Corrigé Série 4

Exercice 1

Process
$$A_n = (X_n = 1)$$
 and hypothèses $P(A_n = 1) = \frac{1}{n^2}$ et $P(X_n = 0) = 1 - \frac{1}{n^2}$

Posons
$$A_n = \{X_n = 1\}$$
, par hypothèse, $P(A_n) = \frac{1}{n^2}, \forall n \geq 1$, donc

$$\sum_{n\geq 1} P\left(A_n\right) < \infty$$

D'après le lemme de Borel-Cantelli, $P\left(\limsup_n A_n\right)=0$, ou de manière équivalente $P\left(\sum_{n\geq 1} 1_{A_n}=\infty\right)=0$ c'est-à-dire

$$P\left(\sum_{n\geq 1} 1_{A_n} < \infty\right) = 1,$$

il suffit alors de remarquer que $X_n = 1_{A_n}$.

Exercice 2

a) On note par F_X la fonction de répartition de X, donc $F_X(x) = P(X \le x)$ La fonction de répartition de U_n est définie par $F_{U_n}(x) = P(U_n \le x)$, on a alors

$$F_{U_n}(x) = P(U_n \le x) = P\left(\max_{1 \le i \le n} X_i \le x\right) = P\left(\bigcap_{i=1}^n \{X_i \le x\}\right) =$$

$$= \prod_{i=1}^n P(X_i \le x) \text{ par indépendance}$$

$$= \prod_{i=1}^n F_{X_i}(x) = (F_X(x))^n \text{ car les v.a.} X_i \text{ sont de même loi que } X$$

b) De la même manière

$$F_{L_n}(x) = P(L_n \le x) = P\left(\min_{1 \le i \le n} X_i \le x\right) = 1 - P\left(\min_{1 \le i \le n} X_i > x\right) =$$

$$= 1 - P\left(\bigcap_{i=1}^n \{X_i > x\}\right) = 1 - \prod_{i=1}^n P(X_i > x) \text{ par indépendance}$$

$$= 1 - \prod_{i=1}^n (1 - P(X_i \le x)) = 1 - \prod_{i=1}^n (1 - F_{X_i}(x)) = 1 - (1 - F_{X}(x))^n$$
car les v.a. X_i sont de même loi que X

c) Pour tout $n \geq 1$, la variable aléatoire nL_n est à valeurs dans [0, n] car chaque X_i est à valeurs dans [0, 1]

donc $\forall x < 0 \ P(nL_n \le x) = 0$ En outre, $X \hookrightarrow \mathcal{U}_{[0,1]}$, donc $F_X(x) = x1_{[0,1]}(x)$ Soit $x \ge 0$, pour tout $n \ge x$,

$$P(nL_n \le x) = P\left(L_n \le \frac{x}{n}\right) =$$

$$= 1 - \left(1 - F_X(\frac{x}{n}\right)^n =$$

$$= 1 - \left(1 - \frac{x}{n}\right)^n$$

Donc $\lim_{n \longrightarrow +\infty} P(nL_n \le x) = \lim_{n \longrightarrow +\infty} 1 - \left(1 - \frac{x}{n}\right)^n = (1 - e^{-x}) 1_{\{x \ge 0\}}(x)$ qui est la fonction de répartition de la loi exponentielle de paramètre 1.

Exercice 3

1) Soit $\varepsilon > 0$ un réel, pour tout $n \ge 1$, on a $P(|X_n + 1| > \varepsilon) = \frac{1}{n^2}$, donc

$$\lim_{n \to +\infty} P(|X_n + 1| > \varepsilon) = 0$$

et $(X_n)_{n\geq 1}$ converge en probabilité vers -1

2) On a, $\forall n \geq 1, P(X_n \neq 1) = \frac{1}{n^2}$, donc, en posant $A_n = \{X_n \neq 1\}$

$$\sum_{n>1} P\left(A_n\right) < \infty$$

D'après Borel-Cantelli, cela signifie qu'avec probabilité 1, il n'y a qu'un nombre fini de valeurs de n pour lesquelles X_n n'est pas égal à 1, autrement dit, avec probabilité 1, X_n est égal à 1 pour n assez grand, c'est-à-dire que la suite $(X_n)_{n\geq 1}$ converge presque sûrement vers -1.

3) Si la convergence L^1 de la la suite $(X_n)_{n\geq 1}$ était possible, on aurait nécessairement

$$\lim_{n \to +\infty} E(X_n) = E(-1) = -1$$

or, $\forall n \geq 1$

$$E(X_n) = -1 \times \left(1 - \frac{1}{n^2}\right) + \left(n^2 - 1\right) \times \frac{1}{n^2} = 0$$

Il n'y a donc pas de convergence L^1 de la la suite $(X_n)_{n\geq 1}$.

Exercice 4

On a pour tout $i \geq 1$, $X_i \hookrightarrow \mathcal{P}(1)$, on sait $E(X_i) = 1$ et $V(X_i) = 1$ S_n est la somme de n variables aléatoires indépendantes,

et de même loi
$$\mathcal{P}\left(1\right)$$
, alors (cours) $S_{n}=\sum_{i=1}^{n}X_{i}$

est une variable aléatoire de loi $\mathcal{P}(n)$, et dont la loi est donnée par

$$P(S_n = k) = e^{-n} \frac{n^k}{k!}, \quad k = 0, 1, \dots$$

$$P(S_n \le n) = P\left(\bigcup_{k=0}^n \{S_n = k\}\right) =$$

$$= \sum_{k=0}^n P(S_n = k) =$$

$$= e^{-n} \sum_{k=0}^n \frac{n^k}{k!}$$

Ainsi

$$P(S_n \le n) = P(S_n - n \le 0) =$$

= $P\left(\frac{S_n - n}{\sqrt{n}} \le 0\right)$

Le théorème central limite nous permet alors d'écrire

$$\lim_{n \longrightarrow +\infty} P\left(\frac{S_n - n}{\sqrt{n}} \le 0\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-\frac{x^2}{2}} dx = \frac{1}{2}$$

et on a le résultat suivant concernant une limite de suite

$$\lim_{n \to +\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} = \frac{1}{2}$$

autrement dit

$$\sum_{k=0}^{n} \frac{n^k}{k!} \underset{n \longrightarrow +\infty}{\sim} e^n$$