# **NBSIR 81-2234**

# Microelectronic Test Patterns NBS-12 and NBS-24



G. P. Carver, R. L. Mattis, and M. G. Buehler

Electron Devices Division
Center for Electronics and
Electrical Engineering
National Engineering Laboratory
U.S. Department of Commerce
National Bureau of Standards
Washington, DC 20234

May 1981



J.S. DEPARTMENT OF COMMERCE

IATIONAL BUREAU OF STANDARDS

QC 100 .U56 81-2234 1981

c.2



MATIONAL HUREAU OF STANDARDS LIBRARY

JUL 2 0 1981

1106 acc -(ii)

u

NBSIR 81-2234

# MICROELECTRONIC TEST PATTERNS NBS-12 AND NBS-24

G. P. Carver, R. L. Mattis, and M. G. Buehler

**Electron Devices Division** Center for Electronics and **Electrical Engineering** National Engineering Laboratory U.S. Department of Commerce National Bureau of Standards Washington, DC 20234

May 1981

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

7 5 A

## Table of Contents

|      |                                         | Page |
|------|-----------------------------------------|------|
| Abst | tract                                   | 1    |
| 1.   | Introduction                            | 1    |
| 2.   | Design Rules                            | 2    |
| 3.   | Process Notes                           | 2    |
| 4.   | Microelectronic Test Pattern NBS-12     | 3    |
| 5.   | Microelectronic Test Pattern NBS-24     | 3    |
| Acki | nowledgments                            | 5    |
| Ref  | erences                                 | 5    |
|      | List of Tables                          |      |
|      |                                         | Page |
| 1    | Test Pattern NBS-12                     | 6    |
| 1.   |                                         |      |
| 2.   | Test Pattern NBS-24                     | 22   |
|      | List of Figures                         |      |
|      |                                         | Page |
| 1.   | Outline drawing of test pattern NBS-12  | 17   |
| 2.   | Outline drawing of quadrant A of NBS-12 | 18   |
| 3.   | Outline drawing of quadrant B of NBS-12 | 19   |
| 4.   | Outline drawing of quadrant C of NBS-12 | 20   |
| 5.   | Outline drawing of quadrant D of NBS-12 | 21   |
| 6.   | Outline drawing of test pattern NBS-24  | 32   |
| 7.   | Outline drawing of quadrant A of NBS-24 | 33   |
| 8.   | Outline drawing of quadrant B of NBS-24 | 34   |
| 9.   | Outline drawing of quadrant C of NBS-24 | 35   |
| 10.  | Outline drawing of quadrant D of NBS-24 | 36   |



Microelectronic Test Patterns
NBS-12 and NBS-24

G. P. Carver, R. L. Mattis, and M. G. Buehler Electron Devices Division National Bureau of Standards Washington, DC 20234

Microelectronic test patterns NBS-12 and NBS-24 are modular developmental patterns for experimentally evaluating improved designs of certain test structures. NBS-12 addresses geometric design considerations for the cross-bridge sheet resistor test structure. NBS-24 contains a variety of preliminary designs for the integrated gated-diode electrometer and a series of variations on the design of the MOSFET dc profiler. Both patterns also include assorted process parameter test structures. Tables of design parameters, functional descriptions of the test structures in each pattern, and computer-composed outline drawings showing all of the test structures are included.

Key Words: Cross-bridge sheet resistor; integrated gated-diode electrometer; microelectronic test pattern; microelectronic test structure; MOSFET dc profiler.

#### 1. INTRODUCTION

This report provides design information for the various microelectronic test structures contained in test patterns NBS-12 and NBS-24. Both of these test patterns are developmental in nature. Each was assembled primarily for verification of the design of one or more types of test structures. Neither contains all the relevant structures necessary to assess a process or to evaluate material quality [1]. Thus, these test patterns are not expected to find widespread application. However, it is desirable to document both patterns to facilitate the interpretation of experimental work using these test structures without repetition of the descriptions of the particular test structures used in each case. The design information in this report is presented in tables which list the geometrical parameters of each test structure and in outline drawings of the pattern quadrants.

Test pattern NBS-12 was designed primarily for experimental evaluation of designs and models for the cross-bridge sheet resistor test structure [2,3]. This test pattern contains several groups of cross and cross-bridge sheet resistors with incrementally different linewidths. Sheet resistor designs are repeated in the various conducting layers of the fabrication process. In addition, there are specialized bridge sheet resistors which contain bridge voltage taps with incrementally different tap widths, and there are sequences of bridge sheet resistors which have different distances between one current contact and the adjacent voltage tap [3]. In addition, certain other test structures and devices unrelated to the primary purpose of the test pattern were included in order to enable preliminary design evaluation data to be obtained.

Test pattern NBS-24 was designed for evaluation of designs for the integrated gated-diode electrometer [4,5] and for investigation of short-channel effects and other limitations on the usable accuracy of the MOSFET dc profiler [6,7,8]. Integrated gated-diode electrometer test structures are present with a variety of gated-diode shapes. Each shape is repeated four times, fabricated using either polysilicon or metal for the diode gate and either with or without a channel stop diffusion. The four-terminal MOSFET profilers have different channel width-to-length ratios, different shapes, and variations in other design details. Also as in NBS-12, test pattern NBS-24 contains some parameter test structures such as contact resistors and cross-bridge sheet resistors to support the primary developmental studies.

Both test patterns employ modular test structures and a 2-by-10 probe-pad array [9].

#### DESIGN RULES

The following design rules were observed for test patterns NBS-12 and NBS-24:

- 1. Minimum linewidth: 6 µm.
- 2. Minimum base (source/drain) to channel stop separation: 8 µm.
- 3. Minimum source-to-drain separation: 10 µm.
- 4. Minimum metal separation: 8 µm.
- 5. Minimum metal overlap at contacts: 4 µm.
- Minimum diffusion overlap at contacts: 4 μm.
- 7. Minimum contact window dimensions: 6 µm.
- 8. Minimum polysilicon separation: 8 μm.
- 9. Lines on each mask level are located so that they do not coincide with lines on another mask level (no coincident lines).

The design rules were generally maintained, except that certain circumstances on NBS-24 required that they be violated. The source-to-drain separation of the source-follower electrometer transistor is 6 µm, violating rule 3. The avoidance of coincidental lines (rule 9) is violated by the implant and second gate oxide mask levels of test pattern NBS-24.

#### 3. PROCESS NOTES

The process suitable for NBS-12 is a modified bipolar process which contains a gate oxidation step and is referred to as a BiMOS process [10]. The base diffusion for the bipolar transistors also serves as the source/drain diffusion for the MOSFETs. Similarly, the emitter diffusion for the bipolar transistors can be used to reduce the contact resistance to collector regions and can serve as a channel stop. Certain compromises in the details of the processing are made so as to accommodate both uses for each diffusion. The terms base and source/drain or emitter and channel stop are used interchangeably as regards the diffusions.

The process for NBS-24 is an MOS process which includes a channel stop. The mask set can be used for a nonaligned gate process or for a self-aligned gate process, depending on the mask sequence. When the nonaligned gate process sequence is used, many integrated gated-diode electrometers with metal gates

and with polysilicon gates, which have the same design geometries, will function. When the self-aligned gate process sequence is used, only the structures designed for self-aligned polysilicon gates will function. The mask levels and process sequence are slightly different for the two test patterns and are given in the discussions of the individual patterns. The mask sets can be used to form either n-channel or p-channel MOSFETs; the choice depends on the conductivity type of the starting material.

#### 4. MICROELECTRONIC TEST PATTERN NBS-12

Of the 122 test structures contained in test pattern NBS-12, 91 are cross and/or bridge structures for use in evaluating the design of the cross-bridge sheet resistor test structure. The pattern size is 5.08 mm (200 mil) by 3.51 mm (138 mil). There are seven mask levels. In the order they would be used during fabrication, they are:

- 1. base contact
- 2. base
  - 3. emitter
- 4. gate oxide
  - 5. contact
- 6. metal
- 7. passivation

Table 1 contains the specifications of all of the test structures in test pattern NBS-12. The table is divided into seven parts. The first part lists all of the individual structures. Succeeding parts contain functional descriptions of the cross sheet resistors, cross-bridge sheet resistors, transistors, advanced or integrated test structures, and miscellaneous structures, including the NBS-12 logo and alignment marks. The last part of table 1 is a chart which shows the identification of the corresponding crosses and cross-bridges in the various conducting layers.

Throughout table 1, the computer numbers of the structures are used as a key. The computer number refers to the file number under which the digital information describing that structure was stored in a computer during composition of the pattern.

The pattern is divided into four quadrants. The entire pattern is shown in figure 1. Figures 2 through 5 show each of the four quadrants with each test structure labeled according to its computer number.

#### 5. MICROELECTRONIC TEST PATTERN NBS-24

The developmental test pattern NBS-24 contains designs for the integrated gated-diode electrometer [4,5] and for the MOSFET dc profiler [6,7,8] test structures, along with a variety of parameter test structures. This test pattern is a square chip, 5.08 mm (200 mil) on a side. There are nine mask levels and two process sequences associated with this test pattern.

The mask levels are:

1. source/drain

- 2. channel stop
- 3. implant
- 4. gate oxide
- 5. polysilicon
- 6. second gate oxide
- 7. contact
- 8. metal
- 9. passivation

The implant mask opens up windows in the gate region of selected test structures (primarily MOSFET dc profilers) and defines a cross-bridge sheet resistor and part of a contact resistor. The second gate oxide mask affects only the dual gate MOSFET dc profiler [4].

For a nonaligned gate MOS process, the mask sequence is 1, 2, 3 (if used), 4, 5, 6 (if used), 7, 8, and 9. All but a few devices will function when this sequence is used. The devices that will not function are those which were designed to have self-aligned polysilicon gates. The self-aligned gate integrated gated-diode electrometers are located in quadrant D. Self-aligned gate MOSFETs are in quadrants C and D. The mask sequence for the self-aligned gate process used to properly fabricate the self-aligned gate structures is 2, 1, 5, 7, 8, and 9. Most of the rest of the structures in the pattern will not function if the self-aligned gate process is used.

The pattern is divided into four quadrants. Table 2 contains the descriptions, locations, and identifications of the 123 test structures contained in test pattern NBS-24. In this table, the computer number of a structure is not unique. This computer number refers to the complete set of geometrical shapes for a generic structure present in all mask levels, while a particular structure on the test pattern is typically composed of the shapes on only some of the mask levels. All cross bridges, for example, have the same computer number even though the conducting channel is formed by a different layer for each structure.

Part V of table 2 gives brief descriptions and geometrical specifications for the gated diodes used in the integrated gated-diode electrometer test structures on NBS-24. Inverted refers to gated diodes where the diode junction surrounds the gate, instead of the reverse which is commonly encountered. Guarded means there is a field plate surrounding the gated diode so that any surface leakage can be controlled. This scheme replaces the channel stop which is usually used.

The complete pattern is shown in figure 6. Figures 7 through 10 show each of the four quadrants with each test structure labeled according to its design code. The integrated gated-diode electrometers have two design codes because the gated diodes and the electrometer amplifiers were designed separately. Structures can also be located using the probe-pad numbers appearing in table 2. The numbering scheme starts with the upper left probe pad of each column (2-by-10 array) as pad number 1 and proceeds sequentially down the left side of the array and up the right side of the array. In quadrant B, there are a few structures located outside the 20-pad columns. These structures are addressable using the 2-by-10 probe card.

#### Acknowledgments

The authors thank Jennifer Stickley for helping to assemble the tables.

#### REFERENCES

- Carver, G. P., Linholm, L. W., and Russell, T. J., The Use of Microelectronic Test Structures to Characterize IC Materials, Processes, and Processing Equipment, Solid State Technology 23 (9), 85-92 (September 1980).
- 2. Buehler, M. G., Grant, S. D., and Thurber, W. R., Bridge and van der Pauw Sheet Resistors for Characterizing the Linewidth of Conducting Layers, J. Electrochem. Soc. 125, 650-654 (1978).
- 3. Carver, G. P., and Mattis, R. L., Design Considerations for the Cross-Bridge Sheet Resistor (to be published).
- 4. Carver, G. P., and Buehler, M. G., The Development of Test Structures for Characterization of the Fabrication and Performance of Radiation-Hardened CCD Imagers, NBSIR 79-1444 (May 1979).
- 5. Carver, G. P., and Buehler, M. G., An Analytical Expression for the Evaluation of Leakage Currents in the Integrated Gated-Diode Electrometer, *IEEE Trans. Electron Devices* ED-27, 2245-2252 (1980)
- 6. Buehler, M. G., Dopant Profiles Determined from Enhancement-Mode MOSFET dc Measurements, Appl. Phys. Lett. 31, 848-850 (1977).
- 7. Buehler, M. G., The D-C MOSFET Dopant Profile Method, J. Electrochem. Soc. 127, 701-704 (1980).
- 8. Buehler, M. G., Effect of the Drain-Source Voltage on Dopant Profiles Obtained From the dc MOSFET Profile Method, *IEEE Trans. Electron Devices* ED-27, 2273-2277 (1980).
- 9. Buehler, M. G., Comprehensive Test Patterns with Modular Test Structures: The 2 by N Probe-Pad Array Approach, Solid State Technology 22 (10), 89-94 (October 1979).
- 10. Leedy, T. F., and Liu, Y. M., Semiconductor Measurement Technology:
  Microelectronic Processing Laboratory at NBS, NBS Spec. Publ. 400-53
  (December 1978).

#### Table 1. Test Pattern NBS-12.

- Part I. Test Structure List by Computer Number
- Part II. Cross Sheet Resistors; Functional Descriptions
- Part III. Cross-Bridge Sheet Resistors; Functional Descriptions
- Part IV. Transistors; Functional Descriptions
- Part V. Advanced Test Structures; Functional Descriptions
- Part VI. Miscellaneous and Integrity Testers; Functional Descriptions
- Part VII. Cross and Cross-Bridge Sheet Resistor Correspondence Chart
- Notes: 1. Abbreviations: W = Width, L = Length, A = Area, D = Contact arm width. Dimensions associated with these parameters are given in units of  $\mu m$ .
  - Layout numbers are coded in the form: Q(r,c), where Q = Quadrant (A, B, C, or D), r =
    contact row number, and c = contact column number. The position of the uppermost lefthand contact of a particular structure determines its layout number. Each column
    is associated with pairs of contact pads.
  - 3. Diffusion notation scheme is consistent for the BIMOS process, viz., if the bulk wafer or epi-layer is n-type, the isolation and base diffusions would be  $p^+$  and the emitter diffusion would be  $n^+$ .
  - 4. Design numbers refer to the order in which the original multicolor drawings are filed.

Table 1, Part I. Test Structure List by Computer Number.

| Computer | est Pattern<br>Layout |                                                  | Design        |
|----------|-----------------------|--------------------------------------------------|---------------|
| Number   | Number                | Description                                      | Number        |
| 1        | A (1,1)               | Metal-to-base contact resistor                   | 55            |
| 2        | A (2,1)               | Base-under-emitter cross sheet resistor          | 20            |
| 3        | A (3,1)               | Base-under-emitter cross-bridge sheet resistor   | 18            |
| 4        | A (4,1)               | Base-under-emitter cross-bridge sheet resistor   | 14            |
| 5        | A (1,2)               | Metal-to-emitter contact resistor                | 56            |
| 6        | A (2,2)               | Base-under-emitter cross sheet resistor          | 20B           |
| 7 :      | A (3,2)               | Base-under-emitter cross-bridge sheet resistor   | 18A           |
| 8 ·      | A (4,2)               | Base-under-emitter cross-bridge sheet resistor   | 15            |
| 9        | A (1,3)               | Bipolar transistor                               | 35C           |
| 10 "     | A (2,3)               | Base-under-emitter cross sheet resistor          | 20C           |
| 11       | A (3,3)               | Base-under-emitter cross-bridge sheet resistor   | 18B           |
| 12       | A (4,3)               | Base-under-emitter cross-bridge sheet resistor   | 16            |
| 13       | A (1,4)               | Bipolar transistor                               | 35F2          |
| 14       | A (2,4)               | Base-under-emitter cross sheet resistor          | 20D           |
| 15       | A (3,4)               | Base-under-emitter cross-bridge sheet resistor   | 19            |
| 16       | A (4,4)               | Base-under-emitter cross-bridge sheet resistor   | 17            |
| 17       | A (1,5)               | Bipolar transistor                               | 35F1          |
| 18       | A (2,5)               | Bipolar transistor                               | .35D          |
| 19       | A (1,6)               | Bipolar transistor                               | 35 <b>G</b> 1 |
| 20       | A (2,6)               | Bipolar transistor                               | 35 <b>G2</b>  |
| 21       | A (3,6)               | Base-under-emitter double-bridge sheet resistor  | 30            |
| 22       | A (4,6)               | Base-under-emitter double-bridge sheet resistor  | 31            |
| 30       | B (1,1)               | Base cross-bridge sheet resistor                 | 18            |
| 31       | B (2,1)               | Gated base cross-bridge sheet resistor           | 24D           |
| 32       | B (4,1)               | Base cross-bridge sheet resistor                 | 14            |
| 33       | B (1,2)               | Base cross-bridge sheet resistor                 | 18A           |
| . 34     | B (2,2)               | Partially-gated base cross-bridge sheet resistor | 24D           |
| 35       | B (4,2)               | Base cross-bridge sheet resistor                 | 15            |
| 36       | B (1,3)               | Base cross-bridge sheet resistor                 | 18B           |
| 37       | B (3,3)               | Base cross-bridge sheet resistor                 | 24D           |
| 38       | B (4,3)               | Base cross-bridge sheet resistor                 | 16            |
|          |                       |                                                  |               |

| Computer<br>Number | Test Pattern<br>Layout<br>Number | Description                                              | Design<br>Number |
|--------------------|----------------------------------|----------------------------------------------------------|------------------|
| 39                 | B (1,4)                          | Base cross-bridge sheet resistor                         | 19               |
| 41                 | B (4,4)                          | Base cross-bridge sheet resistor                         | 17               |
| 42                 | B (1,5)                          | Collector surface-channel cross resistor                 | 38               |
| 43                 | B (2,5)                          | Gated collector surface-channel cross resistor           | 39               |
| 44                 | B (3,5)                          | Base surface-channel cross resistor                      | 40               |
| 45                 | B (4,5)                          | Gated base surface-channel cross resistor                | 41               |
| 46                 | B (2,4)                          | Base quadrate-cross sheet resistor                       | 32               |
| 47                 | B (3,4)                          | Base quadrate-cross sheet resistor                       | 34               |
| 48                 | B (1,8)                          | Base double-bridge sheet resistor                        | 30               |
| 49                 | B (2,8)                          | Base double-bridge sheet resistor                        | 31               |
| 50                 | B (1,6)                          | Base y-factor evaluation tester #1                       | 11A+11B          |
| 51                 | B (3,6)                          | Base y-factor evaluation tester #2                       | 11C+11D          |
| 52                 | B (1,7)                          | Base contact-to-corner distance study bridge resistor #5 | 13-5             |
| 53                 | B (2,7)                          | Base contact-to-corner distance study bridge resistor #4 | 13-4             |
| 54                 | B (3,7)                          | Base contact-to-corner distance study bridge resistor #3 | 13-3             |
| 55                 | B (4,7)                          | Base contact-to-corner distance study bridge resistor #2 | 13-2             |
| 56                 | B (5,7)                          | Base contact-to-corner distance study bridge resistor #1 | 13-1             |
| 57                 | C (1,1)                          | Metal cross sheet resistor                               | 21               |
| 58                 | C (2,1)                          | Metal cross sheet resistor                               | 20               |
| 59                 | C (3,1)                          | Metal cross-bridge sheet resistor                        | . 18             |
| 60                 | C (4,1)                          | Metal cross-bridge sheet resistor                        | 14               |
| 61                 | c (1,2)                          | Metal cross sheet resistor                               | 22               |
| 62                 | c (2,2)                          | Metal cross sheet resistor                               | 20B              |
| 63                 | c (3,2)                          | Metal cross-bridge sheet resistor                        | 18A              |
| 64                 | c (4,2)                          | Metal cross-bridge sheet resistor                        | 15               |
| 65                 | C (1,3)                          | Metal cross sheet resistor                               | 23               |
| 66                 | C (2,3)                          | Metal cross sheet resistor                               | 200              |
| 67                 | C (3,3)                          | Metal cross-bridge sheet resistor                        | 18B              |
| 68                 | C (4,3)                          | Metal cross-bridge sheet resistor                        | 16               |
| 69                 | C (1,4)                          | Metal cross sheet resistor                               | 24               |
| 70                 | C (2,4)                          | Metal cross sheet resistor                               | 200              |
| 71                 | C (3,4)                          | Metal cross-bridge sheet resistor                        | 19               |
| 72                 | C (4,4)                          | Metal cross-bridge sheet resistor                        | 17               |

| Computer<br>Number | Test Pattern<br>Layout<br>Number | Description                                               | Design<br>Number |
|--------------------|----------------------------------|-----------------------------------------------------------|------------------|
| 73                 | C (1,5)                          | Metal continuity tester                                   | 25               |
| 74                 | C (1,8)                          | Emitter-in-base quadrate-cross sheet resistor             | 32               |
| 75                 | C (2,8)                          | Emitter-in-base quadrate-cross sheet resistor             | 34               |
| 76                 | C (3,8)                          | Metal double-bridge sheet resistor                        | 30               |
| 77                 | C (4,8)                          | Metal double-bridge sheet resistor                        | 31               |
| 78                 | C (1,6)                          | Metal γ-factor evaluation tester #1                       | 11A+11B          |
| 79                 | C (3,6)                          | Metal γ-factor evaluation tester #2                       | 11C+11D          |
| 80                 | C (1,7)                          | Metal contact-to-corner distance study bridge resistor #5 | 13-5             |
| 81                 | C (2,7)                          | Metal contact-to-corner distance study bridge resistor #4 | 13-4             |
| 82                 | C (3,7)                          | Metal contact-to-corner distance study bridge resistor #3 | 13-3             |
| 83                 | C (4,7)                          | Metal contact-to-corner distance study bridge resistor #2 | 13-2             |
| 84                 | C (5,7)                          | Metal contact-to-corner distance study bridge resistor #1 | 13-1             |
| 85                 | D (1,1)                          | Base cross sheet resistor                                 | 20               |
| 86                 | D (2,1)                          | Emitter-in-base cross sheet resistor                      | 20               |
| 87                 | D (3,1)                          | Emitter-in-base cross-bridge sheet resistor               | 18               |
| 88                 | D (4,1)                          | Emitter-in-base cross-bridge sheet resistor               | 14               |
| 89                 | D (1,2)                          | Base cross sheet resistor                                 | 20B              |
| 90                 | D (2,2)                          | Emitter-in-base cross sheet resistor                      | 20B              |
| 91                 | D (3,2)                          | Emitter-in-base cross-bridge sheet resistor               | 18A              |
| 92                 | D (4,2)                          | Emitter-in-base cross-bridge sheet resistor               | 15               |
| 93                 | D (1,3)                          | Base cross sheet resistor                                 | 20C              |
| 94                 | D (2,3)                          | Emitter-in-base cross sheet resistor                      | 20C              |
| 95                 | D (3,3)                          | Emitter-in-base cross-bridge sheet resistor               | 18B              |
| 96                 | D (4,3)                          | Emitter-in-base cross-bridge sheet resistor               | 16               |
| 97                 | D (1,4)                          | Base cross sheet resistor                                 | 20D              |
| 98                 | D (2,4)                          | Emitter-in-base cross sheet resistor                      | 20D              |
| 99                 | D (3,4)                          | Emitter-in-base cross-bridge sheet resistor               | 19               |
| 100                | D (4,4)                          | Emitter-in-base cross-bridge sheet resistor               | 17               |
| 101+102            | A (1,7)                          | Gated collector-channel cross-bridge resistor             | 37B              |
| 103+102            | A (2,7)                          | Gated collector-channel cross-bridge resistor             | 37A ,            |
| 104                | A (4,7)                          | Collector-channel cross-bridge resistor                   | 37A              |
| 105                | A (4,8)                          | Collector planar four-probe resistivity tester            | 69               |
| 112                | A (3,5)                          | Bipolar transistor                                        | 35H              |

| Computer<br>Number | Test Pattern<br>Layout<br>Number | Description                                                                               | Design<br>Number |
|--------------------|----------------------------------|-------------------------------------------------------------------------------------------|------------------|
| 113                | A (4,5)                          | Bipolar transistor                                                                        | 35E1             |
| 114                | A (5,5)                          | Bipolar transistor                                                                        | 35E2             |
| 115                | D (1,5)                          | Field effect transistor                                                                   | 48               |
| 116                | D (2,5)                          | Field effect transistor                                                                   | 45               |
| 117                | D (3,5)                          | Field effect transistor                                                                   | 46               |
| 118                | D (4,5)                          | Field effect transistor                                                                   | 49               |
| 119                | D (5,5)                          | Field effect transistor                                                                   | 47               |
| 120                | D (1,6)                          | Gated collector surface-channel cross resistor                                            | 50               |
| 121                | D (2,6)                          | Gated base cross sheet resistor                                                           | 51               |
| 122                | p (3,6)                          | Gated base cross sheet resistor                                                           | 52               |
| 123                | D (5,6)                          | Gated collector cross sheet resistor                                                      | 53               |
| 124                | D (1,7)                          | Gated collector cross sheet resistor                                                      | 54               |
| 125                | Center                           | NBS-12 logo                                                                               | 57               |
| 126                | A (5,8)                          | Alignment markers                                                                         | 58               |
| 127                | D (2,7)                          | Gated base-collector diode with source-follower FET and saturated high-impedance FET load | 59               |
| 129                | D (4,7)                          | Gated base-collector diode with source-follower FET                                       | 59C              |
| 130                | D (1,8)                          | Gated base-collector diode with common-source FET and saturated low-impedance FET load    | 60               |
| 131                | D (2,8)                          | Base-collector diode with common-source FET and saturated low-impedance FET load          | 60B              |
| 132                | D (4,8)                          | Gated base-collector diode with common-source FET                                         | 60C              |
| 133                | B (4,8)                          | Gated base-collector diode                                                                | 61               |
| 134                | B (5,8)                          | Common-source FET with saturated low-impedance FET load                                   | 62               |
| 135                | A (1,8)                          | Capacitor                                                                                 | 63               |
| 136                | A (2,8)                          | Capacitor                                                                                 | 64               |
| 137                | A (3,8)                          | Pinhole tester                                                                            | 65               |
| 138                | A (2,8)                          | Contact tester                                                                            | 68               |
| 139                | D (5,7)                          | Pinhole tester                                                                            | 66               |
| 140                | D (5,8)                          | Pinhole tester                                                                            | 67               |

Table 1, Part II. Cross Sheet Resistors; Functional Descriptions.

| Functional Type   | Layer                     | Computer Numbers of Structures | Specifications/Notes                                                        |
|-------------------|---------------------------|--------------------------------|-----------------------------------------------------------------------------|
| Greek cross       | Metal                     | 58, 62, 66, 70                 | W = 6, 12, 18, 24; D = 6.                                                   |
| Greek cross       | Emitter-in-base           | 86, 90, 94, 98                 | W = 6, 12, 18, 24; D = 6.                                                   |
| Greek cross       | Base-under-emitter        | 2, 6, 10, 14                   | W = 6, 12, 18, 24; D = 6.                                                   |
| Greek cross       | Base                      | 85, 89, 93, 97                 | W = 6, 12, 18, 24; D = 6.                                                   |
| Greek cross       | Meta1                     | 57, 61, 65                     | <pre>W = 6; different exposure geometries   at intersection of cross.</pre> |
| Greek cross       | Metal                     | 69                             | W = 6; horizontal offset in vertical arms of cross.                         |
| Gated Greek cross | Base                      | 121, 122                       | Gate oxide, field oxide.                                                    |
| Gated Greek cross | Collector                 | 123, 124                       | Gate oxide, field oxide.                                                    |
| Gated Greek cross | Base surface-channel      | 45                             | W = 24.                                                                     |
| Gated Greek cross | Collector surface-channel | 43                             | W = 20.                                                                     |
| Greek cross       | Base surface-channel      | 44                             | W = 24.                                                                     |
| Greek cross       | Collector surface-channel | 42                             | W = 20.                                                                     |
| Gated Greek cross | Collector surface-channel | 120                            | W = 44.                                                                     |
| Quadrate cross    | Emitter-in-base           | 74                             | Intersection A = $24 \times 24$ .                                           |
| Greek cross       | Emitter-in-base           | 75                             | W = 24; cf structure 74.                                                    |
| Quadrate cross    | Base                      | 46                             | Intersection A = 24 × 24.                                                   |
| Greek cross       | Base                      | 47                             | W = 24; cf structure 46.                                                    |

Table 1, Part III. Bridge and Cross-Bridge Sheet Resistors; Functional Descriptions.

| Functional Type                            | Layer                     | Computer Numbers<br>of Structures | Specifications/Notes                                                   |
|--------------------------------------------|---------------------------|-----------------------------------|------------------------------------------------------------------------|
| Cross-bridge                               | Metal                     | 59, 63, 67, 71                    | W = 6, 12, 18, 24; D = 6.                                              |
| Cross-bridge                               | Emitter-in-base           | 87, 91, 95, 99                    | W = 6, 12, 18, 24; D = 6.                                              |
| Cross-bridge                               | Base-under-emitter        | 3, 7, 11, 15                      | W = 6, 12, 18, 24; D = 6.                                              |
| Cross-bridge                               | Base                      | 30, 33, 36, 39                    | W = 6, 12, 18, 24; D = 6.                                              |
| Cross-bridge                               | Metal                     | 60, 64, 68, 72                    | W = 6, 12, 18, 24; D = 6; symmetry tabs.                               |
| Cross-bridge                               | Emitter-in-base           | 88, 92, 96, 100                   | W = 6, 12, 18, 24; D = 6; symmetry tabs.                               |
| Cross-bridge                               | Base-under-emitter        | 4, 8, 12, 16                      | W = 6, 12, 18, 24; D = 6; symmetry tabs.                               |
| Cross-bridge                               | Base                      | 32, 35, 38, 41                    | W = 6, 12, 18, 24; D = 6; symmetry tabs.                               |
| Gated cross-bridge                         | Base                      | 31, 34, 37                        | Fully gated, partially gated, ungated; symmetry tabs.                  |
| Cross-bridge                               | Collector surface-channel | 101, 103, 104                     | Gated/no channel stop,<br>gated/channel stop,<br>ungated/channel stop. |
| Double bridge                              | Meta1                     | 76, 77                            | W = 12 and 24, W = 6 and 24.                                           |
| Double bridge                              | Base-under-emitter        | 21, 22                            | W = 12 and 24, W = 6 and 24.                                           |
| Double bridge                              | Base                      | 48, 49                            | W = 12 and 24, W = 6 and 24.                                           |
| Contact-to-corner distance<br>study bridge | Meta1                     | 80, 81, 82, 83, 84                | Voltage tap-to-corner dis-<br>tance = 80, 60, 40, 20,<br>0.            |
| Contact-to-corner distance<br>study bridge | Base                      | 52, 53, 54, 55, 56                | Voltage tap-to-corner dis-<br>tance = 80, 60, 40, 20,<br>0.            |
| γ-factor evaluation tester                 | Metal                     | 78                                | W = 24; D = 6, 12, 18, 24.                                             |
| γ-factor evaluation tester                 | Metal                     | 79                                | W = 36; D = 6, 12, 18, 24.                                             |
| y-factor evaluation tester                 | Base                      | 50                                | W = 24; D = 6, 12, 18, 24                                              |
| γ-factor evaluation tester                 | Base                      | 51                                | W = 36; $D = 6$ , 12, 18, 24.                                          |

Table 1, Part IV. Transistors; Functional Descriptions.

| Functional Type         | Computer Numbers<br>of Structures | Specifications/Notes                                                                         |
|-------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|
| Bipolar transistor      | 9                                 | Emitter: $L/W = 9$ ; A = $18 \times 162$ ; emitter channel stop.                             |
| Bipolar transistor      | 13                                | Emitter: $L/W = 9$ ; A = 18 × 162.                                                           |
| Bipolar transistor      | 17                                | Emitter: $L/W = 3$ ; A = $18 \times 54$ ; emitter channel stop.                              |
| Bipolar transistor      | 18                                | Emitter: $L/W = 3$ ; $A = 18 \times 54$ .                                                    |
| Bipolar transistor      | 19                                | Emitter: L/W = 1; A = $18 \times 18$ ; emitter channel stop.                                 |
| Bipolar transistor      | 20                                | Emitter: L/W = 1; A = 18 × 18.                                                               |
| Bipolar transistor      | 112                               | Emitter: $L/W = 3$ ; $A = 24 \times 72$ .                                                    |
| Bipolar transistor      | 113                               | Emitter: L/W = 3; A = 36 × 108.                                                              |
| Bipolar transistor      | 114                               | Emitter: L/W = 3; A = 54 × 162.                                                              |
| Field effect transistor | 115                               | Channel L = 28; gate oxide; collector under gate; base source/drain.                         |
| Field effect transistor | 116                               | Channel L = 36; gate oxide; buried layer under gate*; emitter source/drain in a base island. |
| Field effect transistor | 117                               | Channel L = 28; gate oxide; base under gate; emitter source/drain.                           |
| Field effect transistor | 118                               | Channel L = 28; field oxide; collector under gate; base source/drain.                        |
| Field effect transistor | 119                               | Channel L = 28; field oxide; base under gate; emitter source/drain.                          |

<sup>\*</sup>Implanted buried layer would be of the same conductivity type as the base diffusion.

Table 1, Part V. Advanced Test Structures; Functional Descriptions.

| Functional Type                                                                                   | Computer Number of Structure | Notes                                                                                     |
|---------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------|
| Gated base-collector diode with source-<br>follower FET and saturated high-<br>impedance FET load | 127                          |                                                                                           |
| Base-collector diode with source-<br>follower FET                                                 | 129                          | Same as 127, except no gate on diode and no load FET. (Requires external resistive load.) |
| Gated base-collector diode with common-<br>source FET and saturated low-impedance<br>FET load     | 130                          |                                                                                           |
| Base-collector diode with common-source<br>FET and saturated low-impedance FET<br>load            | 131                          | Same as 130, except no gate on diode.                                                     |
| Gated base-collector diode with common source FET                                                 | 132                          | Same as 130, except no load FET. (Requires external resistive load.)                      |
| Gated base-collector diode                                                                        | 133                          | Bare gated diode without reset switch.                                                    |
| Common-source FET with saturated low-<br>impedance FET load                                       | 134                          | Amplifier of 130.                                                                         |

Table 1, Part VI. Miscellaneous and Integrity Testers; Functional Descriptions.

| Functional Type                      | Layer                                       | Computer Numbers of Structures | Specifications/Notes                                              |
|--------------------------------------|---------------------------------------------|--------------------------------|-------------------------------------------------------------------|
| Pinhole tester                       | Emitter and collector field and gate oxides | 137                            |                                                                   |
| Pinhole tester                       | Base oxide                                  | 139                            |                                                                   |
| Pinhole tester                       | Isolation oxide                             | 140                            |                                                                   |
| Oxide integrity tester               | Emitter gate oxide break-<br>down           | 138                            |                                                                   |
| Contact tester                       | Metal-to-emitter                            | 5                              |                                                                   |
| Contact tester                       | Metal-to-base                               | 1                              |                                                                   |
| Planar four-probe resistivity tester | Collector                                   | 105                            | Measures resistivity of bulk wafer.                               |
| Alignment markers                    | A11                                         | 126                            | Visual inspection required.                                       |
| Continuity tester                    | Metal                                       | 73                             |                                                                   |
| Capacitor                            | Metal-gate oxide-collector                  | 135                            |                                                                   |
| Capacitor                            | Metal-field oxide-collector                 | 136                            |                                                                   |
| NBS-12 logo                          | Metal                                       | 125                            | Test pattern identification number; located at center of pattern. |

Table 1, Part VII. Cross and Cross-Bridge Sheet Resistor Correspondence Chart, by Computer Number.

| Layer              | Cross Sheet<br>Resistors | Cross-Bridge<br>With Symmetry Tabs | Sheet Resistors<br>Without Symmetry Tabs | W  |
|--------------------|--------------------------|------------------------------------|------------------------------------------|----|
| Metal              | 58                       | 60                                 | 59                                       | 6  |
| Metal              | 62                       | 64                                 | 63 ·                                     | 12 |
| Metal              | 66                       | 68                                 | 67                                       | 18 |
| Metal              | 70                       | 72                                 | 71                                       | 24 |
| Emitter            | 86                       | 88                                 | 87                                       | 6  |
| Emitter            | 90                       | <sub>.</sub> 92                    | 91                                       | 12 |
| Emitter            | 94                       | 96                                 | 95                                       | 18 |
| Emitter            | 98                       | 100                                | 99                                       | 24 |
| Base-under-emitter | 2                        | 4                                  | 3                                        | 6  |
| Base-under-emitter | 6                        | 8                                  | 7                                        | 12 |
| Base-under-emitter | 10                       | 12                                 | 11                                       | 18 |
| Base-under-emitter | 14                       | 16                                 | 15.                                      | 24 |
| Base               | 85                       | 32                                 | 30                                       | 6  |
| Base               | 89                       | 35                                 | 33                                       | 12 |
| Base               | 93                       | 38                                 | 36                                       | 18 |
| Base               | 97                       | 41                                 | 39                                       | 24 |

quadpads Each In each column, the probe The pattern is divided into four quadrants. rant is composed of test structures arranged in an array of eight columns. Outline drawing of test pattern NBS-12. KOM two probe pads per are in ten rows, Figure 1.

356.17 353.76 406.33 422.62 437.50 462.00 486.67 481.26

QUADRANT

160 et 175.00 185.66 204.17 216.76 233.33 227.82 282.89 277.06 281.67 350.28 350.63 356.20 364.68

QUADRANT C

72.62 67.60

29-17 43.76 60.33



The computer number for each test structure is located on the uppermost left probe pad of the structure. Outline drawing of quadrant A of NBS-12. Figure 2.



Outline drawing of quadrant B of NBS-12. The computer number for each test structure is located on the uppermost left probe pad of the structure. Figure 3.



The computer number for each test structure on the uppermost left probe pad of the structure. Outline drawing of quadrant C of NBS-12. is located Figure 4.



Outline drawing of quadrant D of NBS-12. The computer number for each test structure is located on the uppermost left probe pad of the structure. Figure 5.

#### Table 2. Test Pattern NBS-24.

- Part I. Test Structures Contained in Quadrant A
- Part II. Test Structures Contained in Quadrant B
- Part III. Test Structures Contained in Quadrant C
- Part IV. Test Structures Contained in Quadrant D
- Part V. Gated Diode Geometrical Design Specifications
- Notes: 1. Quadrant A is the upper left quarter of the pattern. Quadrants B, C, and D are the upper right, lower left, and lower right quarters, respectively.
  - 2. Abbreviations: W = width and L = length. Dimensions associated with these parameters are given in units of  $\mu m$ .
  - 3. The probe-pad numbers refer to the probe-pad sequence within a 2-by-10 array. The pads are numbered from 1 at the upper left of the column to 10 at the lower left and from 11 to 20 beginning at the lower right and ending at the upper right. Several columns in quadrant C have additional devices with pads above the top and below the bottom of the 2-by-10 array. These additional probe pads are not numbered.

Table 2, Part I. Test Structures Contained in Quadrant A.

| Column<br>Number | Design<br>Code(s) | Computer<br>Number(s) | Device Description                                                                     | Probe Pad<br>Numbers     |
|------------------|-------------------|-----------------------|----------------------------------------------------------------------------------------|--------------------------|
| 1                | GD-1P<br>(A-1P)   | 11, 1                 | Gated-diode electrometer Large rectangular gated diode polysilicon gate                | 1, 2, 3<br>18, 19, 20    |
| 1                | CB-1              | 58                    | Cross-bridge resistor<br>source/drain                                                  | 4, 5, 6<br>15, 16, 17    |
| 1                | ILD-1             | 51                    | Inversion layer detector<br>gate oxide                                                 | 7, 14                    |
| 1                | GD-1M<br>(A-1M)   | 11, 1                 | Gated-oxide electrometer<br>Large rectangular gated diode<br>metal gate                | 8, 9, 10<br>11, 12, 13   |
| 2                | GD-3P<br>(A-1P)   | 13, 1                 | Gated-diode electrometer Small rectangular gated-diode (probeable) polysilicon gate    | 1, 2, 3<br>18, 19, 20    |
| 2                | CB-2              | 58                    | Cross-bridge resistor<br>channel stop                                                  | 4, 5, 6<br>15, 16, 17    |
| 2                | IDL-2             | 51                    | Inversion layer detector field oxide                                                   | 7, 14                    |
| 2                | GD-3M<br>(A-1M)   | 13, 1                 | Gated-diode electrometer<br>Small rectangular gated-diode<br>(probeable)<br>metal gate | 8, 9, 10<br>11, 12, 13   |
| 3                | GD-6P<br>(A-1P)   | 16, 1                 | Gated-diode electrometer Small rectangular gated diode polysilicon gate                | 1, 2, 3<br>18, 19, 20    |
| 3                | CB-3              | 58                    | Cross-bridge resistor<br>metal                                                         | 4, 5, 6<br>15, 16, 17    |
| 3                | G                 | 5                     | Ground                                                                                 | 7, 14                    |
| 3                | GD-6M<br>(A-1M)   | 16, 1                 | Gated-diode electrometer<br>Small rectangular gated diode<br>metal gate                | 8, 9, 10<br>11, 12, 13   |
|                  | GD-2P<br>(A-1P)   | 12, 1                 | Gated-diode electrometer<br>Cross-shaped gated diode<br>polysilicon gate               | 1, 2, 3<br>18, 19, 20    |
| 4                | CB-4              | 58                    | Cross-bridge resistor polysilicon                                                      | 4, 5, 6<br>15, 16, 17    |
| 4                | G                 | 5                     | Ground                                                                                 | 7, 14                    |
| 4                | GD-2M<br>(A-1M)   | 12, 1                 | Gated-diode electrometer<br>Cross-shaped gated diode<br>metal gate                     | 8, 9, 10<br>· 11, 12, 13 |
| 5                | GD-10P<br>(A-1P)  | 20, 1                 | Gated-diode electrometer<br>Round gated diode<br>polysilicon gate                      | 1, 2, 3                  |
| 5                | CB-5              | 58                    | Cross-bridge resistor implant                                                          | 4, 5, 6<br>15, 16, 17    |

| Column<br>Number | Design<br>Code(s) | Computer<br>Number(s) | Device Description                                                                     | Probe Pad<br>Numbers   |
|------------------|-------------------|-----------------------|----------------------------------------------------------------------------------------|------------------------|
| 5                | G                 | 5                     | Ground                                                                                 | 7, 14                  |
| 5                | GP-1DM<br>(A-1M)  | 20, 1                 | Gated-diode electrometer<br>Round gated diode<br>metal gate                            | 8, 9, 10<br>11, 12, 13 |
| 6                | GD-7P<br>(A-1P)   | 17, 1                 | Gated-diode electrometer<br>Inverted large rectangular gated diode<br>polysilicon gate | 1, 2, 3<br>18, 19, 20  |
| 6                | GD-127            | 59                    | Gated-diode electrometer<br>NBS-12 cross shaped gated diode                            | 4, 5, 6<br>15, 16, 17  |
| 6                | G                 | 5                     | Ground                                                                                 | 7, 14                  |
| 6                | GD-7M<br>(A-1M)   | 17, 1                 | Gated-diode electrometer<br>Inverted large rectangular gated diode<br>metal gate       | 8, 9, 10<br>11, 12, 13 |
| 7                | GD-11P<br>(A-1P)  | 21, 1                 | Gated-diode electrometer<br>Inverted small rectangular gated diode<br>polysilicon gate | 1, 2, 3<br>18, 19, 20  |
| 7                | CR-1              | 57                    | Contact resistor<br>Metal-to-polysilicon                                               | 4, 5<br>16, 17         |
| 7                | CR-3              | 57                    | Contact resistor<br>Metal-to-channel stop                                              | 6, 7<br>14, 15         |
| 7                | GD-11P<br>(A-1M)  | 21, 1                 | Gated-diode electrometer<br>Inverted small rectangular gated diode<br>metal gate       | 8, 9, 10<br>11, 12, 13 |
| 8                | GD-1P<br>(A-2P)   | 11, 3                 | Gated-diode electrometer<br>Large rectangular gated diode<br>polysilicon gate          | 1, 2, 3<br>18, 19, 20  |
| 8                | CR-2              | 57                    | Contact resistor<br>Metal-to-source/drain                                              | 4, 5<br>16, 17         |
| 8                | CR-4              | 57                    | Contact resistor<br>Metal-to-implant                                                   | 6, 7<br>14, 15         |
| 8                | GP-1M<br>(A-2M)   | 11, 3                 | Gated-diode electrometer<br>Large rectangular gated diode<br>metal gate                | 8, 9, 10<br>11, 12, 13 |

Table 2, Part II. Test Structures Contained in Quadrant B.

| Column<br>Number | Deslgn<br>Code(s) | Computer<br>Number(s) | Device Description                                                                                  | Probe Pad<br>Numbers                 |
|------------------|-------------------|-----------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|
| 1                | GD-9P<br>(A-1P)   | 19, 1                 | Gated-dlode electrometer Cross shaped gated dlode (guarded) polysillcon gate                        | 1, 2, 3, 4<br>18, 19, 20             |
| 1                | G                 | 5 .                   | Ground                                                                                              | 17, 14                               |
| 1                | C-3PI             | 53                    | Capacitor polysilicon-gate oxide-implant (no regrowth)                                              | 5, 6<br>15, 16                       |
|                  | GD-8P<br>(A-1P)   | 18, 1                 | Gated diode electrometer<br>Inverted large rectangular gated diode<br>(guarded)<br>polysilicon gate | 7, 8, 9, 10<br>11, 12, 13            |
| 2                | GD-4P<br>(A-1P)   | 14, 1                 | Gated-diode electrometer Large rectangular gated diode (guarded) polysilicon gate                   | 1, 2, 3<br>17, 18, 19, 20            |
| 2                | G                 | 5                     | Ground                                                                                              | 4, 7                                 |
| 2                | C-3               | 53                    | Capacitor<br>Metal-gate oxide-substrate                                                             | 5, 6<br>15, 16                       |
| 2                | GD-5P<br>(A-1P)   | 15, 1                 | Gated-diode electrometer Small rectangular gated diode (guarded) polysilicon gate                   | 8, 9, 10<br>11, 12, 13, 14           |
| 3                |                   | 60                    | Alignment markers                                                                                   |                                      |
| 3                | DGP               | 84                    | Dual gated MOSFET profiler                                                                          | 2, 3<br>18, 19, 20                   |
| 3                | G                 | 5                     | Ground                                                                                              | 1, 4, 17                             |
| 3                | C-3F              | 53                    | Capacitor<br>Metal-field oxide-substrate                                                            | 5, 6<br>15, 16                       |
| 3                | P-7F              | 79                    | ''Practical'' MOSFET profiler<br>Metal gate, field oxide                                            | 7, 8<br>13, 14                       |
| 3                | P-851             | 76                    | MOSFET profiler polysilicon gate, implant (no regrowth)                                             | 9, 10<br>11, 12                      |
| 3                | P-71R             | 79                    | <pre>"Practical" MOSFET profiler metal gate, implant (no regrowth)</pre>                            |                                      |
| 4                | GD-12             | 28                    | Gated-diode<br>Round gated diode metal gate                                                         |                                      |
| 4                | EA-1              | 55, 56                | Electrical alignment test structure source/drain-to-contact                                         | 1, 2, 3, 4, 5<br>16, 17, 18, 19, 20  |
| 4                | EA-2              | 55, 56                | Electrical alignment test structure polysilicon-to-contact                                          | 6, 7, 8, 9, 10<br>11, 12, 13, 14, 15 |
| 4                | C-31              | 53                    | Capacitor<br>metal over implant (no regrowth)                                                       |                                      |
| 5                | C-4P              | 93                    | Capacitor polysilicon-gate oxide-implant                                                            |                                      |

| Column<br>Number | Design<br>Code(s) | Computer<br>Number(s) | Device Description                                                                            | Probe Pad<br>Numbers                 |
|------------------|-------------------|-----------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|
| 5                | EA-3              | 65, 66                | Electrical alignment test structure polysilicon-to-metal                                      | 1, 2, 3, 4, 5<br>16, 17, 18, 19, 20  |
| 5                | EA-4              | 65, 66                | Electrical alignment test structure source/drain-to-metal                                     | 6, 7, 8, 9, 10<br>11, 12, 13, 14, 15 |
| • 5              | C-31R             | 53                    | Capacitor<br>metal-gate oxide-implant                                                         |                                      |
| 6                |                   | 61                    | Level designators                                                                             |                                      |
| 6 .              | DGP-M             | 85                    | MOSFET profiler<br>metal gate over implant                                                    | 1, 2<br>19, 20                       |
| 6                | DGP-P             | 86                    | MOSFET profiler<br>polysilicon gate over implant                                              | 3, 4<br>17, 18                       |
| 6                | C-3P              | 53                    | Capacitor<br>polysilicon-gate oxide-substrate                                                 | 5, 6<br>15, 16                       |
| 6                | SIS-1             | 52                    | Step Coverage and Isolation Structure                                                         | 7, 8<br>13, 14                       |
| 6                | S1S-2             | 52                    | Step Coverage and Isolation Structure                                                         | 9, 10<br>11, 12                      |
| 6                | P-71 `            | 79                    | <pre>''Practical'' MOSFET profiler   metal gate over implant (no regrowth)</pre>              |                                      |
| 7 -              | GD-9M<br>(A-1M)   | 19, 1                 | Gated-diode electrometer<br>Cross shaped gated diode (guarded)<br>metal gate                  | 1, 2, 3, 4<br>18, 19, 20             |
| 7                | G                 | 5                     | Ground                                                                                        | 17, 14                               |
| 7                | C-3PF             | 53                    | Capacitor polysilicon-field oxide-substrate                                                   | 5, 6<br>15, 16                       |
| 7                | GD-8M<br>(A-1M)   | 18, 1                 | Gated-diode electrometer<br>Inverted large rectangular gated diode<br>(guarded)<br>metal gate | 7, 8, 9, 10<br>11, 12, 13            |
| 8                | GD-4M<br>(A-1M)   | 14, 1                 | Gated-diode electrometer Large rectangular gated diode (guarded) metal gate                   | 1, 2, 3<br>17, 18, 19, 20            |
| 8                | G                 | 5                     | Ground                                                                                        | 4, 7                                 |
| 8                | C-3PIR            | 53                    | Capacitor polysilicon-gate oxide-implant                                                      | 5, 6<br>15, 16                       |
| 8                | GD-5M<br>(A-1M)   | 15, 1                 | Gated-diode electrometer<br>Small rectangular gated diode (guarded)<br>metal gate             | 8, 9, 10<br>11, 12, 13, 14           |

Table 2, Part III. Test Structures Contained in Quadrant C.1

| Column<br>Number | Design<br>Code(s) | Computer<br>Number(s) | Device Description                                                                                    | Probe Pad<br>Numbers   |
|------------------|-------------------|-----------------------|-------------------------------------------------------------------------------------------------------|------------------------|
| 1                | GD-1PF<br>(A-1P)  | 11, 1                 | Gated-diode electrometer Large rectangular gated diode polysilicon gate (no channel stop)             | 1, 2, 3<br>18, 19, 20  |
| 1                | P-1               | 70                    | MOSFET profiler metal gate (W=240, L=32)                                                              | 4, 5<br>16, 17         |
| 1.               | P-2SP             | 78                    | MOSFET profiler sealed polysilicon gate (W=240, L=24)                                                 | 6, 7<br>14, 15         |
| 1                | GD-1MF<br>(A-1M)  | 11, 1                 | Gated-diode electrometer<br>Large rectangular gated diode<br>metal gate (no channel stop)             | 8, 9, 10<br>11, 12, 13 |
| 2                | GD-3PF<br>(A-1P)  | 13, 1                 | Gated-diode electrometer Small rectangular gated diode (probeable) polysilicon gate (no channel stop) | 1, 2, 3<br>18, 19, 20  |
| 2                | P-2               | 71                    | MOSFET profiler metal gate (W=240, L=24)                                                              | 4, 5<br>16, 17         |
| 2                | P-2S              | 77                    | MOSFET profiler sealed metal gate (W=240, L=24)                                                       | 6, 7<br>14, 15         |
| 2                | GD-3MF<br>(A-1M)  | 13, 1                 | Gated-diode electrometer Small rectangular gated diode (probeable) metal gate (no channel stop)       | 8, 9, 10<br>11, 12, 13 |
| 3                | GD-6PF<br>(A-1P)  | 16, 1                 | Gated-diode electometer Small rectangular gated diode polysilicon gate (no channel stop)              | 1, 2, 3<br>18, 19, 20  |
| 3                | P-3               | 72                    | MOSFET profiler metal gate (W=240, L=16)                                                              | 4, 5<br>16, 17         |
| 3                | P-3M              | 81                    | MOSFET profiler<br>metallized source/drain metal gate<br>(W=240, L=16)                                | 6, 7<br>14, 15         |
| 3                | GD-6MF<br>(A-1M)  | 16, 1                 | Gated-diode electrometer Small rectangular gated diode metal gate (no channel stop)                   | 8, 9, 10<br>11, 12, 13 |
|                  | GD-2PF<br>(A-1P)  | 12, 1                 | Gated-diode electrometer Cross shaped gated diode polysilicon gate (no channel stop)                  | 1, 2, 3<br>18, 19, 20  |
| 4                | P-4               | 73                    | MOSFET profiler metal gate (W=240, L=8)                                                               | 4, 5<br>16, 17         |
| 4                | PR-2              | 92                    | Circular MOSFET profiler<br>metal gate (L=24)                                                         | 6, 7<br>14, 15         |
| 4                | GD-2MF<br>(A-1M)  | 12, 1                 | Gated-diode electrometer<br>Cross shaped gated diode<br>metal gate (no channel stop)                  | 8, 9, 10<br>11, 12, 13 |
| 5                | GD-10PF<br>(A-1P) | 20, 1                 | Gated-diode electrometer<br>Round gated diode<br>polysilicon gate (no channel stop)                   | 1, 2, 3<br>18, 19, 20  |
| 5                | P-5V              | 74                    | MOSFET profiler<br>metal gate (W=120, L=24)                                                           | 4, 5<br>16, 17         |

| Column<br>Number | Design<br>Code(s) | Computer<br>Number(s) | Device Description                                                                                       | Probe Pad<br>Numbers   |
|------------------|-------------------|-----------------------|----------------------------------------------------------------------------------------------------------|------------------------|
| 5                | PR-1              | 91                    | Circular MOSFET profiler polysilicon gate (L=24)                                                         | 6, 7<br>14, 15         |
| 5                | GD-10MF<br>(A-1M) | 20, 1                 | Gated-diode electrometer<br>Round gated diode<br>metal gate (no channel stop)                            | 8, 9, 10<br>11, 12, 13 |
| 6                | GP-7PF<br>(A-1P)  | 17, 1                 | Gated-diode electrometer Inverted large rectangular gated diode polysilicon gate (no channel stop)       | 1, 2, 3<br>18, 19, 20  |
| 6 .              | P-6               | 75                    | MOSFET profiler<br>metal gate (W=48, L=24)                                                               | 4, 5<br>16, 17         |
| 6                | P-2SA             | 81                    | MOSFET profiler self-aligned polysilicon gate (L=24)                                                     | 6, 7<br>14, 15         |
| 6                | GD-7MF<br>(A-1M)  | 17, 1                 | Gated-diode electrometer<br>Inverted large rectangular gated diode<br>metal gate (no channel stop)       | 8, 9, 10<br>11, 12, 13 |
| 7                | GD-11PF<br>(A-1P) | 21, 1                 | Gated-diode electrometer<br>Inverted small rectangular gated diode<br>polysilicon gate (no channel stop) | 1, 2, 3<br>18, 19, 20  |
| 7                | P-7               | 79                    | "Practical" MOSFET profiler<br>metal gate (W=20, L=8)                                                    | 4, 5<br>16, 17         |
| 7                | P-21              | 71                    | MOSFET profiler<br>metal gate over implant (no regrowth)                                                 | 6, 7<br>14, 15         |
| 7                | GD-11MF<br>(A-1M) | 21, 1                 | Gated-diode electrometer<br>Inverted small rectangular gated diode<br>metal gate (no channel stop)       | 8, 9, 10<br>11, 12, 13 |
| 8                | GD-1PF<br>(A-2P)  | 11, 3                 | Gated-diode electrometer Large rectangular gated diode polysilicon gate (no channel stop)                | 1, 2, 3<br>18, 19, 20  |
| 8 .              | P-8S              | 76                    | MOSFET profiler sealed metal gate (W=40, L=160)                                                          | 4, 5<br>16, 17         |
| 8                | P-2S1             | 77                    | MOSFET profiler<br>sealed metal gate over implant<br>(W=236, L=24)                                       | 6, 7<br>14, 15         |
| 8                | GD-1MF<br>(A-2M)  | 11, 3                 | Gated-diode electrometer<br>Large rectangular gated diode<br>metal gate (no channel stop)                | 8, 9, 10<br>11, 12, 13 |

Table 2, Part IV. Test Structures Contained in Quadrant D.

| Column<br>Number | Deslgn<br>Code(s) | Computer<br>Number(s) | Device Description                                                                    | Probe Pad<br>Numbers   |
|------------------|-------------------|-----------------------|---------------------------------------------------------------------------------------|------------------------|
| 1                | GD-1SA<br>(A-1SA) | 22, 2                 | Gated-diode electrometer Self-aligned large rectangular gated diode                   | 1, 2, 3<br>18, 19, 20  |
| 1                | R                 | 83                    | Surface channel cross sheet resistor                                                  | 4,5<br>16, 17          |
| 1                | R-1               | 83                    | Surface channel cross sheet resistor implant (no regrowth)                            | 6, 7<br>14, 15         |
| 1                | GD-1SA<br>(A-1SA) | 22, 2                 | Gated-diode electrometer Self-aligned large rectangular gated diode                   | 8, 9, 10<br>11, 12, 13 |
| 2                | GD-1SA<br>(A-1SA) | 22, 1                 | Gated-diode electrometer<br>Self-aligned large rectangular gated diode                | 1, 2, 3<br>18, 19, 20  |
| 2                | R-F               | 83                    | Surface channel cross sheet resistor (no channel stop)                                | 4, 5<br>16, 17         |
| 2                | R-IR              | 83                    | Surface channel cross sheet resistor implant                                          | 6, 7<br>14, 15         |
| 2                | GD-2SA<br>(A-1SA) | 23, 2                 | Gated-diode electrometer<br>Self-aligned cross shaped gated diode                     | 8, 9, 10<br>11, 12, 13 |
| 3                | GD-3SA<br>(A-1SA) | 24, 2                 | Gated-diode electrometer<br>Self-aligned small rectangular gated<br>diode (probeable) | 1, 2, 3<br>18, 19, 20  |
| 3                | P-2F              | 71                    | MOSFET profiler<br>Metal gate over field oxide (W=240, L=24)                          | 4, 5<br>16, 17         |
| 3                | P-21R             | 71                    | MOSFET profiler<br>Metal gate over implant (W=240, L=24)                              | 6, 7<br>14, 15         |
| 3                | GD-3SA<br>(A-1SA) | 24, 2                 | Gated-diode electrometer Self-aligned small rectangular gated diode (probeable)       | 8, 9, 10<br>11, 12, 13 |
| 4                | GD-6SA<br>(A-1SA) | 25, 2                 | Gated-diode electrometer<br>Self-aligned small rectangular gated diode                | 1, 2, 3<br>18, 19, 20  |
| 4                | P-2SF             | 77                    | MOSFET profiler<br>Sealed metal gate over field oxide<br>(W=240, L=24)                | 4, 5<br>16, 17         |
| 4                | P-2SIR            | 77                    | MOSFET profiler<br>Sealed metal gate over implant (W=240,<br>L=24)                    | 6, 7<br>14, 15         |
| 4                | GD-6SA<br>(A-1SA) | 25, 2                 | Gated-diode electrometer<br>Self-aligned small rectangular gated diode                | 8, 9, 10<br>11, 12, 13 |
| 5                | GD-7SA<br>(A-1SA) | 26, 2                 | Gated-diode electrometer<br>Self-aligned inverted large rectangular<br>gated diode    | 1, 2, 3<br>18, 19, 20  |
| 5                | PR-2F             | 92                    | MOSFET profiler<br>Metal gate over field oxide (L=24)                                 | 4, 5<br>16, 17         |
| 5                | PR-21R            | 92                    | MOSFET profiler<br>Metal gate over implant (L=24)                                     | 6, 7<br>14, 15         |

| Column<br>Number | Design<br>Code(s)  | Computer<br>Number(s) | Device Description                                                                     | Probe Pad<br>Numbers     |
|------------------|--------------------|-----------------------|----------------------------------------------------------------------------------------|--------------------------|
| 5                | GD-7SA<br>(A-1SA)  | 26, 2                 | Gated-diode electrometer Self-aligned inverted large rectangular gated diode           | 8, 9, 10<br>11, 12, 13   |
| 6                | GD-11SA<br>(A-1SA) | 27, 2                 | Gated-diode electrometer<br>Self-aligned small rectangular gated diod                  | 1, 2, 3<br>e 18, 19, 20  |
| 6                | P-2SPF             | 76                    | MOSFET profiler Sealed polysilicon gate over field oxide (W=240, L=24)                 | 4, 5<br>16, 17           |
| 6                | P-2SPIR            | 76                    | MOSFET profiler Sealed polysilicon gate over implant (W=236, L=24)                     | 6, 7<br>14, 15           |
| 6                | GD-11SA<br>(A-1SA) | 27, 2                 | Gated-diode electrometer Self-aligned small rectangular gated diod                     | 8, 9, 10<br>e 11, 12, 13 |
| 7                | GD-2SA<br>(A-1SA)  | 23, 2                 | Gated-diode electrometer<br>Self-aligned cross-shaped gated diode                      | 1, 2, 3<br>18, 19, 20    |
| 7                | P-8SF              | 91                    | MOSFET profiler Sealed metal gate over field oxide (W=40, L=160)                       | 4, 5<br>16, 17           |
| 7                | P-8SIR             | 91                    | MOSFET profiler<br>Sealed metal gate over implant (W=40,<br>L=160)                     | 6, 7<br>14, 15           |
| 7                | GD-10P<br>(A-2P)   | 20, 3                 | Gated-diode electrometer<br>Round gated diode polysilicon gate                         | 8, 9, 10<br>11, 12, 13   |
| 8                | GD-7P<br>(A-2P)    | 17, 3                 | Gated-diode electrometer<br>Inverted large rectangular gated diode<br>polysilicon gate | 1, 2, 3<br>18, 19, 20    |
| 8                | PR-1F              | 92                    | MOSFET profiler polysilicon gate over field oxide (L=24)                               | 4, 5<br>16, 17           |
| 8                | PR-11R             | 92                    | MOSFET profiler polysilicon gate over implant (L=24)                                   | 6, 7<br>14, 15           |
| 8                | GD-6P<br>(A-2P)    | 16, 2                 | Gated-diode electrometer Small rectangular gated diode polysilicon gate                | 8, 9, 10<br>11, 12, 13   |

Table 2, Part V. Gated Diode Geometrical Design Specifications.

| Design<br>Code(GD#) | Gated Diode<br>Description                                       | Junction<br>Area <sup>a</sup><br>(cm <sup>2</sup> ) | Gate<br>Area <sup>b</sup><br>(cm <sup>2</sup> ) | Junction<br>Perimeter <sup>c</sup><br>(cm) | Junction<br>Perimeter/Aread<br>(cm <sup>-1</sup> ) |
|---------------------|------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| 1                   | Large rectangle                                                  | 4.88×10 <sup>-4</sup>                               | 2.19×10 <sup>-4</sup>                           | 8.72×10 <sup>-2</sup>                      | 180                                                |
| 2                   | Cross shape                                                      | 2.08×10 <sup>-4</sup>                               | 2.19x10 <sup>-4</sup>                           | 8.82×10 <sup>-2</sup>                      | 420                                                |
| 3                   | Small rectangle                                                  | 2.44×10 <sup>-4</sup>                               | 1.57×10 <sup>-4</sup>                           | 7.00×10 <sup>-2</sup>                      | 290                                                |
| 4                   | Large rectangle<br>(guarded)                                     | 4.88×10 <sup>-4</sup>                               | 1.38×10 <sup>-4</sup>                           | 8.56×10 <sup>-2</sup>                      | 180                                                |
| 5                   | Small rectangle<br>(guarded)                                     | 2.44×10 <sup>-4</sup>                               | 1.53×10 <sup>-4</sup>                           | 7.00×10 <sup>-2</sup>                      | 290                                                |
| 6                   | Small rectangle                                                  | 2.44×10 <sup>-4</sup>                               | 1.53×10 <sup>-4</sup>                           | 7.00×10 <sup>-2</sup>                      | 290                                                |
| 7                   | Inverted large<br>rectangle                                      | 1.52×10 <sup>-4</sup>                               | 3.97×10 <sup>-4</sup>                           | 8.00×10 <sup>-2</sup>                      | 530                                                |
| 8                   | Inverted large<br>rectangle (guarded)                            | 1.52×10 <sup>-4</sup>                               | 3.97×10 <sup>-4</sup>                           | 8.00×10 <sup>-2</sup>                      | 530                                                |
| 9                   | Cross shape<br>(guarded)                                         | 2.08×10 <sup>-4</sup>                               | 1.39×10 <sup>-4</sup>                           | 8.82×10 <sup>-2</sup>                      | 420                                                |
| 10                  | Round                                                            | ≈4.23×10 <sup>-4</sup>                              | ≈1.83×10 <sup>-4</sup>                          | ≈7.42×10 <sup>-2</sup>                     | ≈180                                               |
| 11                  | Inverted small rectangle                                         | 8.93×10 <sup>-5</sup>                               | 2.06×10 <sup>-4</sup>                           | 5.06×10 <sup>-4</sup>                      | 630                                                |
| ISA                 | Self-aligned<br>large rectangle                                  | 4.67×10 <sup>-4</sup>                               | 2.61×10 <sup>-4</sup>                           | 8.62×10 <sup>-2</sup>                      | 180                                                |
| 2SA                 | Self-aligned<br>cross shape                                      | 1.88×10 <sup>-4</sup>                               | 2.39×10 <sup>-4</sup>                           | 8.70×10 <sup>-2</sup>                      | 460                                                |
| 3SA                 | Self-aligned<br>small rectangle                                  | 2.28×10 <sup>-4</sup>                               | 1.87×10 <sup>-4</sup>                           | 6.10×10 <sup>-2</sup>                      | 270                                                |
| 6SA                 | Self-aligned<br>small rectangle                                  | 2.28×10 <sup>-4</sup>                               | 1.82×10 <sup>-4</sup>                           | 6.06×10 <sup>-2</sup>                      | 270                                                |
| 7SA                 | Self-aligned inverted large rectangle                            | 1.43×10 <sup>-4</sup>                               | 4.14×10 <sup>-4</sup>                           | 8.16×10 <sup>-2</sup>                      | 570                                                |
| 11SA                | Self-aligned inverted small rectangle                            | 7.64×10 <sup>-5</sup>                               | 2.06×10 <sup>-4</sup>                           | 5.76×10 <sup>-2</sup>                      | 750                                                |
| 127                 | Test Pattern NBS-12<br>cross-shaped gated-<br>diode electrometer | 1.36×10 <sup>-4</sup>                               | 6.36×10 <sup>-5</sup>                           | 6.08×10 <sup>-2</sup> *                    | 450                                                |

NOTES

a The junction area is the total design area of the diode junction.

b The gate area is the area of the gate <u>not</u> including regions where the gate overlaps the junction, the channel stop (if present), or field oxide.

c The junction perimeter is only the length of the boundary of the diode junction

beneath or adjacent to the gate.

d The junction perimeter/area is the ratio of the junction perimeter to the junction area.b

<sup>\*</sup> Approximately 25% of the junction outer boundary of this structure is ungated.



# QUADRANT C

#### QUADRANT D

Figure 6. Outline drawing of test pattern NBS-24. The pattern is divided into four quadrants. Each quadrant is divided into eight columns of test structures. Certain columns have additional test structures above and/or below, thus lengthening the basic 2-by-10 probe-pad array.

# QUADRANT A



Figure 7. Outline drawing of quadrant A of NBS-24. The design code of each test structure is located on the upper probe pad(s) of the structure.

# QUADRANT G G EA G 8P 5P GD GD P8

Figure 8. Outline drawing of quadrant B of NBS-24. The design code of each test structure is located on the upper probe pad(s) of the structure.

#### QUADRANT C



Figure 9. Outline drawing of quadrant C of NBS-24. The design code of each test structure is located on the upper probe pad(s) of the structure.

## QUADRANT D



Figure 10. Outline drawing of quadrant D of NBS-24. The design code of each test structure is located on the upper probe pad(s) of the structure.

| NBS-114A (REV. 2-80)                           |                                    |                                                 |              |                        |
|------------------------------------------------|------------------------------------|-------------------------------------------------|--------------|------------------------|
| U.S. DEPT. OF COMM.                            | 1. PUBLICATION OR                  | 2. Performing Organ. Report No                  | 3. Publica   | tion Date              |
| BIBLIOGRAPHIC DATA                             | REPORT NO. NBSIR 81-2234           |                                                 | May 1        | .981                   |
| SHEET (See instructions) 4. TITLE AND SUBTITLE | MDDIK OI III                       |                                                 |              |                        |
|                                                | '                                  |                                                 |              |                        |
| Microelectronic Tes                            | st Patterns NBS-12 and             | NBS-24                                          |              |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
| 5. AUTHOR(S) G. P. Carver, R. L.               | . Mattis, and M. G. Bu             | uehler                                          |              |                        |
|                                                |                                    |                                                 | 7.0          | C N                    |
| 6. PERFORMING ORGANIZA I                       | ΓΙΟΝ (If joint or other than NBS,  | see instructions)                               | 7. Contract/ | Grant No.              |
| NATIONAL BUREAU OF S                           |                                    |                                                 |              |                        |
| DEPARTMENT OF COMME<br>WASHINGTON, D.C. 20234  |                                    |                                                 | 8. Type of R | eport & Period Covered |
| WASHINGTON, D.C. 20234                         |                                    |                                                 |              |                        |
| 9. SPONSORING ORGANIZATI                       | ON NAME AND COMPLETE AL            | DDRESS (Street, City, State, ZIF                | 1)           |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
| 10. SUPPLEMENTARY NOTES                        | 5                                  |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
| □ Document describes a                         | computer program: SE-185 EIP       | S Software Summary, is attached                 |              |                        |
|                                                |                                    | ignificant information. If docum                |              | a significant          |
| bibliography or literature so                  | urvey, mention it here)            | Service and an income and an income             |              |                        |
| Microelectronic tes                            | st patterns NBS-12 and             | d NBS-24 are modular d                          | developmen   | ntal patterns          |
|                                                | _                                  | designs of certain tes                          |              |                        |
|                                                |                                    | ns for the cross-bridg                          |              |                        |
|                                                |                                    | f preliminary designs                           |              |                        |
|                                                |                                    | f variations on the de                          | _            |                        |
| _                                              |                                    | ssorted process parame                          |              |                        |
|                                                |                                    | descriptions of the t<br>drawings showing all o |              |                        |
| are included.                                  | ter-composed outline o             | drawings showing all c                          | or the tes   | st Structures          |
| are included.                                  |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
|                                                |                                    |                                                 |              |                        |
| 12. KEY WORDS (Six to twelve                   | e entries: alphabetical order: car | pitalize only proper names; and                 | separate kev | words by semicolons)   |
|                                                |                                    | gated-diode electrome                           |              |                        |
|                                                |                                    | cture; MOSFET dc profi                          |              | roerectionic           |
|                                                | Defectionic test structure         | etare, Mobili de pior                           |              |                        |
| 13. AVAILABILITY                               |                                    |                                                 |              | 14. NO. OF             |
| X Unlimited                                    |                                    |                                                 |              | PRINTED PAGES          |
|                                                | on. Do Not Release to NTIS         |                                                 |              | 39                     |
|                                                | dent of Documents, U.S. Govern     | ment Printing Office, Washington                | n, D.C.      | 15. Price              |
| 20402.                                         |                                    |                                                 |              | 19. Price              |
| Order From National T                          | echnical Information Service (N    | TIS), Springfield, VA. 22161                    |              |                        |
| 1                                              |                                    |                                                 |              |                        |





