Neutrino Trident Production from NuTeV

ICHEP '98 July, 1998

Todd Adams
Kansas State University

<u>Outline</u>

- 1. Experimental Background
- 2. Neutrino Trident Background
- 3. Measurement
- 4. Comparisons & Conclusions

NuTeV Collaboration

T. Adams⁴, A. Alton⁴, S. Avvakumov⁷, L. de Barbaro⁵, P. de Barbaro⁷,

R. H. Bernstein³, A. Bodek⁷, T. Bolton⁴,

J. Brau⁶, D. Buchholz⁵, H. Budd⁷, L. Bugel³, J. Conrad², R. B. Drucker⁶, R. Frey⁶,

J. Formaggio², J. Goldman⁴, M. Goncharov⁴, D. A. Harris⁷, R. A. Johnson¹,

S. Koutsoliotas^{2,*}, J. H. Kim², M. J. Lamm³, W. Marsh³, D. Mason⁶, C. McNulty²,

K. S. McFarland^{3,†}, D. Naples⁴, P. Nienaber³, A. Romosan², W. K. Sakumoto⁷, H. Schellman⁵, M. H. Shaevitz²,

P. Spentzouris²**, E. G. Stern²,

B. Tamminga², M. Vakili^{1,||}, A. Vaitaitis², V. Wu¹, U. K. Yang⁷, J. Yu³ and G. P. Zeller⁵

¹University of Cincinnati, Cincinnati, OH 45221

²Columbia University, New York, NY 10027

³Fermi National Accelerator Laboratory, Batavia, IL 60510

⁴Kansas State University, Manhattan, KS 66506

⁵Northwestern University, Evanston, IL 60208

⁶University of Oregon, Eugene, OR 97403

⁷University of Rochester, Rochester, NY 14627

^{*} Current address: Bucknell University

[†] Current address: University of Rochester

^{**} Current address: Fermi National Accelerator Laboratory

[∥] Current address: Texas A&M University

The NuTeV Experiment

$$\nu + N \rightarrow ???$$

- 690 ton iron target/calorimeter
- $(\frac{\Delta E_H}{E_H} = \frac{0.89}{\sqrt{E}_H (GeV)})$ $(\frac{\Delta p_{\mu}}{p_{\mu}} = 0.11)$

- Toroid spectrometer
- Sign-Selected Beam:
 - $hd 3 imes 10^{18}$ proton on target
 - \triangleright 10⁶ neutrino interactions
 - $hd 3 imes 10^5$ anti-neutrino interactions
- Ran June, 1996 Sept. 1997
- Measures: $\sin^2 \theta_W$, structure functions, α_s , strange sea, charm mass, V_{cd} , neutrino oscillations, neutral heavy lepton searches and more...

Neutrino Tridents

- $\nu_{\mu}N \to \mu^{+}\mu^{-}\nu_{\mu}N$ (three leptons)
- Neutrino interactions with the electromagnetic field of the nucleus/nucleon

- Test of the Standard Model: W-Z interference
- Proposed in the early 1960s
- Early 1970s: V-A vs. GSW
- 1990s: Experimental measurement (CHARM, CHARM II, CCFR, NuTeV)

Neutrino Trident Diagrams

W-Z interference (40% destructive)

Trident Characteristics in NuTeV

- No visible incoming particle
- Two muons out (dimuon event)
- Small opening angle between muons
- No hadronic energy (E_{had})
- Small invariant mass $(M_{\mu\mu})$

Other Low- E_{had} Dimuon Sources

Charm production

$$u_{\mu} + N \rightarrow \mu^{-} + c + X \qquad (< 0.7 \text{ events})$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow^{+} + \nu_{\mu}$$

 \bullet π/K decay

$$u_{\mu} + N \rightarrow \mu^{-} + X$$
 (< 0.2 events)
$$- - - \pi/K + Y$$

$$- - - \mu^{+} \nu_{\mu} \text{ or } \mu^{+} \nu_{\mu} \pi^{0}$$

Vector meson production

• π^{\pm} production

$$\nu_{\mu} + N \rightarrow \mu^{-} + \pi^{+} + X$$

$$\downarrow \qquad \qquad \downarrow^{\mu^{+}} + \nu_{\mu}$$

• $\tau\mu$ trident production

$$\nu_{\mu} + N \rightarrow \mu^{-} + \tau^{+} + \nu_{\tau} + N$$

$$\downarrow \qquad \qquad \downarrow^{+} + \nu_{\mu} + \overline{\nu}_{\tau}$$

Trident Selection

- Fiducial volume
- Very low hadronic energy ($E_{had} < 3 \text{ GeV}$)
- Two muons (toroid analyzed)
- Muons oppositely charged
- Muon energy minimum $(E_{\mu} > 9 \text{ GeV})$
- ullet Small invariant mass $(M_{\mu\mu} < 2.3 \ {
 m GeV}/c^2)$

Trident Background Estimate

- ullet Relax E_{had} and $M_{\mu\mu}$ cuts
- ullet Plot E_{had} for above and below $M_{\mu\mu}$ cut

$$M_{\mu\mu} < 2.3~{
m GeV}/c^2$$

$$M_{\mu\mu} > 2.3~{
m GeV}/c^2$$

• Normalize areas

ullet Estimate signal and background for $E_{had} < 3$ GeV

Preliminary Trident Results

Theory:

Standard Model (GSW): 10.8 \pm 0.3 events

V-A: 18.3 ± 0.6 events

Results:

	Data	Background	GSW	V-A
u mode	12	7.6 ± 2.5	7.2 ± 0.3	12.26 ± 0.5
$ar{ u}$ mode	5	2.0 ± 1.4	3.6 ± 0.2	6.1 ± 0.3
Combined	17	9.8 ± 2.9	10.8 ± 0.3	18.3 ± 0.6

Conclusions

- ullet We observe low- E_{had} dimuon production in NuTeV
- ullet The low- $M_{\mu\mu}$ events are consistent with Standard Model predictions for trident production
- We will add statistics by increasing the acceptance (lowering second muon constraints)
- Additional statistics will be gained by combining with data from the previous CCFR experiment
- This will yield the highest statistics neutrino trident analysis to date
- ullet We will also study the other sources of low- E_{had} dimuon events