AI BASED

DIABETES

PREDICTION

SYSTEM

PHASE-4

Processing for Missing Values and Outliers

Creating New Feature Interactions

Processing for Missing Values and Outliers

na_cols = missing_values_table(df, True)

	n_miss	ratio
Insulin	374	48.70
SkinThickness	227	29.56
BloodPressure	35	4.56
BMI	11	1.43
Glucose	5	0.65

- 1. Define a Function about comparing target variable with missing values
- 2. Fill the missing values of some variables with the median
- 3.Fill the missing values of *Insulin* and *Skin Thickness* variables
- 4. Standardization of variables
- 5.Implement the KNN method
- 6.Undo the standardization of these variables

Define a Function about comparing target variable with missing values

```
def missing_vs_target(dataframe, target, na_columns):
temp_df = dataframe.copy()
for col in na_columns:
 temp_df[col + '_NA_FLAG'] = np.where(temp_df[col].isnull(), 1, 0)
na_flags = temp_df.loc[:, temp_df.columns.str.contains("_NA_")].columns
for col in na_flags:
print(pd.DataFrame({"TARGET_MEAN":
temp_df.groupby(col)[target].mean(),
"Count": temp_df.groupby(col)[target].count()}), end="\ln \ln (n)
missing vs target(df, "Outcome", na cols)
```

TARGET_MEAN Count

Glucose_NA_FLAG

O

0.348624 763

1

0.400000

TARGET_MEAN Count

BloodPressure_NA_FLAG

0

0.343793 733

1

0.457143 35

TARGET_MEAN Count

SkinThickness_NA_FLAG

)

0.332717 541

1

0.387665

22

Fill the missing values of some variables with the median

```
df["glucose"] =
df["glucose"].fill
na(df["glucose"].media
n())
df["bloodpressure"] =
df["bloodpressure"].fill
na(df["bloodpressure"].
median()) df["bmi"] =
df["bmi"].fillna(df["bmi
"].median())
```

Standardization of variables

scaler = MinMaxScaler()

dff =

pd.DataFrame(scaler.fit_transform(dff), columns=dff.columns)

dff.head

	Insulin	Skin Thickness
0	NaN	0.56
1	NaN	0.44
2	NaN	NaN
3	0.230797	0.32
4	0.444284	0.56

Implement The KNN Method

Insulin	SkinThickness	
0	0.591201	0.560000
1	0.477173	0.440000
2	0.382257	0.441183
3	0.230797	0.320000
4	0.444284	0.560000

from sklearn.impute import KNNImputer imputer = KNNImputer(n_neighbors=5):

dff =
pd.DataFrame(imputer.fit_transform(dff),
columns=dff.columns)
dff.head()

Undo the standardization of these variables

```
dff = pd.DataFrame(scaler.inverse_trans
form(dff), columns=dff.columns)
dff.head()
```

	Insulin	SkinThickness
0	218.925	35.00000
1	179.400	29.00000
2	146.500	29.05915
3	94.000	23.00000
4	168.000	35.00000

```
dff = pd.DataFrame(scaler.inverse_transform(dff),
columns=dff.columns)
dff.head()
```

```
Pregnancies 0
Glucose 0
BloodPressure 0
SkinThickness 0
Insulin 0
BMI 0
DiabetesPedigreeFunction 0
Age 0
Outcome 0
dtype: int64
```

Create a Insulin Categorical variable

1

Create a Glucose Categorical variable 2

Create the Age Categorical variable 3

Create the BMI Categorical variable

4

Create a Diastolic Blood Pressure Categorical variable 5

Create a Insulin Categorical variable

Create a Glucose Categorical variable

```
df.loc[(df['Glucose'] < 70), 'GLUCOSE_CAT'] ="hipoglisemi"
df.loc[(df['Glucose'] >= 70) & (df['Glucose'] < 100) , 'GLUCOSE_CAT']
="normal" df.loc[(df['Glucose'] >= 100) & (df['Glucose'] < 126) ,
'GLUCOSE_CAT'] ="imparied glucose" df.loc[(df['Glucose'] >= 126),
'GLUCOSE_CAT'] = "hiperglisemi"

df.groupby("GLUCOSE_CAT").agg({"Outcome": ["mean", "count"]})
```

Outcome		
	mean	count
GLUCOSE_CAT		
hiperglisemi	0.592593	297
hipoglisemi	0.000000	11
imparied glucose	0.279570	279
normal	0.077348	181

Create the Age Categorical variable

```
df.loc[(df['Age'] >= 18) & (df['Age'] < 30) , 'AGE_CAT'] ="young_women_"
df.loc[(df['Age'] >= 30) & (df['Age'] < 45) , 'AGE_CAT'] ="mature_women"
df.loc[(df['Age'] >= 45) & (df['Age'] < 65) , 'AGE_CAT'] ="middle_age"
df.loc[(df['Age'] >= 65) & (df['Age'] < 75) , 'AGE_CAT'] ="old_age"
df.loc[(df['Age'] >= 75) , 'AGE_CAT'] ="elder_age"

df.groupby("AGE_CAT").agg({"Outcome": ["mean","count"]})
```

Outcome

	mean	count
AGE_CAT		
mature_women	0.493724	239
middle_age	0.529915	117
old_age	0.250000	16
young_women_	0.212121	396

CREATE THE BMI CATEGORICAL VARIABLE

: : :	BMI_CAT		
\vdots \vdots	1st_Obese	0.438298	235
	2nd_Obese	0.452830	212
: : :	3rd_Obese	0.611111	36
	normal	0.068627	102
: : :	overweight	0.223464	179
	weak	0.000000	4

```
df.loc[(df['BMI'] < 16), 'BMI_CAT'] ="overweak"
df.loc[(df['BMI'] >= 16) & (df['BMI'] < 18.5), 'BMI_CAT'] = "weak"
df.loc[(df['BMI'] >= 18.5) & (df['BMI'] < 25), 'BMI_CAT'] = "normal"
df.loc[(df['BMI'] \ge 25) & (df['BMI'] < 30), 'BMI_CAT'] = "overweight"
df.loc[(df['BMI'] >= 30) & (df['BMI'] < 35), 'BMI_CAT'] = "1st_Obese"
df.loc[(df['BMI'] >= 35) & (df['BMI'] < 45), 'BMI_CAT']
="2nd_Obese"
df.loc[(df['BMI'] >= 45), 'BMI_CAT'] = "3rd_Obese"
```

df.groupby("BMI_CAT").agg({"Outcome": ["mean","count"]})

CREATE A DIASTOLIC BLOOD PRESSURE CATEGORICAL VARIABLEI

 $\label{eq:df.loc} $$ df.loc[(df['BloodPressure'] < 70) , 'DIASTOLIC_CAT'] = "low" \\ df.loc[(df['BloodPressure'] >= 70) & (df['BMI'] < 90) , 'DIASTOLIC_CAT'] = "normal" \\ df.loc[(df['BloodPressure'] >= 90) , 'DIASTOLIC_CAT'] = "high" \\ \end{tabular}$

In [39]:

linkcode

df.groupby("DIASTOLIC_CAT").agg({"Outcome":
 ["mean","count"]})

Outcome

		3 3 3 H T
DIASTOLIC_CAT		
high	0.483333	60
low	0.247350	283
normal	0.397647	425

mean

count

CREATE A INSULIN CATEGORICAL VARIABLE

Outcome		
	mean	count
INSULIN_CAT		
abnormal	0.429112	529
normal	0.171548	239

```
df.loc[(df['Insulin'] < 120)]
'INSULIN_CAT']="normal"
df.loc[(df['Insulin'] >= 120),
'INSULIN_CAT']="abnormal"
In [41]:
df.groupby("INSULIN_CAT").agg({"Ou
tcome": ["mean", "count"]})
```

MODELING

Processing Encoding and One-Hot Encoding

```
Label Encoder
     def label_encoder(dataframe, binary_col):
         labelencoder = LabelEncoder()
         dataframe[binary_col] = labelencoder.fit_transform(dataframe[binary_col])
         return dataframe
     for col in binary cols:
         df = label encoder(df, col)
Define a Function about Label encoder
   def one_hot_encoder(dataframe, categorical_cols, drop_first=True):
   dataframe = pd.get_dummies(dataframe, columns=categorical_cols,
   drop_first=drop_first) return dataframe ohe_cols = [col for col in
   df.columns if 10 >= df[col].nunique() > 2]
   df = one_hot_encoder(df, ohe_cols) df.head()
```

Pre gna nci es	Glu cos e	Blo odP ress ure	Ski nTh ick nes s	Ins ulin	ВМІ	Dia bet esP edi gre eFu ncti on	Age		INSU LIN_ CAT	•••	BMI_ CAT_ 2nd_ Obe se	BMI_ CAT_ 3rd_ Obe se		weig	BMI_ CAT_ wea k	DIAS TOLI C_C AT_I ow	DIAS TOLI C_C AT_n orm al
0	0.64 715 0	0.86 604 5	- 0.03 063 2	7.04 454 5e- 01	1.06 486 9	0.18 109 2	0.58 892 7	1.44 569 1	1	0		0	0	0	0	0	0
1	- 0.84 897 0	- 1.20 506 6	- 0.54 391 4	7.01 385 9e- 03	0.48 018 6	- 0.86 946 5	- 0.37 810 1	- 0.18 930 4	0	0		0	0	0	1	0	1
2	1.24 559	2.01	- 0.71 500	- 4.21 273	- 0.00 649	- 1.36 472	0.74	- 0.10 325	1	0		0	0	1	0	0	1

```
primitive_success=[]
model_names=[]
y=df['Outcome']

    X=df.drop('Outcome',axis=1)

    from sklearn.model_selection import train_test_split

    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30)

def ML(algName):
  # Model Building / Training
     model=algName().fit(X train,y train)
     model name=algName.__name___
     model_names.append(model_name)
     # Prediction
     y pred=model.predict(X test)
```

Features - DecisionTreeClassifier

- Imported Libraries And Read Diabetes Dataset
- Explorary Data Analysis: We Checked The Missing Values And We Defined A Function To Grab The Categorical And Numerical Variables Of Its Dataset. We Made The Target Variable Analysis And Outliers Analysis.
- Data Preprocessing: We Filled Missing Values Of Some Variables With Median Values Or The Knn Method.

. . . .

. . . .

. . . .

- Featured Engineering: We Created New Feature Interactions For Categorical Variables.
- Encoding: One-hot-encoding Was Implemented For Categorical Variables.
- Modeling: We Created Ml Model
 For The Dataset. The Accuracy Score Was
 Calculated The Machine Learning Models That
 Are