ELECTRICAL ENGINEERING DEPARTMENT EEL 101 INTRODUCTION TO ELECTRICAL ENGINEERING MINOR TEST III

Date: November 11, 2008

Time: 6:30 to 7:30PM

- Find the Thevenin's equivalent across x-y in Fig. Q1(a) and obtain the power delivered at the 20Ω resistance.
- (11) Write down the loop equations for the circuit given in Fig. Q1(b) and evaluate the value of the valtage across the resistor V_{R}

Fig. Q1(b)

Find the output voltage $V_{\alpha\alpha\beta}$ for the opamp circuit given in ic, +11 = 0

$$(V_0 - V_1) + (V_1 - V_1)_2 \circ (V_1 = V_1 \sin \omega t)$$
 $V_2 = V_2 \sin \omega t$

(2)

(2)(2)

$$\frac{\text{Cd Vi}}{\text{dl}} = \frac{V_2 - V_1}{R}$$

CdVi $\alpha = \frac{V_2 - V_1}{R}$ Q3. In the network of Fig. Q3, the switch is in position 1 for a very long time and moved to position 2 at time t = 0.

Determine the values of v_{ab} and i at t = 0°. find the expression for the complete response of i.

(2)(3)

For the diode circuit shown in Fig. Q4 containing three Silicon diodes, ($V_{\rm Blode}$ = 0.7V), obtain the current I_1 and I_2 for V_A = +1V and -1V.

BEST WISHES FOR A BETTER PERFORMANCE