Inhaltsverzeichnes

Ziel	
Grundlage	
Aufbau	
Durchführung	
4.1 Berechnung:	
Auswertung	
Bibliographie	

Ziel

Ziel

Das Ziel dieses Versuchs ist es, die Welleninterferenz bei LED's verschiedener Farben zu untersuchen. Dabei soll die Wellenlänge berechnet werden.

Grundlage

Die Grundlage des Versuchs bietet die Überlagerung von Wellen. Mithilfer der dadurch entstehenden Maxima der verschiedenen Ordnungen, lässt sich mit folgender Formel die Wellenlänge bestimmen¹:

$$\lambda = \frac{d \cdot a_k}{k \cdot \sqrt{e^2 + a_k^2}}; \quad k \in \{1; 2; 3; ...\}$$

Dabei ist:

• λ : die Wellenlänge des einfallenden Lichts.

• d: der Abstand der Mittelpunkte der beiden Spalte.

• e: Abstand zwischen Doppelspalt und Schirm.

• *k*: Ordnung des betrachteten **Maximums**.

• a_k : Abstand des k. **Maximums** zum 0. Maimum.

Umgestellt sieht diese Funktion wie folgt aus:

$$\lambda = \frac{g \cdot \sin(\arcsin\frac{a_n}{l})}{n} = \frac{g \cdot \sin(\tan^{-1}(\frac{a_n}{l}))}{n}$$

Dabei ist:

• g: Abstand der Gitter streben, beim Doppelspalt der Abstand der Mitte der Spalten

• *n*: Ist die Ordnung

• *l*: ist der Abstand zwischen Schirm und Gitter

Aufbau

...

Doppelspalt | LEIFIphysik, https://www.leifiphysik.de/optik/beugung-und-interferenz/grundwissen/doppelspalt (2024). ([Online; accessed 27. Aug. 2024])

Durchführung

Abstand erster Ordnung	Gruen in cm	Rot in cm	Blau in cm
a_1	10.6	13	9.4
a_2	10.2	12.8	9.3

4.1 Berechnung:

$$\lambda = \frac{g \cdot \sin(\arcsin\frac{a_n}{l})}{n} = \frac{g \cdot \sin(\tan^{-1}(\frac{a_n}{l}))}{n}$$

Dabei ist:

•
$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

- *n*: Ist 1, die Ordnung
- 1: Ist 37cm, der Abstand Schirm zum Gitter

Grün:

$$\lambda = \frac{2 \cdot 10^{-6} \cdot \sin(\tan^{-1}(\frac{0.104}{0.37}))}{1} \approx 5.41 \cdot 10^{-7} = 541 nm$$

Blau:

$$\lambda = \frac{2 \cdot 10^{-6} \cdot \sin(\tan^{-1}(\frac{0.094}{0.37}))}{1} \approx 4.75 \cdot 10^{-7} = 475 nm$$

Rot:

$$\lambda = \frac{2 \cdot 10^{-6} \cdot \sin(\tan^{-1}(\frac{0.129}{0.37}))}{1} \approx 6.58 \cdot 10^{-7} = 658 nm$$

Auswertung

Bibliographie

[1] Doppelspalt | LEIFIphysik, https://www.leifiphysik.de/optik/beugung-und-interferenz/grundwissen/doppelspalt (2024). ([Online; accessed 27. Aug. 2024])