Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Testul 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_3 = a_1 + 2r \Rightarrow r = 3$	2p
	$a_{2021} = a_1 + 2020r = 6062$	3p
2.	$f(x) = y \Leftrightarrow 2x - 3 = -x + 3$	3р
	Coordonatele punctului de intersecție sunt $x = 2$ și $y = 1$	2p
3.	$3^{\frac{x+2}{2}} = 3^3 \Leftrightarrow \frac{x+2}{2} = 3$	3p
	x = 4	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele din mulțimea A care sunt divizori ai numărului 48 sunt: 1, 2, 3, 4, 6 și 8, deci	2
	sunt 6 cazuri favorabile	2p
	nr. cazuri favorabile 6 3	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{6}{10} = \frac{3}{5}$	1p
		_
3.	$\vec{u} \cdot \vec{v} = 2(m-4) + 2m = 4m-8$, unde <i>m</i> este număr real	3 p
	$4m-8=0 \Leftrightarrow m=2$	2p
6.	$BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos A = 36 + 9 + 2 \cdot 6 \cdot 3 \cdot \frac{1}{2} = 63$, deci $BC = 3\sqrt{7}$	3p
	$P_{\Delta ABC} = AB + BC + CA = 3\sqrt{7} + 9 = 3(\sqrt{7} + 3)$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} -2 & 1 & 1 \end{pmatrix}$ $\begin{vmatrix} -2 & 1 & 1 \end{vmatrix}$	
	$A(-1) = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & -1 & -1 \end{pmatrix} \Rightarrow \det(A(-1)) = \begin{vmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & -1 & -1 \end{vmatrix} =$	2p
	$\begin{pmatrix} 1 & -1 & -1 \end{pmatrix}$ $\begin{vmatrix} 1 & -1 & -1 \end{vmatrix}$	
	=-4+1+(-1)-(-2)-(-1)-2=-3	3p
b)	$\begin{vmatrix} 2a & 1 & 1 \end{vmatrix}$	
	$\det(A(a)) = \begin{vmatrix} 1 & 2a & 1 \end{vmatrix} = -6a^2 - a + 2$, pentru orice număr real a	2p
	$\det(A(a)) = \begin{vmatrix} 2a & 1 & 1 \\ 1 & 2a & 1 \\ 1 & a & -1 \end{vmatrix} = -6a^2 - a + 2, \text{ pentru orice număr real } a$	
	Sistemul de ecuații admite soluție unică $\Leftrightarrow \det(A(a)) \neq 0 \Leftrightarrow a \in \mathbb{R} \setminus \left\{-\frac{2}{3}, \frac{1}{2}\right\}$	3p
	Sistemal de cedații dulinte soluție dinea \Rightarrow det $(N(u)) \neq 0 \Rightarrow u \in \mathbb{R} \setminus \{3,2\}$	Эþ
c)	Cum a este număr întreg, obținem că $\det(A(a)) \neq 0$, deci $(1, y_0, z_0)$ este unica soluție a	2p
	sistemului de ecuații	2p
	$1 = \frac{3a}{-6a^2 - a + 2} \Leftrightarrow 3a^2 + 2a - 1 = 0$ şi, cum a este număr întreg, obținem $a = -1$	3р
		Эþ
2.a)	$x \circ 0 = x + 5 \cdot x \cdot 0 + 0 = x$, pentru orice număr real x	2p
	$0 \circ x = 0 + 5 \cdot 0 \cdot x + x = x$, pentru orice număr real x , deci $e = 0$ este elementul neutru al legii	3р
	de compoziție "°"	Эþ

b	$x \circ y = 5xy + x + y + \frac{1}{5} - \frac{1}{5} = 5x\left(y + \frac{1}{5}\right) + \left(y + \frac{1}{5}\right) - \frac{1}{5} =$	3p
	$= \left(y + \frac{1}{5}\right)(5x + 1) - \frac{1}{5} = 5\left(x + \frac{1}{5}\right)\left(y + \frac{1}{5}\right) - \frac{1}{5}, \text{ pentru orice numere reale } x \text{ şi } y$	2p
C	$x \circ \left(-\frac{1}{5}\right) = -\frac{1}{5} \text{ si } \left(-\frac{1}{5}\right) \circ y = -\frac{1}{5} \text{, pentru orice numere reale } x \text{ si } y$	2p
	$q = \left(\left(-\frac{1}{2}\right) \circ \left(-\frac{1}{3}\right) \circ \left(-\frac{1}{4}\right)\right) \circ \left(-\frac{1}{5}\right) \circ \left(-\frac{1}{6}\right) \circ \dots \circ \left(-\frac{1}{2021}\right) = \left(-\frac{1}{5}\right) \circ \left(\left(-\frac{1}{6}\right) \circ \dots \circ \left(-\frac{1}{2021}\right)\right) = -\frac{1}{5}, \text{ dec}$ $[q] = -1$	oi 3p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = (x+1)' \cdot \ln x + (x+1) \cdot (\ln x)' =$	2p
	$= 1 \cdot \ln x + (x+1) \cdot \frac{1}{x} = 1 + \frac{1}{x} + \ln x, \ x \in (0, +\infty)$	3р
b)	f'(1) = 2, $f(1) = 0$	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 2x - 2$	3p
c)	$f''(x) = \frac{x-1}{x^2}, x \in (0, +\infty)$	2p
	$f''(x) \ge 0$, pentru orice $x \in [1, +\infty) \Rightarrow f$ este convexă pe $[1, +\infty)$	3p
2.a)	$g(x) = x^3 + 1, x \in \mathbb{R}, \text{ deci } G: \mathbb{R} \to \mathbb{R}, G(x) = \frac{x^4}{4} + x + c, \text{ unde } c \in \mathbb{R}$	3р
	Cum $G(0) = 2021$, obținem $c = 2021$, deci $G: \mathbb{R} \to \mathbb{R}$, $G(x) = \frac{x^4}{4} + x + 2021$	2p
b)	$\left \int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{x+1}{x^{2}+1} dx = \int_{0}^{1} \left(\frac{x}{x^{2}+1} + \frac{1}{x^{2}+1} \right) dx = \left(\frac{1}{2} \ln(x^{2}+1) + \arctan x \right) \right _{0}^{1} =$	3р
	$=\frac{1}{2}\ln 2 + \frac{\pi}{4}$	2p
c)	$\frac{1}{x^2+1} \le \frac{x^n+1}{x^2+1} \le \frac{x^2+1}{x^2+1}, \text{ pentru orice } x \in [0,1] \text{ și pentru orice număr natural } n, n \ge 2, \text{ deci}$ $\int_0^1 \frac{1}{x^2+1} dx \le \int_0^1 f(x) dx \le \int_0^1 1 dx, \text{ pentru orice număr natural } n, n \ge 2$	3р
	$\begin{vmatrix} \int_{0}^{1} \frac{1}{x^{2} + 1} dx = \arctan x \begin{vmatrix} 1 \\ 0 = \frac{\pi}{4} & \text{si } \int_{0}^{1} 1 dx = x \end{vmatrix} = 1 \Rightarrow \frac{\pi}{4} \leq \int_{0}^{1} f(x) dx \leq 1, \text{ pentru orice număr natural } n, n \geq 2$	2p