Package 'sgsR'

March 3, 2024

```
Type Package
Version 1.4.5
License GPL (>= 3)
Title Structurally Guided Sampling
Description Structurally guided sampling (SGS) approaches for airborne laser scanning (ALS; LI-
     DAR). Primary functions provide means
     to generate data-driven stratifications & methods for allocating samples. Intermediate func-
     tions for calculating and extracting important information
     about input covariates and samples are also included. Processing outcomes are in-
     tended to help forest and environmental management
     practitioners better optimize field sample placement as well as assess and augment existing sam-
     ple networks in the context of data
     distributions and conditions. ALS data is the primary intended use case, however any raster-
     ized remote sensing data can be used,
     enabling data-driven stratifications and sampling approaches.
URL https://github.com/tgoodbody/sgsR,
     https://tgoodbody.github.io/sgsR/
BugReports https://github.com/tgoodbody/sgsR/issues
Depends R (>= 3.5.0), methods
Imports dplyr, ggplot2, sf, terra, tidyr, clhs, SamplingBigData,
     BalancedSampling, spatstat.geom
Suggests knitr, rmarkdown, Rfast, testthat (>= 3.0.0), doParallel,
     doSNOW, snow, foreach, entropy, roxygen2, covr, RANN, spelling
VignetteBuilder knitr
```

Config/testthat/edition 3
Config/testthat/parallel true

Encoding UTF-8
RoxygenNote 7.3.1
Language en-US
NeedsCompilation no

2 calculate_allocation

```
Author Tristan RH Goodbody [aut, cre, cph]

(<a href="https://orcid.org/0000-0002-6894-7925">https://orcid.org/0000-0002-6894-7925</a>),

Nicholas C Coops [aut] (<a href="https://orcid.org/0000-0002-0151-9037">https://orcid.org/0000-0002-0151-9037</a>),

Martin Queinnec [aut] (<a href="https://orcid.org/0000-0002-2741-1032">https://orcid.org/0000-0002-2741-1032</a>)

Maintainer Tristan RH Goodbody <a href="mailto:goodbody.t@gmail.com">goodbody.t@gmail.com</a>>

Repository CRAN

Date/Publication 2024-03-03 15:10:02 UTC
```

R topics documented:

calculate allocation	2
calculate_coobs	
calculate distance	
-	
calculate_lhsOpt	,
calculate_pcomp	
calculate_pop	
calculate_representation	
calculate_sampsize	
extract_metrics	15
extract_strata	16
sample_ahels	18
sample_balanced	20
sample_clhs	22
sample_existing	24
sample_nc	
sample_srs	
sample_strat	
sample_systematic	
sample sys strat	
strat breaks	
strat kmeans	
-	
strat_map	
strat_poly	
strat_quantiles	43
	45
	45

calculate_allocation Sample allocation type and count

Description

Index

Determine how many samples to allocate within strata.

calculate_allocation 3

Usage

```
calculate_allocation(
    sraster,
    nSamp,
    allocation = "prop",
    weights = NULL,
    mraster = NULL,
    existing = NULL,
    force = FALSE
)
```

Arguments

spatRaster. Stratification raster to be used for sampling.

nSamp Numeric. Number of desired samples.

allocation Character. Allocation algorithm to be used. Either prop (default) for propor-

tional allocation, optim for optimal allocation (equal sampling cost), equal for equal number of samples (defined by nSamp) for each strata, or "manual" for

user defined strata weights defined using weights.

weights Numeric. Only applicable when allocation = "manual". Vector of weights

where sum(weights) == 1. Vector length must be equal to the number of unique strata where the first numeric value corresponds to stratum 1, second stratum 2

etc.

mraster spatRaster. ALS metric raster. Required when allocation = optim.

existing sf 'POINT' or data.frame. Existing plot network.

force Logical. Default = FALSE - force nSamp to be exactly the user defined value in

cases where nSamp and sraster strata count are not equally divisible. Additional samples often need to be allocated or removed based on rounding differences resulting from proportional differences between nSamp and strata coverages in sraster. In these instances samples are either added to strata with the lowest number of samples or are removed from strata with the highest number

of samples. Has no effect when existing is provided.

Value

Returns a data.frame of:

- strata Strata ID.
- total Number of samples to be allocated. Values correspond to under representation (samples needed; positive value) or over representation (too many samples; negative value) based on the nSamp provided.
- need Required samples per strata based on allocation method. Rounded.

Author(s)

Tristan R.H. Goodbody

4 calculate_coobs

References

Gregoire, T.G., & Valentine, H.T. (2007). Sampling Strategies for Natural Resources and the Environment (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9780203498880

See Also

Other calculate functions: calculate_allocation_existing(), calculate_coobs(), calculate_distance(), calculate_pcomp(), calculate_pop(), calculate_representation(), calculate_sampsize()

Examples

```
## Not run:
#--- Load strata raster and existing samples---#
r <- system.file("extdata", "sraster.tif", package = "sgsR")
sr <- terra::rast(r)

e <- system.file("extdata", "existing.shp", package = "sgsR")
e <- sf::st_read(e)

#--- proportional allocation ---#
calculate_allocation(
    sraster = sr,
    nSamp = 10,
    allocation = "prop"
)

## End(Not run)</pre>
```

calculate_coobs

coobs algorithm sampling

Description

Perform the COunt of OBServations (coobs) algorithm using existing site data and raster metrics. This algorithm aids the user in determining where additional samples could be located by comparing existing samples to each pixel and associated covariates. The output coobs raster could be used to constrain clhs sampling to areas that are underreprented.

Usage

```
calculate_coobs(
  mraster,
  existing,
  cores = 1,
  threshold = 0.95,
  plot = FALSE,
  filename = NULL,
  overwrite = FALSE)
```

calculate_coobs 5

Arguments

mraster	spatRaster. ALS metrics raster. Requires at least 2 layers to calculate covariance matrix.
existing	sf 'POINT'. Existing plot network.
cores	Numeric. Number of cores to use for parallel processing. $default = 1$.
threshold	Numeric. Proxy maximum pixel quantile to avoid outliers. default = 0.95.
plot	Logical. Plots output strata raster and visualized strata with boundary dividers.
filename	Character. Path to write stratified raster to disc.
overwrite	Logical. Specify whether filename should be overwritten on disc.

Value

Output raster with coobs and classified coobs layers.

Note

Special thanks to Dr. Brendan Malone for the original implementation of this algorithm.

Author(s)

Tristan R.H. Goodbody

References

Malone BP, Minasny B, Brungard C. 2019. Some methods to improve the utility of conditioned Latin hypercube sampling. PeerJ 7:e6451 DOI 10.7717/peerj.6451

See Also

```
Other calculate functions: calculate_allocation(), calculate_allocation_existing(), calculate_distance(), calculate_pcomp(), calculate_pop(), calculate_representation(), calculate_sampsize()
```

```
## Not run:
#--- Load raster and existing plots---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)
e <- system.file("extdata", "existing.shp", package = "sgsR")
e <- sf::st_read(e)

calculate_coobs(
    mraster = mr,
    existing = e,
    cores = 4
)
## End(Not run)</pre>
```

6 calculate_distance

calculate_distance Distance to access layer

Description

Per pixel distance to nearest access vector. Intended to be used as a 'cost' constraint within the sample_clhs function

Usage

```
calculate_distance(
  raster,
  access,
  slope = FALSE,
  plot = FALSE,
  filename = NULL,
  overwrite = FALSE
)
```

Arguments

raster spatRaster. Raster to be used to calculate pixel level distance to access layer.

access sf 'LINESTRING' or 'MULTILINESTRING'. Access network.

slope Logical. Calculate slope distance instead of geographic distance. raster needs

to be a digital terrain model for this to make sense.

plot Logical. Plots output strata raster with samples.

filename Character. Path to write output samples.

overwrite Logical. Choice to overwrite existing filename if it exists.

Value

Input raster with dist2access layer appended.

Author(s)

Tristan R.H. Goodbody

See Also

Other calculate functions: calculate_allocation(), calculate_allocation_existing(), calculate_coobs(), calculate_pcomp(), calculate_pop(), calculate_representation(), calculate_sampsize()

calculate_lhsOpt 7

Examples

```
## Not run:
#--- Load raster and access files ---#
r <- system.file("extdata", "mraster_small.tif", package = "sgsR")
mr <- terra::rast(r)

a <- system.file("extdata", "access.shp", package = "sgsR")
ac <- sf::st_read(a)

calculate_distance(
    raster = mr,
    access = ac,
)

## End(Not run)</pre>
```

calculate_lhsOpt

Analyze optimal Latin hypercube sample number

Description

Population level analysis of metric raster data to determine optimal Latin Hypercube sample size

Usage

```
calculate_lhsOpt(
  mats,
  PCA = TRUE,
  quant = TRUE,
  KLdiv = TRUE,
  minSamp = 10,
  maxSamp = 100,
  step = 10,
  rep = 10,
  iter = 10000
)
```

Arguments

mats	List. Output from calculate_pop function.
PCA	Logical. Calculates principal component loadings of the population for PCA similarity factor testing. default = FALSE.
quant	Logical. Perform quantile comparison testing.
KLdiv	Logical. Perform Kullback-Leibler divergence testing.
minSamp	Numeric. Minimum sample size to test. default = 10.

8 calculate_lhsOpt

maxSamp	Numeric. Maximum sample size to test. default = 100.
step	Numeric. Sample step size for each iteration. default = 10.
rep	Numeric. Internal repetitions for each sample size. default = 10.
iter	Positive Numeric. The number of iterations for the Metropolis-Hastings annealing process. Defaults to 10000. Internal to clhs.

Value

data.frame with summary statistics.

Note

Special thanks to Dr. Brendan Malone for the original implementation of this algorithm.

Author(s)

Tristan R.H. Goodbody

References

Malone BP, Minasny B, Brungard C. 2019. Some methods to improve the utility of conditioned Latin hypercube sampling. PeerJ 7:e6451 DOI 10.7717/peerj.6451

```
## Not run:
#--- Load raster and access files ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)

#--- calculate lhsPop details ---#
mats <- calculate_pop(mraster = mr)

calculate_lhsOpt(mats = mats)

calculate_lhsOpt(
   mats = mats,
   PCA = FALSE,
   iter = 200
)

## End(Not run)</pre>
```

calculate_pcomp 9

|--|

Description

Calculate and rasterize principal components from a metric raster

Usage

```
calculate_pcomp(
  mraster,
  nComp,
  center = TRUE,
  scale = TRUE,
  maxcells = Inf,
  plot = FALSE,
  details = FALSE,
  filename = NULL,
  overwrite = FALSE,
  ...
)
```

Arguments

mraster	spatRaster. ALS metrics raster.
nComp	Numeric. Value indicating number of principal components to be rasterized.
center	Logical. Value indicating whether the variables should be shifted to be zero centered.
scale	Logical. Value indicating whether the variables should be scaled to have unit variance.
maxcells	Numeric. Maximum number of samples to use to generate principal components. For objects that are too large to feed into prcomp.
plot	Logical. Plots output strata raster with samples.
details	Logical. If FALSE (default) output is only stratification raster. If TRUE return a list where \$details is additional stratification information and \$raster is the output stratification spatRaster.
filename	Character. Path to write output samples.
overwrite	Logical. Choice to overwrite existing filename if it exists.
• • •	Additional arguments to be passed to prcomp.

Value

Output raster with specified number of principal components as layers.

10 calculate_pop

Author(s)

Tristan R.H. Goodbody

See Also

Other calculate functions: calculate_allocation(), calculate_allocation_existing(), calculate_coobs(), calculate_distance(), calculate_pop(), calculate_representation(), calculate_sampsize()

Examples

```
#--- Load raster ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)

calculate_pcomp(
    mraster = mr,
    nComp = 2
)

pcomp <- calculate_pcomp(
    mraster = mr,
    nComp = 3,
    details = TRUE
)

#--- Display principal component details ---#
# pcomp$pca

#--- Display importance of components ---#
# summary(pcomp$pca)</pre>
```

calculate_pop

Population descriptors

Description

Population matrices and descriptions of metric raster data

Calculates population level statistics including principal components, quantile matrix, and covariance matrix needed necessary for calculate_lhsOpt. Outputs can also be used as an input for sample_ahels.

Usage

```
calculate_pop(mraster, PCA = FALSE, matQ = TRUE, nQuant = 10, matCov = TRUE)
```

calculate_pop 11

Arguments

mraster	spatRaster. ALS metrics raster.
PCA	Logical. Calculates principal component loadings of the population for PCA similarity factor testing. default = FALSE.
matQ	Logical. Calculates quantile matrix of the population for quantile comparison testing. default = TRUE.
nQuant	Numeric. Number of quantiles to divide the population into for matQ. default = 10.
matCov	Logical. Calculates covariate matrix of the population. Needed for Kullback–Leibler divergence testing. default = TRUE. Requires matQ = TRUE.

Value

List of matrices to be used as input for calculate_lhsOpt.

Note

Special thanks to Dr. Brendan Malone for the original implementation of this algorithm.

Author(s)

Tristan R.H. Goodbody

References

Malone BP, Minasny B, Brungard C. 2019. Some methods to improve the utility of conditioned Latin hypercube sampling. PeerJ 7:e6451 DOI 10.7717/peerj.6451

See Also

```
Other calculate functions: calculate_allocation(), calculate_allocation_existing(), calculate_coobs(), calculate_distance(), calculate_pcomp(), calculate_representation(), calculate_sampsize()
```

```
#--- Load raster and access files ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)
calculate_pop(mraster = mr)</pre>
```

calculate_representation

Compare sample representation within sraster strata

Description

Compare sample representation within sraster strata

Usage

```
calculate_representation(sraster, existing, drop = NULL, plot = FALSE)
```

Arguments

sraster spatRaster. Stratification raster.
existing sf 'POINT'. Existing plot network.

drop Numeric. Numeric value between 0-1 representing the snaster frequency (snasterFreq)

below which strata will be dropped from comparison (e.g.. This parameter can be useful for when comparing stratum where percent coverage of strata may be ~ 0 percent and should be dropped. This could occur when mapping multiple

stratifications.

plot Logical. Plot frequency of strata coverage and sampling coverage for snaster

and existing. Will return a list if TRUE.

Details

Calculate how sraster strata are represented in existing samples

Value

Returns a tibble where:

- strata sraster strata ID.
- srasterFreq sraster coverage frequency.
- sampleFreq Sampling frequency within sraster strata.
- diffFreq Difference between srasterFreq & sampleFreq. Positive values indicate over representation.
- nSamp Number of samples within each strata in existing.
- need srasterFreq * sum(nSamp). Total theoretical number of required samples to be representative of strata coverage. This values is rounded. It is important for the user to consider diffFreq. A small difference e.g. 1 in sampleFreq vs. srasterFreq frequency could make the algorithm allocate or remove samples that could likely be ignored.

Author(s)

Tristan R.H. Goodbody, Martin Queinnec

calculate_sampsize 13

See Also

Other calculate functions: calculate_allocation(), calculate_allocation_existing(), calculate_coobs(), calculate_distance(), calculate_pcomp(), calculate_pop(), calculate_sampsize()

Examples

```
### --- generate example stratification ---###
#--- load ALS metrics from sgsR internal data ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")</pre>
#--- read ALS metrics using the terra package ---#
mraster <- terra::rast(r)</pre>
#--- perform stratification ---#
sraster <- strat_kmeans(</pre>
  mraster = mraster$zq90,
 nStrata = 6
### --- create existing sample network ---###
#--- simple random sampling ---#
existing <- sample_srs(</pre>
  raster = mraster$zq90,
  nSamp = 100
)
#--- calculate representation ---#
calculate_representation(
  sraster = sraster,
  existing = existing
)
```

calculate_sampsize

Sample size determination

Description

Determine a samples size for simple random sampling using relative standard error

Usage

```
calculate_sampsize(
  mraster,
  rse = NULL,
  start = 0.01,
  end = 0.05,
```

14 calculate_sampsize

```
increment = 0.001,
plot = FALSE
)
```

Arguments

mraster spatRaster. Metrics raster. All values must be numeric.

rse Numeric. Desired relative standard error (coefficient of variation of the mean)

threshold to determine sample size.

start Numeric. First rse value to begin rse sequence. default = 0.01. end Numeric. Final rse value to end rse sequence. default = 0.05.

increment Numeric. Value to increment between start & end. default = 0.001.

plot Logical. if TRUE output graphical representation of estimated sample size vs.

rse.

Value

A data.frame of sample size and rse by raster variable.

Note

$$rse = (100 * SE)/mean)$$

Where:

- SE Standard error of the mean
- s Standard deviation of the observations
- n Number of observations

Author(s)

Tristan R.H. Goodbody

References

Benedetti, R., Piersimoni, F., & Postiglione, P. (2015). Sampling spatial units for agricultural surveys. pp 202-203. Berlin: Springer.

See Also

Other calculate functions: calculate_allocation(), calculate_allocation_existing(), calculate_coobs(), calculate_distance(), calculate_pcomp(), calculate_pop(), calculate_representation()

extract_metrics 15

Examples

```
#--- Load raster ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")</pre>
mr <- terra::rast(r)</pre>
calculate_sampsize(
  mraster = mr,
  rse = 0.01
calculate_sampsize(
 mraster = mr
)
calculate_sampsize(
  mraster = mr,
  rse = 0.025,
  start = 0.01,
  end = 0.08,
  increment = 0.01
#--- higher variance leads to need for more samples ---#
```

extract_metrics

Extract metrics

Description

Extract metric values to existing samples

Usage

```
extract_metrics(
  mraster,
  existing,
  quiet = FALSE,
  data.frame = FALSE,
  filename = NULL,
  overwrite = FALSE
)
```

Arguments

mraster spatRaster. Metrics Raster.

 $\hbox{existing} \qquad \qquad \hbox{sf 'POINT'. Existing plot network}.$

quiet Logical. If TRUE the user will not get messages about samples with NA values.

16 extract_strata

data.frame Logical. Output as data.frame if TRUE

filename Character. Path to write output samples.

overwrite Logical. Choice to overwrite existing filename if it exists.

Value

An sf or data.frame object of samples with metrics attributes.

Note

If data.frame = TRUE output will be written using write.table

Author(s)

Tristan R.H. Goodbody

See Also

Other extract functions: extract_strata()

Examples

```
#--- Load mraster ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)

#' #--- load existing samples ---#
e <- system.file("extdata", "existing.shp", package = "sgsR")
e <- sf::st_read(e)

extract_metrics(
    mraster = mr,
    existing = e
)</pre>
```

extract_strata

Extract strata

Description

Extract stratum values to existing samples

17 extract_strata

Usage

```
extract_strata(
  sraster,
  existing,
  quiet = FALSE,
  data.frame = FALSE,
  filename = NULL,
  overwrite = FALSE
)
```

Arguments

```
sraster
                  spatRaster. Stratification raster.
                   sf 'POINT'. Existing plot network.
existing
                  Logical. If TRUE the user will not get messages about samples with NA values.
quiet
data.frame
                  Logical. Output as data.frame if TRUE
filename
                  Character. Path to write output samples.
                  Logical. Choice to overwrite existing filename if it exists.
```

Value

overwrite

An sf or data.frame object of samples with strata attribute.

Note

If data.frame = TRUE output will be written using write.table

Author(s)

Tristan R.H. Goodbody

See Also

Other extract functions: extract_metrics()

```
#--- Load sraster ---#
r <- system.file("extdata", "sraster.tif", package = "sgsR")</pre>
sr <- terra::rast(r)</pre>
#--- load existing samples ---#
e <- system.file("extdata", "existing.shp", package = "sgsR")</pre>
e <- sf::st_read(e)
extract_strata(
  sraster = sr,
  existing = e
)
```

18 sample_ahels

sample_ahels

Adapted Hypercube Evaluation of a Legacy Sample (ahels)

Description

Perform the adapted Hypercube Evaluation of a Legacy Sample (ahels) algorithm using existing site data and raster metrics. New samples are allocated based on quantile ratios between the existing sample and covariate dataset.

Usage

```
sample_ahels(
 mraster,
  existing,
  nQuant = 10,
  nSamp = NULL,
  threshold = 0.9,
  tolerance = 0,
  matrices = NULL,
  plot = FALSE,
  details = FALSE,
  filename = NULL,
  overwrite = FALSE
)
```

Arguments

mraster	spatRaster. ALS metrics raster.
existing	sf 'POINT'. Existing plot network.

nQuant

Numeric. Number of quantiles to divide covariates and samples into. Quantiles that do not cover at least 1 percent of the area of interest will be excluded and

be returned as NA.

nSamp Numeric. Maximum number of new samples to allocate.

threshold Numeric. Sample quantile ratio threshold. After the threshold default = 0.9 is

reached, no additional samples will be added. Values close to 1 can cause the

algorithm to continually loop.

tolerance Numeric. Allowable tolerance (<= 0.1 (10 added until the 1 - tolerance den-

> sity is reached. If threshold is used, samples will be added until the threshold - tolerance value is reached. This parameter allows the user to define a buffer around desired quantile densities to permit the algorithm to not add additional

samples if quantile density is very close to 1, or user-defined threshold.

matrices List. Quantile and covariance matrices generated from calculate_pop(mraster

> = mraster, nQuant = nQuant). Both mraster & nQuant inputs must be the same to supply the covariance matrix. Supplying the matrix allows users with

sample_ahels 19

very large mrasters to pre-process the covariance matrix to avoid longer sampling processing times. If matrices is provided, the nQuant parameter is ignored and taken from the covariance matrix.

Logical. Plots samples of type existing (if provided; crosses) and new (circles) along with mraster.

Logical. If FALSE (default) output is sf object of systematic samples. If TRUE returns a list of sf objects where tessellation is the tessellation grid for sam-

returns a list of st objects where tessellation is the tessellation grid

pling, and samples are the systematic samples.

filename Character. Path to write output samples.

overwrite Logical. Choice to overwrite existing filename if it exists.

Value

plot

details

Returns sf point object with existing samples and supplemental samples added by the ahels algorithm

Note

Messages in the algorithm will state that samples have been added to under-represented quantiles. The number between square brackets that follow represent the matrix row and column respectively that can be printed using details = TRUE.

In some cases, generally when a single metric is used as mraster, sampling ratios all be >= 1 before the nSamp number of samples are allocated. The algorithm will stop in this scenario.

Special thanks to Dr. Brendan Malone for the original implementation of this algorithm.

Author(s)

Tristan R.H. Goodbody

References

Malone BP, Minasny B, Brungard C. 2019. Some methods to improve the utility of conditioned Latin hypercube sampling. PeerJ 7:e6451 DOI 10.7717/peerj.6451

See Also

```
Other sample functions: sample_balanced(), sample_clhs(), sample_existing(), sample_nc(), sample_srs(), sample_strat(), sample_sys_strat(), sample_systematic()
```

```
## Not run:
#--- Load raster and existing plots---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)
e <- system.file("extdata", "existing.shp", package = "sgsR")
e <- sf::st_read(e)</pre>
```

20 sample_balanced

```
sample_ahels(
  mraster = mr,
  existing = e,
  plot = TRUE
)

#--- supply quantile and covariance matrices ---#
mat <- calculate_pop(mraster = mr)

sample_ahels(
  mraster = mr,
  existing = e,
  matrices = mat,
  nSamp = 300
)

## End(Not run)</pre>
```

sample_balanced

Balanced sampling

Description

Balanced raster sampling using lcube and lpm2_kdtree methods

Usage

```
sample_balanced(
  mraster,
  nSamp,
  algorithm = "lpm2_kdtree",
  p = NULL,
  access = NULL,
  buff_inner = NULL,
  buff_outer = NULL,
  plot = FALSE,
  filename = NULL,
  overwrite = FALSE
)
```

Arguments

mraster spatRaster. ALS metrics raster.

nSamp Numeric. Number of desired samples.

algorithm Character. One of lpm2_kdtree, lcube, lcubestratified.

p Numeric. Vector with length equal to the number of cells in mraster representing the inclusion probability for each candidate sample. Default = nSamp / N, where N is the number of cells.

sample_balanced 21

access	sf 'LINESTRING' or 'MULTILINESTRING'. Access network.
buff_inner	Numeric. Inner buffer boundary specifying distance from access where plots cannot be sampled.
buff_outer	Numeric. Outer buffer boundary specifying distance from access where plots can be sampled.
plot	Logical. Plots output strata raster and visualized strata with boundary dividers.
filename	Character. Path to write stratified raster to disc.
overwrite	Logical. Specify whether filename should be overwritten on disc.

Value

An sf object with nSamp samples.

Author(s)

Tristan R.H. Goodbody

References

Anton Grafström and Jonathan Lisic (2019). BalancedSampling: Balanced and Spatially Balanced Sampling. R package version 1.5.5. https://CRAN.R-project.org/package=BalancedSampling

Jonathan Lisic and Anton Grafström (2018). SamplingBigData: Sampling Methods for Big Data. R package version 1.0.0. https://CRAN.R-project.org/package=SamplingBigData

Grafström, A. Lisic, J (2018). BalancedSampling: Balanced and Spatially Balanced Sampling. R package version 1.5.4. http://www.antongrafstrom.se/balancedsampling

See Also

```
Other sample functions: sample_ahels(), sample_clhs(), sample_existing(), sample_nc(), sample_srs(), sample_strat(), sample_systematic()
```

```
#--- Load raster and existing plots---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)

sample_balanced(
    mraster = mr,
    nSamp = 200
)</pre>
```

22 sample_clhs

sample_clhs

Conditioned Latin Hypercube Sampling

Description

Conditioned Latin Hypercube Sampling using clhs functionality.

Usage

```
sample_clhs(
  mraster,
  nSamp,
  iter = 10000,
  cost = NULL,
  existing = NULL,
  access = NULL,
  buff_inner = NULL,
  buff_outer = NULL,
  plot = FALSE,
  details = FALSE,
  filename = NULL,
  overwrite = FALSE,
  ...
)
```

Arguments

mraster	spatRaster. ALS metrics raster.
nSamp	Numeric. Number of desired samples.
iter	Numeric. Value giving the number of iterations within the Metropolis-Hastings process.
cost	Numeric/Character. Index or name of covariate within mraster to be used to constrain cLHS sampling. If default (NULL), a cost constraint is not used.
existing	sf 'POINT'. Existing plot network.
access	sf 'LINESTRING' or 'MULTILINESTRING'. Access network.
buff_inner	Numeric. Inner buffer boundary specifying distance from access where plots cannot be sampled.
buff_outer	Numeric. Outer buffer boundary specifying distance from access where plots can be sampled.
plot	Logical. Plots output strata raster with samples.
details	Logical. If FALSE (default) output is only stratification raster. If TRUE return a list where \$details is additional stratification information and \$raster is the output stratification spatRaster.
filename	Character. Path to write output samples.
overwrite	Logical. Choice to overwrite existing filename if it exists.
	Additional arguments for clhs sampling. See clhs.

sample_clhs 23

Value

An sf object with nSamp stratified samples.

Author(s)

Tristan R.H. Goodbody

References

Minasny, B. and McBratney, A.B. 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences, 32:1378-1388.

Minasny, B. and A. B. McBratney, A.B.. 2010. Conditioned Latin Hypercube Sampling for Calibrating Soil Sensor Data to Soil Properties. In: Proximal Soil Sensing, Progress in Soil Science, pages 111-119.

Roudier, P., Beaudette, D.E. and Hewitt, A.E. 2012. A conditioned Latin hypercube sampling algorithm incorporating operational constraints. In: Digital Soil Assessments and Beyond. Proceedings of the 5th Global Workshop on Digital Soil Mapping, Sydney, Australia.

See Also

```
Other sample functions: sample_ahels(), sample_balanced(), sample_existing(), sample_nc(), sample_srs(), sample_strat(), sample_systematic()
```

```
#--- Load raster and existing plots---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")</pre>
mr <- terra::rast(r)</pre>
e <- system.file("extdata", "existing.shp", package = "sgsR")</pre>
e <- sf::st_read(e)
a <- system.file("extdata", "access.shp", package = "sgsR")</pre>
ac <- sf::st_read(a)</pre>
sample_clhs(
  mraster = mr,
  nSamp = 200,
  plot = TRUE,
  iter = 100
)
sample_clhs(
  mraster = mr,
  nSamp = 400,
  existing = e,
  iter = 250,
  details = TRUE
)
```

24 sample_existing

sample_existing Sample existing

Description

Sub-sample an existing sample. Four sampling methods are available: clhs, balanced, srs and strat.

Usage

```
sample_existing(
  existing,
  nSamp,
  raster = NULL,
  type = "clhs",
  access = NULL,
  buff_inner = NULL,
  buff_outer = NULL,
  details = FALSE,
  filename = NULL,
  overwrite = FALSE,
  ...
)
```

Arguments

existing	sf 'POINT'. Existing plot network.
nSamp	Numeric. Number of desired samples.
raster	SpatRaster. Raster to guide the location of the samples. If type = "clhs" this raster can also be used to define the population distributions to be used for sampling.
type	Character. A string indicating the type of sampling method to use. Possible values are "clhs", "balanced", "srs" and "strat".
access	sf. Road access network - must be lines.
buff_inner	Numeric. Inner buffer boundary specifying distance from access where plots cannot be sampled.
buff_outer	Numeric. Outer buffer boundary specifying distance from access where plots can be sampled.
details	Logical. If FALSE (default) output is sf object of systematic samples. If TRUE returns a list of sf objects where tessellation is the tessellation grid for sampling, and samples are the systematic samples.
filename	Character. Path to write output samples.
overwrite	Logical. Choice to overwrite existing filename if it exists.
	Additional arguments for the sampling method selected.

sample_existing 25

Value

An sf object of samples or a list object if details = TRUE

Note

When type = "clhs" or type = "balanced" all attributes in existing will be used for sampling. Remove attributes not indented for sampling' prior to using this algorithm.

Author(s)

Tristan R.H. Goodbody

See Also

```
Other sample functions: sample_ahels(), sample_balanced(), sample_clhs(), sample_nc(), sample_srs(), sample_srat(), sample_sys_strat(), sample_systematic()
```

```
r <- system.file("extdata", "mraster.tif", package = "sgsR")</pre>
mr <- terra::rast(r)</pre>
#--- generate an existing sample adn extract metrics ---#
e <- sample_systematic(raster = mr, cellsize = 200)
e <- extract_metrics(existing = e, mraster = mr)</pre>
#--- perform clhs (default) sub-sampling ---#
sample_existing(
  existing = e,
  nSamp = 50
)
#--- perform balanced sub-sampling ---#
sample_existing(
  existing = e,
 nSamp = 50,
  type = "balanced"
#--- perform simple random sub-sampling ---#
sample_existing(
  existing = e,
 nSamp = 50,
  type = "srs"
)
```

26 sample_nc

sample_nc

Nearest centroid (NC) sampling

Description

Sampling using the nearest centroid (NC) approach described in Melville & Stone (2016).

Usage

```
sample_nc(
  mraster,
  nSamp,
  k = 1,
  iter = 500,
  algorithm = "Lloyd",
  access = NULL,
  buff_inner = NULL,
  buff_outer = NULL,
  plot = FALSE,
  details = FALSE,
  filename = NULL,
  overwrite = FALSE
)
```

Arguments

mraster	spatRaster. ALS metrics raster.
nSamp	Numeric. Number of desired samples.
k	Numeric. The number of nearest neighbours to take for each k-means center. When $k = 1$ (default), the output number of samples will match nSamp. Increases to k results in a multiplicative result total number of samples nSamp \star k.
iter	Numeric. The maximum number of kmeans iterations allowed.
algorithm	Character. Lloyd (default) or MacQueen kmeans algorithms.
access	sf 'LINESTRING' or 'MULTILINESTRING'. Access network.
buff_inner	Numeric. Inner buffer boundary specifying distance from access where plots cannot be sampled.
buff_outer	Numeric. Outer buffer boundary specifying distance from access where plots can be sampled.
plot	Logical. Plot mraster with allocated samples.
details	Logical. If FALSE (default) output is only stratification raster. If TRUE return a list where \$details is additional stratification information and \$raster is the output stratification spatRaster.
filename	Character. Path to write stratified raster to disc.
overwrite	Logical. Specify whether filename should be overwritten on disc.

sample_nc 27

Value

An sf object with nSamp randomly sampled points.

Note

When details = TRUE, a list is returned where:

- samples output nearest centroid samples with kcenter attribute linking to associated kmeans centers.
- 2. kmeans is a list output of the kmeans function
- 3. centers Un-scaled kmeans center values for each layer in mraster with kcenter attribute to link with the same attribute in samples.
- 4. kplot is a ggplot scatterplot object visualizing the kmeans centers and associated nearest neighbor samples.

Author(s)

Tristan R.H. Goodbody

References

G. Melville & C. Stone (2016) Optimising nearest neighbour information—a simple, efficient sampling strategy for forestry plot imputation using remotely sensed data, Australian Forestry, 79:3, 217-228, DOI: 10.1080/00049158.2016.1218265

See Also

```
Other sample functions: sample_ahels(), sample_balanced(), sample_clhs(), sample_existing(), sample_srs(), sample_strat(), sample_systematic()
```

```
#--- Load raster and access files ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)

#--- perform simple random sampling ---#
sample_nc(
    mraster = mr,
    nSamp = 5,
)</pre>
```

28 sample_srs

-			
samp	l e	srs	

Simple random sampling

Description

Randomly sample within a stratification raster extent.

Usage

```
sample_srs(
  raster,
  nSamp,
  mindist = NULL,
  access = NULL,
  buff_inner = NULL,
  buff_outer = NULL,
  plot = FALSE,
  filename = NULL,
  overwrite = FALSE
)
```

Arguments

raster

nSamp	Numeric. Number of desired samples.
mindist	Numeric. Minimum allowable distance between selected samples. Default = NULL.
access	sf 'LINESTRING' or 'MULTILINESTRING'. Access network.
buff_inner	Numeric. Inner buffer boundary specifying distance from access where plots cannot be sampled.
buff_outer	Numeric. Outer buffer boundary specifying distance from access where plots can be sampled.

spatRaster. Raster to be used for random sampling.

plot Logical. Plots output strata raster with samples.

filename Character. Path to write output samples.

overwrite Logical. Choice to overwrite existing filename if it exists.

Value

An sf object with nSamp randomly sampled points.

Author(s)

Tristan R.H. Goodbody & Martin Queinnec

sample_strat 29

See Also

```
Other sample functions: sample_ahels(), sample_balanced(), sample_clhs(), sample_existing(), sample_nc(), sample_strat(), sample_sys_strat(), sample_systematic()
```

Examples

```
#--- Load raster and access files ---#
r <- system.file("extdata", "sraster.tif", package = "sgsR")
sr <- terra::rast(r)

a <- system.file("extdata", "access.shp", package = "sgsR")
ac <- sf::st_read(a)

#--- perform simple random sampling ---#
sample_srs(
    raster = sr,
    nSamp = 200,
)</pre>
```

 $sample_strat$

Stratified sampling

Description

Sampling based on a stratified raster.

Usage

```
sample_strat(
  sraster,
 nSamp,
 allocation = "prop",
 method = "Queinnec",
 weights = NULL,
 force = FALSE,
 mraster = NULL,
 mindist = NULL,
  existing = NULL,
  include = FALSE,
  remove = FALSE,
  access = NULL,
  buff_inner = NULL,
 buff_outer = NULL,
 wrow = 3,
 wcol = 3,
 plot = FALSE,
  details = FALSE,
```

30 sample_strat

```
filename = NULL,
  overwrite = FALSE
)
```

Arguments

sraster spatRaster. Stratification raster to be used for sampling.

nSamp Numeric. Number of desired samples. existing, include and force influence

this value.

allocation Character. Allocation algorithm to be used. Either prop (default) for propor-

tional allocation, optim for optimal allocation (equal sampling cost), equal for equal number of samples (defined by nSamp) for each strata, or "manual" for

user defined strata weights defined using weights.

method Character. Sampling design approach "Queinnec" (default) or "random". "Queinnec"

method is described in notes below. "random" performs traditional stratified random sampling where probability to sample each cell within each stratum is equal assuming default parameters for mindist. existing, include, remove

are ignored when method = "random".

weights Numeric. Only applicable when allocation = "manual". Vector of weights

where sum(weights) == 1. Vector length must be equal to the number of unique strata where the first numeric value corresponds to stratum 1, second stratum 2

etc.

force Logical. Default = FALSE - force nSamp to be exactly the user defined value in

cases where nSamp and sraster strata count are not equally divisible. Additional samples often need to be allocated or removed based on rounding differences resulting from proportional differences between nSamp and strata coverages in sraster. In these instances samples are either added to strata with the lowest number of samples or are removed from strata with the highest number

of samples. Has no effect when existing is provided.

mraster spatRaster. ALS metric raster. Required when allocation = optim.

mindist Numeric. Minimum allowable distance between selected samples. Default =

NULL.

existing sf 'POINT' or data.frame. Existing plot network.

include Logical. If TRUE include existing plots in nSamp total.

remove Logical. If TRUE randomly remove samples from over represented strata to meet

allocated sample numbers. Used only when existing and include are both

TRUE.

access sf 'LINESTRING' or 'MULTILINESTRING'. Access network.

buff_inner Numeric. Inner buffer boundary specifying distance from access where plots

cannot be sampled.

buff_outer Numeric. Outer buffer boundary specifying distance from access where plots

can be sampled.

wrow Numeric. Number of row in the focal window (default = 3).

wcol Numeric. Number of columns in the focal window (default = 3).

sample_strat 31

plot	Logical. Plots samples of type 'existing' (if provided; croses) and 'new' (circles) along with sraster.
details	Logical. If FALSE (default) output is sf object of stratified samples. If TRUE return a list where \$details additional sampling information and \$raster is an sf object of stratified samples.
filename	Character. Path to write output samples.
overwrite	Logical. Choice to overwrite existing filename if it exists.

Value

An sf object with nSamp stratified samples.

Note

The sampling is performed in 2 stages when method = "Queinnec":

- 1. Rule 1 Sample within grouped stratum pixels defined within the wrow, wool parameters
- 2. Rule 2 If no samples exist to satisfy Rule 1 individual stratum pixels are sampled.

 The rule applied to allocate each sample is defined in the rule attribute of output samples.

existing may contain samples that fall in sraster cells that are 'NA'. If this occurs and include = TRUE, 'NA' samples are separated during sampling and re-appended at the end of the sampling process.

If the snaster provided contains factor values, the algorithm will automatically convert these into the numeric factor levels and perform sampling using those values. The categories (factor values) will be extracted and appended to the algorithm output as the 'category' attribute.

Author(s)

Tristan R.H. Goodbody & Martin Queinnec

References

Queinnec, M., White, J. C., & Coops, N. C. (2021). Comparing airborne and spaceborne photon-counting LiDAR canopy structural estimates across different boreal forest types. Remote Sensing of Environment, 262 (August 2020), 112510. https://doi.org/10.1016/j.rse.2021.112510

See Also

```
Other sample functions: sample_ahels(), sample_balanced(), sample_clhs(), sample_existing(), sample_nc(), sample_srs(), sample_sys_strat(), sample_systematic()
```

```
#--- Load raster and access files ---#
r <- system.file("extdata", "sraster.tif", package = "sgsR")
sr <- terra::rast(r)</pre>
```

32 sample_systematic

```
#--- perform stratified sampling random sampling ---#
sraster <- sample_strat(
    sraster = sr,
    nSamp = 50
)</pre>
```

sample_systematic

Systematic sampling

Description

Systematic sampling with random start point and translation within a square or hexagonal tessellation.

Usage

```
sample_systematic(
  raster,
  cellsize,
  square = TRUE,
  location = "centers",
  force = FALSE,
  access = NULL,
  buff_inner = NULL,
  buff_outer = NULL,
  plot = FALSE,
  filename = NULL,
  overwrite = FALSE,
  details = FALSE,
  ...
)
```

Arguments

raster	spatRaster. Raster used to define extent of fishnet grid.
cellsize	Numeric. Desired cellsize for tessellation.
square	Logical. Tessellation shape. Default is regular square grid, if FALSE hexagons are used.
location	Character. Sample location within tessellation. Default = "centers") returns samples at tessellation centers, "corners" - corners of tessellation are returned, "random" - samples are randomly located within tessellations.
force	Logical. Only applies when location = "random". If TRUE, random samples are forced to fall in areas where raster does not have NA values. This will considerably slow processing.
access	sf. Road access network - must be lines.

sample_systematic 33

buff_inner	Numeric. Inner buffer boundary specifying distance from access where plots cannot be sampled.	
buff_outer	Numeric. Outer buffer boundary specifying distance from access where plots can be sampled.	
plot	Logical. Plots output strata raster with samples.	
filename	Character. Path to write output samples.	
overwrite	Logical. Choice to overwrite existing filename if it exists.	
details	Logical. If FALSE (default) output is sf object of systematic samples. If TRUE returns a list of sf objects where tessellation is the tessellation grid for sampling, and samples are the systematic samples.	
•••	Additional arguments for st_make_grid. Options include offset to offset grid by providing lower left coordinates.	

Value

An sf object with sampled points over a tessellation.

Note

Specifying location = "random" can result in tessellations with no samples. This results from raster have NA values at the random location chosen. Using force = TRUE removes areas of NA from sampling entirely, but considerably slows processing speeds. Thanks to R. Hijmans for help in debugging and providing suggestions for this script.

Author(s)

Tristan R.H. Goodbody, Lukas Winiwarter

See Also

```
Other sample functions: sample_ahels(), sample_balanced(), sample_clhs(), sample_existing(), sample_nc(), sample_srs(), sample_strat(), sample_sys_strat()
```

```
#--- Load raster and access files ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)
#--- perform grid sampling ---#
sample_systematic(
    raster = mr,
    cellsize = 1000
)

sample_systematic(
    raster = mr,
    cellsize = 1000,
    location = "corners",
    plot = TRUE</pre>
```

34 sample_sys_strat

```
sample_systematic(
  raster = mr,
  cellsize = 1000,
  square = FALSE,
  location = "random",
  plot = TRUE
)
```

sample_sys_strat

Systematic stratified sampling

Description

Systematic stratified sampling with random start point and translation within a square or hexagonal tessellation for each stratum.

Usage

```
sample_sys_strat(
    sraster,
    cellsize,
    square = TRUE,
    location = "centers",
    force = FALSE,
    access = NULL,
    buff_inner = NULL,
    buff_outer = NULL,
    plot = FALSE,
    filename = NULL,
    overwrite = FALSE,
    details = FALSE
)
```

Arguments

sraster spatRaster. Stratified raster with name "strata".

cellsize Numeric. Desired cellsize for tessellation.

square Logical. Tessellation shape. Default is regular square grid, if FALSE hexagons

are used.

location Character. Sample location within tessellation. Default = "centers") returns

samples at tessellation centers, "corners" - corners of tessellation are returned,

"random" - samples are randomly located within tessellations.

sample_sys_strat 35

Logical. Only applies when location = "random". If TRUE, random samples force are forced to fall in areas where raster does not have NA values. This will considerably slow processing. sf. Road access network - must be lines. access buff_inner Numeric. Inner buffer boundary specifying distance from access where plots cannot be sampled. buff_outer Numeric. Outer buffer boundary specifying distance from access where plots can be sampled. plot Logical. Plots output strata raster with samples. filename Character. Path to write output samples. overwrite Logical. Choice to overwrite existing filename if it exists. details Logical. If FALSE (default) output is sf object of systematic samples. If TRUE returns a list of sf objects where tessellation is the tessellation grid for sam-

Value

An sf object with sampled points over unique tessellations.

Note

Specifying location = "random" can result in tessellations with no samples. This results from raster have NA values at the random location chosen. Using force = TRUE removes areas of NA from sampling entirely, but considerably slows processing speeds. Thanks to R. Hijmans for help in debugging and providing suggestions for this script.

All stratum are sampled using random tessellation start points and translations.

pling, and samples are the systematic samples.

Author(s)

Tristan R.H. Goodbody

See Also

```
Other sample functions: sample_ahels(), sample_balanced(), sample_clhs(), sample_existing(), sample_nc(), sample_srs(), sample_strat(), sample_systematic()
```

```
#--- Load raster and access files ---#
r <- system.file("extdata", "sraster.tif", package = "sgsR")
sr <- terra::rast(r)
#--- perform grid sampling ---#
sample_sys_strat(
    sraster = sr,
    cellsize = 1000
)</pre>
```

36 strat_breaks

```
sample_sys_strat(
    sraster = sr,
    cellsize = 1000,
    square = FALSE,
    location = "corners"
)
```

strat_breaks

Breaks stratification

Description

Stratify metrics raster using user defined breaks

Usage

```
strat_breaks(
  mraster,
  breaks,
  map = FALSE,
  plot = FALSE,
  details = FALSE,
  filename = NULL,
  overwrite = FALSE
)
```

Arguments

overwrite

mraster	Spatraster. Raster to stratify. Layers in mraster must match the number of breaks vectors provided.	
breaks	Numeric. Vector of breakpoints for each layer of mraster. If mraster has multiple layers, breaks must be a list with an equal number of objects.	
тар	Logical. Map individual stratified layers to a combined stratification. Will output a multi-layer SpatRaster with individual stratifications for each mraster layer and an additional mapped stratification named "strata".	
plot	Logical. Plots output strata raster and visualized strata with boundary dividers.	
details	Logical. If FALSE (default) output is only stratification raster. If TRUE return a list where \$details is additional stratification information and \$raster is the output stratification spatRaster.	
filename	Character. Path to write stratified raster to disc.	

Logical. Specify whether filename should be overwritten on disc.

strat_kmeans 37

Value

Returns an output stratification spatRaster or a list when details = TRUE.

When a list is returned:

1. raster is a stratified spatRaster based on quantiles. If stack = TRUE will be the number of layers of mraster plus the final output

- 2. breaks is a list output of breaks
- 3. plot is a ggplot histogram object showing distribution(s) and break point(s).

Author(s)

Tristan R.H. Goodbody

See Also

```
Other stratify functions: strat_kmeans(), strat_map(), strat_poly(), strat_quantiles()
```

Examples

```
#--- Load raster ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)

#--- create vector breaks ---#
br.zq90 <- c(3, 5, 11, 18)
br.pz2 <- c(20, 40, 60, 80)

strat_breaks(
    mraster = mr$zq90,
    breaks = br.zq90
)

strat_breaks(
    mraster = mr[[1:2]],
    breaks = list(br.zq90, br.pz2),
    details = TRUE
)</pre>
```

strat_kmeans

k-means stratification

Description

Stratify metrics raster using kmeans algorithm

38 strat_kmeans

Usage

```
strat_kmeans(
  mraster,
  nStrata,
  iter = 500,
  algorithm = "Lloyd",
  center = TRUE,
  scale = TRUE,
  plot = FALSE,
  details = FALSE,
  filename = NULL,
  overwrite = FALSE,
  ...
)
```

Arguments

mraster	spatRaster. ALS metrics raster.
nStrata	Numeric. Number of desired strata.
iter	Numeric. The maximum number of iterations allowed.
algorithm	Character. "Lloyd" (default) or "MacQueen" algorithms.
center	Logical. Value indicating whether the variables should be shifted to be zero centered.
scale	Logical. Value indicating whether the variables should be scaled to have unit variance.
plot	Logical. Plots output strata raster and visualized strata with boundary dividers.
details	Logical. If FALSE (default) output is only stratification raster. If TRUE return a list where \$details is additional stratification information and \$raster is the output stratification spatRaster.
filename	Character. Path to write stratified raster to disc.
overwrite	Logical. Specify whether filename should be overwritten on disc.
• • •	Additional arguments to be passed to kmeans function.

Value

output stratification spatRaster, or a list when details = TRUE.

Author(s)

Tristan R.H. Goodbody

See Also

```
Other stratify functions: strat_breaks(), strat_map(), strat_poly(), strat_quantiles()
```

strat_map 39

Examples

```
#--- Load raster and access files ---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)

#--- perform stratification using k-means ---#
kmeans <- strat_kmeans(
    mraster = mr,
    nStrata = 5
)

kmeans <- strat_kmeans(
    mraster = mr,
    nStrata = 5,
    iter = 1000,
    algorithm = "MacQueen",
    details = TRUE
)</pre>
```

strat_map

Map a raster stack of a list of rasters

Description

Map stratified rasters to a combined stratification.

Usage

```
strat_map(
    sraster,
    stack = FALSE,
    filename = NULL,
    overwrite = FALSE,
    plot = FALSE,
    details = FALSE
)
```

Arguments

sraster	spatRaster or list. Stratification raster stack or list of rasters. If snaster is of class list, then it is internally converted into a raster stack.
stack	Logical. Default = FALSE. If TRUE, inputs and output will be stacked: $strata_1$, $strata_2$,, $strata$.
filename	Character. Path to write stratified raster to disc.
overwrite	Logical. Specify whether filename should be overwritten on disc.
plot	Logical. Plots output strata raster and visualized strata with boundary dividers.

40 strat_map

details

Logical. If FALSE (default) output is a mapped stratified spatRaster object. If TRUE return a list where \$outRaster is the mapped stratified raster, and \$lookUp is the lookup table for the stratification.

Value

A spatRaster object.

Mapping

The mapping algorithm will take the stratification from sraster and combine it with overlying strata values across all layers. This will result in a strata attribute where the values from all inputs are combined.

```
i.e.
If strata_1 = 1 and strata_2 = 1 then strata = 11.
If strata_1 = 2 and strata_2 = 14 then strata = 214.
If strata_1 = "A" and strata_2 = 14 then strata = "A14".
```

Author(s)

Tristan R.H. Goodbody, Tommaso Trotto, Robert Hijmans

See Also

Other stratify functions: strat_breaks(), strat_kmeans(), strat_poly(), strat_quantiles()

```
#--- load input metrics rasters ---#
raster <- system.file("extdata", "sraster.tif", package = "sgsR")</pre>
sraster <- terra::rast(raster)</pre>
#--- read polygon coverage ---#
poly <- system.file("extdata", "inventory_polygons.shp", package = "sgsR")</pre>
fri <- sf::st_read(poly)</pre>
#--- stratify polygon coverage ---#
#--- specify polygon attribute to stratify ---#
attribute <- "NUTRIENTS"
#--- specify features within attribute & how they should be grouped ---#
#--- as a single vector ---#
features <- c("poor", "rich", "medium")</pre>
srasterfri <- strat_poly(</pre>
 poly = fri,
 attribute = attribute,
 features = features,
```

strat_poly 41

```
raster = sraster
)
#--- map srasters with raster stack ---#
stack <- c(srasterfri, sraster)
strat_map(
    sraster = stack
)
#--- map sraster with list of rasters ---#
rast_list <- list(srasterfri, sraster)
strat_map(
    sraster = rast_list,
    stack = TRUE,
    details = TRUE
)</pre>
```

strat_poly

Stratify using polygons

Description

Stratify based on polygon coverage attributes and features.

Usage

```
strat_poly(
  poly,
  attribute,
  features,
  raster,
  filename = NULL,
  overwrite = FALSE,
  plot = FALSE,
  details = FALSE
)
```

Arguments

poly sf. Input polygon coverage. e.g. - forest resources inventory coverage. attribute Character. Name of attribute within poly that will be stratified.

features Vector / list of vectors. Features within attribute to guide stratification.

raster spatRaster. Raster template to enable polygon to raster conversion.

filename Character. Path to write stratified raster to disc.

overwrite Logical. Specify whether filename should be overwritten on disc.

plot Logical. Plots output spatRaster.

42 strat_poly

details

Logical. If FALSE (default) output is spatRaster object of stratified polygon attributes. If TRUE return a list where \$outRaster is the stratified attributes, \$lookUp is the lookup table for the stratification, and poly is the defined polygon attribute with corresponding features / strata

Value

A spatRaster object.

Author(s)

Tristan R.H. Goodbody

See Also

Other stratify functions: strat_breaks(), strat_kmeans(), strat_map(), strat_quantiles()

```
#--- load input metrics raster ---#
raster <- system.file("extdata", "sraster.tif", package = "sgsR")</pre>
sraster <- terra::rast(raster)</pre>
#--- read polygon coverage ---#
poly <- system.file("extdata", "inventory_polygons.shp", package = "sgsR")</pre>
fri <- sf::st_read(poly)</pre>
#--- stratify polygon coverage ---#
#--- specify polygon attribute to stratify ---#
attribute <- "NUTRIENTS"
#--- specify features within attribute & how they should be grouped ---#
#--- as a single vector ---#
features <- c("poor", "rich", "medium")</pre>
srasterpoly <- strat_poly(</pre>
  poly = fri,
  attribute = attribute,
  features = features,
  raster = sraster
)
#--- or as multiple lists ---#
g1 <- "poor"
g2 <- c("rich", "medium")</pre>
features <- list(g1, g2)</pre>
srasterpoly <- strat_poly(</pre>
```

strat_quantiles 43

```
poly = fri,
  attribute = attribute,
  features = features,
  raster = sraster,
  details = TRUE
)
```

 $strat_quantiles$

Quantiles stratification

Description

Stratify metric raster using metric quantiles.

Usage

```
strat_quantiles(
  mraster,
  nStrata,
  map = FALSE,
  plot = FALSE,
  details = FALSE,
  filename = NULL,
  overwrite = FALSE)
```

Arguments

overwrite

mraster	spatRaster. ALS metrics raster.
nStrata	Numeric. A positive integer representing the number of desired classes or a numeric vector of probabilities with values between 0-1. If mraster has multiple layers, nStrata must be a list with an equal number of objects.
map	Logical. Map individual stratified layers to a combined stratification. Will output a multi-layer SpatRaster with individual stratifications for each mraster layer and an additional mapped stratification named "strata".
plot	Logical. Plots output strata raster and visualized strata with boundary dividers.
details	Logical. If FALSE (default) output is only stratification raster. If TRUE return a list where \$details is additional stratification information and \$raster is the output stratification spatRaster.
filename	Character. Path to write stratified raster to disc.

Logical. Specify whether filename should be overwritten on disc.

strat_quantiles

Value

Returns an output stratification spatRaster or a list when details = TRUE.

When a list is returned:

- 1. details lookUp table for stratification(s).
- 2. raster is a stratified spatRaster based on quantiles
- 3. plot is a ggplot histogram / scatter plot object (depends on whether metric2 was supplied). Histogram shows distribution and break points.

Author(s)

Tristan R.H. Goodbody

See Also

Other stratify functions: strat_breaks(), strat_kmeans(), strat_map(), strat_poly()

```
#--- Load raster and existing plots---#
r <- system.file("extdata", "mraster.tif", package = "sgsR")
mr <- terra::rast(r)

strat_quantiles(
    mraster = mr$zq90,
    nStrata = 4
)

strat_quantiles(
    mraster = mr[[1:2]],
    nStrata = list(c(0.2, 0.4, 0.8), 3),
    map = TRUE
)</pre>
```

Index

* analyze functions	calculate_sampsize, 4-6, 10, 11, 13, 13	
<pre>calculate_lhs0pt, 7</pre>	clhs, 8, 22	
* calculate functions		
<pre>calculate_allocation, 2</pre>	extract_metrics, 15, 17	
<pre>calculate_coobs, 4</pre>	extract_strata, <i>16</i> , 16	
calculate_distance, 6		
<pre>calculate_pcomp, 9</pre>	kmeans, 27, 37, 38	
calculate_pop, 10	lcube, 20	
calculate_representation, 12	lpm2_kdtree, 20	
calculate_sampsize, 13	ipiliz_kuti ee, 20	
* extract functions	prcomp, 9	
extract_metrics, 15	pr comp, >	
extract_strata, 16	sample_ahels, 10, 18, 21, 23, 25, 27, 29, 31,	
* sample functions	33, 35	
sample_ahels, 18	sample_balanced, 19, 20, 23, 25, 27, 29, 31,	
sample_balanced, 20	33, 35	
sample_clhs, 22	sample_clhs, 6, 19, 21, 22, 25, 27, 29, 31, 33,	
sample_existing, 24	35	
sample_nc, 26	sample_existing, 19, 21, 23, 24, 27, 29, 31,	
sample_srs, 28	33, 35	
sample_strat, 29	sample_nc, 19, 21, 23, 25, 26, 29, 31, 33, 35	
<pre>sample_sys_strat, 34</pre>	sample_srs, 19, 21, 23, 25, 27, 28, 31, 33, 35	
sample_systematic, 32	sample_strat, 19, 21, 23, 25, 27, 29, 29, 33,	
* stratify functions	35	
strat_breaks, 36	sample_sys_strat, 19, 21, 23, 25, 27, 29, 31,	
strat_kmeans, 37	<i>33</i> , 34	
strat_map, 39	sample_systematic, 19, 21, 23, 25, 27, 29,	
strat_poly,41	31, 32, 35	
strat_quantiles,43	st_make_grid, 33	
	strat_breaks, 36, 38, 40, 42, 44	
calculate_allocation, 2, 5, 6, 10, 11, 13, 14	strat_kmeans, <i>37</i> , <i>37</i> , <i>40</i> , <i>42</i> , <i>44</i>	
calculate_allocation_existing, 4-6, 10,	strat_map, <i>37</i> , <i>38</i> , 39, <i>42</i> , <i>44</i>	
11, 13, 14	strat_poly, <i>37</i> , <i>38</i> , <i>40</i> , 41, <i>44</i>	
calculate_coobs, 4, 4, 6, 10, 11, 13, 14	strat_quantiles, <i>37</i> , <i>38</i> , <i>40</i> , <i>42</i> , 43	
calculate_distance, 4, 5, 6, 10, 11, 13, 14		
calculate_lhsOpt, 7, 10, 11	write.table, <i>16</i> , <i>17</i>	
calculate_pcomp, 4-6, 9, 11, 13, 14 calculate_pop, 4-7, 10, 10, 13, 14		
calculate_pop, 4–7, 10, 10, 13, 14 calculate_representation, 4–6, 10, 11, 12,		
14		
14		