

# Industrial Training Mid sem Evaluation

Vyoam Yadav LCO20377



### About TBRL

- 1.TBRL is situated in Chandigarh, India, operating under DRDO.
- It specializes in terminal ballistic research, studying projectiles, explosives, and materials under extreme conditions.
- TBRL partners with national and international organizations for research and technology advancement.
- Its work contributes to defense technology development, including armor systems and munitions, benefiting defense personnel and assets.

| Formula                           | ΔH7<br>(kJ/mol) | Substance            | Formula     | ΔH)<br>(kJ/mol) |
|-----------------------------------|-----------------|----------------------|-------------|-----------------|
| C <sub>2</sub> H <sub>2</sub> (g) | 234.7           | Hydrogen<br>chloride | HCl(g)      | -92.30          |
| $NH_3(g)$                         | -46.19          | Hydrogen             | HF(g)       | -268.6          |
| $C_6H_6(l)$                       | 49.0            | Hydrogen<br>iodide   | HI(g)       | 25.9            |
| CaCOy(s)                          | -1207.1         | Methane              | $CH_{i}(g)$ | -74.8           |
| CaO(s)                            | -635.5          | Methanol             | CH3OH(I)    | -238.6          |
| CO2(g)                            | -303.5          | Propane              | $C_3H_8(g)$ | -103.85         |

## My Role

- I work as a Machine Learning (ML) intern at TBRL, focusing on High-Energy Materials (HEMs) research.
- My role involves enhancing understanding of HEM properties and optimizing synthesis processes using ML algorithms.
- I contribute to predicting performance characteristics and accelerating material design iterations through data-driven approaches.
- My work aims to facilitate advancements in defense technology by leveraging ML in HEM-related research and development.



#### Work so Far

- Researched extensively in the highenergy material domain to understand their properties and behavior.
- Compiled and curated datasets specifically focused on High-Energy Materials (HEMs) for analysis and modeling purposes.
- Developed predictive models using machine learning techniques to estimate detonation velocity and heat of formation for various HEM compositions.
- Contributed to advancing the understanding and predictive capabilities in HEM research, aiding in the development of safer and more efficient defense technologies.



## Explo 5



