### Sistemas de Computação



# Licenciatura Ciências de Computação Mestrado Integrado Eng<sup>a</sup>. Informática Mestrado Integrado Eng<sup>a</sup>. Física

2020/21

A.J.Proença

#### **Tema**

Introdução aos Sistemas de Computação

### Introdução aos Sistemas de Computação (1)



#### Estrutura do tema ISC

- 1. Representação de informação num computador
- 2. Organização e estrutura interna dum computador
- 3. Execução de programas num computador
- 4. Análise das instruções de um processador
- 5. Evolução da tecnologia e da eficiência

#### Noção de computador (1)



### Um computador é um sistema físico que:

- recebe informação,

processa / arquiva informação, transmite informação, e ...

é <u>programável</u>

i.e., a funcionalidade do sistema pode ser modificada, sem alterar fisicamente o sistema

Quando a funcionalidade é fixada no fabrico do sistema onde o computador se integra, diz-se que o computador existente nesse sistema está "embebido": ex. *smart phone*, máq. fotográfica, automóvel, ...

Como se representa a <u>informação</u> num computador ? Como se processa a informação num computador ?

#### Noção de computador (2)





#### Noção de computador (3)



- Como se representa a informação num computador?
  - representação da informação num computador ->

- Como se processa a informação num computador ?
  - organização e funcionamento de um computador ->

### Representação da informação num computador (1)



### Como se representa a informação?

– com <u>b</u>inary dig<u>its!</u>



Um **algarismo** ou **dígito**, é um tipo de representação (um símbolo numérico, como "2" ou "5") usado em combinações (como "25") para representar números (como o número 25) em sistemas de numeração posicionais. O nome "dígito" vem do facto de os 9 dígitos (do latim *digitem*, "dedo") das mãos corresponderem aos 10 símbolos do sistema de numeração comum de base 10, isto é, o decimal (digestivo do latim antigo *decoração*. que significa nove) dígitos.

A palavra "algarismo" tem sua origem no nome do famoso matemático Al-Khwarizmi.

#### Mais:

- Cada um dos elementos de um numeral é um algarismo ou dígito:
  - Numeral com 3 dígitos: 426.
  - Numeral com 10 algarismos: 1.234.567.890
- Dígitos Binários: podem ser apenas dois, o 0 (zero) e o 1 (um)

### Representação da informação num computador (1)



### Como se representa a informação?

– com <u>binary digits!</u>

### Tipos de informação a representar:

- números (para cálculo)
  - » bases de numeração, inteiros (positivos e negativos)
  - » reais (fp), norma IEEE 754
- textos (caracteres alfanuméricos)
- conteúdos multimédia

código para execução no computador

# Sistemas de numeração : quanto vale na base 10 um nº representado numa outra base



**1532.54<sub>10</sub>** (base 10) ; quanto vale cada algarismo?

$$1*10^3 + 5*10^2 + 3*10^1 + 2*10^0 + 5*10^{-1} + 4*10^{-2} = 1532.54_{10}$$

Nota: a potência de 10 dá-nos a ordem do algarismo no número...

**1532**<sub>6</sub> (base 6) ; quanto vale cada algarismo na base 10? **1**\*6<sup>3</sup> + **5**\*6<sup>2</sup> + **3**\*6<sup>1</sup> + **2**\*6<sup>0</sup> = 416<sub>10</sub>

**1532**<sub>13</sub> (base 13); quanto vale cada algarismo na base 10?  $1*13^3 + 5*13^2 + 3*13^1 + 2*13^0 = 3083_{10}$ 

**110110.011<sub>2</sub>** (base 2) ; quanto vale cada algarismo na base 10?  $1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3} = 54.375_{10}$ 

# Sistemas de numeração : como se passa um nº na base 10 para uma outra base



1532.54<sub>10</sub> (base 10); algoritmo para extrair os algarismos?

- parte inteira: divisão sucessiva pela base e...
- parte decimal: multiplicação sucessiva pela base e...

416<sub>10</sub>; quanto vale cada algarismo na base 6?

parte inteira ... parte decimal ...

3083<sub>10</sub>; quanto vale cada algarismo na base 13?

parte inteira ... parte decimal ...

**54.375**<sub>10</sub>; quanto vale cada algarismo na base 2?

parte inteira ... parte decimal ...

### Sistemas de numeração : caso particular da base 2

众入

**110110.011<sub>2</sub>** (base 2); quanto vale cada algarismo na base 10?  $1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 + 0*2^1 + 1*2^2 + 1*2^3 = ...$ 

### Para simplificar:

- eliminar os produtos, ignorar parcelas com produtos por 0
- $1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3} = ...$ =>  $2^5 + 2^4 + 2^2 + 2^1 + 1/2^2 + 1/2^3 = ...$

### Recomendação:

- decorar a tabuada das potências de 2 (20 + 210)
- compreender as potências de 2 múltiplas de 10

# Numeração de base 2 : dicas para uma rápida conversão de potências de 2 para a base 10

#### 众入

| 20 =             | 1    | $2^{10} = 1024 = 1 \text{ Ki(bi)} \approx 1000 = 10^3 = 1 \text{ K(ilo)}$        |
|------------------|------|----------------------------------------------------------------------------------|
| 21 =             | 2    | •••                                                                              |
| 22 =             | 4    | $2^{12} = 2^2 * 2^{10} = 4 \text{ Ki(bi)} \approx 4000 = 4*10^3 = 4 \text{ K}$   |
| 2 <sup>3</sup> = | 8    | $2^{16} = 2^6 * 2^{10} = 64 \text{ Ki(bi)} \approx 64*10^3 = 64 \text{ K}$       |
| 24 =             | 16   | $0.20 - 4  \text{Mag}(1.5) \approx -4.000  0.000 - 4.06 - 4.044  \text{Mg}(1.5)$ |
| 25 =             | 32   | $2^{20} = 1 \text{ Me(bi)} \approx 1000000 = 10^6 = 1 \text{ M(ega)}$            |
| 26 =             | 64   | $2^{30} = 1 \text{ Gi(bi)} \approx 10000000000 = 10^9 = 1 \text{ G(iga)}$        |
| 27 =             | 128  | 040 4 Taur                                                                       |
| 28 =             | 256  | $2^{40} = 1 \text{ Te(bi)} \approx 10^{12} = 1 \text{ T(era)}$                   |
| 29 =             | 512  | $2^{50} = 1 \text{ Pe(bi)} \approx 10^{15} = 1 \text{ P(eta)}$                   |
| 210 = 1          | 1024 |                                                                                  |

# Sistemas de numeração : caso particular da base 16 (hexadecimal)

人入

- Dígitos na base 16:

   0, 1, 2, ... 9,
   a, b, c, d, e, f
   Vantagens sobre um valor de 32 bits:
  - 10100110100001110110010111010100<sub>2</sub> **VS.** a68765d4<sub>16</sub>
- Mesmo com ponto decimal:

  1010011010000111011001011101.012

  1010 0110 1000 0111 0110 0101 1101.01002

  a 6 8 7 6 5 d . 4<sub>16</sub>

#### Representação de inteiros

众入

### Gama de valores representáveis

- ideal: todos os valores e
   simetria em relação ao 0
- mas ...

- e quantos bits para representar um inteiro?

### Representação de positivos & negativos

- estratégias
- análise dum exemplo com todos os valores possíveis
  - S+M: Sinal + Magnitude/amplitude
  - Complemento para 1
  - Complemento para 2
  - Notação por excesso

 $+\infty$ 



| Base 10 | Base 2 | S+M | Comp 1 | Comp 2 | Excesso |
|---------|--------|-----|--------|--------|---------|
| 0       | 000    |     |        |        |         |
| 1       | 001    |     |        |        |         |
| 2       | 010    |     |        |        |         |
| 3       | 011    |     |        |        |         |
| 4       | 100    |     |        |        |         |
| 5       | 101    |     |        |        |         |
| 6       | 110    |     |        |        |         |
| 7       | 111    |     |        |        |         |



| Base 10 | Base 2      | S+M | Comp 1 | Comp 2 | Excesso |
|---------|-------------|-----|--------|--------|---------|
| 0       | 000         | +   |        |        |         |
| 1       | 001         | +   |        |        |         |
| 2       | 010         | +   |        |        |         |
| 3       | 011         | +   |        |        |         |
| 4       | 100         | -   |        |        |         |
| 5       | 101         | -   |        |        |         |
| 6       | <b>1</b> 10 | -   |        |        |         |
| 7       | 111         | -   |        |        |         |



| Base 10 | Base 2      | S+M        | Comp 1 | Comp 2 | Excesso |
|---------|-------------|------------|--------|--------|---------|
| 0       | 000         | (+0)       |        |        |         |
| 1       | 001         | +1         |        |        |         |
| 2       | 010         | +2         |        |        |         |
| 3       | 011         | +3         |        |        |         |
| 4       | 100         | (-0)       |        |        |         |
| 5       | 101         | -1         |        |        |         |
| 6       | <b>1</b> 10 | <b>-</b> 2 |        |        |         |
| 7       | <b>1</b> 11 | <b>-</b> 3 |        |        |         |



| Base<br>10 | Base 2            | S+M | Comp 1                | Comp 2 | Excesso |
|------------|-------------------|-----|-----------------------|--------|---------|
| 0          | 000               |     | +0                    |        |         |
| 1          | 001               |     | +1                    |        |         |
| 2          | <mark>0</mark> 10 |     | +2                    |        |         |
| 3          | 011               |     | +3                    |        |         |
| 4          | 100               |     | -11 <sub>2</sub> > -3 |        |         |
| 5          | 101               |     | -10 <sub>2</sub> > -2 |        |         |
| 6          | 110               |     | -01 <sub>2</sub> > -1 |        |         |
| 7          | 111               |     | -002 -0               |        |         |



| Base<br>10 | Base 2 | S+M | Comp 1                       | Comp 2                    | Excesso |
|------------|--------|-----|------------------------------|---------------------------|---------|
| 0          | 000    |     | +0                           | +0                        |         |
| 1          | 001    |     | +1                           | +1                        |         |
| 2          | 010    |     | +2                           | +2                        |         |
| 3          | 011    |     | +3                           | +3                        |         |
| 4          | 100    |     | -11 <sub>2</sub> > -3        | -(11+1) <sub>2</sub> > -4 |         |
| 5          | 101    |     | -10 <sub>2</sub> > -2        | -(10+1) <sub>2</sub> > -3 |         |
| 6          | 110    |     | -01 <sub>2</sub> > <b>-1</b> | -(01+1) <sub>2</sub> > -2 |         |
| 7          | 111    |     | -00 <sub>2</sub> > <b>-0</b> | -(00+1) <sub>2</sub> > -1 |         |

#### 人入

| Base<br>10 | Base 2      | S+M | Comp 1 | Comp 2 | Excesso 2 <sup>n-1</sup> -1 |
|------------|-------------|-----|--------|--------|-----------------------------|
| 0          | 000         |     |        |        | 0 <b>- 3</b> > <b>-3</b>    |
| 1          | 001         |     |        |        | 1 - 3 > -2                  |
| 2          | <b>0</b> 10 |     |        |        | 2 <b>- 3</b> > <b>-1</b>    |
| 3          | 011         |     |        |        | 3 <b>- 3</b> > <b>0</b>     |
| 4          | 100         |     |        |        | 4 - 3 > +1                  |
| 5          | 101         |     |        |        | 5 <b>- 3</b> > <b>+2</b>    |
| 6          | 110         |     |        |        | 6 <b>- 3</b> > <b>+3</b>    |
| 7          | 111         |     |        |        | 7 <b>- 3</b> > <b>+4</b>    |

Nota: n = #bits,  $2^{n-1}-1 = 2^{3-1}-1 = 2^2-1 = 3$ 

#### 众入

| Base<br>10 | Base<br>2   | S+M | Comp<br>1 | Comp<br>2 | Excesso 2 <sup>n-1</sup> | Excesso 2 <sup>n-1</sup> -1 |
|------------|-------------|-----|-----------|-----------|--------------------------|-----------------------------|
| 0          | 000         |     |           |           | 0 <b>- 4</b> > <b>-4</b> | 0 <b>- 3</b> > <b>-3</b>    |
| 1          | 001         |     |           |           | 1 <b>- 4</b> > <b>-3</b> | 1 - 3 > -2                  |
| 2          | <b>0</b> 10 |     |           |           | 2 <b>- 4</b> > <b>-2</b> | 2 <b>- 3</b> > <b>-1</b>    |
| 3          | 011         |     |           |           | 3 <b>- 4</b> > <b>-1</b> | 3 <b>- 3</b> > <b>0</b>     |
| 4          | 100         |     |           |           | 4 <b>- 4</b> > <b>0</b>  | 4 - 3 > +1                  |
| 5          | 101         |     |           |           | 5 <b>- 4</b> > <b>+1</b> | 5 <b>- 3</b> > <b>+2</b>    |
| 6          | 110         |     |           |           | 6 <b>- 4</b> > <b>+2</b> | 6 <b>- 3</b> > <b>+3</b>    |
| 7          | 111         |     |           |           | 7 <b>- 4</b> > <b>+3</b> | 7 <b>- 3</b> > <b>+4</b>    |

Nota: n = #bits,  $2^{n-1} = 2^{3-1} = 2^2 = 4$ ,  $2^{n-1} - 1 = 2^{3-1} - 1 = 2^2 - 1 = 3$