24

Contents

				/.	2 Suffix Array
1	Basi		1		3 Suffix Automaton
	1.1	vimrc	1	7.	
	1.2	Debue Macro	1	7.	5 Z value
	1.3	Increase Stack	1	7.	6 Manacher
	1.4	Pragma Optimization	2	7.	7 Lexico Smallest Rotation
		• ,	2	7.	8 BWT
	1.5	IO Optimization	2	7.	
_	D	Character and the control of the con	_		
2		a Structure	2	8 M	isc 21
	2.1	Dark Magic	2		Theorems
	2.2	Link-Cut Tree	2	0.	
	2.3	LiChao Segment Tree	2		8.1.1 Kirchhoff's Theorem
		Treap	3		8.1.2 Tutte's Matrix
		·			8.1.3 Cayley's Formula
	2.5	Sparse Table	3		8.1.4 Erdős-Gallai theorem
	2.6	Linear Basis	3		8.1.5 Havel-Hakimi algorithm
7	Grap	nh	3		8.1.6 Hall's marriage theorem
J					8.1.7 Euler's planar graph formula
		BCC Edge	3		8.1.8 Pick's theorem
	3.2	BCC Vertex	4		8.1.9 Lucas's theorem
	3.3	2-SAT (SCC)	4		
		Lowbit Decomposition	4		
				8.	2 DP-opt Condition
	5.5	MaxClique	5		8.2.1 totally monotone (concave/convex)
	3.6	MaxCliqueDyn	5		8.2.2 monge condition (concave/convex)
	3.7	Virtural Tree	6	8.	3 Convex 1D/1D DP
		Centroid Decomposition	6	8.	
		·	_		•
		Tree Hashing	6	8.	· · · · · · · · · · · · · · · · · · ·
	3.10	Minimum Mean Cycle	6	8.	· · · · · · · · · · · · · · · · · · ·
	3.11	Mo's Algorithm on Tree	7	8.	7 DLX 23
		Minimum Steiner Tree	7	8.	8 Tree Knapsack
					9 N Queens Problem
		Directed Minimum Spanning Tree	7		~
		Dominator Tree	8	8.	10 Aliens Optimization
	3.15	Edge Coloring	8	_	
				1	Basic
4	Mate	ching & Flow	8	•	Bacic
7				1.1	vimrc
		Kuhn Munkres	8	1.1	VIIIIC
	4.2	Bipartite Matching	9	١ ٥ ٠	is no rou ho-2 ru mouss-s speeding-u+f 0
	4.3	General Graph Matching	9	1	is nu rnu bs=2 ru mouse=a encoding=utf-8
		Minimum Weight Matching (Clique version)	10	se o	cin et sw=4 sts=4 t_Co=256 tgc sc hls ls=2
				syn	on
		Minimum Cost Circulation	10	-	
	4.6	Flow Models	10		orscheme desert
	4.7	Dinic	11	file	etype indent on
	4 8	Minimum Cost Maximum Flow	11	ino	remap { <cr> {<cr>}<esc>0</esc></cr></cr>
		Global Min-Cut	12		<f8> <esc>:w<cr>:!g++ "%" -o "%<" -02 -std=c++17 -</cr></esc></f8>
	4.5	Global Mill-Cot	12	map	
_					DKISEKI -Wall -Wextra -Wshadow -Wfatal-errors -
5	Matl	n	12		Wconversion -fsanitize=address -fsanitize=undefined
	5.1	Prime Table	12		
	5.2	$ \frac{n}{2} $ Enumeration	12		-g && echo success <cr></cr>
				map	<pre><f9> <esc>:w<cr>:!g++ "%" -o "%<" -02 -std=c++17 -</cr></esc></f9></pre>
		ax+by=gcd	12	_	DKISEKI && echo success <cr></cr>
	5.4	Pollard Rho	12		
	5.5	Pi Count (Linear Sieve)	12	map	<f10> <esc>:!./"%<"<cr></cr></esc></f10>
	5.6	Strling Number	12		
		5.6.1 First Kind	12	1.2	Debue Macro
				1.2	Deboe i idei o
		5.6.2 Second Kind	13	#ife	def KISEKI
	5.7	Range Sieve	13		
	5.8	Miller Rabin	13		fine safe cerr< <pretty_function\< td=""></pretty_function\<>
		Inverse Element	13	< -	<" line "< <line<<" safe\n"<="" td=""></line<<">
				#det	fine debug(a) qwerty(#a, a)
		Extended Euler	13		
	5.11	Gauss Elimination	13		fine orange(a) dvorak(#a, a)
	5.12	Fast Fourier Transform	13	usi	ng std::cerr;
		Chinese Remainder	14		plate <typenamet></typenamet>
		Berlekamp Massey			
		, •	14		d qwerty(const char *s, Ta) {
		NTT	14	C	err << "\e[1;32m(" << s << ") = (";
		Polynomial Operations	14		nt cnt = sizeof(T);
	5.17	FWT	15		, (cerr << a << (cnt ? ", " : ")\e[0m\n")));
		DiscreteLog	15	, ,	, (oci a (ciic : , .)(c[oiii(ii))),
		FloorSum	16	}	
				tem	olate <typename iter=""></typename>
		Quadratic residue	16		d dvorak(const char *s, Iter L, Iter R) {
	5.21	De-Bruijn	16	VO10	a dvorak(const char "s, itel L, itel k) (
	5.22	Simplex Construction	16		err << "\e[1;32m[" << s << "] = [";
		Simplex	16	l fo	or (int f = 0; L != R; ++L)
	2.23		.5	1	cerr << (f++ ? ", " : "") << *L;
,	_				11.10.
O		motru	17	ı ce	err << "]\e[0m\n";
		metry	17		
	6.1	Basic Geometry	17 17	}	
	6.1	<u> </u>		}	se
	6.1 6.2	Basic Geometry	17 17	} #els	
	6.1 6.2 6.3	Basic Geometry	17 17 17	} #els	fine safe ((void)0)
	6.1 6.2 6.3 6.4	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull	17 17 17 17	} #els	fine safe ((void)0)
	6.1 6.2 6.3 6.4 6.5	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair	17 17 17 17 18	} #els #det	fine safe ((void)0) fine debug() ((void)0)
	6.1 6.2 6.3 6.4 6.5	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull	17 17 17 17	#els #det #det	<pre>fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0)</pre>
	6.1 6.2 6.3 6.4 6.5 6.6	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair 2D Closest Pair	17 17 17 17 18	} #els #det	<pre>fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0)</pre>
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair 2D Closest Pair kD Closest Pair (3D ver.)	17 17 17 17 18 18 18	#els #det #det	<pre>fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0)</pre>
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair 2D Closest Pair kD Closest Pair (3D ver.) Simulated Annealing	17 17 17 17 18 18 18	#els #det #det #det #end	<pre>fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0) dif</pre>
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair 2D Closest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection	17 17 17 17 18 18 18 18	#els #det #det	<pre>fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0)</pre>
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair 2D Closest Pair kD Closest Pair (3D ver.) Simulated Annealing	17 17 17 17 18 18 18	#els #det #det #det #end	fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0) dif Increase Stack
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair 2D Closest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection	17 17 17 17 18 18 18 18	#els #det #det #det #end 1.3	<pre>fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0) dif Increase Stack st int size = 256 << 20;</pre>
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair 2D Closest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski sum intersection of line and circle	17 17 17 17 18 18 18 18 18 18	#els #det #det #end 1.3 cons	<pre>fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0) dif Increase Stack st int size = 256 << 20; ister long rsp asm("rsp");</pre>
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair 2D Closest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski sum intersection of line and circle intersection of polygon and circle	17 17 17 17 18 18 18 18 18 18 19	#els #det #det #end 1.3 cons	<pre>fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0) dif Increase Stack st int size = 256 << 20; ister long rsp asm("rsp");</pre>
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair 2D Closest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski sum intersection of line and circle intersection of two circle	17 17 17 18 18 18 18 18 18 19 19	#els #det #det #end 1.3 cons reg: chai	<pre>fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0) dif Increase Stack st int size = 256 << 20; ister long rsp asm("rsp"); r *p = (char*)malloc(size)+size, *bak = (char*)rsp;</pre>
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair 2D Closest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski sum intersection of line and circle intersection of polygon and circle	17 17 17 17 18 18 18 18 18 18 19	#det #det #det #end 1.3 cons reg: chai	<pre>fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0) dif Increase Stack st int size = 256 << 20; ister long rsp asm("rsp"); r *p = (char*)malloc(size)+size, *bak = (char*)rsp; sm("movq %0, %%rsp\n"::"r"(p));</pre>
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14	Basic Geometry Circle Class 2D Convex Hull 3D Convex Hull 2D Farthest Pair 2D Closest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski sum intersection of line and circle intersection of two circle	17 17 17 18 18 18 18 18 18 19 19	#det #det #det #end 1.3 cons reg: chair _as // r	<pre>fine safe ((void)0) fine debug() ((void)0) fine orange() ((void)0) dif Increase Stack st int size = 256 << 20; ister long rsp asm("rsp"); r *p = (char*)malloc(size)+size, *bak = (char*)rsp;</pre>

7 Stringology

1.4 Pragma Optimization

```
#pragma GCC target("sse,sse2,sse3,ssse3,sse4")
#pragma GCC target("popcnt,abm,mmx,avx,tune=native")
1.5 IO Optimization
static inline int gc() {
  constexpr int B = 1 << 20;
  static char buf[B], *p, *q;
  if(p == a \&\&
    (q=(p=buf)+fread(buf,1,B,stdin)) == buf)
   return EOF;
  return *p++;
template < typename T >
static inline bool gn( T &x ) {
 int c = gc(); T sgn = 1; x = 0;
while(('0'>c||c>'9') && c!=EOF && c!='-') c = gc();
if(c == '-') sgn = -1, c = gc();
 if(c == EOF) return false;
 while('0'<=c&&c<='9') x = x*10 + c - '0', c = gc();
 return x *= sgn, true;
```

#pragma GCC optimize("Ofast,no-stack-protector")

#pragma GCC optimize("no-math-errno,unroll-loops")

2 Data Structure

2.1 Dark Magic

2.2 Link-Cut Tree

p->ch[dir]=c;

```
struct Node{
Node *par, *ch[2];
int xor_sum, v;
bool is_rev;
Node(int _v){
 v=xor_sum=_v;is_rev=false;
 par=ch[0]=ch[1]=nullptr;
inline void set_rev(){is_rev^=1;swap(ch[0],ch[1]);}
inline void down(){
 if(is_rev){
  if(ch[0]!=nullptr) ch[0]->set_rev();
   if(ch[1]!=nullptr) ch[1]->set_rev();
   is_rev=false;
 }
inline void up(){
 xor_sum=v;
  if(ch[0]!=nullptr){
  xor_sum^=ch[0]->xor_sum;
  ch[0]->par=this;
 if(ch[1]!=nullptr){
  xor_sum^=ch[1]->xor_sum;
  ch[1]->par=this;
inline bool is_root(){
 return par==nullptr ||\
   (par->ch[0]!=this && par->ch[1]!=this);
bool is_rch(){return !is_root() && par->ch[1]==this;}
} *node[maxn], *stk[maxn];
int top;
void to_child(Node* p,Node* c,bool dir){
```

```
p->up();
inline void rotate(Node* node){
 Node* par=node->par;
 Node* par_par=par->par;
 bool dir=node->is_rch()
 bool par_dir=par->is_rch()
 to_child(par, node->ch[!dir], dir);
 to_child(node,par,!dir);
 if(par_par!=nullptr && par_par->ch[par_dir]==par)
  to_child(par_par,node,par_dir);
 else node->par=par_par;
inline void splay(Node* node){
 Node* tmp=node;
 stk[top++]=node;
 while(!tmp->is_root()){
  tmp=tmp->par;
  stk[top++]=tmp;
 while(top) stk[--top]->down();
 for(Node *fa=node->par;
  !node->is_root();
  rotate(node), fa=node->par)
  if(!fa->is_root())
   rotate(fa->is_rch()==node->is_rch()?fa:node);
inline void access(Node* node){
 Node* last=nullptr;
 while(node!=nullptr){
  splay(node);
  to_child(node, last, true);
  last=node;
  node=node->par;
inline void change_root(Node* node){
 access(node);splay(node);node->set_rev();
inline void link(Node* x, Node* y){
 change_root(x);splay(x);x->par=y;
inline void split(Node* x,Node* y){
 change_root(x);access(y);splay(x);
 to_child(x,nullptr,true);y->par=nullptr;
inline void change_val(Node* node,int v){
access(node);splay(node);node->v=v;node->up();
inline int query(Node* x,Node* y){
 change_root(x);access(y);splay(y);
 return y->xor_sum;
inline Node* find_root(Node* node){
 access(node);splay(node);
 Node* last=nullptr:
 while(node!=nullptr){
  node->down();last=node;node=node->ch[0];
 return last;
set<pii> dic;
inline void add_edge(int u,int v){
 if(u>v) swap(u,v)
 if(find_root(node[u])==find_root(node[v])) return;
 dic.insert(pii(u,v))
link(node[u],node[v]);
inline void del_edge(int u,int v){
 if(u>v) swap(u,v);
 if(dic.find(pii(u,v))==dic.end()) return;
 dic.erase(pii(u,v))
 split(node[u],node[v]);
2.3 LiChao Segment Tree
struct Line{
 int m, k, id;
 Line() : id( -1 ) {}
Line('int a, int'b,'int c')
: m(a), k(b), id(c) {}
```

int at(int x) { return m * x + k; }

```
private:
class LiChao {
                                                               vector< vector< T > > tbl;
 private:
                                                               vector< int > lg;
                                                               T cv(Ta, Tb) {
  int n; vector< Line > nodes;
  inline int lc( int x ) { return 2 * x + 1; }
                                                                return Cmp_()( a, b ) ? a : b;
  inline int rc( int x ) { return 2 * x + 2; }
  void insert( int 1, int r, int id, Line ln ) {
                                                              public:
   int m = (1 + r) >> 1;
                                                               void init( T arr[], int n ) {
   if ( nodes[ id ].id == -1 ) {
                                                                // 0-base
    nodes[ id ] = ln;
                                                                lg.resize(n+1);
                                                                lg[0] = -1;
    return:
                                                                for( int i=1 ; i<=n ; ++i ) lg[i] = lg[i>>1] + 1;
   bool atLeft = nodes[ id ].at( 1 ) < ln.at( 1 );</pre>
                                                                tbl.resize(lg[n] + 1);
   if ( nodes[ id ].at( m ) < ln.at( m ) ) {</pre>
                                                                tbl[ 0 ].resize( n );
                                                                copy( arr, arr + n, tbl[ 0 ].begin() );
    atLeft ^= 1; swap( nodes[ id ], ln );
                                                                for ( int i = 1 ; i <= lg[ n ] ; ++ i ) {
  int len = 1 << ( i - 1 ), sz = 1 << i;</pre>
   if ( r - l == 1 ) return;
                                                                 tbl[ i ].resize( n - sz + 1 );
   if ( atLeft ) insert( l, m, lc( id ), ln );
                                                                 for (int_j = 0; j \le n - sz; ++ j
   else insert( m, r, rc( id ), ln );
                                                                  tbl[i][j] = cv(tbl[i-1][j], tbl[i-1][j+len]);
  int query( int 1, int r, int id, int x ) {
   int ret = 0;
   if ( nodes[ id ].id != -1 )
                                                               T query( int 1, int r ) {
                                                                // 0-base [1, r)
    ret = nodes[ id ].at( x );
                                                                int wh = lg[r - 1], len = 1 << wh;
return cv( tbl[ wh ][ 1], tbl[ wh ][ r - len ] );</pre>
   int m = (1 + r) >> 1;
   if ( r - l == 1 ) return ret;
   else if (x < m )
    return max( ret, query( 1, m, lc( id ), x ) );
   else
                                                              2.6 Linear Basis
    return max( ret, query( m, r, rc( id ), x ) );
                                                              template <int BITS>
 public:
                                                              struct LinearBasis {
  void build( int n_ ) {
                                                               array<uint64_t, BITS> basis;
  n = n_; nodes.clear();
                                                               Basis() { basis.fill(0); }
   nodes.resize( n << 2, Line() );</pre>
                                                               void add(uint64_t x)
                                                                for (int i = 0; i < BITS; ++i) if ((x >> i) & 1) {
  void insert( Line ln ) { insert( 0, n, 0, ln ); }
                                                                 if (basis[i] == 0) {
  int query( int x ) { return query( 0, n, 0, x ); }
                                                                  basis[i] = x;
} lichao;
                                                                  return:
2.4 Treap
                                                                 x ^= basis[i];
namespace Treap{
                                                                }
 #define sz( x ) ( ( x ) ? ( ( x )->size ) : 0 )
 struct node{
                                                               bool ok(uint64_t x) {
  int size;
                                                                for (int i = 0; i < BITS; ++i)</pre>
  uint32_t pri;
                                                                 if ((x >> i) & 1) x ^= basis[i];
 node *lc, *rc;
node() : size(0), pri(rand()), lc(0), rc(0) {}
                                                                return x == 0;
  void pull() {
                                                              };
  size = 1;
   if ( lc ) size += lc->size;
                                                              3
                                                                   Graph
   if ( rc ) size += rc->size;
  }
                                                              3.1 BCC Edge
 node* merge( node* L, node* R ) {
  if ( not L or not R ) return L ? L : R;
                                                              class BCC_Bridge {
                                                               private:
  if ( L->pri > R->pri ) {
                                                                int n, ecnt;
  L->rc = merge( L->rc, R ); L->pull();
                                                                vector<vector<pair<int,int>>> G;
   return L;
                                                                vector<int> dfn, low;
  } else {
                                                                vector<bool> bridge;
                                                                void dfs(int u, int f) {
  dfn[u] = low[u] = dfn[f] + 1;
   R->lc = merge( L, R->lc ); R->pull();
   return R;
                                                                 for (auto [v, t]: G[u]) {
                                                                  if (v == f) continue;
if (dfn[v]) {
 }
 void split_by_size( node*rt,int k,node*&L,node*&R ) {
 if ( not rt ) L = R = nullptr;
                                                                   low[u] = min(low[u], dfn[v]);
  else if( sz( rt->lc ) + 1 <= k ) {
                                                                   continue;
                                                                  dfs(v, u);
low[u] = min(low[u], low[v]);
   split_by_size( rt->rc,k-sz(rt->lc)-1,L->rc,R );
   L->pull();
                                                                  if (low[v] > dfn[u]) bridge[t] = true;
  } else {
   R = rt:
   split_by_size( rt->lc, k, L, R->lc );
   R->pull();
                                                               public:
  }
                                                                void init(int n_) {
                                                                 G.clear(); G.resize(n = n_);
 #undef sz
                                                                 low.assign(n, ecnt = 0);
                                                                 dfn.assign(n, 0);
2.5 Sparse Table
                                                                void add_edge(int u, int v) {
template < typename T, typename Cmp_ = less< T > >
                                                                 G[u].emplace_back(v, ecnt);
                                                                 G[v].emplace_back(u, ecnt++);
class SparseTable {
```

```
void init(int n_){
  void solve() {
                                                                  n=n_;G.clear();G.resize(n);
   bridge.assign(ecnt, false);
                                                                   rG.clear();rG.resize(n);
   for (int i = 0; i < n; ++i)</pre>
                                                                   sccs.clear();ord.clear();
    if (not dfn[i]) dfs(i, i);
                                                                  idx.resize(n);result.resize(n);
  bool is_bridge(int x) { return bridge[x]; }
                                                                 void add_edge(int u,int v){
} bcc_bridge;
                                                                  G[u].push_back(v);rG[v].push_back(u);
3.2 BCC Vertex
                                                                 void orr(int x,int y){
class BCC_AP {
                                                                  if ((x^y)==1) return
                                                                   add_edge(x^1,y); add_edge(y^1,x);
 private:
  int n, ecnt;
  vector<vector<pair<int,int>>> G;
                                                                 bool solve(){
                                                                  vis.clear();vis.resize(n);
  vector<int> bcc, dfn, low, st;
  vector<bool> ap, ins;
void dfs(int u, int f)
                                                                  for(int i=0;i<n;++i)</pre>
                                                                   if(not vis[i])dfs(i);
   dfn[u] = low[u] = dfn[f] + 1;
                                                                   reverse(ord.begin(),ord.end());
   int ch = 0;
                                                                  for (int u:ord){
   for (auto [v, t]: G[u]) if (v != f) {
                                                                    if(!vis[u])continue;
    if (not ins[t]) {
                                                                   sccs.push_back(vector<int>());
     st.push_back(t);
                                                                   rdfs(u);
     ins[t] = true;
                                                                  for(int i=0;i<n;i+=2)</pre>
    if (dfn[v]) {
                                                                   if(idx[i]==idx[i+1])
     low[u] = min(low[u], dfn[v]);
                                                                    return false;
                                                                   vector<bool> c(sccs.size());
     continue:
    } ++ch; dfs(v, u);
                                                                   for(size_t i=0;i<sccs.size();++i){</pre>
                                                                   for(size_t j=0;j<sccs[i].size();++j){
  result[sccs[i][j]]=c[i];</pre>
    low[u] = min(low[u], low[v]);
    if (low[v] >= dfn[u]) {
     ap[u] = true;
                                                                     c[idx[sccs[i][j]^1]]=!c[i];
     while (true) {
                                                                   }
      int eid = st.back(); st.pop_back();
                                                                  }
      bcc[eid] = ecnt;
                                                                  return true;
      if (eid == t) break;
                                                                 bool get(int x){return result[x];}
                                                                 inline int get_id(int x){return idx[x];}
     ecnt++;
    }
                                                                 inline int count(){return sccs.size();}
   if (ch == 1 and u == f) ap[u] = false;
                                                               3.4 Lowbit Decomposition
 public:
                                                               class LowbitDecomp{
  void init(int n_) {
                                                               private:
   G.clear(); G.resize(n = n_);
                                                                int time_, chain_, LOG_N;
                                                                vector< vector< int > > G, fa;
vector< int > tl, tr, chain, chain_st;
   ecnt = 0; ap.assign(n, false);
   low.assign(n, 0); dfn.assign(n, 0);
                                                                // chain_ : number of chain
                                                                // tl, tr[ u ] : subtree interval in the seq. of u // chain_st[ u ] : head of the chain contains u
  void add_edge(int u, int v) {
   G[u].emplace_back(v, ecnt);
                                                                // chian[ u ] : chain id of the chain u is on
   G[v].emplace_back(u, ecnt++);
                                                                void predfs( int u, int f ) {
  void solve() {
                                                                 chain[ u ] = 0;
                                                                 for ( int v : G[ u ] ) {
   ins.assign(ecnt, false);
                                                                  if ( v == f ) continue;
   bcc.resize(ecnt); ecnt = 0;
   for (int i = 0; i < n; ++i)
if (not dfn[i]) dfs(i, i);</pre>
                                                                  chain[ u ] = chain[ v ];
  int get_id(int x) { return bcc[x]; }
  int count() { return ecnt; }
                                                                 if ( not chain[ u ] )
  bool is_ap(int x) { return ap[x]; }
                                                                  chain[ u ] = chain_ ++;
} bcc_ap;
                                                                void dfschain( int u, int f ) {
3.3 2-SAT (SCC)
                                                                 fa[ u ][ 0 ] = f;
                                                                 for ( int i = 1 ; i < LOG_N ; ++ i )
fa[u][i] = fa[fa[u][i-1]][i-1];
class TwoSat{
 private:
                                                                 tl[ u ] = time_++;
  int n:
  vector<vector<int>> rG,G,sccs;
                                                                 if ( not chain_st[ chain[ u ] ] )
                                                                  chain_st[ chain[ u ] ] = u;
  vector<int> ord,idx;
  vector<bool> vis,result;
                                                                 for ( int v : G[ u ] )
  if ( v != f and chain[ v ] == chain[ u ] )
  void dfs(int u){
                                                                 dfschain( v, u );
for ( int v : G[ u ] )
   vis[u]=true
   for(int v:G[u])
                                                                  if ( v != f and chain[ v ] != chain[ u ] )
    if(!vis[v]) dfs(v);
                                                                   dfschain( v, u );
   ord.push_back(u);
                                                                 tr[ u ] = time_;
  void rdfs(int u){
                                                                bool anc( int u, int v ) {
  return tl[ u ] <= tl[ v ] and tr[ v ] <= tr[ u ];
   vis[u]=false;idx[u]=sccs.size()-1;
   sccs.back().push_back(u);
   for(int v:rG[u])
    if(vis[v])rdfs(v);
                                                               public:
                                                                int lca( int u, int v ) {
 public:
                                                                 if ( anc( u, v ) ) return u;
```

```
for ( int i = LOG_N - 1 ; i >= 0 ; -- i )
                                                                    for ( size_t u = cur._Find_first() ;
   if ( not anc( fa[ u ][ i ], v ) )
                                                                     u < n ; u = cur._Find_next( u )</pre>
    u = fa[ u ][ i ];
                                                                      if ( deg[ u ] > sz ) sz = deg[ pivot = u ];
                                                                    cur = P & ( ~G[ pivot ] );
  return fa[ u ][ 0 ];
                                                                    */ // or simply choose first
                                                                    bits cur = P & (~G[ ( P | X )._Find_first() ]);
 void init( int n ) {
 fa.assign( ++n, vector< int >( LOG_N ) ); for ( LOG_N = 0 ; ( 1 << LOG_N ) < n ; ++ LOG_N );
                                                                    for ( size_t u = cur._Find_first()
                                                                     u < n ; u = cur._Find_next( u ) ) {
 G.clear(); G.resize( n );
                                                                     if ( R[ u ] ) continue;
 tl.assign( n, 0 ); tr.assign( n, 0 ); chain.assig( n, 0 ); chain_st.assign( n, 0 );
                                                                     R[u] = 1;
                                                                     BK( R, P & G[ u ], X & G[ u ]);
                                                                     R[u] = P[u] = 0, X[u] = 1;
void add_edge( int u , int v ) {
  // 1-base
 G[ u ].push_back( v );
                                                                 public:
 G[ v ].push_back( u );
                                                                  void init( size_t n_ ) {
void decompose(){
                                                                    for ( size_t i = 0 ; i < n ; ++ i )
                                                                    G[ i ].reset();
 chain_ = 1;
 predfs( 1, 1 );
                                                                    ans.reset();
  time_{-} = 0;
                                                                  void add_edges( int u, bits S ) { G[ u ] = S; }
void add_edge( int u, int v ) {
  G[ u ][ v ] = G[ v ][ u ] = 1;
 dfschain( 1, 1 );
PII get_subtree(int u) { return {tl[ u ],tr[ u ] }; }
vector< PII > get_path( int u , int v ){
 vector< PII > res;
                                                                   int solve() {
  int g = lca( u, v );
                                                                    sort_by_degree(); // or simply iota( deo... )
 while ( chain[ u ] != chain[ g ] ) {
                                                                    for ( size_t i = 0 ; i < n ; ++ i )</pre>
   int s = chain_st[ chain[ u ] ];
res.emplace_back( tl[ s ], tl[ u ] + 1 );
                                                                     deg[ i ] = G[ i ].count();
                                                                    bits pob, nob = 0; pob.set();
   u = fa[ s ][ 0 ];
                                                                    for (size_t i=n; i<MAXN; ++i) pob[i] = 0;</pre>
                                                                    for ( size_t i = 0 ; i < n ; ++ i ) {
    size_t v = deo[ i ];</pre>
  res.emplace_back( tl[ g ], tl[ u ] + 1 );
 while ( chain[ v ] != chain[ g ] ) {
                                                                     bits tmp; tmp[ v ] = 1;
                                                                     BK( tmp, pob & G[ v ], nob & G[ v ] );
  int s = chain_st[ chain[ v ] ];
   res.emplace_back( tl[ s ], tl[ v ] + 1 );
                                                                     pob[ v ] = 0, nob[ v ] = 1;
   v = fa[ s ][ 0 ];
                                                                    return static_cast< int >( ans.count() );
 res.emplace_back( tl[ g ] + 1, tl[ v ] + 1 );
 return res;
  /* res : list of intervals from u to v
                                                                  3.6 MaxCliqueDyn
   * ( note only nodes work, not edge )
   * usage :
                                                                 constexpr int kN = 150;
   * vector< PII >& path = tree.get_path( u , v )
                                                                  struct MaxClique { // Maximum Clique
                                                                  bitset<kN> a[kN], cs[kN];
int ans, sol[kN], q, cur[kN], d[kN], n;
   * for( auto [ 1, r ] : path ) {
* 0-base [ 1, r )
   * }
                                                                   void init(int _n) {
                                                                   n = _n; for (int i = 0; i < n; i++) a[i].reset();
} tree;
                                                                   void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
                                                                   void csort(vector<int> &r, vector<int> &c) {
3.5 MaxClique
                                                                    int mx = 1, km = max(ans - q + 1, 1), t = 0,
m = int(r.size());
// contain a self loop u to u, than u won't in clique
template < size_t MAXN >
                                                                    cs[1].reset(); cs[2].reset();
                                                                    for (int i = 0; i < m; i++) {
  int p = r[i], k = 1;</pre>
class MaxClique{
private:
                                                                     while ((cs[k] & a[p]).count()) k++;
using bits = bitset< MAXN >;
bits popped, G[ MAXN ], ans;
                                                                     if (k > mx) cs[++mx + 1].reset();
 size_t deg[ MAXN ], deo[ MAXN ], n;
                                                                     cs[k][p] = 1
                                                                     if (k < km) r[t++] = p;
void sort_by_degree() {
 popped.reset();
  for ( size_t i = 0 ; i < n ; ++ i )</pre>
                                                                    c.resize(m);
    deg[ i ] = G[ i ].count();
                                                                    if(t) c[t-1] = 0;
 for ( size_t i = 0 ; i < n ; ++ i ) {
    size_t mi = MAXN, id = 0;</pre>
                                                                    for (int k = km; k <= mx; k++) {
  for (int p = int(cs[k]._Find_first());</pre>
    for ( size_t j = 0 ; j < n ; ++ j )</pre>
                                                                          `< kN; p = int(cs[k]._Find_next(p))) {</pre>
      if ( not popped[ j ] and deg[ j ] < mi )</pre>
                                                                      r[t] = p; c[t++] = k;
    mi = deg[id = j];
popped[deo[i] = id] = 1;
    for( size_t u = G[ i ]._Find_first() ;
     u < n ; u = G[ i ]._Find_next( u ) )</pre>
                                                                   void dfs(vector<int> &r, vector<int> &c, int 1,
      -- deg[ u ];
                                                                    bitset<kN> mask) {
                                                                    while (!r.empty()) {
                                                                     int p = r.back(); r.pop_back();
 void BK( bits R, bits P, bits X ) {
                                                                     mask[p] = 0;
 if (R.count()+P.count() <= ans.count()) return;</pre>
                                                                     if (q + c.back() <= ans) return;</pre>
                                                                     cur[q++] = p;
  if ( not P.count() and not X.count() ) {
   if ( R.count() > ans.count() ) ans = R;
                                                                     vector<int> nr, nc;
   return;
                                                                     bitset<kN> nmask = mask & a[p];
                                                                     for (int i : r)
  /* greedily chosse max degree as pivot
                                                                      if (a[p][i]) nr.push_back(i);
                                                                     if (!nr.empty()) {
  bits cur = P | X; size_t pivot = 0, sz = 0;
```

-> **void** {

```
if (1 < 4) {
                                                                    Dist[x].push_back(D);Vis[x] = true;
     for (int i : nr)
                                                                    for (auto [u, w] : g[x]) {
                                                                     if (Vis[u]) continue;
      d[i] = int((a[i] & nmask).count());
     sort(nr.begin(), nr.end(),
                                                                     dfs(dfs, u, D + w);
      [&](int x, int y) {
return d[x] > d[y];
                                                                   };
      });
                                                                   auto Dfs = [&]
                                                                    (auto dfs, int x, int D = 0, int p = -1)->void {
    }
   csort(nr, nc); dfs(nr, nc, 1 + 1, nmask);
} else if (q > ans) {
                                                                    Path.clear(); DfsSz(DfsSz, x);
                                                                    int M = Path.size();
                                                                    int C = -1;
    ans = q; copy(cur, cur + q, sol);
                                                                    for (int u : Path) {
                                                                     if (max(M - sz[u], mx[u]) * 2 <= M) C = u;
   c.pop_back(); q--;
  }
                                                                     Vis[u] = false;
                                                                    DfsDist(DfsDist, C);
 int solve(bitset<kN> mask) { // vertex mask
  vector<int> r, c;
                                                                    for (int u : Path) Vis[u] = false;
  for (int i = 0; i < n; i++)
                                                                    Parent[C] = p; Vis[C] = true;
                                                                    Depth[C] = D;
   if (mask[i]) r.push_back(i);
  for (int i = 0; i < n; i++)</pre>
                                                                    for (auto [u, w] : g[C]) {
                                                                     if (Vis[u]) continue
  d[i] = int((a[i] & mask).count());
  sort(r.begin(), r.end(),
                                                                     dfs(dfs, u, D + 1, C);
   [&](int i, int j) { return d[i] > d[j]; });
  csort(r, c);
  dfs(r, c, 1, mask);
                                                                  Dfs(Dfs, 0); Sub.resize(N); Sub2.resize(N);
  return ans; // sol[0 ~ ans-1]
                                                                   Sz.resize(N); Sz2.resize(N);
                                                                  void Mark(int v) {
} graph;
                                                                  int x = v, z = -1;
for (int i = Depth[v]; i >= 0; --i) {
3.7 Virtural Tree
                                                                    Sub[x] += Dist[v][i]; Sz[x]++;
inline bool cmp(const int &i, const int &j) {
return dfn[i] < dfn[j];</pre>
                                                                    if (z != -1)
                                                                     Sub2[z] += Dist[v][i];
void build(int vectrices[], int k) {
                                                                     Sz2[z]++;
 static int stk[MAX_N];
                                                                    }
 sort(vectrices, vectrices + k, cmp);
                                                                    z = x; x = Parent[x];
 stk[sz++] = 0;
                                                                  }
for (int i = 0; i < k; ++i) {
  int u = vectrices[i], lca = LCA(u, stk[sz - 1]);
  if (lca == stk[sz - 1]) stk[sz++] = u;</pre>
                                                                  int64_t Query(int v) {
                                                                  int64_t res = 0;
                                                                   int x = v, z = -1
   while (sz >= 2 && dep[stk[sz - 2]] >= dep[lca]) {
  addEdge(stk[sz - 2], stk[sz - 1]);
                                                                  for (int i = Depth[v]; i >= 0; --i) {
  res += Sub[x] + 1LL * Sz[x] * Dist[v][i];
                                                                    if (z != -1) res-=Sub2[z]+1LL*Sz2[z]*Dist[v][i];
                                                                   z = x; x = Parent[x];
   if (stk[sz - 1] != lca) {
                                                                  }
    addEdge(lca, stk[--sz]);
                                                                   return res:
                                                                  }
    stk[sz++] = lca, vectrices[cnt++] = lca;
                                                                };
   stk[sz++] = u;
                                                                      Tree Hashing
  }
                                                                uint64_t hsah(int u, int f) {
                                                                 uint64_t r = 127;
 for (int i = 0; i < sz - 1; ++i)
                                                                 for (int v : G[ u ]) if (v != f) {
  addEdge(stk[i], stk[i + 1]);
                                                                  uint64_t hh = hsah(v, u)
                                                                  r=(r+(hh*hh)%1010101333)%1011820613;
3.8 Centroid Decomposition
struct Centroid {
                                                                  return r:
 vector<vector<int64_t>> Dist;
 vector<int> Parent, Depth;
                                                                3.10 Minimum Mean Cycle
 vector<int64_t> Sub, Sub2;
vector<int> Sz, Sz2;
                                                                /* minimum mean cycle O(VE) */
 Centroid(vector<vector<pair<int, int>>> g) {
                                                                struct MMC{
                                                                #define FZ(n) memset((n),0,sizeof(n))
  int N = g.size();
  vector<bool> Vis(N);
                                                                #define E 101010
  vector<int> sz(N), mx(N);
                                                                #define V 1021
  vector<int> Path;
                                                                #define inf 1e9
                                                                  struct Edge { int v,u; double c; };
  Dist.resize(N);
                                                                  int n, m, prv[V][V], prve[V][V], vst[V];
  Parent.resize(N)
  Depth.resize(N);
                                                                  Edge e[E];
  auto DfsSz = [\&](auto dfs, int x) -> void {
Vis[x] = true; sz[x] = 1; mx[x] = 0;
                                                                  vector<int> edgeID, cycle, rho;
                                                                  double d[V][V];
   for (auto [u, w] : g[x]) {
                                                                  void init( int _n ) { n = _n; m = 0; }
    if (Vis[u]) continue;
                                                                  // WARNING: TYPE matters
    dfs(dfs, u)
                                                                  void add_edge( int vi , int ui , double ci )
    sz[x] += sz[u];
                                                                  { e[ m ++ ] = { vi , ui , ci }; }
    mx[x] = max(mx[x], sz[u]);
                                                                  void bellman_ford() {
                                                                   for(int i=0; i<n; i++) d[0][i]=0;</pre>
   Path.push_back(x);
                                                                   for(int i=0; i<n; i++) {</pre>
                                                                   fill(d[i+1], d[i+1]+n, inf);
for(int j=0; j<m; j++) {
  auto DfsDist = [&](auto dfs, int x, int64_t D = 0)
```

int v = e[j].v, u = e[j].u;

```
if(d[i][v]<inf && d[i+1][u]>d[i][v]+e[j].c) {
                                                                    /*
     d[i+1][u] = d[i][v]+e[j].c;
     prv[i+1][u] = v;
                                                                    Method 2:
     prve[i+1][u] = j;
                                                                    dfs u:
                                                                     push u
                                                                     iterate subtree
  }
                                                                     push u
                                                                    Let P = LCA(u, v), and St(u) \le St(v)
 double solve(){
  // returns inf if no cycle, mmc otherwise
                                                                    if (P == u) query[St(u), St(v)]
                                                                    else query[Ed(u), St(v)], query[St(P), St(P)]
  double mmc=inf;
  int st = -1;
                                                                    3.12 Minimum Steiner Tree
  bellman_ford();
  for(int i=0; i<n; i++) {</pre>
                                                                    // Minimum Steiner Tree
                                                                    // 0(V 3^T + V^2 2^T)
   double avg=-inf;
   for(int k=0; k<n; k++) {</pre>
                                                                    struct SteinerTree{
    if(d[n][i]<inf-eps]</pre>
                                                                    #define V 33
     avg=max(avg,(d[n][i]-d[k][i])/(n-k));
                                                                    #define T 8
                                                                    #define INF 1023456789
    else avg=max(avg,inf);
                                                                     int n , dst[V][V] , dp[1 << T][V] , tdst[V];</pre>
   if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
                                                                     void init( int _n ){
                                                                      n = _n;
                                                                      for( int i = 0 ; i < n ; i ++ ){
  for( int j = 0 ; j < n ; j ++ )</pre>
  FZ(vst);edgeID.clear();cycle.clear();rho.clear();
  for (int i=n; !vst[st]; st=prv[i--][st]) {
   vst[st]++;
                                                                        dst[ i ][ j ] = INF;
   edgeID.PB(prve[i][st]);
                                                                       dst[ i ][ i ] = 0;
   rho.PB(st);
  while (vst[st] != 2) {
                                                                     void add_edge( int ui , int vi , int wi ){
  dst[ ui ][ vi ] = min( dst[ ui ][ vi ] , wi );
  dst[ vi ][ ui ] = min( dst[ vi ][ ui ] , wi );
   int v = rho.back(); rho.pop_back();
   cycle.PB(v);
   vst[v]++;
                                                                     void shortest_path(){
  reverse(ALL(edgeID));
                                                                      for( int k = 0 ; k < n ; k ++ )
  edgeID.resize(SZ(cycle));
                                                                       for( int i = 0 ; i < n ; i ++ )</pre>
                                                                        for( int j = 0 ; j < n ; j ++ )
dst[ i ][ j ] = min( dst[ i ][ j ],</pre>
  return mmc;
} mmc;
                                                                             dst[ i ][ k ] + dst[ k ][ j ] );
3.11 Mo's Algorithm on Tree
                                                                     int solve( const vector<int>& ter ){
int q; vector< int > G[N];
                                                                      int t = (int)ter.size();
                                                                      for( int j = 0 ; j < (1 << t ) ; i ++ )
for( int j = 0 ; j < n ; j ++ )
dp[ i ][ j ] = INF;
struct Que{
int u, v, id;
} que[ N ];
int dfn[N], dfn_, block_id[N], block_, stk[N], stk_;
void dfs( int u, int f ) {
                                                                      for( int i = 0 ; i < n ; i ++ )
dp[ 0 ][ i ] = 0;</pre>
 dfn[ u ] = dfn_++; int saved_rbp = stk_;
                                                                      for( int msk = 1 ; msk < ( 1 << t ) ; msk ++ ){</pre>
for ( int v : G[ u ] ) {
  if ( v == f ) continue;
                                                                       if( msk == ( msk & (-msk) ) ){
                                                                         int who = __lg( msk );
                                                                         for( int i = 0 ; i < n ; i ++ )
  dfs( v, u );
                                                                         dp[ msk ][ i ] = dst[ ter[ who ] ][ i ];
  if ( stk_ - saved_rbp < SQRT_N ) continue;</pre>
  for ( ++ block_ ; stk_ != saved_rbp ; )
  block_id[ stk[ -- stk_ ] ] = block_;
                                                                         continue:
                                                                       for( int i = 0 ; i < n ; i ++ )
                                                                        for( int submsk = ( msk - 1 ) & msk ; submsk ;
stk[ stk_ ++ ] = u;
                                                                              submsk = ( submsk - 1 ) & msk )
bool inPath[ N ];
                                                                           dp[ msk ][ i ] = min( dp[ msk ][ i ],
void Diff( int u ) {
                                                                                    dp[ submsk ][ i ] +
 if ( inPath[ u ] ^= 1 ) { /*remove this edge*/ }
                                                                                    dp[ msk ^ submsk ][ i ] );
 else { /*add this edge*/ }
                                                                       for( int i = 0 ; i < n ; i ++ ){</pre>
                                                                        tdst[ i ] = INF;
for( int j = 0 ; j < n ; j ++ )
tdst[ i ] = min( tdst[ i ],</pre>
void traverse( int& origin_u, int u ) {
for ( int g = lca( origin_u, u ) ;
  origin_u != g ; origin_u = parent_of[ origin_u ] )
                                                                                 dp[ msk ][ j ] + dst[ j ][ i ] );
   Diff( origin_u );
 for (int v = u; v != origin_u; v = parent_of[v])
                                                                       for( int i = 0 ; i < n ; i ++ )</pre>
 Diff( v );
                                                                        dp[ msk ][ i ] = tdst[ i ];
 origin_u = u;
                                                                      int ans = INF:
                                                                      for( int i = 0 ; i < n ; i ++ )</pre>
void solve() {
dfs( 1, 1 );
while ( stk_ ) block_id[ stk[ -- stk_ ] ] = block_;
                                                                       ans = min( ans , dp[ ( 1 << t ) - 1 ][ i ] );
                                                                      return ans;
 sort( que, que + q, [](const Que& x, const Que& y) {
                                                                    } solver;
 return tie( block_id[ x.u ], dfn[ x.v ] )
       < tie( block_id[ y.u ], dfn[ y.v ] );
                                                                          Directed Minimum Spanning Tree
 } );
 int U = 1, V = 1;
for ( int i = 0 ; i < q ; ++ i ) {
                                                                    template <typename T> struct DMST {
                                                                     T g[maxn][maxn], fw[maxn];
 pass( U, que[ i ].u );
                                                                     int n, fr[maxn];
                                                                     bool vis[maxn], inc[maxn];
  pass( V, que[ i ].v );
  // we could get our answer of que[ i ].id
                                                                     void clear() {
                                                                      for(int i = 0; i < maxn; ++i) {</pre>
```

int p = find(fa[x], 1);

if (p == -1) return c ? fa[x] : val[x];

```
for(int j = 0; j < maxn; ++j) g[i][j] = inf;</pre>
                                                                 if (sdom[val[x]]>sdom[val[fa[x]]]) val[x]=val[fa[x]];
   vis[i] = inc[i] = false;
                                                                 fa[x] = p;
                                                                 return c ? p : val[x];
  }
 void addEdge(int u,int v,T w){g[u][v]=min(g[u][v],w);}
                                                               vector<int> build(int s, int n) {
 T operator()(int root, int _n) {
                                                               // return the father of each node in the dominator tree
                                                                // p[i] = -2 if i is unreachable from s
 n = n; T ans = 0;
  if (dfs(root) != n) return -1;
                                                                 dfs(s);
  while (true) {
                                                                 for (int i = tk - 1; i >= 0; --i) {
                                                                  for (int u:r[i]) sdom[i]=min(sdom[i],sdom[find(u)]);
   for(int i = 1;i <= n;++i) fw[i] = inf, fr[i] = i;</pre>
   for (int i = 1; i <= n; ++i) if (!inc[i]) {
                                                                  if (i) rdom[sdom[i]].push_back(i);
    for (int j = 1; j <= n; ++j) {
                                                                  for (int &u : rdom[i]) {
     if (!inc[j] && i != j && g[j][i] < fw[i]) {
  fw[i] = g[j][i]; fr[i] = j;</pre>
                                                                   int p = find(u);
                                                                   if (sdom[p] == i) dom[u] = i;
                                                                   else dom[u] = p;
                                                                  if (i) merge(i, rp[i]);
   int x = -1;
   for(int i = 1;i <= n;++i)if(i != root && !inc[i]){</pre>
                                                                 vector<int> p(n, -2); p[s] = -1;
    int j = i, c = 0;
                                                                 for (int i = 1; i < tk; ++i)
    while(j!=root && fr[j]!=i && c<=n) ++c, j=fr[j];</pre>
                                                                  if (sdom[i] != dom[i]) dom[i] = dom[dom[i]];
    if (j == root || c > n) continue;
                                                                 for (int i = 1; i < tk; ++i) p[rev[i]] = rev[dom[i]];</pre>
    else { x = i; break; }
                                                                 return p;
                                                               }}
   if (!~x) {
                                                                3.15 Edge Coloring
    for (int i = 1; i <= n; ++i)
     if (i != root && !inc[i]) ans += fw[i];
                                                               // \max(d_u) + 1 edge coloring, time: O(NM)
                                                               int C[kN][kN], G[kN][kN]; // 1-based, G: ans
    return ans;
                                                               void clear(int N) {
   int y = x;
                                                                for (int i = 0; i <= N; i++)
for (int j = 0; j <= N; j++)
   for (int i = 1; i <= n; ++i) vis[i] = false;</pre>
   do {
                                                                    C[i][j] = G[i][j] = 0;
    ans += fw[y]; y = fr[y]; vis[y] = inc[y] = true;
   } while (y != x);
                                                               void solve(vector<pair<int, int>> &E, int N) {
                                                                int X[kN] = {}, a;
auto update = [&](int u) {
   inc[x] = false;
   for (int k = 1; k <= n; ++k) if (vis[k])</pre>
    for (int j = 1; j <= n; ++j) if (!vis[j]) {
                                                                  for (X[u] = 1; C[u][X[u]]; X[u]++);
     if (g[x][j] > g[k][j]) g[x][j] = g[k][j]
     if (g[j][k] < \inf \&\& g[j][k] - fw[k] < g[j][x])
                                                                 auto color = [&](int u, int v, int c) {
  int p = G[u][v];
      g[j][x] = g[j][k] - fw[k];
                                                                  G[u][v] = G[v][u] = c;
   }
                                                                 C[u][c] = v, C[v][c] = u;
                                                                  C[u][p] = C[v][p] = 0;
  return ans;
                                                                  if (p) X[u] = X[v] = p
                                                                  else update(u), update(v);
 int dfs(int now) {
                                                                  return p;
 int r = 1; vis[now] = true;
  for (int i = 1; i \le n; ++i)
                                                                 auto flip = [&](int u, int c1, int c2) {
   if (g[now][i] < inf && !vis[i]) r += dfs(i);</pre>
                                                                 int p = C[u][c1];
  return r;
                                                                  swap(C[u][c1], C[u][c2]);
                                                                  if (p) G[u][p] = G[p][u] = c2;
};
                                                                 if (!C[u][c1]) X[u] = c1;
if (!C[u][c2]) X[u] = c2;
3.14
      Dominator Tree
                                                                  return p;
namespace dominator {
vector<int> g[maxn], r[maxn], rdom[maxn];
                                                                 for (int i = 1; i <= N; i++) X[i] = 1;
int dfn[maxn], rev[maxn], fa[maxn], sdom[maxn];
                                                                 for (int t = 0; t < E.size(); t++) {</pre>
int dom[maxn], val[maxn], rp[maxn], tk;
                                                                  auto [u, v] = E[t];
void init(int n) {
                                                                  int v0 = v, c = X[u], c0 = c, d;
 // vertices are numbered from 0 to n - 1
                                                                  vector<pair<int, int>> L; int vst[kN] = {};
fill(dfn, dfn + n, -1); fill(rev, rev + n, -1); fill(fa, fa + n, -1); fill(val, val + n, -1);
                                                                  while (!G[u][v0]) {
                                                                   L.emplace_back(v, d = X[v]);
if (!C[v][c]) for(a=L.size()-1;a>=0;a--)
 fill(sdom, sdom + n, -1); fill(rp, rp + n, -1);
 fill(dom, dom + n, -1); tk = 0;
                                                                     c = color(u, L[a].first, c);
 for (int i = 0; i < n; ++i) {
                                                                   else if(!C[u][d])for(a=L.size()-1;a>=0;a--)
  g[i].clear(); r[i].clear(); rdom[i].clear();
                                                                     color(u, L[a].first, L[a].second);
                                                                   else if (vst[d]) break
                                                                   else vst[d] = 1, v = C[u][d];
void add_edge(int x, int y) { g[x].push_back(y); }
void dfs(int x) {
                                                                  if (!G[u][v0]) {
 rev[dfn[x] = tk] = x;
                                                                   for (; v; v = flip(v, c, d), swap(c, d));
 fa[tk] = sdom[tk] = val[tk] = tk; tk ++;
                                                                   if (C[u][c0]) { a = int(L.size()) - 1;
 for (int u : g[x])
                                                                    while (--a >= 0 && L[a].second != c);
  if (dfn[u] == -1) dfs(u), rp[dfn[u]] = dfn[x];
                                                                    for(;a>=0;a--)color(u,L[a].first,L[a].second);
  r[dfn[u]].push_back(dfn[x]);
                                                                   } else t--;
void merge(int x, int y) { fa[x] = y; }
int find(int x, int c = 0) {
  if (fa[x] == x) return c ? -1 : x;
                                                                     Matching & Flow
```

Kuhn Munkres

public:

```
class KM {
                                                                 void init(int _n){
private:
                                                                  n=_n; walked.reset();
 static constexpr 1ld INF = 1LL << 60;</pre>
                                                                  for(int i=0;i<n;i++){</pre>
 vector<lld> hl,hr,slk;
                                                                   X[i].clear();Y[i].clear();
 vector<int> fl,fr,pre,qu;
                                                                   fX[i]=fY[i]=-1;
 vector<vector<lld>> w;
                                                                  }
 vector<bool> v1,vr;
 int n, ql, qr;
                                                                 void add_edge(int x, int y){
 bool check(int x) {
                                                                  X[x].push_back(y); Y[y].push_back(y);
  if (vl[x] = true, fl[x] != -1)
   return vr[qu[qr++] = f1[x]] = true;
                                                                 int solve(){
  while (x != -1) swap(x, fr[fl[x] = pre[x]]);
                                                                  int cnt = 0;
  return false;
                                                                  for(int i=0;i<n;i++){</pre>
                                                                   walked.reset();
 void bfs(int s) {
                                                                   if(dfs(i)) cnt++;
 fill(slk.begin(), slk.end(), INF);
fill(vl.begin(), vl.end(), false);
fill(vr.begin(), vr.end(), false);
                                                                  // return how many pair matched
                                                                  return cnt:
  ql = qr = 0;
  qu[qr++] = s;
                                                                };
  vr[s] = true;
                                                                4.3 General Graph Matching
  while (true) {
                                                                namespace matching {
int fa[kN], pre[kN], match[kN], s[kN], v[kN];
   11d d;
   while (ql < qr) {</pre>
                                                                vector<int> g[kN];
    for (int x = 0, y = qu[ql++]; x < n; ++x) {
     if(!v1[x]\&s1k[x]>=(d=h1[x]+hr[y]-w[x][y])){
                                                                queue<int> q;
      if (pre[x] = y, d) slk[x] = d;
                                                                void Init(int n) {
      else if (!check(x)) return;
                                                                 for (int i = 0; i <= n; ++i) match[i] = pre[i] = n;</pre>
                                                                 for (int i = 0; i < n; ++i) g[i].clear();</pre>
     }
                                                                void AddEdge(int u, int v) {
   d = INF;
                                                                 g[u].push_back(v);
   for (int x = 0; x < n; ++x)
                                                                 g[v].push_back(u);
    if (!vl[x] \&\& d > slk[x]) d = slk[x];
   for (int x = 0; x < n; ++x) {
                                                                int Find(int u) {
    if (v1[x]) h1[x] += d;
                                                                 return u == fa[u] ? u : fa[u] = Find(fa[u]);
    else slk[x] -= d;
    if (vr[x]) hr[x] -= d;
                                                                int LCA(int x, int y, int n) {
                                                                 static int tk = 0; tk++;
   for (int x = 0; x < n; ++x)
                                                                 x = Find(x), y = Find(y);
    if (!v1[x] && !slk[x] && !check(x)) return;
                                                                 for (; ; swap(x, y)) {
                                                                  if (x != n) {
                                                                   if (v[x] == tk) return x;
public:
                                                                   v[x] = tk;
 void init( int n_ ) {
                                                                   x = Find(pre[match[x]]);
  n = n_; qu.resize(n);
  fl.clear(); fl.resize(n, -1);
 fr.clear(); fr.resize(n, -1);
hr.clear(); hr.resize(n); hl.resize(n);
                                                                void Blossom(int x, int y, int 1) {
                                                                 while (Find(x) != 1) {
  w.clear(); w.resize(n, vector<lld>(n));
  slk.resize(n); pre.resize(n);
                                                                  pre[x] = y, y = match[x];
                                                                  if (s[y] == 1) q.push(y), s[y] = 0;
if (fa[x] == x) fa[x] = 1;
  vl.resize(n); vr.resize(n);
                                                                  if (fa[y] == y) fa[y] = 1;
 void set_edge( int u, int v, lld x ) {w[u][v] = x;}
 11d solve() {
                                                                  x = pre[y];
 for (int i = 0; i < n; ++i)
   hl[i] = *max_element(w[i].begin(), w[i].end());
                                                                bool Bfs(int r, int n) {
  for (int i = 0; i <= n; ++i) fa[i] = i, s[i] = -1;</pre>
  for (int i = 0; i < n; ++i) bfs(i);</pre>
 11d res = 0:
  for (int i = 0; i < n; ++i) res += w[i][f1[i]];</pre>
                                                                 while (!q.empty()) q.pop();
  return res:
                                                                 q.push(r);
                                                                 s[r] = 0;
} km;
                                                                 while (!q.empty()) {
                                                                  int x = q.front(); q.pop();
4.2 Bipartite Matching
                                                                  for (int u : g[x]) {
class BipartiteMatching{
                                                                   if (s[u] == -1) {
private:
                                                                    pre[u] = x, s[u] = 1;
 vector<int> X[N], Y[N];
int fX[N], fY[N], n;
                                                                     if (match[u] == n) {
                                                                     for (int a = u, b = x, last; b != n; a = last, b =
 bitset<N> walked;
                                                                      pre[a])
 bool dfs(int x)
                                                                       last = match[b], match[b] = a, match[a] = b;
  for(auto i:X[x]){
                                                                      return true;
   if(walked[i])continue;
                                                                    q.push(match[u]);
   walked[i]=1;
   if(fY[i]==-1||dfs(fY[i])){
                                                                    s[match[u]] = 0
    fY[i]=x;fX[x]=i;
                                                                    } else if (!s[u] && Find(u) != Find(x)) {
                                                                    int 1 = LCA(u, x, n);
Blossom(x, u, 1);
    return 1:
   }
                                                                    Blossom(u, x, 1);
  return 0;
```

```
return false;
int Solve(int n) {
 int res = 0;
for (int x = 0; x < n; ++x) {
 if (match[x] == n) res += Bfs(x, n);
return res;
     Minimum Weight Matching (Clique version)
struct Graph {
// 0-base (Perfect Match)
 int n, edge[MXN][MXN];
int match[MXN], dis[MXN], onstk[MXN];
vector<int> stk:
                                                                 }
void init(int _n) {
 n = _n;
  for (int i=0; i<n; i++)</pre>
   for (int j=0; j<n; j++)</pre>
                                                              }
    edge[i][j] = 0;
 void set_edge(int u, int v, int w) {
 edge[u][v] = edge[v][u] = w;
bool SPFA(int u){
 if (onstk[u]) return true;
  stk.PB(u);
  onstk[u] = 1;
  for (int v=0; v<n; v++){
  if (u != v && match[u] != v && !onstk[v]){
    int m = match[v];
    if (dis[m] > dis[u] - edge[v][m] + edge[u][v]){
     dis[m] = dis[u] - edge[v][m] + edge[u][v];
     onstk[v] = 1;
     stk.PB(v);
     if (SPFA(m)) return true;
     stk.pop_back();
     onstk[v] = 0;
 onstk[u] = 0;
  stk.pop_back();
  return false;
                                                              }
int solve() {
  // find a match
  for (int i=0; i<n; i+=2){</pre>
  match[i] = i+1;
  match[i+1] = i;
  while (true){
   int found = 0;
   for (int i=0; i<n; i++)</pre>
    dis[i] = onstk[i] = 0;
   for (int i=0; i<n; i++){</pre>
    stk.clear()
    if (!onstk[i] && SPFA(i)){
     found = 1
     while (SZ(stk)>=2){
      int u = stk.back(); stk.pop_back();
      int v = stk.back(); stk.pop_back();
      match[u] = v;
      match[v] = u;
   if (!found) break;
  int ret = 0:
  for (int i=0; i<n; i++)</pre>
  ret += edge[i][match[i]];
  return ret>>1;
} graph;
4.5
    Minimum Cost Circulation
struct Edge { int to, cap, rev, cost; };
vector<Edge> g[kN];
int dist[kN], pv[kN], ed[kN];
```

```
bool mark[kN];
int NegativeCycle(int n) {
 memset(mark, false, sizeof(mark));
memset(dist, 0, sizeof(dist));
 int upd = -1:
 for (int i = 0; i <= n; ++i)
  for (int j = 0; j < n; ++j) {
   int idx = 0:
   for (auto &e : g[j]) {
    if(e.cap > 0 && dist[e.to] > dist[j] + e.cost){
     dist[e.to] = dist[j] + e.cost;
     pv[e.to] = j, ed[e.to] = idx;
     if (i == n) {
      upd = j;
      while(!mark[upd])mark[upd]=1,upd=pv[upd];
      return upd;
    idx++;
 return -1:
int Solve(int n) {
 int rt = -1, ans = 0;
 while ((rt = NegativeCycle(n)) >= 0) {
  memset(mark, false, sizeof(mark));
  vector<pair<int, int>> cyc;
while (!mark[rt]) {
   cyc.emplace_back(pv[rt], ed[rt]);
   mark[rt] = true;
   rt = pv[rt];
  reverse(cyc.begin(), cyc.end());
  int cap = kInf;
  for (auto &i : cyc)
   auto &e = g[i.first][i.second];
   cap = min(cap, e.cap);
  for (auto &i : cyc) {
   auto &e = g[i.first][i.second];
   e.cap -= cap;
   g[e.to][e.rev].cap += cap;
   ans += e.cost * cap;
 return ans:
4.6 Flow Models
```

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source ${\cal S}$ and sink ${\cal T}$.
 - 2. For each edge (x,y,l,u), connect x o y with capacity u-l
 - 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v \to T$ with capacity -in(v).
 - To maximize, connect $t\to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f
 eq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the
 - maximum flow from s to t is the answer. – To minimize, let f be the maximum flow from S to T. Connect t o s with capacity ∞ and let the flow from S to T be f'. If $f+f'\neq \sum_{v\in V, in(v)>0}in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is $l_e + f_e$, where f_e corresponds to the flow of edge \boldsymbol{e} on the graph.
- ullet Construct minimum vertex cover from maximum matching M on bipartite graph(X,Y)
 - 1. Redirect every edge: $y \to x$ if $(x, y) \in M$, $x \to y$ otherwise.
 - 2. DFS from unmatched vertices in X.
 - 3. $x \in X$ is chosen iff x is unvisited.
 - 4. $y \in Y$ is chosen iff y is visited.
- · Minimum cost cyclic flow
 - 1. Consruct super source ${\cal S}$ and sink ${\cal T}$
 - 2. For each edge (x,y,c), connect $x \to y$ with (cost,cap) = (c,1) if c>0, otherwise connect $y\to x$ with (cost,cap)=(-c,1)
 - 3. For each edge with c<0, sum these cost as K, then increase d(y) by 1, decrease d(x) by 1 4. For each vertex v with d(v)>0, connect S o v with (cost, cap)=
 - 5. For each vertex v with d(v) < 0, connect $v \to T$ with (cost, cap) =
 - (0, -d(v))6. Flow from S to T, the answer is the cost of the flow C+K

```
· Maximum density induced subgraph
      1. Binary search on answer, suppose we're checking answer {\cal T}
      2. Construct a max flow model, let K be the sum of all weights
      3. Connect source s \to v, v \in G with capacity K
      4. For each edge (u,v,w) in G, connect u 	o v and v 	o u with capacity
      5. For v \in \mathit{G}, connect it with sink v \to t with capacity K + 2T -
         \left(\sum_{e \in E(v)} w(e)\right) - 2w(v)
      6. T is a valid answer if the maximum flow f < K|V|
```

- Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect u' o v' with weight
 - 2. Connect $v \, o \, v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
 - 3. Find the minimum weight perfect matching on G'.
- · Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge
 - $(v,t) \text{ with capacity } -p_v.$ 2. Create edge (u,v) with capacity w with w being the cost of choosing u without choosing v
 - 3. The mincut is equivalent to the maximum profit of a subset of projects.

$$\sum_{x} c_{x} x + \sum_{y} c_{y} \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x \bar{y} + x' \bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with ca-
- 2. Create edge (x,y) with capacity c_{xy} . 3. Create edge (x,y) and edge (x',y') with capacity $c_{xyx'y'}$.

Dinic

```
template <typename flow_t>
struct Dinic {
  struct Edge {
    int to;
    flow_t rest;
    Edge(int t, flow_t r) : to(t), rest(r) {}
  vector<Edge> E;
  vector<vector<int>> g;
  vector<int> dis, cur;
  Dinic(int n) : g(n), dis(n), cur(n) {}
  void addEdge(int a, int b, flow_t cap) {
    g[a].emplace_back(E.size()), E.emplace_back(b, cap)
    g[b].emplace_back(E.size()), E.emplace_back(a, 0);
  bool bfs(int s, int t) {
    fill(dis.begin(), dis.end(), -1);
    queue<int> q;
    dis[s] = 0;
    q.push(s);
    while (!q.empty()) {
      int i = q.front();
      q.pop();
      for (int id : g[i])
        if (E[id].rest > 0 && dis[E[id].to] == -1) {
  dis[E[id].to] = dis[i] + 1;
          q.push(E[id].to);
    return dis[t] != -1;
  flow_t dfs(int i, int t, flow_t lim) {
    if (i == t) return lim;
    flow_t ans = 0;
    while (lim > 0 && cur[i] < int(g[i].size())) {</pre>
      int id = g[i][cur[i]++];
      if (dis[E[id].to] != dis[i] + 1) continue;
      flow_t f = dfs(E[id].to, t, min(lim, E[id].rest))
      lim -= f;
      ans += f;
      E[id].rest -= f;
      E[id ^ 1].rest += f;
    }
    return ans;
  static constexpr flow_t inf = numeric_limits<flow_t</pre>
  flow_t maxFlow(int s, int t) {
```

```
flow_t ans = 0, f;
    while (bfs(s, t)) {
      fill(cur.begin(), cur.end(), 0);
      while ((f = dfs(s, t, inf)) > 0) ans += f;
    return ans;
  }
};
```

Minimum Cost Maximum Flow 4.8

```
class MiniCostMaxiFlow{
 using Cap = int; using Wei = int64_t;
 using PCW = pair<Cap,Wei>;
 static constexpr Cap INF_CAP = 1 << 30;</pre>
 static constexpr Wei INF_WEI = 1LL<<60;</pre>
private:
 struct Edge{
  int to, back;
  Cap cap; Wei wei;
  Edge() {}
  Edge(int a,int b, Cap c, Wei d):
   to(a),back(b),cap(c),wei(d)
  {}
 int ori, edd;
 vector<vector<Edge>> G:
 vector<int> fa, wh;
 vector<bool> inq;
 vector<Wei> dis;
 PCW SPFA(){
  fill(inq.begin(),inq.end(),false);
  fill(dis.begin(), dis.end(), INF_WEI);
  queue<int> qq; qq.push(ori);
  dis[ori] = 0;
  while(not qq.empty()){
   int u=qq.front();qq.pop();
   inq[u] = false;
   for(int i=0;i<SZ(G[u]);++i){
    Edge e=G[u][i];
    int v=e.to; Wei d=e.wei;
    if(e.cap<=0||dis[v]<=dis[u]+d)</pre>
     continue
    dis[v] = dis[u] + d;
    fa[v] = u, wh[v] = i;
    if (inq[v]) continue;
    qq.push(v);
    inq[v] = true;
   }
  if(dis[edd]==INF_WEI) return {-1, -1};
  Cap mw=INF_CAP;
  for(int i=edd;i!=ori;i=fa[i])
   mw=min(mw,G[fa[i]][wh[i]].cap);
  for (int i=edd;i!=ori;i=fa[i]){
   auto &eg=G[fa[i]][wh[i]];
   eq.cap -= mw:
   G[eg.to][eg.back].cap+=mw;
  return {mw, dis[edd]};
public:
 void init(int a,int b,int n){
  ori=a,edd=b;
  G.clear();G.resize(n);
  fa.resize(n);wh.resize(n);
  inq.resize(n); dis.resize(n);
 void add_edge(int st, int ed, Cap c, Wei w){
  G[st].emplace_back(ed,SZ(G[ed]),c,w);
  G[ed].emplace_back(st,SZ(G[st])-1,0,-w);
 PCW solve(){
  Cap cc=0; Wei ww=0;
  while(true){
   PCW ret=SPFA();
   if(ret.first==-1) break;
   cc+=ret.first;
   ww+=ret.first * ret.second;
  return {cc,ww};
} mcmf;
```

```
4.9 Global Min-Cut
const int maxn = 500 + 5;
int w[maxn][maxn], g[maxn];
bool v[maxn], del[maxn];
void add_edge(int x, int y, int c) {
 w[x][y] += c; w[y][x] += c;
pair<int, int> phase(int n) {
  memset(v, false, sizeof(v));
 memset(g, 0, sizeof(g));
int s = -1, t = -1;
 while (true) {
  int c = -1;
  for (int i = 0; i < n; ++i) {
  if (del[i] || v[i]) continue;</pre>
    if (c == -1 \mid | g[i] > g[c]) c = i;
  if (c == -1) break;
  v[s = t, t = c] = true;
   for (int i = 0; i < n; ++i) {</pre>
   if (del[i] || v[i]) continue;
    g[i] += w[c][i];
 return make_pair(s, t);
int mincut(int n) {
 int cut = 1e9;
 memset(del, false, sizeof(del));
 for (int i = 0; i < n - 1; ++i) {
  int s, t; tie(s, t) = phase(n);
del[t] = true; cut = min(cut, g[t]);
for (int j = 0; j < n; ++j) {</pre>
    w[s][j] += w[t][j]; w[j][s] += w[j][t];
  }
 return cut;
}
5
      Math
5.1
      Prime Table
1002939109, 1020288887, 1028798297, 1038684299,
1041211027, 1051762951, 1058585963, 1063020809,
1147930723, 1172520109, 1183835981, 1187659051,
1241251303, 1247184097, 1255940849, 1272759031,
1287027493, 1288511629, 1294632499, 1312650799,
1868732623, 1884198443, 1884616807, 1885059541, \\
\begin{array}{l} 1909942399, 1914471137, 1923951707, 1925453197, \\ 1979612177, 1980446837, 1989761941, 2007826547, \\ 2008033571, 2011186739, 2039465081, 2039728567, \end{array}
2093735719, 2116097521, 2123852629, 2140170259,
3148478261, 3153064147, 3176351071, 3187523093,
3196772239, 3201312913, 3203063977, 3204840059,
3210224309, 3213032591, 3217689851, 3218469083, 3219857533, 3231880427, 3235951699, 3273767923,
3276188869, 3277183181, 3282463507, 3285553889,
3319309027, 3327005333, 3327574903, 3341387953,
3373293941, 3380077549, 3380892997, 3381118801\\
5.2 \lfloor \frac{n}{i} \rfloor Enumeration
T_0 = 1, T_{i+1} = \lfloor \frac{n}{\lfloor \frac{n}{T \cdot + 1} \rfloor} \rfloor
5.3 ax+by=acd
// ax+ny = 1, ax+ny == ax == 1 \pmod{n}
void exgcd(lld x,lld y,lld &g,lld &a,lld &b) {
 if (y == 0) g=x,a=1,b=0;
 else exgcd(y,x%y,g,b,a),b=(x/y)*a;
5.4 Pollard Rho
// does not work when n is prime
// return any non-trivial factor
llu pollard_rho(llu n){
 static auto f=[](llu x,llu k,llu m){
  return add(k,mul(x,x,m),m);
 }:
 if (!(n&1)) return 2;
 mt19937 rnd(120821011);
```

while(true){

if(t!=1)break;
yy=f(yy,x,n);

1lu y=2,yy=y,x=rnd()%n,t=1;

for(llu sz=2;t==1;sz<<=1) {
 for(llu i=0;i<sz;++i){</pre>

```
y=yy;
  if(t!=1&&t!=n) return t;
     Pi Count (Linear Sieve)
static constexpr int N = 1000000 + 5;
1ld pi[N];
vector<int>
            primes;
bool sieved[N];
11d cube_root(11d x){
lld s=cbrt(x-static_cast<long double>(0.1));
 while(s*s*s <= x) ++s;</pre>
 return s-1;
1ld square_root(lld x){
lld s=sqrt(x-static_cast<long double>(0.1));
 while(s*s <= x) ++s;
 return s-1;
}
void init(){
 primes.reserve(N);
 primes.push_back(1);
 for(int i=2;i<N;i++) {</pre>
 if(!sieved[i]) primes.push_back(i);
  pi[i] = !sieved[i] + pi[i-1];
  for(int p: primes) if(p > 1) {
   if(p * i >= N) break;
   sieved[p * i] = true;
   if(p % i == 0) break;
ild phi(lld m, lld n) {
 static constexpr int MM = 80000, NN = 500;
 static lld val[MM][NN];
 if(m<MM&&n<NN&&val[m][n])return val[m][n]-1;</pre>
 if(n == 0) return m;
 if(primes[n] >= m) return 1;
 1ld ret = phi(m,n-1)-phi(m/primes[n],n-1);
 if(m<MM&&n<NN) val[m][n] = ret+1;</pre>
 return ret;
1ld pi_count(1ld);
11d P2(11d m, 11d n) {
11d sm = square_root(m), ret = 0;
 for(lld i = n+1;primes[i]<=sm;i++)</pre>
  ret+=pi_count(m/primes[i])-pi_count(primes[i])+1;
 return ret;
11d pi_count(11d m) {
if(m < N) return pi[m];</pre>
 11d n = pi_count(cube_root(m));
 return phi(m, n) + n - 1 - P2(m, n);
}
      Strling Number
5.6
5.6.1 First Kind
```

t=gcd(yy>y?yy-y:y-yy,n);

 $S_1(n,k)$ counts the number of permutations of n elements with k disjoint cycles.

$$S_1(n,k) = (n-1) \cdot S_1(n-1,k) + S_1(n-1,k-1)$$

$$x(x+1) \dots (x+n-1) = \sum_{k=0}^n S_1(n,k) x^k$$

$$g(x) = x(x+1) \dots (x+n-1) = \sum_{k=0}^n a_k x^k$$

$$\Rightarrow g(x+n) = \sum_{k=0}^n \frac{b_k}{(n-k)!} x^{n-k},$$

$$b_k = \sum_{i=0}^k ((n-i)! a_{n-i}) \cdot (\frac{n^{k-i}}{(k-i)!})$$

5.6.2 Second Kind

 $S_2(n,k)$ counts the number of ways to partition a set of n elements into k nonempty sets.

$$S_2(n,k) = S_2(n-1,k-1) + k \cdot S_2(n-1,k)$$

$$S_2(n,k) = \sum_{i=0}^k {k \choose i} i^n (-1)^{k-i} = \sum_{i=0}^k \frac{(-1)^i}{i!} \cdot \frac{(k-i)^n}{(k-i)!}$$

5.7 Range Sieve

5.8 Miller Rabin

```
bool isprime(llu x){
static llu magic[]={2,325,9375,28178,\
          450775,9780504,1795265022};
static auto witn=[](llu a,llu u,llu n,int t)
->bool{
 if (!(a = mpow(a%n,u,n)))return 0;
 while(t--){
  llu a2=mul(a,a,n);
  if(a2==1 && a!=1 && a!=n-1)
   return 1:
  a = a2;
 }
 return a!=1;
};
if(x<2)return 0;</pre>
if(!(x&1))return x==2;
llu x1=x-1;int t=0;
while(!(x1&1))x1>>=1,t++;
for(llu m:magic)if(witn(m,x1,x,t))return 0;
return 1;
```

5.9 Inverse Element

```
// x's inverse mod k
long long GetInv(long long x, long long k){
  // k is prime: euler_(k)=k-1
  return qPow(x, euler_phi(k)-1);
}

// if you need [1, x] (most use: [1, k-1]
  void solve(int x, long long k){
  inv[1] = 1;
  for(int i=2;i<x;i++)
  inv[i] = ((long long)(k - k/i) * inv[k % i]) % k;
}</pre>
```

5.10 Extended Euler

```
a^b \equiv \begin{cases} a^b \mod \varphi(m) + \varphi(m) & \text{if } (a,m) \neq 1 \wedge b \geq \varphi(m) \\ a^b \mod \varphi(m) & \text{otherwise} \end{cases} \pmod m
```

5.11 Gauss Elimination

```
void gauss(vector<vector<double>> &d) {
  int n = d.size(), m = d[0].size();
  for (int i = 0; i < m; ++i) {
    int p = -1;
    for (int j = i; j < n; ++j) {
      if (fabs(d[j][i]) < eps) continue;
      if (p == -1 || fabs(d[j][i])>fabs(d[p][i])) p=j;
    }
    if (p == -1) continue;
    for (int j = 0; j < m; ++j) swap(d[p][j], d[i][j]);</pre>
```

```
for (int j = 0; j < n; ++j) {
  if (i == j) continue;
  double z = d[j][i] / d[i][i];
  for (int k = 0; k < m; ++k) d[j][k] -= z*d[i][k];
  }
}
}</pre>
```

```
5.12 Fast Fourier Transform
namespace fft {
using VI = vector<int>;
using VL = vector<long long>;
const double pi = acos(-1);
cplx omega[maxn + 1];
void prefft() {
 generate_n(omega, maxn + 1, [i=0]()mutable{
  auto j = i++;
  return cplx(cos(2*pi*j/maxn), sin(2*pi*j/maxn));
 });
void fft(vector<cplx> &v, int n) {
 int z = __builtin_ctz(n) - 1;
 for (int i = 0; i < n; ++i) {
  int x = 0, j = 0;
  for (;(1 << j) < n;++j) x^{=(i >> j & 1) << (z - j);
  if (x > i) swap(v[x], v[i]);
 for (int s = 2; s <= n; s <<= 1) {
  int z = s >> 1;
  for (int i = 0; i < n; i += s) {
   for (int k = 0; k < z; ++k) {
    cplx x = v[i + z + k] * omega[maxn / s * k];
    v[i + z + k] = v[i + k] - x;
    v[i + k] = v[i + k] + x;
void ifft(vector<cplx> &v, int n) {
 fft(v, n);
 reverse(v.begin() + 1, v.end());
 for (int i=0;i<n;++i) v[i] = v[i] * cplx(1. / n, 0);
VL convolution(const VI &a, const VI &b) {
 // Should be able to handle N <= 10^5, C <= 10^4
 int sz = 1;
 while (sz < a.size() + b.size() - 1) sz <<= 1;</pre>
 vector<cplx> v(sz);
 for (int i = 0; i < sz; ++i) {
  double re = i < a.size() ? a[i] : 0;</pre>
  double im = i < b.size() ? b[i] : 0;</pre>
  v[i] = cplx(re, im);
 fft(v, sz);
 for (int i = 0; i <= sz / 2; ++i) {
int j = (sz - i) & (sz - 1);
  cplx x = (v[i] + v[j].conj()) * (v[i] - v[j].conj())
  * cplx(0, -0.25);
if (j != i) v[j] = (v[j] + v[i].conj()) * (v[j] - v[i
    ].conj()) * cplx(0, -0.25);
  v[i] = x;
 ifft(v, sz);
 VL c(sz);
 for (int i = 0; i < sz; ++i) c[i] = round(v[i].re);</pre>
 return c:
VI convolution_mod(const VI &a, const VI &b, int p) {
 int sz = 1:
 while (sz + 1 < a.size() + b.size()) sz <<= 1;</pre>
 vector<cplx> fa(sz), fb(sz);
 for (int i = 0; i < (int)a.size(); ++i)</pre>
  fa[i] = cplx(a[i] & ((1 << 15) - 1), a[i] >> 15);
 for (int i = 0; i < (int)b.size(); ++i)
fb[i] = cplx(b[i] & ((1 << 15) - 1), b[i] >> 15);
 fft(fa, sz), fft(fb, sz);
 double r = 0.25 / sz;
 cplx r2(0, -1), r3(r, 0), r4(0, -r), r5(0, 1);
```

for (int i = 0; i <= (sz >> 1); ++i) {
 int j = (sz - i) & (sz - 1);
 cplx a1 = (fa[i] + fa[j].conj());

cplx a2 = (fa[i] - fa[j].conj()) * r2;

```
cplx b1 = (fb[i] + fb[j].conj()) * r3;
  cplx b2 = (fb[i] - fb[j].conj()) * r4;
                                                                // n must be 2^k, and 0 \le F[i] \le mod
  if (i != j) {
                                                                void inplace_ntt(int n, int F[], bool inv = false) {
                                                                 for (int i = 0, j = 0; i < n; i++) {
  if (i < j) swap(F[i], F[j]);</pre>
   cplx c1 = (fa[j] + fa[i].conj());
   cplx c2 = (fa[j] - fa[i].conj()) * r2;
   cplx d1 = (fb[j] + fb[i].conj()) * r3;
                                                                  for (int k = n>1; (j^k = k) < k; k>=1);
   cplx d2 = (fb[j] - fb[i].conj()) * r4;
   fa[i] = c1 * d1 + c2 * d2 * r5;
                                                                 for (int s = 1; s < n; s *= 2) {
   fb[i] = c1 * d2 + c2 * d1;
                                                                  for (int i = 0; i < n; i += s * 2) {
                                                                   for (int j = 0; j < s; j++) {
  int a = F[i+j];</pre>
  fa[j] = a1 * b1 + a2 * b2 * r5;
  fb[j] = a1 * b2 + a2 * b1;
                                                                    int b = modmul(F[i+j+s], roots[s+j]);
                                                                    F[i+j] = modadd(a, b); // a + b
 fft(fa, sz), fft(fb, sz);
                                                                    F[i+j+s] = modsub(a, b); // a - b
 vector<int> res(sz);
 for (int i = 0; i < sz; ++i) {
  long long a = round(fa[i].re), b = round(fb[i].re),
                                                                 if (inv) {
       c = round(fa[i].im);
                                                                  int invn = modinv(n);
  res[i] = (a+((b \% p) << 15)+((c \% p) << 30)) \% p;
                                                                  for (int i = 0; i < n; i++)</pre>
                                                                  F[i] = modmul(F[i], invn);
 return res;
}}
                                                                  reverse(F + 1, F + n);
5.13 Chinese Remainder
1ld crt(lld ans[], lld pri[], int n){
                                                              const int P=2013265921, root=31;
lld M = 1, ret = 0;
                                                              const int MAXN=1<<20;</pre>
 for(int i=0;i<n;i++) M *= pri[i];</pre>
                                                              NTT<P, root, MAXN> ntt;
 for(int i=0;i<n;i++){</pre>
 lld iv = (gcd(M/pri[i],pri[i]).FF+pri[i])%pri[i];
                                                               5.16 Polynomial Operations
  ret += (ans[i]*(M/pri[i])%M * iv)%M;
                                                              using VL = vector<LL>
  ret %= M;
                                                              #define fi(s, n) for (int i=int(s); i<int(n); ++i)
#define Fi(s, n) for (int i=int(n); i>int(s); --i)
 return ret;
                                                              int n2k(int n) {
}
/*
                                                               int sz = 1; while (sz < n) sz <<= 1;</pre>
                                                                return sz;
Another:
x = a1 \% m1
                                                              template<int MAXN, LL P, LL RT> // MAXN = 2^k
x = a2 \% m2
                                                              struct Poly { // coefficients in [0, P)
g = gcd(m1, m2)
                                                                static NTT<MAXN, P, RT> ntt;
assert((a1-a2)%g==0)
                                                                VL coef;
[p, q] = exgcd(m2/g, m1/g)
                                                                int n() const { return coef.size(); } // n()>=1
return a2+m2*(p*(a1-a2)/g)
                                                                LL *data() { return coef.data(); }
0 <= x < lcm(m1, m2)
                                                                const LL *data() const { return coef.data(); }
                                                                LL &operator[](size_t i) { return coef[i]; }
                                                                const LL &operator[](size_t i)const{return coef[i];}
5.14 Berlekamp Massey
                                                                Poly(initializer_list<LL> a) : coef(a) { }
// x: 1-base, p[]: 0-base
                                                                explicit Poly(int _n = 1) : coef(_n) { }
template<size_t N>
                                                               Poly(const LL *arr, int _n) : coef(arr, arr + _n) {}
Poly(const Poly &p, int _n) : coef(_n) {
vector<llf> BM(llf x[N], size_t n){
 size_t f[N]=\{0\},t=0;llf d[N];
                                                                 copy_n(p.data(), min(p.n(), _n), data());
 vector<llf> p[N];
 for(size_t i=1,b=0;i<=n;++i) {</pre>
                                                                Poly& irev(){return reverse(data(),data()+n()),*this;}
  for(size_t j=0;j<p[t].size();++j)</pre>
                                                                Poly& isz(int _n) { return coef.resize(_n), *this; }
   d[i]+=x[i-j-1]*p[t][j];
                                                                Poly& iadd(const Poly &rhs) { // n() == rhs.n()
  if(abs(d[i]-=x[i])<=EPS)continue;</pre>
                                                                fi(0, n()) if ((coef[i]+=rhs[i]) >= P)coef[i]-=P;
  f[t]=i;if(!t){p[++t].resize(i);continue;}
                                                                 return *this;
  vector<llf> cur(i-f[b]-1);
  11f k=-d[i]/d[f[b]];cur.PB(-k);
                                                                Poly& imul(LL k) {
  for(size_t j=0;j<p[b].size();j++)</pre>
                                                                 fi(0, n()) coef[i] = coef[i] * k % P;
   cur.PB(p[b][j]*k);
                                                                 return *this;
  if(cur.size()<p[t].size())cur.resize(p[t].size());</pre>
  for(size_t j=0;j<p[t].size();j++)cur[j]+=p[t][j];</pre>
                                                                Poly Mul(const Poly &rhs) const {
  if(i-f[b]+p[b].size()>=p[t].size()) b=t;
                                                                 const int _n = n2k(n() + rhs.n() - 1);
  p[++t]=cur;
                                                                 Poly X(*this, _n), Y(rhs, _n);
ntt(X.data(), _n), ntt(Y.data(), _n);
 return p[t];
                                                                 fi(0, _n) X[i] = X[i] * Y[i] % P;
                                                                 ntt(X.data(), _n, true);
                                                                 return X.isz(n() + rhs.n() - 1);
5.15 NTT
template <int mod, int G, int maxn>
                                                                Poly Inv() const { // coef[0] != 0
                                                                 if (n() == 1) return {ntt.minv(coef[0])};
struct NTT {
 static_assert (maxn == (maxn & -maxn));
                                                                 const int _n = n2k(n() * 2);
                                                                 Poly Xi = Poly(*this, (n() + 1)/2).Inv().isz(_n);
 int roots[maxn];
                                                                 Poly Y(*this, _n);
 NTT () {
  int r = modpow(G, (mod - 1) / maxn);
                                                                 ntt(Xi.data(), _n), ntt(Y.data(), _n);
                                                                 fi(0, _n) {
    Xi[i] *= (2 - Xi[i] * Y[i]) % P;
  for (int i = maxn >> 1; i; i >>= 1) {
   roots[i] = 1;
   for (int j = 1; j < i; j++)
                                                                  if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
    roots[i + j] = modmul(roots[i + j - 1], r);
   r = modmul(r, r);
                                                                 ntt(Xi.data(), _n, true);
```

return Xi.isz(n());

```
if (!nk && !nk2) return Poly({1}, n());
Poly Sqrt() const { // Jacobi(coef[0], P) = 1
 if (n()==1) return {QuadraticResidue(coef[0], P)};
                                                              Poly X(data() + nz, n() - nz * nk2);
 Poly X = Poly(*this, (n()+1) / 2).Sqrt().isz(n());
                                                              LL x0 = X[0]
 return X.iadd(Mul(X.Inv()).isz(n())).imul(P/2+1);
                                                              return X.imul(ntt.minv(x0)).Ln().imul(nk).Exp()
                                                                .imul(ntt.mpow(x0, nk2)).irev().isz(n()).irev();
pair<Poly, Poly> DivMod(const Poly &rhs) const {
 // (rhs.)back() != 0
                                                             Poly InvMod(int L) { // (to evaluate linear recursion)
                                                              Poly R{1, 0}; // *this * R mod x^L = 1 (*this[0] ==
 if (n() < rhs.n()) return {{0}, *this};</pre>
 const int _n = n() - rhs.n() + 1;
                                                                 1)
 Poly X(rhs); X.irev().isz(_n);
                                                              for (int level = 0; (1 << level) < L; ++level) {</pre>
 Poly Y(*this); Y.irev().isz(_n);
                                                               Poly 0 = R.Mul(Poly(data(), min(2 << level, n())));
 Poly Q = Y.Mul(X.Inv()).isz(_n).irev();
                                                               Poly Q(2 \ll level); Q[0] = 1;
 X = rhs.Mul(Q), Y = *this
                                                                for (int j = (1 << level); j < (2 << level); ++j)</pre>
 fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
                                                                 Q[j] = (P - O[j]) \% P;
 return {Q, Y.isz(max(1, rhs.n() - 1))};
                                                               R = R.Mul(Q).isz(4 << level);
Poly Dx() const {
                                                              return R.isz(L);
Poly ret(n() - 1);
 fi(0, ret.n()) ret[i] = (i + 1) * coef[i + 1] % P;
                                                             static LL LinearRecursion(const VL&a,const VL&c,LL n){
                                                              // a_n = \sum_{j=0}^{n-j} a_{j}
 return ret.isz(max(1, ret.n()));
                                                              const int k = (int)a.size();
Poly Sx() const {
  Poly ret(n() + 1);
                                                              assert((int)c.size() == k + 1);
                                                              Poly C(k + 1), W(\{1\}, k), M = \{0, 1\};
                                                              fi(1, k + 1) C[k - i] = c[i] ? P - c[i] : 0;
 fi(0, n()) ret[i + 1]=ntt.minv(i + 1)*coef[i] % P;
 return ret;
                                                              C[k] = 1;
                                                              while (n) {
Poly _tmul(int nn, const Poly &rhs) const {
                                                               if (n % 2) W = W.Mul(M).DivMod(C).second;
Poly Y = Mul(rhs).isz(n() + nn - 1);
                                                               n /= 2, M = M.Mul(M).DivMod(C).second;
 return Poly(Y.data() + n() - 1, nn);
                                                              LL ret = 0;
VL _eval(const VL &x, const auto up)const{
                                                              fi(0, k) ret = (ret + W[i] * a[i]) % P;
 const int _n = (int)x.size();
                                                              return ret;
 if (!_n) return {};
 vector<Poly> down(_n * 2);
                                                            };
 down[1] = DivMod(up[1]).second;
                                                            #undef fi
 fi(2,_n*2) down[i]=down[i/2].DivMod(up[i]).second;
                                                            #undef Fi
                                                            using Poly_t = Poly<131072 * 2, 998244353, 3>;
 /* down[1] = Poly(up[1]).irev().isz(n()).Inv().irev()
    _tmul(_n, *this);
                                                            template<> decltype(Poly_t::ntt) Poly_t::ntt = {};
 fi(2, _n * 2) down[i] = up[i ^ 1]._tmul(up[i].n() -
                                                            5.17
                                                                   FWT
   1, down[i / 2]); */
 VL y(_n);
                                                            /* xor convolution:
 fi(0, _n) y[i] = down[_n + i][0];
                                                             * x = (x0, x1) , y = (y0, y1)
                                                             *z = (x0y0 + x1y1 , x0y1 + x1y0 )
 return y;
                                                             * x' = (x0+x1, x0-x1)
static vector<Poly> _tree1(const VL &x) {
                                                                                        , y' = (y0+y1)
                                                             * z' = ((x0+x1)(y0+y1), (x0-x1)(y0-y1))
* z = (1/2) * z''
const int _n = (int)x.size();
 vector<Poly> up(_n * 2);
 fi(0, _n) up[_n + i] = \{(x[i] ? P - x[i] : 0), 1\};
                                                             * or convolution:
 Fi(0, _n-1) up[i] = up[i * 2].Mul(up[i * 2 + 1]);
                                                             * x = (x0, x0+x1), inv = (x0, x1-x0) w/o final div
                                                             * and convolution:
 return up;
                                                             * x = (x0+x1, x1), inv = (x0-x1, x1) w/o final div */
VL Eval(const VL&x)const{return _eval(x,_tree1(x));}
                                                            const LL MOD = 1e9+7;
static Poly Interpolate(const VL &x, const VL &y) {
                                                            inline void fwt( LL x[ MAXN ] , int N , bool inv=0 ) {
 const int _n = (int)x.size();
                                                             for( int d = 1 ; d < N ; d <<= 1 ) {
 vector<Poly> up = _tree1(x), down(_n * 2);
                                                              int d2 = d << 1:
 VL z = up[1].Dx()._eval(x, up);
                                                              for( int s = 0 ; s < N ; s += d2 )
                                                               for( int i = s , j = s+d ; i < s+d ; i++, j++ ){
  LL ta = x[ i ] , tb = x[ j ];</pre>
 fi(0, _n) z[i] = y[i] * ntt.minv(z[i]) % P;
 fi(0, _n) down[_n + i] = {z[i]};
 Fi(0, _n-1) down[i]=down[i * 2].Mul(up[i * 2 + 1])
                                                                 x[ i ] = ta+tb;
                                                                x[ j ] = ta-tb;
if( x[ i ] >= MOD ) x[ i ] -= MOD;
  .iadd(down[i * 2 + 1].Mul(up[i * 2]));
 return down[1];
                                                                 if( x[ j ] < 0 ) x[ j ] += MOD;</pre>
Poly Ln() const { // coef[0] == 1
 return Dx().Mul(Inv()).Sx().isz(n());
                                                             if( inv )
                                                              for( int i = 0 ; i < N ; i++ ) {
  x[ i ] *= inv( N, MOD );</pre>
Poly Exp() const { // coef[0] == 0
if (n() == 1) return {1};
Poly X = Poly(*this, (n() + 1)/2).Exp().isz(n());
Poly Y = X.Ln(); Y[0] = P - 1;
                                                               x[ i ] %= MOD;
 fi(0, n()) if((Y[i] = coef[i] - Y[i]) < 0)Y[i]+=P;
 return X.Mul(Y).isz(n());
                                                            5.18 DiscreteLog
Poly Pow(const string &K) const {
                                                            11d BSGS(11d P, 11d B, 11d N) {
 int nz = 0;
                                                             // find B^L = N mod P
 while (nz < n() && !coef[nz]) ++nz;</pre>
                                                             unordered_map<lld, lld> R;
                                                             lld sq = (lld) sqrt(P), t = 1;
 LL nk = 0, nk2 = 0;
 for (char c : K) {
                                                             for (int i = 0; i < sq; i++) {
  nk = (nk * 10 + c - '0') % P;
                                                              if (t == N) return i;
  nk2 = nk2 * 10 + c - '0';
                                                              if (!R.count(t)) R[t] = i;
  if (nk2 * nz >= n()) return Poly(n());
                                                              t = (t * B) % P;
  nk2 %= P - 1;
```

for (int i = 1; i <= p; ++i)

```
1ld f = inverse(t, P);
                                                                       res[sz++] = aux[i];
 for(int i=0;i<=sq+1;i++) {</pre>
                                                                   } else {
                                                                    aux[t] = aux[t - p];
 if (R.count(N))
                                                                    db(t + 1, p, n, k);
for (int i = aux[t - p] + 1; i < k; ++i) {
   return i * sq + R[N];
 N = (N * f) \% P;
                                                                     aux[t] = i;
                                                                     db(t + 1, t, n, k);
return -1;
5.19 FloorSum
                                                                  int de_bruijn(int k, int n) {
// @param n `n < 2^32`
                                                                   // return cyclic string of len k^n s.t. every string
// @param m `1 <= m < 2^32`
                                                                   // of len n using k char appears as a substring.
// @return sum_\{i=0\}^{n-1} floor((ai + b)/m) mod 2^64
                                                                   if (k == 1) {
llu floor_sum_unsigned(llu n, llu m, llu a, llu b) {
                                                                    res[0] = 0;
 llu ans = 0;
                                                                    return 1:
 while (true)
  if (a >= m) {
                                                                   for (int i = 0; i < k * n; i++) aux[i] = 0;
   ans += n * (n - 1) / 2 * (a / m); a %= m;
                                                                   sz = 0;
                                                                   db(1, 1, n, k);
  if (b >= m) {
                                                                   return sz;
   ans += n * (b / m); b %= m;
 llu y_max = a * n + b;
                                                                  5.22 Simplex Construction
 if (y_max < m) break;</pre>
                                                                  Standard form: maximize \sum_{1 < i < n} c_i x_i such that for all 1 \le j \le m,
 // y_max < m * (n + 1)
// floor(y_max / m) <= n
                                                                  \sum_{1 \leq i \leq n} A_{ji} x_i \leq b_j and x_i \geq 0 for all 1 \leq i \leq n.
 n = (1lu)(y_max / m), b = (1lu)(y_max % m);
                                                                    1. In case of minimization, let c_i^\prime = -c_i
  swap(m, a);
                                                                    2. \sum_{1 < i < n} A_{ji} x_i \ge b_j \to \sum_{1 < i < n} -A_{ji} x_i \le -b_j
 return ans;
                                                                    3. \sum_{1 \leq i \leq n} A_{ji} x_i = b_j
11d floor_sum(11d n, 11d m, 11d a, 11d b) {
 assert(0 <= n && n < (1LL << 32));
                                                                          • \sum_{1 < i < n} A_{ji} x_i \leq b_j
 assert(1 <= m && m < (1LL << 32));
                                                                          • \sum_{1 \le i \le n} A_{ji} x_i \ge b_j
 llu ans = 0;
 if (a < 0) {
                                                                    4. If x_i has no lower bound, replace x_i with x_i - x_i'
 11u \ a2 = (a \% m + m) \% m;
  ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
                                                                  5.23 Simplex
 a = a2:
                                                                  namespace simplex {
                                                                  // maximize c^Tx under Ax <= B
 if (b < 0) {
                                                                  // return VD(n, -inf) if the solution doesn't exist
 11u b2 = (b \% m + m) \% m;
                                                                  // return VD(n, +inf) if the solution is unbounded
 ans -= 1ULL * n * ((b2 - b) / m);
                                                                  using VD = vector<double>;
                                                                  using VVD = vector<vector<double>>;
                                                                  const double eps = 1e-9;
return ans + floor_sum_unsigned(n, m, a, b);
                                                                  const double inf = 1e+9;
                                                                  int n, m;
                                                                  VVD d;
5.20 Quadratic residue
                                                                  vector<int> p, q;
struct S {
                                                                  void pivot(int r, int s) {
 int MOD, w;
                                                                   double inv = 1.0 / d[r][s];
 int64_t x, y;
                                                                   for (int i = 0; i < m + 2; ++i)
 S(int m, int w_=-1, int64_t x_=1, int64_t y_=0)
                                                                    for (int j = 0; j < n + 2; ++j)
if (i != r && j != s)
d[i][j] -= d[r][j] * d[i][s] * inv;</pre>
  : MOD(m), w(w_{-}), x(x_{-}), y(y_{-}) {}
 S operator*(const S &rhs) const {
  int w_{-} = w;
                                                                   for(int i=0;i<m+2;++i) if (i != r) d[i][s] *= -inv;
  if (w_ == -1) w_ = rhs.w;
                                                                   for(int j=0;j<n+2;++j) if (j != s) d[r][j] *= +inv;
  assert(w_! = -1 \text{ and } w_= = rhs.w);
                                                                   d[r][s] = inv; swap(p[r], q[s]);
  return { MOD, w_,
(x * rhs.x + y * rhs.y % MOD * w) % MOD,
                                                                  bool phase(int z) {
   (x * rhs.y + y * rhs.x) % MOD };
                                                                   int x = m + z;
                                                                   while (true) {
}:
                                                                    int s = -1;
int64_t get_root(int64_t n, int P) {
                                                                    for (int i = 0; i <= n; ++i) {
if (P == 2) return 1;
auto check = [&](int64_t x) {
                                                                     if (!z && q[i] == -1) continue;
                                                                     if (s == -1 \mid | d[x][i] < d[x][s]) s = i;
  return qpow(x, (P - 1) / 2, P); };
 if (check(n) == P-1) return -1;
                                                                    if (d[x][s] > -eps) return true;
 int64_t a; int w; mt19937 rnd(7122);
                                                                    int r = -1;
 do { a = rnd() % P;
                                                                    for (int i = 0; i < m; ++i) {
 w = ((a * a - n) % P + P) % P;
                                                                     if (d[i][s] < eps) continue;</pre>
 } while (check(w) != P-1);
 return qpow(S(P, w, a, 1), (P + 1) / 2).x;
                                                                      d[i][n+1]/d[i][s] < d[r][n+1]/d[r][s]) r = i;
                                                                    if (r == -1) return false;
5.21 De-Bruijn
                                                                    pivot(r, s);
int res[maxn], aux[maxn], sz;
void db(int t, int p, int n, int k) {
                                                                  VD solve(const VVD &a, const VD &b, const VD &c) {
 if (t > n) {
  if (n \% p == 0)
                                                                   m = b.size(), n = c.size();
```

d = VVD(m + 2, VD(n + 2));

Real theta = atan2(B.y - A.y, B.x - A.x);

(2 * A.r * dis));

Real phi = acos((A.r * A.r + d2 - B.r * B.r) /

```
for (int i = 0; i < m; ++i)
                                                               Real L = theta - phi, R = theta + phi;
 for (int j = 0; j < n; ++j) d[i][j] = a[i][j];
                                                               while (L < -PI) L += PI * 2;
 p.resize(m), q.resize(n + 1);
                                                               while (R > PI) R -= PI * 2;
for (int i = 0; i < m; ++i) p[i] = n + i, d[i][n] = -1, d[i][n + 1] = b[i];
                                                               return { L, R };
 for (int i = 0; i < n; ++i) q[i] = i, d[m][i] = -c[i];
 q[n] = -1, d[m + 1][n] = 1;
                                                              vector<Point> intersectPoint(Circle a, Circle b) {
                                                               Real d=o.dis(aa.o);
 int r = 0:
                                                               if (d >= r+aa.r || d <= fabs(r-aa.r)) return {};
Real dt = (r*r - aa.r*aa.r)/d, d1 = (d+dt)/2;
Point dir = (aa.o-o); dir /= d;</pre>
 for (int i = 1; i < m; ++i)</pre>
  if (d[i][n + 1] < d[r][n + 1]) r = i;
if (d[r][n + 1] < -eps) {
                                                               Point pcrs = dir*d1 + o;
 pivot(r, n);
                                                               dt=sqrt(max(0.0L, r*r - d1*d1)), dir=dir.rot90();
  if (!phase(1) \mid | d[m + 1][n + 1] < -eps)
   return VD(n, -inf);
                                                               return {pcrs + dir*dt, pcrs - dir*dt};
  for (int i = 0; i < m; ++i) if (p[i] == -1) {
  int s = min_element(d[i].begin(), d[i].end() - 1)
                                                              6.3 2D Convex Hull
       - d[i].begin();
   pivot(i, s);
                                                              template<typename PT>
                                                              vector<PT> buildConvexHull(vector<PT> d) {
 }
                                                               sort(ALL(d), [](const PT& a, const PT& b){
if (!phase(0)) return VD(n, inf);
                                                                 return tie(a.x, a.y) < tie(b.x, b.y);});</pre>
VD x(n);
                                                               vector<PT> s(SZ(d)<<1);</pre>
for (int i = 0; i < m; ++i)
                                                               int o = 0;
 if (p[i] < n) x[p[i]] = d[i][n + 1];
                                                               for(auto p: d) {
                                                                while(o \ge 2 && cross(p - s[o - 2], s[o - 1] - s[o - 2])<=0)
                                                                 0--
                                                                s[o++] = p;
6
    Geometry
                                                               for(int i=SZ(d)-2, t = o+1;i>=0;i--){
                                                                while(o = t\&cross(d[i] - s[o-2], s[o-1] - s[o-2]) <= 0)
6.1
    Basic Geometry
using coord_t = int;
                                                                s[o++] = d[i];
using Real = double;
using Point = std::complex<coord_t>;
                                                               s.resize(o-1);
int sgn(coord_t x) {
                                                               return s;
return (x > 0) - (x < 0);
coord_t dot(Point a, Point b) {
                                                              6.4 3D Convex Hull
return real(conj(a) * b);
                                                              // return the faces with pt indexes
                                                              int flag[MXN][MXN];
coord_t cross(Point a, Point b) {
                                                              struct Point{
return imag(conj(a) * b);
                                                               ld x,y,z;
                                                               Point operator * (const ld &b) const {
int ori(Point a, Point b, Point c) {
                                                                return (Point) {x*b, y*b, z*b};}
return sgn(cross(b - a, c - a));
                                                               Point operator * (const Point &b) const {
                                                                return(Point) {y*b.z-b.y*z,z*b.x-b.z*x,x*b.y-b.x*y};
bool operator<(const Point &a, const Point &b) {</pre>
return real(a) != real(b)
 ? real(a) < real(b) : imag(a) < imag(b);</pre>
                                                              Point ver(Point a, Point b, Point c) {
                                                               return (b - a) * (c - a);}
int argCmp(Point a, Point b) {
                                                              vector<Face> convex_hull_3D(const vector<Point> pt) {
// -1 / 0 / 1 <-> < / == / > (atan2)
                                                               int n = SZ(pt), ftop = 0
int qa = (imag(a) == 0
                                                               REP(i,n) REP(j,n) flag[i][j] = 0;
  ? (real(a) < 0 ? 3 : 1) : (imag(a) < 0 ? 0 : 2));
                                                               vector<Face> now;
 int qb = (imag(b) == 0
                                                               now.emplace_back(0,1,2);
   ? (real(b) < 0 ? 3 : 1) : (imag(b) < 0 ? 0 : 2));
                                                               now.emplace_back(2,1,0)
if (qa != qb)
                                                               for (int i=3; i<n; i++){
  return sgn(qa - qb);
                                                                ftop++; vector<Face> next;
return sgn(cross(b, a));
                                                                REP(j, SZ(now)) {
  Face& f=now[j]; int ff = 0;
template <typename V> Real area(const V & pt) {
                                                                 ld d=(pt[i]-pt[f.a]).dot(
coord_t ret = 0;
                                                                   ver(pt[f.a], pt[f.b], pt[f.c]));
for (int i = 1; i + 1 < (int)pt.size(); i++)</pre>
                                                                 if (d <= 0) next.push_back(f);</pre>
 ret += cross(pt[i] - pt[0], pt[i+1] - pt[0]);
                                                                 if (d > 0) ff=ftop;
return ret / 2.0;
                                                                 else if (d < 0) ff=-ftop;</pre>
                                                                 flag[f.a][f.b]=flag[f.b][f.c]=flag[f.c][f.a]=ff;
6.2 Circle Class
                                                                REP(j, SZ(now)) {
  Face& f=now[j];
struct Circle { Point o; Real r; };
                                                                 if (flag[f.a][f.b] > 0 &&
                                                                   flag[f.a][f.b] != flag[f.b][f.a])
vector<Real> intersectAngle(Circle a, Circle b) {
Real d2 = norm(a.o - b.o)
                                                                  next.emplace_back(f.a,f.b,i);
if (norm(A.r - B.r) >= d2)
                                                                 if (flag[f.b][f.c] > 0 &&
                                                                   flag[f.b][f.c] != flag[f.c][f.b])
 if (A.r < B.r)
   return {-PI, PI};
                                                                  next.emplace_back(f.b,f.c,i);
                                                                 if (flag[f.c][f.a] > 0 &&
 else
                                                                   flag[f.c][f.a] != flag[f.a][f.c])
   return {};
if (norm(A.r + B.r) <= d2) return {};</pre>
                                                                  next.emplace_back(f.c,f.a,i);
Real dis = hypot(A.x - B.x, A.y - B.y);
```

now=next;

return now;

National Taiwan University - ckiseki 6.8 Simulated Annealing | } 6.5 2D Farthest Pair // stk is from convex hull n = (int)(stk.size()); int pos = 1, ans = 0; stk.push_back(stk[0]); for(int i=0;i<n;i++) { while(abs(cross(stk[i+1]-stk[i],</pre> stk[(pos+1)%n]-stk[i])) > abs(cross(stk[i+1]-stk[i] stk[pos]-stk[i]))) pos = (pos+1)%n;ans = max({ans, dis(stk[i], stk[pos]), dis(stk[i+1], stk[pos])}); 6.6 2D Closest Pair struct cmp_y { bool operator()(const P& p, const P& q) const { return p.y < q.y;</pre> } multiset<P, cmp_y> s; void solve(P a[], int n) { sort(a, a + n, [](const P& p, const P& q) { return tie(p.x, p.y) < tie(q.x, q.y);</pre> 11f d = INF; int pt = 0; for (int i = 0; i < n; ++i) { while (pt < i and a[i].x - a[pt].x >= d)s.erase(s.find(a[pt++])); auto it = s.lower_bound(P(a[i].x, a[i].y - d)); while (it != s.end() and it->y - a[i].y < d)</pre> d = min(d, dis(*(it++), a[i])); s.insert(a[i]); } kD Closest Pair (3D ver.) 11f solve(vector<P> v) { shuffle(v.begin(), v.end(), mt19937()); unordered_map<11d, unordered_map<1ld,</pre> unordered_map<lld, int>>> m; 11f d = dis(v[0], v[1]); auto Idx = [&d] (11f x) -> 11d { return round(x * 2 / d) + 0.1; }; auto rebuild_m = [&m, &v, &Idx](int k) { m.clear(); for (int i = 0; i < k; ++i) m[Idx(v[i].x)][Idx(v[i].y)][Idx(v[i].z)] = i;}; rebuild_m(2); for (size_t i = 2; i < v.size(); ++i) {</pre> const 11d kx = Idx(v[i].x), ky = Idx(v[i].y), kz = Idx(v[i].z); bool found = false; for (int dx = -2; dx <= 2; ++dx) { const 11d nx = dx + kx; if (m.find(nx) == m.end()) continue; auto& mm = m[nx]; for (int dy = -2; dy <= 2; ++dy) { const 11d ny = dy + ky; if (mm.find(ny) == mm.end()) continue; auto& mmm = mm[ny]; for (int dz = -2; dz <= 2; ++dz) { const 11d nz = dz + kz; if (mmm.find(nz) == mmm.end()) continue; const int p = mmm[nz]; if (dis(v[p], v[i]) < d) { d = dis(v[p], v[i]);found = true; }

if (found) rebuild_m(i + 1);

else m[kx][ky][kz] = i;

return d;

```
11f anneal() {
 mt19937 rnd_engine( seed );
 uniform_real_distribution< llf > rnd( 0, 1 );
 const 11f dT = 0.001;
 // Argument p
 1lf S_cur = calc( p ), S_best = S_cur;
for ( 1lf T = 2000 ; T > EPS ; T -= dT ) {
  // Modify p to p_prime
const llf S_prime = calc( p_prime );
  const llf delta_c = S_prime - S_cur;
llf prob = min( ( llf ) 1, exp( -delta_c / T ) );
  if ( rnd( rnd_engine ) <= prob )</pre>
   S_cur = S_prime, p = p_prime;
  if ( S_prime < S_best ) // find min</pre>
   S_best = S_prime, p_best = p_prime;
 return S_best;
     Half Plane Intersection
// NOTE: Point is complex<Real>
// cross(pt-line.st, line.dir)<=0 <-> pt in half plane
struct Line {
  Point st, ed;
  Point dir;
  Line (Point _s, Point _e)
   : st(_s), ed(_e), dir(_e - _s) {}
};
bool operator<(const Line &lhs, const Line &rhs) {</pre>
  if (int cmp = argCmp(lhs.dir, rhs.dir))
    return cmp == -1;
  return ori(lhs.st, lhs.ed, rhs.st) < 0;</pre>
Point intersect(const Line &A, const Line &B) {
  Real t = cross(B.st - A.st, B.dir) /
   cross(A.dir, B.dir);
  return A.st + t * A.dir;
Real HPI(vector<Line> &lines) {
  sort(lines.begin(), lines.end());
  deque<Line> que;
  deque<Point> pt;
  que.push_back(lines[0]);
  for (int i = 1; i < (int)lines.size(); i++) {</pre>
    if (argCmp(lines[i].dir, lines[i-1].dir) == 0)
     continue;
#define POP(L, R) \
    while (pt.size() > 0 \
      && ori(L.st, L.ed, pt.back()) < 0) \pt.pop_back(), que.pop_back(); \
    while (pt.size() > 0 \
      && ori(R.st, R.ed, pt.front()) < 0) \
pt.pop_front(), que.pop_front();
    POP(lines[i], lines[i]);
    pt.push_back(intersect(que.back(), lines[i]));
    que.push_back(lines[i]);
  POP(que.front(), que.back())
  if (que.size() <= 1 ||</pre>
    argCmp(que.front().dir, que.back().dir) == 0)
  pt.push_back(intersect(que.front(), que.back()));
  return area(pt):
6.10 Minkowski sum
vector<pll> Minkowski(vector<pll> A, vector<pll> B) {
 hull(A), hull(B);
 vector<pll> C(1, A[0] + B[0]), s1, s2;
 for(int i = 0; i < SZ(A); ++i)</pre>
  s1.pb(A[(i + 1) % SZ(A)] - A[i]);
 for(int i = 0; i < SZ(B); i++)</pre>
  s2.pb(B[(i + 1) % SZ(B)] - B[i]);
 for(int p1 = 0, p2 = 0; p1 < SZ(A) \mid \mid p2 < SZ(B);)
  if (p2 >= SZ(B)
    | | (p1 < SZ(A) \&\& cross(s1[p1], s2[p2]) >= 0))
   C.pb(C.back() + s1[p1++]);
  else
```

```
C.pb(C.back() + s2[p2++]);
                                                               Pt p2 = c2.0 + n * (c2.R * sign1);
                                                               if( fabs( p1.X - p2.X ) < eps and
return hull(C), C;
                                                                 fabs( p1.Y - p2.Y ) < eps )
                                                                p2 = p1 + perp(c2.0 - c1.0);
6.11 intersection of line and circle
                                                               ret.push_back( { p1 , p2 } );
vector<pdd> line_interCircle(const pdd &p1,
                                                              return ret;
    const pdd &p2,const pdd &c,const double r){
                                                             }
pdd ft=foot(p1,p2,c),vec=p2-p1;
double dis=abs(c-ft);
                                                                    Minimum Covering Circle
                                                             6.15
if(fabs(dis-r)<eps) return vector<pdd>{ft};
                                                             template<typename P>
if(dis>r) return {};
                                                             Circle getCircum(const P &a, const P &b, const P &c){
vec=vec*sqrt(r*r-dis*dis)/abs(vec);
                                                              Real a1 = a.x-b.x, b1 = a.y-b.y;
return vector<pdd>{ft+vec,ft-vec};
                                                              Real c1 = (a.x+b.x)/2 * a1 + (a.y+b.y)/2 * b1;
                                                              Real a2 = a.x-c.x, b2 = a.y-c.y;
                                                              Real c2 = (a.x+c.x)/2 * a2 + (a.y+c.y)/2 * b2;
6.12 intersection of polygon and circle
                                                              Circle cc:
// Divides into multiple triangle, and sum up
                                                              cc.o.x = (c1*b2-b1*c2)/(a1*b2-b1*a2);
// test by HDU2892
                                                              cc.o.y = (a1*c2-c1*a2)/(a1*b2-b1*a2);
const double PI=acos(-1);
                                                              cc.r = hypot(cc.o.x-a.x, cc.o.y-a.y);
double _area(pdd pa, pdd pb, double r){
  if(abs(pa)<abs(pb)) swap(pa, pb);</pre>
                                                              return cc;
if(abs(pb)<eps) return 0;</pre>
double S, h, theta;
                                                             template<typename P>
double a=abs(pb), b=abs(pa), c=abs(pb-pa);
                                                             Circle MinCircleCover(const vector<P>& pts){
double cosB = dot(pb,pb-pa) / a / c, B = acos(cosB);
                                                              random_shuffle(pts.begin(), pts.end());
Circle c = { pts[0], 0 };
 double cosC = dot(pa,pb) / a / b, C = acos(cosC);
if(a > r){
                                                              for(int i=0;i<(int)pts.size();i++){</pre>
 S = (C/2)*r*r
                                                               if (dist(pts[i], c.o) <= c.r) continue;</pre>
 h = a*b*sin(C)/c;
                                                               c = { pts[i], 0 };
for (int j = 0; j < i; j++) {
 if (h < r && B < PI/2)
   S = (acos(h/r)*r*r - h*sqrt(r*r-h*h));
                                                                if(dist(pts[j], c.o) <= c.r) continue;</pre>
                                                                c.o = (pts[i] + pts[j]) / 2;
else if(b > r){
                                                                c.r = dist(pts[i], c.o)
 theta = PI - B - asin(sin(B)/r*a);
                                                                for (int k = 0; k < j; k++) {
 S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
                                                                 if (dist(pts[k], c.o) <= c.r) continue;</pre>
                                                                 c = getCircum(pts[i], pts[j], pts[k]);
else S = .5*sin(C)*a*b;
return S;
                                                               }
double area_poly_circle(const vector<pdd> poly,
                                                              return c;
 const pdd &0,const double r){
 double S=0;
for(int i=0;i<SZ(poly);++i)</pre>
                                                                   KDTree (Nearest Point)
 S+=\_area(poly[i]-0,poly[(i+1)\%SZ(poly)]-0,r)
                                                             const int MXN = 100005;
    *ori(0,poly[i],poly[(i+1)%SZ(poly)]);
                                                             struct KDTree {
return fabs(S);
                                                              struct Node {
                                                               int x,y,x1,y1,x2,y2;
                                                               int id, f;
6.13 intersection of two circle
                                                               Node *L, *R;
bool CCinter(Cir &a, Cir &b, pdd &p1, pdd &p2) {
                                                              } tree[MXN], *root;
pdd o1 = a.0, o2 = b.0;
                                                              int n:
double r1 = a.R, r2 = b.R, d2 = abs2(o1 - o2),
                                                              LL dis2(int x1, int y1, int x2, int y2) {
     d = sqrt(d2);
                                                               LL dx = x1-x2, dy = y1-y2;
if(d < max(r1, r2) - min(r1, r2) \mid \mid d > r1 + r2)
                                                               return dx*dx+dy*dy;
  return 0;
pdd u = (o1 + o2) * 0.5
                                                              static bool cmpx(Node& a, Node& b){return a.x<b.x;}</pre>
  + (o1 - o2) * ((r2 * r2 - r1 * r1) / (2 * d2));
                                                              static bool cmpy(Node& a, Node& b){return a.y<b.y;}</pre>
double A = sqrt((r1 + r2 + d) * (r1 - r2 + d)
                                                              void init(vector<pair<int,int>> ip) {
     *(r1 + r2 - d) *(-r1 + r2 + d));
                                                               n = ip.size();
pdd v = pdd(o1.Y - o2.Y, -o1.X + o2.X) * A
                                                               for (int i=0; i<n; i++) {
  tree[i].id = i;</pre>
  / (2 * d2);
p1 = u + v, p2 = u - v;
                                                                tree[i].x = ip[i].first;
return 1;
                                                                tree[i].y = ip[i].second;
                                                               root = build_tree(0, n-1, 0);
6.14 tangent line of two circle
vector<Line> go(const Cir& c1,
                                                              Node* build_tree(int L, int R, int d) {
 const Cir& c2, int sign1){
                                                               if (L>R) return nullptr;
                                                               int M = (L+R)/2; tree[M].f = d%2;
 // sign1 = 1 for outer tang, -1 for inter tang
vector<Line> ret;
                                                               nth_element(tree+L, tree+M, tree+R+1, d%2?cmpy:cmpx);
                                                               tree[M].x1 = tree[M].x2 = tree[M].x;
double d_sq = norm2( c1.0 - c2.0 );
 if( d_sq < eps ) return ret;</pre>
                                                               tree[M].y1 = tree[M].y2 = tree[M].y;
                                                               tree[M].L = build_tree(L, M-1, d+1);
double d = sqrt( d_sq );
Pt v = (c2.0 - c1.0) / d;
                                                               if (tree[M].L) {
                                                                tree[M].x1 = min(tree[M].x1, tree[M].L->x1);
double c = (c1.R - sign1 * c2.R) / d;
 if( c * c > 1 ) return ret;
                                                                tree[M].x2 = max(tree[M].x2, tree[M].L->x2);
tree[M].y1 = min(tree[M].y1, tree[M].L->y1);
 double h = sqrt( max( 0.0
                             1.0 - c * c ) );
for( int sign2 = 1 ; sign2 >= -1 ; sign2 -= 2 ){
                                                                tree[M].y2 = max(tree[M].y2, tree[M].L->y2);
 Pt'n = \{ v.X * c - sign2 * h * v.Y ,
  v.Y * c + sign2 * h * v.X };
                                                               tree[M].R = build_tree(M+1, R, d+1);
  Pt p1 = c1.0 + n * c1.R;
                                                               if (tree[M].R) {
```

sa[--x[s[sa[i] - 1]]] = sa[i] - 1;

```
tree[M].x1 = min(tree[M].x1, tree[M].R->x1);
   tree[M].x2 = max(tree[M].x2, tree[M].R->x2);
                                                                   void sais(int *s, int *sa, int *p, int *q,
                                                                    bool *t, int *c, int n, int z) {
   tree[M].y1 = min(tree[M].y1, tree[M].R->y1);
   tree[M].y2 = max(tree[M].y2, tree[M].R->y2);
                                                                    bool uniq = t[n - 1] = true;
                                                                    int nn=0, nmxz=-1, *nsa = sa+n, *ns=s+n, last=-1;
                                                                    memset(c, 0, sizeof(int) * z);
  return tree+M;
                                                                    for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;
for (int i = 0; i < z - 1; ++i) c[i + 1] += c[i];
 int touch(Node* r, int x, int y, LL d2){
                                                                    if (uniq) {
  LL dis = sqrt(d2)+1;
  if (x<r->x1-dis || x>r->x2+dis ||
                                                                     for (int i = 0; i < n; ++i) sa[--c[s[i]]] = i;
                                                                     return;
    y<r->y1-dis || y>r->y2+dis)
   return 0;
                                                                    for (int i = n - 2; i >= 0; --i)
  return 1;
                                                                     t[i] = (s[i] = s[i + 1] ? t[i + 1] : s[i] < s[i + 1]);
 void nearest(Node* r,int x,int y,int &mID,LL &md2) {
                                                                    pre(sa, c, n, z);
  if (!r || !touch(r, x, y, md2)) return;
LL d2 = dis2(r->x, r->y, x, y);
                                                                    for (int i = 1; i <= n - 1; ++i)
if (t[i] && !t[i - 1])
  if (d2 < md2 || (d2 == md2 && mID < r->id)) {
                                                                      sa[--x[s[i]]] = p[q[i] = nn++] = i;
                                                                    induce(sa, c, s, t, n, z);
for (int i = 0; i < n; ++i)
   mID = r -> id;
   md2 = d2;
                                                                     if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
  // search order depends on split dim
                                                                     bool neq = last < 0 || \</pre>
                                                                      memcmp(s + sa[i], s + last,
(p[q[sa[i]] + 1] - sa[i]) * sizeof(int));
  if ((r->f == 0 \&\& x < r->x) ||
    (r->f == 1 \&\& y < r->y)) {
   nearest(r->L, x, y, mID, md2);
nearest(r->R, x, y, mID, md2);
                                                                     ns[q[last = sa[i]]] = nmxz += neq;
  } else {
                                                                    sais(ns, nsa, p+nn, q+n, t+n, c+z, nn, nmxz+1);
                                                                    pre(sa, c, n, z);
for (int i = nn - 1; i >= 0; --i)
   nearest(r->R, x, y, mID, md2);
   nearest(r->L, x, y, mID, md2);
                                                                     sa[--x[s[p[nsa[i]]]]] = p[nsa[i]];
                                                                    induce(sa, c, s, t, n, z);
 int query(int x, int y) {
  int id = 1029384756;
                                                                   void build(const string &s) {
  LL d2 = 102938475612345678LL;
                                                                   for (int i = 0; i < (int)s.size(); ++i) _s[i] = s[i];
                                                                    _s[(int)s.size()] = 0; // s shouldn't contain 0
  nearest(root, x, y, id, d2);
                                                                    sais(_s, sa, p, q, t, c, (int)s.size() + 1, 256);
for(int i = 0; i < (int)s.size(); ++i) sa[i]=sa[i+1];</pre>
  return id:
                                                                    for(int i = 0; i < (int)s.size(); ++i) rev[sa[i]]=i;</pre>
} tree;
                                                                    int ind = 0; hi[0] = 0;
                                                                    for (int i = 0; i < (int)s.size(); ++i) {</pre>
     Stringology
                                                                     if (!rev[i]) {
                                                                      ind = 0;
7.1 Hash
                                                                      continue:
class Hash {
                                                                     while (i + ind < (int)s.size() && \</pre>
  static constexpr int P = 127, Q = 1051762951;
                                                                      s[i + ind] == s[sa[rev[i] - 1] + ind]) ++ind;
  vector<int> h, p;
                                                                     hi[rev[i]] = ind ? ind-- : 0;
 public:
  void init(const string &s){
                                                                   }}
   h.assign(s.size()+1, 0); p.resize(s.size()+1);
   for (size_t i = 0; i < s.size(); ++i)</pre>
                                                                   7.3 Suffix Automaton
    h[i + 1] = add(mul(h[i], P), s[i]);
                                                                   struct Node{
   generate(p.begin(), p.end(),[x=1,y=1,this]()
                                                                    Node *green, *edge[26];
     mutable{y=x;x=mul(x,P);return y;});
                                                                    int max_len;
                                                                    Node(const int _max_len)
  int query(int 1, int r){ // 1-base (1, r]
                                                                     : green(NULL), max_len(_max_len){
   return sub(h[r], mul(h[1], p[r-1]));}
                                                                     memset(edge, 0, sizeof(edge));
                                                                   } *ROOT, *LAST;
7.2 Suffix Array
                                                                   void Extend(const int c) {
                                                                    Node *cursor = LAST
namespace sfxarray {
bool t[maxn * 2];
                                                                    LAST = new Node((LAST->max_len) + 1);
int hi[maxn], rev[maxn];
                                                                    for(;cursor&&!cursor->edge[c]; cursor=cursor->green)
int _s[maxn * 2], sa[maxn * 2], c[maxn * 2];
int x[maxn], p[maxn], q[maxn * 2];
// sa[i]: sa[i]-th suffix is the \
                                                                     cursor->edge[c] = LAST;
                                                                    if (!cursor)
                                                                     LAST->green = ROOT;
// i-th lexigraphically smallest suffix.
                                                                    else {
                                                                     Node *potential_green = cursor->edge[c];
// hi[i]: longest common prefix
// of suffix sa[i] and suffix sa[i - 1].
                                                                     if((potential_green->max_len)==(cursor->max_len+1))
void pre(int *sa, int *c, int n, int z) {
                                                                      LAST->green = potential_green;
 memset(sa, 0, sizeof(int) * n);
                                                                     else {
 memcpy(x, c, sizeof(int) * z);
                                                                   //assert(potential_green->max_len>(cursor->max_len+1));
                                                                      Node *wish = new Node((cursor->max_len) + 1);
void induce(int *sa,int *c,int *s,bool *t,int n,int z){
                                                                      for(;cursor && cursor->edge[c]==potential_green;
 memcpy(x + 1, c, sizeof(int) * (z - 1));
for (int i = 0; i < n; ++i)
  if (sa[i] && !t[sa[i] - 1])</pre>
                                                                          cursor = cursor->green)
                                                                       cursor->edge[c] = wish;
                                                                      for (int i = 0; i < 26; i++)
  wish->edge[i] = potential_green->edge[i];
   sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
 memcpy(x, c, sizeof(int) * z);
for (int i = n - 1; i >= 0; --i)
if (sa[i] && t[sa[i] - 1])
                                                                      wish->green = potential_green->green;
```

potential_green->green = wish;

LAST->green = wish;

```
return ans;
char S[10000001], A[10000001];
                                                              7.7 Lexico Smallest Rotation
int N;
int main(){
                                                              string mcp(string s){
 scanf("%d%s", &N, S);
                                                               int n = s.length();
 ROOT = LAST = new Node(0);
                                                               s += s;
 for (int i = 0; S[i]; i++)
Extend(S[i] - 'a');
                                                               int i=0, j=1;
                                                               while (i<n && j<n){</pre>
 while (N--){
  scanf("%s", A);
                                                                int k = 0;
                                                                while (k < n \&\& s[i+k] == s[j+k]) k++;
  Node *cursor = ROOT;
                                                                if (s[i+k] <= s[j+k]) j += k+1;
  bool ans = true;
                                                                else i += k+1:
  for (int i = 0; A[i]; i++){
                                                                if (i == j) j++;
  cursor = cursor->edge[A[i] - 'a'];
   if (!cursor) {
                                                               int ans = i < n ? i : j;</pre>
    ans = false;
                                                               return s.substr(ans, n);
    break:
   }
                                                              7.8
                                                                   BWT
  puts(ans ? "Yes" : "No");
                                                              struct BurrowsWheeler{
                                                              #define SIGMA 26
 return 0;
                                                              #define BASE 'a
                                                               vector<int> v[ SIGMA ];
                                                               void BWT(char* ori, char* res){
7.4
      KMP
                                                                // make ori -> ori + ori
vector<int> kmp(const string &s) {
                                                                // then build suffix array
 vector<int> f(s.size(), 0);
 /* f[i] = length of the longest prefix
                                                               void iBWT(char* ori, char* res){
   (excluding s[0:i]) such that it coincides
                                                                for( int i = 0 ; i < SIGMA ; i ++ )</pre>
   with the suffix of s[0:i] of the same length */
                                                                 v[ i ].clear();
 /* i + 1 - f[i] is the length of the
                                                                int len = strlen( ori );
   smallest recurring period of s[0:i] */
                                                                for( int i = 0 ; i < len ; i ++ )</pre>
 int k = 0:
                                                                 v[ ori[i] - BASE ].push_back( i );
 for (int i = 1; i < (int)s.size(); ++i) {</pre>
                                                                vector<int> a;
 while (k > 0 \&\& s[i] != s[k]) k = f[k - 1];
                                                                for( int i = 0 , ptr = 0 ; i < SIGMA ; i ++ )</pre>
  if (s[i] == s[k]) ++k;
                                                                 for( auto j : v[ i ] ){
  f[i] = k;
                                                                  a.push_back( j );
                                                                  ori[ ptr ++ ] = BASE + i;
 return f;
                                                                for( int i = 0 , ptr = 0 ; i < len ; i ++ ){
  res[ i ] = ori[ a[ ptr ] ];</pre>
vector<int> search(const string &s, const string &t) {
 // return 0-indexed occurrence of t in s
                                                                 ptr = a[ ptr ];
 vector<int> f = kmp(t), r;
for (int i = 0, k = 0; i < (int)s.size(); ++i) {</pre>
                                                                res[ len ] = 0;
  while(k > 0 && (k==(int)t.size() \mid \mid s[i]!=t[k]))
   k = f[k - 1];
                                                              } bwt;
  if (s[i] == t[k]) ++k;
  if (k == (int)t.size()) r.push_back(i-t.size()+1);
                                                              7.9
                                                                   Palindromic Tree
                                                              struct palindromic_tree{
 return res;
                                                               struct node{
                                                                int next[26],f,len;
                                                                int cnt,num,st,ed;
7.5 Z value
                                                                node(int l=0):f(0),len(1),cnt(0),num(0) {
char s[MAXN];
                                                                 memset(next, 0, sizeof(next)); }
int len,z[MAXN];
void Z_value() {
                                                               vector<node> st:
 int i,j,left,right;
                                                               vector<char> s;
 z[left=right=0]=len;
                                                               int last,n;
 for(i=1;i<len;i++) {</pre>
                                                               void init(){
  j=max(min(z[i-left], right-i),0);
                                                                st.clear();s.clear();last=1; n=0;
  for(;i+j<len&&s[i+j]==s[j];j++);
                                                                st.push_back(0);st.push_back(-1);
  if(i+(z[i]=j)>right)right=i+z[left=i];
                                                                st[0].f=1;s.push_back(-1); }
                                                               int getFail(int x){
                                                                while(s[n-st[x].len-1]!=s[n])x=st[x].f;
                                                                return x;}
7.6 Manacher
                                                               void add(int c){
                                                                s.push_back(c-='a'); ++n;
int z[maxn]:
int manacher(const string& s) {
                                                                int cur=getFail(last);
 string t = ".";
                                                                if(!st[cur].next[c]){
 for(char c: s) t += c, t += '.';
                                                                 int now=st.size();
 int 1 = 0, r = 0, ans = 0;
                                                                  st.push_back(st[cur].len+2);
 for (int i = 1; i < t.length(); ++i) {
z[i] = (r > i ? min(z[2 * 1 - i], r - i) : 1);
                                                                  st[now].f=st[getFail(st[cur].f)].next[c];
                                                                 st[cur].next[c]=now;
  while (i - z[i] >= 0 \&\& i + z[i] < t.length()) {
                                                                 st[now].num=st[st[now].f].num+1;
   if(t[i - z[i]] == t[i + z[i]]) ++z[i];
                                                                last=st[cur].next[c];
   else break;
                                                                ++st[last].cnt;}
  if (i + z[i] > r) r = i + z[i], l = i;
                                                               int size(){ return st.size()-2;}
                                                              } pt;
 for(int i=1;i<t.length();++i) ans = max(ans, z[i]-1);
                                                              int main() {
```

```
string s; cin >> s; pt.init();
for (int i=0; i<SZ(s); i++) {
  int prvsz = pt.size(); pt.add(s[i]);
  if (prvsz != pt.size()) {
    int r = i, l = r - pt.st[pt.last].len + 1;
    // pal @ [1,r]: s.substr(1, r-1+1)
  }
}
return 0;
}</pre>
```

8 Misc

8.1 Theorems

8.1.1 Kirchhoff's Theorem

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G, where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|\det(\tilde{L}_{rr})|$.

8.1.2 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniform randomly) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

8.1.3 Cayley's Formula

- Given a degree sequence d_1,d_2,\dots,d_n for each labeled vertices, there're $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

8.1.4 Erdős-Gallai theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

holds for all $1 \le k \le n$.

8.1.5 Havel-Hakimi algorithm

find the vertex who has greatest degree unused, connect it with other greatest vertex.

8.1.6 Hall's marriage theorem

Let G be a finite bipartite graph with bipartite sets X and Y. For a subset W of X, let $N_G(W)$ denote the set of all vertices in Y adjacent to some element of W. Then there is an X-saturating matching iff $\forall W\subseteq X, |W|\le |N_G(W)|$

8.1.7 Euler's planar graph formula

$$V - E + F = C + 1, E \le 3V - 6$$
(?)

8.1.8 Pick's theorem

For simple polygon, when points are all integer, we have $A=\#\{\text{lattice points in the interior}\}+\frac{\#\{\text{lattice points on the boundary}\}}{2}-1$

8.1.9 Lucas's theorem

 ${m\choose n}\equiv\prod_{i=0}^k{m_i\choose n_i}\pmod{p}, \text{ where } m=m_kp^k+m_{k-1}p^{k-1}+\cdots+m_1p+m_0,$ and $n=n_kp^k+n_{k-1}p^{k-1}+\cdots+n_1p+n_0.$

8.1.10 Matroid Intersection

Given matroids $M_1=(G,I_1), M_2=(G,I_2)$, find maximum $S\in I_1\cap I_2$. For each iteration, build the directed graph and find a shortest path from s to t.

- $s \to x : S \sqcup \{x\} \in I_1$
- $x \to t : S \sqcup \{x\} \in I_2$
- $y \to x : S \setminus \{y\} \sqcup \{x\} \in I_1$ (y is in the unique circuit of $S \sqcup \{x\}$)
- $x \to y: S \setminus \{y\} \sqcup \{x\} \in I_2$ (y is in the unique circuit of $S \sqcup \{x\}$)

Alternate the path, and |S| will increase by 1. Let $R=\min(\mathrm{rank}(I_1),\mathrm{rank}(I_2)),N=|G|.$ In each iteration, |E|=O(RN). For weighted case, assign weight -w(x) and w(x) to $x\in S$ and $x\notin S$, resp. Use Bellman-Ford to find the weighted shortest path. The maximum iteration of Bellman-Ford is 2R+1.

```
8.2 DP-opt Condition
```

8.2.1 totally monotone (concave/convex)

```
\begin{array}{ll} \forall i < i', j < j', B[i][j] \leq B[i'][j] \implies B[i][j'] \leq B[i'][j'] \\ \forall i < i', j < j', B[i][j] \geq B[i'][j] \implies B[i][j'] \geq B[i'][j'] \end{array}
```

8.2.2 monge condition (concave/convex)

```
\begin{array}{l} \forall i < i', j < j', B[i][j] + B[i'][j'] \geq B[i][j'] + B[i'][j] \\ \forall i < i', j < j', B[i][j] + B[i'][j'] \leq B[i][j'] + B[i'][j] \\ \textbf{8.3} \quad \textbf{Convex 1D/1D DP} \\ \textbf{struct segment } \{ \\ \textbf{int i, 1, r;} \\ \textbf{segment()} \; \{ \} \\ \textbf{segment(int a, int b, int c): i(a), l(b), r(c) } \; \{ \} \\ \textbf{;} \\ \textbf{inline 1ld f(int 1, int r)} \{ \textbf{return dp[1] + w(1+1, r);} \} \\ \textbf{void solve()} \; \{ \\ \textbf{dp[0] = 0;} \\ \end{array}
```

```
deque<segment> dq; dq.push_back(segment(0, 1, n));
for (int i = 1; i <= n; ++i) {
    dp[i] = f(dq.front().i, i);
    while(dq.size()&&dq.front().r<i+1) dq.pop_front();
    dq.front().l = i + 1;
    segment seg = segment(i, i + 1, n);
    while (dq.size() &&
    f(i, dq.back().l)<f(dq.back().i, dq.back().l))
        dq.pop_back();</pre>
```

```
if (dq.size()) {
  int d = 1 << 20, c = dq.back().1;
  while (d >>= 1) if (c + d <= dq.back().r)
  if(f(i, c+d) > f(dq.back().i, c+d)) c += d;
  dq.back().r = c; seg.l = c + 1;
}
if (seg.l <= n) dq.push_back(seg);</pre>
```

8.4 ConvexHull Optimization

```
struct Line {
 mutable int64_t a, b, p;
 bool operator<(const Line &rhs) const { return a < rhs
     .a; }
 bool operator<(int64_t x) const { return p < x; }</pre>
struct DynamicHull : multiset<Line, less<>> {
 static const int64_t kInf = 1e18;
 bool Isect(iterator x, iterator y)
  auto Div = [](int64_t a, int64_t b) {
  return a / b - ((a ^ b) < 0 && a % b); }
if (y == end()) { x->p = kInf; return false; }
  if (x->a == y->a) x->p = x->b > y->b ? kInf : -kInf;
  else x->p = Div(y->b - x->b, x->a - y->a);
  return x->p >= y->p;
 void Insert(int64_t a, int64_t b) {
  auto z = insert({a, b, 0}), y = z++, x = y;
while (Isect(y, z)) z = erase(z);
if (x != begin() && Isect(--x, y)) Isect(x, y = erase
     (y));
  while ((y = x) != begin() && (--x)->p >= y->p) Isect(
     x, erase(y));
 int64_t Query(int64_t x) {
  auto 1 = *lower_bound(x);
  return 1.a * x + 1.b;
};
```

8.5 Josephus Problem

```
// n people kill m for each turn
int f(int n, int m) {
  int s = 0;
  for (int i = 2; i <= n; i++)
    s = (s + m) % i;
  return s;
}
// died at kth
int kth(int n, int m, int k){
  if (m == 1) return n-1;
  for (k = k*m+m-1; k >= n; k = k-n+(k-n)/(m-1));
  return k;
}
```

8.6 Cactus Matching

```
vector<int> init_g[maxn],g[maxn*2];
int n,dfn[maxn],low[maxn],par[maxn],dfs_idx,bcc_id;
void tarjan(int u){
dfn[u]=low[u]=++dfs_idx;
for(int i=0;i<(int)init_g[u].size();i++){</pre>
  int v=init_g[u][i];
  if(v==par[u]) continue;
 if(!dfn[v]){
  par[v]=u;
   tarjan(v);
  low[u]=min(low[u],low[v]);
  if(dfn[u]<low[v]){</pre>
   g[u].push_back(v);
    g[v].push_back(u);
  }else{
  low[u]=min(low[u],dfn[v]);
  if(dfn[v]<dfn[u]){</pre>
    int temp_v=u;
   bcc_id++;
   while(temp_v!=v){
     g[bcc_id+n].push_back(temp_v);
     g[temp_v].push_back(bcc_id+n);
     temp_v=par[temp_v];
   g[bcc_id+n].push_back(v);
    g[v].push_back(bcc_id+n)
    reverse(g[bcc_id+n].begin(),g[bcc_id+n].end());
int dp[maxn][2], min_dp[2][2], tmp[2][2], tp[2];
void dfs(int u,int fa){
if(u<=n){
  for(int i=0;i<(int)g[u].size();i++){</pre>
   int v=g[u][i];
   if(v==fa) continue;
   dfs(v,u);
  memset(tp,0x8f,sizeof tp);
   if(v<=n){
    tp[0]=dp[u][0]+max(dp[v][0],dp[v][1]);
    tp[1]=max(
     dp[u][0]+dp[v][0]+1
     dp[u][1]+max(dp[v][0],dp[v][1])
   }else{
    tp[0]=dp[u][0]+dp[v][0];
    tp[1]=max(dp[u][0]+dp[v][1],dp[u][1]+dp[v][0]);
   dp[u][0]=tp[0],dp[u][1]=tp[1];
}else{
 for(int i=0;i<(int)g[u].size();i++){</pre>
  int v=g[u][i];
   if(v==fa) continue;
  dfs(v,u);
 min_dp[0][0]=0;
 min_dp[1][1]=1;
 min_dp[0][1]=min_dp[1][0]=-0x3f3f3f3f;
 for(int i=0;i<(int)g[u].size();i++){</pre>
   int v=g[u][i];
   if(v==fa) continue;
  memset(tmp,0x8f,sizeof tmp);
   tmp[0][0]=max(
   min_dp[0][0]+max(dp[v][0],dp[v][1]),
   min_dp[0][1]+dp[v][0]
   tmp[0][1]=min_dp[0][0]+dp[v][0]+1;
   tmp[1][0]=max(
   \min_{dp[1][0]+\max(dp[v][0],dp[v][1])}
   min_dp[1][1]+dp[v][0]
   tmp[1][1]=min_dp[1][0]+dp[v][0]+1;
  memcpy(min_dp,tmp,sizeof tmp);
 dp[u][1]=max(min\_dp[0][1],min\_dp[1][0]);
  dp[u][0]=min_dp[0][0];
```

```
int main(){
 int m,a,b;
 scanf("%d%d",&n,&m);
for(int i=0;i<m;i++){
  scanf("%d%d",&a,&b);
  init_g[a].push_back(b);
  init_g[b].push_back(a);
 par[1]=-1;
 tarjan(1);
 dfs(1,-1);
 printf("%d\n", max(dp[1][0], dp[1][1]));
 return 0;
8.7 DLX
struct DLX {
 const static int maxn=210;
 const static int maxm=210;
 const static int maxnode=210*210;
 int n, m, size, row[maxnode], col[maxnode];
 int U[maxnode], D[maxnode], L[maxnode], R[maxnode];
int H[maxn], S[maxm], ansd, ans[maxn];
 void init(int _n, int _m) {
  n = _n, m = _m;
  for(int i = 0; i <= m; ++i) {</pre>
   S[i] = 0;
   U[i] = D[i] = i;
   L[i] = i-1, R[i] = i+1;
  R[L[0] = size = m] = 0;
  for(int i = 1; i <= n; ++i) H[i] = -1;
 void Link(int r, int_c) {
  ++S[col[++size] = c];
  row[size] = r; D[size] = D[c];
  U[D[c]] = size; U[size] = c; D[c] = size;
  if(H[r] < 0) H[r] = L[size] = R[size] = size;</pre>
  else {
   R[size] = R[H[r]];
   L[R[H[r]]] = size;
   L[size] = H[r];
   R[H[r]] = size;
  }
 void remove(int c) {
  L[R[c]] = L[c]; R[L[c]] = R[c];
  for(int i = D[c]; i != c; i = D[i])
for(int j = R[i]; j != i; j = R[j]) {
    U[D[j]] = U[j];
    D[U[j]] = D[j];
     --S[col[j]];
 void resume(int c) {
  L[R[c]] = c; R[L[c]] = c;
  for(int i = U[c]; i != c; i = U[i])
for(int j = L[i]; j != i; j = L[j]) {
    U[D[j]] = j;
    D[U[j]] = j
    ++S[col[j]];
 void dance(int d) {
  if(d>=ansd) return;
  if(R[0] == 0) {
   ansd = d;
   return:
  int c = R[0];
  for(int i = R[0]; i; i = R[i])
   if(S[i] < S[c]) c = i;
  remove(c);
  for(int i = D[c]; i != c; i = D[i]) {
   ans[d] = row[i];
   for(int j = R[i]; j != i; j = R[j])
    remove(col[j]);
   dance(d+1);
   for(int j = L[i]; j != i; j = L[j])
    resume(col[j]);
```

```
resume(c);
} sol;
8.8 Tree Knapsack
int dp[N][K];PII obj[N];
vector<int> G[N];
void dfs(int u, int mx){
for(int s: G[u]) {
  if(mx < obj[s].first) continue;</pre>
  for(int i=0;i<=mx-obj[s].FF;i++)</pre>
  dp[s][i] = dp[u][i];
dfs(s, mx - obj[s].first);
  for(int i=obj[s].FF;i<=mx;i++)</pre>
   dp[u][i] = max(dp[u][i],
    dp[s][i - obj[s].FF] + obj[s].SS);
int main(){
 int n, k; cin >> n >> k;
 for(int i=1;i<=n;i++){</pre>
 int p; cin >> p;
 G[p].push_back(i);
  cin >> obj[i].FF >> obj[i].SS;
 dfs(0, k); int ans = 0;
 for(int i=0; i<=k; i++) ans = max(ans, dp[0][i]);
 cout << ans << '\n';
 return 0;
8.9
      N Queens Problem
vector< int > solve( int n ) {
 // no solution when n=2, 3
 vector< int > ret;
 if ( n % 6 == 2 ) {
  for ( int i = 2 ; i <= n ; i += 2 )
   ret.push_back( i );
 ret.push_back( 3 ); ret.push_back( 1 );
for ( int i = 7 ; i <= n ; i += 2 )
   ret.push_back( i );
  ret.push_back( 5 );
 } else if ( n % 6 == 3 ) {
  for ( int i = 4 ; i <= n ; i += 2 )
  ret.push_back( i );</pre>
  ret.push_back( 2 );
  for ( int i = 5 ; i <= n ; i += 2 )
  ret.push_back( i );</pre>
  ret.push_back( 1 ); ret.push_back( 3 );
 } else {
for ( int i = 2 ; i <= n ; i += 2 )</pre>
   ret.push_back( i );
  for ( int i = 1 ; i <= n ; i += 2 )
   ret.push_back( i );
 return ret;
8.10 Aliens Optimization
long long Alien() {
 long long c = kInf;
 for (int d = 60; d >= 0; --d) {
  // cost can be negative, depending on the problem.
  if (c - (1LL << d) < 0) continue;</pre>
  long long ck = c - (1LL \ll d);
  pair<long long, int> r = check(ck);
  if (r.second == k) return r.first - ck * k;
  if (r.second < k) c = ck;</pre>
pair<long long, int> r = check(c);
return r.first - c * k;
```