Geometric Measure Theory

Problem Set 1

2.1 - Measures and Measurable Sets

Problem 1. (Numerical Summations)

- (a) Let A be a finite subset of \mathbf{R} . Prove that there exists one and only one summation operator \sum_A on nonnegative functions such that the following hold:
 - (i) $\sum_{\emptyset} f = 0$,
 - (ii) If $a \in A$, $f(a) \ge 0$, and f(x) = 0 whenever $a \ne x \in A$, then $\sum_A f = f(a)$.
 - (iii) If $f(x) \ge 0$ and $g(x) \ge 0$ whenever $x \in A$, then

$$\sum_{A} (f+g) = \sum_{A} f + \sum_{A} g.$$

Hint: Suppose there exists another summation operator, say $\widetilde{\sum}_A$ on nonnegative functions that satisfies conditions (i)-(iii). Show that (through induction on card A) for all nonnegative functions f that we have $\sum_A f = \widetilde{\sum}_A f$.

(b) Show that if $\sum_A f \in \overline{\mathbf{R}}$ and $h: A \to Y$, then

$$\sum_{A} f = \sum_{y \in Y} \sum_{h^{-1} \{y\}} f.$$

- (c) Use the results of (b) to conclude:
 - (i) If $0 \neq c \in \mathbf{R}$, then $\sum_A cf = c \sum_A f$,
 - (ii) If $\sum_A f + \sum_A g \in \overline{\mathbf{R}}$, then $\sum_A (f+g) = \sum_A f + \sum_A g$.
 - (iii) If $\sum_A f \in \overline{\mathbf{R}}$ and $A = U \times V$, then

$$\sum_{A} f = \sum_{u \in U} \sum_{v \in V} f(u, v) = \sum_{u \in V} \sum_{v \in U} f(u, v).$$

Problem 2. (Examples of Measures)

(a) Let ϕ be any measure over a set X. For any set $Y \subset X$, show that the function

$$\phi \sqcup Y : \mathbf{2}^X \to [0, \infty]$$
 $(\phi \sqcup Y)(A) = \phi(Y \cap A)$ for $A \subset X$

defines a measure over X.

(b) Let $f: X \to Y$ be a function. Show that for any measure ϕ over X, the function

$$f_{\#}(\phi): \mathbf{2}^X \to [0, \infty]$$
 $(f_{\#}\phi)(B) = \phi(f^{-1}B) \text{ for } B \subset Y$

defines a measure over Y.

- (c) Verify that $f^{-1}(B)$ is ϕ measurable if and only if B is $f_{\#}(\phi \sqcup A)$ measurable for every $A \subset X$.
- (d) Verify that all subsets of a set X are measurable with respect to the counting measure.

Problem 3. Suppose ϕ measures X. Prove that if A is a ϕ measurable set and $B \subset X$, then

$$\phi(A) + \phi(B) = \phi(A \cap B) + \phi(A \cup B).$$

Problem 4. Show that, if $\phi(X) < \infty$ is a regular measure, $f: X \to Y$ and C is an $f_{\#}$ ϕ measurable set, then $f^{-1}(C)$ is ϕ measurable.

Problem 5. (Building Regular Measures) Let ϕ be an arbitrary measure over X.

(a) Show that the measure γ defined by the formula

$$\gamma(A) = \inf\{\phi(B): A \subset B \text{ and } B \text{ is } \phi \text{ measurable}\}$$

for $A \subset X$ is regular.

- (b) If A is ϕ measurable, then A is γ measurable and $\phi(A) = \gamma(A)$.
- (c) If A is γ measurable and $\gamma(A) < \infty$, then A is ϕ measurable.

Problem 6*. (Ulam Numbers)

- (a) Show that \aleph_0 is an Ulam number.
- (b) Show that the class of all Ulam numbers is an initial segment in the well ordered class of all cardinal numbers.
- (c) Show that if there exist any cardinal numbers which are not Ulam numbers, the smallest such number cannot be accessible.

Additional Exercises

Problem 7*. Define functions $\mu_1, \ldots \mu_6$ on $\mathbf{2}^X$ by

$$\mu_1(A) = \begin{cases} 0 & \text{if } A \text{ is empty,} \\ 1 & \text{if } A \text{ is nonempty,} \end{cases}$$

$$\mu_2(A) = \begin{cases} 0 & \text{if } A \text{ is empty,} \\ +\infty & \text{if } A \text{ is nonempty,} \end{cases}$$

$$\mu_3(A) = \begin{cases} 0 & \text{if } A \text{ is bounded,} \\ 1 & \text{if } A \text{ is unbounded,} \end{cases}$$

$$\mu_4(A) = \begin{cases} 0 & \text{if } A \text{ is bounded,} \\ 1 & \text{if } A \text{ is unbounded,} \end{cases}$$

$$\mu_5(A) = \begin{cases} 0 & \text{if } A \text{ is empty,} \\ 1 & \text{if } A \text{ is nonempty and bounded,} \\ +\infty & \text{if } A \text{ is unbounded} \end{cases}$$

$$\mu_6(A) = \begin{cases} 0 & \text{if } A \text{ is countable, and,} \\ +\infty & \text{if } A \text{ is uncountable,} \end{cases}$$

Which of the above functions define measures? For each one that defines a measure, what are the respective measurable subsets of \mathbf{R} ?

Problem 8. (The 1-Dimensional Lebesgue Measure) For each subset A of \mathbf{R} , define the **1-Dimensional Lebesgue Measure**

$$\mathcal{L}^1:\mathbf{2}^X\to[0,\infty]$$

by

$$\mathcal{L}^1(A) = \inf \sum_i (b_i - a_i)$$

where the infimum is taken over all collections $C_A = \{(a_i, b_i)\}$ of open intervals whose union $\bigcup_i (a_i, b_i)$ covers A. I.e., $A \subseteq \bigcup_i (a_i, b_i)$. Show that $\mathcal{L}^1(C) = 0$ for every countable subset C of \mathbf{R} .