

Bootstrap Your Own Latent BYOL

12112422 Yue Wu

Abstract

A new approach to self-supervised image representation learning

Two neural network: online & target: online predict target

No negative part

Good perform

CATALOGUE

01 Background

Background

- •
- Learning good image representation is a key challenge in computer vision
- Wide application scenarios
- Can solve few-shot and zero-shot learning problems
- •

Background - Generative

- Generative
 - representation learning build a distribution over data and latent embedding and use the learned embeddings as image representations
 - Auto-encoder of images
 - Adversial learning

Background - Generative

- •
- Generative Cons
 - Operate in pixel space
 - Computationally expensive
 - high level of detail required for image generation may not be necessary for representation learning

Background - Contrastive

- •
- Contrasive methods: Same closer!
 - Positive pairs & Negative pairs & Collapse trival solution

SimCLR architecture.

Background - Contrastive

MoCo v2 architecture. Top row is online encoder, bottom row is momentum encoder.

Background - Contrastive

- Contrastive Cons
 - Contrastive methods often require comparing each example with many other examples to work well --- computation cost
 - Whether using negative pairs is necessary?

Figure 2: BYOL's architecture. BYOL minimizes a similarity loss between $q_{\theta}(z_{\theta})$ and $\operatorname{sg}(z'_{\xi})$, where θ are the trained weights, ξ are an exponential moving average of θ and sg means stop-gradient. At the end of training, everything but f_{θ} is discarded, and y_{θ} is used as the image representation.

$$\theta \leftarrow \text{optimizer}(\theta, \nabla_{\theta} \mathcal{L}_{\theta, \xi}^{\text{BYOL}}, \eta) \quad \text{ and } \quad \xi \leftarrow \tau \xi + (1 - \tau)\theta,$$

BYOL architecture.

- BN important
- BYOL can learn without explicitly contrasting between multiple different images.
- we only keep the encoder $f\theta$

- BN important
- BN is another
 Contrastive
- A Constraint
- Avoid Collapse

Name	Projection MLP Norm	Prediction MLP Norm	Loss Function	Contrastive	Performance 5
Contrastive Loss	None	None	Cross Entropy	Explicit	44.1
BYOL	Batch Norm	Batch Norm	L2	Implicit	57.7
Projection BN Only	Batch Norm	None	L2	Implicit	55.3
Prediction BN Only	None	Batch Norm	L2	Implicit	48
No Normalization	None	None	L2	None	28.3
Layer Norm	Layer Norm	Layer Norm	L2	None	29.4
Random	_	_	_	None	28.8

- BN important
- Avoid Collapse

 https://generallyintelligent.com/resea rch/2020-08-24-understanding-selfsupervised-contrastive-learning/

- Why projection :
 - The back layer of the neural network Get more generalized features
 - High-dimensional mapping to low-latitude
 - Cosine similarity

- Distillation ?
 - Self-distillation: Self-distillation is a model compression technique that uses a larger teacher model to guide the training of a smaller student model.
 - two views of one image via augmentation

Linear evaluation

Training a linear classifier on top of the frozen representation

Method	Top-1	Top-5
Local Agg.	60.2	-
PIRL [35]	63.6	-
CPC v2 [32]	63.8	85.3
CMC [11]	66.2	87.0
SimCLR [8]	69.3	89.0
MoCo v2 [37]	71.1	-
InfoMin Aug. [12]	73.0	91.1
BYOL (ours)	74.3	91.6

Method	Architecture	Param.	Top-1	Top-5
SimCLR[8]	ResNet-50 (2 \times)	94M	74.2	92.0
CMC [11]	ResNet-50 $(2\times)$	94M	70.6	89.7
BYOL (ours)	ResNet-50 $(2\times)$	94M	77.4	93.6
CPC v2 [32]	ResNet-161	305M	71.5	90.1
MoCo [9]	ResNet-50 $(4\times)$	375M	68.6	-
SimCLR[8]	ResNet-50 $(4\times)$	375M	76.5	93.2
BYOL (ours)	ResNet-50 $(4\times)$	375M	78.6	94.2
BYOL (ours)	ResNet-200 (2 \times)	250M	79.6	94.8

(b) Other ResNet encoder architectures.

⁽a) ResNet-50 encoder.

- Semi-supervised training
 - finetuning BYOL's representation on a classification task with a small subset of train set

Method	Top) -1	Top-5		
	1%	10%	1%	10%	
Supervised [77]	25.4	56.4	48.4	80.4	
InstDisc	-	-	39.2	77.4	
PIRL [35]	-	-	57.2	83.8	
SimCLR[8]	48.3	65.6	75.5	87.8	
BYOL (ours)	53.2	68.8	78.4	89.0	

Method	Architecture	Param.	Top-1		Top-5		
			1%	10%	1%	10%	
CPC v2 [32]	ResNet-161	305M	-	-	77.9	91.2	
SimCLR [8]	ResNet-50 $(2\times)$	94M	58.5	71.7	83.0	91.2	
BYOL (ours)	ResNet-50 $(2\times)$	94M	62.2	73.5	84.1	91.7	
SimCLR [8]	ResNet-50 $(4\times)$	375M	63.0	74.4	85.8	92.6	
BYOL (ours)	ResNet-50 $(4\times)$	375M	69.1	75.7	87.9	92.5	
BYOL (ours)	ResNet-200 (2 \times)	250M	71.2	77.7	89.5	93.7	

⁽a) ResNet-50 encoder.

⁽b) Other ResNet encoder architectures.

Transfer to other classification tasks

Method	Food101	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
BYOL (ours)	75.3	91.3	78.4	57.2	62.2	67.8	60.6	82.5	75.5	90.4	94.2	96.1
SimCLR (repro)	72.8	90.5	74.4	42.4	60.6	49.3	49.8	81.4	75.7	84.6	89.3	92.6
SimCLR [8]	68.4	90.6	71.6	37.4	58.8	50.3	50.3	80.5	74.5	83.6	90.3	91.2
Supervised-IN [8]	72.3	93.6	78.3	53.7	61.9	66.7	61.0	82.8	74.9	91.5	94.5	94.7
Fine-tuned:												
BYOL (ours)	88.5	97.8	86.1	76.3	63.7	91.6	88.1	85.4	76.2	91.7	93.8	97.0
SimCLR (repro)	87.5	97.4	85.3	75.0	63.9	91.4	87.6	84.5	75.4	89.4	91.7	96.6
SimCLR [8]	88.2	97.7	85.9	75.9	63.5	91.3	88.1	84.1	73.2	89.2	92.1	97.0
Supervised-IN [8]	88.3	97.5	86.4	75.8	64.3	92.1	86.0	85.0	74.6	92.1	93.3	97.6
Random init [8]	86.9	95.9	80.2	76.1	53.6	91.4	85.9	67.3	64.8	81.5	72.6	92.0

Table 3: Transfer learning results from ImageNet (IN) with the standard ResNet-50 architecture.

Transfer to other vision tasks

Method	AP_{50}	mIoU
Supervised-IN [9]	74.4	74.4
MoCo [9] SimCLR (repro) BYOL (ours)	74.9 75.2 77.5	72.5 75.2 76.3

		Lower better			
Method	pct.< 1.25	$pct.< 1.25^2$	$pct.< 1.25^3$	rms	rel
Supervised-IN [83]	81.1	95.3	98.8	0.573	0.127
SimCLR (repro) BYOL (ours)	83.3 84.6	96.5 96.7	99.1 99 .1	0.557 0.541	$0.134 \\ 0.129$

⁽a) Transfer results in semantic segmentation and object detection.

(b) Transfer results on NYU v2 depth estimation.

(b) Impact of progressively removing transformations

O4 Conclusion

Conclusion

- No negative pairs
- Faster & Good perform
- Robust

Good experiment design

Q&A THANK YOU