ЛАБОРАТОРНАЯ №7 Вычислительная геометрия

А. Касательная к окружности

Даны координаты центра (x_c, y_c) и радиус R окружности, координаты точки (x, y). Найти точки пересечения касательных с окружностью.

Формат входных данных

Пять вещественных чисел $\mathbf{x_c}$ $\mathbf{y_c}$ \mathbf{R} \mathbf{x} \mathbf{y} — координаты центра и радиус окружности, координаты точки.

Формат выходных данных

В первой строке одно число K, равное количеству точек пересечения касательных к окружности из заданной точки с самой окружностью. Далее в K строках координаты самих точек с точностью до S знаков после запятой.

Пример

input.txt	output.txt	Примечание
1 1 1 2 2	2 1.00 2.00 2.00 1.00	
10 10 5 10 7	0	Точка лежит внутри окруж.

В. Площадь многоугольника.

Вычислите площадь произвольного n — угольника, заданного координатами своих вершин (x_i,y_i) , i=1,2,...,n, в порядке обхода по часовой стрелке. С точностью до 5 знаков после запятой.

Пример

	INPUT.TXT	OUTPUT.TXT
3		0.5
0	0	
0	1	
1	0	

С. Выпуклая оболочка

На плоскости заданы N точек своими декартовыми координатами. Найти минимальный периметр многоугольника, содержащего все эти точки. Гарантируется, что искомый многоугольник имеет ненулевую площадь.

Ограничения: $3 \le N \le 1000$, $-10000 \le x_i$, $y_i \le 10000$, все числа целые, все точки различны, время 2 c.

Ввод. В первой строке находится число N, далее - N строк с парами координат.

Вывод. Вывести одно число - длину периметра с одним знаком после запятой.

С точностью до 5 знаков после запятой.

Примеры

input.txt	output.txt
5	5.65685
1 0	
0 1	
-1 0	
0 -1	
0 0	

D. Принадлежность точки отрезку

Даны координаты точки (x,y) и координаты концов отрезка (x_1,y_1) и (x_2,y_2) . Принадлежит ли точка заданному отрезку.

Формат входных данных

Шесть вещественных чисел \mathbf{x} \mathbf{y} \mathbf{x}_1 \mathbf{y}_1 \mathbf{x}_2 \mathbf{y}_2 — координаты точки и координаты концов отрезка.

Формат выходных данных

Одна строка 'YES', если точка принадлежит отрезку, и 'NO' в противном случае.

Пример

input.txt	output.txt
3 3 1 2 5 4	YES

Индивидуальные задания

Все результаты с точностью до 5 знаков после запятой.

1. Принадлежность точки произвольному многоугольнику

Задан многоугольник и точка. Нужно определить, лежит ли точка внутри этого многоугольника. В этой задаче многоугольник невыпуклый.

Входные данные

Сначала вводится число N ($3 \le N \le 2000$). Далее идут N пар вещественных чисел, задающих координаты вершин многоугольника. Последние два вещественных числа задают координаты точки.

Выходные данные

Выведите сообщение YES, если точка лежит внутри многоугольника, или NO, если нет. Гарантируется, что точка не лежит на границе многоугольника.

Пример

input.txt	output.txt
4	NO
0 0	
1 0	
0.3 0.3	
0 1	
10 10	

2. Максимальный квадрат

На плоскости задан прямоугольник размером $W \times H$, и N отмеченных точек внутри него. Требуется найти квадрат максимального размера:

- со сторонами, параллельными сторонам прямоугольника;
- не содержащий отмеченных точек строго внутри себя (но, возможно, содержащий отмеченные точки на границе);
- лежащий внутри прямоугольника.

Формат входных данных

Первая строка входного файла содержит числа N — количество отмеченных точек, W — ширину прямоугольника и H — высоту прямоугольника ($1 \le N \le 30000$, $0 \le W$, $H \le 1000000$). Следующие N строк содержат координаты отмеченных точек X_i , Y_i (целые числа, $0 \le X_i \le W$, $0 \le Y_i \le H$). Система координат введена так, что вершины прямоугольника имеют координаты (0, 0), (W, 0), (0, H), (W, H).

Формат выходных данных

Выведите в выходной файл одно число — длину стороны максимального искомого квадрата.

Примеры

Input.txt	Output.txt
7 10 7	4
3 2	
4 2	
7 0	
7 3	
4 5	
2 4	
1 7	
1 10 10	5
5 5	

3. Принадлежность точки лучу

Даны координаты точки (x,y) и координаты начала и конца вектора (x_1,y_1) и (x_2,y_2) .

Принадлежит ли точка (x,y) лучу определяемому заданным вектором.

Формат входных данных

Шесть чисел \mathbf{x} \mathbf{y} \mathbf{x}_1 \mathbf{y}_1 \mathbf{x}_2 \mathbf{y}_2 — координаты точки и координаты начала и конца вектора.

Формат выходных данных

Одна строка 'YES', если точка принадлежит лучу, определяемому вектором, и 'NO' в противном случае.

Пример

input.txt	output.txt
1 6 3 7 5 8	NO

4. Положение точек вне прямой

Даны координаты двух точек (x_1,y_1) и (x_2,y_2) вне прямой с нормальным уравнением Ax+By+C=0.

Формат входных данных

Семь вещественных чисел **x1 y1 x2 y2 A B C** — координаты двух точек вне прямой и коэффициенты нормального уравнения.

Формат выходных данных

Одна строка "YES", если точки лежат по одну сторону прямой, и "NO" в противном случае.

Пример

	input.txt	output.txt
0 0 2	2 4 2 -1 -1	YES

5. Расстояние от точки до луча

Даны координаты точки (x,y) и координаты начала и конца вектора (x_1, y_1) и (x_2, y_2) .

Формат входных данных

Шесть чисел \mathbf{x} \mathbf{y} \mathbf{x}_1 \mathbf{y}_1 \mathbf{x}_2 \mathbf{y}_2 — координаты точки и координаты начала и конца вектора.

Формат выходных данных

Одно число — расстояние от точки до луча, определяемого вектором. Результат вывести с точностью до четырех знаков после точки.

Пример

	input.txt					output.txt
2	1	1	1	0	2	1.0000

6. Расстояние от точки до отрезка

Даны координаты точки (x,y) и координаты концов отрезка (x_1,y_1) и (x_2,y_2) . Найти расстояние от точки до заданного отрезка. Результат вывести с точностью до четырех знаков после точки.

Формат входных данных

Шесть чисел — координаты точки и координаты концов отрезка.

Формат выходных данных

Одно число — расстояние от точки до отрезка.

Пример

input.txt					t.txt	output.txt	
0	4	2	3	2	5		2.0000

7. Пересечение двух отрезков

Даны координаты начала и конца двух отрезков (x_1, y_1) , (x_2, y_2) (x_3, y_3) и (x_4, y_4) . Пересекаются ли заданные отрезки.

Формат входных данных

Восемь вещественных чисел x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 — координаты начала и конца двух отрезков.

Формат выходных данных

Одна строка "YES", если отрезки имеют общие точки, и "NO" в противном случае.

Пример

			input.txt	output.txt
5	1	2	6	YES
1	1	7	8	

8. Целые точки

Многоугольник (не обязательно выпуклый) на плоскости задан координатами своих вершин. Требуется подсчитать количество точек с целочисленными координатами, лежащих внутри него (но не на его границе).

Формат входных данных

В первой строке содержится N ($3 \le N \le 1000$) - число вершин многоугольника. В последующих N строках идут координаты (X_i , Y_i) вершин многоугольника в порядке обхода по часовой стрелке. X_i и Y_i - целые числа, по модулю не превосходящие 1000000.

Формат выходных данных

В выходной файл вывести одно число-искомое число точек.

Примеры

input.txt	output.txt	
4	1	
-1		
1 -1		
1		
1 -1		
3	0	
0		
0 2		
2 0		

9. Окружность и прямая

Даны координаты центра (x_c, y_c) и радиус R, и коэффициенты A, B и C нормального уравнения прямой. Найти точки пересечения прямой с окружностью.

Формат входных данных

Шесть вещественных чисел $\mathbf{x_c}$ $\mathbf{y_c}$ \mathbf{R} \mathbf{A} \mathbf{B} \mathbf{C} — координаты центра и радиус окружности, и коэффициенты нормального уравнения прямой.

Формат выходных данных

В первой строке одно число К, равное количеству точек пересечения прямой с окружностью. Далее в К строках координаты самих точек.

Пример

11p timep		
INPUT.TXT	OUTPUT.TXT	
1 1 1 1 -10	2 1.70711 1.70711 0.29289 0.29289	

10. Квадрат

Даны координаты противоположных углов квадрата (x_1, y_1) и (x_2, y_2) . Найти координаты двух других вершин.

Формат входных данных

Даны четыре вещественных числа x_1 y_1 x_2 y_2 — координаты противоположных углов квадрата.

Формат выходных данных

В первой строке вывести координаты одной из найденных вершин, во второй - координаты другой.

Пример

input.txt	output.txt
0 0	0.0 2.0
2 2	2.0 0.0

11. Расстояние между двумя отрезками

Даны координаты концов двух отрезков (x_1, y_1) - (x_2, y_2) и (x_3, y_3) - (x_4, y_4) . Найти расстояние между заданными отрезками. Результат вывести с точностью до трех знаков после точки.

Формат входных данных

В первой строке x_1 y_1 x_2 y_2 — координаты концов первого отрезка, во второй строке x_3 y_3 x_4 y_4 — координаты концов второго отрезка.

Формат выходных данных

Одно число — расстояние между отрезками.

Пример

input.txt	output.txt	Примечание
1 3 3 3	1.000	
1 1 3 2		
1 1 3 2	0.000	Между
1 2 3 1		пересекающимся
		отрезками
		расстояние
		равно О.

12. Перпендикуляр с точки на луч

Даны координаты точки (x,y) и координаты начала и конца вектора (x_1,y_1) и (x_2,y_2) .

Найти длину перпендикуляра с заданной точки на луч.

Формат входных данных

Шесть чисел \mathbf{x} \mathbf{y} \mathbf{x}_1 \mathbf{y}_1 \mathbf{x}_2 \mathbf{y}_2 — координаты точки и координаты начала и конца вектора.

Формат выходных данных

Одно число — длина перпендикуляра. Результат вывести с точностью до четырех знаков после точки. Если перпендикуляр не лежит на луче напечатать -1.

Пример

input.txt	output.txt
1 1 3 0 3 4	2.0000

13. Поиск квадрата

Даны координаты n точек (x_i, y_i) с целыми значениями, i=1,2,...,n $(4 \le n, |x_i|, |y_i| \le 100)$. Найти координаты вершин одного из квадратов, из заданного множества точек. Существование гарантируется.

Пример

INPUT.TXT	OUTPUT.TXT
6	0 0
0 0	-1 1
-1 1	-1 0
-1 0	0 1
1 0	
0 1	
1 1	

14. Кольцо

Даны координаты n точек (x_i,y_i) , i=1,2,...,n $(n\leq 100, x_i+y_i\neq 0)$. Определить минимальное кольцо с центром в начале координат, которое содержит все точки. Напечатать радиусы внутренней и наружной окружностей найденного кольца. Результат с точностью до трех знаков.

Пример

input.txt	output.txt
3	1.414
1 1	2.828
1 2	
2 2	

15. Касательная к окружности

Даны координаты центра (x_c, y_c) и радиус R окружности, координаты точки (x,y) вне окружности. Найти точку пересечения одной из касательных с окружностью.

Формат входных данных

Пять вещественных чисел \mathbf{x}_{c} \mathbf{y}_{c} \mathbf{R} \mathbf{x} \mathbf{y} — координаты центра и радиус окружности, координаты точки.

Формат выходных данных

В первой строке координаты точки.

Пример

input.txt	output.txt	Примечание
1 1 1 2 2	1.00 2.00	

16. Прямоугольник

Даны координаты n точек (x_i,y_i) , i=1,2,...,n $(n\geq 1)$. Указать номера тех точек, которые принадлежат прямоугольнику с координатами левого верхнего узла (a,b) и правого нижнего угла (c,d). Результат вывести в порядке следования вводимых данных. Если таких точек нет, напечатать "0".

Пример

input.txt	output.txt
5	1 4 5
0 0	
2.0 2.0	
3 3	
0.5 0.6	
-0.7 -0.7	
-1.0 1 1 -1	

17. Треугольники

14.2. На плоскости n точек заданы своими координатами (x_i, y_i) , i=1,2,...,n и дана окружность радиуса R с центром в начале координат. Указать множество (номера) всех треугольников с вершинами в заданных точках и содержащихся внутри окружности. Номера вершин печатать в порядке возрастания значений, а также первый номер i-го треугольника должен быть меньше равно первого номера (i+1)-го треугольника. Если таких треугольников нет, напечатать "0".

Пример

input.txt	output.txt
5	1 4 5
1 1	
-2 -2	
2 2	
-1 1	
0 0	
2	

18. Максимальный треугольник

На плоскости n точек заданы своими координатами (x_i,y_i), i=1,2,...,n. Найти треугольник с максимальной площадью с вершинами в заданных точках. Напечатать площадь и номера вершин. Если их несколько, то напечатать любой из них.

Пример

input.txt	output.txt
5	2.00
0 0	1 2 5
0 2	
1 0.5	
0.5 1	
2 0	

19. Расстояние от точки до многоугольника.

Задан многоугольник координатами своих вершин (x_i, y_i) , i=1,2,...N в порядке обхода его контура и точка (x,y) вне этого многоугольника. Определите расстояние от этой точки до многоугольника.

Формат входных данных

В первой строке входного файла даны координаты точки (*x , y*), во второй строке - количество вершин многоугольника – *N* (*1≤N≤100*), с третьей строки координаты вершин многоугольника.

Формат выходных данных

В выходной файл выведите одно число – расстояние от заданной точки до многоугольника (с точностью 0.001).

Пример

	input.txt	output.txt
5	5	2.000
3		
0	0	
5	3	
5	0	

20. Пересечение двух отрезков

Даны координаты начала и конца двух отрезков (x_1, y_1) , (x_2, y_2) (x_3, y_3) и (x_4, y_4) . Найти точку пересечения заданных отрезков.

Формат входных данных

Восемь вещественных чисел x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 — координаты начала и конца двух отрезков.

Формат выходных данных

Одна строка – координаты точки пересечения или координаты любой точки из отрезка совпадения и **-1, если не имеют общих точек касания**.

Пример

			input.txt	output.txt
	2 5			3.0000 3.0000
1	2	5 4		-1

21. Точки пересечения прямой с треугольником

Даны координаты вершин треугольника (x1,y1), (x2,y2), (x3,y3) в порядке обхода и коэффициенты **A**, **B** и **C** нормального уравнения прямой. Найти точки пересечения заданной прямой с заданным треугольником. Если прямая проходит по стороне треугольника, считать, что пересечения с данной стороной нет.

Формат входных данных

В первой строке заданы вещественные числа x1 y1 x2 y2 x3 y3, во второй - А В С.

Формат выходных данных

В первой строке вывести количество выводимых координат найденных точек, во второй строке координаты найденных точек. Если прямая не пересекает треугольник, вывести -1.

Пример

input.txt	output.txt
0 0 0 2 2 0 1 -1 0	2 0 0 1.41421 1.41421

1 3 1 7 5 7	2
1 -1 2	1 3
	5 7

22. Точки пересечения прямой с прямоугольником

Даны координаты вершин прямоугольника (x1,y1), (x2,y2), (x3,y3), (x4,y4) в порядке обхода и коэффициенты **A**, **B** и **C** нормального уравнения прямой. Найти точки пересечения заданной прямой с заданным прямоугольником. Если прямая проходит по стороне многоугольника, считать, что пересечения с данной стороной нет.

Формат входных данных

В первой строке заданы вещественные числа x1 y1 x2 y2 x3 y3 x4 y4, во второй - **A B C**. **Формат выходных данных**

В первой строке вывести количество выводимых координат найденных точек, во второй строке координаты найденных точек. Если прямая не пересекает прямоугольник, вывести -1.

Пример

input.txt	output.txt
2 1 1 4 7 4 7 1 1 -1 -1	2 1 1 5 4
2 1 1 4 7 4 7 1 1 0 -2	2 2 1 2 4

23. Точки пересечения прямой с отрезком

Даны координаты вершин отрезка (x1,y1), (x2,y2) и коэффициенты **A**, **B** и **C** нормального уравнения прямой. Найти точки пересечения заданной прямой с заданным отрезком. Если прямая совпадает с отрезком, вывести координаты середины отрезка.

Формат входных данных

В первой строке заданы вещественные числа х1 у1 х2 у2, во второй - А В С.

Формат выходных данных

В первой строке вывести координаты точки пересечения. Если прямая не пересекает отрезок, вывести -1.

Пример

input.txt	output.txt
1 4 5 2 2 -1 -3	3.000 3.000

24. Точки в многоугольнике

Многоугольник на плоскости задан целочисленными координатами своих N вершин в декартовой системе координат. Требуется найти число точек с целочисленными координатами, лежащих внутри многоугольника (не на границе). Стороны многоугольника друг с другом не соприкасаются (за исключением соседних - в вершинах) и не пересекаются.

Ограничения: $3 \le N \le 10000$, координаты вершин целые и по модулю не превосходят 1000000, время 1c.

Ввод из файла input.txt. В первой строке находится число N, в следующих N строках - пары чисел - координаты точек. Если соединить точки в данном порядке, а также соединить первую и последнюю точки, получится заданный многоугольник.

Вывод в файл output.txt. Вывести одно число - искомое количество точек.

Примеры

input.txt	output.txt
4	361
-10 -10	
-10 10	
10 10	
10 -10	

25. Симметричная точка

Дано уравнение прямой ax+by+c=0 и координаты точки (x,y). Найти координаты симметричной точки относительно заданной прямой.

Входные данные. В первой строке заданы два вещественных числа х и у - координаты точки заданной точки, во второй три числа а, b, c - коэффициенты заданной прямой.

Выходные данные. В первой строке с точностью до трех знаков координаты симметричной точки.

Примеры

input.txt		output.txt			
	1	0	0	-3	6
	3	6			

Указание. Нормаль направлена в сторону возрастания градиента.

26. Отрезки на прямой возвращаются

На прямой задано N попарно различных отрезков $[a_i, b_i]$ $(i = 1, 2, ..., N, a_i < b_i)$. Будем говорить, что отрезок номер i *непосредственно содержится* в отрезке номер j $(i \neq j)$, если:

- он полностью принадлежит j-му (то есть $a_i \le a_i$ и $b_i \le b_i$),
- среди заданных N отрезков не найдётся такого отрезка (с номером k), что і-й отрезок принадлежит k-му и k-й принадлежит j-му (здесь i, j и k различные числа).

Ваша задача — для каждого из данных отрезков найти тот, в котором он непосредственно содержится, либо сообщить, что таких нет. Если данный отрезок непосредственно содержится сразу в нескольких --- подходит любой из них.

Формат входных данных

Сначала вводится целое число N ($1 \le N \le 100000$). Далее идут N пар целых чисел a_i , b_i ($-10^9 \le a_i < b_i \le 10^9$).

Формат выходных данных

Выведите N чисел. Число номер i должно быть равно номеру отрезка, в котором непосредственно содержится отрезок номер i, либо 0 — если такого не существует. Если существует несколько решений, выведите любое.

Пример

4	3 4 0 0
2 3 0 4 1 6 0 5	
0 4	
1 6	
0 5	

Примечание

Тесты состоят из четырёх групп.

- 1. Тест 1, из условия, оценивается в 0 баллов.
- 2. Тесты 2-11. В них N ≤ 100. и гарантируется, что на каждый из них существует единственный ответ. Группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
- 3. Тесты 12-27. В них $N \le 10000$. Группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
- 4. Тесты 28-35. Off-line группа, полные ограничения. Каждый тест оценивается в 5 баллов (тесты оцениваются независимо друг от друга). При этом баллы за тесты этой группы ставятся только тогда, когда программа проходит все тесты групп 1 и 2. Если программа не проходит хотя бы один из тестов групп 1 и 2, то баллы за тесты группы 4 не ставятся.
- **27. Мера объединения отрезков**. На прямой заданы отрезки. Найти меру их объединения, т.е. суммарную длину всех частей прямой, покрытых хотя бы одним отрезком; части, покрытые несколькими отрезками, учитываются один раз.

Формат входных данных

Первая строка текста содержит число N ($2 \le N \le 2500$) — количество отрезков, каждая из следующих N строк — две координаты концов отрезка, заданных числами с плавающей точкой. Неточностями вычислений с плавающей точкой пренебречь.

Формат выходных данных

Строка с числом – мерой объединения

Пример

input.txt	output.txt
3	10.2
-2 5	
12 13.2	
7 4.5	

28. Пересечение отрезков. На оси Ох заданы **n** отрезков $[a_i,b_i]$, i=1,2,...,n Необходимо проверить, пересекаются ли хотя бы два из них. Два отрезка [a,b] и [c,d] пересекаются, если выполняется хотя бы одно из условий: $a \le c \le b$, $a \le d \le b$, $c \le a \le d$.

Формат входных данных

Сначала вводится целое число N ($1 \le N \le 100000$). Далее идут N пар целых чисел a_i , b_i ($-10^9 \le a_i < b_i \le 10^9$).

Формат выходных данных

Выведите "YES" – если пересекаются, «NO" – если не пересекаются.

Примеры

input.txt	output.txt
4	YES
2 3	
0 4	
1 6	
0 5	
3	NO
2 3	
4 6	
7 8	