JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

COMPUTER ORGANIZATION AND ARCHITECTURE LAB PROJECT REPORT

18B17CI574

SUBMITTED BY:

SANSKAR PANDEY	221030358
ADARSH TIWARI	221030378
NAZMA SULTANA	221030402

BCD to 7-Segment Conversion

1. Objective

The objective of this project is to design and implement a BCD (Binary-Coded Decimal) to 7-segment converter using Logisim. This project demonstrates the principles of digital logic design and highlights the practical applications of BCD-to-7-segment conversion in digital systems.

2. Theory

BCD

Binary-Coded Decimal (BCD) is a binary encoding of decimal numbers where each decimal digit is represented by its own binary sequence. For example, the decimal number 9 is represented as 1001 in BCD. This encoding is commonly used in systems where numerical data must be displayed in human-readable form, such as calculators and digital clocks.

7-Segment Display

A 7-segment display is an electronic display device used to represent decimal numbers. It consists of seven LEDs (segments) arranged in the shape of the digit '8'. Each segment

Decimal	Input lines			Output lines					Display			
Digit	A	В	C	D	a	b	C	d	е	f	g	pattern
0	0	0	0	0	1	1	1	1	1	1	0	8
1	0	0	0	1	0	1	1	0	0	0	0	8
2	0	0	1	0	1	1	0	1	1	0	1	8
3	0	0	1	1	1	1	1	1	0	0	1	В
4	0	1	0	0	0	1	1	0	0	1	1	8
5	0	1	0	1	1	0	1	1	0	1	1	8
6	0	1	1	0	1	0	1	1	1	1	1	8
7	0	1	1	1	1	1	1	0	0	0	0	8
8	1	0	0	0	1	1	1	1	1	1	1	8
9	1	0	0	1	1	1	1	1	0	1	1	8

can be lit individually to display numbers from 0 to 9. This display is widely used in digital clocks, calculators, and other embedded systems.

BCD to 7-Segment Conversion

The BCD to 7-segment conversion involves mapping the 4-bit BCD input to the corresponding 7-segment output. Each segment of the display (a, b, c, d, e, f, g) is controlled by a combinational logic circuit. The circuit is designed using a truth table that defines the segments to be activated for each decimal digit.

3. Circuit Diagram

The circuit diagram for the BCD-to-7-segment converter demonstrates the logic required to drive the display.

In BCD to 7 segment LED, the 7 segment LED can be thought of as floors indicator in elevators. All 7 segments are named as a,b,c,d,e.f,g, which are marked as 0 or 1 for particular 0-9 decimals. e.g., for 7 a,b,c are turned on because a is for upper segment, b is for upper right, and c is for bottom right, if these are turned on you would see a 7 on a LED.

4. Importance and Applications

Importance of BCD to 7-Segment Converter

The BCD to 7-segment converter is a critical component in digital systems where human-readable numeric data needs to be displayed. It simplifies the process of converting machine-readable binary data into a format that is easily interpreted by humans. This is particularly important in embedded systems, consumer electronics, and industrial applications.

Applications of BCD to 7-Segment Converter

- Digital clocks and watches
- Calculators
- Digital meters (voltage, current, etc.)
- Embedded systems
- Automotive dashboards
- Industrial control panels

5. Conclusion

In conclusion, the BCD to 7-segment converter is an essential digital logic component that bridges the gap between machine-readable data and human-readable displays. Its widespread applications in everyday devices such as calculators, clocks, and meters highlight its importance in modern electronics and embedded systems.