First they should follow the below link till the end and reproduce everything:

1. https://gilberttanner.com/blog/yolo-object-detection-with-keras-yolo3

Second they should follow the below link and reproduce everything:

2. https://pireddie.com/darknet/yolo/

Third, The following link just for yet another reference: https://github.com/experiencor/keras-yolo3

Also, in 1 as they had used old version of keras, they would face some difficulty:

Following are the changes they would require as and when they face difficulty:

Lines to be changed in yolo_video.py:

```
parser.add_argument( (remove)'--model', type=str,

(add) '-m','-model_path', type=str,

help='path to model weight file, default ' + YOLO.get_defaults("model_path"))

parser.add_argument( (remove)'--anchors', type=str,

(add) '-a','--anchors_path', type=str,

help='path to anchor definitions, default ' + YOLO.get_defaults("anchors_path"))
```

parser.add_argument((remove)'--classes', type=str,

(add) '-c','--classes_path', type=str,

help='path to class definitions, default ' + YOLO.get_defaults("classes_path"))

Also: Add 2 lines at the top: import tensorflow.compat.v1 as tf1 tf1.disable_v2_behavior() Also: Add break in the line next to line number 18 (r_image.show()) Also: import cv2 and use cv2.imwrite to write annotated image as it is not being displayed in colab. Changes in yolo.py: Comment line: keras.utils import multi_gpu_model Add line: import tensorflow.python.keras.backend as K Change Line: From: video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC)) to video_FourCC = cv2.VideoWriter_fourcc(*"mp4v") Comment 2 lines: cv2.namedWindow("result", cv2.WINDOW_NORMAL) and cv2.imshow("result", result) After Line return_value, frame = vid.read() Add:

Changes in yolo3/model.py:

```
Change line number 140/141 from:
```

```
box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))
```

box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))

to:

box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[...,::-1], K.dtype(feats))

box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[...,::-1],
K.dtype(feats))

For Custom Microcontroller Dataset:

First training and test targets are generated using custom_voc_to_yolo.ipynb Row

format: image_file_path box1 box2 ... boxN; Box format:

x_min,y_min,x_max,y_max,class_id (no space). (They need to write this ipynb file)

Here is an example:

path_to_img1.jpg 50,100,150,200,0 30,50,200,120,3

path_to_img2.jpg 120,300,250,600,2 ...

In train.py following changes are to be made:

set annotation_path and classes_path

batch_size changed to 4 at two places

You can also set number of epochs

In model.py following changes are to be made:

tf.while_loop to be used in place of K.control_flow_ops.while_loop in line 394 In yolov3.cfg following changes are to be made:

In 3 [yolo] layers, change classes=4 from classes=80 Before each of the 3 [yolo] layers, change filters=27 (1 pc + 4 bb + 4 class)*3 anchors