LOAN DOCUMENT INVENTORY LEVEL EGG-WTD-10887 DOCUMENT IDENTIFICATION JAN 1992 H **DISTRIBUTION STATEMENT A** Approved for Public Release Distribution Unlimited DISTRIBUTION STATEMENT NTIS TRAC UNANNOUNCER JUSTIFICATION DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL DATE ACCESSIONED DISTRIBUTION STAMP DATE RETURNED 19990712 090 REGISTERED OR CERTIFIED NUMBER DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

DTIC POPM 70A

DOCUMENT PROCESSING SHEET

PREVIOUS EDITIONS MAY BE USED UNITE STOCK IS EXHAUSTED.

Idaho National Engineering Laboratory

Managed by the U.S. Department of Energy

SUPPLEMENTAL DATA IN SUPPORT OF BICARBONATE OF SODA STRIPPING

PHASE I (Vol 2)

M. D. Argyle

J. E. Findley

K. L. Gering

T. L. Harris

L. A. Polson

K. J. Poor

M. N. Tsang

Work performed under DOE Contract No. DE-AC07-76ID01570

SUPPLEMENTAL DATA IN SUPPORT OF BICARBONATE OF SODA STRIPPING PHASE I

FRESH SODIUM BICARBONATE PAINT-STRIPPING MEDIA
. TITRATION GRAPHS AND DATA

The data in this supplemental document is to support the Bicarbonate of Soda Stripping - Phase I report. This data was used to calculate the titration endpoints for the fresh and spent sodium bicarbonate paint-stripping media. This information was used to determine 1) how much acid would be needed to neutralize the spent media and 2) the amount of carbonate and bicarbonate in the fresh and spent media samples.

TITLE Standardization Of NaOH With 0.3753 M KHP TABLE 1 Titration Data FIGURE 1 Titration Curve FIGURE 2 First Derivative Of The Titration Curve FIGURE 3 Second Derivative Of The Titration Curve Standardization Of The First Batch Of HC1 With 0.969 M NaOH First Batch TABLE 2 Titration Data FIGURE 4 Titration Curve FIGURE 5 First Derivative Of The Titration Curve FIGURE 5 First Derivative Of The Titration Curve FIGURE 6 Second Derivative Of The Titration Curve FIGURE 7 Titration Data FIGURE 7 Titration Curve FIGURE 8 First Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve FIGURE 10 Titration Curve FIGURE 10 Titration Curve FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 Second Derivative Of The Titration Curve FIGURE 12 Second Derivative Of The Titration Curve FIGURE 13 Titration Curve FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 16 Titration Curve FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 First Derivative Of The Titration Curve FIGURE 19 Titration Curve FIGURE 10 Titration Curve FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 Second Derivative Of The Titration Curve FIGURE 13 Titration Data FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 16 Titration Data FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 19 Titration Data FIGURE 19 Titration Data FIGURE 19 Titration Curve FIGURE 21 Second Derivative Of The Titration Curve FIGURE 22 Ficuration Curve FIGURE 23 First Derivative Of The Titration Curve FIGURE 24 Second Derivative Of The Titration Curve FIGURE 25 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 Second Derivative Of The Titration Curve FIGURE 27 First Derivative Of The Titration Curve FIGURE 27 First Derivative Of The Titration Curve FIGURE 27 Fir		TITLE	PAGE
FIGURE 1 Titration Curve	Standardization		
FIGURE 2 First Derivative Of The Titration Curve	TABLE 1	Titration Data	. 1
Standardization Of The First Batch Of HC1 With 0.969 M NaOH	FIGURE 1	Titration Curve	. 3
Standardization Of The First Batch Of HC1 With 0.969 M NaOH First Batch TABLE 2 Titration Data FIGURE 4 Titration Curve FIGURE 5 First Derivative Of The Titration Curve FIGURE 6 Second Derivative Of The Titration Curve Second Batch TABLE 3 Titration Data FIGURE 7 Titration Curve FIGURE 8 First Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve Chird Batch TABLE 4 Titration Data FIGURE 10 Titration Curve FIGURE 11 First Derivative Of The Titration Curve TITRALE 12 Second Derivative Of The Titration Curve TITRATION Of Total Fresh Sodium Bicarbonate Media With 0.981 M HC1 FIGURE 13 Titration Data FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 16 Titration Data FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 19 Titration Data FIGURE 10 Titration Data FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 Second Derivative Of The Titration Curve FIGURE 13 Titration Curve FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 19 Titration Data FIGURE 19 Titration Curve FIGURE 20 First Derivative Of The Titration Curve FIGURE 21 Second Derivative Of The Titration Curve FIGURE 22 Titration Data FIGURE 23 First Derivative Of The Titration Curve FIGURE 24 Second Derivative Of The Titration Curve FIGURE 25 First Derivative Of The Titration Curve TABLE 9 Titration Data FIGURE 25 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 First Derivative Of The Titration Curve FIGURE 28 First Derivative Of The Titration Curve FIGURE 27 First Derivative Of The Titration Curve FIGURE 28 First Derivative Of The Titration Curve FIGURE	FIGURE 2	First Derivative Of The Titration Curve	. 3
First Batch TABLE 2 Titration Data FIGURE 4 Titration Curve FIGURE 5 First Derivative Of The Titration Curve FIGURE 6 Second Derivative Of The Titration Curve Second Batch TABLE 3 Titration Data FIGURE 7 Titration Curve FIGURE 8 First Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve Third Batch TABLE 4 Titration Data FIGURE 10 Titration Curve FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 Second Derivative Of The Titration Curve TITRATION Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl FIGURE 13 Titration Data FIGURE 13 Titration Curve FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 16 Titration Curve FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 19 FIGURE 19 First Derivative Of The Titration Curve FIGURE 19 Titration Data FIGURE 10 Titration Data FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 First Derivative Of The Titration Curve FIGURE 13 Titration Data FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 FIGURE 16 Titration Curve FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 19 Titration Curve FIGURE 20 First Derivative Of The Titration Curve FIGURE 21 Second Derivative Of The Titration Curve FIGURE 22 Titration Curve FIGURE 23 First Derivative Of The Titration Curve FIGURE 24 Second Derivative Of The Titration Curve FIGURE 25 First Derivative Of The Titration Curve FIGURE 25 First Derivative Of The Titration Curve FIGURE 25 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 First Derivative Of The Titratio	FIGURE 3	Second Derivative Of The Titration Curve	. 4
First Batch TABLE 2 Titration Data FIGURE 4 Titration Curve FIGURE 5 First Derivative Of The Titration Curve FIGURE 6 Second Derivative Of The Titration Curve Second Batch TABLE 3 Titration Data FIGURE 7 Titration Curve FIGURE 8 First Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve Third Batch TABLE 4 Titration Data FIGURE 10 Titration Curve FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 Second Derivative Of The Titration Curve TITRATION Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl FIGURE 13 Titration Data FIGURE 13 Titration Curve FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 16 Titration Curve FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 19 FIGURE 19 First Derivative Of The Titration Curve FIGURE 19 Titration Data FIGURE 10 Titration Data FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 First Derivative Of The Titration Curve FIGURE 13 Titration Data FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 FIGURE 16 Titration Curve FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 19 Titration Curve FIGURE 20 First Derivative Of The Titration Curve FIGURE 21 Second Derivative Of The Titration Curve FIGURE 22 Titration Curve FIGURE 23 First Derivative Of The Titration Curve FIGURE 24 Second Derivative Of The Titration Curve FIGURE 25 First Derivative Of The Titration Curve FIGURE 25 First Derivative Of The Titration Curve FIGURE 25 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 First Derivative Of The Titratio	Standardization	Of The First Batch Of HCl With 0.969 M NaOH	. 5
TABLE 2 Titration Data FIGURE 4 Titration Curve FIGURE 5 First Derivative Of The Titration Curve FIGURE 6 Second Derivative Of The Titration Curve FIGURE 7 Titration Data FIGURE 7 Titration Curve FIGURE 8 First Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve FIGURE 10 Titration Data FIGURE 10 Titration Curve FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 Second Derivative Of The Titration Curve Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl FIGURE 13 Titration Data FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 16 Titration Data FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 19 Titration Data FIGURE 10 Titration Data FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 Titration Data FIGURE 13 First Derivative Of The Titration Curve FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 16 Titration Data FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 19 Titration Data FIGURE 20 First Derivative Of The Titration Curve FIGURE 21 Second Derivative Of The Titration Curve FIGURE 22 Titration Data FIGURE 23 First Derivative Of The Titration Curve FIGURE 24 Second Derivative Of The Titration Curve FIGURE 25 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 Titration Data FIGURE 28 First Derivative Of The Titration Curve FIGURE 29 Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 Titration Data FIGURE 28 First Derivative Of The Titration Curve FIGURE 29 Titration Curve FIGURE 26 First Derivative Of The Titration Curve			
FIGURE 4 Titration Curve		Titration Data	
FIGURE 5 First Derivative Of The Titration Curve 7 Second Batch 8 TABLE 3 Titration Data 8 FIGURE 7 Titration Curve 9 FIGURE 8 First Derivative Of The Titration Curve 9 FIGURE 9 Second Derivative Of The Titration Curve 9 FIGURE 9 Second Derivative Of The Titration Curve 10 Third Batch 11 TABLE 4 Titration Data 11 FIGURE 10 Titration Curve 12 FIGURE 11 First Derivative Of The Titration Curve 12 FIGURE 12 Second Derivative Of The Titration Curve 13 Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl 14 First Titration 15 TABLE 5 Titration Data 16 FIGURE 13 Titration Curve 16 FIGURE 14 First Derivative Of The Titration Curve 17 Second Titration 18 TABLE 6 Titration Data 19 FIGURE 15 Second Derivative Of The Titration Curve 17 FIGURE 16 Titration Data 18 FIGURE 17 First Derivative Of The Titration Curve 19 FIGURE 18 Second Derivative Of The Titration Curve 19 FIGURE 19 Titration Data 18 FIGURE 19 Titration Curve 19 FIGURE 20 First Derivative Of The Titration Curve 22 FIGURE 21 Second Derivative Of The Titration Curve 22 FIGURE 22 Titration Curve 22 FIGURE 23 First Derivative Of The Titration Curve 24 FIGURE 24 Second Derivative Of The Titration Curve 25 FIGURE 25 Titration Data 24 FIGURE 26 First Derivative Of The Titration Curve 25 FIGURE 27 Titration Curve 25 FIGURE 28 Titration Curve 25 FIGURE 29 Titration Curve 25 FIGURE 20 First Derivative Of The Titration Curve 26 TITRALE 9 Titration Curve 27 FIGURE 25 Titration Curve 27 FIGURE 26 First Derivative Of The Titration Curve 28 FIGURE 27 FITRALE OF TITRALE 27 FIGURE 28 First Derivative Of The Titration Curve 26 FIGURE 26 First Derivative Of The Titration Curve 26 FIGURE 27 FITRALE OF TITRALE 27 FIGURE 28 FITRALE OF TITRALE 27 FIGURE 29 FITRALE OF TITRALE 27 FIGURE 25 FITRALE OF TITRALE 27 FIGURE 26 First Derivative Of The Titration Curve 28 FIGURE 26 First Derivative Of The Titration Curve 28 FIGURE 27 FITRALE 27 FITRALE 27 FITRALE 27 FITRALE 27 FITRALE 27 FITRALE 27 FITRALE 27 FITRALE 27 FITRAL			
FIGURE 6 Second Derivative Of The Titration Curve			
Second Batch TABLE 3 Titration Data FIGURE 7 Titration Curve FIGURE 8 First Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve FIGURE 10 Second Derivative Of The Titration Curve FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 Second Derivative Of The Titration Curve Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl FIGURE 12 Second Derivative Of The Titration Curve FIGURE 13 Titration Curve FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 16 Titration TABLE 6 Titration Data FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 19 First Derivative Of The Titration Curve FIGURE 10 Titration Curve FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 Second Derivative Of The Titration Curve FIGURE 13 Second Derivative Of The Titration Curve FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 16 Titration Curve FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 20 First Derivative Of The Titration Curve FIGURE 21 Second Derivative Of The Titration Curve FIGURE 22 Titration Data FIGURE 23 First Derivative Of The Titration Curve FIGURE 24 Second Derivative Of The Titration Curve FIGURE 25 Titration Data FIGURE 25 Titration Data FIGURE 25 Titration Curve FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 Titration Data FIGURE 28 Titration Data FIGURE 27 Titration Curve FIGURE 28 Titration Curve FIGURE 29 Titration Curve FIGURE 26 First Derivative Of The Titration Curve			
TABLE 3 Titration Data FIGURE 7 Titration Curve FIGURE 8 First Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve Titration Data FIGURE 10 Titration Curve FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 Second Derivative Of The Titration Curve Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl FIGURE 13 Titration Data FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 16 First Derivative Of The Titration Curve FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 17 First Derivative Of The Titration Curve FIGURE 18 Second Derivative Of The Titration Curve FIGURE 19 Titration Curve FIGURE 10 Titration Curve FIGURE 11 First Derivative Of The Titration Curve FIGURE 12 First Derivative Of The Titration Curve FIGURE 13 Second Derivative Of The Titration Curve FIGURE 14 First Derivative Of The Titration Curve FIGURE 15 Second Derivative Of The Titration Curve FIGURE 16 Titration Curve FIGURE 17 First Derivative Of The Titration Curve FIGURE 20 First Derivative Of The Titration Curve FIGURE 21 Second Derivative Of The Titration Curve FIGURE 22 Titration Data FIGURE 23 First Derivative Of The Titration Curve FIGURE 24 Second Derivative Of The Titration Curve FIGURE 25 Titration Data FIGURE 26 First Derivative Of The Titration Curve FIGURE 27 Titration Data FIGURE 28 Titration Data FIGURE 29 Titration Curve FIGURE 20 First Derivative Of The Titration Curve FIGURE 25 Titration Data FIGURE 25 Titration Data FIGURE 26 First Derivative Of The Titration Curve FIGURE 26 First Derivative Of The Titration Curve			
FIGURE 7 Titration Curve FIGURE 8 First Derivative Of The Titration Curve FIGURE 9 Second Derivative Of The Titration Curve 10 Third Batch			-
FIGURE 8 First Derivative Of The Titration Curve			
FIGURE 9 Second Derivative Of The Titration Curve			
Third Batch			
TABLE 4 Titration Data FIGURE 10 Titration Curve			
FIGURE 10 Titration Curve			
FIGURE 11 First Derivative Of The Titration Curve			
FIGURE 12 Second Derivative Of The Titration Curve		litration curve	. 12
Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HC1 First Titration		First Derivative Of The litration Curve	. 12
First Titration	FIGURE 12	Second Derivative Of The Litration Curve	. 13
First Titration	Titration Of Tot	tal Fresh Sodium Bicarbonate Media With 0.981 M HCl	. 14
TABLE 5 Titration Data FIGURE 13 Titration Curve			
FIGURE 13 Titration Curve			
FIGURE 14 First Derivative Of The Titration Curve			
FIGURE 15 Second Derivative Of The Titration Curve		First Derivative Of The Titration Curve	16
Second Titration		Second Derivative Of The Titration Curve	17
TABLE 6 Titration Data FIGURE 16 Titration Curve			
FIGURE 16 Titration Curve		Titration Data	19
FIGURE 17 First Derivative Of The Titration Curve			
FIGURE 18 Second Derivative Of The Titration Curve		First Designative Of The Tituation Curve	. 15
Third Titration			
TABLE 7 Titration Data			
FIGURE 19 Titration Curve			
FIGURE 20 First Derivative Of The Titration Curve			
FIGURE 21 Second Derivative Of The Titration Curve	-	Titration curve	. 22
Fourth Titration			
TABLE 8 Titration Data			
FIGURE 22 Titration Curve			. 24
FIGURE 23 First Derivative Of The Titration Curve			
FIGURE 24 Second Derivative Of The Titration Curve			
Titration Of Fresh 600 Micron Sodium Bicarbonate Media With 0.981 M HCl 27 TABLE 9 Titration Data			
TABLE 9 Titration Data	FIGURE 24	Second Derivative Of The Titration Curve	. 26
TABLE 9 Titration Data	Titration Of Fro	esh 600 Micron Sodium Bicarbonate Media With 0.981 M HCl	. 27
FIGURE 25 Titration Curve			
FIGURE 26 First Derivative Of The Titration Curve			
TINDOS (1 DELINIO DELIVALIVE DI TUE ILITALION CUIVE			

Titration Of Fre	esh 425 Micron	Sodium	Bicarbonate	Media With	0.981	HC1	• .•	30
First Titration								30
TABLE 10	Titration Data	a						30
FIGURE 28	Titration Curv	/e						3]
FIGURE 29	First Derivat	ive Of T	The Titration	n Curve				3]
FIGURE 30	Second Derivat	tive Of	The Titration	on Curve .	• .• •			32
Second Titration	1							33
TABLE 11	Titration Data	a					• •	33
FIGURE 31	Titration Curv	/e						34
FIGURE 32	First Derivat	ive Of 1	The Titration	n Curve				34
FIGURE 33	Second Derivat	ive Of	The Titration	on Curve .				35
Third Titration								36
TABLE 12	Titration Data	a						36
FIGURE 34	Titration Curv	/e						37
FIGURE 35	First Derivati	ive Of 1	The Titration	n Curve				37
FIGURE 36		ive Of	The Titration	on Curve .				38
Titration Of Fre								
First Titration								39
TABLE 13	Titration Data	ì						39
FIGURE 37	Titration Curv First Derivati	/e						40
FIGURE 38	First Derivati	ive Of 1	The Titration	n Curve				40
FIGURE 39	Second Derivat	ive Of	The Titration	on Curve .				41
Second Titration	1							42
TABLE 14	Titration Data	1						42
FIGURE 40	Titration Curv	/e						43
FIGURE 41	First Derivati	ve Of 1	The Titration	n Curve				43
FIGURE 42	Second Derivat	ive Of	The Titration	on Curve .				44
Third Titration								45
TABLE 15	Titration Data	ı						45
FIGURE 43	Titration Curv	re						46
FIGURE 44	First Derivati	ve Of T	he Titration	n Curve				46
FIGURE 45	Second Derivat							
Fourth Titration	1							48
TABLE 16	Titration Data	١						48
FIGURE 46	Titration Curv	e						49
FIGURE 47	First Derivati	ve Of T	he Titration	Curve				49
FIGURE 48	Second Derivat	ive Of	The Titration	on Curve .				50
Titration Of Fre								
First Titration								
TABLE 17	Titration Data							
FIGURE 49	Titration Curv							
FIGURE 50	First Derivati							
FIGURE 51	Second Derivat							
Second Titration	1							54
TABLE 18	Titration Data							
FIGURE 52	Titration Curv							
FIGURE 53	First Derivati							
FIGURE 54	Second Derivat							
Third Titration	<u>.</u>							57
TABLE 19	Titration Data							57

FIGURE 55 FIGURE 56 FIGURE 57	Titration First Deri Second Der	vative	0f '	The	Titr	ati	on	Curv	e .						•		. 5	8
Fourth Titration																		
TABLE 20	Titration	Data .								•							. 6	Ō
FIGURE 58	Titration	Curve .															. 6	1
	First Deri	vative	Of '	The	Titr	ati	on	Curv	e .								. 6	1
FIGURE 60	Second Der																	
Titration Of Fro																		
First Titration			•				•			•	•		•	•	•	•	. 6	3
TABLE 21	Titration																	
FIGURE 61	Titration	Curve .	•	• •	• •		•			•	•		•	•	•	•	. 6	4
	First Deri																	
FIGURE 63																		
Second Titration																		
TABLE 22	Titration																	
	Titration	Curve .	•	• •	• •		•	• . •		•	•		•	•	•	•	. 6	7
FIGURE 65	First Deri																	
FIGURE 66	Second Der																	
Third Titration	<u>.</u>	· · · ·	•				•			•	•		•	•	•	•	. 6	9
TABLE 23	Titration																	
FIGURE 67	Titration	Curve .	•	• •	· . ·	• •	•			•	٠		•	•	•	•	. 7	0
FIGURE 68	First Deri	vative	Of	The	Titr	ati	on	Curv	e.	•	•		•	•	•	•	. 7	0
FIGURE 69	Second Der																	
Fourth Titration	n		•				•			•	•		•	•	•	•	. 7	2
TABLE 24	Titration																	
FIGURE 70	Titration	Curve .	•				•			•	•		•	•	•	•	. 7	3
								C										3
FIGURE 71	First Deri	vative	Of	The	Titr	ati	on	curv	e.	•	•		•	•	•	•	. /	-
	First Deri Second Der	vative ivative	Of Of	The The	Titr Tit	ati rat	on ion	Curv	ve .	:	•		•	•	•	•	. 7	4
FIGURE 71 FIGURE 72 Titration Of Fro	Second Der esh 75 Micr	ivative on Sodi	of um	The Bica	Tit rbon	rat ate	ion Me	Cur dia	ve Wit	h ().9	 61	M 1	НС1	•		. 7 . 7	4 5
FIGURE 71 FIGURE 72 Titration Of Fre First Titration	Second Der esh 75 Micr	ivative on Sodi	of um	The Bica · ·	Tit rbon 	rat ate	ion Me	Cur dia 	ve Wit	h (0.9	 61 	M .	HC1	•	•	. 7 . 7 . 7	4 5 5
FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25	Second Der esh 75 Mic r Titration	on Sodi Data	e Of	The Bica · ·	Tit rbon 	rat ate	ion Me	Cur dia 	ve Wit	h ().9	61 	M !	HC1	•	•	. 7 . 7 . 7	4 5 5 5
FIGURE 71 FIGURE 72 Titration Of From First Titration TABLE 25 FIGURE 73	Second Deresh 75 Micronic Titration Titration	on Sodi Data . Curve	e Of	The Bica · ·	Tit rbon 	rat ate	ion Me	Cur dia 	ve Wit	h ().9	61 61	M	HC1 :	•	•	. 7 . 7 . 7	4 5 5 5 6
FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25 FIGURE 73 FIGURE 74	Second Der esh 75 Micr Titration Titration First Deri	on Sodi Data Curve	um i	The Bica The	Tit rbon Titr	rat ate ati	Me on	Cur dia Curv	Wit	h ().9	61	M	НС1	•	•	. 7 . 7 . 7 . 7	4 5 5 5 6 6
FIGURE 71 FIGURE 72 Titration Of Fre First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75	Second Der sh 75 Micr Titration Titration First Deri Second Der	on Sodi Data . Curve . vative	um i	The Bica The The	Tit rbon	rat ate ati rat	Me on ion	Curv dia Curv Curv	Wit e	h (61	M	HC1	•	•	. 7 . 7 . 7 . 7 . 7	4 5 5 5 6 6 7
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration	Second Der esh 75 Micr Titration Titration First Deri Second Der	on Sodi Data Curve vative	of of	The Bica The The	Tit rbon Titr Tit	rat ate ati rat	Me on ion	Curv Curv	Wit e ve	h (61	M	HC1		•	. 7 . 7 . 7 . 7 . 7	4 5 556678
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration	on Sodi Data Curve vative vative Data	um of	The Bica The The	Tit rbon Titr Tit	ate ati rat	Me on ion	dia Curv Curv	Wit e ve	h (61	M	HC1	•	•	. 7 . 7 . 7 . 7 . 7	4 5 5566788
FIGURE 71 FIGURE 72 Titration Of Frem First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration Titration Titration	con Sodi Data Curve vative vivative Data Curve	um of of	The Bica The The	Tit rbon Titr Titr	ate	Me on ion	Curv Curv	Wit	h (61	M	HC1	•	•	. 7 . 7 . 7 . 7 . 7 . 7	4 5 55667889
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration Titration Titration First Deri	on Sodi Data Curve vative ivative Data Curve	of of of	The Bica The The The	Tit rbon Titr Tit Titr	ate ati rat ati	Me on ion	dia Curv Curv Curv	Wit · · · · · · · · · · · · · · · · · · ·	h (61	M	HC1		•	. 7 . 7 . 7 . 7 . 7 . 7 . 7	4 5 5 5 5 6 6 7 8 8 9 9
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration Titration Titration First Deri Second Der	on Sodi Data Curve vative ivative Data Curve vative ivative	of of of	The Bica The The The The The	Tit rbon Titr Tit Titr Titr	ate ati rat ati	Me on ion on	Curv Curv Curv Curv Curv	Wit ve . ve . ve .	h (61	M	HC1		•	. 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7	4 5 5566788990
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration Titration Titration First Deri Second Der	on Sodi Data Curve ivative ivative Curve vative ivative ivative	of of of of of	The Bica The The The The The	Tit rbon Titr Tit Titr	rat ate	Me	Curv Curv Curv Curv	Wit · · · · · · · · · · · · · · · · · · ·	h (61	M	HC1		• • • • • • • • • • • • • • • • • • • •	. 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7	4 5 55667889901
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration Titration First Deri Second Der Titration First Deri Second Der Titration	on Sodi Data Curve ivative ivative curve vative ivative ivative ivative	of of of of	The Bica The The The The The	Tit rbon Titr Titr Titr	ate	Me	Curv Curv Curv Curv	Wit · · · · · · · · · · · · · · · · · · ·	h (61	M	HC1	•	•	. 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7	4 5 556678899011
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration Titration First Deri Second Der Titration Titration Titration Titration Titration Titration	on Sodi Data Curve vative vative vative vative vative vative vative vative vative	of of of of	The Bica The The The The The The	Tit rbon Titr Tit Titr Tit	ate	Me	Curv Curv Curv Curv Curv	Wit	h (61	M	HC1		• • • • • • • • • • • • • • • • • • • •	. 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 8 . 8 . 8	4 55566788990112
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79 FIGURE 80	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration Titration First Deri Second Der Titration First Deri Titration Titration First Deri	on Sodi Data Curve vative vative vative vative vative vative vative vative vative	of of of of	The Bica The The The The The	Tit rbon	rat ate	Me on ion on	Curv Curv Curv Curv Curv	Wit	h (61	M	HC1		•	. 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 7 7 8 8 8 8 8	4 555667889901122
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79 FIGURE 80 FIGURE 81	Second Der esh 75 Micro Titration Titration First Deri Second Der Titration Titration First Deri Second Der Titration Titration First Deri Second Der Titration Titration Titration First Deri Second Der	on Sodi Data Curve ivative ivative ivative ivative ivative ivative ivative ivative	of of of of of	The Bica The The The The The The	Tit rbon Titr Tit Titr Titr Titr Titr Titr	rat ate	ion Me on ion on ion ion ion	dia Curv Curv Curv Curv Curv Curv	Wit · · · · · · · · · · · · · · · · · · ·	h (. 9 . 9	61	M	HC1			. 7	4 5 5566678899011223
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79 FIGURE 80 FIGURE 81 Fourth Titration	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration Titration First Deri Second Der Titration First Deri Second Der Titration	on Sodi Data Curve ivative ivative ivative ivative ivative ivative ivative ivative	of of of of of of	The Bica The The The The The The	Tit rbon Titr Titr Titr Titr Titr Titr Titr	rat ate	Me	dia Curv Curv Curv Curv Curv	Wit	h (61	M	HC1		•	. 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8	4 5 555667889901122334
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79 FIGURE 80 FIGURE 81 Fourth Titration TABLE 28	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration Titration First Deri Second Der Titration	con Sodi Data Curve ivative	of of of of of	The Bica The The The The The The The	Tit rbon	rat ate	ion Me on ion on ion on	Curv Curv Curv Curv Curv Curv	Wit	h (61	M	HC1	•		. 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8	4 5 55667889901122344
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79 FIGURE 80 FIGURE 81 Fourth Titration TABLE 28 FIGURE 82	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration Titration First Deri Second Der Second Der Titration	on Sodi Data Curve vative	of of of of of	The Bica The The The The The The The	Tit rbon Titr Titr Titr Titr Titr Titr Titr Titr	rat ate	ion Me on ion on ion on	Curv Curv Curv Curv Curv Curv	Wit	h (61	M 1	HC1			. 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8	4 5 5556678899011223445
FIGURE 71 FIGURE 72 Titration Of Free First Titration TABLE 25 FIGURE 73 FIGURE 74 FIGURE 75 Second Titration TABLE 26 FIGURE 76 FIGURE 77 FIGURE 78 Third Titration TABLE 27 FIGURE 79 FIGURE 80 FIGURE 81 Fourth Titration TABLE 28 FIGURE 82	Second Der esh 75 Micr Titration Titration First Deri Second Der Titration Titration First Deri Second Der Titration Titration Titration Titration Titration Titration Titration First Deri Second Der Titration First Deri	on Sodi Data Curve vative	of of of of	The Bica The The The The The The The The	Tit rbon Titr Titr Titr Titr Titr Titr Titr	rat ate	ion Me	dia Curv Curv Curv Curv Curv Curv Curv	Wit	h (61	M 1	HC1	•		. 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8	4 5 55566788990112234455

		_														
Titration Of Fr	esh 45 Mic	ron Soc	lium	Bica	rbon	ate	Med	11a	Wit	n O	.96	l M	H		•	. 87
First Titration	÷.: ::::	· · ·	• •	• •	• •	• •	•	• • .	• •	٠	• •	•	•	• •	•	. 8/
TABLE 29	Titration	Data	• •	• •	• •	• • •	•	• •	• •	•	• •	•	•	• •	•	. 8/
FIGURE 85	Titration First Der	curve		• •	 T:+			• •		. •	• •	•	•	• •	•	. 80
FIGURE 86	First Der	ivative	UT	ine	litr	atio	n u	Jurv	е.	•	• •	•	•	• •	•	. 80
FIGURE 87	Second De															
Second Titratio			• •	• •	• •	• •	•	• •	• •	•	• •	•	•	• •	٠	. 90
TABLE 30	Titration															
FIGURE 88	Titration															
FIGURE 89	First Der															
FIGURE 90	Second De															
Third Titration	.	: : •	• •	• •	• •		•	• •	• •	•	• •	•	• . •	•	•	. 93
TABLE 31	Titration															
FIGURE 91	Titration	Curve	• . :	<u>.</u> . •	<u> :</u>	٠.:	. :	•	• •	•		•		•	٠	. 94
FIGURE 92	First Der															
FIGURE 93	Second De															
Fourth Titration	n						• .			•		•		•	•	. 96
TABLE 32	Titration															
FIGURE 94	Titration	Curve								•					•	. 97
FIGURE 95	First Der	ivative	0f	The	Titra	atio	n (Curv	е.							. 97
FIGURE 96	Second De	rivativ	e Of	The	Titi	rati	on	Cur	ve							. 98
Titration Of Fr	ach <45 Min	cron Sc	dium	Dic		22+0	Me	aiha	Wit	h I	7 Q6	:1 1	4 L	IC I		. 99
First Titration																. 99
																. 99
First Titration	Titration	 Data						• •						•		. 99
First Titration TABLE 33		 Data Curve		• •	• • •					•	• •	•		•		. 99 . 99
First Titration TABLE 33 FIGURE 97	Titration Titration First Der	Data Curve ivative	 Of e Of	 The The	 Titra Titr	 atio	on C	Curv Cur	 e . ve	:	• •	• •		•		. 99 . 99 100 100
First Titration TABLE 33 FIGURE 97 FIGURE 98	Titration Titration First Der	Data Curve ivative	 Of e Of	 The The	 Titra Titr	 atio	on C	Curv Cur	 e . ve	:	• •	• •		•		. 99 . 99 100 100
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99	Titration Titration First Der	Data Curve ivative rivativ	0f e 0f	· · The The	Titra	 atio rati	on (Curv Cur	 e . ve		• •				• • • • • • • • • • • • • • • • • • • •	. 99 100 100 101 102
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34	Titration Titration Titration First Der Second Den n Titration	Data Curve ivative rivativ	of e Of	The The	Titra Titra	 atio rati	on (Curv Cur	 e . ve	:					•	. 99 100 100 101 102
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration	Titration Titration First Der Second Der n Titration Titration	Data Curve ivative rivativ Data Curve	0f e 0f	The The	Titra	atio	on C	Curv							• • • • • • • • • • • • • • • • • • • •	. 99 100 100 101 102 102
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101	Titration Titration First Der Second Der n Titration Titration First Der	Data Curve ivative rivative Data Curve ivative	of e Of	The The	Titra Titra	atio	on C	Curv Cur							• • • • • • • • • • • • • • • • • • • •	. 99 . 99 100 100 101 102 102
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102	Titration Titration First Der Second Der Titration Titration First Der Second Der	Data Curve ivative rivativ Data Curve ivative	of e Of Of e Of	The The	Titra Titra Titra Titra	atio	on Con	Curv Cur Curv								. 99 100 100 101 102 103 103
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101	Titration Titration First Der Second Der Titration Titration First Der Second Der	Data Curve ivative rivativ Data Curve ivative	of e Of Of e Of	The The	Titra Titra Titra Titra	atio	on Con	Curv Cur Curv								. 99 100 100 101 102 103 103
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35	Titration Titration First Der Second Der Titration Titration First Der Second Der	Data Curve ivative Data Curve ivative rivative	Of e Of e Of	The The The The The The	Titra Titra Titra Titra	atioration	on Con Con	Curv Curv Curv	e							. 99 100 100 101 102 103 103 104 105
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration	Data Curve ivative Data Curve ivative rivative Curve Curve Curve Curve Curve	of e Of 	The The The The The	Titra Titra Titra Titra	atio	on Con Con Con	Curv Curv Curv	e							. 99 100 100 101 102 103 103 104 105
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration First Der Titration Titration Titration Titration Titration Titration	Data Curve ivative Data Curve ivative rivative Curve ivative ivative	of e Of of e Of	The The The The The	Titra Titra Titra Titra	atio rati	on Con	Curv Curv Curv								. 99 100 100 101 102 103 103 104 105 105
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration Titration Titration First Der Second Der	Data Curve ivative rivative ivative rivative Curve ivative ivative rivative	of e Of e Of e Of e Of	The The The The The The The	Titra Titra Titra Titra Titra Titra	atiorati	on (on (on (on (on (on (on (on (on (on (Curv Curv Cur Cur								. 99 100 100 101 102 103 103 104 105 106 106
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 Fourth Titration	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration Titration First Der Second Der Second Der	Data Curve ivative rivative rivative curve ivative ivative rivative rivative	of e Of e Of e Of e Of	The The The The The The The	Titra Titra Titra Titra Titra Titra	atio	on Con	Curv Curv Curv Curv								. 99 100 100 101 102 103 103 104 105 106 107 108
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 FOURTH TITRATION TABLE 36	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration Titration Titration First Der Second Der Titration Titration Titration	Data Curve ivative rivative rivative curve ivative rivative rivative rivative	of e Of	The The The The The The	Titra Titra Titra Titra Titra	atio	on Con	Curv Curv Curv Curv								. 99 100 100 101 102 103 103 104 105 106 107 108
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 FOURTH TITRATION TABLE 36 FIGURE 106	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration	Data Curve ivative rivative rivative curve ivative rivative rivative curve curve curve curve curve curve	of e Of	The The The The The The	Titra Titra Titra Titra Titra	ation ration rat	on Con	Curv Curv Curv Curv								. 99 100 100 101 102 103 103 104 105 106 107 108 108
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 Fourth Titration TABLE 36 FIGURE 106 FIGURE 107	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration Titration Titration First Der Second Der Titration Titration Titration Titration Titration Titration Titration	Data Curve ivative rivative rivative rivative curve ivative rivative curve ivative curve ivative	of e Of e Of e Of e Of	The The The The The The The The	Titra Titra Titra Titra Titra Titra	ratio ratio ratio ratio ratio	on () () () () () () () () () (Curv Curv Curv Curv								. 99 100 100 101 102 103 103 104 105 106 107 108 108 109
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 FOURTH TITRATION TABLE 36 FIGURE 106	Titration Titration First Der Second Der Titration First Der Second Der Titration Titration Titration First Der Second Der Titration First Der Titration First Der Titration Titration Titration Titration First Der	Data Curve ivative rivative rivative rivative curve ivative rivative curve ivative curve ivative	of e Of e Of e Of e Of	The The The The The The The The	Titra Titra Titra Titra Titra Titra	ratio ratio ratio ratio ratio	on () () () () () () () () () (Curv Curv Curv Curv								. 99 100 100 101 102 103 103 104 105 106 107 108 108
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 Fourth Titration TABLE 36 FIGURE 106 FIGURE 107 FIGURE 107 FIGURE 108	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration First Der Second Der	Data Curve ivative rivative rivative curve ivative rivative curve ivative rivative rivative	of e Of e Of e Of e Of e Of	The	Titra Titra Titra Titra Titra Titra Titra Titra	ationationationationati	on (on (on (on (on (on (on (on (on (on (Curv Curv Curv Curv Curv Cur								. 99 100 100 101 102 103 103 104 105 106 107 108 109 110
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 FOURTH Titration TABLE 36 FIGURE 106 FIGURE 107 FIGURE 108 Titration Of Soc	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration Titration Titration First Der Second Der Titration	Data Curve ivative rivative rivative curve ivative rivative rivative rivative rivative		The	Titra Titra Titra Titra Titra Titra Titra	ation ration rat	on Con Con Con Con Con Con Con Con Con C	Curv Curv Curv Curv Cur			0.9	61	M	HCI		. 99 100 101 102 103 103 104 105 106 107 108 109 110
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 FOURTH Titration TABLE 36 FIGURE 106 FIGURE 106 FIGURE 107 FIGURE 108 TABLE 37	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration Titration First Der Second Der Titration	Data Curve ivative rivative	Of e Of	The	Titra Titra Titra Titra Titra Titra Titra	ation ration rat	on Con Con Con Con Con Con Con Con Con C	Curv Curv Cur Cur Cur	eve e ve e ve e ve		0.9	061	M	HC1		. 99 100 101 102 103 103 104 105 106 107 108 108 109 110
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 Fourth Titration TABLE 36 FIGURE 106 FIGURE 106 FIGURE 107 FIGURE 108 TABLE 37 FIGURE 109	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration First Der Second Der Titration First Der Second Der Titration	Data Curve ivative rivative rivative rivative rivative rivative rivative rivative curve ivative rivative rivative curve curve curve curve curve curve curve curve	Of e Of e Of e Of From	The	Titra Titra Titra Titra Titra Titra Titra	ation ration rat	on Con Con Con Con Con Con Con Con Con C	Curv Curv Curv Cur Cur			0.9	61	M	HCI		. 99 100 100 101 102 103 103 104 105 106 107 108 109 110 111 111 112
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 Fourth Titration TABLE 36 FIGURE 106 FIGURE 107 FIGURE 108 Titration Of Soc TABLE 37 FIGURE 109 FIGURE 110	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration First Der Second Der Titration Titration Titration Titration Titration Titration First Der Second Der dium Bicarl Titration Titration Titration First Der	Data Curve ivative rivative	of e Of e Of e Of From	The	Titra Titra Titra Titra Titra Titra Titra	ratio ratio ratio ratio ratio ratio ratio	on Con Con Con Con Con Con Con Con Con C	Curv Curv Curv Cur Cur	· · · · e · · · · · · e · · · · · · e · · · · · · e · · · · · · e ·	th	0.9	61	M	HCT		. 99 100 101 102 103 103 104 105 106 107 108 109 110 111 111 112 112
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 Fourth Titration TABLE 36 FIGURE 106 FIGURE 106 FIGURE 107 FIGURE 108 TABLE 37 FIGURE 109	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration First Der Second Der Titration Titration Titration Titration Titration First Der Second Der dium Bicarl Titration Titration Titration First Der	Data Curve ivative rivative	of e Of e Of e Of From	The	Titra Titra Titra Titra Titra Titra Titra	ratio ratio ratio ratio ratio ratio ratio	on Con Con Con Con Con Con Con Con Con C	Curv Curv Curv Cur Cur	· · · · e · · · · · · e · · · · · · e · · · · · · e · · · · · · e ·	th	0.9	61	M	HCT		. 99 100 100 101 102 103 103 104 105 106 107 108 109 110 111 111 112
First Titration TABLE 33 FIGURE 97 FIGURE 98 FIGURE 99 Second Titration TABLE 34 FIGURE 100 FIGURE 101 FIGURE 102 Third Titration TABLE 35 FIGURE 103 FIGURE 104 FIGURE 105 Fourth Titration TABLE 36 FIGURE 106 FIGURE 107 FIGURE 108 Titration Of Soc TABLE 37 FIGURE 109 FIGURE 110	Titration Titration First Der Second Der Titration Titration First Der Second Der Titration Titration Titration First Der Second Der Titration Titration Titration Titration Titration First Der Second Der Titration First Der Second Der Titration	Data Curve ivative rivative rivative curve ivative rivative	of e Of e Of e Of e Of e Of e Of	The	Titra Titra Titra Titra Titra Titra Titra Titra Titra	ation ration rat	on (on (on (on (on (on (on (on (on (on (Curv Curv Curv Curv Curv Curv	· · · · · · · · · · · · · · · · · · ·		0.9	61	M	HCT		. 99 100 101 102 103 103 104 105 106 107 108 109 110 111 111 112 112

FIGURE 112	Titration Curve	113
FIGURE 113	First Derivative Of The Titration Curve	115
FIGURE 114	Second Derivative Of The Titration Curve	116
Titration Of To	tal Spent Sodium Bicarbonate Media With 0.984 M HCl	
First Titration		117
TABLE 39	Titration Data	117
FIGURE 115	Titration Curve	119
FIGURE 116	First Derivative Of The Titration Curve	119
	Second Derivative Of The Titration Curve	
Second Titratio		
TABLE 40	Titration Data	
FIGURE 118		
FIGURE 119		
FIGURE 120		
TABLE 41	Titration Data	
FIGURE 121	Titration Curve	127
	First Derivative Of The Titration Curve	
FIGURE 123		
Fourth Titration		
TABLE 42	Titration Data	129
FIGURE 124	Titration Curve	131
FIGURE 125	First Derivative Of The Titration Curve	131
FIGURE 126		
Tiluntian Of Co.	ant 1000 Missan Colium Disambanata Madia With 0 004 M 1101	100
litration of Sp	ent 1000 micron Sodium Bicardonate media with 0.984 m htt	133
	ent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl	133 133
First Titration		133
First Titration TABLE 43	Titration Data	133 133
First Titration TABLE 43 FIGURE 127	Titration Data	133 133 135
First Titration TABLE 43 FIGURE 127 FIGURE 128	Titration Data	133 133 135 135
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129	Titration Data	133 133 135 135 136
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titratio	Titration Data	133 133 135 135 136
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titratio TABLE 44	Titration Data Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data	133 135 135 136 137 137
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titratio TABLE 44 FIGURE 130	Titration Data Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve	133 133 135 135 136 137 137
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titratio TABLE 44 FIGURE 130 FIGURE 131	Titration Data Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve	133 133 135 136 137 137 139
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titratio TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	133 135 135 136 137 137 139 140
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	133 135 135 135 137 137 139 140
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Data	133 135 135 135 137 137 139 140 141
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve Titration Data Titration Data Titration Data Titration Curve	133 135 135 135 137 137 139 140 141 141
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve Titration Data Titration Data Titration Data Titration Curve	133 135 135 135 137 137 139 140 141 141
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Titration Data Titration Data Titration Curve First Derivative Of The Titration Curve	133 135 135 137 137 137 139 140 141 141 143
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 133 FIGURE 134 FIGURE 135	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Data Titration Data Titration Data Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	133 135 135 135 137 137 139 140 141 143 143
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 134 FIGURE 135 FOURTH TITRATION	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	133 135 135 135 137 137 139 140 141 143 143 144
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 133 FIGURE 135 FOURTH TITRATION TABLE 46	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	133 135 135 135 137 137 139 140 141 143 144 145 145
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 133 FIGURE 134 FIGURE 135 Fourth Titration TABLE 46 FIGURE 136	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Data	133 135 135 135 137 137 139 140 141 143 144 145 145
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 134 FIGURE 135 Fourth Titration TABLE 46 FIGURE 136 FIGURE 137	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve	133 135 135 137 137 137 139 140 141 143 144 145 145 147
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 133 FIGURE 134 FIGURE 135 Fourth Titration TABLE 46 FIGURE 136	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Data	133 135 135 137 137 137 139 140 141 143 144 145 145 147
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 134 FIGURE 135 FOURTH Titration TABLE 46 FIGURE 136 FIGURE 137 FIGURE 137 FIGURE 138	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Titration Data Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	133 135 135 135 137 137 139 140 141 143 144 145 147 147
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 134 FIGURE 135 FOURTH Titration TABLE 46 FIGURE 136 FIGURE 137 FIGURE 138 Titration Of Special Control of Special Cont	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve First Derivative Of The Titration Curve	133 135 135 135 137 137 139 140 141 143 144 145 147 147
First Titration TABLE 43 FIGURE 127 FIGURE 128 FIGURE 129 Second Titration TABLE 44 FIGURE 130 FIGURE 131 FIGURE 132 Third Titration TABLE 45 FIGURE 133 FIGURE 134 FIGURE 135 FOURTH Titration TABLE 46 FIGURE 136 FIGURE 137 FIGURE 138 Titration Of Special Control of Special Cont	Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve Titration Curve First Derivative Of The Titration Curve Titration Data Titration Data Titration Curve First Derivative Of The Titration Curve Second Derivative Of The Titration Curve	133 135 135 135 137 137 139 140 141 143 144 145 145 147 147

	First Derivative Of The Titration Curve Second Derivative Of The Titration Curve .						
	n						
TABLE 48	Titration Data						
FIGURE 142	Titration Curve						155
FIGURE 143	First Derivative Of The Titration Curve			Ì		•	155
FIGURE 144							156
							157
TABLE 49	Titration Data						157
	Titration Curve						159
FIGURE 146							159
	Second Derivative Of The Titration Curve						160
					,		161
Fourth Titration		•	• •	•		•	161
TABLE 50	Titration Data						
	Titration Curve						163
	First Derivative Of The Titration Curve						163
FIGURE 150	Second Derivative Of The Titration Curve .	•	• •	•	• •	٠	164
Titration Of Spe	ent 450 Micron Sodium Bicarbonate Media With	0.	984	M	HC1		165
							165
	Titration Data						165
	Titration Curve						167
	First Derivative Of The Titration Curve						167
	Second Derivative Of The Titration Curve .						168
	1						169
TABLE 52	Titration Data						169
	Titration Curve						171
	First Derivative Of The Titration Curve						171
FIGURE 155	Second Derivative Of The Titration Curve						172
							173
	Tituation Data						
TABLE 53	Titration Data	•	•	•	• •	•	173
FIGURE 157	Titration Curve	•	• •	•	• •	•	174
	First Derivative Of The Titration Curve						174
	Second Derivative Of The Titration Curve .						175
Fourth litration	1_, , , , , , , , , , , , , , , , , , ,	•		•	• •	•	176
TABLE 54	Titration Data	•		٠		•	176
FIGURE 160	Titration Curve	•		٠		•	177
FIGURE 161	first Derivative Of the litration curve			•		٠	177
FIGURE 162	Second Derivative Of The Titration Curve .	•		•	• •	•	178
Titration Of Spe	ent 250 Micron Sodium Bicarbonate Media With	n. (984	М	HC1	_	179
	· · · · · · · · · · · · · · · · · · ·						179
TABLE 55	Titration Data	•	• •	•	• •	•	179
	Titration Curve						180
FIGURE 164	First Derivative Of The Titration Curve	•	• •	•		•	180
FIGURE 165							181
Second Titration							182
TABLE 56							
	Titration Data						182
FIGURE 166	Titration Curve	•	• •	•	• •	•	183
	First Derivative Of The Titration Curve						183
FIGURE 168	Second Derivative Of The Titration Curve .	•	• •	•	• •	•	184
Third Titration							185

TABLE 57	Titration Data						185
FIGURE 169	litration curve						185
FIGURE 170	First Derivative Of The Titration Curve						186
FIGURE 171	Second Derivative Of The Titration Curve .						
Fourth Titration							
TABLE 58	Titration Data						
FIGURE 172	Titration Curve						
	First Derivative Of The Titration Curve	·		Ĭ.	•		189
FIGURE 174							
TIGORE 174	second berivative of the fibration daive .	•	•. •	•	•	• •	150
Titration Of Spe	ent 150 Micron Sodium Bicarbonate Media With	0.	984	М	HC'	١.	191
TARIF 59	Titration Data	•	• •	•	•	• •	
FIGURE 175	Titration Curve	•	• •	•	•	• •	192
FIGURE 175	First Derivative Of The Titration Curve	•	• •	•	•	• •	192
FIGURE 170	Count Desirative Of The Tituation Curve	•	• •	•	•	• •	192
	Second Derivative Of The Titration Curve .						
Second litration	1	•	• •	•	•	• •	194
TABLE 60	Titration Data	•		•	•		194
FIGURE 178	Titration Curve	•		•	•		195
FIGURE 179	First Derivative Of The Titration Curve	•		•	•		195
FIGURE 180	Second Derivative Of The Titration Curve .						196
Third Titration							197
TABLE 61	Titration Data	Ī		Ĭ.	Ī		197
FIGURE 181	Titration Curve						
FIGURE 182	First Derivative Of The Titration Curve	•	• •	•	•	• •	198
FIGURE 183	Second Derivative Of The Titration Curve	•	• •	•	•	• •	199
Fourth Titration	1	•	• •	•	•	• •	200
TABLE 62	Titration Data	٠	• •	٠	•		200
FIGURE 184	Titration Curve	•		•	•		201
FIGURE 185	First Derivative Of The Titration Curve						
FIGURE 186	Second Derivative Of The Titration Curve .	•		•	•		202
Tituatian Of Co.	out 100 Wienen Cadium Discubenste Wedie With	_	001		HO		000
	ent 106 Micron Sodium Bicarbonate Media With						
First litration		•	• •	•	•	•	203
TABLE 63	Titration Data	٠	• •	•	•		203
FIGURE 187	Titration Curve	•		٠	•		204
	First Derivative Of The Titration Curve						
FIGURE 189		•		٠.	•		205
Second Titration							206
TABLE 64	Titration Data						206
FIGURE 190	Titration Curve						207
FIGURE 191	First Derivative Of The Titration Curve						207
FIGURE 192	Second Derivative Of The Titration Curve .						208
Third Titration							209
TABLE 65	Titration Data						
							209
FIGURE 193	Titration Curve						210
FIGURE 194	First Derivative Of The Titration Curve						210
FIGURE 195	Second Derivative Of The Titration Curve .	-		-			211
Fourth Titration							212
TABLE 66	Titration Data						212
FIGURE 196	Titration Curve						213
FIGURE 197							213

FIGURE 198	Second Derivative Of The Titration Curve .		• •		•	21
	ent 75 Micron Sodium Bicarbonate Media With					21
					•	21
TABLE 67	Titration Data				•	21
FIGURE 199	Titration Curve					21
FIGURE 200	First Derivative Of The Titration Curve					21
FIGURE 201	Second Derivative Of The Titration Curve .					21
Second Titratio	n					21
TABLE 68	Titration Data					21
	Titration Curve					21
	First Derivative Of The Titration Curve					21
FIGURE 204	·					22
						22
TABLE 69	Titration Data					22
						22
	Titration Curve					
	First Derivative Of The Titration Curve					22
FIGURE 207	Second Derivative Of The Titration Curve .		• •	• •	•	223
Fourth Titratio		• •	• •		•	22
TABLE 70	litration Data				•	224
FIGURE 208	Titration Curve		• .•		•	22
FIGURE 209	First Derivative Of The Titration Curve					22
FIGURE 210	Second Derivative Of The Titration Curve .				•	220
Tituation Of Co.	aut AE Misusa Cadium Disambanata Madia With	A 001	м -	ucı		227
	ent 45 Micron Sodium Bicarbonate Media With					227
First litration	Titudia Data	• •	• •	• •	•	
	Titration Data					227
FIGURE 211	Titration Curve	• •	• •	• •	•	228
	First Derivative Of The Titration Curve					228
	Second Derivative Of The Titration Curve .					229
Second litration	n <u>.</u>	• •	• •	• •	•	230
TABLE 72	Titration Data				•	230
FIGURE 214	Titration Curve				•	23]
FIGURE 215	First Derivative Of The Titration Curve					23]
FIGURE 216	Second Derivative Of The Titration Curve .				•	232
Third Titration					•	233
TABLE 73	Titration Data					233
FIGURE 217	Titration Curve					234
FIGURE 218	First Derivative Of The Titration Curve					234
FIGURE 219						235
Fourth Titration						236
TABLE 74	Titration Data					236
	Titration Curve					237
	First Derivative Of The Titration Curve					237
	Second Derivative Of The Titration Curve					238
TIONE LLL	second berivative of the fittiation outve .	• • •	•. •	• •	•	250
	ent <45 Micron Sodium Bicarbonate Media With					239
						239
	Titration Data					239
FIGURE 223	Titration Curve				<i>.</i>	240
FIGURE 224	First Derivative Of The Titration Curve					240
FIGURE 225	Second Derivative Of The Titration Curve .					241

Second Titratio	on	242
TABLE 76	Titration Data	242
FIGURE 226	Titration Curve	243
FIGURE 227	First Derivative Of The Titration Curve	243
FIGURE 228	Second Derivative Of The Titration Curve	244
Third Titration	1	245
TABLE 77	Titration Data	245
FIGURE 229	Titration Curve	246
FIGURE 230	First Derivative Of The Titration Curve	246
FIGURE 231	Second Derivative Of The Titration Curve	247
Fourth Titration	n	248
TABLE 78	Titration Data	248
FIGURE 232	Titration Curve	249
FIGURE 233	First Derivative Of The Titration Curve	249
FIGURE 234	Second Derivative Of The Titration Curve	250

TABLE 1. STANDARDIZATION OF NaOH WITH KHP.

0.00 13.704 0.50 0.08 0.25 0.15 1.00 13.780 1.50 0.02 1.00 -0.03 2.00 13.803 2.50 -0.00 2.00 -0.03 3.00 13.799 3.60 -0.01 3.05 -0.01 5.00 13.787 4.60 -0.01 4.10 0.00 5.00 13.767 6.50 -0.01 5.05 -0.00 6.00 13.767 6.50 -0.01 7.00 -0.00 7.00 13.754 7.50 -0.01 7.00 -0.00 8.00 13.740 8.50 -0.02 8.00 -0.01 9.00 13.719 9.50 -0.02 9.00 -0.01 11.00 13.679 11.50 -0.03 11.00 -0.01 12.00 13.652 12.50 -0.03 11.00 -0.01 13.00 13.617 13.50 -0.03 13.00 0.01 14.0						· · · · · · · · · · · · · · · · · · ·
0.00 13.704 0.50 0.08 0.25 0.15 1.00 13.780 1.50 0.02 1.00 -0.05 2.00 13.803 2.50 -0.00 2.00 -0.03 3.00 13.787 4.60 -0.01 3.05 -0.01 5.00 13.787 4.60 -0.01 5.05 -0.00 6.00 13.767 6.50 -0.01 6.00 -0.00 7.00 13.754 7.50 -0.01 7.00 -0.00 8.00 13.740 8.50 -0.02 8.00 -0.01 9.00 13.719 9.50 -0.02 9.00 -0.01 10.00 13.673 11.50 -0.03 11.00 -0.00 11.00 13.679 11.50 -0.03 11.00 -0.01 12.00 13.719 9.50 -0.02 10.00 -0.01 11.00 13.617 13.50 -0.03 11.00 -0.00	m1 0.3753M KHP	На	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
1.00 13,780 1.50 0.02 1.00 -0.05 2.00 13,803 2.50 -0.00 2.00 -0.03 3.00 13,787 4.60 -0.01 4.10 0.00 5.00 13,787 4.60 -0.01 5.05 -0.00 6.00 13,767 6.50 -0.01 6.00 -0.00 7.00 13,754 7.50 -0.01 7.00 -0.00 8.00 13,719 9.50 -0.02 8.00 -0.01 9.00 13,719 9.50 -0.02 9.00 -0.01 11.00 13,679 11.50 -0.03 11.00 -0.01 12.00 13,652 12.50 -0.03 12.00 -0.01 13.00 13,617 13.50 -0.03 12.00 -0.01 14.00 13,588 14.50 -0.05 14.00 -0.02 15.00 13,498 16.50 -0.04 15.00 -0.02 18.00 13,458 17.50 -0.06 17.00 -0.02 <						
2,00 13,803 2,50 -0.00 2,00 -0.03 3,00 13,799 3,60 -0.01 3.05 -0.01 4,20 13,787 4,60 -0.01 4,10 0.00 5,00 13,780 5,50 -0.01 5,05 -0.00 6,00 13,767 6,50 -0.01 6,00 -0.00 7,00 13,740 8,50 -0.02 8,00 -0.01 9,00 13,719 9,50 -0.02 9,00 0.00 10,00 13,679 11,50 -0.03 11,00 -0.01 11,00 13,652 12,50 -0.03 12,00 -0.01 13,00 13,617 13,50 -0.03 12,00 -0.01 14,00 13,588 14,50 -0.05 14,00 -0.02 15,00 13,488 17,50 -0.04 15,00 0.02 15,00 13,488 17,50 -0.06 17,00 -0.02 18,00 13,488 17,50 -0.06 17,00 -0.02						
3.00						
4. 20 13.787 4. 60 -0.01 4. 10 0.00 5.00 13.780 5.50 -0.01 5.05 -0.00 6.00 13.767 6.50 -0.01 5.00 -0.00 7.00 13.754 7.50 -0.01 7.00 -0.00 8.00 13.740 8.50 -0.02 8.00 -0.01 9.00 13.719 9.50 -0.02 9.00 0.00 10.00 13.703 10.50 -0.02 10.00 -0.01 11.00 13.679 11.50 -0.03 11.00 -0.00 12.00 13.652 12.50 -0.03 12.00 -0.01 13.00 13.617 13.50 -0.03 12.00 -0.01 14.00 13.588 14.50 -0.05 14.00 -0.02 15.00 13.535 15.50 -0.04 15.00 -0.02 16.00 13.498 16.50 -0.04 16.00 -0.02 18.00 13.350 19.50 -0.05 18.00 -0.02 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
5.00 13.760 5.50 -0.01 5.05 -0.00 6.00 13.767 6.50 -0.01 6.00 -0.00 7.00 13.754 7.50 -0.01 7.00 -0.00 8.00 13.740 8.50 -0.02 8.00 -0.01 9.00 13.719 9.50 -0.02 10.00 -0.01 10.00 13.679 11.50 -0.02 10.00 -0.01 11.00 13.652 12.50 -0.03 11.00 -0.01 13.00 13.617 13.50 -0.03 13.00 -0.01 14.00 13.588 14.50 -0.05 14.00 -0.02 15.00 13.498 16.50 -0.04 15.00 -0.02 16.00 13.498 16.50 -0.04 16.00 -0.02 18.00 13.493 18.50 -0.05 18.00 -0.02 18.00 13.452 12.50 -0.05 18.00 -0.02						
6.00						
7.00						
8.00 13.740 8.50 -0.02 8.00 -0.01 9.00 13.719 9.50 -0.02 9.00 0.00 10.00 13.679 11.50 -0.03 11.00 -0.00 12.00 13.652 12.50 -0.03 12.00 -0.01 13.00 13.617 13.50 -0.03 12.00 -0.01 14.00 13.588 14.50 -0.05 14.00 -0.02 15.00 13.535 15.50 -0.04 15.00 -0.02 16.00 13.498 16.50 -0.04 16.00 -0.00 17.00 13.458 17.50 -0.06 17.00 -0.02 18.00 13.493 18.50 -0.05 18.00 -0.02 18.00 13.458 17.50 -0.06 17.00 -0.02 18.00 13.458 17.50 -0.05 18.00 -0.00 19.00 13.350 19.50 -0.07 19.00 -0.02 20.00 13.351 22.5 -0.08 20.88 0.01						
9.00						
10.00						
11.00 13.679 11.50 -0.03 11.00 -0.00 12.00 13.652 12.50 -0.03 12.00 -0.01 13.00 13.617 13.50 -0.03 13.00 0.01 14.00 13.588 14.50 -0.05 14.00 -0.02 15.00 13.535 15.50 -0.04 15.00 -0.02 16.00 13.498 16.50 -0.04 16.00 -0.00 17.00 13.458 17.50 -0.06 17.00 -0.02 18.00 13.403 18.50 -0.05 18.00 0.00 19.00 13.350 19.50 -0.07 19.00 -0.02 20.00 13.186 21.25 -0.08 20.88 0.01 21.50 13.145 21.75 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.80 12.760 23.90 -0.22 23.45 -0.09						
12.00 13.652 12.50 -0.03 12.00 -0.01 13.00 13.617 13.50 -0.03 13.00 0.01 14.00 13.588 14.50 -0.05 14.00 -0.02 15.00 13.535 15.50 -0.04 15.00 0.02 16.00 13.498 16.50 -0.04 16.00 -0.00 17.00 13.458 17.50 -0.06 17.00 -0.02 18.00 13.403 18.50 -0.05 18.00 0.00 19.00 13.350 19.50 -0.07 19.00 -0.02 20.00 13.278 20.50 -0.09 20.00 -0.02 21.00 13.186 21.25 -0.08 20.88 0.01 21.50 13.001 22.75 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.00 12.945 23.25 -0.22 23.78 0.11 </td <td></td> <td></td> <td></td> <td></td> <td>11 00</td> <td></td>					11 00	
13.00 13.617 13.50 -0.03 13.00 0.01 14.00 13.588 14.50 -0.05 14.00 -0.02 15.00 13.535 15.50 -0.04 15.00 0.02 16.00 13.498 16.50 -0.04 16.00 -0.00 17.00 13.458 17.50 -0.06 17.00 -0.02 18.00 13.403 18.50 -0.05 18.00 0.00 19.00 13.350 19.50 -0.07 19.00 -0.02 20.00 13.186 21.25 -0.09 20.00 -0.02 21.00 13.186 21.25 -0.08 20.88 0.01 21.50 13.081 22.25 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 -0.10 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 <						
14.00 13.588 14.50 -0.05 14.00 -0.02 15.00 13.535 15.50 -0.04 15.00 0.02 16.00 13.498 16.50 -0.04 16.00 -0.00 17.00 13.458 17.50 -0.06 17.00 -0.02 18.00 13.403 18.50 -0.05 18.00 0.00 19.00 13.350 19.50 -0.07 19.00 -0.02 20.00 13.278 20.50 -0.09 20.00 -0.02 21.00 13.186 21.25 -0.08 20.88 0.01 21.50 13.081 22.25 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.50 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.776 23.90 -0.22 23.78 0.11 <						
15.00 13.535 15.50 -0.04 15.00 0.02 16.00 13.498 16.50 -0.04 16.00 -0.00 17.00 13.458 17.50 -0.06 17.00 -0.02 18.00 13.403 18.50 -0.05 18.00 0.00 19.00 13.350 19.50 -0.07 19.00 -0.02 20.00 13.278 20.50 -0.09 20.00 -0.02 21.00 13.186 21.25 -0.08 20.88 0.01 21.50 13.081 22.25 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.00 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 <						
16.00 13.498 16.50 -0.04 16.00 -0.00 17.00 13.458 17.50 -0.06 17.00 -0.02 18.00 13.403 18.50 -0.05 18.00 0.00 19.00 13.350 19.50 -0.07 19.00 -0.02 20.00 13.278 20.50 -0.09 20.00 -0.02 21.00 13.186 21.25 -0.08 20.88 0.01 21.50 13.145 21.75 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.00 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27						
17.00 13.458 17.50 -0.06 17.00 -0.02 18.00 13.403 18.50 -0.05 18.00 0.00 19.00 13.350 19.50 -0.07 19.00 -0.02 20.00 13.278 20.50 -0.09 20.00 -0.02 21.00 13.186 21.25 -0.08 20.88 0.01 21.50 13.145 21.75 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.00 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93						
18.00 13.403 18.50 -0.05 18.00 0.00 19.00 13.350 19.50 -0.07 19.00 -0.02 20.00 13.278 20.50 -0.09 20.00 -0.02 21.00 13.186 21.25 -0.08 20.88 0.01 21.50 13.145 21.75 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.00 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 <						
19.00 13.350 19.50 -0.07 19.00 -0.02 20.00 13.278 20.50 -0.09 20.00 -0.02 21.00 13.186 21.25 -0.08 20.88 0.01 21.50 13.145 21.75 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.00 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.43 24.44 6.80 <						
20.00 13.278 20.50 -0.09 20.00 -0.02 21.00 13.186 21.25 -0.08 20.88 0.01 21.50 13.145 21.75 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.00 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40						
21.00 13.186 21.25 -0.08 20.88 0.01 21.50 13.145 21.75 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.00 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 <						
21.50 13.145 21.75 -0.13 21.50 -0.09 22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.00 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30						
22.00 13.081 22.25 -0.16 22.00 -0.07 22.50 13.000 22.75 -0.11 22.50 0.10 23.00 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.293 25.05 -0.60 25.00 -1.70						
22.50 13.000 22.75 -0.11 22.50 0.10 23.00 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.233 25.05 -0.60 25.00 -1.70 25.10 12.223 25.05 -0.60 25.00 -1.70						
23.00 12.945 23.25 -0.22 23.00 -0.22 23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.233 25.05 -0.60 25.00 -1.70 25.10 12.223 25.05 -0.60 25.00 -1.70 25.40 11.964 25.45 -1.70 25.40 -7.60						
23.50 12.836 23.65 -0.25 23.45 -0.09 23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.233 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50						
23.80 12.760 23.90 -0.22 23.78 0.11 24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.336 24.95 -0.43 24.90 0.00 25.00 12.293 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60						
24.00 12.715 24.10 -0.30 24.00 -0.38 24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.336 24.95 -0.43 24.90 0.00 25.00 12.293 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.30 12.058 25.35 -0.70 25.20 3.50 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50						
24.20 12.655 24.28 -0.35 24.19 -0.27 24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.336 24.95 -0.43 24.90 0.00 25.00 12.293 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.20 12.128 25.25 -0.70 25.20 3.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50						
24.35 12.603 24.38 -0.94 24.33 -5.93 24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.336 24.95 -0.43 24.90 0.00 25.00 12.293 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.20 12.128 25.25 -0.70 25.20 3.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
24.40 12.556 24.45 -0.43 24.41 6.80 24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.336 24.95 -0.43 24.90 0.00 25.00 12.293 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.20 12.128 25.25 -0.70 25.20 3.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
24.50 12.513 24.55 -0.45 24.50 -0.20 24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.336 24.95 -0.43 24.90 0.00 25.00 12.293 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.20 12.128 25.25 -0.70 25.20 3.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
24.60 12.468 24.65 -0.59 24.60 -1.40 24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.336 24.95 -0.43 24.90 0.00 25.00 12.293 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.20 12.128 25.25 -0.70 25.20 3.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
24.70 12.409 24.75 -0.30 24.70 2.90 24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.336 24.95 -0.43 24.90 0.00 25.00 12.293 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.20 12.128 25.25 -0.70 25.20 3.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
24.80 12.379 24.85 -0.43 24.80 -1.30 24.90 12.336 24.95 -0.43 24.90 0.00 25.00 12.293 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.20 12.128 25.25 -0.70 25.20 3.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
24.90 12.336 24.95 -0.43 24.90 0.00 25.00 12.293 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.20 12.128 25.25 -0.70 25.20 3.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
25.00 12.293 25.05 -0.60 25.00 -1.70 25.10 12.233 25.15 -1.05 25.10 -4.50 25.20 12.128 25.25 -0.70 25.20 3.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
25.10 12.233 25.15 -1.05 25.10 -4.50 25.20 12.128 25.25 -0.70 25.20 3.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
25.20 12.128 25.25 -0.70 25.20 3.50 25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
25.30 12.058 25.35 -0.94 25.30 -2.40 25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
25.40 11.964 25.45 -1.70 25.40 -7.60 25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
25.50 11.794 25.55 -2.15 25.50 -4.50 25.60 11.579 25.65 -3.73 25.60 -15.80						
25.60 11.579 25.65 -3.73 25.60 -15.80						
25./U 11.706 25./5 -6.86 25.70 -31.30	25.70	11.206	25.75	-6.86	25.70	-31.30
25.80 10.520 25.83 -28.52 25.79 -288.80						
25.85 9.094 25.88 -14.66 25.85 277.20						
2000 277.20	20.00		22.00	11100	20.00	L// . LV

TABLE 1. STANDARDIZATION OF NAOH WITH KHP (continued).

ml 0.3753M KHP 25.90 25.95 26.00 26.10 26.20 26.30 26.40 26.60 26.80 27.00 27.20 27.40 27.60 27.80 28.00 28.50	PH 8.361 7.975 7.730 7.474 7.270 7.122 7.031 6.854 6.720 6.580 6.485 6.411 6.339 6.274 6.208 6.087	Vol (ml) 25.93 25.98 26.05 26.15 26.25 26.35 26.70 26.90 27.10 27.30 27.50 27.70 27.90 28.25 28.75	d(pH)/d(ml) -7.72 -4.90 -2.56 -2.04 -1.48 -0.91 -0.88 -0.67 -0.70 -0.47 -0.37 -0.36 -0.33 -0.33 -0.24 -0.20	Vol (ml) 25.90 25.95 26.01 26.10 26.20 26.30 26.43 26.60 26.80 27.00 27.20 27.40 27.60 27.80 28.08 28.08	d2(pH)/d(m1) ² 138.80 56.40 31.20 5.20 5.60 5.70 0.17 1.07 -0.15 1.12 0.52 0.05 0.17 -0.02 0.25 0.09
		_			
29.00	5.989	29.25	-0.24	29.00	-0.09
29.50	5.868	29.75	-0.10	29.50	0.28
30.00	5.816	30.50	-0.08	30.13	0.03
31.00	5.732	31.50	-0.08	31.00	0.00
32.00	5.651	32.50	-0.06	32.00	0.02
33.00	5.592	33.50	-0.06	33.00	-0.00
34.00	5.529	34.50	-0.05	34.00	0.01
35.00	5.475	17.50	0.16	26.00	-0.01

Figure C-1. Titration Curve For Standardization Of NaOH With 0.3753 M KHP.

Figure C-2. First Derivative Of The Titration Curve For Standardization Of NaOH With 0.3753 M KHP.

Figure C-3. Second Derivative Of The Titration Curve For Standardization Of NaOH With 0.3753 M KHP.

TABLE 2. STANDARDIZATION OF HCL WITH NAOH - FIRST BATCH.

ml 0.969M NaOH 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.20 17.40 17.80 18.00 18.20 18.50 18.70 19.00 19.20 19.50 19.80 20.00 20.10 20.20 20.35 20.40 20.45 20.65 20.70 20.90 21.00 21.50 22.00 22.50 23.00 24.00	pH 0.509 0.449 0.454 0.454 0.462 0.476 0.507 0.523 0.549 0.571 0.600 0.636 0.674 0.721 0.778 0.845 0.952 1.063 1.105 1.243 1.287 1.359 1.403 1.576 1.882 2.118 2.324 2.631 4.141 10.628 11.576 11.695	Vol (ml) 0.50 1.50 2.50 3.50 4.50 5.50 6.50 7.50 8.50 9.50 10.50 11.50 12.50 13.50 14.50 17.40 17.30 17.60 17.30 17.60 17.30 17.60 17.30 17.60 17.30 17.60 17.30 17.60 17.30 17.50 1	d(pH)/d(m1) -0.06 0.00 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.04 0.05 0.06 0.07 0.11 0.21 0.18 0.15 0.21 0.22 0.24 0.22 0.31 0.40 0.43 0.59 1.18 2.06 3.07 15.10 129.74 10.14 4.32 3.02 2.18 1.68 1.42 1.06 0.49 0.96 0.46 0.26 0.19 0.13 0.09 0.53	Vol (ml) 0.25 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.80 17.20 17.45 17.75 18.00 18.23 18.48 18.73 18.98 19.50 19.78 19.97 20.10 20.29 20.35 20.40 20.45 20.55 20.60 20.65 20.74 20.88 21.10 22.00 22.50 23.13 17.75	d2(pH)/d(m1) ² -0.12 0.07 0.00 0.01 0.00 0.00 0.01 -0.00 0.01 -0.00 0.01 0.01
---	---	--	---	--	--

Figure C-4. Titration Curve For The Standardization Of The First Batch Of HCl With 0.969 M NaOH.

Figure C-5. First Derivative Of The Titration Curve For The Standardization Of The First Batch Of HC1 With 0.969 M NaOH.

Figure C-6. Second Derivative Of The Titration Curve For The Standardization Of The First Batch Of HC1 With 0.969 M NaOH.

TABLE 3. STANDARDIZATION OF HCL WITH NAOH - SECOND BATCH.

ml 0.969M NaOH	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{d}$
0.0	0.681	0.50	-0.10	0.25	-0.19
1.0	0.584	1.50	-0.01	1.00	0.09
2.0	0.577	2.50	-0.01	2.00	-0.00
3.0	0.565	3.50	-0.00	3.00	0.01
4.0	0.562	4.50	0.01	4.00	0.02
5.0	0.575	5.50	0.03	5.00	0.01
6.0	0.602	6.50	0.01	6.00	-0.02
7.0	0.611	7.50	0.03	7.00	0.03
8.0	0.645	8.50	0.01	8.00	-0.03
9.0	0.653	9.50	0.03	9.00	0.02
10.0	0.682	10.50	0.01	10.00	-0.02
11.0	0.694	11.50	0.05	11.00	0.04
12.0	0.745	13.00	0.04	12.25	-0.01
14.0	0.820	15.00	0.07	14.00	0.02
16.0	0.969	16.50	0.14	15.75	0.05
17.0	1.111	17.50	0.17	17.00	0.03
18.0	1.284	18.25	0.39	17.88	0.29
18.5	1.478	18.75	0.27	18.50	-0.24
19.0	1.612	19.25	0.45	19.00	0.36
19.5	1.835	19.75	1.03	19.50	1.16
20.0	2.348	20.05	2.56	19.90	5.11
20.1	2.604	20.15	5.28	20.10	27.20
20.2	3.132	20.25	74.19	20.20	689.10
20.3	10.551	20.35	7.75	20.30	-664.40
20.4	11.326	20.45	2.58	20.40	-51.70
20.5	11.584	20.75	1.17	20.60	-4.70
21.0	12.169	21.50	0.32	21.13	-1.13
22.0	12.493	22.50	0.18	22.00	-0.15
23.0	12.668	23.50	0.09	23.00	-0.09
24.0	12.754	24.50	0.07	24.00	-0.02
25.0	12.822	12.50	0.51	18.50	-0.04

Figure C-7. Titration Curve For The Standardization Of The Second Batch Of HC1 With 0.969 M NaOH.

Figure C-8. First Derivative Of The Titration Curve For The Standardization Of The Second Batch Of HC1 With 0.969 M NaOH.

Figure C-9. Second Derivative Of The Titration Curve For The Standardization Of The Second Batch Of HC1 With 0.969 M NaOH.

TABLE 4. STANDARDIZATION OF HCL WITH NAOH - THIRD BATCH.

<u>ml 0.969M NaOH</u>	pH_	<u>Vol (ml)</u>	$\frac{d(pH)/d(m1)}{d(m1)}$	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	0.825	0.50	-0.15	0.25	-0.31
1.0	0.671	1.50	-0.01	1.00	0.15
2.0	0.663	2.50	0.01	2.00	0.01
3.0	0.669	3.50	0.01	3.00	0.00
4.0	0.679	4.50	0.00	4.00	-0.01
5.0	0.681	5.50	0.02	5.00	0.01
6.0	0.697	6.50	0.02	6.00	0.00
7.0	0.716	7.50	0.02	7.00	0.00
8.0	0.736	8.50	0.02	8.00	0.00
9.0	0.758	9.50	0.03	9.00	0.00
10.0	0.785	10.50	0.03	10.00	0.01
11.0	0.819	11.50	0.03	11.00	0.00
12.0	0.854	12.50	0.05	12.00	0.01
13.0	0.901	13.50	0.06	13.00	0.01
14.0	0.958	14.50	0.06	14.00	0.00
15.0	1.020	15.50	0.08	15.00	0.02
16.0	1.101	16.50	0.11	16.00	0.03
17.0	1.212	17.50	0.16	17.00	0.05
18.0	1.376	18.50	0.27	18.00	0.11
19.0	1.648	19.50	7.32	19.00	7.04
20.0	8.964	20.10	9.12	19.80	3.01
20.2	10.788	20.25	3.83	20.17	-35.27
20.3	11.171	20.35	1.95	20.30	-18.80
20.4	11.366	20.45	2.70	20.40	7.50
20.5	11.636	20.75	0.60	20.60	-7.01
21.0	11.934	21.50	0.26	21.13	-0.45
22.0	12.193	22.50	0.14	22.00	-0.12
23.0	12.331	23.50	0.09	23.00	-0.05
24.0	12.423	24.50	0.06	24.00	-0.03
25.0	12.487	12.50	0.50	18.50	-0.04

Figure C-10. Titration Curve For The Standardization Of The Third Batch Of HC1 With 0.969 M NaOH.

Figure C-11. First Derivative Of The Titration Curve For The Standardization Of The Third Batch Of HCl With 0.969 M NaOH.

Figure C-12. Second Derivative Of The Titration Curve For The Standardization Of The Third Batch Of HCl With 0.969 M NaOH.

TABLE 5. TOTAL FRESH SODIUM BICARBONATE MEDIA - TITRATION 1.

-1 0 001M UC1	nЦ	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{d(m1)^2}$
ml 0.981M HCl 0.0	<u>pH</u> 9.801	0.05	-0.04	1.00	-0.07
1.0	9.764	1.50	-0.11	2.00	-0.02
2.0	9.659	2.50	-0.12	3.00	0.04
3.0	9.537	3.50	-0.08	4.00	-0.09
4.0	9.454	4.50	-0.17	5.00	0.00
5.0	9.286	5.50	-0.17	6.00	-0.14
6.0	9.120	6.50	-0.31	6.88	-0.01
7.0	8.813 8.657	7.25 7.75	-0.31 -0.73	7.50 8.00	-0.84 -0.18
7.5 8.0	8.291	8.25	-0.73	8.50	0.43
8.5	7.879	8.75	-0.61	9.00	0.55
9.0	7.574	9.25	-0.34	9.50	0.10
9.5	7.406	9.75	-0.28	10.13	0.09
10.0	7.264	10.50	-0.21	11.00	0.05
11.0	7.051	11.50	-0.16	12.00	0.04
12.0	6.888	12.50	-0.12	13.00	0.01
13.0	6.768	13.50	-0.11	14.00	0.03
14.0	6.658	14.50	-0.08	15.00	0.02
15.0	6.580	15.50	-0.06	16.00	-0.01 -0.02
16.0 17.0	6.521 6.457	16.50 17.50	-0.06 -0.08	17.00 18.00	0.01
18.0	6.377	18.50	-0.07	19.00	0.03
19.0	6.311	19.50	-0.03	20.00	-0.06
20.0	6.279	20.50	-0.09	21.00	0.12
21.0	6.190	21.50	0.03	22.00	-0.12
22.0	6.216	22.50	-0.10	23.00	-0.01 -0.04
23.0 24.0	6.119 6.009	23.50 24.50	-0.11 -0.15	24.00 24.88	0.14
25.0	5.859	25.25	-0.15	25.50	-0.28
25.5	5.835	25.75	-0.19	26.00	-0.02
26.0	5.742	26.25	-0.20	26.50	0.05
26.5	5.644	26.75	-0.17	27.00	-0.07
27.0	5.559	27.25	-0.20	27.45	-0.70
27.5	5.457	27.65	-0.48	27.78	-0.03
27.8	5.312 5.214	27.90 28.15	-0.49 -0.78	28.03 28.28	-1.17 -4.03
28.0 28.3	4.979	28.40	-1.79	28.50	-13.35
28.5	4.621	28.60	-4.46	28.68	-12.20
28.7	3.729	28.75	-6.29	28.80	35.20
28.8	3.100	28.85	-2.77	28.90	20.20
28.9	2.823	28.95	-0.75	29.10	1.44
29.0	2.748	29.25	-0.32	29.50	-0.62
29.5	2.589	29.75	-0.63	30.00	0.50 -0.08
30.0 30.5	2.276 2.088	30.25 30.75	-0.38 -0.42	30.50 31.13	0.38
31.0	1.880	31.50	-0.13	32.00	0.06
32.0	1.748	32.50	-0.08	33.00	0.01
33.0	1.672	33.50	-0.07	34.00	0.01

TABLE 5. TOTAL FRESH SODIUM BICARBONATE MEDIA - TITRATION 1 (continued).

	ml 0.981M HCl 34.0 35.0	pH 1.602 1.539	Vol (ml) 34.50 17.50	<u>d(pH)/d(m1)</u> -0.06 0.04	Vol (ml) 26.00 8.75	d2(pH)/d(m1) ² -0.01 0.00
--	-------------------------------	----------------------	----------------------------	-------------------------------------	---------------------------	--------------------------------------

Figure C-13. Curve For The First Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-14. First Derivative Of The First Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-15. Second Derivative Of The First Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 6. TOTAL FRESH SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.981M HCl 0.0	<u>pH</u> 10.049	Vol (ml) 1.00	d(pH)/d(ml) -0.15	Vol (ml) 2.00	$\frac{d2(pH)/d(m1)^2}{0.01}$
2.0	9.752	3.00	-0.14	4.00	-0.01
4.0	9.480	5.00	-0.15	5.75	-0.01
6.0	9.187	6.50	-0.16	7.00	-0.12
7.0	9.028	7.50	-0.28	7.88	-0.81
8.0	8.750	8.25	-0.88	8.50	0.72
8.5	8.309	8.75	-0.52	9.00	-0.32
9.0	8.049	9.25	-0.68	9.50	0.54
9.5	7.709	9.75	-0.41	10.00	0.80
10.0	7.503	10.25	-0.01	10.50	-0.97
10.5	7.496	10.75	-0.50	11.13	0.40
11.0	7.247	11.50	-0.20	12.25	0.04
12.0	7.048	13.00	-0.14	14.00	0.02
14.0	6.760	15.00	-0.10	16.00	0.01
16.0	6.558	17.00	-0.08	18.00	-0.01
18.0	6.403	19.00	-0.09	20.00	0.00
20.0	6.228	21.00	-0.08	22.00	0.05
22.0	6.067	23.00	0.02	24.00	-0.11
24.0	6.106	25.00	-0.20	25.75	-0.07
26.0	5.713	26.50	-0.31	27.00	-1.89
27.0	5.408	27.50	-2.20	27.88	0.96
28.0	3.210	28.25	-1.48	28.50	1.75
28.5	2.472	28.75	-0.60	29.13	0.47
29.0	2.171	29.50	-0.25	30.25	0.09
30.0	1.920	31.00	-0.11	32.00	0.02
32.0	1.695	33.00	-0.07	33.75	0.01
34.0	1.557	34.50	-0.05	26.00	-0.01
35.0	1.505	17.50	0.04	8.75	0.00

Figure C-16. Curve For The Second Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-17. First Derivative Of The Second Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-18. Second Derivative Of The Second Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 7. TOTAL FRESH SODIUM BICARBONATE MEDIA - TITRATION 3.

	,				
ml 0.981M HCl	На	Vol (ml)	d(pH)/d(mI)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.059	1.00	-0.13	2.00	-0.02
2.0	9.795	3.00	-0.17	4.00	-0.01
4.0	9.458	5.00	-0.18	5.75	-0.07
6.0	9.095	6.50	-0.29	6.88	-0.23
7.0	8.802	7.25	-0.46	7.50	0.18
7.5	8.570	7.75	-0.37	8.00	-0.95
8.0	8.384	8.25	-0.85	8.50	0.59
8.5	7.960	8.75	-0.55	9.00	0.28
9.0	7.684	9.25	-0.41	9.50	0.41
9.5	7.477	9.75	-0.21	10.38	0.00
10.0	7.372	11.00	-0.21	12.00	0.05
12.0	6.953	13.00	-0.11	14.00	0.02
14.0	6.736	15.00	-0.07	16.00	-0.00
16.0	6.598	17.00	-0.07	18.00	-0.00
18.0	6.449	19.00	-0.08	20.00	-0.00
20.0	6.296	21.00	-0.08	22.00	-0.02
22.0	6.135	23.00	-0.11	23.75	-0.00
24.0	5.912	24.50	-0.11	25.00	-0.09
25.0	5.798	25.50	-0.21	26.00	-0.23
26.0	5.590	26.50	-0.43	26.83	-0.08
27.0	5.155	27.15	-0.49	27.28	-3.58
27.3	5.008	27.40	-1.38	27.50	-22.25
27.5	4.731	27.60	-5.83	27.70	10.02
27.7	3.564	27.80	-3.83	27.88	14.47
27.9	2.798	27.95	-1.66	28.05	3.95
28.0	2.632	28.15	-0.87	28.30	1.41
28.3	2.371	28.45	-0.45	28.63	0.23
28.6	2.237	28.80	-0.37	29.15	0.23
29.0	2.090	29.50	-0.21	30.25	0.07
30.0	1.881	31.00	-0.11	32.00	0.02
32.0	1.663	33.00	-0.06	33.75	0.01
34.0	1.541	34.50	-0.05	26.00	-0.01
35.0	1.493	17.50	0.04	8.75	0.00

Figure C-19. Curve For The Third Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-20. First Derivative Of The Third Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-21. Second Derivative Of The Third Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 8. TOTAL FRESH SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.981M HCl 0.0 2.0 4.0 6.0 7.5 8.0 8.5 9.0 9.5 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 25.0 26.0 27.0 27.2 27.4 27.6 27.8 28.0 28.1 28.2 28.4 28.6 28.8	pH 10.079 9.820 9.525 9.109 8.843 8.593 8.177 7.854 7.550 7.397 7.265 6.726 6.726 6.580 6.457 6.323 6.006 5.855 5.684 5.395 5.350 5.283 5.165 4.979 4.626 4.133 3.303 2.797 2.531 2.427	Vol (ml) 1.00 3.00 5.00 6.50 7.25 7.75 8.25 8.75 9.25 9.75 11.00 13.00 15.00 17.00 19.00 21.00 23.00 24.50 25.50 26.50 27.10 27.30 27.50 27.70 27.90 28.05 28.15 28.30 28.70 28.90	d(pH)/d(m1) -0.13 -0.15 -0.21 -0.27 -0.50 -0.83 -0.65 -0.61 -0.31 -0.26 -0.16 -0.11 -0.07 -0.06 -0.07 -0.04 -0.12 -0.15 -0.17 -0.29 -0.22 -0.34 -0.59 -0.93 -1.76 -4.93 -8.30 -2.53 -1.33 -0.52 -0.66	Vol (ml) 2.00 4.00 5.75 6.88 7.50 8.00 8.50 9.00 9.50 10.38 12.00 14.00 16.00 18.00 20.00 22.00 23.75 25.00 26.80 27.20 27.40 27.60 27.80 27.97 28.10 28.23 28.40 28.60 29.20	d2(pH)/d(m1) ² -0.01 -0.03 -0.04 -0.31 -0.66 0.37 0.08 0.60 0.08 0.02 0.01 -0.00 0.01 -0.00 -0.01 -0.02 -0.12 0.11 -0.55 -1.27 -1.70 -4.17 -21.10 -33.70 38.47 6.00 4.05 -0.72 0.59
28.2	3.303	28.30	-2.53	28.40	6.00
28.4	2.797	28.50	-1.33	28.60	4.05
29.0	2.294	29.50	-0.31	30.00	0.16
30.0	1.982	30.50	-0.16	31.25	0.04
31.0	1.825	32.00	-0.09	33.00	0.03
33.0	1.638	34.00	-0.04	25.75	-0.01
35.0	1.553	17.50	0.04	8.75	0.00

Figure C-22. Curve For The Fourth Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-23. First Derivative Of The Forth Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-24. Second Derivative Of The Fourth Titration Curve For Titration Of Total Fresh Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 9. FRESH 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.981M HCl 0.0 2.0 4.0 6.0 8.0 8.5 9.0 10.0 11.0 12.0 13.5 14.0 14.5 15.0 15.2 15.4 15.6 15.7	pH 10.787 10.189 9.834 9.194 7.232 6.943 6.803 6.543 6.309 6.110 5.891 5.788 5.669 5.629 5.357 5.208 5.028 4.799 3.591 2.977	Vol (ml) 1.00 3.00 5.00 7.00 8.25 8.75 9.50 10.50 11.50 12.50 13.25 13.75 14.25 14.75 15.10 15.30 15.50 15.65 15.75	d(pH)/d(m1) -0.30 -0.18 -0.32 -0.98 -0.58 -0.28 -0.26 -0.23 -0.20 -0.22 -0.21 -0.24 -0.08 -0.54 -0.75 -0.90 -1.14 -12.08 -6.14 -2.25	Vol (ml) 2.00 4.00 6.00 7.63 8.50 9.13 10.00 11.00 12.00 12.88 13.50 14.00 14.50 14.50 14.50 15.20 15.40 15.58 15.70 15.80	d2(pH)/d(m1) ² 0.06 -0.07 -0.33 0.32 0.60 0.03 0.04 -0.02 0.02 -0.06 0.32 -0.93 -0.57 -0.77 -1.22 -72.90 59.40 38.90 2.40
15.0	5.357	15.10	-0.75	15.20	-0.77
15.4	5.028	15.50	-1.14	15.58	-72.90
15.7 15.8	3.591 2.977	15.75 15.85	-6.14 -2.25	15.80 15.90	38.90 2.40
15.9 16.0 16.5 17.0	2.752 2.551 2.197 2.038	15.95 16.25 16.75 17.50	-2.01 -0.71 -0.32 -0.20	16.10 16.50 17.13 18.00	4.34 0.78 0.16 0.09
18.0 19.0 20.0	1.841 1.736 1.657	18.50 19.50 10.00	-0.11 -0.08 0.08	19.00 14.75 5.00	0.03 -0.02 0.01

Note: Only one test was run with the 600 micron size fraction because there was not enough media to run additional tests.

Figure C-25. Curve For The Titration Of Fresh 600 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-26. First Derivative Of The Titration Curve For Titration Of Fresh 600 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-27. Second Derivative Of The Titration Curve For Titration Of Fresh 600 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 10. FRESH 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.981M HCl 0.0	<u>рН</u> 9.989	Vol (ml) 1.00	<u>d(pH)/d(ml)</u> -0.07	Vol (ml) 2.00	$\frac{d2(pH)/d(m1)^2}{-0.04}$
		3.00	-0.07	4.00	0.02
2.0	9.856 9.563	5.00	-0.13	6.00	-0.00
4.0	9.330	7.00	-0.12	7.75	-0.02
6.0 8.0	9.080	8.50	-0.15	9.00	-0.02
9.0	8.922	9.50	-0.24	9.88	0.06
10.0	8.681	10.25	-0.20	10.50	-0.54
10.5	8.582	10.25	-0.47	11.00	0.01
11.0	8.349	11.25	-0.46	11.50	-0.72
	8.119	11.75	-0.82	12.00	0.58
11.5		12.25	-0.53	12.50	0.39
12.0	7.708				0.10
12.5	7.443	12.75	-0.33	13.13	
13.0	7.276	13.50	-0.26	14.25	0.07
14.0	7.015	15.00	-0.16	16.00	0.02
16.0	6.704	17.00	-0.11	18.00	0.02
18.0	6.493	19.00	-0.08	20.00	0.00
20.0	6.342	21.00	-0.07	22.00	-0.01
22.0	6.202	23.00	-0.09	24.00	-0.00
24.0	6.018	25.00	-0.10	25.75	-0.01
26.0	5.814	26.50	-0.12	26.88	0.15
27.0	5.691	27.25	-0.01	27.50	-0.37
27.5	5.685	27.75	-0.20	28.00	-0.06
28.0	5.587	28.25	-0.22	28.50	-0.19
28.5	5.475	28.75	-0.32	28.93	-0.81
29.0	5.315	29.10	-0.60	29.20	1.47
29.2	5.194	29.30	-0.31	29.40	-2.55
29.4	5.132	29.50	-0.82	29.60	-3.58
29.6	4.968	29.70	-1.54	29.80	3.25
29.8	4.661	29.90	-0.88	30.00	-27.77
30.0	4.484	30.10	-6.44	30.23	17.92
30.2	3.196	30.35	-1.96	30.55	3.31
30.5	2.608	30.75	-0.64	31.13	0.47
31.0	2.290	31.50	-0.29	32.00	0.14
32.0	2.004	32.50	-0.14	33.00	0.05
33.0	1.861	33.50	-0.10	34.00	0.02
34.0	1.763	34.50	-0.08	26.00	-0.01
35.0	1.688	17.50	0.05	8.75	0.00

Figure C-28. Curve For The First Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-29. First Derivative Of The First Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-30. Second Derivative Of The First Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 11. FRESH 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

·					
ml 0.981M HCl	Hq	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.012	1.00	-0.11	2.00	0.01
2.0	9.791	3.00	-0.10	4.00	0.00
4.0	9.596	5.00	-0.09	6.00	-0.01
6.0	9.410	7.00	-0.11	8.00	-0.03
8.0	9.188	9.00	-0.16	9.75	-0.05
10.0	8.864	10.50	-0.24	11.00	-0.19
11.0	8.620	11.50	-0.43	11.88	-0.68
12.0	8.188	12.25	-0.94	12.50	0.86
12.5	7.718	12.75	-0.51	13.00	0.17
13.0	7.464	13.25	-0.42	13.50	0.32
13.5	7.252	13.75	-0.26	14.38	0.05
14.0	7.121	15.00	-0.20	16.00	0.03
16.0	6.729	17.00	-0.13	18.00	0.02
18.0	6.465	19.00	-0.09	20.00	-0.00
20.0	6.277	21.00	-0.10	22.00	-0.01
22.0	6.081	23.00	-0.12	24.00	-0.02
24.0	5.849	25.00	-0.16	26.00	-0.11
26.0	5.537	27.00	-0.39	27.55	-1.40
28.0	4.766	28.10	-1.93	28.20	-20.50
28.2	4.380	28.30	-6.03	28.40	18.55
28.4	3.174	28.50	-2.32	28.60	7.42
28.6	2.710	28.70	-0.84	28.80	0.25
28.8	2.543	28.90	-0.78	29.08	1.03
29.0	2.386	29.25	-0.43	29.50	0.35
29.5	2.173	29.75	-0.25	30.13	0.13
30.0	2.048	30.50	-0.15	31.00	0.03
31.0	1.899	31.50	-0.11	32.00	0.05
32.0	1.785	32.50	-0.07	33.00	0.01
33.0	1.717	33.50	-0.06	34.00	0.01
34.0	1.656	34.50	-0.05	26.00	-0.01
35.0	1.604	17.50	0.05	8.75	0.00

Figure C-31. Curve For The Second Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HC1.

Figure C-32. First Derivative Of The Second Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-33. Second Derivative Of The Second Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 12. FRESH 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.981M HCl	pH	Vol (ml)	d(pH)/d(ml)	Vol (ml)	d2(pH)/d(m1) ²
0.0	10.192	1.00	-0.15	2.00	0.01
2.0	9.899	3.00	-0.13	4.00	0.00
4.0	9.642	5.00	-0.12	6.00	-0.03
6.0	9.393	7.00	-0.19	8.00	-0.09
8.0	9.014	9.00	-0.36	9.63	-0.38
10.0	8.289	10.25	-0.84	10.50	0.10
10.5	7.868	10.75	-0.79	11.00	0.89
11.0	7.472	11.25	-0.35	11.50	-0.12
11.5	7.299	11.75	-0.40	12.38	0.17
12.0	7.097	13.00	-0.19	14.00	0.04
14.0	6.720	15.00	-0.10	16.00	0.01
14.0 16.0 18.0 20.0 22.0 24.0	6.512 6.344 6.185 5.989 5.763	17.00 19.00 21.00 23.00 24.50	-0.10 -0.08 -0.10 -0.11 -0.16	18.00 20.00 22.00 23.75 24.88	0.00 -0.01 -0.01 -0.03 -0.02
25.0	5.607	25.25	-0.17	25.50	-0.37
25.5	5.523	25.75	-0.35	25.95	-0.15
26.0	5.347	26.15	-0.41	26.28	0.74
26.3	5.224	26.40	-0.22	26.53	-2.82
26.5	5.179	26.65	-0.93	26.78	-3.30
26.8	4.900	26.90	-1.75	27.03	-12.66
27.0	4.549	27.15	-4.92	27.28	11.86
27.3	3.073	27.40	-1.95	27.58	3.47
27.5	2.682	27.75	-0.74	28.00	0.83
28.0	2.312	28.25	-0.33	28.50	0.30
28.5	2.149	28.75	-0.18	29.13	0.04
29.0	2.060	29.50	-0.15	30.00	0.05
30.0	1.910	30.50	-0.10	31.25	0.02
31.0	1.810	32.00	-0.07	33.00	-0.00
33.0	1.669	34.00	-0.08	25.75	-0.01
35.0	1.509	17.50	0.04	8.75	0.00

Figure C-34. Curve For The Third Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-35. First Derivative Of The Third Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-36. Second Derivative Of The Third Titration Curve For Titration Of Fresh 425 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 13. FRESH 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.961M HCl 0.0 2.0 3.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0 9.0 11.0 13.0 15.0 17.0 19.0 20.0 21.0 22.5 23.0 23.5 24.0 24.2 24.4 24.6 24.8 25.0 25.5 26.0 27.0 28.0 29.0	pH 9.636 9.200 9.030 8.796 8.617 8.413 8.104 7.695 7.423 7.207 6.804 6.579 6.437 6.290 6.145 5.990 5.809 5.639 5.639 5.639 5.546 5.412 4.099 3.063 2.713 2.521 2.337 2.194 2.070 1.816 1.739	Vol (m1) 1.00 2.50 3.50 4.25 4.75 5.25 5.75 6.25 6.75 8.00 10.00 12.00 14.00 16.00 18.00 19.50 20.50 21.50 22.25 22.75 23.75 24.10 24.30 24.50 24.70 24.90 25.25 25.75 26.50 27.50 28.50 29.50	d(pH)/d(m1) -0.22 -0.17 -0.23 -0.36 -0.41 -0.62 -0.82 -0.54 -0.43 -0.20 -0.11 -0.07 -0.07 -0.07 -0.07 -0.08 -0.10 -0.08 -0.10 -0.19 -0.27 -0.39 -1.07 -2.91 -5.18 -1.75 -0.71 -1.17 -0.29 -0.25 -0.15 -0.10 -0.08 -0.06	Vol (ml) 1.75 3.00 3.88 4.50 5.00 5.50 6.00 6.50 7.38 9.00 11.00 13.00 15.00 17.00 18.75 20.00 21.88 22.50 23.00 23.50 23.93 24.20 24.40 24.60 24.80 25.08 25.50 26.13 27.00 28.00 29.00 22.25	d2(pH)/d(m1) ² 0.03 -0.06 -0.17 -0.10 -0.42 -0.40 0.55 0.22 0.18 0.04 0.02 -0.00 -0.00 -0.01 -0.01 -0.09 -0.02 -0.16 -0.24 -1.36 -5.27 -11.33 17.15 5.22 -2.35 2.54 0.08 0.12 0.06 0.02 0.01 -0.01

Figure C-37. Curve For The First Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-38. First Derivative Of The First Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-39. Second Derivative Of The First Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 14. FRESH 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

Mathematical Ph Vol (ml) d(pH)/d(ml) Vol (ml) d2(pH)/d(ml)^2						
2.0 9.163 2.50 -0.24 3.00 -0.09 3.0 8.922 3.50 -0.33 3.88 -0.30 4.0 8.592 4.25 -0.56 4.50 -0.34 4.5 8.314 4.75 -0.73 5.00 -0.11 5.0 7.950 5.25 -0.78 5.50 0.67 5.5 7.559 5.75 -0.45 6.00 0.26 6.0 7.336 6.25 -0.31 6.50 0.15 6.5 7.179 6.75 -0.24 7.38 0.05 7.0 7.059 8.00 -0.17 9.00 0.04 9.0 6.715 10.00 -0.10 11.00 0.01 11.0 6.521 12.00 -0.09 13.00 0.02 13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960						uz (pii)/ u(iii)
3.0 8.922 3.50 -0.33 3.88 -0.30 4.0 8.592 4.25 -0.56 4.50 -0.34 4.5 8.314 4.75 -0.73 5.00 -0.11 5.0 7.950 5.25 -0.78 5.50 0.67 5.5 7.559 5.75 -0.45 6.00 0.26 6.0 7.336 6.25 -0.31 6.50 0.15 6.5 7.179 6.75 -0.24 7.38 0.05 7.0 7.059 8.00 -0.17 9.00 0.04 9.0 6.715 10.00 -0.10 11.00 0.01 11.0 6.521 12.00 -0.09 13.00 0.02 13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.12 25.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01						
4.0 8.592 4.25 -0.56 4.50 -0.34 4.5 8.314 4.75 -0.73 5.00 -0.11 5.0 7.950 5.25 -0.78 5.50 0.67 5.5 7.559 5.75 -0.45 6.00 0.26 6.0 7.336 6.25 -0.31 6.50 0.15 6.5 7.179 6.75 -0.24 7.38 0.05 7.0 7.059 8.00 -0.17 9.00 0.04 9.0 6.715 10.00 -0.10 11.00 0.01 11.0 6.521 12.00 -0.09 13.00 0.02 13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.21 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01						
4.5 8.314 4.75 -0.73 5.00 -0.11 5.0 7.950 5.25 -0.78 5.50 0.67 5.5 7.559 5.75 -0.45 6.00 0.26 6.0 7.336 6.25 -0.31 6.50 0.15 6.5 7.179 6.75 -0.24 7.38 0.05 7.0 7.059 8.00 -0.17 9.00 0.04 9.0 6.715 10.00 -0.10 11.00 0.01 11.0 6.521 12.00 -0.09 13.00 0.02 13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
5.0 7.950 5.25 -0.78 5.50 0.67 5.5 7.559 5.75 -0.45 6.00 0.26 6.0 7.336 6.25 -0.31 6.50 0.15 6.5 7.179 6.75 -0.24 7.38 0.05 7.0 7.059 8.00 -0.17 9.00 0.04 9.0 6.715 10.00 -0.10 11.00 0.01 11.0 6.521 12.00 -0.09 13.00 0.02 13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469						
5.5 7.559 5.75 -0.45 6.00 0.26 6.0 7.336 6.25 -0.31 6.50 0.15 6.5 7.179 6.75 -0.24 7.38 0.05 7.0 7.059 8.00 -0.17 9.00 0.04 9.0 6.715 10.00 -0.10 11.00 0.01 11.0 6.521 12.00 -0.09 13.00 0.02 13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5	4.5					
6.0 7.336 6.25 -0.31 6.50 0.15 6.5 7.179 6.75 -0.24 7.38 0.05 7.0 7.059 8.00 -0.17 9.00 0.04 9.0 6.715 10.00 -0.10 11.00 0.01 11.0 6.521 12.00 -0.09 13.00 0.02 13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01	5.0					
6.5 7.179 6.75 -0.24 7.38 0.05 7.0 7.059 8.00 -0.17 9.00 0.04 9.0 6.715 10.00 -0.10 11.00 0.01 11.0 6.521 12.00 -0.09 13.00 0.02 13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01	5.5					
6.5 7.179 6.75 -0.24 7.38 0.05 7.0 7.059 8.00 -0.17 9.00 0.04 9.0 6.715 10.00 -0.10 11.00 0.01 11.0 6.521 12.00 -0.09 13.00 0.02 13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5	6.0	7.336				
9.0 6.715 10.00 -0.10 11.00 0.01 11.0 6.521 12.00 -0.09 13.00 0.02 13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01	6.5	7.179	6.75			
11.0 6.521 12.00 -0.09 13.00 0.02 13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 </td <td>7.0</td> <td>7.059</td> <td>8.00</td> <td></td> <td></td> <td></td>	7.0	7.059	8.00			
13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0	9.0	6.715	10.00	-0.10		
13.0 6.348 14.00 -0.05 15.00 0.00 15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0	11.0	6.521	12.00	-0.09		
15.0 6.243 16.00 -0.04 17.00 -0.03 17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.11 27.00 0.02 27.0		6.348	14.00	-0.05	15.00	0.00
17.0 6.158 18.00 -0.10 18.75 0.01 19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.01 29.0<		6.243	16.00	-0.04	17.00	-0.03
19.0 5.960 19.50 -0.08 20.00 -0.06 20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.01 29.0<		6.158	18.00	-0.10	18.75	0.01
20.0 5.877 20.50 -0.14 21.00 -0.04 21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 </td <td></td> <td></td> <td>19.50</td> <td>-0.08</td> <td>20.00</td> <td>-0.06</td>			19.50	-0.08	20.00	-0.06
21.0 5.735 21.50 -0.18 21.88 0.03 22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01			20.50	-0.14		-0.04
22.0 5.550 22.25 -0.16 22.50 -0.41 22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01					21.88	0.03
22.5 5.469 22.75 -0.37 22.95 -1.13 23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01						-0.41
23.0 5.285 23.15 -0.82 23.28 -0.36 23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01						-1.13
23.3 5.039 23.40 -0.91 23.50 -3.95 23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01						-0.36
23.5 4.857 23.60 -1.70 23.73 -12.79 23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01						
23.7 4.517 23.85 -4.90 24.05 9.08 24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01						
24.0 3.048 24.25 -1.26 24.50 1.68 24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01						
24.5 2.416 24.75 -0.42 25.13 0.27 25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01						1.68
25.0 2.204 25.50 -0.22 26.00 0.11 26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01						
26.0 1.980 26.50 -0.11 27.00 0.02 27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01					26.00	0.11
27.0 1.871 27.50 -0.09 28.00 0.02 28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01						0.02
28.0 1.784 28.50 -0.07 29.00 0.01 29.0 1.714 29.50 -0.06 22.25 -0.01			27.50			
29.0 1.714 29.50 -0.06 22.25 -0.01						
20.0						
	55.5	1.000	10.00			

Figure C-40. Curve For The Second Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-41. First Derivative Of The Second Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-42. Second Derivative Of The Second Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 15. FRESH 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.961M HCl	pH	Vol (ml)	$\frac{d(pH)}{d(m1)}$	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.698	1.00	-0.12	2.00	0.01
2.0	9.467	3.00	-0.10	3.75	-0.02
4.0	9.270	4.50	-0.13	5.00	0.04
5.0	9.144	5.50	-0.09	6.00	-0.12
6.0	9.058	6.50	-0.20	7.00	0.14
7.0	8.857	7.50	-0.06	8.00	-0.18
8.0	8.794	8.50	-0.24	8.88	-0.74
9.0	8.556	9.25	-0.79	9.50	-1.31
9.5	8.161	9.75	-1.44	10.00	2.08
10.0	7.439	10.25	-0.40	10.50	0.24
10.5	7.238	10.75	-0.28	11.38	0.07
11.0	7.096	12.00	-0.20	13.00	0.05
13.0	6.695	14.00	-0.11	15.00	0.00
15.0	6.478	16.00	-0.10	17.00	-0.00
17.0	6.276	18.00	-0.10	18.75	0.00
19.0	6.072	19.50	-0.10	20.00	-0.02
20.0	5.971	20.50	-0.13	21.00	-0.05
21.0	5.845	21.50	-0.17	21.88	-0.09
22.0	5.671	22.25	-0.24	22.50	-0.06
22.5	5.551	22.75	-0.27	23.00	-0.50
23.0	5.415	23.25	-0.52	23.43 ,	-1.56
23.5	5.155	23.60	-1.06	23.70	-4.83
23.7	4.942	23.80	-2.03	23.88	-18.80
23.9	4.536	23.95	-4.85	24.05	4.18
24.0	4.051	24.15	-4.01	24.28	10.67
24.3	2.847	24.40	-1.34	24.58	1.99
24.5	2.578	24.75	-0.65	25.13	0.55
25.0	2.253	25.50	-0.24	26.00	0.09
26.0	2.016	26.50	-0.15	27.00	0.05
27.0	1.867	27.50	-0.10	28.00	0.03
28.0	1.771	28.50	-0.07	29.00	0.01
29.0	1.703	29.50	-0.06	22.25	-0.01
30.0	1.641	15.00	0.05	7.50	0.00

Figure C-43. Curve For The Third Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-44. First Derivative Of The Third Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-45. Second Derivative Of The Third Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 16. FRESH 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

					2
<u>ml 0.961M HCl</u>	pH_	Vol (ml)	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	9.673	1.00	-0.11	2.00	-0.04
2.0	9.449	3.00	-0.19	3.75	-0.09
4.0	9.074	4.50	-0.32	5.00 5.88	-0.26 -0.36
5.0	8.755	5.50	-0.58	6.50	0.57
6.0	8.176	6.25 6.75	-0.85 -0.57	7.00	0.46
6.5	7.750 7.466	7.25	-0.34	7.50	0.06
7.0	7.400	7.25 7.75	-0.34	8.38	0.00
7.5 8.0	7.141	9.00	-0.20	10.00	0.03
10.0	6.734	11.00	-0.14	12.00	0.05
12.0	6.445	13.00	-0.04	14.00	-0.03
14.0	6.371	15.00	-0.09	16.00	0.00
16.0	6.184	17.00	-0.09	18.00	-0.01
18.0	6.007	19.00	-0.11	19.75	-0.05
20.0	5.781	20.50	-0.18	20.88	0.21
21.0	5.598	21.25	-0.02	21.50	-0.44
21.5	5.586	21.75	-0.24	21.93	0.01
22.0	5.464	22.10	-0.24	22.20	-0.03
22.2	5.416	22.30	-0.25	22.40	-1.12
22.4	5.367	22.50	-0.47	22.60	-2.78
22.6	5.273	22.70	-1.03	22.80	3.03
22.8	5.068	22.90	-0.42	23.00	-8.17
23.0	4.984	23.10	-2.05	23.20	-22.45
23.2	4.573	23.30	-6.55	23.40	18.33
23.4	3.264	23.50	-2.88	23.60	8.77
23.6	2.688	23.70	-1.13	23.80	2.50
23.8	2.463	23.90	-0.62	24.08	0.58
24.0	2.338	24.25	-0.42	24.50	0.37
24.5	2.127	24.75	-0.24	25.13	0.07
25.0	2.009	25.50	-0.19	26.00	0.08
26.0	1.822	26.50	-0.11	27.00	0.04
27.0	1.717	27.50	-0.06	28.25	-0.00
28.0	1.655	29.00	-0.07	22.00	-0.01
30.0	1.523	15.00	0.05	7.50	0.00

Figure C-46. Curve For The Fourth Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-47. First Derivative Of The Fourth Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-48. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh 250 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 17. FRESH 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

				· · · · · · · · · · · · · · · · · · ·	
ml 0.961M HCl	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.176	1.00	-0.06	2.00	0.02
2.0	10.058	3.00	-0.02	4.00	-0.07
4.0	10.023	5.00	-0.16	6.00	0.02
6.0	9.694	7.00	-0.13	8.00	-0.14
8.0	9.434	9.00	-0.41	9.63	0.20
10.0	8.621	10.25	-0.16	10.50	-3.34
10.5	8.541	10.75	-1.83	11.00	3.13
11.0	7.627	11.25	-0.26	11.50	-0.09
11.5	7.496	11.75	-0.31	12.13	-0.04
12.0	7.342	12.50	-0.34	13.25	0.11
13.0	7.006	14.00	-0.17	15.00	0.02
15.0	6.661	16.00	-0.13	17.00	0.01
17.0	6.400	18.00	-0.11	19.00	-0.00
19.0	6.186	20.00	-0.11	20.75	0.00
21.0	5.964	21.50	-0.11	22.00	-0.03
22.0	5.856	22.50	-0.14	23.00	-0.07
23.0	5.713	23.50	-0.21	23.88	0.05
24.0	5.504	24.25	-0.17	24.50	-0.73
24.5	5.418	24.75	-0.54	24.93	-1.28
25.0	5.150	25.10	-0.98	25.20	-2.78
25.2	4.953	25.30	-1.54	25.40	-19.37
25.4	4.645	25.50	-5.41	25.60	9.10
25.6	3.562	25.70	-3.60	25.80	12.98
25.8	2.843	25.90	-1.00	26.08	0.59
26.0	2.643	26.25	-0.79	26.50	1.02
26.5	2.246	26.75	-0.28	27.13	0.11
27.0	2.104	27.50	-0.20	28.00	0.07
28.0	1.903	28.50	-0.13	29.00	0.04
29.0	1.777	29.50	-0.08	22.25	-0.01
30.0	1.695	15.00	0.06	7.50	0.00

Figure C-49. Curve For The First Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-50. First Derivative Of The First Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-51. Second Derivative Of The First Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 18. FRESH 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.961M HCl	pH	Vol (ml) 1.00	<u>d(pH)/d(m1)</u> -0.16	Vol (ml) 2.00	$\frac{d2(pH)/d(m1)^2}{0.01}$
0.0	10.351				-0.00
2.0	10.036	3.00	-0.14	4.00	
4.0	9.758	5.00	-0.14	6.00	-0.03
6.0	9.471	7.00	-0.20	8.00	-0.14
8.0	9.062	9.00	-0.49	9.63	-0.21
10.0	8.089	10.25	-0.75	10.50	0.43
10.5	7.715	10.75	-0.53	11.00	0.34
11.0	7.448	11.25	-0.36	11.50	0.19
11.5	7.267	11.75	-0.27	12.13	0.11
12.0	7.134	12.50	-0.18	13.25	0.02
13.0	6.950	14.00	-0.15	15.00	0.02
15.0	6.655	16.00	-0.11	17.00	0.01
17.0	6.434	18.00	-0.10	19.00	-0.01
19.0	6.234	20.00	-0.13	20.75	-0.01
21.0	5.981	21.50	-0.14	22.00	-0.06
22.0	5.838	22.50	-0.20	23.00	-0.24
23.0	5.633	23.50	-0.44	23.83	-0.74
24.0	5.190	24.15	-0.92	24.28	-2.57
24.3	4.913	24.40	-1.56	24.50	-23.37
24.5	4.600	24.60	-6.24	24.73	16.95
24.7	3.352	24.85	-2.00	25.00	3.42
25.0	2.751	25.15	-0.98	25.30	1.12
25.3	2.458	25.45	-0.64	25.63	0.64
25.6	2.266	25.80	-0.42	26.03	0.44
26.0	2.100	26.25	-0.22	26.50	0.03
26.5	1.991	26.75	-0.20	27.13	0.10
27.0	1.889	27.50	-0.13	28.00	0.05
28.0	1.759	28.50	-0.08	29.00	0.01
29.0	1.680	29.50	-0.07	22.25	-0.01
30.0	1.609	15.00	0.05	7.50	0.00
JU. U	1.005	10.00			

Figure C-52. Curve For The Second Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-53. First Derivative Of The Second Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-54. Second Derivative Of The Second Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 19. FRESH 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

			· · · · · · · · · · · · · · · · · · ·		
ml 0.961M HCl	pH	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.459	1.00	-0.17	2.00	0.01
2.0	10.118	3.00	-0.15	4.00	-0.00
4.0	9.818	5.00	-0.15	6.00	-0.03
6.0	9.510	7.00	-0.20	7.75	-0.13
8.0	9.100	8.50	-0.40	8.88	-0.14
9.0	8.700	9.25	-0.50	9.50	-0.97
9.5	8.449	9.75	-0.99	10.00	0.40
10.0	7.956	10.25	-0.79	10.50	0.68
10:5	7.562	10.75	-0.45	11.00	0.27
11.0	7.339	11.25	-0.31	11.50	0.01
11.5	7.184	11.75	-0.30	12.13	0.18
12.0	7.032	12.50	-0.17	13.25	0.02
13.0	6.863	14.00	-0.14	15.00	0.02
15.0	6.578	16.00	-0.10	17.00	0.01
17.0	6.369	18.00	-0.08	19.00	-0.00
19.0	6.210	20.00	-0.08	20.75	-0.01
21.0	6.042	21.50	-0.09	22.00	-0.04
22.0	5.948	22.50	-0.13	22.88	-0.10
23.0	5.816	23.25	-0.21	23.50	0.23
23.5	5.713	23.75	-0.09	23.93	-0.36
24.0	5.668	24.10	-0.21	24.23	-0.06
24.2	5.625	24.35	-0.23	24.50	-0.58
24.5	5.556	24.65	-0.40	24.78	-1.01
24.8	5.435	24.90	-0.65	25.00	0.80
25.0	5.304	25.10	-0.49	25.20	-3.83
25.2	5.205	25.30	-1.26	25.40	-6.45
25.4	4.953	25.50	-2.55	25.60	-21.25
25.6	4.443	25.70	-6.80	25.80	24.78
25.8	3.083	25.90	-1.84	26.08	2.76
26.0	2.714	26.25	-0.88	26.50	1.06
26.5	2.274	26.75	-0.35	27.13	0.21
27.0	2.100	27.50	-0.19	28.00	0.06
28.0	1.910	28.50	-0.13	29.00	0.03
29.0	1.785	29.50	-0.09	22.25	-0.01
30.0	1.694	15.00	0.06	7.50	0.00
		,			

Figure C-55. Curve For The Third Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-56. First Derivative Of The Third Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-57. Second Derivative Of The Third Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 20. FRESH 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.961M HCl	<u>pH</u>	Vol (ml)	<u>d(pH)/d(ml)</u>	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	10.384	1.00	-0.14	2.00	-0.00
2.0	10.095	3.00	-0.15	4.00	0.00
4.0	9.801	5.00	-0.14	6.00	-0.03
6.0	9.511	7.00	-0.20	7.75	-0.13
8.0	9.106	8.50	-0.40	8.88	-0.49
9.0	8.703	9.25	-0.77	9.50	-0.34
9.5	8.319	9.75	-0.94	10.00	0.62
10.0	7.849	10.25	-0.63	10.50	0.34
10.5	7.534	10.75	-0.46	11.00	0.35
11.0	7.304	11.25	-0.29	11.50	0.10
11.5	7.161	11.75	-0.24	12.13	0.07
12.0	7.042	12.50	-0.18	13.25	0.03
13.0	6.860	14.00	-0.14	15.00	0.02
15.0	6.572	16.00	-0.10	17.00	0.00
17.0	6.376	18.00	-0.10	19.00	-0.00
19.0	6.186	20.00	-0.10	20.75	-0.01
21.0	5.992	21.50	-0.11	21.88	-0.01
22.0	5.884	22.25	-0.11	22.50	-0.11
22.5	5.827	22.75	-0.17	23.00	-0.07
23.0	5.742	23.25	-0.21	23.50	-0.13
23.5	5.639	23.75	-0.27	23.93	-0.32
24.0	5.503	24.10	-0.38	24.20	1.00
24.2	5.426	24.30	-0.19	24.40	-0.65
24.4	5.389	24.50	-0.31	24.60	-1.00
24.6	5.326	24.70	-0.52	24.80	-3.90
24.8	5.223	24.90	-1.29	25.00	-6.75
25.0	4.964	25.10	-2.64	25.20	-19.03
25.2	4.435	25.30	-6.45	25.40	20.75
25.4	3.145	25.50	-2.30	25.60	8.70
25.6	2.685	25.70	-0.56	25.80	-2.17
25.8	2.573	25.90	-0.99	26.08	1.68
26.0	2.374	26.25	-0.41	26.50	0.25
26.5	2.170	26.75	-0.28	27.13	0.14
27.0	2.028	27.50	-0.18	28.00	0.07
28.0	1.852	28.50	-0.10	29.00	0.02
29.0	1.749	29.50	-0.08	22.25	-0.01
30.0	1.669	15.00	0.06	7.50	0.00

Figure C-58. Curve For The Fourth Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HC1.

Figure C-59. First Derivative Of The Fourth Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-60. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh 150 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 21. FRESH 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.961M HCl	рН	<u>Vol (ml)</u>	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.704	1.00	-0.17	2.00	0.03
2.0	10.358	3.00	-0.12	4.00	-0.01
4.0	10.114	5.00	-0.14	6.00	0.00
6.0	9.840	7.00	-0.13	8.00	-0.02
8.0	9.584	9.00	-0.16	9.75	-0.05
10.0	9.266	10.50	-0.23	10.88	-0.07
11.0	9.036	11.25	-0.28	11.50	-0.22
11.5	8.895	11.75	-0.39	12.00	-0.41
12.0	8.699	12.25	-0.60	12.50	-0.22
12.5	8.400	12.75	-0.71	13.38	0.19
13.0	8.046	14.00	-0.47	15.00	0.15
15.0	7.098	16.00	-0.18	17.00	0.03
17.0	6.732	18.00	-0.11	19.00	0.00
19.0	6.505	20.00	-0.11	21.00	0.00
21.0	6.285	22.00	-0.10	22.75	0.01
23.0	6.077	23.50	-0.10	24.00	-0.02
24.0	5.981	24.50	-0.11	24.88	0.02
25.0	5.870	25.25	-0.10	25.50	-0.13
25.5	5.822	25.75	-0.16	26.00	-0.05
26.0	5.741	26.25	-0.19	26.50	0.01
26.5	5.647	26.75	-0.18	26.95	-0.13
27.0	5.556	27.15	-0.23	27.28	-0.59
27.3	5.486	27.40	-0.38	27.53	-0.51
27.5	5.410	27.65	-0.51	27.78	-0.89
27.8	5.258	27.90	-0.73	28.00	-1.07
28.0	5.112	28.10	-0.94	28.20	-8.78
28.2	4.923	28.30	-2.70	28.40	-12.42
28.4	4.383	28.50	-5.18	28.60	11.92
28.6	3.346	28.70	-2.80	28.80	7.73
28.8	2.786	28.90	-1.25	29.08	1.74
29.0	2.535	29.25	-0.65	29.50	0.76
29.5	2.212	29.75	-0.27	30.13	0.10
30.0	2.079	30.50	-0.19	31.00	0.07
31.0	1.887	31.50	-0.12	32.25	0.03
32.0	1.767	33.00	-0.07	33.75	0.00
34.0	1.624	34.50	-0.06	26.00	-0.01
35.0	1.560	17.50	0.04	8.75	0.00

Figure C-61. Curve For The First Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-62. First Derivative Of The First Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-63. Second Derivative Of The First Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 22. FRESH 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.961M HCl 0.0 2.0 4.0 6.0 8.0 10.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 18.0 20.0 22.0 24.0 25.0 26.0 26.5 27.0 27.5 28.0 28.5 28.7 29.0 29.3 29.5 29.7	pH 10.719 10.321 10.003 9.810 9.570 9.312 9.143 9.021 8.922 8.736 8.508 8.208 7.791 7.503 7.331 7.176 7.062 6.474 6.273 6.071 5.964 5.832 5.772 5.648 5.514 5.309 5.185 4.764 3.228 2.819 2.573	Vol (ml) 1.00 3.00 5.00 7.00 9.00 10.50 11.25 11.75 12.25 12.75 13.25 13.75 14.25 14.75 15.25 15.75 17.00 19.00 21.00 23.00 24.50 25.50 26.25 26.75 27.75 28.25 28.60 28.85 29.40 29.60 29.85	d(pH)/d(m1) -0.20 -0.16 -0.10 -0.12 -0.13 -0.17 -0.24 -0.20 -0.37 -0.46 -0.60 -0.83 -0.58 -0.34 -0.31 -0.23 -0.18 -0.12 -0.10 -0.11 -0.13 -0.12 -0.16 -0.09 -0.27 -0.41 -0.62 -1.40 -5.12 -2.04 -1.23 -0.76	Vol (m1) 2.00 4.00 6.00 8.00 9.75 10.88 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.38 18.00 20.00 22.00 23.75 25.00 25.88 26.50 27.00 25.88 26.50 27.00 27.50 28.00 29.28 29.73 30.05	d2(pH)/d(m1) ² 0.02 0.03 -0.01 -0.00 -0.03 -0.10 0.09 -0.35 -0.17 -0.29 -0.47 0.52 0.46 0.07 0.16 0.04 0.03 0.01 -0.00 -0.03 0.01 -0.00 -0.03 -0.02 -0.07 0.13 -0.35 -0.28 -0.60 -3.13 -12.39 12.30 4.07 1.89 0.88
28.7	5.185	28.85	-1.40	29.00	-12.39
29.0	4.764	29.15	-5.12	29.28	12.30
29.5	2.819	29.60	-1.23	29.73	1.89
29.7	2.573	29.85	-0.76	30.05	0.88
30.0	2.346	30.25	-0.40	30.50	0.27
30.5	2.144	30.75	-0.27	31.13	0.15
31.0	2.010	31.50	-0.16	32.00	0.05
32.0	1.853	32.50	-0.10	33.00	0.03
33.0	1.749	33.50	-0.08	34.00	0.01
34.0	1.671	34.50	-0.05	26.00	-0.01
35.0		17.50	-0.05	8.75	0.00

Figure C-64. Curve For The Second Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-65. First Derivative Of The Second Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-66. Second Derivative Of The Second Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 23. FRESH 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

					
ml 0.961M HCl	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.739	1.00	-0.17	2.00	0.03
2.0	10.390	3.00	-0.12	4.00	-0.01
4.0	10.149	5.00	-0.13	6.00	0.01
6.0	9.881	7.00	-0.12	8.00	-0.01
8.0	9.637	9.00	-0.14	10.00	-0.05
10.0	9.360	11.00	-0.24	11.75	-0.18
12.0	8.889	12.50	-0.50	12.88	-0.54
13.0	8.390	13.25	-0.90	13.50	0.72
13.5	7.939	13.75	-0.54	14.00	0.21
14.0	7.667	14.25	-0.44	14.50	0.21
14.5	7.448	14.75	-0.33	15.13	0.21
15.0	7.281	15.50	-0.18	16.25	-0.01
16.0	7.103	17.00	-0.19	18.00	0.04
18.0	6.724	19.00	-0.11	20.00	0.01
20.0	6.502	21.00	-0.10	22.00	-0.00
22.0	6.309	23.00	-0.10	24.00	-0.01
24.0	6.103	25.00	-0.12	25.75	-0.03
26.0	5.865	26.50	-0.16	26.88	-0.02
27.0	5.700	27.25	-0.18	27.50	-0.12
27.5	5.611	27.75	-0.24	27.95	-0.29
28.0	5.491	28.15	-0.36	28.33	-0.88
28.3	5.384	28.50	-0.66	28.68	-1.66
28.7	5.118	28.85	-1.25	28.98	-16.51
29.0	4.744	29.10	-5.37	29.20	7.42
29.2	3.669	29.30	-3.89	29.40	12.73
29.4	2.891	29.50	-1.34	29.60	2.70
29.6	2.622	29.70	-0.81	29.80	0.68
29.8	2.461	29.90	-0.67	30.08	0.85
30.0	2.327	30.25	-0.37	30.50	0.18
30.5	2.141	30.75	-0.28	31.13	0.18
31.0	2.000	31.50	-0.15	32.00	0.04
32.0	1.851	32.50	-0.11	33.00	0.03
33.0	1.745	33.50	-0.08	34.00	0.01
34.0	1.667	34.50	-0.07	26.00	-0.01
35.0	1.597	17.50	0.05	8.75	0.00
•					

Figure C-67. Curve For The Third Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-68. First Derivative Of The Third Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-69. Second Derivative Of The Third Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 24. FRESH 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.961M HCl	<u>pH</u> 10.487	Vol (ml) 1.00	<u>d(pH)/d(ml)</u> -0.11	Vol (ml) 2.00	$\frac{d2(pH)/d(m1)^2}{0.01}$
0.0		3.00	-0.11	4.00	0.01
2.0	10.257	5.00	-0.10	6.00	-0.00
4.0	10.050 9.859	7.00	-0.10	8.00	-0.00
6.0		9.00	-0.10	10.00	-0.02
8.0	9.661		-0.10	11.75	-0.02
10.0	9.455	11.00			0.02
12.0	9.155	12.50	-0.20	13.00	-0.30
13.0	8.955	13.50	-0.18	13.88	
14.0	8.770	14.25	-0.41	14.50	-0.32
14.5	8.565	14.75	-0.57	15.00	-0.21
15.0	8.280	15.25	-0.68	15.50	-0.44
15.5	7.942	15.75	-0.89	16.00	1.08
16.0	7.495	16.25	-0.36	16.50	0.32
16.5	7.317	16.75	-0.19	17.13	-0.02
17.0	7.220	17.50	-0.21	18.25	0.01
18.0	7.009	19.00	-0.19	20.00	0.03
20.0	6.624	21.00	-0.13	22.00	0.02
22.0	6.369	23.00	-0.10	24.00	-0.01
24.0	6.179	25.00	-0.11	25.75	0.02
26.0	5.957	26.50	-0.09	27.00	-0.11
27.0	5.870	27.50	-0.19	28.00	0.05
28.0	5.676	28.50	-0.15	28.88	-0.00
29.0	5.528	29.25	-0.15	29.50	-0.40
29.5	5.454	29.75	-0.35	29.93	-0.33
30.0	5.280	30.10	-0.46	30.20	-0.83
30.2	5.187	30.30	-0.63	30.40	-3.60
30.4	5.061	30.50	-1.35	30.60	-6.38
30.6	4.791	30.70	-2.63	30.80	-16.72
30.8	4.266	30.90	-5.97	31.00	21.27
31.0	3.072	31.10	-1.71	31.23	2.43
31.2	2.729	31.35	-1.11	31.55	1.46
31.5	2.397	31.75	-0.52	32.13	0.38
32.0	2.135	32.50	-0.24	33.00	0.11
33.0	1.894	33.50	-0.13	34.00	0.02
34.0	1.766	34.50	-0.11	26.00	-0.01
35.0	1.657	17.50	0.05	8.75	0.00

Figure C-70. Curve For The Fourth Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-71. First Derivative Of The Fourth Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-72. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh 106 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 25. FRESH 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.961M HCl 0.0 2.0 4.0	pH 10.135 9.951 9.745 9.512	Vol (ml) 1.00 3.00 5.00	d(pH)/d(ml) -0.09 -0.10 -0.12 -0.13	Vol (ml) 2.00 4.00 6.00 8.00	d2(pH)/d(m1) ² -0.01 -0.01 -0.01
6.0 8.0 10.0	9.256 8.756	7.00 9.00 10.25	-0.25 -0.59	9.63 10.50	-0.06 -0.27 0.04
10.5	8.460	10.75	-0.57	11.00	-0.48
11.0	8.174	11.25	-0.81	11.50	0.47
11.5	7.769	11.75	-0.58	12.00	0.41
12.0	7.481	12.25	-0.37	12.50	0.39
12.5	7.296	12.75	-0.17	13.13	-0.07
13.0	7.209	13.50	-0.23	14.25	0.06
14.0	6.980	15.00	-0.14	16.00	0.03
16.0	6.706	17.00	-0.09	18.00	-0.00
18.0	6.536	19.00	-0.09	20.00	-0.00
20.0	6.364	21.00	-0.09	22.00	-0.00
22.0	6.182	23.00	-0.09	23.75	0.02
24.0	5.993	24.50	-0.06	25.00	-0.01
25.0	5.932	25.50	-0.07	26.00	-0.04
26.0	5.861	26.50	-0.11	26.88	-0.17
27.0	5.755	27.25	-0.23	27.50	-0.09
27.5	5.638	27.75	-0.28	27.95	0.57
28.0	5.498	28.15	-0.05	28.33	-0.42
28.3	5.482	28.50	-0.20	28.68	-0.01
28.7	5.402	28.85	-0.20	28.98	-0.81
29.0	5.341	29.10	-0.40	29.20	-1.50
29.2	5.260	29.30	-0.71	29.40	-0.95
29.4	5.119	29.50	-0.89	29.60	-3.75
29.6	4.940	29.70	-1.65	29.80	-2.15
29.8	4.611	29.90	-2.07	29.97	-40.10
30.0	4.196	30.05	-8.09	30.10	39.30
30.1	3.387	30.15	-4.16	30.25	13.92
30.2	2.971	30.35	-1.38	30.55	1.82
30.5	2.558	30.75	-0.65	31.13	0.53
31.0	2.234	31.50	-0.25	32.00	0.09
32.0	1.982	32.50	-0.16	33.25	0.05
33.0	1.822	34.00	-0.09	25.75	-0.01
35.0	1.649	17.50	0.05	8.75	0.00

Figure C-73. Curve For The First Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HC1.

Figure C-74. First Derivative Of The First Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-75. Second Derivative Of The First Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 26. FRESH 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.961M HCl	pH	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.337	1.00	-0.06	2.00	0.01
2.0	10.223	3.00	-0.04	4.00	-0.01
4.0	10.139	5.00	-0.06	6.00	0.01
6.0	10.023	7.00	-0.03	8.00	0.00
8.0	9.955	9.00	-0.03	9.75	-0.11
10.0	9.893	10.50	-0.19	11.00	0.15
11.0	9.701	11.50	-0.04	12.00	-0.03
12.0	9.657	12.50	-0.07	13.00	0.01
13.0	9.587	13.50	-0.06	14.25	-0.50
14.0	9.532	15.00	-0.81	15.63	0.19
16.0	7.917	16.25	-0.57	16.50	0.37
16.5	7.630	16.75	-0.39	17.00	0.22
17.0	7.435	17.25	-0.28	17.50	-0.14
17.5	7.295	17.75	-0.35	18.38	0.13
18.0	7.121	19.00	-0.19	20.00	0.03
20.0	6.745	21.00	-0.13	22.00	0.01
22.0	6.492	23.00	-0.11	24.00	0.00
24.0	6.269	25.00	-0.11	26.00	-0.01
26.0	6.051	27.00	-0.13	27.63	-0.05
28.0	5.782	28.25	-0.20	28.50	-0.18
28.5	5.684	28.75	-0.29	28.95	-0.16
29.0	5.541	29.15	-0.35	29.33	-0.39
29.3	5.436	29.50	-0.49	29.68	-1.28
29.7	5.241	29.85	-0.94	29.95	-2.27
30.0	4.960	30.05	-1.39	30.10	-6.60
30.1	4.821	30.15	-2.05	30.23	0.37
30.2	4.616	30.30	-2.00	30.40	-20.45
30.4	4.217	30.50	-6.08	30.60	21.57
30.6	3.000	30.70	-1.77	30.80	4.25
30.8	2.646	30.90	-0.92	31.08	1.07
31.0	2.462	31.25	-0.55	31.50	0.51
31.5	2.189	31.75	-0.29	32.13	0.15
32.0	2.044	32.50	-0.18	33.00	0.07
33.0	1.869	33.50	-0.11	34.00	0.03
34.0	1.763	34.50	-0.08	26.00	-0.01
35.0	1.686	17.50	0.05	8.75	0.00

Figure C-76. Curve For The Second Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-77. First Derivative Of The Second Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-78. Second Derivative Of The Second Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 27. FRESH 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

					
ml 0.961M HCl	pH	Vol (ml)	d(pH)/d(m1)	<u>Vol (ml)</u>	$d2(pH)/d(m1)^2$
0.0	10.195	1.00	-0.08	2.00	-0.01
2.0	10.035	3.00	-0.11	4.00	-0.01
4.0	9.819	5.00	-0.12	6.00	0.00
6.0	9.572	7.00	-0.12	8.00	-0.05
8.0	9.337	9.00	-0.23	9.75	-0.11
10.0	8.883	10.50	-0.40	10.88	-0.63
11.0	8.486	11.25	-0.87	11.50	0.33
11.5	8.051	11.75	-0.70	12.00	0.50
12.0	7.699	12.25	-0.46	12.50	0.18
12.5	7.471	12.75	-0.37	13.13	0.16
13.0	7.288	13.50	-0.24	14.25	0.07
14.0	7.044	15.00	-0.15	16.00	0.02
16.0	6.753	17.00	-0.10	18.00	0.01
18.0	6.555	19.00	-0.07	20.00	0.00
20.0	6.416	21.00	-0.07	22.00	-0.01
22.0	6.278	23.00	-0.08	24.00	-0.01
24.0	6.117	25.00	-0.11	25.75	-0.00
26.0	5.897	26.50	-0.11	27.00	-0.08
27.0	5.787	27.50	-0.19	27.88	0.05
28.0	5.601	28.25	-0.15	28.50	-0.12
28.5	5.528	28.75	-0.21	29.00	-0.58
29.0	5.425	29.25	-0.50	29.43	-1.13
29.5	5.176	29.60	-0.89	29.73	-4.98
29.7	4.997	29.85	-2.14	29.95	-25.30
30.0	4.355	30.05	-7.20	30.10	20.70
30.1	3.635	30.15	-5.13	30.20	27.60
30.2	3.122	30.25	-2.37	30.30	7.20
30.3	2.885	30.35	-1.65	30.45	3.43
30.4	2.720	30.55	-0.96	30.70	1.59
30.7	2.431	30.85	-0.49	31.05	0.32
31.0	2.285	31.25	-0.36	31.50	0.28
31.5	2.105	31.75	-0.22	32.13	0.09
32.0	1.996	32.50	-0.15	33.00	0.05
33.0	1.846	33.50	-0.10	34.00	0.02
34.0	1.751	34.50	-0.07	26.00	-0.01
35.0	1.679	17.50	0.05	8.75	0.00

Figure C-79. Curve For The Third Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-80. First Derivative Of The Third Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-81. Second Derivative Of The Third Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 28. FRESH 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

					
ml 0.961M HCl	рН	Vol (ml)	<u>d(Hq)b/d(ml)</u>	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{d}$
0.0	10.345	1.00	-0.12	2.00	-0.00
2.0	10.097	3.00	-0.13	4.00	0.02
4.0	9.845	5.00	-0.08	6.00	-0.03
6.0	9.686	7.00	-0.14	8.00	-0.06
8.0	9.416	9.00	-0.26	9.75	0.17
10.0	8.889	10.50	-0.01	10.88	-2.18
11.0	8.882	11.25	-1.64	11.50	2.01
11.5	8.060	11.75	-0.64	12.00	0.32
12.0	7.741	12.25	-0.48	12.50	0.25
12.5	7.503	12.75	-0.35	13.13	0.12
13.0	7.327	13.50	-0.26	14.25	0.08
14.0	7.066	15.00	-0.14	16.00	0.02
16.0	6.794	17.00	-0.10	18.00	0.01
18.0	6.599	19.00	-0.08	20.00	0.01
20.0	6.441	21.00	-0.06	22.00	-0.01
22.0	6.328	23.00	-0.07	24.00	0.01
24.0	6.185	25.00	-0.06	25.75	-0.04
26.0	6.065	26.50	-0.12	27.00	-0.03
27.0	5.945	27.50	-0.15	28.00	-0.09
28.0	5.799	28.50	-0.23	28.88	0.06
29.0	5.568	29.25	-0.18	29.50	-0.61
29.5	5.476	29.75	-0.49	29.95	-0.91
30.0	5.232	30.15	-0.85	30.30	-4.69
30.3	4.976	30.45	-2.26	30.58	-11.80
30.6	4.298	30.70	-5.21	30.80	11.33
30.8	3.256	30.90	-2.94	31.08	6.51
31.0	2.667	31.25	-0.67	31.50	0.79
31.5	2.333	31.75	-0.27	32.13	0.02
32.0	2.196	32.50	-0.26	33.00	0.14
33.0	1.940	33.50	-0.11	34.00	0.03
34.0	1.828	34.50	-0.09	26.00	-0.01
35.0	1.741	17.50	0.05	8.75	0.00
• • • •					

Figure C-82. Curve For The Fourth Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-83. First Derivative Of The Fourth Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-84. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh 75 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 29. FRESH 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.961M HCl	На	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.870	1.00	-0.15	2.00	0.02
2.0	10.578	3.00	-0.11	4.00	0.02
4.0	10.361	5.00	-0.07	6.00	0.01
6.0	10.217	7.00	-0.05	8.00	-0.07
8.0	10.111	9.00	-0.20	10.00	0.04
10.0	9.708	11.00	-0.11	12.00	-0.02
12.0	9.483	13.00	-0.15	13.75	-0.02
14.0	9.188	14.50	-0.18	15.00	-0.10
15.0	9.007	15.50	-0.28	15.88	-0.39
16.0	8.727	16.25	-0.57	16.50	0.04
16.5	8.441	16.75	-0.55	17.00	-0.38
17.0	8.164	17.25	-0.74	17.50	0.50
17.5	7.792	17.75	-0.50	18.00	0.47
18.0	7.544	18.25	-0.26	18.50	-0.04
18.5	7.413	18.75	-0.28	19.13	0.17
19.0	7.272	19.50	-0.15	20.25	-0.03
20.0	7.121	21.00	-0.13	22.00	0.04
22.0	6.726	23.00	-0.12	24.00	0.01
24.0	6.489	25.00	-0.11	26.00	0.00
26.0	6.274	27.00	-0.10	28.00	-0.01
28.0	6.071	29.00	-0.12	29.75	-0.03
30.0	5.831	30.50	-0.16	31.00	-0.04
31.0	5.672	31.50	-0.20	31.88	-0.11
32.0	5.469	32.25	-0.28	32.50	-0.64
32.5	5.327	32.75	-0.61	32.93	-1.14
33.0	5.024	33.10	-1.00	33.20	-6.67
33.2	4.823	33.30	-2.34	33.40	-15.65
33.4	4.355	33.50	-5.47	33.60	19.73
33.6	3.261	33.70	-1.52	33.80	-0.75
33.8	2.956	33.90	-1.67	34.08	2.84
34.0	2.621	34.25	-0.68	34.50	0.74
34.5	2.281	34.75	-0.31	35.13	0.14
35.0	2.127	35.50	-0.20	36.25	0.07
36.0	1.926	37.00	-0.10	38.00	0.02
38.0	1.722	39.00	-0.06	29.50	-0.01
40.0	1.604	20.00	0.04	10.00	0.00

Figure C-85. Curve For The First Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HC1.

Figure C-86. First Derivative Of The First Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-87. Second Derivative Of The First Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 30. FRESH 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

MI 0.961M HCl DH Vol (ml) d(pH)/d(ml) Vol (ml) d2(pH)/d(ml)^2						
2.0						
4.0 10.351 5.00 -0.09 6.00 0.01 6.0 10.177 7.00 -0.08 8.00 -0.04 8.0 10.027 9.00 -0.16 10.00 0.02 10.0 9.715 11.00 -0.12 12.00 0.01 12.0 9.474 13.00 -0.10 13.75 -0.04 14.0 9.271 14.50 -0.17 15.00 -0.08 15.0 9.105 15.50 -0.24 16.00 -0.49 16.0 8.862 16.50 -0.73 16.88 -0.12 17.0 8.132 17.25 -0.82 17.50 0.67 17.5 7.723 17.75 -0.48 18.00 0.22 18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0						
6.0 10.177 7.00 -0.08 8.00 -0.04 8.0 10.027 9.00 -0.16 10.00 0.02 10.0 9.715 11.00 -0.12 12.00 0.01 12.0 9.474 13.00 -0.10 13.75 -0.04 14.0 9.271 14.50 -0.17 15.00 -0.08 15.0 9.105 15.50 -0.24 16.00 -0.49 16.0 8.862 16.50 -0.73 16.88 -0.12 17.0 8.132 17.25 -0.82 17.50 0.67 17.5 7.723 17.75 -0.48 18.00 0.22 18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.11 24.00 0.01 26.00 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 26.00 -0.01 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.23 31.00 -0.16 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 23.3 3.0 2.980 33.15 -1.40 33.30 2.22 23.3 3.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00	2.0					
8.0 10.027 9.00 -0.16 10.00 0.02 10.0 9.715 11.00 -0.12 12.00 0.01 12.0 9.474 13.00 -0.10 13.75 -0.04 14.0 9.271 14.50 -0.17 15.00 -0.08 15.0 9.105 15.50 -0.24 16.00 -0.49 16.0 8.862 16.50 -0.73 16.88 -0.12 17.0 8.132 17.25 -0.82 17.50 0.67 17.5 7.723 17.75 -0.48 18.00 0.22 18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 29.75 -0.09 30.0	4.0					
10.0 9.715 11.00 -0.12 12.00 0.01 12.0 9.474 13.00 -0.10 13.75 -0.04 14.0 9.271 14.50 -0.17 15.00 -0.08 15.0 9.105 15.50 -0.24 16.00 -0.49 16.0 8.862 16.50 -0.73 16.88 -0.12 17.0 8.132 17.25 -0.82 17.50 0.67 17.5 7.723 17.75 -0.48 18.00 0.22 18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 <td>6.0</td> <td>10.177</td> <td></td> <td></td> <td></td> <td></td>	6.0	10.177				
12.0 9.474 13.00 -0.10 13.75 -0.04 14.0 9.271 14.50 -0.17 15.00 -0.08 15.0 9.105 15.50 -0.24 16.00 -0.49 16.0 8.862 16.50 -0.73 16.88 -0.12 17.0 8.132 17.25 -0.82 17.50 0.67 17.5 7.723 17.75 -0.48 18.00 0.22 18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 24.0 6.437 25.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00	8.0					
14.0 9.271 14.50 -0.17 15.00 -0.08 15.0 9.105 15.50 -0.24 16.00 -0.49 16.0 8.862 16.50 -0.73 16.88 -0.12 17.0 8.132 17.25 -0.82 17.50 0.67 17.5 7.723 17.75 -0.48 18.00 0.22 18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 <td>10.0</td> <td></td> <td></td> <td></td> <td></td> <td></td>	10.0					
15.0 9.105 15.50 -0.24 16.00 -0.49 16.0 8.862 16.50 -0.73 16.88 -0.12 17.0 8.132 17.25 -0.82 17.50 0.67 17.5 7.723 17.75 -0.48 18.00 0.22 18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 24.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.88 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00	12.0	9.474				
16.0 8.862 16.50 -0.73 16.88 -0.12 17.0 8.132 17.25 -0.82 17.50 0.67 17.5 7.723 17.75 -0.48 18.00 0.22 18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.7 <td>14.0</td> <td></td> <td></td> <td></td> <td></td> <td></td>	14.0					
17.0 8.132 17.25 -0.82 17.50 0.67 17.5 7.723 17.75 -0.48 18.00 0.22 18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.11 28.00 -0.01 26.0 6.241 27.00 -0.11 28.00 -0.01 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.7 <td>15.0</td> <td></td> <td></td> <td></td> <td></td> <td></td>	15.0					
17.0 8.132 17.25 -0.82 17.50 0.67 17.5 7.723 17.75 -0.48 18.00 0.22 18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 <td>16.0</td> <td>8.862</td> <td></td> <td></td> <td></td> <td></td>	16.0	8.862				
17.5 7.723 17.75 -0.48 18.00 0.22 18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 <td></td> <td>8.132</td> <td></td> <td>-0.82</td> <td></td> <td></td>		8.132		-0.82		
18.0 7.481 18.25 -0.38 18.50 0.20 18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0<			17.75	-0.48	18.00	0.22
18.5 7.293 18.75 -0.28 19.13 0.12 19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3<			18.25	-0.38	18.50	0.20
19.0 7.155 19.50 -0.19 20.25 0.02 20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6<		7.293		-0.28	19.13	0.12
20.0 6.969 21.00 -0.15 22.00 0.02 22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0<		7.155		-0.19	20.25	0.02
22.0 6.664 23.00 -0.11 24.00 0.01 24.0 6.437 25.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5<						0.02
24.0 6.437 25.00 -0.10 26.00 -0.01 26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0<						0.01
26.0 6.241 27.00 -0.11 28.00 0.00 28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 </td <td></td> <td>6.437</td> <td></td> <td></td> <td></td> <td></td>		6.437				
28.0 6.024 29.00 -0.10 29.75 -0.09 30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00						0.00
30.0 5.822 30.50 -0.23 31.00 -0.16 31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00					29.75	-0.09
31.0 5.593 31.50 -0.39 31.88 -0.70 32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00					31.00	-0.16
32.0 5.205 32.25 -0.91 32.43 -5.04 32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00				-0.39	31.88	-0.70
32.5 4.750 32.60 -2.67 32.70 -13.57 32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00			32.25	-0.91	32.43	
32.7 4.215 32.80 -5.39 32.88 25.47 32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00			32.60	-2.67	32.70	
32.9 3.137 32.95 -1.57 33.05 0.83 33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00			32.80	-5.39	32.88	25.47
33.0 2.980 33.15 -1.40 33.30 2.22 33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00						
33.3 2.559 33.45 -0.74 33.63 1.16 33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00			33.15	-1.40	33.30	2.22
33.6 2.338 33.80 -0.33 34.03 0.08 34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00			33.45	-0.74	33.63	1.16
34.0 2.206 34.25 -0.29 34.50 0.25 34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00				-0.33	34.03	0.08
34.5 2.060 34.75 -0.17 35.13 0.05 35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00					34.50	0.25
35.0 1.976 35.50 -0.13 36.25 0.03 36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00					35.13	0.05
36.0 1.845 37.00 -0.08 38.00 0.02 38.0 1.680 39.00 -0.05 29.50 -0.00						
38.0 1.680 39.00 -0.05 29.50 -0.00						
10.0	-					
	10.0					

Figure C-88. Curve For The Second Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-89. First Derivative Of The Second Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-90. Second Derivative Of The Second Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 31. FRESH 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

. — — — — — — — — — — — — — — — — — — —					
ml 0.961M HCl 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 15.5 16.0 16.5 17.0 17.5 18.0 20.0 22.0 24.0 26.0 28.0 30.0 31.0 31.5 32.0 32.5 33.0 33.5	pH 10.711 10.428 10.188 9.971 9.774 9.564 9.298 8.911 8.583 8.312 7.865 7.517 7.326 7.155 7.041 6.715 6.490 6.326 6.199 6.071 5.871 5.798 5.724 5.672 5.596 5.429 5.238	Vol (ml) 1.00 3.00 5.00 7.00 9.00 11.00 13.00 14.50 15.25 15.75 16.25 16.75 17.75 19.00 21.00 23.00 25.00 27.00 29.00 30.50 31.25 31.75 32.25 33.60	d(pH)/d(m1) -0.17 -0.12 -0.11 -0.10 -0.11 -0.13 -0.19 -0.33 -0.54 -0.89 -0.70 -0.38 -0.34 -0.23 -0.16 -0.11 -0.08 -0.06 -0.10 -0.07 -0.15 -0.10 -0.15 -0.33 -0.38 -0.38	Vol (ml) 2.00 4.00 6.00 8.00 10.00 12.00 13.75 14.88 15.50 16.00 16.50 17.00 17.50 18.38 20.00 22.00 24.00 26.00 28.00 29.75 30.88 31.50 32.00 33.43 33.72	d2(pH)/d(m1) ² 0.03 0.01 0.00 -0.00 -0.01 -0.03 -0.09 -0.29 -0.70 0.40 0.63 0.08 0.23 0.05 0.03 0.02 0.01 -0.00 -0.02 -0.10 0.09 -0.10 -0.36 -0.10 0.02 -2.77
				16.50 17.00	
	7 326				
	7.155				
24.0	6.326	25.00			
	6.199				-0.02
	6.071				
			-0.10		
			-0.15		
33.7	5.163	33.85	-1.07	33.72	0.53
34.0	4.843	34.10	-0.93	34.20	-19.07
34.2	4.656	34.30	-4.75	34.38	-6.53
34.4	3.706	34.45	-5.73	34.53	24.03
34.5	3.133	34.60	-2.12	34.72	4.49
34.7	2.708	34.85	-1.00	35.05	1.29
35.0	2.407	35.25	-0.49	35.50	0.38
35.5	2.163	35.75	-0.30	36.13	0.16
36.0	2.014	36.50	-0.18	37.00	0.04
37.0	1.838	37.50	-0.14	38.25	0.05
38.0	1.701	39.00	-0.06	29.50	-0.01
40.0	1.572	20.00	0.04	10.00	0.00

Figure C-91. Curve For The Third Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-92. First Derivative Of The Third Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-93. Second Derivative Of The Third Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 32. FRESH 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

					
ml 0.961M HCl	H_	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.044	1.00	-0.20	2.00	0.03
2.0	10.640	3.00	-0.13	4.00	0.00
4.0	10.371	5.00	-0.13	6.00	0.01
6.0	10.113	7.00	-0.11	8.00	-0.01
8.0	9.888	9.00	-0.12	10.00	-0.01
10.0	9.641	11.00	-0.14	12.00	-0.03
12.0	9.357	13.00	-0.21	13.75	-0.11
14.0	8.940	14.50	-0.38	14.88	-0.24
15.0	8.559	15.25	-0.56	15.50	-0.79
15.5	8.280	15.75	-0.95	16.00	0.74
16.0	7.803	16.25	-0.58	16.50	0.26
16.5	7.511	16.75	-0.45	17.13	0.25
17.0	7.284	17.50	-0.26	18.25	0.07
18.0	7.021	19.00	-0.16	20.00	0.03
20.0	6.694	21.00	-0.10	22.00	0.01
22.0	6.487	23.00	-0.09	24.13	0.01
24.0	6.302	25.25	-0.07	26.25	-0.00
26.5	6.122	27.25	-0.08	28.13	-0.04
28.0	6.008	29.00	-0.14	29.75	0.03
30.0	5.720	30.50	-0.10	30.88	-0.05
31.0	5.618	31.25	-0.14	31.50	-0.14
31.5	5.547	31.75	-0.21	32.00	-0.29
32.0	5.442	32.25	-0.35	32.50	-0.63
32.5	5.265	32.75	-0.67	32.93	-3.25
33.0	4.931	33.10	-1.80	33.20	-18.72
33.2	4.570	33.30	-5.55	33.40	10.57
33.4	3.460	33.50	-3.44	33.60	10.95
33.6	2.773	33.70	-1.24	33.80	3.57
33.8	2.524	33.90	-0.53	34.08	0.18
34.0	2.418	34.25	-0.47	34.50	0.26
34.5	2.185	34.75	-0.34	35.13	0.21
35.0	2.016	35.50	-0.18	36.25	0.05
36.0	1.833	37.00	-0.10	38.00	0.02
38.0	1.627	39.00	-0.06	29.50	-0.01
40.0	1.509	20.00	0.04	10.00	0.00

Figure C-94. Curve For The Fourth Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-95. First Derivative Of The Fourth Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-96. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh 45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 33. FRESH <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.961M HCl	На	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	$\frac{11.337}{11.337}$	1.00	-0.30	2.00	0.06
2.0	10.736	3.00	-0.17	4.00	0.03
4.0	10.386	5.00	-0.12	6.00	0.01
6.0	10.139	7.00	-0.11	8.00	-0.00
8.0	9.914	9.00	-0.12	10.00	-0.00
10.0	9.678	11.00	-0.12	11.75	-0.03
12.0	9.438	12.50	-0.17	13.00	-0.00
13.0	9.268	13.50	-0.17	14.00	-0.08
14.0	9.097	14.50	-0.25	15.00	-0.23
15.0	8.846	15.50	-0.48	15.88	-0.72
16.0	8.365	16.25	-1.02	16.50	0.61
16.5	7.854	16.75	-0.72	17.00	0.68
17.0	7.495	17.25	-0.38	17.50	0.10
17.5	7.305	17.75	-0.33	18.38	0.10
18.0	7.140	19.00	-0.20	20.00	0.03
20.0	6.738	21.00	-0.13	22.00	0.02
22.0	6.474	23.00	-0.09	24.00	0.01
24.0	6.295	25.00	-0.08	26.00	-0.01
26.0	6.142	27.00	-0.11	28.00	-0.01
28.0	5.931	29.00	-0.12	29.75	-0.03
30.0	5.691	30.50	-0.17	30.88	-0.12
31.0	5.525	31.25	-0.25	31.50	-0.16
31.5	5.398	31.75	-0.34	32.00	-0.25
32.0	5.230	32.25	-0.46	32.45	-1.75
32.5	5.000	32.65	-1.16	32.78	-3.16
32.8	4.652	32.90	-1.95	33.00	-19.43
33.0	4.262	33.10	-5.83	33.20	18.77
33.2	3.095	33.30	-2.08	33.40	5.50
33.4	2.679	33.50	-0.98	33.60	2.53
33.6	2.483	33.70	-0.47	33.80	-0.47
33.8	2.388	33.90	-0.57	34.08	0.65
34.0	2.274	34.25	-0.34	34.50	0.16
34.5	2.103	34.75	-0.26	35.13	0.18
35.0	1.972	35.50	-0.13	36.25	0.03
36.0	1.842	37.00	-0.09	38.00	0.02
38.0	1.663	39.00	-0.06	29.50	-0.01
40.0	1.548	20.00	0.04	10.00	0.00

Figure C-97. Curve For The First Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-98. First Derivative Of The First Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-99. Second Derivative Of The First Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 34. FRESH <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.961M HCl	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{d}$
0.0	11.623	1.00	-0.36	2.00	0.07
2.0	10.909	3.00	-0.23	4.00	0.05
4.0	10.455	5.00	-0.13	6.00	0.01
6.0	10.205	7.00	-0.11	8.00	0.00
8.0	9.977	9.00	-0.11	10.00	-0.01
10.0	9.757	11.00	-0.13	12.00	-0.01
12.0	9.503	13.00	-0.15	13.75	-0.07
14.0	9.206	14.50	-0.25	15.00	-0.15
15.0	8.956	15.50	-0.40	15.88	-0.34
16.0	8.555	16.25	-0.66	16.50	-0.53
16.5	8.227	16.75	-0.92	17.00	0.63
17.0	7.767	17.25	-0.60	17.50	0.47
17.5	7.465	17.75	-0.37	18.13	0.12
18.0	7.281	18.50	-0.28	19.00	0.12
19.0	7.006	19.50	-0.16	20.25	0.02
20.0	6.847	21.00	-0.14	22.00	0.02
22.0	6.575	23.00	-0.09	24.00	-0.00
24.0	6.400	25.00	-0.10	26.00	-0.00
26.0	6.209	27.00	-0.10	28.00	-0.00
28.0	6.006	29.00	-0.10	29.75	-0.03
30.0	5.802	30.50	-0.15	30.88	-0.01
31.0	5.654	31.25	-0.15	31.50	-0.04
31.5	5.578	31.75	-0.17	32.00	-0.28
32.0	5.493	32.25	-0.31	32.50	-0.40
32.5	5.339	32.75	-0.51	32.93	-1.18
33.0	5.085	33.10	-0.92	33.20	-5.57
33.2	4.901	33.30	-2.03	33.40	-18.45
33.4	4.494	33.50	-5.73	33.60	14.90
33.6	3.349	33.70	-2.74	33.80	7.12
33.8	2.800	33.90	-1.32	34.08	2.21
34.0	2.536	34.25	-0.55	34.50	0.47
34.5	2.262	34.75	-0.31	35.13	0.18
35.0	2.106	35.50	-0.18	36.25	0.05
36.0	1.926	37.00	-0.10	38.00	0.02
38.0	1.719	39.00	-0.06	29.50	-0.01
40.0	1.599	20.00	0.04	10.00	0.00

Figure C-100. Curve For The Second Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-101. First Derivative Of The Second Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-102. Second Derivative Of The Second Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 35. FRESH <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.961M HCl	Hq	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.609	1.00	-0.37	2.00	0.10
2.0	10.865	3.00	-0.18	4.00	0.02
4.0	10.507	5.00	-0.13	6.00	0.01
6.0	10.238	7.00	-0.12	8.00	0.00
8.0	10.003	9.00	-0.11	10.00	-0.01
10.0	9.780	11.00	-0.13	12.00	-0.02
12.0	9.520	13.00	-0.17	14.00	-0.08
14.0	9.178	15.00	-0.33	15.63	-0.32
16.0	8.526	16.25	-0.73	16.50	-0.25
16.5	8.162	16.75	-0.85	17.00	0.68
17.0	7.736	17.25	-0.51	17.50	0.31
17.5	7.479	17.75	-0.36	18.13	0.16
18.0	7.299	18.50	-0.24	19.25	0.06
19.0	7.057	20.00	-0.16	21.00	0.02
21.0	6.744	22.00	-0.11	23.00	0.02
23.0	6.516	24.00	-0.07	25.00	-0.00
25.0	6.385	26.00	-0.07	27.00	-0.00
27.0	6.242	28.00	-0.08	28.75	-0.03
29.0	6.089	29.50	-0.13	30.00	0.00
30.0	5.964	30.50	-0.12	31.00	-0.14
31.0	5.841	31.50	-0.27	31.88	-0.01
32.0	5.576	32.25	-0.27	32.45	-0.53
32.5	5.441	32.65	-0.48	32.78	-1.93
32.8	5.296	32.90	-0.96	33.00	-1.03
33.0	5.103	33.10	-1.17	33.20	-9.25
33.2	4.869	33.30	-3.02	33.40	-6.38
33.4	4.265	33.50	-4.30	33.60	6.65
33.6	3.406	33.70	-2.96	33.80	8.95
33.8	2.813	33.90	-1.17	34.08	1.82
34.0	2.578	34.25	-0.54	34.50	0.43
34.5	2.309	34.75	-0.32	35.13	0.17
35.0	2.148	35.50	-0.19	36.25	0.06
36.0	1.954	37.00	-0.11	38.00	0.02
38.0	1.741	39.00	-0.06	29.50	-0.01
40.0	1.623	20.00	0.04	10.00	0.00

Figure C-103. Curve For The Third Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-104. First Derivative Of The Third Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-105. Second Derivative Of The Third Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 36. FRESH <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.961M HCl	pH	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	11.643	1.00	-0.36	2.00	0.10
2.0	10.915	3.00	-0.17	4.00	0.02
4.0	10.575	5.00	-0.14	6.00	0.01
6.0	10.301	7.00	-0.12	8.00	0.00
8.0	10.055	9.00	-0.12	10.00	0.00
10.0	9.811	11.00	-0.12	12.00	-0.01
12.0	9.568	13.00	-0.15	14.00	-0.06
14.0	9.275	15.00	-0.26	15.63	-0.24
16.0	8.759	16.25	-0.55	16.50	-0.23
16.5	8.483	16.75	-0.67	17.00	-0.71
17.0	8.149	17.25	-1.02	17.50	1.31
17.5	7.638	17.75	-0.37	18.13	0.04
18.0	7.454	18.50	-0.34	19.25	0.12
19.0	7.113	20.00	-0.17	21.00	0.03
21.0	6.779	22.00	-0.11	23.00	0.02
23.0	6.564	24.00	-0.07	25.00	-0.01
25.0	6.428	26.00	-0.09	27.00	-0.01
27.0	6.246	28.00	-0.10	29.00	-0.02
29.0	6.038	30.00	-0.14	30.75	0.06
31.0	5.762	31.50	-0.05	31.88	-0.11
32.0	5.714	32.25	-0.13	32.50	-0.44
32.5	5.647	32.75	-0.36	33.00	-0.12
33.0	5.469	33.25	-0.42	33.50	-0.54
33.5	5.261	33.75	-0.69	33.93	-3.38
34.0	4.917	34.10	-1.87	34.20	-14.52
34.2	4.543	34.30	-4.77	34.40	6.35
34.4	3.588	34.50	-3.51	34.60	12.13
34.6	2.887	34.70	-1.08	34.80	1.02
34.8	2.671	34.90	-0.87	35.08	1.13
35.0	2.496	35.25	-0.48	35.50	0.39
35.5	2.257	35.75	-0.28	36.38	0.11
36.0	2.115	37.00	-0.15	38.00	0.04
38.0	1.818	39.00	-0.08	29.50	-0.01
40.0	1.666	20.00	0.04	10.00	0.00

Figure C-106. Curve For The Fourth Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-107. First Derivative Of The Fourth Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

Figure C-108. Second Derivative Of The Fourth Titration Curve For Titration Of Fresh <45 Micron Sodium Bicarbonate Media With 0.961 M HCl.

TABLE 37. TITRATION OF SODIUM BICARBONATE FROM J. T. BAKER CHEMICAL CO.

ml 0.961M HCl	Hq	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	11.367	1.00	-0.40	2.00	0.10
2.0	10.575	3.00	-0.20	4.00	0.04
4.0	10.170	5.00	-0.12	6.00	-0.00
6.0	9.939	7.00	-0.13	7.75	0.03
8.0	9.688	8.50	-0.08	9.00	-0.23
9.0	9.608	9.50	-0.31	10.00	0.06
10.0	9.295	10.50	-0.25	11.00	-0.13
11.0	9.043	11.50	-0.38	11.88	-1.15
12.0	8.664	12.25	-1.24	12.50	0.36
12.5	8.042	12.75	-1.06	13.00	1.04
13.0	7.511	13.25	-0.54	13.50	0.23
13.5	7.240	13.75	-0.43	14.13	0.17
14.0	7.027	14.50	-0.30	15.00	0.09
15.0	6.732	15.50	-0.21	16.25	0.02
16.0	6.524	17.00	-0.18	18.00	0.01
18.0	6.167	19.00	-0.16	19.75	-0.04
20.0	5.854	20.50	-0.22	20.88	0.05
21.0	5.636	21.25	-0.18	21.50	-0.23
21.5	5.547	21.75	-0.29	21.95	-0.15
22.0	5.401	22.15	-0.35	22.33	-0.56
22.3	5.295	22.50	-0.55	22.68	-2.32
22.7	5.075	22.85	-1.36	22.98	-10.93
23.0	4.666	23.10	-4.09	23.20	-4.50
23.2	3.847	23.30	-5.00	23.40	17.88
23.4	2.848	23.50	-1.42	23.60	3.87
23.6	2.564	23.70	-0.65	23.80	0.03
23.8	2.435	23.90	-0.64	24.08	0.82
24.0	2.307	24.25	-0.35	24.50	0.28
24.5	2.131	24.75	-0.21	25.13	0.08
25.0	2.025	25.50	-0.15	26.25	0.04
26.0	1.875	27.00	-0.08	28.00	0.04
28.0	1.705	29.00	-0.00	22.00	-0.00
30.0	1.695	15.00	0.06	7.50	0.00

Figure C-109. Curve For The Titration Of Sodium Bicarbonate From Baker Chemical Co. With 0.961 M HCl.

Figure C-110. First Derivative Of The Titration Curve For Titration Of Sodium Bicarbonate From Baker Chemical Co. With 0.961 M HCl.

Figure C-111. Second Derivative Of The Titration Curve For Titration Of Sodium Bicarbonate From Baker Chemical Co. With 0.961 M HCl.

TABLE 38. TITRATION OF SODIUM CARBONATE FROM ALDRICH CHEMICAL CO...

m1 0.961M HC1	На	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.686	1.00	-0.38	2.00	0.10
2.0	10.918	3.00	-0.19	4.00	0.02
4.0	10.530	5.00	-0.15	6.00	0.03
	10.330	7.00	-0.10	8.00	-0.01
6.0		9.00	-0.10	10.00	0.00
8.0	10.032	11.00	-0.11	12.00	-0.00
10.0	9.813				-0.02
12.0	9.613	13.00	-0.11	13.75	
14.0	9.399	14.50	-0.13	15.00	-0.01
15.0	9.267	15.50	-0.15	16.00	-0.07
16.0	9.122	16.50	-0.21	17.00	-0.05
17.0	8.908	17.50	-0.26	17.88	-0.33
18.0	8.646	18.25	-0.51	18.50	-0.37
18.5	8.393	18.75	-0.69	19.00	-1.12
19.0	8.047	19.25	-1.25	19.50	2.49
19.5	7.420	19.75	-0.01	20.00	-0.27
20.0	7.416	20.25	-0.14	20.50	-0.11
20.5	7.344	20.75	-0.20	21.00	0.32
21.0	7.245	21.25	-0.04	21.50	-0.54
21.5	7.225	21.75	-0.31	22.38	0.02
22.0	7.070	23.00	-0.29	24.00	0.09
24.0	6.489	25.00	-0.11	26.00	0.02
26.0	6.262	27.00	-0.08	28.00	-0.02
28.0	6.110	29.00	-0.11	29.75	0.02
30.0	5.888	30.50	-0.07	31.00	0.01
31.0	5.814	31.50	-0.07	32.00	-0.05
32.0	5.746	32.50	-0.12	33.00	-0.10
33.0	5.630	33.50	-0.21	33.88	0.10
34.0	5.419	34.25	-0.14	34.50	-0.16
34.5	5.351	34.75	-0.21	35.00	-0.16
	5.244	35.25	-0.29	35.50	-0.40
35.0 35.5		35.75	-0.49	35.93	-0.83
	5.098			36.20	-4.77
36.0	4.853	36.10	-0.78		
36.2	4.697	36.30	-1.73	36.40	-16.93
36.4	4.350	36.50	-5.12	36.65	11.10
36.6	3.326	36.80	-1.79	37.03	2.17
37.0	2.610	37.25	-0.81	37.50	0.86
37.5	2.204	37.75	-0.38	38.13	0.24
38.0	2.013	38.50	-0.21	39.00	0.10
39.0	1.808	39.50	-0.11	29.75	-0.01
40.0	1.699	20.00	0.04	10.00	0.00

Figure C-112. Curve For The Titration Of Sodium Carbonate From Aldrich Chemical Co. With 0.961 M HCl.

Figure C-113. First Derivative Of The Titration Curve For Titration Of Sodium Carbonate From Aldrich Chemical Co. With 0.961 M HCl.

Figure C-114. Second Derivative Of The Titration Curve For Titration Of Sodium Carbonate From Aldrich Chemical Co. With 0.961 M HCl.

TABLE 39. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 1.

					
m1 0 004M UC1	nU	Vol. (m1)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
ml 0.984M HCl	<u>pH</u>	<u>Vol (ml)</u>			GE (DIII/ G (IIII)
0.0	11.497	0.50	-0.51	1.00	0.28
1.0	10.984	1.50	-0.24	2.05	0.04
2.0	10.746	2.60	-0.19	3.10	0.02
3.2	10.512	3.60	-0.17	4.05	0.04
4.0	10.375	4.50	-0.14	5.00	0.01
5.0	10.240	5.50	-0.12	6.00	0.02
6.0	10.118	6.50	-0.11	7.00	0.00
7.0	10.011	7.50	-0.11	8.00	0.01
8.0	9.905	8.50	-0.10	9.00	0.09
9.0	9.804	9.50	-0.01	10.00	-0.19
10.0	9.798	10.50	-0.19	11.00	0.06
11.0	9.606	11.50	-0.13	12.00	0.03
12.0	9.478	12.50	-0.10	13.00	-0.03
13.0	9.376	13.50	-0.13	14.00	-0.04
14.0	9.242	14.50	-0.18	15.00	-0.00
15.0	9.065	15.50	-0.18	15.88	-0.26
16.0	8.885	16.25	-0.37	16.50	0.08
16.5	8.699	16.75	-0.33	17.00	-0.35
17.0	8.534	17.25	-0.51	17.50	-0.80
17.5	8.281	17.75	-0.91	18.00	0.52
18.0	7.827	18.25	-0.65	18.50	0.33
18.5	7.504	18.75	-0.48	19.00	0.38
19.0	7.264	19.25	-0.29	19.50	0.16
19.5	7.119	19.75	-0.21	20.13	0.03
20.0	7.014	20.50	-0.19	21.00	0.03
21.0	6.824	21.50	-0.16	22.00	0.04
22.0	6.666	22.50	-0.12	23.00	0.01
23.0	6.544	23.50	-0.11	24.00	0.02
24.0	6.436	24.50	-0.09	25.00	0.02
25.0	6.349	25.50	-0.07	26.00	-0.00
26.0	6.282	26.50	-0.07	27.00	0.01
27.0	6.214	27.50	-0.06	28.00	-0.02
28.0	6.154	28.50	-0.08	29.00	0.02
		29.50			
29.0	6.074		-0.06	30.00	-0.02
30.0	6.015	30.50	-0.08	31.00	-0.01
31.0	5.932	31.50	-0.09	31.88	-0.34
32.0	5.842	32.25	-0.35	32.50	0.02
32.5	5.668	32.75	-0.34	33.13	0.53
33.0	5.499	33.50	0.06	33.88	-0.51
34.0	5.555	34.25	-0.33	34.50	-0.66
34.5	5.391	34.75	-0.66	35.00	-2.10
35.0	5.063	35.25	-1.70	35.43	-11.03
35.5	4.211	35.60	-5.56	35.68	19.30
35.7	3.098	35.75	-2.67	35.80	8.10
35.8	2.831	35.85	-1.86	35.90	2.60
35.9	2.645	35.95	-1.60	36.03	6.13
36.0	2.485	36.10	-0.68	36.20	0.67
30.0	4.400	50.10	-0.00	30.20	0.0/

TABLE 39. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 1 (continued).

ml 0.984M HCl 36.2 36.4 36.7 37.0 37.5 38.0 39.0 40.0 41.0	pH 2.349 2.240 2.110 2.014 1.891 1.806 1.690 1.594 1.534 1.476	Vol (ml) 36.30 36.55 36.85 37.25 37.75 38.50 39.50 40.50 41.50 42.50	d(pH)/d(m1) -0.54 -0.43 -0.32 -0.25 -0.17 -0.12 -0.10 -0.06 -0.06	Vol (ml) 36.43 36.70 37.05 37.50 38.13 39.00 40.00 41.00 42.00 32.00	d2(pH)/d(m1) ² 0.45 0.38 0.18 0.15 0.07 0.02 0.04 0.00 0.01 -0.00
42.0	1.476	42.50	-0.05	32.00	-0.00
43.0	1.431	21.50	0.03	10.75	0.00

NOTE: This sample was taken from the first batch of spent media which was dried in the oven before being broken into size fractions. The spent media dried into a hard cake causing extensive work to break down into particle sizes.

Figure C-115. Curve For The First Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-116. First Derivative Of The First Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-117. Second Derivative Of The First Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 40. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 2.

		V-1 (m1)	٦/-١١١ /٦/٦١	V-1 (-1)	40/-111/4/112
ml 0.984M HCl	<u>pH</u>	<u>Vol (ml)</u>	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{d}$
0.0	11.652	0.05	-0.57	1.00	0.25
1.0	11.086	1.50	-0.32	2.00	0.13
2.0	10.771	2.50	-0.19	3.00	0.01
3.0	10.585	3.50	-0.18	4.00	0.06
4.0	10.405	4.50	-0.13	5.00	-0.01
	10.280	5.50	-0.13	6.00	0.01
5.0					
6.0	10.149	6.50	-0.12	7.00	0.02
7.0	10.029	7.50	-0.10	8.00	-0.01
8.0	9.930	8.50	-0.11	9.00	0.02
9.0	9.822	9.50	-0.09	10.00	-0.03
10.0	9.733	10.50	-0.12	11.00	0.02
11.0	9.612	11.50	-0.10	12.00	-0.03
12.0	9.512	12.50	-0.13	13.00	-0.01
13.0	9.381	13.50	-0.14	14.00	-0.02
14.0	9.244	14.50	-0.16	15.00	-0.07
15.0	9.084	15.50	-0.23	15.88	-0.01
16.0	8.853	16.25	-0.24	16.50	-0.30
16.5	8.735	16.75	-0.39	17.00	0.76
17.0	8.542	17.25	-0.01	17.50	-3.16
17.5	8.538	17.75	-1.59	18.00	1.97
18.0	7.743	18.25	-0.61	18.50	0.48
18.5	7.440	18.75	-0.36	19.00	0.06
19.0	7.258	19.25	-0.33	19.50	0.22
19.5	7.092	19.75	-0.22	20.13	0.04
20.0	6.981	20.50	-0.19	21.00	0.03
21.0	6.787	21.50	-0.17	22.00	0.08
. 22.0	6.621	22.50	-0.09	23.00	-0.01
23.0	6.533	23.50	-0.10	24.00	0.00
24.0	6.435	24.50	-0.10	25.00	0.02
25.0	6.337	25.50	-0.08	26.00	0.01
26.0	6.256	26.50	-0.07	27.00	0.00
27.0	6.190	27.50	-0.07	28.00	0.01
28.0	6.124	28.50	-0.05	29.00	-0.04
29.0	6.070	29.50	-0.09	30.00	0.00
30.0	5.981	30.50	-0.09	30.88	0.00
31.0	5.895	31.25	-0.08	31.50	
					0.05
31.5	5.853	31.75	-0.06	32.00	-0.00
32.0	5.824	32.25	-0.06	32.50	0.24
32.5	5.794	32.75	0.06	33.13	-0.44
33.0	5.823	33.50	-0.27	33.88	0.36
34.0	5.551	34.25	-0.00	34.50	-1.67
34.5	5.549	34.75	-0.84	34.93	1.44
35.0	5.130	35.10	-0.33	35.22	-3.18
35.2	5.063	35.35	-1.13	35.50	-10.63
35.5	4.724	35.65	-4.32	35.78	3.62
35.8	3.428	35.90	-3.41	36.03	9.22
36.0	2.745	36.15	-1.11	36.28	1.78

TABLE 40. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 2 (continued).

m1 0.984M HC1	pH 2.412	Vol (ml) 36.40	<u>d(pH)/d(ml)</u> -0.66	Vol (ml) 36.53	d2(pH)/d(m1) ² 0.85
36.3					
36.5	2.279	36.65	-0.45	36.78	-0.25
36.8	2.143	36.90	-0.51	37.20	0.49
37.0	2.040	37.50	-0.22	38.00	0.10
38.0	1.818	38.50	-0.12	39.00	0.02
39.0	1.699	39.50	-0.10	40.00	0.02
40.0	1.604	40.50	-0.08	41.00	0.02
41.0	1.526	41.50	-0.06	42.00	-0.00
42.0	1.468	42.50	-0.06	32.00	-0.00
43.0	1.409	21.50	0.03	10.75	0.00

NOTE: This sample was taken from the first batch of spent media which was dried in the oven before being broken into size fractions. The spent media dried into a hard cake causing extensive work to break down into particle sizes.

Figure C-118. Curve For The Second Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-119. First Derivative Of The Second Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-120. Second Derivative Of The Second Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 41. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.984M HCl	pH	Vol (ml)	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{d(m1)^2}$
0.0	9.732	0.50	-0.09	1.00	-0.04
1.0	9.637	1.50	-0.14	2.00	0.07
2.0	9.499	2.50	-0.07	3.00	-0.07
3.0	9.426	3.50	-0.14	4.00	-0.10
4.0	9.285	4.50	-0.24	5.00	-0.42
5.0	9.045	5.50	-0.66	5.88	0.47
6.0	8.385	6.25	-0.31	6.50	-0.23
6.5	8.232	6.75	-0.42	7.00	-0.15
7.0	8.022	7.25	-0.49	7.50	6.47
7.5	7.775	7.75	2.74	8.13	-3.82
8.0	9.146	8.50	-0.12	9.00	-0.30
9.0	9.025	9.50	-0.42	9.88	-1.61
10.0	8.604	10.25	-1.63		
10.5				10.50	2.19
	7.788	10.75	-0.54	11.00	-0.01
11.0	7.520	11.25	-0.54	11.50	0.77
11.5	7.249	11.75	-0.16	12.00	-0.14
12.0	7.171	12.25	-0.23	12.50	0.42
12.5	7.057	12.75	-0.02	13.00	-0.64
13.0	7.047	13.25	-0.34	13.50	0.51
13.5	6.878	13.75	-0.08	14.13	-0.07
14.0	6.837	14.50	-0.14	15.00	0.01
15.0	6.702	15.50	-0.12	16.00	0.01
16.0	6.578	16.50	-0.11	17.00	0.03
17.0	6.468	17.50	-0.08	18.00	-0.02
18.0	6.392	18.50	-0.10	19.00	0.03
19.0	6.294	19.50	-0.07	20.00	-0.01
20.0	6.223	20.50	-0.08	21.00	0.00
21.0	6.140	21.50	-0.08	22.00	-0.02
22.0	6.060	22.50	-0.10	23.00	-0.02
23.0	5.964	23.50	-0.11	23.83	0.05
24.0	5.853	24.15	-0.08	24.28	0.21
24.3	5.830	24.40	-0.03	24.53	-0.25
24.5	5.825	24.65	-0.09	24.78	-1.39
24.8	5.799	24.90	-0.43	25.05	1.39
25.0	5.712	25.20	-0.02	25.40	-0.44
25.4	5.705	25.60	-0.19	25.80	-0.11
25.8	5.627	26.00	-0.24	26.20	-0.19
26.2	5.531	26.40	-0.32	26.60	-0.01
26.6	5.405	26.80	-0.32	27.03	-0.64
27.0	5.278	27.25	-0.61	27.50	-6.81
27.5	4.975	27.75	-4.01	27.95	5.72
28.0	2.970	28.15	-1.72	28.28	5.28
28.3	2.454	28.40	-0.40	28.50	-0.97
28.5	2.374	28.60	-0.59	28.73	0.81
28.7	2.255	28.85	-0.39	29.00	0.14
29.0	2.137	29.15	-0.35	29.00	0.22
29.3	2.032	29.40	-0.29	29.50	0.77
L310	2.002	EJ. TU	0.23	23.30	0.77

TABLE 41. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 3 (continued).

ml 0.984M HCl	На	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
29.5	1.973	29.60	-0.14	29.73	-0.45
29.7	1.945	29.85	-0.25	30.18	0.16
30.0	1.869	30.50	-0.15	31.00	0.05
31.0	1.718	31.50	-0.10	32.00	0.01
32.0	1.621	32.50	-0.09	33.00	0.02
33.0	1.534	33.50	-0.06	34.00	0.00
34.0	1.470	34.50	-0.06	26.00	-0.01
35.0	1.407	17.50	0.04	8.75	0.00
	•				

NOTE: This sample was taken from the second batch of spent media which was broken into size fractions as it dried. This approach greatly reduced the time required to break down the media into particle sizes.

Figure C-121. Curve For The Third Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-122. First Derivative Of The Third Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-123. Second Derivative Of The Third Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HC1.

TABLE 42. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.984M HCl	p H	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
		0.50	-0.03	1.00	
0.0	9.987				-0.07
1.0	9.959	1.50	-0.10	2.00	-0.03
2.0	9.857	2.50	-0.13	3.00	0.03
3.0	9.723	3.50	-0.11	4.00	-0.02
4.0	9.618	4.50	-0.12	5.00	-0.01
5.0	9.497	5.50	-0.13	6.00	-0.02
6.0	9.368	6.50	-0.15	7.00	-0.07
7.0	9.219	7.50	-0.22	8.00	-0.13
8.0	9.004	8.50	-0.34	8.88	-0.33
9.0	8.663	9.25	-0.59	9.50	-0.67
9.5	8.368	9.75	-0.93	10.00	0.72
10.0	7.905	10.25	-0.57	10.50	0.05
10.5	7.622	10.75	-0.54	11.00	0.40
11.0	7.351	11.25	-0.34	11.50	0.28
11.5	7.180	11.75	-0.20		
				12.00	-0.08
12.0	7.079	12.25	-0.24	12.63	0.11
12.5	6.957	13.00	-0.16	13.50	0.06
13.5	6.792	14.00	-0.10	14.50	0.00
14.5	6.691	15.00	-0.10	15.50	0.03
15.5	6.594	16.00	-0.07	16.50	-0.01
16.5	6.528	17.00	-0.08	17.50	-0.03
17.5	6.452	18.00	-0.10	18.50	0.05
18.5	6.350	19.00	-0.05	19.50	-0.05
19.5	6.297	20.00	-0.10	20.50	0.02
20.5	6.199	21.00	-0.08	21.50	-0.01
21.5	6.118	22.00	-0.09	22.50	
					-0.01
22.5	6.031	23.00	-0.09	23.50	-0.02
23.5	5.938	24.00	-0.11	24.33	0.02
24.5	5.828	24.65	-0.10	24.78	0.80
24.8	5.798	24.90	0.10	25.08	-0.83
25.0	5.818	25.25	-0.19	25.50	0.42
25.5	5.723	25.75			
			0.02	26.00	-0.94
26.0	5.733	26.25	-0.45	26.43	0.54
26.5	5.509	26.60	-0.26	26.73	1.20
26.7	5.457	26.85	0.04	27.00	-2.86
27.0	5.469	27.15	-0.82	27.28	1.01
27.3	5.224	27.40	-0.56	27.50	2.97
		27.40		27.30	
27.5	5.111	27.60	0.03	27.73	-6.39
27.7	5.117	27.85	-1.57	27.98	-10.35
28.0	4.647	28.10	-4.15	28.20	-0.98
28.2	3.816	28.30	-4.35	28.40	12.85
28.4	2.946	28.50	-1.78	28.60	4.25
28.6	2.590	28.70	-0.93		
				28.80	1.55
28.8	2.404	28.90	-0.62	29.08	0.62
29.0	2.280	29.25	-0.40	29.50	0.37
29.5	2.078	29.75	-0.22	30.00	0.08

TABLE 42. TOTAL SPENT SODIUM BICARBONATE MEDIA - TITRATION 4 (continued).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
33.0 1.647 33.50 -0.07 34.00 0.02 34.0 1.579 34.50 -0.05 26.00 -0.01	30.0 1.969 30.5 1.879 31.0 1.814	30.25 30.75 31.50	-0.18 -0.13 -0.10	30.50 31.13 32.00	0.10 0.05 0.02
35.0 1.527 17.50 0.04 8.75 0.00	33.0 1.647 34.0 1.579	33.50 34.50	-0.07 -0.05	34.00 26.00	0.02

NOTE: This sample was taken from the second batch of spent media which was broken into size fractions as it dried. This approach greatly reduced the time required to break down the media into particle sizes.

Figure C-124. Curve For The Fourth Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-125. First Derivative Of The Forth Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-126. Second Derivative Of The Fourth Titration Curve For Titration Of Total Spent Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 43. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.984M HCl	n.U	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
	<u>pH</u> 11.512				
0.0		0.50	0.00	1.00	-0.73
1.0	11.512	1.50	-0.73	2.00	0.49
2.0	10.783	2.50	-0.24	3.00	0.07
3.0	10.546	3.50	-0.16	4.00	0.05
4.0	10.381	4.50	-0.11	5.00	-0.02
5.0	10.267	5.50	-0.14	6.00	0.05
6.0	10.130	6.50	-0.09	7.00	-0.03
7.0	10.040	7.50	-0.12	8.00	0.01
8.0	9.923	8.50	-0.11	9.00	-0.01
9.0	9.811	9.50	-0.12	10.00	0.01
10.0	9.691	10.50	-0.11	11.00	-0.06
11.0	9.585	11.50	-0.16	12.00	0.02
12.0	9.424	12.50	-0.14	13.00	-0.02
13.0	9.285	13.50	-0.16	14.00	-0.11
14.0	9.123	14.50	-0.28	14.88	0.17
15.0	8.846	15.25	-0.15	15.50	-0.57
15.5	8.770	15.75	-0.15	16.00	-0.76
16.0	8.551	16.25	-0.82	16.50	-0.26
16.5	8.141	16.75	-0.82		
				17.00	0.72
17.0	7.666	17.25	-0.59	17.50	0.43
17.5	7.371	17.75	-0.38	18.13	0.19
18.0	7.183	18.50	-0.24	19.00	0.05
19.0	6.947	19.50	-0.18	20.00	0.04
20.0	6.764	20.50	-0.14	21.00	0.02
21.0	6.624	21.50	-0.12	22.00	0.01
22.0	6.504	22.50	-0.11	23.00	0.01
23.0	6.397	23.50	-0.10	24.00	0.01
24.0	6.299	24.50	-0.08	25.00	-0.01
25.0	6.215	25.50	-0.10	26.00	0.01
26.0	6.119	26.50	-0.09	27.00	-0.01
27.0	6.032	27.50	-0.10	27.78	0.34
28.0	5.935	28.05	0.09	28.10	0.50
28.1	5.944	28.15	0.14	28.20	-0.60
28.2	5.958	28.25	0.08	28.30	-0.10
28.3	5.966	28.35	0.07	28.40	-0.50
28.4	5.973	28.45	0.02	28.50	-0.10
28.5	5.975	28.55	0.01	28.60	0.00
28.6	5.976	28.65	0.01	28.75	-0.43
28.7	5.977	28.85	-0.08	28.98	0.09
29.0	5.954	29.10	-0.05	29.23	-0.37
29.2	5.943	29.35	-0.15	29.50	0.22
29.5	5.899	29.65	-0.08	29.78	-0.10
29.8	5.875	29.90	-0.10	30.08	-0.25
30.0	5.854	30.25	-0.19	30.50	-0.05
30.5	5.758	30.75	-0.22	31.00	-0.22
31.0	5.650	31.25	-0.33	31.45	0.36
31.5	5.487	31.65	-0.18	31.78	0.31
01.0	0.40/	31.03	0.10	31.70	0.31

TABLE 43. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1 (continued).

ml 0.984M HCl	рН	<u>Vol (ml)</u>	$\frac{d(pH)/d(m1)}{d(m1)}$	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{d(m1)^2}$
31.8	5.432	31.90	-0.10	32.08	-1.38
32.0	5.411	32.25	-0.59	32.45	-0.51
32.5	5.117	32.65	-0.79	32.78	-6.72
32.8	4.880	32.90	-2.47	32.97	-23.60
33.0	4.386	33.05	-6.01	33.10	-1.60
33.1	3.785	33.15	-6.17	33.20	30.70
33.2	3.168	33.25	-3.10	33.30	14.60
33.3	2.858	33.35	-1.64	33.40	3.90
33.4	2.694	33.45	-1.25	33.50	4.80
33.5	2.569	33.55	-0.77	33.60	3.40
33.6	2.492	33.65	-0.43	33.70	-2.20
33.7	2.449	33.75	-0.65	33.80	0.80
33.8	2.384	33.85	-0.57	33.90	0.40
33.9	2.327	33.95	-0.53	34.05	0.72
34.0	2.274	34.15	-0.39	34.28	0.67
34.3	2.158	34.40	-0.22	34.58	-0.13
34.5	2.114	34.75	-0.26	35.00	0.12
35.0	1.982	35.25	-0.20	35.50	0.17
35.5	1.880	35.75	-0.12	36.13	0.01
36.0	1.820	36.50	-0.11	37.00	0.01
37.0	1.711	37.50	-0.09	38.00	0.03
38.0	1.616	38.50	-0.06	39.00	0.00
39.0	1.554	39.50	-0.06	40.00	0.01
40.0	1.493	40.50	-0.05	41.00	0.01
41.0	1.444	41.50	-0.04	31.25	-0.00
42.0	1.404	21.00	0.03	10.50	0.00
T L • V	1.107		••••		

NOTE: This sample was taken from the first batch of spent media which was dried in the oven before being broken into size fractions. The spent media dried into a hard cake causing extensive work to break down into particle sizes.

Figure C-127. Curve For The First Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-128. First Derivative Of The First Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-129. Second Derivative Of The First Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 44. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.984M HCl	<u>pH</u>	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	9.466	0.50	-0.31	1.00	0.06
1.0	9.157	1.50	-0.25	2.00	0.01
2.0	8.911	2.50	-0.24	2.88	-0.24
3.0	8.671	3.25	-0.42	3.50	-0.14
3.5	8.460	3.75	-0.49	4.00	-0.62
4.0	8.214	4.25	-0.80	4.50	0.44
4.5	7.813	4.75	-0.58	5.00	0.67
5.0	7.523	5.25	-0.24	5.50	-0.04
5.5	7.401	5.75	-0.26	6.00	0.05
6.0	7.269	6.25	-0.24	6.50	0.28
6.5	7.149	6.75	-0.10	7.00	-0.14
7.0	7.099	7.25	-0.17	7.63	0.02
7.5	7.015	8.00	-0.15	8.50	0.04
8.5	6.863	9.00	-0.11	9.50	0.03
9.5	6.750	10.00	-0.09	10.50	0.01
10.5	6.663	11.00	-0.08	11.50	0.01
11.5	6.585	12.00	-0.07	12.50	-0.00
12.5	6.514	13.00	-0.07	13.50	0.01
13.5	6.440	14.00	-0.06 -0.06	14.50	0.00
14.5 15.5	6.379 6.318	15.00 16.00	-0.06	15.50 16.50	0.00 0.01
16.5	6.258	17.00	-0.05	17.50	-0.06
17.5	6.207	18.00	-0.05	18.50	0.04
18.5	6.097	19.00	-0.11	19.50	-0.00
19.5	6.025	20.00	-0.07	20.38	0.05
20.5	5.953	20.75	-0.03	21.00	-0.19
21.0	5.936	21.25	-0.13	21.43	0.09
21.5	5.871	21.60	-0.10	21.73	0.40
21.7	5.851	21.85	0.00	22.05	-0.36
22.0	5.851	22.25	-0.15	22.50	-0.10
22.5	5.778	22.75	-0.20	23.00	-0.17
23.0	5.680	23.25	-0.28	23.50	-0.17
23.5	5.540	23.75	-0.36	24.00	-0.31
24.0	5.358	24.25	-0.52	24.43	-2.45
24.5	5.099	24.60	-1.37	24.73	-4.34
24.7	4.824	24.85	-2.46	24.95	-27.25
25.0	4.086	25.05	-7.91	25.10	41.50
25.1	3.295	25.15	-3.76	25.20	17.70
25.2	2.919	25.25	-1.99	25.30	10.30
25.3	2.720	25.35	-0.96	25.40	-0.60
25.4	2.624	25.45	-1.02	25.50	1.70
25.5	2.522	25.55	-0.85	25.60	2.30
25.6	2.437	25.65	-0.62	25.70	1.60
25.7	2.375	25.75	-0.46	25.83	2.03
25.8	2.329	25.90	-0.15	26.08	-0.68
26.0 26.5	2.298 2.101	26.25 26.75	-0.39 -0.20	26.50 27.00	0.39 0.02
20.5	2.101	20.75	-0.20	27.00	0.02

TABLE 44. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2 (continued).

ml 0.984M HCl	Hq	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
27.0	2.002	27.25	-0.19	27.50	0.05
27.5	1.907	27.75	-0.16	28.13	0.08
28.0	1.825	28.50	-0.10	29.00	0.00
29.0	1.723	29.50	-0.10	30.00	0.04
30.0	1.622	30.50	-0.06	31.00	0.01
31.0	1.559	31.50	-0.06	32.00	0.01
32.0	1.504	32.50	-0.05	33.00	0.00
33.0	1.457	33.50	-0.05	34.00	0.00
34.0	1.410	34.50	-0.04	26.00	-0.00
35.0	1.367	17.50	0.04	8.75	0.00
55.5			- • •		

NOTE: This sample was taken from the second batch of spent media which was broken into size fractions as it dried. This approach greatly reduced the time required to break down the media into particle sizes.

Figure C-130. Curve For The Second Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-131. First Derivative Of The Second Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-132. Second Derivative Of The Second Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 45. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

					
<u>ml 0.984M HCl</u>	<u>. pH</u>	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$d2(pH)/d(m1)^2$
0.0	9.432	0.50	-0.19	1.00	-0.04
1.0	9.243	1.50	-0.23	2.00	-0.07
2.0	9.015	2.50	-0.30	2.88	-0.29
3.0	8.720	3.25	-0.52	3.50	-0.10
3.5	8.462	3.75	-0.56	4.00	0.01
4.0	8.180	4.25	-0.56	4.50	-0.26
4.5	7.901	4.75	-0.69	5.00	0.86
5.0	7.556	5.25	-0.26	5.50	-0.22
5.5	7.427	5.75	-0.37	6.00	0.34
6.0	7.242	6.25	-0.20	6.50	0.06
6.5	7.142	6.75	-0.17	7.00	0.21
7.0	7.056	7.25	-0.07	7.50	-0.18
7.5	7.030	7.75	-0.16	8.13	0.06
				9.00	0.00
8.0	6.942	8.50	-0.11		
9.0	6.829	9.50	-0.11	10.00	0.03
10.0	6.716	10.50	-0.09	11.00	0.00
11.0	6.629	11.50	-0.09	12.00	0.02
12.0	6.544	12.50	-0.06	13.00	-0.00
13.0	6.480	13.50	-0.07	14.00	0.01
14.0	6.413	14.50	-0.06	15.00	0.01
15.0	6.353	15.50	-0.05	16.00	-0.04
16.0	6.306	16.50	-0.08	17.00	0.01
17.0	6.223	17.50	-0.07	18.00	0.00
18.0	6.152	18.50	-0.07	19.00	-0.02
19.0	6.084	19.50	-0.09	20.00	0.00
20.0	5.994	20.50	-0.09	20.80	0.16
21.0	5.905	21.10	0.01	21.23	-0.11
21.2	5.907	21.35	-0.02	21.50	-0.30
21.5	5.902	21.65	-0.11	21.78	0.05
21.8	5.870	21.90	-0.09	22.08	-0.31
22.0	5.851	22.25	-0.20	22.43	0.56
22.5	5.750	22.60	-0.01	22.73	-0.70
22.7	5.749	22.85	-0.18	23.05	-0.21
23.0	5.695	23.25	-0.26	23.50	-0.05
23.5	5.563	23.75	-0.29	24.00	-0.84
24.0	5.419	24.25	-0.71	24.50	-1.34
24.5	5.066	24.75	-1.38	24.93	-13.88
25.0	4.377	25.10	-6.23	25.18	22.17
25.2	3.130	25.25	-2.91	25.30	12.20
25.3	2.839	25.35	-1.69	25.40	4.10
25.4	2.670	25.45	-1.28	25.55	2.75
25.5	2.542	25.65	-0.73	25.78	1.18
25.8	2.342	25.90	-0.73	26.08	0.26
26.0	2.323	26.25	-0.43	26.50	
26.5	2.236	26.75	-0.34 -0.23	27.00	0.24
27.0	1.951	27.25	-0.23 -0.14	27.50	0.17 -0.02
27.5	1.881	27.25	-0.14 -0.15	28.13	
27.3	1.001	21.13	-0.15	20.13	0.07

TABLE 45. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3 (continued).

				,	
ml 0.984M HCl	Hq	Vol (ml)	d(pH)/d(m1)	Vol.(ml)	$d2(pH)/d(m1)^2$
28.0	1.807	28.50	-0.09	29.00	0.01
29.0	1.714	29.50	-0.08	30.00	0.02
30.0	1.632	30.50	-0.06	31.00	0.00
31.0	1.572	31.50	-0.06	32.00	0.01
32.0	1.515	32.50	-0.05	33.00	0.00
33.0	1.465	33.50	-0.05	34.00	-0.00
34.0	1.420	34.50	-0.05	26.00	-0.01
35.0	1.373	17.50	0.04	8.75	0.00

NOTE: This sample was taken from the second batch of spent media which was broken into size fractions as it dried. This approach greatly reduced the time required to break down the media into particle sizes.

Figure C-133. Curve For The Third Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-134. First Derivative Of The Third Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-135. Second Derivative Of The Third Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 46. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

m1 0.984M HC1 0.0	pH 9.529	Vol (ml) 0.50	<u>d(pH)/d(ml)</u> -0.24	Vol (ml) 1.00	d2(pH)/d(m1) ² 0.05
1.0	9.293	1.50	-0.19	2.00	-0.06
2.0	9.103	2.50	-0.25	2.88	0.03
3.0	8.852	3.25	-0.23	3.50	-0.34
3.5	8.739	3.75	-0.40	4.00	-0.24
4.0	8.540	4.25	-0.52	4.50	-0.22
4.5	8.281	4.75	-0.63	5.00	0.26
5.0	7.968	5.25	-0.50	5.50	0.23
5.5	7.720	5.75	-0.38	6.00	0.32
6.0	7.529	6.25	-0.22	6.50	-0.13
6.5	7.417	6.75	-0.29	7.00	0.22
7.0	7.273	7.25	~0.18	7.50	0.05
7.5	7.183	7.75	-0.16	8.13	0.02
8.0	7.105	8.50	-0.14	9.00	0.02
9.0	6.961	9.50	-0.12	10.00	0.04
10.0	6.841	10.50	-0.08	11.00	-0.01
11.0	6.759	11.50	-0.09	12.00	0.01
12.0	6.667	12.50	-0.08	13.00	0.02
13.0	6.587	13.50	-0.06	14.00	0.00
14.0	6.525	14.50	-0.06	15.00	0.03
15.0	6.466	15.50	-0.03	16.00	-0.05
16.0	6.437	16.50	-0.08	17.00	0.03
17.0	6.361	17.50	-0.05	18.00	-0.05
18.0	6.311	18.50	-0.10	19.00	0.01
19.0	6.215	19.50	-0.08	20.00	0.00
20.0	6.134	20.50.	-0.08	21.00	-0.04
21.0	6.057	21.50	-0.12	22.00	-0.03
22.0	5.936	22.50 23.25	-0.16 -0.13	22.88 23.50	0.03
23.0 23.5	5.780 5.713	23.75	-0.13	23.50	-0.37 0.27
24.0	5.554	24.10	-0.32	24.20	-0.70
24.2	5.509	24.10	-0.22	24.40	1.48
24.4	5.436	24.50	-0.07	24.60	-2.73
24.6	5.422	24.70	-0.62	24.80	0.80
24.8	5.299	24.90	-0.45	25.03	-2.65
25.0	5.208	25.15	-1.12	25.28	-5.79
25.3	4.873	25.40	-2.56	25.50	-15.60
25.5	4.360	25.60	-5.68	25.68	15.70
25.7	3.223	25.75	-3.33	25.80	23.30
25.8	2.890	25.85	-1.00	25.90	-11.00
25.9	2.790	25.95	-2.10	26.00	15.10
26.0	2.580	26.05	-0.59	26.13	-1.10
26.1	2.521	26.20	-0.76	26.30	1.10
26.3	2.370	26.40	-0.53	26.58	0.48
26.5	2.263	26.75	-0.37	27.00	0.26
27.0	2.079	27.25	-0.24	27.50	0.16
27.5	1.960	27.75	-0.16	28.13	0.04

TABLE 46. SPENT 1000 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4 (continued).

ml 0.984M HCl	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
28.0	1.880	28.50	-0.13	29.00	0.04
29.0	1.752	29.50	-0.09	30.00	0.02
30.0	1.662	30.50	-0.07	31.00	0.01
31.0	1.588	31.50	-0.06	32.00	0.01
32.0	1.526	32.50	-0.05	33.00	0.00
33.0	1.479	33.50	-0.04	34.00	0.00
34.0	1.435	34.50	-0.04	26.00	-0.00
35.0	1.391	17.50	0.04	8.75	0.00

NOTE: This sample was taken from the second batch of spent media which was broken into size fractions as it dried. This approach greatly reduced the time required to break down the media into particle sizes.

Figure C-136. Curve For The Fourth Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-137. First Derivative Of The Fourth Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-138. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 1000 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 47. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

1					
-1 0 004M UC1		V-1 (-1)	4/-11/ /4/1/	V-7 (-7)	40/-112/4/722
ml 0.984M HCl	<u>pH</u>	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	11.353	0.50	-0.32	1.00	0.06
1.0	11.038	1.50	-0.26	2.00	0.04
2.0	10.782	2.50	-0.22	3.00	0.09
3.0	10,565	3.50	-0.13	4.00	-0.03
4.0	10.435	4.50	-0.16	5.00	0.05
5.0	10.276	5.50	-0.11	6.00	-0.00
6.0	10.164	6.50	-0.11	7.00	0.01
7.0	10.051	7.50	-0.11	8.00	0.00
8.0	9.945	8.50	-0.11	9.00	0.01
9.0	9.839	9.50	-0.10	10.00	-0.00
10.0	9.742	10.50	-0.10	11.00	-0.07
11.0	9.642	11.50	-0.17	12.00	0.07
12.0	9.468	12.50	-0.10	13.00	-0.07
13.0	9.369	13.50	-0.17	14.00	-0.02
14.0	9.196	14.50	-0.20	15.00	-0.03
15.0	8.998	15.50	-0.23	15.88	-0.46
16.0	8.767	16.25	-0.57	16.50	0.62
16.5	8.480	16.75	-0.26	17.13	-0.78
17.0	8.348	17.50	-0.85	17.13	0.55
18.0	7.502	18.25	-0.44	18.50	-0.15
18.5	7.284	18.75	-0.51	19.13	0.57
19.0	7.234	19.50	-0.51	20.00	-0.10
20.0	6.945	20.50	-0.18	21.00	
					0.04
21.0 22.0	6.765	21.50	-0.14	22.00	0.03
	6.627	22.50	-0.11	23.00	-0.00
23.0	6.518	23.50	-0.11	24.00	0.03
24.0	6.406	24.50	-0.08	25.00	-0.01
25.0	6.324	25.50	-0.09	26.00	0.03
26.0	6.229	26.50	-0.07	27.00	-0.02
27.0	6.161	27.50	-0.09	28.00	0.01
28.0	6.072	28.50	-0.08	28.83	0.16
29.0	5.996	29.15	0.03	29.30	0.17
29.3	6.004	29.45	0.08	29.63	-0.51
29.6	6.027	29.80	-0.10	29.97	0.16
30.0	5.986	30.15	-0.05	30.30	-0.17
30.3	5.972	30.45	-0.10	30.63	-0.02
30.6	5.943	30.80	-0.10	30.97	0.16
31.0	5.902	31.15	-0.05	31.30	-0.23
31.3	5.888	31.45	-0.12	31.63	-0.11
31.6	5.853	31.80	-0.16	32.03	-0.03
32.0	5.791	32.25	-0.17	32.50	-0.03
32.5	5.706	32.75	-0.19	32.95	-0.05
33.0	5.613	33.15	-0.21	33.30	-0.29
33.3	5.551	33.45	-0.29	33.63	-0.26
33.6	5.463	33.80	-0.38	33.97	0.20
34.0	5.309	34.15	-0.32	34.30	-1.54
34.3	5.214	34.45	-0.78	34.57	-1.92
	*				

TABLE 47. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1 (continued).

ml 0.984M HCl	Hq	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
34.6	4.980	34.70	-1.26	34.80	-7.62
34.8	4.728	34.90	-2.78	35.00	-16.33
35.0	4.171	35.10	-6.05	35.20	21.65
35.2	2.961	35.30	-1.72	35.40	3.70
35.4	2.617	35.50	-0.98	35.60	0.80
35.6	2.421	35.70	-0.82	35.80	2.95
35.8	2.257	35.90	-0.23	36.20	-0.08
36.0	2.211	36.50	-0.28	37.00	0.14
37.0	1.931	37.50	-0.14	38.00	0.04
38.0	1.788	38.50	-0.10	39.00	0.02
39.0	1.686	39.50	-0.08	29.75	-0.01
40.0	1.608	20.00	0.04	10.00	0.00

Figure C-139. Curve For The First Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-140. First Derivative Of The First Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-141. Second Derivative Of The First Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 48. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

				 	
0 004M UC3	-11	Val (ml)	d(nU)/d(m1)	Vol. (ml)	$d2(pH)/d(m1)^2$
ml 0.984M HCl	<u>pH</u>	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	
0.0	11.337	0.50	-0.28	1.00	0.01
1.0	11.054	1.50	-0.27	2.00	0.11
2.0	10.784	2.50	-0.16	3.00	0.03
3.0	10.620	3.50	-0.14	4.00	0.01
4.0	10.485	4.50	-0.12	5.00	-0.02
5.0	10.362	5.50	-0.14	6.00	0.04
6.0	10.221	6.50	-0.10	7.00	-0.00
7.0	10.122	7.50	-0.10	8.00	-0.01
8.0	10.020	8.50	-0.11	9.00	-0.01
9.0	9.910	9.50	-0.12	10.00	0.02
10.0	9.792	10.50	-0.10	11.00	-0.03
11.0	9.694	11.50	-0.13	12.00	0.01
12.0	9.564	12.50	-0.12	13.00	-0.05
13.0	9.441	13.50	-0.17	14.00	-0.00
14.0	9.268	14.50	-0.17	15.00	-0.14
15.0	9.094	15.50	-0.31	15.88	-0.09
16.0	8.782	16.25	-0.38	16.50	-0.50
16.5	8.592		-0.63	17.00	
		16.75			-0.54
17.0	8.277	17.25	-0.90	17,50	0.58
17.5	7.826	17.75	-0.61	18.00	0.36
18.0	7.521	18.25	-0.43	18.50	0.28
18.5	7.305	18.75	-0.29	19.00	0.12
19.0	7.159	19.25	-0.23	19.63	0.06
19.5	7.042	20.00	-0.19	20.50	0.04
20.5	6.851	21.00	-0.15	21.50	0.03
21.5	6.699	22.00	-0.12	22.50	0.01
22.5	6.580	23.00	-0.11	23.50	0.03
23.5	6.473	24.00	-0.08	24.50	0.00
24.5	6.397	25.00	-0.07	25.50	-0.02
25.5	6.324	26.00	-0.09	26.50	0.15
26.5	6.235	27.00	0.06	27.50	-0.16
27.5	6.295	28.00	-0.11	28.50	-0.01
28.5	6.190	29.00	-0.12	29.38	0.01
29.5	6.073	29.75	-0.11	30.13	-0.01
30.0	6.019	30.50	-0.12	31.00	-0.04
31.0	5.903	31.50	-0.16	31.88	0.07
32.0	5.743	32.25	-0.11	32.50	-0.15
32.5	5.690	32.75	-0.18	33.00	-0.04
33.0	5.599	33.25	-0.20	33.50	-0.18
33.5	5.497	33.75	-0.29	34.00	-0.50
34.0	5.350	34.25	-0.55	34.50	-3.27
34.5	5.077	34.75	-2.18	34.95	-5.48
35.0	3.986	35.15	-4.37	35.28	13.15
35.3	2.674	35.40	-1.08	35.53	2.18
35.5	2.457	35.65	-0.54	35.78	0.30
35.8	2.295	35.90	-0.46	36.20	0.28
36.0	2.202	36.50	-0.29	37.00	0.14

TABLE 48. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2 (continued).

ml 0.984M HCl	pH	Vol (ml)	$\frac{d(pH)/d(m1)}{2}$	Vol (ml)	d2(pH)/d(m1) ² 0.03
37.0 38.0	1.908 1.755	37.50 38.50	-0.15 -0.12	38.00 39.00	0.03
39.0	1.634	39.50	-0.06	29.75	-0.01
40.0	1.574	20.00	0.04	10.00	0.00

Figure C-142. Curve For The Second Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-143. First Derivative Of The Second Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-144. Second Derivative Of The Second Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 49. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

-1 0 00414 1103	-11	V-1 (7)	4/-112/4/32	W-7 / 7)	40/-112/14/222
ml 0.984M HCl 0.0	<u>pH</u> 11.607	Vol (ml) 0.50	<u>d(pH)/d(ml)</u> -0.56	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{2}$
1.0	11.007	1.50	-0.27	1.00 2.00	0.29
2.0	10.778	2.50	-0.15	3.00	0.12
3.0	10.778	3.50	-0.15	4.00	
4.0	10.486	4.50	-0.14		-0.00
	10.486	5.50	-0.14	5.00	0.03
5.0	10.342	6.50	-0.11	6.00	0.00
6.0 7.0	10.228	7.50	-0.11	7.00	-0.00
8.0	9.998	8.50	-0.12	8.00	0.02
9.0	9.906	9.50	-0.09	9.00	-0.01
	9.799	10.50	-0.11	10.00	-0.01
10.0 11.0	9.799		-0.12	11.00	-0.00
12.0	9.570	11.50		12.00	-0.02
		12.50	-0.13	13.00	-0.02
13.0	9.435	13.50	-0.15	14.00	-0.03
14.0	9.285	14.50	-0.18	15.00	-0.09
15.0	9.109	15.50	-0.26	15.88	-0.16
16.0	8.845	16.25	-0.38	16.50	-0.44
16.5 17.0	8.653	16.75	-0.60	17.00	-0.44
17.5	8.352 7.940	17.25	-0.82	17.50	0.08
18.0	7.547	17.75 18.25	-0.79 -0.39	18.00	0.80
18.5	7.354	18.75		18.50	0.10
19.0	7.354	19.25	-0.34	19.00	0.20
19.5	7.165	20.00	-0.24 -0.20	19.63	0.05
20.5	6.866	21.00		20.50	0.05
21.5	6.712		-0.15	21.50	0.02
22.5	6.576	22.00 23.00	-0.14 -0.09	22.50	0.04
23.5	6.484	24.00	-0.09	23.50 24.50	0.01 -0.01
24.5	6.404	25.00	-0.09	25.50	-0.01
25.5	6.314	26.00	-0.10	26.50	0.04
26.5	6.218	27.00	-0.16	27.50	-0.03
27.5	6.159	28.00	-0.09	28.50	-0.02
28.5	6.071	29.00	-0.11	29.50	0.05
29.5	5.965	30.00	-0.05	30.50	-0.06
30.5	5.911	31.00	-0.11	31.38	0.01
31.5	5.798	31.75	-0.10	32.00	0.01
32.0	5.746	32.25	-0.10	32.50	-0.17
32.5	5.696	32.75	-0.19	33.00	0.06
33.0	5.603	33.25	-0.15	33.50	-0.37
33.5	5.526	33.75	-0.34	33.97	-0.01
34.0	5.356	34.20	-0.34	34.35	-0.78
34.4	5.218	34.50	-0.58	34.60	-2.05
34.6	5.102	34.70	-0.99	34.80	-1.50
34.8	4.904	34.90	-1.29	35.00	-14.70
35.0	4.646	35.10	-4.23	35.20	-3.25
35.2	3.800	35.30	-4.88	35.45	12.20
35.4	2.824	35.60	-1.22	35.75	2.40
			~		

TABLE 49. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3 (continued).

ml 0.984M HCl	pH	<u>Vol (ml)</u>	d(pH)/d(m1)	<u>Vol (ml)</u>	$d2(pH)/d(m1)^2$
35.8	2.336	35.90	-0.50	36.20	0.33
36.0	2.236	36.50	-0.30	37.00	0.12
37.0	1.935	37.50	-0.18	38.00	0.08
38.0	1.756	38.50	-0.10	39.00	0.02
39.0	1.660	39.50	-0.08	29.75	-0.01
40.0	1.580	20.00	0.04	10.00	0.00
					,

Figure C-145. Curve For The Third Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-146. First Derivative Of The Third Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-147. Second Derivative Of The Third Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 50. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.984M HCl	pH	<u>Vol (ml)</u>	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.625	0.05	-0.46	1.00	0.23
1.0	11.164	1.50	-0.23	2.00	-0.02
2.0	10.936	2.50	-0.24	3.00	0.07
3.0	10.693	3.50	-0.17	4.00	0.03
4.0	10.518	4.50	-0.14	5.00	0.02
5.0	10.376	5.50	-0.13	6.00	0.02
6.0	10.250	6.50	-0.11	7.00	0.00
7.0	10.140	7.50	-0.11	8.00	-0.01
8.0	10.034	8.50	-0.12	9.00	0.03
9.0	9.913	9.50	-0.09	10.00	-0.03
10.0	9.820	10.50	-0.12	11.00	0.02
11.0	9.699	11.50	-0.10	12.00	-0.03
12.0	9.596	12.50	-0.14	13.00	-0.02
13.0	9.460	13.50	-0.15	14.00	-0.02
14.0	9.308	14.50	-0.18	15.00	-0.12
15.0	9.132	15.50	-0.29	15.88	-0.07
16.0	8.838	16.25	-0.35	16.50	-0.34
16.5	8.663	16.75	-0.52	17.00	-0.54
17.0	8.403	17.25	-0.79	17.50	-0.18
17.5	8.009	17.75	-0.88	18.00	0.98
18.0	7.571	18.25	-0.39	18.50	0.34
18.5	7.377	18.75	-0.22	19.00	-0.15
19.0	7.268	19.25	-0.29	19.50	0.18
19.5	7.121	19.75	-0.20	20.13	0.06
20.0	7.019	20.50	-0.16	21.00	0.01
21.0	6.862	21.50	-0.14	22.00	0.05
22.0	6.718	22.50	-0.10	23.00	0.00
23.0	6.620	23.50	-0.10	24.00	0.02
24.0	6.524	24.50	-0.07	25.00	0.00
25.0	6.450	25.50	-0.07	26.00	-0.02
26.0	6.380	26.50	-0.09	27.00	0.03
27.0	6.287	27.50	-0.06	28.00	-0.04
28.0	6.228	28.50	-0.10	29.00	-0.01
29.0	6.129	29.50	-0.11	30.00	0.12
30.0	6.022	30.50	0.01	31.00	-0.18
31.0	6.033	31.50	-0.17	32.00	-0.03
32.0	5.861	32.50	-0.21	32.83	0.10
33.0	5.655	33.15	-0.14	33.33	0.12
33.3	5.612	33.50	-0.10	33.68	-0.42
33.7	5.571	33.85	-0.25	34.00	-0.46
34.0	5.496	34.15	-0.39	34.30	-0.29
34.3	5.380	34.45	-0.47	34.63	-1.75
34.6	5.238	34.80	-1.08	34.95	-8.78
35.0	4.804	35.10	-3.72	35.18	-27.33
35.2	4.060	35.25	-7.82	35.33	33.47
35.3	3.278	35.40	-2.80	35.50	9.15
35.5	2.718	35.60	-0.97	35.72	1.05

TABLE 50. SPENT 600 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4 (continued).

ml 0.984M HCl	рН	<u>Vol (ml)</u>	<u>d(pH)/d(ml)</u>	Vol (ml)	d2(pH)/d(m1) ²
35.7	2.524	35.85	-0.71 -0.36	36.18 37.00	0.53 0.21
36.0 37.0	2.312 1.949	36.50 37.50	-0.36	38.00	0.21
38.0	1.792	38.50	-0.11	39.00	0.02
39.0	1.687	39.50	-0.09	29.75	-0.01
40.0	1.601	20.00	0.04	10.00	0.00

Figure C-148. Curve For The Fourth Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-149. First Derivative Of The Fourth Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-150. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 600 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 51. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.984M HCl	pH_	Vol (ml)	<u>d(pH)/d(m1)</u>	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.735	0.50	-0.15	1.00	-0.02
1.0	10.589	1.50	-0.16	2.00	0.02
2.0	10.428	2.50	-0.14	3.00	-0.02
3.0	10.287	3.50	-0.16	4.00	0.05
4.0	10.129	4.50	-0.11	5.00	0.00
5.0	10.023	5.50	-0.10	6.00	-0.01
6.0	9.920	6.50	-0.11	7.00	0.01
7.0	9.811	7.50	-0.10	8.00	0.01
8.0	9.714	8.50	-0.09	9.00	-0.07
9.0	9.624	9.50	-0.16	10.00	0.02
10.0	9.466	10.50	-0.14	11.00	-0.07
11.0	9.330	11.50	-0.20	12.00	-0.02
12.0	9.126	12.50	-0.22	13.00	-0.22
13.0	8.904	13.50	-0.44	14.00	-0.30
14.0	8.464 7.724	14.50	-0.74	15.00	0.29
15.0 16.0	7.724	15.50 16.25	-0.45 -0.24	15.88 16.50	0.28
16.5	7.158	16.25	-0.24	17.13	0.04 0.02
17.0	7.150	17.50	-0.20	18.00	0.06
18.0	6.846	18.50	-0.14	19.00	0.04
19.0	6.706	19.50	-0.10	20.00	0.01
20.0	6.606	20.50	-0.09	21.00	0.00
21.0	6.514	21.50	-0.09	22.00	0.01
22.0	6.425	22.50	-0.08	23.00	0.00
23.0	6.346	23.50	-0.07	24.00	0.01
24.0	6.271	24.50	-0.06	25.00	-0.04
25.0	6.211	25.50	-0.10	26.00	0.03
26.0	6.115	26.50	-0.07	27.00	-0.01
27.0	6.044	27.50	-0.08	28.00	-0.03
28.0	5.963	28.50	-0.12	29.00	-0.02
29.0	5.848	29.50	-0.13	29.83	0.24
30.0	5.717	30.15	0.03	30.28	-0.49
30.3	5.725	30.40	-0.09	30.50	0.18
30.5	5.706	30.60	-0.06	30.73	-1.00
30.7	5.694	30.85	-0.31	31.05	0.06
31.0	5.601	31.25	-0.29	31.45	-0.08
31.5	5.457	31.65	-0.32	31.78	-1.40
31.8 32.0	5.361 5.227	31.90	-0.67	32.03	1.59
32.3	5.145	32.15 32.45	-0.27 -1.10	32.30 32.57	-2.74
32.6	4.816	32.70	-3.75	32.80	-10.61 -9.07
32.8	4.066	32.70	-5.56	33.08	12.17
33.0	2.953	33.25	-1.30	33.50	1.67
33.5	2.301	33.75	-0.47	34.13	0.36
34.0	2.066	34.50	-0.20	35.00	0.06
35.0	1.864	35.50	-0.14	36.00	0.05
36.0	1.720	36.50	-0.09	37.00	0.02
• • •					••••

TABLE 51. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1 (continued).

ml 0.984M HCl	pH	Vol (ml)	d(pH)/d(ml)	Vol (ml)	d2(pH)/d(m1) ²
37.0	1.630	37.50	-0.07	38.00	0.02
38.0	1.557	38.50	-0.05	39.00	0.00
39.0	1.504	39.50	-0.05	29.75	-0.00
40.0	1.455	20.00	0.04	10.00	0.00

Figure C-151. Curve For The First Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-152. First Derivative Of The First Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-253. Second Derivative Of The First Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 52. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.984M HCl 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	pH 10.358 10.344 10.162 10.189 10.048 9.904 9.829 9.748 9.595 9.505 9.293 9.116 8.904	Vol (ml) 0.05 1.50 2.50 3.50 4.50 5.50 6.50 7.50 8.50 9.50 10.50 11.50 12.50	d(pH)/d(m1) -0.01 -0.18 0.03 -0.14 -0.14 -0.07 -0.08 -0.15 -0.09 -0.21 -0.18 -0.21 -0.74	Vol (ml) 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 12.88	d2(pH)/d(m1) ² -0.17 0.21 -0.17 -0.00 0.07 -0.01 -0.07 0.06 -0.12 0.03 -0.03 -0.03 -0.53 0.21
14.0 14.5 15.0 15.5 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.5 31.3 31.4 31.7 32.2 32.5 32.7 33.0 34.0 35.0 36.0	7.522 7.341 7.222 7.081 7.070 6.836 6.704 6.722 6.604 6.497 6.483 6.219 6.121 6.039 5.945 5.704 5.516 5.426 5.516 5.426 5.274 5.059 4.262 3.018 2.599 2.408 2.302 1.804 1.706	14.25 14.75 15.25 15.75 16.50 17.50 18.50 20.50 21.50 22.50 24.50 25.50 26.50 27.50 28.50 29.50 30.25 30.75 31.15 31.35 31.35 31.35 31.35 32.35 32.35 32.35 32.35 32.50	-0.36 -0.24 -0.28 -0.02 -0.23 -0.13 0.02 -0.12 -0.11 -0.01 -0.16 -0.10 -0.18 -0.09 -0.15 -0.19 -0.18 -0.30 -0.59 0.36 -0.25 -2.66 -6.22 -1.40 -0.95 -0.35 -0.34 -0.16 -0.10 -0.07	14.50 15.00 15.50 16.13 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 29.88 30.50 30.95 31.25 31.45 31.70 31.97 32.22 32.47 32.72 33.18 34.00 35.00 36.00 37.00	0.25 -0.09 0.52 -0.28 0.10 0.15 -0.14 0.01 0.09 -0.06 0.07 0.02 -0.01 0.00 -0.05 -0.04 0.01 -0.25 -0.71 4.73 -3.05 -8.02 -14.25 19.29 1.77 2.41 0.02 0.18 0.06 0.03 0.01

TABLE 52. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2 (continued).

ml 0.984M HCl	pH	Vol (ml)	<u>d(pH)/d(ml)</u>	Vol (ml)	d2(pH)/d(m1) ²
37.0	1.636	37.50	-0.06	38.00	0.00
38.0	1.581	38.50	-0.05	39.00	0.01
39.0	1.530	39.50	-0.04	29.75	-0.00
40.0	1.486	20.00	0.04	10.00	0.00

Figure C-154. Curve For The Second Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-155. First Derivative Of The Second Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-156. Second Derivative Of The Second Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 53. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.984M HCl	Нд	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.564	0.50	-0.15	1.00	0.01
1.0	10.409	1.50	-0.15	2.00	0.02
2.0	10.259	2.50	-0.13	3.00	0.01
3.0	10.129	3.50	-0.12	4.00	0.02
4.0	10.008	4.50	-0.10	5.00	-0.05
5.0	9.910	5.50	-0.15	6.00	0.06
6.0	9.760	6.50	-0.09	7.00	-0.04
7.0	9.667	7.50	-0.14	8.00	-0.00
8.0	9.530	8.50	-0.14	9.00	-0.03
9.0	9.391	9.50	-0.17	10.00	-0.06
10.0	9.223	10.50	-0.23	11.00	-0.07
11.0	8.993	11.50	-0.30	11.88	-0.40
12.0	8.691	12.25	-0.50	12.50	-0.46
		12.75	-0.83	13.00	0.21
12.5	8.391 7.975	12./5	-0.73	13.50	
13.0		13.25	-0.73		0.67
13.5	7.612	13.75		14.00	0.12
14.0	7.416	14.25	-0.33	14.50	0.12
14.5	7.249	14.75	-0.27	15.13	0.12
15.0	7.113	15.50	-0.18	16.00	0.03
16.0	6.929	16.50	-0.16	17.00	0.04
17.0	6.771	17.50	-0.12	18.00	0.01
18.0	6.655	18.50	-0.10	19.00	0.02
19.0	6.551	19.50	-0.08	20.00	0.01
20.0	6.472	20.50	-0.07	21.00	-0.04
21.0	6.399	21.50	-0.11	22.00	0.06
22.0	6.290	22.50	-0.05	23.00	-0.04
23.0	6.237	23.50	-0.09	24.00	0.03
24.0	6.143	24.50	-0.06	25.00	-0.03
25.0	6.083	25.50	-0.09	26.00	-0.00
26.0	5.993	26.50	-0.09	27.00	-0.05
27.0	5.898	27.50	-0.15	28.00	0.03
28.0	5.751	28.50	-0.12	29.00	-0.13
29.0	5.630	29.50	-0.25	29.88	0.13
30.0	5.377	30.25	-0.16	30.50	-0.90
30.5	5.298	30.75	-0.61	31.00	-4.66
31.0	4.994	31.25	-2.94	31.50	1.63
31.5	3.524	31.75	-2.13	32.00	3.42
32.0	2.461	32.25	-0.42	32.50	0.05
32.5	2.252	32.75	-0.39	33.13	0.24
33.0	2.055	33.50	-0.21	34.00	0.11
34.0	1.841	34.50	-0.10	35.00	0.02
35.0	1.738	35.50	-0.09	36.00	0.02
36.0	1.650	36.50	-0.06	37.00	0.03
37.0	1.585	37.50	-0.04	38.00	-0.01
38.0	1.549	38.50	-0.05	39.00	0.00
39.0	1.501	39.50	-0.04	29.75	-0.00
40.0	1.457	20.00	0.04	10.00	0.00
		•			

Figure C-157. Curve For The Third Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-158. First Derivative Of The Third Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-159. Second Derivative Of The Third Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 54. SPENT 425 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.984M HCl	рН	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^2$
					-0.07
0.0	10.353	0.50	-0.07	1.00	
1.0	10.282	1.50	-0.14	2.00	0.05
2.0	10.140	2.50	-0.09	3.00	-0.02
3.0	10.049	3.50	-0.11	4.00	0.00
				5.00	0.03
4.0	9.934	4.50	-0.11		
5.0	9.820	5.50	-0.09	6.00	-0.03
6.0	9.732	6.50	-0.12	7.00	0.01
7.0	9.614	7.50	-0.11	8.00	-0.02
	9.504	8.50	-0.13	9.00	-0.04
8.0				10.00	-0.02
9.0	9.372	9.50	-0.17		
10.0	9.199	10.50	-0.19	11.00	-0.11
11.0	9.006	11.50	-0.30	11.88	-0.53
12.0	8.706	12.25	-0.70	12.50	0.02
		12.75	-0.69	13.00	-0.05
12.5	8.357				
13.0	8.012	13.25	-0.72	13.50	0.49
13.5	7.654	13.75	-0.47	14.00	0.20
14.0	7.418	14.25	-0.37	14.50	0.33
14.5	7.232	14.75	-0.21	15.13	-0.01
			-0.22	16.00	0.08
15.0	7.128	15.50			
16.0	6.913	16.50	-0.13	17.00	0.02
17.0	6.778	17.50	-0.12	18.00	0.01
18.0	6.663	18.50	-0.10	19.00	0.02
19.0	6.560	19.50	-0.09	20.00	0.01
20.0	6.474	20.50	-0.08	21.00	0.04
		21.50	-0.04	22.00	-0.06
21.0	6.394				
22.0	6.355	22.50	-0.10	23.00	0.02
23.0	6.252	23.50	-0.08	24.00	0.01
24.0	6.168	24.50	-0.07	25.00	-0.02
25.0	6.097	25.50	-0.09	26.00	0.15
26.0	6.007	26.50	0.06	27.00	-0.21
		27.50	-0.14	28.00	-0.06
27.0	6.070				
28.0	5.926	28.50	-0.20	28.88	0.02
29.0	5.723	29.25	-0.19	29.50	-0.28
29.5	5.629	29.75	-0.33	30.00	-0.73
30.0	5.465	30.25	-0.69	30.50	0.24
30.5	5.118	30.75	-0.57	30.95	-5.65
					-5.01
31.0	4.832	31.15	-2.83	31.30	
31.3	3.982	31.45	-4.34	31.63	10.41
31.6	2.681	31.80	-0.69	32.15	0.49
32.0	2.404	32.50	-0.35	33.00	0.16
33.0	2.052	33.50	-0.19	34.00	0.07
34.0	1.865	34.50	-0.12	35.00	0.05
				36.00	0.01
35.0	1.747	35.50	-0.07		
36.0	1.678	36.50	-0.06	37.00	0.01
37.0	1.617	37.50	-0.05	38.00	0.02
38.0	1.566	38.50	-0.03	39.00	-0.01
39.0	1.532	39.50	-0.04	29.75	-0.00
	1.489	20.00	0.04	10.00	0.00
40.0	1.409	20.00	0.04	10.00	0.00

Figure C-160. Curve For The Fourth Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-161. First Derivative Of The Fourth Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-162. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 450 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 55. SPENT 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

MI 0.984M HC1						
0.0 10.501 0.50 -0.07 1.00 -0.07 1.0 10.431 1.50 -0.14 2.00 0.07 2.0 10.294 2.50 -0.06 3.00 0.01 3.0 10.232 3.50 -0.07 5.00 0.04 5.0 10.182 4.50 -0.07 5.00 0.04 5.0 10.188 5.50 -0.03 6.00 -0.03 6.0 10.077 6.50 -0.06 7.00 -0.04 7.0 10.188 7.50 -0.10 8.00 -0.33 8.0 9.917 8.50 -0.43 9.00 0.28 9.0 9.483 9.50 -0.15 10.00 0.03 10.0 9.333 10.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.22 12.00 -0.06 12.0	ml 0.984M HCl	На	Vol (ml)	d(pH)/d(ml)	Vol (ml)	$d2(pH)/d(m1)^{2}$
1.0 10.431 1.50 -0.14 2.00 0.07 2.0 10.294 2.50 -0.06 3.00 0.01 3.0 10.232 3.50 -0.05 4.00 -0.02 4.0 10.182 4.50 -0.07 5.00 0.04 5.0 10.108 5.50 -0.06 7.00 -0.04 7.0 10.018 7.50 -0.10 8.00 -0.33 8.0 9.917 8.50 -0.10 8.00 -0.33 9.0 9.483 9.50 -0.15 10.00 0.03 10.0 9.333 10.50 -0.12 11.00 -0.10 11.0 9.210 11.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.28 12.88 -0.21 13.0 8.711 13.25 -0.43 13.50 -0.04 13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.75 -0.68 14.50 -0.04 15.5						
2.0 10.294 2.50 -0.06 3.00 0.01 3.0 10.232 3.50 -0.05 4.00 -0.02 4.0 10.182 4.50 -0.07 5.00 0.04 5.0 10.108 5.50 -0.03 6.00 -0.03 6.0 10.077 6.50 -0.06 7.00 -0.04 7.0 10.018 7.50 -0.10 8.00 -0.33 8.0 9.917 8.50 -0.43 9.00 0.28 9.0 9.483 9.50 -0.15 10.00 0.03 10.0 9.333 10.50 -0.12 11.00 -0.10 11.0 9.210 11.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.28 12.88 -0.21 13.0 8.711 13.25 -0.43 13.50 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5						
3.0						
4.0 10.182 4.50 -0.07 5.00 0.04 5.0 10.108 5.50 -0.03 6.00 -0.04 7.0 10.018 7.50 -0.10 8.00 -0.33 8.0 9.917 8.50 -0.10 8.00 -0.33 8.0 9.917 8.50 -0.15 10.00 0.03 10.0 9.333 10.50 -0.12 11.00 -0.10 11.0 9.210 11.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.28 12.80 -0.21 13.0 8.711 13.75 -0.45 14.00 -0.45 14.0						
5.0 10.108 5.50 -0.03 6.00 -0.03 6.0 10.077 6.50 -0.06 7.00 -0.04 7.0 10.018 7.50 -0.10 8.00 -0.33 8.0 9.917 8.50 -0.15 10.00 0.28 9.0 9.483 9.50 -0.15 10.00 0.03 10.0 9.333 10.50 -0.12 11.00 -0.10 11.0 9.210 11.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.28 12.88 -0.21 13.0 8.711 13.25 -0.43 13.50 -0.04 13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 0.00 15.0 7.610 15.25 -0.34 16.13 0.14 16.0						
6.0 10.077 6.50 -0.06 7.00 -0.04 7.0 10.018 7.50 -0.10 8.00 -0.33 8.0 9.917 8.50 -0.43 9.00 0.28 9.0 9.483 9.50 -0.15 10.00 0.03 10.0 9.333 10.50 -0.12 11.00 -0.10 11.0 9.210 11.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.28 12.88 -0.21 13.0 8.711 13.25 -0.43 13.50 -0.04 13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 -0.60 15.0 7.610 15.25 -0.34 15.50 -0.00 15.5 7.441 15.75 -0.34 16.13 0.14 16.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
7.0 10.018 7.50 -0.10 8.00 -0.33 8.0 9.917 8.50 -0.43 9.00 0.28 9.0 9.483 9.50 -0.15 10.00 0.03 10.0 9.333 10.50 -0.12 11.00 -0.10 11.0 9.210 11.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.28 12.88 -0.21 13.0 8.711 13.25 -0.43 13.50 -0.04 13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 0.60 15.0 7.610 15.25 -0.34 15.50 -0.00 15.5 7.441 15.75 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
8.0 9.917 8.50 -0.43 9.00 0.28 9.0 9.483 9.50 -0.15 10.00 0.03 10.0 9.333 10.50 -0.12 11.00 -0.10 11.0 9.210 11.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.28 12.88 -0.21 13.0 8.711 13.25 -0.43 13.50 -0.04 13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 0.60 15.0 7.610 15.25 -0.34 15.50 -0.00 15.5 7.441 15.75 -0.34 15.50 -0.00 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0						
9.0 9.483 9.50 -0.15 10.00 0.03 10.0 9.333 10.50 -0.12 11.00 -0.10 11.0 9.210 11.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.28 12.88 -0.21 13.0 8.711 13.25 -0.43 13.50 -0.04 13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 0.60 15.0 7.610 15.25 -0.34 15.50 -0.00 15.5 7.441 15.75 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 19.00 0.00 21.0 6.618 20.50 -0.10 21.00 0.02 21.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 25.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 27.0 6.005 27.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.12 33.13 0.24	7.0			-0.10	8.00	-0.33
10.0 9.333 10.50 -0.12 11.00 -0.10 11.0 9.210 11.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.22 12.00 -0.06 12.0 8.711 13.25 -0.43 13.50 -0.04 13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 0.60 15.0 7.610 15.25 -0.34 15.50 -0.00 15.5 7.441 15.75 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 20.0 6.618 20.50 -0.13 20.00 0.03 20.0 6.439 22.50 -0.09 23.00 0.02 23.0 <td>8.0</td> <td>9.917</td> <td>8.50</td> <td>-0.43</td> <td>9.00</td> <td>0.28</td>	8.0	9.917	8.50	-0.43	9.00	0.28
11.0 9.210 11.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.28 12.88 -0.21 13.0 8.711 13.25 -0.45 14.00 -0.45 13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 0.60 15.0 7.610 15.25 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 19.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.09 25.00 -0.01 24.0 <td>9.0</td> <td>9.483</td> <td>9.50</td> <td>-0.15</td> <td>10.00</td> <td>0.03</td>	9.0	9.483	9.50	-0.15	10.00	0.03
11.0 9.210 11.50 -0.22 12.00 -0.06 12.0 8.990 12.50 -0.28 12.88 -0.21 13.0 8.711 13.25 -0.45 14.00 -0.45 13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 0.60 15.0 7.610 15.25 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 19.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.09 25.00 -0.01 24.0 <td>10.0</td> <td>9.333</td> <td>10.50</td> <td>-0.12</td> <td>11.00</td> <td>-0.10</td>	10.0	9.333	10.50	-0.12	11.00	-0.10
12.0 8.990 12.50 -0.28 12.88 -0.21 13.0 8.711 13.25 -0.43 13.50 -0.04 13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 0.60 15.0 7.610 15.25 -0.34 15.50 -0.00 15.5 7.441 15.75 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 19.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
13.0 8.711 13.25 -0.43 13.50 -0.04 13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 0.60 15.0 7.610 15.25 -0.34 15.50 -0.00 15.5 7.441 15.75 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 29.00 0.03 20.0 6.618 20.50 -0.10 21.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
13.5 8.494 13.75 -0.45 14.00 -0.45 14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 0.60 15.0 7.610 15.25 -0.34 15.50 -0.00 15.5 7.441 15.75 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 20.00 0.03 20.0 6.618 20.50 -0.13 20.00 0.03 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0						
14.0 8.267 14.25 -0.68 14.50 0.08 14.5 7.928 14.75 -0.64 15.00 0.60 15.0 7.610 15.25 -0.34 15.50 -0.00 15.5 7.441 15.75 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 20.00 0.03 20.0 6.618 20.50 -0.10 21.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 25.00 0.00 26.0						
14.5 7.928 14.75 -0.64 15.00 0.60 15.0 7.610 15.25 -0.34 15.50 -0.00 15.5 7.441 15.75 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 20.00 0.03 20.0 6.618 20.50 -0.10 21.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 26.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
15.0 7.610 15.25 -0.34 15.50 -0.00 15.5 7.441 15.75 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 19.00 0.03 20.0 6.618 20.50 -0.10 21.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 25.00 0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
15.5 7.441 15.75 -0.34 16.13 0.14 16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 20.00 0.03 20.0 6.618 20.50 -0.10 21.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 25.00 0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
16.0 7.271 16.50 -0.24 17.00 0.09 17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 20.00 0.03 20.0 6.618 20.50 -0.10 21.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 25.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
17.0 7.033 17.50 -0.15 18.00 0.02 18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 20.00 0.03 20.0 6.618 20.50 -0.10 21.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 25.00 0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 31.3 <td></td> <td>7.441</td> <td></td> <td></td> <td></td> <td></td>		7.441				
18.0 6.881 18.50 -0.13 19.00 0.00 19.0 6.748 19.50 -0.13 20.00 0.03 20.0 6.618 20.50 -0.10 21.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 25.00 0.00 25.0 6.097 26.50 -0.09 27.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
19.0 6.748 19.50 -0.13 20.00 0.03 20.0 6.618 20.50 -0.10 21.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 25.00 0.00 25.0 6.097 26.50 -0.09 27.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0<						
20.0 6.618 20.50 -0.10 21.00 0.02 21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 26.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.						
21.0 6.519 21.50 -0.08 22.00 -0.01 22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 26.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.	19.0		19.50	-0.13	20.00	0.03
22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 26.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5	20.0	6.618	20.50	-0.10	21.00	0.02
22.0 6.439 22.50 -0.09 23.00 0.02 23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 26.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5	21.0	6.519	21.50	-0.08	22.00	-0.01
23.0 6.347 23.50 -0.07 24.00 -0.01 24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 26.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0	22.0	6.439	22.50	-0.09	23.00	
24.0 6.272 24.50 -0.09 25.00 0.00 25.0 6.183 25.50 -0.09 26.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0<						
25.0 6.183 25.50 -0.09 26.00 -0.01 26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
26.0 6.097 26.50 -0.09 27.00 -0.02 27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
27.0 6.005 27.50 -0.11 28.00 -0.02 28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
28.0 5.891 28.50 -0.14 29.00 -0.06 29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
29.0 5.755 29.50 -0.19 29.88 -0.17 30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
30.0 5.563 30.25 -0.32 30.50 0.01 30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
30.5 5.404 30.75 -0.31 30.95 -0.81 31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
31.0 5.248 31.15 -0.64 31.30 -2.21 31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
31.3 5.057 31.45 -1.30 31.63 -7.61 31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
31.6 4.667 31.80 -3.96 32.03 5.74 32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
32.0 3.082 32.25 -1.38 32.50 1.94 32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
32.5 2.393 32.75 -0.41 33.13 0.24 33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01						
33.0 2.190 33.50 -0.22 34.00 0.07 34.0 1.966 34.50 -0.15 26.00 -0.01	32.5	2.393	32.75	-0.41	33.13	0.24
34.0 1.966 34.50 -0.15 26.00 -0.01	33.0	2.190	33.50	-0.22	34.00	0.07

Figure C-163. Curve For The First Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HC1.

Figure C-164. First Derivative Of The First Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-165. Second Derivative Of The First Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 56. SPENT 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.984M HCl	pH	Vol (ml)	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{d(m1)^2}$
0.0	10.495	0.50	-0.10	1.00	-0.03
1.0	10.400	1.50	-0.12	2.00	0.03
2.0	10.279	2.50	-0.09	3.00	-0.06
3.0	10.185	3.50	-0.15	4.00	0.06
4.0	10.033	4.50	-0.09	5.00	0.01
5.0	9.941	5.50	-0.08	6.00	-0.04
6.0	9.860	6.50	-0.13	7.00	0.04
7.0	9.735	7.50 8.50	-0.08	8.00 9.00	-0.01 -0.02
8.0	9.652 9.563	9.50	-0.09 -0.11	10.00	0.00
9.0	9.452	10.50	-0.11	11.00	-0.06
10.0	9.452	11.50	-0.17	12.00	-0.05
11.0	9.179	12.50	-0.17	13.00	-0.04
12.0	8.965	13.50	-0.26	13.88	-0.44
13.0	8.709	14.25	-0.59	14.50	-0.20
14.0 14.5	8.415	14.25	-0.69	15.00	0.25
15.0	8.071	15.25	-0.56	15.50	0.25
15.5	7.789	15.75	-0.44	16.00	0.23
16.0	7.569	16.25	-0.33	16.50	0.31
16.5	7.402	16.75	-0.18	17.13	-0.02
17.0	7.312	17.50	-0.19	18.00	0.06
18.0	7.120	18.50	-0.14	19.00	0.00
19.0	6.983	19.50	-0.13	20.00	0.00
20.0	6.849	20.50	-0.13	21.00	0.00
21.0	6.716	21.50	-0.13	22.00	0.04
22.0	6.586	22.50	-0.09	23.00	0.01
23.0	6.493	23.50	-0.08	24.00	-0.01
24.0	6.414	24.50	-0.09	25.00	-0.01
25.0	6.322	25.50	-0.10	26.00	-0.01
26.0	6.224	26.50	-0.11	27.00	0.02
27.0	6.113	27.50	-0.09	28.00	-0.05
28.0	6.020	28.50	-0.14	29.00	-0.02
29.0	5.880	29.50	-0.16	30.00	-0.04
30.0 31.0	5.723 5.528	30.50 31.25	-0.19 -0.02	30.88 31.50	0.23 -0.48
31.5	5.517	31.75	-0.26	31.95	-0.56
32.0	5.385	32.15	-0.49	32.28	-0.87
32.3	5.239	32.40	-0.70	32.50	-1.45
32.5	5.098	32.60	-0.99	32.72	-2.57
32.7	4.899	32.85	-1.64	32.97	-17.63
33.0	4.408	33.10	-6.04	33.20	19.30
33.2	3.199	33.30	-2.18	33.43	5.02
33.4	2.762	33.55	-0.93	33.70	1.18
33.7	2.483	33.85	-0.58	34.05	0.47
34.0	2.310	34.25	-0.39	34.50	0.34
34.5	2.116	34.75	-0.22	26.13	-0.02
35.0	2.008	17.50	0.06	8.75	0.00

Figure C-166. Curve For The Second Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-167. First Derivative Of The Second Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-168. Second Derivative Of The Second Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 57. SPENT 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

					· · · · · · · · · · · · · · · · · · ·
ml 0.984M HCl	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.570	0.50	-0.20	1.00	0.11
1.0	10.373	1.50	-0.08	2.00	-0.04
2.0	10.289	2.50	-0.12	3.00	0.03
3.0	10.166	3.50	-0.09	4.00	0.03
4.0	10.075	4.50	-0.06	5.00	-0.03
	10.073	5.50	-0.09	6.00	0.04
5.0					
6.0	9.928	6.50	-0.05	7.00	-0.06
7.0	9.876	7.50	-0.11	8.00	0.02
8.0	9.764	8.50	-0.09	9.00	0.04
9.0	9.677	9.50	-0.04	10.00	-0.18
10.0	9.633	10.50	-0.23	11.00	0.14
11.0	9.407	11.50	-0.08	12.00	-0.02
12.0	9.324	12.50	-0.11	13.00	0.03
13.0	9.216	13.50	-0.08	14.00	-0.11
14.0	9.137	14.50	-0.19	15.00	-0.03
15.0	8.948	15.50	-0.22	15.88	-0.14
16.0	8.733	16.25	-0.32	16.50	-1.90
16.5	8.572	16.75	-1.27	17.00	1.76
17.0	7.936	17.25	-0.39	17.50	-0.18
17.5	7.741	17.75	-0.48	18.00	0.42
18.0	7.501	18.25	-0.27	18.50	0.06
18.5		18.75	-0.24	19.13	-0.21
	7.366				
19.0	7.246	19.50	-0.40	20.00	0.24
20.0	6.851	20.50	-0.15	21.00	0.02
21.0	6.699	21.50	-0.13	22.00	0.02
22.0	6.564	22.50	-0.11	23.00	0.02
23.0	6.451	23.50	-0.09	24.00	-0.03
24.0	6.362	24.50	-0.12	25.00	0.03
25.0	6.247	25.50	-0.08	26.00	-0.03
26.0	6.163	26.50	-0.12	27.00	-0.01
27.0	6.045	27.50	-0.12	28.00	-0.01
28.0	5.921	28.50	-0.14	28.88	-0.06
29.0	5.786	29.25	-0.18	29.50	0.19
29.5	5.697	29.75	-0.08	30.00	-0.57
30.0	5.655	30.25	-0.37	30.50	0.19
30.5	5.470	30.75	-0.27	31.13	-2.75
31.0	5.333	31.50	-2.34	31.88	1.54
32.0	2.995	32.25	-1.19	32.50	1.56
32.5	2.402	32.75	-0.41	33.13	0.23
33.0	2.198	33.50	-0.24	34.00	0.11
		34.50	-0.13		
34.0	1.961			26.00	-0.01
35.0	1.831	17.50	0.05	8.75	0.00

Figure C-169. Curve For The Third Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HC1.

Figure C-170. First Derivative Of The Third Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-171. Second Derivative Of The Third Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 58. SPENT 250 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

·					
ml 0.984M HCl	pH	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.961	0.50	-0.05	1.00	-0.07
1.0	9.914	1.50	-0.12	2.00	-0.02
2.0	9.792	2.50	-0.15	3.00	-0.02
3.0	9.647	3.50	-0.17	4.00	0.22
4.0	9.479	4.50	0.05	5.00	-0.20
5.0	9.534	5.50	-0.14	6.00	0.07
6.0	9.391	6.50	-0.07	7.00	-0.09
	9.317	7.50	-0.16	8.00	-0.09
7.0	9.317	8.50	-0.25	9.00	0.03
8.0	8.903	9.50	-0.22	10.00	-0.28
9.0					
10.0	8.680	10.50	-0.50	10.88	-0.30
11.0	8.178	11.25	-0.72	11.50	1.38
11.5	7.816	11.75	-0.03	12.00	-1.52
12.0	7.800	12.25	-0.79	12.50	1.07
12.5	7.405	12.75	-0.26	13.13	0.06
13.0	7.277	13.50	-0.21	14.00	0.04
14.0	7.067	14.50	-0.17	15.00	-0.00
15.0	6.894	15.50	-0.18	16.00	0.14
16.0	6.718	16.50	-0.03	17.00	-0.04
17.0	6.684	17.50	-0.07	18.00	0.00
18.0	6.610	18.50	-0.07	19.00	-0.02
19.0	6.540	19.50	-0.09	20.00	0.00
20.0	6.451	20.50	-0.09	21.00	-0.02
21.0	6.363	21.50	-0.10	22.00	0.02
22.0	6.259	22.50	-0.08	23.00	-0.01
23.0	6.176	23.50	-0.09	24.00	0.01
24.0	6.084	24.50	-0.09	25.00	-0.03
25.0	5.998	25.50	-0.12	26.00	0.10
26.0	5.879	26.50	-0.02	27.00	-0.22
27.0	5.859	27.50	-0.24	27.83	1.14
28.0	5.624	28.15	0.51	28.28	-3.35
28.3	5.776	28.40	-0.33	28.53	0.27
28.5	5.710	28.65	-0.26	28.78	-1.81
28.8	5.631	28.90	-0.71	29.03	0.05
	5.488	29.15	-0.70	29.28	-3.07
29.0					
29.3	5.277	29.40	-1.47	29.50	-6.40 7.80
29.5	4.983	29.60	-2.75	29.73	-7.89
29.7	4.433	29.85	-4.72	30.05	8.60
30.0	3.016	30.25	-1.28	30.50	1.57
30.5	2.375	30.75	-0.50	31.13	0.38
31.0	2.126	31.50	-0.22	32.00	0.08
32.0	1.911	32.50	-0.13	33.00	0.04
33.0	1.780	33.50	-0.09	34.00	0.02
34.0	1.688	34.50	-0.07	26.00	-0.01
35.0	1.617	17.50	0.05	8.75	0.00

Figure C-172. Curve For The Fourth Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-173. First Derivative Of The Fourth Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-174. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 250 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 59. SPENT 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

m1 0.984M HC1 pH Vol (ml) d(pH)/d(ml) Vol (ml) d2(pH)/d(ml) 0.0 9.192 0.50 -0.14 1.00 -0.0 1.0 9.048 1.50 -0.24 2.00 -0.2 2.0 8.810 2.50 -0.46 2.88 -0.2 3.0 8.349 3.25 -0.68 3.50 0.2 3.5 8.009 3.75 -0.57 4.00 0.1 4.0 7.725 4.25 -0.47 4.50 0.2 4.5 7.489 4.75 -0.34 5.00 0.1 5.0 7.317 5.25 -0.27 5.50 0.1 5.5 7.182 5.75 -0.20 6.13 0.0 6.0 7.083 6.50 -0.17 7.00 0.0 7.0 6.916 7.50 -0.12 8.00 0.0	9 2 9 2 9 6 5 4 4
0.0 9.192 0.50 -0.14 1.00 -0.0 1.0 9.048 1.50 -0.24 2.00 -0.2 2.0 8.810 2.50 -0.46 2.88 -0.2 3.0 8.349 3.25 -0.68 3.50 0.2 3.5 8.009 3.75 -0.57 4.00 0.1 4.0 7.725 4.25 -0.47 4.50 0.2 4.5 7.489 4.75 -0.34 5.00 0.1 5.0 7.317 5.25 -0.27 5.50 0.1 5.5 7.182 5.75 -0.20 6.13 0.0 6.0 7.083 6.50 -0.17 7.00 0.0 7.0 6.916 7.50 -0.12 8.00 0.0	9 2 9 2 9 6 5 4 4
1.0 9.048 1.50 -0.24 2.00 -0.2 2.0 8.810 2.50 -0.46 2.88 -0.2 3.0 8.349 3.25 -0.68 3.50 0.2 3.5 8.009 3.75 -0.57 4.00 0.1 4.0 7.725 4.25 -0.47 4.50 0.2 4.5 7.489 4.75 -0.34 5.00 0.1 5.0 7.317 5.25 -0.27 5.50 0.1 5.5 7.182 5.75 -0.20 6.13 0.0 6.0 7.083 6.50 -0.17 7.00 0.0 7.0 6.916 7.50 -0.12 8.00 0.0	9 2 9 6 5 4 4
2.0 8.810 2.50 -0.46 2.88 -0.2 3.0 8.349 3.25 -0.68 3.50 0.2 3.5 8.009 3.75 -0.57 4.00 0.1 4.0 7.725 4.25 -0.47 4.50 0.2 4.5 7.489 4.75 -0.34 5.00 0.1 5.0 7.317 5.25 -0.27 5.50 0.1 5.5 7.182 5.75 -0.20 6.13 0.0 6.0 7.083 6.50 -0.17 7.00 0.0 7.0 6.916 7.50 -0.12 8.00 0.0	2 9 6 5 4 4
3.0 8.349 3.25 -0.68 3.50 0.2 3.5 8.009 3.75 -0.57 4.00 0.1 4.0 7.725 4.25 -0.47 4.50 0.2 4.5 7.489 4.75 -0.34 5.00 0.1 5.0 7.317 5.25 -0.27 5.50 0.1 5.5 7.182 5.75 -0.20 6.13 0.0 6.0 7.083 6.50 -0.17 7.00 0.0 7.0 6.916 7.50 -0.12 8.00 0.0	2 9 6 5 4 4
3.5 8.009 3.75 -0.57 4.00 0.1 4.0 7.725 4.25 -0.47 4.50 0.2 4.5 7.489 4.75 -0.34 5.00 0.1 5.0 7.317 5.25 -0.27 5.50 0.1 5.5 7.182 5.75 -0.20 6.13 0.0 6.0 7.083 6.50 -0.17 7.00 0.0 7.0 6.916 7.50 -0.12 8.00 0.0	9 6 5 4 4
4.0 7.725 4.25 -0.47 4.50 0.2 4.5 7.489 4.75 -0.34 5.00 0.1 5.0 7.317 5.25 -0.27 5.50 0.1 5.5 7.182 5.75 -0.20 6.13 0.0 6.0 7.083 6.50 -0.17 7.00 0.0 7.0 6.916 7.50 -0.12 8.00 0.0	6 5 4 4
4.5 7.489 4.75 -0.34 5.00 0.1 5.0 7.317 5.25 -0.27 5.50 0.1 5.5 7.182 5.75 -0.20 6.13 0.0 6.0 7.083 6.50 -0.17 7.00 0.0 7.0 6.916 7.50 -0.12 8.00 0.0	5 4 4 4
5.0 7.317 5.25 -0.27 5.50 0.1 5.5 7.182 5.75 -0.20 6.13 0.0 6.0 7.083 6.50 -0.17 7.00 0.0 7.0 6.916 7.50 -0.12 8.00 0.0	4 4 4
5.5 7.182 5.75 -0.20 6.13 0.0 6.0 7.083 6.50 -0.17 7.00 0.0 7.0 6.916 7.50 -0.12 8.00 0.0	4 4
6.0 7.083 6.50 -0.17 7.00 0.0 7.0 6.916 7.50 -0.12 8.00 0.0	4
7.0 6.916 7.50 -0.12 8.00 0.0	
	•
8.0 6.793 8.50 -0.07 9.00 -0.0	2
9.0 6.727 9.50 -0.09 10.00 0.0	
10.0 6.638 10.50 -0.07 11.00 0.0	
11.0 6.566 11.50 -0.00 12.00 -0.0	
12.0 6.563 12.50 -0.07 13.00 -0.0	
13.0 6.494 13.50 -0.08 14.00 0.0	
14.0 6.411 14.50 -0.06 15.00 -0.0	
15.0 6.348 15.50 -0.08 16.00 0.0	
16.0 6.270 16.50 -0.07 17.00 -0.0	
17.0 6.195 17.50 -0.09 18.00 -0.0	
18.0 6.105 18.50 -0.10 19.00 0.0	
19.0 6.004 19.50 -0.01 20.00 -0.1	
20.0 5.998 20.50 -0.13 21.00 -0.0	
21.0 5.865 21.50 -0.22 21.88 -0.0	
22.0 5.647 22.25 -0.27 22.43 -0.0	
22.5 5.513 22.60 -0.27 22.73 -0.8	
22.7 5.459 22.85 -0.47 23.00 -0.4	
23.0 5.318 23.15 -0.62 23.28 -1.5	
23.3 5.133 23.40 -1.00 23.53 -12.8	
23.5 4.932 23.65 -4.21 23.78 -2.7	
23.8 3.669 23.90 -4.89 24.20 7.1	
24.0 2.691 24.50 -0.59 25.00 0.3	
25.0 2.102 25.50 -0.21 26.00 0.0	
26.0 1.889 26.50 -0.12 27.00 0.0	
27.0 1.768 27.50 -0.08 28.00 0.0	
28.0 1.687 28.50 -0.07 29.00 0.0	
29.0 1.620 29.50 -0.06 22.25 -0.0	
30.0 1.564 15.00 0.05 7.50 0.00	
7.00	-

Figure C-175. Curve For The First Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-176. First Derivative Of The First Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-177. Second Derivative Of The First Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 59. SPENT 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.984M HCl	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.536	0.50	-0.32	1.00	0.02
1.0	9.217	1.50	-0.30	2.00	-0.02
2.0	8.916	2.50	-0.33	3.00	-0.27
3.0	8.590	3.50	-0.59	4.00	0.18
4.0	7.996	4.50	-0.42	4.88	0.15
5.0	7.577	5.25	-0.30	5.50	0.04
5.5	7.425	5.75	-0.28	6.13	0.12
6:0	7.284	6.50	-0.19	7.00	0.05
7.0	7.095	7.50	-0.13	8.00	0.04
8.0	6.960	8.50	-0.10	9.00	-0.01
9.0	6.864	9.50	-0.11	10.00	0.01
10.0	6.759	10.50	-0.10	11.00	0.07
11.0	6.663	11.50	-0.03	12.25	-0.04
12.0	6.637	13.00	-0.08	13.75	0.01
14.0	6.468	14.50	-0.07	15.00	-0.00
15.0	6.394	15.50	-0.07	16.00	0.02
16.0	6.319	16.50	-0.05	17.00	-0.01
17.0	6.267	17.50	-0.07	18.00	-0.03
18.0	6.200	18.50	-0.10	19.00	0.09
19.0	6.102	19.50	-0.01	20.00	-0.11
20.0	6.096	20.50	-0.12	21.00	-0.04
21.0	5.976	21.50	-0.16	22.00	-0.02
22.0	5.813	22.50	-0.18	23.00	-0.24
23.0	5.630	23.50	-0.42	23.83	-0.72
24.0	5.211	24.15	-0.89	24.28	-4.07
24.3	4.945	24.40	-1.90	24.50	-27.50
24.5	4.564	24.60	-7.40	24.73	24.50
24.7	3.083	24.85	-1.28	25.18	1.04
25.0	2.699	25,50	-0.60	26.00	0.40
26.0	2.098	26.50	-0.20	27.00	0.08
27.0	1.899	27.50	-0.12	28.00	0.04
28.0	1.779	28.50	-0.08	29.00	0.02
29.0	1.695	29.50	-0.06	22.25	-0.01
30.0	1.631	15.00	0.05	7.50	0.00

Figure C-178. Curve For The Second Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-179. First Derivative Of The Second Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-180. Second Derivative Of The Second Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 60. SPENT 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.984M HCl	Hq	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.586	0.50	-0.04	1.00	0.00
1.0	9.549	1.50	-0.04	2.00	-0.07
2.0	9.513	2.50	-0.11	3.00	0.07
.3.0	9.408	3.50	-0.04	4.00	-0.14
4.0	9.371	4.50	-0.17	5.00	0.06
5.0	9.197	5.50	-0.11	6.00	-0.02
6.0	9.086	6.50	-0.13	7.00	-1.66
7.0	8.954	7.50	-1.79	8.00	1.63
8.0	7.165	8.50	-0.16	9.00	0.03
9.0	7.009	9.50	-0.13	10.00	0.01
10.0	6.879	10.50	-0.12	11.00	0.01
11.0	6.764	11.50	-0.11	12.25	0.02
12.0	6.656	13.00	-0.08	14.00	0.00
14.0	6.488	15.00	-0.08	16.00	-0.01
16.0	6.324	17.00	-0.10	18.00	-0.00
18.0	6.132	19.00	-0.10	19.75	0.06
20.0	5.934	20.50	-0.01	21.00	-0.16
21.0	5.920	21.50	-0.17	21.88	0.08
22.0	5.749	22.25	-0.11	22.45	-0.22
22.5	5.694	22.65	-0.20	22.78	0.33
22.8	5.635	22.90	-0.11	23.08	-0.40
23.0	5.612	23.25	-0.26	23.50	-0.39
23.5	5.484	23.75	-0.45	23.93	-0.31
24.0	5.259	24.10	-0.56	24.20	-0.85
24.2	5.147	24.30	-0.73	24.40	-6.25
24.4	5.001	24.50	-1.98	24.60	-3.43
24.6	4.605	24.70	-2.67	24.80	-11.37
24.8	4.072	24.90	-4.94	25.08	10.32
25.0	3.084	25.25	-1.33	25.50	1.78
25.5	2.420	25.75	-0.44	26.13	0.25
26.0	2.200	26.50	-0.25	27.00	0.13
27.0	1.951	27.50	-0.12	28.00	0.02
28.0	1.834	28.50	-0.10	29.00	0.03
29.0	1.738	29.50	-0.07	22.25	-0.01
30.0	1.671	15.00	0.06	7.50	0.00

Figure C-181. Curve For The Third Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HC1.

Figure C-182. First Derivative Of The Third Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-183. Second Derivative Of The Third Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 61. SPENT 150 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

m1 0.984M HC1	<u>pH</u>	Vol (ml)	$\frac{d(pH)/d(m1)}{2}$	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{-0.04}$
0.0	9.575	0.50	-0.13	1.00	
1.0	9.449	1.50	-0.16	2.00	0.03
2.0	9.285	2.50	-0.14	3.00	-0.22
3.0	9.147	3.50	-0.36	3.88	0.26
4.0	8.791	4.25	-0.16	4.50	-0.23
4.5 5.0	8.711	4.75	-0.27	5.00	-0.48
5.0	8.574	5.25	-0.51	5.50	0.08 0.32
5.5	8.317	5.75	-0.47	6.00	
6.0 6.5	8.081	6.25	-0.31	6.50	-0.78
6.5	7.925	6.75	-0.70	7.00	0.91
7.0	7.574	7.25	-0.25	7.50	-0.27
7.5	7.451	7.75	-0.38	8.13	0.26
8.0	7.260	8.50	-0.19	9.00	0.03
9.0	7.072	9.50	-0.16	10.25	0.03
10.0	6.916	11.00	-0.12	12.00	0.02
12.0	6.679	13.00	-0.08	14.00	-0.00
14.0	6.511	15.00	-0.08	16.00	0.00
16.0	6.342	17.00	-0.08	18.00	0.01
18.0	6.183	19.00	-0.06	20.00	-0.03
20.0	6.064	21.00	-0.13	19.25	-0.04
22.0	5.806	17.50	0.02	17.88	-0.03
23.0	5.651	18.25	-0.01	21.00	-0.04
23.5	5.592	23.75	-0.24	24.00	-0.20
24.0	5.472	24.25	-0.34	24.50	-0.42
24.5	5.303	24.75	-0.55	24.93	-1.16
25.0	5.028	25.10	-0.95	25.20	-9.40
25.2	4.837	25.30	-2.84	25.40	-19.07
25.4	4.270	25.50	-6.65	25.60	28.42
25.6	2.940	25.70	-0.97	25.80	-3.35
25.8	2.747	25.90	-1.63	26.20	2.09
26.0	2.420	26.50	-0.38	27.00	0.21
27.0	2.037	27.50	-0.18	28.00	0.07
28.0	1.860	28.50	-0.10	29.00	0.01
29.0	1.756	29.50	-0.09	22.25	-0.01
30.0	1.664	15.00	0.06	7.50	0.00

Figure C-184. Curve For The Fourth Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-185. First Derivative Of The Fourth Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

Figure C-186. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 150 Micron Sodium Bicarbonate Media With 0.984 M HCl.

TABLE 62. SPENT 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.981M HCl	рН	<u>Vol (ml)</u>	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.646	0.50	-0.09	1.00	-0.09
1.0	9.553	1.50	-0.18	2.00	-0.00
2.0	9.370	2.50	-0.19	3.00	-0.02
3.0	9.184	3.50	-0.21	3.88	-0.10
4.0	8.974	4.25	-0.28	4.50	-0.10
4.5	8.833	4.75	-0.33	5.00	0.21
4.5 5.0 5.5	8.668	5.25	-0.23	5.50	-0.92
5.5	8.555	5.75	-0.69	6.00	-0.58
6.0	8.212	6.25	-0.97	6.50	1.24
6.5	7.725	6.75	-0.35	7.00	0.06
7.0	7.548	7.25	-0.33	7.50	-0.02
7.5	7.385	7.75	-0.33	8.13	0.17
8.0	7.218	8.50	-0.21	9.25	0.06
9.0	7.009	10.00	-0.12	11.00	0.01
11.0	6.763	12.00	-0.10	13.00	0.01
13.0	6.565	14.00	-0.09	15.00	0.01
15.0	6.393	16.00	-0.06	17.00	-0.02
17.0	6.272	18.00	-0.09	19.00	0.01
19.0	6.088	20.00	-0.08	20.75	-0.00
21.0	5.932	21.50	-0.08	22.00	-0.01
- 22.0	5.852	22.50	-0.09	22.88	-0.01
23.0	5.767	23.25	-0.09	23.50	-0.08
23.5	5.720	23.75	-0.13	24.00	-0.02
24.0	5.654	24.25	-0.14	24.50	-0.27
24.5	5.584	24.75	-0.27	25.00	-0.16
25.0	5.447	25.25	-0.35	25.43	-0.04
25.5	5.271	25.60	-0.36	25.73	-0.43
25.7	5.198	25.85	-0.47	25.98	-2.85
26.0	5.056	26.10	-1.18	26.20	-2.50
26.2	4.819	26.30	-1.69	26.40	-21.70
26.4	4.482	26.50	-6.02	26.60	18.20
26.6	3.277	26.70	-2.39	26.80	5.68
26.8	2.800	26.90	-1.25	27.08	1.90
27.0	2.550	27.25	-0.59	27.50	0.48
27.5	2.257	27.75	-0.34	28.13	0.21
28.0	2.085	28.50	-0.19	29.00	0.07
29.0	1.899	29.50	-0.12	22.25	-0.01
30.0	1.779	15.00	0.06	7.50	0.00

Figure C-187. Curve For The First Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-188. First Derivative Of The First Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-189. Second Derivative Of The First Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 63. SPENT 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.981M HCl	рН	Vol (ml)	d(pH)/d(m1)	<u>Vol (ml)</u>	$d2(pH)/d(m1)^2$
0.0	9.695	0.50	-0.09	1.00	-0.04
1.0	9.607	1.50	-0.13	2.00	-0.00
2.0	9.474	2.50	-0.13	3.00	-0.04
3.0	9.340	3.50	-0.17	4.00	-0.01
4.0	9.166	4.50	-0.19	5.00	-0.13
5.0	8.978	5.50	-0.32	5.88	-0.17
6.0	8.661	6.25	-0.45	6.50	-0.96
6.5	8.437	6.75	-0.93	7.00	0.74
7.0	7.973	7.25	-0.56	7.50	0.30
7.5	7.693	7.75	-0.41	8.13	0.11
8.0	7.487	8.50	-0.33	9.00	0.14
9.0	7.160	9.50	-0.19	10.25	0.04
10.0	6.974	11.00	-0.13	12.00	0.02
12.0	6.707	13.00	-0.09	14.00	0.01
14.0	6.533	15.00	-0.08	16.00	-0.00
16.0	6.382	17.00	-0.08	18.00	0.00
18.0	6.230	19.00	-0.07	20.00	0.02
20.0	6.086	21.00	-0.03	21.75	-0.05
22.0	6.032	22.50	-0.11	23.00	-0.01
23.0	5.925	23.50	-0.12	24.00	-0.06
24.0	5.806	24.50	-0.18	25.00	-0.02
25.0	5.625	25.50	-0.20	26.00	-0.40
26.0	5.429	26.50	-0.59	26.88	-3.73
27.0	4.837	27.25	-3.39	27.43	2.88
27.5	3.141	27.60	-2.38	27.73	4.06
27.7	2.664	27.85	-1.37	28.05	2.63
28.0	2.253	28.25	-0.32	28.50	-0.03
28.5	2.094	28.75	-0.33	29.00	0.30
29.0	1.927	29.25	-0.19	29.50	-0.06
29.5	1.834	29.75	-0.22	22.38	-0.02
30.0	1.726	15.00	0.06	7.50	0.00

Figure C-190. Curve For The Second Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-191. First Derivative Of The Second Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-192. Second Derivative Of The Second Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 64. SPENT 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.981M HCl	На	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	9.755	0.50	0.03	1.00	-0.24
1.0	9.783	1.50	-0.21	2.00	0.04
2.0	9.572	2.50	-0.17	3.00	0.01
3.0	9.402	3.50	-0.16	4.00	-0.07
4.0	9.241	4.50	-0.23	5.00	-0.19
5.0	9.008	5.50	-0.43	5.88	-0.53
6.0	8.581	6.25	-0.82	6.50	-0.30
6.5	8.170	6.75	-0.97	7.00	0.94
7.0	7.685	7.25	-0.50	7.50	0.19
7.5	7.435	7.75	-0.41	8.38	0.16
8.0	7.232	9.00	-0.21	10.00	0.04
10.0	6.810	11.00	-0.14	12.00	0.02
12.0	6.532	13.00	-0.10	14.00	0.00
14.0	6.329	15.00	-0.10	16.00	-0.00
16.0	6.139	17.00	-0.10	18.00	-0.02
18.0	5.938	19.00	-0.14	19.75	-0.02
20.0	5.661	20.50	-0.16	20.88	-0.06
21.0	5.497	21.25	-0.21	21.50	-0.41
21.5	5.393	21.75	-0.41	21.93	-0.11
22.0	5.187	22.10	-0.45	22.20	-2.08
22.2	5.092	22.30	-0.87	22.40	-4.55
22.4	4.924	22.50	-1.77	22.58	-4.90
22.6	4.569	22.65	-2.51	22.70	10.50
22.7	4.318	22.75	-1.46	22.80	-45.40
22.8	4.172	22.85	-6.00	22.90	11.70
22.9	3.572	22.95	-4.83	23.10	10.98
23.0	3.089	23.25	-1.54	23.50	2.22
23.5	2.321	23.75	-0.42	24.13	0.25
24.0	2.109	24.50	-0.23	25.00	0.11
25.0	1.876	25.50	-0.12	26.25	0.03
26.0	1.755	27.00	-0.08	28.00	0.02
28.0	1.593	29.00	-0.04	22.00	-0.01
30.0	1.504	15.00	0.05	7.50	0.00

Figure C-193. Curve For The Third Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-194. First Derivative Of The Third Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-195. Second Derivative Of The Third Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 65. SPENT 106 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.981M HCl	рН	<u>Vol (ml)</u>	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	10.033	0.50	-0.14	1.00	0.01
1.0	9.896	1.50	-0.13	2.00	0.02
2.0	9.765	2.50	-0.11	3.00	-0.02
3.0	9.653	3.50	-0.13	4.00	-0.01
4.0	9.520	4.50	-0.15	5.00	-0.02
5.0	9.375	5.50	-0.17	6.00	-0.05
6.0	9.209	6.50	-0.21	7.00	-0.09
7.0	8.996	7.50	-0.30	7.88	-0.42
8.0	8.698	8.25	-0.61	8.50	-0.28
8.5	8.392	8.75	-0.75	9.00	0.20
9.0	8.016	9.25	-0.65	9.50	0.32
9.5	7.689	9.75	-0.49	10.13	0.35
10.0	7.443	10.50	-0.23	11.25	0.03
11.0	7.211	12.00	-0.18	13.00	0.03
13.0	6.844	14.00	-0.12	15.00	0.03
15.0	6.607	16.00	-0.06	17.00	-0.02
17.0	6.488	18.00	-0.09	19.00	0.00
19.0	6.304	20.00	-0.09	20.75	0.05
21.0	6.121	21.50	-0.01	22.00	-0.07
22.0	6.108	22.50	-0.09	23.00	0.01
23.0	6.022	23.50	-0.07	24.00	-0.08
24.0	5.948	24.50	-0.15	24.88	0.10
25.0	5.796	25.25	-0.08	25.50	-0.18
25.5	5.756	25.75	-0.17	26.00	-0.13
26.0	5.672	26.25	-0.23	26.50	-0.37
26.5	5.556	26.75	-0.42	27.00	0.30
27.0	5.347	27.25	-0.27	27.45	-3.50
27.5	5.214	27.65	-1.67	27.78	-25.43
27.8	4.714	27.90	-8.02	28.08	19.33
28.0	3.109	28.25	-1.26	28.50	1.33
28.5	2.479	28.75	-0.60	29.00	0.59
29.0	2.181	29.25	-0.30	29.50	0.21
29.5	2.030	29.75	-0.20	22.38	-0.02
30.0	1.932	15.00	0.06	7.50	0.00

Figure C-196. Curve For The Fourth Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-197. First Derivative Of The Fourth Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-198. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 106 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 66. SPENT 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

- 41					
ml 0.981M HCl	<u>pH</u>	Vol (ml)	<u>d(pH)/d(ml)</u>	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	10.411	0.50	-0.14	1.00	-0.01
1.0	10.271	1.50	-0.15	2.00	0.06
2.0	10.120	2.50	-0.09	3.25	-0.01
3.0	10.027	4.00	-0.11	5.00	0.00
5.0	9.799	6.00	-0.11	7.00	0.00
7.0	9.578	8.00	-0.11	9.00	-0.03
9.0	9.357	10.00	-0.17	11.00	-0.13
11.0	9.017	12.00	-0.42	12.63	-0.30
13.0	8.169	13.25	-0.80	13.50	0.63
13.5	7.770	13.75	-0.48	14.00	0.16
14.0	7.529	14.25	-0.40	14.50	0.41
14.5	7.327	14.75	-0.20	15.38	-0.00
15.0	7.227	16.00	-0.20	17.00	0.03
17.0	6.818	18.00	-0.13	18.75	0.03
19.0	6.548	19.50	-0.09	20.00	-0.02
20.0	6.460	20.50	-0.11	21.00	0.03
21.0	6.354	21.50	-0.08	22.00	-0.00
22.0	6.273	22.50	-0.09	23.00	-0.01
23.0	6.188	23.50	-0.10	24.00	0.00
24.0	6.088	24.50	-0.10	25.00	-0.00
25.0	5.991	25.50	-0.10	25.88	0.03
26.0	5.892	26.25	-0.08	26.50	-0.17
26.5	5.854	26.75	-0.16	27.00	0.01
27.0	5.773	27.25	-0.16	27.50	-0.08
27.5	5.694	27.75	-0.20	28.00	-0.04
28.0	5.595	28.25	-0.22	28.45	-0.47
28.5	5.486	28.65	-0.41	28.78	0.45
28.8	5.364	28.90	-0.30	29.03	-1.55
29.0	5.305	29.15	-0.68	29.28	-1.69
29.3	5.100	29.40	-1.10	29.50	-7.32
29.5	4.879	29.60	-2.57	29.73	-10.64
29.7	4.365	29.85	-5.23	30.05	10.81
30.0	2.796	30.25	-0.91	30.50	0.84
30.5	2.342	30.75	-0.49	31.38	0.25
31.0	2.097	32.00	-0.17	33.00	0.05
33.0	1.752	34.00	-0.08	25.75	-0.01
35.0	1.588	17.50	0.05	8.75	0.00

Figure C-199. Curve For The First Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-200. First Derivative Of The First Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-201. Second Derivative Of The First Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 67. SPENT 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

					124 111 414 712
ml 0.981M HCl	<u>pH</u>	Vol (ml)	<u>d(pH)/d(ml)</u> -0.14	<u>Vol (ml)</u> 2.00	$\frac{d2(pH)/d(m1)^2}{0.01}$
0.0	10.554 10.282	1.00 3.00	-0.14 -0.11	4.00	0.00
2.0	10.282	5.00	-0.11	6.00	0.01
4.0 6.0	9.841	7.00	-0.11	8.00	-0.00
	9.660	9.00	-0.09	10.00	-0.02
8.0 10.0	9.471	11.00	-0.13	12.00	-0.07
12.0	9.215	13.00	-0.27	13.63	-0.43
14.0	8.683	14.25	-0.80	14.50	0.13
14.5	8.281	14.75	-0.74	15.00	0.23
15.0	7.912	15.25	-0.62	15.50	0.49
15.5	7.601	15.75	-0.38	16.13	0.15
16.0	7.413	16.50	-0.26	17.00	0.06
17.0	7.148	17.50	-0.20	18.25	0.04
18.0	6.944	19.00	-0.15	20.00	0.01
20.0	6.652	21.00	-0.12	22.00	0.02
22.0	6.409	23.00	-0.09	24.00	-0.01
24.0	6.238	25.00	-0.10	26.00	-0.01
26.0	6.045	27.00	-0.11	27.75	-0.03
28.0	5.819	28.50	-0.15	29.00	-0.08
29.0	5.668	29.50	-0.24	29.88	-0.19
30.0	5.433	30.25	-0.38	30.50	-1.31
30.5	5.244	30.75	-1.03	30.95	-10.34
31.0	4.727	31.15	-5.17	31.30	10.87
31.3	3.176	31.45	-1.91	31.63	3.26
31.6	2.603	31.80	-0.77	32.15	0.63
32.0	2.296	32.50	-0.32	33.00	0.14
33.0	1.973	33.50	-0.18	34.00	0.09
34.0	1.794	34.50	-0.09	26.00	-0.01
35.0	1.702	17.50	0.05	8.75	0.00

Figure C-202. Curve For The Second Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-203. First Derivative Of The Second Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-204. Second Derivative Of The Second Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 68. SPENT 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.981M HCl	рН	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	10.698	1.00	-0.16	2.00	0.01
2.0	10.385	3.00	-0.14	4.00	0.01
4.0	10.104	5.00	-0.11	6.00	-0.01
6.0	9.880	7.00	-0.12	8.00	-0.00
8.0	9.634	9.00	-0.13	10.00	-0.05
10.0	9.375	11.00	-0.22	12.00	-0.14
12.0	8.927	13.00	-0.51	13.63	-0.20
14.0	7.911	14.25	-0.75	14.50	0.76
14.5	7.535	14.75	-0.37	15.00	0.13
15.0	7.349	15.25	-0.31	15.50	0.14
15.5	7.196	15.75	-0.24	16.38	0.06
16.0	7.078	17.00	-0.17	18.00	0.03
18.0	6.745	19.00	-0.11	20.00	0.01
20.0	6.517	21.00	-0.09	22.00	0.00
22.0	6.329	23.00	-0.09	24.00	0.01
24.0	6.159	25.00	-0.07	26.00	-0.01
26.0	6.011	27.00	-0.09	27.75	-0.03
28.0	5.827	28.50	-0.13	29.00	0.00
29.0	5.695	29.50	-0.13	29.88	-0.23
30.0	5.568	30.25	-0.30	30.50	-0.30
30.5	5.419	30.75	-0.45	31.00	-0.78
31.0	5.195	31.25	-0.84	31.43	-6.61
31.5	4.777	31.60	-3.15	31.68	-28.47
31.7	4.147	31.75	-7.42	31.83	27.30
31.8	3.405	31.90	-3.32	32.08	7.15
32.0	2.740	32.25	-0.82	32.50	0.77
32.5	2.328	32.75	-0.44	33.13	0.30
33.0	2.109	33.50	-0.21	34.00	0.08
34.0	1.896	34.50	-0.13	26.00	-0.01
35.0	1.767	17.50	0.05	8.75	0.00
	2		••••	0.,0	0.00

Figure C-205. Curve For The Third Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-206. First Derivative Of The Third Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-207. Second Derivative Of The Third Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 69. SPENT 75 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.981M HCl	pH	Vol (ml)	<u>d(pH)/d(ml)</u>	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{2}$
0.0	10.666	1.00	-0.16	2.00	0.02
2.0	10.338	3.00	-0.13	4.00	0.03
4.0	10.074	5.00	-0.08	6.00	-0.01
6.0	9.912	7.00	-0.09	8.00	-0.03
8.0	9.728	9.00	-0.16	10.00	0.02
10.0	9.407	11.00	-0.12	12.00	-0.18
12.0	9.174	13.00	-0.48	13.63	-0.31
14.0	8.223	14.25	-0.86	14.50	0.48
14.5	7.793	14.75	-0.62	15.00	0.51
15.0	7.483	15.25	-0.36	15.50	0.14
15.5	7.301	15.75	-0.29	16.38	0.08
16.0	7.155	17.00	-0.19	18.00	0.02
18.0	6.782	19.00	-0.14	20.00	0.02
20.0	6.501	21.00	-0.09	22.00	0.00
22.0	6.316	23.00	-0.09	24.00	-0.01
24.0	6.139	25.00	-0.10	26.00	0.01
26.0	5.940	27.00	-0.07	27.75	-0.08
28.0	5.796	28.50	-0.19	29.00	-0.12
29.0	5.609	29.50	-0.31	29.88	-0.53
30.0	5.300	30.25	-0.71	30.50	-5.91
30.5	4.945	30.75	-3.67	30.95	4.68
31.0	3.112	31.15	-1.79	31.28	3.89
31.3	2.574	31.40	-0.82	31.53	1.44
31.5	2.410	31.65	-0.46	31.78	-0.18
31.8	2.272	31.90	-0.50	32.20	0.45
32.0	2.171	32.50	-0.24	33.00	0.09
33.0	1.936	33.50	-0.14	34.00	0.05
34.0	1.791	34.50	-0.09	26.00	-0.01
35.0	1.698	17.50	0.05	8.75	0.00

Figure C-208. Curve For The Fourth Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-209. First Derivative Of The Fourth Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-210. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 75 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 70. SPENT 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

•				,	
<u>ml 0.981M HCl</u>	pH	Vol (ml)	d(pH)/d(m1)	<u>Vol (ml)</u>	$\frac{d2(pH)/d(m1)^2}{}$
0.0	11.153	1.00	-0.22	2.00	0.04
2.0	10.705	3.00	-0.15	4.00	0.02
4.0	10.398	5.00	-0.11	6.00	0.00
6.0	10.183	7.00	-0.10	8.00	0.01
8.0	9.984	9.00	-0.09	10.00	-0.02
10.0	9.809	11.00	-0.12	12.00	-0.00
12.0	9.564	13.00	-0.13	14.00	-0.04
14.0	9.306	15.00	-0.22	15.75	-0.15
16.0	8.871	16.50	-0.45	16.88	-0.38
17.0	8.423	17.25	-0.73	17.50	-0.32
17.5 18.0	8.058 7.614	17.75 18.25	-0.89	18.00	0.94
18.5	7.404	18.75	-0.42 -0.28	18.50	0.28
19.0	7.264	20.00	-0.28	19.38 21.00	0.05 0.04
21.0	6.832	22.00	-0.13	23.00	0.04
23.0	6.562	24.00	-0.13	25.00	0.01
25.0	6.336	26.00	-0.11	27.00	0.01
27.0	6.167	28.00	-0.07	29.00	-0.03
29.0	6.026	30.00	-0.13	30.75	-0.03
31.0	5.759	31.50	-0.18	31.85	0.33
32.0	5.581	32.20	0.05	32.45	-0.64
32.4	5.602	32.70	-0.27	32.97	-1.09
33.0	5.443	33.25	-0.86	33.50	-5.68
33.5	5.011	33.75	-3.70	33.93	4.01
34.0	3.160	34.10	-2.30	34.22	5.48
34.2	2.700	34.35	-0.93	34.47	1.88
34.5	2.421	34.60	-0.46	34.72	0.03
34.7	2.329	34.85	-0.45	35.18	0.34
35.0	2.193	35.50	-0.23	36.00	0.08
36.0	1.960	36.50	-0.15	37.13	0.05
37.0	1.809	37.75	-0.09	38.50	0.02
38.5	1.668	39.25	-0.06	29.63	-0.01
40.0	1.575	20.00	0.04	10.00	0.00

Figure C-211. Curve For The First Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-212. First Derivative Of The First Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-213. Second Derivative Of The First Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 71. SPENT 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.981M HCl	pH	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	11.164	1.00	-0.23	2.00	0.05
2.0	10.704	3.00	-0.14	4.00	0.01
4.0	10.427	5.00	-0.13	6.00	0.01
6.0	10.175	7.00	-0.11	8.00	-0.01
8.0	9.954	9.00	-0.12	10.00	-0.01
10.0	9.708	11.00	-0.13	12.00	-0.02
12.0	9.440	13.00	-0.18	13.75	-0.08
14.0	9.076	14.50	-0.31	15.00	-0.39
15.0	8.768	15.50	-0.70	15.88	-0.12
16.0	8.071	16.25	-0.79	16.50	0.78
16.5	7.676	16.75	-0.40	17.00	-0.06
17.0	7.475	17.25	-0.43	17.50	0.46
17.5	7.258	17.75	-0.20	18.38	0.02
18.0	7.157	19.00	-0.18	20.00	0.03
20.0	6.797	21.00	-0.12	22.00	0.01
22.0	6.559	23.00	-0.10	24.00	0.01
24.0	6.354	25.00	-0.08	26.00	-0.00
26.0	6.194	27.00	-0'.08	28.00	0.01
28.0	6.027	29.00	-0.07	29.75	0.01
30.0	5.882	30.50	-0.06	31.00	-0.21
31.0	5.820	31.50	-0.27	32.00	-0.06
32.0	5.549	32.50	-0.33	32.80	-0.53
33.0	5.218	33.10	-0.65	33.22	-3.87
33.2	5.088	33.35	-1.62	33.47	-9.85
33.5	4.603	33.60	-4.08	33.72	3.04
33.7	3.787	33.85	-3.32	34.05	6.10
34.0	2.791	34.25	-0.88	34.50	0.79
34.5	2.352	34.75	-0.48	35.13	0.38
35.0	2.111	35.50	-0.19	36.00	0.05
36.0	1.916	36.50	-0.14	37.00	-0.07
37.0	1.772	37.50	-0.21	38.25	0.13
38.0	1.562	39.00	-0.01	29.50	-0.00
40.0	1.544	20.00	0.04	10.00	0.00
			<u> </u>		

Figure C-214. Curve For The Second Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-215. First Derivative Of The Second Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-216. Second Derivative Of The Second Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 72. SPENT 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.981M HCl	Hq	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.493	1.00	-0.33	2.00	0.08
2.0	10.832	3.00	-0.18	4.00	0.02
4.0	10.472	5.00	-0.13	6.00	0.01
6.0	10.205	7.00	-0.10	8.00	-0.00
8.0	9.996	9.00	-0.11	10.00	-0.01
10.0	9.781	11.00	-0.12	12.00	-0.01
12.0	9.538	13.00	-0.14	13.75	-0.00
14.0	9.260	14.50	-0.14	15.00	-0.16
15.0	9.116	15.50	-0.31	15.88	-0.13
16.0	8.807	16.25	-0.40	16.50	-0.57
16.5	8.605	16.75	-0.69	17.00	-0.24
17.0	8.261	17.25	-0.81	17.50	0.60
17.5	7.856	17.75	-0.51	18.00	-0.02
18.0	7.601	18.25	-0.52	18.50	0.18
18.5	7.342	18.75	-0.43	19.13	0.34
19.0	7.127	19.50	-0.18	20.25	0.02
20.0	6.949	21.00	-0.15	22.00	0.02
22.0	6.651	23.00	-0.11	24.00	0.01
24.0	6.427	25.00	-0.10	26.00	0.00
26.0	6.233	27.00	-0.09	27.75	0.01
28.0	6.047	28.50	-0.08	29.00	0.05
29.0	5.965	29.50	-0.03	30.00	-0.10
30.0	5.937	30.50	-0.13	31.00	-0.03
31.0	5.811	31.50	-0.15	31.88	0.02
32.0	5.659	32.25	-0.14	32.50	-0.18
32.5	5.589	32.75	-0.23	32.93	-0.09
33.0	5.475	33.10	-0.26	33.20	0.22
33.2	5.423	33.30	-0.21	33.40	-1.53
33.4	5.380	33.50	-0.52	33.60	-0.60
33.6	5.276	33.70	-0.64	33.80	0.35
33.8	5.148	33.90	-0.57	34.00	-3.98
34.0	5.034	34.10	-1.36	34.18	-7.90
34.2	4.761	34.25	-2.55	34.33	0.07
34.3	4.506	34.40	-2.54	34.50	-13.88
34.5	3.998	34.60	-5.31	34.68	21.63
34.7	2.935	34.75	-2.07	34.83	5.87
34.8	2.728	34.90	-1.19	35.20	1.23
35.0	2.490	35.50	-0.45	36.00	0.28
36.0	2.040	36.50	-0.17	37.13	0.05
37.0	1.870	37.75	-0.10	38.50	0.02
38.5	1.717	39.25	-0.07	29.63	-0.01
40.0	1.606	20.00	0.04	10.00	0.00

Figure C-217. Curve For The Third Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-218. First Derivative Of The Third Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-219. Second Derivative Of The Third Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 73. SPENT 45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.981M HCl	рН	Vol (ml)	d(pH)/d(ml)	Vol_(ml)	$d2(pH)/d(m1)^2$
0.0	11.680	1.00	-0.41	2.00	0.12
		3.00	-0.17	4.00	0.01
2.0	10.855				0.02
4.0	10.515	5.00	-0.14	6.00	
6.0	10.234	7.00	-0.09	8.00	-0.02
8.0	10.050	9.00	-0.13	10.00	0.01
10.0	9.800	11.00	-0.10	12.00	-0.02
12.0	9.592	13.00	-0.14	14.00	-0.05
14.0	9.312	15.00	-0.24	15.63	-0.04
16.0	8.840	16.25	-0.29	16.50	-0.90
16.5	8.696	16.75	-0.74	17.00	-1.40
17.0	8.327	17.25	-1.44	17.50	2.61
17.5	7.609	17.75	-0.13	18.00	-0.05
18.0	7.543	18.25	-0.16	18.50	-0.20
		18.75	-0.26	19.13	-0.25
18.5	7.464				
19.0	7.334	19.50	-0.45	20.25	0.21
20.0	6.884	21.00	-0.14	22.00	-0.01
22.0	6.602	23.00	-0.16	24.00	0.03
24.0	6.287	25.00	-0.11	26.00	0.01
26.0	6.077	27.00	-0.09	27.75	0.01
28.0	5.888	28.50	-0.09	29.00	-0.03
29.0	5.802	29.50	-0.11	30.00	-0.01
30.0	5.689	30.50	-0.12	30.88	-0.07
31.0	5.569	31.25	-0.17	31.45	0.07
31.5	5.483	31.65	-0.14	31.78	-0.39
31.8	5.440	31.90	-0.24	32.00	0.20
32.0	5.392	32.10	-0.20	32.20	-0.22
32.2	5.352	32.30	-0.24	32.40	0.20
32.4	5.303	32.50	-0.21	32.60	-0.87
32.6	5.262	32.70	-0.38	32.80	0.57
32.8	5.186	32.90	-0.26	33.00	-1.65
33.0	5.133	33.10	-0.59	33.20	-1.27
33.2	5.014	33.30	-0.85	33.40	-1.80
33.4	4.844	33.50	-1.21	33.60	-12.03
	4.602	33.70	-3.61	33.80	-3.17
33.6					9.88
33.8	3.879	33.90	-4.25	34.00	5.50
34.0	3.029	34.10	-2.27	34.22	
34.2	2.574	34.35	-0.90	34.55	1.07
34.5	2.304	34.75	-0.47	35.13	0.28
35.0	2.068	35.50	-0.26	36.25	0.10
36.0	1.803	37.00	-0.11	38.00	0.03
38.0	1.587	39.00	-0.05	29.50	-0.00
40.0	1.478	20.00	0.04	10.00	0.00

Figure C-220. Curve For The Fourth Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-221. First Derivative Of The Fourth Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-222. Second Derivative Of The Fourth Titration Curve For Titration Of Spent 45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 74. SPENT <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 1.

ml 0.981M HCl	pH	Vol (ml)	d(pH)/d(m1)	Vol (ml)	$d2(pH)/d(m1)^2$
0.0	11.534	1.00	-0.13	2.00	-0.03
2.0	11.279	3.00	-0.20	4.00	0.04
4.0	10.885	5.00	-0.11	6.00	0.02
6.0	10.670	7.00	-0.07	8.00	0.00
8.0	10.527	9.00	-0.07	10.00	-0.00
10.0	10.397	11.00	-0.07	12.00	0.02
12.0	10.249	13.00	-0.04	14.00	-0.00
14.0	10.178	15.00	-0.04	16.00	0.01
16.0	10.098	17.00	-0.03	18.00	-0.22
18.0	10.042	19.00	-0.46	20.00	0.10
20.0	9.121	21.00	-0.26	21.63	-1.59
22.0	8.602	22.25	-2.24	22.50	2.88
22.5	7.481	22.75	-0.80	23.38	0.43
23.0	7.080	24.00	-0.27	25.00	0.06
25.0	6.543	26.00	-0.14	27.00	0.01
27.0	6.256	28.00	-0.12	29.00	0.02
29.0	6.008	30.00	-0.08	30.75	-0.04
31.0	5.853	31.50	-0.13	32.00	0.01
32.0	5.723	32.50	-0.12	32.88	-0.02
33.0	5.606	33.25	-0.13	33.50	-0.02
33.5	5.540	33.75	-0.14	33.95	-0.34
34.0	5.470	34.15	-0.28	34.28	0.43
34.3	5.387	34.40	-0.17	34.53	-1.31
34.5	5.353	34.65	-0.50	34.78	-0.03
34.8	5.204	34.90	-0.50	35.00	-1.18
35.0	5.103	35.10	-0.74	35.20	-1.65
35.2	4.955	35.30	-1.07	35.40	-6.15
35.4	4.741	35.50	-2.30	35.60	-4.62
35.6	4.281	35.70	-3.22	35.80	-6.20
35.8	3.636	35.90	-4.46	36.08	9.91
36.0	2.743	36.25	-1.00	36.50	1.16
36.5	2.245	36.75	-0.42	37.13	0.25
37.0	2.036	37.50	-0.23	38.00	0.10
38.0	1.803	38.50	-0.13	39.00	0.04
39.0	1.672	39.50	-0.09	29.75	-0.01
40.0	1.578	20.00	0.04	10.00	0.00

Figure C-223. Curve For The First Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-224. First Derivative Of The First Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-225. Second Derivative Of The First Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 75. SPENT <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 2.

ml 0.981M HCl	рН	Vol (ml)	$\frac{d(pH)/d(m1)}{d(pH)}$	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{}$
0.0	11.499	1.00	-0.40	2.00	0.10
2.0	10.702	3.00	-0.20	4.00	0.03
4.0	10.305	5.00	-0.14	6.00	0.01
6.0	10.030	7.00	-0.12	8.00	0.00
8.0	9.793	9.00	-0.11	10.00	0.00
10.0	9.565	11.00	-0.11	12.00	0.01
12.0	9.345	13.00	-0.09	14.00	-0.07
14.0	9.162	15.00	-0.23	15.63	-0.04
16.0	8.696	16.25	-0.28	16.50	-0.34
16.5	8.557	16.75	-0.45	17.00	-0.43
17.0	8.333	17.25	-0.66	17.50	-0.55
17.5	8.002	17.75	-0.94	18.00	0.68
18.0	7.534	18.25	-0.60	18.50	0.63
18.5	7.236	18.75	-0.28	19.38	0.05
19.0	7.095	20.00	-0.22	21.00	0.04
21.0	6.661	22.00	-0.14	23.00	0.02
23.0	6.379	24.00	-0.10	25.00	0.01
25.0	6.182	26.00	-0.08	27.00	-0.00
27.0	6.023	28.00	-0.08	29.00	-0.01
29.0	5.861	30.00	-0.10	30.75	-0.00
31.0	5.666	31.50	-0.11	31.88	0.04
32.0	5.561	32.25	-0.07	32.50	-0.18
32.5	5.524	32.75	-0.17	33.00	0.37
33.0	5.441	33.25	0.02	33.50	-0.73
33.5	5.450	33.75	-0.35	33.93	-0.25
34.0	5.276	34.10	-0.43	34.20	-0.35
34.2	5.189	34.30	-0.50	34.40	-0.83
34.4	5.088	34.50	-0.67	34.60	-3.12
34.6	4.954	34.70	-1.29	34.80	-2.15
34.8	4.695	34.90	-1.72	35.00	-23.88
35.0	4.350	35.10	-6.50	35.20	22.22
35.2	3.050	35.30	-2.05	35.45	3.94
35.4	2.639	35.60	-0.87	35.75	1.19
35.8	2.290	35.90	-0.51	36.20	0.31
36.0	2.187	36.50	-0.33	37.00	0.17
37.0	1.861	37.50	-0.16	38.00	0.06
38.0	1.704	38.50	-0.09	39.00	0.00
39.0	1.612	39.50	-0.09	29.75	-0.01
40.0	1.523	20.00	0.04	10.00	0.00
	,				

Figure C-226. Curve For The Second Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-227. First Derivative Of The Second Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-228. Second Derivative Of The Second Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 76. SPENT <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 3.

ml 0.981M HCl	рН	Vol (ml)	$\frac{d(pH)/d(m1)}{d(m1)}$	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{d(m1)^2}$
0.0	11.492	1.00	-0.41	2.00	0.11
2.0	10.676	3.00	-0.19	4.00	0.03
4.0	10.292	5.00	-0.14	6.00	0.01
6.0	10.019	7.00	-0.11	8.00	0.00
8.0	9.795	9.00	-0.11	10.00	0.00
10.0	9.580	11.00	-0.11	12.00	-0.01
12.0	9.367	13.00	-0.13	14.00	-0.05
14.0	9.098	15.00	-0.23	15.63	0.01
16.0	8.646	16.25	-0.21	16.50	-0.59
16.5	8.540	16.75	-0.51	17.00	-0.62
17.0	8.287	17.25	-0.82	17.50	0.09
17.5	7.879	17.75	-0.77	18.00	0.67
18.0	7.493	18.25	-0.44	18.50	0.02
18.5	7.275	18.75	-0.43	19.38	0.18
19.0	7.062	20.00	-0.21	21.00	0.04
21.0	6.650	22.00	-0.12	23.00	0.01
23.0	6.404	24.00	-0.10	25.00	0.01
25.0	6.197	26.00	-0.09	27.00	0.00
27.0	6.024	28.00	-0.08	28.75	0.00
29.0	5.865	29.50	-0.07	30.00	-0.02
30.0	5.792	30.50	-0.09	31.00	-0.04
31.0	5.699	31.50	-0.13	31.90	-0.01
32.0	5.568	32.30	-0.14	32.55	-0.00
32.6	5.484	32.80	-0.14	33.00	0.17
33.0	5.427	33.20	-0.08	33.40	-0.56
33.4	5.397	33.60	-0.30	33.75	-0.68
33.8	5.277	33.90	-0.50	34.05	0.37
34.0	5.176	34.20	-0.39	34.40	-1.04
34.4	5.019	34.60	-0.81	34.75	-5.74
34.8	4.696	34.90	-2.53	35.03	-10.04
35.0	4.190	35.15	-5.04	35.33	10.61
35.3	2.678	35.50	-1.32	35.68	2.94
35.7	2.148	35.85	-0.30	36.18	0.09
36.0	2.059	36.50	-0.24	37.00	0.10
37.0	1.822	37.50	-0.14	38.00	0.05
38.0	1.686	38.50	-0.09	39.00	0.01
39.0	1.600	39.50	-0.08	29.75	-0.01
40.0	1.523	20.00	0.04	10.00	0.00

Figure C-229. Curve For The Third Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-230. First Derivative Of The Third Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-231. Second Derivative Of The Third Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

TABLE 77. SPENT <45 MICRON SODIUM BICARBONATE MEDIA - TITRATION 4.

ml 0.981M HCl	Hq	Vol (ml)	$\frac{d(pH)/d(m1)}{d(m1)}$	Vol (ml)	$\frac{d2(pH)/d(m1)^2}{d}$
0.0	11.497	1.00	-0.39	2.00	0.10
2.0	10.726	3.00	-0.18	4.00	0.02
4.0	10.367	5.00	-0.15	6.00	0.02
6.0	10.073	7.00	-0.11	8.00	0.00
8.0	9.855	9.00	-0.11	10.00	-0.00
10.0	9.640	11.00	-0.11	12.00	-0.01
12.0	9.413	13.00	-0.13	14.00	-0.02
14.0	9.143	15.00	-0.18	15.75	-0.07
16.0	8.774	16.50	-0.30	16.88	-0.50
17.0	8.478	17.25	-0.67	17.50	-0.24
17.5	8.141	17.75	-0.79	18.00	0.22
18.0	7.745	18.25	-0.68	18.50	0.48
18.5	7.403	18.75	-0.45	19.38	0.17
19.0	7.180	20.00	-0.23	21.00	0.05
21.0	6.715	22.00	-0.13	23.00	0.02
23.0	6.451	24.00	-0.09	25.00	0.00
25.0	6.268	26.00	-0.08	27.00	-0.00
27.0	6.104	28.00	-0.09	29.00	-0.00
29.0	5.930	30.00	-0.09	30.75	0.00
31.0	5.741	31.50	-0.09	32.00	-0.06
32.0	5.651	32.50	-0.15	32.88	0.07
33.0	5.503	33.25	-0.09	33.50	-0.20
33.5	5.457	33.75	-0.19	33.95	0.23
34.0	5.360	34.15	-0.10	34.30	-0.62
34.3	5.329	34.45	-0.29	34.63	-0.66
34.6	5.242	34.80	-0.52	34.95	-0.57
35.0	5.034	35.10	-0.69	35.20	-1.17
35.2	4.896	35.30	-0.92	35.40	-8.43
35.4	4.711	35.50	-2.61	35.60	-16.35
35.6	4.189	35.70	-5.88	35.80	18.17
35.8	3.013	35.90	-2.24	36.20	2.70
36.0	2.564	36.50	-0.62	37.00	0.48
37.0	1.940	37.50	-0.15	38.00	0.03
38.0	1.794	38.50	-0.12	39.00	0.02
39.0	1.675	39.50	-0.10	29.75	-0.01
40.0	1.575	20.00	0.04	10.00	0.00

Figure C-232. Curve For The Fourth Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-233. First Derivative Of The Fourth Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.

Figure C-234. Second Derivative Of The Fourth Titration Curve For Titration Of Spent <45 Micron Sodium Bicarbonate Media With 0.981 M HCl.