Domácí úkol 4

Diskriminační analýza

Marie Melínová

Zadání úkolu č. 4 je jednoduché. V datovém souboru máme obvody břicha, předloktí a kolene u mužů a žen. Úkolem je pak tedy zjistit, jestli na základě těchto rozměrů lze určit, které z nezařazených osob jsou ženy a které muži.

Data si klasicky načteme funkcí read.spss() a pro přehlednost přejmenujeme jednotlivé proměnné. Pak si vytvoříme tři samostnatné datasety - jeden, kde jsou údaje pouze za muže, druhý, kde jsou údaje jen za ženy a třetí, který obsahuje 10 nezařazených lidí, které se budeme snažit zařadit.

```
library(foreign)
data = read.spss("du4_9.sav", to.data.frame = TRUE)

colnames(data) <- c("ID", "oBRICHO", "oPREDLOKTI", "oKOLENE", "POHLAVI")
levels(data$POHLAVI) <- c("2", "0", "1") #0 -> muž, 1 -> žena, 2 -> nezařazeno

muzi <- data[data$POHLAVI == 0, 2:4]
zeny <- data[data$POHLAVI == 1, 2:4]
nez <- data[data$POHLAVI == 2, 2:4]</pre>
```

Průzkum dat z hlediska předpokladů a použitelnosti diskriminační analýzy

Před použitím diskriminační analýzy se musíme podívat, zda-li jsou data pro použití této metody vhodná. Jako první se ujistíme, že všechny řádky matice jsou "plné" - čili, že v datasetech nejsou chybějící hodnoty. Následně se alespoň okrajově ujistíme, že hodnoty u každé kategorie pochází z normálního rozdělení.

```
# kontrola, jestli se v jednotlivých datasetech nenachází chybějící hodnoty c(sum(is.na(muzi)), sum(is.na(zeny)), sum(is.na(nez)))
```

```
## [1] 0 0 0
```

Díky této kontrole si nyní můžeme být jistí, že pro diskriminační analýzu můžeme využít všechny řádky, protože ani v jednom není žádná chybějící hodnota.

Obvod bricha

Obvod predloktí

Obvod kolene

Již na první pohled si můžeme všimnout, že proměnná Obvod předloktí má bimodální rozdělení, proto si tuto proměnnou necháme vykreslit zvlášť pro ženy a zvlášť pro muže.

Obvod predloktí M

Obvod predloktí Z

Na základě vykreslení této proměnné by se dalo říci, že rozměr předloktí odlišuje ženy a muže nejlépe. Dle grafické analýzy bychom o ostatních proměnných mohli tvrdit, že ačkoli jsou lehce sešikmené, přibližně se řídí normálním rozdělením.

Model diskriminační analýzy

Než přejdeme k vytvoření modelu pro zařazení pohlaví nezařazeným osobám, provedeme na modelu křížovou validaci. Následně pak vytvoříme predikci jednotlivých nezařazených osob.

```
library(MASS)
krizova_validace <- function(data, K = 10) {</pre>
    n <- nrow(data)</pre>
    folds <- cut(seq(1, n), breaks = K, labels = F)</pre>
    errors <- numeric(K)</pre>
    for (i in 1:K) {
         test indices <- which(folds == 1)
        train_data <- data[-test_indices, ]</pre>
         test_data <- data[test_indices, ]</pre>
         modelLDA <- lda(POHLAVI ~ ., data = train_data)</pre>
        predicted <- predict(modelLDA, newdata = test_data)</pre>
         errors[i] <- mean(predicted$class != test_data$POHLAVI)</pre>
    }
    return(mean(errors))
}
data_train <- data[data$POHLAVI != 2, 2:5]</pre>
data_train$POHLAVI <- (as.numeric(data_train$POHLAVI) - 2)</pre>
kv <- krizova_validace(data_train)</pre>
kv
```

[1] 0.16

Hodnota křížové validace je 0.16 a znamená, že průměrná chyba klasifikace modelu při použití křížové validace je 16 %. Tato hodnota představuje průměrný podíl špatných klasifikací v rámci jednotlivých testovacích sad.

Nyní přejdeme k definovaní samotného modelu a predikce.

```
data_test <- data[data$POHLAVI == 2, 2:4]

model <- lda(POHLAVI ~ ., data = data_train)
predictions <- model |>
    predict(data_test)
predictions$class
```

```
## [1] 0 0 1 0 1 1 0 1 1 0
## Levels: 0 1
```

Model diskriminační analýzy zařadí nezařazené osoby $\check{\mathbf{c}}$. 1, 2, 4, 7, 10 jako muže a nezařazené osoby $\check{\mathbf{c}}$. 3, 5, 6, 8, 9 jako ženy.

Toto rozřazení si ještě zkusíme vykreslit pomocí grafu. Na hodnotě y = 0 se nachází muži z trénovací množiny (modrá barva), na hodnotě y = 1 se nachází ženy z trénovací množiny (červená barva) a na hodnotě y = 2 se nachází muži a ženy z testovací množiny, neboli lidé, u kterých jsme zjišťovali zařazení pomocí modelu 1da (rozřazení podle barev na muže a ženy).

```
ldaData_train <- as.data.frame(matrix(ncol = 0, nrow = 496))</pre>
ldaData_train$POHLAVI <- c(data_train$POHLAVI)</pre>
ldaData_train$LDA <- c(predict(model)$x)</pre>
ldaData_test <- as.data.frame(matrix(ncol = 0, nrow = 10))</pre>
ldaData_test$POHLAVI <- (as.numeric(predictions$class) - 1)</pre>
ldaData_test$LDA <- predictions$x</pre>
plot(x = ldaData_train[ldaData_train$POHLAVI == 0, ]$LDA, y = rep(0,
    nrow(ldaData_train[ldaData_train$POHLAVI == 0, ])), ylim = c(-5,
    8), xlim = c(min(ldaData_train$LDA), max(ldaData_train$LDA)),
    col = "blue", ylab = "", xlab = "")
points(x = ldaData_train[ldaData_train$POHLAVI == 1, ]$LDA, y = rep(1,
    nrow(ldaData_train[ldaData_train$POHLAVI == 1, ])), col = "red")
points(x = ldaData test[ldaData test$POHLAVI == 0, ]$LDA, y = rep(2,
    nrow(ldaData_test[ldaData_test$POHLAVI == 0, ])), col = "blue")
points(x = ldaData_test[ldaData_test$POHLAVI == 1, ]$LDA, y = rep(2,
    nrow(ldaData_test[ldaData_test$POHLAVI == 1, ])), col = "red")
```

