

COMP90038 Algorithms and Complexity

Lecture 13: Priority Queues, Heaps and Heapsort (with thanks to Harald Søndergaard & Michael Kirley)

Casey Myers
Casey.Myers@unimelb.edu.au
David Caro Building (Physics) 274

Binary Trees

• An example of a **binary tree**, with empty subtrees

This tree has height 4, the empty tree having height -1

Binary Tree Concepts

 Special trees have their external nodes □ only at level h and h+1 for some h.

A **full** binary tree: Each node has 0 or 2 (non-empty) children.

A **complete** tree: Each level filled left to right.

(Every level except perhaps the last is completely filled.)

Calculating the Height

Recursion is the natural way of calculating the height:

Levels and Height

So the tree has **height** 4 (its **maximum level**)

Tree Terminology

t is (a pointer to) the root node of the tree

Binary Tree Traversal

- Preorder traversal visits the root, then the left subtree, and finally the right subtree.
- Inorder traversal visits the left subtree, then the root, and finally the right subtree.
- **Postorder** traversal visits the left subtree, the right subtree, and finally the root.
- Level-order traversal visits the nodes, level by level, starting from the root.

Review from Lecture 12

Preorder Traversal

Visit order: 17 33 19 16 38 31 48 11 14

procedure PreorderTraverse(T)
 if T ≠ null then
 visit T.root
 PreorderTraverse(T.left)
 PreorderTraverse(T.right)

Call Stack

Heaps and Priority Queues

- The heap is a very useful data structure for priority queues, used in many algorithms.
- A priority queue is a set (or pool) of elements.
- An element is injected into the priority queue together with a priority (often the key value itself) and elements are ejected according to priority.
- We think of the heap as a partially ordered binary tree.
- Since it can be easily maintained as a complete tree, the standard implementation uses an array to represent the tree.

The Priority Queue

- As an abstract data type, the priority queue supports the following operations on a "pool" of elements (ordered by some linear order):
 - find an item with maximal priority
 - insert a new item with associated priority
 - test whether a priority queue is empty
 - eject the largest element.
- Other operations may be relevant, for example:
 - replace the maximal item with some new item
 - construct a priority queue from a list of items
 - join two priority queue.

Some Uses of Priority Queues

- Job scheduling done by you operating system. The OS will usually have a notion of "importance" of different jobs.
- (Discrete event) simulation of complex systems (like traffic, or weather). Here priorities are typically event times.
- Numerical computations involving floating point numbers. Here priorities are measures of computational "error".

Many sophisticated algorithms make essential use of priority queues (Huffman encoding and many shortest-path algorithms, for example).

Possible Implementations of the Priority Queue

Assume priority = key.

	INJECT(e)	EJECT()
Unsorted array or list		
Sorted array or list		
Heap	$O(\log n)$	$O(\log n)$

How is this accomplished?

The Heap

- A heap is a complete binary tree which satisfies the heap condition:
 - Each child has a priority (key) which is not greater than its parents.
- This guarantees the root of the tree is a maximal element.
- (Sometimes we talk about this as a max-heap—one can equally well have minheaps, in which each child is no smaller that its parents.)

Heaps and Non-Heaps

Which of these are heaps?

Heaps and Non-Heaps

Which of these are heaps?

Heaps and Non-Heaps

Which of these are heaps?

Heaps and Arrays

We can utilise the completeness of the tree and place its elements in level-order in an array H.

This way, the heap condition is very simple:

For all $i \in \{0,1,\dots,n\}$, we must have $H[i] \leq H[i/2]$

Properties of the Heap

• The root of the tree H[1] holds a maximal item; the cost of EJECT is O(1) plus time to restore the heap.

- The height of the heap is $\lfloor log_2 n \rfloor$.
- Each subtree is also a heap
- The children of node i are 2i and 2i+1.
- The nodes which happen to be parents are in array position 1 to $\lfloor n/2 \rfloor$.
- It is easier to understand heap operations if we think of the heap as a tree.

• Place the new item at the end; then let it "climb up", repeatedly swapping with parents that are smaller.

- Place the new item at the end; then let it "climb up", repeatedly swapping with parents that are smaller.
- We want to inject "P".
- We place "P" at the end.

- Place the new item at the end; then let it "climb up", repeatedly swapping with parents that are smaller.
- We want to inject "P".
- We place "P" at the end.
- We let it "climb up", swapping with smaller parents ("M" and "O")

- Place the new item at the end; then let it "climb up", repeatedly swapping with parents that are smaller.
- We want to inject "P".
- We place "P" at the end.
- We let it "climb up", swapping with smaller parents ("M" and "O")

Building a Heap Bottom-Up

• To construct a heap from an arbitrary set of elements, we can just use the inject operation repeatedly. But the construction cost will be $n \log n$.

- To construct a heap from an arbitrary set of elements, we can just use the inject operation repeatedly. But the construction cost will be $n \log n$.
- But there is a better way.
- Start with the last parent and move backwards, in level-order.
- Whenever a parent is found to be out of order, let it "sift down" until both children are smaller:

- To construct a heap from an arbitrary set of elements, we can just use the inject operation repeatedly. But the construction cost will be $n \log n$.
- But there is a better way.
- Start with the last parent and move backwards, in level-order.
- Whenever a parent is found to be out of order, let it "sift down" until both children are smaller:

- To construct a heap from an arbitrary set of elements, we can just use the inject operation repeatedly. But the construction cost will be $n \log n$.
- But there is a better way.
- Start with the last parent and move backwards, in level-order.
- Whenever a parent is found to be out of order, let it "sift down" until both children are smaller:

- To construct a heap from an arbitrary set of elements, we can just use the inject operation repeatedly. But the construction cost will be $n \log n$.
- But there is a better way.
- Start with the last parent and move backwards, in level-order.
- Whenever a parent is found to be out of order, let it "sift down" until both children are smaller:

- To construct a heap from an arbitrary set of elements, we can just use the inject operation repeatedly. But the construction cost will be $n \log n$.
- But there is a better way.
- Start with the last parent and move backwards, in level-order.
- Whenever a parent is found to be out of order, let it "sift down" until both children are smaller:

- To construct a heap from an arbitrary set of elements, we can just use the inject operation repeatedly. But the construction cost will be $n \log n$.
- But there is a better way.
- Start with the last parent and move backwards, in level-order.
- Whenever a parent is found to be out of order, let it "sift down" until both children are smaller:

- To construct a heap from an arbitrary set of elements, we can just use the inject operation repeatedly. But the construction cost will be $n \log n$.
- But there is a better way.
- Start with the last parent and move backwards, in level-order.
- Whenever a parent is found to be out of order, let it "sift down" until both children are smaller:

- To construct a heap from an arbitrary set of elements, we can just use the inject operation repeatedly. But the construction cost will be $n \log n$.
- But there is a better way.
- Start with the last parent and move backwards, in level-order.
- Whenever a parent is found to be out of order, let it "sift down" until both children are smaller:


```
for i \leftarrow \lfloor n/2 \rfloor downto 1 do
    k \leftarrow i
     v \leftarrow H[k]
     heap ← False
     while not heap and 2 \times k \le n do
         j \leftarrow 2 \times k
         if j < n then
              if H[j] < H[j + 1] then
                   j \leftarrow j + 1
         if v \geq H[j] then
              heap ← True
         else
              H[k] \leftarrow H[j]
              k \leftarrow i
     H[k] \leftarrow v
```



```
for i \leftarrow \lfloor n/2 \rfloor downto 1 do
    k \leftarrow i
    v \leftarrow H[k]
    heap ← False
    while not heap and 2 \times k \le n do
        i \leftarrow 2 \times k
                                                                            j is k's left child
        if j < n then
            if H[j] < H[j + 1] then
                                                                            j is k's largest child
                j \leftarrow j+1
        if v \geq H[j] then
            heap ← True
        else
                                                                            Promote H[j]
            H[k] \leftarrow H[j]
            k \leftarrow i
    H[k] \leftarrow v
```


for $i \leftarrow \lfloor n/2 \rfloor$ downto 1 do	<i>H</i> [1, ···, 7]	[2 9 7 6 5 8 3]
$k \leftarrow i$	n	7
$v \leftarrow H[k]$	i	
$heap \leftarrow False$		
while not heap and $2 \times k \le n$ do	k	
$j \leftarrow 2 \times k$	v	
if $j < n$ then	j	
if $H[j] < H[j+1]$ then	H[k]	
$j \leftarrow j+1$	H[j]	
if $v \geq H[j]$ then	H[j+1]	
$heap \leftarrow True$	110 1 1	
else	not HEAP	
$H[k] \leftarrow H[j]$ (2)	$2 \times k \le n$	
$k \leftarrow j$	j < n	
$H[k] \leftarrow v$ (9)	H[j] < H[j+1]	
\sim	$v \ge H[j]$	

for $i \leftarrow \lfloor n/2 \rfloor$ downto 1 do	<i>H</i> [1, · · · , 7]	[2976583
$k \leftarrow i$	n	7
$v \leftarrow H[k]$	i	3
heap ← False while not heap and $2 \times k \le n$ do ←——	k	3
$j \leftarrow 2 \times k$	v	7
if $j < n$ then	j	
if $H[j] < H[j+1]$ then	H[k]	7
$j \leftarrow j+1$	H[j]	
if $v \geq H[j]$ then $heap \leftarrow True$	H[j+1]	
else	not HEAP	TRUE
$H[k] \leftarrow H[j]$ (2)	$2 \times k \le n$	TRUE
$k \leftarrow j$	j < n	
$H[k] \leftarrow v$ (9)	H[j] < H[j+1]	
\sim	$v \ge H[j]$	
		•

Algorithm to Turn $H[1, \dots, n]$ into a Heap, Bottom-Up

for $i \leftarrow \lfloor n/2 \rfloor$ downto 1 do	$H[1,\cdots,7]$	[2 9 7 6 5 8 3]
$k \leftarrow i$	n	7
$v \leftarrow H[k]$	i	3
$heap \leftarrow False$ while not $heap$ and $2 \times k \le n$ do	k	3
$j \leftarrow 2 \times k$	υ	7
if $j < n$ then	j	6
if $H[j] < H[j+1]$ then	H[k]	7
$j \leftarrow j+1$	H[j]	8
if $v \geq H[j]$ then $heap \leftarrow True$	H[j+1]	3
else	not HEAP	TRUE
$H[k] \leftarrow H[j]$ (2)	$2 \times k \le n$	TRUE
$k \leftarrow j$	j < n	TRUE
$H[k] \leftarrow v$ (9)	H[j] < H[j+1]	
\sim	$v \ge H[j]$	

for $i \leftarrow \lfloor n/2 \rfloor$ downto 1 do	$H[1,\cdots,7]$
$k \leftarrow i$	n
$v \leftarrow H[k]$	i
$heap \leftarrow False$	
while not heap and $2 \times k \le n$ do	k
$j \leftarrow 2 \times k$	v
if $j < n$ then	j
if $H[j] < H[j+1]$ then	H[k]
$j \leftarrow j+1$	H[j]
if $v \geq H[j]$ then	נטיי
$heap \leftarrow True$	H[j+1]
else	not HEAF
$H[k] \leftarrow H[j]$ (2)	$2 \times k \le n$
$k \leftarrow j$	j < n
$H[k] \leftarrow v$ (9)	H[j] < H[j + 1]
\sim	$v \ge H[j]$
$\langle \rangle \rangle \langle \rangle \rangle$	

$H[1,\cdots,7]$	[2 9 7 6 5 8 3]
n	7
i	3
k	3
v	7
j	6
H[k]	7
H[j]	8
H[j+1]	3
not HEAP	TRUE
$2 \times k \le n$	TRUE
j < n	TRUE
H[j] < H[j+1]	FALSE
$v \ge H[j]$	

for $i \leftarrow \lfloor n/2 \rfloor$ downto 1 do	$H[1,\cdots,7]$
$k \leftarrow i$	n
$v \leftarrow H[k]$	i
heap \leftarrow False while not heap and $2 \times k \leq n$ do	k
$j \leftarrow 2 \times k$	v
if $j < n$ then	j
if $H[j] < H[j+1]$ then	H[k]
$j \leftarrow j+1$	H[j]
if $v \ge H[j]$ then $heap \leftarrow True$	H[j+1]
else	not HEAP
$H[k] \leftarrow H[j]$ (2)	$2 \times k \le n$
$k \leftarrow j$	j < n
$H[k] \leftarrow v$ (9)	H[j] < H[j+1]
\sim	$v \ge H[j]$

<i>H</i> [1, · · · , 7]	[2 9 7 6 5 8 3]
n	7
i	3
k	3
v	7
j	6
H[k]	7
H[j]	8
H[j+1]	3
not HEAP	TRUE
$2 \times k \le n$	TRUE
j < n	TRUE
H[j] < H[j+1]	FALSE
$v \ge H[j]$	FALSE

for $i \leftarrow \lfloor n/2 \rfloor$ downto 1 do	Γ
$k \leftarrow i$	F
$v \leftarrow H[k]$	\vdash
$heap \leftarrow False$	
while not heap and $2 \times k \le n$ do	
$j \leftarrow 2 \times k$	
if $j < n$ then	
if $H[j] < H[j+1]$ then	
$j \leftarrow j+1$	F
if $v \geq H[j]$ then	-
$heap \leftarrow True$	L
else	
$H[k] \leftarrow H[j]$ (2)	
$k \leftarrow j$	
$H[k] \leftarrow V$	
9	\vdash
	L
6 5 9 2	

<i>H</i> [1, · · · , 7]	[2 9 8 6 5 8 3]
n	7
i	3
k	6
v	7
j	6
H[k]	8
H[j]	8
H[j+1]	3
not HEAP	TRUE
$2 \times k \le n$	TRUE
j < n	TRUE
H[j] < H[j+1]	FALSE
$v \ge H[j]$	FALSE

for $i \leftarrow \lfloor n/2 \rfloor$ downto 1 do	
$k \leftarrow i$	
$v \leftarrow H[k]$	
$heap \leftarrow False$	
while not heap and $2 \times k \le n$ do	
$j \leftarrow 2 \times k$	
if $j < n$ then	
if $H[j] < H[j+1]$ then	
$j \leftarrow j+1$	
if $v \geq H[j]$ then	
$heap \leftarrow True$	
else	
$H[k] \leftarrow H[j]$ (2)	
$k \leftarrow j$	
$H[k] \leftarrow v$	
\sim	
	•

$H[1,\cdots,7]$	[2 9 8 6 5 8 3]
n	7
i	3
k	6
v	7
j	6
H[k]	8
H[j]	8
H[j+1]	3
not HEAP	TRUE
$2 \times k \le n$	FALSE
j < n	TRUE
H[j] < H[j+1]	FALSE
$v \ge H[j]$	FALSE

for $i \leftarrow \lfloor n/2 \rfloor$ downto 1 do
$k \leftarrow i$
$v \leftarrow H[k]$
$heap \leftarrow False$
while not heap and $2 \times k \le n$ do
$j \leftarrow 2 \times k$
if $j < n$ then
if $H[j] < H[j+1]$ then
$j \leftarrow j+1$
if $v \geq H[j]$ then
heap ← True
else
$H[k] \leftarrow H[j]$ (2)
$k \leftarrow j$
$H[k] \leftarrow V \longleftarrow$
9) 8)
6 5 7 3

$H[1,\cdots,7]$	[2 9 8 6 5 8 3]
n	7
i	3
k	6
v	7
j	6
H[k]	7
H[j]	8
H[j+1]	3
not HEAP	TRUE
$2 \times k \le n$	FALSE
j < n	TRUE
H[j] < H[j+1]	FALSE
$v \ge H[j]$	FALSE

Analysis of Bottom-Up Heap Creation

- For simplicity, assume the heap is a full binary tree: $n = 2^{h+1} 1$.
- Here is an upper bound on the number of "down-sifts" needed (consider the root to be at level h, so leaves are at level 0):

$$\sum_{i=1}^{h} \sum_{\text{nodes at level } i} i = \sum_{i=1}^{h} i \cdot 2^{h-i} = 2^{h+1} - h - 2$$

- The last equation is easily proved by mathematical induction (or see Levitin Appendix A).
- Note that $2^{h+1} h 2 < n$, so we perform at most a linear number of down-sift operations. Each down-sift is preceded by two key comparison, so the number of comparison is also linear.
- Hence we have a linear-time algorithm for heap creation.

Ejecting a Maximal Element from a Heap

• Here the idea is to swap the root with the last item z in the heap, and then let the z "sift-down" to its proper place.

Ejecting a Maximal Element from a Heap

• Here the idea is to swap the root with the last item z in the heap, and then let the z "sift-down" to its proper place.

- Here the idea is to swap the root with the last item z in the heap, and then let the z "sift-down" to its proper place.
- After this, the last element (shown here in green) is no longer considered part of the heap, that is, n is decremented.
- Clearly ejection is $O(\log n)$.

- Here the idea is to swap the root with the last item z in the heap, and then let the z "sift-down" to its proper place.
- After this, the last element (shown here in green) is no longer considered part of the heap, that is, n is decremented.
- Clearly ejection is $O(\log n)$.

- Here the idea is to swap the root with the last item z in the heap, and then let the z "sift-down" to its proper place.
- After this, the last element (shown here in green) is no longer considered part of the heap, that is, n is decremented.
- Clearly ejection is $O(\log n)$.

- Here the idea is to swap the root with the last item z in the heap, and then let the z "sift-down" to its proper place.
- After this, the last element (shown here in green) is no longer considered part of the heap, that is, n is decremented.
- Clearly ejection is $O(\log n)$.

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T, S

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T, S

(G) (I) (S) (T)

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T, S, R

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T, S, R

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T, S, R, O

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T, S, R, O

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T, S, R, O, N

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T, S, R, O, N

- First build a heap from the items: S, O, R, T, I, N, G
- Then repeatedly eject the largest, placing it at the end of the heap.
- Ejected: T, S, R, O, N, I, G

Heapsort

- Heapsort is a $\Theta(n \log n)$ sorting algorithm, based on the idea from this exercise.
- Given unsorted array $H[1, \dots, n]$:

- Step 1 Turn *H* into a heap.
- Step 2 Apply the eject operation n-1 times.

Properties of Heapsort

- On average slower that quicksort, but stronger performance guarantee.
- Truly in place.
- Not stable.

Coming Up Next

• We will look at the "Transform and Conquer" paradigm (Levitin Section 6.1).