

Computer Vision

Exercise Session 10 – Image Categorization

Object Categorization

- Task Description
 - "Given a small number of training images of a category, recognize a-priori unknown instances of that category and assign the correct category label."
 - How to recognize ANY car

Object Categorization

Two main tasks:

- Classification
- Detection

- Classification
 - Is there a car in the image?
 - Binary answer is enough

Detection

- Where is the car?
- Need localization e.g. a bounding box

Bag of Visual Words

Object Bag of 'words'

Bag of Visual Words

BoW for Image Classification

{face, flowers, building}

Works pretty well for whole-image classification

BoW for Image Classification

Dataset

- Training set
 - 50 images CAR back view
 - 50 images NO CAR

- Testing set
 - 49 images CAR back view
 - 50 images NO CAR

Feature Extraction

- Feature detection
 - For object classification, dense sampling offers better coverage.
 - Extract interest points on a grid

- Feature description
 - Histogram of oriented gradients (HOG) descriptor

Codebook Construction

- Map high-dimensional descriptors to words by quantizing the feature space
- Quantize via clustering K-means
- Let cluster centers be the prototype "visual words"

Codebook Construction

 Example: each group of patches belongs to the same visual word

Ideally: an object part = a visual word

Codebook Construction

- K-means
 - Initialize K clusters centers randomly
 - 2. Repeat for a number of iterations:
 - a. Assign each point to the closest cluster center
 - Update the position of each cluster center to the mean of its assigned points

BoW Image Representation

Histogram of visual words

image

BoW image representation

visual words

BoW Image Classification

- Nearest Neighbor Classification
- Bayesian Classification

Nearest Neighbor Classifier

Training:

Training images i -> BoW image representation y_i
 with binary label c_i

Testing:

- Test image -> BoW image representation x
- Find training image j with y_i closest to x
- Classifier test image with binary label c_j

- Probabilistic classification scheme based on Bayes' theorem
- Classify a test image based on the posterior probabilities

- Test image -> BoW image representation
- Compute the posterior probabilities

$$P(Car|hist) = \frac{P(hist|Car) \cdot P(Car)}{P(hist)}$$

$$P(!Car|hist) = \frac{P(hist|!Car) \cdot P(!Car)}{P(hist)}$$

Classification rule

$$P(Car|hist) > P(!Car|hist) => Car$$

 $P(Car|hist) <= P(!Car|hist) => !Car$

In this assignment consider equal priors

$$P(Car) = P(!Car) = 0.5$$

- Notice that the posterior probabilities have the same denominator normalization factor P(hist)
- Classification rule

$$P(hist|Car) > P(hist|!Car) => Car$$

$$P(hist|Car) \le P(hist|!Car) = > !Car$$

How to compute the likelihoods?

the codebook

Each BoW image representation is a K-dimensional vector

hist =
$$\begin{bmatrix} 2 & 3 & 0 & 0 & 0 & ... & 1 & 0 \end{bmatrix}$$

Number of

Counts for the

 $\begin{bmatrix} 2^{nd} \text{ visual word} \end{bmatrix}$

Number of

Number of

Counts for the K-

th visual word in

in the codebook

 Consider the number of counts for each visual word a random variable with normal distribution

$$counts(i) \leadsto \mathcal{N}(\mu(i), \sigma(i))$$

Warning: this is a very non-principled approximation as *counts(i)* is discrete and non-negative!

For positive training images estimate:

$$\mathcal{N}(\mu_p(i), \sigma_p(i))$$

For negative training images estimate:

$$\mathcal{N}(\mu_n(i), \sigma_n(i))$$

- BoW test image representation= [U₁ U₂ ... U_K]
- Probability of observing U_i counts for the ith visual word
 - in a car image $P(U_i|\mathcal{N}(\mu_p(i),\sigma_p(i)))$
 - In a !car image $P(U_i|\mathcal{N}(\mu_n(i),\sigma_n(i)))$

Using independence assumption:

$$P(hist|Car) = \prod_{i=1}^{K} P(U_i|\mathcal{N}(\mu_p(i), \sigma_p(i)))$$

$$P(hist|!Car) = \prod_{i=1}^{K} P(U_i|\mathcal{N}(\mu_n(i), \sigma_n(i)))$$

Numerical stability – use logarithm

$$log(\prod_{i=1}^{K} p_i) = \sum_{i=1}^{K} log(p_i)$$

Now we have the likelihoods

Hand-in

- Report should include:
 - Your classification performance
 - Nearest neighbor classifier
 - Bayesian classifier
 - Variation of classification performance with K
 - Your description of the method and discussion of your results
- Source code
- Try on your own dataset (for bonus marks!)

Hand-in

By 1pm on Friday 15th December 2017 krishna.chaitanya@vision.ee.ethz.ch

