

High Voltage Power MOSFET

IXTA05N100HV IXTA05N100 IXTP05N100

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C$ to $150^{\circ}C$	1000	V	
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	1000	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
 _{D25}	T _c = 25°C	750	mA	
I _{DM}	$T_{\rm C}^{\circ}$ = 25°C, Pulse Width Limited by $T_{\rm JM}$	3	Α	
I _A	T _C = 25°C	1	A	
I _A E _{AS}	$T_{c}^{\circ} = 25^{\circ}C$	100	mJ	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} = 150^{\circ}C$	3	V/ns	
P _D	T _C = 25°C	40	W	
T _J		-55 +150	°C	
T _{.im}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-220)	1.13 / 10	Nm/lb.in	
Weight	TO-220	3.0	g	
	TO-263	2.5	g	
	TO-263HV	2.5	g	

		cteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	1000			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250\mu A$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$				μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 375mA, Note 1$			17	Ω

 $V_{DSS} = 1000V$ $I_{D25} = 750mA$ $R_{DS(on)} \le 17\Omega$

TO-263HV (IXTA)

TO-263 AA (IXTA)

G = Gate D = DrainS = Source Tab = Drain

Features

- High Voltage Package (TO-263HV)
- Fast Switching Times
- Avalanche Rated
- $R_{ds(on)}HDMOS^{TM}$ Process
- Rugged Polysilicon Gate Cell structure
- Extended FBSOA

Advantages

- High Power Density
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- Flyback Inverters
- DC Choppers

Symbol (T _J = 25	$_{\rm J}$ = 25°C, Unless Otherwise Specified) Chara		acteristic Values Typ. Max.		
g _{fs}		$V_{DS} = 20V, I_{D} = 500mA, Note 1$.55	0.93	S
C _{iss})			260	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		22	pF
\mathbf{C}_{rss}	J			8	pF
t _{d(on)}	}	Resistive Switching Times $V_{GS} = 10V, V_{DS} = 0.5 \bullet V_{DSS}, I_{D} = 1A$ $R_{G} = 47\Omega \text{ (External)}$		11	ns
t,				19	ns
$\mathbf{t}_{d(off)}$				40	ns
$\mathbf{t}_{_{\mathbf{f}}}$				28	ns
$\mathbf{Q}_{g(on)}$)			7.8	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 1A$		1.4	nC
\mathbf{Q}_{gd}				4.1	nC
R _{thJC}					3.1 °C/W
$\mathbf{R}_{\mathrm{thCS}}$		(TO-220)		0.50	°C/W

Source-Drain Diode

		Charac Min.	cteristic Values Typ. Max.		
I _s	$V_{GS} = 0V$			750	mA
I _{sm}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			3	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr}	$I_F = I_S$, $-di/dt = 100A/\mu s$ $V_R = 100V$, $V_{GS} = 0V$		710		ns

Note 1: Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 2. Output Characteristics @ T_J = 125°C 0.9 $V_{GS} = 10V$ 7V 6V 0.8 0.7 0.6 Ip - Amperes 0.5 0.4 0.3 5V 0.2 0.1 4.5V 0.0 0 5 10 15 20 25 30 V_{DS} - Volts

Fig. 3. $R_{DS(on)}$ Normalized to I_D = 375mA Value vs. **Junction Temperature**

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 375mA Value vs. **Drain Current**

Fig. 5. Maximum Drain Current vs. **Case Temperature**

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Maximum Transient Thermal Impedance

