2017 年 7 月 24 日 [情報伝送研究室]

ターボ符号器における決定論的インタリーバの設計に関する研究

Bohulu Kwame Ackah (1631133)

1. はじめに

Claude Berrou により提案されたターボ符号 (TC) は、AWGN チャネルにおいて通信の容量を達成でき、誤り訂正符号の一つである。基本の場合、TC は、二つ以上の再帰的畳み込み符号 (RSC 符号) をインタリーバで並列連結して作られている。この 2 つのRSC 符号は、要素符号と呼ばれる。TC のシステム図を図 1 に示す。

図1 ターボ符号器

インタリーバは、ターボ符号の性能に大きな影響を与えるが、一般的に、ランダムインタリーバと決定論的いんたリーバの2つにグループ分けされている。

フレームサイズが長い場合、ランダムインタリーバは良い性能を持つが、TC は符号器と復号器にインタリーバテーブルを保存しなければならない。そのため、インタリーブとデインタリーブをアルゴリズムにより設計できる決定論インタリーバが、実用に多く採用されている。LTE では、文献 [3] で紹介されているPPI が採用されている。

フレームサイズが短い場合、決定論インタリーバは ランダムインタリーバより良い性能を持つが、フレー ムサイズが長い場合、ランダムインタリーバより良い 性能を持つ決定論インタリーバは、まだ見つかってい ない。本研究では、長いフレームサイズでランダムイ ンタリーバより優れた決定論的インターリーバの開発 を目標としている

2. システムモデル

シミュレーションで使用するシステムモデルを図 2 に示す。

図2 システムモデル

長さ N の情報系列 x をターボ符号器の 1 番目の要素符号 (CE1) に入力し、インタリーバで並び替え、2 番目の要素符号 (CE2) に入力する。CE1 と CE2 は同じ RSC 符号器である。次に、長さ (n+1)N のターボ符号器の出力 x を、BPSK 変調器に入力する。BPSK 変調器は "1" を 1 に、"0" を -1 に変調する。変調された出力 \tilde{y} は加法性白色ガウス雑音 (AWGN) 通信路で送信され、AWGN 通信路の出力 \hat{y} をターボ復号器に入力する。ターボ復号器より長さ N の \hat{x} が出力され、ビット判定する。ここで、本資料で使用する記号を表 1 に示す。

表1使用する記号

	双1 (大円りる記号
記号	意味
x_i	i番目の情報ビットの位置
d_{ef}	TC の有効自由距離
$\mid \mid \mid \tau \mid$	RSC 符号の周期
$\mid \mid n \mid$	1 ビットあたりの出力ビット
K	要素符号器の拘束長
R	ターボ符号の出力レート
$\mid \mid \mid \tau \mid$	要素符号器の周期長
\parallel t	CE1 でのタイプ 1 エラーイベントの長さ
s	CE2 でのタイプ 1 エラーイベントの長さ

3. ターボ符号の性能解析

3.1 *a* τ **-2** エラーイベント

RSC 符号は再帰的で、自由距離のプロパティが良いため、TC の設計に RSC 符号を使用することは重要である。RSC 符号器の周期長 (τ) は一つの重要なパラメーターである。 τ は入力が $[1,0,0,0,\dots]$ のときの出力の周期と定義される [3]。5/7 RSC 符号器の

場合、出力が $[1, 1, 1, 0, 1, 1, 0, 1, 1, 0, \ldots]$ である。 周期は [1, 1, 0] で、 τ は 3 である。入力系列のビット"1"を開始から τ 離れ、出力を合わせると符号語の 重みが小さくなってしまう。

 $a\tau$ -2 エラーイベントとは、 τ で離れたビット"1" 二 つを持つ情報系列である。

$$(1+D^{a\tau})(D^u) \triangleq \mathbb{F}, 0 \leq u \leq N-\tau, a = \{1, 2, 3, ...\}$$

代表的な $a\tau$ -2 エラーイベントを図 3 に示す。ターボ符号にある重み 2 エラーイベントはそれぞれの要素符号にある m 個の重み 2 エラーイベントのことでありインタリーバで繋がっている。

図 3 代表的な $a\tau$ -2 エラーイベント

CE1 での i 番目の $a\tau$ -2 エラーイベントは長さ t_i を持ち、 x_i から x_i+t_i まである。エラーイベントの開始と終了は (x_i,x_i+t_i) の整数組で表現されている。CE2 での i 番目の $a\tau$ -2 エラーイベントは長さ s_j で、エラーイベントの開始と終了は (x_i,x_i+s_j) の整数組で表現されている。

3.2 TC のビット誤り率性能

TC に関する $a\tau$ -2 エラーイベントの符号語重みは、以下の式 (1) で計算できる [3]。

$$d_{(t_i,s_j)_v} = 6m + \left(\frac{|t_i|}{\tau} + \frac{|s_j|}{\tau}\right) w_o \tag{1}$$

 $1+D^{\tau}$ の形を持つ入力系列の場合、 w_o は 1 番目の要素符号の出力の重みである。

TC の BER 性能の上界は式 (2) で計算できる。

$$P_b \approx \sum_{v=1}^{l} \frac{2mN_{d_{(t_i,s_j)v}}}{N} Q\left(\sqrt{d_{(t_i,s_j)v}} \frac{2RE_b}{N_o}\right)$$
 (2)

ここで、 $N_{d_{(t_i,s_j)_v}}$ は重み $d_{(t_i,s_j)_v}$ を持つ符号語の数であり、l は $(1+D^{a\tau})(D^u)$, $0 \le u \le N-\tau$, $a = \{1,2,3\}$ の形を持つ入力重み 2m エラーイベントの合計数である。 m=1 で、 $t_i=s_j$ の場合、以下の図 4 を使用してインタリーバの設計考える。

図 4 $t = s = \tau$ のエラーイベント

図 4 は TC の d_{ef} に関するからである。 d_{ef} とは、入力重み 2 エラーイベントが入力された場合のターボ符号語の最低距離である。

4. 線形インタリーバの最適化

TC の d_{ef} を大きくするために、 $t = s = \tau$ を防ぐようなインタリーバを設計する必要がある。線形インタリーバのマッピング関数は式 (3) で定義される [1]。

$$\Pi_{\mathbf{L}_n}(i) \equiv bi \mod N, \ 0 \le i \le N$$
 (3)

b は、N とお互いにそう整数である。式 (1) を大きくする d は以下の方法で検索する。

4.1 b の検索方法

b のすべての可能な値で、 $\Pi_{\mathbf{L}_n}(i+t) - \Pi_{\mathbf{L}_n}(i) = s$ を計算する。式 1 で $d_{(t_i,s_j)_v}$ を計算して $\min d_{(t_i,s_j)_v}$ を選ぶ。最後に、b に関する $\max(\min d_{(t_i,s_j)_v})$ を選択する。

参考文献

- Oscar Y. Takeshita, Member, IEEE, and Daniel J. Costello ,"New Deterministic Interleaver Designs for Turbo Codes", IEEE Trans. Inform. Theory, vol. 46,pp. 1988-2006, Nov. 2000
- [2] L. C. Perez, J. Seghers, D. J. Costello, Jr., "A distance spectrum interpretation of turbo codes", IEEE Trans. Inform. Theory, vol. 42, pp. 1698-1709, Nov. 1996.
- [3] Jing Sun, Oscar Y. Takeshita "Interleavers for Turbo Codes Using Permutation Polynomials over Integer Rings", IEEE Trans. Inform. Theory, vol. 51, pp. 101 - 119 Jan. 2005
- [4] John G. Proakis, Masoud Salehi. "Digital Communications", Fifth Edition, Chapter 8, McGraw-Hill