Tema 2. Interpolación polinómica

2. Interpolación polinómica

- 2.1 Polinomio de Taylor
- 2.2 Polinomio interpolador de Lagrange
 - Formulación de Lagrange
 - Formulación de Newton
- 2.3 Polinomio interpolador de Hermite
- 2.4 Interpolación a trozos

Ejemplo

 Para calcular la probabilidad de que una variable aleatoria con distribución normal tome un valor determinado es necesario calcular los valores de la función

$$f(x) = \int_0^x e^{-s^2} ds.$$
 (1)

Calcular los valores de (1) no es fácil.

• Calcular los valores de la función y sus derivadas sucesivas en x=0 sí lo es.

$$f(x) = \int_0^x e^{-s^2} ds, f(0) = 0,$$

$$f'(x) = e^{-x^2}, f'(0) = 1,$$

$$f''(x) = -2xe^{-x^2}, f''(0) = 0,$$

$$f'''(x) = -2e^{-x^2} + 4x^2e^{-x^2}, f'''(0) = -2.$$

Nos planteamos encontrar un polinomio P que cumpla

$$P(0) = 0, P'(0) = 1, P''(0) = 0, P'''(0) = -2.$$
 (2)

- Si P interpola a f ambas funciones no serán muy diferentes \longrightarrow se evalúa P en lugar de f \longrightarrow más sencillo
- ¿Podremos hallar un polinomio que cumpla (2)?

El problema de interpolación de Taylor

Dados un natural n, un punto x_0 de la recta y los valores de una función y sus n primeras derivadas en x_0

$$f(x_0), f'(x_0), \dots, f^{(n)}(x_0),$$

encontrar un polinomio P(x) de grado $\leq n$ que verifique

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0), \dots, P^{(n)}(x_0) = f^{(n)}(x_0).$$

Dicho polinomio se conoce como polinomio de Taylor.

Existencia y unicidad

El problema de interpolación de Taylor tiene solución única, que se llama polinomio de Taylor de grado $\leq n$ de la función en el punto x_0 .

ullet Buscamos un polinomio P de grado $\leq n$

$$P(x) = a_0 + a_1 x + \dots + a_n x^n,$$

que verifique

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0), \dots, P^{(n)}(x_0) = f^{(n)}(x_0).$$

 \longrightarrow sistema lineal de n+1 ecuaciones y n+1 incógnitas \longrightarrow resulta laborioso

• Más sencillo, como combinación lineal de polinomios $(x-x_0)^i/i!$

$$P(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)^2 / 2! + \dots + b_n(x - x_0)^n / n!,$$

Derivando P e imponiendo las condiciones, se obtiene un sistema de ecuaciones lineales en los b_i con solución única y resolución trivial. Así obtenemos la forma usual del polinomio de Taylor

$$P_{n,x_0}(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2!} + \dots + f^{(n)}(x_0)\frac{(x - x_0)^n}{n!}$$

Ejemplo 1. Calcular el polinomio de Taylor de grado 3 en $x_0 = 0$ de $f(x) = \sin x$.

$$f(x) = \sin x, \quad f(0) = 0,$$

 $f'(x) = \cos x, \quad f'(0) = 1,$
 $f''(x) = -\sin x, \quad f''(0) = 0,$
 $f'''(x) = -\cos x, \quad f'''(0) = -1,$

Entonces,

$$P_{3,0}(x) = x - \frac{x^3}{3!}.$$

Teorema de Taylor

Sea $f \in \mathcal{C}^n([a,b])$ y existe $f^{(n+1)}$ en [a,b]. Sea $x_0 \in [a,b]$. Entonces, para cada $x \in [a, b]$ existe ξ entre x_0 y x tal que

$$f(x) = P_{n,x_0}(x) + R_{n,x_0}(x),$$

con

$$P_{n,x_0}(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \ R_{n,x_0}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

 $P_{n,x_0}(x)$ es el polinomio de Taylor de grado n en x_0 y $R_{n,x_0}(x)$ es el resto en la forma de Lagrange.

Se verifica

$$\lim_{n \to \infty} \frac{|f(x) - P_{n,x_0}(x)|}{(x - x_0)^n} = 0.$$

Error del polinomio de Taylor

El error cometido al aproximar f(x) por $P_{n,x_0}(x)$ en un entorno de x_0 viene dado por $R_{n,x_0}(x)$

$$R_{n,x_0}(x) = f(x) - P_{n,x_0}(x).$$

Notación de Landau

• El resto del polinomio de Taylor de grado n en x_0 es una O grande de $(x-x_0)^n$ (de Landau)

$$R_{n,x_0} = O((x-x_0)^{n+1}).$$

- La forma de *entender* lo que significa la notación O grande es considerar que si $f = O((x x_0)^n)$, f se comporta como un polinomio escrito en potencias de $(x x_0)$ cuyo término de menor grado es de la forma $A(x x_0)^n$.
- Si $f \in \mathcal{C}^{n+1}$ en un entorno de x_0 , entonces $P_{n,x_0}(x)$ es el único polinomio de grado menor o igual a n que verifica

$$f(x) - P_{n,x_0}(x) = O((x - x_0)^{n+1}).$$

Ejemplo 1. Utilizar polinomio de Taylor obtenido para aproximar el valor de f en x = 1/5. Calcular el resto en la forma de Lagrange y acotar el error.

Si utilizamos el polinomio para aproximar el valor en x=0.2

$$f(0.2) = \sin 0.2 \approx P_{3,0}(0.2) = \frac{149}{750}.$$

El resto

$$R_{3,0}(x) = \operatorname{sen}(\xi) \frac{x^4}{4!} = O(x^4).$$

ya que

$$f^{(4)}(x) = \operatorname{sen} x, \Longrightarrow f^{(4)}(\xi) = \operatorname{sen}(\xi).$$

El error cometido

con ξ entre 0 y 0.2. Acotando

$$\left| \sec 0.2 - \frac{149}{750} \right| = \frac{(0.2)^4}{4!} |\sec(\xi)| \le \frac{(0.2)^4}{4!} = \frac{1}{15000}.$$

Una cota del error es $\frac{1}{15000}$.

Figura 1: Función $f(x) = {\rm sen}\, x$ y $P_{3,0}(x)$

2.2 Polinomio Interpolador de Lagrange

Ejemplo 2. Población de E.U. entre 1940 y 1990

Año	1940	1950	1960	
Población	132.165	151.326	179.323	
Año	1970	1980	1990	

Cuadro: Función seno

Objetivo

• Aproximar f(x) mediante un polinomio que coincida con la función en un número de puntos (nodos) de un intervalo.

Teorema de aproximación de Weierstrass

Sea f continua en [a,b]. Para todo $\varepsilon>0$ existe un polinomio P(x) definido en [a,b] con la propiedad

$$|f(x) - P(x)| < \varepsilon, \ \forall x \in [a, b].$$

• ¿Polinomios de Taylor? No. Proporcionan aproximaciones locales.

Ejemplo 4. Polinomios de Taylor

Los seis primeros polinomios de Taylor en $x_0 = 0$ para $f(x) = e^x$

$$P_0(x) = 1, \quad P_1(x) = 1 + x, \quad P_2(x) = 1 + x + \frac{x^2}{2},$$

$$P_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}, \quad P_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24},$$

$$P_5(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120}.$$

En general:

- La aproximación es peor para valores de x alejados de x_0 .
- La aproximación es mejor para n grande: utilizar polinomios de grado elevado?

Ejemplo 5. Polinomios de Taylor

Polinomios de Taylor en $x_0 = 1$ para f(x) = 1/x

n	0	1	2	3	4	5	6	7
$P_n(3)$	1	-1	3	-5	11	-21	43	-85

Cuadro: Valores de los polinomios de Taylor de f(x) = 1/x para x = 3

Limitación

En los polinomios de Taylor toda la información sobre f se concentra en $x_0 \longrightarrow \operatorname{aproximación} \operatorname{en} \operatorname{puntos} \operatorname{cercanos} \operatorname{a} x_0$

Solución

Construir polinomios que incluyan información en diversos puntos --> polinomios interpoladores

El problema de interpolación de Lagrange

Dados un natural n y n+1 puntos

$$x_0, x_1, \ldots, x_n$$

y los valores de f(x)

$$f(x_0), f(x_1), \dots, f(x_n)$$

encontrar un polinomio $P_n(x)$ de grado $\leq n$ que verifique

$$P_n(x_0) = f(x_0), P_n(x_1) = f(x_1), \dots, P_n(x_n) = f(x_n).$$

Dicho polinomio se conoce como polinomio interpolador de Lagrange.

Existencia y unicidad

El polinomio interpolador de Lagrange que interpola a f(x) en n+1 nodos dos a dos distintos es único.

Buscamos un polinomio P_n de grado $\leq n$

$$P_n(x) = a_0 + a_1 x + \dots + a_n x^n,$$

que verifique

$$P_n(x_0) = f(x_0), P_n(x_1) = f(x_1), \dots, P_n(x_n) = f(x_n).$$

Esto da lugar a un sistema lineal de n+1 ecuaciones y n+1 incógnitas

- Resolviendo el sistema obtenemos el polinomio → resulta laborioso
- Existen formas más adecuadas para obtener el polinomio que ahorran la resolución del sistema:
 - Formulación de Lagrange.
 - Pormulación de Newton.

Formulación de Lagrange

Buscamos el polinomio interpolador como combinación lineal de n+1 polinomios $l_i(x)$ de grado n

tales que

$$P_n(x) = b_0 l_0(x) + b_1 l_1(x) + \dots + b_n l_n(x)$$

$$\begin{cases} l_i(x_i) &= 1, \\ l_i(x_j) &= 0, \quad j \neq i. \end{cases} \} \Longrightarrow$$

$$P_n(x_i) = b_i l_i(x_i) =$$

$$b_i = f(x_i)$$
.

• Para que se verifique $l_i(x_j) = 0, j \neq i$

$$l_i(x) = c_i \prod_{j=0, j \neq i}^{n} (x - x_j).$$

• Para que se verifique $l_i(x_i) = 1$,

$$c_i = \prod_{j=0, j \neq i}^n (x_i - x_j)^{-1}.$$

Polinomio interpolador en la forma de Lagrange

$$P_n(x) = f(x_0)l_0(x) + \dots + f(x_n)l_n(x),$$

donde

$$l_i(x) = \prod_{j=0, j \neq i}^{n} \frac{(x - x_j)}{(x_i - x_j)}.$$

 l_i es el i-ésimo coeficiente polinomial de Lagrange (de grado n)

Ejemplo 6 Construir el polinomio interpolador de orden 2 para f(x)=1/x en los nodos 5

$$x_0 = 2, x_1 = \frac{5}{2}, x_2 = 4.$$

Los polinomios l_i

$$l_0(x) = \frac{(x-5/2)(x-4)}{(2-5/2)(2-4)},$$

$$l_1(x) = \frac{(x-2)(x-4)}{(5/2-2)(5/2-4)},$$

$$l_2(x) = \frac{(x-2)(x-5/2)}{(4-2)(4-5/2)},$$

y el polinomio interpolador es

$$P_2(x) = \frac{1}{2}(x - 5/2)(x - 4) - \frac{8}{15}(x - 2)(x - 4) + \frac{1}{12}(x - 2)(x - 5/2).$$

Para aproximar el valor de f(3) = 1/3:

$$f(3) \simeq P_2(3) = 0.325.$$

Comparando con el polinomio de Taylor (Ejemplo 5) el resultado es considerablemente mejor.

Polinomio interpolador $P_2(x)$ para f(x)=1/x

Coste computacional de la formulación de Lagrange

- En la forma de Lagrange el polinomio interpolador no admite la formulación de Horner.
- La forma más eficiente consiste en escribir cada $l_i(x)$

$$l_i(x) = \omega(x) \cdot \frac{1}{x - x_i} \cdot \frac{1}{\prod_{j=0, j \neq i}^{n} (x_i - x_j)},$$

siendo

$$\omega(x) = (x - x_0) \cdots (x - x_{i-1})(x - x_i)(x - x_{i+1}) \cdots (x - x_n).$$

Entonces

$$P_n(x) = \omega(x) \cdot \left[\frac{F_0(x)}{x - x_0} + \dots + \frac{F_n(x)}{x - x_n} \right],$$

con

$$F_i(x) = \frac{f(x_i)}{(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$

$$Total = n^2 + 3n + 2$$
 productos

Error del polinomio interpolador de Lagrange

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\varepsilon)}{(n+1)!}(x - x_0) \cdots (x - x_n).$$
 (3)

para algún número (desconocido) ε que está en el intervalo más pequeño que contiene todos los puntos x_0, x_1, \ldots, x_n y x.

- La fórmula del error recuerda a la del polinomio de Taylor.
- El uso de la fórmula (3) se limita a funciones cuyas derivadas tienen cotas conocidas

$$|f(x) - P_n(x)| \le c_{n+1} \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!}$$

Ejemplo 7 Comparemos las aproximaciones a f(1.5) obtenidas con varios polinomios de Lagrange.

$$\begin{array}{c|cccc} x & f(x) \\ \hline 1.0 & 0.7651970 \\ 1.3 & 0.6200860 \\ 1.6 & 0.4554022 \\ 1.9 & 0.2818186 \\ 2.2 & 0.1103623 \\ \hline \end{array}$$

• Polinomio lineal: $x_0 = 1.3$ y $x_1 = 1.6$

$$P_1(1.5) = 0.5102968.$$

• Polinomio cuadrático 1: $x_0 = 1.3, x_1 = 1.6 \text{ y } x_2 = 1.9$

$$P_2(1.5) = 0.5112857.$$

• Polinomio cuadrático 2: $x_0 = 1.0, x_1 = 1.3 \text{ y } x_2 = 1.6$

$$\hat{P}_2(1.5) = 0.5124715.$$

• Polinomio cúbico 1: $x_0 = 1.3, x_1 = 1.6, x_2 = 1.9, y x_3 = 2.2$

$$P_3(1.5) = 0.5118302.$$

• Polinomio cúbico 2:
$$x_0 = 1.0$$
, $x_1 = 1.3$, $x_2 = 1.6$ y $x_3 = 1.9$

$$\hat{P}_3(1.5) = 0.5118127.$$

Polinomio de cuarto orden: Todos los nodos

$$P_4(1.5) = 0.5118200.$$

- Valor exacto f(1.5) = 0.5118277.

$$\begin{array}{lll} \bullet \ \, & |P_1(1.5) - f(1.5)| & \approx & 1.5 \times 10^{-3}, \\ & |P_2(1.5) - f(1.5)| & \approx & 5.4 \times 10^{-4}, \\ & |\hat{P}_2(1.5) - f(1.5)| & \approx & 6.4 \times 10^{-4}, \\ & |P_3(1.5) - f(1.5)| & \approx & 2.5 \times 10^{-6}, \\ & |\hat{P}_3(1.5) - f(1.5)| & \approx & 1.5 \times 10^{-5}. \end{array}$$

- $P_3(1.5)$ es la aproximación más exacta.
- No podemos emplear el término del error para acotar los errores.

 $|P_4(1.5) - f(1.5)| \approx 7.7 \times 10^{-6}$.

Ventajas de la formulación de Lagrange

• No es necesario resolver un sistema lineal $(n+1) \times (n+1)$

Desventajas de la formulación de Lagrange

- No admite la aplicación del algoritmo de Horner → importante coste computacional.
- Si se añade un nuevo nodo x_{n+1} hay que recalcular cada $l_i(x)$.
- $l_i(x)$ depende de x.

Conclusión

Los polinomios con la formulación de Lagrange se usan poco en la práctica. Son teóricamente muy útiles para deducir fórmulas de integración numérica.

Alternativa → Formulación de Newton

Formulación de Newton

Construiremos el polinomio hasta un cierto grado en pasos sucesivos

• P_0 de grado ≤ 0 tal que

$$P_0(x_0) = f(x_0).$$

 P_1 de grado < 1 tal que

$$P_1(x_0) = f(x_0),$$

 $P_1(x_1) = f(x_1).$

- P_i de grado $\leq i$ tal que

$$P_i(x_j) = f(x_j) \ j = 0, \dots, i.$$

$$P_0(x) = c_0$$

$$P_0(x) = c_0 = f(x_0) \Rightarrow$$

$$P_0(x) = f(x_0).$$

 $\Longrightarrow Q_1(x) = c_1(x - x_0).$

$$P_1(x) = P_0(x) + Q_1(x) \text{ con } Q_1(x) \text{ grado} \leq 1$$

$$Q_1(x_0) = 0$$

$$P_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0).$$

- **3**
- **4** $P_n(x) = P_{n-1}(x) + Q_n(x)$ con $Q_n(x)$ grado $\leq n$ $Q_n(x_0) = \cdots = Q_n(x_{n-1}) = 0$

$$\implies Q_n(x) = c_n(x - x_0)(x - x_1) \cdots (x - x_{n-1}).$$

$$P_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \cdots + c_n(x - x_0)(x - x_1) \cdots (x - x_{n-1}).$$

Observaciones

- (i) Cada sumando tiene significado.
- (ii) No supone esfuerzo obtener un polinomio de grado k+1 a partir de uno de grado k.

¿Cómo obtener los c_i ? \longrightarrow diferencias divididas

Diferencias divididas

Sea f una función definida en k+1 nodos x_0,\dots,x_k . Se define la diferencia dividida de orden k como el coeficiente de x^k en el polinomio interpolador de Newton

$$c_k = f[x_0, \dots, x_k].$$

Polinomio interpolador en la forma de Newton

Con esta notación podemos formular el polinomio interpolador

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + + f[x_0, x_1, x_2](x - x_0)(x - x_1) + + \cdots + f[x_0, \dots, x_n](x - x_0) \cdots (x - x_{n-1}),$$

donde

$$f[x_i] = f(x_i), \quad \rfloor$$

y las diferencias divididas de orden k se pueden obtener a partir de las de orden k-1

$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}.$$

 $f[x_{i-3},\ldots,x_i]$

 $f[x_i]$ $f[x_{i-1}, x_i]$ $f[x_{i-2}, x_{i-1}, x_i]$

Tabla de diferencias divididas

 x_i

$$P_4(x) = 0.7865197 - 0.5547790(x - 1.0) + 0.009721667(x - 1.0)(x - 1.3)$$

$$- 0.06573889(x - 1.0)(x - 1.3)(x - 1.6)$$

$$+ 0.1115062(x - 1.0)(x - 1.3)(x - 1.6)(x - 1.9).$$

Evaluando en x = 1.5 se tiene $P_4(1.5) = 0.5112061$.

Coste computacional de la formulación de Newton

Admite algoritmo de Horner

$$P_n(x) = c_0 + (x - x_0)(c_1 + (x - x_1)(c_2 + (x - x_2))) (c_3 + \dots + (x - x_{n-2})(c_{n-1} + (x - x_{n-1})c_n)) \dots).$$

$$Total = \frac{n^2}{2} + \frac{3n}{2}$$
 productos.

- Con la formulación de Lagrange en la forma más económica \longrightarrow n^2+3n+2 . Requiere la *mitad* de tiempo que la formulación de Lagrange \longrightarrow importante ahorro computacional
- En la formulación de Lagrange los l_i dependen de x; en la formulación de Newton las diferencias divididas no dependen de x si no de x_0, \ldots, x_n .

2.3 Polinomio interpolador de Hermite

Dados un natural n y n+1 puntos

$$x_0,x_1,\ldots,x_n$$
 y los valores de $f(x)$ $f(x_0),f(x_1),\ldots,f(x_n)$ $f'(x_0),f'(x_1),\ldots,f'(x_n)$

encontrar un polinomio $H_{2n+1}(x)$ de grado $\leq 2n+1$ que verifique

$$H_{2n+1}(x_0) = f(x_0), \dots, H_{2n+1} = f(x_n)$$

 $H'_{2n+1}(x_0) = f'(x_0), \dots, H'_{2n+1} = f'(x_n).$

Dicho polinomio se conoce como polinomio interpolador de Hermite.

Existencia y unicidad

El polinomio interpolador de Hermite que interpola a f(x) y f'(x) en n+1 nodos dos a dos distintos es único.

Construcción a partir de la formulación de diferencias divididas

1 A partir de los n+1 nodos x_0, x_1, \ldots, x_n , se genera una nueva sucesión de 2n+2 nodos z_0,\ldots,z_{2n+1}

$$z_{2i} = z_{2i+1} = x_i, \quad i = 0, \dots, n.$$

2 Se construye la tabla de diferencias divididas teniendo en cuenta

$$f[z_{2i}, z_{2i+1}] = f'(z_{2i}) = f'(x_i).$$

- El resto de diferencias divididas se calculan igual que habíamos visto.
- 4 A partir de la tabla de diferencias divididas se construye el polinomio de Hermite.

 $f[z_{i-1}, z_i]$ $f[z_{i-2}, z_{i-1}, z_i]$ $f[z_{i-3}, z_{i-2}, z_{i-1}, z_i]$

Tabla de diferencias divididas

 $f[z_i]$

 z_i

$$z_{0} = x_{0} f(x_{0}) f[z_{0}, z_{1}] = f'(x_{0}) f[z_{0}, z_{1}] = f'(x_{0}) \frac{f[z_{1}, z_{2}] - f[z_{0}, z_{1}]}{z_{2} - z_{0}} \frac{f[z_{1}, z_{2}] - f[z_{0}, z_{1}]}{z_{2} - z_{1}} \frac{f[z_{1}, z_{2}] - f[z_{0}, z_{1}, z_{2}]}{z_{3} - z_{0}} z_{3} - z_{0}$$

$$z_{2} = x_{1} f(x_{1}) f[z_{2}, z_{3}] = f'(x_{1}) \frac{f[z_{2}, z_{3}] - f[z_{1}, z_{2}]}{z_{3} - z_{1}} z_{3} - z_{0}$$

$$z_{3} = x_{1} f(x_{1})$$

Polinomio interpolador de Hermite

$$H_{2n+1} = f[z_0] + \sum_{k=1}^{2n+1} f[z_0, \dots, z_k](x - z_0) \cdots (x - z_{k-1}).$$

Error

$$f(x) - H_{2n+1}(x) = \frac{f^{(2n+2)}(\varepsilon)}{(2n+2)!} (x - x_0)^2 \cdots (x - x_n)^2.$$

para algún número (desconocido) ε que está en el intervalo más pequeño que contiene todos los puntos x_0, x_1, \ldots, x_n y x.

Ejemplo 9. A partir de la tabla, obtener el polinomio de Hermite y utilizarlo para aproximar el valor en x=1.5

$_{k}$	x_k	$f(x_k)$	$f'(x_k)$
0	1.3	0.6200860	-0.5220232
1	1.6	0.4554022	-0.5698959
_2	1.9	0.2818186	-0.5811571

$$H_5(x) = 0.6200860 + (x - 1.3)(-0.5220232) + (x - 1.3)^2(-0.0894267) + (x - 1.3)^2(x - 1.6)(0.0663657) + (x - 1.3)^2(x - 1.6)^2(0.0026663) + (x - 1.3)^2(x - 1.6)^2(x - 1.9)(-0.0027747),$$

y lo usamos para aproximar el valor en x=1.5

$$H_5(1.5) = 0.6200860 + (1.5 - 1.3)(-0.5220232) + (1.5 - 1.3)^2(-0.0894267) +$$

$$+ (1.5 - 1.3)^2(1.5 - 1.6)(0.0663657) + (1.5 - 1.3)^2(1.5 - 1.6)^2(0.0026663) +$$

$$+ (1.5 - 1.3)^2(1.5 - 1.6)^2(1.5 - 1.9)(-0.0027747)$$

$$= 0.5118277.$$

Interpolación polinómica a trozos

Nos planteamos si el error

$$f(x) - P_n(x)$$

puede hacerse arbitrariamente pequeño al ir incrementando el grado del polinomio.

Aún más ¿será cierto

$$\lim_{n \to \infty} P_n(x) = f(x)?$$

 La respuesta es en general negativa: incrementar el grado del polinomio interpolador no siempre es recomendable.

Ejemplo 10. Función de Runge

Función $f(x)=\dfrac{1}{1+x^2}$ y polinomio interpolador en 15 nodos equiespaciados en $-5 \le x \le 5$. No hay convergencia para |x| > 3.6.

Conclusión

Incrementar el grado del polinomio interpolador no siempre es aconsejable

- Se incrementa considerablemente el coste computacional.
- La naturaleza oscilatoria de los polinomios de alto grado hace que

$$\lim_{n \to \infty} P_n(x) \neq f(x), \ \forall x.$$

Solución \longrightarrow Interpolación a trozos o segmentaria.

Estrategia

Dividir el intervalo de partida en subintervalos y en cada uno de ellos construir un polinomio interpolador de grado bajo.

Interpolación lineal a trozos

Consiste en unir una serie de puntos

$$(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))$$

mediante segmentos de rectas.

• Buscamos una función S(x) lineal a trozos que verifique

$$S(x_0) = f(x_0), S(x_1) = f(x_1), \dots, S(x_n) = f(x_n).$$

• En el intervalo $[x_{i-1}, x_i]$ el segmento de recta $S^i(x)$ coincide con el polinomio interpolador de Lagrange en x_{i-1}, x_i

$$S^{i}(x) = f[x_{i-1}] + f[x_{i-1}, x_{i}](x - x_{i-1}), \forall x \in [x_{i-1}, x_{i}]$$

Error

$$|f(x) - S(x)| \le \frac{h^2}{8}k_2 = O(h^2), \quad x \in [a, b].$$

con $|f''(x)| \le k_2$ para $x \in [x_{i-1}, x_i]$ y

$$h = \max(x_i - x_{i-1})$$

Convergencia

Si designamos por $S_0, S_1, \dots S_n$ la sucesión de interpolantes obtenidos al ir refinando la partición (es decir, para $h_0 > \dots > h_n$) se tiene

$$\lim_{n\to\infty(h\to 0)} S_n(x) = f(x) \longrightarrow \text{CONVERGENCIA}.$$

La cota involucra $h^2 \longrightarrow \text{convergencia cuadrática}$.

Ventajas

- El coste de obtener polinomios lineales es menor que el de obtener P_n con n elevado.
- No está garantizado

$$\lim_{n \to \infty} P_n(x) = f(x)$$

y, sin embargo,

$$\lim_{n \to \infty} S_n(x) = f(x)$$

Desventaja

• La función interpolante no es suave: no se garantiza diferenciabilidad en los nodos, sólo continuidad.

Ejemplo 10. Función de Runge

Función $f(x)=\frac{1}{1+x^2}$ y polinomio interpolador lineal a trozos en 15 nodos equiespaciados en $-5 \le x \le 5$.

Interpolación cuadrática a trozos

Consiste en unir una serie de puntos

$$(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))$$

mediante segmentos de parábolas.

• Buscamos una función Q(x) cuadrática a trozos que verifique

$$Q(x_0) = f(x_0), Q(x_1) = f(x_1), \dots, Q(x_n) = f(x_n).$$

• Si en cada intervalo $[x_{i-1}, x_i]$ imponemos además

$$Q(x_i^*) = f(x_i^*)$$
 con $x_i^* = \frac{x_{i-1} + x_i}{2}$.

obtenemos porciones de parábolas $Q^i(x)$ que coinciden con el polinomio interpolador de Lagrange en x_{i-1}, x_i^* y x_i .

• Como en cada subintervalo necesitamos el valor de f en tres nodos x_{i-1}, x_i^* y x_i el número total de nodos ha de ser impar.

Error

$$|f(x) - Q(x)| \le \frac{\sqrt{3}}{216}h^3k_3 = O(h^3)$$

con $|f'''(x)| \leq k_3$ para $x \in [a,b]$ y

$$h = \max(x_i - x_{i-1}).$$

Convergencia

Si designamos por $Q_0, Q_1, \dots Q_n$ la sucesión de interpolantes obtenidos al ir refinando la partición (es decir, para $h_0 > \cdots > h_n$) se tiene

$$\lim_{n\to\infty(h\to 0)} Q_n(x) = f(x) \longrightarrow \text{CONVERGENCIA}.$$

La cota involucra $h^3 \longrightarrow \text{convergencia cúbica}$.

Se ha mejorado la convergencia respecto de la lineal, pero no se subsana la falta de regularidad: Q(x) es continua pero no tiene porqué ser derivable en los nodos --> Interpolación segmentaria de Hermite.

Interpolación segmentaria de Hermite

• Si se conocen los valores de f y f' en x_0, \ldots, x_n se construye en cada subintervalo $[x_{i-1}, x_i]$ un polinomio de Hermite de grado tres que verifique

$$H(x_i) = f(x_i), \quad H'(x_i) = f'(x_i),$$

 $H(x_{i-1}) = f(x_{i-1}), \quad H'(x_{i-1}) = f'(x_{i-1}).$

- Con estas condiciones se consigue derivada continua.
- La cota de error es

$$C_4 \frac{h^4}{384},$$

por lo que presenta convergencia de orden cuatro.

- Inconveniente: Se necesita conocer f'
- Se podrían considerar interpolantes cúbicos, cuárticos,... a trozos con convergencias en h^4, h^5, \ldots pero en la práctica no se pasa del caso cúbico: es mejor refinar la partición.

Interpolación de trazadores cúbicos o splines

- En general los polinomios segmentarios garantizan la convergencia pero en ocasiones no resultan útiles por su reducida regularidad —> Splines
- Los splines son interpolantes muy suaves: se consigue continuidad en la segunda derivada mejorando la regularidad de los interpoladores de Hermite.
- La cota de error es cinco veces superior a la de Hermite

$$5\frac{C_4h^4}{384}$$
.

- No se necesitan los valores de f' y f''.
- Cuando se presentan las condiciones de spline natural la gráfica se aproxima a la forma que adoptaría una varilla flexible (spline) si la hiciéramos pasar por $(x_0, f(x_0)), \ldots, (x_n, f(x_n))$.

Bibliografía

- Diez Lecciones de Cálculo Numérico Sanz-Serna, J.M.
 Delta Publicaciones, Secretariado de Publicaciones e Intercambio Científico, Universidad de Valladolid, 2010.
 Capítulos 2, 3 y 4
- Métodos Numéricos Faires, J.D., Burden, R.L. International Thompson Editores, 2004. Capítulos 1 y 3.
- Análisis Numérico. Burden, R.L., Faires, J.D. International Thompson Editores, 2002. Capítulos 1 y 3.