Mohamadreza ardestani 9513004 Assignment No7

With Extra explanation \odot

Q1)

MAX
$$z = -5x1 + 2x2 + 4x3$$

subject to
 $3x1 + x2 - x3 >= 2$
 $2x1 + 2x2 + x3 = 5$
 $x1 - x2 <= 1$
and $x1,x2,x3 >= 0$

-->Phase-1<--

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

- 1. As the constraint-1 is of type '≥' we should subtract surplus variable S1 and add artificial variable A1
- 2. As the constraint-2 is of type '=' we should add artificial variable A2
- 3. As the constraint-3 is of type '≤' we should add slack variable S2 **After introducing slack, surplus, artificial variables**

$$\text{Max } z = -\text{A1-A2}$$

subject to

$$3 x1 + x2 - x3 - S1 + A1 = 2$$

 $2 x1 + 2 x2 + x3 + A2 = 5$
 $x1 - x2 + S2 = 1$

and $x1,x2,x3,S1,S2,A1,A2 \ge 0$

Iteration-1		Cj	0	0	0	0	0	-1	-1	
В	СВ	XB	x1	x2	х3	S1	S2	A1	A2	MinRatio
A1	-1	2	(3)	1	-1	-1	0	1	0	2/3=0.6667→
A2	-1	5	2	2	1	0	0	0	1	5/2=2.5
S2	0	1	1	-1	0	0	1	0	0	1/1=1
z=-7		Zj	-5	-3	0	1	0	-1	-1	

	Zi-Ci	-5↑	-3	0	1	0	0	0		
		21	5	U	1	U	U	U		

Negative minimum Zj-Cj is -5 and its column index is 1. So, the entering variable is x1.

Minimum ratio is 0.6667 and its row index is 1. So, the leaving basis variable is A1.

 \therefore The pivot element is 3.

Entering =x1, Departing =A1, Key Element =3

Iteration-2		Cj	0	0	0	0	0	-1	
В	СВ	XB	x1	x 2	х3	S1	S2	A2	MinRatio
x1	0	23	1	13	-13	-13	0	0	
A2	-1	113	0	43	53	23	0	1	11/5=2.2
S2	0	13	0	-43	(13)	13	1	0	13/13=1→
z=-11/3		Zj	0	-43	-53	-23	0	-1	
		Zj-Cj	0	-43	-53↑	-23	0	0	

Negative minimum Zj-Cj is -53 and its column index is 3. So, the entering variable is x3.

Minimum ratio is 1 and its row index is 3. So, the leaving basis variable is S2.

∴ The pivot element is 13.

Entering =x3, Departing =S2, Key Element =13

Iteration-3		Cj	0	0	0	0	0	-1	
В	СВ	XB	x1	x 2	х3	S1	S2	A2	MinRatio
x1	0	1	1	-1	0	0	1	0	
A2	-1	2	0	(8)	0	-1	-5	1	2/8=0.25→
х3	0	1	0	-4	1	1	3	0	
z=-2		Zj	0	-8	0	1	5	-1	
		Zj-Cj	0	-8↑	0	1	5	0	

Negative minimum Zj-Cj is -8 and its column index is 2. So, the entering variable is x2.

Minimum ratio is 0.25 and its row index is 2. So, the leaving basis variable is A2.

∴ The pivot element is 8.

Entering =x2, Departing =A2, Key Element =8

Iteration-4		Cj	0	0	0	0	0	
В	СВ	XB	x1	x 2	х3	S1	S2	MinRatio
x1	0	54	1	0	0	-18	38	
x2	0	14	0	1	0	-18	-58	
x3	0	2	0	0	1	12	12	
z=0		Zj	0	0	0	0	0	
		Zj-Cj	0	0	0	0	0	

Since all Zj-Cj≥0

Hence, optimal solution is arrived with value of variables as:

x1=54,x2=14,x3=2

Max z=0

we eliminate the artificial variables and change the objective function for the original, Max z=-5x1+2x2+4x3+0S1+0S2

Iteration-1		Cj	-5	2	4	0	0	
В	C/B	X/B	x1	x2	х3	S1	S2	MinRatio
x1	-5	54	1	0	0	-18	(38)	10/3=3.3333→
x2	2	14	0	1	0	-18	-58	
x3	4	2	0	0	1	12	12	4
z=9/4		Zj	-5	2	4	198	-98	
		Zj-Cj	0	0	0	198	-98↑	

Negative minimum Zj-Cj is -98 and its column index is 5. So, the entering variable is S2. Minimum ratio is 3.3333 and its row index is 1. So, the leaving basis variable is x1.

∴ The pivot element is 38. Entering =S2, Departing =x1, Key Element =38

Iteration-2		Cj	-5	2	4	0	0	
В	C/B	X/B	x1	x2	х3	S1	S2	MinRatio
S2	0	103	83	0	0	-13	1	
x2	2	73	53	1	0	-13	0	
х3	4	13	-43	0	1	23	0	
z=6		Zj	-2	2	4	2	0	
		Zj-Cj	3	0	0	2	0	

Since all Zj-Cj≥0

Hence, optimal solution is arrived with value of variables as:

$$x1*=0$$
, $x2*=7/3=2.3333$, $x3*=1/3=0.3333$, finally Max $z*=6$

Ok, let's go to show it with Simplex method.

After introducing slack variables

Max Z = subject to
$$x1 + S1 = 1$$
 $2x1 + x2 + S2 = 3$ and $x1,x2,S1,S2 \ge 0$

Iteration-1		Cj	1	1	0	0	
В	C/B	X/B	x1	x 2	S1	S2	MinRatio
S1	0	1	(1)	0	1	0	1/1=1→
S2	0	3	2	1	0	1	3/2=1.5
Z=0		Zj	0	0	0	0	
		Zj-Cj	-1↑	-1	0	0	

Visiting (0,0) Entering =x1, Departing =S1, Key Element =1

Iteration-2		Cj	1	1	0	0	
В	C/B	X/B	x1	x2	S1	S2	MinRatio
x1	1	1	1	0	1	0	
S2	0	1	0	(1)	-2	1	1/1=1→
Z=1		Zj	1	0	1	0	
		Zj-Cj	0	-1↑	1	0	

Entering =x2, Departing =S2, Key Element =1

Iteration-3		Cj	1	1	0	0	
В	C/B	X/B	x1	x 2	S1	S2	MinRatio
x1	1	1	1	0	(1)	0	1/1=1→
x2	1	1	0	1	-2	1	
Z=2		Zj	1	1	-1	1	
		Zj-Cj	0	0	-1↑	1	

Visiting (1,1)

Entering =S1, Departing =x1, Key Element =1

Iteration-4		Cj	1	1	0	0	
В	C/B	X/B	x1	x2	S1	S2	MinRatio
S1	0	1	1	0	1	0	
x2	1	3	2	1	0	1	
Z=3		Zj	2	1	0	1	
		Zj-Cj	1	0	0	1	

Finally visiting (0.3)

Hence, optimal solution is arrived with value of variables as : x1=0, x2=3 Max Z=3

Q3)

```
سوال سوم: مسألهٔ غیرخطی زیر را در نظر بگیرید که در آن x = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} با شرح توضیحات لازم، مسأله را به سورت یک x = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} بازنویسی کنید.  \begin{aligned} &\max \left( (2x_1 - 3x_2), \ (4x_1 - 2x_3), \ (2x_2 + x_3) \right) \\ &\text{s. t.} \\ &Ax = b \\ &x \geq 0 \end{aligned}
```

Notation:

$$(2x1-3x2) = A1$$
 & $(4x_1-2x_3) = A2$ & $(2x_2+x_3) = A3$

we should consider (A1,A2,A3) as a set of three point and then interpret "max" as a choose maximum number not Max of |(A1,A2,A3)| = $sqr(A1^2+A2^2,A3^2)$.

Representing above question in LP form:

Min z = W

subject to

 $A1 \le W$

 $A1 \le W$

 $A1 \le W$

AX = b

x>=0

Thank you.