Adversarial Machine Learning

Ankur Bapna Gavilan Galloway

Open Problems

- Bounds on adversarial influence
- Value of adversarial capabilities
- Technologies for secure learning

Bounds on influence?

- Effort needed for adversary to influence
- Lower bounds on performance
- Some systems harder to reverse engineer?

Value of adversarial influence?

- Natural threat models and impact on learner
- How much influence can the learner tolerate

Secure learners for security

- Detecting malicious training instances
- More resilient learners
- Mixture of orthogonal experts

Case 1: Poisoning SVM

- Good points
 - Theoretical guarantees
 - Optimally poisoning a SVM based classifier
 - Works for kernelized SVM
- Not so good
 - Optimization problem non-convex
 - Can't be used for practical attacks
 - Verified on extremely small datasets

Formulation

- Goal
 - Introduce single malicious sample in training set
 - Maximize validation error
- Frame goal as an optimization problem.
- Algorithm
 - Start with a training sample
 - Solve locally using gradient ascent
 - Resulting gradient : function of inner product

Experiments

- 100 training, 500 validation samples
- MNIST Dataset binary classification
 - o 7 vs 1
 - o 9 vs 8
 - o 4 vs 0

Performance

Result

- Error rate ~ 2-5% for label flipping
- Error rate ~ 15-20% for optimal poisoning

Possible improvements

- Multi-point optimization
- Less adversary control
 - Optimal label flipping for existing data point
 - Generating data point without label
- More practical algorithm

Case 2: Poisoning resistant PCA

- Evaluate existing algorithm with poisoning
 - Random poisoning
 - Informed poisoning (local and global)
 - Short term and boiling frog attacks
- Improve performance robust statistics
 - Resistant to boiling frog attacks
 - Still susceptible to random poisoning

Flow volume anomaly detection using PCA

Training

- Y cumulative traffic matrix containing time series for all network flows
- Find principal components of Y
- k components maximum variance for training data
- Model residual using Gaussian find threshold t
- Test
 - Variance not explained by top k components > t
 - Report anomaly

Poisoning

- Random :
 - Add random traffic during training
- Locally informed :
 - Information about current ingress traffic
 - Add traffic if current ingress traffic is large
- Globally informed :
 - Omniscient, Omnipotent attacker
 - Add traffic optimally

Performance of current system

- Network information
 - advantageous
- Boiling frog attack
 - o more efficient
- Need for more robust method

Figure 3: Evasion success of PCA under Single-Training Figure 4: ROC curves of PCA under Single-Training Period poisoning attacks using 3 chaff methods.

Figure 5: Evasion success of PCA under Boiling Frog poisoning attacks.

Figure 6: Chaff rejection rates of PCA under poisoning attacks shown in Fig. 5.

ANTIDOTE

- Median instead of mean for centering
- Median absolute deviation instead of variance
- Evaluate Principal Components: PCA-GRID
 - Grid search algorithm
- Use Laplace distribution to model residual

Performance of ANTIDOTE

- More resistant to informed poisoning
- More resistant to boiling frog attacks
- Vulnerable to random poisoning

Figure 7: Evasion success of antidote under Single-Training Period poisoning attacks using 3 chaff methods.

(average test FNR) 0.6 0.8 1

0.4

Boiling Frog Poisoning: Evading ANTIDOTE Growth rate: 1.01 1.02 9.0 of chaff rejected 1.05 --- 1.15 9.0 0.4 Attack duration (weeks) Week

Figure 11: Evasion success of ANTIDOTE under Boiling Frog poisoning attacks.

Figure 12: Chaff rejection rates of ANTIDOTE under Boiling Frog poisoning attacks.

20

Boiling Frog Poisoning: ANTIDOTE Rejections

Figure 8: ROC curves of antidote under Single-Training

Period poisoning attacks

Thanks!!

Questions??

References

- Open Problems in the Security of Learning, Tygar et. al.
- Poisoning Attacks against Support Vector Machines, Biggio et. al.
- ANTIDOTE: Understanding and Defending against Poisoning of Anomaly Detectors, Tygar et. al.