Elementare Zahlentheorie

Prof. Dr. Ch. Birkenhake Wintersemester 2020/21

Übungsblatt 6

Abgabe: Do. 17.12.19, per Mail als PDF an **wild_dennis@ymail.com**, Dateien mit gedrehter, gespiegelter oder auf dem Kopf stehender Schrift werden nicht korrigiert.

Aufgabe 1:

Bestimmen Sie alle Lösungen der diophantischen Gleichungen

- (1) $3 \cdot x + 17 \cdot y = 158$
- (2) $9 \cdot x + 16 \cdot y = 35$

(6 Pkte)

(1) $3 \cdot x + 17 \cdot y = 158$: Euklidischer Algorithmus auf 3 und 17 angewandt bricht schon an zweiter Stelle ab:

$$17 = 5 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$\Rightarrow 1 = 2 \cdot (-1) + 3 \cdot 1$$

$$= (3 \cdot (-5) + 17 \cdot 1) \cdot (-1) + 3 \cdot 1$$

$$= 3 \cdot 6 + 17 \cdot (-1)$$

$$158 = 3 \cdot 948 + 17 \cdot (-158)$$

$$\Rightarrow (x, y) = (948, -158)$$

Alle Lösungen:

$$(x,y) = (948 - 17t, -158 + 3t)$$
 mit $t \in \mathbb{Z}$.

(2)
$$9 \cdot x + 16 \cdot y = 35$$
:

$$16 = 1 \cdot 9 + 7
9 = 1 \cdot 7 + 2
7 = 3 \cdot 2 + 1
\Rightarrow 1 = -3 \cdot 2 + 7
= -3 \cdot (-7 + 9) + 7 = 4 \cdot 7 - 3 \cdot 9
= 4 \cdot (-9 + 16) - 3 \cdot 9 = -7 \cdot 9 + 4 \cdot 16$$

$$\Rightarrow 7 = -1 \cdot 9 + 16
\Rightarrow 2 = -1 \cdot 7 + 9
\Rightarrow 1 = -3 \cdot 2 + 7$$

Spezielle Lösung:
$$(x, y) = (-7 \cdot 35, 4 \cdot 35) = (-245, 140)$$
, alle Lösungen: $(x, y) = (-245 + 16t, 140 - 9t)$ mit $t \in \mathbb{Z}$.

Aufgabe 2:

Geben Sie je ein Beispiel für eine lösbare und eine unlösbare lineare Diophantische Gleichung an. Finden Sie auch eine lineare Diophantische Gleichung mit Lösungen in $\mathbb{N} \times \mathbb{N}$? (6 Pkte)

Lösbare lineare Diophantische Gleichung:

$$4x + 27y = 36$$

ist lösbar, denn ggT(4,27) = 1 teilt 36.

Unlösbare lineare Diophantische Gleichung:

$$12x + 27y = 4$$

ist nicht lösbar, denn ggT(12, 27) = 3 teilt nicht 4.

Lineare diophantische Gleichung mit positiven Lösungen: Sei z.B. (3,4) eine Lösung. Wegen: $5 \cdot 3 + 2 \cdot 4 = 15 + 8 = 23$, hat

$$5x + 2y = 23$$

die rein positive Lösung (3,4)

Aufgabe 3:

Fertigen Sie eine Multiplikationstafel für $\mathbb{Z}/8\mathbb{Z}$ an. Bestimmen Sie alle Nullteiler, welche Elemente sind invertierbar? (6 Pkte)

101,	Wording Promotive prince in							
\odot	$\ \bar{0}\ $	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{7}$
$\overline{0}$	$\overline{0}$	Ō	Ō	Ō	Ō	Ō	Ō	0
$\overline{1}$	Ō	1	$\bar{2}$	3	$\bar{4}$	5	6	7
$\bar{2}$	Ō	$\bar{2}$	$\bar{4}$	<u>6</u>	Ō	$\bar{2}$	$\bar{4}$	<u> </u> 6
$\overline{3}$	Ō	3	6	1	$\bar{4}$	$\bar{7}$	$\bar{2}$	5
$\overline{4}$	Ō	$\bar{4}$	Ō	$\bar{4}$	Ō	$\bar{4}$	Ō	$\overline{4}$
$\overline{5}$	Ō	5	$\bar{2}$	7	$\bar{4}$	1	6	3
$\bar{6}$	$\bar{0}$	6	$\bar{4}$	$\bar{2}$	$\bar{0}$	6	$\bar{4}$	$\bar{2}$
$\overline{7}$	0	$\bar{7}$	6	5	$\bar{4}$	3	$\bar{2}$	1

Nullteiler: $\bar{2}$, $\bar{4}$, $\bar{6}$

Invertierbare Elemente:

$$\bar{3}^{-1} = \bar{3}$$
 $\bar{5}^{-1} = \bar{5}$ und
 $\bar{7}^{-1} = \bar{7}$

Aufgabe 4:

Mit welcher Ziffer endet die Zahl 3⁸⁰?

(3 Pkte)

Gesucht ist der Repräsentant $0 \le z < 10$ von $\overline{3}^{80}$ in R_{10} .

Mit dem Satz von Euler:

Beachte: $\varphi(10) = 4$ und ggT(3, 10) = 1, also:

$$3^{80} = (3^{20})^4 = (3^{20})^{\varphi(10)} \equiv 1 \mod 10 \quad \text{da} \quad ggT(3^{20}, 10) = 1$$

Also ist 1 die letzte Ziffer!