

Universidad de Santiago de Chile Facultad de Ingeniería Departamento de Ingeniería Informática

Asignatura : Taller de minería de datos avanzada Programa : Magister en Ingeniería Informática

Profesor : Dr. Max Chacón Pacheco Ayudante : Felipe-Andrés Bello Robles

Fecha Entrega Oral : 22 de Noviembre del 2017 Fecha Entrega Escrito : 29 de Noviembre de 2017

TALLER 6: Máquinas de Vectores soporte en Regresión (SVR)

Objetivos:

- Comprender de manera general el modelamiento de la autorregulación cerebral dinámica mediante señales de presión arterial media (PAM) y velocidad de flujo sanguíneo cerebral (VFSC)
- Implementar un esquema de validación cruzada balanceada para ajustar los modelos
- Comprender la estructura tipo FIR para el modelamiento dinámico.
- Realizar una búsqueda en grilla de hyper parámetros de la SVM, para un Kernel RBF utilizando "paralelización".
- Comprender el efecto de los hyper parámetros sobre la regresión
- Realizar selección de los mejores modelos por correlación en test, en la estimación de VFSC.
- Realizar prueba fisiológica (escalón inverso de presión) para identificar si el modelo aprendió la respuesta fisiológica correspondiente a la autorregulación cerebral.
- Identificar que sujeto tiene su autorregulación deteriorada por CO₂

Aspectos importantes a considerar: Para obtener los resultados y cumplir los objetivos del laboratorio, se debe tener en cuenta los siguientes puntos:

- Utilizar los archivos de con las señales PAM y VFSC (2 archivos por grupo), muestreados a 5Hz.
- Utilizar "R" http://www.r-project.org/ y sus librerías "e1071" y "doParallel"
- Se selecciona el mejor modelo por sujeto (correlación en test más alta) que aprenda el patrón de la autorregulación.

Escrito: Se debe elaborar un *Artículo* de máximo 6 páginas, según el formato: https://www.springer.com/gp/computer-science/lncs/conference-proceedings-guidelines

	Puntos a evaluar	Porcentaje
	Presentación, ortografía y redacción	5%
Estructura	Abstract e Introducción	10%
del	Métodos (explicación del funcionamiento)	20%
Artículo	Resultados	20%
	Discusión	25%
	Conclusiones	20%

Observaciones:

Consultas al mail Felipe.bello@gmail.com, Felipe.bello@usach.cl

El trabajo debe ser presentado de forma oral (50%) y escrita (informe 50%) en horario de clases el día 22 de Noviembre y 29 de Noviembre de 2017. Disponen de 15-20 minutos de exposición y 10 para contestar preguntas de la comisión.

Nota Final: Promedio simple de las experiencias.