Nucleophilic Substitution Bimolecular $(S_N 2)$

Study Material for the classes on $S_N 1$ and $S_N 2$

- ✓ Chapter-Nucleophilic Substitution at Saturated Carbon (Clayden Warren)
- ✓ I will also provide a classnote

$$OH^{\Theta} + CH_3CI \longrightarrow CH_3OH + CI^{\Theta}$$

- ✓ We are not going to look at every bonding and antibonding MOs in the reactants
- ✓ First, we have to identify which bond is being formed and which one is being broken: *only they are the important ones*
- ✓ C-Cl bond breaks, C-O bond forms
- ✓ OH⁻ is the nucleophile here and CH₃Cl is the electrophile
- ✓ We have to identify the HOMO of OH⁻ and the LUMO of CH₃Cl
- \checkmark The C-Cl bond breaking can be visualized as a pair of non-bonding electrons from the HOMO of OH⁻ are donated to the σ^* of C-Cl bond and this will make the bond order of the C-Cl bond momentarily zero. Cl⁻ leaves and a new compound is formed having a C-O bond

Approach of the Nucleophile

Front-side Displacement

Back-side Displacement

Molecular Orbitals Support Back-side Approach

 \triangleright The nucleophile attacks the σ^* orbital of the C-X bond

 Δ E (interaction energy) : Σ sterics – Σ orbital overlap (E_{LUMO} – E_{HOMO}) + Σ charge interaction

Rate = k [RX] [Nu]

The reaction rate will depend on the following four factors:

- 1. Structure of alkyl halide
- 2. Nature of nucleophile
- 3. Nature of leaving group
- 4. Solvent

✓ The rate of S_N 2 reaction is critically dependent on the nature of alkyl halide

structure	Me—X	R_X H H	R H R	R X
type	methyl	primary	secondary	tertiary
S _N 2 reaction?	good	good	yes	no

ΔE (interaction energy) : Σ sterics – Σ orbital overlap/(E_{LUMO} – E_{HOMO}) + Σ charge interaction

Steric Factors in S_N 2 Reactions

CH₃X

 $(CH_3)_3CX$

Nucleophilic Substitution Unimolecular $(S_N 1)$

$$H_2O + (CH_3)_3C-CI \longrightarrow HCI + (CH_3)_3C-OH$$

(t-Alkyl halide)

S_N1: Nucleophilic Substitution Unimolecular

- > The leaving group departs early; a carbocation is formed as the intermediate
- > Step 1 is slow and the rate determining step (rds)

$$H_2O + (CH_3)_3C-Br \longrightarrow HBr + (CH_3)_3C-OH$$

Rate = k [RX]

- ✓ When solvent is the nucleophile, it is called solvolysis
- ✓ Protonation/deprotonation steps are typically fast; small activation energy

structure	Me—X	R_X H H	R X H R	RRR
type	methyl	primary	secondary	tertiary
S _N 1 reaction?	no	no	yes	good
S _N 2 reaction?	good	good	yes	no

- \checkmark The lower the value of E_a , the faster the reaction: Kinetically favourable
- \checkmark Higher negative value of $\triangle G$: Thermodynamically favourable

- ✓ Chymotrypsin is a digestive enzyme present in pancreatic juice
- ✓ It helps in hydrolysing peptide bonds
- ✓ These reactions are thermodynamically favorable, but occurs extremely slowly in the absence of a catalyst

Chymotrypsin

$$H_2O + (CH_3)_3C-Br \longrightarrow HBr + (CH_3)_3C-OH$$

Rate = k [RX]

- ✓ It is true that a t-butyl carbocation is more stable than methyl or primary carbocations
- ✓ At the same time, the activation energy of its formation (E_a) is smaller than methyl/primary: *Important for* $S_N 1$ reactions

