# Računalniške komunikacije 2020/21

#### operativna varnost

požarni zidovi, zaznavanje vdorov, napadi in grožnje

# Operativna varnost:

požarni zidovi in sistemi za zaznavanje vdorov



#### Varnost v omrežju

- Administrator omrežja lahko uporabnike deli na:
  - good guys: uporabniki, ki legitimno uporabljajo vire omrežja, pripadajo organizaciji,
  - bad guys: vsi ostali, njihove dostope moramo skrbno nadzorovati
- Omrežje ima običajno eno samo točko vstopa, kontroliramo dostope v njej:
  - požarni zid (firewall)
  - sistem za zaznavanje vdorov (IDS, intrusion detection system)
  - sistem za preprečevanje vdorov (IPS, intrusion prevention system)



# Požarni zid (firewall)

izolira interno omrežje od velikega javnega omrežja, določenim paketom dovoli prehod, druge blokira. Ima 3 naloge:

- filtrira VES promet,
- prepušča samo promet, ki je DOPUSTEN glede na politiko,
- je IMUN na napade



#### Požarni zid: vrste filtriranj

- 1. izolirano filtriranje paketov (angl. stateless, traditional)
  - pretežno filtriranje na podlagi podatkov v glavi: izvorni in ponorni naslovi ter vrata
- 2. filtriranje paketov v kontekstu (angl. stateful filter)
  - nadzoruje vzpostavljenost povezave
- aplikacijski prehodi (angl. application gateways)
  - filtriranje z vpogledom v podatke aplikacijske plasti (vsebina, aplikacijski protokol, uporabniško ime, ...)



- filtriranje običajno izvaja že usmerjevalnik, ki meji na javno omrežje. Na podlagi vsebine paketov se odloča, ali bo posredoval posamezen paket,
- odločitev na podlagi:
  - IP izvornega/ponornega naslova
  - številke IP protokola: TCP, UDP, ICMP, OSPF itd.
  - TCP/UDP izvornih in ciljnih vrat
  - tip sporočila pri protokolu ICMP
  - zastavice TCP: SYN in ACK bit (sta aktivni za prvi segment pri povezovanju, nadzorujemo dopustnost vzpostavljanja povezave)

#### Izolirano filtriranje: dostopovni seznami

- dostopovni seznam (angl. access control list, ACL)
- tabela pravil, upošteva (procesira) se jo od vrha proti dnu
- zapisi so par (pogoj, akcija)
- primer: onemogoči ves promet razen WWW navzven in DNS v obe smeri



| izvorni<br>naslov  | ciljni<br>naslov   | protokol | izvorna<br>vrata | ciljna<br>vrata  | zastavica | akcija |  |
|--------------------|--------------------|----------|------------------|------------------|-----------|--------|--|
| 222.22/16          | izven<br>222.22/16 | ТСР      | <b>&gt;</b> 1023 | 80               | any       | dovoli |  |
| izven<br>222.22/16 | 222,22/16          | ТСР      | 80               | <b>&gt;</b> 1023 | ACK       | dovoli |  |
| 222.22/16          | izven<br>222.22/16 | UDP      | <b>&gt;</b> 1023 | 53               |           | dovoli |  |
| izven<br>222.22/16 | 222,22/16          | UDP      | 53               | <b>&gt;</b> 1023 |           | dovoli |  |
| all                | all                | all      | all              | all              | all       | zavrzi |  |

dopusti izhodni HTTP

tabelo bere od zgoraj navzdol, prvo pravilo, ki ga najde,

uporabi, če pravilo ne ustreza, gre naprej

dopusti dohodni HTTP

dopusti izhodni DNS

dopusti dohodni DNS

#### Filtriranje paketov v kontekstu

- angl. stateful filter, upošteva povezavo
  - izolirano filtriranje lahko dovoli vstop nesmiselnim paketom (npr. vrata = 80, ACK =1;
    čeprav notranji odjemalec ni vzpostavil povezave)
    npr. napadalec s trojancem komunicira preko porta 80, čeprav je to samo za HTTP ...
    tj. prej bi moral biti request od userja, nato šele reply
- IZBOLJŠAVA: filtriranje paketov v kontekstu spremlja in vodi evidenco o vsaki vzpostavljeni TCP povezavi
  - o zabeleži vzpostavitev povezave (SYN) in njen konec (FIN): na tej podlagi odloči, ali so paketi smiselni
  - po preteku določenega časa obravnavaj povezavo kot neveljavno (timeout)
  - uporabljaj podoben dostopovni seznam, ki določa, kdaj je potrebno kontrolirati veljavnost povezave (angl. check connection)

# Filtriranje paketov v kontekstu

| izvorni<br>naslov  | ciljni<br>naslov   | protokol | izvorna<br>vrata | ciljna<br>vrata  | zastavica | akcija | preveri<br>povezavo |
|--------------------|--------------------|----------|------------------|------------------|-----------|--------|---------------------|
| 222.22/16          | izven<br>222.22/16 | ТСР      | <b>&gt;</b> 1023 | 80               | any       | dovoli |                     |
| izven<br>222.22/16 | 222.22/16          | TCP      | 80               | > 1023           | ACK       | dovoli | ×                   |
| 222.22/16          | izven<br>222.22/16 | UDP      | > 1023           | 53               |           | dovoli |                     |
| izven<br>222.22/16 | 222.22/16          | UDP      | 53               | <b>&gt;</b> 1023 |           | dovoli | X                   |
| all                | all                | all      | all              | all              | all       | zavrzi |                     |

#### Aplikacijski prehodi

- omogočajo dodatno filtriranje glede na izbiro uporabnikov, ki lahko uporabljajo določeno storitev
- omogočajo filtriranje na podlagi podatkov na aplikacijskem nivoju poleg polj IP/TCP/UDP.



- 1. vsi uporabniki vzpostavljajo povezavo preko prehoda
- 2. samo za avtorizirane uporabnike prehod vzpostavi povezavo do ciljnega strežnika
- 3. prehod posreduje podatke med 2 povezavama
- 4. usmerjevalnik blokira vse povezave razen tistih, ki izvirajo od prehoda

## Aplikacijski prehodi

Tudi aplikacijski prehodi imajo omejitve:



- če uporabniki potrebujejo več aplikacij (telnet, HTTP, FTP itd.), potrebuje vsaka aplikacija svoj aplikacijski prehod,
- kliente je potrebno nastaviti, da se znajo povezati s prehodom (npr. IP naslov medstrežnika v brskalniku)

#### Sistemi za zaznavanje vdorov

- dodatna naprava IDS, ki izvaja **poglobljeno analizo paketov**. Na podlagi vstopa sumljivih paketov v omrežje lahko naprava prepreči njihov vstop ali razpošlje obvestila.
  - sistem za zaznavanje vdorov (IDS) pošlje sporočilo o potencialno škodljivem prometu
  - sistem za preprečevanje vdorov (IPS) ukrepa pri pojavitvi sumljivega prometa
  - primeri: Cisco, CheckPoint, Snort IDS

#### Načini zaznavanja vdorov

#### Kako deluje IDS/IPS?

- primerjava s shranjenimi vzorci napadov (angl. signatures)
- opazovanje netipičnega prometa (angl. anomaly-based)



#### Zaznavanje z vzorci napadov

- vzorci napadov lahko hranijo izvorni IP, ponorni IP, protokol, zaporedje bitov v podatkih paketa, lahko so vezani na serijo paketov
- varnost je torej odvisna od baze znanih vzorcev; IDS/IPS slabo zaznava še nevidene napade
- možni lažni alarmi
- zahtevno procesiranje (lahko spregleda napad)



#### Zaznavanje netipičnega prometa

- sistem opazuje običajen promet in izračuna statistike, vezane nanj
- sistem reagira na statistično neobičajen promet (npr. nenadno velik delež ICMP paketov)
- možno zaznavanje še nevidenih napadov
- težko ločevanje med normalnim in nenavadnim prometom



#### Primer IDS/IPS sistema

- Snort IDS
  - public-domain, odprtokodni IDS za Linux,
    UNIX, Windows (uporablja isto knjižnico za branje omrežnega prometa kot Wireshark)
  - primer vzorca napada





# Napadi in grožnje





#### Pogosti napadi na omrežne sisteme

- NAMEN? Namenjeni so škodovanju ali obhodu računalniških in omrežnih funkcij.
- ZAKAJ? Denarna dobrobit, škodovalnost, poneverbe, ekonomske dobrobiti, čast in slava?
- KAKO? Ogrožanje zaupnosti, integritete in razpoložljivosti omrežnih sistemov
  - napadi s spreminjanjem informacij (modification attack)
  - zanikanje komunikacije (repudiation attack)
  - odpoved delovanja sistema (denial-of-service attack)
  - nepooblaščen dostop (access attack)
  - •

#### Pogosti napadi na omrežne sisteme



#### Vzdrževanje dostopa

- trojanski konji / virusi
- zakrivanje dokazov
- zavarovanje dostopa samo zase
  - PONOVI

#### Aktivno pregledovanje

- pregled sistema (reconnaissance)
  - iskanje varnostnih ranljivosti
    - pregled arhitekture

#### Napad

- izkoriščanje ranljivosti
- izkoriščanje sistemov

- 1. prisluškovanje in ponarejanje sporočil
- 2. matematični napadi na kriptografske algoritme in ključe
- **3. ugibanje gesel** (brute force, napad s slovarjem)
- 4. virusi, črvi, trojanci
- 5. izkoriščanje šibkosti v programski opremi
- **6. socialni inženiring** (preko e-maila, telefona, servisov)





- 7. **pregled vrat** (port scan): napadalec testira, kateri strežniki so delujoči (npr. ping) in katere storitve ponujajo. Napadalec lahko pridobiva podatke o sistemu: DNS, storitve, operacijski sistemi)
- 8. brskanje po smeteh (dumpster diving): način, s katerim lahko napadalci pridejo do informacij o sistemu (navodil za uporabo, seznamov gesel, telefonskih številk, opisa organizacije dela)
- 9. **rojstnodnevni napad** (birthday attack): je napad na zgoščevalne funkcije, za katere zahtevamo, da nobeni dve sporočili ne generirata iste zgoščene vrednosti. Pri slabših funkcijah napadalec išče sporočilo, ki bo dalo isto zgoščeno vrednost.

- 10. zadnja vrata (back door): napadalec zaobide varnostne kontrole in dostopi do sistema preko druge poti,
- **11. ponarejanje IP naslovov** (*IP spoofing*): napadalec prepriča ciljni sistem, da je nekdo drug (poznan) s spreminjanjem paketov,
- 12. prestreganje komunikacije (man-in-the-middle): napadalec prestreže komunikacijo in se obnaša, kot da je ciljni sistem (pri uporabi certifikatov lahko žrtev uporablja tudi javni ključ napadalca)



- 13. ponovitev komunikacije (replay): napadalec prestreže in shrani stara sporočila ter jih ponovno pošlje kasneje, predstavljajoč se kot eden izmed udeležencev
  - kako preprečimo napade s ponovitvijo komunikacije?
- 14. **ugrabitev TCP sej** (*TCP hijacking*): napadalec prekine komunikacijo med uporabnikoma in se vrine v mesto enega od njiju; drugi verjame, da še vedno komunicira s prvim
  - kaj napadalec pridobi s tem?
- **15. napadi s fragmentacijo** (*fragmentation attack*): z razbijanjem paketa na fragmente razdelimo glavo paketa med fragmente tako, da jih požarni zid ne more filtrirati
  - tiny fragment attack: deli glavo prvega paketa
  - overlapping fragment attack: napačen offset prepiše prejšnje pakete

## Napadi DoS (1/5)

#### **16. odpoved delovanja sistema** (*Denial-of-Service*)

- cilj napadalca: obremeni omrežne vire tako, da se nehajo odzivati zahtevam regularnih uporabnikov (npr. vzpostavitev velikega števila povezav, zasedanje diskovnih kapacitet, ...)
- lahko je porazdeljen (distributed DOS = DDoS)



#### Napadi DoS (2/5)

- primeri:
  - **prekoračitev medpomnilnika** (*buffer overflow*): procesu pošljemo več podatkov, kot jih lahko sprejme (Ping of death: ICMP z več kot 65K podatkov je povzročil sesutje sistema)
  - **SYN napad**: napadalec pošlje veliko število zahtev za vzpostavitev povezave in se na odgovor sistema ne odzove; pride do preobremenitve vrste zahtev v sistemu
    - rešitev: omejitev števila odprtih povezav, timeout
  - napad Teardrop: napadalec spremeni podatke o številu in dolžini fragmentov v IP paketu, kar zmede prejemnika
  - napad Smurf (naslednja prosojnica): uporaba posrednega broadcasta za preobremenitev sistema
    - porazdeljen DDoS
    - uporabniki porazdeljenih omrežnih sistemov lahko da ne vejo, da je napadalna oprema nameščena pri njih

# DoS Smurf (3/5)



## Napadi DoS (4/5)

- Uporaba bot-ov (web roBOT) za organizacijo napadov na ciljni sistem
  - boti so lahko računalniki, okuženi s trojanskimi konji
  - njihovi uporabniki običajno ne vejo, da sodelujejo v napadu



## Napadi DoS (5/5)

• subjekti v napadu: **napadalec**, centralni računalnik za **krmiljenje botov** (*herder*), **boti** (zombie), **cilj** 

