

Metode Pembuktian: Proof by Contradiction

Membuktikan Pernyataan Berkondisi: $p \rightarrow q$ (Indirect Proof: Proof by Contraposition)

Buktikan:

"Jika 3n + 2 bilangan bulat ganjil, maka n adalah bilangan bulat ganjil."

- Proof by Contraposition: Asumsikan $\neg q$ bernilai benar dan tunjukkan $\neg p$ benar dengan menggunakan direct proof.
- Dengan kata lain, kita buktikan dengan direct proof: $\neg q \rightarrow \neg p$
- Jika kita berhasil membuktikan $\neg q \rightarrow \neg p$ dengan direct proof, maka $p \rightarrow q$ juga terbukti.

Contoh: Proof by Contraposition

Buktikan:

"Jika 3n + 2 bilangan bulat ganjil, maka n adalah bilangan bulat ganjil."

Bukti:

Untuk membuktikan pernyataan di atas, secara tidak langsung dibuktikan: "Jika n adalah bilangan bulat genap, maka 3n + 2 adalah bilangan bulat genap" Asumsikan n bilangan bulat genap.

Berdasarkan definisi bilangan bulat genap, n = 2k untuk suatu bilangan bulat k. Dengan demikian:

$$3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1) = 2j$$
, di mana $j = 3k + 1$

Karena 3n + 2 bisa dinyatakan sebagai 3n + 2 = 2j, di mana j = 3k + 1, dan j = 3k + 1 adalah bilangan bulat, maka 3n + 2 adalah bilangan bulat genap.

Kita berhasil membuktikan: "Jika *n* adalah bilangan bulat genap, maka 3*n* + 2 adalah bilangan bulat genap"

Dengan demikian, secara tidak langsung dengan proof by contraposition, telah terbukti bahwa jika 3n + 2 bilangan bulat ganjil, maka n adalah bilangan bulat ganjil.

Latihan: Proof by Contraposition

Buktikan:

"Jika n² bilangan bulat ganjil, maka n adalah bilangan bulat ganjil."

Indirect Proof: Proof by Contradiction

Buktikan bahwa $\sqrt{2}$ adalah bilangan irrational.

Proof by Contradiction (reductio ad absurdum).

Untuk membuktikan p, asumsikan $\neg p$ dan tunjukkan kontradiksi melalui $r \land \neg r$ (bernilai F)

Karena terjadi kontradiksi pada proses pembuktian ini, maka kita telah menunjukkan bahwa $\neg p \rightarrow \mathbf{F}$ berlaku/bernilai benar.

Artinya, $\neg p$ bernilai salah, atau dengan kata lain p bernilai benar (kita telah berhasil membuktikan p).

Contoh: Proof by Contradiction

Buktikan bahwa $\sqrt{2}$ adalah bilangan irrational.

Bukti:

Asumsikan $\sqrt{2}$ adalah bilangan rasional.

Berdasarkan definisi bilangan rasional, terdapat bilangan bulat a dan b sehingga $\sqrt{2} = a/b$, di mana $b \neq 0$ dan khususnya a and b tidak memiliki faktor yang sama.

Mengambil kuadrat pada kedua sisi dari persamaan tersebut diperoleh
$$2=\frac{a^2}{b^2} \qquad 2b^2=a^2 \qquad \qquad (1)$$

Berdasarkan definisi bilangan bulat genap, a^2 adalah bilangan bulat genap.

Jika a^2 adalah bilangan bulat genap maka a adalah bilangan bulat genap (2)

Sebagai latihan, buktikan teorema (2) ini!

Dengan modus ponens diperoleh a adalah bilangan bulat genap dan menggunakan definisi bilangan bulat genap, a =2c untuk suatu bilangan bulat c.

Berdasarkan hal ini dan persamaan (1) sebelunya, diperoleh:

$$2b^2 = 4c^2 b^2 = 2c^2$$

Dengan demikian, b^2 adalah bilangan bulat genap (berdasarkan definisi bilangan bulat genap).

Menggunakan teorema (2) dan modus ponens, dapat disimpulkan badalah bilangan bulat genap.

Karena *a* adalah bilangan bulat genap dan *b* adalah bilangan bulat genap, maka maka *a* dan *b* pasti memiliki faktor yang sama, yaitu 2 (kedua bilangan tersebut habis dibagi 2).

Terjadi kontradiksi dengan pernyataan bahwa *a* dan *b* tidak memiliki faktor yang sama.

Artinya, asumsi awal $\sqrt{2}$ adalah bilangan rasional salah dan oleh karena itu, $\sqrt{2}$ adalah bilangan irrational.

Latihan: Proof by Contradiction

Buktikan dengan proof by contradiction:

"Jika 3n + 2 bilangan bulat ganjil, maka n adalah bilangan bulat ganjil."

Apa yang sudah dipelajari?

Pembuktian Tidak Langsung (Indirect Proof)

- Proof by Contraposition
 - Pernyataan berkondisi $p \rightarrow q$
- Proof by Contradiction
 - Lebih umum, namun bisa dinyatakan sebagai pernyataan berkondisi

Topik selanjutnya: Pembuktian Bikondisional, Proof by Cases, Counterexample

Metode Pembuktian: Pembuktian Bikondisional, Proof by Cases, Counterexample

Diadaptasi dari slides:

- Slides Discrete Mathematics and Its Applications (Rosen)
- Diktat Matematika Diskret (Prof. Belawati Widjaja)

Membuktikan Pernyataan Bikondisional: $p \leftrightarrow q$

Untuk membuktikan teorema dalam bentuk pernyataan bikondisional $p \leftrightarrow q$, kita perlu buktikan $p \rightarrow q$ dan juga $q \rightarrow p$.

Buktikan:

n bilangan bulat ganjil jika dan hanya jika n² juga adalah bilangan bulat ganjil

Bukti:

Perlu dibuktikan dua hal:

- (1) Jika *n* adalah bilangan bulat ganjil maka *n*² juga adalah bilangan bulat ganjil
- (2) Jika n^2 bilangan bulat ganjil, maka n adalah bilangan bulat ganjil.

Untuk (1) sudah kita buktikan pada Contoh 1 Direct Proof.

Untuk (2) dibuktikan sebagai Latihan pada Proof by Contraposition.

Dengan membuktikan (1) dan (2), maka terbuktilah bahwa: n bilangan bulat ganjil jika dan hanya jika n^2 juga adalah bilangan bulat ganjil

Proof by Cases

Buktikan $n^2 \ge n$ untuk setiap bilangan bulat n.

Pernyataan yang ingin dibuktikan:

"Jika n adalah bilangan bulat, maka $n^2 \ge n$.

Proof by Cases

Untuk membuktikan pernyataan kondisional dalam bentuk:

$$(p_1 \lor p_2 \lor \ldots \lor p_n) \to q$$

Gunakan ekivalensi:

$$[(p_1 \lor p_2 \lor \ldots \lor p_n) \to q] \equiv [(p_1 \to q) \land (p_2 \to q) \land \ldots \land (p_n \to q)]$$

• Setiap implikasi $p_i \rightarrow q$ adalah kasus (*case*) yang harus dibuktikan.

Contoh: Proof by Cases (1)

```
Buktikan: n^2 \ge n untuk setiap bilangan bulat n.
```

Bukti:

Ambil p := n adalah sebuah bilangan bulat,

dan $q := n^2 \ge n$.

Sedangkan p setara dengan $p_1 \lor p_2 \lor p_3$ dengan

 $p_1 := n$ adalah sebuah bilangan bulat dengan $n \le -1$

$$p_2 := n = 0$$

dan $p_3 := n$ adalah sebuah bilangan bulat dengan $n \ge 1$.

Jadi yang ingin dibuktikan adalah $(p_1 \lor p_2 \lor p_3) \rightarrow q$.

Untuk membuktikannya dipakai *proof by cases*, yaitu dengan membuktikan

Contoh: Proof by Cases (1)

- (i) $p_1 \rightarrow q$ atau Jika n adalah sebuah bilangan bulat dengan $n \leq -1$ maka $n^2 \geq n$. Ternyata, benar.
- (ii) $p_2 \to q$ atau Jika n = 0 maka $n^2 \ge n$. Ternyata benar.
- (iii) $p_3 \rightarrow q$ atau Jika *n* adalah sebuah bilangan bulat dengan $n \ge 1$ maka $n^2 \ge n$.

Ternyata, benar.

Maka $(p_1 \lor p_2 \lor p_3) \rightarrow q$ terbukti.

Counterexamples

Ingat kembali:

$$\exists x \neg P(x) \equiv \neg \forall x P(x)$$

- Untuk menunjukkan pernyataan $\forall x P(x)$ tidak berlaku/salah (atau $\neg \forall x P(x)$ berlaku/benar), cukup temukan sebuah nilai c dari domain sehingga: P(c) bernilai salah (atau $\neg P(c)$ bernilai benar).
- Dalam hal ini, c disebut counterexample untuk pernyataan $\forall x P(x)$

Contoh: "Setiap bilangan bulat positif dapat dinyatakan sebagai hasil penjumlahan kuadrat dari tiga bilangan bulat.

Pernyataan ini tidak benar dengan mengambil bilangan 7 sebagai counterexample, karena bilangan 7 tidak dapat dinyatakan sebagai jumlahan kuadrat dari tiga bilangan bulat.

Apa yang sudah dipelajari?

Pembuktian pernyataan bikondisional

$$p \leftrightarrow q$$

- Proof by cases
 - Kondisi sebagai disjungsi kasus
- Counterexample

Topik selanjutnya: Himpunan & Fungsi