MODBUS-RTU applied to DIXELL devices.

1. COMMANDS DESCRIPTION

1.1 READ HOLDING REGISTERS (0X03):

The command has the following format:

Slave	Function	Register	Register	Number	Number	CRC	CRC
Address	Code	Address	Address	of	of	(LSByte)	(MSByte)
		(MSByte)	(LSByte)	Registers	Registers		
				(MSByte)	(LSByte)		

Slave Address: Defined the device address that received the answer of reading data.

Function Code: code of the desired function = 0x03

Register address: is the address of the first register to be read

Number of Registers: Defines the number of Elements (Register) that the device has to return (es. 3 = 3 Registers). **No more than 5 Elements allowed**.

CRC: Defined the CRC calculated for the frame data received and has to be used to verify the integrity of data received. It is calculated

The answer message has the following format:

Slave	Function	NumByte	Byte Data 1	Byte Data n	CRC	CRC
address	code				(LSByte)	(MSByte)

NumByte: Defined the number of bytes followed without CRC.

ByteData: byte data buffer.

1.2 WRITE SINGLE REGISTERS (0X06):

This command is not available for all instruments.

The command has the following format:

Slave Address	Function Code	Register Address (MSByte)	Register Address (LSByte)	DATA (MSByte)	DATA (LSByte)	CRC (LSByte)	CRC (MSByte)
------------------	------------------	---------------------------------	---------------------------------	------------------	------------------	-----------------	-----------------

Slave Address: Defined the device address that received the answer of reading data.

Function Code: code of the desired function = 0x06

Register address: is the address of the register to write to

Data: is the data to write

CRC : Defined the CRC calculated for the frame data received and has to be used to verify the integrity

of data received. It is calculated

The answer message is an Eco of the command you sent (it has the same format)

Page 3 / 12

1.3 WRITE HOLDING REGISTER (0X10):

The command has the following format:

Slave	Function	Register	Register	Number	Number	NumByte	DATA	CRC	CRC
address	Code	Address	Address	of	of			(LSByte)	(MSByte)
		(MSByte)	(LSByte)	Registers	Registers				
				(MSByte)	(LSByte)				

Slave Address: Defined the device address that received the answer of writing data.

Function Code: code of the desired function = 0x10

Register address: is the address of the first register to write to

Number of Registers.: Defines the number of registers to write to. No more than 5 Elements allowed.

NumByte: Defined the number of bytes followed without CRC. The number of bytes has to be double respect the number of addressed Elements (NumByte = 2*Nreg).

CRC:

Defined the CRC calculated for the frame data received and has to be used to verify the integrity of data received.

The answer has the following format:

Slave	Function	Register	Register	Number of	Number of	CRC	CRC
Address	code	Address	Address	Registers	Registers	(LSByte)	(MSByte)
		(MSByte)	(LSByte)	(MSByte)	(LSByte)		

√ Serial configuration for DIXELL controllers

Physical layer = RS485 (RS232 for XJ500 system)
Baud Rate = 9600 bps (19200 bps for XJ500 system)

Data Length = 8 bit
Parity = None
Stop Bit = 1

START/STOP = silent interval of 3 characters

MIN TIME BETWEEN TWO RETRY = 500 msec

XJ500 system, when linking by means of RS232 port and ModBUS protocol, RTS and DTR signals have to be kept at logical level LOW.

√ Slave addresses:

This field range is 1-247. Address 0 is used for the broadcast address. In this case the slave execute the command (only Write Holding Register command) but doesn't return some response

√ Exceptions code:

Dixell's devices answers with exception codes when they are not able to execute the last command received. The exception configuration is:

1. Not implemented function (0x01)

In this case is requested a function that device is not able to support. Es: every time master sends a function different from '0x03' or '0x10'

2. Not implemented area (0x02)

In this case is requested a resource absent in the device. Es: every time is requested a Logic Area absent.

3. Area index not valid (0x03)

In this case the value of the selected resource is out of range. Example:

- Every time is requested an Element of a Logic Area absent.
- More than 5 Elements requested.
- Writing a parameter out of range
- Writing in a Logic Area just reading.

4. Read/Write error (0x04)

The device didn't succeeded in reading or writing requested operation. Es: every time reading or writing operation (Ram, E2, RTC and etc) is not ending correctly.

5. Busy state for slave active (0x06)

The device can't execute requested operation because busy in another analogue operation. Master has to repeat the same request in another time.

The exception answer has the following format:

Slave	Function code OR hex(80)	Exception code	CRC	CRC
address			(LSByte)	(MSByte)

1.4 THE CRC:

The CRC value is calculated (on the entire message) by the transmitting device, which appends the CRC to the message. The receiving device recalculates a CRC during receipt of the message and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal, an error results. Here there is the code (in C format) to generate CRC.

```
#define MODBUS_GENERATOR 0xA001
Unsigned int CRC;
void ModbusCalcCRC(unsigned char* Frame,unsigned char LenFrame)
{
       unsigned char CntByte;
       unsigned char j;
       unsigned char bitVal;
       CRC = 0xFFFF;
       For(CntByte=0;CntByte<LenFrame;CntByte++)
              CRC ^= Frame[CntByte];
              for(j=0;j<8;j++)
              bitVal = CRC & 0x0001;
                     CRC = CRC >> 1;
              if(bitVal == 1)
              CRC ^= MODBUS_GENERATOR;
              }
              }
}
```

√ NOTE:

To uniform interpretation mode of data, all data areas will have the following format:

	WORD (single data register)														
			MS	3yte							LSE	Byte			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

ModBUS Communication Protocol v2_5 GB.doc Page 6 / 12

2. REGISTRY ADDRESSES

In this section are reported the registry addresses to consider when acting directly with the controllers (If the device is connected to an XJ500 this last have to be set in "Transparent Mode", see next page).

Device's address represent the "Slave address" to be set in the command structure while the "number of registers" is always 1 (see command description).

	IDENTIFICATION (read only)									
REGISTER		DESCRIPTION	SIZE (register)	NOTE						
0	•	Family code Release firmware	1	MSByte: family code LSByte: release firmware						
1	•	Device Code (MSWord)	1	See below						
2	•	Device Code (LSWord)	1	See below						
3	•	·								
4	•									
5	•	release firmware date	1	Day = bit15 / bit11 Month = bit10 / bit7 Year = bit6 / bit0						
6	•	EEPROM configuration	1							
7	•	Probe presence	1	if bit0=1, the probe 1 is present if bit1=1, the probe 2 is present						

DEVICE CODE EXAMPLE: 'X R120C'

Device Code (MSWord - MSByte) ASCII code char "R"

Device Code (MSWord - LSByte) ASCII code char " " (blank)

Device Code (LSWord):

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Integer	value	"120" –	· [range	(0-999) (1000) is null	value)]	(A	SCII c	ode cha	ar " C ") ·	-hex(20))

	ANALOGUE INPUTS (read only)									
Register		DESCRIPTION	SIZE (register)	NOTES						
256	•	Probe 1 (I°)	1	Probe value 1						
257	•	Probe 1 (II°)	1	Information about probe 1 (table 1)						
258	•	Probe 2 (I°)	1	Probe value 2						
259	•	Probe 2 (II°)	1	Information about probe 2 (table 1)						
260	•	Probe 3 (I°)	1	Probe value 3						
261	•	Probe 3 (II°)	1	Information about probe 3 (table 1)						

table 1: Probe status

Byte		Description						
Byte (H)	Measuring unit:							
Bit0-1-2-3	0 =NC, 1 =°C, 2 =°F, 3 =RH%, 4 =P	SI, 5 =BAR, 6 =Rpm, 7 =mA, 8 =A, 9 =mV, 10 =V						
	11,12,13,14,15=not assigned.							
Byte (H) bit 4	Probe resolution (1) decimal (0) integer							
Byte (H) bit 5-6-7		 						
Byte (L) bit 0	Low alarm active (1)	Probe error (1-1)						
Byte (L) bit 1	High alarm active (1)							
Byte (L) bit 2-3-4-5-								
6-7								

	USER PARAMETERS (Read/Write)										
Register	DE	SCRIPTION	SIZE (register)	NOTES							
768	first pa	rameter value	1	For meaning, limits and range see the device specifications							
769	• second	d parameter value	1	For meaning, limits and range see the device specifications							
770	• third p	arameter value	1	For meaning, limits and range see the device specifications							
	•										
N	• nth pa	rameter value	1	For meaning, limits and range see the device specifications							

NOTE: Parameter list meaning depends on the instrument .

In order to enable a function (device ON.OFF, defrost, etc..), you have to set the relevant bit of the MSByte to 1 (enable) or to 0 (disable). The writing of the status bit is allowed only when the relative bit of the LSByte is set to 1.

	DEVICE STATUS (read-write)				
Register	DESCRIPTION	SIZE (Register)	NOTE		
1280	slave status (I°)	1	The high bite states the operating status of the device (when reading High byte and Low byte have the same value. When writing low byte states which status elements have to be written). See table 2		
1281	slave status (II°)	1	As above but the meaning of High byte is different		
1282	slave status (III°)	1	As above but the meaning of High byte is different		

Register 1280		Device stat	tus	
MSByte	STATUS	STATUS LSByte ENABLE MODIFY		
Bit0	Device ON (1) OFF (0)	bit0		
Bit1	Defrost active (1).	bit1		
Bit2	Fast freezing active (1).	bit2		
Bit3	Keyboard lock (1).	bit3		
Bit4	Reset alarms (1)	bit4		
Bit5		bit5		
Bit6	Energy Saving active (1)	bit6		
Bit7	Digital input status active (1)	bit7		

Register 1281		Device functions	
MSByte	STATUS	LSByte	ENABLE MODIFY
Bit0	On (1) / Off (0) acquisition (XJ500)	bit0	
Bit1	On (1) / Off (0) recording (XJ500)	bit1	
Bit2	Transparent mode ModBUS (1)(XJ500)	bit2	
Bit3		Bit3	
Bit4	main menu (1) (XJ500)	bit4	
Bit5	"Holiday" Function (1)	Bit5	
Bit6	AUX Function (1)	Bit6	
Bit7	LIGHT Function (1)	Bit7	

Register 1282		Device funct	tions		
MSByte	STATUS	STATUS LSByte ENABLE MODIFY			
Bit0	Device reset (1)	bit0			
Bit1		bit1			
Bit2		bit2			
bit3		bit3			
bit4		bit4			
bit5		bit5			
bit6		bit6			
bit7		bit7			

XJ500 TRANSPARENT modes:

- When the XJ500 TRANSPARENT mode is activated, it links the device that is connected to the RS232 serial port to one of the controllers connected to the RS485 (these are not necessarily present in the XJ500 set-up.
- the transparency of a 232-MODBUS and a 485-MODBUS network is complete; rather, each ModBUS command that the master sends to the RS232 serial port of the XJ is repeated to the SLAVE connected to the RS485 output for the reply.
- The transparency of a 232-MODBUS and 485-DIXBUS network is partial; rather, it's only valid for areas 3-4-5 and for physical commands. Further information can be obtained through areas 50 and 51.
- The baud-rate for the RS232 serial port is 19200bps, while that of the RS485 serial port is 9600bps.
- If the acquisitions are active when the master sends a transparent start command, the XJ500 stops RS485 transmission for 10 seconds; when these 10 seconds are over, it exits transparency for time-out. Time-out time is updated at each command it receives. Read the XJ500 status to be sure that the transparent mode is activated.
- if the acquisitions are active when the master sends a transparency command, the XJ500 will not change its status until it receives a transparency exit command or the acquisitions are activated.

	RELAY OUTPUTS STATUS (read)				
Register	DESCRIPTION	SIZE (Register)	NOTE		
2048	relay outputs status (I°)	1	The high bite states the operating status of the device. See table 3		
2049	relay outputs status (II°)	1	As above but the meaning of High byte is different		
2050	relay outputs status (III°)	1	As above but the meaning of High byte is different		
2051	relay outputs status (III°)	1	As above but the meaning of High byte is different		

TABLE 3: RELAY OUTPUTS

Register	2048	DEVICE OUTPUT RELAY I°		
MSByte	RELAY STATUS	LSByte	ENABLE MODIFY	
bit0	On/Off relay	bit0		
bit1	Defrost 1 relay	bit1		
bit2	Defrost 2 relay	bit2		
bit3	Alarm relay	bit3		
bit4	Light relay	bit4		
bit5	Fan relay	bit5		
bit6	AUX1 relay	bit6		
bit7	AUX2 relay	bit7		

Register	2049	DEVICE OUTPUT RELAY II°		
MSByte	RELAY STATUS	LSByte	ENABLE MODIFY	
Bit0	Load relay 1	bit0		
Bit1	Load relay 2	bit1		
Bit2	Load relay 3	bit2		
Bit3	Load relay 4	bit3		
Bit4	Load relay 5	bit4		
Bit5	Load relay 6	bit5		
Bit6	Relay out 1 (Generic)	bit6		
Bit7	Relay out 2 (Generic)	bit7		

Register 2050		DEVICE OUTPUT RELAY III°		
MSByte		RELAY STATUS	LSByte	ENABLE MODIFY
bit0	Load rela	y 7	bit0	
bit1	Load rela	y 8	bit1	
bit2	Load rela	y 9	bit2	
bit3	Load rela	y 10	bit3	
bit4	Load rela	y 11	bit4	
bit5			bit5	
bit6			bit6	
bit7			bit7	

XF series: Bit 6, register 2048, is the steam generator XF series: Bit 7, register 2048, is the steam injector XF series: Bit 6, register 2049, is the steam extractor

	EAL TIME CLOCK (read-write)				
Register	DESCRIPTION	SIZE (Register)	NOTE		
2816	Seconds / Minutes	1	MSByte = seconds LSByte = minutes		
2817	Hours / Day of week	1	MSByte = hours LSByte = day of week (1-sun 7-sat)		
2818	Day / Month	1	MSByte = day LSByte = month		
2819	Year	1	Year		

ALARMS STATUS (read)				
Register	DESCRIPTION	SIZE (Register)	NOTE	
3328	Alarms (I°)	1	Each bit states an alarm (see table 4)	
3329	Alarms (II°)	1	Each bit states an alarm (see table 4)	

TABLE 4: ALARMS

Register 3328		ALARM	ALARMS LIST I°	
MSByte		LSByte		
bit0	Load 9 alarm	bit0	Load 1 alarm	
Bit1	Load 10 alarm	bit1	Load 2 alarm	
bit2	Load 11 alarm	bit2	Load 3 alarm	
bit3	Door open or liquid level alarm	bit3	Load 4 alarm	
bit4	Generic Digital input alarm	bit4	Load 5 alarm	
bit5	Real Time clock alarm	bit5	Load 6 alarm	
bit6		Bit6	Load 7 alarm	
bit7		Bit7	Load 8 alarm	

Register	Register 3329		ALARMS LIST II°	
MSByte		LSByte		
Bit0	No link Alarm	Bit0	ACQ general alarm (XJ500)	
bit1	High pressure	bit1	ACQ serious alarm (XJ500)	
Bit2	Low Pressure	bit2	REC alarm (XJ500)	
bit3		bit3	REC serious alarm (XJ500)	
bit4		bit4	Printer alarm (XJ500)	
bit5		bit5	Printer serious alarm (XJ500)	
bit6		bit6	Fax/Modem alarm (XJ500)	
bit7		bit7	Fax/Modem serious alarm (XJ500)	

The following section state the registry addresses to consider when reading information about controllers connected to an XJ500.

XJ500 System ID represent the "Slave address" to be set in the command structure. The registry address is 12800 + Adr parameter of the instrument you want to read. The "number of register" to read will give you back information desired following the table below:

EXAMPLE: we want to read the *device label* of a controller (with address 5) connected to an XJ500 (whose "System ID" is 0002). The structure of the reading command will be the following (please reefer to page 2):

Slave	Function	Register Address	Number of Registers	CRC
Address	Code			
02	03	12805	3	Automatically calculated

	XJ500 NETWORK SETUP DEVICE (read address 12800+Adr)				
Register		DESCRIPTION	SIZE (register)	NOTE	
1	•	Index	8	LSByte – relative MSByte – absolute	
2	•	Code		LSByte – family code MSByte – mask code	
3	•	Device label (I°)			
4	•	Device label (II°)			
5	•	General info		See table 5	
6	•	Real configuration (I°)			
7	•	Real configuration (II°)			
8	•	Probes presence		LSByte: probes present MSByte: probes enable to recording	

TABLE 5: SETUP FOR XJ500 DEVICE NETWORK

Register General Info			SETUP	
MSByte		LSByte		
bit0	Save status	Bit0-3	Measurement unit 0=NC,1=°C,2=°F,3=RH%,4=PSI,5=BAR ,6=Rpm,7=mA,8=A,9=mV,10=V	
Bit1	Save alarm			
bit2	Synchronise clock enable			
bit3	Device enable			
bit4		bit4		
bit5		bit5		
bit6		Bit6	Automatic print enable	
bit7		Bit7		

The following section state the registry addresses to consider when reading information about controllers connected to an XJ500.

XJ500 System ID represent the "Slave address" to be set in the command structure. The registry address is 13056 + Adr parameter of the instrument you want to read. The "number of register" to read will give you back information desired following the table below:

EXAMPLE: we want to read *probe 2 value* of a controller (with address 12) connected to an XJ500 (whose "System ID" is 0001). The structure of the reading command will be the following (please reefer to page 2):

Slave	Function	Register Address	Number of Registers	CRC
Address	Code			
01	03	13068	2	Automatically calculated

XJ 500 NETWORK RUN-TIME DEVICE INFORMATION (read address 13056+Adr)				
Register	DESCRIPTION		SIZE (Register)	NOTE
1	•	Probe 1 value	1	
2	•	Probe 2 value	1	
3	•	Probe 3 value	1	
4	•	Set Point	1	
5	•	Probe Status	1	LSByte: Probe 1 (*) MSByte: Probe 2 (*)
6	•	Probe Status	1	LSByte: Probe 3 (*) MSByte: SET (*)
7	•	Alarms (I°)	1	
8	•	Alarms (II°)	1	See table 6
9	•	Status (I°)	1	See table 6
10	•	Status (II°)	1	See table 6

^(*) for each status byte, if bit 6=1 the probe resolution is decimal

TABLE 6: ALARMS FOR XJ500 DEVICE NETWORK

Register Alarms (I°)		AL	ARMS
MSByte		LSByte	
bit0	Load 9 alarm	Bit0	Load 1 alarm
bit1	Load 10 alarm	Bit1	Load 2 alarm
Bit2	Load 11 alarm	Bit2	Load 3 alarm
bit3		Bit3	Load 4 alarm
bit4		bit4	Load 5 alarm
bit5		bit5	Load 6 alarm
bit6		bit6	Load 7 alarm
bit7		bit7	Load 8 alarm

Register	r Alarms (II°)	AL	ALARMS		
MSByte		LSByte			
bit0		bit0	Drobo 4.4 LA 2 LIA 2 DE		
Bit1		bit1	Probe 1: 1-LA 2-HA 3-PF		
bit2	Digital Input alarm	bit2	Probe 2: 1-LA 2-HA 3-PF		
bit3	Digital Input alarm	bit3	Plobe 2. I-LA 2-HA 3-PF		
bit4	Real Time clock alarm	bit4	Probe 3: 1-LA 2-HA 3-PF		
bit5		bit5	Probe 3. I-LA Z-MA 3-PF		
bit6		Bit6			
bit7	No Link alarm	Bit7			

Register Status (I°)		ST	STATUS	
MSByte		LSByte		
bit0		Bit0	Load 7 Active	
bit1		Bit1	Load 8 Active	
Bit2		Bit2	Load 9 Active	
bit3		Bit3	Digital input (status) active (XJA controller)	
bit4		Bit4		
bit5		Bit5		
bit6		Bit6		
bit7		Bit7		

Register	Status (II°)	ST	ATUS
MSByte		LSByte	
bit0	Defrost 1 output active	bit0	Device ON/OFF
Bit1	Defrost 2 output active	Bit1	Defrost active
bit2	Load 1 output active	Bit2	Fast freezing active
bit3	Load 2 output active	Bit3	Energy Saving active
bit4	Load 3 output active	Bit4	Alarm output active
bit5	Load 4 output active	bit5	AUX output 1 active
bit6	Load 5 output active	Bit6	AUX output 2 active
bit7	Load 6 output active	Bit7	Fan output active