

Prof. S. Deparis Algèbre linéaire - (n/a) 20 janvier 2020 3 heures

SCIPER: 999999

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 12 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une **calculatrice** et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix multiple, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien											
choisir une rép Antv	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen						Corriger une réponse Correct an answer Antwort korrigieren				
X	\checkmark										
		ce qu'il ne f	aut <u>PAS</u> fa	aire wha	at should <u>l</u>	NOT be d	one wa	s man <u>N</u> l	ICHT tun sollte		
						•					

Notation

- Pour une matrice A, a_{ij} désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur $\vec{x},\,x_i$ désigne la $i\text{-\`e}\mathrm{me}$ coordonnée de $\vec{x}.$
- $-I_m$ désigne la matrice identité de taille $m \times m$.
- $-\mathbb{P}_n(\mathbb{R})$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- $-\mathcal{M}_{m\times n}(\mathbb{R})$ désigne l'espace vectoriel des matrices de taille $m\times n$
- Pour $\vec{x}, \vec{y} \in \mathbb{R}^n$, le produit scalaire canonique est défini par $\vec{x} \cdot \vec{y} = \vec{x}^T \vec{y}$.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'**une seule** réponse correcte par question.

Question [MC-calc-syst-lineaire]: Soient h un paramètre réel,

$$A = \begin{pmatrix} 1 & -4 & -3 \\ -1 & 12 & 5 \\ -1 & 4h + 4 & h + 3 \end{pmatrix} \quad \text{et} \quad \vec{b} = \begin{pmatrix} 0 \\ h - 3 \\ 2 \end{pmatrix}.$$

Alors l'équation matricielle $A\vec{x}=$

- admet une infinité de solutions si et seulement si $h \in \{4, -1\}$.
- admet une infinité de solutions si et seulement si $h \in \{-4, 1\}$.
- admet une infinité de solutions si et seulement si $h \in \{-4, -1\}$.
- admet une infinité de solutions si et seulement si $h \in \{4, 1\}$.

Question [q:MC-calc-span]: Soit a un paramètre réel et soient

$$p_1(t) = a + 4t - 5t^2$$
, $p_2(t) = 4 + at - 5t^2$, $p_3(t) = 4 - 5t + at^2$.

$$p_2(t) = 4 + at - 5t^2$$
,

$$p_3(t) = 4 - 5t + at^2.$$

Alors les polynômes $p_1,\,p_2$ et p_3 sont linéairement dépendants si et seulement si

$$a \in \{-5, 1, 4\}.$$

Question [q:MC-calc-inverse]: Soit

$$A = \left(\begin{array}{rrr} 1 & -1 & 1 \\ 1 & -1 & 0 \\ 1 & -2 & -1 \end{array}\right).$$

Les coefficients de sa matrice inverse $C = A^{-1}$ satisfont

$$c_{21} = -1$$
 et $c_{13} = 0$

$$c_{11} = -1$$
 et $c_{32} = -1$

Question [q:MC-calc-det]: Soient α un nombre réel et

$$A = \left(\begin{array}{rrrr} 1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & \alpha & 1 \\ -1 & 1 & 1 & \alpha \end{array}\right).$$

La matrice A est inversible si et seulement si

 $\alpha \notin \{3, -1\}.$

 $\alpha \notin \{-3, 1\}.$

Question [q:MC-calc-matrice]: Soit $T: \mathbb{R}^2 \to \mathbb{R}^2$ l'application linéaire définie par

$$T\left(\left(\begin{array}{c}x_1\\x_2\end{array}\right)\right)=\left(\begin{array}{c}x_1+2x_2\\8x_1+x_2\end{array}\right)\,.$$

Si $M = \begin{pmatrix} -5 & 10 \\ -2 & 7 \end{pmatrix}$ est la matrice de T par rapport à la base $\mathcal{B} = \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \right\}$, telle que $\left[T(\vec{v}) \right]_{\mathcal{B}} = M \left[\vec{v} \right]_{\mathcal{B}}$ pour tout $\vec{v} \in \mathbb{R}^2$, alors

 $b_1 = 2, b_2 = 1.$

 $b_1 = 1, \quad b_2 = 2.$

 $b_1 = -2, b_2 = 1.$

 $b_1 = 1, \quad b_2 = -2.$

Question [q:MC-calc-matrice]: Soit $T:\mathcal{M}_{2\times 2}(\mathbb{R})\to\mathcal{M}_{2\times 2}(\mathbb{R})$ l'application linéaire définie par

$$T\left(\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\right)=\left(\begin{array}{cc}a-d&b+c\\c-b&a+d\end{array}\right).$$

La matrice M de T par rapport à la base $\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$, telle que $[T(A)]_{\mathcal{B}} = M[A]_{\mathcal{B}}$ pour tout $A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$, est

 $\blacksquare M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$

 $\square M = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \end{pmatrix}.$

Question [q:MC-calc-rank]: Soit A une matrice de taille $m \times n$. Soit W le sous-espace vectoriel de \mathbb{R}^m défini par

 $W = \{ \vec{w} \in \mathbb{R}^m \mid \text{il existe } \vec{v} \in \mathbb{R}^n \text{ tel que } A\vec{v} = \vec{w} \}$.

Si $\dim(W) = k$, alors

 $\dim(\operatorname{Ker} A^T) = m - k.$

Question [q:MC-calc-base-ker]: Soit $T: \mathbb{R}^4 \to \mathbb{R}^4$ l'application linéaire définie par

$$T\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}\right) = \begin{pmatrix} x_1 + 2x_2 - 3x_3 + 4x_4 \\ 2x_1 + x_2 - x_4 \\ 3x_1 + x_2 + x_3 - 3x_4 \\ x_2 - 2x_3 + 3x_4 \end{pmatrix}.$$

Alors

Question [q:MC-calc-base-im]: Soit $T: \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire définie par

$$\begin{split} T(\vec{e}_1) &= 6\vec{e}_1 + 12\vec{e}_2 - 3\vec{e}_3 \,, \qquad \qquad T(\vec{e}_2) = 2\vec{e}_1 + 4\vec{e}_2 - \vec{e}_3 \,, \\ T(\vec{e}_3) &= 8\vec{e}_1 + 12\vec{e}_2 - 8\vec{e}_3 \,, \qquad \qquad T(\vec{e}_4) = 8\vec{e}_1 + 10\vec{e}_2 - 10\vec{e}_3 \,, \end{split}$$

où $\{\vec{e}_1,\vec{e}_2,\vec{e}_3,\vec{e}_4\}$ et $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$ sont les bases canoniques de \mathbb{R}^4 et \mathbb{R}^3 respectivement. Alors

Question [q:MC-calc-passage] : Soient

$$\mathcal{B} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \right\} \quad \text{et} \quad \mathcal{C} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \right\}$$

deux bases de \mathbb{R}^3 . Alors la matrice de passage P de la base \mathcal{B} vers la base \mathcal{C} , telle que $[\vec{x}]_{\mathcal{C}} = P[\vec{x}]_{\mathcal{B}}$ pour tout $\vec{x} \in \mathbb{R}^3$, est

$$\square P = \begin{pmatrix} 2 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}. \qquad \square P = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

$$\blacksquare P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix}. \qquad \square P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & -1 \\ 1 & 1 & -2 \end{pmatrix}.$$

Question [MC-calc-valeurs-propres]: Soit

$$A = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 0 & -1 & 3 & 6 \\ 0 & -5 & 15 & 18 \\ 0 & 2 & -6 & -6 \end{array}\right).$$

Les valeurs propres de A sont

-1, 15, -6 et 2.

2, 6, 0.

-2, 2 et 0.

Question [MC-calc-vecteurs-propres]: Soit A la matrice suivante

$$A = \left(\begin{array}{rrr} 3 & -2 & 1 \\ -2 & 3 & 1 \\ 0 & 0 & 5 \end{array} \right).$$

Alors une base de $\{\vec{x} \in \mathbb{R}^3 \mid A\vec{x} = 5\vec{x}\}$ est donnée par

 $\square \left\{ \left(\begin{array}{c} 1\\0\\2 \end{array}\right), \left(\begin{array}{c} 0\\-1\\2 \end{array}\right) \right\}.$

 $\square \left\{ \left(\begin{array}{c} 0 \\ -1 \\ 2 \end{array} \right), \left(\begin{array}{c} 1 \\ -1 \\ 0 \end{array} \right) \right\}.$

 $\square \left\{ \begin{pmatrix} 1\\0\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\}.$

 $\blacksquare \left\{ \left(\begin{array}{c} 1\\0\\2 \end{array}\right), \left(\begin{array}{c} 1\\-1\\0 \end{array}\right) \right\}.$

Question [q:MC-calc-proj-ortho]: Soient

$$\vec{v} = \begin{pmatrix} 0\\9\\0\\-18 \end{pmatrix} \quad \text{et} \quad W = \text{Vect} \left\{ \begin{pmatrix} 2\\-2\\0\\1 \end{pmatrix}, \begin{pmatrix} 4\\-4\\6\\2 \end{pmatrix} \right\}.$$

Si \mathbb{R}^4 est muni du produit scalaire canonique, alors la projection orthogonale de \vec{v} sur W est

 $\blacksquare \begin{pmatrix} -8 \\ 8 \\ 0 \\ 4 \end{pmatrix}.$

 $\square \left(\begin{array}{c} -12\\12\\-6\\c \end{array} \right).$

 $\square \left(\begin{array}{c} -360 \\ 360 \\ -432 \\ 100 \end{array} \right).$

 $\square \left(\begin{array}{c} 8\\1\\0\\14\end{array}\right).$

Question [MC-calc-moindre-carres]: Soient

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ 1 & -1 \end{pmatrix} \quad \text{et} \quad \vec{b} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}.$$

Alors la solution au sens des moindres carrés $\hat{x} = \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}$ de l'équation $A\vec{x} = \vec{b}$ satisfait

- $\hat{x}_1 = 10/7, \qquad \hat{x}_2 = 12/7.$
- $\widehat{x}_1 = 12/7, \qquad \widehat{x}_2 = -10/7.$

- $\widehat{x}_1 = -10/7, \qquad \widehat{x}_2 = 12/7.$

Question [q:MC-calc-orth	o-diag]: La matric	e symétrique $A = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ est diagonalisable
en base orthonormée et peu et D une matrice diagonale.		\	- /
Si $d_{11} > 0$, alors un choix po	ssible pour Q est		
			$\left(\frac{2/\sqrt{5}}{1/\sqrt{5}}\right)$.
	$\left(\frac{5}{5}\right)$.		$\left(\frac{1}{\sqrt{5}}\right)$.
Question [q:MC-theory-de	t]: Soit A une matr $k = \det ((A + I_n))$		
Alors			
$ k = 2 \det(A). $		$ k = 2^n \det(A). $	
$ k = 4 \det(A). $		$k = 4^n \det(A).$	
Question [q:MC-theory-sy il est toujours vrai que	st-lineaire]: Soit	A une matrice de taille n	$n \times n$ avec $m < n$. Alors
$A\vec{x} = A\vec{c}$ possède une i	nfinité de solutions po	our tout choix de $\vec{c} \in \mathbb{R}^n$.	
	unique solution pour t	out choix de $\vec{c} \in \mathbb{R}^n$.	
$A\vec{x} = \vec{b}$ possède au moi $A^T \vec{y} = \vec{0}$ possède une s		tout choix de $\vec{b} \in \mathbb{R}^m$.	
$\begin{aligned} \mathcal{E}_2 &= \left\{a_0 - \mathcal{E}_3 \right\} \\ \mathcal{E}_3 &= \left\{a_0 - \mathcal{E}_3 - \mathcal{E}_3 \right\} \end{aligned}$	$\begin{split} &+ a_1 t + a_2 t^2 \in \mathbb{P}_2(\mathbb{R}) \mid \\ &+ a_1 t + a_2 t^2 \in \mathbb{P}_2(\mathbb{R}) \mid \\ &+ a_1 t + a_2 t^2 \in \mathbb{P}_2(\mathbb{R}) \mid \end{split}$	i les quatre sous-ensembl $a_0, a_1, a_2 \in \mathbb{R} \text{ et } a_1 = 0 \}$ $a_0, a_1, a_2 \in \mathbb{R} \text{ et } a_2 = a_0 \in a_0, a_1, a_2 \in \mathbb{R} \text{ et } a_1 = a_2 \in a_0, a_1, a_2 \in \mathbb{R} \text{ et } a_1 = a_2 \in a_0, a_1, a_2 \in \mathbb{R} \text{ et } a_0^2 = a_1^2 \}$	$\left\{ +a_{1}\right\} ,$ $\left\{ +3\right\} ,$
combien sont des sous-espace			
□ 1.	2.	3.	<u> </u>
Question [q:MC-theory-di	agonalisable]: Soi	t A une matrice de taille	$n \times n$ diagonalisable.
Si toutes les valeurs propres	de A sont non nulles,	alors il est toujours vrai	que
\Box A^T et A^{-1} ne sont pas	forcément diagonalisa	ables.	
	mais A^T n'est pas fo	rcément diagonalisable.	
A^T et A^{-1} sont diagon	alisables.		

 $\hfill A^T$ est diagonalisable, mais A^{-1} n'est pas forcément diagonalisable.

Question [q:MC-theory-diagonalisation]: Soient A et B deux matrices carrées de taille $n \times n$
et soit $\{\vec{v}_1, \dots, \vec{v}_n\}$ une base de \mathbb{R}^n formée de vecteurs propres de A .
Si $\vec{v}_1, \dots, \vec{v}_n$ sont aussi des vecteurs propres de la matrice AB , alors il est toujours vrai que
\square le déterminant de B est non-nul.
\square si B est inversible, alors B est diagonalisable.
\square si A est inversible, alors $AB \neq BA$.
si A est inversible, alors B est diagonalisable.
Question [q:MC-theory-moindres-carres]: Soit A une matrice de taille $m \times n$ et soit $\vec{b} \in \mathbb{R}^m$. Soit $\vec{w} \in \mathbb{R}^n$ une solution du système linéaire $(A^TA)\vec{x} = A^T\vec{b}$. Alors il est toujours vrai que
$\ \vec{b} - A\vec{w}\ \le \ \vec{b} - A\vec{u}\ $ pour tout $\vec{u} \in \mathbb{R}^n$.
$\ \ \ \ \ \ \ \ \ \ \ \ \ $
\square la matrice A^TA est inversible.
Question [q:MC-theory-matrice-orthogonale]: Soit A une matrice de taille $n \times n$. Si A est orthogonale, laquelle des affirmations suivantes n'est pas forcément vraie? $A^T = A^T $

Deuxième partie, questions de type ouvert

- Cette partie comporte les questions 23 et 24.
- Répondre dans l'espace dédié en utilisant un stylo (ou feutre fin) noir ou bleu foncé.
- Votre réponse doit être soigneusement justifiée: toutes les étapes de votre raisonnement doivent figurer dans votre réponse.
- Laisser libres les cases à cocher: elles sont réservées au correcteur.

Question 1 : Cette question est notée sur 10 points.

Soit A une matrice 4×4 telle que

• Le noyau de
$$A$$
 est $\left\{ t \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}, t \in \mathbb{R} \right\}$

$$\bullet \text{ La factorisation } LU \text{ de } A + 2I_4 \text{ est donn\'ee par} \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{array} \right) \left(\begin{array}{ccccc} 0 & 9 & -9/2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 10/9 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

• L'image de
$$\begin{pmatrix} 2\\0\\-2\\2 \end{pmatrix}$$
 par A est $\begin{pmatrix} 1\\0\\-1\\1 \end{pmatrix}$

Sans calculer explicitement la matrice A ni la matrice P^{-1} :

(a) Calculer les valeurs propres de A, ainsi qu'une base de chaque espace propre. (6 points)

() Justifier les étapes en (a). (2 points)

(b) Calculer les matrices P et D telles que $A = PDP^{-1}$ et D est diagonale. (2 points)

Question 1 : Cette question est notée sur 6 points.

Soit V un espace vectoriel réel.

- (a) Donner la définition d'un produit scalaire (,) dans V. (2 points)
- (b) Donner la définition de norme associé à un produit scalaire. (2 points)
- (c) Prouver le Théorème de Pythagore: pour tout $u, v \in V$ (2 points) $(u, v) = 0 \iff ||u||^2 + ||v||^2 = ||u v||^2$

