MAC0438 - Programação Concorrente - 1s2012 Relatório

Thiago de Gouveia Nunes Wilson Kazuo Mizutani

May 13, 2012

Contents

1	Intr	rodução	2
2	Solução desenvolvida		2
	2.1	Ideia geral	2
	2.2	Estendendo a busca em largura	2
	2.3	Aplicando concorrência	3
3	Implementação da solução		3
	3.1	Breve descrição das classes	3
	3.2	Alguns detalhes de implementação	3
	3.3	Sobre a barreira simétrica usada	3
4	Resultados		
	4.1	Resultado para o grafo da NSFNet	3
	4.2	Comparações de eficiência	3
5	5 Conclusões		3

1 Introdução

Esse relatório trata das decisões tomadas na implementação desse EP. Também fornece uma saída do programa para a entrada de exemplo fornecida no enunciado, além de explicitar a localização no código da implementação da barreira simétrica usada. Informações sobre como como compilar, as dependências necessárias e o modo de uso do programa encontram-se no arquivo LEIAME.

2 Solução desenvolvida

2.1 Ideia geral

A ideia geral da nossa solução se divide em duas partes:

- 1. Estender o algoritmo de busca em largura (Breadth-First Search, um caso particular do algoritmo de Dijkstra no qual todas as arestas possuem custo 1) para que ele encontre não só o menor caminhos, mas sim os **n** menores caminhos.
- 2. Refatorar esse algoritmo para usar programação concorrente, de tal maneira que cada thread seja responsável por tentar encontrar um novo caminho e depois sincronizar com as demais, criando assim um processo iterativo.

2.2 Estendendo a busca em largura

Basicamente, aproveitamos a propriedade da busca em largura na qual um novo vértice retirado da fila está sendo visitado pela primeira vez através do menor caminho.

Estendemos o algoritmo para ter uma fila de caminhos ao invés de vértices, por conveniência, e ao invés de deixarmos de visitar um vértice após passar por ele apenas uma vez, o fazemos após **n** vezes (o que significa que ele já tem n caminhos mínimos terminando nele).

Assim, a propriedade do nosso algoritmo (ainda no caso não-concorrente) seria que um novo caminho retirado da fila é o próximo menor caminho que termina no mesmo último vértice que ele. Mas como o enunciado do EP pedia que cada thread cuidasse de apenas um caminho, mudamos isso de forma que, na verdade, insere-se apenas candidatos a caminho na fila. A propriedade fica portanto que um novo candidato retirado da fila pode ser o próximo menor caminho que termina no seu último vértice, contanto que ele não seja um ciclo.

Uma consequência disso é que o programa vai com certeza ficar menos eficiente, pois há menos restrições sobre quem entra na fila, e portanto ela potencialmente terá mais elementos do que na maneira anterior.

2.3 Aplicando concorrência

Pensamos em várias maneiras de fazer isso. O grande problema é que a ordem com que os caminhos são encontrados é indeterminada, então não podemos assumir que os n primeiros encontrados sejam, de fato, os n menores. Vimos duas maneiras de lidar com isso.

Uma seria controlar a inserção em uma fila compartilhada através de um buffer intermediário que garantisse sua ordem. Isso apresenta dois problemas: a necessidade de uma fila compartilhada, e o fato de que a inserção nela não seria verdadeiramente paralelizada, pois seria justamente preciso serializar as threads para que elas inserissem na ordem correta.

A outra maneira e deixar o trabalho todo para a lista de caminhos de cada vértice. Elas mesmas cuidariam de guardar o n menores caminhos, descartando os demais. Assim, cada thread poderia ter sua própria fila, e no total o algoritmo seria bem mais paralelizável. O problema seria que ua inserção de um dos n verdadeiramente menores caminho custaria com a melhor implementação que pudemos pensar $O(\log(n))$ ao invés de apenas O(1).

No final, optamos pela segunda opção, apostando que uma maior paralelização do algoritmo compensasse a inserção de novos caminhos mínimos.

3 Implementação da solução

- 3.1 Breve descrição das classes
- 3.2 Alguns detalhes de implementação
- 3.3 Sobre a barreira simétrica usada
- 4 Resultados
- 4.1 Resultado para o grafo da NSFNet
- 4.2 Comparações de eficiência
- 5 Conclusões