Objective Measures of Pilot Performance during Approach to Land & Landing Phases of Flight

Chris Hamblin

Mentor:

Goran Milovanovic

Introduction

- Lack of objective measures
- Costly and inaccessible data
- Computer-based Avionics
- Connected Aircraft
- Big Data Analytics

Objectives

- Detect significant events
- Objectively measure pilot performance
- Predict pilot performance

Background

- 45 years of research
- Relatively few measures
- Summary measures
 - Mean, SD, RMSE, Tolerance Deviations, etc
- Static view of pilot performance

Time Series Data

- Capture the dynamic nature of pilot performance
- More granular analysis
- Uncover patterns of behavior

Time Series Based Objective Measures of Pilot Performance (Johnson, Rantanen & Talleur, 2004)

- Expert pilots make frequent, small, smooth control inputs.
- Novice pilots make fewer but larger, jerky inputs

Time Series Based Objective Measures of Pilot Performance (Johnson, Rantanen & Talleur, 2004)

- Expert pilots are more aware of the state of the airplane and better able to predict its future state.
- Autocorrelations of more skillful pilots will decay slower than less skillful pilots

Method

- Apply measures created by Johnson et al.
 - Slope of the autocorrelation coefficient
 - Time for autocorrelation coefficient to decay to zero

- Evaluate a new measure of pilot performance
 - Time after the autocorrelation coefficient reaches zero*
- Improvements
 - Stabilize the variance of the time series data making it stationary

Data Set

- 89 flight data recordings
- Approach and landings at San Francisco Airport, Runway 19L
- Airplane position (altitude, longitude, latitude)
- Airplane attitude (pitch, roll, yaw)
- Performance Data (airspeed, vertical speed, vertical acceleration, pitch rate, roll rate, yaw rate, etc.)
- Airplane state (landing gear configuration, flight control position, weight on wheels, sensor data, etc.)

Approach to Land and Landing Phases of Flight

- Two most critical phases of flight
- Physical and cognitive workload test the limits of the crew

Calculating Pilot Performance

- Approach Stability
- Landing Precision
- Landing Quality

Approach Stability

- Aircraft is on the correct flight path;
- Only small changes in heading and pitch;
- Aircraft speed is not more than 20 knots above designated approach speed and not less than the designated approach speed;
- Descent rate no greater than 1000 ft./min;
- Power setting is appropriate for the aircraft configuration,
- Approach precision is appropriate for the associated instrument landing system.

Stabilized Approach Calculator

	Min	Max
Pitch	-5 deg	3 deg
Heading	-10 deg	10 deg
Roll	-5 deg	5 deg
Descent Rate		-1000 ft./min
Airspeed	126 kts	146 kts.

Stabilized Approaches

	Stable	Unstable
All Approaches	57	33
Heading	90	0
Pitch	79	11
Roll	67	23
Airspeed	86	4
Sink Rate	86	4

	1 axis	2 axis	3 axis
Unstable Axes	26	5	2

Landing Precision

- Distance from runway threshold
- Distance from runway centerline

Landing Precision Calculator

- Distance from threshold
 - Optimum (≥700 & ≤ 2200ft)
 - Ideal (≥ 200 & ≤ 2700 ft)
 - Out of bounds (<200ft)

- Distance from centerline
 - Optimum (+/- 25 ft)
 - Ideal (+/- 50 ft)
 - Out of bounds (>50ft)

Landing Precision

	Optimal	Good	Out of Bounds
Precision	61	20	8

Landing Quality Calculator

- Touch Down Quality
 - Vertical Acceleration
 - >1.7 = Hard
 - 1.5-1.7 = Rough
 - 1.3-1.5 = Good
 - 1-1.3 = Excellent
- Bounced Landing
 - WOW oscillation
- Uncoordinated Landing
 - Left WOW ≠ Right WOW

Landing Quality

TD Quality	Excellent	Good	Hard	rough
Landings	32	29	13	15

Bounced Landings	Normal	Bounced
Landings	81	8

Coordinated Landings	Coordinated	Uncoordinated	1sec	2sec	3sec	4sec
Landings	49	40	32	5	2	1

Statistical Analysis

Research Question: Can approach stability predict landing precision?

Dependent Variable	Statistical Analysis
Distance to Threshold	Multiple Linear Regression
Distance to Center Line	Multiple Linear Regression
Precision	Ordinal Logistic Regression

Results: Linear Regression

Distance to Threshold	Press	P-Value	R^2	RSE
Lag to Zero	95.52	2.03E-05	0.388	410.1
Reg Coeff	103.47	4.17E-05	0.3708	415.8
Lag to Zero + Reg Coeff	97.92	2.48E-06	0.5206	363
Lag to Zero + Reg Coeff + Diff Var	106.53	4.50E-07	0.642	313

Distance to Centerline	Press	P-Value	R^2	RSE
Lag to Zero	87.25	0.01	0.192	10.85
Reg Coeff	90.13	.404	0.014	11.97
Lag to Zero + Reg Coeff	88.03	.009	0.271	10.3

Results: Ordinal Logistic Regression

Distance to Threshold	AIC	Hit Rate
Lag to Zero	129.75	0.781
Reg Coeff	136.72	0.747
Diff Var	139.07	0.758
Reg Coeff + Diff Var	144.53	0.805

Lag To Zero: Ordinal Logistic Regression

```
link threshold nobs logLik AIC niter max.grad cond.H logit flexible 87 -50.88 129.75 6(0) 2.58e-13 6.7e+05
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
`featureCat$Stable approach`1 1.15452
                                 0.60979 1.893 0.0583 .
LagToZero verticalAccel -0.41177
                                 0.16178 -2.545 0.0109 *
LagToZero bodyPitchRate -0.54660
                                 0.24423 -2.238 0.0252 *
LagToZero bodyRollRate 2.08220
                                 1.91423 1.088 0.2767
LagToZero bodyYawRate -0.31409
                                 0.24758 -1.269 0.2046
LagToZero pitchAngle -0.09640
                                 0.08097 -1.191 0.2338
LagToZero rollAngle
                    -0.03072
                                 0.14707 -0.209 0.8345
LagToZero calibratedAirspeed
                       -0.02746
                                 0.06679 -0.411
                                               0.6810
LagToZero gsDev
                                 0.07278 0.555 0.5788
                       0.04040
LagToZero locDev
                       -0.08753
                                 0.04504 -1.943
                                               0.0520 .
LagToZero lRadAlt
                       0.05432
                                 0.07488 0.725
                                               0.4682
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Coefficients

0 1	1 2
-7.47760729	-5.06313436
featureCat\$Stable_approach`1	${\tt LagToZero_inertialVerticalSpd}$
1.15451767	-0.17646595
LagToZero_verticalAccel	LagToZero_bodyPitchRate
-0.41177358	-0.54660116
LagToZero_bodyRollRate	LagToZero_bodyYawRate
2.08220203	-0.31408974
LagToZero_pitchAngle	LagToZero_rollAngle
-0.09640499	-0.03072361
LagToZero_calibratedAirspeed	LagToZero_gsDev
-0.02745822	0.04039837
LagToZero_locDev	LagToZero_lRadAlt
-0.08753308	0.05432252

Symmetric Confidence Intervals

```
2.5 % 97.5 %
0 1
                           -13.70380423 -1.2514103552
1 2
                           -11.04460980 0.9183410854
`featureCat$Stable_approach`1 -0.04065116 2.3496865067
LagToZero_inertialVerticalSpd -0.32956306 -0.0233688326
LagToZero_verticalAccel -0.72885718 -0.0946899762
LagToZero bodyPitchRate -1.02527403 -0.0679282876
LagToZero bodyRollRate -1.66961498 5.8340190322
LagToZero bodyYawRate -0.79934066 0.1711611771
LagToZero pitchAngle -0.25510211 0.0622921376
LagToZero rollAngle
                   -0.31897253 0.2575253050
LagToZero calibratedAirspeed -0.15836769 0.1034512440
LagToZero gsDev
                            -0.10224939 0.1830461349
LagToZero locDev
                            -0.17581907 0.0007529106
LagToZero lRadAlt
                            -0.09244171 0.2010867564
```

Asymmetric Confidence Intervals

```
2.5 % 97.5 %
                           1.118184e-06 0.2861010
1 2
                           1.597302e-05 2.5051311
`featureCat$Stable approach`1 9.601640e-01 10.4822831
LagToZero inertialVerticalSpd 7.192379e-01 0.9769021
LagToZero_verticalAccel 4.824600e-01 0.9096549
LagToZero bodyPitchRate 3.586982e-01 0.9343275
LagToZero bodyRollRate 1.883196e-01 341.7293441
LagToZero bodyYawRate
                    4.496253e-01 1.1866820
LagToZero pitchAngle 7.748374e-01 1.0642732
LagToZero rollAngle
                   7.268955e-01 1.2937245
LagToZero calibratedAirspeed 8.535359e-01 1.1089917
                          9.028044e-01 1.2008698
LagToZero gsDev
LagToZero locDev
                          8.387697e-01 1.0007532
LagToZero_lRadAlt
                          9.117024e-01 1.2227308
```

Summary

- Time series data collected by flight data recordings provides very detailed insight into pilot performance.
- Insights from the data can be used to objectively measure and categorize pilot performance.
- Continuous measures of landing precision did not detect a strong relationship between approach stability and landing precision; however,
- Categorical measures show promise but more data is needed.