噬菌体的分子生物学

- λ 噬菌体的表达调控几乎包括所有原核生物的调控方式:
- ❖ 启动子、终止子、诱导、阻遏
 - 反义RNA 翻译水平调控
- ❖ 抗终止一时序调控
- ❖ 溶原/溶菌选择的结构基础

λ phage

- ❖ 溶原/溶菌选择
- ❖ 免疫原性:
 同种噬菌体感染
 后进入溶原途径
- ❖ 环境因素诱导: 紫外线等因素 进入裂解状态

溶原、溶菌过程示意图

λ噬菌体简介

- ❖ 双链线状DNA分子, 48502bp
- → 两条单链5′端有突出的12个碱基,回文对称, 富含GC-COS位点
- * 从 λ 噬菌体体内提取的 DNA, EcoRI 酶切 6 片段 退火后酶切 5 片段
- ❖ 黏性末端切平,则失去感染活性

λ噬菌体黏性末端的环化

科斯质粒(cosmid: cos site-carrying plasmid)

Lambda has two lifestyles LYTIC CASCADE LYSOGENIC ESTABLISHMENT repression Immediate early repression cro = negative regulator N = antiterminatorDelayed early activation cll, clll regulators cl represso 7 recombination genes 2 replication genes Q antiterminator Late 10 head genes LYSOGENIC 11 tail genes MAINTENANCE 2 lysis genes ©virtualtext www.ergito.com PROGENY PHAGE

时序调控(溶菌)

早早期基因:

启动子和宿主基因类似

- Cro 负调控因子
- N 抗终止子

晚早期基因:

- C II 和C III
- 7个重组基因
- 2个复制基因
- 0 抗终止子

晚期基因:

- 10个头部基因
- 11个尾部基因
- 2个裂解基因

λ噬菌体基因组特征

- 🔹 重组区、调控区、复制区、结构基因区
- ◆ 与调控有关的基因: C_{||}与C_{||}之间
- ▶ N个启动子 每一个转录单位包括功能上并不直接相关 的基因

cos site for

head proteins

Integrase (for integration

- * 转录调控:起始和终止,溶原/溶菌
- 🙀 双链结构:结构基因不对称转录

λ噬菌体基因结构示意图

与调控有关的基因

- P₁: λ基因左侧区域转录启动子
- P_R: λ基因右侧区域转录启动子
- 0_L: 非编码区(约50bp),位于CI和N基因之间
- O_R: 非编码区(约50bp),位于CI和Cro之间

λ噬菌体基因的时序表达

请关注没有表达的蛋白!

N-p

Anti-termination protein

for delayed early stage

Q-p

Anti-termination protein

for late stage

N

NusA

NusA 蛋白

- antitermination N protein utilization substance
- 转录起始→ σ因子脱落 → NusA 与 核心酶结合
 迫使RNApol 在 terminator停留
- 与 p 一起协同作用使RNA转录停止

Regulation model

Early stage;

N蛋白、Cro蛋白的功能

Lambda has two lifestyles LYTIC CASCADE LYSOGENIC ESTABLISHMENT repression Immediate early repression cro = negative regulator N = antiterminatorDelayed early activation cll, clll regulators cl represso 7 recombination genes 2 replication genes Q antiterminator Late 10 head genes LYSOGENIC 11 tail genes MAINTENANCE 2 lysis genes ©virtualtext www.ergito.com PROGENY PHAGE

时序调控

早早期基因:

启动子和宿主基因类似

- Cro 负调控因子
- N 抗终止子

晚早期基因:

- C II 和C III
- 7个重组基因
- 2个复制基因
- 0 抗终止子

晚期基因:

- 10个头部基因
- 11个尾部基因
- 2个裂解基因

CI蛋白的功能?

♦ P R/PL: Strong promoter

λ噬菌体Promoter

Negative control site with CI/ CRO

Promoter for Repressor-Establishment

→ PE: Promoter for lysogenic-Establishment

Weak promoter: Transcription CI gene (anti-sense CRO RNA)

Positive control with CII/CIII

◆ PM: Promoter for lysogenic –Maintenance

Weak promoter: Transcription CI gene

翻译效率低 RNA链长短区别/SD序列

Positive control with??

Negative control site with CI/ CRO

P int: Promoter for Integration

Located on the downstream of CIII, Positive control with CII/CIII

Delayed early stage

与λ噬菌体溶原选择相关的蛋白

- *? 通过PE建立溶原,但不能保持溶原
- * ? 蛋白作为正调启动 PE 转录 CI gene, 维持溶原
- ◆ CIII 参与溶原建立过程
- * N: Anti-termination protein

 for delayed early stage
- Int蛋白

Head Tail	P _R O _R CRO tR ₁ CII O P Q S R	
cos	С	os
tL ₂ int P _{int} Xis CIII tL ₁ N O _L P	P _L CI P _{RM} P _{RE}	

CI蛋白的功能

- ●阻遏蛋白维持 溶原循环过程
- ◆循环过程一旦 被打乱,噬菌体 将进入溶菌过程

λ噬菌体溶原状态下 表达的蛋白?

决定溶原溶菌选择的分子基础?

RNA polymerase	binding site P _{RM}	<				
Repressor protein Lys Thy Ser Met NH ₂ AAAACACGAGUAppp						
c/ mRNA	O _E 3	O _R 2	O _R 1			
TITTTSTGCTCATACGTTAAATC TATCACCGCAAGGGATWATATCTAACACCGTGCGTGTTGACTATTT TACCTCTGGCGGTGATAATGSTTGC AAAAACACGAGTATSCAATTTAGATAGTGGCGTTCCCTATTTATAGATTGTGGCACGCAC						
			pppAUG cro mRi	NA		
		RI	NA polymerase binding site	PR		
	O _l 3	O _L 2	O _L 1			
CAGA "AACCATCTGCGGTGATAAAT TATCTCTGGGCGGTGTTGACATAAA TACCACTGGCGGTGATACTGAGCACATCA GTCTA TTGGTAGACGCCACTATTTAATAGAGACCGCCACAACTGTATTTATGGTGACCGCCACTATGACTCGTGTAGT						
			pppAUC N ml			
	n	⋝R	NA polymerase binding site	P		

Figure 12.24

Each operator contains three repressor-binding sites, and overlaps with the promoter at which RNA polymerase binds. The orientation of \mathcal{O}_{L} has been reversed from usual to facilitate comparison with \mathcal{O}_{R} .

p/o结构与启动子活性

01、02、03 三个位点与CI亲和力不同

以0_R为例,对于CI蛋白,以二聚体形式与操作子结合:

- ❖ CI蛋白亲和力: 0_R1》0_R2》0_R3
- CI浓度较低时,与O_R1结合,阻止P_{R、}P_L转录 (空间环化)
- ◆ CI浓度较高时,还与0₂2,促进Pμ转录
- * CI浓度很高时,进一步与 0_R 3结合,占据 P_M -10区、<math>-35区,阻断 P_M 进行的CI基因的转录——一负反馈

CI蛋白与0_R结合对P_R、P_M活性的影响

P_R有活性; P_M无活性

P_M有活性; P_R无活性

PR和PM无活性

PR和PM无活性

01、02、03 三个位点与Cro亲和力不同

以O_R为例:对于Cro蛋白,也以二聚体形式与操作子结合

- Cro蛋白亲和力: 0_R3》0_R2》0_R1
- ightharpoonup Cro浓度较低时,与 0_R 3结合,阻止CI 表达, P_R 转录
- Cro浓度较高时,还与0₂2 结合,对P₂也有阻遏作用
- ightharpoonup Cro浓度很高时,进一步与 O_R 1结合 ,阻断 P_{M_N} P_R 转录 因为Q大量表达, $P_{R'}$ 顺利启动

溶原和溶菌的选择

◆ CI和Cro阻遏

 P_{L} 、 P_{R} 目的不同:

CI ———溶原

Cro--溶菌

❖ 溶原和溶菌的选择:

C??和Cro竞争Opereator

cI wins, lysogeny results

cro wins, lytic cycle results

思考题

预测表型:

Cro蛋白表达被CI蛋白抑制

CI蛋白突变

CII 蛋白突变

N蛋白突变

λ噬菌体感染宿主目的

 λ phage \Longrightarrow host \Longrightarrow RNApol. binding P_RO_R CRO-p binding OR3 \longrightarrow off P_R 野生型噬菌体HFL有活性 (high frequency lysogenesis) HFL gene mut. hfl HFL突变:溶原 HFL-p degradation CII-p

λ噬菌体溶菌建立

- ❖ 紫外线或丝裂霉素:

CI蛋白水解(111-112)

—→ P_R开放

Cro、Q蛋白大量产生

λ噬菌体溶原化途径的建立

❖营养耗竭:

CII蛋白稳定性提高 CIII蛋白稳定性提高

多重感染(Multiplicity of infection) MOI ≥10
 意味营养不足 → CII蛋白稳定性提高

其它

启动子PE的作用

- · 表达CI蛋白,翻译效率比PM高7~8倍
- · 使转录以相反的方向经过cromRNA的反义RNA

λ噬菌体的调控区

λ噬菌体的免疫区域

cos

cos

tL₂ int P_{int} Xis CIII tL₁ N O_LP_L CI P_{RM}

 $\mathbf{P}_{\mathbf{RE}}$

· Int gene and retro-regulation of sib site

sib site negative control Int gene by sib (retro-regulation)

When lysogenic way be selected

λ的整合与切除

