

Lecture 9: Fabrication

Silicon Lattice

- Transistors are built on a silicon substrate
- Silicon is a Group IV material
- Forms crystal lattice with bonds to four neighbors

Dopants

- Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- ☐ Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

p-n Junctions

- A junction between p-type and n-type semiconductor forms a diode.
- Current flows only in one direction

p-type n-type

anode cathode

Cross sectional View

3D view

Cross-sectional view

CMOS 3D View

3D view of silicon wafer. Now we have PMOS and NMOS Device.

CMOS Inverter

nMOS Transistor

- Four terminals: gate, source, drain, body
- ☐ Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS)
 capacitor
 - Even though gate is no longer made of metal*

^{*} Metal gates are returning today!

pMOS Transistor

- Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Intuition (1)

Intuition (2)

Inverter Cross-section

- ☐ Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors

CMOS Inverter

Figure (a): Top view

Figure (b): Cross-section about the dashed line

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- Transistors and wires are defined by masks
- Cross-section taken along dashed line

Detailed Mask Views

- ☐ Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Fabrication

- Chips are built in huge factories called fabs
- ☐ Contain clean rooms as large as football fields

Courtesy of International Business Machines Corporation. Unauthorized use not permitted.

Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

- Grow SiO₂ on top of Si wafer
 - -900 1200 C with H_2O or O_2 in oxidation furnace

p substrate

SiO₂

Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

Photoresist SiO₂

0: Introduction

Lithography

- ☐ Expose photoresist through n-well mask
- Strip off exposed photoresist

n substrato

Photoresist SiO₂

p substrate

Etch

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranha etch
- Necessary so resist doesn't melt in next step

SiO

p substrate

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implantation
 - Blast wafer with beam of As ions
 - lons blocked by SiO₂, only enter exposed Si

n well

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

n well p substrate

0: Introduction

Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

Use same lithography process to pattern polysilicon

0: Introduction

Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

0: Introduction

N-diffusion

- □ Pattern oxide and form n+ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

0: Introduction

N-diffusion cont.

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

0: Introduction

N-diffusion cont.

Strip off oxide to complete patterning step

0: Introduction

P-Diffusion

 Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

0: Introduction

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide

0: Introduction

Etch oxide where contact cuts are needed

CMOS VLSI Design 4th Ed.

34

Metalization

- ☐ Sputter on aluminum over whole wafer
- Pattern to remove excess metal, leaving wires

Layout

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- \Box Feature size f = distance between source and drain
 - Set by minimum width of polysilicon
- ☐ Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- \square Express rules in terms of $\lambda = f/2$
 - E.g. λ = 0.3 μ m in 0.6 μ m process

Simplified Design Rules

Conservative rules to get you started

Inverter Layout

- Transistor dimensions specified as Width / Length
 - Minimum size is $4\lambda / 2\lambda$, sometimes called 1 unit
 - In f = 0.6 μ m process, this is 1.2 μ m wide, 0.6 μ m long

Summary

- MOS transistors are stacks of gate, oxide, silicon
- Act as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors
- Now you know everything necessary to start designing schematics and layout for a simple chip!