

Guiding Neural Entity Alignmentwith Compatibility

Bing Liu¹, Harrisen Scells¹, Wen Hua¹, Guido Zuccon¹, Genghong Zhao², Xia Zhang²

The University of Queensland¹, Neusoft²

bing.liu@uq.edu.au

https://uqbingliu.github.io/

Entity Alignment (EA)

Establish **mappings** between **equivalent entities** in different Knowledge Graphs (KGs).

Challenge: Heterogeneity of different KGs

Art KG

Neural Entity Alignment

Neural Entity Alignment - Training

Compatibility of Mappings

Another Objective: Making Compatible Predictions

Learning objectives:

Challenges

Challenge 1: How to measure the overall compatibility of a large number of mappings?

Challenges

Challenge 2: How to exploit the compatibility to train the EA models?

• The inference processing is not derivable.

Challenges

Challenge 3: How to optimize the compatibility model?

The EMEA Framework

Compatibility Model

Model the overall compatibility with a Probabilistic Graphical Model

Source KG

Factor subsets

Local compatibilities

Reuse **PARIS**^[1] **rule** to check compatibility:

Reuse **PARIS rule** to check compatibility:

Reuse **PARIS rule** to check compatibility:

Reuse **PARIS rule** to check compatibility:

Two supporting mappings

 (e_2')

Reuse **PARIS rule** to check compatibility:

Two supporting mappings

No supporting mapping

Compatibility Model

Model the overall compatibility with a Probabilistic Graphical Model

Source KG

Factor subsets

Local compatibilities

Joint probability

Improve Neural Predictions

Improve Neural Predictions

 $q^*(y_e)$ involves the neural distributions of entities depending on e.

Optimization with Variational EM

Expectation step:

- Derive $q^*(y_u)$, $u \in U$
- Update Θ using $\{y_u \sim q^*(y_u), u \in U\}$ and y_L

Maximization step:

- Sample $\hat{y}_U \sim q_{\Theta}(y_U)$
- Update Φ to maximize the $p_{\Phi}(y_L, y_U)$

Experimental Results

Annotation Amounts

Settings: neural model: RREA, dataset: zh_en

Annotation Amounts

Settings: neural model: RREA, dataset: zh_en

Neural Architectures

Settings: dataset: zh_en

Initial Training Modes

Conclusion

EMEA: a more effective training framework of neural EA models

- Incorporate compatibility as an extra guidance of training.
- Bridge the gap between neural and reasoning-based EA methods.
- Generic across different settings.

Code & data: https://github.com/uqbingliu/EMEA

Acknowledgement

Thank you for listening!

bing.liu@uq.edu.au

https://uqbingliu.github.io/

y @BingLiu1011