

TRIGONOMETRÍA

Tema:

ÁNGULOS EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS EN EL PLANO CARTESIANO

Definición

P(x; y)

El ángulo en posición normal, es aquel ángulo trigonométrico que tiene su lado inicial sobre el eje positivo de las abscisas, vértice en el origen de coordenadas y lado final en cualquier parte del plano cartesiano.

Ordenada $sen \alpha = \frac{}{radio \ vector}$ Abscisa $\cos \alpha =$ radio vector Ordenada $\tan \alpha = -$ Abscisa $\cot \alpha = \frac{Abscisa}{Ordenada} = \frac{x}{y}$

Ejemplo

Del grafico halle el valor de $m{n}$

X

$$\sec \alpha = \frac{\text{radio vector}}{\text{Abscisa}} = \frac{r}{x}$$

 $\csc \alpha =$

Donde

$$\frac{\text{radio vector}}{\text{Ordenada}} = \frac{\mathbf{r}}{\mathbf{y}}$$

Veamos
Por definición:
$$\cot \theta = \frac{n+1}{-1} = \frac{-3}{-3}$$

$$r = \sqrt{x^2 + y^2}$$
 Luego: $n + 1 = -1$

$$\therefore n = -2$$

Vértice

Signos de las razones trigonométricas en cada cuadrante

Sea α un ángulo en posición normal con lado final en algún cuadrante. Entonces considerando las coordenadas de un punto en el lado final, observaremos que las razones trigonométricas pueden ser positivas o negativas. Se muestra el siguiente cuadro de signos de las razones trigonométricas.

Cuadrante	Razones trigonométricas positivas	Razones trigonométricas negativas		
IC	Todas las Razones trigonométricas	Ninguna		
IIC	$\operatorname{sen} \alpha \ y \operatorname{csc} \alpha$	$\tan \alpha$, $\cot \alpha$, $\cos \alpha$, $\sec \alpha$		
IIIC	$\tan \alpha \ y \cot \alpha$	$\operatorname{sen} \alpha$, $\operatorname{csc} \alpha$, $\operatorname{cos} \alpha$, $\operatorname{sec} \alpha$		
IVC	$\cos \alpha \ y \sec \alpha$	$\operatorname{sen} \alpha$, $\operatorname{csc} \alpha$, $\operatorname{tan} \alpha$, $\cot \alpha$		

Aplicación

Si $\tan \theta > 0$ y $\cos \theta < 0$, determine el signo de las siguientes expresiones

$$N = \cot\theta - \csc\theta$$

$$M = \cos^3\theta + \sin\theta$$

Veamos

$$\tan \theta > 0$$
(I)

$$\cos \theta < 0$$
(II)

De (I) y (II):
$$\theta \in IIIC$$
.

$$\square$$
 N= cot θ - csc θ

$$N = (+) - (-) = (+) + (+)$$

$$N=(+)$$

$$M = (-)^{3} + (-)$$

$$M = (-) + (-)$$

$$M = (-)$$

 \square M = $cos^3\theta + sen\theta$

Razones trigonométricas de ángulos cuadrantales

Sea α un ángulo en posición normal con lado final en algún semieje del plano cartesiano, **(ángulo cuadrantal)**. La medida de α se determina por

$$\alpha = 90^{\circ}k \vee \alpha = \frac{\pi k}{2} \text{rad}$$

Ejemplos

$$\alpha = 0, 90, 180, 270, \dots$$

Para el cálculo de las razones trigonométricas de 90°, dibujamos en el plano cartesiano y asumimos un punto "P" a una distancia 2 del origen de coordenadas, tal como se

muestra en la figura

90°

$$\cos 90^\circ = \frac{x}{r} = \frac{0}{2} = 0$$

$$\tan 90^{\circ} = \frac{y}{x} = \frac{2}{0} = No \ definido(ND)$$

Si repetimos el proceso para los diferentes ángulos cuadrantales obtendremos el siguiente cuadro:

	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

INTENSIVO UNI Resolución **UNI 2017 I** $\alpha ; \beta \in \{90^{\circ}, 180^{\circ}; 270^{\circ}\}$ En el gráfico mostrado si *AB* || CD, entonces el valor de tan θ **Aplicación UNI** $cos^2\alpha - sen\beta = 2$ $cos^2\alpha = 2 + sen\beta \dots \dots \dots (I)$ es Si α y β son ángulos Por ser α ángulo cuadrantal, tenemos los cuadrantales, positivos y casos siguientes: A(0; -4)menores que una vuelta, \square Si $\alpha = 90^{\circ}$ ó $270^{\circ} \Rightarrow \cos \alpha = 0$ que cumplen $\cos^2 \alpha$ – Remplazando (I): $0 = 2 + \sin\beta$ $sen \beta = 2$, calcule el valor $\operatorname{sen}\beta = -2 = \frac{-2}{1} = \frac{y}{r}$, esto no es posible de la expresión $(r \geq |y|)$ $E = \operatorname{sen}\left(\frac{\alpha}{2}\right) + \cos(\beta - \alpha)$ Entonces: $\alpha \neq 90^{\circ} y \alpha \neq 270^{\circ}$ B(-6; -8) \square Si $\alpha = 180^{\circ} \implies \cos \alpha = -1$ A) -3Remplazando (I): $(-1)^2 = 2 + \operatorname{sen}\beta$ B) -1 $sen\beta = -1 \rightarrow \beta = 270^{\circ}$ C) 0 Luego $\beta = 270^{\circ}$ y $\alpha = 180^{\circ}$ D) 1 A) $-\frac{3}{2}$ B) $-\frac{1}{2}$ C) $-\frac{1}{3}$ D) $\frac{1}{2}$ E) $\frac{3}{2}$ Reemplazando en *E* : E) 2 $E = \text{sen}90^{\circ} + \text{cos}90^{\circ}$ E = 1 + 0 $\therefore E = 1$

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe