Example: O-ring failures by temperature 3 link functions and 3 prior specifications

- Christensen (1997) and Congdon (2001) analyze 23 binary observations of O-ring failures y_i (1=failure) in relation to temperature t_i (Fahrenheit).
- y = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0)
- t = (53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70, 70, 70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 81)

What is $Pr(\tilde{y} = 1 | \tilde{x})$, for $\tilde{x} = 31, 33, ..., 51$?

• Bernoulli model:

$$y_i | heta_i \sim Bern(heta_i)$$
 for $i=1,\ldots,n=23.$

- Link functions
 - Link 1: Logit

$$\log\left(\frac{\theta_i}{1-\theta_i}\right) = \alpha + \beta x_i$$

- Link 2: Probit

$$\Phi(\theta_i) = \alpha + \beta x_i$$

Link 3: Complementary Log-log

$$\log(-\log(1-\theta_i)) = \alpha + \beta x_i$$

• $\alpha = -1.26$, $x_i = t_i - \overline{t}$ and $\overline{t} = 69.6$.

- Prior distribution $\beta \sim N(\mathbf{0}, V_{\beta})$
 - Prior 1: $V_{\beta} = 1.0$
 - Prior 2: $V_{\beta} = 10.0$
 - Prior 3: $V_{\beta} = 100.0$
- ullet Kernel of the posterior of eta

$$p(\beta|y, M_j) \propto p(\beta|M_j)l_j(\theta(\beta); y)$$

where j indexes the 9 models, corresponding the combination of 3 link functions and 3 prior variances.

Model	V_{eta}	Link	$10^{6}p(y M)$	Pr(M y)
$\overline{M_1}$	1	Logit	4.00156	0.311
M_2	10	Logit	1.29728	0.101
M_{3}	100	Logit	0.42559	0.033
$M_{ extsf{4}}$	1	Probit	0.38814	0.030
M_5	10	Probit	0.12163	0.010
M_{6}	100	Probit	0.03754	0.003
M_{7}	1	Log-log	4.63591	0.361
M_8	10	Log-log	1.47942	0.115
M_9	100	Log-log	0.47139	0.037

 $Pr(\tilde{y}=1|\tilde{x})$ - Bayesian model averaging (black), logit models (red), probit models (green) and complementary log-log models (blue).