EE3204/EE3204E Computer Communication Networks I (Part 1)

(Lecturer: Assoc. Prof. Mohan Gurusamy)

Performance of CSMA/CD using a simplified model

Let T_f be the frame transmission time.

Let T_p be the end-to-end one way propagation delay.

Let τ be the duration of a (contention) slot which is given by 2 T_p .

Assume that time on medium is organized into cycles each of which consists of a collision/idle period (T_c) followed by a transmission period (T_f). A collision/idle period consists of a sequence of slots during which there are either collisions or no transmissions. Frame transmission occurs during the transmission period.

Therefore, the utilization (or effective throughput or efficiency) U is given by $U = \frac{T_f}{T_c + T_f}$

Let there be N nodes each of which attempts to transmit during a slot with probability p.

Let A be the probability that exactly one node transmits during a slot.

Let n_c be the mean number of slots in a collision/idle period.

Let Pr[i] be the probability that the collision/idle period consists of i slots.

$$A = Np(1-p)^{N-1}$$

The mean number of slots in collision/idle period, n_c , is calculated as follows.

$$n_c = \sum_{i=0}^{\infty} i \ Pr[i]$$
$$= \sum_{i=1}^{\infty} i (1 - A)^i A$$

$$n_c = \frac{1}{A} - 1$$

The utilization U is given by

Utilization
$$U = \frac{T_f}{T_c + T_f}$$
$$= \frac{T_f}{n_c \tau + T_f}$$
$$= \frac{T_f}{2n_c T_p + T_f}$$
$$= \frac{1}{1 + 2an_c}$$
$$= \frac{1}{1 + 2a(\frac{1}{A} - 1)}$$

Calculation of Maximum Utilization

$$A = Np(1 - p)^{N-1}$$

Maximum utilization is achieved when A is maximized.

 A_{max} can be determined by equating dA/dp to 0.

$$dA/dp = N[-p(N-1)(1-p)^{N-2} + (1-p)^{N-1}] = 0$$

$$\Rightarrow p(N-1) = 1-p$$

$$\Rightarrow pN = 1$$

$$\Rightarrow p = \frac{1}{N} \text{ (it can be shown that for this value of } p, d^2A/dp^2 < 0)$$

Therefore A is maximized when $p = \frac{1}{N}$ and A_{max} is given by

$$A_{\text{max}} = \left(1 - \frac{1}{N}\right)^{N-1}$$

The maximum utilization U_{max} is given by

$$U_{\text{max}} = \frac{1}{1 + 2a \left(\frac{1}{A_{\text{max}}} - 1\right)}$$

When $N \to \infty$ (i.e. large number of active nodes)

 $\lim_{N \to \infty} A_{\text{max}} = \lim_{N \to \infty} (1 - \frac{1}{N})^{N-1} = \frac{1}{e}, \text{ where } e = 2.72 \text{ and the maximum utilization is given by}$

$$U_{\text{max}} = \frac{1}{1 + 2a \left(\frac{1}{A_{\text{max}}} - 1\right)}$$
$$= \frac{1}{1 + 2a(e - 1)}$$
$$= \frac{1}{1 + 3.44a}$$