

MMBT3904 SMD General Purpose NPN Transistors SMD Universal-NPN-Transistoren

 $I_c = 200 \text{ mA}$ h_{FE} = 100 ... 300 $T_{imax} = 150$ °C

 $V_{CEO} = 40 V$ $P_{tot} = 350 \text{ mW}$

Typische Anwendungen

Signalverarbeitung,

Schalten, Verstärken

Besonderheiten

Standardausführung 1)

Universell anwendbar

Konfliktmineralien 1)

Konform zu RoHS, REACH,

Version 2018-01-18

Typical Applications Signal processing, Switching, Amplification Commercial grade 1)

Features

General purpose Compliant to RoHS, REACH, Conflict Minerals 1)

Mechanical Data 1)

Pb

Mechanische Daten 1)

Taped and reeled 3000 / 7" Gegurtet auf Rolle Weight approx. 0.01 g Gewicht ca. Case material UL 94V-0 Gehäusematerial Solder & assembly conditions 260°C/10s Löt- und Einbaubedingungen

M	C		_	1
ľ	0	L	_	

Type	Recommended complementary PNP transistors	
Code	Empfohlene komplementäre PNP-Transistoren	
1AM or 1E	MMBT3906	

Maximum ratings 2) Grenzwerte 2)

Collector-Emitter-voltage - Kollektor-Emitter-Spannung	B open	V_{CEO}	40 V
Collector-Base-voltage - Kollektor-Basis-Spannung	E open	V_{CBO}	60 V
Emitter-Base-voltage - Emitter-Basis-Spannung	C open	V_{EBO}	6 V
Power dissipation – Verlustleistung		P_{tot}	350 mW ³)
Collector current – Kollektorstrom	DC	\mathbf{I}_C	200 mA
Junction temperature – Sperrschichttemperatur Storage temperature – Lagerungstemperatur		T_{j} T_{S}	-55+150°C -55+150°C

Characteristics Kennwerte

		$(T_j = 25^{\circ}C)$	Min.	Тур.	Max.
DC current gain	– Kollektor-Basis-Stromverhältnis ⁴)				
$V_{CE} = 1 V$	$\begin{array}{l} I_{\text{C}} = 0.1 \text{ mA} \\ I_{\text{C}} = 1 \text{ mA} \\ I_{\text{C}} = 10 \text{ mA} \\ I_{\text{C}} = 50 \text{ mA} \\ I_{\text{C}} = 100 \text{ mA} \end{array}$	h _{FE}	40 80 100 60 30	-	- 300 - -

Please note the <u>detailed information on our website</u> or at the beginning of the data book Bitte beachten Sie die detaillierten Hinweise auf unserer Internetseite bzw. am Anfang des Datenbuches

 $T_A = 25$ °C and per diode, unless otherwise specified – $T_A = 25$ °C und pro Diode, wenn nicht anders angegeben

Mounted on P.C. board with 3 mm² copper pad at each terminal Montage auf Leiterplatte mit 3 mm² Kupferbelag (Lötpad) an jedem Anschluss

Tested with pulses t_p = 300 µs, duty cycle ≤ 2% - Gemessen mit Impulsen t_p = 300 µs, Schaltverhältnis ≤ 2%

Characteristics Kennwerte

	$(T_j = 25^{\circ}C)$) Min.	Тур.	Max.
Collector-Emitter saturation voltage – Kollektor-Sättigu	ingsspannung 1)			
$I_{\text{C}}=$ 10 mA, $I_{\text{B}}=$ 1 mA $I_{\text{C}}=$ 50 mA, $I_{\text{B}}=$ 5 mA		- -	- -	0.2 V 0.3 V
Base-Emitter saturation voltage – Basis-Sättigungsspa	nnung ¹)			
$I_{\text{C}}=10$ mA, $I_{\text{B}}=1$ mA $I_{\text{C}}=50$ mA, $I_{\text{B}}=5$ mA		0.65 V -	_ _	0.85 V 0.95 V
Collector-Base cutoff current – Kollektor-Basis-Reststro	om			
$V_{CE} = 30 \text{ V}, V_{EB} = 3 \text{ V}$		_	_	50 nA
Emitter-Base cutoff current – Emitter-Basis-Reststrom				
$V_{CE} = 30 \text{ V, - } V_{EB} = 3 \text{ V}$		_		50 nA
Gain-Bandwidth Product – Transitfrequenz				
I_{C} = 10 mA, V_{CE} = 20 V, f = 100 MHz		300 MHz	_	_
Collector-Base Capacitance – Kollektor-Basis-Kapazität	<u>.</u>			
$V_{CB}=5~V,~I_{E}=i_{e}=0,~f=1~MHz$		_	_	4 pF
Emitter-Base Capacitance – Emitter-Basis-Kapazität	<u>.</u>			
$V_{EB}=0.5~V,~I_{C}=i_{c}=0,~f=1~MHz$		_	_	8 pf
Switching times – Schaltzeiten (between 10% and 90%	% levels)			
delay time $V_{CC} = 3 \text{ V}, \text{ V}_{BE}$		_	_	35 ns
rise time $I_C = 10$ mA, I_E	$t_r = 1 \text{mA}$	_	_	35 ns
storage time $V_{cc} = 3 V, I_c = V_{cc}$	= 10 mA,t _s	_	_	200 ns
$I_{\text{B1}} = I_{\text{B2}} = 1 \text{ m}$	nA t _f		_	50 ns
Thermal resistance junction to ambient Wärmewiderstand Sperrschicht – Umgebung		< 357 K/W ²)		

Disclaimer: See data book page 2 or <u>website</u> **Haftungssauschluss:** Siehe Datenbuch Seite 2 oder <u>Internet</u>

2 http://www.diotec.com/ © Diotec Semiconductor AG

¹ Tested with pulses t_p = 300 μ s, duty cycle \leq 2% - Gemessen mit Impulsen t_p = 300 μ s, Schaltverhältnis \leq 2%

Valid, if leads are kept at ambient temperature Gültig, wenn die Anschlüsse auf Umgebungstemperatur gehalten werden