CS 161 HW6 Xiaopei Zhang 004309991

1.

(a). The problem can be modeled as a Bayesian network in the following manner:

(b). The probability we need to calculate is actually P(Oil|Test). According to Bayes' Rule, we have

$$P(0il|Test) = \frac{P(Test|0il) * P(0il)}{P(Test)}$$

In this expression,
$$P(Test) = \sum_{o,g} P(Test|o,g) * P(o,g) = .5 * .9 + .2 * .3 + .3 * .1 = .54$$

$$P(Test|Oil) = 9 P(Oil) = 5$$

$$P(Test|Oil) = .9, P(Oil) = .5$$

Therefore, if the test comes back positive, the probability that oil is present is

$$P(0il|Test) = \frac{.9*.5}{.54} = .83$$

2.

(a).

$$P(A,B,C,D,E,F,G,H) = P(G|A,B,C,D,E,F,H) * P(H|A,B,C,D,E,F) * P(F|A,B,C,D,E)$$

$$* P(E|A,B,C,D) * P(D|A,B,C) * P(C|A,B) * P(B|A) * P(A)$$

According to the condition independence indicated in the Bayesian network, we can simplify this expression as

$$P(A, B, C, D, E, F, G, H)$$
= $P(G|F) * P(H|E, F) * P(F|C, D) * P(E|B) * P(D|A, B) * P(C|A) * P(B)$
* $P(A)$

(b). Let's define all factors as the following:

$$f_1(F,G) \equiv P(G|F), f_2(E,F,H) \equiv P(H|E,F)$$

 $f_3(C,D,F) \equiv P(F|C,D), f_4(B,E) \equiv P(E|B)$
 $f_5(A,B,D) \equiv P(D|A,B), f_6(A,C) \equiv P(C|A)$
 $f_7(B) \equiv P(B), f_8(A) \equiv P(A)$

Therefore,

$$P(A, B, C, D, E, F, G, H)$$

$$\equiv f_1(F, G) * f_2(E, F, H) * f_3(C, D, F) * f_4(B, E) * f_5(A, B, D) * f_6(A, C) * f_7(B)$$

$$* f_8(A)$$

(c).

$$P(E,F,G,H) = \sum_{a} \sum_{b} \sum_{c} \sum_{d} P(A,B,C,D,E,F,G,H)$$

$$\equiv \sum_{a} \sum_{b} \sum_{c} \sum_{d} (f_{1}(F,G) * f_{2}(E,F,H) * f_{3}(C,D,F) * f_{4}(B,E) * f_{5}(A,B,D))$$

$$* f_{6}(A,C) * f_{7}(B) * f_{8}(A)) = \sum_{a} \sum_{b} \sum_{c} \sum_{d} f_{9}(A,B,C,E,F,G,H)$$

$$= \sum_{a} \sum_{b} \sum_{c} f_{10}(A,B,C,E,F,G,H) = \sum_{a} \sum_{b} f_{11}(A,B,E,F,G,H)$$

$$= \sum_{a} f_{12}(A,E,F,G,H) = f_{13}(E,F,G,H)$$

(d).

$$P(a, \neg b, c, d, \neg e, f, \neg g, h) = P(\neg g|f) * P(h|\neg e, f) * P(f|c, d) * P(\neg e|\neg b) * P(d|a, \neg b) * P(c|a) * P(\neg b) * P(a)$$

According to given CPTs, we know that

$$P(\neg e | \neg b) = .1$$

$$P(d | a, \neg b) = .6$$

$$P(\neg b) = .3$$

$$P(a) = .2$$

Hence,

$$P(a, \neg b, c, d, \neg e, f, \neg g, h) = .1 * .6 * .3 * .2 * P(\neg g|f) * P(h|\neg e, f) * P(f|c, d) * P(c|a)$$

= .0036 * P(\neg g|f) * P(h|\neg e, f) * P(f|c, d) * P(c|a)

(e). From the Bayesian network, we observe that A, B are conditional, so

$$P(\neg a, b) = P(\neg a) * P(b) = .8 * .7 = .56$$

From the Bayesian network, we also observe that A, E are conditional, so

$$P(\neg e | a) = P(\neg e)$$

To calculate $P(\neg e)$, we need to make use of CPT of P(E|B)

$$P(\neg e) = P(\neg e|b) * P(b) + P(\neg e|\neg b) * P(\neg b) = .9 * .7 + .1 * .3 = .66$$
, which means $P(\neg e|a) = .66$.

- (f). The Markovian assumptions encoded in the Bayesian network structure is that a node is conditionally independent of all other nodes in the network, given its parents, children, and children's parents.
- (g). The Markov blanket for variable D contains: A, B, C, F.

(h). The resulting factor of multiplying the factors corresponding to P(D|A,B) and P(E|B) is

$f_{14}(A, B, D, E) = f_5(A, B, D) * f_4(B, E)$											
\boldsymbol{A}	В	D	$f_5(A,B,D)$	В	E	$f_4(B,E)$	Α	В	D	Ε	$f_{14}(A,B,D,E)$
T	T	T	. 5	T	T	.1	T	T	T	T	.5 * .1 = .05
T	T	F	.5	T	F	.9	T	T	T	F	.5 * .9 = .45
T	F	T	.6	F	T	.9	T	T	F	T	.5 * .1 = .05
T	F	F	. 4	F	F	.1	T	F	T	T	.6 * .9 = .54
F	T	T	.1				T	T	F	F	.5 * .9 = .45
F	T	F	.9				T	F	T	F	.6 * .1 = .06
F	F	T	.8				T	F	F	T	.4 * .9 = .36
F	F	F	. 2				T	F	F	F	.4 * .1 = .04
							F	T	T	T	.1 * .1 = .01
							F	T	T	F	.1 * .9 = .09
							F	T	F	T	.9 * .1 = .09
							F	F	T	T	.8 * .9 = .72
							F	T	F	F	.9 * .9 = .81
							F	F	T	F	.8 * .1 = .08
							F	F	F	T	.2 * .9 = .18
							F	F	F	F	.2 * .1 = .02

(i). $\sum_{d} f_{14}(A, B, D, E) = f_{14}(A, B, d, E) + f_{14}(A, B, \neg d, E) = f_{15}(A, B, E)$

A	В	E	$f_{15}(A,B,E)$
T	T	T	.05 + .05 = .1
T	T	F	.45 + .45 = .9
T	F	T	.54 + .36 = .9
T	F	F	.06 + .04 = .1
F	T	T	.01 + .09 = .1
F	T	F	.09 + .81 = .9
F	F	T	.72 + .18 = .9
F	F	F	.08 + .02 = .1