Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 7

Aufgabe 7.1 (4 Punkte)

Beweisen Sie: Ein ungerichteter Graph G=(V,E) ist ein Baum \iff (|V|=|E|+1 und G hat keine Zyklen).

Lösung 7.1

Zum Beweis benutzen wir vollständige Induktion über die Anzahl der Knoten.

Induktionsanfang: n=1: Die Aussage stimmt für einen Graphen mit einem Knoten (und keinen Kanten). Er ist ein Baum und |V|=|E|+1=0+1=1

Induktionsvoraussetzung:

Für ein beliebiges, aber festes $n \in \mathbb{N}_+$ gilt: G = (V, E) ist ein Baum \iff (n = |V| = |E| + 1 und G hat keine Zyklen)

Induktionsschluss: Wir zeigen, dass die Annahme dann auch für n+1 Knoten gilt: Angenommen wir haben einen beliebigen Baum mit n+1 Knoten. Sei b ein Blatt dieses Baumes. Wenn wir b und die Kante $\{b,x\}$, die b mit dem restlichen Baum verbindet entfernen, haben wir einen Baum mit n Knoten, für den die IV gilt. Wenn wir also b und die Kante $\{b,x\}$ wieder hinzufügen, gilt die Annahme auch für n+1, da sich die Anzahl der Knoten und die Anzahl der Kanten um 1 erhöht hat.

Angenommen wir haben einen beliebigen zyklenfreien Graphen mit n+1 Knoten und n Kanten. Wir entfernen nun einen Knoten v und die Kante $\{v,x\}, (v\neq x)$, die existieren muss, da der Graf zyklenfrei ist. Nach IV ist der dadurch entstandene Graph mit n Knoten ein Baum, so dass durch das Hinzufügen von v die Baumeigenschaften erhalten bleiben.

Hinweis: IA 1 Punkt, IV 0.5 Punkte, IS 2.5 Punkte

Aufgabe 7.2 (3+4 Punkte)

Ein Kreis ist ein wiederholungsfreier, geschlossener Weg.

- a) Zeichen Sie einen ungerichteten Graphen G=(V,E) mit 10 Knoten, so dass jeder Knoten genau Grad 3 und der kürzeste Kreis (der Länge $\neq 0$) die Länge 5 hat.
- b) Für den ungerichteten Graphen G = (V, E) gilt: $\forall x \in V : d(x) \ge a$ und der kürzeste Kreis (der Länge $\ne 0$) hat Länge 5.

Beweisen Sie, dass G mindestens $a^2 + 1$ Knoten besitzt.

Lösung 7.2

b) Wir wählen einen beliebigen Knoten $x_0 \in V$. Nach Definition des Knotengrades (bzw da $\forall x \in V : d(x) \geq a$) gibt es mindestens a zu x adjazente Knoten: x_1, x_2, \ldots, x_a . Da es keine Kreise mit Länge < 5 gibt, wissen wir, dass es keine Kante zwischen 2 Knoten aus x_1, x_2, \ldots, x_a gibt. Jeder dieser adjazenten Knoten x_1, x_2, \ldots, x_a hat wiederum a-1 andere adjazente Knoten, die keine Kante mit den "bisher betrachteten Knoten" haben (sonst gäbe es einen Kreis der Länge 4).

Daraus folgt, dass G mindestens $1 + a + a \cdot (a - 1) = a^2 + 1$ Knoten hat.

Aufgabe 7.3 (3 Punkte)

An einer Weihnachtsfeier nehmen 6 Personen (A,B,C,D,E,F) teil. A kennt dabei eine andere Person, B kennt zwei, C drei, D vier und E fünf andere Personen. Wie viele andere Personen auf der Feier kennt F? Zeichnen Sie einen Graphen, der die Situation verdeutlicht.

Hinweis: "sich kennen" ist eine symmetrische Relation.

Lösung 7.3

F kennt genau 3 andere Personen auf der Feier.

 $\it Hinweis:$ 2 Punkte für den korrekten Graphen, 1 Punkt für die Aussage, dass F3 Personen kennt.

Aufgabe 7.4 (3 Punkte)

Zeichnen Sie, wenn möglich, einen ungerichteten schlingenfreien Graphen G=(V,E) mit jeweils folgenden Eigenschaften. Begründen Sie kurz, wenn es keinen solchen Graphen gibt.

a)
$$V = \{A, B, C, D, E, F\}, d(A) = 4, d(B) = 3, d(C) = 2, d(D) = 1, d(E) = 1, d(F) = 1$$

b)
$$V = \{A, B, C, D, E\}, d(A) = 4, d(B) = 3, d(C) = 2, d(D) = 1, d(E) = 1$$

Lösung 7.4

a)

b) So einen Graphen gibt es nicht. Da jede Kante zwischen 2 Knoten verläuft, muss die Summe über alle Knotengrade eine gerade Zahl ergeben. Die Summe der angegebenen Knoten ist jedoch 4 + 3 + 2 + 1 + 1 = 11, also ungerade.

Hinweis: Pro Teilaufgabe gibt es 1.5 Punkte. Bei b) gibt es 0.5 Punkte für das Erkennen, dass kein solcher Graph existiert und 1 Punkt für eine ordentliche Begründung

Aufgabe 7.5 (3 Punkte)

Gegeben sei ein Graph G=(V,E). Der Graph G' sei definiert durch G'=(E,T), mit $\{\{a,b\},\{c,d\}\}\in T\iff |\{a,b\}\cap\{c,d\}|=0$ Zeichen Sie G' zu dem gegebenen Graphen G:

Lösung 7.5

