Weeks [12 - 15]

Section 1

PART III Artificial Intelligence

Instructor: Dr. Talgat Manglayev

CSCI 111 Web Programming and Problem Solving

Week-12-lecture-3: Machine Learning. Linear Regression.

CONTENT

- The problem: Predict the price of a house
- The solution: Building a regression model for housing prices
- The linear regression algorithm
- How do we measure our results? The error function

What would be the price for a house with 4 rooms?

Rooms	Price
1	10
2	15
3	20
4	?
5	30
6	35
7	40

What would be the formula for price for a house?

Price = 5 + 5 x number_of_rooms

Rooms	Price
1	10
2	15
3	20
4	?
5	30
6	35
7	40

What would be the formula for price for a house?

The model to predict price for a house

Rooms	Price
1	16
2	19
3	24
4	?
5	36
6	41
7	44

Price = 10 + 5 x number_of_rooms + (small_error)

Rooms	Price
1	16
2	19
3	24
4	?
5	36
6	41
7	44

Price = 10 + 5 x number_of_rooms + (small_error)

Rooms	Price
1	16
2	19
3	24
4	30
5	36
6	41
7	44

Price =
$$10 + 5$$
 x number of rooms + (small error)

The goal of linear regression is to draw the straight line that passes as close as possible to these points.

Rooms	Price
1	16
2	19
3	24
4	30
5	36
6	41
7	44

The model to predict price for a house

Multivariate linear regression

Pick a random line.

Repeat many times:

- Pick a random data point.
- Move the line a little closer to the point.

Return the line you've obtained.

Pick a model with random weights and a random bias.

Repeat many times:

- Pick a random data point.
- Slightly adjust the weights and bias to improve the prediction for that particular data point.

Return the model you've obtained.

Rotate clockwise and counterclockwise

If we increase the slope of a line, the line will rotate counterclockwise. If we decrease the slope of a line, the line will rotate clockwise.

Translate up and down

If we increase the y-intercept of a line, the line is translated upward. If we decrease the y-intercept of a line, the line is translated downward.

The linear regression. Simple Trick

input: y = mx + b, (x, y)

Pick two very small random numbers: $\eta 1$ and $\eta 2$

$m' = m - \eta 1.$ $b' = b + \eta 2.$	$m' = m + \eta 1.$ $b' = b + \eta 2.$
$m' = m + \eta 1.$ $b' = b - \eta 2.$	$m' = m - \eta 1.$ $b' = b - \eta 2.$

output: y' = m'x + b' closer to (x, y)

The linear regression. Simple Trick

input: y = mx + b, (x, y)

Pick two very small random numbers: $\eta 1$ and $\eta 2$

	•
$m' = m - \eta 1.$ $b' = b + \eta 2.$	$m'=m+\eta 1.$
$b' = b + \eta 2.$	$b' = b + \eta 2.$

If the model gave us a price for the house that is lower than the actual price, add a small random amount to the price per room and to the base price of the house.

$$m' = m + \eta 1.$$
 $m' = m - \eta 1.$ $b' = b - \eta 2.$ $b' = b - \eta 2.$

If the model gave us a price for the house that is higher than the actual price, subtract a small random amount from the price per room and the base price of the house.

output: y' = m'x + b' closer to (x, y)

Move the line closer to point:

find values with the correct signs (+ or -) to add to the slope and the y-intercept.

Observation 2: If a point is above the line, the value y - y' (the difference between the price and the predicted price) is positive. If it is below the line, this value is negative.

if we add the difference y - y' to the y-intercept, the line will always move toward the point

if we add the difference y - y' to the y-intercept, the line will always move toward the point **learning rate** - A very small number η , which is set before training model to keep the changes in very small amounts by training. The value $\eta \cdot (y - y')$ is added to the y-intercept to move the line in the direction of the point.

The linear regression. Square trick Rotate counter-Rotate clockwise, clockwise, translate up! translate up! **Observation 3:** In the Case 1 Case 2 simple trick, when the point is in scenario 1 or 4 (above the line and to the right of the vertical axis, or below the line and to the left of the vertical axis), we rotate the line Case 4 Case 3 counterclockwise. Otherwise (scenario 2 or 3), we rotate it clockwise. Rotate Rotate clockwise, counter clockwise, translate down! translate down!

Observation 4:

input:

$$y = mx + b$$
, (x, y) , η

steps:

$$m' = m + \eta \cdot x \cdot (y - y')$$
 (rotate).

$$b' = b + \eta \cdot x \cdot (y - y')$$
 (translate).

output:

price per room and base price: m', b'

The linear regression

Repeat the square trick many times to move the line closer to the points.

Input: a dataset of houses with number of rooms and prices

Procedure:

Random values for m and b.

Repeat many times:

Pick a random data point.

Update the slope and the y-intercept using the square trick.

Output: y' = m'x + b'

Serrano, L., 2021. Grokking machine learning. Simon and Schuster.

The model makes an error of around RMSE for any prediction we make.

Self study

General case: The linear regression. Square trick.

RMSE.

Serrano, L., 2021. Grokking machine learning. Simon and Schuster.,

Chapter 3

Gradient descent

Summary