Examples

1) Zero vector space
$$V = \{0\}$$

over R, say scalars
 $0 + 0 = 0$

smallest possible vector space (v.s.)

Med QEV at least >> Null space cannot be a vector space

2) F^-n-tuples of scalars (R of C) R'or ch

= (a, t, b, ____, ant bn) Coordinate wise vector sum

uses scalar sum (already known)

to define vector sum (New)

ku = k(a,,..., an) = (ka,,..., kan) (> scalar multiple (vector space operation) multiplication of

multiplication of real numbers (scalars)

U+V= (---, U-, +V-, U,+V, U,+V, U,+V,, U2+V2, -----)

ku= (---, ku-, ku-, kvo, ku, ku, ----)

(oordinate wise defins

4) P Polynomial Space

b EP vector is a polynomial, any degree

a what is b+g for b+g EP

Say $b(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_k t^k$ $g(t) = b_0 + b_1 t + \dots + b_k t^k$

Define \$+9 EP using a test point t and real (scalar) arithmetic

(b+q)(t) = ao +a,t + ---- aptk + bo +b,t + b --- + be the Scalars

test point

polynomial vector

 $(cp)(t) = ((a_0t + \dots + a_kt^k))$ $\int_{a_0}^{b_0} \int_{a_0}^{b_0} c(a_0t + \dots + a_kt^k)$

new test bt.

- 5) Matrix space Mij vectors AE Mij are ixj matricies

 Use coordinate wise defn for A+B & RA

 Mij "look exactly like" Rti;

 isomorphic
- 6) Function spaces

vector Sum

$$X$$
 any set
$$\{f: X \longrightarrow F \} = F$$
function from X to scalars F

$$f,g \in F$$
 $(f+g)(t) = f(t) + g(t)$

test bt scalars

in x

x can be any set, often R" or C" $f: X \to R \text{ is a real valued function}$

Axioms > useful, familiar results

Any u EV

7 zero vector is unique

$$u'' = u'' + Q (S3) = u'' + (u' + u)$$

Allows substraction of rectors meaning fully

u-V=u+(-V)