Några extra exempel

Övning 5

1. Vilka av följande permutationer (givna på enradsform) är konjugerade?

 $\pi = 54123$. $\sigma = 45231$. $\tau = 35124$.

- **2.** Hur många element i S_6 har cykelstruktur [24]?
- **3.** Hur många olika konjugatklasser finns det i S_6 ?
- 4. Är $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}$ (tvåradsform) jämn eller udda?
- 5. a) Har udda permutationer udda ordning? b) Har jämna permutationer jämn ordning?
- **6.** Skriv cykeln (1 2 3 4 5 6 7) som en sammansättning av transpositioner.
- 7. Finn permutationer χ, ψ så att $\pi \chi = \sigma, \psi \pi = \sigma$, med

 $\pi = (172)(3698)(45), \quad \sigma = (153968)(24)$ (cykelform).

Vilka av χ , π , ψ och σ är konjugerade? Varför?

Avgör om χ , π , ψ och σ är jämna eller udda permutationer.

- 8. Det går att fylla i vidstående tabell så att den blir multiplikationstabellen för en grupp, dess grupptabell. Gör det.

- a. Ar gruppen abelsk?
- **b.** Vilket element är identitetselement?
- c. Bestäm inverser till alla element.
- d. Bestäm ordningen för alla element och alla cykliska delgrupper till gruppen.
- e. Beräkna a * b * c * d * f * q. (Behövs här inga parenteser?)
- **9.** Låt G vara en grupp med identitetselementet 1 och $a, b, c \in G$.
- a. Givet att $x \in G$ uppfyller $\begin{cases} ax^2 = b \\ x^3 = 1, \end{cases}$ vad är x?

 b. Givet att $x \in G$ uppfyller $\begin{cases} (xax)^3 = bx \\ x^2a = (xa)^{-1}, \end{cases}$ vad är x?

 c. Visa $bac = a^{-1} \Rightarrow cab = a^{-1}$.
- **d.** Visa $(abc)^{-1} = abc \Rightarrow (bca)^{-1} = bca$.
- **e.** Visa att $a^3 = 1 \Rightarrow a$ har en kvadratrot, dvs för ett $r \in G$ gäller $a = r^2$.
- **f.** Visa att $b^2ab = a^{-1} \Rightarrow a$ har en kubikrot, dvs för ett $s \in G$ gäller $a = s^3$.