

Private mouse and keyboard behavioral data

Mid-term presentation – Bachelor Thesis

Hossam Elfar

Supervisors: Guanhua Zhang and Mayar Elfares

June 16, 2023

Perceptual User Interfaces Group, University of Stuttgart

www.perceptualui.org 🗷

Table of Contents

Recap

- Motivation
- **Preliminaries**

Progress

- Dataset
- Remote Data Science

Next steps

Schedule

Recap

Motivation

Motivation

- Keyboard and mouse data contain highly sensitive data:
 - Passwords and login credentials
 - Personal messages and communications
 - Banking information

Motivation - Keyboard attacks

- These keyboard and mouse data are vulnerable to attacks that can potentially expose personal information about individuals in the dataset.
- E.g. Frequency analysis

Motivation - Mouse attacks

- By analyzing the patterns, speed, and direction of mouse movements.
- Adversaries can infer:
 - User's activities, interests, or intentions.
 - User's interactions with applications and websites

.

Motivation - Applications

Challenge: Find a privacy-preserving mechanism that protects these sensitive datasets while maintaining their utility.

Recap

Preliminaries

Diffrential Privacy 1

Definition: Algorithm \mathcal{M} with domain \mathcal{D} satisfies ε -differential privacy if for all pairs of adjacent datasets D and D' that differ in the data of a single individual.

$$\Pr[\mathcal{M}(D) \in S] \le e^{\varepsilon} \cdot \Pr[\mathcal{M}(D') \in S]$$

- ε : privacy loss (small ε = stronger privacy protection)
- The inequality ensures that the probability of obtaining an output S from dataset D is approximately the same as the probability of obtaining the same output S from a neighboring dataset D', up to a multiplicative factor of e^{ε} .

¹The algorithmic foundations of differential privacy - Dwork et al. - 2014

Differential Privacy

Source: Statice

Laplace Mechanism

$$F(x) = f(x) + \mathsf{Lap}\left(\frac{s}{\varepsilon}\right)$$

- s: the sensitivity of the query.
- ε : the privacy loss.
- Lap(x): a sample from the Laplace distribution with scale parameter x.

Laplace Mechanism

• privacy vs utility trade-off

Table of Contents

Recap

- Motivation
- **Preliminaries**

Progress

- Dataset
- Remote Data Science

Next steps

Schedule

Progress

Dataset

Dataset

• Everyday Mouse And Keyboard Interactions dataset ²

Name	EMAKI dataset
Users	39 users
Data	1.2M Mouse data, 210K Keyboard data
Tasks	Text Entry & Editing, Image Editing, Question-
	naire Completion

 $^{^2\}mbox{Exploring Natural Language Processing Methods for Interactive Behaviour Modelling - zhang et al. - 2023$

Progress

Remote Data Science

Remote Data Science - Main Components

- Domain server: manages the remote study of the data by a Data Scientist and allows the Data Owner to manage the data and control the privacy guarantees of the subjects under study.
- Data owner: provides mouse and keyboard datasets to make available for study by an outside party.
- Data scientist: end users who desire to perform computations or answer a specific question using one or more data owners' datasets.

Remote Data Science - Roles

Data Owner

- Deploy a Domain Server
- Upload Private Data
- Manage Privacy Budget

Data Scientist

- Connect to a Domain
- Search for Datasets
- Analyse Data
- Retrieve Secure Results

- Launch domain node.
- Preprocessing of the data.
- Upload datasets to the domain node.
- Create a data scientist account with an initial privacy budget.

- Data scientist view the available datasets of the node.
- Select one of the datasets (Mouse or keyboard).
- Perform a query with noise.
- Review code and approve.
- Data scientist download secure results.

Source: Remote Data Science

Table of Contents

Recap

Motivation

Preliminaries

Progress

Dataset

Remote Data Science

Next steps

Schedule

Next steps

- Remote machine learning DP-SGD³
- Thesis writing

³Deep learning with differential privacy - Abadi et al. - 2016

Table of Contents

Recap

- Motivation
- Preliminaries

Progress

- Dataset
- Remote Data Science

Next steps

Schedule

Schedule

Thank you!

Questions?

