

Hashing

Algorithms and Data Structures 2, 340300 Lecture – 2023W Univ.-Prof. Dr. Alois Ferscha, teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria

jku.at

Motivation

Dictionary data structures until now:

- ordered storage with usage of keys k ∈ K
 At a time only a small amount of keys K from the amount of all possible keys K is in use (k ∈ K)
- search, remove, insert always requires a series of key comparisons

Hashing:

Try to do this without key comparisons, i.e. determine by calculation where a data set with key k ∈ K is stored.

Hashtable:

Data set are stored in an array A[0..N-1]

Hashfunction:

- h: K→ {0, ..., N-1} assigns a hash address to each key k (= index in the hash table)
 0 ≤ h(k) ≤ N-1
- Since N is generally much smaller than K, h() is generally not injective
- Example: Symbol table: 51 reserved words in Java with more than 62⁸⁰ allowed identifiers with ≤ 80 digits.

Motivation

Synonyms

• Keys k, k'∈ K are **synonymous** if h(k) = h(k')

Address collision

- The same hash address is assigned to synonyms
- No synonyms, no collision
- Address collision requires special handling

Occupancy factor

• For a hash table of size N, that currently stores n keys, we specify $\alpha = n/N$ as the occupancy factor.

Two requirements on hashing methods:

- 1. Choose h() in a way, so that **as few collisions as possible** occur = Selection of a "good" hash function
- 2. Address collisions should be **resolved** as **efficiently** as possible

Hash Tables

Hash tables:

Efficient implementation of a dictionary with regard to storage space and complexity of **search**, **insert** and **remove** operations (usually better than implementations based on key comparisons)

- Key-value pairs are stored in an array of size N
- Index is calculated from the hash function value of the key h(k).
 Aim: store item(k,e) at A[h(k)]
- Example: Use key k modulo array size as index and use chaining, if two keys are mapped to the same index (collision)

Chaining:

Keys with same index are stored in a list.

Hash Function

h() often consist of two mapping functions: $h = h_1 \circ h_2$

- hash code:
 h₁:key → integer (k now integer = Hashcode)
- compression map: $h_2: k \rightarrow [0 .. N-1]$

 $k=h_1(s)$... Hashcode (-address)

 $h_2(k) = h_2(k') \Leftrightarrow k \text{ and } k'$ are synonyms

K' is the key set in any data type (e.g. $s \in K'$ string)

K is the key set where $k \in K$ integer

(but often the key k can also be used directly as hash code)

"Good" hash function:

- Easy to calculate
- Possible keys distributed as evenly as possible across indexes
- · Probability of a collision should be minimized

Hash Codes in Java

First part of the hash function (h₁) assigns an integer to any key k = Hash code or hash value

in Java: hashCode() method returns 32 bit int (!) for each object

• (in many Java implementations, however, this is only the memory address of the object, i.e. a bad distribution => bad hash codes => **overload** with better method)

Example: Integer cast

• for numeric data types with 32 bits or less, the bits can be interpreted as int: typecast of byte, short, int, char

Exmaple: Component sum

for numeric types with more than 32 bits (long, double) add 32-bit components

```
public static int hashCode(long i) {
    return (int) ((i >> 32) + (int) i);
}

(upper 32 bit) + (lower 32 bit)
```


Hash Codes: Polynomial Accumulation

Consider binary representation of the key as $(x_0, x_1, x_2, ... x_{k-1})$: **simple accumulation** results in bad hash code because e.g. "spot", "stop", "tops" ... Collide.

for (Java-)Strings therefore:

Consider the character values (ASCII or unicode) $x_0x_1...x_{n-1}$ as **coefficients of a polynomial**

$$x_0 a^{k-1} + x_1 a^{k-2} + ... + x_{k-2} a + x_{k-1}$$

Calculation according to **Horner scheme** (overflows are ignored) for certain value a \neq 1

$$x_{k-1} + a (x_{k-2} + a (x_{k-3} + ... + a (x_1 + a x_0)...))$$

For e.g. a=33, 37, 39, or 41 there are only 6 collisions in a vocabulary of 50.000 (english) words

Division-Reminder-Method

- $h(k) = |\mathbf{k}| \mod \mathbf{N}$
- Choice of N even (odd), then h(k) also even (odd)
 - Bad if e.g. the last bit expresses a fact (e.g. 0 = male, 1 = female)
- Choice of N = 2^p
 - h(k) returns the p lowest dual digits of k: bad because remaining bits are neglected
- Choice of N as prime number: $N \neq r^i \pm j$, $0 \le j \le r-1$, ... r = radix (proves best in practice, empirically best results)

MAD - Multiply, Add, and Divide

- $h(k) = |ak+b| \mod N$... N prime, a, b ≥ 0 , a mod N $\neq 0$
- eliminates "patterns" in keys of the form iN+j
- Collision probability for two keys ≤ 1/N
- the same formula is also used in linear congruent (pseudo)random number generators

Multiplicative Method - Requirement [Turan Sos]:

Let Ψ be an **irrational number**. If you place n points

$$\Psi - \lfloor \Psi \rfloor$$
, $2 \Psi - \lfloor 2 \Psi \rfloor$, $3 \Psi - \lfloor 3 \Psi \rfloor$, ..., $n \Psi - \lfloor n \Psi \rfloor$

in the interval [0,1], then the resulting n+1 intervals have at most three different lengths.

Multiplicative Method - Requirement [Turan Sos]:

$$\Psi = \frac{\sqrt{5} - 1}{2} \approx 0,618$$

$$\Psi - [\Psi]$$

Multiplicative Method - Requirement [Turan Sos]:

Let Ψ be an **irrational number**. If you place n points

$$\Psi - \lfloor \Psi \rfloor$$
, $2 \Psi - \lfloor 2 \Psi \rfloor$, $3 \Psi - \lfloor 3 \Psi \rfloor$, ..., $n \Psi - \lfloor n \Psi \rfloor$

in the interval [0,1], then the resulting n+1 intervals have at most three different lengths.

If you divide further, the next point $(n+1) \Psi - \lfloor (n+1) \Psi \rfloor$ falls into the **largest partial interval**.

Of all numbers $0 \le \Psi \le 1$ the **golden ration** $\Psi = (\sqrt{5} - 1)/2$ leads to the most balanced intervals.

 $h(k) = \lfloor N (k \Psi - \lfloor k \Psi \rfloor) \rfloor$ forms exactly the permutation for N=10 h(1) = 6, h(2) = 2, h(3) = 8, =4, =0, =7, =3, =9, =5, h(10) = 1 (.. and always divides exactly in the golden ratio)

The "Golden Number"

The "Golden Ratio"

with the solutions

$$X_1 = (1 + \sqrt{5})/2 = 1,61803$$

$$X_2 = (\sqrt{5} - 1)/2 = 0.61803$$

Logo Design based on the Golden Ratio

Meet the robots

Multiplicative Method

- Choose constant Ψ with $0 < \Psi < 1$
- Calculate k Ψ mod 1 = k Ψ \[k Ψ \]
- $h(k) = \lfloor N(k \Psi \mod 1) \rfloor$
- Choice of N not critical with N = 2^p the calculation of h(k) can be accelerated.

Example:

$$\begin{array}{ll} \Psi = (\sqrt{5} \ -1)/2 \approx 0,6180339... \\ k = 123456 \\ N = 1024 \\ h(k) &= \left \lfloor 1024(123456 \cdot 0,6180339... \ \text{mod} \ 1) \right \rfloor \\ &= \left \lfloor 1024(76300,0041151... \ \text{mod} \ 1) \right \rfloor \\ &= \left \lfloor 4,213... \right \rfloor = 4 \\ &= \left \lfloor 41,151... \right \rfloor = 41 \quad ... \ \text{Calculation error} \end{array}$$

Perfect Hashing

If the number of keys to be stored is known and $|K| \le N$, collision-free storing is always possible!

Form the **injective** mapping h: $K \rightarrow \{0, ..., N-1\}$:

- 1. arrange the keys $k \in K$ in lexicographic order
- 2. assign (unique) order numbers to the keys

Collisions are completely avoided: perfect hashing

Application example:

Keywords of a programming language are assigned to fixed places in a symbol table.

Analysis of Ideal Hashing

Assumptions

- n data items inserted into a memory with N places
- there have been no deletions
- All configrations of n occupied and N-n nonoccupied storage locations have the same probability
 If P_r is the probability that exactly r places must be tested in the unsuccessful search, then we have:

$$P_r = \begin{cases} \frac{\binom{N-r}{n-(r-1)}}{\binom{N}{n}} & 1 \le r \le N \\ 0 & r > N \end{cases}$$

- the first r-1 places are occupied, the rth place is free
- on the remaining m-r places the other n-(r-1) occupied places can be distributed arbitrarily

Analysis of Ideal Hashing

Expected number of searched items if search failed

$$C'_n = \sum_{r=1}^{N} r P_r = \frac{N+1}{N-n+1} \approx \frac{N}{N-n} = \frac{1}{1-\alpha}$$

Expected number of searched items for successful search

$$C_n = \frac{1}{n} \sum_{k=0}^{n-1} \frac{N+1}{N-k+1} = \frac{N+1}{n} (H(N+1) + H(N-n+1))$$

$$\approx \frac{N+1}{n} \ln \frac{N+1}{N-n+1} \approx \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

with $H(N) = 1 + 1/2 + 1/3 + ... + 1/N \approx \ln N$

Universal Hashing (Randomisation)

Observation:

current key set $K \subset K$ is generally not "equally distributed" from the universe of keys K(example: programmers' preference for variables i, i1, i2, i3, ...)

Problem: If fixed **h** is chosen \Rightarrow K \subset K can be constructed with arbitrarily many collisions!

Idea: Universal Hashing

- Choose hash function **h** randomly from a finite number of hash functions **H** $h \in H : K \to \{0, ..., N-1\}$
- Definition: **H is universal**, if for arbitrary x, y \in K we have: Conclusion: x. v \in K arbitrary. H universal, h \in H random $\frac{|\{h \in H | h(x) = h(y)\}|}{|H|} \leq \frac{1}{N}$

$$Pr_H(h(x) = h(y)) \le \frac{1}{N}$$

(Probability that x, y is mapped to the same hash address of a random $h \in H$)

Example for Universal Hashing

In other words:

H is universal if the number of hash functions to which h(k)=h(l) applies is at maximum equal to |H|/N for each pair of different keys.

Universal Hash functions exist / and are "easy" to create:

Hash table A of size N=3 and p=5 (prime number) Keys $K = \{0, 1, 2, 3, 4\}$

Example: Consider e.g. keys 1 and 4

```
h(1) = h(4) occurs in 4 of 20 hash functions (x+0, x+4, 4x+0, 4x+4) (1\cdot1+0) \mod 5 \mod 3 = 1 = (1\cdot4+0) \mod 5 \mod 3 (1\cdot1+4) \mod 5 \mod 3 = 0 = (1\cdot4+4) \mod 5 \mod 3 (4\cdot1+0) \mod 5 \mod 3 = 1 = (4\cdot4+0) \mod 5 \mod 3 (4\cdot1+4) \mod 5 \mod 3 = 0 = (4\cdot4+4) \mod 5 \mod 3 i.e. Pr_H(h_{i,j}(x) = h_{i,j}(y)) \le 4/20 = 1/5 for all hash functions h_{i,j}(x) \in H i.e. H is universal
```

For two randomly chosen keys 1, 4 there is **one** collision in 4 of the 20 hash functions

in the other 16 there are **0** collisions

Universal Hashing

Recommended approach:

Known:

The number of keys |K| which has to be mapped to N hash addresses.

Choose:

- 1. a **prime number p** which is greater than or equal to |K|
- **2.** two numbers i, j in the range $1 \le i < p$, $0 \le j < p$

Then:

$$h(x) = ((ix + j) \mod p) \mod N$$

is a "good" hash function

Universal Hashing

Definition

$$\delta(x, y, h) = \begin{cases} 1 & \dots & if \ h(x) = h(y) \text{ and } x \neq y \\ 0 & \dots & otherwise \end{cases}$$

 δ shows if collisions occur for two keys from K regarding h()

Extension of δ to a set $Y \subseteq K$ and H

$$\delta(x,Y,h) = \Sigma_{v \in Y} \delta(x,y,h)$$

$$\delta(x,y,H) = \Sigma_{h \in H} \delta(x,y,h)$$

H is universal, if for two arbitrary $x,y \in K(x\neq y)$ we have

$$\delta(x, y, H) \le \frac{|H|}{N}$$

Universal Hashing

Unknown: number of |K|

Known:

 $H: K \to \{0, ..., N-1\}$ a universal set of hash functions $h \in H$ a randomly chosen hash function used for all insertions, then the place h(x) can already be occupied for the insertion attempt x. For the insertion attempt x there are already S keys stored:

$$E[\delta(x,S,h)] = \sum_{h \in H} \delta(x,S,h) / |H|$$

=
$$1/|H| \Sigma_{h \in H} \Sigma_{y \in S} \delta(x,y,h)$$

= $1/|H| \Sigma_{y \in S} \Sigma_{h \in H} \delta(x,y,h)$
= $1/|H| \Sigma_{y \in S} \delta(x,y,H)$
 $\leq 1/|H| \Sigma_{y \in S} |H| / N$
= $|S| / N$

i.e. the expected number of already inserted elements which probably have collided with x is |S| / N

This means that an arbitrarily chosen hash function h from a universal set H, will map sequences of keys (no matter how unilaterally they are) to available hash addresses as evenly as possible.

Overview :: Collision Handling

Inserting a synonym k', if key k is already stored: Collision (place h(k) = h(k') is already occupied) h(k') is referred to as **overflow**

Solution 1: Overflow chaining

- Keys with the same index are stored in an overflow list at the corresponding index position.
- Is also known as closed hash procedure.

Solution 2: Open hashing

- If a key is to be inserted at a position that is already occupied, another free (vacant) position
 is selected and the key is stored at this position.
- More details regarding this follow later.

Chaining

Example:

Insert sequence: 25, 2, 15, 50, 13, 6, 20

Hash Function:

 $h(k) = k \mod 7$

Method:

Each element of the hash table is a reference to an overflow chain.

Operations in Hash Tables with Chaining

Search for key k

- calculate h(k) and reference A[h(k)] in the overflow list
- search for k in the overflow list until it is found or the end of the list is reached (not found)

Insert a key k

- search for k as described above (ends unsuccessfully otherwise it will not be inserted)
- create list element for k and insert it in the overflow list.

Remove a key k

- search for k as described above
- if successful, remove from overflow list

All operations are based on pure list operations.

Analysis of Hash Tables with Chaining

Uniform Hashing assumption:

- all hash addresses are chosen with equal probability: P_r (h(k_i) = j) = 1/N
- Independent from operation to operation (above P_r for each $0 \le j \le N-1$)

Average overflow list length for n entries (also: occupancy factor)

• $n/N = \alpha$

Complexity of the **search**: (new keys are always added to the end of the overflow list)

C'_n expected number of searched position for unsuccessful search

$$C'_n = n/N = \alpha$$

C_n expected number of searched positions for successful search

$$C_n = 1/n$$
 $\Sigma_{j=1...n} (1+(j-1)/N) = 1+ (n-1) / 2m \approx 1 + \alpha/2$

Open Hashing

Idea:

- Placement of overflows k' (h(k') = h(k)) at vacant position in the hash table
- According to the rule: if A[h(k)] occupied, search other position for k'
- Sequence of chosen positions: *probing sequence*
- Basic problem: Selection of a suitable *probing sequence*

Example: Consider entry with next smaller index $(h(k) - 1) \mod N$

Problem: Recovery of k' if k is removed in the meantime

Generalization: consider entry with

• $(h(k) - s(j,k)) \mod N$ j = 0, ..., N-1 for a given function s(j,k)

Common variants of s(j,k):

linear probing:

s(j,k) = j $s(j,k) = (-1)^{j} \cdot \lceil j/2 \rceil^{2}$ quadratic probing:

Open Hashing

Properties of s(j,k)

Sequence

$$h(k) - s(0,k) \mod N$$

$$h(k) - s(1,k) \mod N$$

. . .

 $h(k) - s(N-2,k) \mod N$

 $h(k) - s(N-1,k) \mod N$

Is a **permutation** of the hash addresses 0, ..., N-1

e.g. quadratic probing

h(11) = 4
s(j,k) =
$$(-1)^{j} \cdot \lceil j/2 \rceil^2 = 0$$
, -1, 1, -4, 4, -9, 9

Open Hashing:: Linear Probing

Probe function: s(j,k) = j

Probe sequence: h(k), h(k)-1, h(k)-2, ... 0, N-1, ..., h(k)+1

Example: N=7, $K = \{0, 1, ..., 500\}$, $h(k) = k \mod N$, Keys: 12, 53, 5, 15, 2, 19

6 inspections!

"coalescing"

long (occupied) parts tend to grow further

"primary accumulation"

Efficiency gets worse drastically near α =1

Open Hashing :: Quadratic Probing

Aim: avoid "primary accumulation"

Probe function: $s(j,k) = (-1)^j \cdot \lceil j/2 \rceil^2 = 0, -1, 1, -4, 4, -9, 9$

Probe sequence: h(k), h(k)+1, h(k)-1, h(k)+4, h(k)-4, ...

Example: N=7, $K=\{0, 1, ..., 500\}$, $h(k)=k \mod N$, Keys: 12, 53, 5, 15, 2, 19

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

53 12

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

19

Two synonyms always traverse through the same probe sequence

= interfere each other

A[2] "secondary accumulation"

6 inspections!

Open Hashing:: Uniform Probing

Aim: avoid "primary" and "secondary accumulation"

Reason for accumulation: Probing function is **independent of k**!

(probe function is the same for all synonyms)

Probing function: s(j,k) for j = 0, ..., N-1 is a permutation of the hash addresses that depends only on k,

where each of the N! possible permutations is used with equal probability

(Uniform probing)

+ asymptotically optimal!

- practically very difficult to realize

Random Probing: s(j,k) chooses a hash address **randomly**

Contrary to Uniform Probing: A value chosen for s(j,k)

can be "drawn" again later (j' > j)

Analysis Open Hashing

Linear Probing

- Probe sequence: h(k), h(k)-1, h(k-2), ...
- · Problem: primary clustering
- $C'_n \approx (1 + 1/(1-\alpha)^2)$ $C_n \approx (1 + 1/(1-\alpha))$

Quadratic Probing

- Probe sequence: h(k), h(k)-1, h(k)+1, h(k)-4, h(k)+4, ...
- Permutation, if N = 4i+3, prime
- Problem: secondary clustering
- $C'_n \approx 1/(1-\alpha) \alpha + \ln(1/(1-\alpha))$ $C_n \approx 1 \alpha/2 + \ln(1/(1-\alpha))$

Uniform Probing

- $s(j,k) = \pi_k(j)$ π_k one of N! permutations of $\{0,...,N-1\}$
- Each permutation has equal probability
- $C'_n \le 1/(1-\alpha)$ $C_n \approx 1/\alpha \cdot \ln(1/(1-\alpha))$

Random Probing

- s(j,k) = random number dependent on k
- s(j,k) = s(j',k) possible, but unlikely

Open Hashing

Idea:

- Placement of overflows k' (h(k') = h(k)) at vacant position in the hash table
- According to the rule: if A[h(k)] occupied, search other position for k'
- Sequence of chosen positions: *probing sequence*
- Basic problem: Selection of a suitable probing sequence

Example: Consider entry with next smaller index $(h(k) - 1) \mod N$

Problem: Recovery of k' if k is removed in the meantime

Generalization: consider entry with

• $(h(k) - s(j,k)) \mod N$ j = 0, ..., N-1 for a given function s(j,k)

Common variants of s(j,k):

• Linear Probing: s(j,k) = j

• Quadratic Probing: $s(j,k) = (-1)^{j} \cdot \lceil j/2 \rceil^{2}$

• Double Hashing: $s(j,k) = j \cdot h_2(k)$

Hashing

Algorithms and Data Structures 2, 340300 Lecture – 2023W Univ.-Prof. Dr. Alois Ferscha, teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria

jku.at