Exercise 1 (14.4: 2). Find a primitive generator for $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q} .

The Galois group of $K \doteq \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q} is clearly all 8 distinct maps determined by

$$\sqrt{2} \mapsto \pm \sqrt{2}$$

$$\sqrt{3} \mapsto \pm \sqrt{3}$$

$$\sqrt{5} \mapsto \pm \sqrt{5}$$
.

Since K is a degree 8 extension over \mathbb{Q} , this means K is Galois over \mathbb{Q} . Now Consider $\theta = \sqrt{2} + \sqrt{3} + \sqrt{5}$. It is not fixed by any nontrivial element of the above Galois group, so by the Fundamental Theorem of Galois Theory, $\mathbb{Q}(\theta)$ cannot lie in any proper subfield of K. But since $\theta \in K$, we know $\mathbb{Q}(\theta)$ is a subfield of K. Thus $K = \mathbb{Q}(\theta)$.

Exercise 2 (14.5: 7). Complex conjugation restricts to the automorphism $\sigma_{-1} \in \operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\zeta_n))$ of the cyclotomic field of n-th roots of unity. The field $K^+ = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$ is the subfield of real elements in $K = \mathbb{Q}(\zeta_n)$, called the maximal real subfield of K.

Complex conjugation: Using the definitions of roots of unity on page 539 of DF, any primitive n-th root of unity ζ_n can be written

$$\zeta_n = e^{2\pi ki/n} = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)$$

for some $0 \le k \le n-1$ (not all k in this range will give a primitive root of unity, but the actual value of k won't be needed in this proof). Then using the trigonometric identities $\sin(-x) = -\sin(x)$ and $\cos(-x) = \cos(x)$, complex conjugation gives

$$\overline{\zeta_n} = \cos\left(\frac{2\pi k}{n}\right) - i\sin\left(\frac{2\pi k}{n}\right)$$

$$= \cos\left(-\frac{2\pi k}{n}\right) + i\sin\left(-\frac{2\pi k}{n}\right)$$

$$= e^{-2\pi ki/n}$$

$$= \zeta_n^{-1}.$$

Since the elements of \mathbb{Q} have no imaginary component, \mathbb{Q} is fixed by complex conjugation. Thus it restricts to $\sigma_{-1} \in \operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\zeta_n))$.

Maximal Real Subfield: Since $\zeta_n + \zeta_n^{-1} = \zeta_n + \overline{\zeta_n} = 2\cos(2\pi k/n)$ (the imaginary components cancel out), the extension $K^+ = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$ is real. This shows $K^+ \subset K \cap \mathbb{R}$. This gives us the tower

where $[K^+:\mathbb{Q}]=\phi(n)/2$ was proven on the first midterm and $[K:K^+]=2$ follows from degrees multiplying in towers. This forces one of $[K:\mathbb{R}\cap K]$ and $[\mathbb{R}\cap K:K^+]$ to be 1. But the former cannot be 1, as K contains complex elements and $\mathbb{R}\cap K$ does not. Thus $[\mathbb{R}\cap K:K^+]=1$, so $\mathbb{R}\cap K=K^+$.

Exercise 3 (14.5: 10). $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbb{Q} .

Because it was easier to type out, I denote $\sqrt[3]{2}$ by θ .

First we show that $\mathbb{Q}(\theta)$ is not Galois over \mathbb{Q} . We know that θ is the root of the minimal polynomial $x^3 - 2$ over \mathbb{Q} (this shows that $\mathbb{Q}(\theta)$ is a degree 3 extension of \mathbb{Q}). But this polynomial has roots

$$\theta, \theta\zeta_3, \theta\zeta_3^2,$$

and $\theta\zeta_3$, $\theta\zeta_3^2$ aren't real (this follows from the explicit form of ζ_3 on page 540 of DF). Since θ , on the other hand, is real, this means that θ is the only one of these roots contained in $\mathbb{Q}(\theta)$. Thus the Galois group can only map θ to itself, i.e. the group is trivial. Since the Galois group is order 1 but $\mathbb{Q}(\theta)$ is a degree 3 extension over \mathbb{Q} , this means $\mathbb{Q}(\theta)$ is not Galois over \mathbb{Q} .

Now we can show the desired result. We know $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\zeta_n)) \cong \mathbb{Z}_n^{\times}$, which in particular shows that it is abelian. And every subgroup of an abelian group is necessarily normal, so by the Fundamental Theorem of Galois Theory, all subfields of $\mathbb{Q}(\zeta_n)$ must be Galois over \mathbb{Q} . But we just showed that $\mathbb{Q}(\theta)$ is not Galois over \mathbb{Q} , so it cannot be one of these subfields.

Exercise 4 (14.5: 13).

1. Since a is relatively prime to n, it is relatively prime to the components of the prime decomposition. Then we have

$$\sigma_a(\zeta_{p_i^{a_i}}) = \sigma_a(\zeta_n^{d_i}) = \sigma_a(\zeta_n)^{d_i} = (\zeta_n^a)^{d_i} = (\zeta_n^{d_i})^a = \zeta_{p_i^{a_i}}^{a_i}.$$

It is also an automorphism of $\mathbb{Q}(\zeta_{p_i^{a_i}})/\mathbb{Q}$ since it still fixes \mathbb{Q} and also maps $\mathbb{Q}(\zeta_{p_i^{a_i}})$ onto itself. It depends only on where $\zeta_{p_i^{a_i}}$ is mapped to, and this is determined by $a \pmod{p_i^{a_i}}$.

2. Then by Theorem 26, $\sigma_{a \pmod{p_i^{a_i}}}$ defines an isomorphism

$$(\mathbb{Z}/p_i^{a_i}\mathbb{Z})^{\times} \to \operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\zeta_{p_i^{a_i}})).$$

When we apply these isomorphisms componentwise to the decomposition of $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\zeta_n))$, we get that the two products in Corollary 27 are isomorphic.

Exercise 5 (14.6: 2). Determine the Galois groups of the following polynomials.

- 1. $x^3 x^2 4$.
- 2. $x^3 2x + 4$.
- 3. $x^3 x + 1$.
- 4. $x^3 + x^2 2x 1$.

In all these, I denote the current polynomial's Galois group by G.

- 1. $x^3 x^2 4$ factors into $(x-2)(x^2 + x + 2)$, and since $2 \in \mathbb{Q}$, its splitting field is determined by the second factor. The second factor's discriminant is $b^2 4ac = -7$. Since this isn't a rational square, DF Proposition 34 says that G isn't a subgroup of A_2 . Since S_2 has no proper subfields containing A_2 , this means $G \cong S_2$.
- 2. $x^3 2x + 4$ factors into $(x+2)(x^2 2x + 2)$, and since $-2 \in \mathbb{Q}$, its splitting field is determined by the second factor. The second factor's discriminant is $b^2 4ac = -4$, so by the same logic as in part (a), $G \cong S_2$.
- 3. This polynomial is irreducible by the rational root test. Then by DF Equation 14.18', the discriminant of this polynomial is

$$D = a^2b^2 - 4b^3 - 4a^3c - 27c^2 + 18abc,$$

where a = 0, b = -1, c = 1. This comes out to D = -23, and since this isn't a square, G is not a subgroup of A_3 . Once again, S_3 has no proper subsets containing A_3 , so $G \cong S_3$.

4. This polynomial is irreducible by the rational root test. Then again by Equation 14.18', for a=1,b=-2,c=-1, we get D=49. This is a square in \mathbb{Q} , so G is a subgroup of A_3 . But $|A_3|=3$, so its only proper subgroup is the trivial group. But since our polynomial's roots are not contained in \mathbb{Q} , its Galois group cannot be trivial, so $G \cong A_3$.

Exercise 6 (14.6: 6). Determine the Galois group of $x^4 + 3x^3 - 3x - 2$.

This polynomial is irreducible by Eisenstein's Criterion for p=2. By the long ugly formula on the bottom of DF page 614, for a=3, b=0, c=-3, d=-2, we calculate the discriminant to be D=-2183. This isn't a square in \mathbb{Q} , so by DF Proposition 34, the polynomial's Galois group G is not a subgroup of A_4 .

Additionally, we can manually calculate the resolvent cubic to be

$$h(x) = \frac{1}{64} \left(x^3 + 432x^2 + 908x + 9 \right).$$

This is irreducible by the rational root test, so now we're in case (a) of DF page 615. This means $G \cong S_4$.

Exercise 7 (14.6: 11). Let F be a non-Galois degree 4 extension of \mathbb{Q} . Prove that the Galois closure of F has Galois group either S_4, A_4 , or D_8 . Prove that the Galois group is dihedral if and only if F contains a quadratic extension of \mathbb{Q} .

First bit: By the primitive element theorem, since F is a finite extension of a character 0 field, F must be simple, i.e. $F = \mathbb{Q}(\alpha)$ for some $\alpha \in \mathbb{Q}$. Since it's a degree 4 extension, this means the minimal polynomial $m_{\alpha}(x)$ of α is quartic. Denote the splitting field of $m_{\alpha}(x)$ by K.

Since K is a splitting field, it's Galois over \mathbb{Q} . Since there are 4 roots of $m_{\alpha}(x)$, this means $G \doteq \operatorname{Gal}_{\mathbb{Q}}(K)$ is a subgroup of S_4 .

Since F is not Galois, we know $K \neq F$, so we have the following tower.

Since $|S_4| = 24$ and the order of a subgroup divides the order of the group, this means $[K:\mathbb{Q}] = |\mathrm{Gal}_{\mathbb{Q}}(K)|$ divides 24. Then since degrees multiply in towers, this means [K:F] divides 6 (and isn't 1, since $K \neq F$). This means $[K:\mathbb{Q}] = 8,12$, or 24. Using the list at the top of DF page 614, the only possible subgroups of S_4 of these sizes are D_8 , A_4 , and S_4 .

Second bit: Suppose F contains a quadratic extension $\mathbb{Q}(\sqrt{D})$. We then know $[F:\mathbb{Q}(\sqrt{D})] = [\mathbb{Q}(\sqrt{D}):\mathbb{Q}] = 2$. Since A_4 has no subgroups of index 2, we know $G \neq A_4$. The only index 2 subgroup of S_4 is A_4 , but since A_4 has no index 2 subgroups, we can't get 2 index 2 subgroups in a row, as required by the Galois correspondence. Thus $G = D_8$.

Conversely, suppose $G = D_8$. All subgroups in the subgroup lattice of D_8 has index 2, so by the Galois correspondence and the fact that F is degree 4 over \mathbb{Q} instead of degree 2, F must contain a proper subfield. This proper subfield must then be degree 2 over \mathbb{Q} , i.e. it is a quadratic extension.

Exercise 8 (14.6: 44). Let $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ be the roots of a quartic f(x) over \mathbb{Q} . Show that the quantities $\alpha_1\alpha_2 + \alpha_3\alpha_4, \alpha_1\alpha_3 + \alpha_2\alpha_4$, and $\alpha_1\alpha_4 + \alpha_2\alpha_3$ are permuted by the Galois group of f(x). Conclude that these elements are the roots of a cubic polynomial over \mathbb{Q} .

The Galois group G of f(x) permutes the α_i , so if $\sigma \in G$, then

$$\sigma(\alpha_1 \alpha_2 + \alpha_3 \alpha_4) = \sigma(\alpha_1)\sigma(\alpha_2) + \sigma(\alpha_3)\sigma(\alpha_4)$$

must be one of the other two expressions (note that since the roots all lie in some field, they commute under multiplication). Using similar logic for applying σ to the other two expressions, we get that all three are permuted by G.

If we denote these three expressions by a,b,c, then they're the roots of the polynomial

$$(x-a)(x-b)(x-c).$$

We just showed that this polynomial is symmetric, so by DF Corollary 31 it is a rational function, i.e. it is a cubic polynomial over \mathbb{Q} .

Exercise 9 (14.7: 3). Let $\operatorname{char}(F) \neq 2$. State and prove a necessary and sufficient condition on $\alpha, \beta \in F$ so that $F(\sqrt{\alpha}) = F(\sqrt{\beta})$. Use this to determine whether $\mathbb{Q}(\sqrt{1-\sqrt{2}}) = \mathbb{Q}(i,\sqrt{2})$.

First bit: There are two trivial cases:

- 1. If α and β are both squares in F, then $\sqrt{\alpha}, \sqrt{\beta} \in F$, so $F(\sqrt{\alpha}) = F = F(\sqrt{\beta})$.
- 2. If one is a square and the other isn't, then one of the extensions is equal to F and the other isn't, so the extensions aren't equal.

The final case is when neither α nor β is a square in F, i.e. $\sqrt{\alpha}, \sqrt{\beta} \notin F$. Supposing $F(\sqrt{\alpha}) = F(\sqrt{\beta})$, we can write $\sqrt{\alpha}$ as $\sqrt{\alpha} = c + d\sqrt{\beta}$ for some $c, d \in F$. Squaring gives $\alpha = c^2 + 2cd\sqrt{\beta} + d^2\beta$. Since $\alpha \in F$ but $\sqrt{\beta} \notin F$, this forces 2cd = 0. Since $char(F) \neq 2$, this means either c or d is 0. If d = 0, then $\sqrt{\alpha} = c \in F$, but $\sqrt{\alpha} \notin F$ by assumption, so it must be the case that $c = 0, d \neq 0$. This gives $\alpha = d^2\beta$, or

$$\frac{\alpha}{\beta} = d^2.$$

So if $F(\sqrt{\alpha}) = F(\sqrt{\beta})$, then α/β is a square in F. This condition is also sufficient: if $\alpha/\beta = d^2$ for some $d \in F$, then $\sqrt{\alpha} = d\sqrt{\beta}$, so $F(\sqrt{\alpha}) = F(\sqrt{\beta})$.

Second bit: Let $F = \mathbb{Q}(\sqrt{2})$, $\alpha = 1 - \sqrt{2}$, $\beta = -1$, then

$$F(\sqrt{\alpha}) = \mathbb{Q}(\sqrt{1 - \sqrt{2}}, \sqrt{2}) = \mathbb{Q}(\sqrt{1 - \sqrt{2}}),$$

$$F(\sqrt{\beta}) = \mathbb{Q}(i, \sqrt{2}).$$

Note that the last equality on the first line above comes from this extension being of degree higher than 2, so $((1-\sqrt{2})^{1/2})^2 = 1-\sqrt{2}$ is a basis element of that extension, so $\sqrt{2} \in \mathbb{Q}((1-\sqrt{2})^{1/2})$.

Suppose $\alpha/\beta = \sqrt{2} - 1$ is a square in $F = \mathbb{Q}(\sqrt{2})$, then

$$\sqrt{2} - 1 = (c + d\sqrt{2})^2 = c^2 + 2cd\sqrt{2} + 2d^2$$

for some $c, d \in \mathbb{Q}$. Since $c, d, c^2, d^2 \in \mathbb{Q}$ and $\sqrt{2} \neq \mathbb{Q}$, this implies

$$c^2 + 2d^2 = -1,$$
$$2cd = 1.$$

The first equality in this system is impossible, though, so the two extensions are not equal.