Appunti del corso Linguaggi e Computabilità

Marco Natali

Il corso di Linguaggi e Computabilità riguarda l'informatica teorica e si occupa di definire la calcolabilità di un problema, di definire le grammatiche e i linguaggi formali con l'ausilio di anche di automi e macchine di Turing.

Incominciamo con la definizione dei componenti basilari attraverso cui svilupperemo poi i concetti del corso

Def. Si definisce come *alfabeto*, indicato con Σ , una sequenza di simboli, attraverso cui possiamo stabilire un alfabeto.

Si definisce invece come stringa, una sequenza finita di simboli appartenenti ad un alfabeto Σ ed esisterà sempre la stringa ϵ , indicante la stringa vuota.

Esempio.

$$\Sigma = \{0, 1\} \text{ e}\Sigma = \{a, b, c\}$$
$$w = 10110 \text{ } z = abccabbcc$$

Def. È possibile fornire una definizione induttiva di stringa, partendo dalla stringa ϵ :

CASO BASE : ϵ è una stringa vuota

CASO PASSO : se w è una stringa, allora anche $a \circ w$ è una stringa

Dopo aver fornito le definizioni per le stringhe, definiamo le seguenti operazioni definite su le stringhe:

• insieme di stringhe: definiamo come Σ^k l'insieme di stringhe su Σ con k caratteri come segue:

$$\Sigma^0 = \{\epsilon\}$$

 $\Sigma^1
eq \Sigma$ ma sono l'insieme delle stringhe di un carattere

 Σ^2 = insieme di stringhe di due caratteri

.

 Σ^k = insieme di stringhe di k caratteri

Le due più importanti insiemi di stringhe, usate per rappresentare l'insieme di stringhe di qualsiasi lunghezza, sono:

$$\Sigma^* = \bigcup_{i=0} \Sigma^i$$

$$\Sigma^+ = \Sigma^* - \{\epsilon\}$$

• $|w|: \Sigma^* \to \mathbb{N}$: rappresenta la lunghezza di una stringa, ossiail numero di caratteri presenti in una stringa, e la definizione di lunghezza avviene induttivamente come segue:

BASE: la lunghezza di $|\epsilon| = 0$

PASSO : se |w| = n con $n \in \mathbb{N}$ e sia $a \in \Sigma$ allora $|a \circ w| = 1 + |w| = n + 1$.

Esempio. w = abcdec |w| = 6

• $\circ: \sum^* \times \sum^* \to \sum^*$: rappresenta la concatenazione, ossial'aggiunta dei caratteri della seconda stringa al termine della prima stringa ma vediamo ora una definizione più formale:

Def. Date due stringhe $x = a_1 a_2 \dots a_n$ e $y = b_1 b_2 \dots b_n$ si definisce $x \circ y = a_1 a_2 \dots a_n b_1 b_2 \dots b_n$ con $|x \circ y| = |x| + |y| = n + m$.

La concatenazione possiede le seguenti proprietà:

- è associativa: $\forall x, y, z \in \sum^* x \circ (y \circ z) = (x \circ y) \circ z$.

- non è commutativa infatti presi due stringhe x, y diverse risulta $x \circ y \neq y \circ x$.
- possiede l'elemento neutro ϵ per cui $x \circ \epsilon = x = \epsilon \circ x$.

Esempio.

```
w = 1011100 z = 1011110 w \circ z = 10111001011110 z \circ w = 1011110111100
```

Attraverso le seguenti operazioni si può stabilire che $(\Sigma^*, \circ, \epsilon)$ è un monoide libero su Σ .

Dopo aver considerato e definito l'alfabeto e le stringhe, bisogna definire i linguaggi, concetto su cui si basa tutto il nostro corso e l'informatica teorica:

Def. Definiamo come *Linguaggio* un'insieme di stringhe scelte su Σ^* scelte per far parte del linguaggio ossia $L \subseteq \Sigma^*$. Le componenti di un linguaggio sono:

ALFABETO: insieme di simboli su cui definiamo poi il lessico e la sintassi

LESSICO: definisce il vocabolario del linguaggio e viene definito tramite una grammatica di tipo 3

SINTASSI: definisce come le varie frasi del linguaggio devono essere disposte nel linguaggio e ciò viene definito da una grammatica di tipo 2.

SEMANTICA: il significato attribuito alle frasi del linguaggio però nei linguaggi formali deriva dalla sintassi anche se in questo corso la semantica non verrà affrontata.

I linguaggi possono essere riconosciuti attraverso degli automi oppure generati medianti delle grammatiche.

Un'altra cosa importante è che si hanno sottoinsiemi particolari di linguaggi, come l'insieme vuoto, che resta comunqe un linguaggio, il **linguaggio vuoto** e $\emptyset \in \Sigma^k$, $|\emptyset| = 0$ che è diverso dal linguaggio che contiene la stringa vuota $|\varepsilon| = 1$, inoltre $\Sigma^* \subseteq \Sigma^*$ che ha lunghezza infinita.

Vediamo qualche esempio di linguaggio:

• il linguaggio di tutte le stringhe che consistono in *n* o seguiti da *n* 1:

$$\{\epsilon, 01, 0011, 000111, ...\}$$

• l'insieme delle stringhe con un uguale numero di o e di 1:

$$\{\epsilon, 01, 10.0011, 0101.1001, ...\}$$

• l'insieme dei numeri binari il cui valore è un numero primo:

$$\{\epsilon, 10, 11, 101, 111, 1011, ...\}$$

- Σ^* è un linguaggio per ogni alfabeto Σ
- \emptyset , il linguaggio vuoto, e $\{\epsilon\}$ sono un linguaggio rispetto a qualunque alfabeto

La prima modalità per definire un linguaggio è attraverso la definizione di una grammatica, per stabilire tutte e sole le stringhe del linguaggio. In questo paragrafo forniremo soltanto una definizione informale e definiamo le diverse tipologie di gerarchie, senza effettuarne una trattazione formale, cosa che avverrà nel prossimo capitolo.

Def. Si definisce come *Grammatica* un'insieme di regole che delineano le stringhe ammissibili del linguaggio e possono essere di due tipologie:

- grammatica generativa : insieme di regole che permettono di generare tutte le stringhe di un lunguaggio partendo dalle stringhe base
- grammatica analitica : analizza le stringhe passate in input e stabilisce l'appartenenza o meno al linguaggio

Nel 1956 il linguista Choumsky introdusse e definì la gerarchia delle grammatiche e linguaggi, che ha avuto una notevole importanza nell'informatica teorica anche se il suo intento era quello di catalogare le varie tipologie di linguaggi naturali:

GRAMMATICHE DI TIPO o : non si hanno restrizioni sulle regole di produzione, $\alpha \to \beta$ e sono linguaggi ricorsivamente numerabili, rappresentati dalle *macchine di Turing*, deterministiche o non deterministiche (la macchina di Turing è un automa).

GRAMMATICHE DI TIPO 1 : il lato destro della produzione ha lunghezza almeno uguale a quello sinistro e si chiamano anche grammatiche dipendenti dal contesto e come automa hanno la macchina di Turing che lavora in spazio lineare:

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 B \alpha_2$$

con α_1 e α_2 detti *contesto* e α_1 , α_2 , $\beta \in (V \cup T)^*$

GRAMMATICHE DI TIPO 2 : sono quelle libere dal contesto, context free ed usano come riconoscitore gli automi a pila. Come regola ha $A \to \beta$ con $A \in V$ e $\beta \in V \cup T$ *.

GRAMMATICHE DI TIPO 3 : sono le grammatiche *regolari*, i cui linguaggi vengono riconosciuti dagli automi a stati finiti.

Come regole ha $A \to \alpha B$ (o $A \to B\alpha$) e $A \to \alpha$ con $A, B \in V$ e $\alpha \in T$.

Durante questo corso effettueremo una trattazione delle grammatiche di tipo 3 e 2, anche se analizzeremo solo un esempio di grammatica di tipo 1; iniziamo nel prossimo capitolo a considerare le grammatiche di tipo 2, chiamate grammatiche context-free.

1 | GRAMMATICHE DI TIPO 2

Iniziamo ora a considerare le grammatiche di tipo 2 partendo da un esempio e poi fornendo una definizione formale.

Esempio. Dato il linguaggio delle stringhe palindrome $L_{pal} = \{w \in \Sigma^* : w = w^R\}$ dove w^R rappresenta la stringa reversa per cui ad esempio $'OTTO' \in L_{pal}$ mentre 'PAPA' non appartiene al linguaggio.

Definiamo in maniera più formale e meno ambigua i componenti di L_{pal} :

caso base $: \epsilon, 0, 1 \in L_{pal}$

CASO INDUTTIVO : se $w \in L_{pal}$ allora 0w0 e 1w1 appartengono a L_{pal} e nient'altro appartiene al linguaggio.

Le regole di derivazione per L_{pal} sono le seguenti, e derivano dalla definizione dei componenti:

- \bullet $P \rightarrow \epsilon$
- \bullet $P \rightarrow 0$
- \bullet $P \rightarrow 1$
- $P \rightarrow 0P0$
- $P \rightarrow 1P1$

Una versione più concisa delle regole di derivazione è la seguente:

$$P_{g}\{P \rightarrow \epsilon |0|1|0P0|1P1\}$$

Dopo aver dato le regole di derivazione dobbiamo capire se le seguente regole definiscono tutte e sole le stringhe del linguaggio per cui ci chiediamo per esempio se $010 \in L_{pal}$ e $10001 \in L_{pal}$?

 $P \Rightarrow 0P0 \Rightarrow 010$ la stringa appartiene correttamente al linguaggio

(1)

 $P \Rightarrow 1P1 \Rightarrow 10P01 \Rightarrow 10001$ la stringa appartiene correttamente al linguaggio

(2)

(3)

Attraverso l'applicazione di una serie di regole di derivazione otteniamo una stringa $w \in \Sigma^*$ se e solo $w \in L$ della grammatica definita.

Def. Si definisce una grammatica context free come $G = (V, T, P_g, S)$, i cui componenti sono:

- V rappresenta l'insieme delle variabili usate per rappresentare un linguaggio
- T rappresenta l'insieme dei simboli terminali, ossia l'insieme dei simboli attraverso cui sono definite le stringhe del linguaggio per questo di solito coincide con l'alfabeto del linguaggio.
- *S* rappresenta la variabile di inizio della grammatica, ossia la variabile attraverso cui si definisce la grammatica per cui le altre variabili sono classi ausiliari di stringhe che aiutano a definire le stringhe del linguaggio.

• P_g indica l'insieme di regole, che rappresentano la definizione ricorsiva del linguaggio, della seguente forma:

$$P_{\varphi} = \{X \to \beta | \beta \in (V \cup T)^* \text{ e } X \in V\}$$

la variabile X rappresenta la testa della produzione mentre β è il corpo

Non si possono applicare delle regole in parallelo, ma soltanto una alla volta.

Nell'esempio del linguaggio palidromo la grammatica che lo genera è

$$G = (\{P\}, \{0,1\}, \{P \to \epsilon, P \to 0, P \to 1, P \to 0P0, P \to 1P1\}, S\}$$

Dopo aver definito in maniera formale di grammatica introduciamo il concetto di derivazione, per stabilire se una stringa appartiene o meno al linguaggio.

Def. Sia $G = (V, T, P_g, S)$ una grammatica context-free, sia $\alpha A\beta$ una stringa di terminali e variabili con $A \in V$ e sia infine $A \to \gamma$ una regola di derivazione allora $\alpha A\beta \Rightarrow_g \alpha \gamma \beta$.

Si indica \Rightarrow_g^* , il simbolo di applicazione di zero,uno o più step di derivazione, definito nel seguente modo:

CASO BASE: per ogni stringa α di terminali e variabili, si ha $\alpha \Rightarrow_{g}^{*} \alpha$

caso passo : se
$$\alpha \Rightarrow_g^* \beta$$
 e $\beta \Rightarrow_g \gamma$ allora $\alpha \Rightarrow_g^* \gamma$

Si può anche dire che $\alpha \to_G *\beta$ se e solo se esiste una sequenza di stringhe $\gamma_1,...,\gamma_n$ con $n \ge 1$ tale che $\alpha = \gamma_1$, $\beta = \gamma_n$ e $\forall i, 1 < i < n-1$ si ha che $\gamma_1 \to \gamma_{i+1}$ per cui la derivazione in o o più passi è la chiusura transitiva della derivazione.

Le stringhe che otteniamo sono delle forme sentenziali, ossia stringhe appartenenti a $(V \cup T)^*$ e un particolare sottoinsieme, in cui le stringhe sono composte soltanto da terminali, definisce le stringhe del linguaggio.

Sempre considerando l'esempio del linguaggio delle stringhe palindrome la derivazione di 10011001 è la seguente:

$$P \Rightarrow 1P1 \Rightarrow 10P01 \Rightarrow 100P001 \Rightarrow 1001P1001 \Rightarrow 10011001$$

Al fine di ridurre il numero di scelte nella derivazione di una stringa introduciamo ora:

LEFT DERIVATION: sostituiamo la variabile più a sinistra nell'applicazione di una regola di derivazione e ciò viene rappresentato con il simbolo \Rightarrow_{lm} .

RIGHT DERIVATION: sostituiamo la variabile più a destra nell'applicazione di una regola di derivazione ed essoviene rappresentato con il simbolo \Rightarrow_{rm} .

Def. Data una grammatica context-free $G = (V, T, P_g, S)$ si definisce un linguaggio context-free L come:

$$L_g = \{ w \in T^* | S \Rightarrow_g^* w \}$$

Nei linguaggi context-free si può soltanto effettuare la concatenazione e l'annidamento dei sottolinguaggi come vediamo nei seguenti esempi:

Esempio. Mostriamo ora un esempio di linguaggio definito come la concatenazione di due linguaggi

$$L_g = \{w \in \{0,1\}^* | w = 0^m 1^{m+1} 01^n 001^n \ n \ge 0\}$$

Si può vedere che ci 3 blocchi che concatenati generano il linguaggio L_g per cui le regole di derivazione sono

$$P_g = \{S \to X0Y, X \to 1 | 0X1, Y \to 1001 | 1Y1\}$$

passo	stringa ricorsiva	var	prod	passo stringa impiegata
1	a	I	5	\
2	b	I	6	\
3	bo	I	9	2
4	boo	I	9	3
5	a	Е	1	1
6	boo	Е	1	4
7	a+boo	Е	2	5,6
8	(a+boo)	Е	4	7
9	a*(a+boo)	Е	3	5, 8

Tabella 1: Inferenza ricorsiva di a * (a + b00)

Esempio. Mostriamo ora un esempio di linguaggio definito come l'annidamento di linguaggi:

$$L = \{w = \{a, b, c, d\}^* | w = a^n b^m c^m d^n \, m > 0, n \ge 0\}$$

Le regole di produzione del seguente linguaggio sono $P_g = \{S \rightarrow aSd | Y, Y \rightarrow Y, Y \rightarrow X, Y \rightarrow$ bYc|bc} e come si nota il linguaggio viene definito come una sequenza di a e d intrammezzate da un blocco Y, formato da b e c, e ciò è l'annidamento tra diversi blocchi di una stringa che formano le stringhe del linguaggio.

Un'altra modalità per stabilire l'appartenza di una stringa di un linguaggio è l'inferenza ricorsiva, in cui, a differenza delle altre modalità, applica le regole dal corpo alla testa, ossia concateniamo ogni terminale che appare nel corpo e inferiamo che la stringa trovata è nel linguaggio delle variabili, presenti in testa alle regole.

Viene poco utilizzato in quanto è più naturale e chiaro pensare secondo la derivazione per cui ne vediamo soltanto un esempio e lo usiamo in un importante teorema sull'equivalenza delle modalità di derivazione, che verrà presentato prossimamente.

Esempio. Sia G = (V, T, O, E), con $V = \{E, I\}$ e $T = \{a, b, 0, 1, (,), +, *\}$ quindi ho le seguenti regole, è di tipo 3:

1.
$$E \rightarrow I|E + E|E * E|(E)$$

2.
$$I \rightarrow a|b|Ia|Ib|I0|I1$$

Voglio ottenere a * (a + b00) e sostituisco sempre a destra (right most derivation):

$$E \to E * E \to E * (E) \to E * (E + E) \to E * (E + I) \to E + (E + I0)$$

$$\rightarrow R + (I + b00) \rightarrow E * (a + b00) \rightarrow I * (a + b00) \rightarrow a * (a + b00)$$

usiamo ora l'inferenza ricorsiva:

ALBERI DI DERIVAZIONE 1.1

Introduciamo ora un'importante forma grafica per vedere le regole di derivazioni applicate per formare una stringa

Def. Data una grammatica context-free G, un albero di derivazione per G è un albero composto come:

- ogni nodo interno è etichettato con una variabile $X \in V$, con la radice etichettata con S.
- ogni foglia è etichettata con una variabile, un simbolo terminale o ϵ ; se una foglia viene etichettata con ϵ allora dev essere l'unico figlio del padre.

• se un nodo è etichettato con A e i suoi figli sono etichettati come $x_1, x_2, ..., x_k$, allora $A \to x_1 x_2 ... x_k$ è una regola di produzione della grammatica.

Eseguendo la concatenazione delle stringhe foglia otteniamo una stringa w appartenente alla grammatica di cui abbiamo svolto l'albero sintattico

Esempio. Prendendo il linguaggio L definito come segue: $L = \{w \in \{a, b, c, d\}^* | w = a^n c b^m c d^{n+m} n \ge 0, m > 0\}$ stabiliamo una grammatica context-free e fare l'albero sintattico di $aacbbbcddddd \in L$: le regole di produzione di L sono $P_g = \{S \Rightarrow aSd|cY, Y \Rightarrow bcd|bYd\}$ per cui la grammatica è:

$$G = (\{S, Y\}, \{a, b, c, d\}, P_g, S)$$

L'albero sintattico di aacbbbcddddd è il seguente:

1.2 EQUIVALENZA TRA LE DERIVAZIONI

In questo paragrafo consideriamo un importante teorema sulle equivalenze tra le varie modalità di derivazione, definito come segue:

Thm: 1.1. Data una grammatica context-free $G = (V, T, P_g, S)$ abbiamo che le seguenti modalità di derivazione sono equivalenti:

- 1. la procedura di inferenza ricorsiva che determina che una stringa di terminali w appartiene ad un linguaggio di variabili A
- 2. $A \Rightarrow^* w$
- 3. $A \Rightarrow_{lm}^* w$
- 4. $A \Rightarrow_{rm}^* w$
- 5. esiste un albero sintattico con radice A e come prodotto di foglie la stringa w.

Esempio. Usiamo l'esempio delle stringhe palindrome:

$$P \rightarrow 0P0|1P1|\epsilon$$

sia il seguente albero sintatico:

Esempio. Si ha:

$$E \rightarrow I | E + E | E * E | (E)$$

$$I \rightarrow a|b| Ia| Ib| I0| I1$$

un albero sintattico per a * (a + b00) può essere:

queste 5 proposizioni si implicano l'uni l'altra:

Le prime due sono banali dato che una derivazione sinistra/destra sono anche delle derivazioni quindi risulta verificato. Vediamo le altre dimostrazioni di implicazioni:

da 1 a 5. si procede per induzione:

$$\stackrel{A}{\vartriangle}$$

• **caso passo:** suppongo vero per un numero di righe $\leq n$, lo dimsotro per n+1 righe:

$$A \rightarrow X_1, X_2, ..., X_k$$

$$w = w_1, w_2, ..., w_k$$

ovvero, in meno di n + 1 livelli:

da 5 a 3. procedo per induzione:

• caso base (n=1): $\exists A \to w$ quindi $A \to_{lm} w$, come prima si ha un solo livello:

• caso passo: suppongo che la proprierà valga per ogni albero di profondità minore uguale a n, dimostro che valga per gli alberi profondi n + 1:

$$A \rightarrow X_1, X_2, ..., X_k$$

$$w = w_1, w_2, ..., w_k$$

ovvero, in meno di n + 1 livelli:

$$A \rightarrow_{lm} X_1, X_2, ..., X_k$$

 $x_1
ightharpoonup^*_{lm} w_1$ per ipotesi induttiva si ha un albero al più di n livelli quindi:

$$A \to_{lm} X_1, ..., X_k \to_{lm}^* w_1, X_2, ..., X_k \to_{lm}^* ... \to_{lm}^* w_1, ..., w_k = w$$

Esempio.

$$E \rightarrow I \rightarrow Ib \rightarrow ab$$

$$\alpha E\beta \rightarrow \alpha I\beta \rightarrow \alpha Ib\beta \rightarrow \alpha ab\beta$$
, $\alpha, \beta \in (V \cup T)^*$

Esempio. Mostro l'esistenza di una derivazione sinistra dell'albero sintattico di a * (a + b00):

$$E \to_{lm}^* E * E \to_{lm}^* I * E \to_{lm}^* a * E \to_{lm}^* a * (E) \to_{lm}^* a * (E + E) \to_{lm}^*$$

$$a * (I + E) \to_{lm}^* a * (a + E) \to_{lm}^* a * (a + I) \to_{lm}^* a + (a + I0) \to_{lm}^* a * (a + I00) \to_{lm}^* a * (a + b00)$$

GRAMMATICHE E LINGUAGGI AMBIGUI 1.3

Fino ad ora abbiamo considerato delle grammatiche uniche, ossia in grado di generare in maniera univoca un linguaggio ma non è sempre così, infatti in questo paragrafo consideramo il problema dell'ambiguità nelle grammatiche e nelle grammatiche.

Diamo ora una definizione formale di grammatica ambigua:

Def. Si dice che una grammatica è ambigua se e solo se esiste una stringa $w \in L$ tale per cui w ammette due derivazioni lm e/o rm diverse oppure ammette due alberi sintattici definiti sulla stessa grammatica G

L'obiettivo è quello di avere grammatiche non ambigue perchè esse permettono di definire in maniera univoca, per cui automamilizzabile con una procedura, l'insieme delle stringhe del linguaggio e fortunatamente nella maggior parte dei casi, quando il linguaggio non è ambiguo, data una grammatica ambigua è possibile definire una grammatica non ambigua G' tale che L(G) = L(G').

Esempio. vediamo un esempio:

La grammatica data delle espressioni algebriche ha due cause di ambiguità:

- 1. la precedenza degli operatori non viene rispettata in quanto andrebbe raggruppato prima il silmbolo di * rispetto a +
- 2. una sequenza di uguali operatori può essere reggruppata sia da sinistra che da destra e si stabilisce per convenzione che si raggruppa da sinistra a destra.

Considerate queste cause di ambiguità, per eliminarla si introducono altre variabili definite come:

- 1. un fattore è un espressione che non può essere spezzata da nessun operatore, sia il * che il +, per cui gli unici fattori nel nostro linguaggio delle espressioni sono gli identificatori e ogni espressioni dentro le parentesi.
- 2. un termine è un espressione che non può spezzata dall'operatore +.
- 3. un espressione può riferirsi a qualsiasi possibile espressione, incluse quelle che possono essere spezzate da un adiacente * o +

La grammatica non ambigua del linguaggio delle espressioni è la seguente:

$$P_{exp} = \{E \rightarrow T | E + T, T \rightarrow F | T * F, F \rightarrow I | (E), I \rightarrow a|b|aI|bI|0I|1I\}$$

Possono esserci più derivazioni di una stringa ma l'importante è che non ci siano alberi sintattici diversi e capire se una CFG è ambigua è un problema indecidibile, per cui molto complesso ed oneroso.

Esempio. vediamo un esempio:

$$S \rightarrow \epsilon |SS| iS| iSeS$$

con S=statement, i=if e e=else. Considero due derivazioni:

1. $S \rightarrow iSeS \rightarrow iiSeS \rightarrow iie$: Fare albero sintattico!!!!

Si ha quindi una grammatica ambigua

Per risolvere codesto problema nei linguaggi di programmazione i compilatori assumono la consecutine di associare l'else all'ultimo if

Def. Un linguaggio $L \subseteq \sum^*$ è detto *ambiguo* se per ogni grammatica G, tale per cui $L = L_G$, risulta che G è ambigua.

Esempio. Sia $L = \{a^n b^n c^m d^m | n, m \ge 1\} \cup \{a^n b m n c^m d^n | n, m \ge 1\}$ si ha quindi un CFL formato dall'unione di due CFL. L è inerentemente ambiguo e generato dalla seguente grammatica:

- $S \rightarrow AB \mid C$
- $A \rightarrow aAb|ab$
- $B \rightarrow cBd | cd$
- $C \rightarrow aCd \mid aDd$
- $D \rightarrow bDc|bc$

si possono avere due derivazioni:

1.
$$S \rightarrow_{lm} AB \rightarrow_{lm} aAbB \rightarrow_{lm} aabbB \rightarrow_{lm} aabbcBd \rightarrow_{lm} aabbccdd$$

2.
$$S \rightarrow_{lm} C \rightarrow_{lm} aCd \rightarrow_{lm} aaBdd \rightarrow_{lm} aabBcdd \rightarrow_{lm} aabbccdd$$

a generare problemi sono le stringhe con n=m perché possono essere prodotte in due modi diversi da entrambi i sottolinguaggi. Dato che l'intersezione tra i due sottolinguaggi non è vuota si ha che L è ambiguo

2 | LINGUAGGI E GRAMMATICHE DIPENDENTI DAL CONTESTO

vediamo un esempio di grammatica dipendente dal contesto:

 $L = \{a^n b^n c^n | n \ge 1\}$ la cui grammatiche che lo genera è la seguente:

$$G = \{V, T, P, S\} = \{(S, B, C, X)\} = \{(a, b, c), P, S\}$$

Ecco le regole di produzione, e le grammatiche di tipo 1 posso scambiare variabili a differenza delle context free:

- 1. $S \rightarrow aSBC$
- 2. $S \rightarrow aBC$
- 3. $CB \rightarrow XB$
- 4. $XB \rightarrow XC$
- 5. $XC \rightarrow BC$
- 6. $aB \rightarrow ab$
- 7. $bB \rightarrow bb$
- 8. $bC \rightarrow bc$
- 9. $cC \rightarrow cc$

Vediamo un esempio di derivazione: per n=1 ho abc ovvero $S \rightarrow aBC \rightarrow abC \rightarrow abc$.

con n = 2 ho aabbcc:

$$S o aSBC o aaBCBC o aaBXBC o aaBXCC o aaBBCC o aabBCC o aabbCC o aabbcC o aabbcC$$

Vedere dimostrazione pag 14 di Lorenzo Soligo Vediamo un esempio di grammatica dipendente dal contesto:

$$L = \{a^n b^m c^n d^m | n, m \ge 1\}$$

Si ha:

$$G = (\{S, X, C, D, Z\}, \{a, b, c, d\}, P, S)$$

con le seguenti regole di produzione:

- $S \rightarrow aSc \mid aXc$
- $X \rightarrow bXD \mid bD$
- $DC \rightarrow CD$
- $DC \rightarrow DZ$
- $DZ \rightarrow CZ$
- $XZ \rightarrow CD$
- $bC \rightarrow bc$
- $cC \rightarrow cc$

•
$$cD \rightarrow cd$$

•
$$dD \rightarrow dd$$

Provo a derivare *aabbbccddd* quindi con n = 2, m = 3:

$$S o aSC o aaXCC o aabXDCC o aabbXDDCC o$$
 $aabbbDDDCC o aabbbCCDDD o aabbbccddd$

3 | LINGUAGGI REGOLARI

Per definire le stringhe appartenenti ai linguaggi regolari, di tipo 3, vi può utilizzare le *grammatiche regolari*, in cui vengono definite delle regole per stabilire se e quando una stringa appartiene al linguaggio, oppure le *espressioni regolari*.

Incominciamo a considerare le grammatiche regolari, sottoinsieme delle grammatiche di tipo 2 secondo la gerarchia di Choumsky, utilizzate per generare i linguaggi regolari.

Si ha la solita grammatica G = (V, T, P, S) con però vincoli su P:

- ϵ si può ottenere solo con $S \to \epsilon$
- le produzioni sono tutte lineari a destra ($A \rightarrow aA$ o $A \rightarrow a$) o a sinistra ($A \rightarrow Ba$ o $A \rightarrow a$)

Esempio. $I \rightarrow a |b| Ia| Ib| I0| I1$ è una grammatica con le produzioni lineari a sinistra.

Potremmo pensarlo a destra $I \rightarrow a|b|aI|bI|0I|1I$.

Vediamo esempi di produzione con queste grammatiche:

• con $I \rightarrow a|b|Ia|Ib|I0|I1$ possiamo derivare ab01b0:

$$I \rightarrow I0 \rightarrow Ib0 \rightarrow I1b0 \rightarrow I01b0 \rightarrow Ib01b0 \rightarrow ab01b0$$

• con $I \rightarrow a |b| aI |bI| 0I |1I|$ invece non riusciamo a generare nulla:

$$I \rightarrow 0I \rightarrow 0a$$

Definisco quindi un'altra grammatica (con una nuova categoria sintattica):

$$I \rightarrow aJ|bJ$$

$$J \rightarrow a|b|aJ|bJ|0J|1J$$

che però non mi permette di terminare le stringhe con o e 1, la modifico ancora otterdendo:

$$I \rightarrow aJ \mid bJ$$
$$J \rightarrow a \mid b \mid aJ \mid bJ \mid 0J \mid 1J \mid 0 \mid 1$$

e questo è il modo corretto per passare da lineare sinistra a lineare destra

Esempio. Sia $G = (\{S\}, \{0,1\}, P, S)$ con $S \rightarrow \epsilon | 0S | 1S$ e si ha quindi:

$$L(G) = \{0, 1\}^*$$

Si hanno comunque solo produzioni lineari a destra mentre usando le produzioni lineari a sinistra ottengo:

$$S \rightarrow \epsilon |S0| S1$$

Esempio. Trovo una grammatica lineare destra e una sinistra per $L = \{a^n b^m | n, m \ge 0\}$:

• lineare a destra: si ha $G = (\{S, B\}, \{a, b\}, P, S)$ e quindi:

$$S \to \epsilon |aS| bB$$

$$B \rightarrow bB | b$$

ma non si possono generare stringhe di sole *b*, infatti:

$$S \Rightarrow aS \Rightarrow abB \Rightarrow abbB \Rightarrow abbb$$

ma aggiungere ε a B **non è lecito**. posso però produrre la stessa stringa da due derivazioni diverse:

$$S \to \varepsilon |aS| bB| b$$
$$B \to bB| b$$

che risulta quindi la nostra lineare a destra

• lineare a sinistra: si ha $G = (\{S, A\}, \{a, b\}, P, S)$ e quindi:

$$S \to \varepsilon |Sb| Ab| a$$
$$A \to Aa| a$$

ESPRESSIONI REGOLARI 3.1

Le espressioni regolari permettono di definire, utilizzando una notazione algebrica, un linguaggio regolare e vengono utilizzate per estrarre parole da un testo ed altre notevole applicazioni, che verranno analizzate nel corso dei paragrafi.

Per riuscire a definire in maniera formale le espressioni regolari dobbiamo definire le seguenti operazioni sui linguaggi regolari:

• Unione: dati due linguaggi $L, M \subseteq \Sigma *$ si definisce $L \cup M$ come:

$$L \cup M = \{ w \in \Sigma * | w \in L \lor w \in M \}$$

Esempio: $L = \{001, 10, 111\}$ e $M = \{\epsilon, 001\}$ risulta $L \cup M = \{\epsilon, 10, 001, 111\}$. Risulta verificata la seguente equivalenza $L \cup M \equiv M \cup L$.

- Concatenazione: dati due linguaggi $L, M \subseteq \Sigma *$ si ha $L \circ M = LM$, ossia il linguaggio formato da tutte le strighe ottenute concatenando le stringhe in L con le stringhe in M. Esempio: $L = \{001, 10\}$ e $M = \{\epsilon, 111\}$ risulta $L \circ M = \{001, 10, 001111, 10111\}.$
- Chiusura di Kleene: dato un linguaggio L si ha L* definito induttivamente

$$L^{0} = \{\epsilon\}$$

$$L^{1} = L$$

$$L^{2} = L \circ L$$

$$...$$

$$L^{i} = L^{i-1} \circ L$$

$$L^{*} = L^{0} \cup L^{1} \cup L^{2} \cup ...$$

$$L^{+} = L^{*} - \{epsilon\}$$

Esempio: dato $L = \{0, 1\}$ abbiamo:

$$L^0 = \{epsilon\}$$

$$L^1 = \{0,1\}$$

$$L^2 = \{00,01,10,11\}$$

$$L^3 = \{000,001,010,011,100,101,110,111\}$$

Il linguaggio L* è generalmente un linguaggio infinito in quanto è l'unione di un numero infinito di linguaggi finiti ma esistono due linguaggi la cui chiusura è finita, che analizziamo ora:

- il linguaggio $L = \{0\}$ la sua chiusura di kleene è finita dato che si ha:

$$L^{0} = \epsilon$$

$$L^{1} = L$$

$$L^{2} = L \circ L = L$$

$$L^{3} = L^{2} \circ L = L$$

$$L^{i} = L^{i-1} \circ L = L$$

$$L^{*} = L^{0} \cup L^{1} \cup L^{2} \cup \dots = L \cup epsilon = L$$

– il linguaggio $L = \emptyset$ la sua chiusera di kleene è finita in quanto:

$$\begin{split} L^0 &= \epsilon \\ L^1 &= \varnothing \\ L^2 &= \varnothing \circ \varnothing = \varnothing \\ L^i &= \varnothing^i \circ \varnothing = \varnothing \\ L^* &= \varnothing \cup \{\epsilon\} = \{epsilon\} \end{split}$$

Dopo aver definito le operazioni sui linguaggi regolari, definiamo ora le espressioni regolari, molto utilizzate per rappresentare in maniera algebrica la grammatica dei linguaggi regolari:

Def. Si definisce espressione regolare induttivamente come segue, considerando anche il linguaggio che generano:

CASO BASE: la base consiste in 3 parti:

- 1. ϵ e \emptyset sono Regex e generano $L(\epsilon) = \{epsilon\}, L(\emptyset) = \emptyset$
- 2. se a è un simbolo allora a è una Regex e questa espressione genera L(a) =
- 3. una variabile, rappresentanti linguaggi regolari, sono Regex, e generano L(L) = L

CASO INDUTTIVO: la parte induttiva delle espressioni regolari sono composte da 4 tipologie:

- 1. se E e F sono delle Regex allora E+F è una Regex e rappresentano $L(E+F) = L(E) \cup L(F)$
- 2. se E e F sono delle Regex allora $E \circ F = EF$ è una Regex per cui rappresentano L(EF) = L(E)L(F)
- 3. se E è una Regex allora E* è una RegEx, che denota la chiusura di L(E)infatti $L(E^*) = (L(E))^*$
- 4. se E è una Regex allora (E) è una Regex in cui L((E)) = L(E).

Esempio: Data l'espressione regolare Regex = 01 si ha allora $L(01) = L(0) \circ$ $L(1) = 0 \circ 1 = 01.$

Al fine di ridurre la lunghezza delle espressioni regolari per migliorarne la leggibilità e la comprensione, si introducono delle proprietà algebriche iniziando prima dalla definizione di espressioni equivalenti:

Def. Due espressioni regolari sono equivalenti se denotano lo stesso linguaggio. Due espressioni regolari con variabili sono equivalenti se e solo se sono equivalenti per ogni assignamento alle variabili.

Per sapere quali operazioni in una Regex viene eseguita, si introduce la precedenza degli operatori, eseguiti da sinistra a destra:

- * e si applica alla sequenza più piccola a sinistra che sia anche un'espressione regolare
- o applicato da sinistra a destra
- + viene valutato da sinistra a destra
- la parentesi () permette di isolare il contenuto dentro e stabilire l'ordine di applicazione

Gli operatori delle espressioni regolari possiedono le seguenti proprietà:

- Unione: l'unione si può vedere come l'addizione nell'aritmetica dato che possiede le stesse proprietà infatti:
 - Commutatività: dati due linguaggi L e M risulta L + M = M + L
 - **Associavità**: dati tre linguaggi L, M e N risulta (L+M)+N=L+(M+M)
 - Identità: l'identità per l'unione è l'insieme \emptyset infatti risulta verificato L + $\emptyset = L = \emptyset + L$
 - Idempotenza: dato un linguaggio L risulta L + L = L.
- la Concatenazione presenta delle analogie con la moltiplicazione infatti possiede le seguenti proprietà:
 - Associavità: dati tre linguaggi L, M e N risulta (LM)N = L(MN)
 - Identità: l'identità per la concatenazione è l' ϵ attraverso cui risulta $\epsilon L=$ $L = L\epsilon$
 - Annichilatore: l'annichilatore per la concatenazione è ∅ in quanto risulta $\emptyset L = \emptyset = L\emptyset$. L'annichilatore risulta molto utile per effettuare delle utili ed importanti semplificazioni.

L'unione e la concatenazione possiedono le proprietà distributive della concatenazione rispetto all'unione:

- -L(M+N) = LM + LN(legge distribuitiva sinistra della concatenazione rispetto all'unione)
- -(M+N)L = ML + NL(legge distribuitiva destra della concatenazione rispetto all'unione)
- la chiusura possiede le seguenti proprietà:

$$-(L^*)^* = L^*$$

-
$$\emptyset^* = \epsilon$$

$$-\epsilon^*=\epsilon$$

$$-L^{+}=LL^{*}=L^{*}L$$

$$-L^* = L^+ + \epsilon$$

-
$$L$$
? = ϵ + L

Esempio: Scrivere la regex del seguente linguaggio:

$$L = \{ w \in \{a, b, c, d\}^* | w = a^n b c d^m \text{ con } n > 0, m \ge 0 \}$$

Dato che si ha n > 0 ci sarà per forza una a per cui per generare a^n si ha aa^* mentre essendo $m \ge 0$ per definire d^m si usa d*.

Fatte codeste considerazioni si ottiene Regex = aa^*bcd* .

Scrivere la regex del seguente linguaggio $L = \{w \in 0, 1\}^* | w = \text{stringhe in cui compare 10.}$ La regex per generare il linguaggio è $(0+1)^*10(0+1)^*$ in quanto $(0+1)^*$ mi genera una qualsiasi stringa di 0 e 1 mentre 10 mi assicura di avere tutte e sole le strighe in cui compare 10.

4 AUTOMI A STATI FINITI

Un automa a stati finiti è un tipo di automa che permette di descrivere con precisione e in maniera formale il comportamento di molti sistemi.

Grazie alla sua semplicità e chiarezza questo modello è molto diffuso nell'ingegneria e nelle scienze, soprattutto nel campo dell'informatica e della ricerca operativa e può essere utilizzato sia per modellare un sistema esistente che per modellare un nuovo sistema formale in grado di risolvere alcuni nuovi problemi. Un automa a stati finiti permette di definire le stringhe accettabili in un linguaggio regolare e possiede un insieme di stati e un controllo che si muove da stato a stato in risposta a input esterni.

Si ha una distinzione:

AUTOMI DETERMINISTICI dove l'automa non può essere in più di uno stato per volta

AUTOMI NON DETERMINISTICI dove l'automa può trovarsi in più stati contemporaneamente

Iniziamo a parlare degli automi deterministici, facilmente implementabili da un calcolatore e su cui è possibile dimostrare la correttezza, per poi affrontare gli automi non deterministici, facili da disegnare e sviluppare dagli esseri umani.

4.1 AUTOMI DETERMINISTICI

Come già visto, un automa a stati finiti deterministico (*DFA*), è un automa che dopo aver letto una qualunque sequenza di input si trova in un singolo stato.

Il termine *deterministico* deriva dal fatto che per ogni input esiste un solo stato verso il quale l'automa passa dal suo stato corrente e dal punto di vista formale un DFA consiste nelle seguenti parti:

- un insieme finito di stati, spesso indicato con Q
- ullet un insieme finito di simboli di input , spesso indicato con Σ
- una funzione di transizione δ , che prende come argomento uno stato e un simbolo di input e restituisce uno stato.
 - Nella rappresentazione grafica informale di automi δ è rappresentata dagli archi tra gli stati e dalle etichette sugli archi. Se q è uno stato e a è un simbolo di input, $\delta(q,a)$ è lo stato p tale che esiste un arco etichettato con a da q a p
- uno stato iniziale q_0 , corrispondente ad uno degli stati in Q
- un insieme $F \subseteq Q$ di stati finali o accettanti, in cui si accettano le stringhe arrivate in quello stato

Nel complesso un DFA è rappresentato in maniera concisa con l'enumerazione dei suoi elementi, quindi con la quintupla:

$$A = (Q, \Sigma, \delta, q_0, F)$$

Vediamo come decidere se accettare o meno una stringa (sequenza di caratteri) in input mediante un DFA.

δ	О	1
$\rightarrow q_0$	q_1	90
* 91	q_1	q_1
92	92	q_1

Ho una sequenza in input $a_1...a_n$. Parto dallo stato iniziale q_0 , consultando la funzione di transizione δ , per esempio $\delta(q_0, a_1) = q_1$ e trovo lo stato in cui il DFA entra dopo aver letto a_1 .

Poi passo a $\delta(q_1, a_2) = q_2$ e così via, $\delta(q_{i-1}, a_i) = q_i$ fino a ottenere q_n e se q_n è elemento di F allora $a_1...a_n$ viene accettato, altrimenti viene rifiutato.

Vediamo ora un esempio per capire come si rappresenta e come si sviluppa un automa:

Esempio. Specifico un DFA che accetta tutte le strighe binarie in cui compare la sequenza 01:

$$L = \{w \in 0, 1^* | w = x01y \ x, y \in 0, 1^*\} = \{01, 11010, 100011, ...\}$$

Ragioniamo sul fatto che *A*:

- 1. se ha "già visto" o1, accetterà qualsiasi input
- 2. pur non avendo ancora visto 01, l'input più recente è stato 0, cosicché se ora vede un 1 avrà visto 01
- 3. non ha ancora visto 01, ma l'input più recente è nullo (siamo all'inizio), in tal caso A non accetta finché non vede uno o e subito dopo un 1

L'automa DFA per rappresentare il linguaggio è il seguente:

$$A = \{\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\}\}\$$

con in totale le seguenti transizioni:

$$\delta(q_0, 1) = q_0$$

$$\delta(q_0, 0) = q_2$$

$$\delta(q_2, 0) = q_2$$

$$\delta(q_2, 1) = q_1$$

$$\delta(q_1, 0) = q_1$$

$$\delta(q_1, 1) = q_1$$

Definire l'automa con questa notazione è noioso e non molto semplice da sviluppare per questo si possono utilizzare le seguenti due maniera per rappresentare un automa:

- tabella di transizione: rappresentazione tabellare della funzione δ , dove lo stato iniziale viene indicato con \rightarrow e gli stati accettati con * Nel nostro esempio si ha la seguente tabella di transizione:
- diagramma di transizione: grafo indicante una rappresentazione grafica dell'automa per capire in maniera semplice ed immediata il comportamento dell'automa.

Nel nostro esempio di automa il diagramma di transizione è il seguente:

Esempio. Trovo automa per:

$$L = \{w \in \{a, b\}^* | \text{ w che contiene un numero pari di b} \}$$

Figura 1: Automa per rappresentare le stringhe xo1y

Figura 2: Automa per rappresentare un numero pari di b

Definiamo ora un estenzione della funzione di transizione $\hat{\delta}$, il quale ci descrive come opera un automa fornendo uno stato e una sequenza di input. La definizione può essere di due diversi tipi, ambedue di tipo induttivo:

 versione semplificata, comoda da definire ma difficile per dimostrare la correttezza in cui si considera una stringa w = ax con $x \in \Sigma^*$ per cui la definizione è la seguente:

CASO BASE $\hat{\delta}(q, \epsilon) = q$ con ovviamente |w| = 0

caso Passo Supponiamo che w=ax, con $a \in \Sigma$ e $x \in \Sigma^*$ e $|w| \neq 0$ allora $\hat{\delta}(q, w) = \hat{\delta}(q, ax) = \hat{\delta}(\delta)(\delta(q, a), x).$

• versione fornita dal libro, comoda per la dimostrazione della correttezza del linguaggio in cui si considera una stringa w = xa, sempre con $x \in \Sigma^*$ e $a \in \Sigma$. La definizione è la seguente:

caso base
$$\hat{\delta}(q,\epsilon) = q$$
 in caso $|w| = 0$

caso Passo Supponiamo di avere la stringa come w = xa, con $|w| \neq 0$, allora $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a).$

Dopo aver definito la funzione di transizione estesa possiamo fornire una definizione formale del linguaggio accettato da un'automa infatti:

$$L(a) = \{ w | \hat{\delta}(q_0, w) \in F \}$$

. In caso L = L(a) per un DFA A, allora diciamo che L è un linguaggio regolare.

AUTOMI NON DETERMINISTICI 4.2

Un automa a stati finiti non deterministici (NFA) è un automa che può trovarsi in diversi stati contemporaneamente e come i DFA accettano linguaggi regolari.

Il motivo per cui sono studiati e definiti è perche spesso sono più semplici da trattare rispetto ai DFA, anche se è più difficile la dimostrazione della correttezza dei linguaggi.

Un NFA è definito come un DFA, ossia con la solita quintupla ma si ha un diverso tipo di transizione δ , che ha sempre come argomenti uno stato e un simbolo di input ma resituisce zero o più stati.

Esempio. Sia $L = \{x01 | x \in \{0,1\}\}$ ovvero il linguaggio formato da tutte le stringhe binarie che terminano in 01 per cui avremo il seguente automa determinsitico per rappresentare il linguaggio: L'automa NFA corrispondente al linguaggio invece è:

Figura 3: DFA per il linguaggio w = x01

Figura 4: NFA per il linguaggio w = x01

quindi con:

$$\delta(q_0, 0) = \{q_0, q_1\}$$

$$\delta(q_0, 1) = \{q_0\}$$

$$\delta(q_1, 0) = \emptyset$$

$$\delta(q_1, 1) = \{q_2\}$$

$$\delta(q_2, 0) = \emptyset$$

$$\delta(q_2, 1) = \emptyset$$

in forma tabulare: vediamone la simulazione per la stringa 00101:

Il funzionamento dell'automa, come si nota nella figura, per la stringa 00101 è la seguente: si parte dallo stato inziale q_0 , quando viene letto o si passa a q_0 e q_1 , poi viene letto il secondo o quindi q_0 va nuovamente verso q_0 e q_1 mentre il primo q_1 muore non avendo transizioni su o.

Arriva poi l'1 quindi q_0 va solo verso q_0 e q_1 verso q_2 e sarebbe accettante ma l'input non è finito.

Ora arriva o e q_2 si blocca mentre q_0 va sia in q_0 che in q_1 ed arriva infine un 1 che

δ	О	1
$ \begin{array}{c} $	$ \begin{cases} q_0, q_1 \\ \emptyset \\ \emptyset \end{cases} $	$ \begin{vmatrix} q_1 \\ q_2 \\ \emptyset \end{vmatrix} $

manda q_0 in q_0 e q_1 in q_2 che è accettante e non avendo altri input si è dimostrata l'appartenenza della stringa al linguaggio.

Definisco quindi un NFA come una quintupla:

$$A = (Q, \Sigma, \delta, q_0, F)$$

con, a differenza dei DFA:

$$\delta: Q \times F \to 2^Q$$

Possiamo ora definire induttivamente $\hat{\delta}$, delta cappuccio che prende in ingresso uno stato e l'intera stringa w e come già visto per i DFA ci sono ben due definizioni:

- versione semplificata fornita a lezione in cui si considera una stringa come w = ax, con $a \in Sigma$ e $x \in Sigma$ * per cui la definizione di delta è:
 - caso base: se $w = \epsilon$ si ha $\hat{\delta}(q, \epsilon) = \{q\}$
 - caso passo: sia |w| > 0, w = ax ed avendo $\delta(q, a) = \{p_1, p_2, \dots, p_k\}$ allora $\hat{\delta}(q, w) = \bigcup_{i=1}^k \hat{\delta}(p_i, x) = \{r_1, r_2, \dots, r_m\}$
- versione fornita dal libro in cui si considera w = xa, con $x \in Sigma^*$ e $a \in \Sigma$ per cui la definizione di $\hat{\delta}$ è la seguente:
 - **caso base:** se |w| = 0 si ha $\hat{\delta}(q, \epsilon) = \{q\}$
 - caso passo: sia |w| > 0, W = xa, con $a \in \Sigma$ e $x \in \Sigma^*$. Posto $\hat{\delta}(q, x) = \{p_1, ..., p_k\}$ si ha:

$$\hat{\delta}(q, w) = \hat{\delta}(q, xa) = \bigcup_{i=1}^{k} \delta(p_i, a)$$

Il linguaggio accettato dall'automa NFA è il seguente:

$$L(a) = \{ w \in \Sigma^* | \hat{\delta}(q_0, q) \cap F \neq \emptyset \}$$

Esempio. Automa per $L = \{x010y | x, y \in \{0,1\}^*\}$ ovvero tutte le stringhe con dentro la sequenza 010:

Troviamo ora un algoritmo che trasformi un NFA in un DFA. Dall'ultimo esempio ricavo:

	О	1
Ø	Ø	Ø
$\rightarrow \{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_{2}\}$
* {q2}	Ø	Ø
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$*\{q_0,q_2\}$	$\{q_0, q_1\}$	$\{q_0\}$
$*\{q_1,q_2\}$	Ø	$\{q_{2}\}$
$*\{q_0,q_1,q_2\}$	$\left\{q_0,q_1\right\}$	$\{q_0, q_2\}$

ovvero:

che è il DFA che si era anche prima ottenuto. Si hanno però dei sottoinsiemi mai raggiungibili. Si ha quindi:

	0	1
$\rightarrow \{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
q_0, q_2	$\{q_0, q_1\}$	$\{q_0\}$

e definendo $\{q_0\} = a$, $\{q_0, q_1\} = b$ e $\{q_0, q_2\} = c$ si avrà:

Definiamo questo algoritmo che avrà:

- come input un NFA $N = (Q_n, \Sigma, \delta_N, q_0, F_N)$
- come output un DFA $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ tale che L(D) = L(N)

con:

- $Q_D = 2^{Q_N}$ (quindi se $Q_N = n$ si ha $|Q_D| = 2^n$)
- $F_D = \{ S \subseteq Q_n | S \cap F_N \neq \emptyset \}$
- $\forall S \subseteq Q_N \ \mathbf{e} \ \forall a \in \Sigma$:

$$\delta_D(S, a) = \bigcup \delta_n(p, a)$$

per esempio:

$$\delta_D(\{q_0, q_1, q_2\}, 0) = \delta_N(q_0, 0) \cup \delta_N(q_1, 0) \cup \delta_N(q_2, 0)$$

4.3 AUTOMI $\epsilon-nfa$

Si definisce l' ϵ – *NFA* come l'automa a stati finiti non deterministici con ϵ transizioni, ossia la transizione che permette di saltare i nodi in cui si avanza nel grafo senza consumare caratteri.

Ovviamente questo automa non amplia la classe dei linguaggi accettati dall'automa, ma offre una certa comodità notazionale e come vedremo gli $\epsilon-NFA$ sono strettamente collegati alle espressioni regolari.

Formalmente denotiamo un $\epsilon-NFA$ con $A=(Q,\Sigma,\delta,q_0,F)$, con gli stessi argomenti uguali a quelli per il NFA con la differenza che la funzione δ è definita come $\delta:Q\times\Sigma\cup\{\epsilon\}\to P\subseteq Q$.

Per stabilire le stringhe e i linguaggi accettati da tali automi, dobbiamo introdurre la funzione ECLOSE(q), per stabilire la chiusura di uno stato rispetto a ϵ , definita induttivamente come:

Figura 5: Automa $\epsilon - NFA$ per generare il linguaggio $a^n b^m c^k$

Tabella 2: Tabella di transizione dell'epsilon - NFA

	a	b	c
$ \begin{array}{c} $	$\begin{cases} \{q_0, q_1, q_2\} = A \\ \emptyset = D \end{cases}$	$\begin{cases} \{q_1, q_2\} = B \\ \{q_1, q_2\} \end{cases}$	$\begin{cases} \{q_2\} = C \\ \{q_2\} \end{cases}$
*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ø = B	(41,42) Ø	$\{q_2\}$
Ø	Ø	Ø	Ø

- **caso base:** lo stato *q* appartiene a *ECLOSE*(*q*)
- **caso passo:** se lo stato $p \in ECLOSE(q)$ ed esiste una transizione ϵ da p a r, allora $r \in ECLOSE(q)$.

Più precisamente, sia δ la funzione di transizione di un ϵ – *NFA*: se $p \in ECLOSE(q)$, allora ECLOSE(q) contiene anche tutti gli stati in $\delta(p, \epsilon)$.

Tramite questa definizione di *ECLOSE* possiamo definire ora la funzione $\hat{\delta}$ in maniera induttiva:

• Fare definizione

Esempio. Si ha $ER = a^*b^*c^*$, che genera $L = \{a^nb^mc^k | n, m, k \ge 0\}$, l'automa per denotare il linguaggio è il seguente: Si ha poi le seguenti ECLOSE:

$$E CLOSE(q_0) = \{q_0, q_1, q_2\}$$

 $E CLOSE(q_1) = \{q_1, q_2\}$
 $E CLOSE(q_2) = \{q_2\}$

Mettendo in tabella l'automa $\epsilon-NFA$ si ha: Una rappresentazione formale di come si ottengono le seguenti transizioni nella tabella è la seguente:

$$\begin{split} \delta_D(\{q_0,q_1,q_2\},a) &= E\,CLOSE(\delta_N(q_0,a) \cup \delta_N(q_1,a) \cup \delta_N(q_2,a)) \\ &= E\,CLOSE(\{q_0\} \cup \varnothing \cup \varnothing) = E\,CLOSE(\{q_0\}) \\ &= E\,CLOSE(q_0) = \{q_0,q_1,q_2\} \\ \delta_D(\{q_0,q_1,q_2\},B) &= E\,CLOSE(\delta_N(q_0,b) \cup \delta_N(q_1,b) \cup \delta_N(q_2,b)) \\ &= E\,CLOSE(\varnothing \cup \{q_1\} \cup \varnothing) = E\,CLOSE(\{q_1\}) \\ &= E\,CLOSE(q_1) = \{q_1,q_2\} \\ \delta_D(\{q_0,q_1,q_2\},c) &= E\,CLOSE(\delta_N(q_0,c) \cup \delta_N(q_1,c) \cup \delta_N(q_2,c)) \\ &= E\,CLOSE(\varnothing \cup \varnothing \cup \{q_2\}) = E\,CLOSE(\{q_1\}) \\ &= E\,CLOSE(q_2) = \{q_2\} \end{split}$$

Si ottiene quindi il seguente NFA: che diventa il seguente DFA:

Figura 7: Automa DFA corrispondente all' $\epsilon-NFA$

