Reg no-1081 Name-Rishitha Bandi Date-12/10/2022

import pandas as pd
import numpy as np

data =pd.read_csv("/content/Enrollments_28092022.csv")
data

	StudentNo	DEGREE	INTERMEDIATE	SSC	INTERNSHIP
0	1001	8.10	76.0	92.0	Data Science
1	1002	8.10	76.0	92.0	MEAN Stack Web Development
2	1003	7.80	94.6	92.0	MEAN Stack Web Development
3	1004	9.03	89.5	89.0	Data Science
4	1005	8.38	87.0	90.0	MEAN Stack Web Development
292	2188	8.70	94.1	93.0	Data Science
293	2189	8.45	90.0	93.0	Data Science
294	2190	8.40	94.9	98.0	Data Science
295	2191	7.06	90.6	88.0	Cloud Computing Services (AWS)
296	2192	7.50	95.5	95.0	Cloud Computing Services (AWS)

297 rows × 5 columns

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 297 entries, 0 to 296
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	StudentNo	297 non-null	int64
1	DEGREE	297 non-null	float64
2	INTERMEDIATE	297 non-null	float64
3	SSC	297 non-null	float64
4	INTERNSHIP	297 non-null	object

dtypes: float64(3), int64(1), object(1)

memory usage: 11.7+ KB

rows=len(data)

```
print("no.of rows:",rows)
    no.of rows: 297

cols=len(data.axes[1])
print("no.of columns:",str(cols))
    no.of columns: 5
```

import matplotlib.pyplot as plt
import statistics as stat

plt.hist(data["DEGREE"])
plt.show()

plt.hist(data["INTERMEDIATE"])
plt.show()

plt.hist(data["SSC"])
plt.show()

data["INTERNSHIP"].value_counts()

Data Science	156			
Cloud Computing Services (AWS)	90			
MEAN Stack Web Development				
Name: INTERNSHIP, dtvpe: int64				

courses=["Data Science","Cloud Computing Services(AWS)","Mean Stack Web Development"]
students=[156,90,51]
plt.pie(students,labels=courses,autopct="%1.2f%%")
plt.show()

#Degree

```
print("Mean=",np.mean(data["DEGREE"]))
print("Median=",np.median(data["DEGREE"]))
print("Mode=",stat.mode(data["DEGREE"]))
```

Mean= 7.928080808080809

Median= 8.0 Mode= 7.0

#Intermediate

```
print("Mean=",np.mean(data["INTERMEDIATE"]))
print("Median=",np.median(data["INTERMEDIATE"]))
print("Mode=",stat.mode(data["INTERMEDIATE"]))
     Mean= 88.662626262626
     Median= 90.8
     Mode= 95.0
#10th class
print("Mean=",np.mean(data["SSC"]))
print("Median=",np.median(data["SSC"]))
print("Mode=",stat.mode(data["SSC"]))
     Mean= 88.10673400673402
     Median= 90.0
     Mode= 95.0
df = lambda x:np.std(x, ddof=1)/np.mean(x)*100
#Degree
print("Range=",max(data["DEGREE"])-min(data["DEGREE"]))
print("co-effecient of variations =",df(data["DEGREE"]))
data["DEGREE"].describe()
     Range= 3.729999999999995
     co-effecient of variations = 9.90881225818308
              297.000000
     count
                7.928081
     mean
     std
                0.785579
                5.800000
     min
     25%
                7.400000
     50%
                8.000000
     75%
                8.560000
     max
                9.530000
     Name: DEGREE, dtype: float64
#Intermediate
print("Range=",max(data["INTERMEDIATE"])-min(data["INTERMEDIATE"]))
print("co-effecient of variations=",df(data["INTERMEDIATE"]))
data["INTERMEDIATE"].describe()
     Range= 34.400000000000006
     co-effecient of variations= 8.29631726338337
     count
              297.000000
     mean
               88.662626
     std
               7.355733
               65.000000
     min
     25%
               83.000000
     50%
               90.800000
     75%
               94.600000
```

max

99,400000

Name: INTERMEDIATE, dtype: float64

```
#10th class
print("Range=",max(data["SSC"])-min(data["SSC"]))
print("co-effecient of variation=",df(data["SSC"]))
data["SSC"].describe()
     Range= 60.6
     co-effecient of variation= 10.24664491920062
     count
              297.000000
               88.106734
     mean
     std
               9.027984
     min
               38.400000
     25%
               85.000000
     50%
               90.000000
     75%
               95.000000
               99.000000
     max
     Name: SSC, dtype: float64
def outlier(a):
  q1 = np.quantile(a, 0.25)
  q3 = np.quantile(a, 0.75)
  med = np.median(a)
  iqr = q3-q1
  upper bound = q3+(1.5*iqr)
  lower_bound = q1-(1.5*iqr)
  print(iqr,upper bound,lower bound)
  print("Inter-Quartile Range:",iqr)
  outliers = a[(a<=lower_bound) | (a>=upper_bound)]
  print("The following are the outliers in the boxplot:\n{}".format(outliers))
#Degree
outlier(data["DEGREE"])
     1.1600000000000001 10.3 5.66
     Inter-Quartile Range: 1.16000000000000001
     The following are the outliers in the boxplot:
     Series([], Name: DEGREE, dtype: float64)
#Intermediate
outlier(data["INTERMEDIATE"])
     11.599999999999 111.9999999999 65.60000000000001
     Inter-Quartile Range: 11.59999999999994
     The following are the outliers in the boxplot:
     271
            65.0
     Name: INTERMEDIATE, dtype: float64
```

```
#10th class
outlier(data["SSC"])
     10.0 110.0 70.0
     Inter-Quartile Range: 10.0
     The following are the outliers in the boxplot:
     7
            70.0
     31
            60.0
     51
            68.0
     69
            60.0
     82
            65.6
     86
            50.0
     107
            64.0
     236
            38.4
     237
            67.0
     243
            40.2
     270
            65.0
     288
            65.0
     Name: SSC, dtype: float64
import scipy.stats as stats
print("Standard Scores of Degree:")
print(stats.zscore(data["DEGREE"]))
     Standard Scores of Degree:
            0.219213
     1
            0.219213
     2
           -0.163315
     3
            1.405052
     4
            0.576240
              . . .
     292
            0.984271
     293
            0.665497
     294
            0.601742
     295
           -1.106886
     296
           -0.545844
     Name: DEGREE, Length: 297, dtype: float64
print("Standard Scores of Intermediate:")
print(stats.zscore(data["INTERMEDIATE"]))
     Standard Scores of Intermediate:
           -1.724369
     1
           -1.724369
     2
            0.808539
     3
            0.114032
           -0.226413
              . . .
     292
            0.740450
     293
            0.182121
```

```
294 0.849392295 0.263827296 0.931099
```

Name: INTERMEDIATE, Length: 297, dtype: float64

print("Standard Scores of 10th class:")
print(stats.zscore(data["SSC"]))

Standard Scores of 10th class:

```
0.431972
1
       0.431972
2
       0.431972
3
       0.099111
       0.210065
292
       0.542926
293
       0.542926
294
       1.097694
295
      -0.011843
```

Name: SSC, Length: 297, dtype: float64

```
plt.boxplot(data["DEGREE"])
plt.show()
```

0.764833

296


```
plt.boxplot(data["INTERMEDIATE"])
plt.show()
```

#10th Class

func(data['SSC'])

```
100
       95
       90
plt.boxplot(data["SSC"])
plt.show()
      100
       90
       80
       70
       60
       50
       40
                                8
def func(b):
  q9 = np.quantile(b,0.9)
  li=b[b==q9]
  print("No.of students with 90% percentile:",li.count())
#Degree
func(data['DEGREE'])
     No.of students with 90% percentile: 3
#Intermediate
func(data['INTERMEDIATE'])
     No.of students with 90% percentile: 3
```

No.of students with 90% percentile: 19

Colab paid products - Cancel contracts here

✓ 0s completed at 7:27 PM

×