Análisis numérico

Clase 15: Interpolación y aproximación (parte 1)

Joaquin Cavieres

Instituto de Estadística, Universidad de Valparaíso

Outline

Interpolación

Introducción

Generalmente, en problemas estadísticos o matemáticos, nosotros queremos evaluar una función en uno o más puntos. Sin embargo esto no es tan sencillo ya que surgen algunos inconvenientes tales como:

- Tiempos de ejecución del proceso de estimación demasiado costoso.
- Evaluación de funciones complejas
- Puede suceder que solo tengamos el valor de una función en un conjunto finito de puntos

Introducción

Una estrategia adecuada y conveniente para este tipo de problemas podría ser reemplazar esa función en forma parcial por otra función más simple y que pueda ser evaluada eficientemente.

Introducción

Una estrategia adecuada y conveniente para este tipo de problemas podría ser reemplazar esa función en forma parcial por otra función más simple y que pueda ser evaluada eficientemente.

Estas funciones "simples" casi siempre son elegidas entre polinomiales, funciones trigronométricas, racionales, etc.

Interpolación

Definición

La interpolación de una función f, mediante otra función g, consiste en, dado los siguientes puntos de datos:

- n+1 puntos distintos $x_0,, x_n$
- n+1 valores en aquellos puntos, $f(x_0)=\omega_0, f(x_1)=\omega_1,....,f(x_n)=\omega_n$

encontrar una función g tal que $g(x_i)=\omega_i$ para un i=0,1,....,n.

Los puntos $x_0,, x_n$ son llamados nodos (o "knots") de interpolación y la función g es llamada interpolante de f en los puntos $x_0,, x_n$.

Interpolación

En primera instancia, vamos a considerar dos tipos de interpolantes:

• Interpolante polinomial

$$g(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n = \sum_{k=0}^n a_kx^k$$

Interpolante polinomial por partes ("Piecewise polynomial")

$$g(x) = \begin{cases} p_1(x) & \text{si } x \in (x_0^*, x_1^*) \\ p_2(x) & \text{si } x \in (x_1^*, x_2^*) \\ \dots \\ p_m(x) & \text{si } x \in (x_{m-1}^*, x_m^*) \end{cases}$$

donde x_0^*, x_m^* forman una partición del intervalo que contiene a los nodos de interpolación (x_0, x_n) y $p_i(x)$ son los polinomiales.

1. Interpolación Lineal

En este caso sencillo vamos a representar a dos puntos, por ejemplo el crecimiento de un niño, la cantidad de azuar en una bebida gaseosa o el número de computadores en las casas durante un año. Para este tipo reales, realizar dos mediciones es más factible que realizar mediciones continuas. Por lo tanto, las dos mediciones se toman en diferentes puntos en el tiempo, o para diferentes tamaños de bebida, o en diferentes valores de lo que sea que estemos midiendo.

1. Interpolación Lineal

Así:

El punto en cual se determina nuestra medida es x y el valor observado es nuestra variable y. Por tanto, mediante un cálculo básico de álgebra, podemos hacer:

$$y = mx + b$$

que no es nada más que la ecuación de la recta con su intercepto y pendiente. Para encontrar m (pendiente) hacemos:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

y su intercepto $b = y_2 - m * x_2$

Ver ejemplo 1 en R

2. Interpolación de Lagrange

Ya sabemos por definición que un interpolante polinomial tiene la siguiente expresión:

$$g(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$

la cual satisface que $(g(x_0) = \omega_0, ..., g(x_n) = \omega_n)$. Considerando los nodos de interpolación e igualandolos a ω_i , entonces obtenemos una solución de un sistema linal como:

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \omega_0 \\ \omega_1 \\ \vdots \\ \omega_n \end{bmatrix}$$

2. Interpolación de Lagrange

La matriz de coeficientes:

$$\mathbb{A} = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix}$$

es del tipo " Vandermonde" con determinante:

$$\det(A) = \prod_{0 < l < k < n} (x_k - x_l)$$

Como los nodos del interpolante son distintos, la $\det(A) \neq 0$, por tanto el sistema tiene solución única (g(x)). Este polinomial se llamado el interpolante de Lagrange en los punos $x_0, ..., x_n$ realtivo a los valores $\omega_0, ..., \omega_n$.

2. Interpolación de Lagrange

La solución del sistema anterior puede volverse costoso computacionalmente ya que, si tenemos "n" observaciones, necesitamos encontrar "n" coeficientes.

Por lo anterior es que existen alternativas para calcular los interpolantes de Lagrange, entre ellos: Los polinomiales fundamentales de Lagrange y el método de diferencias divididas

Polinomiales fundamentales de Lagrange

Definición

Para un conjunto de datos $(x_0, y_0), (x_1, y_1), \cdots, (x_n, y_n)$, sin x duplicados, existe una función g que evalua esos puntos para así encontrar un único polinomial P(x) de grado $\leq n$. El polinomial esta dado por:

$$P(x) = f(x_0)L_{n,0}(x) + \cdots + f(x_n)L_{n,n}(x) = \sum_{k=0}^{n} f(x_k)L_{n,k}(x)$$

donde k = 0, 1, ..., n está dado por:

$$L_{n,k} = \frac{(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)(x_k-x_1)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)} = \prod_{\substack{i=0\\i\neq k}}^n \frac{(x-x_i)}{(x_k-x_i)}$$

Ver ejemplo 2 en R

◆ロト 4団ト 4 三ト 4 三 ト ラ のQで

Como vimos anteriormente, cuando el número de nodos del interpolante de Lagrange aumenta, puede suceder que a) se forman oscilaciones a partir el aumento del grado del polinomial y b) la aproximación no necesariamente es mejor, esto es, que todas las derivadas de la función interpolada deben estar uniformemente acotadas.

Como vimos anteriormente, cuando el número de nodos del interpolante de Lagrange aumenta, puede suceder que a) se forman oscilaciones a partir el aumento del grado del polinomial y b) la aproximación no necesariamente es mejor, esto es, que todas las derivadas de la función interpolada deben estar uniformemente acotadas.

Una manera de evitar esto es mediante funciones polinomiales por partes. Aunque algunas regularidades se pierden con esta técnica, nos aseguramos de que el error disminuya a medida que aumenta el número de nodos de interpolación.

El grado de polinomiales de una interpolación por partes (*linearwise polynomials*) es tal que los polinomiales, en este caso las lineas rectas, estan determinadas por dos nodos consecutivos:

$$g(x) = \omega_i + (\omega_{i+1} - \omega_i) \frac{x - x_i}{x_{i+1} - x_i}, \text{ si } x \in [x_i, x_{i+1}]$$

para cada i=0,....,n-1. En este caso g es continua pero su derivada, en general, es discontinua en los nodos. Así, la interpolación mediante polinomiales por partes de orden 3 (splines cúbicos), son las más importantes en esta familia de interpolantes.

Ver ejemplo en R

Splines

Un spline lineal con nodos en ν_k , k=1,....,K es un polinomial linear por partes continuo en cada nodo. Además, un conjunto de splines lineales con nodos fijos no es un espacio vectorial. Un spline lineal puede ser descompuesto en basis de K+2 funciones de base como:

$$y = \sum_{m=1}^{K+2} \beta_m h_m(x) + \epsilon$$

Splines

Las funciones de base pueden elegirse como:

$$h_1(x) = 1$$

 $h_2(x) = x$
 $h_{k+2}(x) = (x - \nu_k)_+, \quad k = 1,, K$

donde (·) denota la parte positiva, por ejemplo, $(x-\nu_k)_+=x-\nu_k$ si $x>\nu_k$ y $(x-\nu_k)_+=0$ en otro caso.

- Burden, R. L., & Faires, J. D. (2011). Numerical analysis.
- Howard, J. P. (2017). Computational Methods for Numerical Analysis with R. CRC Press.
- Banerjee, S., & Roy, A. (2014). Linear algebra and matrix analysis for statistics. Crc Pr
- Kiusalaas, J. (2013). Numerical methods in engineering with python (2nd ed.). New York: Cambridge University Press.