Álgebra I. Tarea 1: Permutaciones Universidad de El Salvador. Fecha límite: 13.03.2018

Por cualquier pregunta, no duden en contactarme por correo electrónico cadadr@gmail.com.

Ejercicio 1.1. Encuentre la descomposición en ciclos disjuntos para la permutación

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 6 & 5 & 1 & 4 & 2 & 3 & 10 & 8 & 9 \end{pmatrix} \in S_{10}$$

y su signo.

Ejercicio 1.2. Calcule la descomposición en ciclos disjuntos del producto de ciclos

$$(1\ 2)\ (2\ 5\ 3)\ (1\ 5\ 7\ 3\ 2\ 6\ 4)\ (4\ 7\ 6)\in S_7$$

y su signo.

Ejercicio 1.3. *Demuestre la fórmula para el signo de un k-ciclo:*

$$sgn(i_1 i_2 \cdots i_k) = (-1)^{k-1}.$$

En general, si $\sigma \in S_n$ afecta m elementos (en el sentido de que $\sigma(i) \neq i$ para m números i) y tiene una descomposición en s ciclos disjuntos, entonces

$$\operatorname{sgn} \sigma = (-1)^{m-s}$$
.

Por ejemplo,

$$\sigma = (1\ 2)\ (3\ 6\ 4)\ (5\ 11\ 8)$$

afecta 1, 2, 3, 4, 5, 6, 8, 11, entonces m = 8, y en la expresión de arriba hay s = 3 ciclos disjuntos. Entonces, $\operatorname{sgn} \sigma = (-1)^{8-3} = -1$.

Ojo: según nuestra terminología, el último ejercicio nos dice que una permutación cíclica de orden par k es impar (tiene signo -1) y viceversa.

Para realizar cualquier permutación, se puede fijar algún elemento y cada vez hacer intercambios solo con este.

Ejercicio 1.4. Fijemos algún elemento de $\{1, ..., n\}$, por ejemplo 1. Demuestre que toda transposición $(i\ j)$ puede ser escrita como una composición de transposiciones de la forma $(1\ k)$. Deduzca que toda permutación $\sigma \in S_n$ para $n \ge 2$ es un producto de transposiciones

$$(1\ 2),\ (1\ 3),\ \ldots,\ (1\ n).$$

De hecho, para expresar cualquier permutación, es suficiente usar una sola transposición, un *n*-ciclo y su inverso.

Ejercicio 1.5. Demuestre que todo elemento de S_n puede ser expresado como un producto de

$$(1\ 2),\ (1\ 2\ \cdots\ n),\ (1\ 2\ \cdots\ n)^{-1}.$$

Indicación: use que los elementos de S_n se expresan como productos de transposiciones de la forma $(i \ i+1)$ y la fórmula $\sigma(i_1 \ i_2 \ \cdots \ i_k) \ \sigma^{-1} = (\sigma(i_1) \ \sigma(i_2) \ \cdots \ \sigma(i_k))$.

En los siguientes ejercicios vamos a demostrar un resultado similar para los grupos alternantes.

Ejercicio 1.6. Sean i, j, k, ℓ números distintos. Verifique las relaciones para la composición de transposiciones

$$(i j) (j k) = (i j k),$$

 $(i j) (k \ell) = (i j k) (j k \ell).$

Deduzca que para $n \ge 3$ todo elemento de A_n es una composición de ciclos de orden 3.

Ejercicio 1.7. Demuestre que para $n \ge 3$ todo elemento de A_n es una composición de ciclos de la forma $(1 \ i \ j)$. Indicación: use el ejercicio 1.6.

Ejercicio 1.8. Demuestre que para $n \ge 3$ todo elemento de A_n es una composición de ciclos de la forma $(1\ 2\ i)$. Indicación: use el ejercicio 1.7.

Ejercicio 1.9. Demuestre que para $n \ge 3$ todo elemento de A_n es una composición de ciclos de la forma $(i \ i + 1 \ i + 2)$. Indicación: note que es un análogo de la descomposición de los elementos de S_n mediante las transposiciones de la forma $(i \ i + 1)$. Para i > 3 demuestre la identidad

$$(1\ 2\ i) = (1\ 2\ i-2)\ (1\ 2\ i-1)\ (i-2\ i-1\ i)\ (1\ 2\ i-2)\ (1\ 2\ i-1)$$

Luego, proceda por inducción sobre i y use el ejercicio 1.8.

Ejercicio 1.10. Demuestre que para $n \geq 3$ todo elemento de A_n puede ser escrito como el producto de

- $(1\ 2\ 3)$, $(2\ 3\ \cdots\ n)$, $(2\ 3\ \cdots\ n)^{-1}$, si n es par;
- \blacksquare (1 2 3), (1 2 ··· n), (1 2 ··· n)⁻¹, si n es impar.

Indicación: use la fórmula $\sigma(i_1 \ i_2 \ \cdots \ i_k) \ \sigma^{-1} = (\sigma(i_1) \ \sigma(i_2) \ \cdots \ \sigma(i_k)) \ y$ el ejercicio 1.9.

La moraleja de los ejercicios de arriba: aunque S_n y A_n tienen muchos elementos, estos se expresan en términos de solamente dos de ellos (y sus inversos).