WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 96/10966

A61F 2/00, 2/02, 2/06, A61L 27/00

A1 (43) International Publication Date:

18 April 1996 (18.04.96)

(21) International Application Number:

PCT/US95/13070

(22) International Filing Date:

4 October 1995 (04.10.95)

(30) Priority Data:

08/320,199

7 October 1994 (07.10.94)

US

(71) Applicant: BAXTER INTERNATIONAL INC. [US/US]; One Baxter Parkway, Deerfield, IL 60015 (US).

(72) Inventors: BRAUKER, James, H.; 39360 N. Lake Avenue, Lake Villa, IL 60046 (US). MARTINSON, Laura, A.; 813 N.W. 64th Street, Seattle, WA 98107 (US). STERNBERG, Shrnuel; 4240 Yorkshire Lane, Northbrook, IL 60062 (US). BELLAMY, David; 92 Robsart Road, Kenilworth, IL 60043 (US).

(74) Agents: BATES, Sarah, E. et al.; One Baxter Parkway, Deerfield, IL 60015 (US).

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: POROUS MICROFABRICATED POLYMER MEMBRANE STRUCTURES

(57) Abstruct

Polymer membrane structures are microfabricated from polyimide film by lithography or etching. The microfabricated structures have systematically varied dimensions and geometries conducive to implanting in host tissue and the promotion, when implanted, of new vascular structures.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	G S	United Kingdom	MR	Mauricania
AU	Australia	GE	Georgia	MW	Malovi
88	Barbados	GN	Guines	NE	Niger
38	Belgium	GR	Greece	NL	Notherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	ΠÈ	treland	NZ	New Zealand
B.J	Benin	17	italy	PL	Poland
BR	Brazil	· JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Кутдуяца	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sodan
CG	Congo		of Korea	5E	Sweden
СЯ	Switzerland	SCIR.	Republic of Korea	81	Słovenia
CI	Côse d'Ivoire	162	Kazakhutan	SK	Slovakie
CM	Cameroos	U	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czochoslovakia	LÜ	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	ŦJ	Tajikiwan
DE	Gerrosay	МС	Monaco	T T	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
Ħ	Finland	ML	Mali	uz	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Naro
GA	Gaboo		-		

10

15

20

25

30

POROUS MICROFABRICATED POLYMER MEMBRANE STRUCTURES

Field of the Invention

The invention generally relates to systems and methods for implanting materials into body tissue. In a more particular sense, the invention relates to the structures and methods for implanting living cells in host tissue within porous membrane structures for achieving a desired therapeutic effect, such as, for example, the treatment of diabetes.

Background of the Invention

Many diseases could be treated in a more physiologic fashion if tissue from lower animals could be transplanted into humans. However, the problem with discordant xenografting is hyperacute rejection of the transplanted tissue.

Immunoisolation, as its name implies, is the protection of transplanted organs, tissues, cells, etc. from attack by the host immune system. Isolation from the host immune system accomplished by the use of a semipermeable membrane. Therefore. utilizing immunoisolation. theoretically possible to perform xenografts. This method has not worked well however, primarily because of the foreign body tissue response to the implanted polymer membrane.

The concept of immunoisolation was proposed by Chang nearly 30 years ago (see Chang, T.M.S.: Semipermeable microcapsules. Scienc, 146, 524-527

WO 96/10966

5

10

15

20

25

30

35

(1964). Since then many research groups have used immunoisolation membranes for transplantation of isolated tissues, in particular, pancreatic islets. The term bioartificial means the use of biologically active cells or organelles, but protected from immunological or other aggression by an artificial semi-porous membrane. This membrane should permit the passage of low molecular weight substances, such as nutrients, electrolytes, oxygen, and bioactive secretory products, while excluding the passage of immunocytes, high-molecular weight proteins such as immunoglobulins, and other transplant rejection effector mechanisms.

- 2 -

The concept of immunoisolation and the bioartificial organ is particularly important due to the use of pancreas transplantation for the treatment of diabetes mellitus. Diabetes mellitus is the seventh leading cause of death in the United States, with an annual toll of about 35,000. It is estimated that 1 to 2% of the adult population have diabetes mellitus.

Even though the bioartificial pancreas (immunoisolated islets of Langerhans) has addressed the problems of transplantation of whole pancreas and unprotected human islets, it has created another problem, namely the tissue response to the artificial membrane surrounding the islets. The main reason for failure of these devices is the development of a fibrous foreign body capsule around the implant.

The foreign body reaction is characterized by inflammatory giant cells and macrophages at the tissue-membrane interface. The primary macrophage layer is normally overlain by many layers f fibroblasts in a collagen matrix oriented parallel

10

15

20

25

30

35

to the surface of the implant. The fibrosis can be several hundred micrometers thick, and is typically avascular. This creates a diffusional barrier for nutrients and secretory products. The encapsulated tissue essentially "starves" and becomes necrotic, leading to failure of the bioartificial organ.

A major area of biomaterials research is concerned with addressing the tissue response to implanted materials. In particular, the fibrotic reaction developed against implanted polymer membranes is of primary concern regarding many implantable devices. Some evidence has indicated that the chemistry of the surface of the material is not the determining factor, but rather it is the microstructure of the interface which affects the tissue response.

Recently, studies by Brauker et al. with immunoisolation membranes have indicated that their vascularizing properties are dependent on membranes microarchitecture (see Brauker, J., Martinson, L., Young, S., Johnson, C.: R. Neovascularization at a membrane-tissue interface is dependent on microarchitecture. Transactions of the Fourth World Biomaterials Congress April 24-28, 1992 p. 685; Brauker, J., Martinson, L., Carr-Brendel, V. E., and Johnson, R. C.: Neovascularization of a PTFE membrane for use as the outer layer of an immunoisolation device. Transactions of the Fourth World Biomaterials Congress April 24-28, 1992 p. 676; Brauker, J., Martinson, L., Hill, R., and Young, S.: Neovascularization of immunoisolation membranes: The effect of membrane architecture and encapsulated tissue. Transplantation 1:163,1992; and Brauker, J., Martinson, L. A., Hill, R. S., Young, S. K., Carr-Brendel, V. E., and Johnson, R. C.:

WO 96/10966

Neovascularization of immunoisolation membranes: The effect of membrane architecture and encapsulated tissue. Transplantation Proceedings 24:2924, 1992).

- 4 -

Brauker et al. have observed that membranes of the same type of material, differing only in their microarchitecture, create a marked difference in biological responses when implanted in terms of the number of vascular structures near the host tissuematerial interface.

Brauker et al. have characterized the 10 difference as follows:

> Membranes that did have close vascular structures allowed cellular infiltration, and had pores that were formed by membrane structures (strands or fibers) with a diameter of less than 5µm, whereas membranes that did not develop close vascular structures had cavities with "plate-like" qualities, having diameters greater than 5 µm. Histological examination of the vascularizing membranes revealed that the invading inflammatory cells (of the host) had a rounded morphology, while the cells were flattened in the membranes that did not have close vascular structures.

The Brauker et al. hypothesis is that the membrane architecture dictates cellular morphology, and the rounded cells in turn secrete some, as vet unknown, trophic factors which promote the formation of vascular structures.

30 Summary of the Invention

5

15

20

25

35

The invention provides layered porous polymer membrane structures formed by microfabrication. microfabricated structures comprise precisely defined three-dimensi nal porous structures with chemical inertness and robust mechanical properties

5

10

15

20

25

30

35

suitable for implantation in host tissue.

One aspect of the invention provides a porous structure for implanting in host tissue. The structure includes multiple layers of microfabricated polymer film, each layer having predefined geometric patterns of holes and intermediate spaces defining strands.

In a preferred embodiment, the porous structure forms a chamber to hold living cells while implanted in host tissue. In a preferred implementation, the geometric pattern in one of the layers differs from the geometric pattern in another one of the layers.

The inventors have found that, by stacking individual layers of polymer film microfabricated with different geometric patterns, a three dimensional interior architecture is created. The architecture emulates the geometry identified by Brauker et al. for promoting the growth of vascular structures near the interface between host tissue and the porous structure.

In a preferred embodiment, the membrane structures comprise layers of polyimide film with microfabricated geometric patterns of holes and intermediate strands. The structures include one layer having a first microfabricated geometric pattern sandwiched between two other layers having microfabricated geometric patterns different than the first geometric pattern. The first geometric pattern comprises holes having a cross dimension greater than about 20 µm spaced apart by strands less than about 5µm. The other geometric patterns comprise smaller holes having a cross dimension equal to r less than about 20 mm spaced apart by smaller strands equal to or less than about 2 µm.

Another aspect of the invention pr vides a

10

15

20

25

30

35

method of implanting living cells in host tissue. The method forms a chamber t hold living cells. The chamber has a wall structure that includes multiple layers of microfabricated film, each layer having predefined geometric patterns of holes and intermediate spaces defining strands. The method places living cells in the chamber and implants the chamber and living cells it contains in host tissue. Brief Description of the Drawings

Figs. 1A and 1B are perspective views (Fig. 1A being scaled with reference to a human hand and Fig. 1B being enlarged) of an implant assembly that includes a porous membrane structure comprising multiple layers of polymer film material that embodies the features of the invention;

Fig. 1C is a side section view of the implant assembly taken generally along line 1C-1C in Fig. 1B;

Fig. 2 is a top view of the geometric pattern of holes and strands that the outer porous layer of the membrane structure shown in Fig. 1 possesses;

Figs. 3A and 3B are representative mask designs that can be used to microfabricate the primary film layers of the porous membrane structure shown in Fig. 1;

Fig. 4 is a representative mask design that can be used to microfabricate the spacer film layers of the porous membrane structure shown in Fig. 1;

Figs. 5A/B/C are schematic views of the process of microfabricating the primary and spacer layers of the porous membrane structure using light sensitive polyimide film;

Figs. 6A/B/C/D/E are schematic views of the process f microfabricating the primary and spacer layers of the prous membrane structure using

10

15

20

25

30

35

etchabl polyimide film;

Figs. 7A/B/C/D show scanning electron micrographs of primary film layers (U7501, U4212, and HTR3-100 polyimides) patterned with 6.2 μ m openings and 2.8 μ m strands (still attached to the silicon substrate used in microfabricating the films);

Figs. 8A/B/C/D show scanning electron micrographs of primary film layers (U7501, U4212, and HTR3-100 polyimides) patterned with 10 μ m spaces and 2 μ m strands (still attached to the silicon substrate used in fabricating the films);

Figs. 9A/B/C/D show scanning electron micrographs of spacer film layers (U7501, U4212, and HTR3-100 polyimides) patterned with $50\mu m$ holes and 4.5 μm strands (with a thickness of the $4\mu m$) (still attached to the silicon substrate used in fabricating the films);

Figs. 10A/B/C/D are schematic views of the process of stacking primary and spacer layers to form the multiple layer porous membrane structure shown in Fig. 1;

Figs. 11A/B show scanning electron micrographs of multiple 3- layer stacked membrane structures (U4212 and HTR3-100 polyimides) that embody the features of the invention;

Figs. 12A/B/C show scanning micrographs of multiple 5- layers stacked membrane structures (U7501, U4212, and HTR3-100 polyimides) that embody the features of the invention; and

Figs. 13A/B show scanning electron micrograph of other multilayer stacked m mbrane structures (U4212 polyimide) that emb dy the features of the invention.

The invention may be embodied in several forms

WO 96/10966 PCT/US95/13070

without departing from its spirit or essential characteristics. The scope of the invention is defined in the appended claims, rather than in the specific description preceding them. All embodiments that fall within the meaning and range of equivalency of the claims are therefore intended to be embraced by the claims.

- 8 -

Description of the Preferred Embodiments

5

10

15

20

25

30

35

Figs. 1A/B/C show an implant assembly 10 that embodies the features of the invention.

The assembly 10 forms a chamber 12 (see Fig. 1C) to hold living cells 14 while implanted in host tissue. The implanted cells 14 generate biological products that the host, because of disease or injury, cannot produce for itself. For example, the chamber 12 can carry clusters of pancreatic cells (called "islets"), which generate insulin for release into and use by a diabetic host.

In the embodiment shown in Fig. 1, the assembly 10 is carried within a hoop-like housing 24 (see Figs. 1B/C). The details of construction of the hoop-like housing are disclosed in U.S. Patent 5,344,454, which is incorporated herein by reference.

The assembly 10 forms a porous, life sustaining boundary 16 between the implanted cells 14 and the host. The porous boundary 16 includes a first porous region 18 immediately surrounding the chamber 12. The first region 18 has a pore size sufficient to block penetration into the lumen of the chamber 12 by host vascular structures. This penetration breaches the integrity of the boundary 16, exposing the implanted cells 14 to the complete immune response of the host. Generally speaking, pore sizes less than about 2 μm (i.e., 2 micrometers)

5

10

15

20

25

30

35

will block the ingress of vascular structures. (As used in this Specification, "pore size" refers to the maximum pore size of the material. The practitioner determines pore size using conventional bubble point methodology, as described in Pharmaceutical Technology, May 1983, pages 36 to 42).

When the implanted cells 14 are from another animal species (i.e., xenografts), the pore size of the first region 18 must also be sufficient to prevent the passage of both inflammatory cells and molecular immunogenic factors from the host into the implant tissue chamber. As used "inflammatory cells" include Specification. macrophages, foreign giant body cells, and fibroblasts, and "molecular immunogenic factors" refers to molecules such as antibodies complement. Pore sizes sufficient to block passage of both inflammatory cells and molecular immunogenic factors in humans lie in the range of about .015 mi-Of course, these pore sizes are also crometers. impermeable to vascular structures.

When the implanted cells are from the same animal species but having a different genetic make up (i.e., allografts), the pore size of the first region 18 usually must be sufficient to prevent the passage of only inflammatory cells from the host into the implant cell chamber. In allografts, molecular immunogenic factors do not seem to adversely affect the viability of the implanted cells. Still, some degree of tissue matching may be required for complete protection. Pore sizes sufficient to block passage f inflammatory cells in humans lie in the range of below about 0.8 micrometers. These p re sizes, too, are impermeable to vascular structures.

10

15

20

25

30

35

When the implanted cells are isografts (autlogous implants of genetically engineered cells), the pore size must be sufficient only to prevent the isografts from entering the host, while also preventing ingress of vascular structures in the chamber 12.

The boundary 16 also includes a second porous region 20 overlying at least a portion of the first region 18. The second region 20 constitutes the interface with host tissue. The second region 20 has an architecture that promotes the growth of vascular structures in host tissue near the interface. Preferably, at least some of the near vascular structures lie within one cell thickness of the interface.

In this way, the porous boundary 16 associates itself with the host's biological system closely enough to transfer nutrients and wastes in support of the biological processes of the implanted cells 14. The porous boundary 16 also transfers the therapeutic products generated by the implanted cells 14 to the host.

According to the invention, the second region 20 comprises a porous membrane structure formed with multiple microfabricated layers of polymer film 26.

In the illustrated and preferred embodiment, each polymer film layer 26 (see Fig. 2) is made from photoimageable polyimide material. The film 26 is processed, using either negative photoresist techniques or etchable membrane fabrication techniques, to create predefined geometric patterns of holes 28 and intermediate spaces defining strands 30. (see Fig. 2).

The geometric patterns alternate between film layers 26 fr m smaller, more closely spaced hole

5

10

15

patterns (with cross hole dimensions equal to or less than about 20 μm and strand dimensions typically about 2-3 $\mu m)$ to larger holes with less closely spaced patterns (with cross hole dimensions exceeding 20 μm and upwards to about 50 μm and strand dimensions typically about 4-5 μm). The stacking of different geometric patterns creates an open, porous membrane structure having randomly positioned, interconnected cavities with minimum interior dimensions greater than about 5 μm formed by interconnected stands with minimum dimensions less than about 5 μm .

The preferred embodiment shows the porous membrane structure being used in association with a chamber for implanting living cells. Still, it should be appreciated that the porous structure embodying the features of the invention can be used in association with other implanted objects, like catheters, biosensing devices, and the like.

20

25

30

35

I. Selection of Polymer Film Material

The membrane structure for the second region 22 and fabrication require a number characteristics, including biocompatibility, ease of fabrication, the ability to create identifiable, three dimensional geometries, chemical inertness, and robust mechanical properties. Polyimide is one material that meets these requirements. Polyimide, commonly used as planarizing dielectric layers in microelectronics, is biocompatible, mechanically strong, and can be routinely microfabricated into patterns of precise geometries using lithographic techniques.

Polyimides are cyclic-chain polymers. They are characterized by the imide functionality, which is

10

15

20

25

30

35

a cyclic secondary amine bound to two carbonyl gr ups, and may contain either aromatic or aliphatic groups in the main chain.

Polyimide can be synthesized using a two step method via the precursor poly(amic-acids) (see Sroog, C. E.: Polyimides. Progress in polymer science 16:561-694, 1991). In this method, the precursor of the imide moiety, poly(amic-acid), is polycondensation (addition by а polymerization) reaction of an acid dianhydride with diamine. Diamines that can be used include 4,4'-diaminodiphenyl ether (DADPE), also known as oxydianiline (ODA); 4,4-methylene dianiline (MDA); and 4,4'-diaminobenzophenone (DABP). Dianhydrides that can be used include pyromellitic dianhydride 3,3',4,4'-benzophenonetetracarboxylic (PMDA); dianhydnde (BTDA): 3.3',4.4'-biphenyltetracarboxylic dianhydnde BPDA).

Poly(amic-acid) is soluble in polar organic solvents such as N-methyl-2-pyrrolidone (NMP), dimethyl formamide (DMF), and dimethylsulfoxide (DMSO). Depending on the structure of the radicals attached to the imide group, polyimides can be aliphatic, alicyclic, or aromatic; and linear or three-dimensional, depending on the chain structure. Aromatic, linear polyimides are the most common, essentially because they have found wide practical application because of their high level of performance over a broad temperature range.

During the second step of the method, the poly(amic-acid) is converted to the polyimide at temperatures high enough to remove the solvent and initiate ring closure with intramolecular expulsion of water. The heat treatment described is kn wn as "curing", and typically has a final temperature

WO 96/10966

5

10

15

20

25

30

35

range f 300-500°C. The completeness f the imidization reaction depends on the nature of the R and R' groups as well as the specific conditions of the imidization or cure.

After complete cure, polyimide is insoluble in virtually all common solvents including photoresist strippers. However, some hot bases, such as hydrazine, antimony trichloride, arsenic trichloride, concentrated sulfuric acid and fuming nitric acid, will dissolve polyimide films.

The biocompatibility of different polyimides has been examined for use in cochlear implants. The polyimides investigated included Hughes HR610, Dupont 2555, Hitachi PIQ and M.&T. 2056/5000. All resulted in very limited adverse tissue response (see Haggerty, H. S. and Lusted, H. S.: Histological Reaction to polyimide films in the cochlea. Acta Otolaryngol (Stockh) 107:13-22, 1989).

II. Design of Membrane Microstructures

Figs. 3A/B and 4 show representative mask plate designs 32P and 32N for creating the desired geometric patterns on the polyimide films using known lithographic printing or etching techniques. So-called "negative mask" plates 32N (which Figs. 3A/B show) can be used with light sensitive polyimide films (coated with negative photoresist material). So-called "positive mask" plates 32P (which Fig. 4 shows) can used for etchable polyimide films.

As Figs. 3A/B and 4 show, the mask plate designs 32P and 32 N preferably use a "honey comb" pattern. The pattern has hexagonal holes 28. A hexagonal geometry achieves a high packing density and, therefore, a high por sity membrane.

10

15

20

25

30

35

The mask plate pattern 32 itself defines a planar surface geometry, i.e., the two dimensional horizontal x-y plane of the microstructure. The z-dimension (vertical plane) of the microstructure is defined by the thickness of the polyimide film 26. In the illustrated and preferred embodiment, individual films 26 having a thickness of about $2\mu m$ are layered on top of each other to build vertical height in the z-direction, which can range from about $4 \mu m$ (i.e., two layers) to $14 \mu m$ (i.e., 5 or more layers).

Fig. 3A shows a mask plate design with hexagonal holes with cross dimensions (indicated by arrows C) which measure about 6 μ m. The strands (i.e. the spaces between the holes) measure about 2.8 μ m. This pattern creates a film that can be identified as a 6μ m/2.8 μ m (hole dimension/strand dimension) structure. The nominal dimensions are shown (in μ m) in Fig. 3A.

Fig. 3B shows another mask plate design based on this geometry having holes with cross dimension (again indicated by arrows C) of 10 μm and 2 μm strands. This pattern creates a film having a $10\mu m/2\mu m$ structure, using the nomenclature of the preceding paragraph. The nominal dimensions are shown (in μm) in Fig. 3B.

Each design shown in Figs. 3A and 3B is intended to fit a one cm square area. Therefore, the interhex strand spaces are actually slightly less than 2.8 and 2 μ m, but the difference is negligible (i.e. less than 0.01 μ m). The smallest strand size that can be achieved is approximately 1.5 μ m, being limited by the contact printing lithographic process and wavelength of the ultraviolet light. Inherent shrinkage of the polyimide film can occur during

10

15

20

25

30

35

processing (as described below) and is ben ficial, because it can reduce the stand size below that attainable strictly by the contact lithographic process.

when layers of film mirroring the hexagonal mask plate design shown in Figs. 3. A and B are stacked on top of each other, the vertical pattern of the strands and holes in the microstructure emulate a three dimensional fibrous membrane structure of interconnected fibers (i.e., the vertical registration of stacked strands) forming interconnected interior cavities (i.e., the overlaying of the vertically stacked holes).

According to the invention, an open membrane structure made according to the teachings of Brauker et al. — having interconnected cavities with x, y, and z dimensions greater than 5 μ m formed by interconnected stands with y dimensions less than 5 μ m — is emulated in a stacked microfabricated film structure by including spacer film layers having large diameter holes (i.e., over about 20 μ m and upwards to about 50 μ m) than the 6 μ m/2.8 μ m and 10 μ m/2 μ m primary film layers already described.

Fig. 4 shows a mask plate design 32 for a spacer layer having 50 μm holes and 2 μm strands. The nominal dimensions are shown (in μm) in Fig. 4.

Like the designs shown in Figs. 3A/B, the design shown in Fig.4 is intended to fit a one cm square area. This pattern creates a spacer film having a $50\mu\text{m}/2\mu\text{m}$ structure.

According to the invention, the spacer layers having the design shown in Fig. 4 with larger diameter holes ar alternated with the polyimide films having the design shown in Figs. 3A or 3B with the smaller diameter holes. The layers of primary

10

15

20

25

30

35

polyimide film and polyimide film spacers ar stacked with random alignment to create an open membrane structure, as will be described in greater detail later.

In a preferred implementation, the mask designs shown in Figs.3 and 4 were layered out with an AutoCAD™ system. Each 1 cm² area was magnified by 10x, i.e. approximately 0.1cm x 0.1cm areas of the final device. After file conversion, reticle plates were made on a GCA MANN 3600F pattern generator. The reticle (5" plate) was placed in the GCA MANN 3696 stepper which has optics that reduce the image 10X, and stepped across the mask (4" plate) in such a way as to make nine 1 cm² patterns.

The plates were soda lime glass plates covered with 5000 Å of low reflective chrome, and 5000 Å of Shipley™ Microposit™ AZ1350J photoresist (supplied by Nanofilm Inc.). After development the exposed plates were etched with CEN-300 micro-chrome etchant (Microchrome Technology Inc.) for 40 seconds. The process was completed with removal of the photoresist.

Both clear field and dark field versions of the mask plates were made, so that both negative acting polyimide and positive acting photoresist could be used for the creating the microstructures.

III. <u>Preparing the Polyimide Structures</u> A. Microfabricating the Film Layers

In a preferred implementation, the following polyimides film materials were used in making microfabricated membrane structures that embody the features of the invention:

Light Sensitive Films

Amoco UltradelTM 7501 (U7501): The exact

10

15

20

25

30

35

chemical structure of these polyimides from Amoco Chemical Company (Naperville, IL) is proprietary. However, it is an inherently light sensitive, preimidized, benzophenone (BTDA) based fluorinated polyimide. The solvent system for this polyimide is abutyrolactone.

OCG SelectiplastTM HTR3-100 (HTR3-100): The HTR3 series of polyimides from OCG Microelectronics (West Paterson, NJ) are a PMDA/ODA based polyimide which has a sensitizer molecule providing light sensitivity. The exact chemical formulation of the sensitizer molecule is proprietary. The solvent system used for this polyimide is cyclopentanone.

Etchable Film

Amoco UltradelTM 4212 (U4212): This is an etchable material with a chemical structure of a 4,4' hexafluoro-isopropylidene-bis pthalic anhydride (HFDA) and 4,4'-bis(4-aminophenoxy)biphenyl (APBP). The solvent system used for this polyimide is 2-methoxyethylether.

Figs. 5A/B/C show the steps of the fabrication process for the light sensitive polyimide films, for which the negative mask is used to create the desired microstructure. Figs. 6A/B/C/D/E show the steps of the fabrication process for the etchable polyimide films, for which the positive mask is used to create the desired microstructure.

In a preferred implementation of each fabrication process, substrates 34 comprising two inch diameter silicon wafers were cleaned for 10 minute in SummaTM clean in an ultrasonic bath at 30°C, followed by a 5 minute deionized water (DI) rinse and blown dry in nitrogen. A steam oxide was grown at 1100°C to a thickness of approximately 0.5 μ m. This forms the sacrificial layer 36 used for

10

15

20

25

30

35

later removal of the polyimide films from the substrat wafers (see Fig. 5A and Fig. 6A).

The oxidized substrate wafers are cleaned with filtered isopropanol and then coated with diluted adhesion promoter.

For the light sensitive film, the adhesion promoter was Amoco, UltradelTM A200 (3-aminopropyltriethoxysilane). The adhesion promoter was diluted 1:2000 with mentanol and water. The adhesion promoter was spin coated at 5000 RPM on the oxidized substrate wafers, followed by a 30 second hot plate bake at 100°C to remove moisture.

For the etchable film, OCG adhesion promoter (some type of aminosilane) was diluted 1:9 (QZ3289:QZ3290) (QZ3290 is ethanol). The adhesion promoter was likewise spin coated at 4000 RPM on the oxidized substrate wafers, followed by a 20 second hot plate bake at 110°C.

The polyimides 38 were then spin coated upon the substrates. The coated substrates were prebaked on a hot plate (Fairweather Inc., Thermal Ace, SantaClara, CA), fitted with vacuum ports for hard contact bake (see Fig. 5B and Fig. 6B).

After the prebake, the etchable samples (see Fig. 6B) were coated with a positive photoresits 40, like Shipley 1400-31 positive photoresist. With a positive mask 32P (as shown in Figs. 4) in place (see Fig. 6C), the polyimide film 38 is wet etched (50 sec. E422). The etching removes film 38 in the open regions of the positive mask 32P, while leaving film 38 in the closed regions of the mask 32P. This forms the holes 28 and strands 30 in the polyimide 38 (as Fig. 6D shows). The etched film is rinsed (15 sec. deionized water (DI)), and spun dry (30 sec. nitrogen), and the photoresist stripped away (

10

15

20

25

30

35

2 min S420) (as Fig. 6E shows).

The photosensitive polyimide samples (see Fig. 5B) were exposed, with the negative mask 32N (shown in Figs. 3A/B) in place, to polyimide lithography on a Karl Suss MJB 3 mask aligner, and then spray developed, overlapped (consists of simultaneous spraying with developer and rinse), and rinsed (see Fig. 5C).

Curing of the polyimides (both etchable and photosensitive) was performed in a nitrogen purged programmable furnace (Fisher, Model 495A, Pittsburgh, PA). Flowing nitrogen at about 50 SCFH reduces the oxygen content of the furnace to about 5%, thus reducing oxidation of the films. The samples were allowed to cool to 100°C before removal from the furnace.

The strength of the film is considerably reduced, if not cured in an unpurged furnace. This is due to oxidation of the polyimide during cure. All of the polyimides become qualitatively "brittle" if cured in normal atmospheric concentrations of oxygen.

The HTR3-100 had the most shrinkage during curing, which resulted in narrower strands. There is an advantage in this because the ideal filament structure is more closely approximated with smaller strands.

Following the lithographic treatment and curing, as just described, the films 38 are then removed from the substrate 34 (as Fig. 10A shows). This is accomplished by etching the thermally grown silicon dioxide layer from under the membranes. The films 38 are r leased fr m the substrate by immersing the wafers in Transistar buffer d oxide etchant [6 parts ammonium fluoride:1 part

15

20

hydrofluoric acid (HF)]. A milliliter or two of concentrated HF (49%) is added to speed up the release process (with added HF the process takes approximately 30 seconds to one minute). The released films were transferred to a petri dish of deionized water with TeflonTM forceps and rinsed for five minutes.

Spacing layers with 50 μ diameter holes and 4.5 μ m strands were fabricated of two different thicknesses, referred to as thin (having a nominal thickness of 2 μ m) and thick (having a nominal thickness of 4 μ m). These structures can be identified as 50μ m/4.5 μ m/2 μ m (hole dimension/strand dimension/thickness) structures and 50μ m/4.5 μ m/4 μ m structures.

Approximately 100 A of gold was electron beam evaporated onto the single layer samples attached to silicon substrates. Scanning electron microscopy (SEM) was performed in a JEOL JSM-35 scanning electron microscope.

The following Table 1 summarizes measurements made on the single layer structures using a Tencor P1 long scan profiler (Mountain View, California) and SEM cross sections:

TABLE 1: DIMENSIONS OF SINGLE LAYER MICROSTRUCTURE MEMBRANES

5	Material	Film Thickness (µm)		Dimensions Hole/Strand (Nominal)	
	Thin		6/2.8 (µm)	10/2 (µm)	50/4.5 (µm)
	U7501	2.5 (SEM) 2.7 (Profiler)	2	2	4
	U4212	2	1	1.5	3
10	HTR3-100 (Depending upon Pro- cessing)	1.5-1.8 (SEM) 1.3-1.75 (Profiler)	1.3	1.25	3
15	Thick				
	U7501 (Depending upon Pro- cessing)	5.7 (SEM) 5.4-6.8 (Profiler)			
20	U4212	3.9 (SEM) 4 (Profiler)			
	HTR3-100	3.4 (SEM) 3 (Profiler)			

Figs. 7A/B/C/D show scanning electron micrographs of the top surface of single layer films patterned with the mask with 6.2 µm openings and 2.8 μm strands (still attached to the silicon substrate). Fig. 7A shows a single microfabricated film layer made from U7501 material. Fig. 7B shows

25

WO 96/10966

a single microfabricated film layer made from U4212 Fig. 7C shows a single microfabricated film layer made from HTR3-100 material. shows an enlarged, slightly angled view of a hole formed in the single layer film of U7501 material.

- 22 -

Fias. 8A/B/C/D show scanning electron micrographs of the top surface of films patterned with 10 µm spaces and 2 µm strands (still attached to the silicon substrate). Fig. 8A shows a single microfabricated film layer made from U7501 material. Fig.8B shows a single microfabricated film layer made from U4212 material. Fig. 8C shows a single microfabricated film layer made from HTR3-100 Fig. 8D shows an enlarged, slightly angled view of holes formed in the single layer film of HTR3-100 material.

10

15

20

25

30

35

Figs. 9A/B/C/D show scanning electron micrographs of the top surface of single layer films patterned with the mask with 50µm holes and 4.5 µm strands (with a thickness of the 4µm) (still attached to the silicon substrate). Fig. 9A shows a single microfabricated film layer made from U7501 material (at a slightly angled view). Fig.9B shows a single microfabricated film layer made from U4212 material (at a slightly angled view). Fig. 9C shows a single microfabricated film layer made from HTR3-100 material (at a slightly angled view). Fig. 9D shows cross section of the 4µm thick film made from U7501 material.

From the micrographs, it can be seen that the films are quite uniform, i.e. the features are consistent from one hole to the next. "rounding" of features and other pattern anomalies that occurred, which varied according to film type and may have in large part due to processing WQ 96/10966 PCT/US95/13070

- 23 -

variables, such as shrinkage of the film, optical effects due to imperfect contact between the mask plate and the substrate, and over-etching.

5

10

15

20

25

30

35

For good pattern transfer using a contact printing mask aligner (like the Karl Suss MJB 3), intimate contact between mask and substrate is essential. Given that perfect contact is not possible, there is some light diffraction around the mask edges, and the exposed regions are further separated when this overlap is reduced and pattern transfer is improved. Mask-to- substrate contact is affected by several variables including: uniformity of the prebaked film, edge bead, particulates, substrate-mask contact pressure, and wafer flatness. Wafer flatness seemed to be one of the most important factors for achieving good yields, i.e. membranes that were completely porous. Wafers which were not flat had incomplete development in the center of the wafer. The wafers were examined by optical interference and this problem was remedied by selecting wafers which had uniform interference fringes.

The thin spacing layers exhibited better pattern transfer than the thick spacing layers, due to absorption of ultraviolet (UV) light by the top of the thicker film causing the bottom of the film to be more soluble upon development.

Still, overall, the dimensions seen in the scanning electron micrographs are close to those specified in the mask design.

B. Stacking the Microfabricated Film Layers

Multilayer micr structure membranes are made consisting of either alternating films f large and small dimensions or of all the same dimensions. In

15

all cases like materials were assembled.

In making the multiple structure membranes, released membranes of like polyimide material were stacked together and laminated to a polyester webbing to provide good mechanical integrity of the membranes. Fig. 10 shows the process, which can be summarized as follows:

- (1) a drop of water was placed on top of an unreleased film;
- 10 (2) a free membrane was then transported onto the drop of water using a vacuum pickup fitted with a Teflon tip;
 - (3) the film was positioned with the vacuum pickup on a silicon substrate 34 (as before described with an oxide coating 36, as Fig. 10B shows), and flattened by gently blowing with a nitrogen gun, while simultaneously applying suction at the corner of the film;
- (4) a Ultrasonic Wire Bonder (West Bond, Model 20 7700A-45-66, Anaheim, CA) was used to tack multiple layers (designated L1, L2, etc. in Fig. 10B) of the films together around the perimeter, if necessary, to the substrate 34. The U7501 sometimes required this step, the 25 U4212 always needed bonding and the HTR3-100 never needed bonding. The layers L1; L3; and L5 comprise film with the smaller diameter holes 28 and smaller strands 30 (for example, a 10µm/2µm film structure, already described). 30 The alternating layers L2 and L4, which are sandwiched by the other layers, comprise the spacer layers with the larger diameter holes larger strands (for example, $50\mu\text{m}/4.5\mu\text{m}/2\mu\text{m}$ or $50\mu\text{m}/4.5\mu\text{m}/4\mu\text{m}$ structures, already described.) 35

20

25

- (5) the films were cured again under the conditi ns described before;
- (6) an interpenetrating, stranded network 40 of molten ethylene vinyl acetate (EVA) was formed on the surface of the samples, 40-50 strands per inch (as Fig. 10C shows);
- (7) next, a layer of polyester webbing 42 was clamped to the exterior surface (as Fig. 10C also shows);
- 10 (8) the samples were baked at 80°C for 10 minutes to remove the solvent (toluene) from the EVA;
 - (9) finally, the same oxide etching process as described above was performed to remove the laminated membranes (as Fig. D shows);
- 15 (10) membranes were mounted in titanium rings 0.5 inches in diameter (like those shown in Figs. 1A/B/C);
 - (11) the assembled multiple layer membrane structures were stored in 70% ethyl alcohol to sterilize them.

This process was performed for films with the same dimensions, as well as stacking alternating layers of different dimensions. In addition, single layer films were laminated to 5um Goretex* membranes, which were used as controls.

The following Table 2 lists the types of multilayer structures made:

TABLE 2: DIMENSIONS OF MULTILAYER MICROSTRUCTURE MEMBRANES

	Material		Naminal Sizes (µm)	
5	Material	Primary Layer (Hole/Strand)	Spacer Layer Hole/Strand/Thick	Total Number of Layers
	Multiple Identical Layers			
10	U7501	6/2.8	None	2
	U7501	6/2.8	None	4
	U4212	6/2.8	None	2
	U4212	6/2.8	None	4
	U4212	10/2	None	3
15	HTR3-100	10/2	None	3
	HTR3-100	10/2	None	4
	HTR3-100	10/2	None	6
	Alternating Layers			
20	U7501	10/2	50/4.5/2 (thin)	5
	U7501	10/2	50/4.5/4 (thick)	5
	U4212	10/2	50/4.5/2 (thin)	5
	U4212	10/2	50/4.5/4 (thick)	5
	HTR3-100	10/2	50/4.5/2 (thin)	5
25	HTR3-100	10/2	50/4.5/4 (thick)	5

Fig. 11A shows a scanning electron micrograph of a representative example of the three layer stacked structure of the U4212 membrane. The excessive rounding of the features is due to a

30

10

15

20

25

30

35

slight over-etch. In addition, at some points of contact the two layers seem to have "melted" together during the post stacking cure. Fig. 11B shows a scanning electron micrograph of the six layer stacked structure of HTR3-100 membrane. Little alignment is apparent from one layer to the next. The manual stacking and curing of the films results in a random alignment between the layers.

Figs. 12A/B/C show micrographs of the membranes comprising alternating 5 layers of film layers and the thick spacer layers (4 µm), for each of the three polyimides used. Fig. 12A shows the spacer-stacked U7501 structure. Fig. 12B shows the spacer-stacked U4212 structure. Fig. 12C shows the spacer-stacked HTR3-100 structure. In each case all five layers can be seen. Again, a random alignment is observed between the layers. The strand in the spacer layer can be seen to partially block a hole in the membrane surface.

Figs. 13A/B show scanning electron micrograph of other multilayer membrane structures made in the manner described above. In Figs. 13A/B, the structures alternate one polyimide film layer (U4212 material) microfabricated with 15µm hexagonal holes with strands of 2µm (2 µm thick) with a second polyimide film (also layer U4212 material) microfabricated with 50µm hexagonal holes with strands of 4.5µm (3.5 µm thick), used as a spacing Fig. 13A shows the presence of one layer. 50µm/4.5µm/3.5µm spacing layer sandwiched between two 15µm/2µm/2µm layers. Fig. 13B shows alternate layering of three 15µm layers and two 50µm spacing layers. As before, a random alignment of holes and strands is sh wn. The 50µm middl spacing layer can be clearly seen in Figs. 13A and B under the top

10

15

20

25

30

35

15µm layer.

layers theref re stacking of the Manual produces no particular uniform alignment, and it is uniform alignment believed that no such preferred. Since the holes of the spacing layers are much larger than the holes of the primary layers, the smaller holes in the primary layers are not completely blocked by the strands of the spacing providing an open thereby architecture that allows inflammatory cells to enter and promote the desired vascularizing effect near the interface with host tissue.

with the addition of a spacer layer, a highly porous structure results. The porosity of the films varied from 50% to 85%.

The film bonding was analyzed qualitatively for all three polyimides as alternating layer membranes. Three test were performed (1) flowing DI water, (2) flowing nitrogen (20 PSI), and (3) wafer breaking. The results of these test were either to pass or fail, which was indicated by delamination. All the multilayer structures passed the first two tests. The spacer-stacked U4212 passed the third test. Delamination of some spacer-stacked U7501 structures and all spacer-stacked HTRJ-100 structures during implanting was also observed. This indicates that the adhesion was marginally better for the U4212 material.

It is clearly evident that the membranes display repeatable geometries. Throughout the handling process all the membranes displayed excellent mechanical stability considering they were about 1.75-6.8 µm thick and had a porosity in the range 50-95%.

Processing photoimageable polyimide can be done

10

15

20

25

30

35

in a single lithography step in the same way as for a negative photoresist. Etchable polyimide fabrication, although somewhat more complicated, still requires only a single masking step. After patterning the polyimide film, the area of any flat surface can be identified easily using scanning electron microscopy, and film thicknesses can be measured on a profiler. Fully cured polyimides have excellent physical and thermal properties including: high tensile strength, large Young's modulus of elasticity, large percent elongation at break, a high glass transition temperature, and resistance to many acids and organic solvents.

Brauker et al. have demonstrated that membranes that did have close vascular structures allowed cellular penetration and had pores that were formed by membrane structures (strands or fibers) with a diameter of less than 5um, whereas membranes that did not develop close vascular structures had cavities with "plate-like" qualities, Histological greater than 5um. diameters examination of the vascularizing membranes revealed that the invading cells had a rounded morphology, while the cells were flattened in the membranes that did not have close vascular structures. The cells appear to be "trapped" and not allowed to flatten on any surface, which apparently causes the more rounded morphology of the cells which infiltrate the vascularizing membranes. The hypothesis is that the membrane architecture dictates cellular morphology, and the rounded cells in turn secrete some, as yet unknown, trophic factors which promote the formation of vascular structures.

The multilayer, stacked polyimid microfabricated membrane structures made in

10

accordance with the invention provide the type of structure characterized by Brauker et al. The alternating layers of primary and spacer layers increased the porosity of the films, decreasing the opportunity of two strands to coincide in the vertical plane, and increasing the internal volume of the membrane. Cellular penetration with rounded morphology and close vascular structures may noticeably increase for these spacer-stacked membrane structures.

Various features of the invention are set forth in the following claims.

5

5

5

We Claim:

- 1. A porous structure for implanting in host tissue, the structure including multiple layers of microfabricated polymer film, each layer having predefined geometric patterns of holes and intermediate spaces defining strands to form, when stacked in layers, interior cavities.
- 2. A porous structure forming a chamber to hold living cells while implanted in host tissue, the structure including multiple layers of microfabricated polymer film, each layer having predefined geometric patterns of holes and intermediate spaces defining strands to form, when stacked in layers, interior cavities.
- 3. A porous structure according to claim 1 or 2

wherein the microfabricated polymer film is polyimide material.

4. A porous structure according to claim 1 or 2

wherein the holes in the geometric patterns are generally hexagonal in shape.

5. A porous structure according to claim 1 or

wherein the geometric pattern in one of the layers differs from the geometric pattern in another one of the layers.

- 6. A porous structure according to claim 2 and further living cells in the chamber.
- 7. A method of implanting living cells in host tissue comprising the steps of

forming a chamber to hold living cells, the chamber having a wall structure including multiple layers of microfabricated film, each layer having predefined geometric patterns of holes and

WO 96/10966 PCT/US95/13070

intermediate spaces defining strands to form, when stacked in layers, interior cavities,

placing living cells in the chamber, and implanting the chamber and living cells it contains in host tissue.

10

5

10

5

- 8. A porous structure forming a chamber to hold living cells while implanted in host tissue, the structure, when implanted, forming an interface with host tissue with vascular structures having grown in the host tissue sufficiently near to the interface to transport molecules through the porous structure between the vascular structures and the cells in the chamber, the structure including one polymer film layer having a first microfabricated geometric pattern, and two other polymer film layers sandwiching the one film layer between them, the two other polymer film layers having microfabricated geometric patterns different than the first geometric pattern.
- 9. A porous structure according to claim 8 wherein the first microfabricated geometric pattern comprises holes and intermediate spaces defining strands.
- 10. A porous structure according to claim 9
 wherein the other two microfabricated geometric
 patterns comprise holes and intermediate spaces
 defining strands, the holes of the other two
 patterns being of lesser dimension than the holes of
 the first geometric pattern.
- 11. A porous structure according to claim 9
 wherein the holes of the first microfabricated
 geometric pattern have a cross dimension that is
 greater than about 20µm.
 - 12. A porous structure according to claim 11 wherein the other two micr fabricated geometric

- 33 -

patterns comprise holes and intermediate spaces defining strands, the holes of the other two patterns having cross dimensions equal to or less than about 20 µm.

5

5

5

5

10

- 13. A porous structure according to claim 9 wherein the holes of the first microfabricated geometric pattern have a cross dimension that is greater than about 20µm and the strands of the first microfabricated geometric pattern have a dimension of less than about 5um.
- 14. A porous structure according to claim 13 wherein the other two microfabricated geometric patterns comprise holes and intermediate spaces defining strands, the holes of the other two patterns having cross dimensions equal to or less than about 20 um and the strands of the other two patterns having a dimension less than the dimension of the strands of the first pattern.
- 15. A porous structure according to claim 8 and further including living cells in the chamber.
- 16. A porous structure according to claim 8 wherein the polymer of the layers is polyimide material.
- 17. A method of implanting living cells in host tissue comprising the steps of

forming a chamber to hold living cells, chamber having a wall structure including one film layer having a first microfabricated geometric pattern sandwiched, two other layers sandwiching the one film layer between them, the two other layers having microfabricated geometric patterns different than the first geometric pattern,

placing living cells in the chamber, and implanting the chamber and living cells it - 34 -

contains in host tissue.

5

10

5

10

15

18. A porous structure forming a chamber to hold living cells while implanted in host tissue, structure including multiple lavers the microfabricated polyimide film, one film layer having a first microfabricated geometric pattern comprising holes having a cross section of greater than about 20um and intermediate strands having a dimension less than about 5µm, and two other layers sandwiching the one film layer between them, the two layers having microfabricated patterns comprising holes having a cross section of equal to or less than about 20um and intermediate strands having a dimension less than about 5µm.

- 19. A porous structure according to claim 18 and further including living cells in the chamber.
- 20. A method of implanting living cells in host tissue comprising the steps of

forming a chamber to hold living cells, chamber having a wall structure including multiple layers of microfabricated polyimide film, one film layer having a first microfabricated geometric pattern comprising holes having a cross section of greater than about 20µm and intermediate strands having a dimension of less than about 5um, and two other layers sandwiching the one film layer between them, the two other layers having microfabricated geometric patterns comprising holes having a cross section of equal to or less than about 20um and intermediate strands having a dimension less than about 5um.

placing living cells in the chamber, and implanting the chamber and living cells it contains in host tissue.

5

21. A method of making a porous structure comprising the steps of

forming one film layer having a first microfabricated geometric pattern,

forming two other layers having microfabricated geometric patterns different than the first geometric pattern, and

sandwiching the one film layer between the two other layers to create the porous structure.

22. A method according to claim 21

wherein the film layers are geometric patterns on at least one of the layers is microfabricated by lithography or etching.

23. A method according to claim 21
wherein the geometric patterns comprise holes
and intermediate spaces comprising strands.

l , nauenal application No.

PCT/US 95/13070

Box (Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inu	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
ı. X	Chairms Nos.: 7, 17, 20 because they relate to subject matter not required to be searched by this Authority, namely: PCT Rule 39.1(iv)Method for treatm.of the human body by surgery or therapy
2. 🗌	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
j	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a),
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inu	ernational Searching Authority found multiple inventions in this international application, as follows:
ı. 🔲	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. <u> </u>	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Noz.:
• 🗆	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	en Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

information on patent family members

Inter mail Application No PCT/US 95/13070

Patent document cited in search report	Publication date	Patent famili member(s)		Publication date
US-A-5344454	06-09-94		645155	06-01-94
		AU-B- 8	951491	26-05-92
		CA-A- 2	070816	01-05-92
		CN-A- 1	063046	29-07-92
		EP-A- 0	507933	14-10-92
		JP-T- 5	504704	22-07-93
			207525	14-05-92
			453278	26-09-95
			314471	24-05-94
			555428	18-08-93
		JP-T- 6	502577	24-03-94
		WO-A- 9	302635	18-02-93
JP-A-6097388	18-01-94	EP-A- 0	621018	26-10-94
		EP-A- 0	566427	20-10-93
EP-A-566427	20-10-93	JP-A- 6	007388	18-01-94
US-A-4636219	13-01-87	AU-B-	579950	15-12-88
		AU-B- 6	631286	11-06-87
		CA-A- 1	265422	06-02-90
			683994	02-04-92
		EP-A.B G	225838	16-06-87
		JP-A- 62	137050	19-06-87
WO-A-9000888	08-02-90	ES-A- 2	910327	01-11-89
US-A-4976738	11-12-90	NONE	• • • • • • •	
EP-A-159034	23-10-85	US-A- 4	65754 4	14-04-87
	<u> </u>		759757	26-07-88
EP-A-359575	21-03-90	CA-A- 1:	323959	89-11-93
	_		911808	10-02-94
			911808	26-05-94
			011494	30-04-91
			219361	15-06-93
WO-A-9222336	23-12-92	AU-B-	657768	23-03-95

information on patent family members

PCT/US 95/13970

Patent document cited in search report	Publication date	Patent memi		Publication date
WO-A-9222336		EP-A- JP-T- NO-A- US-A-	0588890 6508536 934506 5486546	30-03-94 29-09-94 09-02-94 23-01-96
EP-A-647439	12-04-95	US-A- JP-A-	5455100 7171172	03-10-95 11-07-95
US-A-4601868	22-07-86	NONE		

F16.1A

FIG. 1B

3/15

F16, 7A

F16.

WO 96/10966 PCT/US95/13070

F16.

F16.

6/15

WO 96/10966 PCT/US95/13070

Fig.

F16. 8E

PCT/US95/13070 WO 96/10966

F16.

F16. 8D

FIG.

F16.98

F16.70

Fig. 9D

F16.

F16 11B

WO 96/10966 PCT/US95/13070

F16.

F16. 12B

PCT/US95/13070 WO 96/10966

F16.12C

F161

PCT/US95/13070

F16, 13B

Inten nal Application No. PCT/US 95/13070

A. CLASSIFICATION OF SUBJECT MATTER
1PC 5 A61F2/00 A61F2/02 A61F2/06 A61L27/00 According to International Paters Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 A61F Documentation searched other than maximum documentation to the extent that such documents are included in the listes searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claum No. Category * Citation of document, with indication, where appropriate, of the relevant passages 1.2.4-6 US.A.5 344 454 (CLARKE) 6 September 1994 cited in the application see the whole document JP,A,06 007 388 (KYOCERA CORPORATION) 18 1,2,4-6 January 1994 see figures 1-10,15-21,54 8.9 & EP,A,O 621 D18 (KYOCERA CORPORATION) 26 October 1994 EP, A, 0 566 427 (KYOCERA CORPORATION) 20 1.2 A October 1993 see abstract; figures 1-10,15-17,38 US,A,4 636 219 (PRATT) 13 January 1987 A 1.2 see abstract; figures 2A,2B -/--Further documents are listed to the continuation of box C. Patent family members are luted in annex. * Special categories of cited documents : "T" later document published after the international bling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of personal relevance. "E" earlier document but published on or after the international "X" document of particular relevance; the claimed investion cannot be considered novel or cannot be considered to unvolve as inventive step when the document is taken alone filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclorate, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "A" document member of the same autent family Date of the actual completion of the international search Date of mailing of the international search report 18.03.55 11 March 1996 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patendaan 2 NL - 2210 HV Rijunjk Td. (+31-70) 340-2040, Tx. 31 631 epo ni, Faz: (+31-70) 340-2016 Klein, C

Form PCT ISA-210 (second short) (July 1992)

1

later us Application No PCT/US 95/13070

		PCT/US 95/13070			
C.(Combinuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
Category "	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A	WO,A,90 00888 (THE COOPER COMPANIES) 8 February 1990 see page 17, line 8 - line 13; figure 11	4			
A	US.A.4 976 738 (FREY) 11 December 1990 see abstract; figures	5			
A	EP,A,O 159 034 (CORDIS CORPORATION) 23 October 1985 see abstract; figures	8			
A	EP,A,O 359 575 (CLEMSON UNIVERSITY) 21 March 1990 see abstract; figures 1-3	11-14,18			
A	WO,A,92 22336 (GUIDOR) 23 December 1992 see abstract; figures 1-5	21			
Р,Х	EP,A,O 647 439 (INTERPORE INTERNATIONAL) 12 April 1995 see the whole document	1.2.8			
A	US.A.4 601 868 (RADEL) 22 July 1986				