BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CSE322 (Computer Networks Sessional), July 2018 Term Packet Trace Online, Section A1, December 3, 2018

Time: 1 hour Marks: 20

Instructions:

There are two checkpoints in this lab. After completing tasks 1-4, you will reach checkpoint 1. At this point show your configurations to your assigned examiner. If marked completed by the examiner, proceed to complete the tasks 5-6. After completing the tasks 5-6, ask the examiner for evaluation of checkpoint 2.

Requirements:

Consider the network topology in the accompanying **topology.pkt** file. You need to configure the network according to the following specifications.

- 1. Configure the network appropriately to enable communication among all the devices, i.e., PCs and routers.
- 2. All the configured IP addresses must be in the range 192.0.0.0-223.255.255.255.
- 3. All the subnet masks must be of length 24.

Now complete the following tasks.

Tasks:

- 1. Assign unique network addresses to all the subnets.
- 2. Configure all the hosts/PCs and router interfaces with appropriate unique IP addresses from respective subnets.
- 3. Make sure all router interfaces are turned on.
- 4. Configure dynamic routing protocol **RIP** to ensure connectivity among all subnets. Do not use any static route.

Checkpoint 1:

- (a) Show that the network is connected. Ping between any pair of devices (i.e., PCs or Router interfaces) must be successful.
- (b) Show the routing table of **Router** M using GUI tool.
- 5. Modify your RIP configuration in such a way that packets between any two PC's (e.g., PC_A <-->PC_B and PC_C<->PC_D) pass through Router_M. You are not allowed to disconnect any cable or shutdown any interface. You are not also allowed to use static route to satisfy the given constraint.
- 6. Configure minimum number of static routes to ensure that any packet from PC_A to PC_C traverses the path Router_A->Router_M->Router_B->Router_C, and any packet from PC_C to PC_A traverses the path Router_C->Router_M->Router_D->Router_A.

Checkpoint 2:

- (a) Using tracert command show that packets from PC_A to PC_B go through $Router_M$.
- (b) Using **simulation mode** show the path traversed by packets from **PC_A** to **PC_C** and from **PC_C** to **PC_A**.