Estatística descritiva

Medidas de dispersão

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Slides e notebook em:

github.com/tetsufmbio/IMD0033/aula06

Objetivos da aula

Medidas de dispersão de dados

- Amplitude;
- Amplitude entre quartis;
- Variância e Desvio Padrão;

Observe os seguintes dados

O que você diria sobre a média, mediana e moda?

Medidas de dispersão (variabilidade)

Medidas que tentam descrever o grau de dispersão dos dados.

Amplitude

Diferença entre o valor máximo e o valor mínimo dos dados.

Amplitude entre quartis (IQR)

Quartil - Divide os dados em 4 partes.

Em um quartil, definimos 3 posições:

Q1: Compreende até 25% dos dados;

Q2: Compreende até 50% dos dados (mediana);

Q3: Compreende até 75% dos dados.

Amplitude entre quartis (IQR)

Amplitude entre quartis

Representação gráfica em Boxplot

A = { 1, 4, 5, 8, 8, 9, 10, 12, 14, 15, 16 }

Como descrever a dispersão com apenas um valor?

χi $xi - \overline{x}$ 2 - 5.5 = -3.52 4 4 - 5.5 = -1.55 5 - 5.5 = -0.56 6 - 5.5 = 0.57 - 5.5 = 1.59 9 - 5.5 = 3.5

Média do desvio = somatória(xi -x)/n = 0

Como descrever a dispersão com apenas um valor?

Desvio absoluto

ΧI	XI - X	XI - X
2	2 - 5.5 = -3.5	2 - 5.5 = 3.5
4	4 - 5.5 = -1.5	4 - 5.5 = 1.5
5	5 - 5.5 = -0.5	5 - 5.5 = 0.5
6	6 - 5.5 = 0.5	6 - 5.5 = 0.5
7	7 - 5.5 = 1.5	7 - 5.5 = 1.5
9	9 - 5.5 = 3.5	9 - 5.5 = 3.5

vi - 🔽

Média do = somatória(|xi -x|)/n = 5.5 desvio absoluto

Como descrever a dispersão com apenas um valor?

Quadrado do

Desvio

ΧI	XI - X	XI - X	(XI - X)^^2
2	2 - 5.5 = -3.5	2 - 5.5 = 3.5	(2 - 5.5)**2 = 12.25
4	4 - 5.5 = -1.5	4 - 5.5 = 1.5	(4 - 5.5)**2 = 2.25
5	5 - 5.5 = -0.5	5 - 5.5 = 0.5	(5 - 5.5)**2 = 0.25
6	6 - 5.5 = 0.5	6 - 5.5 = 0.5	(6 - 5.5)**2 = 0.25
7	7 - 5.5 = 1.5	7 - 5.5 = 1.5	(7 - 5.5)**2 = 2.25
9	9 - 5.5 = 3.5	9 - 5.5 = 3.5	(9 - 5.5)**2 = 12.25

Média do
quadrado do
desvio

=
somatória((xi -x)**2)/n
=
4.916

Variância

Quando estamos calculando a variância...

Desvio padrão

Variância =
$$\sigma^2 = (\Sigma(xi - x)^2)/n)$$

Desvio padrão = $\sigma = ((\Sigma(xi - x)^2)/n)^{0.5}$

Desvio padrão

Desvio padrão da amostra

Desvio padrão da amostra

Na maioria das vezes, uma amostragem não consegue representar toda a variabilidade da população, por isso utilizamos a correção de Bessel, onde determina que o desvio padrão da amostra, caso utilizado para estimar o desvio padrão de uma população corresponde a:

Desvio
padrão =
$$s = ((\Sigma(xi - x)^2)/(n-1))^{0.5}$$

amostral