Patterning of Periodic Ripples in Monolayer MoS₂ by Using Laser Irradiation

Sung Won Kim, Jeong Hyeon NA, Won Lyeol Choi, Hyun-Jong Chung and Sung Ho Jhang*

Department of Physics, Konkuk University, Seoul 05029, Korea

Soo Ho Choi and Woochul Yang Department of Physics, Dongguk University, Seoul 04620, Korea

Sang Wook Lee Department of Physics, Ewha Womans University, Seoul 03760, Korea

(Received 12 October 2016, in final form 27 October 2016)

We have investigated the effect of laser irradiation on monolayer MoS_2 and observed the swellingup of the monolayer from the SiO_2 substrate upon laser illumination. The mismatch in the thermal expansion between the substrate and MoS_2 can result in the structural deformation. Employing this method, one can induce structural deformation in a desired pattern, and one can demonstrate the patterning of periodic ripples in monolayer MoS_2 by using laser irradiation. The controlled fabrication of the ripple structure may be instrumental in understanding the effect of ripples on the interesting physical properties of monolayer MoS_2 .

PACS numbers: 62.25.+g, 68.65.-k Keywords: MoS₂, Ripple, Laser irradiation

DOI: 10.3938/jkps.69.1505

I. INTRODUCTION

Two-dimensional (2D) transition-metal dichalcogenide materials such as MoS₂ have recently attracted much research interest for future electronics and optoelectronics due to their unique properties [1–6]. Structural defects such as ripples always modulate the physical properties of 2D materials, and ripples have been explored in monolayer (1L) MoS_2 [7–11]. Controlled fabrication of a periodic ripple structure will be instrumental in understanding the effect of ripples on the interesting physical properties of monolayer MoS₂. On the other hand, laser irradiation has been utilized to thin multilayer graphene or MoS₂ into a monolayer [12, 13]. In this letter, we report that by using laser irradiation, one can locally induce structural deformation and draw desired patterns of deformation down to a feature size of ~ 250 nm in an atomic layer of MoS₂. We demonstrate a periodic ripple structure patterned in a MoS₂ monolayer by using simple laser irradiation.

*E-mail: shjhang@konkuk.ac.kr

II. EXPERIMENTS AND DISCUSSION

Our experiments were performed on both exfoliated MoS_2 and MoS_2 monolayers directly grown on SiO_2 substrates by using a chemical vapor deposition (CVD) method. The thickness of MoS_2 was monitored by using optical contrast microscopy and was confirmed by using atomic force microscopy (AFM) and Raman spectroscopy.

Figure 1(a) shows a schematic diagram of our experimental method to locally modify the structure of a MoS₂ monolayer by irradiating it with a laser. A confocal Raman measurement system (Witec alpha 300R) was adapted. The wavelength of the laser was 532 nm, and the spot size was $\sim 1 \mu m$. In Fig. 1(b), the laser was illuminated onto three different spots of an exfoliated MoS_2 monolayer prepared on a SiO₂ substrate. The power of the laser was 5 mW, and the illumination lasted 60 s on each spot. As shown in the optical microscopy image (Fig. 1(b)), the colors of the spots exposed to the laser were clearly changed. To further study the change in the structure, we used AFM to investigate the area within the black dashed rectangle. The AFM image is displayed in Fig. 1(c). Interestingly, we find that the spot exposed to the laser ($\sim 1 \ \mu \text{m}^2$) swells out from the substrate. The AFM height profile along the spot (Fig. 1(d)) reveals that it swells up by ~ 1 nm. Notice that the ratio of the height to the width is about 1 to 1000. As an ori-

Fig. 1. (Color online) (a) Schematic diagram of a MoS₂ monolayer locally deformed by using laser illumination. (b) Optical microscopy image of a MoS₂ monolayer after laser irradiation (5 mW, 60 s) onto 3 different spots in the monolayer. (c) Atomic force microscopy image, zoomed in on the dashed rectangular area shown in (b). Spots exposed to the laser swell out from the substrate. (d) AFM height profile along the dashed red line indicated in (c).

gin of the formation of such a swollen-up structure, one can suggest the mismatch in the thermal expansion coefficients [10] between the SiO_2 substrate ($\sim 10^{-7} \text{ K}^{-1}$) and the MoS_2 ($\sim 10^{-5}$ K⁻¹). The spot exposed to the laser experiences a local increase in temperature. While heating or cooling, the local strain generated by the mismatch in the thermal expansion coefficient can be relieved by forming a swollen-up structure. In addition, the expansion of the gas trapped between the MoS_2 and the substrate may affect the formation of the swollen-up structure. The gap between the MoS₂ and the substrate change the diffraction of light, resulting in a change in the optical microscopy image.

Figure 2(a) presents the Raman spectrum of the swollen-up MoS₂ monolayer after 5-mW laser irradiation. We compare the Raman spectrum (red) to that of the pristine MoS₂ monolayer (black) measured before the irradiation. Raman spectra were obtained with the same confocal Raman measurement system, but with a laser power of 0.5 mW to avoid further structural deformation. For the pristine MoS_2 monolayer, two dominant Raman peaks are located each at ~ 386 and ~ 404 cm⁻¹ corresponding to the $E_{2\mathrm{g}}^1$ and the $A_{1\mathrm{g}}$ modes, respectively. $E_{2\mathrm{g}}^1$ is the in-plane vibration mode between a Mo atom and two S atoms, and A_{1g} is the out-of-plane vibration mode between S atoms [14]. The frequency difference between the E_{2g}^1 and the A_{1g} modes is generally used to determine the number of layers in MoS₂, and the observed value of $\sim 18~\rm cm^{-1}$ confirms that our MoS₂

Fig. 2. (Color online) (a) Raman spectrum of the swollenup MoS₂ monolayer (red) compared to that of pristine one (black). (b) Raman spectra of MoS₂ monolayer samples swollen up by using laser irradiation at various laser powers. The peak observed at ~ 227 cm⁻¹ is attributed to the structural disorder, produced by the swelling of MoS₂ sur-

300

Raman shift (cm⁻¹)

350

400

450

4 mW

3 mW pristine

250

200

flake is a monolayer [14,15]. After the laser irradiation, the E_{2g}^1 peak exhibits a red-shift by $\sim 0.6 \text{ cm}^{-1}$ and the A_{1g} peak a blue-shift by ~ 0.6 cm⁻¹, leading to a larger frequency difference, 19.2 cm⁻¹, between the two Raman modes. A red-shift of the E_{2g}^1 peak has been reported for MoS₂ under a uniaxial strain [8,16–19] and for MoS₂ subjected to defects [20,21]. One can first consider the effect of the strain generated in the swollen-up structure. According to previous studies [8, 16–19], the observed red-shift of E^1_{2g} peak ($\sim 0.6~{\rm cm}^{-1}$) requires a strain of ~ 1 %. However, this amount of strain is unlikely to exist in the swollen-up structure as the height-to-width ratio is $\sim 1/1000$.

Turning to the effect of disorder, we have investigated in Fig. 2(b) the Raman spectra of MoS₂ monolayer samples, swollen up by laser irradiation at different laser powers. With increasing laser power, we observed in the Raman spectra increases in full widths at half maximum

Fig. 3. (Color online) (a) Optical image of a CVD-grown MoS₂ monolayer. Black lines present periodic sweeping of a 5-mW laser at line intervals of 250 nm, imposing a periodic ripple structure inside a red dashed square. (b) Zoomed-in AFM image of the ripple-patterned MoS₂ monolayer. (c) AFM height profile along the black dotted line indicated in (b) shows in the monolayer a periodic modulation of the height due to the laser illumination. The lines irradiated by the laser swell up periodically from the substrate.

for the E_{2g}^1 and the A_{1g} peaks, together with a red-shift of the E_{2g}^1 peak and a blue-shift of the A_{1g} peak. In addition, a new Raman peak at $\sim 227 \text{ cm}^{-1}$ became prominent. These observations are in accord with previous reports on the effect of disorder on Raman scattering of a MoS₂ monolayer [20, 21]. Similar to the D peak in graphene, the $\sim 227 \text{-cm}^{-1}$ peak in MoS₂ is attributed to disorder-induced Raman scattering [20]. This suggests the role of structural disorder, generated by the swelling of the MoS₂ surface, in our Raman spectra. Partial oxidation of MoS₂ by laser irradiation can also result in the $\sim 227 \text{-cm}^{-1}$ peak [22,23]. However, the most prominent peak of MoO₃ at $\sim 820 \text{ cm}^{-1}$ was not seen in our Raman spectra (data not shown), ruling out the role of oxidation

To further exploit the swelling of the MoS₂ monolayer upon laser illumination, we employed this phenomenon to induce a structural deformation in a desired pattern. As shown in Fig. 3(a), we attempted a periodic line pattern. We swept a 5-mW laser beam in a line at a speed of 250 nm/s and then moved to the next lines at periodic intervals of 250 nm over the area of a red dashed square ($10 \times 10 \ \mu \text{m}^2$) on a CVD-grown MoS₂ monolayer. After the laser irradiation, one can already notice a line pattern in the optical contrast microscopy image. Figure 3(b) displays an AFM image of the line-patterned MoS₂ monolayer. The AFM height profile, taken perpen-

Fig. 4. (Color online) (a) AFM image of a part of the $\rm MoS_2$ monolayer after sweeping a laser beam of 6.5 mW at periodic line-intervals of 250 nm for an area of $10 \times 10~\mu \rm m^2$. (b) AFM height profile along the red dashed line indicated in (a). The area irradiated by laser swells up overall by ~ 1 nm, suggesting the importance of the proper choice of the laser power. (c) AFM image of ripple-patterned $\rm MoS_2$ monolayer with a ripple width of 500 nm for an area of $10 \times 10~\mu \rm m^2$. Here, the effective distance between the $\rm MoS_2$ and the substrate was as large as ~ 1 nm because of a wet-transfer process. (d) AFM height profile along the red dashed line indicated in (c). The areas irradiated by the laser sink periodically to reach the substrate at the designed intervals of 500 nm.

dicular to the sweeping lines of the laser beam, shows a periodic modulation of the height (\sim 0.5 nm) in the monolayer (Fig. 3(c)). Note that the lines irradiated by using a laser swell up periodically from the substrate with the designed intervals of 250 nm. The resulting structure has a similarity to the periodic ripple structure of a MoS₂ monolayer, thus opening a new possibility to control the ripple structure for strain and bandgap engineering [9, 10]. Also, our experiments demonstrate that one can use laser irradiation to draw desired patterns of structural deformation down to \sim 250 nm in an atomic layer of MoS₂.

The patterning of the periodic ripple structure is sensitive to various parameters, such as the laser power and the effective distance between the MoS_2 monolayer and the substrate. For example, we attempted ripple patterning in the same way as presented in Fig. 3, but changed the laser power from 5 to 6.5 mW. As shown in Fig. 4(a), the line patterns blurred in the AFM image. The AFM height profile along the red dashed line, perpendicular to the sweeping lines of laser irradiation, shows that the area irradiated by using the laser swells up overall by ~ 1 nm (Fig. 4(b)). Strong laser irradiation causes more heat to transfer to areas surrounding the beam spots, blurring the designed patterns. Also, for laser powers less than 4 mW, the ripple patterns became indistinct

as MoS_2 surface did not swell up enough. The proper choice of laser power is important for the patterning of a ripple structure in a MoS_2 monolayer.

On the other hand, the effective distance between the MoS_2 and the substrate plays a role in the patterning of a ripple structure. In Fig. 4(c), we show a MoS_2 monolayer that was transferred from the CVD-grown substrate to a new SiO₂ substrate by using a wet transfer technique [24]. After the wet-transfer, the effective distance between the MoS_2 and the substrate was as large as ~ 1 nm because of the moisture and some chemicals residing between them. When we conducted a periodic sweeping of a 5-mW laser beam at line-intervals of 500 nm for an area of $10 \times 10 \ \mu\text{m}^2$, the ripple-patterns appeared in the AFM image with designed intervals of 500 nm, as displayed in the Fig. 4(c). However, the AFM height profile along the red dashed line shows that the patterning worked in the opposite manner (Fig. 4(d)). We note the areas irradiated by using a laser sink periodically to reach the substrate with the designed intervals of 500 nm. Heat generated by the laser irradiation possibly removed the moisture and the chemicals underlying it, so the MoS₂ surface sinked accordingly. Optimization for the laser patterning and a systematic study of the effect of ripples on the properties of a MoS₂ monolayer are now under progress.

III. CONCLUSIONS

In summary, we studied the effect of laser irradiation on monolayer MoS₂ and reported structural deformation upon laser illumination. We demonstrated the patterning of periodic ripples in monolayer MoS₂ by using laser irradiation. The controlled fabrication of the ripple structure may be instrumental in understanding the effect of ripples on the physical properties of monolayer MoS₂. Furthermore, structure engineering by using laser irradiation might provide a useful tool with enhancing the performance of electronic and optoelectronic devices based on 2D atomic layers.

ACKNOWLEDGMENTS

This research was supported by the National Research Foundation of Korea (NRF-2015R1A2A2A01005135, NRF-2015R1A2A2A05050829) and the Ministry of Education of Korea (No. 2015R1D1A1A01058991).

REFERENCES

- A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli and F. Wang, Nano Lett. 10, 1271 (2010).
- [2] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giscometti and A. Kis, Nature Nanotech. 6, 147 (2011).
- [3] S. Ghatak, A. N. Pal and A. Ghosh, ACS Nano 5, 7707 (2011).
- [4] A. Kuc, N. Zibouche and T. Heine, Phys. Rev. B 83, 245213 (2011).
- [5] A. K. Geim and I. V. Grigorieva, Nature **499**, 419 (2013).
- [6] H. C. Kim et al., ACS Nano 9, 6854 (2015).
- [7] J. Brivio, D. T. L. Alexander and A. Kis, Nano Lett. 11, 5148 (2011).
- [8] A. Castellanos-Gomez et al., Nano Lett. 13, 5361 (2013).
- [9] J. Qi, X. Li, X. Qian and J. Feng, Appl. Phys. Lett. 102, 173112 (2013).
- [10] S. Luo, G. Hao, Y. Fan, L. Kou, C. He, X. Qi, C. Tang, J. Li, K. Huang and J. Zhong, Nanotechnology 26, 105705 (2015).
- [11] Y. Pan, M. Yang, Y. Li, Z. Wang, C. Zhang, Y. Zhao, J. Yao, Q. Wu and J. Xu, Sci. Rep. 6, 19571 (2016).
- [12] G. H. Han et al., ACS Nano 5, 263 (2011).
- [13] A. Castellanos-Gomez, M. Barkelid, A. M. Goossens, V. E. Calado, H. S. J. van der Zant and G. A. Steele, Nano. Lett. 12, 3187 (2012).
- [14] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone and S. Ryu, ACS Nano 4, 2695 (2010).
- [15] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012).
- [16] C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil and K. S. Novoselov, Phys. Rev. B 87, 081307 (2013).
- [17] C. R. Zhu et al., Phys. Rev. B 88, 121301 (2013).
- [18] Y. Wang, C. Cong, C. Qiu and T. Yu, Small 9, 2857 (2013).
- [19] H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, Jr, S. T. Pantelides and K. I. Bolotin, Nano Lett. 13, 3626 (2013).
- [20] S. Mignuzzi et al., Phys. Rev. B 91, 195411 (2015).
- [21] W. M. Parkin et al., ACS Nano 10, 4134 (2016).
- [22] B. C. Windom, W. G. Sawyer and D. W. Hahn, Tribol. Lett. 42, 301 (2011).
- [23] N. Kang, H. P. Paudel, M. N. Leuenberger, L. Tetard and S. I. Khondaker, J. Phys. Chem. C 118, 21258 (2014).
- [24] After spin coating PMMA on top of MoS₂, we etched the underlying $\rm SiO_2$ layer with a 4-M KOH solution to detach the PMMA-MoS₂ membrane. We transferred the membrane onto a new substrate, and removed the PMMA by using acetone.