Análise de Complexidade dos Algoritmos

Análise de algoritmos

Objetivos

- Provar que um algoritmo está correto
- Determinar os recursos exigidos pelo algoritmo (tempo, espaço, ...)
 - geralmente existem vários algoritmos para o mesmo problema
 - como escolher o "melhor"
 - comparar os recursos exigidos pelos diferentes algoritmos
 - um algoritmo mais eficiente exige menos recursos para resolver o mesmo problema
 - prever o crescimento dos recursos exigidos por um algoritmo, à medida que a quantidade de dados de entrada (tamanho de entrada) cresce (taxa de crescimento)

Tipos de análise

- Pormenorizada
 - mais exacta e direta, mas em geral menos útil
 - expressa em segundos
 - resultado da avaliação da eficiência (por ex: tempo gasto):
 - único
 - dependente da velocidade e características do processador
- Através de ordens de grandeza
 - ignora as constantes multiplicativas
 - é uma análise **assintótica** (ignora os valores pequenos, considera os valores grandes)
 - expressa em ordens de grandeza (ordens assintóticas)
 - resultado da avaliação da eficiência:
 - paramétrico (uma função da quantidade de dados de entrada)
 - independente da velocidade e características do processador

Recursos

- A eficiência de um algoritmo é medida pela quantidade de recursos gastos durante a sua execução, como função da quantidade de dados de entrada
- O que são recursos?
 - tempo de execução do algoritmo (o mais usual)
 - espaço de memória necessário para guardar os dados

Tempo de execução de um algoritmo, T(n)

- A quantidade de dados de entrada depende do problema
 - normalmente é um só número
 - em algoritmos que envolvem arrays de 1D (ordenação, pesquisa, ...), a quantidade de dados é o número de elementos do array
 - mas podem ser mais
 - em algoritmos que envolvem grafos (caminho mais curto, ..), a quantidade de dados é geralmente expresso por duas quantidades: o número de nós e o número de arcos (temática a estudar mais tarde)

Tempo de execução de um algoritmo, T(n)

- Normalmente, o tempo exato não é importante
- Normalmente, o tempo é medido pelo número de operações primitivas do algoritmo que são executadas
 - operações primitivas: atribuições, comparações, ...
 - cada operação do algoritmo requer tempo constante
 - independente da quantidade de dados
 - operações diferentes podem requerer tempos diferentes
 - chamadas de módulos (subprogramas/funções) também têm tempo constante
 - mas a execução do módulo (subprograma/função) poderá não ter

Ordem de crescimento

- O tempo de execução de um algoritmo é expresso como função da quantidade de dados de entrada do problema (em geral um número inteiro positivo)
- Para quantidades de dados elevadas, simplifica-se para se concentar no essencial
 - eliminam-se os termos de ordem inferior
 - ignoram-se as constantes multiplicativas, como o coeficiente do termo de ordem superior

- Exemplo

- tempo de execução: $T(n) = a \times n^2 + b \times n + c$
- eliminam-se os termos de ordem inferior ⇒ a × n²
- ignora-se o coeficiente do termo de ordem superior \Rightarrow n^2
- Aspeto importante
 - não se pode dizer que $T(n) = n^2$
 - mas pode-se dizer que T(n) "cresce" de modo proporcional a n2
- Diz-se que $T(n) = O(n^2)$ para capturar a noção de que a ordem de crescimento é proporcional a n^2 (chama-se a isto **análise assintótica**)

Análise assintótica

- Apenas a ordem de crescimento do tempo de execução é relevante
 - só se analisa o comportamento assintótico dos algoritmos:
 se o algoritmo A1 é assintoticamente melhor que o algoritmo A2, então
 A1 será melhor escolha do que A2, exceto para pequenas quantidades de dados
- Para valores enormes de **n**, as seguintes funções são da mesma ordem assintótica, por terem todas a mesma "taxa de crescimento" (são todas "equivalentes")
 - $-n^2$
 - $-1000 \times n^2$
 - $1/1000 \times n^2$
 - $n^2 + 100 \times n$
 - ...

Análise assintótica

- Uma função f é **assintoticamente não-negativa** se
 - \exists M : f(n) \geq 0, \forall n > M (para todo o **n** suficientemente grande)
- Dadas duas funções assintoticamente não-negativas, T e f, diz-se que T está na ordem \acute{O} de f e escreve-se T(n) = O(f(n)) se existem constantes c > 1 e m > 0 tais que $T(n) \le c \times f(n)$, $\forall n > m$

Complexidade dos Algoritmos

Trata da eficiência computacional dos algoritmos

- Complexidade temporal
 - exigências de tempo de processamento (tempo de execução)
- Complexidade espacial
 - exigências do espaço de armazenamento

Eficiência dos algoritmos

- A dimensão do problema será denotada por **n** (inteiro positivo)
- Na análise de um algoritmo
 - interessa o seu comportamento no caso geral, e não num caso específico
 - questão principal:
 - qual o desempenho do algoritmo à medida que **n** cresce e se torna muito elevado

Complexidade espacial de um algoritmo

- Espaço de memória necessário para executar até ao fim, S(n)
 - espaço de memória exigido em função da quantidade de dados de entrada n

Complexidade temporal de um algoritmo

- Tempo que demora a executar (tempo de processamento), **T(n)**
 - tempo de execução em função da quantidade de dados de entrada n

Complexidade vs. Eficiência

- À medida que a complexidade aumenta a eficiência diminui

Por vezes estima-se a complexidade para

- O "melhor caso" (pouco útil)
- O "pior caso" (mais útil)
- O "caso médio" (igualmente útil)

Complexidade temporal

Objetivo do estudo da complexidade

- Caracterizar o tempo de execução necessário para a resolução de um problema em função da quantidade de dados de entrada
 - interessa o caso mais difícil (a pior situação, o pior caso)
- Complexidade temporal, **T(n)**, significa que a computação de qualquer algoritmo de dimensão **n** pode ser completada em não mais de T(n) operações

Complexidade asintótica

- Normalmente diz-se que um algoritmo é mais eficiente do que outro, se o seu tempo de execução **no pior caso** tiver uma menor ordem de crescimento (menor complexidade assintótica)

Crescimento de funções

- Ter um modo de descrever a **escalabilidade** de algoritmos
- Exemplo
 - quando se duplica a quantidade de dados de entrada de um problema, o que é que acontece ao tempo de execução?
- Na prática, é difícil (ou mesmo impossível) prever com rigor o tempo de execução de um algoritmo
- Pretende-se obter o tempo de execução a menos de
 - constantes multiplicativas (são tempos de execução de operações primitivas)
 - parcelas menos significativas para valores grandes de n
- Para tal,
 - identificam-se as operações primitivas dominantes: mais frequentes ou mais demoradas
 - determina-se o número de vezes que são executadas
 - e não o tempo de cada execução, que seria uma constante multiplicativa
 - exprime-se o resultado com a notação de "O grande"

O tempo de execução em geral depende de um único parâmetro n

- Ordem de um polinómio
- Tamanho de um ficheiro a ser processado, ordenado, etc.
- Medida abstrata do tamanho do problema a considerar
 - normalmente relacionado com a quantidade de dados

Quando há mais do que um parâmetro

- Procura-se exprimir todos os parâmetros em função de um só
- Faz-se uma análise em separado para cada parâmetro

Notação de "O grande" (Big-O)

Definição

- T(n) = O(f(n)) (lê-se T(n) é de ordem f(n))
 - o tempo de execução T(n) de um algoritmo com \mathbf{n} dados de entrada é de ordem f(n) se existem constantes $\mathbf{c} > \mathbf{1}$ e $\mathbf{m} > \mathbf{0}$ tais que T(n) \leq c \times f(n), \forall n > m
 - ou seja, se um algoritmo é O(f(n)), então há um ponto \mathbf{m} a partir do qual o desempenho do algoritmo é limitado a um múltiplo de f(n)
 - f(n) é assintoticamente um limite superior para T(n), a menos de um fator constante
- Exemplos
 - 1) $3 \times n^2 = O(n^2)$
 - fazer c = 3 e m = 1: $3 \times n^2 \le 3 \times n^2$, $\forall n > 1$
 - 2) $3 \times n^2 = O(n^3)$
 - fazer c = 3 e m = 1: $3 \times n^2 \le 3 \times n^3$, $\forall n > 1$
 - 2) $1000 \times n^2 + 1000 \times n = O(n^2)$
 - fazer c = 1200 e m = 5: $1000 \times n^2 + 1000 \times n \le 1200 \times n^2$, $\forall n > 5$

Esta notação é usada com três objetivos

- Limitar o erro que é feito ao ignorar os termos de ordens menores nas fórmulas matemáticas
- Limitar o erro que é feito na análise ao desprezar parte do algoritmo que contribui de forma mínima para o tempo de execução (complexidade) total
- Permitir classificar algoritmos de acordo com limites superiores do seu tempo de execução

Ordens mais comuns

- 1: tempo de execução constante
 - muitas operações são executadas uma só vez ou poucas vezes
 - se isto acontece para todo o algoritmo, então o tempo de execução é constante
- log n: tempo de execução logarítmico
 - cresce ligeiramente à medida que **n** cresce:
 - quando **n** duplica, **log n** aumenta mas muito pouco
- **n**: tempo de execução linear
 - típico quando algum processamento é feito para cada dado de entrada
 - situação ótima quando é necessário
 - processar **n** dados de entrada, ou
 - produzir **n** dados na saída

Ordens mais comuns

- n log n:
 - típico quando
 - se reduz um problema em subproblemas
 - se resolvem estes separadamente
 - se combinam as soluções
- **n**²: tempo de execução quadrático
 - típico quando é necessário processar todos os pares de dados de entrada
 - prático apenas em pequenos problemas (ex: produto de vetores)
- **2**ⁿ: tempo de execução exponencial
 - provavelmente de pouca aplicação prática
- **n**³: tempo de execução cúbico
 - para n = 100, $n^3 = 1.000.000$ (ex: produto de matrizes)

Ordens mais comuns

Consequências da definição

- $O(n^3) + O(n^2) = O(n^3)$
- $O(n^2) + O(n) = O(n^2)$
- $O(\Sigma_{k=1,...,p} a_k n^k) = O(n^p)$
- O(1) indica um trecho de algoritmo com tempo constante

Exemplos genéricos

```
c_k n^k + c_{k-1} n^{k-1} + ... + c_0 = O(n^k)

(c_i - constantes)

log_2 n = O(log n)

(n\~ao se indica a base porque mudar de base é multiplicar por uma constante)

(mudança de base: log_a x = log_b x / log_b a)

4 = O(1)

(usa-se 1 para ordem constante)
```

Metodologia para determinar a ordem de complexidade

Exemplo 1

- Considere-se a seguinte função em C (calcula a soma dos elementos dum array 1D)

```
int somaArray (int *A, int N)
{
   int k, soma;
   soma = 0;
   k = 0;
   while (k < N) {
      soma = soma + A[k];
      k = k + 1;
   }
   return soma;
}</pre>
```

- Pior caso
 - não existe, pois todos os elementos do array têm de ser tratados (analisados)

- Contabilização do número de vezes que as operações primitivas são executadas

k	soma = 0	k = 0	k < N	soma = soma + A[k]	k = k + 1
0	1	1	1 (V)	1	1
1	0	0	1 (V)	1	1
2	0	0	1 (V)	1	1
			•••		
N - 2	0	0	1 (V)	1	1
N - 1	0	0	1 (V)	1	1
N	0	0	1 (F)	0	0
	1	1	N + 1	N	N

-
$$T(N)$$
: 1 + 1 + $(N + 1)$ + $N + N = 3 \times N + 3$

T(N) = O(p(N)), em que p(N) é um polinómio de grau 1 em ordem a N

- Ordem de complexidade: **O(N)**

- Operação primitiva dominante (mais vezes executada): k < N
- Contabilização do número de vezes que a operação dominante é executada

	k	k < N
0	(k = 0)	1 (V)
1	(k = k+1)	1 (V)
2	(k = k+1)	1 (V)
N - 1	(k = k+1)	1 (V)
N	(k = k+1)	1 (F)
		N + 1

- T(N): N + 1

T(N) = O(p(N)), em que p(N) é um polinómio de grau 1 em ordem a N

- Ordem de complexidade: O(N)

- Ordens de complexidade determinadas
 - contabilizando todas as operações: O(N)
 - contabilizando a operação dominante: O(N)
- Conclusão
 - o número de vezes que as operações que estão dentro do ciclo são realizadas não tem impacto no cálculo da ordem de complexidade
 - basta considerar a operação dominante, caso esta seja fácil de determinar

- Considere-se a seguinte função em C (determinar o maior elemento dum array 1D)

```
int maiorElementoArray (int *A, int N)
 int k, maior;
 maior = A[0];
 k = 1;
 while (k < N) {
    if (A[k] > maior)
       maior = A[k];
    k = k + 1;
 return maior;
```

- Contabilização do número de vezes que as operações primitivas são executadas
 - Pior caso:
 - para a operação "maior = A[k]" ser executada o máximo de vezes, o array deve estar ordenado por ordem crescente
 - as restantes operação são sempre executadas o máximo de vezes

k	maior = A[0]	k = 1	k < N	A[k] > maior	maior = A[k]	k = k + 1
1	1	1	1 (V)	1	1	1
2	0	0	1 (V)	1	1	1
3	0	0	1 (V)	1	1	1
N - 1	0	0	1 (V)	1	1	1
N	0	0	1 (F)	0	0	0
	1	1	N + 1	N	N	N

- Contabilização do número de vezes que as operações primitivas são executadas
 - T(N): 1 + 1 + (N + 1) + $N + N + N = 4 \times N + 3$ T(N) = O(p(N)), em que p(N) é um polinómio de grau 1 em ordem a N
- Ordem de complexidade: **O(N)**
- Questão:
 - Como se define o melhor caso e o caso médio?

- Operação primitiva dominante (mais vezes executada): k < N
- Contabilização do número de vezes que a operação dominante é executada
 - Pior caso: não existe, pois esta operação é sempre executada o máximo de vezes

k	k < N
1 (k = 1)	1 (V)
2 (k = k+1)	1 (V)
3 (k = k+1)	1 (V)
N - 1 (k ← k+1)	1 (V)
N (k ← k+1)	1 (F)
	N

- T(N): N

T(N) = O(p(N)), em que p(N) é um polinómio de grau 1 em ordem a N

- Ordem de complexidade: O(N)

- Considere-se a seguinte função em C (calcula a soma dos elementos dum array 2D)

```
int somaMatriz (int X[][], int M, int N)
{
   int k, soma;
   soma = 0;
   for (k = 0; k < M; k++)
        for (j = 0; j < N; j++){
        soma = soma + V[k][j];
      }
   return soma;
}</pre>
```

- Pior caso
 - não existe, pois todos os elementos do array têm que ser tratados (ou analisados)

- Operação primitiva dominante (mais vezes executada): j < N
- Contabilização do número de vezes que a operação dominante é executada

k	k < M	j	j < N
0 (k = 0)	1 (V)	0 (j = 0)	1(V)
		1 $(j = j+1)$	1(V)
		N - 1 (j = j+1)	1(V)
		N $(j = j+1)$	1(F)
	1		N + 1
1 (k = k+1)	1 (V)	0 (j = 0)	1(V)
		1 $(j = j+1)$	1(V)
		N - 1 (j = j+1)	1(V)
		n (j = j+1)	1(F)
	1		N + 1

- Contabilização do número de vezes que a operação dominante é executada

k	k < M	j	j < N
•••		***	
M - 1 (k = k+1)	1 (V)	0 (j = 0)	1(V)
		1 $(j = j+1)$	1(V)
		•••	
		n - 1 (j = j+1)	1(V)
		n (j = j+1)	1(F)
	1		N + 1
M (k = k+1)	1 (F)	-	-
	M + 1		total

- Contabilização do número de vezes que a operação dominante é executada
 - resultados da simulação:

$$\begin{array}{lll} - \ k = 0 & \Rightarrow & N+1 \\ - \ k = 1 & \Rightarrow & N+1 \\ & \dots & \\ - \ k = M-1 & \Rightarrow & N+1 \\ - \ k = M & \Rightarrow & 0 \end{array}$$

- total: $M \times (N + 1) = M \times N + M$
- fazendo $\mathbf{M} = \mathbf{a} \times \mathbf{N}$, em que \mathbf{a} é uma constante
- T(N): $M \times N + M = a \times N \times N + a \times N = a \times N^2 + a \times N$ T(N) = O(p₂(N)), em que p₂(N) é um polinómio de grau 2 em ordem a N
- Ordem de complexidade: O(N²)

- Considere-se a seguinte função em C (pesquisa de um elemento num array 1D)

```
int pesquisaExaustiva (int E, int *A, int N)
 int k;
 k = 0;
 while (k < N \& A[k] != E) {
    k = k + 1;
 if (k == N)
    return -1;
 else
    return k;
```

- Operação dominante: ?
- Pior caso, melhor caso e caso médio: ?

- Operação primitiva dominante (mais vezes executada): k < N && A[k]!= E
- Contabilização do número de vezes que a operação dominante é executada
 - Pior caso: o elemento E não está no array A

k	k < N && A[k] != E
0 (k = 0)	1 (V)
1 (k = k+1)	1 (V)
2 (k = k+1)	1 (V)
N - 1 (k ← k+1)	1 (V)
N (k ← k+1)	1 (F)
	N

- T(N): N; T(N) = O(p(N)), em que p(N) é um polinómio de grau 1 em ordem a N
- Ordem de complexidade: O(N)