MT5823 Semigroup theory: Problem sheet 6 (James D. Mitchell) Cancellative semigroups, regular semigroups, inverses

Cancellative semigroups

Recall that a semigroup S is *cancellative* if ax = bx and yc = yd implies that a = b and c = d for all $a, b, c, d, x, y \in S$.

- **6-1**. Let S be a cancellative semigroup. Prove that the semigroup S^1 (S with an identity adjoined) is cancellative if and only if S has no identity element.
- **6-2**. Let S be a cancellative semigroup without identity. Prove that in S we have $\mathcal{R} = \mathcal{L} = \mathcal{H} = \mathcal{D} = \Delta_S$.
- **6-3**. Let T be the semigroup consisting of matrices of the form

$$\begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix}$$

where $a,b \in \mathbb{R}$ and a,b > 0. Prove that T is a semigroup with respect to the usual matrix multiplication. Prove that T is cancellative, and deduce that \mathscr{R} , \mathscr{L} , \mathscr{H} and \mathscr{D} are all trivial. Prove that T has no proper two-sided ideals, so that $\mathscr{J} = T \times T$. (This is an example where $\mathscr{J} \neq \mathscr{D}$.)

Regular semigroups

- **6-4**. Let S be a regular semigroup with a single idempotent. How many \mathscr{R} -classes and \mathscr{L} -classes does S have? Prove that S is a group.
- **6-5.** Let S be a regular semigroup and let ρ be a congruence on S. Assume that $a \in S$ is such that a/ρ is an idempotent in S/ρ . If x is any inverse of a^2 , then prove that e = axa is an idempotent, and that it belongs to a/ρ . (This result is known as **Lallement's Lemma**.)
- **6-6.** Prove that the bicyclic monoid is regular. Prove that every rectangular band is regular.
- **6-7**. Prove that the semigroup generated by the mappings

$$x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & - & - \end{pmatrix} \quad \text{and} \quad y = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 4 & 5 & 4 \end{pmatrix}$$

is not regular. Prove that the semigroup defined by the presentation $\langle a, b \mid a^3 = a, b^4 = b, ba = a^2b \rangle$ is regular.

Inverses

- **6-8.*** Let S be a regular semigroup, and let E be the set of idempotents of S. For a set $X \subseteq S$ and $n \ge 1$ let $X^n = \{x_1x_2 \dots x_n : x_1, \dots, x_n \in X\}$. For an element $x \in S$ denote by V(x) the set of all inverses of x. Finally, for $X \subseteq S$ let $V(X) = \bigcup_{x \in X} V(x)$.
 - (a) For $x = e_1 e_2 \dots e_n \in E^n$ and $y \in V(x)$ define

$$f_j = e_j \dots e_n y e_1 \dots e_{j-1}$$
 $j = 1, \dots, n$.

Prove that all f_j are idempotents and that $yxf_nf_{n-1}\dots f_2xy=y$.

(b) For $x = e_1 e_2 \dots e_{n+1} \in E^{n+1}$ and any $y \in V(x)$ let

$$g_j = e_{j+1} \dots e_{n+1} y e_1 \dots e_j \quad j = 1, \dots, n+1.$$

Prove that all g_i are idempotents and that $x \in V(g_n g_{n-1} \dots g_1)$.

(c) Prove that $V(E^n) = E^{n+1}$ for all $n \ge 1$.

Further problems

- **6-9**. Let S be a regular semigroup. Show that the following are equivalent:
 - (a) S has exactly one idempotent;
 - (b) S is cancellative;
 - (c) S is a group.