ApexPlanet Cybersecurity Internship: Task 1 Notes

Task Objective:

- Build a strong foundation in cybersecurity fundamentals.
- Set up a professional, private hacking lab environment.

1. Theory & Foundational Concepts

- The CIA Triad: The three core principles of information security.
 - o Confidentiality: Keeping data secret (e.g., passwords).
 - o **Integrity**: Ensuring data is accurate and trustworthy (e.g., bank records).
 - Availability: Making sure data is accessible when needed (e.g., a website staying online).
- Threats & Attack Vectors: A threat is a potential danger, while an attack vector is the method used to exploit a vulnerability.
 - Common Threats: Phishing, Malware, DDoS, SQL Injection, Brute Force, and Ransomware.
 - o Attack Vectors: Social Engineering, Wireless Attacks, and Insider Threats.

Networking Basics:

- **OSI Model**: A 7-layer framework for network communication.
- **TCP/IP**: The primary protocol suite for the internet.
- DNS/HTTP: DNS translates domain names to IP addresses, while HTTP is the protocol for web traffic.

Cryptography Basics:

- Symmetric vs. Asymmetric Encryption: Symmetric uses one key, while asymmetric uses a public/private key pair.
- Hashing: A one-way function to create a unique fingerprint of data (e.g., MD5, SHA256).

2. Lab Environment Setup

- Virtualization: Used VirtualBox to host virtual machines.
- Attacker Machine: Installed Kali Linux, an OS pre-loaded with security tools.
- Target Machine: Installed Metasploitable2, a vulnerable OS for ethical hacking practice.
- **Network Configuration**: Set up a **Host-Only Adapter** to create a private network, isolating the lab from the internet. This ensures that all activities remain contained.

3. Linux & Tool Cheat Sheet

This section includes key commands used during the task.

Category	Command	Description	Example
File System	ls	Lists files and	ls -l
		directories.	
	cd	Changes the current	cd /home/kali/

Category	Command	Description	Example
		directory.	
	pwd	Prints the current	pwd
		working directory.	
Networking	ifconfig	Displays network	ifconfig
		configurations.	
	ping	Tests connectivity to a	ping 192.168.56.101
		host.	
	netstat	Displays network	netstat -ano
		connections.	
Permissions	chmod	Changes a file's	chmod +x script.sh
		permissions.	
	chown	Changes a file's	chown kali:kali file.txt
		ownership.	
Cryptography	openssl	Command-line	openssl enc
		cryptography tool.	-aes-256-cbc
Scanning	nmap	Network scanning tool.	nmap 192.168.56.101
Packet Capture	wireshark	Packet analyzer.	sudo wireshark

4. Hands-on Demonstrations

- **Linux Fundamentals**: Practiced file and directory management using Is, cd, pwd, chmod, and chown.
- **Cryptography**: Successfully encrypted and decrypted a file using the openssl command to demonstrate an understanding of symmetric encryption.
- Tool Familiarization:
 - Used **ifconfig** to find the IP addresses of both the attacker and target machines.
 - Ran a **ping** command from Kali to Metasploitable2 to verify network connectivity.
 - Used **nmap** to perform a basic scan on the target, listing all open ports.
 - Launched **Wireshark** and performed a packet capture to monitor network traffic.