Problem statement:

Yulu is India's leading micro-mobility service provider, which offers unique vehicles for the daily commute. Now our role is identify which variables are significant in predicting the demand for shared electric cycles in the Indian market and how those variables describe the electric cycle demands.

Business Insights:

- · Working day has clear effect on electric cycles rented
- · The impact of working days is more when there is work .
- · The number of cycles rented are dependent on the weather and different seasons
- · The average number of cycles rented is more when the weather is clear
- · The average number of cycles rented is more when it is fall
- · weather is depenent on the seasons

Recommendations:

- · Company should give coupons to the working professiols
- · Company should make make campaigns near working offices
- · Comapny should keep stock of vehicles more in fall and spring seasons
- · Company should keep stock of vehicles on the clear days
- Comapny should keep track of good weather analysis on daily basis
- Company should come up with a way to make more cycles subscribed in holidays too.
- · They can give more coupons on holidays

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
data=pd.read_csv('C:/Users/Ajith/Desktop/scaler case studiess/bike_sharing.csv')
```

In [3]:

```
data.head()
```

Out[3]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8
2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5
3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3
4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0
4										•

In [4]:

data.shape

Out[4]:

(10886, 12)

In [5]:

data.info()

<class 'pandas.core.frame.DataFrame'>

Panga Inday: 10006 anthias 0 to 10005							
RangeIndex: 10886 entries, 0 to 10885							
Data columns (total 12 columns):							
#	Column	Non-Null Count	Dtype				
0	datetime	10886 non-null	object				
1	season	10886 non-null	int64				
2	holiday	10886 non-null	int64				
3	workingday	10886 non-null	int64				
4	weather	10886 non-null	int64				
5	temp	10886 non-null	float64				
6	atemp	10886 non-null	float64				
7	humidity	10886 non-null	int64				
8	windspeed	10886 non-null	float64				
9	casual	10886 non-null	int64				
10	registered	10886 non-null	int64				
11	count	10886 non-null	int64				
<pre>dtypes: float64(3), int64(8), object(1)</pre>							
memory usage: 1020.7+ KB							

In [6]:

data.dtypes

Out[6]:

object datetime int64 season holiday int64 workingday int64 int64 weather temp float64 float64 atemp humidity int64 windspeed float64 casual int64 registered int64 count int64 dtype: object

In [7]:

data.isna().sum()

Out[7]:

datetime 0 season 0 0 holiday workingday 0 weather 0 temp 0 0 atemp humidity 0 windspeed 0 0 casual registered 0 count 0 dtype: int64

In [8]:

data.describe()

Out[8]:

	season	holiday	workingday	weather	temp	atemp	
count	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000	10886.000000	108
mean	2.506614	0.028569	0.680875	1.418427	20.23086	23.655084	
std	1.116174	0.166599	0.466159	0.633839	7.79159	8.474601	
min	1.000000	0.000000	0.000000	1.000000	0.82000	0.760000	
25%	2.000000	0.000000	0.000000	1.000000	13.94000	16.665000	
50%	3.000000	0.000000	1.000000	1.000000	20.50000	24.240000	
75%	4.000000	0.000000	1.000000	2.000000	26.24000	31.060000	
max	4.000000	1.000000	1.000000	4.000000	41.00000	45.455000	1
4							•

In [9]:

data.describe(include='all')

Out[9]:

	datetime	season	holiday	workingday	weather	temp	
count	10886	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000	10886.0
unique	10886	NaN	NaN	NaN	NaN	NaN	
top	2011-03- 19 21:00:00	NaN	NaN	NaN	NaN	NaN	
freq	1	NaN	NaN	NaN	NaN	NaN	
mean	NaN	2.506614	0.028569	0.680875	1.418427	20.23086	23.0
std	NaN	1.116174	0.166599	0.466159	0.633839	7.79159	8.4
min	NaN	1.000000	0.000000	0.000000	1.000000	0.82000	0.
25%	NaN	2.000000	0.000000	0.000000	1.000000	13.94000	16.0
50%	NaN	3.000000	0.000000	1.000000	1.000000	20.50000	24.:
75%	NaN	4.000000	0.000000	1.000000	2.000000	26.24000	31.0
max	NaN	4.000000	1.000000	1.000000	4.000000	41.00000	45.4
4							•

Type $\it Markdown$ and LaTeX: $\it \alpha^2$

In [10]:

data2=data.copy()

```
In [11]:
data2.dtypes
Out[11]:
datetime
               object
                int64
season
                int64
holiday
                int64
workingday
weather
                int64
              float64
temp
              float64
atemp
humidity
                int64
windspeed
              float64
casual
                int64
registered
                 int64
                 int64
count
dtype: object
In [ ]:
```

Unique elements of each column

```
In [12]:

for i in data.columns:
    print(i,':',data[i].nunique())

datetime : 10886
season : 4
holiday : 2
workingday : 2
```

weather: 4
temp: 49
atemp: 60
humidity: 89
windspeed: 28
casual: 309
registered: 731
count: 822

Conversion of Categorical variables to category type

```
In [13]:

data['season']=data['season'].astype('category')
data['holiday']=data['holiday'].astype('category')
data['workingday']=data['workingday'].astype('category')
```

```
In [14]:
```

```
data.dtypes
```

Out[14]:

datetime object season category holiday category workingday category weather int64 temp float64 float64 atemp int64 humidity windspeed float64 int64 casual registered int64 count int64 dtype: object

Non-Graphical Analysis

Checking the value_counts of each categorical variable

```
In [15]:
```

```
d=data.select_dtypes(include=['category'])
a=list(d.columns)
a
```

Out[15]:

```
['season', 'holiday', 'workingday']
```

```
In [16]:
for i in a:
    print(i)
    print(data[i].value_counts())
    print('\n')
season
4
     2734
     2733
3
2
     2733
1
     2686
Name: season, dtype: int64
holiday
     10575
       311
Name: holiday, dtype: int64
workingday
     7412
1
     3474
Name: workingday, dtype: int64
In [17]:
data.groupby('season').agg({'count':['count','mean']})
Out[17]:
        count
        count mean
season
         2686 116.343261
         2733 215.251372
         2733 234.417124
```

Visual Analysis

2734 198.988296

Univariate Analysis

In [18]:

```
# count
plt.figure(figsize=(15,6))
plt.subplot(131)
sns.histplot(data=data,x='count')
plt.subplot(132)
sns.distplot(data['count'])
plt.subplot(133)
sns.kdeplot(data['count'])
```

Out[18]:

<AxesSubplot:xlabel='count', ylabel='Density'>

· It is following skewed distribution

In [19]:

```
# temp
plt.figure(figsize=(15,6))
plt.subplot(131)
sns.histplot(data=data,x='temp')
plt.subplot(132)
sns.distplot(data['temp'])
plt.subplot(133)
sns.kdeplot(data['temp'])
```

Out[19]:

<AxesSubplot:xlabel='temp', ylabel='Density'>

• It is kind of following normal distribution

In [20]:

```
#atemp
plt.figure(figsize=(15,6))
plt.subplot(131)
sns.histplot(data=data,x='atemp')
plt.subplot(132)
sns.distplot(data['atemp'])
plt.subplot(133)
sns.kdeplot(data['atemp'])
```

Out[20]:

<AxesSubplot:xlabel='atemp', ylabel='Density'>

· It is also following Normal Distribution

In [21]:

```
#humidity
plt.figure(figsize=(15,6))
plt.subplot(131)
sns.histplot(data=data,x='humidity')
plt.subplot(132)
sns.distplot(data['humidity'])
plt.subplot(133)
sns.kdeplot(data['humidity'])
```

Out[21]:

<AxesSubplot:xlabel='humidity', ylabel='Density'>

• It is following Normal Distribution

In [22]:

```
#windspeed
plt.figure(figsize=(15,6))
plt.subplot(131)
sns.histplot(data=data,x='windspeed')
plt.subplot(132)
sns.distplot(data['windspeed'])
plt.subplot(133)
sns.kdeplot(data['windspeed'])
```

Out[22]:

<AxesSubplot:xlabel='windspeed', ylabel='Density'>

• It is following a skewed distribution

In [23]:

```
#casual
plt.figure(figsize=(15,6))
plt.subplot(131)
sns.histplot(data=data,x='casual')
plt.subplot(132)
sns.distplot(data['casual'])
plt.subplot(133)
sns.kdeplot(data['casual'])
```

Out[23]:

<AxesSubplot:xlabel='casual', ylabel='Density'>

In [24]:

```
#registered
plt.figure(figsize=(15,6))
plt.subplot(131)
sns.histplot(data=data,x='registered')
plt.subplot(132)
sns.distplot(data['registered'])
plt.subplot(133)
sns.kdeplot(data['registered'])
```

Out[24]:

<AxesSubplot:xlabel='registered', ylabel='Density'>

· its distribution is right skewed

Bivariate analysis

In [25]:

```
#relation between season and count
plt.figure(figsize=(15,6))
plt.subplot(121)
sns.boxplot(x='season',y='count',data=data)
plt.subplot(122)
sns.barplot(x='season',y='count',data=data)
```

Out[25]:

<AxesSubplot:xlabel='season', ylabel='count'>

In []:

In [26]:

```
# relation between holiday and count
plt.figure(figsize=(15,6))
plt.subplot(121)
sns.boxplot(x='holiday',y='count',data=data)
plt.subplot(122)
sns.barplot(x='holiday',y='count',data=data)
```

Out[26]:

<AxesSubplot:xlabel='holiday', ylabel='count'>

- · There are outliers in case of no holidays but these are not outliers
- The holidays approx have equal no of values for each category

In [27]:

```
# relation between workingday and count
plt.figure(figsize=(15,6))
plt.subplot(121)
sns.boxplot(x='workingday',y='count',data=data)
plt.subplot(122)
sns.barplot(x='workingday',y='count',data=data)
```

Out[27]:

<AxesSubplot:xlabel='workingday', ylabel='count'>

In []:

In [28]:

```
# relation between
sns.pairplot(data.select_dtypes(include='int64'))
```

Out[28]:

<seaborn.axisgrid.PairGrid at 0x1a6e5f70d90>

In [29]:

```
x=data2.corr()
x
```

Out[29]:

	season	holiday	workingday	weather	temp	atemp	humidity	winds
season	1.000000	0.029368	-0.008126	0.008879	0.258689	0.264744	0.190610	-0.14
holiday	0.029368	1.000000	-0.250491	-0.007074	0.000295	-0.005215	0.001929	0.00
workingday	-0.008126	-0.250491	1.000000	0.033772	0.029966	0.024660	-0.010880	0.0
weather	0.008879	-0.007074	0.033772	1.000000	-0.055035	-0.055376	0.406244	0.00
temp	0.258689	0.000295	0.029966	-0.055035	1.000000	0.984948	-0.064949	-0.0
atemp	0.264744	-0.005215	0.024660	-0.055376	0.984948	1.000000	-0.043536	-0.0
humidity	0.190610	0.001929	-0.010880	0.406244	-0.064949	-0.043536	1.000000	-0.3
windspeed	-0.147121	0.008409	0.013373	0.007261	-0.017852	-0.057473	-0.318607	1.00
casual	0.096758	0.043799	-0.319111	-0.135918	0.467097	0.462067	-0.348187	0.09
registered	0.164011	-0.020956	0.119460	-0.109340	0.318571	0.314635	-0.265458	0.09
count	0.163439	-0.005393	0.011594	-0.128655	0.394454	0.389784	-0.317371	0.10
4								•

In [30]:

```
plt.figure(figsize=(15,6))
sns.heatmap(data2.corr(), cmap="YlGnBu", annot=True)
plt.show()
```


- From heatmap we can see that count is dependent on registerd and casual features
- it is dependent on temp and atemp but not as much as registered and casual
- · Temp and atemp are highly correlated to eachother

In [31]:

```
sns.distplot(data['season'])
```

Out[31]:

<AxesSubplot:xlabel='season', ylabel='Density'>

In [32]:

sns.distplot(data['holiday'])

Out[32]:

<AxesSubplot:xlabel='holiday', ylabel='Density'>

In [33]:

```
sns.distplot(data['workingday'])
```

Out[33]:

<AxesSubplot:xlabel='workingday', ylabel='Density'>

1)Selecting test for Working Day and no of electric cycles rented

In [34]:

Here we use T-test because we dont know the population variances #H0:no of bikes rented on working day and non working day are same #Ha:no of bikes rented on working day and non working day are not same #alpha=0.05

In [36]:

```
s1=data[data['workingday']==0]
s2=data[data['workingday']==1]
dof=s1.shape[0]+s2.shape[0]-2
```

```
In [37]:
```

```
# Checking the assumptions of T-Test:
# 1) Normality check-Shapiro Wilk test
# 2) population variances are equal-Levene's test
```

In [41]:

```
from scipy import stats
```

In [42]:

```
#1) Shapiro test
#H0: Data is in Normal Distribution
#Ha: Data is not normally distributed
stats.shapiro(s1['count'])
```

Out[42]:

ShapiroResult(statistic=0.8852126598358154, pvalue=4.203895392974451e-45)

In [43]:

```
#so the data is in normal distribution
```

In [54]:

```
#1) Shapiro test
#H0: Data is in Normal Distribution
#Ha: Data is not normally distributed
stats.shapiro(s2['count'])
```

Out[54]:

ShapiroResult(statistic=0.8702576160430908, pvalue=0.0)

In [51]:

```
#so the data is in normal distribution
```

In [44]:

```
#2) Levenes test
#H0: Both variances are equal
# Ha: Both variances are not equal
stats.levene(s1['count'],s2['count'])
```

Out[44]:

LeveneResult(statistic=0.004972848886504472, pvalue=0.9437823280916695)

In [45]:

```
m1=s1['count'].mean()
st1=s1['count'].std()
m2=s2['count'].mean()
st2=s2['count'].std()
```

In [47]:

```
# Here we are continuing the analysis even levenes test failed
# QQPLOT
stats.probplot(s1['count'],dist='norm',sparams=(m1,st1),plot=plt)
```

Out[47]:


```
In [48]:
```

```
stats.probplot(s2['count'],dist='norm',sparams=(m2,st2),plot=plt)
```

Out[48]:

```
((array([-496.31766087, -453.99287291, -430.71904597, ..., 816.74279124, 840.01661819, 882.34140615]), array([ 1, 1, 1, ..., 968, 970, 977], dtype=int64)), (0.9333254460569756, 12.868980513910742, 0.9329510592827182))
```


In [56]:

```
# T-Test
stats.ttest_ind(s1['count'],s2['count'])
```

Out[56]:

Ttest_indResult(statistic=-1.2096277376026694, pvalue=0.22644804226361348)

Here the p-value 0.22 > alpha=0.05 so we fail to reject the null hypothesis

2) No. of cycles rented similar or different in different weather conditions

In [59]:

```
data['weather'].value_counts()
```

Out[59]:

```
1 7192
2 2834
3 859
```

Name: weather, dtype: int64

```
In [ ]:
#HO: No of cycles rented doesn't depend on weather
#H1: No of cycles rented does depend on weather
In [103]:
In [105]:
#There are 4 catgories in weather
w1=data[data['weather']==1]
w2=data[data['weather']==2]
w3=data[data['weather']==3]
w4=data[data['weather']==4]
In [129]:
mw1=w1['count'].mean()
stw1=w1['count'].std()
mw2=w2['count'].mean()
stw2=w2['count'].std()
mw3=w3['count'].mean()
stw3=w3['count'].std()
mw4=w4['count'].mean()
stw4=w4['count'].std()
print(mw1)
print(mw2)
print(mw3)
print(mw4)
205.23679087875416
178.95553987297106
118.84633294528521
164.0
In [116]:
# Shapiro test
# HO: data is noramlly distributed
# h1: data is normally distributed
stats.shapiro(w1['count'])
Out[116]:
ShapiroResult(statistic=0.8909225463867188, pvalue=0.0)
In [117]:
stats.shapiro(w2['count'])
Out[117]:
```

ShapiroResult(statistic=0.8767688274383545, pvalue=9.781063280987223e-43)

In [118]:

```
stats.shapiro(w3['count'])
```

Out[118]:

ShapiroResult(statistic=0.7674333453178406, pvalue=3.876134581802921e-33)

In [119]:

```
# Levene test
# H0:Both variances are equal
# Ha: Both variances are not equal
stats.levene(w1['count'],w2['count'],w3['count'])
```

Out[119]:

LeveneResult(statistic=54.85106195954556, pvalue=3.504937946833238e-35)

In []:

In [120]:

```
stats.probplot(w1['count'],dist='norm',sparams=(mw1,stw1),plot=plt)
```

Out[120]:

In [121]:

```
stats.probplot(w2['count'],dist='norm',sparams=(mw2,stw2),plot=plt)
```

Out[121]:

```
((array([-450.11300143, -404.11573316, -378.66907991, ..., 789.14266167, 814.58931492, 860.58658319]), array([ 1,  1,  1, ..., 862, 868, 890], dtype=int64)), (0.8396698568244296, 6.624393060702118, 0.9365111227539784))
```


In [122]:

```
stats.probplot(w3['count'],dist='norm',sparams=(mw3,stw3),plot=plt)
2,
         2.40861421e+02, 2.41458147e+02, 2.42057156e+02, 2.42658475e+0
2,
         2.43262135e+02, 2.43868165e+02, 2.44476595e+02, 2.45087456e+0
2,
         2.45700781e+02, 2.46316600e+02, 2.46934946e+02, 2.47555854e+0
2,
         2.48179356e+02, 2.48805487e+02, 2.49434282e+02, 2.50065777e+0
2,
         2.50700009e+02, 2.51337015e+02, 2.51976832e+02, 2.52619500e+0
2,
         2.53265058e+02, 2.53913546e+02, 2.54565005e+02, 2.55219478e+0
2,
         2.55877006e+02, 2.56537633e+02, 2.57201405e+02, 2.57868366e+0
2,
         2.58538563e+02, 2.59212042e+02, 2.59888854e+02, 2.60569046e+0
2,
         2.61252670e+02, 2.61939777e+02, 2.62630420e+02, 2.63324653e+0
2,
```

Here we should apply anova test

```
In [66]:
```

```
from scipy.stats import f_oneway
f_oneway(w1['count'],w2['count'],w4['count'])
```

Out[66]:

F_onewayResult(statistic=65.53024112793271, pvalue=5.482069475935669e-42)

In [67]:

```
# Here p-value is less than alpha so we reject the null hypothesis
```

therefore No of cycles rented does depent on Weather on that particular day

2) No. of cycles rented similar or different in different seasons

```
In [69]:
```

```
In [87]:
se1=data[data['season']==1]
se2=data[data['season']==2]
se3=data[data['season']==3]
se4=data[data['season']==4]
In [88]:
#HO: No of cycles rented doesn't depend on season
#H1: No of cycles rented does depend on season
In [89]:
# Shapiro test
# H0: data is noramlly distributed
# h1: data is normally distributed
stats.shapiro(se1['count'])
Out[89]:
ShapiroResult(statistic=0.8087379336357117, pvalue=0.0)
In [90]:
stats.shapiro(se2['count'])
Out[90]:
ShapiroResult(statistic=0.9004815220832825, pvalue=6.038716365804366e-39)
In [91]:
stats.shapiro(se3['count'])
Out[91]:
ShapiroResult(statistic=0.9148167371749878, pvalue=1.0437229694698105e-36)
In [92]:
stats.shapiro(se4['count'])
Out[92]:
ShapiroResult(statistic=0.8954642415046692, pvalue=1.130082751748606e-39)
In [93]:
```

from above we can say that we reject null hypo but we have proofs that given data is norm

```
In [94]:
# Levene test
# H0:Both variances are equal
# Ha: Both variances are not equal
stats.levene(se1['count'],se2['count'],se3['count'],se4['count'])
```

Out[94]:

LeveneResult(statistic=187.7706624026276, pvalue=1.0147116860043298e-118)

```
In [95]:
```

```
f_oneway(se1['count'],se2['count'],se3['count'],se4['count'])
```

Out[95]:

F_onewayResult(statistic=236.94671081032106, pvalue=6.164843386499654e-149)

- From p-value we can say that it is lower than alpha so we reject the null hypothesis.
- · Therefore the season feature effects the no of cycles rented

4)Weather is dependent on season (check between 2 predictor variable)

For this we use chisquare test of independence

```
In [ ]:
# Here we need to check whether there is any relation between Weather and season
# H0: There is no relation between weather and season
# Ha: Weather is dependent on season
```

```
In [101]:
```

```
# Creating the observed value table or contingency table
t=pd.crosstab(data['weather'],data['season'])
```

```
In [97]:
```

```
t
```

Out[97]:

season	1	2	3	4
weather				
1	1759	1801	1930	1702
2	715	708	604	807
3	211	224	199	225
4	1	0	0	0

In [99]:

```
chi2_stat,p,dof,expected = stats.chi2_contingency(t)
```

In [102]:

```
print('chi2_statistic :',chi2_stat)
print('p-value :',p)
print('Degrees Of Freedom',dof)
print('Expected',expected)
```

```
chi2_statistic : 49.15865559689363
p-value : 1.5499250736864862e-07
Degrees Of Freedom 9
Expected [[1.77454639e+03 1.80559765e+03 1.80559765e+03 1.80625831e+03]
[6.99258130e+02 7.11493845e+02 7.11493845e+02 7.11754180e+02]
[2.11948742e+02 2.15657450e+02 2.15657450e+02 2.15736359e+02]
[2.46738931e-01 2.51056403e-01 2.51056403e-01 2.51148264e-01]]
```

In [136]:

```
x3=data[data['season']==3].mean()
x3['count'].mean()
```

Out[136]:

234.417124039517

- · here as p value is less than alpha we reject null hypothesis
- Therfore we can conclude that weather is dependent on season

Business Insights:

- * Working day has clear effect on electric cycles rented
- * The impact of working days is more when there is work .
- * The number of cycles rented are dependent on the weather and different seasons
- * The average number of cycles rented is more when the weather is clear
- * The average number of cycles rented is more when it is fall
- * weather is depenent on the seasons

Recommendations:

- * Company should give coupons to the working professiols
- * Company should make make campaigns near working offices
- * Comapny should keep stock of vehicles more in fall and spring seasons
- * Company should keep stock of vehicles on the clear days
- * Comapny should keep track of good weather analysis on daily basis
- * Company should come up with a way to make more cycles subscribed in holidays to o.
- * They can give more coupons on holidays

In []:		