Eine beispielhafte Studie

Dennis Nienhüser

2. Februar 2018

Inhaltsverzeichnis

1	Einl	eitung	3
	1.1	Aufgabenstellung	3
	1.2	Ausgangssituation	4
	1.3	Systemarchitektur	5
		1.3.1 Hardware	5
		1.3.2 Software	6
	1.4	Arbeitspakete	7
2	State of the Art		
	2.1	Bilderkennung	8
	2.2	Bahnplanung & Greifen	9
3	Arb	eitsbericht	10
	3.1	Bilderkennung	10
		<u> </u>	10
			11
			12
	3.2	Bahnplanung & Greifen	13
		3.2.1 Bahnplanung	13
			14
	3.3	High-level Steuerung & Kommunikation	15
4	Bes	chreibung des Gesamtsystems	16
	4.1	Bilderkennung	16
		4.1.1 Tassenerkennung	16
		4.1.2 Automatische Kamerakalibrierung	17
	4.2	Bahnplanung & Greifen	18
		4.2.1 Bahnplanung	18
			19
	4.3	High-level Steuerung & Kommunikation	20
5	Eva	luation & Ausblick	21
	5.1	Tassenerkennung	21
	5.2	Turtleboterkennung	22
	5.3		23
	5.4		24
	5.5	Greifen	25
	5.6		26

1 Einleitung

1.1 Aufgabenstellung

1.2 Ausgangssituation

1.3 Systemarchitektur

1.3.1 Hardware

1.3.2 Software

1.4 Arbeitspakete

2 State of the Art

2.1 Bilderkennung

2.2 Bahnplanung & Greifen

3 Arbeitsbericht

3.1 Bilderkennung

3.1.1 Tassenerkennung

3.1.2 Turtleboterkennung

3.1.3 Automatische Kamerakalibrierung

3.2 Bahnplanung & Greifen

3.2.1 Bahnplanung

3.2.2 Greifen

3.3 High-level Steuerung & Kommunikation

4 Beschreibung des Gesamtsystems

4.1 Bilderkennung

4.1.1 Tassenerkennung

4.1.2 Automatische Kamerakalibrierung

4.2 Bahnplanung & Greifen

4.2.1 Bahnplanung

4.2.2 Greifen

4.3 High-level Steuerung & Kommunikation

5 Evaluation & Ausblick

5.1 Tassenerkennung

5.2 Turtleboterkennung

5.3 Automatische Kamerakalibrierung

5.4 Bahnplanung

5.5 Greifen

5.6 High-level Steuerung & Kommunikation

