

I Semester M.C.A. (Two Years Course) Examination, July 2023 (CBCS) (2020-2021 and Onwards) COMPUTER SCIENCE 1 MCA 4 : Theory of Computation

Time: 3 Hours

Max. Marks: 70

Instructions: Part – A: Attend any five questions.

Part – B: Attend any four questions.

PART - A

Answer any five full questions.

(5×6=30)

1. Define ϵ -closure. Find ϵ -closure of all states for the given ϵ -NFA.

2. Convert the following NFA to DFA.

- Regular languages are closed under union and intersection. Justify.
- State and prove pumping lemma for regular languages.

5. Convert the following Mealy machine to Moore machine.

Define ambiguous grammar. Check whether the following grammar is ambiguous.

 $S \rightarrow aB \mid bA$

 $A \rightarrow aS \mid bAA \mid a$

 $B \rightarrow bS \mid aBB \mid b$

7. Convert the following grammar into PDA.

 $S \rightarrow aABC$

 $A \rightarrow aB \mid a$

 $B \rightarrow bA \mid b$

 $C \rightarrow a$

8. Write a short note on Halting problem of Turing Machine.

PART - B

Answer any four full questions.

 $(4 \times 10 = 40)$

9. a) Explain extended transition function of DFA.

4

b) Draw a DFA to accept strings of a's and b's having even number of a's and even number of b's.

6

10. Define equivalent and non equivalent states and minimize the following DFA. 10

		1	0
\rightarrow	Α	В	С
	В	C	D
	C	C	Ε
*	D	D	D
非	E	E	Ε
	F	F	E

11. a)	Write a short note on Chomsky Hierarchy of languages.	5
--------	---	---

12. a) Obtain a CFG for the language
$$L = \{a^n b^n \mid n \ge 1\}.$$

$$S \rightarrow A$$

 $A \rightarrow aBa|a$
 $B \rightarrow bAb|b$

 $L = \{ w \subset w^R | w \in (a+b)^* \}$ b) Check whether the string a a b c b a a is accepted or not.

b) Prove that if a Language L and its complement L' both are RE then L is recursive.