

Leaping Shadows: Adaptive and Power-aware Resilience for Extreme-scale Systems

Xiaolong Cui¹, Tariq Alturkestani², Esteban Meneses³, Taieb Znati¹, Rami Melhem¹

Computer Science, University of Pittsburgh, USA

Introduction

System scale keeps growing for both HPC and Cloud.

System level failure rate will dramatically increase

Power/energy will dominate CAPEX

Low efficiency + high cost

Shadow Collocation

- Collocate multiple shadow processes on each node
 - *Reduces shadow processes' execution rate
 - *Reduces hardware and power requirement

World's #1 Open Science Supercomputer

Flagship accelerated computing system | 200-cabinet Cray XK7 supercomputer 18,688 nodes (AMD 16-core Opteron + NVIDIA Tesla K20 GPU)

CPUs/GPUs working together – GPU accelerates | 20+ Petaflops

Shadow Leaping

- *The lagging shadow processes can benefit from the faster execution of the main processes
- Sync states from the main processes to the shadows

Lazy Shadowing

- * Each process is associated with a "shadow"
- Shadow processes initially execute at reduced rate
- Upon failure of a main process, its shadow process increases execution rate to recover and complete task

The Fault Tolerance Spectrum Fault Tolerance Replication Enables tradeoff between time and space Space redundancy Space redundancy

redundancy

MPI Implementation

- IsMPI lies between application and MPI that transparently supports Leaping Shadows
- Failure detection with User Level Fault Mitigation

- * ACK/NAK is used to guarantee consistent promotion of a shadow process in the case of a failure
- Main process is responsible for resolving non-determinism, such as MPI_ANY_SOURCE receive, MPI_Wtime()
- Collectives use IsMPI internal point-to-point communications