PT-51 Board Test Procedure

Hemanth Kumar

Objective

- To test the peripherals of the microcontroller and the hardware on the PT-51 board, i.e.
 - LEDs
 - Switches
 - PCA Module
 - SPI
 - UART
 - LCD display
 - Port Pins

Test Procedure

- Putting the switches in various positions from 0 to 7 (bit values) will test each of the peripherals
- The switches are connected to pins P1.0-P1.3 of the microcontroller
- The switches corresponding to P1.0 to P1.2 will be used for the test, with P1.0 being the LSB and P1.2 being the MSB
- Ongoing test and results displayed on LCD

Test Procedure

Key Position (P1.2-P1.0)	Tested Peripheral
000	Timers
001	PWM module
010	Counter Module
011	SPI Module *
100	UART Module **
101	LCD Display
110	Clear Screen
All others	Timers

^{*}Pins MOSI and MISO are to be shorted during this time

^{**}Pins 3.0 and 3.1 (UART Rx and Tx) are to be shorted during this time Please refer to the Pt-51 manual for identifying the pins

PT-51 Board

Defaults

- Keeping the switches in position
 6(0b110) clears the LCD Screen
- All other key positions (0x07 to 0x0F) run the default test, i.e., the Timer Test
- If the test fails because the loopback wires are not connected, plug in the wires and restart the microcontroller.
- If the test fails in spite of the wires being connected, inform your TA

Starting the tests

Timer Test

- How many timers does the microcontroller AT89C5131A have?
- Keep the switches in Position 0 (0b000) for test
- Timer 0 blinks LED4 (P1.4)
- Timer 1 blinks LED3 (P1.5)
- Timer 2 blinks LED2 (P1.6)
- Try to guess the frequencies

Timer Test

PWM Test

- Uses the PCA module of the microcontroller
- What does PCA stand for?
- Called CCP module in some microcontrollers
- Keep the Switches in Position 1(0b001)
- Signals of different duty cycle with the same pulse width are fed to the 4 LEDs

PWM Test

- Average voltage applied to LEDs varied by varying duty cycle
- As a result they light up with different intensities
- Try to guess duty cycles used in the program

PWM test

- Uses the PCA module of the microcontroller
- Microcontroller can capture events on a pin and save it into a register
- Keep the Switches in Position 2(0b010)
- Toggle switch 3(P1.2) to increment the count
- When the count reaches 5, test is finished
- Because of bounce, count may increment by more than one for 1 toggle

- What does SPI stand for?
- Used for communication between uCs and peripherals(1 or more) or between uCs (1 or more)
- Keep the Switches in Position 3(0b011)
- Short pins MOSI and MISO before test
- Data sent over MOSI is received by MISO (Called looping back)
- If both bytes match, test is a success
- Procedure repeated 5 times

- SPI uses shift registers to send and receive data
- When bit 7 is transmitted by master, it is put in bit 0 of the slave. Then both registers are shifted right by one
- Transmission and shifting continues 7 more times till data is in the right place

Failed Test-SPI/UART

UART Test

- One of the most popular communication interfaces
- Stands for Universal Asynchronous Receiver Transmitter (Also called RS232)
- Keep the Switches in Position 4(0b100)
- Performs loopback as with SPI. Hence need to short UART Rx and Tx pins (P3.0 and P3.1)
- If sent data = received data, test successful
- Performed 5 times

UART

UART Test

UART Test

LCD Test

- Keep the Switches in Position 5(0b101)
- LCD has 2 lines with 16 characters each
- Program verifies if the LCD is able to display all alphanumeric characters
- The program quickly go over all alphanumeric characters at every display block in both lines
- Displays 32 "Z"s at the end of the test

LCD Test

LCD Test

Thank You