GRUPE

Grupoid $\mathcal{G} = (G, *)$ je **grupa** akko

- (1) je operacija * asocijativna, tj. ako je \mathcal{G} polugrupa (asocijativni grupoid),
- (2) postoji levi neutralni element, tj.

$$\exists e \in G, \forall x \in G, e * x = x,$$

(3) za svaki element $x \in G$ postoji njemu levi inverzni element $x' \in G$, tj.

$$\forall x \in G, \exists x' \in G, x' * x = e.$$

Grupa u kojoj važi komutativni zakon zove se komutativna ili Abelova grupa.

U grupi uvek važi:

- levi neutralni element je istovremeno i desni neutralni element, pa je to onda neutralni element i on je jedinstven,
- levi inverzni elementi su istovremeno i desni inverzni elementi, pa su to inverzni elementi i oni su jedinstveni,
- zakon kancelacije, jer je svaka grupa asocijativa, ima neutralni i inverzne elemente.

Primer: Da li su sledeći uređeni parovi grupe?

$$(\mathbb{N},+), (\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{N},\cdot), (\mathbb{Q},\cdot), (\mathbb{C},+), (\mathbb{Z},\cdot), (\{-1,0,1\},+), (\mathbb{I}\setminus\{0\},\cdot).$$

Grupa (A, \cdot) se naziva multiplikativna grupa i u njoj se neutralni elemenat označava sa 1 i čita "jedinica grupe", a inverzni elemenat od x se označava sa x^{-1} .

Grupa (A, +) se naziva aditivna grupa i u njoj se neutralni elemenat označava sa 0 i čita "nula grupe", a inverzni od x se označava sa -x.

Neka su $\mathcal{H} = (H, *)$ i $\mathcal{G} = (G, *)$ grupe. Tada je \mathcal{H} podgrupa grupe \mathcal{G} akko je $H \subseteq G$ i operacija * iz \mathcal{H} je restrikcija operacije * iz \mathcal{G} .

Neutralni elemenat grupe je takođe neutralni elemenat i svake njene podgrupe.

Svaka grupa (osim one koja se sastoji samo od neutralnog elementa) ima bar dve podgrupe, takozvane trivijalne podgrupe:

- podgrupu koja se sastoji samo od neutralnog elementa i
- celu grupu koja je uvek sama sebi podgrupa.

Da bi $\mathcal{H} = (H, *)$ bila podgrupa grupe $\mathcal{G} = (G, *)$, gde je $\emptyset \neq H \subseteq G$, dovoljno je da operacija * bude zatvorena u H, da neutralni element grupe \mathcal{G} pripada skupu H i da za svako $x \in H$ njegov inverzni elemenat u \mathcal{G} pripada skupu H.

Lagranžova teorema: Ako je \mathcal{G} konačna grupa i \mathcal{H} podgrupa grupe \mathcal{G} , tada je broj svih elemenata grupe \mathcal{G} deljiv brojem svih elemenata podgrupe \mathcal{H} .

Primer: Primeri podgrupa:

- $(\mathbb{R},+)$ je podgrupa grupe $(\mathbb{C},+)$,
- $(\mathbb{Q}, +)$ je podgrupa grupa $(\mathbb{R}, +)$ i $(\mathbb{C}, +)$,
- $(\mathbb{Z},+)$ je podgrupa grupa $(\mathbb{Q},+)$, $(\mathbb{R},+)$ i $(\mathbb{C},+)$,
- $(\mathbb{R} \setminus \{0\}, \cdot)$ je podgrupa grupe $(\mathbb{C} \setminus \{0\}, \cdot)$,
- $((0,\infty),\cdot)$ je podgrupa grupa $(\mathbb{R}\setminus\{0\},\cdot)$ i $(\mathbb{C}\setminus\{0\},\cdot)$,
- $(\mathbb{Q} \setminus \{0\}, \cdot)$ je podgrupa grupa $(\mathbb{R} \setminus \{0\}, \cdot)$ i $(\mathbb{C} \setminus \{0\}, \cdot)$.

Primer: Grupoid (G, \circ) kod kog je $G = \{e, a, b, c\}$, a operacija o zadata tablicom

GRUPE 2

je Abelova grupa i naziva se Klajnova grupa. Klajnovu grupu karakteriše to da je svaki elemenat sam sebi inverzan.

Primer: Naći sve podgrupe Klajnove grupe.

- trivijalne:
$$(\{e\}, \circ), (G, \circ)$$

- netrivijalne: Kako na osnovu Lagranžove teoreme broj elemenata podgrupe mora da deli broj elemenata grupe, to Klajnova grupa može da ima samo podgrupe sa 1, 2 ili 4 elementa. Sa 1 i 4 elementa su trivijalne podgrupe, a sa 2 moraju sadržati neutralni elemenat pa su kandidati za netrivijalne podgrupe

$$(\left\{e,a\right\},\circ)$$
 $(\left\{e,b\right\},\circ)$ $(\left\{e,c\right\},\circ)$

Direktnom proverom iz tablica vidi se da ovo jesu grupe, pa Klajnova grupa osim trivijalnih ima i tri netrivijalne podgrupe.

Napomena: Kako izomorfizam prenosi osobine sa jednog na drugi grupoid to znači da ako su dva grupoida izomorfna i ako je jedan od njih grupa biće i drugi.