Boosting: boosted trees and gradient boosting

Wei Li

Syracuse University

Spring 2024

OVERVIEW

Boosting trees

Gradient boosting

Tunining hyperparameters

Boosting trees

Boosting trees

A CART tree can be expressed as

$$T(x;\Theta) = \sum_{j=1}^{J} \gamma_j \mathbb{1}(x \in R_j)$$

with parameters $\Theta = (\gamma_j, R_j)_1^J$.

$$\widehat{\Theta} = \arg\min_{\Theta} \sum_{j=1}^{J} \sum_{x_i \in R_j} L(y_i, \gamma_j) = \arg\min_{\Theta} \sum_{i=1}^{n} L(y_i, T(x_i, \Theta))$$

- ▶ Finding γ_j given R_j : Given the R_j , estimating the γ_j is typically trivial, and often $\hat{\gamma}_j = \bar{y}_j$, the mean of the y_i falling in region R_j .
 - ▶ For classification, $\hat{\gamma}_j$ is the majority class of the observations falling in region R_j .
- Finding R_j : A typical strategy is to use a **greedy**, **top-down** recursive partitioning algorithm to find the R_j .

Two modifications

We solve the problem iteratively building the model.

We approximate the objective function by a smoother and more convenient criterion for optimizing the R_j

$$\tilde{\Theta} = \arg\min_{\Theta} \sum_{i=1}^{n} \tilde{L}(y_i, T(x_i, \Theta))$$

Then given the $\hat{R}_j = \tilde{R}_j$, the γ_j can be estimated more precisely using the original criterion.

A simple algorithm for boosting regression trees

Assume $J_m = J$ fixed (same amount of terminal nodes).

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For m = 1, 2, ..., M, repeat:
 - (a) Fit a tree \hat{f}^m with J terminal nodes to the training data(X, r)
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}_m(x)$$

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}_m\left(x_i\right)$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{m=1}^{M} \lambda \hat{f}_m(x)$$

- \blacktriangleright M: too large of M leads to overfit
- \triangleright λ : often choose some small $\lambda = 0.01$ or 0.001.
 - \triangleright Smaller λ leads to larger M needed.
- \triangleright J controls the interaction depth (need not be too large).
 - $\blacktriangleright J = 1$ is a stump.

Boosted trees

The boosted tree model is a sum of such trees,

$$f_M(x) = \sum_{m=1}^{M} T(x; \Theta_m)$$

induced in a forward stagewise manner.

At each step m, given the current tree model $f_{m-1}(x)$, we solve

$$\widehat{\Theta}_{m} = \arg\min_{\Theta_{m}} \sum_{i=1}^{n} L(y_{i}, f_{m-1}(x_{i}) + T(x_{i}, \Theta_{m}))$$

where $\Theta_m = (\gamma_{jm}, R_{jm}), j = 1, \dots, J_m$ the parameter of the next tree.

$$\widehat{\Theta}_{m} = (\hat{\gamma}_{jm}, \hat{R}_{jm}) = \arg\min_{\Theta_{m}} \sum_{i=1}^{n} L(y_{i}, f_{m-1}(x_{i}) + T(x_{i}, \Theta_{m}))$$
 (1)

Find γ_{im} given R_{im} - easy

$$\hat{\gamma}_{jm} = \arg\min_{\gamma_{jm}} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}\left(x_i\right) + \gamma_{jm}\right) \tag{2}$$

- Find R_{jm} 's not so straightforward, except for squared-error loss and exponential loss (binary).
 - ▶ Squared-error loss. At each stage, the solution (1) to is a fitted regression tree to residuals $y_i f_{m-1}(x_i)$, $\hat{\gamma}_{jm}$ is the mean of these residuals in each corresponding region.
 - exponential loss
 - ► Adaboost
 - real Adaboost

Two-class classification: AdaBoost(M.1)

If all trees $T(x; \Theta_m)$ are restricted to scaled classification trees, i.e., trees of the form $\beta_m T(x; \Theta_m)$ with optimal constant γ_{jm} (on the region R_{jm}) restricted to $\{-1,1\}$ (i.e. discrete), then solving 1

$$\arg\min_{\Theta_m,\beta_m} \sum_{i=1}^n \exp\left(-y_i \Big(f_{m-1}(x_i) + \beta T(x_i, \Theta_m)\Big)\right)$$

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^n w_i^{(m)} \mathbb{1} \left(y_i \neq T\left(x_i; \Theta_m \right) \right)$$
 (3)

- \blacktriangleright weights $w_i^{(m)} = \exp(-y_i f_{m-1}(x_i))$
- $\beta_m = \log \left((1 \operatorname{err}_m) / \operatorname{err}_m \right) / 2$

Fit a small tree $\in \{-1, 1\}$ minimizing the above weighted 0/1 loss (3)

Real AdaBoost

Real AdaBoost: impose no restriction on the type of tree (same exponential loss, with no β), the problem (1) is

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^n w_i^{(m)} \exp\left(-y_i T\left(x_i; \Theta_m\right)\right)$$

The solution to (2) given R_{jm} is

$$\hat{\gamma}_{jm} = \frac{1}{2} \log \frac{\sum_{x_i \in R_{jm}} w_i^{(m)} 1 (y_i = 1)}{\sum_{x_i \in R_{jm}} w_i^{(m)} 1 (y_i = -1)}$$

with weights $w_i^{(m)} = \exp(-y_i f_{m-1}(x_i)).$

This requires a specialized tree-growing algorithm.

Gradient boosting

Gradient boosting

Consider the numerical optimization

$$\arg \min_{f \in \{f_M\}} L(f) \equiv \sum_{i=1}^{n} L(y_i, f(x_i))$$

The solution f_M is written as a sum of component vectors

$$\mathbf{f}_M = \sum_{m=0}^M \mathbf{h}_m, \quad h_m \in \mathbb{R}^n$$

where $\mathbf{f}_{M} = \left(f_{M}\left(x_{1}\right), \cdots, f_{M}\left(x_{n}\right)\right)^{\top}$ and \mathbf{h}_{m} is the increment vector at the m th step.

The general idea of a greedy algorithm is to solve:

$$f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{n} L(y_i, \gamma)$$

$$f_m(x) = f_{m-1}(x) + \arg\min_{h_m} \left[\sum_{i=1}^{n} L(y_i, f_{m-1}(x_i) + h_m(x_i)) \right]$$

where h_m is a base learner function.

Unfortunately, choosing the best function h at each step for an arbitrary loss function L is a computationally infeasible optimization problem in general.

We consider functional gradient descent method.

functional gradient descent

▶ Steepest descent: choose $\mathbf{h}_m = -\rho_m \mathbf{g}_m$, where ρ_m is a scalar and the ith component of \mathbf{g}_m is given by

$$g_{im} := g_m(x_i) = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$

▶ The step length ρ_m is the solution to

$$\rho_m = \arg\min_{\rho} \sum_{i=1}^{n} L(y_i, f_{m-1}(x_i) - \rho g_m(x_i))$$

► Solution update: $f_m(x_i) = f_{m-1}(x_i) - \rho_m g_m(x_i)$

A comparison

$$\rho_m = \arg\min_{\rho} \sum_{i=1}^{n} L(y_i, f_{m-1}(x_i) - \rho g_m(x_i))$$

compared with Forward stagewise boosting trees:

$$\hat{\Theta}_m = \arg\min_{\Theta_m} \sum_{i=1}^n L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

- Tree predictions $T(x_i; \Theta_m)$ are analogous to the negative gradients $-g_m(x_i)$
- ▶ But $\mathbf{t}_m = \{T(x_1; \Theta_m), \dots, T(x_n; \Theta_m)\}$ are no independent, but constrained to be predictions of a J_m -terminal node decision tree, whereas $-\mathbf{g}_m$ is the unconstrained maximal descent direction.
- ▶ $\rho_m = \arg\min_{\rho} L\left(y, f_{m-1} \rho g_m\right)$ is analogous to $\hat{\gamma}_{jm} = \arg\min_{\gamma_{jm}} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}\left(x_i\right) + \gamma_{jm}\right)$, but the latter solved in each region.

The gradient is defined only at the training data points x_i whereas the ultimate goal is to generalize $f_M(x)$ to new data not represented in the training set.

A possible solution is to fit the tree T to the negative gradient values by $least\ squares$:

▶ Fit a tree $T(x; \Theta_m)$ at m th iteration whose predictions \mathbf{t}_m are as close as possible to the negative gradient

$$\tilde{\Theta}_{m} = \arg\min_{\Theta} \sum_{i=1}^{n} \left(-g_{im} - T\left(x_{i};\Theta\right) \right)^{2}$$

▶ From the (approximate) solution regions \tilde{R}_{jm} set,

$$\hat{\gamma}_{jm} = \arg\min_{\gamma_{jm}} \sum_{x_i \in \tilde{R}_{im}} L\left(y_i, f_{m-1}\left(x_i\right) + \gamma_{jm}\right)$$

Gradient tree boosting

Algorithm 10.3 (Gradient tree boosting)

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^n L(y_i, \gamma)$
- 2. For m = 1 to M:
 - (a) For i = 1, 2, ..., n compute pseudo-residuals

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

(b) Fit a regression tree to the targets r_{im} giving terminal regions

$$R_{jm}, j=1,2,\ldots,J_m$$

(c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} L(y_i, f_{m-1}(x_i) + \gamma)$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} 1 (x \in R_{jm})$
- 3. Output $\hat{f}(x) = f_M(x)$.

The following table summarizes the gradients for some loss functions.

Setting	Loss Function	$-\partial L(y_i, f(x_i))/\partial f(x_i)$
Regression	$\frac{1}{2}[y_i - f(x_i)]^2$	$y_i - f(x_i)$
Regression	$ y_i - f(x_i) $	$sign[y_i - f(x_i)]$
Regression	Huber	$\begin{aligned} y_i - f(x_i) &\text{ for } y_i - f(x_i) \leq \delta_m \\ \delta_m &\text{ sign}[y_i - f(x_i)] &\text{ for } y_i - f(x_i) > \delta_m \\ &\text{ where } \delta_m = \alpha \text{th-quantile}\{ y_i - f(x_i) \} \end{aligned}$
Classification	Deviance	kth component: $I(y_i = \mathcal{G}_k) - p_k(x_i)$

ESL Table. 10.2. Gradients for commonly used loss functions.

Gradient tree boosting for classification

For **K-class classification**, Class label $Y \in \{1, ..., K\}, K \geq 3$. Using one-hot encoding: let $Y_i = (Y_{i1}, ..., Y_{ik})$

▶ $Y_{ik} = 1$ if *i*-th obs. in class k, 0 otherwise

For classification (K-classes), K separate trees are built at each iteration, producing $p_k(x) = e^{f_k} / \sum_l e^{f_l}$.

Recall assuming $\sum_{k=1}^{K} f_k(x) = 0$, multinomial deviance is

$$L(y, p(x)) = -\sum_{k=1}^{K} 1(y = k) f_k(x) + \log \left(\sum_{\ell=1}^{K} e^{f_{\ell}(x)} \right)$$

Each tree T_{km} is fit to its respective negative gradient vector \mathbf{g}_{km} ,

$$-g_{ikm} = \left[\frac{\partial L(y_i, f_1(x_i), \dots, f_K(x_i))}{\partial f_k(x_i)}\right]_{\mathbf{f}(x_i) = \mathbf{f}_{m-1}(x_i)}$$
$$= y_{ik} - p_k(x_i)$$

Algorithm 10.4 (Gradient tree boosting for classification with multinomial deviance loss)

- 1. Initialize $f_{k0}(x) = 0, k = 1, 2, \dots, K$.
- 2. For m = 1 to M:
 - (a) Set

$$p_k(x) = \frac{e^{f_k(x)}}{\sum_{\ell=1}^K e^{f_\ell(x)}}, k = 1, 2, \dots, K$$

- (b) For k = 1 to K:
 - i. Compute $r_{ikm} = y_{ik} p_k(x_i), i = 1, 2, ..., n$
 - ii. Fit a regression tree to the targets $r_{ikm}, i=1,2,\ldots,n$ giving terminal regions $R_{jkm}, j=1,2,\ldots,J_m$
 - iii. Compute

$$\gamma_{jkm} = \frac{K-1}{K} \frac{\sum_{x_i \in R_{jkm}} r_{ikm}}{\sum_{x_i \in R_{jkm}} |r_{ikm}| (1-|r_{ikm}|)}, j = 1, 2, \dots, J_m$$

iv. Update
$$f_{km}(x) = f_{k,m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jkm} 1 \left(x \in R_{jkm} \right)$$

3. Output $\hat{f}_k(x) = f_{kM}(x), k = 1, 2, \dots, K$.

Tunining hyperparameters

Choosing tree size J

At each iteration a J -terminal node regression tree is induced. Thus J is the tuning parameter.

Other consideration

- ightharpoonup The interaction level of tree-based approximations is limited by the tree size J.
- ▶ No interaction effects of level greater than J-1 are possible.
 - Setting J=2 (single split "decision stump") produces boosted models with only main effects; no interactions are permitted.

Experience so far indicates that $4 \le J \le 8$ works well in the context of boosting.

Choosing M

Shrinkage:

Line 2(d) of Algorithm 10.3 is replaced by

$$f_m(x) = f_{m-1}(x) + \nu \sum_{j=1}^{J} \gamma_{jm} 1 (x \in R_{jm})$$

The parameter ν is learning rate.

- \triangleright smaller values of ν , more shrinkage (less complexity)
- \triangleright higher M, more complexity
- \triangleright a tradeoff between them ν and M

Empirically the best strategy is to set ν to be very small ($\nu < 0.1$) and choose M by early stopping.

Subsampling:

With stochastic gradient boosting (Friedman, 1999), at each iteration we sample a fraction of the training observations (without replacement), and grow the next tree using that subsample. The rest of the algorithm is identical.