A **Ring** is a set R with two binary operations, called addition and multiplication, usually denoted by the operators '+' and '.' respectively, such that

- (i) (R, +) forms an abelian group,
- (ii) (R, \cdot) forms a monoid,
- (iii) multiplication distributes over addition, i.e.,

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 and $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$

for all $a, b, c \in R$.

The additive identity of R is denoted by 0_R , or simply 0 if the ring is clear from context.

The multiplicative identity of R is denoted by 1_R , or simply 1 if the ring is clear from context.

We often write the multiplication by omitting the '·' operator, i.e., $ab = a \cdot b$ for all $a, b \in R$. Also, multiplication in R is understood to take precedence over addition, so we might rewrite condition (iii) as follows:

$$a(b+c) = ab + ac$$
 and $(a+b)c = ac + bc$

for all $a, b, c \in R$.

Let R be a ring.

A subset $S \subseteq R$ is called a **subring** if $1 \in S$ and S closed under addition and multiplication.

Let R and S be rings.

A ring homomorphism is a map $\varphi: R \to S$ such that for all $a, b \in R$

- (i) $\varphi(a+b) = \varphi(a) + \varphi(b)$,
- (ii) $\varphi(ab) = \varphi(a)\varphi(b)$.

Let $\varphi: R \to S$ be a ring homomorphism. The **kernel** of φ is

$$\ker \varphi = \{ r \in R \mid \varphi(r) = 0 \}.$$

The **image** of φ is

$$\varphi(R) = \{ \varphi(r) \mid r \in R \}.$$

A **ring isomorphism** is a bijective ring homomorphism. If there exists an isomorphism between rings R and S, then R and S are said to be **isomorphic**, written $R \cong S$.

Let R be a ring, $I \subseteq R$, and $r \in R$.

We say I is an **ideal** of R if

- (i) I is a subring of R,
- (ii) $rI \subseteq I$ and $Ir \subseteq I$ for all $r \in R$.

We say I is a **proper ideal** if $I \neq R$.

The ideal $\{0\}$ is called the **trivial ideal** of R, and sometimes denoted by 0.

Let I be an ideal of R. The quotient ring of R by I is the set

$$R/I = \{r + I \mid r \in I\}$$

with operations

$$(r+I) + (s+I) = (r+s) + I$$
 and $(r+I) \cdot (s+I) = (rs) + I$.

We often write $\overline{r} = r + I$, and the operations become

$$\overline{r} + \overline{s} = \overline{r+s}$$
 and $\overline{r} \cdot \overline{s} = \overline{rs}$.

Let I, J be ideal of R.

Their **sum** is $I + J = \{a + b \mid a \in I, b \in J\}.$

Their **product** is $IJ = \{ \sum a_k b_k \mid a_k \in I, b_k \in J \}$ with finite support, i.e., only finite sums.

Let R be a ring and $A \subseteq R$.

Denote by (A) the smallest ideal of R containing A, called the **ideal generated by** A.

- 1. If $A, B \subseteq R$, then $(A) + (B) = (A \cup B)$.
- 2. If $a_1, \ldots, a_n \in R$, then $(a_1) + \cdots + (a_n) = (a_1, \ldots, a_n)$.
- 3. If $r \in R$, then $(x r) = \{p(x) \in R[x] \mid p(r) = 0\} = I_r\}$.
- 4. In $\mathbb{Z}[x]$, $(2,x) = \{2a(x) + xb(x) \mid a(x), b(x) \in \mathbb{Z}[x]\}$ is polynomials on $\mathbb{Z}[x]$ with constants in $2\mathbb{Z}$.
- 5. In $\mathbb{Q}[x]$, we have $(2, x) = \mathbb{Q}[x]$.

An ideal generated by a single element is called a **principal ideal**, i.e., (a) for $a \in R$.

An ideal generated by a finite set is called a **finitely generated ideal**.

- 1. Every principal ideal is finitely generated.
- 2. Every ideal of \mathbb{Z} is principal: ideals are $n\mathbb{Z}=(n)$ for some $n\in\mathbb{Z}$.
- 3. $(2, x) \subseteq \mathbb{Z}[x]$ is not principal.
- 4. In $C^0([0,1])$, the ideal $\{f \mid f(1/2) = 0\}$ is not finitely generated.

A proper ideal M is called a **maximal ideal** if the only ideals containing M are M and R. Two ideals I and J of the ring R are said to be **comaximal** if I + J = R.

1. $n\mathbb{Z}, m\mathbb{Z} \subseteq \mathbb{Z}$ are comaximal if and only if n and m are coprime.

A proper ideal P is called a **prime ideal** if $ab \in P$ implies that either $a \in P$ or $b \in P$.

1. If $n \in \mathbb{Z}_{>0}$, then $(n) = n\mathbb{Z}$ is a prime ideal in \mathbb{Z} if and only if n is a prime number.

A subset $S \subseteq R$ called a **multiplicative subset** if $1 \in S$ and $ab \in S$ for all $a, b \in S$.

- 1. R^{\times} is a multiplicative subset of R.
- 2. If R is an integral domain, then $R \{0\}$ is a multiplicative subset of R.
- 3. If P is a prime ideal of R, then R P is a multiplicative subset of R.

Let S be a multiplicative subset of the ring R.

Define the equivalence relation \sim on $R \times S$ by

$$(r_1, s_1) \sim (r_2, s_2) \iff u(r_1 s_2 - r_2 s_1) = 0 \text{ for some } u \in S.$$

Denote the equivalence class $\overline{(r,s)} \in S^{-1}R$ by $\frac{r}{s}$. Then

$$\frac{r_1}{s_1} = \frac{r_2}{s_2} \iff u(r_1s_2 - r_2s_1) = 0 \text{ for some } u \in S.$$

The localization of R at S is the set

$$S^{-1}R = \{ \frac{r}{s} \mid r \in R, s \in S \}$$

with operations

$$\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1 s_2 + r_2 s_1}{s_1 s_2}$$
 and $\frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1 r_2}{s_1 s_2}$.

If R is an integral domain and $S^{-1} = R - 0$, then $S^{-1}R$ is the **fraction field** of R

Given $a \in R$ non-nilpotent, take $S = \{a^n \mid n \in \mathbb{Z}_{\geq 0}\}$. Then $S^{-1}R$ is called the **localization** of R at the element a and denoted by R_a .

For a P is a prime ideal of R, denote by $R_P = (R - P)^{-1}R$ the localization of R at the prime ideal P.

- 1. The fraction field of \mathbb{Z} is isomorphic to \mathbb{Q} .
- 2. $\{1\}^{-1}R \cong R$.
- 3. If $0 \in S$, then $S^{-1}R = 0$.
- 4. Fix $N \in \mathbb{Z}_{\geq 0}$, $S = \{N^n \mid n \in \mathbb{Z}_{\geq 0}\}$, then $S^{-1}\mathbb{Z} = \{m/N^n \mid m \in \mathbb{Z}, n \in n \in \mathbb{Z}_{\geq 0}\}$.
- 5. If p is a prime number and $S = \mathbb{Z} (p)$, then $S^{-1}\mathbb{Z} = \{m/n \mid m \in \mathbb{Z}, \gcd(n, p) = 1\}$

Let R be an integral domain.

Any function $N: R \to \mathbb{Z}_{\geq 0}$ with N(0) = 0 is called a **norm**. If N(a) > 0 for $a \neq 0$, then N is called a **positive norm**.

We say R is a **Euclidean domain** if there is a norm N on R such that for all $a, b \in R$ with $b \neq 0$ there exist $q, r \in R$ such that

$$a = qb + r$$
, $r = 0$ or $N(r) < N(b)$.

The element q is called the **quotient** and r the **remainder** of the division of a by b.

- 1. \mathbb{Z} is a Euclidean domain with N(a) = |a|.
- 2. A field is a Euclidean domain with the zero norm.
- 3. If F is a field, F[x] is a Euclidean domain with $N(p(x)) = \deg p(x)$.

Let R be a commutative ring and $a, b \in R$ with $b \neq 0$.

a is said to be a **multiple** of b if there exists an element $x \in R$ with a = bx. Then b is said to **divide** a or be a **divisor** of a, written $b \mid a$.

A greatest common divisor (gcd) of a and b is a nonzero element d such that

- (i) $d \mid a \text{ and } d \mid b$,
- (ii) if $d' \mid a$ and $d' \mid b$ then $d' \mid d$.

In which case, we denote $d = \gcd(a, b)$.

1. If R is a PID, $a, b \in R$ with $b \neq 0$, then (a, b) = (d) for some $d \in R$. Moreover, d is a gcd of a and b.

A **principal ideal domain** (PID) is an integral domain in which every ideal is principal.

1. \mathbb{Z} is a PID, but $\mathbb{Z}[x]$ is not.

Let R be an integral domain.

A nonzero, non-unit element $r \in R$ is called **irreducible** in R if

$$r = ab \implies a \in R^{\times} \text{ or } b \in R^{\times}.$$

and **reducible**, otherwise.

A nonzero element $p \in R$ is called **prime** in R if (p) is a prime ideal of R. Equivalently, a nonzero, non-unit element $p \in R$ is prime if

$$p \mid ab \implies p \mid a \text{ or } p \mid b.$$

Two elements $a, b \in R$ are said to be **associate** in R if a = ub for some $u \in R^{\times}$.

A unique factorization domain (UFD) is an integral domain R in which every nonzero, non-unit element $r \in R$ has the following:

(i) $r = p_1 \cdots p_n$ where each p_i is irreducible in R,

(ii) this decomposition is unique up to associates, i.e., if $r = q_1 \cdots q_m$ is another factorization into irreducibles, then m = n and there is a renumbering such that p_i is associate to q_i for $i = 1, \ldots, n$.

A ring R is called **Noetherian** if every ideal is finitely generated.

An integer a is called a **primitive root** mod n if \overline{a} is a generator of $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Theorem 1. (First Isomorphism Theorem) Let $\varphi: R \to S$ be a ring homomorphism.

- 1. $\ker \varphi$ is an ideal of R,
- 2. $\varphi(R)$ is a subring of S,
- 3. $R/\ker\varphi\cong\varphi(R)$.

If I is an ideal of R, then the natural projection

$$\pi: R \to R/I$$
$$r \mapsto r + I$$

is a surjective ring homomorphism with ker $\pi = I$.

Theorem 2. (Second Isomorphism Theorem) Let A be a subring and I be an ideal of R.

- 1. A + I is a subring of R,
- 2. $A \cap I$ is an ideal of A and I is an ideal of A + I,
- 3. $(A+I)/I \cong A/(A \cap I)$.

Theorem 3. (Third Isomorphism Theorem) Let I and J be ideals of R with $I \subseteq J$.

- 1. J/I is an ideal of R/I,
- 2. $(R/I)/(J/I) \cong R/J$.

Theorem 4. (Fourth Isomorphism Theorem) Let I be an ideal of R. The map

$$\{ \text{ideals of } R \text{ containing } I \} \rightarrow \{ \text{ideals of } R/I \}$$

$$J \mapsto J/I$$

is an inclusion preserving bijection.

Theorem 5. (Chinese Remainder Theorem) Let I_1, \ldots, I_n be ideals of R. The map

$$\varphi: R \to R/I_1 \times \cdots \times R/I_n$$

 $r \mapsto (r + I_1, \dots, r + I_n)$

is a ring homomorphism with $\ker \varphi = I_1 \cap \cdots \cap I_n$.

If I_i and J_j are comaximal for $i \neq j$, then this map is surjective and $I_1 \cap \cdots \cap I_n = I_1 \cdots I_n$, so

$$R/(I_1\cdots I_n)\cong R/I_1\times\cdots\times R/I_n.$$

Corollary 1. Let n be a positive integer and let $p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ be its factorization into powers of distinct primes. Then

$$\mathbb{Z}/n\mathbb{Z} \cong (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z}) \times \cdots \times (\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})$$

Corollary 2. Given $a_1, \ldots, a_n, c_1, \ldots, c_n \in \mathbb{Q}$ with $a_i \neq a_j$ for $i \neq j$. There exists a polynomial $p(x) \in \mathbb{Q}[x]$ such that $p(a_i) = c_i$ for $i = 1, \ldots, n$.

If I is an ideal of R, then I = R if and only if I contains a unit.

R is a field if and only if it has no nontrivial proper ideals, i.e., its only ideals are 0 and R.

If R is a field, then any nonzero ring homomorphism with domain R is an injection.

(id) Every proper ideal is contained in a maximal ideal.

(comm) An ideal M is maximal if and only if R/M is a field.

(comm) An ideal P is prime if and only if R/P is an integral domain.

(comm) Every maximal ideal is a prime ideal.

Every ideal in a Euclidean domain is principal.

Every nonzero prime ideal in a PID is maximal.

R[x] is a PID if and only if R is a field.

Let R be an integral domain, $r \in R$. If r is prime in R, then r is irreducible in R.

A PID is a UFD.

In a UFD, an element is prime if an only if it is irreducible.

In a UFD, every nonzero non-unit has a prime factorization, unique up to associates.

Lemma 1. (Gauss' Lemma) Let R be a UFD with fraction field F and let $p(x) \in R[x]$. If p(x) is reducible in F[x] then p(x) is reducible in R[x]. More precisely, if p(x) = A(x)B(x) for some nonconstant polynomials $A(x), B(x) \in F[x]$, then there are nonzero elements $r, s \in F$ such that rA(x) = a(x) and sB(x) = b(x) both lie in R[x] and p(x) = a(x)b(x) is a factorization in R[x].

R[x] is a UFD if and only if R is a UFD.

If R is an integral domain and $r \in R$, then r is irreducible/prime in R if and only if it is irreducible/prime in R[x].

Corollary 3. Let R be a UFD with fraction field F. If $p(x) \in R[x]$, then p(x) is irreducible in R[x] if and only if p(x) is irreducible in F[x] and the gcd of its coefficients is 1. In particular, if p(x) is a monic polynomial that is irreducible in R[x], then p(x) is irreducible in F[x].

If R is a UFD and $p(x) \in R[x]$, then (p(x)) is a prime ideal of R[x] if and only if p(x) is irreducible in R[x].

If F is a field and $p(x) \in G[x]$, then (p(x)) is a maximal ideal of F[x] if and only if p(x) is irreducible in F[x].

Let F be a field and $p(x) \in F[x]$. Then p(x) has a degree one factor if and only if p(x) has a root in F.

Let F be a field. Then a polynomial of F[x] of degree two or three is reducible if and only if it has a root in F.

Let R be an integral domain, I be a proper ideal of R, and $p(x) \in R[x]$ be a monic polynomial. If $\overline{p(x)} \in (R/I)[x]$ cannot be factored into two polynomials of smaller degree, then p(x) is irreducible in R[x].

Proposition 1. (Eisenstein's Criterion) Let R be an integral domain, P be a prime ideal of R, and $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in R[x]$ with $n \ge 1$. If $a_{n-1}, \ldots, a_1, a_0 \in P$ and $a_0 \notin P^2$, then f(x) is irreducible in R[x].

Corollary 4. (Eisenstein's Criterion for $\mathbb{Z}[x]$) Let p be a prime in \mathbb{Z} and $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{Z}[x]$ with $n \geq 1$. If $p \mid a_j$ for $j = 0, 1, \ldots, n-1$ but $p \nmid a_0$, then f(x) is irreducible in both $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$.

A ring is Noetherian if and only if every ascending chain of R eventually stabilizes, i.e, for all sequences $\{I_j\}_{j\in\mathbb{N}}$ of ideals of R with $I_j\subseteq I_{j+1}$, there exists $N\in\mathbb{N}$ such that $I_n=I_N$ for all $n\geq N$.

Let R be a Noetherian ring. If I is an ideal of R, then R/I is Noetherian. If S is a multiplicative subset of R, then $S^{-1}R$ is Noetherian.

Theorem 6. (Hilbert's Basis Theorem) If R is a Noetherian ring, then so is R[x].

Theorem 7. (Primitive Root Theorem) Let F be a field. Then any finite subgroup of F^{\times} is cyclic. In particular if p is a prime number, then $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic.

Let $n \ge 2$ be an integer. Then $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is cyclic if and only if $n = 2, 4, p^m, 2p^m$ where p is an odd prime and m is a positive integer.