

# Сегментация и плотное предсказание



#### План лекции

- Плотное предсказание
- Сегментация
- Другие виды плотного предсказания



#### Плотное предсказание

- Классификация
  - Картинка -> число / вектор.
  - Отвечает на вопрос, что нарисовано на картинке.
  - Оцениваем картинку целиком.
- Плотное предсказание
  - Картинка —> число / вектор для каждого пикселя
  - Отвечает на вопрос, что и где расположено на картиинке.
  - Оцениваем каждый пиксель изображения



#### Скрытые признаки картинки

Изображение содержит  $H \times W \times 3$  признаков, что избыточно.

Многие модели работают по принципу извлечения некоторых скрытых признаков из картинки. Например, количество людей, автомобилей, окон (они не обязаны быть интерпретируемы).

Что мы знаем из донейросетевой эпохи?

PCA – линейная проекция на подпространство, образованное компонентами с большей дисперсией. Далее на этих признаках можно обучить другую модель.





#### Скрытые признаки картинки

Идея: заменим в РСА линейное преобразование на нейросеть.

#### Проблемы:

- Как ее обучить?
- Как из скрытого пространства восстановить картинку? В РСА для этого была линейная функция.



$$H \times W \times 3$$



#### Автоэнкодер

Идея: заменим в РСА линейное преобразование на нейросеть.

#### Проблемы:

- Как ее обучить?
- Как из скрытого пространства восстановить картинку? В РСА для этого была линейная функция.

Идея: функцию восстановления тоже построим нейросетью и будем оптимизировать MSE исходной картинки и восстановленной.



 $H \times W \times 3$   $H \times W \times K$ 



#### Автоэнкодер

- **Кодировщик** (Encoder) преобразует изображение в его признаковое описание, тензор размера  $h \times w \times d$ .
- Декодировщик (Decoder) преобразует тензор признаков в приближение исходной картинки.
- Оптимизируем MSE между исходной картинкой и восстановленной.

Данная идея является основной многих нейросетевых моделей.





#### План лекции

- Плотное предсказание
- Сегментация
  - Виды сегментации
  - Семантическая сегментация
  - Upsampling
  - Модели сегментации
  - Метрики и функции ошибки
- Другие виды плотного предсказания



#### Сегментация

## 1

#### **Семантическая сегментация** (semantic segmentation)

- Находим класс для каждого пикселя изображения.
- Нет разделения между объектами: если объекты находятся рядом, то они сливаются в одну область.



Изображение



Семантическая (semantic) сегментация



Объектная (instance) сегментация



Паноптическая (panoptic) сегментация



#### Сегментация

## Объектная сегментация (instance segmentation)

- Находим определенные объекты.
- Для каждого объекта находим все пиксели, которые ему принадлежат.



Изображение



Семантическая (semantic) сегментация



Объектная (instance) сегментация



Паноптическая (panoptic) сегментация





#### Сегментация

#### Паноптическая сегментация (panoptic segmentation)

- Находим класс для каждого пикселя изображения.
- Разделяем объекты одного класса.



Изображение



Семантическая (semantic) сегментация



Объектная (instance) сегментация



Паноптическая (panoptic) сегментация



#### Задача семантической сегментации

#### Пусть

 $\mathscr{X}$  — пространство картинок.

У — набор классов, например{человек, машина, дорога, тротуар, знак ПДД}.

 $\mathscr{Z}$ — пространство картинок, где каждый пиксель имеет значение из Y.

Требуется построить модель  $f: \mathscr{X} \to \mathscr{X}$ , определяющую, к какому классу из  $\mathscr{Y}$  принадлежит каждый пиксель изображения X.





#### Модель семантической сегментации

Пусть H — высота изображения, W — ширина изображения, K — количество классов. Будем строить модель семантической сегментации.

- Вход модели изображение, тензор размера  $H \times W \times 3$ .
- Выход модели предсказание для каждого пикселя, к какому классу он относится, тензор размера H imes W imes K.





#### Модель семантической сегментации

Большинство моделей семантической сегментации устроено по принципу кодировщик-декодировщик (encoder-decoder).

- **Кодировщик** (Encoder) преобразует изображение в его признаковое описание, тензор размера  $h \times w \times d$ .
  - Обычно кодировщик Feature Extractor часть любой сети для классификации изображений.
- **Декодировщик** (Decoder) преобразует тензор признаков в картинку.





#### Модель семантической сегментации

#### Как делать декодировщик?

Нужна операция, которая из тензора размера  $h \times w \times d$  , получает тензор размер  $H \times W \times K$ , где h < H, w < W.

Такая операция называется Upsampling.





#### Виды Upsampling

- Интерполяция / interpolation
- Обратный пулинг / inverse pooling / unpooling
- Обратная свертка / Deconvolution / Transposed Convolution



По ближайшему соседу (Nearest Neighbours)





#### Билинейная (Bilinear)

Сначала вычислим линейную интерполяцию по оси х

$$f(x,y_1) = \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}),$$

$$f(x,y_2) = \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}).$$

Затем вычислим линейную интерполяцию по оси у

$$f(x,y) = \frac{y_2 - y}{y_2 - y_1} f(x, y_1) + \frac{y - y_1}{y_2 - y_1} f(x, y_2).$$





#### Билинейная (Bilinear). Пример

Перенесем значения исходной матрицы таким образом, чтобы по краям новой матрицы матрицы оказались краевые значения исходной матрицы.

| 10 | 20 |
|----|----|
| 30 | 40 |



$$f(x,y_1) = \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}) = \frac{2}{3} * \mathbf{10} + \frac{1}{3} * \mathbf{20} = \frac{40}{3},$$

$$f(x,y_2) = \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}) = \frac{2}{3} * 30 + \frac{1}{3} * 40 = \frac{100}{3},$$

$$f(x,y) = \frac{y_2 - y}{y_2 - y_1} f(x,y_1) + \frac{y - y_1}{y_2 - y_1} f(x,y_2) = \frac{2}{3} * \frac{40}{3} + \frac{1}{3} * \frac{100}{3} = 20.$$



#### Билинейная (Bilinear). Пример

Перенесем значения исходной матрицы таким образом, чтобы по краям новой матрицы матрицы оказались краевые значения исходной матрицы.

| 10 | 20 |
|----|----|
| 30 | 40 |

| 10 | 13 | 17 | 20 |
|----|----|----|----|
| 17 | 20 | 23 | 27 |
| 23 | 27 | 30 | 33 |
| 30 | 33 | 37 | 40 |



Билинейная (Bilinear)

Есть два способа, как располагать краевые точки исходной матрицы в новой.

- source pixel
- target pixel





|    |    | 10 | 13 | 1/ | 20 |
|----|----|----|----|----|----|
| 10 | 20 | 17 | 20 | 23 | 27 |
| 30 | 40 | 23 | 27 | 30 | 33 |
|    |    | 30 | 33 | 37 | 40 |



align\_corners=False



## Upsampling. Обратный пулинг

#### Max Pooling

Remember which element was max!



Input: 4 x 4 Output: 2 x 2

**Max Unpooling** 

Use positions from pooling layer

| 1 | 2 | <b>-</b> |
|---|---|----------|
| 3 | 4 |          |

Input: 2 x 2

| 0 | 0 | 2 | 0 |
|---|---|---|---|
| 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 4 |

Output: 4 x 4

Corresponding pairs of downsampling and upsampling layers





#### Одномерный случай





#### Двумерный случай

| а | b |
|---|---|
| С | d |

| $x_1$ | $1   \lambda$ | $\mathfrak{c}_{12}$ | $x_{13}$ |
|-------|---------------|---------------------|----------|
| $x_2$ | $_{1}$        | $x_{22}$            | $x_{23}$ |
| $x_3$ | 1             | $x_{32}$            | $x_{33}$ |

| $ax_{11}$ | $ax_{12}$ | $ax_{13} + bx_{11}$ | <i>bx</i> <sub>12</sub> | <i>bx</i> <sub>13</sub> |
|-----------|-----------|---------------------|-------------------------|-------------------------|
| $ax_{21}$ | $ax_{22}$ | $ax_{23} + bx_{21}$ | $bx_{22}$               | <i>bx</i> <sub>23</sub> |
| $ax_{31}$ | $ax_{32}$ | $ax_{33} + bx_{31}$ | $bx_{32}$               | <i>bx</i> <sub>33</sub> |
|           |           |                     |                         |                         |
|           |           |                     |                         |                         |



- Операцию обратной свертки можно представить в виде ленейной операции, по аналогии с обычной сверткой.

  Значит, она обучаема!
- Padding и stride в обратной свертке можно интерпертировать по-разному. Рассмотрим то, как они **представлены в pytorch**.
- Padding используется для приведения к нужному размеру.

  Удаляем из полученного feature map нейронны так,

  чтобы если бы применили свертку (не обратную)

  с такими же параметрами padding и stride к новому feature map,

  то получили бы feature map такого же размера как исходное изображение.
- **Stride** шаг, с которым результаты сверток накладываются друг на друга. Чем больше stride, тем больше feature map на выходе.



вход

2 4

input

ядро



k

stride=1

s=1, p=0, выход 3х3

s=1 2 10 -

| - | 12 | 4  |
|---|----|----|
| - | 4  | 20 |
| - | -  | -  |





| 6 | 14 | 4  |
|---|----|----|
| 2 | 17 | 21 |
| 0 | 1  | 5  |

s=1, p=1, выход 1х1

| - | 12 | 4  |
|---|----|----|
| - | 4  | 20 |
| - | -  | -  |





| 6 | 14 | 4  |
|---|----|----|
| 2 | 17 | 21 |
| 0 | 1  | 5  |



## **вход**2 4 0 1

input

s=2



| 3 | 1 |
|---|---|
| 1 | 5 |

stride=2



| - | - | 12 | 4  |
|---|---|----|----|
| - | - | 4  | 20 |
| - | - | -  | -  |
| - | - | -  | -  |

|   | s=2 | 2, p= | =O, E | ЗЫХ | од 4 | 1x4 |
|---|-----|-------|-------|-----|------|-----|
| - | -   | -     | -     |     | -    | -   |
| - | -   | -     | -     |     | -    | -   |
| 0 | 0   | -     | -     | +   | -    | -   |
| 0 | 0   | -     | -     |     | -    | -   |
|   |     |       |       |     |      |     |

| - | - | - | - |
|---|---|---|---|
| - | - | - | - |
| - | - | 3 | 1 |
| - | - | 1 | 5 |

| 6 | 2  | 12 | 4  |
|---|----|----|----|
| 2 | 10 | 4  | 20 |
| 0 | 0  | 3  | 1  |
| 0 | 0  | 1  | 5  |

k







s=2, p=1, выход 2х2

| - | - | - | - |
|---|---|---|---|
| - | - | - | - |
| - | - | 3 | 1 |
| - | - | 1 | 5 |

| 6 | 2  | 12 | 4  |
|---|----|----|----|
| 2 | 10 | 4  | 20 |
| 0 | 0  | 3  | 1  |
| 0 | 0  | 1  | 5  |































декодировщик







#### Недостатки

При постоянном уменьшении размера возникает проблема **Scale Variability**.

Upsampling плохо восстаналивает пространственную информацую из сильно сжатого представления.







### Модели вида U-Net

Upsampling плохо восстанавливает пространственную информацию ———из сильно сжатого представления.

Будем использовать представления с более ранних слоев кодировщика в симметричных слоях декодировщика. Они содержат менее сжатую простр. информацию.



Рассмотрим первую версию Unet.

Статья





кодировщик

декодировщик

### Обычные свертки









64 64

input



output image 🔷 🔷 segmentation tile 388 x 388 392 x 392 390 x 390 388 x 388 map 572 x 572 570 x 570 568 x 568 128 128 256 128 2842 256 256 → conv 3x3, ReLU copy and crop 512 512 1024 512 max pool 2x2 up-conv 2x2 1024 conv 1x1 282

128 64 64 2

Свертка 3x3, p=0, s=1

64 64

input



output image 🔷 🔷 segmentation tile 388 x 388 392 x 392 390 x 390 388 x 388 map 572 x 572 570 x 570 568 x 568 128 128 256 128 2842 256 256 → conv 3x3, ReLU copy and crop 512 512 1024 512 max pool 2x2 up-conv 2x2 1024 conv 1x1 282

128 64 64 2

Свертка 3x3, p=0, s=1



Понижение размерности — max pooling 2 x 2



Повышение размерности — обратная свертка 2 x 2

Обрезаем feature map с менее глубокого слоя. Конкатенируем его с соотв. более глубоким feature map по оси каналов



#### Интересные особенности модели

- Модель была предложена для решения задачи сегментации медицинских картинок.
- Для того, чтобы не теряла информация на границах изображения, сделали большой зеркальный padding.
- Для того, чтобы границы клеток четко отображались нейронной сетью, **для лосса задавали доп. веса**, которые были больше там, где граница между клетками.



#### Достоинства

- Решается проблема с потерей пространственной информации
   за счет объединения с менее глубокими признаковыми представлениями.
- Можно достичь хорошего качества сегментации.

#### Недостатки

Может переобучиться таким образом,
что будут работать только верхние слои U - модели.
Тогда модель в основном будет работать
с локальными паттернами, но не будет изучать
структуру данных в целом.



# Модификации U-Net



# Модификации U-Net

#### **TernausNet-16**



# Модификации U-Net



# DeepLabV3: Atrous / Dillated Convolution

Выход y для входа x:

$$y[i] = \sum_{k}^{K} x[i + rk]w[k].$$







- Atrous свертка помогает расширить рецертивное поле фильтров, при этом количество обучаемых параметров меньше, чем если использовать для этого обычную свертку.
- Ее действие аналогично тому, что использовать обычную свертку, в которой вместо некоторых параметров стоят **нули**.
- B Pytorch из Conv2d в Pytorch можно получить Atrous свертку, установив параметр dilation > 1.



# DeepLabV3: Atrous / Dillated Convolution

#### Идем глубже с Atrous сверткой

**Без использования Atrous свертки** каждый следующий **слой становится меньше** по размеру, из-за использования сверток со stride > 1 и пулингов.

Причем stride тут был необходим **для увеличения области видимости нейронов**.

**При использовании Atrous свертки** мы можем **сохранить stride и область видимости нейронов**, при этом **размер выхода не изменится**, что важно для семантической сегментации.



(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when  $output\_stride = 16$ .

# DeepLabV3: ASSP

#### **Atrous Spatial Pyramid Pooling (ASPP)**

ASPP состоит из следующих компонент, которые вычисляются параллельно.

- одна 1х1 свертка сохраняет контекст с 256 фильтрами + батч нормализация.
- три свертки с rate равным 6, 12, 18 соответственно и stride = 16, все с 256 фильтрами + батч нормализация учитывают разного размера контекст.
- Image Pooling / Global average Pooling учитывает глобальный контекст.



### HR-Net

Одна из относительно недавних моделей сегментации (2020). Дает предсказания с высокой точностью.

Пример HR-Net — основная часть сети



Параллельные свертки для разных разрешений

Fusion модуль для разных разрешений Fusion модель для одинаковых разрешений эквивалентна свертке

Fusion-модель — подробнее











### HR-Net

Одна из относительно недавних моделей сегментации (2020). Дает предсказания с высокой точностью.

Пример HR-Net — основная часть сети



Пример HR-Net — выходная часть сети, 3 варианта



### HR-Net

#### Чем примечатьна статья HR-Net

- Предложили архитектуру с параллельными свертками и fusion модулями.
- Получили хорошее качество сегментации.
- Применили модель для других задач: оценка точек позы человека и детекция объектов.

#### Оценка позы

Сначала детектировали объект, затем вырезали область с объектом и предсказывали карты вероятностей нахождения определенных точек тела. Карт столько же, сколько точек задается на человека задается в задаче.



#### Детекция объектов

Использовали выходы сети в виде feature-piramid как вход для модели детекции.





На выходе модели имеем предсказание класса для каждого пикселя изображения. Рассмотрим предсказания для **одного класса**.

#### **Pixel Accuracy**

$$\frac{TP + TN}{TP + TN + FP + FN}$$

Считаем долю пикселей, для которых сделали правильное предсказание.

#### Недостатки

Плохо в случае дисбаланса классов. Например, если пикселей заданного класса мало, то  $TP+FN\ll TN$  и метрика всегда близка к 1, даже если модель неправильно сработала.





На выходе модели имеем предсказание класса для каждого пикселя изображения. Рассмотрим предсказания для **одного класса**.

#### **Pixel Precision**

$$\frac{TP}{TP + FP}$$

Считаем долю предсказ. пикселей целевого класса, для которых предсказ. правильное.

#### Недостатки

Чем меньше предсказ. пикселей целевого класса, тем больше метрика.

#### Pixel Recall

$$\frac{TP}{TP + FN}$$

Считаем долю пикселей целевого класса, для которых сделали правильное предсказание.

#### Недостатки

Чем больше предсказ. пикселей целевого класса, тем больше метрика.





На выходе модели имеем предсказание класса для каждого пикселя изображения. Рассмотрим предсказания для **одного класса**.

#### Pixel F1-score

$$\frac{2 \ precision * recall}{precision + recall} = \frac{2TP}{2TP + FP + FN}$$

Среднее гармоническое между precision и recall. Нивелируем недостатки обеих метрик.

#### Недостатки

Не учитывается TN.





На выходе модели имеем предсказание класса для каждого пикселя изображения. Рассмотрим предсказания для **одного класса**.

Pixel F1-score = Dice score

$$F_1 = \frac{2TP}{2TP + FP + FN} = \frac{2|A \cap B|}{|A| + |B|} = Dice$$

Геометрически смысл:

Считаем отношение пересечением областей предсказания и таргета к сумме областей предсказания и таргета.





На выходе модели имеем предсказание класса для каждого пикселя изображения. Рассмотрим предсказания для **одного класса**.

IoU – Intersection over Union / Jacard score

$$IoU = \frac{|A \cap B|}{|A \cup B|} = \frac{TP}{TP + FP + FN}$$

Геометрически смысл: считаем отношение пересечением областей предсказания и таргета к объедигнению предсказания и таргета.





На выходе модели имеем предсказание класса для каждого пикселя изображения. Рассмотрим предсказания для **одного класса**.

IoU – Intersection over Union / Jacard score

$$IoU = \frac{|A \cap B|}{|A \cup B|} = \frac{TP}{TP + FP + FN}$$

$$Dice = \frac{2IoU}{1 + IoU}$$

Если IoU близка к 1, то и Dice близок к 1. Если IoU близка к 0, то Dice почти в 2 раза больше.





Рассмотрим модель сегментации для одного класса.

На выходе модели для каждого i-го пикселя изображения имеем предсказание вероятности класса  $\hat{p}_i$  , которому соответствует метка класса  $y_i$  (0 или 1).

#### Бинарная кросс-энтропия

$$L_{BCE}(y, \hat{p}) = -\sum_{i} (y_i \log \hat{p}_i + (1 - y_i) \log(1 - \hat{p}_i))$$

#### Взвешенная бинарная кросс-энтропия

$$L_{W-BCE}(y, \hat{p}) = -\sum_{i} (\beta y_{i} \log \hat{p}_{i} + (1 - y_{i}) \log(1 - \hat{p}_{i}))$$

Если  $\beta < 0$ , то уменьшаем количество FP, если  $\beta > 0$ , то уменьшаем количество FN.

Рассмотрим модель сегментации для K классов.

На выходе модели для каждого i-го пикселя изображения имеем для класса kпредсказание вероятности  $\hat{p}_{ki}$  , которому соответствует метка класса  $y_{ki}$  (0 или 1).

Кросс-энтропия 
$$L_{CE}(y_{ki},\hat{p}_{ik}) = \begin{cases} -\log \hat{p}_{ik}, & \text{если } y_{ki} = 1 \\ -\log(1-\hat{p}_{ik}), & \text{иначе} \end{cases}$$

Положим 
$$q_{ki} = egin{cases} \hat{p}_{ik}, & \text{если } y_{ki} = 1 \\ 1 - \hat{p}_{ik}, & \text{иначе} \end{cases}$$

тогда 
$$L_{CE}(y_{ki},\hat{p}_{ik})=L_{CE}(q_{ik})=-\log q_{ik}$$

На выходе модели имеем предсказание **вероятности класса** p для каждого пикселя изображения, которому соответствует действительное значение класса y .

Рассмотрим предсказания для нескольких непересекающихся классов.

#### **Focal Loss**

$$q_{ki} = egin{cases} \hat{p}_{ik}, & ext{если } y_{ki} = 1 \ 1 - \hat{p}_{ik}, & ext{иначе} \end{cases}$$

$$L_{FL}(q_{ik}) = -(1 - \alpha)^{\gamma} \log q_{ik}$$

Чем больше  $\gamma$  , тем меньше модель штрафует хорошо размеченные классы.

Чем больше  $\alpha$ , тем меньше модель штрафует объекты, где y=1.



Рассмотрим предсказания для одного класса.

На выходе модели имеем предсказание **вероятности класса**  $p_i$  для каждого пикселя i, которому соответствует метка класса  $y_i$ .

Пусть  $\widehat{y_i}$  предсказание класса для пикселя i.

Dice Loss

$$Dice = \frac{2|A \cap B|}{|A| + |B|} \longrightarrow Dice = \frac{2\sum \widehat{y_i} y_i}{\sum \widehat{y_i} + \sum y_i} \longrightarrow L_{Dice} = 1 - \frac{2\sum p_i y_i + \varepsilon}{\sum p_i + \sum y_i + \varepsilon}$$

# Предсказание позы как регрессия тепловой карты



# Предсказание позы как регрессия тепловой карты



## Предсказание позы. Open Pose



2 ветви сети предсказывают карту веротяности точек позы и афинное поле, по которому восстнавливается взаимосвзяь между точками позы.

Статья



