

STUSB4500 NVM registers Description and generic access

Related products

- STUSB4500
 Standalone USB PD sink controller with short-to-VBUS protections
- STEVAL-ISC005V1
 Evaluation board for the STUSB4500 USB Power Delivery controller
- STREF-SCS001V1
 Fast and easy migration from DC barrel to Type-C

Scope

- Summary of STUSB4500 NVM operation
- NVM organization
- I2C access description for NVM Read and Write
- TotalPhase Aardvark example
- STSW-STUSB002 GUI software import and export

1	NVN	/I Principle	3
	1.1	IC Startup	3
	1.2	NVM Organization	3
	1.3	NVM map full list	4
2	I2C	NVM Access	6
	2.1	NVM registers	6
	2.1.1	1 Control registers :	6
	2.1.2	2 Data registers :	7
	2.2	NVM READ procedure	7
	2.2.1	1 Procedure	7
	2.2.2	2 Aardvark example	9
	2.3	NVM WRITE procedure	11
	2.3.1	1 Procedure	11
	2.3.2	2 Aardvark example	13
3	NVM	/I Мар	17
	3.1	NVM Map customization through STSW-STUSB002 GUI	17
	3.1.1	1 STSW-STUSB002 GUI file format	17
	3.1.2	2 STUSB4500 NVM default content (GUI file format)	17
	3.1.1	1 NVM file interface with STSW-STUSB002 GUI	18
	3.2	NVM Map Detailed Content	18

1 NVM Principle

1.1 IC Startup

The STUSB4500 is a USB power delivery controller that addresses sink devices.

It is a full autonomous and auto-run device that implements a proprietary algorithm to allow the negotiation of a power delivery contract with a source without MCU support. PDO profiles and other parameters are configured in an integrated non-volatile memory (NVM).

When the device starts, NVM content is loaded into registers, and parameters are used by the algorithms and state machines.

Device behaviour can be customised by changing some values in NVM. A specific procedure based on I2C accesses allows the read, erase and write of NVM.

Parameters are described in STUSB4500 datasheet, and NVM mapping is described in this document.

Thus, to avoid side effects, it is strongly recommended to use ST provided tools such as <u>STSW-STUSB002</u> GUI software to modify the parameters.

1.2 NVM Organization

Memory is organized into 5 banks of 64bits

Each bank can be addressed individually.

For any operation, the whole content of the bank (all the 64bits) will be affected.

Memory map: Addresses

Bank	Address										
0	0xC0	0xC1	0xC2	0xC3	0xC4	0xC5	0xC6	0xC7			
1	0xC8	0xC9	0xCA	0xCB	0xCC	0xCD	0xCE	0xCF			
2	0xD0	0xD1	0xD2	0xD3	0xD4	0xD5	0xD6	0xD7			
3	0xD8	0xD9	0xDA	0xDB	0xDC	0xDD	0xDE	0xDF			
4	0xE0	0xE1	0xE2	0xE3	0xE4	0xE5	0xE6	0xE7			

Memory map : Data

Bank	Data										
0	Data_C0	Data_C1	Data_C2	Data_C3	Data_C4	Data_C5	Data_C6	Data_C7			
1	Data_C8	Data_C9	Data_CA	Data_CB	Data_CC	Data_CD	Data_CE	Data_CF			
2	Data_D0	Data_D1	Data_D2	Data_D3	Data_D4	Data_D5	Data_D6	Data_D7			
3	Data_D8	Data_D9	Data_DA	Data_DB	Data_DC	Data_DD	Data_DE	Data_DF			
4	Data_E0	Data_E1	Data_E2	Data_E3	Data_E4	Data_E5	Data_E6	Data_E7			

Memory map: Default Values

Bank	Data										
0	0x00	0x00	0xB0	0xAA	0x00	0x45	0x00	0x00			
1	0x10	0x40	0x9C	0x1C	0xFF	0x01	0x3C	0xDF			
2	0x02	0x40	0x0F	0x00	0x32	0x00	0xFC	0xF1			
3	0x00	0x19	0x56	0xAF	0xF5	0x35	0x5F	0x00			
4	0x00	0x4B	0x90	0x21	0x43	0x00	0x40	0xFB			

1.3 NVM map full list

Bank 0

Addr	Content
0xC0	RESERVED : VENDOR_ID_LOW = 0x00
0xC1	RESERVED : VENDOR_ID_HIGH = 0x00
0xC2	RESERVED : PRODUCT_ID_LOW = 0xB0
0xC3	RESERVED : PRODUCT_ID_HIGH = 0xAA
0xC4	RESERVED : BCD_DEVICE_ID_LOW = 0x00
0xC5	RESERVED : BCD_DEVICE_ID_LOW = 0x45
0xC6	RESERVED : PORT_ROLE_CTRL = 0x00
0xC7	RESERVED : DEVICE_POWER_ROLE_CTRL = 0x00

Bank 1

Addr	Content									
0xC8	RESERVED : 0b00 GPIO_CF0			CFG[1:0] RESERVED: 0x0						
0xC9	0	1	VBUS_ DCHG_ MASK							
0xCA	Г	DISCHARGE_T	IME_TO_0V[3:0	0]	VBUS_DISCH_TIME_TO_PDO[3:0]					
0xCB				RESERVE	ED: 0x1C					
0xCC				RESERVE	ED:0xFF					
0xCD				RESERVI	ED: 0x01					
0xCE	RESERVED: 0x3C									
0xCF				RESERVE	ED: 0xDF					

Bank 2

Addr	Content
0xD0	RESERVED: 0x02
0xD1	RESERVED: 0x40
0xD2	RESERVED: 0x0F
0xD3	RESERVED: 0x00
0xD4	RESERVED: 0x32
0xD5	RESERVED: 0x00
0xD6	RESERVED : 0xFC
0xD7	RESERVED : 0xF1

Bank 3

	Bank 0										
Addr	Content										
0xD8	RESERVED: 0x00										
0xD9	RESERV	RESERVED: 0x19									
0xDA	LUT_SNK_PDO1_I[3:0]	SNK_ UNCONS_ POWER	DPM_SNK_ PDO_NUMB[1:0]	USB_ COMM_ CAPABLE							
0xDB	SNK_HL1[3:0]		SNK_LL1[3:0]								
0xDC	SNK_LL2[3:0]		LUT_SNK_PDO2_I[3:0]								
0xDD	LUT_SNK_PDO3_I[3:0]	SNK_HL2[3:0]									
0xDE	SNK_HL3[3:0] SNK_LL3[3:0]										
0xDF	RESERVED : SNK_PI	OO_FILL_0xDF	= 0x00								

Bank 4

	1									
Addr		Content								
0xE0	SNK_PDO_ FLEX1_V[1:0]			RESERVED: 0b000000						
0xE1				SNK_PDO_F	LEX1_V[9:2]					
0xE2		SNK_PDO_FLEX2_V[7:0]								
0xE3			SNK_PDO_		SNK_PDO_ FLEX2_V[9:8]					
0xE4	0		R_OK_ [1:0]	0	SNK_PDC	D_FLEX_I[9:6]				
0xE5				RESERVED:	SPARE = 0x00					
0xE6	RE	ESERVED : 0b0	010	REQ_ SRC_ CURRENT	RESERVED: 0x0					
0xE7			RESERV	'ED : ALERT_S	TATUS_1_MASK = 0x00					

2 I2C NVM Access

NVM access is done through STUSB4500 I2C read and write commands to specific registers.

2.1 NVM registers

2.1.1 Control registers:

Registers list

Addr	Content
0x95	FTP_KEY
0x96	FTP_CTRL_0
0x97	FTP_CTRL_1

FTP_KEY

Bit	7	6	5	4	3	2	1	0
Content		FTP_KEY						
Address: 0x95								
Default: 0x00)							

Default: 0x00

Description: FTP_KEY register

[7:0] FTP_KEY: Customer FTP access Key

FTP_CTRL_0

Bit	7	6	5	4	3	2	1	0
Content	FTP_ CUST_ PWR	FTP_ CUST_ RST_N	RESER VED	FTP_ CUST_ REQ	RESER VED	F	TP_CUST_SE	СТ

Address: 0x96

Default: 0x40

Description: FTP_CTRL_0 register

Docomption:	7 11 _0 114_0 10gistor							
[7]	FTP_CUST_PWR: Not used							
[6]	FTP_CUST_RST_N: NVM macro-cell reset in customer mode (Active Low)							
	0: Active reset							
	1: No reset							
[5]	RESERVED = 0							
[4]	FTP_CUST_REQ: Access request to NVM in customer mode							
[3]	RESERVED = 0							
[2:1]	FTP_CUST_SECT:							
	000: Sector 0 accessed							
	001: Sector 1 accessed							
	010: Sector 2 accessed							
	011: Sector 3 accessed							
	100: Sector 4 accessed							
	others: Not allowed in customer mode (In this case sector 0 accessed)							

FTP_CTRL_1

Bit	7	6	5	4	3	2	1	0
Content			FTP_CUST_SE	FTI	P_CUST_OPC	ODE		
Address:	0x97							

Default: 0x00

Description: FTP_CTRL_1 register

Description:	FTP_CTRL_1 register						
[7:3]	FTP_CUST_SER: NVM sector input in customer mode						
	00000: (NO_SECTOR) No sector selected						
	xxxx1: Sector 0 selected						
	xxx1x: Sector 1 selected						
	xx1xx: Sector 2 selected						
	x1xxx: Sector 3 selected						
	1xxxx: Sector 4 selected						
[2:0]	FTP_CUST_OPCODE: NVM operation in customer mode						
	000: Read memory array						
	001: Shift In Data on Program Load Register						
	010: Shift In Data on Sector Erase Register						
	011: Shift Out Data on Program Load Register						
	100: Shift Out Data on sector Erase Register						
	101: Erase memory array						
	110: Program word into EEPROM						
	111: Soft Program array						

2.1.2 Data registers:

NVM Data Read / Write registers

Addr	Content
0x53	NVM data : LSB
0x54	NVM data
0x55	NVM data
0x56	NVM data
0x57	NVM data
0x58	NVM data
0x59	NVM data
0x5A	NVM data : MSB

2.2 NVM READ procedure

2.2.1 Procedure

The following operations shall be done for NVM read:

2.2.1.1 NVM Accessibility

Before any operation, the customer access key must be written in the FTP_KEY register. This write gives the access to the FTP_CTRL_0 and FTP_CTRL_1 registers.

- Unlock NVM by writing password in FTP_KEY register :
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x95, data = 0x47

2.2.1.2 NVM Power-up Sequence

After STUSB4500 start-up sequence, the NVM is powered off.

Before any customer operation, the NVM must be powered on and reset pulse must be applied by the following sequence:

- Reset NVM internal controller and NVM : write FTP_CUST_RST_N at '0' in FTP_CTRL_0 register :
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x00
- A temporization upper than 2 us must be observed before the following write.

- Wait for command execution: 1ms
- Put NVM internal controller and NVM in operational conditions: write FTP_CUST_RST_N at '1' in FTP_CTRL_0 register:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40

2.2.1.3 NVM Customer Sector0 Read

- Set Read Sector Opcode (0b000) in FTP_CTRL_1 register :
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x00
- Load Opcode : set FTP_CUST_REQ = '1' and FTP_CUST_SECT = 0b000 in register FTP_CTRL_0 :
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution : 1ms
- Read NVM Data (8 bytes) at starting address 0x53
 - o (Less Significant Byte)
 - Data_C0 : I2C Read : dev_addr = 0x28, reg_addr = 0x53
 - Data_C1: I2C Read: dev_addr = 0x28, reg_addr = 0x54
 - \circ Data_C2 : I2C Read : dev_addr = 0x28, reg_addr = 0x55
 - o Data_C3 : I2C Read : dev_addr = 0x28, reg_addr = 0x56
 - \circ Data_C4 : I2C Read : dev_addr = 0x28, reg_addr = 0x57
 - Data_C5 : I2C Read : dev_addr = 0x28, reg_addr = 0x58
 - Data_C6: I2C Read: dev_addr = 0x28, reg_addr = 0x59
 - (Most Significant Byte)
 - Data_C7 : I2C Read : dev_addr = 0x28, reg_addr = 0x5A

2.2.1.4 NVM Customer Sector1 Read

- Set Read Sector Opcode (0b000) in FTP_CTRL_1 register :
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x00
- Load Opcode: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = 0b001 in register FTP_CTRL_0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x51
- · Wait for command execution: 1ms
- Read NVM Data (8 bytes) at starting address 0x53
 - (Less Significant Byte)
 - Data_C8 : I2C Read : dev_addr = 0x28, reg_addr = 0x53
 - Data_C9: I2C Read: dev_addr = 0x28, reg_addr = 0x54
 - Data_CA : I2C Read : dev_addr = 0x28, reg_addr = 0x55
 - $\circ \hspace{0.5cm} \text{Data_CB: I2C Read: dev_addr = 0x28, reg_addr = 0x56}$
 - \circ Data_CC : I2C Read : dev_addr = 0x28, reg_addr = 0x57
 - O Data_CD : I2C Read : dev_addr = 0x28, reg_addr = 0x58
 - o Data_CE : I2C Read : dev_addr = 0x28, reg_addr = 0x59
 - o (Most Significant Byte)
 - Data_CF: I2C Read: dev_addr = 0x28, reg_addr = 0x5A

2.2.1.5 NVM Customer Sector2 Read

- Set Read Sector Opcode (0b000) in FTP_CTRL_1 register :
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x00
- Load Opcode: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = 0b010 in register FTP_CTRL_0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution: 1ms
- Read NVM Data (8 bytes) at starting address 0x53
 - (Less Significant Byte)
 - Data_D0 : I2C Read : dev_addr = 0x28, reg_addr = 0x53
 - Data_D1 : I2C Read : dev_addr = 0x28, reg_addr = 0x54
 - Data_D2 : I2C Read : dev_addr = 0x28, reg_addr = 0x55
 - o Data_D3: I2C Read: dev_addr = 0x28, reg_addr = 0x56
 - Data_D4: I2C Read: dev_addr = 0x28, reg_addr = 0x57
 - Data_D5: I2C Read: dev_addr = 0x28, reg_addr = 0x58
 - Data_D6: I2C Read: dev_addr = 0x28, reg_addr = 0x59
 - o (Most Significant Byte)
 - Data_D7: I2C Read: dev_addr = 0x28, reg_addr = 0x5A

2.2.1.6 NVM Customer Sector1 Read

• Set Read Sector Opcode (0b000) in FTP_CTRL_1 register :

- o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x00
- Load Opcode: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = 0b011 in register FTP_CTRL_0:
- I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x51
- · Wait for command execution: 1ms
- Read NVM Data (8 bytes) at starting address 0x53
 - (Less Significant Byte)
 - Data_D8: I2C Read: dev_addr = 0x28, reg_addr = 0x53
 - o Data_D9: I2C Read: dev_addr = 0x28, reg_addr = 0x54
 - o Data_DA: I2C Read: dev_addr = 0x28, reg_addr = 0x55
 - Data_DB: I2C Read: dev_addr = 0x28, reg_addr = 0x56
 - o Data_DC : I2C Read : dev_addr = 0x28, reg_addr = 0x57
 - Data_DD: I2C Read: dev_addr = 0x28, reg_addr = 0x58
 - Data_DE: I2C Read: dev_addr = 0x28, reg_addr = 0x59
 - (Most Significant Byte)
 - Data_DF: I2C Read: dev_addr = 0x28, reg_addr = 0x5A

2.2.1.7 NVM Customer Sector4 Read

- Set Read Sector Opcode (0b000) in FTP_CTRL_1 register :
 - I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x00
- Load Opcode: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = 0b100 in register FTP_CTRL_0:
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution : 1ms
- Read NVM Data (8 bytes) at starting address 0x53
 - (Less Significant Byte)
 - Data_E0 : I2C Read : dev_addr = 0x28, reg_addr = 0x53
 - Data_E1: I2C Read: dev_addr = 0x28, reg_addr = 0x54
 - Data_E2 : I2C Read : dev_addr = 0x28, reg_addr = 0x55
 - Data_E3: I2C Read: dev_addr = 0x28, reg_addr = 0x56
 - Data_E4 : I2C Read : dev_addr = 0x28, reg_addr = 0x57
 - Data_E5 : I2C Read : dev_addr = 0x28, reg_addr = 0x58
 - Data_E6 : I2C Read : dev_addr = 0x28, reg_addr = 0x59
 - (Most Significant Byte)
 - Data_E7 : I2C Read : dev_addr = 0x28, reg_addr = 0x5A

2.2.1.8 Exit Test mode

- Clear FTP_CTRL registers
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40, 0x00
- Clear FTP_KEY register
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x95, data = 0x00

2.2.2 Aardvark example

2.2.2.1 Command list (Full memory read)

```
I2C Write: dev addr = 0x28, reg addr = 0x95, data = 0x47
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x00
Wait for command execution : 1ms
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x40
I2C Write: dev addr = 0x28, reg addr = 0x97, data = 0x00
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x50
Wait for command execution : 1ms
8 Bytes I2C Read : dev_addr = 0x28, reg_addr = 0x53
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x51
Wait for command execution : 1ms
8 Bytes I2C Read : dev addr = 0x28, reg addr = 0x53
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x52
Wait for command execution : 1ms
8 Bytes I2C Read : dev addr = 0x28, reg addr = 0x53
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x53
Wait for command execution : 1ms
```



```
8 Bytes I2C Read : dev_addr = 0x28, reg_addr = 0x53
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x54
Wait for command execution : 1ms
8 Bytes I2C Read : dev_addr = 0x28, reg_addr = 0x53
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x40, 0x00
I2C Write : dev_addr = 0x28, reg_addr = 0x95, data = 0x00
 2.2.2.2
         Sample Batch
<aardvark>
   <configure i2c="1"/>
    <i2c bitrate khz="400"/>
    <i2c write addr="0x28" radix="16"> 95 47 </i2c write>
    <i2c_write addr="0x28" radix="16"> 96 00 </i2c_write>
    <sleep ms="1"/>
    <i2c write addr="0x28" radix="16"> 96 40 </i2c write>
    <i2c write addr="0x28" radix="16"> 97 00 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 53 </i2c_write>
    <i2c read addr="0x28" count="8"/>
    <i2c_write addr="0x28" radix="16"> 96 51 </i2c_write>
    <sleep ms="1"/>
    <i2c write addr="0x28" radix="16"> 53 </i2c write>
    <i2c read addr="0x28" count="8"/>
    <i2c write addr="0x28" radix="16"> 96 52 </i2c write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 53 </i2c_write>
    <i2c read addr="0x28" count="8"/>
    <i2c_write addr="0x28" radix="16"> 96 53 </i2c_write>
    <sleep ms="1"/>
    <i2c write addr="0x28" radix="16"> 53 </i2c write>
    <i2c read addr="0x28" count="8"/>
    <i2c_write addr="0x28" radix="16"> 96 54 </i2c_write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 53 </i2c_write>
    <i2c read addr="0x28" count="8"/>
    <i2c write addr="0x28" radix="16"> 96 40 00 </i2c write>
    <i2c_write addr="0x28" radix="16"> 95 00 </i2c_write>
</aardvark>
```

2.2.2.3 Sample Results

Export Time: 2019-02-14 10:26:42

Port 0

Adapter HW Version: 3.00 FW Version: 3.51

Time 25:21.9 25:21.9 25:21.9		Read/Wr	ite	Master/	Slave	Feature	sBitrate	Address Length Data Configure: I2C=1 SPI=1 GPIO=0 Power Control Disabled I2C Pullups Disabled
25:21.9	I2C							I2C Bitrate Set to: 400
25:21.9	I2C	M	M		400	0x28	2	95 47
25:21.9	I2C	W	M		400	0x28	2	96 00
25:21.9	I2C	W	M		400	0x28	2	96 40
25:21.9	I2C	W	M		400	0x28	2	97 00
25:21.9	I2C	W	M		400	0x28	2	96 50
25:21.9	I2C	W	M		400	0x28	1	53
25:21.9	I2C	R	M		400	0x28	8	00 00 B0 AA 00 45 00 00
25:21.9	I2C	M	M		400	0x28	2	96 51
25:21.9	I2C	M	M		400	0x28	1	53

25:21.9	I2C	R	M	 400	0x28	8	10 40 9D 1C FF 01 3C DF
25:21.9	I2C	W	M	 400	0x28	2	96 52
25:22.0	I2C	W	M	 400	0x28	1	53
25:22.0	I2C	R	M	 400	0x28	8	02 40 OF 00 32 00 FC F1
25:22.0	I2C	M	M	 400	0x28	2	96 53
25:22.0	I2C	M	M	 400	0x28	1	53
25:22.0	I2C	R	M	 400	0x28	8	00 19 56 AF F5 35 5F 00
25:22.0	I2C	W	M	 400	0x28	2	96 54
25:22.0	I2C	M	M	 400	0x28	1	53
25:22.0	I2C	R	M	 400	0x28	8	00 4B 90 21 43 00 40 FB
25:22.0	I2C	W	M	 400	0x28	3	96 40 00
25:22.0	I2C	M	M	 400	0x28	2	95 00

This means the following NVM matrix:

```
00 00 B0 AA 00 45 00 00 10 40 9C 1C FF 01 3C DF 02 40 0F 00 32 00 FC F1 00 19 56 AF F5 35 5F 00 00 4B 90 21 43 00 40 FB
```

2.3 NVM WRITE procedure

2.3.1 Procedure

The following operations shall be done for NVM write:

2.3.1.1 NVM Accessibility

Before any operation, the customer access key must be written in the FTP_KEY register. This write gives the access to the FTP_CTRL_0 and FTP_CTRL_1 registers.

- Unlock NVM by writing password in FTP_KEY register
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x95, data = 0x47

2.3.1.2 NVM Power-up Sequence

After STUSB4500 start-up sequence, the NVM is powered off.

Before any customer operation, the NVM must be powered on and reset pulse must be applied by the following sequence:

- Load 0x00 to data register
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x53, data = 0x00
- Reset NVM internal controller and NVM: write FTP_CUST_RST_N at '0' in FTP_CTRL_0 register:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x00
- A temporization upper than 2 us must be observed before the following write.
- Wait for command execution : 1ms
- Put NVM internal controller and NVM in operational conditions: write FTP_CUST_RST_N at '1' in FTP_CTRL_0 register:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40

2.3.1.3 NVM Full Erase

- Set "Shift In Data on Sector Erase Register" Opcode for all sectors: FTP_CUST_SER = 0b11111 and FTP_CUST_OPCODE = 0b010
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0xFA
- Load Opcode: set FTP_CUST_REQ = '1' in register FTP_CTRL_0:
 - I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x50
- Wait for command execution: 1ms
- Set "Soft Program array": FTP CUST OPCODE = 0b111
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x07
- Load Opcode: set FTP_CUST_REQ = '1' in register FTP_CTRL_0:
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for EP (Memory Erase time) : 5ms
- Set "Erase memory array" Opcode: FTP_CUST_OPCODE = 0b101

- o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x05
- Load Opcode: set FTP CUST REQ = '1' in register FTP CTRL 0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for EP (Memory Erase time): 5ms

2.3.1.4 NVM Customer Sector0 Write

- Load NVM Data Sector 0 (8 bytes) at starting address 0x53
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96,
 data = Data_C0, Data_C1, Data_C2, Data_C3, Data_C4, Data_C5, Data_C6, Data_C7
- Wait for command execution : 1ms
- Set "Shift In Data on Program Load Register" Opcode: FTP_CUST_OPCODE = 0b001
 - I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x01
- Load Opcode: set FTP_CUST_REQ = '1' in register FTP_CTRL_0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution: 1ms
- Set "Program word into EEPROM" Opcode: FTP_CUST_OPCODE = 0b110
 - I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x06
- Load Opcode with sector value : set FTP_CUST_REQ = '1' and FTP_CUST_SECT = '000' in register FTP_CTRL_0 :
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for PP (Word Program time): 2ms

2.3.1.5 NVM Customer Sector1 Write

- Load NVM Data Sector 1 (8 bytes) at starting address 0x53
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96,
 data = Data_C8, Data_C9, Data_CA, Data_CB, Data_CC, Data_CD, Data_CE, Data_CF
- Wait for command execution: 1ms
- Set "Shift In Data on Program Load Register" Opcode: FTP_CUST_OPCODE = 0b001
 - I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x01
- Load Opcode: set FTP CUST REQ = '1' in register FTP CTRL 0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution: 1ms
- Set "Program word into EEPROM" Opcode : FTP_CUST_OPCODE = 0b110
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x06
- Load Opcode with sector value: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = '001' in register
 FTP_CTRL 0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x51
- Wait for PP (Word Program time): 2ms

2.3.1.6 NVM Customer Sector2 Write

- Load NVM Data Sector 2 (8 bytes) at starting address 0x53
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96,
 data = Data_D0, Data_D1, Data_D2, Data_D3, Data_D4, Data_D5, Data_D6, Data_D7
- · Wait for command execution: 1ms
- Set "Shift In Data on Program Load Register" Opcode: FTP_CUST_OPCODE = 0b001
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x01
- Load Opcode: set FTP_CUST_REQ = '1' in register FTP_CTRL_0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution : 1ms
- Set "Program word into EEPROM" Opcode: FTP_CUST_OPCODE = 0b110
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x06
- Load Opcode with sector value: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = '010' in register FTP_CTRL_0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x52
- Wait for PP (Word Program time): 2ms

2.3.1.7 NVM Customer Sector3 Write

- Load NVM Data Sector 3 (8 bytes) at starting address 0x53
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96,
 data = Data_D8, Data_D9, Data_DA, Data_DB, Data_DC, Data_DD, Data_DE, Data_DF

- Wait for command execution : 1ms
- Set "Shift In Data on Program Load Register" Opcode: FTP CUST OPCODE = 0b001
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x01
- Load Opcode: set FTP_CUST_REQ = '1' in register FTP_CTRL_0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- · Wait for command execution: 1ms
- Set "Program word into EEPROM" Opcode: FTP_CUST_OPCODE = 0b110
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x06
- Load Opcode with sector value: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = '011' in register
 FTP_CTRL 0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x53
- Wait for PP (Word Program time): 2ms

2.3.1.8 NVM Customer Sector4 Write

- Load NVM Data Sector 4 (8 bytes) at starting address 0x53
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96,
 data = Data_E0, Data_E1, Data_E2, Data_E3, Data_E4, Data_E5, Data_E6, Data_E7
- Wait for command execution : 1ms
- Set "Shift In Data on Program Load Register" Opcode: FTP_CUST_OPCODE = 0b001
 - I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x01
- Load Opcode: set FTP_CUST_REQ = '1' in register FTP_CTRL_0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution: 1ms
- Set "Program word into EEPROM" Opcode: FTP_CUST_OPCODE = 0b110
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x06
- Load Opcode with sector value: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = '100' in register FTP_CTRL_0:

00 00 B0 AA 00 45 00 00

- I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x54
- Wait for PP (Word Program time): 2ms

2.3.1.9 Exit Test mode

- Clear FTP_CTRL registers
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40, 0x00
- Clear FTP_KEY register
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x95, data = 0x00

2.3.2 Aardvark example

2.3.2.1 Command list (Full memory write with default values)

```
10 40 9C 1C FF 01 3C DF
02 40 0F 00 32 00 FC F1
00 19 56 AF F5 35 5F 00
00 4B 90 21 43 00 40 FB

I2C Write: dev_addr = 0x28, reg_addr = 0x95, data = 0x47
I2C Write: dev_addr = 0x28, reg_addr = 0x53, data = 0x00
I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x00
Wait for command execution: 1ms
I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40
I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40
I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0xFA
I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for command execution: 1ms
```

I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x07
I2C Write : dev addr = 0x28, reg addr = 0x96, data = 0x50

I2C Write: dev addr = 0x28, reg addr = 0x97, data = 0x05

I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for EP (Memory Erase time) : 5ms

Wait for EP (Memory Erase time) : 5ms


```
I2C Write: dev addr = 0x28, reg addr = 0x96,
data = 00 00 B0 AA 00 45 00 00
Wait for command execution : 1ms
I2C Write: dev addr = 0x28, reg addr = 0x97, data = 0x01
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x50
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x06
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for PP (Word Program time) : 2ms
I2C Write: dev addr = 0x28, reg addr = 0x96,
data = 10 40 9C 1C FF 01 3C DF
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x01
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for command execution : 1ms
I2C Write: dev addr = 0x28, reg addr = 0x97, data = 0x06
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x51
Wait for PP (Word Program time) : 2ms
I2C Write : dev_addr = 0x28, reg_addr = 0x96,
data = 02 40 0F 00 32 00 FC F1
Wait for command execution : 1ms
I2C Write: dev addr = 0x28, reg addr = 0x97, data = 0x01
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x50
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x06
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x52
Wait for PP (Word Program time) : 2ms
I2C Write : dev_addr = 0x28, reg_addr = 0x96,
data = 00 19 56 AF F5 35 5F 00
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x01
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x50
Wait for command execution : 1ms
I2C Write: dev addr = 0x28, reg addr = 0x97, data = 0x06
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x53
Wait for PP (Word Program time) : 2ms
I2C Write : dev_addr = 0x28, reg_addr = 0x96,
data = 00 4B 90 21 43 00 40 FB
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x01
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for command execution : 1ms
I2C Write: dev addr = 0x28, reg addr = 0x97, data = 0x06
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x54
Wait for PP (Word Program time) : 2ms
I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x40, 0x00
I2C Write: dev addr = 0x28, reg addr = 0x95, data = 0x00
 2.3.2.2
         Sample Batch
<aardvark>
    <configure i2c="1"/>
    <i2c_bitrate khz="400"/>
    <i2c_write addr="0x28" radix="16"> 95 47 </i2c write>
    <i2c write addr="0x28" radix="16"> 53 00 </i2c write>
    <i2c write addr="0x28" radix="16"> 96 00 </i2c write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 96 40 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 97 FA </i2c_write>
    <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
    <sleep ms="1"/>
```



```
<i2c write addr="0x28" radix="16"> 97 07 </i2c write>
    <i2c write addr="0x28" radix="16"> 96 50 </i2c write>
    <sleep ms="5"/>
    <i2c write addr="0x28" radix="16"> 97 05 </i2c write>
    <i2c write addr="0x28" radix="16"> 96 50 </i2c write>
    <sleep ms="5"/>
    <i2c write addr="0x28" radix="16"> 53 00 00 B0 AA 00 45 00 00 </i2c write>
    <sleep ms="1"/>
    <i2c write addr="0x28" radix="16"> 97 01 </i2c write>
    <i2c write addr="0x28" radix="16"> 96 50 </i2c write>
    <sleep ms="1"/>
    <i2c write addr="0x28" radix="16"> 97 06 </i2c write>
    <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
    <sleep ms="2"/>
    <i2c write addr="0x28" radix="16"> 53 10 40 9D 1C FF 01 3C DF </i2c write>
    <sleep ms="1"/>
    <i2c write addr="0x28" radix="16"> 97 01 </i2c write>
    <i2c write addr="0x28" radix="16"> 96 50 </i2c write>
    <sleep ms="1"/>
    <i2c write addr="0x28" radix="16"> 97 06 </i2c write>
    <i2c write addr="0x28" radix="16"> 96 51 </i2c write>
    <sleep ms="2"/>
    <i2c write addr="0x28" radix="16"> 53 02 40 0F 00 32 00 FC F1 </i2c write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 97 01 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
    <sleep ms="1"/>
    <i2c write addr="0x28" radix="16"> 97 06 </i2c write>
    <i2c_write addr="0x28" radix="16"> 96 52 </i2c_write>
    <sleep ms="2"/>
    <i2c write addr="0x28" radix="16"> 53 00 19 56 AF F5 35 5F 00 </i2c write>
    <sleep ms="1"/>
    <i2c write addr="0x28" radix="16"> 97 01 </i2c write>
    <i2c write addr="0x28" radix="16"> 96 50 </i2c write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 97 06 </i2c_write>
    <i2c write addr="0x28" radix="16"> 96 53 </i2c write>
    <sleep ms="2"/>
    <i2c write addr="0x28" radix="16"> 53 00 4B 90 21 43 00 40 FB </i2c write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 97 01 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
    <sleep ms="1"/>
    <i2c write addr="0x28" radix="16"> 97 06 </i2c write>
    <i2c write addr="0x28" radix="16"> 96 54 </i2c write>
    <sleep ms="2"/>
    <i2c write addr="0x28" radix="16"> 96 40 00 </i2c write>
    <i2c_write addr="0x28" radix="16"> 95 47 </i2c_write>
</aardvark>
 2.3.2.3
        Sample Results
Export Time: 2019-02-14 10:56:26
Port 0
Adapter HW Version: 3.00 FW Version: 3.51
Time
     Module Read/Write Master/Slave
                                        FeaturesBitrate Address Length Data
56:23.9
                                                      Configure: I2C=1 SPI=1 GPIO=0
56:23.9
                                                      Power Control Disabled
56:23.9 I2C
                                                      I2C Pullups Disabled
56:23.9 I2C
                                                      I2C Bitrate Set to: 400
```


56:23.9 I2C	W	М	 400	0x28	2	95 47
56:23.9 I2C	M	M	 400	0x28	2	53 00
56:23.9 I2C	W	M	 400	0x28	2	96 00
56:23.9 I2C	W	M	 400	0x28	2	96 40
56:23.9 I2C	W	M	 400	0x28	2	97 FA
56:23.9 I2C	W	M	 400	0x28	2	96 50
56:24.0 I2C	W	M	 400	0x28	2	97 07
56:24.0 I2C	W	M	 400	0x28	2	96 50
56:24.0 I2C	W	M	 400	0x28	2	97 05
56:24.0 I2C	W	M	 400	0x28	2	96 50
56:24.0 I2C	W	M	 400	0x28	9	53 00 00 B0 AA 00 45 00 00
56:24.0 I2C	W	M	 400	0x28	2	97 01
56:24.0 I2C	W	M	 400	0x28	2	96 50
56:24.0 I2C	W	M	 400	0x28	2	97 06
56:24.0 I2C	W	M	 400	0x28	2	96 50
56:24.0 I2C	M	M	 400	0x28	9	53 10 40 9D 1C FF 01 3C DF
56:24.1 I2C	W	M	 400	0x28	2	97 01
56:24.1 I2C	W	M	 400	0x28	2	96 50
56:24.1 I2C	M	M	 400	0x28	2	97 06
56:24.1 I2C	W	M	 400	0x28	2	96 51
56:24.1 I2C	W	M	 400	0x28	9	53 02 40 0F 00 32 00 FC F1
56:24.1 I2C	W	M	 400	0x28	2	97 01
56:24.1 I2C	W	M	 400	0x28	2	96 50
56:24.1 I2C	W	M	 400	0x28	2	97 06
56:24.1 I2C	W	M	 400	0x28	2	96 52
56:24.1 I2C	W	M	 400	0x28	9	53 00 19 56 AF F5 35 5F 00
56:24.1 I2C	W	M	 400	0x28	2	97 01
56:24.2 I2C	W	M	 400	0x28	2	96 50
56:24.2 I2C	W	M	 400	0x28	2	97 06
56:24.2 I2C	W	M	 400	0x28	2	96 53
56:24.2 I2C	W	M	 400	0x28	9	53 00 4B 90 21 43 00 40 FB
56:24.2 I2C	W	M	 400	0x28	2	97 01
56:24.2 I2C	W	M	 400	0x28	2	96 50
56:24.2 I2C	M	M	 400	0x28	2	97 06
56:24.2 I2C	M	M	 400	0x28	2	96 54
56:24.2 I2C	M	M	 400	0x28	3	96 40 00
56:24.2 I2C	W	M	 400	0x28	2	95 47

3 NVM Map

3.1 NVM Map customization through STSW-STUSB002 GUI

Thanks to <u>STSW-STUSB002</u> GUI software, parameters can be modified to configure STUSB4500 without studying the full map.

GUI can read and write STUSB4500 device through NUCLEO-F072RB interface board for evaluation, configuration validation and quick prototyping.

GUI can also interpret and generate text format files of NVM map.

3.1.1 STSW-STUSB002 GUI file format

```
0xC0: Data_C0 Data_C1 Data_C2 Data_C3 Data_C4 Data_C5 Data_C6 Data_C7 CR LF

0xC8: Data_C8 Data_C9 Data_CA Data_CB Data_CC Data_CD Data_CE Data_CF CR LF

0xD0: Data_C0 Data_C1 Data_C2 Data_C3 Data_C4 Data_C5 Data_C6 Data_C7 CR LF

0xD8: Data_C8 Data_C9 Data_C2 Data_C3 Data_C4 Data_C5 Data_C6 Data_C7 CR LF

0xD8: Data_C8 Data_C9 Data_CA Data_CB Data_CC Data_CD Data_CE Data_CF CR LF

0xE0: Data_E0 Data_E1 Data_E2 Data_E3 Data_E4 Data_E5 Data_E6 Data_E7 CR LF
```

Symbols note:

→ : ASCII code 0x09 TAB (horizontal tab)

CR: ASCII code 0x0D CR (carriage return)

LF: ASCII code 0x0A LF (NL line feed, new line)

3.1.2 STUSB4500 NVM default content (GUI file format)

0xC0:	0x00	0x0	0xB0	0xAA	0x00	0x45	0x0	0x00
0xC8:	0x10	0x40	0x9C	0x1C	0xFF	0x01	0x3C	0xDF
0xD0:	0x02	0x40	0x0F	0x00	0x32	0x00	0xFC	0xF1
0xD8:	0x00	0x19	0x56	0xAF	0xF5	0x35	0x5F	0x00
0xE0:	0x00	0x4B	0x90	0x21	0x43	0x0	0x40	0xFB

3.1.1 NVM file interface with STSW-STUSB002 GUI

NVM mapping, read from I2C command and in the right file format, can be loaded into STSW-STUSB002 GUI with the "Load NVM confit file ..." button.

Then the parameters can be displayed and modified in the other tabs ("SNK Parameters", "TypeC")

The "NVM MAP" tab reflects the modified parameters, and then the configuration can be exported with the "Save NVM confit file ..." button.

The exported file contains the NVM Map that can bed flashed with I2C commands previously described.

3.2 NVM Map Detailed Content

VENDOR_ID_LOW Bit 7 3 2 0 4 RESERVED: 0x00 Content Address: 0xC0 Default: 0x00 Description: VENDOR_ID_LOW [7:0] RESERVED : VENDOR_ID_LOW = 0x00

VENDOR_ID_HIGH											
Bit	7	6	5	4	3	2	1	0			
Content		RESERVED: 0x00									
Address:	Address: 0xC1										
Default: 0x0	0										
Description:	Description: VENDOR_ID_HIGH										
[7:0]	RESERVED	: VENDOR_ID	_HIGH = 0x00								

PRODUCT_ID_ LOW

Bit	7	6	5	4	3	2	1	0	
Content	RESERVED: 0xB0								
Address:	0xC2								

Default: 0xB0

Description: PRODUCT_ID_LOW

RESERVED : PRODUCT_ID_LOW = 0xB0 [7:0]

PRODUCT_ID_ HIGH

Bit	7	6	5	4	3	2	1	0		
Content	RESERVED: 0xAA									
Address:	0xC3									
Default: 0xAA										

Description: PRODUCT_ID_HIGH

RESERVED: PRODUCT_ID_HIGH = 0xAA [7:0]

BCD_DEVICE_ID_LOW

Bit	7	6	5	4	3	2	1	0			
Content		RESERVED: 0x00									
Address:	0xC4										

Default: 0x00

Description: BCD_DEVICE_ID_LOW

RESERVED : BCD_DEVICE_ID_LOW = 0x00 [7:0]

BCD_DEVICE_ID_HIGH

Bit	7	6	5	4	3	2	1	0		
Content		RESERVED: 0x45								
Address:	0xC5									

Default: 0x45

Description: BCD_DEVICE_ID_HIGH

RESERVED : BCD_DEVICE_ID_LOW = 0x45 [7:0]

PORT_ROLE_CTRL

Bit	7	6	5	4	3	2	1	0	
Content		RESERVED: 0x00							

0xC6 Address:

Default: 0x00

Description: PORT_ROLE_CTRL

[7:0] RESERVED : PORT_ROLE_CTRL = 0x00

DEVICE_POWER_ROLE_CTRL

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED: 0x00			

Address: 0xC7

Default: 0x00

Description: DEVICE_POWER_ROLE_CTRL

RESERVED : DEVICE_POWER_ROLE_CTRL = 0x00 [7:0]

GPIO_CTRL

Bit	7	6	5	4	3	2	1	0	
Content	0	0	GPIO_CFG[1:0]		0	0	0	0	
A 1.1	0.00								

Address: 0xC8

Default: 0x10

Description: GPIO_CTRL

[7:6]	RESERVED: 0b00
[5:4]	GPIO_CFG[1:0]
[3:0]	RESERVED: 0x0

ANALOG_CTRL

Bit	7	6	5	4	3	2	1	0
Content	0	1	VBUS_ DCHG_ MASK	0	0	0	0	0

Address: 0xC9

Default: 0x40

Description: ANALOG_CTRL

[7]	RESERVED: 0b0
[6]	RESERVED: 0b1
[5]	VBUS_DCHG_MASK
[4:0]	RESERVED: 0b00000

DISCHARGE TIME CTRL

Bit	7	6	5	4	3	2	1	0	
Content	D	ISCHARGE_T	IME_TO_0V[3:0	0]	VBUS_DISCH_TIME_TO_PDO[3:0]				
Address:	0xCA								
Default: 0x90)								

Description: DISCHARGE_TIME_CTRL

RESERVED: 0x1C

2 000p	2.66.1.1.1022
[7:4]	DISCHARGE_TIME_TO_0V[3:0]
[3:0]	VBUS_DISCH_TIME_TO_PDO[3:0]

RESERVED_0xCB

Bit	7	6	5	4	3	2	1	0		
Content		RESERVED: 0x1C								
Address:	Address: 0xCB									
Default: 0x1	С									
Description:	RESER	VED								

RESERVED OVCC

RESERVED_UXCC										
Bit	7	6	5	4	3	2	1	0		
Content		RESERVED : 0xF0								

Address: 0xCC

Default: 0xF0

[7:0]

Description: RESERVED

[7:0] RESERVED: 0xFF

RESERVED_0xCD

Bit	7	6	5	4	3	2	1	0		
Content		RESERVED: 0x01								
Address:	0xCD									
Default: 0x0	11									

Default: 0x01

Description: RESERVED [7:0] RESERVED: 0x01

RESERVED_0xCE

Bit	7	6	5	4	3	2	1	0		
Content	RESERVED: 0x00									
Address:	0xCE									
Default: 0x0	Default: 0x00									
Description:	RESER	VED								
[7:0]	RESERVED	0x3C								

RESERVED_0xCF

Bit	7	6	5	4	3	2	1	0		
Content	RESERVED: 0xDF									
Address:	0xCF									
Default: 0xE	Default: 0xDF									
Description:	RESER	VED								
[7:0]	RESERVED	: 0xDF								

RESERVED_0xD0

Bit	7	6	5	4	3	2	1	0		
Content	RESERVED: 0x02									
Address:	0xD0									
Default: 0x0	2									

Description: RESERVED

[7:0] RESERVED: 0x02

RESERVED_0xD1

Bit	7	6	5	4	3	2	1	0		
Content	RESERVED: 0x40									
Address:	0xD1									
Default: 0x4	Default: 0x40									
Description:	RESER	VED								
[7:0]	RESERVED	: 0x40								

RESERVED_0xD2

Bit	7	6	5	4	3	2	1	0
Content				RESERVI	ED : 0x0F			

Address: 0xD2

Default: 0x0F

RESERVED_0xD3

Bit	7	6	5	4	3	2	1	0		
Content		RESERVED: 0x00								
Address:	0xD3									
Default: 0x0	00									

Description: **RESERVED** RESERVED: 0x00 [7:0]

RESERVED_0xD4

Bit	7	6	5	4	3	2	1	0	
Content	RESERVED: 0x32								
Address:	0xD4								
Default: 0x3	Default: 0x32								
Description:	RESER	VED							
[7:0]	RESERVED	: 0x32							

RESERVED_0xD5

Bit	7	6	5	4	3	2	1	0		
Content	RESERVED: 0x00									
Address:	0xD5									
Default: 0x0	00									
Description:	RESER	VED								
[7:0]	RESERVED	: 0x00								

RESERVED_0xD6

Bit	7	6	5	4	3	2	1	0		
Content	RESERVED : 0xFC									
Address:	0xD6									
Default: 0xF	C									

RESERVED Description:

[7:0]

RESERVED: 0x00

[7:0] RESERVED: 0xFC

RESERVED_0xD7

Bit	1	6	5	4	3	2	1	U		
Content		RESERVED : 0xF1								
Address:	0xD7									
Default: 0xF1										
Description:	RESER	VED								
[7:0]	RESERVED	: 0xF1								

RESERVED_0xD8

11-1-11-1												
Bit	7	6	5	4	3	2	1	0				
Content	RESERVED: 0x00											
Address:	0xD8											
Default: 0x00	00											
Description:	RESERV	FD										

RESERVED_0xD9

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED : 0x19			
Address:	0xD9							

Default: 0x19

Description: **RESERVED** [7:0] RESERVED: 0x19

SNK_PDO_FILL_0xDA

Bit	7	6	5	4	3	2	1	0
Content		LUT_SNK_	PDO1_I[3:0]		SNK_ UNCONS_ POWER	DPM_ PDO_NU	SNK_ JMB[1:0]	USB_ COMM_ CAPABLE

Address: 0xDA

Default: 0x56

Description: SNK_PDO_FILL, part 1 of 11

	entrical entrical (1997) (1997)
[7:4]	LUT_SNK_PDO1_I[3:0]
[3]	SNK_UNCONS_POWER
[2:1]	DPM_SNK_PDO_NUMB[1:0]
[0]	USB_COMM_CAPABLE

SNK_PDO_FILL_0xDB

Bit	7	6	5	4	3	2	1	0
Content		SNK_H	HL1[3:0]			SNK_L	L1[3:0]	
Address:	Address: 0xDB							
Default: 0xAl	Default: 0xAF							
Description: SNK_PDO_FILL, part 2 of 11								

SNK_HL1[3:0] [7:4] [3:0] SNK_LL1[3:0]

SNK_PDO_FILL_0xDC

Bit	7	6	5	4	3	2	1	0
Content		SNK_L	L2[3:0]			LUT_SNK_I	PDO2_I[3:0]	
Address:	0xDC							

Default: 0xF5

Description: SNK_PDO_FILL, part 3 of 11

_		
	[7:4]	SNK_LL2[3:0]
	[3:0]	LUT_SNK_PDO2_I[3:0]

SNK_PDO_FILL_0xDD

Bit	7	6	5	4	3	2	1	0
Content LUT_SNK_PDO3_						SNK_F	HL2[3:0]	
Address:	0xDD							
Default: 0x3	Default: 0x35							
Description:	Description: SNK_PDO_FILL, part 4 of 11							
Description: SNK_PDO_FILL, part 4 of 11								

[7:4]	LUT_SNK_PDO3_I[3:0]
[3:0]	SNK_HL2[3:0]

SNK_PDO_FILL_0xDE

Bit	7	6	5	4	3	2	1	0
Content		SNK_F	IL3[3:0]			SNK_L	L3[3:0]	
Address:	0xDE							

Address.

Default: 0x5F

Description: SNK_PDO_FILL, part 5 of 11

[7:4]	SNK_HL3[3:0]
[3:0]	SNK_LL3[3:0]

SNK_PDO_FILL_0xDF

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED: 0x00			

Address: 0xDF

Default: 0x00

Description: SNK_PDO_FILL, part 6 of 11

[7:0] RESERVED : $SNK_PDO_FILL_0xDF = 0x00$

SNK_PDO_FILL_0xE0

Bit	7	6	5	4	3	2	1	0
Content	SNK_ FLEX1				RESERVED): 0b000000		

Address: 0xE0

Default: 0x00

[7:0]

Description: SNK_PDO_FILL, part 7 of 11

SNK_PDO_FLEX1_V[9:2]

[7:6]	SNK_PDO_FLEX1_V[1:0]
[5:0]	RESERVED: 0b000000

SNK_PDO_FILL_0xE1

Bit	7	6	5	4	3	2	1	0
Content	SNK_PDO_FLEX1_V[9:2]							
Address:	0xE1							
Default: 0x4E	3							
Description:	SNK_PI	DO_FILL, par	rt 8 of 11					

Bit	7	6	5	4	3	2	1	0
Content	SNK_PDO_FLEX2_V[7:0]							
Address:	ess: 0xE2							
Default: 0x90								
Description: SNK_PDO_FILL, part 9 of 11								
[7:0]	SNK_PDO_FLEX2_V[7:0]							

SNK_PDO_FILL_0xE2

SNK_PDO_FILL_0xE3

Bit	7	6	5	4	3	2	1	0
Content			SNK_PDO_	FLEX_I[5:0]			SNK_ FLEX2	PDO_ _V[9:8]

Address: 0xE3

Default: 0x21

Description: SNK_PDO_FILL, part 10 of 11

[7:2]	SNK_PDO_FLEX_I[5:0]
[1:0]	SNK_PDO_FLEX2_V[9:8]

SNK_PDO_FILL_0xE4

Bit	7	6	5	4	3	2	1	0
Content	0	POWE CFG	R_OK_ [1:0]	0		SNK_PDO_	FLEX_I[9:6]	

Address: 0xE4

Default: 0x43

Description: SNK_PDO_FILL, part 11 of 11

-		= = 7
	[7]	RESERVED: 0b0
ſ	[6:5]	POWER_OK_CFG[1:0]
	[4]	RESERVED: 0b0
	[3:0]	SNK_PDO_FLEX_I[9:6]

SPARE

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED: 0x00			

Address: 0xE5

Default: 0x00

Description: SPARE

[7:0] RESERVED : SPARE = 0x00

VBUS_CTRL

Bit	7	6	5	4	3	2	1	0
Content	RE	ESERVED: 0b0	110	REQ_ SRC_ CURRENT		RESERV	/ED : 0x0	

Address: 0xE6

Default: 0x40

Description: VBUS_CTRL

[7:5]	RESERVED: 0b010
[4]	REQ_SRC_CURRENT
[3:0]	RESERVED: 0x0

ALERT_STATUS_1_MASK

712111201111011								
Bit	7	6	5	4	3	2	1	0
Content				RESERVI	ED : 0xFB			

Address: 0xE7

Default: 0xFB

Description: ALERT_STATUS_1_MASK

[7:0] RESERVED : ALERT_STATUS_1_MASK = 0x00