyr Leu Gln Leu Gln Ser Asn Ile Phe Gly Gly Leu 1 5 10 15

Asp Glu Ser Leu Leu Ala Arg Ala Glu Ala Leu Ala Ala Val Asp Ile
20 25 30

Val Ser Gln Ser Lys Ser His His His Pro Pro His His Ser Pro 35 40 45

Phe Lys Pro Asp Ala Thr Tyr His Thr Met Asn Thr Ile Pro Cys Thr

60

55

50

Pro His Gln Ala Leu Glu Gly Glu Leu Leu Glu His Leu Ser Pro Gly 100 105 110

Leu Ala Leu Gly Ala Met Ala Gly Pro Asp Gly Thr Val Val Ser Thr
115 120 125

Pro Ala His Ala Pro His Met Ala Thr Met Asn Pro Met His Gln Ala 130 135 140

Ala Leu Ser Met Ala His Ala His Gly Leu Pro Ser His Met Gly Cys 145 150 155 160

Met Ser Asp Val Asp Ala Asp Pro Arg Asp Leu Glu Ala Phe Ala Glu 165 170 175

Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val Thr Gln Ala Asp Val 180 185 190

Gly Ser Ala Leu Ala Asn Leu Lys Ile Pro Gly Val Gly Ser Leu Ser 195 200 205

Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr Leu Ser His Asn Asn 210 215 220

Met Ile Ala Leu Lys Pro Ile Leu Gln Ala Trp Leu Glu Glu Ala Glu 225 230 235 240

Lys Ser His Arg Glu Lys Leu Thr Lys Pro Glu Leu Phe Asn Gly Ala 245 250 255

Glu Lys Lys Arg Lys Arg Thr Ser Ile Ala Ala Pro Glu Lys Arg Ser 260 265 270

Leu Glu Ala Tyr Phe Ala Ile Gln Pro Arg Pro Ser Ser Glu Lys Ile 275 280 285 Ala Ala Ile Ala Glu Lys Leu Asp Leu Lys Lys Asn Val Val Arg Val
290 295 300

Trp Phe Cys Asn Gln Arg Gln Lys Gln Lys Lys Val Lys Tyr Ser Ala 305 310 315 320

Gly Ile

<210> 37

<211> 3110

<212> DNA

<213> Homo sapiens

<400> 37

agacetegge accegtteag actgacagea gaggeggega aggagegegt ageegagate 60 120 aggcgtacag agtccggagg cggcggggg tgagctcaac ttcgcacagc ccttcccagc tecageeceg getggeeegg caettetegg agggteeegg eageegggae eagtgagtge 180 ctctacggac cagcgccccg gcgggcggga agatgatgat gatgtccctg aacagcaagc 240 aggegtttag catgeegeac ggeggeagee tgeaegtgga geecaagtae teggeaetge 300 acagcacete geogggetee teggeteeca tegegeeete ggecagetee eecagcaget 360 cgagcaacgc tggtggtggc ggcggcggcg gcggcggcgg cggcggcggc ggcggaggcc 420 gaagcagcag ctccagcagc agtggcagca gcggcggcgg gggctcggag gctatgcgga 480 gageetgtet tecaaceeca eegageaata tatteggegg getggatgag agtetgetgg 540 cccgcgccga ggctctggca gccgtggaca tcgtctccca gagcaagagc caccaccacc 600 atccacccca ccacagcccc ttcaaaccgg acgccaccta ccacactatg aataccatcc 660 cgtgcacgtc ggccgcctct tcttcatcgg tgcccatctc gcacccttgc gcgttggcgg 720 geacgeacea ceaceaceae cateaceaee aceaeeae ecaaeegeae caggegetgg 780 agggcgagct gctggagcac ctgagtcccg ggctggccct gggcgctatg gcgggccccg 840 900 acggcgctgt ggtgtccacg ccggctcacg cgccgcacat ggccaccatg aaccccatgc 960 accaagcage geteageatg geceaegege aegggetgee gtegeacatg ggetgeatga gcgacgtgga cgccqacccq cgqgacctgg aggcattcgc cgagcgcttc aagcagcgac 1020 gcatcaaget gggggtgace caggcagatg tgggctccgc gctggccaac ctcaagatcc 1080 ccggcgtggg ctcgcttagc cagagcacca tctgcaggtt cgagtccctc acactgtccc 1140

1200 acaataatat gategegete aaaceeatee tgeaggeatg getegaggag geegagaagt cccaccgcga gaagctcacc aagcctgaac tcttcaatgg cgcggagaag aagcgcaagc 1260 1320 gcacgtccat cgctgcgcca gagaagcgct cgctcgaagc ctactttgcc attcagcctc 1380 ggccctcctc tgaaaagatc gccgccatcg cggagaagct ggacctgaag aaaaacgtgg 1440 tgcgcgtctg gttctgcaac cagaggcaga aacagaaaag aatgaaatat tccgccggca 1500 tttagaagac tcttggcctc tccagagacg cccctttcct cgtccgctct tttctcct 1560 ctcttctgcc tcttttcact tttggcgact agaaacaatt ccagtaaatg tgaatctcga caaatcgagg actgaagagg gagcgaacga gcgaacaact gagcccaagc cggtgagaat 1620 gtgaaacagt ttctcaaagg aaagaataac aaaagatggt atttgtctgt tgtagcaaag 1680 1740 ttgtcccttt gaaccccacc tcggcttctt cagaggaagt gtggagatgg ctgtttgcag 1800 gaaggcagac gagacagtgt ttaaaaagtc cacaagaatg atcaagtaag atttgttttt 1860 attettacag acateacceg tgttcaagtt taaaagtaca etttgcaact atttttcaga aatagaaatt gattcaggac taaaacttta aactagagtt gatgcttaat gtgatagaga 1920 1980 catctctaaa gtattttgaa ttttaaaaaa agatggcaga ttttctgcat ttacactgta tattatatat atatttttat tgtggttctt accccctttt ccttctctga agtgttaatg 2040 2100 cttaagaaaa gagttgcgcc tgctgtgttc actgatcttg aaagctatta ttagattatt 2160 gcagaacaac cctctgtaaa ttattaattt atctctctag caacttaatt ttgtgcacat tctaattaat taaacttctt ccgtctaaaa aaagtggggg aaatgtatag ctagtaacgt 2220 2280 tcaaaaaatt ttgtttgatg agtttaccga atttttacag ctttcctcct atactgtgtt cettttgace catttgtata tteteacttg aatgaagatt gttttttet ttgtttttac 2340 tggtagtgtt ctgatttgtg agtcgacact cagtaatgga tgtcttaatc gtgtagacct 2400 2460 gattcactgt ctgaagtatt gtttacttcg ttacatattt aatggggatt cccacattgt 2520 ccccatgaca catgageget etcaettace ettacacaca cacacacaca cacacacaca 2580 cctictaacag aagggaagaa gcagttggaa gcatgaccga tgcaccattt tctagtttta 2640 ggtgcatttg ccacttggtg tttgcccttc agattttaga tttcaccaag gtatttcagt cttccagttt tcaattgctt tgttggctac atgttaatat ttataggaat acttcagttt 2700 ttccttttgg aggtttgttt gtagaaaaac taatttgaac tataagaaag acagtgcact 2760 gcttgtaaat tcacattgtt tggaaaaatt cttttggaac aaaaaattag gtacatgata 2820

actggtacct tatctactgt aaatattca ttaaaaatga tgcacacata gatatattct 2880
tacaaatttt gctgtattgc tgttctcttt gaggctctcc aaagtcttga gttctgtata 2940
tggcctggtt tcttgttttt attaatagat ggtttattta ctatggtaat gtattaattt 3000
atttttggtg ttgttcgatt gtctttcatt gaagagataa ttttaatgtt ttattggcaa 3060
cgtatgctgc tttttcatta aaatatgcta ttaaaattaa atggctttta 3110

<210> 38

<211> 410

<212> PRT

<213> Homo sapiens

<400> 38

Met Met Met Met Ser Leu Asn Ser Lys Gln Ala Phe Ser Met Pro His 1 5 10 15

Gly Gly Ser Leu His Val Glu Pro Lys Tyr Ser Ala Leu His Ser Thr 20 25 30

Ser Pro Gly Ser Ser Ala Pro Ile Ala Pro Ser Ala Ser Ser Pro Ser 35 40 45

Ser Ser Ser Asn Ala Gly Gly Gly Gly Gly Gly Gly Gly Gly 50 55 60

Gly Gly Gly Gly Arg Ser Ser Ser Ser Ser Ser Gly Ser Ser 65 70 75 80

Gly Gly Gly Ser Glu Ala Met Arg Arg Ala Cys Leu Pro Thr Pro 85 90 95

Pro Ser Asn Ile Phe Gly Gly Leu Asp Glu Ser Leu Leu Ala Arg Ala 100 105 110

Glu Ala Leu Ala Ala Val Asp Ile Val Ser Gln Ser Lys Ser His His
115 120 125

His His Pro Pro His His Ser Pro Phe Lys Pro Asp Ala Thr Tyr His 130 135 140

Thr Met Asn Thr Ile Pro Cys Thr Ser Ala Ala Ser Ser Ser Ser Val 145 150 155 160

Pro	Ile	Ser	His	Pro 165	Cys	Ala	Leu	Ala	Gly 170	Thr	His	His	His	His 175	His
His	His	His	His 180	His	His	His	Gln	Pro 185	His	Gln	Ala	Leu	Glu 190	Gly	Glu
Leu	Leu	Glu 195	His	Leu	Ser	Pro	Gly 200	Leu	Ala	Leu	Gly	Ala 205	Met	Ala	Gly
Pro	Asp 210	Gly	Ala	Val	Val	Ser 215	Thr	Pro	Ala	His	Ala 220	Pro	His	Met	Ala
Thr 225	Met	Asn	Pro	Met	His 230	Gln	Ala	Ala	Leu	Ser 235	Met	Ala	His	Ala	His 240
Gly	Leu	Pro	Ser	His 245	Met	Gly	Cys	Met	Ser 250	Asp	Val	Asp	Ala	Asp 255	Pro
Arg	Asp	Leu	Glu 260	Ala	Phe	Ala	Glu	Arg 265	Phe	Lys	Gln	Arg	Arg 270	Ile	Lys
Leu	Gly	Val 275	Thr	Gln	Ala	Asp	Val 280	Gly	Ser	Ala	Leu	Ala 285	Asn	Leu	Lys
Ile	Pro 290	Gly	Val	Gly	Ser	Leu 295	Ser	Gln	Ser	Thr	Ile 300	Суѕ	Arg	Phe	Glu
Ser 305	Leu	Thr	Leu	Ser	His 310	Asn	Asn	Met	Ile	Ala 315	Leu	Lys	Pro	Ile	Leu 320
Gln	Ala	Trp	Leu	Glu 325	Glu	Ala	Glu	Lys	Ser 330	His	Arg	Glu	Lys	Leu 335	Thr
Lys	Pro	Glu	Leu 340	Phe	Asn	Gly	Ala	Glu 345	Lys	Lys	Arg	Lys	Arg 350	Thr	Ser
Ile	Ala	Ala 355	Pro	Glu	Lys	Arg	Ser 360	Leu	Glu	Ala	Tyr	Phe 365	Ala	Ile	Gln
Pro	Arg 370	Pro	Ser	Ser	Glu	Lys 375	Ile	Ala	Ala	Ile	Ala 380	Glu	Lys	Leu	Asp

Leu Lys Lys Asn Val Val Arg Val Trp Phe Cys Asn Gln Arg Gln Lys 400 385 390 395

Gln Lys Arg Met Lys Tyr Ser Ala Gly Ile 405 410

<210> 39

<211> 1594

<212> DNA <213> Mus musculus

<400> 39

caagcgagag	ggcgagggga	gcgctggcgc	tgagcggcgc	tcacttggag	cgcggagagc	60
tagcaagacg	agcttgattc	catgtccccc	gctgcctccc	tgccagactc	ccgaagatga	120
tggccatgaa	cgccaagcac	cgtttcggca	tgcaccccgt	actgcaagaa	cccaaattct	180
ccagcctaca	ctccggctct	gaggccatgc	gccgagtttg	tctcccagcc	ccgcaggtac	240
gtagcggacg	ataattaccg	ctctaaggca	cattttttga	caggcactag	cttcatgttt	300
ttttcatgtc	gcccagaaca	atcgccgctg	tctgaacccc	tcgccttgtc	tccccgcgc	360
tctctcgcgg	ctctctctct	ctctctct	ctctctct	ctctctct	ctctcattca	420
tgtctctgat	ccacacgtct	gttccaacag	agaggctgcc	tccgtattaa	tttttatgac	480
ctgggctttg	aggagaggca	tctcggttgc	ttgaaaatgt	gttttaatcc	tgagttgaca	540
gtattcccca	ctgaccgtgc	tgtgcgcctt	ctcgcttgca	gctgcagggt	aatatatttg	600
gaagctttga	tgagagcctg	ctggcacgcg	ccgaagctct	ggcggcggtg	gatatcgtct	660
cccacggcaa	gaaccatccg	ttcaagcccg	acgccaccta	ccataccatg	agcagcgtgc	720
cctgcacttc	tacctcgccc	acggtgccca	tctctcaccc	ggctgcactc	acctcgcacc	780
cgcatcacgc	ggtacatcag	ggcctcgagg	gcgacttact	tgagcacatc	tegeceaege	840
tgagcgtgag	tggcctaggg	gccccggagc	actcggtgat	gccggcgcag	atccacccgc	900
atcatctagg	cgccatgggc	cacttgcatc	aggccatggg	catgagtcac	ccgcatgccg	960
tagcaccgca	cagtgccatg	cccgcgtgtc	tcagcgatgt	ggagtcagac	cctcgagagc	1020
tggaagcgtt	cgccgagcgc	ttcaagcaga	ggcgcatcaa	gttgggggtc	acccaggcgg	1080
acgtgggcgc	ggctttagcc	aatcttaaga	tccccggtgt	gggctcgctc	agccagagca	1140
ccatctgcag	gttcgagtct	cttactctgt	cgcacaacaa	catgatcgct	ctcaagccgg	1200
tectecagge	ctggctggag	gaggccgagg	ccgcctaccg	agagaagaac	agcaagccag	1260
agctcttcaa	cggcagtgag	cgtaagcgca	aacgcacgtc	catcgccgcg	ccagagaagc	1320

gctcactcga	agcctatttc	gccatccagc	cacgtccttc	atccgagaag	atcgcggcca	1380
tcgcggagaa	actggacctt	aaaaagaatg	tggtgagggt	ctggttctgt	aaccagagac	1440
agaaacagaa	acgaatgaaa	tactctgctg	tggactgatt	gcggcgggtg	ctgcgtccgg	1500
aggagcctgg	agagcctaat	gcatcgcccc	cttccgatgg	gaggggagct	tacgggacac	1560
tccagggtgt	ttcctggcag	gtcaggttct	ttcc			1594

<210> 40

<211> 338

<212> PRT

<213> Mus musculus

<400> 40

Met Met Ala Met Asn Ala Lys His Arg Phe Gly Met His Pro Val Leu 1 5 10 15

Gln Glu Pro Lys Phe Ser Ser Leu His Ser Gly Ser Glu Ala Met Arg 20 25 30

Arg Val Cys Leu Pro Ala Pro Gln Leu Gln Gly Asn Ile Phe Gly Ser 35 40 45

Phe Asp Glu Ser Leu Leu Ala Arg Ala Glu Ala Leu Ala Ala Val Asp 50 55 60

Ile Val Ser His Gly Lys Asn His Pro Phe Lys Pro Asp Ala Thr Tyr 65 70 75 80

His Thr Met Ser Ser Val Pro Cys Thr Ser Thr Ser Pro Thr Val Pro 85 90 95

Ile Ser His Pro Ala Ala Leu Thr Ser His Pro His His Ala Val His
100 105 110

Gln Gly Leu Glu Gly Asp Leu Leu Glu His Ile Ser Pro Thr Leu Ser 115 120 125

Val Ser Gly Leu Gly Ala Pro Glu His Ser Val Met Pro Ala Gln Ile 130 135 140

His Pro His His Leu Gly Ala Met Gly His Leu His Gln Ala Met Gly 145 150 155 160

Met Ser His Pro His Ala Val Ala Pro His Ser Ala Met Pro Ala Cys 170 175 165 Leu Ser Asp Val Glu Ser Asp Pro Arg Glu Leu Glu Ala Phe Ala Glu 185 Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val Thr Gln Ala Asp Val Gly Ala Ala Leu Ala Asn Leu Lys Ile Pro Gly Val Gly Ser Leu Ser 215 220 Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr Leu Ser His Asn Asn 230 235 240 Met Ile Ala Leu Lys Pro Val Leu Gln Ala Trp Leu Glu Glu Ala Glu 245 Ala Ala Tyr Arg Glu Lys Asn Ser Lys Pro Glu Leu Phe Asn Gly Ser 260 265 270 Glu Arg Lys Arg Lys Arg Thr Ser Ile Ala Ala Pro Glu Lys Arg Ser 275 Leu Glu Ala Tyr Phe Ala Ile Gln Pro Arg Pro Ser Ser Glu Lys Ile 295 Ala Ile Ala Glu Lys Leu Asp Leu Lys Lys Asn Val Val Arg Val 310 315

Val Asp

<210> 41 <211> 120 <212> DNA <213> Homo sapiens

325

<400> 41 atgatggcca tgaactccaa gcagcctttc ggcatgcacc cggtgctgca agaacccaaa 60

Trp Phe Cys Asn Gln Arg Gln Lys Gln Lys Arg Met Lys Tyr Ser Ala

330

335

ttctccagtc tgcactctgg ctccgaggct atgcgccgag tctgtctccc agccccgcag	120
<210> 42 <211> 897 <212> DNA <213> Homo sapiens	
<400> 42 ctgcagggta atatatttgg aagctttgat gagagcctgc tggcacgcgc cgaagctctg	60
gcggcggtgg atatcgtctc ccacggcaag aaccatccgt tcaagcccga cgccacctac	120
cataccatga gcagcgtgcc ctgcacgtcc acttcgtcca ccgtgcccat ctcccaccca	180
gctgcgctca cctcacaccc tcaccacgcc gtgcaccagg gcctcgaagg cgacctgctg	240
gagcacatet egeceaeget gagtgtgage ggeetgggeg eteeggaaca eteggtgatg	300
cccgcacaga tccatccaca ccacctgggc gccatgggcc acctgcacca ggccatgggc	360
atgagtcacc cgcacaccgt ggcccctcat agcgccatgc ctgcatgcct cagcgacgtg	420
gagtcagacc cgcgcgagct ggaagccttc gccgagcgct tcaagcagcg gcgcatcaag	480
ctgggggtga cccaggcgga cgtgggcgcg gctctggcta atctcaagat ccccggcgtg	540
ggctcgctga gccaaagcac catctgcagg ttcgagtctc tcactctctc gcacaacaac	600
atgategete teaageeggt geteeaggee tggttggagg aggeegagge egeetaeega	660
gagaagaaca gcaagccaga gctcttcaac ggcagcgaac ggaagcgcaa acgcacgtcc	720
atcgcggcgc cggagaagcg ttcactcgag gcctatttcg ctatccagcc acgtccttca	780
tctgagaaga tcgcggccat cgctgagaaa ctggacctta aaaagaacgt ggtgagagtc	840
tggttctgca accagagaca gaaacagaaa cgaatgaagt attcggctgt ccactga	897
<210> 43 <211> 338	

<212> PRT <213> Homo sapiens

<400> 43

Met Met Ala Met Asn Ser Lys Gln Pro Phe Gly Met His Pro Val Leu 10 15

Gln Glu Pro Lys Phe Ser Ser Leu His Ser Gly Ser Glu Ala Met Arg 20 30

Arg Val Cys Leu Pro Ala Pro Gln Leu Gln Gly Asn Ile Phe Gly Ser

Phe Asp Glu Ser Leu Leu Ala Arg Ala Glu Ala Leu Ala Ala Val Asp

45

50 55 60

40

35

Ile Val Ser His Gly Lys Asn His Pro Phe Lys Pro Asp Ala Thr Tyr 65 70 75 80

His Thr Met Ser Ser Val Pro Cys Thr Ser Thr Ser Ser Thr Val Pro 85 90 95

Ile Ser His Pro Ala Ala Leu Thr Ser His Pro His His Ala Val His
100 105 110

Gln Gly Leu Glu Gly Asp Leu Leu Glu His Ile Ser Pro Thr Leu Ser 115 120 125

Val Ser Gly Leu Gly Ala Pro Glu His Ser Val Met Pro Ala Gln Ile 130 135 140

His Pro His His Leu Gly Ala Met Gly His Leu His Gln Ala Met Gly 145 150 155 160

Met Ser His Pro His Thr Val Ala Pro His Ser Ala Met Pro Ala Cys 165 170 175

Leu Ser Asp Val Glu Ser Asp Pro Arg Glu Leu Glu Ala Phe Ala Glu 180 185 190

Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val Thr Gln Ala Asp Val 195 200 205

Gly Ala Ala Leu Ala Asn Leu Lys Ile Pro Gly Val Gly Ser Leu Ser 210 215 220

Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr Leu Ser His Asn Asn 225 230 235 240

Met Ile Ala Leu Lys Pro Val Leu Gln Ala Trp Leu Glu Glu Ala Glu 245 250 255

Ala Ala Tyr Arg Glu Lys Asn Ser Lys Pro Glu Leu Phe Asn Gly Ser 260 265 270

	275					280					285				
Leu Gli 29		Tyr	Phe	Ala	Ile 295	Gln	Pro	Arg	Pro	Ser 300	Ser	Glu	Lys	Ile	
Ala Ala 305	a Ile	Ala	Glu	Lys 310	Leu	Asp	Leu	Lys	Lys 315	Asn	Val	Val	Arg	Val 320	
Trp Pho	e Cys	Asn	Gln 325	Arg	Gln	Lys	Gln	Lys 330	Arg	Met	Lys	Tyr	Ser 335	Ala	
Val His	s														
<210><211><211><212><213>		sap:	iens												
<400> cacago	44 tcat 1	taac	gcgc												18
<210><211><211><212><213>		sap	iens												
<400>	45 tcat 1	taac	gcgc												18
<210><211><211><212><213>		sap:	iens												
<400> cacage	46 tcat 1	taagi	tcgc												18
<210><211><212><213>		sap	iens												
<400> cacgca	47 tgcg	taat	gcgc												18

Glu Arg Lys Arg Lys Arg Thr Ser Ile Ala Ala Pro Glu Lys Arg Ser

```
<210> 48
<211> 11
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (5)..(7)
<223> wherein n is a, c, g, or t
<400> 48
                                                                 11
gcatnnntaa t
<210> 49
<211> 11
<212> DNA
<213> Rattus norvegicus
<400> 49
gcataaataa t
                                                                 11
<210> 50
<211> 668
<212> DNA
<213> Mus musculus
<220>
<221> misc_feature
<222>
     (49)..(49)
<223> wherein n is a, c, g, or t
<400> 50
tggagcagag gtttccattg tgtctctcag agcagaaacg gttggcctnt gtgttgcaac
                                                                 60
cctcagcatc gcagtgctta tacgaattct gactacattc ctgatggtgt gtttcgctgg
                                                                 120
ctttaacata aaggaaaaga tatttatttc ttttgcctgg cttccaaagg ccacggtcca
                                                                 180
ggctgccatt ggctctgtgg ctctggacac ggcaagatcc cacggagaga agcagctgga
                                                                 240
agactatggg atggatgtgc tgacggtggc atttttggcc atcctcatta cagcaccaat
                                                                 300
tggaagccta ctgattggtt tgctgggtcc cagggttctt cagaaatctg aacatcgaac
                                                                 360
cgaagaggag gttcaaggag agacttctgc acacattcag aggaagcctg aggattccat
                                                                 420
480
ccgggacaac tttacttccc tttgactcag aagaaaactt cccgtggaat ttcataagca
                                                                 540
aacaaattag aaagetttac getgetaaca gtaceteagg tgtttactte etcagaaaga
                                                                 600
```

ccggaggaca	ggttacttca	gaaagtgaga	gaaagtaatt	tggacaaata	aaacattcac	660
gattttgt						668