Análise sintática

Função, interação com o compilador Análise descendente e ascendente Especificação e reconhecimento de cadeias de tokens válidas Implementação Tratamento de erros

Prof. Thiago A. S. Pardo

Análise sintática ascendente

- Parte-se dos símbolos terminais em direção ao símbolo inicial da gramática
- Derivação mais à direita

- Redução: operação de substituição do lado direito de uma produção pelo não-terminal correspondente do lado esquerdo
 - □ Para a regra A → α, α pode ser reduzido em A
- Analisadores sintáticos ascendentes
 - □ Analisadores de empilha-reduz (*shift-reduce*)

3

Análise sintática ascendente

- Componentes do analisador ascendente
 - Pilha, onde os símbolos a serem reduzidos são empilhados
 - Tabela sintática que guia o processo de empilhamento e redução
- Processo de <u>reconhecimento de uma sentença</u>
 - Empilhar símbolos da cadeia de entrada
 - Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
 - Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Exemplo

	Pilha	Cadeia	Regra
<s> ::= [<l>] a <l> ::= <l>;<s> <s></s></s></l></l></l></s>	\$	[a;a]\$	
Reconhecer a cadeia [a;a]			

5

Análise sintática ascendente

Exemplo

- F -	Pilha	Cadeia	Regra
0 [1]	\$	[a;a]\$	empilha [
<s> ::= [<l>] a</l></s>	\$[a;a]\$	empilha a
<l> ::= <l>;<s> <s></s></s></l></l>	\$[a	;a]\$	reduz S→a
	\$[S	;a]\$	reduz L→S
Reconhecer a cadeia [a;a]	\$[L	;a]\$	empilha;
	\$[L;	a]\$	empilha a
	\$[L;a]\$	reduz S→a
	\$[L;S]\$	reduz L→L;S
	\$[L]\$	empilha]
	\$[L]	\$	reduz S→[L]
	\$S	\$	SUCESSO

- O analisador empilha símbolos até ter na pilha uma seqüência de símbolos que corresponde à definição de um não terminal
 - Seqüência de símbolos: lado direito da produção
 - Não terminal: lado esquerdo da produção

Handle

- Produção cujo lado direito está na pilha
- Operação de redução: substituição do lado direito do handle pelo seu lado esquerdo
 - O uso da seqüência correta de handles no processo de análise leva ao símbolo inicial da gramática
 - Derivação mais a direita para a cadeia de entrada

Análise sintática ascendente

Exemplo

- F -	Pilha	Cadeia	Regra
0 [1]	\$	[a;a]\$	empilha [
<\$> ::= [<l>] a</l>	\$[a;a]\$	empilha a
<l> ::= <l>;<s> <s></s></s></l></l>	\$[a	;a]\$	reduz S→a
	\$[S	;a]\$	reduz L→S
	\$[L	;a]\$	empilha ;
Haveria outras opções	\$[L;	a]\$	empilha a
de handles?	\$[L;a]\$	reduz S→a
	\$[L;S]\$	reduz L→L;S
	\$[L]\$	empilha]
	\$[L]	\$	reduz S→[L]
	\$S	\$	SUCESSO

Exemplo

	Piina	Cadela	Regra
0 []]] -	\$	[a;a]\$	empilha [
<s> ::= [<l>] a</l></s>	\$[a;a]\$	empilha a
<l> ::= <l>;<s> <s></s></s></l></l>	\$[a	;a]\$	reduz S→a
	\$[S	;a]\$	reduz L→S
	\$[L	;a]\$	empilha ;
Haveria outras opções	\$[L;	a]\$	empilha a
de handles?	\$[L;a]\$	reduz S→a
■ L→S	\$[L;S]\$	reduz L→L;S
O que aconteceria?	\$[L]\$	empilha]
	\$[L]	\$	reduz S→[L]
	\$S	\$	SUCESSO

9

Análise sintática ascendente

- Operações durante a análise
 - Empilha: coloca-se no topo da pilha o primeiro símbolo da cadeia de entrada
 - Reduz: substitui-se a lado direito do handle pelo seu lado esquerdo
 - Aceita: a cadeia de entrada é reconhecida
 - □ Erro: a cadeia de entrada não é reconhecida

- Bottom-up, ascendente ou redutiva
 - Analisadores de precedência de operadores
 - Analisadores LR
 - SLR: Simple LR
 - LR Canônico
 - Look Ahead LR: LALR

11

ASA: precedência de operadores

- Simples e eficiente
- Aplicada, principalmente, para o <u>reconhecimento de</u> <u>expressões</u>
- Subclasse de gramáticas
 - □ Gramáticas de (precedência de) operadores
 - Não há símbolos não terminais adjacentes
 - Não há produções que derivam a cadeia nula

 Exemplo: a gramática abaixo não é de precedência de operadores

$$::= | () | id ::= + | -$$

Transformando-a em gramática de operadores:

$$::= + | - | () | id$$

13

ASA: precedência de operadores

 Para identificar os handles, utilizam-se relações de precedência existentes entre os símbolos terminais (operandos e operadores) em uma tabela sintática (ou de precedência)

```
□ <, > e =
```

- Considere os terminais a e b
 - a<b significa que a tem precedência menor do que b
 - a=b significa que a e b têm a mesma precedência
 - a>b significa que a tem precedência maior do que b
- Durante a análise ascendente, na pilha:
 - < identifica o limite esquerdo do lado direito do handle</p>
 - = indica que os terminais envolvidos pertencem ao mesmo handle
 - > identifica o limite direito do lado direito do handle

Tabela sintática

- Matriz quadrada que relaciona todos os terminais da gramática e o símbolo delimitador utilizado (\$)
 - Primeira linha da tabela: terminais da cadeia sendo analisada
 - Primeira coluna da tabela: terminais do topo da pilha

Poucos terminais são operadores

Onde estão os não terminais?

13

ASA: precedência de operadores

Uso da tabela sintática

- Seja a o terminal mais ao topo da pilha (os não terminais são ignorados) e b o primeiro terminal da cadeia sendo analisada
 - Se a<b ou a=b, então se empilha b
 - Se a>b, então se procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - O lado direito do handle estará delimitado na pilha pelos símbolos
 - Os não terminais não precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos

Exemplo: expressões lógicas

<e> ::= <e>/<t> <t></t></t></e></e>
<t> ::= <t>&<f> <f></f></f></t></t>
<f> ::= (<e>) id</e></f>

Tabela sintática

	id	/	&	()	\$
id		^	>		^	>
/	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	<	<	<	=	
)		^	>		^	>
\$	<	<	<	<		

Pilha	Cadeia	Regra
\$	id&id/id\$	

17

ASA: precedência de operadores

Exemplo: expressões lógicas

<E> ::= <E>/<T> | <T> <T> ::= <T>&<F> | <F>

<F> ::= (<E>) | id

Tabela sintática

	id	/	&	()	\$
id		۸	>		۸	۸
/	٧	۸	<	٧	۸	۸
&	٧	۸	>	٧	۸	۸
(<	<	<	<	=	
)		^	>		^	^
\$	<	<	<	<		

Pilha	Cadeia	Regra
\$<	id&id/id\$	empilha
\$ <id>></id>	&id/id\$	reduz
\$<	&id/id\$	empilha
\$<&<	id/id\$	empilha
\$<& <id>></id>	/id\$	reduz
\$<&>	/id\$	reduz
\$<	/id\$	empilha
\$ <</td <td>id\$</td> <td>empilha</td>	id\$	empilha
\$ <id	\$	reduz
\$	\$	reduz
\$E	\$	SUCESSO

Exercício: reconheça a expressão (id)

PilhaCadeiaRegra\$(id)\$

Tabela sintática

	id	/	&	()	\$
id		^	^		^	>
/	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	٧	٧	٧	II	
)		>	>		>	>
\$	<	<	<	<		

19

ASA: precedência de operadores

Exercício: reconheça a expressão (id)

Tabela sintática

	id	/	&	()	\$
id		۸	>		۸	۸
/	٧	۸	<	٧	۸	۸
&	٧	۸	>	٧	۸	۸
(<	<	<	<	=	
)		^	>		^	^
\$	<	<	<	<		

Pilha	Cadeia	Regra
\$<	(id)\$	empilha
\$<(<	id)\$	empilha
\$<(<id>></id>)\$	reduz
\$<(=)\$	empilha
\$<(=)>	\$	reduz
\$E	\$	SUCESSO