Topologie

Sebastian Bechtel

15. April 2015

Definition. Sei X Menge, $\emptyset \neq \varphi \subseteq \mathcal{P}(X)$. φ heißt <u>Filter</u> auf X gdw.

- (1) $X \in \varphi, \emptyset \notin \varphi$
- (2) $A \in \varphi$ und $B \in \varphi \implies A \cap B \in \varphi$
- (3) $A \in \varphi \text{ und } B \supseteq A \implies B \in \varphi$

Beispiel 1. • Aus Folgen gebildete Filter: Elementarfilter

- Für $\emptyset \neq A \subseteq X$: $[A] := \{P \subseteq X : PA\}$
- Spezialfall $A = \{a\}$ ist Einpunktfilter $\dot{a} \coloneqq [\{a\}]$ zu a

Definition. X Menge, φ Filter auf X, $\mathfrak{B} \subseteq \mathcal{P}_0(X)$.

- \mathfrak{B} heißt Basis von φ gdw. $\varphi = \{P \subseteq X : \exists B \in \mathfrak{B} : B \subseteq P\}$
- $\mathfrak B$ heißt <u>Subbasis</u> von φ gdw. die Familie aller endlichen Schnitte von Elementen in $\mathfrak B$ eine Basis von φ ist.
- φ heißt der von \mathfrak{B} erzeugte Filter $[\mathfrak{B}]$.

Proposition 1. Sei $\emptyset \neq X$ Menge, $\mathfrak{B} \subseteq \mathcal{P}_0(X)$.

- (1) \mathfrak{B} ist Filtersubbasis gdw. die endlichen Durchschnitte von Elementen aus \mathfrak{B} sämtlich nicht leer sind.
- (2) \mathfrak{B} ist Filterbasis gdw. zu je endlich vielen $B_1, \ldots, B_k \in \mathfrak{B}$ es ein $B_0 \in \mathfrak{B}$ gibt, sodass $B_0 \subseteq \bigcap_{i=1}^k B_i$.
- (3) Sind \mathfrak{A} und \mathfrak{B} Filterbasen, so ist $\mathfrak{A} \cup \mathfrak{B}$ Filtersubbasis gdw. für $A \in \mathfrak{A}$ und $B \in \mathfrak{B}$ gilt: $A \cap B \neq \emptyset$.
- (4) Ist \mathfrak{A} eine Filterbasis und $P \subseteq X$, sodass für $A \in \mathfrak{A}$ gilt: $P \cap A \neq \emptyset$, dann ist $\mathfrak{A} \cup \{P\}$ Filtersubbasis.

Definition. X Menge, $d: X \times X \to [0, \infty)$ mit

- (1) für $x, y \in X$ gilt d(x, y) = 0 gdw. x = y.
- (2) für $x, y \in X$ gilt d(x, y) = d(y, x).
- (3) für $x, y, z \in X$ gilt $d(x, z) \le d(x, y) + d(y, z)$.

dann heißt (X, d) metrischer Raum.

Definition. Sei (X, d) metrischer Raum, $x \in X$, $\varepsilon > 0$.

- $U_{\varepsilon} = U_{\varepsilon}^d \coloneqq \{y \in X : d(x,y) < \varepsilon\}$ heißt ε -Umgebung von x.
- Eine Teilmenge $O \subseteq X$ heißt offen (bzgl. d), falls es für $x \in O$ ein $\varepsilon > 0$ gibt, sodass $U_{\varepsilon}(x) \subseteq O$.
- Eine Menge $V \subseteq X$ heißt Umgebung von x, falls es $\varepsilon > 0$ gibt, sodass $U_{\varepsilon}(x) \subseteq V$.
- Die Familie aller Umgebungen von x heißt Umgebungsfilter von x: $\underline{U}(x)$
- Eine Folge (x_n) in X konvergiert gegen y, falls es für $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, sodass für $m > n_0$ gilt: $d(x_m, y) < \varepsilon$
- Ein Filter φ auf X konvergiert gegen y, falls für $\varepsilon > 0$ gilt: $U_{\varepsilon}(y) \in \varphi$. Äquivalent: $\underline{U}(y) \subseteq \varphi$

Proposition 2. In einem metrischen Raum (X, d) ist jede ε -Umgebung $U_{\varepsilon}(x)$ offen.

Beweis. Sei
$$y \in U_{\varepsilon}(x)$$
. Wähle $\delta := \varepsilon - d(x, y)$, dann ist $U_{\delta}(y) \subseteq U_{\varepsilon}(x)$.

Proposition 3. Sei (X, d) metrischer Raum, $O \subseteq X$. Es sind äquivalent:

- (1) O ist offen.
- (2) Für jede Folge (x_n) in X, die gegen $y \in O$ konvergiert, gilt: es gibt $n_0 \in \mathbb{N}$, sodass für $m > n_0$ gilt: $x_m \in O$.
- (3) Für jeden Filter φ auf X, der gegen $y \in O$ konvergiert, gilt $O \in \varphi$.

Beweis. (1) \Longrightarrow (2): Da O offen ist, gibt es $\varepsilon > 0$ mit $U_{\varepsilon} \subseteq O$. Nun gibt es $n_0 \in \mathbb{N}$, sodass für m > n gilt: $x_m \in U_{\varepsilon}(y) \subseteq O$.

- (2) \Longrightarrow (1): Angenommen O ist nicht offen, dann gibt es $y \in O$, sodass für $n \in \mathbb{N}^+$ ein x_m existiert mit $x_m \in U_{1/n}(y) \setminus O$. Widerspruch!
- (1) \Longrightarrow (3): O offen, $\varphi \to y \in O$, dann gibt es $\varepsilon > 0$, sodass $U_{\varepsilon}(y) \subseteq O$. $U_{\varepsilon}(y) \in \varphi$, also auch $O \in \varphi$.
 - (3) \Longrightarrow (1): Wähle für alle $x \in X$ den Umgebungsfilter von x.

Lemma 1. Sei (X, d) metrischer Raum, $\tau_d := \{O \subseteq X : O \text{ offen bzgl. } d\}$. Dann gelten:

- (1) $X \in \tau_d, \emptyset \in \tau_d$
- (2) $A \in \tau_d \text{ und } B \in \tau_d \implies A \cap B \in \tau_d$
- (3) $\mathfrak{B} \subseteq \tau_d \implies \cup_{B \in \mathfrak{B}} B \in \tau_d$

Definition. Seien $(X_1, d_1), (X_2, d_2)$ metrische Räume, $f: X_1 \to X_2$. f heißt stetig, falls

- es für $x \in X$ und $\varepsilon > 0$ ein $\delta > 0$ gibt, sodass für $y \in X_1$ mit $d_1(x,y) < \delta$ folgt: $d_2(f(x),f(y)) < \varepsilon$
- Äquivalent: für $x \in X_1$ und $\varepsilon > 0$ gibt es $\delta > 0$, sodass $f(U_{\delta}(x)) \subseteq U_{\varepsilon}(f(x))$
- Äquivalent: für $x \in X_1$ gilt: $[f(\underline{U}(x))] \supseteq \underline{U}(f(x))$

Lemma 2. Eine Funktion $f: X_1 \to X_2$ zwischen metrischen Räumen $(X_1, d_1), (X_2, d_2)$ ist stetig gdw. für jede in X_2 offene Menge O das Urbild $f^{-1}(O)$ offen in X_1 ist.

Beweis. " \Rightarrow ": Sei f stetig, $O \subseteq X_2$ offen, $x \in f^{-1}(0)$. $f(x) \in O$, also gibt es $\varepsilon > 0$, sodass $U_{\varepsilon}(f(x)) \subseteq O$. Wegen Stetigkeit gibt es $\delta > 0$, sodass $f(U_{\delta}(x)) \subseteq U_{\varepsilon}(f(x)) \subseteq O$. Somit $U_{\delta}(x) \subseteq f^{-1}(O)$, also $f^{-1}(O)$ offen.

"\(\infty\)": Sei $x \in X_1$. Setze $O := U_{\varepsilon}(f(x))$. Dann ist $f^{-1}(U_{\varepsilon}(f(x)))$ offen, also gibt es $\delta > 0$ mit $U_{\delta}(x) \subseteq f^{-1}(U_{\varepsilon}(f(x)))$, somit $f(U_{\delta}(x)) \subseteq U_{\varepsilon}(f(x))$.

Definition. Sei $X = \mathbb{R}^{\mathbb{R}}$.

- Eine Folge (f_n) in $\mathbb{R}^{\mathbb{R}}$ konvergiert punktweise gegen $g \in \mathbb{R}^{\mathbb{R}}$, falls für $x \in \mathbb{R}$ gilt $f_n(f) \to g(x)$.
- Ein Filter φ auf $\mathbb{R}^{\mathbb{R}}$ konvergiert punktweise gegen $g \in \mathbb{R}^{\mathbb{R}}$, falls für $x \in \mathbb{R}$ gilt $\varphi(x) \to g(x)$, wobei $\varphi(x) \coloneqq [\{F(x) : F \in \varphi\}]$ und $F(x) \coloneqq \{f(x) : f \in F\}$.

Lemma 3. Es gibt keine Metrik auf $\mathbb{R}^{\mathbb{R}}$, deren Konvergenz die punktweisen Konvergenz ist.

Beweis. Angenommen, es gäbe eine solche Metrik d auf $\mathbb{R}^{\mathbb{R}}$, $f_0 \in \mathbb{R}^{\mathbb{R}}$ fest gewählt. Setze $\mathfrak{H}_{E,\varepsilon} := \{g \in \mathbb{R}^{\mathbb{R}} : \forall e \in E : d(g(e), f_0(e)) < \varepsilon\}$, wobei E endlich und $\varepsilon > 0$.

Behauptung: alle $\mathfrak{H}_{E,\varepsilon}$ sind offen. Sei (g_n) Folge in $\mathbb{R}^{\mathbb{R}}$, die gegen $g \in \mathfrak{H}_{E,\varepsilon}$ konvergiert. Für $e \in E$ gibt es $n_e \in \mathbb{N}$, sodass für $m > n_e$ gilt: $d(g_m(e), g(e)) < \delta$. Setze $n_0 := \max_{e \in E} n_e$.