

气液平衡实验说明书

重庆理工大学专业基础实验 2017.11

一、实验设备的特点:

- 1. 该实验装置全部采用玻璃材料制成,可以清楚观测釜内实验现象。
- 2. 该装置具有实验样品用量少达到平衡速度快的特点,实验数据重现性良好。

二、实验方法及步骤

- 1. 将与阿贝折光仪配套的超级恒温水浴(用户自备)调整运行到 30℃, 并记录温度。
- 2. 观察实验设备,确定实验开始前:冷凝液管道通畅,电源是否处在接通但未开启状态,电压表和电流表的旋钮是否处在最左端的位置。
- 2. 称取待测液 50m1~70m1 (不超过 70m1), 移入平衡釜中。
- 3. 打开冷凝器冷却水, 接通电源开始缓慢加热, 直到出现冷凝回流液(注意, 冷凝液回流开始时缓慢, 不易过多)。然后稳定回流 20 分钟以建立平衡状态。
- 4. 达到平衡状态时停止加热,用微量注射器分别取两相样品,用阿贝折光仪分析其组成。
- 5. 测取完实验数据并检查合理后,调整电压到下一个实验温度,重新建立汽液相平衡。
- 6. 重复步骤 3、4, 完成不同温度下的汽液相平衡数据的采集。
- 7. 测取完一组实验数据并检查合理后,停止加料,将加热电压调为零。停止加热后 10 分钟,关闭冷却水,一切复原结束实验。

阿贝折射仪测样步骤:

- 1. 观察与阿贝折射仪相连的温度计上温度是否达到 25℃。
- 2. 打开进样口,用酒精棉球擦拭测样片。
- 3. 确定进样口干燥的情况下,进行滴样以及检测。
- 4. 测样前,确定遮光板和反光板均已打开,再读数。
- 5. 读数完毕后,打开进样口去掉样品,并再用酒精棉球将进样口擦拭赶紧,并确保干燥。
- 6. 关闭进样口,确定阿贝折射仪的完整,等待下次测样。

注:

- 1. 电压的调整不易过快,也不易调的过高。开始时,电压表不要超过 20V (先调整电压到 10V,待出现少量气泡的时候,在逐步调到 20V),待稳定后再向高电压处调整,但最大不要超过 50V。
- 2. 冷凝液回流不易过多,冷凝回流液控制在每秒 2-3 滴即可。
- 3. 取样时,若从釜中抽取 5毫升液体样品,则需再向釜内补充 5毫升无水乙醇溶液重新建立平衡。

三、实验的主要数据:

物系(乙醇—正丙醇)分析纯,乙醇沸点 78.3°、正丙醇沸点 97.2°、 折光指数与溶液浓度的关系见表 1。

表 1 温度一折光指数一液相组成之间的关系

	0	0. 05052	0.09985	0. 1974	0. 2950	0. 3977	0. 4970	0. 5990
25℃	1. 3827	1. 3815	1. 3797	1. 3770	1. 3750	1. 3730	1. 3705	1. 3680
30℃	1. 3809	1. 3796	1. 3784	1. 3759	1. 3755	1. 3712	1. 3690	1. 3668
35℃	1. 3790	1. 3775	1. 3762	1. 3740	1. 3719	1. 3692	1. 3670	1. 3650

(续表 1)

	0. 6445	0. 7101	0. 7983	0.8442	0.9064	0. 9509	1.000
25℃	1. 3607	1. 3658	1. 3640	1. 3628	1. 3618	1. 3606	1. 3589
30℃	1. 3657	1. 3640	1. 3620	1. 3607	1. 3593	1. 3584	1. 3574
35℃	1. 3634	1. 3620	1. 3600	1. 3590	1. 3573	1. 3653	1. 3551

对 30℃下质量分率与阿贝折光仪读数之间关系也可按下列回归式计算:

 $W = 58.844116 - 42.61325 \times n_D$

其中: W为乙醇的质量分率;

n_D为折光仪读数(折光指数).

由质量分率求摩尔分率(X_A):

乙醇分子量M_A=46:正丙醇分子量M_B=60

$$X_{A} = \frac{(W_{A}/M_{A})}{(W_{A}/M_{A}) + [1 - (W_{A})]/M_{B}}$$

四、实验设备示意图(如图1所示):

图 1 平衡釜示意图

1-冷凝器; 2-气相取样口; 3-气相贮液槽; 4-沸腾管; 5-缓冲球; 6-回流管; 7-平衡釜; 8-钟罩; 9-温度计套管; 10 液相取样口; 11-液相贮液槽; 12-提升管; 13-沸腾室; 14-加热套管; 15-真空加套; 16-放液阀。

四、实验注意事项:

- 1. 由于实验所用物系属于易燃物品, 所以实验过程要特别注意安全, 操作过程中避免洒落以免发生危险。
- 2. 本实验设备加热功率由电位器调解,加热时不要升温过快,以免发生爆沸(过冷沸腾),使液体从平衡釜中冲出。若遇此现象应立即断掉电源。
- 3. 开车时应先打开冷却水,再向平衡釜供热。停车时反之。
- 4. 浓度测量使用阿贝折光仪,读取折光指数时,一定要同时记录测量温度,并按给定的折光指数—质量百分浓度—测量温度关系(见表1)测定有关数据。

五、实验数据记录及结果

将所测实验数据整理后绘制成表格,具体格式见表 2,同时绘出($T-x_i-y_i$)或 $(P-x_i-y_i)$ 平衡曲线 (见图 3),

表 2 实验数据记录表

序号	1	2	3	4	5	6
平衡温度℃	97. 3	93	90.3	88. 08	86. 41	85. 11
液相折光指数	1. 3809	1. 3779	1. 3752	1. 3729	1. 3718	1. 3692
气相折光指数	1. 3809	1. 3759	1. 3729	1. 3702	1. 3687	1. 3659
液相质量分数	0.000	0. 127	0. 242	0.340	0. 387	0. 498
气相质量分数	0.000	0. 213	0.340	0. 455	0. 519	0.639
液相摩尔分数	0.000	0.160	0.294	0.402	0.452	0.564
气相摩尔分数	0.000	0. 260	0.402	0. 522	0. 585	0. 697

序号	7	8	9	10	11	12	13
平衡温度℃	84. 1	82. 7	82.5	81. 9	81.2	80. 7	78. 3
液相折光指数	1. 3671	1. 366	1. 3641	1. 3638	1. 3619	1. 3611	1. 3574
气相折光指数	1. 3649	1. 3629	1. 3621	1. 3614	1. 36	1. 36	1. 3574
液相质量分数	0. 588	0.634	0. 715	0. 728	0.809	0.843	1.001
气相质量分数	0. 681	0. 767	0. 801	0.830	0.890	0.890	1.001
液相摩尔分数	0.650	0.694	0.766	0.777	0.846	0.875	1.001
气相摩尔分数	0. 736	0.811	0. 840	0.865	0. 913	0.914	1.001

图 2 t-x-y 图

图 3 x一y 曲线图

六、思考题。

- 1. 阿贝折光仪的原理是什么?
- 2. 温度、压力对汽液两相组成的分布影响是怎样的?