

Recitation 4: Modeling Data as Relations

TAs: Federico Cimini & Liang-Yun Cheng Friday, Sept 22, 2023 @ 1:45 PM | Fagin Auditorium

Housekeeping Announcements

- HW 1 FAQ #65
- HW1: Updates to Autograder #452
- Ed Best Practices for Efficient Response Times #55
- Gradescope Submission Penalty Warnings #251
- HW 1 Large File Hidden Late Submissions #625

OH: Wednesday 9am - 11am

DATS 2024

Hometown: Tainan, Taiwan

Favorite spot on campus: Williams Cafe

Favorite emoji: 🙈

Hobbies: Cooking/baking, eco-friendly

living, procrastinate by watching

productivity videos

Fun Fact: Studied in India for 7 years

OH: Wednesday 9am - 11am

DATS 2024

Hometown: Buenos Aires, Argentina (go

Messi!)

Favorite spot on campus: Campus green

terrace behind Alumni House

Favorite emoji: 🙃

Hobbies: Acting, movies, videogames

Fun Fact: I will be directing a play for the

first time this fall!

Learning Objective

- Entity-Relationship (ER) Diagram
- Types of Relationships
- Joins
- Translating words into SQL codes
- SQL Order of Execution

Stages of Database Design

- 1. Requirements Analysis: what data, applications, critical operations
- 2. Conceptual DB Design: high-level description of data and constraints typically using an Entity Relationship (ER) model
- 3. Logical DB Design: convert ER diagram into a schema
- 4. Schema Refinement: normalization (eliminating redundancy and other anomalies)

(reference: CIS 450/550)

Entity-Relationship Diagrams

Definitions: Entities & Entity Sets

- Entity: Real-world object distinguishable from other objects.
 - E.g. an employee ('123-33-9875', 'John', 'Associate')
 - Described using a set of attributes.

- Entity Set: Collection of entities that share similar properties
 - eg. all employees

Key attributes are underlined.

Definitions: Relationship, Relationship Set

- o *Relationship*: Association between 2 or more entities. E.g., John's home department is Marketing.
- o *Relationship Set*: Named collection of similar relationships. E.g., home

Relationship Sets Can Have Attributes

<u>ssn</u>	name	title
123456789	Jack	Manager
234567890	Sally	Associate

<u>ssn</u>	<u>code</u>	year
123456789	abc123	1998
234567890	abc123	2022

<u>code</u>	name
abc123	HR
xyz456	FA

Types of Relationships

1. One-one

E.g. Each person has exactly one passport number

2. One-Many/Many-One

E.g. Supervisor of an Employee

3. Many-many

E.g. Students and Courses (Many students can take a course, A student can take many courses.)

1. One-One Relationships

each item in each table only appears once

Each manager manages one department. Each department is managed by one person.

2. One-Many / Many-One Relationships

 one item in one table can have a relationship to multiple items in another table.

Each employee belongs to one department. Each department can have many employees.

3. Many-Many Relationships

- one or more items in one table can have a relationship to one or more items in another table
- usually broken down into two one-many/many-to one relationships

Each employee can be assigned to multiple projects. Each projects can be worked on by multiple employees.

Scenario & Tables

Imagine you are a **supervisor** of a subset of teams on a cruise, and your **manager** is asking for some data about your team

crew_df		
id	name	rank
1	Jane	9
2	Dan	10
3	Alex	4
4	Jen	4
5	Brandon	1

hours_df			
id	crew_id	day	hours
1	1	1	10
2	2	1	5
3	3	1	8
4	4	1	12
5	1	2	5
6	2	2	8
7	3	2	9
8	11	2	8
9	П	2	2

SQL Framework

```
SELECT t1.[name]
       ,tl.[rank]
       ,SUM(t2.[hours]) AS 'total hour'
       ,COUNT(t2.[day]) AS 'total day'
FROM crew df AS tl
      LEFT JOIN hours_df AS t2
      ON t1.[id] = t2.[crew id]
WHERE tl.[rank] > 5
GROUP BY tl.[name],tl.[rank]
ORDER BY tl.[name]
LIMIT I
```

Order of Execution behind the scenes:

- I. FROM (what table?)
- WHERE (Filtering condition)
- 3. GROUP BY
- 4. HAVING
- **5. SELECT** (What columns to keep)
- **6. ORDER BY** (Sort By)
- **7. LIMIT** (First x rows)

A list of crew names and their rank

id	name	rank
1	Jane	9
2	Dan	10
3	Alex	4
4	Jen	4
5	Brandon	1

A list of crew names and their rank

id	name	rank
1	Jane	9
2	Dan	10
3	Alex	4
4	Jen	4
5	Brandon	1

crew_name	rank
Jane	9
Dan	10
Alex	4
Jen	4
Brandon	1

FROM crew_df

Excel EquivalentKeep Columns

A list of crew names and their rank, just those with rank above 5

id	name	rank
1	Jane	9
2	Dan	10
3	Alex	4
4	Jen	4
5	Brandon	1

crew_name	rank
Jane	9
Dan	10
Alex	4
Jen	4
Brandon	1

crew_name	rank
Jane	9
Dan	10

FROM crew_df

WHERE [rank] > 5

Excel EquivalentFilter

A list of crew names and their rank, just those with rank above 5, most senior at the top of the list

id	name	rank
1	Jane	9
2	Dan	10
3	Alex	4
4	Jen	4
5	Brandon	1

crew_name	rank
Jane	9
Dan	10
Alex	4
Jen	4
Brandon	1

crew_name	rank
Jane	9
Dan	10

crew_name	rank
Dan	10
Jane	9

FROM crew df

WHERE [rank] > 5

ORDER BY [rank] DESC

Excel Equivalent
Sort

A list of crew names and their rank, just those with rank above 5, most senior at the top of the list, just the most senior

id	name	rank
1	Jane	9
2	Dan	10
3	Alex	4
4	Jen	4
5	Brandon	1

crew_name	rank
Jane	9
Dan	10
Alex	4
Jen	4
Brandon	1

crew_name	rank
Jane	9
Dan	10

crew_name	rank
Dan	10

crew_name	rank
Dan	10
Jane	9

FROM crew df

WHERE [rank] > 5

ORDER BY [rank] DESC

LIMIT I

Excel Equivalent Top K rows

SQL Framework

```
SELECT t1.[name]
       ,tl.[rank]
       ,SUM(t2.[hours]) AS 'total hour'
       ,COUNT(t2.[day]) AS 'total day'
FROM crew df AS tl
     LEFT JOIN hours_df AS t2
      ON t1.[id] = t2.[crew id]
WHERE tl.[rank] > 5
GROUP BY tl.[name],tl.[rank]
ORDER BY tl.[name]
LIMIT I
```

Order of Execution behind the scenes:

- I. FROM (what table?) + (JOIN)
- WHERE (Filtering condition)
- 3. GROUP BY
- 4. HAVING
- **5. SELECT** (What columns to keep)
- **6. ORDER BY** (Sort By)
- **7. LIMIT** (First x rows)

id	name	rank
1	Jane	9
2	Dan	10
3	Alex	4
4	Jen	4
5	Brandon	1

id	crew_id	day	hours
1	1	1	10
2	2	1	5
3	3	1	8
4	4	1	12
5	1	2	5
6	2	2	8
7	3	2	9
8	11	2	8
9	П	2	2

Excel Equivalent VLookUp

id	name	rank
1	Jane	9
2	Dan	10
3	Alex	4
4	Jen	4
5	Brandon	1
5	Brandon	1

id	crew_id	day	hours
1	1	1	10
2	2	1	5
3	3	1	8
4	4	1	12
5	1	2	5
6	2	2	8
7	3	2	9
8	11	2	8
9	11	2	2

crew_df AS t I			hours_df AS t2				
id	name	rank	id	crew_id	day	hours	
1	Jane	9	1	1	1	10	
2	Dan	10	2	2	1	5	
3	Alex	4	3	3	1	8	
4	Jen	4	4	4	1	12	
1	Jane	9	5	1	2	5	
2	Dan	10	6	2	2	8	
3	Alex	4	7	3	2	9	
5	Brandon	1					

FROM crew_df AS t1

LEFT JOIN hours_df AS t2

ON t1.[id] = t2.[crew_id]

	name	rank		id	crew_id	day	hours
	ne	9		1	1	1	10
)	an	10		2	2	1	5
ı	ex	4		3	3	1	8
e	n	4		4	4	1	12
I	andon	1		5	1	2	5
			•	6	2	2	8
				7	3	2	9
			Г	8	11	2	8
				9	11	2	2

crew_	crew_df AS t I			hours_df AS t2				
id	name	rank	id	crew_id	day	hours		
1	Jane	9	1	1	1	10		
2	Dan	10	2	2	1	5		
3	Alex	4	3	3	1	8		
4	Jen	4	4	4	1	12		
1	Jane	9	5	1	2	5		
2	Dan	10	6	2	2	8		
3	Alex	4	7	3	2	9		
5	Brandon	1						

Observation:

1. MAIN TABLE: Only record in the crew_df are preserved

id	name	rank
1	Jane	9
2	Dan	10
3	Alex	4
4	Jen	4
5	Brandon	1

crew_	crew_df AS tI			hours_df AS t2			
id	name	rank	id	crew_id	day	hours	
1	Jane	9	1	1	1	10	
2	Dan	10	2	2	1	5	
3	Alex	4	3	3	1	8	
4	Jen	4	4	4	1	12	
1	Jane	9	5	1	2	5	
2	Dan	10	6	2	2	8	
3	Alex	4	7	3	2	9	
5	Brandon	1					

Observation:

- 1. MAIN TABLE: Only record in the crew_df are preserved
- 2. REPEATED ROWS: crew_df rows are repeated because there are multiple records of it in the hours_df

crew_	crew_df AS t I			hours_df AS t2				
id	name	rank	id	crew_id	day	hours		
1	Jane	9	1	1	1	10		
2	Dan	10	2	2	1	5		
3	Alex	4	3	3	1	8		
4	Jen	4	4	4	1	12		
1	Jane	9	5	1	2	5		
2	Dan	10	6	2	2	8		
3	Alex	4	7	3	2	9		
5	Brandon	1						

	•									
crew_df AS t I			hours_df AS t2							
id	name	rank	id	crew_id	day	hours				
1	Jane	9	1	1	1	10				
2	Dan	10	2	2	1	5				
1	Jane	9	5	1	2	5				
2	Dan	10	6	2	2	8				

FROM crew_df AS t1

LEFT JOIN hours_df AS t2

ON t1.[id] = t2.[crew_id]

WHERE [rank] > 5

Excel EquivalentFilter

SQL Framework

```
SELECT t1.[name]
       ,tl.[rank]
       ,SUM(t2.[hours]) AS 'total hour'
       ,COUNT(t2.[day]) AS 'total day'
FROM crew df AS tl
     LEFT JOIN hours df AS t2
     ON t1.[id] = t2.[crew id]
WHERE tl.[rank] > 5
GROUP BY tl.[name],tl.[rank]
ORDER BY tl.[name]
LIMIT I
```

Order of Execution behind the scenes:

- I. FROM (what table?) (JOIN)
- WHERE (Filtering condition)
- GROUP BY (Aggregation Dimension)
- **4. HAVING** (Filtering condition on for aggregated results)
- **5. SELECT** (What columns to keep)
- **6. ORDER BY** (Sort By)
- **7. LIMIT** (First x rows)

crew_df AS t l			hours_df AS t2				
id	name	rank	id	crew_id	day	hours	
1	Jane	9	1	1	1	10	
2	Dan	10	2	2	1	5	
1	Jane	9	5	1	2	5	
2	Dan	10	6	2	2	8	

name	total_hour
Jane	15
Dan	13

Excel EquivalentPivot Table

crew_df AS t I			hours_df AS t2				
id	name	rank	id	crew_id	day	hours	
1	Jane	9	1	1	1	10	
2	Dan	10	2	2	1	5	
1	Jane	9	5	1	2	5	
2	Dan	10	6	2	2	8	

name	rank	total_hour								
Jane	9	15								
Dan	10	13								

Observation:

Every time you add a field, you need to decide if it's a

dimension or a measure field

• Dimension: Appear in Group By

• Measure: Wrapped in aggregation function in SELECT

Excel EquivalentPivot Table

A list of crew names, their rank, and their total working hours and total days worked, just those above rank 5

crew_df AS t I			hours_df AS t2				
id	name	rank	id	crew_id	day	hours	
1	Jane	9	1	1	1	10	
2	Dan	10	2	2	1	5	
1	Jane	9	5	1	2	5	
2	Dan	10	6	2	2	8	

name	rank	total_hour	total_day		
Jane	9	15	2		
Dan	10	13	2		

Observation:

Every time you add a field, you need to decide if it's a

dimension or a measure field

- Dimension: Appear in Group By
- Measure: Wrapped in aggregation function in SELECT

Excel EquivalentPivot Table

A list of crew names, their rank, and their total working hours and total days worked, just those above rank 5, just those with total of at least 15 total hours

crew_df AS t I			hours_df AS t2			
id	name	rank	id	crew_id	day	hours
1	Jane	9	1	1	1	10
2	Dan	10	2	2	1	5
1	Jane	9	5	1	2	5
2	Dan	10	6	2	2	8

	`							
name	rank	total_hour	total_day					
Jane	9	15	2					
Dan	10	13	2					

name	rank	total_hour	total_day				
Jane	9	15	2				

Observation:

.HAVING is a filter for aggregated results

2.CANNOT use 'total_day' as a reference as it's not in the FROM table

Types of Joins

Join Overview

Inner Join

crew_df					
id	rank				
1	Jane	9			
2	Dan	10			
3	Alex	4			
4	Jen	4			

hours_df								
id	crew_id	day	hours					
1	1	1	10					
2	2	1	5					
3	3	1	8					
5	П	2	8					
6	Ш	2	2					

Join_df							
id	name	rank	id	crew_id	day	hours	
1	Jane	9	1	1	1	10	
2	Dan	10	2	2	1	5	
3	Alex	4	3	3	1	8	

SELECT *

FROM crew_df AS t I

INNER JOIN hours_df AS t2

ON t1.[id] = t2.[crew_id]

Left Join

crew_df					
id	name	rank			
1	Jane	9			
2	Dan	10			
3	Alex	4			
4	Jen	4			

hours_df id crew_id day hours 10 5 8 6

Join_df								
id	name	rank	id	crew_id	day	hours		
1	Jane	9	1	1	1	10		
2	Dan	10	2	2	1	5		
3	Alex	4	3	3	1	8		
4	Jen	4						

SELECT * FROM crew df AS tl LEFT JOIN hours_df AS t2 ON t1.[id] = t2.[crew id]

Right Join

crew_df					
id	id name				
1	Jane	9			
2	Dan	10			
3	Alex	4			
4	Jen	4			

hours_df day id crew_id hours 10 5 8 8 П 6

Join_df								
id	name	rank	id	crew_id	day	hours		
1	Jane	9	1	1	1	10		
2	Dan	10	2	2	1	5		
3	Alex	4	3	3	1	8		
			5	11	2	8		
			6	П	2	2		

SELECT <select_list> FROM TableA A LEFT JOIN TableB B ON A.Key = B.Key WHERE B.Key IS NULL SELECT < select_list FROM TableA A

B

ON A.Key = B.Key

FULL OUTER JOIN TableB B WHERE A.Key IS NULL

© C.L. Moffatt, 2008

SELECT <select_list> FROM TableA A RIGHT JOIN TableB B ON A.Key = B.Key

> SELECT <select_list> FROM TableA A RIGHT JOIN TableB B ON A.Key = B.Key

SELECT <select_list> FROM TableA A FULL OUTER JOIN TableB B ON A.Key = B.Key

OR B.Kev IS NULL

WHERE A.Key IS NULL

SELECT * FROM crew df AS tl RIGHT JOIN hours_df AS t2 ON t1.[id] = t2.[crew id]

Full Join

crew_dfidnamerank1Jane92Dan103Alex44Jen4

hours_df id crew_id day hours 1 1 1 10 2 2 1 5 3 3 1 8 5 11 2 8 6 11 2 2

© C.L. Moffatt, 2008

OR B.Key IS NULL

Careful!

crew_df id name rank 1 Jane 9 2 Dan 10 3 Alex 4 3 Alex 4

SELECT *

FROM crew_df AS t1

RIGHT JOIN hours_df AS t2

ON t1.[id] = t2.[crew_id]