Subregular Complexity

Examples

1. Strings end with a b.	(2-SL)
2. The second to last symbol in all strings is b.	(3-SL)
3. The third to last symbol in all strings is b.	(4-SL)
4. Strings contain at least one b.	(1-LT = 1-PT)
5. Strings contain at most one b.	(2-SP)
6. Strings contain exactly one b.	(2-PT)
7. Strings contain at least one bb substring.	(2-LT)
8. Strings contain two bs.	(2-PT)
9. Strings contain two bb substrings.	(2,2-LTT)
10. Strings contain an a between every pair of bs.	(SF)
11. Strings contain an odd number of bs.	(REG)

Grammar-Independent Characterizations

SL Suffix Substitution Closure:

A language L is Strictly Local iff there is a k such that for all strings $u_1, v_1, u_2, v_2 \in \Sigma^*$ and for all strings x of length k whenever $u_1xv_1, u_2xv_2 \in L$ then $u_1xv_2 \in L$.

LT Local Testability:

A language L is Locally Testable iff there exists k such that for all $u, v \in \Sigma^*$, if u and v have the same k-1 prefix, k-long substrings, and k-1 suffix then either $u, v \in L$ or $u, v \notin L$.

LTT Local Theshold Testabilty:

A language L is Locally Testable iff there exists k such that for all $u, v \in \Sigma^*$, if u and v have the same k-1 prefix, k-1 suffix, and the same number of occurrences of the same k-long substrings, counting up to some threshold t, then either $u, v \in L$ or $u, v \notin L$.

SP Subsequence Closure:

A language L is Strictly Piecewise iff whenever $w \in L$ every subsequence of w also belongs to L.

PT Piecewise Testability: A language L is Piecewise Testable iff there exists k such that for all $u, v \in \Sigma^*$, if u and v have the same k-long subsequences then either $u, v \in L$ or $u, v \notin L$.

SF Aperiodicity:

A language L is Star-Free iff there exists n such that for all $x, y, z \in \Sigma^*$ and m > n if $xy^nz \in L$ then $xy^mz \in L$.

Reg MyHill/Nerode Theorem:

L is regular iff $|\{T_L(u) \mid u \in \Sigma^*\}|$ is finite, where for all $L \subseteq \Sigma^*, u \in \Sigma^*, T_L(u) = \{v \mid uv \in L\}.$

References

McNaughton, Robert, and Seymour Papert. 1971. Counter-Free Automata. MIT Press.

Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome, and Sean Wibel. 2010. On languages piecewise testable in the strict sense. In *The Mathematics of Language*, edited by Christian Ebert, Gerhard Jäger, and Jens Michaelis, vol. 6149 of *Lecture Notes in Artifical Intelligence*, 255–265. Springer.

Rogers, James, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert, and Sean Wibel. 2013. Cognitive and sub-regular complexity. In *Formal Grammar*, edited by Glyn Morrill and Mark-Jan Nederhof, vol. 8036 of *Lecture Notes in Computer Science*, 90–108. Springer.

Rogers, James, and Geoffrey Pullum. 2011. Aural pattern recognition experiments and the subregular hierarchy. *Journal of Logic, Language and Information* 20:329–342.

Thomas, Wolfgang. 1997. Languages, automata, and logic. In *Handbook of Formal Languages*, vol. 3, chap. 7. Springer.