



# **CONTENT**

- 1. Statistical methods
- 2. proximity methods
- 3. clustering

#### **Outliers**

Outlier: observation that deviates significantly from the rest of the observations (other than noise)

Applications: fraud detection, medicine, security, industry, image processing, video/sensor network surveillance, intrusion detection

#### Global:

- Observation that deviates significantly from the other
- Simplest type of *outlier*
- · Most methods aim to detect this type



# • Ob • Att

#### **Contextual / Conditional:**

- Observation that deviates significantly from the others in a given context (ex: the temperature today is 30°C in December it is an *outlier*; in July it is not)
- The context has to be specified along with the problem definition
- · Attributes separated into two types :
  - Contextual: define the context ( eg date, location)
  - <u>Behavioral</u>: define the characteristics of the object, being used to assess whether or not it is an *outlier* in the context to which it belongs ( eg temperature, humidity)

#### Collective:

- Set of objects that deviate significantly from the rest
- Each object alone is not an *outlier*



#### **Outlier**

#### Modeling normal objects and outliers effectively

The boundary between data normality and abnormality ( outliers ) is usually not well defined

#### data dependent

Ex: in medicine, a small variation can be significant; in marketing it would take a large variation to be meaningful

#### deal with the noise

It is necessary to remove the noise before detecting outliers to avoid the outlier being "masked" by the noise

#### comprehensibility

Justify the detected *outlier* 

#### **Outlier**

#### Supervised

Experts identify data as being normals/ *outliers* and later it can be seen as a classification problem Challenges:

- Unbalanced classes (normal data are much larger than outliers)
- Finding as many *outliers* as possible is more important than not misclassifying normals as *outliers*.

#### Unsupervised

We don't know which objects are normal/ outliers

Objects are assumed to be " clustered " and outliers are further away

#### semi-supervised

Similar to supervised, but with only a subset of the data identified as normals/ outliers

#### **Outlier**

#### Statistics ( model-based )

They assume: data generated by a statistical model (stochastic); data that do not follow the model are outliers

#### **Proximity**

Assume: an object is an *outlier* if its nearest neighbors are far from the *feature space* ( ie : the proximity of the object to its neighbors deviates from the proximity of most objects to its neighbors)

#### clustering

Assume: normal objects belong to dense and large *clusters and outliers* belong to small or sparse *clusters or do not belong to any cluster* 

# **Statistical methods**

#### Statistical methods

They assume that the normal objects in a dataset are generated by a stochastic process:

- Normal objects occur in high probability regions for the stochastic model
- Objects in low probability regions are outliers

#### Two categories:

- **Parametric**: assume that normal objects are generated by a parameterized parametric distribution  $\Theta$ . The *probability* density function of the parametric distribution  $f(x, \Theta)$  determines the probability of x being generated by that distribution. The smaller this value, x the more likely it is to be an *outlier*.
- Non-parametric: assume no a priori statistical model, but try to determine the model from the input data

# **Parametric statistical methods**

### Univariate data: assume normal distribution - use maximum likelihood

#### Example:

Considering a sample of *n* ordered values (eg: 24.0; 28.9; 28.9; 29.0; 29.1; 29.1; 29.2; 29.2; 29.3; 29.4)

Assuming that the values follow the normal distribution with mean  $\mu$  and standard deviation  $\sigma$ 

maximum is obtained likelihood estimates:

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \text{In the example} = 28.61$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 In the example  $\approx 2.29 \ \hat{\sigma} \approx \sqrt{2,29} \approx 1,51$ 



In the normal distribution,  $\mu \pm 3\sigma$ it contains approximately 97.7% of the data

A value outside this range is likely to be an *outlier*. That is, the values  $v:\frac{\mu-v}{\sigma}>3$ , because the probability of following the same distribution is < 0.15%

In the example, 24.0 is an outlier, because  $\frac{28,61-24,0}{1,51} \approx 3,05 > 3$ 

## **Univariate** data: assume normal distribution – use boxplot



#### **Outliers** are the values v:

$$v < Q1 - 1.5 \times IQR$$

or

$$v > Q3 + 1.5 \times IQR$$

#### Example:

Considering a sample of *n* ordered values (eg: 24.0; 28.9; 28.9; 29.0; 29.1; 29.1; 29.2; 29.2; 29.3; 29.4)



```
import matplotlib.pyplot as plt
fig = plt.figure ( figsize =(10, 7))
plt.boxplot (x=[24.0, 28.9, 28.9, 29.0, 29.1, 29.1, 29.2, 29.2, 29.3, 29.4], vert
=False)
plt.show ()
```

24.0 is an outlier



## Univariate data: assume normal distribution – use Grubb test

For each object x in a set of N values with mean  $\bar{x}$  and standard deviation s, we define its z-score:

$$z = \frac{|x - \bar{x}|}{s}$$

The object *x* is an *outlier* if:

$$z \ge \frac{N-1}{\sqrt{N}} \sqrt{\frac{t^2 \alpha/(2N), N-2}{N-2+t^2 \alpha/(2N), N-2}}$$
, on what:

 $t^2_{\alpha/(2N),N-2}$  is the value following a distribution t with a significance level  $\alpha/(2N)$  of N-2 degrees of freedom

## Multivariate data: assume normal distribution, make univariate – use Mahalanobis

Let be  $\bar{o}$ the average vector of a *dataset D* and *S*the covariance matrix.

For each object oin the dataset, the Mahalanobis distance from  $oa \bar{o}is$ :

$$MDist(o, \bar{o}) = (o - \bar{o})^T S^{-1}(o - \bar{o})$$

 $MDist(o, \bar{o})$  is a univariate variable, and Grubb's test can be applied.

outlier detection into multivariate data as follows:

- 1. Calculate the average vector of the *dataset*
- 2. For each object ocalculate  $MDist(o, \bar{o})$
- 3. Detect outliers in the dataset transformed  $\{MDist(o, \bar{o}), o \in < D\}$
- 4. If it is determined to  $MDist(o, \bar{o})$  be an outlier then oit is also an outlier

# Multivariate data: assume normal distribution, make univariate – use Chi square

For each object oin a dataset with nobservations, the chi square is:

$$\chi^2 = \sum_{i=1}^n \frac{(o_i - E_i)^2}{E_i}$$
 , is  $o_i$  the value of  $o$ nth  $i$ dimension;  $E_i$  is the mean of the  $i$ - th dimension

If the value of  $\chi^2$  is high, the object *o* is an *outlier* .

# Multivariate data: assume multiple normal distributions

Considering the data in the figure, there are two clusters.

Assuming that the data are generated by a normal distribution would estimate the mean in the middle of the two clusters, and objects between the clusters would not be detected as *outliers*.

We can assume that the normal objects are generated by several normal distributions.

In this case, with 2 distributions, we assume normal distributions:

$$\Theta_1(\mu_1, \sigma_1)$$
lt is $\Theta_2(\mu_2, \sigma_2)$ 



 $\Pr(o|\Theta_1,\Theta_2) = f_{\Theta_1}(o) + f_{\Theta_2}(o)$ ,  $f_{\Theta_1}$  and  $f_{\Theta_3}$  are the *probabilities density functions* of  $\Theta_1$  and  $\Theta_2$ , respectively.

We can use the *Expectation algorithm Maximization* (EM) <sup>(1)</sup> to get the parameters  $\mu_1$ ,  $\sigma_1$ ,  $\mu_2$  e  $\sigma_2$ .

o object is an outlier if it does not belong to any cluster

(1) https://scikit-learn.org/stable/modules/mixture.html



# Multivariate data : use multiple clusters

Cluster C3 must be detected as an outlier

We can assume that normal objects are generated by a normal distribution, or a composite of normal distributions, and that *outliers* are generated by another distribution.

For example, we can assume that this distribution has a greater variance if the *outliers* are distributed over a larger area.



In practice, we define  $\sigma_{outlier} = k\sigma$ , where k is a user-defined parameter and  $\sigma$  is the standard deviation of the normal distribution that generates the data.

We can also use the EM algorithm

**Non-parametric statistical methods** 

# histogram

#### Procedure:

- 1. Build the histogram from the data
- 2. Determine the *outliers*: objects that belong to the least populated " *bins*" or the most "far away"

#### Example:



Given a set of objects in a *feature space*, a distance measure can be used to quantify the similarity between objects. Objects further away can be considered *outliers*.

outlier's proximity to its nearest neighbors significantly deviates from the object's proximity to most other objects in the set

#### Two types of methods:

- **Distance-based**: queries the neighborhood of an object, defined by a given radius. An object is considered *an outlier* if its neighborhood does not have enough points
  - · Outliers (taking into account the entire dataset )
- **Density-based**: investigates the density of an object and its neighbors. An object is an *outlier* if its density is much lower than that of its neighbors.
  - Allows local outliers (taking into account local neighborhoods)

**Distance** 

# Detection of outliers by proximity - distance

in a dataset D of objects, a distance threshold, r, is defined for the neighborhood of an object

For each object, the, check the number of objects in its r-neighborhood

If most objects in *D* are far from *o* (not in its *r* -neighborhood), then *o* is an *outlier* 

be  $\pi$  (0 <  $\pi$  < 1)a threshold (fraction). An o -object is an  $DB(r,\pi)$ -outlier if:

$$\frac{\|\{o'|dist(o,o') \le r\}\|}{\|D\|} \le \pi \qquad \text{(within radius neighborhood $r$ there are less than $\pi$ objects)}$$

# Outlier detection by proximity – distance – grid (CELL method)

Feature space is partitioned into a multidimensional grid, where each cell is a "hypercube" with a diagonal of size  $\frac{r}{2}$ , where r is the distance threshold. If the dataset has I dimensions, the edge size of each cell will be  $\frac{r}{2\sqrt{l}}$ 

Considering a 2D dataset , the edge length of each cell is  $\frac{r}{2\sqrt{2}}$ 

Cell C has the elements;  $b_1$ It is $b_2$  are the total number of elements in the cells marked with 1 and 2, respectively

The neighboring cells of C can be divided into 2 groups of different levels:

- Level 1 adjacent to C
  - Given any point  $x \in C$  and any possible point y in a level 1 cell, then  $dist(x, y) \le r$
  - If  $a + b_1 > \lceil \pi n \rceil$ , all o objects of C <u>are not DB(r,  $\pi$ )</u>- outliers, because all the objects of C and of the level 1 cells are in the *r*-neighborhood of *o* and there are at least  $\lceil \pi n \rceil$  neighbors with these characteristics
- Level 2 at a distance of 1 or 2 cells from C
  - Given any point  $x \in C$  and any possible point y such that  $dist(x,y) \ge r$ , then y it is in a level 2 cell
  - If  $a+b_1+b_2<[\pi n]+1$ , all C objects <u>are</u>  $DB(r,\pi)$ -outliers, because each of its r neighborhoods has less than  $[\pi n]$  objects

**Density** 

# **Outlier** detection by proximity – density – local proximity

Assume: relative density (surrounding) of a normal object is significantly different from the relative density of its neighbors

Given an object o and a set of objects D, the distance- k,  $dist_k(o)$ , is the distance dist(o, p) between objects o and p such that:

- There are at least k objects  $o' \in D \{o\}$  such that  $dist(o, o') \leq dist(o, p)$
- There are at most k-1 objects  $o'' \in D \{o\}$  such that dist(o, o'') < dist(o, p)

That is,  $dist_k(o)$  it is the distance between o and its k nearest neighbors

The *k*- distance - neighborhood of o contains all objects whose distance to o is not greater than  $dist_k(o)$ .

The local density of o is the average of the distances from o to objects in the k- distance - neighborhood of o

# clustering



# Outlier detection with clustering

After running the *clustering*, let's check what the *outliers are*.

#### Outliers:

- Objects that do not belong to any cluster
- Objects that are far from the nearest cluster
- Objects that are part of a small or sparse cluster

# Outlier detection with clustering: objects that do not belong to any cluster

Using a *clustering algorithm density-based*, (ex: DBSCAN) we were able to determine that:

- · Black dots belong to clusters
- The white dot a does not belong to any cluster
  - · it is an outlier



# Outlier detection with clustering: objects far from the nearest

Using, for example, *k- means* we can partition the data into 3 clusters different symbols

The center of each cluster is marked with +

can assign a score to each object according to the distance between the object and the nearest centroid and compare this distance with the other elements of the cluster.

If there is a very large difference, the object is an *outlier*.



# Outlier detection with clustering: objects in small

Using Cluster- based Local Outlier Factor (CBLOF) we were able to identify *the* and the objects in the C3 cluster as *outliers* 

Considers the similarity between the object and the points of the *clusters* 





Do conhecimento à prática.