Programación de línea de producción Fischertechnik

Daniel Laverde Gutiérrez 1802124, David Steven Galvis Arévalo 1802584, Carlos Felipe Betancourt Martin 1802501

Resumen -- En este documento se presenta el desarrollo de la programación de 5 diferentes estaciones de una línea de producción didáctica de la empresa FischerTechnik. Para esto fue necesario programar cada una en el software ROBOPro teniendo en cuenta que las estaciones forman parte de una secuencia utilizando un PLC por cada estación y programando de forma secuencial de manera que se cumpla con cada operación en el proceso de cada estación.

Abstract -- This document presents the development of the programming of 5 different stations of a didactic production line of the company FischerTechnik. So that it is necessary to program a software in ROBOPro taking into account that the stations are part of a sequence using a PLC for each station and programming sequentially so that each time with the operation in the process of each station.

Palabras Clave -- Neumática, Lógico, Proceso, Industrial, Retardos.

INTRODUCCIÓN

Un controlador lógico programable es un dispositivo electrónico digital que usa una memoria programable para guardar instrucciones y llevar a cabo funciones lógicas,

de configuración de secuencia, de sincronización, de conteo y aritméticas, para el control de maquinaria y procesos, en este principalmente se implementan funciones lógicas como primer paso para el aprendizaje de la programación[1].

MATERIALES

- Software ROBOPro
- Software FluidSim Pneumatics
- Estaciones Fischertechnik

PROCEDIMIENTO

Para cada estación se realizó la caracterización de los sensores tanto digitales como analógicos dispuestos y de los actuadores que actúan en el proceso de cada estación. En las siguientes tablas se presenta el resultado del reconocimiento de cada estación.

Caracterización:

A continuación se presenta los componentes de entrada (sensores) y salida (actuadores) para cada una de las estaciones Fischertechnik.

Est	tacion 1 -Distribucion	
Enti	radas	
I_1	Final de carrera	Cilindro adentro
I_2	Final de carrera	Cilindro afuera
I_3	Sensor Optico	Detecta Pieza
I_4	Final de carrera pulsador	Brazo en misma estacion
I_5	Final de carrera pulsador	Brazo a siguiente estacion
Sali	das	
01	Motor 1	Compresor
O_2	Motor 1	Compresor
03	Motor 2 Brazo	Brazo a misma estacion
04	Motor 2 Brazo	Brazo a siguiente estacion
05	Motor 3 succionador	Succion para agarre de pieza
06	Luz	Luz que detecta si hay objeto
07	Cilindro doble efecto	Retroceso del cilindro
08	Cilindro doble efecto	Avance del cilindro

Tabla 1: Caracterización estación 1

Es	tacion 2 -Transporte	
Ent	radas	
I_1	Sensor Optico	
I_2	Final de carrera magnetico	Plataforma inclinada
I_3	Final de carrera magnetico	Plataforma Horizontal
I_4	Final de carrera magnetico	Pista Bloqueada
I_5	Pulsador	Plataforma arriba
I_6	Pulsador	Plataforma abajo
Sali	idas	
01	Motor 1	Compresor
02	Motor 1	Compresor
03	Motor 2 Plataforma	Plataforma Sube
04	Motor 2 Plataforma	Plataforma Baja
05	Luz	Enceder luz, para deteccion de objeto
06	Cilindro doble efecto	Avance de cilindro inclinacion plataforma
07	Cilindro doble efecto	Retroceso de cilindro, plataforma horizontal
08	Cilindro simple efecto	Acande del cilindro barrera

Tabla 2: Caracterización estación 2

Es	tacion 3 -Proceso	
Ent	radas	
I_1	Sensor Optico	Detecta objeto
I_2	Final de carrera magnetico	Cilindro posicion intermedia
I_3	Final de carrera magnetico	Cilindro posicion abajo
I_4	Sensor magnetico	Cadena que empuja pieza de la estacion
I_5		Detecta cuando la plataforma gira 90º
Sali	idas Motor 1	Compresor
O_2		Compresor
03	Motor 2 Giro horario	Transporta pieza avance
04	Motor 2 Giro antihorario	Transporta pieza retroceso
05	Motor 3	Cadena empuja pieza siguiente estacion
06	Motor 3	Cadena devuelve pieza a misma estacion
07	Cilindro simple efecto	Etiqueta
08	Luz	Activa luz para el sensor optico

Tabla 3: Caracterización estación 3

Est	tacion 4 -Verificacion	
Enti	radas	
I_1	Sensor Optico	Sensor antes de verificacion
I_2	Sensor Optico	Sensor despues de verificacion
I_3	Final de carrera magnetico	Bloque el paso de pieza sobre banda
I_4	Sensor de calor	Detecta calor de la pieza
I_5	Final de carrera magnetico	Deja pasar pieza en la banda
Sali	das	
01	Motor 1	Compresor
02	Motor 1	Compresor
03	Motor 2	Activa banda transportadora
04	Luz 1	Enciende luz antes de verificacion
05	Luz 2	Enciende luz despues de verificacion
06	Cilindro doble efecto	Retroceso, bloquea el paso en la banda
07	Cilindro doble efecto	Avanza, permite el paso en la banda
08	Cilindro simple efecto	Saca la pieza de la linea de produccion

Tabla 4: Caracterización estación 4

Est	tacion 5 -Clasificacion	
Ent	radas	
I_1	Sensor Optico	Detecta si hay pieza
I_2	Final de carrera pulsador	Manipulador sobre bandeja de suministros pieza
I_3	Final de carrera pulsador	Manipulador sobre ultima caja
I_4	Final de carrera magnetico	Detecta si el cilindro (manipulador) esta abajo
Sali	idas	
01	Motor 1	Compresor
02	Motor 1	Compresor
03	Motor 2 antihorario	Actuador lineal desplaza manipulador a la izquierda
04	Motor 2 Horario	Actuador lineal desplaza manipulador a la derecha
05	Luz	Luz para sensor optico detector de objeto
06	Cilindro simple efecto	Manipulador que sujeta la pieza
07	Motor 3 succionador	Permite el agarre de la pieza

Tabla 5: Caracterización estación 5

Algoritmo:

Figura 1:Algoritmo estación 1

Para la estación 1 las condiciones iniciales son que el cilindro que abastece de piezas al manipulador se encuentre dentro de la camisa, y que el manipulador que transporta la pieza de una estación a otra, se encuentre en la estación 1.

Figura 2:Algoritmo estación 2

En la estación de transporte, estación 2, se debe iniciar el proceso teniendo la plataforma que transporta la pieza en posición horizontal y que se encuentre abajo lista para recibir la pieza proveniente de la estación anterior.

Figura 3:Algoritmo estación 3

Para la estación 3 que corresponde al proceso principal, se tiene en cuenta para que entre en operación, que el cilindro simple efecto debe estar dentro de la camisa, totalmente en retroceso, y que la banda que empuja la pieza desde la estación 3 hasta la 4 se encuentre en la parte superior, de manera que pueda transportar la pieza sin que interfiera en su camino

Figura 4:Algoritmo estación 4

En la estación 4 de verificación, la única condición inicial para el inicio del proceso es que el paso de la pieza sobre la banda transportadora se encuentre bloqueada, con el fin de no permitir que pasen hacia la siguiente

estación aquellas piezas que no estén verificadas, que para este caso corresponde a la selección de color.

Figura 5:Algoritmo estación 5

Y por último, la condición inicial para realizar este proceso de clasificación es que el manipulador (cilindro simple efecto) se encuentre dentro de la camisa, ya que esto el permitirá desplazarse a lo largo de los depósitos de las piezas sin colisionar con el soporte de la estación.

Planos:

Los planos de cada una de las estaciones se encuentra anexado al final de este documento.

RESULTADOS

Se obtiene el correcto funcionamiento de cada una de las estaciones, programado de manera secuencial para que desde el inicio sólo pueda funcionar si se cumplen ciertas condiciones en determinada estación, para que no ocurran conflictos con los componentes electrónicos y para que el proceso se lleve a cabo sin problemas.

CONCLUSIONES

En los procesos industriales es de vital importancia conocer cada uno de los elementos de campo que se encuentran por ejemplo en una línea de producción, es por eso que la caracterización es el primer y fundamental paso antes de poner en funcionamiento maquinaria, ya que se puede conocer las características de funcionamiento de los elementos como lo son los actuadores y sensores presentes.

En procesos industriales es de gran ayuda el uso de softwares dedicados como lo es RoboPro de fischertechnik, que cuenta como una interfase que actúa como nexo de unión entre ordenador y modelo para la fácil aplicación e implementación.

REFERENCIAS

[1]W. Bolton, Mecatrónica: Sistemas de control electrónico en ingeniería mecánica y eléctrica, Editorial Alfaomega, 2 ed, pp 423 - 431.

