## **BIG DATA COMPUTING**

ID's last digit: 5-9

### Francesco Silvestri

Department of Information Engineering
University of Padova
silvestri@dei.unipd.it

### OUTLINE

- Big Data Phenomenon
- Computational Challenges
- Organization of the Course
- Administrative Issues

### Who am I? Francesco Silvestri

### Experience:

- 2006-2009: PhD University of Padova in Computer Engineering + visiting scholar University of Texas at Austin
- 2010-2016: Post-doc University of Padova and IT University of Copenhagen
- 2016-2019: Assistant professor at University of Padova
- Since 2019: Associate professor at University of Padova

#### Research:

- Big data algorithms: how to efficiently extract information from big-data?
- High performance algorithms: how to exploit modern computer architecture for big-data?

#### Real life:

- 3 kids + 1 wife
- Love Denmark and biking cargo-bikes
- Sports: barely jogging and swimming; play with kids.



From: Google Trends

Big Data: term proposed in 2005 from Roger Mougalas (O'Reilly Media)

"Space is big. Really big" (Douglas Adams, The Hitchhiker's Guide to the Galaxy)

# Why is DATA growing so much?

- Technological progress:
  - Growth of storage capacity
  - Growth of comunication bandwith
  - Growth of computing capacity
- Reduction of ICT costs
- Pervasiveness of digital technologies: scientific research, health, business, politics, social interactions, ...



From: The Digitization of the World (IDC, 2018)

### How big is 175ZB?:

- 1 ZettaByte (ZB) = 1 trillion GB =  $10^{12}$  GB;
- 175 ZB  $\equiv$  23 parallel stacks of DVD from Earth to Moon;
- Downloading 175 ZB at 1Gb/s takes > 43 million years

## The world continuously collects huge amounts of:

- Physical data: from sensors, telescopes, particle physics experiments.
- Biological/medical data: from genetic studies, patient monitoring, epidemic evolution analyses.
- Human activity data: from social networks, mobile devices, internet/web traffic, IoT systems.
- Business data: from online stores, customer profiling, bank/credit-card/financial services, quality-of-service monitoring.

The term Big Data relates to two distinct issues:

- ISSUE 1:
  - Data are produced everywhere;
  - Automated analytics are required (vs human inspection);
  - NEED: data selection/preparation procedures, adequate analysis tools.
- ISSUE 2:
  - Massive datasets must be processed;
  - Traditional (algorithmic) approaches are unsuited;
  - NEED: feasible and efficient methods to process massive data, novel computing frameworks.

This course focuses on ISSUE 2!

## Computing Challenges



Source: IBM Big Data & Analytics Hub

# Computational Challenges

- Volume: processing huge datasets poses several challenges and requires a data-centric perspective.
- Veracity: large datasets coming from real-world applications are likely to contain noisy, uncertain data, hence accuracy of solutions must be reconsidered.
- Velocity: sometimes, the data arrive at such a high rate that they cannot be stored and processed offline. Hence stream processing is needed.
- Variety: large datasets arise in very different scenarios. More
  effective processing is achieved by adapting to the actual
  characteristics of data.

The above issues require a

paradigm shift w.r.t. traditional computing.

# Computational Challenges

### To tackle the above challenges effectively, one needs:

- Platforms with:
  - High storage capacity and computing power
     ⇒ parallel/distributed architectures
  - Moderate costs
  - Ease of programming and management
- Focus on accuracy-resource tradeoffs, to cope with size, noise, and uncertainty of data
- Data-centric view
- Data stream processing (sometimes)

# Big Data Computing Course

#### What will we learn?

- Novel computing/programming frameworks for big data processing: theory and practice
- 2 Key techniques to process large-scale data
  - Rigorous setting (provable guarantees)
  - Application to fundamental data analysis primitives

### Specific topics

- Frameworks: Distributed (MapReduce, Apache Spark) and Streaming
- 2 Techniques with applications (in parentheses):
  - Partitioning (data distribution)
  - Coresets (unsupervised learning);
  - Sketches (estimation of moments, set memebership)
  - Locality sensitive hashing (similarity search);

### Subdivision into classes

Students of all programs are subdivided into two parallel classes based on their ID's last digit (same syllabus, homeworks, and exams)

- Class A (prof. Pietracaprina): last digit 0-4
- Class B (prof. Silvestri): last digit 5-9

#### Lectures

- Slide sets are made available in advance for each topic.
- Attendance and active participation are strongly encouraged.

#### Exam

- Homeworks: programming assignments (6+1 points)
  - Groups of 2-3 students (even from different classes)
  - 3 homeworks, approximately one every 3 weeks.
  - Use of Apache Spark on individual PCs and Cluster.
  - Bonus point if team registers by the deadline and all homeworks submitted by their deadlines.
- Final written exam (26 points)
  - Must be taken only after returning all homeworks!
  - To pass the exam: written exam  $\geq$  13 and final grade  $\geq$  18.
- Oral exam: at teacher's discretion, but compulsory if last homework returned after Session 1.

#### SEE DETAILED RULES IN THE COURSE MOODLE

#### **Exam Sessions**

Written exams are scheduled in the following dates (also found in the Course Moodle):

- Session 1: June 18 2024, 9am
- Session 2: July 15 2024, 2pm
- Session 3: September 5 2024, 9am
- Session 4: January/February 2025 (t.b.a)

IMPORTANT: No additional exams sessions will be scheduled, independently of specific individual needs. It is the student's responsibility to organize her/his work and plan the exam well in advance.

### Required background

- Java or Python programming
- Basic algorithmics: asymptotic, worst-case analysis; fundamental algorithms and data structures; (e.g., lists, queues, stacks, hash tables, maps/dictionaries)
- Basic math tools, combinatorics, and probability.

### Reference Textbooks

- J. Leskovec, A. Rajaraman and J. Ullman. Mining Massive Datasets. Cambridge University Press, 2014.
- A. Blum, J. Hopcroft, and R. Kannan. Foundations of Data Science. Cambridge University Press, 2020.

### Administrative Issues

#### Online tools

Course Moodle:

https://stem.elearning.unipd.it/course/view.php?id=8801

- Announcements and student forum.
- Infos: contacts, textbooks, exam rules and sessions.
- Lectures diary.
- Material: slides, videos, exercises, articles.
- Preliminary exams grades.
- Uniweb: Official exam lists and final grades.
- Exam Moodle (only one for the two classes):

https://esami.elearning.unipd.it/course/view.php?id=5621

- Formation of groups for Homeworks
- Submission of Homeworks.

### Administrative Issues

#### Contacts and office hours

- Teacher (prof. Francesco Silvestri): silvestri@dei.unipd.it
- TAs (Filippo Bragato and Mohammadmahdi Ghahramanibozandan): bdc-course@dei.unipd.it

Office hours are by appointment (via Email). Teaching assistants should be contacted by email and only for questions related to homeworks.

### TODO: As soon as possible

- Register in the Course Moodle (no password required)
- Register in the Exam Moodle (password:
- Form groups of size at most 3 for the homeworks by March 15.
   Once a group is formed, it must be registered in the Exam Moodle using the Group registration link. Bonus point needs registration by the deadline.