一、是非判断(对的在括号内打"√",错的打"×")

- 1. 三相不对称负载越接近对称,中线上通过的电流就越小。
- 2. 在电感性负载两端并联一合适大小的电容,可以提高功率因数减小线路的损耗。(√)
- 3. 在交流电路中功率因数 cosφ=有功功率/(有功功率+无功功率)。 (\mathbf{x})
- 4. 三相负载星形联接时,中线上的电流一定为零。 (\mathbf{x})
- 5. 在换路瞬间, 电感电压不能跃变, 电感电流可以跃变。 (\mathbf{x})
- 6. 电路不管是发生串联还是并联谐振,此时电路都呈纯阻性。 $(\sqrt{})$

二、单项选择

- 1. 右图所示电路, 换路前电路已稳定。在开关 S 闭合瞬间,图示电路中的 $i_{\rm R}$ 、 $i_{\rm L}$ 、 $i_{\rm C}$ 和 i 这四 个量中,发生跃变的量是(D
 - A. i、 i_R 和 i_C B. i_R 和i
 - C. i_c 和 i_R D. i_c 和i

 $(\sqrt{})$

- 2. 某 R, L, C 串联的线性电路激励信号为非正弦周期信号, 若该电路对信号的三次谐波谐 振, 电路的五次谐波感抗 X_{SL} 与 5 次谐波容抗 X_{SC} 的关系是(A)。

 - A. X_{5L}>X_{5C} B. X_{5L}=X_{5C} C. X_{5L}<X_{5C} D. 不确定

- 3. 如右图所示,D为理想二级管,则i=(B
 - A. 0A
- B. 1A
- C. 2A
- D. 3A

- 4. 已知某电路的电源频率 f = 50Hz,复阻抗 $Z = 60 \angle 30^{\circ} \Omega$,若用 RL 串联电路来等效,则电 路等效元件的参数为(C)。
 - $A R = 51.96 \Omega L = 0.6 H$
- $R = 30 \Omega$, L = 51.96 H
- $R = 51.96 \Omega$, L = 0.096 H
- $R = 30 \Omega$, L = 0.6 H

5. 图示为同频正弦电流 i_1 、 i_2 、 i_3 的波形,

可以看出这三个电流的相位先后顺序是(

B. i_2 , i_3 , i_1

C. i_3 , i_1 , i_2

D. i_2 , i_1 , i_3

6.从工程应用角度言,一阶电路瞬变过程中时间常数τ

小,则(B)。

- A. 电路接近稳态所需时间长
- B. 电路接近稳态所需时间短
- C. 电路接近稳态所需时间与 τ 无关 D. 电路没瞬变过程

三、填空题(将答案填入空格内)

- 1. 有一对称三相负载 Y 连接,每相阻抗模为 22Ω,功率因数为 0.8,又测出负载中的电流为 10A,那么三相电路的有功功率为 5280 瓦 ; 无功功率为 3960 乏 ; 视在功率为 6600VA 。
- 2. 如左下图所示电路,可求得电流 $I=_{2.86A}$, ab 两端的等效电阻为 0.571Ω

- 3. 如右上图所示电路中, $X_C=X_L=R$,并已知电流表 A_1 的读数为 3A,则 A_2 的读数为 0AA₃的读数为 3A 。
- 4. 右图所示电路原已稳定,t=0 时将开关 S

闭合。已知: $\mathbf{R} = 1\Omega$, $\mathbf{R}_1 = 2\Omega$, $\mathbf{R}_2 = 3\Omega$,

 $C = 5 \mu F$, $U_S = 6 V$ 。则S闭合后,

 \mathbf{u}_{c} 的初始电压 \mathbf{u}_{c} (0⁺) = 3V ,

 u_c 的稳态电压 u_c (∞) = 0V ,

时间常数 $\tau = 6\mu S$, u_c 的表达式 u_c (t) = $_3e^{-\frac{t}{6}}V$ ($t \ge 0\mu S$)

5. 如题 2-3 图所示,已知 $u_1=10\sqrt{2}\sin(50t+30^\circ)$ V, $u_2=5\sqrt{2}\sin(50t-30^\circ)$ V,则 $u_3=5\sqrt{2}\sin(50t-30^\circ)$ V,则 $u_4=5\sqrt{2}\sin(50t-30^\circ)$ V,则 $u_4=5\sqrt{2}\cos(50t-30^\circ)$ V,和 $u_5=5\sqrt{2}\cos(50t-30^\circ)$ V,和

$5\sqrt{6}\sin(50t-120^{\circ}) V$

- 6. 如题 2-5 图所示的三相四线制供电线路,线电压 380V,三相对称负载均为白炽灯,电阻 $R_1=R_2=R_3=22\Omega$,则当开关 S 打开和闭合时电流表 A 的读数分别为 10A, 0A。 四、已知工频正弦交流电路中,电源电压为 220V。当开关 S 断开时,电流表读数为 0.75A,功率表读数为 132W。求:
 - (1) 电路参数 R、L及开关 S 断开时电路的功率因数 $\lambda = \cos \varphi_{RL}$;
 - (2) 若 S 合上,整个电路 cosφ=1,此时电流表读数多大? C=?
 - (3) 以电源电压为参考相量, 画出 S 合上后电路的各电流相量图。

解:

1. $P=UI_{RL}\cos\varphi_{RL}$

 $\lambda = \cos\varphi_{\rm RL} = P/(UI_{\rm RL}) = 0.8$

 $|Z_{RL}| = (U/I_{RL}) = 293.3 \Omega$

 $R=|Z_{RL}|\cos\varphi_{RL}=234.7\Omega$

 $X_L = |Z_{RL}| \sin \varphi_{RL} = 293.3 \times 0.6 = 176 \Omega$

$$L = X_L / (2\pi f) = 0.560H$$

2. S 合上,整个电路 cosφ=1, P 不变

$$I = I_{\rm RL} \cos \varphi_{\rm RL} = 0.75 \times 0.8 = 0.6 A$$

电容电流

 $I_{\rm C} = I_{\rm RL} \sin \varphi_{\rm RL} = 0.75 \times 0.6 = 0.45 \, {\rm A} = 2\pi f \, {\rm CU}$

 $C = I_C/(2\pi f U) = 6.51 \times 10^{-6} F = 6.51 \mu F$

3. S 合上后电路的各电流相量图

五、求如图所示电路 ab 端左侧的戴维宁等效电路,并求电流 I。

解:

由 ab 开路,可得:
$$I_1 = \frac{12}{2+4} = 2A$$
 ,开路电压 $u_{ab} = I_1 \cdot 4 + 2I_1 \cdot 1 = 8 + 4 = 12 \text{ V}$

由 ab 短路,可得:
$$\left(\frac{4I_1}{1} + I_1 + 2I_1\right) \cdot 2 + 4I_1 = 12$$
 ,

可得:
$$I_1 = \frac{2}{3}A$$
, 于是短路电流为:
$$i_{ab} = \frac{4I_1}{1} + 2I_1 = 4A$$

于是等效电阻:

$$R_{\rm d} = \frac{u_{\rm ab}}{i_{\rm ab}} = 3\Omega$$

所以戴维宁等效电路的等效参数为: $u_{ab} = 12 \,\mathrm{V}$, $R_{d} = 3 \,\Omega$.

$$I = \frac{12}{3+5} = 1.5 \,\mathrm{A}$$

六、图示正弦稳态电路, $R = X_L = X_C = 1\Omega$,电路消耗的功率 P = 1 W。

- 1. 设 u_{RL} 的初相位为 0° ,画出图中各电压电流的相量图;
- 2. 计算电压 U 及电路功率因数。

解: 1.
$$I_R = \sqrt{\frac{P}{R}} = 1A$$
, $I_L = I_R = 1A$, $U_{RL} = RI_R = 1V$

向量图如下

2. 由向量图得

$$I = I_C = \sqrt{2}I_R = \sqrt{2}A$$
, $U_C = X_CI_C = \sqrt{2}V$, $U = 1V$

电路功率因数

$$\cos\varphi = \frac{P}{UI} = \frac{1}{1 \times \sqrt{2}} = 0.707$$