MPI* Info

TD Grammaires

Olivier Caffier

1. Expliquer comment on peut se ramener à cela sans perte de généralité.

Corrigé:

Il suffit juste de créer une nouvelle grammaire avec les mêmes règles et un nouveau symbole initial qui ne peut que se dériver en l'ancien symbole initial.

1 Grammaire \mathcal{G}_2

On définit $G_2 = (V_2, \Sigma_2, S_2, R_2)$ avec $V_2 = \{S_2, E, T\}, \Sigma_2 = \{a, +, *\}$ et R_2 :

$$S_2 \rightarrow E$$
 $E \rightarrow E + T \mid T$
 $T \rightarrow T * a \mid a$

2. Est-ce que le mot a * a + a * a est généré par \mathcal{G}_2 ? Si oui, donner un arbre de dérivation pour ce mot et une dérivation gauche pour ce mot.

Corrigé:

On a

$$S_2 \rightarrow E$$

$$\rightarrow E + T$$

$$\rightarrow T + T$$

$$\rightarrow T * a + T$$

$$\rightarrow a * a + T$$

$$\rightarrow a * a + T * a$$

$$\rightarrow a * a + a * a$$

D'où l'arbre de dérivation suivant :

3. Est-ce que le mot a + a * a + a est généré par \mathcal{G}_2 ? Si oui, donner un arbre de dérivation pour ce mot et une dérivation gauche pour ce mot.

Corrigé:

On a

$$S_2 \rightarrow E$$

$$\rightarrow E + T$$

$$\rightarrow E + a$$

$$\rightarrow E + T + a$$

$$\rightarrow E + T * a + a$$

$$\rightarrow E + a * a + a$$

$$\rightarrow T + a * a + a$$

$$\rightarrow a + a * a + a$$

On peut obtenir l'arbre suivant :

4. On considère la grammaire \mathcal{G}_2' ayant les mêmes caractéristiques que \mathcal{G}_2 mais de symbole initial T. Donner (sans justification) une expression régulière décrivant le langage engendré par \mathcal{G}_2' .

Corrigé:

On a

$$L(\mathcal{G}_2') = a(* a)^*$$

5. On considère la grammaire \mathcal{G}_2'' ayant les mêmes caractéristiques que \mathcal{G}_2 mais de symbole initial E. Même question avec \mathcal{G}_2'' .

Corrigé:

On a

$$L(G_2'') = a(* a)^* (+ a(* a)^*)^*$$

6. En déduire une description du langage engendré par \mathcal{G}_2 et justifier que cette grammaire n'est pas ambiguë. Montrer, à l'aide d'un schéma, la forme d'un arbre de dérivation de cette grammaire.

Corrigé:

D'une part,

$$L(\mathcal{G}_2) = L(\mathcal{G}_2'')$$

Il s'agit donc du langage composé de a avec un + ou un * entre eux.

D'autre part, soit $m \in L(\mathcal{G}_2)$. Alors m est de la forme :

Notons $k \in \mathbb{N}$ le nombre d'occurence de "+" dans m. Alors l'arbre de dérivation gauche est de la forme suivante :

Entre deux signes "+", on a $\underbrace{a*a*\cdots*a}_{\text{longueur }l}$. On a alors un sous-arbre de la forme :

Les valeurs k et l étant entièrement déterminées par m et la forme d'arbre ci-dessus étant la seule représentation possible au vu de \mathcal{G}_2 , on en déduit le caractère non-ambiguë.

7. Écrire une fonction bool genere_2(char* m) qui prend en entrée une chaîne de caractère quelconque et renvoie true si et seulement si celle-ci correspond à un mot généré par \mathcal{G}_2 . On attend une complexité linéaire en la longueur de m. Corrigé:

```
bool genere_2(char* m){
     int ind = 0;
     while (m[ind + 1] != '\0'){
       if (m[ind] == 'a'){
4
         if (m[ind+1] == 'a'){
           // caractere illegal
           return false;
         }
         ind +=1;
       }
10
       else{
11
         if (m[ind+1] != 'a'){
           // caractere illegal
           return false;
14
15
         ind +=1;
16
17
     }
18
     return m[ind] == 'a';
19
20
```

2 Grammaire G_1 et réductions

Considérons la grammaire $\mathcal{G}_1=(\mathcal{V}_1,\Sigma_1,S,R_1)$ avec $\mathcal{V}_1=\{S,R,T\},\Sigma_1=\{a,b\}$ et R_1 :

$$S \rightarrow R \mid T$$

 $R \rightarrow aRb \mid ab$

$$T \rightarrow aTbb \mid abb$$

- 8. Montrer proprement que le langage engendré par \mathcal{G}_1 est inclus dans $\{a^nb^n\mid n\in\mathbb{N}^*\}\cup\{a^nb^{2n}\mid n\in\mathbb{N}^*\}$ Corrigé:
 - Si $n \in \mathbb{N}^*$, notons H_n : "après n dérivations de R on obtient le mot a^nb^n , après n dérivations de T on obtient a^nb^{2n} ".
 - -n=1: immédiat

 H_1 vraie

— $H_n \Rightarrow H_{n+1}$: On a $R \Rightarrow^{n+1} aub$ avec $R \Rightarrow^n u$. Par H.R, $u = a^n b^n$. D'où le résultat voulu. De même pour T.

 H_{n+1} vraie

Ainsi, en utilisant les règles de dérivations de \mathcal{G}_1 , on est bien dans $\{a^nb^n\mid n\in\mathbb{N}^*\}\cup\{a^nb^{2n}\mid n\in\mathbb{N}^*\}$.

D'où l'inclusion recherchée.

9. Démontrer l'inclusion réciproque afin de caractériser le langage engendré par \mathcal{G}_1 . Corrigé :

Soit $m \in \{a^n b^n \mid n \in \mathbb{N}^*\} \cup \{a^n b^{2n} \mid n \in \mathbb{N}^*\}.$

Si $m \in \{a^n b^n \mid n \in \mathbb{N}^*\}$: alors $\exists N \in \mathbb{N}^*$ tq. $m = a^N b^N$. Or, d'après la question précédente, N dérivations du symbole R permet d'obtenir ce mot.

D'où $m \in L(\mathcal{G}_1)$.

ightharpoonup Si $m \in \{a^n b^{2n} \mid n \in \mathbb{N}^*\}$: de même en dérivant N fois T.

D'où $m \in L(\mathcal{G}_1)$.

D'où l'inclusion réciproque.

D'où

$$L(\mathcal{G}_1) = \{a^n b^n \mid n \in \mathbb{N}^*\} \cup \{a^n b^{2n} \mid n \in \mathbb{N}^*\}$$

10. Donner une dérivation gauche depuis le symbole initial pour le mot aaabbb.

Corrigé:

On a

$$S \rightarrow R$$

$$\rightarrow aRb$$

$$\rightarrow aaRbb$$

$$\rightarrow aaabbb$$

11. Donner une dérivation droite depuis le symbole initial pour le mot *aabbbb*.

Corrigé:

On a

$$S \rightarrow T$$

$$\rightarrow aTbb$$

$$\rightarrow aabbbb$$

12. Écrire une fonction bool genere_1(char* m) qui prend en entrée une chaîne de caractères quelconque et renvoie true si et seulement si celle-ci correspond à un mot généré par \mathcal{G}_1 . On attend une complexité linéaire en la longueur de m. Corrigé:

```
bool genere_1(char* m){
     int count_a = 0;
     int count_b = 0;
     int ind = 0;
     while (m[ind + 1] != '\0'){
       if (m[ind] == 'b'){
         count_b +=1;
         if (m[ind+1] == 'a'){
          return false;
         }
10
         ind +=1;
11
12
       else{
13
         count_a +=1;
14
         ind+=1;
15
16
17
     }
18
     if (m[ind] == 'b'){
19
       count_b +=1;
       return (count_a == count_b) || (2 * count_a == count_b);
20
21
     else{
22
       return false;
23
24
25
```

On définit maintenant la notion de réduction comme l'opération contraire à la dérivation. On dit que pour $\mathcal{G} = (\mathcal{V}, \Sigma, S, R), u \in (\mathcal{V} \cup \Sigma)^*$ se réduit en $v \in (\mathcal{V} \cup \Sigma)^*$ sei v se dérive en v. Une réduction directe se notera $v \mapsto v$ et correspondra à $v \mapsto v$.

Une réduction de u est une réduction de u jusqu'au symbole initial.

On dit qu'une réduction de u est gauche ssi, à chaque étape, on réduit le facteur le plus à gauche possible.

13. Donner une réduction gauche pour *aabbbb* dans \mathcal{G}_1 .

Corrigé:

On a

$$aabbbb \hookrightarrow^* aTbb$$

14. Montrer qu'une réduction gauche correspond à une dérivation droite pour toute grammaire.

Corrigé:

```
Soit m \hookrightarrow u_1 \hookrightarrow \cdots \hookrightarrow u_k = S une réduction gauche.
On considère la dérivation : s \Rightarrow u_{k-1} \Rightarrow \cdots \Rightarrow u_2 \rightarrow m
```

Supposons que cette dérivation ne soit pas droite, alors $\exists i \in [1, k]$ tel que $\begin{cases} u_i &= v_1 V_1 v_2 V_2 v_3 \\ u_{i-1} &= v_1 h v_2 V_2 v_3 \end{cases}.$

avec $v_1, v_2, v_3, h \in (\mathcal{V} \cup \Sigma)^*$ et $V_1, V_2 \in \mathcal{V}$.

Autrement dit, on dérive le non terminal V_1 avant V_2 .

On a alors

$$u_{i-1} = v_1 h v_2 V_2 v_3 \hookrightarrow v_1 V_1 v_2 V_2 v_3 = u_i$$

Mais cela signifie que V_2 est obtenu précédemment lors d'une réduction $u_j \hookrightarrow u_{j+1}$ (avec j < i-1) alors que la réduction h était possible.

La réduction ne serait alors pas gauche. D'où l'absurdité.

15. Montrer que si une grammaire est non-ambiguë alors tout mot engendré par celle-ci admet une unique réduction gauche.

Corrigé:

Si la grammaire est non-ambiguë, alors elle admet une unique dérivation droite. Ainsi, d'après la question précédente, elle admet une unique réduction gauche.

16. Montrer que si on a $u \hookrightarrow v$ alors il existe $x, h, y \in (\mathcal{V} \cup \Sigma)^*$ et une règle $T \to h \in R$ tels que u = xhy et v = uTy. On dit que h est un facteur réductible de u.

Corrigé:

Si $u \hookrightarrow v$ alors $v \Rightarrow u$ et donc par définition de la dérivation, il existe $x, h, y \in (\mathcal{V} \cup \Sigma)^*$ tq v = xTy, u = xhy et il existe une telle règle $R: T \to h$. D'où le résultat voulu.

17. Soit $\omega = u_1 \hookrightarrow u_2 \hookrightarrow \cdots \hookrightarrow u_k$ une réduction gauche avec $\omega \in \Sigma^*$. On a alors pour chaque u_i l'existence d'une factorisation sous la forme $u_i = xhy$ et d'une règle sous la forme $T \to h$ tq $u_{i+1} = xTy$. Justifier que y est commposé uniquement de symboles terminaux.

Corrigé:

Si *y* contient un symbole non-terminal, alors celui-ci est apparu lors d'une étape précédente comme résultat d'une réduction, mais alors la réduction ne peut pas être gauche car elle a réduit un facteur à droite d'un facteur irréductible :

- *h* si déjà présent lors de la réduction
- l'un de ses facteurs non-terminaux sinon

Absurde

On appelle mot valide un mot $m \in (\mathcal{V} \cup \Sigma)^*$ pour lequel il existe $u \in L(\mathcal{G})$ tel que m apparait dans une réduction gauche de u.

- 18. Dire (et justifier) si les mots suivants sont valides pour la grammaire \mathcal{G}_1 :
 - (a) aaRbb
 - (b) *aTbb*
 - (c) aaRbbbbb
 - (d) aaabbbbbb

Corrigé:

(a) *aaRbb* est valide car appartient à la réduction gauche suivante :

$$aaabbb \hookrightarrow aaRbb$$
 $\hookrightarrow aRb$
 $\hookrightarrow R$
 $\hookrightarrow S$

(b) De même:

$$aabbbb \hookrightarrow aTbb$$
$$\hookrightarrow T$$
$$\hookrightarrow S$$

- (c) aaRbbbbb n'est pas un mot valide (aucune réduction n'existe pour faire apparaître ce mot).
- (d) $aaabbbbbb \in L(G_1)$ donc il s'agit bien d'un mot valide.
- 19. Pour tout mot valide m, on appelle facteur réductible gauche, un facteur réductible de m situé le plus à gauche possible tel que si on lui applique la réduction on obtient un mot valide. Pour chacun des mots valides identifiés dans la question précédente, donner son facteur réductible gauche.

Corrigé:

Pour aaRbb: abPour aTbb: aTbbPour aaabbbbbb: abb

20. Une grammaire est dite déterministe si pour tout mot m valide de $(\mathcal{V} \cup \Sigma)^*$, il existe une unique réduction directe gauche vers un mot valide de règle $T \to h$ avec m = xhy et que pour tout $y' \in \Sigma^*$, cette même réduction est l'unique réduction gauche de m' = xhy' vers un mot valide quand m' est valide.

Justifier à l'aide des mots aaabbb et aaabbbbbb que \mathcal{G}_1 n'est pas déterministe.

Corrigé:

On a

$$m = \underbrace{aa}_{x} \underbrace{ab}_{h} \underbrace{bb}_{y}$$

est un mot valide donc h = ab et h unique pour m. Or

$$m' = aaabbbbbb$$

= $xabbbbbb$

ainsi, m' admet h' = abb comme unique réduction gauche. Finalement,

$$h \neq h'$$

D'où le caractère non-déterministe de \mathcal{G}_1 .