MA9202 Mathematik für Physiker 2 (Analysis 1), Prof. Dr. S. Warzel Probeklausur, 23.12.2014, 14:15-15:45

Hilfsmittel: ein selbsterstelltes DIN-A4 Blatt.

Bei Multiple-Choice-Aufgaben sind **genau** die zutreffenden Aussagen anzukreuzen.

Bei Aufgaben mit Kästen werden nur die Resultate in diesen Kästen berücksichtigt.

Aufgaben ohne Kästen lösen Sie bitte auf dem bereitgestellten Bearbeitungsbogen.

1. Vollständige Induktion

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion, dass $\sum_{k=1}^n \frac{1}{k^2+k} = \frac{n}{n+1}$ für alle $n \in \mathbb{N}$ gilt.

LÖSUNG

Induktionsbeginn
$$(n=1)$$
: $\sum_{k=1}^{1} \frac{1}{k^2+k} = \frac{1}{2} = \frac{1}{1+1}$ [2]

Induktionsschritt $(n-1 \to n)$: Für $n \ge 2$ gilt

$$\sum_{k=1}^{n} \frac{1}{k^2 + k} \stackrel{\text{[2]}}{=} \sum_{k=1}^{n-1} \frac{1}{k^2 + k} + \frac{1}{n^2 + n} \stackrel{\text{I.V.[2]}}{=} \frac{n-1}{n} + \frac{1}{n(n+1)} \stackrel{\text{[1]}}{=} \frac{n^2 - 1 + 1}{n(n+1)} \stackrel{\text{[1]}}{=} \frac{n}{n+1}$$

2. Komplexe Zahlen

[7 Punkte]

Schreiben Sie log $(\sqrt{e^{\pi+7\pi i}})$ in Polardarstellung.

LÖSUNG:

Es ist

$$\begin{split} e^{\pi+7\pi i} &= e^{\pi+\pi i} = -e^{\pi}, \qquad [\mathbf{2}] \\ \sqrt{e^{\pi+7\pi i}} &= i e^{\pi/2}, \qquad [\mathbf{2}] \\ \log\left(\sqrt{e^{\pi+7\pi i}}\right) &= \log(e^{\pi/2}i) = \log(e^{\frac{\pi}{2}+i\frac{\pi}{2}}) = \frac{\pi}{2} + i\frac{\pi}{2} = \frac{\pi}{\sqrt{2}}e^{i\frac{\pi}{4}} \end{split} \qquad [\mathbf{3}]$$

3. Konvergenz von Folgen und Reihen

[10 Punkte]

(a) Berechnen Sie den Wert der Reihe:
$$\sum_{n=1}^{\infty} \frac{1-2(-3)^n}{4^n} = \frac{25}{21}$$
 [2]

(b) Wo liegt der Grenzwert der Reihe
$$\sum_{n=2}^{\infty} \frac{1}{(-1+\frac{1}{n})^n}$$
? [2]

$$\square = -\infty$$
 $\square \in (-\infty, 0)$ $\square = 0$ $\square \in (0, \infty)$ $\square = +\infty$ \square undefiniert

(c) Wie groß ist der Konvergenzradius der Potenzreihe
$$\sum_{n=0}^{\infty} \frac{n^n}{n!} x^n$$
? [3]

$$\square$$
 0 \square $\frac{1}{\pi}$ \boxtimes $\frac{1}{\mathrm{e}}$ \square $\frac{1}{2}$ \square 1 \square 2 \square e \square π \square ∞

(d) Sei
$$(x_n)_{n\in\mathbb{N}_0}$$
 eine relle Zahlenfolge mit $|x_{n+1}-x_n|\leq r\,|x_n-x_{n-1}|$ für alle $n\in\mathbb{N}$, wobei $r\in[0,1)$ ist. (x_n) ist

$$\square$$
 eine Cauchy-Folge \square divergent \square konvergent \square monoton fallend

LÖSUNG:

(a) Summe zweier konvergenter geometrischer Reihen:

$$\sum_{n=1}^{\infty} \frac{1-2(-3)^n}{4^n} = \sum_{n=1}^{\infty} \frac{1}{4^n} - 2\sum_{n=1}^{\infty} \left(\frac{-3}{4}\right)^n = \left(\frac{1}{1-\frac{1}{4}}-1\right) - 2\left(\frac{1}{1+\frac{3}{4}}-1\right) = \frac{4}{3} - 1 - 2\left(\frac{4}{7}-1\right) = \frac{1}{3} + \frac{6}{7} = \frac{25}{21}$$

- (b) $\left|\frac{1}{(-1+\frac{1}{n})^n}\right| = \frac{1}{(1-\frac{1}{n})^n} \to e \neq 0$ ist keine Nullfolge, also ist die Reihe divergent. Da die Summanden alternierendes Vorzeichen haben divergiert die Reihe auch nicht bestimmt gegen $\pm \infty$. Der Grenzwert ist undefiniert.
- (c) Quotientenkriterium: $\left|\frac{(n+1)^{n+1}x^{n+1}/(n+1)!}{n^nx^n/n!}\right| = \frac{(n+1)^n}{n^n}|x| = (1+\frac{1}{n})^n|x| \to e|x|$. Die Reihe ist also konvergent für $|x| < \frac{1}{e}$ und divergent für $|x| > \frac{1}{e}$. Der Konvergenzradius ist $\frac{1}{e}$.
- (d) Für alle $n \in \mathbb{N}_0$ gilt $|x_{n+1} x_n| \le r^n |x_1 x_0|$, denn der Induktionsanfang ist erfüllt und

$$|x_{n+1} - x_n| \le r |x_n - x_{n-1}| \le rr^{n-1}|x_1 - x_0| = r^n|x_1 - x_0|.$$

Also ist

$$\sum_{n=0}^{\infty} |x_{n+1} - x_n| \le |x_1 - x_0| \sum_{n=0}^{\infty} r^n = |x_1 - x_0| \frac{1}{1 - r} \le \infty$$

Die Reihe $\sum_{n=0}^{\infty} (x_{n+1} - x_n)$ ist also absolut konvergent. Ihre Teilsummen sind $x_{n+1} - x_0$. somit ist auch (x_n) konvergent und damit auch eine Cauchy-Folge.

4. Zwischenwertsatz [8 Punkte]

- (a) Zeigen Sie, dass für eine stetige Funktion $f:[0,1]\to [0,1]$ die Gleichung f(x)=x immer eine Lösung hat. HINWEIS: Man betrachte f(x)-x.
- (b) Geben Sie mit Skizze eine Funktion $f:[0,1]\to[0,1]$ an, für die $f(x)\neq x$ für alle $x\in[0,1]$ gilt.

LÖSUNG:

(a) Wir betrachten die Funktion $F:[0,1] \to \mathbb{R}$, F(x) = f(x) - x, die auch stetig ist. [1] f(x) = x ist somit gleichbedeutend mit F(x) = 0.

Nun ist $F(0) = f(0) \ge 0$ und $F(1) = f(1) - 1 \le 0$, da f Werte in [0, 1] hat. [2]

Nach dem Zwischenwertsatz gibt es ein $x_0 \in [0,1]$ mit $F(x_0) = 0$, d.i., $f(x_0) = x_0$.

(b)
$$f:[0,1] \to [0,1], f(x) = \begin{cases} 1 & \text{für } x < \frac{1}{2}, \\ 0 & \text{für } x \ge \frac{1}{2}. \end{cases}$$
 [2]

[1]

5. Ableitung der Umkehrfunktion

[17 Punkte]

- (a) Sei $f:(a,b) \to (c,d)$ mit $-\infty \le a < b \le \infty$, und $-\infty \le c < d \le \infty$ eine zweimal differenzierbare bijektive Funktion mit f'>0. Begründen Sie, dass die Umkehrfunktion f^{-1} zweimal differenzierbar ist und drücken Sie die zweite Ableitung von f^{-1} an der Stelle $y \in (c,d)$ durch Ableitungen von f an geeigneter Stelle aus.
- (b) Zeigen Sie, das $f:(0,e)\to (-\infty,\frac{1}{e}), f(x)=\frac{\ln x}{x}$ den Bedingungen von (a) genügt und berechnen Sie das Taylorpolynom zweiter Ordnung von f^{-1} im Punkt 0.

LÖSUNG:

(a) Nach dem Satz über die Ableitung der Umkehrfunktion ist $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} > 0$. [1]Da f^{-1} und f' differenzierbar sind, ist auch f^{-1} als Kombination differenzierbarer Funktionen differenzierbar. [2]Außerdem ist

$$(f^{-1})''(y) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{f'(f^{-1}(y))} = -\frac{1}{\left(f'(f^{-1}(y))\right)^2} f''(f^{-1}(y))(f^{-1})'(y) = -\frac{f''(f^{-1}(y))}{\left(f'(f^{-1}(y))\right)^3}.$$

[4]

(b) f ist auf $(0, \infty)$ beliebig oft differenzierbar. [1]

$$f'(x) = \frac{1}{x^2} - \frac{\ln x}{x^2} = \frac{1 - \ln x}{x^2} > 0 \text{ für } x \in (0, e).$$

Außerdem ist $\lim_{x\downarrow 0} f(x) = \lim_{x\downarrow 0} \frac{1}{x} \ln x = -\infty$ und $\lim_{x\uparrow e} f(x) = \lim_{x\uparrow e} \frac{\ln x}{x} \stackrel{\text{stetig}}{=} \frac{\ln e}{e} = \frac{1}{e}$. D.h. f ist bijektiv.

[2]

Schließlich gilt wegen f(1) = 0, dass $f^{-1}(0) = 1$. [1] Somit erhalten wir mit f'(1) = 1 und $f''(x) = \frac{-\frac{1}{x}x^2 - (1 - \ln x)2x}{x^4} = -\frac{3}{x^3} + \frac{2\ln x}{x^3}$, also f''(1) = -3, [2] dass

$$f^{-1}(0) = 1,$$
 $(f^{-1})'(0) = \frac{1}{f'(1)} = 1,$ $(f^{-1})''(0) = -\frac{f''(f^{-1}(0))}{(f'(f^{-1}(0)))^3} = -\frac{f''(1)}{(f'(1))^3} = 3.$

[2][1]

Das Taylorpolynom lautet also $T_n f^{-1}(0;x) = 1 + x + \frac{3}{2}x^2$.

6. Integration [7 Punkte]

Berechnen Sie

(a)
$$\int_{0}^{x} \frac{t^{2013}}{1+t^{2014}} dt$$
, (b) $\int_{0}^{x} e^{t} \sin t dt$.

LÖSUNG:

(a) Mit Substitution: $g(t) = 1 + t^{2014}$, $g'(t) = 2014t^{2013}$

$$\int\limits_{0}^{x} \frac{t^{2013}}{1+t^{2014}} \mathrm{d}t = \frac{1}{2014} \int\limits_{0}^{x} \frac{g'(t)}{g(t)} \mathrm{d}t = \left[\frac{\log g(t)}{2014}\right]_{0}^{x} = \frac{\log(1+x^{2014})}{2014}.$$

[3]

(b) Partielle Integration ergibt

$$F(x) = \int_{0}^{x} \underbrace{e^{t}}_{=f'} \underbrace{\sin t}_{=g} dt = \left[e^{t} \sin t \right]_{0}^{x} - \int_{0}^{x} \underbrace{e^{t}}_{=f} \underbrace{\cos t}_{=g'} dt = e^{x} \sin x - \int_{0}^{x} \underbrace{e^{t}}_{=f'} \underbrace{\cos t}_{=g} dt$$

$$= e^{x} \sin x - \left[e^{t} \cos t \right]_{0}^{x} + \int_{0}^{x} \underbrace{e^{t}}_{=f} \underbrace{(-\sin t)}_{=g'} dt = 1 + e^{x} (\sin x - \cos x) - F(x).$$

Wir erhalten also $F(x) = \frac{1}{2} + \frac{1}{2}e^x(\sin x - \cos x)$ [4]

7. Funktionenfolgen

[10 Punkte]

Für die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$, $f_n:\mathbb{R}\to\mathbb{R}$, $f_n(x)=\arctan(nx)$ gilt:

(a) (f_n) konvergiert punktweise gegen $f: \mathbb{R} \to \mathbb{R}$, mit

[3]

$$f(x) = \begin{cases} \frac{\pi}{2}, & x > 0\\ 0, & x = 0\\ -\frac{\pi}{2}, & x < 0 \end{cases}$$

- (b) \square Weil f stetig ist, konvergiert (f_n) gleichmäßig gegen f.
 - \square Weil f stetig ist, konvergiert (f_n) nicht gleichmäßig gegen f.
 - \square Weil f unstetig ist, konvergiert (f_n) gleichmäßig gegen f.
 - \boxtimes Weil f unstetig ist, konvergiert (f_n) nicht gleichmäßig gegen f.
- (c) Berechnen Sie die Ableitungen $f_n'(x)$ und skizzieren Sie sie.

[2] [2]

en $f_n(x)$ und skizzieren 51e sie.

$$f_n'(x) = \frac{n}{1 + (nx)^2}$$

[3]

LÖSUNG:

(a)
$$f(x) = \lim_{n \to \infty} \arctan(nx) = \begin{cases} \frac{\pi}{2}, & x > 0\\ 0, & x = 0.\\ -\frac{\pi}{2}, & x < 0 \end{cases}$$

- (b) Wäre die Konvergenz sogar gleichmäßig, so müßte f stetig sein. Da dies nicht der Fall ist, kann die Konvergenz nicht gleichmäßig sein.
- (c) s.o.