Endomorphismes orthogonaux – Démonstrations

<u>Propriété</u>: Soient $u \in \mathcal{L}(E)$, et B une base <u>orthonormée</u> de E. On a équivalence entre :

- (i) u est un endomorphisme orthogonal de E.
- (ii) $Mat_B(u)$ est une matrice orthogonale.

Démonstration : 🖈

On a:

$$u \in O(E) \Leftrightarrow u^* \circ u = Id_E$$

 $\Leftrightarrow \operatorname{Mat}_B(u^*) \operatorname{Mat}_B(u) = I_n$
 $\Leftrightarrow {}^t\operatorname{Mat}_B(u) \operatorname{Mat}_B(u) = I_n$
 $\Leftrightarrow \operatorname{Mat}_B(u) \in O_n(\mathbb{R})$

(Le 3^e point vient du fait que B est orthonormée, donc $Mat_B(u^*) = {}^tMat_B(u)$)

Proposition: Soit $u \in O(E)$, alors $Sp(u) \in \{1, -1\}$

<u>Démonstration</u>: **★**

Soit $\lambda \in Sp(u)$, alors comme E est euclidien, $\lambda \in \mathbb{R}$

Alors $\exists x \in E, x \neq 0_E$, tel que $u(x) = \lambda x$.

Alors d'une part : $||u(x)|| = ||\lambda x|| = |\lambda|||x||$

Et d'autre part, $u \in O(E)$ donc u conserve la norme, ainsi ||u(x)|| = ||x||

D'où $||x|| = |\lambda| ||x||$, ie $|\lambda| = 1$

Donc $\lambda = \pm 1$

<u>Lemme</u>: Soit $u \in O(E)$. Soit F un sev de E stable par u, alors F^{\perp} est aussi stable par u. De plus, l'endomorphisme u_F (resp. $u_{F^{\perp}}$) est un endomorphisme orthogonal de F (resp. F^{\perp}).

<u>Démonstration</u>: ★

Comme $u(F) \subset F$ et $u \in O(E)$, u est bijectif donc u conserve les dimensions ainsi

$$\dim(u(F)) = \dim F$$

(cela se prouve facilement en prenant une base $(e_1, ..., e_r)$ de F, et en montrant que $(u(e_1), ..., u(e_r))$ est libre).

On en déduit donc que u(F) = F.

 \rightarrow Soit $x \in F^{\perp}$, on veut montrer que $u(x) \in F^{\perp}$. Soit $y \in F$, alors

$$\langle u(x), y \rangle = \langle u(x), u(z) \rangle$$
 car $y \in F = u(F)$, donc $\exists z \in F, u(z) = y$
= $\langle x, z \rangle$ car $u \in O(E)$ donc u conserve le produit scalaire.

 $= 0 \operatorname{car} x \in F^{\perp} \operatorname{et} z \in F.$

Ainsi $u(x) \in F^{\perp}$. D'où $u(F^{\perp}) \subseteq F^{\perp}$.

 \rightarrow Montrons que $u_F: F \rightarrow F, x \mapsto u(x)$ appartient à O(F)

Soit
$$x \in F$$
, alors $\|u_F(x)\| = \|u(x)\| \underset{u \in O(E)}{=} \|x\|$

Donc $u \in O(F)$.

(On fait pareil pour l'autre)