Team

Lihao Zhu

Yuanhai Tan

Xuewei Wang

Jiayun Zhong

Dōkō

General Usage Robot

General

Utility

Neuro-network

Driven

Advanced

Mobile-Robot

In collaboration with

Overview: We want to enable a robot to do...

• **Navigation** - move from one place to another place automatically.

 Face Recognition - recognize up to two hundred faces.

• **Voice Control** - cloud computing powered voice assistant.

Overview: What we have done

 Navigation - System completed, fine tuning some parameters.

 Face Recognition - Model finialized, integrating with other systems.

• **Voice Control** - Drive commands and simple conversion.

Navigation: I hate glass walls

• Fully automatic self driving system

• A lot of code

Fusion of different sensors

Navigation: which can't be seen.

 We introduced a drastic change in the map

• People moving around the robot

Narrow aisle

Timeline

Jan 21 ~ Feb 24
Communicate with the OhmniLabs

Feb 24 ~ Mar 24 Training Model

Mar 24 ~ Current
Working on Navigation

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Lihao Zhu

http://clipart-library.com/communication-clipart.html http://wiki.ros.org/navigation?action=AttachFile&do=get&target=nav_comic.png

Face Recognition: Model Training

Implement code that

- Train model according to different networks
- Save models and restart training from checkpoints
- visualize training process using tensorboard
- **Test** on LFW (labeled faces in the wild)
- Deploy the model to android or web

Provide documentation for setting up environment, training model, and troubleshooting.

Lihao Zhu Dataset: CASIA-WebFace

Face Recognition: Training Output

Train model that

- **92.06** % accuracy on LFW using **Mobilenet**
- **82.283 %** on LFW using **simplified LFR**
- Use Mobilenet so Xuewei can work on the deployment early

Both could obtain > 99% on LFW in theory, but

- Takes time to fine tune the parameters.
- Simplified the LFR due to time restriction.
- The pre-trained model and training code for LFR is not released.

Smaller size**MB**

= |ess parameters

= shorter computation time

Lihao Zhu

Android App: User Interface Design

 Camera Activity: real time face detection and recognition.

Name of the current user, whoever's face occupies the greatest area.

"TAKE PHOTO": initiate the face registration activity with the face detected.

Xuewei Wang

Android App: User Interface Design

 Communication Activity: doko interact with the user by starting a conversation.

Doko: Say something

tell me a joke

Android App: User Interface Design

Face Registration Activity: where users add their faces to the database.

by face detection model is displayed here.

Xuewei Wang

The Android App: Technical Details

- Video Processing: Camera API to perform face recognition on each frame.
- Face Recognition: two models integrated by OpenCV and TensorFlow Lite.
 A SQLite database storing face feature vectors along with names.
- Communication:
 - recognizing speech (CMU Sphinx)
 - generating a response (DialogFlow)
 - response to speech (TextToSpeech)

Timeline and Individual Progress

Jan 21 ~ Feb 24

Early Experiment on Keras

Feb 24 ~ Mar 24

First Prototype: Face Detection

Mar 24 ~ April 10

Second Prototype: Face Detection +

Face Recognition

April 10 ~ May 1

Intermin Prototype

18 commits, ~2000 lines of Java

Xuewei Wang

Voice Assistant

Summary and Plan

Summary:

Navigation: She moves on herself.

Face Recognition: Train model with different structures and deploy it.

Voice Assistant: User command movements, basic conversations, incorporate with face recognition.

General Plan for next semester:

- Make 3 parts work together smoothly and test in different scenarios.

Jiayun Zhong