

Quiz #4

Monday, Febuary 19 2018

Duration	n: 20 min
NAME:	
	rite clearly and properly. vour answers appropriately.

Problem	Grade
1	
2	
Total	

Problem 1 (\sim 8 points.).

Consider the parametrized curve in 3-dimensional space given by the following function:

$$f: \mathbb{R} \to \mathbb{R}^3$$

 $t \mapsto (x(t), y(t), z(t))$

where:

$$x(t) = \sqrt{3}\cos(t)$$
$$y(t) = 2\sin(t)$$
$$z(t) = \cos(t).$$

Let M(t) denote the moving point in 3-dimensional space with coordinates (x(t), y(t), z(t)), and denote $\vec{r}(t) = \overrightarrow{OM(t)} = (x(t), y(t), z(t))$.

(1) Compute the motion.	 	 	

(2) Compute the acceleration $\vec{a}(t)$ for this motion.
(3) Show that the path lies in a sphere centered at the origin.
(3) Show that the path lies in a sphere centered at the origin.
(3) Show that the path lies in a sphere centered at the origin.
(3) Show that the path lies in a sphere centered at the origin.
(3) Show that the path lies in a sphere centered at the origin.
(3) Show that the path lies in a sphere centered at the origin.
(3) Show that the path lies in a sphere centered at the origin.
(3) Show that the path lies in a sphere centered at the origin.
(3) Show that the path lies in a sphere centered at the origin.
(3) Show that the path lies in a sphere centered at the origin.
(3) Show that the path lies in a sphere centered at the origin.

(5)		C.1 C .1		4:
(5)	Derive the nature	of the curve from the	ie two previous ques	uons.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.
(5)	Derive the nature	of the curve from the	e two previous ques	tions.

Problem 2 (∼ 4 points.)**.**

Consider a moving point M(t) in 3-dimensional space whose acceleration is given by:

$$\vec{a}(t) = (6t, 0, -2)$$
.

Find the velocity $\vec{v}(t)$ and the position $\vec{r}(t)$ for this motion, assuming the initial conditions:

$$\begin{cases} \vec{r}(0) &= (0, 0, 1) \\ \vec{v}(0) &= (-1, 2, 0) \end{cases}$$

Where is the moving point M(t) at t = 1?