

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 2 de marzo de 2022

Nombre y apellido:		Padrón:
Cuatrimestre de cursada:	Turno:	

This exam contains 5 questions.

1) Tres materiales semiconductores tienen masas efectivas similares, pero distinta energía de gap. En la tabla, se resumen algunos de sus parámetros físicos a temperatura ambiente. Con cada uno de estos materiales se fabrica un diodo de juntura P^+N de iguales dimensiones y mismos dopajes, es decir que sólo difieren en el material semiconductor. Los diodos se disponen en un arreglo serie polarizados en directa a través de una fuente de tensión $(V_F = 10\,V)$ y un resistor $(1\,k\Omega)$. ¿Cómo es la relación entre las caídas de tensión de cada uno de los diodos? (Considerar que $N_D >> n_1$ para todos los casos y que las movilidades a cada lado de la juntura son similares)

	SC 1	SC 2	SC 3
E_g (eV)	0,8	1,1	1,5
$\mu_n (\mathrm{cm}^2/(\mathrm{Vs}))$	700	900	800
$\mu_p \ (\mathrm{cm}^2/(\mathrm{Vs}))$	200	300	250

- A) $V_{D1} > V_{D2} > V_{D3}$.
- B) $V_{D3} > V_{D2} > V_{D1}$.
- C) $V_{D1} > V_{D3} > V_{D2}$.
- D) $V_{D2} > V_{D3} > V_{D1}$.
- E) $V_{D1} = V_{D2} = V_{D3} = 0.7 \text{ V}.$
- F) $V_{D1} = V_{D2} = V_{D3} = V_F$.
- Calcular los parámetros del amplificador de la figura (A_{vo}; R_{IN}; R_{OUT}). [La respuesta se considera correcta si los 3 parámetros están bien calculados]

Datos: $V_{DD}=3.3\,\mathrm{V};~R_1=30\,\mathrm{k}\Omega;~R_2=60\,\mathrm{k}\Omega;~R_3=4\,\mathrm{k}\Omega;~R_s=3\,\mathrm{k}\Omega;~V_T=-0.7\,\mathrm{V};~\mu\,C_{ox}'=120\,\mathrm{\mu}\mathrm{A}~\mathrm{V}^{-2};~W/L=50;~\lambda=0.$

Solution:
$$V_{GS} = -V_{DD} \frac{30 \,\mathrm{k}\Omega}{30 \,\mathrm{k}\Omega + 60 \,\mathrm{k}\Omega} = -1.1 \,\mathrm{V}$$

 $I_{DQ} = -1/2 \,\mu \,C_{ox}' \,W/L (V_{GS} - V_T)^2 = -480 \,\mu\mathrm{A}$
 $V_{DS} = 480 \,\mathrm{pA} \times 4 \,\mathrm{k}\Omega - 3.3 \,\mathrm{V} = -1.38 \,\mathrm{V}$
 $g_m = \mu \,C_{ox}' \,W/L (V_{GS} - V_T) = 2.4 \,\mathrm{m\,S}; \, r_o \to \infty.$
 $R_{IN} = 20 \,\mathrm{k}\Omega; \, R_{OUT} = 4 \,\mathrm{k}\Omega; \, A_{vo} = -g_m \times R_{OUT} = -2.4 \,\mathrm{m\,S} \times 4 \,\mathrm{k}\Omega = -9.6$

Página 1 de 2

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 2 de marzo de 2022

3) Calcular VCEO para el circuito de la figura.

Datos: $\beta = 140$; $V_{CC} = 5 \text{ V}$; $R_{B1} = 100 \text{ k}\Omega$; $R_{B2} = 286.7 \text{ k}\Omega$; $R = 1 \text{ k}\Omega$; $V_T = 0.8 \text{ V}$; $\mu_D C_{cc}^{\prime} W/L = 480 \text{ uA V}^{-2}$.

Solution:
$$I_B = -\frac{5\,\mathrm{V} - 0.7\,\mathrm{V}}{286.7\,\mathrm{k}\Omega} + \frac{0.7\,\mathrm{V}}{100\,\mathrm{k}\Omega} = -7.9983\,\mathrm{pA}$$
 $I_C = \beta\,I_B = -1.1198\,\mathrm{mA}$
 $V_R = 1.1198\,\mathrm{V}$

$$V_{CS} = \sqrt{\frac{1.1176\,\mathrm{mA}}{0.24\,\mathrm{mA}\,\mathrm{V}^{-2}}} + 0.8\,\mathrm{V} = 2.96\,\mathrm{V}$$

$$V_{CEQ} = V_R + V_{CS} - V_{CC} = -0.9202\,\mathrm{V}.$$

- 4) Se diseña un amplificador emisor común sin realimentación y sin carga, polarizado con una única R_B y una única R_C . A la entrada, la fuente de señal presenta una tensión v_s pico y una resistencia serie R_s no nula. Al implementar el amplificador, el transistor utilizado tiene un β considerablemente mayor que lo estimado en la etapa de diseño. ¿Qué consecuencias tendrá esto sobre el desempeño del amplificador? (Considerar despreciable el efecto Early).
 - A) El amplificador podría distorsionar por alinealidad.
 - B) El amplificador podría distorsionar por saturación.
 - C) El amplificador podría distorsionar por corte.
 - D) La A_{vo} disminuirá considerablemente.
 - E) La R_{OUT} disminuirá considerablemente.
 - F) La R_{IN} disminuirá considerablemente.
- 5) Diodos de potencia: ¿Qué consideraciones constructivas se tienen en cuenta al fabricar un diodo PN de potencia?
 - A) Los dopajes deben ser altos en la juntura para aumentar E₀ y soportar mayores tensiones.
 - B) Los dopajes deben ser altos para aumentar ϕ_B y aumentar $V_{BE(ON)}$.
 - C) Lejos de la juntura metalúrgica, el dopaje debe disminuir para reducir su conductividad.
 - D) El área del diodo debe ser grande para poder manejar corrientes altas.
 - E) El área del diodo debe ser grande para aumentar la capacidad del diodo, y mejorar su tiempo de respuesta.

Página 2 de 2