Lab Division Algorithm

Kinner Parikh

October 16, 2022

CMPEN 331 - 001

1 Code

```
'timescale 1ns / 1ps
module src(
    input clk, clrn, start, [31:0] a, [15:0] b,
    output reg [15:0] reg_r, reg [31:0] reg_q, reg [4:0] count, reg busy, re
    );
    reg [15:0] reg_b;
    wire [16:0] sub_out;
    wire [16:0] subtrahend = {1'b0, reg_b};
    wire [16:0] minuend = {reg_r, reg_q[31]};
    sub sub_mod(minuend, subtrahend, sub_out);
    wire [15:0] r = {reg_r[14:0], reg_q[31]};
    wire sub_mux_sel = sub_out[16];
    wire [15:0] sub_mux_out;
    sub_mux sub_mux_mod(r, sub_out[15:0], sub_mux_sel, sub_mux_out);
    wire [31:0] ina = a;
    wire [31:0] q = {reg_q[30:0], !sub_out[16]};
    wire [31:0] q_mux_out;
    q_mux q_mux_mod(ina, q, start, q_mux_out);
    always @(posedge clk)
    begin
        //innebeningin
        if (clrn == 0)
        begin
            reg_b <= 0;
            reg_q <= 0;
            reg_r <= 0;
            count <= 0;
            ready <= 0;
            busy <= 0;
        end
        else if (start == 1)
        begin
            reg_b <= b;
            reg_q <= q_mux_out;</pre>
            reg_r <= 0;
            count <= 0;
```

```
ready <= 0;
             busy <= 1;
         end
         else if (busy == 1)
         begin
             reg_q <= q_mux_out;</pre>
             reg_r <= sub_mux_out;</pre>
             count <= count + 1;</pre>
             if (count == 31)
             begin
                  busy <= 0;
                 ready <= 1;
             end
         end
    end
endmodule
```

```
'timescale 1ns / 1ps
module sub(minuend, subtrahend, difference);
  input [16:0] minuend;
  input [16:0] subtrahend;
  output reg [16:0] difference;

always @(*)
  begin
      difference = minuend - subtrahend;
  end
endmodule
```

```
'timescale 1ns / 1ps
module sub_mux(r, sub_in, sel, reg_r);
    input [15:0] r;
    input [15:0] sub_in;
    input sel;
    output reg [15:0] reg_r;
    always @(*)
    begin
        if (sel == 1) // negative case
        begin
            reg_r = r;
        end
        else // positive case
        begin
            reg_r = sub_in[15:0];
        end
    end
endmodule
```

```
'timescale 1ns / 1ps
module testbench();
    reg clrn, start, clk;
    reg [31:0] a;
    reg [15:0] b;
    wire [31:0] q;
    wire [15:0] r;
    wire busy, ready;
    wire [4:0] count;
    src div(clk, clrn, start, a, b, r, q, count, busy, ready);
    initial
    begin
        clrn = 0;
        start = 0;
        clk = 1;
        a = 'h4c7f228a;
        b = 'h6a0e;
        #5
        start = 1;
        clrn = 1;
        #10
        start = 0;
        #325
        clrn = 0;
        start = 0;
        a = 'hffff00;
        b = 'h4;
        #5
        start = 1;
        clrn = 1;
        #10
        start = 0;
    end
    always
    begin
        clk = ~clk;
    end
endmodule
```

2 Images

Timing Waveform

400.000 ns	410.000 ns	420.000 ns	430.000 ns	440.000 ns	450.000 ns	460.000 ns	470.000 ns	480.000 ns	490.000 ns
					00ffff00				
					0004				
lfffe000	3fffc000	7fff8000	ffff0000	fffe0000	fffc0000	fff80001	fff00003	ffe00007	ffc0000f
11116000	0000	71118000	11110000	0001	11160000	11130001	11100003	0003	11000001
	3000							0005	
05	06	07	08	09	Oa Oa	0b	0c	04	0e
	<u> </u>	<u> </u>				^	^	<u> </u>	1
500.000 ns	 510.000 ns	 520.000 ns	 530.000 ns	 540.000 ns	 550.000 ns	 560.000 ns	 570.000 ns	 580.000 ns	 590.000 ns
500.000 ns		520.000 hs	530.000 hs	540.000 ns	550.000 ns	560.000 ns	570.000 hs	580.000 ns	
					00ff:				
ff80001f	ff00003f	fe00007f	fc0000ff	f80001ff	f00003ff	e00007ff	c0000fff	80001fff	00003fff
11800011	11000031	12000071	10000011	000		40000711	1 20000111	80001111	00003111
				000	-				
Of	10	11	12	13	14	15	16	17	18
	<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>
600.000 ns	₁ 610.000 ns	620.000 ns	630.000 ns	640.000 ns	650.000 ns	1660.000 ns	670.000 ns	680.000 ns	690.000 ns
					00ffff00				
					0004				
00007fff	0000ffff	0001fffe	0003fffc	0007fff8	000ffff0	001fffe0	V		003fffc0
0002				<u> </u>		0000	Λ		
19	la	1b	le .	1d	le	1f			00
	1								

I/O Planning

