M1: s1 s2 p

- 1. Does the model M1 and s1 satisfy the following formulas?
 - a. AG AF p False $-S1 \rightarrow S1 \rightarrow S1...$ will never get to p
 - b. AG EF p True can always find a way to p

- 2. Does the model M2 and s0 satisfy the following formulas?
 - a. ! EG r False can always get to r
 - b. AF g False $-S0 \rightarrow S0, S0 \rightarrow S1 \rightarrow S2 \rightarrow S1...$
 - c. AG AF aFalse same as above, cannot always find path to a
- 3. Prove or construct counterexamples for the following CTL formulas
 - a. EG (p & q) \rightarrow (EG p & EG q)
 - b. EG $(p | q) \rightarrow (EG p | EG q)$

See page 2

4. Give a model and a world in which only one of the following two formulas is true while the other is false.

$$\Diamond(p \land q)$$
 and $\Diamond p \land \Diamond q$ See page 3

5. Find natural deduction proofs for the following sequent over the basic modal logic K.

$$\Diamond(p \to q) \models \Box p \to \Diamond q$$

See page 3

- 3. Prove or construct counterexamples for the following CTL formulas
 - a. EG (p & q) \rightarrow (EG p & EG q) Valid (Proof)
 - b. EG $(p \mid q) \rightarrow (EG p \mid EG q)$ Invalid (Counterexample)

a.

M is a model of CTL, s is a given state in M M, $s \models EG(p \& q)$ if EG(p & q) is satisfied, it must also be the case that (EGp & EGq) is satisfied Therefore, for all the states in M, s_i , M, $s_i \models (p \& q)$ must be satisfied Therefore, for all paths starting with s, all states s_i must satisfy M, $s_i \models p$ and all paths must also satisfy M, $s_i \models q$ This means that M, $s \models EGp$ and M, $s \models EGq$ We can now say that M, $s \models (EGp \& EGq)$

b.

To show a counterexample, M is a model of CTL and s is a given state in M M satisfies M, $s \models EG(p \text{ or } q)$, but not M, $s \models (EGp \text{ or } EGq)$ Consider M to have two states, s_1 , and s_2 and edges (s_1, s_2) , (s_2, s_1) If p holds only in s_1 , and q holds only in s_2 , then EG(p or q) holds but not (EGp or EGq)

Example:

4. Give a model and a world in which only one of the following two formulas is true while the other is false.

$$\Diamond (p \land q)$$
 and $\Diamond p \land \Diamond q$

The solution is similar to problem 3. Here we will show an example where $\phi(p \& q)$ is false and $\phi p \& \phi q$ is true.

Consider the world W with s_0 , s_1 , and s_2 , R (s_0 , s_1) and (s_0 , s_2), and L(s_1) = p, L(s_2) = q. The following is a representation of W:

Thus s0 ! \parallel - \diamond (p & q), but s0 \parallel - \diamond p & \diamond q

5. Find natural deduction proofs for the following sequent over the basic modal logic K.

$$\Diamond(p \to q) \vdash \Box p \to \Diamond q$$

1. □p → ♦ q	premise
2. $\neg \Box \neg (p \rightarrow q)$	premise
3. □p	assumption
4. □¬q	assumption
5. p	□e 2
6. $p \rightarrow q$	assumption
7. q	$5, \rightarrow e 6$
8. ¬q	□e 4
9. 🗆	¬e 8, 7
10. $\neg (p \rightarrow q)$	→ i 5 - 9
11. $\Box \neg (p \rightarrow q)$	□i 4-10
12. ⊥	¬e 11, 2
13. ¬ □¬q	¬i 3-12
14. $\Box p \rightarrow \neg \Box \neg q$	→ i 2 - 13
15. $\Box p \rightarrow \blacklozenge q$	